The computational nature of phonological generalizations

Jeffrey Heinz

Linguistics Department

Michigan State University

April 19, 2018

The computational nature of natural language

characterizes the computations involved in knowing and learning natural languages. Its study spans all subdisciplines of linguistics.

Hypotheses about the computational nature of language:

- 1. Make typological and psycholinguistic predictions
- 2. Lead to new learning algorithms
- 3. Inform trends in Machine Learning, Natural Language Processing, Cognitive Science, and other aspects of science and engineering.

Today

I will argue that the computational nature of phonological generalizations is

- 1. not only "regular", but also
- 2. "less than" regular in a particularly "local" way

Doing Linguistic Typology

Requires two books:

- "encyclopedia of categories"
- "encyclopedia of types"

Wilhelm Von Humboldt

The Encyclopedia of Categories: Model Theory

		Monadic Second Order Logic	—— Regular
		First Order Logic	
		Propositional Logic	
		Conjunctions of Negative Literals	
Rep 2	Rep 1		•

Part I

What is phonology?

The fundamental insight

The fundamental insight in the 20th century which shaped the development of generative phonology is the following.

The **best** explanation of the systematic variation in the pronunciation of morphemes is to posit a single underlying mental representation of the phonetic form of each morpheme and to derive its pronounced variants with context-sensitive transformations.

(Kenstowicz and Kisseberth 1979, chap 6; Odden 2014, chap 5)

Example from Finnish

Nominative Singular	Partitive Singular	
aamu	aamua	'morning'
kello	kelloa	'clock'
kylmæ	kylmææ	'cold'
kømpelø	kømpeløæ	'clumsy'
æiti	æitiæ	'mother'
tukki	tukkia	\log'
yoki	yok <mark>e</mark> a	'river'
ovi	ov <mark>e</mark> a	'door'

Mental Lexicon

Word-final /e/ raising

1.
$$e \longrightarrow [+high] / \#$$

2.
$$*e\# >> IDENT(HIGH)$$

If your theory asserts that ...

There exist underlying representations of morphemes which are transformed to surface representations...

Then there are three important questions:

- 1. What is the nature of the abstract, underlying, lexical representations?
- 2. What is the nature of the concrete, surface representations?
- 3. What is the nature of the transformation from underlying forms to surface forms?

Theories of Phonology...

• disagree on the answers to these questions, but they agree on the questions being asked.

Phonological constraints and transformations are infinite objects

Extensions of grammars in phonology are infinite objects in the same way that perfect circles represent infinitely many points.

Word-final /e/ raising : Intensional Descriptions

1.
$$e \longrightarrow [+high] / \#$$

2. *e# >> IDENT(HIGH)

Word-final /e/ raising : Extensional Description

(ove,ovi), (yoke,yoki), (tukki,tukki), (kello,kello),... (manilabanile,manilabanili), ...

Grammars describe functions

function	Notes	
$f:\Sigma^*\to\{0,1\}$	Binary classification	(well-formedness)
$f:\Sigma^*\to\mathbb{N}$	Maps strings to numbers	(well-formedness)
$f:\Sigma^*\to [0,1]$	Maps strings to real values	(well-formedness)
$f: \Sigma^* \to \Delta^*$	Maps strings to strings	(transformation)
$f: \Sigma^* \to \wp(\Delta^*)$	Maps strings to sets of strings	(transformation)

Truisms about grammars

- 1. Different grammars may generate the same constraints and transformations (functions).
- 2. Functions may have properties *largely independent* of grammatical particulars.
 - regular sets and functions
 (Kleene 1956, Elgot and Mezei 1956, Scott and Rabin 1959)
 - output-driven maps (Tesar 2014)
 - strict locality (Rogers and Pullum 2011, Chandlee 2014)

Part II

Phonological Generalizations are Regular

Regular grammars for sets and transformations

- 1. Regular expressions
- 2. Finite-state automata
- 3. MSO-definability

What "Regular" means

A set or function is regular provided the memory required for the computation is bounded by a constant, regardless of the size of the input.

Some computations important to grammar

- For given constraint C and any representation w:
 - Does w violate C? How many times?
- For given grammar G and any underlying representation w:
 - What surface representation(s) does G transform w to? With what probabilities?

Example: Vowel Harmony

Progressive

Vowels agree in backness with the first vowel in the underlying representation.

Majority Rules

Vowels agree in backness with the majority of vowels in the underlying representation.

