Physics 242 Homework 4

$$\begin{array}{ll} \textbf{1.} & \textbf{(a)} & < X > = \sqrt{\frac{12}{N}} \sum_{i=1}^{N} (< x_i - \frac{1}{2} >) = \sqrt{\frac{12}{N}} \sum_{i=1}^{N} (< x_i > -\frac{1}{2}) \\ & where & < x_i > = \int_0^1 x_i dx_i = \frac{1}{2} \to < X > = 0 \\ & \sigma_X^2 = \frac{12}{N} \sum_{i=1}^{N} \sigma_{x_i}^2 = 12 \sigma_{x_i}^2 \ with \ no \ correlation \ between \ the \ x_i \\ & where \ \sigma_{x_i}^2 = < (x_i - \frac{1}{2})^2 > - < x_i - \frac{1}{2} >^2 = < (x_i - \frac{1}{2})^2 > = \int_0^1 (x_i - \frac{1}{2})^2 dx_i = \frac{1}{12} \\ & \to \sigma_X^2 = 1 \\ \textbf{1.} & \textbf{(b)} \ \textbf{Source:} \\ & \text{package hwlprob!}, \\ & \text{public class Hw4Prob!} \ \{ \\ & \text{public static void calcMoments (double[] \ moments, \ Random \ rand)} \ \{ \\ & \text{double sum} = -6.0, \ //-1/2 \ \text{times 12} \\ & \text{for (int i = 0, i < lambda length; i++)} \ \{ \\ & \text{sum} + = \text{rand.nextDouble()}; \\ \} & \text{for (int i = 0, i < moments.length; i++)} \ \{ \\ & \text{moments[i]} + = \text{Math.pow(sum, i+1)}; \\ \} \\ \} & \text{public static void main(String[] args)} \ \{ \\ & \text{double[] moments} = \text{new double[6]}; \\ & \text{double } x_i \\ & \text{int trials} = 50000; \\ & \text{Random rand} = \text{new Random()}; \\ & \text{for (int i = 0, i < trials; i++)}} \ \{ \\ & \text{calcMoments (moments, rand)}; \\ \} & \text{System.out.println("The first 6 moments of X:")}; \\ & \text{for (int i = 0, i < moments.length; i++)} \ \{ \\ & \text{System.out.println("The first 6 moments of X:")}; \\ & \text{for (int i = 0, i < moments.length; i++)} \ \{ \\ & \text{System.out.format(" = 8f8n", i+1, moments[i]/trials)}; \\ \} \} \\ \textbf{Output:} \\ & \text{The first 6 moments of X:} \\ & \text{\times^{n}} = -0.003004 \\ & \text{\times^{n}} = -0.003291 \\ & \text{\times^{n}} = -0.097072 \\ & \text{\times^{n}} = -1, 1, 2, 1566} \\ \textbf{1.} \ \textbf{(c):} \\ & \text{let} \ y_i = x_i - \frac{1}{2} \ then \ < X^4 > = \frac{144}{N^2} < \sum_{i=1}^{N} y_i > 4 \\ \end{array}$$

$$\langle y_i \rangle = 0, \langle y_i^2 \rangle = \frac{1}{12}, ..., only even moments,$$

so $\langle X^4 \rangle = \frac{12^2}{N^2} [\sum_i \langle y_i^4 \rangle + \sum_{j,k} \langle y_j^2 \rangle \langle y_k^2 \rangle] \text{ where } j \neq k$

There are N terms in the first sum. There are

 $C_2^4 \times N \times (N-1) \times \frac{1}{2} = 3N^2 - 3N$ terms in the second sum because there are 4 choose 2 ways to arrange j and k out of 4 factors, e.g. $y_j y_k y_j y_k$ or $y_j y_j y_k y_k$. This is multiplied by N possible choices for picking j times (N-1) choices for k. The ½ factor accounts for choosing j then k being the same as choosing k then j.

$$\int_{\frac{1}{2}}^{-\frac{1}{2}} y_i^4 dy_i = \frac{1}{80}, \text{ so } \langle X^4 \rangle = \frac{12^2}{N^2} \left[\frac{N}{80} + \frac{3N^2 - 3N}{12^2} \right] = 3 - 6/(5N)$$

 $\langle X^4 \rangle$ = 2.9 with N = 12 agrees with part (b).

