CS173: Intermediate Programming Complex ADT

Overview
The Complex data structure stores and manipulates complex numbers of the form
a+bi where a and b are real numbers. This Complex type supports a multitude of
arithmetic operations pertinent to compley numbers: these operations are described

below.	
Constructors	
default	A new Complex data type should default to the value of $0 + 0i$.
	Complex c;
copy	Create a new Complex type from an existing one.
	Complex c1(c2);
Complex(a,b)	We should be able to specify a new Complex type by giving its
	real and imaginary components. The imaginary part defaults to 0.
	Complex c1(2,3.1); Complex c2(2.5);
Operators	
addition	Should support addition between two complex numbers, complex
	and int, and complex and float.
	c1 = c2 + c3; c1 = c2 + 5.5;
subtraction	Should support subtraction between two complex numbers, com-
	plex and int, and complex and float.
	c1 = c2 - c3; c1 = c2 - 5;
multiplication	Should support multiplication between two complex numbers,
	complex and int, and complex and float.
	c1 = c2 * c3; c1 = c2 * 5.5;
division	Should support division between two complex numbers, complex
	and int, and complex and float.
	c1 = c2 / c3; c1 = c2 / 5;
conjugate	The \sim operator returns the complex conjugate.
	$c1 = \sim c2;$
negation	The – operator returns the negative of a complex.
	c1 = -c2;
exponentiation	The \land operator should raise a complex number to an integer power.
	$c1 = c2 \land x$; (where x is integer only)
abs	The abs method should return the distance from the origin.
	c1.abs()

Modifiers and A	Modifiers and Accessors	
setReal	Sets the real part of the complex number.	
	c1.setReal(5);	
getReal	Gets the real part of the complex number.	
	<pre>float f = c1.getReal();</pre>	
setImag	Sets the imaginary part of the complex number.	
	c1.setImag(5);	
getImag	Gets the imaginary part of the complex number.	
	<pre>float f = c1.getImag();</pre>	
Other		
assignment	Allows assignment of values between complex numbers.	
operator	c1 = c2;	
destructor	Cleans up the complex class.	
equality	Equal if both real and imaginary parts are equal.	
operator	c1 == c2;	
inequality	True if either real or imaginary parts are not equal.	
operator	c1 != c2;	
greaterThan	Returns true if $abs(c1) > abs(c2)$, false otherwise.	
operator	c1 > c2;	
greaterEqual	Returns true if $abs(c1) \ge abs(c2)$, false otherwise.	
operator	c1 >= c2;	
lessThan	Returns true if $abs(c1) < abs(c2)$, false otherwise.	
operator	c1 < c2;	
lessEqual	Returns true if $abs(c1) \le abs(c2)$, false otherwise.	
operator	c1 <= c2;	
cout <<	Allows printing of a complex number as a string " $a + bi$ ".	
	cout << c1 << endl;	
	print a+0i as a	
	print 0+bi as bi	
	print a+-bi as a-bi	
cin>>	Allows reading of a complex number as a string " $a+bi$ ".	
	cin >> c1;	
	reads: a+bi, a-bi, -a+bi, -a-bi, a+-bi, +a+bi	
	reads: a, -a, +a, bi, -bi, +bi	
	where a, b can be integers or reals with decimal points	