University of Illinois at Urbana-Champaign

MATH 417 - Introduction to Abstract Algebra

Spring 2022 - Midterm1 - Review questions - Short answers

- 1. Solve the linear equation $9x \equiv 13 \pmod{70}$ in two steps.
 - a) Determine integers s and t such that 1 = 9s + 70t.
 - b) Determine the smallest positive integer solution x.

	q	r	s	t
-1		70	0	1
0	7	9	1	0
1	1	7	-7	1
2	3	2	8	-1
3	2	1	-31	4
4		0	70	- 9

- a) s = -31, t = 4. Verification: $1 = 9 \cdot -31 + 70 \cdot 4$, yes.
- b) $x \equiv -31 \cdot 13 \pmod{70} \equiv -53 \pmod{70}$. Choose x = 17.

Verification: $9 \cdot 17 = 153 \equiv 13 \pmod{70}$, yes.

- 2. Let $A \leq G$ and $B \leq G$ be subgroups of an abelian group (G, +).
 - a) Show that $A + B = \{a + b : a \in A, b \in B\}$ is a subgroup of G.
 - b) Show that $A \cap B$ is a subgroup of G.

In both cases: Either use the definition of subgroup (Definition 5.4 on page 50) or verify the three properties that characterize a subgroup (Theorem 5.14 on page 52). The last one will be shorter because it avoids checking associativity.

- 3. Let $H = 12\mathbb{Z} + 27\mathbb{Z} \subset \mathbb{Z}$ and let $K = 12\mathbb{Z} \cap 27\mathbb{Z} \subset \mathbb{Z}$.
 - a) Determine h such that $H = h\mathbb{Z}$..
 - b) Determine k such that $K = k\mathbb{Z}$.
 - a) Use two different arguments to explain separately that $12\mathbb{Z} + 27\mathbb{Z} \subset 3\mathbb{Z}$ and that $12\mathbb{Z} + 27\mathbb{Z} \supset 3\mathbb{Z}$. Conclude that h = 3. (In general h is the gcd, but be sure that you can provide the arguments and not just the answer)
 - b) Use two different arguments to explain separately that $12\mathbb{Z} \cap 27\mathbb{Z} \supset 108\mathbb{Z}$ and that $12\mathbb{Z} \cap 27\mathbb{Z} \subset 108\mathbb{Z}$. Conclude that k = 108. (In general k is the lcm, but be sure that you can provide the arguments and not just the answer)

- 4. Let $S_3 = \{1, \rho, \rho^2, \sigma, \sigma\rho, \sigma\rho^2\}$, with $\rho = (123), \sigma = (12)$.
 - a) Show that $\rho \sigma = \sigma \rho^2$.
 - b) Reduce the permutation $\rho\sigma\rho^2\sigma\rho\sigma$ to one of the six elements in the set S_3 .
 - a) $\rho \sigma = (123)(12) = (13), \ \sigma \rho^2 = (12)(132) = (13).$
 - b) $\rho \sigma \rho^2 \sigma \rho \sigma = \rho(\sigma \rho^2) \sigma \rho \sigma = \rho(\rho \sigma) \sigma \rho \sigma = \rho^2 \sigma^2 \rho \sigma = \rho^2 \rho \sigma = \rho^3 \sigma = \sigma$.

(There are other ways to carry out the reduction, no computations needed, only that $\rho\sigma=\sigma\rho^2$)

- 5. Let $G = \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_4$.
 - a) Determine the number of elements in G of order 1, order 2, and order 4.
 - b) Determine the number of subgroups of G of size 4.
 - a) Order 1: $1 \times$, Order 2: $7 \times$, Order 4: $56 \times$.
 - b) There are seven subgroups of type $\mathbb{Z}_2 \times \mathbb{Z}_2$ (because there are seven subgroups of type $\mathbb{Z}_2 \times \mathbb{Z}_2$ in $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$) and 28 of type \mathbb{Z}_4 (one for each element of order four and its inverse). Total: 35.
- 6. Give a permutation $\tau \in S_8$ such that $\tau(13572468) = (1357)(2468)$.
 - $\tau = (1\,2)$. Verification: <u>yes</u>. (In general a cycle breaks into two parts after multiplication with a carefully chosen transposition).
- 7. Give a permutation $\sigma \in S_8$ such that $(1357) = \sigma(2468)\sigma^{-1}$.

$$\sigma = (1\,2)(3\,4)(5\,6)(7\,8)$$
. Verification: yes.

(Another solution would be (87654321). In general use for σ a permutation that maps the cycle element-wise to the other cycle, in this case $2 \mapsto 1, 4 \mapsto 3, 6 \mapsto 5, 8 \mapsto 7$)

- 8. List the possible cycle structures for a permutation $\sigma \in A_5$.
 - (1) $1\times$, (12)(34) $15\times$, (1,2,3) $20\times$, (1,2,3,4,5) $24\times$. Total: $60=|A_5|$.
- 9. Select all pairs of isomorphic groups among the following three groups.

$$\mathbb{Z}_{14} \times \mathbb{Z}_{24} \times \mathbb{Z}_{35}, \qquad \mathbb{Z}_{210} \times \mathbb{Z}_{56}, \qquad \mathbb{Z}_{6} \times \mathbb{Z}_{40} \times \mathbb{Z}_{49}.$$

$$\mathbb{Z}_{14} \times \mathbb{Z}_{24} \times \mathbb{Z}_{35} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{7} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}.$$

$$\mathbb{Z}_{210} \times \mathbb{Z}_{56} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7} \times \mathbb{Z}_{8} \times \mathbb{Z}_{7}.$$

$$\mathbb{Z}_{6} \times \mathbb{Z}_{40} \times \mathbb{Z}_{49} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{49}.$$

The first two are isomorphic (matching factorizations). The third group is not isomorphic to the first two (the subgroups $\mathbb{Z}_7 \times \mathbb{Z}_7$ and \mathbb{Z}_{49} of order 49 do not match)

10. Prove using only the group axioms that each element in a group $\,G\,$ has a unique inverse in $\,G\,$.

Assume that ba = ab = e and ca = ac = e. Then c = ce = c(ab) = (ca)b = eb = b.