## The state of the s

## SEQUENCE LISTING

<110> SEIKI, Motoharu SATO, Hiroshi SHINAGAWA, Akira

<120> NOVEL METALLOPROTEINASE AND ENCODING DNA THEREFOR

<130> 55-290P

<140> 08/448,489 <141> 1995-06-07

<160> 19

<170> PatentIn Ver. 2.0

<210> 1

<211> 582

<212> PRT

<213> Homo sapiens

<400> 1

Met Ser Pro Ala Pro Arg Pro Ser Arg Cys Leu Leu Leu Pro Leu Leu 1 5 10 15

Thr Leu Gly Thr Ala Leu Ala Ser Leu Gly Ser Ala Gln Ser Ser Ser 20 25 30

Phe Ser Pro Glu Ala Trp Leu Gln Gln Tyr Gly Tyr Leu Pro Pro Gly 35 40 45

Asp Leu Arg Thr His Thr Gln Arg Ser Pro Gln Ser Leu Ser Ala Ala 50 55 60

Ile Ala Ala Met Gln Lys Phe Tyr Gly Leu Gln Val Thr Gly Lys Ala 65 70 75 80

Asp Ala Asp Thr Met Lys Ala Met Arg Arg Pro Arg Cys Gly Val Pro 85 90 95

Asp Lys Phe Gly Ala Glu Ile Lys Ala Asn Val Arg Arg Lys Arg Tyr 100 105 110

Ala Ile Gln Gly Leu Lys Trp Gln His Asn Glu Ile Thr Phe Cys Ile 115 120 125

Gln Asn Tyr Thr Pro Lys Val Gly Glu Tyr Ala Thr Tyr Glu Ala Ile

130 135 140

| Arg<br>145 | Lys        | Ala        | Phe        | Arg        | Val<br>150 | Trp        | Glu        | Ser        | · Ala      | Thr<br>155 |            | Leu        | Arg        | Phe        | Arg<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu        | Val        | Pro        | Tyr        | Ala<br>165 | Tyr        | Ile        | Arg        | Glu        | Gly<br>170 |            | Glu        | Lys        | Gln        | Ala<br>175 | Asp        |
| Ile        | Met        | Ile        | Phe<br>180 |            | Ala        | Glu        | Gly        | Phe        |            | Gly        | Asp        | Ser        | Thr<br>190 | Pro        | Phe        |
| Asp        | Gly        | Glu<br>195 | Gly        | Gly        | Phe        | Leu        | Ala<br>200 | His        | Ala        | Tyr        | Phe        | Pro<br>205 | Gly        | Pro        | Asn        |
| Ile        | Gly<br>210 | Gly        | Asp        | Thr        | His        | Phe<br>215 | Asp        | Ser        | Ala        | Glu        | Pro<br>220 | Trp        | Thr        | Val        | Arg        |
| Asn<br>225 | Glu        | Asp        | Leu        | Asn        | Gly<br>230 |            | Asp        | Ile        | Phe        | Leu<br>235 | Val        | Ala        | Val        | His        | Glu<br>240 |
| Leu        | Gly        | His        | Ala        | Leu<br>245 | Gly        | Leu        | Glu        | His        | Ser<br>250 | Ser        | Asp        | Pro        | Ser        | Ala<br>255 | Ile        |
| Met        | Ala        | Pro        | Phe<br>260 | Tyr        | Gln        | Trp        | Met        | Asp<br>265 | Thr        | Glu        | Asn        | Phe        | Val<br>270 | Leu        | Pro        |
| Asp        | Asp        | Asp<br>275 | Arg        | Arg        | Gly        | Ile        | Gln<br>280 | Gln        | Leu        | Tyr        | Gly        | Gly<br>285 | Glu        | Ser        | Gly        |
| Phe        | Pro<br>290 | Thr        | Lys        | Met        | Pro        | Pro<br>295 | Gln        | Pro        | Arg        | Thr        | Thr<br>300 | Ser        | Arg        | Pro        | Ser        |
| Val<br>305 | Pro        | Asp        | Lys        | Pro        | Lys<br>310 | Asn        | Pro        | Thr        | Tyr        | Gly<br>315 | Pro        | Asn        | Ile        | Cys        | Asp<br>320 |
| Gly        | Asn        | Phe        | Asp        | Thr<br>325 | Val        | Ala        | Met        | Leu        | Arg<br>330 | Gly        | Glů        | Met        | Phe        | Val<br>335 | Phe        |
| Lys        | Lys        | Arg        | Trp<br>340 | Phe        | Trp        | Arg        | Val        | Arg<br>345 | Asn        | Asn        | Gln        | Val        | Met<br>350 | Asp        | Gly        |
| Tyr        | Pro        | Met<br>355 | Pro        | Ile        | Gly        | Gln        | Phe<br>360 | Trp        | Arg        | Gly        | Leu        | Pro<br>365 | Ala        | Ser        | Ile        |
| Asn        | Thr<br>370 | Ala        | Tyr        | Glu        | Arg        | Lys<br>375 | Asp        | Gly        | Lys        | Phe        | Val<br>380 | Phe        | Phe        | Lys        | Gly        |
| Asp        | Lys        | His        | Trp        | Val        | Phe        | Asp        | Glu        | Ala        | Ser        | Leu        | Glu        | Pro        | Gly        | Tyr        | Pro        |

[]

Ala Ala Leu Phe Trp Met Pro Asn Gly Lys Thr Tyr Phe Phe Arg Gly 420 425 430

Asn Lys Tyr Tyr Arg Phe Asn Glu Glu Leu Arg Ala Val Asp Ser Glu 435 440 445

Tyr Pro Lys Asn Ile Lys Val Trp Glu Gly Ile Pro Glu Ser Pro Arg 450 455 460

Gly Ser Phe Met Gly Ser Asp Glu Val Phe Thr Tyr Phe Tyr Lys Gly 465 470 480

Asn Lys Tyr Trp Lys Phe Asn Asn Gln Lys Leu Lys Val Glu Pro Gly 485 490 495

Tyr Pro Lys Ser Ala Leu Arg Asp Trp Met Gly Cys Pro Ser Gly Gly 500 505 510

Arg Pro Asp Glu Gly Thr Glu Glu Glu Thr Glu Val Ile Ile Glu 515 520 525

Val Asp Glu Glu Gly Gly Gly Ala Val Ser Ala Ala Ala Val Leu 530 540

Pro Val Leu Leu Leu Leu Val Leu Ala Val Gly Leu Ala Val Phe 545 550 560

Phe Phe Arg Arg His Gly Thr Pro Arg Arg Leu Leu Tyr Cys Gln Arg
565 570 575

Ser Leu Leu Asp Lys Val 580

<210> 2

<211> 3403

<212> DNA

<213> Homo sapiens

<400> 2

agttcagtgc ctaccgaaga caaaggcgcc ccgagggagt ggcggtgcga ccccagggcg 60 tgggcccggc cgcggagcca cactgcccgg ctgacccggt ggtctcggac catgtctccc 120 gccccaagac cctccgttg tctcctgctc cccctgctca cgctcggcac cgcgctcgcc 180

