Tutorial 9

Exercise 1: Construct GNFA accepting languages L_1 and L_4 :

a) $L_1 = L_2 \cdot L_3$, where $L_2 = \{w \in \{0,1\}^* \mid \text{every occurrence of 00 in } w \text{ is immediately followed by 1}\}$ $L_3 = \{w \in \{0,1\}^* \mid |w|_1 \mod 3 = 2\}$

Solution:

b) $L_4 = \{w \in \{a,b\}^* \mid w \text{ is obtained from some word } w' \in L_5 \text{ by ommiting of one symbol}\}$, where L_5 is the language consisting of those words over alphabet $\{a,b\}$ that contain subword abba and end with suffix abb.

Solution:

Exercise 2: Construct equivalent DFA for the given GNFA:

Solution:

Original automaton:

	a	b	ε
$\rightarrow 1$	2	2	_
2	3	-	_
$\leftrightarrow 3$	1	1	2

 $Resulting \ automaton:$

	α	b
$\longleftrightarrow \{1,2,3\}$	{1, 2, 3}	{1, 2}
{1, 2}	$\{2, 3\}$	{2}
$\leftarrow \{2,3\}$	$\{1, 2, 3\}$	{1}
{2}	$\{2,3\}$	Ø
{1}	{2}	{2}
Ø	Ø	Ø

After renaming states:

	а	b
$\leftrightarrow 1$	1	2
2	3	4
$\leftarrow 3$	1	5
4	3	6
5	4	4
6	6	6

Solution:

$$-\underbrace{(1,2)} \underbrace{a,b} \underbrace{3}$$

Original automaton:

	а	b	ε
$\rightarrow 1$	_	3	2
2	3	3	_
$\leftarrow 3$	1	1,2	_

Resulting automaton:

	α	b
\rightarrow {1, 2}	{3}	{3}
$\leftarrow \{3\}$	$\{1, 2\}$	$\{1, 2\}$

After renaming states:

	а	b
$\rightarrow 1$	2	2
$\leftarrow 2$	1	1

Solution:

Resulting automaton:

Original automaton:

	а	b	ε
$\rightarrow 1$	2	2	_
2	3	_	_
$\leftarrow 3$	1	1	2

	α	b
\rightarrow {1}	{2}	{2}
{2}	$\{2, 3\}$	Ø
$\leftarrow \{2,3\}$	$\{1, 2, 3\}$	{1}
Ø	Ø	Ø
$\leftarrow \{1,2,3\}$	$\{1, 2, 3\}$	{1, 2}
{1,2}	$\{2, 3\}$	{2}

After renaming states:

	а	b
$\rightarrow 1$	2	2
2	3	4
$\leftarrow 3$	5	1
4	4	4
$\leftarrow 5$	5	6
6	3	2

Exercise 3: For each of the following automata find at least one word over alphabet $\{a, b\}$, which is not accepted by the given automaton.

Solution: For example bab.

Solution: For example abb.

Exercise 4: For each of the following regular expressions, construct an equivalent finite automaton (it can be a GNFA):

a)
$$(0+11)*01$$

Solution:

b) (0+11)*00*1

Solution:

c)
$$(a + bab)^* + a^*(ba + \varepsilon)$$

Exercise 5: Describe an algorithm that for a given NFA $\mathcal{A} = (Q, \Sigma, \delta, I, F)$ decides if:

- a) $\mathcal{L}(\mathcal{A}) = \emptyset$
- b) $\mathcal{L}(\mathcal{A}) = \Sigma^*$

Exercise 6: Describe an algorithm that for given NFA $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ decides if $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.

Exercise 7: Describe an algorithm that for given GNFA \mathcal{A} constructs an equivalent NFA \mathcal{A}' such that the sets of states of automata \mathcal{A} and \mathcal{A}' are the same.

*Exercise 8: Consider an arbitrary alphabet Σ .

The *Hamming distance* h(u,v) of a pair of words $u,v \in \Sigma^*$, such that |u| = |v|, is the number of positions in the words u,v where these two words differ. Formally, h(u,v) can be defined as follows: $h(\varepsilon,\varepsilon) = 0$, and for all symbols $a,b \in \Sigma$ and words $u,v \in \Sigma^*$, such that |u| = |v|, we have

$$h(\alpha u,b\nu) = \left\{ \begin{array}{ll} h(u,\nu) & \mathrm{if} \ \alpha = b \\ 1 + h(u,\nu) & \mathrm{if} \ \alpha \neq b \end{array} \right.$$

For a language $L\subseteq \Sigma^*$ and each $k\geq 0$ we define the language $H_k(L)$ as

$$H_k(L) = \{ w \in \Sigma^* \mid \exists w' \in L : |w| = |w'| \land h(w, w') \le k \}.$$

Show that for each $k \ge 0$ holds that if a language L is regular then also language $H_k(L)$ is regular.