Energy System Modelling and Energy Justice - Incompatible Concepts?

Session 1: Basics of Energy Modelling

Workshop @ Meccanica Feminale, Stuttgart, 18.02 - 20.2.2025

Martha M. Hoffmann

© Reiner Lemoine Kolleg

Introduction

- Master degree "Regenerative energy systems", Berlin Institute of Technology (TUB), Germany
- 2019-2022: Researcher, Reiner Lemoine Institut
- Since 2022: PhD Student, Reiner Lemoine Foundation

Reiner Lemoine Institut

- Non-profit research institute, founded 2010 (Berlin)
- 100 % subsidiary of Reiner Lemoine-Foundation (RLS)
- Managing Directors:
 - Dr. Kathrin Goldammer & Dr. Christine Kühnel
- ≈ 100 researchers and students
- Scientific research for an energy transition towards
 100 % Renewable Energy

Reiner LemoineFounder of the Reiner LemoineFoundation

Round of Introductions

- Name
- Study programme
- Bachelor / Master
- Expectations and wishes

Workshop Sessions

Day 1: Introduction to Energy Modelling			
10:00	11:30	Session 1	Basics of Energy Modelling
14:00	15:30	Session 2	Open Energy Models
16:00	17:30	Session 3	Oemof-Tutorial

Day 2: Introduction to Justice Concepts			
8:30	10:00	Session 4	Social aspects of energy systems
10:30	12:00	Session 5	Justice in energy systems
14:00	15:30	Session 6	Case Studies Development

D	Day 3: Co-Creation at the Intersection of Energy Modelling & Justice				
8:30	10:0	00	Session 7	Group Work on Case Studies	
10:30	12:0	00	Session 8	Discussion of Case Studies	

Workshop Sessions

Day 1: Introduction to Energy Modelling				
10:00	11:30	Session 1	Basics of Energy Modelling	
14:00	15:30	Session 2	Open Energy Models	
16:00	17:30	Session 3	Oemof-Tutorial	

Day 2: Introduction to Justice Concepts			
8:30	10:00	Session 4	Social aspects of energy systems
10:30	12:00	Session 5	Justice in energy systems
14:00	15:30	Session 6	Case Studies Development

Day 3: Co-Creation at the Intersection of Energy Modelling & Justice				
8:30	10:00	Session 7	Group Work on Case Studies	
10:30	12:00	Session 8	Discussion of Case Studies	

Time	Title
10:00	Settling in
10:10	Introductions & Expectations
10:25	Agenda
10:40	Time for Questions
10:45	Energy supply basics
10:55	Foundations of energy modelling
11:05	Experimental Use OpenPlan
11:25	Time for Questions
11:30	Pause

Electricity generation assets in Germany

Stromerzeugung in Deutschland nach Energieträgern

Burger, Bruno. 2025. 'Stromerzeugung in Deutschland Im Jahr 2024'. https://www.energy-charts.info/downloads/Stromerzeugung_2024.pdf.

- Paris agreement: 1.5 (2.0) degree global warming
- Klimate neutrality in Germany by 2045
- 2025: 60% of electricity generation from renewables in Germany!

Folie 8

Add categories or election check Martha Hoffmann; 2025-02-14T09:09:01.513 MH0

Energy trilemma - traditional targets of supply

What are traditional targets of energy supply?

Energy trilemma - traditional targets of supply

Environmental sustainability

Reiner Lemoine Kolleg

What is an energy supply system?

Renewable Energy in Electricity Sector

- Use of renewable energy holds the potential of...
 - Reducing GHG emissions
 - Reducing power generation costs
 - Current electricity grid already combines:
 - Fossil-fuelled generation (gas, coal, nuclear)
 - Renewable energy (hydro, PV, wind)
 - Storage (mainly hydropower)

Components of energy systems

Diesel generator

Fuel = Diesel

Kinetic Energy

Electricity

- Conversion Principle: magnetic induction
- Fuel price: ??? ~ 0.6 USD/I
- Emissions: 3.1-3.5 kgCO2/l
- Flexible

Hydro Power System

"Fuel" = water flow

- Conversion Principle: potential energy to rotating energy
- Fuel price: 0 USD/unit
- Emissions: 0 kgCO₂/unit
- Dipatchable (with reservoir)
- Provides rotating mass

Solar PV System

- Conversion Principle: photoelectric effect
- Fuel price: 0 USD/unit
- Emissions: 0 kgCO2/unit
- Volatile

Sources: scienceabc (I), Mascus Deutschland (r)

Wind Power System

"Fuel" = wind (air flow)

Electricity

- Conversion Principle: kinetic energy to rotating energy
- Fuel price: 0 USD/unit
- Emissions: 0 kgCO2/unit
- Volatile

Energy demand and load profiles

- Peak demand (kW, MW)
- Average demand (kW, MW)
- Daily energy demand (kWh, MWh)
- Load factor: A. demand/ P. demand
- Load profile: Temporal resolution
- Key for RE based systems

Challenges of electricity supply

Dynamic load response challenge intensified by fluctuating renewable electricity production

Intermittent generation and intermittent consumption

Higher uncertainty leads to higher spinning reserve needs

Generation and supply need to match on temporal and spatial scale

Energy trilemma - traditional targets of supply

Energy management system (EMS)

Need for control and dispatch mechanism securing supply security

→ Energy management system

EMS tracks and manages...

