In [2]:	1	1 import pandas as pd									
In [3]:	1	<pre>df = pd.read_csv('pizza_sales.csv')</pre>									
In [4]:	1	df									
Out[4]:		ķ	oizza_id	order_id	pizza_name_id	quantity	order_date	order_time	unit_price	total_p	
		0	1.0	1.0	hawaiian_m	1.0	1/1/2015	11:38:36	13.25	10	
		1	2.0	2.0	classic_dlx_m	1.0	1/1/2015	11:57:40	16.00	16	
		2	3.0	2.0	five_cheese_l	1.0	1/1/2015	11:57:40	18.50	18	
		3	4.0	2.0	ital_supr_l	1.0	1/1/2015	11:57:40	20.75	2(
		4	5.0	2.0	mexicana_m	1.0	1/1/2015	11:57:40	16.00	16	
	4861	15	48616.0	21348.0	ckn_alfredo_m	1.0	31-12-2015	21:23:10	16.75	16	
	4861	16	48617.0	21348.0	four_cheese_l	1.0	31-12-2015	21:23:10	17.95	17	
	4861	17	48618.0	21348.0	napolitana_s	1.0	31-12-2015	21:23:10	12.00	12	
	4861	18	48619.0	21349.0	mexicana_l	1.0	31-12-2015	22:09:54	20.25	2(
	4861	19	48620.0	21350.0	bbq_ckn_s	1.0	31-12-2015	23:02:05	12.75	12	
	48620 rows × 12 columns										

48620 rows × 12 columns

1

```
In [12]:
              import numpy as np
              import matplotlib.pyplot as plt
           2
              import seaborn as sns
              from sklearn.cluster import KMeans
              from sklearn.preprocessing import StandardScaler
              features = ['quantity', 'unit_price', 'total_price']
In [13]:
           2
              df_selected = df[features].dropna()
           3
In [14]:
              scaler = StandardScaler()
              df_scaled = scaler.fit_transform(df_selected)
              df_scaled
In [15]:
Out[15]: array([[-0.13714123, -0.89573558, -0.80486599],
                [-0.13714123, -0.13643454, -0.185127],
                [-0.13714123, 0.55383914, 0.37827207],
                . . . ,
                [-0.13714123, -1.24087242, -1.08656553],
                [-0.13714123, 1.03703071, 0.77265143],
                [-0.13714123, -1.03379031, -0.91754581]])
In [17]:
              inertia = []
              k_values = range(1, 11)
           2
              for k in k_values:
           3
                  kmeans = KMeans(n_clusters = k, random_state = 42, n_init = 10)
           5
                  kmeans.fit(df_scaled)
                  inertia.append(kmeans.inertia_)
In [22]:
              plt.figure(figsize = (6, 4))
              plt.plot(k values, inertia, marker = 'o', linestyle = '--')
             plt.xlabel('Number of clusters')
           3
              plt.ylabel('Inertia')
           5
             plt.title('Elbow Method for Optimal K')
              plt.show()
                             Elbow Method for Optimal K
```


In []: