Assignment 1

CMPT 215 **Due**: July 13^{th} , 2017

Total: 50 marks

Problem 1.

(8 marks) Define and write the equations for the following metrics in terms of instruction count (I), number of clock cycles (C) and clock cycle time (T).

- i Frequency
- ii CPI
- iii MIPS
- iv CPU execution time

Computer System Metrics			
Instruction type	CPI	Frequency	Clock
			$ \operatorname{cycle}(ns) $
A	1	20%	0.5
В	2	40%	0.5
С	3	30%	0.5
D	4	10%	0.5

Problem 2.

(6 marks) Calculate the following performance metrics using the given values in the table above and showing all **steps and units**.

- i CPI
- ii MIPS
- iii CPU execution time for 500 instructions

Problem 3.

(4 marks) Suppose it is possible to third (1/3) the number of type C instructions in the table above, what will be the new CPI value?

Problem 4.

(4 marks) Describe and write the equation for Ambdals law.

Problem 5.

(10 marks) Convert the following integers into binary and hexadecimal.

- i 27
- ii 400
- iii 88
- iv 10
- v 99

Problem 6.

(5 marks) Convert the following binary to their integer values.

- i 1001
- ii 101110
- iii 111001
- iv 01100011
- v 01110010

Problem 7.

(3 marks) What is the difference between 1's compliment and 2's compliment? When are they used and what applications are they used in?

Problem 8.

(10 marks) Convert the following to 8-bit 1's compliment and 2'compliment.

- i 20
- ii 0
- iii -100
- iv 127
- v 127

Bonus:

Problem 9.

(3 marks) Name the top three fastest machines in the world and mention which benchmark was used to test their performance.