CSCI 430: Homework 6

John E. Buckley III

October 22, 2017

1 4.1-1

FIND-MAX-SUBARRAY is supposed to find the subarray with the maximum sum, however if all elements in A are negative then FIND-MAX-SUBARRAY will return the max single negative number.

2 4.1-2

```
\label{eq:main_sum} \begin{split} \operatorname{Maximum-Subarray}(A, \operatorname{low}, \operatorname{high}) \\ \operatorname{left=0} \\ \operatorname{right=0} \\ \operatorname{sum=-\infty} \\ \operatorname{for i=low to high} \\ \operatorname{newsum=0} \\ \operatorname{for j=i to high} \\ \operatorname{newsum+=A[j]} \\ \operatorname{if newsum}; \operatorname{sum} \\ \operatorname{sum=newsum} \\ \operatorname{left=i} \\ \operatorname{right=j} \\ \operatorname{return}(\operatorname{left}, \operatorname{right}, \operatorname{sum}) \end{split}
```

3 4.1-4

If the sum of the maximum subarray is negative, then return the empty subarray.

4 4.3-1

```
Let us assume T(n) \le cn^2 for some c. we get: T(n) \le c(n-1)^2 + n = cn^2 - 2cn + c + n
```

and if we pick c=1, we get: $n^2 - 2n + 1 + n = n^2 - n + 1 \le n^2$ for $n \ge 1$ Hence, T(n) = T(n-1) + n is $O(n^2)$.

5 4.3-2

Let us assume $T(n) \le clg(n-1)$ we get: $T(n) \le clg([n/2] - a) + 1$ $\le clg([\frac{n+1}{2}] - a) + 1$ = clg(n+1-2a) - c + 1 $\le clg(n-a) - c + 1$ for $(a \ge \frac{1}{3})$ $\le clg(n-a)$ for $(c \ge 1)$ Hence, T(n) = T([n/2]) + 1isO(lgn).

6 4.3-3

Lets suppose $T(n) \ge cnlgn$ $T(n) \ge 2c(\frac{n}{2})lg(\frac{n}{2}) + n$ = cnlgn - cn + n $\ge cnlgn$ for $(c \le 1)$

Hence this recurrence is also $\Omega(nlgn)$ and if the upper and lower bounds are both nlgn then the "exact" bound is also $nlgn (\Theta(nlgn))$.

7 4.5-1

 $n = n^{\frac{1}{2}}$ because a=2 and b=4 for all occurrences.

- 1. $f(n) = O(1) = O(n^{\frac{1}{2} \frac{1}{2}})$ which is case 1 of the master method hence, $T(n) = \Theta(n^{\frac{1}{2}})$
- 2. $f(n) = O(n^{\frac{1}{2}})$ which is case 2 of the master method hence, $T(n) = \Theta(n^{\frac{1}{2}} lgn)$
- 3. $f(n) = O(n) = O(n^{\frac{1}{2} + \frac{1}{2}})$ which is case 3 of the master method hence, $T(n) = \Theta(n)$
- 4. $f(n) = O(n^2) = O(n^{\frac{1}{2} + \frac{3}{2}})$ which is also case 3 of the master method hence, $T(n) = \Theta(n^2)$

8 4.5-2

The running time for Strassen's algorithm is $\Theta(n^{lg7})$ Professor Caesar's running time for his algorithm, in the worst case, is: $T(n) = \Theta(n^{lg4a}) = \Theta(n^{lg4a}) = \Theta(n^{lg4a})$.

For the professors algorithm to be smaller than Strassens then $n^{lg\sqrt{a}}$ must be smaller than n^{lg7} :

$$n^{lg\sqrt{a}} < n^{lg7}$$

$$lg\sqrt{a} < lg7$$

$$\sqrt{a} < 7$$

a < 49 The largest integer value of a is 48

Hence, the professor's algorithm is faster than Strassens when a;48.

9 4.5-3

In the given recurrence a=1 and b=2. Hence, $n^{lg_21}=1\to T(n)=lgn$ Thus, $T(n)=T(n/2)+\Theta(1)$ is $T(n)=\Theta(lgn)$

10 Non-Chapter

see notes