Inductive Logic Programming. Part 2

Based partially on Luc De Raedt's slides http://www.cs.kuleuven.be/~lucdr/lrl.html

Specialisation and generalisation

A formula G is a **specialisation** of a formula F iff F entails from G

(If h is true, F is true)

$$G \models F$$

= each model of G is also a model of F.

Specialisation operator

assign a formula a set of all its specialisations

Generalisation = the other direction

$$dog(x) = mammal(x)$$
 $G = F$

F follows *deductively* from G G follows *inductively* from F

therefore induction is the inverse of deduction

this is an operational point of view because there are many deductive operators |- that implement |=

take any deductive operator and invert it and one obtains an inductive operator

Resolution

father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain).

Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain).

father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain)

male(adam)

father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain)

father(adam,kain)

Given C_1 which is of the form AvB, and resolvent which is of the form BvC, the aim is to find C_2 .

In propositional logic:

- 1. Find a literal L that appears in C_I but not in the resolvent.
- 2. Then C2 is given by either (Resolvent (Resolvent $\cap C_1$)) $\cup \{\neg L\}$ or by (Resolvent $(C_1 \{L\})$) $\cup \{\neg L\}$

In predicate logic:

father(X,Y):- male(X)

father(adam,kain)

- 1. Find a literals L_1 in C_1 that is not in the resolvent. Then in C_2 there must be L_2 that $L_1 \Theta = L_2 \Theta$.
- 2. Assume $\Theta = \Theta_1 \Theta_2$ such that $L_1 \Theta_1 = L_2 \Theta_2$. Then $L_2 = \neg L_1 \Theta_1 \Theta_2^{-1}$
- 3. Then $C_2 = (\text{Resolvent} (C_1 \{L_1\}\Theta_1)) \Theta_2^{-1} \cup \neg L_1\Theta_1\Theta_2^{-1}$
- 4. C_1 is ground => Θ_1 ={} C_2 = (Resolvent - $(C_1 - \{L_1\})) \Theta_2^{-1} \cup \neg L_1 \Theta_2^{-1}$

Main drawback

nondeterminism

```
father(X,Y):- male(X)
father(X,kain):- male(X)
father(adam,kain):- male(adam)

father(adam,kain)
```

Subsumption and Θ-subsumption

Clause G subsumes clause F if and only $G \models F$ or, equivalently $G \subseteq F$

Example - propositional logic

$$pos := p,q,r = pos := p,q,r,s,t$$

because

$$\{pos, \neg p, \neg q, \neg r\} \subseteq \{pos, \neg p, \neg q, \neg r, \neg s, \neg t\}$$

Subsumption in propositional logic

Subsumption in propositional logic

- Perfect structure
- Complete lattice
 - any two clauses have unique
 - least upper bound (least general generalization)
 - greatest lower bound
- No syntactic variants
- Easy specialization, generalization

Subsumption in predicate logic

Subsumption in logical atoms

- g subsumes s if and only if there is a substitution θ such that $g\theta = s$
- e.g. p(X,Y,X) subsumes p(a,Y,a)
- e.g. p(f(X),Y) subsumes p(f(a),Y)

Subsumption in simple logical atoms

Subsumption in simple logical atoms

Subsumption in logical atoms

Subsumption in logical atoms

G subsumes F iff there is a substitution θ such that $G\theta = F$

- Still nice properties and complete lattice up to variable renaming
 - p(X,a) and p(U,a)
 - greatest lower bound = unification
 - unification p(X,a) and p(b,U) gives p(b,a)
 - least upper bound = anti-unification = lgg
 - lgg p(X,a,b) and p(c,a,d) = p(X,a,Y)
 - lgg p(X,f(X,c)) and p(a,f(a,Y)) gives p(U,f(U,T))

Ideal Specialization Operator

- Ideal Specialization operator :
 - apply a substitution { X / Y } where X,Y already appear in atom
 - apply a substitution $\{X / f(Y1, ..., Yn)\}$ where Yi new variables
 - apply a substitution {X / c } where c is a constant
- Ideal Generalization operator :
 - apply an inverse substitution
 - Inverse substitution substitutes terms at specified places by variables
 - Invert one of the specialization steps above
 - Replace some (but not all) occurences of a variable X by a different variable Y
 - Replace all terms f(Y1,...,Yn) where Yi are distinct by a new variable X
 - Replace some occurences of a constant by a new variable

