Topics in Economics

Axelle Ferriere

Sciences Po, CNRS & CEPR

November 2024

■ History of Modern Macroeconomics

1

- History of Modern Macroeconomics
 - First-generation models: dynamic models with rational expectations
 - · Equilibrium, solve, calibrate with a representative agent

- History of Modern Macroeconomics
 - First-generation models: dynamic models with rational expectations
 - · Equilibrium, solve, calibrate with a representative agent
 - Second-generation models: account for inequality
 - · Macro shocks \Rightarrow inequality, welfare

- History of Modern Macroeconomics
 - First-generation models: dynamic models with rational expectations
 - · Equilibrium, solve, calibrate with a representative agent
 - Second-generation models: account for inequality
 - · Macro shocks \Rightarrow inequality, welfare
 - Third-generation models: business cycles, HANK
 - · Amplification, inequality \Rightarrow macro

- History of Modern Macroeconomics
 - First-generation models: dynamic models with rational expectations
 - · Equilibrium, solve, calibrate with a representative agent
 - Second-generation models: account for inequality
 - · Macro shocks \Rightarrow inequality, welfare
 - Third-generation models: business cycles, HANK
 - · Amplification, inequality \Rightarrow macro
- This class: On inequality and the welfare state

Rising Income and Wealth Inequality

Figure 5: Top 5% and top 10% income and wealth shares

■ Top-income and -wealth shares have increased (SCF+, United States) Kuhn, Schularick and Stein (2020)

No Income Growth for the Poor

■ Household income has been flat for 5 decades at the bottom (CPS, United States)
Heathcote, Violante, Perri and Zhang (2023)

- Two main questions
 - Should we tax wealth? Or capital income?
 - "Heterogeneity and Persistence in Returns to Wealth"
 A. Fagereng, L. Guiso, D. Malacrino and L. Pistaferri, Econometrica 2020
 - "Use It or Lose It: Efficiency and Redistributional Effects of Wealth Taxation"
 F. Guvenen, G. Kambourov, B. Kuruscu, S. Ocampo and D. Chen, QJE 2023

- Two main questions
 - Should we tax wealth? Or capital income?
 - "Heterogeneity and Persistence in Returns to Wealth"
 A. Fagereng, L. Guiso, D. Malacrino and L. Pistaferri, Econometrica 2020
 - "Use It or Lose It: Efficiency and Redistributional Effects of Wealth Taxation"
 F. Guvenen, G. Kambourov, B. Kuruscu, S. Ocampo and D. Chen, QJE 2023
 - Should we implement a Universal Basic Income?
 - Some data on long-run trends of the welfare state in the United States National Accounts, Moffitt, my own work
 - "Universal Basic Income: A Dynamic Assessment"
 D. Daruich and R. Fernandez, AER 2024

- First-generation models: Capital taxes should be 0
 - Chamley (1986), Judd (1985)

- First-generation models: Capital taxes should be 0
 - Chamley (1986), Judd (1985)
 - In the long run, with one representative agent
 - $-\,$ Intuition: rolling over the Euler equation for ever

5

- First-generation models: Capital taxes should be 0
 - Chamley (1986), Judd (1985)
 - In the long run, with one representative agent
 - Intuition: rolling over the Euler equation for ever
- Second-generation models: Capital taxes should be...34%
 - Conesa, Kitao and Krueger (2008)

- First-generation models: Capital taxes should be 0
 - Chamley (1986), Judd (1985)
 - In the long run, with one representative agent
 - Intuition: rolling over the Euler equation for ever
- Second-generation models: Capital taxes should be...34%
 - Conesa, Kitao and Krueger (2008)
 - Incomplete markets with borrowing constraints, heterogeneous labor income
 - Rich distribution of wealth and income, OLG structure: age dynamics

- First-generation models: Capital taxes should be 0
 - Chamley (1986), Judd (1985)
 - In the long run, with one representative agent
 - Intuition: rolling over the Euler equation for ever
- Second-generation models: Capital taxes should be...34%
 - Conesa, Kitao and Krueger (2008)
 - Incomplete markets with borrowing constraints, heterogeneous labor income
 - Rich distribution of wealth and income, OLG structure: age dynamics
- Why do people accumulate so much wealth?

- New theoretical literature in the early 2010s: heterogeneous capital returns
 - Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2019)
 - Gabaix, Lasry, Lions, and Moll (2016)

- New theoretical literature in the early 2010s: heterogeneous capital returns
 - Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2019)
 - Gabaix, Lasry, Lions, and Moll (2016)
- Heterogeneity in capital returns can generate fat tails in wealth distribution
 - Very simple idea: labor income is additive, capital income is multiplicative

- New theoretical literature in the early 2010s: heterogeneous capital returns
 - Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2019)
 - Gabaix, Lasry, Lions, and Moll (2016)
- Heterogeneity in capital returns can generate fat tails in wealth distribution
 - Very simple idea: labor income is additive, capital income is multiplicative
- A simple example with Bob and Jane
 - Bob and Jane start with a stock of wealth $w_0 = 100$ (consume c = 0)
 - Bob earns $y_\ell^b = 110$ and makes 10% of returns on wealth
 - Jane earns $y_\ell^j=100$ and makes 20% of returns on wealth

■ A simple example with Bob and Jane (cont.)

- In year 1, Bob has
$$w_1=w_0+y_\ell^b+r^b\times w_0=100+110+10\times 100=220$$
 Jane has $w_1=w_0+y_\ell^j+r^j\times w_0=100+100+20\times 100=220$

7

■ A simple example with Bob and Jane (cont.)

- In year 1, Bob has
$$w_1=w_0+y_\ell^b+r^b\times w_0=100+110+10\times 100=220$$
 Jane has $w_1=w_0+y_\ell^j+r^j\times w_0=100+100+20\times 100=220$ - In year 2, Bob has $w_2^b=w_1+y_\ell^b+r^b\times w_1=220+110+10\times 220=352$ Jane has $w_2^j=w_1+y_\ell^j+r^j\times w_1=220+100+20\times 220=364$

7

- A simple example with Bob and Jane (cont.)
 - In year 1, Bob has $w_1=w_0+y_\ell^b+r^b\times w_0=100+110+10\times 100=220$ Jane has $w_1=w_0+y_\ell^j+r^j\times w_0=100+100+20\times 100=220$ - In year 2, Bob has $w_2^b=w_1+y_\ell^b+r^b\times w_1=220+110+10\times 220=352$
 - Jane has $w_2^j = w_1 + y_\ell^j + r^j \times w_1 = 220 + 100 + {\color{red} 20} \times 220 = {\color{red} 364}$
 - . . .
 - In year 5, Bob has $w_5^b=832$, Jane has $w_5^j=992$

- A simple example with Bob and Jane (cont.)
 - In year 1, Bob has $w_1 = w_0 + y_\ell^b + r^b \times w_0 = 100 + 110 + 10 \times 100 = 220$ Jane has $w_1 = w_0 + y_\ell^j + r^j \times w_0 = 100 + 100 + 20 \times 100 = 220$ - In year 2, Bob has $w_2^b = w_1 + y_\ell^b + r^b \times w_1 = 220 + 110 + 10 \times 220 = 352$ Jane has $w_2^j = w_1 + y_\ell^j + r^j \times w_1 = 220 + 100 + 20 \times 220 = 364$. . . - In year 5, Bob has $w_5^b = 832$, Jane has $w_5^j = 992$ - In year 10, Bob has $w_{10}^b \approx 2012$, Jane has $w_{10}^j \approx 3215$

7

- Needed ingredients for capital returns to generate (a lot of) wealth inequality
 - Persistent idiosyncratic returns (even across generations)
 - · "Type dependence"

- Needed ingredients for capital returns to generate (a lot of) wealth inequality
 - Persistent idiosyncratic returns (even across generations)
 - · "Type dependence"
 - Correlation of wealth and returns
 - · "Scale dependence"

- Needed ingredients for capital returns to generate (a lot of) wealth inequality
 - Persistent idiosyncratic returns (even across generations)
 - · "Type dependence"
 - Correlation of wealth and returns
 - · "Scale dependence"
- Plausible in the data?

Fagereng, Guiso, Malacrino, and Pistaferri (2020)

- Norwegian administrative data
 - Individual tax records 2005-2015
 - · Labor and capital income
 - · Asset holdings and liabilities

Fagereng, Guiso, Malacrino, and Pistaferri (2020)

- Norwegian administrative data
 - Individual tax records 2005-2015
 - · Labor and capital income
 - Asset holdings and liabilities
 - Data on deposits and loans
 - Housing transactions registry
 - Private business balance sheet

Fagereng, Guiso, Malacrino, and Pistaferri (2020)

- Norwegian administrative data
 - Individual tax records 2005-2015
 - · Labor and capital income
 - Asset holdings and liabilities
 - Data on deposits and loans
 - Housing transactions registry
 - Private business balance sheet
- Compute individual returns to wealth
 - 33 millions of observations (pooling all years)

■ Large heterogeneity in portfolios

- Large heterogeneity in portfolios
- Very heterogeneous returns on wealth
 - Large heterogeneity overall
 - · Large heterogeneity across assets
 - · Large heterogeneity within classes of assets
 - $-\,$ Large scale dependence: from net worth- $\!10\mathrm{th}$ to $-90\mathrm{th}$ percentile
 - Strong persistence across generations

Heterogeneous Capital Returns Portfolio Compositions

 $\label{table 1A} {\bf PORTFOLIO\ COMPOSITION\ OF\ NET\ WORTH,\ BY\ SELECTED\ FRACTILES^a}$

		Gross V	Vealth Shares]			
	Safe	Risky	Housing	Private Equity	Consumer Debt	Student Debt	Long-Term Debt	Gross Wealth (Logs)
Bottom 10%	0.51	0.03	0.43	0.02	0.50	2.47	9.08	10.73
10-20%	0.78	0.03	0.18	0.01	0.42	3.08	3.39	9.06
20-50%	0.31	0.02	0.66	0.01	0.01	0.05	0.40	11.89
50-90%	0.11	0.02	0.86	0.02	0.00	0.01	0.21	13.42
90-95%	0.12	0.02	0.81	0.05	0.00	0.00	0.12	14.12
95-99%	0.13	0.03	0.73	0.11	0.00	0.00	0.10	14.55
99-99.9%	0.15	0.04	0.44	0.36	0.00	0.00	0.07	15.41
99.9–99.99%	0.14	0.04	0.11	0.71	0.00	0.00	0.04	16.94
Top 0.01%	0.08	0.04	0.03	0.85	0.00	0.00	0.02	18.78

^aThe table reports the share of gross wealth in safe assets (cash/deposits, bonds, outstanding claims and receivables), risky assets (foreign assets, mutual funds, directly held listed stocks), housing, private business wealth, consumer debt, student debt, and long-term debt (mortgages and personal loans) for Norwegian taxpayers against selected fractiles of the net worth distribution. Debt leverage values are winsorized at the top 1%. In the last column, we report the logarithm of real gross wealth. Data are for 2005–2015.