tecetegget eggeecaaag eageagette ageecegaag eetggetaca geaatatgge 240 tacctgcctc ccggggacct acgtacccac acacagcgct caccccagtc actctcagcg 300 gccatcgctg ccatgcagaa gttttacggc ttgcaagtaa caggcaaagc tgatgcagac 360 accatgaagg ccatgaggcg cccccgatgt ggtgttccag acaagtttgg ggctgagatc 420 aaggccaatg ttcgaaggaa gcgctacgcc atccagggtc tcaaatggca acataatgaa 480 attactttct gcatccagaa ttacaccccc aaggtgggcg agtatgccac atacgaggcc 540 attcgcaagg cgttccgcgt gtgggagagt gccacaccac tgcgcttccg cgaggtgccc 600 tatgcctaca tccgtgaggg ccatgagaag caggccgaca tcatgatctt ctttgccgag 660 ggcttccatg gcgacagcac gcccttcgat ggtgagggcg gcttcctggc ccatgcctac 720 ttcccagggc ccaacattgg aggagacacc cactttgact ctgccgagcc ttggactgtc 780 aggaatgagg atctgaatgg aaatgacatc ttcctggtgg ctgtgcacga gctgggccat 840 gccctggggc tcgagcattc cagtgacccc tcggccatca tggcaccctt ttaccagtgg 900 atggacacgg agaattttgt gcttcccgat gatgaccgcc ggggcatcca gcaactttat 960 gggggtgagt cagggttecc caccaagatg ccccctcaac ccaggactac ctcccggcct 1020 tctgttcctg ataaacccaa aaaccccacc tatgggccca acatctgtga cgggaacttt 1080 gacaccgtgg ccatgctccg aggggagatg tttgtcttca agaagcgctg gttctggcgg 1140 gtgaggaata accaagtgat ggatggatac ccaatgccca ttggccagtt ctggcggggc 1200 ctgcctgcgt ccatcaacac tgcctacgag aggaaggatg gcaaattcgt cttcttcaaa 1260 ggagacaagc attgggtgtt tgatgaggcg tccctggaac ctggctaccc caagcacatt 1320 aaggagetgg geegaggget geetaeegae aagattgatg etgetetett etggatgeee 1380 aatggaaaga cctacttctt ccgtggaaac aagtactacc gtttcaacga agagctcagg 1440 gcagtggata gcgagtaccc caagaacatc aaagtctggg aagggatccc tgagtctccc 1500 agagggtcat tcatgggcag cgatgaagtc ttcacttact tctacaaggg gaacaaatac 1560 tggaaattca acaaccagaa gctgaaggta gaaccgggct accccaagtc agccctgagg 1620 gactggatgg gctgcccatc gggaggccgg ccggatgagg ggactgagga ggagacggag 1680 ctgcccgtgc tgctgctgct cctggtgctg gcggtgggcc ttgcagtctt cttcttcaga 1800 cgccatggga cccccaggcg actgctctac tgccagcgtt ccctgctgga caaggtctga 1860 cgcccatccg ccggcccgcc cactcctacc acaaggactt tgcctctgaa ggccagtggc 1920 agcaggtggt ggtgggtggg ctgctcccat cgtcccgagc cccctccccg cagcctcctt 1980 gettetetet gteecetgge tggeeteett caccetgace geeteectee eteetgeece 2040 ggcattgcat cttccctaga taggtcccct gagggctgag tgggagggcg gccctttcca 2100 gcctctgccc ctcaggggaa ccctgtagct ttgtgtctgt ccagccccat ctgaatgtgt 2160 tggggggctct gcacttgaag gcaggaccct cagacctcgc tggtaaaggt caaatggggt 2220 catctgctcc ttttccatcc cctgacatac cttaacctct gaactctgac ctcaggaggc 2280 totggggaac tocagecetg aaageceeag gtgtaceeaa ttggcageet etcactacte 2340 tttctggcta aaaggaatct aatcttgttg agggtagaga ccctgagaca gtgtgagggg 2400 gtggggactg ccaagccacc ctaagacctt gggaggaaaa ctcagagagg gtcttcgttg 2460 ctcagtcagt caagttcctc ggagatcttc ctctgcctca cctaccccag ggaacttcca 2520 aggaaggagc ctgagccact ggggactaag tgggcagaag aaacccttgg cagccctgtg 2580 cctctcgaat gttagccttg gatggggctt tcacagttag aagagctgaa accaggggtg 2640 cagctgtcag gtagggtggg gccggtggga gaggcccggg tcagagccct gggggtgagc 2700 cttaaggcca cagagaaaga accttgccca aactcaggca gctggggctg aggcccaaag 2760 gcagaacagc cagagggggc aggaggggac caaaaaggaa aatgaggacg tgcagcagca 2820 ttggaaggct ggggcccggc agccaggtta aagctaacag ggggccatca gggtgggctt 2880 gtggagctct caggaagggc cctgaggaag gcacacttgc tcctgttggt ccctgtcctt 2940 gctgcccagg cagggtggag gggaagggta gggcagccag agaaaggagc agagaaggca 3000 cacaaacgag gaatgagggg cttcacgaga ggccacaggg cctggctggc cacgctgtcc 3060

```
cggcctgctc accatctcag tgagggacag gagctggggc tgcttaggct gggtccacgc 3120
 ttccctggtg ccagcacccc tcaagcctgt ctcaccagtg gcctgccctc tcgctccccc 3180
 acccagecca eccattgaag teteettggg teecaaaggt gggeatggta eeggggaett 3240
 gggagagtga gacccagtgg agggagcaag aggagaggga tgtggggggg tggggcacgg 3300
 gtaggggaaa tggggtgaac ggtgctggca gttcggctag atttctgtct tgtttgtttt 3360
 tttgttttgt ttaatgtata tttttattat aattattata tat
                                                                    3403
 <210> 3
 <211> 7
 <212> PRT
 <213> Unknown
 <220>
<223> Description of Unknown Organism: Highly conserved
       sequence fragments from MMP family
<400> 3
Pro Arg Cys Gly Val Pro Asp
<210> 4
<211> 9
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Organism: Highly conserved
      sequence fragments from MMP family
<400> 4
Gly Asp Ala His Phe Asp Asp Glu
  1
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 5
ccmmgvtgys gvrwbccwga
                                                                  20
<210> 6
<211> 25
```

```
The first that the first was the first of the
```

```
<212> DNA
 <213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 6
ytcrtsvtcr tcraartgrr hrtcy
                                                                   25
<210> 7
<211> 30
<212> PRT
<213> Homo sapiens
<400> 7
Gly Gly Gly Ala Val Ser Ala Ala Ala Val Val Leu Pro Val Leu Leu
                  5
                                      10
Leu Leu Val Leu Ala Val Gly Leu Ala Val Phe Phe
             20
<210> 8
<211> 14
<212> PRT
<213> Homo sapiens
<400> 8
Arg Glu Val Pro Tyr Ala Tyr Ile Arg Glu Gly His Glu Lys
                                     10
<210> 9
<211> 14
<212> PRT
<213> Homo sapiens
Asp Gly Asn Phe Asp Thr Val Ala Met Leu Arg Gly Glu Met
 1
<210> 10
<211> 15
<212> PRT
<213> Homo sapiens
<400> 10
```

