Задача 1 (1 балл)

Определите тип дифференциального уравнения, приведите его к каноническому виду, запишите общее решение, найдите решение задачи Коши.

1.
$$u_{xx} - 2x u_{xy} + x^2 u_{yy} - u_y = 0$$
; $u(0, y) = y^2$, $u_x(0, y) = y$.

2.
$$u_{xx} + 2(\sin x)u_{xy} + (\sin^2 x)u_{yy} + (\cos x)u_y = 0$$
; $u(0,y) = y^2$, $u_x(0,y) = y^3$.

3.
$$y^4 u_{xx} + 2y^2 u_{xy} + u_{yy} - \frac{2}{y} u_y = 0; \quad u(x,1) = \frac{x^3}{3}, \ u_y(x,1) = 2x.$$

4.
$$4y^2 u_{xx} + 2(1-y^2)u_{xy} - u_{yy} - \frac{4y}{1+y^2}u_x + \frac{2y}{1+y^2}u_y = 0; \quad u(x,1) = x, \ u_y(x,1) = 0.$$

5.
$$y^2 u_{xx} - 2y u_{xy} + u_{yy} - u_x = 0$$
; $u(x,1) = \left(x + \frac{1}{2}\right)^2$, $u_y(x,1) = 0$.

6.
$$u_{xx} - 2(\cos x)u_{xy} - (3 + \sin^2 x)u_{yy} + (\sin x)u_y = 0; \quad u(0, y) = 0, \ u_x(0, y) = y^2.$$

7.
$$y^2 u_{xx} - 2y u_{xy} + u_{yy} + u_x - \frac{2}{y} u_y = 0; \quad u(x,1) = x^2, \ u_y(x,1) = x.$$

8.
$$u_{xx} - 2(\sin x)u_{xy} - (\cos^2 x)u_{yy} - u_x + (\sin x - \cos x - 1)u_y = 0; \quad u(0, y) = 3y, \ u_x(0, y) = 5.$$

9.
$$u_{xx} + 2(\sin x)u_{xy} + (\sin^2 x)u_{yy} - u_x - (\sin x - \cos x)u_y = 0; \quad u(0,y) = y^2, \ u_x(0,y) = y.$$

10.
$$u_{xx} + 2(\cos x)u_{xy} - (\sin^2 x)u_{yy} - (\sin x)u_y = 0; \quad u(0,y) = y^2, \ u_x(0,y) = 1.$$

11.
$$u_{xx} + 2x^2 u_{xy} + x^4 u_{yy} + u_x + (x^2 + 2x)u_y = 0$$
; $u(0, y) = y^2$, $u_x(0, y) = y$.

12.
$$4y^3 u_{xx} - y u_{yy} + 2y^3 u_x + (1+y^2)u_y = 0; \quad u(x,1) = x^2, \ u_y(x,1) = 0.$$

13.
$$9y^5 u_{xx} - y u_{yy} + 18y^5 u_x + (2 - 6y^3)u_y = 0; \quad u(x, 1) = 0, \ u_y(x, 1) = x.$$

14.
$$u_{xx} - 2(\sin x)u_{xy} - (\cos^2 x)u_{yy} - 2u_x + (2\sin x + 2 - \cos x)u_y = 0; \quad u(0,y) = \frac{y^2}{2}, \ u_x(0,y) = 1.$$

15.
$$-x u_{xx} + 4x^3 u_{yy} + (1 - 4x^2)u_x + 8x^3 u_y = 0; \quad u(1,y) = y, \ u_x(1,y) = 3.$$

16.
$$y^2 u_{xx} - 2y u_{xy} + u_{yy} - \frac{1}{y} u_y = 0; \quad u(x,1) = x, \ u_y(x,1) = x^2.$$

17.
$$u_{xx} - 2(\sin x)u_{xy} - (\cos^2 x)u_{yy} + 2u_x - (2 + \cos x + 2\sin x)u_y = 0;$$
 $u(0,y) = 2y, u_x(0,y) = 1.$

18.
$$u_{xx} + 2x^2 u_{xy} + x^4 u_{yy} + 2x u_y = 0$$
; $u(0, y) = y$, $u_x(0, y) = y^2$.

