CLAIMS

1. Compounds which are represented by the following general formula [I]

[in which A stands for a group of the following formula $[a_0]$ or $[b_0]$

Ar¹, Ar² and Ar³ each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, hydroxyl, lower alkyl, lower alkenyl, lower alkoxy, carbamoyl, lower alkylcarbamoyl and di-lower alkylcarbamoyl; k means 0 or 1; m, n and s each independently means 0, 1 or 2; R1 stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl; R², R³, R⁴ and R⁵ each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl, or R² and R³, or R⁴ and R⁵, may together stand for, independently of each other, optionally substituted trimethylene, propenylene,

tetramethylene or 2-butenylene group, the substituent being selected from the group consisting of oxo, hydroxyl, amino, lower alkoxy, lower alkanoyloxy, lower alkylamino, di-lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, imidazolyl and a group represented by -R7, R7 standing for optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, lower alkoxycarbonyl and imidazolyl; R^{60} stands for hydrogen, C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; R61 and R71 each independently stands for C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl, or R^{61} and R^{71} may together stand for optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2, 3-epoxytetramethylene group, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy; X stands for carbonyl or methylene; Y stands for nitrogen or methine; and Q stands for anion]

or salts thereof.

2. The compounds according to Claim 1, in which A is a group expressed by the formula $[a_0]$

$$R^{60}$$
 [a₀].

3. The compounds according to Claim 1, in which A is a group expressed by the formula $[b_0]$

$$\begin{array}{ccc}
Q^{-} & R^{61} \\
& R^{71} & [b_0]
\end{array}$$

- 4. The compounds according to Claim 1, in which Ar^1 , Ar^2 and Ar^3 each independently stands for phenyl which is optionally substituted with halogen or lower alkyl; n is 1 or 2; s is 1; and R^1 is hydrogen.
- 5. The compounds according to Claim 4, which are represented by the general formula [I-a]:

$$R^{8} \xrightarrow{Q} CH_{2} - C - N - CH - C - N - (CH_{2})_{2} - C - N - CH_{2} - A^{1}$$
[I-a]

[wherein A^1 stands for a group represented by the formula $[a_1]$ or $[b_1]$

R^{2a} and R^{3a} each independently stands for hydrogen, or optionally substituted lower alkyl, the substituent being selected from hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl; R8 stands for hydrogen, halogen or lower alkyl; R^{60} stands for hydrogen, C1-C10 alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; R61 and R⁷¹ each independently stands for C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl, or R^{61} and R^{71} may together stand for optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2, 3-epoxytetramethylene group, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy; and Q stands for anion].

6. The compounds according to Claim 4, which are represented by the general formula [1-b]:

[wherein Ala stands for a group of the formula [a1]

$$\mathbb{R}^{60}$$
 [a₁];

R⁸ stands for hydrogen, halogen or lower alkyl; and R⁶⁰ stands for hydrogen, C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl.

7. The compounds according to Claim 4, which are represented by the general formula [I-c]:

[in which A^1 stands for a group represented by the formula $\begin{bmatrix} a_1 \end{bmatrix}$ or $\begin{bmatrix} b_1 \end{bmatrix}$

R⁸ stands for hydrogen, halogen or lower alkyl; R⁶⁰ stands for hydrogen, C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; R⁶¹ and R⁷¹ each independently stands for C₁-C₁₀ alkyl, lower alkenyl,

cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl, or R⁶¹ and R⁷¹ may together stand for optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2, 3-epoxytetramethylene group, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy; and Q stands for anion].

8. The compounds according to Claim 4, which are represented by the general formula [I-d]

$$R^{8} \longrightarrow CH_{2}-C-N-(CH_{2})_{6}-C-N-CH_{2}-A^{1a}$$

$$R^{8} \longrightarrow CH_{2}-C-N-(CH_{2})_{6}$$

[in which A^{1a} stands for a group of the formula [a₁]

$$\mathbb{R}^{60}$$
 [a₁];

R⁸ stands for hydrogen, halogen or lower alkyl; R⁶⁰ stands for hydrogen, C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl.

