TOPOLOGICAL HOCHSCHILD HOMOLOGY OF TRUNCATED BROWN-PETERSON SPECTRA II

GABRIEL ANGELINI-KNOLL, DOMINIC LEON CULVER, AND EVA HÖNING

ABSTRACT. We compute topological Hochschild homology of the second truncated Brown-Peterson spectrum at primes $p \geq 3$ with Adams summand coefficients.

CONTENTS

1. Introduction	1
1.1. Conventions	1
2. Recollections	1
3. Bounding Hochschild homology of $BP\langle n \rangle$	
3.1. The Bockstein spectral sequences	4
References	Ę

1. Introduction

1.1. Conventions. We write L_E for Bousfield localization at a spectrum E. We write $BP\langle n\rangle$ for a family of \mathbb{E}_2 -MU-algebra forms of $BP\langle n\rangle$ such that

$$\mathrm{MU} \to \cdots \to \mathrm{BP}\langle n \rangle \to \mathrm{BP}\langle n-1 \rangle \to \cdots \to H\mathbb{Z}_{(p)} \to H\mathbb{F}_p$$

and therefore we fix classes v_i such that on graded commutative rings

$$\mathrm{MU}_* \to \mathrm{BP}\langle n \rangle_*$$

is given by sending x_{p^i-1} to v_i for $0 \le i \le n$ (with $v_0 = p$) and $x_i \mapsto 0$ otherwise. This also fixes the map of graded commutative rings

$$BP\langle n\rangle_* \to BP\langle n-1\rangle_*$$

sending v_i to v_i for $0 \le i \le n-1$ and $v_n \mapsto 0$. Such a family exists by [6]. Alternatively, when $n \leq 2$ and $p \in \{2, 3\}$, there are \mathbb{E}_2 -MU-algebra forms of BP $\langle 2 \rangle$ denoted tmf₁(3) and $\tan^{\overline{D}}$ respectively, which have the extra property that their \mathbb{E}_2 -algebra structures lift to \mathbb{E}_{∞} -algebra structures by [2,7–9].

2. Recollections

In this section, we recall the necessery results from [1].

Proposition 2.1. There is an isomorphism of $\pi_*L_{H\mathbb{O}}BP\langle n\rangle = \mathbb{Q}[v_1,\ldots,v_n]$ -algebras

$$\pi_* L_{H\mathbb{Q}} \operatorname{THH}(BP\langle n \rangle) \cong \mathbb{Q}[v_1, \dots, v_n] \otimes_{\mathbb{Q}} \Lambda_{\mathbb{Q}}(\sigma v_1, \dots, \sigma v_n).$$

Proof. The authors computed

$$\pi_* \operatorname{THH}(BP\langle n \rangle; H\mathbb{Q}) = \Lambda_{\mathbb{Q}}(\sigma v_1, \dots, \sigma v_n).$$

We then observe that

$$L_{H\mathbb{Q}} \operatorname{THH}(BP\langle n \rangle) \simeq \operatorname{THH}(BP\langle n \rangle; L_{H\mathbb{Q}} BP\langle n \rangle)$$

because $L_{H\mathbb{Q}}$ is a smashing localization. We then consider the spectral sequence

$$\operatorname{THH}_*(\operatorname{BP}\langle n\rangle; \mathbb{Q}) \otimes_{\mathbb{Q}} \pi_* L_{H\mathbb{Q}} \operatorname{BP}\langle n\rangle \implies \operatorname{THH}_*(\operatorname{BP}\langle n\rangle; L_{H\mathbb{Q}} \operatorname{BP}\langle n\rangle)$$

associated to the multiplicative complete filtration $\tau_{\geq \bullet}$ THH(BP $\langle n \rangle; \mathbb{Q}$) in $H\mathbb{Q}$ -modules. This spectral sequence has input

$$\pi_* L_{H\mathbb{Q}} \mathrm{BP} \langle n \rangle \otimes_{\mathbb{Q}} \Lambda_{\mathbb{Q}} (\sigma v_1, \dots, \sigma v_n)$$

by [1, Proposition 3.7]. It collapses because the targets of all differentials whose source is an indecomposable algebra generator land in zero groups. The abutment and the E_{∞} -term are a free $\pi_*L_{H\mathbb{Q}}\mathrm{BP}\langle n\rangle$ -modules and consequently there are no $\pi_*L_{H\mathbb{Q}}\mathrm{BP}\langle n\rangle$ -module extensions. There isn't room for algebra extensions.

Proposition 2.2. The groups

$$THH_s(BP\langle n\rangle)$$

are finitely generated for all integers s. Consequently, we have

$$|\operatorname{THH}_s(\operatorname{BP}\langle n\rangle)| < \infty$$

for $s \neq 2p^i - 1 \mod 2p^j - 2$ for 1 < i, j < n.

