Kompilator języka strukturalnego

David Korenchuk

August, 23, 2023

Spis treści

1	Wprowadzenie	3
2	Historia	4
3	Teoria 3.1 Języki formalne	5 E E
4	Analiza leksykalna4.1 Wyrażenia regularne	6
5	Analiza składniowa5.1 Definicja5.2 Eliminacja rekurencji lewej5.3 Niejednoznaczność5.4 Implementacja AST5.5 Implementacja analizatora składniowego5.6 Reprezentacja wizualna AST	8 9 10 11 11
6	Analiza semantyczna 6.1 Analiza nieużywanych zmiennych	12 12
7	1	13 13 13
8	Generacja kodu pośredniego 8.1 Generacja grafu sterowania	15 16
9	Optymalizacje kodu pośredniego9.1 Definicje9.2 Constant propagation9.3 Unreachable code elimination	16 17 17 19
10	Interpreter	20
11	Anney: Gramatyka w BNF	20

1 Wprowadzenie

Człowiek posługuje się językami werbalnymi, aby komunikować z innymi ludźmi. Za pomocą języka polskiego albo angielskiego można wyrazić myśl, ale zazwyczaj w sposób niejednoznaczny, bo jesteśmy przyzwyczajeni do tego, że każde zdanie może być wyrażone na wiele sposobów. Natomiast, aby umożliwić komunikację pomiędzy człowiekiem a komputerem, te zdania muszą być dość mocno sprecyzowane, aby móc je wykonać w sposób deterministyczny.

Celem niniejszej pracy jest pokazanie technik, które są używane do umożliwiania takiego rodzaju komunikacji. Dalsza część pracy zawiera opis każdego z etapów tworzenia języka programowania strukturalnego.

2 Historia

Potrzeba automatyzacji pracy intelektualnej istniała zawsze. Dlatego od dawna człowiek próbuje znaleźć metody do tego. Niżej jest krótkie podsumowanie powstania informatyki.

- W IX wieku przez irańskiego matematyka al Kindi wieku został stworzony system szyfrowania informacji na podstawie zliczania ilości liter w tekscie.
- W XVII wieku powstał suwak logarytmiczny, potrzebny do ułatwienia działań matematycznych.
- W tym samym XVII wieku powstał jeden z pierszych kalkulatorów mechanicznych Pascalina. Jest to narzędzie do wykonania operacji arytmetycznych na podstawie ruchu koł zębatych i innych części.
- W XVIII wieku Charlesa Babbage stworzył mechaniczną maszynę różnicową do tworzenia dużych tabeli logarytmicznych, które do tej pory człowiek musiał wyliczać ręcznie.
- W 1847 roku George Boole wyprowadził nowy rozdział algebry: **algebrę Boole'a**, na podstawie której później został zaprojektowany pierwszy klasyczny komputer.
- W 1930 roku Vannevar Bush stworzył **analizator różnicowy** do rozwiązania równań różnicowych metodą całkowania.

3 Teoria

3.1 Języki formalne

Według teorii automatów, automat – jest to jednostka wykonawcza. Jednostki te, zależnie od swojej struktury i tego, jaki **język formalny** oni mogą obrobić, dzielą się na klasy.

Klasy te opisane są hierarchią Chomsky'ego. Mówi ona o tym, że języki formalne dzielą się na 4 typy:

- Typ 3 języki regularne
- Typ 2 języki bezkontekstowe
- Typ 1 języki kontekstowe
- Typ 0 języki rekurencyjnie przeliczalne

Jako przykład języka typu 3 według hierarchii Chomsky'ego można podać wyrażenia regularne. Język ten opisuje się automatem skończonym deterministycznym (DFA). Bardziej szczegółowo wyrażenia regularne będą rozpatrzone w opisaniu analizy leksykalnej.

3.2 Klasyfikacja gramatyczna

Niniejszy język nie może być odniesiony do żadnej z klas hierarchii Chomsky'ego, chociaż jest on językiem regularnym. Tak jest dlatego, że można napisać gramatycznie poprawny kod, który jednak prowadzi do błędów kontekstowych i logicznych. Naprzykład

```
void f() {
    return argument + 1;
}
```

Kolejną z przyczyn niemożliwości odniesienia naszego języka do jednej z klas hierarchii Chomsky'ego jest niejednoznaczność konstrukcji językowych. Przykład niżej pokazuje, że nie można jednoznacznie stwierdzić, czy data * d jest deklaracją zmiennej albo operatorem mnożenia dwóch zmiennych. Aby móc poprawnie prowadzić analizę składniową, musimy zadbać o rozróżnienie kontekstu.

4 Analiza leksykalna

Jednym ze sposobów na sprowadzanie kodu źródłowego do postaći listy tokenów jest narzędzie flex. Przyjmuje ono zestaw reguł w postaći wyrażeń regularnych, według których działa rozbicie tekstu wejściowego. Można jednak ominąć lex i zaimplemenetować lexer ręcznie, ale ta praca nie skupia się na tym.

4.1 Wyrażenia regularne

Wyrażenie regularne – łańcuch znaków, zawierający pewne polecenia do wyszukiwania tekstu.

