Датчик 220B DKST 910.5

Протокол 1-Wire

Версия документа 1.07

Дата: 29/07/2015

Table of Contents

1 Введение	1
1.1 Цели и аудитория документа	1
1.2 Ссылки	
1.3 История версий документа	
2 Физический уровень	
2.1 Временные параметры / ограничения	
3 Сетевой уровень	
3.1 ROM Команды	4
3.2 Функциональные команды	5
3.2.1 Запись в регистры памяти DKST 910.5	5
3.2.2 Чтение из регистров памяти DKST 910.5	
3.2.3 Команда перезагрузки DKST 910.5	6
3.2.4 Команда чтения статистики (полная версия)	6
3.2.5 Команда чтения статистики (сокращённая версия)	6
3.2.6 Вычисление CRC-16	7
	8

1 Введение

1.1 Цели и аудитория документа

Данный документ описывает детали протокола управления датчиком 220B DKST 910.5. по интерфейсу 1-Wire. Документ предназначен для разработчиков программно - аппаратных средств и другого персонала задействонного в данном проекте.

1.2 Ссылки

[1] [DKSF 90.1.1] Первая версия ПО https://netping.teamworkpm.net/tasks/3463455

1.3 История версий документа

Дата	Версия	Автор	Коментарий
27/05/15	0.9	Alex Maekivi	Первоначальная версия
05/06/15	1	Alex Maekivi	Учтены предложения Павла Любасова
05/06/15	1.01	Alex Maekivi	Исправление ошибок в описании регрстров

09/06/15	1.02	Alex Maekivi	Доработка сокращенной версии пакета статистики
09/06/15	1.03	Alex Maekivi	Исправил код пакета «короткой» статистики
10/06/15	1.04	Alex Maekivi	Изменения в пакете записи в регистры — CRC-16 вычисляется только от данных.
11/06/15	1.05	Alex Maekivi	- Пороги недо-напряжения перенапряжения внесены в профили счетчиков — измениласть карта памяти регистров Указан используемый алгоритм CRC-16
17/06/15	1.06	Alex Maekivi	- Исправление опечаток Изменена карта памяти — добавлено зарезервированное место для выравнивания доступа к 32-битным счетчикам - Алгоритм CRC-16 изменен на Maxim CRC-16
29/07/15	1.07	Alex Maekivi	Исправил диаграмму — обший алгоритм работы устройства, подкорректировал информацию по CRC

2 Физический уровень

Устройство DKST 910.5 реализует роль ведомого («slave») рамках стандартного протокола 1-Wire, поддерживаемого фирмой Maxim.

Детально с протоколом можно ознакомиться по ссылке:

http://www.maximintegrated.com/en/products/1-wire/flash/overview/

На физическом уровне DKST 910.5 поддерживает:

- определение сигнала RESET (сброс)
- генерацию сигнала PRESENCE (присутствие)
- прием битов данных от мастера
- передача битов данных мастеру

2.1 Временные параметры / ограничения

Сигнал	Значение	Комментарий
Окно успешного определения сигнала RESET от мастера	От 480 до < 960 микросекунд	
Задержка после окончания сигнала RESET от мастера, перед генерацие PRESENCE	57 микросекунд	
Длительность генерируемого сигнала PRESENCE	94 микросекунды	
Длительность удерживания линии в низком уровне при передачи нуля (от начала	55 микросекунд	

таймслота)

Диаграмма 1 (Сброс и импульс присутствия)

Диаграмма 2 (Передача 0 и 1 от слэйва мастеру)

3 Сетевой уровень

Устройство DKST 910.5 в общем виде работает в состояниях показанных на диаграмме ниже:

3.1 ROM Команды

Ниже приведен список поддерживаемых ROM команд с описанием. Команды отправляются мастером и принимаются слейвом.

