Random Multiplicative Walks on the Integers Modulo *n*

Nathan McNew Towson University

Special Session on Analytic Number Theory and Arithmetic Joint Mathematics Meetings Atlanta, Georgia January 7th, 2017

A **random walk** is a set of states and possible (weighted) transitions between them.

A **random walk** is a set of states and possible (weighted) transitions between them. Starting from an initial state X_0 , each subsequent state is randomly chosen from the possible transitions from the prior state.

A **random walk** is a set of states and possible (weighted) transitions between them. Starting from an initial state X_0 , each subsequent state is randomly chosen from the possible transitions from the prior state.

A **random walk** is a set of states and possible (weighted) transitions between them. Starting from an initial state X_0 , each subsequent state is randomly chosen from the possible transitions from the prior state.

A **random walk** is a set of states and possible (weighted) transitions between them. Starting from an initial state X_0 , each subsequent state is randomly chosen from the possible transitions from the prior state.

A random walk is **transitive** if it is possible to get from any one state to any other state in a finite number of steps.

A **random walk** is a set of states and possible (weighted) transitions between them. Starting from an initial state X_0 , each subsequent state is randomly chosen from the possible transitions from the prior state.

A random walk is **transitive** if it is possible to get from any one state to any other state in a finite number of steps.

A state is **absorbing** if it is not possible to leave that state.

Make a random walk from a group, G:

Make a random walk from a group, G:

Take the elements of G to be the states of the random walk.

Make a random walk from a group, G:

Take the elements of G to be the states of the random walk.

Fix a generating set S of the group.

Make a random walk from a group, G:

Take the elements of G to be the states of the random walk.

Fix a generating set S of the group. Each step consists of acting on the current state by one of the elements of S chosen at random.

Make a random walk from a group, G:

Take the elements of G to be the states of the random walk.

Fix a generating set S of the group. Each step consists of acting on the current state by one of the elements of S chosen at random.

Note that since the elements of S generate G, this walk will be transitive, and there are no absorbing elements.

$$G = \mathbb{Z}, \ S = \{\pm 1\}, \ X_0 = 0$$

$$G=\mathbb{Z}$$
, $S=\{\pm 1\}$, $X_0=0$

$$G = \mathbb{Z}/n\mathbb{Z}$$
, $S = \{\pm 1\}$, $X_0 = 0$

$$G = \mathbb{Z}, \ S = \{\pm 1\}, \ X_0 = 0$$

$$G=\mathbb{Z}/n\mathbb{Z}$$
, $S=\{\pm 1\}$, $X_0=0$

Random walks on monoids

Recently several authors (Gretete, Mairesse, ...) have generalized many of the ideas from random walks on groups to monoids.

Random walks on monoids

Recently several authors (Gretete, Mairesse, ...) have generalized many of the ideas from random walks on groups to monoids.

Recall: A **monoid** is almost a group, but some elements may not have inverses.

Random walks on monoids

Recently several authors (Gretete, Mairesse, ...) have generalized many of the ideas from random walks on groups to monoids.

Recall: A **monoid** is almost a group, but some elements may not have inverses.

Since elements may not have inverses, the walk may not be transitive.

Take $M = \mathbb{Z}/n\mathbb{Z}$, (operation: multiplication)

Take $M = \mathbb{Z}/n\mathbb{Z}$, (operation: multiplication) $S = \mathbb{Z}/n\mathbb{Z}$,

Take $M = \mathbb{Z}/n\mathbb{Z}$, (operation: multiplication) $S = \mathbb{Z}/n\mathbb{Z}$, $X_0 = 1$.

Example: Let n = 6.

Take $M = \mathbb{Z}/n\mathbb{Z}$, (operation: multiplication) $S = \mathbb{Z}/n\mathbb{Z}$, $X_0 = 1$.

Example: Let n = 6.

Single absorbing state: $0 \pmod{n}$.

For any integer n this random walk will eventually reach the absorbing state 0 (mod n).

For any integer n this random walk will eventually reach the absorbing state 0 (mod n).

