1 Exo 6 TD2

On considère un langage du premier ordre contenant trois prédicats unaires $P,\ Q$ et R.

Caractériser les modèles des formules

A'
$$\forall x (P(x) \rightarrow (Q(x) \rightarrow R(x)))$$

A"
$$\exists x (P(x) \rightarrow (Q(x) \rightarrow R(x)))$$

B'
$$\forall x((P(x) \rightarrow Q(x)) \rightarrow R(x))$$

B"
$$\exists x((P(x) \rightarrow Q(x)) \rightarrow R(x))$$

Solution

A'
$$\mathcal{I}(P) \cap \mathcal{I}(Q) \subseteq \mathcal{I}(R)$$

A"
$$\mathcal{I}(P) \cap \mathcal{I}(Q) = \emptyset$$
 (ou) $\mathcal{I}(P) \cap \mathcal{I}(Q) \cap \mathcal{I}(R) \neq \emptyset$

B'
$$(I(P) \cap \mathcal{D} \setminus I(Q)) \cup I(R) = \mathcal{D}$$

B"
$$\mathcal{I}(Q) \not\subseteq \mathcal{I}(P)$$
 ou $\mathcal{I}(R) \neq \emptyset$

Correction Soit I un modèle de la formule

 \mathbf{A} ' pour toute assignation σ de x (resp. \mathbf{A} " il existe une assignation σ telle que)

$$\begin{aligned} Val(\Big(P(x) \to (Q(x) \to R(x))\Big), I, \sigma) &= Val(P(x), I, \sigma) \text{ donc} \Big) \Big(Val(Q(x), I, \sigma) \text{ donc} \Big) Val(R(x), I, \sigma) \\ &= \sigma(x) \in I(P) \text{ donc} \Big) \Big(\sigma(x) \in I(Q) \text{ donc} \Big) \sigma(x) \in I(R) \Big) \\ &= \Big(\sigma(x) \in I(P) \text{ et} \Big) \sigma(x) \in I(Q) \text{ donc} \Big) \sigma(x) \in I(R) \\ &= \sigma(x) \in I(P) \cap \mathcal{I}(Q) \text{ donc} \Big) \sigma(x) \in I(R) \end{aligned}$$

B' pour toute assignation σ (resp. **B''** il existe une assignation σ telle que)

$$\begin{split} Val(\Big((P(x) \to (Q(x)) \to R(x)\Big), I, \sigma) &= \Big(Val(P(x), I, \sigma) \pmod{Val(Q(x), I, \sigma)}\Big) \pmod{Val(R(x), I, \sigma)} \\ &= \Big(\sigma(x) \in I(P) \pmod{\sigma(x)} \in I(Q)\Big) \pmod{\sigma(x)} \in I(R) \\ &= \Big(\sigma(x) \in I(P) \pmod{\sigma(x)} \not\in I(Q)\Big) \pmod{\sigma(x)} \in I(R) \\ &= \sigma(x) \in I(P) \cap \mathcal{D} \setminus I(Q) \pmod{\sigma(x)} \in I(R) \\ &= \sigma(x) \in \Big(I(P) \cap \mathcal{D} \setminus I(Q)\Big) \cup I(R) \end{split}$$

2 Exo 4 TD3

$$- \mathcal{F}_1 : (\forall x \ P(x) \to (\forall x \ Q(x) \to \exists x \ R(x)))$$

$$- \mathcal{F}_2 : ((\forall x \ P(x) \to \forall x \ Q(x)) \to \exists x \ R(x))$$

$$- \mathcal{G}_1 : \exists y \ \exists z \ \exists t \ (P(y) \to (Q(z) \to R(t)))$$

$$- \mathcal{G}_2 : \forall y \ \exists z \ \exists t \ ((P(y) \to Q(z)) \to R(t))$$

Chacune des deux formules \mathcal{F}_1 et \mathcal{F}_2 est logiquement équivalente à une formule \mathcal{G}_1 ou \mathcal{G}_2 . Laquelle? Justifier.

