Inteligencja obliczeniowa w analizie danych

Logika rozmyta Wnioskowanie rozmyte

Gdzie jesteśmy

Algorytmy heurystyczne

Algorytmy probabilistyczne
Algorytmy genetyczne
Strategie ewolucyjne
Metody roju cząstek,
mrówkowe, symulowane
wyżarzanie...

Logika rozmyta

Rozmyte systemy wnioskujące

Systemy eksperckie Sterowanie rozmyte

Sztuczne sieci neuronowe

Sieci neuronowe – teoria Sieci neuronowe – typowe aplikacje Głębokie sieci neuronowe Sieci neuronowe – aplikacje inżynierskie

Zbiory ostre

Klasyczna teoria zbiorów (zbiory ostre):

Pewnym obszarem rozważań niech będzie X.

Zbiór dowolnych elementów a_i należy do zbioru A, natomiast b_i nie należy do zbioru A : $a_i \in A$, $b_i \notin A$

Zbiory a_i oraz b_i zostały utworzone w tej samej przestrzeni $X: a_i \in X, b_i \notin X$.

Dla każdego elementu $x \in X$ jego przynależność do zbioru A można określić przez funkcję przynależności, która przyjmuje wartość:

$$\mu_A(x) = \begin{cases} 0 & dla & x \notin A \\ 1 & dla & x \in A \end{cases}$$
 PRAWDA/FAŁSZ

Logika wielowartościowa

Jan Łukasiewicz (ur. 21 grudnia 1878 we Lwowie, zm. 13 lutego 1956 w Dublinie) – polski naukowiec i polityk; logik i filozof, rektor Uniwersytetu Warszawskiego, minister.

Jego praca *O zasadzie sprzeczności u Arystotelesa* zapoczątkowała rozwój logiki matematycznej. **Był autorem logiki trójwartościowej**, pierwszego nieklasycznego rachunku logicznego, na bazie którego powstały logika modalna, logika probabilistyczna i logika rozmyta.

Prócz prawdy – "1" oraz fałszu "0" zaproponował dodatkową wartość – " $\frac{1}{2}$ "

Przykład – na wakacje pojadę na Malediwy – czy to zdanie jest prawdziwe czy fałszywe ? – na chwilę obecną to "prawdopodobnie" - $\frac{1}{2}$ "

Oprócz logiki trójwartościowej powstały także logiko wielowartościowe:

$$0, \frac{1}{n-1}, \dots, \frac{n-2}{n-1}, 1$$

Profesor **Zadeh**, praca pt.: "Fuzzy Sets" **1965** w Information and Control.

INFORMATION AND CONTROL 8, 338-353 (1985)

Fuzzy Sets*

L. A. ZADEH

Department of Electrical Engineering and Electronics Research Laboratory, University of California, Berkeley, California

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

Pewnym obszarem rozważań niech będzie X.

Zbiór rozmyty A został utworzony w tym obszarze $X: A \in X$.

Dla każdego elementu $x \in X$ jego przynależność do zbioru A można określić przez funkcję przynależności, która przyjmuje wartość:

$$A = \{(x, \mu_A(x)) : x \in X, \mu_A(x) \in [0,1]\}$$

Tak zdefiniowana funkcja to zbiór romyty

 $\mu_A(x)$ - to funkcja przynależności określająca stopień przynależności elementów x do zbioru A

Zbiór elementów o stopniach przynależności większych od zera to nośnik zbioru rozmytego.

$$\mu_A(x_3) = 0.2$$

 $\mu_A(x_2) = 0.7$
 $\mu_A(x_1) = 1$

Czy x_3 należy do zbioru A? ... raczej nie .., trochę, mało .. Nieprecyzyjne określenie .. Tak często robimy w życiu ..

Takie pozornie nieprecyzyjnie określenia (mało, szybko, niski) nazywamy zmiennymi lingwistycznymi

funkcja przynależności zbiory ostre

$$\mu_A(x) = \begin{cases} 0 & dla & x \notin A \\ 1 & dla & x \in A \end{cases}$$

wiek

Czy x_3 należy do zbioru A? ... raczej nie .., trochę, mało .. Nieprecyzyjne określenie .. Tak często robimy w życiu ..

