»Mladi za napredek Maribora 2018«35. srečanje

RAČUNALNIŠKE KOMPONENTE

Računalništvo

Raziskovalna naloga

Avtor: FILIP PETEK

Mentor: MANJA ŠARMAN ŠUMANDL

Šola: SREDNJA ELEKTRO-RAČUNALNIŠKA ŠOLA MARIBOR

Maribor, 2018

»Mladi za napredek Maribora 2018«35. srečanje

RAČUNALNIŠKE KOMPONENTE

Računalništvo

Raziskovalna naloga

Maribor, 2018

KAZALO VSEBINE

1.	Ra	ačunalniške komponente	5
	1.1.	Predstavil bom naslednje komponente:	5
	1.2.	Raziskujem to področje z namenom:	5
2.	Proc	esor	6
	2.1. 2	Zgodovina	6
	2.2. ا	Kako delujejo procesorji	6
3.	Za	asnova procesorjev ter izvedba	7
	3.1.	Podnožja	8
4.	Gı	rafične kartice	. 13
	4.1.	Grafični pomnilnik	. 13
	4.2.	Zgodovina	. 14
	4.3.	Sestavni deli	. 14
	4.4.	Proizvajalci	. 15
5.	M	atične plošče	. 17
	5.1.	PROIZVAJALCI	. 19
6.	Br	ralno-pisalni pomnilnik (RAM)	. 20
7.	Tr	di diski in SSD diski	. 22
	7.1.	Delovanje	. 22
	7.2.	Lastnosti trdega diska	. 22
8.	Na	apajalniki	. 25
9.	Hl	ladilni sistemi	. 26
	9.1.	Ohišja	. 27
	9.2.	Optični disk	. 27
10).	RAZISKOVALNI DEL	. 28
11	L.	SPLETNI VIRI	. 31
	11.1	. VIRI BESEDILA	. 31
	11.2	. VIRI SLIK	. 32

KAZALO SLIK

Slika 1 procesor 4004	6
Slika 2 procesor 4004 matična	6
Slika 3 delovanje procesorja	6
Slika 4 intel core i7 8700K	12
Slika 5 procesor na matični	12
Slika 6 NVidia GeForce GTX	16
Slika 7 MSI GeForce GTX 1060 6G Armor OC	16
Slika 8 MSI matična plošča	17
Slika 9 Reža za procesor	17
Slika 10 Reža za RAM	18
Slika 11 PCI express 16 reža	18
Slika 12 PCI reža	18
Slika 13 ATX priključek	18
Slika 14 Priklopi SATA 3	19
Slika 15 Priklopi za ohišje	19
Slika 16 Priklopi za ventilator	19
Slika 17 Bralno-pisalni pomnilnik RAM	20
KAZALO GRAFOV	
Graf 1 Prodajnost procesorjev	28
Graf 2 Primariava hitrocti GDI Liev	20

1. Računalniške komponente

Komponente v računalniku opravljajo svoje naloge. Poznamo veliko proizvajalcev komponent zato pripravljam to raziskovalno nalogo, da dokažem zmogljivost komponent, ter tudi najboljše proizvajalce. Za to posebej pripravljam anketo (vprašalnik) za podjetja in tudi posameznike, da delijo svoje mnenje.

1.1.Predstavil bom naslednje komponente:

Procesorie – Intel/AMD

Grafične kartice – Msi, EVGA...

Matične plošče – Msi, Asus...

RAM (Delavni polnilnik) -Kingston, Corsair...

Trde/SSD diske – WD, Samsung...

Napajalnike – EVGA, Corsair...

Hladilne sisteme – Voda, zrak

Ohišja – ATX, Mid ATX...

Gonilnike CD –Samsung, Asus...

1.2. Raziskujem to področje z namenom:

- Da dokažem katere komponente so najboljše
- Katere komponente so cenovno najbolj primerne
- Razliko med AMD in INTEL procesorji
- Razliko med Nvidia in AMD grafičnimi karticami
- Katere komponente skupaj delujejo najboljše
- Razliko med SSD in HDD diski

2. Procesor

- Je osrednji del računalnika, ki skrbi za izračunavanje in obdelavo (procesiranje) podatkov ter nadzor in upravljanje drugih enot.
- Procesorji se načeloma delijo po številu tranzistorjev, jeder, niti, podnožju in velikosti polnilnika.
- Procesorji so narejeni iz **SICILIJA**, ovoji pa so iz Aluminija ali **Keramike.**
- Za svoje normalno delovanje potrebuje še hladilnik oz. ventilator.
- Vgradimo ga na matično ploščo, ki ima ustrezno režo za podnožje procesorja.

2.1. Zgodovina

Slika 1 procesor 4004

Prvi komercialni procesor je bil narejen leta 1971. Izdelalo ga je podjetje INTEL. To je bil 4-bitni Intel 4004. Istočasno je podjetje Texas Instruments razvijalo procesor TMS 1000.

Intel je kasneje razvil prvi 8-bitni procesor, 8008 in naslednika Intel 8080 ter Zilog Z80.

Večprocesorski sistemi so se najprej uveljavili na posebnih področjih, kjer je bila zahtevana zmogljivost, kot so strežniki, zmogljivi računalniki in delovne postaje, so se pa tudi že

uveljavili v običajnih namiznih in prenosnih računalnikih.

Več procesorjev omogoči hitrejše delovanje računalnika in s tem tudi izvajanje zahtevnejših procesov na računalniku. Z tem imamo v računalnikov več bit-ov, ker procesorji delujejo skupaj. Na sliki

je prikazan sistem z tremi Intel 4004 procesorji na Slika 2 procesor 4004 matična matični plošči.

2.2. Kako delujejo procesorji

Osnovno delovanje večine procesorjev je glede na svojo fizično obliko. Po obliki izvajajo ukaze iz shranjenih programov. Poznamo 4 korake za delovanje procesorja, ki jih uporabljajo skoraj vsi procesorji. To pa so Prenašalec ukazov, dekodirnik ukazov, registri in ALE. Pri tem sodeluje še pomnilniški vmesnik, ki je povezan še z pomnilnikom.

Slika 3 delovanje procesorja

3. Zasnova procesorjev ter izvedba

Tako je zasnovan osnovni koncept procesorja:

V procesorski zasnovi je vgrajen seznam osnovnih operacij, ki jih lahko izvaja tako rečeno nabor ukazov. Te operacije lahko vključujejo seštevanje in odštevanje dveh števil, primerjavo števil ali skočne ukaze na različne dele programov. Vsaka izmed teh osnovnih operacij je predstavljena z določenim zaporedjem bitov. Takšno zaporedje imenujemo OPERACIJSKA KODA. Uporablja se za določeno operacijo. Z pošiljanjem določene operacijske kode v procesor bo to povzročilo izvajanje operacije, ki jo predstavlja ta koda.

V več procesorskih zasnovah se nabor ukazov očitno razlikuje od operacij za nalaganje podatkov iz spomina in od tistih za izvajanje matematike. V primeru da so podatki naloženi iz spomina shranjeni v register, in matematična operacija nima argumentov ampak preprosto le izvaja matematiko nad podatki v registrih in jih zapiše v nov register, katerih vrednost v spomin zapiše druga operacija.

Tri glavne značilnosti procesorja so:

- Frekvenca ali delovni takt: število ciklov na sekundo. Giblje se nekaj deset kHz pri procesorjih za posebne namene in do nekaj GHz pri procesorjih v osebnih računalnikih.
- Širina podatkovnega vodila: merjena je v bitih, ki jih procesor obdela v eni operaciji je navadno 64 bitov, počasi se premika proti 128. Starejše generacije so imele vodilo širine 32 ali 16 bitov.
- Širina naslovnega vodila: merjena v bitih, da največji možen naslovni prostor procesorja, navadno merjen v megabajtih ali gigabajtih. Seveda pa je najvišji razpoložljivi fizični naslov odvisen od količine fizičnega pomnilnika, ki je procesorju na razpolago. Trenutno je naslovno vodilo običajno enako široko kot podatkovno, v preteklosti, pa ni bilo vedno tako.

Pri procesorju je zelo pomembno število tranzistorjev. V enem procesorju jih je lahko tudi lahko več sto milijonov!

Delovni takt ali takt ure je hitrost s katero mikroprocesor izvaja ukaze. Vsak računalnik vsebuje notranjo uro, ki regulira hitrost s katero se ukazi izvajajo in sinhronizira vse različne komponente računalnika. Hitrejša kot je ura, več ukazov lahko CPU izvede na sekundo.

3.1. Podnožja

Različni tipi procesorjev imajo različna podnožja. Uporabljamo jih v različnih računalnikih in tudi za različne namene. Poznamo LGA, PGA, rPGA, slot, DIP, PLCC.

Leta 1970 se je uporabljalo podnožje DIP za procesor 4004 in 8008 ter naslednje generacije do leta 1989.

Uporaba podnožij – leto nastanka ter proizvajalci:

Ime podnožja	Leto nastanka	Podprti procesorji	Vrsta
DIP	1970	Intel 8086 Intel 8088	Intel
Socket 1	1989	Intel 80486	Intel
Socket 3	1991	Intel 80486	Intel
Socket 4	1993	Intel Pentium	Intel
Socket 5	1994	Intel Pentium AMD K5 Cyrix 6x86 IDT WinChip C6 IDT WinChip 2	AMD/Intel
Socket 463 NexGen	1994	NexGen Nx586	AMD/Intel
Socket 7	1994	Intel Pentium Intel Pentium MNX AMD K6	AMD/Intel
Socket 8	1995	Intel Pentium Pro	Intel
Socket 431	1995	Alpha 21064/20164A	AMD/Intel
Socket 499	1997	Alpha 21264	AMD/Intel
Slot 1	1997	Intel Pentium II Intel Pentium III	Intel
Socket 587	1998	Alpha 21264	AMD/Intel
Super Socket 7	1998	AMD K6-2 AMD K6-III Rise mP6 Cyrix MII	AMD
Slot 2	1998	Intel Pentium II Xeon	Intel
Socket 615	1999	Intel Mobile Pentium II Intel Mobile Celeron	Intel
Slot A	1999	AMD Athlon	AMD

Socket 370	1999	Intel Pentium III	Intel
Socket 570	1,,,,	Intel Celeron	meer
		VIA Cyrix III / VIA	
		C3	
Socket A/462	2000	AMD Athlon	AMD
		AMD Duron	
		AMD Athlon XP	
		AMD Athlon XP-M	
		AMD Athlon MP	
		AMD Sempron	
Socket 423	2000	Intel Pentium 4	Intel
Socket 478/N	2000	Intel Pentium 4	Intel
		Intel Celeron	
		Intel Pentium 4 EE	
		Intel Pentium 4 M	
Socket 495	2000	Intel Celeron	Intel
		Intel Pentium III	
PAC418	2001	Intel Itanium	Intel
Socket 603	2001	Intel Xeon	Intel
Socket 563	2002	AMD Athlon XP-M	AMD
PAC611	2002	Intel Itanium 2	Intel
		HP PA-8800, PA-	
		8900	
Socket 604	2002	Intel Xeon	Intel
Socket 754	2003	AMD Athlon 64	AMD
		AMD Sempron	
		AMD Turion 64	
Socket 940	2003	AMD Opteron	AMD
		AMD Athlon 64 FX	
Socket 479	2003	Intel Pentium M	Intel
		Intel Celeron M	
Socket 939	2004	AMD Athlon 64	AMD
		AMD Athlon 64 FX	
		AMD Athlon 64 X2	
		AMD Opteron	
LGA 775/T	2004	Intel Pentium 4	Intel
		Intel Pentium D	
		Intel Celeron	
		Intel Celeron D	
		Intel Pentium XE	
		Intel Core 2 Duo	
		Intel Core 2 Quad	
		Intel Xeon	
Socket M	2006	Intel Core Solo	Intel
		Intel Core Duo	
		Intel Dual-Core	
		Xeon	
		Intel Core 2 Duo	
LGA 771/J	2006	Intel Xeon	Intel
Socket S1	2006	AMD Turion 64 X2	AMD

Socket AM2	2006	AMD Athlon 64	AMD
		AMD Athlon 64 X2	
Socket	2006	AMD Athlon 64 FX	AMD
F&L/1207FX		AMD Opteron	
Socket AM2+	2007	AMD Athlon 64	AMD
		AMD Athlon X2	
		AMD Phenom	
		AMD Phenom II	
Socket P	2007	Intel Core 2	Intel
rPGA 988A/G1	2008	Intel Atom	Intel
Socket 441	2008	Intel Core i7 (900	Intel
		series)	
		Intel Xeon (35xx,	
		36xx, 55xx, 56xx	
		series)	
LGA 1366/B	2008	Intel Core i7 (600,	Intel
		700, 800, 900	
		series)	
		Intel Core i5 (400,	
		500 series)	
		Intel Core i3 (300	
		series)	
		Intel Pentium	
		(P6000 series)	
		Intel Celeron	
0 1 4 4 3 4 2	2000	(P4000 series)	AMD
Socket AM3	2009	AMD Phenom II	AMD
		AMD Samman	
		AMD Optoron	
		AMD Opteron (1300 series	
LGA 1156/H	2009	Intel Core i7 (800	Intel
LUA 1130/H	2009	series)	inter
		Intel Core i5 (700,	
		600 series)	
		Intel Core i3 (500	
		series)	
		Intel Xeon (X3400,	
		L3400 series)	
		Intel Pentium	
		(G6000 series)	
		Intel Celeron	
		(G1000 series)	
Socket G34	2010	AMD Opteron	AMD
	_510	(6000 series)	
Socket C32	2010	AMD Opteron	AMD
	_010	(4000 series)	
LGA 1248	2010	Intel Itanium 9300-	Intel
-	- *	series	

