## **Hidden Markov Models (HMMs)**

이영기 서울대학교 컴퓨터공학부



## **Markov Chain**

- Markov Chain is a stochastic model describing a sequence of possible events.
- The probability of each event depends only on the state attained in the previous event.

Markov Process is a Markov Chain for sequential time.

0.3

0.7

## What's an HMM?

#### Set of states

- Initial probabilities
- Transition probabilities



#### Set of potential observations

Emission probabilities



**HMM** generates observation sequence

## **Hidden Markov Models (HMMs)**

#### Finite state machine

**Hidden state sequence** 

Generates

01 02 03 04 05 06 07 08

**Observation sequence** 



## **Hidden Markov Models (HMMs)**

# Finite state machine Hidden state sequence O1 O2 O3 O4 O5 O6 O7 O8 Observation sequence

## **Graphical Model**



Random variable  $y_t$  takes values from  $\{S_1, S_2, S_3, S_4\}$  Random variable  $x_t$  takes values from  $\{o_1, o_2, o_3, o_4, o_5, \cdots\}$ 

## **HMM Graphical Model**

Hidden states ...

Observations ...



Random variable  $y_t$ takes values from  $\{S_1, S_2, S_3, S_4\}$ 

Random variable  $x_t$  takes values from  $\{o_1, o_2, o_3, o_4, o_5, \cdots\}$ 

#### **Need Parameters:**

Start state probabilities:  $P(y_1 = S_i)$ 

Transition probabilities:  $P(y_t = S_i | y_{t-1} = S_i)$ 

Observation probabilities:  $P(x_t = o_j | y_t = S_i)$ 

#### **Training:**

Maximize probability of training observations

## **Example: The Dishonest Casino**

#### A casino has two dice:

Fair die

$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$

Loaded die

$$P(1) = P(2) = P(3) = P(4) = P(5) = 1/10$$
  
 $P(6) = \frac{1}{2}$ 



#### Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2





## The Dishonest Casino HMM



$$P(1|F) = 1/6$$

$$P(2|F) = 1/6$$

$$P(3|F) = 1/6$$

$$P(4|F) = 1/6$$

$$P(5|F) = 1/6$$

$$P(6|F) = 1/6$$

$$P(1|L) = 1/10$$

$$P(2|L) = 1/10$$

$$P(3|L) = 1/10$$

$$P(4|L) = 1/10$$

$$P(5|L) = 1/10$$

$$P(6|L) = 1/2$$

## Question #1 - Evaluation

#### **GIVEN**

A sequence of rolls by the casino player

124552646214614613613666166466163661636616361 ...

#### **QUESTION**

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

## Question # 2 - Decoding

#### **GIVEN**

A sequence of rolls by the casino player

124552646214614613613666166466163661636616361 ...

#### **QUESTION**

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** problem in HMMs

## **Question #3 - Learning**

#### **GIVEN**

A sequence of rolls by the casino player

124552646214614613613666166466163661636616361 ...

#### **QUESTION**

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** problem in HMMs

# What's This Have to Do with Info Extraction?



$$P(1|F) = 1/6$$

$$P(2|F) = 1/6$$

$$P(3|F) = 1/6$$

$$P(4|F) = 1/6$$

$$P(5|F) = 1/6$$

$$P(6|F) = 1/6$$

$$P(1|L) = 1/10$$

$$P(2|L) = 1/10$$

$$P(3|L) = 1/10$$

$$P(4|L) = 1/10$$

$$P(5|L) = 1/10$$

$$P(6|L) = 1/2$$

# What's This Have to Do with Info Extraction?



## **IE with Hidden Markov Models**

Given a sequence of observations:

Yesterday Pedro Domingos spoke this example sentence.

And a trained HMM:



Find the most likely state sequence: (Viterbi)  $argmax_{\vec{s}}P(\vec{s},\vec{o})$ 



Any words said to be generated by the designated "person name" state extract as a person name:

Person name: Pedro Domingos

## **IE with Hidden Markov Models**

#### For sparse extraction tasks:

- Separate HMM for each type of target
- Each HMM should
  - Model entire document
  - Consist of *target* and *non-target* states
  - Not necessarily fully connected



## Or ... Combined HMM

Example – Research Paper Headers



## HMM Example: "Nymble"

Task: Named Entity Extraction

[bikel, et al 1998]. [BBN "IdentiFinder"]



Train on ~500k words of news wire text.

