Question 5 (13 marks)

The table below contains values of the polynomial function f(x), its first and second derivatives, and the function $F(x) = \int_0^x f(t) dt$ for x = 0, 1, 2, 3, 4, 5, 6.

f(x) has no stationary points at non-integer values of x, and the letters a, b, c, d and e represent unspecified constants.

	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5	<i>x</i> = 6
f(x)	а	b	4	c	0	d	e
f'(x)	16	0	-4	-2	0	-4	-20
f''(x)	-24	-9	0	3	0	-9	-24
F(x)	0	4.7	10.4	12.6	12.8	12.5	7.2

(a) Evaluate
$$\frac{d}{dx}(f(x)^2)$$
 when $x = 2$. (2 marks)

(b) Evaluate
$$\int_2^4 (f(x) + 2) dx$$
. (3 marks)

(c) Evaluate
$$\frac{d}{dx} \int_2^x f(t) dt$$
 when $x = 2$. (2 marks)

(d) Determine the *x*-coordinate of any stationary points and whether they are local maxima, local minima or inflection points. Justify your answer. (3 marks)

(e) Sketch a possible graph of f(x) for $0 \le x \le 6$ on the axes below. (3 marks)