Mówimy, że wyrażenie regularne określone nad alfabetem Σ , jeżeli zachodzą następujące warunki:

- Ø wyrażenie regularne, reprezentujące pusty zbiór.
- \bullet ϵ wyrażenie regularne, reprezentujące pusty łańcuch.
- $\forall_{a \in \Sigma}$, a reprezentuje jeden znak.
- Warunek indukcyjny: jeżeli R_1, R_2 wyrażenia regularne, (R_1R_2) stanowi konkatenację R_1 i R_2 .
- Warunek indukcyjny: jeżeli R wyrażenie regularne, R* stanowi domknięcie Kleene'ego.

W rzeczywistości, takich zasad może być więcej.

Zazwyczaj wyrażenie regularne jest realizowane za pomocą DFA (Deterministic finite automaton, Deterministyczny automat skończony). Lex sprowadza podany zbiór zasad do takiego automatu.

Podamy przykład automatu dla wyrażenia -?[0-9]+

Aby odśledzić wykonane kroki, można wypełnić tabelę przejść pomiędzy stanami. Podamy przykład dla łańcucha -22

Biężący stan	Akcja		
0	zaakceptować -		
0, 1	zaakceptować 2		
0, 1, 2	zaakceptować 2		

4.2 Flex

Flex jest narzędziem projektu GNU. Pozwala ono w wygodny sposób podać listę reguł dla analizy leksykalnej (ang. Scanning). Flex jest mocno powiązany z językiem C, dlatego program w flex'u korzysta z konstrukcji języka C. Pokażemy przykład użycia flex'u

```
Listing 1: Przykład użycia flex
#include "portrzebny-do-analizy-plik.h"
/* Kod w jezyku C. */
%}
/* Opcje flex */
%option noyywrap nounput noinput
%option yylineno
%% /* Reguly w postaci wyrazen regularnych. */
/* Wzorzec
                          | Akcja przy znalezieniu takiego wzorcu */
                 **********************************
-?[0-9]+
                            LEX_CONSUME_WORD (TOK_INTEGRAL_LITERAL)
-?[0-9]+\.[0-9]+
                            LEX_CONSUME_WORD (TOK_FLOATING_POINT_LITERAL)
\"([^\"\\]*(\\.[^\"\\]*)*)\"
                            LEX_CONSUME_WORD (TOK_STRING_LITERAL)
\'.\'
                            LEX_CONSUME_WORD (TOK_CHAR_LITERAL)
                            { /* Znaleziony niewiadomy znak.
                                Zglosic blad.
%%
```

Zauważmy, że flex próbuje szukać wzorców w tekscie dokładnie w takiej kolejności, która jest podana w jego kodzie. Dlatego często robią ostatnią regułe z wyrażeniem regularnym ".", który akceptuje dowolny znak, i umieszczają tam komunikat o błędzie.

W naszym przypadku, lex generuje kod, który gromadzi wszystkie znalezione lexemy do tablicy.

5 Analiza składniowa

5.1 Definicja

Mając listę składników elementarnych wejściowego programu, jesteśmy w stanie przejść do następnego etapu kompilacji – analizy składniowej. Jest to proces generacji struktury drzewiastej, a mianowicie AST (Abstract Syntax Tree).

Wynikiem działania analizy składniowej zawsze jest **jedno** drzewo AST. Może zawieraić ono definicje wszystkich funkcji.

AST może być stworzony po zdefiniowaniu gramatyki regularnej danego języka. Stosuje się do tego notacja BNF (Backus–Naur form). Pełny opis gramatyki pokazany jest w końcu pracy. Pokażemy tylko kilka przykładów:

```
 \langle program \rangle \qquad ::= (\langle function-decl \rangle \mid \langle structure-decl \rangle)^* 
 \langle var-decl \rangle \qquad ::= \langle type \rangle \ (*) * \langle id \rangle = \langle logical-or-stmt \rangle \ ; 
 \langle stmt \rangle \qquad ::= \langle block-stmt \rangle 
 | \langle selection-stmt \rangle 
 | \langle iteration-stmt \rangle 
 | \langle jump-stmt \rangle 
 | \langle decl \rangle 
 | \langle expr \rangle 
 | \langle assignment-stmt \rangle 
 | \langle primary-stmt \rangle
```

W przypadku wyrażeń arytmetycznych, AST także jednoznacznie określa za pomocą produkcji gramatyki BNF priorytet operacji arytmetycznych. Naprzykład, mając wyrażenie 1 + 2 * 3 + 4, drzewo syntaksyczne będzie skonstruowane zgodnie z prawami arytmetyki, co pozwala nie trzymać w AST żadnych informacji o nawiasach. Widać, że aby zastosować produkcję < additive-stmt>, najpierw musi być zastosowana następna produkcja < multiplicative-stmt>.

Pomocnicza przy prowadzeniu analizy jest **tablica parsingu**. Jest to zbiór konkretnych przejść pomiędzy produkcjami. Pomaga ona w zrozumieniu, jaką produkcję zastosować mając dany nieterminal. Zauważmy, że w tabelę są wpisane produkcje bez alternatyw, i każde przejście gramatyczne określone jednoznacznie.

