第2讲基础知识

罗国杰

gluo@pku.edu.cn

2025年春季学期

算 P 法 K 设山 分 析 实 验

数学基础

- 函数的渐近的界
- ■常见函数的阶
- 递推方程求解
 - ▶递归树
 - ▶主定理证明及应用
 - ▶生成函数

函数的渐近的界

▶ 下列公式表示的确切含义是什么?

- ightharpoonup f (n) = O(g(n)) : Big Oh
 - $f(n) = \Omega(g(n))$: Big Omega
- ightharpoonup f(n) = o(g(n)) : little oh
 - $f(n) = \omega(g(n))$: little omega
- ► $f(n) = \Theta(g(n))$: Big Theta

大O记号 (渐近上界)

- ightharpoonup f(n) = O(g(n))
 - ▶ iff \exists c, $n_0 > 0$, s.t. \forall $n \ge n_0$: $0 \le f(n) \le c \cdot g(n)$

大Ω记号 (渐近下界)

- ightharpoonup f(n) = $\Omega(g(n))$
 - ▶ iff \exists c, $n_0 > 0$, s.t. \forall $n \ge n_0$, $0 \le c \cdot g(n) \le f(n)$

大Θ记号 (渐近紧确界)

函数的渐近的界

定义 设 f 和 g 是定义域为自然数集 N 上的函数

- 五 若存在正数 c 和 n_0 ,使得对一切 $n > n_0$ 有 $0 \le f(n) \le cg(n)$ 成立,则称 f(n) 的渐近的上界是 g(n),记作 f(n) = O(g(n))。 // 也记作 $f(n) \in O(g(n))$
- 2. 若存在正数 c 和 n_0 ,使得对一切 $n > n_0$ 有 $0 \le cg(n) \le f(n)$ 成立,则称 f(n) 的渐近的下界是 g(n),记作 $f(n) = \Omega(g(n))$ 。 // 也记作 $f(n) \in \Omega(g(n))$
- 3. 若 f(n) = O(g(n))且 $f(n) = \Omega(g(n))$, 则记作 $f(n) = \Theta(g(n))$ 。 // 也记作 $f(n) \in \Theta(g(n))$

函数的渐近的界

4. 若对任意正数 c 都存在 n_0 ,使得当 $n \ge n_0$ 时有 $0 \le f(n) < cg(n)$ 成立,则记作 f(n) = o(g(n)). 即 f(n) = O(g(n)) 但 $f(n) \ne O(g(n))$

5. 若对任意正数 c 都存在 n_0 ,使得当 $n \ge n_0$ 时有 $0 \le cg(n) < f(n)$ 成立,则记作 $f(n) = \omega(g(n))$. 即 $f(n) = \Omega(g(n))$ 但 $f(n) \ne \Theta(g(n))$

例函数
$$f(n) = n^2 + n$$
,

$$f(n) = O(n^2), f(n) = O(n^3), f(n) = o(n^3), f(n) = \Theta(n^2)$$

有关定理

定理 设 ƒ 和 g 是定义域为自然数集合的函数.

(1) 如果
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c>0$$
,那么 $f(n)=\Theta(g(n))$.

(2) 如果
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
,那么 $f(n) = o(g(n))$.

(3) 如果
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=+\infty$$
,那么 $f(n)=\omega(g(n))$.

有关阶的一些性质

- 定理 设 f, g, h 是定义域为自然数集合的函数,
 - 1. 如果 f = O(g) 且 g = O(h), 那么 f = O(h).
 - 2. 如果 $f = \Omega(g)$ 且 $g = \Omega(h)$, 那么 $f = \Omega(h)$.
 - 3. 如果 $f = \Theta(g)$ 和 $g = \Theta(h)$, 那么 $f = \Theta(h)$.

■ 定理 假设 f 和 g 是定义域为自然数集合的函数,若对某个其它的函数h,有 f = O(h) 和 g = O(h), 那么 f + g = O(h).

例题

例题 设 $f(n) = \frac{1}{2}n^2 - 3n$,证明 $f(n) = \Theta(n^2)$ 。

证:因为

$$\lim_{n \to \infty} \frac{f(n)}{n^2} = \lim_{n \to \infty} \frac{\frac{1}{2}n^2 - 3n}{n^2} = \frac{1}{2}$$

根据定理有 $f(n) = \Theta(n^2)$ 。

可以证明: 多项式函数,幂函数的阶低于指数函数 $n^d = o(r^n)$, r > 1, d > 0

12 对数函数的阶

符号: $\log n = \log_2 n$ $\log^k n = (\log n)^k$ $\log\log n = \log(\log n)$ 性质: $\log_b n = o(n^a) \quad \alpha > 0$ $a^{\log_b n} = n^{\log_b a}$

 $\log_k n = \Theta(\log_l n)$

阶乘函数的阶

Stirling
$$\triangle \Rightarrow$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n}))$$

$$n! = o(n^n)$$

$$n! = \Omega(2^n)$$

$$\log(n!) = \Theta(n\log n)$$

$$\lim_{n \to +\infty} \frac{\log(n!)}{n\log n} = \lim_{n \to +\infty} \frac{\ln(n!)/\ln 2}{n\ln n/\ln 2} = \lim_{n \to +\infty} \frac{\ln(n!)}{n\ln n}$$

$$= \lim_{n \to +\infty} \frac{\ln(\sqrt{2\pi n} (\frac{n}{e})^n (1 + (\frac{c}{n})))}{n\ln n} = \lim_{n \to +\infty} \frac{\ln\sqrt{2\pi n} + n\ln \frac{n}{e}}{n\ln n} = 1$$