Ideal Specialization Operator

Properties

Ideal specialisation operator must be

- locally complete
- globally complete
- proper

Ideal Specialization Operator

Let A be an atom. Then

$$\rho_{s,a,i}(A) = \{ A\theta \mid \theta \text{ is an elementary substitution} \}$$
 (5.4)

where an elementary substitution θ is of the form

$$\theta = \begin{cases} \{X/f(X_1, ..., X_n)\} & \text{with } f \text{ a functor of arity } n \text{ and} \\ \text{the } X_i \text{ are variables not occurring in } A \\ \{X/C\} & \text{with } c \text{ a constant} \\ \{X/Y\} & \text{with } X \text{ and } Y \text{ are variables occurring in } A \end{cases}$$

$$(5.5)$$

It is relatively easy to see that $\rho_{s,a,i}$ is an ideal operator for atoms.

Optimal Specialization Operator

Fig. 5.6. Example of duplicate avoidance for Unification

Optimal Specialization Operator

Let A be an atom. Then

$$\rho_{s,a,o}(A) = \{ A\theta \mid \theta \text{ is an optimal elementary substitution} \}$$
 (5.6)

where an elementary substitution θ is of the form θ is an optimal elementary substitution for an atom A iff it is of the form

$$\theta = \begin{cases} \{X/f(X_1, ..., X_n)\} & \text{with } f \text{ a functor of arity } n \text{ and} \\ \text{the } X_i \text{ variables not occurring in } A \\ \{X/c\} & \text{with } c \text{ a constant} \\ \{X/Y\} & \text{where } X \text{ and } Y \text{ are variables occurring in } A \\ & X \text{ occurs once, and all variables to the right of} \\ & X \text{ occur only once in } A \end{cases}$$

$$(5.7)$$

Theta-subsumption (Plotkin 70)

- Most important framework for inductive logic programming. Used by all major ILP systems.
- F and G are single clauses
- Combines propositional subsumption and subsumption on logical atoms
- c1 theta-subsumes c2 if and only if there is a substitution θ such that c1 $\theta \subseteq$ c2
- c1 : father(X,Y) :- parent(X,Y),male(X)
- c2 : father(adam,kain) :- parent(adam,kain), parent(adam,an), male(adam), female(an)
- $\theta = \{ X / adam, Y / kain \}$

Example

- d1: p(X,Y):= q(X,Y), q(Y,X)
- d2 : p(Z,Z) := q(Z,Z)
- d3 : p(a,a) := q(a,a)
- theta(1,2): $\{X / Z, Y / Z\}$
- theta(2,3): $\{Z/a\}$
- d1 is a generalization of d3
- Mapping several literals onto one leads (sometimes) to combinatorial problems

Properties

• Soundness: if c1 theta-subsumes c2 then

$$c1 = c2$$

• Incompleteness (but only for self-recursive clauses) wrt logical entailment

```
c1: p(f(X)):- p(X)c2: p(f(f(Y))):- p(Y)
```

- Decidable (but NP-complete)
- transitive and reflexive but not anti-symmetric

Specialisation operations

binding of two distinct variables

```
path(X,Y) . . . There is a path between nodes X and Y in a graph edge(X,Y). . . There is an edge between X and Y spec(path(X,Y)) = path(X,X)
```

adding a most general atom into a clause body

arguments are distinct and so far unused variables spec(path(X,Y)) = (path(X,Y) :- edge(U,V))

= a minimal set of specialisation operations for logic programs without function symbols:

Specialisation operations

Logic programs with functions:

A minimal set extended with

Substitution a variable with a most general term

arguments are distinct and so far unused variables

```
spec(number(X)) = number(0)

spec(number(X)) = number(s(Y)).
```

Specialisation and generalisation

Domain-dependent operations - examples

triangle \leq n-angle \leq plannar object

 $town \le district \le region \le country \le continent$

$$[0,1) \leq [0,11) \leq [0,111) \leq [0,\inf)$$