

Волатильность и методы её расчёта

Бузанов Никита Moscow State University 8 мая 2023 г.

Оглавление

- 1 Историческая волатильность (Historical Volatility)
 - EWMA (Exponentially Weighted Moving Average)
- 2 Неявная или подразумеваемая волатильность (Implied Volatility)
 - Модель Блэка-Шоулза
- 3 Расчёт неявной волатильности
- 4 References

Бузанов Никита 2/18

Историческая волатильность (Historical Volatility)

Бузанов Никита 3/18

Историческая волатильность (Historical Volatility)

Доходность:

$$u_i = \ln\left(\frac{P_i}{P_{i-1}}\right)$$

где P_i - цена закрытия актива в день i.

Средняя ежедневная доходность за период n дней может быть рассчитанна как сумма доходностей, деленная на количество дней:

$$\overline{u} = \frac{1}{n} \sum_{i=1}^{n} u_i$$

Таким образом, историческая волатильность закрытия-к-закрытию (Historical Close-to-Close Volatility), рассчитанная на основе n дней, оценивается как:

$$HV = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (u_i - \overline{u})^2}$$

Историческая волатильность по Паркинсону (Historical High-Low Volatility)

$$HL_{-}HV = \sqrt{\frac{1}{4nln2} \sum_{i=1}^{n} \left(ln \frac{H_{i}}{L_{i}} \right)^{2}}$$

где H_i и L_i - максимальное и минимальное значение цены в течении i-го дня соответственно.

Историческая волатильность по Роджурсу-Сатчеллу (Historical Open-High-Low-Close Volatility)

$$HL_{-}HV = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \left[ln \frac{H_{i}}{O_{i}} ln \frac{H_{i}}{C_{i}} + ln \frac{L_{i}}{O_{i}} ln \frac{L_{i}}{C_{i}} \right]}$$

где O_i - цена открытия в день i, а C_{i-1} - цена закрытия в день i-1.

EWMA (Exponentially Weighted Moving Average) или Экспоненциально взвешенная скользящая средняя

▶ Шаг 1: Ежедневная логарифмическая доходность:

$$u_i = ln(\frac{P_i}{P_{i-1}})$$

► IIIar 2:

$$\sigma^{2} = \frac{1}{m-1} \sum_{i=1}^{m} u_{n-i}^{2} \Rightarrow \sigma^{2} = \frac{1}{m-1} \sum_{i=1}^{m} \lambda_{i} u_{n-i}^{2}$$

▶ Шаг 3:

$$\sum_{i=1}^{m} \lambda_i = 1 \quad \lambda_i > 0 \quad \forall i \in \{1, ..., m\}.$$

Фиксируем λ - коэффициент затухания (0< λ <1). Положим $\lambda_1=1-\lambda,$ $\lambda_{i+1}=\lambda\lambda_i$, для $i\geq 2$

/_	Α		В	С		D	Е	F
1	Day	-	Stock Pric 🔻	Period returns 🔻	Return ²	~	w	R ² ∗w ▼
2		1	29.66					
3		2	30.14	1.6054%		0.0258%	6%	0.00155%
4		3	29.85	-0.9668%		0.0093%	5.64%	0.00053%
5		4	30.10	0.8340%		0.0070%	5.30%	0.00037%
6		5	30.95	2.7848%		0.0776%	4.98%	0.00386%
7		6	31.72	2.4574%		0.0604%	4.68%	0.00283%
8		7	31.30	-1.3329%		0.0178%	4.40%	0.00078%
9		8	30.59	-2.2945%		0.0526%	4.14%	0.00218%
10		9	29.06	-5.1311%		0.2633%	3.89%	0.01024%
11		10	29.42	1.2312%		0.0152%	3.66%	0.00055%
12		11	28.76	-2.2689%		0.0515%	3.44%	0.00177%
13		12	27.77	-3.5029%		0.1227%	3.23%	0.00397%
14		13	28.00	0.8248%		0.0068%	3.04%	0.00021%
15		14	26.62	-5.0542%		0.2554%	2.86%	0.00729%
16		15	25.91	-2.7034%		0.0731%	2.68%	0.00196%
17		16	26.05	0.5389%		0.0029%	2.52%	0.00007%
18		17	26.51	1.7504%		0.0306%	2.37%	0.00073%
19		18	26.93	1.5719%		0.0247%	2.23%	0.00055%
20		19	26.26	-2.5194%		0.0635%	2.10%	0.00133%
21		20	27.36	4.1035%		0.1684%	1.97%	0.00332%
22		21	27.41	0.1826%		0.0003%	1.85%	0.00001%
23								
24				λ	94%		EWMA	0.04410%

EWMA (Exponentially Weighted Moving Average) или Экспоненциально взвешенная скользящая средняя

▶ Шаг 4: Наконец, историческая волатильность может быть вычислена как квадратный корень из среднего значения квадрата доходности:

$$HV = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} \lambda_i u_{n-i}^2}$$

В нашем примере:

$$HV = \sqrt{\frac{1}{20} \cdot 0.04410} \approx 0.047\%$$

Неявная или подразумеваемая волатильность (Implied Volatility)

Бузанов Никита 9 /

Опцион

Опцион - это право держателя купить или продать определённый актив по заранее оговорённой цене в определённый промежуток времени.

- ► Call опцион право купить
- ► Put опцион право продать

Срок действия опциона ограничен датой эксперации.

Цена исполнения (strike) - установленная цена, по которой покупатель опциона может купить или продать актив.

