Package 'UBCRM'

April 26, 2024

Title Simulate and Conduct Dose-Escalation Phase I Studies

Author Benjamin Esterni with contribution from Baboukar Mane

Type Package

Date 2024-04-25

Maintainer Christophe Zemmour <christophe.zemmour@gmail.com></christophe.zemmour@gmail.com>
Description Two Phase I designs are implemented in the package: the classical 3+3 and the Continual Reassessment Method (<doi:10.2307 2531628="">). Simulations tools are also available to estimate the operating characteristics of the methods with several user-dependent options.</doi:10.2307>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2024-04-26 08:30:02 UTC
R topics documented:
UBCRM-package
aip
CreData
Crm
fp
Lp
psip
sim3p3
simCrm
ssim3p3
ssimCrm
troisPtrois
updata
Index 19

2 UBCRM-package

UBCRM-package	UBCRM is a package containing functions to simulate and conduct dose escalation phase I studies

Description

Two designs are implemented in the package: the classical 3+3 and the Continual Reassessment Method. Simulations tools are also available to estimate the operating characteristics of the methods with several user-dependent options.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

Examples

```
data<- CreData(4)
prior<-c(.05,.1,.15,.2)

# One study simulation
simCrm(prior=prior, firstdose = 2, truerate = prior, cohortsize = 3, target = 1/3,
nptmax = 18, nmaxmtd = 6, nmaxdose = 18, sd = 1.34, approach = "bayes", model = "power",
method = "fpost", nextlevel = "ntarget", upskipping = TRUE, downskipping = FALSE,
lastdose = NA, graphic = FALSE, seed = 20130110)

# N simulations with CRM
# Power model, no up skipping, start at dose 2
res1<- ssimCrm(prior=prior, 100, firstdose = 2, truerate = prior, cohortsize = 3,
target = 1/3, nptmax = 18, nmaxmtd = 6, nmaxdose = 18, sd = 1.34, approach = "bayes",
method = "fpost", model = "power", nextlevel = "ntarget", upskipping = TRUE,
downskipping = FALSE, r = 2, seed=20130110)
res1</pre>
```

aip 3

```
# Simulations with 3+3 design
res2<- ssim3p3(truerate=prior, 100, r = 2, seed=20130110)
res2</pre>
```

aip

Functions to calculate the appropriate dose level singletons

Description

Pool of functions to calculate dose level singletons values: aip, ail2 and ait2 calculate sgl in order that E[psy] = prior, ail1 and ait1 calculate sgl in order that psy(sgl,1) = prior.

Usage

```
aip(p_prior, sd = 1.34)
ait1(p_prior, a=1)
ail1(p_prior, a=1)
ait2(p_prior)
ail2(p_prior)
```

Arguments

p_prior Prior toxicity probability.

sd Standard deviation in case of normal distribution for the parameter.

a Rate in case of exponential distribution for the parameter.

Value

Numeric length(p-prior)-vector.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

4 CreData

CreData	Creates a	CRM	datafran
Ciebata	Creates a	CIM	aaiajran

Description

Creates a n-row summary dataframe indicating the number of treated patients and observed DLTs at each of the n dose-levels. This is the dataframe structure that will be needed in the different functions of the UBCRM package.

Usage

```
CreData(ndose = 3, dosenames = paste("dose", 1:ndose, sep = " "))
```

Arguments

ndose Number of dose levels.

dosenames A ndose-length character vector of labels for the dose levels.

Value

A ndose * 3 dataframe containing:

dose Integer value 1..ndose ordering the doses.

npt Integer count of the treated patients at dose i.

ndlt Integer count of the observed DLT at dose i.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

updata

Crm 5

Examples

```
\label{eq:data} $$ {\rm data} - {\rm CreData}(5,c("5\ mg/m2","7\ mg/m2","10\ mg/m2","15\ mg/m2","20\ mg/m2")) $$ {\rm data} $$
```

Crm

Dose-escalation with the Continual Reassessment Method

Description

The function gives the next level to include patients following a model-based design. Needs an updated input dataframe with the CreData() structure.

