Claims

1. A compound of formula I,

R¹O(O)C-CH₂-(R)Cgl-Aze-Pab-R²

I

wherein

 R^1 represents $-R^3$ or $-A^1C(O)N(R^4)R^5$ or $-A^1C(O)OR^4$;

 A^1 represents C_{1-5} alkylene;

R² (which replaces one of the hydrogen atoms in the amidino unit of Pab-H) represents OH, OC(O)R⁶, C(O)OR⁷ or C(O)OCH(R⁸)OC(O)R⁹;

 R^3 represents H, C_{1-10} alkyl, or C_{1-3} alkylphenyl (which latter group is optionally substituted by C_{1-6} alkyl, C_{1-6} alkoxy, nitro or halogen);

 R^4 and R^5 independently represent H, C_{1-6} alkyl, phenyl, 2-naphthyl or, when R^1 represents $-A^1C(O)N(R^4)R^5$, together with the nitrogen atom to which they are attached represent pyrrolidinyl or piperidinyl;

 R^6 represents C_{1-17} alkyl, phenyl or 2-naphthyl (all of which are optionally substituted by C_{1-6} alkyl or halogen);

 R^7 represents 2-naphthyl, phenyl, C_{1-3} alkylphenyl (which latter three groups are optionally substituted by C_{1-6} alkyl, C_{1-6} alkoxy, nitro or halogen), or C_{1-12} alkyl (which latter group is optionally substituted by C_{1-6} alkoxy, C_{1-6} acyloxy or halogen);

R⁸ represents H or C₁₋₄ alkyl; and

 R^9 represents 2-naphthyl, phenyl, C_{1-6} alkoxy or C_{1-8} alkyl (which latter group is optionally substituted by halogen, C_{1-6} alkoxy or C_{1-6} acyloxy); provided that when R^1 represents R^3 , R^3 represents benzyl, methyl, ethyl, *n*-butyl or *n*-hexyl and R^2 represents $C(O)OR^7$, then R^7 does not represent benzyl;

or a pharmaceutically-acceptable salt thereof.

2. A compound of formula I, as defined in Claim 1, wherein A^1 represents C_{1-3} alkylene when R^1 represents $-A^1C(O)N(R^4)R^5$.

- 3. A compound of formula I, as defined in Claim 1- or Claim 2, wherein R^4 represents H or C_{1-6} alkyl when R^1 represents $-A^1C(O)N(R^4)R^5$.
- 4. A compound of formula I, as defined in any one of Claims 1 to 3, wherein R^5 represents C_{1-6} alkyl or C_{4-6} cycloalkyl when R^1 represents $-A^1C(O)N(R^4)R^5$.
- 5. A compound of formula I, as defined in any one of Claims 1 to 3, wherein R^4 and R^5 together represent pyrrolidinyl when R^1 represents $-A^1C(O)N(R^4)R^5$.
- 6. A compound of formula I, as defined in any one of Claims 2 to 5, wherein A^1 represents C_{1-3} alkylene, and R^4 represents H or C_{1-3} alkyl and R^5 represents C_{2-6} alkyl or C_{5-6} cycloalkyl, or R^4 and R^5 together represent pyrrolidinyl.
- 7. A compound of formula I, as defined in Claim 1, wherein A^1 represents C_{1-3} alkylene when R^1 represents $-A^1C(O)OR^4$.
- 8. A compound of formula I, as defined in Claim 1 or Claim 7, wherein R^4 represents C_{1-6} alkyl when R^1 represents $-A^1C(0)OR^4$.
- 9. A compound of formula I, as defined in Claim 7 or Claim 8, wherein A^1 represents C_{1-5} alkylene and R^4 represents C_{1-4} alkyl.
- 10. A compound of formula I, as defined in Claim 1, wherein R^3 represents H, C_{1-10} alkyl (which latter group may be linear or, when there are a sufficient number of carbon atoms, may be branched and/or be partially cyclic or cyclic), or C_{1-3} alkylphenyl (which latter groups is optionally substituted, may be linear or, when there are a sufficient

number of carbon atoms, be branched), when R1 represents R3.

- 11. A compound as claimed in Claim 1 or Claim 10, wherein R^1 represents H, linear C_{1-10} alkyl, branched C_{3-10} alkyl, partially cyclic C_{4-10} alkyl, C_{4-10} cycloalkyl, optionally substituted linear C_{1-3} alkylphenyl, optionally substituted branched C_3 alkylphenyl.
- 12. A compound as claimed in Claim 11, wherein R^1 represents linear C_{1-6} alkyl, C_{6-10} cycloalkyl, or optionally substituted linear C_{1-3} alkylphenyl.
- 13. A compound of formula I, as defined in any one of Claims 1 to 12, wherein \mathbb{R}^2 represents OH.
- 14. A compound of formula I, as defined in any one of Claims 1 to 12, wherein R^6 represents optionally substituted phenyl or C_{1-17} alkyl (which latter group may be linear or, when there are a sufficient number of carbon atoms, may be branched, be cyclic or partially cyclic, and/or be saturated or unsaturated) when R^2 represents $OC(O)R^6$.
- 15. A compound as claimed in Claim 14 wherein R^6 represents optionally substituted phenyl, linear C_{1-4} alkyl, branched C_{3-4} alkyl or *cis*-oleyl.
- 16. A compound as claimed in Claim 15 wherein R^6 represents linear C_{1-3} alkyl or branched C_3 alkyl.
- 17. A compound of formula I, as defined in any one of Claims 1 to 12, wherein R^7 represents optionally substituted phenyl, C_{1-12} alkyl (which latter group is optionally substituted, may be linear or, when there are a sufficient number of carbon atoms, may be branched, cyclic or partially cyclic, and/or saturated or unsaturated), or C_{1-3} alkylphenyl (which latter

group is optionally substituted, may be linear or, when there are a sufficient number of carbon atoms, may be branched) when R² represents C(O)OR⁷.

- 18. A compound as claimed in Claim 17 wherein R^7 represents optionally substituted and/or optionally unsaturated linear C_{1-4} alkyl or optionally substituted and/or optionally unsaturated branched C_{3-4} alkyl, optionally substituted phenyl, or optionally substituted linear C_{1-3} alkylphenyl or optionally substituted branched C_3 alkylphenyl.
- 19. A compound as claimed in Claim 18 wherein R^7 represents optionally substituted linear C_{1-4} alkyl or optionally substituted branched C_{3-4} alkyl, optionally substituted linear C_{1-3} alkylphenyl or branched C_3 alkylphenyl.
- 20. A compound of formula I, as defined in any one of Claims 1 to 12, wherein R^8 represents H or methyl, when R^2 represents $C(O)OCH(R^8)OC(O)R^9$.
- 21. A compound of formula I, as defined in any one of Claims 1 to 12 or Claim 20, wherein R^9 represents phenyl, or C_{1-8} alkyl (which latter group is optionally substituted, may be linear or, when there are a sufficient number of carbon atoms, may be branched and/or cyclic or partially cyclic) when R^2 represents $C(O)OCH(R^8)OC(O)R^9$.
- 22. A compound of formula I, as defined in Claim 20 or Claim 21 wherein R^8 represents H or methyl and R^9 represents phenyl, C_{5-7} cycloalkyl, linear C_{1-6} alkyl, branched C_{3-6} alkyl or partially cyclic C_{7-8} alkyl.
- 23. A compound as claimed in Claim 22 wherein R⁸ represents H and R⁹

represents C₅₋₇ cycloalkyl, linear C₁₋₆ alkyl or partially cyclic C₇₋₈ alkyl.