上述的c为某个常数

例题: 函数的阶

按照阶从高到低对以下函数排序:

$$\log^2 n$$
, 1, $n!$, $n2^n$, $n^{n/\log n}$, $\left(\frac{3}{2}\right)^n$, $\sqrt{\log n}$, $(\log n)^{\log n}$, 2^{2^n} , $n^{\log \log n}$, n^3 , $\log \log n$, $n \log n$, n , $n \log n$, n

结果:

$$2^{2^n}$$
, $n!$, $n2^n$, $n^{n/\log n}$, $\left(\frac{3}{2}\right)^n$, $(\log n)^{\log n} = n^{\log\log n}$, n^3 , $\log(n!) = \Theta(n\log n)$, $n=2^{\log n}$, $\log^2 n$, $\log n$, $\sqrt{\log n}$, $\log\log n$

多项式函数与指数函数

时间复杂 度函数	问题规模						
	10	20	30	40	50	60	
n	10 ns	20 ns	30 ns	40 ns	50 ns	60 ns	
n^2	0.1 μs	0.4 μs	0.9 μs	1.6 µs	2.5 μs	3.6 μs	
n^3	1 μs	8 μs	27 μs	64 μs	125 μs	216 μs	
n^5	0.1 ms	3.2 ms	24.3 ms	0.10 s	0.31 s	0.78 s	
2 ⁿ	1 μs	1 ms	1.1 s	18 min	13 d	37 y	
3 ⁿ	59 μs	3.5 s	57 h	3.9 C	2*10 ⁵ C	1.3*10 ¹⁰ C	

^{*}假设单个操作耗时1ns

10亿次/秒机器求解的问题

- ► 快速排序算法给10万个数据排序,运算量约为 105×log₂105≈1.7×106,仅需1.7×106/109=1.7×10-3秒.
- Dijkstra算法求解1万个顶点的图的单源最短路径问题, 运算量约为(10⁴)²=10⁸,约需10⁸/10⁹=0.1秒.
- 回溯法解100个顶点的图的最大团问题,运算量为 100×2¹⁰⁰≈1.8×10³²,需要1.8×10³²/10⁹=1.8×10²¹秒 =5.7×10¹⁵年,即5千7百万亿年!
- 1分钟能解多大的问题: 1分钟=60秒,这台计算机可做用快速排序算法可给2×10⁹(20亿)个数据排序,用 Dijkstra算法可解2.4×10⁵个顶点的图的单源最短路径问题,而用回溯法—天只能解41个顶点的图的最大团问题

9项式函数与指数函数

时间复杂 度函数	1小时可解的问题实例的最大规模					
	计算机	快100倍的计算机	快1000倍的计算机			
n	N_1	100 N ₁	1000 N ₁			
n^2	N ₂	10 N ₂	31.6 N ₂			
n^3	N_3	4.64 N ₃	10 N ₃			
n^5	N_4	2.5 N ₄	3.98 N ₄			
2 ⁿ	N_5	N ₅ + 6.64	N ₅ + 9.97			
3 ⁿ	N_6	N ₆ + 4.19	N ₆ +6.29			

快1000倍的计算机

- ②? 求解规模更大的难题
- ▶ ②! 求解更多规模适中的难题
 - ▶或将原问题分解为更多、更精确的规模适中的难题

```
#include <assert.h>
#include <stdint.h>

uint32_t inline div_255_fast(uint32_t x) { return (x + ((x + 257) >> 8)) >> 8; }

void test(uint32_t x) {

if (x <= 65536) {

uint32_t ret = div_255_fast(x);

assert(ret == (x / 255));
}

}

}</pre>
```

```
CBMC version 5.10 (cbmc-5.10) 64-bit x86 64 linux
Parsing example.c
Converting
Type-checking example
Generating GOTO Program
Adding CPROVER library (x86 64)
Removal of function pointers and virtual functions
Generic Property Instrumentation
Running with 8 object bits, 56 offset bits (default)
Starting Bounded Model Checking
size of program expression: 45 steps
simple slicing removed 4 assignments
Generated 3 VCC(s), 3 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
Solving with MiniSAT 2.2.1 with simplifier
1085 variables, 5069 clauses
SAT checker: instance is UNSATISFIABLE
Runtime decision procedure: 0.0192695s
[div_255_fast.overflow.1] arithmetic overflow on unsigned + in x + (unsigned int)257: SUCCESS
[div 255 fast.overflow.2] arithmetic overflow on unsigned + in x + (x + (unsigned int)257 >> 8): SUCCESS
[test.assertion.1] assertion ret == (x / 255): SUCCESS
** 0 of 3 failed (1 iteration)
VERIFICATION SUCCESSFUL
```