9. The compounds according to Claim 4, which are represented by the general formula [I-e]

$$R^{8} \xrightarrow{Q} CH_{2}-C-N-CH-C-N-CH-C-N-(CH_{2})_{n1}-A^{1} \qquad [I-e]$$

[in which A^1 stands for a group represented by the formula $[a_1]$ or $[b_1]$

n1 stands for 1 or 2; R^{e1} , R^{e2} , R^{e3} and R^{e4} each independently stands for hydrogen, hydroxyl, amino, lower alkoxy, lower alkanoyloxy, lower alkylamino, di-lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, imidazolyl and a group represented by -R7; or Re1 and Re2 together signify oxo group; R7 stands for optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, lower alkoxycarbonyl and imidazolyl; R8 stands for hydrogen, halogen or lower alkyl; R60 stands for hydrogen, C1-C10 alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; R⁶¹ and R⁷¹ each independently stands for C1-C10 alkyl, lower alkenyl,

cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl, or R^{61} and R^{71} may together stand for optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2, 3-epoxytetramethylene group, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy; and Q stands for anionl.

- 10. The compounds according to Claim 9, in which Rel is hydrogen or hydroxyl, and all of Rel, Rel and Rel are hydrogen.
- 11. The compounds according to Claim 1, 2, 4, 5, 6, 7, 8, 9 or 10, in which R^{60} is hydrogen, C_1 - C_{10} alkyl, cycloalkyl or cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl.
- 12. The compounds according to Claim 11, in which said C_1 - C_{10} alkyl as R^{60} is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, 2-methylbutyl, hexyl, 2-methylpentyl, heptyl, octyl or decyl.
- 13. The compounds according to Claim 11, in which said cycloalkyl group as R^{60} is cyclopentyl or cyclohexyl.
- 14. The compounds according to Claim 11, in which said cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl as R⁶⁰ is cyclopropylmethyl, cyclobutylmethyl, 2-(1-methylcyclopropyl)ethyl, cyclopentylmethyl, (2,2-dimethylcyclopentyl)methyl, 1-cyclopentylethyl, cyclohexylmethyl or 1-cyclohexylethyl.
- 15. The compounds according to Claim 1, 3, 4, 5, 7 or 9, in which R^{61} and R^{71} each independently is C_1 - C_{10} alkyl, lower alkenyl or cycloalkyl-lower alkyl whose ring portion may be substituted with

lower alkyl.

- 16. The compounds according to Claim 15, in which R^{61} and R^{71} each independently is C_1 - C_6 alkyl.
- 17. The compounds according to Claim 16, in which R^{61} and R^{71} each independently is methyl, ethyl, propyl or 2-methylbutyl.
- 18. The compounds according to Claim 15, in which both R^{61} and R^{71} are 2-propenyl or cyclopropylmethyl; or R^{61} is cyclohexylmethyl and R^{71} is methyl.
- 19. The compounds according to Claim 1, 3, 4, 5, 7 or 9, in which R^{61} and R^{71} together stand for optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2,3-epoxytetramethylene, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy.
- 20. A process for producing a compound represented by the general formula [I-1]:

[in which Aa stands for a group of the formula [a0]

$$\mathbb{R}^{\mathsf{R}^{\mathsf{60}}}$$
 [a₀];

Ar¹, Ar² and Ar³ each independtly stands for optionally substituted phenyl, the substituent being selected from the

group consisting of halogen, hydroxyl, lower alkyl, lower alkenyl, lower alkoxy, carbamoyl, lower alkylcarbamoyl and di-lower alkylcarbamoyl; R1 stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl; R², R³, R⁴ and R⁵ each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl, or R2 and R3, or R4 and R5, may together stand for, independently of each other, optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene group, the substituent being selected from the group consisting of oxo, hydroxyl, amino, lower alkoxy, lower alkanoyloxy, lower alkylamino, di-lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, imidazolyl and a group represented by -R⁷, R⁷ standing for optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di·lower alkylcarbamoyl, lower alkoxycarbonyl and imidazolyl; R60 stands for hydrogen, C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; and k, m, n, s, X and Y have later defined significations

