

CS310 – AI Foundations Andrew Abel February 2023

Week 6: Constraint Satisfaction Problems

Welcome!

- Constraint Satisfaction Problems
 - This class starts out heavy but
 - O A) It will make sense by the end!
 - B) Its totally worth it, its actually very interesting
 - o C) You might not believe B at first, but it really is

Constraint Satisfaction Problems

Constraint Satisfaction

- Goal: find "admissible" valuation for given set of variables
 - O Given some parameters/variables,
 - Try to find solutions that meet conditions
- Example: The 8-queens problem
 - O How to distribute 8 queens on a chess board such that none of them attack each other?
- Remarks:
- like planning, constraint satisfaction problems use a factored representation of states
- we take state structure into account when searching for a solution!
- Rather than seeing state as a "black box", we now take it into account
 - o general-purpose heuristics

Constraint Satisfaction Problem (formally)

- Previous slide was the "informal" definition
- A CSP consists of three components:
 - o a set of variables $X=X_1,...,X_n$,
 - o a set of domains $D = D_1,...,D_n$ (one for each variable)
 - Domain here refers to a set of possible values
 - o a set C of constraints that specify allowable combinations of values.

What does a constraint look like?

- A constraint C consists of a pair < scope, rel > where:
- Scope is a tuple of variables that participate in the constraint
- Rel is a relation that defines the values that those variables can take on
- Rel can be either given explicitly or using operators, e.g. suppose two variables X_1 and X_2 both have domain $\{A,B\}$, then the constraint that X_1 is not equal to X_2 can be written in either of the following ways:
 - $o < \{X_1, X_2\}, X_1 \neq X_2 >$
 - $\circ < \{X_1, X_2\}, \{(A,B), (B,A)\} >$
 - \blacksquare We omit (A,A), (B,B) since they would be equal
- Often better to use operators
- We often specify the constraint by only stating the relation rel in the example above we would simply write $X_1 \neq X_2$

What does a solution look like?

- Given a collection C₁,...C_n of constraints,
 - o an assignment is a map $\{X_1 := v_1, ..., X_k := v_k\}$ where $X_1, ..., X_k$ are variables occurring in $C_1, ..., C_n$ and for each X_i we have $v_i \in D_i$
 - Each variable assigned a value, and each value must be in the variable domain
 - o a complete assignment is an assignment that provides values for all variables in $C_1, \dots C_n$
 - i.e. all variables in our problem
 - E.g. 8 queens problem, complete assignment is one where each queen specifies a position
 - o a solution is a complete assignment that ``satisfies all constraints'', ie. for each constraint $< \{X_1,...,X_m\}$, $R(X_1,...,X_m) >$ we have
 - R = the relationship, i.e. not equals from previous slide

$$(v_1, \dots v_m) \in R$$

Example: Colouring Australia

- We want to use 3 colours to colour in map
- No two adjacent states can have same colour

Example: Colouring Australia

- Variables
- X = {WA, NT, Q, NSW, V, SA, T}
- same domain for all variables
- D={green, red, blue}

Example: Colouring Australia

- Constraint
- Adjacent tiles can not be the same colour
- constraints: C = {SA ≠ WA, SA ≠ NT, SA ≠ Q, SA ≠ NSW, SA ≠ V, WA ≠ NT, NT ≠ Q, Q ≠ NSW, NSW ≠ V }

Example formalised

- Variables X = {WA, NT, Q, NSW, V, SA, T}
- same domain for all variables D={green, red, blue}
- constraints: C = {SA ≠ WA, SA ≠ NT, SA ≠ Q, SA ≠ NSW, SA ≠ V, WA ≠ NT,
 NT ≠ Q, Q ≠ NSW, NSW ≠ V }
- A solution:
- {SA = green, WA = red, NT = blue}, Q = red, NSW = blue, V = red, T=green}.

