Подготовка к рубежному контролю №2 «Функция нескольких переменных»

Проект «Аполлон» 29 мая 2024 г.

1 Теория

Вопрос 1. Дать определение открытой окрестности и открытого множества в \mathbb{R}^n .

Ответ. Если для каждой точки a множества $A \subset \mathbb{R}^n$ существует ε -окрестность точки a и целиком содержащаяся в A: $U(a, \varepsilon) \subset A$, то такое множество A называют открытым.

Ответ. Открытой окрестностью точки называется любое открытое множество, включающее в себя эту точку.

Вопрос 2. Дать определение предельной точки, граничной точки множества, и замкнутого множества в \mathbb{R}^n .

Ответ. Точку $f \in \mathbb{R}^n$ называют предельной точкой множества $A \in \mathbb{R}^n$, если любая проколотая окрестность точки содержит точки из множества A.

Ответ. Точку $a \in \mathbb{R}^n$ называют граничной точкой множества $A \in \mathbb{R}^n$, если любая ε -окрестность точки a содержит как точки, принадлежащие множеству A, так и точки, не принадлежащие этому множеству.

Ответ. Множество, которое содержит все свои граничные точки (свою границу), называют замкнутым множеством.

Вопрос 3. Дать определение ограниченного и связного множества в \mathbb{R}^n .

Ответ. Множество $A \in \mathbb{R}^n$ называют ограниченным множеством, если существует такое положительное число r, что r-окрестность точки $0 = (0, \dots, 0)$ содержит множество A.

Вопрос 4. Дать определение предела функции нескольких переменных (Φ H Π) по множеству и непрерывной Φ H Π .

Ответ. Пусть заданы функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$, множество $A \subset D(f)$, включенное в область определения D(f) функции f, и предельная точка a множества A. Точку $b \in \mathbb{R}$ называют пределом функции f в точке a по множеству A, если для любой ε -окрестности $U(b,\varepsilon)$ точки b существует такая проколотая δ -окрестность $U(a,\delta)$ точки a, что $f(x) \in U(b,\varepsilon)$ при $x \in U(a,\delta) \cap A$

$$\forall U(b,\varepsilon) \subset \mathbb{R}^m \quad \exists (a,\delta) \subset \mathbb{R}^n \quad \forall x \in U(a,\delta) \cap A: \quad f(x) \in U(b,\varepsilon).$$

Ответ. Функция нескольких переменных $f:A\subset\mathbb{R}^n\to\mathbb{R}$ называется непрерывной в точке $a\in \forall A,$ если существует предел функции f при $x\underset{A}{\to}a,$ равный значению функции в этой точке

$$\lim_{x \to a} f(x) = f(a).$$

Вопрос 5. Дать определение частной производной ФНП в точке.

Ответ. Пусть определена функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ в некоторой окрестности точки $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$. Тогда в некоторой окрестности точки $a_i \in \mathbb{R}$ $i = \overline{1,n}$ определена функция одного переменного $\varphi_1(x_i) = f(x_1, a_1, \ldots, a_i, \ldots, a_n)$, которая получается из функции $f(x_1, \ldots, x_n)$ при фиксированных значениях всех аргументов, кроме i-го. Тогда производную $\varphi'(a_i)$ функции $\varphi(x_i)$ в точке $a_i \in \mathbb{R}$ называют частной производной функции нескольких переменных f в точке a по переменному x_i .

Вопрос 6. Дать определение дифференцируемой ФНП в точке.

Ответ. Функцию $f: \mathbb{R}^n \to \mathbb{R}$, определенную в некоторой окрестности точки x, называют дифференцируемой в точке x, если ее полное приращение в окрестности этой точки можно представить в виде

$$\Delta f(x) = a_1 \Delta x_1 + a_2 \Delta x_2 + \ldots + a_n \Delta x_n + \alpha(\Delta x) |\Delta x|,$$

где коэффициенты a_1, a_2, \dots, a_n не зависят от приращений Δx , а функция $\alpha(\Delta x)$ является бесконечно малой при $\Delta x \to 0$.