19.
$$u_{xx} + 2x^2 u_{xy} + x^4 u_{yy} - u_x + (2x - x^2)u_y = 0; \quad u(0, y) = \sin y, \ u_x(0, y) = y.$$

20.
$$y^2 u_{xx} + 2y u_{xy} + u_{yy} + (1-y)u_x - u_y = 0; \quad u(x,0) = x^2, \ u_y(x,0) = x.$$

21.
$$-x u_{xx} + 9x^5 u_{yy} + (2 - 6x^3)u_x + 18x^5 u_y = 0; \quad u(1,y) = 0, \ u_x(1,y) = y.$$

22.
$$y^2 u_{xx} + 2y u_{xy} + u_{yy} + (1+y)u_x + u_y = 0$$
; $u(x,0) = -x$, $u_y(x,0) = \sin x$.

23.
$$u_{xx} - 2(\sin x)u_{xy} - (\cos^2 x)u_{yy} + u_x + (1 - \cos x - \sin x)u_y = 0; \quad u(0, y) = y, \ u_x(0, y) = 0.$$

24.
$$y^2 u_{xx} + 2y u_{xy} + u_{yy} + u_x = 0$$
; $u(x,0) = x^3$, $u_y(x,0) = -x$.

25.
$$(\sin^2 y)u_{xx} + 2(\cos y)u_{xy} - u_{yy} - (\sin y)u_x = 0; \quad u(x,0) = x^2, u_y(x,0) = 1.$$

26.
$$u_{xx} - 2x u_{xy} + x^2 u_{yy} - u_x + (x - 1)u_y = 0; \quad u(0, y) = y, \ u_x(0, y) = y^2.$$

27.
$$(3+\sin^2 y)u_{xx}-2(\cos y)u_{xy}-u_{yy}+(\sin y)u_x=0; \quad u(x,0)=x, \ u_y(x,0)=x^2.$$

28.
$$9y^5 u_{xx} - y u_{yy} + 6y^5 u_x + (2 + 2y^3)u_y = 0; \quad u(x,1) = 2x, u_y(x,1) = 0.$$

29.
$$(\cos^2 y)u_{xx} - 2(\sin y)u_{xy} - u_{yy} + (1 - \cos y + \sin y)u_x + u_y = 0; \quad u(x,0) = x^2, \ u_y(x,0) = 0.$$

30.
$$-x u_{xx} + 4x^3 u_{yy} + (1+x^3)u_x + 2x^3 u_y = 0; \quad u(1,y) = y^2, \ u_x(1,y) = 0.$$

Задача 2 (1 балл)

Для задачи Штурма — Лиувилля с оператором L на отрезке [a, b] и заданными граничными условиями найти собственные числа и собственные функции.

Задача 3 (1 балл)

Заданную функцию разложить в ряд по собственным функциям задачи Штурма — Лиувилля (см. предыдущую задачу).