Usage

```
Crm(Dk, prior, target = 1/3, nptmax = 24, nmaxmtd = 6, nmaxdose = nptmax, sd = 1.34,
approach = "bayes", model = "power", method = "fpost", nextlevel = "ntarget",
upskipping = F, downskipping = F, lastdose = NA)
```

Arguments

Dk	Study dataframe with CreData() structure.
prior	Numeric vector of prior DLTs probabilities.
target	Target used for the MTD determination.
nptmax	Maximum number of patients to include in the study.
nmaxmtd	Maximum number of patients to be treated at the designated MTD. Assign a high value (=nptmax) to avoid such a stopping rule.
nmaxdose	Maximum number of patients to be treated at the same dose. Assign a high value (=nptmax) to avoid such a stopping rule.
sd	Standard deviation used in case of a normal distribution assumption for the parameter.
approach	Character indicating the estimation method: "bayes" (default value) for CRM or "mle" for CRML.
model	Character indicating the dose-DLT relationship model: "power", "tangent" or "logistic". More informations in the details section.
method	Estimation method for the posterior probabilities. "fpost" (default) estimates the mean of the posterior distribution of the parameter alpha (hat_alpha=E[alpha]) and uses it in psy(hat_alpha,). "ppostp" and "pposts" directly estimate the mean of the posterior DLT probability. "ppostp" uses prior as singletons whereas "pposts" calculates appropriates singletons (see ail, ait or aip functions).
nextlevel	Character option used for determining the next dose level. "ntarget" (default) if the next level is chosen as the closest level to the desired target (may be higher than target). "utarget" if the next level is the closest level with the restriction to be lower than the target value.

6 Crm

upskipping Boolean option used for determining the next dose level. If TRUE no level

skip in escalation will be allowed. If FALSE (default) the level skips will be

permitted.

downskipping Boolean option used for determining the next dose level. If TRUE no level

skip in desescalation will be allowed. If FALSE (default) the level skips will be

permitted.

lastdose Integer representing the last experimented dose level.

Details

Details of the 3 dose-DLT relationship proposed models: "power" for the power model $psy(s,a)=s^exp(a)$, "tangent" for the hyperbolic tangent model $psy(s,a)=((tanh(s)+1)/2)^**a$, "logistic" for the logistic model psy(s,a)=exp(3+a*s)/(1+exp(3+a*s)). Note: power and tangent models are equivalent after an appropriate transformation on the parameter.

Value

nextdose An integer representing the next recommended dose to experiment.

mtd If reached, an integer representing the MTD.

prob Posterior DLTs probabilities.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

simCrm, ssimCrm

fp 7

Examples

```
data<- CreData(5)
data<- updata(data,1,3,0)
data<- updata(data,2,3,1)
data<- updata(data,2,3,1)
data
Crm(data,prior=c(0.1,0.15,0.25,0.35,0.45),target=0.3,nextlevel="ntarget",nptmax=24,nmaxmtd=6)
data<- updata(data,3,3,2)
data
Crm(data,prior=c(0.1,0.15,0.25,0.35,0.45),target=0.3,nextlevel="ntarget",nptmax=24,nmaxmtd=6)</pre>
```

fp

Density functions

Description

Density functions for the model parameter. fp(a,sd) is the normal density: $1/(sd*sqrt(2*pi))*exp(-(a^2)/(2*sd^2))$. It and fl are the exponential density (with a fixed rate = 1): exp(-a).

Usage

```
fp(a, sd)
ft(a)
fl(a)
```

Arguments

a Parameter.sd Standard deviation.

Value

Numeric value of the computed density.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

8 Lp

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

Lp

Likelihood functions

Description

Lp is the likelihood function for the power model $psy(s,a)=s^*exp(a)$. Lt is the likelihood function for the hyperbolic tangent model $psy(s,a)=((tanh(s)+1)/2)^**a$. Ll is the likelihood function for the logistic model $psy(s,a)=exp(3+a^*s)/(1+exp(3+a^*s))$.

