Atmega128 - Reset / Interrupt Vector

- Interrupt Vector 丑
 - 순위가 높을 수록 우선순위가 높다.

Table 23. Reset and Interrupt Vectors

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition					
1	\$0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset					
2	\$0002	INT0	External Interrupt Request 0					
3	\$0004	INT1	External Interrupt Request 1					
4	\$0006	INT2	External Interrupt Request 2					
5	\$0008	INT3	External Interrupt Request 3					
6	\$000A	INT4	External Interrupt Request 4					
7	\$000C	INT5	External Interrupt Request 5					
8	\$000E	INT6	External Interrupt Request 6					
9	\$0010	INT7	External Interrupt Request 7					
10	\$0012	TIMER2 COMP	Timer/Counter2 Compare Match					
11	\$0014	TIMER2 OVF	Timer/Counter2 Overflow					
12	\$0016	TIMER1 CAPT	Timer/Counter1 Capture Event					
13	\$0018	TIMER1 COMPA	Timer/Counter1 Compare Match A					
14	\$001A	TIMER1 COMPB	Timer/Counter1 Compare Match B					
15	\$001C	TIMER1 OVF	Timer/Counter1 Overflow					
16	\$001E	TIMER0 COMP	Timer/Counter0 Compare Match					
17	\$0020	TIMER0 OVF	Timer/Counter0 Overflow					

- 1번: RESET Vector
- 2~9 번: 외부 인터럽트(0~7)
- 10~17번:Timer/Counter에 의한 인터럽트
 Timer/Counter 0, 2는 8-bit Timer/Counter이기 때문에 Compare Match와
 Overflow Interrupt만 제공.

Timer/Counter 1, 3은 16-bit Timer/Counter으로 COMP(A,B,C) , CAP, OVF 까지 제공

간략히 설명하자면

- Compare Match: 기준값(TCNT)이 특정 값(OCR)과 일치할 때 Interrupt 발생
- Overflow: 기준값(TCNT)이 오버플로우 발생할 시 Interrupt 발생
- Capture Event: 트리거 시스템으로 신호의 상승 / 하강엣지를 검출하여 신호의 주파수나 주기 검출 가능 물론 이때 Interrupt가 발생한다.

18	\$0022	SPI, STC	SPI Serial Transfer Complete					
19	\$0024	USARTO, RX	USART0, Rx Complete					
20	\$0026	USARTO, UDRE	USART0 Data Register Empty					
21	\$0028	USARTO, TX	USART0, Tx Complete					
22	\$002A	ADC	ADC Conversion Complete					
23	\$002C	EE READY	EEPROM Ready					
24	\$002E	ANALOG COMP	Analog Comparator					
25	\$0030 ⁽³⁾	TIMER1 COMPC	Timer/Countre1 Compare Match C					
26	\$0032 ⁽³⁾	TIMER3 CAPT	Timer/Counter3 Capture Event					
27	\$0034 ⁽³⁾	TIMER3 COMPA	Timer/Counter3 Compare Match A					
28	\$0036 ⁽³⁾	TIMER3 COMPB	Timer/Counter3 Compare Match B					
29	\$0038 ⁽³⁾	TIMER3 COMPC	Timer/Counter3 Compare Match C					
30	\$003A ⁽³⁾	TIMER3 OVF	Timer/Counter3 Overflow					

○ 18번 : SPI 시리얼 통신시 Interrupt 발생

○ 19 ~ 21 번 : USARTO 시리얼 통신 RX (수신), Data Register Clear, TX (송신)

o 22번: ADC 변환 완료 후 Interrupt 발생

o 23번: EEPROM이 Write 되고 나서 인터럽트 발생

• 24번: 아날로그 비교기 (Interrupt 모드에 따라 Toggle, 상승/하강 엣지에 인 터럽트 발생)

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
31	\$003C ⁽³⁾	USART1, RX	USART1, Rx Complete
32	\$003E ⁽³⁾	USART1, UDRE	USART1 Data Register Empty
33	\$0040 ⁽³⁾	USART1, TX	USART1, Tx Complete
34	\$0042 ⁽³⁾	TWI	Two-wire Serial Interface
35	\$0044 ⁽³⁾	SPM READY	Store Program Memory Ready

31~33번: USART1 시리얼 통신34번: I2C 시리얼 통신시 인터럽트

○ 35번: 저장된 프로그램 메모리 상에 올린 후 인터럽트 발생

Table 24. Reset and Interrupt Vectors Placement

BOOTRST	IVSEL	Reset Address	Interrupt Vectors Start Address		
1	0	\$0000	\$0002		
1	1	\$0000	Boot Reset Address + \$0002		
0	0	Boot Reset Address	\$0002		
0	1	Boot Reset Address	Boot Reset Address + \$0002		

- Program에서 Interrupt를 허용하지 않았을 때 다음과 같이 BOOTSRT Fuse Bit와 IVSEL Bit 설정에 따라
 - Reset Address와 Interrupt Vectors Start Address를 바꿀 수 있다.
- 참고로 Boot Reset Address는 다음 표와 같이 Boot Loader에서의 BOOTSZ1
 과 BOOTSZ0 Fuse Bit 설정에 따라 달라진다.
- Fuse Bit : AVR의 BIOS 설정 같은 느낌, 0 : 기본 상태 / 1 : 프로그래밍된 상태이다.

