Crittografia post quantistica

(PQC)

Crittografia

Luciano Margara

Unibo

2026

Dato di fatto

- Nel 2024, il NIST (National Institute of Standards and Technology) ha pubblicato una suite di standard post-quantistici per meccanismi di incapsulamento di chiavi e schemi di firma digitale.
- Questi schemi sono progettati per sostituire RSA ed ECC che sono vulnerabili agli attacchi quantistici. Si prevede che Kyber (KEM) e Dilithium (firma) saranno i più adottati nei prossimi anni.

Perché?

Computer Quantistici

Concetto introdotto da Yuri Manin (1980) e Richard Feynman (1981). I computer quantistici usano fenomeni della meccanica quantistica: Superposition, Interference e Entanglement.

Qubit:

un qubit è l'analogo quantistico di un bit. Può trovarsi in due stati contemporaneamente, ciascuno con una certa probabilità. Un registro di n qubit può rappresentare 2^n stati simultaneamente. Una funzione $f:\{0,1\}^n \to \{0,1\}^n$ può essere valutata simultaneamente su tutti i 2^n input. Alla misurazione, il registro collassa in uno solo degli stati, secondo la distribuzione di probabilità.

Algoritmo di Shor

I protocolli a chiave pubblica attualmente utilizzati basano la loro sicurezza sulla complessità computazionale di alcuni problemi matematici: fattorizzazione di interi, logaritmo discreto nei gruppi finiti, logaritmo discreto su curve ellittiche.

L'algoritmo di Shor (1994) è un algoritmo quantistico efficiente (tempo polinomiale) per risolvere questi problemi.

Quando saranno costruiti i computer quantistici?

- ▶ 1998: Jones & Mosca computer quantistico da 2 qubit.
- ➤ 2017: IBM 50 qubit tinyurl.com/IBMqc50
- ➤ 2019: Google 53 qubit tinyurl.com/GoogleQC
- ➤ 2021: IBM 127 qubit tinyurl.com/IBMqc127
- ▶ 2022: IBM 433 qubit tinyurl.com/IBMqc433
- 2023 (dicembre): IBM 1.121 qubit tinyurl.com/IBMqc1121

Computer quantistici tolleranti agli errori

- ▶ I computer quantistici odierni non sono "fault tolerant".
- Attualmente, i qubit fisici sono troppo instabili.
- Si lavora per combinare molti qubit fisici in uno logico, resistente agli errori.
- Stima Gidney & Ekera (2021): per fattorizzare RSA-2048 tramite l'algoritmo di Shor occorrono 6.000 qbit logici ovvero 20M qubit fisici e 8 ore di calcolo.
- Dicembre 2023: Harvard/MIT/QuEra: progresso notevole nella correzione degli errori.
- Non ci sono ostacoli teorici alla costruzione di computer quantistici fault-tolerant.

Computer quantistici tolleranti agli errori

- I computer quantistici costruiti finora non rappresentano ancora una minaccia per la crittografia attuale.
- È ancora troppo presto per prevedere quando verranno costruiti computer quantistici tolleranti agli errori su larga scala.
- Il prossimo traguardo sarà costruire un singolo qubit logico funzionante.

La minaccia dei computer post quantistici

Cos'è un attacco HNDL?

- ► Attacchi HNDL (Harvest Now, Decrypt Later): gli avversari (es. agenzie governative) raccolgono e archiviano grandi volumi di traffico cifrato oggi.
- Quando i computer quantistici saranno disponibili, potranno decifrare questi dati.
- Colpisce in particolare cifrari basati su RSA, DH ed ECC.

Domande:

- Cosa possiamo fare per mitigare questa minaccia?
- Quando dobbiamo agire?
 - ▶ Ora?
 - ► Tra 5 anni?
 - ▶ Tra 10? 20?

NSA - IAD: Annuncio di transizione (agosto 2015)

IAD = Information Assurance Directorate ovvero una sezione interna della National Security Agency (NSA) degli Stati Uniti.

- Inizieremo la transizione verso algoritmi resistenti ai computer quantistici nel prossimo futuro.
- ► Intendiamo pianificare e comunicare in anticipo, collaborare con USG, vendor, enti di standardizzazione, garantire una transizione aperta e trasparente.
- Diettivo: sicurezza efficace ed economicamente sostenibile contro i futuri computer quantistici.

