### Math 415 - Lecture 21

#### Introduction

### Wednesday October 14th 2015

Textbook reading: Chapter 2.5.

Suggested practice exercises: Chapter 2.5: 1, 2, 6.

Strang lecture: Lecture 12: Graphs, Networks, Incidence Matrices

#### 1 Review

Recall that if  $V \subset \mathbb{R}^n$  is a subspace,  $V^{\perp}$  is the *orthogonal complement* of V, the subspace of all vectors  $\mathbf{x}$  perp to all vectors of V.

Theorem 1. Fundamental Theorem of Linear Algebra.

- $\dim(V) + \dim(V^{\perp}) = \dim(\mathbb{R}^n) = n$ .
- $\operatorname{Col}(A)^{\perp} = \operatorname{Nul}(A^T)$ .
- $\operatorname{Nul}(A)^{\perp} = \operatorname{Col}(A^T)$ .

## 2 Directions and Equations

**Directions and Equations.** Let V be a subspace of  $\mathbb{R}^n$ . Then there are two ways of describing V.

By directions: If V = Col(A) then you know that any vector  $\mathbf{v}$  in V is a linear combination of the columns of A, so you know in which directions  $\mathbf{v}$  can point.

By equations: If V = Nul(B) then you know that any  $\mathbf{v}$  in V satisfies the equations  $\mathbf{R_i^T} \cdot \mathbf{v} = 0$ , for all rows  $\mathbf{R_i}$  of B.

Both descriptions are useful, and we will often switch between them, to answer any particular question we want to answer.

## 3 A new perspective on Ax = b

To see if  $A\mathbf{x} = \mathbf{b}$  has a solution, check that

Direct approach:  $b \in Col(A)$ 

Indirect approach:  $\mathbf{b} \perp Nul(A^T)$ 

The indirect approach means:

if 
$$\mathbf{\underline{y}}^T A = \mathbf{0}$$
, then  $\mathbf{\underline{y}}^T \mathbf{b} = 0$ .

Example 2. Let  $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$ . For which **b** does A**x** = **b** have a solution?

Solution (old). Write augmented matrix, get Echelon form:

$$\begin{bmatrix} 1 & 2 & b_1 \\ 3 & 1 & b_2 \\ 0 & 5 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 0 & -3b_1 + b_2 + b_3 \end{bmatrix}$$

When is this consistent? Whenever  $-3b_1 + b_2 + b_3 = 0$ .

Solution (new). Indirect approach says:  $A\mathbf{x} = \mathbf{b}$  solvable  $\iff \mathbf{b} \perp Nul(A^T)$ .

Find basis for  $Nul(A^T)$ :

$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

so 
$$Nul(A^T)$$
 has basis  $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$ 

Need 
$$\mathbf{b} \perp Nul(A^T)$$
:  $A\mathbf{x} = \mathbf{b}$  is solvable  $\iff \mathbf{b} \cdot \begin{bmatrix} -3\\1\\1 \end{bmatrix} = 0$ 

This is the same condition as before!

# 4 Application: Directed graphs

#### 4.1 Set up

- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- Arrow indicates direction of flow
- No edges from a node to itself



**Definition 3.** Let G be a graph with m edges and n nodes. The edge-node incidence matrix of G is the  $m \times n$  matrix A with

$$A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j \\ +1, & \text{if edge } i \text{ enters node } j \\ 0, & \text{otherwise} \end{cases}$$

So each row (describing an edge=arrow) contains a single -1 (the tail of the arrow), a single +1 (the head of the arrow), and for the rest zeroes.

Example 4. Give the edge-node incidence matrix of our graph.



Solution.

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

### 4.2 Meaning of the null space

The  $\mathbf{x}$  in  $A\mathbf{x}$  assigns values to each node. (Think: assigning potentials)

$$A\mathbf{x} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ -x_2 + x_3 \\ -x_2 + x_4 \\ -x_3 + x_4 \end{bmatrix}$$

**Idea.**  $Ax = 0 \iff$  nodes connected by an edge are assigned the same value.

For our graph, 
$$Nul(A)$$
 has basis  $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$  (i.e.  $x_1=x_2=x_3=x_4$ .) This always

happens as long as G is connected.

