Untersuchung eines Bauteils auf Tauwasserkondensation

Tauwasser kondensiert, wenn $p(9) = p_s(9)$ gilt.

Schritte:

- 1. Berechnung des Temperaturverlaufs im Bauteil
- 2. Ermittlung des Verlauf des Sättigungsdampfdruckes p_s im Bauteil aus der Temperaturkurve
- 3. Berechnung des Partialdruckverlaufs im Bauteil, p und p_s vorzugsweise aufgetragen über s_d / $s_{d,ges}$
- 4. Ermittlung von Schnittpunkten zwischen $p(s_d/s_{d,ges})$ und $p_s(s_d/s_{d,ges})$

(1) Konstruktionsaufbau und Ausgangsdaten

Querschnittskizze: Außenwand mit Innendämmung

innen

außen

Spanplatte 19 mm
 Mineralwolle 100 mm
 Ziegelmauerwerk 175 mm

Schichtaufbau und Schichteigenschaften:

k	Bezeichnung	d _k in m	μ_{k}	s _{d k} in m	$\lambda_{ m k}$ in W m $^{-1}$ K $^{-1}$	R _k in m² K W⁻¹
i	innere Wärme- übergangszone	-	_	-	_	0,25
1	Spanplatte	0,019	20	0,38	0,18	0,106
2	Mineralwolle	0,100	1	0,10	0,04	2,500
3	Ziegelmauerwerk	0,175	10	1,75	0,41	0,427
е	äußere Wärme- übergangszone	_	_	_	_	0,04
	Summe	-	_	2,23 (s _{d, ges})	_	3,323 (<i>R</i> _T)

$$\mathbf{S}_{dk} = \mu_{k} \cdot \mathbf{d}_{k} \qquad \qquad \mathbf{R}_{k} = \frac{\mathbf{d}_{k}}{\lambda_{k}}$$

Randbedingungen für Tau- und Verdunstungsperiode nach DIN 4108-3:

	Taupe	eriode	Verdunstungsperiode	
Innenklima	$\mathcal{G}_{i} = 20\ ^{\circ}C$	$\varphi_{i} = 50 \%$	p _i = 1200 Pa	
Außenklima	$\theta_{\rm e} = -5~{ m ^{\circ}C}$	$\varphi_{\rm e}$ = 80 %	p _e = 1200 Pa	
Tauwasserbereich	Tauwasserbereich		p _s = 1700 Pa	
Dauer	$t_{\rm T} = t_{\rm V} = 90~{\rm d} = 2160~{\rm h} = 7,776 \cdot 10^6~{\rm s}$			

(2) Überprüfung auf Tauwasser im Querschnitt

Bestimmung des Temperatur- und des Sättigungsdampfdruckverlaufs:

Wärmedurchgangswiderstand:
$$R_T = 3,323 \text{ m}^2 \text{ K W}^{-1}$$

$$j = \frac{(20 - (-5) \text{ K}}{3.323 \text{ m}^2 \text{ K W}^{-1}}$$
 $j = 7,523 \text{ Wm}^{-2}$

Sättigungsdampfdruck für Wasserdampf nach DIN 4108-3

	$p_{\rm s}$ in Pa									
θ in °C	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
30	4241	4265	4289	4314	4339	4364	4389	4414	4439	4464
29	4003	4026	4050	4073	4097	4120	4144	4168	4192	4216
28	3778	3800	3822	3844	3867	3889	3912	3934	3957	3980
27	3563	3584	3605	3626	3648	3669	3691	3712	3734	3756
26	3359	3379	3399	3419	3440	3460	3480	3501	3522	3542
25	3166	3185	3204	3223	3242	3261	3281	3300	3320	3340
24	2982	3000	3018	3036	3055	3073	3091	3110	3128	3147
23	2808	2825	2842	2859	2876	2894	2911	2929	2947	2964
22	2642	2659	2675	2691	2708	2724	2741	2757	2774	2791
21	2486	2501	2516	2532	2547	2563	2579	2594	2610	2626
20	2337	2351	2366	2381	2395	2410	2425	2440	2455	2470
19	2196	2210	2224	2238	2252	2266	2280	2294	2308	2323
18	2063	2076	2089	2102	2115	2129	2142	2155	2169	2182
17	1937	1949	1961	1974	1986	1999	2012	2024	2037	2050
16	1817	1829	1841	1852	1864	1876	1888	1900	1912	1924
15	1704	1715	1726	1738	1749	1760	1771	1783	1794	1806
14	1598	1608	1619	1629	1640	1650	1661	1672	1683	1693
13	1497	1507	1517	1527	1537	1547	1557	1567	1577	1587
12	1402	1411	1420	1430	1439	1449	1458	1468	1477	1487
11	1312	1321	1330	1338	1347	1356	1365	1374	1383	1393
10	1227	1236	1244	1252	1261	1269	1278	1286	1295	1303
9	1147	1155	1163	1171	1179	1187	1195	1203	1211	1219
8	1072	1080	1087	1094	1102	1109	1117	1124	1132	1140
7	1001	1008	1015	1022	1029	1036	1043	1050	1058	1065
6	935	941	948	954	961	967	974	981	988	994
5	872	878	884	890	897	903	909	915	922	928
4	813	819	824	830	836	842	848	854	860	866
3	757	763	768	774	779	785	790	796	801	807
2	705	710	715	721	726	731	736	741	747	752
1	656	661	666	671	676	680	685	690	695	700
0	611	615	619	624	629	633	638	642	647	652
-0	611	605	601	596	591	586	581	576	571	567
-1	562	557	553	548	544	539	535	530	526	521
-2	517	513	509	504	500	496	492	488	484	479
-3	475	471	468	464	460	456	452	448	444	441
-4	437	433	430	426	422	419	415	412	408	405
-5	401	398	394	391	388	384	381	378	375	371
-6	368	365	362	359	356	353	350	347	344	341
-7	338	335	332	329	326	323	320	318	315	312
-8	309	307	304	301	299	296	294	291	288	286
-9	283	281	278	276	274	271	269	266	264	262
-10	259	257	255	252	250	248	246	244	241	239

