

### Sheet (1)

[1] Complete by writing the following numbers in the form  $rac{a}{b}$  where a & b are two integers in the simplest form,  $b \neq 0$ :

(6) 
$$1\frac{1}{4} = \dots$$

[2] Complete the following:

(1) 
$$\sqrt{25+144} =$$

(2) 
$$\sqrt{0.25}$$
 =

(3) The standard form of the number 0.00015 is

(4) The standard form of the number  $421 \times 10^3$  is \_\_\_\_\_

(5) The sum of the two square roots of each number  $2\frac{1}{4} = ...$ 

[3] Choose the correct answer:

(1) 
$$Z^+ \cup \{0\} = \dots$$

(2) 
$$|-2| + |-4| + |6| =$$
 (zero ,  $|-12|$  , -12 , 6)

(3) 
$$\sqrt{a^2} =$$

(4) 
$$\sqrt{100-36}$$
 = .....

(5) 
$$\frac{\sqrt{25-9}}{\sqrt{25}-\sqrt{9}}$$
 =

$$(-1,1,2,3)$$

- (6) Which of the following rational numbers lies between  $\frac{1}{5}$  $(\frac{2}{10}, \frac{1}{10}, 0.3, -0.3)$ and  $\frac{2}{5}$ ?
- (7) The product of the rational number  $\frac{a}{b}$  by its additive (zero,  $\frac{-a}{b}$ ,  $\frac{a^2}{b^2}$ ,  $\frac{-a^2}{b^2}$ ) inverse equals
- (8)  $3^{10} + 3^{10} + 3^{10} =$  $(3^{10}, 3^{30}, 9^{10}, 3^{11})$
- $\left(-\frac{2}{3},\frac{3}{2},-\frac{3}{2},1\right)$ (9) If  $a^{-1} = \frac{2}{3}$ , then a = \_\_\_\_\_
- The multiplicative inverse of 5<sup>-1</sup> is

$$(\frac{1}{5}, 5, -5, \frac{-1}{5})$$

### [4] Find the value of imes in the following equations:

(1) 5x + 3 = 20(2) 5x + 11 = 12

(3) 3x + 5 = 1(4) x + 3 = 7



### Find the solution set of each of the following equations, where $x \in Q$ :

(1) 
$$x^2 + 12 = 21$$

(2) 
$$2x^2 - 1 = -9$$

(3) 
$$|x| = 2$$

(4) 
$$\sqrt{x^2} = 4$$



### Sheet (2)

### Example (1):

Area = 
$$5 \times 5 = 5^2 = 5^2 = 25 \text{ cm}^2$$
.

| mple (1):                                                                              | ational number       |
|----------------------------------------------------------------------------------------|----------------------|
| Find the area of a square who                                                          | se side length 5 cm? |
| Area = S × S = S <sup>2</sup> = 5 <sup>2</sup> = 25 cr                                 | •                    |
| The square numbers                                                                     | The square root      |
| 12 = 1                                                                                 | $\sqrt{1} = 1$       |
| 2 <sup>2</sup> = 4                                                                     | $\sqrt{4}=2$         |
| 3 <sup>2</sup> = 9                                                                     | $\sqrt{9} = 3$       |
| 4 <sup>2</sup> = 16                                                                    | $\sqrt{16} = 4$      |
| 5 <sup>2</sup> = 25                                                                    | $\sqrt{25} = 5$      |
| 6 <sup>2</sup> = 36                                                                    | $\sqrt{36} = 6$      |
| 7 <sup>2</sup> = 49                                                                    | $\sqrt{49} = 7$      |
| 8 <sup>2</sup> = 64                                                                    | $\sqrt{64} = 8$      |
| 9 <sup>2</sup> = 81                                                                    | $\sqrt{81} = 9$      |
| $5^2 = 25$ $6^2 = 36$ $7^2 = 49$ $8^2 = 64$ $9^2 = 81$ $10^2 = 100$ $\sqrt{x^4} = x^2$ | $\sqrt{100} = 10$    |
| $\sqrt{x^4} = x^2$                                                                     | $\sqrt{x^6} = x^3$   |

### Example (2):

$$V = S \times S \times S = S^3 = 5^3 = 125 \text{ cm}^3$$
.

| The cub numbers        | The cube root         |
|------------------------|-----------------------|
| 1 <sup>3</sup> = 1     | $\sqrt[3]{1} = 1$     |
| 2 <sup>3</sup> = 8     | $\sqrt[3]{8} = 2$     |
| $3^3 = 27$             | $\sqrt[3]{27} = 3$    |
| $4^3 = 64$             | $\sqrt[3]{64} = 4$    |
| 5 <sup>3</sup> = 125   | $\sqrt[3]{125} = 5$   |
| 6 <sup>3</sup> = 216   | $\sqrt[3]{216} = 6$   |
| $7^3 = 343$            | $\sqrt[3]{343} = 7$   |
| 8 <sup>2</sup> = 512   | $\sqrt[3]{512} = 8$   |
| $9^3 = 729$            | $\sqrt[3]{729} = 9$   |
| 10 <sup>3</sup> = 1000 | $\sqrt[3]{1000} = 10$ |
| $\sqrt[3]{x^3} = x$    | $\sqrt[3]{x^6} = x^2$ |

### [1] Complete the following table:

| Find the                       | volume                  | e of a               | cube v     | vhose (             | edge le         | ength 5              | cm? |   |
|--------------------------------|-------------------------|----------------------|------------|---------------------|-----------------|----------------------|-----|---|
| <b>V</b> = <b>S</b> × <b>S</b> | × S =                   | = S <sup>3</sup> = ! | $5^3 = 12$ | 25 cm <sup>3</sup>  | •               |                      |     |   |
| The                            | e cub r                 | number               | <b>'</b> S |                     | The             | cube ro              | ot  |   |
|                                | 1 <sup>3</sup> =        | 1                    |            |                     | :               | $\sqrt[3]{1} = 1$    |     |   |
|                                | 2 <sup>3</sup> =        | 8                    |            |                     | :               | $\sqrt[3]{8} = 2$    |     |   |
|                                | 3 <sup>3</sup> =        | 27                   |            |                     | 3               | $\sqrt{27} = 3$      |     |   |
|                                | <b>4</b> <sup>3</sup> = | 64                   |            |                     | 3               | $\sqrt{64} = 4$      |     |   |
|                                | 5 <sup>3</sup> = 3      | 125                  |            | $\sqrt[3]{125} = 5$ |                 |                      |     |   |
|                                | $6^3 = 3$               | 216                  |            |                     | <sup>3</sup> √  | $\overline{216} = 6$ |     |   |
|                                | $7^3 = 3$               | 343                  |            |                     | <sup>3</sup> √  | 343 = 7              |     |   |
|                                | 8 <sup>2</sup> = !      | 512                  |            |                     | <sup>3</sup> √  | 512 = 8              |     |   |
|                                | $9^3 = 7$               | 729                  |            |                     | <sup>3</sup> √  | 729 = 9              |     |   |
|                                | 10 <sup>3</sup> = 1     | .000                 |            |                     | <sup>3</sup> √1 | 000 = 1              | 0   |   |
|                                | $\sqrt[3]{\chi^3}$      | = x                  |            |                     | 3<br>V          | $\sqrt{x^6} = x^2$   |     |   |
| l] Complete                    | e the                   | follow               | ing ta     | ble:                |                 |                      |     |   |
| Number a                       | 8                       | 125                  | -27        |                     | $3\frac{3}{8}$  | $-\frac{8}{125}$     |     |   |
| $\sqrt[3]{a}$                  |                         |                      |            | -10                 |                 |                      | 6   | • |

### [2] Find each of the following:

(1) 
$$\sqrt[3]{216} =$$

(2) 
$$\sqrt[3]{-343} =$$

(3) 
$$\sqrt[3]{\frac{64}{125}} =$$

$$(4) \sqrt[3]{\frac{-8}{27}} =$$

(5) 
$$\sqrt[3]{0.001} =$$

(7) 
$$\sqrt[3]{8x^3} =$$

(8) 
$$\sqrt[3]{-27a^6}$$
 = .....

(1) 
$$\sqrt[3]{x^3} =$$

(3) 
$$\sqrt{16} = \sqrt[3]{\dots}$$

(4) 
$$|\sqrt[3]{-125}| = \sqrt{\dots}$$

(5) 
$$\sqrt[3]{8} + \sqrt[3]{-8} =$$

(6) 
$$\sqrt[3]{27} - \sqrt[3]{64} =$$

(8) 
$$\sqrt{9} + \sqrt[3]{-8} =$$

(9) 
$$\sqrt{64} - \sqrt[3]{64} = \dots$$

$$(10) - \sqrt[3]{-1} - \sqrt{1} = \dots$$

$$(11)\frac{-\sqrt[3]{64}}{\sqrt{64}} = \dots$$

(12) 
$$\sqrt[3]{64} = \sqrt{\dots}$$

$$(13)\sqrt[3]{64+\ldots} = 5$$

# ### Properties of the following: (7) $\sqrt[3]{27} - \sqrt[3]{-27} = \frac{1}{27}$ (8) $\sqrt{9} + \sqrt[3]{-8} = \frac{1}{27}$ (9) $\sqrt{64} - \sqrt[3]{64} = \frac{1}{27}$ (11) $-\sqrt[3]{64} = \frac{1}{27}$ (12) $\sqrt[3]{64} = \frac{1}{27}$ (13) $\sqrt[3]{64} = \frac{1}{27}$ (14) Find the value of x in each of the following: (1) $\sqrt[3]{x} = 5$ (2) $\sqrt[3]{x} = \frac{-1}{4}$ $x = \dots$ (3) $\sqrt[3]{x} = -\sqrt{4}$ $x = \dots$ (4) $\sqrt[3]{x} - 3 = -1$ (5) $x^3 = -8$ $x = \dots$ (6) $x^3 = 64$ $x = \dots$ (7) $x^3 + 5 = 32$ $x = \dots$ (8) $2x^3 = 54$ $x = \dots$ (9) $\frac{1}{5}x^3 = -200$ $x = \dots$

(1) 
$$\sqrt[3]{x} = 5$$
  $x = \dots$ 

(2) 
$$\sqrt[3]{x} = \frac{-1}{4}$$
  $x = \dots$ 

(3) 
$$\sqrt[3]{x} = -\sqrt{4}$$
  $x = \dots$ 

(4) 
$$\sqrt[3]{x} - 3 = -1$$
  $x = \dots$ 

(5) 
$$x^3 = -8$$
  $x = \dots$ 

(6) 
$$x^3 = 64$$
  $x = \dots$ 

(7) 
$$x^3 + 5 = 32$$
  $x = \dots$ 

(8) 
$$2x^3 = 54$$
  $x = \dots$ 

(9) 
$$\frac{1}{5}x^3 = -200$$
  $x = \dots$ 

[5] Choose the correct answer from those given: 

(1) 
$$\sqrt[3]{(-8)^2} = \dots$$

$$(2, -2, 4, -4)$$

(2) 
$$\sqrt[3]{-64} + \sqrt{16} = \dots$$

$$(0,8,-8,\pm 8)$$

(3) 
$$\sqrt{25} - \sqrt[3]{-125} = \dots$$

(4) 
$$\sqrt{(-2)^2} + \sqrt[3]{(-2)^3} = \dots$$

$$(-4,8,4,0)$$

(5) 
$$\sqrt[3]{3\frac{3}{8}} + \sqrt{0.25} = \dots$$

$$(\frac{3}{2}, \frac{1}{2}, 2, -2)$$

(6) 
$$\sqrt[3]{x} = \frac{1}{4}$$
, then  $x = .....$ 

$$(\frac{1}{2}, \frac{1}{16}, \frac{1}{12}, \frac{1}{64})$$

If the volume of a cube is 64 cm<sup>3</sup>, then the length (8,4,32,16)of its edge = \_\_\_\_cm

If the capacity of a cubic vessel is 8 litres, then the (8) length of its inner edge is \_\_\_\_ cm (2,4,20,40)

(9) If the volume of a sphere is 36  $\pi$  cm<sup>3</sup>, then the length of its diameter = cm (3,6,9,27)

(10) If 
$$-\sqrt{25} = \sqrt[3]{y}$$
, then  $y =$  (5, -5, 125, -125)

(11) If 
$$x^3 = 64$$
, then  $\sqrt{x} = ...$ 

(12) 
$$\sqrt[3]{x^6} = \sqrt{\dots}$$

$$(x^3, x^2, x, x^4)$$

(13) If 
$$\frac{x}{3} = \frac{9}{x^2}$$
, then  $x = (1, 3, 9, 27)$ 

[6] Find the S.S. of each of the following equations in Q:

(1) 
$$x^3 + 27 = 0$$

$$(2) 8x^3 + 7 = 8$$

$$(3) (x+3)^3 = 343$$

 $(5x-2)^3+10=18$ 





The set of irrational numbers denoted by Q` appear in:

(1) The square root of a non perfect square of a rational number such as:  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\sqrt{5}$ , .....

- (2) The cube root of a non perfect cube of a rational number such as:  $\sqrt[3]{2}$ ,  $\sqrt[3]{3}$ ,  $\sqrt[3]{4}$ , .....
  - (3)  $\pi \notin Q$

[1] In each of the following, show which of them is a rational number and which of them is an irrational number:

(5) 
$$-\sqrt{36}$$

$$(9) \quad \sqrt{\frac{1}{3}}$$

(11) 
$$(-5)^{zero}$$

(13) 
$$\sqrt{4} - \sqrt{11}$$

(2) 
$$2\frac{2}{3}$$

(4) 
$$2.3 \times 10^5$$

(6) 
$$\sqrt[3]{36}$$

(8) 
$$\sqrt[3]{\frac{-64}{81}}$$

$$(10) \frac{\pi}{2}$$

(12) 
$$\sqrt{9} + \sqrt{16}$$

(14) 
$$\sqrt[3]{8} + \sqrt[3]{27}$$

[2] Find an approximated value for each of the following numbers:

(1) 
$$\sqrt{11} \cong \dots$$
 (to the nearest hundredth)

(2) 
$$\sqrt[3]{7} \cong \dots$$
 (to the nearest tenth)

(3) 
$$\sqrt[3]{-9} \cong \dots$$
 (to the nearest tenth)



[3] Find two successive integers for each the following numbers to be included between them:

(1) 
$$\sqrt{5}$$
 is between and

(2) 
$$\sqrt{12}$$
 is between and

(3) 
$$\sqrt[3]{-20}$$
 is between and



[4] If x is an integer, find the value of x in each of the following cases:

(1) 
$$x < \sqrt{2} < x + 1 \ x =$$

(2) 
$$x < \sqrt{80} < x + 1$$
  $x =$ 

(3) 
$$x < \sqrt[3]{50} < x + 1$$
  $x =$ 

(4) 
$$x < \sqrt[3]{-100} < x + 1 x = \dots$$

(5) 
$$x < \left| -\sqrt{35} \right| < x + 1 \ x =$$

### [5] Complete the following:

- (1) The value of  $\sqrt[3]{13}$  to the nearest one decimal is
- (2) The two consecutive integers which include the number  $\sqrt{5}$  between them are and
- (3)  $\sqrt[3]{x^6} = \sqrt{\dots}$
- (4) The solution set in Q of the equation  $5x^2 = 20$  is \_\_\_\_\_
- (5) If  $x \in Z$  and  $x < \sqrt[3]{29} < x + 1$ , then x = 1
- (6) If  $x = \sqrt{3}$ , then  $x^2 = \dots$



### [6] Choose the correct answer:

(1) The irrational number in the following numbers is

(a) 
$$\sqrt{\frac{1}{4}}$$

(c) 
$$\sqrt{\frac{4}{9}}$$

(d) 
$$\sqrt{2}$$

- (2)  $(\sqrt[3]{-3})^3 =$ 
  - (a) 3
- (b) -3
- (c)  $\pm 3$
- (d)  $\sqrt[3]{-9}$

- - (a) <
- (b) >
- (c) =
- (d) ≤
- (4) The irrational number located between 2 and 3 is
  - (a)  $\sqrt{10}$
- (b)  $\sqrt{7}$
- (c) 2.5
- (d)  $\sqrt{3}$

(5) The irrational number between 3 and 4 is .....

- (a) 3.6
- (b)  $\sqrt{6}$
- (c)  $\sqrt{15}$
- (d)  $\sqrt{17}$

(6) The irrational number between -2 and -1 is

- (a) -3
- (b)  $-1\frac{1}{2}$  (c)  $-\sqrt{3}$
- (d)  $\sqrt{2}$

(7)  $\sqrt{10} \cong \dots$ 

- (a) 2.99 (b) 3.71
- (c) 3
- (d) -3.2

(8) The nearest integer to  $\sqrt[3]{26}$  is

- (a)5
- (b) 3
- (c) 2
- (d) 13

(9) If  $n \in \mathbb{Z}_+$ ,  $n < \sqrt{26} < n+1$ , then  $n = \dots$ 

- (a) 25
- (b) 5
- (c) -5
- (d) 24

(10) The area of a square whose side length is  $\sqrt{3}$  cm is

- (a)  $4\sqrt{3}$
- (b) 9
- (c)3
- (d) 6

(11) The square whose side length is  $\sqrt{7}$  cm, its area is \_\_\_\_cm<sup>2</sup>.

- (a) 28
- (b) 49
- (c)7
- (d) 14

(12) The square whose area is 10 cm<sup>2</sup>, its side length is \_\_\_\_ cm.

- (a)5
- (b) -5
- (c)  $\sqrt{10}$
- (d)  $-\sqrt{10}$

(13) The S.S. of the equation  $(x - \sqrt{5})(x + \sqrt{3}) = 0$  in Q` is \_\_\_\_\_

- (a)  $\{\sqrt{5}\}$  (b)  $\{-\sqrt{3}\}$  (c)  $\{-\sqrt{5}, \sqrt{3}\}$  (d)  $\{\sqrt{5}, -\sqrt{3}\}$

(14)  $|\sqrt[3]{-125}| = \sqrt{\dots}$ 

- (a) 25
- (b) -25
- (c) 5
- (d) -5

[7] Find the value of  $oldsymbol{ imes}$  in each of the following cases and determine whether  $x \in Q$  or  $x \in Q$ :

(1) 
$$5x^2 = 10$$

" 
$$\pm \sqrt{2}$$
"

(2) 
$$4x^2 = 9$$

" 
$$\pm \frac{3}{2}$$
"

(3)  $x^3 = 125$ 

(4) 
$$3x^3 = 27$$

(5) 
$$0.001x^3 = -8$$

(6) 
$$(x-1)^2 = 4$$

"
$$3or - 1$$
"

$$(7) (x-5)^3 = 1$$

### [8] Find in Q` the S.S. of each of the following equations:

(1) 
$$x^2 = 13$$

(2) 
$$x^3 = 16$$

$$(3) \frac{2}{5}x^2 = \frac{25}{2}$$

$$(4) 125x^3 - 7 = 20$$

 $(5) \frac{1}{4}x^2 + 2 = 66$ 



### [9] Prove that (V.I):

(1)  $\sqrt{2}$  is included between 1.4 and 1.5

### Representing an irrational number on the number line

Therefore we can deduce that:

Each irrational number can be represented by a point on the number line.

### Generally

To draw a line segment with length  $\sqrt{a}$  length unit where a > 1,

draw a right-angled triangle in which the length of one side of the right-angle =  $\frac{a-1}{2}$  length unit and the length of the hypotenuse =  $\frac{a+1}{2}$  length unit.



### Example:

Draw a line segment with length =  $\sqrt{7}$  length unit, then use it to determine the points which represent the following numbers on the number line:

Using the compasses with a distance equal to the length of BC taking O as a centre , draw an arc to cut the number line on the right side of O at the point X, then X is the point which represents  $\sqrt{7}$ 



[10] Determine the point that represents each of the following numbers on the number line:

- (1)  $\sqrt{3}$
- (3)  $\sqrt{10}$
- (4)  $\sqrt{5} + 1$

### **56 heet (4)** e Set of real numbers

The set of real numbers

It is the set obtained from the union o numbers. It is denoted by  $\mathbb{R}$ i.e.  $\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}$  (as shown in the opposite Noticing that:  $\mathbb{Q} \cap \mathbb{Q} = \emptyset$ • The opposite Venn diagram show  $\mathbb{Q} \subset \mathbb{R}$  and  $\mathbb{Q} \subset \mathbb{R}$  [1] Complete the following (1)  $Q \cap Q' = \dots$  (2)  $Q \cup Q' = \dots$  (3)  $R_+ \cap R_- = \dots$  (4)  $R_+ \cup R_- = \dots$  (5)  $R - Q' = \dots$  (6)  $R - Q = \dots$ It is the set obtained from the union of the set of rational numbers and the set of irrational

i.e.  $\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}$  (as shown in the opposite figure)

• The opposite Venn diagram shows that :

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
 and  $\mathbb{Q} \subset \mathbb{R}$ 





$$R - Q = Q$$

$$R_{+} = \{x : x \in R, x > 0\}$$

$$R_{\perp} \cap R_{-} = \varphi$$

$$\pi \in Q$$

$$R - Q' = Q$$

$$R_{-} = \{x : x \in R, x < 0\}$$

$$R = R_+ \cup \{0\} \cup R_-$$

$$R^* = R - \{0\} = R_+ \cup R_-$$

### [1] Complete the following:

(1) 
$$Q \cap Q^* = \dots$$

(2) 
$$Q \cup Q^{\cdot} = \dots$$

(3) 
$$R_+ \cap R_- = \dots$$

(4) 
$$R_+ \cup R_- = \dots$$

(5) 
$$R - Q^{-} = \dots$$

(6) 
$$R - Q = \dots$$

התתתתתתתתתת Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term מתתתתתתתתתת

(7) The solution set in R of the equation  $x^2 + 9 = 0$  is \_\_\_\_\_

(8) The cube whose volume is 8 cm<sup>3</sup>, then the sum of the lengths of its edges is \_\_\_\_\_cm.

two integers which include the number between them are and

(10)If  $\sqrt[3]{x} = -5$ , then  $x = \dots$ 

[2] Put the suitable sign (<), (>) or (=):

(1)  $\sqrt{5}$ 2

(2)2.6

3 (3)

 $\sqrt[3]{-24}$ **(4)** -2

(5)  $3-\sqrt{5}$ 

(6)

(7)  $1+\sqrt{3}$  $\sqrt{5}$ 

(8)  $\sqrt[3]{3} - 1$ 0.2

(9)  $\sqrt{2}-1$ 

### [3] Choose the correct answer from the given ones:

(1) R =

(a)  $Q \cup Q$  (b)  $Z_+ \cup Z_-$  (c)  $R_+ \cup R_-$  (d)  $N \cup R_-$ 

(2)  $\{x: x \in R, x < 0\} =$ 

 $(a) R_{+}$ 

(b)  $R_{-}$  (c)  $R^{*}$ 

(d) R

(3) If x is a negative real number, then which of the following numbers is positive?

(a)  $x^{2}$ 

(b)  $x^3$ 

(c) 2x

 $(4) R_{+} =$ 

(a)  $\{x: x \in R, x < 0\}$ 

(b)  $\{x: x \in R, x \ge 1\}$ 

(c)  $\{x: x \in R, x > 0\}$ 

(d)  $\{x: x \in R, x \ge 0\}$ 

(5)  $\sqrt[3]{5}$ ..... $\sqrt{3}$ 

(a) <

(b) >

(c) =

(d) ≥

(6) The irrational number which is included between 2 and 3 is .....

(a)  $\sqrt{10}$  (b)  $\sqrt{7}$ 

(c) 2.5

(d)  $\sqrt{3}$ 

 $(7) (-5)^{zero} = \dots$ 

(a) zero (b) 1 (c) -1

(d) -5

(8) The S.S. of the equation  $x^2 + 1 = 0$  in R is \_\_\_\_\_

(a)  $\{-1\}$  (b)  $\{1, -1\}$  (c)  $\{1\}$  (d)  $\varphi$ 

(9)  $\sqrt{(2-\pi)^2}$  (2 -  $\pi$ )

(a) <

(b) >

(c) =

 $(d) \geq$ 

カカカカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカ

(10) If  $x \in R_+$ ,  $y \in R_+$  and  $x^2 > y^2$ , then



(11) If  $\frac{1}{a}$  and  $\frac{a}{\sqrt{5}}$  are real numbers included between 0 and 1 then a =

- (a) 2
- (b) 1
- (c)  $\sqrt{5}$
- (d) 2



### [4] Arrange the following numbers in an ascending order:

- (1)  $\sqrt{8}$  ,  $-\sqrt{3}$  ,  $\sqrt{15}$  ,  $\sqrt{5}$  ,  $-\sqrt{7}$  and  $-\sqrt{11}$ The order is:
- (2)  $\sqrt{27}$ ,  $-\sqrt{45}$ ,  $\sqrt{20}$ , 0.6 and  $\sqrt[3]{-1}$ The order is:



### [5] Arrange the following numbers in a descending order:

- (1)  $\sqrt{62}$ , 8,  $-\sqrt{50}$  and  $\sqrt{70}$ The order is:
- (2)  $\sqrt{6}$ , 9,  $-\sqrt{10}$ ,  $-\sqrt{7}$ ,  $-\sqrt{50}$  and  $\sqrt{101}$ The order is:

### [6] Write three positive irrational numbers less than 2:

7] Write three negative irrational numbers greater than





[8] Write four irrational numbers included between 15 and 17:



[9] Write three irrational positive numbers less than 3:



[10] Solve the following equations to the nearest hundredth given  $x \in R$ :

(1) 
$$x^2 - 6 = 0$$



(2) 
$$\frac{3}{4}x^2 = 24$$

$$(3) \frac{1}{2}x^2 - 5 = 0$$

(4) 
$$5x^3 + 3 = 2$$



### The Square

Let the edge length = S, then

$$area = S^2$$

$$S = \sqrt{area}$$

Let the diagonal length = d, then  $area = \frac{1}{2}d^2$ ,

$$d = \sqrt{2 \times area}$$

$$area=\frac{1}{2}d^2,$$

$$d=\sqrt{2\times s\times s}$$

[13] Find the side length of a square whose area is 5 cm2. Is the edge length a rational number? " $\sqrt{5}cm$ 

[14] A square is of area 32 cm2, Find its side length and its diagonal length? " $\sqrt{32}$ , 8"

[15] A square is of side length 6 cm. Find its diagonal length? " $\sqrt{72}cm$ 



### intervaled read numbers (Intervaled

$$X = \{a : a \in Z, -3 \le a < 2\}$$

$$X = \{-3, -2, -1, 0, 1, 2\}$$

$$K = \{a: a \in R, -3 \le a < 2\}$$

but it is impossible to express the set K by listing method because there are an infinity of real numbers between -3 and 2. So we use another method to express a subset of the set of real numbers, which is (the intervals).

