See Hondowto 8 9 4 410, Chp 1,6,14, sechers 4,6, 53-5,6 17.2-7.4 in Devore book.

(1 (8,0,4)

250 ind observators 4, , 42, - 4250 from a process yield the following remaind probability plot.

· Osny the plat given, discover the process distribution relative to a normal plat will respect to tell weight and symmetry.

From the Q, Q plot shown we can tell that the process abeliable has a house right tool and dighter left tool than the 12(0,1) distribution.

Forthmore, the process distribution is showed hearly to the right.

To k need to redo because & 6 6 1. Need to contine last two groups. IT

(H.O.9)

2.) Ny lon Burs were toked for brittleness. Each of the 500 burs was nedeled vider sunder conditions and was tested by placing a specified dress at 5 localins on the ter. Assuming each bar has virter conquality, the number of breaks on a given ber should be binemally dishabited as a unknown probability of breaking. The following table sammeries the ortenes of the experiment:

Bredez Ber.	10	1-1	12	3	4	15	Total
Frequency	140	197	1115	4	5	2	500

· Use a GOF test to evaluate wheter the date appear to be from a benemal model.

(D Find MLE of 0; 6 = Saight probability of a location on a bor brokeny.

6 = 0(140) + 1(147) + 2(115) + 3(41) + 4(5) + 5(2) = 0.232 = 6,

(O Let ?:+, be the probability that a rondowly idealed bor has i broken for i e[o,..., 5]. Not is P(+; = P[X=i] where X ~ Binamicl(5, 0) dishiphan o p(-; = ?(X=i) = fo(1, 6): (i) (0.232)i (0.768)⁵⁻ⁱ for ie[o,...5]

• $\hat{Q} = \frac{500 \hat{P}_L}{100 - \hat{E}_L}$

(Follow Falle was calculated using R.

	دا	1	2	3	ч .	15	14	Total
1	13.	6.26 7813	6,4357)	0.243614	0.073652	0.0111245	CP013F20000, 0	1.00
	بُدن	185.5000	1	1	1	1	0.33605466	200
	Oi	140	104	112	4,	5	2	500
ĝ.=	(01.2.2)	0.3075	0.1131	0.3913	6,4730	0.05684	8.23888	9.58077

NOTE: Ê6 (1 => need to recolculate w) 5 and 6 contined.

2) (contd)

Que = Qui - Earl + Egran = 9, 7807M - 5, 562284 -0,126054 + 5,898229

9(az 1.490813) = 1-P(Q = 1.490813) = 1-Pchize (440813, 3)

PLOS 14908 13) = 0.6842223 => w/ a p-velve but large, we would conclude a remaind distribution is a great fit of redate.

40.8) 3.

3) A rondom sample of 500 data rates are reliefed from 4 reporter processes berry colfs F., Fe, F., Fy. Re plat of the sample greatles is a studered rannel quarter for each of the for sample is given below. For each of the plats, select One of the following distribute to describe the plot which generally the detail. (Hint: make sure to take into convolvelen the size of relies associated we each distribute.)

Plot 1: V

Plot 3: H.

Plot 2: D (MC X2 goes from 0 to 1) Plot 4: G

4.) An experiment was conducted to investigate if the impact of the arenogen DMBA could be delayed by trailment wil a potential backs - bloder 50 meture rate of the same governd health were given the betwee blocker the enjected wo DMBA. The time in days, after exposure, at which to coremona was diagnosed for the rule are over below. From part studies, 150 days after exposure, a corevena was detected in interest rets to Data course tallet

· Does a weitell destribution appear to prenche an adequate fit to the dete? Tothey ger arsher very both a GOF and a graphed plat.

Ouce R to Find MLE or & a, P : à

8 = 1,3861041 | 2 = 201,1786473 40 = 0.5h+0802

40W= 0.553550+

· From Table 5 ... H. O. 9 (pg 34) we see that our photo 10 > 025. Due we have avery good by. · Suntarty, looking at our QQ plot in 12 we see but the overbuild product is a good Ct.

* note carr test and AD are not mulchy up. AD => good fit, correst => not good.

* Ask about corr test for ren name date.

of major problem on the Out of Messaco is the excellent capture of gave fish by Shampers.

A raidom sample of the solder of 50 shampers, yield the filling dark concerning the container per out affort (CPUE) of feel songers, a brildy sight game fishe led to be the CPUE of the

(11) CPUE data is offere modeled very a log-nerved distribution. Does to ober data appear to be from a Log-Normal distribution? Explan your ensurer as both a normal reference distribution plot and a ODF took.

· Cissal K= Jaccis.

New Mi M N(m, 32)

Dang ME estrates from five get is: 2.5906217, 3° = 2.070229 AD=0.4774204, ADM= 0.4550114.

" From table 5 (4.0.9 pg 34) we see Out our probe to boun (0,10,0,25) This the lognormal distribution provides a moderalely good but it tealing

· In R: Idnik= log (duta), x= sort (Idnik). shepiro. test (x)

W=0.97731, p-value = 0.4451 => & logname I duhahan provide

on"excellent fit" (4.0.9 pg 5) to our dark

(2.) Use the Box-cox transferment of the CPUE delen to determine the most appropriate power transfermation to transfer the CPUE distribution to Warmely.

