Name:		Exercise T	Type (Cost):
J#:		In-Class	s (1AP)
Date: 2017 July 14			
Standard: This student is a	ble to		Mark:
C06: AreaBtCurv. definite integral.	Express an area between curves as a		
Extra2	* reatt	tempt due on:	

Find a definite integral equal to the area bounded by $x = y^2 + 1$ and $x = 3 - y^2$.

Name:	Exercise Type (Cost):
J#:	In-Class (1AP)
Date: 2017 July 14	

Standard: This student is able to...

C12: PartSum. Find the value of a convergent series by expressing it as a limit of partial sums.

**reattempt due on:

Find a formula for the partial sum $s_n = a_0 + a_1 + \dots + a_n$ where $a_n = (\frac{2}{n+3} - \frac{2}{n+4})$. Then use this formula to find the value of $\sum_{n=0}^{\infty} (\frac{2}{n+3} - \frac{2}{n+4}) = (\frac{2}{3} - \frac{2}{4}) + (\frac{2}{4} - \frac{2}{5}) + \dots$

Name:	Exercise Type (Cost):	
J#:	In-Class (1AP)	
Date: 2017 July 14		
Standard: This student is able to	Mark:	
S11: GeoAlt. Determine if a geometric series or alternating		

Recall that the geometric series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$ when |r| < 1 and diverges otherwise.

 \star reattempt due on:

3/3

Does the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{5}{4^{k-1}} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \dots$ converge or diverge? If it converges, what it is value?

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 14		
		I
Standard: This student is able to		Mark:
S12: IntTest. Use the integral test to determine series con-		
vergence.		
2/3 * reat	tempt due on:	

Does $\int_1^\infty \frac{2x}{x^2+1} dx$ converge or diverge?

Does $\sum_{m=0}^{\infty} \frac{2m}{m^2+1}$ converge or diverge?

Name:	Exercise Type (Cost):
J#:	In-Class (1AP)
Date: 2017 July 14	
Standard: This student is able to	Mark:

Standard: This student is able to...

S13: RatioRoot. Use the ratio and root tests to determine series convergence.

1/3 * reattempt due on:

Does
$$\sum_{m=0}^{\infty} \frac{m!}{3^{2m}} = 1 + \frac{1}{9} + \frac{2}{81} + \frac{6}{729} + \dots$$
 converge or diverge?