Floating Point Nubmers

Chia-Tien Dan Lo

Computer Science and Software Engineering Southern Polytechnic State University

The Needs

- To represent very large or very small numbers
- In Chemistry, the number of atoms in a molecule is

$$6.022 \times 10^{23}$$

• In Electronics, the charge of an electron is

$$1.602176487 \times 10^{-19} C$$

C: coulomb

Scientific Notations

- Instead of writing 602200000000000000000
- We write this: 6.022×10^{23}

- The general form: $\gamma \times 10^e$
 - r is a real number and called significand or mantissa
 - e is an integer and called exponent

Scientific Notations

A negative mantissa indicates a negative number.

$$-1.23 \times 10^{2}$$

A negative exponent denotes a number close to zero.

$$1.0 \times 10^{-5} = 0.00001$$

Precision

The mantissa determines digits of precision.

$$0.12345 \times 10^{8}$$

5 digits of precision

$$0.123456789 \times 10^{8}$$

9 digits of precision

Order of Magnitude

The exponent indicates the range of magnitude.

$$0.12345 \times 10^{8}$$

• Magnitude 8

$$0.12345 \times 10^{15}$$

• Magnitude 15

Addition/Subtraction

Adjust exponents if they are not the same

$$r_1 \times 10^e + r_2 \times 10^e$$

= $(r_1 + r_2) \times 10^e$
 $r_1 \times 10^e - r_2 \times 10^e$
= $(r_1 - r_2) \times 10^e$

Addition

$$1 \times 10^{2} + 2 \times 10^{1} = 1 \times 10^{2} + 0.2 \times 10^{2} = 1.2 \times 10^{2}$$
Adjust exponent

Multiplication/Division

Operate directly on mantissas and exponents

$$r_1 \times 10^{e_1} \times r_2 \times 10^{e_2}$$

$$= (r_1 \times r_2) \times 10^{e_1 + e_2}$$

$$\frac{r_1 \times 10^{e_1}}{r_2 \times 10^{e_2}} = (\frac{r_1}{r_2}) \times 10^{e_1 - e_2}$$

Multiplication

Normalization

 Obviously, there are lots of scientific representations for a number.

$$1 \times 10^2 = 10 \times 10^1 = 0.1 \times 10^3 = \dots$$

• Easier to compare two numbers via order of magnitude

$$r \times 10^{e}$$
 where $1 \le |r| < 10$.

Binary Real Numbers

 A "binary point" is used to separate integral part from fraction part of a binary real number.

$$0.1_2 = 2^{-1} = 0.5$$

 $0.01_2 = 2^{-2} = 0.25$
 $0.001_2 = 2^{-3} = 0.125$
 $0.101_2 = 2^{-1} + 2^{-2} = 0.625$

Repeating decimals like 1/7 may not be represented.

EEE 754 Standard

- Allows floating point data to be exchanged
- Defines floating point formats, including infinities and NaN (not a number)
- Exponents use excess-127 or excess-1023 representations
- Denormals for small numbers

Binary32 Single Precision Format

- Use 32 bits
- Normalized binary numbers

$$r \times 2^e$$
, $1 \le r < 2$

bits 1 8

S Exponent Fraction

23

$$(-1)^S \times (1 + Fraction) \times$$

 $2^{Exponent - Bias}$ where $bias = 127$

Decimal to Binary32 Example

- Convert to binary fraction
- Normalization

• Exponent +127

Reserved Exponents

- All zeros
- All ones

Minimum of Single Precisions

- The sign is negative, i.e., the sign bit is 1,
- The exponent is minimum, i.e., 1, and
- The fraction bits are all zeros.

bits	1	8	23		
	S	Exponent	Fraction		
values	1	0000 0001	000 0000 0000 0000 0000		
	The number represented is -1.0×2^{-126} .				

Maximum of Single Precisions

- The sign is positive, i.e., the sign bit is o,
- The exponent is maximum, i.e., 127, and
- The fraction bits are all one's.

bits 1 8 23

S Exponent Fraction

values 0 1111 1110 111 1111 1111 1111 1111

The number represented is

Single Precision Range

Minimum to maximum

$$1.2 \times 10^{-38} \sim 3.4 \times 10^{38}$$

Binary64 Double Precision

Use 64 bits

bits 1 11 52
S Exponent Fraction

$$(-1)^S \times (1 + Fraction) \times$$

 $2^{Exponent - Bias}$ where $bias = 1023$

Decimal to Binary64 Example

- Convert to binary fraction
- Normalization
- Exponent +1023

Decimal to Binary64 Example

Minimum of Doubles

- The sign is negative, i.e., the sign bit is 1,
- The exponent is the smallest, i.e., , and
- The fraction bits are all zero's.

bits	1	11	52				
	S	Exponent	Fraction				
values	1	000 0000 0001	0000 0000 0000 0000 0000 0000 0000 0000 0000				
The number represented is -1.0×2^{-1022} .							

Maximum of Doubles

- The sign is positive, i.e., the sign bit is o,
- The exponent is the largest, i.e., , and
- The fraction bits are all one's.

Range of Binary64

$$2.2 \times 10^{-308}$$
 to 1.8×10^{308}

Floating Point Precision

- All the fraction bits are significant.
- Binary32: 6 decimal digits of precision

$$23 \times \log 2 \cong 23 \times 0.3 \cong 6$$

• Binary64: 15 decimal digits of precision

$$52 \times \log 2 \cong 52 \times 0.3 \cong 15$$

Precision Errors

 Number 999,999,999 when converted to Binary32 is actually 999,999,936!

bits	1	8	23				
	S	Exponent	Fraction				
values	0	1001 1100	110 1110 0110 1011 0010 0111				
	999999999999999999999999999999999999						
	Th	a last 6 ana's of	the gianificand may not be stored in the fraction field				

The last 6 one's of the significand may not be stored in the fraction field due to the precision limit.

Special Values

• o, o/o, square root of negatives, etc.

Sign	Exponent	Fraction	Object Represented
0	All zero's	All zero's	+0
1	All zero's	All zero's	-0
0	All one's	All zero's	+∞
1	All one's	All zero's	-∞
-	All one's	Nonzero	NaN (Not a Number)

Denormal Numbers

- There is a gap between
 - o and smallest positive number
 - Largest negative number and o
- For Binary32:
 - Exponent is all zeros but non-zero fraction

Denormal Binary32

• E.g., 0.1×2^{-149}

The number represented is 0.000 0000 0000 0000 0000 0001 \times $2^{-127}.$

Denormal Numbers

Binary64

Questions

