Laxminarayen

Analysis of Variance

- In this section we introduce a new distribution – the F-Distribution
- Used to answer the question "What is the probability that two samples come from populations that have the same variance?"

Analysis of Variance

- In this section we introduce a new distribution – the F-Distribution
- Can also answer the question "What is the probability that three or more samples come from the same population?"

ANOVA Analysis of Variance

- In the previous section we tested samples to see if they are the representative of the population.
- What if we had three (or more) samples?
- Could we find if they are from same population?

 Our null hypothesis would look like:

 $H_0: \mu_A = \mu_B = \mu_C$

We could test each pair:

$$H_0$$
: $\mu_A = \mu_B$ $\alpha = 0.05$

$$H_0$$
: $\mu_A = \mu_C$ $\alpha = 0.05$

$$H_0$$
: $\mu_B = \mu_C$ $\alpha = 0.05$

The problem is, our overall confidence drops:

$$H_0$$
: $\mu_A = \mu_B$ $\alpha = 0.05$
 H_0 : $\mu_A = \mu_C$ $\alpha = 0.05$

$$H_0$$
: $\mu_B = \mu_C$ $\alpha = 0.05$

 $.95 \times .95 \times .95 = .857$

85.7% confidence level

- This is where ANOVA comes in!
- We compute an F value, and compare it to a critical value determined by our degrees of freedom (the number of groups, and the number of items in each group)

Let's work with some data:

First calculate the sample means

Next calculate the overall mean

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53

 $\mu_{A,B,C}$

ANOVA considers two types of variance:

Between Groups

how far group means stray from the total mean

Within Groups

how far individual values stray from their respective group mean

The F value we're trying to calculate is simply the ratio between these two variances!

$$F = \frac{Variance\,Between\,Groups}{Variance\,Within\,Groups}$$

Recall the equation for variance:

$$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1} = \frac{SS}{df}$$

Here $\Sigma(x-\bar{x})^2$ is the "sum of squares" *SS* and n-1 is the "degrees of freedom" df

So the formula for the F value becomes:

$$F = \frac{Variance\ Between\ Groups}{Variance\ Within\ Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

SSG=Sumof Squares Groups df_{groups} SSE=Sumof Squares Error df_{error} = df_{error} = df_{error}

 df_{groups} = degrees of freedom (groups) df_{error} = degrees of freedom(error)

SSG = 420

= 16

42

 $\mu_{A,B,C}$

 μ_{TOT}

roupA	GroupB	Group
-------	--------	-------

50

53

$$(\mu_A - \mu_{TOT})^2 = (44 - 49)^2 = 25$$

$$(\mu_B - \mu_{TOT})^2 = (50 - 49)^2 = 1$$

$$(\mu_C - \mu_{TOT})^2 = (53 - 49)^2$$

Multiply by the number of items in each group:

$$42 \times 10 = 420$$

$$SSG = 420$$
 $df_{groups} = 2$

GroupA GroupB GroupC

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

64	
43	

μтот

SSG = 420 $df_{groups} = 2$ SSE = 3300

=49

$(x_A-\mu_A)^2$	$(x_A-\mu_A)^2$	$(x_B-\mu_B)^2$	$(x_B-\mu_B)^2$	$(x_C-\mu_C)^2$	$(x_C-\mu_C)^2$
49	64	144	16	9	1
256	121	529	36	100	0
64	25	361	361	25	100
1	25	196	1	1	144
16	441	49	49	16	100
	1062		1742		496

TOTAL 3300

μ_{Α,Β,С}

 μ_{TOT}

(44)

$$SSG = 420$$

 $df_{groups} = 2$
 $SSE = 3300$
 $df_{error} = 27$

GroupA GroupB GroupC

$$df_{error} = (n_{rows} - 1) *n_{g} roups$$

= (10-1) *3
= 27

 $\mu_{A,B,C}$

 μ_{TOT}

Plug these into our formula:

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{420}{2}}{\frac{3300}{27}} = \frac{210}{122.2} = 1.718$$