cbmc example.c --function test --unsigned-overflow-check

问题的复杂度分析

多项式时间可解的问题与难解的问题

- 多项式时间可解的问题P
 存在着解P的多项式时间的算法
- 难解的问题P
 不存在解P的多项式时间的算法
- 实际上可计算的问题多项式时间可解的问题

不同复杂性类的基本层次结构

https://people.cs.umass.edu/~immerman/descriptive_complexity.html

部分NPC问题的实例可在合理时间内取得结果

- 可满足性问题 SAT
 - ▶某类问题的变量和子句平均数目可高达 107

Family	#instances	avg. #vars.	avg. #clauses
2d-strip-packing	5	12753.20	1267404.40
bio	5	46376.40	471256.00
crypto-aes	11	25285.90	82980.81
crypto-des	9	31590.22	95015.66
crypto-gos	30	1892.93	22883.60
crypto-md5	11	66894.00	267579.54
crypto-sha	30	4773.33	151027.86
crypto-vmpc	8	1061.50	171947.00
diagnosis	26	235279.42	1129797.46
hardware-bmc-ibm	4	1335863.00	5234846.00
hardware-bmc	3	114448.33	341918.00
hardware-cec	30	255757.16	754358.03
hardware-velev	21	282973.85	7478281.09
planning	25	469285.60	3323685.24
scheduling-pesp	30	37454.30	270133.10
scheduling	30	160310.13	722325.73
software-bit-verif	14	131492.71	378409.78
software-bmc	3	11216817.00	32697150.00
termination	5	219846.80	950546.60

递推方程的求解

递推方程的求解

设序列 a_0 , a_1 , ..., a_n , ..., 简记为 $\{a_n\}$, 一个把 a_n 与某些个 $a_i(i \le n)$ 联系起来的等式叫做关于序列 $\{a_n\}$ 的递推方程

例子:
$$a_n = a_{n-1} + a_{n-2}$$
, $a_0 = 0$, $a_1 = 1$
求解目标: 给出 a_n 的关于 n 的显式公式
$$a_n = \frac{1}{\sqrt{5}} (\phi^n - \widehat{\phi}^n)$$
$$\phi = \frac{1 + \sqrt{5}}{2}, \ \widehat{\phi} = \frac{1 - \sqrt{5}}{2}$$

递推方程的求解

■ 设序列 $a_0, a_1, ..., a_n, ...$, 简记为 $\{a_n\}$, — 求解方法: 个把 a_n 与某些个 a_i (i < n) 联系起来的等 式叫做关于序列 {an} 的递推方程

- ▶迭代法
 - 直接迭代: 插入排序最坏情况下时间分析
 - 换元迭代: 二分归并排序最坏情况下时间分析
 - 差消迭代: 快速排序平均情况下的时间分析
- ▶ 迭代模型: 递归树
- ▶尝试法: 快速排序平均情况下的时间分析
- ▶主定理:递归算法的分析
- ▶生成函数

迭代模型: 递归树

递归树的应用实例

求解: $a_n = a_{n/3} + a_{2n/3} + n$

层数
$$k$$
: $n(2/3)^k \le 1 \Rightarrow (3/2)^k \ge n \Rightarrow k \ge \log_{3/2} n$ $a_n = O(n \log n)$

尝试法: 快速排序

(1)
$$T(n)=C$$
 为常函数,左边= $O(1)$
右边= $\frac{2}{n}C(n-1)+O(n)=2C-\frac{2C}{n}+O(n)$

$$T(n) = \frac{2}{n} \sum_{i=1}^{n-1} T(i) + O(n)$$

(2) *T*(*n*)=*cn*, **左边**=*cn*

右边=
$$\frac{2}{n}\sum_{i=1}^{n-1}ci+O(n)=\frac{2c}{n}\frac{(1+n-1)(n-1)}{2}+O(n)=cn-c+O(n)$$

(3) $T(n)=cn^2$, 左边= cn^2

右边=
$$\frac{2}{n}\sum_{i=1}^{n-1}ci^2+O(n)=\frac{2}{n}\left[\frac{cn^3}{3}+O(n^2)\right]+O(n)=\frac{2c}{3}n^2+O(n)$$

(4) $T(n)=cn\log n$, 左边= $cn\log n$

右边 =
$$\frac{2c}{n} \sum_{i=1}^{n-1} i \log i + O(n) = cn \log n + O(n)$$

以积分作为求和的近似

$$\int_{1}^{n-1} x \log x dx \le \sum_{i=1}^{n-1} i \log i \le \int_{2}^{n} x \log x dx$$

$$\int_{2}^{n} x \log x dx = \int_{2}^{n} \frac{x}{\ln 2} \ln x dx$$

$$= \frac{1}{\ln 2} \left[\frac{x^{2}}{2} \ln x - \frac{x^{2}}{4} \right]_{2}^{n}$$

$$= \frac{1}{\ln 2} \left(\frac{n^{2}}{2} \ln n - \frac{n^{2}}{4} \right) - \frac{1}{\ln 2} \left(\frac{4}{2} \ln 2 - \frac{4}{4} \right)$$