k/I	Grenzfläche	S _{d, k/l}	S _{d, k/l} / S _{d, ges}		ϑ _{k/I}	p _s
		in m			in °C	in Pa
i/1	Innenluft / Spanplatte	0	0	$g_{si} = g_i - j \cdot R_{Si}$	18,1	2076
1/2	Spanplatte / Mineralwolle	0,38	0,170	$\vartheta_{1/2} = \vartheta_{i} - j \cdot (R_{Si} + R_{1})$	17,3	1974
2/3	Mineralwolle / Ziegelmauerwerk	0,48	0,215	$\theta_{2/3} = \theta_i - j \cdot (R_{Si} + R_1 + R_2)$	-1,5	539
3/e	Ziegelmauerwerk / Außenluft	2,23	1,000	$\theta_{\text{se}} = \theta_{\text{i}} - j \cdot (R_{\text{Si}} + R_1 + R_2 + R_3)$	-4,7	412

Kontrolle: $\mathcal{G}_{i} - j \cdot (R_{si} + R_{1} + R_{2} + R_{3} + R_{se}) = -5.0 \,^{\circ}\text{C} \approx \mathcal{G}_{e}$

Bestimmung des Wasserdampfpartialdruckverlaufs:

innen	$oldsymbol{p_{i}} = oldsymbol{arphi_{i}} \cdot oldsymbol{p_{si}}$	p _i = 1168 Pa		
	$p_{si} = p_s (\theta_i) = p_s (20 \text{ °C}) = 2337 \text{ Pa}$			
	$p_{\rm i} = 0.50 \cdot 2337 \; {\sf Pa}$			
außen	$p_{ m e} = arphi_{ m e} \cdot p_{ m se}$	p _i = 321 Pa		
	$p_{\rm se} = p_{\rm s} (\theta_{\rm e}) = p_{\rm s} (-5 ^{\circ}{\rm C}) = 401 {\rm Pa}$			
	p _e = 0,80 · 410 Pa			

Diffusionsdiagramm für die Tauperiode (ohne Tauwasserkondensation):

Berechnung ohne Tauwasserkondensation:

Wasserdampfpartialdruck an einer beliebigen Grenzfläche zwischen den Schichten k und I:

$$oldsymbol{p}_{k/l} = oldsymbol{p}_i - oldsymbol{j}_D \cdot oldsymbol{Z}_{k/l}$$

$$\mathbf{j}_{D} = \frac{\mathbf{p}_{i}}{\mathbf{Z}_{o}}$$

mit
$$j_D = \frac{p_i - p_e}{Z_{ges}}$$
 und $Z_{k/l} = \frac{s_{d,k/l}}{\delta_L}$, $Z_{ges} = \frac{s_{d,ges}}{\delta_L}$

$$oldsymbol{p}_{\mathsf{k/l}} = oldsymbol{p}_{\mathsf{i}} - \Big(oldsymbol{p}_{\mathsf{i}} - oldsymbol{p}_{\mathsf{e}}\Big) \cdot rac{oldsymbol{s}_{\mathsf{d,k/l}}}{oldsymbol{s}_{\mathsf{d,ges}}}$$

