1 Introduction

Our goal is to describe different types of Dieudonné complexes in terms of fixed points. This is relatively easy to accomplish for saturated complexes but requires a bit more work for strict complexes. As a reminder, recall that $M \in DC$ is saturated if it is p-torsion-free and

$$\alpha_F: M \to \eta_p M, \qquad x \mapsto p^n F(x)$$

is an isomorphism of Dieudonné complexes (where $x \in M^n$). Note that the data of a map of complexes $M \to \eta_p M$ is equivalent to a choice of Frobenius on M making it into a Dieudonné complex. In more detail, $\alpha: M \to \eta_p M$ induces

$$F_{\alpha}: M \to M, \qquad x \mapsto p^{-n}\alpha(x)$$

a map of graded abelian groups (where $x \in M^n$). Recall also that $M \in \mathsf{DC}_{\mathsf{sat}}$ is strict if the canonical map $\rho_F : M \to \mathcal{W}M$ is an isomorphism, noting that $\mathcal{W}M$ is always strict.

2 Décalage

As we already know, the décalage process determines an endofunctor $\eta_p : \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}} \to \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}}$. One of the key properties of décalage is that it kills off p-torsion in cohomology – given $M \in \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}}$, there is a canonical isomorphism

$$H^{\bullet}(M)/H^{\bullet}(M)[p] \xrightarrow{\sim} H^{\bullet}(\eta_{p}M)$$

of graded abelian groups. Hence, η_p sends qis's to qis's and we obtain the following result.

Proposition 1. There is an essentially unique functor $L\eta_p:D(\mathbb{Z})\to D(\mathbb{Z})$ such that

$$\begin{array}{ccc} \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}} & \xrightarrow{\eta_p} & \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}} \\ & & & \downarrow & & \downarrow \\ D(\mathbb{Z}) & \xrightarrow{\exists ! \ L\eta_p} & D(\mathbb{Z}) \end{array}$$

commutes up to natural isomorphism.

Thinking of $D(\mathbb{Z})$ as $\mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}}$ with qis's inverted, we obtain $L\eta_p X$ for $X \in D(\mathbb{Z})$ by choosing a representative for X in $\mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}}$, applying η_p , and taking the corresponding qis class in $D(\mathbb{Z})$.² Similar comments apply if one were to choose a different model of $D(\mathbb{Z})$, in particular the homotopical model $h \, \mathsf{Ch}(\mathbb{Z})^{\mathrm{free}}$.

3 Completion

Definition 2. Classical p-completion is the functor

$$\widehat{\cdot} : \mathsf{Mod}_{\mathbb{Z}} \to \mathsf{Mod}_{\mathbb{Z}}, \qquad X \mapsto \varprojlim_{n \geq 1} X/p^n X.$$

¹We can upgrade this to an isomorphism of complexes if the RHS is equipped with the differential induced by the Bockstein operator.

²By using the term 'class' here I don't mean to suggest that we are performing some kind of quotient process. Instead, I mean that the result is well-defined up to qis (which is isomorphism in $D(\mathbb{Z})$). In particular, passing to the skeleton of $D(\mathbb{Z})$ gives something unique (I think).

We say $X \in \mathsf{Mod}_{\mathbb{Z}}$ is **classically** p-complete if the natural map $X \to \widehat{X}$ is an isomorphism. On a somewhat related note, $X \in D(\mathbb{Z})$ is **derived** p-complete if $\mathsf{Hom}_{D(\mathbb{Z})}(Y,X) = 0$ for every $Y \in D(\mathbb{Z})$ such that $p: Y \xrightarrow{\sim} Y$. Such objects span a full subcategory $D_p(\mathbb{Z}) \subseteq D(\mathbb{Z})$.

Proposition 3. The inclusion $D_p(\mathbb{Z}) \hookrightarrow D(\mathbb{Z})$ admits a left adjoint $\widehat{\cdot} : D(\mathbb{Z}) \to D_p(\mathbb{Z})$ called the **derived** p-completion given by choosing a representative in $\mathsf{Ch}(\mathbb{Z})^{\mathsf{tf}}$ and applying classical p-completion in each degree.³

In line with the above, we extend derived notions to $\mathsf{Ch}(\mathbb{Z})$ by passing to qis classes. This in turn allows us to extend derived notions to $\mathsf{Mod}_{\mathbb{Z}}$ by thinking of abelian groups as complexes concentrated in degree 0. Given $X \in \mathsf{Mod}_{\mathbb{Z}}$, the classical p-completion of X represents the derived p-completion of X and so we may identify the two. In this simple case, to check that X is derived p-complete we need only verify that $\mathsf{Hom}_{D(\mathbb{Z})}(\mathbb{Z}[p^{-1}],X)=0$.

Proposition 4. Let $X \in \mathsf{Mod}_{\mathbb{Z}}$. Then, X is **pro-free** (i.e., the p-completion of a free abelian group) if and only if it is derived p-complete and p-torsion-free.

Complexes of pro-free abelian groups span a full subcategory $\mathsf{Ch}(\mathbb{Z})^{\mathsf{pro-free}} \subseteq \mathsf{Ch}(\mathbb{Z})$. This category is clearly linked to $D_p(\mathbb{Z})$ by the above, and in fact the connection is strong.

Theorem 5. The functor $\mathsf{Ch}(\mathbb{Z})^{\mathsf{pro-free}} \to D(\mathbb{Z})$ obtained by passing to qis classes has essential image $D_p(\mathbb{Z})$ and induces an equivalence $h \, \mathsf{Ch}(\mathbb{Z})^{\mathsf{pro-free}} \xrightarrow{\sim} D_p(\mathbb{Z})$. In more detail, given $X, Y \in \mathsf{Ch}(\mathbb{Z})^{\mathsf{pro-free}}$, $\mathsf{Hom}_{\mathsf{Ch}(\mathbb{Z})}(X,Y) \twoheadrightarrow \mathsf{Hom}_{D(\mathbb{Z})}(X,Y)$ and $f,g \in \mathsf{Hom}_{\mathsf{Ch}(\mathbb{Z})}(X,Y)$ have the same image if and only if $f \simeq g$.

Before discussing fixed points, we mention two supplementary results that will be important soon. The first result concerns compatibility of décalage and p-completion.

Proposition 6. Suppose that $M \to N$ in $D(\mathbb{Z})$ exhibits N as a derived p-completion of M. Then, the induced map $L\eta_p M \to L\eta_p N$ exhibits $L\eta_p N$ as a derived p-completion of $L\eta_p M$. Hence, $L\eta_p$ restricts to an endofunctor of $D_p(\mathbb{Z})$.

The second result concerns completion of Dieudonné complexes.

Proposition 7. Given $M \in \mathsf{DC}_{\mathsf{sat}}$, the canonical map $\rho_F : M \to \mathcal{W}M$ exhibits $\mathcal{W}M$ as a derived p-completion of M. Moreover, ρ_F is a qis if and only if M is derived p-complete.

4 Fixed Points

Definition 8. Let C be a category and $T: C \to C$ an endofunctor. The **fixed point** category C^T of C with respect to T is the category whose objects are pairs (X, φ) with $X \in C$ and $\varphi \in \text{Isom}_{C}(X, TX)$. The data of a morphism $f: (X, \varphi) \to (X', \varphi')$ is $f \in \text{Hom}_{C}(X, X')$ such that

³Part of the content of this result is that the choice of representative does not matter (up to qis). In particular, $D_p(\mathbb{Z})$ is invariant under this process.

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} X' \\ \varphi \Big\downarrow & & \Big\downarrow \varphi' \\ TX & \stackrel{Tf}{\longrightarrow} TX' \end{array}$$

commutes.

Remark 9. Let (C,T) and (C',T') be categories equipped with endofunctors that are intertwined in the sense that there is a functor $C \to C'$ intertwining T and T' up to specified natural isomorphism. Then, there is a natural induced functor $C^T \to (C')^{T'}$.

Basically by definition, we immediately see that there is an equivalence

$$\mathsf{DC}_{\mathrm{sat}} \xrightarrow{\sim} (\mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}})^{\eta_p}, \qquad (M, F) \mapsto (M, \alpha_F).$$

Because of the earlier commutative diagram for décalage, we obtain a functor θ via

$$\mathsf{DC}_{\mathrm{str}} \hookrightarrow \mathsf{DC}_{\mathrm{sat}} \xrightarrow{\sim} (\mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}})^{\eta_p} \to D(\mathbb{Z})^{L\eta_p}.$$

Theorem 10. The composite functor $\theta: \mathsf{DC}_{\mathsf{str}} \to D(\mathbb{Z})^{L\eta_p}$ induces an equivalence $\mathsf{DC}_{\mathsf{str}} \xrightarrow{\sim} D_p(\mathbb{Z})^{L\eta_p}$.

We begin by showing that the essential image of θ is $D_p(\mathbb{Z})^{L\eta_p}$. To that end, choose an object of $D_p(\mathbb{Z})^{L\eta_p}$. On the level of representatives, this amounts to choosing $X \in \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}}$ and a qis $\alpha: X \to \eta_p X$. Using α , we endow X with the structure of a Dieudonné module as discussed earlier. Each of the arrows in the diagram

$$X \xrightarrow{\alpha} \eta_p X \xrightarrow{\eta_p \alpha} \eta_p^2 X \xrightarrow{\eta_p^2 \alpha} \cdots$$

is a qis and so the induced map $X \to \operatorname{Sat}(X)$ is a qis. Since X is derived p-complete, $\operatorname{Sat}(X)$ is derived p-complete and so the canonical map $\operatorname{Sat}(X) \to \mathcal{W}\operatorname{Sat}(X)$ is a qis. Hence, the completed saturation map $X \to \mathcal{W}\operatorname{Sat}(X)$ is a qis. This fits into a commutative diagram

$$X \longrightarrow W\mathrm{Sat}(X)$$

$$\alpha \downarrow \qquad \qquad \downarrow W\mathrm{Sat}(\alpha)$$

$$\eta_p X \longrightarrow \eta_p W\mathrm{Sat}(X)$$

The right vertical map is an isomorphism since $W\mathrm{Sat}(X)$ is saturated. It follows that (X,α) and $(W\mathrm{Sat}(X),W\mathrm{Sat}(\alpha))$ represent isomorphic objects in $D_p(\mathbb{Z})^{L\eta_p}$ and so (X,α) lies in the essential image of $W\mathrm{Sat}(X)\in\mathsf{DC}_{\mathrm{str}}$ under θ . To finish seeing that the essential image of θ is $D_p(\mathbb{Z})^{L\eta_p}$, note that $X\in\mathsf{DC}_{\mathrm{str}}$ satisfies $X\cong WX$ and the latter is derived p-complete (which means θ factors through $D_p(\mathbb{Z})^{L\eta_p}$).

