Advanced Microeconomics II Knowledge

Brett Graham

Wang Yanan Institute for Studies in Economics Xiamen University, China

April 1, 2015

Knowledge

- Nash equilibrium assumes that you "know" the other player's equilibrium strategy.
- How do we model what a person knows?
- How do we model common knowledge?
- Can people agree to disagree?
- Can we express formally the assumptions about knowledge that lie behind the concept of Nash equilibrium?

Information Function

The core of our model of knowledge is Ω , the set of states. Interpretation:

- set of contingencies that are relevant to decision problem, or
- a full description of the world.

Definition

An information function for the set Ω of states is a function P that associates with every state $\omega \in \Omega$ a nonempty subset $P(\omega)$ of Ω .

Definition

An information function P on the set Ω of states is rational if it satisfies the following two conditions.

- (P1) $\omega \in P(\omega)$ for every $\omega \in \Omega$.
- (P2) If $\omega' \in P(\omega)$ the $P(\omega') = P(\omega)$.

Partitional Information Function

Definition

An information function P on the set Ω of states is partitional if there is a partition of Ω such that for any $\omega \in \Omega$ the set $P(\omega)$ is the element of the partition that contains ω .

Lemma

An information function is partitional if and only if it is rational.

- (⇒) Direct from the definitions.
- (\Leftarrow) Suppose that P is rational.
 - ▶ If $P(\omega)$ and $P(\omega')$ intersect and $\omega'' \in P(\omega) \cap P(\omega')$ then $P(\omega) = P(\omega') = P(\omega'')$ (by (P2))
 - $\triangleright \cup_{\omega \in \Omega} P(\omega) = \Omega \text{ (by (P1))}.$

Knowledge Function

Definition

An event E is any subset of Ω .

Definition

Let E be an event. A knowledge function K is a mapping of events into events, i.e. subsets of Ω into subsets of Ω such that

$$K(E) = \{\omega \in \Omega : P(\omega) \subset E\}.$$

Example: Six Sided Die

- $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- $\mathcal{P}_1 = \{\{1,2,3\},\{4,5,6\}\}, \mathcal{P}_2 = \{\{1,2\},\{3,4\},\{5,6\}\}.$
- $E_1 = \{1\}, E_2 = \{1, 2\}, E_3 = \{1, 2, 3\}, E_4 = \{1, 2, 3, 4\}.$

For each partition and event, find K(E).

Knowledge Function Properties

A knowledge function has the following three properties.

- (K1) $K(\Omega) = \Omega$.
- (K2) If $E \subset F$ then $K(E) \subset K(F)$.
- (K3) $K(E) \cap K(F) = K(E \cap F)$.

Knowledge Function Properties

Lemma

If P satisfies (P1) and (P2) then the associated knowledge function K satisfies the following three properties.

- (K4 Axiom of Knowledge) $K(E) \subset E$.
- (K5 Axiom of Transparency) K(E) = K(K(E)).
- (K6 Axiom of Wisdom) $\Omega \backslash K(E) = K(\Omega \backslash K(E))$.
- (K4) If $\omega \in K(E)$ then $P(\omega) \in E$. By (P1) $\omega \in E$.
- (K5) If F is a union of members of a partition then K(F) = F. If P satisfies (P1) and (P2) then K(E) is indeed such a union.
- (K6) Since K(E) is a union of members of a partition, $\Omega \backslash K(E)$ is also a partition.

The Puzzle of the Hats

- n rational people are seated around a table, each wearing a hat that is either black or white.
- Each individual observes everybody's hat except his own.

 - $P_i^0(c) = \{(W, c_{-i}), (B, c_{-i})\}.$
- A person must leave the table one minute after they know the color of their own hat.
 - ▶ $E_i = \{c : P_i(c) \subset \{c : c_i = B\} \text{ or } P_i(c) \subset \{c : c_i = W\}.$
- An observer announces that at least one hat is white.
 - Let $F^k = \{c : |\{i : c_i = W\}| = k\}$ (set of states where there are k white hats).
 - $P_i^1(c) = P_i^0(c) \backslash F^0$.
 - ▶ If $c \in F^1$ then there exists i such that $P_i^1(c) = \{(W, c_{-i})\}$, $P_i^1(c) \subset E_i$, $K_i(E_i) = \{(W, c_{-i})\}$ and i leaves after one minute.

