IP Layer: Inter-Domain Routing (BGP)

ECE 50863 – Computer Network Systems

Internet Structure

The Internet is a collection of networks, each controlled by different administrations

An autonomous system (AS) is a network under a single administrative control

Each AS assigned a number – e.g., Purdue's AS Number is 17.

Intradomain And Interdomain

Border Gateway Protocol

- Two types of routers
 - Border router (Edge), Internal router (Core)

Purpose of BGP

Share connectivity information across ASes

BGP: Key Considerations

* Scale

- Forward packets destined to any address in Internet
- Order of 140,000 CIDR prefixes

Domains are autonomous

No idea what interior protocol/metrics used within each AS

Dominated by policy, business considerations

- Provider A unwilling to believe advertisements of Provider B.
- Provider A unwilling to carry traffic between Providers B, C

Consequences

Goal of BGP:

- Simply find some path between A and B.
- Does not try to "optimize" path

Path Vector Protocol

- Distance Vector based or Link State based?
- Distance vector algorithm with extra information
 - For each route, store the complete AS path
 - Note this does not include the actual routers, just list of ASs
 - No extra computation, just extra storage

* Advantages:

- can make policy choices based on set of ASs in path
- can avoid loops

Example: Multiple AS Paths

Example

Typical policy: prefer path with minimum AS hops

Limitations

Nontransit vs. Transit ASes

Selective Transit

Most transit networks transit in a selective manner...

Customers and Providers

Customer pays provider for access to the Internet

Customer-Provider Hierarchy

The Peering Relationship

Peering Provides Shortcuts

Peering also allows connectivity between the customers of "Tier 1" providers.

Peering Wars

Peer

- Reduces upstream transit costs
- Can increase end-to-end performance
- May be the only way to connect your customers to some part of the Internet ("Tier 1")

Don't Peer

- You would rather have customers
- Peers are usually your competition
- Peering relationships may require periodic renegotiation

Peering struggles are by far the most contentious issues in the ISP world.

Peering agreements are often confidential.

Import Routes

Export Routes

Valley-Free Routing

Valid path from one AS to another AS involves:

- Going through series of providers
- Then, at most one peering relationship
- Then, series of customers
- Other kinds of paths are not allowed.

Examples

Disallowed sequence of ASs (violate valley-free property

Reality of BGP in ISPs today

- Not simple path-vector protocol
- Tons of mechanisms
 - Conflict/overlap in unpredictable ways
 - Complex policies, unforeseen vulnerabilities, misconfigurations
- Comes from ISPs trying to achieve diverse goals
 - E.g., load-balancing, traffic engineering, business relationships