Let $a(n) = \mathbb{E}[\text{Number of steps to reach 0 (mod } n)].$

For any integer n this random walk will eventually reach the absorbing state 0 (mod n).

Let $a(n) = \mathbb{E}[\text{Number of steps to reach 0 (mod } n)].$

Alternatively: Start with the empty product: 1. Randomly multiply by integers chosen uniformly at random from [1, n].

For any integer n this random walk will eventually reach the absorbing state 0 (mod n).

Let $a(n) = \mathbb{E}[\text{Number of steps to reach } 0 \pmod{n}].$

Alternatively: Start with the empty product: 1. Randomly multiply by integers chosen uniformly at random from [1, n]. a(n) is the expected number of multiplications before n divides the product.

Random multiplicative walks on $\mathbb{Z}/n\mathbb{Z}$

For any integer n this random walk will eventually reach the absorbing state 0 (mod n).

Let $a(n) = \mathbb{E}[\text{Number of steps to reach 0 (mod } n)].$

Alternatively: Start with the empty product: 1. Randomly multiply by integers chosen uniformly at random from [1, n]. a(n) is the expected number of multiplications before n divides the product.

$$a(6) =$$

Random multiplicative walks on $\mathbb{Z}/n\mathbb{Z}$

For any integer n this random walk will eventually reach the absorbing state 0 (mod n).

Let $a(n) = \mathbb{E}[\text{Number of steps to reach 0 (mod } n)].$

Alternatively: Start with the empty product: 1. Randomly multiply by integers chosen uniformly at random from [1, n]. a(n) is the expected number of multiplications before n divides the product.

$$a(6) = 3.5.$$

Case: n = p is prime.

Case: n = p is prime.

Every element besides $0 \pmod{p}$ is a unit.

Case: n = p is prime.

Every element besides $0 \pmod{p}$ is a unit.

Each selection from $\mathbb{Z}/n\mathbb{Z}$ is a Bernoulli trial with probability

$$\frac{p-1}{p} \text{ Remain in } (\mathbb{Z}/n\mathbb{Z})^{\times}$$

$$\frac{1}{p} \text{ Step to 0 (mod } p)$$

Case: n = p is prime.

Every element besides $0 \pmod{p}$ is a unit.

Each selection from $\mathbb{Z}/n\mathbb{Z}$ is a Bernoulli trial with probability

$$\frac{p-1}{p} \text{ Remain in } (\mathbb{Z}/n\mathbb{Z})^{\times}$$

$$\frac{1}{p} \text{ Step to 0 (mod } p)$$

$$a(p) = p$$

Case: $n = p^k$ is a prime power.

Case: $n = p^k$ is a prime power.

Let
$$R_d = \{r \in \mathbb{Z}/n\mathbb{Z} | (r, n) = d\}.$$

Case: $n = p^k$ is a prime power.

Let $R_d = \{r \in \mathbb{Z}/n\mathbb{Z} | (r, n) = d\}.$

•••

Case: $n = p^k$ is a prime power.

Let
$$R_d = \{r \in \mathbb{Z}/n\mathbb{Z} | (r, n) = d\}.$$

$$\begin{array}{c|c}
 & \underline{p-1} \\
 & \underline{p} \\
 & \underline$$

The probability of selecting a unit is $\frac{p-1}{p}$.

Case: $n = p^k$ is a prime power.

Let $R_d = \{r \in \mathbb{Z}/n\mathbb{Z} | (r, n) = d\}.$

The probability of selecting a unit is $\frac{p-1}{p}$.

The probability of transitioning from R_1 to R_{p^i} is $\frac{p-1}{p^{i+1}}$ and to R_{p^k} is $\frac{1}{p^k}$

Case: $n = p^k$ is a prime power.

Let $R_d = \{r \in \mathbb{Z}/n\mathbb{Z} | (r, n) = d\}.$

The probability of selecting a unit is $\frac{p-1}{p}$.