递推方程的归纳证明

■ 尝试 (猜测) 递推方程的解应用归纳法严格证明

- 归纳法求解递推方程的三个步骤
 - ▶猜测解的形式
 - ▶用数学归纳法证明
 - 找出使解有效的常数
 - ▶ 确定常数使边界条件成立

- ■常用技巧
 - ▶通过引入低阶项获得更紧的解的形式

递推方程的归纳证明

例: T(n) = 4T(n/2) + n

- **■** [假定*T*(1)=Θ(1)]
- 猜测T(n)= O (n^3) (分别证明O和Ω 关系)
- 假设,对于所有的k < n $T(k) \le ck^3$
- 通过归纳法证明

$$T(n) \le cn^3$$

例: T(n) = 4T(n/2) + n

这里要保证: $((c/2)n^3 - n) \ge 0$,

这只需要: $c \ge 2$ 并且 $n \ge 1$

于是有 $T(n)=O(n^3)$

例: T(n) = 4T(n/2) + n

- ▶ 还必须处理初始情形,才能使归纳成立。
- ► 注意到,因为对所有的 $1 \le n < n_0$ 都有 $T(n) = \Theta(1)$ (其中 n_0 是某个适当的常数)
- 于是当 $1 \le n < n_0$ 时,只要 c 足够大,就有

"
$$\Theta(1)$$
" $\leq cn^3$

• 但 $T(n) = O(n^3)$ 这个界并不够紧

更紧的上界

- 我们来证明 $T(n) = O(n^2)$
- 假设对于所有的 k < n, 有 $T(k) \le ck^2$

$$T(n) = 4T(n/2) + n$$

 $\leq 4c(n/2)^2 + n = cn^2 + n$
 $= O(n^2)$ 错! 必须证明完全一致的形式

更紧的上界

- 我们来证明 $T(n) = O(n^2)$
- 假设对于所有的 k < n, 有 $T(k) \le ck^2$

但对任何 c > 0, 上式最后一步不可能成立!

更紧的上界

要点:加强归纳假设

*减去一个低阶项

假设: 对于 k < n, 有 $T(k) \le c_1 k^2 - c_2 k$

$$T(n) = 4T(n/2) + n$$

 $\leq 4(c_1(n/2)^2 - c_2(n/2)) + n$
 $= c_1 n^2 - 2c_2 n + n$
 $= c_1 n^2 - c_2 n - (c_2 n - n)$
 $\leq c_1 n^2 - c_2 n \implies c_2 > 1$

可以取 c_1 足够大来处理初始情况。

例:
$$T(n) = 4T(n/2) + n = \Omega(n^2)$$

- \blacksquare 再证明: $T(n) = \Omega(n^2)$
- 假设对于 k < n, 有 $T(k) \ge ck^2$

$$T(n) = 4T(n/2) + n$$

$$\geq 4c(n/2)^2 + n$$

$$= cn^2 + n$$

- 取 c 足够小来处理初始情况。
- \blacksquare $T(n) = O(n^2)$ 且 $T(n) = O(n^2)$ 得 $T(n) = O(n^2)$

换元法的求解递推方程

- 例: *T*(*n*)=2*T*(√*n*)+log*n*
- 通过改变变量转化递归式,将 \sqrt{n} 转化为整数。 令 $m = \log n$,于是

$$T(2^m) = 2T(2^{m/2}) + m$$

■ 再令 $S(m) = T(2^m)$, 于是

$$S(m) = 2S(m/2) + m$$
$$= \Theta(m \log m)$$

$$T(n) = T(2^m) = S(m) = \Theta(m \log m)$$
$$= \Theta(\log n \log \log n)$$

主定理(Master Theorem)

- Bentley, Haken, Saxe, "A general method for solving divide-and-conquer recurrences," ACM SIGACT News, 12 (3): 36–44, 1980.
- Popularized by the CLRS Textbook

主定理

定理:设 $a \ge 1$, b > 1为常数, f(n)为函数, T(n)为非负整数, 且 T(n) = a T(n/b) + f(n)

则有以下结果:

- 3. 若 $f(n) = \Omega(n^{\log_b a + \epsilon}), \epsilon > 0$, 且对某个常数 c < 1 和 所有充分大的 n 有 $a f(n/b) \le c f(n)$,那么 $T(n) = \Theta(f(n))$

主定理的应用

例9 求解递推方程 T(n) = 9T(n/3) + n

解 上述递推方程中的a = 9, b = 3, f(n) = n,那么

$$n^{\log_3 9} = n^2, \quad f(n) = O(n^{\log_3 9 - 1}),$$

相当于主定理的第一种情况,其中 ε =1. 根据定理得到

$$T(n) = \Theta(n^2)$$

例10 求解递推方程 T(n) = T(2n/3) + 1

解 上述递推方程中的 a=1, b=3/2, f(n)=1, 那么

$$n^{\log_{3/2} 1} = n^0 = 1, \quad f(n) = 1$$

相当于主定理的第二种情况. 根据定理得到.

$$T(n) = \Theta(n^0 \log n) = \Theta(\log n)$$

主定理的证明

不妨设 $n=b^k$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$= a[aT(\frac{n}{b^2}) + f(\frac{n}{b})] + f(n) = a^2T(\frac{n}{b^2}) + af(\frac{n}{b}) + f(n)$$

$$= ...$$

$$= a^kT(\frac{n}{b^k}) + a^{k-1}f(\frac{n}{b^{k-1}}) + ... + af(\frac{n}{b}) + f(n)$$

$$= a^kT(1) + \sum_{j=0}^{k-1} a^j f(\frac{n}{b^j})$$

$$= c_1 n^{\log_b a} + \sum_{j=0}^{k-1} a^j f(\frac{n}{b^j}) \qquad T(1) = c_1$$

情况1

$$f(n) = O(n^{\log_b a - \varepsilon})$$

$$T(n) = c_{1}n^{\log_{b}a} + \sum_{j=0}^{k-1}a^{j}f(\frac{n}{b^{j}})$$

$$= c_{1}n^{\log_{b}a} + O(\sum_{j=0}^{\log_{b}n-1}a^{j}(\frac{n}{b^{j}})^{\log_{b}a-\epsilon})$$