Fase transitoria: Fino a quando la nuova suite non sarà sviluppata e i prodotti disponibili, continueremo a usare gli algoritmi attuali.

Standardizzazione NIST della crittografia post-quantistica

- ▶ 30 novembre 2017: 69 proposte ricevute (Round 1)
- ▶ 30 gennaio 2019: 26 selezionate per il Round 2
- ▶ 22 luglio 2020: 7 + 8 selezionate per il Round 3
- ▶ 5 luglio 2022:
 - Kyber selezionato come KEM
 - Dilithium, Falcon, SPHINCS+ come schemi di firma
 - ▶ LMS e XMSS (firma) già standardizzati (SP 800-28)
- ▶ 13 agosto 2024:
 - FIPS 203: Kyber
 - FIPS 204: Dilithium
 - FIPS 205: SPHINCS+
 - FIPS 206 (Falcon) atteso a breve

CNSA - Commercial National Security Algorithm Suite 2.0

Obiettivo: raccomandare algoritmi resistenti ai computer quantistici per la protezione di: informazioni classificate, sistemi di sicurezza nazionale e applicazioni commerciali ad alta sicurezza. Data di pubblicazione: 7 settembre 2022.

Algoritmi raccomandati:

- ► Kyber: KEM basato su reticoli
- Dilithium: firma digitale basata su reticoli
- ► SPHINCS+: firma digitale stateless basata su hash
- ► AES-256 e SHA-384: mantenuti per crittografia simmetrica e hash

CNSA 2.0 sostituisce CNSA 1.0 (che includeva RSA e ECC), supporta la transizione alla crittografia post-quantistica ed è applicabile fino al 2030 e oltre

Adozione della crittografia post-quantistica

- ► Apple: PQ3 (2024)
 Introdotto in iMessage su iOS/macOS. Combina ECC con
 Kyber (ML-KEM). Protezione contro attacchi "Harvest
 Now, Decrypt Later". Formalmente verificato.
- ► Signal: PQXDH (2023)
 Estensione post-quantistica del protocollo X3DH. Utilizza
 Kyber per la protezione della fase di handshake iniziale.
- Non hanno ancora adottato PQC nei prodotti pubblici, ma partecipano attivamente alla standardizzazione (es. NIST PQC). In fase di test e sperimentazione.

Prerequisiti matematici: $\mathbb{Z}_p[x]$

p è un numero primo > 2

$$\mathbb{Z}_p = \{0, 1, \dots, p-1\}$$

 $\mathbb{Z}_p[x]$ è l'insieme dei polinomi con coefficienti in \mathbb{Z}_p (riduce i coefficienti tra 0 e p-1)

Esempio: Sia
$$p=7,$$
 $f(x)=5+4x^2+3x^3\in\mathbb{Z}_7[x]$ $g(x)=6+3x^+2x^2\in\mathbb{Z}_7[x]$

abbiamo:

$$f(x) + g(x) = 4 + 3x + 6x^2 + 3x^3$$

 $f(x) - g(x) = 6 + 4x + 2x^2 + 3x^3$
 $f(x)g(x) = 2 + x + 6x^2 + 2x^3 + 3x^4 + 6x^5$

Prerequisiti matematici: $\mathbb{Z}_p[x]/(x^n+1)$

(riduce il grado a x^n-1)

n è un numero intero positivo.

 $R_p = \mathbb{Z}_p[x]/(x^n+1)$ è l'anello dei polinomi in $\mathbb{Z}_p[x]$ di grado minore di n, con la moltiplicazione di polinomi eseguita modulo la riduzione polinomiale x^n+1 .

Quindi per moltiplicare f(x) e g(x) in R_p :

- 1. Si calcola h(x) = f(x)g(x) in $\mathbb{Z}_p[x]$, $deg(h(x)) \leq 2n 2$
- 2. Si calcola r(x) come il resto della divisione di h(x) per $\frac{x^n+1}{x^n}$, deg(r(x)) < n-1.
- 3. si pone f(x)g(x) = r(x).

