สคริปต์นำเสนอ

อั้น

//สไลด์ 1

สวัสดีครับผมนายธีรธร รักษาเมือง ผมนาย... วันนี้พวกเราจะมานำเสนอโครงการเรื่อง การพัฒนาแนวทาง อัตโนมัติในการสร้างโมเดลตรวจจับวัตถุประสิทธิภาพสูงจากชุดข้อมูลขนาดเล็ก โดยที่จะเป็นการลง case study ไปที่การตรวจจับขวดพลาสติกบนแม่น้ำนะครับ

//สไลด์ 2

ความสำคัญและที่มาของปัญหานะครับ ปัจจุบัน โมเดลตรวจจับวัตถุที่มีประสิทธิภาพสูงส่วนใหญ่มักพัฒนามาจาก ชุดข้อมูลขนาดใหญ่ ซึ่งมีความหลากหลายของข้อมูลสูง ชุดข้อมูลเหล่านี้ช่วยให้โมเดลสามารถเรียนรู้รูปแบบและ ความแตกต่างของวัตถุได้อย่างมีประสิทธิภาพ อย่างไรก็ตาม การจัดเตรียมชุดข้อมูลขนาดใหญ่นั้นมีต้นทุนสูง ทั้งใน ด้านเวลา แรงงาน และทรัพยากรในการเก็บรวบรวมและจัดการข้อมูล

ในทางตรงกันข้าม การพัฒนาโมเดลจากชุดข้อมูลขนาดเล็กนั้นมีข้อจำกัดหลายประการ โดยเฉพาะในด้านความ แม่นยำ และความหลากหลายของข้อมูลที่ไม่ดีเท่าชุดข้อมูลขนาดใหญ่ ซึ่งประสิทธิภาพของโมเดลที่พัฒนาจากชุด ข้อมูลขนาดเล็กอาจลดลงเมื่อเผชิญกับสภาพแวดล้อมที่ซับซ้อน ความท้าทายนี้จึงเป็นจุดเริ่มต้นของโครงการนี้ ที่ มุ่งเน้น การพัฒนาแนวทางอัตโนมัติในการสร้างโมเดลตรวจจับวัตถุที่มีประสิทธิภาพสูงจากชุดข้อมูลขนาดเล็ก

ส่วนสาเหตุที่เรามุ่งเน้นไปในการตรวจจับขวดพลาสติกบนน้ำนั้น เนื่องจากปัญหาขยะลอยน้ำ โดยเฉพาะขวด พลาสติกที่ถูกทิ้งลงแหล่งน้ำธรรมชาติ เป็นหนึ่งในประเด็นสำคัญที่ส่งผลกระทบอย่างร้ายแรงต่อสิ่งแวดล้อมและ ระบบนิเวศ ขวดพลาสติกที่สะสมในแม่น้ำ ลำคลอง หรือทะเล ไม่เพียงแต่ทำให้แหล่งน้ำสกปรก แต่ยังเป็นอันตราย ต่อสิ่งมีชีวิต และยังส่งผลกระทบต่อคุณภาพน้ำที่ใช้ในชีวิตประจำวันของมนุษย์

แม้ว่าจะมีความพยายามในการเก็บรวบรวมขยะจากแหล่งน้ำ แต่การทำงานด้วยแรงงานมนุษย์ล้วน ๆ มีข้อจำกัด ดังนั้นการตรวจจับขยะลอยน้ำโดยใช้ AI เป็นทางเลือกที่ช่วยเพิ่มประสิทธิภาพในการจัดการขยะเหล่านี้ได้ อย่างไร ก็ตาม การพัฒนาโมเดล AI ที่สามารถตรวจจับขยะลอยน้ำได้อย่างแม่นยำ ยังคงเผชิญกับปัญหาหลักสองประการ ได้แก่ การขาดแคลนชุดข้อมูลที่เหมาะสมสำหรับการฝึกโมเดล และความยากลำบากในการตรวจจับขยะใน สภาพแวดล้อมที่หลากหลาย เช่น เงาสะท้อนบนผิวน้ำ หรือสีที่กลมกลืนระหว่างขวดพลาสติกและพื้นน้ำ