Our aim now is to show that θ is fully faithful. To that end, choose $X, Y \in \mathsf{DC}_{\mathsf{str}}$ (from which we get that X, Y are both pro-free by earlier comments) and consider the natural map

$$\Theta_{X,Y}: \operatorname{Hom}_{\mathsf{DC}_{\operatorname{str}}}(X,Y) \to \operatorname{Hom}_{D_p(\mathbb{Z})^{L\eta_p}}(X,Y)$$

induced by θ . Recall from earlier that we have an equivalence $h\operatorname{Ch}(\mathbb{Z})^{\operatorname{pro-free}} \xrightarrow{\sim} D_p(\mathbb{Z})$ obtained by passing to qis classes. We wish to understand what $\operatorname{Hom}_{D_p(\mathbb{Z})^{L\eta_p}}(X,Y)$ looks like under this equivalence. With this in mind, we introduce the following definition.

Definition 11. Suppose $X, Y \in \mathsf{Ch}(\mathbb{Z})^{\mathsf{tf}}$ are equipped with the structure of Dieudonné modules and $f \in \mathsf{Hom}_{\mathsf{Ch}(\mathbb{Z})}(X,Y)$. We say that f is **weakly** F-**compatible** if the diagram

$$\begin{array}{c} X \stackrel{f}{\longrightarrow} Y \\ \alpha_F \downarrow & \downarrow \alpha_F \\ \eta_p X \stackrel{}{\longrightarrow} \eta_p Y \end{array}$$

commutes up to homotopy. In the case that Y is saturated this is the same as requiring that

$$\alpha_F^{-1} \circ \eta_p f \circ \alpha_F = F^{-1} \circ f \circ F \simeq f$$

as maps of complexes. This notion clearly extends to homotopy classes of maps in [X,Y].

It follows that the (functorial) bijection $\operatorname{Hom}_{D_p(\mathbb{Z})}(X,Y)\longleftrightarrow [X,Y]$ induces a (functorial) bijection

$$\operatorname{Hom}_{D_n(\mathbb{Z})^{L\eta_p}}(X,Y)\longleftrightarrow \{f\in [X,Y]: f \text{ is weakly } F\text{-compatible}\}.$$

The matter of whether $\Theta_{X,Y}$ is bijective therefore boils down to the following lemma.

Lemma 12. Let $X, Y \in \mathsf{Ch}(\mathbb{Z})^{\mathsf{tf}}$ equipped with the structure of Dieudonné modules such that Y is strict. Let $f \in \mathsf{Hom}_{\mathsf{Ch}(\mathbb{Z})}(X,Y)$ be weakly F-compatible. Then, there exists a unique natural choice of $\widetilde{f} \in \mathsf{Hom}_{\mathsf{DC}}(X,Y)$ such that $\widetilde{f} \simeq f$.

Proof. We first prove existence. By hypothesis there exists a map $h: X^{\bullet} \to Y^{\bullet-1}$ of graded abelian groups such that $F^{-1} \circ f \circ F = f + dh + hd$. We seek a homotopy $u: X^{\bullet} \to Y^{\bullet-1}$ such that taking $\widetilde{f} := f + du + ud$ gives $F^{-1} \circ \widetilde{f} \circ F = \widetilde{f}$. No matter how we choose u, the identity FdV = d gives

$$F^{-1} \circ (du + ud) \circ F = d(VuF) + (VuF)d$$

and so

$$F^{-1} \circ \widetilde{f} \circ F = F^{-1} \circ f \circ F + F^{-1} \circ \widetilde{f} \circ F$$
$$= f + dh + hd + d(VuF) + (VuF)d$$
$$= f + d(h + VuF) + (h + VuF)d.$$

Thus, the condition we want is u = h + VuF and so we take

$$u := \sum_{r>0} V^r u F^r.$$

Now to prove uniqueness. Let $g \in \operatorname{Hom}_{\mathsf{DC}}(X,Y)$ such that $g \simeq 0$, so g = dh + hd for some homotopy $h: X^{\bullet} \to Y^{\bullet -1}$. Given $r \geq 0$,

$$g = F^{-r} \circ g \circ F^{r}$$

$$= F^{-r}(dh + hd) \circ F^{r}$$

$$= d(V^{r}hF^{r}) + V^{r}(hF^{r}d).$$

Hence, the composition

$$X \xrightarrow{g} Y \longrightarrow \mathcal{W}_r Y$$

vanishes and so g vanishes since Y is strict.