Usage

```
Lp(a, data, sgl)
Lt(a, data, sgl)
Ll(a, data, sgl)
```

Arguments

a Parameter.

data CRM dataframe with a CreData() structure.

sgl Dose level singleton.

Value

Numeric value of the computed likelihood.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

psip 9

psip	Dose-Toxicity modelisation functions

Description

psip corresponds to the power model $psy(s,a)=s^exp(a)$. psit corresponds to the hyperbolic tangent model $psy(s,a)=((tanh(s)+1)/2)^**a$. psil corresponds to the logistic model psy(s,a)=exp(3+a*s)/(1+exp(3+a*s)).

Usage

```
psip(sgl,a)
psit(sgl,a)
psil(sgl,a)
```

Arguments

sgl Dose level singleton.
a Parameter.

Value

Numeric value of the computed function.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

10 sim3p3

sim3p3	Simulation of one dose-escalation study with the classical 3+3 design

Description

Given a true rates vector of DLT probabilities, the function simulate a 3+3 dose-escalation design.

Usage

```
sim3p3(truerate, seed = NULL)
```

Arguments

truerate A nlevel-length vector of true rates for the DLTs. seed If not empty, the seed to use for random generation.

Value

data Study data.

mtd If reached, an integer representing the MTD level.

lastdose An integer representing the last experimented dose.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

troisPtrois, ssim3p3

simCrm 11

Examples

```
# A 3-dose study with 10%, 20% and 30% of true rates for toxicity sim3p3(c(0.1,0.2,0.3))
```

sim	Crm	Simulation of one dose-escalation study with the Continual Reassess- ment Method

Description

Given prior and true rates vectors of DLT probabilities, the function simulates a CRM dose-escalation design.

Usage

```
simCrm(prior, firstdose = NA, truerate = prior, cohortsize = 3, target = 1/3,nptmax = 24,
nmaxmtd = nptmax, nmaxdose = nptmax, sd = 1.34, approach = "bayes", model = "power",
method = "fpost", nextlevel = "ntarget", upskipping = F, downskipping = F, lastdose = NA,
graphic = F, seed = NULL)
```

Arguments

prior	Numeric vector of prior DLT probabilities.
firstdose	Integer representing the dose at which the first cohort will be treated.
truerate	A nlevel-length vector of true rates for the DLTs.
cohortsize	Size of the cohort. Default value = 3.
target	Target used for the MTD determination.
nptmax	Maximum number of patients to include in the study.
nmaxmtd	Maximum number of patients to be treated at the designated MTD. Assign a high value (=nptmax) to avoid such a stopping rule.
nmaxdose	Maximum number of patients to be treated at the same dose. Assign a high value (=nptmax) to avoid such a stopping rule.
sd	Standard deviation used in case of a normal distribution assumption for the parameter.
approach	Character indicating the estimation method: "bayes" (default value) for CRM or "mle" for CRML.
model	Character indicating the dose-DLT relationship model: "power", "tangent" or "logistic".
method	Estimation method for the posterior probabilities. "fpost" (default) estimates the mean of the posterior distribution of the paramater alpha (hat_alpha=E[alpha]) and uses it in psy(hat_alpha,). "ppostp" and "pposts" directly estimate the mean of the posterior DLT probability. "ppostp" uses prior as singletons whereas "pposts" calculates appropriate singletons (see ail, ait or aip functions).

12 simCrm

nextlevel Character option used for determining the next dose level. "ntarget" (default) if

the next level is chosen as the closest level to the desired target (may be higher than target). "utarget" if the next level is the closest level with the restriction to

be lower than the target value.

upskipping Boolean option used for determining the next dose level. If TRUE no level

skip in escalation will be allowed. If FALSE (default) the level skips will be

permitted.

downskipping Boolean option used for determining the next dose level. If TRUE no level

skip in desescalation will be allowed. If FALSE (default) the level skips will be

permitted.

lastdose Integer representing the last experimented dose level.

graphic Boolean option for graphic generation.

seed If not empty, the seed to use for random generation.

