FILED BY IDS

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出原公開番号

特開平10-188332

(43)公開日 平成10年(1998) 7月21日

(51)IntCL^c G11B 7/135 識別記号

FI G11B 7/135

z

審査請求 未請求 請求項の数6 OL (全 7 頁)

(21)出願番号	特展平 9-188703	(71) 出題人	000000044 旭 硝子株式会社
(22) 出題目	平成9年(1997)7月14日	(72)発明者	東京都千代田区丸の内2丁目1番2号 田辺 護
(31) 優先権主張番号 (32) 優先日 (33) 優先権主張国 (31) 優先権主張番号 (32) 優先日 (33) 優先権主張国	特惠平8~193689 平8 (1996) 7 月23日 日本 (JP) 特顯平8~285544 平8 (1996)10月28日 日本 (JP)	(72) 発明者	神奈川県松英市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 藤野 陽柏 神奈川県梅廷市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 黒澤 みつる
(33) (27) (28)		(74)代理人	神奈川県横浜市神奈川区羽沢町1150番地 旭稿子株式会社中央研究所内
•			

(54) 【発明の名称】 光ヘッド装置

(57)【耍約】

【課題】光の利用効率が高く、小型化が容易で、安価に 生産性良く製造できる2 魚点レンズを額み込んだ光へッ ド装置を得る。

【解決手段】光源1、ピームスプリッタ2、位相差板3、液品レンズ4及び光検出器8を有する光ヘッド装置であって、液晶レンズ4として、液晶セルの基板の少なくとも一方が凹部又は凸部を有しており、内部に充填された液晶がツイストしているものを使用する。

B. Carrier

3 m

【特許請求の範囲】

【請求項1】光源、ピームスブリッタ、液晶レンズ及び 光検出器を有する光ヘッド装置において、ビームスプリ ッタと光記録媒体との間に配置する液晶レンズとして、 液晶セルの基板の少なくとも一方が凹部又は凸部を有し ており、内部に充填された液晶がツイストしており、基 板の少なくとも一部に設けられた電極によって焦点距離 又は光の位相分布を可変としたものを使用することを特 徴とする光ヘッド装置。

【請求項2】光源、ビームスプリジタ、液晶レンズ及び 光検出器を有する光ヘッド装置において、ピームスプリ ッタと光記録媒体との間に配置する彼品レンズとして、 液晶セルの基板の少なくとも一方が微細な凹部又は凸部 を有してフレネルレンズ構造とされており、内部に充填 された液晶がツイストしており、基板の少なくとも一部 に設けられた電極によって悠点距離又は光の位相分布を 可変としたものを使用することを特徴とする光ヘッド装

【請求項3】被品レンズの中央部分の基板がほぼ平板と されている請求項1又は2記載の光ヘッド装置。

【請求項4】被品の常光展折率をn。、異常光屈折率を na 、ツイストピッチをP、真空中の波長をえとしたと き、 (ne −ne) ³ P/ (8 λ) ≦0. ガラである韻 求項1、2又は3記載の光へッド装置。

【請求項5】 基板の屈折率を、液晶の常光屈折率又は異 常光屈折率又は常光屈折率と異常光屈折率の平均にほぼ 等しくした請求項1、2、3又は4記載の光ヘッド装 置.

【請求項6】格子状の凹部を設けた基板を少なくとも一 方の基板として用い、基板間に光学異方性材料を充壌し た偏光回折案子を用いる請求項1、2、3、4又は5記 裁の光ヘッド装置。

[発明の詳細な説明]

[0001]

【発明の属する技術分野】本発明は、CD(コンパクト ディスク)、CD-ROM、ビデオディスク等の光ディ スク及び光磁気ディスク等の光学記録媒体に光学的情報 を告き込んだり、光学的情報を読み取るための光ヘッド 裝置に関する。

[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等 の光記録媒体に光学的情報を巻き込んだり、光学的情報 を読み取る光ヘッド装置において、CD/CD-ROM とDVDディスクのように異なる厚みのディスクに対し て信号の読み寄きを1つの光ヘッド装置で実現するため に、次のような構成が採られていた。