Takie pozornie nieprecyzyjnie określenia (mało, szybko, niski) nazywamy **zmiennymi lingwistycznymi**

Funkcje przynależności (funkcje definiujące zbiór rozmyty)

Trójkątna funkcja przynależności

 $A = \{(x, \mu_A(x)) : x \in X, \mu_A(x) \in [0,1]\}$ Tak zdefiniowana funkcja to zbiór rozmyty

Funkcje przynależności

Trapezowa funkcja przynależności

Funkcje przynależności

Gaussowska funkcja przynależności

Funkcje przynależności

Dzwonowa funkcja przynależności

Logika klasyczna – logika rozmyta – operacje na zbiorach

Koniunkcja zbiorów ostrych

$$A \cap B = \{x \in X : x \in A \land x \in B\}$$

Uogólniona koniunkcja zbiorów rozmytych

$$(A \cap B)(x) = min\{A(x), B(x)\}, x \in X$$

Logika klasyczna – logika rozmyta – operacje na zbiorach

Alternatywa zbiorów ostrych

$$A \cup B = \{x \in X : x \in A \lor x \in B\}$$

Uogólniona alternatywa zbiorów rozmytych

$$(A \cup B)(x) = max\{A(x), B(x)\}, x \in X$$

Logika klasyczna – logika rozmyta – operacje na zbiorach

$$A' = \{x \in X : x \notin A\}$$

$$(A')(x) = 1 - A(x), x \in X$$

Logika rozmyte: aksjomaty, reguły – całość szerokiego zagadnienia

Zbiór rozmyty – zbiór zdefiniowany funkcją przynależności

zdania logiczne

klasyczne	rozmyte
koniunkcja ∧	uogólniona koniunkcja
alternatywa v	uogólniona alternatywa
negacja ¬	uogólniona negacja
implikacja ⇒	uogólniona implikacja

Wnioskowanie klasyczne

Reguła Modus Ponens

reguła: JEŻELI x jest A, TO y jest B

fakt: x jest A

wniosek: y jest B

JEŻELI *dzisiaj* jest *piątek*,

reguła: TO wieczorem jest impreza

fakt: dzisiaj jest piątek

wniosek: wieczorem jest impreza

Wnioskowanie rozmyte – nasze dane są przybliżone

Uogólniona reguła Modus Ponens

reguła: JEŻELI twierdzenie rozmyte pierwsze,

TO twierdzenie rozmyte drugie

fakt: twierdzenie rozmyte pierwsze

wniosek: twierdzenie rozmyte drugie

przy czym, twierdzenia rozmyte pierwsze, zawierają najczęściej koniunkcje wszystkich kombinacji pojęć lingwistycznych dla danych zmiennych wejściowych

reguła: JEŻELI temperatura jest wysoka,

TO wieczorem wypijemy dużo piwa

fakt: temperatura jest wysoka

wniosek: wieczorem wypijemy dużo piwa

wysoka temperatura, dużo piwa to zmienne lingwistyczne, których ilościowe znaczenie możemy opisać zbiorami rozmytymi za pomocą funkcji przynależności

zbiór reguł określający spektrum możliwości buduje bazę reguł

Wnioskowanie rozmyte – nasze dane są przybliżone

Logika klasyczna: Jeżeli przesłanka jest prawdą to i implikacja jest prawdziwa.

Logika rozmyta: Jeżeli przesłanka jest w pewnym stopniu prawdziwa, to i konsekwencja jest w pewnym stopni prawdziwa.

Wnioskowanie rozmyte – baza reguł

regula 1: IF $A_1(x)$, THEN $B_1(y)$

regula 2: IF $A_2(x)$, THEN $B_2(y)$

••••

regula 2: IF $A_n(x)$, THEN $B_n(y)$

FAKT A(x)

WNIOSEK B(y)

Wnioskowanie rozmyte – baza reguł złożonych Metoda wnioskowania rozmytego Mamdaniego

Mamdani, Ebrahim H (1974).

