Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu

Arquitectura Vo

Arquitectura Harv

Modificada

Comparació

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem

instrucciones CISC vs RISC

Otros ISAs

Referencias

### Arquitectura de Computadores I

Luis Alberto Chavarría Zamora

**ITCR** 

lachavarria@tec.ac.cr

8 de agosto de 2023

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Ha

Modificada

Clasificació

de los ISA Tipo de Operand

Load/Store

Complejidad de la instrucciones

Otros ISAs

Referencias

#### Contenido

1 Lección Anterior

2 Formas de Organización / Microarquitectura

Arquitectura Von Neumann

Arquitectura Harvard

Arquitectura Harvard Modificada

Comparación

3 Clasificación de los ISA

Tipo de Operando

 $\mathsf{Load}/\mathsf{Store}$ 

Register/Mem

Complejidad de las instrucciones

CISC vs RISC

Otros ISAs

4 Referencias

Chavarría-Zamora, Luis Alberto

#### Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura H Modificada

Comparación

#### Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las instrucciones

Referencias

### Lección Anterior ; Qué vimos?

- 1 ¿Qué es una arquitectura de un computador?
- ¿Qué es microarquitectura?
- 3 ¿Qué consideraciones tiene la ley de Amdahl respecto al tipo de procesador y al paralelismo?
- 4 ¿Cuáles son las principales clasificaciones según Flynn?
- **5** ¿Qué diferencia existe entre una arquitectura simétrica y una no simétrica?
- ¿Qué es benchmarking?

Chavarría-Zamora, Luis Alberto

#### Lección Anterior

Formas de Organización / Microarqui

Arquitectura Vo Neumann

Arquitectura Harva Arquitectura Harva Modificada

Comparació

#### Clasificació

Tipo de Operando Load/Store

Complejidad de la

instrucciones

Otros ISAs

Referencias

### Lección Anterior

¿Qué vimos?



Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarquitectura

Arquitectura Voi Neumann

Arquitectura Harvard Arquitectura Harvard

Comparación

Clasificación

Tipo de Operando Load/Store Register/Mem

Complejidad de l

Otros ISAs

Referencias

### Formas de Organización/Microarquitectura

Tradicionalmente se habla de dos tipos:

- 1 Arquitectura Von Neumann.
- Arquitectura Harvard.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarquitectura

Arquitectura Von Neumann

Arquitectura Ha Modificada

Comparación

de los ISA

Tipo de Operando Load/Store Register/Mem

Complejidad de la instrucciones CISC vs RISC

Otros ISAs

Referencias

## Formas de Organización/Microarquitectura

Arquitectura Von Neumann

- Jon von Neumann (nombre real: Neumann János Lajos) (1903-1957).
- Matemático, ingeniero químico.
- Contribuciones en el campo de la mecánica cuántica, física, economía, militar, informática.
- Murió de cáncer de huesos a los 53 años.



Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu tectura

Arquitectura Von Neumann

Arquitectura Harvar Arquitectura Harvar Modificada

Comparació

Clasificació de los ISA

Tipo de Operando Load/Store

Complejidad de la

instrucciones

Otros ISAs

Referencias

# Formas de Organización/Microarquitectura

Arquitectura Von Neumann



Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqu tectura

Arquitectura Von Neumann

Arquitectura Ha Modificada

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las instrucciones CISC vs RISC

Referencias

# Formas de Organización/Microarquitectura Arquitectura Von Neumann

En la versión original se listaron las siguientes partes:

- Central Arithmetic (CA): Unidad encargada de llevar a cabo las operaciones aritméticas de suma, resta, multiplicación y división.
- Central Control (CC): Lógica de control del computador, encargado de llevar la secuencia correcta del programa.
- Memoria (M): Almacena largas cantidades de operaciones (programa). Se ejecuta secuencialmente.
- I/O Equipment (I,O): Periféricos del sistema.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqu tectura

Arquitectura Von

Arquitectura Harvar Arquitectura Harvar Modificada

Comparació

Clasificació

Tipo de Operando Load/Store

Complejidad de la

Otros ISAs

Referencias

# Formas de Organización/Microarquitectura

Arquitectura Von Neumann



Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Von Neumann

Arquitectura Harvar Modificada Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem

Complejidad de la instrucciones CISC vs RISC

Otros ISAs

Referencias

### Formas de Organización/Microarquitectura

Arquitectura Von Neumann

#### Unidad Aritmética y Lógica (ALU):

- AC o acumulador: Guarda los resultados de los cálculos hecho por la ALU.
- MQ o multiplicador cociente: Se usa para guardar los bits menos significativos producto de una multiplicación.
- Memory Buffer Register (MBR): Almacena las instrucciones obtenidas de la memoria o cualquier dato que se transfiera y almacene en la memoria. También se conoce como MDR (Memory Data Register).

#### Unidad que Control:

- Program Counter (PC): Realiza un seguimiento de la ubicación de la memoria de las siguientes instrucciones a tratar. La PC luego pasa esta siguiente dirección al Memory Buffer Register (MBR).
- Instruction Register (IR): Mantiene la instrucción que está siendo ejecutada.
- Instruction Buffer Register (IBR): La instrucción que no se ejecutará inmediatamente se coloca en el registro de búfer de instrucciones IBR.
- Memory Adress Register (MAR): Almacena las ubicaciones de memoria de las instrucciones que deben recuperarse de la memoria o almacenarse en la memoria.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de
Organización
/ Microarqu
tectura

Arquitectura Von Neumann

Arquitectura Harvaro Modificada

Comparación

de los ISA

Load/Store Register/Mem Complejidad de las instrucciones CISC vs RISC

Referencias

## Formas de Organización/Microarquitectura

Arquitectura Von Neumann: Características

- La información se representa por medio de direcciones.
- Memoria unificada, una única memoria para datos y programa.
- Las instrucciones almacenadas y ejecutadas secuencialmente: Program counter debe actualizarse (PC=PC+1) para obtener siguiente instrucción.
- Ciclo de Fetch: Búsqueda, Decodificación, Ejecución, Almacenado.
- Cuenta con un ISA de 21 instrucciones.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqu tectura

Arquitectura Von Neumann

Arquitectura Harva Arquitectura Harva Modificada

Comparació

Clasificación de los ISA

Tipo de Operando Load/Store

Complejidad de l

instrucciones CISC vs RISC

Defenses

erencias

# Formas de Organización/Microarquitectura Arquitectura Von Neumann



Simulador de Von Neumann

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarquitectura

Neumann

Arquitectura Harvard

Arquitectura H Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store

Complejidad de la

CISC vs RIS

ъ.

# Formas de Organización/Microarquitectura Arquitectura Harvard

- Fue presentado a IBM por Howard Aiken en 1937.
- Fue construída en 1944 por personal de la Universidad de Harvard.
- Era una computadora electromecánica con propósito militar para la Segunda Guerra Mundial.



Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqu tectura

Arquitectura Vo Neumann

Arquitectura Harvard
Arquitectura Harvard
Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las instrucciones CISC vs RISC

Referencias

# Formas de Organización/Microarquitectura Arquitectura Harvard

 La evolución en los computadores y la necesidad de rapidez y paralelismo generaron cambios en la organización de los computadores.

 La memoria unificada de acceso secuencial representa un obstáculo (cuello de botella o Von Neumann Bottleneck).

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Harvard Arquitectura Harvard Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las instrucciones CISC vs RISC

Referencias

# Formas de Organización/Microarquitectura Arquitectura Harvard

 La evolución en los computadores y la necesidad de rapidez y paralelismo generaron cambios en la organización de los computadores.