【0003】例えば、レンズの表面にフレネルレンズタ イプのプレーズホログラムを形成し、半導体レーザから レンズに入射した光のうち、例えば約半分をホログラム によってビームが広がる方向に回折し、残り半分はその まま透過せしめ、その後にレンズ本体によって各々のビ 一ムを収束せしめることによって、2つの焦点を持つ光 を1つの光ヘッド芸置によって作り出すことが行われて きた。また、レンズは従来と同様のものにし、上記と同 じ機能を持つフレネルホログラムレンズプレー トを別途 分離して配置せしめることも試みられている。

【0004】しかしこれらの方式では、上記のホログラ ムによって往路で光の光量が半分になり、かつ復路でも 再び光量が半分になるので、往復で光量が1/4以下に なる問題があった。

【0005】このため、特に大きな出力を得るのが困難 である赤色の半導体レーザを利用した光ヘッド装置の場 合、光源に対する負荷が大きくなり、消費電力の増加、 光ヘッド装置の大型化、コストの上昇、信頼性の低下を もたらす問題があった。

【0006】また、2個の焦点距離の異なるレンズを用 意し、それを機械的に切り替えて使用することも行われ ているが、機械的に移動させて使用するので、光ヘッド 装置の大型化、コストの上昇、信頼性の低下をもたらす 問題があった。

[0007]

【発明が解決しようとする課題】本発明は、前途の問題 を解消し、光の利用効率を高め、小型化が容易で、安価 に生産性良く製造できる2焦点レンズを組み込んだ光へ ッド装置の提供を目的とする。また、偏光ホログラムや **仏光ビームスプリッタを用いたいわゆる偏光系でも使用** できる2焦点レンズを組み込んだ光ヘッド装置の提供を 目的とする。

[0008]

【課題を解決するための手段】本発明は、光源、ビーム スプリッタ、液晶レンズ及び光検出器を有する光ヘッド 装置において、ビームスプリッタと光記録媒体との間に 配置する液晶レンズとして、液晶セルの基板の少なくと も一方が凹部又は凸部を有しており、内部に充填された 液晶がツイストしており、基板の少なくとも一部に設け られた包模によって焦点距離又は光の位相分布を可変と したものを使用することを特徴とする光ヘッド装置を提 供する。

【0009】また、光源、ピームスプリッタ、液品レン ズ及び光検出器を有する光ヘッド装置において、ビーム スプリッタと光記録媒体との間に配置する液晶レンズと して、液晶セルの基板の少なくとも一方が微細な凹部又 は凸部を有してフレネルレンズ構造とされており、内部 に充填された筱島がツイストしており、基板の少なくと も一部に設けられた電極によって焦点距離又は光の位相 分布を可変としたものを使用することを特徴とする光へ ッド装置を提供する。

[0010] さらに、それらの液晶レンズの中央部分の 基板がほぼ平板とされている光ヘッド装置、及び、それ らの液晶の常光屈折率をn。、異常光屈折率をn。、ツ

イストピッチをP、真空中の波長をえとしたとき、(n。-n。) 2 P/(8 λ) \leq 0 . 0 5 である光ヘッド装置を提供する。

【0011】さらには、それらの基板の屈折率を、液晶の常光屈折率又は異常光屈折率又は常光屈折率と異常光屈折率の平均にほぼ等しくした光へッド装置、及び、それらのビームスプリッタとして、格子状の凹部を設けた基板を少なくとも一方の基板として用い、基板間に光学異方性材料を充填した偏光回折索子を用いる光へッド装置を提供する。

[0012] 本発明では、液晶レンズを用いているので、外部からの電圧印加によって焦点距離又は光の位相分布を切り替え可能であり、利用効率の高い光ヘッド装置が得られる。

[0013]

【発明の実施の形態】図1は、本発明の基本的な構成を示す模式図である。図1において、1は半導体レーザ等の光源、2はビームスプリッタ、3は位相差板、4は液晶レンズ、5は無光レンズ、6は第1の光記録媒体、7は第2の光記録媒体、8は光検出器を示す。

【0014】光源1から出た光は、ビームスプリッタ2を通過し、位相差板3を通過し、液晶レンズ4を通過して、集光レンズ5で集光されて光記録媒体に到達する。ここで、液晶レンズに電圧を印加するか否か又は即加する電圧を変えることにより、液晶レンズの無点距離又は光の位相分布を変えて、第1の光記録媒体6又は第2の光記録媒体7に焦点を合わせる。なお、本発明でビームスプリッタは、プリズム状のもの、液晶ホログラム等の優光ビームスプリッタが使用できる。