Aby zbudować tą tablicy, możemy użyć zasady **First & Follow**. Tutaj **First** to zbiór terminalnych symboli, które mogą pojawić się jako pierwsze w ciągu znaków wygenerowanym przez daną nieterminalną symbol w gramatyce, a **Follow** to zbiór terminalnych symboli, które mogą wystąpić bezpośrednio po danym nieterminalnym symbolu w dowolnym ciągu znaków wygenerowanym przez gramatykę.

Podamy gramatykę dla przykładu powyżej (1 + 2 * 3 + 4). Musimy wprowadzić dwa poziomy priorytetów, aby prawidłowo zachować kolejność operacji mnożenia i dodawania.

```
 \langle additive\text{-}stmt \rangle \qquad ::= \langle multiplicative\text{-}stmt \rangle \\ | \langle multiplicative\text{-}stmt \rangle + \langle additive\text{-}stmt \rangle \\ | \langle multiplicative\text{-}stmt \rangle - \langle additive\text{-}stmt \rangle \\ | \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle prefix\text{-}unary\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle multiplicative\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle multiplicative\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle multiplicative\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle \\ | \langle multiplicative\text{-}stmt \rangle + \langle multiplicative\text{-}stmt \rangle +
```

	First	Follow
<additive-stmt></additive-stmt>	0-9	+, -
$<\!\!\mathrm{multiplicative}\!\!-\!\!\mathrm{stmt}\!\!>$	0-9	*, /
<pre><pre>cprefix-unary-stmt></pre></pre>	0-9	ϵ

	0-9	+	-	*	/	\$
<additive-stmt></additive-stmt>		<mul> + <add></add></mul>	<mul> - <add></add></mul>			<mul></mul>
<multiplicative-stmt></multiplicative-stmt>				<una> * <mul></mul></una>	<una> / <mul></mul></una>	<una></una>
<pre><pre><pre><pre><pre><pre>prefix-unary-stmt></pre></pre></pre></pre></pre></pre>	0-9					

5.2 Eliminacja rekurencji lewej

Projektując gramatykę, należy wziąć pod uwagę problem rekurencji lewej (Left recursion). Są produkcje gramatyczne, nie pozwalające kodu, które je implementuje przejść do następnego terminalu, stosując tą

samą produkcję, co prowadzi do rekurencji nieskończonej.

Rekuręcja lewa może wyglądać następująco:

$$\langle factor \rangle ::= \langle factor \rangle '+' \langle term \rangle$$

Kod, wykonujący tą regułe będzie miał postać:

```
void factor() {
    factor(); // Rekurencja bez zadnego warunku wyjscia
    consume('+');
    term();
}
```

5.3 Niejednoznaczność

Projektując język, łatwo trafić na niejednoznaczne produkcje gramatyczne. One są takie, że jednego tekstu wejściowego są one w stanie wyprodukować kilka różnych od siebie drzew. Popularny warunek dla stworzenia niejednoznaczności to taka produkcja

$$\begin{array}{c} \langle P \rangle & ::= \langle P \rangle + \langle P \rangle \\ | \langle symbol \rangle \end{array}$$

Po zastosowaniu danej produkcji dla A + B + C możliwe jest otrzymanie dwóch drzew

Aby rozwiązać ten problem i jednoznacznie wskazać kolejność zastosowania reguł gramatycznych, możemy zamienić prawy operand na symbol, wtedy eliminuje się dwuznaczność. Pierwsza produkcja poniżej jest lewostronną, a druga – prawostronną.

$$\langle P \rangle$$
 ::= $\langle P \rangle + \langle symbol \rangle$

$$\langle P \rangle$$
 ::= $\langle symbol \rangle + \langle P \rangle$

5.4 Implementacja AST

Zaimplementowany AST składa się ze struktury ast_node. Jest to główny typ węzła, zawierający niektóre zbędne informacje dla każdego typu węzła AST, i przechowujący konkretny węzęł jako wskaźnik.

```
struct ast_node {
    enum ast_type type;    /* Rozrozniamy typ wedlug tej flagi */
    void     *ast;    /* ast_num, ast_for, ast_while, et cetera */
    uint16_t     line_no;
    uint16_t     col_no;
};
```

Konkretne węzły definiujemy w następujący sposób:

```
struct ast_num {
    int32_t value;
};
```

Taki AST stanowi strukturę drzewiastą, mającą wszystkie zalety i wady drzew jako struktur danych. Mając takie drzewo, jesteśmy w stanie prowadzić zwykłe przeszukiwanie w głąb i wszerz. W danym przypadku taki algorytm się nazywa **AST visitor**. Dokładnie w ten sposób działa każda z przedstawionych niżej analiz semantycznych oraz generacja kodu pośredniego.

