

1GB - 240-Pin 1Rx8 Registered ECC LV DDR3 DIMM

DTM64331A 128Mx72 1GB 1Rx8 PC3L-10600R-9-10-A0 Performance range

Clock / Module Speed / CL-t_{RCD} -t_{RP}

667 MHz / PC3L-10600 / 9-9-9 533 MHz / PC3L-8500 / 8-8-8 533 MHz / PC3L-8500 / 7-7-7 400 MHz / PC3L-6400 / 6-6-6

Features

240-pin JEDEC-compliant DIMM, 133.35 mm wide by 30 mm high

Operating Voltage: VDD = VDDQ = +1.35V (1.283V to 1.45V)

Backward-compatible to VDD = VDDQ = +1.5V ±0.075V

I/O Type: SSTL_15

On-board I2C temperature sensor with integrated serial presence-detect (SPD) EEPROM.

Data Transfer Rate: 10.6 Gigabytes/sec

Data Bursts: 8 and burst chop 4 mode

ZQ Calibration for Output Driver and On-Die Termination (ODT)

Programmable ODT / Dynamic ODT during Writes

Programmable CAS Latency: 6, 7, 8 and 9

Bi-Directional Differential Data Strobe signals

SDRAM Addressing (Row/Col/Bank): 14/10/3

Fully RoHS Compliant

Description

DTM64331A is a registered 128Mx72 memory module, which conforms to JEDEC's DDR3L, PC3L-10600 standard. The assembly is Single-Rank. The rank is comprised of nine 128Mx8 DDR3L Samsung SDRAMs.

One 2K-bit EEPROM is used for Serial Presence Detect and a combination register/PLL, with Address and Command Parity, is also used.

Both output driver strength and input termination impedance are programmable to maintain signal integrity on the I/O signals in a Fly-by topology.

A thermal sensor accurately monitors the DIMM module and can prevent exceeding the maximum operating temperature of 95C.

