Лекция № 12 (7 апреля 2022)

3.5. Характеристики звеньев с произвольной передаточной функцией.

Для построения ЛАЧХ и ЛФЧХ звена (системы) с произвольной передаточной функцией W(p) можно использовать два способа:

Первый способ:

W(p) разбивается на простейшие сомножители

$$W(p) = \prod_{i} W_i(p)$$

Здесь $W_i(p)$ имеют вид

$$k; p; \frac{1}{p}; (Tp \pm 1); \frac{1}{(Tp \pm 1)}; T^2p^2 + 2\xi Tp + 1; \frac{1}{(T^2p^2 + 2\xi Tp + 1)}$$

Отсюда следует:

ККУ звена

$$W(j\omega) = \prod_{i} W_{i}(j\omega) = \prod_{i} A_{i}(\omega) \cdot e^{j\varphi_{i}(\omega)} = A(\omega) \cdot e^{j\varphi(\omega)},$$
 где
$$A(\omega) = \prod_{i} A_{i}(\omega) = \sum_{i} L_{i}(\omega) = 20lgA(\omega) = 20lg\prod_{i} A_{i}(\omega) = \sum_{i} 20lgA_{i}(\omega) = \sum_{i} L_{i}(\omega)$$
 (1)

$$\varphi(\omega) = \arg W(j\omega) = \sum_{i} \arg W_{i}(j\omega) = \sum_{i} \varphi(\omega)$$
 (2)

Суть **первого способа**: для построения ЛАЧХ (или ЛФЧХ) произвольного звена (системы) его W(p) представляется в виде произведения передаточной функции типовых динамических звеньев, затем строятся ЛАЧХ (или ЛФЧХ) этих звеньев и геометрически складываются в соответствии с формулой (1) (или (2)).

Например, пусть имеется звено с передаточной функцией $W(p) = \frac{K}{P(1+pT)}$ (инерционно-интегрирующее звено; последовательное соединение интегрирующего и инерционного звеньев).

1) W(p) представляется в виде произведения $W_1(p) = \frac{K}{1+pT}$ и $W_2(p) = \frac{1}{p}$.

Строятся ЛАЧХ каждого звена (в данном случае – интегрирующего и инерционного).

2) Для получения ЛАЧХ исходного звена эти ЛАЧХ складываются.

$$L_{\rm l}(\omega) = 20\lg K - 20\lg \sqrt{1 + \omega^2 T^2}$$
 – ЛАЧХ инерционного звена

$$L_2(\omega) = -20 \lg \omega$$
 – ЛАЧХ интегрирующего звена (= $20 \lg 1 - 20 \lg \omega$)

На рисунке желтым и фиолетовым показаны асимптотические ЛАЧХ инерционного и интегрирующего звеньев (соответственно).

Результирующая асимптотическая ЛАЧХ инерционно-интегрирующего звена $\overline{L}(\omega)$ показана зеленым — построена путем сложения ординат ас. ЛАЧХ обоих звеньев. Результирующая ЛФЧХ (черный график) построена также путем суммирования ординат ЛФЧХ обоих звеньев.

Аналогично для АФХ: каждой частоты ω_i амплитуды (т.е. длины векторов) комплексных коэффициентов усиления интегрирующего и инерционного звеньев перемножаются, а аргументы (углы) ККУ складываются.

В результате получаем $A\Phi X$ инерционноинтегрирующего звена, представляющую собой, по определению, геометрическое место точек конца вектора комплексного коэффициента усиления при изменении частоты он нуля до бесконечности (при $0 \xrightarrow{\omega} \infty$):

Можно показать, что при $\omega \to 0$ АФХ данного звена будет стремиться к некоторой асимптоте, параллельной мнимой оси. Для этого представим ККУ инерционно-интегрирующего звена в следующем виде:

$$W(j\omega) = \frac{K}{j\omega(1+j\omega T)} = -j\frac{K}{\omega(1+j\omega T)} \stackrel{\text{домножим на комплексно-сопряженное число}}{=} -j\frac{K(1-j\omega T)}{\omega(1+\omega^2 T^2)} = \\ = -\frac{KT}{1+\omega^2 T^2} - j\frac{K}{\omega(1+\omega^2 T^2)} = P(\omega) + jQ(\omega)$$
Как видно из данного выражения, $P(0) = -KT$, т.е. $Peanbo$ АФХ инерционно-интегрирующего звена будет выглядеть следующим образом:

Второй способ: однако для построения асимптотических ЛАЧХ можно воспользоваться **более простым правилом** (а ЛФЧХ построить затем по ЛАЧХ). Проиллюстрируем его на примере.

