MYCHEMISTRY -EXAMPLES

v1.99 2012/07/27

Create Reaction Schemes with \LaTeX 2ε and Chemfig

Clemens NIEDERBERGER

https://bitbucket.org/cgnieder/mychemistry/contact@mychemistry.eu

English documentation

Since the documentation is already long enough I decided to provide an extra file containing only examples and a few words where to find possibly interesting code.

For all the undocumented little macros like \fscrp or \delm have a look in the chemmacros documentation.

Contents			7	7 Hydratisation	
1	Addition Reaction	1	8	Esterification	10
2	Mesomerism	2	9	Electrophilic Addition	12
3	The Former Titlepage	4	10	Activation of Fatty Acids	14
4	Condensation Reaction	5	11	Change the layout with TikZ	16
5	Substitution vs. Elimination	6	12	Claisen-Kondensation	18
6	Scheme with three Lines	7	13	Extensive Synthesis	20

1 Addition Reaction

A simple reaction scheme with two different products.

Reaction scheme 1 Addition Reaction

```
\begin{rxnscheme}[,]{Addition Reaction}
     \reactant{ \chemfig{=_[::-30]-[::60](=[::60]0)-[::-60]} }
     \arrow{ $+ \Hpl$ }{}
     \mesomeric[,rf]{
       \reactant{ \chemfig{=_[:-30]-[::60](-[::60]0H)
     (-[::-120,.3,,,white]\fplus)-[::-60]}}
       \marrow[below]
       \reactant[below]{ \chemfig{\fplus-[6,.3,,,white
     ]-[:-30]=_[::60](-[::60]OH)-[::-60]} }
     \branch[right=of rf,,yshift=3em]{
       \arrow{}{}
10
       \reactant{ \chemname{\chemfig{=_[:-30]-[::60](-[::60]OH)}
11
     (-[::-120]R)-[::-60]}{1,2-adduct}}
12
     \branch[right=of rf,,yshift=-5em]{
13
       \arrow{}{}
14
       \reactant{ \chemname{\chemfig{R}
15
     -[6]-[:-30]=_[::60](-[::60]0H)-[::-60]\}\{1,4-adduct\} \ \}
16
    \end{rxnscheme}
```

2 Mesomerism

If you put something relative to an arrow you might have to consider that the arrow's anchor point is in the middle of the arrow. That's why \mesomeric is shifted with yshift=-2.5em in line 9.

Reaction scheme 2 Mesomerism


```
\begin{rxnscheme}[,,,.8]{Mesomerism}
     \setatomsep{1.6em}
     % main reaction:
     \label{lem:chemfig} $$\operatorname{chemfig}_{*6(-=-=(-[,,,,white])} $$
     phantom(Br))-=)}}{benzene \cmpd{benzene}} }
     \arrow[,,2.8]{}{}
     \reactant{ \chemfig{*6(-=-=(-Br)-=)}}{
     bromobenzene \cmpd{bromobenzene}} }
     AlBr4-}$}
     \mesomeric[!!pfeil_a.below!!,mesomerism,xshift=8.5em,!!
     yshift=-2.5em!!]{
       \reactant{
10
         \chemfig{*6(=[0{e1}]-=-(-[:120]Br)(-[:60]H)
11
     -(-[:-30,.4,,,white]\fplus)-[0{e2}])
         \ensuremath{\mbox{elmove}} \{e1\}\{60:4mm\}\{e2\}\{0:4mm\}
       }
       \marrow
14
15
       \reactant{
         \left[ \frac{1}{90,.4,,,white} \right] = [0{e}]
16
     3}]-(-[:120]Br)(-[:60]H)-=)}
         \ensuremath{\mbox{elmove}} \{e3\}\{180:4mm\}\{e4\}\{150:4mm\}
       }
18
19
       \marrow
       \reactant{
20
         \ensuremath{\mbox{ hemfig}} *6(-=-(-[:-150,.4,,,white]\fplus)-(-[:120]Br)
21
     (-[:60]H)-=)}
       }
22
     % last arrow inside a branch, since it cannot be shifted
24
     by itself:
```

```
25  \branch[above=of mesomerism,,xshift=7.5em]{
26   \arrow[above]{$-\Hpl$}{}
27   }
28  \end{rxnscheme}
```

3 The Former Titlepage

This scheme used to be on the title page of the examples file. It isn't any more but here's the scheme, anyway.