Pin Configuration

Descri	

Front S	ide			Back Sid	е				Name	Function
1 V _{REFDQ}	31 DQ25	61 A2	91 DQ41	121 V _{SS}	151 V _{SS}	181 A1	211	V _{SS}	CB[7:0]	Data Check Bits
2 V _{SS}	32 V _{SS}	62 V _{DD}	92 V _{SS}	122 DQ4	152 DM3	182 V _{DD}	212	DM5	DQ[63:0]	Data Bits
3 DQ0	33 /DQS3	63 CK1**	93 /DQS5	123 DQ5	153 /TDQS12	183 V _{DD}	213	/TDQS14	DQS[8:0], /DQS[8:0]	Differential Data Strobes
4 DQ1	34 DQS3	64 /CK1**	94 DQS5	124 V _{SS}	154 V _{SS}	184 CK0	214	V_{SS}	DM[8:0]	Data Mask
5 V _{SS}	35 V _{SS}	65 V _{DD}	95 V _{SS}	125 DM0	155 DQ30	185 /CK0	215	DQ46	/TDQS[17:9]	Termination Data Strobes
6 /DQS0	36 DQ26	66 V _{DD}	96 DQ42	126 /TDQS9	156 DQ31	186 V _{DD}	216	DQ47	CK[1:0], /CK[1:0]	Differential Clock Inputs
7 DQS0	37 DQ27	67 V _{REFCA}	97 DQ43	127 V _{SS}	157 V _{SS}	187 /Event	217	V_{SS}	CKE[1:0]	Clock Enables
8 V _{SS}	38 V _{SS}	68 P _{AR} _I _N	98 V _{SS}	128 DQ6	158 CB4	188 A0	218	DQ52	/CAS	Column Address Strobe
9 DQ2	39 CB0	69 VDD	99 DQ48	129 DQ7	159 CB5	189 V _{DD}	219	DQ53	/RAS	Row Address Strobe
10 DQ3	40 CB1	70 A10/AP	100 DQ49	130 V _{SS}	160 V _{SS}	190 BA1	220	V_{SS}	/S[3:0]	Chip Selects
11 V _{SS}	41 V _{SS}	71 BA0	101 V _{SS}	131 DQ12	161 DM8	191 V _{DD}	221	DM6	WE	Write Enable
12 DQ8	42 /DQS8	$72 V_{DD}$	102 /DQS6	132 DQ13	162/TDQS17	192 /RAS	222	/TQDS15	A[15:0]	Address Inputs
13 DQ9	43 DQS8	73 /WE	103 DQS6	133 V _{SS}	163 V _{SS}	193 /S0	223	V_{SS}	BA[2:0]	Bank Addresses
14 V _{SS}	44 V _{SS}	74 /CAS	104 V _{SS}	134 DM1	164 CB6	194 V _{DD}	224	DQ54	ODT[1:0]	On Die Termination Inputs
15 /DQS1	45 CB2	75 V _{DD}		135/TDQS10		195 ODT0	225	DQ55	SA[2:0]	SPD Address
16 DQS1	46 CB3	76 /S1**	106 DQ51	136 V _{SS}	166 V _{SS}	196 A13	226	V_{SS}	SCL	SPD Clock Input
17 V _{SS}	47 V _{SS}	77 ODT1**	107 V _{SS}	137 DQ14	167 NC (TEST)	197 V _{DD}	227	DQ60	SDA	SPD Data Input/Output
18 DQ10	48 V _{TT}	78 V _{DD}	108 DQ56	138 DQ15	168/RESET	198 /S3, NC**	228	DQ61	V_{SS}	Ground
19 DQ11	49 V _{TT}	79 /S2, NC**	109 DQ57	139 V _{SS}	169 CKE1**	199 V _{SS}	229	V_{SS}	V_{DD}	Power
$20V_{SS}$	50 CKE0	80 V _{SS}	110 V _{SS}	140 DQ20	170 V _{DD}	200 DQ36	230	DM7	V_{DDSPD}	SPD EEPROM Power
21 DQ16	51 V _{DD}	81 DQ32	111/DQS7	141 DQ21	171 A15	201 DQ37	231	/TDQS16	V_{REFDQ}	Reference Voltage for DQ
22 DQ17	52 BA2	82 DQ33	112 DQS7	142 V _{SS}	172 A14	202 V _{SS}	232	V_{SS}	V_{REFCA}	Reference Voltage for CA
$23V_{SS}$	53 /E _{RR} _O _{UT}	83 V _{SS}	113 V _{SS}	143 DM2	173 V _{DD}	203 DM4	233	DQ62	V_{TT}	Termination Voltage
24 /DQS2	54 V _{DD}	84 /DQS4	114 DQ58	144/TDQS11	174 A12/ /BC	204 /TQDS13	234	DQ63	/Event	Temperature Sensing
25 DQS2	55 A11	85 DQS4	115 DQ59	145 V _{SS}	175 A9	205 V _{SS}	235	V_{SS}	NC	No Connection
26 V _{SS}	56 A7	86 V _{SS}	116 V _{SS}	146 DQ22	176 V _{DD}	206 DQ38		V_{DDSPD}		
27 DQ18	57 V _{DD}	87 DQ34	117 SA0	147 DQ23	177 A8	207 DQ39	237			
28 DQ19	58 A5	88 DQ35		148 V _{SS}	178 A6	208 V _{SS}	238			
29 V _{SS}	59 A4	89 V _{SS}	119 SA2	149 DQ28	179 V _{DD}	209 DQ44	239			
	60 V _{DD}	90 DQ40	$120 V_{TT}$	150 DQ29	180 A3	210 DQ45	240	V_{TT}		
**	Not used									

Front view

Notes

Tolerances on all dimensions except where otherwise indicated are $\pm .13$ (.005).

All dimensions are expressed: millimeters [inches]

1GB - 240-Pin 1Rx8 Registered ECC LV DDR3 DIMM

Absolute Maximum Ratings

(Note: Operation at or above Absolute Maximum Ratings can adversely affect module reliability.)