- La memoria unificada de acceso secuencial representa un obstáculo (cuello de botella o Von Neumann Bottleneck).
- Solución: Separar la memoria Memoria para instrucciones
   (I) y memoria para datos (D).
- Paralelismo porque puede haber acceso simultáneo a memoria para instrucciones y memoria para datos.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu tectura

Arquitectura Vo Neumann

Arquitectura Harvard

Arquitectura Harva Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las instrucciones CISC vs RISC

Referencias

# Formas de Organización/Microarquitectura

Arquitectura Harvard: Características

- Memoria de datos y memoria de programa están físicamente separadas.
- Acceso a memoria de datos e instrucciones puede ser simultáneo.
- Ventaja: mayor rendimiento (paralelismo).
- La mayoría de DSP poseen una arquitectura tipo Harvard pues necesitan buscar datos y operaciones al mismo tiempo.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu

Arquitectura Von

Arquitectura Harvard

Arquitectura Harva Modificada

Comparació

Clasificación de los ISA

Tipo de Operando Load/Store

Complejidad de la instrucciones

CISC vs RISC Otros ISAs

Referencias

## Formas de Organización/Microarquitectura

Arquitectura Harvard: Características



Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Harva

Arquitectura Harvard Modificada

Comparació

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de la instrucciones

Otros ISAs

Referencias

# Formas de Organización/Microarquitectura

Arquitectura Harvard Modificada

- Desventajas de la arquitectura de Harvard:
  - El espacio de direccionamiento separado implica 2 memorias físicas diferentes: mayor espacio, consumo de potencia.
  - Rutas diferentes (mayor ancho de banda) generan mayor consumo de potencia dinámica.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Harvard

Modificada

Comparació

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las instrucciones

Referencias

### Formas de Organización/Microarquitectura

Arquitectura Harvard Modificada

- Desventajas de la arquitectura de Harvard:
  - El espacio de direccionamiento separado implica 2 memorias físicas diferentes: mayor espacio, consumo de potencia.
  - Rutas diferentes (mayor ancho de banda) generan mayor consumo de potencia dinámica.
- Arquitectura de Harvard Modificada:
  - Disminuye el impacto de la separación de memoria.
  - Rutas separadas para instrucciones y datos, con único espacio de direccionamiento.
  - Provee instrucciones para acceder a los contenidos de la memoria de instrucciones como si fueran datos.
  - Una única memoria principal.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqu tectura

Neumann

Arquitectura Harvard

Arquitectura Harvard

Modificada

Comparación

Clasificación de los ISA Tipo de Operando

Load/Store Register/Mem Complejidad de las instrucciones CISC vs RISC

Referencias

## Formas de Organización/Microarquitectura

Arquitectura Harvard Modificada: Implementación

- Utiliza dos memorias caché de CPU, para la separación de datos e instrucciones.
- Una única memoria principal.
- Desde el punto de vista macro se comporta como una arquitectura Von Neumann, pero internamente separa instrucciones y datos.
- ¿Dónde está lo complicado?

La mayoría de las arquitecturas modernas Harvard son en realidad Harvard Modificada.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Organizació / Microarqu tectura

Arquitectura Vo Neumann

Arquitectura Harvard Modificada

Comparació

de los ISA

Tipo de Operando Load/Store

Complejidad de la

instrucciones

Otros ISAS

Referencias

# Formas de Organización/Microarquitectura

Arquitectura Harvard Modificada: Implementación



Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu

Arquitectura Vo Neumann

Arquitectura Harva Modificada

Comparación

de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las instrucciones CISC vs RISC Otros ISAs

Referencias

# Formas de Organización/Microarquitectura

Arquitectura Harvard Modificada: Implementación

- Arquitectura Von Neumann: Un único espacio de direccionamiento, y única ruta de acceso al CPU.
- Arquitectura Harvard: Memoria de datos y memoria de instrucciones tienen rutas de hardware diferentes hacia el CPU, además de espacios de direccionamiento separados.
- Arquitectura Harvard Modificada: rutas de hardware diferentes para el CPU Cache, y un espacio de direccionamiento único.

Chavarría-Zamora, Luis Alberto

Tipo de Operando

### Clasificación de los ISA Tipo de operando

Tipos de operando que existen:

- Load / Store.
- Register / Mem.

Lección 1 -Semana 3 Chavarría-

Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqu

Arquitectura Vo Neumann

Arquitectura Ha Modificada

Comparación

de los ISA

Tipo de Operando Load/Store

Register/Mem
Complejidad de la
instrucciones
CISC vs RISC

Referencias

### Clasificación de los ISA

Tipo de operando: Load/Store

Load/Store  $\rightarrow$  Divide las operaciones en dos categorías:

- Accesos a memoria (instrucciones: Load/Store en memorias y registros).
- Operaciones con ALU (solo entre registros).

