MATEMATICKÉ KYVADLO

ONDREJ KUREŠ, MAREK MIKLOŠ, LADISLAV TRNKA

ABSTRACT. V tejto správe sa budeme zaoberať pohybom matematického kyvadla popísaným ako aj lineárnymi, tak aj nelineárnymi diferenciálnymi rovnicami. Pomocou eliptického integrálu a perturbačnej metódy získame aproximácie preiódy kmitov a porovnáme ich s numerickým riešením v programe Mathematica.

Contents

1. Úvod	1	3.2. Metody	3
1.1. Pohybová rovnice	1	3.3. Perioda kyvadla	6
2. Eliptický integrál	2	4. Analytická aproximace	6
3. Numerické řešení	2	4.1. Porovnání aproximace a numerického řešení	8
3.1. Zachování energie	3		

1. Úvod

Matematické kyvadlo je nejjednodušším typem kyvadla. Máme hmotný bod o hmotnosti m zavěšený na provázku délky l zanedbatelné hmotnosti. Tření a odpor vzduchu nezapočítáváme. Tíhové pole považujeme za homogenní s tíhovým zrychlením g.

1.1. **Pohybová rovnice.** Hmotný bod se pohybuje po kružnici o poloměru l a jeho pohyb popisujeme aktuálním úhlem $\varphi(t)$, který měří výchylku z dolní rovnovážné polohy. Pro zrychlení platí $a = l\varepsilon = l\dot{\omega} = l\ddot{\varphi}$ a pro vratnou sílu platí $F = -mg\sin\varphi$. Použijeme 2. Newtonův zákon: F = ma.

$$ma = ml\ddot{\varphi} = F = -mg\sin\varphi$$

Můžeme pokrátit m z naší rovnice a vydělíme celou rovnici l. Pak vše převedeme na jednu stranu. Dostáváme pohybovou rovnici matematického kyvadla.

$$\boxed{\ddot{\varphi} + \frac{g}{l}\sin\varphi = 0} \tag{1.1}$$

Vidíme, že naše rovnice je nelineární diferenciální rovnice druhého řádu. Pokud budeme brát v úvahu jen malé výchylky z rovnovážné polohy, můžeme rovnici linearizovat.

$$\ddot{\varphi} + \frac{g}{l}\varphi = 0 \tag{1.2}$$

Využili jsme Taylorova rozvoje $\sin \varphi$:

$$\sin \varphi = \varphi - \frac{\varphi^3}{6} + \frac{\varphi^5}{120} + O(\varphi^6).$$

Kde jsme vzali jen první člen, neboť nás zajímají jen malé výchylky. Když vezmeme počáteční podmínku $\varphi(t_0 = 0) = \varphi_0$, tak řešení rovnice (1.2) vypadá takto

$$\varphi = \varphi_0 \cos \sqrt{\frac{g}{l}} t. \tag{1.3}$$

Jak můžeme vidět, rovnice (1.3) odpovídá rovnici harmonického oscilátoru s amplitudou φ_0 a s úhlovou frekvencí malých harmonických kmitů $\omega = \sqrt{\frac{g}{l}}$. Periodě matematického kyvadla při malých výchylkách pak odpovídá

$$T = 2\pi \sqrt{\frac{l}{g}}. ag{1.4}$$

FIGURE 1. Matematické kyvadlo

2. Eliptický integrál

Eliptický integrál nám poskytuje exaktní řešení nelinearizované rovnice (1.1). Když rovnici (1.1) vynásobíme $\frac{d\varphi}{dt}$, tak získáme:

 $\frac{d\varphi}{dt}\left(\ddot{\varphi} + \frac{g}{l}\sin\varphi\right) = \frac{d}{dt}\left(\frac{1}{2}\dot{\varphi}^2 - \frac{g}{l}\cos\varphi\right) = 0.$

Po integraci dostáváme první integrál pohybu pohybové rovnice (1.1).