Пример 1: построить асимптотическую ЛАЧХ, ЛФЧХ и АФХ.

Пусть:

$$W(p) = \frac{\sqrt{100(p+1)^2}}{\sqrt{10p+1(0.1p+1)^2}}$$

(где v - nopядок астатическая, если v = 0, то система астатическая, если v > 0, то система астатическая).

$$W(j\omega) = \frac{100(j\omega + 1)^2}{(j\omega)^{\nu}(10j\omega + 1)(0,1j\omega + 1)^2}$$
$$A(\omega) = \frac{100(\sqrt{1 + \omega^2})^2}{\omega^{\nu}\sqrt{1 + (10\omega)^2}(\sqrt{1 + (0,1\omega)^2})^2}$$

Пусть ν = 2. Коэффициент усиления обозначим через К (в данном примере равен 100).

Построение асимптотической ЛАЧХ (второй способ):

1) Записывают общее выражение для ЛАЧХ:

$$L(\omega) = 20lgK + 40lg\sqrt{1 + \omega^2} - \nu \cdot 20lg\omega - 20lg\sqrt{1 + (10\omega)^2} - 40lg\sqrt{1 + (0,1\omega)^2} \quad (*)$$

2) Находят сопрягающие частоты (частоты, где асимптотическая ЛАЧХ меняет наклон) $\omega_i = \frac{1}{T_i}$, которые нумеруют в порядке возрастания: $\omega_1 < \omega_2 < \dots$ (т.к. при малых значениях частот наибольшее влияние оказывают звенья с наибольшей постоянной времени (T_1 — наибольшая постоянная времени, далее в порядке убывания идут T_2 и т.д. — просто так их обозначим).

$$\omega_1 = \frac{1}{T_1} = \frac{1}{10} = 0,1 \text{ (cek}^{-1}); \ \omega_2 = \frac{1}{T_2} = \frac{1}{1} = 1 \text{ (cek}^{-1}); \ \omega_3 = \frac{1}{T_3} = \frac{1}{0,1} = 10 \text{ (cek}^{-1})$$

3) Записывают выражения для отрезков асимптотической ЛАЧХ между сопрягающими частотами и определяют их наклон. При частотах, меньших сопрягающей частоты, под корнем оставляем только 1, а при больших – член с наивысшей степенью ω (обоснование: при $\omega < \omega_i = \frac{1}{T_i}$ произведение $T_i \omega < 1$, а значит, $(T_i \omega)^2 \ll 1$ и слагаемым $(T_i \omega)^2$ под корнем $\sqrt{1 + (T_i \omega)^2}$ можно пренебречь).

Число участков асимптотической ЛАЧХ равно количеству сомножителей в W(p) (при этом произведения вида $k \cdot p^{\nu}$ или $K \cdot \frac{1}{p^{\nu}}$ рассматривают как один сомножитель, т.к. K не добавляет наклона асимптотической ЛАЧХ).

Асимптоты строят до сопрягающей частоты, каждая последующая асимптота начинается с конца предыдущей.

Этап 3) для данного примера:

Как видно из выражения для передаточной функции (сомножители в W(p) обведены красным цветом и их номера подписаны римскими цифрами), у ас. ЛАЧХ будет 4 участка:

1. Рассматриваем диапазон частот $\omega \le \omega_1$:

 $\overline{L}_1(\omega) = 20 lgK - \nu \cdot 20 lg\omega = 20 lg 100 - \nu \cdot 20 lg\omega = 40 - 40 lg\omega$ (пренебрегли во всех корнях выражения (*) членами, содержащими ω , оставили только единицы)

— первая асимптота, которая представляет собой прямую. Эта прямая проходит через точку $\omega=1$ и $\overline{L}_1(\omega)=\underline{20lgK}$ (в примере = **40**) с наклоном $-\nu\cdot 20$ дБ/дек (в примере = **-40** дБ/дек).

