F5

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-041575

(43)Date of publication of application: 12.02.1999

(51)Int.CI.

HO4N 7/14 HO4L 12/28 HO4L 12/56 HO4N 7/24

(21)Application number : 09-192140

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

17.07.1997

(72)Inventor:

NAKAMURA KENJI

(54) AUDIO AND VIDEO COMMUNICATION EQUIPMENT AND SYSTEM THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide audio and video communication equipment and an audio and video communication system in which continuity of audio and video data is ensured even in the case of frequent occurrence of congestion in a LAN.

SOLUTION: This system is provided with an image processing section 3 that applies analog/digital conversion to an image, an audio processing section 4 that applies analog/digital conversion to audio data, an image compression section 5 that obtains a compressed image signal, an audio compression section 6 that obtains a compressed audio signal, a multiplexer section 7 that multiplexes the compressed image signal and the compressed audio signal to convert the result into an audio/video multiplex signal, a LAN interface section 8 that outputs the audio/video multiplex signal to a LAN 9 and provides an output of a congestion generating signal on the occurrence of congestion on a LAN traffic and a data quantity control section 10 that controls a data quantity of the audio/video multiplex signal based on the congestion occurrence signal. The data quantity control section 10 controls the data quantity to reduce the audio/video multiplex signal when the congestion generating signal is outputted from the LAN interface section 8.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-41575

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl. ⁶	識別記号	FΙ					
H04N 7/14	B .	H04N 7/14					
H04L 12/28		H04L 11	1/00				
12/50		11	1/20				
H04N 7/24	l	H04N 7	H 0 4 N 7/13 Z				
		審査請求	未請求	請求項の勢	k32 OI	. (全 31 頁)	
(21)出願番号	特顧平9-192140	(71)出顧人		121 居産業株式会	· 社		
(22)出願日	平成9年(1997)7月17日	大阪府門真市大字門真1006番地				地	
		(72)発明者	中村	是二			
			大阪府門真市大字門真1006番地 松下電器 産業株式会社内				
		(74)代理人	弁理士	掩本 智之	<u> </u>	名)	
						•	

(54) 【発明の名称】 画像音声通信装置および画像音声通信システム

(57)【要約】

【 課題】 LANの輻輳発生頻度が増しても画像音声の 連続性を確保できる画像音声通信装置および画像音声通 信システムを提供することを目的とする。

【解決手段】 画像をアナログ、デジタル変換する画像処理部3と、音声をアナログ、デジタル変換する音声処理部4と、画像圧縮信号を得る画像圧縮部5と、音声圧縮信号を得る音声圧縮部6と、画像圧縮信号と音声圧縮信号を多重化して画像音声多重信号に変換する多重化部7と、画像音声多重信号をLAN9へ出力すると共にLANトラフィック上の輻輳が発生した際に輻輳発生信号を出力するLANインタフェース部8と、輻輳発生信号に基づいて画像音声多重信号のデータ量を制御するデータ量制御部10とを有する画像音声通信装置であって、データ量制御部10は、LANインタフェース部8から輻輳発生信号が出力されたとき、画像音声多重化信号のデータ量を減少させる制御を行う。

【 特許請求の範囲】

【 請求項1 】入力するアナログ画像信号をデジタル画像 信号に変換する画像処理部と、入力するアナログ音声信 号をデジタル音声信号に変換する音声処理部と、前記画 像処理部から出力されるデジタル画像信号を圧縮して画 像圧縮信号に変換する 画像圧縮部と、 前記音声処理部か ら出力されるデジタル音声信号を圧縮して音声圧縮信号 に変換する音声圧縮部と、前記画像圧縮部から出力され る前記画像圧縮信号と前記音声圧縮部から出力される前 記音声圧縮信号を多重化して画像音声多重信号に変換す る多重化部と、前記多重化部から出力される画像音声多 重信号を入力してLAN回線へ出力すると共にLANト ラフィック上の輻輳が発生した際に輻輳発生信号を出力 するLANインタフェース部と、前記LANインタフェ ース部から出力される輻輳発生信号に基づいて前記画像 音声多重信号のデータ 量を制御する データ 量制御部とを 有する画像音声通信装置であって、前記データ量制御部 は、前記LANインタフェース部から輻輳発生信号が出 力されたとき、前記画像音声多重化信号のデータ量を減 少させる制御を行うことを特徴とする画像音声通信装 置。

【請求項2】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマットを制御することにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1に記載の画像音声通信装置。

【 請求項3 】前記データ 量制御部は、前記LANインタフェース部から 輻輳発生信号が出力されたとき、前記画像圧縮部に対する駒落とし制御を行うことにより前記画像音声多重化信号のデータ 量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

【 請求項4 】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記音声圧縮部における音声圧縮の制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

【請求項5】前記データ最制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記音声処理部および前記音声圧縮部における音声圧縮モードの制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1に記載の画像音声通信装置。

【 請求項6 】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記多重化部において画像データ伝送の停止を行わせることにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

【 請求項7 】前記データ 量制御部は、前記L ANインタフェース 部から 輻輳発生信号が出力されたとき、前記画

像処理部におけるデジタル画像信号のフォーマットを制御し、前記画像圧縮部に対する駒落とし制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1に記載の画像音声通信装置。

【 請求項8 】前記データ 量制御部は、前記L ANインタフェース部から 輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマット を制御し、前記画像圧縮部に対する駒落とし制御を行い、前記音声圧縮部における音声圧縮の制御を行うことにより前記画像音声多重化信号のデータ 量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

【 請求項9 】前記データ最制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマットを制御し、前記画像圧縮部に対する駒落とし制御を行い、前記音声処理部および前記音声圧縮部における音声圧縮モードの制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

【 請求項10】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマットを制御し、前記音声圧縮部における音声圧縮の制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1に記載の画像音声通信装置。

【 請求項1 1 】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマットを制御し、前記音声処理部および前記音声圧縮部における音声圧縮モードの制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

【 請求項1 2 】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記音声圧縮部における音声圧縮の制御を行い、前記多重化部において画像データ伝送の停止を行わせることにより前記画像音声多重化信号のデータ量を制御することを特像とする請求項1 に記載の画像音声通信装置。

【請求項13】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記音声処理部および前記音声圧縮部における音声圧縮モードの制御を行い、前記多重化部において画像データ伝送の停止を行わせることにより前記画像音声多重化信号のデータ最を制御することを特徴とする請求項1に記載の画像音声通信装置。

【 請求項14 】 前記データ 量制御部は、前記LANイン タフェース部から 輻輳発生信号が出力されたとき、前記 画像処理部におけるデジタル画像信号のフォーマットを FCIFからQCIFに変更することにより 前記画像音 p多重化信号のデータ量を制御することを特徴とする 請 求項2 に記載の画像音声通信装置。

【 請求項15】前記データ 量制御部は、前記LANインタフェース部から 輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFに変更することにより前記画像音声多重化信号のデータ 量を制御することを特徴とする請求項2に記載の画像音声通信装置。

【 請求項16】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記画像圧縮部のバッファの蓄積容量を減少させデータの発生量を押さえることにより駒落としを行うことを特徴とする請求項3に記載の画像音声通信装置。

【 請求項17 】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記音声圧縮部における音声圧縮レートの制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項2に記載の画像音声通信装置。

【 請求項18】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記音声処理部および前記音声圧縮部における音声圧縮モードをG.711、G.722、G.728からG.723へ変更することにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項2に記載の画像音声通信装置。

【 請求項19 】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマットを制御し、前記画像圧縮部のバッファにおける蓄積容量を減少させて駒落とし制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

【請求項20】前記データ量制御部は、前記LANインタフェース部から輻輳発生信号が出力されたとき、前記画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFへ変更し、前記音声圧縮部における音声圧縮の制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1に記載の画像音声通信装置。

【 請求項2 1 】前記データ量制御部は、前配LANインタフェース部から輻輳発生信号が出力されたとき、前記画像圧縮部に対する駒落とし制御を行い、前記音声圧縮部における音声圧縮の制御を行うことにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項1 に記載の画像音声通信装置。

とを特徴とする請求項1に記載の画像音声通信装置。

【 請求項2 3 】前記データ量制御部は、前配画像圧縮部における画像圧縮モードを選択する画像圧縮モード選択 部と前記音声圧縮部における音声圧縮モードを選択する 音声圧縮モード選択部とを有することを特徴とする請求 項1 に記載の画像音声通信装置。

【 請求項24 】前記画像圧縮部は、前記画像圧縮モード 選択部により選択された画像圧縮モードに基づいて動作 することにより前記画像音声多重化信号のデータ 量を制 御することを特徴とする請求項23に記載の画像音声通 信装置。

【 請求項25 】前記音声圧縮部は、前記音声圧縮モード 選択部により選択された音声圧縮モードに基づいて動作 することにより前記画像音声多重化信号のデータ量を制 御することを特徴とする請求項23に記載の画像音声通 信装置。

【請求項26】前記画像圧縮部は前記画像圧縮モード選択部により選択された画像圧縮モードに基づいて動作し、前記音声圧縮部は前記音声圧縮モード選択部により選択された音声圧縮モードに基づいて動作することにより前記画像音声多重化信号のデータ量を制御することを特徴とする請求項23に記載の画像音声通信装置。

【 請求項27】LAN回線上の輻輳を検知する処理過程と、前記処理過程において発生した輻輳信号をデータに変換する変換過程と、前記変換過程で得られたデータを相手側の画像音声通信装置に通知する通知過程とを有することを特徴とする画像音声通信装置。