8 Queens Problem Solution

Variables: C₁, C₂, C₃, C₄, C₅, C₆, C₇, C₈ (each variable representing a column)

Domains:
$$D_1 = D_2 = ... D_8 = \{1,8\}$$

(position on each column)

Constraints:
$$C_i \neq C_j$$
 for $i \neq j$, $i < j$
 $\mid C_i - C_i \mid \neq j - i$ for $i \neq j$, $i < j$

Constraint Satisfaction

- Example: The 8-queens problem
 - O How to distribute 8 queens on a chess board such that none of them attack each other?

8 Queens Solution

• Have a think about it!

Structure of a CSP

The Constraint Graph

- To analyse a CSP we consider its constraint graph
- Depicts dependences between variables
- variables are nodes
- an edge indicates that the variables occur in a constraint
- This is still a map of Australia!
 - Variables are connected if they are participating in a constraint

Example: 2+2=4

- Famous arithmetic problem
- Solve for each letter between 0 and 9
- Two plus Two becomes 4 if we substitute numbers for letters!
- Each number must represent a different value

$$T W O$$
 $+ T W O$
 $\overline{F} O U R$

Example: 2+2=4

• Variables are the letters. Constraints are as follows:

T W O

- Variables: T,W, O, F, U, R
- Domain: $D = \{0,...,9\}$

$$+ T W O$$

- We now have what looks like a set of obvious constraints
- \bullet O + O = R
- W + W = U
- \bullet T + T = O
- \bullet F = ?

Example: 2+2=4

- Constraint example: O + O = R?
- But what if O≥5
 - O R must be in range {0...9}
 - o So we need to carry the 10!

•
$$O + O = R + 10 C_1$$

•
$$C_1 + W + W = U + 10 C_2$$

•
$$C_2 + T + T = O + 10 C_3$$

- \bullet $C_3 = F$
- plus an Alldiff constraint that all letters represent different values!

Constraint Hypergraph

Hypergraph has ``hyperedges'' that connect more than two nodes:

 Non-binary constraints can always be replaced by binary ones (cf. Norvig & Russell 6.1.3).

Constraint Hypergraph

Hypergraph has ``hyperedges'' that connect more than two nodes:

 Non-binary constraints can always be replaced by binary ones (cf. Norvig & Russell 6.1.3).

Constraint Hypergraph

- In this Graph, all letter variables are connected to each other via the box at the top of the graph (the hyperedge)
 - This is the "alldiff" constraint
- $C_2 + T + T = O + 10 C_3$
 - o C₂, T, O, C₃ all participating in constraint
 - All connected
- Can this help us solve problems more efficiently?

Types of constraints

- a unary constraint is a constraint involving only one variable
 - \circ i.e. x < 5, only variable mentioned is x
- a binary constraint is a constraint involving two variables
 - o i.e. $X_3 > X_4$
- a higher-order constraint is a constraint involving more than two variables
- We don't need all the hyper edges and graphs
 - Any CSP can be written into a CSP involving only binary constraints!

- Any CSP can be rewritten into a CSP involving only binary constraints.
- Remove unary constraints by restricting the domain of the relevant variable.
- for each higher-order constraint $R(X_1, ..., X_n)$
 - introduce a new variable Y, and
 - o define its domain D_y by
 - $D(Y) = \{ (d_1,...,d_n) \mid R(d_1,...,d_n) \text{ is true.} \}$
- for each X_i add the constraint that $\pi[Y] = X_i$, i.e., the ith component of the value of Y has to be equal to X.
- Remove the higher-order constraint $R(X_1, ..., X_n)$.

- Remove unary constraints by restricting the domain of the relevant variable.
 - \circ So if $X_1 < 5$, just restrict D_1 to $\{0,...4\}$ and remove constraint
- for each higher-order constraint $R(X_1, ..., X_n)$
 - introduce a new variable Y, and
 - o define its domain D_y by
 - $D(Y) = \{ (d_1,...,d_n) \mid R(d_1,...,d_n) \text{ is true.} \}$
- for each X_i add the constraint that $\pi[Y] = X_i$, i.e., the ith component of the value of Y has to be equal to X.
- Remove the higher-order constraint $R(X_1, ..., X_n)$.

