HLS Assignment 2

(KANEKAL KOUSAR[FWC2022063])

2.1) Use 32bit inputs and figure out the what the bitwidth should be for your design using your understanding of digital design and arithmetic operations

Header file

```
#ifndef MUL
#define MUL

#include <iostream>
using namespace std;

typedef long long out;

struct inputs{
    int A;
    int B;
};

#endif
```

C++ code

```
#include "mul.h"

void mul32_old(inputs din,out &dout){
    dout=(din.A)*(din.B);
}
```

Testbench

```
#include "mul.h"
void mul32_old(inputs din,out &dout);
int main(){
    inputs in;
    out out;
    int i;
    for (i=0;i<10;i++){
        in.A=i+2;
        in.B=i;
        mul32_old(in,out);
        cout<<iin.A<<"X"<<iin.B<<'"="<< out <<endl;
}
return 0;
}</pre>
```

Simulation report:

```
INFO: [SIM 2] ************ CSIM start *********
INFO: [SIM 4] CSIM will launch GCC as the compiler.
   Compiling ../../../mul_tb.cpp in debug mode
   Compiling ../../../mul.cpp in debug mode
   Generating csim.exe
```

Synthesis report:

Synthesis Report for 'mul32_old'

General Information

Date: Sat Mar 18 22:09:41 2023

Version: 2017.4 (Build 2086221 on Fri Dec 15 21:13:33 MST 2017)

Project: assignment2.1_new

Solution: solution1 Product family: zynq

Target device: xc7z020clg484-1

Performance Estimates

Timing (ns)

■ Summary

Clock Target Estimated Uncertainty ap_clk 10.00 8.51 1.25

Latency (clock cycles)

Summary

Latency Interval
min max min max Type
0 0 0 none

■ Detail

± Instance

± Loop

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	_	_	_	-
Expression	_	3	0	20
FIFO	_	_	_	_
Instance	_	_	_	_
Memory	_	_	_	_
Multiplexer	_	_	_	_
Register	_	_	_	-
Total	0	3	0	20
Available	280	220	106400	53200
Utilization (%)	0	1	0	~0

```
Detail
    ± Instance
    DSP48

    Memory

    # FIFO
    Expression
     Variable Name
                                  DSP48E
                                           FF
                                                LUT
                                                       Bitwidth P0
                                                                    Bitwidth P1
                      Operation
    tmp_fu_35_p2
Total
                                             0
                                                                             32
                                        3
                                                  20
                                                                32
                                                  20
                                             0
                                                                32
                                                                             32
    Multiplexer
    Register
Interface
 ■ Summary
                            Protocol Source Object
    RTL Ports
                 Dir Bits
                                                          С Туре
   ap_start
                 in
                            ap_ctrl_hs
                                           mul32_old return value
                         1 ap_ctrl_hs
1 ap_ctrl_hs
                                           mul32_old return value
mul32_old return value
   ap_done
                 out
                       į
   ap_idle
                 out
                                           mul32_old return value
   ap_ready
                 out
                          ap_ctrl_hs
                 in
in
                        32
   din_A
                            ap_none
                                                din_A
                                                             scalar
                        32
   din_B
                            ap_none
                                                din_B
                                                             scalar
                             ap_vld
ap_vld
   dout
                 out
                        64
                                                 dout
                                                            pointer
                       1
   dout_ap_vld out
                                                 dout
                                                            pointer
```

Cosimulation report

```
INFO: [Common 17-206] Exiting xsim at Sat Mar 18 22:17:02 2023...
INFO: [COSIM 212-316] Starting C post checking ...
2X0=0
3X1=3
4X2=8
5X3=15
6X4 = 24
7X5 = 35
8X6=48
9X7=63
10X8=80
11X9=99
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
INFO: [COSIM 212-210] Design is translated to an combinational logic. II and
Latency will be marked as all 0.
Finished C/RTL cosimulation.
```

Cosimulation Report for 'mul32_old'

```
Result
                     Latency
                                      Interval
   RTL
         Status
                 min
                      avg
                           max
                                  min
                                       avg
                                            max
 VHDL
            NA
                  NA
                       NA
                             NA
                                  NA
                                        NA
                                              NA
 Verilog
           Pass
Export the report(.html) using the Export Wizard
```

2.2) Use arbitrary precision data type with bitwidth of 4 for integer and 24 for fractional part of the inputs and figure out what the bitwidth of the output should be for your design.

