MIPSfpga+ ADC Interface Module for Altera MAX10 FPGA (ADC_MAX10)

Main Features

- Small. The module core have about 250 lines of Verilog code);
- Simple. Module register interface (architecture) is very similar to Atmel ATmega88 devices ADC block;
- Supports up to 10 input pins (1 dedicated, 8 dual purpose analog input pins, 1 device temperature sensor);
- Supports ADC conversion speed up to 1 MSPS (in Free Running mode) and up to 0.33 MSPS when conversion starts by external trigger input;
- ADC Conversion End interrupt signal support;
- Checked on Terasic DE10-Lite board (Altera MAX10 10M50DAF484C7G FPGA device);
- Merged to MIPSfpga+ system: https://github.com/MIPSfpga/mipsfpga-plus
- Project for standalone ADC core debug: https://github.com/zhelnio/ahb_lite_adc_max10

Module Interface Signals

Signal Name	Type	Description
		AHB-Lite Interface Signals
HCLK	input	Clock input.
HRESETn	input	The bus reset signal is active LOW
HADDR [31:0]	input	The 32-bit system address bus
HBURST [2:0]	input	Ignored
HMASTLOCK	input	Ignored
HPROT [3:0]	input	Ignored
HSEL	input	Peripheral device select signal
HSIZE [2:0]	input	Ignored. Only x32 operations are supported
HTRANS [1:0]	input	Indicates the transfer type of the current transfer
HWDATA [31:0]	input	The write data bus transfers data from the master to the slaves during write operations.
HWRITE	input	Indicates the transfer direction. When HIGH this signal indicates a write transfer
	Ι	and when LOW a read transfer.
HRDATA [31:0]	output	Read Data
HREADY	output	When HIGH, the HREADY signal indicates that a transfer has finished on the
	1	bus. This signal can be driven LOW to extend a transfer.
HRESP	output	The transfer response. When LOW, the HRESP signal indicates that the transfer
	1	status is OKAY.
SI_Endian	input	Ignored
_		MAX10 ADC Control Core Interface Signals (Avalon-ST bus)
ADC_C_Valid	output	Command Stream. Indication from the source port that current transfer is valid.
ADC_C_Channel [4:0]	output	Command Stream. Indicates the channel that the ADC hard block samples from for current
	1	command:
		• 17—temperature sensor
		• 16:0—channels 16 to 0; where channel 0 is the dedicated analog input pin and channels 1
		to 16 are the dual purpose analog input pins. In current realization only 8:0 are
		supported.
ADC_C_SOP	output	Command Stream. Indication from the source port that current transfer is the start of
		packet.
ADC_C_EOP	output	Command Stream. Indication from the source port that current transfer is the end of packet.
ADC_C_Ready	input	Command Stream. Indication from the sink port that it is ready for current transfer.
ADC_R_Valid	input	Response Stream. Indication from the source port that current transfer is valid.
ADC_R_Channel [4:0]	input	Response Stream. Indicates the ADC channel to which the ADC sampling data
	•	corresponds for the current response.
		• 17—temperature sensor
		• 16:0—channels 16 to 0; where channel 0 is the dedicated analog input pin and channels 1
		to 16 are the dual purpose analog input pins. In current realization only 8:0 are
		supported.
ADC_R_Data [11:0]	input	ADC sampling data
ADC_R_SOP	input	Response Stream. Indication from the source port that current transfer is the start of packet.
ADC_R_EOP	input	Response Stream. Indication from the source port that current transfer is the end of packet.
	-	Trigger and Interrupt Signals
ADC_Trigger	input	The signal can be used to start the conversion for all the selected channels when the
	•	ADCS.EN = 1 and $ADCS.TE = 1$.

ADC_Interrupt	output	Indicates the ADC Conversion End interrupt request. This signal is set when
		ADCS.EN = 1, ADCS.IE = 1, ADC conversion completes for all enabled channels and the
		data registers are updated. Signal is cleared by writing a logical one to the ADCS.IF flag.

Altera MAX10 FPGA ADC Performance Specifications (Dual Supply Devices)