$$\frac{1}{2}\dot{\varphi}^2 - \frac{g}{l}\cos\varphi = C \tag{2.1}$$

Protože chceme, aby kyvadlo mělo na počátku nulovou rychlost ($\dot{\varphi} = 0$, pro $\varphi = \varphi_0$, kde φ_0 je počáteční úhel), můžeme dopočítat konstantu C, což nám dává $C = -\frac{g}{l}\cos\varphi_0$. Dosadíme konstantu C a upravíme.

$$\dot{\varphi} = \frac{d\varphi}{dt} = \sqrt{\frac{2g}{l}} \sqrt{\cos\varphi - \cos\varphi_0} \tag{2.2}$$

Využijeme větu o derivaci inverzní funkce na (2.2) a vynásobíme ji $d\varphi$.

$$dt = \frac{d\varphi}{\sqrt{\frac{2g}{l}\sqrt{\cos\varphi - \cos\varphi_0}}} \tag{2.3}$$

Budeme integrovat od $\varphi = 0$ do $\varphi = \varphi_0$. Tento interval odpovídá čtvrtině periody.

$$\frac{T}{4} = \int_0^{\varphi_0} \frac{d\varphi}{\sqrt{\frac{2g}{I}}\sqrt{\cos\varphi - \cos\varphi_0}}$$
 (2.4)

Pomocí substituce $\cos \varphi = 1 - 2\sin^2 \theta \ (\theta = \frac{\varphi}{2})$ a dalších úprav, se nám podaří získat eliptický integrál, díky němuž jsme schopni vypočítat periodu T matematického kyvadla.

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}},\tag{2.5}$$

kde $k = \sin \frac{\varphi_0}{2}$. Uděláme Taylorův rozvoj $\frac{1}{\sqrt{1-k^2\sin^2\theta}}$, čímž si usnadňujeme práci s integrálem, ale musíme počítat s tím, že budeme získávat jeho aproximovanou hodnotu.

$$\frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} \approx 1 + \frac{1}{8} \varphi_0^2 \sin^2 \theta + \frac{1}{384} \varphi_0^4 \left(9 \sin^4 \theta - 4 \sin^2 \theta \right) \tag{2.6}$$

Teď už jen (2.6) vložíme do (2.5) a dostaneme:

$$T = 4\sqrt{\frac{l}{q}} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} \approx 2\pi \sqrt{\frac{l}{q}} \left(1 + \frac{1}{16} \varphi_0^2 + \frac{11}{3072} \varphi_0^4 \right). \tag{2.7}$$

3. Numerické řešení

V předchozích kapitolách jsme dospěli k rovnici (1.1). Vzhledem k jednotě značení v této sekci ji přepišme jako:

$$\boxed{\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \frac{g}{l}\sin y = 0},\tag{3.1}$$

kde y(t) je výchylka (orientovaný úhel) kyvadla v čase t. V celé této sekci budeme pracovat se základními jednotkami SI. Pokusme se nyní tuto rovnici řešit pomocí numerických metod. K tomu využijeme prostředí $Mathematica.^1$ Pro jednoduchost předpokládejme délku kyvadla l=1 m, hmotnost m=1 kg, tíhové zrychlení jako g=9.81 m s⁻², počáteční výchylku $y(0)=y_0=1$ rad a čas 1 s $\leq t \leq 10$ s, po který budeme sledovat pohyb matematického kyvadla.

 $^{^{1}}$ všechny přiložené kódy jsou napsané v Mathematica 12.02

```
1  g = 9.81;
2  l = 1;
3  poc = 1;
4  time = {t, 0, 10};
```