Ejemplos: ARM, RISC-V, MIPS.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu

Arquitectura Vo Neumann

Arquitectura Harva Arquitectura Harva Modificada

Comparació

Clasificació

de los ISA

Tipo de Operando Load/Store

Complejidad de instrucciones

CISC vs RISC

Referencias

### Clasificación de los ISA

Tipo de operando: Load/Store

| 31 | 25       | 24       | 20 19 | 15 14 12 | 11 7             | 7 6    | 0      |
|----|----------|----------|-------|----------|------------------|--------|--------|
|    | funct7   | rs2      | rs1   | funct3   | $_{\mathrm{rd}}$ | opcode | R-type |
|    |          |          |       |          |                  |        |        |
|    | imm[11:  | 0]       | rs1   | funct3   | $_{\mathrm{rd}}$ | opcode | I-type |
|    | (        |          |       |          |                  |        |        |
| i  | mm[11:5] | rs2      | rs1   | funct3   | imm[4:0]         | opcode | S-type |
|    |          |          | 1.01  |          |                  |        |        |
|    |          | imm[31:1 | [2]   |          | rd               | opcode | U-type |

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Voi Neumann

Arquitectura Harva Arquitectura Harva Modificada

Comparació

de los ISA

Tipo de Operando Load/Store

Register/Mem Compleiidad de

instrucciones
CISC vs RISC

Otros ISAs

Referencias

#### Clasificación de los ISA

Tipo de operando: Register/Mem

Operaciones pueden ser entre registros y entre espacios de memoria.



Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

Lección 1 -Semana 3 Chavarría-

Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu

Arquitectura Vo Neumann

Arquitectura H. Modificada Comparación

Clasificación

Tipo de Operando Load/Store Register/Mem

Complejidad de las instrucciones

CISC vs RISC Otros ISAs

Referencias

### Clasificación de los ISA

Complejidad de instrucciones: CISC

#### Complex Instruction Set Computer:

- Enfoque inicial de arquitectura.
- El ISA contiene gran variedad de instrucciones: instrucciones poderosas y complicadas.
- Facilidad de programación.
- El compilador no realiza traducciones complejas: instrucciones son similares a lenguajes de alto nivel.

Ejemplo: x86.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Harv Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem

Complejidad de las instrucciones

CISC vs RISC Otros ISAs

Referencias

### Clasificación de los ISA

Complejidad de instrucciones: CISC

### Complex Instruction Set Computer:

Características típicas del set:

- Múltiples modos de direccionamiento (forma de acceder a datos en memoria).
- Formato de instrucciones variable.
- Duración de instrucciones variable.
- Bajo número de registros de propósito general. x86: RAX, RBX, RCX, RDX.
- Las instrucciones son capaces de ejecutar tareas complejas.
- Decodificación de instrucciones implica mayor lógica de hardware

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Harvard Arquitectura Harvard Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem

Complejidad de las instrucciones

Otros ISAs

Referencias

### Clasificación de los ISA

Complejidad de instrucciones: CISC

#### Ventajas:

- Facilidad de programación: Tareas complejas se realizan en menos tiempo.
- Múltiples modos de direccionamiento simplifican las tareas.
- Tamaño de código pequeño.

#### Desventajas:

- Instrucciones de tamaño variable: diferente tiempo de búsqueda y ejecución hacen muy complicado tener sistemas determinísticos. Hardware es complicado (área, dinero).
- Muchas de las instrucciones especializadas no son utilizadas con frecuencia: El 98 % de las instrucciones en un programa típico corresponden al 20 % de las instrucciones del set.

Lección 1 -Semana 3 Chavarría-

Zamora, Luis Alberto

Clasificación de los ISA

Complejidad de instrucciones: CISC

#### Ejemplo:

#### 5.10.2 Floating-Point Dot Product Instructions

DPPD Perform double-precision dot product for up to 2 elements and broadcast. **DPPS** 

Perform single-precision dot products for up to 4 elements and broadcast.

