Elsőrendű logika (predikátumkalkulus)

A nulladrendű logika korlátozottan alkalmas a világ leírására, az egyszerű állítások belső szerkezetét nem vizsgálja. Például a "Minden ember halandó.", "Szókrátész ember.", "Szókrátész halandó." állítások nulladrendű formalizálása esetén nincs más lehetőségünk, mint x, y és z-ként formalizálni a fenti állítás-hármast. Ugyanakkor mivel az emberek halmaza részhalmaz a halandók halmazának és Szókrátész az ember-halmaz egy eleme, ezért jó lenne egy olyan modell, ahol a 3. állítás az első 2 következménye.

Egy elsőrendű logikában (nem véletlen a határozatlan névelő!) az állítások belső szerkezetét is figyelembe tudjuk venni. Tudunk egy halmaz összes elemére illetve legalább egy elemére vonatkozó állításokat formalizálni.

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció Egy elsőrendű logika szimbólumhalmaza a következőkből áll

- Pred, a **predikátumszimbólumok** véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- Ind = $\{x_1, x_2, \ldots\}$, az **individuumváltozók** megszámlálhatóan végtelen halmaza
- {¬, ∧, ∨, →, ∀, ∃} műveleti jelek és kvantorok. ∀ neve univerzális kvantor, míg ∃ neve egzisztenciális kvantor
- (,) és , (vessző).

Minden $s \in \operatorname{Pred} \cup \operatorname{Func} \cup \operatorname{Cnst-hez}$ hozzá van rendelve egy $\operatorname{ar}(s) \in \mathbb{N}$ szám, a szimbólum **aritása** (a konstansokhoz mindig 0).

Definíció A termek Term nyelve az a legszűkebb halmaz, amelyre

- minden $x \in \text{Ind eset\'en } x \in \text{Term}$
- minden $c \in \text{Cnst}$ esetén $c \in \text{Term}$
- minden $f \in \text{Func \'es } t_1, \dots t_{\operatorname{ar}(f)} \in \text{Term eset\'en } f(t_1, \dots t_{\operatorname{ar}(f)}) \in \text{Term.}$

Definíció Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

- minden $p \in \text{Pred \'es } t_1, \dots t_{\operatorname{ar}(p)} \in \text{Term eset\'en } p(t_1, \dots t_{\operatorname{ar}(p)}) \in \text{Form.}$ Ezek az **atomi formulák**.
- Ha $\varphi \in$ Form, akkor $\neg \varphi \in$ Form.
- Ha φ , $\psi \in$ Form, akkor $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi) \in$ Form.
- Ha $\varphi \in$ Form, akkor $\forall x \varphi \in$ Form és $\exists x \varphi \in$ Form.

Példa

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.

$$x, a, f(x,y), f(x,f(a,x)) \in \text{Term.}$$

$$p(x,y), q(x,f(a,a)), \neg p(x,f(y,z)), (\exists x p(x,y) \rightarrow q(x,z)) \in \text{Form.}$$

$$\varphi_1 = \forall x p(x, a) \in \text{Form},$$

 $\varphi_2 = \forall x \exists y q(f(x, y), a) \in \text{Form},$
 $\varphi_3 = \forall x (\forall y q(f(y, x), y) \to p(x, a)) \in \text{Form}.$

Precedenciasorrend zárójelelhagyáshoz: \forall , \exists , \neg , \land , \lor , \rightarrow .

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak interpretációja alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- I_{Pred} minden $p \in \text{Pred-hez}$ hozzárendel egy $p^I \subseteq U^{\text{ar}(p)}$ ar(p)-változós relációt U felett,

- I_{Func} minden $f \in \text{Func-hez hozzárendel egy } f^I: U^{\text{ar}(p)} \to U \text{ ar}(p)$ -változós műveletet U-n,
- I_{Cnst} minden $c \in \text{Cnst-hez}$ hozzárendel egy $c^I \in U$ -t.

Definíció Változókiértékelés alatt egy $\kappa : \operatorname{Ind} \to U$ leképezést értünk.

Vegyük észre, hogy κ függ az U univerzumtól.

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N}, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\text{Pred}}(p) = p^I, \ (m, n) :\in p^I \Leftrightarrow m \ge n$$

$$I_{\text{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$$

$$I_{\text{Func}}(f) = f^I, \quad f^I(m,n) := m + n$$

$$I_{\text{Cnst}}(a) := 0,$$

legyen továbbá κ egy változókiértékelés, amelyre $\kappa(x) = 5, \kappa(y) = 3$.