### Types of intervals

| זנו                   |                                                                    | (e                                                          | Sheet<br>Mbsets of real num                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                        |
|-----------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                    | 9                                                           |                                                                                                                                                                                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                        |
|                       |                                                                    |                                                             | of integers which gro<br>set X by the descri                                                                                                                                                                                                                                               | •                                                     |                                                                                                                                                                                                                                                                        |
|                       |                                                                    |                                                             | $Z$ , $-3 \le a < 2$                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                        |
| an                    | expre                                                              | ess it by l                                                 | listing method                                                                                                                                                                                                                                                                             |                                                       |                                                                                                                                                                                                                                                                        |
| 2                     | <b>Y</b> =                                                         | {-3,-                                                       | -2, -1, 0, 1, 2                                                                                                                                                                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                        |
|                       |                                                                    |                                                             | real number which gi                                                                                                                                                                                                                                                                       | •                                                     |                                                                                                                                                                                                                                                                        |
|                       |                                                                    | •                                                           | is the set K by the definition $R = R + R = R$                                                                                                                                                                                                                                             | •                                                     | as tollows:                                                                                                                                                                                                                                                            |
|                       |                                                                    | -                                                           | $ER, -3 \le a < 2$                                                                                                                                                                                                                                                                         |                                                       | حمد علم مرسم                                                                                                                                                                                                                                                           |
| T II                  | s impo                                                             | ossible to<br>eal numbe                                     | express the set K b<br>crs between -3 and 2                                                                                                                                                                                                                                                | •                                                     |                                                                                                                                                                                                                                                                        |
| es:                   | s a su                                                             | bset of t                                                   | he set of real number                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                        |
|                       |                                                                    |                                                             | Types of i                                                                                                                                                                                                                                                                                 |                                                       |                                                                                                                                                                                                                                                                        |
|                       |                                                                    |                                                             | Types of i                                                                                                                                                                                                                                                                                 | ntervais                                              |                                                                                                                                                                                                                                                                        |
| Ty<br>int             | pes of<br>ervals                                                   | The interval                                                | Expression by distinguished property                                                                                                                                                                                                                                                       | Representation on the number line                     | Notice that                                                                                                                                                                                                                                                            |
| Ty int                | pes of<br>ervals                                                   | The interval                                                | Expression by distinguished property $\{x : x \in \mathbb{R} \ fa \le x \le b\}$                                                                                                                                                                                                           | Representation on the                                 | •a∈[a,b                                                                                                                                                                                                                                                                |
| d intervals           | pes of ervals  Pervals  pervalo  pervalo                           | The interval  [a,b]                                         | Expression by distinguished property $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a < x < b\}$                                                                                                                                                                       | Representation on the number line                     | •a∈[a,b<br>•b∈[a,b                                                                                                                                                                                                                                                     |
| The limited intervals | pes of ervals pened pened pened                                    | The interval  [a,b]  ]a,b[  [a,b[                           | Expression by distinguished property $\{x: x \in \mathbb{R}  ; a \leq x \leq b\}$ $\{x: x \in \mathbb{R}  ; a \leq x \leq b\}$ $\{x: x \in \mathbb{R}  ; a \leq x \leq b\}$                                                                                                                | Representation on the number line                     | •a∈[a,b<br>•b∈[a,b<br>•a∉]a,b<br>•b∉]a,b                                                                                                                                                                                                                               |
| Ty int Ly intervals   | half opened (half closed) Opened (half closed)                     | The interval  [a,b]  ]a,b[  [a,b[  [a,b]                    | Expression by distinguished property $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$                                                                               | Representation on the number line  a b  a b           | •a∈[a,b<br>•b∈[a,b<br>•a∉]a,b<br>•b∉]a,b<br>•a∈[a,b<br>•b∉[a,b                                                                                                                                                                                                         |
| The limited intervals | rvals half opened Opened Closed spara sed (half closed)            | The interval  [a,b]  ]a,b[  [a,b[  ]a,b[                    | Expression by distinguished property $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$                                     | Representation on the number line  a b b              | •a∈[a,b<br>•b∈[a,b<br>•a∉]a,b<br>•b∉]a,b<br>•a∈[a,b<br>•b∉[a,b<br>•b∉]a,b                                                                                                                                                                                              |
| Ty int Ly intervals   | ed intervals half opened Opened Closed spaces (half closed)        | The interval  [a,b]  ]a,b[  [a,b[  ]a,c[  ]a,∞[             | Expression by distinguished property $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : x \le x \le a\}$ $\{x: x \in \mathbb{R} : x \ge a\}$ | Representation on the number line  a b  a b  a b      | •a∈[a,b<br>•b∈[a,b<br>•a∉]a,b<br>•b∉]a,b<br>•a∈[a,b<br>•b∉[a,b<br>•b∈]a,b<br>•a∈[a,b                                                                                                                                                                                   |
| The limited intervals | inlimited intervals half opened Opened Closed spaces (half closed) | The interval  [a,b]  ]a,b[  [a,b[  ]a,c[ ]a,∞[ ]a,∞[ ]-∞,a] | Expression by distinguished property $\{x: x \in \mathbb{R} : a \le x \le b\}$ $\{x: x \in \mathbb{R} : a < x < b\}$ $\{x: x \in \mathbb{R} : a \le x < b\}$ $\{x: x \in \mathbb{R} : a < x \le b\}$ $\{x: x \in \mathbb{R} : a < x \le b\}$                                               | Representation on the number line  a b  a b  a b  a b | Notice that $ \bullet a \in [a , b] \bullet b \in [a , b] \bullet b \notin ]a , b] \bullet a \notin [a , b] \bullet b \notin [a , b] \bullet b \in ]a , b$ $ \bullet a \notin [a , \infty[$ $ a \notin ]a , \infty[$ $ a \notin ]a , \infty[$ $ a \notin ]a , \infty[$ |

$$\mathbf{2} \, \mathbb{R}_{+} = ]0 , \infty[$$

$$3\mathbb{R}_{=}]-\infty,0[$$

- 4 The set of non-negative real numbers =  $\mathbb{R}_+ \cup \{0\} = [0, \infty[$
- **5** The set of non-positive real numbers =  $\mathbb{R} \cup \{0\} = ]-\infty$ , 0



### [1] Complete the following table:



### [2] Complete using (∈) or (∉):

(5) 
$$\sqrt{9}$$
 ]-3,  $\infty$ [ (6)  $\sqrt[3]{-1}$  ]- $\infty$ , 1]

(7) 
$$1.3 \times 10^{-5}$$
 R<sub>+</sub> (8)  $\sqrt{2}$  [2, 5]

(9) 5 
$$\sqrt{23}$$
 [ (10)  $\sqrt[3]{-125}$   $-\sqrt{25}$ ,  $\sqrt{25}$ ]

Choose the correct answer:

- - (a) ∈

(b)∉

(c) C

(d) ⊄

- 5 € ......
  - (a)  $]5,\infty[$
- (b)]-∞,5[
- (c)(3,5)

- 3 The opposite figure represents the interval .....
  - (a) [-4,8]
- (b) [8, -4]
- (c) [-4, 8]
- (d) ]-4,8[

- $\mathbb{R} = \dots$ 
  - (a) ℝ<sub>+</sub> ∩ ℝ\_
- (b) ℝ<sub>+</sub> U ℝ\_
  - (c)]-∞,∞[
- (d) ℚ ∩ Q

- 5  $\mathbb{R}_{+} = \cdots \cdots$ 
  - (a) ]0,∞
- (b)  $-\infty,0$
- (c) [0,∞[
- $(d) ] \infty, 0]$

- 6 R = .....
  - (a) ]0,∞
- (b)  $]-\infty,0[$
- (c) [0,∞[
- (d)  $]-\infty,0]$

- 7 The set of non-negative real numbers = .....
  - (a) ]0,∞[
- (b)  $]-\infty,0[$
- (c) [0,∞[
- (d)  $]-\infty,0]$

- The set of non-positive real numbers = ..... 8
  - (a) ]0,∞[
- (b)  $]-\infty$ , 0 (c)  $[0,\infty[$
- $(d) \infty, 0$



### [1] Complete:



## **╁╁╁╁╁┼┞┼** [2] Essay problems:

If  $X = \begin{bmatrix} -1 & , 4 \end{bmatrix}$ ,  $Y = \begin{bmatrix} 3 & , \infty \end{bmatrix}$ ,  $Z = \{3 & , 4\}$ , find using the number line :

$$(2)X \cap Y$$

$$(3)X-Z$$



If  $X = [3, \infty[, Y = ]-4, 8[$ 

$$(2) X \cap Y$$

Find each of the following:



(2) 
$$[1,5] \cap ]-2,3]$$

If  $X = \begin{bmatrix} -2 & 3 \end{bmatrix}$ ,  $Y = \begin{bmatrix} 1 & 5 \end{bmatrix}$ , then find by using the number line:  $X \cup Y$ , X - Y

### [1] Choose the correct answer:

(a) 
$$\emptyset$$

(b) 
$$\{-3\}$$

(c) 
$$\{-1\}$$

(d) 
$$\{3\}$$

2 
$$[1,5] \cap ]-2,3] = \cdots$$

(a) 
$$\{1,3\}$$

(c) 
$$[1,3]$$

(a) 
$$[0,3]$$

(a) 
$$[1, 6]$$

(a) 
$$]-2,5[$$

(b) 
$$]-2,6[$$

(c) 
$$]-2,5]$$

(d) 
$$[-2,5[$$

(a) 
$$[-3,7[$$
 (b)  $]-3,7]$ 

(b) 
$$]-3,7]$$

(c) 
$$]-3,7[$$

### [2] Essay problems:

If X = [-1, 4],  $Y = [3, \infty[, Z = \{3, 4\}]$ , find using the number line:

$$(\mathbf{z}) \mathbf{X} \cap \mathbf{Y}$$

$$(3)X-Z$$

If X = [-2, 1] and  $Y = [0, \infty]$ 

Find:  $(1) X \cap Y$ 



If  $X = [3, \infty[, Y = ]-4, 8[$ 

Find:  $(1) \times \bigcup Y$ 

 $(2) X \cap Y$ 

(3) X

If  $X = \begin{bmatrix} -1 & 4 \end{bmatrix}$  and  $Y = \begin{bmatrix} 2 & 7 \end{bmatrix}$ , then find each of:

 $(1)X \cap Y$ 

(2) YUX

If  $X = [-2, 1], Y = [0, \infty[$ 

Find:  $(1) X \cap Y$ 

(2) X U Y

(3)Y-X

If  $X = \begin{bmatrix} -1 & 4 \end{bmatrix}$ ,  $Y = \begin{bmatrix} 3 & \infty \end{bmatrix}$ , find using the number line each of :

(1) X U Y

(2)X-Y

Find each of the following:

(1) 
$$[0,5] \cup [3,8[$$

(a) 
$$[1,5] \cap ]-2,3]$$

If  $X = \begin{bmatrix} -2 & 3 \end{bmatrix}$ ,  $Y = \begin{bmatrix} 1 & 5 \end{bmatrix}$ , then find by using the number line:  $X \cup Y$ , X - Y

If X = [-2, 4] and Y = ]2,  $\infty[$ , find each of the following using the number line:

$$(1) X \cap Y \qquad (2) X - Y$$

If  $X = \begin{bmatrix} -1 & 4 \end{bmatrix}$ ,  $Y = \begin{bmatrix} 2 & 7 \end{bmatrix}$ , then find each of the following by using the number line : 10 (1) X U Y  $(2) X \cap Y$ (3) X - Y



If X = [1, 5], Y = [2, 7] Find by using the number line:  $(1)X \cap Y$ (2) X U Y



### Sheet (6) nerations on the real nu

We know that 2x and 3x are two like algebraic terms, then 2x + 3x = 5x

then we deduce that  $2\sqrt{5} + 3\sqrt{5} = (2+3)\sqrt{5} = 5\sqrt{5}$ .

but 2x and 3y are two unlike algebraic terms then their sum 2x + 3y

then the sum of  $2\sqrt{3}$ ,  $3\sqrt{2}$  written in the form  $2\sqrt{3} + 3\sqrt{2}$ 

### Properties of addition of real numbers

### Closure:

For every  $a \in \mathbb{R}$  and  $b \in \mathbb{R}$  we find that  $(a + b) \in \mathbb{R}$ 

**i.e.** The sum of any two real numbers is a real number, therefore we say  $\mathbb R$  is closed under addition operation.

### For example :

•  $\sqrt{5} \in \mathbb{R}$  and  $2\sqrt{5} \in \mathbb{R}$  we find that  $:\sqrt{5} + 2\sqrt{5} = 3\sqrt{5} \in \mathbb{R}$ 

### Commutative property:

For every  $a \in \mathbb{R}$  and  $b \in \mathbb{R}$  it will be a + b = b + a

### For exomple:

$$5\sqrt[3]{2} + 4\sqrt[3]{2} = 9\sqrt[3]{2}$$
,  $4\sqrt[3]{2} + 5\sqrt[3]{2} = 9\sqrt[3]{2}$ 

i.e. 
$$5\sqrt[3]{2} + 4\sqrt[3]{2} = 4\sqrt[3]{2} + 5\sqrt[3]{2}$$

### Associative property:

For every  $a \in \mathbb{R}$ ,  $b \in \mathbb{R}$  and  $c \in \mathbb{R}$  it will be (a + b) + c = a + (b + c) = a + b + c

35

### For example :

$$(\sqrt{3} + 2\sqrt{3}) + 5\sqrt{3} = 3\sqrt{3} + 5\sqrt{3} = 8\sqrt{3}$$
,

$$\sqrt{3} + (2\sqrt{3} + 5\sqrt{3}) = \sqrt{3} + 7\sqrt{3} = 8\sqrt{3}$$

i.e. 
$$(\sqrt{3} + 2\sqrt{3}) + 5\sqrt{3} = \sqrt{3} + (2\sqrt{3} + 5\sqrt{3})$$

カカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカ

The additive neutral:

For every  $a \in \mathbb{R}$  it will be a + 0 = 0 + a = a

i.e. Zero is the additive neutral.

For example:  $\sqrt{2} + 0 = 0 + \sqrt{2} = \sqrt{2}$ ,  $-\sqrt[3]{5} + 0 = 0 + (-\sqrt[3]{5}) = -\sqrt[3]{5}$ 

The additive inverse of every real number :

For every  $a \in \mathbb{R}$  there is  $(-a) \in \mathbb{R}$  where a + (-a) = zero (the additive neutral)

For example:

- The additive inverse of the number  $\sqrt{3}$  is  $-\sqrt{3}$  and vice versa because  $\sqrt{3} + (-\sqrt{3}) = 0$
- The additive inverse of the number  $2 + \sqrt{5}$  is  $-(2 + \sqrt{5})$  and equals  $-2 \sqrt{5}$
- The additive inverse of the number  $3-\sqrt{2}$  is  $-(3-\sqrt{2})$  and equals  $\sqrt{2}-3$
- The additive inverse of the number zero is itself.

[1] Find the result of each of the following in the simplest form:

(1) 
$$\sqrt{3} + 2\sqrt{3} =$$

(2) 
$$3\sqrt{2} - 5\sqrt{2} =$$

(3) 
$$2\sqrt{5} - 3\sqrt{5} + \sqrt{5} =$$

$$(4) \quad 5\sqrt[3]{7} - 8\sqrt[3]{7} + 2\sqrt[3]{7} =$$

(5) 
$$4\sqrt{5} - 2\sqrt{5} + 5\sqrt{5} - \sqrt{5} =$$

(6) 
$$5\sqrt{3} - 7\sqrt{3} + 3\sqrt{3} - \sqrt{3} =$$

(7) 
$$\sqrt{5} - \sqrt{3} + 2\sqrt{5} + \sqrt{3} =$$

(8) 
$$2\sqrt{3} + 5 + \sqrt{3} - 6 =$$

カカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカカ

$$(10) 2\sqrt{2} - 3\sqrt[3]{2} + 5\sqrt{2} + \sqrt[3]{2} =$$

The properties of multiplication operation of real numbers

[1.e. The product of any two real numbers is a real number therefore we say:

The multiplication operation is closed in 
$$\mathbb{R}$$

For every  $a \in \mathbb{R}$  and  $b \in \mathbb{R}$  it will be  $a \times b \in \mathbb{R}$ 

1.e. The product of any two real numbers is a real number therefore we say:

The multiplication operation is closed in  $\mathbb{R}$ 

For example:

•  $\sqrt{3} \in \mathbb{R}$  and  $2\sqrt{3} \in \mathbb{R}$ 

We find that:  $\sqrt{3} \times 2\sqrt{3} = 2 \times 3 = 6 \in \mathbb{R}$ 

Commutative property:

For every  $a \in \mathbb{R}$  and  $b \in \mathbb{R}$  it will be  $a \times b = b \times a$ 

For example:

•  $2\sqrt{5} \times 3\sqrt{5} = 6 \times 5 = 30$ ,  $3\sqrt{5} \times 2\sqrt{5} = 6 \times 5 = 30$ 

i.e.  $2\sqrt{5} \times 3\sqrt{5} = 3\sqrt{5} \times 2\sqrt{5}$ 

The associative property:

For every  $a \in \mathbb{R}$ ,  $b \in \mathbb{R}$  and  $c \in \mathbb{R}$  it will be  $(a \times b) \times c = a \times (b \times c) = a \times b \times c$ 

For example:

•  $(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 56 \times \sqrt{7} = 56\sqrt{7}$ 

i.e.  $(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 2\sqrt{7} \times 28 = 56\sqrt{7}$ 

i.e.  $(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 2\sqrt{7} \times 28 = 56\sqrt{7}$ 

i.e.  $(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 2\sqrt{7} \times 28 = 56\sqrt{7}$ 

i.e.  $(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 2\sqrt{7} \times 28 = 56\sqrt{7}$ 

i.e.  $(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 2\sqrt{7} \times 28 = 56\sqrt{7}$ 

i.e.  $(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 2\sqrt{7} \times 28 = 56\sqrt{7}$ 

(12) 
$$\frac{1}{4}\sqrt{2} + \frac{2}{7}\sqrt{5} + \frac{3}{4}\sqrt{2} - \frac{2}{7}\sqrt{5} =$$

### The properties of multiplication operation of real numbers

i.e. The product of any two real numbers is a real number therefore we say:

• 
$$2\sqrt{5} \times 3\sqrt{5} = 6 \times 5 = 30$$
,  $3\sqrt{5} \times 2\sqrt{5} = 6 \times 5 = 30$ 

i.e. 
$$2\sqrt{5} \times 3\sqrt{5} = 3\sqrt{5} \times 2\sqrt{5}$$

For every  $a \in \mathbb{R}$ ,  $b \in \mathbb{R}$  and  $c \in \mathbb{R}$  it will be  $(a \times b) \times c = a \times (b \times c) = a \times b \times c$ 

• 
$$(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 56 \times \sqrt{7} = 56\sqrt{7}$$

• 
$$2\sqrt{7} \times (4\sqrt{7} \times \sqrt{7}) = 2\sqrt{7} \times 28 = 56\sqrt{7}$$

**i.e.** 
$$(2\sqrt{7} \times 4\sqrt{7}) \times \sqrt{7} = 2\sqrt{7} \times (4\sqrt{7} \times \sqrt{7})$$

### The multiplicative neutral:

For every  $a \in \mathbb{R}$  it will be  $a \times 1 = 1 \times a = a$ 

**i.e.** One is the multiplicative neutral in  $\mathbb{R}$ 

#### For example:

• 
$$\sqrt[3]{5} \times 1 = 1 \times \sqrt[3]{5} = \sqrt[3]{5}$$

### The multiplicative inverse of any non-zero real number :

For every real number  $a \neq 0$ , there is a real number  $\frac{1}{a}$  where  $a \times \frac{1}{a} = 1$ which is the multiplicative neutral.

#### For example:

- The multiplicative inverse of  $\sqrt{3}$  is  $\frac{1}{\sqrt{3}}$  because  $\sqrt{3} \times \frac{1}{\sqrt{2}} = 1$
- The multiplicative inverse of  $-\frac{\sqrt{2}}{5}$  is  $-\frac{5}{\sqrt{2}}$
- The multiplicative inverse of the number 1 is itself and also the multiplicative inverse of -1 is itself.

#### Notice that:

Both the number and its multiplicative inverse have the same sign.

#### Notice that:

There is no multiplicative inverse for the number zero because  $\frac{1}{zero}$ is meaningless (i.e. undefined)

#### Remark

- Since each non-zero real number has a multiplicative inverse then the division operation by any real number does not equal zero is possible in R and it is defined as For every  $a \in \mathbb{R}$  and  $b \in \mathbb{R}^*$  it will be  $a \div b = a \times \frac{1}{b}$ 
  - i.e. The division operation (a ÷ b) means multiplying the number a by the multiplicative inverse of the number b such that  $b \neq 0$

#### Then we can deduce that:

The division operation in  $\mathbb R$  is not commutative and it is not associative.

# [2] Find the result of each of the following in the simplest form:

$$(2) \quad -2\sqrt{5} \times 3\sqrt{5} \quad = \quad$$

$$(3) \quad 2 \times 3\sqrt{2} \quad = \quad$$

$$(4) \quad \frac{1}{3}\sqrt{3}\times\sqrt{3} =$$

(5) 
$$\left(\sqrt[3]{5}\right)^3 \times 3\sqrt{3} =$$

(6) 
$$2\sqrt{3} \times \frac{2\sqrt{7}}{7} \div \frac{20\sqrt{3}}{5\sqrt{7}} =$$

# 3] Make the denominator in each of the following an integer:

$$(1) \quad \frac{3}{\sqrt{3}} \quad = \quad$$

$$(2) \quad \frac{10}{\sqrt{5}} \quad = \quad \dots$$

$$(3) \quad \frac{-6}{\sqrt{3}} \quad = \quad \dots$$

$$(4) \quad \frac{6}{2\sqrt{3}} \quad = \quad \dots$$

(5) 
$$\frac{\sqrt{2}+3}{\sqrt{2}} =$$

### Distributing multiplication on addition and subtraction

For any three real numbers a , b and c it will be :

• 
$$a(b \pm c) = ab \pm ac$$

• 
$$(b \pm c) a = ba \pm ca$$

Remarks:

• 
$$(a+b)(a-b) = a^2 - b^2$$

• 
$$(a+b)^2 = a^2 + 2ab + b^2$$

• 
$$(a-b)^2 = a^2 - 2ab + b^2$$

[4] Find the result of each of the following in the simplest form:

(1) 
$$2(\sqrt{2} + \sqrt{5}) =$$

(2) 
$$\sqrt{2}(5+\sqrt{2}) =$$

(3) 
$$\sqrt{7}(\sqrt{7}+2) =$$

(4) 
$$-\sqrt{3}(-5-\sqrt{3})$$

(5) 
$$-2\sqrt{5}(3-\sqrt{5}) =$$

$$(6) \quad \sqrt{7} \left( \frac{2}{\sqrt{7}} - \sqrt{7} + 3 \right) =$$

[5] Find the result of each of the following operations:

(1) 
$$(\sqrt[4]{2}+1)(\sqrt[4]{2}-1) =$$

(2) 
$$(4-3\sqrt{2})(4+3\sqrt{2}) =$$

$$(3) \left(\sqrt{5}-1\right)^2 =$$

(4) 
$$(2\sqrt{3}+4)^2 =$$

התנתתתתתתתת או Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term מתתתתתתתתתתתת

# [6] Complete the following:

- (1)The multiplicative neutral in  $\mathbb R$  is ...... and the additive neutral in  $\mathbb R$  is ......
- (2)The additive inverse of the number  $1 - \sqrt{2}$  is ......
- The multiplicative inverse of the number  $\frac{2\sqrt{3}}{5}$  is  $\frac{1}{5}$ (3)
- The multiplicative inverse of the number  $\frac{3}{\sqrt{3}}$  is  $\frac{3}{\sqrt{3}}$ (4)
- If:  $a = \sqrt{5}$  and  $b = 2\sqrt{5}$ , then:  $ab = \dots$ (5)
- If:  $x = \sqrt{5} + 2$  and  $y = \sqrt{5} 2$  then  $(x + y)^2 = \cdots$ (6)
- If:  $x = 2\sqrt[3]{5}$ , then  $x^3 = \dots$ (7)
- The solution set of the equation :  $\chi^2 + 25 = 0$  in  $\mathbb{R}$  is ...... (8)
- $\mathbb{R}_+ \cup [-3,2[=\cdots\cdots$

### Choose the correct answer:

- $2\sqrt{5} + 3\sqrt{5} = \cdots$ **(1)** 
  - (a)  $5\sqrt{10}$
- (b) 5√5
- (c) 6√5
- (d) 30
- (2)The multiplicative inverse of the number  $\frac{\sqrt{3}}{6}$  is .....
  - (a)  $\frac{\sqrt{6}}{3}$

- (b)  $2\sqrt{3}$
- (c)  $\frac{3}{\sqrt{6}}$

- $\sqrt{3} + (-\sqrt{3}) = \cdots$ (3)
  - (a)  $2\sqrt{3}$
- (b)  $2\sqrt{6}$
- (c) 16
- (d) zero

- (c)  $2\sqrt{3}$
- (d) 6

מתתתתתתתת Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term מתתתתתתתת Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term

The additive inverse of the (a)  $-2\sqrt{3}$  (b)  $2\sqrt{3}$  (c)  $2\sqrt{3}$  (d)  $2\sqrt{3}$  (e)  $2\sqrt{3}$  (f) The additive inverse of the (a)  $\sqrt{2} + \sqrt{5}$  (b)  $\sqrt{5}$  (f) The multiplicative inverse of (a) -5 (b)  $\frac{-1}{5}$  (e)  $-\frac{1}{5}$  (f) The multiplicative inverse of (a) -5 (b)  $\frac{-1}{5}$  (f)  $-\frac{1}{5}$  (g) If  $: x = \sqrt{2} + 10$ ,  $y = \sqrt{2} - (a) + (b) + (b) + (b) + (b) + (b) + (b) + (c)$  (a)  $-\frac{1}{5}$  (b)  $-\frac{1}{5}$  (c) If  $: x = \sqrt{3} + 2$ , then  $x = -\frac{1}{5}$  (a)  $-\frac{1}{5}$  (b)  $-\frac{1}{5}$  (c) If  $: x = \sqrt{3} + 2$ , then  $x = -\frac{1}{5}$  (a)  $-\frac{1}{5}$  (b)  $-\frac{1}{5}$  (a)  $-\frac{1}{5}$  (b)  $-\frac{1}{5}$  (b)  $-\frac{1}{5}$  (c)  $-\frac{1}{5}$  (d)  $-\frac{1}{5}$  (e)  $-\frac{1}{5}$  (f)  $-\frac{1}{5}$  (f)  $-\frac{1}{5}$  (f)  $-\frac{1}{5}$  (g)  $-\frac{1}{5}$  (h)  $-\frac{1}{5}$  (f)  $-\frac{1}{5}$  (g)  $-\frac{1}{5}$  (g)  $-\frac{1}{5}$  (h)  $-\frac{1}{5}$  (f)  $-\frac{1}{5}$  (g)  $-\frac{1}{5}$  (h)  $-\frac{1}{5}$ The additive inverse of the number  $\frac{6}{\sqrt{2}} = \cdots$ 

(c)  $-3\sqrt{2}$ (b)  $2\sqrt{3}$ 

(d)  $3\sqrt{2}$ 

The additive inverse of the number  $(\sqrt{2} - \sqrt{5}) = \cdots$ 

(b)  $\sqrt{5} - \sqrt{2}$  (c)  $\sqrt{2} - \sqrt{5}$ 

(d)  $-\sqrt{2}-\sqrt{5}$ 

The multiplicative inverse of the number  $\sqrt{5}$  is .......