or salts thereof, which comprises reacting carboxylic acid of the general formula [II]:

$$Ar^{1p}$$
 R^{1p}
 R^{1p}

[in which Ar^{1p}, Ar^{2p} and Ar^{3p} each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, lower alkyl, lower alkenyl, lower alkoxy and di-lower alkylcarbamoyl and optionally protected hydroxyl, carbamoyl and lower alkylcarbamoyl; and R^{1p} stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl, optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups]

or salt or reactive derivative thereof with a compound of the general formula [III]:

[in which A^{ap} stands for a group of the formula $[a_{op}]$

$$N$$
 R^{60p}
 $[a_{0p}];$

k means 0 or 1; m, n and s each independently means 0, 1 or 2; R^{2p} , R^{3p} , R^{4p} and R^{5p} each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkyl- carbamoyl and optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups, or R^{2p} and R^{3p} , or R^{4p} and R^{5p} , together form, each independently of the other pair,

optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene, the substituent being selected from the group consisting of lower alkoxy, lower alkanoyloxy, di-lower alkylamino, lower alkoxycarbonyl, di-lower alkylcarbamoyl, a group represented by $-R^{7p}$ and optionally protected oxo, hydroxyl, amino, lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; R^{7p} stands for optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl and lower alkoxycarbonyl, and optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; R60p stands for imino-protecting group, C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring potion being optionally substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; X stands for carbonyl or methylene; and Y stands for nitrogen or methine

or a salt thereof to form a compound represented by the general formula [IV-1]

[in which A^{ap}, Ar^{1p}, Ar^{2p}, Ar^{3p}, k, m, n, R^{1p}, R^{2p}, R^{3p}, R^{4p}, R^{5p}, X and Y have the above significations]
or a salt thereof, and if necessary removing the protective group(s).

21. A process for producing a compound represented by the general formula [1-3]:

[in which Aba signifies a group expressed by the formula [boa]

Ar¹, Ar² and Ar³ each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, hydroxyl, lower alkyl, lower alkenyl, lower alkoxy, carbamoyl, lower alkylcarbamoyl and di-lower alkylcarbamoyl; R1 stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl; R2, ${
m R^3},~{
m R^4}$ and ${
m R^5}$ each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl, or R^2 and R^3 , or R^4 and R^5 , may together stand for, independently of each other, optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene group, the substituent being selected from the group consisting of oxo, hydroxyl, amino, lower alkoxy, lower alkanoyloxy, lower alkylamino, di-lower alkylamino (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl,

imidazolyl and a group represented by $-R^7$, R^7 standing for optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, lower alkoxycarbonyl and imidazolyl; Q stands for anion; and k, m, n, s, R^{61b} , R^{71a} , X and Y have the later defined significations

which comprises reacting a compound represented by the general formula [VI-2]:

$$R^{71a}-L^2$$
 [VI-2]

lin which L^2 signifies a leaving group; R^{71a} signifies C_1 - C_{10} alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl

or a salt thereof with a compound of the general formula [IV-1b]:

[in which A^{ab} signifies a group represented by the formula $[a_{ob}]$

Ar^{1p}, Ar^{2p} and Ar^{3p} each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, lower alkyl, lower alkenyl, lower alkoxy and di-lower alkylcarbamoyl and optionally protected

hydroxyl, carbamoyl and lower alkylcarbamoyl; k means 0 or 1; m, n and s each independently means 0, 1 or 2; R^{1p} stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl, optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; R^{2p}, R^{3p}, R^{4p} and R^{5p} each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl and optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups, or R^{2p} and R^{3p}, or R^{4p} and R^{5p}, together form, each independently of the other pair, optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene, the substituent being selected from the group consisting of lower alkoxy, lower alkanoyloxy, di-lower alkylamino, lower alkoxycarbonyl, di-lower alkylcarbamoyl, a group represented by $-R^{7p}$ and optionally protected oxo, hydroxyl, amino, lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; R^{7p} stands for optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl and lower alkoxycarbonyl, and optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; R^{61b} signifies C₁·C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyllower alkyl or aralkyl; X stands for carbonyl or methylene; and Y stands for nitrogen or methine]

or salt thereof, to form a compound represented by the general formula [IV-2]:

