Niveau: 2 P.C. + 2 S.V.- COURS

FONCTIONS PRIMITIVES

page 🎵

L Primitives d'une fonction numérique :

a. Définition :

b. Exemple :

- Fonction primitive de la fonction f(x) = 4x + 2 sur \mathbb{R} est $F: x \to x^2 + 3x$.
- Fonction primitive de la fonction $f(x) = \cos x \text{ sur } \mathbb{R} \text{ est } F(x) = 3 + \sin x$.
- c. Propriété:

To<mark>ute fo</mark>nction continue sur un intervalle I admet une fonction primitive sur I .

d. Propriété:

F est une primitive d'une fonction f définie sur un intervalle I

Toute fonction primitive G de f sur I est de la forme G(x) = F(x) + c; $(c \in \mathbb{R})$.

e. Exemple:

Les fonctions primitives de la fonction f(x) = 4x + 2 sur $\mathbb R$ sont de la forme $F(x) = x^2 + 3x + c$ avec $c \in \mathbb R$.

<u>f.</u> Propriété:

F <mark>est une</mark> primitive d'une fonction f définie sur un intervalle I

 $x_0 \in I$ et $y_0 \in \mathbb{R}$; il existe une seule fonction primitive G def qui vérifie la condition $G(x_0) = y_0$.

g. Exemple:

Déterminer la fonction primitive de $f(x) = x^3 - 2x + 3$ qui prend la valeur 0 (zéro) en -1.

Les primitives de f sont de la forme $F(x) = \frac{1}{4}x^4 - x^2 + 3x + c$; $c \in \mathbb{R}$

Puisque
$$F(-1) = 0 \Leftrightarrow \frac{1}{4}(-1)^4 - (-1)^2 + 3 \times (-1) + c = 0$$

$$\Leftrightarrow \frac{1}{4} - 4 + c = 0$$

$$\Leftrightarrow c = \frac{15}{4}$$

Conclusion: La fonction primitive de $f(x) = x^3 - 2x + 3$ qui prend la valeur 0 (zéro) en -1 est:

$$G(x) = \frac{1}{4}x^4 - x^2 + 3x + \frac{15}{4}$$
.

Fonctions primitives de la somme de deux fonctions – le produit d'une fonction par un réel α :

Niveau: 2 P.C. + 2 S.V.- COURS

FONCTIONS PRIMITIVES

<u>a.</u> Propriété :

Fet G sont les primitives respectivement de f et g sur I on a :

- $\mathbf{f} + \mathbf{G}$ est une primitive de $\mathbf{f} + \mathbf{g}$.
- est une primitive de af.

<u>b.</u> Exemple :

Soient f(x) = 3x et $g(x) = \cos(x)$, leurs fonctions primitives sont respectivement $F(x) = 6x^2 + c$ et $G(x) = \sin x + c'$ avec c et $c' \in \mathbb{R}$

Operations sur les fonctions primitives - Tableau des fonctions primitives des fonctions usuelles

Operations sur les fonctions primitives		Tableau des fonctions primitives des fonctions usuelles	
Fonction h	H primitive de h	Fonction f	F primitives de f $(c \in \mathbb{R})$
h=f'+g'	H = f + g	$\mathbf{f}(\mathbf{x}) = 0$	$\mathbf{F}(\mathbf{x}) = \mathbf{c}$
$h = \alpha f'$	$H = \alpha f$	$\mathbf{f}(\mathbf{x}) = \mathbf{a}; (\mathbf{a} \in \mathbb{R})$	$\mathbf{F}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{c}$
$h = f' \times g + f \times g'$	$H = f \times g$	$\mathbf{f}(\mathbf{x}) = \mathbf{x}$	$\mathbf{F}(\mathbf{x}) = \frac{1}{2}\mathbf{x}^2 + \mathbf{c}$
$\mathbf{h} = -\frac{\mathbf{g'}}{\mathbf{g^2}}$ $\mathbf{h} = \frac{\mathbf{f' \times g - f \times g'}}{\mathbf{g^2}}$	$H = \frac{1}{g}$	$f(x) = x^{n}; (n \in \mathbb{Z} \setminus \{-1\})$	$F(x) = \frac{1}{n+1}x^{n+1} + c$
$\mathbf{h} = \frac{\mathbf{f} ' \times \mathbf{g} \cdot \mathbf{f} \times \mathbf{g}'}{\mathbf{g}^2}$	$H = \frac{f}{g}$	$f(x) = x^r; (r \in \mathbb{Q} \setminus \{-1\})$	$F(x) = \frac{1}{r+1}x^{r+1} + c$
h = f '×f ⁿ n ≠ −1 مع	$H = \frac{1}{n+1}f^{n+1}$	$\mathbf{f}(\mathbf{x}) = \frac{1}{\sqrt{\mathbf{x}}}$	$\mathbf{F}(\mathbf{x}) = 2\sqrt{\mathbf{x}} + \mathbf{c}$
h = f '×f r ≠ −1 مع	$H = \frac{1}{r+1}f^{r+1}$	$\mathbf{f}(\mathbf{x}) = \sin(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = -\mathbf{cos}(\mathbf{x}) + \mathbf{c}$
$\mathbf{h} = \mathbf{f} ' \times \mathbf{g}' \circ \mathbf{f}$	$\mathbf{H} = \mathbf{g} \circ \mathbf{f}$	$f(x) = \sin(ax + b) \ a \neq 0$	$F(x) = -\frac{1}{a}\cos(ax + b) + c$
$h = f'(ax + b) a \neq 0$	$\mathbf{H} = \frac{1}{\mathbf{a}}\mathbf{f} \left(\mathbf{a}\mathbf{x} + \mathbf{b}\right)$	$\mathbf{f}(\mathbf{x}) = \mathbf{cos}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \sin(\mathbf{x}) + \mathbf{c}$
		$f(x) = \cos(ax + b) \ a \neq 0$	$F(x) = \frac{1}{a}\sin(ax+b) + c$
		$f(x) = 1 + \tan^2(x) = \frac{1}{\cos^2 x}$	$\mathbf{F}(\mathbf{x}) = \mathbf{tan}(\mathbf{x}) + \mathbf{c}$
		$\mathbf{f}(\mathbf{x}) = \frac{\mathbf{f}'(\mathbf{x})}{\sqrt{\mathbf{f}(\mathbf{x})}}$	$\mathbf{F}(\mathbf{x}) = 2\sqrt{\mathbf{f}(\mathbf{x})} + \mathbf{c}$
		$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + c$