(b)  $\frac{-1}{5}$ 

 $\cdot \quad \text{(c)} \frac{3}{\sqrt{5}}$ 

(c) 5

(d) 4

If:  $x = \sqrt{2} + 10$ ,  $y = \sqrt{2} - 10$ , then  $(x + y)^2 = \cdots$ 

(c) 8

(d)  $4\sqrt{2}$ 

(a) [3,4] (b) ]2,5[

(c)  $\{2,5\}$ 

(d)[2,5]

If:  $x^3 + 9 = 1$  where  $x \in \mathbb{R}$ , then  $x = \dots$ 

(c) 2

(d) 8

If:  $x = \sqrt{3} + 2$ , then  $x^2 = \dots$ 

(b) 7

(c)  $7 + 2\sqrt{3}$ 

(d)  $7 + 4\sqrt{3}$ 

(13) If:  $x^2 - y^2 = 60$ ,  $x + y = 5\sqrt{6}$ , then  $= x - y = \dots$ 

(b)  $2\sqrt{6}$ 

(c)  $3\sqrt{6}$ 

(d)  $4\sqrt{6}$ 

[8] If  $x = \sqrt{5} - 2$  and  $y = \sqrt{5} + 2$ , find the value of:

(1) x + y =

$$1 \sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

• 
$$\sqrt{3} \times \sqrt{12} = \sqrt{36} = 6$$

• 
$$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \text{ where } b \neq 0$$

$$\bullet \frac{\sqrt{8}}{\sqrt{2}} = \sqrt{\frac{8}{2}} = \sqrt{4} = 2$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \frac{\sqrt{a}}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}} = \frac{\sqrt{ab}}{b} \text{ where } b \neq 0$$

This operation is carried out to make the denominator an integer.

$$\bullet \frac{\sqrt{2}}{\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{10}}{5}$$



(1) 
$$\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}$$

(2) 
$$\sqrt{28} = \sqrt{4 \times 7} = 2\sqrt{7}$$

(3) 
$$2\sqrt{72} = 2 \times \sqrt{36 \times 2} = 2 \times 6\sqrt{2} = 12\sqrt{2}$$

$$(4)\frac{2}{5}\sqrt{1000} = \frac{2}{5}\sqrt{100 \times 10} = \frac{2}{5} \times 10\sqrt{10} = 4\sqrt{10}$$

カカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカ

(5) 
$$2\sqrt{\frac{1}{2}} = \sqrt{2^2 \times \frac{1}{2}} = \sqrt{2} \left( x\sqrt{\frac{1}{x}} = \sqrt{x} \right)$$

(6) 
$$6\sqrt{\frac{2}{3}} = \sqrt{36 \times \frac{2}{3}} = 2\sqrt{6}$$

[2] Simplify each of the following to the simplest form:

(1) 
$$\sqrt{50} + \sqrt{8}$$

(2) 
$$3\sqrt{2} + \sqrt{8} - \sqrt{18}$$

(3) 
$$\sqrt{98} - \sqrt{128} - \sqrt{18} + 4\sqrt{2}$$
 (4)  $\sqrt{27} + 5\sqrt{18} - \sqrt{300}$ 

(4) 
$$\sqrt{27} + 5\sqrt{18} - \sqrt{300}$$

(5) 
$$2\sqrt{18} + \sqrt{50} + \frac{1}{3}\sqrt{162}$$

(6) 
$$2\sqrt{5} + 4\sqrt{20} - 5\sqrt{\frac{1}{5}}$$

(7) 
$$2\sqrt{5} + 6\sqrt{\frac{1}{3}} - \sqrt{12} - 5\sqrt{\frac{1}{5}}$$

(8) 
$$\sqrt{18} - \frac{\sqrt{12}}{\sqrt{6}}$$

| (9) | $2\sqrt{3}$ | × | 5√ | 2 |
|-----|-------------|---|----|---|
|-----|-------------|---|----|---|

$$(10)\sqrt{5}\times2\sqrt{10}$$

$$(11)\sqrt{\frac{2}{7}} \times \sqrt{\frac{7}{2}} =$$

$$(12)\frac{3\sqrt{15}}{\sqrt{5}} =$$

(13) 
$$12\sqrt{\frac{2}{3}} \times \sqrt{54}$$





[3] Simplify each of the following to the simplest form:

$$(1) \quad \sqrt{6}(\sqrt{3}-\sqrt{2}) =$$

(2) 
$$(3\sqrt{5} - \sqrt{7})(3\sqrt{5} + \sqrt{7}) =$$

(3) 
$$(3\sqrt{2}-5)(3\sqrt{2}+5) =$$

(4) 
$$\left(\sqrt{2} + \sqrt{6}\right)^2 =$$

(5) 
$$\left(\sqrt{3} - \sqrt{2}\right)^2 =$$



カカカカカカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカ

[4] Choose the correct answer:

$$\frac{\sqrt{63}}{\sqrt{7}} = \cdots$$

- (b)  $\sqrt{3}$
- (c)9

 $(d) \pm 3$ 

 $\square \sqrt{8} - \sqrt{2} = \cdots$ (2)

- $(a)\sqrt{6}$
- $(b)\sqrt{2}$
- (c) 2

(d) 1

 $\square \left(\sqrt{8} + \sqrt{2}\right)^2 = \cdots$ (3)

- $(a)\sqrt{10}$
- (b) 10
- (c) 18

(d)  $\sqrt{18}$ 

(4) $\square (\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5}) = \cdots$ 

(a) 2

- (b) 12
- (c)  $2\sqrt{7}$
- (d)  $-2\sqrt{5}$

(5) $\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}} = \cdots$ 

- (b)  $\sqrt{\frac{1}{4}}$
- (c)  $\sqrt{2}$

 $\frac{\sqrt{27}}{\sqrt{3}} \div \frac{\sqrt{72}}{\sqrt{2}} = \cdots$ (6)

- · (b) 2

- (c) 2
- (d) 4

(7)The multiplicative inverse of the number  $\sqrt{50}$  is ......

- (b)  $\frac{-\sqrt{2}}{10}$
- (c)  $-5\sqrt{2}$
- (d)  $5\sqrt{2}$

If:  $x = \frac{\sqrt{6}}{\sqrt{2}}$ , then  $x^{-1} = \dots$ (a)  $\sqrt{3}$ : (b)  $\frac{\sqrt{3}}{2}$ 

- (d)  $2\sqrt{3}$

มมมมมมมมมม Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term มมมมมมมมมมมมมม 

(9) If: 
$$x = \sqrt{7} + \sqrt{3}$$
 and  $y = \sqrt{28} + \sqrt{12}$ , then  $x = \dots$ 

 $(b)\frac{1}{2}y$ 

(c) 2y



[5] If  $x=rac{\sqrt{50}-\sqrt{18}}{2}$  and  $y=2-\sqrt{2}$ , find in the simplest form:

(1) 
$$x + y =$$

$$(2) xy =$$



# Sheet (8) The two conjugate numbers

If a and b are two positive rational numbers, then each of the two numbers  $(\sqrt{a} + \sqrt{b})$  and  $(\sqrt{a} - \sqrt{b})$  is conjugate to the other one and we find that

- Their sum =  $(\sqrt{a} + \sqrt{b}) + (\sqrt{a} \sqrt{b}) = 2\sqrt{a}$  = twice the first term.
- Their product =  $(\sqrt{a} + \sqrt{b}) (\sqrt{a} \sqrt{b}) = (\sqrt{a})^2 (\sqrt{b})^2 = a b$ The difference:

Greater – smaller = 
$$(\sqrt{a} + \sqrt{b}) - (\sqrt{a} - \sqrt{b}) = 2\sqrt{b}$$
 (twice the second term)

$${f Smaller-greater}=\left(\sqrt{a}-\sqrt{b}
ight)-\left(\sqrt{a}+\sqrt{b}
ight)=-2\sqrt{b}$$
 (negative twice the second term

# Example: $\left(\sqrt{2}+\sqrt{5}\right)$ its conjugate is $\left(\sqrt{2}-\sqrt{5}\right)$

| Their sum<br>2 of 1 <sup>st</sup> term | $G-S$ 2 of $2^{nd}$ term |              | Their product $(1^{st})^2 - (2^{nd})^2$ |
|----------------------------------------|--------------------------|--------------|-----------------------------------------|
| $2\sqrt{2}$                            | $2\sqrt{5}$              | $-2\sqrt{5}$ | 2 - 5 = -3                              |

# Exercise (1): $(3-\sqrt{7})$ its conjugate is

| Their sum | G - S | S - G | Their product |
|-----------|-------|-------|---------------|
|           |       |       |               |

# Exercise (2): $\left(3\sqrt{5}-\sqrt{6} ight)$ its conjugate is \_\_\_\_\_

| Their sum | G - S | S - G | Their product |
|-----------|-------|-------|---------------|
|           |       |       |               |

### Remarks:

• 
$$x^2 - y^2 = (x + y)(x - y)$$

• 
$$x^2 + 2xy + y^2 = (x + y)^2$$

Remarks:
$$x^{2} - y^{2} = (x + y)(x - y)$$

$$x^{2} + 2xy + y^{2} = (x + y)^{2}$$

$$x^{2} - 2xy + y^{2} = (x - y)^{2}$$
[1] Choose the correct ans
$$(1) \quad \text{The conjugate of } (\sqrt{3} + \sqrt{5} - \sqrt{3})$$

$$(2) \quad (\sqrt{5} + \sqrt{3})^{2} (\sqrt{5} - \sqrt{3})$$

$$(3) \quad \text{The number } \frac{4}{3 + \sqrt{5}} \text{ in } (\sqrt{3} + \sqrt{5}) = (\sqrt{3} + \sqrt{3}) = (\sqrt{3} + \sqrt$$

# [1] Choose the correct answer:

(1) The conjugate of 
$$(\sqrt{3} - \sqrt{5})$$
 is

(a) 
$$\sqrt{5} - 3$$
 (b)  $\sqrt{3} + \sqrt{5}$  (c)  $-\sqrt{3} - \sqrt{5}$  (d)  $\sqrt{5} - \sqrt{3}$ 

(2) 
$$\left(\sqrt{5} + \sqrt{3}\right)^2 \left(\sqrt{5} - \sqrt{3}\right)^2 = \dots$$

- (a) 4
- (b) 2
- (c) 8
- (d) 3

(3) The number 
$$\frac{4}{3+\sqrt{5}}$$
 in the simplest form is \_\_\_\_\_

(a) 
$$3 + \sqrt{5}$$
 (b)  $3 - \sqrt{5}$  (c)  $\sqrt{3} + \sqrt{5}$  (d)  $3\sqrt{5}$ 

(5) The conjugate of the number 
$$\frac{1}{\sqrt{3}+\sqrt{2}}$$
 is ......

(a) 
$$\sqrt{3} - \sqrt{2}$$
 (b)  $\sqrt{3} + \sqrt{2}$  (c)  $\frac{1}{\sqrt{3} - \sqrt{2}}$  (d)  $-\sqrt{3} - \sqrt{2}$ 

[2] If 
$$x=\sqrt{5}+\sqrt{3}$$
 and  $y=rac{2}{\sqrt{5}+\sqrt{3}}$ , prove that  $imes$  and  $y$  are

conjugate numbers then find the value of  $x^2 + 2xy + y^2$ .



[4] If  $a=\sqrt{3}+\sqrt{2}$  and  $b=rac{1}{\sqrt{3}+\sqrt{2}}$ , find the value of  $a^2-b^2$ 





[6] If  $x = \sqrt{5} + \sqrt{2}$  and  $y = \sqrt{5} - \sqrt{2}$ , find the value of  $\frac{x+y}{xy-1}$ .



[7] If 
$$x=\frac{2}{\sqrt{5}-\sqrt{3}}$$
 and  $y=\frac{2}{\sqrt{5}+\sqrt{3}}$ , find the value of  $x^2-xy+y^2$ .

[8] If  $x=\frac{5\sqrt{2}+3\sqrt{5}}{\sqrt{5}}$  and  $y=\frac{2\sqrt{5}-3\sqrt{2}}{\sqrt{2}}$ , find:

[1)  $x^2+y^2=$ 

[2)  $xy=$ 

[3) Prove that:  $\frac{x^2+y^2}{xy}=38$ 

$$x^2 - xy + y^2.$$



[8] If 
$$x = \frac{5\sqrt{2} + 3\sqrt{5}}{\sqrt{5}}$$
 and  $y = \frac{2\sqrt{5} - 3\sqrt{2}}{\sqrt{2}}$ , find:

$$\frac{1}{2}(1) x^2 + y^2 =$$

$$(2) xy =$$

(3) Prove that: 
$$\frac{x^2+y^2}{xy} = 38$$



กภภภภภภภภภ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term ภภภภ

# [9] Complete:

(1) 
$$(\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3}) = \dots$$

- $\square$  If:  $x = 3 + \sqrt{2}$ , then its conjugate is ...... and the product of multiplying (2)X by its conjugate is ........
- (3)The conjugate number of the number  $\frac{1}{\sqrt{3}-\sqrt{2}}$  is ......
- (4)The conjugate number of the number  $1 + \frac{7}{\sqrt{7}}$  in the simplest form is ......
- The multiplicative inverse for  $(\sqrt{3} + \sqrt{2})$  in its simplest form is ...... (5)
- If:  $x = 2 + \sqrt{5}$  and y is the conjugate number of x, then  $(x y)^2 = \cdots$ (6)
- If:  $\frac{x}{5-\sqrt{5}} = 5+\sqrt{5}$ , then the value of x in its simplest form is ........ (7)
- (8)If:  $\frac{1}{x} = \sqrt{5} - 2$ , then the value of x in its simplest form is ........
- If:  $x = \sqrt{3} + 2$ ,  $y = \sqrt{3} 2$ , then (xy, x + y) equals ....... (9)
- (10)  $(\sqrt{2} + \sqrt{3})^{-9} (\sqrt{2} \sqrt{3})^{-9} = \dots$



If a and b are two real numbers, then

$$1 \sqrt[3]{a} \times \sqrt[3]{b} = \sqrt[3]{ab}$$

For example:

$$\sqrt[3]{3} \times \sqrt[3]{9} = \sqrt[3]{3 \times 9} = \sqrt[3]{27} = 3$$

$$^3\sqrt{2} \times ^3\sqrt{-4} = ^3\sqrt{2 \times -4} = ^3\sqrt{-8} = -2$$

$$2 \frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}} \text{ (where b \neq 0)}$$

For example:

$$\bullet \frac{\sqrt[3]{54}}{\sqrt[3]{-2}} = \sqrt[3]{\frac{54}{-2}} = \sqrt[3]{-27} = -3$$

Remarks

\* If a and b are two real numbers, then:

$$\sqrt[3]{a^3 + b^3} \neq a + b , \sqrt[3]{a^3 - b^3} \neq a - b$$

$$\sqrt[3]{-a} = -\sqrt[3]{a}$$

$$3 a^{3}\sqrt{b} = \sqrt[3]{a^{3}b}$$

For example : • 
$$3\sqrt[3]{\frac{1}{9}} = \sqrt[3]{27 \times \frac{1}{9}} = \sqrt[3]{3}$$

• 8 
$$\sqrt[3]{\frac{1}{4}} = 4 \times 2 \sqrt[3]{\frac{1}{4}} = 4 \sqrt[3]{8 \times \frac{1}{4}} = 4 \sqrt[3]{2}$$

54

$$\sqrt[3]{\frac{a}{b}} = \sqrt[3]{\frac{a}{b} \times \frac{b^2}{b^2}} = \sqrt[3]{\frac{a b^2}{b^3}} = \frac{1}{b} \sqrt[3]{a b^2}$$

For example : • 
$$\sqrt[3]{\frac{1}{3}} = \sqrt[3]{\frac{1}{3} \times \frac{9}{9}} = \sqrt[3]{\frac{9}{27}} = \frac{1}{3}\sqrt[3]{9}$$

Important Remarks

$$\sqrt[3]{16} = \sqrt[3]{8} \times \sqrt[3]{2} = 2\sqrt[3]{2}$$

$$\sqrt[3]{24} = \sqrt[3]{8} \times \sqrt[3]{3} = 2\sqrt[3]{3}$$

$$\sqrt[3]{54} = \sqrt[3]{27} \times \sqrt[3]{2} = 3\sqrt[3]{2}$$

$$\sqrt[3]{81} = \sqrt[3]{27} \times \sqrt[3]{3} = 3\sqrt[3]{3}$$

$$\sqrt[3]{128} = \sqrt[3]{64} \times \sqrt[3]{2} = 4\sqrt[3]{2}$$

$$\sqrt[3]{40} = \sqrt[3]{8} \times \sqrt[3]{5} = 2\sqrt[3]{5}$$

$$\sqrt[3]{250} = \sqrt[3]{125} \times \sqrt[3]{2} = 5\sqrt[3]{2}$$

$$\sqrt[3]{135} = \sqrt[3]{27} \times \sqrt[3]{5} = 3\sqrt[3]{5}$$

המתנונות המתונות של ליים Prep 1<sup>st</sup> term מתנונות המתונות המתמנות המתונות התתונות התתונות התתונות התתונות התתונות התתונות התתו

# [1] Find the result in its simplest form:

(1) 
$$\sqrt[3]{2} \times \sqrt[3]{32} =$$

(2) 
$$\frac{\sqrt[3]{72}}{\sqrt[3]{9}} =$$

$$\frac{4^{3}\sqrt{-54}}{2^{3}\sqrt{-2}} =$$

$$\frac{1}{2}\sqrt[3]{10} \times 6\sqrt[3]{100} =$$

(5) 
$$\sqrt[3]{\frac{2}{5}} \times \sqrt[3]{\frac{4}{25}} =$$

(6) 
$$\sqrt[3]{\frac{3}{4}} \div \sqrt[3]{\frac{2}{9}} =$$



# [2] Find the result in its simplest form:

(1) 
$$\sqrt[3]{16} - \sqrt[3]{2}$$
 =

(2) 
$$\sqrt[3]{81} + \sqrt[3]{-24} =$$

มมมม Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term **มมมมมมมมมมม**มม

$$(4) \quad \sqrt[3]{125} - \sqrt[3]{24}$$

(5) 
$$\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{250}$$

(6) 
$$\sqrt[3]{16} - \frac{1}{3}\sqrt[3]{54} + \sqrt[3]{-2} =$$

(8) 
$$\sqrt[3]{54} \times \sqrt[3]{16} \div (\sqrt[3]{4} \times 6) =$$



# [3] Simplify each of the following:

(2) 
$$\sqrt{27} + \frac{1}{3}\sqrt[3]{27} - 9\sqrt{\frac{1}{3}} - 1 =$$

$$(3) \sqrt[3]{-16} + \frac{14}{\sqrt{7}} - \sqrt{28} + \sqrt[3]{54} =$$
=

カカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカオ

| (4) | $ \sqrt{18} + \sqrt[3]{54} - \frac{\sqrt{216}}{\sqrt{12}} - \sqrt[3]{16}$ | = |
|-----|---------------------------------------------------------------------------|---|
|     |                                                                           | = |

(5) 
$$5\sqrt{2} - \frac{1}{2}\sqrt{200} + (\sqrt[3]{5} \times \sqrt[3]{25}) =$$



[4]

If 
$$a = \sqrt[3]{5} + 1$$
,  $b = \sqrt[3]{5} - 1$  Find the value of the following:

(4) 
$$\sqrt{18} + \sqrt[3]{54} - \frac{\sqrt{216}}{\sqrt{12}} - \sqrt[3]{16} = \frac{1}{2}$$

(5)  $5\sqrt{2} - \frac{1}{2}\sqrt{200} + (\sqrt[3]{5} \times \sqrt[3]{25}) = \frac{1}{2}$ 

[4] If  $a = \sqrt[3]{5} + 1$ ,  $b = \sqrt[3]{5} - 1$  Find the value of the following:

$$(a - b)^5 = \frac{1}{2}(a + b)^3 = \frac{1}{2}$$

If  $x = 3 + \sqrt[3]{6}$ ,  $y = 3 - \sqrt[3]{6}$  Find the value of:  $(\frac{x - y}{x + y})^3$ 

If 
$$x = 3 + \sqrt[3]{6}$$
,  $y = 3 - \sqrt[3]{6}$  Find the value of :  $\left(\frac{x - y}{x + y}\right)^3$ 



[6] Complete:

(1) 
$$\sqrt[3]{\frac{2}{3}} \times \sqrt[3]{-12} = \dots$$

(2) 
$$\sqrt[3]{3} \times \sqrt[3]{9} = \sqrt{\dots}$$

(3) 
$$\sqrt[3]{54} - \sqrt[3]{-16} = \sqrt[3]{\cdots}$$

(4) The conjugate of the number 
$$\frac{2\sqrt{5}-3\sqrt{2}}{\sqrt{2}}$$
 is .....

(6) 
$$\sqrt[3]{54} - \sqrt[3]{2} = \cdots$$

(7) If: 
$$x = \sqrt[3]{2} + 1$$
 and  $y = \sqrt[3]{2} - 1$ , then  $(x + y)^3 = \dots$ 

(8) 
$$2\sqrt{\frac{1}{2}} - \sqrt{2} = \dots$$

Choose the correct answer:

(1) 
$$\square^{3}\sqrt{54} + \sqrt[3]{-2} = \dots$$

$$(a)\sqrt[3]{52}$$

(b)
$$\sqrt[3]{2}$$

(c) 
$$2\sqrt[3]{2}$$

(d) 
$$4\sqrt[3]{2}$$

(2) 
$$\square^3 \sqrt{-64} + \sqrt{16} = \dots$$

$$(c) - 8$$

$$(d) \pm 8$$

(3) 
$$\frac{\sqrt[3]{16}}{\sqrt[3]{2}}$$

(b) 
$$-2$$

(d) 
$$2\sqrt[3]{2}$$

カカカカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカカカ 

- (b)  $\sqrt[3]{4}$
- $(c)\sqrt[3]{8}$
- $(d)^{3}\sqrt{16}$

- (5)
- (b)  $\sqrt[3]{\frac{1}{6}}$
- $(c)^{3}\sqrt{6}$
- $(d)\sqrt[3]{2}$

- If:  $X = ]-\infty$ , 0[, then  $\vec{X} = \cdots$ (6)
  - (a) R<sub>+</sub>

- (b) [0,∞[
- (c)  $]-\infty,0]$
- (d) ℝ\_
- The multiplicative inverse of the number  $\sqrt{\frac{3}{2}}$  is ...... **(7)** 
  - (a)  $\frac{2}{3}\sqrt{2}$

- The irrational number in the following numbers is ...... (8)
  - $(a)\sqrt{\frac{1}{4}}$

- (b) $\sqrt[3]{8}$
- $(c)\sqrt{\frac{4}{9}}$
- (d)  $2\sqrt{2}$

- $]-1,3] \cap [-3,-1] = \dots$ (9)
  - (a) Ø

- (b)  $\{-3\}$
- (c)  $\{-1\}$
- (d)  $\{3\}$

If:  $x = \sqrt{3} + \sqrt{2}$  and x = 1, then y = 3.

(a)  $\sqrt{2} - \sqrt{3}$  (b)  $\sqrt{3} + \sqrt{2}$ 

(a) 
$$\sqrt{2} - \sqrt{3}$$

(b) 
$$\sqrt{3} + \sqrt{2}$$

(c) 
$$\sqrt{3} - \sqrt{2}$$

(d) 1



# Sheet (10) ions on the real numbers

| The solid        | The lateral area        | The total area                                | The volum             |
|------------------|-------------------------|-----------------------------------------------|-----------------------|
| cube cube        | $4\ell^2$               | 6 l <sup>2</sup>                              | $\ell^3$              |
| en pioqui y      | $z$ $2(x + y) \times z$ | 2 (X y + y z + z X)                           | <i>X</i> y z          |
| The cylinder     | 2 π r h                 | $2\pi r h + 2\pi r^{2}$<br>= $2\pi r (h + r)$ | $\pi r^2 h$           |
| The              | <u>-</u>                | 4 π r <sup>2</sup>                            | $\frac{4}{3} \pi r^3$ |
|                  |                         |                                               |                       |
|                  | THE CUI                 | BE                                            |                       |
| 1] A cube with v | olume 125 cm3           | Find its total                                | _<br>area an          |
| its lateral are  |                         |                                               |                       |



|                  | sube whose lateral area is 36 cm2. Find its total a, and its volume.                                                |
|------------------|---------------------------------------------------------------------------------------------------------------------|
| ui ei            | a, una 115 volume.                                                                                                  |
| The              | e perimeter of one face of a cube is 12 cm. Find                                                                    |
|                  | me, and its lateral area.                                                                                           |
|                  |                                                                                                                     |
|                  |                                                                                                                     |
| The              | e sum of lengths of all edges of a cube is 60 cm.                                                                   |
|                  | e sum of lengths of all edges of a cube is 60 cm.<br>If its volume and its total area.                              |
|                  |                                                                                                                     |
|                  |                                                                                                                     |
| Find             | d its volume and its total area.                                                                                    |
| Find             | d its volume and its total area.  nplete:                                                                           |
| Find             | its volume and its total area.  nplete:  If the edge length of a cube is 5 cm., then its volume = cm <sup>3</sup> . |
| Find Cor (1)     | its volume and its total area.  nplete:  If the edge length of a cube is 5 cm., then its volume =                   |
| Find (1) (2)     | d its volume and its total area.                                                                                    |
| Find (1) (2) (3) | its volume and its total area.  Inplete:  If the edge length of a cube is 5 cm., then its volume =                  |

### [6] Choose the correct answer:

The volume of a cube is  $1 \text{ cm}^3$ , then the sum of its edge lengths = ..... cm. (1)

(a) 1

(b) 6

(c) 8

(d) 12

The volume of a cube is 64 cm<sup>3</sup>, then its lateral area = ......... cm<sup>2</sup> (2)

(a) 4

(b) 8

(c) 64

(d) 96

If the total area of a cube is  $96 \text{ cm}^2$ , then the area of one face = ....... cm<sup>2</sup>. (3)

(a) 16

(b) 64

(c) 24

(d) 48

If the area of the six faces of a cube =  $54 \text{ cm}^2$ , then its volume = ...... cm<sup>3</sup>. (4)

(a) 54

(b) 44

(c) 72

(d) 27

If the volume of a cube =  $64 \text{ cm}^3$ , then the length of a diagonal of one face = .......... cm. (5)

(a) 16

(b)  $4\sqrt{2}$ 

(c) 32

(d) 64

The volume of a cube is 5 cm<sup>3</sup>. If the edge length became twice the first, then its (6) $volume = \cdots cm^3$ 

(a) 10

**(b)** 20

(c) 30

(d) 40

(7)

(a) √2

(b) 2

(c) 8

(d) 1.5



### THE CUBOID



[1] The dimensions of the base of a cuboid are 9 cm and 10 cm and its height is 5 cm. Find its volume, its lateral area and its total area

[2] The height of a cuboid is 4 cm and its base is a square of side length 5 cm. Find its volume, its lateral area and its total area.





