. PCT .

世界知的所有権機関 国 際 事 務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 H01L 21/20, 21/205, 21/203, 21/208, 33/00, H01S 3/18, C01B 21/06

(11) 国際公開番号 A1

WO99/23693

(43) 国際公開日

1999年5月14日(14.05.99)

(21) 国際出願番号

PCT/JP98/04908

(22) 国際出願日

1998年10月29日(29.10.98)

(30) 優先権データ

特願平9/298300 特願平10/9008 特願平10/102546 1997年10月30日(30.10.97) JP 1998年1月20日(20.01.98) JP JP

1998年4月14日(14.04.98)

(71) 出願人(米国を除くすべての指定国について) 住友電気工業株式会社

(SUMITOMO ELECTRIC INDUSTRIES, LTD.)[JP/JP] 〒541-0041 大阪府大阪市中央区北浜四丁目5番33号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

元木健作(MOTOKI, Kensaku)[JP/JP]

岡久拓司(OKAHISA, Takuji)[JP/JP] 松本直樹(MATSUMOTO, Naoki)[JP/JP]

〒664-0016 兵庫県伊丹市昆陽北一丁目1番1号

住友電気工業株式会社 伊丹製作所内 Hyogo, (JP)

(74) 代理人

升理士 長谷川芳樹,外(HASEGAWA, Yoshiki et al.) 〒104-0031 東京都中央区京橋二丁目13番10号 京橋ナショナルビル6F 創英国際特許事務所 Tokyo, (JP)

CA, CN, JP, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公閒書類

国際調査報告書

Gan single crystalline substrate and method of producing the same (54)Title:

(54)発明の名称 GaN単結晶基板及びその製造方法

(57) Abstract

A method of producing a GaN single substrate, characterized by crystalline comprising forming a mask layer (8) having a plurality of opening windows (10) mutually spaced on a GaAs substrate (2), and growing an epitaxial layer (12) of GaN on the mask layer (8).

(57)要約

ι.

本発明に係るGaN単結晶基板の製造方法は、GaAS基板2上に互いに離隔 配置された複数の開口窓10を有するマスク層8を形成するマスク層形成工程と、 マスク層8上にGaNからなるエピタキシャル層12を成長させるエピタキシャ ル層成長工程とを備えることを特徴とする。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

```
SIRABDEHMNWRRUDELNSTPEGPRZC
```

明細書

GaN単結晶基板及びその製造方法

5 技術分野

本発明は、窒化ガリウム(GaN)等の窒化物系化合物半導体を用いた、発光 ダイオード、半導体レーザ等の発光デバイスや、電界効果トランジスタ等の電子 デバイス用の基板及びその製造方法に関するものである。

10 背景技術

15

従来、窒化物系化合物半導体を用いた発光デバイス等では、安定なサファイア 基板が用いられていた。

しかし、サファイアには劈開面が無いため、半導体レーザにサファイア基板を 用いた場合は劈開による反射面を作製することができないという問題があった。

また、サファイアを発光デバイス等の基板材料として用いた場合、サファイア 基板と当該サファイア基板上に成長させるエピタキシャル層との間の格子不整合 や熱膨張係数の相違に起因して、エピタキシャル層中に転位等の結晶欠陥が多発 するという問題もあった。

このようなサファイアを発光デバイス等の基板とした場合の問題を解消すべく 開発された技術として、特開平8-116090号公報に掲載された半導体発光 素子の製法がある。この半導体発光素子の製法は、ガリウム砒素 (GaAs)基 板等の半導体単結晶基板上に窒化ガリウム系化合物半導体層を成長させた後、半 導体単結晶基板 (GaAs基板)を除去し、残った窒化ガリウム系化合物半導体 層を新たな基板としてその上に動作層である窒化ガリウム系化合物半導体単結晶 層をエピタキシャル成長させて、半導体発光素子を製造するものである。

この特開平8-116090号公報の技術によれば、窒化ガリウム系化合物半

導体層とこの上に成長させる窒化ガリウム系化合物半導体単結晶層 (エピタキシャル層) との格子定数や熱膨張係数が非常に近いため、半導体単結晶層 (エピタキシャル層) に転位等に起因する格子欠陥が発生しにくくなる。また、基板とこの上に成長させる動作層とが同じ窒化ガリウム系化合物半導体層からなっているため、同種の結晶が揃うことになり、容易に劈開することができる。このため、半導体レーザ等の反射鏡を簡単に作製することができる。

発明の開示

5

25

しかし、上記特開平8-116090号公報に掲載された製法で製造したGa N基板は、格子不整合等の理由で結晶品質は極めて低く、結晶欠陥に起因する内部応力の為に大きな反りが発生し、実用化には至っていなかった。そして、技術進歩に伴い、窒化ガリウム系化合物半導体を用いた光半導体デバイスの特性を更に向上させることが要求され、本発明者らにおいて、より高品質のGaN単結晶基板を製作する必要が生じた。そのためには、GaN単結晶基板のエピタキシャル層に発生する転位等の結晶欠陥を一層低減させる必要がある。結晶欠陥を低減することにより、高い結晶品質を有し、内部応力が低く、反りも殆どないGaN単結晶基板を得ることができる。

本発明は、かかる事情に鑑みてなされたものであり、転位等の結晶欠陥が低減されたGaN単結晶基板及びその製造方法を提供することを目的とする。

20 本発明に係るGaN単結晶基板の製造方法は、GaAs基板上に、互いに離隔 配置された複数の開口窓を有するマスク層を形成するマスク層形成工程と、前記 マスク層上に、GaNからなるエピタキシャル層を成長させるエピタキシャル層 成長工程と、を備えることを特徴とする。

本発明のGaN単結晶基板の製造方法によれば、マスク層の各開口窓内でGa N核が形成され、このGaN核が次第にマスク層上の横方向、すなわちマスク層 の開口窓が形成されていないマスク部の上方に向かって何の障害物もなく自由に

ラテラル成長する。そして、GaN核がラテラル成長するときに、GaN核内の 欠陥は広がらないため、結晶欠陥が大幅に低減されたGaN単結晶基板を形成す ることができる。

また、本発明に係るGaN単結晶基板の製造方法において、前記マスク層形成工程の前に、前記GaAs基板上にバッファ層を形成するバッファ層形成工程と、前記バッファ層上に、GaNからなる下層エピタキシャル層を成長させる下層エピタキシャル層成長工程と、を更に備えることが好ましい。

5

10

20

25

この場合、マスク層の開口窓の下方にGaNからなる下層エピタキシャル層が位置し、当該下層エピタキシャル層の上にGaNからなる上記エピタキシャル層が形成されるため、当該エピタキシャル層の結晶欠陥が一層低減される。すなわち、転位等の結晶欠陥は、バッファ層に近い部分ほどその密度が高いため、このように一旦下層エピタキシャル層を成長させてバッファ層からの距離をおいてマスク層を形成した方が、下層エピタキシャル層を成長させない場合よりも結晶欠陥の低減を図ることができる。

15 また、本発明に係るGaN単結晶基板の製造方法において、前記エピタキシャル層成長工程の前に、前記マスク層の前記開口窓内における前記GaAs基板上にバッファ層を形成するバッファ層形成工程を更に備えることも好ましい。

この場合、GaNエピタキシャル層を一回成長させるだけで結晶欠陥が大幅に低減したGaN単結晶基板を形成することができ、コスト削減を図ることができる。なお、GaAs基板上にGaNエピタキシャル層を成長させる場合には、アモルファス層に近いGaN低温バッファ層またはA1Nバッファ層を成長させた後、高温でGaNを成長させることで、たとえ格子不整合が大きくてもエピタキシャル成長を得ることができる。低温バッファ層形成時は、 SiO_2 、 Si_3N_4 から成るマスク層のマスク部上には低温バッファ層は成長せず、開口窓内にのみ形成される。

また、本発明に係るGaN単結晶基板の製造方法において、前記エピタキシャ

ル層は、厚さ $5\sim300\mu$ mの範囲内で成長され、前記エピタキシャル層成長工程の後に、前記 GaAs基板を除去する GaAs基板除去工程と、前記エピタキシャル層上に GaNからなる第二のエピタキシャル層を積層成長させる工程と、を更に備えることも望ましい。

この場合、第二のエピタキシャル層を成長させる前にGaAs基板を除去するので、GaAs基板とバッファ層及びエピタキシャル層との熱膨張係数の差に起因する熱応力の発生を防止することでエピタキシャル層に発生するクラック及び内部応力を低減でき、これにより、クラックが無く、且つ、結晶欠陥の大幅に低減されたGaN単結晶基板を形成することができる。

5

20

25

また、本発明に係るGaN単結晶基板の製造方法において、前記マスク層の前記開口窓を前記下層エピタキシャル層の<10-10>方向にピッチLで複数配列して<10-10>窓群を形成すると共に、前記<10-10>窓群を前記下層エピタキシャル層の<1-210>方向にピッチd(0.75L≦d≦1.3 L)で複数並設し、さらに、前記各<10-10>窓群は、前記各開口窓の中心位置が隣り合う前記<10-10>窓群の前記各開口窓の中心位置に対して前記
 位置が隣り合う前記<10-10>窓群の前記各開口窓の中心位置に対して前記

この場合、各<10-10>窓群の各開口窓は、その中心位置が隣り合う<10-10>窓群の各開口窓の中心位置に対して<10-10>方向に約1/2L ずれているため、各開口窓から成長する正六角錐または正六角錐台のGaNの結晶粒は、隣接する開口窓から成長した結晶粒と殆どピットを生じさせず、隙間無く繋がり、エピタキシャル層における結晶欠陥及び内部応力の低減を図ることができる。

また、本発明に係るGaN単結晶基板の製造方法において、前記マスク層の前記開口窓を前記GaAs基板の(111)面上において<11-2>方向にピッチLで複数配列して<11-2>窓群を形成すると共に、前記<11-2>窓群を前記GaAs基板の(111)面の<-110>方向にピッチd(0.75L

 \leq d \leq 1.3 L) で複数並設し、さらに、前記各<<11-2>窓群は、前記各開口窓の中心位置が隣り合う前記<<11-2>窓群の前記各開口窓の中心位置に対して前記<<11-2>方向に約1/2Lずれて並設されていることが望ましい。

この場合、各<11-2>窓群の各開口窓は、その中心位置が隣り合う<11-2>窓群の各開口窓の中心位置に対して<11-2>方向に約1/2Lずれているため、各開口窓から成長する正六角錐または正六角錐台のGaNの結晶粒は、隣接する開口窓から成長した結晶粒と殆どピットを生じさせず、隙間無く繋がり、エピタキシャル層における結晶欠陥及び内部応力の低減を図ることができる。

5

10

15

20

25

また、本発明に係るGaN単結晶基板の製造方法において、前記エピタキシャル層成長工程において、前記エピタキシャル層を厚く成長させてGaN単結晶のインゴットを形成し、前記インゴットを複数枚に切断する切断工程を更に備えることも望ましい。

この場合、GaN単結晶のインゴットを複数枚に切断するため、一回の製造処理で、結晶欠陥が低減されたGaN単結晶基板を複数枚得ることができる。

また、本発明に係るGaN単結晶基板の製造方法において、前記エピタキシャル層成長工程において、前記エピタキシャル層を厚く成長させてGaN単結晶のインゴットを形成し、前記インゴットを複数枚に劈開する劈開工程を更に備えることも望ましい。

この場合、GaN単結晶のインゴットを複数枚に劈開するため、一回の製造処理で、結晶欠陥が低減されたGaN単結晶基板を複数枚得ることができる。また、この場合は、GaN結晶の劈開面に沿ってインゴットを劈開させるため、容易に複数枚のGaN単結晶基板を得ることができる。

また、本発明に係るGaN単結晶基板の製造方法において、前述の製造方法によって得られたGaN単結晶基板にGaNからなるエピタキシャル層を厚く成長させてGaN単結晶のインゴットを形成するインゴット形成工程と、前記インゴットを複数枚に切断する切断工程と、を更に備えることも望ましい。

この場合、前述の製造方法によって製造されたGaN単結晶基板にGaNエピタキシャル層を成長させてインゴットを形成し、当該インゴットを切断するだけでGaN単結晶基板を複数枚得ることができる。すなわち、簡単な作業で、結晶欠陥が低減されたGaN単結晶基板を複数枚製造することができる。

5

15

図面の簡単な説明

図1A~図1Dは、それぞれ、第1実施形態に係るGaN単結晶基板の製造方法の第1工程~第4工程を示す図である。

図2は、HVPE法に使用される気相成長装置を示す図である。

10 図3は、有機金属塩化物気相成長法に使用される気相成長装置を示す図である。 図4は、第1実施形態のマスク層の平面図である。

図5A~図5Dは、それぞれ、第1実施形態に係るエピタキシャル成長の第1 工程~第4工程を示す図である。

図6A~図6Dは、それぞれ、第2実施形態に係るGaN単結晶基板の製造方法の第1工程~第4工程を示す図である。

図7は、第2実施形態のマスク層の平面図である。

図8A~図8Dは、それぞれ、第3実施形態に係るGaN単結晶基板の製造方法の第1工程~第4工程を示す図である。

図9は、第3実施形態のマスク層の平面図である。

20 図10A及び図10Bは、それぞれ、第3実施形態に係る第2のエピタキシャル層の成長過程を示す図である。

図11A~図11Dは、それぞれ、第4実施形態に係るGaN単結晶基板の製造方法の第1工程~第4工程を示す図である。

図12は、第4実施形態のマスク層の平面図である。

25 図13A~図13Eは、それぞれ、第5実施形態に係るGaN単結晶基板の製造方法の第1工程~第5工程を示す図である。

- 図14は、第6実施形態のマスク層の平面図である。
- 図15は、第7実施形態のマスク層の平面図である。
- 図16A~図16Fは、それぞれ、第8実施形態に係るGaN単結晶基板の製造方法の第1工程~第6工程を示す図である。
- 5 図17A~図17Cは、それぞれ、第9実施形態に係るGaN単結晶基板の製造方法の第1工程~第3工程を示す図である。
 - 図18A及び図18Bは、それぞれ、第10実施形態に係るGaN単結晶基板の製造方法の第1工程及び第2工程を示す図である。
- 図19A~図19Cは、それぞれ、第11実施形態に係るGaN単結晶基板の 10 製造方法の第1工程~第3工程を示す図である。
 - 図20は、第3実施形態のGaN単結晶基板を用いた発光ダイオードを示す図である。
 - 図21は、第3実施形態のGaN単結晶基板を用いた半導体レーザを示す図である。
- 15 図22は、昇華法に使用される気相成長装置を示す図である。

