TSI1 – Physique-chimie

TD19: Acides-bases, précipitation

Exercice 1 : ACIDE ÉTHANOÏQUE

Le pH d'une solution aqueuse d'acide éthanoïque CH₃COOH de concentration $c = 2.0 \times 10^{-3}$ mol L⁻¹ est égal à 3,9.

- 1. L'acide éthanoïque est-il un acide fort ou faible? Justifier.
- 2. Ecrire l'équation de la réaction de cet acide avec l'eau pour donner l'ion éthanoate CH₂COO⁻.
- 3. Déterminer l'avancement volumique final de cette réaction, en déduire la constante d'acidité de l'acide éthanoïque.

Exercice 2: Influence de la dillution

On considère une solution d'acide fluorhydrique HF de $pK_A = 3,2$ de concentration $c_1 = 0,1$ mol/l.

- 1. Écrire l'équation de réaction de HF avec l'eau.
- 2. Calculer le pH de la solution ci-dessus.
- 3. On dilue la solution précédente par un facteur 10. Calculer à nouveau son pH.
- 4. Comment la dilution influence-t-elle l'avancement de la réaction de l'acide fluorhydrique avec l'eau?

Exercice 3: Dissolution de l'acide propanoïque

On considère une solution d'acide propanoïque C_2H_3 COOH de concentration $C=10^{-2}$ mol/l et de $pK_A=4,87$.

- 1. Exprimer l'avancement volumique final de sa réaction avec l'eau ainsi que le taux de dissociation. On pourra négliger l'autoprotolyse de l'eau.
- 2. En déduire le pH de la solution.

Exercice 4 : DIAGRAMME DE PRÉDOMINANCE

- 1. Tracer sur un même axe les diagrammes de prédominance des espèces acides et basiques des couples :
 - acide nitreux HNO₂/ ion nitrite NO₂⁻, $pK_{A1} = 3.3$
 - ion méthylammonium $CH_3NH_3^+$ / méthylamine CH_3NH_2 , $pK_{A2} = 10.7$
- 2. On mélange un volume $V_1 = 50$ ml de solution d'acide nitreux de concentration $C_1 = 10^{-2}$ mol/l avec un volume $V_2 = V_1$ de solution de méthylamine de même concentration $C_2 = C_1$.
 - (a) Les espèces chimiques mises en présence peuvent-elles être simultanément prédominantes?
 - (b) Écrire l'équation de la réaction acido-basique associée à la transformation de ce système.
 - (c) Calculer la constante d'équilibre associée à cette réaction.
- 3. Établir un tableau d'avancement, puis calculer la valeur de l'avancement dans l'état final. La transformation est-elle totale?

Exercice 5 : Dosage du vinaigre

On se propose de doser par pH-mètrie un vinaigre afin d'en déterminer la concentration en acide éthanoïque. Pour cela, on prépare $V=100\,\mathrm{ml}$ d'une solution diluée 10 fois du vinaigre. Puis on prélève un volume $V_1=10\,\mathrm{ml}$ de la solution diluée que l'on verse dans un bécher, auquel on ajoute suffisamment d'eau distillée pour immerger correctement la cellule du pH-mètre. On réalise le dosage avec une solution d'hydroxyde de sodium de concentration molaire volumique $c_2=0.01\,\mathrm{mol}\,\ell^{-1}$. Le pH est relevé en fonction du volume V_2 de solution d'hydroxyde de sodium et on obtient la courbe ci-dessous $pH=f(V_2)$. Toutes les solutions sont à 25 °C.

Données : pour le couple CH_3COOH/CH_3COO^- à 25 °C pKa=4.8 et pKe=14

- 1. Écrire l'équation chimique associée à la transformation chimique étudiée.
- 2. Exprimer le quotient Q_r de cette réaction. Quelle valeur particulière prend-il dans l'état d'équilibre du système? Calculer cette valeur. Cette valeur dépend-elle de la composition initiale du système?
- 3. Déterminer graphiquement les coordonnées du point d'équivalence. En déduire la concentration c en acide éthanoïque du vinaigre.
- 4. On se place dans la situation où on a versé un volume d'hydroxyde de sodium représentant la moitié du volume versé à l'équivalence

Quelles sont les quantités d'hydroxyde de sodium et d'acide éthanoïque introduites? Déterminer la quantité d'ion éthanoate alors formés, ainsi que la quantité d'acide éthanoïque restant dans le milieu réactionnel. En déduire la valeur du pH en ce point. Comparer la valeur du pH ainsi trouvée avec la valeur du pH lue sur la courbe de dosage. Commenter.

Exercice 6: Dissolution du phosphate de Calcium

On introduit une masse m=8.0 g de phosphate de calcium ($\text{Ca}_3(\text{PO}_4)_2$) solide dans un volume V=50.0 mL d'eau distillée. Après agitation, on obtient une solution saturée et il reste une masse m'=0.7 g de ce solide non dissout.

- 1. Écrire l'équation de dissolution du phosphate de calcium dans l'eau.
- 2. Déterminer la valeur de la constante de solubilité K_S du phosphate de calcium.

Exercice 7: Dissolution du sel de cuisine

Le produit de solubilité du NaCl dans l'eau vaut $K_s \simeq 39$ en déduire la masse maximale de sel de cuisine que l'on peut dissoudre dans 1ℓ d'eau. On donne $M_{\rm NaCl} = 58,5 \, {\rm gmol}^{-1}$