LGA 1567	2010	Intel Xeon	Intel
7.01.000/64	2011	6500/7500-series	
rPGA 988/G2	2011	Intel Core i7 (2000,	Intel
		3000 series)	
		Intel Core i5 (2000,	
		3000 series)	
		Intel Core i3 (2000,	
		3000 series)	
Socket FM1	2011	AMD Llano	AMD
		Processors	
Socket FS1	2011	AMD Llano	AMD
		Processors	
Socket AM3+	2011	AMD FX Vishera	AMD
		AMD FX Zambezi	
		AMD Phenom II	
		AMD Athlon II	
		AMD Sempron	
LGA 1155/H2	2011	Intel Sandy Bridge	Intel
		Intel Ivy Bridge	
		Intel Xeon E3 12xx	
		Sandy Bridge 12xx	
		Ivy Bridge 12xxV2	
LGA 2011/R	2011	Intel Core i7 3xxx	Intel
		Sandy Bridge-E	
		Intel Core i7 4xxx	
		Ivy Bridge-E	
		Intel Xeon E5	
		2xxx/4xxx (Sandy	
		Bridge EP) (2/4S)	
		Intel Xeon E5-	
		2xxx/4xxx v2 (Ivy	
		Bridge EP) (2/4S)	
Socket FM2	2012	AMD Trinity	AMD
		Processors	
LGA 1150/H3	2013	Intel Haswell	Intel
		Intel Haswell	
		Refresh	
		Intel Broadwell	
LGA G3	2013	Intel Haswell	Intel
		Intel Broadwell	
Socket FM2+	2014	AMD Kaveri	AMD
		Processors	
		AMD Godavari	
		Processors	
Socket AM1	2014	AMD Samman	AMD
T.C.A. 1151	2017	AMD Sempron	T 4 1
LGA 1151	2015	Intel Skylake	Intel
		Intel Kaby Lake	
		Intel Coffee Lake	

LGA 3647	2016	Intel Xeon Phi	Intel
		Intel Skylake-SP	
Socket AM4	2017	AMD Ryzen 7	AMD
		AMD Ryzen 5	
		AMD Ryzen 3	
Socket SP3	2017	AMD EPYC	AMD
Socket TR4	2017	AMD Ryzen	AMD
		Threadripper	
LGA 2066/R4	2917	Intel Skylake-X	Intel
		Intel Kaby Lake-X	
Slot B	Leto ni znano	Intel 80186	AMD/Intel
		Intel 80286	
		Intel 80386	
PLCC	Leto ni znano	Intel 80486	Intel
Socket 2	Leto ni znano	Intel 80486	Intel
Socket 6	Leto ni znano	Alpha	Intel
		21264/21264A	

Slika 4 intel core i7 8700K

Slika 5 procesor na matični

4. Grafične kartice

Grafična kartica je strojna oprema oziroma del računalnika, ki skrbi za prikaz slike na zaslonu. Nekateri računalniki jo imajo integrirano na matični plošči, ostali pa jo imajo nameščeno samostojno preko razširitvenih rež (ISA, PCI, AGP, PCI-Express,...). Od njene kvalitete je tako odvisna kakovost prikazane slike.

4.1. Grafični pomnilnik

Večina grafičnih kartic uporablja posebni RAM - VRAM. Ta pomnilnik omogoča večje hitrosti kot navadni RAM. V njem se nahaja slika, ki gre na zaslon. Od količine VRAM-a je odvisna ločljivost slike in barvna globina. Razen slike so v VRAM-u še teksture.

Grafična procesna enota GPE

Je čip posvečen izračunu slike v osebnem računalniku, delovni postaji ali igralni konzoli. Pri obdelavi slike gre za veliko količino razmeroma preprostih računskih operacij. Grafični procesor je temu prilagojen. Njegova zgradba je močno paralelna. To pomeni, da ima nekaterih enot več, ki delujejo hkrati. S tem se močno poveča hitrost izračuna slike.

Oblike GPE-ja

Integrirana grafika: Integrirane grafične kartice, integrirani grafični procesorji, deljene grafične rešitve uporabljajo del RAM-a od računalnika, ker nimajo svojega tako kot imajo to namensko grafične kartice. Integrirani grafični procesorji so lahko integrirani na sami matični plošči ali pa so integrirani v centralno procesno enoto računalnika. Slednjo obliko integriranosti lahko zasledimo pri Intelovi HD grafiki. Na začetku leta 2007 je 90% računalnikov, ki so se prodali, imelo integrirane grafične procesorje, saj čeprav so slabši kot namenska grafika veliko cenejši. V zgodovino je veljalo, da z integrirano grafiko ne moremo igrati 3D iger in uporabljati zahtevnih grafičnih programov. Uporabnik pa je lahko uporabljal manj zahtevne programe, kot so Adobe Flash. Novejše pa so seveda že sposobne prikazovat 3D grafiko, vendar v manjšem obsegu kot pa namenske grafične kartice. Ker je grafika zelo potrošna glede RAM-a se na takšnih računalnikih po navadi centralna grafična enota in grafična procesna enota tako rekoč tepeta za RAM.

Namenska grafika: Namenske grafične kartice imajo po navadi priključek na matični plošči. En od teh priključkov je PCI, s tem priključkom lahko grafično kartico zamenjamo ali celo nadgradimo za boljšo, dokaj preprosto, seveda pa nam more matična plošča podpirat novo grafično kartico. Ni nujno, da so namenske grafične kartice odstranljive ali celo standardno priključene na matično ploščo. Beseda namensko ne pomeni, da je grafična kartica odstranljiva, vendar pomeni, da ima grafična kartica namenski RAM že vgrajen v samo kartico, tako da ne rabi uporabljati RAM-a od računalnika. Pri teh karticah je RAM po navadi

še natančno izbran glede na to kakšne obremenitve se pričakuje, da bo izvajal. Namenske grafične kartice pri prenosnih računalnikih so drugačne, kot pa iste grafične kartice za namizne računalnike in po navadi nezamenljive. Tehnologije kot na primer SLI od podjetja NVidia in Crossfire od podjetja AMD dopuščajo, da več grafičnih kartic hkrati prikazuje sliko na en zaslon, kar poveča odzivnost grafičnih kartic.

Hibridna grafika: Najnovejše grafične kartice tekmujejo z integriranimi grafičnimi karticami pri nizko cenovnih računalnikih. Najpogostejše takšne implementacije so od podjetja ATI (HyperMemory) in podjetja NVidia (TurboCache).Hibridno grafične kartice so za malenkost dražje od integriranih in veliko cenejše od namenskih grafičnih kartic. Hibridne grafične kartice uporabljajo RAM od računalnika, tako kot ga uporabljajo integrirane grafične kartice, vendar pa imajo nekaj malega svojega namenskega RAM-a. Namenski RAM uporabljajo pri velikih obremenitvah računalnika, ko centralna procesna enota uporablja veliko RAM-a v računalniku.