Команда	Значение	Описание
READ ROM	0x33	Если на шине одно устройство, слейв обеспечивает 64 таймслота чтения и принимает от устройста 8 байтов уникального кода устройства (адрес). Последний байт адреса = CRC предшествующих 7 байтов. Первый байт адреса = код семейства, всегда равен 0хАС в датчиках DKST 910.5
SKIP ROM	0xCC	Данная команда переводит устройство сразу в режим ожидания функциональных команд, минуя адресацию.
Search ROM	0xF0	Данная команда реализует алгоритм перебора 8 байтных адресов всех устройств на шине. Реализуется в DKST 910.5 в рамках стандарта 1-Wire

Match ROM	0x55	За командой следует 8 байтный уникальный код
		(адрес) устройства. При совпадении адреса, DKST 910.5 переходит в состояние ожидания
		_
		функциональных команд.

3.2 Функциональные команды

Ниже приведен список поддерживаемых функциональных команд. Устройство DKST 910.5 исполняет функциональную команду и переходит в режим ожидания следующей функциональной команды или сигнала сброса.

3.2.1 Запись в регистры памяти DKST 910.5

Команда записи данных в память DKST 910.5 имеет следующий формат:

	Команда	Адрес (байтовый)	Длина данных	Данные	CRC16	Подтверждение
Размер	8 bit	8 bit	8 bit	переменный	16 bit	8 bit
Направление M=Master S=Slave	M => S	M => S	M => S	M => S	M => S	M <= S
Значение	0x40	Адрес регистра для записи	Длина данных для записи	Блок данных для записи	СКС данных	0x06=ACK 0x15=NAK

3.2.2 Чтение из регистров памяти DKST 910.5

Команда чтения данных из памяти DKST 910.5 имеет следующий формат:

	Команда	Адрес (байтовый)	Длина данных	Данные	CRC16
Размер	8 bit	8 bit	8 bit	переменный	16 bit
Направление M=Master S=Slave	M => S	M => S	M => S	S <= M	S <= M
Значение	0x60	Адрес регистра для чтения	Длина данных для чтения	Блок данных (выставляет слэйв)	СRС данных (выставляет слэйв)

3.2.3 Команда перезагрузки DKST 910.5

Команда перезагрузки может использоваться мастером для того что бы заставить слэйв перезагрузиться с новыми настройками. Команда имеет следующий формат:

	Команда	Magic	Подтверждение
Размер	8 bit	16 bit	8 bit
Направление M=Master S=Slave	M => S	M => S	M <= S
Значение	0xA2	0x5253	0x06=ACK 0x15=NAK

3.2.4 Команда чтения статистики (полная версия)

	Команда	Длина данных	Данные	CRC16
Размер	8 bit	8 bit	переменный	16 bit
Направление M=Master S=Slave	M => S	$M \le S$ $S \le M$		S <= M
Значение	0x62	Длина блока данных статистики (выставляет слэйв)	Блок данных статистики (выставляет слэйв): - VERSION (16 bit), - CNT1_UV (32 bit) - CNT1_OV (32 bit) - CNT2_UV (32 bit) - CNT2_UV (32 bit) - CNT2_OV (32 bit) - CNT_BLKOUT (32 bit) - VRMS (16 bit) - VFREQ (16 bit)	СRС данных (выставляет слэйв)

3.2.5 Команда чтения статистики (сокращённая версия)

	Команда	Длина данных	Данные	CRC16
Размер	8 bit	8 bit	переменный	16 bit
Направление M=Master S=Slave	M => S	M <= S	S <= M	S <= M
Значение	0x64	Длина блока данных статистики (выставляет слэйв)	Блок данных статистики (выставляет слэйв): - VERSION (8 bit), Bits [75] = Version Major + 90	СRС данных (выставляет слэйв)

Bits [43] = Version Minor Bits [20] = Version Point (Пример 0x0A = 90.0.2)
- CNT1_UV (8 bit, low byte) - CNT1_OV (8 bit, low byte) - CNT2_UV (8 bit, low byte) - CNT2_OV (8 bit, low byte) - CNT_BLKOUT (8 bit, low byte) - VRMS (16 bit) - VFREQ (16 bit)

3.2.6 Вычисление CRC-16

CRC-16 вычисляется с помощью таблицы:

```
uint16 t crc16 table[256] = {
```

```
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
```

```
};
// Maxim CRC-16:
// Poly 0x8005 (x^16 + x^15 + x^2 + 1)
// Init 0
__INLINE uint16_t crc_16_update(uint16_t crc, uint8_t data)
{
    return (crc >> 8) ^ crc16_table[(crc ^ data) & 0xff];
}
Полином 0x8005 (x^16 + x^15 + x^2 + 1), первоначальное значение 0x0000
При передаче старший байт передается первым (Big Endian !)
```

3.3 Описание регистров устройства DKST 910.5

R/W = чтение и запись; RO = только чтение

При попытке записи в регистры с атрибутом RO данные будут приняты устройством но не будут записаны в память.