Proof. Since $\pi_a \mathbb{S}$ and $\pi_b \mathrm{BP}\langle n \rangle$ are finitely generated abelian groups for all integers a, b, the strongly convergent Künneth spectral sequence computing $\pi_*(\mathrm{BP}\langle n \rangle \wedge \mathrm{BP}\langle n \rangle)$ is finitely generated in each bidegree and has a vanishing line of postive slope so $\pi_c(\mathrm{BP}\langle n \rangle \wedge \mathrm{BP}\langle n \rangle)$ is finitely generated for each integer c. The same argument implies that $\mathrm{THH}_s(\mathrm{BP}\langle n \rangle)$ is finitely generated for each integer s. The second statement then follows from Proposition 2.1 and the classification of finitely generated $\mathbb{Z}_{(p)}$ -modules.

3. Bounding Hochschild homology of $BP\langle n \rangle$

The goal of this section is to use the cosimplicial descent spectral sequence from work of [4] to produce a useful upper bound on $THH_*(BP\langle n \rangle)$.

Definition 3.1. Let $C^{\bullet}(A/B)$ denote the cosimplicial cobar complex with q-simplices $C^{q}(A/B) = A^{\otimes_{B}q+1}$.

First, we need a lemma.

Lemma 3.2. Let $n \geq 1$. There is an isomorphism rings

$$\mathbf{E}_2^{*,*} \cong \mathrm{Tor}^{\pi_* \mathrm{BP} \langle n-1 \rangle \wedge \mathrm{BP} \langle n-1 \rangle} (\mathrm{BP} \langle n-1 \rangle, \mathrm{BP} \langle n-1 \rangle) \otimes \Gamma\{\sigma^2 v_n^{(j)} : 1 \leq j \leq q\} \otimes \Lambda(\sigma v_1^{(j)} : 1 \leq j \leq q)$$
 where

$$\mathbf{E}_{2}^{*,*} = \pi_{*} \left(\pi_{*} H \pi_{*} \operatorname{THH}(\mathrm{BP} \langle n-1 \rangle)^{\wedge_{H\pi_{*}} \operatorname{THH}(\mathrm{BP} \langle n \rangle)} q^{+1} \right)$$

is the E_2 -term of the multiplicative Künneth spectral sequence

$$\mathrm{E}_2^{*,*} \implies \mathrm{THH}_*(\mathrm{BP}\langle n-1\rangle^{\wedge q+1}).$$

Proof. When q=0, then THH(BP $\langle n-1\rangle^{\wedge_{\mathrm{BP}\langle n\rangle}q+1}$) = THH(BP $\langle n-1\rangle$). We first compute $\pi_*(\mathrm{BP}\langle n-1\rangle\otimes_{\mathrm{BP}\langle n\rangle}\mathrm{BP}\langle n-1\rangle)$ by a Künneth spectral sequence. The E_2 -term is BP $\langle n-1\rangle_*\otimes\Lambda(\sigma v_n)$ so it is concentrated in Künneth filtration [0,1] and therefore the spectral sequence collapses because the targets of all differentials are zero groups. We then use the equivalence

$$A \wedge_B A \wedge_B A \simeq (A \wedge_B A) \wedge_A (A \wedge_B A)$$

where $A = \mathrm{BP}\langle n-1 \rangle$ and $B = \mathrm{BP}\langle n \rangle$ and the fact that $\pi_*(\mathrm{BP}\langle n-1 \rangle \wedge_{\mathrm{BP}\langle n \rangle} \mathrm{BP}\langle n-1 \rangle)$ is free as a $\mathrm{BP}\langle n-1 \rangle_*$ -module to inductively determine from the Künneth spectral sequence that

$$\pi_*(\mathrm{BP}\langle n-1\rangle^{\wedge_{\mathrm{BP}\langle n\rangle}q+1}) \cong \mathrm{BP}\langle n-1\rangle_* \otimes \Lambda(\sigma v_n^{(1)}, \dots, \sigma v_n^{(q)}).$$

By obstruction theory, we determine that $\mathrm{BP}\langle n-1\rangle^{\wedge_{\mathrm{BP}\langle n\rangle}q+1}$ is the smash product of square zero extensions

$$\left(BP\langle n-1\rangle \vee \Sigma^{2p-1}BP\langle n-1\rangle\right)^{\wedge_{BP\langle n-1\rangle}q}$$

Consequently, we determine that

$$\pi_* \left(\mathrm{BP} \langle n-1 \rangle^{\wedge_{\mathrm{BP}(n)} q+1} \right)^{\wedge 2} \cong \pi_* (\mathrm{BP} \langle n-1 \rangle^{\wedge 2}) \otimes \Lambda(\sigma v_n^{(1)}, \dots, \sigma v_n^{(q)})^{\wedge 2}.$$

