Scikit-ribo - Accurate A-site prediction and robust modeling of translational control

Han Fang

February 12, 2016 AGBT

Acknowledgments

Lyon Lab
Max Doerfel
Yiyang Wu
Jonathan Crain
Jason O'Rawe

Gholson Lyon

Michael Schatz

Schatz Lab Fritz Sedlazeck Tyler Garvin James Gurtowski Maria Nattestad Srividya Ramakrishnan

Cold Spring Harbor Laboratory:

Yifei Huang Noah Dukler Adam Siepel Melissa Kramer Eric Antoniou Elena Ghiban Stephanie Muller Stony Brook University:

Rob Patro

Central dogma of biology - Classic view

What is ribosome profiling (Riboseq)?

Ingolia. Science. (2009) Ingolia. Nat Rev Genet. (2014)

Calculate translational efficiency (TE)

Less efficient translation

More efficient translation

$$\log_2(TE) = 0$$

$$\log_2(TE) > 0$$

$$TE = \frac{Riboseq\ rpkm}{RNAseq\ rpkm}$$

Hypothesis: TE distribution could be skewed by ribosome pausing events.

Ribosome footprints without bias

Ribosome footprints with pausing

Simulated S. cerevisiae data - TE distribution are negatively-skewed by ribosome pausing events

Analytical Challenges

Introducing scikit-ribo

What and where is the ribosome A-site?

Figure adapted from Ingolia et al. Science (2009)

15

12

How to predict A-site?

Training data and features:

Classifier and model tuning:

- SVM with RBF kernel (scikit-learn)
- 10 fold cross-validation for grid search
- Make predictions on all reads genome-wide

Prediction performance by cross validation

Scikit-ribo has much higher accuracy of identifying A-site than the previous method (0.86 vs. 0.64, 10-fold CV).

Scikit-ribo accurately predicted codon usage fraction and codon normalized TE

Finding ribosome pausing sites (peaks) is hard. But it is easier after knowing the A-site location.

Q: how to robustly identify ribosome pausing sites while accounting for over-dispersion?

Ribosome pausing site identification by negative binomial mixture model

Yifei Huang

$$P(\mathbf{X}_i|\pi_i,\mu_i,k_i,r_i) = \prod_j \pi_i \mathcal{NB}(X_{ij}|\mu_i,r_i) + (1-\pi_i)\mathcal{NB}(X_{ij}|k_i\mu_i,r_i),$$

for gene i at position j, where $k \geq 5$

Ribosome pausing site identification by negative binomial mixture model

Yifei Huang

$$P(\mathbf{X}_i|\pi_i,\mu_i,k_i,r_i) = \prod_j \pi_i \mathcal{NB}(X_{ij}|\mu_i,r_i) + (1-\pi_i)\mathcal{NB}(X_{ij}|k_i\mu_i,r_i),$$

for gene i at position j, where $k \geq 5$

# genes	# genes (rpkm > 100)	# genes with pausing	# ribosome pausing sites identified
6664	1252	94	180

mRNA with stronger secondary structure tend to have ribosome pausing events

TE distributions are negatively-skewed in many studies. Over-structured mRNA show inflated TE.

Weinberg, Shah et al. (2015)

Summary

Discussed:

- I) Introduce scikit-ribo for joint analysis of Riboseq & RNAseq data.
- 2) Learn from data itself to determine ribosome A-site location.
- 3) Reveal biases in Riboseq data due to ribosome pausing.
- 4) How Riboseq biases lead to issues with estimating TE.

Ongoing work:

- I) Joint inference of codon elongation rates and protein TE.
- 2) Extend the ribosome pausing calling to a HMM based method.

