Clases Particulares

Prof. Gonzalo Narváez.

- 1. [10 puntos] Sea una línea de transmisión visto en la figura 1 de impedancia característica $Z_0 = 50 \Omega$, se le adiciona una linea de transmisión de longitud $l = 5\lambda/12$ en circuito abierto.
 - (a) [2 puntos] Calcule la impedancia Z_{ca} del circuito.
 - (b) [2 puntos] Calcule la impedancia equivalente en la linea de transmisión.
 - (c) [4 puntos] Determine las distancias l y l_s necesarias para adaptar la línea de transmisión utilizando la Carta de Smith, implementando un stub en cortocircuito y otro en circuito abierto.
 - (d) [2 puntos] Explique detalladamente el proceso de adaptación.

Figura 1: Linea de transmisión en circuito abierto.

Solución:

(a) La impedancia Z_{ca} del circuito se calculará con la formula Z_{in} para la cual se tiene que $Z_L = \infty$ y $Z_0 = 50 \,\Omega.$

$$Z_{ca} = \frac{Z_0(Z_l + jZ_0 \tan(\beta l))}{(Z_0 + jZ_l \tan(\beta l))}$$
(1)

$$Z_{ca} = \frac{Z_0(Z_l + jZ_0 \tan(\beta l))}{(Z_0 + jZ_l \tan(\beta l))}$$

$$= Z_0 \frac{\left(1 + \frac{jZ_0 \tan(\beta l)}{Z_l}\right)}{\left(\left(\frac{Z_0}{Z_l} + j \tan(\beta l)\right)\right)}$$

$$= \frac{-jZ_0}{\tan\left(\frac{2\pi}{\lambda} \frac{5\lambda}{12\pi}\right)}$$

$$\stackrel{i}{=} Z_0$$

$$(3)$$

$$= \frac{-jZ_0}{\tan\left(\frac{2\pi}{\lambda}\frac{5\lambda}{12\pi}\right)} \tag{3}$$

$$=\frac{-jZ_0}{\tan\left(\frac{5\pi}{6}\right)}\tag{4}$$

$$=\frac{j\sqrt{3}Z_0}{3}\tag{5}$$

(b) La impedancia equivalente en la linea de transmisión será la impedancia de circuito abierto en paralelo con la impedancia de la carga $Z_{eq} = Z_{ca}//Z_l$.