【請求項28】画像音声通信装置として請求項1に記載の第1の画像音声通信装置および請求項1に記載の第2の画像音声通信装置と、前記第1の画像音声通信装置と前記第2の画像音声通信装置との間において情報の伝送を行うデータ転送部とを有する画像音声通信システムであって、前記第1の画像音声通信装置のLANインタフェース部からLAN回線における輻輳の発生を示す輻輳発生信号が前記第1の画像音声通信装置の多重化部は、前記データ転送部を介して、前記輻輳発生信号を前記第2の画像音声通信装置に通知することを特徴とする画像音声通信システム。

【請求項29】前記第1の画像音声通信装置の多重化部は、LSDを用いて前記輻輳発生信号を前記第2の画像音声通信装置に通知することを特徴とする請求項28に記載の画像音声通信システム。

【請求項30】前記第1の画像音声通信装置の多重化部は、HSDを用いて前記輻輳発生信号を前記第2の画像音声通信装置に通知することを特徴とする請求項28に記載の画像音声通信システム。

【 請求項31】前記第1の画像音声通信装置の多重化部は、MLPのインタフェースを用いて前記輻輳発生信号を前記第2の画像音声通信装置に通知することを特徴と

する請求項28に記載の画像音声通信システム。

【 請求項32】前記第1の画像音声通信装置の多重化部は、BASを用いて前記輻輳発生信号を前記第2の画像音声通信装置に通知することを特徴とする請求項28に記載の画像音声通信システム。

【発明の詳細な説明】

[0001]

【 発明の属する技術分野】本発明は、輻輳が発生する多 重化伝送系(たとえばLAN)に接続され、画像、音 声、データを伝送する画像音声通信装置およびその画像 音声通信装置を用いた画像音声通信システムに関する。 【 0002】

【 従来の技術】近年、マルチメディア化の時代を迎え、 I S D N やL A N の整備、テレビ会議システムやパソコンの普及が進むようになってきた。以下、従来の画像音 声通信装置について説明する。

【 0003】図28は従来の画像音声通信装置を示すブ ロック図である。図28において、1は被写体を撮像し てアナログ画像信号を出力するカメラ、2 は音声を入力 してアナログ音声信号を出力するマイク、3 は国際標準 規格H.320に準拠し、アナログ画像信号をデジタル 画像信号に変換する画像処理部、4 は国際標準規格H. 320に準拠し、アナログ音声信号をデジタル音声信号 に変換する音声処理部、5 は国際標準規格H. 320 に 準拠し、デジタル画像信号を圧縮して画像圧縮信号を生 成する画像圧縮部、6 は国際標準規格H. 320 に準拠 し、デジタル音声信号を圧縮して音声圧縮信号を生成す る音声圧縮部、7は国際標準規格H.320に準拠し、 画像圧縮信号と音声圧縮信号を多重化して画像音声多重 信号を生成する多重化部、8 はL AN9 へ画像音声多重 信号を出力するLANインタフェース部、10 MはLA Nインタフェース部8 から 輻輳発生を示す輻輳発生信号 を入力し、画像圧縮部5 における符号化データ 量を制御 するデータ量制御部である。

【0004】以上のように構成された画像音声通信装置 について、その動作を説明する。カメラ1 に入力された 映像はアナログ画像信号に変換され、画像処理部3 へ出 力される。画像処理部3は、カメラ1から入力されたア ナログ画像信号を国際標準規格H.320に準拠するフ オーマット(FCIF, QCIF)のデジタル画像信号 に変換し、画像圧縮部5 に出力する。画像圧縮部5 は、 入力されたデジタル画像信号を国際標準規格H. 320 に準拠する画像圧縮信号に変換し、多重化部7に出力す る。一方、マイク2に入力された音声はアナログ音声信 号に変換され、音声処理部4に出力される。音声処理部 4 は、マイク2 から入力されたアナログ音声信号を国際 標準規格H. 320に準拠するデジタル音声信号に変換 し、音声圧縮部6に出力する。音声圧縮部6は、入力さ れたデジタル音声信号を国際標準規格H. 320 に準拠 する音声圧縮信号に変換し、多重化部7に出力する。

【0005】多重化部7は、入力された画像圧縮信号と音声圧縮信号を国際標準規格H.320に準拠するフォーマットで多重化して画像音声多重信号を生成し、LANインタフェース部8は入力された画像音声多重信号をLAN9へ出力する。LAN9上に輻輳が発生すると、LANインタフェース部8から輻輳発生信号がデータ量制御部10Mに送信され、データ量制御部10Mは、画像圧縮部5における画像圧縮の量子化度を制御し、符号化データ量の発生を押さえる。

[0006]

【 発明が解決しようとする課題】しかしながら、LAN 9 上に接続される機器は年々増加の傾向にあり、輻輳の発生頻度は高くなり、画像圧縮の量子化度の制御だけでは、動画や音声の連続性は失われ、特に音声の連続性が失われると会議ができなくなるという問題点を有していた

【 0007】この画像音声通信装置および画像音声通信 システムでは、LANが普及して輻輳発生頻度が増加し ても対応可能なことが要求されている。

【 0008】本発明は、LANが普及して輻輳発生頻度が増加しても画像音声の連続性を確保することができる 画像音声通信装置およびLANが普及して輻輳発生頻度 が増加しても画像音声の連続性を確保することができる 画像音声通信システムを提供することを目的とする。

[0009]

【 課題を解決するための手段】上記課題を解決するため に本発明の画像音声通信装置は、入力するアナログ画像 信号をデジタル画像信号に変換する画像処理部と、入力 するアナログ音声信号をデジタル音声信号に変換する音 声処理部と、画像処理部から出力されるデジタル画像信 号を圧縮して画像圧縮信号に変換する画像圧縮部と、音 声処理部から 出力される デジタル音声信号を圧縮して音 声圧縮信号に変換する音声圧縮部と、 画像圧縮部から出 力される画像圧縮信号と音声圧縮部から出力される音声 圧縮信号を多重化して画像音声多重信号に変換する多重 化部と、多重化部から 出力される 画像音声多重信号を入 カレ てLANへ出力すると共にLANトラフィック上の 輻輳が発生した際に輻輳発生信号を出力するLANイン タフェース部と、LANインタフェース部から出力され る輻輳発生信号に基づいて画像音声多重信号のデータ量 を制御するデータ 量制御部とを有する 画像音声通信装置 であって、データ量制御部は、LANインタフェース部 から 輻輳発生信号が出力されたとき、 画像音声多重化信 号のデータ 量を減少させる制御を行う構成を備えてい

【 0010】これにより、LANが普及して輻輳発生頻度が増加しても画像音声の連続性を確保することができる画像音声通信装置が得られる。

【0011】上記課題を解決するための本発明の画像音

声通信システムは、画像音声通信装置として上記発明の 第1 の画像音声通信装置および上記発明の第2 の画像音 声通信装置と、第1 の画像音声通信装置と第2 の画像音 声通信装置との間において情報の伝送を行う データ 転送 部とを有する画像音声通信システムであって、第1 の画 像音声通信装置のL A N インタフェース部から L A N に おける輻輳の発生を示す輻輳発生信号が第1 の画像音声 通信装置の多重化部に転送されたとき、第1 の画像音声 通信装置の多重化部は、データ転送部を介して、輻輳発 生信号を第2 の画像音声通信装置に通知する構成を備え ている。

【0012】これにより、LANが普及して輻輳発生頻度が増加しても画像音声の連続性を確保することができる画像音声通信装置が得られる。

[0013]

【 発明の実施の形態】本発明の請求項1 に記載の発明 は、入力するアナログ画像信号をデジタル画像信号に変 換する画像処理部と、入力するアナログ音声信号をデジ タル音声信号に変換する音声処理部と、画像処理部から 出力されるデジタル画像信号を圧縮して画像圧縮信号に 変換する画像圧縮部と、音声処理部から出力されるデジ タル音声信号を圧縮して音声圧縮信号に変換する音声圧 縮部と、画像圧縮部から出力される画像圧縮信号と音声 圧縮部から出力される音声圧縮信号を多重化して画像音 声多重信号に変換する多重化部と、多重化部から出力さ れる画像音声多重信号を入力してLANへ出力すると共 にLANトラフィック上の輻輳が発生した際に輻輳発生 信号を出力するLANインタフェース部と、LANイン タフェース部から 出力される 輻輳発生信号に基づいて画 像音声多重信号のデータ 量を制御する データ 量制御部と を有する画像音声通信装置であって、データ 量制御部 は、LANインタフェース部から輻輳発生信号が出力さ れたとき、画像音声多重化信号のデータ 量を減少させる 制御を行うこととしたものであり、輻輳発生時に、画像 音声多重信号のデータ 量が減少するという 作用を有す る。

【 0014】請求項2に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御することにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、デジタル画像信号のフォーマットが変更され、画像音声多重信号のデータ量が減少するという作用を有する。

【 0015】請求項3に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像圧縮部に対する駒落とし制御を行うことにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、画像圧縮部における駒落としが行われ、画像

音声多重信号のデータ 量が減少するという 作用を有する。

【 0 0 1 6 】請求項4 に配載の発明は、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声圧縮部における音声圧縮の制御を行うことにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、音声圧縮部において音声圧縮レートが変更され、画像音声多重信号のデータ量が減少するという作用を有する。