- for each higher-order constraint R(X₁, ..., X_n)
 - Here we have n variables, and R is the relationship that should be satisfied for those n variables
 - This is a form of constraint
 - introduce a new variable Y
 - define its domain D_v exactly by the tuples
 - $D(Y) = \{ (d_1,...,d_n) \mid R(d_1,...,d_n) \text{ is true.} \}$
 - We only keep the combination of the domain elements where the relation holds
 - Result is a set of elements d₁ to d_n which satisfy this constraint
 - Have a new variable Y with a specific domain, the exact combinations allowed!

- for each X_i add the constraint that $\pi[Y] = X_i$, i.e., the ith component of the value of Y has to be equal to X.
 - Whenever we have values for X_i and a value for Y
 - Then the X_i's are exactly the ith component of the value for Y
 - Xi will satisfy the relation, because all Xi's will create an element of Y and the elements of Y satisfy the constraints
 - $\blacksquare \quad \pi[Y] = X_i$
- Remove the higher-order constraint $R(X_1, ..., X_n)$.
 - By using Y and restricting domain, we have only binary constraints

Real-world examples

- Assignment problems e.g., who teaches what class
- Timetabling problems e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning
 - Layout of buildings
- Notice that many real-world problems involve real-valued variables

Looking for a solution I: Propagating Constraints

Key idea

- Solving the problem!
 - O Cut down on the search space
- focus on ``local consistency''
 - Look at one constraint at a time
 - Remove values that will violate the constraints we are trying to satisfy
- simplest form is node consistency: remove values from domain D_i that obviously violate a constraint that X_i is involved in
 - o E.g. if $X_i < 5$ and $d = \{2,3,4,5,6,7,8\}$, can remove 5,6,7,8
- arc-consistency where 2 variables are involved
- path-consistency, k-consistency covering whole path, not covered here!
 - o see Section 6.2 in Norvig & Russell

Arc-consistency

- consider binary constraints (ie constraints with ≤ 2 variables)
- a variable is arc-consistent if every value in its domain satisfies the variable's binary constraints
- A network is arc-consistent if every variable is arc-consistent with every other variable.
- Concretely: X_i is arc-consistent with respect to X_j if for every value in $d_i \in D_i$ there exists a value in $d_j \in D_j$ such that the pair d_i, d_j satisfies the constraint on (X_i, X_i) .
- Example: Let X and Y be variables with domain {1,..., 10} and consider the constraint X²=Y. Then we have to restrict the values of X to {1,2,3} to make X arc-consistent.

Arc-consistency

- Example: Let X and Y be variables with domain {1,..., 10} and consider the constraint X²=Y. Then we have to restrict the values of X to {1,2,3} to make X arc-consistent.
- So now X is arc-consistent with Y
 - But now we have to make Y arc consistent with X
 - So we have to restrict values of Y to {1,4,9}
- Imagine now we have a whole graph of connected nodes...
- How can we achieve overall arc-consistency for whole program

Taken from Russel and Norvig

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_i) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_i then
       delete x from D_i
       revised \leftarrow true
  return revised
```

- Returns true if it looks like a solvable problem
- Returns false if an inconsistency is found, i.e. it can't be solved

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_j) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_i then
       delete x from D_i
       revised \leftarrow true
  return revised
```

- Returns true if it looks like a solvable problem
- Returns false if an inconsistency is found, i.e. it can't be solved
- Input is the CSP
- Queue of arcs created
- Arc is a directed connection between 2 variables
 - O i.e. pair X -> Y
 - O Pair Y -> X

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_i) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
    if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_i then
       delete x from D_i
       revised \leftarrow true
  return revised
```

- Remove each arc and check it
- Revise function removes any inconsistent values
- Check if the domain is empty
 O If empty, no
 - possible values, so inconsistent
- If revised, have to add anything that is connected to X_i back into the queue

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_i) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_i) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_i then
       delete x from D_i
       revised \leftarrow true
  return revised
```

- If algorithm produces at least one empty domain the CSP is unsolvable!
- Next, more detailed algorithm and an example!

