Exercise 1: Lasso Regularization

Consider the regression learning setting, i.e., $\mathcal{Y} = \mathbb{R}$, and feature space $\mathcal{X} = \mathbb{R}^p$. Let the hypothesis space be the linear models:

$$\mathcal{H} = \{ f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^p \}.$$

Suppose your loss function of interest is the L2 loss $L(y, f(\mathbf{x})) = \frac{1}{2}(y - f(\mathbf{x}))^2$. Consider the L_1 -regularized empirical risk of a model $f(\mathbf{x} \mid \boldsymbol{\theta})$ (i.e., Lasso regression):

$$\mathcal{R}_{\text{reg}}(\boldsymbol{\theta}) = \mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_1 = \frac{1}{2} \sum_{i=1}^n \left(y^{(i)} - \boldsymbol{\theta}^\top \mathbf{x}^{(i)} \right)^2 + \lambda \sum_{i=1}^p |\theta_i|.$$

Assume that $\mathbf{X}^T\mathbf{X} = \mathbf{I}$, which holds if \mathbf{X} has orthonormal columns. Show that the minimizer $\hat{\theta}_{\text{Lasso}} = (\hat{\theta}_{\text{Lasso},1}, \dots, \hat{\theta}_{\text{Lasso},p})^{\top}$ is given by

$$\hat{\theta}_{\text{Lasso},i} = sgn(\hat{\theta}_i) \max\{|\hat{\theta}_i| - \lambda, 0\}, \quad i = 1, \dots, p,$$

where $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \dots, \hat{\theta}_p)^{\top} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is the minimizer of the unregularized empirical risk (w.r.t. the L2 loss). For this purpose, use the following steps:

(i) Derive that

$$\operatorname{arg\,min}_{\boldsymbol{\theta}} \mathcal{R}_{\operatorname{reg}}(\boldsymbol{\theta}) = \operatorname{arg\,min}_{\boldsymbol{\theta}} \sum_{i=1}^{p} -\hat{\theta}_{i} \theta_{i} + \frac{\theta_{i}^{2}}{2} + \lambda |\theta_{i}|.$$

(ii) Note that the minimization problem on the right-hand side of (i) can be written as $\sum_{i=1}^{p} g_i(\theta_i)$, where

$$g_i(\theta) = -\hat{\theta}_i \theta + \frac{\theta^2}{2} + \lambda |\theta|.$$

What is the advantage of this representation if we seek to find the θ with entries $\theta_1, \ldots, \theta_p$ minimizing $\mathcal{R}_{reg}(\theta)$?

(iii) Consider first the case that $\hat{\theta}_i > 0$ and infer that for the minimizer θ_i^* of g_i it must hold that $\theta_i^* \geq 0$. Hint: Compare $g_i(\theta)$ and $g_i(-\theta)$ for $\theta \geq 0$.

(iv)	Derive that $\theta_i^* = \max\{ \hat{\theta}_i - \lambda, 0\}$, by using (iii) (and also still considering the case $\hat{\theta}_i > 0$.)
(v)	Consider the complementary case of (iii) and (iv), i.e., $\hat{\theta}_i \leq 0$, and infer that for the minimizer θ_i^* of g_i it must hold that $\theta_i^* \leq 0$.
(vi)	Derive that $\theta_i^* = \min\{\hat{\theta}_i + \lambda, 0\}$, by using (v) (and also still considering the case $\hat{\theta}_i \leq 0$.)
(vii)	Make sure that both minimizers in the two case can indeed be written as $sgn(\hat{\theta}_i) \max\{ \hat{\theta}_i - \lambda, 0\}$.
(viii)	Quiz time: Log in to Particify (https://partici.fi/63221686) and try to answer the questions for Week 9.