Contents

	List	of illus	trations	page vi
	List	of table	28	xi
	Pref	ace		xii
1	Inva	ariance	e and quantization of charges and currents	1
	1.1	Polari	ization, adiabatic currents, and surface charge	4
		1.1.1	Surface charge	6
		1.1.2	Adiabatic loop and charge pumping	11
		1.1.3	Slow spatial variation in a supercell	14
		1.1.4	Fictitious physics of classical point charges	15
		1.1.5	Robustness against weak interactions	18
	1.2	Orbit	al magnetization and surface currents	20
	1.3	Edge	channels and anomalous Hall conductivity	23
		1.3.1	Edge channels	23
		1.3.2	Anomalous Hall conductivity	26
	1.4	Discu	ssion	30
2	Rev	iew of	electronic structure theory	33
	2.1	Electr	ronic Hamiltonian and Bloch functions	33
		2.1.1	Reduction to a single-particle Hamiltonian	33
		2.1.2	Spin, spin-orbit coupling, and external fields	37
		2.1.3	Crystal potential, Bloch's theorem, and recipro-	
			cal space	38
		2.1.4	Electron counting	41
		2.1.5	Cell-periodic Bloch functions	42
	2.2	Tight	-binding model Hamiltonians	43
		2.2.1	Finite systems	44
		2.2.2	The PythTB package	48
		2.2.3	Extended systems	50

iv Contents

		2.2.4 Examples	53	
	2.3	Linear response theory	56	
3	\mathbf{Ber}	ry phases and curvatures	61	
	3.1	Berry phase, gauge freedom, and parallel transport	61	
		3.1.1 Discrete formulation	62	
		3.1.2 Continuous formulation and Berry potential	66	
		3.1.3 An example	70	
	3.2	Berry curvature and the Chern theorem	73	
		3.2.1 Berry curvature	73	
		3.2.2 Chern theorem	75	
	3.3	Adiabatic dynamics		
	3.4	Berryology of the Brillouin zone		
	3.5	Wannier functions	90	
		3.5.1 Properties of the Wannier functions	92	
		3.5.2 Gauge freedom	97	
	3.6	Multiband formulation	98	
		3.6.1 Multiband Wannier functions	96	
		3.6.2 Multiband parallel transport	103	
		3.6.3 Multiband Berry potentials and curvatures	107	
4	Elec	ctric polarization	111	
	4.1	Statement of the problem	111	
	4.2	Berry-phase theory of polarization	115	
		4.2.1 First-order change in polarization	116	
		4.2.2 Change of polarization on an adiabatic path	120	
		4.2.3 Quantized diabatic charge transport in 1D	125	
		4.2.4 Historical development	126	
	4.3	Discussion		
		4.3.1 The quantum of polarization	127	
		4.3.2 Ionic contribution and origin dependence	131	
		4.3.3 Relation to Wannier charge centers	132	
		4.3.4 Practicalities	134	
	4.4	Questions of interpretation	138	
		4.4.1 How is polarization measured?	139	
		4.4.2 "Formal" vs. "effective" polarization	141	
		4.4.3 Symmetry considerations	143	
	4.5	Surface charge theorem		
	4.6	Uniform electric fields		
5	And	omalous Hall conductivity	148	
	5.1	Introduction	148	

Contents	\mathbf{v}
Contents	v

	5.2	Intrinsic AHC in terms of Berry curvature and Berry			
		phase	148		
	5.3	Quantum anomalous Hall insulator	148		
6	Topological insulators				
	6.1	Quantum anomalous Hall insulator	149		
	6.2	Quantum spin Hall insulator	149		
	6.3	3D Z_2 topological insulator	149		
	6.4	4D second-Chern insulator	150		
7	Orbital magnetization				
	7.1	Statement of the problem	151		
	7.2	Derivation in the Wannier representation	151		
	7.3	General expression	151		
	7.4	Discussion	151		
8	Orbi	tal magnetoelectric coupling	152		
	8.1	The linear magnetoelectric tensor	152		
	8.2	Axion electrodynamics	152		
	8.3	The Chern-Simons theta coupling	152		
	8.4	Relation to surface anomalous Hall conductivity	152		
9	Sum	mary and prospects	153		
App	endix	A The PythTB package	155		
	Intro	duction	155		
	Руть	TB extensions module	155		
	Exam	ple PythTB programs	156		
App	endix	B Fourier transform conventions	159		
App	endix	C Quantum metric and Born-Oppenheimer dy-			
	nami	cs	160		
App	endix	D Systems of units	161		
References					