The Puzzle of the Hats

- If nobody leaves after one minute then $P_i^2(c) = P_i^1(c) \setminus F^1$.
 - ▶ If $c \in F^2$ then there exists two i such that $P_i^2(c) = \{(W, c_{-i})\}$, $K_i(E_i) = \{(W, c_{-i})\}$ and both players leave after two minutes.
- If nobody leaves after k minutes then $P_i^{k+1}(c) = P_i^k(c) \backslash F^k$.
 - ▶ If $c \in F^{k+1}$ then there exists k+1 i such that $P_i^{k+1}(c) = \{(W, c_{-i})\}$, $K_i(E_i) = \{(W, c_{-i})\}$ and k+1 players leave after k+1 minutes.
- One minute after somebody leaves, everybody else leaves.

Common Knowledge

Definition (1)

Let K_1 and K_2 be the knowledge function of individuals 1 and 2 for the set Ω of states. An event $E \subset \Omega$ is common knowledge between 1 and 2 in the state $\omega \in \Omega$ if ω is a member of every set in the infinite sequence $K_1(E), K_2(E), K_1(K_2(E)), K_2(K_1(E)), \ldots$

Example: Six-sided die. $\Omega = \{1, 2, 3, 4, 5, 6\}$. The partitions induced by knowledge functions K_1 and K_2 are

$$\mathcal{P}_1 = \{\{1,2\}, \{3,4,5\}, \{6\}\}$$

$$\mathcal{P}_2 = \{\{1\}, \{2,3,4\}, \{5\}, \{6\}\}$$

- In what states is $E_1 = \{3, 4, 5, 6\}$ common knowledge?
- In what states is $E_2 = \{1, 2, 3, 4\}$ common knowledge?

Common Knowledge

Definition (2)

Let P_1 and P_2 be the information functions of individuals 1 and 2 for the set Ω of states. An event $F \subset \Omega$ is self-evident between 1 and 2 if for all $\omega \in F$ we have $P_i(\omega) \subset F$ for i=1,2. An event $E \subset \Omega$ is common knowledge between 1 and 2 in the state $\omega \in \Omega$ if there is a self-evident event F for which $\omega \in F \subset E$.

Example: Six-sided die. $\Omega = \{1, 2, 3, 4, 5, 6\}$. The partitions induced by knowledge functions K_1 and K_2 are

$$\mathcal{P}_1 = \{\{1,2\}, \{3,4,5\}, \{6\}\}$$

$$\mathcal{P}_2 = \{\{1\}, \{2,3,4\}, \{5\}, \{6\}\}$$

- In what states is $E_1 = \{3, 4, 5, 6\}$ common knowledge?
- In what states is $E_2 = \{1, 2, 3, 4\}$ common knowledge?

Properties of Common Knowledge Events

Lemma

Let P_1 and P_2 be the partitional information functions of individuals 1 and 2 for the set Ω of states, let K_1 and K_2 be the associated knowledge functions, and let E be an event. Then the following three conditions are equivalent.

- **1** $K_i(E) = E$ for i = 1, 2.
- 2 E is self-evident between 1 and 2.
- **3** E is a union of members of the partition induced by P_i for i = 1, 2.
 - (3) directly implies (1).
- (1) implies (2) since given (1) for every $\omega \in E$ we have $P_i(\omega) \subset E$ for i = 1, 2.
- (2) implies (3) since given (2) $E = \bigcup_{\omega \in E} P_i(\omega)$.

Common Knowledge Definition Equivalence

Proposition

Let Ω be a finite set of states, let P_1 and P_2 be the partitional information functions of individuals 1 and 2, and let K_1 and K_2 be the associated knowledge functions. Then an event $E \subset \Omega$ is common knowledge between 1 and 2 in the state $\omega \in \Omega$ according to Definition 1 if and only if it is common knowledge between 1 and 2 in the state ω according to definition 2.

- (\Rightarrow) E is common knowledge between 1 and 2 in ω according to definition 1.
 - ▶ $\exists F = K_i(K_i(K_i \cdots K_i(F) \cdots))$ for which $\omega \in F$.
 - ▶ Since Ω is finite we must have $F = K_i(F) = K_i(K_i(F)) = K_i(F)$.
 - F is self-evident so E is common knowledge.

Common Knowledge Definition Equivalence

Proposition

Let Ω be a finite set of states, let P_1 and P_2 be the partitional information functions of individuals 1 and 2, and let K_1 and K_2 be the associated knowledge functions. Then an event $E \subset \Omega$ is common knowledge between 1 and 2 in the state $\omega \in \Omega$ according to Definition 1 if and only if it is common knowledge between 1 and 2 in the state ω according to Definition 2.