How does the R + frankle box-cox transferment compare to the Rt For the log transfermentar?

• Tron 2: $\Theta = 0.094$;
• In 2: olate = data NO.074; shepro.tcst(data)

=> W = 0.98151, p-value = 0.6173,

The fit from the boxcox brows fermular is kelter that to fit
for the log brashmatur

Si) (contal)

(3) Use the & program from H.O. 10 to draw 10:000 Bodstrap sugles from the CPUE date. From the 10,000 camples, estimate the studend error of the simple ween for the 1/2 = log(Ci) date. Compare the committee to the usual estuale Sy ITT, where Sy is the sample student develor compiled from the n=50 values of you = log (co).

= 0.2055469 50(9)=6,2035765

The estanded standard error of Ke simple men is approximately expect to the sample straded

(4) Use your bookstrap samples to estable the mean and standard deneater of the following surple obahohes for 4: = log (CL) (a) surple median; Q(0,5)

Q(0.5) = 2.814869, SD(Q(S)) = 0.3721707

(0) surple 80; sy 5 = 1,433990, so(54) = 0.1187079

(c) Rescript MAD; MADY MAD = 1.569868, SD(MAD) = 0.2244567

(H.O.10 pg 18) (5) Historically, the log (CPDE) data was madeled as a random surple from a N(3, (1.5)2) distribution. Compare your bookstrap estimates of the men and standard durates of Q (05) and Sy from put 4 of the prollen to the thorehow ween aid studered devader of ay (0,5) and Sy based on Mi = log (Ci) Nang a NO, (1.5) & doluber.

· Asymbolic Men of Q60.5) is m = Q(0.5) = 3

The is approximally the save as the mean of the sample median 15 151712 · Asymptotic SD of Q(0.5): 0A = 150 f(000) - 150 (0 toil) : 150 = 0.2658681

· The asymptote 80 of Q(0,5) is less them our estuded so of Q(0,5).

o Asymptohic Mun of Syrs 0 = 1.5

"The asymbolic men of sy is approximately egood to an estula sy.

· Asymbotic so of Sy 15 OA = 20 Jn , is/ my = 304 = 3 (1.5)4 = 15,1875 04 = [15.1875 - (1.5) / (2(1.5) 550) = 0.15]

· On Any-toke 80 of Sy is slightly larger then our estimate. 50 (0 y) =

6.) A company has designed a new battery system for chebre powered automobiles. To extende the bifetime of the systems, the danger engineers place the between in 25 electric purered cers and test Kim under smouthled afy drawn . Let Yi be the time to halve of the letteres of the it car, i & [1, ..., 25]. The factors trues are received in waits of 20,000 water. The company and to know the probability. But the sample mean bared on 25 descriptions. all extrude the true men win a margin efector of ± 0.2 (90000 mlss), provided but the true weeks has a rate of 5 (100,000 miles), that is, affrontiale, ?[-0.264-560,2] = 9 4.8= 7 5527

(1) From good about, the distribution of the time to Feeling of the braking system is exponents.) is a new value of 5 (100000 section). Let Y be the scople men true to future of the 25 cers.

(40,10 mg) (a) what a the exact disinfution of I if the exposurbal model is still valid? I FIN thing we use to feet that if My , You ind Exp (B), the the destablish NB = Exxi N (namma (NB)

Fy $(\vec{q}) = \frac{1}{\Gamma(25)} s^{25} = \frac{1}{25} \times \frac{1}{25}$

 $=\frac{50}{725} \times \frac{1}{515} \times \frac{1}{5} \times \frac{1}{5}$

= F(25) (=)25 = 7 / 1 ~ Grumma (25, 1/5)

(0) whit is the mean and SD of I if the expension would is still valid? [17] = 5 = (21) = 5 = [7] = SDCT) = [25(1/5)2] = 1 = SD(T)

(2) Simplate 10000 random super of size 25 from the expounded deliber w/ B=5. Compose the super mean for each of the 10000 super. Display a normal retrainer plot for the 10000 scripte mens. Does the glit regist that ke soply dishabland T is approximately remain TO NO. Ke soughing distribution & I is not approximately named

(Contd)
(3) Campute or cohnele ?[0.2 & y-5 & 0.2] in each of Ke bollowing we
(a) Very the exact destributes of]
· 9[-0.2 = 9 - 5 = 0.2] = P[4.8 = 9 = 5.2]
= 7[4=5.2] - P[4=4.8]
PE01214 7-514 0.2] = 01580747
(b) long control limit Tearen
0.1282104
(c) using your simulated 10000 4's
\$ [-0.2 = 7 - 5 = 0.2] = 0,1546.]
(4) what is the level of agreement in the three computational commeters of
P[-0.2 = \qquad - 5 \qquad 0.2]?
· All three estimators agree to the recrest himsbeth, the central
limit rearran and the exact distribution agree to the
necrest Thousandl.
Weered I was a second of the s