

Global United Technology Services Co., Ltd.

Report No.: GTS16000787E02

FCC REPORT

Applicant: Simbans Limited

Address of Applicant: 806, 8th Floor, Tai Tak Industrial Building 2-12 Kwai Fat Road,

Kwai Chung, Hong Kong

Equipment Under Test (EUT)

Product Name: 10.1 Inch IPS tablet

Model No.: PRESTO

Trade Mark: Simbans

FCC ID: 2AHY3-PRESTO

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2014

Date of sample receipt: April 11, 2016

Date of Test: April 11-14, 2016

Date of report issued: April 14, 2016

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	April 14, 2016	Original

Prepared By:	Sam. Gao	Date:	April 14, 2016	
	Project Engineer	_		
Check By:	hank. yan	Date:	April 14, 2016	
	Reviewer			

3 Contents

		Page
1 COV	ER PAGE	1
2 VEI	RSION	2
3 CO	NTENTS	3
4 TES	ST SUMMARY	4
4.1	MEASUREMENT UNCERTAINTY	4
5 GE	NERAL INFORMATION	5
5.1	CLIENT INFORMATION	
5.2	GENERAL DESCRIPTION OF EUT	
5.3	TEST MODE	
5.4	DESCRIPTION OF SUPPORT UNITS	
5.5	TEST FACILITY	
5.6 5.7	TEST LOCATION OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	ST INSTRUMENTS LIST	
7 TES	ST RESULTS AND MEASUREMENT DATA	9
7.1	ANTENNA REQUIREMENT	
7.2	CONDUCTED EMISSIONS	
7.3	RADIATED EMISSION METHOD	13
7.3.	3 · · · · · · · · · · · · · · · · · · ·	
7.3.	-1	
7.3.	- · · · · · · · · · · · · · · · · · · ·	
7.4	20DB OCCUPY BANDWIDTH	
8 TES	ST SETUP PHOTO	23
9 EU	T CONSTRUCTIONAL DETAILS	24

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10 2013 and ANSI C63.4: 2014

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.

5 General Information

5.1 Client Information

Applicant:	Simbans Limited
Address of Applicant:	806, 8th Floor, Tai Tak Industrial Building 2-12 Kwai Fat Road, Kwai Chung, Hong Kong
Manufacturer/ Factory:	Shenzhen Iproda Technology CO.,LTD.
Address of Manufacturer/ Factory:	4F-5F ,C Building, Gongming Tang Wei Village Wanfeng Industrial Zone, Guangming New District , Shenzhen

5.2 General Description of EUT

Product Name:	10.1 Inch IPS tablet
Model No.:	
Model No	PRESTO
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4QPSK, 8DPSK
Antenna Type:	Integral antenna
Antenna gain:	-2.3dBi (declare by Applicant)
Power supply:	Adapter:
	Model No.: KA23-0502000DEU
	Input: AC 100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2.0A
	or
	DC 3.7V Li-ion polymer Battery

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
	:		:			:	:
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Y	Z
Field Strength(dBuV/m)	93.15	96.88	94.32

Final Test Mode:

The EUT was tested in GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup":

Y axis (see the test setup photo)

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.7 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 26 2016	Mar. 25 2017	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jun. 30 2015	Jun. 29 2016	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jun. 30 2015	Jun. 29 2016	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jun. 30 2015	Jun. 29 2016	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	Jun. 26 2015	Jun. 25 2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2016	Mar. 26 2017	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 27 2016	Mar. 26 2017	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 27 2016	Mar. 26 2017	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 27 2016	Mar. 26 2017	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 27 2016	Mar. 26 2017	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jun. 30 2015	Jun. 29 2016	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jun. 30 2015	Jun. 29 2016	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Jun. 26 2015	Jun. 25 2016	
16	Band filter	Amindeon	82346	GTS219	Mar. 27 2016	Mar. 26 2017	

Con	ducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Jun. 30 2015	Jun. 29 2016
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jun. 30 2015	Jun. 29 2016
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jun. 30 2015	Jun. 29 2016
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jun. 30 2015	Jun. 29 2016
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jun. 30 2015	Jun. 29 2016
6	Coaxial Cable	GTS	N/A	GTS227	Jun. 30 2015	Jun. 29 2016
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Gen	General used equipment:												
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)							
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016							

