CO₂アーク溶接ロボットによる鋼管多層全周溶接部の力学的性能の検討

×4 Ж. З × 4 X2. 溶接施工 Y7. 溶接 正会員 青木博文 清水誠司 古屋重彦 修 **%** 6 × 8 勝 同〇鈴木孝義 山本成治 同 山本美佐夫 同 山川広行 同 西山

1. 序

建築鉄骨において生産性の向上、溶接部の品質の安定化のために、安価で性能の良い溶接ロボットの実用化が 期待されている。すでに直線溶接については、昨年の実験により良好な結果が得られている。そこで本実験では、 角形鋼管多層全周溶接が可能な CO2アーク溶接ロボットを使用し、 CO2アーク半自動溶接との溶接部の力学的性 能について比較実験を行なった。

2. 溶接ロボットの仕様

本実験では角形鋼管専用の CO2アーク溶接を対象としたロボットを使用した。こ のロボット(写真1)は、タッチ式センサーにより次層の溶接トーチの制御を行な い、治具により鋼管を回転させながら溶接を重ねていく。使用可能な角形鋼管の寸 法は、□-250 ×250 mm~□-500 ×500 mm、長さ 350mm~ 800mmである。

3. 実験概要

CO₂アーク溶接ロボットと CO₂アーク半自動溶接による角形鋼管溶接部の力学的 性能を比較するために溶接部のシャルビー試験、硬度試験、また実大実験として角 形鋼管多層全周溶接部を含む三点曲げモデル実験を行なった。使用鋼材はすべてSS 41とした。シャルピー試験、硬度試験はロ-300×300×16とP32を、三点曲げモ

デル実験には、 □- 250× 250×12と P.36 を用いた。その機械的性質と化学成分を表1、 表2に示す。また溶接条件を表3に示す。

4. 実験方法と実験結果

4.1 シャルピー試験 試験片はJIS 4号Vノッチ試験片とし、図1に示すR部、 R部先端および直線部より採取した。表4は 試験結果を最小二乗法により(1)、(2)

表4 シャルビー諸係数一覧

	4X 4±	ンヤル		XX 9	.
	エネルギー 遷移温度 (°C)	破面 遷移温度 (°C)	シェルフ エネルギー (kgf·m)	係数 α	係数 ß
RH	-16.5	-8.1	10.3	0.0197	0.0270
RB	0.3	4.1	15.4	0.0163	0.0533
RW	-5.4	0.4	16.3	0.0165	0.0222
RTB	1.3	-0.8	20.7	0.0181	0.0384
МН	20.8	17.6	16.0	0.0140	0.0152
МВ	6.6	-9.4	- 13.1	0.0140	0.0198
MW	-22.2	-5.4	11.5	0.0141	0.0171
мтв	-6.8	-10.5	17.2	0.0117	0.0320
RSH	19.8	17.6	11.9	0.0127	0.0152
RSB	-9.6	-20.2	12.6	0.0230	0.0254
RSW	-10.2	7.3	13.2	0.0271	0.0202
R:ロボット溶接 (R部) M:半自動溶接 (R部)					

RT:ロボット溶接 (R部先端) MT:半自動溶接 (R部先端) RS:ロボット溶接 (直線部) H: Haz B: Bond W: Weld Metal

表 1 使用鋼材の機械的性質

降伏点 引張強さ 伸び (kgf/mm²) (kgf/mm²) (%)

SS41 □-250×250×12.0	3 2	45	42
SS41 □-300×300×16.0	3 5	45	4 1
SS41 1₽32	27	44	3 0
SS41 12:36	28	4.5	26

表 5

吸収エネルギー 脆性破面率 (0℃) 吸収

エネルギー

(kgf·m)

6.8

7.7

8.9

10.1

5.7

5.9

7.5

9.3

4.6

7.7

RH

RВ

RW

RTB

МН ΜВ

MW

МТЕ

RSH

RSB

RSW

脆性

破面落

(%)

39.2

60.9

50.4

48.5

51.5

40.7

45.4

33.2

63.4

24.4

57.4

	С	Si	Мn	Р	S
		× 10	0	× 1	000
SS41					
□-250×250×12.0	17	1	68	18	9
SS41					
□-300×300×16.0	16	5	58	16	5
SS41 1232	17	20	6 5	19	10
SS41 1₽36	1 7	16	57	24	15

表2 使用鋼材の化学成分

溶接ロボット

表3 溶接条件

写直 1

		電流 (A)	電圧 (V)	溶接速度 (cm/min)	溶接 ワイヤ	CO1流量 (1/min)
半自動溶接	直線部	260~280	38	24~73	ΥM26 1.2 Φ	30
ロボット溶接		240~300	32~36	50	YM26 1.2 ø	> 25
半自動溶接	R部	140~160	30	9	YM26 1.2 ø	30
ロボット溶接	1, 56	190~240	26~30	6~11	YM26 1.2 ¢	> 25

	00×16	R部先端 R部先
32 350	32	R部 R
	(mm)	

図 1 シャルピー試験片採取位置

Study on Mechanical Property

of Butt Welding Joints Welded by Robot

21261

SUZUKI Takayoshi et al. 式に関数近似した結果を示す。表5には0℃ における吸収エネルギー、脆性破面率、図2 ~図5はR部およびR部先端溶接部の遷移曲 線を示したものである。ロボット溶接Bon d部の脆性破面率が、低温側で半自動溶接に 比べ高くなっているが、他は大差ない結果と なった。また、ロボット溶接の直線部とR部 の比較においても明確な差は見られなかった。 $vE = \frac{vE shelf}{2} \{1 + tanh\alpha(T - vTre)\}$ (1) ₁₅ $B=50\{1-\tanh\beta(T-vTrs)\}$

ただし

VE; 吸収エネルギー(kgf·m) B; 脆性破面率(%) vEshelf;シェルフエネルギー(kgf·m) α ;エネルギー係数 vTrs;破面遷移温度($^{\circ}$ C) vTre;エネルギー遷移温度(°c) β;破面係数

4.2 硬度試験 マイクロビッカース 硬度計を用い、使用荷重は1kgf とした。図 6に角形鋼管R部の試験結果を示す。両者と も傾向はほぼ一致しており、また割れを生じ ない基準値Hv=350を越えていない。

4.3 三点曲げモデル実験 試験体は、 図7に示す2体とし、接合部の一方をロボッ ト溶接、他方を半自動溶接としたものである。 載荷は、層間変形角を考慮した変位制御とし た。載荷計画を図8に示す。荷重-変位関係 を図9に示す。2体とも溶接部では破壊せず 角形鋼管が局部座屈し、層間変形角1/25まで 変形させた後も溶接部には何ら異常は見られ ず、溶接部は十分な性能を有しているといえ る。

5. 結び

CO₂アーク溶接ロボットによる角形鋼管多 層全周溶接部の力学的性能を CO2 アーク半自 動溶接のものと比較した結果、ここで用いた 溶接ロボットによる溶接部の力学的性能は半 自動溶接と比べて十分な性能を有しているこ とが確認できた。

図 9 荷重-変位関係

参考文献 1) 青木他7名; CO2アーク溶接ロボットによる突合わせ溶接部の力学的性能の検討 日本建築学会学術講演梗概集 (昭和61年)

- 横浜国立大学教授 工博※2 信州大学助教授 工博※3 山梨県商工振興課 **※** 1
- ネジ武精工(株)※6 大三製鋼(株)※7 信州大学助手 山梨県工業技術センター※5 $\times 4$
- ※8 信州大学大学院※9 神奈川大学大学院