

Self-Practice No. : 2

Topics Covered : Basic Math, Control Flow, Arrays, Functions, Bit

Manipulation

Date : 09-05-2024

Solve the following problems

Q No.	Question Detail	Level
1	Count ways to reach the n'th stair	Medium
	Problem Statement: There are n stairs, a person standing	
	at the bottom wants to reach the top. The person can climb	
	either 1 stair or 2 stairs at a time. Count the number of ways,	
	the person can reach the top (order does matter).	
	Example 1:	
	Input:	
	n = 4	
	Output: 5	
	Explanation:	
	You can reach 4th stair in 5 ways.	
	Way 1: Climb 2 stairs at a time.	
	Way 2: Climb 1 stair at a time.	
	Way 3: Climb 2 stairs, then 1 stair	
	and then 1 stair.	
	Way 4: Climb 1 stair, then 2 stairs	
	then 1 stair.	
	Way 5: Climb 1 stair, then 1 stair and	
	then 2 stairs.	
	Example 2:	
	Input:	
	n = 10	
	Output: 89	
	Explanation:	

	There are 89 ways to reach the 10th stair.	
	Constraints:	
	1 ≤ n ≤ 10^4	
2	Largest prime factor	Medium
	Problem statement : Given a number N, the task is to find	
	the largest prime factor of that number.	
	Example 1:	
	Input:	
	N = 5	
	Output:	
	5	
	Explanation:	
	5 has 1 prime factor i.e 5 only.	
	Example 2:	
	Input:	
	N = 24	
	Output:	
	3	
	Explanation:	
	24 has 2 prime factors 2 and 3 in which 3 is greater.	
	Constraints:	
	2 <= N <= 10^9	
3	Mirror Upper triangle star pattern	Medium
	Problem Statement: You are tasked with creating a Java	
	program to print a mirror upper star triangle pattern. Given an	
	integer N, the program should print a pattern with N rows	
	where each row contains a mirrored upper triangle of stars.	
	Sample input 1:	
	N=7	
	Sample output 1:	

	*	
	* *	
	* * *	
	* * * *	
	* * * *	
	* * * * *	

	* * * *	
	* * *	
	**	
	*	
	Constraints:	
	1 <= N <= 10	
4	Occurrences of chican digit	Madiona
4	Occurrences of given digit	Medium
	Problem statement: Rohan needs to find the number of	
	6 11 11 1 1 -1 1 1 1	
	occurrence of a digit in a given number .The input may lie	
	within the range of integer. If the digit does not occur in the	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits.	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1:	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1:	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457.	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457. Sample Input 2:	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457.	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457. Sample Input 2:	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457. Sample Input 2: 9876543	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457. Sample Input 2: 9876543 D=0	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457. Sample Input 2: 9876543 D=0 Sample Output 2:	
	within the range of integer. If the digit does not occur in the input it should print 0 else the count of digits. Sample Input 1: 1223457 D= 2 Sample Output 1: The digit 2 occurs 2 times in the number 1223457. Sample Input 2: 9876543 D=0 Sample Output 2:	

	1 <= N <=10^6	
	0<=D<=9	
	Where D represents the digits	
5	Single Number III	Medium
	Problem Statement: Given an integer array nums, in which	
	exactly two elements appear only once and all the other	
	elements appear exactly twice. Find the two elements that	
	appear only once. You can return the answer in any order. You	
	must write an algorithm that runs in linear runtime	
	complexity and uses only constant extra space.	
	Example 1:	
	Input: nums = [1,2,1,3,2,5]	
	Output: [3,5]	
	Explanation: [5, 3] is also a valid answer.	
	Example 2:	
	Input: nums = [-1,0]	
	Output: [-1,0]	
	Constraints:	
	2 <= nums.length <= 3 * 10^4	
	• -2^31 <= nums[i] <= 2^31 - 1	
	 Each integer in nums will appear twice, only two 	
	integers will appear once.	
6	Find Xor-Beauty of Array	Medium
	Problem Statement: You are given a 0-indexed integer	
	array nums. The effective value of three indices i, j, and k is	
	defined as ((nums[i] nums[j]) & nums[k]).The xor-beauty	
	of the array is the XORing of the effective values of all the	
	possible triplets of indices (i, j, k) where $0 \le i$, j, k <	
	n.Return the xor-beauty of nums.	
	Note that:	
	 val1 val2 is bitwise OR of val1 and val2. 	
	 val1 & val2 is bitwise AND of val1 and val2. 	

Example 1:

Input: nums = [1,4]

Output: 5

Explanation:

The triplets and their corresponding effective values are listed below:

- -(0,0,0) with effective value ((1 | 1) & 1) = 1
- -(0,0,1) with effective value ((1 | 1) & 4) = 0
- -(0,1,0) with effective value ((1 | 4) & 1) = 1
- -(0,1,1) with effective value ((1 | 4) & 4) = 4
- -(1,0,0) with effective value ((4 | 1) & 1) = 1
- (1,0,1) with effective value ((4 | 1) & 4) = 4
- -(1,1,0) with effective value ((4 | 4) & 1) = 0
- (1,1,1) with effective value ((4 | 4) & 4) = 4

Xor-beauty of array will be bitwise XOR of all beauties = $1 ^0 ^1 ^4 ^1 ^4 ^1 ^4 ^0 ^4 = 5$.