$$= c_{1}n^{\log_{b}a} + O(n^{\log_{b}a-\epsilon}\sum_{j=0}^{\log_{b}n-1}\frac{a^{j}}{(b^{\log_{b}a-\epsilon})^{j}})$$

$$= c_{1}n^{\log_{b}a} + O(n^{\log_{b}a-\epsilon}\sum_{j=0}^{\log_{b}n-1}(b^{\epsilon})^{j})$$

$$= c_{1}n^{\log_{b}a} + O(n^{\log_{b}a-\epsilon}\frac{b^{\epsilon\log_{b}n}-1}{b^{\epsilon}-1})$$

$$= c_{1}n^{\log_{b}a} + O(n^{\log_{b}a-\epsilon}n^{\epsilon}) = O(n^{\log_{b}a})$$

情况2

$$f(n) = \Theta(n^{\log_b a})$$

$$T(n) = c_1 n^{\log_b a} + \sum_{j=0}^{k-1} a^j f(\frac{n}{b^j})$$

$$= c_1 n^{\log_b a} + \Theta(\sum_{j=0}^{\log_b n-1} a^j (\frac{n}{b^j})^{\log_b a})$$

$$= c_1 n^{\log_b a} + \Theta(n^{\log_b a} \sum_{j=0}^{\log_b n-1} \frac{a^j}{a^j})$$

$$= c_1 n^{\log_b a} + \Theta(n^{\log_b a} \log n)$$

$$= \Theta(n^{\log_b a} \log n)$$

情况3

$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$

$$T(n) = c_1 n^{\log_b a} + \sum_{j=0}^{k-1} a^j f(\frac{n}{b^j})$$

$$\leq c_1 n^{\log_b a} + \sum_{j=0}^{\log_b n-1} c^j f(n) \qquad (af(\frac{n}{b}) \leq cf(n))$$

$$= c_1 n^{\log_b a} + f(n) \frac{c^{\log_b n} - 1}{c - 1}$$

$$= c_1 n^{\log_b a} + \Theta(f(n)) \qquad (c < 1)$$

$$= \Theta(f(n)) \qquad (f(n) = \Omega(n^{\log_b a + \varepsilon}))$$

应用实例

例11 求解递推方程

$$T(n) = 3T(n/4) + n \log n$$

解 上述递推方程中的a=3, b=4, $f(n)=n\log n$, 那么

$$n \log n = \Omega(n^{\log_4 3 + \varepsilon}) = \Omega(n^{0.793 + \varepsilon})$$
, $\varepsilon \approx 0.2$

此外,要使 $af(n/b) \le cf(n)$ 成立,代入 $f(n)=n\log n$,得到

$$\frac{3n}{4}\log\frac{n}{4} \le cn\log n$$

显然只要 $c \ge 3/4$,上述不等式就可以对充分大的n成立.

相当于主定理的第三种情况. 因此有 $T(n) = \Theta(f(n)) = \Theta(n \log n)$

不能直接使用主定理的例子

例12 求解 $T(n) = 2T(n/2) + n \log n$

$$a=b=2, n^{\log_2 2}=n, f(n)=n\log n$$

不存在
$$\varepsilon > 0$$
 使得 $n\log n = \Omega(n^{1+\varepsilon})$ 成立, $n\log n$ $n\log n$ $n\log n$ $n\log n = \Omega(n^{1+\varepsilon})$ 成立, $n(\log n - 1)$ $n(\log n - 1)$ $n(\log n - 2)$ $n(\log n - 2)$

$$T(n) = n \log n + n(\log n - 1) + n(\log n - 2) + \dots + n(\log n - k + 1)$$

$$= (n \log n) \log n - n(1 + 2 + \dots + k - 1)$$

$$= n \log^2 n - nk(k - 1)/2 = O(n \log^2 n)$$

生成函数求解递推方程

生成函数

- 生成函数 / 形式幂级数
 - ▶ 带形式变量 (无需考虑级数的收敛性) 的幂级数, 以幂级数系数表示递推序列
- **章** 定义 给的序列 $a_0, a_1, a_2, a_3, ..., a_n, ...$ (即 $\{a_n\}$) , 称函数