【0015】この光記録媒体から反射して戻ってきた光は、再度集光レンズ5、液晶レンズ4、位相差板3、ビームスプリッタ2を順次通過し、ビームスプリッタ2で分離された光が光検出器8に到達する。

【0016】図2は、基板が凹部又は凸部を有する被晶 レンズの例を示す断面図である。図2において、11、 12は基板、13はその基板に設けられた凹部、14、 15は電極、16は周辺のシール材、17は基板間に充 填された液晶を示す。

【0017】この基板11、12は、プラスチック、ガラス等の透明基板が使用できる。この基板の少なくとも一方の内面側(液晶側)に凹部又は凸部を形成する。この図では基板12側に凹部を形成している。この凹部又は凸部は基板自体に形成してもよく、表面に有機又は無機の透明膜を所定の形状に形成してもよい。

【0018】この加工は、基板自体に形成する場合には、機械的に削ったり、プレス成形したり、エッチングしたりして形成すればよい。 表面に有機又は無機の透明 膜を形成する場合には、透明膜を全面に形成後、基板自体の場合と同様に削ったり、エッチングしたりして形成してもよく、直接所定のパターンに地積させたり、印刷

したりして形成してもよい。

【0019】図3は、基板をフレネルレンズ構造にした 液晶レンズの例を示す斯面図である。図3において、2 1、22は基板、23はその基板に設けられたフレネル レンズ構造の凹凸部、24、25は電極、26は周辺の シール材、27は基板間に充填された液晶を示す。この フレネルレンズ構造の凹凸部も前記した基板に凹部又は 凸部を形成する方法と同様の方法で形成できる。

【0020】これらのレンズの凹凸は、完全に所定の形状としてもよく、加工が容易になるように中心部のみは平坦な形状にして用いてもあまり問題はない。特に、フレネルレンズ構造とする場合には、中心部を平坦にしておくことにより、加工が容易になり好ましい。この中心部とは、レンズの外径に対して20~60%程度の径より内側の領域を意味する。

【0021】電極14、15、24、25は、通常のITO等の適明電極が使用できる。通常は金面ベタ電極とすることでよいが、例えばリング状にパターニングして部分的にレンズ作用を変えさせるようにもできる。また、一部に金属線等を設けて低抵抗化することもできる。

【0022】また、図示していないが、この電極上にポリイミド、ポリアミド、SiO等の配向膜を形成して用いる。代表的な例では、ポリイミド膜を形成し、表面をラピングして配向膜を形成する。この配向膜のラピング方向は、液晶が2枚の基板間でツイストしたり、しなかったりして使用できる。

【0023】このようにして形成された2枚の基板を電 概側が対向するように配置し、筒辺でシール材16、2 6で接着して、内部に液晶17、27を充填する。この 液晶としては、通常のネマチック液晶が使用される。

【0024】次いで光ヘッド装置の動作を説明する。光 源1から出た光は、直線偏光、例えばP偏光(紙面に平行な方向の偏光)を有するとする。図2の被晶レンズで正の誘電異方性のネマチック液晶を用い、基板12の屈 折率を被島の常光屈折率n。と異常光屈折率n。との中間の値(no+no)/2に一致するようにしたものを用い、その配向膜の光源側のラビング方向は紙面に平行な方向にする。

【0025】この場合、液晶が右ねじれでツイストピッチP(360°ツイストするピッチ)でツイストしているとすると、右回り円偏光の光に対する液晶の実効的な屈折率は近似的に(n_0+n_0)/2+(n_0 - n_0)2 P/(81)と發される。また、左回り円偏光の光に対する液晶の実効的な屈折率は近似的に(n_0+n_0)/2-(n_0-n_0)2 P/(81)と姿される。

【0026】液晶レンズ4がオフ状態の場合、光源側の 塞板では液晶は基板にほぼ平行にかつ紙面に平行な方向 に配向している。反対側(光記錄媒体側)の基板では、 例えば90°ねじれた状態等の光源側の塞板の配向角度 と異なる角度で配向しているとする。

【0027】往路では光源1から出た光は、ビームスプリッタ2を通過し、次いで1/4板等の位相差板3により右回り円偏光にされ、液晶レンズ4に入射する。このピームスプリッタ2は、光の偏光方向によってビームスプリッタとして機能したり機能しなかったりする偏光系ピームスプリッタとされる。