- Electricity generation
- Demand
- Voltage and frequency
- Potenial: forecasting

Usable PV production in PV-diesel systems

Usable PV peak production

Use of storage:

- Storing and time shifting of electricity → enabling higher shares of renewables
- Providing ancillary services to improve grid quality and enable higher share of renewable energy

Storage Systems

NGK Insulators Inc.

Energy supply planning

Energy supply should optimally fulfill all demand and stability requirements

Planning is needed for appropriate demand, generation, capacity and dispatch.

Complexity increases with renewables and decentralication of supply and demand!

Energy system models needed!

What is Energy Modelling?

- Computational representations of energy systems to analyze, simulate, predict or simulate outcomes based on certain assumptions
- Simplification of real (complicated) conditions and are sensitive to applied input parameters/data

Sketch of PyPSA-Eur an open model dataset of the European energy system. Source: https://pypsa-eur.readthedocs.io/en/latest/

Purpose of Energy Modelling

- Inform and support stakeholder / policy decisions:
 - Energy needs
 - Energy costs
 - Infrastructure requirements
- Key categories:
 - Impact assessments
 - Long-term energy planning

Energy Model Classification I: Characteristics

Energy models can vary greatly, depending on their subject matter. Typically, the defining parameters will be:

- ▶ Geographical scale
- Sectors of the economy
- ▶ Timeframe
- Mathematical approaches
- ▶ and many more...

An example of model classification, Energy Planning and Modelling A Guide for Energy Planners and Policymakers 2022. Source: GIZ_EnergyModellingGuidebook_2022.pdf

Energy Model Classification II: Types

Agent-Based Models (ABM)

- Focused on individual agents
- Behavioural decisions
- Example: PV update depending on incentive schemes

Macroeconomic Models (CGE, ...)

- Focus on economy at large,
- Including broad impacts like employment, GDP or wellfare
- Example: CO2 taxing and employment effects

Microeconomic Models

- Focussed on policy impacts on household level
- Benefit and/or burden relative to specific group
- Example: CO2 prices on heat

Data Analysis

- Geospatial analysis
- Correlations
- Example:
 Histroical
 correlation
 between PV
 adoption and
 socio-economic
 background

Energy System Models (ESM)

- Representation of energy systems for planning
- Dispatch optimization
- Capacity and infrastructure planning
- Example: Micro grid planning

Components of an Energy System Model (ESM)

Demand that needs to be supplied

Definition of selected technologies available to fulfill demand

Objective function (eg. minimize annual supply costs)

Model represents real-life system under a number of simplifying assumptions

Component models

Economic assumptions

Dispatch strategies

ESM Characteristics I: Timeframes

Timeframes are subject to the analytical objectives!

Source: Welsch, 2013

Time horizon by type of analysis, Energy Planning and Modelling A Guide for Energy Planners and Policymakers 2022. Source: <u>GIZ_EnergyModellingGuidebook_2022.pdf</u>

ESM Characteristics II: Time slices

 Models often utilize time slices to avoid distorting reality through averaging (example: energy demand in summer and winter should not be summarized in a single value)

Example of representation of time slices, Energy Planning and Modelling A Guide for Energy Planners and Policymakers 2022. Source: GIZ_EnergyModellingGuidebook_2022.pdf

ESM Characteristics III: Geographical Scope

- Energy models can represent energy systems at a local, regional or global level
- Different purposes require different levels of simplification, which is typically achieved through nodes
- Depending on the goal, districts, cities, or entire regions can be summarized into a single node

Single node and multi-node representation, Energy Planning and Modelling A Guide for Energy Planners and Policymakers 2022. Source: <u>GIZ_EnergyModellingGuidebook_2022.pdf</u>

Case study example: Micro Grid

Basic steps of energy system modelling

Define energy supply system

Implement components into model

Collect input data

Calculate scenarios / optimize component sizes or operational strategies

Derive recommendations

Inputs: Data requirements of model

Load profiles for each time step

Timeseries of renewable generation potential

Economic parameters

Fix and variable cost of the system components, weighted average cost of capital, project lifetime