- (\Leftarrow) E is common knowledge between 1 and 2 in ω according to definition 2.
 - ▶ \exists a self-evident event F such that $\omega \in F \subset E$.
 - From previous lemma $F = K_i(F) = K_j(F)$ so $F = K_i(K_i(K_i \cdots K_i(F) \cdots))$.
 - ▶ By (K2) $\omega \in F \subset K_i(K_j(K_i \cdots K_i(E) \cdots))$ so E is common knowledge.

Can People Agree to Disagree?

- Can it be common knowledge that two individuals with the same prior belief assign different probabilities to the same event.
- If we want to model a situation where people have different posterior beliefs what assumptions do we need to make about prior beliefs.
- ullet ρ is the common prior probability distribution on the set Ω of states.
- $\rho(E|P_i(\omega))$ is the probability player i attaches to event E in state ω .
- The event "individual i assigns probability η_i to the event E" is

$$\{\omega \in \Omega : \rho(E|P_i(\omega)) = \eta_i\}$$

People With Common Priors Cannot Agree to Disagree

Proposition

Suppose that the set Ω of states is finite and individuals 1 and 2 have the same prior belief. If each individual's information function is partitional and it is common knowledge between 1 and 2 in some state $\omega^* \in \Omega$ that individual 1 assigns probability η_1 to event E and individual 2 assigns probability η_2 to E then $\eta_1 = \eta_2$.

• There is a self-evident event $F \ni \omega^*$ and

$$F \subset \{\omega \in \Omega : \rho(E|P_1(\omega)) = \eta_1\} \cap \{\omega \in \Omega : \rho(E|P_2(\omega)) = \eta_2\}$$

- For each individual $F = \bigcup_{\omega \in F} P_1(\omega) = \bigcup_{\omega \in F} P_2(\omega)$ which is finite. (Why?)
- For each $P_i(\omega) \subset F$, $\rho(E|P_i(\omega)) = \eta_i$.
- Since the information function is partitional, $\rho(E|F) = \eta_i$.

Knowledge and Solution Concepts

- We can now formally model the assumptions implied by different solution concepts applied to $\{N, (A_i), (u_i)\}$.
- \bullet Ω is the set of states, each of which describes the environment relevant to the game. Formally, each $\omega \in \Omega$ consists of
 - \triangleright $P_i(\omega)$ where P_i is partitional.
 - $ightharpoonup a_i(\omega) \in A_i$
 - $\blacktriangleright \mu_i(\omega)$, a probability measure on $A_{-i} = \times_{i \in N \setminus \{i\}} A_i$
- We assume G is common knowledge.

Knowledge and Nash Equilibrium

Proposition

Suppose that in the state $\omega \in \Omega$ each player $i \in N$

- knows the other players' actions:
 - $P_i(\omega) \subset \{\omega' \in \Omega : a_{-i}(\omega') = a_{-i}(\omega)\};$
- **2** has a belief that is consistent with his knowledge: the support of $\mu_i(\omega)$ is a subset of $\{a_{-i}(\omega') \in A_{-i} : \omega' \in P_i(\omega)\}$;
- **3** is rational: $a_i(\omega)$ is a best response of player i to $\mu_i(\omega)$.

Then $(a_i(\omega))_{i\in\mathbb{N}}$ is a Nash equilibrium of G.

- From 3, player i's action is a best response to his belief.
- From 2, player i's belief puts probability one on action profile a_i of the other players.
- From 1, player i's belief is correct.

Knowledge and Mixed Strategy Nash Equilibrium

Proposition

Suppose that |N|=2 and that in the state $\omega\in\Omega$ each player $i\in N$

- knows the other player's beliefs: $P_i(\omega) \subset \{\omega' \in \Omega : \mu_j(\omega') = \mu_j(\omega)\}$ for $j \neq i$;
- **2** has a belief that is consistent with his knowledge: the support of $\mu_i(\omega)$ is a subset of $\{a_{-i}(\omega') \in A_{-i} : \omega' \in P_i(\omega)\}$;
- **3** knows that the other is rational: for any $\omega' \in P_i(\omega)$ the action $a_j(\omega')$ is a best response of player j to $\mu_i(\omega)$.

Then the mixed strategy profile $(\alpha_1, \alpha_2) = (\mu_2(\omega), \mu_1(\omega))$ is a mixed strategy Nash equilibrium of G.

Knowledge and Nash Equilibrium

Choose an action a_i^* in the support of $\mu_j(\omega)$.

- From 2, there is some state ω' consistent with player j's information in which player i plays a_i^* .
- From 3, a_i^* is a best response for player i to his belief in state ω' .
- From 1, player i's belief in the state ω' equals his belief in state ω .

Requirement of 2 Players

	L	R		
U	2, 3, 0	2, 0, 0		
D	0, 3, 0	0,0,0		

	L	R
U	0, 0, 0	0, 2, 0
D	3, 0, 0	3, 2, 0

B

Δ

	/ 1					D
State	α	β	γ	δ	ϵ	η
Probability×63	32	16	8	4	2	1
1's action	U	D	D	D	D	D
2's action	L	L	L	L	L	L
3's action	Α	В	Α	В	Α	В
1's partition	$\{\alpha\}$	$\{\beta$	$\gamma\}$	$\{\delta$	$\epsilon\}$	$\{\eta\}$
2's partition	$\{\alpha$	β }	$\{\gamma$	$\delta\}$	$\{\epsilon$	η }
3's partition	$\{\alpha\}$	$\{\beta\}$	$\{\gamma\}$	$\{\delta\}$	$\{\epsilon\}$	$\{\eta\}$

Knowledge and Mixed Strategy Nash Equilibrium

Proposition

If all players have a common prior and in some state

- rationality is mutual knowledge and
- the player's beliefs are common knowledge

then the beliefs in that state form a mixed strategy Nash equilibrium

See Aumann and Brandenburger (1995).

Knowledge and Rationalizability

Proposition

Suppose that |N|=2 and that in the state $\omega\in\Omega$ it is common knowledge between the players that each player's belief is consistent with his knowledge and that each player is rational. That is, suppose that there is a self-evident event $F\ni\omega$ such that for every $\omega'\in F$ and each $i\in N$ Suppose that there is a self-evident event F such that $\omega\in F$ such that for every $\omega'\in F$ and each $i\in N$

- the support of $\mu_i(\omega')$ is a subset of $\{a_j(\omega'') \in A_j : \omega'' \in P_i(\omega')\}$ for $j \neq i$;
- ② the action $a_i(\omega')$ is a best response of player i to $\mu_i(\omega')$.

Then for each $i \in N$ the action $a_i(\omega)$ is rationalizable in G.

- Let $Z_i = \{a_i(\omega') \in A_i : \omega' \in F\}.$
- By 2 for any $\omega \in F$, $a_i(\omega')$ is a best response to $\mu_i(\omega')$.
- By 1 the support of $\mu_i(\omega')$ is a subset of $\{a_j(\omega'') \in A_j : \omega'' \in P(\omega')\}.$
- Since F is self-evident we have $P_i(\omega') \subset F$ so that

E-mail Game - No Communication

	Α	В		Α	В
Α	M, M	1, -L	Α	0,0	1, -L
В	-L, 1	0,0	В	-L, 1	M, M
G_a	(probab	oility 1 –	p) (G_b (prob	ability p

- $N = \{1, 2\}, \Omega = \{(a, b\}, A_i = \{A, B\} \text{ for each } i \in N.$
- $p_1(b) = p_2(b) = 1 p_1(a) = 1 p_2(a) = p$.
- $T_1 = \{a, b\}, T_2 = \{ab\}.$
- $\tau_1(a) = a, \tau_1(b) = b, \tau_2(a) = \tau_2(b) = ab.$
- What are the Nash Equilibria?
- (A, A) in each state.

E-mail Game - Perfect Communication

$$\begin{array}{c|cccc}
 A & B \\
 A & M, M & 1, -L \\
 B & -L, 1 & 0, 0
\end{array}$$

$$\begin{array}{c|cccc}
 A & B \\
 A & 0,0 & 1,-L \\
 B & -L,1 & M,M
\end{array}$$

 G_a (probability 1-p)

 G_b (probability p)

$$L > M > 1$$
; $p < 1/2$

- $N = \{1, 2\}, \Omega = \{a, b\}, A_i = \{A, B\}$ for each $i \in N$
- $p_1(b) = p_2(b) = 1 p_1(a) = 1 p_2(a) = p$.
- $T_1 = T_2 = \{a, b\}.$
- $\tau_1(a) = \tau_2(a) = a, \tau_1(b) = \tau_2(b) = b.$
- What are the Nash Equilibria?
- (A, A) in state a, (B, B) in state b (Pareto optimal).
- (A, A) in state a, (A, A) in state b.
- (A, A) in state a, (α, α) in state b where $\alpha(A) = \frac{M-1}{I+M-1}$.