【 0 0 1 7 】 請求項5 に記載の発明は、請求項1 に記載 の発明において、データ量制御部は、LANインタフェ ース 部から 輻輳発生信号が出力されたとき、 音声処理部 および音声圧縮部における音声圧縮モードの制御を行う ことにより 画像音声多重化信号のデータ 量を制御するこ ととしたものであり、輻輳発生時に、音声処理部および 音声圧縮部における音声圧縮モードが変更され、画像音 声多重信号のデータ量が減少するという 作用を有する。 【0018】請求項6に記載の発明は、請求項1に記載 の発明において、データ量制御部は、LANインタフェ ース 部から 輻輳発生信号が出力されたとき、 多重化部に おいて画像データ伝送の停止を行わせることにより 画像 音声多重化信号のデータ量を制御することとしたもので あり、輻輳発生時に、多重化部において画像データ伝送 が停止され、画像音声多重信号のデータ量が減少すると いう作用を有する。

【 0 0 1 9 】請求項7 に記載の発明は、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、画像圧縮部に対する駒落とし制御を行うこととしたものであり、輻輳発生時に、デジタル画像信号のフォーマットが変更され、また画像圧縮部における駒落としが行われ、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0 0 2 0 】請求項8 に記載の発明は、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、画像圧縮部に対する駒落とし制御を行い、音声圧縮部における音声圧縮の制御を行うこととしたものであり、輻輳発生時に、デジタル画像信号のフォーマットが変更され、また画像圧縮部における駒落としが行われ、さらに音声圧縮部における音声圧縮レートが変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0021】請求項9に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、画

像圧縮部に対する駒落とし制御を行い、音声処理部および前記音声圧縮部における音声圧縮モードの制御を行うこととしたものであり、輻輳発生時に、デジタル画像信号のフォーマットが変更され、また画像圧縮部における駒落としが行われ、さらに音声処理部および音声圧縮部における音声圧縮モードが変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0022】請求項10に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、音声圧縮部における音声圧縮の制御を行うことにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、デジタル画像信号のフォーマットが変更され、また音声圧縮部における音声圧縮レートが変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【0023】請求項11に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、音声処理部および音声圧縮部における音声圧縮モードの制御を行うこととしたものであり、輻輳発生時に、デジタル画像信号のフォーマットが変更され、また音声処理部および音声圧縮部における音声圧縮モードが変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0 0 2 4 】請求項1 2 に記載の発明は、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声圧縮部における音声圧縮の制御を行い、多重化部において画像データ伝送の停止を行わせることとしたものであり、輻輳発生時に、音声圧縮部における音声圧縮レートが変更され、また多重化部において画像データ伝送が停止され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0025】請求項13に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声処理部および音声圧縮部における音声圧縮モードの制御を行い、多重化部において画像データ伝送の停止を行わせることとしたものであり、輻輳発生時に、音声処理部および音声圧縮部における音声圧縮モードが変更され、また多重化部において画像データ伝送が停止され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0026】請求項14に記載の発明は、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットをFCIF

からQCIFに変更することとしたものであり、画像処理部におけるデジタル画像信号のフォーマットがFCIFからQCIFに変更され、画像音声多重信号のデータ量が減少するという作用を有する。

【0027】請求項15に記載の発明は、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFに変更することとしたものであり、画像処理部におけるデジタル画像信号のフォーマットがQCIFからSQCIFに変更され、画像音声多重信号のデータ量が減少するという作用を有する。

【 0028】請求項16に記載の発明は、請求項3に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像圧縮部のバッファの蓄積容量を減少させデータの発生量を押さえることにより駒落としを行うこととしたものであり、輻輳発生時に、画像圧縮部における駒落としが行われ、画像音声多重信号のデータ量が減少するという作用を有する。

【0029】請求項17に記載の発明は、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声圧縮部における音声圧縮レートの制御を行うことにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、画像処理部におけるデジタル画像信号のフォーマットが変更され、また音声圧縮部における音声圧縮レートが例えば6.4kbpsから5.3kbpsに変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0030】請求項18に記載の発明は、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声処理部および音声圧縮部における音声圧縮モードをG.711、G.722、G.728からG.723へ変更され、また音声圧縮部における音声圧縮モードがG.711、G.722、G.728からG.723へ変更され、画像音声多重信号のデータ量が更に減少するという作用を有する

【 0 0 3 1 】請求項1 9 に記載の発明は、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、画像圧縮部のバッファにおける蓄積容量を減少させて駒落とし制御を行うことにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、画像処理部におけるデジタル画像信号のフォーマットが変更され、また画像圧縮部における駒落としが行われ、

画像音声多重信号のデータ量が更に減少するという作用を有する。

【0032】請求項20に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFへ変更し、音声圧縮部における音声圧縮の制御を行うことにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、画像処理部におけるデジタル画像信号のフォーマットがQCIFからSQCIFへ変更され、また音声圧縮部における音声圧縮レートが変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【0033】請求項21に記載の発明は、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像圧縮部に対する駒落とし制御を行い、音声圧縮部における音声圧縮の制御を行うことにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、画像圧縮部において駒落としが行われ、また音声圧縮部において音声圧縮レートが変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【 0 0 3 4 】請求項2 2 に記載の発明は、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声圧縮部における音声圧縮レートの制御を行い、多重化部において画像データ伝送の停止を行わせることにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、音声圧縮部において音声圧縮レートが変更され、また多重化部において画像データ伝送が停止され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【0035】請求項23に記載の発明は、請求項1に記載の発明において、データ量制御部は、画像圧縮部における画像圧縮モードを選択する画像圧縮モード選択部と音声圧縮における音声圧縮モードを選択する音声圧縮モード選択部とを有することとしたものであり、輻輳発生時に、画像圧縮モード選択部で選択される画像圧縮モードが変更され、また音声圧縮モード選択部で選択される音声圧縮モードが変更され、画像音声多重信号のデータ量が更に減少するという作用を有する。

【0036】請求項24に記載の発明は、請求項23に記載の発明において、画像圧縮部は、画像圧縮モード選択部により選択された画像圧縮モードに基づいて動作することにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、画像圧縮モード選択部で選択される画像圧縮モードが変更され、選択変更された画像圧縮モードに基づいて画像圧縮部は動作し、画像音声多重信号のデータ量が減少するという作用を有する。

【 0 0 3 7 】請求項2 5 に記載の発明は、請求項2 3 に 記載の発明において、音声圧縮部は、音声圧縮モード選 択部により選択された音声圧縮モードに基づいて動作す ることにより画像音声多重化信号のデータ最を制御する こととしたものであり、輻輳発生時に、音声圧縮モード 選択部で選択される音声圧縮モードが変更され、選択変 更された音声圧縮モードに基づいて音声圧縮部は動作 し、画像音声多重信号のデータ量が減少するという作用 を有する。

【 0 0 3 8 】請求項2 6 に記載の発明は、請求項2 3 に記載の発明において、画像圧縮部は画像圧縮モード選択部により選択された画像圧縮モード選択部により選択された音 p圧縮モード選択部により選択された音 p圧縮モードに基づいて動作することにより画像音声多重化信号のデータ量を制御することとしたものであり、輻輳発生時に、画像圧縮モード選択部で選択される画像圧縮モードが変更され、選択変更された画像圧縮モードに基づいて画像圧縮モード選択部で選択される音 p圧縮モードが変更され、選択変更され、選択変更され、選択変更された音p圧縮モードに基づいて音p圧縮部は動作し、画像音p多重信号のデータ量が減少するという作用を有する

【 0 0 3 9 】請求項2 7 に記載の発明は、LAN上の輻輳を検知する処理過程と、処理過程において発生した輻輳信号をデータに変換する変換過程と、変換過程で得られたデータを相手側の画像音声通信装置に通知する通知過程とを有することとしたものであり、輻輳発生時に、その発生輻輳が相手側の画像音声通信装置に通知されるという作用を有する。

【0040】請求項28に記載の発明は、画像音声通信装置として上記発明の第1の画像音声通信装置および上記発明の第2の画像音声通信装置と、第1の画像音声通信装置と第2の画像音声通信装置との間において情報の伝送を行うデータ転送部とを有する画像音声通信システムであって、第1の画像音声通信装置のLANインタフェース部からLANにおける輻輳の発生を示す輻輳発生信号が第1の画像音声通信装置の多重化部に転送されたとき、第1の画像音声通信装置の多重化部は、データ転送部を介して、輻輳発生信号を第2の画像音声通信装置に通知することとしたものであり、輻輳発生時に、その発生した輻輳がデータ転送部を介して相手側の画像音声通信装置に通知されるという作用を有する。

【 0 0 4 1 】請求項2 9 に記載の発明は、請求項2 8 に 記載の発明において、第1 の画像音声通信装置の多重化 部は、L S Dを用いて輻輳発生信号を第2 の画像音声通信装置に通知することとしたものであり、輻輳発生時に、その発生した輻輳がデータ転送部を介して第1 の画像音声通信装置から第2 の画像音声通信装置に通知されるという作用を有する。

【 0 0 4 2 】請求項3 0 に記載の発明は、請求項2 8 に

記載の発明において、第1の画像音声通信装置の多重化 部は、HSDを用いて輻輳発生信号を第2の画像音声通 信装置に通知することとしたものであり、輻輳発生時 に、その発生した輻輳がデータ転送部を介して第1の画 像音声通信装置から第2の画像音声通信装置に通知され るという作用を有する。