発明を実施するための最良の形態

以下、添付図面を参照して、本発明の好適な実施形態を詳細に説明する。各実 施形態の説明で結晶の格子方向および格子面を使用する場合があるが、ここで、

20 格子方向及び格子面の記号の説明をしておく。個別方位は[]、集合方位は< >、 個別面は()、集合面は { } でそれぞれ示すことにする。尚、負の指数につい ては、結晶学上、"-"(バー)を数字の上に付けることになっているが、明細書 作成の都合上、数字の前に負号を付けることにする。

25 [第1実施形態]

第1実施形態に係るGaN単結晶基板及びその製造方法を、図1A~図1Dの

製造工程図を用いて説明する。

5

10

15

20

25

まず、図1Aに示す第1の工程で、GaAs基板2を気相成長装置の反応容器内に設置する。なお、GaAs基板2として、GaAs(111)面がGa面となっているGaAs(111)A基板、または、GaAs(111)面がAs面となっているGaAs(111)B基板の何れかを用いることができる。

GaAs基板2を気相成長装置の反応容器内に設置した後、当該GaAs基板2上にGaNからなるバッファ層4を形成する。バッファ層4の形成方法としては、HVPE (Hydride Vapor Phase Epitaxy) 法、有機金属塩化物気相成長法、MOCVD法等の気相成長法がある。以下、これらの各気相成長法について詳説する。

まず、HVPE法について説明する。図2は、HVPE法に使用する常圧の気

相成長装置を示す図である。この装置は、第1のガス導入ボート51、第2のガス導入ボート53、第3のガス導入ボート55、及び排気ボート57を有する反応チャンバ59と、この反応チャンバ59を加熱するための抵抗加熱ヒータ61と、から構成されている。また、反応チャンバ59内には、Ga メタルのソースボート63と、Ga A s 基板2を支持する回転支持部材65とが設けられている。このような気相成長装置を用いたバッファ層4の好適な形成方法を説明すると、Ga A s 基板2としてGa A s Ga A G

 (H_2) を導入する。また、第3のガス導入ボート55には、水素 (H_2) のみを導入する。このような条件下で、約20分~約40分間GaN を成長させることにより、GaAs 基板2上に、厚さ約500オングストローム~約1200オングストロームのGaN からなるバッファ層4を形成する。HVPE 法を用いた場合は、塩化ガリウム(GaC1)の合成量を増加させてもバッファ層の成長速度はさほど変化せず、反応律速であると考えられる。

5

20

25

また、GaAs基板2としてGaAs(111)B基板を用いる場合も、GaAs(111)A基板を用いる場合とほぼ同様の条件でバッファ層を形成することができる。

次に、有機金属塩化物気相成長法について説明する。図3は、有機金属塩化物気相成長法に使用する成長装置を示す図である。この装置は、第1のガス導入ボート71、第2のガス導入ボート73、第3のガス導入ボート75、及び排気ボート77を有する反応チャンバ79と、この反応チャンバ79を加熱するための抵抗加熱ヒータ81と、から構成されている。また、反応チャンバ79内には、GaAs基板2を支持する回転支持部材83が設けられている。

3、及び第3のガス導入ボート75には、それぞれキャリアガスとして水素(H_2)を導入する。このような条件下で、約20分~約40分間GaNを成長させることにより、GaAs基板2上に、厚さ約500オングストローム~約1200オングストロームのGaNからなるバッファ層4を形成する。このとき、バッファ層4の成長速度を、約0.08 μ m/hr~約0.18 μ m/hrにすることができる。

5

20

また、GaAs基板2としてGaAs(111)B基板を用いる場合も、GaAs(111)A基板を用いる場合とほぼ同様の条件でバッファ層を形成することができる。

また、MOCVD法とは、コールドウォール型の反応炉において、加熱された GaAs基板2上に、Gaを含む例えばトリメチルガリウム (TMG) 等の有機 金属とアンモニア (NH₃) とをキャリアガスと共に吹きつけ、GaAs基板2 上にGaNを成長させる方法である。ここで、Gaを含む有機金属等をGaAs 基板2に吹き付ける際の当該GaAs基板2の温度は、GaAs (111) A基 板を用いる場合は約450℃~約600℃で、GaAs (111) B基板を用いる場合は約450℃~約550℃にすることが好ましい。また、Gaを含む有機 金属として、TMGの他に、例えばトリエチルガリウム (TEG) 等を用いることができる。

以上がバッファ層4を形成する気相成長法である。バッファ層4を形成した後、 当該バッファ層4上にGaNからなる第1のエピタキシャル層(下層エピタキシャル層)6を成長させる。第1のエピタキシャル層6の成長には、バッファ層4 の形成方法と同様に、HVPE法、有機金属塩化物気相成長法、MOCVD法等 の気相成長法を使用することができる。以下、第1のエピタキシャル層6をこれ らの気相成長法で成長させる場合の好適な条件を説明する。

25 HVPE法により第1のエピタキシャル層6を成長させる場合は、バッファ層4の形成と同様に、図2に示す装置を使用することができる。そして、GaAs

有機金属塩化物気相成長法により第1のエピタキシャル層6を成長させる場合は、バッファ層4の形成と同様に、図3に示す装置を使用することができる。そして、GaAs基板2としてGaAs(111)A基板を用いる場合は、抵抗加熱ヒータ81によりGaAs基板2の温度を約920℃~約1030℃に昇温保持させた状態で第1のエピタキシャル層6を成長させる。このとき、第1のエピタキシャル層6の成長速度を約10 μ m/h r ~約60 μ m/h r にすることができる。なお、成長速度を上げるに為には、T M G の分圧を上げることで G a C 1 の分圧を上げればよいが、ガス配管の温度での T M G の平衡蒸気圧以上の分圧であった場合、ガス配管内壁へ T M G の液化が起こり、配管の汚染や詰まりが発生するため、T M G の分圧はむやみに上げられず、約5×10⁻³ a t m が上限であると考えられる。このため、成長速度も60 μ m/h r 程度が上限であると考えられる。

一方、GaAs基板 2 としてGaAs(1 1 1) B基板を用いる場合は、抵抗加熱ヒータ 8 1 によりGaAs 基板 2 の温度を約 8 5 0 ∞ ~約 9 5 0 ∞ に昇温保持させた状態で第 1 のエピタキシャル層 6 を成長させる。このとき、第 1 のエピタキシャル層 6 の成長速度を約 1 0 μ m/h r ~約 5 0 μ m/h r にすることができる。尚、反応チャンバ 7 9 内に導入するトリメチルガリウム等の分圧は、上記

の理由から、 5×10^{-3} atmが上限となる。

5

10

15

20

25

続いて、図1Bに示す第2の工程を説明する。図1Bに示す第2の工程では、製造途中のウエハを成長装置から取り出して、エピタキシャル層6上にSiN又はSiO₂から成るマスク層8を形成する。マスク層8は、厚さ約100nm~約500nmのSiN膜又はSiO₂膜をプラズマCVD等により形成し、このSiN膜又はSiO₂膜をフォトリソグラフィ技術でパターンニングすることにより形成される。

図4は、図1Bに示す第2の工程におけるウエハの平面図である。図1B及び図4に示されているように、本実施形態のマスク層8には、複数のストライプ状のストライプ窓10が形成されている。ストライプ窓10は、GaNからなる第1のエピタキシャル層6の<10-10>方向に延在するように形成されている。 尚、図4の矢印は、第1のエピタキシャル層6の結晶方位を示している。

マスク層 8 を形成した後、図1Cに示す第3の工程に進む。第3の工程では、マスク層 8 を形成したウエハを再び気相成長装置の反応容器内に設置する。そして、マスク層 8 と第1のエピタキシャル層6のストライプ窓10から露出している部分との上に第2のエピタキシャル層12を成長させる。第2のエピタキシャル層12の成長方法としては、第1のエピタキシャル層6の成長方法と同様に、HVPE法、有機金属塩化物気相成長法、MOCVD法等がある。尚、第2のエピタキシャル層12の厚さは、約150 μ m~約1000 μ mにすることが好ましい。

ここで、図5A~図5Dを用いて、第2のエピタキシャル層12の成長過程を

詳細に説明する。図5Aに示されているように、GaNからなる第2のエピタキシャル層12の成長初期においては、第2のエピタキシャル層12はマスク層8上には成長せず、GaN核としてストライプ窓10内における第1のエピタキシャル層6上にのみ成長する。そして、成長が進むに従って、第2のエピタキシャル層12の厚みが増し、この厚みの増加に伴って、図5Bのように、マスク層8上において、第2のエピタキシャル層12のラテラル成長(lateral growth)が生じる。これにより、図5Cに示すように、マスク層8上で両側から成長してきたエピタキシャル層12が繋がり、それらが一体化する。ラテラル成長により一体化した後は、図5Dに示すように、第2のエピタキシャル層12は上方に向かって成長し、厚みが増していく。尚、第2のエピタキシャル層12は、ラテラル成長により隣接するエピタキシャル層12と一体化すると、一体化する前よりも厚み方向への成長速度が速くなる。以上が、第2のエピタキシャル層12の成長過程である。

5

10

15

20

ここで、図4の説明で述べたように、ストライプ窓10は、GaNからなる第1のエピタキシャル層6の<10-10>方向に延在するように形成されているため、ストライプ窓10の幅方向と第1のエピタキシャル層6の<1-210>方向とがほぼ一致する。そして、一般的に、GaNエピタキシャル層は、<1-210>方向へ成長する速度が速いため、第2のエピタキシャル層12のラテラル成長が始まってから隣接するエピタキシャル層12同士が一体化するまでの時間が短縮される。このため、第2のエピタキシャル層12の成長速度が速くなる。尚、ストライプ窓10は、必ずしも第1のエピタキシャル層6の<10-10>方向に延在させる必要はなく、例えば、エピタキシャル層6の<1-210>方向に延在するように形成してもよい。

次に、第2のエピタキシャル層12の転位密度について説明する。図5Aに示 25 されているように、第2のエピタキシャル層12の内部には、複数の転位14が 存在する。しかし、図5Dに示されているように、第2のエピタキシャル層12

が横方向に成長しても、転位14は横方向には殆ど広がらない。また、たとえ転位14が横方向に広がったとしても、水平方向に延びて上下面を貫通する貫通転位とはならない。このため、マスク層8のストライプ窓10の形成されていない部分(以下、「マスク部」という。)の上方には、ストライプ窓10の上方の領域よりも転位密度の低い低転位密度領域16が形成される。これにより、第2のエピタキシャル層12の転位密度を減少させることができる。また、ラテラル成長により隣接するエピタキシャル層12同士が一体化した図5Cの状態からエピタキシャル層12が上方へ向かって急成長する際に、転位14は殆ど上方に延びない。このため、第2のエピタキシャル層12の上面は、ボイドや貫通転位が無く埋め込み性及び平坦性に優れた面になる。

5

10

15

20

25

以上のように第2のエピタキシャル層12を形成した後、図1Dに示す第4の 工程に進む。第4の工程では、ウエハをエッチング装置内に設置し、アンモニア 系エッチング液でGaAs基板2を完全に除去する。さらに、GaAs基板2を 除去した後、GaAs基板2の除去面、すなわちバッファ層4の下面に研磨処理 を施して本実施形態に係るGaN単結晶基板13が完成する。

尚、第2のエピタキシャル層12の一部に異常粒成長が生じた場合や、第2のエピタキシャル層12の層厚が不均一になった場合は、第2のエピタキシャル層12の上面に研磨処理を施して鏡面に仕上げる。具体的には、第2のエピタキシャル層12の上面にラッピング研磨を施した後、さらに、バフ研磨を施すことが好ましい。

10の窓幅Qをこの範囲にすることで、マスクの効果を引き出すことができる。

また、図1Aに示す第1の工程で、GaNからなるバッファ層4を成長させる場合を述べたが、GaNの代わりにA1Nからなるバッファ層4を成長させてもよい。この場合は、MOVPE法を使用することができる。具体的には、反応容器内をあらかじめ十分に真空排気した後、常圧にて、GaAs(111)A基板を用いる場合は約550℃~約700℃に、GaAs(111)B基板を用いる場合は約550℃~約700℃にGaAs基板2を昇温保持した状態で、キャリアガスとして水素、原料ガスとしてトリメチルアルミニウム(TMA)とアンモニア(NHョ)を導入する。そして、このような処理により、GaAs基板2上に、厚さ約100オングストローム~約1000オングストロームのA1Nからなるバッファ層4が形成される。

[第2実施形態]

5

10

15

20

25

次に、第2実施形態に係るGaN単結晶基板及びその製造方法を、図6A~図6Dの製造工程図を用いて説明する。

まず、図6Aに示す第1の工程において、GaAs基板2上に、直接SiN又はSiO $_2$ から成るマスク層8を形成する。マスク層8は、厚さ約100nm~約500nmのSiN膜又はSiO $_2$ 膜をプラズマCVD等により形成し、このSiN膜又はSiO $_2$ 膜をフォトリソグラフィ技術でパターンニングすることにより形成される。

図7は、図6Aに示す第1の工程におけるウエハの平面図である。図6A及び図7に示されているように、本実施形態のマスク層8にも、第1実施形態と同様に複数のストライプ状のストライプ窓10が形成されている。なお、ストライプ窓10は、GaAs基板2の<11-2>方向に延在するように形成されている。また、図7の矢印は、GaAs基板2の結晶方位を示している。

マスク層8を形成した後、図6日に示す第2の工程に進み、ストライプ窓10

内のGaAs基板2上にバッファ層24を形成する。バッファ層24は、第1実施形態と同様に、HVPE法、有機金属塩化物気相成長法、MOCVD法などで形成することができる。尚、バッファ層24の厚さは、約50nm~約120nmにすることが好ましい。

