湖 学 南 城 市 院

年 第二学期

高等数学 A(下) 》试卷

年级专业:全体本科专业 B 卷 时间: 120 分钟

【闭卷】

题型	I		Ш	四	五	六	七	八	总分	合分人
分数	15	15	70							
得分										

得分

一、填空题: (每小题 3 分, 共 15 分)

- 1、设函数 $f(x, y) = x^2 + y^2, \varphi(x, y) = x^2 y^2, 则 f[\varphi(x, y), y^2] =$
- 3、设曲面 S 是 xoy 面上闭区域 D 的上侧,则 $\iint (x+y+z)dydz =$ ___
- 5、将 xoz 面上的抛物线 $z^2 = 5x$ 绕 x 轴旋转一周, 所得的旋转曲面方程为

得分

二、选择题(每题只有一个最恰当的答案,每题3分,共15分)

6、设函数P(x,y),Q(x,y)在单连通开区域D内有具有一阶连续偏导数,则曲线积分

 $\int P dx + Q dy$ 在 D 内与路径无关的充要条件是

- (A) $\frac{\partial Q}{\partial x} = -\frac{\partial P}{\partial y}$, (B) $\frac{\partial Q}{\partial y} = -\frac{\partial P}{\partial x}$

- (C) $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ (D) $\frac{\partial Q}{\partial y} = \frac{\partial P}{\partial x}$
- 7、下列结论错误的是
 - (A) 若函数 z = z(x, y) 在点 M 处可微,则其在点 M 处一定连续;
 - (B) 若函数 z = z(x, y) 在点 M 处可微,则其在点 M 处一定可偏导;
 - (C) 若函数 z = z(x, y) 在点 M 处可偏导,且偏导函数连续,则其在点 M 处一定可微;
 - (D) 若函数 z = z(x, y) 在点 M 处可偏导,则其在点 M 处一定可微;

8、若 $f_x(a,b) = 2$,则 $\lim_{\Delta y \to 0} \frac{f(a,b+\Delta y) - f(a,b-\Delta y)}{\Delta y} =$

(B) 4

- (A) 2

(D) 0

9、下列关于向量描述错误的是

(A) 若向量 $\vec{a} \perp \vec{b} = 0$, 则 $\vec{a} \times \vec{b} = 0$ (B) 若向量 $\vec{a} / / \vec{b}$, 则 $\vec{a} \times \vec{b} = 0$

(C) 6

- (C) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ 是一个数量 (D) $Prj_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
- 10、判断正项级数的敛散性 $\sum_{n=1}^{\infty} \sin \frac{1}{n}$
 - (A) 绝对收敛
- (B) 条件收敛
- (C) 发散
- (D) 不能判断其敛散性

得分

三、解答题: (本大题共70分,每题10分)

11、
$$\iint\limits_{D} \sqrt{x^2 + y^2} dx dy$$
, 其中 D 是圆形区域 $a^2 \le x^2 + y^2 \le b^2$ (a,b)

$$\left| 12, \ \ \frac{x}{y} + \ln(yz) = 0, \ \ \text{\vec{x}} \ Z_x(x,y), Z_y(x,y), dz \right|_{(0,1,1)}$$

13、在曲面 z = xy 上求一点,使得该点的法线垂直于平面 x + 2y + z + 9 = 0,并求在该点处的法线方程及切平面方程。

14、计算 $\int_{L} (e^{x} \sin 2y - y) dx + (2e^{x} \cos 2y - 100) dy$, 其中 L 为单位圆 $x^{2} + y^{2} = 1$ 上从点 A(1,0) 至点 B(-1,0) 的上半圆周。

15、级数 $\sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n}$ 是否收敛?如果收敛, 是绝对收敛还是条件收敛?

16、设三角形的三边长分别为 3a,4a,5a,(a>0), 试该三角形内一点到三边距离之乘积的最大值。

17、计算 $\oint_{\Sigma} (xz^2 + x) dy dz + (x^2y + 2y) dz dx + (y^2z - 3z) dx dy$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 的内侧。