What is Computational Neuroscience?

- * "The goal of computational neuroscience is to explain in computational terms how brains generate behaviors" (T. Sejnowski)
- ◆ Computational neuroscience provides tools and methods for "characterizing what nervous systems do, determining how they function, and understanding why they operate in particular ways" (P. Dayan and L. Abbott)
 - → Descriptive Models (What)

 - ❖ Interpretive Models (Why)

An Example: Models of "Receptive Fields"

Responses of a Neuron in an Intact Cat Brain

(Hubel and Wiesel, c. 1965)

Receptive Field

→ <u>Definition</u>: Specific properties of a sensory stimulus that generate a strong response from the cell

♦ Examples:

- ⇒ Spot of light that turns on at a particular location on the retina
- ⇒ Bar of light that turns on at a particular orientation and location on the retina

Receptive Field Models

Let's look at:

- I. A Descriptive Model of Receptive Fields
- II. A *Mechanistic Model* of Receptive Fields
- III. An Interpretive Model of Receptive Fields

I. Descriptive Model of Receptive Fields

ganglion cells convey info about the image to the lateral geniculate nucleus (LGN)

I. Descriptive Model of Receptive Fields

Center-Surround Receptive Fields in the Retina

On-Center Off-Surround Receptive Field

Off-Center On-Surround Receptive Field When a cell has an "on-center, off-surround" receptive field, which center is being referred to?

- The center of the entire retina.
- The center of the small patch of retina associated with the cell.

Correct

Each cell tends to respond to light input in only a small area of the retina and visual field. An on-center, off-surround cell becomes more active when only the center of this area is illuminated and less active when the only edges of this area (the surround) are illuminated. Generally a cell is not affected much by input in far away areas of the retina (although recent studies have begun to show that some subtle long-range communication may exist).

- The center of the visual field.
- None of these.

The On-Center / Off-Surround receptive field can be thought of as a filter, which is causing more activation when the light is concentrated in the center of the receptive field, and less when more light on the outside.

Descriptive Models: Cortical Receptive Fields

Descriptive Models: Cortical Receptive Fields

Orientation Preference

Other examples of oriented receptive fields

We will learn later how to quantify these using reverse correlation

How are these *oriented* receptive fields obtained from *center-surround* receptive fields?

Next Lecture: Mechanistic Model of Receptive Fields