Probabilidade

Variância e Covariância

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada...

Esperança matemática

- Valor médio "esperado" de um experimento se ele for repetido muitas vezes.
- Média dos elementos de um espaço amostral ponderada pelas suas probabilidades.

Duas empresas, e as duas possuem 1000 empregados;

As duas empresas possuem a mesma média salarial: R\$10.000,00;

- E1: Todos os empregados ganham R\$10.000,00;
- E2: Todos os empregados ganham R\$100, mas o chefe R\$9.000.000,00;

Em qual das duas empresas você trabalharia?

Mesma média, distribuição diferente;

Variância

Medida que calcula a dispersão dos dados;

$$\sigma^2 = rac{\sum\limits_{i=1}^n (x_i - \mu)^2}{n} \;\; \sigma^2 = V(X) = E(X - \mu)^2 \ \sigma_X = \sqrt{V(X)}$$

Dado justo

$$E(X) = \sum_{x} p_x . x \quad E(X) = \mu = 3.5$$

face	ace prob x - µ		(x - μ) ²
1	1/6	-2.5	6.25
2	1/6	-1.5	2.25
3	1/6	-0.5	0.25
4	1/6	0.5	0.25
5	1/6	1.5	2.25
6	1/6	2.5	6.25

$$V(X) = E(X - \mu)^2$$

$$V(X) = p_1.(x_1 - \mu)^2 + \ldots + p_6.(x_6 - \mu)^2$$

$$V(X) = 2.92...$$

$$\sigma = \sqrt{V(X)} = \sqrt{2.92} = 1.71...$$

Três moedas

X = {número de caras após jogadas de três moedas}

$$E(X) = \sum_{x} p_x . x \quad E(X) = \mu = 1.5$$

# caras	prob	x - µ	(x - μ) ²	$V(X) = E(X-\mu)^2$
0	1/8	-1,5	2.25	$V(X) = \frac{1}{8}.2.25 + \ldots + \frac{1}{8}.2.25$
1	3/8	-0.5	0.25	$V(X) = \frac{1}{8}.2.20++\frac{1}{8}.2.20$
2	3/8	0.5	0.25	$V(X)=0.75=rac{3}{4}$
3	1/8	1.5	2.25	$\sigma=\sqrt{rac{3}{4}}=rac{\sqrt{3}}{2}$

Fórmula alternativa da variância

$$V(X) = E(X - \mu)^2$$
 $E(X) = \mu$

Fórmula alternativa da variância

$$egin{align} V(X) &= E(X - \mu)^2 & E(X) &= \mu \ V(X) &= E(X^2 - 2X\mu + \mu^2) \ V(X) &= E(X^2) - E(2X\mu) + E(\mu^2) \ V(X) &= E(X^2) - 2\mu E(X) + \mu^2 \ V(X) &= E(X^2) - 2\mu^2 + \mu^2 \ V(X) &= E(X^2) - \mu^2 = E(X^2) - (E(X))^2 \ \end{cases}$$

Como as modificações simples em X afeta a sua variância?

Adição por uma constante (Tradução)

$$E(Y) = E(X)+b$$

$$V(Y) = V(X+b)$$

$$= E(X+b-\mu_{x+b})^{2}$$

$$= E(X+b-(\mu_{x}+b))^{2}$$

$$V(Y) = E(X-\mu_{x})^{2}$$

$$V(Y) = V(X)$$

$$V(X) = E(X - \mu)^2$$

Multiplicação por uma constante (dimensionamento) $V(X) = E(X - \mu)^2$

$$E(Y) = bE(X)$$

$$V(Y) = V(Xb)$$

$$= E(Xb - \mu_{xb})^{2}$$

$$= E(Xb - b\mu_{x})^{2}$$

$$= E(b(X - \mu_{x}))^{2}$$

$$= b^{2}E(X - \mu_{x})^{2} = b^{2}V(X)$$

$$\sigma_{Y} = \sqrt{V(Y)} = \sqrt{b^{2}V(X)} = b\sqrt{V(X)}$$

Transformações afins

$$egin{array}{ll} V(aX+b) &= V(aX) \ &= a^2 V(X) \end{array}$$

$$\sigma_{ax+b} = |a|\sigma_x$$

$$U = X + Y$$

 $E(U) = \sum_{u} p_u . u$

X = {# de caras na jogada da moeda 1}

Y = {# de caras na jogada da moeda 2}

X/Y	$P(Y=0) = \frac{1}{2}$	P(Y=1) = ½		
$P(X=0) = \frac{1}{2}$	1/4	1/4		
P(X=1) = ½	1/4	1/4		