"Application of fuzzy algorithms for control of simple dynamic plant". Proceedings of the Institution of Electrical Engineers. 121 (12): 1585–1588

Mamdani-Type Fuzzy Inference (MIN-MAX)

regula 1: IF $A_1(x)$ AND $B_1(x)$ AND ..., THEN $Z_1(y)$

reguła 2: IF $A_2(x)$ AND $B_2(x)$ AND ..., THEN $Z_2(y)$

••••

reguła 2: IF $A_n(x)$ AND $B_n(x)$ AND ..., THEN $Z_n(y)$

FAKT A(x), B(x)...

WNIOSEK Z(y)

Wnioskowanie rozmyte – baza reguł złożonych Metoda wnioskowania rozmytego Mamdaniego

Co po wnioskowaniu - procedury defuzyfikacji

Zademonstrujmy przebieg procesu wnioskowania rozmytego na przykładzie ...

Przykład sercu bliski –

ile browarków planujemy spożyć podczas długiego weekendu majowego ...

(oczywiście tylko warstwa merytoryczna jest wartościowa – nie promujemy spożywania alkoholu ©)

KROK 1: wybór zmiennych wejściowych i wyjściowych

Ustalamy, jakie czynniki mają wpływ na proces wnioskowania – od czego powinien zależeć wynik ..

... złóżmy, że dla przykładowego problemu najważniejsze są: **dwie zmienne wejściowe:**zasoby nadmiarowej gotówki

oraz

średnia prognozowana temperatura

(pragnienie wzrasta wraz z temperaturą, czemu sprzyjają imprezy pod gołym niebem, jednak braki budżetowe mogą ograniczyć fantazję ..) a proces wnioskowania dotyczy

> jednej zmiennej wyjściowej: planowanej ilości browarków

KROK 2: określenie fizycznych dziedzin (nośników zbiorów rozmych) dla wybranych zmiennych

Optymistycznie załóżmy, że możemy zaszaleć i na weekendowy relaks przewidujemy budżet do 1000 PLN..., natomiast wiosna zapowiada się gorąca, z temperaturami sięgającymi 30°C.

zmienne wejściowe:

- ✓ budżet 0-1000 PLN
- √ prognozowana temperatura: 0-30 °C

zmienna wyjściowa:

✓ planowana ilość browarków 0-10 (dziennie ! Przedział umiarkowany - nie promujemy zachowań skrajnych ..)

KROK 3: wybór i nazwanie zmiennych lingwistycznych opisujących każdą ze zmiennych wejściowych/wyjściowych

Uznajmy, że właściwą **liczbą zmiennych lingwistycznych** do opisu parametrów wejściowych jest

3 dla zmiennej **budżet**

oraz

4 dla zmiennej temperatura.

Zmienne lingwistyczne opisujące **budżet** nazwijmy następująco: **M**ały, **Ś**redni, **D**uży.

Zmienne lingwistyczne opisujące prognozowaną temperaturę nazwijmy następująco:

Niska, Średnia, Optymalna, Gorąca.

Liczbę zmiennych lingwistycznych dla zmiennej wyjściowej – ilość_browarków określmy na 5 i nazwijmy je:

Bardzo_Mało, Mało, Średnio, Dużo, Bardzo_Dużo

Dla potrzeb przykładu wybierzmy najprostszy kształt funkcji przynależności – trójkątny.

Każdorazowo oś pionowa określa stopień przynależności w granicach od 0 do 1.

Kreślenie funkcji przynależności polega na skodyfikowaniu subtelnych odczuć naszych, bądź eksperta, związanych z umiejscowieniem w fizycznej dziedzinie zaproponowanych zmiennych lingwistycznych.

Zmienne lingwistyczne opisujące **Budżet**:

Mały, Średni, Duży.

Nośnik zbioru rozmytego budżet – [0-1000] PLN

Zmienne lingwistyczne opisujące **Budżet**:

Mały, Średni, Duży.