Reaction scheme 3 The Titlepage

$$\begin{array}{c} CH_3 \\ C-C-C-CH_3 \\ HO OH \end{array}$$

```
\operatorname{begin}\{\operatorname{rxn}\}[,.7]
     \setatomsep{1.5em}\footnotesize
     % reaction above:
     \reactant[,a]{ \chemfig{C(-[4]*6(=-=-=))(-[2]*6(=-=-=))
     (-[6,,,2]HO)-C(-[2]CH_3)(-[6]OH)-CH_3}
     \arrow[a.45]{}{}
     \reactant[45]{ \chemfig{C(-[4]*6(=-=-=))(-[2]*6(=-=-=))
     (-[0{e1}6,,,2]H_20{e2}\chembelow{0}{\fplus})-C(-[2]CH_3)
     (-[6]OH)-CH_3\\\ellowe{e1}{10:4mm}{e2}{-10:4mm} }
     \arrow[,,1.42]{$-\ch{H20}$}{}
     \reactant{ \chemfig{\chembelow{C}{\fplus}(-[4]*6(=-=-=-))}
     (-[2]*6(=-=-=))-C(-[2]CH_3)(-[6]OH)-CH_3}}{}
     % going down:
     \arrow[a.-45,-|>]{}{}
11
     \reactant[-45]{ \chemfig{C(-[4]*6(=-=-=))(-[2]*6(=-=-=))}
     (-[6,,,2]H0)-C(-[2]CH_3)(-[0{e3}6]0{e4}\chembelow{0}{\chembelow{0}}{\chembelow{0}}
     fplus}H_2)-CH_3}\elmove{e3}{170:4mm}{e4}{-170:4mm} }
     \arrow[,,1.42]{$-\ch{H20}$}{}
12
     \reactant{ \chemfig{C(-[4]*6(=-=-=))(-[2]*6(=-=-=))
     (-[6,,,2]H0)-\chembelow{C}{\fplus}(-[2]CH_3)-CH_3}
    \end{rxn}
```

4 Condensation Reaction

```
| \begin{rxnscheme}{Condensation Reaction}
| \reactant{\chemfig{**6(---(-CH_2OH)-(-OH)--)}}
| \chemand |
| \reactant{\chemfig{**6(----(-OH)-(-HOCH_2)-)}}
```

5 Substitution vs. Elimination

You may see in line 20 that the **\elmove** commands are put inside of **\anywhere**. This is necessary in order to produce the right scheme. But this time you can position **\anywhere** literally anywhere.

```
\begin{rxnscheme}{Substitution vs. Elimination}
     % first reaction:
      \label{lem:lemma} $$\operatorname{(0_{H}H-[0_{b1}:-60]}\subset \mathbb{C}$
      }{\scriptstyle\beta}(<[:-100]H)(<:[:-150]H)-[@{b2}]\
      \label{lem:chemabove(C)} $$  \chemabove(C)_{\scriptstyle}alpha(<[:20]H)(<:[:60]H)-[0{b}] $$
      3}:-60]@{X1}X}}
      \arrow{\mech[e2}{}
     \reactant{\chemfig{H-[:60]C(-[:120]H)=C(-[:60]H)-[:-60]H}}
     \chemand
     \reactant{\ch{X-}}
     \chemand
     \reactant{\chemfig{0(-[:60]H)-[:-60]H}}
     % second reaction:
10
     \reactant[start_a.-90,start_b,yshift=-4em]{\chemfig{H
      -[:-60]C(<[:-100]H)(<:[:-150]H)-@{C}C(<[:20]H)(<:[:60]H)-[
      @{b4}:-60]@{X2}X}}
     \arrow{\mech[2]}{}
     \reactant{\chemfig{H-[:-60]C(<[:-100]H)(<:[:-150]H)-C
      (<[:-80]H)(<:[:-30]H)-[:60]OH}}
     \chemand
14
     \reactant{\ch{X-}}
15
     % nucleophile/base:
     \anywhere{start_b.135,nuc,xshift=-3em,yshift=2em}{\chemfig{
17
     % electron movements:
     \anywhere{nuc.0}{
        \ensuremath{\mbox{elmove}\{0\}\{90:1.5cm\}\{H\}\{180:1cm\}}
        \ensuremath{\mbox{elmove}\{b1\}\{60:1cm\}\{b2\}\{90:5mm\}}
        \ensuremath{\verb{elmove{b3}{{-170:5mm}}{X1}{180:5mm}}}
        \ensuremath{\mbox{elmove}\{0\}\{-90:1cm\}\{C\}\{100:1.5cm\}}
23
        \ensuremath{\mbox{elmove}\{b4\}\{-170:5mm\}\{X2\}\{180:5mm\}}
24
25
     \end{rxnscheme}
```