E-mail Game - Imperfect Communication

$$\begin{array}{c|cccc}
 A & B \\
 A & M, M & 1, -L \\
 B & -L, 1 & 0, 0
\end{array}$$

$$G_a$$
 (probability $1-p$)

$$\begin{array}{c|cccc}
 A & B \\
 A & 0,0 & 1,-L \\
 B & -L,1 & M,M
\end{array}$$

$$G_b$$
 (probability p)

- $N = \{1, 2\}, A_i = \{A, B\}, T_1 = T_2 = \{0, 1, 2, \ldots\},$
- $\Omega = \{(Q_1, Q_2) : Q_1 = Q_2 \text{ or } Q_1 = Q_2 + 1\}.$
- For each i, $\tau_i(Q_1, Q_2) = Q_i$.
- If $\omega = (0,0)$ then payoffs are derived from G_a , otherwise, payoffs are determined by G_b .

E-mail Game - Imperfect Communication Beliefs

Initial beliefs:
$$p_i(0,0) = 1 - p$$
.

Updated beliefs
$$\tilde{p}_i(\omega|\tau_i(\omega))$$
: $\tilde{p}_1((0,0)|0) = (1-p)/(1-p) = 1$

- $\tilde{p}_2((0,0)|0) = \frac{1-p}{1-p+p\epsilon} > \frac{1}{2}$ since $p < \frac{1}{2}$.
- $\tilde{p}_2((1,0)|0) = \frac{p\epsilon}{1-p+p\epsilon} < \frac{1}{2}$ since $p < \frac{1}{2}$.
- $\tilde{p}_1((q+1,q)|q+1) = \frac{p\epsilon(1-\epsilon)^{2q}}{p\epsilon(1-\epsilon)^{2q}+p\epsilon(1-\epsilon)^{2q+1}} = \frac{\epsilon}{\epsilon+\epsilon(1-\epsilon)} > \frac{1}{2}.$
- $\bullet \ \ \widetilde{p}_1((q+1,q+1)|q+1) = \frac{\rho\epsilon(1-\epsilon)^{2q+1}}{\rho\epsilon(1-\epsilon)^{2q} + \rho\epsilon(1-\epsilon)^{2q+1}} = \frac{\epsilon(1-\epsilon)}{\epsilon + \epsilon(1-\epsilon)} < \frac{1}{2}.$
- $\bullet \ \ \widetilde{p}_2((q,q)|q) = \tfrac{p\epsilon(1-\epsilon)^{2q-1}}{p\epsilon(1-\epsilon)^{2q-1}+p\epsilon(1-\epsilon)^{2q}} = \tfrac{\epsilon}{\epsilon+\epsilon(1-\epsilon)} > \tfrac{1}{2}.$
- $ilde{p}_2((q+1,q)|q)=rac{p\epsilon(1-\epsilon)^{2q}}{p\epsilon(1-\epsilon)^{2q-1}+p\epsilon(1-\epsilon)^{2q}}=rac{\epsilon(1-\epsilon)}{\epsilon+\epsilon(1-\epsilon)}<rac{1}{2}.$

E-mail Game - Imperfect Communication Equilibrium

Proposition

The electronic mail game has a unique Nash equilibrium, in which both players always choose A.

- Show when player 1 sees 0, player 1 should play A, i.e., $(Q_1, Q_2) = (0, 0)$.
- Show when player 2 sees 0, player 2 should play A, i.e., $(Q_1, Q_2) \in \{(0, 0), (1, 0)\}.$
- Assume that when player 2 sees q he plays A, i.e., $(Q_1, Q_2) \in \{(q, q), (q + 1, q)\}$, e.g. $\{(0, 0), (1, 0)\}$..
 - ▶ Show that when player 1 sees q + 1, she should play A, i.e., $(Q_1, Q_2) \in \{(q + 1, q), (q + 1, q + 1)\}$, e.g. $\{(1, 0), (1, 1)\}$.
- Assume that when player 1 sees q+1 she plays A, i.e., $(Q_1,Q_2) \in \{(q+1,q),(q+1,q+1)\}$, e.g. $\{(1,0),(1,1)\}$.
 - ▶ Show that when player 2 sees q + 1, he should play A, i.e., $(Q_1, Q_2) \in \{(q + 1, q + 1), (q + 2, q + 1)\}$, e.g. $\{(1, 1), (2, 1)\}$.