次に、図6Cに示す第3の工程において、バッファ層24上にGaNからなるエピタキシャル層26を成長させる。エピタキシャル層26は、第1実施形態と同様に、HVPE法、有機金属塩化物気相成長法、MOCVD法などにより、厚さ約150 μ m~約1000 μ mまで成長させることが好ましい。また、この場合も、エピタキシャル層のラテラル成長によって、エピタキシャル層26の結晶欠陥、特に、マスク層8のマスク部上方、及び、エピタキシャル層26の上面の結晶欠陥を低減させることができる。、

5

10

15

20

25

ここで、上述のように、ストライプ窓10は、GaAs基板2の<11-2>方向に延在するように形成されいるため、ストライプ窓10の幅方向とGaAs基板2の<1-10>方向とがほぼ一致する。そして、一般的に、GaNエピタキシャル層は、GaAs基板2の<1-10>方向へ成長する速度が速いため、エピタキシャル層26のラテラル成長が始まってから隣接するエピタキシャル層26同士が一体化するまでの時間が短縮される。このため、エピタキシャル層26の成長速度が速くなる。

尚、ストライプ窓10は、必ずしもGaAs基板2の<11-2>方向に延在させる必要はなく、例えば、GaAs基板2の<1-10>方向に延在するように形成してもよい。

エピタキシャル層 2 6 を成長させた後、図 6 Dに示す第4の工程に進み、G a A s 基板 2 を除去して本実施形態のG a N 単結晶基板 2 7 が完成する。尚、G a A s 基板 2 の除去方法としては、例えばエッチングがある。アンモニア系エッチング液を用いてG a A s 基板 2 に約 1 時間ウエットエッチングを施すことにより、当該 G a A s 基板 2 を除去することができる。なお、王水を用いて、G a A s 基

板2にウエットエッチングを施すこともできる。また、GaAs基板2を除去した後、GaAs基板2の除去面、すなわちマスク層8及びバッファ層24の下面に研磨処理を施してもよい。さらに、第1実施形態と同様に、エピタキシャル層26の上面に研磨処理を施してもよい。

5 以上のように、本実施形態のGaN単結晶基板の製造方法によれば、エピタキシャル層を1回成長させるだけで結晶欠陥が少なく内部応力の小さなGaN基板を製造することができるため、第1実施形態と比べて製造工程数を低減でき、かつ、コスト削減を図ることができる。

10 [第3実施形態]

15

20

25

第3実施形態の説明をする前に、本実施形態に係るGaN単結晶基板及びその 製造方法を完成させるに至った経緯を説明する。

光半導体デバイスの特性を向上させる要求に応えるため、本発明者らは、より 高品質のGaN基板を製作すべく試行錯誤を繰り返した。その結果、本発明者ら は、高品質のGaN基板を製作するためには、成長したGaNエピタキシャル層 の内部応力を低減させることが重要であることを見出した。

一般に、GaNエピタキシャル層の内部応力は、熱応力と真の内部応力とに分けて考えることができる。この熱応力は、GaAs基板とエピタキシャル層との熱膨張係数の差に起因して生じるものである。また、この熱応力によりGaN基板が反る方向を予測することができるが、GaAs基板を除去しない状態におけるGaN基板全体の実際の反りが、予測した方向とは反対の方向であること、さらにGaAs基板を除去した後にもGaN基板に大きな反りが発生することから、GaNエピタキシャル層に真の内部応力が存在することが明らかとなった。

真の内部応力は、成長の初期段階から存在するものであり、成長したGaNエピタキシャル層中の真の内部応力は、測定の結果、 $0.2 \times 10^{9} \sim 2.0 \times 10^{9}$ $0.2 \times 10^{9} \sim 2.0 \times 10^{9}$ 0.2×10^{9} 0.

るために用いたストーニー(Stoney)の式を説明する。基板上に薄膜が形成されたウエハにおいて、内部応力 σ は、下記数式(1):

$$\sigma = \frac{Eb^2\delta}{3(1-\nu)I^2d}$$

〔数式(1)中、 σ は内部応力、Eは剛性率、 ν はポアソン比、bは基板の厚さ、dは薄膜の厚さ、Iは基板の直径、 δ はウエハの撓みを示す。〕

によって与えられる。GaN単結晶の場合は、d=bとして、下記数式 (2):

$$\sigma = \frac{Ed\delta}{3(1-\nu)I^2}$$

5

10

15

20

〔数式(2)中、記号は数式(1)と同じものを示す。〕

となる。この数式(2)に基づいて、本発明者らは、上述のようなエピタキシャル層における真の内部応力の値を算出した。

真の内部応力や熱応力等の内部応力が存在すると、基板に反りが生じたり、クラック等が発生し、広面積、高品質のGaN単結晶基板を得ることができない。そこで、本発明者らは、真の内部応力が発生する原因を追及した。その結果到達した真の内部応力の発生原因は以下の通りである。即ち、GaNエピタキシャル層は、一般的に結晶が六角柱状となっており、この柱状粒の界面にはわずかな傾きを持った粒界が存在し、原子配列の不整合が観察される。さらに、GaNエピタキシャル層中には、多くの転位が存在する。そして、これら粒界や転位が、欠陥の増殖、消滅を通じてGaNエピタキシャル層の体積収縮等を生じさせ、真の内部応力の発生原因になっているのである。

かかる真の内部応力の発生原因を踏まえて完成された発明の実施形態が、第3 実施形態~第7実施形態に係るGaN単結晶基板及びその製造方法である。

以下、第3実施形態に係るGaN単結晶基板及びその製造方法を、図8A~図8Dの製造工程図を用いて説明する。

図8Aに示す第1の工程では、第1実施形態と同様の方法で、GaAs基板2

上にGaNからなるバッファ層 4 およびGaNからなる第 1 のエピタキシャル層(下層エピタキシャル層) 6 を成長させる。次いで、図8 Bに示す第 2 の工程では、第 1 のエピタキシャル層 6 上にSiN又は SiO_2 からなるマスク層 2 8 を形成する。本実施形態が第 1 実施形態と異なる点は、このマスク層 2 8 の形状にある。

5

10

15

20

25

ここで、図9を用いて、マスク層28の形状を説明する。図9に示されているように、本実施形態では、マスク層28に、正方形の開口窓30が複数形成されている。そして、各開口窓10を第1のエピタキシャル層6の<10-10>方向にピッチLで配列し、<10-10>窓群32が形成されている。そして、この<10-10>窓群32は、各開口窓10の中心位置が隣り合う<10-10>窓群32の各開口窓10の中心位置に対して<10-10>方向に1/2Lずらしながら、第1のエピタキシャル層6の<1-210>方向にピッチdで複数並設されている。尚、ここでいう各開口窓30の中心位置とは、各開口窓30の重心位置を意味する。また、各開口窓30を一辺の長さが2 μ mの正方形とし、ピッチLを6 μ m、ピッチdを5 μ mとした。

次に、図8Cに示す第3の工程では、第1実施形態と同様の方法で、マスク層28上に第2のエピタキシャル層34を成長させる。

ここで、図10A及び図10Bを用いて、第2のエピタキシャル層34の成長 過程を説明する。図1.0Aは、第2のエピタキシャル層34の成長初期段階を示している。この図に示されているように、成長初期において、各開口窓30から 正六角錐または正六角錐台のGaN結晶粒36が成長する。そして、図10Bに 示されているように、このGaN結晶粒36がマスク層28上にラテラル成長すると、各々のGaN結晶粒36は、他のGaN結晶粒36との間に隙間(ピット)を設けることなく繋がる。そして、各GaN結晶粒36がマスク層28を覆い、表面が鏡面状の第2のエピタキシャル層34が形成される。

即ち、<10-10>方向に各開口窓30の中心を1/2Lずらしながら、<

10-10>窓群32を<1-210>方向に複数並設しているため、正六角錐台のGaN結晶粒36は隙間を殆ど生じることなく成長し、この結果、真の内部応力が大幅に低減される。

また、第1実施形態と同様に、第2のエピタキシャル層34のマスク層28のマスク部上方に相当する領域では、GaN結晶粒36のラテラル成長の効果により転位が殆ど発生しない。

5

10

15

20

25

第2のエピタキシャル層34を成長させた後、図8Dに示す第4の工程に進み、 GaAs基板2をエッチング処理等によって除去し、本実施形態のGaN単結晶 基板35が完成する。

本実施形態では、上述のように、マスク層 28 の各間口窓 30 の形状を一辺が 2μ mの方形としたが、マスク層 28 の開口窓 30 の形状及び寸法はこれに限られず、成長条件等に応じて適宜調整することが望ましい。例えば、一辺が $1\sim5$ μ mの方形、直径が $1\sim5$ μ mの円形にすることができる。さらに、各窓 10 の形状は、方形、円形に限られることはなく、楕円形、多角形にすることが空ましい。各開口窓 30 の面積は、0.7 μ m² ~ 50 μ m² にすることが望ましい。各開口窓 30 の面積をこの範囲よりも大きくしすぎると、各開口窓 30 内のエピタキシャル層 34 で欠陥が多発し、内部応力が増加する傾向にある。一方、各開口窓 30 の面積をこの範囲よりも小さくしすぎると、各開口窓 30 の形成が困難となり、また、エピタキシャル層 34 の成長速度も低下してしまう傾向にある。また、各開口窓 30 の総面積は、マスク層 28 の全ての開口窓 30 及びマスク部を合わせた全面積の $10\sim50$ %であることが望ましい。各開口窓 30 の総面積をこの範囲にした場合、300 の総面積をこの範囲にした場合、300 ののでいることができる。

また、本実施形態では、ビッチLを 6μ m、ビッチdを 5μ mとしたが、ビッチL及びビッチdの長さは、これに限定されるものではない。ビッチLは、 $3\sim 10\mu$ mの範囲にすることが望ましい。ビッチLが 10μ mよりも長すぎると、

GaN結晶粒36同土が繋がるまでの時間が増加し、第2のエピタキシャル層34の成長に多大な時間を費やすことになる。一方、ピッチLが3 μ mよりも短すぎると、結晶粒36がラテラル成長する距離が短くなり、ラテラル成長の効果が小さくなってしまう。また、同様の理由から、ピッチdは、0.75 L \leq d \leq 1.3 L となる範囲にすることが望ましい。特に、d=0.87 L のとき、即ち<10-10>方向に隣接する二つの開口窓30と、この二つの開口窓34の<1-210>方向に存在すると共に、この二つの開口窓34までの距離が最も短い一つの開口窓30とを結ぶと正三角形ができるときに、全面に結晶粒が隙間無く並びエピタキシャル層34に生じるピットが最も少なくなり、GaN単結晶基板の欠陥密度及び内部応力を最小にすることができる。

また、<10-10>窓群32の各開口窓30が隣接する<10-10>窓群32の各開口窓30と<10-10>方向にずれている距離は、必ずしも正確に1/2 L である必要はなく、2/5 L $\sim3/5$ L 程度であれば、内部応力の低減を図ることができる。

15 尚、マスク層 28 の厚さは、約 0.05μ m~約 0.5μ mの範囲にすることが望ましい。これは、マスク層 28 がこの範囲よりも厚すぎると GaNの成長中にクラックが入ってしまい、一方、この範囲よりも薄すぎると GaNの成長中に GaAs 基板が蒸発損傷を受けるからである。

20 [第4実施形態]

5

10

25

次に、第4実施形態に係るGaN単結晶基板及びその製造方法を、図11A~図11Dの製造工程図を用いて説明する。本実施形態は、マスク層の形状以外は、第2実施形態と同様である。

まず、図11Aに示す第1の工程において、GaAs基板2上に直接、SiN 又は SiO_2 から成るマスク層38を形成する。マスク層38は、厚さ約100 nm~約500nmのSiN膜又は SiO_2 膜をプラズマCVD等により形成し、

このSiN膜又は SiO_2 膜をフォトリソグラフィ技術でパターンニングすることにより形成される。

図12は、図11Aに示す第1の工程におけるウェハの平面図である。図12に示されているように、本実施形態のマスク層38の形状は、第3実施形態のマスク層28と同様の形状である。マスク層38には、複数の開口窓40が形成されている。そして、各開口窓40がGaAs基板2の<11-2>方向にピッチLで配列され、<11-2>窓群42が形成されている。そして、この<11-2>窓群42は、各開口窓40の中心位置が隣り合う<11-2>窓群42の各開口窓40の中心位置に対して<11-2>方向に1/2Lずれながら、GaAs基板2の<1-10>方向にピッチdで複数並設されている。本実施形態のマスク層38が第3実施形態のマスク層28と異なるのは、このような各開口窓の配列方向のみである。

5

10

20

25

マスク層38を形成した後、図11Bに示す第2の工程で、開口窓40内のG aAs基板2上にバッファ層24を形成する。

15 次いで、図11Cに示す第3の工程でバッファ層24上にGaNからなるエピタキシャル層26を成長させる。

本実施形態においても、第3実施形態と同様に、成長初期において、各開口窓40から正六角錐台のGaN結晶粒が成長する。そして、このGaN結晶粒がマスク層38上にラテラル成長すると、各々のGaN結晶粒は、他のGaN結晶粒との間に隙間(ピット)を設けることなく繋がる。そして、各GaN結晶粒がマスク層38を覆い、表面が鏡面状のエピタキシャル層26が形成される。

即ち、GaAs基板 2の<11-2>方向に各開口窓 40の中心を 1/2 L ずらしながら、<11-2>窓群 42を<1-10>方向に複数並設しているため、正六角錐台のGaN結晶粒は隙間を殆ど生じることなく成長し、この結果、真の内部応力が大幅に低減される

尚、各開口窓40は、必ずしもGaAs基板2の<11-2>方向に延在させ

る必要はなく、例えば、GaAs基板2の<1-10>方向に延在するように形成してもよい。

エピタキシャル層26を成長させた後、図11Dに示す第4の工程に進み、G aAs基板2を除去して本実施形態のGaN単結晶基板39が完成する。なお、GaN単結晶基板39の表面や裏面の粗さが大きいときは、表面および裏面を研磨してもよい。

以上のように、本実施形態のGaN単結晶基板の製造方法によれば、エピタキシャル層を1回成長させるだけで、結晶欠陥が大幅に低減したGaN基板を製造することができ、コスト削減を図ることができる。

10

15

20

25

5

[第5実施形態]