6 Scheme with three Lines

```
begin{rxnscheme}{Scheme with three Lines}

look setatomsep{1.5em}

footnotesize

reactant[,start]{\chemfig{EtO-(=[2]0)-[:-60](-Br)}

-[:-120](=[6]0)-[4]Et0}}

chemand

reactant{\chemfig{*6(-=--*5(-(=0)-\chemabove{\lewis{4:,N}}}{\fscrm}(-[4,.7,,,draw=none]\chemabove{K}{\fscrp})-(=0)
--)=)}}

arrow{}{}

reactant{\chemfig{*6(-=--*5(-(=0)-N(-(-[::-60](=[::-60]0))}
-[::60]Et0)-[::60](=[::60]0)-[::-60]Et0)-(=0)--)=)}}
```

Reaction scheme 6 Scheme with three Lines

```
% newline, started with \anywhere:
     \anywhere{start.-90,a,xshift=-4em,yshift=-5em}{}
10
     \label{lemis} $$ \operatorname{a.0,..6}_{\operatorname{lewis}_{0:,B}}_{\operatorname{scrm}_{}}^{} $$
11
     \arrow{\ch{R-X}}{}
     \c = -*5(-(=0)-N(-(-[4]R))
     (-[::-60](=[::-60]0)-[::60]Et0)-[::60](=[::60]0)-[::-60]
     Et0)-(=0)--)=)}}
     (-[::-60](=[::-60]0)-[::60]H0_2C)-[::60](=[::60]0)-[::-60]
     HO_2C)-(=0)--)=)\}
     % newline, started with \anywhere:
     \anywhere{a.-90,b,yshift=-7em}{}
     \arrow[b.0]{$- {\ch{CO2}}$}{}
     \arrow{\Hpl}{\ch{H20}}
     \label{lem:lemfig} $$ \operatorname{R-}(-[6]H)(-[2]C|0_2\mathbb)-NH_3\mathbb)$$
    \end{rxnscheme}
```

7 Hydratisation

A scheme with transition states.

For this example we first declare a style for the delocalized double bonds:

```
| \pgfdeclaredecoration{ddbond}{initial}{%
| \state{initial} [width=2pt] {%
| \pgfpathlineto{\pgfpoint{2pt}{0pt}}%
| \pgfpathmoveto{\pgfpoint{1.5pt}{2pt}}%
| \pgfpathlineto{\pgfpoint{2pt}{2pt}}%
| \pgfpathmoveto{\pgfpoint{2pt}{0pt}}%
| \pgfpathmoveto{\pgfpoint{2pt}}%
| \pgfpathmoveto{\pgfpoint{2pt}{0pt}}%
| \pgfpathmoveto{
```

Reaction scheme 7 Hydratisation

```
% \state{final}{%
pgfpathlineto{\pgfpointdecoratedpathlast}%
}%
}%
tikzset{lddbond/.style={decorate,decoration=ddbond}}%
\tikzset{rddbond/.style={decorate,decoration={ddbond,mirror}}%
```

Now the delocalized double bond can be used via chemfig's fifth option (see the chemfig manual):

```
\chemfig{-[,,,,lddbond]-[,,,,rddbond]}
```

