振り返りと導入

前回は KL ダイバージェンスの双対平坦多様体への一般化を考え始めた。本稿では次のことを行う:

- 双対平坦構造の canonical ダイバージェンスを定義する。
- 双対平坦構造からシンプレクティック構造が定まることをみる。

1 双対平坦構造の canonical ダイバージェンス

以下 M を多様体とする。

定義 1.1 (canonical ダイバージェンスの定義域). (g, ∇, ∇^*) を M 上の双対平坦構造とし、

$$\mathcal{W}\coloneqq \left\{ (p,q)\in M\times M \left| egin{array}{c} (i)\ p,q\ e 結ぶ \, \nabla - 測地線のうち最短なものがただひとつ存在する。 \\ (ii)\ e の像を覆う単連結 \, \nabla - アファインチャートが存在する。 \end{array}
ight\}$$

$$\mathcal{U} := \operatorname{Int}_{M \times M} \mathcal{W} \tag{1.2}$$

とおく。 \mathcal{U} を双対平坦構造 (g, ∇, ∇^*) の canonical ダイバージェンスの定義域 と呼ぶ。

命題 1.2. U は $M \times M$ における Δ_M の開近傍である。

証明 資料末尾の付録を参照。

命題-定義 1.3 (canonical ダイバージェンス). $(p,q) \in \mathcal{U}$ を固定し、(i) の ∇ -測地線を $\gamma: I \to M$ とおく。 γ の像を覆う任意の単連結 ∇ -アファインチャート (U,θ) と U 上の g の任意の ∇ -ポテンシャル $\psi: U \to \mathbb{R}$ に対し、 $\eta_i \coloneqq \partial_i \psi \in C^\infty(U), \ \eta \coloneqq (\eta_i)_i \in C^\infty(U,\mathbb{R}^n), \ \varphi \coloneqq \langle \theta, \eta \rangle - \psi \in C^\infty(U)$ とおくと、

$$\psi(q) + \varphi(p) - \langle \theta(q), \eta(p) \rangle \tag{1.3}$$

の値は (U,θ) , ψ の取り方によらない。この値を D(p||q) と記す。以上により定まる関数 $D:\mathcal{U}\to\mathbb{R}$ を双対平 坦構造 (g,∇,∇^*) の canonical ダイバージェンス と呼ぶ。

注意 1.4. η は U 上の座標とは保証されていないことに注意。

補題 1.5. 条件 (ii) をみたす任意の (U,θ) に対し、次をみたす ∇ -ポテンシャル $\psi\colon U\to\mathbb{R}$ がただひとつ存在する:

- (a) $\psi(p) = 0$
- (b) $(\nabla \psi)_p = 0$

このような ψ を ψ_p とおくと、U 上の g の任意の ∇ -ポテンシャル ψ に対し

$$\psi_{\nu}(q) = \psi(q) + \varphi(p) - \langle \theta(q), \eta(p) \rangle \qquad (q \in U)$$
(1.4)

が成り立つ。

証明 (一意性): 2 つの ∇ -ポテンシャル ψ , ψ' に対し $\nabla^2 \psi = g = \nabla^2 \psi'$ であることより従う。(存在): U は単連結 だから Poincaré の補題より U 上の ∇ -ポテンシャル ψ が存在する。このとき $\widetilde{\psi}(q) \coloneqq \psi(q) - \partial_i \psi(p) \theta^i(q) - \psi(p)$ もまた U 上の ∇ -ポテンシャルであり、条件 (a), (b) をみたす。したがって存在が示せた。

命題-定義 1.3 の証明 補題より $D^{\theta',\psi}(p||q) = \psi_p(q) = D^{\theta',\psi'}(p||q)$ が成り立つ。また、 $U \cap U'$ のうち γ の像を含む連結成分上では 2 つの座標 θ , θ' はアファイン変換で移り合うから、 $D^{\theta,\psi}(p||q) = D^{\theta',\psi}(p||q)$ が成り立つ。よって $D^{\theta,\psi} = D^{\theta',\psi'}$ が成り立つ。