Heterogeneous Capital Returns Portfolio Compositions

 $\label{table 1A} \mbox{Portfolio Composition of Net Worth, by Selected Fractiles}^a$

	Gross Wealth Shares]			
	Safe	Risky	Housing	Private Equity	Consumer Debt	Student Debt	Long-Term Debt	Gross Wealth (Logs)
Bottom 10%	0.51	0.03	0.43	0.02	0.50	2.47	9.08	10.73
10–20%	0.78	0.03	0.18	0.01	0.42	3.08	3.39	9.06
20-50%	0.31	0.02	0.66	0.01	0.01	0.05	0.40	11.89
50-90%	0.11	0.02	0.86	0.02	0.00	0.01	0.21	13.42
90-95%	0.12	0.02	0.81	0.05	0.00	0.00	0.12	14.12
95-99%	0.13	0.03	0.73	0.11	0.00	0.00	0.10	14.55
99-99.9%	0.15	0.04	0.44	0.36	0.00	0.00	0.07	15.41
99.9-99.99%	0.14	0.04	0.11	0.71	0.00	0.00	0.04	16.94
Top 0.01%	0.08	0.04	0.03	0.85	0.00	0.00	0.02	18.78

^aThe table reports the share of gross wealth in safe assets (cash/deposits, bonds, outstanding claims and receivables), risky assets (foreign assets, mutual funds, directly held listed stocks), housing, private business wealth, consumer debt, student debt, and long-term debt (mortgages and personal loans) for Norwegian taxpayers against selected fractiles of the net worth distribution. Debt leverage values are winsorized at the top 1%. In the last column, we report the logarithm of real gross wealth. Data are for 2005–2015.

Heterogeneous Capital Returns Portfolio Compositions

TABLE 1A
PORTFOLIO COMPOSITION OF NET WORTH, BY SELECTED FRACTILES^a

	Gross Wealth Shares				1			
	Safe	Risky	Housing	Private Equity	Consumer Debt	Student Debt	Long-Term Debt	Gross Wealth (Logs)
Bottom 10%	0.51	0.03	0.43	0.02	0.50	2.47	9.08	10.73
10-20%	0.78	0.03	0.18	0.01	0.42	3.08	3.39	9.06
20-50%	0.31	0.02	0.66	0.01	0.01	0.05	0.40	11.89
50-90%	0.11	0.02	0.86	0.02	0.00	0.01	0.21	13.42
90-95%	0.12	0.02	0.81	0.05	0.00	0.00	0.12	14.12
95-99%	0.13	0.03	0.73	0.11	0.00	0.00	0.10	14.55
99-99.9%	0.15	0.04	0.44	0.36	0.00	0.00	0.07	15.41
99.9-99.99%	0.14	0.04	0.11	0.71	0.00	0.00	0.04	16.94
Top 0.01%	0.08	0.04	0.03	0.85	0.00	0.00	0.02	18.78

^aThe table reports the share of gross wealth in safe assets (cash/deposits, bonds, outstanding claims and receivables), risky assets (foreign assets, mutual funds, directly held listed stocks), housing, private business wealth, consumer debt, student debt, and long-term debt (mortgages and personal loans) for Norwegian taxpayers against selected fractiles of the net worth distribution. Debt leverage values are winsorized at the top 1%. In the last column, we report the logarithm of real gross wealth. Data are for 2005–2015.

Heterogeneous Capital Returns Heterogeneous Returns

 $\label{eq:TABLE 3} \textbf{RETURNS TO WEALTH: SUMMARY STATISTICS}^a$

Wealth Component	Mean	St. Dev.	Skewness	Kurtosis	P10	Median	P90
Net worth (before tax)	0.0379	0.0859	-0.79	47.75	-0.0308	0.0321	0.1109
Net worth (after tax)	0.0365	0.0781	-0.71	36.88	-0.0283	0.0316	0.1067
Net worth (before tax, unweighted)	0.0004	0.2205	-6.73	68.46	-0.0600	0.0230	0.1037
Net worth (after tax, unweighted)	0.0155	0.1546	-5.28	56.42	-0.0449	0.0247	0.1040
Financial wealth	0.0105	0.0596	-1.78	22.17	-0.0171	0.0084	0.0530
Safe fin. assets	0.0078	0.0188	4.38	53.52	-0.0106	0.0059	0.0268
Risky fin. assets	0.0425	0.2473	-0.08	6.22	-0.2443	0.0418	0.3037
Non-financial wealth	0.0511	0.0786	1.80	15.47	-0.0215	0.0429	0.1275
Housing	0.0485	0.0653	0.73	9.95	-0.0209	0.0441	0.1165
Private equity	0.1040	0.5169	18.01	836.79	-0.0531	0.0052	0.3616
Debt	0.0236	0.0216	2.51	29.50	0.0030	0.0215	0.0461
Long-term debt	0.0230	0.0209	3.54	56.92	0.0038	0.0209	0.0446
Consumer debt	0.0961	0.1086	4.60	82.60	-0.0124	0.0741	0.2119
Student debt	0.0078	0.0260	0.68	4.14	-0.0213	0.0074	0.0399

^aThe table reports summary statistics for various measures of real returns to wealth, pooling data for 2005–2015. Except when noted, all returns are value-weighted.

Heterogeneous Capital Returns Heterogeneous Returns

 $\label{eq:TABLE 3} \textbf{RETURNS TO WEALTH: SUMMARY STATISTICS}^a$

Wealth Component	Mean	St. Dev.	Skewness	Kurtosis	P10	Median	P90
Net worth (before tax)	0.0379	0.0859	-0.79	47.75	-0.0308	0.0321	0.1109
Net worth (after tax)	0.0365	0.0781	-0.71	36.88	-0.0283	0.0316	0.1067
Net worth (before tax, unweighted)	0.0004	0.2205	-6.73	68.46	-0.0600	0.0230	0.1037
Net worth (after tax, unweighted)	0.0155	0.1546	-5.28	56.42	-0.0449	0.0247	0.1040
Financial wealth	0.0105	0.0596	-1.78	22.17	-0.0171	0.0084	0.0530
Safe fin. assets	0.0078	0.0188	4.38	53.52	-0.0106	0.0059	0.0268
Risky fin. assets	0.0425	0.2473	-0.08	6.22	-0.2443	0.0418	0.3037
Non-financial wealth	0.0511	0.0786	1.80	15.47	-0.0215	0.0429	0.1275
Housing	0.0485	0.0653	0.73	9.95	-0.0209	0.0441	0.1165
Private equity	0.1040	0.5169	18.01	836.79	-0.0531	0.0052	0.3616
Debt	0.0236	0.0216	2.51	29.50	0.0030	0.0215	0.0461
Long-term debt	0.0230	0.0209	3.54	56.92	0.0038	0.0209	0.0446
Consumer debt	0.0961	0.1086	4.60	82.60	-0.0124	0.0741	0.2119
Student debt	0.0078	0.0260	0.68	4.14	-0.0213	0.0074	0.0399

^aThe table reports summary statistics for various measures of real returns to wealth, pooling data for 2005–2015. Except when noted, all returns are value-weighted.

Heterogeneous Capital Returns Heterogeneous Returns

 $\label{eq:TABLE 3} \textbf{Returns to Wealth: Summary Statistics}^a$

Wealth Component	Mean	St. Dev.	Skewness	Kurtosis	P10	Median	P90
Net worth (before tax)	0.0379	0.0859	-0.79	47.75	-0.0308	0.0321	0.1109
Net worth (after tax)	0.0365	0.0781	-0.71	36.88	-0.0283	0.0316	0.1067
Net worth (before tax, unweighted)	0.0004	0.2205	-6.73	68.46	-0.0600	0.0230	0.1037
Net worth (after tax, unweighted)	0.0155	0.1546	-5.28	56.42	-0.0449	0.0247	0.1040
Financial wealth	0.0105	0.0596	-1.78	22.17	-0.0171	0.0084	0.0530
Safe fin. assets	0.0078	0.0188	4.38	53.52	-0.0106	0.0059	0.0268
Risky fin. assets	0.0425	0.2473	-0.08	6.22	-0.2443	0.0418	0.3037
Non-financial wealth	0.0511	0.0786	1.80	15.47	-0.0215	0.0429	0.1275
Housing	0.0485	0.0653	0.73	9.95	-0.0209	0.0441	0.1165
Private equity	0.1040	0.5169	18.01	836.79	-0.0531	0.0052	0.3616
Debt	0.0236	0.0216	2.51	29.50	0.0030	0.0215	0.0461
Long-term debt	0.0230	0.0209	3.54	56.92	0.0038	0.0209	0.0446
Consumer debt	0.0961	0.1086	4.60	82.60	-0.0124	0.0741	0.2119
Student debt	0.0078	0.0260	0.68	4.14	-0.0213	0.0074	0.0399

^aThe table reports summary statistics for various measures of real returns to wealth, pooling data for 2005–2015. Except when noted, all returns are value-weighted.

Panel A: Average and median return to net worth

■ What explains heterogeneous capital returns within a class of assets?

- What explains heterogeneous capital returns within a class of assets?
 - Fixed cost to access some investments? Scale?

- What explains heterogeneous capital returns within a class of assets?
 - Fixed cost to access some investments? Scale?
 - Capacity to pick better investments? Types?

- What explains heterogeneous capital returns within a class of assets?
 - Fixed cost to access some investments? Scale?
 - Capacity to pick better investments? Types?
 - Exposure to risk?
 - "Rich Pickings? Risk, Return, and Skill in Household Wealth"
 Bach, Calvet and Soldini, AER (2020)

- What explains heterogeneous capital returns within a class of assets?
 - Fixed cost to access some investments? Scale?
 - Capacity to pick better investments? Types?
 - Exposure to risk?
 - "Rich Pickings? Risk, Return, and Skill in Household Wealth"
 Bach, Calvet and Soldini, AER (2020)
- Active literature
 - "Why Are the Wealthiest So Wealthy?"
 Salgado, Halvorsen, Ozkan and Hubmer, R&R Econometrica (2024)
 - Many other papers looking at . . .

- New question for taxation: should we tax capital income? Or the stock of capital?
 - Should we tax capital or wealth?