Pro Lys Ser Ala Leu Arg Asp Trp Met Gly Cys Pro Ser Gly Gly
1 5 10 15

<210> 11

<211> 489

<212> PRT

<213> Unknown

<220>

<223> X = UNKNOWN

<220>

<223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family

<400> 11

Met Ala Pro Ala Ala Trp Leu Arg Ser Ala Ala Ala Arg Ala Leu Leu 1 5 10 15

Pro Pro Met Leu Leu Leu Leu Gln Pro Pro Pro Leu Leu Ala Arg 20 25 30

Ala Leu Pro Pro Asp Val His His Leu His Ala Glu Arg Arg Gly Pro 35 40 45

Gln Pro Trp His Ala Ala Leu Pro Ser Ser Pro Ala Pro Ala Pro Ala 50 55 60

Thr Gln Glu Ala Pro Arg Pro Ala Ser Ser Leu Arg Pro Pro Arg Cys
65 70 75 80

Gly Val Pro Asp Pro Ser Asp Gly Leu Ser Ala Arg Asn Arg Gln Lys
85 90 95

Arg Phe Val Leu Ser Gly Gly Arg Trp Glu Lys Thr Asp Leu Thr Tyr 100 105 110

Arg Ile Leu Arg Phe Pro Trp Gln Leu Val Gln Glu Gln Val Arg Gln
115 120 125

Thr Met Ala Glu Ala Leu Lys Val Trp Ser Asp Val Thr Pro Leu Thr 130 135 140

Arg Tyr Trp Asp Gly Asp Asp Leu Pro Phe Asp Gly Pro Gly Gly Ile

13

165 170 175

Leu Ala His Ala Phe Phe Pro Lys Thr His Arg Glu Gly Asp Val His 180 185 190

Phe Asp Tyr Asp Glu Thr Trp Thr Ile Gly Asp Asp Gln Gly Thr Asp 195 200 205

Leu Cln Val Ala Ala His Glu Phe Gly His Val Leu Gly Leu Gln 210 215 220

His Thr Thr Ala Ala Lys Ala Leu Met Ser Ala Phe Tyr Thr Phe Arg 225 230 235 240

Tyr Pro Leu Ser Leu Ser Pro Asp Asp Cys Arg Gly Val Gln His Leu 245 250 255

Tyr Gly Gln Pro Trp Pro Thr Val Thr Ser Arg Thr Pro Ala Leu Gly 260 265 270

Pro Gln Ala Gly Ile Asp Thr Asn Glu Ile Ala Pro Leu Glu Pro Asp 275 280 285

Ala Pro Pro Asp Ala Cys Glu Ala Ser Phe Asp Ala Val Ser Thr Ile 290 295 300

Arg Gly Glu Leu Phe Phe Phe Lys Ala Gly Phe Val Trp Arg Leu Arg 305 310 315 320

Gly Gly Gln Leu Gln Pro Gly Tyr Pro Ala Leu Ala Ser Arg His Trp 325 330 335

Gln Gly Leu Pro Ser Pro Val Asp Ala Ala Phe Glu Asp Ala Gln Gly 340 345 350

His Ile Trp Phe Phe Gln Gly Ala Gln Tyr Trp Val Tyr Asp Gly Glu 355 360 365

Lys Pro Val Leu Gly Pro Ala Pro Leu Thr Glu Leu Gly Leu Val Arg 370 375 380

Phe Pro Val His Ala Ala Leu Val Trp Gly Pro Glu Lys Asn Lys Ile 385 390 395 400

Tyr Phe Phe Arg Gly Arg Asp Tyr Trp Arg Phe His Pro Ser Thr Arg
405 410 415

Arg Val Asp Ser Pro Val Pro Arg Arg Ala Thr Asp Trp Arg Gly Val

Pro Ser Glu Ile Asp Ala Ala Phe Gln Asp Ala Asp Gly Tyr Ala Tyr 435 440 445

Phe Leu Arg Gly Arg Leu Tyr Trp Lys Phe Asp Pro Val Lys Val Lys 450 455 460

Ala Leu Glu Gly Phe Pro Arg Leu Val Gly Pro Asp Phe Phe Gly Cys 465 470 475 480

Ala Glu Pro Ala Asn Thr Phe Leu Xaa 485

<210> 12

<211> 469

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family

<400> 12

Met His Ser Phe Pro Pro Leu Leu Leu Leu Leu Phe Trp Gly Val Val 1 5 10 15

Ser His Ser Phe Pro Ala Thr Leu Glu Thr Gln Glu Gln Asp Val Asp 20 25 30

Leu Val Gln Lys Tyr Leu Glu Lys Tyr Tyr Asn Leu Lys Asn Asp Gly
35 40 45

Arg Gln Val Glu Lys Arg Arg Asn Ser Gly Pro Val Val Glu Lys Leu 50 60

Lys Gln Met Gln Glu Phe Phe Gly Leu Lys Val Thr Gly Lys Pro Asp 65 70 75 80

Ala Glu Thr Leu Lys Val Met Lys Gln Pro Arg Cys Gly Val Pro Asp 85 90 95

Val Ala Gln Phe Val Leu Thr Glu Gly Asn Pro Arg Trp Glu Gln Thr 100 105 110

His Leu Thr Tyr Arg Ile Glu Asn Tyr Thr Pro Asp Leu Pro Arg Ala
115 120 125

Asp Val Asp His Ala Ile Glu Lys Ala Phe Gln Leu Trp Ser Asn Val Thr Pro Leu Thr Phe Thr Lys Val Ser Glu Gly Gln Ala Asp Ile Met Ile Ser Phe Val Arg Gly Asp His Arg Asp Asn Ser Pro Phe Asp Gly Pro Gly Gly Asn Leu Ala His Ala Phe Gln Pro Gly Pro Gly Ile Gly Gly Asp Ala His Phe Asp Glu Asp Glu Arg Trp Thr Asn Asn Phe Thr Glu Tyr Asn Leu His Arg Val Ala Ala His Glu Leu Gly His Ser Leu Gly Leu Ser His Ser Thr Asp Ile Gly Ala Leu Met Tyr Pro Ser Tyr Thr Phe Ser Gly Asp Val Gln Leu Ala Gln Asp Asp Ile Asp Gly Ile Gln Ala Ile Tyr Gly Arg Ser Gln Asn Pro Val Gln Pro Ile Gly Pro Gln Thr Pro Lys Ala Cys Asp Ser Lys Leu Thr Phe Asp Ala Ile Thr Thr Ile Arg Gly Glu Val Met Phe Phe Lys Asp Arg Phe Tyr Met Arg Thr Asn Pro Phe Tyr Pro Glu Val Glu Leu Asn Phe Thr Ser Val Phe Trp Pro Gln Leu Pro Asn Gly Leu Glu Ala Ala Tyr Glu Phe Ala Asp Arg Asp Glu Val Arg Phe Phe Lys Gly Asn Lys Tyr Trp Ala Val Gln Gly Gln Asn Val Leu His Gly Tyr Pro Lys Asp Ile Tyr Ser Ser Phe Gly Phe Pro Arg Thr Val Lys His Ile Asp Ala Ala Leu Ser Glu Glu 

50

65

Asn Thr Gly Lys Thr Tyr Phe Phe Val Ala Asn Lys Tyr Trp Arg Tyr 385 390 395 400 Asp Glu Tyr Lys Arg Ser Met Asp Pro Gly Tyr Pro Lys Met Ile Ala 405 410 His Asp Phe Pro Gly Ile Gly His Lys Val Asp Ala Val Phe Met Lys 420 425 Asp Gly Phe Phe Tyr Phe Phe His Gly Thr Arg Gln Tyr Lys Phe Asp 435 440 Pro Lys Thr Lys Arg Ile Leu Thr Leu Gln Lys Ala Asn Ser Trp Phe 450 455 460 Asn Cys Arg Lys Asn 465 <210> 13 <211> 468 <212> PRT <213> Unknown <220> <223> X = UNKNOWN<220> <223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family <400> 13 Met Phe Ser Leu Lys Thr Leu Pro Phe Leu Leu Leu His Val Gln 1 5 10 15 Ile Ser Lys Ala Phe Pro Val Ser Ser Lys Glu Lys Asn Thr Lys Thr 20 25 Val Gln Asp Tyr Leu Glu Lys Phe Tyr Gln Leu Pro Ser Asn Gln Tyr 35 40 45 Gln Ser Thr Arg Lys Asn Gly Thr Asn Val Ile Val Glu Lys Leu Lys

Glu Met Gln Arg Phe Phe Gly Leu Asn Val Thr Gly Lys Pro Asn Glu

60

75

55

70

Glu Thr Leu Asp Met Met Lys Lys Pro Arg Cys Gly Val Pro Asp Ser Gly Gly Phe Met Leu Thr Pro Gly Asn Pro Lys Trp Glu Arg Thr Asn Leu Thr Tyr Arg Ile Arg Asn Tyr Thr Pro Gln Leu Ser Glu Ala Glu Val Glu Arg Ala Ile Lys Asp Ala Phe Glu Leu Trp Ser Val Ala Ser Pro Leu Ile Phe Thr Arg Ile Ser Gln Gly Glu Ala Asp Ile Asn Ile Ala Phe Tyr Gln Arg Asp His Gly Asp Asn Ser Pro Phe Asp Gly Pro Asn Gly Ile Leu Ala His Ala Phe Gln Pro Gly Gln Gly Ile Gly Gly Asp Ala His Phe Asp Ala Glu Glu Thr Trp Thr Asn Thr Ser Ala Asn Tyr Asn Leu Phe Leu Val Ala Ala His Glu Phe Gly His Ser Leu Gly Leu Ala His Ser Ser Asp Pro Gly Ala Leu Met Tyr Pro Asn Tyr Ala Phe Arg Glu Thr Ser Asn Tyr Ser Leu Pro Gln Asp Asp Ile Asp Gly Ile Gln Ala Ile Tyr Gly Leu Ser Ser Asn Pro Ile Gln Pro Thr Gly Pro Ser Thr Pro Lys Pro Cys Asp Pro Ser Leu Thr Phe Asp Ala Ile Thr Thr Leu Arg Gly Glu Ile Leu Phe Phe Lys Asp Arg Tyr Phe Trp Arg Arg His Pro Gln Leu Gln Arg Val Glu Met Asn Phe Ile Ser Leu Phe Trp Pro Ser Leu Pro Thr Gly Ile Gln Ala Ala Tyr Glu Asp Phe 

Asp Arg Asp Leu Ile Phe Leu Phe Lys Gly Asn Gln Tyr Trp Ala Leu 340 345 350

Ser Gly Tyr Asp Ile Leu Gln Gly Tyr Pro Lys Asp Ile Ser Asn Tyr 355 360 365

Gly Phe Pro Ser Ser Val Gln Ala Ile Asp Ala Ala Val Phe Tyr Arg 370 375 380

Ser Lys Thr Tyr Phe Phe Val Asn Asp Gln Phe Trp Arg Tyr Asp Asn 385 390 395 400

Gln Arg Gln Phe Met Glu Pro Gly Tyr Pro Lys Ser Ile Ser Gly Ala 405 410 415

Phe Pro Gly Ile Glu Ser Lys Val Asp Ala Val Phe Gln Glu His 420 425 430

Phe Phe His Val Phe Ser Gly Pro Arg Tyr Tyr Ala Phe Asp Leu Ile 435 440 445

Ala Gln Arg Val Thr Arg Val Ala Arg Gly Asn Lys Trp Leu Asn Cys 450 460

Arg Tyr Gly Xaa 465

<210> 14

<211> 476

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family

<400> 14

Met Met His Leu Ala Phe Leu Val Leu Cys Leu Pro Val Cys Ser 1 5 10 15

Ala Tyr Pro Leu Ser Gly Ala Ala Lys Glu Glu Asp Ser Asn Lys Asp 20 25 30

Leu Ala Gl<br/>n Gl<br/>n Tyr Leu Glu Lys Tyr Tyr As<br/>n Leu Glu Lys Asp Val\$35\$ 40<br/> 45

Lys Gln Phe Arg Arg Lys Asp Ser Asn Leu Ile Val Lys Lys Ile Gln

50 55 60

| Gly<br>65  |            | Gln        | Lys        | Phe        | Leu<br>70  | Gly        | Leu        | Glu        | Val        | Thr<br>75  | Gly        | Lys        | Leu        | Asp        | Thr<br>80  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asp        | Thr        | Leu        | Glu        | Val<br>85  | Met        | Arg        | Lys        | Pro        | Arg<br>90  | Cys        | Gly        | Val        | Pro        | Asp<br>95  | Val        |
| Gly        | His        | Phe        | Ser<br>100 | Ser        | Phe        | Pro        | Gly        | Met<br>105 | Pro        | Lys        | Trp        | Arg        | Lys<br>110 | Thr        | His        |
| Leu        | Thr        | Tyr<br>115 | Arg        | Ile        | Val        | Asn        | Tyr<br>120 | Thr        | Pro        | Asp        | Leu        | Pro<br>125 | Arg        | Asp        | Ala        |
| Val        | Asp<br>130 | Ser        | Ala        | Ile        | Glu        | Lys<br>135 | Ala        | Leu        | Lys        | Val        | Trp<br>140 | Glu        | Glu        | Val        | Thr        |
| Pro<br>145 | Leu        | Thr        | Phe        | Ser        | Arg<br>150 | Leu        | Tyr        | Glu        | Gly        | Glu<br>155 | Ala        | Asp        | Ile        | Met        | Ile<br>160 |
| Ser        | Phe        | Ala        | Val        | Lys<br>165 | Glu        | His        | Gly        | Asp        | Phe<br>170 | Tyr        | Ser        | Phe        | Asp        | Gly<br>175 | Pro        |
| Gly        | His        | Ser        | Leu<br>180 |            | His        | Ala        | Tyr        | Pro<br>185 | Pro        | Gly        | Pro        | Gly        | Leu<br>190 | Tyr        | Gly        |
| Asp        | Ile        | His<br>195 | Phe        | Asp        | Asp        | Asp        | Glu<br>200 | Lys        | Trp        | Thr        | Glu        | Asp<br>205 | Ala        | Ser        | Gly        |
| Thr        | Asn<br>210 | Leu        | Phe        | Leu        | Val        | Ala<br>215 | Ala        | His        | Glu        | Leu        | Gly<br>220 | His        | Ser        | Leu        | Gly        |
| Leu<br>225 | Phe        | His        | Ser        | Ala        | Asn<br>230 | Thr        | Glu        | Ala        | Leu        | Met<br>235 | Tyr        | Pro        | Leu        | Tyr        | Asn<br>240 |
| Ser        | Phe        | Thr        | Glu        | Leu<br>245 | Ala        | Gln        | Phe        | Arg        | Leu<br>250 | Ser        | Gln        | Asp        | Asp        | Val<br>255 | Asn        |
| Gly        | Ile        | Gln        | Ser<br>260 | Leu        | Tyr        | Gly        | Pro        | Pro<br>265 | Pro        | Ala        | Ser        | Thr        | Glu<br>270 | Glu        | Pro        |
| Leu        | Val        | Pro<br>275 | Thr        | Lys        | Ser        | Val        | Pro<br>280 | Ser        | Gly        | Ser        | Glu        | Met<br>285 | Pro        | Ala        | Lys        |
| Cys        | Asp<br>290 | Pro        | Ala        | Leu        | Ser        | Phe<br>295 | Asp        | Ala        | Ile        | Ser        | Thr<br>300 | Leu        | Arg        | Gly        | Glu        |
| Tyr        | Leu        | Phe        | Phe        | Lys        | Asp        | Arg        | Tyr        | Phe        | Trp        | Arg        | Arg        | Ser        | His        | Trp        | Asn        |

305 310 315 320

Pro Glu Pro Glu Phe His Leu Ile Ser Ala Phe Trp Pro Ser Leu Pro 325 330 335

Ser Tyr Leu Asp Ala Ala Tyr Glu Val Asn Ser Arg Asp Thr Val Phe 340 345 350

Ile Phe Lys Gly Asn Glu Phe Trp Ala Ile Arg Gly Asn Glu Val Gln 355 360 365

Ala Gly Tyr Pro Arg Gly Ile His Thr Leu Gly Phe Pro Pro Thr Ile 370 375 380

Arg Lys Ile Asp Ala Ala Val Ser Asp Lys Glu Lys Lys Lys Thr Tyr 385 390 395 400

Phe Phe Ala Ala Asp Lys Tyr Trp Arg Phe Asp Glu Asn Ser Gln Ser 405 410 415

Met Glu Gln Gly Phe Pro Arg Leu Ile Ala Asp Asp Phe Pro Gly Val 420 425 430

Glu Pro Lys Val Asp Ala Val Leu Gln Ala Phe Gly Phe Phe Tyr Phe 435 440 445

Phe Ser Gly Ser Ser Gln Phe Glu Phe Asp Pro Asn Ala Arg Met Val 450 455 460

Thr His Ile Leu Lys Ser Asn Ser Trp Leu His Cys 465 470 475

<210> 15

<211> 477

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family

<400> 15

Met Lys Ser Leu Pro Ile Leu Leu Leu Cys Val Ala Val Cys Ser 1 5 10 15

Ala Tyr Pro Leu Asp Gly Ala Ala Arg Gly Glu Asp Thr Ser Met Asn 20 25 30

Leu Val Gln Lys Tyr Leu Glu Asn Tyr Tyr Asp Leu Lys Lys Asp Val
35 40 45

Lys Gln Phe Val Arg Arg Lys Asp Ser Gly Pro Val Val Lys Lys Ile 50 55 60

Arg Glu Met Gln Lys Phe Leu Gly Leu Glu Val Thr Gly Lys Leu Asp 65 70 75 80

Ser Asp Thr Leu Glu Val Met Arg Lys Pro Arg Cys Gly Val Pro Asp 85 90 95

Val Gly His Phe Arg Thr Phe Pro Gly Ile Pro Lys Trp Arg Lys Thr 100 105 110

His Leu Thr Tyr Arg Ile Val Asn Tyr Thr Pro Asp Leu Pro Lys Asp 115 120 125

Ala Val Asp Ser Ala Val Glu Lys Ala Leu Lys Val Trp Glu Glu Val 130 135 140

Thr Pro Leu Thr Phe Ser Arg Leu Tyr Glu Gly Glu Ala Asp Ile Met 145 150 155 160

Ile Ser Phe Ala Val Arg Glu His Gly Asp Phe Tyr Pro Phe Asp Gly
165 170 175

Pro Gly Asn Val Leu Ala His Ala Tyr Ala Pro Gly Pro Gly Ile Asn 180 185 190

Gly Asp Ala His Phe Asp Asp Glu Gln Trp Thr Lys Asp Thr Thr 195 200 205

Gly Thr Asn Leu Phe Leu Val Ala Ala His Glu Ile Gly His Ser Leu 210 215 220

Gly Leu Phe His Ser Ala Asn Thr Glu Ala Leu Met Tyr Pro Leu Tyr 225 230 235 240

His Ser Leu Thr Asp Leu Thr Arg Phe Arg Leu Ser Gln Asp Asp Ile
245 250 255

Asn Gly Ile Gln Ser Leu Tyr Gly Pro Pro Pro Asp Ser Pro Glu Thr 260 265 270

Pro Leu Val Pro Thr Glu Pro Val Pro Pro Glu Pro Gly Thr Pro Ala 275 280 285 Asn Cys Asp Pro Ala Leu Ser Phe Asp Ala Val Ser Thr Leu Arg Gly 290 295 300

Glu Ile Leu Ile Phe Lys Asp Arg His Phe Trp Arg Lys Ser Leu Arg 305 310 315 320

Lys Leu Glu Pro Glu Leu His Leu Ile Ser Ser Phe Trp Pro Ser Leu 325 330 335

Pro Ser Gly Val Asp Ala Ala Tyr Glu Val Thr Ser Lys Asp Leu Val 340 345 350

Phe Ile Phe Lys Gly Asn Gln Phe Trp Ala Ile Arg Gly Asn Glu Val355  $\phantom{0}$  360  $\phantom{0}$  365  $\phantom{0}$  .

Arg Ala Gly Tyr Pro Arg Gly Ile His Thr Leu Gly Phe Pro Pro Thr 370 375 380

Val Arg Lys Ile Asp Ala Ala Ile Ser Asp Lys Glu Lys Asn Lys Thr 385 390 395 400

Tyr Phe Phe Val Glu Asp Lys Tyr Trp Arg Phe Asp Glu Lys Arg Asn 405 410 415

Ser Met Glu Pro Gly Phe Pro Lys Gln Ile Ala Glu Asp Phe Pro Gly 420 425 430

Ile Asp Ser Lys Ile Asp Ala Val Phe Glu Glu Phe Gly Phe Phe Tyr 435 440 445

Phe Phe Thr Gly Ser Ser Gln Leu Glu Phe Asp Pro Asn Ala Lys Lys 450 455 460

Val Thr His Thr Leu Lys Ser Asn Ser Trp Leu Asn Cys 465 470 475

<210> 16

<211> 708

<212> PRT

<213> Unknown

<220>

<223> X = UNKNOWN

<220>

<223> Description of Unknown Organism: Known Member of

## Matrix Metalloproteinase Family

| <40        | 0> 1       | 6          |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Met<br>1   | Ser        | Leu        | Trp        | Gln<br>5   | Pro        | Leu        | Val        | Leu        | Val<br>10  | Leu        | Leu        | Val        | Leu        | Gly<br>15  | Cys        |
| Cys        | Phe        | Ala        | Ala<br>20  | Pro        | Arg        | Gln        | Arg        | Gln<br>25  | Ser        | Thr        | Leu        | Val        | Leu<br>30  | Phe        | Pro        |
| Gly        | Asp        | Leu<br>35  | Arg        | Thr        | Asn        | Leu        | Thr<br>40  | Asp        | Arg        | Gln        | Leu        | Ala<br>45  | Glu        | Glu        | Tyr        |
| Leu        | Tyr<br>50  | Arg        | Tyr        | Gly        | Tyr        | Thr<br>55  | Arg        | Val        | Ala        | Glu        | Met<br>60  | Arg        | Gly        | Glu        | Ser        |
| Lys<br>65  | Ser        | Leu        | Gly        | Pro        | Ala<br>70  | Leu        | Leu        | Leu        | Leu        | Gln<br>75  | Lys        | Gln        | Leu        | Ser        | Leu<br>80  |
| Pro        | Glu        | Thr        | Gly        | Glu<br>85  | Leu        | Asp        | Ser        | Ala        | Thr<br>90  | Leu        | Lys        | Ala        | Met        | Arg<br>95  | Thr        |
| Pro        | Arg        | Cys        | Gly<br>100 | Val        | Pro        | Asp        | Leu        | Gly<br>105 | Arg        | Phe        | Gln        | Thr        | Phe<br>110 | Glu        | Gly        |
| Asp        | Leu        | Lys<br>115 | Trp        | His        | His        | His        | Asn<br>120 | Ile        | Thr        | Tyr        | Trp        | Ile<br>125 | Gln        | Asn        | Tyr        |
| Ser        | Glu<br>130 | Asp        | Leu        | Pro        | Arg        | Ala<br>135 | Val        | Ile        | Asp        | Asp        | Ala<br>140 | Phe        | Ala        | Arg        | Ala        |
| Phe<br>145 | Ala        | Leu        | Trp        | Ser        | Ala<br>150 | Val        | Thr        | Pro        | Leu        | Thr<br>155 | Phe        | Thr        | Arg        | Val        | Tyr<br>160 |
| Ser        | Arg        | Asp        | Ala        | Asp<br>165 | Ile        | Val        | Ile        | Gln        | Phe<br>170 | Gly        | Val        | Ala        | Glu        | His<br>175 | Gly        |
| Asp        | Gly        | Tyr        | Pro<br>180 | Phe        | Asp        | Gly        | Lys        | Asp<br>185 | Gly        | Leu        | Leu        | Ala        | His<br>190 | Ala        | Phe        |
| Pro        | Pro        | Gly<br>195 | Pro        | Gly        | Ile        | Gln        | Gly<br>200 | Asp        | Ala        | His        | Phe        | Asp<br>205 | Asp        | Asp        | Glu        |
| Leu        | Trp<br>210 | Ser        | Leu        | Gly        | Lys        | Gly<br>215 | Val        | Val        | Val        | Pro        | Thr<br>220 | Arg        | Phe        | Gly        | Asn        |
| Ala<br>225 | Asp        | Gly        | Ala        | Ala        | Cys<br>230 | His        | Phe        | Pro        | Phe        | Ile<br>235 | Phe        | Glu        | Gly        | Arg        | Ser<br>240 |

Tyr Ser Ala Cys Thr Thr Asp Gly Arg Ser Asp Gly Leu Pro Trp Cys Ser Thr Thr Ala Asn Tyr Asp Thr Asp Asp Arg Phe Gly Phe Cys Pro Ser Glu Arg Leu Tyr Thr Arg Asp Gly Asn Ala Asp Gly Lys Pro Cys Gln Phe Pro Phe Ile Phe Gln Gly Gln Ser Tyr Ser Ala Cys Thr Thr Asp Gly Arg Ser Asp Gly Tyr Arg Trp Cys Ala Thr Thr Ala Asn Tyr Asp Arg Asp Lys Leu Phe Gly Phe Cys Pro Thr Arg Ala Asp Ser Thr Val Met Gly Gly Asn Ser Ala Gly Glu Leu Cys Val Phe Pro Phe Thr Phe Leu Gly Lys Glu Tyr Ser Thr Cys Thr Ser Glu Gly Arg Gly Asp Gly Arg Leu Trp Cys Ala Thr Thr Ser Asn Phe Asp Ser Asp Lys Lys Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val Ala Ala His Glu Phe Gly His Ala Leu Gly Leu Asp His Ser Ser Val Pro Glu Ala Leu Met Tyr Pro Met Tyr Arg Phe Thr Glu Gly Pro Pro Leu His Lys Asp Asp Val Asn Gly Ile Arg His Leu Tyr Gly Pro Arg Pro Glu Pro Glu Pro Arg Pro Pro Thr Thr Thr Pro Gln Pro Thr Ala Pro Pro Thr Val Cys Pro Thr Gly Pro Pro Thr Val His Pro Ser Glu Arg Pro Thr Ala Gly Pro Thr Gly Pro Pro Ser Ala Gly Pro Thr Gly Pro 

Pro Thr Ala Gly Pro Ser Thr Ala Thr Thr Val Pro Leu Ser Pro Val 500 505 510

Asp Asp Ala Cys Asn Val Asn Ile Phe Asp Ala Ile Ala Glu Ile Gly 515 520 525

Asn Gln Leu Tyr Leu Phe Lys Asp Gly Lys Tyr Trp Arg Phe Ser Glu 530 540

Gly Arg Gly Ser Arg Pro Gln Gly Pro Phe Leu Ile Ala Asp Lys Trp 545 550 560

Pro Ala Leu Pro Arg Lys Leu Asp Ser Val Phe Glu Glu Pro Leu Ser 565 570 575

Lys Lys Leu Phe Phe Phe Ser Gly Arg Gln Val Trp Val Tyr Thr Gly 580 585 590

Ala Ser Val Leu Gly Pro Arg Arg Leu Asp Lys Leu Gly Leu Gly Ala
595 600 605

Asp Val Ala Gln Val Thr Gly Ala Leu Arg Ser Gly Arg Gly Lys Met 610 615 620

Leu Leu Phe Ser Gly Arg Arg Leu Trp Arg Phe Asp Val Lys Ala Gln 625 630 635 640

Met Val Asp Pro Arg Ser Ala Ser Glu Val Asp Arg Met Phe Pro Gly 645 650 655

Val Pro Leu Asp Thr His Asp Val Phe Gln Tyr Arg Glu Lys Ala Tyr 660 665 670

Phe Cys Gln Asp Arg Phe Tyr Trp Arg Val Ser Ser Arg Ser Glu Leu 675 680 685

Asn Gln Val Asp Gln Val Gly Tyr Val Thr Tyr Asp Ile Leu Gln Cys 690 695 700

Pro Glu Asp Xaa 705

<210> 17

<211> 631

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family

<400> 17

Ala Pro Ser Pro Ile Ile Lys Phe Pro Gly Asp Val Ala Pro Lys Thr
1 5 10 15

Asp Lys Glu Leu Aïa Val Gln Tyr Leu Asn Thr Phe Tyr Gly Cys Pro
20 25 30

Lys Glu Ser Cys Asn Leu Phe Val Leu Lys Asp Thr Leu Lys Lys Met 35 40 45

Gln Lys Phe Phe Gly Leu Pro Gln Thr Gly Asp Leu Asp Gln Asn Thr 50 55 60

Ile Glu Thr Met Arg Lys Pro Arg Cys Gly Asn Pro Asp Val Ala Asn 65 70 75 80

Tyr Asn Phe Pro Arg Lys Pro Lys Trp Asp Lys Asn Gln Ile Thr
85 90 95

Tyr Arg Ile Ile Gly Tyr Thr Pro Asp Leu Asp Pro Glu Thr Val Asp 100 105 110

Asp Ala Phe Ala Arg Ala Phe Gln Val Trp Ser Asp Val Thr Pro Leu 115 120 125

Arg Phe Ser Arg Ile His Asp Gly Glu Ala Asp Ile Met Ile Asn Phe 130 135 140

Gly Arg Trp Glu His Gly Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly 145 150 155 160

Leu Leu Ala His Ala Phe Ala Pro Gly Thr Gly Val Gly Gly Asp Ser 165 170 175

His Phe Asp Asp Asp Glu Leu Trp Thr Leu Gly Glu Gly Gln Val Val 180 185 190

Arg Val Lys Tyr Gly Asn Ala Asp Gly Glu Tyr Cys Lys Phe Pro Phe 195 200 205

Leu Phe Asn Gly Lys Glu Tyr Asn Ser Cys Thr Asp Thr Gly Arg Ser 210 215 220

Asp Gly Phe Leu Trp Cys Ser Thr Thr Tyr Asn Phe Glu Lys Asp Gly

And the first properties of the first process of the first process of the first properties.

| Lys        | Tyr        | Gly        | Phe        | Cys<br>245 |            | His        | Glu        | Ala        | Leu<br>250 |            | Thr               | Met        | Gly        | Gly<br>255 |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|
| Ala        | Glu        | Gly        | Gln<br>260 | Pro        | Cys        | Lys        | Phe        | Pro<br>265 | Phe        | Arg        | Phe               | Gln        | Gly<br>270 |            | Sei        |
| Tyr        | Asp        | Ser<br>275 | Cys        | Thir       | Thr        | Glu        | Gly<br>280 | Arg        | Thr        | Asp        | Gly               | Tyr<br>285 |            | Trp        | Cys        |
| Gly        | Thr<br>290 | Thr        | Glu        | Asp        | Tyr        | Asp<br>295 | Arg        | Asp        | Lys        | Lys        | Tyr<br>300        |            | Phe        | Cys        | Pro        |
| Glu<br>305 | Thr        | Ala        | Met        | Ser        | Thr<br>310 | Val        | Gly        | Gly        | Asn        | Ser<br>315 | Glu               | Gly        | Ala        | Pro        | Cys        |
| Val        | Phe        | Pro        | Phe        | Thr<br>325 | Phe        | Leu        | Gly        | Asn        | Lys<br>330 | Tyr        | Gl <sup>'</sup> u | Ser        | Cys        | Thr<br>335 | Ser        |
| Ala        | Gly        | Arg        | Ser<br>340 | Asp        | Gly        | Lys        | Met        | Trp<br>345 | Cys        | Ala        | Thr               | Thr        | Ala<br>350 | Asn        | Tyr        |
| Asp        | Asp        | Asp<br>355 | Arg        | Lys        | Trp        | Gly        | Phe<br>360 | Cys        | Pro        | Asp        | Gln               | Gly<br>365 | Tyr        | Ser        | Leu        |
| Phe        | Leu<br>370 | Val        | Ala        | Ala        | His        | Glu<br>375 | Phe        | Gly        | His        | Ala        | Met<br>380        | Gly        | Leu        | Glu        | His        |
| Ser<br>385 | Gln        | Asp        | Pro        | Gly        | Ala<br>390 | Leu        | Met        | Ala        | Pro        | Ile<br>395 | Tyr               | Thr        | Tyr        | Thr        | Lys<br>400 |
| Asn        | Phe        | Arg        | Leu        | Ser<br>405 | Gln        | Asp        | Asp        | Ile        | Lys<br>410 | Gly        | Ile               | Gln        | Glu        | Leu<br>415 | Tyr        |
| Gly        | Ala        | Ser        | Pro<br>420 | Asp        | Ile        | Asp        | Leu        | Gly<br>425 | Thr        | Gly        | Pro               | Thr        | Pro<br>430 | Thr        | Leu        |
| Gly        | Pro        | Val<br>435 | Thr        | Pro        | Glu        | Ile        | Cys<br>440 | Lys        | Gln        | Asp        | Ile               | Val<br>445 | Phe        | Asp        | Gly        |
| Ile        | Ala<br>450 | Gln        | Ile        | Arg        | Gly        | Glu<br>455 | Ile        | Phe        | Phe        | Phe        | Lys<br>460        | Asp        | Arg        | Phe        | Ile        |
| Trp<br>465 | Arg        | Thr        | Val        | Thr        | Pro<br>470 | Arg        | Asp        | Lys        | Pro        | Met<br>475 | Gly               | Pro        | Leu        | Leu        | Val<br>480 |
| Ala        | Thr        | Phe        | Trp        | Pro        | Glu        | Leu        | Pro        | Glu        | Lys        | Ile        | Asp               | Ala        | Val        | Tvr        | Glu        |

Ala Pro Gln Glu Glu Lys Ala Val Phe Phe Ala Gly Asn Glu Tyr Trp 500 505 510

Ile Tyr Ser Ala Ser Thr Leu Glu Arg Gly Tyr Pro Lys Pro Leu Thr 515 520 525

Ser Leu Gly Leu Pro Pro Asp Val Gln Arg Val Asp Ala Ala Phe Asn 530 535 540

Trp Ser Lys Asn Lys Lys Thr Tyr Ile Phe Ala Gly Asp Lys Phe Trp 545 550 560

Arg Tyr Asn Glu Val Lys Lys Lys Met Asp Pro Gly Phe Pro Lys Leu 565 570 575

Ile Ala Asp Ala Trp Asn Ala Ile Pro Asp Asn Leu Asp Ala Val Val 580 585 590

Asp Leu Gln Gly Gly Gly His Ser Tyr Phe Phe Lys Gly Ala Tyr Tyr 595 600 605

Leu Lys Leu Glu Asn Gln Ser Leu Lys Ser Val Lys Phe Gly Ser Ile 610 615 620

Lys Ser Asp Trp Leu Gly Cys 625 630

<210> 18

<211> 267

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family

<400> 18

Met Arg Leu Thr Val Leu Cys Ala Val Cys Leu Leu Pro Gly Ser Leu 1 5 10 15

Ala Leu Pro Leu Pro Gln Glu Ala Gly Gly Met Ser Glu Leu Gln Trp 20 25 30

Glu Gln Ala Gln Asp Tyr Leu Lys Arg Phe Tyr Leu Tyr Asp Ser Glu
35 40 45

Thr Lys Asn Ala Asn Ser Leu Glu Ala Lys Leu Lys Glu Met Gln Lys 50 55 60 Phe Phe Gly Leu Pro Ile Thr Gly Met Leu Asn Ser Arg Val Ile Glu 65 70 Ile Met Gln Lys Pro Arg Cys Gly Val Pro Asp Val Ala Glu Tyr Ser 85 90 Leu Phe Pro Asn Ser Pro Lys Trp Thr Ser Lys Val Val Thr Tyr Arg 100 105 110 Ile Val Ser Tyr Thr Arg Asp Leu Pro His Ile Thr Val Asp Arg Leu 115 120 125 Val Ser Lys Ala Leu Asn Met Trp Gly Lys Glu Ile Pro Leu His Phe 135 140 Arg Lys Val Val Trp Gly Thr Ala Asp Ile Met Ile Gly Phe Ala Arg 145 150 155 160 Gly Ala His Gly Asp Ser Tyr Pro Phe Asp Gly Pro Gly Asn Thr Leu 165 170 175 Ala His Ala Phe Ala Pro Gly Thr Gly Leu Gly Gly Asp Ala His Phe 180 185 190 Asp Glu Asp Glu Arg Trp Thr Asp Gly Ser Ser Leu Gly Ile Asn Phe 195 200 205

Leu Tyr Ala Ala Thr His Glu Leu Gly His Ser Leu Gly Met Gly His 210 215 220

Ser Ser Asp Pro Asn Ala Val Met Tyr Pro Thr Tyr Gly Asn Gly Asp 225 230 235 240

Pro Gln Asn Phe Lys Leu Ser Gln Asp Asp Ile Lys Gly Ile Gln Lys 245 250 255

Leu Tyr Gly Lys Arg Ser Asn Ser Arg Lys Lys 260 265

<210> 19

<211> 231

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Known Member of Matrix Metalloproteinase Family

<400> 19

Met Pro Leu Leu Leu Leu Glu Tyr Leu Glu Lys Leu Met Gln Lys 1 5 10 15

Phe Gly Leu Val Thr Gly Lys Leu Asp Thr Leu Met Arg Lys Pro Arg 20 25 30

Cys Gly Val Pro Asp Val Gly Phe Phe Pro Gly Pro Lys Trp Thr Leu 35 40 45

Thr Tyr Arg Ile Asn Tyr Thr Pro Asp Leu Pro Val Asp Ala Lys Ala 50 55 60

Phe Val Trp Ser Val Thr Pro Leu Thr Phe Arg Val Glu Gly Ala Asp 65 70 75 80

Ile Met Ile Phe Ala His Gly Asp Tyr Pro Phe Asp Gly Pro Gly Gly 85 90 95

Leu Ala His Ala Phe Pro Gly Pro Gly Ile Gly Gly Asp Ala His Phe 100 105 110

Asp Asp Glu Trp Thr Asn Leu Phe Leu Val Ala Ala His Glu Gly His 115 120 125

Ser Leu Gly Leu His Ser Asp Pro Ala Leu Met Tyr Pro Thr Phe Phe 130 135 140

Leu Ser Gln Asp Asp Ile Gly Ile Gln Leu Tyr Gly Pro Pro Thr Cys 145 150 155 160

Asp Phe Asp Ala Ile Thr Arg Gly Glu Phe Phe Lys Asp Arg Trp Arg 165 . 170 . 175

Leu Ser Phe Trp Pro Leu Pro Asp Ala Ala Tyr Glu Phe Phe Gly Asn 180 185 190

Tyr Trp Gly Gly Tyr Pro Ile Leu Gly Pro Val Asp Ala Ala Lys Thr 195 200 205

Tyr Phe Phe Lys Trp Arg Asp Met Pro Gly Pro Ile Phe Pro Gly Asp 210 215 220