Complements de matemàtiques

Alfredo Hernández Cavieres 2014-2015

Aquesta obra està subjecta a una llicència de Reconeixement-NoComercial-CompartirIgual 4.0 Internacional de Creative Commons.

Índex

Índex

1	Introducció als nombres complexos	6
	1.1 Definició	6
	1.2 Expressió dels nombres complexos	6
	1.3 Propietats d'un nombre complex	6
	1.4 Fórmula d'Euler	7
	1.5 El teorema de de Moivre	7
	1.6 Arrels de nombres complexos	8
	1.7 Topologia	8
2	Funcions d'una variable complexa	10
	2.1 Definició	10
	2.2 Funcions elementals	10
	2.3 Límits i continuïtat	10
	2.4 Funcions multivaluades	11
	2.5 Funcions inverses	11
0		10
3	Derivades	12
	3.1 Definició	12
	3.2 Condicions per a la derivabilitat	13
	3.3 Fórmules de derivació	14
	3.4 Funcions analítiques	14
	3.5 Funcions harmòniques	15
4	Integrals	16
	4.1 Definicions	16
	4.2 Integrals reals de línia	17
	4.3 Teorema de Green i de Cauchy	17
	4.4 Fórmula integral de Cauchy	18
	4.5 Teoremes relacionats	19
5	Sèries de Taylor i Laurent	20
	5.1 Sèrie de Taylor	20
	5.2 Sèrie de Laurent	20
	5.3 Residu	21
	5.4 Càlcul d'integrals reals	22
6	Sèries de Fourier	28
_	6.1 Definicions	28
	6.2 Sèrie de Fourier del tipus cosinus	29
	6.3 Sèrie de Fourier del tipus sinus	29
	6.4 Identitat de Parseval	30

7	Transformades de Fourier	32
	7.1 Definició	32
	7.2 Teorema de convolució i identitat de Parseval	33
	7.3 Transformada de Fourier del tipus cosinus	34
	7.4 Transformada de Fourier del tipus sinus	34
	7.5 Transformada de Fourier de més d'una variable	35
	7.6 Delta de Dirac	35
	7.7 Aplicacions de la delta de Dirac	36
8	Altres resultats de variable complexa	38
	8.1 Fórmules integrals de Poisson	38
	8.2 Continuació analítica	38
	8.3 Principis de reflexió d'Schwartz	38
	8.4 Teorema de l'argument	39

1 Introducció als nombres complexos

1.1 Definició

Considerem el conjunt $\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(x,y) \mid x,y \in \mathbb{R}\}$. Denotarem els seus elements per z = (x,y). Definim les seves operacions:

- Suma: (a,b) + (c,d) = (a+c,b+d).
- Producte: $(a,b) \cdot (c,d) = (ac bd, ad + bc)$.
- Producte per un escalar: $\mu(a,b) = (\mu a, \mu b), \forall \mu \in \mathbb{R}.$
- Distància: $d((a,b),(c,d)) = \sqrt{(a-c)^2 + (b-d)^2}$.

1.2 Expressió dels nombres complexos

Qualsevol de les tres expressions són equivalents:

- Forma binòmica: z = x + iy.
- Forma trigonomètrica: $z = r(\cos \theta + i \sin \theta)$.
- Forma polar: $z = r e^{i\theta}$.

1.3 Propietats d'un nombre complex

Definició 1.1 (Conjugat de z). Sigui z = x + iy un nombre complex. Definim el seu complex conjugat com

$$z^* \equiv x - iy \tag{1.1}$$

i compleix les següents propietats:

- i) $(z^*)^* = z$
- ii) $(z \pm w)^* = z^* \pm w^*$.
- iii) $(zw)^* = z^*w^*$.
- iv) $(z/w)^* = z^*/w^*$.

Definició 1.2 (Mòdul de z). Sigui z = x + iy un nombre complex. Definim el seu mòdul com

$$r \equiv |z| = \sqrt{zz^*} = +\sqrt{x^2 + y^2} = +\sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2}$$
 (1.2)

Definició 1.3 (Argument de z). Sigui z = x + iy un nombre complex. Definim el seu argument com

$$\theta \equiv \arg(z) = \operatorname{Arg}(z) + 2\pi n, \quad n \in \mathbb{Z}$$
 (1.3)

On Arg(z) és l'argument principal de z i el definim com

$$Arg(z) = \arctan \frac{y}{x} \in (-\pi, \pi]$$
 (1.4)

on l'ambigüitat entre els dos angles que tenen la mateixa tangent es resol tenint en consideració els signes de x i y.

Exemple 1.1. Sigui
$$z=-1-i$$
. Llavors, tenim que $\operatorname{Arg}(z)=-\frac{3}{4}\pi$, però $\operatorname{arg}(z)=-\frac{3}{4}\pi+2\pi n=\left(\frac{5}{4}+2n\right)\pi$.

Definició 1.4 (Invers de z). Sigui $z = r(\cos \theta + i \sin \theta)$. Definim el seu invers com

$$z^{-1} \equiv \{ w \mid zw = 1 \} \Rightarrow z^{-1} = \frac{1}{r} (\cos \theta - i \sin \theta)$$
 (1.5)

1.4 FÓRMULA D'EULER

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1.6}$$

De manera que podem que podem expressar qualsevol complex com $z = r e^{i\theta} \in \mathbb{C}$. A partir de la Fórmula d'Euler podem deduir les següents propietats:

- i) $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$.
- ii) $z_1/z_2 = r_1/r_2 e^{i(\theta_1 \theta_2)}$.
- iii) $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$.
- iv) $\arg(z_1/z_2) = \arg(z_1) \arg(z_2)$.

1.5 El teorema de de Moivre

Teorema 1.1. Siguin $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$ un nombre complex. Llavors, es compleix

$$z^{n} = r^{n} (\cos \theta + i \sin \theta)^{n} = (r e^{i\theta})^{n} = r^{n} (\cos n\theta + i \sin n\theta)$$
 (1.7)

1.6 Arrels de nombres complexos

Donat un nombre complex $z=r\,e^{i\theta},$ sempre podem trobar un altre $w=\rho\,e^{i\alpha}$ tal que $w^n\equiv z.$

Només cal prendre $\rho = \sqrt[n]{r}$ i $\alpha = \theta/n$. El nombre complex $w = \sqrt[n]{r}e^{i\alpha/n}$ és l'arrel n-èsima de z. Però, de fet, n'hi ha més d'arrels n-èsimes degut al fet que z té infinits arguments $\theta + 2\pi k$. Cada cop que augmentem θ en 2π , l'argument de w augmenta en $2\pi/n$. Llavors, hi ha n arrels n-èsimes de z:

$$\sqrt[n]{z} \equiv \sqrt[n]{r}e^{i(\theta+2\pi k)/n}, \quad k = 0, 1, 2, \dots, n-1$$
 (1.8)

Arrel d'un polinomi

Sigui un polinomi de grau n: $a_0z^n + a_1z^{n-1} + \cdots + a_{n-1}z + a_n = 0$, amb $a_0 \neq 0$. Llavors, el polinomi té n arrels complexes i es pot expressar com

$$a_0(z-z_1)(z-z_2)\dots(z-z_n)=0$$
 (1.9)

1.7 Topologia

Boles

- Bola oberta de centre $z_0 \in \mathbb{C}$ de radi $r \in \mathbb{R}$: $B(z_0, r) \equiv \{z \mid |z z_0| < r\}$.
- Bola perforada o reduïda: $B^*(z_0, r) \equiv B(z_0, r) \setminus \{z_0\}.$

PUNTS

- Punt interior a S: si \exists alguna bola $B(z_0, r) \subset S$.
- Punt exterior a S: si \exists alguna bola $B(z_0, r) \subset \bar{S}$.
- Punt d'acumulació (o límit) de S: si tota bola de z_0 conté algun element de S diferent de z_0 .

Conjunts

- Conjunt obert S: si tots els seus punts són interiors.
- Conjunt tancat S: si conté els seus punts d'acumulació ($\Leftrightarrow \bar{S}$ és obert).
- Conjunt S' dens a S: si $\forall z \in S$, $\forall \varepsilon > 0$, $\exists z' \in S' \mid d(z, z') < \varepsilon$.
- Conjunt obert connex S: conjunt que compleix que tota parella de dos punts poden ser unides per un camí format per un nombre finit de segments de recta contingut a S.
- Regió oberta o domini \mathcal{R} : un conjunt obert i connex.

