Presentazione Fisica

onde stazionarie in colonne d'aria - interferenza nel piano e nello spazio - diffrazione

Giulia Voltolina

2024-02-16

Liceo M. Buonarroti

- 1. Onde stazionarie
 - Tubo con una sola estremità chiusa
 - Esempi
- 2. Interferenza
 - Interferenza costruttiva
 - Interferenza distruttiva
- 3. Diffrazione
- 4. Appendice

Onde stazionarie in colonne d'aria

Le onde stazionarie, oltre che sulle corde, possono formarsi anche in colonne d'aria (es. tubi "vuoti").

Sono onde sonore longitudinali (\rightarrow lungo la colonna ci sono zone di rarefazione e zone di compressione).

In un tubo, ad ogni base chiusa corrisponde un nodo e ad ogni base aperta corrisponde un ventre Quindi, in un tubo chiuso ad entrambe le estremità avremo due nodi esterni e la situazione sarà analoga alle onde stazionarie sulle corde:

$$\lambda_n = \frac{2L}{n}$$

$$f_n = n \left(\frac{v}{2L}\right)$$

con L: lunghezza del tubo e v: velocità del suono nel mezzo

Tubo con una sola estremità chiusa

$$\lambda_n = \frac{4L}{2n-1}$$

$$f_n = (2n-1) \left(\frac{v}{4}L\right)$$

A causa del fattore (2n-1) possiamo ottenere solo le armoniche dispari.

Esempi

- video Harvard University
- spiegazione strumento video Harvard
- animazione particelle

Interferenza su un piano o nello spazio

Sorgenti coerenti: sorgenti che oscillano con una differenza di fase sempre costante

Figura d'interferenza:

Interferenza costruttiva

Si ha un'interferenza costruttiva quando le onde emesse dalle due sorgenti S_1 ed S_2 arrivano **in fase** nel punto P

$$\overline{S_1P} - \overline{S_2P} = k \cdot \lambda \; ; \; \text{con} \; k \in \mathbb{Z}$$

Interferenza distruttiva

Si ha un'interferenza distruttiva quando le onde emesse dalle due sorgenti S_1 ed S_2 arrivano **in opposizione** nel punto Q

$$\overline{S_1Q} - \overline{S_2Q} = (2k+1)\left(\frac{\lambda}{2}\right)$$
; con $k \in \mathbb{Z}$

• simulazione interferenza (2)

Diffrazione

Onde stazionarie

Quando un'onda incontra un ostacolo, o uno schermo con una fenditura, i fronti d'onda si incurvano e l'onda si espande anche oltre l'ostacolo.

• simulazione diffrazione (3 e 4)

Onde stazionarie

Harvard University

Il nuovo Amaldi per i licei scientifici blu

Phet Colorado

Appendice