Value

data Study data.

dose Integer vector representing for each cohort the experimented dose levels.

nDLT Integer vector representing for each cohort the number of observed DLTs.

mtd If reached, an integer representing the MTD level.

lastdose An integer representing the last experimented dose.

prob Posterior DLT probabilities.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

Crm, ssimCrm

ssim3p3

Examples

```
simCrm(c(0.1,0.2,0.3,0.35,0.45),firstdose=1,target=0.33)
```

ssim3p3

Simulation of n dose-escalation study with the 3+3 design

Description

The ssim3p3 function simulates n dose-escalation study with the 3+3 design and provides summarized results.

Usage

```
ssim3p3(truerate, n, r = 2, seed = NULL)
```

Arguments

truerate A nlevel-length vector of true rates for the DLTs.

n Number of studies to simulate.

r Integer, number of digits for percentages in output. seed If not empty, the seed to use for random generation.

Value

data Summarized result in a "np1" view.

norecommendation

Percentage of studies with no recommendation for the MTD (in case of the first

level is considered as toxic).

mean.npt Mean number of enrolled patients.
mean.ndlt Mean number of observed DLTs.
mean.lastdose Mean last experimented dose level.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

14 ssimCrm

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

```
troisPtrois, sim3p3
```

Examples

```
ssim3p3(c(0.1,0.2,0.25,0.35),100)
```

ssimCrm	Simulation of n dose-escalation study with the Continual Reassess-
	ment Method

Description

The ssimCrm function simulates n dose-escalation study with the CRM and provides summarized results.

Usage

```
ssimCrm(prior, n, firstdose = NA, truerate = prior, cohortsize = 3, target = 1/3,
nptmax = 24, nmaxmtd = nptmax, nmaxdose = nptmax, sd = 1.34, approach = "bayes",
method = "fpost", model = "power", nextlevel = "ntarget", upskipping = F,
downskipping = F, r = 2, seed = NULL)
```

Arguments

prior	Numeric vector of prior DLT probabilities.
n	Number of studies to simulate.
firstdose	Integer representing the dose at which the first cohort will be treated.
truerate	A nlevel-length vector of true rates for the DLTs.
cohortsize	Size of the cohort. Default value = 3.
target	Target used for the MTD determination.
nptmax	Maximum number of patients to include in the study.
nmaxmtd	Maximum number of patients to be treated at the designated MTD. Assign a high value (=nptmax) to avoid such a stopping rule.
nmaxdose	Maximum number of patients to be treated at the same dose. Assign a high value (=nptmax) to avoid such a stopping rule.
sd	Standard deviation used in case of a normal distribution assumption for the parameter.

ssimCrm 15

approach Character indicating the estimation method: "bayes" (default value) for CRM or

"mle" for CRML.

model Character indicating the dose-DLT relationship model: "power", "tangent" or

"logistic".

method Estimation method for the posterior probabilities. "fpost" (default) estimates the

mean of the posterior distribution of the paramater alpha (hat_alpha=E[alpha]) and uses it in psy(hat_alpha,...). "ppostp" and "pposts" directly estimate the mean of the posterior DLT probability. "ppostp" uses prior as singletons whereas

"pposts" calculates appropriate singletons (see ail, ait or aip functions).

nextlevel Character option used for determining the next dose level. "ntarget" (default) if

the next level is chosen as the closest level to the desired target (may be higher than target). "utarget" if the next level is the closest level with the restriction to

be lower than the target value.

upskipping Boolean option used for determining the next dose level. If TRUE no level

skip in escalation will be allowed. If FALSE (default) the level skips will be

permitted.

downskipping Boolean option used for determining the next dose level. If TRUE no level

skip in desescalation will be allowed. If FALSE (default) the level skips will be

permitted.

r Integer, number of digits for percentages in output.

seed If not empty, the seed to use for random generation.

