Analyse Statistique des Séquences Biologiques TD n°5: Motifs

C.Bouyioukos, G. Nuel

November 15, 2017

Exercice 1 (accès internet). Récupérer à partir de http://rsat.ulb.ac.be/rsat/ les régions upstream d'une famille de gènes de la levure (au format fasta); ex: GAL_up800, GCN_up800, etc. Récupérer ensuite à partir de JASPAR au moins un motif connu chez la levure (Saccharomyces cerevisiae) au format sites ou bien pfm.

Exercice 2 (random; Biopython: SeqIO, Motif; R; matplotlib). Pour un choix seuil donné, compter le nombre de *hits* du motif que vous avez choisi dans le jeu de donnée, puis donner la significativité de cette observation sous la forme: 1) d'une *p-value* empirique; 2) d'un *z-score*. Reprendre cette démarche pour deux autres valeurs de seuil.

Exercice 3 (biopython: SeqIO, ExPASy, shuffle, re.compile, find_all). Récupérer dans SWISSPROT les 16 β -globines suivantes:

Q7M2Y5	Q9YGW1	P02112	P68873
P68871	P68223	P02075	P60524
P02088	P68872	P02062	P07412
P02070	P68226	P02067	P02094

Combien de ces globines contiennent-elles l'expression régulière G[AG]E[AVF]L ? Utiliser le modèle de shuffling pour évaluer la significativité de cette observation.