$$A(\mathbf{z}) = \sum_{k \ge 0} a_k \mathbf{z}^k$$

为该序列的<mark>常规生成函数</mark>(OGF), 用记号 $[z^k]A(z)$ 表示系数 a_k 。

- 生成函数求解递推方程的基本思想
 - ▶表示:序列~生成函数系数
 - ▶ 求解: 递推方程 ⇒ 数列相邻项方程 ⇒ 生成函数方程 ⇒ 生成函数 ~ 序列

表1: 基本的常规生成函数

$$1, 1, 1, ..., 1, ...$$

$$\sum_{N \ge 0} 1 \cdot z^N = \frac{1}{1 - z}$$

$$0, 1, 2, 3, 4, ..., N, ...$$

$$\sum_{N \ge 1} N \cdot z^N = \frac{z}{(1 - z)^2}$$

$$0, 0, 1, 3, 6, 10, ..., {N \choose 2}, ...$$

$$\sum_{N \ge 2} {N \choose 2} \cdot z^N = \frac{z^2}{(1 - z)^3}$$

$$0, ..., 0, 1, M + 1, ..., {N \choose M}, ...$$

$$\sum_{N \ge M} {N \choose M} \cdot z^N = \frac{z^M}{(1 - z)^{M+1}}$$

$$1, M, {M \choose 2}, ..., {M \choose N}, ..., M, 1$$

$$\sum_{N \ge M} {M \choose M} \cdot z^N = (1 + z)^M$$

$$1, M + 1, {M + 2 \choose 2}, {M + 3 \choose 3}, ...$$

$$\sum_{N \ge 0} {N + M \choose N} \cdot z^N = \frac{1}{(1 - z)^{M+1}}$$

表1: 基本的常规生成函数 (续)

$$1,0,1,0,...,1,0,...$$

$$\sum_{N\geq 0} z^{2N} = \frac{1}{1-z^2}$$

$$1,c,c^2,c^3,...,c^N,...$$

$$\sum_{N\geq 0} c^N \cdot z^N = \frac{1}{1-cz}$$

$$1,1,\frac{1}{2!},\frac{1}{3!},...\frac{1}{N!},...$$

$$\sum_{N\geq 0} \frac{1}{N!} \cdot z^N = e^z$$

$$0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},...,\frac{1}{N},...$$

$$\sum_{N\geq 1} \frac{1}{N} \cdot z^N = \ln \frac{1}{1-z}$$

$$0,1,1+\frac{1}{2},1+\frac{1}{2}+\frac{1}{3},...,H_N,...$$

$$\sum_{N\geq 1} H_N \cdot z^N = \frac{1}{1-z} \ln \frac{1}{1-z}$$

$$0,0,1,2\left(\frac{1}{2}+\frac{1}{3}\right),...,N(H_N-1),...$$

$$\sum_{N>0} N(H_N-1) \cdot z^N = \frac{z}{(1-z)^2} \ln \frac{1}{1-z}$$

表2: 关于常规生成函数的运算

表2:关于常规生成函数的运算(续)

比例

$$A(\lambda z) = \sum_{n\geq 0} \lambda^n a_n z^n$$

$$a_0$$
, λa_1 , $\lambda^2 a_2$, ..., $\lambda^n a_n$, ...

相加

$$A(z) + B(z) = \sum_{n>0} (a_n + b_n)z^n$$

$$a_0 + b_0$$
, $a_1 + b_1$, ..., $a_n + b_n$, ...

差分

$$(1-z)A(z) = a_0 + \sum_{n\geq 1} (a_n - a_{n-1})z^n$$

$$a_0, a_1 - a_0, ..., a_n - a_{n-1}, ...$$

卷积

$$A(z)B(z) = \sum_{n>0} \left(\sum_{0 \le k \le n} a_k b_{n-k} \right) z^n$$

$$A(z)B(z) = \sum_{n>0} \left(\sum_{0 \le k \le n} a_k b_{n-k} \right) z^n \qquad a_0 + b_0, \ a_1 b_0 + a_0 b_1, \ \dots, \sum_{0 \le k \le n} a_k b_{n-k}, \ \dots$$

$$\frac{A(z)}{1-z} = \sum_{n\geq 0} \left(\sum_{0\leq k\leq n} a_k\right) z^n$$

$$a_0, a_0 + a_1, ..., \sum_{0 \le k \le n} a_k, ...$$

例子: 若干数列的生成函数

$$\frac{1}{(1-3z)^4}$$

$$a_n = \binom{n+3}{n} 3^n$$

$$\left(1-z^2\right)\ln\frac{1}{1-z}$$

$$(1-z^2)\ln\frac{1}{1-z}$$
 0, 1, $\frac{1}{2}$, ..., $(\frac{1}{N}-\frac{1}{N-2})$

$$\frac{1}{\left(1-2z^2\right)^2}$$

$$\frac{1}{(1-2z^2)^2} \qquad \left(\frac{1}{2} + \frac{(-1)^n}{2}\right) \left(\frac{n}{2} + 1\right) \sqrt{2}^n$$

指数生成函数

lacktriangle 定义 给的序列 $a_0, a_1, a_2, a_3, ..., a_n, ...$ (即 $\{a_n\}$),称函数 $A(z) = \sum_{k \geq 0} a_k \frac{z^k}{k!}$

■ 为该序列的指数生成函数 (EGF) , 用记号 $k![z^k]A(z)$ 表示系数 a_k 。

$$1, 1, 1, ..., 1, ...$$

$$e^{z} = \sum_{N \ge 0} \frac{z^{N}}{N!}$$

$$0, 1, 2, 3, 4, ..., N, ...$$

$$ze^{z} = \sum_{N \ge 1} \frac{z^{N}}{(N-1)!}$$

$$0, 0, 1, 3, 6, 10, ..., {N \choose 2}, ...$$

$$\frac{1}{2}z^{2}e^{z} = \frac{1}{2}\sum_{N \ge 2} \frac{z^{N}}{(N-2)!}$$

$$0, ..., 0, 1, M+1, ..., {N \choose M}, ...$$

$$\frac{1}{M!}z^{M}e^{z} = \frac{1}{M!}\sum_{N \ge M} \frac{z^{N}}{(N-M)!}$$

$$1, 0, 1, 0, ..., 1, 0, ...$$

$$\frac{1}{2}(e^{z} + e^{-z}) = \sum_{N \ge 0} \frac{1 + (-1)^{N}}{2} \frac{z^{N}}{N!}$$