 $\{0028\}$ このとき、 $\{n_0+n_0\}$ /2に比して $\{n_0-n_0\}^2$ $P/\{81\}$ が小さいとすると、右回 9 円偏光の光に対して液晶の実効的な屈折率は近似的に $\{n_0+n_0\}$ /2 にほぼ等しくなる。このため、往路では光源 1 から出た光は、基板の屈折率(液晶の常光屈折率と異常光屈折率との中間)とねじれた液晶の唇折率はほぼ一数することになり、屈折率が等しいので光は屈折せずにほぼ直進する。そして、集光レンズ 5 で集光されて第 1 の光記録媒体 6 に焦点を結ぶ。

【0029】復路では、第1の光記録媒体6の表面で反射された光は、左回りの円偏光になり、再度集光レンズ5、レンズとして機能していない液晶レンズ4を通過し、位相差板3で直線偏光に戻され、ビームスプリッタ2で光が分離され光検出器8に到達する。

【0030】また、本発明では、右回り円偏光に対する 被晶部の実効屈折率と、左回り円偏光に対する被晶部の 実効屈折率とが、実用上許容される範囲内でほぼ等しい ことが重要になる。そのためには、ピッチPはあまり大 きくないことが好ましい。具体的には、ピッチPは5 μ 加以下にされることが好ましく、特に3 μ m以下にする ことが好ましい。

【0031】また、液晶のビッチPと液晶圏の厚みdとの比d/Pが1.0を超える場合、電圧オフ時に液晶らせん軸の乱れたフォーカルコニック状態による光散乱のため、実質的にターンオフ時間が増大する傾向にある。このため、液晶の粘性を低くする、基板界面付近の液品配向ベクトルと基板面とのなす角度すなわちブレテルト角を大きくする等が好ましい。

【0032】液晶レンズ4に電圧が印加されてオン状態になると、液晶は電界方向に整列し、基板にほぼ垂直に(紙面の上下方向)に配向する。このため、往路では光波1から出た光は、ビームスプリッタ2を通過し、次いで位相差板3により右回り円偏光にされ、液晶レンズ4に入射する。

【0033】ここで基板の屈折率(液晶の常光屈折率と 異常光屈折率との中間)と篏晶の屈折率(常光屈折率と なる)は一致しないことになり、凹レンズとして機能す ることになり光は屈折する。このため、携光レンズ5で 集光された際に焦点距離が長くなって、第2の光記録媒 体7に焦点を結ぶ。

【0034】復路では、第2の光記録媒体7の表面で反射された光は、左回り円偏光になり、再度集光レンズ 5、凹レンズとして機能している液晶レンズ4を通過 し、位相差板3で直線偏光に戻され、ビームスプリッタ 2で光が分離され光検出器8に到達する。

【0035】上記例では、基板12が凹部を有する基板を用いたが、同じ構成で凸部を有する基板を用いれば、 凸レンズとして機能することになる。また、基板12の 屈折率を被晶の常光屈折率n。と一致するようにしたも のを用いれば、電圧オフ時に基板12が凹部を有する基 板を用いた場合には凸レンズとして機能し、凸部を有す る基板を用いた場合には凹レンズとして機能する。

【0036】この場合、配向処理は両側の基板とも水平配向処理をする、片側の基板のみを水平配向処理する、 片側の基板のみを水平配向処理し他方の基板を垂直配向 処理する、両側の基板とも垂直配向処理をする等の配向 処理が可能である。

【0037】無直配向処理は、有機シラン、レシテン、 界面活性剤等で電極基板表面を処理する方法で行えばよい。また、水平配向処理は、電極、基板又はその上に形成された有機、無機のオーバーコート材を布等で一方向にこする方法や、斜方蒸着法等により行えばよい。

【0038】なお、本発明で使用する光源1は、通常の 光ヘッド装置に使用される光源が使用できる。具体的に は、半導体レーザによる光源が最も一般的であるが、他 のレーザや波長変換索子を組み合わせたような光源も使 用できる。

【0039】ビームスプリッタ2は、特定の偏光方向の 光のみ回折させるものであり、往路の光顔からの光はそ のまま通過し、復路の光は回折又は反射する等して、光 検出器に光を到達させうるものであればよい。具体的に は、回折格子、液晶を用いた回折格子、複合プリズム等 が使用できる。特に、特定の偏光方向の光のみ回折させ る液晶を用いた回折格子が好道である。位相茲板3は、 道熱偏光で入射した光を円偏光に変換する1/4板等の 公知の位相差板が使用できる。

