- 1C.
- 5 Is \mathbb{R}^2 a subspace of the complex vector space \mathbb{C}^2 ? No, check scalar mutliplication by i.
- 7 prove/disprove: If U is a nonempty subset of R^2 that is closed under addition and taking additive inverses, then U is a subspace. No, take $U = \{(x,0) \mid x \in Q\}$.
- 8 want an example of a subset U of \mathbb{R}^2 that satisfies scalar mutliplication but not vector addition take x-axis, y-axis.
- 13 prove that union of three subspaces of V is a subspace iff one contains the other two suffices to show if W is the union of three of its subspaces, then then one of the three subspaces is contained in the union of the other two, by applying result of prob 1c.12.
- 18 does the operation of addition on subspaces of V have additive identity? which subspaces have inverses? add. id. is {0} and only {0} has additive inverse.
- 19 prove/disprove: If V_1, V_2, U subspaces of V, then $V_1 + U = V_2 + U$ implies $V_1 = V_2$ false. take V_1, V_2, U to be x-axis, y-axis, y = x respectively.
- 23 prove/disprove: If V_1, V_2, U subspaces of V so that $V = V_1 \oplus U = V_2 \oplus U$, then $V_1 = V_2$. use same counterexample as in problem above.
- 2A.
- 7b Show if C is a vector space over C, then 1 + i, 1 i is L.D. for L.D. relation, choose coeffs a = i and b = 1 for 1 + i, 1 i, resp.
- 17 show that V is inf-dim iff there is a sequence $v_1, v_2, \dots \in V$ so that v_1, \dots, v_m l.i. for all positive integers m. for reverse direction, prove contrapositive.
- 19 show that real vector space of all cts real values functions on [0,1] is inf-dim. look at polynomials.
- 5 let V be finite-dim and V = U + W. show there is a basis of V consisting of vectors from $U \cup W$. concatenate bases of U and W.
- 2C.
- 8 let v_1, \ldots, v_m be linearly independent in V and $w \in V$. show dim $span(v_1 + w, \ldots, v_m + w) \ge m 1$. look at $v_1 v_2, \ldots, v_1 v_m$ and it is contained in the dimspan.
- 10 let m be a positive integer. for $0 \le k \le m$, let $p_k = x^k (1-x)^{m-k}$. show p_0, \ldots, p_m is a basis of $P_m(F)$. set linear dependence relation and choose x-values to substitute.

- 11 Let U,W be 4-dim subspaces of C^6 . show there exist two vectors in $U \cap W$ that aren't scalar multiples of each other. equivalent to showing $\dim(U \cap W) \geq 2$.
- 16 let V be finite-dim and U a strict subspace of V. let $n = \dim U$ and $m = \dim V$. show there are n m subsapces of V each with dim 1 whose intersectin is U fix a basis of U and extend it to basis of V and construct subspaces that each 'delete' a vector in the extension of U.
- 3A.
- 8 give a function $\phi: R^2 \to R$ so that $\phi(\lambda v) = \lambda \phi(v)$ but ϕ not linear take $\phi(x,y) = (x^3 + y^3)^{1/3}$.
- 10 prove/disprove: if $q \in P(R)$ and $T: P(R) \to P(R)$ by $Tp = q \circ p$, then T is linear false. take $q = x^2$.
- 11 let V be finitedim and $T \in L(V)$. show $T = \lambda I$ iff ST = TS for all $S \in L(V)$. for reverse direction, try contrapositive and look at ker T.
- 12 let U be a strict subspace of V. Let $S \in L(U, W)$ and $S \neq 0$. Let T(v) = Sv if $v \in U$ and Tv = 0 if $v \notin U$. show T is not linear. pick $v_1 \in U$ and $v_2 \notin U$.
- 17 let V be finitedim. show the only two-sided ideals of L(V) are $\{0\}$ and L(V). let w be so that $Tw \neq 0$. let $S_k : V \to V$ that sends v_j to 0 for $j \neq k$ and v_k to w. put R_k so that $R_k(Tw) = v_k$, and look at $R_kTS_kv_j$.
- 3B.
- 15 Suppose there is a linear map on V so that both null space and range of it are finitedim. show that V is finite dim. look at basis Tv_1, \ldots, Tv_n for range and w_1, \ldots, w_k for null space.
- 19 Let W be finitedim and $T \in L(V, W)$. show T is 1-1 iff there exists $S \in L(W, V)$ so that ST = I on V. letting $T : V \to W$ be 1-1 and looking at $U = \operatorname{range} T$, put $S : U \to V$ as the inverse of T and extend to $S : W \to V$.
- 20 let W be finite-dim and $T \in L(V, W)$. Show T onto iff there exists $S \in L(W, V)$ so that TS = I on W. use ontoness of T and look at restriction of T to X, the complement of null T. do isomorphism $X \cong W$ and put $S: W \to X$ so that TS = I.
- 3C.
- 5 Let V, W be finitedim and $T \in L(V, W)$. show there is a basis of V and a basis of W so that in these bases, all entries of M(T) are 0 except those in entries row k col k if $1 \le k \le \operatorname{range} T$. $U = \operatorname{nul} T$ and X is complement to U in V. put bases of X and U. find bases of range T and complete to get basis of W.