Example 5. Give a basis for Nul(A) for this graph:



**Solution.** If  $A\mathbf{x} = 0$ , then

$$\underbrace{x_1 = x_3}_{\text{connected by an edge}}$$
 and  $\underbrace{x_2 = x_4}_{\text{connected by an edge}}$ 

So, 
$$Nul(A)$$
 has basis: 
$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Just to make sure, the edge-node incidence matrix is:

$$A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

**Theorem 6.** dim(Nul(A)) is the number of connected subgraphs.

- For large graphs, disconnection may not be visually apparent
- ullet But, we can always find out by computing dim(Nul(A)) using Gaussian elimination!

### 4.3 Meaning of left null space

The  $\mathbf{y}$  in  $\mathbf{y}^T A$  is assigning values to each edge. (Think: assigning currents to edges, so that  $\mathbf{y}$  describes a *flow pattern*.)

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \end{bmatrix} = \begin{bmatrix} -y_{1} - y_{2} \\ y_{1} - y_{3} - y_{4} \\ y_{2} + y_{3} - y_{5} \\ y_{4} + y_{5} \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{vmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{vmatrix} = \begin{bmatrix} -y_1 - y_2 \\ y_1 - y_3 - y_4 \\ y_2 + y_3 - y_5 \\ y_4 + y_5 \end{bmatrix}$$

**Idea.** So:  $A^T \mathbf{y} = 0 \iff$  at each node, (directed) values assigned to edges add to zero.

When thinking of currents, this is Kirchhoff's first law: at each node, incoming and outgoing currents balance. Flow in = Flow out.

What is the simplest way to balance current?

Assign current in a loop! We have two loops:

$$edge_1 \rightarrow edge_3 \rightarrow -edge_2$$
 and  $edge_3 \rightarrow edge_5 \rightarrow -edge_4$ 

Example 7. Solve  $A^T \mathbf{y} = 0$  for our graph. Recall

$$A^T = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Solution. Get RREF:

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The parametric solution is:  $\begin{bmatrix} y_3-y_5\\-y_3+y_5\\y_3\\-y_5\\y_5 \end{bmatrix}$ 

So a basis for 
$$Nul(A^T)$$
 is:  $\begin{bmatrix} 1\\-1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\-1\\1 \end{bmatrix}$ 

**Observation:** These two basis vectors correspond to loops.

Note: get the "simpler" loop  $\begin{bmatrix} 0\\0\\1\\-1\\1 \end{bmatrix}$  as  $\begin{bmatrix} 1\\-1\\1\\0\\0 \end{bmatrix} + \begin{bmatrix} -1\\1\\0\\-1\\1 \end{bmatrix}$ 

**Theorem 8.** In general,  $dim(Nul(A^T))$  is the number of (independent) loops.

For large graphs, we now have a nice way to computationally find all loops.

## 5 Summary/Outlook

- \* We described a network by using a matrix A.
- \* The Null space Nul(A) has as dimension the number of connected components of the network.
- \* The Left Null Space  $Nul(A^T)$  has as dimension the number of independent loops.
- \* The column space Col(A) and row space  $Col(A^T)$  also have "geometric" meaning in terms of the network, see the book and Strang's lecture.

## 6 Practice problems

#### 6.1 Problem 1

Example 9. Give a basis for  $Nul(A^T)$  for the following graph:



**Solution.** This graph contains no loops, so  $Nul(A^T) = ??$ .  $Nul(A^T)$  has the empty set as basis.

To check, the incidence matrix is:

$$A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Indeed,  $Nul(A^T) = \{0\}.$ 

### 6.2 Problem 2

Example 10. Draw the graph with edge-node incidence matrix

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

Give a basis for Nul(A) and  $Nul(A^T)$ .



Figure 1: The graph

Solution.

If  $A\mathbf{x} = 0$ , then  $x_1 = x_2 = x_3 = x_4$  (all connected by edges.)

So, 
$$Nul(A)$$
 has basis  $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ 

(This graph is connected, so only 1 connected subgraph, so dim(Nul(A)) = 1.)

**Loops:** This graph has one loop:  $edge_1 \rightarrow edge_2 \rightarrow -edge_3$ . Assign values  $y_1 = 1, y_2 = 1, y_3 = -1$  along the edges of that loop.

$$Nul(A^T)$$
 has basis  $\begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}$ 

(The graph has 1 loop, so  $dim(Nul(A^T)) = 1$ .)