Merge sort

- Merge sort is a well-known example of an algorithm design called Divide-and-Conquer consisting of the following 3 steps:
 - Divide: divide the given instance into smaller instances.
 - Conquer: solve all of the smaller instances.
 - Combine: combine the outcomes of the smaller instances.

L2.1

Merge sort

```
MERGE-SORT A[1..n]
1.If n= 1, done.
2.Recursively sort A[1...n/2.]and A[[n/2]+1..n].
3."Merge" the 2 sorted lists.
```

Key subroutine: MERGE

L2.2

Merge Sort

```
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}

// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A
// (how long should this take?)</pre>
```

Merging two sorted arrays

2 1

L2.3 L2.4

Merging two sorted arrays

20 12 13 11 7 9 2 1

Merging two sorted arrays

L2.5

Merging two sorted arrays

Merging two sorted arrays

L2.7 L2

Merging two sorted arrays

Merging two sorted arrays

2.9 L2.10

Merging two sorted arrays

Merging two sorted arrays

L2.11 L2.12

Merging two sorted arrays

Merging two sorted arrays

L2.13

Merging two sorted arrays

Merging two sorted arrays

Time = $\Theta(n)$ to merge a total of n elements (linear time).

L2.15

Procedure Merge

Merge - Example A ... 1 6 8 9 26 32 42 43 ... k L 6 8 26 32 \omega R 1 9 42 43 \omega j

Merge-Sort (A, p, r)

INPUT: a sequence of *n* numbers stored in array A **OUTPUT:** an ordered sequence of *n* numbers

```
MergeSort (A, p, r) // sort A[p..r] by divide & conquer1if p < r2then q = \lfloor (p+r)/2 \rfloor3MergeSort (A, p, q)4MergeSort (A, q+l, r)5Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]Initial Call: MergeSort (A, 1, n)
```

Merge Sort - Example

L2.19 L2.21

Another Example: Merge Sort

L2.22

Analysis of Merge Sort

```
Statement
                                                     Effort
MergeSort(A, left, right) {
                                                            T(n)
   if (left < right) {
    mid = floor((left + right) / 2);</pre>
                                                            Θ(1)
                                                            0(1)
       MergeSort(A, left, mid);
MergeSort(A, mid+1, right);
                                                            T(n/2)
                                                            T(n/2)
       Merge(A, left, mid, right);
                                                            0(n)
• So T(n) =
                  \Theta(1) when n = 1, and
                  2T(n/2) + \Theta(n) when n > 1
• So what (more succinctly) is T(n)?
```

L2.23