Technical parameters

Generators: Efficiencies or fuel curve, min/max runtime, min/max loading (if possible)

Battery storage system: minimum state of charge, input/output efficiencies, C-rate

Objective Function: Minimized Annuity

Minimize annual energy supply costs

• Decision variables: Asset capacities and their dispatch

Costs of compor	Costs of dispatch		
$min \sum_{i} (Capex(i)*CRF(i)+Ope$	$x_{fix}(i))*$	$P_{inst}(i) + \sum_{i} \sum_{t} Opex_{var}(i) *$	$E_{gen}(i,t)$
$i \in \{WEA, PV, BHKW, Speicher\}$ $t \in \{18760\}$	Capex CRF Opex $_{fix}$ Opex $_{var}$ P $_{inst}$ E $_{gen}$ i	Capital expenditure Capital recovery factor Fixed operational expenditure Variable operational expenditure Capacity of component Generated electricity per timestep Index of system components Index of time steps	EUR/kW - EUR/(kW*a) EUR/kWh kW kWh -

Potential technological constraints

Maximum potentials for installation (e.g. space restrictions)

Minimal renewable share

Minimal degree of autonomy

Maximum Backup power Maximum Emissions

Outputs of ESM

Technical

- Optimal capacities
- Dispatch of assets
- Aggregated energy flows
- Peak power
- Renewable factor
- Autonomy
- Excess generation

Economical

- Total cost of energy system
- Levelized cost of energy
- Payback period, Return-of-Investment,...

Others

- CO2-Emissions
- Subsequent tariffs
- Environmental indicators
- Social indicators

Outputs of ESM: LCOE

LCOE = Levelized cost of electricity = €/kWh

- Important, but not only relevant indicator of optimal system sizing and operation
- Annual cost of energy system devided by supplied demand
- Not directly optimized for
- Dependent on system boundaries and provided economical details

Scenario calculation / optimization

Scenario	S	Results					
Name	Components	Capacities	Investment costs total [USD]	LCOE [USD/kWh]	RE-share [%]	GHG emissions [Mtons/year]	
Diesel- only	Diesel plant	2.4 MW	0	0.32	0	11	
Wind- diesel	Diesel plant Wind farm	2.4 MW 3.6 MW	5.4 Million	0.27	35%	7.1	
PV- battery- diesel	Diesel plant PV Battery storage	2.4 MW 4 MW 1.5 MWh	6.35 Million	0.28	39%	6.3	

Webtool: open_plan tool

- Cross-sectoral open planning tool with a graphical user interface
 - based on the multi-vector-simulator and oemof
 - special focus on energy cells
- The development takes place in close cooperation with the stakeholders
- https://open-plan-tool.org, https://open-plan.rl-institut.de

Register for open_plan

Welcome to the open-plan-tool

Do you not have an account yet? Sign up

Forgot your password? Reset Password

https://open-plan.rl-institut.de/en/

Webtool OpenPlan - Excercise I

- 1. Log in to Open Plan
- 2. Everyone chooses a scenario
- 3. Run the default scenario without capacity optimization
- 4. Look at the results
- 5. Find Levelized cost of Electricity

How expensive is each kWh electricity if only supplied by diesel generator?

Webtool OpenPlan - Excercise II

- Create a new scenario
- 2. Remove storages from energy system
- 3. Create multiple scenarios with different renewable share constraints (25%, 50%, 75%)
- 4. Optimize capacity and dispatch
- 5. Look at the LCOE of the different scenarios
- 6. Does a renewable constraint of 100% work?

Discuss the behaviour of LCOE relative to the obtained renewable share!

Impact of energy demand and load profile on RE

Effect of excess energy

Webtool OpenPlan - Excercise III

- Add a storage unit to the scenarios of excercise III
- 2. Create multiple scenarios with different renewable share constraints (25%, 50%, 75%)
- 3. Optimize capacity and dispatch
- Look at the LCOE of the different scenarios
- 5. Does a renewable constraint of 100% work?

Discuss the LCOE!

Impact of energy demand and load profile on RE

Learnig Outcomes of this Session

- Energy trilemma
- Energy supply assets
 - Dispatchable and non-dispatchable
- Energy model types
- Energy system models
 - Components
 - Input Data
 - Output data
- First experience with energy modelling through openPlan

Thank you for your participation ©

E-Mail: <u>martha.Hoffmann@rl-kolleg.de</u>

Web: https://www.reiner-lemoine-stiftung.de

/kolleg/team/martha-hoffmann

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0)

See license text for further information.

Please cite as: "Title of presentation" Martha Hoffmann | <u>CC BY 4.0</u>