LISTING 1. Konstanty

3.1. **Zachování energie.** Hmotný bod na závěsu vychýlíme z rovnovážné polohy o úhel $y_0 = 1$ rad a pustíme bez udělení počáteční rychlosti y'(0) = 0. Dále zanedbávejme odpor prostředí apod. Kyvadlo se začne periodicky pohybovat s periodou T. Náš systém zachovává mechanickou energii:

$$E = \frac{1}{2}m[y'(t)]^2 - \frac{g}{l}m\cos(y(t)), \tag{3.2}$$

která na počátku pohybu byla rovna:

$$E = E_0 = -\frac{g}{l} m \cos(y_0). \tag{3.3}$$

Tedy v průběhu numerického řešení bychom očekávali splnění rovnice:

$$-\frac{g}{l}\cos(y_0) = \frac{1}{2}[y'(t)]^2 - \frac{g}{l}\cos(y(t))$$
(3.4)

a to v každém čase t. Při hodnocení numerických metod je pro nás výhodné znázornit trajektorii $(y(t), y'(t))^2$ řešení ve fázovém prostoru. Pokud fázovým portrétem bude uzavřená křivka, naše numerické řešení zachovává celkovou energii systému.

3.2. **Metody.** Na příkladech numerických řešení rovnice (3.1) si ukážeme úskalí používání numerických metod při konfrontaci se zachováním periodicity a při zachování energie apod.

Automatická metoda zvolená softwarem: Podívejme se na řešení s automatickým výběrem metody v příkazu NDSolve:

```
NDSolve[{y''[t] + g/l*Sin[y[t]] == 0, y[0] == poc,y'[0] == 0}, y, time];
```

Na obrázku (2) vidíme periodicitu řešení. Z (3) a (4) plyne, že řešení poměrně zachovává energii s přesností 10^{-5} .

FIGURE 2. Časová závislost výchylky na čase

Explicitní Eulerova metoda: Tato metoda je nejjednodušší a zároveň, jak si ukážeme, nejméně vhodná pro numerické řešení rovnice (3.1). Proto si ji pro ilustraci rozeberme trochu podrobněji. Mějme rovnoměrné (ekvidistantní) dělení $\{t_n\}$ intervalu (0,10):

$$t_n = nh, n \in \mathbb{N}_{\mathbb{O}},$$

kde h je velikost kroku. Dále aproximujme $y(t_n) \approx y_n$. Pak explicitní Eulerova metoda (jednokroková) pro rovnici³ y'(t) = f(t, y(t)) se dá vyjádřit jako⁴:

$$y_{n+1} = y_n + hf(t_n, y_n).$$

Pro demonstraci získání "špatného" výsledku použijme:

```
NDSolve[{y''[t]+g/l*Sin[y[t]] == 0,y[0] == poc,y'[0] == 0},y, time, Method -> "
ExplicitEuler", StartingStepSize -> 0.1, MaxStepSize -> 0.1, MaxSteps -> 100]
```

LISTING 2. Eulerova metoda

 $^{^2}$ respektive trajektori (q(t), p(t)), kde q je zobecněná souřadnice a p je kanonická hybnost, ale v našem případě q(t) = y(t) a p(t) = y'(t), při uvážení m = 1

³předpokládáme existenci řešení

 $^{^4}$ v našem případě ODR 2. řádu bychom převedli na soustavu ODR 1. řádu

FIGURE 3. Fázový prostor

FIGURE 4. Zachování energie - rovnice (3.4)

Výsledné numerické řešení naprosto ztrácí periodicitu - obrázek (5) a nezachovává energii (6), (7) - systém energii v čase získává.

FIGURE 5. Eulerova metoda - časová závislost výchylky na čase

Metody snažící se zachovat celkovou energii: Nyní použijeme sofistikovanější metody založené na Runge-Kuttových metodách. Pro ilustraci napišme explicitní Runge-Kuttovu metodu 4. řádu (zachováme značení jako výše) pro

FIGURE 6. Eulerova metoda - fázový prostor

FIGURE 7. Eulerova metoda - energie

rovnici y'(t) = f(t, y(t)):

$$K_{1} = f(t_{n}, y_{n}),$$

$$K_{2} = f\left(t_{n} + \frac{h}{2}, y_{n} + h\frac{K_{1}}{2}\right),$$

$$K_{3} = f\left(t_{n} + \frac{h}{2}, y_{n} + h\frac{K_{2}}{2}\right),$$

$$K_{4} = f(t_{n} + h, y_{n} + hK_{3}),$$

$$y_{n+1} = y_{n} + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4}).$$

Konkrétně použijeme metodu SymplecticPartitionedRungeKutta, která ovšem vyžaduje přejít do Hamiltonova formalismu:

```
H = p[t]^2/2 - g/1 *Cos[q[t]];
eqs = {p'[t] == -D[H, q[t]], q'[t] == D[H, p[t]]};
ics = {p[0] == 0, q[0] == poc};
vars = {q[t], p[t]};
```