PARAMETER	Symbol	Minimum	Maximum	Unit
Temperature, non-Operating	T _{STORAGE}	-55	100	С
Ambient Temperature, Operating	T _A	0	70	С
DRAM Case Temperature, Operating	T _{CASE}	0	95	С
Voltage on V _{DD} relative to V _{SS}	V _{DD}	-0.4	1.975	V
Voltage on Any Pin relative to V _{SS}	V_{IN}, V_{OUT}	-0.4	1.975	V

Notes:

DRAM Operating Case Temperature above 85C requires 2X refresh.

Recommended DC Operating Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Operation Voltage	Minimum	Typical	Maximum	Unit	Note
Power Supply Voltage	\/	1.35V	1.283	1.35	1.4500	V	
	V_{DD}	1.5V	1.425	1.5	1.575	V	
I/O Reference Voltage	V_{REFDQ}	1.35V	0.49 V _{DD}	0.50 V _{DD}	0.51 V _{DD}	V	1
	▼ REFDQ	1.5V	J 0.43 V	0.30 V _{DD}	0.01	v	
I/O Reference Voltage	\/	1.35V	0.40.\/	0.50 V _{DD}	0.51 V _{DD}	V	1
	V_{REFCA}	1.5V	0.49 V _{DD}		U.ST VDD	V	.

Notes:

DC Input Logic Levels, Single-Ended ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Operation Voltage	Minimum	Maximum	Unit
Logical High (Logic 1)	$V_{IH(DC)}$	1.35V	V _{REF} + 0.09	V_{DD}	V
		1.5V	V _{REF} + 0.1	V_{DD}	
Logical Low (Logic 0)	$V_{IL(DC)}$	1.35V	V_{SS}	V _{REF} - 0.09	V
		1.5V	V _{SS}	V _{REF} - 0.1	

AC Input Logic Levels, Single-Ended ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Operation Voltage	Minimum	Maximum	Unit
Logical High (Logic 1)	V _{IH(AC)}	1.35V	V _{REF} + 0.160	-	V
		1.5V	V _{REF} + 0.175	-	
Logical Low (Logic 0)	$V_{IL(AC)}$	1.35V	-	V _{REF} - 0.160	V
		1.5V	-	V _{REF} - 0.175	

¹⁾ For Reference $V_{DD}/2 \pm 15$ mV. The value of VREF is expected to equal one-half VDD and to track variations in the VDD DC level. Peak-to-peak noise on VREF may not exceed $\pm 1\%$ of its DC value. For Reference: VREF = VDD/2 ± 15 mV.

1GB - 240-Pin 1Rx8 Registered ECC LV DDR3 DIMM

Differential Input Logic Levels ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Differential Input Logic High	$V_{IH.DIFF}$	+0.200	DC:V _{DD} AC:V _{DD} +0.4	V
Differential Input Logic Low	$V_{IL,DIFF}$	DC:V _{SS} AC:V _{SS} -0.4	-0.200	V
Differential Input Cross Point Voltage relative to VDD/2	V _{IX}	- 0.150	+ 0.150	V

Capacitance (T_A = 25 C, f = 100 MHz)

PARAMETER	Pin	Symbol	Minimum	Maximum	Unit
Input Capacitance, Clock	CK0, /CK0	C _{CK}	1.5	2.5	pF
Input Capacitance, Address	BA[2:0], A[15:0], /RAS, /CAS, /WE	Cı	1.5	2.5	pF
Input Capacitance Control	/S0, CKE0, ODT0	Cı	1.5	2.5	
Input/Output Capacitance	DQ[63:0], CB[7:0] DQS[8:0], /DQS[8:0], DM[8:0], /TDQS[17:9]	C _{IO}	1.5	2.5	pF

DC Characteristics ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit	Note
Input Leakage Current	I _{IL}	-18	+18	μA	1,2
(Any input 0 V < VIN < VDD)					
Output Leakage Current	I _{OL}	-10	+10	μA	2,3
(0V < VOUT < VDDQ)					

- 1) All other pins not under test = 0 V
- 2) Values are shown per pin3) DQ, DQS, /DQS and ODT are disabled

