

Rev 0:Jan 2003 Rev 1:Jan 2004

AO4410

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4410 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, shoot-through immunity, body diode characteristics and ultra-low gate resistance. This device is ideally suited for use as a low side switch in Notebook CPU core power conversion.

Features

 $V_{DS}(V) = 30V$

I_D = 18A

 $R_{DS(ON)}$ < 5.5m Ω (V_{GS} = 10V)

 $R_{DS(ON)} < 6.2 m\Omega (V_{GS} = 4.5 V)$

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V_{DS}	30	V		
Gate-Source Voltage		V_{GS}	±12	V		
Continuous Drain	T _A =25°C		18			
Current ^A	T _A =70°C	I_D	15	Α		
Pulsed Drain Current ^B		I _{DM}	80]		
	T _A =25°C	P_{D}	3	W		
Power Dissipation	T _A =70°C		2.1] vv		
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 150	°C		

Thermal Characteristics						
Parameter	Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	31	40	°C/W	
Maximum Junction-to-Ambient ^A	Steady-State	$\kappa_{\theta JA}$	59	75	°C/W	
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	16	24	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		30			V
	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V				1	^
I _{DSS}		T _J =	T _J =55°C			5	μА
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.8	1.1	1.5	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V		80			Α
R _{DS(ON)}		V_{GS} =10V, I_D =18A			4.7	5.5	m()
	Static Drain-Source On-Resistance		T _J =125°C		6.4	7.4	mΩ
		V _{GS} =4.5V, I _D =15A			5.2	6.2	mΩ
g FS	Forward Transconductance	V _{DS} =5V, I _D =18A			102		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.64	1	V
I _S Maximum Body-Diode Continuous Current						4.5	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			9130	10500	pF
C _{oss}	Output Capacitance				625		pF
C _{rss}	Reverse Transfer Capacitance				387		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			0.4	0.5	Ω
SWITCHI	NG PARAMETERS						
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =18A			72.4	85	nC
Q_{gs}	Gate Source Charge				13.4		nC
Q_{gd}	Gate Drain Charge				16.8		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_L =0.83 Ω , R_{GEN} =3 Ω			11		ns
t _r	Turn-On Rise Time				7		ns
t _{D(off)}	Turn-Off DelayTime				99		ns
t _f	Turn-Off Fall Time				13		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =18A, dI/dt=100A/μs			33	40	ns
Q_{rr}	Body Diode Reverse Recovery Charge	l _F =18A, dl/dt=100A/μs			22.2		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

ALPHA & OMEGA SEMICONDUCTOR, INC.

SO-8 Package Data

DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
A	1.45	1.50	1.55	0.057	0.059	0.061
A1	0.00		0.10	0.000		0.004
A2		1.45			0.057	
b	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E1	3.80		4.00	0.150		0.157
e	1.27 BSC			0.050 BSC		
Е	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
aaa			0.10			0.004
θ	0°		8°	0°		8°

- NOTE: 1. LEAD FINISH: 150 MICROINCHES (3.8 um) MIN. THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD 2. TOLERANCE ±0.10 mm (4 mil) UNLESS OTHERWISE SPECIFIED

- 3. COPLANARITY : 0.10 mm 4. DIMENSION L IS MEASURED IN GAGE PLANE

PACKAGE MARKING DESCRIPTION

NOTE:

LOGO - AOS LOGO

- AOS LOGO
- PART NUMBER CODE.
- FAB LOCATION
- ASSEMBLY LOCATION
- YEAR CODE
- WEEK CODE. 4410 F

A Y W

LC - ASSEMBLY LOT CODE

RECOMMENDED LAND PATTERN

UNIT: mm

SO-8 PART NO. CODE

PART NO.	CODE
AO4410	4410