#### **Results:**

| Case  | Language | F1  |
|-------|----------|-----|
| Mixed | English  | 93% |
| Upper | English  | 91% |
| Mixed | Spanish  | 90% |

## **Finite State Model**



## vs. Path



## Question #1 - Evaluation

#### **GIVEN**

A sequence of observations  $x = x_1 x_2 x_3 \dots x_T$ 

A trained HMM

$$\theta = (p(y_t|y_{t-1}), p(x_t|y_t), p(y_1))$$

#### **QUESTION**

How likely is this sequence, given our HMM?  $P(x, \theta)$ 

Why do we care?

Need it for learning to choose among competing models!

## A Parse of a Sequence

Given a sequence  $x = x_1 x_2 x_3 \dots x_T$ 

A parse of a o is a sequence of states  $y = y_1 \dots y_T$ 



## Question # 2 - Decoding

#### **GIVEN**

A sequence of observations  $x = x_1 x_2 x_3 \dots x_T$ A trained HMM  $\theta = (p(y_t|y_{t-1}), p(x_t|y_t), p(y_1))$ 

#### **QUESTION**

How do we choose the corresponding parse (state sequence)  $y_1y_2y_3 \dots y_T$ , which "best" explains  $x_1x_2x_3 \dots x_T$ ?

There are several reasonable optimality criteria: single optimal sequence, average statistics for individual states, ...

## **Question #3 - Learning**

#### **GIVEN**

A sequence of observations  $x = x_1 x_2 x_3 \dots x_T$ 

#### **QUESTION**

How do we learn the model parameters

$$\theta = (P(y_t|y_{t-1}), P(x_t|y_t), p(y_1))$$

Which maximize  $P(x, \theta)$ ?

## **Three Questions**

- Evaluation
  - Forward algorithm

- Decoding
  - Viterbi algorithm

- Learning
  - Baum-Welch Algorithm (aka "forward-backward")
  - A kind of EM (expectation maximization)

## **Naive Solution to #1: Evaluation**

Given observations  $x = x_1 \dots x_T$  and HMM  $\theta$ , what is p(x)?

Enumerate every possible state sequence  $y = y_1 \dots y_T$ 

Probability of o and given particular y

$$p(x|y) = \prod_{t=1} p(x_t|y_t)$$

Probability of particular y

2T multiplications per sequence

$$p(y) = \prod_{t=1}^{T} p(y_t|y_{t-1})$$

Summing over all possible state sequences we get

For small HMMs
T=10, N=10
There are 10
Billion sequences!

$$p(x) = \sum_{all \ y} p(x|y)p(y)$$

$$N^{T} \text{state sequences!}$$

## **Many Calculations Repeated**

Use Dynamic Programming

$$p(x) = \sum_{y} p(y)p(x|y)$$

$$= \sum_{y} \prod_{t=1...T} p(y_t|y_{t-1})p(x_t|y_t)$$

$$= \sum_{y} \sum_{t=1...T} p(y_T, y_{T-1}, x_T) \sum_{y_{T-2}} p(y_{T-1}|y_{T-2})p(x_{T-1}|y_{T-1}) \sum_{y_{T-3}} ...$$

Cache and reuse inner sums

"forward variables"

## **Solution to #1: Evaluation**

#### **Use Dynamic Programming**

Define forward variable

$$\alpha_t(i) = P(x_1 x_2 \dots x_T, y_t = S_i)$$

Probability that at time t

- the state is  $S_i$
- the partial observation sequence  $x = x_1 \dots x_T$  has been emitted

## Base case: Forward Variable $\alpha_t(i)$

$$\alpha_t(i) = P(x_1 x_2 \dots x_t, y_t = S_i)$$

Prob - that the state at t has value  $S_i$  and

- the partial obs sequence  $x = x_1 \dots x_t$  has been seen



## Inductive Case: Forward Variable $\alpha_t(i)$

$$\alpha_t(i) = P(x_1 x_2 \dots x_t, y_t = S_i)$$

Prob - that the state at t has value  $S_i$  and

- the partial obs sequence  $x = x_1 \dots x_t$  has been seen



## The Forward Algorithm

 $\alpha_t(i) \coloneqq P(x_1 x_2 \dots x_t, y_t = S_i)$  $\alpha_{t-1}(1)$  $\alpha_{t-1}(2)$  $S_2$  $p(y_{t-1} = S_2)p(y_t = \underline{S_3})$  $\alpha_{t-1}(3)$  $p(y_{t-1} = S_3)p(y_t = S_3)$  $p(y_{t-1} = S_K)p(y_t = S_3)$  $\alpha_{t-1}(N)$  $S_N$  $p(x_t = o_t | y_t = S_3)$  $y_t$  $y_{t-1}$ 