P	arameter	Symbol	Condition	Min	Тур	Max	Unit
ADC resolution		_	_	_	_	12	bits
Analog supply voltag	e	V _{CCA_ADC}	_	2.375	2.5	2.625	V
Digital supply voltage	2	V _{CCINT}	_	1.15	1.2	1.25	V
External reference vo	ltage	V _{REF}	_	V _{CCA_ADC} - 0.5	_	V _{CCA_ADC}	V
P	arameter	Symbol	Condition	Min	Тур	Max	Unit
Sampling rate		F_S	Accumulative sampling rate	_	_	1	MSPS
Operating junction to	emperature range	T_J	_	-40	25	125	°C
Analog input voltage		V	Prescalar disabled	0	_	V _{REF}	v
Analog input voltage		V _{IN}	Prescalar enabled (41)	0	_	3	V
Analog supply currer	nt (DC)	I _{ACC_ADC}	Average current	_	275	450	μA
Digital supply curren	it (DC)	I _{CCINT}	Average current	_	65	150	μΑ
Input resistance		R _{IN}	_	_	(42)	_	kΩ
Input capcitance		C _{IN}	_	_	(42)	_	pF
	Offset error and drift	E _{offset}	Prescalar disabled	-0.2	_	0.2	%FS
		Loffset	Prescalar enabled	-0.5	_	0.5	%FS
	Gain error and drift	Egain	Prescalar disabled	-0.5	_	0.5	%FS
D.C. (Gain error and drift		Prescalar enabled	-0.75	_	0.75	%FS
DC Accuracy	Differential non linearity	DNL	External V _{REF} , no missing code	-0.9	_	0.9	LSB
		DNL	Internal V _{REF} , no missing code	-1	_	1.7	LSB
	Integral non linearity	INL	_	-2	_	2	LSB
P	arameter	Symbol	Condition	Min	Тур	Max	Unit
	Total harmonic distortion	THD	F_{IN} = 50 kHz, F_{S} = 1 MHz, PLL	-70 (43)(44) (45)	_	_	dB
AC Accuracy	Signal-to-noise ratio	SNR	F_{IN} = 50 kHz, F_{S} = 1 MHz, PLL	62 (46)(47)(45)	_	_	dB
	Signal-to-noise and distortion	SINAD	F_{IN} = 50 kHz, F_{S} = 1 MHz, PLL	61.5 (48) (49)(45)	_	_	dB
	Temperature sampling rate	T_S	_	_	_	50	kSPS
On-Chip Tempera- ture Sensor	Absolute accuracy	_	-40 to 125°C, with 64 samples averaging	_	_	±5	°C
			Single measurement	_	_	1	Cycle
Conversion Rate (51)	Conversion time	_	Continuous measurement	_		1	Cycle
			Temperature measurement	_	_	1	Cycle

For more details about interface signals and MAX10 FPGA device, refer to:

- MIPS32 microAptiv UP Processor Core Family Integrator's Guide;
- MAX 10 FPGA Device Handbook;
- MAX 10 FPGA Device Datasheet;
- Avalon Interface Specifications;
- MIPSfpga+ source code.

ADC Interface Module Register Description

Regi	ster	Description	Read/Write
Name	Offset	Description	Read/ Write
ADCS	1	ADC control and status	R/W
ADMSK	2	ADC channel mask	R/W
ADC0	3	ADC dedicated analog input conversion results (channel 0)	R
ADC1	4	ADC channel 1 conversion results	R
ADC2	5	ADC channel 2 conversion results	R
ADC3	6	ADC channel 3 conversion results	R
ADC4	7	ADC channel 4 conversion results	R
ADC5	8	ADC channel 5 conversion results	R
ADC6	9	ADC channel 6 conversion results	R
ADC7	10	ADC channel 7 conversion results	R
ADC8	11	ADC channel 8 conversion results	R
ADCT	12	ADC temperature channel conversion results	R

ADCS - ADC Control and Status Register

Fie	elds	Description	Read/Write	Reset State
Name	Bit(s)	Description	Read/ write	Reset State
EN	0	ADC enable. Writing this bit to one enables the ADC. By writing it	R/W	0
		to zero, the ADC is turned off.		
SC	1	ADC start conversion. In Single Conversion mode, write this bit to	R/W	0
		one to start conversion for all the enabled in ADMSK channels. In		
		Free Running mode, write this bit to one to start the first conversion.		
TE	2	ADC trigger enable. When this bit is written to one, Triggering of the	R/W	0
		ADC is enabled. The ADC will start a conversion for all the enabled		
		in ADMSK channels on a HIGH level of the ADC_Trigger signal.		
FR	3	ADC free running mode. In this mode the conversion runs cyclically	R/W	0
		for all the enabled in ADMSK channels until ADCS.EN = 1 and		
		ADCS.FR = 1. If ADC Conversion End is enabled it will be called		
		after every cycle end.		
ΙE	4	ADC interrupt enable. Enables the ADC Conversion End interrupt	R/W	0
IF	5	ADC interrupt flag. Indicates the ADC Conversion End interrupt	R/W	0
		request. This flag is set when ADCS.EN = 1, ADCS.IE = 1, ADC		
		conversion completes for all enabled in ADMSK channels and the		
		data registers (ADC0-ADC8 and ADCT) are updated. Flag is cleared		
		by writing a logical one to it.		
-	31:6	Reserved	R	0