4.2. Zgodovina

Prvi je grafično kartico vpeljal proizvajalec Apple v modelu Apple II. Prvi IBM PC računalniki so imeli monokromatske (enobarvne) grafične kartice. Nekaj mejnikov v razvoju:

- CGA od leta 1981,
- EGA od leta 1984,
- VGA od leta 1989,

Zatem IBM izgubi nadzor tržišča. Pojavi se množica standardov (SVGA, XGA,...). Začne se označevanje s številkami (na primer 1024x 768), pojavi se 3D pospeševanje.

4.3. Sestavni deli

Grafična kartica je sestavljena iz tiskanega vezja kjer se nahajajo:

- GPU, procesor na grafični kartici
- Video BIOS ki je del zagonske programske kode
- VRAM, grafični pomnilnik
- Priključek (vodilo)

Hladilni sistem ki služi za hlajenje grafične kartice, da se ne poškoduje. Hlajenje je lahko pasivno, aktivno in vodno. Dodatni napajalni sistem, grafične kartice se napajajo preko vodila (75W) vendar, ker električna poraba teh kartic narašča potrebujemo dodatni napajalnik.

4.4. Proizvajalci

Srce grafične kartice je čip GPU (angleška kratica za Graphics processing unit). Na svetu je samo nekaj pomembnih proizvajalcev GPU:

- Intel HD graphics, HD i3, HD i5, HD i7.
- Matrox "C" series, "G" series, "M" series.
- AMD Technologies APU family, R-200 series, R-300 series, R-400 series, R-500 series.
- NVIDIA Corporation 700 series, 900 series, 1000 series, Titan.

Poznamo pa tudi druge proizvajalce celotnih grafičnih kartic. Trenutno najboljše:

AMD	AMD 100-506048
	AMD 100-505989
Asus	Asus GTXTITANZ-12GD5
	Asus GTXTITANX-12GD5
ATI	ATI FirePro S9150
	ATI FirePro W9100
BFG	BFG GeForce 9400 GT 512MB Video Card
Biostar	Biostar VA5755NHG1
	Biostar VA5775NHG1
Club 3D	Club 3D CGAX-R9399
	Club 3D CGAX-R9298SO
Colorful	Colorful iGame GTX1080Ti Vulcan X OC
Corsair	Corsair CB-9060011-WW
	Corsair CB-9060010-WW
Dell	Dell 469-4186
Diamond	Diamond R9295X2D58G
	Diamond RX480D58G
ECS	ECS NGT440-2GQM-F
	ECS EGT640A-2GR3-YBF(v1.0)
EVGA	EVGA 12G-P4-2992-KR
	EVGA 11G-P4-6393-KR
Gainward	Gainward 426018336-3897
	Gainward 426018336-3644
GALAX	GALAX 80IUJBMDQ0EW
	GALAX 80IUJBDHQ7FZ
Galaxy	Galaxy 68NQH6DN6DXZ
·	Galaxy 77NQH7DV8NKV
Gigabyte	Gigabyte GV-NTITANXXTREME-12GD-B
	Gigabyte GV-N108TAORUSX W-11GD
HIS	HIS HS-VEGR8FSNR
	HIS H390QM8GD
HP	HP J3G93AT

	HP J3G92AT
Inno3D	Inno3D N1080T-1DDN-Q6MO
	Inno3D C108V4-1SDN-P6DNX
Leadtek	Leadtek Quadro GP100
Jaton	Jaton Video-PX658-DLP-EX
	Jaton Video-PX610GT-EX
KFA2	KFA2 80IUJBDHQ7LK
	KFA2 80IUJBMDQ0EK
Lenovo	Lenovo 0B47392
	Lenovo 0B47394
MSI	MSI V801-1279R
	MSI GeForce GTX 1080 Ti GAMING X 11G
NVIDIA	NVIDIA 900-1G611-2530-000
	NVIDIA 900-1G611-2550-000
OcUK	OcUK OcUK_TitanX
	OcUK GX-21H-OK
Palit	Palit NE5XTIZ010K7-P2080F
	Palit NEB108TS15LCJ
PNY	PNY VCQP6000-PB
	PNY VCQGP100-PB
PowerColor	PowerColor AXR9 390 II 16GBD5
	PowerColor AXRX 580 8GBD5-3DH/OC
Sapphire	Sapphire 11265-05-20G
	Sapphire 11265-21-20G
Sparkle	Sparkle 700005
	Sparkle SXT4302048S3LNM
VisionTek	VisionTek 900888
	VisionTek 900809
XFX	XFX RX-580P8DBDR
	XFX RX-480M8BBA6
Zogis	Zogis ZOGTX970-4GD5SC
	Zogis ZOGTX970-4GD
Zotac	Zotac ZT-90402-10P
	Zotac ZT-P10810G-10P

Slika 6 NVidia GeForce GTX

Slika 7 MSI GeForce GTX 1060 6G Armor OC

5. Matične plošče

Matična plošča, je osnovno tiskano vezje v osebnem računalniku. Na matično ploščo se vstavijo oziroma se priključijo vse ostale komponente: procesor, bralno pisalni pomnilnik (RAM), razširitvene kartice (npr.: grafična) in zunanji pomnilnik. Matična plošča vsebuje tudi priključke za mnoge vmesnike (npr.: miškin, tipkovničin, USB, zaporedni, tiskalniški ...). Najpomembnejši sestavni del matične plošče je sistemski nabor, kateri povezuje ostale komponente med seboj. Sistemski nabor določa zmogljivosti matične. Po navadi je razdeljen na dva dela, severni in južni most. Severni most skrbi za komunikacijo procesorja s pomnilnikom, ter pomembnejšimi razširitvenimi vmesniki, kot so konvencionalni PCI, AGP

Slika 8 MSI matična plošča

in PCIe. Severni most ima po navadi le eno PCI vodilo, ki je povezano na južni most. Južni most skrbi za V/I naprave, kot so PCI, IDE, FDD, LAN, SCI, PS/2, AC97, USB, LPT in drugi vmesniki. Naprave priključene na matično ploščo so povezane z vodili, ki so ali paralelna ali pa serijska. Trenutni trendi se nagibajo v smer serijskih prenosov, le pri povezavi pomnilnika še vedno prevladujejo paralelni prenosi, ki omogočajo veliko večje prenose podatkov kot serijski.

Sestavni deli, priklopi in reže: (Spodnje slike se navezujejo na zgornjo sliko matične plošče.)

1. Podnožje za procesor

Vsaka matična plošča ima podnožje za procesor. Podnožja se razlikujejo glede na modele saj so namenjena za različne procesorje. Pri Intelovih procesorjih je to v večini primerov LGA, pri AMD pa Socket AM, FM, F, C... Ob procesorskem podnožju je tudi manjša ročica s katero fiksiramo procesor na matično ploščo. S tem se procesor ne more premakniti in se ne more

poškodovati čip. Za tem nad procesor položimo še procesorski

Slika 9 Reža za procesor

ventilator, ki je tudi fiksiran na matični plošči. Nastavek za ventilator je lahko različen glede na velikost matične plošče, saj poznamo več tipov velikosti plošč.

