· Popular Computing

APRIL 1975

VOL 3 NO 4

The Obfuscating Circles

The large circle on the cover has a diameter of 6 units. The smaller circles have diameters of .1, .2, .3, .4, ... units, and are centered at points that are 6 units apart on the circumference of the large circle (that is, at intervals of every two radians of central angle). The first 5 of the circles are numbered at their centers. The first 25 such circles are shown. Problem: if the sequence of smaller circles is continued, which one will complete the coverage of the large circle?

The Problem might be solved by continuing the drawing and observing which circle does the job.

This empirical approach lends itself to computerized plotting. For the problem as stated, it would probably provide a correct solution. If, however, the interval between the centers were changed, and/or the increment in the radii were changed, the empirical approach would probably not work, and an analytic solution might be required.

POPULAR COMPUTING is published monthly at Box 272, Calabasas, California 91302. Subscription rate in the United States is \$18 per year, or \$15 if remittance accompanies the order. For Canada and Mexico, add \$4 per year to the above rates. For all other countries, add \$6 per year to the above rates. Back issues \$2 each. Copyright 1975 by POPULAR COMPUTING.

Publisher: Fred Gruenberger Con Editor: Audrey Gruenberger Associate Editors: David Babcock Irwin Greenwald

Contributing editors: Richard Andree Daniel D. McCracken k William C. McGee

Advertising manager: Ken W. Sims Art Director: John G. Scott Business Manager: Ben Moore

Reproduction by any means is prohibited by law and is unfair to other subscribers.

S 四四四

Log 25	1.397940008672037609572522210551013946463620237075782917
--------	--

Ln 25 3.218875824868200749201518666452375279051202708537035444

√25 2.924017738212866065506787360137922778530498635101030041

√25 1.903653938715878489896147288119097778655062586108560553

 $\sqrt[3]{25}$ 1.583819608766579044552643382752747852313248105374232359

₹ 25 1.379729661461214832390063464216017692855649877977606122

¹⁰⁰√25 1.032712419896443050915132358204671897789875147184427347

e²⁵ 72004899337.38587252416135146612615791522353381339527873 62213864472320593107782569745000325654258093

 π^{25} 2683779414317.764549009928124395386777953247850874391888 511221809941911795481617621619668652806886

tan-1 25 1.530817639671606577817743842010376038501565652495829422

25100 62230152**7**786114170714406405378012424059025216872**1**167**133**1 **011**16614**78**9698834035383441183944823125713616956966589555 1224821247160434722900390625

> The usual values for entry 9 in the N-series were omitted in favor of other interesting numbers. To make the series complete, the regular values are given here:

2.080083823051904114530056824357885386337805340373262109

1.551845573915359674273345135516699323262346293809667838

1.368738106642201674842367788664029653049786979819082599 ₹9

1.245730939615517325966680336640305080939309993068779811 100/9

1.022215413278477020829316576243419810698983623819729905 **e**9 8103.083927575384007709996689432759965011475087831613462

500159052178272515690624828686451092408461447077482 π^9 29809.09933344621166650940240123965536386805777428865331

66711560278546108339131522095247659105710491660902 tan-1 9 1.460139105621000972672181819429689336123298604684488878

9100 26561398887587476933878132203577962682923345265339449597 4574961739092490901302182994384699044001

3X+1 Once Again

The 3X+1 problem has been discussed in issues 1, 4, and 13. The problem is this:

Take a positive integer, N. Let X equal N. If X is odd, replace X by 3X+1. If X is even, replace X by X/2. Continue this process until X equals one. Let A equal the number of terms so generated, including the original value.

The accompanying table shows the tabulations of the A values for all N from 1 to 100000 (top) and for all N from 100001 to 200000 (bottom), from calculations made by Lynn Wyatt. 163 small values are missing from the top table; the largest omitted value is 1 for A = 351. 166 small values are missing from the bottom table; the largest omitted value is 1 for A = 443.

In the first writeup on the 3X+l problem (in PCl), the statement was made "...not every A value can be produced, and empirical studies indicate that relatively few A values exist." This new evidence seems to vitiate that statement, but the distribution of the A values is nevertheless erratic.

A table (PC1-3) showed the first appearance of successively larger values of A, with their corresponding N, obtained during a run in which only odd values of N were being examined. A new entry for that table has been found:

A = 706 N = 31466383

The Chips Gap

In 1959, a delegation of U.S. computer experts visited the Soviet Union and some of its computing facilities. Paul Armer brought back a pocketful of chips from a 513 reproducer, a few of which are attached to the initial print run of this issue.

The card-punching machine was one of many loaned to Russia as part of World War II lend-lease. An IBM customer engineer would notice that its dies have not been kept sharp, the edges of the chips are very fuzzy. In addition, the card stock is repulped and of lower quality than we are accustomed to.