UR	Progressive	Majority Rules
/nokelu/	nok <mark>o</mark> lu	nok <mark>o</mark> lu
/nokeli/	nok <mark>olu</mark>	n <mark>i</mark> keli
/pidugo/	pid <mark>ige</mark>	p <mark>u</mark> dugo
/pidugomemi/	pid <mark>ige</mark> memi	pid <mark>ige</mark> memi

Progressive and Majority Rules Harmony

Some Perspective

Typological: Majority Rules is unattested. (Bakovic 2000)

Psychological: Human subjects fail to learn Majority Rules in artificial grammar learning experiments, unlike progressive harmony. (Finley 2008, 2011)

Computational: Majority Rules is not regular. (Riggle 2004, Heinz and Lai 2013)

Optimality Theory

- 1. There exists a CON and ranking over it which generates Majority Rules: AGREE(BACK)>>IDENTIO[BACK].
- 2. Changing CON may resolve this, but this solution misses the forest for the trees.

Phonological generalizations are regular

Evidence supporting the hypothesis that phonological generalizations are finite-state originate with Johnson (1972) and Kaplan and Kay (1994), who showed how to translate any phonological grammar defined by an ordered sequence of SPE-style rewrite rules into a finite-state automaton.

Consequently:

- 1. Constraints on well-formed surface and underlying representations are regular (since the image and pre-image of finite-state functions are finite-state). (Rabin and Scott 1959)
- 2. Since virtually any phonological grammar can be expressed as an ordered sequence of SPE-style rewrite rules, this means "being regular" is a property of the functions that *any* phonological grammar defines.

Part III

Phonological Constraints are "less than" Regular

The Chomsky Hierarchy

Subregular Classes based on Successor

5 2	Monadic Second Order Logic
4	First Order Logic
3	Propositional Logic
1	Conjunctions of Negative Literals
strings with "successor" representation	

- 1. *sr
- 2. *s...S
- 3. If sr then VV
- 4. *3sr (but 2 OK)
- 5. *Even-Sib

Subregular Classes based on Successor and Precedence

1. *sr

2. *s...S

3. If sr then VV

5. *Even–Sib

4. *3sr (but 2 OK)

5	Monadic Second Order Logic
4	First Order Logic
3	Propositional Logic
1 2	Conjunctions of Negative Literals
strings with "successor" + "phono-tier" o "precedence" representation	

Representing words with successor

hypothetical [srif]

• The information about order is given by the successor (\triangleleft) relation.

Sub-structures

When words are represented with successor, **sub-structures are sub-strings** of a certain size.

• So the structure $s \xrightarrow{\triangleleft} r$ is a sub-structure of *srif*.

When words are represented with successor, **sub-structures are sub-strings** of a certain size.

• **CNL**(**succ**) constraints are ones describable with a finite list of *forbidden substrings*.

$$\neg s_1 \wedge \neg s_2 \dots \wedge \neg s_n \quad (\triangleleft)$$

• For string $\rtimes abab \ltimes$, if we fix a diameter of 2, we have to check these substrings.

When words are represented with successor, **sub-structures are sub-strings** of a certain size.

- We can imagine examining each of the substructures, checking to see if it is forbidden or not.
- The whole structure is well-formed only if each sub-structure is.

(Rogers and Pullum 2011, Rogers et al. 2013)

When words are represented with successor, **sub-structures are sub-strings** of a certain size.

- We can imagine examining each of the substructures, checking to see if it is forbidden or not.
- The whole structure is well-formed only if each sub-structure is.

(Rogers and Pullum 2011, Rogers et al. 2013)

When words are represented with successor, **sub-structures are sub-strings** of a certain size.

- We can imagine examining each of the substructures, checking to see if it is forbidden or not.
- The whole structure is well-formed only if each sub-structure is.

(Rogers and Pullum 2011, Rogers et al. 2013)

Sarcee (Cook 1978, 1984)

- a. $/\sin t \sin a ?/ \rightarrow \int it \int idz ?$ 'my duck' $*\sin t \int idz ?$
- b. $/\text{na-s-yat}// \rightarrow \text{na-fyát}$ 'I killed them again'

The constraint *s...

In Sarcee words, [-anterior] sibilants like $[\int]$ may not follow [+anterior] sibilants like [s].

How much work to determine that [ʃ] follows [s]?

hypothetical [srif]

One can deduce that [f] follows [s], but it requires MSO power!