(자세한 내용은 https://binworld.kr/47 참고)

Table 112. Boot Size Configuration

BOOTSZ1	BOOTSZ0	Boot Size	Pages	Application Flash Section	Boot Loader Flash Section	End Application section	Boot Reset Address (start Boot Loader Section)
1	1	512 words	4	\$0000 - \$FDFF	\$FE00 - \$FFFF	\$FDFF	\$FE00
1	0	1024 words	8	\$0000 - \$FBFF	\$FC00 - \$FFFF	\$FBFF	\$FC00
0	1	2048 words	16	\$0000 - \$F7FF	\$F800 - \$FFFF	\$F7FF	\$F800
0	0	4096 words	32	\$0000 - \$EFFF	\$F000 - \$FFFF	\$EFFF	\$F000

• Atmega 128 기본적인 Reset / Interrupt Vector Address setup

• BOOTRST fuse unprogrammed / IVSEL bit enable

0x0000~ 0xEFFF: Application Section
 0xF000 ~ 0xF044: Reset / Interrupt Vector

```
Address LabelsCode
                             Comments
$0000 RESET:ldi r16, high(RAMEND); Main program start
            out SPH, r16 ; Set stack pointer to top of RAM
$0001
$0002
            ldi r16, low(RAMEND)
            out SPL, r16
$0003
$0004
            sei
                            ; Enable interrupts
$0005
            <instr> xxx
.org $F002
$F002
            jmp
                  EXT_INT0 ; IRQ0 Handler
$F004
                  EXT_INT1 ; IRQ1 Handler
            jmp
. . .
             . . .
                   . . .
$F044
             jmp
                   SPM_RDY ; Store Program Memory Ready Handler
```

- BOOTRST fuse programmed / IVSEL bit Disable
 - o 0x0000~ 0x0044 : Reset / Interrupt Vector
 - 0xF000 ~ : Application Section

```
Address
         LabelsCode
                            Comments
.org $0002
$0002
            qmj
                  EXT_INTO ; IRQO Handler
$0004
                    EXT_INT1 ; IRQ1 Handler
              jmp
. . .
              . . .
                    . . .
$0044
              jmp SPM_RDY ; Store Program Memory Ready Handler
.org $F000
$F000 RESET: ldi r16, high(RAMEND); Main program start
              out SPH, r16; Set stack pointer to top of RAM
$F001
$F002
              ldi r16, low(RAMEND)
$F003
              out SPL, r16
$F004
              sei
                             ; Enable interrupts
$F005
              <instr> xxx
```

- BOOTRST fuse programmed / IVSEL bit enable
 - 0xF000 ~ 0xF044 : Reset / Interrupt Vector
 0xF046 ~ : Application Section

```
Address
                Labels Code
                                          Comments
.org $F000
$F000
              jmp
                  RESET ; Reset handler
              jmp EXT_INTO ; IRQO Handler
$F002
              jmp EXT_INT1 ; IRQ1 Handler
$F004
              . . .
. . .
$F044
              jmp SPM_RDY; Store Program Memory Ready Handler
$F046 RESET: ldi r16, high(RAMEND); Main program start
$F047
              out
                   SPH, r16 ; Set stack pointer to top of RAM
              ldi r16, low(RAMEND)
$F048
$F049
              out SPL, r16
$F04A
                              ; Enable interrupts
              sei
$F04B
              <instr> xxx
```

MCU Control Register - MCUCR

Bit	7	6	5	4	3	2	. 1	0	_
	SRE	SRW10	SE	SM1	SM0	SM2	IVSEL	IVCE	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

o Bit 1 - IVSEL : Interrupt Vector Select

IVSEL bit가 clear 상태 일 때 interrupt vector 위치 : 플래시 메모리 처음 부분 (0x0000)

IVSEL bit가 enable 일 때 interrupt vector 위치 : 플래시 메모리의 Boot Loader 영역 부분 (BOOTSZ Fuse Bit 설정에 따라 다름)

- Bit 0 IVCE: Interrupt Vector Change Enable
 - IVSEL bit를 enable 하기 위해서는 IVCE bit를 먼저 허용해야 한다.
 - IVCE나 IVSEL bit enable 되고 4 cycle 이후 IVCE bit가 clear 된다.
 - IVCE bit 설정시 모든 Interrupt들이 Disable 된다.

```
void Move_InterruptVector(){
    MCUCR = (1 << IVCE);
    MCUCR = (1 << IVSEL);

    // IVCE bit를 먼저 enable 한 이후 IVSEL bit를 enable 해야한다.
    // MCUCR = 0x03; (x)
}
```

=> (IVCE/IVSEL bit 설정 하는 이유가 Interrupt을 시스템 측면에서 막기 위해서나 플래시 메모리 절약 때문인 거 같다)