

In the Claims:

The listing of claims below will replace all prior versions and listings of claims in the application. Please cancel claims 7, 38 and 59-62, as indicated below.

1. (Currently Amended) A method for determining the spacing of objects, the method comprising the steps of:
receiving data that defines a constraint;
receiving a set of spacing parameter values that indicate how to space objects across said constraint;
selecting a grid type from a plurality of grid types, wherein the grid type is associated with one or more grid parameters attributes; and
generating grid parameter values based on the spacing parameter values;
generating a set of points based on the grid parameter values; and
mapping the set of points to the defined constraint to establish locations of the objects a
~~grid of said selected grid type onto said constraint.~~
2. (Cancelled).
3. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting the grid type based on the set of received spacing parameter values.
4. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting the grid type based on the defined constraint.

5. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting the grid type based on user input that specifies a particular type of grid that is to be used.
6. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting the grid type based on the set of spacing parameter values and the defined constraint.
7. (Cancelled).
8. (Original). The method of Claim 1, further comprising the step of receiving input that specifies one or more attributes of said constraint, wherein said one or more attributes are associated with one or more bounds of one or more dimensions of said constraint.
9. (Original). The method of Claim 1, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a one-dimensional constraint.
10. (Original). The method of Claim 1, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a multi-dimensional constraint.
11. (Original). The method of Claim 1, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a spline constraint.
12. (Original). The method of Claim 1, wherein the step of receiving data that defines a

constraint includes the step of receiving data that defines a sphere constraint.

13. (Original). The method of Claim 1, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a cylinder constraint.

14. (Original). The method of Claim 1, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a rectangle constraint.

15. (Original). The method of Claim 1, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a line segment constraint.

16. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting a two-dimensional grid type.

17. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting a three-dimensional grid type.

18. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting a rectangular grid type.

19. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting a polar grid type.

20. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type

includes the step of selecting a hex grid type.

21. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting a triangular mesh grid type.

22. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting a spherical grid type.

23. (Previously Presented). The method of Claim 1, wherein the step of selecting a grid type includes the step of selecting a random grid type.

24. (Previously Presented). The method of Claim 2 1, wherein the step of selecting a grid type includes the step of selecting a scattered grid type.

25. (Original). The method of Claim 1, further comprising the step of receiving a set of object information, wherein the set of object information identifies a particular object to be placed on the constraint at locations based on said generated set of points.

26. (Original). The method of Claim 25, wherein the step of generating the set of grid points includes the steps of generating the set of grid points based on the set of object information.

27. (Original). The method of Claim 26, wherein:

the set of object information identifies a bounding box that is associated with the particular object; and

the step of generating the set of grid points based on the set of object information comprises the step of generating the set of grid points based the bounding box.

28. (Currently Amended). The method of Claim 1, wherein the step of mapping a grid of said selected grid type onto said the set of points to the defined constraint includes the step of determining one or more locations to place objects on said constraint by identifying one or more areas of said grid that intersect said constraint.

29. (Original). The method of Claim 28, further comprising the step of: receiving pivot point information, wherein the pivot point information specifies pivot points for the placement of objects relative to the generated set of points; and placing objects on said constraint such that the pivot points of said objects coincide with said one or more locations.

30. (Original). The method of Claim 28, further comprises the steps of: identifying a particular object; generating a copy of said particular object; and placing the copy of said particular object at one or more of said one or more locations.

31. (Original). The method of Claim 28, further comprises the steps of: identifying a particular object; generating an instance of said particular object; and placing the instance of said particular object at one or more of said one or more locations.

32. (Currently Amended) A computer-readable medium carrying one or more sequences of instructions for determining the spacing of objects, wherein execution of the one or more sequences of instructions by one or more processors causes the one or more processors to perform the steps of:

receiving data that defines a constraint;
receiving a set of spacing parameter values that indicate how to space objects across said constraint;
selecting a grid type from a plurality of grid types, wherein the grid type is associated with one or more parameters attributes; and
generating grid parameter values based on the spacing parameter values;
generating a set of points based on the grid parameter values; and
mapping the set of points to the defined constraint to establish locations of the objects a
grid of said selected grid type onto said constraint.

