Example script for SpatialVAM for spatio-temporal analysis of species interactions data

James Thorson October 26, 2016

Contents

1	Ove	erview	2
2	Get	tting started	2
	2.1	Further information	2
	2.2	Related tools	2
	2.3	How to cite SpatialVAM	2
3	Set	tings	3
	3.1	Spatial settings	3
	3.2	Model settings	3
	3.3	Stratification for results	4
	3.4	Derived objects	4
	3.5	Save settings	4
4	Pre	epare the data	4
	4.1	Data-frame for catch-rate data	4
	4.2	Extrapolation grid	5
	4.3	Derived objects for spatio-temporal estimation	5
5	Bui	ild and run model	5
	5.1	Build model	5
	5.2	Estimate fixed effects and predict random effects	6
6	Dia	gnostic plots	6
	6.1	Plot data	6
	6.2	Convergence	6
	6.3	Model selection	9
7	Mo	del output	9
	7.1	Density surface for each year	10
	7.2	Index of abundance	10
	73	Center of gravity and range expansion/contraction	19

1 Overview

This tutorial will walk through a simple example of how to use SpatialVAM for estimating species interactions.

2 Getting started

To install TMB on a windows machine, we need to first install Rtools. During the installation, please select the option to have Rtools included in your system path. On other operating systems, it is not necessary to install Rtools. We then install VAST.

```
devtools::install_github("james-thorson/SpatialVAM")
```

We also install FishData, which is used to download data for our example

```
devtools::install_github("james-thorson/FishData")
```

Next load libraries.

```
library(TMB)  # Can instead load library(TMBdebug)

## Warning: package 'TMB' was built under R version
## 3.3.2

library(SpatialVAM)
```

2.1 Further information

If you have further questions after reading this tutorial, please explore the GitHub repo mainpage, wiki, and glossary. Also please explore the R help files, e.g., e.g., ?Data_Fn for explanation of data inputs, or ?Param_Fn for explanation of parameters.

2.2 Related tools

Related tools for spatio-temporal fisheries analysis are currently housed at www.FishStats.org. These include VAST, a a multispecies model for estimating abundance using delta-models, and www.FishViz.org, a tool for visualizing single-species results using worldwide. VAST and SpatialDeltaGLMM both use continuous integration to confirm that they give identical estimates when applied to single-species data.

2.3 How to cite SpatialVAM

SpatialVAM has involved many publications for developing individual features. If using SpatialVAM, please read and cite:

```
citation("SpatialVAM")
```

```
##
## To cite package 'SpatialVAM' in publications
##
##
     James Thorson (2015). SpatialVAM: Spatial
     vector autoregressive model. R package
##
     version 1.0.
##
     http://github.com/James-Thorson/SpatialVAM
##
##
  A BibTeX entry for LaTeX users is
##
##
##
     @Manual{,
       title = {SpatialVAM: Spatial vector autoregressive model},
##
       author = {James Thorson},
##
##
       year = {2015},
##
       note = {R package version 1.0},
       url = {http://github.com/James-Thorson/SpatialVAM},
##
##
     }
##
## ATTENTION: This citation information has
## been auto-generated from the package
## DESCRIPTION file and may need manual
## editing, see 'help("citation")'.
```

and also browse the GitHub list of papers.

3 Settings

We use latest version for CPP code

```
Version = "spatial_vam_v14"
```

3.1 Spatial settings

The following settings define the spatial resolution for the model, and whether to use a grid or mesh approximation

```
n_x = c(50, 100)[1] # Number of stations
Kmeans_Config = list( "randomseed"=1, "nstart"=100, "iter.max"=1e3 )
```

3.2 Model settings

The following settings define whether to include spatial and spatio-temporal variation, the rank of this covariance among species, whether its autocorrelated, and whether there's overdispersion

```
Nfactors_est = 3  # Number of dynamic factors in process error

Ncointegrate = 3

Use_REML = FALSE

Estimate_Phi = TRUE  # Phi is the offset of initial and equilibrium abundance

StartFromEquilibriumTF = FALSE
```

```
B_type = c("Independent", "Real_eigenvalue", "Complex_eigenvalue")[3]
Kappa = c("constant", "spatial_vs_spatiotemporal",
        "different")[1]
EigenBounds = c(Lower = -2, Upper = -0.001)
ObsModel = c("Poisson", "LNP", "ZILN")[3]
```

3.3 Stratification for results

We also define any potential stratification of results, and settings specific to any case-study data set

```
strata.limits <- data.frame(STRATA = "All_areas")</pre>
```

3.4 Derived objects

In this case, we'll use publicly available data for three groundfishes in the Eastern Bering Sea, so we set Region and Species_set accordingly. Region is used to define both the database for downloading data, as well as the region for extrapolation density, while Species_set is only used when downloading data.

```
Region = "Eastern_Bering_Sea"
Species_set = c("Atheresthes stomias", "Gadus chalcogrammus", "Hippoglossoides elassodon")
```

3.5 Save settings

We then set the location for saving files.

```
DateFile = pasteO(getwd(),'/SpatialVAM_output/')
dir.create(DateFile)
```

4 Prepare the data

4.1 Data-frame for catch-rate data

We then download data for three species using FishData.