If M is a circle with radius length r , then:

- 1 The circumference of the circle =  $2 \pi$  r length unit.
- 2 The area of the circle =  $\pi r^2$  square unit.





[1] A circle is of radius length 10.5 cm. Find each of its circumference and its area.  $(\pi = \frac{22}{3})$ 

| <br>M |
|-------|

| Mathematics | 2nd | Pren | 1 st | torm  |
|-------------|-----|------|------|-------|
| Mainemaile  | _   | rieu |      | 16111 |

- [2] The area of a circle is 25 $\pi$  cm $^2$ . Calculate its circumference in terms of  $\pi$ .
  - [3] The area of a circle is 154 cm<sup>2</sup>. Find its circumference and its diameter length.  $\left(\pi=\frac{22}{7}\right)$





- The lateral area of the cylinder =  $2 \pi r$  h square unit.
- The total area of the cylinder = the lateral area of the cylinder + twice the area of the base =  $2 \pi r h + 2 \pi r^2$  square unit.
- 3 The volume of the cylinder = the area of the base  $\times$  height =  $\pi$  r<sup>2</sup> h cube unit.

Consider  $\pi = \frac{22}{7}$  if there are not any other values given.

(1) A right circular cylinder, the radius length of its base is 14 cm. and its height is 20 cm.  $\times 12320 \text{ cm}^3$ , 2992 cm<sup>2</sup>,  $\times$ Find the volume and the total area of the cylinder.

| (2)            | Find the lateral area for a right circular cylinder of volume 924 cm <sup>3</sup> , and of a height 6 cm.                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | « 264 cm                                                                                                                                               |
| (3)            | The find the total area of a right circular cylinder of volume 7536 cm <sup>3</sup> and its height is 24 cm ( $\pi = 3.14$ )  « 2135.2 cm <sup>3</sup> |
|                |                                                                                                                                                        |
| (4)            | Find the height of a right circular cylinder whose height is equal to its base radius length and its volume is $72 \pi \text{ cm}^3$ .                 |
|                | THE SPHERE                                                                                                                                             |
| <b>I</b> The ∶ | area of the sphere = $4 \pi r^2$ square unit.                                                                                                          |
| _              | volume of the sphere = $\frac{4}{3} \pi r^3$ cube unit.                                                                                                |
|                | Consider $\pi = \frac{22}{7}$ if there are not any other values given.                                                                                 |
| (1)            | Find the volume and the surface area of a sphere if the length of its diameter is 4.2 cm.  « 38.808 cm. , 55.44 cm.                                    |
|                |                                                                                                                                                        |
|                |                                                                                                                                                        |

| (2)               | The volume of a sphere is 4188 cm <sup>3</sup> . Find its radius length. (π                                                                                                                                                         | = 3.141)                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| (3)               | The volume of a sphere = $\frac{500}{3}\pi$ cm. <sup>3</sup> Find the leng                                                                                                                                                          | th of its diameter.                              |
| (4)               | The volume of a sphere is 562.5 π cm <sup>3</sup> .                                                                                                                                                                                 |                                                  |
|                   | Find its surface area in terms of π                                                                                                                                                                                                 | ∢ 225 π                                          |
| Cor               | eral Revision on Applications on the Renplete:  The sphere whose volume = $36 \pi$ cm <sup>3</sup> has a radius                                                                                                                     |                                                  |
| (1)               | nplete:  The sphere whose volume = 36 π cm <sup>3</sup> has a radius                                                                                                                                                                | length = cm                                      |
| Cor               | nplete:                                                                                                                                                                                                                             | length = ······ cm<br>cm³. If its heigh          |
| (1)               | The sphere whose volume = $36  \pi  \text{cm}^3$ has a radius<br>A right circular cylinder, its volume is $343  \pi$                                                                                                                | length = ·······cm<br>cm³. If its heigh<br>cm.   |
| (1)<br>(2)<br>(3) | The sphere whose volume = $36 \pi$ cm <sup>3</sup> has a radius  A right circular cylinder, its volume is $343\pi$ equals its base radius length, then its height =                                                                 | length = ·······cm<br>cm³. If its heigh<br>cm.   |
| (1)<br>(2)<br>(3) | The sphere whose volume = $36 \pi$ cm <sup>3</sup> has a radius  A right circular cylinder, its volume is $343\pi$ equals its base radius length, then its height =  The volume of a cube is $64 \text{ cm}^3$ , then its total are | length = ······cm  cm³. If its heigh  cm.  ca is |

カカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カ 

- The right circular cylinder whose base radius length = 3 cm. and its height = 5 cm. (3)its volume =  $\dots$  cm<sup>3</sup>.
  - (a) 15 TT

- (b) 75 π
- (c) 45 T
- (d)  $\frac{3}{5} \pi$

- If:  $-\sqrt{25} = \sqrt[3]{x}$ , then  $x = \dots$ (4)
  - (a) 5

- (b) -25
- (c) 125
- (d) 125
- The volume of the sphere whose diameter length is 6 cm. =  $\dots$  cm<sup>3</sup> (5)
  - (a) 288
- (b) 12 π
- (c) 36 TT
- (d) 288 π
- If the volume of a sphere =  $\frac{9}{16}$   $\pi$  cm<sup>3</sup>, then its radius length = ......... cm. (6)
  - (a) 3
- (b)  $\frac{4}{3}$
- (c)  $\frac{3}{4}$
- (d)  $\frac{1}{3}$
- If the surface area of a sphere is  $9 \pi \text{ cm}^2$ , then its diameter length = .......... cm. (7)
  - (a) 9
- (b) 3
- (c) 15
- (d) 6
- (8)If three quarters of volume of a sphere equals  $8 \pi \text{ cm}^3$ , then the length of its radius equals ..... cm.
  - (a) 64
- (b) 8
- (c)4
- (d) 2

# Sheet (111) Ming equations and and inequalities of the first degree in one variable

[1] Find the solution set for each of the following equations in R then graph the solution on the number line:

(1) 
$$x + 5 = 0$$

(2) 
$$5x + 6 = 1$$





(3) 
$$2x + 4 = 3$$

(4) 
$$2x - 3 = 4$$





(5) 
$$\sqrt{5}x - 1 = 4$$

(6) 
$$x - 1 = \sqrt{3}$$





(7) 
$$\sqrt{3}x - 1 = 2$$

(8) 
$$7x - \sqrt{7} = 6\sqrt{7}$$



(9) 
$$x - \sqrt{5} = 1$$









[2] Find the solution set for each of the following inequalities in R in the form of interval, then graph the solution on the number line:

(1) 
$$2x > 6$$







(3) 
$$x + 3 \le 5$$

(4) 
$$5 - x > 3$$





(5) 
$$2x + 5 \ge 3$$

(6) 
$$1 - 5x < 6$$



$$(7)\,\frac{1}{2}x+1\leq 2$$

(8) 
$$3 - 2x \le 7$$



Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term



$$(10) - 5 < x + 3 < 9$$



**(11)**
$$-3 \le -x \le 3$$

(12) 
$$1 < 5 - x \le 3$$



(13) 
$$\sqrt[3]{-8} \le x + 1 \le \sqrt{9}$$

(14) 
$$5 < 3 - x \le 3^2$$

(15) 
$$|-3| < 2x - 1 < 5$$



(16) 
$$3x < 2x + 4$$



(17) 
$$7x - 9 \ge 4x$$

(18) 
$$5x - 3 < 2x + 9$$



(19) 
$$x + 3 \ge 2x \ge x - 2$$



$$(20)4x \le 5x + 2 \le 4x + 3$$

カカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカ

(21) 
$$x - 1 < 3x - 1 \le x + 1$$

(21) 
$$x - 1 < 3x - 1 \le x + 1$$
 (22)  $2x - 1 < 3x - 2 \le 2x + 1$ 



$$(23)1 \le 3 - 2x < 5$$

$$(24)2x - 1 \ge 7$$





$$(25)-7 \le 3x + 2 < 11$$

$$(26)x + 1 \le 2x - 3 < x + 4$$





$$(27)-2 < 3x + 7 \le 10$$

$$(28) - 3 < 2x - 3 \le \sqrt[3]{125}$$





$$(29)3 \le 2x - 1 < 11$$

$$(30)6 < 2x + 4 \le 10$$



$$(31) 5 < 2x - 3 \le 11$$

$$(32)2x + 4 \ge 3x - 3 > 2x + 1$$

มมมมมมมม Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term มมมมมมมมมมมมมมมมมมม

[1] Complete:

If  $X-3 \ge 0$ , then X...... (1)

(2)If  $5 \times < 15$ , then  $\times ------$ 

(3)If 1-x>4, then x......

(4) If  $-2 \times \leq 3$ , then  $\times \cdots$ 

(5)If  $\sqrt{2} \propto 4$ , then  $\propto \dots$ 

The S.S. of the inequality  $-5 \le -x < 2$  in  $\mathbb{R}$  is ...... (6)

If -3 < x < 3 where  $x \in \mathbb{R}$ , then  $2x \in ]-6$ , ..... (7)

[2] Choose the correct answer:

The S.S. of the inequality: x + 3 < 3 in  $\mathbb{R}$  is ...... (1)

(a) 
$$]-\infty,0[$$

(b) 
$$]-\infty$$
, 0] (c)  $[0,\infty[$ 

(c) 
$$[0,\infty[$$

(2) The S.S. of the inequality: 1 > x - 5 > -1 in  $\mathbb{R}$  is ......

(a) [4,6]

(b) ]4 ,6[

(c) ]4 ,6]

(d) [4,6[

If x > 5, then -x...... (3)

$$(a) < -9$$

(b) 
$$\ge$$
 −5

$$(c) < -5$$

$$(d) > -5$$

(4) If -2 < x < 2, then 2x + 3 belongs to ......

(d) 
$$]-4,6[$$

# Sheet (12)



Complete the following ordered pairs which satisfy the relation :  $y = 3 \times -1$ 

 $(5, \dots, (2, \dots, (0, \dots, (2, \dots,$ 

Show which of the following ordered pairs satisfy the relation :  $y-4 \ x=7$ (2)

1 (1, 2)

2(3,-5)

3(-1,3)

Find four ordered pairs satisfying the relation y = 2x - 1 and represent it.









Represent graphically the relation x + y = 2



Represent the relation 2y - x = 2 graphically



[8] Complete:

If (2,3) satisfies the relation x + y = k, then k = ..... (1)

If (k,2k) satisfies the relation x + y - 15 = 0, then k = ..... (2)

If (-2,k) satisfies the relation 2x + 3y = 35, then k = ..... (3)

[9] Choose the correct answer:

If (2,-5) satisfies the relation: 3x-y+c=0, then  $c=\cdots$ (1)

(a) 1

**(b)** -1

(c) 11

(d) - 11

Which of the following ordered pairs satisfies the relation: 2x + y = 5? (2)

(a) (-1,3)

(b) (1,3)

(c)(3,1)

(d)(2,2)

(3)(3, 2) does not satisfy the relation ........

(a) y + X = 5

(b) 3 y - X = 3

(c) y + x = 7

(d) X - y = 1

The relation:  $3 \times + 8 \text{ y} = 24$  is represented by a straight line intersecting y-axis (4)

at the point .....

(a) (0, 8)

(b) (8,0)

(c)(0,3)

(d)(3,0)

(5)The relation  $2 \times 7 = 14$  is represented by a straight line intersecting x-axis

at the point .....

(a) (2, 0)

(b) (0, 2)

(c)(7,0)

(d)(0,7)

If: (2 k, 3 k) satisfies the relation X + y = 15, then  $k = \dots$ (6)

(a) 5

(b) 3

(c) - 5

(d) - 3

If a point moves on a straight line L from the location  $A(X_1, y_1)$  to the location

The change in the x-coordinates =  $x_2 - x_1$ 

It is called (the horizontal change).

The change in the y-coordinates =  $y_2 - y_1$ 

It is called (the vertical change).

The ratio of the change in the y-coordinates to the change in the X-coordinates is called the



the change in y-coordinates the vertical change The slope of the straight line = the change in X-coordinates the horizontal change

i.e.  $S = \frac{y_2 - y_1}{x_2 - x_1}$ , where  $x_1 \neq x_2$ , S is undefined if  $x_1 = x_2$ 



1 Classify the slope of the straight line in each of the following figures showing whether it is (positive - negative - zero - undefined)



[2] Find the slope of the straight line passing through the two points in each of the following:

| (1) $A(1,3), B(3,4)$ | ) |
|----------------------|---|
|----------------------|---|

(2) 
$$A(1,2), B(5,0)$$

(3) 
$$A(2,-1), B(4,-1)$$

(4) 
$$A(5,2), B(5,4)$$

[3]

In the opposite figure:

ABC is a triangle. Complete by using one of the following words A (positive, negative, zero, undefined)



2 The slope of  $\overrightarrow{BC}$  is ......

The slope of  $\overrightarrow{AO}$  is ......

4 The slope of  $\overrightarrow{AC}$  is ......



# [4] Complete:

- (3) The straight line whose slope = zero is parallel to ........
- (4) If A, B and C are collinear then the slope of  $\overrightarrow{AB}$  = the slope of .........
- (5) The slope of the straight line  $\overrightarrow{AB}$  where A (2, 3) and B (0, 4) is ........
- (6) If the slope of the straight line which passes through the two points (1, 3), (3, k) equals 3, find the value of k
- [7] If the slope of the straight line which passes through the two points  $(3 \cdot c)$  and  $(5 \cdot -2)$  equals -3, find the value of c



[4] Prove that the points A(2,5), B(0,1) and C(5,12) are collinear.



The opposite figure shows the capital change of a company during 8 years:

- (1) Find the slope of each of  $\overrightarrow{AB}$ ,  $\overrightarrow{BC}$  and  $\overrightarrow{CD}$ What is the meaning of each?
- (2) Find the starting capital of the company.

 $\ll 10, 0, -5, 20$  thousand pounds »



The opposite figure shows the relation between the height of a person (in cm.) and his age (in years):

- (1) Find the slope of each of AB, BC and CD What is the meaning of each?
- (2) Calculate the difference between the height of this person when he was 8 years old and his height when he was 30 years old.



The opposite graph shows the relation between the distance in km. and the time (t) in hours for a bicycle which moved between two towns A and B going and returning back. Answer the following:

- (1) What is the uniform velocity during the going trip?
- (2) What is the average velocity during returning back?



(3) What is the meaning of the horizontal line segment in the graph?





- (2) The depth of the well after finishing digging.
- (3) The total time which the machine took in digging the well.
- (4) The average of depth of the well which the machine digs within the first five hours.
- (5) The average of the depth of the well within the last two hours of digging.



«5 m., 40 m., 10 hr., 4.5 m./hr., 6.25 m./hr.»

Magdi filled the tank of his car by fuel. The opposite figure represents the relation between the time (t) in hours and the amount of remained fuel in the tank (y) in litres:

- (1) What is the greatest capacity of the tank?
- (2) When will the tank become empty?
- (3) What is the amount of remained fuel after 15 hours?
- (4) What is the range of consumption of fuel in each hour?



### Sheet (141) **ia ascending and descending cumulative frequency tall**a and their graphical representation

| Sets of wages              | 54 - | 58 - | 62 - | 66 – | 70 - | Total |
|----------------------------|------|------|------|------|------|-------|
| No. of workers (Frequency) | 5    | 12   | 22   | 7    | 14   | 50    |

- 1 The number of workers whose weekly wages are less than 60 pounds.
- 2 The percentage of the number of workers whose weekly wages are less than 60 pounds.

| Less than 54 Less than 58 Less than 62 Less than 60 Less than 70 Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total for represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  Choose a suitable scale to represent data on the vertical axis so that it contains the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers  Number of workers is 12 22 70  Less than 54 = Less than 54 = Less than 54 = Less than 62 = 5 + 12 = 22 = Less than 62 = 5 + 12 + 22 = The seconding cumulative frequency begins with zero and ends at the total for represent the ascending cumulative frequency table graphically, do as follows:  Ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | Meas                                      | <b>Cending</b> and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ] <b>(]@SC</b> G                    | Sheet<br>ending<br>phica | j <b>cum</b> ( | ulativ<br>BSOM    | e fr<br>atic | eque<br>In          | ncy t                                 |              |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|----------------|-------------------|--------------|---------------------|---------------------------------------|--------------|---------------------|
| Sets of wages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Examp                                                                    | le 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                          |                |                   |              |                     |                                       |              |                     |
| No. of workers (Frequency) 5 12 22 7 4 50  Form the ascending cumulative frequency table and represent it graphically ,  The number of workers whose weekly wages are less than 60 pounds.  The percentage of the number of workers whose weekly wages are less than 60 pounds.  Form the ascending cumulative frequency table as follows:  The upper boundaries of sets  Less than 54  Less than 54  Less than 58  Less than 62  Less than 62  Less than 62  Less than 66  Less than 70  Less than 70  Less than 74  The ascending cumulative frequency table graphically , do as follows:  Solution  Frequency  Of sets  Sets of wages  Number of workers  (Frequency)  Sets of wages  S | The following                                                            | ing frequ                                 | ency table sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ws the v                            | veekly                   | wages i        | n pou             | nds o        | of 50 v             | vorker                                | s in on      | e                   |
| Form the ascending cumulative frequency table and represent it graphically,  The number of workers whose weekly wages are less than 60 pounds.  The percentage of the number of workers whose weekly wages are less than 60 pounds.  Form the ascending cumulative frequency table as follows:  The upper boundaries of sets  Less than 54  Less than 54  Less than 58  Less than 62  Less than 62  Less than 66  Less than 70  Less than 66  Less than 70  Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total of represent the ascending cumulative frequency table graphically, do as follows:  Sets of wages  Sets of wa |                                                                          | 141                                       | Sets of wages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * 1                                 | 54 –                     | 58 –           | 62 -              | 66           | - 7                 | 0 - 0                                 | <b>Cotal</b> |                     |
| The number of workers whose weekly wages are less than 60 pounds.  The percentage of the number of workers whose weekly wages are less than 60 pounds.  Form the ascending cumulative frequency table as follows:  The upper boundaries of sets  Less than 54 Less than 54 Less than 58 Less than 62 Less than 66 Less than 60 Less than 70 Less than 70 Less than 70 Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total to represent the ascending cumulative frequency table graphically, do as follows:  Sets of wages  Sets o |                                                                          |                                           | A STATE OF THE PARTY OF THE PAR |                                     | 35                       |                |                   |              |                     |                                       |              |                     |
| The upper boundaries of sets  Less than 54 Less than 58 Less than 62 Less than 66 Less than 70 Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total or represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency easily.  Represent the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers (Frequency)  Less than 54 = Less than 54 = Less than 58 = 5 + 0 = Less than 62 = 5 + 12 = Less than 70 = 5 + 12 + 22 + 7 = Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 70 = 5 + 12 + 22 = Less than 70 = 5 + 12 + 22 = Less than 70 = 5 + 12 + 22 = Less than 62 = 5 + 12 = Less than 70 = 5 + 12 + 22 = Less than 62 = 5 + 12 = Less than 70 = 5 + 1 | 2 The per Solution                                                       | rcentage                                  | of the number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of work                             | ers wh                   | ose we         | ekly w            | vages        |                     |                                       | an 60 p      | C                   |
| Less than 54 Less than 58 Less than 62 Less than 66 Less than 70 Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total of represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  Choose a suitable scale to represent data on the vertical axis so that it contains the ascending cumulative frequency of each set; then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph; we find that:  The number of workers  The set than 54 —  Less than 54 —  Less than 54 —  Less than 54 —  Less than 62 = 5 + 12 =  Less than 60 = 5 + 12 + 22 =  Less than 70 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 62 = 5 + 12 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than 64 = 5 + 12 + 22 + 7 + 4 =  Less than |                                                                          |                                           | ng cumunanve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 27                                |                          |                | - 1011            |              | 58 -                | 62 -                                  | 66 -         |                     |
| Less than 58 Less than 62 Less than 66 Less than 70 Less than 70 Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total of represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  Choose a suitable scale to represent data on the vertical axis so that it contains the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                     | 250,7100                                  | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second second second            |                          |                | ers               | 5            | 12                  | 22                                    | 7            |                     |
| Less than 62 Less than 66 Less than 70 Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total or represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  Choose a suitable scale to represent data on the vertical axis so that it contains to ascending cumulative frequency easily.  Represent the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Less tha                                                                 | an 54                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Less                                | than 54                  | =              |                   |              |                     |                                       | i            | 0000                |
| Less than 66 Less than 70 Less than 74  Less than 70 Less than 74  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total to represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  Choose a suitable scale to represent data on the vertical axis so that it contains the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Less tha                                                                 | an 58                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Less                                | than 58                  | = 5 + 0        | ) =               | ]            |                     |                                       |              | 1                   |
| Less than 70 Less than 74  Less than 74  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Less than 74 = 5 + 12 + 22 + 7 + 4 =  Notice that: The ascending cumulative frequency begins with zero and ends at the total for represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  Choose a suitable scale to represent data on the vertical axis so that it contains the ascending cumulative frequency easily.  Ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Less tha                                                                 | an 62                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Less                                | than 62                  | = 5 + 1        | 2=                |              |                     | 1                                     |              | 1                   |
| Less than 74  Less than 74 = 5 + 12 + 22 + 7 + 4 =  The ascending cumulative frequency table.  Notice that: The ascending cumulative frequency begins with zero and ends at the total for represent the ascending cumulative frequency table graphically, do as follows:  Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  Choose a suitable scale to represent data on the vertical axis so that it contains to ascending cumulative frequency easily.  Ascending cumulative frequency  Ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  From the graph, we find that:  The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Less tha                                                                 | an 66                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Less                                | than 66                  | = 5 + 1        | 2 + 22            | =            |                     |                                       | .]           | 1                   |
| Notice that: The ascending cumulative frequency begins with zero and ends at the total for represent the ascending cumulative frequency table graphically, do as follows:  1 Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  2 Choose a suitable scale to represent data on the vertical axis so that it contains the ascending cumulative frequency easily.  3 Represent the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  • From the graph, we find that:  1 The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Less tha                                                                 | an 70                                     | 11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Less                                | than 70                  | = 5 + 1        | 2 + 22            | +7           |                     |                                       |              |                     |
| Notice that: The ascending cumulative frequency begins with zero and ends at the total for represent the ascending cumulative frequency table graphically, do as follows:  1 Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative frequency.  2 Choose a suitable scale to represent data on the vertical axis so that it contains to ascending cumulative frequency easily.  3 Represent the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  • From the graph, we find that:  1 The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Less tha                                                                 | an 74                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Less                                | than 74                  | = 5 + 1        | 2 + 22            | +7           | +4=                 | la.                                   |              |                     |
| To represent the ascending cumulative frequency table graphically, do as follows:  1 Specialize the horizontal axis for sets and the vertical axis for the ascending cum frequency.  2 Choose a suitable scale to represent data on the vertical axis so that it contains to ascending cumulative frequency easily.  3 Represent the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  • From the graph, we find that:  1 The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                        |                                           | ive frequency table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 377.300                             |                          |                |                   |              |                     |                                       |              |                     |
| each set, then draw the graph (the curve) such that it passes through the points which we located as shown in the opposite figure.  • From the graph, we find that:  1 The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>Speciali<br/>frequence</li> <li>Choose<br/>ascending</li> </ol> | ze the ho<br>cy.<br>a suitabl<br>ng cumul | orizontal axis for<br>e scale to represative frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or sets a<br>esent dat<br>y easily. | nd the                   | vertica        | l axis            | for this     | he aso              | eendin                                | g cumu       |                     |
| passes through the points which we located as shown in the opposite figure.  • From the graph • we find that :  1 The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                          |                | 50                |              |                     |                                       |              | 1                   |
| in the opposite figure.  • From the graph • we find that:  1 The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                          |                | 30                |              |                     |                                       | شمرا         | Hitting.            |
| • From the graph • we find that:  The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e locate                            | d as sho                 | own            | 40                |              |                     | 1                                     |              | territor            |
| The number of workers whose weekly wages are less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                          |                | 30                |              |                     | $\ /\ $                               |              | THE PERSON NAMED IN |
| less than 60 pounds = 10 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | wagee                    | are            | 20                |              |                     |                                       |              | THE PERSON          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | wages                    | uic.           | 20                |              |                     | /                                     |              | THE PERSON NAMED IN |
| The percentage of the number of workers whose weekly wages are less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 244 - 244                                                              | 100 C 100                                 | the number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | s whos                   | se             | 10                | ر ا          | $Z_{\bullet}$       |                                       |              | STATISTICS.         |
| than 60 pounds = $\frac{10}{50} \times 100\% = 20\%$ $54  58  62  66  70$ The assending cumulative frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 The perc<br>weekly v                                                   | vages are                                 | e less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                          |                | and distributions |              | Carlo Anna Language | · · · · · · · · · · · · · · · · · · · |              | ₩                   |

- 1 Specialize the horizontal axis for sets and the vertical axis for the ascending cumulative
- 2 Choose a suitable scale to represent data on the vertical axis so that it contains the ascending cumulative frequency easily. Ascending cumulative frequency
- 3 Represent the ascending cumulative frequency of each set, then draw the graph (the curve) such that it passes through the points which we located as shown
- 1 The number of workers whose weekly wages are
- 2 The percentage of the number of workers whose



The following frequency table shows the weekly wages of 50 workers in one factory:

| Sets of wages ·            | 54 – | 58 - | 62 – | 66 – | 70 – | Total |
|----------------------------|------|------|------|------|------|-------|
| No. of workers (Frequency) | 5    | 12   | 22   | 7    | 4    | 50    |

Form the descending cumulative frequency table and represent it graphically, then find:

- 1 The number of workers whose weekly wages are 60 pounds or more.
- 2 The percentage of the number of workers whose weekly wages are 60 pounds or more.

