Revision r0p0

3.3.1. Cortex-M4 instructions

The processor implements the ARMv7-M Thumb instruction set. Table 3.1 shows the Cortex-M4 instructions and their cycle counts. The cycle counts are based on a system with zero wait states.

Within the assembler syntax, depending on the operation, the <op2> field can be replaced with one of the following options:

- a simple register specifier, for example Rm
- an immediate shifted register, for example Rm, LSL #4
- a register shifted register, for example Rm, LSL Rs
- an immediate value, for example #0xE000E000.

For brevity, not all load and store addressing modes are shown. See the *ARMv7-M Architecture Reference Manual* for more information.

Table 3.1 uses the following abbreviations in the Cycles column:

Р

The number of cycles required for a pipeline refill. This ranges from 1 to 3 depending on the alignment and width of the target instruction, and whether the processor manages to speculate the address early.

В

The number of cycles required to perform the barrier operation. For DSB and DMB, the minimum number of cycles is zero. For ISB, the minimum number of cycles is equivalent to the number required for a pipeline refill.

Ν

The number of registers in the register list to be loaded or stored, including PC or LR.

W

The number of cycles spent waiting for an appropriate event.

Table 3.1. Cortex-M4 instruction set summary

Operation	Description	Assembler	Cycles
Move	Register	MOV Rd, <op2></op2>	1
	16-bit immediate	MOVW Rd, # <imm></imm>	1
	Immediate into top	MOVT Rd, # <imm></imm>	1
	To PC	MOV PC, Rm	1 + P
Add	Add	ADD Rd, Rn, <op2></op2>	1
	Add to PC	ADD PC, PC, Rm	1 + P
	Add with carry	ADC Rd, Rn, <op2></op2>	1
	Form address	ADR Rd, <label></label>	1
Subtract	Subtract	SUB Rd, Rn, <op2></op2>	1
	Subtract with borrow	SBC Rd, Rn, <op2></op2>	1
	Reverse	RSB Rd, Rn, <op2></op2>	1
Multiply	Multiply	MUL Rd, Rn, Rm	1
	Multiply accumulate	MLA Rd, Rn, Rm	2
	Multiply subtract	MLS Rd, Rn, Rm	2

Operation	Description	Assembler	Cycles
	Long signed	SMULL RdLo, RdHi, Rn, Rm	1
	Long unsigned	UMULL RdLo, RdHi, Rn, Rm	1
	Long signed accumulate	SMLAL RdLo, RdHi, Rn, Rm	1
	Long unsigned accumulate	UMLAL RdLo, RdHi, Rn, Rm	1
Divide	Signed	SDIV Rd, Rn, Rm	2 to 12 ^[a]
	Unsigned	UDIV Rd, Rn, Rm	2 to 12 ^[a]
Saturate	Signed	SSAT Rd, # <imm>, <op2></op2></imm>	1
	Unsigned	USAT Rd, # <imm>, <op2></op2></imm>	1
Compare	Compare	CMP Rn, <op2></op2>	1
	Negative	CMN Rn, <op2></op2>	1
Logical	AND	AND Rd, Rn, <op2></op2>	1
	Exclusive OR	EOR Rd, Rn, <op2></op2>	1
	OR	ORR Rd, Rn, <op2></op2>	1
	OR NOT	ORN Rd, Rn, <op2></op2>	1
	Bit clear	BIC Rd, Rn, <op2></op2>	1
	Move NOT	MVN Rd, <op2></op2>	1
	AND test	TST Rn, <op2></op2>	1
	Exclusive OR test	TEQ Rn, <op1></op1>	
Shift	Logical shift left	LSL Rd, Rn, # <imm></imm>	1
	Logical shift left	LSL Rd, Rn, Rs	1
	Logical shift right	LSR Rd, Rn, # <imm></imm>	1
	Logical shift right	LSR Rd, Rn, Rs	1
	Arithmetic shift right	ASR Rd, Rn, # <imm></imm>	1
	Arithmetic shift right	ASR Rd, Rn, Rs	1
Rotate	Rotate right	ROR Rd, Rn, # <imm></imm>	1
	Rotate right	ROR Rd, Rn, Rs	1
	With extension	RRX Rd, Rn	1
Count	Leading zeroes	CLZ Rd, Rn	1
Load	Word	LDR Rd, [Rn, <op2>]</op2>	2 ^[b]
	To PC	LDR PC, [Rn, <op2>]</op2>	2 ^[b] + P
	Halfword	LDRH Rd, [Rn, <op2>]</op2>	2 ^[b]
	Byte	LDRB Rd, [Rn, <op2>]</op2>	2 ^[b]
	Signed halfword	LDRSH Rd, [Rn, <op2>]</op2>	₂ [b]

