Levi Clark EECS 678

Lab06

Dining Philosophers

1) Describe the asymmetric solution. How does the asymmetric solution guarantee the philosophers never enter a deadlocked state?

Answer: This solution has even numbered phils to pick up in left-right order, while odd-numbered pick up in right-left order. As a result, have of the chopsticks are unclaimed and available so phils can find one when looking to other side.

2) Does the asymmetric solution prevent starvation? Explain.

Answer: As long as thinking and eating periods vary randomly and other factors make when a phil tries to pick up their chopsticks vary randomly, then progress should be roughly equal and no phil should starve \sim slide 12

3)Describe the waiter's solution. How does the waiter's solution guarantee the philosophers never enter a deadlocked state?

Answer: The waiter distributes chopsticks after waiting that both chopsticks are available to distribute to the philosopher. The waiters solution guarantees there is never a deadlocked state because he looks for both chopsticks at once.

4) Does the waiter's solution prevent starvation? Explain.

Answer: slide 16: "does the solution prevent starvation? Hint: NO!!!" . The waiter could possibly never find 2 chopsticks to distribute.

5) Consider a scenario under a condition variable based solution where a philosopher determines at the time it frees its chopsticks that both chopsticks of another philosopher (Phil) it shares with are free, and so it sends the (possibly) waiting Phil a signal. Under what circumstances may Phil find that both of its chopsticks are NOT free when it checks?

Answer: Phil could find that a faster philosopher has grabbed the chopsticks before him if a loop isnt used to make him wait for one.