The probability of transitioning from R_1 to R_{p^i} is $\frac{p-1}{p^{i+1}}$ and to R_{p^k} is $\frac{1}{p^k}$

 $a(p^k) = \mathbb{E}[\mathsf{Steps} \; \mathsf{to} \; \mathsf{first} \; \mathsf{factor} \; \mathsf{of} \; p] + \mathbb{E}[\mathsf{Steps} \; \mathsf{for} \; \mathsf{remaining} \; \mathsf{powers}]$

Case: $n = p^k$ is a prime power.

Let $R_d = \{r \in \mathbb{Z}/n\mathbb{Z} | (r, n) = d\}.$

The probability of selecting a unit is $\frac{p-1}{p}$.

The probability of transitioning from R_1^r to R_{p^i} is $\frac{p-1}{p^{i+1}}$ and to R_{p^k} is $\frac{1}{p^k}$

 $a(p^k) = \mathbb{E}[\mathsf{Steps} \; \mathsf{to} \; \mathsf{first} \; \mathsf{factor} \; \mathsf{of} \; p] + \mathbb{E}[\mathsf{Steps} \; \mathsf{for} \; \mathsf{remaining} \; \mathsf{powers}]$

$$= \qquad \qquad + \qquad \sum_{i=1}^{k-1} \left(\frac{p-1}{p^{i+1}}\right) a(p^i)$$

Case: $n = p^k$ is a prime power.

Let $R_d = \{r \in \mathbb{Z}/n\mathbb{Z} | (r, n) = d\}.$

The probability of selecting a unit is $\frac{p-1}{p}$.

The probability of transitioning from R_1 to R_{p^i} is $\frac{p-1}{p^{i+1}}$ and to R_{p^k} is $\frac{1}{p^k}$

 $a(p^k) = \mathbb{E}[\text{Steps to first factor of } p] + \mathbb{E}[\text{Steps for remaining powers}]$

$$= p + \sum_{i=1}^{k-1} \left(\frac{p-1}{p^{i+1}}\right) a(p^i)$$
$$= k(p-1) + 1$$

We can use a similar idea for arbitrary n:

 $a(n) = \mathbb{E}[\mathsf{Steps} \; \mathsf{to} \; \mathsf{first} \; \mathsf{non\text{-}unit}] + \mathbb{E}[\mathsf{Steps} \; \mathsf{from} \; \mathsf{there} \; \mathsf{to} \; \mathsf{0} \; (\mathsf{mod} \; n)]$

$$\mathit{a}(\mathit{n}) = \mathbb{E}[\mathsf{Steps} \; \mathsf{to} \; \mathsf{first} \; \mathsf{non\text{-}unit}] + \mathbb{E}[\mathsf{Steps} \; \mathsf{from} \; \mathsf{there} \; \mathsf{to} \; \mathsf{0} \; (\mathsf{mod} \; \mathit{n})]$$

$$\mathbb{E}[\mathsf{Steps to first non-unit}] = \frac{n}{n - \varphi(n)}$$

$$\mathit{a}(\mathit{n}) = \mathbb{E}[\mathsf{Steps} \ \mathsf{to} \ \mathsf{first} \ \mathsf{non\text{-}unit}] + \mathbb{E}[\mathsf{Steps} \ \mathsf{from} \ \mathsf{there} \ \mathsf{to} \ \mathsf{0} \ (\mathsf{mod} \ \mathit{n})]$$

$$\mathbb{E}[\mathsf{Steps to first non-unit}] = \frac{n}{n - \varphi(n)}$$

$$\mathbb{P}(\mathsf{First non-unit step to } R_d) = \frac{|R_d|}{n - \varphi(n)}$$

$$\mathit{a}(\mathit{n}) = \mathbb{E}[\mathsf{Steps} \ \mathsf{to} \ \mathsf{first} \ \mathsf{non\text{-}unit}] + \mathbb{E}[\mathsf{Steps} \ \mathsf{from} \ \mathsf{there} \ \mathsf{to} \ \mathsf{0} \ (\mathsf{mod} \ \mathit{n})]$$

$$\mathbb{E}[\mathsf{Steps \ to \ first \ non-unit}] = \frac{n}{n - \varphi(n)}$$