LISTING 3. Hamiltonův formalismus

Máme časově nezávislý hamiltonián - zachovává se v čase (integrál pohybu):

$$H = \frac{p^2}{2m} - \frac{g}{l}m\cos(q). \tag{3.5}$$

Implementace metody:

```
NDSolve[{eqs, ics}, vars, time, Method ->{"SymplecticPartitionedRungeKutta","
    DifferenceOrder" -> 4, "PositionVariables" -> {q[t]}}];
```

Pro porovnání zkusme ještě jiný přístup pomocí Projection:

```
NDSolve[{y''[t] + g/l *Sin[y[t]] == 0, y[0] == poc,y'[0] == 0}, y, time, Method -> {"
Projection", Method -> "ExplicitRungeKutta", "Invariants" -> -g/l *Cos[poc]}];
```

V tabulce (8) je porovnání všech použitých metod (vyjma Eulerovy metody). Nejlépe z použitých metod vychází SymplecticRungeKutta, která zachovává energii s přesností přibližně 10^{-6} . Automaticky vybraná metoda při příkazu NDSolve zachovává energii asi s přesností 10^{-5} . Posledně zmíněná metoda Projection zachovává energii s přesností okolo 10^{-3} tedy s menší přesností než první dvě metody.

Čas	NDSolve	SymplecticRungeKutta	Projection
0	-5.300365621	-5.300365621	-5.300365621
1	-5.300365503	-5.300365669	-5.300364618
2	-5.300365607	-5.300365639	-5.300365847
3	-5.300365352	-5.300365644	-5.300351305
4	-5.300365507	-5.300365646	-5.300348124
5	-5.300365437	-5.300365575	-5.300357624
6	-5.300365525	-5.300365688	-5.300343897
7	-5.300366032	-5.300365495	-5.300362859
8	-5.300366084	-5.300365652	-5.300399387
9	-5.300365929	-5.300365615	-5.300377653
10	-5.300365649	-5.300365559	-5.300365623

FIGURE 8. Porovnání metod podle energií v čase

3.3. **Perioda kyvadla.** Periodu matematického kyvadla T určíme jako čtyřnásobek času, za který hmotný bod z počáteční výchylky proběhne rovnovážnou polohu. K jeho stanovení využijeme metod ukázaných výše, přímou integraci eliptického integrálu a aproximaci odvozenou v prvních kapitolách:

$$T = 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{y_0^2}{16} + \frac{11y_0^2}{3072} \right). \tag{3.6}$$

Pro porovnání budeme periodu určovat při různých počátečních výchylkách y_0 a dodejme ještě velikost periody pro linearizovanou rovnici:

$$T = 2\pi \sqrt{\frac{l}{g}}. ag{3.7}$$

Počáteční výchylka	NDSolve	Symplectic RungeKutta	Eulerova metoda	Aproximace periody	Přímou integrací	Lin. rovnice
0.001	2.00605	2.00607	2.06809	2.00607	2.00607	2.00607
0.301	2.01749	2.01749	2.08132	2.01749	2.01749	2.00607
0.601	2.05231	2.05231	2.12202	2.05229	2.05231	2.00607
0.901	2.11285	2.11285	2.19407	2.11258	2.11285	2.00607
1.201	2.20344	2.20344	2.30382	2.20186	2.20344	2.00607
1.501	2.33149	2.33149	2.45399	2.32501	2.33149	2.00607

FIGURE 9. Velikost periody T pro různé metody v závislosti na počáteční výchylce y_0

Z obrázku (10) a z tabulky (9) je patrné, že Eulerova metoda se výrazně odlišuje od zbylých. Metody NDSolve a SymplecticPartitionedRungeKutta jsou velmi přesné, překvapivě aproximace periody (3.7) je také poměrně přesná, ale při vyšších počátečních výchylkách ztrácí na přesnosti. Určení periody z linearizované rovnice je možné jen pro malé počáteční výchylky řádově 0.001 rad, při vyšších výchylkách rychle ztrácí na přesnosti.

