DEVOIR SURVEILLÉ n°6

Durée: 4 heures

L'usage de calculatrices est interdit

AVERTISSEMENT

La **présentation**, la lisibilité, l'orthographe, la qualité de la **rédaction**, **la clarté et la précision** des raisonnements entreront pour une **part importante** dans **l'appréciation des copies**. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Problème de géométrie

Dans cette partie, l'espace \mathbb{R}^2 est muni de sa structure euclidienne usuelle et d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

On considère la famille de droites $(D_t)_{t\in\mathbb{R}}$ d'équation cartésienne

$$D_t: (t^2 - 1)x - 2ty = 2t(t - 1).$$

- 1. Question préliminaire. Soit $(a, b, c) \in \mathbb{R}^3$ tel que $(a, b) \neq (0, 0)$. On considère alors la droite D d'équation cartésienne ax + by + c = 0 ainsi que le point M_0 de coordonnées $(x_0, y_0) \in \mathbb{R}^2$.
 - (a) Démontrer que les coordonnées du projeté orthogonal H_0 de M_0 sur la droite D sont :

$$\left(x_0 - a\frac{ax_0 + by_0 + c}{a^2 + b^2}, y_0 - b\frac{ax_0 + by_0 + c}{a^2 + b^2}\right).$$

- (b) En déduire la distance $d(M_0, D)$ du point M_0 à la droite D.
- 2. (a) Déterminer l'ensemble des points du plan équidistants des droites D_{-1} , D_0 et D_1 .
 - (b) En déduire qu'il existe un unique point, dont on précisera les coordonnées, équidistant de toutes les droites $D_t, t \in R$.
- 3. (a) Soit t un réel fixé. Donner un point, un vecteur directeur puis une représentation paramétrique de la droite D_t .
 - (b) Démontrer qu'une représentation paramétrique de l'enveloppe Γ de la famille de droites $(D_t)_{t\in\mathbb{R}}$ est :

$$\begin{cases} x = \frac{2t^2}{1+t^2} \\ y = \frac{(1-t)^2}{1+t^2} \end{cases}, t \in \mathbb{R}.$$

4. On considère maintenant la courbe Γ' de représentation paramétrique

$$\begin{cases} x = 1 + \cos(\theta) \\ y = 1 + \sin(\theta) \end{cases}, \theta \in [0, 2\pi].$$

On note $M(\theta)$ le point de Γ' de paramètre θ , $(\overrightarrow{T(\theta)}, \overrightarrow{N(\theta)})$ et $\gamma(\theta)$ la base de Frénet et la courbure de Γ' au point $M(\theta)$. Enfin, s désigne l'abscisse curviligne de Γ' qui s'annule en 0.

- (a) Reconnaître la courbe Γ' . On sera le plus précis possible.
- (b) Démontrer que $\Gamma \subset \Gamma'$. Sont-elles égales?
- (c) Les deux courbes sont-elles parcourues dans le même sens?
- 5. Des questions de cours : pour préparer la suite
 - (a) Donner les deux définitions (ou caractérisations) de la développée d'une courbe régulière.
 - (b) Donner la définition (pas la méthode de calcul) de l'enveloppe d'une famille de droites $(D_t)_{t\in\mathbb{R}}$.
 - (c) Donner les deux formules de Frénet.
- 6. On considère un réel k et pour tout $\theta \in [0, 2\pi]$, on note $P_k(\theta)$ le point défini par $\overline{M(\theta)P_k(\theta)} = (k s(\theta))\overline{T(\theta)}$ et Λ_k l'ensemble des points $P_k(\theta)$ pour $\theta \in [0, 2\pi]$.
 - (a) Calculer les vecteurs $\overrightarrow{T(\theta)}$ et $\overrightarrow{N(\theta)}$, ainsi que $s(\theta)$ pour $\theta \in [0, 2\pi]$. Quelle est l'origine du repère de Frénet?
 - (b) Déterminer une représentation paramétrique de Λ_k .
 - (c) Déterminer les points non réguliers de Λ_k . Où sont-ils situés?
 - (d) Déterminer la développée de Λ_k éventuellement privée de ses points non réguliers.
- 7. Dans la suite de cette partie, nous allons vérifier que toute courbe Λ dont la développée est incluse dans Γ' est une courbe Λ_k .