$$\mathbb{P}(\mathsf{First \ non-unit \ step \ to} \ R_d) = \frac{|R_d|}{n - \varphi(n)} = \frac{\varphi\left(\frac{n}{d}\right)}{n - \varphi(n)}$$

$$\mathit{a}(\mathit{n}) = \mathbb{E}[\mathsf{Steps} \ \mathsf{to} \ \mathsf{first} \ \mathsf{non\text{-}unit}] + \mathbb{E}[\mathsf{Steps} \ \mathsf{from} \ \mathsf{there} \ \mathsf{to} \ \mathsf{0} \ (\mathsf{mod} \ \mathit{n})]$$

$$\mathbb{E}[\mathsf{Steps \ to \ first \ non-unit}] = \frac{n}{n - \varphi(n)}$$

$$\mathbb{P}(\mathsf{First \ non-unit \ step \ to \ } R_d) = \frac{|R_d|}{n - \varphi(n)} = \frac{\varphi\left(\frac{n}{d}\right)}{n - \varphi(n)}$$

$$\mathbb{E}[\mathsf{Steps \ from \ } R_d \ \mathsf{to \ 0 \ (mod \ } n)] = a\left(\frac{n}{d}\right)$$

$$\mathit{a}(\mathit{n}) = \mathbb{E}[\mathsf{Steps} \; \mathsf{to} \; \mathsf{first} \; \mathsf{non\text{-}unit}] + \mathbb{E}[\mathsf{Steps} \; \mathsf{from} \; \mathsf{there} \; \mathsf{to} \; \mathsf{0} \; (\mathsf{mod} \; \mathit{n})]$$

$$\mathbb{E}[\mathsf{Steps \ to \ first \ non-unit}] = \frac{n}{n - \varphi(n)}$$

$$\mathbb{P}(\mathsf{First \ non-unit \ step \ to \ } R_d) = \frac{|R_d|}{n - \varphi(n)} = \frac{\varphi\left(\frac{n}{d}\right)}{n - \varphi(n)}$$

$$\mathbb{E}[\mathsf{Steps \ from \ } R_d \ \mathsf{to \ 0 \ (mod \ } n)] = a\left(\frac{n}{d}\right)$$

$$a(n) = \frac{n}{n - \varphi(n)} + \sum_{\substack{d \mid n \\ d \neq 1}} \frac{\varphi\left(\frac{n}{d}\right) a\left(\frac{n}{d}\right)}{n - \varphi(n)}$$

$$\mathit{a}(\mathit{n}) = \mathbb{E}[\mathsf{Steps} \; \mathsf{to} \; \mathsf{first} \; \mathsf{non\text{-}unit}] + \mathbb{E}[\mathsf{Steps} \; \mathsf{from} \; \mathsf{there} \; \mathsf{to} \; \mathsf{0} \; (\mathsf{mod} \; \mathit{n})]$$

$$\mathbb{E}[\mathsf{Steps \ to \ first \ non-unit}] = \frac{n}{n - \varphi(n)}$$

$$\mathbb{P}(\mathsf{First \ non-unit \ step \ to \ } R_d) = \frac{|R_d|}{n - \varphi(n)} = \frac{\varphi\left(\frac{n}{d}\right)}{n - \varphi(n)}$$

$$\mathbb{E}[\mathsf{Steps \ from \ } R_d \ \mathsf{to \ 0 \ (mod \ } n)] = a\left(\frac{n}{d}\right)$$

$$a(n) = \frac{n}{n - \varphi(n)} + \sum_{\substack{d \mid n \\ d \neq 1}} \frac{\varphi\left(\frac{n}{d}\right) a\left(\frac{n}{d}\right)}{n - \varphi(n)} = \frac{1}{n - \varphi(n)} \left(n + \sum_{\substack{d \mid n \\ d \neq n}} \varphi\left(d\right) a\left(d\right)\right)$$

Suppose *n* is squarefree.

Suppose *n* is squarefree. For each p|n let

 X_p = number of steps before a residue chosen is divisible by p.

11

Suppose n is squarefree. For each p|n let

 X_p = number of steps before a residue chosen is divisible by p.