Definíció Egy $t \in \text{Term } \acute{\text{ert}}\acute{\text{ek}}\acute{\text{et}}$ egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- Ha $x \in \text{Ind}$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- Ha $c \in \text{Cnst}$, akkor $|c|^{I,\kappa} := c^I$,
- $|f(t_1, t_2, \dots, t_{\operatorname{ar}(f)})|^{I,\kappa} := f^I(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\operatorname{ar}(f)}|^{I,\kappa}).$

Példa Az előző példát folytatva $|f(f(x,y),y)|^{I,\kappa}=11.$

Definíció A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \text{Ind}, y \neq x$ esetén.

Definíció Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

•
$$|p(t_1, t_2, \dots, t_{ar(p)})|^{I,\kappa} = i \Leftrightarrow (|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{ar(p)}|^{I,\kappa}) \in p^I$$
,

$$\bullet \ |\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$$

$$\bullet \ |\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \quad \circ \in \{\land,\lor,\to\}$$

- $|\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \kappa\text{-nak minden } \kappa^* x\text{-variánsára},$
- $|\exists x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ κ-nak legalább egy } \kappa^* x$ -variánsára.

 $A \neg, \land, \lor, \rightarrow$ műveletek ugyanazok, mint az ítéletlogikánál.

Példa Az előző példát folytatva

$$\begin{split} |p(f(y,y),x)|^{I,\kappa} &= i. \\ |q(f(y,y),x)|^{I,\kappa} &= h. \\ |p(x,y) &\to q(x,y)|^{I,\kappa} = h. \end{split}$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám ≥ 0 . $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q (f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa} = h$,

$$\varphi_3 = \forall x (\forall y q (f(y, x), y) \to p(x, a)),$$

Ha a természetes számoknak van nulleleme, akkor az egyenlő 0-val, $|\varphi_3|^{I,\kappa} = i$.

Ha $U = \mathbb{Z}$ lenne, akkor φ_2 is igaz lenne.

Definíció

Legyen φ egy formula, és tekintsük $x \in \text{Ind}$ egy előfordulását φ -ben. Azt mondjuk, hogy x ezen előfordulása **kötött**, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása **szabad**. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor **zárt** formuláról beszélünk. Egyébként a kormula **nyitott**. Azon változókat, amelyeknek nem minden előfordulása kötött, a formula **paramétereinek** nevezzük és halmazukat $\text{Par}(\varphi)$ jelöli.

Észrevétel: Ha φ zárt, ekkor bármely I interpretáció esetén $|\varphi|^{I,\kappa}$ értéke nem függ κ -tól. Ilyenkor $|\varphi|^{I,\kappa}$ helyett $|\varphi|^I$ írható.

Példa Az előző példában φ_1 , φ_2 , φ_3 zárt formulák, míg $\forall x p(x,x) \to q(x,x)$ nyitott, mert x 3. és 4. előfordulását nem tartalmazza kvantált részformula. (A formula részformulái: $\forall x p(x,x) \to q(x,x)$, $\forall x p(x,x)$, p(x,x), q(x,x).)

Definíció Egy formula **prímformula**, ha atomi vagy kvantált (fő logikiai összekötője kvantor)formula.

Definíció Egy φ formula **prímkomponensei**, azok a ψ részformulái, amelyekre

- ψ prímformula ÉS
- \bullet $\varphi\text{-nek}$ nincs olyan $\psi\text{-től}$ különböző prím- részformulája, amelyiknek ψ részformulája.

Jelölje φ prímkomponenseinek halmazát $Prim(\varphi)$.

Példa: $\varphi := \neg \forall x (P(x) \lor \exists y Q(x,y)) \to P(x) \land \neg \exists x \neg Q(x,y)$ prímkomponensei: $\forall x (P(x) \lor \exists y Q(x,y)); P(x); \exists x \neg Q(x,y). \quad \psi := \exists y Q(x,y)$ azért nem prímkomponens, mert létezik φ -nek ψ és φ ,,közötti" prím- részformulája $\forall x (P(x) \lor \exists y Q(x,y)).$

Definíció

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.
- φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák **logikailag ekvivalensek**, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.
- Az \mathcal{F} formulahalmaz **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$ teljesül minden $\varphi\in\mathcal{F}$ -re, egyébként **kielégíthetetlen**.
- Az \mathcal{F} formulahalmaznak φ logikai következménye (jelölés: $\mathcal{F} \models \varphi$) ha minden I, κ -ra ha minden $\psi \in \mathcal{F}$ -re $|\psi|^{I,\kappa} = i$ teljesül, akkor $|\varphi|^{I,\kappa} = i$ is teljesül.
- Quine-táblázat: A prímkomponenseket ítéletváltozónak tekintő ítélettábla.