Successions

- Successió $\{z_i\}$ convergent cap a z: si $\forall \varepsilon > 0, \ \exists M_\varepsilon \in \mathbb{N} \mid d(z_n,z) < \varepsilon, \ \forall n > M_\varepsilon.$
- Successió $\{z_i\}$ de Cauchy: si $\forall \varepsilon > 0, \ \exists M_{\varepsilon} \in \mathbb{N} \mid d(z_n, z_m) < \varepsilon, \ \forall n, m > M_{\varepsilon}.$

2 Funcions d'una variable complexa

2.1 Definició

Definició 2.1. Una funció de variable complexa és una funció univaluada que ve definida per l'aplicació següent:

$$f: \quad \mathbb{C} \quad \to \quad \mathbb{C}$$

$$z \quad \mapsto \quad f(z) = w$$

$$(x,y) \quad \mapsto \quad (u(x,y), v(x,y))$$

$$(2.1)$$

2.2 Funcions elementals

• Funcions exponencials:

$$f(z) = e^z = e^x e^{iy}, \quad |e^z| = e^x.$$

 $f(z) = e^{iz} = e^{ix} e^{-y}, \quad |e^{iz}| = e^{-y}.$

• Funcions trigonomètriques:

$$f(z) = \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

 $f(z) = \cos z = \frac{e^{iz} + e^{-iz}}{2}.$

• Funcions hiperbòliques:

$$f(z) = \sinh z = \frac{e^z - e^{-z}}{2} = -i \sin iz.$$

 $f(z) = \cosh z = \frac{e^z + e^{-z}}{2} = \cos iz.$

Obsevem que les funcions trigonomètriques i les hiperbòliques no són fitades, és a dir $\nexists M \in \mathbb{R}^+ \mid |f(z)| < M, \ \forall z \in \text{domini de } f(z).$

2.3 LÍMITS I CONTINUÏTAT

Sigui f(z) definida i unívoca a un entorn reduït de $z-z_0$. Llavors, es compleix el següent:

- $\lim_{z \to z_0} = l \in \mathbb{C}$, si $\forall \varepsilon > 0$, $\exists \delta(\varepsilon, z_0) > 0 \mid f(z) l < \varepsilon$, $\forall z \in B^*(z_0, \delta)$.
- f(z) és contínua a z_0 si $\lim_{z\to z_0} f(z) = f(z_0)$.

2.4 Funcions multivaluades

Per treballar de forma eficient amb funcions multivaluades, distingirem tant entre el valor principal de l'argument d'un nombre complex i la resta d'arguments, com entre el valor principal del logaritme i la resta de logaritmes.

• Funció logarítmica:

$$f(z) = \ln(z) = \ln|z| + i \arg z = \ln r + i(\theta + 2\pi k).$$

 $f(z) = \ln(z) = \ln|z| + i \operatorname{Arg} z.$

• Polinomis:

$$f(z) = z^n = e^{n \operatorname{Ln}(z)}$$
, amb $n \in \mathbb{Z}$.

• Exponencial de base complexa:

$$f(z) = a^z = e^{z \ln(a)}, \quad |a^z| = e^{x \ln(a)}.$$

Superfícies de Riemann

Per una informació detallada de les superfícies o fulls de Riemann podeu consultar http://www.math.odu.edu/~jhh/ch45.PDF¹.

Per una classificació dels diferents talls de branques dirigiu-vos a http://mathworld.wolfram.com/BranchCut.html.

2.5 Funcions inverses

• Funcions trigonomètriques:

$$f(z) = \arcsin z = -i \ln \left(iz \pm \sqrt{1 - z^2} \right).$$

$$f(z) = \arccos z = -i \ln \left(z \pm \sqrt{z^2 - 1} \right).$$

• Funcions hiperbòliques:

$$f(z) = \operatorname{arcsinh} z = \ln \left(z \pm \sqrt{z^2 + 1} \right).$$

 $f(z) = \operatorname{arccosh} z = \ln \left(z \pm \sqrt{z^2 - 1} \right).$

Observem que aquestes funcions són multivaluades, ja que el logaritme és multivaluat i l'arrel quadrada és bivaluada.

¹Del llibre Introduction to Complex Variables per John H. Heinbockel.

3 Derivades 12

3 Derivades

3.1 Definició

Definició 3.1. Sigui f(z) una funció de variable complexa. La seva derivada al punt z_0 es defineix com

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \Leftrightarrow \frac{\mathrm{d}w}{\mathrm{d}z} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$$
(3.1)

Exemple 3.1. Sigui $f(z) = |z|^2$ una funció de la qual volem trobar la seva derivada.

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{|z + \Delta z|^2 - |z|^2}{\Delta z} = \frac{(z + \Delta z)(\bar{z} + \bar{\Delta z}) - z\bar{z}}{\Delta z}$$
$$= \bar{z} + \bar{\Delta z} + \frac{\bar{\Delta z}}{\Delta z}$$

Per estudiar com es comporta la derivada, farem dos límits diferents:

i) $\Delta x \to 0$ i $\Delta y = 0$:

$$\frac{\bar{\Delta z}}{\Delta z} = 1 \Rightarrow f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \bar{z} + z.$$

ii) $\Delta x = 0$ i $\Delta y \to 0$:

$$\frac{\bar{\Delta z}}{\Delta z} = -1 \Rightarrow f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \bar{z} - z.$$

Així doncs, $\nexists f'(z_0)$ si $z \neq 0$.

PROPIETATS

i) Linealitat:
$$\frac{\mathrm{d}}{\mathrm{d}z} (\alpha f(z) + \beta g(z)) = \alpha f'(z) + \beta g'(z)$$
.

ii) Multiplicació:
$$\frac{\mathrm{d}}{\mathrm{d}z}(f(z)g(z)) = f'(z)g(z) + g'(z)f(z).$$

iii) Divisió:
$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{f(z)}{g(z)}\right) = \frac{f'(z)g(z) - g'(z)f(z)}{\left(g(z)\right)^2}.$$

iv) Composició:
$$\omega = f(z), W = g(\omega) \Rightarrow \frac{\mathrm{d}W}{\mathrm{d}z} = \frac{\mathrm{d}W}{\mathrm{d}\omega} \frac{\mathrm{d}\omega}{\mathrm{d}z}.$$

3.2 Condicions per a la derivabilitat

CONDICIONS NECESSÀRIES (EQUACIONS DE CAUCHY-RIEMANN)

Sigui f(z) = u(x,y) + iv(x,y). Definim $z_0 = x_0 + iy_0$, $\Delta z = \Delta x + i\Delta y$, i $\Delta w = x_0 + iy_0$ $f(z_0 + \Delta z) - f(z_0)$. Llavors,

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta}{\Delta z} = \lim_{(\Delta x, \Delta y) \to (0,0)} \operatorname{Re}\left(\frac{\Delta}{\Delta z}\right) + i \operatorname{Im}\left(\frac{\Delta}{\Delta z}\right)$$
(3.2)

Considerem el camí $\Delta x \to 0$ i $\Delta y = 0 \ (\Rightarrow \Delta z = \Delta x)$. Llavors, tenim

•
$$\lim_{\Delta z \to 0} \operatorname{Re} \frac{\Delta w}{\Delta z} = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} = u_x(x_0, y_0).$$

$$\begin{array}{l}
\Delta z \to 0 & \Delta z & \Delta x \to 0 \\
\bullet & \lim_{\Delta z \to 0} \operatorname{Im} \frac{\Delta w}{\Delta z} = \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x} = v_x(x_0, y_0). \\
\text{Llavors, si } \exists f'(z_0) \text{ es compleix la següent relació:}
\end{array}$$

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$$
(3.3)

En canvi si considerem el camí $\Delta x=0$ i $\Delta y\to 0 \ (\Rightarrow \Delta z=i\Delta y)$, tenim

•
$$\lim_{\Delta z \to 0} \operatorname{Re} \frac{\Delta w}{\Delta z} = \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i\Delta y} = v_y(x_0, y_0).$$

• $\lim_{\Delta z \to 0} \operatorname{Im} \frac{\Delta w}{\Delta z} = \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y} = -u_y(x_0, y_0).$

•
$$\lim_{\Delta z \to 0} \operatorname{Im} \frac{\Delta w}{\Delta z} = \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y} = -u_y(x_0, y_0).$$

Llavors, si $\exists f'(z_0)$ es compleix la següent relació:

$$f'(z_0) = v_y(x_0, y_0) - iu_y(x_0, y_0)$$
(3.4)

A partir de (3.3) i (3.3) és trivial veure que

$$\begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0) \end{cases}$$
(3.5)

Les equacions (3.3), (3.4), i (3.5) són les equacions de Cauchy-Riemann.

CONDICIONS SUFICIENTS

Teorema 3.1. Donada f(z) = u(x,y) + iv(x,y), si $\exists f'(z_0)$, llavors, es compleix

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow f'(z_0) = u_x + iv_x$$
 (3.6)

Teorema 3.2. Donada f(z) = u(x,y) + iv(x,y), si $\exists f'(z_0)$ definida a un entorn de radi ε al punt $z_0 = x_0 + iy_0$ i que \exists les derivades parcials de primer ordre de les funcions u i $v \text{ respecte } x \text{ } i \text{ } y, \forall z \in B(z_0, \varepsilon).$

 $Si \exists aquestes derivades parcials, són contínues a z_0, i satisfan Cauchy-Riemann <math>\Rightarrow$ $\exists f'(z_0).$ 3 Derivades 14

3.3 FÓRMULES DE DERIVACIÓ

A partir de Cauch-Riemann $(u_x = v_y \text{ i } u_y = -v_x)$ podem arribar al següent resultat:

$$\frac{\partial f}{\partial x} = -i\frac{\partial f}{\partial y} \Leftrightarrow \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f = 0 \Leftrightarrow \frac{\partial f}{\partial z^*} = 0 \tag{3.7}$$

Exemple 3.2.
$$f(z) = |z|^2 = zz^* \Rightarrow \frac{\partial f}{\partial z^*} \Rightarrow \exists f'(z) \text{ només per } z = 0.$$

Com podem veure, comparant amb el procediment dut a terme a l'exemple 3.1, aquest procediment és molt útil ja que ens porta de manera trivial a la solució, mentre que la manera tradicional és considerablement més llarga.