Form the descending cumulative frequency table as follows:

| Sets of wages · 54 - 58 - No. of workers (Frequency) 5 12  Form the descending cumulative frequency table and 1 The number of workers whose weekly wages are 60 2 The percentage of the number of workers whose week Solution  • Form the descending cumulative frequency table as form to set the following form the descending cumulative frequency table as form to set the following form to set the following following following following following following following following following frequency table to get the opposite graph.  • From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers weekly wages are 60 pounds or more = 40 workers week | Example 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                               | 41     | oldly            |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------|------------------|---------|
| No. of workers (Frequency) 5 12  Form the descending cumulative frequency table and  The number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  Sets of wages 54 - 58 - 62 - 66 - 70  Number of workers (Frequency) 5 12 22 7 4  Sand more = 5 + 12 + 22 + 7 + 4 = 62 and more = 12 + 22 + 7 + 4 = 62 and more = 74 and more = 75 + 12 + 22 + 7 + 4 = 70 and more = 74 and more = 74 and more = 74 and more = 75 + 12 + 22 + 7 + 4 = 70 and more = 74 and more = 74 and more = 75 + 12 + 22 + 7 + 4 = 70 and more = 74 and more = 74 and more = 74 and more = 75 + 12 + 22 + 7 + 4 = 70 and more = 74 and more = | The following frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y tabl                        | e snows                       | the    |                  |         |
| The number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly wages are 60  To represent the number of workers whose weekly wages are 60 pounds or more = 40 workers workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 pounds or more = 40 workers whose weekly wages are 60 p |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               | 111    |                  |         |
| The number of workers whose weekly wages are 60  The percentage of the number of workers whose week  Solution  Form the descending cumulative frequency table as form the descending cumulative frequency table as form the descending cumulative frequency table as form to see the following seeds are followed by the follo | No. of worl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kers (F                       | reque                         | icy)   | 5                | 12      |
| The number of workers whose weekly wages are 60  The percentage of the number of workers whose weekly solution  Form the descending cumulative frequency table as form the descending cumulative frequency table as form the descending cumulative frequency table as form to see the following seeds are followed by the foll | Form the descending c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | umula                         | tive fre                      | quen   | cy tab           | le and  |
| Solution  Form the descending cumulative frequency table as form the descending cumulative frequency frequency)  54 and more = 5 + 12 + 22 + 7 + 4 = 58 and more = 12 + 22 + 7 + 4 = 62 and more = 74 and more = 75 follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.  From the graph , we find that:  The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               |        |                  |         |
| Sets of wages 54 - 58 - 62 - 66 - 70  Number of workers (Frequency) 5 12 22 7 4  54 and more = 5 + 12 + 22 + 7 + 4 = 58 and more = 12 + 22 + 7 + 4 = 62 and more = 74 and more = 74 and more = 74 and more = 74 and more = 75 and  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               |        |                  |         |
| Sets of wages  Sets o | 2 The percentage of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e numo                        | er or we                      | JIKCI  | WILOS            | z week  |
| Sets of wages  Number of workers (Frequency)  54 and more = 5+12+22+7+4=  58 and more = 12+22+7+4=  62 and more = 22+7+4=  70 and more = 7+4=  74 and more = 74 and more =  15 to represent this table graphically follow the same previous steps in the ascending cumulative frequency be graph.  From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                               |        |                  |         |
| Sets of wages  Number of workers (Frequency)  54 and more = 5+12+22+7+4=  58 and more = 12+22+7+4=  62 and more = 22+7+4=  70 and more = 7+4=  74 and more = 74 and more =  15 to represent this table graphically follow the same previous steps in the ascending cumulative frequency be graph.  From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Form the descending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cumul.                        | ative fr                      | eauer  | ncv tab          | le as f |
| Number of workers (Frequency)  54 and more = 5 + 12 + 22 + 7 + 4 =  58 and more = 12 + 22 + 7 + 4 =  62 and more = 22 + 7 + 4 =  63 and more = 7 + 4 =  70 and more =  74 and more =  74 and more =  75 represent this table graphically follow the same previous steps in the ascending cumulative frequency be graph.  To represent the graph we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               |        |                  |         |
| (Frequency)  54 and more = 5+12+22+7+4=  58 and more = 12+22+7+4=  62 and more = 22+7+4=  63 and more = 7+4=  70 and more = 74 and more = 75 a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54 -                          | 38 -                          | 02 -   | - 00             | - /     |
| 54 and more = 5 + 12 + 22 + 7 + 4 =  58 and more = 12 + 22 + 7 + 4 =  62 and more = 22 + 7 + 4 =  66 and more = 7 + 4 =  70 and more =  74 and more =  Whotice that: The descending cumulative frequency be with zero.  To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.  From the graph, we find that:  The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             | 12                            | 22     | 7                | 12      |
| 58 and more = 12 + 22 + 7 + 4 = 62 and more = 22 + 7 + 4 = 66 and more = 7 + 4 = 70 and more = 74 and more =  Notice that: The descending cumulative frequency be with zero.  • To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.  • From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 5+                            | 12+    | 22 + 7           | +4=     |
| 62 and more = 22 + 7 + 4 = 66 and more = 7 + 4 = 70 and more = 74 and more = 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ,                             |        |                  |         |
| 66 and more = 7+4= 70 and more = 74 and more =  Notice that: The descending cumulative frequency be with zero.  • To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.  • From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                               |        |                  |         |
| Notice that: The descending cumulative frequency be with zero.  • To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.  • From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66 and r                      | nore =                        |        | W                |         |
| Notice that: The descending cumulative frequency be with zero.  • To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.  • From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 an                         | d more                        | Ė      |                  |         |
| <ul> <li>with zero.</li> <li>To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.</li> <li>From the graph, we find that:</li> <li>The number of workers whose weekly wages are 60 pounds or more = 40 workers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 74 and                        | more   | =                |         |
| <ul> <li>with zero.</li> <li>To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.</li> <li>From the graph, we find that:</li> <li>The number of workers whose weekly wages are 60 pounds or more = 40 workers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               |        |                  |         |
| <ul> <li>with zero.</li> <li>To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.</li> <li>From the graph, we find that:</li> <li>The number of workers whose weekly wages are 60 pounds or more = 40 workers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Notice that : The desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ending                        | cumula                        | ative  | freque           | ncy be  |
| <ul> <li>To represent this table graphically, follow the same previous steps in the ascending cumulative frequency table to get the opposite graph.</li> <li>From the graph, we find that:</li> <li>The number of workers whose weekly wages are 60 pounds or more = 40 workers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               |        |                  |         |
| the same previous steps in the ascending cumulative frequency table to get the opposite graph.  • From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s |                               | aphical                       | v , fe | ollow            |         |
| cumulative frequency table to get the opposite graph.  • From the graph, we find that:  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>To represent this ta</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-                            | T                             |        |                  |         |
| • From the graph • we find that :  1 The number of workers whose weekly wages are 60 pounds or more = 40 workers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stens i                       | n the as                      | cend   | 1119             |         |
| <ul> <li>From the graph, we find that:</li> <li>The number of workers whose weekly wages are 60 pounds or more = 40 workers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the same previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                               |        | 40               | ite     |
| The number of workers whose weekly wages are 60 pounds or more = 40 workers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the same previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                               |        | 40               | ite     |
| weekly wages are 60 pounds or more = 40 works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the same previous cumulative frequence graph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ncy tab                       | le to ge                      |        | 40               | ite     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the same previous cumulative frequence graph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ncy tab                       | le to ge                      |        | 40               | ite     |
| 40 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the same previous cumulative frequence graph.  • From the graph • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ncy tab                       | le to ge                      | et the | 40               | ite     |
| The percentage of those workers $= \frac{100\%}{100\%}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the same previous cumulative frequence graph.  • From the graph • v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ncy tab<br>we find            | le to get that:               | t the  | oppos            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the same previous cumulative frequency graph.  • From the graph • weekly wages ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | we find<br>workers<br>e 60 pc | le to get that: whose ounds o | et the | oppos<br>re = 40 | ) work  |

| The lower<br>boundaries<br>of sets | Frequency |
|------------------------------------|-----------|
| 54 and more                        |           |
| 58 and more                        |           |
| 62 and more                        |           |
| 66 and more                        |           |
| 70 and more                        |           |
| 74 and more                        |           |

The descending cumulative frequency table

Notice that: The descending cumulative frequency begins with the total frequency and ends Descending cumulative frequency



50 30 10

The descending cumulative frequency curve



### Remember that:

To calculate the mean of a set of values, do as follows:

- I Find the sum of these values.
- 2 Divide this sum by the number of these values
- The sum of values i.e. The mean of a set of values = Number of values

### For example:

If the marks of 5 students are 25, 23, 21, 22, 24

, then the mean of marks = 
$$\frac{25 + 23 + 21 + 22 + 24}{5}$$
 = 23 marks.

Notice that:  $23 \times 5 = 115$ 

- the sum of marks of the 5 students = 25 + 23 + 21 + 22 + 24 = 115
- i.e. The mean is the value which is given to each item of a set, then the sum of these new values is the same sum of the original values.

# Finding the mean of data from the frequency table with sets

### Example The following table shows the distribution of the marks of 50 students in mathematics:

| Sets      | 10 – | 20 - | 30 - | 40 – | 50 - | Total |
|-----------|------|------|------|------|------|-------|
| Frequency | 8    | 12   | 14   | 9    | 7    | 50    |

Find the mean of these marks.

# 1 Determine the centres of sets according to the rule:

The centre of a set =  $\frac{\text{the lower limit + the upper limit}}{}$ 

- , then the centre of the first set =  $\frac{10 + 20}{2}$  = 15
- the centre of the second set =  $\frac{20+30}{2}$  = 25 ... and so on.

Since the lengths of the subsets are equal and each of them = 10therefore we consider the upper limit of the last set = 60

• then its centre = 
$$\frac{50 + 60}{2} = 55$$

| Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Centre of the set « X »                                                                                                                                                                     | Frequency « f »                                                                                                                                        | $x \times f$                                                                                           |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------|
| 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             | 8                                                                                                                                                      |                                                                                                        |                                    |
| 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             | 12                                                                                                                                                     |                                                                                                        |                                    |
| 30 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             | 14                                                                                                                                                     |                                                                                                        |                                    |
| 40 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             | 9                                                                                                                                                      |                                                                                                        |                                    |
| 50 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             | 7                                                                                                                                                      |                                                                                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                                                                                                                                                                       | 50                                                                                                                                                     |                                                                                                        | - 1                                |
| descending descending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | an is the middle value<br>gly, such that the nur                                                                                                                                            | mber of values whi                                                                                                                                     | after arranging it a                                                                                   | ascendingly or is equal to the     |
| The media descending number of the media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an is the middle value                                                                                                                                                                      | e in a set of values mber of values whiteater than it.                                                                                                 | ch are less than it                                                                                    | is equal to the                    |
| The media descending number of the media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an is the middle value<br>gly, such that the nur<br>f values which are gr<br>n of a set of values                                                                                           | e in a set of values mber of values whiteater than it.                                                                                                 | ch are less than it                                                                                    | is equal to the                    |
| The media descending number of the media.  To find the media.  We arra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an is the middle value<br>gly, such that the nur<br>f values which are gr<br>n of a set of values                                                                                           | e in a set of values mber of values white reater than it.  we do as follows  ascending                                                                 | ch are less than it                                                                                    | is equal to the                    |
| The media descending number of the media.  To find the media.  We arra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value                                                                                    | e in a set of values mber of values white reater than it.  we do as follows  ascending                                                                 | ch are less than it                                                                                    | is equal to the                    |
| The media descending number of the media.  We arra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value                                                                                    | e in a set of values white the seater than it.  we do as follows  ascending  If the                                                                    | ch are less than it  :  ly or descer  values number i                                                  | is equal to the                    |
| The median descending number of the median is the middle exactly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value tumber is odd, the                                                                 | e in a set of values white the seater than it.  we do as follows  ascending  If the                                                                    | th are less than it  it  yor descer  values number i                                                   | is equal to the                    |
| The median descending number of the median is the middle exactly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value tumber is odd, the                                                                 | e in a set of values white teater than it.  we do as follows  ascending  If the  The media  The sum                                                    | in of the two values ly                                                                                | is equal to the                    |
| The median descending number of the median is the median in the median i | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value the value where is odd, the he value lying in the                                  | e in a set of values white reater than it.  we do as follows  ascending  The media  The sum  For exam  If the value                                    | in of the two values ly popule : es are                                                                | is equal to the                    |
| The media descending number of the values are the values are to 12, 23, 17, 30 are to 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value the value where is odd, the he value lying in the                                  | e in a set of values white reater than it.  we do as follows  as ascending  If the  The media  The sum  If the value  27, 13, 2                        | in of the two values ly                                                                                | is equal to the dingly seven, then |
| The media descending number of the values are the values are to 12, 23, 17, 30 are to 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value where is odd, the he value lying in the value lying in the ascendingly as follows. | e in a set of values white teater than it.  we do as follows  ascending  If the  The media  The sum  For exam  If the value  27, 13, 2  We arran       | values number i  values number i  of the two values ly  an  ple: es are 23,24,13,21                    | is equal to the dingly seven, then |
| The median descending number of the values are the values are to t | an is the middle value gly, such that the nur f values which are grown of a set of values ange the value where is odd, the land a scendingly as follows a scendingly as follows.            | e in a set of values white reater than it.  we do as follows  as ascending  The media  The sum  For exam  If the value  27, 13, 2  We arran  13, 13, 4 | values number i  values number i  of the two values ly  2  in ple: es are 23,24,13,21 age them ascendi | is equal to the dingly seven, then |

The mean = 
$$\frac{\text{The sum of } (X \times f)}{\text{The sum of } f} =$$



# We arrange the values ascendingly or descendingly

# Finding the median of a frequency distribution with sets graphically

The following table shows the frequency distribution of marks of 50 students in math exam:

| Sets of marks      | 0 – | 10 – | 20 – | 30 – | 40 – | 50 – | Total |
|--------------------|-----|------|------|------|------|------|-------|
| Number of students | 2   | 5    | 8    | 19   | 14   | 2    | 50    |

Find the median mark of the student.

Using the ascending cumulative

| The upper boundaries of sets | Frequency |
|------------------------------|-----------|
| Less than 0                  | peor to   |
| Less than 10                 |           |
| Less than 20                 |           |
| Less than 30                 |           |
| Less than 40                 |           |
| Less than 50                 |           |
| Less than 60                 |           |

Using the descending cumulative frequency curve:

| The lower boundaries of sets | Frequency |
|------------------------------|-----------|
| 0 and more                   |           |
| 10 and more                  |           |
| 20 and more                  |           |
| 30 and more                  |           |
| 40 and more                  |           |
| 50 and more                  |           |
| 60 and more                  |           |





- : The order of the median =  $\frac{50}{2}$  = 25
- :. From the two previous graphs, the median = 36 approximately







The mode of a set of values is the most common value in the set, or in other words, it is the value which is repeated more than any other values.

The mode of the set of the values: 7, 3, 4, 1, 7, 9, 7, 4 is 7

# Finding the mode for a frequency distribution with equal sets in range.

The following is an example which shows how to find the mode of a frequency

The following is the frequency distribution of marks of 100 pupils in one of the exams:

| Set of marks     | 10 - | 20 - | 30 – | 40 – | 50 – | Total |
|------------------|------|------|------|------|------|-------|
| Number of pupils | 16   | 24   | 30   | 20   | 10   | 100   |

Find the mode mark for these pupils.

We can find the mode of that distribution graphically using the histogram as follows:

- Draw two orthogonal axes: one of them is horizontal and the other is vertical to represent
- Divide the horizontal axis into a number of equal parts with a suitable drawing
- Remember that

  The mode of a set of values is words, it is the value which is the following is an example which distribution with sets.

  Example

  The following is the frequency distribution with sets.

  Example

  The following is the frequency distribution with sets.

  Set of marks

  10 
  Number of pupils

  16

  Find the mode mark for these pupils

  Find the mode of that distribution

  We can find the mode of that distribution

  We can find the mode of that distribution

  We can find the mode of that distribution

  The following is the frequency of each set.

  Draw two orthogonal axes: one of the frequency of each set.

  Divide the horizontal axis into a not equal parts with a suitable draw scale to represent the greatest frequency in the sets.

  Draw a rectangle whose base is and its height equals the frequency in the sets.

  Draw a second rectangle adjacet first one whose base is set (20 
  and its height equals the frequency and its height equ 3 Divide the vertical axis into a number of equal parts with a suitable drawing
  - Draw a rectangle whose base is set (10 –) and its height equals the frequency (16)
  - Draw a second rectangle adjacent to the first one whose base is set (20 -) and its height equals the frequency (24)



カカカカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカカカ

[1] Choose the correct answer:

The arithmetic mean of: 3, 10, 2 is .....

(1) (a) 10

(b) 5

(c) 3

(d) 6

The mean of the values: 2,5,4,5 is ..... **(2)** 

(a) 4

(b) 5

(c) 16

(d) 8

The mean of the values: 2, 8, 6, 4 is .....

(3) (a) 2

(b) 5

(c) 4

(d) 6

The arithmetic mean of:  $3, 7, 28, 52, 10 = \dots$ 

**(4)** (a) 17

(b) 19

(c) 20

(d) 27

The arithmetic mean of the values: 19, 32, 21, 6, 12 is .....

(5)(a) 90

(b) 32

(c) 18

(d) 6

The mean of the values: 7, 15, 19, 14 and 15 is .........

(6)(a) 14

(b) 15

(c) 16

(d) 17

The arithmetic mean of the values: 30, 23, 25, 30, 22 is ......

**(7)** 

(a) 22

(b) 23

(c) 24

(d) 26

If the arithmetic mean of the values: 27, 8, 16, 24, 6 and k is 14,

then  $k = \cdots$ (8)

(a) 3

(b) 6

(c) 27

(d) 84

If the mean of marks of 5 pupils is 20, then the total of their marks =  $\dots$  n

(9)(a) 4

(b) 15

(c) 25

(d) 100

If the sum of 5 numbers equals 30, then the arithmetic mean of these numbers is .....

(10)(a) 150

(b) 6

(c) 18

(d) 72

The set which its lower boundary is 2 and its upper boundary is 6, then its

centre is ..... (11)

(a) 2

(b) 6

(c) 4

(d) 8

The lowest limit of a set is 4 and the other limit is 8, then its centre is ......

(a) 2

(b) 4

(c) 6

(d) 8

| (13)    | (a) 4                           | (b) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d the upper limit is 1<br>(c) 1  |                         | (d) 8    |
|---------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|----------|
| (14)    | If the upper l                  | imit of a set is 19 ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd the lower limit of            | the same set is 11      | , then   |
| ( • • ) | (a) 10                          | (b) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 20                           | (d) 3                   | 30       |
| (15)    | If the lowest then $X = \cdots$ | and the second of the second o | 10 and the upper bo              | oundary is X and i      | ts centr |
|         | (a) 10                          | (b) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 2                            |                         | (d) 30   |
| (16)    | If the lower li<br>(a) 2        | mit of a set is 18 an<br>(b) 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d its centre is 20, th<br>(c) 22 |                         | l) 4     |
| (17)    | 3 3 3 3                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ues:3-a,5,1,                     |                         |          |
|         | (a) 1                           | (b) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) :                            |                         | (d) 15   |
| (18)    | (a) 1                           | (b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es:9,6,5,14,k<br>(c) 34          |                         | ) 35     |
| (19)    | The mean of the                 | the values: $2 - a , 4 ,$ (b) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,5,3+a is<br>(c) 3              | (d) 15                  |          |
| (20)    | The order of (a) 7              | the median of the set (b) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et of values: 8,4, (c)           |                         | (d) 5    |
| (21)    | The order of the (a) third.     | (b) 6  ne median of the set of (b) fourth.  the median of a set of (b) 5  of the set of the values (b) 27  the values: 1,2,5, (b) 4  the values: 2,9,3 (b) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of values: 4,5,6,7 (c) fifth.    | and 8 is<br>(d) sixth.  |          |
| (22)    | If the order of t               | he median of a set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | values is the fourth, th         | en the number of th     | nese     |
|         | (a) 3                           | (b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 7                            | (d) 9                   |          |
|         | If the median of                | of the set of the values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : 27,45,19,24 and                | 28 is $X$ , then $X = $ |          |
| (23)    | (a) 24                          | (b) 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 28                           | (d) 45                  |          |
| (0.4)   | The median of                   | the values: 1,2,5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 and 4 is                       |                         |          |
| (24)    | (a) 3                           | (b) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 5                            | (d) 2                   |          |
|         | The median of                   | the values: 2,9,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,7 ,5 is                         | _ =                     |          |
| 105     | US-6, RES                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) 7                            | (d) 8                   |          |

| (26)          | The median of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he values: 3,7,5,8<br>(b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) 8                        | (d) 7                   |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|--|--|
|               | The median of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the values: 7,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 • 4 is                     |                         |  |  |
| (27)          | (a) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 5                        | (d) 7                   |  |  |
| (28)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the values 3,9,7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                         |  |  |
| (=0)          | (a) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 7                        | (d) 9                   |  |  |
| (29)          | The median of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he set of the values: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,6,6,7,9,11,13,              | 14, 15 and 20 is        |  |  |
| (23)          | (a) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 11                       | (d) 20                  |  |  |
| (20)          | The median of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | values: 4,8,3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,7 ,9 is                     |                         |  |  |
| (30)          | (a) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 7                        | (d) 8                   |  |  |
| (31)          | The median of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f the set of the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es: 15,22,9,11               | and 33 is               |  |  |
| (01)          | (a) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 18                       | (d) 90                  |  |  |
| (32)          | The median of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he values: 10,9,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 19 , 12 is                 |                         |  |  |
| (02)          | (a) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 11                       | (d) 19                  |  |  |
| (00)          | The median of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he set of the values : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,22,9,11 and 33             | is                      |  |  |
| (33)          | (a) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 18                       | (d) 90                  |  |  |
| <b>(0.1)</b>  | The median of the values: 34, 23, 25, 40, 22, 14 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                         |  |  |
| (34)          | (a) 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 24                       | (d) 25                  |  |  |
| <b>40.5</b> \ | The median or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f the values: 41,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3, 15, 30, 20 is ··          |                         |  |  |
| (35)          | (a) 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 3                        | 0 (d) 20                |  |  |
| (26)          | The mode of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e values: 3,5,3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,3 and 8 is                 |                         |  |  |
| (36)          | (a) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 6                        | (d) 8                   |  |  |
| (37)          | A Committee of the Comm | The second secon | 11,10,11,14,15               |                         |  |  |
| (0.,          | (a) 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 15                       | (d) 10                  |  |  |
| (38)          | If the mode of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the set of the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s:4,11,8,2xi                 | is 4, then $X = \cdots$ |  |  |
|               | (a) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 6<br>1,9,15 is 9, then 2 | (d) 8                   |  |  |
| (39)          | (a) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) 10                       | (d) 8                   |  |  |
| • ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                         |  |  |
| (40)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is 9 then $X = \cdots $      |                         |  |  |
| • •           | (a) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 6                        | (d) 7                   |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                         |  |  |

カカカカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカカ 

The mode of: 5, 6, 7, x + 2 and 8 is 7, then  $x = \dots$ (b) 6 (c) 4 (d) 5 If the mode of the set of values:  $4 \cdot 11 \cdot x + 3 \cdot 6$  is  $6 \cdot$  then  $x = \dots$ (a) 2 (b) 3 The mode of the set of values: 5, 9, 5, x-2, 9 is 9, then  $x = \dots$ (b) 57 (c) 9



# [2] Essay problems:

Find the arithmetic mean of the following frequency distribution:

| Sets      | 5 – | 15 – | 25 – | 35 – | 45 – | Total |
|-----------|-----|------|------|------|------|-------|
| Frequency | 3   | 10   | 12   | 10   | 5    | 40    |

Form the vertical table:

| Set | Centre of<br>the set « X » | Frequency<br>«f» | X×f |
|-----|----------------------------|------------------|-----|
|     |                            |                  |     |
| -   | Total                      |                  |     |

The sum of  $(X \times f)$ The sum of f

ภภภภภภภภภภภภภภ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term **ภภภภภภภภภ**ฦฦ

Find the mean of the following data:

| Sets      | 8 – | 12 - | 16 – | 20 – | 24 – | Total |
|-----------|-----|------|------|------|------|-------|
| Frequency | 4   | 10   | 16   | 12   | 8    | 50    |

Form the vertical table:

| Set | Centre of<br>the set « X » | Frequency<br>«f» | $x \times f$ |
|-----|----------------------------|------------------|--------------|
|     |                            |                  |              |
|     | Total                      |                  |              |

The mean = 
$$\frac{\text{The sum of } (X \times f)}{\text{The sum of } f} =$$

The following table shows frequency distribution of marks of 32 students in an exam: 3

| • Sets    | 10 - | 20 – | 30 – | 40 – | 50 - | Total |
|-----------|------|------|------|------|------|-------|
| Frequency | 3    | 6    | 10   | 8    | 5    | 32    |

Find the mean of this distribution.

Form the vertical table:

| Set | Centre of<br>the set « X » | Frequency<br>«f» | $x \times f$ |
|-----|----------------------------|------------------|--------------|
|     |                            |                  |              |
|     |                            |                  |              |
|     | Total                      |                  |              |

 $\frac{\text{The sum of } (X \times f)}{\text{The sum of } f}$ 

การการ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term **การการการ** 

The following table shows the frequency distribution, find the arithmetic mean:

| Sets      | 10 – | 20 - | 30 - | 40 - | 50 - |
|-----------|------|------|------|------|------|
| Frequency | 10   | 20   | 25   | 30   | 15   |

Form the vertical table:

| Set | Centre of<br>the set « X » | Frequency<br>«f» | $x \times f$ |
|-----|----------------------------|------------------|--------------|
|     |                            |                  |              |
|     |                            |                  |              |

The sum of  $(X \times f)$ The sum of f

# [2] Complete:

- The most common value in a set is called .....
- The value which is the most common of a set of values is called ..... 2
- The mode of a set of values is ..... 3
- The mode of the values: 2,5,1,4,2 is .....
- The mode of the values: 4,7,5,7,6,8,7,5 is .....
- The mode of the values: 8,7,8,7,6,5,8 is ....... 6
- The mode of the set of values: 13, 12, 4, 13 is .....
- The mode of the set of the values: 14, 11, 10, 11, 14, 15, 11 is .......... 8

| 9  | The mode of the values: 11, 13, 11, 14, 11, 12 is                                      |
|----|----------------------------------------------------------------------------------------|
| 10 | The mode value of: 13, 23, 46, 33, 46, 43, 33, 46, 32 is                               |
| 11 | If the mode of the set of the values: $4,5,a,3$ is $4$ , then $a = \cdots$             |
| 12 | If the mode of the values: $3,6,a,2,5$ is $6$ , than $a = \dots$                       |
| 13 | If the mode of the set of the values: $4, 5$ , a and 3 is 3, then $a = \cdots$         |
| 14 | If the mode of the values: 5, 7 and $x + 1$ is 7, then $x = \dots$                     |
| 15 | The mode of the values: 14,8, $x+1$ ,8,14 is 8, then $x = \dots$                       |
| 16 | If the mode of the values: 12, 7, $x + 1$ , 7, 12 is 7, then $x = \dots$               |
| 17 | If the mode of the set of the values: 15,9, $x+1$ , 9 and 15 is 9, then $x = \dots$    |
| 18 | If the mode of the set of the values: 15, 9, $x + 6$ , 9 and 15 is 9, then $x = \dots$ |
| 19 | If the mode of the values: 4, 11, 8, and $2^{x}$ is 4, then $x = \dots$                |
|    | Sending<br>agou<br>my<br>best                                                          |





# met l

The median of a triangle is the line segment the midpoint of the opposite side of this for example:

In the opposite figure:

If D is the midpoint of  $\overline{BC}$ , then  $\overline{AD}$  is a median of  $\Delta$  ABC

Notice that:

Any triangle has three medians.