Then the whole code looks like follows:

```
\begin{rxnscheme}{Hydratisation}
                      \reactant[,carbonyl_A]{\chemfig{R_2C=0}}
                       \anywhere{above=of carbonyl_A}{\chemfig{H-[:-30]0-[:30]H}}
                      \arrow[,<=>]{\tiny slow}{}
                      \label{lem:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma
                       dotted] \cdot (-[:150]H) - [:30]H) - [:-30,1.15,,,]
                       lddbond]0-[6,,,,densely dotted]H-[,,,,densely dotted]\
                       chemabove{A}{\delm}}}
                      \anywhere{below=of transition_A,,text width=3cm}{(general
                      transition state, acid cat.)}
                      \arrow[,<=>,.7]{}{}
                      -[:-60]OH}}
                       \arrow[below right, <=>,.7] {\frac{\Hpl\}}{}
10
                       \reactant[below right]{\chemfig{R_2C(-[:60]0H)-[:-60]0H}}
                       \arrow[below left, <=>,.7] {} {\ch{H20}}
                      \label{lem:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma
                      mch}}
                      \arrow[left,<=>,.7]{}{}
13
                      \transition[left,transition_B]{\chemfig{R_2C(-[2,,2,,
                      densely dotted]O(-[:150]H-[4,,,,densely dotted]\chemabove{
                      B}_{\langle p} = [:30]H] - [:-30,1.15,,,lddbond] \chemabove{0}{
                       delm}-[6,,,,draw=none]\phantom{H}}}
                      \anywhere{below=of transition_B,,text width=3cm}{(general
                      transition state, base cat.)}
                      \arrow[left, <=>]{\tiny langsam}{}
                     \reactant[left,carbonyl_B]{\chemfig{R_2C=0}}
                      \anywhere{above=of carbonyl_B}{\chemfig{H-[:-30]0-[:30]H}}
                   \end{rxnscheme}
```

You can see that \anywhere was used several times, either to place molecules or to label molecules.

8 Esterification

```
| \begin{rxn}{Esterification}
| \reactant{\chemfig{H-C(=[:60]0)-[:-60]0-H}}
| \arrow[,-+>,1.2,protolysis]{\ch{H2S04}}{\ch{HS04-}}
| \anywhere{below=of protolysis,,yshift=1em}{\tiny protolysis}
| \mesomeric{
| \reactant{\chemfig{H-@{a2}C(-[:60]0-H)(-[:30,.5,,,draw=none]{\fscrp})-[:-60]0-H}}
| \marrow \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}
| \protolysis \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}
| \marrow \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}
| \protolysis \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}}
| \protolysis \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}
| \protolysis \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}
| \protolysis \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}
| \protolysis \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H) -[:-60]0-H}}
| \protolysis \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\chemabove{0}{\
```

Reaction scheme 8 Esterification

```
O-[:60]CH_3}}
 12
                           \reactant[below]{
                                   \label{lem:chemfig} $$ \chemfig{H-C(-[2]0-[:30]H)(-\chemabove{0}}{\cluster{Communication} } $$
13
                    }(-[:60]CH_3)-[:-60]H)-[6]O-[:-30]H}
                                   \ensuremath{\mbox{elmove}\{a1\}\{90:1.5cm\}\{a2\}\{0:3cm\}}
14
15
16
                    \branch[left,,yshift=-3.5em]{
17
                           \arrow[left, <=>]{}{\tiny protolysis}
18
19
                    \reactant[left]{
                           \ensuremath{\mbox{chemfig}} \ensuremath{\mbox{H-C(-[2]0-[:30]H)(-0-CH_3)-[0{b1}6]0{a3}} \ensuremath{\mbox{\mbox{\mbox{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\
21
                    \label{lem:chemabove} $$  \ \end{chemabove} (-[:-150]H) - [:-30]H $$
                           \ensuremath{\mbox{elmove}\{b1\}\{0:5mm\}\{a3\}\{20:5mm\}}
22
23
                   24
                    \mesomeric[below,,xshift=6em]{
25
                            fscrp})-[:-60]0-CH_3}}
                            \marrow
27
                            \reactant{\chemfig{H-C(=[:60]\chemabove{0}{\fscrp}-H)}
                     -[:-60]O-CH_3}}
                    \arrow[,-+>,1.2]{\ch{HS04-}}{\ch{H2S04}}
                    \label{lem:chemfig} $$\operatorname{H-C}(=[:60]0) - [:-60]0 - CH_3$$
                 \end{rxnscheme}
```

9 Electrophilic Addition

This scheme forms a circle.

