Devoir à la maison n° 8

À rendre le 07 décembre

Soit d_1, d_2, \ldots, d_9 , neuf entiers relatifs distincts.

On note $f: \mathbb{Z} \to \mathbb{Z}$

$$n \mapsto (n+d_1) \times \cdots \times (n+d_9)$$

L'objectif de ce problème est de montrer qu'il existe $N \in \mathbb{Z}$ tel que pour tout $n \ge N$, f(n) est divisible par un nombre premier supérieur ou égal à 20.

On se place pour commencer dans le cas où d_1, \ldots, d_n sont des entiers strictement positifs.

On note H le nombre de nombres premiers inférieurs ou égaux à 20 et p_1, \ldots, p_H ces entiers.

- 1) Déterminer H.
- 2) On pose $d = \max(d_1, \ldots, d_9)$ et $N = d^8$. On suppose par l'absurde qu'il existe $n \ge N$ tel que tous les diviseurs premiers de f(n) soient inférieurs ou égaux à 20.

Montrer alors que pour tout $i \in \{1, ..., 9\}$, il existe un nombre premier q_i avec $q_i \leq 20$ et un entier α_i tels que $q_i^{\alpha_i} | n + d_i$ et $q_i^{\alpha_i} > d$.

- 3) En déduire qu'il existe i et j avec $i \neq j$ tels que $q_i = q_j$.
- **4)** Montrer qu'alors $q_i^{\min(\alpha_i,\alpha_j)}$ divise $d_i d_j$.
- 5) En déduire une absurdité.
- 6) Conclure.
- 7) On se place maintenant dans le cas général, c'est-à-dire qu'on ne suppose plus que d_1, \ldots, d_9 sont strictement positifs. Montrer que le résultat est encore vrai et donner, en fonction de d_1, \ldots, d_9 , une valeur de N convenant.

— FIN —