(51) 4 C 22 B 15/00 // C 22 B 23/04

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

ВСЕСОЮЗНАЯ
13 патемента 13
Технолема 13

- (21) 3742166/22-02
- (22) 18.05.84
- (46) 23.01.86. Бюл. № 3
- (71) Ленинградский ордена Октябрьской Революции и ордена Трудового Красного Знамени технологический институт им.Ленсовета
- (72) А.А.Блохин, Т.В.Разживина, В.П.Таушканов и В.А.Вакуленко
- (53) 669.334 (088.8)
- (56) Логвиненко И.А. и др.Гидрометаллургия, М.: Наука, 1976, с.140.

Колонина Н.П. и др. - Цветные металлы, 1965, № 9, с.43.

(54)(57) СПОСОБ ИЗВЛЕЧЕНИЯ МЕДИ из никельсодержащих растворов, включающий контактирование их со слабосновным анионитом, синтезированным на основе полиэтиленполиамина, от личающий ся тем, что, с целью повышения степени извлечения меди и выхода очищенной соли никеля, раствор приводят в контакт с анионитом, содержащим аминоспиртовые группы.

Изобретение относится к гидрометаллургии цветных металлов, в частности меди и никеля.

Цель изобретения - повышение степени извлечения меди и выхода очищен- 5 ной соли никеля.

Пример 1.5 г анионита СБ-1, синтезированного на основе полиэтиленполиамина и содержащего в качестве функциональных аминоспиртовые группы в количестве 5 ммоль/г, заливается 500 мл 1 М раствора Ni (NO₃)₂ с рН 4,3, создаваемым добавлением ацетатного буфера, с содержанием меди 0,4 г/л. Раствор со смолой перемешивается в течение 1 ч мешалкой. Затем раствор отделяется от анионита фильтрацией. Фильтрат анализируют на содержание меди и никеля.

Пример 2. 2 лраствора того же состава, что и в примере 1, со скоростью 2 см/мин пропускают через колонку объемом 20 мл, заполненную анионитом СБ-1. Пропущенный раствор анализируют на содержание меди и никеля. После извлечения меди

анионит промывается водой и производится десорбция меди 2 М HNO₄.

Для сравнения аналогичные операции производят с анионитом АН-31, синтезированном на основе полиэтиленполиамина и содержащего в качестве функциональных групп вторичные и третичные аминогруппы.

В табл.1 приведены результаты 10 извлечения меди из 1 М Ni $(NO_{\frac{1}{3}})_2$ в статических условиях.

В табл.2 приведены результаты извлечения меди из 1 М Ni $(NO_3)_2$ в динамических условиях.

15 Из представленных в табл. 1 и 2 результатов видно, что применение предлагаемого способа позволяет при проведении процесса в статических условиях в 2,6 раза увеличить

20 емкость сорбента по меди и извлечение меди, а при проведении процесса в динамических условиях повысить емкость по меди до проскока в 14 раз полную динамическую емкость — в

25 6,6 раза, увеличить коэффициент очистки раствора нитрата никеля от меди более, чем в 50 раз, а концентрацию меди в элюате — в ~5 раз.

Таблица 1

Способ Сорбент Группы Емкость по Си, Извлечение мг/г Известный АН-31 =//H;= N 15 37,5			· · · · · · · · · · · · · · · · · · ·				
Известный АН-31 = NH;= N 15 37,5	Способ	Сорбент	Группы	Емкость по Си, мг/г	Извлечение,%		
	Известный	AH-31	=NH;= N	15	37,5		
Предлагае- мый СБ-1 -NCH ₂ CH ₂ OH 39 97,5	- , ,		·	1 2	97,5		

П р и м е ч а н и е: Содержание никеля в растворе практически не изменяется.

Таблина 2

						r,		улица 2
Способ	Сорбент	Группы	Емкость і Сы, мг/г до прос- кока	10 Полная	Содержа- ние в очищен- ном раство- ре мг/л	Коэффи- циент очистки от Си	Выход очищен- ной со- ли,г N:(NO ₃) ₂ на 1 г смолы	Коэффици- ент кон- центрирова- ния Си в элюате
Извест- ный Предла-		=NH; =N	2,7	14	50	8	3,1	28
гаемый	CB-I	=NCH ₂ CH ₂ C	OH 42	93	1	>4.00	32,1	5,6

Примечание: Содержание никеля в растворе достигает исходного после пропускания 2 колоночных объемов раствора.

ВНИИПИ Заказ 8654/27 Тираж Подписное Филиал ППП "Патент", г.Ужгород, ул.Проектная, 4