Данные в регистрах хранятся в формате Little Endian

Адрес	Длина	Read Write	Название	Описание
0x00	16 bit	R/W	PROF1_UVTRES	Profile 1 Under Voltage Threshold (профиль счетчика 1, напряжение провала) 0 300 В
0x02	16 bit	R/W	PROF1_OVTRES	Profile 1 Over Voltage Threshold (профиль счетчика 1, напряжение перенапряжения) 0 300 В
0x04	16 bit	R/W	PROF1_MIN	Counter profile 1 Min Duration (профиль счетчика 1, минимальная длительность) 25 мс 65000 мс
0x06	16 bit	R/W	PROF1_MAX	Counter profile 1 Max Duration (профиль счетчика 1, максимальная длительность) 25 мс 65000 мс
0x08	16 bit	R/W	PROF1_RESERVED1	Зарезервировано для будущих версий
0x0A	16 bit	R/W	PROF1_RESERVED2	Зарезервировано для будущих версий
0x0C	16 bit	R/W	PROF2_UVTRES	Profile 2 Under Voltage Threshold (профиль счетчика 2, напряжение провала) 0 300 В
0x0E	16 bit	R/W	PROF2_OVTRES	Profile 2 Over Voltage Threshold

				(профиль счетчика 2, напряжение перенапряжения) 0 300 В
0x10	16 bit	R/W	PROF2_MIN	Counter profile 2 Min Duration (профиль счетчика 2, минимальная длительность) 25 мс 65000 мс
0x12	16 bit	R/W	PROF2_MAX	Counter profile 2 Max Duration (профиль счетчика 2, максимальная длительность) 25 мс 65000 мс
0x14	16 bit	R/W	PROF2_RESERVED1	Зарезервировано для будущих версий
0x16	16 bit	R/W	PROF2_RESERVED2	Зарезервировано для будущих версий
0x18	16 bit	R/W	BLKOUT_TRES	Вlackout threshold duration (Длительность полного отсутствия напряжения после которой инкрементируется счетчик отсутствия напряжения CNT_BLKOUT) 25 мс 65000 мс
0x1A	16 bit	RO	RESERVED	Зарезервировано (требуется для выравнивания доступа к 32-битным счетчикам)
0x1C	32 bit	RO	CNT1_UV	Counter 1 Under-Voltage (Счетчик провалов 1)
0x20	32 bit	RO	CNT1_OV	Counter 1 over-voltage (Счетчик перенапряжений 1)
0x24	32 bit	RO	CNT2_UV	Counter 2 under-voltage (Счетчик провалов 2)
0x28	32 bit	RO	CNT2_OV	Counter 2 over-voltage (Счетчик перенапряжений 2)
0x2C	32 bit	RO	CNT_BLKOUT	Blackout counter (Счетчик отсутствия напряжения)
0x30	16 bit	RO	VRMS	Действующе (среднеквадратическое) значение сетевого напряжения (RMS) в Вольтах.
				Данные в регистре представлены в формате «фиксированной точки» с одним десятичным местом после запятой.

				Например десятичное значение: 2156 означает 215,6 Вольт 2200 означает 220,0 Вольт
0x32	16 bit	RO	VFREQ	Текущая частота сетевого напряжения (Герц) Данные в регистре представлены в формате «фиксированной точки» с двумя десятичными местами после запятой. Например десятичное значение: 5000 означает 50,00 Hz 5001 означает 50,01 Hz
0x34	16 bit	RO	VERSION	Версия П.О. датчика: ===================================