Operation	Description	Assembler	Cycles
	Signed byte	LDRSB Rd, [Rn, <op2>]</op2>	2 ^[b]
	User word	LDRT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User halfword	LDRHT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User byte	LDRBT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User signed halfword	LDRSHT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User signed byte	LDRSBT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	PC relative	LDR Rd,[PC, # <imm>]</imm>	2 ^[b]
	Doubleword	LDRD Rd, Rd, [Rn, # <imm>]</imm>	1 + N
	Multiple	LDM Rn, { <reglist>}</reglist>	1 + N
	Multiple including PC	LDM Rn, { <reglist>, PC}</reglist>	1 + N + P
Store	Word	STR Rd, [Rn, <op2>]</op2>	2 ^[b]
	Halfword	STRH Rd, [Rn, <op2>]</op2>	2 ^[b]
	Byte	STRB Rd, [Rn, <op2>]</op2>	2 ^[b]
	Signed halfword	STRSH Rd, [Rn, <op2>]</op2>	2 ^[b]
	Signed byte	STRSB Rd, [Rn, <op2>]</op2>	2 ^[b]
	User word	STRT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User halfword	STRHT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User byte	STRBT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User signed halfword	STRSHT Rd, [Rn, # <imm>]</imm>	2 ^[b]
	User signed byte	STRSBT Rd, [Rn, # <imm>]</imm>	2 <u>b</u>
	Doubleword	STRD Rd, Rd, [Rn, # <imm>]</imm>	1 + N
	Multiple	STM Rn, { <reglist>}</reglist>	1 + N
Push	Push	PUSH { <reglist>}</reglist>	1 + N
	Push with link register	PUSH { <reglist>, LR}</reglist>	1 + N
Рор	Рор	POP { <reglist>}</reglist>	1 + N
	Pop and return	POP { <reglist>, PC}</reglist>	1 + N + P
Semaphore	Load exclusive	LDREX Rd, [Rn, # <imm>]</imm>	2
	Load exclusive half	LDREXH Rd, [Rn]	2
	Load exclusive byte	LDREXB Rd, [Rn]	2
	Store exclusive	STREX Rd, Rt, [Rn, # <imm>]</imm>	2
	Store exclusive half	STREXH Rd, Rt, [Rn]	2
	Store exclusive byte	STREXB Rd, Rt, [Rn]	2

Operation	Description	Assembler	Cycles
	Clear exclusive monitor	CLREX	1
Branch	Conditional	B <cc> <label></label></cc>	1 or 1 + P ^[c]
	Unconditional	B <label></label>	1 + P
	With link	BL <label></label>	1 + P
	With exchange	BX Rm	1 + P
	With link and exchange	BLX Rm	1 + P
	Branch if zero	CBZ Rn, <1abe1>	1 or 1 + P ^[c]
	Branch if non-zero	CBNZ Rn, <label></label>	1 or 1 + P ^[c]
	Byte table branch	TBB [Rn, Rm]	2 + P
	Halfword table branch	TBH [Rn, Rm, LSL#1]	2 + P
State change	Supervisor call	SVC # <imm></imm>	-
	If-then-else	IT <cond></cond>	1 ^[d]
	Disable interrupts	CPSID <flags></flags>	1 or 2
	Enable interrupts	CPSIE <flags></flags>	1 or 2
	Read special register	MRS Rd, <specreg></specreg>	1 or 2
	Write special register	MSR <specreg>, Rn</specreg>	1 or 2
	Breakpoint	BKPT # <imm></imm>	-
Extend	Signed halfword to word	SXTH Rd, <op2></op2>	1
	Signed byte to word	SXTB Rd, <op2></op2>	1
	Unsigned halfword	UXTH Rd, <op2></op2>	1
	Unsigned byte	UXTB Rd, <op2></op2>	1
Bit field	Extract unsigned	UBFX Rd, Rn, # <imm>, #<imm></imm></imm>	1
	Extract signed	SBFX Rd, Rn, # <imm>, #<imm></imm></imm>	1
	Clear	BFC Rd, Rn, # <imm>, #<imm></imm></imm>	1
	Insert	BFI Rd, Rn, # <imm>, #<imm></imm></imm>	1
Reverse	Bytes in word	REV Rd, Rm	1
	Bytes in both halfwords	REV16 Rd, Rm	1
	Signed bottom halfword	REVSH Rd, Rm	1
	Bits in word	RBIT Rd, Rm	1
Hint	Send event	SEV	1
	Wait for event	WFE	1 + W
	Wait for interrupt	WFI	1 + W
	No operation	NOP	1
Barriers	Instruction synchronization	ISB	1 + B

