Clase 10

Cálculo 3

Carlos Martínez Ranero

Departamento de Matemática Universidad de Concepción

Recordatorio de la clase anterior.

• Aplicaciones de la regla de la cadena.

Objetivos de la clase de hoy.

• Teorema de la función implícita.

Aplicaciones de la Regla de la cadena.

Ejemplo 1

Sea $S = \{(x, y, z) : x^2 + 4y^2 + 9z^2 = 22\}$. Encontrar la ecuación del plano tangente a S en el punto (3, 1, 1).

Aplicaciones de la Regla de la cadena.

Solución:

- $\nabla(f)(x, y, z) = (2x, 8y, 18z)$
- $\nabla(f)(3, 1, 1) = (6, 8, 18)$
- Por lo tanto, $P = \{(x, y, z) : (6, 8, 18) \cdot [(x, y, z) (3, 1, 1)]\}.$
- La ecuación del plano es 6x + 8y + 18z = 44

Ejemplo 2

Sea $S: x^2 + y^2 + z^2 = 2$. Analizar si se puede despejar a la variable z como una función diferenciable de x, y en el punto (0, 1, 1) y lo mismo para la variable x.

5

Solución:

- Primero analizaremos si podemos despejar z como función de x, y.
- $z = \pm \sqrt{2 x^2 y^2}$
- como z(0, 1) = 1 > 0 podemos elegir el signo mas.
- Ademas las derivadas parciales

$$\frac{\partial f}{\partial x} = -\frac{x}{\sqrt{2 - x^2 - y^2}}, \quad \frac{\partial f}{\partial y} = -\frac{y}{\sqrt{2 - x^2 - y^2}}$$

son continuas alrededor del (0, 1) y por lo tanto, la función $z = \sqrt{2 - x^2 - y^2}$ es diferenciable en (0, 1).

- Ahora veamos si podemos despejar x como función de y, z.
- $x = \pm \sqrt{2 y^2 z^2}$
- como x(1, 1) = 0 no es claro como podemos elegir el signo. De hecho veremos que no x no es una función diferenciable de y, z.
- Derivamos implicitamente la función $f(x, y, z) = x^2 + y^2 + z^2 22$
- $2x\partial_v x + 2y = 0$
- $2x\partial_z x + 2z = 0$
- El sistema de ecuaciones no tiene solución en el punto (0, 1, 1), y por lo tanto no podemos despejar a x.

En general dada una ecuación F(x, y, z) = c tenemos que si z es una función diferenciable de x, y. Entonces

$$\partial_x F = F_x + F_z \partial_x z,$$

$$\partial_y F = F_y + F_z \partial_y z$$

El sistema tiene solución si $F_z \neq 0$.

Ejemplo 3

Sea $S: x^2 + y^2 + z^2 = 2$, x + z = 1. Analizar si se puede despejar a la variable y como una función diferenciable de x en el punto (0, 1, 1).

9

Solución:

Derivamos implicitamente las funciones

$$f_1(x, y, z) = x^2 + y^2 + z^2 - 2, f_2(x, y, z) = x + z - 1$$

•
$$2x + 2y \frac{dy}{dx} + 2z \frac{dz}{dx} = 0$$

• 1 +
$$\frac{dz}{dx}$$
 = 0

$$\cdot \begin{bmatrix} 2y & 2z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{dy}{dx} \\ \frac{dz}{dx} \end{bmatrix} = \begin{bmatrix} -2x \\ -1 \end{bmatrix}$$

• En el punto x = 0, y = 1, z = 1 tenemos

• El sistema tiene solución si y sólo si la matriz $\begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$ es invertible.

- Notemos que z = 1 x
- $y = \pm \sqrt{2 x^2 (1 x)^2} = \pm \sqrt{1 2x^2 + 2x}$
- como y(0) = 1 > 0 elegimos el signo positivo $y = \sqrt{1 - 2x^2 + 2x}$
- · La función es diferenciable en 0.

Teorema de la función implícita

Sea $U \subset \mathbb{R}^{n+k}$ un conjunto abierto, $F: U \to \mathbb{R}^k$ una función de clase C^1 . Denotemos $\vec{x} = (x_1, \dots, x_n)$ y $\vec{y} = (y_1, \dots, y_k)$

$$F(\vec{x},\vec{y}) = \begin{bmatrix} F_1(\vec{x},\vec{y}) \\ \dots \\ F_k(\vec{x},\vec{y}) \end{bmatrix} = \begin{bmatrix} F_1(x_1,\dots,x_n,y_1,\dots,y_k) \\ \dots \\ F_k(x_1,\dots,x_n,y_1,\dots,y_k) \end{bmatrix}$$