Derivació en forma polar

A partir de l'expressió en coordenades cartesianes dels nombres complexos i la seva correspondència en polars podem reexpressar les derivades parcials de primer ordre:

$$\begin{cases} u_r = v_r = u_x c \theta + u_y s \theta \\ u_\theta = v_\theta = r \left(u_y s \theta - u_x c \theta \right) \end{cases} \Rightarrow \begin{cases} u_x = u_r c \theta - u_\theta \frac{s \theta}{r} \\ u_y = u_r s \theta + u_\theta \frac{c \theta}{r} \end{cases}$$
(3.8)

Tanmateix podem reexpressar l'equació (3.5) de Cauchy–Riemann:

$$\begin{cases} ru_r = v_\theta \\ ru_\theta = -rv_r \end{cases}$$
 (3.9)

Exemples de derivades de funcions

- $f(z) = e^z = e^x \cos y + ie^x \sin y \Rightarrow f'(z) = e^z$, $(f: \mathbb{C} \to \mathbb{C})$.
- $f(z) = \frac{1}{z} \Rightarrow f'(z) = -\frac{1}{z^2}, \quad (f: \mathbb{C} \setminus \{0\} \to \mathbb{C}).$
- $f(z) = \operatorname{Ln} z = \operatorname{ln} r + i \operatorname{Arg} z \Rightarrow f'(z) = \frac{1}{z}, \quad (f : \mathbb{C} \to \mathbb{C}).$
- $f(z) = z^n \Rightarrow f'(z) = nz^{n-1}, \quad (f: \mathbb{C} \to \mathbb{C}).$

3.4 Funcions analítiques

Definició 3.2 (Funció analítica). Si $\exists f'(z), \ \forall z \in \mathcal{D}$, llavors direm que f(z) és analítica a \mathcal{D} . Una funció f(z) és analítica a un punt z_0 si $\exists B(z_0, \varepsilon) \mid \exists f'(z), \ \forall z \in B(z_0, \varepsilon)$.

Definició 3.3 (Funció entera). Sigui f(z) una funció de variable complexa. Diem que és entera si és analítica a tot el pla \mathbb{C} .

Teorema 3.3. Si f(z) és analítica a un domini \mathcal{D} , llavors $\exists f^{(n)}(z)$ i són analítiques a \mathcal{D} , $\forall n$.

Regla de l'Hôpital

Siguin f(z) i g(z) funcions analítiques a \mathcal{D} . Si $f(z_0) = g(z_0) = 0$, i $g'(z_0) \neq 0$, amb $z_0 \in \mathcal{D}$; llavors es compleix

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)} \tag{3.10}$$

Definició 3.4 (Punt singular). Punt on la funció f(z) està mal definida en algun sentit. N'hi ha de diferents tipus:

- Singularitat aïllada: punt $z = z_0 \mid \exists \varepsilon > 0 \mid \forall z \in B^*(z_0, \varepsilon) \ f(z)$ és analítica.
- Pol: si $\exists n \in \mathbb{N} \mid \lim_{z \to z_0} (z z_0)^n f(z) = A \neq 0$, llavors $z = z_0$ és un pol d'ordre n. Si n = 1, parlem d'un pol simple.
- Punt de ramificació: sense entrar en més detalls, són punts singulars que no són singularitats aïllades.
- Singularitat essencial: no és ni pol, ni punt de ramificació, ni punt removible $(e^{\frac{1}{z-z_0}})$.

3.5 Funcions harmòniques

Definició 3.5 (Funció harmònica). Diem que una funció real de dues variables reals H(x,y) és una funció harmònica si $\forall (x,y) \in \mathcal{D} \subseteq \mathbb{R} \exists$ les derivades parcials de primer i segon ordre, són contínues, i H(x,y) satisfà l'equació de Laplace:

$$H_{xx}(x,y) + H_{yy}(x,y) = 0 (3.11)$$

Teorema 3.4. Si una funció de variable complexa f(z) = u(x, y) + iv(x, y) és analítica a un domini \mathcal{D} , llavors u i v són harmòniques a \mathcal{D} .

Definició 3.6 (Funció harmònica conjugada). Siguin u i v funcions harmòniques a un domini \mathcal{D} amb $u_x = v_y$ i $u_y = -v_x$. Llavors, es diu que v és l'harmònica conjugada de u

Teorema 3.5. Una funció f(z) = u(x,y) + iv(x,y) és analítica a \mathcal{D} sí i només si v és harmònica conjugada de u.

4 Integrals 16

4 Integrals

4.1 Definitions

Definició 4.1 (Integral de camí). Sigui f(z) contínua $\forall z \in \text{corba } \mathcal{C}$. Llavors es compleix

$$\lim_{n \to \infty} S_n \equiv \int_a^b f(z) \, \mathrm{d}z \quad \left(\text{si } \exists = \int_{\mathcal{C}} f(z) \, \mathrm{d}z \right)$$
 (4.1)

on
$$S_n \equiv \sum_{k=1}^n f(s_k)(z_k - z_{k-1})$$
 i $s_k \in [z_{k-1}, z_k]$.

Definició 4.2 (Arc). Qualsevol corba que uneix dos punts. En particular, als complexos, aquests es poden parametritzar: $\mathbb{R} \to \mathbb{C}$ $t \mapsto z(t)$.

- Arc simple (o de Jordan): $z(t_1) \neq z(t_2)$, $\forall t_1 \neq t_2$.
- Arc suau (o diferenciable): $\exists \dot{z}(t)$ contínua.
- Arc suau a trossos: suma finita d'arcs suaus ≡ camí.

Definició 4.3 (Corba tancada simple, o de Jordan). Arc simple excepte pel fet que z(a) = z(b).

Teorema 4.1 (de Jordan). Els punts de qualsevol corba tancada simple (de Jordan) són frontera de dues regions diferents $(\mathcal{R}_1 \cap \mathcal{R}_2 = \varnothing)$:

- i) \mathcal{R}_1 és interior i fitada $(\exists M \in \mathbb{N} \mid |z| < M)$.
- ii) \mathcal{R}_2 és exterior i no fitada.

Definició 4.4 (Regió connexa). Sigui \mathcal{R} una regió. Si $\forall z_1, z_2 \in \mathcal{R}$ i $\forall \mathcal{C}_1, \mathcal{C}_2 \in \mathcal{R}$, tots dos camins amb extrems a z_1 i z_2 , la regió definida per \mathcal{C}_1 i \mathcal{C}_2 està continguda a \mathcal{R} , diem que \mathcal{R} és simplement connexa.

Si no es compleix aquesta propietat, diem que \mathcal{R} és múltiplement connexa.

PROPIETATS

i)
$$\int_{\mathcal{C}} (f(z) + g(z)) dz = \int_{\mathcal{C}} f(z) dz + \int_{\mathcal{C}} g(z) dz.$$

ii)
$$\int_{\mathcal{C}} \mu f(z) dz = \mu \int_{\mathcal{C}} f(z) dz$$
, $\forall \mu \in \mathbb{C}$.

iii)
$$\int_a^b f(z) dz = - \int_b^a f(z) dz \Leftrightarrow \oint_{\mathcal{C}} f(z) dz = - \oint_{\mathcal{C}} f(z) dz.$$

iv)
$$\int_{a}^{b} f(z) dz = \int_{a}^{m} f(z) dz + \int_{m}^{b} f(z) dz.$$
v)
$$\left| \int_{a}^{b} f(z) dz \right| \leq \int_{\mathcal{C}} |f(z)| |dz| \leq M \int_{\mathcal{C}} |dz| = ML_{\mathcal{C}}. \text{ \'Es a dir, si } f(z) \text{ \'es contínua}$$

$$\exists M \mid \forall z \in \mathcal{C}, |f(z)| \leq M.$$

4.2 Integrals reals de línia

Siguin P(x,y) i Q(x,y) funcions reals a la corba \mathcal{C} . Llavors, tenim

$$\int_{\mathcal{C}} [P(x,y) \, dx + Q(x,y) \, dy] = \int_{t_i}^{t_f} [P(x,y)\dot{x} + Q(x,y)\dot{y}] \, dt$$
 (4.2)

Sigui f(z) = u(x,y) + iv(x,y) una funció de variable complexa i contínua a la corba C. Llavors, tenim

$$\int_{\mathcal{C}} f(z) \, \mathrm{d}z = \int_{\mathcal{C}} (u + iv) (\mathrm{d}x + i \, \mathrm{d}y)$$

$$= \int_{t_i}^{t_f} \left(\frac{\mathrm{d}x}{\mathrm{d}t} + i \frac{\mathrm{d}y}{\mathrm{d}t} \right) \left[u(x(t), y(t)) + iv(x(t), y(t)) \right]$$

$$= \int_{\mathcal{C}} (u \, \mathrm{d}x - v \, \mathrm{d}y) + i \int_{\mathcal{C}} (v \, \mathrm{d}x + u \, \mathrm{d}y)$$
(4.3)

4.3 Teorema de Green I de Cauchy

Teorema 4.2. Sigui f(z) contínua a un domini \mathcal{D} . Les següents propietats són equivalents entre si:

- i) f(z) té una primitiva F(z) a \mathcal{D} : $\exists F(z) \mid F'(z) = f(z)$.
- ii) Les integrals de f(z) sobre camins continguts a \mathcal{D} , amb un punt inicial z_1 , i final z_2 fixats, tenen totes el mateix valor:

$$\int_{\mathcal{C}_1} f(z) \, \mathrm{d}z = \int_{\mathcal{C}_2} f(z) \, \mathrm{d}z.$$

iii) Les integrals de f(z) sobre camins tancats continguts a \mathcal{D} tenen totes valor zero: $\int_{\mathcal{C}} f(z) dz = 0, \quad \forall \mathcal{C} \subset \mathcal{D}.$

Només el podem aplicar si el domini de f(z) i el de F(z) és el mateix.