【0040】 無光レンズ5は、第1の光記録媒体又は第2の光記録媒体のいずれかに光を集光させるためのレンズである。液品レンズ4が電圧オン状態とオフ状態とでいずれもある程度レンズとして機能する場合には、その使用状態のいずれかの状態で第1の光記録媒体又は第2の光記録媒体のいずれかに光を集光させうるようにする。

[0041]

[吳施例]

「例1」図2に示すように、基板11、12として厚さ
0.5mmで、大きさが10×10mmで、屈折率が
1.57のガラス基板を用い、下面のガラス基板の中心
はプレスにより非球面凹レンズ状に凹部13を形成し
た。この非球面レンズは、直径2mm、中心の深さは5
μmとした。上面、下面の基板11、12とも電極1
4、15としてITO電板を形成後、ポリイミドの膜を
逸布し、ラビングして水平配向処理を行った。

【0042】この2枚の基板11、12を失々の配向方向が平行になるように対向させ、周辺でシールして、レンズ中心部で間除が 10μ m、周辺部で間除が 5μ mの空セルを形成した。なお、基板11、12の外面には失々反射防止膜を形成した。

【0043】この空セルに、液晶17として常光屈折率が1.52、Δnが0.1、ツイストピッチPが10μ mの正の誘電異方性のネマチック液晶組成物を注入し、 注入口を封止して液晶レンズを製造した。

【0044】図1に示すように、この被晶レンズ4を配置して、波長650nmの右回り及び左回りの円偏光の透過率を測定したところ、右回りの円偏光(光ヘッド装置での往路)では95%、左回りの円偏光(光ヘッド装置での復路)でも95%の効率であり、往復で90%の効率が得られた。

【0045】まず、液品レンズ4の上下の基板11、12の電極14、15間に電圧を印加しない場合について設明する。光減1から出たP隔光(紙面に平行な偏光方向)の光は、偏光系のビームスプリッタ2を通過し、位相差板3で右回りの円偏光になった光は、液晶レンズ4でほとんど屈折されなく通過し、第1の光記録媒体6に焦点が合った。

【0046】この第1の光記録媒体6で反射した光は左回りの円偏光になり、再度液晶レンズ4をほぼそのまま 通過し、位相差板3で直線偏光に戻され、5 偏光(紙面に垂直な偏光方向)の光になって、偏光系のピームスプリッタ2に入射する。5 偏光の光はピームスプリッタ2で回折されて、光検出器8に到達した。

【0047】一方、液晶レンズ4の上下の基板11、12の電極14、15間に100H2、5Vの電圧を印加した場合について説明する。光減1から出たP隔光(紙面に平行な偏光方向)の光は、偏光系のビームスプリック2を通過し、位相差板3で右回りの円偏光になった光は、液晶レンズ4で屈折され、第2の光記録媒体7に焦点が合った。

【0048】この第2の光記録媒体7で反射した光は左回りの円偏光になり、再度被晶レンズ4で屈折され、位相差板3で直線偏光に戻され、5偏光(紙面に垂直な偏光方向)の光になって、偏光系のビームスプリッタ2に入射する。5偏光の光はビームスプリッタ2で回折されて、光検出器8に到達した。

【0049】「例2」例1の液品レンズの代わりに、同じガラス基板を使用し、図3に示すようにフレネルレンズ構造の凹凸部23をプレスでにより形成した。フレネルレンズ構造の凹凸部23は、面径2mm、中心の淡さは2μmとした。周辺部での間隙が4μmとする他は例1と同様にして空セルを形成した。

【0050】この空セルに、液晶 27として常光屈折率 1 1.52、 1 1 1 52、 1 1

入口を封止して液晶レンズを製造した。

【0051】この被晶レンズを例1と同様に図1のような構成の光へッド装置に組み込んだ。液長650nmの右回り及び左回りの円偏光の透過率を測定したところ、右回りの円偏光(光ヘッド装置での往路)では95%、左回りの円偏光(光ヘッド装置での復路)でも95%の効率であり、往復で90%の効率が得られた。例1と同様に100Hz、5Vの電圧のオン、オフにより、焦点を切り替えることができた。