Algorithm 1 Przeszukiwanie AST

```
    procedure DFS(AST)
    for each child node Child of AST do
    DFS(Child)
    end for
    end procedure
```

5.5 Implementacja analizatora składniowego

W danym przypadku, analizator składniowy jest napisany ręcznie, chociaż są narzędzia od projektu GNU, takie jak GNU Bison i UNIX'owe, takie jak YACC. Niniejszy analizator jest napisany bez pomocy tych programów, aby jawnie pokazać, jak się przekładają produkcje BNF na język C.

Aby poradzić sobie z zadaniem pisania takiego analizatora, możemy zauważyć, że zadanie to sprowadza się do implementacji każdej produkcji gramatycznej osobno.

5.6 Reprezentacja wizualna AST

Jest pokazana też implementacja **visitor**'u, pozwalającego na przeprowadzenie AST do formy tekstowej. Do tego służy funkcja **ast_dump()**. Przyjmuje ona wskaźnik do węzła drewa i działa według algorytmu DFS, opisanego wyżej, przy tym pisząc tekstową formę węzłów do pliku (ewentualnie, do **stdout**). Funkcjonalność ta jest bardzo ważna do prowadzenia testów jednostkowych samego AST oraz analizatoru skła-

dniowego. Niżej pokazany jest przykładowy wynik działania tej funkcji.

```
CompoundStmt <line:0, col:0>
  StructDecl <line:9, col:1> 'custom'
  CompoundStmt <line:9, col:1>
    VarDecl <line:10, col:5> int 'a'
  VarDecl <line:11, col:5> int 'b'
  VarDecl <line:12, col:5> int 'c'
  ArrayDecl <line:13, col:5> char [1000] 'mem'
  VarDecl <line:14, col:5> struct string 'description'
```

6 Analiza semantyczna

Aby zapewnić poprawność napisanego kodu, stosuje się wiele rodzajów analiz. Niniejszy kompilator dysponuje trzema:

- Analiza nieużytych zmiennych, oraz zmiennych, które są zdefiniowane, ale nie zostały użyte
- Analiza poprawności typów
- Analiza prawidłowego użycia funkcji

6.1 Analiza nieużywanych zmiennych

Podamy przykłady kodu prowadzącego do odpowiednich ostrzeżeń

```
void f() {
    int argument = 0; // Warning: unused variable 'argument'
}

void f(int argument) { // Warning: unused variable 'argument'
}

void f() {
    int argument = 0;
    ++argument; // Warning: variable 'argument' written, but never read
}
```

Rzecz polega na przejściu drzewa syntaksycznego i zwiększania liczników **read_uses** i **write_uses** dla każdego węzła typu **ast sym**.

Algorytm operuje na blokach kodu, zawartego w { ... }. Po przejściu każdego bloku (w tym rekurencyjnie), analiza jest wykonana w następujący sposób:

Do analizy nieużywanych funkcji stosuje się tem sam algorytm. Jedyne, co jest wtedy zmienione – sprawdzenie, czy nazwa rozpatrywanej funkcji nie jest **main**. Funkcja **main** jest wywołana automatycznie.

Algorithm 2 Wyszukiwanie nieużywanych zmiennych

```
    procedure ANALYZE(AST)
    Set ← all declarations at current scope depth
    for each collected declaration Use in Set do
    if Use is not a function & Use.ReadUses is 0 then
    Emit warning
    end if
    end for
    end procedure
```

7 System typów

7.1 Opis

Wiele zasad, dotyczących pracy z typami mogą być precyzyjnie opisane zasadami typów (**Typing rules**). Jest to notacja matematyczna, znaczenie której niżej wyjaśnimy.

Kluczowym pojęciem w tej notacji jest statyczne środowisko typów (static typing environment). Oznacza się ono symbolem Γ . Mówimy, że to środowisko jest skonstruowane poprawnie pisząc

$$\Gamma \vdash \diamond$$

Mówimy, że zmienna V ma typ T w środowisku Γ pisząc

$$\Gamma \vdash V : T$$

Kreska pozioma mówi o tym, że zdanie wyżej jest konieczne, aby zaszło zdanie niżej

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \mathrm{V} : T}$$

Zauważmy, że notacja ta jest mocnyn narzędziem, pozwalającym opisać dość złożone systemy typów dla takich języków jak C++ i **Haskell**.

7.2 Definicja systemu

Opiszmy teraz system typów w naszym języku

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \text{true} : bool} \qquad \frac{\Gamma \vdash \diamond}{\Gamma \vdash \text{false} : bool}$$

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \text{n} : int}$$

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \text{c} : char}$$

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \mathbf{x} : float}$$

Oznaczmy dla $\mathbb{N},\mathbb{R}:\oplus\in\{=,+,-,*,/,<,>,\leqslant,\geqslant,==,\neq,||,\&\&\},$ wtedy

$$\frac{\Gamma \vdash e_l : float}{\Gamma \vdash e_l \oplus e_r : float}$$

Dodamy do \oplus operacje tylko dla $\mathbb{N}: \oplus \cup \{|, \&, \hat{\ }, <<, >>, \%\}$, wtedy

$$\frac{\Gamma \vdash e_l : int \qquad \Gamma \vdash e_r : int}{\Gamma \vdash e_l \oplus e_r : int} \qquad \frac{\Gamma \vdash e_l : int \qquad \Gamma \vdash e_r : char}{\Gamma \vdash e_l \oplus e_r : char}$$