Subregular Classes based on Successor

5 2	Monadic Second Order Logic
4	First Order Logic
3	Propositional Logic
1	Conjunctions of Negative Literals
strings with "successor" representation	

1. *sr

2. *s...S

3. If sr then VV

5. *Even-Sib

4. *3sr (but 2 OK)

The "MSO with successor" Theory

Is this a good theory of possible constraints in phonology?

NO! Because...

- 1. Typologically, it overgenerates.
 - (a) *EVEN-Sib
 - (b) *3-sr (so 2 sr structures OK, but not 3)
- 2. There are no feasible algorithms for learning the whole class of regular stringsets from positive evidence (Gold 1967, inter alia).

Representing Order in Sequences

hypothetical [srif]

1. Successor

2. Precedence

Conjunction of Negative Literals (Precedence)

When words are represented with precedence, **sub-structures are sub-sequences** of a certain size.

• So $s \stackrel{\leq}{\longrightarrow} \int$ is a sub-structure of [sri \int].

• CNL(prec) constraints are ones describable with a finite list of forbidden sub-structures (with words represented using the precedence relation).

$$\neg s_1 \wedge \neg s_2 \dots \wedge \neg s_n \quad (<)$$

CNL with Successor and Precedence

5	Monadic Second	
	Order Logic	
	First Order	
4	Logic	
	Dwonogitionol	
3	Propositional Logic	
	подте	
1 2	Conjunctions of	
	Negative Literals	
strings		
with		
"successor"	+	
"phono-tier'		
"precedence"		
representation		

1. *sr

2. *s...S

- 3. If sr then VV
- 4. *3sr (but 2 OK)
- 5. *Even–Sib

The CNL with Successor and Precedence Theory

Is this a better theory of possible constraints in phonology?

- 1. Typologically, it is better than "MSO with successor."
 - (a) Admits phonotactic constraints which arguably drive long-distance harmony patterns
 - (b) Provably excludes constraints like *EVEN-Sibilants and "*3-sr".
- 2. Both CNL(succ) and CNL(prec) constraints are feasibly learnable (Garcia et al. 1991, Heinz 2010)
- 3. Human subjects learn CNL(prec) patterns—but not similar Prop(succ) ones—in lab experiments (Lai 2015).

Morals of this Story

- 1. Precedence is the transitive closure of successor.
- 2. Providing the power of transitive closure (MSO-definabilty) yields power to do lots of other things (so expands the typology undesirably)
- 3. Putting precedence directly into the representation allows a restricted expansion of the typology in a more desirable way.
- 4. The restriction also brings learnability benefits.
- 5. Makes strong psychological predictions.

The subregular hierarchies demonstrate a firm mathematical foundation upon which the interplay between representation and computation in linguistic theory can be studied.

CNL with Successor and Precedence

5	Monadic Second Order Logic
_	
4	First Order Logic
3	Propositional Logic
1 2	Conjunctions of Negative Literals
strings with	
"successor" "phono-tier"	
"precedence" representation	on

40

1. *sr

2. *s...S

3. If sr then VV

5. *Even–Sib

4. *3sr (but 2 OK)

Autosegmental Representations

1. Jardine (2016, 2017) shows these ideas to autosegmental representations (ASRs), where the sub-structures are now sub-graphs of the autosegmental structure.

- 2. He argues this approach captures the typology better than Zoll's 2003 approach in OT and earlier derivational approaches.
- 3. He shows that his grammars can be learned from strings (not ASRs!) because ASRs are fundamentally stringlike (Jardine and Heinz 2015).

Some well-studied patterns of tonal association

- 1. Position-specific contours (Mende, Hausa, Northern Karanga)
- 2. Position-specific plateaus (Mende, Hausa, Northern Karanga)
- 3. Melody constraints (Mende)
- 4. Quality-dependent plateaus (Kukuya)

41

Tone and Autosegmental Representations (Jardine 2016, 2017)

• Autosegmental representations are **graphs** (Goldsmith 1976, Coleman and Local 1991)

• A sub-structure is a finite, connected piece of a graph.

Case study: Mende — Plateaus

• Kukuya will use ϕ_{NF-H^2} but not ϕ_{NF-L^2}

Case study: Mende — Contours

• c.f. (Zhang 2000)

Case study: Mende — Melody Constraint

$$\phi_{HLH} = H \longrightarrow L \longrightarrow H$$

Case study: Mende — Summary

$$\neg \phi_{HLH} \wedge \neg \phi_{NF\text{-}Cont} \wedge \neg \phi_{NF\text{-}H^2} \wedge \neg \phi_{NF\text{-}L^2}$$

Evaluation procedure now 'crawls' through graph

Part IV

Phonological Transformations are "less than" Regular

Input Strictly Local Transformations

- 1. Chandlee (2014 et seq.) extends these ideas to segmental transformations.
- 2. She argues this approach better captures the typology than OT and earlier derivational approaches.
- 3. She establishes theoretical, efficient learning results from (UR,SR) pairs.