Вопрос 7. Сформулировать теорему о связи непрерывности и дифференцируемости ФНП.

Теорема. Если функция нескольких переменных дифференцируема в некоторой точке, то она непрерывна в этой точке.

Вопрос 8. Сформулировать теорему о необходимых условиях дифференцируемости ФНП.

Необходимость. Если функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке x, то у этой функции в точке x существуют все конечные частные производные $f'_x(x)$, $i = \overline{1, n}$, причем коэффициенты a_i в представлении функции в виде

$$\Delta f(x) = a_1 \Delta x_1 + a_2 \Delta x_2 + \ldots + a_n \Delta x_n + \alpha(\Delta x) |\Delta x|$$

равны значениям соответствующих частных производных в точке х:

$$a_i = f'_{x}(x), \quad i = \overline{1, n}.$$

Вопрос 9. Сформулировать теорему о достаточных условиях дифференцируемости ФНП.

Достаточность. Если функция нескольких переменных $f:\mathbb{R}^n \to \mathbb{R}$ в некоторой окрестности точки а определена и имеет частные производные по всем переменным, причем все производные непрерывны в самой точке a, то функция f дифференцируема в точке a.

Вопрос 10. Дать определение (полного) первого дифференциала ФНП.

Ответ. Линейную относительно Δx часть полного приращения функции f(x), дифференцируемой в точке x называют (полным) дифференциалом функции f и обозначают как df(x)

$$df(x) = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \ldots + \frac{\partial f}{\partial x_n} dx_n.$$

Вопрос 11. Дать определение второго дифференциала ФНП и матрицы Гессе.

Ответ. Если дифференциал функции f(x) является дифференцируемой функцией, то выражение

$$d(df(x)) = \sum_{i=1}^{n} \frac{\partial df(x)}{\partial x} dx_{j} = \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_{j} \partial x_{i}} dx_{i} dx_{j}$$

называют вторым дифференциалом функции f(x).

Ответ. Если для функции $f(x_1,...,x_n)$ в точке x существуют все частные производные второго порядка, то из них можно составить квадратную матрицу порядка n:

$$f''(x) = \begin{pmatrix} \frac{\partial^2 f_1(x)}{\partial x_1^2} & \frac{\partial^2 f_1(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f_1(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f_2(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f_2(x)}{\partial^2 x_2} & \cdots & \frac{\partial^2 f_2(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f_2(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f_n(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f_2(x)}{\partial^2 x_n} \end{pmatrix},$$

называемой матрицей Гессе.

Вопрос 12. Сформулировать теорему о независимости смешанных частных производных от порядка дифференцирования.

Теорема (О смешанных частных производных). Пусть функция $f(x_1, x_2, ..., x_n)$ (n > 1) в некоторой окрестности точки $a \in \mathbb{R}^n$ имеет частные производные первого порядка f'_{x_i} и $f''_{x_ix_j}$, $i \neq j$, а также смешанные производные $f''_{x_ix_j}$ и $f''_{x_ix_j}$. Если эти смешанные производные являются непрерывными в точке a функциями по части переменных x_i и x_j , то в этой точке их значения совпадают, то есть $f''_{x_ix_i} = f''_{x_ix_i}$.

Вопрос 13. Сформулировать теорему о необходимых и достаточных условиях того, чтобы выражение P(x, y)dx + Q(x, y)dy было полным дифференциалом.

Вопрос 14. Записать формулы для вычисления частных производных сложной функции вида z = f(u(x, y), v(x, y)).

Ответ.

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x} \qquad \qquad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial y}.$$

Вопрос 15. Записать формулу для вычисления производной сложной функции вида u = f(x(t), y(t), z(t)).

Ответ.

$$\frac{du}{dt} = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} + \frac{\partial u}{\partial z}\frac{dx}{dt}.$$

Вопрос 16. Сформулировать теорему о неявной функции.