Soit $\theta \mapsto P(\theta), \theta \in [0, 2\pi]$ un paramétrage de Λ . On suppose que ce paramétrage est de classe \mathcal{C}^2 sur l'intervalle $[0, 2\pi]$ et que la courbe Λ est birégulière.

On note $(\overrightarrow{T_P(\theta)}, \overrightarrow{N_P(\theta)})$, $s_P(\theta)$ et $\gamma_P(\theta)$ la base de Frénet, une abscisse curviligne et la courbure de Λ au point $P(\theta)$. Enfin, on considère que $M(\theta)$ est le centre de courbure de Λ au point $P(\theta)$.

- (a) Sur la copie, faire une figure illustrant la situation : placer les points $M(\theta)$, $P(\theta)$, les vecteurs $T(\theta)$, $N(\theta)$, $T_P(\theta)$, $N_P(\theta)$ ainsi qu'une allure possible pour les courbes Γ' et Λ au voisinage des points $M(\theta)$ et $P(\theta)$.
- (b) Justifier qu'il existe une fonction λ , dont on admettra qu'elle est de classe \mathcal{C}^1 sur $[0, 2\pi]$ telle que :

$$\forall \theta \in [0, 2\pi], \overrightarrow{M(\theta)P(\theta)} = \lambda(\theta)\overrightarrow{T(\theta)}.$$

(c) En déduire que :

$$\frac{d\overrightarrow{OP}}{d\theta} = \frac{d\overrightarrow{OM}}{d\theta} + \frac{d\lambda}{d\theta}\overrightarrow{T} + \lambda\frac{d\overrightarrow{T}}{d\theta}$$

puis que:

$$\frac{ds_P}{d\theta}\overrightarrow{T_P} = \frac{ds}{d\theta}\overrightarrow{T} + \frac{d\lambda}{d\theta}\overrightarrow{T} + \lambda\gamma\frac{ds}{d\theta}\overrightarrow{N}.$$

- (d) Justifier que $\frac{ds}{d\theta} + \frac{d\lambda}{d\theta} = 0$ et en déduire λ .
- (e) Conclure

Problème d'analyse

Partie I

- 1. (a) On considère la série entière $\sum_{p\geqslant 0}(-1)^pt^{2p}$: donner son rayon de convergence et sa somme, lorsque celle-ci est définie.
 - (b) On considère la série entière $\sum_{p\geqslant 0}(-1)^pt^{2p+1}$: donner son rayon de convergence et sa somme, lorsque celle-ci est définie.
- 2. Donner la solution générale de l'équation différentielle $(\mathscr{E}_c): y'' = 0$.
- 3. On considère l'équation différentielle (\mathcal{E}_h) : $(1+t^2)y''(t)+4ty'(t)+2y(t)=0$.
 - (a) Soit f une solution de (\mathcal{E}_h) définie sur \mathbb{R} .
 - i. Montrer que la fonction $t \mapsto (1+t^2)f(t)$ est une fonction affine de t (on pensera à calculer sa dérivée seconde).
 - ii. Montrer que la famille

$$\left(t\longmapsto \frac{1}{1+t^2},t\longmapsto \frac{t}{1+t^2}\right)$$

est une base de l'espace des solutions de (\mathcal{E}_h) .

(b) Dans cette question on propose une autre méthode pour déterminer les solutions de l'équation homogène (\mathscr{E}_h) .

On recherche les solutions de (\mathcal{E}_h) développables en série entière au voisinage de 0, sous la forme :

$$y(t) = \sum_{n=0}^{+\infty} a_n t^n$$

où $a_n, n \in \mathbb{N}$ sont des réels.