Reaction scheme 9 Electrophilic Addition

$$\begin{array}{c|c} C & + & |\overline{Br} - \overline{Br}| \\ \hline \\ C & |\overline{C} - \overline{C}| \\ \hline \\ C &$$

```
\begin{rxnscheme}{Electrophilic Addition}
                  \setarrowlength{3em}
                  \chemand[,plus]
                  \reactant{\chemfig{\lewis{246,Br}-\lewis{026,Br}}}
                  \arrow[plus.-90,<=>]{\footnotesize fast}{}
                  \cline{Condition} $$ \operatorname{chemfig} {\sim (<[:40]) = [0{db}6]C $} $$
                  (<[:-130])<[:-20]}}
                  \anywhere{right=of attack}{
                        \label{lewis} $$ \operatorname{QBr1}\leq (246,Br)-[0(b2)]_{ewis}(026,Br) - [0(b2)]_{ewis}(026,Br) - [0(b2)]_{
                 }}
                        \ensuremath{\mbox{elmove}\{db\}\{20:5mm\}\{Br1\}\{135:5mm\}}
10
                        \ensuremath{\mbox{elmove}\{b2\}\{-120:5mm\}\{Br2\}\{-120:5mm\}}
11
                 }
12
                 % to the left:
                  \arrow[attack.-135,<=>,2]{$- {\ch{Br-}}}$}{\footnotesize}
14
                  \reactant[-135,carbenium_a]{\vflipnext\chemfig{-[:-30]\
15
                  chembelow{C}{\fscrp}(-[:30])-[6]C(<[:-150])(<:[:-100])</pre>
                  -[:-30]\leq \{137,Br\}\}
                  \anywhere{below=of carbenium_a}{\footnotesize carbenium
                 ion}
                  \arrow[,<<=>]{}{}
17
                  \reactant[,bromonium]{\chemfig{>:[:-60]C?(<[:160])-[6]C
                  (<[:-110])(<:[:-150])-[:30]\lewis{17,Br}?-[4,.5,,,draw=
                  none] {\fscrp}}}
```

10 Activation of Fatty Acids

```
\begin{rxnscheme}{Activation of Fatty Acids}
                 \reactant[,ATP]{\chemfig{\chemabove{0}}{\hspace*{-5mm}\
                 fscrm}-P(=[2]0)(-[6]\chembelow{0}{\fscrm})-0-P(=[2]0)(-[6]\
                  \begin{array}{l} \textbf{chembelow} \{0\} \{ \text{crm} \} \} - 0 - \text{CH}_2 - [6, 1.5, 1] (-[6, .5]) (-[:20, 1.3] \\ \end{array} 
                 0?[a] < [7] (-[2,.5]) (-[6] OH) - [,,,,line width=3pt] (-[2,.5])
                 (-[6]OH)>[1]?[a](-[6,.5])-[2,1.5]N?[b]-[:18]([:30]*6(-N=-N)
                 =(-NH_2)-=))-[:90]-[:162]N=^[:-126]?[b]}}
                 \anywhere{below right=of ATP,,xshift=-4em,yshift=3em}{\
                 bfseries ATP}
                 \arrow[below,,1.5]{\chemname{\chemfig{R-C(=[:-60]0)-[:60]@{
                 02}0-[@{b2}]H}}{fatty acid}}{}
                 \branch[on chain=going below]{
                       \reactant[,pyrophosphat]{
                               \chemfig{\chemabove{0}{\hspace*{-5mm}\fscrm}-P(=[2]0)
                 (-[6] \cdot (-[6
                 fscrm}) - \chemabove{0}{\hspace*{5mm}\fscrm}}
                               \elmove{b1}{100:1cm}{01}{90:5mm}
                              \ensuremath{\mbox{elmove}} \{02\} \{135:1cm\} \{P\} \{-135:1cm\}
                              \ensuremath{\verb|elmove||} \{-90:5mm\} \{02\} \{-60:5mm\}
10
11
                       \anywhere{below=of pyrophosphat}{pyrophosphate PP$_\text{
                        \chemand
14
                       \cline{C}C(=[:-60]0)-[0{b}
                 3:60] 0{03}0-P(-[6]\chembelow{0}{\fscrm})(=[2]0)-0-CH
                 _2-[6,,1,1]r|ibos|e-[2,1.05,3,1]A|denine}}
                       \anywhere{below=of acyl-amp}{\bfseries acyl-AMP}
15
16
                 \branch[on chain=going below,,xshift=-8em]{
17
                       \arrow[below]{\ch{H20}}{}
18
                       19
                 chembelow{0}{\fscrm})-0}}
                        \anywhere{below right=of Pi}{P$_\text{i}$}
```