Independent.

Suppose n is squarefree. For each p|n let

 X_p = number of steps before a residue chosen is divisible by p.

- Independent.
- Geometrically distributed ($\mathbb{E}[X_p] = p$.)

Suppose n is squarefree. For each p|n let

 X_p = number of steps before a residue chosen is divisible by p.

- Independent.
- Geometrically distributed ($\mathbb{E}[X_p] = p$.)

$$a(n) = \mathbb{E}\left[\max_{p|n}\{X_p\}\right].$$

Theorem

For
$$n \ge 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{d}{d - \varphi(d)}$.

Theorem

For
$$n \geq 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \neq 1}} (-1)^{\omega(d)+1} \frac{d}{d - \varphi(d)}$.

Theorem

For
$$n \geq 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \neq 1}} (-1)^{\omega(d)+1} \frac{d}{d - \varphi(d)}$.

$$a(n) = \mathbb{E}[X]$$

Theorem

For
$$n \ge 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{d}{d-\varphi(d)}$.

$$a(n) = \mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}[X > i]$$

Theorem

For
$$n \ge 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{d}{d-\varphi(d)}$.

$$a(n) = \mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}[X > i] = \sum_{i=0}^{\infty} (1 - \mathbb{P}[X \le i])$$

Theorem

For
$$n \ge 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{d}{d-\varphi(d)}$.

$$a(n) = \mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}[X > i] = \sum_{i=0}^{\infty} (1 - \mathbb{P}[X \le i])$$
$$= \sum_{i=0}^{\infty} \left(1 - \prod_{p \mid n} \mathbb{P}[X_p \le i]\right)$$

Theorem

For
$$n \geq 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \neq 1}} (-1)^{\omega(d)+1} \frac{d}{d-\varphi(d)}$.

$$a(n) = \mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}[X > i] = \sum_{i=0}^{\infty} (1 - \mathbb{P}[X \le i])$$
$$= \sum_{i=0}^{\infty} \left(1 - \prod_{p|n} \mathbb{P}[X_p \le i]\right) = \sum_{i=0}^{\infty} \left(1 - \prod_{p|n} \left(1 - \left(\frac{p-1}{p}\right)^i\right)\right)$$

Theorem

For
$$n \geq 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \neq 1}} (-1)^{\omega(d)+1} \frac{d}{d-\varphi(d)}$.

$$a(n) = \mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}[X > i] = \sum_{i=0}^{\infty} (1 - \mathbb{P}[X \le i])$$

$$= \sum_{i=0}^{\infty} \left(1 - \prod_{\substack{p \mid n}} \mathbb{P}[X_p \le i]\right) = \sum_{i=0}^{\infty} \left(1 - \prod_{\substack{p \mid n}} \left(1 - \left(\frac{p-1}{p}\right)^i\right)\right)$$

$$= \sum_{i=0}^{\infty} \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{\varphi(d)^i}{d^i}$$

Theorem

For
$$n \ge 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{d}{d-\varphi(d)}$.

Proof: Let $X = \max_{p|n} \{X_p\}$.

$$\begin{aligned} a(n) &= \mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}[X > i] = \sum_{i=0}^{\infty} (1 - \mathbb{P}[X \le i]) \\ &= \sum_{i=0}^{\infty} \left(1 - \prod_{p \mid n} \mathbb{P}[X_p \le i] \right) = \sum_{i=0}^{\infty} \left(1 - \prod_{p \mid n} \left(1 - \left(\frac{p-1}{p} \right)^i \right) \right) \\ &= \sum_{i=0}^{\infty} \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{\varphi(d)^i}{d^i} = \sum_{\substack{d \mid n \\ d \ne 1}} \frac{(-1)^{\omega(d)+1}}{1 - \frac{\varphi(d)}{d}} \end{aligned}$$

12

Squarefree numbers

Theorem

For
$$n \ge 2$$
 squarefree, $a(n) = \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{d}{d-\varphi(d)}$.

Proof: Let $X = \max_{p|n} \{X_p\}$.

$$\begin{split} a(n) &= \mathbb{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}[X > i] = \sum_{i=0}^{\infty} (1 - \mathbb{P}[X \le i]) \\ &= \sum_{i=0}^{\infty} \left(1 - \prod_{p \mid n} \mathbb{P}[X_p \le i] \right) = \sum_{i=0}^{\infty} \left(1 - \prod_{p \mid n} \left(1 - \left(\frac{p-1}{p} \right)^i \right) \right) \\ &= \sum_{i=0}^{\infty} \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{\varphi(d)^i}{d^i} = \sum_{\substack{d \mid n \\ d \ne 1}} \frac{(-1)^{\omega(d)+1}}{1 - \frac{\varphi(d)}{d}} = \sum_{\substack{d \mid n \\ d \ne 1}} (-1)^{\omega(d)+1} \frac{d}{d - \varphi(d)}. \end{split}$$

12

Factor $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where $p_1 > p_2 > \ldots > p_k$.

13

Factor
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
 where $p_1 > p_2 > \ldots > p_k$.

Write

$$P_i(n) = p_i$$

Factor
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
 where $p_1 > p_2 > \ldots > p_k$.

Write

$$P_i(n) = p_i$$

$$B(n) = \sum_{i=1}^k \alpha_i p_i.$$

Factor $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where $p_1 > p_2 > \ldots > p_k$.

Write

$$P_i(n) = p_i$$

$$B(n) = \sum_{i=1}^k \alpha_i p_i.$$

Trivial lower bound:

$$P_1(n) \leq a(n)$$
.

Factor $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where $p_1 > p_2 > \ldots > p_k$.

Write

$$P_i(n) = p_i$$

$$B(n) = \sum_{i=1}^k \alpha_i p_i.$$

Trivial lower bound:

$$P_1(n) \leq a(n)$$
.

Almost-as-trivial upper bound:

$$a(n) \leq B(n)$$
.

$$P_1(n) \leq a(n) \leq B(n)$$

$$P_1(n) \leq a(n) \leq B(n)$$

Theorem: (Alladi, Erdős, 1977)

$$\sum_{n < x} P_1(n) \sim \frac{\pi^2 x^2}{12 \log x}$$

$$P_1(n) \leq a(n) \leq B(n)$$

Theorem: (Alladi, Erdős, 1977)

$$\sum_{n < x} P_1(n) \sim \frac{\pi^2 x^2}{12 \log x} \sim \sum_{n < x} B(n).$$

$$P_1(n) \leq a(n) \leq B(n)$$

Theorem: (Alladi, Erdős, 1977)

$$\sum_{n < x} P_1(n) \sim \frac{\pi^2 x^2}{12 \log x} \sim \sum_{n < x} B(n).$$

Corollary:
$$\sum_{n < x} a(n) \sim \frac{\pi^2 x^2}{12 \log x}.$$

$$P_1(n) \leq a(n) \leq B(n)$$

Theorem: (Alladi, Erdős, 1977)

$$\sum_{n < x} P_1(n) \sim \frac{\pi^2 x^2}{12 \log x} \sim \sum_{n < x} B(n).$$

Corollary:
$$\sum_{n < x} a(n) \sim \frac{\pi^2 x^2}{12 \log x}.$$

The asymptotic behavior of $P_i(n)$, B(n) and their friends have been studied by Alladi, De Koninck, Erdős, Ivić, Naslund, Pomerance and others.

Is $P_1(n)$ or B(n) a better estimate for a(n)?

15

Is $P_1(n)$ or B(n) a better estimate for a(n)?

Theorem

On a set of asymptotic density 1,

Is $P_1(n)$ or B(n) a better estimate for a(n)?

Theorem

On a set of asymptotic density 1,

$$a(n) = P_1(n) + o(1)$$

If
$$P_1(n) > P_2(n)^2$$

Is $P_1(n)$ or B(n) a better estimate for a(n)?

Theorem

On a set of asymptotic density 1,

$$a(n) = P_1(n) + o(1)$$
 If $P_1(n) > P_2(n)^2$
 $a(n) - P_1(n) \to \infty$ as $n \to \infty$ If $P_1(n) < P_2(n)^2$.