Модель Блэка-Шоулза

Текущая справедливая цена $c=c(\sigma)$ европейского опциона call:

$$c = P_0 N(d_+) - X e^{-rT} N(d_-)$$

 P_0 - текущая цена актива, X - цена исполнения (strike), T - время экспирации, r - безрисковая процентная ставка.

 $N(\cdot)$ - стандартная нормальная функция распределения.

$$d_{+}(\sigma) = \frac{\ln\left(\frac{P(t)}{X}\right) + \left(r + \frac{\sigma^{2}}{2}\right)T}{\sigma\sqrt{T}} \quad d_{-}(\sigma) = \frac{\ln\left(\frac{P(t)}{X}\right) + \left(r - \frac{\sigma^{2}}{2}\right)T}{\sigma\sqrt{T}}$$

Неявная волатильность

Неявной или **подразумеваемой волатильностью** σ_{impied} принято называть такое значение волатьности исходных активов (то есть значение коэффициента σ), при котором теоритически справедоивая цена $c=c(\sigma)$ европейского опциона call (вычисленной по формуле Блэка-Шоулза) совпадает с его рыночной ценой c_m .

Другими словами, $\sigma_{implied}$ - решение уравнения:

$$c_m = c \Rightarrow$$

$$c_m = P_0 N(d_+(\sigma)) - X e^{-rT} N(d_-(\sigma))$$

Расчёт неявной волатильности

Бузанов Никита 13 / 18

Метод Ньютона нахождения корня уравнения

$$f(x) = 0$$
 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

Рассмотрим уравнение:

$$c(\sigma) - c_m = 0$$

$$\sigma_{n+1} = \sigma_n - \frac{c(\sigma_n) - c_m}{\frac{\partial c}{\partial \sigma}(\sigma_n)} = \sigma_n - \frac{c(\sigma_n) - c_m}{vega(\sigma_n)}$$

$$vega(\sigma) = \frac{\partial c}{\partial \sigma} = \left(P_0 N(d_-) - X e^{-rT} N(d_2) \right)_{\sigma}' =$$

$$= P_0 \cdot \frac{e^{-\frac{d_+^2}{2}}}{\sqrt{2}} \left(-\frac{1}{\sigma} \right) d_- - X e^{-r}$$

$$\begin{split} & = \left(P_0 N(d_-) - X e^{-rT} N(d_2) \right)_{\sigma}' = \\ & = P_0 \cdot \frac{e^{-\frac{d_+^2}{2}}}{\sqrt{2\pi}} \left(-\frac{1}{\sigma} \right) d_- - X e^{-rT} \cdot \frac{e^{-\frac{d_-^2}{2}}}{\sqrt{2\pi}} \left(-\frac{1}{\sigma} \right) d_+ = \\ & = \frac{1}{\sqrt{2\pi}} e^{-\frac{d_+^2}{2}} \left[-\frac{P_0 d_-}{\sigma} + \frac{X e^{-rT} d_+}{\sigma} e^{\frac{d_+^2}{2} - \frac{d_-^2}{2}} \right] = \\ & = N'(d_+) \left[-\frac{P_0 d}{\sigma} + \frac{X e r T d_+}{\sigma} e^{\frac{1}{2} (d_+ - d_-)(d_+ + d_-)} \right] = \\ & = N'(d_+) \left[-\frac{P_0 d}{\sigma} + \frac{X e r T d_+}{\sigma} e^{\frac{1}{2} \sigma \sqrt{T} \frac{2 l n \frac{P_0}{N} + 2 r T}{\sigma \sqrt{T}}} \right] = \\ & = N'(d_+) \left[-\frac{P_0 d}{\sigma} + \frac{P_0 d_+}{\sigma} \right] = P_0 N'(d_+) \sqrt{T} \end{split}$$

Пример

$$P = 100$$

 $X = 105$
 $r = 0.01$
 $T = 30.0/365$
 $c_m = 2.30$
 $\sigma_0 = 0.5$

 $\sigma_{implied} = 0.3688563$

```
from scipy.stats import norm
from math import sort, exp. log. pi
def d(sigma, P, X, r, t):
    d1 = 1 / (sigma * sgrt(t)) * (log(P/X) + (r + sigma**2/2) * t)
    d2 = d1 - sigma * sgrt(t)
    return d1, d2
def call price(sigma, P, X, r, t, d1, d2):
    C = norm.cdf(d1) * P - norm.cdf(d2) * X * exp(-r * t)
    return C
P = 100.0
X = 105.0
r = 0.01
t = 30.0/365
C0 = 2.30
```

```
vol = 0.5
epsilon = 1.0 # Define variable to check stopping conditions
abstol = 1e-4 # Stop calculation when abs(epsilon) < this number
i = 0 # Variable to count number of iterations
max iter = 1e3 # Max number of iterations before aborting
while epsilon > abstol:
if i > max iter:
i = i + 1
oria = vol
d1, d2 = d(vol, P, X, r, t)
function \ value = call \ price(vol, P, X, r, t, d1, d2) - C0
vega = P * norm.pdf(d1) * sqrt(t)
vol = -function value/vega + vol
epsilon = abs(function value)
print ("Implied volatility = ", vol)
print ("Code required", "iterations.")
```


References

Бузанов Никита 17/18

References

- книга "Вероятностно-статистические методы декомпозиции волатильности хаотических процессов" В.Ю.Королёва
- ▶ Историческая волатильность
- ▶ Определения доходности
- ► EWMA
- ► Exploring the Exponentially Weighted Moving Average
- ▶ Some Advanced Methods for Volatility estimation
- ▶ Derive vega for Black-Scholes
- ▶ Метол Ньютона
- ▶ Код для расчёта неявной волатильности

18 / 18Бузанов Никита References