Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subiectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
- 2. Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(integer, integer), având modelul de flux (i, o):

```
f(100, 1):-!. f(K1,Y), Y>1, !, K2 is K1-1, X is K2+Y. f(K,X):-K1 is K+1, f(K1,Y), Y>0.5, !, X is Y. f(K,X):-K1 is K+1, f(K1,Y), X is Y-K1.
```

Rescrieți această definiție pentru a evita apelul recursiv **f(J,V)** în clauze, fără a redefini logica clauzelor. Justificați răspunsul.

B. Să se scrie un program PROLOG care generează lista submulţimilor cu suma număr impar, cu valori din intervalul [a, b]. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru $\mathbf{a}=2$ și $\mathbf{b}=4 \Rightarrow [[2,3],[3,4],[2,3,4]]$ (nu neapărat în această ordine)

C. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2). Se cere să se determine înălțimea unui nod în arbore. Se va folosi o funcție MAP.

 <u>Exemplu</u> pentru arborele (a (b (g)) (c (d (e)) (f)))
 a) nod=e => înălțimea e 0
 b) nod=v => înălțimea e -1
 c) nod=c => înălțimea e 2