4. Analytická aproximace

Problém s nelineární rovnicí se dá řešit i jiným způsobem. Můžeme na to jít skrze Taylorův rozvoj

$$\sin \varphi = \sum_{n=1}^{+\infty} (-1)^n \frac{\varphi^{2n+1}}{(2k+1)!} \approx \varphi - \frac{\varphi^3}{3!} + \frac{\varphi^5}{5!} + \dots$$
 (4.1)

Takto jsme se zbavili nelineárního členu a nahradili jsme ho polynomem. Na základě znalostí z linearizované rovnice provedeme odhad, že úhel φ bude dán jako

$$\varphi(t) = \epsilon \varphi_A + \epsilon^2 \varphi_B + \epsilon^3 \varphi_C + \dots, \tag{4.2}$$

a protože hledáme lichou funkci, vynecháme sudé členy a přepíšeme

$$\varphi(t) = \epsilon \varphi_A + \epsilon^3 \varphi_B + \epsilon^5 \varphi_C + \dots \tag{4.3}$$

Frekvence ω bude vypadat takto

$$\omega^2 = \omega_0^2 + \epsilon^2 \alpha + \epsilon^4 \beta + \dots \tag{4.4}$$

FIGURE 10. Velikost periody T pro různé metody v závislosti na počáteční výchylce y_0

Naše rozvoje vložíme do

$$\frac{d^2\varphi}{dt^2} + \omega_0^2 \sin \varphi = 0, (4.5)$$

a získáváme

$$\frac{d^2}{dt^2} \left[\epsilon \varphi_A + \epsilon^3 \varphi_B + \dots \right] + \left[\omega^2 - \epsilon^2 \alpha - \epsilon^4 \beta + \dots \right] \left[\left(\epsilon \varphi_A + \epsilon^3 \varphi_B + \dots \right) - \frac{\left(\epsilon \varphi_A + \epsilon^3 \varphi_B + \dots \right)}{5!} + \dots \right] = 0 \tag{4.6}$$

Zjistili jsme první členy aproximace $\varphi(t) = \epsilon \varphi_A(t) + \epsilon^3 \varphi_B(t) + \epsilon^5 \varphi_C(t) + \dots$

$$\varphi_A(t) = \varphi_{init} \cos(\omega t), \tag{4.7}$$

$$\varphi_B(t) = \frac{\varphi_{init}^3}{192} [\cos(3\omega t) - \cos(\omega t)]. \tag{4.8}$$

Zamíříme k třetímu členu $\varphi_C(t)$. Budeme mít počáteční podmínky (t = 0)

$$\varphi_C = 0, \tag{4.9}$$

$$\frac{d\varphi_C}{dt} = 0. (4.10)$$

Jak se hledali stejné mocniny ϵ u předešlých, tak najdeme i zde. Tím získáme následující rovnici.

$$\frac{d\varphi_C}{dt} + \omega^2 \varphi_C = \beta \varphi_A - \frac{\alpha \varphi_A^3}{3!} - \frac{\omega^2 \varphi_A^5}{5!} + \alpha \varphi_B + \frac{1}{2} \omega^2 \varphi_A^2 \varphi_B. \tag{4.11}$$

Nyní dosadíme φ_A a φ_B . Proměnnou α už známe také $(\alpha = -\frac{\omega^2 \varphi_{init}^2}{8})$. Jen upravíme celou rovnici a dostaneme výslednou rovnost.

$$\frac{d\varphi_C}{dt} + \omega^2 \varphi_C = \left(\beta \varphi_{init} + \frac{5}{512} \omega^2 \varphi_{init}^5\right) \cos(\omega t) + \frac{\omega^2 \varphi_{init}^5}{384} \cos(3\omega t) + \frac{\omega^2 \varphi_{init}^5}{7680} \cos(5\omega t)$$
(4.12)