Theorem 1

The medians of a triangle are concurrent at M (i.e.  $\overline{AD} \cap \overline{BF} \cap \overline{CE} = \{M\}$ )

Theorem 2

The point of concurrence of the medians of 1:2 from its base.

For example:

In the opposite figure:

In  $\Delta$  ABC,  $\Delta$  M is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) is the point of concurrent at M (i.e.  $\Delta$  M) i The median of a triangle is the line segment drawn from any vertex of this triangle to the midpoint of the opposite side of this vertex.



The medians of a triangle are concurrent.

 $\overline{AD}$ ,  $\overline{BF}$  and  $\overline{CE}$  are the three medians of  $\Delta \overline{ABC}$ ,

(i.e. 
$$\overline{AD} \cap \overline{BF} \cap \overline{CE} = \{M\}$$
)



The point of concurrence of the medians of the triangle divides each median in the ratio

In  $\triangle$  ABC, M is the point of concurrence of its medians, then:

$$1 MD = \frac{1}{2} AM \qquad \text{If } AM = 6 \text{ cm.}, \text{ then } MD = 3 \text{ cm.}$$



### Remark

The point of concurrence of the medians of the triangle divides each of them in the ratio of 2:1 from the vertex.

### Fact

The point which divides the median in a triangle by the ratio of 1:2 from the base is the point of intersection of the medians of this triangle.

# In the opposite figure:

If  $\overline{AD}$  is a median in  $\triangle ABC$  and  $M \in \overline{AD}$  such that AM = 2 MD, then M is the point of intersection of the medians of  $\triangle$  ABC



# [1] Complete:

- In  $\triangle$  ABC : if the point X is the midpoint of  $\overline{BC}$ , then  $\overline{AX}$  is called ......
- 2 The medians of the triangle are .....
- 3 The medians of the triangle intersect at .....
- The point of intersection of the medians of a triangle divides each median in the ratio ..... from the vertex.
- The points of concurrence of the medians of the triangle divides each median in the ratio ...... from the base.
- The point of intersection of the medians of the triangle divides each of them by the ratio 1:2 from .......
- The point which divides the median of the triangle in the ratio 1:2 from the base is 7 the point of .....

99

### 8 In the opposite figure:

If M is the point of intersection of 



| 9  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | In the opposite figure :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|    | In the opposite figure:  If: $MF = 2 \text{ cm.}$ , then $DF = \cdots$ In the opposite figure:  In $\triangle ABC$ , $M$ is the point of concurrence of the medians, $MC = 8 \text{ cm.}$ , then $DM = \cdots \text{ cm.}$ Essay problems:  In the opposite figure:  E is the midpoint of $\overline{AB}$ , $D$ is the midpoint of $\overline{BC}$ $\overline{AD} \cap \overline{CE} = \{M\}$ , $MC = 5 \text{ cm.}$ and $\overline{MD} = 2 \text{ cm.}$ Find: The length of each of $\overline{AD}$ and $\overline{ME}$ . | B F   |
| 0  | In the opposite figure :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A     |
|    | In $\DeltaABC$ , $M$ is the point of concurrence of the medians                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p. #  |
|    | , $MC = 8$ cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M 8cm |
|    | • then DM = cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В     |
| 2] | Essay problems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 1  | In the opposite figure :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A     |
|    | E is the midpoint of $\overline{AB}$ , D is the midpoint of $\overline{BC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                | / M E |
|    | $\overline{AD} \cap \overline{CE} = \{M\}$ , MC = 5 cm. and MD = 2 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|    | <b>Find</b> : The length of each of $\overline{AD}$ and $\overline{ME}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C D B |

In the opposite figure:

F , N are midpoints of  $\overline{AB}$ ,  $\overline{AC}$  respectively,  $\overline{BN} \cap \overline{CF} = \{M\}$ ,

if: AB = 8 cm., AC = 10 cm., BM = 4 cm. and CF = 9 cm.

Find: the perimeter of figure AFMN

*ຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆ* 

| (a) $\frac{1}{3}$                                                            | hen AM = $\cdots$ AD (b) $\frac{2}{3}$                                                                                                                                                                      | (c) $\frac{1}{2}$                                                               | (d) $\frac{1}{4}$                                     |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|
| the state of the state of the state of                                       | edian in $\triangle$ ABC, M is the j                                                                                                                                                                        | point of intersection of                                                        | its medians,                                          |
| (a) 2                                                                        | (b) $\frac{1}{2}$                                                                                                                                                                                           | (c) 3                                                                           | (d) $\frac{1}{3}$                                     |
| If $\overline{XE}$ is a number then EM =                                     | nedian in $\Delta$ XYZ, M is the                                                                                                                                                                            | e point of intersection of                                                      | of its medians,                                       |
| (a) $\frac{1}{2}$                                                            | (b) 2                                                                                                                                                                                                       | (c) $\frac{1}{3}$                                                               | (d) $\frac{2}{3}$                                     |
|                                                                              | If $AD = 6$ cm. is a median                                                                                                                                                                                 | n and M is a point of c                                                         | oncurrent,                                            |
| then $MA =$ (a) 6 cm.                                                        | (b) 3 cm.                                                                                                                                                                                                   | (c) 2 cm.                                                                       | (d) 4 cm.                                             |
| If AD is a n                                                                 | nedian of $\triangle$ ABC $\Rightarrow$ M is the $\Rightarrow$ then AD =                                                                                                                                    |                                                                                 |                                                       |
| (a) 12 cm.                                                                   | (b) 6 cm.                                                                                                                                                                                                   | (c) 18 cm.                                                                      | (d) 9 cm.                                             |
|                                                                              | dian in $\triangle$ ABC, M is the pans, MD = 2 cm., then A  (b) 4                                                                                                                                           |                                                                                 | 8 C D                                                 |
| of the media<br>(a) 2                                                        | ans, $MD = 2 \text{ cm.}$ , then A (b) 4                                                                                                                                                                    | D = cm.                                                                         |                                                       |
| of the media<br>(a) 2                                                        | ans, MD = 2 cm., then A (b) 4  roblems:                                                                                                                                                                     | D = cm.                                                                         |                                                       |
| of the media<br>(a) 2                                                        | ans, $MD = 2 \text{ cm.}$ , then A (b) 4                                                                                                                                                                    | D = cm.<br>(c) 6 (d)                                                            |                                                       |
| of the media (a) 2  Essay p  In the oppo                                     | ans, MD = 2 cm., then A (b) 4  roblems: site figure:                                                                                                                                                        | D = cm.<br>(c) 6 (d)                                                            |                                                       |
| of the media (a) 2  Essay p  In the oppo ABC is a tri , XY = 5 cm where CM = | ans, MD = 2 cm., then A (b) 4  roblems: site figure: angle, X bisects $\overline{AB}$ , Y bi a., $\overline{XC} \cap \overline{AY} = \{M\}$ = 8 cm., YM = 3 cm.                                             | D =cm. (c) 6 (d)  sects BC                                                      |                                                       |
| of the media (a) 2  Essay p  In the oppo ABC is a tri , XY = 5 cm where CM = | ans , MD = 2 cm. , then A<br>(b) 4  roblems: site figure: angle, X bisects $\overline{AB}$ , Y bia., $\overline{XC} \cap \overline{AY} = \{M\}$ = 8 cm., YM = 3 cm. broof the length of : $\overline{AC}$ , | $D = \cdots cm.$ (c) 6 (d) $Sects \overline{BC}$ $\overline{MX}, \overline{AM}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| of the media (a) 2  Essay p  In the oppo ABC is a tri , XY = 5 cm where CM = | ans , MD = 2 cm. , then A<br>(b) 4  roblems: site figure: angle, X bisects $\overline{AB}$ , Y bia., $\overline{XC} \cap \overline{AY} = \{M\}$ = 8 cm., YM = 3 cm. broof the length of : $\overline{AC}$ , | D =cm. (c) 6 (d)  sects BC                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| of the media (a) 2  Essay p  In the oppo ABC is a tri , XY = 5 cm where CM = | ans, MD = 2 cm., then A (b) 4  roblems: site figure: angle, X bisects $\overline{AB}$ , Y bi a., $\overline{XC} \cap \overline{AY} = \{M\}$ = 8 cm., YM = 3 cm. broof the length of: $\overline{AC}$ ,      | $D = \cdots cm.$ (c) 6 (d) $\overline{MX}, \overline{AM}$                       | A X X B                                               |
| of the media (a) 2  Essay p  In the oppo ABC is a tri , XY = 5 cm where CM = | ans, MD = 2 cm., then A (b) 4  roblems: site figure: angle, X bisects $\overline{AB}$ , Y bi a., $\overline{XC} \cap \overline{AY} = \{M\}$ = 8 cm., YM = 3 cm. broof the length of: $\overline{AC}$ ,      | $D = \cdots cm.$ (c) 6 (d) $Sects \overline{BC}$ $\overline{MX}, \overline{AM}$ | A X X B                                               |

| ABC is a triangle in which \(\overline{CD}\), \(\overline{BH}\) are medians intersect at M , \(MC = 6 \text{ cm. }, BC = 8 \text{ cm. }, MB = 4 \text{ cm.}\)  Find with proof: The perimeter of Δ MDH  B  In the opposite figure:  D and E are the midpoints of \(\overline{AB}\) and \(\overline{AC}\) respectively | BH are medians intersect at M ,  MC = 6 cm. , BC = 8 cm. , MB = 4 cm.  Find with proof: The perimeter of Δ MDH  C  B  In the opposite figure:                                                                                                                                                                                                     | In the opposite figure :                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| MC = 6 cm., BC = 8 cm., MB = 4 cm.  Find with proof: The perimeter of $\triangle$ MDH  C  B  In the opposite figure:  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively                                                                                                                   | MC = 6 cm., BC = 8 cm., MB = 4 cm.  Find with proof: The perimeter of $\triangle$ MDH  In the opposite figure:  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively, $\overline{BE} \cap \overline{CD} = \{M\}$ , If $AB = 6$ cm., $AC = 10$ cm., $BM = 4$ cm. and $CD = 9$ cm.  Find the perimeter of the figure: ADME | ABC is a triangle in which $\overline{\text{CD}}$ ,                                                     |
| Find with proof: The perimeter of Δ MDH  B  In the opposite figure:  D and E are the midpoints of AB and AC respectively  E  D                                                                                                                                                                                        | Find with proof: The perimeter of $\Delta$ MDH  In the opposite figure:  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively $\overline{BE} \cap \overline{CD} = \{M\}$ , If $AB = 6$ cm., $AC = 10$ cm. $BM = 4$ cm. and $CD = 9$ cm.  Find the perimeter of the figure: ADME                                          | BH are medians intersect at M,                                                                          |
| In the opposite figure :  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively                                                                                                                                                                                                               | In the opposite figure:  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively $\overline{BE} \cap \overline{CD} = \{M\}$ , If $AB = 6$ cm., $AC = 10$ cm. $BM = 4$ cm. and $CD = 9$ cm.  Find the perimeter of the figure: ADME                                                                                          | MC = 6  cm., $BC = 8  cm.$ , $MB = 4  cm.$                                                              |
| In the opposite figure :  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively                                                                                                                                                                                                               | In the opposite figure:  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively $\overline{BE} \cap \overline{CD} = \{M\}$ , If $AB = 6$ cm., $AC = 10$ cm. $\overline{BM} = 4$ cm. and $\overline{CD} = 9$ cm.  Find the perimeter of the figure: ADME                                                                    | <u> </u>                                                                                                |
| TODE   CD = IM   THAD = O CHI. TAC = IO CHI.                                                                                                                                                                                                                                                                          | , BM = 4 cm. and CD = 9 cm.  Find the perimeter of the figure : ADME                                                                                                                                                                                                                                                                              | In the opposite figure :  D and E are the midpoints of $\overline{AB}$ and $\overline{AC}$ respectively |

Theorem 3.

In the right-angled triangle  $\circ$  the length of the median from the vertex of the equals half the length of the hypotenuse.

For example:

In the opposite figure:  $\triangle ABC \text{ is a right-angled triangle at B},$ D is the midpoint of  $\overline{AC}$  and AC = 10 cm., then DB = 5 cm.The converse of theorem 3.

If the length of the median drawn from a vertex of a triangle equals half the opposite side to this vertex, then the angle at this vertex is right.

For example:

In the opposite figure:

If  $\overline{BD}$  is a median in  $\triangle ABC$ ,  $\overline{BD} = 3 \text{ cm. and } AC = 6 \text{ cm.}$ , then  $m(\angle ABC) = 90^\circ$  "because  $BD = \frac{1}{2} AC$ "

Corollary

The length of the side opposite to the angle of measure  $30^\circ$  in the right-angle equals half the length of the hypotenuse.

i.e.

In the opposite figure:

If  $\triangle ABC$  is right-angled at B and  $m(\angle C) = 30^\circ$ , then  $ABC = \frac{1}{2} AC$ For example:

If ABC is right-angled at B and  $m(\angle C) = 30^\circ$ , then  $ABC = \frac{1}{2} AC$ For example:

If ABC is right-angled at B and  $m(\angle C) = 30^\circ$ , then  $ABC = \frac{1}{2} AC$ For example:

If ABC = 20 cm., then ABC = 10 cm.In the right-angled triangle, the length of the median from the vertex of the right angle



If the length of the median drawn from a vertex of a triangle equals half the length of the



The length of the side opposite to the angle of measure 30° in the right-angled triangle

$$m (\angle C) = 30^{\circ}$$
, then  $AB = \frac{1}{2} AC$ 



# [1] Complete:

- In the right-angled triangle the length of the median from the vertex of the right angle equal ..... the length of the hypotenuse.
- In the right-angled triangle, the length of the median from the vertex of the right angle equals .....
- 3 If the length of the median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex in length, then ......
- The length of the side opposite to the angle of measure 30° in the right-angled triangle equals ..... the length of the hypotenuse.
- The length of side opposite to the angle whose measure = 30° in the right-angled triangle = .....
- The length of the hypotenuse on the right-angled triangle equals ..... the length of a side opposite to the angle of measure 30°
- 7 In  $\triangle$  LMN: If m ( $\angle$  L) = 30°, m ( $\angle$  N) = 60°, NM = 4 cm., then LN = ....... cm.
- If ABC is a right-angled triangle at B, AB = 6 cm., BC = 8 cm., if BD is 8 a median of triangle ABC, then BD = ..... cm.
- 9
- In  $\triangle$  ABC if m ( $\angle$  A) = 30° and m ( $\angle$  B) = 90°, then BC = .......... AC
- If ABC: Is a right-angled at B, AB =  $\frac{1}{2}$  AC, then m ( $\angle$  C) = ......
- If ABC is a right-angled triangle at B and AB =  $\frac{1}{2}$  AC, then m ( $\angle$  A) = ......
- ABC is a right-angled triangle at B, if AC = 2 BC, then  $m (\angle C) = \dots$
- In the opposite figure: The perimeter of  $\triangle$  ABD = ...... cm.



| In the opposite figure :                                                                                                                                                                                                             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| D is the midpoint of $\overline{AC}$                                                                                                                                                                                                 | X    |
| $m (\angle E) = 30^{\circ}$                                                                                                                                                                                                          |      |
| AC = 10  cm.                                                                                                                                                                                                                         | /:   |
| Find the length of : $\overline{BE}$                                                                                                                                                                                                 | 30   |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
| ••••••                                                                                                                                                                                                                               |      |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                      |      |
| Essay problems:                                                                                                                                                                                                                      |      |
| Essay problems:<br>In the opposite figure: $\triangle$ ABC, $\triangle$ AC = 8 cm.,<br>$m(ABAC) = 60^{\circ} \cdot m(ABC) = 90^{\circ} \cdot m$                                                                                      | 60   |
| Essay problems:<br>In the opposite figure: $\triangle$ ABC, AC = 8 cm.,<br>$m (\angle BAC) = 60^{\circ}$ , $m (\angle ABC) = 90^{\circ}$ ,<br>D is the midpoint of $\overline{AC}$                                                   | D 60 |
| Essay problems:  In the opposite figure: $\triangle$ ABC, $AC = 8$ cm., $m (\angle BAC) = 60^{\circ}$ , $m (\angle ABC) = 90^{\circ}$ ,  D is the midpoint of $\overline{AC}$                                                        | D 60 |
| Essay problems:<br>In the opposite figure: $\triangle$ ABC, AC = 8 cm.,<br>$m (\angle BAC) = 60^{\circ}$ , $m (\angle ABC) = 90^{\circ}$ ,<br>D is the midpoint of $\overline{AC}$<br>Find: The perimeter of $\triangle$ ABD         | D 60 |
| Essay problems: In the opposite figure: $\triangle$ ABC, AC = 8 cm., m ( $\angle$ BAC) = 60°, m ( $\angle$ ABC) = 90°, D is the midpoint of $\overline{AC}$ Find: The perimeter of $\triangle$ ABD                                   | D 60 |
| Essay problems: In the opposite figure: $\Delta$ ABC, AC = 8 cm., m ( $\angle$ BAC) = 60°, m ( $\angle$ ABC) = 90°, D is the midpoint of $\overline{AC}$ Find: The perimeter of $\Delta$ ABD                                         | D 60 |
| Essay problems:<br>In the opposite figure: $\triangle$ ABC, AC = 8 cm.,<br>$m (\triangle BAC) = 60^{\circ}$ , $m (\triangle ABC) = 90^{\circ}$ ,<br>D is the midpoint of $\overline{AC}$<br>Find: The perimeter of $\triangle$ ABD   | D 60 |
| Essay problems:  In the opposite figure: $\triangle$ ABC, AC = 8 cm., $m (\triangle BAC) = 60^{\circ}$ , $m (\triangle ABC) = 90^{\circ}$ ,  D is the midpoint of $\overline{AC}$ Find: The perimeter of $\triangle$ ABD             | D 60 |
| Essay problems:  In the opposite figure: $\triangle$ ABC, $AC = 8$ cm., $m (\angle BAC) = 60^{\circ}$ , $m (\angle ABC) = 90^{\circ}$ ,  D is the midpoint of $\overline{AC}$ Find: The perimeter of $\triangle$ ABD                 | D 60 |
| Essay problems:  In the opposite figure: $\triangle$ ABC, AC = 8 cm., $m (\triangle BAC) = 60^{\circ}$ , $m (\triangle ABC) = 90^{\circ}$ ,  D is the midpoint of $\overline{AC}$ Find: The perimeter of $\triangle$ ABD             | D 60 |
| Essay problems:<br>In the opposite figure: $\triangle$ ABC, $AC = 8$ cm.,<br>$m (\triangle BAC) = 60^{\circ}$ , $m (\triangle ABC) = 90^{\circ}$ ,<br>D is the midpoint of $\overline{AC}$<br>Find: The perimeter of $\triangle$ ABD | D 60 |
| Essay problems:  In the opposite figure: $\triangle$ ABC, $AC = 8$ cm., $m (\triangle BAC) = 60^{\circ}$ , $m (\triangle ABC) = 90^{\circ}$ ,  D is the midpoint of $\overline{AC}$ Find: The perimeter of $\triangle$ ABD           | D 60 |
| Essay problems:  In the opposite figure: $\triangle$ ABC, $AC = 8$ cm., $m (\angle BAC) = 60^{\circ}$ , $m (\angle ABC) = 90^{\circ}$ ,  D is the midpoint of $\overline{AC}$ Find: The perimeter of $\triangle$ ABD                 | D 60 |

# In the opposite figure:

 $m (\angle B) = 90^{\circ}$ ,  $m (\angle C) = 30^{\circ}$ , BD is a median, AB = 4 cm.

### Complete:

 $AC = \cdots cm$ ,  $BD = \cdots cm$ ,  $AD = \cdots cm$ .



## In the opposite figure:

 $\triangle$  ABC in which m ( $\angle$  B) = 90°, AC = 10 cm.  $m (\angle C) = 30^{\circ}, EC = EB, AD = DC$ 

Find with proof: The perimeter of  $\triangle$  ABD





## In the opposite figure:

$$m (\angle B) = 90^{\circ}$$
,

$$m (\angle ACB) = 30^{\circ}$$
,

E , F are midpoints of  $\overline{AD}$  ,  $\overline{DC}$ 

Prove that : AB = EF



| ינונוני | נננת | נגנגו | ונונו | ינונוני | uuuu |
|---------|------|-------|-------|---------|------|

Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term

# In the opposite figure:



m ( $\angle$  ACB) = 30°, and  $\overline{DE}$  is a median of  $\triangle$  ADC,

If AB = 3 cm.

Find: The length of  $\overline{DE}$ 



# In the opposite figure:

$$m (\angle ABC) = m (\angle BDE) = 90^{\circ}$$

$$, m (\angle E) = 30^{\circ}$$

, D is the midpoint of  $\overline{AC}$ 

Prove that : AC = BE



התתתתתתתתתתת השולה ל Prep 1<sup>st</sup> term מתתתתתתתתת Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term

In  $\triangle$  ABC: m ( $\angle$  A) = 30°, m ( $\angle$  B) = 90°, AC = 10 cm., then BC = ......... cm.

(c) 10

(d)5

In  $\triangle$  XYZ, if m ( $\angle$  Y) = 90°, m ( $\angle$  X) = 30° and XZ = 20 cm., then

- (c) 20
- (d) 10

In the rectangle ACBD, if AC = 10 cm., then  $BD = \cdots$ 

(c) 15

(d) 20



- In the right-angled triangle, the length of the median from the vertex of the right
- If the length of the median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex in length, then ......
- The length of the side opposite to the angle of measure 30° in the right-angled triangle equals ..... the length of the hypotenuse.
  - The length of side opposite to the angle whose measure  $= 30^{\circ}$  in the right-angled
  - The length of the hypotenuse on the right-angled triangle equals ...... the length of a side opposite to the angle of measure 30°
  - In  $\triangle$  LMN: If m ( $\angle$  L) = 30°, m ( $\angle$  N) = 60°, NM = 4 cm., then LN = ....... cm.
  - If ABC is a right-angled triangle at B, AB = 6 cm, BC = 8 cm, if BD is a median of triangle ABC, then BD = ..... cm.
  - In  $\triangle$  ABC, m ( $\angle$  C) = 60°, m ( $\angle$  B) = 90°, AC = 8 cm., then BC = ..... cm.
  - In  $\triangle$  ABC if m ( $\angle$  A) = 30° and m ( $\angle$  B) = 90°, then BC = .......... AC

| 424242424242 | 12 42 42 42 42 |   |
|--------------|----------------|---|
| บบบบบบ       | <br>           | , |

# [3] Essay problems:

# In the opposite figure:

 $m (\angle B) = 90^{\circ} \text{ and } m (\angle C) = 30^{\circ}$ 

AC = 10 cm.

**Find**: the lengths of  $\overline{AB}$  and  $\overline{BD}$ 



# In the opposite figure:

 $m (\angle C) = 30^{\circ}$ 

Prove that:

AB = BD



*\* 

## 3 In the opposite figure:

In  $\triangle$  ABC: m ( $\angle$  B) = 90°, m ( $\angle$  C) = 30°

- , D is the midpoint of  $\overline{AC}$ , E is the midpoint of  $\overline{BC}$
- , AC = 12 cm.
- (1) Find length of: BM
- (2) Find the perimeter of :  $\triangle$  ABC



# In the opposite figure:

X, Y, D are the midpoints of

EA, EC and AC respectively,

 $m (\angle ABC) = 90^{\circ}$ 

Prove that : BD = YX



| nnn. | ממו | ממנ | ממה | מתנ  |
|------|-----|-----|-----|------|
| -    |     |     |     | <br> |

# In the opposite figure:

 $m (\angle B) = 90^{\circ}, m (\angle ACB) = 30^{\circ},$ 

AB = DH where H is midpoint of  $\overline{AC}$ 

Prove that:  $m (\angle ADC) = 90^{\circ}$ 



# 6 In the opposite figure:

 $m (\angle BAC) = m (\angle CBE) = 90^{\circ}$ 

 $m (\angle BEC) = 30^{\circ}$ ,

D and F are the midpoints of BC

and  $\overline{\text{CE}}$  respectively.

Prove that : AD =  $\frac{1}{2}$  BF



Triangles are classified according to the lengths of their sides into three types which are:





3 Equilateral triangle. (three sides are congruent).



And in the following we will study the relations between the angles in the isosceles

$$AB = AC$$
,  $m (\angle A) = 40^{\circ}$ ,

then m (
$$\angle$$
 B) = m ( $\angle$  C) =  $\frac{180^{\circ} - 40^{\circ}}{2}$  =  $70^{\circ}$ 



- 2 The vertex angle in the isosceles triangle may be acute, right or obtuse angle.

If the triangle is equilateral, then it is equiangular where each angle measure is 60°

フルスルスルスルスルス Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カルスルス

# For example:

# In the opposite figure:

If XYZ is a triangle in which

$$XY = YZ = ZX$$
,

then m (
$$\angle X$$
) = m ( $\angle Y$ ) = m ( $\angle Z$ ) = 60°



# Complete:

- The two base angles in an isosceles triangle are ......
- 2  $\triangle$  ABC, AB = AC, m ( $\angle$  C) = 70°, then m ( $\angle$  A) = ......
- 3 In the  $\triangle$  ABC: AB = AC, m ( $\angle$  A) = 70°, then m ( $\angle$  C) = .....°
- The  $\triangle$  ABC is an isosceles and right-angled triangle if m ( $\angle$  B) = 90°, then  $m(\angle A) = m(\angle C) = \cdots$
- 5
- 6 In  $\triangle$  ABC: if AB = AC, m ( $\angle$  B) = 60°, then the triangle is an ......
- 7
- The length of side opposite to the angle whose measure = 30° in the right-angled triangle = .....
- The length of the hypotenuse on the right-angled triangle equals ..... the length of a side opposite to the angle of measure 30°
- In  $\triangle$  LMN: If m ( $\angle$  L) = 30°, m ( $\angle$  N) = 60°, NM = 4 cm., then LN = ........ cm.
- If ABC is a right-angled triangle at B, AB = 6 cm., BC = 8 cm., if BD is a median of triangle ABC, then BD = ..... cm.



# [2] Essay problems:

# In the opposite figure:

ACBD is a quadrilateral in which:

$$AB = BC = CA = BD$$

$$m (\angle ABD) = 24^{\circ}$$

Find: m (∠ CAD)



# In the opposite figure complete:

$$X = \cdots \circ$$
,



# In the opposite figure:

ABC is a triangle,

$$AC = BC \cdot AD // BC \cdot m (\angle DAC) = 40^{\circ}$$

**Find :** The measure of angles in the  $\triangle$  ABC



An isosceles triangle, one of its base angles has measure 50°, then the measure of

117

(c) 70°

(b) 60°

the vertex angle = .....