## The Forward Algorithm

#### **INITIALIZATION**

$$\alpha_t(i) \coloneqq P(x_1 x_2 \dots x_t, y_t = S_i)$$

$$\alpha_t(i) := P(x_1 x_2 \dots x_t, y_t = S_i)$$

$$\alpha_1(i) = p(y_1 = S_i)p(x_1 | y_1)$$

#### INDUCTION

$$\alpha_t(i) = p(x_1 x_2 \dots x_t, y_t = S_i)$$

$$= \sum_{j \in S} \alpha_{t-1}(j) p(y_t = S_i | y_{t-1} = S_j) p(x_t | y_t)$$

#### **TERMINATION**

$$p(x) = \sum_{j \in S} \alpha_T(j)$$

Time:

 $O(K^2N)$ 

Space:

O(KN)

K = |S| #states

length of sequence

## The Backward Algorithm

 $\beta_t(i) \coloneqq P(y_t = S_i, x_{t+1} x_{t+2} \dots x_T)$  $\beta_{t+1}(1)$  $\beta_{t+1}(2)$  $S_2$  $S_2$  $\beta_{t+1}(3)$  $S_3$  $\overline{p(y_t = S_3)p(y_{t+1} = S_3)}$  $p(y_{t} = S_{3})p(y_{t+1} = S_{N})$  $\beta_{t+1}(N)$  $p(x_{t+1} = o_{t+1} | y_{t+1} = S_3)$  $o_{t+1}$  $y_t$  $y_{t+1}$ 

## The Backward Algorithm

#### INITIALIZATION

$$\beta_t(i) \coloneqq P(y_t = S_i, x_{t+1} x_{t+2} \dots x_T)$$

$$\beta_T(i) = 1$$

#### **INDUCTION**

$$\beta_t(i) = p(y_t = S_i, x_{t+1}x_{t+2} \dots x_T)$$

$$= \sum_{j \in S} p(y_{t+1} = S_j | y_t = S_i) p(x_{t+1} | y_{t+1}) \beta_{t+1}(j)$$

#### **TERMINATION**

$$p(x) = \sum_{j \in S} p(y_1 = S_j) p(x_1 | y_1) \beta_1(j)$$

Time: Space:

 $O(K^2N)$  O(KN)

## **Three Questions**

- Evaluation
  - Forward algorithm

- Decoding
  - Viterbi algorithm

- Learning
  - Baum-Welch Algorithm (aka "forward-backward")
  - A kind of EM (expectation maximization)

## #2 - Decoding Problem

Given  $x = x_1 \dots x_T$  and HMM  $\theta$ , what is "best" parse  $y_1 \dots y_T$ ?

#### Several possible meanings

1. States which are individually most likely:

$$P(y_t = S_i | x) = \frac{\alpha_t(i)\beta_t(i)}{P(x)} = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i=1}^K \alpha_t(i)\beta_t(i)}$$

most likely state  $y_t^*$  at time t is then

$$y_t^* = argmax_{1 \le i \le K} P(y_t = S_i | x)$$

## #2 - Decoding Problem

Given  $x = x_1 \dots x_T$  and HMM  $\theta$ , what is "best" parse  $y_1 \dots y_T$ ?

### Several possible meanings of 'solution'

- 1. States which are individually most likely:
- 2. Single best state sequence

We want sequence  $y_1 \dots y_T$ , such that P(x, y) is maximized  $y^* = argmax_y P(x, y)$ 



Again, we can use ????????

## $\delta_t(i)$

#### Like

 $\alpha_t(i)$  = prob that the state, y, at time t has value  $S_i$  and the partial obs sequence  $x = x_1 \dots x_t$  has been seen

#### Define

 $\delta_t(i)$  = probability of **most likely** state sequence ending with state  $S_i$ , given observations  $x_1 \dots x_t$ 

$$\delta_t(i) = \max_{y_1, y_2, \dots, y_{t-1}} P(y_1, \dots, y_{t-1}, y_t = S_i | x_1, \dots, x_t, \Theta)$$

## $\delta_t(i)$ = probability of most likely

state sequence ending with state  $S_i$ , given observations  $x_1, \dots, x_t$ 

$$\delta_t(i) = \max_{y_1, y_2, \dots, y_{t-1}} P(y_1, \dots, y_{t-1}, y_t = S_i | x_1, \dots, x_t, \Theta)$$

