Task №2

Щербаков Алексей Б01-908

24 September 2019

1

Верно ли, что для любых множеств A и B выполняется равенство $(A \backslash B) \cap ((A \cup B) \backslash (A \cap B)) = A \backslash B$

$$(A \backslash B) \cap ((A \cup B) \backslash (A \cap B)) = (A \backslash B) \cap (A \triangle B) = (A \backslash B)$$
 - верно

2

Верно ли, что для любых множеств A,B и C выполняется равенство $((A\backslash B)\cup (A\backslash C))\cap (A\backslash (B\cap C))=A\backslash (B\cup C)$

 $((A\backslash B)\cup (A\backslash C))\cap (A\backslash (B\cap C))=(A\backslash (A\cap B\cap C)\cap (A\backslash (B\cap C))=(A\backslash (A\cap B\cap C)),$ что очевидно не равно $A\backslash (B\cup C)$

Например, если $x \in (A \cap B \backslash C)$, то х принадлежит левой части и не принадлежит правой

3

Верно ли, что для любых множеств A,B и C выполняется равенство $(A\cap B)\backslash C=(A\backslash C)\cap (B\backslash C)$

В левой части находятся все элементы множеств A и B, не входящие в C;

В правой части находятся все элементы A, не входящие в C, и элементы B, не входящие в C.

Очевидно, что правая и левая части равны.

Ответ: Верно

4

Верно ли, что для любых множеств A и B выполняется включение $(A \cup B) \backslash (A \backslash B) \subseteq B$

Во множестве $(A \backslash B)$ находятся все элементы, не входящие в B. Соответственно в $(A \cup B) \backslash (A \backslash B)$ находятся все элементы, не входящие в A. Следовательно все элементы $(A \cup B) \backslash (A \backslash B)$ входят в B.

5

Пусть P=[10;40]; Q=[20;30]; известно, что отрезок A удовлетворяет соотношению $((x\in A)\to (x\in P))\land ((x\in Q)\to (x\in A))$

$$\begin{cases} ((\mathbf{x} \notin A) \lor (x \in P)) = 1\\ ((\mathbf{x} \notin Q) \lor (x \in A)) = 1 \end{cases}$$

Если x лежит в A, то он лежит в P, если x лежит в Q, то он лежит в A // Отрезок A целиком лежит в P

- 1. Максимальный отрезок A = P. Ответ: 30
- 2. Минимальный отрезок A = Q. Ответ: 10

6

Пусть множества A, B, X, Y известно, что $A \cap X = B \cap X, A \cup Y = B \cup Y$. Верно ли, что $A \cup (Y \setminus X) = B \cup (Y \setminus X)$?

$$A \cup (Y \backslash X) = A \cup (Y \cap \bar{X}) = (A \cup Y) \cap (A \cup \bar{X})$$

Докажем, что $(A \cup \bar{X}) = (B \cup \bar{X}).$

Путь $\alpha \notin X$, тогда верно.

Пусть $\alpha\in X$: Если $\alpha\in (A\cap X)$, то верно по уловию, если $\alpha\notin (A\cap X)$, то из условия следует, что $\alpha\notin (B\cap X)$ Т.к. $A\cap X=B\cap X$. Значит $(A\cup \bar X)=(B\cup \bar X)$

$$(A\cup \bar{X})=(B\cup \bar{X})=(A\cup B\cup Y)$$
 $(A\cup Y)=(B\cup Y)$ по условию Следовательно $(A\cup Y)\cap (A\cup \bar{X})=(B\cup Y)\cap (B\cup \bar{X})$ Следовательно $A\cup (Y\backslash X)=B\cup (Y\backslash X)$ верно. Ответ: Верно.

7

Пусть $A_1\supseteq A_2\supseteq A_3...\supseteq A_n$. Известно, что $A_1\backslash A_4=A_6\backslash A_9$ Доказать, что $A_2\backslash A_7=A_3\backslash A_8$ Пусть $A_1\backslash A_2=a_1,A_2\backslash A_3=a_2$ и тд.

```
Доказать: a_2+a_3+a_4+a_5+a_6=a_3+a_4+a_5+a_6+a_7 Доказать: a_2=a_7 a_1\cup a_2\cup a_3=a_6\cup a_7\cup a_8 Так как последовательность невозрастающая, следовательно a_1=a_2=a_3=a_6=a_7=a_8=\emptyset чтд.
```

8

Пусть A,B,C,D - такие отрезки прямой, что $A \triangle B = C \triangle D$ (симметриеские разности равны). Верно ли, что выполняется включение $A \cap B \subseteq C$

Не верно:

Пример: A = [0; 10], B = [0; 20], C = [10; 30], D = [20; 30]

 $A \triangle B = C \triangle D = [10; 20]$ Ho $A \cap B = [0; 10][10; 30]$

Ответ: не верно