Seminární úlohy 7

1. Vlnová funkce základního stavu elektronu atomu vodíku (kvantová čísla N=1, l=0, m=0) je ve sférických souřadnicích $\Psi_{100}(r,\mathcal{G},\varphi)=R_{10}(r)Y_{00}(\mathcal{G},\varphi)$, kde

$$R_{10}(r) = \frac{2}{\sqrt{a_0^3}} \exp\left(-\frac{r}{a_0}\right)$$

 $Y_{00}(9, \varphi) = \frac{1}{\sqrt{4\pi}}$

 $(a_0$ je Bohrův poloměr). Hustota pravděpodobnosti výskytu elektronu v bodě o souřadnicích (r, θ, φ) je $\Psi_{100}\Psi_{100}^*$. Vypočítejte marginální hustotu pravděpodobnosti pro vzdálenost elektronu od jádra.

Řešení:

$$[f_r(r) = \frac{4}{a_0^3} r^2 \exp\left(-\frac{2r}{a_0}\right)]$$

2. Při experimentu bylo provedeno 10 opakovaných měření náhodných proměnných a,b,c, které mají normální rozdělení. Byly získány následující hodnoty:

а	b	С
30	10.1	9.9
31	9.5	9.5
39	12.1	9.2
40	12.5	9.0
41	13.5	9.1
42	12.4	8.9
39	11.4	9.3
45	12.6	8.8
36	8.8	10.2
46	13	8.7

Na základě naměřených dat vyšetřete korelaci náhodných proměnných a,b,c. Proveďte odhad očekávané hodnoty a chyby veličiny $y = \frac{3ab}{c^2}$.

Řešení:

$$[\rho(a,b) = 0.73 \pm 0.16, \rho(a,c) = -0.74 \pm 0.15, \rho(b,c) = -0.81 \pm 0.12, y = 15.8 \pm 5.5]$$