Prerequisiti matematici: $\mathbb{Z}_p[x]/(x^n+1)$

Esempio:

$$egin{aligned} & p=41, \ n=4 \ f(x) = 32 + 17x^2 + 22x^3 \ g(x) = 11 + 7x + 19x^2 + x^3 \ h(x) = 24 + 19x + 16x^2 + 24x^3 + 26x^4 + 25x^5 + 22x^6 \end{aligned}$$

poniamo $x^4 o -1$, $x^5 o -x$, $x^6 o -x^2$ li sostituiamo perché gradi maggiori di neve e semplifichiamo:

$$r(x) = 24 + 19x + 16x^2 + 24x^3 - 26 - 25x - 22x^2$$

= $39 + 35x + 35x^2 + 24x^3$

Prerequisiti matematici: $\mathbb{Z}_p[x]/(x^n+1)$

$$egin{aligned} R_p &= \mathbb{Z}_p[x]/(x^n+1) \ f(x) &= a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \ f &= (a_0, a_1, \dots, a_{n-1}) \end{aligned}$$

Esempio:

$$egin{align} R_{41} &= \mathbb{Z}_p[x]/(x^4+1) \ f(x) &= 23 + 11x^2 + 7x^3
ightarrow f = (23,0,11,7) \ g(x) &= 40 + 5x + 16x^2
ightarrow g = (40,5,16,0) \ f+g &= (22,5,27,7) \ fg &= (12,3,29,7) \ \end{gathered}$$

Prerequisiti matematici: Modulo R_p^k

Rp^k = vettore di k elementi (gli elementi sono Polinomi in Rp)

 R_p^k è il modulo contenente tutti i vettori di k posizioni con elementi in R_p .

Addizione e sottrazione si calcolano componente per componente.

Il prodotto interno di due elementi di R_p^k è un elemento di R_p .

I vettori in R_p^k sono vettori colonna.

Prerequisiti matematici: Modulo simmetrico

Prerequisiti matematici: Modulo simmetrico

Prerequisiti matematici: Arrotondamenti

Sia p un numero primo dispari e $r \in [0, p-1]$.

E sia

$$r'=r \; mods \; p \in \left[-rac{p-1}{2}, rac{p-1}{2}
ight] \; ext{ 'fa parte del modulo simmetrico di p}$$

Definiamo:

se r' si trova nella parte lontana allo zero, allora = 1 $\frac{Round_p(r')}{1} = \begin{cases} 0, & \text{se } -\frac{p}{4} < r' < \frac{p}{4} \\ 1, & \text{altrimenti} \end{cases}$ se r' si trova nella parte vicina allo zero, allora = 0

 $Round_n$ può essere estesa ai polinomi in R_n applicandola a tutti i coefficienti del polinomio.

Esempio: Sia p = 3329, p/4 = 832.25:

$$Round_{3329}(3000 + 1500x + 2010x^2 + 37x^3) = x + x^2$$

Prerequisiti matematici: Arrotondamenti

Rappresentazione della soglia di arrotondamento per p = 17 e $x' \in [-8, 8]$:

Prerequisiti matematici: Size di oggetti

prendere il massimo tra quelli (cioé

per ogni polinomio fare il

passaggio precedente)

norma infinito applicato al polinomio = applicare la norma infinito ad ogni coeff. e prendere il massimo tra quelli

Prerequisiti matematici: Small polynomials

$$f\in R_p$$
 è small se $\|f\|_\infty$ è piccola rispetto a $p/2$ Sia η un intero positivo Definiamo $S_{\overline{\eta}}=\{f\in R_p: \|f\|_\infty \leq \overline{\eta}\}$ di solito si sceglie ben al di sotto di p/2 Esempio: $p=31$, Questo polinomio ha come max norma infinito di tutti i coeff uguale a 2, quindi é un Small Polynomial (pk piccola rispetto a theta = 2

Esempio: S_1 contiene i polinomi in R_p i cui coefficienti ridotti $mods\ p$ sono -1,0,1

Prerequisiti matematici: Small polynomials

$$f \in S_{\eta_1}, g \in S_{\eta_2} \implies fg \in S_{n\eta_1\eta_2}$$

Prodotto scalare di due "vettori di polinomi piccoli"

$$v \in S^k_{\eta_1}$$
 , $w \in S^k_{\eta_2} \implies v^T w \in S_{kn\eta_1\eta_2}$

Module Learning With Errors (MLWE)

Notazione

Useremo $a \in_R A$ per indicare il processo di generazione casuale di un elemento a appartenente all'insieme A.