ISL defined

$$x_0 x_1 \ldots x_n \mapsto u_0 u_1 \ldots u_n$$

where

- 1. Each x_i is a single symbol and each u_i is a string.
- 2. There exists a $k \in \mathbb{N}$ such that for all input symbols x_i its output string u_i depends only on x_i and the k-1 elements immediately preceding x_i .

Input Strict Locality: Main Idea in a Picture

Figure 1: For every Input Strictly 2-Local function, the output string u of each input element x depends only on x and the input element previous to x. In other words, the contents of the lightly shaded cell only depends on the contents of the darkly shaded cells.

$$\text{/ove/} \mapsto [\text{ovi}]$$

input:
$$\times$$
 o v e \times output: \times o v λ i \times

$$\text{/ove/} \mapsto [\text{ovi}]$$

input:
$$\rtimes$$
 o v e \ltimes output: \rtimes o v λ i \ltimes

$$\text{/ove/} \mapsto [\text{ovi}]$$

input:
$$\rtimes$$
 o v e \rtimes output: \rtimes o v λ i \rtimes

$$\text{/ove/} \mapsto [\text{ovi}]$$

input:
$$\times$$
 o v e \times output: \times o v λ i \times

What can be modeled with ISL functions?

1. Many individual phonological processes.

(local substitution, deletion, epenthesis, and synchronic metathesis)

Construction: Transformations describable with a rewrite rule R: A \longrightarrow B / C $_$ D where

- CAD is a finite set,
- R applies simultaneously, and
- contexts, but not targets, can overlap are ISL for k equal to the longest string in CAD.

(Chandlee 2014, Chandlee and Heinz 2018)

What can be modeled with ISL functions?

- 2. Approximately 95% of the individual processes in P-Base (v.1.95, Mielke (2008))
- 3. Many opaque transformations without any special modification.

(Chandlee 2014, Chandlee and Heinz 2018, Chandlee, Heinz and Jardine 2018)

Opaque ISL transformations

- Opaque maps are typically defined as the extensions of particular rule-based grammars (Kiparsky 1971, McCarthy 2007). Tesar (2014) defines them as non-output-driven.
- Baković (2007) provides a typology of opaque maps.
 - Counterbleeding
 - Counterfeeding on environment
 - Counterfeeding on focus
 - Self-destructive feeding
 - Non-gratuitous feeding
 - Cross-derivational feeding
- Each of the examples in Baković's paper is ISL.

(Chandlee, Heinz and Jardine 2018)

Interim Summary

Many phonological patterns, including many opaque ones, have the necessary information to decide the output contained within a window of bounded length on the input side.

What CANNOT be modeled with ISL functions

- 1. progressive and regressive spreading
 - But these are Output Strictly Local (Chandlee et al. 2015)!
- 2. long-distance (unbounded) consonant and vowel harmony
 - Stay tuned!

(Chandlee 2014, Chandlee and Heinz, 2018)

Learning Results in a nutshell

- Particular finite-state transducers can be used to represent ISL functions.
- Automata-inference techniques (de la Higuera 2010) are used to learn these transducers.
- **Theorems:** Given k and a sufficient sample of (u, s) pairs any k-ISL function can be exactly learned in polynomial time and data.
 - ISLFLA (Chandlee et al. 2014, TACL) (quadratic time and data)
 - SOSFIA (Jardine et al. 2014, ICGI) (linear time and data)

Part V

Logical Characterizations of Transductions

Defining Transductions Logically

Logical expressions can translate one relational structure into another.

$$P(x) \stackrel{\text{def}}{=} Q(x)$$

"Position x has property P in the output only if corresponding position x in the input has property Q."