Wasserdampfpartialdruck an der Grenzfläche Spanplatte/Mineralwolle:

$$oldsymbol{p}_{\text{1/2}} = oldsymbol{p}_{\text{i}} - \left(oldsymbol{p}_{\text{i}} - oldsymbol{p}_{\text{e}}
ight) \cdot rac{oldsymbol{s}_{ ext{d,1/2}}}{oldsymbol{s}_{ ext{d,ges}}}$$

$$p_{1/2} = 1168 \text{ Pa} - (1168 \text{ Pa} - 321 \text{ Pa}) \cdot 0,170$$

$$p_{1/2} = 1024 \text{ Pa}$$

$$p_{s,1/2} = 1974 \text{ Pa} \implies p_{1/2} < p_{s,1/2}$$

kein Tauwasser

Wasserdampfpartialdruck an der Grenzfläche Mineralwolle / Ziegelmauerwerk:

$$oldsymbol{
ho}_{2/3} = oldsymbol{
ho}_{\mathrm{i}} - \Big(oldsymbol{
ho}_{\mathrm{i}} - oldsymbol{
ho}_{\mathrm{e}}\Big) \cdot rac{oldsymbol{\mathsf{S}}_{\mathrm{d},2/3}}{oldsymbol{\mathsf{S}}_{\mathrm{d,ges}}}$$

$$p_{2/3} = 1168 \text{ Pa} - (1168 \text{ Pa} - 321 \text{ Pa}) \cdot 0,215$$

$$p_{2/3} = 986 \, \text{Pa}$$

$$p_{s,2/3} = 539 \text{ Pa} \implies p_{2/3} > p_{s,2/3}$$

Tauwasserkondensation

bei
$$\frac{s_{d,C}}{s_{d,ges}} = 0,215$$

$$s_{d,C} = 0,48 \text{ m}$$

$$p_{c} = 539 \, Pa$$

Diffusionsdiagramm für die Tauperiode (mit Tauwasserkondensation):

Tauwasserschutz nach DIN 4108-3

Tauwasserbildung im Inneren von Bauteilen, welche zu Schädigungen oder Beeinträchtigung der Funktionssicherheit führt, ist zu vermeiden.

Tauwasser ist unter folgenden Bedingungen als unschädlich anzusehen:

- Baustoffe werden nicht geschädigt, z. B. durch Korrosion oder Pilzbefall.
- Grenzwerte für die maximale Tauwassermasse in Bauteilen und den maximalen Feuchtegehalt in Baustoffen dürfen nicht überschritten werden.
- Das während der Tauperiode anfallende Tauwasser wird in der Verdunstungsperiode wieder an die Umgebung abgegeben.

(3) Berechnung der Tauwassermasse

flächenbezogene Tauwassermasse:

$$m'_{\mathsf{W},\mathsf{T}} = rac{m_{\mathsf{W},\mathsf{T}}}{A}$$

$$j_{D,T} = \frac{1}{A} \cdot \frac{m_{W,T}}{t_T} \Rightarrow m_{W,T} = j_{D,T} \cdot A \cdot t_T$$

$$m'_{\mathsf{W},\mathsf{T}} = j_{\mathsf{D},\mathsf{T}} \cdot t_{\mathsf{T}}$$

$$m{j}_{ extsf{D,T}} = m{j}_{ extsf{Di}} - m{j}_{ extsf{De}} = rac{\left(m{p}_{ extsf{i}} - m{p}_{ extsf{C}}
ight)}{m{Z}} - rac{\left(m{p}_{ extsf{C}} - m{p}_{ extsf{e}}
ight)}{m{Z}}$$

$$Z_{i} = \frac{S_{d,C}}{\delta_{i}}$$

$$oldsymbol{Z}_{
m e} = rac{oldsymbol{s}_{
m d,ges} - oldsymbol{s}_{
m d,C}}{\delta_{
m c}}$$

$$m{j}_{ extsf{D,T}} = m{\delta}_{ extsf{L}} \cdot \left(rac{\left(m{
ho}_{ extsf{i}} - m{
ho}_{ extsf{C}}
ight)}{m{s}_{ extsf{d,C}}} - rac{\left(m{
ho}_{ extsf{C}} - m{
ho}_{ extsf{e}}
ight)}{m{s}_{ extsf{d,ges}} - m{s}_{ extsf{d,C}}}
ight)$$

$$m'_{\mathsf{W},\mathsf{T}} = \delta_{\mathsf{L}} \cdot \left(\frac{\left(\boldsymbol{p}_{\mathsf{i}} - \boldsymbol{p}_{\mathsf{C}} \right)}{\mathbf{s}_{\mathsf{d},\mathsf{C}}} - \frac{\left(\boldsymbol{p}_{\mathsf{C}} - \boldsymbol{p}_{\mathsf{e}} \right)}{\mathbf{s}_{\mathsf{d},\mathsf{ges}} - \mathbf{s}_{\mathsf{d},\mathsf{C}}} \right) \cdot \boldsymbol{t}_{\mathsf{T}}$$

