HW3

PB20111689 蓝俊玮

6.5

首先将该式子转化成:

$$O + O = R + 10 \times X_1$$
 $X_1 + W + W = U + 10 \times X_2$ $X_2 + T + T = O + 10 \times X_3$ $X_3 = F$

其中的 X_1, X_2, X_3 用来记作进位信息,因此它们的取值范围为 $\{0, 1\}$ 。

• 前向检查

X_3	X_2	X_1	F	T	W	O	U	R
$\{0, 1\}$	$\{0, 1\}$	$\{0, 1\}$	$\{1,\ldots,9\}$	$\{0,\ldots,9\}$	$\{0,\ldots,9\}$	$\{0,\ldots,9\}$	$\{0,\ldots,9\}$	$\{0,\ldots,9\}$
1	$\{0, 1\}$	$\{0, 1\}$	{1}	$\{5,\ldots,9\}$	$\{0,\ldots,9\}$	$\{0,\ldots,9\}$	$\{0,\ldots,9\}$	$\{0,\ldots,9\}$
1	$\{0, 1\}$	$\{0, 1\}$	1	$\{5,\ldots,9\}$	$\{0,2,\ldots,9\}$	$\{0,2,\ldots,9\}$	$\{0,2,\ldots,9\}$	$\{0, 2, \dots, 9\}$
1	0	$\{0, 1\}$	1	$\{6,\ldots,9\}$	$\{0,2,3,4\}$	$\{0,2,4,6,8\}$	$\{0,2,\ldots,9\}$	$\{0,2,\ldots,9\}$
1	0	0	1	$\{6, 7\}$	$\{0,2,3,4\}$	$\{0, 2, 4\}$	$\{0,4,6,8\}$	$\{0,4,8\}$
1	0	0	1	7	$\{0, 2, 3\}$	$\{0, 4\}$	$\{0, 4, 6\}$	{0,8}
1	0	0	1	7	$\{0, 3\}$	4	$\{0, 6\}$	{8}
1	0	0	1	7	$\{0, 3\}$	4	$\{0, 6\}$	8
1	0	0	1	7	3	4	{6}	8
1	0	0	1	7	3	4	6	8

- 1. 初始时,我们知道 F 是不能为 0 的。
- 2. 首先对于 X_3 ,它不能选择 0 ,这是因为 $F=X_3$,而 F_3 作为数字的开头是不为 0 的。所以选择 $X_3=1$
- 3. 那么这时候就知道 T 的大小必须满足能够进位,因此需要大于等于 5
- 4. 接着选择 F=1,这时候其它所有变量都不能选择 1
- 5. 选择 $X_2=0$,同理可以知道 W 的大小必须满足不能进位,因此其大小小于等于 4,同时说明 2T=O,所以 O 要选择偶数。
- 6. 选择 $X_1 = 0$,同理可以知道 O 的大小必须满足不能进位,因此其大小小于等于 4,同时可以因为该条件更新其它所有变量的取值范围
- 7. 选择 T=7,则剩下的变量取值范围可以一步步推出。最后可以知道 F=1, T=7, W=3, O=4, U=6, R=8 为一组可行的解
- 最少剩余值
- 最少约束值

6.11

从初始赋值条件可以得到如下信息:

由 WA 为 green, NT 和 SA 不能有 green。由 V 为 red, NSW 和 SA 不能有 red。

WA	NT	SA	Q	NSW	V
green	{red, blue}	{blue}	{red, green, blue}	{green, blue}	red

SA 为 blue 时,NT 为 {red},NSW 为 {green},Q 为 {red, green}。NT 为 red 时,Q 为 {green}。NSW 为 green 时,Q 为 {},因此由弧相容原理得知,这个赋值是不相容的。

6.12

假设有 n 个顶点,值域中最多有 d 个值。在树状结构 CSP 问题下,AC-3 算法的复杂度为 $O(nd^2)$ 。