(Courcelle 1994, Engelfriedt and Higgeboom 2001)

Defining "Post Nasal Voicing" Logically

$$\begin{array}{ccc} \mathtt{voiced}(x) & \stackrel{\mathrm{def}}{=} & \mathtt{voiced}(x) \vee \mathtt{nasal}(\mathtt{pred}(x)) \\ \mathtt{feature}(x) & \stackrel{\mathrm{def}}{=} & \mathtt{feature}(x) \text{ (for all other features)} \\ \mathtt{pred}(x) & \stackrel{\mathrm{def}}{=} & \mathtt{pred}(x) \end{array}$$

(Courcelle 1994, Engelfriedt and Higgeboom 2001)

Defining "Post Nasal Voicing" Logically

$$\begin{array}{ccc} \mathtt{voiced}(x) & \stackrel{\mathrm{def}}{=} & \mathtt{voiced}(x) \vee \mathtt{nasal}(\mathtt{pred}(x)) \\ \mathtt{feature}(x) & \stackrel{\mathrm{def}}{=} & \mathtt{feature}(x) \text{ (for all other features)} \\ \mathtt{pred}(x) & \stackrel{\mathrm{def}}{=} & \mathtt{pred}(x) \end{array}$$

(Courcelle 1994, Engelfriedt and Higgeboom 2001)

Quantifier Free (QF) transductions

Chandlee and Lindell show that ISL transductions from a logical perspective are QF.

Compare:

1.
$$P(x) \stackrel{\text{def}}{=} Q(x) \wedge \exists y [R(y)]$$
 (First Order Definable)

Requires scanning whole word for such a y!!

2.
$$P(x) \stackrel{\text{def}}{=} Q(x) \wedge R(\text{pred}(x))$$
 (QF Definable)

Information to decide P is local to x in the input!!

$\begin{tabular}{ll} Logical Characterizations of Subregular \\ \hline {\it Functions} \ \ {\it for} \ \ {\it Transformations} \\ \end{tabular}$

Monadic Second Order Logic

First Order Logic

Quantifier Free

Rep 1

${\it Logical Characterizations of Subregular} \\ {\it Functions for Transformations}$

Monadic Second Order Logic

First Order Logic

ISL functions

Quantifier Free

Successor

(Chandlee and Lindell 2016)

Transformation incorporating phonological representations

Strother-Garcia (2017, 2018) shows

- 1. Translations between different syllabic representations is QF.
- 2. Syllabification in IT Berber is QF, with a "window size" of 3.

She concludes

• "...syllabification in ITB can be represented by a QF graph transduction, a formalism restricted to substantially lower computational complexity than [traditional] phonological grammars... Establishing that ITB syllabification is QF highlights an insight not apparent from [those traditional] grammatical formalisms..."

Additional Areas of Inquiry

- 1. Systematically compare representations of features, syllables, feet, . . .
- 2. Phonetics/Phonology Interface
- 3. Morphology/Phonology Interface
- 4. Learning lexicons, grammars, exceptions, variation
- 5. Learning representations

Discussion

- 1. Well-studied methods from computer science (logic and automata) can be used to express phonological generalizations precisely, accurately, and completely.
- 2. They provide an "Encyclopedia of categories" in Humboldt's sense.
- 3. They are easy to learn with only a little practice.
- 4. They can be weighted to compute probabilties, count violations, handle optionality, ...
- 5. One advantage of logic is the flexibility of the representations.
- 6. One advantage of automata is the previous literature on learning them.
- 7. Both logic and automata will still be here in 100, 200 years...!!

Conclusion

The computational nature of phonology matters because:

- 1. It provides well-studied methods for relating extensional and intensional descriptions of generalizations.
- 2. It provides a mathematical foundation for comparing representation and logical power.
- 3. It often directly leads to psychological models of representation, memory and processing.
- 4. These models specify what learners must attend to, and thus explains the kinds of phonological generalizations that can be learned.
- 5. It makes typological predictions and provides explanations for the phonological generalizations we do and do not observe.

Acknowledgments

- Alëna Askenova (Stony Brook)
- Jane Chandlee (Haverford)
- Aniello DeSanto (Stony Brook)
- Hossep Dolatian (Stony Brook)
- Rémi Eryaud (Marseilles)
- Thomas Graf (Stony Brook)
- Hyun Jin Hwangbo (UD)
- Bill Idsardi (UMCP)
- Adam Jardine (Rutgers)
- Regine Lai (HKIEd)
- Kevin McMullin (Ottawa)
- Jon Rawski (Stony Brook)
- Jim Rogers (Earlham)
- Kristina Strother-Garcia (UD)
- Herbert G. Tanner (UD)

5	Monadic Second Order Logic
4	First Order Logic
3	Propositional Logic
1 2	Conjunctions of Negative Literals

strings
with
"successor" +
"phono-tier" or
"precedence"
representation

1. *sr

2. *s...S

3. If sr then VV

4. *3sr (but 2 OK)

5. *Even-Sib