1GB - 240-Pin 1Rx8 Registered ECC LV DDR3 DIMM

 I_{DD} Specifications and Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol Test Condition		Max \	Unit	
			1.35V	1.5V	
Operating One Bank Active- Precharge Current	I _{DD} 0	Operating current : One bank ACTIVATE-to-PRECHARGE	1115	1160	mA
Operating One Bank Active-Read- Precharge Current	I _{DD} 1	Operating current : One bank ACTIVATE-to-READ-to- PRECHARGE	1205	1250	mA
Precharge Power- Down Current	I _{DD} 2P	Precharge power down current: (Slow exit)	700	700	mA
Precharge Power- Down Current	I _{DD} 2P	Precharge power down current: (Fast exit)	745	790	mA
Precharge Quiet Standby Current	I _{DD} 2Q	Precharge quiet standby current	840	885	mA
Precharge Standby Current	I _{DD} 2N	Precharge standby current	905	905	mA
Active Power-Down Current	I _{DD} 3P	Active power-down current	835	835	mA
Active Standby Current	I _{DD} 3N	Active standby current	1075	1125	mA
Operating Burst Write Current	I _{DD} 4W	Burst write operating current	1575	1665	mA
Operating Burst Read Current	I _{DD} 4R	Burst read operating current	1520	1610	mA
Burst Refresh Current	I _{DD} 5	Refresh current	1660	1705	mA
Self Refresh Current	I _{DD} 6	Self-refresh temperature current: MAX Tc = 85°C	690	690	mA
Operating Bank Interleave Read Current	I _{DD} 7	All bank interleaved read current	2195	2285	mA

1GB - 240-Pin 1Rx8 Registered ECC LV DDR3 DIMM

AC Operating Conditions

				ı
PARAMETER	Symbol	Min	Max	Unit
Internal read command to first data	t _{AA}	13.125	20	ns
CAS-to-CAS Command Delay	t _{CCD}	4	-	t _{CK}
Clock High Level Width	t _{CH(avg)}	0.47	0.53	t _{CK}
Clock Cycle Time	t _{CK}	1.5	1.875	ns
Clock Low Level Width	t _{CL(avg)}	0.47	0.53	t _{CK}
Data Input Hold Time after DQS Strobe	t _{DH}	65	-	ps
DQ Input Pulse Width	t _{DIPW}	400	-	ps
DQS Output Access Time from Clock	t _{DQSCK}	-255	+255	ps
Write DQS High Level Width	t _{DQSH}	0.45	0.55	t _{CK(avg)}
Write DQS Low Level Width	t _{DQSL}	0.45	0.55	t _{CK(avg)}
DQS-Out Edge to Data-Out Edge Skew	t _{DQSQ}	-	125	ps
Data Input Setup Time Before DQS Strobe	t _{DS}	30	-	ps
DQS Falling Edge from Clock, Hold Time	t _{DSH}	0.2	-	t _{CK(avg)}
DQS Falling Edge to Clock, Setup Time	t _{DSS}	0.2	-	t _{CK(avg)}
Clock Half Period	t _{HP}	minimum of t _{CH} or t _{CL}	-	ns
Address and Command Hold Time after Clock	t _{IH}	140	-	ps
Address and Command Setup Time before Clock	t _{IS}	65	-	ps
Load Mode Command Cycle Time	t_{MRD}	4	-	t _{CK}
DQ-to-DQS Hold	t_{QH}	0.38	-	t _{CK(avg)}
Active-to-Precharge Time	t _{RAS}	36	9*t _{REFI}	ns
Active-to-Active / Auto Refresh Time	t _{RC}	49.125	-	ns
RAS-to-CAS Delay	t _{RCD}	13.125	-	ns
Average Periodic Refresh Interval 0° C < T _{CASE} < 85° C	t _{REFI}	-	7.8	μs
Average Periodic Refresh Interval 0° C < T _{CASE} < 95° C	t _{REFI}	-	3.9	μs
Auto Refresh Row Cycle Time	t _{RFC}	110	-	ns
Row Precharge Time	t_{RP}	13.125	-	ns
Read DQS Preamble Time	t _{RPRE}	0.9	Note-1	t _{CK(avg)}
Read DQS Postamble Time	t _{RPST}	0.3	Note-2	t _{CK(avg)}
Row Active to Row Active Delay	t _{RRD}	Max(4nCK, 6ns)	-	ns
Internal Read to Precharge Command Delay	t _{RTP}	Max(4nCK, 7.5ns)	-	ns
Write DQS Preamble Setup Time	t _{WPRE}	0.9	-	t _{CK(avg)}
Write DQS Postamble Time	t _{WPST}	0.3	-	t _{CK(avg)}
Write Recovery Time	t _{WR}	15	-	ns
Internal Write to Read Command Delay	t _{WTR}	Max(4nCK, 7.5ns)	-	ns
Notes:				