We then note that the Künneth spectral sequence sequence computing

$$THH_*(BP\langle n-1\rangle^{\wedge_{BP\langle n\rangle}q+1})$$

has E_2 -term

$$\operatorname{Tor}^{\pi_* \operatorname{BP}\langle n-1 \rangle \wedge \operatorname{BP}\langle n-1}(\operatorname{BP}\langle n-1 \rangle, \operatorname{BP}\langle n-1 \rangle) \otimes \Gamma(\sigma^2 v_n^{(1)}, \dots, \sigma^2 v_n^{(q)}) \otimes \Lambda(\sigma v_n^{(1)}, \dots, \sigma v_n^{(q)})$$
 and that is exactly what we describe in the statement of the lemma.

Proposition 3.3. There is an equivalence

$$\mathrm{THH}(\mathrm{BP}\langle n\rangle,\mathrm{BP}\langle n-1\rangle)\simeq\mathrm{Tot}\left(\mathrm{THH}(C^{\bullet}(\mathrm{BP}\langle n-1\rangle/\mathrm{BP}\langle n\rangle,\mathrm{BP}\langle n-1\rangle))\right).$$

Consequently, there is a spectral sequence

$$\pi_{t-s} \lim_{\Delta} \operatorname{Tot} H\pi_s \operatorname{THH}(C^{\bullet}(\operatorname{BP}\langle n-1 \rangle / \operatorname{BP}\langle n \rangle, \operatorname{BP}\langle n-1 \rangle)) \implies \pi_{t-s} \operatorname{THH}(\operatorname{BP}\langle n \rangle; \operatorname{BP}\langle n-1 \rangle)$$

associated to the filtration

(3.4)
$$\lim \operatorname{Tot} \tau_{\geq s} \operatorname{THH}(C^{\bullet}(\operatorname{BP}\langle n-1\rangle/\operatorname{BP}\langle n\rangle; \operatorname{BP}\langle n-1\rangle)).$$

The E_2 -term is

$$\mathrm{THH}_*(BP\langle n-1\rangle)\otimes_{\mathbb{Z}_{(p)}}\Lambda_{\mathbb{Z}_{(p)}}(\sigma v_n)$$
.

Consequently,

$$|\operatorname{THH}_t(BP\langle n\rangle;\operatorname{BP}\langle n-1)| \leq |\operatorname{THH}_t(BP\langle n-1\rangle)| + |\operatorname{THH}_{t-2p^n+1}(BP\langle n-1\rangle)|$$

Proof. Since $BP\langle n\rangle \to BP\langle n-1\rangle$ is an isomorphism on π_i for i=0,1 the first statement follows directly from [4, Theorem 3.7]. The second statement follows from [5, Remark 3.7] which identifies the filtration (3.4) with the décalage (cf. [3, pp. 21]) of the filtration whose associated graded is the E_1 -term of the Bousfield–Kan spectral sequence.

It therefore suffices to compute the E_2 -term, which is the cohomology of the Hopf algebroid (THH_{*}(BP $\langle n-1 \rangle$), THH_{*}(BP $\langle n-1 \rangle$) $\otimes \Gamma\{\sigma^2v_n\}$) by Lemma 3.2. We note from the proof of Lemma 3.2 that this Hopf algebroid is the tensor product of the Hopf algebroids (THH_{*}(BP $\langle n-1 \rangle$), THH_{*}(BP $\langle n-1 \rangle$)) and ($\mathbb{Z}_{(p)}$, $\Gamma_{\mathbb{Z}_{(p)}}\{\sigma^2v_n\}$). Consequently, the cohomology of this Hopf algebroid is THH_{*}(BP $\langle n-1 \rangle$) $\otimes \Lambda(\sigma v_n)$ as desired.

Example 3.5. We consider the case n=0. Then there is a spectral sequence

$$\mathrm{THH}_*(H\mathbb{F}_p) \otimes \Lambda(\sigma v_0) \implies \mathrm{THH}_*(\mathbb{Z}_{(p)};\mathbb{F}_p).$$

This spectral sequence has a differential $d_1(\mu) = \sigma v_0$ and no further differentials except those generated by the Leibniz rule yielding the known answer $\mathbb{F}_p[\mu^p]\langle \sigma v_0 \mu^{p-1} \rangle$.

3.1. The Bockstein spectral sequences. Associated to the square

$$BP\langle 1 \rangle \longrightarrow H\mathbb{Z}_{(p)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$k(1) \longrightarrow H\mathbb{F}_{p}$$

there is a square of Bockstein spectral sequences

$$THH(BP\langle 2\rangle; \mathbb{F}_p)[v_0, v_1] \Longrightarrow THH(BP\langle 2\rangle; \mathbb{Z}_{(p)})[v_1]$$

$$\downarrow \qquad \qquad \downarrow$$

$$THH(BP\langle 2\rangle; k(1))[v_0] \Longrightarrow THH(BP\langle 2\rangle; BP\langle 1\rangle).$$

In [1], the authors computed the first Bockstein spectral sequence in each composite of spectral sequences above.

