T4Train:

Rapid Prototyping of ML-Driven Interactive Applications

Unit 1

Yasha Iravantchi Ph.D. Candidate, Computer Science & Engineering

Alanson Sample
Associate Professor, Computer Science & Engineering

Unit 1: Introductions

- Introduce yourself
 - Background, research interests
- What you hope to get out of this course
- One fun fact about yourself!
- Downloads and Installations (CHI WiFi is SLOW!;)
 - Arduino
 - T4Train
 - Anaconda3-2022.10

Unit 1: Discussion Agenda

- Overview of Interactive Sensing
 - Types of Sensors
 - Common Sensor Interfaces
 - Signal Processing
 - Filtering, conditioning, and cleanup
 - Featurization
 - Binning, FFT
 - Classical ML Techniques
- Brainstorming an Application
- Installing Software for Workshop

Unit 2: Workshop Agenda

- Connecting a Sensor
- Visualizing the Data
- Training a Model
- Triggering an Action

Why do Interactive Sensing?

- Demonstrating interfaces that are responsive in realtime is an important part of technical HCI
- Provides a high-level view of the capabilities of a system

What is Interactive Sensing?

- Connecting a Sensor
- Visualizing the Data
- Training a Model
- Triggering an Action

Fast prototyping of Interactive ML

- What could we do if we had a tool that could quickly prototype interactive ML?
- Test different sensors, signal processing approaches, ML models
- Quickly generate useful applications

Fast prototyping of Interactive ML

Coffee Machine

Toy Dragon

Active Speaker

Fabric Couch

Overview of Interactive Sensing

6 Step Process:

- Identify a potential signal
- 2. Design/select a sensor
- 3. Digitize the signal

- 4. Visualize the signal for human interpretation
- Use signal processing and ML for computer interpretation
- Perform an action based on ML predictions

Types of Sensors

- Optical
 - Cameras
 - Depth Sensor
 - LiDAR
- IMU/Inertial
 - Accelerometer
 - Magnetometer
 - Geophone

- Acoustic
 - Microphone
 - Ultrasonic Rangefinder
- What else? Discuss

Common Sensor Interfaces

- USB
 - Serial/UART
 - Universal AudioClass
 - Universal Video Class
- WiFi TCP/UDP
 - Large bandwidth capabilities, comes at the cost of power

- Bluetooth/BLE
 - Constrained bandwidth, great for low power
 - Unintuitive data transfer structure
 - BLE UART is great for sensor data
- Anything else?

Signal Lifecycle (Sensor Side)

Signal Lifecycle (Computer Side)

Signal Processing

- Why do we need signal processing?
 - Signals are usually imperfect
 - Can have many noise sources
 - Signal we want might be "buried" in sensor data

Sensor data is corrupted by 50Hz line noise, but with filtering and smoothing can be recovered

Noise Rejection Filtering

- Applying digital filters is an efficient way to remove unwanted noise in sensor data
- In previous example, a band-stop filter at 50Hz was applied to remove only 50Hz noise
- There are a few different kinds of filters, but generally:
 - Low-pass to reject high frequencies
 - High-pass to reject low frequencies
 - Band-pass to reject some low, some high
 - Band-stop to reject specific frequencies

Noise Rejection Filtering Example

- Applying digital filters is an efficient way to remove unwanted noise in sensor data
- In previous example, a band-stop filter at 50Hz was applied to remove only 50Hz noise
- There are a few different kinds of filters, but generally:
 - Low-pass to reject high frequencies
 - High-pass to reject high frequencies
 - Band-pass to reject some low, some high
 - Band-stop to reject specific frequencies

Noise Rejection Filtering Example

Signal Extraction Filtering

- You can also use digital filters to extract valuable signal buried in the sensor data
- For example, if we know our signal is in a certain frequency range, a band-pass filter can reject all but our desired signal

Signal Conditioning and Smoothing

- Filters can be used to smooth
 - SavGol Filter
 - Kalman Filter
- Sometimes it may be easier to smooth with sliding window methods
- Few different ways:
 - Median Filter
 - Moving Average
 - Moving Maximum
 - Moving Minimum

Featurization

- Why do we need featurization?
- For many time-series sensor data, it is difficult to represent it consistently for classical ML

Frequency (Hz)

Classical ML Techniques

- T4Train utilizes classical ML approaches:
 - Can generally train "on the fly"
 - Fast for realtime inferencing
 - Does not require GPU

Support Vector Machines

Random Forests

Jupyter Notebook Example

Sound Classification

T4Train Hello World

- Microphone Demo
- Nano 33 Sense Accelerometer Demo

Brainstorming an Application

Pair in groups of 3-4

T4Train:

Rapid Prototyping of ML-Driven Interactive Applications

Unit 2

Yasha Iravantchi Ph.D. Candidate, Computer Science & Engineering

Alanson Sample
Associate Professor, Computer Science & Engineering

Unit 2: Workshop Agenda

- Connecting a Sensor
- Visualizing the Data
- Training a Model
- Triggering an Action