//สไลด์ 3

โดยที่วัตถุประสงค์ของโครงการเรามีทั้งหมด 3 ข้อด้วยกัน หนึ่งคือเราต้องการพัฒนาแนวทางที่เหมาะสมและมี ประสิทธิภาพในการขยายจำนวนของชุดข้อมูลภาพ ด้วยกระบวนการสร้างชุดข้อมูลจำลอง หรือ Synthetic Dataset ที่มีความหลากหลายและครอบคลุมสถานการณ์จริง เพื่อแก้ไขข้อจำกัดของการใช้งานชุดข้อมูลขนาดเล็ก ซึ่งเป็นปัญหาที่พบในระบบการพัฒนาโมเดลตรวจจับวัตถุในปัจจุบัน สองคือสร้างโมเดล AI ตรวจจับขวดพลาสติก บนน้ำที่มีความแม่นยำอย่างน้อย 80% และอย่างสุดท้ายคือ พัฒนาเฟรมเวิร์ค AI ที่สามารถนำไปประยุกต์ใช้ได้ใน อนาคต โดยมุ่งเน้นการสร้างชุดข้อมูลแบบอัตโนมัติเพื่อลดเวลาในการเตรียมชุดข้อมูลครับ

กาย

//สไลด์ 4

ต่อไปจะเป็นขอบเขตของโครงการนะครับ เรามาเริ่มที่การเก็บรวบรวมและจัดหารข้อมูลโดยเราจะแบ่งป็น 2 ส่วน ด้วยกัน

ส่วนแรกคือ**การเก็บภาพฟีเจอร์** ในที่นี้คือขวดพลาสติก โดยเราจะทำการถ่ายรูปขวดพลาสติกชนิดต่างๆที่คาดว่า จะพบเจอได้บ่อยในแม่น้ำโดยการถ่ายบนฉากเขียว เพื่อให้สะดวกต่อการแยกฟีเจอร์ หลังแยกฟีเจอร์เราจะได้แต่รูป ขวดพลาสติกที่มีพื้นหลังโปร่งใส เพื่อจะนำไปสร้างชุดข้อมูลจำลองในขั้นตอนต่อไป

อีกส่วนคือ**การเก็บภาพพื้นหลัง** เราจะนำภาพแหล่งน้ำต่างๆจากแหล่งออนไลน์ เพื่อใช้เป็นฐานสำหรับการสร้างชุด ข้อมูลจำลอง

//สไลด์ 5

ต่อไปจะเป็น**การสร้างชุดข้อมูลภาพจำลอง หรือ Synthetic Dataset** นะครับ เราจะใช้กระบวนการสร้างภาพ จำลองเชิงโปรแกรม โดยนำภาพฟีเจอร์หรือขวดพลาสติก มาวางบนภาพพื้นหลังที่มี Mask ของพื้นที่น้ำที่สร้างด้วย เทคนิค HSV Masking ที่จะกำหนดช่วงของค่า Hue Saturation และ Value ของภาพเพื่อแยกพื้นที่น้ำออกมา โดยสุ่มตำแหน่ง ขนาด และองศาการหมุนของฟีเจอร์เพื่อความหลากหลายของชุดข้อมูลจำลอง

//สไลด์ 6

ต่อไปคือ**การพัฒนาความหลากหลายของชุดข้อมูล** โดยเราจะใช้ฟีเจอร์ต่างๆ ของ RoboFlow เพื่อเพิ่มความ หลากหลาย ได้แก่การหมุนภาพ การปรับความสว่าง การเพิ่ม Noise และ Blur เพื่อให้ชุดข้อมูลมีความครอบคลุม และเหมาะสมกับการฝึกโมเดล

//สไลด์ 7

สุดท้ายคือ**การพัฒนาเฟรมเวิร์ค AI** โดนเราจะออกแบบเฟรมเวิร์คสำหรับสร้างชุดข้อมูลแบบอัตโนมัติ ตั้งแต่ กระบวนการสร้าง Synthetic Dataset ไปจนถึงการทำ Data Augmentation ผ่าน RoboFlow ในลักษณะ อัตโนมัติ เพื่อเตรียมความพร้อมสำหรับการใช้งานโมเดลตรวจจับขวดพลาสติกบนพื้นน้ำ

ในระยะยาว เฟรมเวิร์คนี้จะช่วยลดความยุ่งยากในกระบวนการเตรียมข้อมูล และทำให้การพัฒนาระบบ AI ใน อนาคตสามารถดำเนินการได้อย่างต่อเนื่องและยืดหยุ่น