【0043】請求項31に記載の発明は、請求項28に記載の発明において、第1の画像音声通信装置の多重化部は、MLPのインタフェースを用いて輻輳発生信号を第2の画像音声通信装置に通知することとしたものであり、輻輳発生時に、その発生した輻輳がデータ転送部を介して第1の画像音声通信装置から第2の画像音声通信装置に通知されるという作用を有する。

【 0044】請求項32に記載の発明は、請求項28に記載の発明において、第1の画像音声通信装置の多重化部は、BASを用いて輻輳発生信号を第2の画像音声通信装置に通知することとしたものであり、輻輳発生時に、その発生した輻輳がデータ転送部を介して第1の画像音声通信装置から第2の画像音声通信装置に通知されるという作用を有する。

【 0045】以下、本発明の実施の形態について、図1 ~図27を用いて説明する。

(実施の形態1)図1は本発明の実施の形態1による画像音声通信装置を示すブロック図である。図1において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9は図28と同様のものなので、同一符号を付し、説明は省略する。10はLANインタフェース部8からの輻輳発生信号を入力し、画像処理部3に対してフォーマットの制御を行うデータ量制御部である。

【0046】以上のように構成された画像音声通信装置 について、その動作を説明する。カメラ1 に入力された 映像はアナログ画像信号に変換され、画像処理部3 へ出 力される。画像処理部3は、カメラ1から入力されたア ナログ画像信号を国際標準規格H. 320 に準拠するフ オーマット(FCIF, QCIF)のデジタル画像信号 に変換し、画像圧縮部5 に出力する。画像圧縮部5 は、 入力されたデジタル画像信号を国際標準規格H. 320 に準拠する画像圧縮信号に変換し、多重化部7 に出力す る。一方、マイク2に入力された音声はアナログ音声信 号に変換され、音声処理部4に出力される。音声処理部 4 は、マイク2 から入力されたアナログ音声信号を国際 標準規格H. 320 に準拠するデジタル音声信号に変換。 し、音声圧縮部6に出力する。音声圧縮部6は、入力さ れたデジタル音声信号を国際標準規格H.320に準拠 する音声圧縮信号に変換し、多重化部7に出力する。

【 0047】多重化部7は、入力された画像圧縮信号と音声圧縮信号を国際標準規格H.320に準拠するフォーマットで多重化して画像音声多重信号を生成し、LA

Nインタフェース部8 に出力し、LANインタフェース部8 は入力された画像音声多重信号をLAN9 へ出力する。LAN9 上に輻輳が発生すると、LANインタフェース部8 から輻輳発生信号がデータ量制御部10 に送信され、データ量制御部10は、画像処理部3に対し、FCIF(352×288)モードからQCIF(176×144)モードへの変更を通知し、符号化データ量の発生を4分の1に押さえ、これにより輻輳の発生を押さえることができる。

【0048】以上のように本実施の形態によれば、LA N9上に輻輳が発生してLANインタフェース部8から データ量制御部10に通知があったとき、データ量制御 部10は画像処理部3における処理モードをFCIFモ ードから QCIFモードへ変更させることにより、符号 化データ量の発生を4分の1に押さえることができる。 【 0049】(実施の形態2) 図2は本発明の実施の形 態2による画像音声通信装置を示すプロック図である。 図1 において、カメラ1、マイク2、画像処理部3、音 声処理部4、画像圧縮部5、音声圧縮部6、多重化部 7、LANインタフェース部8、LAN9、データ量制 御部10は図1と同様のものなので、同一符号を付し、 説明は省略する。本実施の形態では、データ量制御部1・ 0と画像圧縮部5の動作が実施の形態1とは異なる。 【0050】以上のように構成された画像音声通信装置 について、その動作を実施の形態1との相違点に関して

【0051】LAN9上に輻輳が発生すると、LANインタフェース部8から輻輳発生信号がデータ量制御部10に送信され、データ量制御部10は画像圧縮部5に対し、駒落としを通知する。通知を受けた画像圧縮部5は駒落としを行う。以下に画像圧縮部5の動作を更に詳細に説明する。

説明する。

【0052】図3は図2の画像圧縮部を示すブロック図 である。図3において、31は動き補償フレーム間予測 部、32はDCT部、33は量子化部、34は可変長符 号化部、35は多重化部、36は伝送符号化部である。 このように構成された画像圧縮部5の動作を説明する。 【 0053 】画像処理部3から出力されたデジタル画像 信号は、動き補償フレーム間予測部31に入力され、動 き補償およびフレーム間予測された画像データに変換さ れ、DCT部32へ出力される。また、その属性を示す サイド情報が可変長符号化部34~出力される。DCT 部32に入力された画像データはDCT変換され、量子 化部33に出力される。量子化部33に入力された画像 データは量子化され、可変長符号化部34に入力され る。可変長符号化部34に入力された量子化データとサ イズ情報は可変長符号化され、多重化部35に出力さ れ、多重化部35で多重化されて伝送符号化部36に出。 力される。多重化部35で発生するデータ量は動きの大 小で変動するが、これを固定速度の伝送チャネルで送る

ため、伝送符号化部36ではバッファを散けてデータの 平滑化を行っている。輻輳発生時、このバッファの蓄積 容量を減少させてデータの発生量を押さえることによ り、輻輳の発生を押さえることができる。すなわち、デ ータ量制御部10は伝送符号化部36のバッファ蓄積容 量を制御している。

【0054】以上のように本実施の形態によれば、LAN9上に輻輳が発生してLANインタフェース部8から輻輳発生信号がデータ量制御部10に送信されたとき、データ量制御部10は画像圧縮部5に対して駒落としを通知し、通知を受けた画像圧縮部5は駒落とし制御を行うようにしたので、データの発生量を押さえることができ、輻輳の発生を押さえることができる。

【0055】(実施の形態3)図4は本発明の実施の形態3による画像音声通信装置を示すプロック図である。図1において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。本実施の形態では、データ量制御部10と音声圧縮部6の動作が実施の形態1、実施の形態2とは異なる。

【 0056】以上のように構成された画像音声通信装置 について、その動作を実施の形態1、実施の形態2との 相違点に関して説明する。

【0057】LAN9上に輻輳が発生すると、LANイ ンタフェース部8 から 輻輳発生信号がデータ 量制御部1 0 に送信され、データ量制御部1 0 は音声圧縮部6 に対 して圧縮レート変更を通知する。通知を受けた音声圧縮 部6は、国際標準勧告G. 711やG. 722の場合、 音声圧縮レートを64kbsから56kbpsに落と す。56kbpsの状態において更にレート変更の通知 があった場合は更に48kbps ヘレートを落とす。 【0058】以上のように本実施の形態によれば、LA N9上に輻輳が発生してLANインタフェース部8から 輻輳発生信号がデータ量制御部10に送信されたとき、 データ 量制御部10 は音声圧縮部6 に対して圧縮レート 変更を通知し、通知を受けた音声圧縮部6 は音声圧縮レ ートを64kbs から56kbps に落とし、また56 k b p s の状態において更にレート変更の通知があった 場合は更に48kbps ヘレートを落とすことにより、 輻輳発生時、音声符号化データの発生量を押さえること ができ、輻輳の発生を押さえることができる。

【 0 0 5 9 】 (実施の形態4) 図5 は本発明の実施の形態4による画像音声通信装置を示すプロック図である。図1において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。本実施の形態では、データ量制御部1

0 と音声処理部4、音声圧縮部6 の動作が実施の形態1 ~3 とは異なる。

【 0 0 6 0 】以上のように構成された画像音声通信装置 について、その動作を実施の形態1 ~3 との相違点に関 して説明する。

【0061】LAN9上に輻輳が発生すると、LANインタフェース部8から輻輳発生信号がデータ量制御部10に送信され、データ量制御部10は音声圧縮部6に対して圧縮モード変更を通知し、また音声処理部4に対してアナログ・デジタル変換ビット係数の変更を通知する。通知を受けた音声圧縮部6は、国際標準勧告G.711もしくはG.722からG.728(16kbps)へモードを変更する。初期モードがG.722の場合はアナログ・デジタル変換ビット係数が16ビットであるため、ビット係数を8ビットに変更する。

【0062】以上のように本実施の形態によれば、LAN9上に輻輳が発生してLANインタフェース部8から輻輳発生信号がデータ量制御部10に送信されたとき、データ量制御部10は音声圧縮部6に圧縮モードの変更を通知し、音声処理部4に対してアナログ・デジタル変換ビット係数の変更を通知し、通知を受けた音声圧縮部6および音声処理部4において、圧縮モードの変更およびアナログ・デジタル変換ビット係数の変更を行うようにしたことにより、輻輳発生時、音声符号化データの発生量を押さえることができる。

【0063】(実施の形態5)図6は本発明の実施の形態5による画像音声通信装置を示すプロック図である。図6において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。7Aは多重化部である。本実施の形態では、データ量制御部10と多重化部7Aの動作が実施の形態1~4とは異なる。

【 0064】以上のように構成された画像音声通信装置について、その動作を実施の形態1~4との相違点に関して説明する。

【 0065】LAN9上に輻輳が発生すると、LANインタフェース部8から輻輳発生信号がデータ量制御部10に送信され、データ量制御部10は多重化部7Aに対して画像データ伝送停止を通知する。以下、多重化部7Aの動作を説明する。

【 0 0 6 6 】図7 は、1 2 8 k b p s の通信時(音声約64 k b p s 、画像約64 k b p s)の多重化部7 Aにおけるデータのフレーミング構造を示すフレーミング図である。図7 において、4 0 は音声圧縮データ格納部、4 1 は画像圧縮データ格納部、4 2 は同期を取るためのFAS(Frame Alignment Signal、フレーム同期信号)格納部、4 3 は通信情報をやりとりするためのBAS