Wprowadźmy reguły niejawnej konwersji, które są niezbędne przy sprawdzaniu w warunku logicznym wyniku operacji arytmetycznej, zwracającej typ różny od bool. Oznaczmy reguły dla typów int, char i float.

$$\frac{\Gamma \vdash e : int}{\Gamma \vdash e : bool} \qquad \qquad \frac{\Gamma \vdash e : char}{\Gamma \vdash e : bool} \qquad \qquad \frac{\Gamma \vdash e : float}{\Gamma \vdash e : bool}$$

Wprowadźmy także reguły do operacji wskaźnikowych. Oznaczmy $\oplus \in \{=,+,-,\leqslant,\geqslant,==,\neq\}$, wtedy

$$\frac{\Gamma \vdash e_l : int *}{\Gamma \vdash e_l \oplus e_r : int *} \qquad \frac{\Gamma \vdash e_l : char *}{\Gamma \vdash e_l \oplus e_r : char *}$$

$$\frac{\Gamma \vdash e_l : float *}{\Gamma \vdash e_l \oplus e_r : float *} \qquad \frac{\Gamma \vdash e_l : bool *}{\Gamma \vdash e_l \oplus e_r : bool *}$$

Mając taką konwersję, możemy wprowadzić reguły do konstrukcji warunkowych:

$$\frac{\Gamma \vdash \text{condition} : bool \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if (condition)} \ \{ \ e_1 \ \} \ \text{else} \ \{ \ e_2 \ \} : \tau}$$

$$\frac{\Gamma \vdash \text{condition} : bool \qquad \Gamma \vdash e : \tau}{\Gamma \vdash \text{while (condition)} \ \{ \ e \ \} : \tau}$$

$$\frac{\Gamma \vdash \text{condition} : bool \qquad \Gamma \vdash e : \tau}{\Gamma \vdash \text{do } \{ e \} \text{ while (condition)} : \tau}$$

$$\frac{\Gamma \vdash \text{init} : \tau_1 \qquad \Gamma \vdash \text{condition} : bool \qquad \Gamma \vdash \text{increment} : \tau_2 \qquad \Gamma \vdash e : \tau_3}{\Gamma \vdash \text{for (init; condition; increment) } \Set{e} : \tau_3}$$

8 Generacja kodu pośredniego

Kod pośredni – jest to język, składający się z elementarnych operacji nad danymi, takimi jak arytmetyczne operacje, zapisanie do komórki pamięci.

Im prostszy ten język jest, tym prostsze są algorytmy do analizy, optymalizacji i generacji dalszych warstw pośrednich.

Istnieje wiele różnych podobnych do assemblera języków (Intermediate representation, **IR**), służącego do generacji kodu maszynowego (LLVM IR, GIMPLE, FIRM). Jednak, niniejszy język implementuje własny IR z kilku powodów:

- Jest prostszy
- Ma prostszy interfejs programistyczny
- Nie stanowi dodatkowych zależności jako biblioteki
- Ma na celu pokazanie metod na tworzenie takiego języka i operacje nad nimi

8.1 Generacja grafu sterowania

Wygenerowana poprzednio warstwa poprzednia zawiera wszystkie informacje, dotyczące operacji nad danymi, ale brakuje jeszcze informacji o przepływie sterowania. Aby wiedzieć, która instrukcja się wykonuje po której, musimy stworzyć związek między poprzednią i następną instrukcją, który określa się następująco

- Instrukcja warunkowa ma dwóch następników. Jeden jest wykonany w przypadku spełnionengo warunku, a drugi – gdy warunek nie zaszedł.
- Instrukcja skokowa ma jednego następnika, niekoniecznie będącego następnikiem na liście kodu. Jeżeli index instrukcji docelowej jest < od instrukcji skoku, powstaje krawędź powrotna (back edge).
 Wszystkie inne krawędzi są skierowane w przód (forward edge).

W przykładzie, pokazanym po lewej stronie, jest jedna krawędź powrotna, wiodąca od jmp L2 do int t_1 .

Otrzymany graf jest użyteczny przy wielu rodzajach optymalizacji. Naprzykład, przy usuwaniu kodu nieosiądalnego oraz analizie zależności danych.

9 Optymalizacje kodu pośredniego

Optymalizacja – to zmiana kodu programu, mająca na celu polepszyć wydajność albo inne cechy programu. Najważniejym z kriteria optymalizacji jest utrzymanie całej struktury działania programu, takiej, jak chce programista. Nie wolno przeprowadzać wiodące do niespodziewanych lub niepoprawnych wyników optymalizacje.

Istnieje wiele rodzajów optymalizacji, gdzie każda wymaga więcej lub mniej założeń i matematyki. Jeżeli chodzi o matematykę, to główną rolę w optymalizacji pełni **teoria grafów**. Jednym z pierwszych naukowców, kto zadecydował wprowadzić modele grafowe do kompilatorów był **Robert Tarjan**. Wprowadził także on algorytm do obliczenia drzewa dominatorów (dominator tree), co przyda nam się później.