Base Case: t=1

$$Max_i P(y_1 = S_i)P(x_1 = o_1|y_1 = S_i)$$

### **Inductive Step**

$$\delta_t(i) = \max_{y_1, y_2, \dots, y_{t-1}} P(y_1, \dots, y_{t-1}, y_t = S_i | x_1, \dots, x_t, \Theta)$$



#### The Viterbi Algorithm

#### **DEFINE**

$$\delta_t(i) = \max_{y_1, y_2, \dots, y_{t-1}} P(y_1, y_2, \dots, y_{t-1}, y_t = i | x_1, \dots, x_t, \Theta)$$

#### INITIALIZATION

$$\delta_1(i) = p(y_1 = S_i)p(x_1|y_1 = S_i)$$

#### INDUCTION

$$\delta_t(j) = \max_{i \in S} \delta_{t-1}(i) p(y_t = S_j | y_{t-1} = S_i) p(x_i | y_t = S_j)$$

#### **TERMINATION**

$$p^* = \max_{i \in S} \delta_T(i)$$

Backtracking to get state sequence  $y^*$ 

#### The Viterbi Algorithm



Remember:  $\delta_t(i)$  = probability of most likely state seq ending with  $y_t = state \ S_t$ 

## **Terminating Viterbi**



### **Terminating Viterbi**



How did we compute  $\delta^*$ ?  $\max_{i} \delta_{T-1}(i) * P_{trans} * P_{obs}$ 

Now Backchain to Find Final Sequence

Time:  $O(K^2T)$ 

Space: O(KT)

Linear in length of sequence

#### The Viterbi Algorithm



#### **Three Questions**

- Evaluation
  - Forward algorithm

- Decoding
  - Viterbi algorithm

- Learning
  - Baum-Welch Algorithm (aka "forward-backward")
  - A kind of EM (expectation maximization)

### Solution to #3 - Learning

If we have labeled training data!



- Output:
  - Initial state & transition probabilities:

$$p(y_1), p(y_t|y_{t-1})$$

- Emission probabilities:  $p(x_t|y_t)$ 

### **Supervised Learning**

• Input:



states & edges, but no probabilities

Yesterday Pedro Domingos spoke this example sentence.

Daniel Weld gave his talk in Mueller 153.

Sieg 128 is a nasty lecture hall, don't you think?

The next distinguished lecture is by Oren Etzioni on Thursday.

#### • Output:

- Initial state probabilities:  $p(y_1)$ 
  - $P(y_1 = name) = 1/4$
  - $P(y_1 = location) = 1/4$
  - $P(y_1 = background) = 2/4$

### **Supervised Learning**

• Input:



states & edges, but no probabilities

Yesterday Pedro Domingos spoke this example sentence.

Daniel Weld gave his talk in Mueller 153.

Sieg 128 is a nasty lecture hall, don't you think?

The next distinguished lecture is by Oren Etzioni on Thursday.

#### Output:

- State transition probabilities:  $p(y_t|y_{t-1})$ 
  - $P(y_t = name | y_{t-1} = name) = 3/6$
  - $P(y_t = name | y_{t-1} = background) = 2/22$
  - Etc...

### **Supervised Learning**



- Output:
  - State transition probabilities:  $p(y_1)$ ,  $p(y_t|y_{t-1})$
  - Emission probabilities:  $p(x_t|y_t)$

#### Solution to #3 - Learning

Given  $x_1 \dots x_T$ , how do we learn  $\theta = (p(y_t|y_{t-1}), p(x_t|y_t), p(y_1))$  to maximize P(x)?

- Unfortunately, there is no known way to analytically find a global maximum  $\theta^*$  such that  $\theta^* = argmax P(x|\theta)$
- But it is possible to find a local maximum; given an initial model  $\theta$ , we can always find a model  $\theta'$  such that

$$P(x|\theta') \ge P(x|\theta)$$

#### **Chicken & Egg Problem**

- If we knew the actual sequence of states
  - It would be easy to learn transition and emission probabilities
  - But we can't observe states, so we don't!
- If we knew transition & emission probabilities
  - Then it'd be easy to estimate the sequence of states (Viterbi)
  - But we don't know them!

## **Simplest Version**

Mixture of two distributions



Know: form of distribution & variance,

• Just need mean of each distribution

# **Input Looks Like**



#### **We Want to Predict**



### Chicken & Egg

Note that coloring instances would be easy If we knew Gaussians...