Notes:

The maximum preamble is bound by tLZDQS(min)
The maximum postamble is bound by tHZDQS(max)

1GB - 240-Pin 1Rx8 Registered ECC LV DDR3 DIMM

SERIAL PRESENCE DETECT MATRIX

Byte#	Function.	Value	Hex
0	Number of Bytes Used / Number of Bytes in SPD Device / CRC C	overage.	0x92
	Bit 3 ~ Bit 0. SPD Bytes Used -	176	
	Bit 6 ~ Bit 4. SPD Bytes Total -	256	
	Bit 7. CRC Coverage -	Bytes 0-116	0.40
1	SPD Revision.	Rev. 1.0	0x10
2	Key Byte / DRAM Device Type.	DDR3 SDRAM	0x0B
3	Key Byte / Module Type.		0x01
	Bit 3 ~ Bit 0. Module Type -	RDIMM	
	Bit 7 ~ Bit 4. Reserved -	0	0.00
4	SDRAM Density and Banks.		0x02
	Bit 3 ~ Bit 0. Total SDRAM capacity, in megabits -	1Gb	
	Bit 6 ~ Bit 4. Bank Address Bits -	8 banks	
	Bit 7. Reserved -	0	
5	SDRAM Addressing.		0x11
	Bit 2 ~ Bit 0. Column Address Bits -	10	
	Bit 5 ~ Bit 3. Row Address Bits -	14	
	Bit 7, 6. Reserved	0	
6	Module Nominal Voltage, VDD.	1.35 V operable.	0x02
7	Module Organization.		0x01
	Bit 2 ~ Bit 0. SDRAM Device Width -	8-Bits	
	Bit 5 ~ Bit 3. Number of Ranks -	1-Rank	
	Bit 7, 6. Reserved	0	
8	Module Memory Bus Width.		0x0B
	Bit 2 ~ Bit 0. Primary bus width, in bits -	64-Bits	
	Bit 4, Bit 3. Bus width extension, in bits -	8-Bits	
	Bit 7 ~ Bit 5. Reserved -	0	
9	Fine Timebase (FTB) Dividend / Divisor.		0x52
	Bit 3 ~ Bit 0. Fine Timebase (FTB) Divisor	2	
	Bit 7 ~ Bit 4. Fine Timebase (FTB) Dividend	5	
10	Medium Timebase (MTB) Dividend.	1 (MTB = 0.125ns)	0x01
11	Medium Timebase (MTB) Divisor.	8 (MTB =	0x08
''	Interior Timesacce (INTB) Bivicon	0.125ns)	OXOO
12	SDRAM Minimum Cycle Time (tCKmin).	1.5ns	0x0C
13	Reserved.	UNUSED	0x00
14	CAS Latencies Supported, Least Significant Byte.		0x3C
	Bit 0. CL = 4 -		
	Bit 1. CL = 5 -	.,,	
	Bit 2. CL = 6 -	X	4
	Bit 3. CL = 7 -	X	4
	Bit 4. CL = 8 -	X	4
	Bit 5. CL = 9 -	X	-
	Bit 6. CL = 10 - Bit 7. CL = 11 -		-
	DIL / . CL = 11 -		