Reaction scheme 10 Activation of Fatty Acids

11 Change the layout with TikZ

This is an example for the usage of the <tikz> option. Please take a closer look at lines 5, 7, 11 and 15.

```
\begin{rxnscheme}{Change the layout with \TikZ}
               \colorlet{mCgreen}{green!50!gray}
               \colorlet{mCblue}{cyan!50!gray}
               \colorlet{mCred}{magenta!50!gray}
               !!\tikzset{reactant/.style={draw=#1,fill=#1!10,minimum
              width=.8\textwidth,inner sep=1em,rounded corners}}!!
               \mCsetup{arrowlength=3em,arrowline=very thick}
               \reactant[,,!!reactant=mCgreen!!]{
                    \chemname{\chemfig{Alky|1--[6](-[4,,,2]Acy|1)-[6]-0-P}
               (=[2]0)(-[6]0|\mbox{\mbox{$\mbox{$m$ch$}}}-0-[:-30]-[:30]-[:-30]NH_2}}{\mbox{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mb
              Phosphatidylethanolamine}
               \arrow[below]{}{\iupac{\N-acyl\|transferase}}
               \reactant[below,,!!reactant=mCblue!!]{
                    \chemname{\chemfig{Alky|1--[6](-[4,,,2]Acy|1)-[6]-0-P}
               (=[2]0)(-[6]0|\mch)-0-[:-30]-[:30]-[:-30]\chembelow{N}{H}
               }-[:30](=[2]0)
               -[:-30]-[:30]-[:-30]-[:30]=_-[:-30]-[:30]=_-[:-60]
               -[::-60]=_[:180]-[::-30]-[::60]=_[:180]-[::-30]-
               [::60]-[::-60]-[::60]-[6]}{\bfseries\iupac{\N\-
               arachidonoyl\-PE}}
13
               \arrow[below]{}{Phospholipase D}
14
               \reactant[below,,!!reactant=mCred!!]{
                    }-[:30](=[2]0)
               -[:-30]-[:30]-[:-30]-[:30]=_-[:-30]-[:30]=_-[:-60]
               -[::-60]=_[:180]-[::-30]-[::60]=_[:180]-[::-30]-
               [::60]-[::-60]-[6]}}{\bfseries Anandamide}
```

Reaction scheme 11 Change the layout with Ti*k*Z

$$\begin{array}{c} \text{Alkyl} \\ \text{Acyl} \\ \hline \\ \text{O} \\ \text{O} \\ \hline \\ \text{Phosphatidylethanolamine} \end{array}$$

N-acyltransferase

Phospholipase D

```
18 \mCsetup{reset}
19 \end{rxnscheme}
```

12 Claisen-Kondensation

```
\begin{rxnscheme}{Claisen-Kondensation}
                      \colorlet{mCred}{red!50!gray}
                      \setatomsep{1.5em}
                      % Ergebnis:
                      \branch[,one,draw=mCred,fill=mCred!10,rounded corners,
                      inner sep=.5em]{
                              \reactant{\chemfig{[:30]-(=[2]0)-[:-30]0--[:-30]}}
                              \ensuremath{\ensuremath{\texttt{chemfig}\{[:30]-(=[2]0)-[:-30]0--[:-30]\}}}
                              \arrow[,,2]{\ch{NaOEt}, \ch{EtOH}}{}
                             \c = 100 - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] - [:-30] -
 10
                      --[:-30]}}
11
                     % Mechanismus:
                     \branch[-90,,xshift=-13.5em]{
13
                             \arrow[-90,<=>]{\ch{^-OEt}}{}
14
15
                      \mesomeric[-90,two,xshift=4.5em]{
 16
                             \reactant{\chemfig{[:30](-[:150,.3,,,draw=none]@{C1}\
17
                     fscrm)-(=[2]0)-[:-30]0--[:-30]}}
 18
                              19
20
21
                      \chemand
                      \reactant{\ch{EtOH}}}
                     \branch[two.-90,three,xshift=-5.5em]{
                            \arrow[-90, <=>,,,both] {\chemfig[][scale=.7] {[:30] -@{C
                     2 (=[0{b1}2]00{01})-[:-30]0--[:-30]}}{
25
                     \c = 10^{-90} {\c = 10^{-90}} \c = 10^{-90} \c = 10^{-90
                      (-[6]-[:-30](=[6]0)-[:30]0-[:-30]-[:30])-[0{b3}]0{03}0
                      -[:30]-[:-30]}}
                      \arrow[,<=>]{}{}
                     \reactant[,four]{\chemfig{[:30]-(=[2]0)-[:-30]@{C
                     3{(-[:-120]H)(-[0{b4}:-60]H0{H})-(=[2]0)-[:-30]0--[:-30]}}
29
                     \chemand
30
                     \reactant{\chemfig{\mch @{04}0Et}}
                     \arrow[four.-90]{}{}
31
                     \mesomeric[-90]{
32
                              \c = 10 - [2]0 - [-30] = (-[2]0 | mch)
33
                      -[:-30]0--[:-30]}}
                              \marrow
34
                              \reactant{\chemfig{[:30]-(=[2]0)-[:-30](-[6,.3,,,draw=
35
                     none]\fscrm)-(=[2]0)-[:-30]0--[:-30]}}
                              \marrow
```