The data is formatted as shown here, with head...

	spp	Year	$Catch_KG$	$AreaSwept_km2$	Vessel	Lat	Lon
1982_A-02_67	1	1982	6.98	0.01	0	55	-167
1982_A-03_59	1	1982	4.37	0.01	0	55	-166
1982_A-04_66	1	1982	12.6	0.01	0	55	-166
1982_A-05_58	1	1982	4.28	0.01	0	55	-165
1982_A-06_38	1	1982	0	0.01	0	55	-165
1982_B-02_68	1	1982	10.3	0.01	0	55.3	-167

				AreaSwept_km2			
	spp	Year	$Catch_KG$		Vessel	Lat	Lon
2016_U-29_156	3	2016	1.15	0.01	0	61.7	-176
2016_V-25_152	3	2016	0	0.01	0	62	-174
2016_V-26_153	3	2016	0	0.01	0	62	-174
2016_V-27_154	3	2016	0	0.01	0	62	-175
2016_V-28_155	3	2016	0	0.01	0	62	-176
2016_Z-05_73	3	2016	28	0.01	0	54.7	-165

4.2 Extrapolation grid

We also generate the extrapolation grid appropriate for a given region. For new regions, we use Region="Other".

4.3 Derived objects for spatio-temporal estimation

And we finally generate the information used for conducting spatio-temporal parameter estimation, bundled in list Spatial_List

5 Build and run model

5.1 Build model

To estimate parameters, we first build a list of data-inputs used for parameter estimation. Data_Fn has some simple checks for buggy inputs, but also please read the help file ?Data_Fn.

```
startFromEquilibriumTF = FALSE, spatial_method = 0,
MeshList = Spatial_List$MeshList, n_factors = Nfactors_est)
```

We then build the TMB object.

```
TmbList = Build_TMB_Fn(TmbData = TmbData, Version = Version,
    use_REML = ifelse(is.na(Use_REML), TRUE, Use_REML),
    loc_x = Spatial_List$MeshList$loc_x, estimate_phi = Estimate_Phi,
    Kappa = Kappa, eigenbounds = EigenBounds, RunDir = DateFile)
obj = TmbList$Obj  # 'Parameters' = InputList$TmbParams,
```

5.2 Estimate fixed effects and predict random effects

Next, we use a gradient-based nonlinear minimizer to identify maximum likelihood estimates for fixed-effects

```
Opt = TMBhelper::Optimize(obj = obj, lower = TmbList$Lower,
    upper = TmbList$Upper, getsd = TRUE, savedir = DateFile,
    newtonsteps = 3)
```

Finally, we bundle and save output

```
Report = obj$report()
ParHat = obj$env$parList()
```

6 Diagnostic plots

We first apply a set of standard model diagnostics to confirm that the model is reasonable and deserves further attention. If any of these do not look reasonable, the model output should not be interpreted or used.

6.1 Plot data

It is always good practice to conduct exploratory analysis of data. Here, I visualize the spatial distribution of data. Spatio-temporal models involve the assumption that the probability of sampling a given location is statistically independent of the probability distribution for the response at that location. So if sampling "follows" changes in density, then the model is probably not appropriate!

6.2 Convergence

Here I print the diagnostics generated during parameter estimation, and I confirm that (1) no parameter is hitting an upper or lower bound and (2) the final gradient for each fixed-effect is close to zero. For explanation of parameters, please see <code>?Data_Fn</code>.