• Egy φ elsőrendű logikai formula **tautologikusan igaz**, ha Quine-táblázatában φ oszlopában csupa i áll. Jelölése $\models_0 \varphi$.

Definíció Adott egy elsőrendű logika φ formulája és egy I interpretáció. φ értéktáblája alatt a egy $|U|^{|\operatorname{Par}(\varphi)|} \times (|\operatorname{Par}(\varphi)| + |\operatorname{Prim}(\varphi) \cup \{\varphi\}|)$ méretű táblázatot értünk. A táblázat első $|\operatorname{Par}(\varphi)|$ darab oszlopát minden lehetséges módon kitöltjük U elemeivel $(|U|^{|\operatorname{Par}(\varphi)|}$ darab lehetőség). A többi oszlop megfelel $\operatorname{Prim}(\varphi) \cup \{\varphi\}$ elemeinek. Minden $\psi \in \operatorname{Prim}(\varphi) \cup \{\varphi\}$ -nek megfelelő oszlopot a κ változókiértékelésnek megfelelő sorban $|\psi|^{I,\kappa}$ -val töltjük ki.

Elsőrendű logikai törvények

```
• ha x \notin \operatorname{Par}(\varphi):

\forall x \varphi \sim \varphi \text{ és } \exists x \varphi \sim \varphi.
```

- $\forall x \forall y \varphi \sim \forall y \forall x \varphi$ és $\exists x \exists y \varphi \sim \exists y \exists x \varphi$,
- $\neg \exists x \varphi \sim \forall x \neg \varphi$ és $\neg \forall x \varphi \sim \exists x \neg \varphi$,
- ha $x \notin \operatorname{Par}(\varphi)$: $\varphi \wedge \forall x \psi \sim \forall x (\varphi \wedge \psi)$ és $\varphi \wedge \exists x \psi \sim \exists x (\varphi \wedge \psi)$, $\varphi \vee \forall x \psi \sim \forall x (\varphi \vee \psi)$ és $\varphi \vee \exists x \psi \sim \exists x (\varphi \vee \psi)$, $\varphi \to \forall x \psi \sim \forall x (\varphi \to \psi)$ és $\varphi \to \exists x \psi \sim \exists x (\varphi \to \psi)$, $\forall x \psi \to \varphi \sim \exists x (\psi \to \varphi)$ és $\exists x \psi \to \varphi \sim \forall x (\psi \to \varphi)$,
- $\forall x \varphi \land \forall x \psi \sim \forall x (\varphi \land \psi)$ és $\exists x \varphi \lor \exists x \psi \sim \exists x (\varphi \lor \psi)$.

Feladat: Egy elsőrendű logikában Pred= $\{P,Q\}$, Func= $\{f\}$, Cnst= $\{a,b\}$ ar(P)=2, ar(Q)=1, ar(f)=2. Tekinsük a következő $I=\langle U,I_{\mathrm{Pred}},I_{\mathrm{Func}},I_{\mathrm{Cnst}}\rangle$ interpretációt:

 $U = \{0, 1, 2\},$

 $I_{\operatorname{Pred}}: P \longrightarrow P^I, Q \longrightarrow Q^I,$

 $I_{\operatorname{Func}}: f \longrightarrow f^I,$

 $I_{\text{Cnst}}: a \longrightarrow 0, b \longrightarrow 1,$

ahol $P^I=\{(0,1),(0,2),(2,1),(2,2)\}, Q^I=\{(0),(2)\},$ f^I a modulo 3 összeadás. Készítsük el a következő formulák értéktábláját!

