Algoritmer og datastrukturer

Introduktion til kurset

Rolf Fagerberg

Forår 2025

Hvem er vi?

Underviser:

▶ Rolf Fagerberg, Institut for Matematik og Datalogi (IMADA) Forskningsområde: algoritmer og datastrukturer

Deltagere:

- ► BA i Datalogi (2. sem.)
- ▶ BA i Kunstig Intelligens (2. sem.)
- ▶ BA i Software Engineering (4. sem.)
- ► BA i Matematik-Økonomi (4. sem.)
- ► BA i Anvendt Matematik (4. sem.)
- ► BA sidefag i Datalogi (6. sem.)
- ► KA profil i Data Science (2./8. sem.)

Bemærk stor diversitet: forskellige semestre i uddannelsen, forskellige mængder af programmering og af matematiske fag på uddannelsen.

Tre (fire) kurser i ét

DM578: Algoritmer og datastrukturer (7.5 ETCS)

Skriftlig MC eksamen (3 timer)

► Algoritmer og datastrukturer (7.5 ETCS)

DM507/DS814: Programmeringsprojekt i tre dele (2.5 ETCS)

Skriftlig MC eksamen (3 timer)

► Algoritmer og datastrukturer (7.5 ETCS)

SE4-DMAD: ▶ Diskret matematik (2.5 ETCS)

Skriftlig MC eksamen (3 timer og 3 kvarter)

Diskret matematik har separate forelæsninger (Lene Monrad Favrholdt) og øvelsestimer. Tirsdage 10-12 i ti uger.

Der er et ITS-kursusrum for DM507/DM578/DS814 og et andet ITS-kursusrum for SE4-DMAD.

Kursets format (DM578)

Forudsætninger:

Programmering i Python eller Java, lidt matematisk modenhed

Format:

Forelæsninger (f-timer) ved Rolf Fagerberg. Opgaveregning (e-timer) ved instruktor. Arbejde selv og i studiegrupper.

Eksamenform:

Skriftlig eksamen (juni), 7.5 ECTS:

Multiple-choice (med bøger og noter). Karakter efter 7-skala. Mål: check af kendskab til stoffet. [NB: reeksamen er *mundtlig*.]

Kursets format (DM507/DS814)

Forudsætninger:

Programmering i Python, lidt matematisk modenhed

Format:

Forelæsninger (f-timer) ved Rolf Fagerberg. Opgaveregning (e-timer) ved Instruktor. Arbejde selv og i studiegrupper.

Eksamenform:

Skriftlig eksamen (juni), 7.5 ECTS:

Multiple-choice (med bøger, noter). Karakter efter 7-skala. Mål: check af kendskab til stoffet. [NB: reeksamen er mundtlig.]

Projekt undervejs, 2.5 ECTS, Python:

I tre dele. Karakter B/IB. Skal ikke bestås for at gå til skriftlig eksamen. Mål: træne overførsel af stoffet til praksis (programmering).

Kursets format (SE4-DMAD)

Forudsætninger:

Programmering i Java eller Python, lidt matematisk modenhed

Format:

Forelæsninger (f-timer) ved Rolf Fagerberg og Lene Monrad Favrholdt. Opgaveregning (e-timer) ved instruktor. Arbejde selv og i studiegrupper.

Eksamenform:

```
Skriftlig eksamen (juni), 10 ECTS:
```

Multiple-choice (med bøger, noter). Karakter efter 7-skala. Mål: check af kendskab til stoffet. [NB: reeksamen er mundtlig.]

Materialer i algoritmer og datastrukturer

Lærebog:

Cormen, Leiserson, Rivest, Stein: *Introduction to Algorithms*, 4th edition, 2022.

(Jeg vil også angive læsestof og opgaver ud fra 3rd edition.)

Andet læremateriale på kursets webside:

Slides fra forelæsninger Opgaver til øvelsestimer Tidligere eksamenssæt Projektet

Forventet arbejdsindsats (DM578)

- ► Skim stof før forelæsning: 0,5 timer ← mindst vigtig
- ► Forelæsning: 2 timer
- Læs stof efter forelæsning: 1,5 timer
- ► Opgaveregning (hjemme): 3 timer ← mest vigtig
- ► Opgaveregning (klasse): 2 timer ← mest vigtig

Ovenstående i gennemsnit 1.5 gang per uge over 14 uger. Dertil følgende én gang:

- Eksamenslæsning: 40 timer
- ► Spørgetime og eksamen: 6 timer

I alt:
$$14 \cdot 1.5 \cdot 9 + 40 + 6 = 235$$
 timer

$$7.5 \text{ ECTS} = 1/8 \text{ årsværk} = 1650/8 \text{ timer} = 206 \text{ timer}$$

Forventet arbejdsindsats (DM507/DS814)

- ► Skim stof før forelæsning: 0,5 timer ← mindst vigtig
- ► Forelæsning: 2 timer
- Læs stof efter forelæsning: 1,5 timer
- ► Opgaveregning (hjemme): 3 timer ← mest vigtig
- ► Opgaveregning (klasse): 2 timer ← mest vigtig