Module Learning With Errors (MLWE)

```
Parametri del problema:
p primo
n, k, l interi con k > l
\eta_1, \eta_2 interi molto più piccoli di p/2
Input: (A, t) ottenuti come segue
A \in_R R_n^{k \times l} (dove R_p = \mathbb{Z}_p[x]/(x^n+1))
t=As+e \ {
m con} \ s\in_R S^l_{n_1}, \ e\in_R S^k_{n_2} e quindi
t \in R_n^k
Output: s
```

MLWE: Esempio

$$p=541,\,\,n=4,\,\,k=3,\,\,l=2,\,\,\eta_1=3,\,\,\eta_2=2$$
 $R_{541}=\mathbb{Z}_{541}[x]/(x^4+1)$

Matrice (selezionata random) $A \in R_{541}^{3 \times 2}$:

$$A = \begin{bmatrix} 442 + 502x + 513x^2 + 15x^3 & 368 + 166x + 37x^2 + 135x^3 \\ 479 + 532x + 116x^2 + 41x^3 & 12 + 139x + 385x^2 + 409x^3 \\ 29 + 394x + 503x^2 + 389x^3 & 9 + 499x + 92x^2 + 254x^3 \end{bmatrix}$$

MLWE: Esempio

Segreto (selezionato random) $s \in S_3^2 \subset R_{541}^2$:

$$s = egin{bmatrix} 2 - 2x + x^3 \ 3 - 2x - 2x^2 - 2x^3 \end{bmatrix}$$

Errore (selezionato random) $e \in S_2^3 \subset R_{541}^3$:

$$e = egin{bmatrix} 2 - 2x - x^2 \ 1 + 2x + 2x^2 + x^3 \ -2 - x^2 - 2x^3 \end{bmatrix}$$

MLWE: Esempio

Calcolo:

$$t = As + e = \begin{bmatrix} 30 + 252x + 401x^2 + 332x^3 \\ 247 + 350x + 259x^2 + 485x^3 \\ 534 + 234x + 137x^2 + 443x^3 \end{bmatrix} \Rightarrow ||t||_{\infty} = 259$$

Problema:

Dato (A, t)determinare un $s \in S_3^2$ e un $e \in S_2^3$ tali per cui t = As + e.

Versione decisionale di MLWE (D-MLWE)

```
Parametri del problema:
p primo
n, k, l interi con k > l
\eta_1, \eta_2 interi molto più piccoli di p/2
Input: (A, z) ottenuti come segue
A \in_R R_n^{k \times l} (dove R_p = \mathbb{Z}_p[x]/(x^n + 1))
b \in_{R} \{0,1\}
          z=\left\{egin{array}{ll} t=As+e,\ s\in_R S_{\eta_1}^l,\ e\in_R S_{\eta_2}^k & 	ext{se }b=0\ t\in_R R_n^k & 	ext{constant} \end{array}
ight.
```

Output: b

Complessità computazionale quantistica di MLWE e D-MLWE

Ad oggi non si conosce alcun algoritmo, né classico né quantistico, che risolva il problema MLWE o D-MLWE in tempo polinomiale.

La intrattabilità di questi problemi (anche utilizzando un modello di calcolo quantistico) si basa sulla complessità di alcuni problemi su reticoli:

SVP (Shortest Vector Problem)

CVP (Closest Vector Problem)

che sono notoriamente difficili anche per gli algoritmi quantistici.

Kyber-PKE

Kyber-PKE: generazione della chiave eseguita da Alice

- 1. $A \in_R R_q^{k \times k}$, $s \in_R S_{\eta_1}^k$, $e \in_R S_{\eta_2}^k$
- 2. t = As + e
- 3. Chiave pubblica: (A, t), Chiave privata: s

Nota: Calcolare s da A e t è un'istanza del problema MLWE.

Nota: In Kyber la matrice A è quadrata.

Kyber-PKE: Codifica eseguita da Bob

Messaggio $m \in \{0,1\}^n$

- 1. Ottenere da Alice la encryption key (A, t)
- 2. m(x) polinomio calcolato da m
- 3. $r \in_R S_{\eta_1}^k$, $e_1 \in_R S_{\eta_2}^k$, $e_2 \in_R S_{\eta_2}$
- 4. $u = A^T r + e_1$, $v = t^T r + e_2 + \lceil \frac{p}{2} \rfloor m(x)$
- 5. $c=(u,v)\in R_p^k imes R_p$

Kyber-PKE: Deodifica eseguita da Alice

Ciphertext
$$c = (u, v)$$

1.
$$m = Round_p(v - s^T u)$$

Nota: *s* è la chiave privata di Alice.