Reaction scheme 12 Claisen-Kondensation

```
\c = 10 - (-[2]0] \cdot (-[2]0)
       -[:-30]0--[:-30]}}
38
       \arrow[-90]{\Hpl, \ch{H20}}{}
       \reactant[-90]{\chemfig{[:30]-(=[2]0)-[:-30]-(=[2]0)}
40
       -[:-30]0--[:-30]}}
       \anywhere{one.0}{
41
         \ensuremath{\mbox{elmove}\{C1\}\{-100:2cm\}\{C2\}\{-90:2cm\}}
         \ensuremath{\mbox{elmove}\{b1\}\{10:5mm\}\{01\}\{0:5mm\}}
43
         \ensuremath{\mbox{elmove}} \{02\} \{180:5mm\} \{b2\} \{180:5mm\}
         \elmove{b3}{80:5mm}{03}{90:5mm}
         \ensuremath{\mbox{elmove}\{b4\}\{0:5mm\}\{C3\}\{0:7mm\}}
          \ensuremath{\mbox{elmove}\{04\}\{-90:1cm\}\{H\}\{-45:1cm\}}
48
      \end{rxnscheme}
```

13 Extensive Synthesis

As last example we can create extensive syntheses, using the \merge command.

```
\begin{rxnscheme}[,,,.8]{Extensive Synthesis}
     \setatomsep{1.5em}
     \branch[,start_left]{
       \reactant{\chemfig{=_[::30]-[::-60]-[::60](-[::-60])
     (-[::120])-[::0]OH}}
       \arrow[below]{\ch{HBr}}{}
       \reactant[below]{\chemfig{Br
     -[::30]-[::-60]=_[::60](-[::-60])-[::60]}}
     \branch[right=of start_left,start_center,yshift=1em]{
       \reactant{\chemfig[][scale=.8]{**6(--(-S0_2C1)
     ---(-)-)}}{tosyle chloride}}
       \arrow[below]{\ch{NaOH}}{\ch{Zn}}
       \reactant[below] {\chemfig[] [scale=.8] {**6(--(-SO_2Na)
11
     ---(-)-)}}
12
     \branch[right=of start_center,start_right,xshift=3em,
     yshift=-10em]{
       \reactant{\chemfig{-[::30](-[::60])
14
     =_[::-60]-[::60]COOH}}{\sum_{i=0}^{6} (3)-methy1^{-2}-butenoic acid
     }}}
       \arrow[below]{\ch{CH30H}}{}
       \reactant[below] {\chemfig{-[::30](-[::60])}
     = [::-60]-[::60]CO_2CH_3}
17
     \branch[below=of start_left,target_one,xshift=5em,yshift
       \reactant{\chemfig[][scale=.8]{**6(--(-SO
     _2-[:30]-[::-60]=_[::60](-[::60])-[::-60])---(-)-)}}
```

Reaction scheme 13 Extensive Synthesis

```
\branch[below=of target_one, target_two, xshift=6em, yshift
     =-6em]{
       \mesomeric{\chemfig[][scale=.8]{-[::30](-[::60])
22
     =^[::-60]-[::60](-[::60]S(=[::90]0)(=[::-90]0)
     -[::0]**6(---(-)---))-[::-60](-[::0])(-[::-120])
      -[::60](-[::60,.5,,,white]\fminus)-[::-60]CO_2CH_3}}
       \arrow[below,,.5]{}{}
       \arrow[below,,.5]{\ch{KOH}}{}
24
       \reactant[below]{\chemfig{-[::-30](-[::-60])
25
     =^[::60]>[::-60](-[::90,1.2])
     -[::30,1.2](-[::120,1.2](-[::-60])-[::0]) <: [::-30] \texttt{COOH} \} \\ \{ \setminus (1,0) \in (0,1) \} 
     iupac{\trans\-chrysanthemum acid}}
     \merge{target_one}{start_left}{start_center}
27
     \merge[\ch{NaOCH3}]{target_two}{target_one}{start_right}
28
    \end{rxnscheme}
```