Chapter 6. Descriptive Statistics

- 6.1 Experimentation
- 6.2 Data Presentation
- **6.3 Sample Statistics**

6.0 Introduction

- Data: a mixture of nature and noise.
- Is the noise manageable?
 - The noise is desired to be representable by a probability distribution.
- Statistical inference:
 - The science of deducing properties of an underlying probability distribution from data
- Can we have information on the underlying probability distribution?
 - The information is given in the form of (functions of) data.

- 6.1 Experimentation
- 6.1.1 Samples
- **Population**: the set of all the possible observations available from a particular probability distribution.
- Sample: a subset of a population.
- Random sample: a sample where the elements are chosen at random from the population
- A sample is desired to be representative of the population.
- Types of observations: numerical and nominal

6.1.2 Examples

- Example 1: Machine breakdowns
 - Suppose that an engineer in charge of the maintenance of a machine keeps records on the breakdown causes over a period of a year.

 Suppose that 46 breakdowns were observed by the engineer (Figure 6.2).

- What is the population from which this sample is drawn?
 - The population consists of all the breakdowns that occurred and will occur to the machine.

Breakdown cause	Frequency				
Electrical	9				
Mechanical	24				
Misuse	13				
Total	46				
FIGURE 6.2					
Data set of machine breakdowns					

Example 1: Machine breakdowns

- Factors to consider to check representativeness of data:
 - Quality of operators
 - Working load on the machine
 - Particularity of data observation (e.g., more rainy days than other years)

Example 2: Defective computer chips

- The chip boxes are selected at random from
- Points to check on data:
 - What is the data type?
 - Are the data representative?
 - How the randomness of data realized?
- Statistical problem:
 - What is the population from which the data are sampled?
 - The population consists of all the chip boxes that are produced over a certain period of time.

6.2 Data presentation

6.2.1 Bar and Pareto charts

Python codes for bar charts

```
auto=pd.read_csv('C:/data/autos.txt')
print(auto)
    cars₩ttrucks₩tsuvs
0     12₩t26₩t47
1     29₩t52₩t43
2     62₩t43₩t63
3     38₩t51₩t62
4     93₩t122₩t159
```

6.2 Data presentation

['cars', 'trucks', 'suvs']

```
auto = pd.read_csv('C:/data/autos.txt', sep='\t')
   # To remove "₩t" in the last table, use the
     option 'sep'
print(auto)
 cars trucks suvs
  12
      26 47
  29 52 43
2 62 43 63
3 38 51 62
   93
      122 159
print(list(auto))
```

auto.plot.bar(y='cars', title='Cars')
plt.show() # for bar plots

print(auto.apply(sum)) cars 234 trucks 294 suvs 374 dtype: int64

auto.T.plot.bar(y=['M','T','W','Th','F'], tit
 # 'rot' is for the angle of the x-label.
plt.ylabel('Total(in thousands)')
plt.show() # for a stacked bar plot

auto.T.plot.bar(y=['M','T','W','Th','F'], title='Autos', rot=0)
plt.ylabel('Total(in thousands)')
plt.show() # for a side-by-side bar plot

6.2.1 Bar and Pareto charts

Python codes for Pareto charts

import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter 100%

```
auto_ord = auto.sort_values(by='cars',ascending=False)
auto_ord["cumpercentage"] = auto_ord["cars"].cumsum()/auto["cars"].sum()*100
Print(list(auto ord))
   ['cars', 'trucks', 'suvs', 'cumpercentage']
fig, ax = plt.subplots()
auto.index=['F','W','Th','T','M'] # index reordered
ax.bar(auto.index, auto ord["cars"], color="b")
 # Colors may be given as "C0", "C1",....
ax2 = ax.twinx()
ax2.plot(auto.index, auto_ord["cumpercentage"], color="r", marker="D", ms=5)
ax2.yaxis.set_major_formatter(PercentFormatter())
ax.tick_params(axis="y", colors="b")
ax2.tick_params(axis="y", colors="r")
plt.show()
```

6.2.2 Pie charts

Python codes for pie charts

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

plt.show() # for pie charts

```
auto.plot.pie(y='cars', title='Cars')
plt.savefig('C:/.../fig/plot1.png',bbox_inches='tight')
# to save the plot as file 'plot1.png' with a tight
# margin in directory 'C:/.../fig'.
```