Теорема (О неявной функции). Пусть уравнение $f(x,y)=0,\ x,y\in\mathbb{R},\$ удовлетворяет следующим трем условиям:

- 1. координаты точки (a,b) удовлетворяют уравнению f(a,b)=0;
- 2. функция f(x,y) определена в некоторой окрестности U точки (a,b) и непрерывно дифференцируема в U, то есть $f \in C^1(U)$;
- 3. частная производная функции f(x,y) в точке (a,b) по переменному y отлична от нуля $\frac{\partial f}{\partial y} \neq 0$.

Тогда существует прямоугольник P, определяемый неравенствами $|x-a| < \delta_x$, $|x-b| < \delta_y$, имеющий центр симметрии в точке (a,b), такой, что в P уравнение f(x,y)=0 разрешимо относительно переменного y и тем самым задает функцию $y=\varphi(x), x\in T=(a-\delta_x,a+\delta_x)$. При этом функция $y=\varphi(x)$ непрерывно дифференцируема на T, а ее производная может

быть вычислена по формуле

$$\varphi'(x) = -\left. \frac{f_x'(x,y)}{f_y'(x,y)} \right|_{y=\varphi(x)}.$$

Вопрос 17. Записать формулы для вычисления частных производных неявной функции z(x,y), заданной уравнением F(x,y,z) = 0.

Ответ.

$$\frac{\partial z}{\partial x} = -\frac{\partial F}{\partial x}\frac{\partial x}{\partial z} \qquad \qquad \frac{\partial z}{\partial y} = -\frac{\partial F}{\partial y}\frac{\partial y}{\partial z}$$

Вопрос 18. Дать определение градиента ФНП и производной ФНП по направлению.

Ответ. Производной функции $f:\mathbb{R}^n \to \mathbb{R}$ в точке $a\in\mathbb{R}^n$ по направлению вектора n называют число

$$\frac{\partial f(a)}{\partial n} = \lim_{s \to +0} \frac{f(a + sn^o) - f(a)}{s},$$

если этот предел существует. n^o обозначен единичный вектор, сонаправленный с n

$$n^o = \frac{n}{|n|}.$$

Ответ. Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ в точке x имеет все частные производные первого порядка. Тогда вектор

$$f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

называют градиентом функции f в точке x.

Вопрос 19. Записать формулу для вычисления производной ФНП по направлению. Ответ.

$$\frac{\partial f(a)}{\partial n} = \sum_{i=1}^{n} \frac{\partial f(a)}{\partial x_i} v_i,$$

где $n/|n| = (v_1 \dots v_n)^{\tau}$.

Вопрос 20. Перечислить основные свойства градиента ФНП.

Ответ. 1. Если функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $x \in \mathbb{R}^n$, то в этой точке

$$\frac{\partial f(x)}{\partial n} = \prod_{n \neq 0} f(x),$$

где $\Pi p_b a$ – проекция вектора a на направление вектора b.

2. Если функция $f:\mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $x\in\mathbb{R}^n$ и $f(x)\neq 0,$ то при n=f(x) имеем

$$\frac{\partial f(x)}{\partial n} = |f(x)|.$$

- 3. Если функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $x \in \mathbb{R}^n$, то в этой точке вектор f(x) указывает направление наибольшего роста функции f(x).
- 4. Если функция $f(x): \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке x, то в этой точке вектор -f(x) задает направление наибольшего убывания функции.

5. Если функция $f(x): \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке x, то наибольшая скорость роста (или убывания) функции f(x) в этой точке равна |f(x)| (или |-f(x)|).

Вопрос 21. Сформулировать теорему Тейлора для функции двух переменных.

Теорема (Теорема Тейлора). Пусть функция нескольких переменных $f:\mathbb{R}^n\to\mathbb{R}$ определена в некоторой окрестности U точки $a\in\mathbb{R}^n$, причем функция и ее производные до m+1 порядка непрерывны $f\in C^{m+1}(U)$. Если отрезок, соединяющий точки $a=(a_1,\ldots,a_n)$ и $a+\Delta x=(a_1+\Delta x_1,\ldots,a_n+\Delta x_n)$, содержится в U, то для функции f(x) имеет место формула Тейлора

$$f(a + \Delta x) = \sum_{k=0}^{m} \frac{d^{k} f(a)}{k!} + \frac{d^{m+1} f(a + \vartheta \Delta x)}{(m+1)!},$$

где $\vartheta \in (0,1)$ – некоторое число, а $d^0 f(a) = f(a)$ по определению.