Nośnik zbioru rozmytego budżet – [0-1000] PLN

Zmienne lingwistyczne opisujące **Budżet**:

Mały, Średni, Duży.

Nośnik zbioru rozmytego budżet - [0-1000] PLN

Zmienne lingwistyczne opisujące **Budżet**:

Mały, Średni, Duży.

Nośnik zbioru rozmytego budżet - [0-1000] PLN

Zmienne lingwistyczne opisujące **Prognozowaną Temperaturę**: Niska, Średnia, Optymalna, Gorąca.

Nośnik zbioru rozmytego Prognozowana_Temperatura – [0-30] °C

Zmienne lingwistyczne opisujące **Prognozowaną Temperaturę**: Niska, Średnia, Optymalna, Gorąca.

Nośnik zbioru rozmytego Prognozowana_Temperatura – [0-30] °C

Zmienne lingwistyczne opisujące **Prognozowaną Temperaturę**: Niska, Średnia, Optymalna, Gorąca.

Nośnik zbioru rozmytego Prognozowana_Temperatura – [0-30] °C

Zmienne lingwistyczne opisujące Prognozowaną Temperaturę: Niska, Średnia, Optymalna, Gorąca.

Nośnik zbioru rozmytego Prognozowana_Temperatura – [0-30] °C

Zmienne lingwistyczne opisujące **Prognozowaną Temperaturę**: Niska, Średnia, Optymalna, Gorąca.

Nośnik zbioru rozmytego Prognozowana_Temperatura – [0-30] °C

Prognozowana Temperatura

Zmienne lingwistyczne opisujące **ilość_browarków**:

Zmienne lingwistyczne opisujące **ilość_browarków**:

Zmienne lingwistyczne opisujące **ilość_browarków**:

Zmienne lingwistyczne opisujące **ilość_browarków**:

Zmienne lingwistyczne opisujące **ilość_browarków**:

Zmienne lingwistyczne opisujące **ilość_browarków**:

Określamy reguły wiążące ze sobą zmienne wejściowe w związki typu: **JEŚLI** twierdzenie rozmyte pierwsze **WTEDY** twierdzenie rozmyte drugie, przy czym twierdzenia rozmyte pierwsze zawierają najczęściej koniunkcje wszystkich kombinacji pojęć lingwistycznych dla danych zmiennych wejściowych.

przykładowo

JEZELI Bużet jest Duży ORAZ Prognozowana_Temperatura jest Gorąca
WTEDY Ilość_Browarków jest Bardzo Duża

JEŻELI **Bużet** jest *Mały* ORAZ **Prognozowana Temperatura** jest *Niska*WTEDY **Ilość Browarków** jest *Bardzo Mała*

.

Pełna baza reguł – wszystkie kombinacje zmiennych lingwistycznych

wejściowych!

wejsciowy	vejsciowych !								
W naszym przykładzie : 4 x 3 = 12			BUDŻE	Γ	Ilość Browarków				
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało			
ANA RA	NISKA				M	Mało			
ZOW/	ŚREDNIA				Ś	Średnio			
PROGNOZOWANA TEMPERATURA	OPTY- MALNA				D	Dużo			
PRO	GORĄCA				BD	Bardzo Dużo			

		BUDŻET		Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało
ANA RA	NISKA	BM			M	Mało
SOWA	ŚREDNIA				Ś	Średnio
PROGNOZOWANA TEMPERATURA	OPTY- MALNA				D	Dużo
PRO	GORĄCA				BD	Bardzo Dużo

		BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM			M	Mało	
ZOW/	ŚREDNIA	BM			Ś	Średnio	
ROGNOZOWANA	OPTY- MALNA				D	Dużo	
PRO	GORĄCA				BD	Bardzo Dużo	

		BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA	NISKA	BM			M	Mało	
OWA	ŚREDNIA	BM			Ś	Średnio	
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M			D	Dużo	
PRO	GORĄCA				BD	Bardzo Dużo	

		BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM			М	Mało	
COWA	ŚREDNIA	BM			Ś	Średnio	
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M			D	Dużo	
PRO	GORĄCA	Ś			BD	Bardzo Dużo	

		BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM	M		M	Mało	
PROGNOZOWANA TEMPERATURA	ŚREDNIA	BM			Ś	Średnio	
	OPTY- MALNA	M			D	Dużo	
PRO	GORĄCA	Ś			BD	Bardzo Dużo	

		E	BUDŻE	Τ	Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM	M		M	Mało	
ZOW/	ŚREDNIA	BM	M		Ś	Średnio	
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M			D	Dużo	
PRO	GORĄCA	Ś			BD	Bardzo Dużo	

		BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM	M		M	Mało	
ZOW/	ŚREDNIA	BM	M		Ś	Średnio	
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M	Ś		D	Dużo	
PRO	GORĄCA	Ś			BD	Bardzo Dużo	

		E	BUDŻE	Τ	Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM	M		M	Mało	
ZOW/	ŚREDNIA	BM	M		Ś	Średnio	
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M	Ś		D	Dużo	
PRO	GORĄCA	Ś	D		BD	Bardzo Dużo	

		BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM	М	Ś	M	Mało	
COWA	ŚREDNIA	BM	M		Ś	Średnio	
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M	Ś		D	Dużo	
PRO	GORĄCA	Ś	D		BD	Bardzo Dużo	

		BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało	
ANA RA	NISKA	BM	М	Ś	M	Mało	
ZOWA ATUF	ŚREDNIA	BM	M	D	Ś	Średnio	
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M	Ś		D	Dużo	
PRO	GORĄCA	Ś	D		BD	Bardzo Dużo	

		E	BUDŻET			Ilość Browarków		
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało		
ANA RA	NISKA	BM	M	Ś	M	Mało		
ZOW/	ŚREDNIA	BM	M	D	Ś	Średnio		
PROGNOZOWANA TEMPERATURA	OPTY- MALNA	M	Ś	BD	D	Dużo		
PRO	GORĄCA	Ś	D		BD	Bardzo Dużo		

		BUDŻET			Ilość Browarków	
		MAŁY	ŚREDNI	DUŻY	BM	Bardzo Mało
PROGNOZOWANA TEMPERATURA	NISKA	BM	М	Ś	M	Mało
	ŚREDNIA	BM	M	D	Ś	Średnio
	OPTY- MALNA	M	Ś	BD	D	Dużo
	GORĄCA	Ś	D	BD	BD	Bardzo Dużo

dla rozważanego przez nas systemu rozmytego

- √ budżet= 600 PLN,
- ✓ Prognozowana_Temperatura = 17°C

dla rozważanego przez nas systemu rozmytego

- √ budżet= 600 PLN,
- ✓ Prognozowana_Temperatura = 17°C

dla rozważanego przez nas systemu rozmytego

- √ budżet= 600 PLN,
- ✓ Prognozowana_Temperatura = 17°C

dla rozważanego przez nas systemu rozmytego

- √ budżet= 600 PLN,
- ✓ Prognozowana_Temperatura = 17°C

dla rozważanego przez nas systemu rozmytego

- √ budżet= 600 PLN,
- ✓ Prognozowana_Temperatura = 17°C

dla rozważanego przez nas systemu rozmytego

Załóżmy, że wartości zmiennych wejściowych to:

✓ Budżet= 600 PLN,

✓ Prognozowana_Temperatura = 17°C

Razem 4 zbiory rozmyte opisujące zmienne lingwistyczne wejściowe ze stopniem przynależności >0

0 250 500: 750 1000 0 5 10 15: 20 25 30 °C Prognozowana Temperatura

JEŻELI Bużet jest Średni ORAZ Prognozowana_Temperatura jest Średnia WTEDY Ilość_Browarków jest Mała min{0.8,0.3}=0.3

JEŻELI Bużet jest Średni ORAZ Prognozowana_Temperatura jest Optymalna

WTEDY Ilość_Browarków jest Średnia

0.2

JEŻELI Bużet jest Duży ORAZ Prognozowana_Temperatura jest Średnia

WTEDY Ilość_Browarków jest $Du\dot{z}a$ $\min\{0.2,0.3\}=0.2$ JEŻELI Bużet jest $Du\dot{z}y$ ORAZ Prognozowana_Temperatura jest OptymalnaWTEDY Ilość_Browarków jest OptymalnaWTEDY Ilość_Browarków jest Optymalna