Víme, že člen $\left(\beta\varphi_{init} + \frac{5}{512}\omega^2\varphi_{init}^5\right)\cos(\omega t)$ nám bude způsobovat problémy. Zbavíme se ho tím, že si položíme $\beta = -\frac{5}{512}\omega^2\varphi_{init}^4$. Pak už jen diferenciální rovnici vyřešíme (počáteční podmínky máme) a dostaneme

$$\varphi_C(t) = \frac{\varphi_{init}^5}{184220} [61\cos(\omega t) - 60\cos(3\omega t) - \cos(5\omega t)]. \tag{4.13}$$

Celková aproximace vypadá takto

$$\varphi(t) \approx \varphi_{init} \cos(\omega t) + \frac{\varphi_{init}^3}{192} \left[\cos(3\omega t) - \cos(\omega t)\right] + \frac{\varphi_{init}^5}{184320} \left[61\cos(\omega t) - 60\cos(3\omega t) - \cos(5\omega t)\right] + \dots \tag{4.14}$$

Známe i druhý člen u frekvence ω

$$\omega^{2} \approx \omega_{0}^{2} - \frac{\omega^{2} \varphi_{init}^{2}}{8} - \frac{5}{512} \omega^{2} \varphi_{init}^{4} + \dots, \tag{4.15}$$

přepíšeme tedy na $\omega^2 \approx \frac{\omega_0^2}{1+\frac{\varphi_{init}^2}{8}+\frac{5\varphi_{init}^4}{512}}$. Dosadíme do definice periody T a máme

$$T \approx 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{\varphi_{init}^2}{16} + \frac{5\varphi_{init}^4}{1024} + \dots \right).$$
 (4.16)

4.1. Porovnání aproximace a numerického řešení. Parametry použité při porovnání jsme si nastavili takto

$$g = 9.81 \,\mathrm{m^2 s^{-1}},$$
 (4.17)

$$l = 1 \,\mathrm{m},\tag{4.18}$$

$$\varphi_0 = 1 \text{ rad.} \tag{4.19}$$

Na grafech 11 můžeme vidět, že průběhy analytické aproximace a numerického řešení skoro splývají. Z tabulky 12 vyčteme, že hodnoty se liší v řádu 10^{-2} . Analytická aproximace je tedy velmi dobrá, i když se určilo jen prvních pár členů. (Použili jsme aproximaci (4.14).) Pro srovnání jsme se koukli i na linearizované řešení se stejně nastavenými parametry. V počátečních hodnotách jsou si všechna řešení velmi podobná, ale už po první půl periodě se začne linearizované řešení znatelně lišit.

FIGURE 11. Velikost okamžité výchylky při různých typech řešení

Čas [s]	Řešení linearizované rovnice [rad]	Aproximace s více členy [rad]	Numerické řešení – Symplectic RungeKutta [rad]
0.01	0.99951	0.999551	0.999587
0.51	-0.0265674	0.0698329	0.074358
1.01	-0.999762	-0.98469	-0.985377
1.51	0.017069	-0.264394	-0.279272
2.01	0.999924	0.928709	0.931685
2.51	-0.00756909	0.449392	0.471191
3.01	-0.999996	-0.83453	-0.839993
3.51	-0.00193153	-0.617748	-0.641692
4.01	0.999978	0.706858	0.713075
4.51	0.011432	0.762515	0.783922
5.01	-0.999869	-0.55167	-0.555244
5.51	-0.0209314	-0.877214	-0.892767
6.01	0.99967	0.375687	0.372528
6.51	0.0304289	0.956319	0.964753
7.01	-0.999381	-0.18594	-0.172649
7.51	-0.0399237	-0.995798	-0.997814
8.01	0.999002	-0.0104871	-0.0353279
8.51	0.0494149	0.993565	0.991065
9.01	-0.998532	0.20654	0.24164
9.51	-0.0589016	-0.94974	-0.944684

FIGURE 12. Velikost okamžité výchylky při různých typech řešení