DPPD — Dot Product of Packed Double Precision Floating-Point Values

| Opcode/<br>Instruction                                           | Op/<br>En | 64/32-bit<br>Mode | CPUID<br>Feature<br>Flag | Description                                                                                                                                                                           |
|------------------------------------------------------------------|-----------|-------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 66 OF 3A 41 /r lb<br>DPPD <i>xmm1, xmm2/m128, imm8</i>           | RMI       | V/V               | SSE4_1                   | Selectively multiply packed DP floating-point values from xmm1 with packed DP floating-point values from xmm2, add and selectively store the packed DP floating-point values to xmm1. |
| VEX.128.66.0F3A.WIG 41 /r ib<br>VDPPD xmm1,xmm2, xmm3/m128, imm8 | RVMI      | V/V               | AVX                      | Selectively multiply packed DP floating-point values from xmm2 with packed DP floating-point values from xmm3, add and selectively store the packed DP floating-point values to xmm1. |

Tipo de Operando

Complejidad de las instrucciones

Chavarría-Zamora, Luis Alberto

Tipo de Operando

Complejidad de las

instrucciones

#### Ejemplo:

### Clasificación de los ISA

Complejidad de instrucciones: CISC

```
Operation
DP_primitive (SRC1, SRC2)
IF (imm8[4] = 1)
   THEN Temp1[63:0] ← DEST[63:0] * SRC[63:0]; // update SIMD exception flags
   ELSE Temp1[63:0] \leftarrow +0.0; FI;
IF (imm8[5] = 1)
   THEN Temp1[127:64] ← DEST[127:64] * SRC[127:64]; // update SIMD exception flags
   ELSE Temp1[127:641 ← +0.0; FI;
/* if unmasked exception reported, execute exception handler*/
Temp2[63:0] ← Temp1[63:0] + Temp1[127:64]; // update SIMD exception flags
/* if unmasked exception reported, execute exception handler*/
IF (imm8[0] = 1)
   THEN DEST[63:0] \leftarrow Temp2[63:0];
   ELSE DEST[63:0] \leftarrow +0.0; FI;
IF (imm8[1] = 1)
   THEN DEST[127:641 ← Temp2[63:01:
   ELSE DEST[127:641 ← +0.0; FI;
```

#### DPPD (128-bit Legacy SSE version)

DEST[127:01←DP Primitive(SRC1[127:01, SRC2[127:01); DEST[MAXVL-1:128] (Unmodified)

#### VDPPD (VEX.128 encoded version)

DEST[127:0]  $\leftarrow$  DP\_Primitive(SRC1[127:0], SRC2[127:0]); DEST[MAXVL-1:1281 ← 0

#### Flags Affected

None

Lección 1 -Semana 3 Chavarría-

Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Ha Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem

Complejidad de las instrucciones

Otros ISAs

Referencias

### Clasificación de los ISA

Complejidad de instrucciones: RISC

#### Reduced Instruction Set Computer:

- Enfoque moderno: DSPs, CPUs para sistemas embebidos.
- El set está compuesto por pocas instrucciones con funcionalidad simple.
- La dificultad está en el programador (bajo nivel) o el compilador.

Ejemplos: MIPS, ARM.

Lección 1 -Semana 3 Chavarría-

Zamora, Luis Alberto

Lección Anterior

Formas de Organizació / Microarqu

Arquitectura Vo Neumann

Arquitectura H Modificada

Comparación

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem

Complejidad de las instrucciones

CISC vs RISC Otros ISAs

Referencias

### Clasificación de los ISA

Complejidad de instrucciones: RISC

#### Reduced Instruction Set Computer:

Características típicas del set:

- Pocos modos de direccionamiento (1-4).
- Las instrucciones tienen un tamaño fijo.
- El tiempo de ejecución de cada instrucción es el mismo.
- Alto número de registros de propósito general (16, +32).
- Decodificación de instrucciones simple.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de
Organización
/ Microarqui

Arquitectura Voi Neumann

Arquitectura Harva Modificada

Comparación

Clasificación

Tipo de Operando Load/Store

Complejidad de las instrucciones

CISC vs RISC Otros ISAs

Referencias

#### Clasificación de los ISA

Complejidad de instrucciones: RISC

#### Ventajas:

- Instrucciones de tiempo y tamaño fijo: simplifica hardware y brinda determinismo.
- Mejor aprovechamiento de hardware.
- Permite pipeline.
- Desventajas:
  - Tamaño de código mayor.
  - Carga pesada para el software (programa de bajo nivel o compilador).