Value

data Summarized result in a "np1" view.

norecommendation

Percentage of studies with no recommendation for the MTD (in case of the first

level is considered as toxic).

mean.npt Mean number of enrolled patients.

mean.ndlt Mean number of observed DLTs.

mean.lastdose Mean last experimented dose level.

mean.prob Mean of posterior DLT probabilities.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

16 troisPtrois

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

Crm, simCrm

Examples

```
ssimCrm(c(0.1,0.2,0.3,0.35,0.45),firstdose=1,target=0.33,n=100)
```

troisPtrois

Dose escalation with the 3+3 design

Description

The function gives the next level to include patients following a 3+3 design. Needs an updated input dataframe with the CreData() structure.

Usage

```
troisPtrois(data = data, lastdose)
```

Arguments

data Study dataframe with CreData() structure.

lastdose Integer representing the last experimented dose level.

Value

nextdose An integer representing the next recommended dose to experiment.

mtd If reached, an integer representing the MTD.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

updata 17

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

```
sim3p3, ssim3p3
```

Examples

```
# Study initialization
data<- CreData(5,c("5 mg/m2","7 mg/m2","10 mg/m2","15 mg/m2","20 mg/m2"))
data
# Three patients are treated at the dose 1, without any observed DLT:
data<- updata(data,lastdose=1,npt=3,ndlt=0)
data
# 3+3 design
troisPtrois(data,lastdose=1)</pre>
```

updata

Update the CRM dataframe after new patients' collected data

Description

This function uptdates the CRM dataframe (result of the CreData routine) with new treated patients or observed DLTs.

Usage

```
updata(data = data, lastdose, npt, ndlt)
```

Arguments

data Dataframe to be updated.

lastdose Integer representing the dose to be updated.

npt Number of new treated patients.

ndlt Number of DLTs among the npt patients.

18 updata

Value

Updated dataframe.

Author(s)

Benjamin Esterni, Baboukar Mane. Unite de Biostatistique et de Methodologie, Institut Paoli-Calmettes, Marseille, France.

References

O'Quigley J., Pepe M., Fisher L. (1990). Continual Reassessment Method: a practical design for Phase I clinical trials in cancer. Biometrics 46, 33-48. https://doi.org/10.2307/2531628>

O'Quigley J., Shen LZ. (1996). Continual Reassessment Method: a likelihood approach. Biometrics 52, 673-684. https://doi.org/10.2307/2532905>

Paoletti X., Kramar A. (2009). A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Statistics in Medecine 28, 3012-3028. https://doi.org/10.1002/sim.3682

Chamorey Emmanuel. (2009). Methodologie des essais de phase precoce en cancerologie: evolution des schemas et apport de la pharmacologie. These.

Garret-Mayer Elizabeth. (2006). The Continual Reassessment Method for dose-finding studies: a tutorial. Clinical Trials: 57-71. https://doi.org/10.1191/1740774506cn1340a

See Also

CreData

Examples

```
# Study initialization
data<- CreData(5,c("5 mg/m2","7 mg/m2","10 mg/m2","15 mg/m2","20 mg/m2"))
data
# Three patients are treated at the dose 1, without any observed DLT:
data<- updata(data,lastdose=1,npt=3,ndlt=0)
data</pre>
```

Index

```
* UBCRM
    UBCRM-package, 2
ail1 (aip), 3
ail2(aip), 3
aip, 3
ait1(aip), 3
ait2(aip), 3
CreData, 4, 18
Crm, 5, 12, 16
fl (fp), 7
fp, 7
ft (fp), 7
L1 (Lp), 8
Lp, 8
Lt (Lp), 8
psil (psip), 9
psip, 9
psit (psip), 9
sim3p3, 10, 14, 17
simCrm, 6, 11, 16
ssim3p3, 10, 13, 17
ssimCrm, 6, 12, 14
troisPtrois, 10, 14, 16
UBCRM (UBCRM-package), 2
UBCRM-package, 2
updata, 4, 17
```