Operation	Description	Assembler	Cycles
	Data memory	DMB	1 + B
	Data synchronization	DSB <flags></flags>	1 + B

[[]a] Division operations use early termination to minimize the number of cycles required based on the number of leading ones and zeroes in the input operands.

Table 3.2 shows the DSP instructions that the Cortex-M4 processor implements.

Table 3.2. Cortex-M4 DSP instruction set summary

Operation	Description	Assembler	Cycles
Multiply	32-bit multiply with 32-most-significant-bit accumulate	SMMLA	1
	32-bit multiply with 32-most-significant-bit subtract	SMMLS	1
	32-bit multiply returning 32-most-significant-bits	SMMUL	1
	32-bit multiply with rounded 32-most-significant-bit accumulate	SMMLAR	1
	32-bit multiply with rounded 32-most-significant-bit subtract	SMMLSR	1
	32-bit multiply returning rounded 32-most-significant- bits	SMMULR	1
Signed Multiply	Q setting 16-bit signed multiply with 32-bit accumulate, bottom by bottom	SMLABB	1
	Q setting 16-bit signed multiply with 32-bit accumulate, bottom by top	SMLABT	1
	16-bit signed multiply with 64-bit accumulate, bottom by bottom	SMLALBB	1
	16-bit signed multiply with 64-bit accumulate, bottom by top	SMLALBT	1
	Dual 16-bit signed multiply with single 64-bit accumulator	SMLALD	1
	16-bit signed multiply with 64-bit accumulate, top by bottom	SMLALTB	1
	16-bit signed multiply with 64-bit accumulate, top by top	SMLALTT	1
	16-bit signed multiply yielding 32-bit result, bottom by bottom	SMULBB	1
	16-bit signed multiply yielding 32-bit result, bottom by top	SMULBT	1
	16-bit signed multiply yielding 32-bit result, top by bottom	SMULTB	1

[[]b] Neighboring load and store single instructions can pipeline their address and data phases. This enables these instructions to complete in a single execution cycle.

^[c] Conditional branch completes in a single cycle if the branch is not taken.

[[]d] An IT instruction can be folded onto a preceding 16-bit Thumb instruction, enabling execution in zero cycles.

Operation	Description	Assembler	Cycles
	16-bit signed multiply yielding 32-bit result, top by bottom	SMULTT	1
	16-bit by 32-bit signed multiply returning 32-most-significant-bits, bottom	SMULWB	1
	16-bit by 32-bit signed multiply returning 32-most-significant-bits, top	SMULWT	1
	Dual 16-bit signed multiply returning difference	SMUSD	1
	Q setting 16-bit signed multiply with 32-bit accumulate, top by bottom	SMLATB	1
	Q setting 16-bit signed multiply with 32-bit accumulate, top by top	SMLATT	1
	Q setting dual 16-bit signed multiply with single 32-bit accumulator	SMLAD	1
	Q setting 16-bit by 32-bit signed multiply with 32-bit accumulate, bottom	SMLAWB	1
	Q setting 16-bit by 32-bit signed multiply with 32-bit accumulate, top	SMLAWT	1
	Q setting dual 16-bit signed multiply subtract with 32-bit accumulate	SMLSD	1
	Q setting dual 16-bit signed multiply subtract with 64-bit accumulate	SMLSLD	1
	Q setting sum of dual 16-bit signed multiply	SMUAD	1
	Q setting pre-exchanged dual 16-bit signed multiply with single 32-bit accumulator	SMLADX	1
Unsigned Multiply	32-bit unsigned multiply with double 32-bit accumulation yielding 64-bit result	UMAAL	1
Saturate	Q setting dual 16-bit saturate	SSAT16	1
	Q setting dual 16-bit unsigned saturate	USAT16	1
Packing and	Pack half word top with shifted bottom	PKHTB	1
Unpacking	Pack half word bottom with shifted top	PKHBT	1
	Extract 8-bits and sign extend to 32-bits	SXTB	1
	Dual extract 8-bits and sign extend each to 16-bits	SXTB16	1
	Extract 16-bits and sign extend to 32-bits	SXTH	1
	Extract 8-bits and zero-extend to 32-bits	UXTB	1
	Dual extract 8-bits and zero-extend to 16-bits	UXTB16	1
	Extract 16-bits and zero-extend to 32-bits	UXTH	1
	Extract 8-bit to 32-bit unsigned addition	UXTAB	1
	Dual extracted 8-bit to 16-bit unsigned addition	UXTAB16	1
	Extracted 16-bit to 32-bit unsigned addition	UXTAH	1
	Extracted 8-bit to 32-bit signed addition	SXTAB	1