Header file

```
#ifndef MUL
#define MUL

#include <iostream>
#include "ap_fixed.h"
using namespace std;

typedef ap_ufixed<28,4> fix28_4;
typedef ap_ufixed<56,8> fix56_8;

struct inputs{
    fix28_4 A;
    fix28_4 B;
};
#endif
```

C++ code

```
#include "mul.h"
void mulf(inputs din,fix56_8 &dout){
         dout=din.A*din.B;
}
```

Test bench

```
#include "mul.h"
void mulf(inputs din,fix56_8 &dout);
int main(){
    inputs in;
    fix56_8 out;
    int i;
    for (i=0;i<10;i++){
        in.A=i+0.64;
        in.B=i+0.52;
        mulf(in,out);
        cout <<iin.A<<"X"<<iin.B<</pre>
**Cout << endl;
}
</pre>
```

Simulation report

```
INFO: [SIM 2] ************* CSIM start *********
INFO: [SIM 4] CSIM will launch GCC as the compiler.
    Compiling ../../../mul_tb.cpp in debug mode
    Compiling ../../mul.cpp in debug mode
    Generating csim.exe
0.64X0.52=0.3328
1.64X1.52=2.4928
2.64X2.52=6.6528
3.64X3.52=12.8128
```

Synthesis report

Synthesis Report for 'mulf'

General Information

Date: Sat Mar 18 23:14:32 2023

Version: 2017.4 (Build 2086221 on Fri Dec 15 21:13:33 MST 2017)

Project: assignment2.2_old

Solution: solution1

Product family: zynq

Target device: xc7z020clg484-1

Performance Estimates

■ Summary

Clock Target Estimated Uncertainty ap_clk 10.00 7.45 1.25

■ Latency (clock cycles)

■ Summary

Latency Interval
min max min max Type
0 0 0 0 none

Detail

± Instance

+ Loop

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	_	_	_	_
Expression	_	3	0	36
FIFO	_	_	-	_
Instance	_	_	_	_
Memory	_	_	_	_
Multiplexer	_	_	-	_
Register	_	_	_	_
Total	0	3	0	36
Available	280	220	106400	53200
Utilization (%)	0	1	0	~0

Detail

± Instance

DSP48

Memory

± FIFO

± Expression

Multiplexer

E Register

Interface

■ Summary

Co-simulation report

```
INFO: [Common 17-206] Exiting xsim at Sat Mar 18 23:19:27 2023...
INFO: [COSIM 212-316] Starting C post checking ...
0.64X0.52=0.3328
1.64X1.52=2.4928
2.64X2.52=6.6528
3.64X3.52=12.8128
4.64X4.52=20.9728
5.64X5.52=31.1328
6.64X6.52=43.2928
7.64X7.52=57.4528
8.64X8.52=73.6128
9.64X9.52=91.7728
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
INFO: [COSIM 212-210] Design is translated to an combinational logic. II and Latency
will be marked as all 0.
Finished C/RTL cosimulation.
```

```
Result
                                         Interval
                       Latency
   RTL
          Status
                                           avg
                                                 mn-ax:
                  min
                         awg
                              max
                                     min
 VHDL
             NA
                   NA
                                                  NA
                               NA
                                     NΑ
                                           NA
 Verilog
            Pass
                     0
                                        O.
Export the report(.html) using the Export Wizard
```

2.3.1) Use HLS stream blocking interface for the ports in your design

Header file

```
#ifndef MUL32
#define MUL32
#include <iostream>
#include "hls_stream.h"

using namespace std;
using namespace hls;

typedef long long out;
struct inputs{
    int A;
    int B;
};
#endif
```

C++ code

```
#include "mul32.h"

void mul32(stream<inputs> &din,stream<out> &dout){
```

```
inputs data=din.read();
  dout.write(data.A * data.B);
}
```