Confronto con Elgamal

Bob messaggio = m $\overline{a^R \leftarrow \cdot} \cdots$ genera k a caso

Eve

$$g^k o \cdots$$

$$egin{array}{c} g^k
ightarrow \cdots \ m(g^R)^k
ightarrow \cdots
ightarrow g^k \ \cdots
ightarrow m(g^R)^k \ m(g^R)^k ((g^k)^R)^{-1} = m{m} \end{array}$$

Bob messaggio = m $(A,t) \leftarrow \cdots$ genera r, e_1, e_2 a caso $u = A^T r + e_1$ $v = t^T r + e_2 + \lceil \frac{p}{2} \rceil m(x)$

Eve

$$\cdots \leftarrow (A, t)$$

$$u \to \cdots \\ v \to \cdots$$

$$\frac{\text{Alice}}{Prv = s} \quad Pub = (A, t)$$

$$egin{array}{c|c} u o\cdots& & \cdots & A^Tr+e_1\ v o\cdots& & t^Tr+e_2+\lceilrac{p}{2}
vert m(x) \end{array}$$

$$Round_p(v-s^Tu)=rac{m}{m}$$

Kyber-PKE: Generazione delle chiavi (Alice)

Parametri: p = 137, n = 4, k = 2, $\eta_1 = 2$, $\eta_2 = 2$

$$A = egin{bmatrix} 21 + 57x + 78x^2 + 43x^3 & 126 + 122x + 19x^2 + 125x^3 \ 111 + 9x + 63x^2 + 33x^3 & 105 + 61x + 71x^2 + 64x^3 \end{bmatrix}$$
 $s = egin{bmatrix} 1 + 2x - x^2 + 2x^3 \ -x + 2x^3 \end{bmatrix}$ $e = egin{bmatrix} 1 - x^2 + x^3 \ -x + x^2 \end{bmatrix}$

Calcolo:

$$t = As + e = \begin{bmatrix} 55 + 96x + 123x^2 + 7x^3 \\ 32 + 27x + 127x^2 + 100x^3 \end{bmatrix}$$

Chiave pubblica: (A, t)

Chiave privata: s

Kyber-PKE: Codifica (Bob)

Messaggio:
$$m = 0111$$
 \Rightarrow $m(x) = x + x^2 + x^3$

Scelte casuali:

$$r = egin{bmatrix} -2 + 2x + x^2 - x^3 \ -1 + x + x^2 \end{bmatrix}$$

$$e_1 = egin{bmatrix} 1 - 2x^2 + x^3 \ -1 + 2x - 2x^2 + x^3 \end{bmatrix} \quad e_2 = 2 + 2x - x^2 + x^3$$

Calcoli:

$$u = A^T r + e_1 = egin{bmatrix} 56 + 32x + 77x^2 + 9x^3 \ 45 + 21x + 2x^2 + 127x^3 \end{bmatrix}$$

$$v = t^T r + e_2 + \left| \frac{p}{2} \right| m(x) = 3 + 10x + 8x^2 + 123x^3$$

Ciphertext: c = (u, v)

Kyber-PKE: Decodifica (Alice)

Calcolo:

$$v - s^T u = 4 + 60x + 79x^2 + 66x^3$$

Dopo l'arrotondamento: $m(x) = x + x^2 + x^3$ e quindi m = 0111.

Kyber-PKE: Sicurezza da chosen-plaintext attack

Kyber-PKE è IND-CPA sicuro (Indistinguishability under Chosen-Plaintext Attack), assumendo che il problema D-MLWE sia intrattabile.

L'operazione di cifratura può essere scritta come:

$$egin{bmatrix} u \ v \end{bmatrix} = egin{bmatrix} A^T \ t^T \end{bmatrix} r + egin{bmatrix} e_1 \ e_2 \end{bmatrix} + egin{bmatrix} 0 \ \lceil rac{p}{2}
floor m \end{bmatrix}$$

Sotto l'assunzione D-MLWE intrattabile, $A^T r + e_1$ è indistinguibile da casuale.