Opis procesu wnioskowania $(A \cup B)(x) = max\{A(x), B(x)\}, x \in X$

JEŻELI **Bużet** jest **Średni** ORAZ **Prognozowana Temperatura** jest **Średnia** WTFDY **Ilość Browarków** jest **Mała** $\min\{0.8, 0.3\} = 0.3$ WTEDY **Ilość_Browarków** jest *Mała*

Opis procesu wnioskowania $(A \cup B)(x) = max\{A(x), B(x)\}, x \in X$

- JEZELI Buzet jest Średni ORAZ Prognozowana_Temperatura jest Średnia $min\{0.8, 0.3\}=0.3$ WTEDY Ilość_Browarków jest *Mała*
- JEZELI Bużet jest Sredni ORAZ Prognozowana_Temperatura jest Optymalna $min{0.8, 0.7} = 0.7$ WTEDY **Ilość_Browarków** jest *Średnia*

- JEŻELI Bużet jest Średni ORAZ Prognozowana_Temperatura jest Średnia $min{0.8, 0.3}=0.3$ WTEDY Ilość_Browarków jest *Mała*
- JEZELI **Bużet** jest *Średni* ORAZ **Prognozowana_Temperatura** jest *Optymalna* WTEDY Ilość_Browarków jest Średnia $\min\{0.8, 0.7\} = 0.7$
- JEŻELI Bużet jest Duży ORAZ Prognozowana_Temperatura jest Średnia WTEDY **Ilość_Browarków** jest **Duża** $min{0.2, 0.3} = 0.2$

- JEŻELI Bużet jest Średni ORAZ Prognozowana_Temperatura jest Średnia WTEDY Ilość_Browarków jest *Mała* $\min\{0.8, 0.3\}=0.3$
- JEZELI Bużet jest *Sredni* ORAZ Prognozowana_Temperatura jest *Optymalna* WTEDY Ilość_Browarków jest Średnia $min\{0.8, 0.7\} = 0.7$
- JEŻELI Bużet jest *Duży* ORAZ Prognozowana_Temperatura jest *Średnia* $min{0.2, 0.3}=0.2$ WTEDY **Ilość_Browarków** jest **Duża**
- JEZELI Bużet jest Duży ORAZ Prognozowana_Temperatura jest Optymalna WTEDY Ilość_Browarków jest Bardzo_Duża $min{0.2, 0.7} = 0.2$

- JEŻELI Bużet jest Średni ORAZ Prognozowana_Temperatura jest Średnia WTEDY Ilość_Browarków jest *Mała* $\min\{0.8, 0.3\}=0.3$
- JEZELI Bużet jest *Sredni* ORAZ Prognozowana_Temperatura jest *Optymalna* WTEDY Ilość_Browarków jest Średnia $\min\{0.8,0.7\}=0.7$
- JEŻELI **Bużet** jest **Duży** ORAZ **Prognozowana_Temperatura** jest **Średnia** $min{0.2, 0.3}=0.2$ WTEDY **Ilość_Browarków** jest **Duża**
- JEZELI Bużet jest *Duży* ORAZ Prognozowana_Temperatura jest *Optymalna* WTEDY Ilość_Browarków jest Bardzo Duża $min{0.2, 0.7} = 0.2$

Opis procesu wnioskowania

Opis procesu wnioskowania

Opis procesu wnioskowania

W efekcie wnioskowania, jeśli:

- √ budżet= 600 PLN,
- ✓ Temperatura = 17°C

Przewidywana ilość browarków które należałoby spożyć wynosi 4.8!

Defuzzyfikacja metodą środka ciężkości – jak policzyć?

$$x^* = \frac{\sum_{i=1}^n A_i \cdot x_i}{\sum_{i=1}^n A_i} \qquad A_i = \int \mu_G(x) dx$$

albo jedna z metoda ...