Teorema 4.3 (de Green en el pla \mathbb{R}). Siguin P(x,y) i Q(x,y) funcions reals contínues amb derivades parcials contínues a una regió \mathcal{R} tancada per una corba \mathcal{C} . Llavors, es compleix

$$\oint_{\mathcal{C}} (P \, dx + Q \, dy) = \iint_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy \tag{4.4}$$

4 Integrals 18

Teorema 4.4 (de Green a \mathbb{C}). Sigui $F(z, z^*)$ contínua i amb derivades parcials contínues a \mathcal{R} . Llavors es compleix

$$\oint_C F(z, z^*) dz = 2i \iint_{\mathcal{R}} \frac{\partial F}{\partial z^*} dA$$
(4.5)

Teorema 4.5 (de Cauchy). Sigui f(z) analítica en una regió \mathcal{R} i sobre la seva frontera \mathcal{C} . Llavors, es compleix

$$\oint_{\mathcal{C}} f(z) \, \mathrm{d}z = 0 \tag{4.6}$$

Teorema 4.6. Sigui f(z) analítica en una regió separada per dues corbes simples tancades C i C_1 (on $C_1 \subset R$), i sobre C i C_1 . Llavors, es compleix

$$\oint_{\mathcal{C}} f(z) \, \mathrm{d}z = \oint_{\mathcal{C}_1} f(z) \, \mathrm{d}z \tag{4.7}$$

Teorema 4.7. Sigui f(z) analítica en una regió limitada per les corbes simples tancades disjuntes C, C_1, C_2, \ldots, C_n (on $C_i \subset \mathcal{R}$), i sobre aquestes corbes. Llavors, es compleix

$$\oint_{\mathcal{C}} f(z) dz = \oint_{\mathcal{C}_1} f(z) dz + \oint_{\mathcal{C}_2} f(z) dz + \dots + \oint_{\mathcal{C}_n} f(z) dz$$
(4.8)

4.4 FÓRMULA INTEGRAL DE CAUCHY

Teorema 4.8. Sigui f(z) analítica en el domini interior \mathcal{R} a un camí tancat simple \mathcal{C} , orientat positivament, i en tots els punts del camí. Si $z_0 \in \mathcal{R}$, llavors, es compleix

$$f(z_0) = \frac{1}{2\pi i} \oint \frac{f(z) \,dz}{z - z_0}$$
 (4.9)

Lema 4.9. Sigui C un camí tancat simple, orientat positivament, i sigui f(z) analítica a C i a dins. Sigui z un punt interior del domini. Llavors, es compleix

$$f'(z) = \frac{1}{2\pi i} \oint \frac{f(s) ds}{(s-z)^2}$$
 i $f''(z) = \frac{1}{\pi i} \oint \frac{f(s) ds}{(s-z)^3}$

Corol·lari 4.10 (Fórmula de diferenciació de Cauchy).

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint \frac{f(s) \, \mathrm{d}s}{(s-z)^{n+1}} \tag{4.10}$$

4.5 Teoremes relacionats

Teorema 4.11 (de Morera). Sigui f(z) contínua en un domini \mathcal{D} . Si $\oint_{\mathcal{C}} f(z) dz = 0$, $\forall \mathcal{C}$ tancat (on $\mathcal{C} \in \mathcal{D}$), llavors f(z) és analítica en \mathcal{D} .

Aquest teorema és una consequència del teorema 3.3.

Lema 4.12. Sigui f(z) analítica a l'interior i els punts d'una circumferència \mathcal{C}_R centrada a z_0 i de radi R. Si $|f(z)| \leq M_R$, $\forall z \in \mathcal{C}_R$, llavors, es compleix

$$\left| f^{(n)}(z) \right| \le \frac{n! M_R}{R^n} \tag{4.11}$$

Teorema 4.13 (de Liouville). Una funció f(z) és analítica i fitada $\forall z \in \mathbb{C} \Leftrightarrow f(z)$ és constant a tot el pla complex.

Demostració. Sigui f(z) una funció entera (analítica a tot C). Llavors, es pot representar per la seva sèrie de Taylor al voltant de zero:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, $a_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(s)}{s^{n+1}} ds$

on \mathcal{C} és una circumferència centrada a 0 de radi r > 0. Suposem que f és fitada $\Leftrightarrow |f(z)| \leq M$, $\forall z$. Llavors podem estimar directament que

$$|a_n| \leq \frac{1}{2\pi} \oint_{\mathcal{C}} \frac{|f(s)|}{|s|^{n+1}} |\mathrm{d}s| \leq \frac{1}{2\pi} \oint_{\mathcal{C}} \frac{M}{r^{n+1}} |\mathrm{d}s| = \frac{M}{2\pi r^{n+1}} \oint_{\mathcal{C}} |\mathrm{d}s| = \frac{M}{2\pi r^{n+1}} 2\pi r = \frac{M}{r^n}$$

Observem, no obstant, l'elecció de r és un nombre positiu arbitrari. Així doncs, fent $r \to \infty$ fa que $a_n = 0, \forall n \ge 1$. Així doncs, $f(z) \equiv a_0$.

5 Sèries de Taylor i Laurent

SÈRIE GEOMÈTRICA

Considerem la sèrie geomètrica: $\sum_{k=0}^{n} z^k = 1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$, si $z \neq 1$. Quin comportament podem esperar de la sèrie quan $n \to \infty$?

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}, \quad |z| < 1$$

Aquest resultat és particularment útil, ja que ens servirà a càlculs posteriors.

5.1 Sèrie de Taylor

Teorema 5.1 (de Taylor). Sigui g(z) una funció analítica en un disc $|z - z_0| < R_0$, centrat a z_0 i de radi R_0 . Llavors, es compleix

$$g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad amb \ a_n = \frac{g^{(n)}(z_0)}{n!}$$
 (5.1)

L'expansió en sèrie de e^z , sin z, i cos z també tenen la mateixa forma que tenen a \mathbb{R} :

•
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
.

•
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{1}{2i} \sum_{n=0}^{\infty} \frac{(iz)^n - (-iz)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{1+2n}}{(1+2n)!}.$$

•
$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(iz)^n + (-iz)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}.$$

5.2 Sèrie de Laurent

Teorema 5.2 (de Laurent). Sigui g(z) una funció analítica a l'anell $\mathcal{R} = \{z \mid R_1 < |z - z_0| < R_2\}$ centrat a z_0 . Sigui \mathcal{C} qualsevol camí tancat simple, orientat positivament, que rodeja a z_0 i $\mathcal{C} \subset \mathcal{R}$. Llavors, es compleix

$$g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)}$$
 (5.2)

amb
$$a_n = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{g(z) dz}{(z - z_0)^{n+1}}, i b_n = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{g(z) dz}{(z - z_0)^{-n+1}}.$$

O alternativament

$$g(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n$$
 (5.3)

$$amb \ c_n = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{g(z) \, \mathrm{d}z}{(z - z_0)^{n+1}}.$$

Exemple 5.1. • $f(z) = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ (Taylor).

•
$$f(z) = e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{z^n} \frac{1}{n!}$$
 (Laurent).

Com podem veure, l'estratègia per facilitar el càlcul de les sèries de Laurent és fer Taylor i fer el canvi de variable adequat.

5.3 Residu

Definició 5.1 (Residu). La constant a_{-1} a la sèrie de Laurent de f(z) al punt z_0 s'anomena residu de f(z). Ho expressem de la següent forma:

$$\underset{z=z_0}{\operatorname{Res}} f(z) \equiv a_{-1} \tag{5.4}$$

Si f(z) és analítica al punt z_0 , el seu residu és zero; si z_0 és una singularitat, $\underset{z=z_0}{\operatorname{Res}} f(z) \neq 0$.

Pol simple

Fent Laurent, tenim $f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1 + \dots$ Considerem la funció $g(z) = (z - z_0) f(z)$, que és analítica, per tant podem fer Taylor: $g(z) = a_{-1} + a_0 (z - z_0) + a_1 (z - z_0)^2$. Així doncs,

$$\underset{z=z_0}{\text{Res}} f(z) = \lim_{z \to z_0} (z - z_0) f(z)$$
 (5.5)

Pol d'ordre n

Fent Laurent, tenim $f(z) = \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{n-1}}{(z-z_0)^{n-1}} + \dots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0)$. Considerem la funció $g(z) = (z-z_0)^n f(z)$, que és analítica, per tant podem fer Taylor: $g(z) = \sum_{s=0}^{\infty} \frac{g^s(z_0)(z-z_0)}{s!}$. Així doncs,

$$\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \frac{1}{(n-1)!} \frac{\mathrm{d}^{n-1}}{\mathrm{d}z^{n-1}} \left[(z - z_0)^n f(z) \right]$$
 (5.6)