$$< X^6> = \frac{12^3}{N^3} [\sum_i < y_i^6> + \sum_{j,k} < y_j^4> < y_k^2> + \sum_{l,m,n} < y_l^2> < y_m^2> < y_n^2>]$$

There are N terms in the first sum. There are $C_2^6 \times N \times (N-1) = 15 \text{N}^2 - 15 \text{N}$ terms in the second sum. Choosing j then k or k then j are different, so there is no ½ factor. There are $\frac{6!}{2!^3} \times N \times (N-1) \times (N-2) \times \frac{1}{3!} = 15 \text{N}^3 - 45 \text{N}^2 + 30 \text{N}$ terms in the third sum. The 1/3! factor prevents overcounting (the order of choosing 1,m,n does not matter).

$$\begin{split} &\int_{\frac{1}{2}}^{-\frac{1}{2}} y_i^6 dy_i = \frac{1}{448} \\ &< X^6 > = \frac{12^3}{N^3} [\frac{N}{448} + \frac{15N^2 - 15N}{80 \times 12} + \frac{15N^3 - 45N^2 + 30N}{12^3}] = 15 - 18/N + 48/(7N^2) \\ &< \mathbf{X^6} > \mathbf{13.5476 \ when \ N = 12 \ agrees \ with \ part \ (b) \ . \end{split}$$

2. Source:

```
package hw4prob2;
import java.util.Random;
public class Hw4Prob2 {
    static double function(double x) {
       return Math.log(x);
    public static void main(String[] args) {
        double a = 1.0;
        double b = 2.0;
        double interv = b - a;
        int trials = 50000; //N
        Random rand = new Random();
        double x;
        double func;
        double funcSum = 0;
        double funcSquareSum = 0;
        double sumAve;
        double squareSumAve;
        double stdDev;
        for (int i = 0; i < trials; i++) {
            x = a + rand.nextDouble()*interv;
```

```
funcSum += func;
                   funcSquareSum += func*func;
               }
               sumAve = funcSum/trials;
               squareSumAve = funcSquareSum/trials;
               stdDev = Math.sqrt(Math.abs(squareSumAve - sumAve*sumAve)/(trials - 1));
              System.out.println("Monte Carlo Integration of ln(x) from x = 1 to 2:");
              System.out.format("Integral: %f ± %f%n", sumAve, stdDev);
      }
Output:
      Monte Carlo Integration of ln(x) from x = 1 to 2:
      Integral: 0.386069 \pm 0.000884
3. Source:
      package hw4prob3;
      import java.util.Random;
      import java.awt.Color;
      import org.jfree.chart.ChartPanel;
      import org.jfree.chart.JFreeChart;
      import org.jfree.data.xy.XYSeries;
      import org.jfree.ui.ApplicationFrame;
      import org.jfree.ui.RefineryUtilities;
      import org.jfree.chart.plot.XYPlot;
      import org.jfree.chart.ChartFactory;
      import org.jfree.chart.plot.PlotOrientation;
      import org.jfree.data.xy.XYSeriesCollection;
      import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
      public class Hw4Prob3 extends ApplicationFrame {
          public Hw4Prob3(String applicationTitle, String chartTitle,
                   XYSeriesCollection dataset) {
               super(applicationTitle);
               JFreeChart xylineChart = ChartFactory.createScatterPlot(
                       chartTitle , "time step" ,
                       "red: x distance, blue: x dist squared", dataset,
                       PlotOrientation.VERTICAL, true ,true ,false);
              ChartPanel chartPanel = new ChartPanel( xylineChart );
              chartPanel.setPreferredSize( new java.awt.Dimension( 560 , 367 ) );
              final XYPlot plot = xylineChart.getXYPlot();
              XYLineAndShapeRenderer renderer = new XYLineAndShapeRenderer();
              renderer.setSeriesPaint( 0 , Color.RED );
              renderer.setSeriesPaint( 1 , Color.BLUE );
              plot.setRenderer( renderer );
              setContentPane( chartPanel );
          public static void main(String[] args) {
               int trials = 50000;
               int tMax = 100;
              double x;
              double xSquared;
              double[] xAve = new double[tMax];
              double[] xSquaredAve = new double[tMax];
              Random rand = new Random();
               for (int i = 0; i < trials; i++) {
                   x = 0;
                   for (int t = 1; t < tMax; t++) {
                       if (rand.nextDouble() < 0.5) {</pre>
                           x += 1;
                       } else {
                           x -= 1;
                       xAve[t] += x;
```

