МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Физики

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Общая физика»

Тема: ИССЛЕДОВАНИЕ ДИНАМИКИ КОЛЕБАТЕЛЬНОГО И ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Студент группы 4353	 Букреев Д.Э.
Преподаватель	 Сизова Е.А.

Санкт-Петербург

Лабораторная работа №3

«Исследование динамики колебательного и вращательного движения»

Цель работы: исследование динамики колебательного движения на примере крутильного маятника, определение момента инерции маятника, модуля сдвига материала его подвеса и характеристик колебательной системы с затуханием (логарифмического декремента затухания и добротности колебательной системы).

Приборы и принадлежности: крутильный маятник, секундомер, масштабная линейка, микрометр. Применяемый в работе крутильный маятник (рис. 3.1) представляет собой диск 1, закрепленный на упругой стальной проволоке 2, свободный конец которой зажат в неподвижном кронштейне 3. На кронштейне расположено кольцо 4, масса которого известна. Кольцо 4 можно положить сверху на диск 1, изменив тем самым момент инерции маятника. Для отсчета значений угла поворота маятника служит градуированная шкала 5, помещенная на панели прибора снизу от диска 1.

Исследуемые закономерности

Момент инерции – физическая величина, характеризующая инертные свойства твердого тела при его вращении.

$$M = I \epsilon$$
,

где момент инерции I связывает угловое ускорение тела є и момент сил M, действующих на него.

Крутильный маятник. При повороте тела, закрепленного на упругом подвесе, в результате деформации сдвига при закручивании подвеса возникает возвращающий момент упругих сил $M = -k \phi$, где k - коэффициент кручения, зависящий от упругих свойств материала подвеса, его размеров и формы, ϕ - угол поворота. При малых углах поворота, без учета сил трения в подвесе, крутильные колебания маятника являются гармоническими, а уравнение движения тела имеет вид

$$\frac{d^2\varphi}{dt^2} = -\omega_0^2\varphi,$$

где частота собственных колебаний гармонического осциллятора

$$\omega_0 = \sqrt{\frac{k}{I}}$$
,

I — момент инерции диска крутильного маятника.

Сопротивление движению маятника (трение) создает тормозящий момент, пропорциональный скорости движения маятника,

$$M_R = -R \frac{d\varphi}{dt},$$

где R - коэффициент сопротивления. С учетом сил сопротивления уравнение движения маятника принимает вид

$$\frac{d^2\varphi}{dt^2} + 2\beta \frac{d\varphi}{dt} + \omega_0^2 \varphi = 0$$

и является уравнением движения осциллятора с затуханием. Колебания такого осциллятора уже не будут гармоническими. Коэффициент $\beta = R/2I$ называют коэффициентом затухания. Если $\omega_0^2 - \beta^2 > 0$, движение крутильного маятника описывается уравнением затухающих колебаний

$$\varphi(t) = A_0 e^{-\frac{t}{\tau}} \cos \omega t \quad ,$$

где A_0 - начальная амплитуда колебаний маятника, $\tau = 1/\beta$ - время затухания, определяющее скорость убывания амплитуды A(t) маятника, численно равное времени, за которое амплитуда убывает в e раз (рис. 2), т.е.

$$A(t) = A_0 e^{-\frac{t}{\tau}}$$
 при $t = \tau$ $A(t) = \frac{A_0}{e}$,

 о - частота колебаний осциллятора с затуханием, связанная с собственной частотой соотношением

$$\omega = \sqrt{\omega_0^2 - \beta^2} .$$

Время затухания τ также выражается через момент инерции I и коэффициент сопротивления R выражением

$$\tau = \frac{2I}{R}$$

Крутильный маятник как диссипативная система

Полная энергия колебаний маятника убывает со временем по закону

$$W(t) = W_0 e^{-\frac{2t}{\tau}},$$

где $W_0 = \frac{kA_0^2}{2}$ - начальная энергия колебаний.

Убывание энергии происходит за счет совершения работы против сил трения. Энергия при этом превращается в тепло, идет процесс диссипации энергии. Скорость диссипации энергии (мощность потерь)

$$P_d = -\frac{dW(t)}{dt} = \frac{2}{\tau}W(t).$$

Помимо коэффициента затухания β (или времени затухания τ) и мощности потерь P_d колебательная диссипативная система характеризуется также добротностью Q, позволяющей судить о способности системы сохранять энергию. Добротность определяется отношением запасенной системой энергии к потерям энергии за время $T/2 \square = 1/\square$. Легко видеть, что добротность

$$Q = 2\pi \frac{W}{P_d T} = \frac{\omega \tau}{2} = \pi \frac{\tau}{T} ,$$

т.е. численно равна числу колебаний за время $t=\pi\tau$. За это время амплитуда колебаний уменьшается в $e^\pi \cong 23$ раза, а энергия колебаний в $e^{2\pi} \cong 535$ раз, иными словами, за это время колебания практически затухают.

В технике для характеристики колебательных систем с затуханием вводят декремент затухания (Δ), или его логарифм – логарифмический декремент затухания ($\delta = \ln \Delta$), определяя эти параметры через отношение амплитуд колебаний, соответствующих соседним периодам

$$\Delta = rac{A(t)}{A(t+T)} = e^{eta T}$$
 или $\delta = eta T$.

Протокол наблюдений к лабораторной работе №3 «Исследование динамики колебательного и вращательного движения»

, M	d, м	D _{ex,} м	D _{in} , M	D _{0,} м	h _{0,} м	М, кг	ρ, κΓ/m ³

№	$t_{\scriptscriptstyle \rm I\!\!I}$, c	$t_{0 \pi}$, c	t_{κ} , c	$t_{0\kappa}$, c
1				
2				
3				
4				
5				

Контрольные вопросы

11. декремент затухания - это безразмерная величина, характеризующая скорость затухания колебаний в механической, электрической, молекулярной и других колебательных системах.

Логарифмический декремент затухания — это величина, обратная числу колебаний, по истечении которых амплитуда уменьшается в е раз (е — основание натуральных логарифмов).

Промежуток времени, необходимый для этого, называется временем релаксации.

22. Докажите, что решение уравнения
$$\ddot{\phi}+\omega_0^2\phi=0$$
 является функция.
$$\varphi(t)=A_0\cos\omega t\;,$$