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo

Arquitectura Harvi Arquitectura Harvi Modificada

Comparación

Clasificació

Tipo de Operando Load/Store

Complejidad de las instrucciones

CISC vs RISC Otros ISAs

Referencias

### Clasificación de los ISA

Complejidad de instrucciones: RISC

#### Ejemplo:

#### Table F1-26 Advanced SIMD dot product instructions

| Mnemonic | Instruction                         | See                                |
|----------|-------------------------------------|------------------------------------|
| VSDOT    | Signed dot product (vector form)    | VSDOT (vector) on page F6-4475     |
| VUDOT    | Unsigned dot product (vector form)  | VUDOT (vector) on page F6-4577     |
| VSDOT    | Signed dot product (indexed form)   | VSDOT (by element) on page F6-4473 |
| VUDOT    | Unsigned dot product (indexed form) | VUDOT (by element) on page F6-4575 |

Chavarría-Zamora, Luis Alberto

Ejemplo:

Operation for all encodings

bits(64) operand1; bits(64) operand2; bits(64) result;

for r = 0 to regs-1

operand1 = D[n+r]; operand2 = D[m+r];

operand2 = D[m+r];
result = D[d+r];
integer element1, element2;

for e = 0 to 1 integer res = 0;

for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1. 4 \* e + i, esize DIV 4]):

element2 = SInt(Elem[operand2, 4 \* e + i, esize DIV 4]);

element1 = UInt(Elem[operand1, 4 \* e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 \* e + i, esize DIV 4]);

Clasificación de los ISA

Complejidad de instrucciones: RISC

res = res + element1 \* element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;
D[d+r] = result:

< □ > < ⑤ > < ≧ > < ≧ > 3

Lección Anterior

Formas de Organización / Microarqui

Arquitectura Vo

Arquitectura Har

Arquitectura Harva Modificada

Comparació

Clasificación de los ISA

Tipo de Operando Load/Store Register/Mem

Complejidad de las instrucciones

CISC vs RISC

Referencia

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqu tectura

Arquitectura Vo Neumann

Arquitectura Ha Modificada

Comparación

de los ISA
Tipo de Operando

Load/Store Register/Mem Complejidad de las instrucciones

Otros ISAs

Referencias

### Clasificación de los ISA

CISC vs RISC: Breakout room

#### Discuta en grupos las siguientes preguntas:

- ¿Cuál es la razón por la que CISC tiene pocos GPR?
- ¿Qué efecto tiene en la potencia la implementación de ISA reducido y sencillo (RISC)?
- 3 ¿Cuál es la razón por la que CISC es más antiguo que RISC?
- 4 ¿Por qué RISC tiene menos modos de direccionamiento que CISC?

Lección 1 -Semana 3 Chavarría-

Zamora, Luis Alberto

Clasificación de los ISA CISC vs RISC

Tipo de Operando CISC vs RISC

#### Ejemplo:

|                                         |                | lex Instruction<br>ISC) Compute | Reduced Instruction<br>Set (RISC) Computer |        |               |
|-----------------------------------------|----------------|---------------------------------|--------------------------------------------|--------|---------------|
| Characteristic                          | IBM<br>370/168 | VAX<br>11/780                   | Intel<br>80486                             | SPARC  | MIPS<br>R4000 |
| Year developed                          | 1973           | 1978                            | 1989                                       | 1987   | 1991          |
| Number of instructions                  | 208            | 303                             | 235                                        | 69     | 94            |
| Instruction size (bytes)                | 2-6            | 2–57                            | 1–11                                       | 4      | 4             |
| Addressing modes                        | 4              | 22                              | 11                                         | 1      | 1             |
| Number of general-<br>purpose registers | 16             | 16                              | 8                                          | 40-520 | 32            |
| Control memory size (Kbits)             | 420            | 480                             | 246                                        | _      | _             |
| Cache size (KBytes)                     | 64             | 64                              | 8                                          | 32     | 128           |