Theorem 3.6 ([1, Theorem 3.8, Theorem 4.6]). Let $B\langle 2 \rangle$ be an arbitrary E_3 -MU-algebra form of $BP\langle 2 \rangle$ at p > 2 and let $B\langle 2 \rangle := tmf_1(3)$ at p = 2.

(1) There is an isomorphism

$$\operatorname{THH}_*(\mathrm{B}\langle 2\rangle; \mathbb{Z}_{(p)}) = \mathbb{F}_p\langle \lambda_1, \lambda_2\rangle \otimes (\mathbb{Z}_{(p)} \oplus T_0^2)$$

where

$$T_0^2 = \bigoplus_{s \ge 1} \mathbb{Z}/p^s \otimes \mathbb{Z}_{(p)}[\mu_3^{p^s}] \otimes \mathbb{Z}_{(p)}\{\lambda_{s+2}\mu_3^{jp^{s-1}} \mid 0 \le j \le p-2\}.$$

(2) There is an isomorphism

$$THH_*(B\langle 2\rangle; k(1)) = \mathbb{F}_p\langle \lambda_1 \rangle \otimes (\mathbb{F}_p[v_1] \oplus T_1^2)$$

where

$$T_1^2 = \bigoplus_{s \ge 1} \mathbb{F}_p[v_1]/(v_1^{r(s,1)}) \otimes \mathbb{F}_p[\mu_3^{p^s}] \otimes \mathbb{F}_p\langle \lambda_{s+2} \rangle \otimes \mathbb{F}_p\{\lambda_{s+1}\mu_3^{jp^{s-1}} \mid 0 \le j \le p-2\}.$$

Note that the map

$$THH_*(B\langle 2\rangle, k(1)) \longrightarrow THH_*(B\langle 2\rangle, \mathbb{F}_p)$$

is injective modulo v_1 .

Theorem 3.7. The

From this, we produce a second bound on $THH_*(B\langle 2\rangle; B\langle 1\rangle)$.

Corollary 3.8. There is an inequality

$$|\operatorname{THH}_k(B\langle 2\rangle)| \leq \operatorname{THH}_k(B\langle 2\rangle, k(1))[v_0].$$

In particular,

$$THH_k(B\langle 2\rangle, B\langle 1\rangle) = 0$$

when $k \not\equiv 0, -1 \mod 2p$.

References

- [1] Gabriel Angelini-Knoll, Dominic Leon Culver, and Eva Höning, Topological Hochschild homology of truncated Brown-Peterson spectra. I., Algebr. Geom. Topol. 24 (2024), no. 5, 2509–2536 (English).
- [2] Steven Greg Chadwick and Michael A. Mandell, E_n genera, Geom. Topol. **19** (2015), no. 6, 3193–3232 (English).
- [3] Pierre Deligne, *Théorie de Hodge. II. (Hodge theory. II)*, Publ. Math., Inst. Hautes Étud. Sci. **40** (1971), 5–57 (French).
- [4] Bjørn Ian Dundas and John Rognes, Cubical and cosimplicial descent, J. Lond. Math. Soc., II. Ser. 98 (2018), no. 2, 439–460 (English).
- [5] Bogdan Gheorghe, Daniel C. Isaksen, Achim Krause, and Nicolas Ricka, C-motivic modular forms, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 10, 3597–3628 (English).
- [6] Jeremy Hahn and Dylan Wilson, Redshift and multiplication for truncated Brown-Peterson spectra, Ann. Math. (2) 196 (2022), no. 3, 1277–1351 (English).
- [7] Michael Hill and Tyler Lawson, Automorphic forms and cohomology theories on Shimura curves of small discriminant, Adv. Math. **225** (2010), no. 2, 1013–1045 (English).
- [8] Tyler Lawson and Niko Naumann, Commutativity conditions for truncated Brown-Peterson spectra of height 2, J. Topol. 5 (2012), no. 1, 137–168 (English).
- [9] ______, Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime 2, Int. Math. Res. Not. **2014** (2014), no. 10, 2773–2813 (English).

Freie Universität Berlin, Institut für Mathematik, Arnimallee 7, 14195 Berlin, Germany

 $Email\ address \hbox{: } \verb"gakQmath.fu-berlin.de"$

University of Illinois, Urbana-Champaign

Email address: dculver@illinois.edu

FACHBEREICH MATHEMATIK DER UNIVERSITÄT HAMBURG, BUNDESSTRASSE 55, 20146 HAMBURG, GERMANY

Email address: eva.hoening@uni-hamburg.de