ETAPY W MODELU ROZMYTYM (WNIOSKOWANIE ROZMYTE)

Czynności wstępne:

- 1. Określenie reguł rozmytych.
- 2. Określenie funkcji przynależności do wartości wejść i wyjść.

Główne kroki:

- 1. Rozmycie wejść poprzez użycie funkcji przynależności (fuzyfikacja).
- 2. Łączenie rozmytych przesłanek (wejść) poprzez rozmyte reguły by uzyskać rozmyte konsekwencje (z wielu reguł).
- 3. Łączenie wniosków (konsekwencji), by otrzymać ostateczny rozkład wyjścia.
- 4. Defuzyfikacja wyjścia (wyostrzenie) gdy musimy uzyskać jednoznaczną odpowiedź.

Można także budować i konfigurować system z linii poleceń – dobry opis w dokumentacji matlaba "Build Fuzzy Systems at the Command Line"

fis = readfis('browarki'); evalfis(fis,[17 600]) ans =

4.7969

https://pythonhosted.org/scikit-fuzzy/

https://pythonhosted.org/scikit-fuzzy/api/skfuzzy.html#skfuzzy.trimf

ZASTOSOWANIE W BIZNESIE I FINANSACH:

- Inwestycje bankowe.
- Ocena ryzyka kredytowego.
- Ocena ryzyka ubezpieczenia.
- Określenie strategii inwestycyjnych.
- Określenie profilu klienta.
- Kontroler jakości.
- Przewidywanie długości pobytu w szpitalu.
- Wyszukiwanie powtarzających się danych w bazach.
- Prognozowanie giełdowe.
- Wyznaczanie ramówek dla reklam telewizyjnych.

ZASTOSOWANIA INŻYNIERSKIE:

- ABS (Antilock-Bracking System).
- Sterowanie dźwigiem dopasowując ciężar i drogę, tak by elementy nie huśtały się na linach.
- Wszędzie tam, gdzie trudno jest utworzyć matematyczny model, ale daje się opisać sytuację w sposób jakościowy, za pomocą reguł rozmytych.
- Kontrolery rozmyte.
- Często w przemyśle kontrola procesów.
- Inteligentne lodówki, pralki, windy, opiekacze do grzanek, aparaty fotograficzne.

ZASTOSOWANIA TECHNICZNE

- Synteza jądrowa.
- Ustalanie drogi przelotu samolotu.
- Sterowanie procesem spalania paliw w elektrowniach.
- Kontrola prędkości ciężarówki.
- Sterowanie procesem produkcji penicyliny.
- Kontrola ruchu ulicznego.
- Mikrokontrolery (68HC12 MCU).

Na kiedy??

nieobligatoryjne, albo do

albo przyjdźcie na

mnie (p.317)

Dzisiejszy wykład – fuzzy logic

Wykład za tydzień: system ekspercki na bazie logiki rozmytej ..

Kwiecień 2025						Maj	Kolejne obligatoryjne laborki – 8 i 9 maja					2025	
Pn	Wt	Śr	Cz	Pt	SO	N	Pn	Wt	Śr	Cz	Pt	SO	N
	1	2	3	4	5	6				1	2	3	4
7	8	9	10	11	12	13	5	6	7	8	9	10	11
14	15	16	17	18	19	20	12	13	14	15	16	17	18
21	22	23	24	25	26	27	19	20	21	22	23	24	25
28	29	30/					26	27	28	29	30	31	
	Gz /	Pt //				OI	ERMINY DDANIA IEKTÓW	11 maja/ genetyczny		z	Wszelkie z genetycznyr albo prz		-

Pod linkiem na dole slajdu znajduje się zestawienie z datami oddania kolejnych projektów i .. ogólnie bieżącą sytuacją – proszę sprawdzajcie, czy się nie pomyliłem – jeśli się pomyliłem, piszcie do mnie ...