- New question for taxation: should we tax capital income? Or the stock of capital?
 - Should we tax capital or wealth?
- Under homogenous returns, taxing capital = taxing wealth

$$(1 + r(1 - \tau_k))a_i = (1 - \tau_a)(1 + r)a_i$$

- au_k is a tax on capital income
- au_a is a tax on the stock of capital (wealth)

- New question for taxation: should we tax capital income? Or the stock of capital?
 - Should we tax capital or wealth?
- Under homogenous returns, taxing capital = taxing wealth

$$(1 + r(1 - \tau_k))a_i = (1 - \tau_a)(1 + r)a_i$$

- au_k is a tax on capital income
- τ_a is a tax on the stock of capital (wealth)
 - · Equivalent as long as $au_a = au_k r/(1+r)$

- New question for taxation: should we tax capital income? Or the stock of capital?
 - Should we tax capital or wealth?
- Under homogenous returns, taxing capital = taxing wealth

$$(1 + r(1 - \tau_k))a_i = (1 - \tau_a)(1 + r)a_i$$

- τ_k is a tax on capital income
- $-\tau_a$ is a tax on the stock of capital (wealth)
 - · Equivalent as long as $au_a = au_k r/(1+r)$
- What if returns are heterogeneous?

$$(1+r_i(1-\tau_k))a_i$$
 vs. $(1-\tau_a)(1+r_i)a_i$

- \blacksquare Assume two agents, a and b,
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$

- lacktriangle Assume two agents, a and b,
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays \$0
 - Agent b pays $10\% \times 20\% \times 1000 = \20

- \blacksquare Assume two agents, a and b,
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - $\ \, \mathsf{Agent} \,\, a \,\, \mathsf{pays} \,\, \0
 - Agent b pays $10\% \times 20\% \times 1000 = \20
- (Revenue-neutral) policy 2: $\tau^a = 0.91\%$ tax rate on wealth
 - Agent a pays $0.91\% \times 1000 = \$9.10$
 - Agent b pays $0.91\% \times (1000 + 200) = \10.90

- \blacksquare Assume two agents, a and b,
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays \$0
 - Agent b pays $10\% \times 20\% \times 1000 = \20
- (Revenue-neutral) policy 2: $\tau^a = 0.91\%$ tax rate on wealth
 - Agent a pays $0.91\% \times 1000 = \$9.10$
 - Agent b pays $0.91\% \times (1000 + 200) = \10.90
- A wealth tax shifts the tax burden away from the more productive hh

- \blacksquare Assume two agents, a and b,
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays \$0
 - Agent b pays $10\% \times 20\% \times 1000 = \20
- (Revenue-neutral) policy 2: $\tau^a = 0.91\%$ tax rate on wealth
 - Agent a pays $0.91\% \times 1000 = \$9.10$
 - Agent b pays $0.91\% \times (1000 + 200) = \10.90
- A wealth tax shifts the tax burden away from the more productive hh
 - Good for efficiency

- \blacksquare Assume two agents, a and b,
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays \$0
 - Agent b pays $10\% \times 20\% \times 1000 = \20
- (Revenue-neutral) policy 2: $\tau^a = 0.91\%$ tax rate on wealth
 - Agent a pays $0.91\% \times 1000 = \$9.10$
 - Agent b pays $0.91\% \times (1000 + 200) = \10.90
- A wealth tax shifts the tax burden away from the more productive hh
 - Good for efficiency, bad for redistribution?

"Use it or lose it!" Three channels

In a dynamic general-equilibrium model

- 1. "Use-it-or-lose-it" channel
 - Capital reallocates toward more productive entrepreneurs

"Use it or lose it!" Three channels

In a dynamic general-equilibrium model

- 1. "Use-it-or-lose-it" channel
 - Capital reallocates toward more productive entrepreneurs
- 2. "Behavior response" channel
 - More productive entrepreneurs will save more

"Use it or lose it!" Three channels

In a dynamic general-equilibrium model

- 1. "Use-it-or-lose-it" channel
 - Capital reallocates toward more productive entrepreneurs
- 2. "Behavior response" channel
 - More productive entrepreneurs will save more
- 3. "Price" channel
 - Wages and interest rates will adjust

- Overlapping generations (OLG) model
 - Age h, live up to H years
 - Wealth inheritance

- Overlapping generations (OLG) model
 - Age h, live up to H years
 - Wealth inheritance
- Households make three decisions
 - Endogenous labor until retirement R

- Overlapping generations (OLG) model
 - $-\,$ Age h, live up to H years
 - Wealth inheritance
- Households make three decisions
 - Endogenous labor until retirement R
 - Consumption-savings decision

- Overlapping generations (OLG) model
 - Age h, live up to H years
 - Wealth inheritance
- Households make three decisions
 - Endogenous labor until retirement ${\it R}$
 - Consumption-savings decision
 - Portfolio choice
 - · Choose how much to invest in own technology ("entrepreneurship")
 - => No occupation decision, intensive margin

■ Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$

- Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$
 - Type: κ_i imperfectly inherited from parents
 - Age-profile g(h)
 - Idiosyncratic shock: e_{ih} follows an AR(1)

- Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$
 - Type: κ_i imperfectly inherited from parents
 - Age-profile g(h)
 - Idiosyncratic shock: e_{ih} follows an AR(1)
- Social security: $y^R(\kappa,e) = \phi(\kappa,e)\bar{E}$ when h>R

- Entrepreneurial ability z_{ih}
 - Type: \bar{z}_i imperfectly inherited from parents

- Entrepreneurial ability z_{ih}
 - Type: \bar{z}_i imperfectly inherited from parents
 - Stochastic process $\mathbb{I}_{ih} \in \{\mathcal{H}, \mathcal{L}, 0\}$

$$z_{ih} = \left\{ \begin{array}{ll} \left(\bar{z}_i\right)^{\lambda} & \text{if } \mathbb{I}_{ih} = \mathcal{H} \\ \bar{z}_i & \text{if } \mathbb{I}_{ih} = \mathcal{L} \\ 0 & \text{if } \mathbb{I}_{ih} = 0 \end{array} \right.$$
 with $\lambda > 1$: "fast-lane" entrepreneurs

