

D.Y. Patil Academic Education Excellence Federation's

Dr.D.Y. Patil Technical Campus

(Engineering and MCA)
(Approved by AICTE, DTE-Govt of Maharashtra, Affiliated to Savitribai Phule Pune University, Pune)
Sr.No.32/1/A/7, Near Talegaon Railway Station, A/P Varale, Talegaon Dabhade
Tal-Maval, Dist Pune 410507

Ph. No.9920141406,9309228311,7666829653,9307909501 Website: www.dypatiltcs.com

Lab Manual – ER Modeling and Normalization

Experiment No. 1

Title: ER Modeling and Normalization for Real-Time Application

1. Aim

To analyze a real-time problem, formulate a case study, design its conceptual schema using **Entity-Relationship (ER) modeling**, and convert it into a normalized relational database schema.

2. Problem Statement

"Design a database system for an **Online Bookstore** that manages books, customers, orders, and payments. The system should support functionalities like customer registration, book search, order placement, and payment tracking."

3. Theory

3.1 ER Modeling

- Entity: Real-world object (e.g., Book, Customer, Order, Payment).
- **Attributes**: Properties of entities (e.g., Book → ISBN, Title, Price).
- **Primary Key**: Unique identifier for entity (e.g., ISBN for Book, Cust ID for Customer).
- Relationships: Associations between entities (e.g., Customer places Order).
- Cardinalities: One-to-One, One-to-Many, Many-to-Many.
- Generalization/Specialization: Hierarchical relationships (e.g., Payment → Online Payment, Cash Payment).

3.2 Conversion from ER to Relational Model

- Strong Entity → Table with PK.
- Weak Entity → Table with PK + FK.
- Relationship → Converted based on cardinality.

3.3 Normalization

Process of organizing data to reduce redundancy and dependency.

- **1NF**: Remove multivalued attributes: ensure atomic values.
- **2NF**: Remove partial dependencies (non-key attribute depends on part of composite key).
- **3NF**: Remove transitive dependencies (non-key depending on another non-key).
- **BCNF**: Every determinant is a candidate key.

4. Tools Used

- ERDPlus (Free online tool: https://erdplus.com)
- **ERWin / Draw.io / Lucidchart** for ER diagrams

5. Procedure

1. Case Study Selection

- Select a real-world domain (e.g., Bookstore, Hospital, Library, Banking).
- Define scope and functional requirements.

2. Identify Entities and Attributes

 Example (Bookstore): Book (ISBN, Title, Author, Price), Customer (Cust_ID, Name, Email), Order (Order_ID, Date), Payment (Pay_ID, Type, Amount).

3. Identify Relationships

- Customer places Order
- Order contains Book (M:N relationship resolved by Order Details)
- o Order has Payment

4. Draw ER Diagram

- Using ERDPlus / ERWin.
- o Show all entities, relationships, cardinalities, keys.

5. Convert ER Diagram to Relational Schema

Example:

- Customer(Cust_ID PK, Name, Email, Phone)
- Book(ISBN PK, Title, Author, Price)
- Order(Order_ID PK, Order_Date, Cust_ID FK)
- Order_Details(Order_ID FK, ISBN FK, Quantity)
- Payment(Pay_ID PK, Pay_Type, Amount, Order_ID FK)

6. Normalization Steps

- Apply 1NF, 2NF, 3NF to ensure optimized schema.
- o Justify removal of redundancy.

6. Equations / Rules Applied

• Functional Dependency (FD):

If $X \rightarrow Y$, then attribute Y is functionally dependent on X.

Keys:

- Candidate Key: Minimal set of attributes uniquely identifying a tuple.
- Primary Key: Chosen candidate key.

Normalization Rules:

- 1NF: Eliminate repeating groups.
- 2NF: Eliminate partial dependencies.
- 3NF: Eliminate transitive dependencies.

7. Sample Output

ER Diagram (Bookstore Example)

[Here students will paste ERD diagram created in tool]

Normalized Relational Tables

- Customer(Cust_ID PK, Name, Email, Phone)
- Book(ISBN PK, Title, Author, Price)
- Order(Order_ID PK, Order_Date, Cust_ID FK)
- Order_Details(Order_ID FK, ISBN FK, Quantity)
- Payment(Pay_ID PK, Pay_Type, Amount, Order_ID FK)

8. Conclusion

In this experiment, we successfully designed a **conceptual schema** for a real-time application using ER modeling, converted it into a **normalized relational model**, and applied database normalization principles up to **3NF**. This lays the foundation for developing a complete miniproject backend system.