Chavarría-Zamora, Luis Alberto

Clasificación de los ISA CISC vs RISC

Ejemplo:

Table VI. Geometric Mean CPI a cross All Benchmark Suites.

| ISA            | ARM | x86  | MIPS     | ARM | ARM | x86    | x86 |
|----------------|-----|------|----------|-----|-----|--------|-----|
| Implementation | A8  | Atom | Loongson | A9  | A15 | Bobcat | i7  |
| CPI            | 2.5 | 1.9  | 1.5      | 1.6 | 1.2 | 1.3    | 0.7 |

Table VII. Instruction Size Summary

|                |         | (a) Binary Size (MB) |      |      | (b) Instr | (b) Instruction Length (B) |     |  |
|----------------|---------|----------------------|------|------|-----------|----------------------------|-----|--|
|                |         | MIPS                 | ARM  | x86  | MIPS      | ARM                        | x86 |  |
|                | Minimum | _                    | 0.02 | 0.02 | 4.0       | 4.0                        | 2.4 |  |
| Mobile         | Average | 0.55                 | 0.95 | 0.87 | 4.0       | 4.0                        | 3.3 |  |
| Z              | Maximum | -                    | 1.30 | 1.42 | 4.0       | 4.0                        | 3.7 |  |
| op<br>L        | Minimum | 0.61                 | 0.53 | 0.65 | 4.0       | 4.0                        | 2.7 |  |
| Desktop<br>INT | Average | 1.58                 | 1.47 | 1.46 | 4.0       | 4.0                        | 3.1 |  |
|                | Maximum | 4.35                 | 3.88 | 4.05 | 4.0       | 4.0                        | 3.5 |  |
|                | Minimum | 0.76                 | 0.66 | 0.74 | 4.0       | 4.0                        | 2.6 |  |
| Desktop<br>FP  | Average | 1.81                 | 1.70 | 1.73 | 4.0       | 4.0                        | 3.4 |  |
| De             | Maximum | 5.21                 | 4.75 | 5.24 | 4.0       | 4.0                        | 6.4 |  |
| Server         | Minimum | 0.16                 | 0.12 | 0.18 | 4.0       | 4.0                        | 2.5 |  |
|                | Average | 0.51                 | 0.39 | 0.59 | 4.0       | 4.0                        | 3.2 |  |
|                | Maximum | 0.84                 | 0.47 | 1.00 | 4.0       | 4.0                        | 3.7 |  |

Tipo de Operando

CISC vs RISC

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui tectura

Arquitectura Vo Neumann

Arquitectura Han Arquitectura Han Modificada

Comparación

Clasificación

Tipo de Operando Load/Store

Complejidad de la instrucciones

Otros ISAs

Referencia

### Clasificación de los ISA Otros ISAs

- ISA ortogonal: El codigo de operación y el operando son independientes.
- Cualquier instrucción puede usar cualquier operando.

#### Longitud fija vs longitud variable:

- Longitud fija: Fetching y decoding por hardware es rápido.
- Longitud variable: Fetching y decoding por hardware es lento.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Organizació
/ Microarqu

Arquitectura Vo Neumann

Arquitectura Harvard Arquitectura Harvard Modificada

Comparación

Clasificación

de los ISA

Load/Store

Complejidad de instrucciones

Otros ISAs

Referencias

#### Referencias



J. Hennesy y D. Patterson (2012)

Computer Architecture: A Quantitative Approach. 5th Edition. Elsevier – Morgan Kaufmann.



J. González y R. García (2019)

Notas de clase de los profesores: Jeferson González y Ronald García.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Formas de Organización / Microarqui-

Arquitectura Vo Neumann

Arquitectura Harvai Arquitectura Harvai Modificada

Comparació

Clasificació de los ISA

Tipo de Operando Load/Store Register/Mem Complejidad de las

CISC vs RISC

Referencias

### Arquitectura de Computadores I

Luis Alberto Chavarría Zamora

ITCR

lachavarria@tec.ac.cr

8 de agosto de 2023