	0	1	2	3	4	5	6	7	8	9
000 010 020 030 040 050 060 070 080 090 100 110 120 130 140 150 160 170 180 190 220 230 240 250 260 270	0 6 578 5772 588 5772 588 2534 4554 405 405 405 405 405 405 405 405 4	0 63 2019 1148 1101 1831 1831 1835 1759 1758 1650 1652 1799 1652 1799 1652 1799 1652 1799 1652 1799 1799 1799 1799 1799 1799 1799 179	18 81 289 4991 118 53896 57506 53896 57506 1994 216 1994 216	1 80 416 782 8756 5341 1091 1807 1807 1807 1807 1809 163 163 163 111 112 112 112 113 114 114 115 116 117 117 117 117 117 117 117 117 117	2 14 1050 4050 4072 4931 4072 4951 4051 4051 4051 4051 4051 4051 4051 40	18 138 428 65603 34300 9100 91	2 24 124 1250 1158 9726 305 4155 8726 293 2156 329 293 293 293 293 293 293 293 293 293	29 171 408 510 458 703 1417 1006 429 311 22648 319 33 1148 5338 37 93 1268 420 93	45688 181837797888792921 61637797888792921 444213116 5211 5211	43 195 371 384 1350 9622 421 9622 4283 609 97836 97836 1147 3199 3199 3197 52
010 020 030 040 050 060 070 080 110 120 130 140 150 160 170 180 190 220 230 240 250 260 270 280 290 310 320	0 0 0 366 1633 1985 67 0 0 2584 1557 1307 0 0 1873 1347 739 146 22 13 0	0 8 171 238 0 993 3040 1556 1118 0 242 2595 1428 947 0 906 473 233 133 60 0 67 40 14	0 0 225 1426 1598 17 0 0 0 3315 1625 10 187 1898 1877 1998 1877 1998 1877 1998 1877 1998 1877 1998 1877 1998 1877 1998 1998	0 23 0 0 933 7 2544 7 7 7 66 0 0 4 2134 1765 9 8 0 0 6 4 4 2134 1765 9 138 8 30 19 7	0 27 301 823 581 0 2629 2907 2064 1473 1017 100 2530 1827 750 360 0 1858 179 350 0 0 0 1858 179 179 179 179 179 179 179 179 179 179	0 1 1214 1906 2085 1747 423 0 2243 2155 1718 1471 1109 1639 991 530 271 82 0 0 170 157 63 18 0 0	0 57 359 0 736 3278 2675 1892 1307 201 0 2775 2249 1697 1112 718 5 0 694 1893 133 60 53 24 12	0 27 486 1161 1540 1140 0 2126 2733 1931 1371 250 0 2357 1010 552 267 0 0 263 130 79 31 20 0 2130 2130 2130 2130 2130 2130 2	1 48 0 2106 2728 2312 1756 2312 1756 2313 1939 1493 1498 1788 9 1306 710 9 10 10 10 10 10 10 10 10 10 10 10 10 10	118 553 1044 180 0 3234 1708 1209 528 1408 1209 5253 1488 961 253 128 68 32 0 132 20

Isol	ated terms of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 21, 34, 55, 89, 144,)
50 51	12586269025 20365011074
100	354224848179261915075 573147844013817084101
150 151	9969216677189303386214405760200 16130531424904581415797907386349
200 201	280571172992510140037611932413038677189525 453973694165307953197296969697410619233826
250 251	7896325826131730509282738943634332893686268675876375 12776523572924732586037033894655031898659556447352249
300 301	22223224462942044552973989346190996720666693909649976499 0979600 35957932520658356096176566517218909905236721430926723225 5589801
350 351	62544494288205516415497721901701841906081775146743317264 39961915653414425 10119911756749018713965376799211044556615579094364594923 736162239653346274
400 401	17602368064501396646822694539241125077038438330449219188 6725992896575345044216019675 28481229810848961175798893768146099561538008878230489098 6477195645969271404032323901
450 451	49539670118750664731625249252316040477277918713460610011 50551747313593851366517214899257280600 80156870043596115037168387733153212558390773036997994982 82226546635165089515533148342062946549
500 501	13942322456169788013972438287040728395007025658769730726 4108962948325571622863290691557658876222521294125 22559151616193633087251269503607207204601132491375819058 8638866418474627738686883405015987052796968498626

The ratio of the 501st term to the 500th term is 1.61803398876955

which agrees to 11 significant digits with the golden mean, $(1\pm\sqrt{5})/2$.

The Generalized Birthdate Problem

For how many people, taken at random, will it be an even money bet that some two of them have the same birthdate?

