Multivariate Statistics: Due by 11:35 AM Monday, May 27

Zhang Chenfeng

May 12, 2019

1. PCA

Determine the population principal components Y_1 and Y_2 for the covariance matrix:

$$\Sigma = \left[\begin{array}{cc} 5 & 2 \\ 2 & 2 \end{array} \right]$$

Also, calculate the proportion of the total population variance explained by the first principal component.

2. PCA

Convert the covariance matrix in Question One to a correlation matrix ρ .

- (a) Determine the principal components Y_1 and Y_2 from ρ and compute the proportion of total population variance explained by Y_1 .
- (b)Compare the components calculated in Part a with those obtained in Question One. Are they the same? Should they be?
- (c)Compute the correlations ρ_{Y_1,Z_1} , ρ_{Y_1,Z_2} and ρ_{Y_2,Z_1}

3. FA

The covariance matrix

$$\rho = \left[\begin{array}{ccc} 1.0 & .63 & .45 \\ .63 & 1.0 & .35 \\ .45 & .35 & 1.0 \end{array} \right]$$

for the p = 3 standardized random variables Z_1 , Z_2 and Z_3 .

(a) Show that matrix ρ can be generated by the m=1 factor model

$$Z_1 = .9F_1 + \varepsilon_1$$

$$Z_2 = .7F_1 + \varepsilon_2$$

$$Z_3 = .5F_1 + \varepsilon_3$$

and

$$\Psi = Cov(\varepsilon) = \begin{bmatrix} .19 & 0 & 0 \\ 0 & .51 & 0 \\ 0 & 0 & 75 \end{bmatrix}$$

That is, write ρ in the form $\rho = \mathbf{L}\mathbf{L}' + \mathbf{\Psi}$.

- (b) Calculate communalities $h_i^2, i=1,2,3,$ and interpret these quantities.
- (c) Calcualte $Corr(Z_i, F_1)$ for i = 1, 2, 3. Which variable might carry the greatest weight?
- (d) Assuming an m=1 factor model, calculate the loading matrix L using the principal component solution method.