図13A~図13Eを用いて、第5実施形態のGaN単結晶基板及びその製造方法を説明する。

まず、図13Aに示す第1の工程で、第4実施形態と同様にGaAs基板2上に好ましくは厚さ約100nm~約500nmのマスク層38を形成する。

次に、図13Bに示す第2の工程で、開口窓40内のGaAs基板2上に、好ましくは厚さ約500nm~約1200nmのバッファ層24を形成する。

次いで、図13Cに示す第3の工程で、バッファ層24及びマスク層38上に GaNからなる第1のエピタキシャル層44を成長させる。第1のエピタキシャル層44の厚さは、約50 μ m~約300 μ mの範囲内にすることが好ましい。 本実施形態においても、第3実施形態および第4実施形態と同様に、各開口窓40から成長するGaN結晶粒は、他のGaN結晶粒との間に隙間(ピット)を設けることなく繋がり、マスク層38を埋め込むような構造となる。

図13Dに示す第4の工程では、第1のエピタキシャル層44を形成したウェ ハをエッチング装置内に配置し、王水で約10時間エッチングすることにより、 GaAs基板2を完全に除去する。このようにして、一旦、厚さ約50 μ m~約 300μmの薄厚のGaN単結晶基板を形成する。

図13Eに示す第5の工程では、第1のエピタキシャル層44上に、上述のH VPE法、有機金属塩化物気相成長法、MOCVD法等によって、GaNからなる第2のエピタキシャル層46を厚さ約100 μ m~約700 μ m成長させる。

5 これにより、厚さ約 150μ m〜約 1000μ mのGaN単結晶基板47が形成される。

以上のように、本実施形態では、第2のエピタキシャル層46を成長させる前にGaAs基板2を除去するため、GaAs基板2と、バッファ層24及びエピタキシャル層44,46との熱膨張係数の差に起因する熱応力の発生を防止することができる。このため、GaAs基板2を途中で除去せずにエピタキシャル層を最後まで成長させる場合と比較して、反りやクラックの少ない高品質のGaN単結晶基板を作製することができる。

尚、上述のように、第1のエピタキシャル層44の厚さを約300 μ m以下にするのは、第1のエピタキシャル層44が厚すぎると、熱応力の影響が大きくなるためである。一方、第1のエピタキシャル層44の厚さを約50 μ m以上にするのは、第1のエピタキシャル層44が薄すぎると、機械的強度が弱く、ハンドリングが困難なためである。

また、ここではマスク層として第4実施形態のマスク層を用いる場合を説明したが、本実施形態のマスク層に、第2実施形態のようなストライプ窓を有するマスク層を用いてもよい。さらに、GaN単結晶基板47の表面や裏面の粗さが大きいときは、表面および裏面を研磨してもよい。

「第6実施形態]

10

15

20

25

次に、図14を用いて、第6実施形態に係るGaN単結晶基板及びその製造方法を説明する。本実施形態のバッファ層およびエピタキシャル層の形成方法は、第3実施形態の方法と同じであり、マスク層の開口窓の形状のみ第3実施形態と

異なる。

5

10

15

20

25

図14は、本実施形態で用いたマスク層48の各開口窓の形状及び配置を示した図である。図のように、各開口窓は長方形(短冊状)に形成され、マスク層48の直ぐ下の層である第1のエピタキシャル層6の<10-10>方向を長手方向とする長方形窓50となっている。各長方形窓50が第1のエピタキシャル層6の<10-10>方向にピッチLで配列されて、<10-10>長方形窓群52が形成されている。そして、この<10-10>長方形窓群52は、隣り合う<10-10>長方形窓群52と<10-10>方向に各長方形窓50の中心位置を1/2Lずらしながら、第1のエピタキシャル層6の<1-210>方向にピッチdで複数並設されている。

また、第1のエピタキシャル層 6の<1-210>方向に隣り合う長方形窓群 5 2間のマスク幅(d-w)は、約2 μ m〜約10 μ mにすることが望ましい。 マスク幅(d-w)が広すぎると、六角柱状の結晶粒が連続化するのに時間がかかり、一方、マスク幅(d-w)が狭すぎると、ラテラル成長の効果が得られず、結晶欠陥が低減されにくくなるためである。さらに、各長方形窓 5 0 の幅wは、約1 μ m〜約5 μ mにすることが望ましい。これは、幅wを広くしすぎると、各長方形窓 5 0内の G a N 層で欠陥が多発する傾向にあり、他方、幅wを狭くしすぎると、各長方形窓 5 0 の形成が困難となり、第2のエピタキシャル層の成長速度も低下する傾向にあるからである。

このようなマスク層 4 8 を形成した後、第 3 実施形態と同様に、マスク層 4 8 上に G a N からなる第 2 のエピタキシャル層 1 2 を成長させるが、本実施形態においても、第 2 のエピタキシャル層 1 2 の成長初期において、各長方形窓 5 0 から正六角錐台の G a N 結晶粒が成長する。そして、この G a N 結晶粒がマスク層 4 8 上にラテラル成長すると、各々の G a N 結晶粒は、他の G a N 結晶粒との間に隙間(ピット)を設けることなく繋がり、マスク層 4 8 を埋め込むような構造となる。

5

10

15

20

25

即ち、第1のエピタキシャル層6の<10-10>方向に各長方形窓50の中心位置を1/2Lずらしながら、<10-10>長方形窓群52を第1のエピタキシャル層6の<1-210>方向に複数並設しているため、正六角錐台のGa N結晶粒はピットを生じることなく成長し、結晶欠陥の低減および真の内部応力の低減を図ることができる。

また、第3実施形態と同様に、第2のエピタキシャル層のマスク層48のマスク部上方に相当する領域では、GaN結晶粒のラテラル成長の効果により転位が 殆ど発生しない。

さらに、各長方形窓 50の長手方向が第1のエピタキシャル層 6の<10-10>方向と一致するように各長方形窓 50 が形成されているため、マスク層 48 上に成長させる第2のエピタキシャル層の成長速度を速めることができる。これは、60 の成長初期に成長速度の速い $\{1-211\}$ 而が現れて、 $\{1-211\}$ 0 の成長速度が増加し、各長方形窓 50 内に形成された島状の 60 の 61 品粒が連続膜化するまでの時間が短くなるためである。

また、本実施形態とは異なり、第1のエビタキシャル層6を介さず、直接GaAs基板2上にマスク層48を形成しても、マスク層48上に形成する第2のエビタキシャル層の成長速度を向上することができる。この場合は、長方形窓50の長手方向が、マスク層48の下層のGaAs基板2の<11-2>方向と一致するように形成することが好ましい。

[第7実施形態]

5

10

15

25

次に、図15を用いて、第7実施形態に係るGaN単結晶基板及びその製造方法を説明する。本実施形態は、マスク層の窓の形状に特徴がある。バッファ層およびエピタキシャル層は、上記各実施形態と同様に形成する。

図15に示されているように、本実施形態では、マスク層58の各開口窓が正 六角リング状に形成された六角窓60となっている。そして、この六角窓60の 六つの各辺が、マスク層58の下層のエピタキシャル層の<10-10>方向と 一致するように形成されている。六角窓60の各辺をこの方向に形成することに より、マスク層58上に形成するエピタキシャル層の成長速度を速めることがで きる。これは、GaNの成長初期に、成長速度の速い $\{1-211\}$ 面が<1-210>方向に成長するためである。尚、六角窓60の窓幅aは約 2μ m、外側の正六角形の一辺の長さりは約 5μ m、隣接する六角窓60間のマスク幅wは約 3μ mにすることが望ましい。但し、これらの値は、この範囲に限定されるものではない。また、図15中の矢印は、マスク層58の下層のエピタキシャル層の 結晶方位を示している。

マスク層 5 8 上にエピタキシャル層を成長させた後、ウエハにエッチング処理を施すことにより、GaAs基板を完全に除去する。更に、GaAs基板の除去面を研磨処理して、本実施形態のGaN単結晶基板を形成する。

20 本実施形態のGaN単結晶基板も、上記各実施形態と同様に、マスク層上のエ ビタキシャル層のマスク部上方に相当する領域では、GaN結晶粒のラテラル成 長の効果により転位が殆ど発生しない。

なお、本実施形態とは異なり、エピタキシャル層を介さず直接GaAs基板上にマスク層58を形成しても、マスク上に形成するエピタキシャル層の成長速度を向上させることができる。この場合は、この六角窓42の六つの各辺が、GaAs基板の<11-2>方向と一致するように形成する。

[第8実施形態]

25

次に、図16A〜図16Fを用いて、第8実施形態に係るGaN単結晶基板及びその製造方法を説明する。

図16Aに示す第1の工程におけるマスク層8の形成、図16Bに示す第2の工程におけるバッファ層24の形成、図16Cに示す第3の工程におけるエピタキシャル層26の成長、図16Dに示す第4の工程におけるGaAs基板2の除去は、第2実施形態の同様に行われるため、説明は省略する。尚、GaAs基板2が除去されたGaN単結晶基板の厚さは、第2実施形態と同様に約50μm~約300μm程度、あるいは、それ以上であることが望ましい。

図16 E に示す第5の工程では、図16 D に示すG a N 単結晶を種結晶として、エピタキシャル層26上にG a N からなるエピタキシャル層62を成長させて、G a N 単結晶のインゴット64を形成する。尚、エピタキシャル層62の成長方法としては、上記各実施形態と同様にH V P E 法、有機金属塩化物気相成長法、MOC V D 法等があるが、本実施形態では、この他、昇華法を採用してもよい。昇華法は、図22に示すような成長装置90を用いて行われる成長法であり、より詳しくは、原料とするG a N 粉末92と基板2とが対向して設置された反応炉94内に、高温中でN H。ガス等を流し込み、これによりG a N 粉末の蒸発拡散を進行させながらN H。ガスを流し込み、基板2上にG a N を成長させる気相成20 長方法である。この昇華法は、微妙な制御が困難であるが、エピタキシャル層の厚付け、即ち、インゴットの作製には適している。本実施形態では、反応炉の温度を約1000℃~約1300℃に設定し、窒素ガスをキャリアガスとして、アンモニアを約10sccm~約100sccm流し込む。

次に、図16Fに示す第6の工程では、GaN単結晶のインゴット64を複数 枚のGaN単結晶基板66にする。インゴット64を複数枚のGaN単結晶基板 にする方法としては、インゴット64を内周歯のスライサー等により切断する方

法とGaN単結晶の劈開面に沿ってインゴット64を劈開する方法とがある。尚、 切断処理と劈開処理の両方を用いてもよい。

以上のように、本実施形態によれば、GaN単結晶のインゴットを複数枚に切断又は劈開するため、簡単な作業で、結晶欠陥が低減されたGaN単結晶基板を複数枚得ることができる。すなわち、上記各実施形態と比較して、量産性を向上させることができる。

尚、インゴット64の高さは、約1cm以上にすることが好ましい。インゴット64が1cmよりも低すぎると量産効果がないためである。

また、本実施形態の製造方法は、図6Aから図6Dに示す第2実施形態の製造工程を経たGaN単結晶基板上に基づいてインゴット64を形成するものであるが、本実施形態はこの方法には限られない。この他、第1実施形態〜第7実施形態の製造工程を経たGaN単結晶基板に基づいてインゴット64を形成するようにしてもよい。

尚、本実施形態のGaN単結晶基板 66は、故意のドーピングなしで、キャリア濃度がn型で 1×10^{16} c m $^{-3}\sim1\times10^{20}$ c m $^{-3}$ の範囲内、電子移動度が60 c m $^{2}\sim800$ c m 2 の範囲内、比抵抗が 1×10^{-4} Ω c m $\sim1\times10$ Ω c mの範囲内になるように制御可能であることが実験により判明した。

[第9実施形態]

5

10

20 次に、図17A~図17Cを用いて、第9実施形態に係るGaN単結晶基板及 びその製造方法を説明する。

図17Aに示す第1の工程では、GaAs基板2上に、マスク層8及びバッファ層24を形成する。マスク層8およびバッファ層24の形成方法は、上記各実施形態と同様である。

25 次に、図17Bに示す第2の工程では、GaNからなるエピタキシャル層68 を一気に成長させて、インゴット70を形成する。エピタキシャル層68の成長

方法は、第8実施形態のエピタキシャル層62の成長方法と同様である。尚、インゴット70の高さは、約1cm以上にすることが好ましい。

図17 Cに示す第3の工程では、第8実施形態の第6の工程と同様に、切断処理又は劈開処理によって、GaN単結晶のインゴット70を複数枚のGaN単結晶基板72にする。

以上のように、本実施形態によれば、GaN単結晶のインゴットを複数枚に切断又は劈開するため、簡単な作業で、結晶欠陥が低減されたGaN単結晶基板を複数枚得ることができる。すなわち、第1実施形態~第7実施形態と比較して、量産性を向上させることができる。さらに、GaNエピタキシャル層の成長は一回だけなので、第8実施形態と比較しても、製造プロセスの簡略化およびコスト削減を図ることができる。

尚、本実施形態のGaN単結晶基板72も、第8実施形態のGaN単結晶基板66と同様に、故意のドーピングなしで、キャリア濃度がn型で 1×10^{16} c $m^{-3}\sim1\times10^{20}$ c m^{-3} の範囲内、電子移動度が60 c $m^{2}\sim800$ c m^{2} の範囲内、比抵抗が $1\times10^{-4}\Omega$ c $m\sim1\times10\Omega$ c m0 の範囲内になるように制御可能であることが実験により判明した。

[第10実施形態]

5

10

15

20

25

図18A~図18Bを用いて、第10実施形態に係るGaN単結晶基板及びその製造方法を説明する。

まず、図18Aに示す第1の工程で、上記第8実施形態で製造されたGaN単結晶基板66上にエピタキシャル層74を成長させて、GaN単結晶のインゴット76を形成する。エピタキシャル層74の成長方法には、上記各実施形態と同様に、HVPE法、有機金属塩化物気相成長法、MOCVD法、昇華法等を用いることができる。

次に、図18Bに示す第2の工程では、切断処理又は劈開処理によって、Ga

N単結晶のインゴット76を複数枚のGaN単結晶基板78にする。これにより、本実施形態のGaN単結晶基板78が得られる。

以上のように、本実施形態では、既に製造されたGaN単結晶基板に基づいてインゴットを作製するため、簡単な作業で、結晶欠陥が低減されたGaN単結晶基板を複数枚得ることができる。尚、本実施形態では、第8実施形態で製造されたGaN単結晶基板66を種結晶としてインゴットを作製したが、インゴットの種結晶はこれには限られない。例えば、第9実施形態のGaN単結晶基板72を種結晶として用いることもできる。

