Digital Logic Design Laboratory

Lab 7

Flip Flops and Counters

Full name: Nguyễn Đình Ngọc Huy-EEEEIU22020

Lê Quang Thông- EEACIU22222

Student number: 2

Date Submitted: [24/12/2023]

Date Performed: [18/12/2023]

Lab Section: [6]

Course Instructor: [Ph.D V.Q.Bao]

GRADING GUIDELINE FOR LAB REPORT

Numb er	Content		Score	Comment
	Format (max 9%)			
1	- Font type	Yes No		
	- Font size	Yes No		
	- Lab title	Yes No		
	- Page number	Yes No		
	- Table of contents	Yes No		
	- Header/Footer	Yes No		
	- List of figures (if exists)	Yes No		
	- List of tables (if exists)	Yes No		
	- Lab report structure	Yes No		
2	English Grammar and Sp 6%)	oelling (max		
	- Grammar	Yes No		
	- Spelling	Yes No		
3	Data and Result Analysis	(max 85%)		
	Total Score		•	

			e:

Date:

THERMATION OF THE PROPERTY OF

INTERNATIONAL UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING

I. Objectives

In this laboratory, students will study:

- Understand the operation of Flip Flops.
- Use a Flip Flops and design/implement a circuit based on a function definition.
- Design a counter based on Flip Flops

II. Procedure

1. Analyze and design synchronous counters

a. Analyze the counter given schematic circuit

Implement the below circuit in Figure 7. Control (SW1) and (SW2) to make the circuit operate.

Figure 7. Logic diagram

When the clock is active:

When the clock signal is engaged, the state transitions. As the state undergoes changes, the inputs to the flip-flops adjust accordingly. These alterations in input, following the inherent behavior of the flip-flops, guide the system towards the subsequent state.

Write the excitation (trigger) input equations of all flip-flops:

$$J_0 = {\bf Q_2}' ; K_0 = 1$$

 $J_1 = {\bf Q_0} ; K_1 = {\bf Q_0}$
 $J_2 = {\bf Q_0} * {\bf Q_1} ; K_2 = 1$

Transition Table

Present State						Next State					
Q2	Q1	Q0	J2	K2	J1	K1	J 0	K0	Q2	Q1	Q0
0	0	0	0	X	0	X	1	X	0	0	1
0	0	1	0	X	1	X	X	1	0	1	0
0	1	0	0	X	X	0	1	X	0	1	1
0	1	1	1	X	X	1	X	1	1	0	0
1	0	0	X	1	0	X	0	X	0	0	0

J0

Q0	0	1
Q2Q1		
00	1	X
01	1	X
11	Х	X
10	0	X

K0

Q0	0	1
Q2Q1		
00	X	1
01	X	1
11	X	X
10	X	X

J1

Q0	0	1
Q2Q1		
00	0	1
01	X	X
11	X	X
10	0	X

K1

Q0	0	1
Q2Q1		
00	X	X
01	0	1
11	X	X
10	X	X

J2

Q0	0	1
Q2Q1		
00	0	0
01	0	1
11	X	X
10	X	X

K2

Q0	0	1
Q2Q1		
00	X	X
01	X	X
11	X	X
10	1	X

 $J0=\overline{Q2}$; K0=1

J1=K1=Q0

K2=1; J2=Q1.Q0

Implement the circuit via simulation software and paste the result in here

Figure 8. MOD-5 Counter

Draw the state diagram of the counter:

Figure 9. State diagram of the counter

Make comment on the results

This 3-bit synchronous counter perfectly demonstrates standard binary counting from 1 to 4. The chosen flip-flop excitation equations precisely govern this sequence, highlighting the direct influence of flip-flop configurations on counter behavior. This design underscores the essence of digital design - the ability to control outcomes through carefully chosen configurations.

HAILWIND ON THE REAL PROPERTY OF THE PARTY O

INTERNATIONAL UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING

b. Design and implement a synchronous counter by the given state diagram

Design and implement a synchronous 2-bit counter shown in the given diagram as shown in Figure 8 using J-K Flip Flops

Figure 9. State diagram

Transition Table

Present State						Next State	
Q1	Q0	J1	K1	J0	K0	Q1	Q0
0	0	1	X	0	X	1	0
1	0	X	1	1	X	0	1
0	1	1	X	X	0	1	1
1	1	X	0	X	1	1	0

Write the excitation (trigger) input equations of all flip-flops:

$$J_0\!=\!\!{\bm{Q_1}} \ ; \ K_0\!=\!{\bm{Q_1}}$$

$$J_1 = 1$$
; $K_1 = Q_0$

Implement the circuit via simulation software and paste the result in here

THINING HOME

INTERNATIONAL UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING

Figure 9. Circuit for the counter

Make comment on the results

Steps to design a synchronous 2-bit counter:

- First, we connect both of reset and set of two j-k flip flop to the fixed volt
- Second, we can see J0 and K0 equal to Q1, so we combine J0 and K0 together and connect to Q1
- Third, we connect J1 to fixed volt
- Final step, because the karaugh map of show that k1 equal to Q0', we connect k1 to Q0'

In conclusion, the 2-bit synchronous counter, with its unique 0-2-1-3-2 sequence, demonstrates how altering flip-flop configurations can yield varying counting patterns. The specific excitation equations (J0 = Q1, K0 = Q1, J1 = 1, K1 = Q0) drive the transitions, resulting in this unique sequence. This emphasizes that the design of synchronous counters isn't limited to standard binary counting, and they can be tailored for specific applications.