Operation	Description	Assembler	Cycles
	Dual extracted 8-bit to 16-bit signed addition	SXTAB16	1
	Extracted 16-bit to 32-bit signed addition	SXTAH	1
Miscellaneous Data	Select bytes based on GE bits	SEL	1
Processing	Unsigned sum of quad 8-bit unsigned absolute difference	USAD8	1
	Unsigned sum of quad 8-bit unsigned absolute difference with 32-bit accumulate	USADA8	1
Addition	Dual 16-bit unsigned saturating addition	UQADD16	1
	Quad 8-bit unsigned saturating addition	UQADD8	1
	Q setting saturating add	QADD	1
	Q setting dual 16-bit saturating add	QADD16	1
	Q setting quad 8-bit saturating add	QADD8	1
	Q setting saturating double and add	QDADD	1
	GE setting quad 8-bit signed addition	SADD8	1
	GE setting dual 16-bit signed addition	SADD16	1
	Dual 16-bit signed addition with halved results	SHADD16	1
	Quad 8-bit signed addition with halved results	SHADD8	1
	GE setting dual 16-bit unsigned addition	UADD16	1
	GE setting quad 8-bit unsigned addition	UADD8	1
	Dual 16-bit unsigned addition with halved results	UHADD16	1
	Quad 8-bit unsigned addition with halved results	UHADD8	1
Subtraction	Q setting saturating double and subtract	QDSUB	1
	Dual 16-bit unsigned saturating subtraction	UQSUB16	1
	Quad 8-bit unsigned saturating subtraction	UQSUB8	1
	Q setting saturating subtract	QSUB	1
	Q setting dual 16-bit saturating subtract	QSUB16	1
	Q setting quad 8-bit saturating subtract	QSUB8	1
	Dual 16-bit signed subtraction with halved results	SHSUB16	1
	Quad 8-bit signed subtraction with halved results	SHSUB8	1
	GE setting dual 16-bit signed subtraction	SSUB16	1
	GE setting quad 8-bit signed subtraction	SSUB8	1
	Dual 16-bit unsigned subtraction with halved results	UHSUB16	1
	Quad 8-bit unsigned subtraction with halved results	UHSUB8	1
	GE setting dual 16-bit unsigned subtract	USUB16	1
	GE setting quad 8-bit unsigned subtract	USUB8	1

Operation	Description	Assembler	Cycles
Parallel Addition and Subtraction	Dual 16-bit unsigned saturating addition and subtraction with exchange	UQASX	1
	Dual 16-bit unsigned saturating subtraction and addition with exchange	UQSAX	1
	GE setting dual 16-bit addition and subtraction with exchange	SASX	1
	Q setting dual 16-bit add and subtract with exchange	QASX	1
	Q setting dual 16-bit subtract and add with exchange	QSAX	1
	Dual 16-bit signed addition and subtraction with halved results	SHASX	1
	Dual 16-bit signed subtraction and addition with halved results	SHSAX	1
	GE setting dual 16-bit signed subtraction and addition with exchange	SSAX	1
	GE setting dual 16-bit unsigned addition and subtraction with exchange	UASX	1
	Dual 16-bit unsigned addition and subtraction with halved results and exchange	UHASX	1
	Dual 16-bit unsigned subtraction and addition with halved results and exchange	UHSAX	1
	GE setting dual 16-bit unsigned subtract and add with exchange	USAX	1

Copyright © 2009, 2010 ARM Limited. All rights reserved. Non-Confidential

ARM DDI 0439B