Anche $t^T r + e_2$ è indistinguibile da casuale.

Quindi, l'avversario vede un valore casuale + messaggio mascherato \rightarrow impossibile ottenere informazioni su m.

Kyber-PKE: la decodifica non sempre è corretta

La decodifica produce correttamente m? ovvero $m = \text{Round}_q(v - s^T u)$?

$$egin{aligned} v-s^Tu &= \left(t^Tr+e_2+\left\lceilrac{p}{2}
ight
floor m
ight)-s^T(A^Tr+e_1)\ &= s^TA^Tr+e^Tr+e_2+\left\lceilrac{p}{2}
ight
floor m-s^TA^Tr-s^Te_1\ &= e^Tr+e_2-s^Te_1+\left\lceilrac{p}{2}
ight
floor m \end{aligned}$$

$$E(x) = e^T r + e_2 - s^T e_1$$

La decifratura funziona se ogni coefficiente E_i soddisfa:

$$-p/4 < E_i \; mods \; p < p/4 \quad \Rightarrow \|E\|_{\infty} < p/4$$

Kyber-PKE: la decodifica non sempre è corretta

$$\|E\|_{\infty} < kn\eta_1\eta_2 + \eta_2 + kn\eta_1\eta_2$$

Nel caso di ML-KEM-768:

$$p=3329, \ n=256, \ k=3, \ \eta_1=\eta_2=2\Rightarrow \|E\|_{\infty}\leq 6146>p/4$$

Conclusione: la decodifica non è garantita, ma:

 $||E||_{\infty} < p/4$ con probabilità estremamente alta.

Kyber-KEM

PKE (Public-Key Encryption)Vs KEM (Key Encapsulation Mechanism)

	PKE	KEM	
Obiettivo	Cifrare un	Condividere una	
	messaggio	chiave segreta	
Input mittente	Messaggio m	Nessun input	
Output mittente	Ciphertext c	Ciphertext +	
	contenente m	chiave K	
Output destinatario	m	K	
Sicurezza tipica	IND-CPA o	IND-CCA	
	IND-CCA		
Esempi	RSA, ElGamal,	Kyber-KEM,	
	Kyber-PKE	NTRU-KEM	

Nozioni di sicurezza: IND-CPA vs IND-CCA

IND = IndistinguishabilityCPA = Chosen Plaintext AttackCCA = Chosen Ciphertext Attack

Nozioni di sicurezza: IND-CPA vs IND-CCA

- ▶ IND-CPA: L'avversario può scegliere e cifrare liberamente messaggi. Poi chiede di cifrare m_0 e m_1 (sempre scelti da lui), riceve c che è il chipertext di m_0 o di m_1 . Se riesce a capire quale dei due è stato cifrato, il cifrario non è IND-CPA.
- ► IND-CCA: L'avversario può scegliere e cifrare liberamente messaggi. Poi chiede di cifrare m₀ e m₁ (sempre scelti da lui), riceve c che è il chipertext di m₀ o di m₁. L'avversario può scegliere e decifrare liberamente qualunque ciphertext tranne c. Se riesce a capire quale dei due è stato cifrato, il cifrario non è IND-CCA.
- Differenza chiave: in IND-CCA l'avversario ha accesso a un oracolo di decifratura, rendendo la sfida più difficile da vincere per lo schema.

Nozioni di sicurezza: IND-CPA vs IND-CCA

Gerarchia di sicurezza:

 $IND\text{-}CCA \Rightarrow IND\text{-}CPA \Rightarrow \text{semantica}$

Un cifrario è semanticamente sicuro se un avversario non può ricavare nessuna informazione significativa dal ciphertext, neppure una singola proprietà del messaggio.

Trasformazione di Fujisaki-Okamoto (FO)

FO trasforma uno schema IND-CPA (come Kyber-PKE) sicuro contro attacchi a testo cifrato scelto (IND-CCA).

Gli schemi PKE (Public-Key Encryption) sono di solito solo IND-CPA sicuri. Per l'uso pratico (es. TLS) serve invece la sicurezza IND-CCA.

FO Transform (1999): Prende uno schema IND-CPA. Usa hash e re-encryption per verificare la coerenza. Se il decapsulamento non "ricostruisce" correttamente, viene rigettata.