- Entrepreneurial ability z_{ih}
 - Type: \bar{z}_i imperfectly inherited from parents
 - Stochastic process $\mathbb{I}_{ih} \in \{\mathcal{H}, \mathcal{L}, 0\}$

$$z_{ih} = \left\{ \begin{array}{ll} \left(\bar{z}_i\right)^{\lambda} & \text{if } \mathbb{I}_{ih} = \mathcal{H} \\ \bar{z}_i & \text{if } \mathbb{I}_{ih} = \mathcal{L} \\ 0 & \text{if } \mathbb{I}_{ih} = 0 \end{array} \right.$$
 with $\lambda > 1$: "fast-lane" entrepreneurs

Stochastic transition downwards

Environment Production

- Final good: $Y = Q^{\alpha}L^{1-\alpha}$
 - Aggregate labor L, with $\alpha=0.4$
 - Intermediates: $Q=\left(\int x_{ih}^{\mu}\right)^{\frac{1}{\mu}}$, with $\mu=0.9$
 - Competitive sector

Environment Production

- Final good: $Y = Q^{\alpha}L^{1-\alpha}$
 - Aggregate labor L, with $\alpha=0.4$
 - Intermediates: $Q=\left(\int x_{ih}^{\mu}\right)^{\frac{1}{\mu}}$, with $\mu=0.9$
 - Competitive sector
- Intermediate goods: $x_{ih} = z_{ih}k_{ih}$
 - Intermediates: $Q=\left(\int \left(z_{ih}k_{ih}
 ight)^{\mu}
 ight)^{rac{1}{\mu}}$
 - Price $p_{ih} = \alpha x_{ih}^{\mu-1} Q^{\alpha-\mu} L^{1-\alpha}$

Environment Household entrepreneurial problem

lacktriangle Bond market: individuals can lend and borrow at rate r

Environment Household entrepreneurial problem

- lacktriangle Bond market: individuals can lend and borrow at rate r
- Entrepreneurial choice: Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher

Environment Household entrepreneurial problem

- lacktriangle Bond market: individuals can lend and borrow at rate r
- Entrepreneurial choice: Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher
- After-tax wealth

$$\Pi(a, z; \tau) = a + (ra + \pi(a, z) \times (1 - \tau_k))$$

= $a \times (1 - \tau_a) + (ra + \pi(a, z))$

Environment Household dynamic problem

■ Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E} \left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa) \right]$$

Environment Household dynamic problem

■ Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E} \left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa) \right]$$

such that

Environment Household dynamic problem

■ Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E}\left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa)\right]$$

such that

$$(1 + \tau_c)c + a' = (1 - \tau_\ell)\bar{w}w(\kappa, e)n + \Pi(a, z; \tau)$$

Environment Household dynamic problem

■ Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E}\left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa)\right]$$

such that

$$(1 + \tau_c)c + a' = (1 - \tau_\ell)\bar{w}w(\kappa, e)n + \Pi(a, z; \tau)$$
$$a' \ge \underline{a}$$

Environment Household dynamic problem

■ Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E}\left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa)\right]$$

such that

$$(1 + \tau_c)c + a' = (1 - \tau_\ell)\bar{w}w(\kappa, e)n + \Pi(a, z; \tau)$$
$$a' \ge \underline{a}$$

Equilibrium: $\int a = \int k$

Calibration

- Standard earnings risk
- Dynamics of entrepreneurship to match fast wealth growth of super wealthy (Forbes 400)
- Collateral constraint: $\nu(z) = 1 + \varphi(\bar{z} \bar{z}_0)$, with φ to match business debt/GDP

Calibration

- Standard earnings risk
- Dynamics of entrepreneurship to match fast wealth growth of super wealthy (Forbes 400)
- lacktriangle Collateral constraint: $u(z)=1+arphi(\bar{z}-\bar{z}_0)$, with arphi to match business debt/GDP
- Taxes: $\tau_k = 25\%$, $\tau_\ell = 22.4\%$, $\tau_c = 7.5\%$, $\tau_a = 0\%$

Calibration

⇒ Generates high wealth inequality!

	top-50	top-10	top-1	top-0.5	top-0.1
Data (SCF+)	0.99	0.75	0.36	0.27	0.14
Model	0.97	0.66	0.36	0.31	0.23

■ Model: 50% households with no business income, 7% earn majority of income from business ("entrepreneur")

- Suddenly and unexpectedly ...steady-state comparison
- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$

- Suddenly and unexpectedly ...steady-state comparison
- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a=1.13\%$
- New economy features
 - Larger K: +20% \rightarrow agents save more

- Suddenly and unexpectedly ...steady-state comparison
- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$
- New economy features
 - Larger K: +20% \rightarrow agents save more
 - Larger $Q: +25\% \rightarrow less misallocation$

- Suddenly and unexpectedly ...steady-state comparison
- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$
- New economy features
 - Larger K: $+20\% \rightarrow$ agents save more
 - Larger $Q: +25\% \rightarrow less misallocation$
 - Larger Y and $C\colon +10\%$

- Suddenly and unexpectedly ...steady-state comparison
- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$
- New economy features
 - Larger K: +20% \rightarrow agents save more
 - Larger $Q: +25\% \rightarrow less misallocation$
 - Larger Y and C: +10%
 - Lower r, higher wages, large welfare gains: +6.8%! (2020 calibration)

■ Why does capital increase? Three channels

- Why does capital increase? Three channels
 - "Use-it-or-loose-it" [fixing prices & decision rules to benchmark] $K \uparrow$
 - GE effects [with prices of new equilibrium] $K\downarrow$
 - Behavioral responses [with new decision rules] $K \uparrow$

- Why does capital increase? Three channels
 - "Use-it-or-loose-it" [fixing prices & decision rules to benchmark] $K \uparrow$
 - **GE effects** [with prices of new equilibrium] $K\downarrow$
 - Behavioral responses [with new decision rules] $K \uparrow$
- All three channels are approximately of the same magnitude!