[Если бы множитель p^{ν} был не в знаменателе, а в числителе передаточной функции, то наклон первой асимптоты был бы $+\nu \cdot 20$ дБ/дек]

{Прямую, как известно, можно построить по двум точкам, либо, что здесь и делается, зная точку, через которую она проходит, и ее наклон. Точка $\omega=1$ берется для простоты, т.к. при $\omega=1$ $lg\omega=0$. В контрольной работе для простоты можно брать и другие точки: $\omega=0.01$, 0,1, 10, 100, ... – любую, кратную $10^{\rm N}$ (где N — целое число), но строится первая асимптота только до первой сопрягающей частоты включительно}.

Строим $\overline{L}_1(\omega)$ до первой сопрягающей частоты $\omega_1 = 0.1$ – см. рисунок ниже.

На рисунке голубыми пунктирными линиями показаны прямые с наклоном -20, -40 и -60 дБ/дек — асимптоты можно строить параллельным переносом этих прямых, но нужно знать хотя бы одну точку, через которую асимптота должна пройти. $\overline{L}_1(\omega=1)=20lgK$ - так будет всегда, но можно посчитать \overline{L}_1 от любой другой частоты (например, в данной задаче удобно посчитать $\overline{L}_1(\omega_1=0.1)=80$ дБ) и построить данную асимптоту по ее наклону и известной точке.

Первая асимптота строится только до первой сопрягающей частоты!

2.
$$\omega_1 \le \omega \le \omega_2 \ (\omega_1 = \frac{1}{T_1}, \ \omega_2 = \frac{1}{T_2})$$
:

В данном диапазоне частот под корнем $\sqrt{1+(T_1\omega)^2}$ уже пренебрегают слагаемым «1», поскольку $T_1\omega > 1$; квадрат и корень сокращаем, в итоге к выражению для первой асимптоты добавится слагаемое $-20lg10\omega$:

$$\overline{L}_2(\omega) = 40 - 40 lg\omega - \mathbf{20} lg 10\omega = 40 - 40 lg\omega - 20 - 20 lg\omega = 20 - 60 lg\omega$$

Эта асимптота при $\omega=\omega_2=1$ проходит через точку 20 ($\overline{L}_2(\mathbf{1})=\mathbf{20}$), ее наклон по отношению к первой асимптоте изменяется на **-20** дБ/дек и обуславливается множителем (10p+1) в знаменателе.

 $(B \ контрольной работе не надо так подробно расписывать, чему будет равна <math>\overline{L}_2(\omega_2))$ – надо только написать ее выражение, понять, что $\underline{\kappa}$ наклону «-40» первой асимптоты добавился наклон «-20» и что результирующий наклон станет «-60».)

Строим вторую асимптоту, которая начинается с конца первой асимптоты и проводится до второй сопрягающей частоты (ω_2).

3.
$$\omega_2 \leq \omega \leq \omega_3$$
:
$$\overline{L}_3(\omega) = 20 - 60 lg\omega + 40 lg\omega = 20 - 20 lg\omega$$

$$\overline{L}_2(\omega)$$
 за счет множителя
$$(p+1)^2 \text{ в числителе } W(p)$$

Строим третью асимптоту до частоты ω_3 .

(Легко посчитать, что $\overline{L}_3(\omega_3=10)=0$, но в контрольной работе достаточно просто провести с конца предыдущей асимптоты прямую с наклоном -20 дБ/дек).

4.
$$\omega \geq \omega_3$$
:
$$\overline{L}_4(\omega) = \overline{L}_3(\omega) - 40 lg 0,1 \omega$$
 (был наклон «-20», добавился «-40» - стал «-60»).

Таким образом, при построении асимптотической ЛАЧХ при движении вправо на каждой сопрягающей частоте наклон асимптотической ЛАЧХ меняется на величину $\pm l \cdot 20 \ \partial E/\partial e\kappa$, где l – степень множителя $(pT+1)^l$ в выражении для передаточной функции («+» – если множитель в числителе, «-» – если множитель в знаменателе).

