PSALTer results panel

 $\mathcal{S} = \iiint (\mathcal{R}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{6} t_{\frac{1}{6}} (2 \ \mathcal{R}^{\alpha_{i}}_{\ \alpha} \ \mathcal{R}^{\theta}_{i} - 4 \ \mathcal{R}^{\theta}_{\alpha} \ \partial_{i} f^{\alpha_{i}} + 4 \ \mathcal{R}^{\theta}_{i} \ \partial_{i} f^{\alpha}_{\alpha} - 2 \partial_{i} f^{\theta}_{\theta} \ \partial_{i} f^{\alpha}_{\alpha} - 2 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\beta}_{\alpha} - 4 \partial_{\alpha} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 3 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} \partial_$

Wave operator

	${}^{0^+}\mathcal{F}^{\parallel}$	$0.^+f^{\parallel}$	$0.^{+}f^{\perp}$	${}^0{\mathcal F}^{\parallel}$	_									
${}^{0^+}\mathcal{A}^{\parallel}$ †	0	0	0	0										
$0.^{+}f^{\parallel}$ †	0	0	0	0										
0.+ f [⊥] †	0	0	0	0										
^{0.} Æ [∥] †	0	0	0	-t. 1	$^{1^{+}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$\overset{1^+}{\cdot} \mathcal{F}\!\!\!/^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$\overset{1^+}{\cdot}f^{\parallel}{}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}^{\perp}{}_{lpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{\alpha}^{\perp}$	_		
				$\overset{1}{\cdot} \mathscr{A}^{\parallel} \dag^{\alpha\beta}$			$-\frac{i k t}{\sqrt{2}}$	0	0	0	0			
				$^{1^{+}}_{\cdot}\mathcal{H}^{\scriptscriptstyle{\perp}}\dagger^{^{\alpha\beta}}$	$-\frac{t}{\sqrt{2}}$	0	0	0	0	0	0			
				$\overset{1^{+}}{\cdot} \mathcal{A}^{\perp} \dagger^{\alpha\beta}$ $\overset{1^{+}}{\cdot} f^{\parallel} \dagger^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	0	0	0	0	0	0			
				$^{1.}\mathcal{A}^{\parallel}$ † lpha		0	0	$k^2 r_{.5} + \frac{t_{.1}}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{ikt.}{3}$			
				$\frac{1}{2}\mathcal{A}^{\perp} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	$\frac{t}{3}$	0	$\frac{1}{3}i\sqrt{2}kt_{1}$			
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ikt$	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2 k^2 t}{3}$	^{2,+} <i>Я</i> [∥] αβ	$2^+f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	t. 1/2	$-\frac{i k t}{\sqrt{2}}$	0
											$^{2.}f^{\parallel}\uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$.	0
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	t. 1/2

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities		
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\ \alpha}^{\ \beta} == 0$	1		
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha}_{\ \alpha}$	1		
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1		
$2 i k \cdot 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3		
$\frac{1}{1} \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$\bar{i} k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\alpha} + $	3		
$-2 i k ^{2^{+}} \sigma^{\parallel^{\alpha\beta}} + 2^{+} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\lambda}\partial^{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\lambda}\partial^{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\lambda}\partial^{\chi}\tau\left(\Delta+$	5		
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta\alpha\epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} = 0$			
Total expected gauge generators:				

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$-\frac{7}{r_{.5}}$	$-\frac{2p^2}{t_1}$	$-\frac{4r.p^4}{t.^2}$	> 0
Polarisations:	2			

Unitarity conditions

 $r_{.5} < 0 \&\& (t_{.1} < 0 || t_{.1} > 0)$