This is a well-known problem, for which the answer is 23. The calculation is done as follows:

by the following reasoning. We calculate the probability of having, out of K people, all different birthdates (and the probability we seek is then the complement of this result). We begin with K = 1, for which the probability of having K dates all different is 1.000, expressed as 365/365, since we are working with a population of 365 things. For K = 2, there are 364 possibilities remaining in order to maintain all different birthdates, so the net probability for K = 2 is the probability for K = 1 multiplied by 364/365. The calculation proceeds as shown, until the net probability falls below .5 (at K = 23), at which point the probability we are seeking must be over .5.

The problem as stated has two parameters: namely, the population size (365 for the birthdate problem) and the probability level (.50). If we keep the probability level constant at .50 and vary the population size, we get the results shown in Figure H. Thus, for a population of 100, the number of items drawn is 13. This is the license plate problem. Of 13 cars taken at random, the probability is .5 that some two of them will have their last two digits the same.

Or, for a population of 1000, we have this: of 38 cars taken at random, the probability is .5 that some two of them will agree on the last three digits of their license numbers.

As a rough rule of thumb, the value of K for an even money bet is 1.2 times the square root of N, where N is the population size. For a population of 3000, this formula gives K = 66 (the true value being 65).

For N = 30, the formula gives K = 7. This says that seven people have a .5 probability of having the second hand of their wrist watches in agreement within one second. If they can read their watches to within half a second, then N = 60, and K = 10.

The other parameter of the generalized problem, the probability level, can be varied also. The accompanying flowchart shows a scheme of calculation for probability levels of 1/2, 2/3, 3/4, and 4/5, for population sizes from 50 to 3000 by 50's.

The Problem is this: What are corresponding rules of thumb for probability levels other than .5 for the generalized problem?

PROBLEM 8

Computing: An Introduction

by Fred Gruenberger

"This is a fascinating book. It is different, authoritative, original and useful... Here is a text that can be studied in depth or read by the casual information gatherer... warmly recommended as a text for a worthwhile computing course that is now being offered in too few colleges."

(from the review in DATA PROCESSING DIGEST)

"Here is a truly comprehensive text. Its scientific, or technical, orientation makes it well suited for third or fourth year engineering students...can also be a valuable tool for capable instructors in the information sciences."

(from the review in COMPUTING REVIEWS)

HARCOURT BRACE JOVANOVICH, INC.

757 THIRD AVENUE, NEW YORK, N.Y. 10017

"Still the only set of integrated texts in the field."

Computing: A Second Course

by Fred Gruenberger

"This is indeed one of the most amazing computing books I have had the pleasure to examine. It deals with computing, and not with computers, not with the idiosyncrasies of various implementations of computer languages, not with the computer coding, but in the very real sense with the art of computing as it can be and should be practiced in the early 1970s."

(from the review in DATA PROCESSING DIGEST)

Direct orders to: Harper & Row, Publishers, Inc. Keystone Industrial Park Scranton, PA 18512

Two searchlights are located at 0 and P.

The searchlight at 0 makes an angle A with
the horizontal and sends out light in a sector
of angle B. The searchlight at P has an
angle of elevation C and an angle of spread
of D. The distance between the lights is X.

Looking only at the cross section as shown,
what is the common area Y?

PROBLEM 89

8 Write a subroutine in any language for which the calling X, A, B, C, D and the output V sequence has the arguments Indicate how that subroutine is the area Y. might be tested.

Searchlight

More on Penny Flipping

In PC23-10, the first three Penny Flipping problems were given, with some known results. Let us state all the problems.

In each case, a group of coins is given, all heads up. The coins are flipped in small sub-sets, and the number of flips that must be made until all coins return to heads is counted. The number of flips is a function of the number of coins.

I. (The original problem, from the book SIMULA BEGIN.) Given a stack of N pennies. Flip the top 1, the top 2, the top 3,..., the entire stack, then the top 1, the top 2, the top 3,..., the entire stack, and so on.

II. For a stack of N pennies, flip the top 1, the bottom 2, the top 3, the bottom 4,..., the entire stack, the top 1, the bottom 2, and so on.

III. The pennies are arranged in a triangular array (thus there are N rows, but the number of pennies is one of 1, 3, 6, 10, 15, 21, etc.). Flip one row, then 2 rows, 3 rows,..., the entire array. Then rotate the array 120° clockwise and start over, flipping the top row, then 2 rows, and so on.

IV. For a stack of N pennies, flip the top 1, then the entire stack, the top 2, the entire stack, the top 3, the entire stack,..., until the top K is the entire stack; then start over with the top 1, the stack, the top 2, and so on.

V. For a triangular array, flip one row, rotate the array, then 2 rows, rotate, 3 rows, rotate, and so on.

VI. For a stack of N, flip the top 1, the entire stack, the bottom 2, the entire stack, the top 3, the stack, the bottom 4, and so on.