U =X+Y	P(x,y)	P(x,y).u
0	1/4	0
1	1/2	1/2
2	1/4	1/2

E(U) = 1

U = X + Y

$$E(U) = \sum p_u . \, u$$

$$E(U) = \sum_{x} \sum_{y} p_{(x,y)}. (x+y)$$

$$E(U) = \sum \sum p_{(x,y)}$$
 . $x + p_{(x,y)}$. y

X :	= {#	de	caras	na	jogada	da	moeda	1}
-----	------	----	-------	----	--------	----	-------	----

Y = {# de caras na jogada da moeda 2}

X/Y	P(Y=0) = ½	P(Y=1) = ½	
$P(X=0) = \frac{1}{2}$	1/4	1/4	
$P(X=1) = \frac{1}{2}$	1/4	1/4	

$E(U) = \sum \sum p_{(x,y)} \cdot x + \sum \sum p_{(x,y)} \cdot y$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$E(U) = \sum x \sum p_{(x,y)} + \sum y \sum p_{(x,y)}$
x y y x
$E(U) = \sum_x x. p(x) + \sum_y y. p(y)$
x y
E(U)=E(X)+E(Y)

U =X+Y	P(x,y)	P(x,y).u
0	1/4	0
1	1/2	1/2
2	1/4	1/2

E(U) = 1

$$U=X+Y$$
 $V(U)=V(X)+V(Y)$? $V(U)=E(U^2)-(E(U))^2$

$$U = X + Y$$
 $V(U) = V(X) + V(Y)$?
 $V(U) = E(U^2) - (E(U))^2$
 $V(U) = E((X + Y)^2) - (E(X + Y))^2$
 $V(U) = E(X^2 + 2XY + Y^2) - (E(X) + E(Y))^2$
 $V(U) = E(X^2) + 2E(XY) + E(Y^2) - ((E(X))^2 + 2E(X)E(Y) + (E(Y))^2)$
 $V(U) = E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2 + 2(E(XY) - E(X)E(Y))$
 $V(U) = V(X) + V(Y) + 2(E(XY) - E(X)E(Y))$

Covariância

Covariância

 $Cov(X,Y) \rightarrow Tanto de X que varia junto com Y$

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

Média do produto da diferença entre Xi e sua média e da diferença entre Yi e sua média.

$$Cov(X,Y) = E(x - \mu_x)(y - \mu_y)$$

Covariância

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

$$Cov(X,Y) = E(x - \mu_x)(y - \mu_y)$$

Covariância

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

$$Cov(X,Y) = E(x - \mu_x)(y - \mu_y)$$

$$Cov(X,Y) = E(xy - y\mu_x - x\mu_y + \mu_x\mu_y)$$

$$Cov(X,Y) = E(XY) - E(y\mu_x) - E(x\mu_y) + E(\mu_x\mu_y)$$

$$Cov(X,Y) = E(XY) - \mu_x E(Y) - \mu_y E(X) + \mu_x \mu_y$$

$$Cov(X,Y) = E(XY) - \mu_x \mu_y - \mu_y \mu_x + \mu_x \mu_y$$

$$Cov(X,Y) = E(XY) - \mu_x \mu_y$$

$$U=X+Y$$
 $V(U)=V(X)+V(Y)$?
$$V(U)=E(U^2)-(E(U))^2$$

$$V(U)=V(X)+V(Y)+2(E(XY)-E(X)E(Y))$$
 Covariância = 0

Variáveis independentes!

Exemplos (Dado)

Evento	Conjunto	Probabilidade	
primos	{2, 3, 5}	1/2	
ímpar	{1, 3, 5}	1/2	
quadrado	{1, 4}	1/3	

Quais pares de eventos são independentes?

Interseção	Conj.	Prob.	=?	Produto	Independência
Primos ∩ ímpar	{ 3,5 }	1/3	≠	1/2 * 1/2 = 1/4	dependente
Primos ∩ quadrado	{Ø}	0	≠	1/2 * 1/3 = 1/6	dependente
Quadrado ∩ ímpar	{1}	1/6	=	1/2 * 1/3 = 1/6	independente

Revisão

Variância;

Esperança e variância com duas variáveis aleatórias;

Covariância.