SAS Assignment #3

Prepared By: Group #5

Joel Camacho

Mohamed Mazarul

Bradley John

The purpose of this project was to continue the knowledge enhancement of SAS Enterprise Miner. The project required us to apply decision tree nodes, partition the data and use the average square error as the model assessment statistic to answer a business problem for a supermarket with a new line of organic products. The supermarket has a customer loyalty program. As an initial buyer incentive plan, the supermarket provided coupons for the organic products to all the loyalty program participants and collected data that includes whether these customers purchased any of the organic products. Detail of these attributes is as follows.

Business Problem

A supermarket is offering a new line of organic products. The supermarket's management wants to determine which customers are likely to purchase these products.

Questions & Building Model

- 1. How do the purchase orders vary by gender?
- 2. Does age play a role in purchasing orders?

Data description

The ORGANICS data set contains:

- 13 variables and
- over 22,000 observations

Variable	Role	Level	Discussion
ID	ID	Nominal	Customer loyalty identification number
DemAffl	Input	Interval	Affluence grade on a scale from 1 to 30
DemAge	Input	Interval	Age, in years
DemCluster	Rejected	Nominal	Type of residential neighborhood
DemGender	Input	Nominal	M = male, F = female, U = unknown
DemRegion	Input	Nominal	Geographic region
DemTVReg	Input	Nominal	Television region
PromClass	Input	Nominal	Loyalty status: tin, silver, gold, or platinum
PromSpend	Input	Interval	Total amount spent
PromTime	Input	Interval	Time as loyalty card member
TargetBuy	Target	Binary	Organics purchased? 1 = Yes, 0 = No
TargetAmt	Rejected	Interval	Number of organic products purchased

Our first step was to import the data in EM using all the variables and set the roles as listed above then applied the required parameters to answer the business problem. The following steps were completed (see Appendices for screenshots)

- 1. Decision Tree nodes were created
- 2. A Data Partition node was added by assigning 50% of the data for training and 50% for validation

Data Exploration

The proportion of individuals who purchased organic products appears to be 24.3%.

Implementations and Findings

We created a decision tree model. We used <u>average square error</u> as the model assessment statistic. We also used <u>Subtree Assessment Plot</u> to assess the model.

- Using average square error as the assessment measure results in a tree with 29 leaves in Model 1
- Age is used for the first split
- Competing splits are Affluence Grade and Gender

For comparison purposes we created a second model that allowed an additional split at each node. In this model

- Using average square error as the assessment measure results in a tree with 32 leaves in Model 2
- Age is used for the first split
- The competing splits is Affluence Grade

Conclusion

Our data showed us that the solution to acquiring more customer purchases is to focus on two areas of the business. The first is to focus on women since the data shows they have a higher purchase rate. The second is to market towards middle aged customers. These customers are the top buyers and those are the ones that need to be targeted. Each of the models gave a similar final answer and could be used. We performed a model comparison (Appendix D) and the misclassification rates were nearly the same for each. Each model also performed similarly for a variety of other measures.

Appendices:

A: Overall SaS Diagram

B. Decision Tree1 Results:

B.1 – Output Only

C: Decision Tree 2

C.1 – Model 2 Output Only

D. Model Comparison

 ${\tt Model Selection \ based \ on \ Valid: \ Misclassification \ Rate \ (_VMISC_)}$

Model		Data			False	True	False	True
Node	Model Description	Role	Target	Target Label	Negative	Negative	Positive	Positive
Tree	Decision Tree	TRAIN	TargetBuy	Organics Purchase Indicator	1676	7978	381	1077
Tree	Decision Tree	VALIDATE	TargetBuy	Organics Purchase Indicator	1679	7979	380	1073
Tree2	Decision Tree (2)	TRAIN	TargetBuy	Organics Purchase Indicator	1584	7890	469	1169
Tree2	Decision Tree (2)	VALIDATE	TargetBuy	Organics Purchase Indicator	1593	7867	492	1159

Data Role=Valid

Statistics	Tree	Tree2
Valid: Kolmogorov-Smirnov Statistic	0.50	0.50
Valid: Average Squared Error	0.13	0.13
Valid: Roc Index	0.82	0.82
Valid: Bin-Based Two-Way Kolmogorov-Smirnov Probability Cutoff	0.26	0.24
Valid: Cumulative Percent Captured Response	31.28	31.32
Valid: Percent Captured Response	14.15	14.28
Valid: Divisor for VASE	22222.00	22222.00
Valid: Gain	212.54	212.94
Valid: Gini Coefficient	0.65	0.65
Valid: Bin-Based Two-Way Kolmogorov-Smirnov Statistic	0.49	0.49
Valid: Kolmogorov-Smirnov Probability Cutoff	0.27	0.26
Valid: Cumulative Lift	3.13	3.13
Valid: Lift	2.83	2.85
Valid: Maximum Absolute Error	1.00	1.00
Valid: Misclassification Rate	0.19	0.19
Valid: Sum of Frequencies	11111.00	11111.00
Valid: Root Average Squared Error	0.36	0.36
Valid: Cumulative Percent Response	77.41	77.51
Valid: Percent Response	70.06	70.66
Valid: Sum of Squared Errors	2950.48	2948.02