Aula 015

Professores:

Marta Mattoso Vanessa Braganholo

Conteúdo:

Álgebra Relacional - 2

Organização do Curso

Parte 2 Modelo Relacional:

Capítulo do livro texto Elmasri/Navathe:

6 - A álgebra relacional -

união, interseção, diferença e junção;

Operações da Álgebra Relacional - Teoria de Conjuntos

Operação de UNIÃO U

O resultado dessa operação, denotada por R ∪ S, é uma relação que inclui todas as tuplas que estão ou em R ou em S ou em ambas R e S. Tuplas duplicadas são eliminadas.

Operações da Álgebra Relacional - Teoria de Conjuntos

Exemplo: Para obter o número de seguridade social security (SSN) de todos os empregados que ou trabalham no departamento 5 ou gerenciam diretamente um empregado que trabalha no departamento 5, pode-se usar a operação de união, conforme a seguir:

```
\begin{split} & \text{EMPS\_DEP5} \; \leftarrow \; \sigma_{\text{DNO}\,\text{=}\,5} \, (\text{EMPREGADO}) \\ & \text{RESULT1} \; \leftarrow \; \pi_{\text{SSN}} \, (\text{EMPS\_DEP5}) \\ & \text{RESULT2} \; \leftarrow \; \pi_{\text{SUPERSSN}} \, (\text{EMPS\_DEP5}) \\ & \text{RESULT} \; \leftarrow \; \text{RESULT1} \; \cup \; \text{RESULT2} \end{split}
```

A operação de união produz as tuplas que estão ou em RESULT1 ou RESULT2 ou ambas. Os dois operandos devem ser de "tipos compatíveis".

União (cont.)

Tipos Compatíveis (ou UNIÃO compatíveis)

- As relações operando R₁(A₁, A₂, ..., A_n) e R₂(B₁, B₂, ..., B_n) devem ter o mesmo número de atributos, e os domínios dos atributos correspondentes devem ser compatíveis; i.e., dom(A_i) = dom(B_i) para i = 1, 2, ..., n.
- A relação resultante de R₁ ∪ R₂, R₁ ∩ R₂, ou R₁− R₂ tem os mesmos nomes de atributos que a primeira relação operando R₁ (por convenção).

União (cont.)

EMPS_DEP5 $\leftarrow \sigma_{DNO=5}$ (EMPREGADO)

RESULTADO1 $\leftarrow \pi_{SSN}$ (EMPS_DEP5)

RESULTADO2(SSN) $\leftarrow \pi_{\text{SUPERSSN}}$ (EMPS_DEP5)

RESULTADO3 ← RESULTADO1 ∪ RESULTADO2

RESULTADO1	SSN
	123456789
	333445555
	666884444
	453453453

RESULTADO2	SSN
	333445555
	888665555

RESULTADO3	SSN
	123456789
	333445555
	666884444
	453453453
	888665555

Interseção e Diferença

Operação de INTERSEÇÃO

O resultado dessa operação, denotada por R ∩ S, é uma relação que inclui todas as tuplas que estão em ambas R e S. As duas relações operando devem ser de "tipos compatíveis"

Operação de DIFERENÇA -

O resultado dessa operação, denotada por R – S, é uma relação que inclui todas as tuplas que estão em R, mas não estão em S. As duas relações operando devem ser de "tipos compatíveis"

Operações da Álgebra Relacional - Teoria de Conjuntos

- (a) Duas relações tipos compatíveis
- (b) ALUNO ∪ INSTRUTOR
- (c) ALUNO ∩ INSTRUTOR
- (d) ALUNO INSTRUTOR
- (e) INSTRUTOR ALUNO

(b)	PN	UN
	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert
	John	Smith
	Ricardo	Browne
	Francis	Johnson

(c)	PN	UN
	Susan	Yao
	Ramesh	Shah

(a) [ALUNO	ALUNO PN			
		Susan	Yao		
		Ramesh	Shah		
		Johnny	Kohler		
		Barbara	Jones		
		Amy	Ford		
		Jimmy	Wang		
		Frnest	Gilhert		

INSTRUTOR	PNOME	UNOME
	John	Smith
	Ricardo	Browne
	Susan	Yao
	Francis	Johnson
	Ramesh	Shah

(d)	PN	UN
` '	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert

(e)	PNOME	UNOME
	John	Smith
	Ricardo	Browne
	Francis	Johnson

Propriedades

Note que ambas união e interseção são *operações comutativas*; isto é,

$$R \cup S = S \cup R$$
, e $R \cap S = S \cap R$

Ambas união e interseção podem ser tratadas como operações n-arias aplicáveis a qualquer número de relações, e ambas são operações associativas; isto é

$$R \cup (S \cup T) = (R \cup S) \cup T$$
, e $(R \cap S) \cap T = R \cap (S \cap T)$

A operação de diferença não é *comutativa*; isto é, em geral

$$R - S \neq S - R$$

Produto

Operação PRODUTO X (ou PRODUTO CARTESIANO)

- Essa operação é usada para combinar tuplas de duas relações de modo combinatorial. Em geral, o resultado de R(A₁, A₂, . . . , A_n) x S(B₁, B₂, . . . , B_m) é a relação Q com grau n + m atributos Q(A₁, A₂, . . . , A_n, B₁, B₂, . . . , B_m), nessa ordem. A relação resultante Q possui uma tupla para cada combinação de tuplas — uma de R e uma de S.
- Assim, se R possui n_R tuplas (denotado por |R| = n_R), e S tem n_S tuplas, então | R x S | terá n_R * n_S tuplas.
- Os dois operandos NÃO precisam ser de "tipos compatíveis"