- i. Donner une relation de récurrence entre a_{n+2} et a_n pour tout $n \in \mathbb{N}$.
- ii. Pour tout entier $p \in \mathbb{N}$, exprimer a_{2p} et a_{2p+1} en fonction de p, a_0, a_1 .
- iii. En déduire une expression simplifiée de $\sum_{n=0}^{+\infty} a_n t^n$ sur un voisinage de 0.
- 4. On considère l'équation différentielle (\mathcal{E}) :

$$(1+t^2)y''(t) + 4ty'(t) + 2y(t) = \frac{1}{1+t^2}.$$

On cherche à résoudre (\mathcal{E}) en appliquant la méthode de variation des constantes en recherchant la solution sous la forme :

$$t \longmapsto y(t) = \frac{\lambda(t)}{1+t^2} + \frac{t\mu(t)}{1+t^2}$$

- où λ et μ sont deux fonctions inconnues à déterminer.
- (a) Donner la condition vérifiée par $\lambda'(t)$ et $\mu'(t)$

(b) Montrer que pour tout réel t:

$$\begin{cases} \lambda'(t) &= -\frac{t}{1+t^2} \\ \mu'(t) &= \frac{1}{1+t^2} \end{cases}$$

- (c) Exprimer, pour tout réel t, $\lambda(t)$ et $\mu(t)$.
- (d) En déduire la solution générale de (\mathscr{E}) .

Partie II

Pour tout entier $n \in \mathbb{N}^*$, on pose $\varphi(n) = \int_0^{\frac{1}{n}} \frac{1-2t}{1+t^2} dt$ et $\psi(n) = \varphi\left(\frac{1}{n}\right)$.

- 1. Donner pour tout entier, l'expression de $\varphi(n)$ en fonction de n.
- 2. Rappeler la formule de Taylor-Young à l'ordre p en un point $x_0 \in \mathbb{R}$ pour une fonction de classe \mathscr{C}^p sur un intervalle I de \mathbb{R} contenant x_0 .
- 3. Pour $p \in \mathbb{N}^*$, donner le développement limité de la fonction $x \longmapsto \frac{1}{1+x^2}$ à l'ordre 2p en 0 et en déduire celui de la fonction $x \longmapsto \arctan(x)$ à l'ordre 2p+1 en 0.
- 4. Montrer que la fonction $x \longmapsto \arctan(x) + \arctan(\frac{1}{x})$ est constante sur \mathbb{R}_+^* . Préciser la valeur de cette constante.
- 5. Montrer que $\varphi(n) + \psi(n) + 2\ln(n) = \frac{\pi}{2} 2\ln\left(1 + \frac{1}{n^2}\right)$ puis montrer qu'il existe $\alpha \in \mathbb{R}$ tel que :

$$\cos\left[\varphi(n) + \psi(n) + 2\ln n\right] - \frac{\alpha}{n^2} \underset{n \to +\infty}{=} O\left(\frac{1}{n^4}\right).$$

- 6. Quelle est la nature de la série $\sum_{n>0} \cos (\varphi(n) + \psi(n) + 2 \ln n)$?
- 7. Quelle est la nature de la série $\sum_{n>0} \cos(\varphi(n))$?

Partie III

Soit φ la fonction définie sur \mathbb{R}^2 par : $\varphi(u,v)=(ue^v,e^{-v})$.

- 1. Montrer que φ est une bijection de \mathbb{R}^2 sur $\Omega = \mathbb{R} \times]0; +\infty[$ en explicitant sa bijection réciproque φ^{-1} .
- 2. Montrer que φ est de classe \mathscr{C}^1 sur \mathbb{R}^2 et que φ^{-1} est de classe \mathscr{C}^1 sur Ω .
- 3. Soit $f:\Omega\to\mathbb{R}$ une fonction de classe \mathscr{C}^1 sur Ω telle que :

$$\forall (x,y) \in \Omega, x \frac{\partial f}{\partial x}(x,y) - y \frac{\partial f}{\partial y}(x,y) = 0.$$

Soit F la fonction définie sur \mathbb{R}^2 par $F(u,v) = f(ue^v, e^{-v})$.

- (a) Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R}^2 et exprimer les dérivées partielles de F en fonction de celles de f.
- (b) En déduire qu'il existe une fonction g de classe \mathscr{C}^1 sur \mathbb{R} telle que :

$$\forall (x,y) \in \mathbb{R}^2, f(x,y) = g(xy).$$