Problemstellung

- Gleichungssystem mit p + q Variablen und p Gleichungen
 - nach q Variablen auflösen

- · Vorgehensweise:
 - alle "ungwollten" Variablen auf linke Seite
 - Koeffizientenmatrix aufstellen
 - * invertierbar <==> auflösbar nach "gewollten" Variablen

Hauptsatz über implizite Funktionen

- f: $M \subset \mathbb{R}^{p+q} \rightarrow \mathbb{R}^p$
 - Moffen
 - GLS mit p+q Variablen und p Gleichungen
 - $-\ M(\zeta): f_i(x_1,...,x_p,y_{p+1},y_{p+q}) = 0$
- auflösbar, wenn folgende Bedingungen erfüllt sind
 - $f_i(\zeta)=0$ für i = 1 bis p
 - Koordinatenfunktion \boldsymbol{f}_i mindestens einmal stetig differenzierbar
 - # für i = 1 bis p
 - Ableitungsmatrix (nicht Jacobi)
 - * $det(\frac{\partial(f_1,...,f_p)}{\partial(x_1,...,x_p)}) \neq 0$
- kann auch ohne Bedingungen auflösbar sein

[[Extremwertaufgaben mit Nebenbedingungen]][[Funktionen ^p auf ^q]]