func = function(x);

```
xSquaredAve[t] += x*x;
    }
XYSeries xPoints = new XYSeries("<x(t)>");
XYSeries xSquaredPoints = new XYSeries("<x(t)^2>");
System.out.println("x-axis Random Walk:");
System.out.format("%5s %10s %10s%n", "t", "<x(t)>", "<x(t)^2>");
for (int t = 0; t < tMax; t++) {
    x = xAve[t]/trials;
    xSquared = xSquaredAve[t]/trials;
    xPoints.add(t, x);
    xSquaredPoints.add(t, xSquared);
    if (t%10 == 0) {
        System.out.format("%5d %10.3f %10.3f%n", t, x, xSquared);
}
XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(xPoints);
dataset.addSeries(xSquaredPoints);
Hw4Prob3 chart = new Hw4Prob3("<x> and <x^2> vs t",
        "<x> and <x^2> vs t", dataset);
chart.pack();
RefineryUtilities.centerFrameOnScreen( chart );
chart.setVisible( true );
```

Output:

}

x-axis	Random Walk:	
t	<x(t)></x(t)>	$<$ x(t)^2>
0	0.000	0.000
10	-0.009	9.968
20	0.006	20.103
30	0.025	30.152
40	0.031	40.178
50	0.025	50.324
60	0.018	60.746
70	0.028	70.864
80	0.032	80.934
90	0.029	90.839

4. Source:

```
package hw4prob4;
import java.util.ArrayList;
import java.util.Random;
import java.util.Scanner;
public class Hw4Prob4 {
    static double gasDev(ArrayList<Double> betas, Random rand) {
        double fac, rsq, v1, v2;
        if (betas.isEmpty()) {
            do {
                 v1 = 2.0*rand.nextDouble() - 1.0;
                 v2 = 2.0*rand.nextDouble() - 1.0;
                rsq = v1*v1 + v2*v2;
```

```
fac = Math.sqrt(-2.0*Math.log(rsq)/rsq);
                   betas.add(v1*fac);
                   return v2*fac;
               } else {
                   return betas.remove(0);
           }
           public static double f(double x) { //force
               //V = x^2 /2, F = -dV/dx = -x
               return -x;
           public static void velocityVerlet(double h, double[] y, double beta)
               double xN = y[0]; //get current x before updating to n + 1 to calculate
                                  //v n+1
               y[0] += h*(y[1] + (h * f(xN) + beta)/2.0)/(1.0 + h/2.0); //x n+1
               y[1] += h*(f(xN) + f(y[0]))/2.0 - (y[0] - xN) + beta; //v n+1
           public static void main(String[] args) {
               Scanner in = new Scanner(System.in);
               System.out.println("Enter seed:");
               int seed = in.nextInt();
               Random rand = new Random(seed);
               ArrayList<Double> betas = new ArrayList<>();
               double[] y = \{0.0, 0.0\}; //y[0] = x, y[1] = v
               //initialize x(0) = 0 and v(0) = 0 (particle at rest at origin)
               double h = 0.1;
               double stdDevFac = Math.sqrt(2*h); //beta has variance 2h
               int trials = 10000000;
               //xEvenMom[0] = x^2 sum, xEvenMom[1] = x^4 sum, xEvenMom[2] = x^6 sum
               double[] xEvenMom = new double[3]; //the first three even moments of x
               System.out.format("%n%10s %10s %10s %10s %10s %10s %n", "time step", "x(t)",
                       "x(t)^2", "x(t)^4", "x(t)^6");
               for (int i = 0; i <= trials; i++) {
                   velocityVerlet(h, y, stdDevFac * gasDev(betas, rand));
                   xEvenMom[0] += y[0]*y[0];
                   xEvenMom[1] += y[0]*y[0]*y[0]*y[0];
                   xEvenMom[2] += y[0]*y[0]*y[0]*y[0]*y[0]*y[0];
                   if (i%1000000 == 0) {
                       System.out.format("%10d %10.3f %10.3f %10.3f %10.3f%n", i,
                                y[0], y[0]*y[0], y[0]*y[0]*y[0]*y[0],
                                y[0]*y[0]*y[0]*y[0]*y[0]*y[0]);
               System.out.format("%n%9s %7s %7s%n", "", "<x^2>", "<x^4>", "<x^6>"); System.out.format("%9s %7.3f %7.3f%n", "numerical",
                       xEvenMom[0]/trials, xEvenMom[1]/trials, xEvenMom[2]/trials);
               //Boltzmann dist.: p(x) = A*exp(-x^2/2)
               //normalization: A = 1/sqrt(2*pi)
               //<x^2> = integral x^2 * p(x) dx, x=-inf..inf and similarly for higher
               //moments. The analytic values for the even moments follow:
               System.out.format("%9s %7.3f %7.3f %7.3f%n", "analytic",
                       1.0, 3.0, 15.0);
      }
Output (i):
      Enter seed:
       654867
```