(Base Activity Subset、基本アクティビティサブセット)格納部である。データ量制御部10から画像データ伝送停止信号を受けた多重化部7Aは、画像圧縮データ格納部41の画像圧縮データの送信を停止させ、音声圧縮データのみの通信を行う。さらに、通信モード変更の内容をBASに格納させ、相手側の画像音声通信装置に通知する。

【0067】以上のように本実施の形態によれば、LA N9上に輻輳が発生してLANインタフェース部8から 輻輳発生信号がデータ 量制御部10 に送信されたとき、 データ 量制御部10 は多重化部7 A に対して画像データ 伝送停止を通知し、通知を受けた多重化部7 Aは、画像 圧縮データ格納部41の画像圧縮データの送信を停止さ せ、音声圧縮データのみの通信を行わせるようにしたこ とにより、輻輳発生時、多重化データの発生量を押さえ ることができ、輻輳の発生を押さえることができる。 【 0068】(実施の形態6) 図8 は本発明の実施の形 態6 による画像音声通信装置を示すブロック図である。 図8において、カメラ1、マイク2、画像処理部3、音 声処理部4、画像圧縮部5、音声圧縮部6、多重化部 7、LANインタフェース部8、LAN9、データ量制 御部10は図1と同様のものなので、同一符号を付し、 説明は省略する。本実施の形態では、データ量制御部1 0、画像処理部3 および画像圧縮部5 の動作が実施の形 態1~5とは異なる。すなわち、本実施の形態による画 像音声通信装置は、実施の形態1と実施の形態2を合体 したものである。

【 0069】以上のように本実施の形態によれば、実施の形態1と実施の形態2とを合体して、輻輳発生時、画像処理部3における処理モードをFCIFモードからQCIFモードへ変更させて符号化データ量の発生を4分の1に押さえると共に、駒落とし制御を行うようにしたことにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【 0 0 7 0 】(実施の形態7) 図9 は本発明の実施の形態7 による画像音声通信装置を示すブロック図である。図9 において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。本実施の形態では、データ量制御部10、画像処理部3、画像圧縮部5 および音声圧縮部6の動作が実施の形態1~6とは異なる。すなわち、本実施の形態による画像音声通信装置は、実施の形態1と実施の形態2と実施の形態3とを合体したものである。

【 0071】以上のように本実施の形態によれば、実施の形態1と実施の形態2と実施の形態3とを合体して、輻輳発生時、画像処理部3における処理モードをFCIFモードからQCIFモードへ変更させて符号化データ 量の発生を4分の1に押さえ、かつ、駒落とし制御を行

うと共に音声圧縮レートを操作するようにしたことにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0072】(実施の形態8)図10は本発明の実施の形態8による画像音声通信装置を示すプロック図である。図10において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。本実施の形態では、データ量制御部10、画像処理部3、画像圧縮部5、音声圧縮部6および音声処理部4の動作が実施の形態1~7とは異なる。すなわち、本実施の形態による画像音声通信装置は、実施の形態1と実施の形態2と実施の形態4とを合体したものである。

【0073】以上のように本実施の形態によれば、実施の形態1と実施の形態2と実施の形態4とを合体して、輻輳発生時、画像処理部3における処理モードをFCIFモードからQCIFモードへ変更させて符号化データ量の発生を4分の1に押さえ、かつ、駒落とし制御を行うと共に音声圧縮モードを操作するようにしたことにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0074】(実施の形態9)図11は本発明の実施の形態9による画像音声通信装置を示すブロック図である。図11において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。本実施の形態では、データ量制御部10、画像処理部3および音声圧縮部6の動作が実施の形態1~8とは異なる。すなわち、本実施の形態による画像音声通信装置は、実施の形態1と実施の形態3とを合体したものである。

【0075】以上のように本実施の形態によれば、実施の形態1と実施の形態3とを合体して、輻輳発生時、画像処理部3における処理モードをFCIFモードからQCIFモードへ変更させて符号化データ量の発生を4分の1に押さえると共に音声圧縮レートを操作することにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0076】(実施の形態10)図12は本発明の実施の形態10による画像音声通信装置を示すプロック図である。図12において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。本実施の形態では、データ量制御部10、画像処理部3、音声処理部4および音声圧縮部6の動作が実施の形態1~9とは異なる。すなわち、

本実施の形態による画像音声通信装置は、実施の形態1 と実施の形態4とを合体したものである。

【 0077】以上のように本実施の形態によれば、実施の形態1と実施の形態4とを合体して、輻輳発生時、画像処理部3における処理モードをFCIFモードからQCIFモードへ変更させて符号化データ量の発生を4分の1に押さえると共に音声圧縮モードを操作することにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0078】(実施の形態11)図13は本発明の実施の形態11による画像音声通信装置を示すプロック図である。図13において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。6Aは音声圧縮部である。本実施の形態では、データ量制御部10と音声圧縮部6Aの動作が実施の形態1~10とは異なる。すなわち、本実施の形態による画像音声通信装置は、実施の形態3と実施の形態5とを合体したものである。

【 0079】以上のように本実施の形態によれば、実施の形態3と実施の形態5とを合体して、輻輳発生時、音声圧縮レートを操作すると共に画像データの伝送を停止させることにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0080】(実施の形態12)図14は本発明の実施の形態12による画像音声通信装置を示すプロック図である。図14において、カメラ1、マイク2、画像処理部3、画像圧縮部5、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。4Aは音声処理部、6Bは音声圧縮部である。本実施の形態では、データ量制御部10、音声処理部4A、音声圧縮部6Bの動作が実施の形態1~11とは異なる。すなわち、本実施の形態による画像音声通信装置は、実施の形態4と実施の形態5とを合体したものである。

【 0081】以上のように本実施の形態によれば、実施の形態4と実施の形態5とを合体して、輻輳発生時、音声圧縮モードを操作すると共に画像データの伝送を停止させることにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0082】(実施の形態13)図15は本発明の実施の形態13による画像音声通信装置を示すプロック図である。図15において、カメラ1、マイク2、音声処理部4、画像圧縮部5、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。3Aは画像処理部である。

【 0083】以上のように構成された画像音声通信装置 について、その動作を説明する。カメラ1に入力された 映像はアナログ画像信号に変換され、画像処理部3 へ出 力される。画像処理部3は、カメラ1から入力されたア ナログ画像信号を国際標準規格H. 324に準拠するフ オーマット(QCIF, SQCIF)のデジタル画像信 号に変換し、画像圧縮部5に出力する。画像圧縮部5 は、入力されたデジタル画像信号を国際標準規格H.3 24 に準拠する画像圧縮信号に変換し、多重化部7 に出 力する。一方、マイク2に入力された音声はアナログ音 声信号に変換され、音声処理部4 に出力される。音声処 理部4は、マイク2から入力されたアナログ音声信号を 国際標準規格H. 324 に準拠するデジタル音声信号に 変換し、音声圧縮部6 に出力する。音声圧縮部6 は、入 力されたデジタル音声信号を国際標準規格H.324に 準拠する音声圧縮信号に変換し、多重化部7に出力す る。多重化部7は、入力された画像圧縮信号と音声圧縮 信号を国際標準規格H.324に準拠するフォーマット で多重化して画像音声多重信号を生成し、LANインタ フェース部8 に出力し、LANインタフェース部8 は入 力された画像音声多重信号をLAN9 へ出力する。LA N9上に輻輳が発生すると、LANインタフェース部8 から 輻輳発生信号がデータ 量制御部10 に送信され、デ 一夕 量制御部10 は、画像処理部3 に対し、QCIF (176×144) モードからSQCIF(128×9 6) モードへの変更を通知し、符号化データ量の発生を 2 分の1 に押さえ、これにより 輻輳の発生を押さえるこ とができる。

【0084】以上のように本実施の形態によれば、LAN9上に輻輳が発生してLANインタフェース部8からデータ量制御部10に通知があったとき、データ量制御部10は画像処理部3Aにおける処理モードをQCIFモードからSQCIFモードへ変更させることにより、符号化データ量の発生を2分の1に押さえることができる。

【0085】(実施の形態14)図16は本発明の実施の形態14による画像音声通信装置を示すブロック図である。図16において、カメラ1、マイク2、画像処理部3、音声処理部4、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。5Aは画像圧縮部である。

【0086】以上のように構成された画像音声通信装置について、その動作を説明する。LAN9上に輻輳が発生すると、LANインタフェース部8から輻輳発生信号がデータ量制御部10に送信され、データ量制御部10は画像圧縮部5Aに対し、駒落としを通知する。通知を受けた画像圧縮部5Aは駒落としを行う。以下に画像圧縮部5Aの動作を更に詳細に説明する。前述の図3において、31は動き補償フレーム間予測部、32はDCT部、33は量子化部、34は可変長符号化部、35は多

