Gun V/a

Given V/C Definition: a complex inner product / Hermitian form is a map $\langle , \rangle : \bigvee \times \bigvee \longrightarrow \bigcirc$ V, V, H) (U,, V2) Satisfyly following properties Conjugate symmetric (V, V, V) @ Sesquilinear: | wear $< \vee$, $\alpha_i \times_i + \alpha_2 \times_i > = \alpha_1 < \nu$, $\chi_i > + \alpha_k < \nu$, $\chi_i > + \alpha_k < \nu$. a, a, e CConjugate linear $\langle \alpha_1 V_1 + \alpha_2 V_2, \chi \rangle = \overline{\alpha_1} \langle V_1, \chi \rangle + \overline{\alpha_2} \langle V_2, \chi \rangle$ (A) Let Component 3 (optional) positive definite Hernitian form; (V, V) >0 is a real number Example: V = C $|Z| = (\overline{Z} \cdot \overline{Z})^{\frac{1}{n}} \quad \langle Z_1, Z_2 \rangle = \overline{Z_1} \cdot Z_2$ Standard Hermitian form: $\overline{X} = (X_1 - X_1)^T \quad \overline{Y} = (Y_1 - Y_1)^T \quad \langle \overline{X}, \overline{Y} \rangle = \overline{Y} \cdot \overline$ Check: $\langle \vec{y}, \vec{x} \rangle = \sum \vec{y}_i \cdot x_i = (\sum \vec{x}_i \vec{y}_i) = \langle \vec{x}, \vec{y} \rangle$ $\langle \vec{x}, \alpha \vec{y} \rangle = \sum \vec{x}_i \cdot (\alpha \vec{y}_i) = \alpha \left(\sum \vec{x}_i \cdot \vec{y}_i \right)$ $\langle a\vec{x}, \hat{y} \rangle = \frac{1}{2} \overline{\langle ax_i \rangle y_i} = \frac{1}{2} (2 \overline{\chi_i} y_i)$ Check $(\overline{X}, \overline{X}) = \overline{X} =$ Fix a basis B= ? e, -- end, then Hermitian form can described In terms of matrix $H = (\langle e_i, e_j \rangle)_{ij}$ As By is basis $V = \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{4$ RHS = $((a, -a)H).(b) = \overline{1}(5ace; e)$ by

Step 1:
$$e_{i}^{\circ}$$
; $e_{i,e,s}^{\dagger}$ $(e_{i,e,s}^{\circ})_{=}^{\dagger}$ $(e_{i,e,s}^{\circ})_{=}^{\dagger}$ $(e_{i,e,s}^{\circ})_{=}^{\dagger}$ $(e_{i,e,s}^{\circ})_{=}^{\dagger}$ $(e_{i,e,s}^{\circ})_{=}^{\dagger}$

Step 2:
$$e_2' = e_1 - \overline{(e_2, e_i^\circ)} e_i^\circ$$

Claim: $e_2' \perp e_i^\circ$ rdeed (e_1', e_i°)

Step3:
$$e_{3}' = e_{3} - \langle e_{3}, e_{1}^{\circ} \rangle e_{1}^{\circ} - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ}$$
 $e_{3}' = e_{3} - \langle e_{3}, e_{1}^{\circ} \rangle e_{1}^{\circ} - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ}$
 $e_{3}' = e_{3}' - \langle e_{3}, e_{1}^{\circ} \rangle e_{1}^{\circ} - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ}$
 $e_{3}' = e_{3}' - \langle e_{3}, e_{1}^{\circ} \rangle e_{1}^{\circ} - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ}$
 $e_{3}' = e_{3}' - \langle e_{3}, e_{1}^{\circ} \rangle e_{1}^{\circ} - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ}$
 $e_{3}' = e_{3}' - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ} - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ}$
 $e_{3}' = e_{3}' - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ} - \langle e_{3}, e_{2}^{\circ} \rangle e_{2}^{\circ}$

Lem:
$$H' = h^* \cdot H \cdot h$$
 $f_{\hat{i}} = \sum e_k h_{k\hat{i}} f_{\hat{j}} = \sum e_i h_{e\hat{j}}$

$$Pf(Sketch) : (H')_{\hat{i}\hat{j}} = (h^*H \cdot h)_{\hat{i}\hat{j}}$$

LHS:
$$\langle f_i, f_j \rangle = \sum_{k_i} \overline{h_{k_i}} h_{k_j} \langle e_k, e_l \rangle$$

= RHS

Def., a unitary matrix
$$g$$
, is such that $g^*, g = I$

Lemma: g is a hairany matrix iff
$$\langle v,w \rangle = \langle gv, gw \rangle$$
 for any $v,w \in V$ Pf., For the standard \langle , \rangle and standard basis (e. en)

H associated to the if
$$(ei, ej)$$
 $f_j = (Sij) = I$

Previous lenne \Rightarrow $(v, w) = H \cdot \overline{w} = \overline{v}^* \cdot \overline{w}$
 $(gv, gw) = (gv)^* \cdot (g\overline{w}) = \overline{v}^* \cdot g^* \cdot g \cdot \overline{w}$
 $(gv, gw) = (v, w)$

iff $g^*g = I$
 $(gv, gw) = (v, w)$

iff $g^*g = I$
 $(gv, gw) = (v, w)$

iff $g^*g = I$
 $(gv, gw) = (v, w)$

iff $g^*g = I$
 $(gv, gw) = (gv, w)$

iff $g^*g = I$
 $(gv, gw) = (gv, w)$

iff $g^*g = I$
 $(gv, gw) = I$
 $(gv, gw) = I$
 $(gv, gw) = I$

iff $g^*g = I$
 $(gv, gw) = I$
 $(gv, g$

Description of the standard o

Definition: for any subspece $W \subset V$, V with C, V define $W^{\perp} = \{ v \in V \mid (v, w) = 0 \mid \forall w \in W \}$