} while (rsq >= $1.0 \mid \mid rsq == 0.0$);

time step 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000	x(t)	x(t)^2	x(t)^4	x(t)^6
	-0.005	0.000	0.000	0.000
	0.500	0.250	0.062	0.016
	-1.142	1.304	1.702	2.220
	1.455	2.117	4.481	9.485
	0.909	0.827	0.683	0.565
	-1.395	1.947	3.790	7.378
	0.299	0.089	0.008	0.001
	-0.519	0.269	0.072	0.019
	0.768	0.590	0.348	0.205
	0.363	0.132	0.017	0.002
	1.453	2.110	4.452	9.395
numerical analytic Output (ii): Enter seed: 91451		<pre></pre>		
time step 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000	x(t)	x(t)^2	x(t)^4	x(t)^6
	0.022	0.000	0.000	0.000
	-0.869	0.755	0.570	0.431
	-0.331	0.109	0.012	0.001
	1.109	1.230	1.512	1.859
	0.872	0.760	0.578	0.439
	1.167	1.361	1.853	2.523
	-0.303	0.092	0.008	0.001
	0.800	0.641	0.410	0.263
	-1.277	1.631	2.660	4.338
	1.295	1.677	2.811	4.713
	-0.192	0.037	0.001	0.000
numerical analytic Output (iii): Enter seed: 74138	<x^2> <x^1.000 3.0<br="">1.000 3.0</x^1.000></x^2>	002 15.100		
time step 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000	x(t)	x(t)^2	x(t)^4	x(t)^6
	-0.013	0.000	0.000	0.000
	1.698	2.882	8.307	23.944
	0.422	0.178	0.032	0.006
	1.390	1.932	3.733	7.213
	0.707	0.500	0.250	0.125
	0.187	0.035	0.001	0.000
	0.582	0.338	0.115	0.039
	0.188	0.035	0.001	0.000
	-0.633	0.400	0.160	0.064
	-0.318	0.101	0.010	0.001
	-1.070	1.146	1.312	1.503
numerical analytic Output (iv): Enter seed: 82465	<x^2> <x^1.001 3.0<br="">1.000 3.0</x^1.001></x^2>	003 15.011		

time step 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000	x(-0.0 -0.6 -0.8 -1.4 0.5 0.2 -2.0 -0.1 0.8 0.0	13 26 24 33 05 44 35 02 34	x(t)^2 0.000 0.392 0.679 2.053 0.255 0.059 4.142 0.010 0.696 0.000 1.565	x(t)^4 0.000 0.154 0.462 4.215 0.065 0.004 17.159 0.000 0.484 0.000 2.449	x(t)^6 0.000 0.060 0.314 8.654 0.017 0.000 71.080 0.000 0.337 0.000 3.832
numerical analytic Output (v): Enter seed: 123456789	<x^2> 0.996 1.000</x^2>	<x^4> 2.970 3.000</x^4>	<x^6> 14.713 15.000</x^6>		
time step 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000	x(-0.0 1.4 -0.8 0.6 0.1 0.7 1.5 2.7 1.1 -0.1	12 29 04 24 41 26 54 11	x(t)^2 0.000 1.993 0.688 0.365 0.015 0.549 2.328 7.586 1.234 0.010 1.539	x(t)^4 0.000 3.973 0.473 0.133 0.000 0.302 5.418 57.554 1.522 0.000 2.370	x(t)^6 0.000 7.919 0.325 0.049 0.000 0.166 12.610 436.631 1.877 0.000 3.648
numerical analytic	<x^2> 0.997 1.000</x^2>	<x^4> 2.983 3.000</x^4>	<x^6> 14.853 15.000</x^6>		