9.1 Definicje

Każdy program posiadą taką cechę jak **przepływ sterowania**, i może ona być dość precyzyjnie wyrażona **grafem przepływu sterowania** (Control Flow Graph). Program rozpatrywany jest jako graf skierowany, posiadający wierzchołek startowy, będący pierwszą instrukcją w programie. Krawędzie reprezentują przejście pomiędzy instrukcjami. Zauważmy, że każda instrukcja może mieć wiele krawędzi wejściowych i wyjściowych, tworząc **gałęzi** w wykonaniu programu.

Oznaczmy kilka ważnych pojęć.

Niech G = (V, E, s) – graf skierowany. V – zbiór wierzchołków. E – zbiór krawędzi. s – węzęł początkowy. $G' = (V', E') \subseteq G$ – podgraf, gdzie każdy wierzchołek $v \in G'$ jest nieosiągalny z dowolnej ścieżki $(s, ..., v) \in G$. Zauważmy, że G' może być grafem rozłącznym.

$$V' = \{ v \mid \forall v \not\equiv (s, ..., v) \}$$

Niech G = (V, E, s) – graf skierowany, zdefiniowany powyżej. Graf zależności danych – graf G' = (V', E', D'). Wtedy $D' = \{ d, d' \in V' \mid d \to d' \}$. Przez $d \to d'$ oznaczona zależnoścd od wyniku obliczenia d'. Zbiór D' reprezentuje takie zależności, przy czym dodatkowo musi być spełnione

$$d, d' \in V', v \rightarrow v' \iff \exists (v', ..., v) \in G'$$

9.2 Constant propagation

Został zaimplementowany algorytm przeliczania stałych. Rozpatruje on każdy block CFG osobno, co pozwala na przeprowadzenie lokalnych optymalizacji. Niniejszy algorytm nie usuwa zmiennych, których nie potrzebuje po obliczeniach dlatego, że to jest obowiązek innej optymalizacji (dead code elimination).

Algorithm 3 Przeliczenie zmiennych stałych

```
1: procedure ConstProp(AST)
       Consts \leftarrow \emptyset
 2:
       for each statement S across all CFG blocks do
 3:
           if new CFG block is reached then
 4:
               Consts \leftarrow \emptyset
                                                                                           ▶ Reset optimizer state
 5:
           end if
 6:
           if S is binary then
 7:
               Consts \leftarrow Consts \cup computed value of binary expression
 8:
           end if
 9:
           if S is store then
10:
               if S stores immediate then
11:
                   if Consts has value for S.Sym then
12:
                       Update Consts with new value
13:
                   else
14:
                       Consts \leftarrow Consts \cup value
15:
                   end if
16:
               end if
17:
               if S stores symbol then
18:
                   if Consts has value for S.Sym then
19:
                       Update Consts with new value
20:
21:
22:
                       Consts \leftarrow Consts \setminus \{ value \}
                   end if
23:
               end if
24:
           end if
25:
        end for
26:
27: end procedure
```

9.3 Unreachable code elimination

Usuwanie kodu nieosiągalnego polega na dwóćh krokach.

- Obejście grafu sterowania programu (CFG)
- Usuwanie wszystkich instrukcji, do których nie ma żadnych wejściowych krawędzi.

Algorytm polega na zlalezieniu takich **podgrafów** grafu sterowania programem, do których nie prowadzi żadna z krawędzi.

Algorithm 4 Usuwanie kodu nieosiągalnego

```
1: procedure ELIMINATE(CFG)
       Visited \leftarrow \emptyset
 2:
       Traverse(Visited, CFG, First(CFG))
 3:
       Unvisited \leftarrow CFG \setminus Visited
 4:
       Cut(Unvisited, CFG)
 5:
 6: end procedure
 7:
 8: procedure Traverse(Visited, CFG, IR)
       Visited[IR] \leftarrow 1
 9:
       for each control flow successor of IR do
10:
           Traverse(Visited, CFG, Succ(IR))
11:
       end for
12:
13: end procedure
14:
15: procedure Cut(Unvisited, CFG)
       for each unvisited statement do
16:
          Remove statement from IR
17:
       end for
18:
19: end procedure
```

