Συναρτήσεις Οριο Συνάρτησης στο $x_0 \in \mathbb{R}$

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Το αστέρι μας

$$\lim_{x \to x_0} f(x)$$

- Το όριο της εφ όταν το χι τείνει στο χιμηδεν
- ullet Το όριο της f στο x_0
- Οταν το x πάει στο x_0 , πού πάει η f...

Το αστέρι μας

$$\lim_{x \to x_0} f(x)$$

- Το όριο της εφ όταν το χι τείνει στο χιμηδεν
- ullet Το όριο της f στο x_0
- Οταν το x πάει στο x_0 , πού πάει η f...

Το αστέρι μας

$$\lim_{x \to x_0} f(x)$$

- Το όριο της εφ όταν το χι τείνει στο χιμηδεν
- ullet Το όριο της f στο x_0
- ullet Οταν το x πάει στο x_0 , πού πάει η f...

Το αστέρι μας

$$\lim_{x \to x_0} f(x)$$

- Το όριο της εφ όταν το χι τείνει στο χιμηδεν
- Το όριο της f στο x_0
- Οταν το x πάει στο x_0 , πού πάει η f...

- ullet Τι σημαίνει πλησιάζω στο x_0
 - Δημιουργήστε την γραμμή των πραγματικών αριθμών και πλησιάστε στο x=2
 - Με πόσους τρόπους μπορείτε να πλησιάσετε
- ullet Τι σημαίνει η f πλησιάζει στο l
- Τι σημαίνει οσοδήποτε κοντά

- ullet Τι σημαίνει πλησιάζω στο x_0
 - Δημιουργήστε την γραμμή των πραγματικών αριθμών και πλησιάστε στο x=2
 - Με πόσους τρόπους μπορείτε να πλησιάσετε
- ullet Τι σημαίνει η f πλησιάζει στο l
- Τι σημαίνει οσοδήποτε κοντά

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 4/13

- Τι σημαίνει πλησιάζω στο x_0
 - Δημιουργήστε την γραμμή των πραγματικών αριθμών και πλησιάστε στο x=2
 - Με πόσους τρόπους μπορείτε να πλησιάσετε
- Τι σημαίνει η f πλησιάζει στο l
- Τι σημαίνει οσοδήποτε κοντά

- Τι σημαίνει πλησιάζω στο x_0
 - Δημιουργήστε την γραμμή των πραγματικών αριθμών και πλησιάστε στο x=2
 - Με πόσους τρόπους μπορείτε να πλησιάσετε
- Τι σημαίνει η f πλησιάζει στο l
- Τι σημαίνει οσοδήποτε κοντά

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Για μια συνάρτηση που ορίζεται σε διάστημα της μορφής (α,x_0) για κατάλληλο α

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Για μια συνάρτηση που ορίζεται σε διάστημα της μορφής (α,x_0) για κατάλληλο α

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Δεξί πλευρικό όριο

$$\lim_{x\to x_0^+} f(x)$$

Για μια συνάρτηση που ορίζεται σε διάστημα της μορφής (x_0,α) για κατάλληλο α

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Δεξί πλευρικό όριο

$$\lim_{x\to x_0^+} f(x)$$

Για μια συνάρτηση που ορίζεται σε διάστημα της μορφής (x_0,α) για κατάλληλο α

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Δεξί πλευρικό όριο

$$\lim_{x\to x_0^+} f(x)$$

Για μια συνάρτηση που ορίζεται σε διάστημα της μορφής (x_0,α) για κατάλληλο α

Αρα

Υπαρξη ορίου

$$\lim_{x \to x_0^-} f(x) = \lambda \iff \begin{cases} \lim_{x \to x_0^-} f(x) = \lambda \in \mathbb{R} \\ \lim_{x \to x_0^+} f(x) = \lambda \in \mathbb{R} \\ \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \end{cases}$$

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 7/13

Περιπτωσάρα

Av
$$f(x) = \sqrt{x}$$
?, $f(x) = \ln(-x)$?

Αν μια συνάρτηση ορίζεται μόνο σε διάστημα της μορφής (α,x_0) τότε $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}f(x)$

Ομοια για
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x)$$

Περιπτωσάρα

Av
$$f(x) = \sqrt{x}$$
?, ή $f(x) = \ln(-x)$?