[in which Z^- signifies anion; Ar^{1p} , Ar^{2p} , Ar^{3p} , k, m, n, s, R^{1p} , R^{2p} , R^{3p} , R^{4p} , R^{5p} , R^{61b} , R^{71a} , X and Y have the earlier defined significations]

and if necessary removing the protective group(s) and/or exchanging the anion.

22. A process for producing a compound represented by the general formula [I-4]:

[in which Abb signifies a group expressed by the formula [bob]:

Ar¹, Ar² and Ar³ each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, hydroxyl, lower alkyl, lower alkenyl, lower alkoxy, carbamoyl, lower alkylcarbamoyl and di-lower alkylcarbamoyl; R¹ stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from

the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl; R2, R³, R⁴ and R⁵ each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl, or R² and R³, or R⁴ and R⁵, may together stand for, independently of each other, optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene group, the substituent being selected from the group consisting of oxo, hydroxyl, amino, lower alkoxy, lower alkanoyloxy, lower alkylamino, di-lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, imidazolyl and a group represented by -R7, R7 standing for optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkyl- carbamoyl, di-lower alkylcarbamoyl, lower alkoxycarbonyl and imidazolyl; R71b signifies optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2, 3-epoxytetramethylene group, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy; Q stands for anion; and k, m, n, s, X and Y have the later defined significations

which comprises reacting a compound represented by the general formula [VII]:

[in which L3 and L4 each independently signifies a leaving

group; and R^{71bp} signifies optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2,3-epoxytetramethylene, the substituent being selected from the group consisting of lower alkyl, lower alkoxy, and optionally protected oxo and hydroxyl] or a salt thereof with a compound of a general formula [IV-1a]

[in which A^{aa} signifies a group represented by the formula $[a_{0a}]$

Ar^{1p}, Ar^{2p} and Ar^{3p} each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, lower alkyl, lower alkenyl, lower alkoxy and di-lower alkylcarbamoyl and optionally protected hydroxyl, carbamoyl and lower alkylcarbamoyl; k means 0 or 1; m, n and s each independently means 0, 1 or 2; R^{1p} stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl, optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; R^{2p}, R^{3p}, R^{4p} and R^{5p} each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl and optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups, or R^{2p} and R^{3p}, or R^{4p} and R^{5p}, together form, each

independently of the other pair, optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene, the substituent being selected from the group consisting of lower alkoxy, lower alkanoyloxy, di-lower alkylamino, lower alkoxycarbonyl, di-lower alkylcarbamoyl, a group represented by $-R^{7p}$ and optionally protected oxo, hydroxyl, amino, lower alkylamino, (imino·lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino, lower alkylsulfonylamino, guanidino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; R^{7p} stands for optionally substituted lower alkyl, the substituent being selected from the group consisting of di-lower alkylcarbamoyl and lower alkoxycarbonyl, and optionally protected hydroxyl, amino, carbamoyl, lower alkylcarbamoyl and imidazolyl groups; X stands for carbonyl or methylene and Y stands for nitrogen or methine

or a salt thereof, to form a compound of the general formula [IV-3]

[in which Z signifies anion; Ar^{1p} , Ar^{2p} , Ar^{3p} , k, m, n, s, R^{1p} , R^{2p} , R^{3p} , R^{4p} , R^{5p} , R^{71bp} , X and Y have the earlier defined significations]

and if necessary removing protective group(s) and/or exchanging the anion.