33. (Cancelled).

34. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting the grid type based on the set of received spacing parameter values.

35. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting the grid type based on the defined constraint.

36. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of

selecting a grid type includes the step of selecting the grid type based on user input that specifies a particular type of grid that is to be used.

37. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting the grid type based on the set of spacing parameter values and the defined constraint.

38. (Cancelled).

39. (Original). The computer-readable medium of Claim 32, further comprising instructions for performing the step of receiving input that specifies one or more attributes of said constraint, wherein said one or more attributes are associated with one or more bounds of one or more dimensions of said constraint.

40. (Original). The computer-readable medium of Claim 32, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a one-dimensional constraint.

41. (Original). The computer-readable medium of Claim 32, wherein the step of receiving data that defines a constraint includes the step of receiving data that defines a multi-dimensional constraint.

42. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting a two-dimensional grid type.

43. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting a three-dimensional grid type.
44. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting a rectangular grid type.
45. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting a polar grid type.
46. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting a triangular mesh grid type.
47. (Previously Presented). The computer-readable medium of Claim 32, wherein the step of selecting a grid type includes the step of selecting a spherical grid type.
48. (Original). The computer-readable medium of Claim 32, further comprising instructions for performing the step of receiving a set of object information, wherein the set of object information identifies a particular object to be placed on the constraint at locations based on said generated set of points.
49. (Original). The computer-readable medium of Claim 48, wherein the step of generating the set of grid points includes the steps of generating the set of grid points based on the set of object information.

50. (Original). The computer-readable medium of Claim 49, wherein:
the set of object information identifies a bounding box that is associated with the
particular object; and
the step of generating the set of grid points based on the set of object information
comprises the step of generating the set of grid points based the bounding box.
51. (Currently Amended). The computer-readable medium of Claim 32, wherein the step of
~~mapping a grid of said selected grid type onto said the set of points to the defined constraint~~
includes the step of determining one or more locations to place objects on said constraint by
identifying one or more areas of said grid that intersect said constraint.
52. (Original). The computer-readable medium of Claim 51, further comprising instructions
for performing the step of:
receiving pivot point information, wherein the pivot point information specifies pivot
points for the placement of objects relative to the generated set of points; and
placing objects on said constraint such that the pivot points of said objects coincide with
said one or more locations.
53. (Original). The computer-readable medium of Claim 51, further comprising instructions
for performing the steps of:
identifying a particular object;
generating a copy of said particular object; and
placing the copy of said particular object at one or more of said one or more locations.

54. (Original). The computer-readable medium of Claim 51, further comprising instructions for performing the steps of:

identifying a particular object;
generating an instance of said particular object; and
placing the instance of said particular object at one or more of said one or more locations.

55. (Currently amended). A computer system for determining the spacing of objects, the system comprising:

a memory;
one or more processors coupled to the memory; and
a set of computer instructions contained in the memory, the set of computer instruction including computer instructions which when executed by the one or more processors, cause the one or more processors to perform the steps of:
receiving data that defines a constraint;
receiving a set of spacing parameter values that indicate how to space objects across said constraint;
selecting a grid type from a plurality of grid types, wherein the grid type is associated with one or more grid parameters attributes; and
generating grid parameter values based on the spacing parameter values;
generating a set of points based on the grid parameters; and
mapping the set of points to the defined constraint to establish locations of
the objects a grid of said selected grid type onto said constraint.

56. (Cancelled).

57. (Currently Amended). A computer system for determining the spacing of objects, the system comprising:

means for receiving data that defines a constraint;

means for receiving a set of spacing parameter values that indicate how to space objects across said constraint;

means for selecting a grid type from a plurality of grid types, wherein the grid type is associated with one or more parameters attributes; and

means for generating grid parameter values based on the spacing parameter values;

means for generating a set of points based on the grid parameter values; and

means for mapping the set of points to the defined constraint to establish locations of the objects a grid of said selected grid type onto said constraint.

58. (Cancelled).

59. (Cancelled).

60. (Cancelled).

61. (Cancelled).

62. (Cancelled).