Example 2:

Input: nums = [15,45,20,2,34,35,5,44,32,30]

Output: 34

Constraints:

- 1 <= nums.length <= 10^5
- 1 <= nums[i] <= 10^9

7 Number of Steps to Reduce a Number in Binary

Medium

Representation to One
Problem Stateme

Problem Statements: Given the binary representation of an integer as a string s, return the number of steps to reduce it to 1 under the following rules: If the current number is even, you have to divide it by 2. If the current number is odd, you have to add 1 to it. It is guaranteed that you can always reach one for all test cases.

Example 1:

Input: s = "1101"

Output: 6

Explanation: "1101" corresponds to number 13 in their decimal representation.

Step 1) 13 is odd, add 1 and obtain 14.

Step 2) 14 is even, divide by 2 and obtain 7.

Step 3) 7 is odd, add 1 and obtain 8.

Step 4) 8 is even, divide by 2 and obtain 4.

Step 5) 4 is even, divide by 2 and obtain 2.

Step 6) 2 is even, divide by 2 and obtain 1.

Example 2:

Input: s = "10"

Output: 1

Constraints:

- 1 <= s.length <= 500
- s consists of characters '0' or '1'
- s[0] == '1'

8 Minimum Moves to Capture the Queen

Medium

Problem Statement: There is a 1-indexed 8 x 8 chessboard containing 3 pieces.

You are given 6 integers a, b, c, d, e, and f where:

- (a, b) denotes the position of the white rook.
- (c, d) denotes the position of the white bishop.
- (e, f) denotes the position of the black queen.

Given that you can only move the white pieces, return the minimum number of moves required to capture the black queen.

Note that:

- Rooks can move any number of squares either vertically or horizontally, but cannot jump over other pieces.
- Bishops can move any number of squares diagonally, but cannot jump over other pieces.
- A rook or a bishop can capture the queen if it is located in a square that they can move to.
- The queen does not move.

Example 1:

Input: a = 1, b = 1, c = 8, d = 8, e = 2, f = 3

Output: 2

Explanation: We can capture the black queen in two moves by moving the white rook to (1, 3) then to (2, 3).

It is impossible to capture the black queen in less than two moves since it is not being attacked by any of the pieces at the beginning.

Constraints:

- 1 <= a, b, c, d, e, f <= 8
- No two pieces are on the same square.

9 Rectangular numbers

Medium

Problem statement : Print the pattern in such a way that the outer rectangle is of the number 'N' and the number goes on decreasing as we move inside the rectangles.

For **example,** if N' = 4, then pattern will be:

444444

4333334

4322234

4321234

4322234

4 3 3 3 3 3 4

444444

Sample Input 1: 2 2 1 Sample Output 1: 222 212 222 1 **Explanation Of Sample Input 1:** Test case 1: For the first test case of sample output 1, as the number is 2, so the outermost rectangle is of number 2. The moment we get inside the rectangle, we reduce the number by 1 and make another rectangle. Test case 2: For the second test case of sample output 1, as the number is 1, so the outermost rectangle is of number 1. Sample Input 2: 1 Sample Output 2: 444444 4333334 4 3 2 2 2 3 4 4321234 4322234 4333334 444444 **Explanation Of Sample Input 2:** Test case 1: For the first test case of sample output 2, as the number is 4,

so the outermost rectangle is of number 24. The moment we get inside the rectangle, we reduce the number by 1 and make another rectangle. This process goes on till we reach 1.

	SDE Readiness	iraining
	Constraints:	
	1 <= T <= 5	
	1 <= N <= 100	
10	Stickler Thief	Medium
	Problem Statement: Stickler the thief wants to loot money	
	from a society having n houses in a single line. He is a weird	
	person and follows a certain rule when looting the houses.	
	According to the rule, he will never loot two consecutive	
	houses. At the same time, he wants to maximize the amount	
	he loots. The thief knows which house has what amount of	
	money but is unable to come up with an optimal looting	
	strategy. He asks for your help to find the maximum money he	
	can get if he strictly follows the rule. ith house has a[i] amount	
	of money present in it.	
	Example 1:	
	Input:	
	n = 5	
	a[] = {6,5,5,7,4}	
	Output:	
	15	
	Explanation:	
	Maximum amount he can get by looting 1st, 3rd and 5th	
	house. Which is 6+5+4=15.	
	Example 2:	
	Input:	
	n = 3	
	$a[] = \{1,5,3\}$	
	Output:	
	5	
	Explanation:	
	Loot only 2nd house and get maximum amount of 5.	

Constraints:	
1 ≤ n ≤ 10^5	
1 ≤ a[i] ≤ 10^4	

