Financial Formulas

FINANCIAL STATEMENTS AND CASH FLOW

- Assets≡Liabilities + Stockholders' Equity
- Net working capital=Current Assets Current Liabilities
- Revenue—Expenses≡Income

FINANCIAL STATEMENT ANALYSIS

- Current ratio = $\frac{\text{Current assets}}{\text{Current liabilities}}$
- Quick ratio = Current liabilities
- Cash ratio = Cash and cash equivalents

 Current liabilities
- Operating cash flow ratio = $\frac{\text{Cash flow from operations}}{\text{current liabilities}}$
- Total Debt Ratio $=\frac{Total \ assets Total \ stockholders' \ equity}{Total \ assets}$
- Equity Multiplier = Total assets
 Total stockholders' equity
- Interest coverage ratio= EBIT Interest expense
- Inventory Turnover = Cost of Goods Sold / Inventory
- Days' sales in inventory (DSI) = $\frac{365 \text{ days}}{\text{Inventory turnover}}$
- Total asset turnover = $\frac{\text{Total revenues}}{\text{Total assets}}$
- Gross profit margin = $\frac{\text{Gross Profit}}{\text{Total Revenues}}$
- Net profit margin = $\frac{\text{Net income}}{\text{Total revenue}}$
- Return on Assets (ROA) = $\frac{\text{Net income}}{\text{Total assets}}$
- Return on Equity (ROE) = Net income
 Total equity
- $ROE = Net Profit Margin \times Total Asset Turnover \times Equity Multiplier$
- Price to earnings ratio (P/E ratio) = Current share price/Earnings per share

• Market capitalization (market cap) = Current price per share × Shares outstanding

TIME VALUE OF MONEY

- Future value: $FV = PV \times (1 + r)^T$
- Present value: $PV = \frac{FV}{(1+r)^T}$
- Net present value: $NPV = C + \sum^{T} \underline{c_t}$ 0 $t=1_{(1+r)^t}$
- The internal rate of return (IRR) has to satisfy the following equation:

$$0 = C_0 + \frac{C_1}{1 + RR} + \frac{C_2}{(1 + IRR)^2} + \frac{C_3}{(1 + IRR)^3} + \dots + \frac{C_T}{(1 + IRR)^T}$$

- Effective annual rate: $EAR = (1 + \frac{r}{m})^m 1$
- Future value based on continuous compounding: $FV = PV \times e^{rT}$
- Perpetuity: $PV = \frac{c}{r}$

- Growing perpetuity: $PV = \frac{c}{r-g}$ Annuity: $\begin{array}{c} c & 1 \\ PV = \frac{-1}{r} [1 \frac{1}{(1+r)^t}] \end{array}$ Growing annuity: $PV = \frac{c}{r-g} [1 (\frac{1+g}{1+r})^t]$