Exemplo Produto Cartesiano

```
\begin{aligned} & \text{EMPS\_FEM} \; \leftarrow \\ & \sigma_{\text{SEXO} \; = \; 'F'} \; (\text{EMPREGADO}) \\ & \text{NOMESEMP} \; \leftarrow \\ & \pi_{\text{PNOME, UNOME, SSN}} \; (\text{EMPS\_FEM}) \end{aligned}
```

EMPS _FEM	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	-4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Joyce	A	English	453453453	1972-07-31	5631 Flice, Houston, TX	F	25000	333445555	5

NOMESEMP	PNOME	UNOME	SSN
	Alicia	Zelaya	999887777
	Jennifer	Wallace	987654321
	Jayce	English	453453453

Exemplo Produto Cartesiano

DEPENDENTES_EMP ←
NOMESEMP X DEPENDENTES

DEPENDENTES_EMP	PNOME	UNOME	SSN	ESSN	NOME_DEPENDENTE	SEXO	DATANASC	
	Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
	Alicia	Zelaya	999887777	333445556	Theodore	M	1983-10-25	
	Alicia	Zelaya	999887777	333445555	Jay	F	1958-05-03	
	Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
	Alicia	Zelaya	999887777	123456789	Michael	M	1988-01-04	
	Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
	Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
	Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
	Jenniter	Wallace	987654321	333445555	Theodore	M	1983-10-25	
	Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
	Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	
	Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
	Jennifer	Wallace	987654321	123456789	Alloe	F	1988-12-30	
	Jenniter	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
	Joyce	English	453453453	333445555	Allce	F	1986-04-05	
	Joyce	English	453453453	333445555	Theodore	M.	1983-10-25	
	Joyce	English	453453453	333445555	Jay	F	1958-05-03	
	Joyce	English	453453453	987654321	Abner	M	1942-02-28	
	Joyce	English	453453453	123456789	Michael	M	1988-01-04	
	Joyce	English	453453453	123456789	Alice	F	1988-12-30	
	Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

Junção

- Consiste da seqüência de um produto cartesiano seguido de uma seleção. É muito usada para identificar e selecionar tuplas relacionadas de duas relações
- Essa operação é fundamental para qualquer SGBD relacional, pois ela é a responsável pelo processamento de relacionamentos entre relações
- A forma genérica da operação de junção sobre duas relações R(A₁, A₂, . . . , A_n) e S(B₁, B₂, . . . , B_m) é:

R⊠ _{<condição de junção>}S

onde R e S podem ser quaisquer relações, inclusive resultantes de uma expressão da álgebra relacional

Exemplo Junção

Supondo que se queira obter o nome do gerente de cada departamento. Para obter o nome, é necessário combinar cada tupla de DEPARTAMENTO com a tupla de EMPREGADO cujo valor de SSN seja o mesmo valor de GERSSN na tupla do departamento. Isso é feito através da operação de junção.

DEPT_GER	DNOME	DNUMERO	GERSSN	 PNOME	MINICIAL	UNOME	SSN	
	Research	5	333445555	 Franklin	T	Wong	333445555	
	Administration	4	987654321	 Jennifer	S	Wallace	987654321	
	Headquarters	1	888665555	 James	Е	Borg	888665555	

Tipos de Junção

Operação de EQUIJUNÇÃO

O uso mais comum da junção envolve condições de junção contendo apenas a condição de igualdade. Tal junção, é chamada de EQUIJUNÇÃO. No resultado da EQUIJUNÇÃO, sempre haverá um (ou mais) pares de atributos (cujos nomes não são necessariamente idênticos) que possuem valores idênticos em cada tupla.

O exemplo anterior era de EQUIJUNÇÃO.

Tipos de Junção

Operação de JUNÇÃO NATURAL*

É considerada um caso especial da EQUIJUNÇÃO. Como em cada par de atributos da EQUIJUNÇÃO os valores desses atributos são idênticos, uma nova operação, chamada de JUNÇÃO NATURAL - denotada por * - foi definida para eliminar o segundo atributo (supérfluo) numa condição de junção da EQUIJUNÇÃO. A definição padrão da JUNÇÃO NATURAL requer que os dois atributos de junção, tenham o **mesmo nome** em ambas relações. Quando não for o caso, a operação de renomear deve ser aplicada antes.

Exemplo de Junção Natural

 \triangleleft

Exemplo: Uso da junção natural sobre os atributos DNUMERO de ambas DEPARTAMENTO e DEPT_LOCALIZACOES:

DEPT_LOCS ← DEPARTMENTO * DEPT_LOCALIZACOES

DEPT_LOCS	DNOME	DNUMERO	GERSSN	GERDATAINICIO	LOCALIZACAO
	Sede Administrativa	1	888665555	1981-06-19	Houston
	Administracao	4	987654321	1995-01-01	Stafford
	Pesquisa	5	333445555	1988-05-22	Bellaire
	Pesquisa	5	333445555	1988-05-22	Sugarland
	Pesquisa	5	333445555	1988-05-22	Houston

