

Übungen zur Vorlesung

Praktische Optimierung, SoSe 2024

Prof. Dr. Günter Rudolph, Dr. Marco Pleines

http://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/POKS/SS2024/lecture.jsp

Blatt Präsenz 7

18./20.06.2024

Abgabe: keine

Polynomielle Metamodelle und Bias-Variance-Tradeoff

Betrachten Sie die Funktion $f:[0,5]\to\mathbb{R}$ mit $f(x)=x^2\cos(x)+\sin(5x)$. Für diese Funktion sollen nun polynomielle Metamodelle angepasst und verglichen werden. Dabei sei ein polynomielles Metamodell vom Grad k gegeben durch

$$p_k(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_k x^k.$$

Die Koeffizienten $\theta_0, \dots, \theta_k$ werden anhand von Punktepaaren (x, f(x)) geschätzt. Wir betrachten die Grade $k = 1, \dots, 6$.

- (a) Für jeden Grad $k \in \{1, ..., 6\}$ wiederholen Sie das folgende Prozedere 100 Mal:
 - Ziehen Sie n = 15 Werte für x gleichverteilt aus dem Intervall [0, 5] und werten Sie f in diesen Punkten aus.
 - \bullet Anhand dieser Daten passen Sie ein polynomielles Metamodell vom Grad k an.

Visualisieren Sie die 100 Metamodelle für jeden Wert von k und zeichnen Sie jeweils auch die wahre Funktion f ein. Zeichnen Sie zusätzlich die Vorhersagen ein, die sich ergeben, wenn jeweils über alle 100 Modelle gemittelt wird.

(b) Bekanntlich gilt

$$E((\hat{f}(x) - f(x))^2) = (E(\hat{f}(x)) - f(x))^2 + E((\hat{f}(x) - E(\hat{f}(x)))^2),$$

wobei der erste Summand den Bias und der zweite die Varianz der Schätzung $\hat{f}(x)$ angibt. Schätzen Sie für jeden Grad k für jeden Wert x, in dem Sie ihre Metamodelle auswerten, Bias und Varianz. Stellen Sie Bias und Varianz in Abhängigkeit des Grades k grafisch dar. Was fällt auf?

<u>Hinweis</u>: Nutzen Sie das Paket *sklearn* (Achtung: pip install scikit-learn). Folgende Funktionen können hilfreich sein:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

Hinweis: In Moodle steht für Sie ein Template zur Verfügung.