

CRICOS PROVIDER 00123M

School of Computer Science

COMP SCI 1103/2103 Algorithm Design & Data Structure Complexity

adelaide.edu.au seek LIGHT

Overview

- Today we will have
 - Review on the topic of last session
 - Formal definition of Big O

Review

We've talked about complexity in general terms.

- Assumptions:
 - The complexity analysis focuses on algorithms
 - The input size is taken as argument.
 - The machine model is used to eliminate the influence of hardware
- The running time complexity of an algorithm matters in
 - the worst case
 - the average case

Review

- Is it always easy to find the complexity of an algorithm?
- We provide a range for the complexity that we are after
 - Upper bound
 - Lower bound
- Usually used for the worst case or the average case.
- When you introduce an instance of the problem as the worst case, is it always possible to prove that it is the worst case?
 - No. (but for the simple search example it was obvious!)
 - Formally, it is usually called a hard instance.
 - It gives a lower bound on the worst case complexity, but for proving an upper bound we need to go generally for the proof

Example: A simple search function

```
// pseudo code
search(list, item)
   for(i=1 to n)
       if list[i]==item
               return i
    Required time:
   Set up time
```

oct up tiin

For loop

- The for loop will take approximately n times the effort to make decision on one item.
- Set-up for this algorithm is constant.
- Mathematically, the execution time is equal to cn + s.
 - Where c and s are constants and represents the overhead per iteration, and the set-up costs, respectively.
- f(n) = cn + s represents the actual execution time of this searching process.

Big O[O(g(n))] – formal definition

- If f(n) represents the *actual* execution time of an algorithm, then, as we don't always know the details of f(n), we approximate it.
- f(n) = O(g(n)) if there exist positive constants c and n_o such that f(n) <= c g(n) when $n>= n_o$.
- We refer to this as Big-Oh(g(n)), O(g(n)) or "order g(n)"

General Rules

 Some mathematical background is required for analyzing computational complexity

Rule 1. If
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$, then

- 1. $f_1(n) + f_2(n) = O(g_1(n) + g_2(n)) = O(\max(g_1(n), g_2(n)))$
- 2. $f_1(n) * f_2(n) = O(g_1(n)*g_2(n))$

Rule 2. If f(n) is a polynomial of degree k, then $f(n) = O(n^k)$

Rule 3. if $f(n) = \log(n^k)$ then $f(n) = O(\log n)$ for any constant k

Let's see some examples

- n+1 = O(n)?
- n+2 = O(n)?
- 2n+2 = O(n)?
- $n^2 = O(n)$?
- $\operatorname{sqrt}(n) = \operatorname{O}(n)$?
- 1 = O(n)?
- $\log n = O(n)$?
- $n \log n = O(n)$?

- $n = O(n^2)$?
- $n^2 = O(n^2)$?
- $n^3 = O(n^2)$?
- * We want our Big Oh bounds to be:
 - Tight: We want g(n) to be as close to f(n) as it can be.
 - Simple: we can drop low order terms and constants. (why?)
- Growth rates are important

How do you find the complexities?

- We have simple rules
 - Simple statements (Math operators: +, -, &&, *, etc ...,
 Assignment , Array indexing, Comparisons) are all O(1)
 - The running time of a loop is at most the running time of the statements inside the loop (including tests) multiplied by the number of iterations
 - Nested loops?
 - The running time of an if/else statement is at most the running time of the test plus the larger of the running times of the statements in the if and else block.

Simple Statement

- Simple statements:
 - Math operators: +, -, &&, *, etc ...
 - Assignment, array indexing, ...
 - Comparison
- The simple statements are all O(1)
- What about blocks of simple statements?

Simple Statement

Consider the code block below

```
int next, n1, n2;
next = n1 + n2;
n2 = n1;
n1 = next;
```

- These statements are all O(1).
- They take a constant amount of time to execute, independent of the input size!
- The complexity of the entire code segment is O(1).
 - These statements altogether still take a constant amount of time to execute.

• For-loops: (n is the input)

```
int counter = 0;
for(int i = 0; i< N; i++){
  counter += i;
}</pre>
```

- The running time of a for loop is at most the running time of the statements inside the for loop (including tests) multiplies the number of iterations.
- O(n*[complexity of statements inside the loop])
 O(n)

```
int counter = 0;
for(int i = 0; i< 100; i++){
  counter += i;
}</pre>
```

- The statements are performed 100 times.
- The complexity of the entire code segment is 100 * [the complexity of the statements inside the loop]

```
-100*c = O(1)
```

Nested loops:

```
int counter = 0;
for(int i = 0; i< n ; i++){
  for(int j = 0; j< n ; j++){
    counter ++;
  }
}</pre>
```

- The total running time of the statements that form a group of nested loops is the running time of the inner statements multiplied by the product of the sizes of all the loops.
- O(n^2)

Nested loops

```
for(int i = 0; i< n: i++){
  for(int j = 0; j< m; j++){
    counter ++;
  }
}</pre>
```

```
for(int i = 0; i< n; i++){
  for(int j = 0; j< 100; j++){
    counter ++;
  }
}</pre>
```

While-loops:

Consecutive Statements

 Block of statements without function calls is just summation.

If/else Statement

• The running time of an if/else statement is never more than the running time of the test plus the larger of the running times of the statements in the if and else block.

If/else Statement

```
if(a>b){
  for(int i=0; i<n; i++){
    counter ++;
  }
}else{
  counter = 0;
}</pre>
```

- Iterative version of Fibonacci number calculation
- The program structure tree
- O(n)

```
4 \vee int Fib(int n) {
 5
         if (n==0 || n==1) {
              return n;
 8
10
         int n1=0;
         int n2=1;
11
12
         int next;
13
14 ▼
         for(int i = 2; i <= n; i++) {
              next = n1 + n2;
15
16
              n1 = n2;
17
              n2 = next;
18
19
         return next;
20
```

- The iterative version of Fibonacci has a linear growth rate.
- The run time grows in proportion to the magnitude of the Fibonacci number we are computing.

Typical Big-Oh Running Times

Big-Oh	Informal name
$O(1)$ $O(\log n)$ $O(n)$ $O(n \log n)$ $O(n^2)$ $O(n^3)$ $O(2^n)$	constant logarithmic linear n log n quadratic cubic exponential

running time

input size

Summary

- Notations:
 - Big O: for presenting an upper bound
- Simple Rules
 - Summation and multiplication
 - Polynomials with degree k: O(n^k)
 - Analysis of Simple algorithms:
 - Simple statement, If/else statements, Loops, Consecutive statement