(a) 50°

(d) 80°

|   | (a) 70°                              | (b) 110°                                           | (c) 20°                                   | (d) 40°                         |
|---|--------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------|
| 7 | The measure of measure of the        |                                                    | base angles of the isosc                  | teles = $75^{\circ}$ , then the |
|   | (a) 50°                              | (b) 75°                                            | (c) 30°                                   | (d) 105°                        |
| 8 | In a triangle AI                     | BC : If AB = AC and                                | $m (\angle A) = 40^{\circ}$ , then i      | m (∠ C) = ·······               |
|   | (a) 40°                              | (b) 70°                                            | (c) 140°                                  | (d) 50°                         |
| 9 | In Δ ABC, AB                         | $=AC \cdot m (\angle A) = 50$                      | • , then m ( $\angle$ B) =                |                                 |
|   | (a) 50°                              | (b) 65°                                            | (c) 130°                                  | (d) 100°                        |
| 0 | If the measure of of the other angle |                                                    | eles triangle is 100°, the                | en the measure of one           |
|   | (a) 50°                              | (b) 80°                                            | (c) 40°                                   | (d) 100°                        |
| 1 |                                      | of an angle of the isos<br>angles =                | celes triangles is 120°                   | , then the measure of           |
|   | (a) 60°                              | (b) 30°                                            | (c) 40°                                   | (d) 45°                         |
| 2 |                                      | ose sides lengths are 2 ose when $x = \cdots cm$ . | cm. $(X + 1)$ cm and 5 c                  | em. becomes an                  |
|   | (a) 1                                | (b) 2                                              | (c) 3                                     | (d) 4                           |
| 3 | Triangle whose triangle when X       |                                                    | (x-2) cm., 5 cm.                          | becomes isosceles               |
|   | (a) 3                                | (b) 4                                              | (c) 5                                     | (d) 7                           |
| 4 | ABC is a triangl                     | e in which AB = AC a                               | and m ( $\angle$ A) = 110°, the           | en m (∠ B) =                    |
| • | (a) 70°                              | (b) 55°                                            | (c) 35°                                   | (d) 110°                        |
| 5 | Δ XYZ is an iso                      | sceles triangle in which                           | h m ( $\angle X$ ) = $100^{\circ}$ , then | ı m (∠ Y) = ······°             |
|   | (a) 100                              | (b) 80                                             | (c) 60                                    | (d) 40                          |
|   |                                      |                                                    |                                           |                                 |

|  | תתתתת | תתתתת | nnnnnn |
|--|-------|-------|--------|
|--|-------|-------|--------|

| Mathematics | 2nd | Pren | 1 st | term   |
|-------------|-----|------|------|--------|
| Mainemaics  | _   | rreb |      | 161.11 |

# [2] Essay problems:

# In the opposite figure:

$$AB = AD$$
,  $m (\angle A) = 30^{\circ}$ ,

$$CB = BD = CD$$



# In the opposite figure:

ABC is a triangle in which: AC = BC,

$$\overline{AD} // \overline{BC}$$
, m ( $\angle DAC$ ) = 30°

Find: m (∠ ABC)



| In the opposite figure :                               | $\wedge$           |
|--------------------------------------------------------|--------------------|
| ABC is an equilateral triangle,                        | * 5 *              |
| DB = DC $\cdot$ m ( $\angle$ D) = 110°                 |                    |
| Find with proof: $m (\angle DBC)$ and $m (\angle DBA)$ | 110                |
|                                                        | В                  |
| •••••••••••••••••••••••••••••••••••••••                | ••••••••••         |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        | ••••••             |
|                                                        | •••••••••••        |
|                                                        | A                  |
| In the opposite figure:                                |                    |
| ADE is a triangle, $B \in DE$ , $C \in DE$             | -/ <del>*</del> *\ |
| ,BD = CE, AB = AC                                      |                    |
| Prove that : $AD = AE$                                 | E C B D            |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
|                                                        |                    |
| I                                                      |                    |

# Sheet (4) a copyerse of the isosceles triangle thank

# Theorem 2

If two angles of a triangle are congruent, then the two sides opposite to these two angles are congruent and the triangle is isosceles.

# Remark

The isosceles triangle in which the measure of one of its angles = 60° is an equilateral triangle.



# [1] Complete:

- If angles of any triangle are equal in measures, then the triangle is ......
  - If the angles of a triangle are congruent, then the triangle is .....
  - The measure of the exterior angle of equilateral triangle = .........°
  - If the measure of one of the angles of the right-angled triangle is 45°, then the triangle is .....
  - In an isosceles triangle, if any angle has a measure of 60°, the triangle is .....
  - In  $\triangle$  ABC if:  $\overline{AB} \perp \overline{BC}$  and  $\overline{AB} = \overline{BC}$ , then m ( $\angle A$ ) = ......°



| Essay problems:                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In the opposite figure :                  |                        | Ą                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD bisects ∠ BAC                          |                        | A Company of the Comp |
| • m ( $\angle$ B) = 30°                   |                        | 70 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $m (\angle C) = 70^{\circ}$               |                        | C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Prove that :</b> $\triangle$ ADC is is | sosceles triangle.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •••••                                     |                        | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •••••                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ••••••                                    |                        | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •••••                                     |                        | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ••••••                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ABC is a triangle in                      | which: $m(\angle A)$ = | = $50^{\circ}$ and m ( $\angle$ C) = $80^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prove that: this tria                     | angle ABC is an is     | sosceles triangle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •••••                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ••••••                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •••••                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •••••                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •••••                                     |                        | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | •••••                  | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| In the opposite figure :                                                                                                                                                               | A       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AB = AC,                                                                                                                                                                               |         |
| BM and $\overline{CM}$ bisect the angles ( $\angle B$ ), ( $\angle C$ )                                                                                                                | M       |
| In the opposite figure:  AB = AC ,  BM and CM bisect the angles (∠ B) , (∠ C)  Prove that: MB = MC  In the opposite figure:  BD = CE , m (∠ ABC) = m (∠ ACB) , m (∠ D) = m (∠ E) = 90° |         |
|                                                                                                                                                                                        | С       |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        | ••••••  |
|                                                                                                                                                                                        |         |
| •••••••••••••                                                                                                                                                                          | ••••••• |
|                                                                                                                                                                                        | ••••••• |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        | •••••   |
|                                                                                                                                                                                        | •••••   |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        | •••••   |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
| In the annosite figure :                                                                                                                                                               | 2 T 153 |
| DD _ CE                                                                                                                                                                                | A       |
| BD=CE                                                                                                                                                                                  |         |
| $, m (\angle ABC) = m (\angle ACB)$                                                                                                                                                    |         |
| $m (\angle D) = m (\angle E) = 90^{\circ}$                                                                                                                                             | EQ      |
| <b>Prove that :</b> $m (\angle DAB) = m (\angle CAE)$                                                                                                                                  | c       |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        | •••••   |
|                                                                                                                                                                                        | •••••   |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        |         |
|                                                                                                                                                                                        | ••••••  |
|                                                                                                                                                                                        |         |

カカカカカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカカカ

5 In the opposite figure:

> $AB = AC \cdot \overline{DE} // \overline{AB}$ and AC // DO

Prove that :  $\bigcirc$  DE = DO  $2 m (\angle A) = m (\angle D)$ 



Choose the correct answer:

The measure of exterior angle of an equilateral triangle = .....

(a) 30°

(b) 60°

- (c) 120°
- (d) 180°

In  $\triangle$  XYZ: if XY = XZ, then the exterior angle at the vertex Z is ........

- (a) acute.
- (b) obtuse.
- (c) right.
- (d) reflex.

In  $\triangle$  ABC: if AB = AC and m ( $\angle$  A) = 60°, if its perimeter is 18 cm., then BC = ..... cm.

(a) 18

(b) 6

(c) 3

(d) 60

| ] | Essay problems:                                                                                                                                                                                      |            |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   | In the opposite figure :                                                                                                                                                                             | A<br>A 30° |
|   | AD = AC                                                                                                                                                                                              | 1/10       |
|   | $m (\angle DAB) = 30^{\circ}$                                                                                                                                                                        | 11         |
|   | $m (\angle ABD) = 40^{\circ}$                                                                                                                                                                        | 40         |
|   | Prove that : AB = CB                                                                                                                                                                                 | C D        |
|   |                                                                                                                                                                                                      |            |
|   | In the opposite figure:  ABC is a triangle in which AB = AC, $X \in \overline{AB}$ , $Y \in \overline{AC}$ and $\overline{XY} / / \overline{BC}$ Prove that: the triangle AXY is isosceles triangle. | Y X        |
|   | In the opposite figure:  ABC is a triangle in which AB = AC , X ∈ AB ,  Y ∈ AC and XY // BC  Prove that: the triangle AXY is isosceles triangle.                                                     | C B        |
|   |                                                                                                                                                                                                      |            |
|   |                                                                                                                                                                                                      |            |
|   |                                                                                                                                                                                                      |            |

| In the opposite figure :                                                                          |                                |
|---------------------------------------------------------------------------------------------------|--------------------------------|
| $AB = AC$ , $\overrightarrow{BD}$ bisects $\angle B$ and $\overrightarrow{CD}$ bisects $\angle C$ |                                |
| <b>Prove that :</b> $\triangle$ DBC is an isosceles triangle                                      | C                              |
|                                                                                                   |                                |
|                                                                                                   | ••••••                         |
|                                                                                                   |                                |
| ••••••                                                                                            |                                |
|                                                                                                   |                                |
|                                                                                                   |                                |
|                                                                                                   | ••••                           |
|                                                                                                   | •••••                          |
|                                                                                                   |                                |
|                                                                                                   |                                |
|                                                                                                   | ••••••                         |
|                                                                                                   | •••••                          |
| In the opposite figure :                                                                          | - 1                            |
| $\overrightarrow{CD}$ bisects $\angle$ ACB , $\overrightarrow{DE}$ // $\overrightarrow{CB}$       |                                |
| <b>Prove that :</b> $\Delta$ ECD is an isosceles triangle.                                        | $B \longrightarrow \mathbb{R}$ |
|                                                                                                   | •••••                          |
|                                                                                                   | ••••••                         |
|                                                                                                   | •••••                          |
|                                                                                                   | •••••                          |
|                                                                                                   | •••••                          |
|                                                                                                   |                                |
|                                                                                                   |                                |
|                                                                                                   | •••••                          |
|                                                                                                   | •••••                          |
|                                                                                                   | •••••                          |
|                                                                                                   |                                |
|                                                                                                   |                                |
|                                                                                                   | ••••••                         |
|                                                                                                   |                                |

# 5

# In the opposite figure:

 $m (\angle B) = m (\angle C) \cdot AB = (2 X - 1) cm.$ 

AC = (x + 3) cm.

, BC = (9 - X) cm.

Find with proof the perimeter of  $\Delta$  ABC



| <br>      |                                         |                                         |                                         |
|-----------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|           |                                         |                                         |                                         |
| <br>      |                                         |                                         | <br>                                    |
| <br>••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|           |                                         |                                         |                                         |
|           |                                         |                                         |                                         |

The median of an isosceles triangle from the vertex angle bisects it and is perpendicular



The bisector of the vertex angle of an isosceles triangle bisects the base and is



Sheet (3)

Corollary 1

The median of an isosceles triangle from the vertex angle bisects it and is per to the base.

In the opposite figure:

ABC is a triangle in which AB = AC and

AD is a median , then:

1 AD bisects \( \triangle \) BAC

i.e. m (\( \triangle \) BAD) = m (\( \triangle \) CAD)

2 AD \( \triangle \) BC

Corollary 2

The bisector of the vertex angle of an isosceles triangle bisects the base and is perpendicular to it.

In the opposite figure:

ABC is a triangle in which AB = AC and

AD bisects \( \triangle \) BAC , then:

1 D is the midpoint of BC

i.e. BD = CD

2 AD \( \triangle \) BC

Corollary 3

The straight line drawn passing through the vertex angle of an isosceles triangle.

In the opposite figure:

ABC is a triangle in which AB = AC and

AD \( \triangle \) BC

Corollary 3

The straight line drawn passing through the vertex angle of an isosceles triangle in the opposite figure:

ABC is a triangle in which AB = AC and

AD \( \triangle \) BC

i.e. BD = CD

2 m(\( \triangle \) BAD) = m(\( \triangle \) CAD) The straight line drawn passing through the vertex angle of an isosceles triangle



The previous three corollaries can be proved using the congruence of  $\Delta$  ABD and  $\Delta$  ACD

# Axis of symmetry of a line segment

The straight line perpendicular to a line segment at its middle is called the axis of symmetry for that line segment, in brief it is known as the axis of a line segment.

Notice that:

The previous three corollaries can be produced a line segment. The straight line perpendicular to a line segment that line segment in brief it is known in the opposite figure:

If the straight line L ⊥ AB and C ∈ the line L where C is the midpoint of AB, the straight line L is called the axis of AB

Property

Any point on the axis of symmetry of a literminals (end points).

In the opposite figure:

If the straight line L is the axis of AB, D∈L, E∈L and F∈L, then DA = DB, EA = EB and FA = FB

The converse of the previous propile. If a point is at equal distances from the segment, then this point lies on the axis of that CA = CB, then the point C lies on the axis of AB

Axis of symmetry of the isosceles

The isosceles triangle has one axis of sy It is the straight line drawn from the vertex. If the straight line  $L \perp \overline{AB}$  and  $C \in$  the straight line L where C is the midpoint of  $\overline{AB}$ , then



Any point on the axis of symmetry of a line segment is at equal distances from its



# The converse of the previous property is true

i.e. If a point is at equal distances from the two terminals of a line segment, then this point lies on the axis of this line segment.



# Axis of symmetry of the isosceles triangle

The isosceles triangle has one axis of symmetry.

It is the straight line drawn from the vertex angle perpendicular to its base.



1 The equilateral triangle has three axes of symmetry, they are the three perpendiculars drawn from its vertices to the opposite sides.

The straight lines L<sub>1</sub>, L<sub>2</sub> and L<sub>3</sub> are the axes of symmetry of the equilateral triangle ABC

The scalene triangle has no axes of symmetry.



- The ray drawn from the vertex of the isosceles triangle passing through the
- The median of an isosceles triangle drawn from the vertex bisects ...... and is
- The bisector of the vertex angle of an isosceles triangle ....... and .......
- The straight line perpendicular to the midpoint of a line segment is called .........
- In the isosceles triangle if the measure of any angle is 60°, then the number of axis
- The number of axes of symmetry of the isosceles triangle equal ......
- The number of symmetrical line in an scalene triangle = .....
- The number of the axes of symmetry in an equilateral triangle =

| 10<br> 1<br> 2<br> 3<br> 4<br> 5<br> 6<br> 2] | The number of axes of symmetry of the triangle in which the measures of two angles are $50^{\circ}$ , $70^{\circ} = \cdots$ |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 11                                            | In $\triangle$ ABC: If AB = AC, then the point A lies on the axis of symmetry of                                            |
| 12                                            | If D is the midpoint of $\overrightarrow{AB}$ and $\overrightarrow{CD} \perp \overrightarrow{AB}$ , then $CA = \cdots$      |
| 13                                            | The axis of symmetry of the line segment is the straight line which                                                         |
| 14                                            | Any point on the axis symmetry of a line segment is at two equal distance from                                              |
| 15                                            | If the point $A \in$ the axis of symmetry of $\overline{BC}$ , then $AB = \cdots$                                           |
| 16                                            | The axis of symmetry of isosceles triangle is                                                                               |
| [2]                                           | Essay problems:                                                                                                             |
| 1                                             | In the opposite figure :                                                                                                    |
| •                                             | In $\triangle$ ABC, AB = AC,                                                                                                |
|                                               | $\overrightarrow{AD} \perp \overrightarrow{BC}$ ,                                                                           |
|                                               | AB = 13  cm. and  BD = 5  cm.                                                                                               |
|                                               | Find: 1 The length of $\overline{BC}$                                                                                       |
|                                               | 2 The area of $\triangle$ ABC                                                                                               |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               |                                                                                                                             |
|                                               | 131                                                                                                                         |

| uuuuu                |                   |                  |
|----------------------|-------------------|------------------|
| dd dd dd dd dd dd dd | 44 44 44 44 44 44 | da da da da da l |
| -0000                | -0-0-0-0-0        |                  |

Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term

# In the opposite figure:

ABC is a triangle in which:  $AB = AC \cdot \overline{AD} \perp \overline{BC}$ 

 $m (\angle BAC) = 100^{\circ} \text{ and } BD = 3 \text{ cm}.$ 

Find: (1)  $m (\angle BAD)$ (2) The length of  $\overline{CB}$ 



# In the opposite figure:

XL = XY, ZL = ZY,

M is the midpoint of  $\overline{LY}$ 



 $\boldsymbol{X}$  ,  $\boldsymbol{M}$  ,  $\boldsymbol{Z}$  are on the same straight line.



| 6  | (a) no                          | (b) two                                        | s (axes) of symmetry. (c) only one                                                                                         | (d) three            |
|----|---------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|
| 7  | The number of a                 | xes of symmetry in the                         | ne equilateral triangle                                                                                                    | is                   |
| ·  | (a) 0                           | (b) 2                                          | (c) 3                                                                                                                      | (d) 1                |
| 8  | The equilateral tr              | iangle has axes o                              | of symmetry.                                                                                                               |                      |
|    | (a) one                         | (b) two                                        | (c) three                                                                                                                  | (d) otherwise        |
| 9  | The triangle which              | ch has no axes of symr                         | netry is triangle                                                                                                          | s.                   |
|    | (a) scalene                     | (b) isosceles                                  | (c) equilateral                                                                                                            | (d) otherwise        |
| 10 | If ABC has one                  | axes of symmetry and                           | $m (\angle ABC) = 140^{\circ}$ , th                                                                                        | en m (∠ A) = ······· |
| •  | (a) 30°                         | (b) 20°                                        | (c) 40°                                                                                                                    | (d) 60°              |
| 11 | The triangle which              | h has three axes of syn                        | metry is triangle                                                                                                          |                      |
|    | (a) scalene                     | (b) isosceles                                  | (c) right-angled                                                                                                           | (d) equilateral      |
| 12 | Δ ABC in which symmetry.        | $m (\angle A) = m (\angle B) =$                | 65°, then it has                                                                                                           | ····· axis (axes) of |
|    | (a) 1                           | (b) 2                                          | (c) 3                                                                                                                      | (d) zero             |
| 13 | In Δ ABC if : m (axes) of symme | $(\angle A) = 40^{\circ}$ and m $(\angle$ try. | (c) 3  B) = 70°, then Δ ABC  (c) 2  an axis of symmetry of  (c) a parallelogram  point of BC, then A  (b) altit  (d) all t | C has axis           |
|    | (a) 3                           | (b) 1                                          | (c) 2                                                                                                                      | (d) zero             |
| 14 | The quadrilateral               | ABCD in which BD is                            | an axis of symmetry of                                                                                                     | AC may by            |
|    | (a) a rhombus                   | (b) a rectangle                                | (c) a parallelogran                                                                                                        | n (d) a trapezium    |
| 15 | $\Delta$ ABC , AB =             | AC, D is the mid                               | point of $\overline{BC}$ , then $\overline{A}$                                                                             | AD is                |
|    | (a) median.                     |                                                | (b) altit                                                                                                                  | tude.                |
|    | (c) bisector of                 | the vertex angle.                              | (d) all t                                                                                                                  | he previous.         |
|    |                                 |                                                |                                                                                                                            |                      |
|    |                                 |                                                |                                                                                                                            |                      |
|    |                                 |                                                |                                                                                                                            |                      |

| <u> </u> | Mathematics | 2 <sup>nd</sup> Prep | 1 <sup>st</sup> term |  |
|----------|-------------|----------------------|----------------------|--|
|          |             |                      |                      |  |

# [2] Essay problems:

# In the opposite figure:

In  $\triangle$  ABC, AB = AC,

 $\overline{AD} \perp \overline{BC}$ ,

AB = 13 cm, and BD = 5 cm.

Find: 1 The length of  $\overline{BC}$ 





# In the opposite figure:

ABC is a triangle in which :  $AB = AC \cdot \overline{AD} \perp \overline{BC}$ 

m ( $\angle$  BAC) = 100° and BD = 3 cm.

Find: (1) m  $(\angle BAD)$ (2) The length of CB



| /* X                                                   |
|--------------------------------------------------------|
| In $\triangle$ ABC:                                    |
| $AB = AC$ , $\overrightarrow{AD}$ bisects $\angle BAC$ |
| and $BD = 3$ cm.                                       |
| Prove that : $\overline{AD} \perp \overline{BC}$       |
| , then find the length of : $\overline{CB}$            |
| , dien inid die length of a CD                         |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
| In the opposite figure :                               |
| XL = XY, ZL = ZY                                       |
| M is the midpoint of LY                                |
| Prove that:                                            |
| X, M, Z are on the same straight line.                 |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |

# (8) seed he measure of angles in a fri

# Axioms of inequality relation

For any four numbers a , b , c and d:

1 If a > b, then a + c > b + c

2 If a > b, then a - c > b - c

3 If a > b, c > 0, then a c > b c

- 4 If a > b, b > c, then a > c
- 5 If a > b, c > d, then a + c > b + d

# Remember that:

The measure of any exterior angle of a triangle is greater than the measure of any interior angle of the triangle except its adjacent angle.

# Theorem

In a triangle, if two sides have unequal lengths, then the longer is opposite to the angle of the greater measure.

# Remark

The greatest angle in measure of the triangle is opposite to the longest side of the triangle and its measure is greater than 60° and the smallest angle in measure of the triangle is opposite to the shortest side of the triangle and its measure is less than 60°

# i.e. In AABC:

If AB > BC > AC, then  $m(\angle C) > m(\angle A) > m(\angle B)$  $m (\angle C) > 60^{\circ}$  and  $m (\angle B) < 60^{\circ}$ 





# [1] Complete:

- The length of two sides in the triangle are not equal, then the greatest side in length is opposite to ......
- In a triangle, if two sides have unequal lengths, the longer is opposite to the angle of the .....
- In triangle ABC, if BC > AB, then  $m (\angle A) \cdots m (\angle C)$ 3
- In  $\triangle$  ABC, if AB > BC > AC, then the smallest angle in measure of it is angle ......
- 6 In  $\triangle$  ABC : if the point X is the midpoint of  $\overline{BC}$ , then  $\overline{AX}$  is called ......
- 7 The medians of the triangle are ......
- 8 The medians of the triangle intersect at ......
- 9 The point of intersection of the medians of a triangle divides each median in the ratio ..... from the vertex.
- The points of concurrence of the medians of the triangle divides each median in the ratio ...... from the base.
- The point of intersection of the medians of the triangle divides each of them by the ratio 1:2 from ......
- The point which divides the median of the triangle in the ratio 1:2 from the base is the point of .....

## 13 In the opposite figure:

If M is intersection point of medians and m ( $\angle$  B) = 90°, MF = 1.5 cm. , then the length of  $\overline{AC} = \cdots$ 



| Ī |                                                                                        |          |
|---|----------------------------------------------------------------------------------------|----------|
| 1 | In the opposite figure :                                                               | T CIN    |
|   | Arrange the angles of $\triangle$ ABC                                                  |          |
|   | descendingly due to their measures                                                     | C 6cm. B |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   | In the opposite figure :                                                               | D        |
|   | ABCD is a quadrilateral in which: AD = DC,                                             |          |
|   | BC > AB                                                                                |          |
|   | <b>Prove that</b> : $m (\angle BAD) > m (\angle BCD)$                                  | C B      |
|   | A D. C. COMO D. S. P. L.                           |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   |                                                                                        |          |
|   | ABCD is a quadrilateral in which: AD = DC , BC > AB  Prove that: m (∠ BAD) > m (∠ BCD) |          |
|   |                                                                                        |          |

カカカカカカ Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term カカカ *\* In  $\triangle$  ABC: If AB = 9 cm., BC = 6 cm., AC = 7 cm., then the smallest angle is ...... (a) ∠ BAC (b) ∠ ABC (c) ∠ ACB (d) ∠ BCA The medians of the triangle intersect at ..... point. (d) 4 (a) 1 (b) 2 (c) 3 The right-angled triangle has ..... medians. (c) 2 (a) 0 (b) 1 (d)3The point of concurrence of the medians of the triangle divides each median in the ratio of ..... from the base. (a) 1:2 (c) 2:1 (d) 3:1(b) 1:3 If AD is a median of triangle ABC, and M is the point of intersection of the medians, then  $AM = \cdots AD$ (c)  $\frac{1}{2}$ (a)  $\frac{1}{3}$ (d)  $\frac{1}{4}$ AD is a median in  $\triangle$  ABC, M is the point of intersection of its medians, then  $AM = \dots MD$ (d)  $\frac{1}{3}$ (b)  $\frac{1}{2}$ (a) 2 (c) 3 If XE is a median in  $\triangle$  XYZ, M is the point of intersection of its medians, then EM = ..... XE (d)  $\frac{2}{3}$ (c)  $\frac{1}{3}$ (a)  $\frac{1}{2}$ (b) 2 In the opposite figure: AD is a median in  $\triangle$  ABC, M is the point of intersection of the medians, MD = 2 cm., then  $AD = \dots cm$ . (c) 6 (d) 8(a) 2 (b) 4

| In the opposite figure :                                                 | A                                       |
|--------------------------------------------------------------------------|-----------------------------------------|
| ED // BC,                                                                |                                         |
| AC > AB                                                                  | E                                       |
| Prove that : AE > AD                                                     | C                                       |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          | ••••••••••••                            |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
| In the opposite figure :                                                 | A                                       |
| AB = 8  cm.                                                              | 600                                     |
| BC = 7  cm.                                                              | 5                                       |
| CD = 4  cm $AD = 6  cm$                                                  | 7                                       |
| CD = 4 cm. (AD = 0 cm.                                                   |                                         |
| <b>Prove that :</b> $m (\angle BCD) > m (\angle BAD)$                    | B 7cm, C                                |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          | ••••••••••••••••••••••••••••••••••••••• |
| BC = 7 cm. , CD = 4 cm. , AD = 6 cm.  Prove that : m (∠ BCD) > m (∠ BAD) | ••••••                                  |
|                                                                          | ••••••                                  |
|                                                                          |                                         |

| In the opposite figure :                              | T |
|-------------------------------------------------------|---|
| XYZL is a quadrilateral,                              | X |
| XL = LZ, YZ > XY                                      |   |
| <b>Prove that :</b> $m (\angle LXY) > m (\angle LZY)$ | Z |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
|                                                       |   |
| מתתתתתת (144) תתתתתתתתתתתתתת                          |   |

# Sheet (7) <u>Camparing</u> the lengths of sides in a triad

In a triangle, if two angles are unequal in measure, then the greater angle in measure is opposite to a side greater in length than that opposite to the other angle.

In the right-angled triangle, the hypotenuse is the longest side.

If  $\triangle$  ABC is right-angled at B, then m ( $\angle$  B) > m ( $\angle$  A),

 $m (\angle B) > m (\angle C)$  because  $\angle B$  is a right angle and each of

∠ A and ∠ C is acute, so we find that:

AC > BC and AC > AB (according to the previous theorem).