 $\mu_{A,B,C}$

 μ_{TOT}

ANOVA with Excel Data Analysis

	Α	В	С	D	Е	Da	nta Analysis				?	X
1	Anova: Single Factor						_					
2						A	nalysis Tools				ОК	
3	SUMMARY						Anova: Single		+i	^		
4	Groups	Count	Sum	Average	Variance			actor With Replica actor Without Rep			Canc	51
5	GroupA	10	440	44	118		Correlation				<u>H</u> elp	
6	GroupB	10	500	50	193.555556		Covariance Descriptive S	tatistics			775-1	
7	GroupC	10	530	53	55.11111111		Exponential S	Smoothing				
8							F-Test Two-S Fourier Analy	ample for Variance	25			
9							Histogram	313		~		
10	ANOVA											
11	Source of Variation	SS	df	MS	F	P-	value	F crit				
12	Between Groups	420	2	210	1.718181818	0.19	8430533	3.354130829				
13	Within Groups	3300	27	122.2222								
14												
15	Total	3720	29									
16												

F Distribution

F-Distribution

F-Distribution

Look up our critical value from an F-table

use a table set for 95% confidence find numerator df find denominator df critical value =3.35

\wedge			F-Table Up	per Tail Aı	ea of 0.05	
		Numerator df				
		1	2	3	4	5
*	25	4.24	3.39	2.99	2.76	2.60
9	26	4.23	3.37	2.98	2.74	2.59
nat	27	4.21	3.35	2.96	2.73	2.57
Ē	28	4.20	3.34	2.95	2.71	2.56
denominator df	29	4.18	3.33	2.93	2.70	2.55
ō	30	4.17	3.32	2.92	2.69	2.53

F-Scores in MS Excel

 In Microsoft Excel, the following function returns an F-score:

α	df1	df2	Formula	Output Value
0.05	2	27	=FINV(A2,B2,C2)	3.3541308285292

F-Scores in Python

```
>>> from scipy import stats
```

- >>> stats.f.ppf(1-.05,dfn=2,dfd=27)
- 3.3541308285291986

- In an effort to receive faster payment of invoices, a company introduces two discount plans
- One set of customers is given a 2% discount if they pay their invoice early
- Another set is offered a 1%discount
- A third set is not offered any incentive

- The results are as follows:
- Using ANOVA, can we say that the offers result in faster payments?

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21

1. Calculate the means

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
$\mu_{2,1,0}$	12	17	16
μ _{τοτ}	15		

SSG = 70

 $\mu_{2,1,0}$

μтот

ANOVA Exercise #1

2. Find Sum of Squares Groups

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

 $(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$
 $(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$

Multiply by the number of items in each group:

$$14 \times 5 = 70$$

14

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16
15		

$$SSG = 70$$

 $df_{groups} = 2$

3. Degrees of Freedom Groups

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
٥, ا	12	17	16
т	15		

SSG = 70 $df_{groups} = 2$ SSE = 198

4. Sum of Squares Error

$(x_2-\mu_2)^2$	$(x_1-\mu_1)^2$	$(x_0-\mu_0)^2$
1	16	4
16	4	25
9	36	4
4	49	0
4	1	25
34	106	58
	TOTAL	198

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
μ _{2,1,0}	12	17	16
μ _{тот}	15		

SSG = 70 $df_{groups} = 2$ SSE = 198 $df_{error} = 12$

5. Degrees of Freedom Error

$$df_{error} = (n_{rows} - 1) *n_{groups}$$

= (5-1) *3
= 12

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
2,1,0	12	17	16
гот	15		

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$
 $df_{error} = 12$

 $\mu_{2,1,0}$

 μ_{TOT}

6. Calculate F value:

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{70}{2}}{\frac{198}{12}} = \frac{35}{16.5} = 2.121$$

2% disc 1% disc no disc

7. Look up F_{critical}: 3.885

SSG = 70 $df_{groups} = 2$ SSE = 198 $df_{error} = 12$

Since F falls to the left of $F_{critical}$ 2.121 < 3.885

we fail to reject the null hypothesis!

We don't have enough to support the idea that our offers changed the average number of days that customers took to pay their invoices!