Teorema 5.3 (del residu). Si C és una corba tancada simple, orientada positivament, i f(z) és analítica al seu interior excepte per un nombre finit de singularitats aïllades z_j dins de C i un nombre finit de pols simples z_s a la corba. Llavors, es compleix

$$\int_{\mathcal{C}'} f(z) \, dz = 2\pi i \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Res}} f(z) + \pi i \sum_{s=1}^{m} \underset{z=z_{s}}{\text{Res}} f(z)$$
 (5.7)

on $C' = C \setminus \{punts \ singulars \ z_s\}.$

5.4 Càlcul d'integrals reals

Integrals racionals trigonomètriques

Sigui $G(\sin \theta, \cos \theta)$ una funció racional trigonomètrica. Llavors, la integral de $G(\theta) \mid \theta \in [0, 2\pi]$ és

$$\int_{0}^{2\pi} G(\sin \theta, \cos \theta) d\theta = \oint_{\mathcal{C}} G\left(\frac{1}{2}\left[z + \frac{1}{z}\right], \frac{1}{2i}\left[z - \frac{1}{z}\right]\right) \frac{d\theta}{iz}$$
 (5.8)

 $\begin{array}{ll} \textit{Demostraci\'o}. & \text{Fent el canvi } z=e^{i\theta} \Rightarrow \frac{1}{z}=e^{-i\theta}, \text{ arribem a } \cos\theta=\frac{1}{2}\left(z+\frac{1}{z}\right) \text{ i } \sin\theta=\frac{1}{2i}\left(z-\frac{1}{z}\right). \end{array}$

ESTUDI DELS POLS SIMPLES

Sigui $G(\theta) = \frac{\mathrm{d}\theta}{a + b\cos\theta}$ una funció trigonomètrica racional. Llavors, podem expressar la integral sobre la corba |z| = 1 com

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2}{ib} \int_{|z|=1} \frac{dz}{z^2 + 2Az + 1}, \quad \text{amb } A = \frac{a}{b}$$
 (5.9)

$$Demostraci\acute{o}. \quad \int_{0}^{2\pi} \frac{\mathrm{d}\theta}{a + b\cos\theta} = \int_{|z| = 1} \frac{\mathrm{d}z}{iz\left(a + b\frac{z^2 + 1}{2z}\right)} = \frac{1}{ib} \int_{|z| = 1} \frac{\mathrm{d}z}{\frac{z^2 + 1}{2} + Az} = \frac{2}{ib} \int_{|z| = 1} \frac{\mathrm{d}z}{z^2 + 2Az + 1}.$$

Així doncs, segons la naturalesa dels pols que tingui la funció, la seva integral tindrà un resultat o un altre. En concret, veiem que són els següents:

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a + b\cos\theta} = \begin{cases} \frac{2\pi}{\sqrt{a^2 - b^2}}, & \left(\frac{a}{b}\right)^2 > 1\\ 0, & \left(\frac{a}{b}\right)^2 < 1 \end{cases}$$
 (5.10)

Demostraci'o.~ Fent $z^2+2Az+1=0$ trobem el següents pols simples:

- $A^2 > 1 : z_{\pm} = -A \pm \sqrt{A^2 1}$. $\frac{2}{ib} \int \frac{\mathrm{d}z}{(z - z_{+})(z - z_{-})} = \frac{2}{ib} (2\pi i) \underset{z=z_{+}}{\operatorname{Res}} \frac{\mathrm{d}z}{z^2 + 2Az + 1}$ $= \frac{2}{ib} (2\pi i) \frac{1}{2z_{+} + 2z_{-}} = \frac{2\pi}{\sqrt{a^2 - b^2}}.$
- $A^2 < 1 : z_{\pm} = -A \pm i\sqrt{1 A^2} \Rightarrow |z_{\pm}| = 1$. Fem $a + b\cos\theta = 0 \Rightarrow \cos\theta = -\frac{a}{b} = -\sqrt{A} < 1$. Llavors, tenim una integral impròpia amb pols simples a la corba, i tenim

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \int_{\mathcal{C}_A} \frac{dz}{z^2 + 2Az + 1} = -\int_{\mathcal{C}_1} -\int_{\mathcal{C}_2} = -\frac{\pi}{2i\sqrt{1 - A^2}} + \frac{\pi}{2i\sqrt{1 - A^2}} \equiv 0.$$

Exemple 5.2. $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta} = -i \oint_{|z|=1} \frac{2 dz}{z^2 + 4z + 1} \Rightarrow \text{les singularitats són } z = -2 \pm \sqrt{3}, \text{llavors},$

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta} = -i(2\pi i) \underset{z = -2 + \sqrt{3}}{\text{Res}} \left(\frac{2}{z^2 + 4z + 1} \right)$$
$$= \lim_{z \to -2 + \sqrt{3}} \left[\left(z + 2 - \sqrt{3} \right) \left(\frac{2}{z^2 + 4z + 1} \right) \right]$$
$$= \frac{4\pi}{2z + 4} \Big|_{z = -2 + \sqrt{3}} = \frac{2\pi}{\sqrt{3}} = \frac{2\pi}{\sqrt{2^2 - 1^2}}$$

Integrals reals racionals de polinomis reals

Siguin P(x) i Q(x) dues funcions reals tals que $\deg P(x)+2\leq \deg Q(x)$. Llavors, la integral de $\frac{P(x)}{Q(x)}\mid x\in (-\infty,\infty)$ és

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{\operatorname{Im} z_j > 0} \operatorname{Res}_{z=z_j} \left(\frac{P(z)}{Q(z)} \right) + \pi i \sum_{\operatorname{Im} z_s > 0} \operatorname{Res}_{z=z_s} \left(\frac{P(z)}{Q(z)} \right)$$
 (5.11)

on z_j són singularitats aïllades dins la regió tancada per la corba d'integració i z_s pols simples a la recta real \mathbb{R} .

Figura 5.1: Representació gràfica dels camins sobre els quals s'integra la funció $\frac{P(x)}{Q(x)}$ a la demostració

De mostraci'o.

$$\int_{\mathcal{C}+\mathcal{C}_R} \frac{P(z)}{Q(z)} dz = 2\pi i \sum_{\text{Im } z_j > 0} \underset{z=z_j}{\text{Res}} \frac{P(z)}{Q(z)} + \pi i \sum_{\text{Im } z_s > 0} \underset{z=z_s}{\text{Res}} \frac{P(z)}{Q(z)}$$
$$= \int_{\mathcal{C}} + \int_{\mathcal{C}_R} = I + I_R$$

Observem que volem trobar el valor de $I=\int_{\mathcal{C}}\frac{P(x)}{Q(x)}\,\mathrm{d}x$. Fent la parametrització $z=Re^{i\theta}\Rightarrow$

$$\bullet \quad |I_R| \leq \int_0^\pi \left| \frac{P\left(Re^{i\theta}\right)}{Q\left(Re^{i\theta}\right)} \right| R \, \mathrm{d}\theta = \int_0^\pi \frac{|z|^m + \dots}{|z|^{m+s} + \dots} R \, \mathrm{d}\theta = \pi \frac{R^{m+1}}{R^{m+s}} \underset{R \to 0}{\longrightarrow} 0.$$
 Llavors, tenim $I = \int_{\mathcal{C} + \mathcal{C}_R} \frac{P(z)}{Q(z)} \, \mathrm{d}x.$

Integrals reals racionals afegint una fase

Siguin P(x) i Q(x) dues funcions reals tals que $\deg P(x)+2\leq \deg Q(x)$. Llavors, la integral de $\frac{P(x)}{Q(x)}e^{ix}\mid x\in (-\infty,\infty)$ és

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{ix} dx = 2\pi i \sum_{\text{Im } z_j > 0} \underset{z = z_j}{\text{Res}} \left(\frac{P(z)}{Q(z)} e^{iz} \right)$$

$$+ \pi i \sum_{\text{Im } z_j > 0} \underset{z = z_s}{\text{Res}} \left(\frac{P(z)}{Q(z)} e^{iz} \right)$$

$$(5.12)$$

on z_j són singularitats aïllades dins la regió tancada per la corba d'integració i z_s pols simples a la recta real \mathbb{R} .

Demostraci'o.

$$\int_{\mathcal{C}+\mathcal{C}_R} \frac{P(z)}{Q(z)} e^{iz} dz = 2\pi i \sum_{\text{Im } z_j > 0} \underset{z=z_j}{\text{Res}} \left(\frac{P(z)}{Q(z)} e^{iz} \right) + \pi i \sum_{\text{Im } z_s > 0} \underset{z=z_s}{\text{Res}} \left(\frac{P(z)}{Q(z)} e^{iz} \right)$$
$$= \int_{\mathcal{C}} + \int_{\mathcal{C}_R} = I + I_R$$

Observem que volem trobar el valor de $I = \int_{\mathcal{C}} \frac{P(x)}{Q(x)} e^{ix} dx$.

• $I_R = 0$, pel lema de Jordan.

Llavors, tenim
$$I = \int_{\mathcal{C} + \mathcal{C}_R} \frac{P(z)}{Q(z)} e^{iz} dx$$
.

Lema 5.4 (de Jordan). Sigui g(z) una funció analítica tal que $\lim_{|z|\to\infty} |g(z)|=0$, i que $\operatorname{Im} z\geq 0$. Llavors, es compleix

$$\int_{\mathcal{C}_R} g(z)e^{imz} \, \mathrm{d}z \xrightarrow[R \to \infty]{} 0, \quad m > 0$$
 (5.13)

Demostració. $e^{imz} = e^{imR(c\theta + is\theta)} = e^{-mRs\theta}e^{imRc\theta}$. Observem que $e^{-mRs\theta} \ge 0$ quan $\theta \in [0, \pi]$, i que $e^{imRc\theta}$ no és més que una fase.