15	CAS Latencies Supported, Most Significant Byte.		0x0	
	Bit 0. CL = 12 -		\dashv	
	Bit 1. CL = 13 -			
	Bit 2. CL =14 -			
	Bit 3. CL = 15 -			
	Bit 4. CL = 16 -			
	Bit 5. CL = 17 - Bit 6. CL = 18 -			
	Bit 6. CL = 18 -			
16	Minimum CAS Latency Time (tAAmin).	13.125ns	0x69	
17	Minimum Write Recovery Time (tWRmin).	15.0ns	0x7	
18	Minimum RAS# to CAS# Delay Time (tRCDmin).	13.125ns	0x69	
19	Minimum Row Active to Row Active Delay Time (tRRDmin).	6.0ns	0x3	
20	Minimum Row Precharge Delay Time (tRPmin).	13.125ns	0x69	
21	Upper Nibbles for tRAS and tRC.		0x1	
	Bit 3 ~ Bit 0. tRAS Most Significant Nibble -	1	-	
	Bit 7 ~ Bit 4. tRC Most Significant Nibble -	1		
22	Minimum Active to Precharge Delay Time (tRASmin), Least	36.0ns	0x2	
	Significant Byte.			
23	Minimum Active to Active/Refresh Delay Time (tRCmin), Least	49.125ns	0x8	
24	Significant Byte. Minimum Refresh Recovery Delay Time (tRFCmin), Least	110.0ns	0x7	
24	Significant Byte.	110.0115	UXI	
25	Minimum Refresh Recovery Delay Time (tRFCmin), Most	110.0ns	0x0	
	Significant Byte.			
26	Minimum Internal Write to Read Command Delay Time (tWTRmin).	7.5ns	0x30	
27	Minimum Internal Read to Precharge Command Delay Time (tRTPmin).	7.5ns	0x3	
28	Upper Nibble for tFAW.		0x0	
	Bit 3 ~ Bit 0. tFAW Most Significant Nibble -	0		
	Bit 7 ~ Bit 4. Reserved -	0		
29	Minimum Four Activate Window Delay Time (tFAWmin), Least Significant Byte.	30.0ns	0xF	
30	SDRAM Optional Features.		0x8	
	Bit 0. RZQ / 6 -	Χ		
	Bit 1. RZQ / 7 -	X		
	Bit 6 ~ Bit 2. Reserved -			
21	Bit 7. DLL-Off Mode Support SDRAM Drivers Supported.		0x0	
31		V		
	Extended Temperature Range - Extended Temperature Refresh Rate -	X	-	
	Auto Self Refresh (ASR) -	X		
	On-die Thermal Sensor (ODTS) Readout -			
	Reserved -			
	Reserved -			
	Reserved -			
20	Partial Array Self Refresh (PASR) -		00	
32	Module Thermal Sensor.		0x8	