Bap.	L	Гр. условия	[a,b]	$f_1(x)$	$f_2(x)$	$f_3(x)$
1	$-d^2/dx^2 + I$	u(a) = u(b) = 0	$[0, \frac{\pi}{3}]$	$\sin 6x$	$x^2 - 1$	$\cos 2x$
2	$-d^2/dx^2 + 2I$	u'(a) = u'(b) = 0	$[0,\pi]$	$\cos 2x$	$x^2 - 1$	$\sin 6x$
3	$-d^2/dx^2 + 3I$	u'(a) = u(b) = 0	$[0, \pi/6]$	$\cos 15x$	$x^2 - 1$	$\sin 5x$
4	$-d^2/dx^2 + 4I$	u(a) = u'(b) = 0	$[0, \pi/4]$	$\sin 14x$	$x^2 - 1$	$\cos 4x$
5	$-d^2/dx^2 + I$	u(a) = u(b) = 0	$[0, 2\pi/3]$	$\sin 3x$	$x^2 - 1$	$\cos 3x$
6	$-d^2/dx^2 + 2I$	u'(a) = u'(b) = 0	$[0, 7\pi/6]$	$\cos 6x$	$x^2 - 1$	$\sin x$
7	$-d^2/dx^2 + 3I$	u'(a) = u(b) = 0	$[0, \pi/4]$	$\cos 10x$	$x^2 - 1$	$\sin 10x$
8	$-d^2/dx^2 + 4I$	u(a) = u'(b) = 0	$[0, \pi/2]$	$\sin 7x$	$x^2 - 1$	$\cos 3x$
9	$-d^2/dx^2 + I$	u(a) = u(b) = 0	$[0, 3\pi/4]$	$\sin 4x$	$x^2 - 1$	$\cos 5x$
10	$-d^2/dx^2 + 2I$	u'(a) = u'(b) = 0	$[0, 5\pi/4]$	$\cos 4x$	$x^2 - 1$	$\sin 2x$
11	$-d^2/dx^2 + 3I$	u'(a) = u(b) = 0	$[0, \pi/2]$	$\cos 5x$	$x^2 - 1$	$\sin 5x$
12	$-d^2/dx^2 + 4I$	u(a) = u'(b) = 0	$[0, 3\pi/2]$	$\sin 3x$	$x^2 - 1$	$\cos x$
13	$-d^2/dx^2 + I$	u(a) = u(b) = 0	$[0, 5\pi/6]$	$\sin 6x$	$x^2 - 1$	$\cos 6x$
14	$-d^2/dx^2 + 2I$	u'(a) = u'(b) = 0	$[0, 4\pi/3]$	$\cos 3x$	$x^2 - 1$	$\sin 3x$
15	$-d^2/dx^2 + 3I$	u'(a) = u(b) = 0	$[0, 3\pi/2]$	$\cos x$	$x^2 - 1$	$\sin 7x$
16	$-d^2/dx^2 + 4I$	u(a) = u'(b) = 0	$[0, \pi/6]$	$\sin 21x$	$x^2 - 1$	$\cos 8x$
17	$-d^2/dx^2 + I$	u(a) = u(b) = 0	$[0, \pi/3]$	$\sin 9x$	$x^2 - 1$	$\cos 3x$
18	$-d^2/dx^2 + 2I$	u'(a) = u'(b) = 0	$[0,\pi]$	$\cos 4x$	$x^2 - 1$	$\sin 4x$
19	$-d^2/dx^2 + 3I$	u'(a) = u(b) = 0	$[0, \pi/6]$	$\cos 21x$	$x^2 - 1$	$\sin 7x$
20	$-d^2/dx^2 + 4I$	u(a) = u'(b) = 0	$[0, \pi/6]$	$\sin 15x$	$x^2 - 1$	$\cos 5x$
21	$-d^2/dx^2 + I$	u(a) = u(b) = 0	$[0, 2\pi/3]$	$\sin 6x$	$x^2 - 1$	$\cos 2x$
22	$-d^2/dx^2 + 2I$	u'(a)=u'(b)=0	$[0, \pi/3]$	$\cos 12x$	$x^2 - 1$	$\sin 12x$
23	$-d^2/dx^2 + 3I$	u'(a) = u(b) = 0	$[0, \pi/4]$	$\cos 14x$	$x^2 - 1$	$\sin 7x$
24	$-d^2/dx^2 + 4I$	u(a) = u'(b) = 0	$[0, \pi/4]$	$\sin 10x$	$x^2 - 1$	$\cos 5x$
25	$-d^2/dx^2 + 5I$	u(a) = u(b) = 0	$[0,\pi]$	$\sin 3x$	$x^2 - 1$	$\cos 3x$
26	$-d^2/dx^2 + 6I$	u'(a) = u'(b) = 0	$[0, 5\pi/3]$	$\cos 3x$	$x^2 - 1$	$\sin 3x$
27	$-d^2/dx^2 + 7I$	u'(a) = u(b) = 0	$[0, \pi/2]$	$\cos 7x$	$x^2 - 1$	$\sin x$
28	$-d^2/dx^2 + 8I$	u(a) = u'(b) = 0	$[0, \pi/2]$	$\sin 5x$	$x^2 - 1$	$\cos 10x$
29	$-d^2/dx^2 + I$	u(a) = u(b) = 0	$[0, 5\pi/3]$	$\sin 3x$	$x^2 - 1$	$\cos 6x$
30	$-d^2/dx^2 + 2I$	u'(a) = u'(b) = 0	$[0, 7\pi/4]$	$\cos 4x$	$x^2 - 1$	$\sin 4x$