Supongamos que $(\vec{a}, \vec{b}) \in U$, donde $\vec{a} \in \mathbb{R}^n$ y $\vec{b} \in \mathbb{R}^k$ son tales que $F(\vec{a}, \vec{b}) = \vec{c} \in \mathbb{R}^k$, y la matriz

$$\left[\frac{\partial F_i}{\partial y_j} (\vec{a}, \vec{b}) \right]_{1 \leq i, j \leq k} = \begin{bmatrix} \frac{\partial F_1}{\partial y_1} (\vec{a}, \vec{b}) & \dots & \frac{\partial F_1}{\partial y_k} (\vec{a}, \vec{b}) \\ \dots & \dots & \dots \\ \frac{\partial F_k}{\partial y_1} (\vec{a}, \vec{b}) & \dots & \frac{\partial F_k}{\partial y_k} (\vec{a}, \vec{b}) \end{bmatrix}$$
es invertible.

Entonces existen abiertos $\vec{a} \in V$ y $\vec{b} \in W$ y una función de clase $C^1, g: V \to W, g(x_1, ..., x_n) = (y_1, ..., y_k)$ tal que:

- $g(\vec{a}) = \vec{b}$.
- $F(\vec{x}, q(\vec{x})) = \vec{c}$.

•
$$\left[\frac{\partial g_j}{\partial x_\ell}(\vec{a})\right] = -\left[\frac{\partial F_i}{\partial y_j}(\vec{a}, \vec{b})\right]^{-1}\left[\frac{\partial F_i}{\partial x_\ell}(\vec{a}, \vec{b})\right]$$

Por que el Teorema de la funcióm implicita es fantastico

- Dado un sistema no lineal de k ecuaciones con k ecuaciones, es generalmente imposible de resolver y en practica no se puede saber si tiene o no soluciones.
- En contraste si el sistema fuera lineal podemos utilizar eliminación Gaussiana para saber si el sistema tiene solución y resolverlo.
- El Teorema de la Función Implícita nos permite (parcialmente) reducir un sistema no lineal a uno lineal.

Ejemplo 4

Determinar, cerca del punto (x, y, u, v) = (2, -1, 2, 1), podemos resolver el sistema en forma única para u, v en términos de x, y. Calcular $\frac{\partial u}{\partial x}(2, -1)$.

$$x^{2} - y^{2} - u^{3} + v^{2} = -4$$
$$2xy + y^{2} - 2u^{2} + 3v^{4} = -8$$

Solución:

- Observemos que la función $F(x,y,u,v) = (x^2 y^2 u^3 + v^2, 2xy + y^2 2u^2 + 3v^4) \text{ es de clase } C^1 \text{ por ser polinomial.}$
- F(2, -1, 2, 1) = (-4, -8)

•
$$\frac{\partial F}{\partial (u,v)} = \begin{bmatrix} -3u^2 & 2v \\ -4u & 12v^3 \end{bmatrix}$$

$$\bullet \left. \frac{\partial F}{\partial (u,v)} \right|_{(2,-1,2,1)} = \begin{bmatrix} -12 & 2\\ -8 & 12 \end{bmatrix}$$

•
$$\det\begin{bmatrix} -12 & 2 \\ -8 & 12 \end{bmatrix} = -128 \neq 0$$

• Como la matriz $\frac{\partial F}{\partial (u,v)}\Big|_{(2,-1,2,1)}$ es invertible se sigue del Teorema de la función Implícita que existe una función g(x,y)=(u,v) de clase C^1 .

•
$$Dg = -\left[\frac{\partial F}{\partial(u,v)}\right]^{-1}\left[\frac{\partial F}{\partial(x,y)}\right]$$

•
$$\frac{\partial F}{\partial(x,y)} = \begin{bmatrix} 2x & -2y \\ 2y & 2x + 2y \end{bmatrix}$$

•
$$\frac{\partial F}{\partial(x,y)}\Big|_{(2,-1,2,1)} = \begin{bmatrix} 4 & 2\\ -2 & 2 \end{bmatrix}$$

Teorema de la Función Inversa.

• Recordemos que
$$Dg = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$$

•
$$Dg = -\begin{bmatrix} -12 & 2 \\ -8 & 12 \end{bmatrix}^{-1} \begin{bmatrix} 4 & 2 \\ -2 & 2 \end{bmatrix} =$$

$$\cdot \frac{1}{128} \begin{bmatrix} 2 & -2 \\ -8 & 12 \end{bmatrix} \begin{bmatrix} -4 & -12 \\ -2 & 2 \end{bmatrix}$$

•
$$\frac{\partial u}{\partial x}(2,-1) = \frac{52}{128}$$
.