	Bit 7. Thermal Sensor -	With TS	
33	SDRAM Device Type.		0x00
	Bit 6 ~ Bit 0. Non-Standard Device Description -	0	
	Bit 7. SDRAM Device Type -	Std Mono	
34-59	Reserved	UNUSED	0x00
60	Module Nominal Height.		0x0F
	Bit 4 ~ Bit 0. Module Nominal Height max, in mm -	29 <h<=30< td=""><td></td></h<=30<>	
	Bit 7 ~ Bit5. Reserved -	0	
61	Module Maximum Thickness.		0x11
	Bit 3 ~ Bit 0. Front, in mm (baseline thickness = 1 mm) -	1 <th<=2< td=""><td></td></th<=2<>	
	Bit 7 ~ Bit 4. Back, in mm (baseline thickness = 1 mm) -	1 <th<=2< td=""><td></td></th<=2<>	
62	Reference Raw Card Used.		0x00
	Bit 4 ~ Bit 0. Reference Raw Card -	R/C A	
	Bit 6, Bit 5. Reference Raw Card Revision -	Rev.0	
00	Bit 7. Reserved -	0	0.05
63	(Registered) DIMM Module Attributes.		0x05
	Bit 1 ~ Bit 0. # of Registers used on RDIMM -	1 Register	
	Bit 3 ~ Bit 2. # of Rows of DRAMs on RDIMM -	1 Row	
64	Bit 7 ~ Bit 4. Reserved - RDIMM Thermal Heat Spreader Solution.	0	0x00
04	·		UXUU
	Bit 6 ~ Bit 0. Heat Spreader Thermal Characteristics - Bit 7. Heat Spreader Solution -	0 No HS	
65	Register Manufacturer ID Code, Least Significant Byte	UNUSED	0x00
00	(Optional).		0,000
66	Register Manufacturer ID Code, Most Significant Byte (Optional).	UNUSED	0x00
67	Register Revision Number (Optional).		0xFF
68	Register Type.		0x00
	Bit[2-0] Support Device -	SSTE32882	
	Bit[7-3] Reserved -	0	
69	[SSTE32882]: RC1 (MS Nibble) / RC0 (LS Nibble)	UNUSED	0x00
70	[SSTE32882]: RC3 (MS Nibble) / RC2 (LS Nibble) - Drive Strength, Command/Address.		
	Bit 1, Bit 0. RC2/DA3,4 Value	RESERVED	
	Bit 3, Bit 2. RC2/DBA0,1 Value -	RESERVED	
	Bit 5, Bit 4. RC3/DA4,3 value, Command/Address A Outputs -	Light	
	Bit 7, Bit 6. RC3/DBA0,1 value, Command/Address B Outputs -	Light	0x00
71	[SSTE32882]: RC5 (MS Nibble) / RC4 (LS Nibble) - Drive Strength, Control and Clock.		
	Bit 1, Bit 0. RC4/DA3,4 Control Signals, A Outputs	Light	
	Bit 3, Bit 2. RC4/DBA0,1 Control Signals, B Outputs -	Light	
	Bit 5, Bit 4. RC5/DA4,3 value, Y1/Y1# and Y3/Y3# Clock Outputs	Light	
	Bit 7, Bit 6. RC5/DBA0,1 value, Y0/Y0# and Y2/Y2# Clock Outputs -	Light	
72	[SSTE32882]: RC7 (MS Nibble) / RC6 (LS Nibble).	UNUSED	0x00
73	[SSTE32882]: RC9 (MS Nibble) / RC8 (LS Nibble).	UNUSED	0x00
74	[SSTE32882]: RC11 (MS Nibble) / RC10 (LS Nibble).	UNUSED	0x00
75	[SSTE32882]: RC13 (MS Nibble) / RC12 (LS Nibble).	UNUSED	0x00
	[201. 2010 2]. 10 10 (0 1410010).	0.10020	1 37.00

	[SSTE32882]: RC15 (MS Nibble) / RC14 (LS Nibble).	UNUSED	0x00
77-112	Module-Specific Section	UNUSED	0x00
113	Module-Specific Section.	UNUSED	0x00
114-116	Module-Specific Section	UNUSED	0x00
117	Module Manufacturer ID Code, Least Significant Byte		0x01
118	Module Manufacturer ID Code, Most Significant Byte		0x91
	Module Manufacturing Location	UNUSED	0x00
	Module Manufacturing Date		0x20
122-125	Module Serial Number		0x20
126	Cyclical Redundancy Code (CRC).	CRC	0x16
127	Cyclical Redundancy Code (CRC).	CRC	0x2C
128-131	Module Part Number		0x20
132	Module Part Number	D	0x44
	Module Part Number	А	0x41
134	Module Part Number	Т	0x54
135	Module Part Number	A	0x41
136	Module Part Number	R	0x52
137	Module Part Number	Α	0x41
138	Module Part Number	M	0x4D
139	Module Part Number		0x20
140	Module Part Number	6	0x36
	Module Part Number	4	0x34
142	Module Part Number	3	0x33
143	Module Part Number	3	0x33
	Module Part Number	1	0x31
145	Module Part Number		0x20
146,147	Module Revision Code		0x20
	DRAM Manufacturer ID Code, Least Significant Byte	UNUSED	0x00
	DRAM Manufacturer ID Code, Most Significant Byte	UNUSED	0x00
	Manufacturer's Specific Data	UNUSED	0x00
176-255	Open for customer use	UNUSED	0x00

1GB - 240-Pin 1Rx8 Registered ECC LV DDR3 DIMM

DATARAM CORPORATION, USA Corporate Headquarters, P.O.Box 7528, Princeton, NJ 08543-7528; Voice: 609-799-0071, Fax: 609-799-6734; www.dataram.com

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.