Results were given for problems I and II for the first 32 values of N. Problem III is dull, since the functional value is 3N or 3N-1 for even and odd N respectively. Problem V is also dull; the functional value is 2N when N is congruent to 0 or 3 mod 6, is 3N when N is congruent to 2 or 4 mod 6, and is 3N-1 when N is congruent to 1 or 5 mod 6.

Problems II and IV seem to be the interesting ones. The accompanying table shows results for these two problems; 31 new values for PF-II, and 34 values for PF-IV. The results shown here were calculated by Thomas Sardi.

Both of these functions are wild indeed, and the preliminary results for PF-IV indicate that it is the wilder of the two. The case for N equals 58 in PF-II is still unknown.

Clearly, more results will be needed before anyone could establish a relationship between N and f for either case. Both of these problems are readily coded in any language for any computer.

N	f		
33 34 35 36 37 38 39	20790 28560 16170	N	f
36	16839	4	17
38	83980	56 78	40 27
40	15960	7 8	27 18 97 43
41 42	30668 5880	9	43
40 41 42 43 44	13330 230384	11	200
45	28560 16170 16839 16872 83980 13104 15960 30668 5880 13330 230384 62100 2484	13	531 200 219 312 2184 437 2700
45 46 47 48	71170	14 15	2184 437
49	16316	16 17	2700 501
51	264960 16316 12900 27744 2600	18 19	501 1088 15120
4551234567890123	2600 2226	20 21	15120 608 1267
54 55	2226 1156680 75889 11760 13680	22	923 1848 828 2112 1500
56 57	11760	24	828
58	14868	26	1500
60	140400	27 28	1441
62	14640 135408 232848	29 30	2688 51040
64	25535	31 32	12000
		9 11 12 13 15 16 17 18 19 20 12 21 21 21 21 21 21 21 21 21 21 21 21	52 0 8 14336 55440
		35	1904 32743
		37	8640

Problem Solution

these being the number of zeros that cannot appear at the low order end of the factorials. For example:

> 25852016738884976640000 620448401733239439360000 25! = 15511210043330985984000000

Whenever N contains a factor of 5, factorial N will have one more zero than did factorial (N-1). If N has a factor of 25, then two new zeros will be introduced into the table, as is seen above at N = 25. Thus, there is no factorial having 5 zeros at the low order end. The series involved thus goes:

5, 11, 17, 23, 29, 30, 36, 42, 48, 54, 60, 61, 67, 73, 79, 85, 91, 92, 98, 104, 110, 116, 122, 123, 129, 135, 141,...

Factorial 10000 has 2499 zeros at its low order end (see PC4-10). This figure checks as follows:

> 10000/ 2000 10000/ 25 400 = 10000/ 125 10000/ 625 80 16 10000/3125 2499

Since 10000 = 5.5.5.5.16, this implies that the series under discussion also contains the terms 2496, 2497, and 2498.

? FRUSTRATED

... SEARCHING FOR INFORMATION? TIME AND MONEY AT A PREMIUM? YOU NEED DATA PROCESSING DIGEST

Continuous search through computer, management, and trade magazines. reports, information services. Readable digests of the best material we find. Book reviews, monthly and yearly index, calendar, complete reference to sources. 12 monthly issues, \$51.

Data Processing Digest

Published Each Month Since 1955

Write for Information

Data Processing

The accompanying chart shows the arrangements of numbers to be placed on the sides of 25 boxes, as shown

to form 4-sided "dominoes." All 100 combinations from 00 to 99 appear once each.

The boxes can be chained, as in dominoes, with adjacent numbers equal. For example, a chain can be made starting with box Al side 4 and continuing with Y2-4, Q2-2, Y4-3, and K3-3, so that the numbers showing on the boxes are:

Superominoes

4-6-6-2-2-0-0-9-9-7-...

(the last two numbers illustrating that the boxes can be turned end-for-end.) It is relatively easy to form a chain of all 25 boxes. Is it possible to form such a chain so that the starting and ending digits are alike? at is, can all 25 boxes be chained in a circle?

Δ

8 0 It has been shown that, for values of 2^T in decimal form, a value can be found having K adjacent zeros, for any K. For the first appearance of such numbers, the present state of knowledge is the following:

K	T		
1	10		
2	53		
3	242		
4	377 1491		
123456789	1492		
7	6801		
8	14007		
9	(greater	than	60000)

For example, the 14007th power of 2 exhibits 8 adjacent zeros, starting at the 729th digit.

The accompanying table (from calculations made by Richard Lubin) shows that it is relatively easy to display strings of zeros of any length in powers of 2. The ones shown here are not, of course, the first appearances of strings of eleven zeros.

Printed by Argold Press Inc. 16921 Ventura Boulevard, Encino