2. Reža za bralno pisalni pomnilnik

Slika 10 Reža za RAM

Bralno pisalni pomnilnik drugače znan kot RAM je namenjen za hitrejše procesiranje in opravljanje storitev na računalniku. Reže na sliki se imenujejo

DDR4. Poznamo pa še tudi trenutno aktualne DDR3 in malo starejše DDR2 in DDR. Na sliki je vidno, da

so 4 reže za RAM in od tega sta 2 rdeči in 2 črni. Od zgoraj navzdol štejemo reže po zaporedju 3, 1, 4, 2. Tako da reži rdeče barve sta 1 in 2, črni pa sta 3 in 4. Ena reža lahko prenese do 32GB RAM-a. Tako da skupaj do 128GB.

3. Reža za grafično kartico (PCIe)

Slika 11 PCI express 16 reža

PCIe reža je drugače imenovana PCI Express 1 ali 16. Zgornja črna reža je imenovana PCIe 1 in je namenjena za vgrajene SSD diske, ter za priključke za dodatne PCIe 16 zunanje kartice. Na PCIe lahko priključimo tudi

omrežne kartice na primer za internetno WiFi povezavo ali dodatne kartice za telefonijo ali LAN povezavo. Spodnja

reža se imenuje PCIe 16, ki pa je v tem primeru namenjena za grafično kartico. Matična plošča ima po navadi 2 do 3 reži PCIe 16. To nam omogoča uporabo več grafičnih kartic na enkrat.

4. PCI reže

PCI reže imajo isto uporabo kot PCIe 1 reže. So malo starejša verzija PCIe 1 rež vendar jih še vedno najdemo na novejših matičnih ploščah. Namenjene so prav tako za dodatne kartice za internetno povezavo in SSD diske.

Slika 12 PCI reža

5. Priključek napajanja ATX

Slika 13 ATX priključek

ATX napajalni kabel služi za napajanje matične plošče. Kabel pridobimo z napajalnika. Je največji kabel na napajalniku in ima 24 tako imenovanih PINov. Pomemben podatek! Moč napajalnika mora znašati toliko, da zadostuje

za vse komponente skupaj. Če je moč premajhna je velika možnost da lahko uničimo svojo matično ploščo.

6. Priklopi SATA 3

Sata 3 so nasledniki priklopov SATA in SATA 2. Ti so proti starejšima verzijama zelo manjši, njihova hitrost pa je tudi večja. Uporabljajo se za priklapljanje diskov, CD pogonov, disketnikov, med drugim tudi SSD diskov. Na tej verziji matične plošče sta dva priključka SATA 3, po navadi pa jih najdemo na matičnih ploščah 6 do 8 včasih tudi po 12.

Slika 14 Priklopi SATA 3

7. Priklopi za ohišje

Slika 15 Priklopi za ohišje

Na te priklope priključimo kable s katerimi nadzorujemo LED lučke, lučke v ohišju, ventilatorje, gumbe za vklop, ter za reset.

vendar potrebujemo dodatne

8. Priključek za ventilator

Nahaja se neposredno zraven procesorja ali pa na robu matične plošče. Po navadi so na eni matični plošči 3 do 4. Lahko pa jih priključimo tudi več

Slika 16 Priklopi za ventilator

priključke.

5.1. PROIZVAJALCI

V tabeli so prikazani proizvajalci ter njihovi najboljši izdelki.

ASRock	ASRock Z97 EXTREME6
	ASRock Fatal1ty X99X Killer
Biostar	Asus Sabertooth Z87
	Asus Maximus VI Impact
Asus	Biostar X370GTN
	Biostar Z170GT7
ECS	ECS B85H3-M(1.0)
	ECS P67H2-A
EVGA	EVGA 150-SE-E789-KR
	EVGA Z97 FTW
Foxconn	Foxconn H61S
	Foxconn A75M
Gigabyte	Gigabyte GA-H97M-D3H
	Gigabyte Z370 AORUS Gaming 5
Intel	Intel DH67BLB3
	Intel DH77EB
Jetway	Jetway JNAF93-Q77
	Jetway JM26GT4-D3-LF
MSI	MSI Z170A KRAIT GAMING 3X
	MSI X99S Gaming 7
NZXT	NZXT N7-Z37XT-W1
	NZXT N7-Z37XT-B1

Sapphire	Sapphire PURE Black X58
	Sapphire PURE Black 990FX
Supermicro	Supermicro MBD-X10DRI-O
	Supermicro C7X99-OCE-F
XFX	XFX MBN790IUL9
Zotac	Zotac H67ITX-C-E
	Zotac A75ITX-B-E

6. Bralno-pisalni pomnilnik (RAM)

Bralno-pisalni pomnilnik, pogosto imenovan z angleško kratico RAM (Random Access Memory), je vrsta elektronskega pomnilnika. Podatke lahko vanj zapisujemo in jih beremo iz njega. Lahko ga imenujemo tudi delovni pomnilnik. Uporablja se v računalnikih in drugih digitalnih napravah.

Ločimo dve vrsti RAM pomnilnikov: dinamični RAM (DRAM), ki za svoje delovanje potrebuje signal, ki nekaj tisočkrat na sekundo osveži vsebino pomnilnika ter statični RAM (SRAM), ki ne potrebuje osveževanja, zato omogoča hitrejši dostop do podatkov, vendar je dražji (uporaba v predpomnilnikih).

Glavni značilnosti pomnilnika sta kapaciteta (velikost), ki jo merimo v bajtih ter čas dostopa do podatkov, ki je velikostnega razreda nekaj nanosekund.

Lastnosti: - branje in pisanje je enako hitro - ob izklopu pozabijo - uporabljajo jih za začasno shranjevanje

Statični Ram (Sram) Uporabljajo se predvsem velike procese ali krmilne računalnike. Celica je velika pri tem pa so čipi majhnih kapacitet. Ker so v celici samo tranzistorji je delovanje zelo hitro.

- Čas dostopa nekaj 10nano sekund.

Slika 17 Bralno-pisalni pomnilnik RAM

Dinamični RAM (Dram) Ker imajo veliko kapaciteto jih vgrajujejo v pomnilniške sisteme velikih računalnikov. Pomnilniki imajo pozitivno in negativno napajanje zato, da lahko logično 0 in 1 zakodiramo s + ali - napetostjo.

Poznamo različne vrste čipov RAM

DIP, SIPP, SIMM 30pin, SIMM 72pin, DIMM, DDR DIMM, DDR2 DIMM.

Trenutno aktualen je DDR4 čip saj je najnovejši!