れた画像圧縮部5の動作を説明する。

【 0087】画像処理部3から出力されたデジタル画像 信号は、動き補償フレーム間予測部31に入力され、動 き補償およびフレーム間予測された画像データに変換さ れ、DCT部32へ出力される。また、その属性を示す サイド情報が可変長符号化部34へ出力される。DCT 部32に入力された画像データはDCT変換され、量子 化部33に出力される。量子化部33に入力された画像 データは量子化され、可変長符号化部34に入力され る。可変長符号化部34に入力された量子化データとサ イズ情報は可変長符号化され、多重化部35に出力さ れ、多重化部35で多重化されて伝送符号化部36に出 力される。多重化部35 で発生するデータ量は動きの大 小で変動するが、これを固定速度の伝送チャネルで送る ため、伝送符号化部36ではバッファを設けてデータの 平滑化を行っている。輻輳発生時、このバッファの蓄積 容量を減少させてデータの発生量を押さえることによ り、輻輳の発生を押さえることができる。すなわち、デ ータ 量制御部10 は伝送符号化部36 のバッファ 蓄積容 量を制御している。

【 0088】以上のように本実施の形態によれば、LAN9上に輻輳が発生してLANインタフェース部8から輻輳発生信号がデータ量制御部10に送信されたとき、データ量制御部10は画像圧縮部5に対して駒落としを通知し、通知を受けた画像圧縮部5Aは駒落とし制御を行うようにしたので、データの発生量を押さえることができ、輻輳の発生を押さえることができる。

【0089】(実施の形態15)図17は本発明の実施の形態15による画像音声通信装置を示すプロック図である。図17において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。6Cは音声圧縮部である。図17と図4との比較から分かるように本実施の形態は実施の形態3における音声圧縮レートを変えたものである。

【0090】以上のように構成された画像音声通信装置について、その動作を説明する。LAN9上に輻輳が発生すると、LANインタフェース部8から輻輳発生信号がデータ量制御部10に送信され、データ量制御部10は音声圧縮部6 Cに対して圧縮レート変更を通知する。通知を受けた音声圧縮部6 Cは、音声圧縮レートを6.4kbpsから5.3kbpsに落とす。

【 0 0 9 1 】以上のように本実施の形態によれば、LAN9上に輻輳が発生してLANインタフェース部8から輻輳発生信号がデータ量制御部10に送信されたとき、データ量制御部10は音声圧縮部6Cに対して圧縮レート変更を通知し、通知を受けた音声圧縮部6Cは音声圧縮レートを6.4kbpsから5.3kbpsに落とすことにより、輻輳発生時、音声符号化データの発生量を

押さえることができ、輻輳の発生を押さえることができる。

【0092】(実施の形態16)図18は本発明の実施の形態16による画像音声通信装置を示すプロック図である。図18において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。7日は多重化部である。図18と図7と比較から分かるように、本実施の形態では、多重化部7日の動作が実施の形態5とは異なる。

【 0093】以上のように構成された画像音声通信装置について、その動作を説明する。LAN9上に輻輳が発生すると、LANインタフェース部8から輻輳発生信号がデータ量制御部10に送信され、データ量制御部10は多重化部7Bに対して画像データ伝送停止を通知する。

【0094】以上のように本実施の形態によれば、LA N9 上に輻輳が発生してLANインタフェース部8から 輻輳発生信号がデータ量制御部10に送信されたとき、 データ量制御部10は多重化部7Bに対して画像データ 伝送停止を通知し、通知を受けた多重化部7 B は、画像 圧縮データ格納部41の画像圧縮データの送信を停止さ せ、音声圧縮データのみの通信を行わせるようにしたこ とにより、輻輳発生時、多重化データの発生量を押さえ ることができ、輻輳の発生を押さえることができる。 【0095】(実施の形態17)図19は本発明の実施 の形態17による画像音声通信装置を示すプロック図で ある。図19において、カメラ1、マイク2、音声処理 部4、音声圧縮部6、多重化部7、LANインタフェー ス部8、LAN9、データ量制御部10は図1と同様の ものなので、同一符号を付し、説明は省略する。3 B は 画像処理部、5 B は画像圧縮部である。本実施の形態 は、実施の形態13と実施の形態15とを合体したもの である。

【0096】以上のように本実施の形態によれば、実施の形態13と実施の形態14とを合体して、輻輳発生時、画像処理部3における処理モードをQCIFモードからSQCIFモードへ変更させて符号化データ量の発生を2分の1に押さえると共に駒落とし制御を行うようにしたことにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0097】(実施の形態18)図20は本発明の実施の形態18による画像音声通信装置を示すプロック図である。図20において、カメラ1、マイク2、音声処理部4、画像圧縮部5、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。3Cは画像処理部、6Dは音声圧縮部である。本実施の形態は、実施の形態13と実施の形態15とを合体したもの

である。

【0098】以上のように本実施の形態によれば、実施の形態13と実施の形態15とを合体して、輻輳発生時、画像処理部3Cにおける処理モードをQCIFモードからSQCIFモードへ変更させて符号化データ量の発生を2分の1に押さえると共に音声圧縮部6Cにおける音声圧縮レートを6.4kbpsから5.3kbpsに落とすことにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【0099】(実施の形態19)図21は本発明の実施の形態19による画像音声通信装置を示すプロック図である。図21において、カメラ1、マイク2、画像処理部3、音声処理部4、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。5Cは画像圧縮部、6Eは音声圧縮部である。本実施の形態は、実施の形態14と実施の形態15とを合体したものである。

【 0 1 0 0 】以上のように本実施の形態によれば、実施の形態1 3 と実施の形態1 5 とを合体して、輻輳発生時、画像圧縮部5 C で駒落とし制御を行う共に音声圧縮部6 E における音声圧縮レートを6 . 4 k b p s から5 . 3 k b p s に落とすことにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【 0 1 0 1 】(実施の形態2 0)図2 2 は本発明の実施の形態2 0 による画像音声通信装置を示すブロック図である。図2 1 において、カメラ1、マイク2、画像処理部3、音声処理部4、多画像圧縮部5、LANインタフェース部8、LAN9、データ量制御部1 0 は図1と同様のものなので、同一符号を付し、説明は省略する。6 F は音声圧縮部、7 C は多重化部である。本実施の形態は、実施の形態1 5 と 実施の形態1 6 とを合体したものである。

【 0102】以上のように本実施の形態によれば、実施の形態15と実施の形態16とを合体して、輻輳発生時、音声圧縮部6Fで音声圧縮レートを6.4kbpsから5.3kbpsに落とすと共に、多重化部7Cで画像データの伝送を停止させるようにしたことにより、更にデータの発生量を押さえて輻輳の発生を押さえることができる。

【 0103】(実施の形態21)図23は本発明の実施の形態21による画像音声通信装置を示すブロック図である。図23において、カメラ1、マイク2、画像処理部3、音声処理部4、音声圧縮部6、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。5Dは画像圧縮部である。

【 0104】以上のように構成された画像音声通信装置について、その動作を説明する。LAN9上に輻輳が発生してLANインタフェース部8から輻輳発生信号がデ

ータ 量制御部10に送信されたとき、データ 量制御部10は画像圧縮部5Dに対してモード変更を通知し、通知を受けた画像圧縮部5Dは国際標準規格H.261モードから国際標準規格H.263モードへの変更を行うようにしたことにより、多重化部7への画像圧縮データ量を減少させることができ、輻輳の発生を押さえることができる。

【 0105】以上のように本実施の形態によれば、LAN9上に輻輳が発生してLANインタフェース部8からデータ量制御部10に通知があったとき、データ量制御部10は画像圧縮部5Dに対してモード変更を通知し、画像圧縮部5Dに国際標準規格H.261モードから国際標準規格H.263モードへモード変更させるようにしたことにより、多重化部7への画像圧縮データ量を減少させることができ、輻輳の発生を押さえることができる。

【 0106】(実施の形態22) 図24は本発明の実施の形態22による画像音声通信装置を示すブロック図である。図24において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。6Gは音声圧縮部である。

【 0107】以上のように構成された画像音声通信装置について、その動作を説明する。LAN9上に輻輳が発生してLANインタフェース部8から輻輳発生信号がデータ量制御部10に送信されたとき、データ量制御部10は音声圧縮部6Gに対してモード変更を通知し、通知を受けた音声圧縮部6Gは国際標準規格G.711、G.722、G.728モードから国際標準規格G.7 23モードへの変更を行うようにしたことにより、多重化部7への音声圧縮データ量を減少させることができ、輻輳の発生を押さえることができる。

【 0108】以上のように本実施の形態によれば、LAN9上に輻輳が発生してLANインタフェース部8からデータ量制御部10に通知があったとき、データ量制御部10は音声圧縮部6Gに対してモード変更を通知し、音声圧縮部6Gに国際標準規格G.711、G.722、G.728モードから国際標準規格G.723モードへモード変更させるようにしたことにより、多重化部7への画像圧縮データ量を減少させることができ、輻輳の発生を押さえることができる。

【 0109】(実施の形態23)図25は本発明の実施の形態23による画像音声通信装置を示すプロック図である。図25において、カメラ1、マイク2、画像処理部3、音声処理部4、多重化部7、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。5Dは画像圧縮部、6Gは音声圧縮部である。図25と図23、図24との比較から分かるように、本実施の形態

は、実施の形態21と実施の形態22とを合体したものである。

【0110】以上のように本実施の形態によれば、実施の形態21と実施の形態22とを合体して、輻輳発生時、画像圧縮部5Dに国際標準規格H.261モードから国際標準規格H.263モードへモード変更させると共に、音声圧縮部6Gに国際標準規格G.711、G.722、G.728モードから国際標準規格G.723モードへモード変更させるようにしたことにより、多重化部7への画像圧縮データ量を更に減少させることができ、輻輳の発生を更に押さえることができる。

