Proving Mathematical Statements

Rodolfo Lopez

April 2023

Overview

• A statement is a proposition that is either true or false.

Overview

- A statement is a proposition that is either true or false.
- Proofs are used to establish whether a statement is true or false.

Overview

- A statement is a proposition that is either true or false.
- Proofs are used to establish whether a statement is true or false.
- Four proof methods are: direct proof, proof by contrapositive, proof by contradiction, and proof by induction.

Proving mathematical statements...

Proving mathematical statements...

• Ensures the correctness of mathematical ideas and helps to avoid errors in practical applications

Proving mathematical statements...

- Ensures the correctness of mathematical ideas and helps to avoid errors in practical applications
- Helps to advance our understanding of mathematical concepts and their relationships

Proving mathematical statements...

- Ensures the correctness of mathematical ideas and helps to avoid errors in practical applications
- Helps to advance our understanding of mathematical concepts and their relationships
- Can lead to new discoveries and innovations that can have significant impacts in various fields

Direct Proof

A direct proof shows that an if-then statement is true by providing a logical chain of reasoning from the premises to the conclusion.

1 State the hypothesis or premise of the statement to be proved.

- State the hypothesis or premise of the statement to be proved.
- State any definitions or axioms that are relevant.

- State the hypothesis or premise of the statement to be proved.
- 2 State any definitions or axioms that are relevant.
- Use logical reasoning to deduce the conclusion from the premises and definitions.

- State the hypothesis or premise of the statement to be proved.
- State any definitions or axioms that are relevant.
- Use logical reasoning to deduce the conclusion from the premises and definitions.
- State the conclusion and conclude the proof.

Prove that if a and b are odd integers, then a + b is even.

1 Let *a* and *b* be odd integers.

- 1 Let a and b be odd integers.
- ② By definition, an odd integer can be written as 2n + 1, where n is an integer.

- 1 Let a and b be odd integers.
- ② By definition, an odd integer can be written as 2n + 1, where n is an integer.
- 3 So, we can write $a = 2n_1 + 1$ and $b = 2n_2 + 1$ for some integers n_1 and n_2 .

- ① Let a and b be odd integers.
- ② By definition, an odd integer can be written as 2n + 1, where n is an integer.
- 3 So, we can write $a = 2n_1 + 1$ and $b = 2n_2 + 1$ for some integers n_1 and n_2 .
- **1** Therefore, $a + b = 2n_1 + 1 + 2n_2 + 1 = 2(n_1 + n_2 + 1)$, which is even by definition.

- 1 Let a and b be odd integers.
- ② By definition, an odd integer can be written as 2n + 1, where n is an integer.
- 3 So, we can write $a = 2n_1 + 1$ and $b = 2n_2 + 1$ for some integers n_1 and n_2 .
- Therefore, $a + b = 2n_1 + 1 + 2n_2 + 1 = 2(n_1 + n_2 + 1)$, which is even by definition.
- **5** Hence, if a and b are odd integers, then a + b is even.

Proof by Contrapositive

A proof by contrapositive is a proof that establishes the truth of an if-then statement by proving the truth of its contrapositive. The contrapositive of an if-then statement is formed by negating both the hypothesis and the conclusion and reversing the direction of the implication.

Proof by Contrapositive Structure

State the contrapositive of the statement to be proved.

Proof by Contrapositive Structure

- State the contrapositive of the statement to be proved.
- Assume the negated conclusion is true.

Proof by Contrapositive Structure

- State the contrapositive of the statement to be proved.
- Assume the negated conclusion is true.
- Use direct proof to show that the negated hypothesis must also be true.

Prove that if n is an integer and n^2 is even, then n is even.

• The contrapositive of the statement is: If n is an odd integer, then n^2 is odd.

- The contrapositive of the statement is: If n is an odd integer, then n^2 is odd.
- Assume that n is an odd integer.

- The contrapositive of the statement is: If n is an odd integer, then n^2 is odd.
- 2 Assume that *n* is an odd integer.
- **3** By definition, an odd integer can be written as 2k + 1, where k is an integer.

- The contrapositive of the statement is: If n is an odd integer, then n^2 is odd.
- ② Assume that n is an odd integer.
- **3** By definition, an odd integer can be written as 2k + 1, where k is an integer.
- **3** So, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ is odd.

- The contrapositive of the statement is: If n is an odd integer, then n^2 is odd.
- ② Assume that n is an odd integer.
- **3** By definition, an odd integer can be written as 2k + 1, where k is an integer.
- **3** So, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ is odd.
- **1** Hence, if n is an odd integer, then n^2 is odd.

- The contrapositive of the statement is: If n is an odd integer, then n^2 is odd.
- ② Assume that n is an odd integer.
- **3** By definition, an odd integer can be written as 2k + 1, where k is an integer.
- **3** So, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ is odd.
- **1** Hence, if n is an odd integer, then n^2 is odd.
- By proving the contrapositive, we have shown that if n^2 is even, then n must be even.

Proof by Contradiction

A proof by contradiction is a proof that establishes the truth of a statement by assuming its negation and then deriving a contradiction.

Proof by Contradiction Structure

Assume the negation of the statement to be proved.

Proof by Contradiction Structure

- Assume the negation of the statement to be proved.
- ② Use logical reasoning to derive a contradiction.

Proof by Contradiction Structure

- Assume the negation of the statement to be proved.
- ② Use logical reasoning to derive a contradiction.
- Onclude that the original statement must be true.