Proizvajalci

ADATA	ADATA XPG GAMMIX D10
	ADATA XPG Z1
AMD	AMD R7 Performance
	AMD R9 Gamer Series

Apacer	Apacer Panther-Golden Apacer Panther Silver			
Apotop	Apotop DDR3-1600			
Avexir	Avexir Raiden			
TIVOM	Avexir Raiden Avexir ROG Red Tesla			
Corsair	Corsair Vengeance LPX			
00150021	Corsair Dominator Platinum			
Crucial	Crucial Ballistix Sport LT			
	Crucial			
Dell	Dell			
EVGA	EVGA SuperSC			
	EVGA Superclocked			
G.Skill	G.Skill Trident Z RGB			
	G.Skill Aegis			
GALAX	GALAX HOF			
GeIL	GeIL SUPER LUCE RGB SYNC			
	GeIL EVO SPEAR			
Gloway	Gloway			
HP	HP DDR3-1600			
IBM	IBM DDR3-1600			
Kingston	Kingston HyperX Fury Black			
	Kingston ValueRAM			
Klevv	Klevv Cras			
	Klevv Urbane			
Lexar	Lexar			
Micron	Micron			
Mushkin	Mushkin Silverline			
	Mushkin Blackline			
OCZ	OCZ Gold XTE			
	OCZ Obsidian			
Panram	Panram Ninja-V			
	Panram Falcon			
Pareema	Pareema			
Patriot	Patriot Viper Elite			
DNIX	Patriot Viper 4			
PNY	PNY Anarchy			
Company	PNY Anarchy X			
Samsung Silicon Power	Samsung Silicon Power Xpower			
Silicon Power	Silicon Power Silicon Power			
CV hyniv	SK hynix			
SK hynix Super Talent	·			
Team	Super Talent Team Dark			
1 Gain	Team T-Force / Night Hawk			
Toshiba	Toshiba			
Transcend				
Tunscend	Transcend aXeRAM			
V7	V7 V7			
VisionTek	VisionTek Black Label Series			
, intollion	TIDIOTITOR DIGOR EGUOT DOLLO			

	VisionTek Adrenaline			
Wintec	Wintec Value			
	Wintec Server Series			
XPG	XPG SPECTRIX D40			

7. Trdi diski in SSD diski

Trdi disk: Trdi disk (angleško Hard Disk Drive, HDD), tudi samo disk, je najbolj razširjena vrsta zunanjega pomnilnika. Je poceni in ob izklopu ohrani vsebino. Vsi podatki (besedilo, slika, film, zvok, programi, gonilniki ...) na trdem disku so zapisani v datotekah. Disk je sestavljen iz več okroglih kovinskih plošč prevlečenih z magnetno snovjo, ki se med delovanjem vrtijo. Nad diskom je bralno pisalna glava. To je navitje, ki lahko magneti površino diska (pisanje), ali ugotavlja smer namagnetenosti (branje). Pred uporabo DAM krmilnika so naprave za vsak poseg v notranji pomnilnik posegale v procesor, da jim je dodeli pravilen pomnilniški naslov. Ker se je lahko ta dodelitev pojavljala pogosto, je procesor veliko časa porabil za dodelitev dostopa do pomnilnika namesto izvrševanja procesov. Naprave, ki uporabljajo DMA svoje zahteve pošljejo krmilniku in ta namesto procesorja izračuna pomnilniški naslov. Tako se razbremeni procesor za druga opravila. Prenos informacij iz diska na osnovno ploščo je odvisen od povezave. Prva povezava je bila preko ATA kablov. ATA kabel ima 40 žil, podatki pa se prenašajo vzporedno pri frekvenci od 33 do 133 MHz. Ker je hitrost še vedno bila zelo nizka, se je uveljavil priključek SATA, ki ima 4pine in 7 žil. Podatki se prenašajo zaporedno preko dveh kablov. Za uporabnike s potrebo po velikih hitrostih prenosa podatkov, se je razvilo SCSI vodilo. Ker je protokol prenosa informacij drugačen kot pri ATA in SATA vodilih, so SCSI diski tudi dražji.

7.1. Delovanje

Trdi disk deluje tako, da zaporedne spremembe v smeri magnetizacije predstavljajo binarnih podatkovnih bitov (0 in 1). Podatke bere iz diska z detekcijo prehodov v magnetizacije. Tipičen HDD dizajn sestavlja vreteno, ki ima ploske okrogle diske, imenovane tudi plošče, ki vodijo zapisane podatke. Plošče so izdelane iz nemagnetnega materiala, običajno aluminijeve zlitine, stekla ali keramike, in so prevlečene s plitvo plast magnetnega materiala običajno 10-20 nm v globino, z zunanjo plastjo ogljika za zaščito.

7.2. Lastnosti trdega diska

Hitrost branja in pisanja trdega diska se meri v megabajtih na sekundo (MB/s). Današnji diski dosežejo hitrost do 50 MB/s, novejši SSD-ji pa dosegajo hitrosti do 500 MB/s.

Zmogljivost (kapaciteta) trdega diska se običajno meri v gigabajtih (GB) in terabajtih (TB). Proizvajalci trdih diskov uporabljajo pretvorbo 1 gigabajt = 1000 megabajtov in 1 terabajt = 1000 gigabajtov. To se razlikuje od standarda v preostali računalniški industriji, kjer je faktor pretvorbe 210 in je torej 1 gigabajt enak 1024 megabajtom.

Fizična velikost trdega diska je največkrat 3,5", za prenosne računalnike pa 2,5".

Vmesnik. Najbolj znana sta ATA (PATA in SATA), SSD ter SCSI.

Zanesljivost. Podatek MTBF nam pove, koliko časa povprečno preteče med dvema napakama.

SSD disk: Solid state drive je naprava za shranjevanje informacij, ki deluje podobno kot USB ali pa DRAM pomnilnik. SSD je bolj sposoben naslednik trdih diskov. SSD za razliko nima diska, prav tako nima gibljivih delov.

Prednosti SSD

Precej krajši dostopni čas in krajša latenca

Hitrejši prenos podatkov, tipično 100 MB/s do 600 MB/s

Manjša poraba energije, ugodno za prenosnike

Manjše segrevanje

Brezšumno delovanje

Večja odpornost na udarce

Slabosti SSD

Omejeno število ciklov pisanja, vendar dovolj za običajnega uporabnika

Višja nakupna cena na enoto shranjenih podatkov v primerjavi s trdimi diski

Trenutno imajo SDD-ji manjše kapacitete kot trdi diski, vendar cene obeh padajo in kapacitete obeh rastejo.