//สไลด์ 8

นี่คือข้อจำกัดของโครงการเรานะครับ โดยที่การพัฒนาของเราจะเน้นการทำงานกับชุดข้อมูลขนาดเล็ก และ Synthetic Dataset ทำให้อาจมีข้อจำกัดด้านความแม่นยำเมื่อเทียบกับชุดข้อมูลขนาดใหญ่, ระบบต้องพึ่งพา คุณภาพของ Mask น้ำ และกระบวนการ Augmentation ซึ่งอาจส่งผลต่อความสมจริงของชุดข้อมูล และสุดท้าย คือระบบจะรองรับเฉพาะขวดพลาสติกที่ลอยน้ำเท่านั้นสำหรับโครงการนี้

//สไลด์ 9

ในส่วนของอุปกรณ์และเครื่องมือที่ใช้ ด้าน Hardware ได้แก่กล้องถ่ายรูปหรือโทรศัพท์มือถือสำหรับการถ่ายภาพ ขวดพลาสติกบนฉากเขียว และคอมพิวเตอร์สำหรับการพัฒนาโค้ดต่างๆ ส่วนทางด้าน Software ที่ใช้ เราเลือกใช้ เครื่องมือที่เหมาะสมกับการพัฒนา Al ได้ก่

- OpenCV สำหรับการประมวลผลภาพและการสร้าง Mask น้ำ
- Google Colab สำหรับการฝึกโมเดล YOLOv8 โดยใช้ทรัพยากร GPU
- Visual Studio Code เป็นเครื่องมือสำหรับการเขียนและปรับปรุงโค้ด
- Python ซึ่งเป็นภาษาหลักสำหรับพัฒนาโค้ดในโครงการนี้
- Roboflow สำหรับการจัดการและปรับแต่งชุดข้อมูล
- และ Ultralytics YOLOv8 สำหรับการพัฒนาและฝึกโมเดลตรวจจับขวดพลาสติก

แพร

//สไลด์ 10

ส่วนต่อไปจะเป็นประโยชน์ที่คาดว่าจะได้รับนะคะ ได้แก่

เพิ่มประสิทธิภาพการสร้างชุดข้อมูล โดยจะลดเวลาและต้นทุนในการสร้างชุดข้อมูล ด้วยการพัฒนาแนวทาง อัตโนมัติในการสร้างชุดข้อมูลภาพจำลอง (Synthetic Dataset) พร้อม Annotation ที่เหมาะสม ช่วยให้การ เตรียมข้อมูลสำหรับการฝึกโมเดลมีความรวดเร็วและมีมาตรฐานมากขึ้น

สร้างโมเดลที่มีคุณภาพจากข้อมูลจำกัด เราพัฒนาโมเดลที่สามารถตรวจจับขวดพลาสติกบนพื้นน้ำได้อย่าง แม่นยำ โดยใช้ชุดข้อมูลที่มีจำนวนจำกัดและผ่านการปรับแต่ง ส่งเสริมการพัฒนาระบบตรวจจับวัตถุที่สามารถ ประยุกต์ใช้กับชุดข้อมูลขนาดเล็กได้ในสถานการณ์อื่น (เช่นการตรวจรอยรั่วบนซองบรรจุภัณฑ์)

สนับสนุนการจัดการปัญหาสิ่งแวดล้อม ระบบสามารถนำไปใช้ต่อยอดในการขยะพลาสติกในแหล่งน้ำแบบ อัตโนมัติได้ ซึ่งเป็นสิ่งสำคัญสำหรับการวางแผนการจัดการปัญหาสิ่งแวดล้อม ช่วยลดขยะพลาสติกในแหล่งน้ำ

เป็นต้นแบบสำหรับการพัฒนาเฟรมเวิร์ค AI เฟรมเวิร์คที่พัฒนาขึ้นสามารถนำไปต่อยอดเป็นระบบที่ช่วยสร้าง และจัดการชุดข้อมูลภาพในบริบทอื่น เช่น การตรวจรอยรั่วบนซองบรรจุภัณฑ์ สนับสนุนการวิจัยและพัฒนาในด้าน AI และ Deep Learning ด้วยการนำเฟรมเวิร์คไปใช้ในงานที่หลากหลาย

//สไลด์ 11

ต่อไปจะเป็น**ผลที่คาดว่าจะได้รับเมื่อเสร็จสิ้นโครงการ**นะคะ ได้แนวทางประยุกต์ที่เหมาะสมในการขยายจำนวน ของชุดข้อมูลภาพ, ได้โมเดล AI ตรวจจับขวดพลาสติกบนน้ำที่มีความแม่นยำอย่างน้อย 80%, ได้เฟรมเวิร์ค AI เพื่อ การสร้างชุดข้อมูลแบบอัตโนมัติ

