Задача обучения по прецедентам

- X множество *объектов*;
- Y множество *ответов*;
- $y: X \to Y$ неизвестная зависимость (target function).

Дано:

$$\{x_1,\ldots,x_\ell\}\subset X$$
 — обучающая выборка (training sample); $y_i=y(x_i),\ i=1,\ldots,\ell$ — известные ответы.

Найти:

 $a: X \to Y$ — алгоритм, решающую функцию (decision function), приближающую y на всём множестве X.

Весь курс машинного обучения — это конкретизация:

- как задаются объекты и какими могут быть ответы;
- как строить функцию *a*;
- ullet в каком смысле *а* должен приближать *у*.

Как задаются объекты. Признаковое описание

$$f_j\colon X o D_j$$
, $j=1,\ldots,n$ — признаки объектов (features).

Типы признаков:

- $D_i = \{0,1\}$ бинарный признак f_i ;
- $|D_j| < \infty$ номинальный признак f_j ;
- ullet $|D_j|<\infty$, D_j упорядочено порядковый признак f_j ;
- $D_j = \mathbb{R}$ количественный признак f_j .

Вектор $(f_1(x), \dots, f_n(x))$ — признаковое описание объекта x.

Матрица «объекты-признаки» (feature data)

$$F = ||f_j(x_i)||_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}$$

Как задаются ответы. Типы задач

Задачи классификации (classification):

- ullet $Y = \{-1, +1\}$ классификация на 2 класса.
- ullet $Y = \{1, ..., M\}$ на M непересекающихся классов.
- $Y = \{0,1\}^M$ на M классов, которые могут пересекаться.

Задачи восстановления регрессии (regression):

ullet $Y=\mathbb{R}$ или $Y=\mathbb{R}^m$.

Задачи ранжирования (ranking, learning to rank):

• Y — конечное упорядоченное множество.

Предсказательная модель

Модель (predictive model) — параметрическое семейство функций

$$A = \{a(x) = g(x,\theta) \mid \theta \in \Theta\},\$$

где $g: X \times \Theta \to Y$ — фиксированная функция, Θ — множество допустимых значений параметра $\theta.$

Пример.

 $ec{\mathcal{I}}$ инейная модель с вектором параметров $\theta=(heta_1,\dots, heta_n)$, $\Theta=\mathbb{R}^n$:

$$g(x, heta) = \sum_{j=1}^n heta_j f_j(x)$$
 — для регрессии и ранжирования, $Y = \mathbb{R}$;

$$g(x,\theta)=\mathrm{sign}\sum_{j=1}^n heta_j f_j(x)$$
 — для классификации, $Y=\{-1,+1\}.$

Пример: задача классификации цветков ириса [Фишер, 1936]

n=4 признака, |Y|=3 класса, длина выборки $\ell=150$.

Пример: задача регрессии, модельные данные

$$X = Y = \mathbb{R}$$
, $\ell = 200$, $n = 3$ признака: $\{x, x^2, 1\}$ или $\{x, \sin x, 1\}$

Вывод: признаковое описание можно задавать по-разному

Этапы обучения и применения модели

Этап обучения (train):

Метод обучения (learning algorithm) $\mu \colon (X \times Y)^\ell \to A$ по выборке $X^\ell = (x_i, y_i)_{i=1}^\ell$ строит алгоритм $a = \mu(X^\ell)$:

$$\begin{pmatrix}
f_1(x_1) & \dots & f_n(x_1) \\
\dots & \dots & \dots \\
f_1(x_\ell) & \dots & f_1(x_\ell)
\end{pmatrix} \xrightarrow{y} \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix} \xrightarrow{\mu} a$$

Этап применения (test):

алгоритм a для новых объектов x_1',\ldots,x_k' выдаёт ответы $a(x_i')$.

$$\begin{pmatrix} f_1(x_1') & \dots & f_n(x_1') \\ \dots & \dots & \dots \\ f_1(x_k') & \dots & f_n(x_k') \end{pmatrix} \stackrel{a}{\longrightarrow} \begin{pmatrix} a(x_1') \\ \dots \\ a(x_k') \end{pmatrix}$$

Функционалы качества

 $\mathscr{L}(a,x)$ — функция потерь (loss function) — величина ошибки алгоритма $a\in A$ на объекте $x\in X$.

Функции потерь для задач классификации:

• $\mathscr{L}(a,x) = [a(x) \neq y(x)]$ — индикатор ошибки;

Функции потерь для задач регрессии:

- $\mathscr{L}(a,x) = |a(x) y(x)|$ абсолютное значение ошибки;
- $\mathscr{L}(a,x) = (a(x) y(x))^2$ квадратичная ошибка.

Эмпирический риск — функционал качества алгоритма a на X^{ℓ} :

$$Q(a,X^{\ell})=rac{1}{\ell}\sum_{i=1}^{\ell}\mathscr{L}(a,x_i).$$

Сведение задачи обучения к задаче оптимизации

Минимизация эмпирического риска (empirical risk minimization):

$$\mu(X^{\ell}) = \arg\min_{\mathbf{a} \in A} Q(\mathbf{a}, X^{\ell}).$$

Пример: *метод наименьших квадратов* ($Y = \mathbb{R}$, \mathscr{L} квадратична):

$$\mu(X^{\ell}) = \arg\min_{\theta} \sum_{i=1}^{\ell} (g(x_i, \theta) - y_i)^2.$$

Понятие обобщающей способности (generalization performance):

- найдём ли мы «закон природы» или переобучимся, то есть подгоним функцию $g(x_i, \theta)$ под заданные точки?
- ullet будет ли $a=\mu(X^\ell)$ приближать функцию y на всём X?
- будет ли $Q(a, X^k)$ мало́ на новых данных контрольной выборке $X^k = (x_i', y_i')_{i=1}^k$, $y_i' = y(x_i)$?

Резюме

- Основные понятия машинного обучения: объект, ответ, признак, предсказательная модель, метод обучения, эмпирический риск, переобучение.
- Прикладные задачи машинного обучения
 встречаются во всех областях бизнеса, науки, производства
 об этом в следующей лекции