

Question 15.7:

For an amplitude modulated wave, the maximum amplitude is found to be 10 V while the minimum amplitude is found to be 2 V. Determine the modulation index μ . What would be the value of μ if the minimum amplitude is zero volt?

Answer

Maximum amplitude, $A_{max} = 10 \text{ V}$

Minimum amplitude, $A_{min} = 2 \text{ V}$

Modulation index μ , is given by the relation:

$$\mu = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}$$

$$=\frac{10-2}{10+2}=\frac{8}{12}=0.67$$

If
$$A_{\min} = 0$$
,

Then
$$\mu' = \frac{A_{\text{max}}}{A_{\text{max}}} = \frac{10}{10} = 1$$

Question 15.8:

Due to economic reasons, only the upper sideband of an AM wave is transmitted, but at the receiving station, there is a facility for generating the carrier. Show that if a device is available which can multiply two signals, then it is possible to recover the modulating signal at the receiver station.

Answer

Let ω_{c} and ω_{s} be the respective frequencies of the carrier and signal waves.

Signal received at the receiving station, $V = V_1 \cos(\omega_c + \omega_s)t$

Instantaneous voltage of the carrier wave, $V_{\rm in} = V_{\rm c} \cos \omega_{\rm c} t$

$$\begin{split} \therefore VV_{\text{in}} &= V_1 \cos(\omega_c + \omega_s)t. (V_c \cos \omega_c t) \\ &= V_1 V_c \Big[\cos(\omega_c + \omega_s)t. \cos \omega_c t \Big] \\ &= \frac{V_1 V_c}{2} \Big[2\cos(\omega_c + \omega_s)t. \cos \omega_c t \Big] \\ &= \frac{V_1 V_c}{2} \Big[\cos\{(\omega_c + \omega_s)t + \omega_c t\} + \cos\{(\omega_c + \omega_s)t - \omega_c t\} \Big] \\ &= \frac{V_1 V_c}{2} \Big[\cos\{(2\omega_c + \omega_s)t + \cos \omega_s t\} \Big] \end{aligned}$$

At the receiving station, the low-pass filter allows only high frequency signals to pass through it. It obstructs the low frequency signal ω_s . Thus, at the receiving station, one

can record the modulating signal $\frac{V_1V_c}{2}\!\cos\omega_{\rm s}t$, which is the signal frequency.