Вопрос 22. Сформулировать теорему об условиях существовании касательной плоскости к поверхности, заданной уравнением F(x, y, z) = 0.

Теорема. Если для поверхности S, заданной уравнением F(x,y,z)=0 известны координаты x_0,y_0,z_0 точки $M\in S$ выполняются следующие условия:

- 1. F(x, y, z) дифференцируема в точке M;
- 2. градиент функции F(x, y, z) в точке M отличен от нуля;

то для данной поверхности существует касательная плоскость к точке M.

Вопрос 23. Записать уравнения касательной и нормали к поверхности F(x, y, z) = 0 в точке (x_0, y_0, z_0) .

Ответ. Для поверхности S заданной уравнением F(x,y,z)=0 в точке (x_0,y_0,z_0) касательная плоскость имеет вид

$$\frac{\partial F(x_0,y_0,z_0)}{\partial x}(x-x_0) + \frac{\partial F(x_0,y_0,z_0)}{\partial y}(y-y_0) + \frac{\partial F(x_0,y_0,z_0)}{\partial z}(z-z_0) = 0.$$

Уравнение нормали к поверхности S в точке M:

$$\frac{x - x_0}{F_x'(x_0, y_0, z_0)} = \frac{y - y_0}{F_y'(x_0, y_0, z_0)} = \frac{z - z_0}{F_z'(x_0, y_0, z_0)}$$

Вопрос 24. Дать определение (обычного) экстремума (локального максимума и минимума) ФНП.

Ответ. Функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$, определенная в некоторой окрестности точки $a \in \mathbb{R}^n$, имеет в этой точке локальный максимум (локальный минимум), если существует такая проколотая окрестность $\mathring{U}(a,\varepsilon)$ точки a, что для любой точки $x \in \mathring{U}(a,\varepsilon)$ выполнено неравенство $f(x) \leq f(a)$ ($f(x) \geq f(a)$).

Вопрос 25. Сформулировать необходимые условия экстремума ФНП.

Необходимость. Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ имеет в точке $a \in \mathbb{R}^n$ экстремум. Если функция $f(x_1, \dots, x_n)$ имеет в точке a частную производную первого порядка по переменному x_i , $i = \overline{1, n}$, то эта частная производная равна нулю: $\frac{\partial f(a)}{\partial x_i} = 0$. \square

Вопрос 26. Сформулировать достаточные условия экстремума ФНП.

Достаточность. Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ определена в окрестности U(a) точки a, дважды непрерывно дифференцируема в U(a) и df(a) = 0. Тогда:

- 1. если квадратичная форма $d^2f(a)$ в точке a положительно определенная, то в этой точке функция f(x) имеет строгий локальный минимум;
- 2. если квадратичная форма $d^2f(a)$ в точке a отрицательно определенная, то в этой точке функция f(x) имеет строгий локальный максимум;
- 3. если квадратичная форма $d^2f(a)$ в точке a знакопеременная, то в этой точке функция f(x) не имеет экстремума.

Вопрос 27. Дать определение условного экстремума ФНП.

Ответ. Функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$, определенная в окрестности точки $a \in \mathbb{R}^n$, достигает в этой точке условного локального максимума (минимума) при условиях $\varphi_1(x) = 0, \ldots \varphi_n(x) = 0$, где $\varphi_i(x)$, $i = \overline{1,n}$ – некоторые функции нескольких переменных, определенных в окрестности точки a, если существует такая проколотая окрестность $\mathring{U}(a, \delta)$ точки a, что для всех точек $x \in \mathring{U}(a, \delta)$, удовлетворяющих условиям $\varphi_i(x) = 0$, $i = \overline{1,m}$, верно неравенство

$$f(x) \le f(a) \qquad (f(x) \ge f(a))$$

Вопрос 28. Дать определение функции Лагранжа и множителей Лагранжа задачи на условный экстремум ФНП.