10 [第11実施形態]

5

25

図19A~図19Cを用いて、第11実施形態に係るGaN単結晶基板及びその製造方法を説明する。

まず、図19Aに示す第1の工程で、GaAs基板2上に、厚さ約50nm~約120nmのバッファ層79を形成する。

次に、図19Bに示す第2の工程で、マスク層を形成せずに、バッファ層79上にGaNからなるエピタキシャル層81を成長させて、高さ約1cm以上のGaN単結晶のインゴット83を形成する。尚、エピタキシャル層81を成長させるには、HVPE法、有機金属塩化物気相成長法、MOCVD法、昇華法等を用いることができる。ここで、本実施形態ではマスク層を形成しないため、エピタキシャル層のラテラル成長は起こらず結晶欠陥は少なくないが、エピタキシャル層を厚くすることで転位を低減することができる。

最後に、図19Cに示す第3の工程では、切断処理又は劈開処理によって、GaN単結晶のインゴット83を複数枚のGaN単結晶基板85にする。

以上のように、本実施形態によれば、GaN単結晶のインゴットを複数枚に切断又は劈開するため、簡単な作業で、結晶欠陥が低減されたGaN単結晶基板を複数枚得ることができる。すなわち、第1実施形態~第7実施形態と比較して、

量産性を向上させることができる。

[発光デバイス及び電子デバイス]

5

10

15

20

上記各実施形態により製造されるGaN単結晶基板は、n型で導電性を有するため、その上にMOCVD法などでInGaN活性層を含むGaN系の層をエピタキシャル成長させることにより、発光ダイオード等の発光デバイスや電界効果トランジスタ(MESFET)等の電子デバイスを形成することができる。これらの発光デバイス等は、上記各実施形態で製造された結晶欠陥が少ない高品質のGaN基板を使用して作製されているため、サファイア基板を用いた発光デバイス等と比較して特性が著しく向上する。また、GaN単結晶基板に成長させたエピタキシャル層の(0001)面がGaN単結晶基板の(0001)面に対して平行にホモエピタキシャル成長し、劈開面が一致するため、上記発光デバイス等は優れた性能を有する。

図20は、第3実施形態で得られたGaN単結晶基板35を用いた発光ダイオード80を示す図である。この発光ダイオード80は、GaN単結晶基板35上に、GaNバッファ層101と、Siドープn型GaN障壁層102と、厚さ30オングストロームのアンドープ $In_{0.45}Ga_{0.55}N$ 井戸層103と、Mgドープp型 $Al_{0.2}Ga_{0.8}N$ 障壁層104と、Mgドープp型GaNコンタクト層105と、を成長させた量子井戸構造となっている。この発光ダイオード80は、アンドープInGaN井戸層103の組成比により発光色を変化することができ、たとえばInO組成比を1000.2にすると青色発光になる。

この発光ダイオード80の特性を調べた結果、従来のサファイア基板を用いた 発光ダイオードの発光輝度が0.5cdであったのに対し、2.5cdと5倍に なった。

25 尚、かかる発光ダイオードの基板として、第3実施形態のGaN単結晶基板3 5に限られず、他の実施形態のGaN単結晶基板も当然使用することができる。

図21は、第3実施形態で得られたGaN単結晶基板35を用いた半導体レーザ82を示す図である。半導体レーザ82は、GaN単結晶基板35上に、GaNがパッファ層1112と、n-GaNコンタクト層112と、 $n-In_{0.05}Ga_{0.05}N$ クラッド層113と、 $n-Al_{0.08}Ga_{0.02}N$ クラッド層114と、n-GaNガイド層115と、Siドープ $In_{0.15}Ga_{0.85}N$ (35オングストローム) $/In_{0.02}Ga_{0.08}N$ (70オングストローム)多層によるMQW層116と、 $p-Al_{0.02}Ga_{0.08}N$ 0のオングストローム)を層によるMQW層118と、 $p-Al_{0.08}Ga_{0.092}N$ 0のラッド 119 層と、p-GaN 118 と、 $p-Al_{0.08}Ga_{0.092}N$ 0 ラッド 119 層と、p-GaN 118 と、118 と、118 と、118 と、118 と、118 と、118 と、118 と 118 と 118

この半導体レーザ82では、従来は数分程度であった発振寿命が100時間を超え、大幅な特性向上を実現することができた。具体的には、従来、約1.5分程度であった発振寿命が、約120時間と増加した。

尚、かかる半導体レーザとして、第3実施形態のGaN単結晶基板35に限られず、他の実施形態のGaN単結晶基板も当然使用することができる。

さらに、図示は省略するが、本実施形態のGaN単結晶基板をもとに電界効果トランジスタ(MESFET)を製作した。この電界効果トランジスタの特性を調べた結果、500 Cという高温においても43 mS/mmという高い相互コンダクタンス(gm)が得られ、本実施形態のGaN 単結晶基板は、電子デバイス用の基板としても有効であることが分かった。

20

25

15

5

10

実施例 1

第1実施形態のGaN単結晶基板及びその製造方法の実施例である実施例1について、図1A~図1Dを参照して説明する。

GaAs基板2には、GaAs(111)面がGa面となっているGaAs(111)A基板を使用した。また、バッファ層4、第1のエピタキシャル層6、及び第2のエピタキシャル層12は、全て図3に示す気相成長装置を用いて有機金

属塩化物気相成長法によって形成した。

5

10

15

20

25

まず、図1Aに示す第1の工程で、バッファ層4を有機金属塩化物気相成長法によって形成した。この際、抵抗加熱ヒータ81によってGaAs基板2の温度を約500℃に昇温保持し、トリメチルガリウム(TMG)を分圧 6×10^{-4} atm、塩化水素を分圧 6×10^{-4} atm、アンモニアを分圧0.13 atm でそれぞれ反応チャンバ79内に導入した。そして、バッファ層4の厚さを約800オングストロームにした。

次に、図1Bに示す第2の工程で、第1のエピタキシャル層6上に SiO_2 からなるマスク層8を形成した。この際、ストライプ窓10の長手方向を第1のエピタキシャル層6の[10-10]に向け、マスク層8の厚さを約300nm、マスク部の幅Pを約5 μ m、窓幅Qを約2 μ mとした。

次に、図1Cに示す第3の工程で、有機金属塩化物気相成長法によって第2のエピタキシャル層12を成長させた。この際、抵抗加熱ヒータ81によってGaAs基板2の温度を約970℃に昇温保持し、トリメチルガリウム(TMG)を分圧2×10 $^{-3}$ atm、塩化水素を分圧2×10 $^{-3}$ atm、アンモニアを分圧0.25atmでそれぞれ反応チャンバ79内に導入した。そして、約20 μ m /hrの成長速度で、第2のエピタキシャル層12の厚さを約100 μ mにした。次に、図1Dに示す第4の工程で、ウエハをエッチング装置に設置し、アンモニア系エッチング液でGaAs基板2を約1時間ウエットエッチングすることで、GaAs基板2を完全に除去した。そして最後に、GaAs基板2の除去面に研

磨処理を施して、GaN単結晶基板13を完成させた。

本実施例により製造されたGaN単結晶基板の諸特性は以下のようであった。すなわち、このGaN単結晶基板は、基板面が (0001) 面となっており、その結晶性はX線解析によるX線半値幅 4.5分、そして、転位密度が単位面積当たり 10^7 (cm^{-2}) 程度であった。これにより、従来のサファイア基板上にGaNエピタキシャル層を形成した場合の欠陥密度が単位面積当たり 10^9 (cm^{-2}) であったのに比べて、結晶欠陥が大幅に低減したことが分かった。

実施例2

5

25

10 次に、第1実施形態の他の実施例である実施例2について、図1A~図1Dを 参照して説明する。

GaAs基板2には、GaAs (111) A基板を使用した。また、バッファ層4、第1のエピタキシャル層6、及び第2のエピタキシャル層12は、全て図2に示す気相成長装置を用いてHVPE法によって形成した。

15 まず、図1Aに示す第1の工程で、バッファ層4をHVPE法によって形成した。この際、抵抗加熱ヒータ61によってGaAs基板2の温度を約500℃に昇温保持し、塩化水素を分圧 5×10^{-3} atm、アンモニアを分圧0. 1atmでそれぞれ反応チャンバ59内に導入した。そして、バッファ層4の厚さを約800オングストロームにした。

次に、バッファ層 4 上に、HVPE法によって第1のエピタキシャル層 6 を成長させた。この際、抵抗加熱ヒータ 6 1 によってGaAs基板 2 の温度を約970 Cに昇温保持し、塩化水素を分圧 2×10^{-2} a t m、アンモニアを分圧 0.2 5 a t mでそれぞれ反応チャンバ79内に導入した。そして、成長速度を約80 μ m/hrにして、第1のエピタキシャル層 6 の厚さを約4 μ mにした。

次に、図1Bに示す第2の工程で、第1のエピタキシャル層6上にマスク層8 を形成した。この際、ストライプ窓10の長手方向を第1のエピタキシャル層6

の [10-10] に向け、マスク層 8 の厚さを約 3 0 0 n m、マスク部の幅 P を 約 5 μ m、窓幅 Q を約 2 μ m とした。

次に、図1Cに示す第3の工程で、HVPE法によって第2のエピタキシャル層12を成長させた。この際、抵抗加熱ヒータ61によってGaAs基板2の温度を約970℃に昇温保持し、塩化水素を分圧2. $5×10^{-2}atm$ 、アンモニアを分圧0.25atmでそれぞれ反応チャンバ79内に導入した。そして、成長速度を約100 μ m/hrにして、第2のエピタキシャル層12の厚さを約100 μ mにした。このように、本実施例では、HVPE法を用いているため、有機金属塩化物気相成長法を用いた実施例1と比較して、エピタキシャル層の成長速度を速くすることができた。

次に、図1Dに示す第4の工程で、ウエハをエッチング装置に設置し、アンモニア系エッチング液でGaAs基板2を約1時間ウエットエッチングすることで、GaAs基板2を完全に除去した。そして最後に、GaAs基板2の除去面に研磨処理を施して、GaN単結晶基板13を完成させた。

本実施例により製造されたGaN単結晶基板の諸特性は以下のようであった。すなわち、このGaN単結晶基板は、基板面が(0001) 面となっており、その結晶性はX線解析によるX線半値幅 4.5分、そして、転位密度が単位面積当たり 5×10^7 (cm^{-2}) 程度であった。これにより、従来のサファイア基板上にGaNエピタキシャル層を形成した場合の欠陥密度が単位面積当たり 10^9 (cm^{-2}) であったのに比べて、結晶欠陥が大幅に低減したことが分かった。

実施例3

5

10

次に、第2実施形態の実施例である実施例3について、図6A~図6Dを参照して説明する。

25 GaAs基板2には、GaAs(111)面がAs面となっているGaAs(111) B基板を使用した。また、バッファ層24及び第2のエピタキシャル層2

6は、ともに図3に示す気相成長装置を用いて有機金属塩化物気相成長法によって形成した。

まず、図6Aに示す第1の工程で、GaAs基板2上にマスク層8を形成した。この際、ストライプ窓10の長手方向をGaAs基板2の [11-2] に向け、マスク層8の厚さを約350 nm、マスク部の幅Pを約4 μ m、窓幅Qを約2 μ mとした。

5

10

15

次に、図6Bに示す第2の工程で、ストライプ窓10内のGaAs基板2上に バッファ層24を有機金属塩化物気相成長法によって形成した。この際、抵抗加熱ヒータ81によってGaAs基板2の温度を約500℃に昇温保持し、トリメチルガリウム(TMG)を分圧6×10 $^{-4}$ atm、塩化水素を分圧6×10 $^{-4}$ atm、アンモニアを分圧0.1atmでそれぞれ反応チャンバ79内に導入した。そして、バッファ層24の厚さを約700オングストロームにした。

20 次に、図6Dに示す第4の工程で、ウエハをエッチング装置に設置し、アンモニア系エッチング液でGaAs基板2を約1時間ウエットエッチングすることで、GaAs基板2を完全に除去した。そして最後に、GaAs基板2の除去面に研磨処理を施して、GaN単結晶基板27を完成させた。

本実施例により製造されたGaN単結晶基板は、転位密度が単位面積当たり2 25 ×10⁷ (cm⁻²)程度であった。すなわち、本実施例により製造されたGaN 単結晶基板は、実施例1および実施例2のGaN単結晶基板よりは転位密度が大

きかったものの、従来のサファイア基板上にGaNエピタキシャル層を形成した場合よりも結晶欠陥が大幅に低減したことが分かった。また、本実施例では、実施例1および実施例2よりも製造工程数が少ないため、コスト削減を図ることができた。

5

10

15

20

25

<u>実施例4</u>

次に、第3実施形態の実施例である実施例4について、図8A~図8Dを参照して説明する。

GaAs基板2には、GaAs(111)A基板を使用した。また、バッファ 層4、第1のエピタキシャル層6、及び第2のエピタキシャル層34は、全て図 3に示す気相成長装置を用いて有機金属塩化物気相成長法によって形成した。

まず、図8Aに示す第1の工程で、バッファ層4を有機金属塩化物気相成長法によって形成した。この際、抵抗加熱ヒータ81によってGaAs基板2の温度を約500℃に昇温保持し、トリメチルガリウム(TMG)を分圧 6×10^{-4} atm、塩化水素を分圧 6×10^{-4} atm、アンモニアを分圧0. 1 atmでそれぞれ反応チャンバ79内に導入した。そして、バッファ層4の厚さを約700オングストロームにした。

次に、バッファ層 4 上に、有機金属塩化物気相成長法によって第 1 のエピタキシャル層 6 を成長させた。この際、抵抗加熱ヒータ 8 1 によって G a A s 基板 2 の温度を約 9 7 0 ∞ に昇温保持し、トリメチルガリウム(TMG)を分圧 2×1 0^{-3} a t m、塩化水素を分圧 2×1 0^{-3} a t m、アンモニアを分圧 0 . 2 a t m でそれぞれ反応チャンバ 7 9 内に導入した。そして、約 1 5 μ m/h r の成長速度で、第 1 のエピタキシャル層 6 の厚さを約 2 μ mにした。