Llavors,
$$|I| \equiv \left| \int_{\mathcal{C}} g(z) e^{imz} \, \mathrm{d}z \right| \leq \int_{\mathcal{C}} |g(z)| \left| e^{imz} \right| \mathrm{d}z$$
. Notem que $\sin \theta \geq \frac{2}{\pi} \theta$, si $\theta \in [0, \pi/2]$.

$$\Rightarrow |I| \le M_R \int_0^{\pi} \left| e^{-mR \, s \, \theta} e^{imR \, c \, \theta} \right| R \, d\theta = 2M_R R \int_0^{\pi/2} e^{-mR\theta/2} \, d\theta$$
$$= 2M_R R \frac{\pi}{2mR} \left(1 - e^{-mR} \right) = \frac{M_R}{m} \pi \left(1 - e^{-mR} \right) \underset{M_R \to 0}{\longrightarrow} 0.$$

Integrals reals d'una funció real amb un factor de potència α

Sigui R(x) una funció real analítica a $\mathbb C$ tal que $R(z) \to \frac{1}{z^{2+s}}$, amb $s \ge 0$, i quan $z \to 0$ R(z) té com molt un pol simple. Sigui α un factor tal que $0 < \alpha < 1$. Llavors, la integral de $x^{\alpha}R(x) \mid x \in [0,\infty)$ és

$$\int_0^\infty x^\alpha R(x) \, \mathrm{d}x = \frac{2\pi i}{1 - e^{i2\pi\alpha}} \sum_{z_j \notin \mathbb{R}^+} \underset{z=z_j}{\mathrm{Res}} \left(z^\alpha R(z) \right) \tag{5.14}$$

on z_j són singularitats aïllades dins la regió tancada per la corba d'integració. Observem que la presència de pols simples a l'eix \mathcal{R} no afecta el resultat de la integral.

Figura 5.2: Representació gràfica dels camins sobre els quals s'integra la funció $x^{\alpha}R(x)$ a la demostració

De mostraci'o.

$$\int_{\mathcal{C}+\mathcal{C}_R+\mathcal{C}_2+\mathcal{C}_{\delta}} z^{\alpha} R(z) \, dz = 2\pi i \sum_{z_j \notin \mathbb{R}^+} \underset{z=z_j}{\text{Res}} \left(z^{\alpha} R(z) \right)$$
$$= \int_{\mathcal{C}} + \int_{\mathcal{C}_R} + \int_{\mathcal{C}_2} + \int_{\mathcal{C}_{\delta}} = I + I_R + I_2 + I_{\delta}$$

Obserevem que volem trobar el valor de $I=\int_{\mathcal{C}}z^aR(z)\,\mathrm{d}z$. Fent la parametrització $z=\rho\,e^{i\theta}\Rightarrow$

•
$$|I_R| \le \int_0^{2\pi} R^{\alpha} |R(Re^{i\theta})| R d\theta = 2\pi \frac{R^{1+\alpha}}{R^{2+s}} \underset{R \to \infty}{\longrightarrow} 0.$$

•
$$|I_{\delta}| \leq \int_{2\pi}^{0} \delta^{\alpha} \left| R\left(\delta e^{i\theta}\right) \right| \delta d\theta = \int_{2\pi}^{0} \delta^{\alpha} \left[\frac{1}{\delta} + \ldots \right] \delta d\theta = -2\pi \delta^{\alpha} \underset{\delta \to 0}{\longrightarrow} 0.$$

•
$$I_2 = \int_R^{\delta} e^{i2\pi} R\left(r e^{i2\pi}\right) \left(r e^{i2\pi - \varepsilon}\right)^{\alpha} dr = e^{i2\pi\alpha} \int_R^{\delta} r^{\alpha} R(r) dr = -e^{i2\pi\alpha} I.$$

Llavors, tenim
$$I\left(1 - e^{i2\pi\alpha}\right) = 2\pi i \sum_{z_j \notin \mathbb{R}^+} \underset{z=z_j}{\operatorname{Res}} \left(z^{\alpha} R(z)\right).$$

6 Sèries de Fourier 28

6 Sèries de Fourier

6.1 Definitions

Definició 6.1 (Funció periòdica). Diem que f(x) és una funció de període T si $f(x+T) \equiv f(x)$, $\forall x \in \mathbb{R}$. Alternativament al període podem definir la longitud d'una funció com L = T/2.

Definició 6.2 (Sèrie de Fourier d'exponencials de període T). Sigui $\phi_n(x) = \frac{e^{in\omega x}}{\sqrt{T}}$ una funció amb periodicitat T, amb $n \in \mathbb{Z}$ i $\omega = 2\pi/T$. Es pot demostrar que $\phi_n(x)$ es pot aproximar com el següent sumatori, que anomenem sèrie de Fourier:

$$S_{\phi_n}(x) = \sum_{k=-\infty}^{\infty} c_k e^{in\omega x}, \quad c_k \in \mathbb{C}$$
 (6.1)

o de forma alternativa

$$S_{\phi_n}(x) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega x) + b_k \sin(k\omega x) \right]$$
 (6.2)

Demostració. $\frac{1}{T} \int_{a}^{a+T} e^{im\omega x} dx = \delta_{0m}$.

$$\Rightarrow \frac{1}{T} \int_{a}^{a+T} f(x) e^{-ik\omega x} dx = \frac{1}{T} \int_{a}^{a+T} \left(\sum_{l=-\infty}^{\infty} c_{l} e^{il\omega x} \right) e^{-ik\omega x} dx$$
$$= \sum_{l=-\infty}^{\infty} c_{l} \left(\frac{1}{T} \int_{a}^{a+T} e^{i(l-k)\omega x} dx \right) = \sum_{l=\infty}^{\infty} c_{l} \delta_{lk} = c_{k}$$

Les expressions (6.1) i (6.2) es relacionen de la següents manera:

$$\begin{cases} a_0 = c_0 \\ a_k = c_k + c_{-k} \\ b_k = i (c_k - c_{-k}) \end{cases}$$

Teorema 6.1. Si f i f' són contínues a trossos $\Rightarrow \exists S_f(x) \equiv \sum_{k=-\infty}^{\infty} c_k e^{i\omega kx}$ i es compleix que $S_f(x) = \frac{1}{2} \lim_{\varepsilon \to 0^+} [f(x+\varepsilon) + f(x-\varepsilon)].$

Si f i f' són contínues, llavors la sèrie de Fourier $S_f(x)$ convergeix absolutament i uniforme a f(x).

FUNCIONS PARELLES I SENARS

Definició 6.3 (Funció parella). Una funció parella és aquella que compleix f(-x) = f(x). Un exemple típic de funció parella és $f(x) = \cos x$.

Definició 6.4 (Funció senar). Una funció senar és aquella que compleix f(-x) = -f(x). Un exemple típic de funció senar és $f(x) = \sin x$.

6.2 Sèrie de Fourier del tipus cosinus

Sigui f(x) definida a [0, L]. Definim $\tilde{f}(x) = \begin{cases} f(x), & x \in [0, L] \\ f(-x), & x \in [-L, 0) \end{cases}$, que és una funció parella. Llavors, podem fer la sèrie de Fourier de $\tilde{f}(x)$:

$$S_{\tilde{f}}(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right), \quad \text{on}$$

$$a_0 = \frac{1}{L} \int_0^L f(x) \, \mathrm{d}x, \quad a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) \, \mathrm{d}x$$

L'expressió de $S_{\tilde{f}}(x)$ és certa a [-L,L] i òbviament a [0,L]. Llavors, es pot demostrar que $S_{\tilde{f}}(x)=f(x)\Rightarrow$

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right), \quad 0 \le x \le L$$
 (6.3)

6.3 Sèrie de Fourier del tipus sinus

Sigui f(x) definida a [0, L]. Definim $\tilde{f}(x) = \begin{cases} f(x), & x \in [0, L] \\ -f(-x), & x \in [-L, 0) \end{cases}$, que és una funció senar. Llavors, podem fer la sèrie de Fourier de $\tilde{f}(x)$:

$$S_{\tilde{f}}(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right), \quad \text{on} \quad b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

L'expressió de $S_{\tilde{f}}(x)$ és certa a [-L,L] i òbviament a [0,L]. Llavors, es pot demostrar que $S_{\tilde{f}}(x)=f(x)\Rightarrow$

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right), \quad 0 \le x \le L$$
 (6.4)

6 Sèries de Fourier 30

CONDICIONS D'ORTOGONALITAT DE FUNCIONS TRIGONOMÈTRIQUES

Les relacions següents, anomenades condicions d'ortogonalitat, poden ser de gran utilitat a l'hora de calcular els coeficients de Fourier:

•
$$\int_{-\infty}^{a+T} \cos(n\omega x) \sin(n\omega x) dx = 0.$$

•
$$\int_{a}^{a+T} \cos(m\omega x) \sin(n\omega x) dx = \delta_{mn} \frac{T}{2}.$$

•
$$\int_{a}^{a+T} \sin(m\omega x) \sin(n\omega x) dx = \delta_{mn} \frac{T}{2}.$$

6.4 Identitat de Parseval

Teorema 6.2 (de Parseval). Sigui $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega x) + b_n \sin(n\omega x)$ una sèrie de Fourier, amb $\omega = \frac{2\pi}{T} = \frac{\pi}{L}$. Llavors, es compleix

$$\frac{1}{T} \int_{-T/2}^{T/2} |f(x)|^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$
 (6.5)

Teorema 6.3 (de Parseval generalitzat). Siguin $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega x) + b_n \sin(n\omega x)$ $i g(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega x) + B_n \sin(n\omega x)$ sèries de Fourier, amb $\omega = \frac{2\pi}{T} = \frac{\pi}{L}$. Llavors, es compleix

$$\frac{1}{T} \int_{-T/2}^{T/2} f^{\star}(x)g(x) \, \mathrm{d}x = a_0^{\star} A_0 + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^{\star} A_n + b_n^{\star} B_n \right)$$
 (6.6)

Demostraci'o. L'identitat de Parseval es pot derivar a partir de les condicions d'ortogonalitat de les funcions sinus i cosinus.