Proizvajalci Trdih in SSD diskov

PROIZVAJALEC	KOMPONENTA	VRSTA
ADATA	ADATA ASP550SS3-240GM-C	SSD
Addlink	Addlink ad240GBS10S3	SSD
AMD	AMD RADEON-R7SSD-480G	SSD
Apotop	Apotop MASS3C128GBR	SSD
Asus	Asus RAIDR EXPRESS	SSD
Avexir	Avexir AVSSDE100ZZ-480GB	SSD
Axiom	Axiom 0A89478-AX	HDD
	Axiom SSD25S32480-AX	
Biwin	Biwin CSE25A00001-512	SSD
Corsair	Corsair CSSD-F120GBMP500	SSD
Crucial	Crucial CT500MX500SSD1	SSDHDD
Dell	Dell 342-3520	SSD
Drevo	Drevo WAR PRO T300 240G	SSD

Edge Tech	Edge Tech EDGSD-233846-PE	SSD
Eluktro	Eluktro TRO-SSD7-512GB-PRO	SSD
G.Skill	G.Skill FM-PCx8G2R4-960G	SSD
Hitachi	Hitachi 0F27352	HDD
Tittaciii	Hitachi 07/27/3/2 Hitachi 07/00191	SSD
HP	HP 653950-001	HDD
111	HP 738975-001	SDD
Hyundai Technology	Hyundai Technology	SSD
Tryundar Teenmology	SSDHYC2S3T120G	SSD
IBM	IBM 43X0839	HDD
Inland	Inland 349381	SSD
Intel	Intel SSDPECME032T401	SSD
Kingston	Kingston SA400S37/120G	SSD
Lenovo	Lenovo 0C19494	HSS
Maxtor	Maxtor 7Y250M0	HSS
Micron	Micron MTFDDAK128MBF-1A	SSD
Mushkin	Mushkin MKNSSDRE1TB ssd	SSD
MyDigitalSSD	MyDigitalSSD MDNVME80-BPX-	SSD
	0512	
OCZ	OCZ RVD350-FHPX28-240G	SSD
OWC	OWC OWCSSD7E6G120	SSD
Patriot	Patriot PTL240GS25SSDR	SSD
PLDS	PLDS PX128M5M	SSD
Plextor	Plextor PX-256M8PeY	SSD
PNY	PNY SSD7CS1311-120-RB	SSD
Samsung	Samsung HD103SJ	HDD
	Samsung 840 EVO	SSD
SanDisk	SanDisk SDSSDA-240G-G26	SSD
Seagate	Seagate ST1800MM0128	HDD
	Seagate ST480FP0021	SSD
Silicon Power	Silicon Power	SSD
	SP240GBSS3S55S25AE	
SK hynix	SK hynix HFS250G32TND-N1A2A	SSD
Supermicro	Supermicro HDD-T4000- ST4000NM00	HDD
Team	Team T253LE480GTC101	SSD
Toshiba	Toshiba THN-TR20Z9600U8(CS	SSD
	Toshiba MQ01ABD050	HDD
Transcend	Transcend TS64GSSD370S	SSD
V7	V7 VBS3128GR-3N	SSD
Verbatim	Verbatim 47473	SSD
VisionTek	VisionTek 900612	SSD
Western Digital	Western Digital WDS250G2B0A	SSD
	Western Digital WD1000CHTZ	HDD
Wintec	Wintec 33121302-I	SSD
XPG	XPG ASX7000NPC-512GT-C	SSD
Zalman	Zalman SSD0128N1	SSD
Zotac	Zotac ZTSSD-A5P-240G	SSD

8. Napajalniki

Napajalnik je električna naprava, ki dobavlja električno energijo na električni obremenitvi. Primarna funkcija napajalnika je pretvorba električnega toka iz vira na pravilno napetost, tok in frekvenco, da napajajo obremenitev. Kot rezultat, napajalnike včasih imenujemo električni pretvorniki moči. Nekateri napajalniki so ločeni samostojni deli opreme, medtem ko so drugi vgrajeni v naprave, ki jih napajajo. Primeri slednjih vključujejo napajalnike, najdene v namiznih računalnikih in potrošniško elektronskih napravah. Druge funkcije, ki lahko napajalniki opravljajo vključujejo omejuje tok, ki ga obremenitve do varnih ravneh, izklop toka v primeru električne okvare , moč naprava za preprečevanje elektronskega hrupa ali napetosti šokov na vhodu doseže obremenitev, motorni popravljanje faktorja in shranjevanje energije, tako da lahko v primeru začasne prekinitve moči vira (neprekinjeno napajanje) še naprej poganja obremenitev.

Vsi napajalniki imajo priključek za vhodno moč, ki sprejema energijo v obliki električnega toka iz vira in eno ali več izhodov moči, ki zagotavljajo tok do bremena. Izvorna moč je lahko iz električnega omrežja, kot je električna vtičnica, naprave za shranjevanje energije, kot so baterije ali gorivne celice, generatorji ali alternatorji, pretvorniki sončne energije ali drugo napajanje. Vhod in izhod sta običajno vezana vezja na vezje, čeprav nekateri napajalniki uporabljajo brezžični prenos energije, da napajajo svoje obremenitve brez žičnih povezav. Nekateri napajalniki imajo tudi druge vrste vhodov in izhodov za funkcije, kot je zunanji nadzor in nadzor.

Proizvajalci

ABS	Aerocool	Antec	Apevia	Apex
Athena Power	Azza	be quiet!	BFG	BitFenix
Broadway	Cooler Master	CoolMax	Corsair	Cougar
Cyonic	Deepcool	Diablotek	Dynapower	E-Power
Enermax	EVGA	FirePower	Fractal Design	FSP Group
Game Max	Gigabyte	HEC	Inwin	Kingwin
Kuroutoshikou	LEPA	Lian-Li	Linkworld	Logisys
Mars Gaming	Mushkin	Nexus	NOX	NZXT
OCZ	PC Power	Raidmax	Replace Power	RIOTORO
Rocketfish	Rosewill	SeaSonic	Sentey	SHARKOON
Silverstone	Solid Gear	Sparkle	StarTech	Sunbeam
Super Flower	Thermaltake	Thortech	Topower	TUNIQ
Ultra	VisionTek	WinPower	XFX	Zalman

9. Hladilni sistemi

Ker se komponente v računalniku segrevajo je potrebno poskrbeti za primerno hlajenje. K temu spadajo:

- Procesorski ventilator
- Dodatno hlajenje ali ventilatorji
- Vodno hlajenje

Procesorski ventilatorji:

Najpogostejši ventilatorji so INTEL normalni začetni ventilator, ki ga lahko kasneje zamenjamo z vodnim hlajenjem ali drugim ventilatorjem.

Vodno hlajenje samo za procesor sta naredili podjetji Corsair in Cooler Master. Glava hlajenja se namesti na matično ploščo isto kot ventilator za procesor. Drugi del hlajenja pa na zgornjo stran ohišja. Drug del ima na sebi 1-3 ventilatorje kateri hladijo vodo v napravi.

Dodatno hlajenje:

Dodatno hlajenje so po navadi samo navadni ventilatorji, ki jih lahko vgradimo v ohišje računalnika.

Vodni sistem hlajenja:

Celotno vodno hlajenje lahko hladi večino komponent v našem računalniku. Z njim lahko hladimo procesor, grafične kartice ter diske.

Vodno hlajenje za delovanje potrebuje:

- Črpalko (ki poganja vodo po sistemu)
- Gumijaste cevi (po navadi prozorne)
- Hladilne glave (so nastavki katere pritrdimo na komponente)
- Led trak (za boljši izgled)
- Napajalnik (po vsej verjetnosti je že vgrajen v računalnik)

9.1. Ohišja

Ohišij poznamo veliko razlikujejo se samo po velikosti:

- ATX
- MID ATX
- Mini ATX
- ATX TOWER
- ITX
- MINI ITX
- HTPC

V teh je razlika samo to da ATX TOWER podpira največje matične plošče ostale pa malo manjše. V nekatere lahko vstavimo več ventilatorjev kot v druge, in tudi pri ljudeh, ki radi igrajo igre in jim je pomemben izgled imajo nekatera ohišja tudi zanimivejše in lepše oblike.

