La gráfica de una función con dominio y rango en los números reales
Valores de una función
Interceptos
La prueba de la recta vertical
Ecuaciones que definen funciones.
Dominio y rango
Funciones crecientes y decrecientes
Valores máximos y mínimos locales de una función

Sección 1.3 Gráficas de funciones

Universidad de Puerto Rico Recinto Universitario de Mayagüez Facultad de Artes y Ciencias Departamento de Ciencias Matemáticas

Contenido

- 1 La gráfica de una función con dominio y rango en los números reales
- 2 Valores de una función
- Interceptos
- 4 La prueba de la recta vertical
- 5 Ecuaciones que definen funciones
- 6 Dominio y rango
- Funciones crecientes y decrecientes
- 8 Valores máximos y mínimos locales de una función

La gráfica de una función con dominio y rango en los números reales

En este curso, a menos que se diga lo contrario, solo se consideran funciones con dominio y rango contenidos en el conjunto de los números reales.

Una de las cuatro formas de representar una función es visualmente, es decir, mediante gráficas. La representación gráfica de una función se conoce simplemente como la gráfica de la función y consiste de un conjunto de puntos en un sistema coordenado de dos dimensiones. En otras palabras, se representan gráficamente en el plano cartesiano los puntos (x,y) cuya coordenada x es el valor de entrada y cuya coordenada y es el valor de salida de la función.

Gráfica de una función

Si f es una función con dominio A, entonces la gráfica de la función f es el conjunto de pares ordenados:

$$\{(x, f(x)) \mid x \in A\}.$$

En otras palabras, la gráfica de f es el conjunto de todos los puntos (x,y) tal que y=f(x), esto es, la gráfica de f es la gráfica de y=f(x).

Valores de una función

La gráfica de una función contiene información acerca de la función, dice qué valores de entrada corresponden a qué valores de salida. Al analizar la gráfica de una función se debe tener en mente que la altura de la gráfica sobre la representación numérica de x en el eje horizontal (o bajo el eje en caso de valores negativos) es el valor de la función en x, esto es, f(x).

Ejemplo

Encuentre los valores de una función a partir de su gráfica.

(a)
$$f(-2) =$$

(b)
$$f(-1) =$$

(c)
$$f(0) =$$

(d)
$$f(1) =$$

(e)
$$f(2) =$$

Ejemplos

Dibuje la gráfica de las siguientes funciones.

(a)
$$f(x) = x^2$$

x	f(x)
-2	
-1	
0	
1	
2	

(b)
$$f(x) = x^3$$

x	f(x)
-2	
-1	
0	
1	
2	

(c)
$$f(x) = \sqrt{x}$$

x	f(x)
0	
1	
4	
9	
16	

Interceptos

Las coordenadas de x de los puntos donde una gráfica interseca el eje x se llaman **interceptos en** x.

Las coordenadas de y de los puntos donde una gráfica interseca el eje y se llaman **interceptos en** y.

La gráfica de una función con dominio y rango en los números reales
Valores de una función
Interceptos
La prueba de la recta vertical
Ecuaciones que definen funciones
Dominio y rango
Funciones crecientes y decrecientes
Valores máximos y mínimos locales de una función

¿Cómo se encuentran los interceptos de la gráfica de una función y=f(x)?

- Los interceptos con el eje x de y=f(x) se encuentran al sustituir y=0 y resolviendo la ecuación resultante para la variable x.
- Los interceptos con el eje y de y=f(x) se encuentran al sustituir x=0 y resolviendo la ecuación resultante para la variable y.

Ejemplos

Halle los interceptos en x y y de las gráficas de las siguientes funciones.

(a)
$$f(x) = |x| - 2$$

(b)
$$f(x) = x^2 - 1$$

(c)
$$f(x) = x(x+3)(x-2)$$

La prueba de la recta vertical

La gráfica de una función es una curva en el plano xy. Ahora, ¿cuáles curvas en el plano xy son gráficas de funciones?

Prueba de la recta vertical

Una curva en el plano coordenado es la gráfica de una función si y solo si ninguna recta vertical interseca la curva más de una vez.

Ejemplos

Determine cuáles de las siguientes son gráficas de funciones.