Test bench

```
#include "mul32.h"
void mul32(stream<inputs> &din,stream<long long> &dout);
int main(){
      stream<inputs> indata;
      stream<long long> outdata;
      inputs in;
      long long out;
      int i;
      for (i=0;i<10;i++){</pre>
             in.A=i+2;
             in.B=i;
             indata.write(in);
             mul32(indata,outdata);
             outdata>>out;
             cout<<in.A<<"X"<<in.B<<"="<< out <<endl;</pre>
      return 0;
```

Simulation

```
INFO: [SIM 4] CSIM will launch GCC as the compiler.
  Compiling ../../mul32_tb.cpp in debug mode
  Compiling ../../mul32.cpp in debug mode
  Generating csim.exe
2X0=0
3X1=3
4X2=8
5X3=15
6X4=24
7X5=35
8X6=48
9X7=63
10X8=80
11X9=99
INFO: [SIM 1] CSim done with 0 errors.
```

Synthesis:

Synthesis Report for 'mul32'

General Information

Date: Sat Mar 18 23:47:56 2023

Version: 2017.4 (Build 2086221 on Fri Dec 15 21:13:33 MST 2017)

Project: assignment2.1

Solution: solution1

Product family: zynq

Target device: xc7z020clg484-1

Performance Estimates

Timing (ns)

■ Summary

Clock Target Estimated Uncertainty ap_clk 10.00 8.51 1.25

■ Latency (clock cycles)

■ Summary

Latency Interval min max min max Type 2 2 2 2 none

Detail

± Instance

± Loop

Utilization Estimates

 Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	_	_	_	-
Expression	_	3	0	36
FIFO	-	-	_	-
Instance	-	-	_	-
Memory	_	_	_	-
Multiplexer	-	-	_	48
Register	-	_	99	-
Total	0	3	99	84
Available	280	220	106400	53200
Utilization (%)	0	1	~0	~0

Detail

Instance

± DSP48

± Memory

± FIFO

■ Expression

Variable Name	Operation	DSP48E	FF	LUT	Bitwidth P0	Bitwidth P1
tmp_1_fu_51_p2	*	3	0	20	32	32
din_V_A0_status	and	0	0	8	1	1
ap_block_state1	or	0	0	8	1	1
Total	3	3	0	36	34	34

■ Multiplexer

Name	LUT	Input Size	Bits	Total Bits
ap_NS_fsm	21	4	1	4
din_V_A_blk_n	9	2	1	2
din_V_B_blk_n	9	2	1	2
dout_V_blk_n	9	2	1	2
Total	48	10	4	10

Interface ─ Summary RTL Ports Dir Bits Protocol Source Object C Type ap_ctrl_hs mul32 in 1 return value ap_clk in 1 ap_ctrl_hs mul32 return value ap_rst 1 ap_ctrl_hs ap_start in mul32 return value ap_done 1 ap_ctrl_hs mul32 return value out ap_idle 1 ap_ctrl_hs mul32 return value out 1 ap_ctrl_hs mul32 return value ap_ready out din_V_A_dout din_V_A_empty_n din_V_A_read 32 ap_fifo din_V_A pointer in 1 din_V_A din_V_A in ap fifo pointer out ap_fifo pointer ap_fifo din_V_B din_V_B_dout 32 pointer in din_V_B_empty_n 1 ap_fifo din V B pointer in 1 din_V_B din_V_B_read out ap_fifo pointer dout_V_din 64 out ap_fifo dout_V pointer dout_V_full_n pointer in 1 ap_fifo dout_V dout_V_write out 1 ap_fifo dout_V pointer

Co-simualtion report:

```
INFO: [Common 17-206] Exiting xsim at Sat Mar 18 23:50:44 2023...
INFO: [COSIM 212-316] Starting C post checking ...
2X0=0
3X1=3
4X2=8
5X3=15
6X4=24
7X5=35
8X6=48
9X7=63
10X8=80
11X9=99
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
Finished C/RTL cosimulation.
```

Cosimulation Report for 'mul32'

```
Result
                                       Interval
                      Latency
   RTL
          Status
                  min
                      awg
                            max
                                   min
                                         awg
                                              mnax
 VHDL
            NA
                  NA
                        NA
                              NA
                                                NA
                                    NA
                                         NA
 Verilog
           Pass
                    2
                                2
                                                  3
Export the report(.html) using the Export Wizard
```