命題 1.6 (canonical ダイバージェンスの性質). $(p,q) \in \mathcal{U}$ に対し次が成り立つ:

- (1) $D(p||q) \ge 0$
- (2) $D(p||q) = 0 \iff p = q$

証明 ψ の ∇ -凸性より従う。

定義 1.7 (D へのベクトル場の作用の記法). $X_1, \ldots, X_l, Y_1, \ldots, Y_m \in \mathfrak{X}(M)$, $l, m \in \mathbb{Z}_{\geq 0}$ に対し

$$D(X_1, \dots, X_l || Y_1, \dots, Y_m) := (X_1, 0) \dots (X_l, 0)(0, Y_1) \dots (0, Y_m) D \in C^{\infty}(\mathcal{U})$$
(1.5)

と定める。ただし $X,Y \in \mathfrak{X}(M)$ に対し $(X,Y) \in \mathfrak{X}(M \times M)$ はベクトル場の直和を表す。

命題 1.8 (canonical ダイバージェンスから双対平坦構造の復元). $p \in M$ 、 $x = (x_{\alpha})_{\alpha}$ を p のまわりの座標として

- (1) $g_p(X_p, Y_p) = D(||XY)(p, p) = -D(X||Y)(p, p) = D(XY||)(p, p)$
- (2) $\Gamma_{\alpha\beta\gamma}(p) = -D(\partial_{\gamma} || \partial_{\alpha}\partial_{\beta})(p,p)$
- (3) $D(p||-): \mathcal{U}_p \to \mathbb{R}$ は $\mathcal{U}_p \perp g$ の ∇ -ポテンシャルである。
- (4) $D(-\|p)$: $\mathcal{U}_{\nu} \to \mathbb{R}$ は \mathcal{U}_{ν} 上の g の ∇^* -ポテンシャルである。

証明 (1) 直接計算より。

- $\underline{\underline{(2)}}$ 直接計算より。ただし ∇ が平坦ゆえ $\Gamma^{\gamma}_{\alpha\beta} = \frac{\partial x^{\gamma}}{\partial x^{\alpha}\partial x^{\beta}}$ であることに注意。
- (3) Dの定義から

$$d(D(p||-))_q = d\psi_q - \eta_i(p)d\theta_q^i = (\eta_i(q) - \eta_i(p))d\theta_q^i$$
(1.6)

より

$$\nabla^2(D(p||-)) = \partial_i(\eta_i) d\theta^i d\theta^i = g \tag{1.7}$$

を得る。

(4) (3) と同様。

2 双対平坦構造とシンプレクティック構造

定義 2.1 (シンプレクティックベクトル空間). 2*n* 次元 \mathbb{R} -ベクトル空間 V と V 上の非退化交代形式 ω : $V \times V \to \mathbb{R}$ の組 (V, ω) をシンプレクティックベクトル空間 (symplectic vector space) という。

定義 2.2 (シンプレクティック形式). M を 2n 次元多様体とする。 $\omega \in \Omega^2(M)$ が M 上の**シンプレクティック形式 (symplectic form)** であるとは、 ω が閉形式かつ各点 $x \in M$ で (T_xM,ω_x) がシンプレクティックベクトル空間であることをいう。

例 2.3 (標準シンプレクティック形式). \mathbb{R}^{2n} の標準的な座標 $(x^1,\ldots,x^n,y_1,\ldots,y_n)$ に対し $\omega_0 := dx^i \wedge dy_i \in \Omega^2(\mathbb{R}^{2n})$ は \mathbb{R}^{2n} 上のシンプレクティック構造である。 ω_0 を \mathbb{R}^{2n} 上の標準シンプレクティック形式 (standard symplectic form) という。

例 2.4 (余接束の自然シンプレクティック形式). M を n 次元多様体とする。余接束 π : $T^{\vee}M\to M$ 上の 1-形式 $\theta\in\Omega^1(T^{\vee}M)$ を

$$\theta_{(q,p)}(v) := p(d\pi_{(q,p)}(v)) \tag{2.1}$$

で定め、これを**トートロジカル 1-形式 (tautological 1-form)** と呼ぶ。このとき $\omega_0 := -d\theta \in \Omega^2(T^{\vee}M)$ は $T^{\vee}M$ 上のシンプレクティック構造となり、これを $T^{\vee}M$ 上の**自然シンプレクティック形式 (canonical symplectic form)** と呼ぶ。