6.2.3 Histograms

- Useful for reading a general trend in data.
- Stem-and-leaf plots are a special type of a histogram which shows the data values in the picture.

```
> airquality = pd.read_csv('C:/.../data/airquality.csv')
> print(airquality.head())
Unnamed: 0 Ozone Solar.R Wind Temp Month Day
0 1 41.0 190.0 7.4 67 5 1
1 2 36.0 118.0 8.0 72 5 2
2 3 12.0 149.0 12.6 74 5 3
3 4 18.0 313.0 11.5 62 5 4
4 5 NaN NaN 14.3 56 5 5
```

(153, 6)

```
> airquality = pd.read_csv('C:/.../data/airquality.csv', index_col=0)
> print(airquality.head())
   Ozone Solar.R Wind Temp Month Day
1   41.0   190.0   7.4   67    5   1
2   36.0   118.0   8.0   72    5   2
3   12.0   149.0   12.6   74    5   3
4   18.0   313.0   11.5   62    5   4
5   NaN NaN 14.3   56    5   5
> print(airquality.shape)
```

> print(airquality.describe())

-	Ozone	Solar.R	Wind	Temp M	onth I	Day
count	116.000000	146.000000	153.000000	153.00000	0 153.0000	00 153.000000
mean	42.129310	185.931507	9.957516	77.882353	6.993464	15.803922
std	32.987885	90.058422	3.523001	9.465270	1.416522	8.864520
min	1.000000	7.000000	1.700000	56.000000	5.000000	1.000000
25%	18.000000	115.750000	7.400000	72.000000	6.000000	8.000000
50%	31.500000	205.000000	9.700000	79.000000	7.000000	16.000000
75%	63.250000	258.750000	11.500000	85.000000	8.000000	23.000000
max	168.000000	334.000000	20.700000	97.000000	9.000000	31.000000

- > from stemgraphic import stem_graphic # install 'stemgraphic' by typing "pip install stemgraphic" in # the Anaconda Prompt.
- > stem_graphic(airquality['Ozone'])
- > plt.show() # for Stem-and-leaf plots

```
Key: aggr|stem|leaf
                                          133 16 8
                                                    = 16 .8x10 = 168.0
116 16 8
115 15
115 14
115 13 5
114 12 2
113 11 058
110 10 8
109
     9 1677
105
     8 024559
     7 13367889
91
     6 134456
     5 0299
85
     4 01444556789
81
     3 001222455667799
70
      2 0000111123333334478889
55
33
      1 011122333344446666888889
     0 1467778999
10
```

- > airquality.hist(['Ozone'], grid=False)
- > plt.show() # for a histogram

6.2.4 Outliers

- An outlier is an observation which is not from the distribution from which the main body of the sample is collected.
- Outliers need to be removed for analysis.

6.3 Sample statistics

Sample: X_1, \dots, X_n

6.3.1 Sample mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

6.3.2 Sample median

The (n+1)/2-th smallest of the sample when n is odd;

The average of the n/2-th and the (n+1)/2-th smallest of the sample when n is even.

6.3.3 r% sample trimmed mean

The average of the subset of the sample which is obtained by removing the top r% and the bottom r% from the sample.

6.3.4 Sample mode

The value of the sample at which the sample frequency is the largest.

Sample: X_1, \dots, X_n

6.3.5 Sample variance

$$S^2 = \frac{\sum_{i}^{n} (X_i - \overline{X})^2}{n - 1}.$$

S is called the sample standard deviation.

6.3.6 100p-th sample quantile

The value y which satisfies

$$\frac{\#(X_i \le y)}{n} \ge p$$
 and $\frac{\#(X_i \ge y)}{n} \ge 1 - p$

The 25-th and 75-th sample quantiles are called in particular the 1-st (Q_1) and the 3-rd sample quartiles (Q_3) respectively.

The Inter-quartile range (IQR) is the difference, $Q_3 - Q_1$.

6.3.7 Boxplots

Used for reading a general shape of the distribution of data. Useful for finding candidates of outliers.

- > airquality.boxplot(['Ozone'], grid=False, vert=False)
- > plt.show()

- > airquality.boxplot('Ozone', by='Month', grid=False, vert=False, figsize=(6,6))
- > plt.show()
- # for boxplots grouped by Month

Sample:
$$X_1, \dots, X_n$$

6.3.8 Coefficient of variation

$$CV = \frac{S}{X}$$

Chapter Summary

- 6.1 Experimentation
- 6.2 Data Presentation
- 6.3 Sample Statistics