【0052】「例3」図2に示すように、基板11、12として厚さ0.5mmで、大きさが10×10mmで、屈折率が1.62のガラス基板を用い、下面のガラス基板の中心はプレスにより非縁面凹レンズ状に凹部13を形成した。この非球面レンズは、直径2mm、中心の深さは5μmとした。上面、下面の基板11、12とも電極14、15としてITO電極を形成した。次いで、上面の基板11にはポリイミドの膜を強布し、ラビングして水平配向処理を行った。また、下面の基板12には有機シラン系の垂直配向剤を塗布した。

【0053】この2枚の基板11、12を夫々の配向方向が平行になるように対向させ、周辺でシールして、レンズ中心部で開隙が 10μ m、周辺部で開除が 5μ mの登セルを形成した。なお、基板11、12の外面には失々反射防止膜を形成した。

【0054】この空セルに、被晶17として常光屈折率が1.52、Δnが0.2、ツイストピッチアが2μm の正の誘電異方性のネマチック被品組成物を往入し、注 入口を封止して液晶レンズを製造した。

【0055】この液晶レンズを例1と同様に図1のような構成の光ヘッド整度に組み込んだ。波長650nmの右回り及び左回りの円偏光の透過率を測定したところ、右回りの円偏光(光ヘッド装置での往路)では95%、左回りの円偏光(光ヘッド装置での復路)でも95%の効率であり、往復で90%の効率が得られた。例1と同様に100Hz、5Vの電圧のオン、オフにより、焦点を切り替えることができた。

【0056】「例4」2枚の基板として厚さ0.5mmで、大きさが10×10mmで、屈折率が1.57のガラス基板は中心が凸部になるようにエッチングにより非球面凸レンズ状に凸部を形成した。この非球面レンズは、直径1.5mm、中心の高さは4μmとした。上面、下面の基板とも電極としてITO電極を形成後、ポリイミドの膜を塗布し、ラビングして水平配向処理を行った。

【0057】この2枚の基板を夫々の配向方向が平行になるように対向させ、周辺でシールして、レンズ中心部で間隙が 4μ m、周辺部で間隙が 8μ mの空セルを形成した。なお、2枚の基板の外面には失々反射防止膜を形成した。

【0058】この空セルに、液晶として常光屈折率が

1.49、Δnが0.12、ツイストピッチPが3μm の正の跨電異方性のネマチック液品組成物を注入し、法 入口を封止して液品レンズを製造した。

【0059】このようにして製造した液品レンズは、電圧を印加しない状態では液晶の分子はらせん構造を有し、そのらせん軸は基板面に垂直になる。このため、基板面に垂直に入射した液長633nmの光に対して、液晶の実効屈折率は常光屈折率1.49と異常光屈折率1.61との中間の値1.55になる。このことから、液晶の屈折率と基根の屈折率との屈折率差が小さくなり、液晶レンズを透過した光の位相分布は透過前の状態とほとんど変わらなかった。

【0060】次に、被晶レンズの上下の基板の電極間に 100Hz、10Vの電圧を印加すると、液晶分子が縦 配向状態となる。このため、基板面に垂直に入射した波 長633nmの光に対しては、液晶の突効屈折率は常光 屈折率1.49に等しくなる。このことから、液晶の屈 折率と基板の屈折率との屈折率差が大きくなり、液晶レ ンズを透過した光の位相分布はセルの基板面に形成され た非球面形状高さに比例するように変化した。

【0061】これにより、図1の特成で用いた場合、液品レンズ4の上下の基板の電極間に電圧を印加しない場合には、第1の光記録媒体6からの信号が読み出せ、電圧を印加した場合には、第2の光記録媒体7からの信号が読み出せた。

【0062】「例5」例4と同じガラス基板を用いた。ただし、下面のガラス基板は中心が凸部になるようにエッチングにより非球面凸レンズ状に凸部を形成した。この非球面レンズは、直径1.5mm、中心の高さは3μmとした。この下面のガラス基板には、電径としてIT O質極を形成後、宥機シラン系の溶剤を塗布して垂直配向処理を行った。一方、上面のガラス基板は、覚極としてITO電極を形成した後、ポリイミドの膜を塗布し、ラビングして水平配向処理を行った。

【0063】この2枚の基板を対向させ、周辺でシール して、レンズ中心部で間隙が3μm、周辺部で間隙が6 μmの変セルを形成した。なお、2枚の基板の外面には 夫々反射防止膜を形成した。

【0064】この空セルに、液晶として常光屈折率が 1.49、 Δ nが0.12、ツイストピッチアが1.6 μ mの正の誘電異方性のネマチック液晶組成物を注入 し、注入口を封止して液晶レンズを製造した。