Ответ. Функцией Лагранжа для функции нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ и условий $\varphi_i(x) = 0, i = \overline{1,m}$ называется функция

$$L(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)+\sum_{i=1}^m\lambda_i\varphi_i(x_1,\ldots,x_n),$$

где λ_i $i = \overline{1,m}$ – множители Лагранжа.

Вопрос 29. Сформулировать необходимые условия условного экстремума ФНП.

Необходимость. Пусть функции нескольких переменных f(x,y) и $\varphi(x,y)$ определены и непрерывно дифференцируемы в окрестности точки P(a,b). Если функция f(x,y) имеет в точке P условный экстремум при условии $\varphi(x,y)=0$, причем $\varphi(a,b)\neq 0$, то существует такое число λ , которое вместе с координатами a и b точки P удовлетворяет системе уравнений

$$\begin{cases} \frac{\partial f(x,y)}{\partial x} + \lambda \frac{\partial \varphi(x,y)}{\partial x} = 0\\ \frac{\partial f(x,y)}{\partial y} + \lambda \frac{\partial \varphi(x,y)}{\partial y} = 0\\ \varphi(x,y) = 0 \end{cases}.$$

Вопрос 30. Сформулировать достаточные условия условного экстремума ФНП.

Достаточность. Пусть функции $f: \mathbb{R}^n \to \mathbb{R}, \ \varphi_i: \mathbb{R}^n \to \mathbb{R}, \ i = \overline{1,m}$ дважды непрерывно дифференцируемы в окрестности точки $a \in \mathbb{R}^n, \ \varphi(a) = 0, \left(\frac{\partial \varphi_i(a)}{\partial x_j}\right) = m$ и координаты точки a вместе с координатами некоторого вектора λ_a удовлетворяют системе уравнений

$$\begin{cases} \frac{\partial L(x,\lambda)}{\partial x_1} = 0\\ \dots\\ \frac{\partial L(x,\lambda)}{\partial x_n} = 0\\ \frac{\partial L(x,\lambda)}{\partial \lambda_1} = 0\\ \dots\\ \frac{\partial L(x,\lambda)}{\partial \lambda_n} = 0 \end{cases}$$

тогда:

- 1. если квадратичная форма $d^2L(a)_H$ положительно определенная, то функция f(x) имеет в точке a строгий условный локальный минимум при условии $\varphi(x)$;
- 2. если квадратичная форма $d^2L(a)_H$ отрицательно определенная, то функция f(x) имеет в точке a строгий условный локальный максимум при условии $\varphi(x)$;
- 3. если квадратичная форма $d^2L(a)_H$ знакопеременная, то функция f(x) в точке a не имеет условного экстремума.

Вопрос 31. Доказать теорему о необходимых условиях дифференцируемости ФНП.

Необходимость. Если функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке x, то у этой функции в точке x существуют все конечные частные производные $f'_x(x)$, $i = \overline{1, n}$, причем коэффициенты a_i в представлении функции в виде

$$\Delta f(x) = a_1 \Delta x_1 + a_2 \Delta x_2 + \ldots + a_n \Delta x_n + \alpha(\Delta x) |\Delta x|$$

равны значениям соответствующих частных производных в точке х:

$$a_i = f_x'(x), \quad i = \overline{1, n}.$$

Доказательство. Для дифференцируемой в точке x функции f представление полного приращения функции

$$\Delta f(x) = a_1 \Delta x_1 + a_2 \Delta x_2 + \ldots + a_n \Delta x_n + \alpha(\Delta x) |\Delta x|$$

верно для любого приращения Δx . В частности, когда

$$\Delta x = (0 \dots 0 \, \Delta x_i \, 0 \dots 0)^{\tau}, \quad \Delta x_i \neq 0,$$

где i выбран произвольным образом и зафиксирован. В этом случае $|\Delta x| = |\Delta x_i|$, а соответствующее полное приращении функции сводится к ее i-ому приращению $\Delta_i f(x)$. Равенство принимает вид

$$\Delta f(x) = \Delta_i f(x) = a_i \Delta x_i + \alpha(\Delta x) |\Delta x_i|.$$