命題 2.5 (自然シンプレクティック形式の成分表示). M を n 次元多様体、 $x=(x^i)_i$ を M の局所座標とする。x により定まる $T^{\vee}M$ の局所座標を $(x^1,\ldots,x^n,\xi_1,\ldots,\xi_n)$ とおくと、これに関する自然シンプレクティック形式 ω_0 の成分表示は

$$\omega_0 = dx^i \wedge d\xi_i \tag{2.2}$$

となる。

証明 $\pi(q,p)=q$ ゆえ $d\pi^*(dx^i)=dx^i$ であることに注意すると、トートロジカル 1-形式の成分表示

$$\theta_{(q,p)} = d\pi_{(q,v)}^*(\xi_i dx^i) = \xi_i dx^i$$
(2.3)

より命題の等式が従う。

命題 2.6 (双対平坦構造のシンプレクティック構造). M を多様体、 (g, ∇, ∇^*) を M 上の双対平坦構造、 $D: \mathcal{U} \to \mathbb{R}$ を canonical ダイバージェンス、 $\omega_0 \in \Omega^2(T^\vee M)$ を $T^\vee M$ 上の自然シンプレクティック構造とする。写像 $d_1D: \mathcal{U} \to T^\vee M$ を第 1 成分に関する微分、すなわち $d_1D := D(\frac{\partial}{\partial x^i} \|) dx^i$ で定め、 \mathcal{U} 上の 2-形式 $\omega \in \Omega^2(\mathcal{U})$ を $\omega := (d_1D)^*(\omega_0)$ で定める。このとき次が成り立つ:

(1) M の任意の局所座標 $x = (x_i)_i$ に対し、 $x^* := x$ とおいて \mathcal{U} の局所座標 $(x, x^*) = (x^1, \dots, x^n, x^{*1}, \dots, x^{*n})$

を定めると、 ω の成分表示は

$$\omega = D(\frac{\partial}{\partial x^i} \| \frac{\partial}{\partial x^{*i}}) dx^i \wedge dx^{*j}$$
 (2.4)

となる。

(2) ω は U 上のシンプレクティック形式である。

証明 (1) x により定まる $T^{\vee}M$ の局所座標を $(x^1, \ldots, x^n, \xi_1, \ldots, \xi_n)$ とおくと

$$\omega = (d_1 D)^*(\omega_0) \tag{2.5}$$

$$= (d_1 D)^* (dx^i \wedge d\xi_i) \tag{2.6}$$

$$= d(x^{i} \circ d_{1}D) \wedge d(\xi_{i} \circ d_{1}D) \tag{2.7}$$

$$= dx^{i} \wedge \left(D\left(\frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}} \| \right) dx^{j} + D\left(\frac{\partial}{\partial x^{i}} \| \frac{\partial}{\partial x^{*j}} \right) dx^{*j} \right)$$
 (2.8)

$$=D(\frac{\partial}{\partial x^{i}}\|\frac{\partial}{\partial x^{ij}})dx^{i}\wedge dx^{*j}$$
(2.9)

を得る。

(2) [TODO] 要証明

2023/11/08

今後の予定

• 双対平坦構造のシンプレクティック構造と双対アファイン座標

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

[野 20] 知宣 野田, シンプレクティック幾何的視点での BAYES の定理について (部分多様体の幾何学の深化と展開), 数理解析研究所講究録 2152 (2020), 29–43 (jpn).

