Etkinlik

Adı	Çelik Üretimindeki Kimyasal Hesaplamalar
Amacı	Kimyasal hesaplama yapabilme
Süresi	40 dakika

Aşağıdaki metni okuyunuz ve basamakları takip ederek etkinliği gerçekleştiriniz. Basamakları tamamladıktan sonra "Değerlendirme" bölümündeki soruları cevaplayınız.

Çelik, demirin çeşitli elementlerle oluşturduğu bir alaşım türüdür. Çelik üretiminde Fe₂O₃ bileşiği, bazen H₂ ile bazen de CO ile indirgenerek Fe metali elde edilir. Fe₂O₃ bileşiğinin CO ile verdiği tepkime,

$$Fe_2O_3(k) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

şeklindedir. Denkleştirilmiş bu denklemden elde edilebilecek birçok bilgi vardır. Örneğin çelik üretiminde kullanılan Fe₂O₃ bileşiği CO ile tepkimeye girdiğinde kaç g demir elde edilir? Bu tepkimede tepkimeye giren maddelerin ve tepkime sonucu oluşan ürünlerin kütleleri aşağıda verilmiştir:

Fe₂O₃(k) + 3CO(g)
$$\rightarrow$$
 2Fe(s) + 3CO₂(g)
160 g 84 g 112 g 132 g
80 g 42 g 56 g 66 g

Tepkime ile ilgili verilen soruları cevaplayınız. (H: 1 g/mol, C: 12 g/mol, O: 16 g/mol, Fe: 56 g/mol)

- 1. Yukarıdaki tepkimede verilen kütleleri inceleyiniz. Verilen kütlelerden mol sayıları hesaplandığında mol oranları ile tepkime katsayıları arasında nasıl bir ilişki olduğunu arkadaşlarınızla tartışınız.
- 2. 2 mol Fe₂O₂ tamamen tepkimeye girdiğinde
 - Kaç mol CO harcanır?
 - Kaç mol Fe oluşur?

Tepken ya da ürünlerin mol sayıları ile katsayıları arasındaki ilişkiyi açıklayınız.

- 3. 1,5 mol CO tamamen tepkimeye girdiğinde
 - Kaç g Fe,O, harcanır?
 - Kaç g Fe oluşur?
 - Kaç g CO₂ oluşur?

Tepken ya da ürünler arasındaki stokiyometrik orana ilişkin çıkarımınızı yazınız. Bu çıkarıma nasıl ulaştığınızı açıklayınız.

4. 1 mol Fe elde etmek için kaç tane CO molekülü kullanılmalıdır?