10 Interpreter

11 Annex: Gramatyka w BNF

```
\langle program \rangle
                                             ::= (\langle function-decl \rangle \mid \langle structure-decl \rangle)^*
\langle structure\text{-}decl \rangle
                                             ::= struct \{ \langle structure-decl-list \rangle \}
\langle structure\text{-}decl\text{-}list \rangle
                                             ::= ( \langle decl\text{-}without\text{-}initialiser \rangle ;
                                               |\langle structure-decl \rangle; )*
\langle function\text{-}decl \rangle
                                             ::= \langle ret - type \rangle \langle id \rangle ( \langle parameter - list - opt \rangle ) { \langle stmt \rangle * }
\langle ret-type\rangle
                                             ::=\langle type \rangle
                                                      \langle void\text{-}type \rangle
\langle type \rangle
                                             ::= int
                                                      float
                                                      char
                                                      string
                                                      boolean
\langle void\text{-}type \rangle
                                             ::= void
\langle constant \rangle
                                             ::= \langle integral-literal \rangle
                                                      \langle floating-literal \rangle
                                                       \langle string\text{-}literal \rangle
                                                       \langle char\text{-}literal \rangle
                                                       \langle boolean\text{-}literal \rangle
\langle integral-literal \rangle
                                             ::= \langle digit \rangle *
```

```
::= \langle digit \rangle * . \langle digit \rangle *
\langle floating-literal \rangle
                                           ::= ''( x00000000-x0010FFFF )*''
\langle string\text{-}literal \rangle
\langle char\text{-}literal \rangle
                                            ::= 'ASCII(0)-ASCII(127)'
\langle boolean-literal \rangle
                                            ::= true
                                                    false
                                           ::= a | b | ... | z |
\langle alpha \rangle
                                            ::= 0 | 1 | ... | 9
\langle diqit \rangle
                                            ::= \langle alpha \rangle (\langle alpha \rangle | \langle digit \rangle) *
\langle id \rangle
                                           ::= \langle type \rangle ( * )* \langle id \rangle [ \langle integral-literal \rangle ]
\langle array-decl \rangle
                                            ::= \langle type \rangle ( * )* \langle id \rangle = \langle logical\text{-}or\text{-}stmt \rangle;
\langle var-decl \rangle
                                           ::=\langle id \rangle ( * )* \langle id \rangle
\langle structure\text{-}var\text{-}decl \rangle
\langle decl \rangle
                                            ::=\langle var-decl \rangle
                                                 \langle array-decl \rangle
                                                     \langle structure-var-decl \rangle
\langle decl\text{-}without\text{-}initialiser \rangle ::= \langle type \rangle (*) * \langle id \rangle
                                               |\langle array-decl\rangle|
                                                    \langle structure-var-decl \rangle
\langle parameter-list \rangle
                                            ::= \langle decl\text{-}without\text{-}initialiser \rangle , \langle parameter\text{-}list \rangle
                                                     \langle decl\text{-}without\text{-}initialiser \rangle
\langle parameter-list-opt \rangle
                                            := \langle parameter-list \rangle \mid \epsilon
\langle stmt \rangle
                                            ::= \langle block\text{-}stmt \rangle
                                                    \langle selection\text{-}stmt \rangle
                                                     \langle iteration\text{-}stmt \rangle
                                                     \langle jump\text{-}stmt \rangle
                                                     \langle decl \rangle
                                                     \langle expr \rangle
                                                     \langle assignment\text{-}stmt \rangle
                                                     \langle primary\text{-}stmt \rangle
\langle member-access-stmt \rangle ::= \langle id \rangle. \langle member-access-stmt \rangle
                                               |\langle id \rangle . \langle id \rangle
\langle iteration\text{-}stmt \rangle
                                            ::=\langle stmt\rangle
                                                    break;
                                                     continue;
\langle block\text{-}stmt \rangle
                                           ::= \{ \langle stmt \rangle * \}
```

```
\langle iteration\text{-}block\text{-}stmt \rangle ::= \{ \langle iteration\text{-}stmt \rangle * \}
\langle selection\text{-}stmt \rangle
                                              ::= if ( \langle expr \rangle ) \langle block\text{-}stmt \rangle
                                                       if ( \langle expr \rangle ) \langle block\text{-}stmt \rangle else \langle block\text{-}stmt \rangle
                                              ::= for (\langle expr-opt \rangle; \langle expr-opt \rangle; \langle expr-opt \rangle) \langle iteration-block-stmt \rangle
\langle iteration\text{-}stmt \rangle
                                                        for ( \langle decl \rangle : \langle symbol\text{-}stmt \rangle ) \langle iteration\text{-}block\text{-}stmt \rangle
                                                       while ( \langle expr \rangle ) \langle iteration\text{-}block\text{-}stmt \rangle
                                                        do \langle iteration-block-stmt \rangle while (\langle expr \rangle);
\langle jump\text{-}stmt \rangle
                                              ::= return \langle expr \rangle ? ;
\langle assignment-op \rangle
                                               ::= =
                                                        /=
                                                        %=
                                                        <<=
                                                        >>=
                                                        &=
\langle expr \rangle
                                               ::= \langle assignment\text{-}stmt \rangle