Intuizione: Il ciphertext dipende in modo deterministico dal messaggio segreto. Durante il decapsulamento si controlla che il ciphertext sia coerente e quindi impedisce attacchi attivi.

Kyber-KEM

Kyber-KEM è un quantum-safe Key Encapsulation Mechanism.

Kyber-KEM è stato standardizzato dal NIST in FIPS 203 (agosto 2024) dove è chiamato ML-KEM (Module-Lattice-based KEM).

Kyber-KEM è stato progettato applicando la trasformazione di Fujisaki-Okamoto a Kyber-PKE che è un Public-key Encryption Scheme.

Kyber-KEM

Kyber è stato sviluppato da un team internazionale di crittografi, tra i quali: Daniel J. Bernstein, Johannes Buchmann, Léo Ducas, Eike Kiltz, Tanja Lange, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, Damien Stehlé, Johannes Albrecht, Christian Badertscher.

ML-KEM-768

ML-KEM-768 è una istanza specifica di Kyber-KEM che utilizza i seguenti parametri:

Parametro	Valore
Primo p	3329
Grado del polinomio n	256
Dimensione del modulo k	3
Ampiezza del segreto η_1	2
Ampiezza dell'errore η_2	2

KEM: Key Encapsulation Mechanisms

Un KEM consente a due parti di stabilire una chiave segreta condivisa tramite crittografia a chiave pubblica.

Un KEM è composto da tre algoritmi:

Key Generation. Ogni utente (es. Alice) esegue questo algoritmo per generare una chiave pubblica di incapsulamento ek e una chiave privata di decapsulamento dk

Encapsulation. L'altra parte (es. Bob) usa ek per generare una chiave segreta condivisa K e un ciphertext c. Bob invia c ad Alice.

Decapsulation. Alice usa la chiave privata dk per derivare la stessa chiave K a partire da c.

Kyber-KEM e la trasformazione Fujisaki-Okamoto

Per applicare la trasformazione Fujisaki-Okamoto a Kyber-PKE occorre utilizzare tre funzioni hash:

- $ightharpoonup G: \{0,1\}^* o \{0,1\}^{512}$
- $ightharpoonup H: \{0,1\}^* o \{0,1\}^{256}$

G, H e J sono funzioni hash SHA-3.

Resistenza quantistica di SHA-3

SHA-3 è parzialmente resistente ad attacchi quantistici.

Funzione	Impronta	Sicurezza effettiva	
SHA3-256	256 bit	Accettabile	
SHA3-512	512 bit	Robusta	
SHAKE-128	variabile	Debole	
SHAKE-256	variabile	Standard per PQ	

Conclusione: SHA-3 è quantum-resilient, ma per piena sicurezza post-quantistica servono primitive basate su problemi resistenti ad attacchi quantistici.

Kyber-KEM: Generazione delle chiavi (Alice)

1. Esegue l'algoritmo di generazione delle chiavi descritto in Kyber-PKE: Chiave pubblica: ek = (A, t)

2. $z \in_R \{0, 1\}^{256}$

Chiave segreta: s

3. Encapsulation key: ek = (A, t)Decapsulation key: dk = (s, ek, H(ek), z)

Kyber-KEM: Incapsulamento (Bob)

- 1. Ottiene la chiave pubblica di Alice: ek
- 2. $m \in_R \{0,1\}^{256}$
- 3. h = H(ek)
- 4. (K, R) = G(m, h)
- 5. Usa R per cifrare m con Kyber-PKE e ottiene c. Le quantità random che servono in Kyber-PKE vengono generate a partire da R (derandomization)
- 6. Chiave segreta = K
- 7. Spedisce *c* a Alice

Kyber-KEM: Decapsulamento (Alice)

- 1. Calcola m' decriptando c (usa Kyber-PKE e la chiave segreta s)
- 2. (K', R') = G(m', H(ek))
- 3. Calcola c' codificando nuovamente m' usando R'
- 4. Se c = c', allora K = K'
- 5. Altrimenti return K = J(z, c)

Kyber-KEM: trasformazione FO

Encapsulamento e derandomizzazione:

Si seleziona $m \in \{0,1\}^{256}$ casuale. Si calcolano h = H(ek) e (K,R) = G(m,h). I polinomi (r,e_1,e_2) usati per cifrare m sono derivati da R e non sono scelti a caso

Kyber-KEM: trasformazione FO

Decapsulamento:

Si decifra c per ottenere m'. Si ricalcolano (K', R') = G(m', H(ek)). Si rigenera c' e si confronta con c. Se c = c', allora K = K', altrimenti K = J(z, c) (random e quindi totalmente indipendente da K).