1.
$$\forall x P(x,y) \lor Q(y)$$
,

- 2. $\exists y P(x,y) \rightarrow \forall y P(f(y,y),b),$
- 3. $(\forall x (P(a,y) \lor Q(x)) \to \neg \forall x \exists y P(x,y)) \land P(f(y,y),b),$

Megoldás:

y	$\forall x P(x,y)$	Q(y)	$\forall x P(x,y) \lor Q(y)$
0	h	i	i
1	h	h	h
2	h	i	i

			$\exists y P(x,y) \rightarrow$
x	$\exists y P(x,y)$	$\forall y P(f(y,y),b)$	$\forall y P(f(y,y),b)$
0	i		h
1	h	h	i
2	i		h

y	f(y,y) P(f(y,y),b)		
$\overline{0}$	0	i	
1	2	i	
2	1	h	

				$\Big(\forall x (P(a,y) \lor Q(x)) \to$
y	$\forall x (P(a,y) \lor Q(x))$	$\forall x \exists y P(x,y)$	P(f(y,y),b)	$\neg \forall x \exists y P(x,y)) \land P(f(y,y),b)$
0	h		i	i
1	i	h	i	i
2	i		h	h

Feladat: Igazoljuk, hogy $\neg \exists x \neg P(x) \rightarrow \forall x P(x)$ nem tautologikusan igaz formula, de logikailag igaz.

Megoldás:

$\exists x \neg P(x)$	$\forall x P(x)$	$\neg \exists x \neg P(x) \rightarrow \forall x P(x)$
i	i	i
i	h	i
h	i	i
h	h	h

Tehát a formula nem tautologikusan igaz.

$$\begin{array}{l} |\neg\exists x\neg P(x)\rightarrow \forall xP(x)|^{I,\kappa}=h \iff |\neg\exists x\neg P(x)|^{I,\kappa}=i \text{ \'es } |\forall xP(x)|^{I,\kappa}=h \iff |\exists x\neg P(x)|^{I,\kappa}=h \text{ \'es } |\forall xP(x)|^{I,\kappa}=h. \end{array}$$

 $|\exists x \neg P(x)|^{I,\kappa} = h \Leftrightarrow \text{nem létezik } \kappa\text{-nak olyan } \kappa^* x\text{-variánsa } |\neg P(x)|^{I,\kappa^*} = i \Leftrightarrow \kappa\text{-nak minden } \kappa^* x\text{-variánsára } |\neg P(x)|^{I,\kappa^*} = h \Leftrightarrow \kappa\text{-nak minden } \kappa^* x\text{-variánsára } |P(x)|^{I,\kappa^*} = i \Leftrightarrow |\forall x P(x)|^{I,\kappa} = i.$

Tehát minden I, κ esetén a formula i, azaz a formula logikailag igaz.

Feladat: Igazoljuk, hogy ha $x \notin Par(\varphi)$:

 $\forall x \varphi \sim \varphi$ viszont általában (azaz ha $x \in \operatorname{Par}(\varphi)$) $\forall x \varphi \sim \varphi$ nem áll fenn.

Megoldás:

- $|\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \kappa$ -nak minden κ^* x-variánsára $|\varphi|^{I,\kappa^*} = i$. Mivel $x \notin \operatorname{Par}(\varphi)$, ezért $|\varphi|^{I,\kappa^*} = |\varphi|^{I,\kappa}$.
- Nem igaz, hogy $\forall x \varphi \sim \varphi$ általában. Legyen az I interpretáció a következő $U:=\{0,1\}, R:=\{P\}, M:=\{\}, K:=\{\}, \nu(P):=1, \ P^{\mathrm{ig}}:=\{(0)\} \ \varphi:=P(x).$

Az értéktábla:

\boldsymbol{x}	P(x)	$\forall x P(x)$
0	i	h
1	h	

Legyen κ az az I-beli interpretáció, ami x-hez a 0-t rendeli, ekkor $|P(x)|^{I,\kappa} = i$, de $|\forall x P(x)|^{I,\kappa} = h$.

Feladat: Igazoljuk, hogy $\neg \exists x \varphi \sim \forall x \neg \varphi$.

Megoldás:

$$\begin{split} |\neg \exists x \varphi|^{I,\kappa} &= i \iff |\exists x \varphi|^{I,\kappa} = h \iff \text{nem létezik } \kappa\text{-nak olyan } \kappa^* \text{ x-variánsa} \\ |\varphi|^{I,\kappa^*} &= i \iff \kappa\text{-nak minden } \kappa^* \text{ x-variánsára } |\varphi|^{I,\kappa^*} = h \iff \kappa\text{-nak minden } \kappa^* \text{ x-variánsára } |\neg \varphi|^{I,\kappa^*} = i \iff |\forall x \neg \varphi|^{I,\kappa} = i. \end{split}$$