State Event Models for the Formal Analysis of Human-Machine Interactions

Sébastien Combéfis¹ Dimitra Giannakopoulou² Charles Pecheur¹

 1 Université catholique de Louvain (UCL) ICT, Electronics and Applied Mathematics Institute (ICTEAM)

²NASA Ames Research Center (ARC)

March 26, 2014

Introduction

- Automated formal analysis techniques for HMI systems
- Detection of potential automation surprises
- Conformance relation between actual system and mental model according to which it is operated

Formal Modelling

- HMI-LTS extends LTS with inputs and outputs:
 - Commands executed by the user
 - Observations executed by the system and observed by the user
 - Internal actions invisible to the user

Interaction Model

Interaction:

■ Represented with the synchronous parallel composition

Bad situations:

- \blacksquare A command missing on the system model (c₄)
- An observation missing on the mental model (o₁)

5

Full-control property

 \mathcal{H} fc \mathcal{S} if and only if :

- Full-control property captures safe interaction
- During the interaction between a user and a system:
 - The user must know exactly the possible commands...
 - ...and at least all the possible observations

```
\forall \sigma \in \mathcal{L}^* such that s_S \in (s_{0_S} \operatorname{after} \sigma) and s_H \in (s_{0_H} \operatorname{after} \sigma):
```

$$A^{c}(s_{S}) = A^{c}(s_{H})$$
 and $A^{o}(s_{S}) \subseteq A^{o}(s_{H})$

Generation Problem

■ **Goal:** Given the model of a system, automatically generate a minimal full-control conceptual model

Motivation:

- Extract the minimal behaviour of the system, so that it can be controlled without surprise
- Help to build artifacts: manuals, procedures, trainings, ...
- If such abstraction does not exist, provide feedback to help redesigning the system

ADEPT toolset

- Automatic Design and Evaluation Prototyping Toolset
- Java-based tool
- Support designers in early prototyping phases of automation interfaces

Autopilot ADEPT model I

Autopilot ADEPT model II

State Event Models

- ADEPT models combine state with transition information
- A state is made of *n* variables x_i ranging over domains D_i
- Only some state-variable are visible

HMI-LTS are enriched with state-values

HMI State-Valued System Model

- Each state s is associated with a state-value $\mathcal{O}(s)$
- Two kinds of observations are possible in a system

HMI State-Valued Mental Model

- Transition are guarded with a state-value
- A transition will be executed if the guard is satisfied in the current state of the system

Enriched models to HMI-LTS

■ System model

Mental model

■ The transformation preserves the developed algorithms

Conclusion

- An enriched model for system and mental model
- Translation from ADEPT models (to be automated)
- Reverse translation from HMI-LTS to ADEPT to be done