Computer Architecture and system programming

Kristoffer Klokker 2022

Contents

1	Exe	Exercises			
	1.1	Benchmark	3		
		1.1.1 Find the average CPI	3		
		1.1.2 Execution time	3		
		1.1.3 MIPS	3		
	1.2	Explain how a negative number is represented in the following			
		representation	4		
	1.3	Represent the following in 8 bit two compliment and sing			
magnitude					
	1.4	Convert from two compliment to decimal	4		
	1.5	Show the calculations in 8 bit two compliment	4		
		1.5.1 6+12	4		
		1.5.2 -6+12	4		
		1.5.3 6-12	5		
		1.5.4 -6-12	5		
	1.6	Fill out the table for the most two compliment addition	5		
	Convert 23 and 29 to 6 bit two compliment and multiply				
		using Booths algorithm	6		

1 Exercises

1.1 Benchmark

For the 40MHz processor which performed the instructions

Instruction type	Instruction count	Cycles per instruction
Integer artihemtic	41,000	1
Data transfer	28,000	2
Floating point	25,000	2
Control transfer	6,000	2

1.1.1 Find the average CPI

$$\frac{1 \cdot 41000 + 2 \cdot 28000 + 2 \cdot 25000 + 2 \cdot 6000}{100000} = 1.59$$

CPI is the average cycles pr instruction. Therefore 4.5

1.1.2 Execution time

$$CPI = 1.59$$

$$I_c = 100000$$

$$\tau = \frac{1}{f} = \frac{1}{40000000Hz}$$

$$T = I_c \cdot CPI \cdot \tau$$

$$= 1.59 \cdot 100000 \cdot \frac{1}{40000000Hz}$$

$$T = 0.003975s$$

1.1.3 MIPS

$$MIPS = \frac{f}{CPI \cdot 10^{6}}$$

$$CPI = 1.59$$

$$f = 40000000Hz$$

$$MIPS = \frac{40000000Hz}{1.59 \cdot 10^{6}}$$

$$MIPS = 25.16\frac{1}{s}$$

1.2 Explain how a negative number is represented in the following representation

- Sign-magnitude The left most bit must be 1 which result in the rest being interpretated as negative
- Two compliment The left most bit is 1 to subtract the maximum value from the rest
- Biased Bias is most usually half the range therefore a negative value is simply less half the maximum value

1.3 Represent the following in 8 bit twos compliment and sing magnitude

- 64 00100000
- -28 twos 11100100 sign 10011100

1.4 Convert from two compliment to decimal

• 1100110 : -26

• 1011101 : -35

1.5 Show the calculations in 8 bit two compliment

$1.5.1 \quad 6+12$

$$6 = 00000110$$

$$12 = 00001100$$

$$00000110 + 00001100 = 00010010$$

1.5.2 -6 + 12

$$-6 = 11111010$$
$$12 = 00001100$$
$$11111010 + 00001100 = 00000110$$

Overflow is ignored

1.5.3 6-12

$$6 = 00000110$$
$$-12 = 11110100$$
$$00000110 + 11110100 = 11111010$$

1.5.4 -6-12

$$-6 = 11111010$$

 $-12 = 11110100$
 $11111010 + 11110100 = 11101110$

Overflow is ignored

1.6 Fill out the table for the most two compliment addition

	Input			Output	
x_{n-1}	y_{n-1}	c_{n-2}	z_{n-1}	c_{n-1}	V
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	1	1

Here x_{n-1} and y_{n-1} is the most significant bits of the two addends. c is the carry bit and z_{n-1} is the results most significant bit. v is a bit singular overflow.

If can be seen in row 2 and the last row that:

Overflow occurs if and only if the carry into the addition of the MSBs is different from the carry out of that addition

1.7 Convert 23 and 29 to 6 bit twos compliment and multiply using Booths algorithm

$$23 = 010111$$

$$29 = 011101$$

$$A = 0$$

$$Q_{-1} = 0$$

$$M = 010111$$

$$Q = 011101$$

$$count = 6$$

$$Q_0, Q_{-1} = 10$$

$$A = A - M = 101001$$

$$shift A = 101001 Q = 011101 Q_{-1} = 0$$

$$A = 110100$$

$$Q = 101110$$

$$Q_{-1} = 1$$

$$count = 5$$

$$Q_0, Q_{-1} = 01$$

$$A = A + M = 110100 + 010111 = 001011$$

$$shift$$

$$A = 000101$$

$$Q = 110111$$

$$Q_{-1} = 0$$

$$count = 4$$

$$Q_0, Q_{-1} = 10$$

$$A = A - M = 000101 - 011001$$

$$A = 000101 + 101001 = 101110$$

$$shift A = 101110 Q = 110111 Q_{-1} = 0$$

$$A = 110111$$

$$Q = 011011$$

$$Q_{-1} = 1$$

$$count = 3$$

$$Q_0, Q_{-1} = 11$$

$$shift \ A = 110111 \ Q = 011011 \ Q_{-1} = 1$$

$$A = 111011$$

$$Q = 101101$$

$$Q_{-1} = 1$$

$$count = 2$$

$$Q_0, Q_{-1} = 11$$

$$shift \ A = 111011 \ Q = 101101 \ Q_{-1} = 1$$

$$A = 111101$$

$$Q = 110110$$

$$Q_{-1} = 1$$

$$count = 2$$

$$Q_0, Q_{-1} = 01$$

$$A = A + M = 111101 + 011001$$

$$A = 010100$$

$$shift \ A = 010100 \ Q = 110110 \ Q_{-1} = 1$$

$$A = 001010$$

$$Q = 011011$$

$$Q_{-1} = 0$$

$$count = 2$$

$$010111 \times 011101 = AQ = 001010011011$$