White Noise and Random Walk

Son Nguyen

White Noise

• y_t is a white-noise process (series) if y_1 , y_2 ,..., y_t are independent identical distributed (iid) zero mean random variables from a certain distribution (usually normal)

```
set.seed(30)

y ← ts(rnorm(100))

library(ggfortify)

autoplot(y) + ggtitle("White noise of Standard Normal Distribution")
```

White noise of Standard Normal Distribution


```
set.seed(30)

y = sample(c(-1, 1), 100, replace = TRUE)

y \leftary(ggfortify)
autoplot(y) + ggtitle("White noise of Tossing a Coin")
```


Correlogram

ullet Autocorrelation lag with lag k is the the correlation between the time series y_t and y_{t-k}

$$\rho_k = \frac{\sum_{t=k+1}^{n} (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{n} (Y_t - \bar{Y})^2}$$

where:

- ρ_k : Autocorrelation at lag k
- ullet Y_t : Value of the series at time t
- \bar{Y} : Mean of the series
- n: Number of observations
 - Autocorrelation lag with lag 0 is always 1
 - The Correlogram is the plot of the autocorrelations for values of lag k = 0, 1, 2,...

Correlogram a white noise

• Correlogram of a white noise

```
# create a white-noise time series
y = ts(rnorm(100))
# plot its ACF or correlogram
acf(y)
```


Correlogram a white noise

```
set.seed(30)
y = sample(c(-1, 1), 100, replace = TRUE)

y \leftarrow ts(y)

acf(y)
```

Series y

Correlogram a time series with trend

• Usually a trend in the data will show in the correlogram as a slow decay in the autocorrelation

```
Y = ts(c(1:100))
acf(y)
```


The Correlogram - Example

```
y = ts(cos(c(1:100))+rnorm(100)) acf(y)
```


`

ACF of a time series with seasonality

```
set.seed(30)
y = cos(1:100)
y \leftarrow ts(y)
acf(y)
```


Random Walk

ullet A time series y_t is called a random walk if

$$y_t = y_{t-1} + \epsilon_t,$$
 where ϵ_t is a white-noise

• A random walk can be written as

$$y_t = y_0 + \epsilon_1 + \epsilon_2 + \ldots + \epsilon_t$$

```
set.seed(1)
n \leftarrow 5
ct = sample((-1, 1), n, TRUE)
x \leftarrow cumsum(c(0, et))
plot(ts(x))
```


~

```
set.seed(1)
n \leftarrow 1000
ct = c(0, sample(c(-1, 1), n, TRUE))
x \leftarrow cumsum(ct)
plot(ts(x))
```



```
set.seed(3000)
n = 100
c \(
c \tau \text{rnorm}(n)
\)
y_0 = 0

y = c(y_0, 2:n)
for (i in 2:n)
{
    y[i] = y[i-1]+c[i]
}
y = ts(y)
plot(y)
```


Random Walk with drift

• A time series y_t is called a random walk if where ϵ_t is a white-noise

• A random walk can be written as

A random walk can be written as
$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (\epsilon_1 + \epsilon_2 + \dots + \epsilon_t)$$

$$y_t = y_0 + (dt) + (dt) + (dt) + (dt) + (dt)$$

$$y_t = y_0 + (dt) + (dt) + (dt) + (dt)$$

$$y_t = y_0 + (dt) + (dt) + (dt)$$

$$y_t = y_0 + (dt) + (dt) + (dt)$$

$$y_t = y_0 + (dt)$$

```
set.seed(30)
n = 1000
c \leftarrow rnorm(n, sd = 20)
y 0 = 0
drift = 5
y = c(y_0, 2:n)
for (i in 2:n)
  y[i] = drift + y[i-1]+c[i]
library(ggfortify)
library(latex2exp)
plot(ts(y))
title(paste0("A random walk with drift ", drift))
```


The ACF of Random Walks

```
n = 100
error_mean = 0
c ← rnorm(n, mean = error_mean, sd = 30)
y_0 = 0
y = c(y_0, 2:n)

for (i in 2:n)
{
    y[i] = y[i-1]+c[i]
}
acf(y)
```

Series y

de : di-Merenerd series

$$\frac{1}{\sqrt{12}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$$

If 4, 15 a random walk:

Differencing Time Series

```
n = 100
error_mean = 0
drift = 100
c ← rnorm(n, mean = error_mean, sd = 30)
y_0 = 0
y = c(y_0, 2:n)

for (i in 2:n)
{
   y[i] = drift + y[i-1]+c[i]
}
y = ts(y)
plot(y)
.
```


plot(diff(y))

_

acf(y)

`

acf(diff(y))

Series diff(y)

_

Quantmod Package

https://www.quantmod.com/

Random Walks and Stocks

```
library(quantmod)
getSymbols('MSFT', src='yahoo')

## [1] "MSFT"

y = Ad(MSFT[index(MSFT)>"2023-01-01",])
plot(y)
```


acf(diff(y), na.action = na.pass)

Series diff(y)

_

- The differencing series could be a white noise
- It is very reasonable to assume that the stock follows the random walk model.