Proof by Contradiction Example

Prove that $\sqrt{2}$ is irrational.

Proof by Contradiction Example

Prove that $\sqrt{2}$ is irrational.

• Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.

- Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.

- Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.
- **3** Multiplying both sides by q^2 , we get $2q^2 = p^2$.

- Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.
- **3** Multiplying both sides by q^2 , we get $2q^2 = p^2$.
- Since p^2 is even, p must be even. [by Example 2]

- Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.
- **3** Multiplying both sides by q^2 , we get $2q^2 = p^2$.
- Since p^2 is even, p must be even. [by Example 2]
- **5** Let p = 2k for some integer k.

- **1** Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.
- **3** Multiplying both sides by q^2 , we get $2q^2 = p^2$.
- Since p^2 is even, p must be even. [by Example 2]
- **1** Let p = 2k for some integer k.
- **5** Substituting this into the previous equation, we get $2q^2 = (2k)^2 = 4k^2$, which implies that $q^2 = 2k^2$.

- Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.
- **3** Multiplying both sides by q^2 , we get $2q^2 = p^2$.
- Since p^2 is even, p must be even. [by Example 2]
- **5** Let p = 2k for some integer k.
- **6** Substituting this into the previous equation, we get $2q^2 = (2k)^2 = 4k^2$, which implies that $q^2 = 2k^2$.
- **O** Since q^2 is even, q must also be even. [by Example 2]

- Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.
- **3** Multiplying both sides by q^2 , we get $2q^2 = p^2$.
- Since p^2 is even, p must be even. [by Example 2]
- **5** Let p = 2k for some integer k.
- **6** Substituting this into the previous equation, we get $2q^2 = (2k)^2 = 4k^2$, which implies that $q^2 = 2k^2$.
- Since q^2 is even, q must also be even. [by Example 2]
- \odot But this contradicts our assumption that p and q have no common factors, since they are both even.

- Assume that $\sqrt{2}$ is rational, i.e., it can be expressed as a fraction in lowest terms, $\sqrt{2} = \frac{p}{q}$, where p and q are integers with no common factors.
- ② Squaring both sides of the equation, we get $2 = \frac{p^2}{q^2}$.
- **3** Multiplying both sides by q^2 , we get $2q^2 = p^2$.
- **4** Since p^2 is even, p must be even. [by Example 2]
- **5** Let p = 2k for some integer k.
- **6** Substituting this into the previous equation, we get $2q^2 = (2k)^2 = 4k^2$, which implies that $q^2 = 2k^2$.
- **O** Since q^2 is even, q must also be even. [by Example 2]
- 3 But this contradicts our assumption that p and q have no common factors, since they are both even.
- **9** Therefore, our assumption that $\sqrt{2}$ is rational must be false, and $\sqrt{2}$ is irrational.

Proof by Induction

A proof by induction is a method of proof that establishes the truth of a statement for all natural numbers (or all integers greater than some fixed integer) by proving it for a base case and then showing that if the statement is true for some integer n, then it must also be true for n+1.

1 Prove the statement for a base case (usually n = 1 or n = 0).

- **1** Prove the statement for a base case (usually n = 1 or n = 0).
- ② Assume that the statement is true for n = k.

- **1** Prove the statement for a base case (usually n = 1 or n = 0).
- ② Assume that the statement is true for n = k.
- **3** Show that it must also be true for n = k + 1.

- **1** Prove the statement for a base case (usually n = 1 or n = 0).
- ② Assume that the statement is true for n = k.
- **3** Show that it must also be true for n = k + 1.
- Conclude that the statement is true for all natural numbers n.

Prove that for all natural numbers n, $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

1 Base case: When n = 0, the left-hand side of the equation is 0, and the right-hand side is $\frac{0(0+0)}{2} = 0$. Therefore, the statement is true for n = 0.

- **1** Base case: When n = 0, the left-hand side of the equation is 0, and the right-hand side is $\frac{0(0+0)}{2} = 0$. Therefore, the statement is true for n = 0.
- ② Assume that the statement is true for n = k, i.e., $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$.

- **1** Base case: When n = 0, the left-hand side of the equation is 0, and the right-hand side is $\frac{0(0+0)}{2} = 0$. Therefore, the statement is true for n = 0.
- ② Assume that the statement is true for n = k, i.e., $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$.
- **3** Consider the case when n = k + 1. We have:

$$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)}{2}$$

Prove that for all natural numbers n, $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

- **1** Base case: When n = 0, the left-hand side of the equation is 0, and the right-hand side is $\frac{0(0+0)}{2} = 0$. Therefore, the statement is true for n = 0.
- ② Assume that the statement is true for n = k, i.e., $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$.
- **3** Consider the case when n = k + 1. We have:

$$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)}{2}$$

1 This shows that if the statement is true for n = k, then it must also be true for n = k + 1.

- **1** Base case: When n = 0, the left-hand side of the equation is 0, and the right-hand side is $\frac{0(0+0)}{2} = 0$. Therefore, the statement is true for n = 0.
- ② Assume that the statement is true for n = k, i.e., $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$.
- **3** Consider the case when n = k + 1. We have:

$$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)}{2}$$

- **4** This shows that if the statement is true for n = k, then it must also be true for n = k + 1.
- **5** Therefore, by the principle of mathematical induction, the statement is true for all natural numbers *n*.

Thank You!