■ Who wins from the reform?

- Who wins from the reform?
- Welfare gains by age and entrepreneurial ability

 $TABLE\ IX-Welfare\ Gain/Loss\ by\ Age\ Group\ and\ Entrepreneurial\ Ability$

	Entrepreneurial Ability Groups (\overline{z}_i Percentiles)					
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+
groups:	$RN\ Reform$					
20	7.0	7.3	7.9	8.9	10.6	11.7
21 – 34	6.5	6.3	6.3	6.6	7.0	6.8
35 - 49	5.1	4.4	3.9	3.3	1.7	0.1
50 – 64	2.3	1.8	1.4	0.8	-0.6	-1.8
65+	-0.2	-0.3	-0.4	-0.6	-1.2	-1.8

- The high-wealth/low-z (= the old) loose
- The young **benefit**...from $\tau_k = 0$ (high z), from higher w (low a)

Optimal Taxation Capital and Wealth Taxes

Optimize steady-state fiscal system

- Optimal capital tax
 - $-\tau_k = -14\%$ (!), $\tau_\ell = 31\%$
 - Welfare gains: +5.1%

Optimal Taxation Capital and Wealth Taxes

Optimize steady-state fiscal system

- Optimal capital tax
 - $-\tau_k = -14\%$ (!), $\tau_\ell = 31\%$
 - Welfare gains: +5.1%
- Optimal wealth tax:
 - $-\tau_a \approx 3\%$, $\tau_\ell \approx 14\%$
 - Much larger welfare gains: + 8.7%

Optimal Taxation Capital and Wealth Taxes

Optimize steady-state fiscal system

- Optimal capital tax
 - $-\tau_k = -14\%$ (!), $\tau_\ell = 31\%$
 - Welfare gains: +5.1%
- Optimal wealth tax:
 - $~\tau_a\approx 3\%$, $\tau_\ell\approx 14\%$
 - Much larger welfare gains: + 8.7%
- Transitions

Taxing Capital? Taking Stock

- With heterogeneous capital returns, positive wealth tax
 - Mostly for efficiency reasons! Reallocation

Taxing Capital? Taking Stock

- With heterogeneous capital returns, positive wealth tax
 - Mostly for efficiency reasons! Reallocation
- Implementability?

Taxing Capital? Taking Stock

- With heterogeneous capital returns, positive wealth tax
 - Mostly for efficiency reasons! Reallocation
- Implementability?
- What if high returns reflect rents? Gaillard and Wangner (2023), Scheuer et al.

Going Forward Data

- What else can we study with the admin Norwegian dataset?
 - Many papers: on who becomes rich, who gives what to their kids, housing, ...

Going Forward Data

- What else can we study with the admin Norwegian dataset?
 - Many papers: on who becomes rich, who gives what to their kids, housing, ...
- "Why Are the Wealthiest So Wealthy? New Longitudinal Empirical Evidence and Implications for Theories of Wealth Inequality"

Ozkan, Hubmer, Salgado, Halvorsen, R&R Econometrica (2024)

Empirical Approach (for now!)

- Study lifecycle dynamics of wealth accumulation
 - 1993-2015 Norwegian panel data on wealth and income

Empirical Approach (for now!)

- Study lifecycle dynamics of wealth accumulation
 - 1993-2015 Norwegian panel data on wealth and income
- Backwards approach
 - How many of the wealthiest at age 50 were already wealthy at age 25?
 - · "Old Money" vs. "New Money"
 - Where does the wealth of the wealthiest at age 50 come from?
 - · Labor income, capital returns, saving rates, inheritances, initial wealth?
- Complementary frontwards approach

Empirical Approach (for now!)

- Study lifecycle dynamics of wealth accumulation
 - 1993-2015 Norwegian panel data on wealth and income
- Backwards approach
 - How many of the wealthiest at age 50 were already wealthy at age 25?
 - · "Old Money" vs. "New Money"
 - Where does the wealth of the wealthiest at age 50 come from?
 - · Labor income, capital returns, saving rates, inheritances, initial wealth?
- Complementary frontwards approach
- Accounting . . . complemented with models!