Разделив на Δx_i и перейдя к пределу при $\Delta x_i \to 0$, получаем:

$$\lim_{\Delta x_i \to 0} \frac{\Delta_i f(x)}{\Delta x_i} = a_i + \lim_{\Delta x_i \to 0} \left(\alpha(\Delta x) \frac{|\Delta x_i|}{\Delta x_i} \right) = a_i,$$

поскольку функция $\alpha(\Delta x)$ бесконечно малая при $\Delta x_i \to 0$, а отношение $|\Delta x_i|/\Delta x_i = 1$, ограничено, так что последний предел равен нулю. Следовательно, производная $f_{x_i}(x)$ в точке x существует и равна a_i .

Вопрос 32. Доказать теорему о достаточных условиях дифференцируемости ФНП.

Достаточность. Если функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ в некоторой окрестности точки а определена и имеет частные производные по всем переменным, причем все производные непрерывны в самой точке a, то функция f дифференцируема в точке a.

Доказательство. Там выкладка на страницу, Вы точно думаете, что напишите это на PK?

Вопрос 33. Доказать теорему о независимости смешанных частных производных от порядка дифференцирования (для вторых производных функции двух переменных).

Теорема (О смешанных частных производных). Пусть функция $f(x_1, x_2, \dots, x_n)$ (n > 1) в некоторой окрестности точки $a \in \mathbb{R}^n$ имеет частные производные первого порядка f'_{x_i} и f''_{x_j} , $i \neq j$, а также смешанные производные $f''_{x_ix_j}$ и $f''_{x_ix_j}$. Если эти смешанные производные являются непрерывными в точке a функциями по части переменных x_i и x_j , то в этой точке их значения совпадают, то есть $f''_{x_ix_j} = f''_{x_ix_i}$.

Доказательство. Там выкладка на страницу, Вы точно думаете, что напишите это на PK?

Вопрос 34. Вывести формулу для дифференцирования сложной ФНП (можно ограничиться случаем функции вида z = f(x(t), y(t))).

Теорема. Если функция $g_i(t)$, $i = \overline{1,n}$ дифференцируемы в точке $\underline{a} \in \mathbb{R}$, а функция $f(u_1,\ldots,u_n)$ дифференцируема в точке $b=(b_1,\ldots,b_n)$, где $b_i=g_i(a),$ $i=\overline{1,n}$, то в некоторой окрестности точки a определена сложная функция $F(t)=f(g_1(t),\ldots,g_n(t))$, дифференцируемая в точке a, причем

$$\frac{dF(a)}{dt} = \frac{\partial f(b)}{\partial u_1} \frac{dg_1(a)}{dt} + \frac{\partial f(b)}{\partial u_2} \frac{dg_2(a)}{dt} + \ldots + \frac{\partial f(b)}{\partial u_n} \frac{dg_n(a)}{dt}.$$

Доказательство. Условие дифференцируемости функции f в точке b предполагает, что эта функция определена в некоторой окрестности $U(b,\sigma)$ точки b. Так как функции g_i дифференцируемы в точке a, они определены в некоторой окрестности этой точки и являются непрерывными функциями в точке a. Значит, согласно определению непрерывности, существует такая окрестность $U(a,\delta)$, в которой определены все функции $g_i, i = \overline{1,n}$ и выполняются неравенства $|g_i(t) - g_i(a)| < \frac{\sigma}{\sqrt{n}}$. Тогда для любого $t \in U(a,\delta)$ точка $u = (u_1, \ldots, u_n)$, где $u_i = g_i(t), i = \overline{1,n}$, попадает в окрестность $U(b,\sigma)$, поскольку $|u-b| < \sqrt{\frac{\sigma^2}{n}} \cdot n = \sigma$. Следовательно, в окрестности $U(a,\delta)$ определена сложная функция $F(t) = f(g_1(t), \ldots, g_n(t))$.

