DS 598 Introduction to RL

Xuezhou Zhang

Chapter 6: Imitation Learning (Continued)

Last time: Behavior Cloning (BC)

- Given a data set of (X, Y) pairs, predict Y as a function of X.
- This is exactly supervised learning: $\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell(\pi, s^*, a^*)$
- Only use offline expert demonstration data.

2/26/24

The Distribution Shift problem in BC

• This is fundamental to offline RL/IL.

How to prevent it?

- Naïve approach: expert demonstrations from all possible starting states.
- Infeasible in practice.

Today: Interactive Imitation Learning

Online Imitation Learning

Agent interacts with the real environment.

• At any time step t, agent at (s_t, a_t) .

• Agent can query $\mathbf{a}_t^{\star} = \pi^{\star}(s_t)$ from the expert.

Dagger (Dataset Aggregation) [Ross2011]

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Stéphane Ross

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213, USA stephaneross@cmu.edu

Geoffrey J. Gordon

Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213, USA ggordon@cs.cmu.edu

J. Andrew Bagnell

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213, USA dbagnell@ri.cmu.edu

Dagger --- Oth iteration

Dagger --- 1st iteration

Dagger --- 2nd iteration

Dagger --- 3rd iteration

Dagger --- nth iteration

Performance of Dagger

How do we quantify the performance of dagger?

• We need some tools from Online Learning/Online Optimization.

A Quick Intro to Online Learning

Learner

convex Decision set Θ

Adversary picks a loss $\mathscr{E}_0:\Theta \to \mathbb{R}$

Learner picks a new decision $heta_1$

Adversary picks a loss $\mathscr{E}_1:\Theta\to\mathbb{R}$

• • •

$$\mathsf{Regret} = \sum_{t=0}^{T-1} \mathscr{E}_t(\theta_t) - \min_{\theta \in \Theta} \sum_{t=0}^{T-1} \mathscr{E}_t(\theta)$$

Adversary

Example: online linear regression

Can we perform linear regression in online fashion with non i.i.d (or even adversary) data?

Every iteration t:

- 1. Learner first picks $\theta_t \in \text{Ball} \subset \mathbb{R}^d$
- 2. Adversary **then** picks $x_t \in \mathcal{X} \subset \mathbb{R}^d, y_t \in [a, b]$
 - 3. Learner suffers loss $\mathcal{C}_t(\theta_t) = (\theta_t^{\mathsf{T}} x_t y_t)^2$

Learner has to make decision θ_t based on history up to t-1, while adversary could pick (x_t, y_t) even after seeing θ_t

Adversary seems too powerful...

Example: online linear regression

BUT, a very intuitive algorithm actually achieves no-regret property:

Every iteration *t* :

1. Learner first picks θ_t that minimizes the aggregated loss

$$\theta_t = \arg\min_{\theta \in \mathsf{Ball}} \sum_{i=0}^{t-1} \left(\theta^\top x_i - y_i \right)^2 + \lambda \|\theta\|_2^2$$

This is called Follow-the-Regularized-Leader (FTRL), and it achieves no-regret property:

$$\sum_{i=0}^{T-1} \mathscr{C}_i(\theta_i) - \min_{\theta \in \mathsf{Ball}} \sum_{i=0}^{T-1} \mathscr{C}_i(\theta) = O\left(1/\sqrt{T}\right)$$

Generally, Follow-the-Regularized-Leader is no-regret

At time step t, learner has seen $\ell_0, \dots \ell_{t-1}$, which new decision she could pick?

FTL:
$$\theta_t = \min_{\theta \in \Theta} \sum_{i=0}^{t-1} \mathscr{E}_i(\theta) + \lambda R(\theta)$$

Theorem (FTL) (optional): if Θ is convex, and \mathscr{C}_t is convex for all t, and $R(\theta)$ is strongly convex, then for regret of FTL, we have:

$$\frac{1}{T} \left[\sum_{t=0}^{T-1} \ell_t(\theta_t) - \min_{\theta \in \Theta} \sum_{t=0}^{T-1} \ell_t(\theta) \right] = O\left(1/\sqrt{T}\right)$$

Any questions about no-regret online learning?