Solution $\mathcal{F}_1 \equiv \mathcal{G}_1 \text{ et } \mathcal{F}_2 \equiv \mathcal{G}_2$

Correction

1. $\mathcal{F}_1 \equiv \mathcal{G}_1$

On rend propre \mathcal{F}_1 (manipulation syntaxique):

$$\mathcal{F}_1 \equiv (\forall y \ P(y) \to (\forall z \ Q(z) \to \exists t \ R(t)))$$

On a une chaîne d'implication, donc il est plus facile de regarder la négation :

$$\neg F_1 \equiv \forall y \ P(y) \land \forall z \ Q(z) \land \neg \exists t \ R(t)$$

z et t (resp. t et y) (resp. y et z) n'ont aucune occurrence dans P(y) (resp. Q(z)) (resp. R(t)) donc on peut mettre les quantificateurs dans n'importe quel ordre pour obtenir

$$\neg F_1 \equiv \forall y \forall z \forall t (P(y) \land Q(z) \land \neg R(t))$$

et en repassant à la négation

$$\mathcal{F}_1 \equiv \exists y \exists z \exists t (\neg (P(y) \land P(z)) \lor R(t)) \equiv \exists y \exists z \exists t ((P(y) \land P(z)) \to R(t))$$

2. $\mathcal{F}_2 \equiv \mathcal{G}_2$

On rend propre \mathcal{F}_2 (manipulation syntaxique) :

$$\mathcal{F}_2 \equiv ((\forall y \ P(y) \to \forall z \ Q(z)) \to \exists t \ R(t))$$

puis en se débarassant successivement des \rightarrow

$$\mathcal{F}_2 \equiv ((\neg(\forall y \ P(y) \to \forall z Q(z))) \lor \exists t \ R(t)) \equiv ((\forall y \ P(y) \land \neg \forall z \ Q(z)) \lor \exists t \ R(t))$$

Soit en niant le quantificateur universel puis en déplaçant les quantificateurs

$$\mathcal{F}_2 \equiv \forall y \exists z \exists t ((P(y) \land \neg Q(z)) \lor R(t))$$

puis en remarquant que

$$P(y) \wedge \neg Q(z) \equiv \neg (P(y) \rightarrow Q(z))$$
 on obtient

$$((P(y) \land \neg Q(z)) \lor R(t)) \equiv (\neg (P(y) \to Q(z)) \lor R(t)) \equiv ((P(y) \to Q(z)) \to R(t))$$

3 TD 3 Exo 5

Soient les cinq expressions logiques suivantes :

- $-E_1 = \forall x \ P(x,x)$
- $--E_2 = \forall x \forall y \ [P(x,y) \to P(y,x)]$
- $--E_3 = \forall x \forall y \forall z \ [\{P(x,y) \land P(y,z)\} \to P(x,z)]$
- $--E_4 = \forall x \forall y \ [P(x,y) \lor P(y,x)]$
- $E_5 = \forall x \exists y \ P(x, y)$
- 1. trouver deux énoncés différents E_a et E_b parmi ces cinq tels que $E_a \models E_b$
- 2. trouver deux énoncés E_c et E_d parmi ces cinq tels que E_c , $E_d \models$ chacun des énoncés.
- 3. Montrer que E_2 n'est pas conséquence logique de $\{E_1, E_3, E_4, E_5\}$
- 4. Montrer que E_4 n'est pas conséquence logique de $\{E_1, E_2, E_3, E_5\}$
- 5. Montrer que E_3 n'est pas conséquence logique de $\{E_1, E_2, E_5\}$

Solution

- 1. $E_1 \models E_5$
- 2. E_4 , $E_2 \models \{E_1, E_2, E_3, E_4, E_5\}$
- 3. $D = \{a, b\}, I(P) = \{(a, a), (b, b), (a, b)\}$ modélise E_1, E_3, E_4, E_5 et pas E_2
- 4. $D = \{a, b\}, I(P) = \{(a, a), (b, b)\}$ modélise E_1, E_2, E_3, E_5 et pas E_4
- 5. $D = \{a, b, c\}$ $I(P) = \{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}$ modélise E_1, E_2, E_5 et pas E_3

Correction

1. pour toute assignation σ de x à un objet d, soit σ' l'assignation de y au même objet : pour toute interprétation I

$$Val(P(x,y), I, \sigma + \sigma') = (\sigma(x), \sigma'(y)) \in I(P) = (\sigma(x), \sigma(x)) \in I(P)$$

donc si I est un modèle de E_1 , c'est aussi un modèle de E_5

2. le plus simple est de remarquer que E_4 , $E_2 \models \forall x \forall y P(x,y) = \mathcal{F}_0$: D'après le théorème fondamental:

 E_4 , $E_2 \models \mathcal{F}_0$ si et seulement si $\mathcal{F}_1 = E_4 \land E_2 \land \neg \mathcal{F}_0$ est insatisfiable. Les modèles de \mathcal{F}_0 sont évidement des contre modèles de \mathcal{F}_1 les contre

Les modèles de \mathcal{F}_0 , sont évidement des contre modèles de \mathcal{F}_1 les contre modèles de E_4 aussi.