Пусть $t \in U(a, \delta)$ – произвольная точка, $u_i = g_i(t)$, $i = \overline{1, n}$, $z = f(u_1, \dots, u_n)$. Обозначим $\Delta t = t - a$, $\Delta u_i = u_i - b_i$, $\Delta z = z - c$, где c = f(b). В силу дифференцируемости функций g_i в точке a имеем представление

$$\Delta u_i = g_i(t) - g_i(a) = g_i'(a)\Delta t + \alpha_i(\Delta t)|\Delta t|1,$$

где $\Delta u = u - b$, $\alpha_i(\Delta t) \to 0$ при $\Delta x \to 0$. В силу дифференцируемости функции f в точке b имеем аналогичное представление

$$\Delta z = f(u) - f(b) = \sum_{i=1}^{n} \frac{\partial f(b)}{\partial u_i} \Delta u_i + \beta(\Delta u) |\Delta u|, \tag{2}$$

где $\beta(\Delta u) \to 0$ при $\Delta u \to 0$. Подставив (1) в (2), получим

$$\Delta F(a) = \Delta z = \sum_{i=1}^{n} \frac{\partial f(b_i)}{\partial u_i} \left(\frac{dg(a)}{dt} \Delta t + \alpha i (\Delta t) |\Delta t| \right) = \left(\sum_{i=1}^{n} \frac{\partial f(b_i)}{\partial u_i} \frac{dg(a)}{dt} \Delta t \right) \Delta t + \gamma (\Delta t) |\Delta t|.$$

Докажем, что функция $\gamma(\Delta t)$, имеющая вид

$$\gamma(\Delta t) = \sum_{i=1}^{n} \frac{\partial f(b)}{\partial u_i} \alpha_i(\Delta t) + \beta(\Delta g_1(a), \dots, \Delta g_m(a)) \sqrt{\sum_{i=1}^{n} \left(\frac{dg_i(a)}{dt} \frac{\Delta t}{|\Delta t|} + \alpha_i(\Delta t) \right)^2},$$

— бесконечно малая функция. Функция $\beta(\Delta u)$ бесконечно малая при $\Delta u \to 0$, причем на представление(2) не влияет значение этой функции при $\Delta u = 0$. Поэтому можно считать, что $\beta(0) = 0$ и что функция $\beta(\Delta u)$ непрерывна при $\Delta u = 0$. Но тогда функция $\beta(\Delta g_1(a), \ldots, \Delta g_m(a))$ непрерывна при $\Delta t = 0$, как композиция непрерывных функций. Значит, она является бесконечно малой при $\Delta t \to 0$. Функция $\nu(\Delta t) = \frac{\Delta t}{|\Delta t|}$ является ограниченной: $|\nu(\Delta t)| = 1$. Отсюда вытекает, что функция $\nu(\Delta t) = \sqrt{\sum_{i=1}^{n} \left(\frac{dg_i(a)}{dt}\nu(\Delta t) + \alpha_i(\Delta t)\right)^2}$ ограничена при $\Delta t \to 0$. Следовательно, произведение $\beta(\Delta g_1(a), \ldots, \Delta g_m(a))$ есть бесконечно малая функция при $\Delta t \to 0$, так как представляет собой произведение бесконечно малой на ограниченную функцию. Таким образом, $\gamma(\Delta t)$, как сумма бесконечно малых функций, является бесконечно малой функцией при $\Delta t \to 0$. Согласно определению это означает, что функция F дифференцируема в точке a.

Bonpoc 35. Сформулировать теорему о неявной функции. Вывести формулы для частных производных неявной функции.

Теорема (О неявной функции). Пусть уравнение $f(x,y) = 0, x,y \in \mathbb{R}$, удовлетворяет следующим трем условиям:

- 1. координаты точки (a, b) удовлетворяют уравнению f(a, b) = 0;
- 2. функция f(x,y) определена в некоторой окрестности U точки (a,b) и непрерывно дифференцируема в U, то есть $f \in C^1(U)$;
- 3. частная производная функции f(x,y) в точке (a,b) по переменному y отлична от нуля $\frac{\partial f}{\partial y} \neq 0$.

