An Algebraic Introduction to Mathematical Logic Chapter 2 Propositional Calculus Section 4 Proof in The Propositional Calculus Exercises

David L. Meretzky

February 7th, 2018

For the propositional calculus on the set X, we take as axioms all elements of the subset $\mathscr{A} = \mathscr{A}_1 \cup \mathscr{A}_2 \cup \mathscr{A}_3$ of P(X), where

$$\begin{array}{l} \mathscr{A}_1 = \{p \Rightarrow (q \Rightarrow p) | p, q \in P(X)\} \\ \mathscr{A}_2 = \{(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) | p, q, r \in P(X)\} \text{ and } \\ \mathscr{A}_3 = \{ \sim p \Rightarrow p | p \in P(X)\}. \end{array}$$

As our one rule of inference, we take the rule known as modus ponens: from p and $p \Rightarrow q$, deduce q. We may now give a formal definition of a proof.

Definition 4.1 Let $q \in P(X)$ and let $A \subseteq P(X)$. In the propositional calculus on the set X, a proof of q from the assumptions A is a finite sequence $p_1, p_2, ...$ p_n of elements $p_i \in P(X)$ such that $p_n = q$ and for each i, either $p_i \in \mathscr{A} \cup A$ or for some j, k < i we have $p_k = (p_j \Rightarrow p_i)$.

Definition 4.2 Let $q \in P(X)$ and let $A \subseteq P(X)$. We say that q is a deduction from A, or q is provable from A, or that A syntactically implies q, if there exists a proof of q from A. We shall write this as \vdash , and we shall denote by Ded(A) the set of all deduction from A.

Problem 1 (4.9). Show that Ded(A) is the smallest subset D of P(X) such that $\mathscr{A} \cup A \subseteq D$ and closed under modus ponens.

4.9 Solution. Pick any $r \in Ded(A)$. We will show that it must be in any other subset D of P(X) satisfying the above requirements. This is sufficient to show that $Ded(A) \subseteq D$.

Since $r \in Ded(A)$, there exists a proof of r. If the proof is of length 1, then $r \in \mathscr{A} \cup A$ and therefore in D, and we are finished. The result follows inductively, suppose it holds that $r \in D$ for all r with proofs of up to length n-1. Then either $p_n = r \in \mathscr{A} \cup A$ or for some i, j < n $p_i = p_j \Rightarrow r$ in which case since p_i and p_j have proofs of length n-1 or less, p_j and p_j lie in D. By closure under modus ponens, $r \in D$.

Therefore, $Ded(A) \subseteq D$ for all such D and is thus the smallest, ordered by inclusions.

Problem 2 (4.10). Construct a proof in the propositional calculus of $p \Rightarrow r$ from the assumptions $A = \{p \Rightarrow q, q \Rightarrow r\}$.

4.10. By assumption, $(q \Rightarrow r) \in Ded(A)$. Let $p_1 = (q \Rightarrow r)$. Axiom 1 of \mathscr{A} says that $p_1 \Rightarrow (p \Rightarrow p_1) \in \mathscr{A} \cup A$ and is therefore in Ded(A).

We have, $p_1 \in Ded(A)$ and $p_1 \Rightarrow (p \Rightarrow p_1) \in Ded(A)$. By modus ponens, $p \Rightarrow p_1 \in Ded(A)$. Applying Axiom 2 to $(p \Rightarrow p_1) = (p \Rightarrow (q \Rightarrow r))$, We obtain $((p \to q) \Rightarrow (p \Rightarrow r))$. Noting that we began with the assumption $(p \to q)$, by modus ponens we obtain $(p \Rightarrow r)$.