Kyber-KEM: sicurezza

In Kyber-KEM il decapsulamento produce K se e solo se chi ha effettuato l'incapsulamento conosceva già K. Questo rende Kyber-KEM resistente agli attacchi di tipo CCA

Kyber-KEM: fallimento del decapsulamento

- ► Il decapsulamento fallisce quando il ciphertext rigenerato c' è diverso da quello ricevuto c
- In tal caso, la chiave prodotta K = J(z, c) sarà quasi certamente diversa da quella incapsulata.
- Questo può avvenire anche se Alice e Bob sono "onesti", a causa di una piccola probabilità di errore in Kyber-PKE
- ► Il tasso di fallimento nel decapsulamento è dimostrabilmente trascurabile.

Kyber-KEM: conclusione

Assumendo che il problema D-MLWE sia intrattabile e che le funzioni hash G, H, J siano funzioni random, Kyber-KEM è IND-CCA sicuro (indistinguibilità sotto attacco a ciphertext scelto)

Assumendo che gli attaccanti possono effettuare query classiche e query quantistiche su G, H e J, Kyber-KEM resiste anche ad attaccanti quantistici

Perché Kyber-KEM è resistente agli attacchi CCA?

Trasformazione Fujisaki-Okamoto rende la cifratura deterministica (via hash) e abilita il controllo del ciphertext durante il decapsulamento.

Il messaggio decriptato viene usato per ricostruire il ciphertext originale. Se $c \neq c'$, viene restituita una chiave casuale: nessuna informazione utile per l'attaccante Nessun oracolo di decifratura utile. Anche se l'attaccante può manipolare ciphertext, non può distinguerli né ottenere vantaggi concreti.

Dimostrazione formale nel modello ROM: la sicurezza IND-CCA di Kyber-KEM è dimostrata nel Random Oracle Model, assumendo che D-MLWE sia difficile.

Perché usare Kyber-KEM invece di Kyber-PKE diretto?

- Sicurezza più forte (IND-CCA) Kyber-KEM è sicuro anche contro attacchi attivi, grazie alla trasformazione Fujisaki-Okamoto. Kyber-PKE è solo IND-CPA.
- Cifratura ibrida pronta all'uso Kyber-KEM genera una chiave segreta K da usare con AES o ChaCha20. Ideale per protocolli come TLS, Signal, WireGuard.
- Nessun messaggio diretto da cifrare
 Non serve gestire padding, lunghezza o formato dei messaggi.
- Più robusto contro RNG deboli Kyber-KEM è derandomizzato via hash: evita problemi storici legati a cifratura con randomness debole (es. RSA).
- ► Modularità
 Separazione tra negoziazione della chiave (KEM) e cifratura
 dei dati (AEAD). Favorisce l'integrazione sicura nei protocolli.

Parametri di sicurezza: Kyber-KEM

Categoria NIST		Sicurezza equivalente	
ML-KEM-512	Categoria 1	128-bit (AES-128)	
ML-KEM-768	Categoria 3	192-bit (AES-192)	
ML-KEM-1024	Categoria 5	256-bit (AES-256)	

Le categorie 1, 3 e 5 corrispondono alla resistenza contro attacchi quantistici brute force su cifrari a 128, 192 e 256 bit.

Parametri di sicurezza: Kyber-KEM

	512	768	1024
Categoria NIST	1	3	5
k (dimensione modulo)	2	3	4
p (modulo)	3329	3329	3329
n (grado dei polinomi)	256	256	256
η_1 (errore secret)	3	2	2
η_2 (errore noise)	2	2	2
Plaintext incapsulato	32 B	32 B	32 B
Chiave pubblica	800 B	1184 B	1568 B
Chiave segreta	1632 B	2400 B	3168 B
Ciphertext	736 B	1088 B	1440 B
Failure rate	$\leq 2^{-129}$	$\leq 2^{-151}$	$\leq 2^{-189}$