【0065】このようにして製造した液晶レンズは、電圧を印加しない状態では液晶の分子はらせん構造を育し、そのらせん軸は基板面に垂直になる。このため、基板面に垂直に入射した液長633nmの光に対して、液晶の気効屈折率は常光屈折率1.49と異常光屈折率1.61との中間の値1.55になる。このことから、液晶の屈折率と基板の屈折率との屈折率差が小さくなり、液晶レンズを透過した光の位相分布は透過前の状態

とほとんど変わらなかった。

【0066】次に、液晶レンズの上下の基板の電極間に 100Hz、10Vの電圧を印加すると、液晶分子が縦 配向状態となる。このため、基板面に垂直に入射した波 長633nmの光に対しては、液晶の実効屈折率は常光 屈折率1.49に等しくなる。このことから、液晶の屈 折率と基板の屈折率との屈折率差が大きくなり、液晶レ ンズを透過した光の位相分布はセルの基板面に形成され た非球面形状高さに比例するように変化した。

【0067】これにより、図1の構成で用いた場合、液 品レンズ4の上下の基板の電極間に電圧を印加しない場 合には、第1の光記録媒体6からの信号が読み出せ、電 圧を印加した場合には、第2の光記録媒体7からの信号 が読み出せた。

【0068】「例6」図4に示すように、2枚の基板として厚さ0.5mmで、大きさが10×10mmで、屈 折率が1.49のガラス基板を用い、下面のガラス基板には、中心部が基板の平坦部と同じ高さの山となるようにプレスにより非球面同心円状に凹部を形成した。この非球面レンズは、直径2.3mm、凹部の深さは2.3μmとした。上面、下面の基板とも電極としてITO電極を形成後、ポリイミドの膜を強布し、ラビングして水平配向処理を行った。

【0069】この2枚の基板を失々の配向方向が平行になるように対向させ、周辺でシールして、レンズ中心部で間隙が 4μ m、凹部で間隙が 6.3μ mの空セルを形成した。なお、2枚の基板の外面には失々反射防止膜を形成した。

【0070】この空セルに、液晶として常光屈折率が 1.49、Δnが0.12、ツイストピッチPが1.6 μmの正の誘電異方性のネマチック液晶組成物を注入 し、注入口を封止して液晶レンズを製造した。

【0071】このようにして製造した液晶レンズは、電圧を印加しない状態では液晶の分子はらせん構造を有し、そのらせん軸は基板面に垂直になる。このため、基板面に垂直に入射した波長633nmの光に対して、液晶の実効屈折率は常光屈折率1.49と異常光屈折率1.61との中間の値1.55になる。このことから、液晶の屈折率と基板の屈折率との屈折率差が大きくなり、液晶レンズを透過した光の位相分布はセルの基板面に形成された非球面形状高さに比例するように変化した

【0072】次に、被晶レンズの上下の基板の電極間に 100Hz、10Vの電圧を印加すると、液晶分子が縦 配向状態となる。このため、基板面に垂直に入射した波 長633nmの光に対しては、液晶の実効展折率は常光 屈折率1.49に等しくなる。このことから、液晶の屈 折率と基板の屈折率との屈折率差が小さくなり、液晶レ ンズを透過した光の位相分布は透過前の状態とほとんど 変わらなかった。 (7)

特別平10-188332

【0073】これにより、図1の構成で用いた場合、液晶レンズ4の上下の基板の電極間に電圧を印加しない場合には、第2の光記録媒体7からの信号が読み出せ、電圧を印加した場合には、第1の光記録媒体6からの信号が読み出せた。

[0074]

【発明の効果】本発明の光ヘッド装置では、液晶がツイストした液晶レンズを用いているので、外部からの電圧 印加によって焦点距離又は光の位相分布を切り替え可能 であり、利用効率の高い光ヘッド装置を得ることができ る。本発明は、その効果を損しない範囲内で、種々の応 用ができる。

【図面の簡単な説明】

【図1】本発明の光ヘッド装置の例を示す模式図。

【図2】基板が凹部又は凸部を有する液晶レンズの例を 示す断面図。

【図3】 基板をフレネルレンズ構造にした液晶レンズの 例を示す断面図。

【図4】 基板の中心部に山を有する液晶レンズの例を示す断面図。

[図1]

[図3]

[図2]

[図4]