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_i) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_i) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_j then
       delete x from D_i
       revised \leftarrow true
  return revised
```

The AC-3 Algorithm (simpified)

We had a queue of arcs...

- 1. Turn each binary constraint into two arcs e.g. $X_1 < X_2$ becomes (X_1, X_2) and (X_2, X_1) .
 - 1. Important to have both directions, X_1 is constrained by X_2 , and X_2 is also constrained by X_1
- 2. Add all arcs to an agenda.
- 3. Repeat until agenda empty:
 - O take an arc (X_i, X_i) of the agenda and check it
 - o for every value of D_i there must be some value of D_i
 - o remove any **inconsistent** values from D_i
 - If domain of X_i has changed, add all arcs of the form (X_k,X_i) to the agenda
 Only add the ones that are not there already
- This procedure can be done for pre-processing or after each (partial) assignment.
 - O If we do partial assignment and then check and find inconsistencies, then we know our partial assignment does not work!

Complexity of AC-3

- assume n variables, domain size at most d and value c=n²
 - o c is measure of number of possible arcs in problem
- checking one arc for consistency can be done in O(d²)
 - For every element in domain, we need to find an element in the other domain
- checking all arcs once is O(cd²)
- an arc can be added at most d times to the queue
- -> overall worst-case complexity is O(cd³).

Example

- $D_X = D_Y = D_Z = \{1,2,3,4\}$
- X > Y and Y > Z
- 1. Draw the constraint graph!
- 2. Make this problem arc-consistent via AC-3.
- 3. Solve the remaining instance.

AC3 – Algorithm Example, 1 – Draw Constraint Graph

- Variables: X, Y, Z
- Domains $D_X = D_Y = D_Z = \{1,2,3,4\}$
- Constraints X > Y, Y > Z
- Constraint graph

AC3 – Algorithm Example, 2 – Make problem arc-consistent

- Add all arcs to agenda
- Agenda = { (X,Y), (Y,X), (Y,Z), (Z,Y) }

- Remove (X,Y): X>Y
 - $OD_x = \{2,3,4\}$ (Removed 1)
 - Add (Y,X) to agenda if not there (it is, so we do not!)
 - \circ Agenda = { (Y,X), (Y,Z), (Z,Y) }
- Remove (Y, X): Y<X
 - O $D_v = \{1, 2, 3\}$ (4 is not smaller than anything, so we remove it)
 - Add (X,Y) to agenda if not there
 - o Agenda = { (Y,Z), (Z,Y), (X,Y) }

AC3 – Algorithm Example, 2 – Make problem arc-consistent

- Remove (Y,Z): Y>Z
 - \circ D_Y= { 2,3} (Removed 1)
 - Add (Z,Y) to agenda if not there
 - o Agenda = { (Z,Y), (X,Y) }
- Remove (Z, Y): Z<Y
 - $O D_7 = \{1, 2\}$
 - Add (Y,Z) to agenda if not there
 - o Agenda = { (X,Y), (Y,Z) }
- Remove (X,Y): X>Z
 - o $DX = \{3,4\}$
 - Add (Y,X) to agenda if not there
 - O Agenda = {(Y,Z), (Y,X)}

AC3 – Algorithm Example, 2 – Make problem arc-consistent

- Remove (Y,Z): Y>Z
 - $O D_{y} = \{ 2,3 \}$ (No change)
 - o Agenda = { ((Y,X) }
- Remove (Y,X): Y<X
 - $O D_{y} = \{ 2,3 \}$ (No change)
 - O Agenda = { } (empty)
- Algorithm Terminates:
 - O $D_X = \{3,4\}, D_Y = \{2,3\}, D_Z = \{1,2\}$

Example

- Another excellent video by John Levine
- Runs through AC-3 Algorithm as a detailed example

Summary

- This week was about learning to solve problems!
- Some of the theory was a bit heavy
 - O Unary, Binary, and Higher-order constraints
 - Hypergraphs
 - Theory of binary constraints
- Constraint satisfaction with the AC3 Algorithm
 - Very useful way of solving problem
- Some very real applications
 - O Useful for programming!