NORTHEASTERN UNIVERSITY

Department of Mechanical and Industrial Engineering

Supply Chain Engineering IE 7200

Prof. Gupta Spring 2014 (Mondays)

Homework No. 3 (Solution)

Problem 1.

This is a SS case for multiple products.

Given, P = \$200/order, I = \$5/unit-year, D = 500 units/months = 6000 units/year, A = 1500 units/month = 18000 units/year and W = \$10/unit-year,

$$EMQ_M = \sqrt{\frac{2DP}{(I+W)(1+D/A)}} = 346 \text{ units.}$$

Inventory cost/unit-year

$$= \frac{P}{Q} + \frac{(I+W)(1+D/A)}{2D}Q = \$1.15.$$

Problem 2.

This is an interesting problem because what this means is that safety stock has to be carried over and above the previous model. The value of this is 500 * 0.2 = 100 units. The *EMQ* remains the same but the inventory cost is increased by (I+W)*100/D = 1500/6000 = \$0.25. Hence the inventory cost/unit-year = 1.15 + 0.25 = \$1.40.

Problem 3.

The two product-structure trees using low-level coding are given below:

Problem 4.

End l	[tem]	1, I	Lev	el ()
-------	--------	------	-----	------	---

Lead Time = 1		Period							
Lot Size = 119									
Lot Sizing Rule = EOQ		1	2	3	4	5	6		
Projected Requirement	40	20	10	60	10	30			
Scheduled Receipts					119				
On Hand at end of	80	40	20	10	69	59	29		
Period									
Planned Order Release				119					

End Item 2, Level 0

		_					
Lead Time = 1				Per	riod		
Lot Size $= 4$ weeks							
Lot Sizing Rule = POQ		1	2	3	4	5	6
Projected Requirement		20	10	30	50	70	40
Scheduled Receipts				180			
On Hand at end of	40	20	10	160	110	40	0
Period							
Planned Order Release	;		180				

Subassembly A, Level 1

Lead Time = 1		Period							
Lot Sizing Rule = PPB		1	2	3	4	5	6		
Projected Requirement	t	0	180	0	0	0	0		
Scheduled Receipts			150						
On Hand at end of	30	30	0	0	0	0	0		
Period									
Planned Order Release		150							

Subassembly D, Level 1

				,			
Lead Time = 1		Period					
Lot Sizing Rule = LFL		1	2	3	4	5	6
Projected Requiremen	t	0	0	119	0	0	0
Scheduled Receipts				19			
On Hand at end of	100	100	100	0	0	0	0
Period							
Planned Order Release	e		19				

Subassembly B, Level 2

Lead Time = 1		Period							
Lot Sizing Rule = LFL		1	2	3	4	5	6		
Projected Requirement		150	199	119	10	0	0		
Scheduled Receipts			249	119	10				
On Hand at end of	100	-50	0	0	0	0	0		
Period									
Planned Order Release	;	249	119	10					

Note: In period 1, a negative inventory situation arises. If this happens, an order is placed immediately to correct this situation. An order of 50+199=249 units was needed.

Item cc, Level 2

Lead Time = 1		Period							
Lot Sizing Rule = LFL		1	2	3	4	5	6		
Projected Requirement		450	0	238	0	0	0		
Scheduled Receipts				188					
On Hand at end of	500	50	50	0	0	0	0		
Period									
Planned Order Release			188						

Subassembly C, Level 3

Lead Time = 1		Period								
Lot Sizing Rule = LFL		1	2	3	4	5	6			
Projected Requirement		249	318	10	0	0	10			
Scheduled Receipts			467	10			10			
On Hand at end of	100	-149	0	0	0	0	0			
Period										
Planned Order Release	;	467	10			10				

Item	99	Level	4
110111	aa.	Level	4

Lead Time = 1		Period							
Lot Sizing Rule = LFL		1	2	3	4	5	6		
Projected Requiremen	t	934	200	0	0	40	0		
Scheduled Receipts			934			40			
On Hand at end of	200	-734	0	0	0	0	0		
Period									
Planned Order Release	•	934			40				

Item bb, Level 4

Lead Time $= 1$		Period							
Lot Sizing Rule = LFL		1	2	3	4	5	6		
Projected Requirement	t	1899	268	20	0	30	0		
Scheduled Receipts			1867	20		30			
On Hand at end of	300	-1599	0	0	0	0	0		
Period									
Planned Order Release		1867	20		30				

Calculation of lot sizes:

The lot sizes for Item 1, Item 2 and Subassembly A were calculated as follows.

Item 1, EOQ.

Average demand =
$$\frac{40 + 20 + 10 + 60 + 10 + 30}{6} = 28.33$$

EOQ = $\sqrt{\frac{2(\$25)(28.33)}{\$0.10}} \approx 119$.

Item 2, POQ.

Average demand =
$$\frac{20+10+30+50+70+40}{6}$$
 = 36.67
EOQ = $\sqrt{\frac{2(\$25)(36.67)}{\$0.10}} \approx 135$.

Convert EOQ into periods by dividing by average demand.

$$N = \frac{135}{36.67} \approx 4 \text{ (rounded)}.$$

Subassembly A, PPB.

Order Arrives in Period #	Tentative Lot Size	Extra Inventory	No. of Periods held	Extra Carrying	Cumulative Extra	Is This > Setup Cost ?
Period #	4.50			Cost	Carrying Cost	
2	150	0	0	0	0	No
	150	0	1	0	0	No
	150	0	2	0	0	No
	150	0	3	0	0	No
	150*	0	4	0	0	No

^{*}Since this covers the entire planning horizon of six periods, we choose 150 as the lot size to be arrived in period 2, even though the cumulative extra carrying cost is not greater than the setup cost!