【 0111】(実施の形態24)図26は本発明の実施の形態24による画像音声通信装置を示すプロック図である。図26において、カメラ1、マイク2、画像処理部3、音声処理部4、画像圧縮部5、音声圧縮部6、LANインタフェース部8、LAN9、データ量制御部10は図1と同様のものなので、同一符号を付し、説明は省略する。7Dは多重化部である。

【0112】図27は図26の画像音声通信装置を多数、LANを介して接続した画像音声通信システムを示すブロック図である。図27において、20は相手側の画像音声通信装置、21は輻輳が発生していないLAN、22はLAN21に接続されたその他の端末としての画像音声通信装置、23は輻輳が発生していないLAN21に接続されるHUB、24は高速LAN、25は自端末としての画像音声通信装置、26は輻輳が発生しているLAN、27はLAN26に接続されたその他の端末としての画像音声通信装置、28はLAN26に接続されたHUBである。

【0113】以上のように構成された画像音声通信システムの動作を説明する。自端末25が接続されたLAN26上に輻輳が発生すると、自端末25側では輻輳を検知し、データ伝送量の減少化を行って輻輳に対処するが、LAN26とLAN21とは高速LAN24を通じて接続されているため、LAN26上で発生している輻輳発生信号は相手端末20が接続されたLAN21上には通知されず、相手端末20は輻輳が発生していないと認識して動作し、このため自端末25と相手端末20との間で正常な通信ができなくなる。よって、自端末25は、正常な通信を行うため、相手端末20に輻輳が発生していることを通知する必要がある。

【 0 1 1 4 】 LAN2 6 上に輻輳が発生して自端末2 5 のLANインタフェース部8 から輻輳発生信号がデータ 量制御部1 0 に送信されたとき、データ 量制御部1 0 は 多重化部7 Dに対して輻輳の発生を通知する。通知を受けた多重化部7 Dは、国際標準規格H. 3 2 0 に準拠するLSD、HSD、MLPまたはBASに輻輳発生通知信号を載せ、相手端末2 0 に通知し、これを受けた相手端末2 0 はデータ伝送量の制御を行い、輻輳の発生に対処する。

【0115】以上のように本実施の形態によれば、LAN9上に輻輳が発生して自端末25のLANインタフェース部8から輻輳発生信号がデータ量制御部10に送信されたとき、データ量制御部10は多重化部7Dに対して輻輳の発生を通知し、通知を受けた多重化部7Dは、国際標準規格H.320に準拠するLSD、HSD、MLPまたはBASに輻輳発生通知信号を載せ、相手端末20に通知し、これを受けた相手端末はデータ伝送量の制御を行うようにしたことにより、異なるLAN間であっても一方のLAN26から他方のLAN21へ輻輳発生を通知することができるので、一方のLAN26に接続された画像音声通信装置の多重化部7Dへの画像圧縮データ量を減少させることができ、輻輳の発生を押さえることができる。

[0116]

【 発明の効果】以上のように請求項1 に記載の画像音声 通信装置によれば、入力するアナログ画像信号をデジタ ル画像信号に変換する画像処理部と、入力するアナログ 音声信号をデジタル音声信号に変換する音声処理部と、 画像処理部から出力されるデジタル画像信号を圧縮して 画像圧縮信号に変換する画像圧縮部と、音声処理部から 出力されるデジタル音声信号を圧縮して音声圧縮信号に 変換する音声圧縮部と、画像圧縮部から出力される画像 圧縮信号と音声圧縮部から出力される音声圧縮信号を多 重化して画像音声多重信号に変換する多重化部と、多重 化部から 出力される 画像音声多重信号を入力してLAN へ出力すると共にLANトラフィック上の輻輳が発生し た際に輻輳発生信号を出力するLANインタフェース部 と、LANインタフェース部から出力される輻輳発生信 号に基づいて画像音声多重信号のデータ量を制御するデ ータ 量制御部とを有する画像音声通信装置であって、デ ータ 量制御部は、LANインタフェース部から 輻輳発生 信号が出力されたとき、画像音声多重化信号のデータ量 を減少させる制御を行うことにより、輻輳発生時に、画 像音声多重信号のデータ量を減少させることができると いう有利な効果が得られる。

【 0 1 1 7 】 請求項2 に記載の発明によれば、請求項1 に記載の発明において、データ量制御部は、L A N インタフェース部から 輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマット を制御することにより 画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、デジタル画像信号のフォーマット を変更することができるので、画像音声多重信号のデータ量を減少させることができるという 有利な効果が得られる。

【 0 1 1 8 】 請求項3 に記載の発明によれば、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から 輻輳発生信号が出力されたとき、 画像 圧縮部に対する駒落とし制御を行うことにより 画像音声 多重化信号のデータ量を制御することにより、 輻輳発生

時に、画像圧縮部における駒落としを行うことができる ので、画像音声多重信号のデータ 量を減少させることが できるという 有利な効果が得られる。

【 0 1 1 9 】 請求項4 に記載の発明によれば、請求項1 に記載の発明において、データ 量制御部は、LANインタフェース部から 輻輳発生信号が出力されたとき、音声 圧縮部における 音声圧縮の制御を行うことにより 画像音 声多重化信号のデータ 量を制御することにより、 輻輳発生時に、音声圧縮部において音声圧縮レートを変更することができるので、画像音声多重信号のデータ 量を減少させることができるという 有利な効果が得られる。

【 0 1 2 0 】請求項5 に記載の発明によれば、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声処理部および音声圧縮部における音声圧縮モードの制御を行うことにより画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、音声処理部および音声圧縮部における音声圧縮モードを変更することができるので、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0 1 2 1 】請求項6 に記載の発明によれば、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から 輻輳発生信号が出力されたとき、多重化部において画像データ伝送の停止を行わせることにより 画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、多重化部において画像データ伝送を停止することができるので、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0 1 2 2 】請求項7 に記載の発明によれば、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、画像圧縮部に対する駒落とし制御を行うこととしたものであり、輻輳発生時に、デジタル画像信号のフォーマットを変更し、また画像圧縮部における駒落としを行うことができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0 1 2 3 】請求項8 に記載の発明によれば、請求項1 に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、画像圧縮部に対する駒落とし制御を行い、音声圧縮部における音声圧縮の制御を行うことにより、輻輳発生時に、デジタル画像信号のフォーマットを変更し、また画像圧縮部における駒落としを行い、さらに音声圧縮部における音声圧縮レートを変更することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0 1 2 4 】 請求項9 に記載の発明によれば、請求項1 に記載の発明において、データ 量制御部は、LANインタフェース部から 輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、画像圧縮部に対する駒落とし制御を行い、音声処理部および前記音声圧縮部における音声圧縮モードの制御を行うことにより、輻輳発生時に、デジタル画像信号のフォーマットを変更し、また画像圧縮部における駒落としを行い、さらに音声処理部および音声圧縮部における音声圧縮モードを変更することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0125】請求項10に記載の発明によれば、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、音声圧縮部における音声圧縮の制御を行うことにより画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、デジタル画像信号のフォーマットを変更し、また音声圧縮部における音声圧縮レートを変更し、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【0126】請求項11に記載の発明によれば、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットを制御し、音声処理部および音声圧縮部における音声圧縮モードの制御を行うことにより、輻輳発生時に、デジタル画像信号のフォーマットを変更し、また音声処理部および音声圧縮部における音声圧縮モードを変更することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0127】請求項12に記載の発明によれば、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声圧縮部における音声圧縮の制御を行い、多重化部において画像データ伝送の停止を行わせることにより、輻輳発生時に、音声圧縮部における音声圧縮レートを変更し、また多重化部において画像データ伝送を停止することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0 1 2 8 】請求項1 3 に記載の発明によれば、請求項1 に記載の発明において、データ量制御部は、L A N インタフェース部から輻輳発生信号が出力されたとき、音声処理部および音声圧縮部における音声圧縮モードの制御を行い、多重化部において画像データ伝送の停止を行わせることにより、輻輳発生時に、音声処理部および音声圧縮部における音声圧縮モードを変更し、また多重化部において画像データ伝送を停止することができるので、画像音声多重信号のデータ量を更に減少させること

ができるという有利な効果が得られる。

【 0129】請求項14に記載の発明によれば、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットをFCIFからQCIFに変更することにより、画像処理部におけるデジタル画像信号のフォーマットをFCIFからQCIFに変更することができるので、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0130】請求項15に記載の発明によれば、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFに変更することにより、画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFに変更することができるので、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0131】請求項16に記載の発明によれば、請求項3に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像圧縮部のバッファの蓄積容量を減少させデータの発生量を押さえることにより駒落としを行うことにより、輻輳発生時に、画像圧縮部における駒落としを確実に行うことができるので、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0132】請求項17に記載の発明によれば、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声圧縮部における音声圧縮レートの制御を行うことにより画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、画像処理部におけるデジタル画像信号のフォーマットを変更し、また音声圧縮部における音声圧縮レートを例えば6.4kbpsから5.3kbpsに変更することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0133】 請求項18に記載の発明によれば、請求項2に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、音声処理部および音声圧縮部における音声圧縮モードをG.711、G.722、G.728からG.723へ変更することにより、輻輳発生時に、画像処理部におけるデジタル画像信号のフォーマットを変更し、また音声圧縮部における音声圧縮モードをG.711、G.722、G.728からG.723へ変更することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0134】請求項19に記載の発明によれば、請求項