#### Chicken & Egg

And finding the Gaussians would be easy If we knew the coloring



- Pretend we do know the parameters
  - Initialize randomly: set  $\theta_1 = ?$ ;  $\theta_2 = ?$



- Pretend we do know the parameters
  - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable



- Pretend we do know the parameters
  - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable



- Pretend we do know the parameters
  - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable
- [M step] Treating each instance as fractionally having both values compute the new parameter values



#### **ML Mean of Single Gaussian**

$$U_{ml} = argmin_u \sum_{i} (x_i - u)^2$$



• [M step] Treating each instance as *fractionally* having **both** values compute the new parameter values



 [E step] Compute probability of instance having each possible value of the hidden variable



- [E step] Compute probability of instance having each possible value of the hidden variable
- [M step] Treating each instance as fractionally having both values compute the new parameter values



- [E step] Compute probability of instance having each possible value of the hidden variable
- [M step] Treating each instance as fractionally having both values compute the new parameter values



#### **EM for HMMs**

- [E step] Compute probability of instance having each possible value of the hidden variable
  - Compute the forward and backward probabilities for given model parameters and our observations
- [M step] Treating each instance as fractionally having every value compute the new parameter values
  - Re-estimate the model parameters
  - Simple counting

#### **Summary - Learning**

- Use hill-climbing
  - Called the Baum/Welch algorithm
  - Also "forward-backward algorithm"

#### Idea

- Use an initial parameter instantiation
- Loop
  - Compute the forward and backward probabilities for given model parameters and our observations
  - Re-estimate the parameters
- Until estimates don't change much

### **Bayes' Theorem**

When  $B = B_1 \cup B_2 \cup \cdots \cup B_K$  and  $B_1, B_2, \ldots, B_K$  are coprime

$$\Rightarrow A = (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_K)$$

Then,

$$P(B_{j}|A) = \frac{P(A|B_{j})P(B_{j})}{P(A)}$$

$$= \frac{P(A|B_{j})P(B_{j})}{P(A|B_{1})P(B_{1}) + \dots + P(A|B_{K})P(B_{K})}$$



• Estimating Emission probabilities  $\gamma_t(j) := P(y_t = S_i | \theta)$ 

$$\gamma_t(j) \coloneqq P(y_t = S_j | \theta)$$

$$\gamma_t(j) = P(y_t = S_j | O, \theta) = \frac{P(y_t = S_j, O | \theta)}{P(O | \theta)}$$
$$= \frac{\alpha_t(j) \times \beta_t(j)}{\sum_{n=1}^{N} \alpha_t(n) \times \beta_t(n)}$$



Estimated Emission probability

$$\hat{b}_{j}(o_{k}) = \frac{\sum_{t=1,s.t.x_{t}=o_{t}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$



$$\hat{b}_A(1) = \frac{1}{2}$$

Estimating Transition probabilities

$$\xi_t(i,j) = P(y_t = S_i, y_{t+1} = S_j | O, \theta)$$

$$\begin{aligned} \xi_{t}(i,j) &= P(y_{t} = S_{i}, y_{t+1} = S_{j} | 0, \theta) \\ &= \frac{P(y_{t} = S_{i}, y_{t+1} = S_{j}, 0 | \theta)}{P(0 | \theta)} \\ &= \frac{\alpha_{t} \times P(y_{t} = S_{j} | y_{t-1} = S_{i}) \times P(x_{t+1} = o_{t+1} | y_{t} = S_{j}) \times \beta_{t+1}(j)}{\sum_{n=1}^{N} \alpha_{t}(n) \times \beta_{t}(n)} \end{aligned}$$



Estimating Transition probabilities

$$\xi_t(i,j) = P(y_t = S_i, y_{t+1} = S_j | O, \theta)$$

$$P(y_t = S_j | y_{t-1} = S_i) = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i, k)}$$



#### Discriminative vs Generative Models

- So far: all models generative
- Generative Models ... model P(y, x)
- Discriminative Models ...  $model P(y \mid x)$

P(y|x) does not include a model of P(x). So it does not need to model the dependencies between features!

#### **Discriminative Models Often Better**

- Eventually, what we care about is p(y|x)!
  - Bayes Net describes a family of joint distributions of. whose conditionals take certain form
  - But there are many other joint models, whose conditionals also have that form.
- We want to make independence assumptions amon g y, but not among x.

# Thank you!