7 Transformades de Fourier

7.1 Definició

Definició 7.1 (Transformada de Fourier). Donada la funció f(x), definim la seva transformada de Fourier com:

$$\mathcal{F}[f(x)](k) \equiv \hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$
 (7.1)

Definició 7.2 (Transformada de Fourier inversa). Donada la funció g(k), definim la seva transformada de Fourier inversa com:

$$\mathcal{F}^{-1}[g(k)](x) \equiv \tilde{g}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k) e^{ixk} dk$$
 (7.2)

Teorema 7.1. Sigui $f(x) \in \mathcal{L}^1_{[a,b]}$ una funció tal que f(x) i f'(x) siguin contínues a trossos. Llavors, es compleix

$$\hat{\hat{f}}(x) = \frac{1}{2} \lim_{\varepsilon \to 0^+} \left[f(x + \varepsilon) + f(x - \varepsilon) \right] = f(x)$$

Demostraci'o.

$$\begin{split} \tilde{\hat{f}}(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega x} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \, e^{-i\omega t} \, \mathrm{d}t \right] \mathrm{d}\omega \\ &= \int_{-\infty}^{\infty} f(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega(t-\omega)} \, \mathrm{d}\omega \right] \mathrm{d}t = \int_{-\infty}^{\infty} f(t) \delta(t-x) \, \mathrm{d}t = f(x) \end{split}$$

Definició 7.3. S és l'espai de les funcions complexes de variable real, infinitament derivables, i que decreixen (ella i les seves derivades) més ràpidament que tota potència de $\frac{1}{|x|}$ quan $|x| \to \infty$.

Exemple 7.1.
$$f(x) \sim e^{-x^2} \in S$$
: $e^{-x^2} |x|^n \to 0, \forall n$.

Teorema 7.2. La transformada de Fourier és una operació bijectiva en l'espai S, i la seva inversa és la transformada de Fourier inversa:

$$\mathcal{F}^{-1} \circ \mathcal{F}: \ \mathcal{S} \ \rightarrow \ \mathcal{S} \ \rightarrow \ \mathcal{S}$$

$$\varphi \ \mapsto \ \hat{\varphi} \ \mapsto \ \tilde{\hat{\varphi}} = \varphi$$

Relacions de les integrals de Fourier

Exemple 7.2. Sigui g(x) = f(x+a). Sabent l'expressió de $\hat{f}(k)$ podem esbrinar com es transforma f(x) respecte una trasl·lació, és a dir, podem saber $\hat{g}(k)$?

$$\hat{g}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x+a) e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\tilde{x}) e^{-ik(\tilde{x}-a)} d\tilde{x} = e^{ika} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\tilde{x}) e^{-ik\tilde{x}} d\tilde{x} \right]$$

$$= e^{ika} \hat{f}(k)$$

A continuació podem veure una llista de les relacions més comunes a les integrals de Fourier:

- $\mathcal{F}[f(x+a)] = e^{ika}\hat{f}(k)$.
- $\mathcal{F}\left[e^{iax}f(x)\right] = \hat{f}(k-a).$
- $\mathcal{F}[xf(x)] = i\hat{f}'(k)$.
- $\mathcal{F}[f'(x)] = ik\hat{f}(k)$.
- $\mathcal{F}[f^{\star}(x)] = \hat{f}^{\star}(-k).$
- $\mathcal{F}[f(\lambda x)] = \frac{1}{|\lambda|} \hat{f}\left(\frac{k}{\lambda}\right)$.
- $\mathcal{F}[f(x) \star g(x)] = \sqrt{2\pi} \hat{f}(k) \cdot \hat{g}(k)$.
- $\mathcal{F}[f(x) \cdot g(x)] = \sqrt{2\pi}\hat{f}(k) \star \hat{g}(k)$.

7.2 Teorema de convolució i identitat de Parseval

Teorema 7.3 (de convolució). Siguin f(x), g(x) dues funcions complexes i definim $h(x) = \int_{-\infty}^{\infty} f(y)g(x-y) dy \equiv f(x) \star g(x)$. Llavors, es compleix

$$\hat{h}(k) = \sqrt{2\pi}\hat{f}(k)\hat{g}(k) \tag{7.3}$$

Demostració.

$$\hat{h}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \left[\int_{-\infty}^{\infty} f(y)g(x-y) \, \mathrm{d}y \right] \mathrm{d}x$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)g(u) \, e^{-ik(u+y)} \, \mathrm{d}y \, \mathrm{d}u$$

$$= \sqrt{2\pi} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) \, e^{-iky} \, \mathrm{d}y \right] \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(u) \, e^{-iku} \, \mathrm{d}u \right]$$

$$= \sqrt{2\pi} \hat{f}(k) \hat{g}(k)$$

Teorema 7.4 (de Parseval). Siguin f(x) i g(x) dues funcions complexes de variable real. Llavors, es compleix

$$\int g^{\star}(x)f(x) dx = \int \hat{g}^{\star}(k)\hat{f}(k) dk$$
 (7.4)

7.3 Transformada de Fourier del tipus cosinus

Sigui f(x) definida a $[-\infty, \infty]$. Definim $F(x) = \begin{cases} f(x), & x \ge 0 \\ f(-x), & x \le 0 \end{cases}$ que és una funció parella. Llavors, definim la seva transformada de Fourier de tipus cosinus:

$$\hat{f}_c(\omega) \equiv \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(\omega x) \, \mathrm{d}x \tag{7.5}$$

de manera que es compleix

$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{f}_c(\omega) \cos(\omega x) d\omega$$
 (7.6)

Observem que es conserva la paritat de la transformada: $\hat{F}(\omega) = \hat{F}(\omega)$. Demostració.

$$\hat{F}(\omega) = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} F(x) e^{-i\omega x} dx = \frac{1}{\sqrt{2}} \int_{0}^{\infty} f(x) e^{-i\omega x} dx$$
$$+ \frac{1}{\sqrt{2}} \int_{-\infty}^{0} f(-x) e^{-i\omega x} dx = \frac{1}{\sqrt{2}} \int_{0}^{\infty} f(x) \left[e^{-i\omega x} + e^{i\omega x} \right] dx$$
$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} f(x) \cos(\omega x) dx \equiv \hat{f}_{c}(\omega)$$

7.4 Transformada de Fourier del tipus sinus

Sigui f(x) definida a $[-\infty, \infty]$. Definim $F(x) = \begin{cases} f(x), & x > 0 \\ 0, & x = 0, \text{ que és una funció} \\ -f(-x), & x < 0 \end{cases}$

senar. Llavors, definim la seva transformada de Fourier de tipus sinus:

$$\hat{f}_s(\omega) \equiv \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin(\omega x) dx$$
 (7.7)

de manera que es compleix

$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{f}_s(\omega) \sin(\omega x) d\omega$$
 (7.8)

7.5 Transformada de Fourier de més d'una variable

Definició 7.4. Sigui $f(\vec{x})$ una funció complexa de varies variables reals. Llavors definim la seva transformada de Fourier com

$$\hat{f}(\vec{k}) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(\vec{x}) e^{-i\omega \vec{x}} d^n \vec{x}$$

$$(7.9)$$

i compleix les següents propietats:

- i) $\mathcal{F}\left[\partial_j f(\vec{x})\right](\vec{k}) = ik_j f(\vec{k}).$
- ii) $\mathcal{F}[\partial_{j_1,...,j_m}f(\vec{x})](\vec{k}) = (i)^m k_{j_1}...k_{j_m}f(\vec{k}).$
- iii) $\mathcal{F}\left[f(\hat{\mathcal{A}}\vec{x})\right](\vec{k}) = \frac{1}{\det \hat{\mathcal{A}}}\hat{f}\left((\hat{\mathcal{A}}^{-1})^t\vec{k}\right).$

7.6 Delta de Dirac

Definició 7.5 (Delta de Dirac). Sigui $f(x)=\frac{1}{\sqrt{2\pi}}\exp\left[-\frac{x^2}{2a^2}\right]$ una gaussiana. Considerem la seva transformada de Fourier:

$$\hat{f}_a(k) = \frac{1}{\sqrt{2\pi}} a \exp\left[-\frac{k^2 a^2}{2}\right]$$
 (7.10)

Llavors es pot veure que quan $a \to \infty$, $\hat{f}_a(k) = \delta(x) \equiv$ delta de Dirac.

$$\delta(x) \equiv \frac{1}{\sqrt{2\pi}} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} \, \mathrm{d}k \right] = \frac{\mathcal{F}[1](x)}{\sqrt{2\pi}}$$
 (7.11)

De l'expressió integral de la delta de Dirac podem fer les següents observacions:

i)
$$\int_{-\infty}^{\infty} \hat{f}_a(y) \, \mathrm{d}y = 1.$$

ii)
$$\int_{-\infty}^{\infty} \hat{f}_a(y) y^{2n+1} \, \mathrm{d}y = 0, \, n \in \mathbb{N}.$$

iii)
$$\int_{-\infty}^{\infty} \hat{f}_a(y) y^{2n} \, \mathrm{d}y = \frac{\#}{a^{2n}}.$$

iv)
$$\int_{-\infty}^{\infty} \delta(y)g(y) dy \equiv g(0)$$
, quan $a \to \infty$.

