

LANGUAGE MODELS

Why should agents do NLP?

- Knowledge acquisition from spoken and written language artifacts (e.g. on the web)
 - Natural language is messy!
- Communicate with human

Outline

- Language Models
 - Predict the probability distribution of language expressions

Language Models

- Formal languages (e.g. Python, Logic)
 - Grammar (generative)
 - Semantics
- Natural languages (e.g. English)
 - Grammaticality is less clear
 - * Tobe not invited is sad
 - Ambiguity at many levels (syntax, semantics, ...)
 - I saw the man with the telescope
 - He saw her duck
 - Suggests modeling via probability distributions
 - What is the probability that a random sentence would be a string of words?
 - What is the probability distribution over possible meanings for a sentence?

 CS8691-AI-UNIT-V-LANGUAGE MODELS

 4 of 9

N-Gram Models

N-Gram

- a sequence (of some unit characters, words, etc.) of length n
- Unigram, Bigram and Trigrams for n= 1, 2, and 3

N-Gram Model

- probability distribution of n-unit sequences
- Markov chain of order n -1
 - the probability of a unit depends only on some of the immediately preceding units

N-gram character models

- P(c_{1:n}) is the probability of a sequence of N characters c₁ through c_N
 - Typically corpus-based (uses a body of text)
 - -P("the") = .03
 - -P("zgq") = .000000000002
- Application: language identification
 - Corpus: P(Text | Language) (trigrams)
 - Language Identification use Bayes Rule!
- Application: named-entity recognition
 - "ex" -> drug name
 - Can handle unseen words!

Smoothing

- What do we do about zero (or low) counts in a training corpus?
 - Sequences with count zero are assigned a small non-zero probability (support generalization)
 - Need to adjust other counts downward, so probability still sums to 1
- Add one smoothing (1/(n+2))
- Backoff (e.g. if no trigram, use bigram)
- Many others in NLP course
- Just like ML, is it better to improve smoothing methods, or to get more data????

- Just like ML, cross-validation with train/validate/test data
- Just like ML, many metrics
 - extrinsic e.g. language identification
 - instrinsic perplexity

- Much larger "vocabulary" of units
- Since units are open, out of vocabulary becomes a problem
- "Word" needs to be defined precisely
- Common in speech recognition