- 24. A compound as claimed in any one of the preceeding claims wherein, when R^1 represents R^3 and R^3 represents optionally substituted C_{1-3} alkylphenyl, the optional substituent C_{1-6} alkyl.
- 25. A compound as claimed in Claim 24 wherein the substituent is methyl.
- 26. A compound as claimed in any one of the preceding claims wherein, when R^2 represents $C(O)OR^7$ and R^7 represents optionally substituted C_{1-12} alkyl, the optional substituent is selected from halogen and C_{1-6} alkoxy.
- 27. A compound as claimed in Claim 26 wherein the substituent is selected from chloro and methoxy.
- 28. A compound as claimed in any one of the preceding claims wherein, when R^2 represents $C(0)OR^7$ and R^7 represents optionally substituted phenyl, the optional substituent is selected from C_{1-6} alkyl, C_{1-6} alkoxy and halogen.
- 29. A compound as claimed in Claim 28 wherein the substituent is selected from methyl, methoxy and chloro.
- 30. A compound as claimed in any one of the preceeding claims wherein when R^2 represents $C(O)OR^7$ and R^7 represents optionally substituted C_{1-3} alkylphenyl, the optional substituent is nitro.
- 31. A compound as claimed in Claim 1 which is EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂CH=CH₂; nPrOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂CH=CH₂;

```
tBuOOCCH_2-(R)CgI-Aze-Pab-COOCH_2CH=CH_2;
  EtOOCCH2-(R)Cgl-Aze-Pab-COOEt;
  EtOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-COO-nBu;
  PriC(O)CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
  ChNHC(O)CH<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
  (nPr)<sub>2</sub>NC(O)CH<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-COOCH<sub>2</sub>OOCC(CH<sub>3</sub>)<sub>3</sub>;
  EtOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-COOCH<sub>2</sub>OOCC(CH<sub>3</sub>)<sub>3</sub>;
  EtOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-COOCH(CH<sub>3</sub>)OOCCH<sub>3</sub>;
  MeOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OOCPh;
 MeOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 EtOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 BnOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 nPrOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
 nPrOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 iPrOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 tBuOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 (nPr)<sub>2</sub>NCOCH<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 ChNHCOCH<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
 EtOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OAc;
HOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-OH;
HOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-O-cis-Olevl:
Cyclooctyl-OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
tBuCH<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
(2-Me)BnOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
ChCH<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
ChOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
PhC(Me)<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
(Me)<sub>2</sub>CHC(Me)<sub>2</sub>OOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-Z;
BnOOCCH<sub>2</sub>-(R)Cgl-Aze-Pab-COOPh(4-OMe);
```

ChCH₂OOCCH₂-(R)Cgl-Aze-Pab-COOPh(4-OMe); (2-Me)BnOOCCH₂-(R)Cgl-Aze-Pab-COOPh(4-OMe); EtOOCCH₂-(R)Cgl-Aze-Pab-COOPh(4-Me); $BnOOCCH_2$ -(R)Cgl-Aze-Pab-COOPh(4-Me); BnOOCCH₂-(R)Cgl-Aze-Pab-COO-nBu; $iPrOOCCH_2-(R)Cgl-Aze-Pab-COOCH_2CH=CH_2;$ EtOOCCH₂-(R)Cgl-Aze-Pab-COO-iBu; BnOOCCH₂-(R)Cgl-Aze-Pab-COO-nPr; EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂OOCCh; EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂OOCCH₂Ch; EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH(Me)OOCPh; EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH,OOCPh: BnOOCCH₂-(R)Cgl-Aze-Pab-COOCH(Me)OAc; EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂OAc; tBuOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂OAc; MeOOC-C(=CHEt)CH₂-OOCCH₂-(R)Cgl-Aze-Pab-Z; Men-OOCCH₂-(R)Cgl-Aze-Pab-COOPh(4-OMe); and EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂CCl₃.

32. A compound as claimed in Claim 1 which is

EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂CCl₃;

BnOOCCH₂-(R)Cgl-Aze-Pab-COOnBu;

nPrOOCCH₂-(R)Cgl-Aze-Pab-Z;

Cyclooctyl-OOCCH₂-(R)Cgl-Aze-Pab-Z;

EtOOCCH₂-(R)Cgl-Aze-Pab-COOCH₂OOCCh;

MeOOCCH₂-(R)Cgl-Aze-Pab-OH;

EtOOCCH₂-(R)Cgl-Aze-Pab-OH;

nPrOOCCH₂-(R)Cgl-Aze-Pab-OH;

iPrOOCCH₂-(R)Cgl-Aze-Pab-OH;

BnOOCCH₂-(R)Cgl-Aze-Pab-OH; and EtOOCCH₂-(R)Cgl-Aze-Pab-OAc.

- 33. A compound of formula I, as defined in Claim 1, with the additional proviso that R¹ does not represent -A¹C(O)OR⁴.
- 34. A compound of formula I, as defined in Claim 1, with the additional proviso that R⁴ and R⁵ do not independently represent H.
- 35. A compound of formula I, as defined in Claim 1, with the additional proviso R^6 does not represent C_{1-17} alkyl, when R^2 represents $OC(O)R^6$.
- 36. A compound of formula I, as defined in Claim 1, wherein R¹ represents -A¹C(O)OR⁴.
- 37. A compound of formula I, as defined in Claim 1, wherein R⁴ and R⁵ independently represent H.
- 38. A compound of formula I, as defined in Claim 1, wherein R^6 represents C_{1-17} alkyl, when R^2 represents $OC(O)R^6$.
- 39. A pharmaceutical formulation including a compound of formula I as defined in any one of Claims 1 to 38, or a pharmaceutically acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.
- 40. A compound of formula I, as defined in any one of Claims 1 to 38, or a pharmaceutically acceptable salt thereof, for use as a pharmaceutical.
- 41. A compound of formula I as defined in any one of Claims 1 to 38, or

