Industry Readiness Program

Training Module

	,
Day 1	 Data Types Operators (Arithmetic(6), relational(6), logical(5), bitwise(6), address of and value at unary operators, ++ and, dot operator and [] subscript operator, -> operator) I/P functions (getc, putc, printf, scanf, gets, puts, fgetc, fputc, fgets, fputs,
	 ASCII character set, Escape sequences, digits as characters (48 to 57), range of small case(65-90) and upper case characters (97-122) How numbers are stored in memory. How -ve numbers are stored in memory (using 2s compliment technique), How floating point numbers are stored in memory (IEEE standard technique) Formatting the O/P using %d, %o, %x, %X, %s (left alignment, right alignment) Type casting (implicit and explicit, downcast and upcast) Integer division vs floating point division. If-else (0 and non-zero as boolean values in C programming)
	NEXT IS NOW
Day 2	Problems with Conditional Programming: nested if-else switch-case ternary operator O(n) problem solving using Loops (for, while and do-while examples)

Day 3	Problem-solving on Loops O(n) and O(n-square) problems
	• Function Call Stack (IR, PC, FP, SP)
	Memory management of a program (code area, static and global data segment,
	stack area, and heap area)
	• Different stages of a program (macro expansion also called pre-processing,
	compilation (lexical analysis and synthetical analysis, translation of human-
	friendly code to machine code). Object code (.obj or .o file) is machine-specific
	and the interpreter makes it. Loading and Linking. Generation of .exe or .out
	(executable file)
	• ASSESSMENT
	Recursion and recursive functions. When to avoid and when to use recursion.
	• Storage classes (scope, storage, life of a variable)
	Pointer variable
	Address of and value at operators
	Pointer, not a number, and vice versa
	Pointer can hold only an address
Day 4	Pointer can only be of a struct data type
	Pointer to a pointer
	• pointer arithmetic
	Need for an Array
	Array implementation using pointer and pointer arithmetic
	• const pointer
	wild pointer
	• null pointer
	• nullptr (C++11 concept)
	dangling pointer & const pointer
	Problem-solving on Arrays O(n)
	Hacker rank, Leetcode, etc. problem-solving on Arrays O(n) and O(n-square)
Day 5	pointer to an array
	pointer to a constant array
	constant pointer to an array
	constant pointer to a constant array
L	

	What is string
	Why store a string in an Array
	Need of /0
	• 2D Array to store multiple strings
Day 6	 String handling functions and their return types and discuss why the return types
	and function prototypes use const
	Implementation of string handling functions
	Implement Circular Queue using Array
	• ASSESSMENT
	Hackerrank and Leetcode Problem solving on strings
	Complex problem-solving on Arrays and strings
	Need for data binding
	structure definition
	structure definition has no memory allocation
Day 7	structure within a structure
	structure padding
	pointer to a structure
	pointer within a structure
	pointer (advanced concept)
	problem-solving on structures
	Implement Stack and Queue using Fixed Arrays
	Implement Stack and Queue using dynamically created Arrays
	Implement Stack and Queue using Linked List
	Implement problems on Linked List:
	o reverse an array
Day 8	o sort an array using bubble sort
	 merge 2 sorted arrays into a single sorted array
	 search, insert, delete, and list nodes into a linked list
	o implement all the above using the double-linked list
	• ASSESSMENT

Day 9	 Implement the algorithms, find their efficiencies, discuss their efficiencies, and train the students on the need to optimize the algorithms. When to use and when not use the various searching and sorting techniques Linear search, Binary search, Bubble sort, Insertion sort, Quick sort, Merge sort, BST, BST traversals, add a node into a BST, delete a node from BST (all the possibilities), search for a node in a BST, Implement self-balancing BST which is the AVL Tree (discuss and implement all 4 rotations)
Day 10	 The first half of the day must be used for covering the LEFT OVER topics. The second half must be used for REVISION, Recap, and Multiple ASSESSMENTS

PARVAM

NEXT IS NOW