In the obtuse-angled triangle, the side opposite to the obtuse angle is the longest side in

Theorem

In a triangle, if two angles are unequal opposite to a side greater in length than

Corollaries

Corollary 1 ...

In the right-angled triangle, the hypote:

In the opposite figure:

If Δ ABC is right-angled at B, then m m (∠ B) > m (∠ C) because ∠ B is a r ∠ A and ∠ C is acute, so we find that AC > BC and AC > AB (according to the triangle).

Notice that:

In the obtuse-angled triangle, the side the triangle.

Corollary 2 ...

The length of the perpendicular line segnth is line is shorter than any line segment.

In the opposite figure:

If C ∉ AB and D ∈ AB such that CD, then CB is the hypotenuse in Δ CBD which is right-angled at D,

CA is the hypotenuse in Δ CDA which According to corollary 1, we find the i.e. CD < CB and CD < CA.

Definition

The distance between any point and a give segment drawn from this point to the given The length of the perpendicular line segment drawn from a point outside a straight line to this line is shorter than any line segment drawn from this point to the given straight line.

If  $C \notin \overrightarrow{AB}$  and  $D \in \overrightarrow{AB}$  such that  $\overrightarrow{CD} \perp \overrightarrow{AB}$ ,



 $\overline{CA}$  is the hypotenuse in  $\Delta$  CDA which is right-angled at D and so on ...

According to corollary 1 , we find that CB > CD , CA > CD and so on ...

The distance between any point and a given straight line is the length of the perpendicular line segment drawn from this point to the given line.

| 19             | In $\Delta$ ABC , m ( $\angle$ A) = 50° , m ( $\angle$ B) = 65° , then the number of axes of symmetry equals  |
|----------------|---------------------------------------------------------------------------------------------------------------|
| 20             | In $\triangle$ ABC , m ( $\angle$ A) = 50°, m ( $\angle$ B) = 65°, then the number of axes of symmetry equals |
| !1             | In $\triangle$ ABC m ( $\angle$ B) = 70° and m ( $\angle$ C) = 60° then AC ······ AB                          |
| 22             | In the isosceles triangle if : $AB = AC$ , $m$ ( $\angle A$ ) = $70^{\circ}$ , then $AB < \cdots$             |
| 23             | In the triangle ABC : if m ( $\angle$ B) – m ( $\angle$ A) > m ( $\angle$ C) , then AC ······ AB              |
| 2]             | Essay problems:                                                                                               |
| 1              | $\square$ ABC is a triangle in which: m ( $\angle$ A) = 40° and m ( $\angle$ B) = 75°                         |
| 23<br>[2]<br>1 | Order the lengths of the sides of the triangle descendingly.                                                  |
| 2              | In the opposite figure :                                                                                      |
|                | ABC is an obtuse-angled triangle at B                                                                         |
|                | $,\overline{\rm DE}/\!/\overline{\rm BC}$                                                                     |
|                | Prove that:                                                                                                   |
|                | In the opposite figure:  ABC is an obtuse-angled triangle at B  DE // BC  Prove that:  AE > AD                |

| ADC is a right-angle                                      | ed triangle at B $D \in \overline{AC}$ and $E \in \overline{I}$ | BC where $AD = BE$ |
|-----------------------------------------------------------|-----------------------------------------------------------------|--------------------|
| Prove that : m (∠ CED)                                    | > m (∠ CDE)                                                     |                    |
|                                                           |                                                                 |                    |
|                                                           |                                                                 |                    |
| ••••                                                      |                                                                 | ••••               |
| •••••                                                     |                                                                 | •••••              |
| •••••                                                     |                                                                 | •••••              |
| •••••                                                     | •••••                                                           | •••••              |
| ••••••                                                    |                                                                 |                    |
| •••••                                                     |                                                                 |                    |
| •••••                                                     | ••••••                                                          |                    |
| ••••••                                                    |                                                                 |                    |
|                                                           |                                                                 |                    |
|                                                           |                                                                 |                    |
| •••••                                                     |                                                                 | ••••               |
|                                                           |                                                                 |                    |
| In the opposite figu                                      | ire:                                                            |                    |
| $\overline{AB} \cap \overline{CD} = \{M\}, \overline{AC}$ |                                                                 |                    |
|                                                           |                                                                 | D                  |
| Prove that:                                               |                                                                 | [ / M              |
| AB > CD                                                   |                                                                 |                    |
|                                                           |                                                                 | В                  |
| •••••                                                     |                                                                 | •••••              |
| •••••                                                     |                                                                 | •••••              |
| •••••                                                     | ••••••                                                          | •••••              |
| •••••                                                     | •••••                                                           | •••••              |
| ••••••                                                    | ••••••                                                          | ••••••             |
|                                                           |                                                                 | ••••••             |
|                                                           |                                                                 |                    |
|                                                           |                                                                 |                    |
|                                                           |                                                                 | •••••              |
| •••••                                                     |                                                                 | •••••              |
|                                                           |                                                                 | •••••              |
|                                                           |                                                                 | •••••              |
| •••••                                                     | •••••                                                           | •••••              |
|                                                           | 22222                                                           |                    |
|                                                           |                                                                 |                    |
|                                                           |                                                                 |                    |

# [1] Choose the correct answer:

 $\Delta XYZ$ , m ( $\angle X$ ) = 60°, m ( $\angle Y$ ) = 40°, then XZ ...... XY

(a) <

(b) >

(c) =

(d) nothing.

2 ABC is a triangle in which:  $m (\angle B) = 70^{\circ}$ ,  $m (\angle C) = 50^{\circ}$ , then AC ....... AB

(a) >

(b) <

(c) =

(d) ≡

In a triangle ABC:  $m(\angle B) = 75^{\circ}$ ,  $m(\angle C) = 50^{\circ}$ , then BC .....AB

(a) <

(b) >

(c) =

ABC is a triangle in which:  $m (\angle B) = 80^{\circ}$ ,  $m (\angle C) = 50^{\circ}$ , then BC ......... AB

(a) >

(b) <

(c) =

If:  $m (\angle A) = 50^{\circ}$  and  $m (\angle B) = 60^{\circ}$  in triangle ABC then AB .....AC

(a) >

(b) <

(c) =

(d) ≤

In a triangle ABC: If m ( $\angle$  A) = 80°, m ( $\angle$  C) = 60°, then AB ...... BC

(a) >

(b) <

(c) =

(d) ≥

Triangle ABC: If m ( $\angle$  B) = 70°, m ( $\angle$  C) = 60°, then BC .......... AB

(a) <

(b) >

(c) =

(d) ≥

In  $\triangle$  LMN, if m ( $\angle$  N) = 75°, m ( $\angle$  M) = 60°, then LM ..... LN.

(a) >

(b) <

(c) =

(d) twice

(a) >

(b) =

(c) <

(d) ≥

In  $\triangle$  XYZ: If m ( $\angle$  X) = 30° and m ( $\angle$  Y) = 80°, then .....

(a) XY < XZ

(b) XY > XZ

(c) XY = XZ

(d) XY < YZ

In  $\triangle$  ABC: m ( $\angle$  A) = 60° and m ( $\angle$  C) = 45°, then ......

(a) AB < AC

(b) AB = AC

(c) AB > AC

(d)  $AB \equiv AC$ 

|     | (a) KL = KM                                                                                                       | ont is true ?<br>(b) KM > KL              | (c) KM < M                                | IL (d) LM > KL                           |  |
|-----|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|--|
| 3   | The triangle in which (a) a right-angled                                                                          |                                           | o angles are 74° and a (c) an equilateral | 53° is triangle (d) a scalene            |  |
| 4   | ) In Δ ABC : If AB (a) 70°                                                                                        | > AC , m ( $\angle$ C) = 7<br>(b) 50°     | '0°, then m (∠ B) ma<br>(c) 80°           | ny equal<br>(d) 75°                      |  |
| 5   | In Δ ABC, if m (Z<br>triangle ABC is ····                                                                         |                                           | B) = $30^{\circ}$ , then the s            | hortest side in the                      |  |
|     | (a) AB                                                                                                            | (b) $\overline{\text{CB}}$                | (c) AC                                    | (d) BC                                   |  |
| 6   | Δ ABC which: m                                                                                                    | $(\angle A) = 50^{\circ} \cdot m (\angle$ | B) = $60^{\circ}$ the longest             | side of it is                            |  |
|     | (a) AB                                                                                                            | (b) AC                                    | (c) BC                                    | (d) $\overline{CB}$                      |  |
| 7   | In $\triangle$ ABC if: m ( $\angle$ B) = 60° and m ( $\angle$ C) = 50°, then the shortest side in triangle ABC is |                                           |                                           |                                          |  |
|     | (a) AC                                                                                                            | (b) BC                                    | (c) BC                                    | (d) $\overline{AB}$                      |  |
| 8   | In the triangle AB                                                                                                | $C$ , if m ( $\angle$ B) = 90°            | o, then the greatest si                   | de in length is                          |  |
|     | (a) $\overline{AB}$                                                                                               | (b) BC                                    | (c) AC                                    | (d) $\overline{XY}$                      |  |
| 9   | In $\triangle$ ABC if: m ( $\angle$ B) = 130°, then the longest side of it is                                     |                                           |                                           |                                          |  |
|     | (a) BC                                                                                                            | (b) $\overline{AC}$                       | (c) AB                                    | (d) it's median                          |  |
| 0   | In the triangle ABC : If m ( $\angle$ B) > m ( $\angle$ C), then AB AC                                            |                                           |                                           |                                          |  |
|     | (a) <                                                                                                             | (b) >                                     | (c) =                                     | (d) otherwise                            |  |
| 1   | In Δ ABC : if m (2                                                                                                | $(\triangle B) > m (\triangle C)$ , the   | en AC ······ AB                           | 1,50                                     |  |
|     | (a) >                                                                                                             | (b) <                                     | (c) =                                     | (d) ≤                                    |  |
| 1 2 | In Δ ABC, if m (                                                                                                  | $\angle B) > m (\angle C)$                | then                                      |                                          |  |
|     | (a) AB < AC                                                                                                       | (b) $AB = AC$                             | (c) $AB > AC$                             | (d) $\overline{AB} \equiv \overline{AC}$ |  |

| (a) AB<br>Δ XYZ is right-angle<br>(a) =                                                                                | (b) BC<br>ed at Y, then XZ<br>(b) ><br>+ m (∠ C) = 3 m<br>(b) 60 | ngle at B, then the lo (c) AC      | (d) AD (d) < |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------|--------------|--|--|--|--|
| $\Delta$ XYZ is right-angle<br>(a) =  In $\Delta$ ABC : m ( $\angle$ B)  (a) 30  Essay problem                         | ed at Y, then XZ  (b) >  + m ( $\angle$ C) = 3 m  (b) 60         | YZ (c) ≤ (∠ A), then m (∠ A        | (d) <        |  |  |  |  |
| (a) = In ∆ ABC : m (∠ B) (a) 30 Essay problem                                                                          | (b) ><br>+ m (∠ C) = 3 m<br>(b) 60                               | (c) ≤ (∠ A), then m (∠ A           | 10.00        |  |  |  |  |
| In $\triangle$ ABC : m ( $\angle$ B) (a) 30  Essay problem                                                             | $+ m (\angle C) = 3 m$<br>(b) 60                                 | $(\angle A)$ , then m $(\angle A)$ | 10.00        |  |  |  |  |
| (a) 30<br>Essay problem                                                                                                | (b) 60                                                           |                                    | ) =°         |  |  |  |  |
| Essay problem                                                                                                          |                                                                  | (c) 45                             | ,            |  |  |  |  |
|                                                                                                                        |                                                                  |                                    | (d) 90       |  |  |  |  |
| In the opposite fi                                                                                                     | 12.                                                              |                                    |              |  |  |  |  |
|                                                                                                                        | gure :                                                           |                                    | A            |  |  |  |  |
| ABC is a triangle, D                                                                                                   | ABC is a triangle, $D \in \overrightarrow{CB}$ ,                 |                                    |              |  |  |  |  |
| $E \subseteq \overline{AC} : m(\langle ABD \rangle = 110^{\circ})$                                                     |                                                                  |                                    |              |  |  |  |  |
| and m ( $\angle$ BCE) = 120° $E \angle AC \text{ in } (\angle ABD) = 110$ $E \angle AC \text{ in } (\angle ABD) = 110$ |                                                                  |                                    |              |  |  |  |  |
| Prove that : AB > BC                                                                                                   |                                                                  |                                    |              |  |  |  |  |
| •••••                                                                                                                  |                                                                  |                                    |              |  |  |  |  |
| •••••                                                                                                                  |                                                                  |                                    |              |  |  |  |  |
|                                                                                                                        |                                                                  | •••••                              |              |  |  |  |  |
| •••••                                                                                                                  |                                                                  |                                    |              |  |  |  |  |
| •••••                                                                                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                          | •••••                              |              |  |  |  |  |
|                                                                                                                        | •••••                                                            | •••••                              |              |  |  |  |  |
| •••••                                                                                                                  |                                                                  | •••••                              |              |  |  |  |  |
| •••••                                                                                                                  | •                                                                | •••••                              |              |  |  |  |  |
| •••••                                                                                                                  |                                                                  | •••••                              |              |  |  |  |  |
| •••••                                                                                                                  | •••••                                                            | ••••••                             |              |  |  |  |  |
| •••••                                                                                                                  | ••••••                                                           | •••••                              |              |  |  |  |  |
| •••••                                                                                                                  | •••••                                                            |                                    | •••••        |  |  |  |  |
|                                                                                                                        |                                                                  |                                    |              |  |  |  |  |
|                                                                                                                        |                                                                  |                                    |              |  |  |  |  |
|                                                                                                                        |                                                                  |                                    |              |  |  |  |  |

| 2 | In the opposite figure :                                                                                                                                                         | D       |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   | $AB = AC \cdot m (\angle ABC) = 65^{\circ}$                                                                                                                                      |         |
|   | , m ( $\angle$ ACD) = 20°, A $\in$ $\overline{BD}$ *                                                                                                                             | A       |
|   | In the opposite figure : $AB = AC , m (\angle ABC) = 65^{\circ}$ $, m (\angle ACD) = 20^{\circ} , A \in \overline{BD}^{\bullet}$ Prove that : $AB > AD$ In the opposite figure : | 20° 65° |
|   |                                                                                                                                                                                  |         |
|   |                                                                                                                                                                                  | •••••   |
|   |                                                                                                                                                                                  | ••••••  |
|   |                                                                                                                                                                                  |         |
|   |                                                                                                                                                                                  |         |
|   |                                                                                                                                                                                  | ••••••  |
| 3 | In the opposite figure :                                                                                                                                                         | A       |
|   | ABC is a triangle, $\overrightarrow{CD}$ bisects $\angle C$ and intersects $\overrightarrow{AB}$ at point D                                                                      |         |
|   | , m ( $\angle$ BDC) = 100° and DB = DC                                                                                                                                           | D 100   |
|   | Prove that:                                                                                                                                                                      | **      |
|   | AC > DB                                                                                                                                                                          | C       |
|   |                                                                                                                                                                                  | ••••••  |
|   |                                                                                                                                                                                  |         |
|   | In the opposite figure:  ABC is a triangle → CD bisects ∠ C and intersects AB at point D  → m (∠ BDC) = 100° and DB = DC  Prove that:  AC > DB                                   |         |
|   |                                                                                                                                                                                  | •••••   |
|   |                                                                                                                                                                                  |         |
|   |                                                                                                                                                                                  |         |

| In the opposite figure :                                                                                                                                                                | D       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $\overrightarrow{AD}$ // $\overrightarrow{BC}$ , m ( $\angle$ BAC) = 80° and m ( $\angle$ DAC) = 30°                                                                                    | 30 8    |
| Prove that:                                                                                                                                                                             |         |
| BC > AB                                                                                                                                                                                 | c ·     |
|                                                                                                                                                                                         |         |
|                                                                                                                                                                                         | ••••••  |
| •••••                                                                                                                                                                                   | •••••   |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | •••••   |
| ••••••                                                                                                                                                                                  | •••••   |
|                                                                                                                                                                                         | ••••••  |
|                                                                                                                                                                                         | ••••    |
|                                                                                                                                                                                         | ••••    |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | •••••   |
| ••••••                                                                                                                                                                                  | •••••   |
| In the opposite figure:  AD // BC , m (∠ BAC) = 80° and m (∠ DAC) = 30°  Prove that:  BC > AB  In the opposite figure:  ABC is a triangle and D ∈ BC where BD = AD  Prove that: BC > AC | Ĵ       |
| Prove that : BC > AC                                                                                                                                                                    |         |
|                                                                                                                                                                                         | C D     |
|                                                                                                                                                                                         |         |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | ••••••  |
| •••••••••••••••••••••••••••••••••••••••                                                                                                                                                 | •••••   |
|                                                                                                                                                                                         |         |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | •••••   |
|                                                                                                                                                                                         | •••••   |
| ••••••                                                                                                                                                                                  | •••••   |
|                                                                                                                                                                                         |         |
| ABC is a triangle and D∈BC where BD = AD  Prove that: BC > AC                                                                                                                           | ••••••• |
|                                                                                                                                                                                         |         |

|          |       |                         |                |          | uuuu        |
|----------|-------|-------------------------|----------------|----------|-------------|
| dd dd da | 14444 | d <i>d</i> d <i>d</i> d | المل المل الما | dd dd dd | dd dd dd dd |
|          | ,     |                         |                |          |             |

Mathematics 2<sup>nd</sup> Prep 1<sup>st</sup> term

# In the opposite figure:

A is the midpoint of  $\overline{BD}$ 

$$m (\angle ABC) = 70^{\circ}$$

$$m (\angle ACB) = 50^{\circ}$$

# Prove that:

$$m (\angle D) > m (\angle DCA)$$





# [23] **1a**a

In any triangle, the sum of the lengths of any two sides is greater than the length of the

, we get: 
$$AB + BC > AC$$

$$,BC+CA>AB$$

$$, CA + AB > CB$$



The length of any side in a triangle is greater than the difference between the lengths of the

And you can prove that from the triangle inequality as follows:

$$AC + AB > BC$$

$$, :: AB + BC > AC$$

i.e. 
$$BC > AC - AB$$
 (2)

From (1) and (2), we deduce that: AC - AB < BC < AC + AB

$$AC - AB < BC < AC + AB$$



To check the possibility that three lengths can be side lengths of a triangle, do as follows:

Compare the greatest length with the sum of the other two lengths:

- Generally

  In any triangle, the sum of the lengths third side.

  i.e. In any triangle such as Δ ABC, we get: AB + BC > AC, BC + CA > AB, CA + AB > CB

  Corollary

  The length of any side in a triangle is gother two sides and less than their sum.

  And you can prove that from the triangle In any triangle ABC:

  AC + AB > BC

  , ∴ AB + BC > AC

  From (1) and (2), we deduce that: At Remark

  To check the possibility that three length Compare the greatest length with the sum.

  If the greatest length is greater than or deduce that the three given lengths compared to the could be drawn with the sum three given lengths compared to the could be lengths of the greatest length is less than the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given lengths could be drawn with the sum three given • If the greatest length is greater than or equal to the sum of the other two lengths , you deduce that the three given lengths couldn't be lengths of the three sides of a triangle. (i.e. no triangle could be drawn with these side lengths).
  - If the greatest length is less than the sum of the other two lengths, you deduce that the three given lengths could be lengths of the three sides of a triangle.

(i.e. a triangle could be drawn with these side lengths).



- lengths of the third side is ..... cm.
- The length of two sides in the isosceles triangle are 3 cm. and 8 cm., then the length of third side equals ......cm.
- The triangle whose side lengths are  $(2 \times -1)$  cm., (x + 3) cm., and 7 cm. becomes an equilateral triangle when  $x = \cdots cm$ .

| 1 | The sum of lengt                                                    | hs of any two sides in                           | any triangle th         | ne length of the third sid |  |
|---|---------------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------------|--|
|   | (a) is less than                                                    | (b) is greater t                                 | than (c) equals         | (d) otherwise              |  |
| 2 |                                                                     | wo sides in an isosceled side iscm.              |                         | and 5 cm., then the        |  |
|   | (a) 2                                                               | (b) 3                                            | (c) 5                   | (d) 7                      |  |
| 3 | $\Delta$ ABC , AB = 2                                               | cm., $BC = 7$ cm., th                            | nen AC may equal        | 1001                       |  |
|   | (a) 2 cm.                                                           | (b) 5 cm.                                        | (c) 9 cm.               | (d) 8 cm.                  |  |
| 4 | The numbers 6 >                                                     | 3, can be leng                                   | ths of sides of an iso  | sceles triangle.           |  |
|   | (a) 3                                                               | (b) 6                                            | (c) 9                   | (d) 11                     |  |
| 5 | If the lengths of the length of third si                            | two sides in the isosce                          | eles triangle are 3 cm  | .,7 cm., then the          |  |
|   | (a) 3 cm.                                                           | (b) 7 cm.                                        | (c) 10 cm.              | (d) 4 cm.                  |  |
| 6 | If 3 cm., 7 cm. a side is                                           | re two side lengths in a                         | a triangle, then the sn | nallest number of third    |  |
|   | (a) 3 cm.                                                           | (b) 4 cm.                                        | (c) 5 cm.               | (d) 6 cm.                  |  |
| 7 | The numbers 5, 4 and can be lengths of sides of a triangle.         |                                                  |                         |                            |  |
|   | (a) 8                                                               | (b) 9                                            | (c) 10                  | (d) 12                     |  |
| 8 | The numbers 4, 8, can be lengths of sides of an isosceles triangle. |                                                  |                         |                            |  |
|   | (a) 4                                                               | (b) 8                                            | (c) 12                  | (d) 3                      |  |
| 9 |                                                                     | wo sides in a triangle<br>the length of third si |                         | and it has on axis of      |  |
|   | (a) 4 cm.                                                           | (b) 5 cm.                                        | (c) 9 cm.               | (d) 13 cm.                 |  |
| 0 | The lengths of 5                                                    | cm. , 6 cm. and                                  | can be length of the    | sides of a triangle.       |  |
|   | (a) 15 cm.                                                          | (b) 13 cm.                                       | (c) 11 cm.              | (d) 8 cm.                  |  |
| 1 | The numbers 5,                                                      | 7 , can be l                                     | engths of sides of tria | angle.                     |  |
| • | (a) 12                                                              | (b) 3                                            | (c) 2                   | (d) 13                     |  |

|       | (a) 10                                                                                                                     | (b) 8                              | ides of an isosceles tria<br>(c) 6 | (d) 4           |  |
|-------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-----------------|--|
| 13    | In Δ ABC if : AB (a) ]3 ,8]                                                                                                |                                    | 5 cm., then AC ∈<br>(c) ]2,8 [     | <br>(d) ]2 ,5 [ |  |
| 14    | In the triangle AF (a) =                                                                                                   | $BC$ , if $BC = 9$ cm., (b) $\geq$ | AB = 7 cm., then m ( $\angle$      | (d) <           |  |
| 15    | Which of the foll                                                                                                          | owing can be sides t               | o draw the triangle ·····          | 9999            |  |
|       | (a) 5 cm. , 6 cm.                                                                                                          |                                    | (b) 5 cm. , 6 c                    |                 |  |
|       | (c) 5 cm. , 6 cm.                                                                                                          | , 4 cm.                            | (d) 4 cm. , 6 c                    |                 |  |
| 6     | ) Which of the foll                                                                                                        | owing numbers can b                | e the lengths of sides of          | a triangle?     |  |
|       | (a) 4, 6, 10                                                                                                               | (b) 4,6,8                          | (c) 2, 3, 6                        | (d) 4,5,10      |  |
| 7     | The lengths whi                                                                                                            | ch can be the lengt                | ths of the sides of a tr           | iangle are      |  |
|       | (a) 3, 4, 7                                                                                                                | (b) $3, 3, 6$                      | (c) 3,5,7                          | (d) 1,5,7       |  |
| 8     | Which of the following set of numbers can be lengths of sides of a triangle                                                |                                    |                                    |                 |  |
|       | (a) 2, 3, 6 (                                                                                                              | b) 2, 3, 5                         | (c) 2, 3, 4 (d                     | 2,3,7           |  |
| 19    | If the length of one side of a triangle is 5 cm., then which of the following could be the lengths of the other two sides? |                                    |                                    |                 |  |
|       | (a) 2 cm. and 3 c                                                                                                          | m.                                 | (b) 7 cm. and                      | 12 cm.          |  |
|       |                                                                                                                            | m.                                 | (d) 4 cm. and                      | 16 cm.          |  |
|       | (c) 2 cm. and 2 c                                                                                                          |                                    |                                    |                 |  |
| 20    |                                                                                                                            | owing numbers canno                | ot be the lengths of side          | s of a triangle |  |
| 20    |                                                                                                                            | owing numbers cannot               |                                    | (d) 3, 4, 5     |  |
| 20    | Which of the follo                                                                                                         |                                    | (c) 3, 6, 12                       |                 |  |
| 20    | Which of the follo                                                                                                         | (b) 9, 9, 9                        | (c) 3, 6, 12                       |                 |  |
| 20 21 | Which of the follo<br>(a) 7, 7, 5<br>In any triangle Al<br>(a) >                                                           | (b) 9 , 9 , 9<br>BC : AB BC -      | (c) 3, 6, 12<br>AC<br>(c) =        | (d) 3, 4, 5     |  |

| In any triangle | ABC , AB + BC AC                                  |                                  |
|-----------------|---------------------------------------------------|----------------------------------|
| (a) =           | (b) < (c)                                         | )> (d)≤                          |
| Essay prob      |                                                   | A                                |
|                 |                                                   | Â                                |
| Prove that:     | e in which M is a point inside it.                |                                  |
|                 | (> 1 the manimum right and a 1                    | ADC M                            |
| MA + MD + MC    | $2 > \frac{1}{2}$ the perimeter of the triangle A | ABC                              |
|                 |                                                   | C                                |
| •••••           |                                                   |                                  |
| •••••           |                                                   |                                  |
| •••••           |                                                   |                                  |
|                 |                                                   |                                  |
| •••••           |                                                   |                                  |
| ••••            |                                                   |                                  |
| •••••           |                                                   |                                  |
| •••••           |                                                   |                                  |
| •••••           |                                                   | •••••••••••••••••                |
| Prove that the  | e length of any side in a triangle is             | less than half of the perimeter. |
|                 |                                                   |                                  |
| •••••           |                                                   |                                  |
| •••••           |                                                   | ••••••                           |
|                 |                                                   |                                  |
| •••••           |                                                   |                                  |
|                 |                                                   |                                  |
| •••••           | )                                                 | •                                |
|                 |                                                   | ••••••                           |

| ı |                                                                                      |
|---|--------------------------------------------------------------------------------------|
|   | Prove that the sum of the lengths of two diagonals in a convex quadrilateral is less |
|   | than its perimeter.                                                                  |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |
|   |                                                                                      |