Figure 1: Spatial extent and location of knots

Figure 2: Spatial distribution of catch-rate data

Param	Lower	MLE	Upper	final_gradient
logkappa_z	-5.978	-5.022	-3.114	3.365 e-09
$alpha_p$	-Inf	-0.9313	Inf	9.687e-14
$alpha_p$	-Inf	0.9253	Inf	4.551e-14
$alpha_p$	-Inf	-0.03329	Inf	-6.523e-15
$\mathrm{phi}\mathrm{_p}$	-Inf	-1.044	Inf	-3.975e-13
$\mathrm{phi}\mathrm{_p}$	-Inf	1.297	Inf	3.558e-14
$\mathrm{phi}\mathrm{_p}$	-Inf	0.3537	Inf	4.109e-13
$logMargSigmaA_p$	-4.605	2.444	Inf	3.143e-09
$logMargSigmaA_p$	-4.605	1.987	Inf	9.493e-12
$logMargSigmaA_p$	-4.605	1.536	Inf	-1.519e-10
L_{val}	-Inf	0.7269	Inf	1.055e-09
L_val	-Inf	0.1435	Inf	-6.608e-11
L_{val}	-Inf	0.1307	Inf	-3.331e-10
L_{val}	-Inf	0.8041	Inf	1.019e-10
L_val	-Inf	0.1115	Inf	-6.999e-13
L_val	-Inf	0.2953	Inf	3.105e-10
$Alpha_pr$	-Inf	-0.5651	Inf	5.677e-09
$Alpha_pr$	-Inf	0.005647	Inf	-1.981e-10
$Alpha_pr$	-Inf	0.007715	Inf	-3.245e-09
$Alpha_pr$	-Inf	0.01215	Inf	-2.229e-10
$Alpha_pr$	-Inf	-0.3642	Inf	2.87e-11
$Alpha_pr$	-Inf	0.04586	Inf	1.673e-11
$Alpha_pr$	-Inf	0.1008	Inf	8.689 e-10
$Alpha_pr$	-Inf	-0.07022	Inf	-2.646e-11
$Alpha_pr$	-Inf	-0.2667	Inf	-5.645e-10
$logsigma_pz$	$-\mathrm{Inf}$	0.3294	Inf	5.648e-11
$logsigma_pz$	-Inf	0.2569	Inf	-3.894e-12
$logsigma_pz$	-Inf	0.6897	Inf	-2.744e-11
$logsigma_pz$	-Inf	-0.2089	Inf	-3.666e-12
$logsigma_pz$	-Inf	0.3	Inf	1.106e-11
$logsigma_pz$	-Inf	0.4046	Inf	1.357e-12

6.3 Model selection

To select among models, we recommend using the Akaike Information Criterion, AIC, via Opt\$AIC= 2.477\times 10^{5}.

7 Model output

Last but not least, we generate useful plots by first determining which years to plot (Years2Include), and labels for each plotted year (Year_Set)

```
Year_Set = min(DF[,'Year']):max(DF[,'Year'])
```

We then run a set of pre-defined plots for visualizing results

7.1 Density surface for each year

We can visualize many types of output from the model. Here I only show predicted density, but other options are obtained via other integers passed to plot_set as described in ?PlotResultsOnMap_Fn

7.2 Index of abundance

The index of abundance is generally most useful for stock assessment models.

Category	Year	$Estimate_metric_tons$	SD_mt
Atheresthes_stomias	1982	457.9	54.11
Atheresthes_stomias	1983	772.9	97.71
Atheresthes_stomias	1984	848.2	111.1
Atheresthes_stomias	1985	1280	182.3
Atheresthes_stomias	1986	1281	182.8
Atheresthes_stomias	1987	2308	300.4
Atheresthes_stomias	1988	1793	248.1
Atheresthes_stomias	1989	2415	304.1
Atheresthes_stomias	1990	2299	329.4
Atheresthes_stomias	1991	1708	291
Atheresthes_stomias	1992	1262	187.3
Atheresthes_stomias	1993	2955	377.8
Atheresthes_stomias	1994	2509	389.9
Atheresthes_stomias	1995	1654	258.2
Atheresthes_stomias	1996	2716	349.2
Atheresthes_stomias	1997	2214	308.4