Ovenstående i gennemsnit 1.5 gang per uge over 14 uger. Dertil følgende én gang:

- ▶ Projektet: 15+15+25 timer
- ► Eksamenslæsning: 40 timer
- Spørgetime og eksamen: 6 timer

I alt:
$$14 \cdot 1.5 \cdot 9 + 55 + 40 + 6 = 290$$
 timer

$$10 \text{ ECTS} = 1/6 \text{ årsværk} = 1650/6 \text{ timer} = 275 \text{ timer}$$

Forventet arbejdsindsats (SE4-DMAD)

- ► Skim stof før forelæsning: 0,5 timer ← mindst vigtig
- ► Forelæsning: 2 timer
- Læs stof efter forelæsning: 1,5 timer
- ▶ Opgaveregning (hjemme): 3 timer ← mest vigtig
- ► Opgaveregning (klasse): 2 timer ← mest vigtig

Ovenstående i gennemsnit 1.5 per uge over 14 uger (Rolf) og 0.5 gang per uge over 10 uger (Lene). Dertil følgende én gang:

- ► Eksamenslæsning: 40 timer
- ► Spørgetime og eksamen: 6 timer

I alt:
$$(14 \cdot 1.5 + 10 \cdot 0.5) \cdot 9 + 40 + 6 = 280$$
 timer

$$10 \text{ ECTS} = 1/6 \text{ årsværk} = 1650/6 \text{ timer} = 275 \text{ timer}$$

Kursets formål og plads i det store billede

Generelt mål i IT: Få en computer til at udføre en opgave.

Relaterede spørgsmål:

- Hvordan skrives programmer? Programmering, programmeringssprog, software engineering.
- ► Hvordan skal programmet løse opgaven? ← DM507/DM578/... Algoritmer og datastrukturer, databasesystemer, lineær algebra med anvendelser, data mining og machine learning.
- ► (Hvor godt) er det overhovedet muligt at løse opgaven? Nedre grænser, kompleksitet, beregnelighed.
- ► Hvordan fungerer maskinen der udfører opgaven? Baggrundsviden om computerarkitektur og operativsystemer.

Hvordan skal programmet løse opgaven?

Algoritme = l øsningsmetode.

Tilpas præcist skrevet ned: tegning, tekst, pseudo-kode,...

 $\textbf{Datastruktur} = \mathsf{data} + \mathsf{effektive} \ \mathsf{operationer} \ \mathsf{herpå}.$

Forskellige niveauer af løsning:

- 1. **Opfind** én algoritme som løser opgaven.
- 2. **Sammenlign** flere algoritmer som løser opgaven.
- 3. Hvad er den bedst mulige algoritme som løser opgaven?

Udvikling og vurdering af algoritmer

- 1. **Opfind** en algoritme som løser opgaven: Kræver ideer, erfaring, og en værktøjskasse med både eksisterende algoritmer og metoder til at udvikle nye.
- 2. **Sammenlign** flere algoritmer som løser opgaven: Kræver definition af hvad kvalitet er (ofte: kvalitet = lavt tidsforbrug).
- 3. Hvad er den bedst mulige algoritme som løser opgaven?

Analyse (tænkearbejde, argumenter, beviser): godt værktøj til punkt 1, 2 og 3. Giver høj sikkerhed for korrekthed af metoden/idéen. Sparer implementationsarbejde. Sammenligning upåvirket af: maskine, sprog, programmør, og valg af testdata.

Afprøvning (implementation, test): godt værktøj til punkt 1 og 2. Kan udforske ideer, fange implementationsfejl, belyse ting som ikke fanges af analysen.

Udvikling og vurdering af algoritmer

DM507/DM578/DS814/SE4-DMAD vil have mest fokus på analyse, lidt mindre på implementation og afprøvning.

I alle byggefag analyserer og planlægger man før man bygger (tænk f.eks. storebæltsbro).

Målsætning for kurset

DM507 giver dig en værktøjskasse af algoritmer for fundamentale opgaver, samt metoder til at udvikle og analysere nye algoritmer og varianter af eksisterende.

Målsætning for kurset

Øvelser og programmeringsprojekter øger din forståelse for værktøjerne og træner dig i brugen af dem.

Undervejs begejstres du måske også over smarte og elegante ideer i algoritmer og analyser.

Konkret indhold af kurset

Algoritmer:

- Analyse af algoritmer: korrekthed og køretid (værktøj)
- Del og hersk algoritmer (algoritmemetode)
- ► Grådige algoritmer (algoritmemetode)
- Dynamisk programmering (algoritmemetode)
- Konkrete algoritmer for sortering, graf-problemer (BFS, DFS, korteste veje, udspændende træer,...), fil-komprimering, multiplikation af matricer,...

Datastrukturer:

- Ordbøger (søgetræer og hashing)
- Prioritetskøer (heaps)
- Disjunkte mængder