ADMSK - ADC Channel Mask Register

Fiel	ds	Decarintion	Read/Write	Reset State
Name	Bit(s)	Description	Read/ write	Reset State
ADMSK0	0	ADC dedicated analog input enable	R/W	0
ADMSK1	1	ADC channel 1 enable	R/W	0
ADMSK2	2	ADC channel 2 enable	R/W	0
ADMSK3	3	ADC channel 3 enable	R/W	0
ADMSK4	4	ADC channel 4 enable	R/W	0
ADMSK5	5	ADC channel 5 enable	R/W	0
ADMSK6	6	ADC channel 6 enable	R/W	0
ADMSK7	7	ADC channel 7 enable	R/W	0
ADMSK8	8	ADC channel 8 enable	R/W	0
ADMSK9	9	ADC temperature channel enable	R/W	0
-	31:10	Reserved	R	0

ADC0 - ADC dedicated analog input conversion results (channel 0)

Fie	lds	Description	Read/Write	Reset State
Name	Bit(s)	Description	Reau/ write	Reset State
DATA	11:0	ADC dedicated analog input conversion results (channel 0)	R	0
-	31:12	Reserved	R	0

ADC1 - ADC channel 1 conversion results

Fiel	lds	Description	Read/Write	Reset State
Name	Bit(s)	Description	Read/ write	Reset State
DATA	11:0	ADC channel 1 conversion results	R	0
-	31:12	Reserved	R	0

ADC2 - ADC channel 2 conversion results

Fie	lds	Description	Read/Write	Reset State
Name	Bit(s)	Description	Reau/ write	Reset State
DATA	11:0	ADC channel 2 conversion results	R	0
_	31:12	Reserved	R	0

ADC3 - ADC channel 3 conversion results

Fiel	lds	Description	Read/Write	Reset State
Name	Bit(s)	Description	Read/ Write	Reset State
DATA	11:0	ADC channel 3 conversion results	R	0
-	31:12	Reserved	R	0

ADC4 - ADC channel 4 conversion results

Fiel	ds	Dogovintion	Read/Write	Reset State
Name	Bit(s)	Description	Read/ write	Reset State
DATA	11:0	ADC channel 4 conversion results	R	0
-	31:12	Reserved	R	0

ADC5 - ADC channel 5 conversion results

Fie	lds	Degavintion	Read/Write	Reset State
Name	Bit(s)	Description	Read/ Write	Reset State
DATA	11:0	ADC channel 5 conversion results	R	0
-	31:12	Reserved	R	0

ADC6 - ADC channel 6 conversion results

Fields		Decarintian	Read/Write	Reset State
Name	Bit(s)	Description	Read/ Write	Reset State
DATA	11:0	ADC channel 6 conversion results	R	0
_	31:12	Reserved	R	0

ADC7 - ADC channel 7 conversion results

Fields		Description	Read/Write	Reset State
Name	Bit(s)	Description	Reau/ write	Reset State
DATA	11:0	ADC channel 7 conversion results	R	0
-	31:12	Reserved	R	0

ADC8 - ADC channel 8 conversion results

Fields		Description	Read/Write	Reset State
Name	Bit(s)	Description	Read/ write	Reset State
DATA	11:0	ADC channel 8 conversion results	R	0
-	31:12	Reserved	R	0

ADCT - ADC temperature channel conversion results

Fields		Decarintian	Read/Write	Reset State
Name	Bit(s)	Description	Read/ write	Reset State
DATA	11:0	ADC temperature channel conversion results	R	0
-	31:12	Reserved	R	0

Altera Modular ADC core configuration to use with Interface Module (example)

Terasic DE10-Lite FPGA board specifics

- The FPGA device (Altera MAX10 10M50DAF484C7G) that was used on DE10-Lite board have dual ADC core. But the second ADC core inputs are connected to ground;
- The operational amplifier that was used for input Low Pass filter (MCP6244-E/SL) Gain Bandwidth Product is 550 kHz

ADC input pins connection

ADC Input Low Pass Filter

MIPSfpga+ ADC Example Program run order (on Windows)

- change directory to MIPSfpga-plus folder;
- check settings in **mfp_ahb_lite_matrix_config.vh**. The **MFP_USE_ADC_MAX10** option have to be uncommented;
- change directory to **programs\09_adc**;
- set the correct running mode in **main.c** (SIMULATION or HARDWARE);
- for simulation run those scripts: **02_compile_and_link.bat**, **05_generate_verilog_readmemh_file.bat**, **06_simulate_with_modelsim.bat**;
- for hardware test you have to build the MIPSfpga system and load the program binary file to its memory;
- the ADC channel is selected by onboard switches position. The conversation result will be shown on HEX indicator.