Methodology

- Build measures of net wealth and capital returns
 - Follow Fagereng et al. (2020)

Methodology

- Build measures of net wealth and capital returns
 - Follow Fagereng et al. (2020)
 - Indirect ownership for retained earnings (7 layers)
 - Inheritance severely undervalued
 - Value of equity owned excludes intangibles

Methodology

- Build measures of net wealth and capital returns
 - Follow Fagereng et al. (2020)
 - Indirect ownership for retained earnings (7 layers)
 - Inheritance severely undervalued
 - Value of equity owned excludes intangibles
- lacktriangle Average wealth (AW) pprox \$437,000 in 2015
 - Life-cycle similar to the US

FIGURE 3 - WEALTH DIST

(A) Average Net Worth

Backwards Life-Cycle Profiles

- The Rich Started Rich
 - Top-0.1% 50-54y have 125 AW \approx \$55 million
 - In their late 20s have already 20 AW $\approx \$9$ million
 - Higher within-cohort inequality earlier in life

(a) Backward-Looking Wealth Profile

Backwards Life-Cycle Profiles

< P75	[P75, P90)	[P90, P95)	[P95, P99)	[P99, P99.9)	$\geq P99.9$
A. 1994 Wealth Quantile for $BW_{>P99.9}^{50-54}$ households					
21.4%	7.4%	5.9%	13.0%	23.2%	29.2%

■ The Rich Started Rich

- 1/3 of the wealthiest at age 50 started in the top-0.1%
 - ⇒ "Old Money"
- $-\ 1/5$ started with very little wealth
 - ⇒ "New Money"

Backwards Life-Cycle Profiles

< P75	[P75, P90)	[P90, P95)	[P95, P99)	[P99, P99.9)	$\geq P99.9$	
A. 1994 Wealth Quantile for $BW_{>P99.9}^{50-54}$ households						
21.4%	7.4%	5.9%	13.0%	23.2%	29.2%	

■ The Rich Started Rich

- 1/3 of the wealthiest at age 50 started in the top-0.1%
 - ⇒ "Old Money"
- 1/5 started with very little wealth⇒ "New Money"

Portfolio Compositions The Rich Hold Equity

■ Public + Private equity always above 80%, with little leverage

Portfolio Compositions The Rich Hold Equity

- Public + Private equity always above 80%, with little leverage
 - Old Money: even less housing at younger ages
 - New money: leveraged at younger ages

Sources of Income Income of the Rich is Equity Returns

Figure 6 – Decomposition of Total Lifetime Resources

Accounting equation

$$W_{i,\tau} = W_{i,1993} + \sum_{t=1994}^{\tau} [L_{i,t} + H_{i,t} + R_{i,t}^E + R_{i,t}^S + R_{i,t}^H + T_{i,t} - I_{i,t}^L] - \sum_{t=1994}^{\tau} C_{i,t}$$

Why are the Wealthiest so Wealthy?

- End wealth can differ because of: inheritances, labor earnings, return rates & saving rates
- Accounting: Shapley-Owen decomposition
 - Simulate the counterfactual evolution of wealth factor by factor

Why are the Wealthiest so Wealthy? Inheritances

- End wealth can differ because of: inheritances, labor earnings, return rates & saving rates
- Accounting: Shapley-Owen decomposition
 - Simulate the counterfactual evolution of wealth factor by factor

Why are the Wealthiest so Wealthy? Taking Stock

- A third is "Old-Money"
 - $\approx 40\%$ comes from inheritances
 - Returns on equity and saving rates
- A fifth is "New-Money"
 - No inheritance, more labor income
 - Returns on equity and saving rates

Why are the Wealthiest so Wealthy? Taking Stock

- A third is "Old-Money"
 - $\approx 40\%$ comes from inheritances
 - Returns on equity and saving rates
- A fifth is "New-Money"
 - No inheritance, more labor income
 - Returns on equity and saving rates
- How many individuals?...
 - Norway: 5 million individuals . . . Age $50 54 \approx 250,000$?
 - Top 0.1% of $50 54 \approx 250$ individuals
 - Old Money ≈ 75 individuals, New-Money ≈ 50 individuals?

Why are the Wealthiest so Wealthy?

■ Going forward: testing alternative models of wealth accumulation

Why are the Wealthiest so Wealthy?

- Going forward: testing alternative models of wealth accumulation
- Going forward: Bacher, Ferriere, Irarrazabal, Lizarraga and Zheng (2024)
 - Same data
 - Focus on private limited liability companies
 - Entrepreneurs or investors? "When money meet skills"

- Where are private business owners situated in the net wealth distribution?
 - In the top of the distribution

- Where are private business owners situated in the net wealth distribution?
- What kind of firms do they owe?
 - Heterogeneity

- Where are private business owners situated in the net wealth distribution?
- What kind of firms do they owe?
- How many firms do they owe?
 - Mostly one

- Where are private business owners situated in the net wealth distribution?
- What kind of firms do they owe?
- How many firms do they owe?
- Scale dependence?
 - Yes! Up to the 50th percentile

- Where are private business owners situated in the net wealth distribution?
- What kind of firms do they owe?
- How many firms do they owe?
- Scale dependence?
 - Yes! Up to the 50th percentile

- Empirical distinction bw entrepreneurs & investors
 - Owners who also supply skill
 - Owners who only supply money
- Role Database
 - Entrepreneurs if have a Role and some shares
 - Multiple layers

■ Three groups

- $\approx 50\%$ of shares by managers who also sit on the board
- $\approx 30\%$ by those who only sit on the board
- $\approx 20\%$ by those who do not have any roles

■ On average, 42% of business wealth held by entrepreneur-owners and 58% held by investor-owners

■ On average, 42% of business wealth held by entrepreneur-owners and 58% held by investor-owners

- Majority of business wealth held in entrepreneurial projects
 - Except at the very top
- Top: Serial investors

■ On average, 42% of business wealth held by entrepreneur-owners and 58% held by investor-owners

- Majority of business wealth held in entrepreneurial projects
 - Except at the very top
- Top: Serial investors

- Which investment has higher returns? As entrepreneur or investor?
- How do you make it to the very top? As entrepreneur or investor?
- Who can invest in private businesses?