$$1, c, c^{2}, c^{3}, ..., c^{N}, ...$$

$$e^{cz} = \sum_{N \ge 0} \frac{c^{N}z^{N}}{N!}$$

$$1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{N+1}, ...$$

$$\frac{e^{z} - 1}{z} = \sum_{N \ge 1} \frac{z^{N}}{(N+1)!}$$

$$1, 2, 6, 24, ..., N!, ...$$

$$\frac{1}{1-z} = \sum_{N \ge 1} \frac{N!}{N!}$$

表4关于指数生成函数的运算

表4关于指数生成函数的运算(续)

相
$$A(z) + B(z) = \sum_{n\geq 0} (a_n + b_n) \frac{z^n}{n!}$$

$$a_0 + b_0$$
, ..., $a_n + b_n$, ...

差
$$A'(z) - A(z) = \sum_{n>0} (a_{n+1} - a_n) \frac{z^n}{n!}$$

$$a_1 - a_0$$
, ..., $a_{n+1} - a_n$, ...

$$a_0 + b_0$$
, $a_1 b_0 + a_0 b_1$, ..., $\sum_{0 \le k \le n} \binom{n}{k} a_k b_{n-k}$, ...

部分
$$e^z A(z) = \sum_{n \geq 0} \left(\sum_{0 \leq k \leq n} {n \choose k} a_k \right) \frac{z^n}{n!}$$

$$a_0$$
, $a_0 + a_1$, ..., $\sum_{0 \le k \le n} \binom{n}{k} a_k$, ...

生成函数求解递推方程

- ■利用常规生成函数求解递推方程的机械步骤
 - ▶在递推方程的两边乘以 zn , 然后关于 n 求和。
 - ▶处理所得的各个和,导出一个关于 OGF 的函数方程。
 - ▶解这个方程,导出 OGF 的显示公式。
 - ▶将 OGF 展开为一个幂级数,从而得到系数表达式。
 - ▶这些系数就是原序列中的元素
- ■同样的步骤也适用于指数生成函数
 - ▶只是递推方程两边乘以 $z^n/n!$,然后在关于n求和。

例题: 平凡线性递推

- 解递推方程: $a_n = a_{n-1} + 1$, $a_0 = 0$
- 两边乘以 z^n ,然后关于n求和 $\sum_{n\geq 1} a_n z^n = \sum_{n\geq 1} a_{n-1} z^n + \frac{z}{1-z}$
 - lacktriangle 由生成函数: $A(z) = \sum_{n>0} a_n z^n$
 - 求得方程

$$A(z) = zA(z) + \frac{z}{1-z}$$

▶ 于是

$$A(z) = \frac{z}{(1-z)^2} \quad \Rightarrow \quad a_n = n$$

例题: 简单指数型递推 (1/2)

- 解递推方程: $a_n = 2a_{n-1} + 1$, $a_0 = 1$
- 两边乘以zn , 然后关于 n 求和

$$\sum_{n\geq 1} a_n z^n = 2z \sum_{n\geq 1} a_{n-1} z^{n-1} + \frac{z}{1-z}$$

- lacktriangle 由生成函数: $A(z) = \sum_{n \geq 0} a_n z^n$
- 求得方程

$$A(z) - 1 = 2zA(z) + \frac{z}{1-z}$$

$$A(z) = \frac{1}{(1-z)(1-2z)}$$

例题: 简单指数型递推 (2/2)

■ 应用分式和

$$A(z) = \frac{1}{(1-z)(1-2z)} = \frac{2}{1-2z} - \frac{1}{1-z}$$

■ 求和展开

$$[z^n]A(z) = [z^n]\left(\frac{2}{1-2z} - \frac{1}{1-z}\right) = 2^{n+1} - 1$$

例题: 斐波那契数列

- \blacksquare 解递推方程: $F_n = F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$
- lacktriangle 由生成函数: $F(z) = \sum_{n \geq 0} F_n z^n$
- ■满足

$$F(z) = zF(z) + z^2F(z) + z$$

■导出

$$F(z) = \frac{z}{1 - z - z^2} = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi z} - \frac{1}{1 - \widehat{\phi} z} \right)$$

■ 两项对应的数列相加/减

$$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \widehat{\phi}^n \right)$$

例题: 高阶线性递推

- 解递归方程
- 由生成函数

- 满足
- 导出

● 于是

$$a_n = 5a_{n-1} + 6a_{n-2}$$
, $a_0 = 0$, $a_1 = 1$

$$A(\mathbf{z}) = \sum_{n \ge 0} a_n \mathbf{z}^n$$

$$A(z) - z = 5zA(z) - 6z^2A(z)$$

$$A(z) = \frac{z}{1 - 5z + 6z} = \frac{1}{1 - 3z} - \frac{1}{1 - 2z}$$

$$a_n = (3^n - 2^n)$$

定理求解高阶递推方程

- 对于高阶方程:
- 其生成函数

■ 为有理函数

- 其中
- 而f(z)由数列初值

决定,且次数小于t。

$$a_n = x_1 a_{n-1} + x_2 a_{n-2} + ... + x_t a_{n-t}$$

$$a(z) = \sum_{n \ge 0} a_n z^n$$

$$a(\mathbf{z}) = \frac{f(\mathbf{z})}{g(\mathbf{z})}$$

$$g(z) = 1 - x_1 z - x_2 z^2 - ... - x_t z^t$$

$$a_0, a_1, ..., a_t$$

证明

$$\sum_{n\geq t} a_n z^n = x_1 \sum_{n\geq t} a_{n-1} z^n + x_2 \sum_{n\geq t} a_{n-2} z^n + \dots + x_t \sum_{n\geq t} a_{n-t} z^n$$