- a pharmaceutically acceptable salt thereof, for use in the treatment of a condition where inhibition of thrombin is required.
- 42. A compound of formula I as defined in any one of Claims 1 to 38, or a pharmaceutically acceptable salt thereof, for use in the treatment of thrombosis.
- 43. A compound of formula I as defined in any one of Claims 1 to 38, or a pharmaceutically acceptable salt thereof, for use as an anticoagulant.
- 44. The use of a compound of formula I as defined in any one of Claims 1 to 38, or a pharmaceutically acceptable salt thereof as active ingredient in the manufacture of a medicament for the treatment of a condition where inhibition of thrombin is required.
- 45. The use as claimed in Claim 44, wherein the condition is thrombosis.
- 46. The use of a compound of formula I as defined in any one of Claims I to 38, or a pharmaceutically acceptable salt thereof, as active ingredient in the manufacture of an anticoagulant.
- 47. A method of treatment of a condition where inhibition of thrombin is required which method comprises administration of a therapeutically effective amount of a compound of formula I as defined in any one of Claims 1 to 38, or a pharmaceutically acceptable salt thereof, to a person suffering from, or susceptible to, such a condition.
- 48. A method as claimed in Claim 47, wherein the condition is thrombosis.

- 49. A method as claimed in claim 47, wherein the condition is hypercoagulability in blood and tissues.
- 50. The use of a compound of formula I, as defined in Claim 1 but without the provisos, as a prodrug.
- 51. A process for the preparation of compounds of formula I which comprises:
- (a) for compounds of formula I in which R² represents OH, reaction of a corresponding compound of formula I, wherein R² represents OC(O)R⁶ and R⁶ is as defined in Claim 1 with an alkoxide base;
- (b) for compounds of formula I in which R² represents OH, reaction of a corresponding compound of formula I wherein R² represents C(O)OR⁷ and R⁷ is as defined in Claim 1 with hydroxylamine, or an acid addition salt thereof;
- (c) reaction of a corresponding compound of formula II,

H-(R)Cgl-Aze-Pab-R²

 Π

wherein R² is as defined in Claim 1 with a compound of formula III,

$$R^1O(O)C-CH_2-L^1$$

m

wherein L1 represents a leaving group and R1 is as defined in Claim 1;

- (d) for compounds of formula I in which R^1 represents H and R^2 represents OH or $C(O)OR^7$, reaction of a corresponding compound of formula I wherein R^1 represents C_{1-10} alkyl or C_{1-3} alkylphenyl, and R^2 represents OH or $C(O)OR^7$, with a base;
- (e) for compounds of formula I wherein R² represents OC(O)R⁶ and R⁶ is as defined in Claim 1, reaction of a corresponding compound of formula I wherein R² represents OH, with a compound of formula IV,

 $R^6C(O)-O-C(O)R^6$

IV

or a compound of formula V,

R6C(O)Hal

V

wherein Hal represents Cl or Br and, in both cases, R⁶ is as defined in Claim 1;

(f) for compounds of formula I in which R¹ represents H and R² represents OC(O)R⁶, and R⁶ is as defined in Claim 1, reaction of a corresponding compound of formula VI,

VI

wherein P^1 represents an acid labile ester protecting group and R^2 represents $OC(O)R^6$, wherein R^6 is as defined in Claim 1, with an acid; (g) for compounds of formula I in which R^1 represents R^3 , R^3 represents C_{1-10} alkyl or C_{1-3} alkylphenyl, and R^2 represents OH or $C(O)OR^7$, and R^7 is as defined in Claim 1 by a trans-esterification of a corresponding compound of formula VII,

$$R^{1a}O(O)C-CH_2-(R)Cgi-Aze-Pab-R^2$$
 VII

wherein R^{1a} represents a C_{1-10} alkyl or C_{1-3} alkylphenyl group other than that being formed, or an alternative labile alkyl substituent and R^2 is as defined in Claim 1.