次に、図8Bに示す第2の工程で、第1のエピタキシャル層6上にSiO₂からなるマスク層28を形成した。この際、開口窓30を1辺の長さが 2μ mの正方形とし、<10-10>窓群32のピッチLを 6μ m、ピッチdを 5μ mとし

た。また、隣り合う<10-10>窓群32同士を、<10-10>方向に3 μ mずつずらした。

次に、図8 Cに示す第3の工程で、有機金属塩化物気相成長法によって第2のエピタキシャル層34を成長させた。この際、抵抗加熱ヒータ81によってGaAs基板2の温度を約1000 Cに昇温保持し、トリメチルガリウム(TMG)を分圧 4×10^{-3} atm、塩化水素を分圧 4×10^{-3} atm、アンモニアを分圧0.2atmでそれぞれ反応チャンバ79内に導入した。そして、成長速度を約25 μ m/hrにして、第2のエピタキシャル層12の厚さを約100 μ mにした。

10 次に、図8Dに示す第4の工程で、ウエハをエッチング装置に設置し、王水で GaAs基板2を約10時間エッチングすることで、GaAs基板2を完全に除 去した。そして最後に、GaAs基板2の除去面に研磨処理を施して、GaN単 結晶基板35を完成させた。

本実施例により製造された G a N 単結晶基板の諸特性は以下のようであった。 すなわち、欠陥密度は、約 3 × 1 0 ⁷ (c m ⁻²)程度であり、従来よりも著しく低減されていた。また、クラックも観察されなかった。また、別途マスク層形成工程を省いて製造した G a N 単結晶基板の曲率半径は約 6 5 mmであったが、本実施例の G a N 単結晶基板の曲率半径は約 7 7 0 mmで、 G a N 単結晶基板の反りをかなり低減させることができた。また、従来 0 . 0 5 G P a であった内部応20 力も、本実施例の G a N 単結晶基板では約 0 . 0 0 5 G P a と約 1 / 1 0 に低減していた。尚、G a N 単結晶基板では約 0 . 0 0 5 G P a と約 1 / 1 0 に低減していた。尚、G a N 単結晶基板の内部応力は、上述のストーニーの式(数式(2))により算出した。また、ホール測定により電気特性を算出したところ、n型でキャリア濃度 2 × 1 0 ¹⁸ c m ⁻³、キャリア移動度 1 8 0 c m ² / V ・ S であった。

25 実施例 5

5

次に、第5実施形態の実施例である実施例5について、図13A~図13Eを

参照して説明する。

GaAs基板2には、GaAs (111) A基板を使用した。また、バッファ 層24、第1のエピタキシャル層44、及び第2のエピタキシャル層46は、全 て図2に示す気相成長装置を用いてHVPE法によって形成した。

5 まず、図13Aに示す第1の工程で、GaAs基板2上にマスク層38を形成した。この際、開口窓40を直径が 2μ mの円形とし、<11-2>窓群のビッチLを 6μ m、ビッチdを 5.5μ mとした。また、隣り合う<11-2>窓群同士を、<11-2>方向に 3μ mずつずらした。

次に、図13Bに示す第2の工程で、開口窓40内のGaAs基板2上にバッファ層24をHVPE法によって形成した。この際、抵抗加熱ヒータ61によってGaAs基板2の温度を約500 $\mathbb C$ に昇温保持し、トリメチルガリウム(TMG)を分圧 6×10^{-4} atm、塩化水素を分圧 6×10^{-4} atm、アンモニアを分圧0.1 atmでそれぞれ反応チャンバ59内に導入した。そして、バッファ層24の厚さを約700オングストロームにした。

次に、図13Cに示す第3の工程で、バッファ層24上に、HVPE法によって第1のエピタキシャル層44を成長させた。この際、抵抗加熱ヒータ61によってGaAs基板2の温度を約970℃に昇温保持し、トリメチルガリウム(TMG)を分圧5×10⁻³atm、塩化水素を分圧5×10⁻³atm、アンモニアを分圧0.25atmでそれぞれ反応チャンバ59内に導入した。そして、成20 長速度を約25μm/hrにして、第1のエピタキシャル層44の厚さを約50μmにした。

次に、図13Dに示す第4の工程で、ウェハをエッチング装置内に配置し、王水で約10時間エッチングして、GaAs基板2を完全に除去した。このようにして、-旦、厚さ約 50μ mの薄厚のGaN単結晶基板を形成した。

25 続いて、図13Eに示す第5の工程で、第1のエピタキシャル層44上に、H VPEによって、成長温度100℃にて塩化水素の分圧2×10⁻²atm、ア

ンモニアの分圧 0.2atmで、約 $100\mu m/h$ rの成長速度でGaNからなる第2のエピタキシャル層 46を厚さ約 $130\mu m$ 成長させた。これにより、厚さ約 $180\mu m$ のGaN単結晶基板 47を形成した。

以上のようにして形成された本実施例のGaN単結晶基板は、測定の結果、基板表面での欠陥密度が $2\times10^7/cm^2$ 程度と著しく低減されており、クラックも観察されなかった。また、GaN単結晶基板の反りを従来よりも低減することができ、内部応力も0.002GPaと非常に小さいことが分かった。

実施例6

-5

25

10 次に、第8 実施形態の実施例である実施例 6 について、図 1 6 A ~ 図 1 6 F を 参照して説明する。

本実施例では、GaAs基板2としてGaAs(111)A基板を使用した。 また、バッファ層24、エピタキシャル層26、及びエピタキシャル層62は、 全て図2に示す気相成長装置を用いてHVPE法によって形成した。

まず、図16Aに示す第1の工程で、GaAs基板2上にマスク層8を形成した。この際、ストライプ窓10の長手方向をGaAs基板2の[11-2]に向け、マスク層8の厚さを約300nm、マスク部の幅Pを約5μm、窓幅Qを約3μmとした。

次に、図16Bに示す第2の工程で、GaAs基板2の温度を約500℃にし 20 た状態で、ストライプ窓10内のGaAs基板2上にバッファ層24をHVPE 法によって形成した。尚、バッファ層24の厚さは、約800オングストローム にした。

次に、図16 Cに示す第3 の工程で、G a A s 基板2 の温度を約9 50 ℃にした状態で、バッファ層2 4 上にHVPE法によってエピタキシャル層2 6 を約2 0 0 μ m成長させた。

次に、図16Dに示す第4の工程で、GaAs基板2を王水でエッチング除去

した。

5

10

15

図16 Eに示す第5の工程では、反応チャンバ59内の温度を1020℃にした状態で、エピタキシャル層26上にHVPE法によってエピタキシャル層62をさらに厚付けし、GaN単結晶のインゴット64を形成した。インゴット64は、上面の中央部が少し窪んだ形状で、底から上面中央部までの高さは約2cm、外径は約55mmであった。

続いて、図16 Fに示す第6の工程で、内周歯のスライサーによってインゴット64を切断し、外径約50 mm、厚さ約350 μ mのGa N単結晶基板66 を20 枚得た。このGa N単結晶基板66 には、顕著な反りの発生は見られなかった。尚、切断処理後に、Ga N単結晶基板66 には、ラッピング研磨および仕上げ研磨を施した。

上述の実施例 $1 \sim$ 実施例 5 では、1 回の製造処理により 1 枚の単結晶基板しか得られないが、本実施例においては、1 回の製造処理により 20 枚の基板が得られた。また、製造コストは、実施の約 6 5%に低減された。このように、本実施例では、大幅なコスト削減が図れ、さらに、1 枚あたりの製造時間を短縮することができた。

尚、インゴット 64 の最上端部から得られた GaN 単結晶基板 66 の電気特性を測定した結果、キャリア濃度は $n型2\times10^{18}$ c m^{-3} で、電子移動度は、 $200\text{cm}^2/V$ s、比抵抗は、 0.017Ω cm であった。

20 また、インゴット 64 の最下端部から得られた GaN 単結晶基板 66 の電気特性を測定した結果、キャリア濃度は $n型8\times10^{18}$ cm⁻³ で、電子移動度は、15 0 cm²/Vs、比抵抗は、0.06 Ω cm であった。

従って、インゴット64の中間部の特性は、この間の値、あるいは近傍にある ことを品質保証でき、全量検査をする手間を省くことができる。

25 尚、このGaN単結晶基板 6 6 を用いて In GaNを発光層とするLEDを作製したところ、従来のサファイア基板上のものと比較して、発光輝度が約 5 倍

に向上した。発光輝度が向上した理由は、従来のLEDでは、活性層内に多くの 質通転位が存在しているのに対し、本実施例においては発光層内に貫通転位が存 在しないためであると考えられる。

5 実施例7

15

次に、第8実施形態の他の実施例である実施例7について、図16A~図16 Fを参照して説明する。

本実施例では、GaAs基板 2としてGaAs (111) A基板を使用した。また、バッファ層 24、エピタキシャル層 26、及びエピタキシャル層 62は、

10 全て図3に示す気相成長装置を用いて有機金属塩化物気相成長法によって形成した。

まず、図16Aに示す第1の工程で、GaAs基板2上にマスク層8を形成した。この際、ストライプ窓10の長手方向をGaAs基板2の [11-2] に向け、マスク層8の厚さを約500nm、マスク部の幅Pを約 5μ m、窓幅Qを約 3μ mとした。

次に、図16Bに示す第2の工程で、GaAs基板2の温度を約490℃にした状態で、ストライプ窓10内のGaAs基板2上にバッファ層24をHVPE法によって形成した。尚、バッファ層24の厚さは、約800オングストロームにした。

20 次に、図16Cに示す第3の工程で、GaAs基板2の温度を約970℃にした状態で、バッファ層24上に有機金属塩化物気相成長法によってエピタキシャル層26を約25μm成長させた。

次に、図16Dに示す第4の工程で、GaAs基板2を王水でエッチング除去した。

25 図16 Eに示す第5の工程では、反応チャンバ79内の温度を1000℃にした状態で、エピタキシャル層26上にHVPE法によってエピタキシャル層62

をさらに厚付けし、GaN単結晶のインゴット64を形成した。インゴット64 は、上面の中央部が少し窪んだ形状で、底から上面中央部までの高さは約3cm、外径は約30mmであった。

続いて、図16Fに示す第6の工程で、内周歯のスライサーによってインゴット64を切断し、外径約20~約30mm、厚さ約400 μ mのGaN単結晶基板66を25枚得た。このGaN単結晶基板66には、顕著な反りの発生は見られなかった。尚、切断処理後に、GaN単結晶基板66には、ラッピング研磨および仕上げ研磨を施した。

上述の実施例1~実施例5では、1回の製造処理により1枚の単結晶基板しか得られないが、本実施例においては、1回の製造処理により25枚の基板が得られた。また、製造コストは、実施の約65%に低減された。このように、本実施例では、大幅なコスト削減が図れ、さらに、1枚あたりの製造時間を短縮することができた。

尚、インゴット 64 の中間部から得られた GaN 単結晶基板 66 の電気特性を測定した結果、キャリア濃度は $n型 2 \times 10^{18}$ cm⁻³で、電子移動度は、 25 0 cm²/V s、比抵抗は、 0.015 Ω cm であった。

実施例8

5

10

15

25

次に、第9実施形態の実施例である実施例8について、図17A~図17Cを 20 参照して説明する。

本実施例では、GaAs基板2としてGaAs(111)A基板を使用した。 また、バッファ層24およびエピタキシャル層68は、ともに図2に示す成長装 置を用いてHVPE法によって形成した。

まず、図17Aに示す第1の工程で、GaAs基板2上にマスク層8を形成した。この際、ストライプ窓10の長手方向をGaAs基板2の [11-2] に向け、マスク層8の厚さを約250nm、マスク部の幅Pを約 5μ m、窓幅Qを約

3μmとした。そして、マスク層8を形成した後、GaAs基板2の温度を約500℃にした状態で、ストライプ窓10内のGaAs基板2上にバッファ層24をHVPE法によって形成した。尚、バッファ層24の厚さは、約900オングストロームにした。

5 次に、図17Bに示す第2の工程で、GaAs基板2の温度を約1000℃に した状態で、バッファ層24上にHVPE法によってエピタキシャル層68を成 長させて、GaN単結晶のインゴット70を形成した。インゴット70は、上面 の中央部が少し窪んだ形状で、底から上面中央部までの高さは約1.6cmであった。

10 続いて、図17 Cに示す第3 の工程で、内周歯のスライサーによってインゴット70 を切断し、厚さ約300 μ mのGa N単結晶基板72 を12 枚得た。この Ga N単結晶基板72 には、顕著な反りの発生は見られなかった。尚、切断処理 後に、Ga N単結晶基板72 には、ラッピング研磨および仕上げ研磨を施した。

上述の実施例 1 ~実施例 5 では、1 回の製造処理により 1 枚の単結晶基板しか得られないが、本実施例においては、1 回の製造処理により 1 2 枚の基板が得られた。また、製造コストは、実施例 1 の約 6 0 %に低減された。このように、本実施例では、大幅なコスト削減が図れ、さらに、1 枚あたりの製造時間を短縮することができた。

尚、インゴット70の中間部から得られたGaN単結晶基板72の電気特性を 20 測定した結果、キャリア濃度は $n型1\times10^{19}$ cm で、電子移動度は、100 cm 2 /Vs、比抵抗は、0.005 Ω cm であった。

実施例9

15

次に、第10実施形態の実施例である実施例9について、図18A~図18B 25 を参照して説明する。

まず、図18Aに示す第1の工程で、実施例6で製造されたGaN単結晶基板

上にエピタキシャル層 74 を成長させて、GaN 単結晶のインゴット 76 を形成した。この際、エピタキシャル層 74 は、HVPE 法により、GaAs 基板 2 の温度を約 1010 ℃にした状態で成長させた。また、インゴット 76 は、上面の中央部が少し窪んだ形状で、底から上面中央部までの高さは約 2.5 cmで、外径は約 55 mmであった。

次に、図18Bに示す第2の工程では、内周歯のスライサーによってインゴット76を切断し、外径約50mm、厚さ約600 μ mのGaN単結晶基板78を15枚得た。

実施例1~実施例5では、1回の製造処理により1枚の単結晶基板しか得られ ないが、本実施例においては、1回の製造処理により15枚の基板が得られた。 また、製造コストは、実施例1と同様のプロセスで製造した場合と比較して約5 5%に低減された。このように、本実施例では、大幅なコスト削減が図れ、さら に、1枚あたりの製造時間を短縮することができた。

尚、インゴット 76 の中間部から得られた GaN 単結晶基板 78 の電気特性を 15 測定した結果、キャリア濃度は $n型 1 \times 10^{17} cm^{-3}$ で、電子移動度は、650 cm^2/Vs 、比抵抗は、0.08 Ω cm であった。

実施例10

5

25

次に、第10実施形態の他の実施例である実施例10について、図18A~図 18Bを参照して説明する。

まず、図18Aに示す第1の工程で、実施例7で製造されたGaN単結晶基板上にエピタキシャル層74を成長させて、GaN単結晶のインゴット76を形成した。この際、エピタキシャル層74は、図22に示した成長装置を用いて、昇華法により、GaAs基板2の温度を約1200℃にした状態で成長させた。尚、反応容器内に流し込んだアンモニアは、20sccmであった。また、インゴット76は、実施例6~実施例9のインゴットと比べると平坦で、底から上面まで

の高さは約0.9 cmで、外径は約35 mmであった。

次に、図18Bに示す第2の工程では、内周歯のスライサーによってインゴット76を切断し、外径約35mm、厚さ約500μmのGaN単結晶基板78を5枚得た。

5 実施例1~実施例5では、1回の製造処理により1枚の単結晶基板しか得られないが、本実施例においては、1回の製造処理により5枚の基板が得られた。また、製造コストは、実施例1の約80%に低減された。このように、本実施例では、大幅なコスト削減が図れ、さらに、1枚あたりの製造時間を短縮することができた。

10 尚、インゴット76の中間部から得られたGaN単結晶基板78の電気特性を測定した結果、キャリア濃度は $n型1\times10^{18}$ cm⁻³ で、電子移動度は、200 cm²/Vs、比抵抗は、 0.03Ω cm であった。

実施例11

15 次に、第11実施形態の実施例である実施例11について、図19A~図19 Cを参照して説明する。

まず、図19Aに示す第1の工程で、HVPE法によって、約500℃にされたGaAs基板2上に、厚さ約90nmのGaNからなるバッファ層79を形成した。尚、GaAs基板として、GaAs(111)B基板を使用した。

次に、図19Bに示す第2の工程で、HVPE法によって、バッファ層79上にGaNからなるエピタキシャル層81を成長させて、GaN単結晶のインゴット83を形成した。この際、エピタキシャル層81は、HVPE法により、GaAs基板2の温度を約1030℃にした状態で成長させた。また、インゴット83は、上面の中央部が少し窪んだ形状で、底から上面中央部までの高さは約1.

25 2 c m で あった。

最後に、図19Cに示す第3の工程で、内周歯のスライサーによってインゴッ

ト83を切断し、厚さ約300μmのGaN単結晶基板85を10枚得た。

実施例 1~実施例 5 では、1 回の製造処理により 1 枚の単結晶基板しか得られないが、本実施例においては、1 回の製造処理により 1 0 枚の基板が得られた。また、製造コストは、実施例 1 の約 7 0 %に低減された。このように、本実施例では、大幅なコスト削減が図れ、さらに、1 枚あたりの製造時間を短縮することができた。

尚、インゴット83の中間部から得られたGaN単結晶基板78の電気特性を測定した結果、キャリア濃度は $n型1\times10^{19}$ cm⁻³ で、電子移動度は、100 cm²/Vs、比抵抗は、 0.005Ω cm であった。

10

15

5

産業上の利用可能性

以上のように、本発明のGaN単結晶基板の製造方法においては、マスク層の各開口窓内でGaN核が形成され、このGaN核が次第にマスク層上の横方向、すなわちマスク層の開口窓が形成されていないマスク部の上方に向かって何の障害物もなく自由にラテラル成長する。このため、本発明のGaN単結晶基板の製造方法によれば、結晶欠陥が大幅に低減された本発明のGaN単結晶基板を効率よく且つ確実に得ることが可能となる。

請求の範囲

1. GaAs基板上に、互いに離隔配置された複数の閉口窓を有するマスク層を形成するマスク層形成工程と、

前記マスク層上に、GaNからなるエピタキシャル層を成長させるエピタキシャル層成長工程と、

を備えることを特徴とするGaN単結晶基板の製造方法。

5

10

20

2. 前記マスク層形成工程の前に、前記GaAs基板上にバッファ層を形成するバッファ層形成工程と、

前記バッファ層上に、GaNからなる下層エピタキシャル層を成長させる下層 エピタキシャル層成長工程と、

を更に備えることを特徴とする請求項1記載のGaN単結晶基板の製造方法。

- 3. 前記エピタキシャル層成長工程の前に、前記マスク層の前記開口窓内における前記GaAs基板上にバッファ層を形成するバッファ層形成工程を更に備えることを特徴とする請求項1記載のGaN単結晶基板の製造方法。
- 4. 前記マスク層の前記開口窓は、ストライプ状のストライプ窓であることを特徴とする請求項2記載のGaN単結晶基板の製造方法。
 - 5. 前記ストライプ窓は、前記GaNからなる前記下層エピタキシャル層の<10-10>方向に延在しており、窓幅が $0.3\mu m\sim10\mu m$ の範囲内で、マスク幅が $2\mu m\sim20\mu m$ の範囲内であることを特徴とする請求項4記載のGaN単結晶基板の製造方法。
 - 6. 前記ストライプ窓は、前記 GaN からなる前記下層エピタキシャル層の<1-210>方向に延在しており、窓幅が 0.3μ m $\sim10\mu$ mの範囲内で、マスク幅が 2μ m $\sim20\mu$ mの範囲内であることを特徴とする請求項4記載のGaN単結晶基板の製造方法。
- 25 7. 前記エピタキシャル層成長工程の後に、 前記GaAs基板を除去するGaAs基板除去工程と、

前記バッファ層の下面および前記エピタキシャル層の上面を研磨する研磨工程と、

を更に備えることを特徴とする請求項2記載のGaN単結晶基板の製造方法。

- 8. 前記マスク層の前記開口窓は、ストライプ状のストライプ窓であることを特徴とする請求項3記載のGaN単結晶基板の製造方法。
- 9. 前記ストライプ窓は、前記GaAs基板の<11-2>方向に延在しており、窓幅が0. $3\mu m\sim10\mu m$ の範囲内で、マスク幅が $2\mu m\sim20\mu m$ の範囲内であることを特徴とする請求項8記載のGaN単結晶基板の製造方法。
- 10. 前記ストライプ窓は、前記GaAs基板の<1-10>方向に延在しており、窓幅が $0.3\mu m \sim 10\mu m$ の範囲内で、マスク幅が $2\mu m \sim 20\mu m$ の範囲内であることを特徴とする請求項8記載のGaN単結晶基板の製造方法。
 - 11. 前記エピタキシャル層成長工程の後に、
- 15 前記GaAs基板を除去するGaAs基板除去工程と、

5

前記マスク層及び前記バッファ層の下面と、前記エピタキシャル層の上面を研磨する研磨工程と、

を更に備えることを特徴とする請求項3記載のGaN単結晶基板の製造方法。

- 12. 前記GaAs基板が、GaAs (111) A基板又はGaAs20 (111) B基板であることを特徴とする請求項1~3のうち何れか一項に記載のGaN単結晶基板の製造方法。
 - 13. 前記バッファ層を、ハイドライドVPEにて形成することを特徴とする請求項2又は請求項3記載のGaN単結晶基板の製造方法。
- 14. 前記エピタキシャル層を、ハイドライドVPEにて形成することを特徴とする請求項1~請求項3のうち何れか一項に記載のGaN単結晶基板の製造方法。

15. 前記エピタキシャル層は、厚さ 5μ m $\sim 300\mu$ mの範囲内で成長され、

前記エピタキシャル層成長工程の後に、

前記GaAs基板を除去するGaAs基板除去工程と、

5 前記エピタキシャル層上にGaNからなる第二のエピタキシャル層を積層成長 させる工程と、

を更に備えることを特徴とする請求項1又は請求項3記載のGaN単結晶基板の製造方法。

- 16. 前記マスク層の前記開口窓を前記下層エピタキシャル層の<1 0-10>方向にピッチLで複数配列して<10-10>窓群を形成すると共に、前記<10-10>窓群を前記下層エピタキシャル層の<1-210>方向にピッチd(0.75 L \le d \le 1.3 L) で複数並設することを特徴とする請求項 2 記載のGa N 単結晶基板の製造方法。
- 17. 前記各<10-10>窓群は、前記各開口窓の中心位置が隣り 15 合う前記<10-10>窓群の前記各開口窓の中心位置に対して前記<10-1 0>方向に約1/2Lずれて並設されていることを特徴とする請求項16記載の GaN単結晶基板の製造方法。
- 18. 前記マスク層の前記開口窓を前記GaAs基板の(111)面上において<11-2>方向にピッチLで複数配列して<11-2>窓群を形成
 20 すると共に、前記<11-2>窓群を前記GaAs基板の(111)面の<-1 10>方向にピッチd(0.75L≤d≤1.3L)で複数並設することを特徴とする請求項3記載のGaN単結晶基板の製造方法。
- 19. 前記各<11-2>窓群は、前記各開口窓の中心位置が隣り合う前記<11-2>窓群の前記各開口窓の中心位置に対して前記<11-2>方 向に約1/2Lずれて並設されていることを特徴とする請求項18記載のGaN 単結晶基板の製造方法。

20. 前記各開口窓のピッチLは、 3μ m~ 10μ mの範囲内であることを特徴とする請求項16~請求項19のうち何れか一項に記載のGaN単結晶基板の製造方法。

21. 前記マスク層の前記開口窓の形状は、円形、楕円形、多角形の何れかであることを特徴とする請求項1~請求項20のうち何れか一項に記載のGaN単結晶基板の製造方法。

5

15

20

25

- 22. 前記マスク層の前記各開口窓の面積は、 $0.7 \mu m^2 \sim 50 \mu m^2$ であることを特徴とする請求項 $1 \sim$ 請求項21のうち何れか一項に記載のGa N単結晶基板の製造方法。
- 10 23. 前記マスク層の前記各開口窓は、一辺が $1 \mu m \sim 5 \mu m$ の方形、 又は直径 $1 \mu m \sim 5 \mu m$ の円形であることを特徴とする請求項 $1 \sim$ 請求項2 0の うち何れか一項に記載のG a N単結晶基板の製造方法。
 - 24. 前記各開口窓の総面積は、全ての前記開口窓の面積と前記開口窓が形成されていないマスク部の面積とを合わせた全面積の10~50%であることを特徴とする請求項1~請求項23のうち何れか一項に記載のGaN単結晶基板の製造方法。
 - 25. 前記マスク層の前記開口窓が前記下層エビタキシャル層の<10-10>方向を長手方向とする長方形状の長方形窓であり、前記長方形窓を前記<10-10>方向にピッチLで複数配列して<10-10>長方形窓群を形成すると共に、<10-10>長方形窓群を前記下層エビタキシャル層の<1-210>方向にピッチdで複数並設することを特徴とする請求項2記載の30 単結晶基板の製造方法。
 - 26. 前記各<10-10>長方形窓群は、前記各長方形窓の中心位置が隣り合う前記<10-10>長方形窓群の前記各長方形窓の中心位置に対して前記<10-10>方向に約1/2Lずれて並設されていることを特徴とする請求項25記載のGaN単結晶基板の製造方法。

27. 前記マスク層の前記開口窓が前記GaAs基板の<11-2>方向を長手方向とする長方形状の長方形窓であり、前記長方形窓を前記GaAs基板の(111)面上において<11-2>方向にピッチLで複数配列して<11-2>長方形窓群を形成すると共に、前記<11-2>長方形窓群を<-110>方向にピッチdで複数並設することを特徴とする請求項3記載のGaN単結晶基板の製造方法。

5

10

15

25

- 28. 前記各<11-2>長方形窓群は、前記各長方形窓の中心位置が隣り合う前記<11-2>長方形窓群の前記各長方形窓の中心位置に対して前記<11-2>方向に約1/2Lずれて並設されていることを特徴とする請求項27記載のGaN単結晶基板の製造方法。
- 29. 前記長方形窓のピッチLは 4μ m~ 20μ mで、前記長方形窓の長手方向に隣り合う前記各長方形窓間のマスク長さが 1μ m~ 4μ mで、前記各長方形窓の幅wは 1μ m~ 5μ mで、前記長方形状の前記開口窓の短手方向に隣り合う前記長方形窓群間のマスク幅(d-w)は 2μ m~ 10μ mであることを特徴とする請求項25~請求項28のうち何れか一項に記載の300 N単結晶基板の製造方法。
- 30. 前記マスク層の前記各開口窓は、六角リング状の六角窓であり、前記六角窓の六つの各辺の方向が、前記下層エピタキシャル層の<10-10>方向であることを特徴とする請求項2記載のGaN単結晶基板の製造方法。
- 20 31. 前記マスク層の前記各開口窓は、六角リング状の六角窓であり、 前記六角窓の六つの各辺の方向が、前記GaAs基板の<11-2>方向である ことを特徴とする請求項3記載のGaN単結晶基板の製造方法。
 - 32. 前記マスク層が、 SiO_2 またはSiNで形成されていることを特徴とする請求項1~請求項31のうち何れか一項に記載のGaN単結晶基板の製造方法。
 - 33. 前記GaAs基板を除去する工程を更に備えることを特徴とす

る請求項1~請求項6、請求項8~請求項10、請求項12~請求項14、請求項16~請求項32のうち何れか一項に記載のGaN単結晶基板の製造方法。

- 34. 前記エピタキシャル層成長工程において、前記エピタキシャル層を成長させてGaN単結晶のインゴットを形成し、
- 5 前記インゴットを複数枚に切断する切断工程を更に備えることを特徴とする請求項1~請求項33のうち何れか一項に記載のGaN単結晶基板の製造方法。
 - 35. 前記エピタキシャル層成長工程において、前記エピタキシャル層を成長させてGaN単結晶のインゴットを形成し、

前記インゴットを複数枚に劈開する劈開工程を更に備えることを特徴とする請求項1~請求項33のうち何れか一項に記載のGaN単結晶基板の製造方法。

36. 請求項1~請求項35のうち何れか一項に記載の製造方法によって得られたGaN単結晶基板にGaNからなるエピタキシャル層を成長させてGaN単結晶のインゴットを形成するインゴット形成工程と、