$$a(z) - u_0(z)$$

$$= (x_1 z a(z) - u_1(z)) + (x_2 z^2 a(z) - u_2(z)) + \dots + (x_t z^t a(z) - u_t(z))$$

其中 $u_i(z)$, $0 \le i \le t$ 至多是t-1次的。

设

$$f(z) \equiv u_0(z) - u_1(z) - u_2(z) - \dots - u_t(t)$$

则

$$a(z) = \frac{u_0(z) - u_1(z) - u_2(z) - \dots - u_t(t)}{1 - x_1 z - x_2 z^2 - \dots - x_t z^t} = \frac{f(z)}{g(z)}$$

由f(z)次数小于t,并且f(z) = a(t)g(t),则必然有

$$f(z) = g(t) \sum_{0 \le n \le t} a_n z^n \pmod{z^t}$$

例题

$$a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3} \ (n > 2, a_0 = 0, a_1 = a_2 = 1)$$

$$a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3} \ (n > 2, a_0 = a_1 = a_2 = 1)$$

$$a_n = 2a_{n-1} - a_{n-2} + 2a_{n-3} \ (n > 2, a_0 = 1, a_1 = 0, a_2 = -1)$$

$$a_n = 2a_{n-1} - a_{n-2} + 2a_{n-3} \ (n > 2, a_0 = 0, a_1 = 1, a_2 = 4)$$

求解高阶递推方程的一般方法

- 由递推方程导出 g(z)
- \blacksquare 由 g(z) 和初始条件计算 f(z)
- 消去 f(z)/g(z) 中的公共因子
- 用部分分式将 f(z)/g(z) 表示为形如 $(1-\theta z)^{-j}$ 的项的线性组合
- 将每个部分分式按以下公式展开

$$[z^n](1-\beta z)^{-j} = {n+j-1 \choose j-1}\beta^n$$

例题: 快速排序的递推求解 (1/2)

$$C_n=n+1+rac{2}{n}\sum_{1\leq k\leq n}C_{k-1}$$
 , $n\geq 1$, $C_0=0$ $nC_n=(n+1)n+2\sum_{1\leq k\leq n}C_{k-1}$

定义生成函数:

$$C(z) = \sum_{n>0} C_n z^n$$

关于 n 求和:

$$\sum_{n\geq 1} nC_n z^n = \sum_{n\geq 1} (n+1)nz^n + 2\sum_{n\geq 1} \sum_{1\leq k\leq n} C_{k-1} z^n$$

例题: 快速排序的递推求解 (2/2)

由于

$$\sum_{n\geq 1} nC_n z^n = z \sum_{n\geq 1} nC_n z^{n-1} = z \sum_{n\geq 0} (n+1)C_{n+1} z^n = zC'(z)$$

$$\sum_{n\geq 1} (n+1)nz^n = z \sum_{n\geq 0} (n+2)(n+1)z^n = \frac{2z}{(1-z)^3}$$

$$\sum_{n\geq 1} \sum_{1\leq k\leq n} C_{k-1} z^n = z \sum_{n\geq 0} \sum_{0\leq k\leq n} C_k z^n = \frac{zC(z)}{1-z}$$

可得生成函数的微分方程:

$$C'(z) = \frac{2}{(1-z)^3} + \frac{2C(z)}{1-z}$$

递推方程与生成函数简史

- 四大文明古国的数学家们研究数列问题
- 1202年 Leonardo Bonacci (a.k.a., Fibonacci / 斐波那契)研究 Fibonacci 数列
 - ► Leonardo Bonacci. "Liber Abaci," 1202.
- 1722年 De Moivre (棣莫弗) 提出用生成函数方法研究 Fibonacci 数列
 - ► Abraham de Moivre. "De fractionibus algebraicis radicalitate immunibus ad fractiones simpliciores reducendis, deque summandis terminis quarundam serierum aequali intervallo a se distantibus." Philosophical Transactions, 32(373):162–168, 1722.
- ▶ 生成函数的扩展阅读材料 (除用于解递推方程,也广泛用于组合计数)
 - ► Sec. 7.3 "Solving Recurrence" in Graham, Knuth, Patashnik, "Concrete Mathematics (2nd ed.)," 2013
 - ▶ Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley, third edition, 1997.
 - ▶ C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968.

内容小结

- 函数的渐近的界
- 常见函数的阶
- 递推方程求解
 - ▶递归树
 - ▶主定理证明及应用
 - ▶生成函数

教材和扩展阅读

- ▶ 1.3 算法的数学基础
 - ▶ 1.3.1 函数的渐近的界
 - ▶ 1.3.2 求和的方法
 - ▶1.3.3 递推方程求解方法
- 生成函数
 - ► https://aofa.cs.princeton.edu/30gf/