2.3.1)

Header file

```
#ifndef MULFIX
#define MULFIX
```

```
#include <iostream>
#include "ap_fixed.h"
#include "hls_stream.h"

using namespace std;
using namespace hls;

typedef ap_ufixed<28,4, AP_RND, AP_WRAP> fix28_4;
typedef ap_ufixed<56,8, AP_RND, AP_WRAP> fix56_8;

struct inputs{
    fix28_4 A;
    fix28_4 B;
};
#endif
```

C++ code

```
#include "mulfix.h"
void mulf(stream<inputs> &din,stream<fix56_8> &dout){
    inputs data=din.read();
    dout.write(data.A * data.B);
}
```

Test bench

```
#include "mulfix.h"
void mulf(stream<inputs> &din,stream<fix56_8> &dout);
int main(){
    stream<inputs> indata;
    stream<fix56_8> outdata;
    int i;
    inputs in={0,0};
    fix56_8 out;
    for (i=0;i<10;i++){
        in.A=i+0.6;
        in.B=i+0.5;
        indata.write(in);
        mulf(indata,outdata);
        outdata>>out;
        cout <<iin.A<<"X"<<iin.B<<"="<<out<<>end1;}}
```

Simulation reports

```
9.6X9.5=91.2
```

INFO: [SIM 1] CSim done with 0 errors.

Synthesis:

Interface ─ Summary RTL Ports Dir Bits Protocol Source Object C Type ap_clk in ap_ctrl_hs mulf return value ap_ctrl_hs ap_rst in 1 mulf return value ap_start 1 ap_ctrl_hs in mulf return value ap_done 1 out ap_ctrl_hs mulf return value ap_idle 1 ap_ctrl_hs mulf return value out ap_ready out 1 ap_ctrl_hs mulf return value din_V_A_V_dout din_V_A_V ap_fifo pointer in 28 din_V_A_V_empty_n ap_fifo din_V_A_V in pointer din_V_A_V_read din_V_A_V 1 pointer out ap_fifo din_V_B_V_dout din_V_B_V_empty_n ap_fifo din_V_B_V din_V_B_V 28 pointer in in 1 ap_fifo pointer din_V_B_V_read 1 din_V_B_V ap_fifo out pointer dout_V_V_din out 56 ap_fifo dout V V pointer dout_V_V_full_n dout_V_V in 1 ap_fifo pointer dout_V_V_write 1 ap_fifo dout_V_V pointer out

Cosimulation report:

```
INFO: [Common 17-206] Exiting xsim at Sun Mar 19 00:17:15 2023...
INFO: [COSIM 212-316] Starting C post checking ...
0.6X0.5=0.3
1.6X1.5=2.4
2.6X2.5=6.5
3.6X3.5=12.6
4.6X4.5=20.7
5.6X5.5=30.8
6.6X6.5=42.9
7.6X7.5=57
8.6X8.5=73.1
9.6X9.5=91.2
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
```


OBSERVATIONS 1:

assignment	Time	Resources	
	(ns)	LUT	DSP48E
1 (8-bit)	4.1	41	-
2.1 (32-bits)	8.51	20	3

- From assignment 1 to 2.1 the data-width increased, so timing increased
- Multiplications which are >=10-bits are implemented on DSP48,else LUT's are used

OBSERVATION2:

Assignment	Time (ns)	Resources	
		LUT	DSP48E
2.1 (32-bits)	8.51	20	3
2.2 (28-bits)	7.45	36	3

- From assignment 2.1 to 2.2 the data-width decreased ,so timing decreased
- In assignment 2.2 arbitrary precision data type is used, so number of LUT's increased

OBSERVATION3:

Assignment		Time	Resources		
		(ns)	LUT	DSP48	FF
2.1	Without HLS stream interface	8.51	20	3	-
(32-bits)	With HLS stream interface	8.51	84	3	99
2.2	Without HLS stream interface	7.45	36	3	-
(28-bits)	With HLS stream interface	7.45	100	3	115

- By using HLS stream interface there is no effect on timing
- By using HLS stream interface the number of resources consumed increased