DeAn An allocation (x*, y*) and price vector p* = IR constitute a price equilibrium with transfers if there exists W=(W1,..., WI) with

- (1) For each firm; p* y = p* y; for all jeTj
- (2) For each consumer i,
 - 20) x # = B:(P*, W;) = { x; e X; P* x; \(\) \(
 - 26) At Z; Xi for all Xi & B; (p*, Wi)
- (4) ZW = p. W + Z p. y.

Today: Second Welfare theorem

- * Approach to Second Welfare theorem
 - · Define "silly equilibrium"
 - · Show that under [Assumption 1] any Pareto optimal allocation can be subtained as a silly equilibrium
 - · Show that under [Assumption 2] any silly equilibrium induces a price equilibrium with thamsfers

* Motivation

For each RIEX, [PAREW: > RED RICK CO = PARE > Wi]

[92 > 9x = p. 92 Wi) R can we add this? To see how silly, think above contrapositive. [p*.x. < W. = x. z. x.]

Could have some 9/2 s.t. P* Ni = Wi and Ni X

Geto An allocation (x*, y*) and a price vector p* e IR constitute a quasi-price equilibrium with transfers

if there exists om assignment of wealth, W= (Wi..., Wz) S.t.

(1) for each j. p* Y = p* to for each & ET;

(2) for each is and each Ni EX; Ni > Ni > Ni \ Wi

The difference from P.E.T.

(4) $\sum_{i=1}^{T} W_{i} = p^{*} \overline{w} + \sum_{i=1}^{J} p^{*} y_{i}^{*}$

(Theorem) Second Welfare Theorem (Silly Ver.)

Fix am economy when (a) each T; is convex

and (b) each %; is locally non-satisfied and convex

Then, for every Pareto optimal allocation (1x*, y*),

there exists a price vector p* = (0,...,0) s.t. ((x*,y*), p*) anstitute a quasi-price equilibrium with Homsters.

W= (WI, WI): Pareto optimal alloration.

- It P*=0, 1 can always consume more of good l=2 and be better off.

=) i=1 does not have om optimal bundle

- If (Pt, Pt) s.t. Pt>0 Pt=0 i=1 can consume $W_i=(0,\overline{W}_2)$ \rightarrow 3 $\alpha_1 = (0, \alpha_{21})$ s.t. $\alpha_{21} \rightarrow \omega_2$ But, $p^+\alpha_1 = p^+$ ω_1 does not contradict q^- PET

W1=0, W1=p* W1 = P1* W1 + P2.0 = P1* W1

i=2 rom Consume W= (W1,0)

(Corollary) Fix am economy. Where (a) each Xi EIR' is convex and contains (0,...,0) EXi, and (b) each %; is continuous.

If ((ort, y*), p*) is a quasi-price equilibrium w/ strictly positive transfers for each in $W = (W_1, ..., W_Z)$ then (cort, you), po) is a price equilibrium with transfers. S.t. each Wito

Endogenous object.

* Prof of Second Welfare Theorem (Silly Ver.) Fix a pateto optimal allocation (9x+, y+) and construct sets total consumption when each is is T= { Jilj: for each j. yjeTj] = IRL better off than art x is total possible phocherions.

Step3 If (x1,..., x2) is such that for each i, xxx*, then \(\frac{1}{2}\) P. \(\time\) = 11. (Same).

Step4 $\sum_{i=1}^{7} W_i = p^* \overline{\omega} + \sum_{j=1}^{7} p^* \cdot y_j = r \leftarrow use Step 2, 3$

Step 5 Use Steps 1,3 and 4 to show conditions (1,-12) of a quasi equilibrium Condition 3) get for free Since (or, y*) pasets optimal implies feasible.