前記インゴットを複数枚に切断する切断工程と、

10

- 15 を更に備えることを特徴とするGaN単結晶基板の製造方法。
 - 37. 請求項1~請求項35のうち何れか一項に記載の製造方法によって得られたGaN単結晶基板にGaNからなるエピタキシャル層を成長させてGaN単結晶のインゴットを形成するインゴット形成工程と、

前記インゴットを複数枚に劈開する劈開工程と、

- 20 を更に備えることを特徴とするGaN単結晶基板の製造方法。
 - 38. GaN単結晶を種結晶として当該GaN単結晶の上にGaNからなるエピタキシャル層を成長させて、GaN単結晶のインゴットを形成するインゴット形成工程と、

前記インゴットを複数枚に切断する切断工程と、

- 25 を備えることを特徴とするGaN単結晶基板の製造方法。
 - 39. GaN単結晶を種結晶として当該GaN単結晶の上にGaNか

らなるエピタキシャル層を成長させて、GaN単結晶のインゴットを形成するインゴット形成工程と、

前記インゴットを複数枚に劈開する劈開工程と、

5

10

15

20

25

を備えることを特徴とするGaN単結晶基板の製造方法。

40. 互いに離隔配置された複数の開口窓を有するマスク層と、 GaNからなると共に前記マスク層上に積層されたエピタキシャル層と、 を少なくとも含むことを特徴とするGaN単結晶基板。

- 41. 前記マスク層の前記エピタキシャル層の形成されていない側に、バッファ層と、当該バッファ層と前記マスク層との間に形成された下層エピタキシャル層と、を更に備えることを特徴とする請求項40記載のGaN単結晶基板。
- 42. 前記マスク層の前記各開口窓内に、バッファ層が形成されていることを特徴とする請求項40記載のGaN単結晶基板。
- 43. 前記マスク層の前記開口窓が前記下層エピタキシャル層の<10-10>方向にピッチLで複数配列されて<10-10>窓群が形成されると共に、前記<10-10>窓群を前記下層エピタキシャル層の<1-210>方向にピッチd <0. 75 L \le d \le 1. 3 L) で複数並設されていることを特徴とする請求項 4 1記載のG a N 単結晶基板。
- 44. 前記各<10-10>窓群は、前記各開口窓の中心位置が隣り合う前記<10-10>窓群の前記各開口窓の中心位置に対して前記<10-10>方向に約1/2Lずれて並設されていることを特徴とする請求項43記載のGaN単結晶基板。
- 45. 前記エピタキシャル層の前記マスク層との接触面から10μmまでの範囲内で、且つ、前記マスク層の前記開口窓が形成されていないマスク部上において、前記開口窓の上方の領域よりも転位密度の低い低転位密度領域が形成されていることを特徴とする請求項40~請求項44のうち何れか一項に記載のGaN単結晶基板。

46. 前記エピタキシャル層の前記低転位密度領域における転位密度は、 $1\times10^8\,\mathrm{c\,m^{-2}}$ 以下であることを特徴とする請求項45記載の GaN 単結晶基板。

47. 前記エピタキシャル層の前記マスク層が形成されている側の面の反対側の面に、GaAs基板を更に備えることを特徴とする請求項40~請求項46のうち何れか一項に記載のGaN単結晶基板。

5

10

- 48. 前記エピタキシャル層は、厚さが 5μ m~ 300μ mの範囲内であり、前記エピタキシャル層上に、GaNからなる第二のエピタキシャル層が更に形成されていることを特徴とする請求項40又は請求項42記載のGaN単結晶基板。
- 49. 請求項1~請求項33のうち何れか一項に記載のGaN単結晶 基板の製造方法により製造されたことを特徴とする請求項40記載のGaN単結 晶基板。
- - 51. キャリア濃度が、 $n型で1 \times 10^{16} \, \mathrm{cm}^{-3} \sim 1 \times 10^{20}$ cm^{-3} の範囲内にあることを特徴とする請求項50記載の GaN 単結晶基板。
- 52. 電子移動度が、60cm²~800cm²の範囲内にあることを 20 特徴とする請求項50又は請求項51記載のGaN単結晶基板。
 - 53. 比抵抗が、 $1 \times 10^{-4} \Omega$ c m $\sim 1 \times 10 \Omega$ c m の範囲内にあることを特徴とする請求項 50 ~請求項 52 のうち何れか一項に記載のG a N 単結晶基板。
- 54. 請求項40~53のうち何れか一項に記載のGaN単結晶基板 25 と、

前記GaN単結晶基板上に形成された半導体層と、を備え、

前記半導体層により発光素子を構成したことを特徴とする発光デバイス。

55. 請求項40~53のうち何れか一項に記載のGaN単結晶基板と、

前記GaN単結晶基板上に形成された半導体層と、を備え、

5 前記半導体層により少なくともpn接合を構成したことを特徴とする電子デバイス。

図1B

図1 C

図1D

図 4

5/21

図8A

図88

図8 C

図8D

図10B

図11B

図11 C

図11D

47

- 38

図14

16/21

図18A

図18B

78

図19A

図19B

図19C

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/04908

A		<u>-</u>			
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ H01L21/20, H01L21/205, H01L21/203, H01L21/208, H01L33/00, H01S3/18, C01B21/06					
According to International Patent Classification (IPC) or to both national classification and IPC					
	S SEARCHED	•			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ H01L21/20, H01L21/205, H01L21/203, H01L21/208, H01L33/00, H01S3/18, C01B21/06					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-1999 Kokai Jitsuyo Shinan Koho 1971-1999 Jitsuyo Shinan Toroku Koho 1996-1999					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT	•			
Category*	Citation of document, with indication, where app	· · -	Relevant to claim No.		
х	U. Akira et al., Thick GaN Epi Dislocation Density by Hydrid "Japanese Journal of Applied F Part 2, Vol. 36, No. 7B, pp.1	e Vapor Phase Epitaxy, Physics", 15 July 1997,	40, 41		
Y			1, 2, 4-7, 12-17, 20-26, 29, 32-39, 43-55		
X	S. Akira et al., Defect structu GaN films with low threading "Applied physics Letters", 20 No. 16, pages 2259-2261.	40, 41, 45, 46			
Y			1, 2, 4-7, 12-17, 20-26, 29, 32-39, 43, 44, 47-55		
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date or processidered to be of particular relevance "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" there document published after the international filing date or processidered to inconflict with the application but cited to unders the principle or theory underlying the invention document of particular relevance; the claimed invention canno considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention canno document of particu			tion but cited to understand evention laimed invention cannot be ed to involve an inventive step laimed invention cannot be when the document is documents, such combination art		
. 26	January, 1999 (26. 01. 99)	Date of mailing of the international sea 2 February, 1999 (
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile l	No.	Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04908

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	Hidetada Matsunaga et al., "Selective Growth of GaN on Submicron Pattern by MOVPE (in Japanese)", Technical Report of IEICE Vol. 97, No. 61, 23, May, 1997 (Tokyo), pages 41-46.	40, 41
Y		1, 2, 4-7, 12-14, 16, 17, 20-26, 29, 32, 33, 43, 44, 47, 49, 54, 55
х	Takumi Shibata et al., "Preparation of High-Quality GaN Bulk Single Crystal by Selective HVPE Growth (in Japanese)", Technical Report of IEICE, Vol. 97, No. 61, 23 May, 1997 (Tokyo), pages 35-40.	40, 41, 43
Y	No. 01, 25 May, 1997 (10Mg0), pages 33 40.	1, 2, 4, 7, 12-16, 21, 25, 32-39, 45, 47-55
Y	<pre>JP, 8-116090, A (Rohm Co., Ltd.), 7 May, 1996 (07. 05. 96), Page 3, right column, line 42 to page 5, line 41; Fig. 1 (Family: none)</pre>	1, 2, 7, 12, 15, 33, 47, 48, 54, 55
Y	JP, 9-255496, A (NEC Corp.), 30 September, 1997 (30. 09. 97), Page 2, right column, lines 36 to 40; page 3, right column, line 36 to page 4, left column, line 17 (Family: none)	1, 2, 12-14, 47
Y	JP, 7-273048, A (Mitsubishi Cable Industries, Ltd.), 20 October, 1995 (20. 10. 95), Page 4, left column, line 37 to right column, line 8 (Family: none)	7, 15, 33-39, 50
Y	K. Shota et al., Fabrication of GaN Hexagonal Pyramids on Dot-patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase Epitaxy, "Japanese Journal of Applied Physics", 15 September, 1995, Part 2, Vol. 34, No. 9B, pp.L1184-L1186.	16, 17, 25, 26 43, 44
Y	JP, 51-50899, A (Hitachi,Ltd.), 4 May, 1976 (04. 05. 76), Page 2, upper left column, line 14 to upper right column, line 10 (Family: none)	48
РX	<pre>JP, 10-265297, A (Shiro Sakai, Sharp Corp.), 6 October, 1998 (06. 10. 98), Full text; Figs. 1 to 7 (Family: none)</pre>	1, 2, 16, 21 24, 32, 40, 41 43, 47, 49
EX	JP, 10-312971, A (NEC Corp.), 24 November, 1998 (24. 11. 98), Full text; Figs. 1 to 6 (Family: none)	40-43, 45, 46 48, 54

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04908

		PCT/J	P98/04908
C (Continual	cion). DOCUMENTS CONSIDERED TO BE RELEVANT	L <u>.</u>	· · · · · · · · · · · · · · · · · · ·
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
EA	JP, 10-326751, A (Mitsubishi Cable Industries, Ltd.), 8 December, 1998 (08. 12. 98), Page 4, right column, lines 14 to 28; I (Family: none)	Fig. 2	40, 41, 43, 45,
EA	JP, 10-321529, A (Nippon Telegraph & Te Corp.), 4 December, 1998 (04. 12. 98), Page 3, left column, line 13 to right co line 41; Fig. 5 (Family: none)		40, 41, 45, 46, 48, 54
			·
			•
			·

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調查報告 国際出願番号 PCT/JP98/04908 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl' H01L21/20. H01L21/205, H01L21/203, H01L21/208, H01L33/00, H01S3/18, C01B21/06 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl HO1L21/20. HO1L21/205, HO1L21/203, HO1L21/208, H01L33/00, H01S3/18, C01B21/06 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公阴実用新案公報 1971-1999年 日本国登録実用新案公報 1994-1999年 日本国実用新案登錄公報 1996-1999年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X U. Akira et al., Thick GaN Epitaxial Growth with Low Dislocati 40,41 on Density by Hydride Vapor Phase Epitaxy, "Japanese Journal of Applied Physics", 15 July 1997, Part2, Vol. 36, No. 7B, pp. L89 9-L902. Y 1. 2. 4-7, 12-17, 20-26, 29, 32-39, 43-55 X S. Akira et al., Defect structure in selectively grown GaN fil 40, 41, 45, 46 ms with low threading dislocation density, "Applied physics Letters", 20 October 1997, vol. 71, No. 16, pages2259-2261. Y 1, 2, 4-7, 12-17, 20-26, 29, C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの て出願と矛盾するものではなく、発明の原理又は理 「E」国際出願目前の出願または特許であるが、国際出願日 論の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 02.02.99 26.01.99 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 9836 日本国特許庁(ISA/JP) ΕΠ 岡 和久 **鄭便番号100-8915**

電話番号 03-3581-1101 内線 3462

東京都千代田区霞が関三丁目4番3号

C (続き) .	門ボナスト部外にれる文体	
引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X Y	松嶋秀忠 他, MOVPE法によるサブミクロンパターンへのGaN選択成長,「電子情報通信学会技術研究報告」,信学技報Vol. 97, No. 61, 23. 5月. 1997(東京), pages 41-46.	32-39, 43, 44, 47-55 40, 41 1, 2, 4-7, 12-
X	柴田巧 他, HVPE法による選択成長を用いた高品質GaNバルク単結 晶の作製及び評価,「電子情報通信学会技術研究報告」,信学技報Vo 1.97, No. 61,23.5月.1997(東京), pages 35-40.	14, 16, 17, 20– 26, 29, 32, 33, 43, 44, 47, 49, 54, 55 40, 41, 43
Y	JP,8-116090,Λ (ローム株式会社) 7.5月.1996(07.05.96) 第3頁右欄第42行〜第5頁第41行,図1(ファミリーなし)	16, 21, 25, 32- 39, 45, 47-55 1, 2, 7, 12, 15, 33, 47, 48, 54,
Y	JP, 9-255496, A (日本電気株式会社) 30.9月.1997(30.09.97) 第2頁右欄第36行〜第40行,第3頁右欄第36行〜第4頁左欄 第17行 (ファミリーなし)	55 1, 2, 12–14, 47
Y	JP, 7-273048, A (三菱電線工業株式会社) 20. 10月. 1995 (20. 10. 95)	7, 15, 33–39,
Y	第4頁左欄第37行〜右欄第8行(ファミリーなし) K. Shota et al., Fabrication of GaN Hexagonal Pyramids on Dot- patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase Epitaxy, "Japanese Journal of Applied Physics	50 16, 17, 25, 26, 43, 44
Y	",15 September 1995, Part2, Vol. 34, No. 9B, pp. L1184-L1186. JP,51-50899, A (日立製作所) 4.5月.1976(04.05.76) 第2頁左上欄第14行~右上欄第10行(ファミリーなし)	48
PΧ	JP, 10-265297, A (酒井士郎,シャープ株式会社) 6.10月.1998(06.1 0.98) 全文,図1-7 (ファミリーなし)	1, 2, 16, 21, 24, 32, 40, 41, 43, 47, 49
EX	JP. 10-312971, A (日本電気株式会社) 24.11月.1998(24.11.98)	40-43, 45, 46, 48, 54
EA	全文,図1-6 (ファミリーなし) JP, 10-326751, A (三菱電線工業株式会社) 8.12月.1998(08.12.97) 第4頁右欄第14行〜第28行,図2 (ファミリーなし) JP, 10-321529, A (日本電信電話株式会社) 4.12月.1998(04.12.98) 第3頁左欄第13行〜右欄第41行,図5 (ファミリーなし)	40, 41, 43, 45, 46, 40, 41, 45, 46, 48, 54

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

5