1 に記載の発明において、データ 量制御部は、LANインタフェース部から 輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマット を制御し、画像圧縮部のパッファにおける蓄積容量を減少させて駒落とし制御を行うことにより 画像音声多重化信号のデータ 量を制御することにより、輻輳発生時に、画像処理部におけるデジタル画像信号のフォーマット を変更し、また画像圧縮部における駒落としを行うことができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0135】請求項20に記載の発明によれば、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFへ変更し、音声圧縮部における音声圧縮の制御を行うことにより画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、画像処理部におけるデジタル画像信号のフォーマットをQCIFからSQCIFへ変更し、また音声圧縮部における音声圧縮レートを変更することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0136】請求項21に記載の発明によれば、請求項1に記載の発明において、データ量制御部は、LANインタフェース部から輻輳発生信号が出力されたとき、画像圧縮部に対する駒落とし制御を行い、音声圧縮部における音声圧縮の制御を行うことにより、輻輳発生時に、画像圧縮部において駒落としを行い、また音声圧縮部において音声圧縮レートを変更することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0137】請求項2 2 に記載の発明によれば、請求項 1 に記載の発明において、データ 量制御部は、LANイ ンタフェース部から 輻輳発生信号が出力されたとき、音 声圧縮部における音声圧縮レート の制御を行い、多重化 部において画像データ伝送の停止を行わせることにより 画像音声多重化信号のデータ量を制御することにより、 輻輳発生時に、音声圧縮部において音声圧縮レートを変 更し、また多重化部において画像データ伝送を停止する ことができるので、画像音声多重信号のデータ量を更に 減少させることができるという有利な効果が得られる。 【 0138】請求項23に記載の発明によれば、請求項 1 に記載の発明において、データ 量制御部は、画像圧縮 部における画像圧縮モードを選択する画像圧縮モード選 択部と音声圧縮部における音声圧縮モードを選択する音 声圧縮モード 選択部とを有することにより、 輻輳発生時 に、画像圧縮モード選択部で選択される画像圧縮モード を変更し、また音声圧縮モード選択部で選択される音声 圧縮モードを変更することができるので、画像音声多重

信号のデータ 最を更に減少させることができるという 有利な効果が得られる。

【 0139】請求項24に記載の発明によれば、請求項23に記載の発明において、画像圧縮部は、画像圧縮モード選択部により選択された画像圧縮モードに基づいて動作することにより画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、画像圧縮モード選択部で選択される画像圧縮モードを変更し、選択変更された画像圧縮モードに基づいて画像圧縮部が動作することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0 1 4 0 】請求項2 5 に記載の発明によれば、請求項2 3 に記載の発明において、音声圧縮部は、音声圧縮モード選択部により選択された音声圧縮モードに基づいて動作することにより画像音声多重化信号のデータ量を制御することにより、輻輳発生時に、音声圧縮モード選択部で選択される音声圧縮モードを変更し、選択変更された音声圧縮モードに基づいて音声圧縮部が動作することができるので、画像音声多重信号のデータ量を更に減少させることができるという有利な効果が得られる。

【 0 1 4 1 】請求項2 6 に記載の発明によれば、請求項2 3 に記載の発明において、画像圧縮部は画像圧縮モード選択部により選択された画像圧縮モードに基づいて動作し、音声圧縮部は音声圧縮モード選択部により選択された音声圧縮モードに基づいて動作することにより、輻輳発生時に、画像圧縮モード選択部で選択される画像圧縮モードを変更し、選択変更された画像圧縮モードに基づいて画像圧縮部が動作することができ、また、音声圧縮モード選択部で選択される音声圧縮モードを変更し、選択変更された音声圧縮部が動作することができるという有利な効果が得られる。

【 0 1 4 2 】請求項2 7 に記載の発明によれば、LAN上の輻輳を検知する処理過程と、処理過程において発生した輻輳信号をデータに変換する変換過程と、変換過程で得られたデータを相手側の画像音声通信装置に通知する通知過程とを有することにより、輻輳発生時に、その発生輻輳を相手側の画像音声通信装置に通知することができるので、相手側の画像音声通信装置において、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0143】請求項28に記載の発明によれば、画像音声通信装置として上記発明の第1の画像音声通信装置および上記発明の第2の画像音声通信装置と、第1の画像音声通信装置と第2の画像音声通信装置との間において情報の伝送を行うデータ転送部とを有する画像音声通信システムであって、第1の画像音声通信装置のLANインタフェース部からLANにおける輻輳の発生を示す輻

較発生信号が第1の画像音声通信装置の多重化部に転送されたとき、第1の画像音声通信装置の多重化部は、データ転送部を介して、輻輳発生信号を第2の画像音声通信装置に通知することにより、輻輳発生時に、その発生した輻輳をデータ転送部を介して相手側の画像音声通信装置に通知することができるので、相手側の画像音声通信装置において、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0 1 4 4 】請求項2 9 に記載の発明によれば、請求項2 8 に記載の発明において、第1 の画像音声通信装置の多重化部は、L S Dを用いて輻輳発生信号を第2 の画像音声通信装置に通知することにより、輻輳発生時に、その発生した輻輳をデータ転送部を介して第1 の画像音声通信装置から第2 の画像音声通信装置に通知することができるので、第2 の画像音声通信装置において、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0 1 4 5 】請求項3 0 に記載の発明によれば、請求項2 8 に記載の発明において、第1 の画像音声通信装置の多重化部は、HS Dを用いて輻輳発生信号を第2 の画像音声通信装置に通知することにより、輻輳発生時に、その発生した輻輳をデータ転送部を介して第1 の画像音声通信装置から第2 の画像音声通信装置に通知することができるので、第2 の画像音声通信装置において、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【 0146】請求項31に記載の発明によれば、請求項28に記載の発明において、第1の画像音声通信装置の多重化部は、MLPのインタフェースを用いて輻輳発生信号を第2の画像音声通信装置に通知することにより、輻輳発生時に、その発生した輻輳をデータ転送部を介して第1の画像音声通信装置から第2の画像音声通信装置に通知することができるので、第2の画像音声通信装置において、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。

【0147】請求項32に記載の発明によれば、請求項28に記載の発明において、第1の画像音声通信装置の多重化部は、BASを用いて輻輳発生信号を第2の画像音声通信装置に通知することにより、輻輳発生時に、その発生した輻輳をデータ転送部を介して第1の画像音声通信装置から第2の画像音声通信装置に通知することができるので、第2の画像音声通信装置において、画像音声多重信号のデータ量を減少させることができるという有利な効果が得られる。されるという作用を有する。

【図面の簡単な説明】

【 図1 】本発明の実施の形態1 による画像音声通信装置を示すブロック図

【 図2 】本発明の実施の形態2による画像音声通信装置を示すブロック図

【 図3 】図2 の画像圧縮部を示すプロック図

【 図4 】本発明の実施の形態3 による画像音声通信装置を示すブロック図

【 図5 】本発明の実施の形態4 による画像音声通信装置 を示すプロック図

【 図6 】本発明の実施の形態5 による画像音声通信装置 を示すブロック図

【 図7 】128kbpsの通信時の多重化部におけるデータのフレーミング構造を示すフレーミング図

【 図8 】本発明の実施の形態6 による画像音声通信装置 を示すプロック図

【 図9 】本発明の実施の形態7 による画像音声通信装置 を示すプロック図

【 図10】本発明の実施の形態8による画像音声通信装置を示すブロック図

【 図1 1 】本発明の実施の形態9 による画像音声通信装置を示すブロック図

【 図12】本発明の実施の形態10による画像音声通信 装置を示すブロック図

【 図13】本発明の実施の形態11による画像音声通信 装置を示すブロック図

【 図14】本発明の実施の形態12による画像音声通信 装置を示すブロック図

【 図15】本発明の実施の形態13による画像音声通信 装置を示すプロック図

【 図1 6 】本発明の実施の形態1 4 による画像音声通信 装置を示すプロック図

【 図17】本発明の実施の形態15による画像音声通信 装置を示すプロック図

【 図18】本発明の実施の形態16による画像音声通信 装置を示すブロック図

【 図19】本発明の実施の形態17による画像音声通信 装置を示すブロック図

【 図20】本発明の実施の形態18による画像音声通信

装置を示すプロック図

【 図2 1 】本発明の実施の形態1 9 による画像音声通信 装置を示すブロック図

【 図2 2 】本発明の実施の形態2 0 による画像音声通信 装置を示すプロック図

【 図2 3 】本発明の実施の形態2 1 による画像音声通信 装置を示すブロック図

【 図24】本発明の実施の形態22による画像音声通信 装置を示すブロック図

【 図25 】本発明の実施の形態23による画像音声通信 装置を示すブロック図

【 図2 6 】本発明の実施の形態2 4 による画像音声通信 装置を示すブロック図

【 図2 7 】図2 6 の画像音声通信装置を多数、LANを介して接続した画像音声通信システムを示すブロック図 【 図2 8 】従来の画像音声通信装置を示すブロック図 【 符号の説明】

1 カメラ

2 マイク

3、3A、3B、3C 画像処理部

4、4A 音声処理部

5、5A、5B、5C、5D 画像圧縮部

6、6A、6B、6C、6D、6E、6F、6G 音声 圧縮部

7、7A、7B、7C、7D 多重化部

8 LANインタフェース部

9,21,26 LAN

10 データ量制御部

20 相手端末

22、27 その他の端末

23,28 HUB

24 高速LAN

25 自端末

【図3】

【図1】

【図2】

【図7】

【図4】

【図5】

【図6】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

Committee and the second second second

【図28】