A 付録

1.1 定義 1.1 の条件 (i), (ii) について

M を多様体、g を M 上の Riemann 計量、 ∇ を M 上のアファイン接続とする。

定義 A.1 (simple chain (ここだけの用語)). X を位相空間とする。X の開集合の有限列 $(U_i)_{i=1}^N$ が simple chain であるとは、 $U_i \cap U_j \neq \emptyset \iff |i-j| \leq 1$ が成り立つことをいう。さらにすべての $U_i \cap U_{i+1}$ が連結のとき very simple chain という。

補題 A.2. ∇ -アファインチャートの列 $(U_i)_{i=1}^N$ が very simple chain ならば、 $\bigcup_{i=1}^N U_i$ を定義域とする ∇ -アファイン座標が存在する。

証明 $U_1 \cap U_2$ は連結であり、2 つの座標はアファイン変換で移り合うから、それに応じて U_2 上の座標を調整すれば $U_1 \cup U_2$ 上の ∇ -アファイン座標が得られる。以下同様にして $U_1 \cup \cdots \cup U_N$ 上の ∇ -アファイン座標が得られる。

命題 A.3. $\gamma:I\to M$ が単射な ∇ -測地線ならば、 $\gamma(I)$ を覆う単連結な ∇ -アファインチャートが存在する。

証明 [TODO] 要確認 $\gamma(I)$ の各点のまわりの ∇ -アファインチャートを集めて $\gamma(I)$ の開被覆 $\mathcal U$ を作る。Lebesgue 数の補題より、実数列 $0=t_0 < t_1 < \cdots < t_N = 1$ が存在して各 $S_i \coloneqq \gamma([t_{i-1},t_i])$ はある $U_i \in \mathcal U$ に含まれる。 γ の単射性より、ある $\varepsilon > 0$ であって $(U(S_i,\varepsilon))_{i=1}^N$ が very simple chain かつ $U(S_i,\varepsilon) \subset U_i$ となるものが存在する (ただし $U(S_i,\varepsilon)$ は Riemann 距離に関する ε -近傍)。 そこで $U \coloneqq \bigcup_{i=1}^N U(S_i,\varepsilon)$ とおくと、補題より U 上の ∇ -アファイン座標 θ が存在する。 $\theta(\gamma(I))$ が $\theta(U)$ 内の線分であることに注意すると、 $\theta(\gamma(I))$ の十分小さい近傍 V をとれば、 $\theta^{-1}(V)$ は $\gamma(I)$ を覆う単連結な ∇ -アファインチャートとなる。

1.2 命題 1.2 の証明

証明 $p \in M$ を固定し、(p,p) の $M \times M$ におけるある開近傍が W に含まれることを示せばよい。そのような開近傍を次のように構成する。

まず ∇ の平坦性より p のまわりの ∇ -アファインチャート (U,θ) が存在する。p の M における (計量 g から定まる距離に関する)3r-近傍が U に含まれるように r>0 をとり、p の M における r-近傍を U' とおく。さらに $\theta(p)$ の \mathbb{R}^n における ε -近傍 V_ε が $\theta(U')$ に含まれるように $\varepsilon>0$ をとる。 $U_\varepsilon:=\theta^{-1}(V_\varepsilon)$ とおくと (p,p) の $U_\varepsilon\times U_\varepsilon$ は $M\times M$ における開近傍である。

以下 $U_{\varepsilon} \times U_{\varepsilon} \subset W$ を示す。すなわち、 $(a,b) \in U_{\varepsilon} \times U_{\varepsilon}$ として $(a,b) \in W$ を示す。 U_{ε} は ∇ -凸ゆえ、a,b を 結ぶ U_{ε} 内の ∇ -測地線 γ が存在する。このとき γ はとくに U 内の ∇ -測地線でもあるが、U は ∇ -アファインチャートだから γ は a,b を結ぶ U 内の唯一の ∇ -測地線である。U' の定め方から、a,b を結ぶ (M 内の) 任意 の ∇ -測地線は γ より真に長いか γ 自身である [TODO] 怪しい。したがって、a,b を結ぶ (M 内の) ∇ -測地線のうち最短なものはただひとつ存在し、それは γ である。よって (a,b) は条件 (i) をみたす。さらに U_{ε} は γ の像を覆う単連結 ∇ -アファインチャートだから、(a,b) は条件 (ii) をみたす。したがって $(a,b) \in W$ である。