7.7 APLICACIONS DE LA DELTA DE DIRAC

Equació de Poisson

Definició 7.6 (Equació de Poisson).

$$\vec{\nabla}^2 \phi(\vec{x}) = -4\pi \rho(\vec{x}) \tag{7.12}$$

La solució de l'equació d'ona és $\phi(\vec{x}) = \frac{q}{|\vec{x} - \vec{a}|}$.

Demostració.

$$\phi(\vec{x}) \equiv -\int 4\pi \rho(\vec{x}') G(\vec{x} - \vec{x}') \, \mathrm{d}^3 \vec{x}'$$

$$\Rightarrow \vec{\nabla}^2 \phi(\vec{x}) = -\int 4\pi \rho(\vec{x}') \left(\vec{\nabla}^2 G(\vec{x} - \vec{x}') \right) \mathrm{d}^3 \vec{x}' = -4\pi \rho(\vec{x})$$

on $G(\vec{x})$ s'anomena funció de Green. Considerem la seva transformada de Fourier:

$$\hat{G}(\vec{k}) = \frac{1}{(2\pi)^{3/2}} \int e^{-i\vec{k}\cdot\vec{y}} G(\vec{y}) \,d^3\vec{y} \Rightarrow G(\vec{x} - \vec{x}') = \frac{1}{(2\pi)^{3/2}} \int e^{i\vec{k}\cdot(\vec{x} - \vec{x}')} \hat{G}(\vec{k}) \,d^3\vec{k}$$

Calculant explícitament $\vec{\nabla}^2 G(\vec{x} - \vec{x}')$ i fent la seva transformada de Fourier inversa podem arribar a l'expressió $\hat{G}(\vec{k}) = \frac{1}{(2\pi)^{3/2}} \frac{1}{\vec{k}^2}$. Coneguda aquesta expressió podem trobar $G(\vec{x} - \vec{x}')$ fent la seva transformada inversa:

$$G(\vec{x} - \vec{x}') = -\frac{1}{4\pi} \frac{1}{|\vec{x} - \vec{x}'|}$$

$$\Rightarrow \phi(\vec{x}) = \iiint \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} d^3 \vec{x}' = \iiint \frac{q \, \delta^{(3)}(\vec{x}' - \vec{a})}{|\vec{x} - \vec{x}'|} d^3 \vec{x}' = \frac{q}{|\vec{x} - \vec{a}|}$$

Equació d'ona

Definició 7.7 (Equació d'ona).

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \tag{7.13}$$

La solució de l'equació d'ona és $y(x,t) = f(x \mp vt)$.

Demostració. Coneixem les condicions inicials de la funció: y(x,t=0). Primer de tot fem la transformada de Fourier de l'equació d'ona

$$\int_{-\infty}^{\infty} \left(\frac{\partial^2 y}{\partial x^2} \right) e^{i\alpha x} \, \mathrm{d}x = \frac{1}{v^2} \int_{-\infty}^{\infty} \left(\frac{\partial^2 y}{\partial t^2} \right) e^{i\alpha x} \, \mathrm{d}x$$

Considerant $\hat{y}(\alpha,t)=\frac{1}{\sqrt{2}}\int_{-\infty}^{\infty}y(x,t)\,e^{i\alpha x}\,\mathrm{d}x$ i integrant per parts arribem a

$$(-i\alpha)^2 \hat{y}(\alpha, t) = \frac{1}{v^2} \frac{\partial^2 \hat{y}(\alpha, t)}{\partial t^2}$$

$$\Rightarrow \hat{y}(\alpha, t) = F(\alpha) e^{\pm iv\alpha t} = \hat{y}(\alpha, 0) e^{\pm iv\alpha t} = \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{i\alpha x} dx\right) e^{\pm iv\alpha t}$$

Fent la tranformada de Fourier inversa arribem a

$$y(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\alpha) e^{-i\alpha(x \mp vt)} d\alpha = f(x \mp vt)$$

8 Altres resultats de variable complexa

8.1 FÓRMULES INTEGRALS DE POISSON

Sigui un disc de radi R amb punts interiors $z = r e^{i\theta}$, i f(z) és analítica a dins el disc i la frontera. Llavors,

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 + r^2 - 2Rr\cos(\theta - \phi)} u(Re^{i\phi}) d\phi$$
 (8.1)

El mateix càlcul és vàlid per a $v(re^{i\theta})$.

Sigui f(z) analítica al semiplà superior del pla complex, i sigui aquesta fitada (|f(z)| < M si $|z| \to \infty$). Llavors,

$$u(x,y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{u(r,0)}{(r-x)^2 + y^2} f(Re^{i\phi}) dr$$
 (8.2)

El mateix càlcul és vàlid per a v(x, y).

8.2 Continuació analítica

Definició 8.1 (Continuació analítica). Sigui f_0 una funció analítica a la regió \mathcal{R}_0 definida per la corba tancada simple \mathcal{C}_0 , i sigui f_1 una funció analítica a la regió \mathcal{R}_1 definida per la corba tancada simple \mathcal{C}_1 .

Si
$$f_0(z) = f_1(z)$$
, $\forall z \in \mathcal{R}_0 \cap \mathcal{R}_1$, diem que $f_1(z)$ és la continuació analítica de $f_0(z)$ en $\mathcal{R}_0 \cup \mathcal{R}_1$.

Exemple 8.1. Sigui
$$f(z) = \int_0^\infty e^{-zt} dt = \frac{1}{z} | \operatorname{Re} z > 0$$
. Llavors $F(z) = \frac{1}{z}, \forall z \in \mathbb{C} \setminus \{0\}$ és la continuació analítica de $f(z)$ a $\mathbb{C} \setminus \{0\}$.

Teorema 8.1 (d'unicitat). Si $f_1(z)$ i $f_2(z)$ són analítiques en un domini \mathcal{D} i els seus valors coincideixen sobre una successió $\{a_k\} \to a \in \mathcal{D}$: $f(a_k) = f_2(a_k)$. Llavors $f_1(z) = f_2(z)$, $\forall z \in \mathcal{D}$.

8.3 Principis de reflexió d'Schwartz

Teorema 8.2. Sigui \mathcal{D} una regió tal que $D \cap \mathbb{R} \neq \emptyset$ sigui un interval finit, i f(z) sigui real $\forall z \in D \cap \mathbb{R}$. Llavors, $f(z^*) \equiv f^*(z)$, $\forall z \in \mathcal{D}$.

Exemple 8.2. Sigui f(z) una funció real, z = x + i0, i $x \in [-\infty, 0)$. Podem determinar l'expressió de f(z), $\forall z \in \mathbb{C}$ sabent les següents condicions?

• f(z) és analítica a $\mathbb{C}\setminus[0,\infty]$.

- $f(z) \xrightarrow[|z| \to 0]{} 0.$
- Im $f(x + i\varepsilon)$ és conegut (on $0 < \varepsilon \to 0$).

A partir de la fórmula integral de Cauchy diem, sobre la corba $\mathcal{C} = \mathcal{C}_1 + \mathcal{C}_R + \mathcal{C}_2 + \mathcal{C}_\rho$,

$$f(z) = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \oint_{\mathcal{C}_1 + \mathcal{C}_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

$$= \frac{1}{2\pi i} \int_0^\infty \frac{f(x + i\varepsilon)}{x + i\varepsilon - z} \, dx + \frac{1}{2\pi i} \int_\infty^0 \frac{f(x - i\varepsilon)}{x - i\varepsilon - z} \, dx$$

$$= \frac{1}{2\pi i} \int_0^\infty \frac{f(x + i\varepsilon) - f^*(x + i\varepsilon)}{x - z} \, dx = \frac{1}{\pi} \int_0^\infty \frac{\operatorname{Im} f(x + i\varepsilon)}{x - z} \, dx$$

$$\Rightarrow f(z) = \frac{1}{\pi} \int_0^\infty \frac{\operatorname{Im} f(x + i\varepsilon)}{x - z} \, \mathrm{d}x, \quad \forall z \in \mathbb{C}$$

8.4 Teorema de l'argument

Teorema 8.3. Sigui f(z) analítica excepte P pols $\alpha_1, \alpha_2, \ldots, \alpha_P$ d'ordre m_1, m_2, \ldots, m_P , respectivament, en una regió \mathcal{R} determinada per $\delta \mathcal{R} \equiv \mathcal{C}$. La funció f(z) té alhora N zeros $\beta_1, \beta_2, \ldots, \beta_N$ d'ordre n_1, n_2, \ldots, n_N , respectivament. Llavors, es compleix

$$\frac{1}{2\pi i} \oint \frac{f'(z)}{f(z)} dz \equiv (m_1 + m_2 + \dots + m_P) - (n_1 + n_2 + \dots + n_N)$$
 (8.3)

Corol·lari 8.4. Sigui f(z) analítica excepte P pols simples $(s_1, s_2, ..., s_P)$ en una regió \mathcal{R} determinada per $\delta \mathcal{R} \equiv \mathcal{C}$. La funció f(z) té alhora N zeros d'ordre 1 $(z_1, z_2, ..., z_N)$. Llavors, es compleix

$$\frac{1}{2\pi i} \oint \frac{f'(z)}{f(z)} dz \equiv N - P \tag{8.4}$$