                                                        \langle var-decl \rangle
\langle expr-opt \rangle
                                              ::=\langle expr\rangle \mid \epsilon
\langle assignment\text{-}stmt \rangle
                                              ::= \langle logical\text{-}or\text{-}stmt \rangle
                                                        \langle logical\text{-}or\text{-}stmt \rangle \langle assignment\text{-}op \rangle \langle assignment\text{-}stmt \rangle
\langle logical\text{-}or\text{-}stmt \rangle
                                              ::= \langle logical\text{-}and\text{-}stmt \rangle
                                                        \langle logical\text{-}and\text{-}stmt \rangle \mid | \langle logical\text{-}or\text{-}stmt \rangle
\langle logical-and-stmt \rangle
                                              ::= \langle inclusive\text{-}or\text{-}stmt \rangle
                                                        \langle inclusive-or-stmt \rangle && \langle logical-and-stmt \rangle
                                              ::= \langle exclusive-or-stmt \rangle
\langle inclusive-or-stmt \rangle
                                                        \langle exclusive-or-stmt \rangle \mid \langle inclusive-or-stmt \rangle
\langle exclusive-or-stmt \rangle
                                              ::=\langle and\text{-}stmt\rangle
                                                        \langle and\text{-}stmt \rangle \hat{} \langle exclusive\text{-}or\text{-}stmt \rangle
\langle and\text{-}stmt \rangle
                                              ::=\langle equality\text{-}stmt\rangle
                                                        \langle equality\text{-}stmt \rangle & \langle and\text{-}stmt \rangle
\langle equality\text{-}stmt \rangle
                                              ::=\langle relational\text{-}stmt\rangle
                                                        \langle relational\text{-}stmt \rangle == \langle equality\text{-}stmt \rangle
                                                        \langle relational\text{-}stmt \rangle != \langle equality\text{-}stmt \rangle
```

```
\langle relational\text{-}stmt \rangle
                                                 ::= \langle shift\text{-}stmt \rangle
                                                           \langle shift\text{-}stmt \rangle > \langle relational\text{-}stmt \rangle
                                                           \langle shift\text{-}stmt \rangle < \langle relational\text{-}stmt \rangle
                                                           \langle shift\text{-}stmt \rangle \Rightarrow \langle relational\text{-}stmt \rangle
                                                           \langle shift\text{-}stmt \rangle \leftarrow \langle relational\text{-}stmt \rangle
\langle shift\text{-}stmt \rangle
                                                 ::= \langle additive\text{-}stmt \rangle
                                                           \langle additive\text{-}stmt \rangle \iff \langle shift\text{-}stmt \rangle
                                                           \langle additive\text{-}stmt \rangle \implies \langle shift\text{-}stmt \rangle
\langle additive\text{-}stmt \rangle
                                                 ::= \langle multiplicative\text{-}stmt \rangle
                                                           \langle multiplicative\text{-}stmt \rangle + \langle additive\text{-}stmt \rangle
                                                           \langle multiplicative\text{-}stmt \rangle - \langle additive\text{-}stmt \rangle
\langle multiplicative\text{-}stmt \rangle
                                                 ::= \langle prefix-unary-stmt \rangle
                                                           \langle prefix-unary-stmt \rangle * \langle multiplicative-stmt \rangle
                                                           \langle prefix-unary-stmt \rangle / \langle multiplicative-stmt \rangle
                                                           \langle prefix\text{-}unary\text{-}stmt \rangle % \langle multiplicative\text{-}stmt \rangle
\langle prefix-unary-stmt \rangle
                                                 ::= \langle postfix\text{-}unary\text{-}stmt \rangle
                                                          ++ \langle postfix\text{-}unary\text{-}stmt \rangle
                                                           -- \langle postfix\text{-}unary\text{-}stmt \rangle
                                                           * \langle postfix-unary-stmt \rangle
                                                           & \langle postfix\text{-}unary\text{-}stmt \rangle
                                                           ! \langle postfix-unary-stmt \rangle
\langle postfix-unary-stmt \rangle
                                                ::=\langle primary\text{-}stmt\rangle
                                                           \langle primary\text{-}stmt \rangle ++
                                                           \langle primary\text{-}stmt \rangle --
\langle primary\text{-}stmt \rangle
                                                 ::=\langle constant \rangle
                                                           \langle symbol\text{-}stmt \rangle
                                                           ( \langle logical\text{-}or\text{-}stmt \rangle )
\langle symbol\text{-}stmt \rangle
                                                 ::= \langle function\text{-}call\text{-}stmt \rangle
                                                           \langle array-access-stmt \rangle
                                                           \langle member-access-stmt \rangle
                                                           \langle id \rangle
                                                := \langle id \rangle ( [ \langle expr \rangle ] )*
\langle array-access-stmt \rangle
\langle function\text{-}call\text{-}arg\text{-}list \rangle ::= \langle logical\text{-}or\text{-}stmt \rangle , \langle function\text{-}call\text{-}arg\text{-}list \rangle
                                                          \langle logical\text{-}or\text{-}stmt \rangle
\langle function\text{-}call\text{-}arg\text{-}list\text{-}opt \rangle ::= \langle function\text{-}call\text{-}arg\text{-}list \rangle \mid \epsilon
\langle function\text{-}call\text{-}expr \rangle ::= \langle id \rangle \ ( \langle function\text{-}call\text{-}arg\text{-}list\text{-}opt \rangle \ )
```

Literatura

- [1] https://www.bates.edu/biology/files/2010/06/How-to-Write-Guide-v10-2014.pdf
- [2] Bauer, Friedrich Ludwig, Compiler construction, 1974, Berlin, ISBN: 3-540-06958-5
- [3] http://lucacardelli.name/papers/typesystems.pdf
- [4] https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
- [5] https://llvm.org/docs/LangRef.html
- [6] https://github.com/libfirm/libfirm