Тогда существует прямоугольник P, определяемый неравенствами $|x-a| < \delta_x$, $|x-b| < \delta_y$, имеющий центр симметрии в точке (a,b), такой, что в P уравнение f(x,y)=0 разрешимо относительно переменного y и тем самым задает функцию $y=\varphi(x), x\in T=(a-\delta_x,a+\delta_x)$. При этом функция $y=\varphi(x)$ непрерывно дифференцируема на T, а ее производная может быть вычислена по формуле

$$\varphi'(x) = -\left. \frac{f_x'(x,y)}{f_y'(x,y)} \right|_{y=\varphi(x)}.$$

Ответ. Пусть функция $\varphi(x)$, $x \in G \subset \mathbb{R}^n$ определена неявно уравнением f(x,y) = 0. Тогда в области G имеем $f(x,\varphi(x)) \equiv 0$. Считая, что функции $y = \varphi(x)$ и z = f(x,y) дифференцируемы в соответствующих точках, причем $f'(x,y) \neq 0$, тогда по правилу дифференцирования

сложной функции получаем:

$$\frac{\partial z}{\partial x_k} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial x_k} = 0, \quad x \in G.$$

Из этого уравнения находим

$$\frac{\partial y}{\partial x_k} = -\frac{\frac{\partial z}{\partial x_k}}{\frac{\partial z}{\partial u}}$$

что эквивалентно

$$\frac{\partial y}{\partial x_k} = -\frac{\partial z}{\partial x_k} \frac{\partial y}{\partial z} = -\frac{f_y'}{f_{x_k}'}.$$

Вопрос 36. Вывести уравнение касательной плоскости к поверхности, заданной уравнением F(x, y, z) = 0.

Ответ. Рассмотрим поверхность S, заданную уравнением F(x,y,z)=0. Пусть известны координаты x_0,y_0,z_0 точки $M\in S$ выполняются следующие условия:

- 1. F(x, y, z) дифференцируема в точке M;
- 2. градиент функции F(x, y, z) в точке M отличен от нуля.

Рассмотрим кривую γ , лежащую на поверхности S и проходящую через точку M. Зададим эту кривую параметрическими уравнениями

$$x = \varphi(t)$$
 $y = \psi(t)$ $z = \chi(t)$,

так, чтобы значение параметра t=0 соответствовало точке M, то есть чтобы

$$x_0 = \varphi(0)$$
 $y_0 = \psi(0)$ $z_0 = \chi(0)$.

Предположим, что в точке t=0 функции $\varphi(t), \psi(t), \chi(t)$ имеют производные, не обращающиеся в нуль одновременно. Тогда

$$F(\varphi(t), \psi(t), \chi(t)) \equiv 0,$$

причем сложная функция в левой части тождества дифференцируема в точке t=0. Поэтому, дифференцируя данное выражение в точке t=0 по правилу дифференцирования сложной функции, получаем

$$\frac{\partial F(x_0,y_0,z_0)}{\partial x}\varphi'(0) + \frac{\partial F(x_0,y_0,z_0)}{\partial y}\psi'(0) + \frac{\partial F(x_0,y_0,z_0)}{\partial y}\chi'(0) = 0.$$

Записанное равенство означает, что вектор

$$\tau = (\varphi'(0) \ \psi'(0) \ \chi'(0))^{\tau}$$

называемый касательным вектором к кривой γ в точке M ортогонален вектору

$$F(x_0,y_0,z_0) = \left(\frac{\partial F(x_0,y_0,z_0)}{\partial x} \ \frac{\partial \ F(x_0,y_0,z_0)}{\partial y} \ \frac{\partial F(x_0,y_0,z_0)}{\partial z}\right)$$

не зависящему от выбора кривой γ .

Итак, все касательные векторы в точке $M \in S$ всевозможных кривых, лежащий на поверхности S и проходящих через точку M, ортогональны градиенту $F(x_0,y_0,z_0)$ функции F(x,y,z). Построим плоскость π , проходящую через точку M и имеющую нормальный вектор $F(x_0,y_0,z_0)$. Тогда касательный вектор любой кривой, лежащей на поверхности S, в точке M будет параллелен плоскости π . Согласно определению, плоскость π является касательной плоскостью к поверхности S в точке M.