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Integral antenna, the best case gain of the antenna is -2.3dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto							
Limit:	Limit (dBuV)								
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithn	n of the frequency.	_						
Test setup:	Reference Plane								
	Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m								
Test procedure:	The EUT and simulators ar line impedance stabilization 50ohm/50uH coupling impe	n network (L.I.S.N.). Th	is provides a						
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).								
	3. Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:	d the maximum emission all of the interface cab	on, the relative bles must be changed						
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Pass								

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

: 0787

Job No. Test mode : Bluetooth mode

Test Engineer: Sky

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBu₹	dBuV	dB	
1	0.168	47.03	0.15	0.12	47.30	65.08	-17.78	QP
2	0.168	34.79	0.15	0.12	35.06	55.08	-20.02	Average
	0.471	42.80	0.12	0.11	43.03	56.49	-13.46	QP
4 5 6	0.471	29.28	0.12	0.11	29.51	46.49	-16.98	Average
5	0.494	43.38	0.12	0.11	43.61	56.10	-12.49	QP
6	0.494	25.22	0.12	0.11	25.45	46.10	-20.65	Average
7	0.665	40.66	0.14	0.13	40.93	56.00	-15.07	QP
8	0.665	24.44	0.14	0.13	24.71	46.00	-21.29	Average
9	1.662	39.77	0.12	0.14	40.03	56.00	-15.97	QP
10	1.662	19.96	0.12	0.14	20.22	46.00	-25.78	Average
11	2.448	38.12	0.13	0.15	38.40	56.00	-17.60	QP
12	2, 448	20.02	0.13	0.15	20.30	46.00	-25.70	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0787

Test mode : Bluetooth mode

Test Engineer: Sky

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	2
1	0.170	43.56	0.07	0.12	43.75	64.94	-21.19	QP
2	0.170	28.65	0.07	0.12	28.84	54.94	-26.10	Average
3	0.402	40.65	0.06	0.11	40.82	57.81	-16.99	QP
4	0.402	29.37	0.06	0.11	29.54	47.81	-18.27	Average
5	0.494	47.59	0.06	0.11	47.76	56.10	-8.34	QP
4 5 6 7	0.494	32.64	0.06	0.11	32.81	46.10	-13.29	Average
	0.535	44.11	0.07	0.11	44.29	56.00	-11.71	QP
8	0.535	26.77	0.07	0.11	26.95	46.00	-19.05	Average
9	0.963	41.64	0.07	0.13	41.84	56.00	-14.16	QP
10	0.963	22.01	0.07	0.13	22.21	46.00	-23.79	Average
11	1.698	41.29	0.09	0.14	41.52	56.00	-14.48	QP
12	1.698	21 47	0.09	0.14	21.70	46.00	-24 30	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

FCC Part15 C S	Section 15 20	10					
FCC Part15 C Section 15.209							
ANSI C63.10:20	013						
30MHz to 25GH	łz						
Measurement D	istance: 3m						
Frequency	Detector	RB	3W	VBW	Remark		
30MHz- 1GHz	Quasi-pea	k 120l	KHz	300KHz	Quasi-peak Value		
Above 1CHz	Peak	1M	Hz	3MHz	Peak Value		
Above IGHZ	Peak	1M	Hz	10Hz	Average Value		
Freque	Frequency			m @3m)	Remark		
2400MHz-24				Average Value			
21001111122			114.0	0	Peak Value		
		Limit (d			Remark		
					Quasi-peak Value		
				Quasi-peak Value			
				Quasi-peak Value			
960101112-					Quasi-peak Value Average Value		
Above 1	GHz				Peak Value		
harmonics, shal fundamental or	ll be attenuat to the genera	ed by at l al radiate	least 5	0 dB belov	w the level of the		
whichever is the lesser attenuation. Below 1GHz Antenna Tower Search Antenna RF Test Receiver Ground Plane							
	30MHz to 25GH Measurement D Frequency 30MHz- 1GHz Above 1GHz Freque 2400MHz-24 Freque 30MHz-8 88MHz-2 216MHz-9 960MHz- Above 1 Emissions radia harmonics, shalfundamental or whichever is the Below 1GHz	30MHz- 1GHz Above 1GHz Peak Frequency 2400MHz-2483.5MHz Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuat fundamental or to the general whichever is the lesser atternoon and the lesser	Measurement Distance: 3m Frequency Detector RE 30MHz- Quasi-peak 120 1GHz Peak 1M Peak 1M Frequency Limit (c) 2400MHz-2483.5MHz Frequency Limit (c) 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of the spentarmonics, shall be attenuated by at fundamental or to the general radiate whichever is the lesser attenuation. Below 1GHz EUT 4m Ground Plane Ground Plane	Measurement Distance: 3m Frequency Detector RBW 30MHz- Quasi-peak 120KHz 1GHz Above 1GHz Peak 1MHz Peak 1MHz Peak 1MHz Peak 1MHz Peak 1MHz Frequency Limit (dBuV/) 2400MHz-2483.5MHz Frequency Limit (dBuV/) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 74.00 Emissions radiated outside of the specified harmonics, shall be attenuated by at least 5 fundamental or to the general radiated emiswhichever is the lesser attenuation. Below 1GHz	Measurement Distance: 3m Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Limit (dBuV/m @3m) 2400MHz-2483.5MHz 114.00 Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 54.00 Emissions radiated outside of the specified frequency harmonics, shall be attenuated by at least 50 dB below fundamental or to the general radiated emission limits whichever is the lesser attenuation. Below 1GHz Anten Ground Plane		

