Matemática Discreta

Relações de Recorrência 2

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Matemática Discreta

Equações de recorrência lineares não homogéneas

Exemplos

Equações de recorrência lineares não homogéneas

Equação de recorrência linear não homogénea de ordem r

Definição

Designa-se por equação de recorrência linear não homogénea de ordem r, uma equação do tipo

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - \cdots - c_r a_{n-r} = f(n),$$
 (1)

onde f(n) é uma função não nula e c_i (i = 1, 2, ..., r) são constantes. Para a resolução de (1) são necessárias r condições iniciais.

• Solução geral: $a_n = a_n^{(1)} + a_n^{(2)}$, onde $a_n^{(1)}$ é a solução geral da equação de recorrência linear homogénea

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - \cdots - c_r a_{n-r} = 0$$
 (2)

e $a_n^{(2)}$ é uma solução particular da equação (1).

Equações de recorrência lineares não homogéneas

Determinação da solução particular $a_n^{(2)}$ (alguns casos)

• 1º caso: $f(n) = cq^n$, onde q e c são constantes com $q \in \mathbb{Q} \setminus \{1\}$. Então

$$a_n^{(2)} = An^m q^n,$$

onde $m \in \mathbb{N} \cup \{0\}$ é a multiplicidade de q enquanto raiz característica da equação linear homogénea (2) (caso não seja raiz, tem-se m=0) e A é uma constante. Note-se que quando q=1, f(n)=c, ou seja, é um polinómio de grau zero.

• 2^o caso: f(n) é um polinómio (na variável n) de grau $k \in \mathbb{N} \cup \{0\}$. Então

$$a_n^{(2)} = A_0 n^r + A_1 n^{r+1} + \cdots + A_k n^{r+k},$$

onde $r \in \mathbb{N} \cup \{0\}$ é a multiplicidade de 1 enquanto raiz característica da equação linear homogénea (2) (caso não seja raiz, tem-se r = 0) e A_0, A_1, \ldots, A_k são constantes.

Determinação da solução particular $a_n^{(2)}$ (cont.)

- 3° caso: $f(n) = f_1(n) + f_2(n) + \cdots + f_k(n)$.
- Se $a_{n,1}^{(2)}, a_{n,2}^{(2)}, \ldots, a_{n,k}^{(2)}$ são soluções particulares das equações de recorrência lineares não homogéneas

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - \dots - c_r a_{n-r} = f_i(n), \quad i = 1, 2, \dots, k,$$
 então

$$a_n^{(2)} = a_{n,1}^{(2)} + a_{n,2}^{(2)} + \cdots + a_{n,k}^{(2)}.$$

Exemplo

Vamos determinar a solução da equação de recorrência

$$a_n = 3a_{n-1} - 2a_{n-2} + f(n), \ n = 2, 3, ...,$$
 (3)

com $a_0 = 0$ e $a_1 = -2$, se

- (a) $f(n) = 2^n$.
- (b) $f(n) = 2^n + 1 + n$.
- Solução: A solução geral da equação homogénea associada, $a_n 3a_{n-1} + 2a_{n-2} = 0$, é

$$a_n^{(1)} = C_1 + C_2 2^n, n \in \mathbb{N} \cup \{0\}$$

• A solução particular para o caso (a), onde $f(n) = cq^n$, com c = 1 e q = 2, vem dada por $a_n^{(2)} = An2^n$. Por sua vez, a constante A obtém-se substituindo em (3), a_n por $a_n^{(2)}$.

Exemplo (cont.)

- Logo, $An2^n 3A(n-1)2^{n-1} + 2A(n-2)2^{n-2} = 2^n$, o que é equivalente a $2An 3A(n-1) + A(n-2) = 2 \Leftrightarrow 3A 2A = 2 \Leftrightarrow A = 2$.
- Assim, $a_n^{(2)} = 2n2^n = n2^{n+1}$ e a solução geral da equação de recorrência (3) (no caso (a)) é

$$a_n = a_n^{(2)} + a_n^{(1)} = C_1 + C_2 2^n + n 2^{n+1}.$$

Determinação das constantes C₁ e C₂:

$$\left\{ \begin{array}{l} a_0 = 0 \\ a_1 = -2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} C_1 + C_2 = 0 \\ C_1 + 2C_2 + 4 = -2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} C_1 = -C_2 \\ C_2 = -6. \end{array} \right.$$

Logo, $C_1 = 6$, $C_2 = -6$ e a solução da equação linear não homogénea é $a_n = 6 - 6 \cdot 2^n + n2^{n+1}$, $n \in \mathbb{N} \cup \{0\}$.

Resolução do caso (b)

Sabe-se que

$$a_n^{(1)} = C_1 + C_2 2^n$$
 e $a_n^{(2)} = n2^{n+1} + a_{n,2}^{(2)}$,

onde $n2^{n+1}$ é uma solução particular de $a_n = 3a_{n-1} - 2a_{n-2} + 2^n$ (ver alínea (a)) e $a_{n,2}^{(2)}$ é uma solução particular da equação de recorrência

$$a_n = 3a_{n-1} - 2a_{n-2} + 1 + n.$$
 (4)

- Determinação de a⁽²⁾_{n,2}:
- Uma vez que f(n) = 1 + n é um polinómio de grau k = 1 e 1 é raiz característica de multiplicidade r = 1,

$$a_{n,2}^{(2)} = A_0 n + A_1 n^2$$
.

Resolução do caso (b) (cont.)

• Substituindo em (4), a_k por $a_{k,2}^{(2)}$ (para k = n - 2, n - 1, n), obtém-se

$$a_{n,2}^{(2)} = -\frac{7}{2}n - \frac{1}{2}n^2.$$

• Então $a_n = a_n^{(1)} + a_n^{(2)} = C_1 + C_2 2^n + n 2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^2$. Vamos determinar as constantes, C_1 e C_2 .

$$\begin{cases} a_0 = 0 \\ a_1 = -2 \end{cases} \Leftrightarrow \begin{cases} C_1 + C_2 = 0 \\ C_1 + 2C_2 + 4 - \frac{7+1}{2} = -2 \end{cases} \Leftrightarrow \begin{cases} C_1 = -C_2 \\ C_2 = -2 \end{cases}$$

 \bullet Logo, $C_1=2$, $C_2=-2$ e a solução da equação linear não homogénea é

$$a_n = 2 - 2^{n+1} + n2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^2, \ n \in \mathbb{N} \cup \{0\}.$$