

Modeling Temporal-Spatial Correlations for Crime Prediction

Xiangyu Zhao and Jiliang Tang

Data Science and Engineering Lab Michigan State University

Background

- Urban Security and Safety
 - Eg. New York City
 - Weekly Crime Report (NYPD)
 - ☐ 1888 felony incident, July 4~10, 2016

Urgent demand for accurate crime prediction

Motivation

- Recent development of new techniques to collect and integrate urban data:
 - Public safety data
 - Weather data
 - Point of interests (POIs) data
 - Human mobility data
 - 311 public-service complaint data

Motivation

- Two challenging questions
 - Q1: What temporal-spatial patterns can be observed about urban crimes
 - Q2: How to model these patterns mathematically for crime prediction

Problem Statement

- \square \mathbf{X}_n^k : feature vector of \mathbf{n}^{th} region in \mathbf{k}^{th} time slot

- Temporal pattern
 - how crime evolves over time for each region in a city
 - \Box c_t and $c_{t+\Delta t}$: the crime number in time t and $t+\Delta t$

- \Box time differences Δt increase \longrightarrow crime difference Δc increase

250

200

 $\Delta t (dav)$

Intra-region temporal correlation

- Spatial pattern
 - geographical influence among regions in the city
 - \Box c_i and c_i : the crime number in region i and region j

Observations

- two spatial close regions similar crime numbers
- \square spatial distance $\triangle d$ increase \longrightarrow crime difference $\triangle c$ increase

Inter-region spatial correlation

Q2:TCP Framework

$$\min_{\mathbf{W}} L = \sum_{k=1}^{K} \left(\sum_{n=1}^{N} (\mathbf{X}_{n}^{k} \mathbf{W}_{n}^{k} - Y_{n}^{k})^{2} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} g(d_{ij}) \|\mathbf{W}_{i}^{k} - \mathbf{W}_{j}^{k}\|_{1} \right) + \lambda \sum_{n=1}^{N} \sum_{k=1}^{K-1} \|\mathbf{W}_{n}^{k} - \mathbf{W}_{n}^{k+1}\|_{1}$$

■ ADMM framework for optimizing objective function

An Overview of the Crime Prediction System

■ Step 1: Feature Extraction

Step 2: TCP framework

Step 3: CrimePrediction

Experiment Settings

- Datasets
 - New York City
 - July 2012 June 2013 (365 days)
 - \square 133 disjointed regions (2km \times 2km grid)

- Metric
 - Average root-mean-square-error (RMSE)

$$aRMSE = \frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{1}{K_S} \sum_{k=1}^{K_S} \left(\hat{\mathbf{Y}}_n^k - \mathbf{Y}_n^k\right)^2}$$

Experiment Settings

- Two questions
 - QA: how TCP performs compared to baselines
 - QB: how the temporal and spatial patterns contribute to the performance

- Baselines:
 - CSI: Cubic Spline Interpolation
 - ARMA: Auto-Regression-Moving-Average
 - LASSO: Lasso Regression
 - ☐ LR: Linear Regression
 - stMTL: Spatio-Temporal Multi-Task Learning

☐ QA: Overall performance Comparison

	1 day	7 days
CSI	13.223	33.562
ARMA	6.3135	12.2572
LASSO	2.8210	3.3956
LR	2.5498	2.8985
stMTL	2.2356	2.5365
TCP	1.7205	1.7791

- QB: Contribution of Temporal and Spatial Correlations
 - TCP-t: evaluate temporal correlations
 - TCP-s: evaluate spatial correlations

$$\min_{\mathbf{W}} L = \sum_{k=1}^{K} \left(\sum_{n=1}^{N} (\mathbf{X}_{n}^{k} \mathbf{W}_{n}^{k} - Y_{n}^{k})^{2} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} g(d_{ij}) \|\mathbf{W}_{i}^{k} - \mathbf{W}_{j}^{k}\|_{1} \right) + \lambda \sum_{n=1}^{N} \sum_{k=1}^{K-1} \|\mathbf{W}_{n}^{k} - \mathbf{W}_{n}^{k+1}\|_{1}$$

☐ Further Probing on Temporal Patterns

■ How the spatial distribution of urban crimes varies with respect to days of a week?

Future Work

- More sources
 - Social media, Crime networks...
- More temporal-spatial patterns
 - Weekly periodicity, Hotspot...
- More applications
 - Air quality prediction, Noise Detection...

Acknowledgements

Thanks for the grant IIS-1714741 and IIS-1715940 from National Science Foundation (NSF)

Thanks for the support from Data
Science and Engineering Lab at Michigan
State University

http://dse.cse.msu.edu/

- Authors' email:
 - ☐ {zhaoxi35, tangjili}@msu.edu

Thanks

http://www.cse.msu.edu/~zhaoxi35/