23. Treating agents for diseases associated with muscarinic M₃ receptors, which contain as the active ingredient the compounds represented by the general formula [I]

[in which A stands for a group of the following formula $[a_0]$ or $[b_0]$

Ar¹, Ar² and Ar³ each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, hydroxyl, lower alkyl, lower alkenyl, lower alkoxy, carbamoyl, lower alkylcarbamoyl and di-lower alkylcarbamoyl; k means 0 or 1; m, n and s each independently means 0, 1 or 2; R1 stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl; R², R³, R⁴ and R⁵ each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl, or R² and R³, or R⁴ and R⁵, may together stand for, independently of each other, optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene group, the substituent being selected from the group consisting of oxo, hydroxyl, amino, lower alkoxy, lower alkanoyloxy, lower alkylamino, di-lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino,

lower alkylsulfonylamino, guanidino, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, imidazolyl and a group represented by -R7, R7 standing for optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, lower alkoxycarbonyl and imidazolyl; R^{60} stands for hydrogen, C1-C10 alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; R⁶¹ and R⁷¹ each independently stands for C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl, or R⁶¹ and R⁷¹ may together stand for optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2, 3-epoxytetramethylene group, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy; X stands for carbonyl or methylene; Y stands for nitrogen or methine; and Q stands for anionl

or salts thereof.

24. Treating agents for chronic obstructive pulmonary diseases, chronic bronchitis, asthma, chronic respiratory tract obstruction, fibroid lung, pulmonary emphysema and rhinitis; irritable bowel syndrome, convulsive colitis, gastroduodental ulcer, convulsion or hyperanakinesia of digestive tract, diverticulitis and pain accompanying contraction of smooth muscles of the digestive system; urinary incontinence, urgency and pollakiuria in nervous pollakiuria, neurogenic bladder, nocturnal enuresis, unstable bladder, cystospasm and chronic cystisis; and motion sickness, which agents contain as the active ingredient the compounds represented by the general formula [I]

[in which A stands for a group of the following formula $[a_0]$ or $[b_0]$

Ar¹, Ar² and Ar³ each independently stands for optionally substituted phenyl, the substituent being selected from the group consisting of halogen, hydroxyl, lower alkyl, lower alkenyl, lower alkoxy, carbamoyl, lower alkylcarbamoyl and di-lower alkylcarbamoyl; k means 0 or 1; m, n and s each independently means 0, 1 or 2; R1 stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl; R², R³, R⁴ and R⁵ each independently stands for hydrogen or optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl and imidazolyl, or R² and R³, or R⁴ and R⁵, may together stand for, independently of each other, optionally substituted trimethylene, propenylene, tetramethylene or 2-butenylene group, the substituent being selected from the group consisting of oxo, hydroxyl, amino, lower alkoxy, lower alkanoyloxy, lower alkylamino, di-lower alkylamino, (imino-lower alkyl)amino, lower alkanoylamino, lower alkoxycarbonylamino, (lower alkylcarbamoyl)amino,

lower alkylsulfonylamino, guanidino, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, imidazolyl and a group represented by -R7, R7 standing for optionally substituted lower alkyl, the substituent being selected from the group consisting of hydroxyl, amino, carbamoyl, lower alkylcarbamoyl, di-lower alkylcarbamoyl, lower alkoxycarbonyl and imidazolyl; R60 stands for hydrogen, C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl; R61 and R71 each independently stands for C₁-C₁₀ alkyl, lower alkenyl, cycloalkyl, cycloalkyl-lower alkyl whose ring portion may be substituted with lower alkyl, cycloalkenyl-lower alkyl or aralkyl, or R⁶¹ and R⁷¹ may together stand for optionally substituted trimethylene, tetramethylene, 2-butenylene, pentamethylene, 3-oxapentamethylene or 2, 3-epoxytetramethylene group, the substituent being selected from the group consisting of oxo, hydroxyl, lower alkyl and lower alkoxy; X stands for carbonyl or methylene; Y stands for nitrogen or methine; and Q stands for anion]

or salts thereof.