(a)

(b)

(c)

(d)

Ecuaciones que definen funciones

Cualquier ecuación en las variables x y y define una relación entre estas variables. Por ejemplo, la ecuación

$$y - x^2 = 0$$

define una relación entre x y y. Pero, ¿esta ecuación define a y como función de x? Para responder esta pregunta, se despeja y:

$$y = x^2$$

Se puede observar que la ecuación determina una regla que asocia un solo valor de y para cada valor inicial de x. Se puede expresar la regla en notación de función como

$$f(x) = x^2$$

La gráfica de una función con dominio y rango en los números reales Valores de una función Interceptos La prueba de la recta vertical Ecuaciones que definen funciones Dominio y rango Funciones crecientes y decrecientes Valores máximos y mínimos locales de una función

Además, se puede dibujar la gráfica de la función y notar que cumple con la prueba de la recta vertical.

Sin embargo, no toda ecuación define a y como función de x, es decir que no toda ecuación es una función.

Ejemplos

En cada caso, determine si la ecuación define a y como función de x.

(a)
$$x = y^2$$

(b)
$$x = y^3$$

(c)
$$x^2 + y^2 = 4$$

Dominio y rango

El dominio de una función f consiste de todos los valores de entrada; estos valores están representados por las coordenadas x de los puntos en la gráfica de f.

El rango de una función f consiste de todos los valores de salida; estos valores están representados por las coordenadas y de los puntos en la gráfica de f.

Si se *recorre* la gráfica de izquierda a derecha, se puede visualizar el dominio de una función. Cuando se *recorre* de abajo hacia arriba se puede visualizar el rango de la función.

Ejemplo

Grafique la función $f(x) = \sqrt{9 - x^2}$. Encuentre el dominio, el rango y los interceptos.

La gráfica de una función con dominio y rango en los números reales
Valores de una función
Interceptos
La prueba de la recta vertical
Ecuaciones que definen funciones
Funciones crecientes y decrecientes
Valores máximos y príginos locales de una función

Funciones crecientes y decrecientes

Una de las características más importantes de una función es cuándo y dónde ésta crece o decrece.

La gráfica de una función con dominio y rango en los números reales Valores de una función Interceptos La prueba de la recta vertical Ecuaciones que definen funciones Dominio y rango Funciones crecientes y decrecientes Valores máximos y mínimos locales de una función

La gráfica que se muestra en la figura se eleva, cae y se eleva nuevamente cuando la curva se recorre de izquierda a derecha. Esta gráfica se eleva de A a B, cae de B a C y se eleva nuevamente de C a D.

Función creciente

Se dice que una función f es **creciente en un intervalo** I si $f(x_1) < f(x_2)$ para cualquier par de números $x_1 < x_2$ en I.

Función decreciente

Se dice que una función f es **decreciente en un intervalo** I si $f(x_1) > f(x_2)$ para cualquier par de puntos $x_1 < x_2$ en I.

Ejemplo

Para la función representada por la siguiente gráfica, halle el dominio, el rango y los intervalos donde la función crece o decrece.

Valores máximos y mínimos locales de una función

Máximo local

El valor f(a) de una función f es un *máximo local* de f si $f(a) \geq f(x)$ para cualquier x en el dominio de f que *está cerca* de a. Es decir, $f(a) \geq f(x)$ para toda x que está en el dominio de f y en algún intervalo abierto que contiene a a. En tal caso, se dice que f tiene un máximo local en x=a.

La gráfica de una función con dominio y rango en los números reales
Valores de una función
Interceptos
La prueba de la recta vertical
Ecuaciones que definen funciones
Dominio y rango
Funciones crecientes y decrecientes
Valores máximos y mínimos locales de una función

Mínimo local

El valor f(a) de una función f es un mnimo local de f si $f(a) \leq f(x)$ para cualquier x en el dominio de f que está erca de a. Es decir, $f(a) \leq f(x)$ para toda x que está en el dominio de f y en algún intervalo abierto que contiene a a. En tal caso, se dice que f tiene un emínimo local en e1.

fica de una función con dominio y rango en los números reales Valores de una función Interceptos La prueba de la recta vertical Ecuaciones que definen funciones Dominio y rango Funciones crecientes y decrecientes Valores máximos y mínimos locales de una función

Ejemplo

Encuentre los máximos y mínimos locales de la función cuya gráfica se da a continuación.

una función con dominio y rango en los números reales
Valores de una función
Interceptos
La prueba de la recta vertical
Ecuaciones que definen funciones
Dominio y rango
Funciones crecientes y decrecientes
Valores máximos y mínimos locales de una función