$$m'_{\text{W,T}} = 2 \cdot 10^{-10} \text{ kgm}^{-1} \text{s}^{-1} \text{ Pa}^{-1} \cdot \left(\frac{\left(1168 \text{ Pa} - 539 \text{ Pa}\right)}{0.48 \text{ m}} - \frac{\left(539 \text{ Pa} - 321 \text{ Pa}\right)}{2,23 \text{ m} - 0,48 \text{ m}} \right) \cdot 7,776 \cdot 10^6 \text{ s}$$

$$m'_{W,T} = 1,844 \text{ kgm}^{-2}$$

(4) Berechnung der Verdunstungswassermasse

Diffusionsdiagramm für die Verdunstungsperiode:

flächenbezogene Verdunstungswassermasse:

$$m'_{\mathsf{W},\mathsf{V}} = \frac{m_{\mathsf{W},\mathsf{V}}}{A}$$

$$m'_{\mathsf{W},\mathsf{V}} = \emph{j}_{\mathsf{D},\mathsf{V}} \cdot \emph{t}_{\mathsf{V}}$$

$$j_{\text{D,V}} = j_{\text{Di}} + j_{\text{De}} = \frac{\left(p_{\text{C}} - p_{\text{i}}\right)}{Z} - \frac{\left(p_{\text{C}} - p_{\text{e}}\right)}{Z}$$

$$Z_{\text{i}} = \frac{S_{\text{d,C}}}{\delta_{\text{i}}}$$

$$Z_{\text{e}} = \frac{S_{\text{d,ges}} - S_{\text{d,C}}}{\delta_{\text{i}}}$$

$$m{j}_{\text{D,V}} = \delta_{\text{L}} \cdot \left(\frac{\left(m{p}_{\text{C}} - m{p}_{\text{i}} \right)}{m{s}_{\text{d,C}}} + \frac{\left(m{p}_{\text{C}} - m{p}_{\text{e}} \right)}{m{s}_{\text{d,ges}} - m{s}_{\text{d,C}}} \right)$$

$$m'_{\mathsf{W},\mathsf{V}} = \delta_{\mathsf{L}} \cdot \left(\frac{\left(oldsymbol{p}_{\mathsf{C}} - oldsymbol{p}_{\mathsf{i}}
ight)}{oldsymbol{s}_{\mathsf{d},\mathsf{C}}} + \frac{\left(oldsymbol{p}_{\mathsf{C}} - oldsymbol{p}_{\mathsf{e}}
ight)}{oldsymbol{s}_{\mathsf{d},\mathsf{ges}} - oldsymbol{s}_{\mathsf{d},\mathsf{C}}}
ight) \cdot oldsymbol{t}_{\mathsf{V}}$$

$$m'_{\text{W,T}} = 2 \cdot 10^{-10} \text{ kgm}^{-1} \text{s}^{-1} \text{ Pa}^{-1} \cdot \left(\frac{\left(1700 \text{ Pa} - 1200 \text{ Pa}\right)}{0.48 \text{ m}} + \frac{\left(1700 \text{ Pa} - 1200 \text{ Pa}\right)}{2.23 \text{ m} - 0.48 \text{ m}} \right) \cdot 7.776 \cdot 10^6 \text{ s}^{-1} \cdot 10^6 \text{ m}^{-1} \cdot 10^6$$

$$m'_{W,V} = 2,064 \text{ kgm}^{-2}$$

Tauwasserschutz nach DIN 4108-3:

maximale flächenbezogene Tauwassermasse

Dächer und Wände gegen Außenluft, Decken unter nicht ausgebauten Dachräumen:

$$m'_{W,T} \le 1.0 \text{ kgm}^{-2}$$

$$m'_{W,T} \leq 0.5 \text{ kgm}^{-2}$$

an Berührungsflächen von Schichten, bei denen mindestens eine kapillar nicht aufnahmefähig ist (Metalle, Folien, Normalbeton, viele Dämmstoffe)

maximale Erhöhung des massebezogenen Feuchtegehaltes

(5) Auswertung

 An der Grenzfläche Mineralwolle / Ziegelmauerwerk kondensiert Tauwasser.

 $\bullet \qquad m'_{\mathsf{W},\mathsf{V}} > m'_{\mathsf{W},\mathsf{T}}$

In der Verdunstungsperiode verschwindet das Tauwasser vollständig.

 Die flächenbezogene Tauwassermasse von 1,8 kg m⁻² ist als kritisch anzusehen.