15

Is $P_1(n)$ or B(n) a better estimate for a(n)?

Theorem

On a set of asymptotic density 1,

$$a(n) = P_1(n) + o(1)$$
 If $P_1(n) > P_2(n)^2$
 $a(n) - P_1(n) \to \infty$ as $n \to \infty$ If $P_1(n) < P_2(n)^2$.

Theorem (Wheeler, 1990)

The integers with $P_1(n) > P_2(n)^2$ have density 0.62432... the Golomb-Dickman constant.

16

Theorem (Erdős, Alladi, 1977)

$$\sum_{n\leq x} (B(n) - P_1(n))$$

Theorem (Erdős, Alladi, 1977)

$$\sum_{n\leq x} (B(n)-P_1(n)) \sim \sum_{n\leq x} P_2(n)$$

Theorem (Erdős, Alladi, 1977)

$$\sum_{n \le x} (B(n) - P_1(n)) \sim \sum_{n \le x} P_2(n) \sim K_2 \frac{x^{3/2}}{\log^2 x}$$

Theorem (Erdős, Alladi, 1977)

$$\sum_{n \leq x} (B(n) - P_1(n)) \sim \sum_{n \leq x} P_2(n) \sim K_2 \frac{x^{3/2}}{\log^2 x}$$

Balasubramanian: $K_2 = \frac{8}{3}\zeta(3/2)$.

$$\sum_{n \le x} B(n) - P_1(n) \sim \sum_{n \le x} P_2(n) \sim \frac{8}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x}$$

$$\sum_{n \le x} B(n) - P_1(n) \sim \sum_{n \le x} P_2(n) \sim \frac{8}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x}$$

What about $a(n) - P_1(n)$?

$$\sum_{n \le x} B(n) - P_1(n) \sim \sum_{n \le x} P_2(n) \sim \frac{8}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x}$$

What about $a(n) - P_1(n)$? Note: This is the expected number of steps required after picking up the largest prime divisor of n.

Nathan McNew Random Multiplicative Walks January 7th, 2017

$$\sum_{n \le x} B(n) - P_1(n) \sim \sum_{n \le x} P_2(n) \sim \frac{8}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x}$$

What about $a(n) - P_1(n)$? Note: This is the expected number of steps required after picking up the largest prime divisor of n.

Theorem

$$\sum_{n \le x} a(n) - P_1(n) \sim \frac{8 - 2\pi}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x}$$

$$\sum_{n \le x} B(n) - P_1(n) \sim \sum_{n \le x} P_2(n) \sim \frac{8}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x}$$

What about $a(n) - P_1(n)$? Note: This is the expected number of steps required after picking up the largest prime divisor of n.

Theorem

$$\sum_{n \le x} a(n) - P_1(n) \sim \frac{8 - 2\pi}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x} \sim \left(1 - \frac{\pi}{4}\right) \sum_{n \le x} P_2(n)$$

$$\sum_{n \le x} B(n) - P_1(n) \sim \sum_{n \le x} P_2(n) \sim \frac{8}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x}$$

What about $a(n) - P_1(n)$? Note: This is the expected number of steps required after picking up the largest prime divisor of n.

Theorem

$$\sum_{n \le x} a(n) - P_1(n) \sim \frac{8 - 2\pi}{3} \zeta(3/2) \frac{x^{3/2}}{\log^2 x} \sim \left(1 - \frac{\pi}{4}\right) \sum_{n \le x} P_2(n)$$

"On average:"
$$a(n) \approx P_1(n) + \left(1 - \frac{\pi}{4}\right) P_2(n)$$
.

Question

Is a(n) ever an integer when n is not a prime or prime power?

Question

Is a(n) ever an integer when n is not a prime or prime power?

Question

How many distinct residues modulo n is this walk expected to visit?

Question

Is a(n) ever an integer when n is not a prime or prime power?

Question

How many distinct residues modulo n is this walk expected to visit?

Question

Can similar results be obtained about the variance of the time to reach $0 \pmod{n}$?

Thank you!

19