Pri ohišjih je tudi pomembno, da so narejena tako da propuščajo čim manj zvoka ter toplote.

9.2. Optični disk

Pri računalniku je pogon optičnega diska (ODD) diskovni pogon, ki v okviru ali v bližini vidnega svetlobnega spektra uporablja lasersko svetlobo ali elektromagnetne valove kot del procesa branja ali pisanja podatkov na ali iz optičnih diskov . Nekateri pogoni lahko berejo samo z določenih diskov, vendar lahko nedavni pogoni preberejo in snemajo, imenovane tudi gonilniki ali pisatelji. Kompaktni diski , DVD-ji in Blu-ray diski so običajne vrste optičnih medijev, ki jih takšni pogoni lahko berejo in posnamejo. Pogoni z optičnimi diski, ki niso več v produkciji, vključujejo pogon CD-ROM, pogon CD-jev, pogon (CD-RW / DVD-ROM) in pogon DVD-zapisovalnika, ki podpira določene zapisljive in prepisljive DVD-je (kot je DVD-R), samo DVD + R (W), samo DVD-RAM in vse oblike DVD-jev razen DVD-R DL). Od leta 2015 je pogon DVD-jev, ki podpira vse obstoječe zapisljive in prepisljive DVD-je, najpogostejši za namizne računalnike in prenosne računalnike. Obstajajo tudi pogon DVD-ROM, pogon BD-ROM, pogon Blu-ray Disk (BD-ROM / DVD \pm RW / CD-RW) in disk zapisovalnik Blu-ray Disk.

10. RAZISKOVALNI DEL

Kateri procesorji so boljši AMD ali INTEL?

Po pregledu nekaj strani sem ugotovil, da je velika cenovna razlika med procesorji AMD in Intel. AMD so precej cenejši in so za svojo ceno zelo dobri. Vendar Intel kljub temu da je dražji za svojo ceno ponuja veliko več.

Prodani procesorji na mesec:

Graf 1 Prodajnost procesorjev

Iz grafa je vidno da je večja prodajnost pri podjetju Intel.

Primerjava hitrosti grafičnih kartic

Kot je bilo že prej povedano je proizvajalcev veliko in zato sem poiskal najboljšega proizvajalca, ki zagotavlja najboljšo hitrost delovanja grafik v igrah.

Graf 2 Primerjava hitrosti GPU-jev

To je hitrost delovanja grafičnih kartic. Titan X je trenutno najhitrejša grafična kartica za njo pa GeForce GTX 1080 Ti in 1080.

Cenovno najboljši računalnik in njegove komponente:

Pri sestavljanju tega računalnika sem bil pozoren na dobro grafiko in procesor. Komponente niso izbrane v najboljšem možnem ujemanju ampak v najboljši zmogljivosti ter ceni. Pri ceni sem želel ostati po 1000€!

Procesor: AMD - Ryzen 5 1600 3.2GHz 6-Core 200€

Matična plošča: MSI - B350 TOMAHAWK ATX AM4 70€

Grafična kartica: MSI RX 580 GAMING X 8G 405€

Ram: G.Skill - Aegis 8GB (1 x 8GB) DDR4-2133 85€

Disk: Western Digital WD10EZEX 45€

Hlajenje: Cooler Master Hyper 212 EVO 30€

Napajanje: EVGA 100-N1-0400-L1 30€

Optični pogon: Samsung SH-224GB/BSBE 15€

Ohišje: Azza Cosmas 25€

Cena računalnika: 905€ + poštnina za dele

SSD ali HDD?

Oboje je v redu!

SSD omogoča hitrejše zapise ampak s tem tudi manj zapisov.

HDD je pa ravno nasprotje SSD-ja.

Najboljše delovanje komponent skupaj

Komponente istih proizvajalcev delujejo skupaj boljše. Npr. MSI matična plošča in MSI grafična kartica bosta skupaj delovali hitreje, kot pa GigaByte matična in MSI grafična kartica.

Najboljše komponente, ki bi delovale skupaj so:

- MSI matična plošča
- MSI grafična kartica
- Kingston RAM
- Intel I7
- Kingston SSD
- Kingston HDD
- Corsair napajalnik
- Cooler master hladilnik za procesor

11. SPLETNI VIRI

11.1. VIRI BESEDILA

https://sl.wikipedia.org/wiki/Procesor

http://www.prenosnik.info/kaj-pomenijo-oznake-procesorja/

https://pcpartpicker.com/products/cpu/

https://en.wikipedia.org/wiki/Graphics_processing_unit

https://pcpartpicker.com/products/video-card/

https://sl.wikipedia.org/wiki/Mati%C4%8Dna_plo%C5%A1%C4%8Da

https://eigre.si/komponente/osnovne-plosce/

https://en.wikipedia.org/wiki/Random-access_memory

https://pcpartpicker.com/products/memory/

https://en.wikipedia.org/wiki/Hard_disk_drive

https://sl.wikipedia.org/wiki/Solid-state_drive

https://pcpartpicker.com/products/internal-hard-drive/

napajalnik: lasten vir

hladilni sistemi: lasten vir

ohišja: lasten vir

 $\underline{https://sl.wikipedia.org/wiki/Strojna_oprema_ra\%C4\%8Dunalnika}$

11.2. VIRI SLIK

- $Slika\ 1: \underline{https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Intel_C4004.jpg/1200px-Intel_C4004.jpg}$
- Slika 2: http://www.vintagecalculators.com/assets/images/NCR18-36_6.jpg
- Slika 3: https://upload.wikimedia.org/wikipedia/sl/c/cd/Zgradba cpe.png
- Slika 4: https://shop-

 $\underline{media.intel.com/api/v2/helperservice/getimage?url=http\%3A\%2F\%2Fimages.icecat.biz\%2Fimg\%2Fg} \\ allery\%2F28496309_7196655501.jpg\&height=550\&width=550$

- Slika 5: https://icdn4.digitaltrends.com/image/amd-ryzen-1600x-centerturned-1200x630-c-ar1.91.jpg?ver=1
- Slika 6: https://images10.newegg.com/BizIntell/item/14/487/14-487-294/f01_121516.jpg
- Slika 7: https://images10.newegg.com/NeweggImage/ProductImage/14-127-945-S99.jpg
- Slika 8: https://asset.msi.com/global/picture/image/feature/mb/Z270/GamingPlus/msi-z270_gaming_plus-tuning-hero.png
- Slika 9: lasten vir
- Slika 10: lasten vir
- Slika 11: lasten vir
- Slika 12: lasten vir
- Slika 13: lasten vir
- Slika 14: lasten vir
- Slika 15: lasten vir
- Slika 16: lasten vir
- Slika 17: http://cdn.mos.cms.futurecdn.net/efe0f4d446d95e37614c5cfd3c2eec04-1200-80.jpg