//สไลด์ 12

ความต้องการของระบบจะแบ่งเป็น 2 ส่วนได้แก่

ความต้องการด้านฟังก์ชันการทำงาน คือ ระบบต้องสามารถตรวจจับขวดพลาสติกบนพื้นน้ำจากภาพถ่ายได้อย่าง แม่นยำ, ระบบต้องรองรับการสร้างชุดข้อมูลภาพจำลอง (Synthetic Dataset) พร้อม Annotation ที่เหมาะสม, ระบบต้องสามารถส่งออก Annotation เพื่อใช้ร่วมกับแพลตฟอร์มภายนอก เช่น Roboflow, ระบบสามารถ

ปรับปรุงโมเดลเพิ่มเติมได้เมื่อมีข้อมูลใหม่เข้ามา, โมเดลที่พัฒนาต้องมีความแม่นยำไม่น้อยกว่า 80% ในการ ตรวจจับขวดพลาสติกบนพื้นน้ำ

//สไลด์ 13

อีกส่วนคือ ความต้องการด้านฮาร์ดแวร์และซอฟต์แวร์ ได้แก่ เครื่องคอมพิวเตอร์ที่มี GPU รองรับการ ประมวลผล Deep Learning, Python 3.9 ขึ้นไป พร้อมไลบรารีที่เกี่ยวข้อง เช่น OpenCV, TensorFlow, PyTorch, และ Ultralytics YOLOv8 , Google Colab สำหรับการฝึกโมเดล, Roboflow สำหรับการ จัดการชุดข้อมูลและ Annotation, Visual Studio Code สำหรับการพัฒนาโค้ด

//สไลด์ 14

ปัญหาที่พบในระบบได้แก่

ความหลากหลายของข้อมูลไม่เพียงพอ แม้ว่าจะมีการสร้างชุดข้อมูลภาพจำลอง แต่ยังขาดความหลากหลายของ ภาพพื้นหลังและลักษณะของขวดพลาสติก เช่น สี ขนาด หรือมุมมองที่แตกต่างกัน ซึ่งอาจส่งผลต่อความสามารถ ในการตรวจจับของโมเดลในสถานการณ์จริงม

การสร้าง Mask น้ำที่ไม่แม่นยำ การกำหนดขอบเขตของน้ำด้วยค่าช่วงสี (HSV) บางครั้งไม่สามารถแยกพื้นที่น้ำ ออกจากท้องฟ้าหรือภูเขาที่สะท้อนน้ำได้อย่างแม่นยำ

การแยกขวดพลาสติกออกจากพื้นหลัง การใช้โค้ด Python หรือเครื่องมือ เช่น OpenCV อาจพบปัญหาการแยก ขอบที่ไม่สมบูรณ์ในบางภาพ

การปรับแต่งชุดข้อมูลใน Roboflow การตั้งค่า Data Augmentation อาจยังไม่ครอบคลุมสถานการณ์จริง เช่น ความสว่างหรือการสะท้อนแสงของพื้นน้ำ

ความซับซ้อนของภาพในโลกจริง ระบบอาจไม่สามารถรองรับภาพที่มีความซับซ้อน เช่น พื้นน้ำที่มีเงาสะท้อน หรือขวดพลาสติกที่ซ่อนอยู่บางส่วน

//สไลด์ 15

สถาปัตยกรรมนี้ประกอบด้วย 5 ชั้นที่ทำงานสอดคล้องกัน ตั้งแต่การเก็บข้อมูลจนถึงการพัฒนาเฟรมเวิร์ค AI ที่ สามารถใช้งานได้ในอนาคต โดยเริ่มจากการเก็บข้อมูลฟีเจอร์ผ่าน**กล้อง**, สร้างชุดข้อมูลจำลองผ่าน Visual Studio Code, เพิ่มความหลากหลายของข้อมูลผ่าน RoboFlow, เทรนโมเดล YOLO ด้วย Google Colab, และเมื่อได้โมเดลที่มีความแม่นยำตามที่กำหนด ก็จะพัฒนาเป็น**เฟรมเวิร์ค A**I สำหรับสร้างชุดข้อมูลโดยอัตโนมัติ ค่ะ

//สไลด์ 16

สุดท้ายนี้เราขอขอบคุณทุกท่านที่ให้ความสนใจ และหากมีคำถามหรือข้อสงสัยใด ๆ เรายินดีที่จะตอบค่ะ