FILE

NAME:	TEACHER:	

SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS

PRELIMINARY HSC Year 11 ASSESSMENT TASK 2 July 2014

Time Allowed: 70 minutes

Total Marks: 56

General Instructions:

- Each question attempted is to be started on a NEW PAGE, clearly marked with the number of the question.
- Write using black or blue pen.
- APPROVED CALCULATORS may be used.
- All necessary working should be shown. Marks may be deducted if working is poorly set out or difficult to read.

Question 1:

(7 Marks)

a) Factorise:

$$8x^3-64$$

/2

b) State the domain of: $f(x) = \frac{1}{\sqrt{9-x}}$

/2

c) Solve:

$$|x + 3| = 2x - 1$$

/3

Question 2: Start a new page.

(7 Marks)

a) Find the equation of the line parallel to 2x - 3y + 5 = 0, which passes through (1, -2). Give the answer in general form.

/3

b)

- (i) Draw this diagram in your exam booklet
- (ii) Find the size of \angle ACD, Giving reasons for your statements. /2

c) Simplify:
$$\frac{4^3 \times 16^{(1-3n)}}{8^{-2n}}$$

Question 3: Start a new page.

(7 Marks)

a) Find the exact value of: $\sin 225^{\circ}$

/2

/3

c) Solve:

$$\cos \theta = \frac{-\sqrt{3}}{2}, \ 0^0 \le \theta \le 360^0$$

/2

Question 4: Start a new page.

(7 Marks)

a) If $\tan A = \frac{\sqrt{2}}{3}$, and $\cos A < 0$ Find the exact value of $\sin A$

/2

b)

(i) Copy this diagram into your exam booklet

/3

(ii) Prove:

- c) Prove that:
- $tan^2\theta cosec^2\theta = 1 + tan^2\theta$

Question 5 Start a new page

(7 Marks)

a) Simplify:

$$\frac{\sin(90-\theta)}{\sin\theta}$$

/1

b) From a lighthouse, L, a ship, S, bears 053^{0} T, and is at a distance of 8 nautical miles.

From L, a boat, B, bears 293° T and is at a distance of 6 nautical miles.

(i) Copy the diagram into your answer booklet and show all the given information.

- (ii) Show that \angle SLB is 120°
- (iii) Find the exact distance of the ship from the boat, in simplest surd form.
- (iv) Find the bearing of the ship from the boat to the nearest degree. /6

Question 6: Start a new page.

(7 Marks)

a) Solve $4sin^2\theta$ -3=0,

ABCD is a rhombus

ABE is an equilateral triangle

- (i) Draw this diagram in your exam booklet
- (ii) Find the size of ∠EAD, giving reasons for your statement.
- (iii) Find the size of ∠EDA giving reasons for your statement. /4

 Question 7: Start a new page (7 Marks)

(i) Find the gradient of AC

- (ii) Find θ to the nearest degree.
- (iii) Find the co-ordinates of D, the midpoint of AC
- (iv) Show that AC is perpendicular to BD

- (v) What does (iv) say about \triangle ABC.
- (vi) Write the co-ordinates of the point E, such that ABCE is a rhombus.

Question 8: Start a new page

(7 Marks)

a) One of the exterior angles in a regular polygon is 15°. How many sides does it have?

/1

b)

A regular hexagon is drawn outside a circle of radius, r, centre, 0

/6

- (i) Show that \bigwedge OGH is equilateral
- (ii) Show that the area of \(\sumeq OGH \) is given by

$$A = \frac{\sqrt{3}r^2}{3}$$

- (iii) Find the area of the hexagon in terms of r.
- (iv) By considering the result in (iii)

Show that $\pi < 2\sqrt{3}$

End of Test

2014 Yr 11 Zunit

Ass 2 Solutions

$$= 8(x-2)(x^3+2x+4)$$
= 8(x-2)(x^3+2x+4)

$$-3\alpha = \lambda$$

$$3c = -\frac{\lambda}{3}$$

Question 2

$$y = \frac{3}{5}x + 5$$

$$y + 2 = \frac{2}{5}(x - 1)$$

C)
$$\frac{1}{8^{-2n}} = \frac{2^{4} \times 2^{4-12n}}{2^{-6n}}$$

$$= \frac{2^{10-12n}}{2^{-6n}}$$

b)
$$\frac{\sin \theta}{5} = \frac{\sin |0| |1|}{3}$$

 $\sin \theta = \frac{5 \sin |0| |1|}{3}$
 $\theta = |0| |3| = |0| |1|$

b) LCED = x

Question 4

= 1 + tan 20

= RHS

C) tanger cosec
$$\theta = 1 + \tan^2 \theta$$

Singler $\frac{1}{3}$

Conquis opposedual sides

LBEA = x^2 (vertically opposedual)

LBAE = x^2 (alternate angles)

ABILOC)

ABILOC

ABILOC

PO = BE (Sides opposedual)

equal angles)

ice)
$$d^2 = L^2 + g^2 - 2\pi L \times 8 \times ces$$

Question 6

$$\theta = 60^{\circ} 120^{\circ}, 240^{\circ} 300^{\circ}$$

: LEOR=
$$180-108$$
 (angles opposite equal sides) $\frac{2}{2}$

$$9m_{AC} = \frac{1}{6}$$
 (ii) $tan \theta = \frac{2}{3}$ (iii) $0 = (4, 2)$ $\sqrt{\frac{2}{3}}$

iv)
$$m_{BD} = \frac{8-2}{0-4}$$
 v) Isosceles 1
= $-\frac{6}{2}$ vi) $(8,-4)$ 1
As $m_{BD} \times m_{BC} \times m_{BC} = -1$

ii)
$$\frac{1}{x} = \frac{1}{x}$$

iii) area of hexagon
= 6 × 13 r²
3 iv) area of circle < area of heragon 77 2 2/3 x2 = 2/312 $T < 2\sqrt{3}$