Pour prouver que \mathcal{F}_1 est insatisfiable, il suffit de prouver que si I est un contre modèle de \mathcal{F}_0 et un modèle de E_4 alors il est un contre modèle de E_2 .

Dire que I est un contre modèle de F_0 veut dire qu'il existe une assignation σ_0 telle que $(\sigma_0(x), \sigma_0(y)) \notin I(P)$.

Mais puisque I est un modèle de E_4 , $(\sigma_0(y), \sigma_0(x)) \in I(P)$

Donc $Val(P(x,y) \to P(y,x), I, \sigma_0)$ =faux ce qui veut bien dire que I est un contre modèle de E_2 .

Montrer que \mathcal{F}_0 a pour conséquence logique \mathcal{E}_1 , \mathcal{E}_3 et \mathcal{E}_5 est évident.

4 Exo supplémentaire

Enoncé

Soient les formules

A' $\forall x \exists y P(x,y)$

A" $\exists z \forall t P(t,z)$

Montrer que $A'' \models A'$ mais que l'inverse est faux.

Corrigé En utilisant le théorème fondamental, il faut prouver que $A'' \to A'$ est valide mais que $A' \to A''$ ne l'est pas

Le plus facile il suffit d'un contre modèle.

La raison est qu'une interprétation peut satisfaire A' si à deux assignations différentes de x correspondent deux assignations différentes de y.

Soit $\mathcal{D} = \{o_1, o_2\}$ et $I(P) = \{(o_1, o_2), (o_2, o_1)\}$

— Val(\mathbf{A}' ,I)=vrai ssi Val($\exists y P(x,y)$,I, σ)=vrai pour les deux assignations $\sigma_1: x \to o_1$ et $\sigma_2: x \to o_2$.

Si on considère l'assignation "complémentaire" σ' qui assigne à y l'objet qui n'est pas assigné à x, on a

— $\operatorname{Val}(P(x,y), \mathbf{I}, \sigma_1 + \sigma_1') = \operatorname{vrai} \operatorname{donc} \operatorname{Val}(\exists y P(x,y), \mathbf{I}, \sigma_1) = \operatorname{vrai}$

— et $Val(P(x,y),I,\sigma_2 + \sigma_2')$ =vrai donc $Val(\exists y P(x,y),I,\sigma_2)$ =vrai Donc $Val(\mathbf{A}',I)$ =vrai

— $\operatorname{Val}(\mathbf{A''},\mathbf{I})=$ vrai ssi $\operatorname{Val}(\forall tP(t,z),\mathbf{I},\sigma)=$ vrai pour au moins une des deux assignations $\sigma_1:z\to o_1$ et $\sigma_2:z\to o_2$.

Si on considère l'assignation "identique" σ' qui assigne à t l'objet qui est assigné à z, on a

— $Val(P(t,z),I,\sigma_1 + \sigma_1') = faux donc Val(\forall t P(t,z),I,\sigma_1) = faux$

— et Val(P(t,z),I, $\sigma_2 + \sigma_2'$)=faux donc Val($\forall t P(t,z)$,I, σ_2)=faux Donc Val($\mathbf{A''}$,I)=faux

Plus compliqué

Soit I un modèle de **A**". Par définition de ce qu'est un modèle, il existe un objet o_0 du domaine \mathcal{D} (et ce quel que soit ce domaine) tel que $\operatorname{Val}(\forall t P(t,z), I, \{z \leftarrow o_0\}) = \operatorname{vrai}$, c'est à dire que pour tout objet o du domaine $(o,o_0) \in I(P)$.

Mais alors pour toute assignation σ de x à un objet o du domaine considérons l'assignation σ_0 de y à o_0 :

 $\operatorname{Val}(P(x,y), I, \sigma + \sigma_0) = (o, o_0) \in I(P) = \operatorname{vrai}.$

Donc pour toute assignation σ de x Val $(\exists y P(x, y), I, \sigma)$ =vrai.

Donc Val(A',I)=vrai.