Online learning is a very rich research area — details are out of scope

Key message:

Learner has to make a decision before Adversary picks a loss function, yet it is possible to do as well as the best decision in hindsight if we had access to all the loss functions beforehand

Back to Dagger

Data Aggregation = Follow-the-Regularized-Leader Online Learner

Initialize π^0 , and dataset $\mathcal{D} = \mathcal{D}$ For $t = 0 \to T-1$:

- 1. W/ π^t , generate dataset $\mathcal{D}^t = \{s_i, a_i^{\star}\}, s_i \sim d_{\mu}^{\pi^t}, a_i^{\star} = \pi^{\star}(s_i)$
- 2. Data aggregation: $\mathscr{D}=\mathscr{D}+\mathscr{D}^t$ 3. Update policy via Supervised-Learning: $\pi^{t+1}=\operatorname{SL}\left(\mathscr{D}\right)$

Dagger is essentially doing online learning with the SL objective.

Analysis

Recall the online learning regret guarantee

$$\frac{1}{T} \sum_{t} \ell_t(\pi_t) - \ell_t(\pi^*) \le O(1/\sqrt{T})$$

• This implies, for $T=1/\epsilon^2$, there exists a $t \in [T]$, s.t.

$$\ell_t(\pi_t) - \ell_t(\pi^*) \le \epsilon$$

• Recall $\ell_t(\pi_t) = \mathbb{E}_{s \sim d} \pi_t [1\{\pi_t(s) \neq \pi^*(s)\}]$, so we have

$$\mathbb{E}_{s \sim d^{\pi_t}} \left[\mathbf{1} \{ \pi_t(s) \neq \pi^{\star}(s) \} \right] \leq \epsilon$$

Recall the analysis from last time

Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\widehat{\pi}$:

$$V^{\pi^{\star}} - V^{\widehat{\pi}} \le \frac{2}{(1-\gamma)^2} \epsilon \quad \frac{\epsilon}{1-\gamma} \max_{s,a} |A^{\pi^{\star}}(s,a)|$$

Proof: Performance Difference Lemma: $(1 - \gamma)(f(\pi) - f(\pi')) = \mathbb{E}_{s,a \sim d^{\pi}}[A^{\pi'}(s,a)]$

$$(1 - \gamma) \left(V^{\star} - V^{\hat{\pi}} \right) = -\mathbb{E}_{s \sim d^{\hat{\pi}}} A^{\pi^{\star}}(s, \hat{\pi}(s))$$

$$\leq -\max_{s, a} A^{\pi^{\star}}(s, a) \mathbb{E}_{s \sim d^{\hat{\pi}}} \mathbf{1} \{ \hat{\pi}(s) \neq \pi^{\star}(s) \}$$

$$\leq \epsilon \max_{s, a} |A^{\pi^{\star}}(s, a)| \qquad \text{We have from online learning}$$

$$\mathbb{E}_{s \sim d^{\pi_t}} [1 \{ \pi_t(s) \neq \pi^{\star}(s) \}] \leq \epsilon$$
"Recoverability"

2/26/24

Summary

• Dagger achieves the same performance to the full coverage approach with an adaptive procedure, avoiding the quadratic blow-up.

Problem? Online Expert query can be expensive/impossible.

Solutions? Better HCl design. Non-human Experts.

Non-human Expert

Example: high-speed off-road driving [Pan et al, RSS 18, Best System Paper]

Fig. 4: The AutoRally car and the test track.

Goal: learn a racing control policy that maps from data on cheap on-board sensors (raw-pixel imagine) to low-level control (steer and throttle)

Non-human Expert

Example: high-speed off-road driving [Pan et al, RSS 18, Best System Paper]

Fig. 4: The AutoRally car and the test track.

Their Setup:

At Training, we have expensive sensors for accurate state estimation and we have computation resources for **MPC** (i.e., high-frequency replanning)

The MPC is the expert in this case!

