

properties of nil and nilpotent ideals

 ${\bf Canonical\ name} \quad {\bf Properties Of Nil And Nilpotent Ideals}$

Date of creation 2013-03-22 14:12:54 Last modified on 2013-03-22 14:12:54

Owner mclase (549) Last modified by mclase (549)

Numerical id 6

Author mclase (549)

Entry type Result
Classification msc 16N40

Related topic KoetheConjecture Related topic NillsARadicalProperty **Lemma 1.** Let $A \subset B$ be ideals of a ring R. If A is nil and B/A is nil, then B is nil. If A is nilpotent and B/A is nilpotent, then B is nilpotent.

Proof. Suppose that A and B/A are nil. Let $x \in B$. Then $x^n \in A$ for some n, since B/A is nil. But A is nil, so there is an m such that $x^{nm} = (x^n)^m = 0$. Thus B is nil.

Suppose that A and B/A are nilpotent. Then there are natural numbers n and m such that $A^m = 0$ and $B^n \subseteq A$. Therefore, $B^{nm} = 0$.

Lemma 2. The sum of an arbitrary family of nil ideals is nil.

Proof. Let R be a ring, and let \mathcal{F} be a family of nil ideals of R. Let $S = \sum_{I \in \mathcal{F}} I$. We must show that there is an n with $x^n = 0$ for every $x \in S$. Now, any such x is actually in a sum of only finitely many of the ideals in \mathcal{F} . So it suffices to prove the lemma in the case that \mathcal{F} is finite. By induction, it is enough to show that the sum of two nil ideals is nil.

Let A and B be nil ideals of a ring R. Then $A \subset A + B$, and $A + B/A \cong B/(A \cap B)$, which is nil. So by the first lemma, A + B is nil.

Lemma 3. The sum of a finite family of nilpotent left or right ideals is nilpotent.

Proof. We prove this for right ideals. Again, by induction, it suffices to prove it for the case of two right ideals.

Let A and B be nilpotent right ideals of a ring R. Then there are natural numbers n and m such that $A^n = 0$ and $b^m = 0$.

Let k = n + m - 1. Let z_1, z_2, \ldots, z_k be elements of A + B. We may write $z_i = a_i + b_i$ for each i, with $a_i \in A$ and $b_i \in B$. If we expand the product $z_1 z_2 \cdots z_k$ we get a sum of terms of the form $x_1 x_2 \ldots x_k$ where each $x_i \in \{a_i, b_i\}$.

Consider one of these terms $x_1x_2\cdots x_k$. Then by our choice of k, it must contain at least n of the a_i 's or at least m of the b_i 's. Without loss of generality, assume the former. So there are indices $i_1 < i_2 < \cdots < i_n$ with $x_{i_j} \in A$ for each j. For $1 \le j \le n-1$, define $y_j = x_{i_j}x_{i_j+1}\cdots x_{i_{j+1}-1}$, and define $y_n = x_{i_n}x_{i_n+1}\cdots x_k$. Since A is a right ideal, $y_j \in A$.

Then $x_1 x_2 \cdots x_k = x_1 x_2 \cdots x_{i_1-1} y_1 y_2 \cdots y_n \in x_1 x_2 \cdots x_{i_1-1} A^n = 0$.

This is true for all choices of the x_i , and so $z_1 z_2 \cdots z_k = 0$. But this says that $(A + B)^k = 0$.