Nazwisk	Imię	Monte	Genetycz	Fuzzy	Neuro	lle oddanych	Ocena z projektów	Ocena z egzaminu	Ocena Końcowa
A	Łucja Weronika	3/21/2025				1	2		
В	Jakub Marcel	3/24/2025				1	2		
В	Maja	3/21/2025				1	2		
Ch	Jakub Hubert	4/3/2025	3/30/2025			2	3		
Ch D	Wiktor Jan Konrad Adam	3/30/2025 4/6/2024				1	2		
D	Kamil Stanisław	3/19/2025				1	2		
D	Adam	4/4/2025				1	2		
D	Tomasz Piotr	3/31/2025				1	2		
D	Gabriela	3/30/2025				1	2		
D	Jan Bartosz	3/21/2025	3/30/2025			2	3		
E	Maurycy	4/1/2025				1	2		
F	Julia	4/6/2025				1	2		
F	Aleksandra Maria	3/27/2025				1	2		
G G	Zuzanna Ewa Patrycja	4/6/2025 3/19/2025				1	2		
G	Mikołaj	4/6/2025				1	2		
G	Konrad Wojciech	4/3/2025				1	2		
G	Jakub Przemysław	3/19/2025				1	2		
Н	Karol	4/3/2025				1	2		
Н	Aleksander Jakub	3/21/2025				1	2		
l .	Bartosz	4/6/2025				1	2		
J	Filip Andrzej	4/6/2025				1	2		
J	Aleksandra Monika	4/6/2025				1	2		
J	Julia Weronika Roksana Kamila	3/29/2025 3/24/2025				1	2		
J	Weronika	4/6/2025				1	2		
Ki	Maria	3/31/2025				1	2		
Kn	Maria	3/17/2025				1	2		
K	Karolina Agnieszka	3/27/2025				1	2		
K	Oliwier Piotr	3/15/2025				1	2		
K	Julia Anita	3/27/2025				1	2		
K	Bartłomiej Mariusz	3/23/2025				1	2		
K	Dawid Tomasz	3/20/2025				1	2		
K	Natalia Katarzyna	3/21/2025				1	2		
K L	Kacper Bartłomiej Patryk	4/5/2025 4/3/2025				1	2		
M	Patrycja Anna	3/21/2025				1	2		
M	Gerard	3/20/2025				1	2		
M	Jakub Franciszek	3/16/2025				1	2		
M	Eliza Klaudia	3/28/2025				1	2		
M	Karolina Małgorzata	4/6/2025				1	2		
0	Joanna Julia	3/26/2025				1	2		
P P	Miłosz	3/25/2025				1	2		
Pie Pie	Szymon Mateusz Bartosz	4/3/2025 4/6/2025				1	2		
Piw	Bartłomiej Jakub	3/24/2025				1	2		
P	Magdalena Maria	4/4/2025				1	2		
P	Dominika	3/31/2025				1	2		
R	Gabriel Mieczysław	4/4/2025				1	2		
S	Dominik	3/30/2025				1	2		
S	Marcin Jan	3/17/2025				1	2		
S	Julia Krystyna	3/25/2025				1	2		
S	Julita	3/28/2025				1	2		
S S	Szymon Marcin	3/16/2025				1	2		
S S	Weronika Martyna Joanna	3/26/2025				0	2		
S	Wiktoria Danuta	4/4/2024				1	2		
S	Aleksandra	3/27/2025				1	2		
S	Anna Sara	4/3/2025				1	2		
Szcz	Magdalena Anna	4/6/2025				1	2		
Szt	Magdalena	3/19/2025				1	2		
Sz	Mikołaj	4/3/2025				1	2		
<u>T</u>	Katarzyna	4/1/2025				1	2		
T	Witold	3/17/2025				1	2		
W	Julia Barbara	3/26/2025				1	2		
W	Katarzyna Oliwia Klaudia	4/6/2025 3/25/2025				1	2		
Z	Michał	3/21/2025				1	2		
		4/2/2025				1	2		
	Karolina								
Z	Karolina	4/2/2023							

Montecarlo – 100%

Inteligencja obliczeniowa w analizie danych

dziękuję za uwagę!