- 6 Let v_1, \ldots, v_n be basis of V and W is finitedim and let $T \in L(V)$. show there is a basis w_1, \ldots, w_m so that all entries of M(T), in these bases, are 0 except possibly a 1 in the first row, first col. first column is Tv_1 . consider when $Tv_1 = 0, \neq 0$. put basis $W = span(Tv_1, w_2, \ldots, w_m)$.
- 7 Let w_1, \ldots, w_n a basis of W and V finitedim and $T \in L(V, W)$. Show there is a basis v_1, \ldots, v_m of V so that all entries in first row of M(T), in these bases, are 0 except possibly a 1 in first row, first col. Look at $T': W' \to V'$ and apply 3c.6 result.
- 3D.
- 10 Let V, W be finite dim and $U \subseteq V$. put $E = \{T \in L(V, W) \mid U \subseteq \text{nul } T\}$. find a formula for dim E in terms of dim V, dim U, dim W. put $\Phi: L(V, W) \to L(U, W)$ by $\phi(T) = T \mid_{U}$ and find range and null space.
- 19 let V be finitedim and $T \in L(V)$. show T has same matrix with respect to every basis of V iff $T = \lambda I$. fix a matrix of T and for basis v_1, \ldots, v_m of $V, v_1, \ldots, (1/2)v_k, \ldots, v_m$ is also basis; scale and edit.
- 20 let $q \in P(R)$. show there is a polynomial $p \in P(R)$ so that $q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. define $T : P(R) \to P(R)$ by $Tp = (x^2 + x)p''(x) + 2xp'(x) + p(3)$ and show T is 1-1 (and by finitedim of domain, codomain) thus T is onto.
- 3E.
- 9 Show a nonempty subset A of V is a translate of some subspace of V iff $\lambda v + (1 \lambda)w \in A$ for all $v, w \in A$, $\lambda \in F$. for converse, fix $x \in A$ attempt for A = x + U, where $U = \{a x \mid a \in A\}$.
- 17 Let U be a subspace of V so that dim V/U = 1. show there is $\phi \in L(V, F)$ so that nul $\phi = U$. put $T : V/U \to F$ that sends everything to $1 \in F$. let ϕ be composite of $\pi : V \to V/U$ and T.
- 3F.
- 6 let $\phi, \beta \in V'$. show nul $\phi \subseteq \text{nul } \beta$ iff there is $c \in F$ so that $\beta = c\phi$. by a previous problem, there is $S \in L(F)$ so that $\beta = S\phi$.
- 26 let V be finitedim and Ω be a subspace of V'. show $\Omega = \{v \in V \mid \phi(v) = 0 \forall \phi \in \Omega\}^0 = U^0$. show $U = \bigcap_{i=1}^m (\operatorname{nul} \phi_i)$.
- 5A.
- 15 Let V be finitedim, $T \in L(V)$, and $\lambda \in F$. show λ is an eigenvalue of T iff λ is an eigenvalue of T' use chain of if and only ifs.
- 20 let $S \in L(F^{\infty})$ be backwards shift by $S(z_1, z_2, \dots) = (z_2, z_3, \dots)$. show each $f \in F$ is an eigenvalue and find all eigenvectors. look at $(1, \lambda, \lambda^2, \dots)$.

- 28 let V be finitedim and $T \in L(V)$. show T has at most $1 + \dim \operatorname{range} T$ distinct eigenvalues. put distinct eigenvalues/vectors and for nonzero eigenvalues, look at $v_i = T((1\lambda_i)v_i)$ and linear independence and range.
- 39 Let V be finitedim and $T \in L(V)$. show T has eigenvalue iff there is a subspace of V of $\dim V 1$ that is T-invariant. one direction: use fact eigenvalues of $T_{V/U}$ are eigenvalues of T. other direction: if λ eigenvalue, then $T \lambda I$ noninvertible so its range has $\dim V$ if $X = \operatorname{range} T$, every subspace W of V with $X \subseteq W \subseteq V$ is T-invariant.

• 5B.

ullet