Category	Year	Estimate_metric_tons	SD_mt
Atheresthes_stomias	1998	2370	305
Atheresthes_stomias	1999	878	138.5
Atheresthes_stomias	2000	1615	212.9
Atheresthes_stomias	2001	2542	340.8
Atheresthes_stomias	2002	2114	266.2
Atheresthes stomias	2003	3486	385
Atheresthes stomias	2004	3731	432.7
Atheresthes stomias	2005	5341	588.2
Atheresthes stomias	2006	4220	559.6
Atheresthes stomias	2007	2828	389.2
Atheresthes stomias	2008	3329	446.2
Atheresthes stomias	2009	1967	294.3
Atheresthes stomias	2010	3081	407
Atheresthes stomias	2011	3989	494.3
Atheresthes stomias	2012	1928	256.5
Atheresthes stomias	2013	2433	313.2
Atheresthes stomias	2014	3544	425.1
Atheresthes stomias	2014	2779	314.9
Atheresthes stomias	2016	3871	394.1
Gadus_chalcogrammus	1982	9164	1184
Gadus_chalcogrammus	1982	22406	3261
Gadus_chalcogrammus Gadus_chalcogrammus	1984	14393	$\frac{3201}{2129}$
~	1984	14393 19700	$\frac{2129}{3034}$
Gadus_chalcogrammus	1986		$\frac{3034}{2262}$
Gadus_chalcogrammus		15985	$\frac{2202}{2212}$
Gadus_chalcogrammus	1987	15624	
Gadus_chalcogrammus	1988	27130	3880
Gadus_chalcogrammus	1989	22541	2982
Gadus_chalcogrammus	1990	14497	2023
Gadus_chalcogrammus	1991	21912	2855
Gadus_chalcogrammus	1992	14823	1925
Gadus_chalcogrammus	1993	24315	3008
Gadus_chalcogrammus	1994	19209	2527
Gadus_chalcogrammus	1995	10313	1340
Gadus_chalcogrammus	1996	12105	1483
Gadus_chalcogrammus	1997	11631	1638
Gadus_chalcogrammus	1998	11084	1441
Gadus_chalcogrammus	1999	13155	1876
Gadus_chalcogrammus	2000	13863	1643
$Gadus_chalcogrammus$	2001	17032	2047
Gadus_chalcogrammus	2002	16363	1971
Gadus_chalcogrammus	2003	25913	3078
Gadus_chalcogrammus	2004	17489	2000
Gadus_chalcogrammus	2005	16641	2040
Gadus_chalcogrammus	2006	13160	1780
Gadus_chalcogrammus	2007	11295	2218
Gadus_chalcogrammus	2008	6553	1126
Gadus_chalcogrammus	2009	4703	710.3
Gadus_chalcogrammus	2010	10245	2149
Gadus_chalcogrammus	2011	14001	1970
Gadus_chalcogrammus	2012	12254	1624
_			
Gadus_chalcogrammus	2013	17698	2565

Category	Year	Estimate_metric_tons	SD_mt
Gadus_chalcogrammus	2015	41355	5026
Gadus_chalcogrammus	2016	27635	3387
Hippoglossoides_elassodon	1982	962.8	69.49
Hippoglossoides_elassodon	1983	1547	131.2
Hippoglossoides_elassodon	1984	1670	150
Hippoglossoides_elassodon	1985	1883	169.7
Hippoglossoides_elassodon	1986	2119	190.7
Hippoglossoides_elassodon	1987	2380	214.5
Hippoglossoides_elassodon	1988	2701	247.9
Hippoglossoides_elassodon	1989	2990	265
Hippoglossoides_elassodon	1990	3262	289.1
Hippoglossoides_elassodon	1991	3618	334
Hippoglossoides_elassodon	1992	3372	299.9
Hippoglossoides elassodon	1993	4106	371.3
Hippoglossoides_elassodon	1994	4349	408.3
Hippoglossoides_elassodon	1995	3436	315.8
Hippoglossoides_elassodon	1996	3440	296.6
Hippoglossoides_elassodon	1997	3377	282.5
Hippoglossoides_elassodon	1998	3885	329.5
Hippoglossoides_elassodon	1999	2227	200.8
Hippoglossoides_elassodon	2000	2203	186.9
Hippoglossoides_elassodon	2001	2577	218.3
Hippoglossoides_elassodon	2002	2607	221.5
Hippoglossoides_elassodon	2003	2781	233.3
Hippoglossoides_elassodon	2004	3108	259.5
Hippoglossoides_elassodon	2005	3413	283.5
Hippoglossoides_elassodon	2006	3143	269.6
Hippoglossoides_elassodon	2007	2991	261.5
Hippoglossoides_elassodon	2008	2538	225.9
Hippoglossoides_elassodon	2009	1659	152.2
Hippoglossoides_elassodon	2010	1783	162.1
Hippoglossoides_elassodon	2011	1962	170.4
$Hippoglossoides_elassodon$	2012	1630	144.8
Hippoglossoides_elassodon	2013	1674	141
$Hippoglossoides_elassodon$	2014	1913	155.7
Hippoglossoides_elassodon	2015	2009	169.5
$Hippoglossoides_elassodon$	2016	2626	223.4

7.3 Center of gravity and range expansion/contraction

We can detect shifts in distribution or range expansion/contraction.

```
SpatialDeltaGLMM::Plot_range_shifts(Report = Report,
    TmbData = TmbData, Sdreport = Opt$SD, Znames = colnames(TmbData$Z_xm),
    PlotDir = DateFile, category_names = unique(DF$Sci),
    Year_Set = Year_Set)
```


Figure 3: Density maps for each year for arrowtooth flounder

Figure 4: Density maps for each year for Alaska pollock

Figure 5: Index of abundance plus/minus 1 standard error