Report No.: GTS16000787E02 FUT Spectrum Table Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.3 for details Test results: Pass

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	92.64	27.58	5.39	30.18	95.43	114.00	-18.57	Vertical
2402.00	89.95	27.58	5.39	30.18	92.74	114.00	-21.26	Horizontal
2441.00	90.90	27.55	5.43	30.06	93.82	114.00	-20.18	Vertical
2441.00	88.94	27.55	5.43	30.06	91.86	114.00	-22.15	Horizontal
2480.00	93.82	27.52	5.47	29.93	96.88	114.00	-17.12	Vertical
2480.00	90.57	27.52	5.47	29.93	93.63	114.00	-20.37	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	81.95	27.58	5.39	30.18	84.74	94.00	-9.26	Vertical
2402.00	79.29	27.58	5.39	30.18	82.08	94.00	-11.92	Horizontal
2441.00	80.02	27.55	5.43	30.06	82.94	94.00	-11.06	Vertical
2441.00	77.06	27.55	5.43	30.06	79.98	94.00	-14.02	Horizontal
2480.00	83.30	27.52	5.47	29.93	86.36	94.00	-7.64	Vertical
2480.00	79.92	27.52	5.47	29.93	82.98	94.00	-11.02	Horizontal

7.3.2 Spurious emissions

■ Below 1GHz

- Delow I	0112							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
50.94	34.63	15.21	0.78	29.99	20.63	40.00	-19.37	Vertical
103.81	36.28	14.78	1.22	29.68	22.60	43.50	-20.90	Vertical
177.51	32.86	11.49	1.73	29.29	16.79	43.50	-26.71	Vertical
296.18	39.13	14.98	2.34	29.98	26.47	46.00	-19.53	Vertical
444.85	38.85	17.57	3.07	29.41	30.08	46.00	-15.92	Vertical
656.53	27.26	20.66	3.94	29.24	22.62	46.00	-23.38	Vertical
42.90	27.59	15.56	0.69	30.03	13.81	40.00	-26.19	Horizontal
82.07	36.58	11.28	1.05	29.79	19.12	40.00	-20.88	Horizontal
135.03	42.17	10.56	1.47	29.49	24.71	43.50	-18.79	Horizontal
230.91	40.51	13.67	2.02	29.48	26.72	46.00	-19.28	Horizontal
338.40	39.60	16.05	2.57	29.79	28.43	46.00	-17.57	Horizontal
636.13	25.85	20.59	3.86	29.26	21.04	46.00	-24.96	Horizontal

Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.00	31.78	8.60	32.09	44.29	74.00	-29.71	Vertical
7206.00	30.97	36.15	11.65	32.00	46.77	74.00	-27.23	Vertical
9608.00	30.70	37.95	14.14	31.62	51.17	74.00	-22.83	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.02	31.78	8.60	32.09	48.31	74.00	-25.69	Horizontal
7206.00	32.61	36.15	11.65	32.00	48.41	74.00	-25.59	Horizontal
9608.00	30.00	37.95	14.14	31.62	50.47	74.00	-23.53	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.06	31.78	8.60	32.09	33.35	54.00	-20.65	Vertical
7206.00	19.80	36.15	11.65	32.00	35.60	54.00	-18.40	Vertical
9608.00	18.96	37.95	14.14	31.62	39.43	54.00	-14.57	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	29.15	31.78	8.60	32.09	37.44	54.00	-16.56	Horizontal
7206.00	21.89	36.15	11.65	32.00	37.69	54.00	-16.31	Horizontal
9608.00	18.58	37.95	14.14	31.62	39.05	54.00	-14.95	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel: Middle channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	35.71	31.85	8.67	32.12	44.11	74.00	-29.89	Vertical
7323.00	30.77	36.37	11.72	31.89	46.97	74.00	-27.03	Vertical
9764.00	30.53	38.35	14.25	31.62	51.51	74.00	-22.49	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	39.67	31.85	8.67	32.12	48.07	74.00	-25.93	Horizontal
7323.00	32.39	36.37	11.72	31.89	48.59	74.00	-25.41	Horizontal
9764.00	29.80	38.35	14.25	31.62	50.78	74.00	-23.22	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	24.83	31.85	8.67	32.12	33.23	54.00	-20.77	Vertical
7323.00	19.64	36.37	11.72	31.89	35.84	54.00	-18.16	Vertical
9764.00	18.82	38.35	14.25	31.62	39.80	54.00	-14.20	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	28.89	31.85	8.67	32.12	37.29	54.00	-16.71	Horizontal
7323.00	21.71	36.37	11.72	31.89	37.91	54.00	-16.09	Horizontal
9764.00	18.42	38.35	14.25	31.62	39.40	54.00	-14.60	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel:	Highest channel
---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.60	31.93	8.73	32.16	45.10	74.00	-28.90	Vertical
7440.00	31.36	36.59	11.79	31.78	47.96	74.00	-26.04	Vertical
9920.00	31.05	38.81	14.38	31.88	52.36	74.00	-21.64	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	40.74	31.93	8.73	32.16	49.24	74.00	-24.76	Horizontal
7440.00	33.05	36.59	11.79	31.78	49.65	74.00	-24.35	Horizontal
9920.00	30.41	38.81	14.38	31.88	51.72	74.00	-22.28	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.61	31.93	8.73	32.16	34.11	54.00	-19.89	Vertical
7440.00	20.17	36.59	11.79	31.78	36.77	54.00	-17.23	Vertical
9920.00	19.29	38.81	14.38	31.88	40.60	54.00	-13.40	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.77	31.93	8.73	32.16	38.27	54.00	-15.73	Horizontal
7440.00	22.30	36.59	11.79	31.78	38.90	54.00	-15.10	Horizontal
9920.00	18.97	38.81	14.38	31.88	40.28	54.00	-13.72	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3.3 Bandedge emissions

45.89

34.61

47.67

27.58

27.59

27.58

5.39

5.38

5.39

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channel: Lowest channel								
Test Charline	i.			LO	west charme			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	44.34	27.59	5.38	30.18	47.13	74.00	-26.87	Horizontal
2400.00	61.34	27.58	5.39	30.18	64.13	74.00	-9.87	Horizontal
2390.00	45.03	27.59	5.38	30.18	47.82	74.00	-26.18	Vertical
2400.00	63.53	27.58	5.39	30.18	66.32	74.00	-7.68	Vertical
Average va	Average value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	34.56	27.59	5.38	30.18	37.35	54.00	-16.65	Horizontal

l est channel:

30.18

30.18

30.18

48.68

37.40

50.46

54.00

54.00

54.00

-5.32

-16.60 -3.54 Horizontal

Vertical

Vertical

Peak value:

2400.00

2390.00

2400.00

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	46.62	27.53	5.47	29.93	49.69	74.00	-24.31	Horizontal
2500.00	45.51	27.55	5.49	29.93	48.62	74.00	-25.38	Horizontal
2483.50	47.71	27.53	5.47	29.93	50.78	74.00	-23.22	Vertical
2500.00	46.65	27.55	5.49	29.93	49.76	74.00	-24.24	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.41	27.53	5.47	29.93	40.48	54.00	-13.52	Horizontal
2500.00	35.20	27.55	5.49	29.93	38.31	54.00	-15.69	Horizontal
2483.50	38.74	27.53	5.47	29.93	41.81	54.00	-12.19	Vertical
2500.00	35.24	27.55	5.49	29.93	38.35	54.00	-15.65	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215			
Test Method:	ANSI C63.10:2013			
Limit:	Operation Frequency range 2400MHz~2483.5MHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	0.835	Pass
Middle	0.833	Pass
Highest	0.831	Pass

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS16000787E01

----- End -----