Построим ЛФЧХ и АФХ:

$$W(j\omega) = \frac{100(j\omega + 1)^2}{(j\omega)^{\nu}(10j\omega + 1)(0,1j\omega + 1)^2}$$

ЛФЧХ:

$$\varphi(\omega) = argW(j\omega) = 2arctg\omega - \nu \cdot \frac{\pi}{2} - arctg10\omega - 2arctg0, 1\omega = 2arctg\omega - \pi - arctg10\omega - 2arctg0, 1\omega$$

Для минимально-фазовых звеньев приближенно считают, что участку асимптотической ЛАЧХ с наклоном $\pm k \cdot 20 \frac{\text{дБ}}{\text{дек}}$ (k – целое) соответствует фазовый сдвиг $\varphi(\omega) = \pm k \cdot \frac{\pi}{2}$ (рад.). (было на прошлой лекции)

В соответствии с данным правилом и стоим ЛФЧХ:

Наклон	$\varphi(\omega)$, рад
$\overline{L}(\omega)$, дБ/дек	
-40	$-\pi$
-60	$-3\pi/2$
-20	$-\pi/2$
-60	$-3\pi/2$

(В контрольной работе так и делаем, но <u>общее выражение для $\varphi(\omega)$ должно быть</u>, иначе оценка снизится!)

Построим АФХ (годограф ККУ): (по $A(\omega)$ и $\phi(\omega)$)

$$A(\omega) = \frac{100(\sqrt{1+\omega^2})^2}{\omega^2\sqrt{1+(10\omega)^2}(\sqrt{1+(0,1\omega)^2})^2} \qquad \varphi(\omega) = 2arctg\omega - \pi - arctg10\omega - 2arctg0,1\omega$$

Сначала смотрим, откуда начнется $A\Phi X$ и куда придет при изменении частоты от 0 до ∞ .

$$\omega = 0:$$

$$A(0) = \infty$$

$$\varphi(0) = -\pi$$

$$\omega = \infty:$$

$$A(\infty) = 0$$

$$\varphi(\infty) = -\frac{3\pi}{2}$$

На плоскости $W(j\omega)$ отмечаем пунктиром возможные начало $A\Phi X$ и куда она придет.

Далее строим АФХ уже согласно следующему правилу:

начинаем со скобки $(j\omega T+1)^l$ из выражения $W(j\omega)$ с большей постоянной времени (поскольку при малых частотах наибольшее значение оказывает звено с большей постоянной времени):

если скобка $(j\omega T+1)^l$ входит в знаменатель $W(j\omega)$, то идем l квадрантов по часовой стрелке (т.к. фаза убывает, если скобка в знаменателе), если в числитель – l квадрантов против часовой стрелки (фаза увеличивается). Т.е. степень скобки определяет, сколько мы должны пройти квадрантов.

<u>Далее</u> переходим к рассмотрению скобки <u>со следующей по величине постоянной</u> времени и т.д. В итоге должны прийти в намеченную точку на плоскости $W(j\omega)$.

В данном примере

$$W(j\omega) = \frac{100(j\omega + 1)^2}{(j\omega)^{\nu}(10j\omega + 1)(0,1j\omega + 1)^2}$$

ККУ содержит **три скобки вида** $(j\omega T+1)^l$ (на множитель $(j\omega)^{\nu}$ внимания не обращаем – он уже внес свой вклад в построение АФХ тем, что она начнется из $-\nu \cdot \frac{\pi}{2}$ (будь он в числителе – началась бы из $+\nu \cdot \frac{\pi}{2}$)).

Поскольку скобка с большей постоянной времени ($T_1 = 10$) находится в знаменателе, то $A\Phi X$ пойдет из начальной точки по часовой стрелке, но в следующий квадрант не перейдет, т.к. скобка ($10j\omega + 1$) стоит в первой степени (т.е. идем 1 квадрант).

(Можно рисовать не прямо до оси, а более схематично — «немного вверх», а если говорить строго, то насколько «вверх» зависит от соотношения постоянных времени T_1 и T_2)

Далее рассматривается скобка со следующей по величине постоянной времени –

 $(j\omega+1)^2$. Т.к. она **в числителе** и **в квадрате**, то разворачиваемся и рисуем далее АФХ в направлении **против часовой стрелки** два квадранта (поскольку скобка во 2-й степени).

И наконец, последняя скобка — $(0,1j\omega+1)^2$. Т.к. она **в знаменателе**, то снова разворачиваемся и рисуем $A\Phi X$ в направлении **по часовой стрелке, тоже два квадранта**. Конец примера 1.