Αν μια συνάρτηση ορίζεται μόνο σε διάστημα της μορφής (α, x_0) τότε $\lim_{x\to x_0} f(x) = \lim_{x\to x_0^-} f(x)$

Ομοια για
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x)$$

Συναρτήσεις 8/13

Περιπτωσάρα

Av
$$f(x) = \sqrt{x}$$
?, $f(x) = \ln(-x)$?

Αν μια συνάρτηση ορίζεται μόνο σε διάστημα της μορφής (α, x_0) τότε $\lim_{x \to x_0} f(x) = \lim_{x \to x_0^-} f(x)$

Ομοια για
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x)$$

Συναρτήσεις 8/13

Ιδιότητες

• Το όριο στην περίπτωση που υπάρχει είναι μοναδικό

$$\bullet \ \lim_{x \to x_0} f(x) = k \iff \lim_{x \to x_0} \left(f(x) - k \right) = 0$$

$$\bullet \lim_{x \to x_0} f(x) = k \iff \lim_{h \to 0} f(h + x_0) = k$$

Ιδιότητες

- Το όριο στην περίπτωση που υπάρχει είναι μοναδικό
- $\bullet \ \lim_{x \to x_0} f(x) = k \iff \lim_{x \to x_0} \left(f(x) k \right) = 0$
- $\bullet \lim_{x \to x_0} f(x) = k \iff \lim_{h \to 0} f(h + x_0) = k$

Ιδιότητες

- Το όριο στην περίπτωση που υπάρχει είναι μοναδικό
- $\bullet \ \lim_{x \to x_0} f(x) = k \iff \lim_{x \to x_0} \left(f(x) k \right) = 0$
- $\bullet \ \lim_{x \to x_0} f(x) = k \iff \lim_{h \to 0} f(h + x_0) = k$

- Θα περιγράφουμε
- Θα υπολογίζουμε (χωρίς να ξέρουμε γιατί)
- Θα χρησιμοποιούμε ιδιότητες και τεχνικές
- αλλά και πάλι δεν θα καταλαβαίνουμε

Ουσιαστικά τα όρια θα τα υπολογίζουμε εντελώς μηχανικά

- Θα περιγράφουμε
- Θα υπολογίζουμε (χωρίς να ξέρουμε γιατί)
- Θα χρησιμοποιούμε ιδιότητες και τεχνικές
- αλλά και πάλι δεν θα καταλαβαίνουμε

Ουσιαστικά τα όρια θα τα υπολογίζουμε εντελώς μηχανικά

- Θα περιγράφουμε
- Θα υπολογίζουμε (χωρίς να ξέρουμε γιατί)
- Θα χρησιμοποιούμε ιδιότητες και τεχνικές

Ουσιαστικά τα όρια θα τα υπολογίζουμε εντελώς μηχανικά

Συναρτήσεις 10/13

- Θα περιγράφουμε
- Θα υπολογίζουμε (χωρίς να ξέρουμε γιατί)
- Θα χρησιμοποιούμε ιδιότητες και τεχνικές
- αλλά και πάλι δεν θα καταλαβαίνουμε

Ουσιαστικά τα όρια θα τα υπολογίζουμε εντελώς μηχανικά

Συναρτήσεις 10/13

Επίδειξη

Στο διάλ ορίου.

Ορισμό Εστω μι Λέμε ότ

Για κάθ0 < |x|

Επίδειξη

Στο διάλ ορίου. Ι

Ορισμό Εστω μι

Λέμε ότ

0 < |x|

Επίδειξη

ΚΑΙ ΜΕΤΆ ΒΑΛΑΜΕ ΣΤΟ ΣΧΟΛΙΚΌ ΤΟΝ ΟΡΙΣΜΟ ΤΟΥ ΟΡΙΟΥ ΑΠΟ ΤΟ ΠΑΝΕΠΙΣΤΗ Στο διάλ ορίου. Ι Ορισμό Εστω μι Λέμε ότ Για κάθε KAI AYTOI EXOYN THN 0 < |x|ΕΝΤΥΠΩΣΗ ΟΤΙ ΘΑ ΤΟΝ ΚΑΤΑΛΑΒΟΥΝ

Εξάσκηση

Μόνο από το βιβλίο, μόνο γραφικά!

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση