Appl. No. 09/647,054 Amdt. dated July 18, 2003 Reply to Office Action of February 21, 2003

IN THE CLAIMS:

Claim 73 (canceled).

Claim 108 (currently amended): A library of peptide mimetics comprising at least one mimetic from Claim 113.

Claims 74-94 (canceled).

Claim 113 (new): A general mimetic of the structure

 Z^1 P_g^N M' M'' X

wherein:

~~ indicates a bond at a chiral centre of the structure which centre may be in the R or S configuration or a mixture thereof;

R and R² is an amino acid side chain group which may be the same or different;

M' and M'' may be the same or different and are selected from the group consisting of hydrogen, C_1 - C_4 alkyl, chloro and C_1 - C_4 alkoxy;

Z' is selected from the group consisting of hydrogen, methyl and part of a cyclic amino acid sidechain joined to Q^1

PgN is a protecting group for amine;

R^C is selected from the group consisting of a carboxy terminal part of the mimetic, hydrogen, R, and CH₂R;

Appl. No. 09/647,054 Amdt. dated July 18, 2003 Reply to Office Action of February 21, 2003

 $Q^1 = R^1$ which has the same definition as R and R^2 above and $Q^2 = Z$ where Z is selected from the group consisting of hydrogen, methyl, ethyl, formyl and acetyl, -CH₂R, and C(O)R or alternatively Z is part of a cyclic amino acid sidechain group joined to R2; or Q1 and Q2 taken together represent a cyclic group;

Q³ is selected from the group consisting of C(O) and CH₂, -C(O)N(Q⁵)CH(R)C(O)-, - $C(O)N(Q^5)CH(R)$ CH_2 - wherein Q^5 is a covalent bond from the Q^4 group to the nitrogen atom in Q³ to form a bicyclic ring system;

 Q^4 is selected from the group consisting of CH(M'), C(O), CH(Q^5)CH₂ and CH(Q^5)C(O); with the provisos that when:-

- Q^3 is C(O), then $Q^4 = CH(M')$;
- Q^3 is CH_2 , then $Q^4 = C(O)$; (ii)
- Q^3 is $-C(Q)N(Q^5)CH(R)C(Q)$, then $Q^4 = CH(Q^5)CH_2$; (iii)
- Q^3 is $-C(O)N(Q^5)CH(R)$ CH_2 -, then $Q^4 = CH(Q^5)C(O)$; (iv) where Q⁵ is a covalent bond from the Q⁴ group to the nitrogen atom in Q³ which is a cyclization forming a bicyclic ring system.

Claim 114 (new): A peptide mimetic as claimed in claim 113 wherein when Q1 and Q2 form a cyclic group O¹O² which is selected from the group consisting of -CH(R)C(O)-, - $CH_2CH(R)C(O)$ -, $-CH_2CH_2CH(R)C(O)$ -, $-CH(R)CH_2$ -, $-CH_2CH(R)CH_2$ -, $-CH_2CH_2CH(R)CH_2$ -, -CH₂CH(R)-, -CH₂CH₂CH(R)-, -CH(R)CH₂CH₂-, -CH₂CH(R)CH₂CH₂-, -CH(R)CH₂C(O)- and $-CH_2CH(R)CH_2C(O)-.$

Claim 115 (new): A peptide mimetic as claimed in Claim 113 wherein Q1 is R, Q2 is Z, Q3 is C(O) or CH_2 .

Appl. No. 09/647,054 Amdt. dated July 18, 2003 Reply to Office Action of February 21, 2003

Claim 1/6 (new): A peptide mimetic as claimed in Claim 113 wherein Q^1 is R, Q^2 is Z, Q^3 is - C(O)N(Q⁵)CH(R)C(O)- or -C(O)N(Q⁵)CH(R) CH₂-.

Claim 1.7 (new): A peptide mimetic as claimed in Claim 113 wherein Q^1 is $CH(R)C(O)Q^2$, Q^1Q^2 - forms a cyclic group -CH(R)C(O)-Q², Q³ is C(O) or CH₂.

Claim 1/18 (new): A peptide mimetic as claimed in Claim 113 wherein Q^1 is $CH_2CH(R)C(O)Q^2$, Q^1Q^2 - forms a cyclic group $-CH_2CH(R)C(O)$ -, Q^3 is C(O) or CH_2 .

Claim 1/19 (new): A peptide mimetic as claimed in Claim 113 wherein R^C is $C(O)Pg^C$ where Pg^C is a protecting group for carboxylic acid.

Claim 120 (new): A peptide mimetic as claimed in Claim 119 wherein Pg^C is selected from the group consisting of alkoxy, benzyloxy, allyloxy, fluorenylmethyloxy amines forming easily removable amides, a cleavable linker to a solid support, the solid support, hydroxy, NHR, OR, R or the remaining C-terminal portion of the mimetic.

Claim 121 (new): A peptide mimetic as claimed in Claim 113 wherein Pg^N is selected from a group consisting of Boc, Cbz, Alloc, trityl, a cleavable linker to a solid support, the solid support, the solid support, hydrogen, R, C(O)R or part of the remaining N-terminal portion of the mimetic.

Claim 122 (new): A peptide mimetic as claimed in Claim 113 wherein M' or M" is methoxy.

Claim 123 (new): A peptide mimetic as claimed in Claim 113 wherein M' or M" is methyl.

Claim 124 (new): A peptide mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is C(O), Z^1 =H and R^C is $C(O)Pg^C$.

Appl. No. 09/647,054 Amdt. dated July 18, 2003

Reply to Office Action of February 21, 2003

Claim 125 (new): A peptide mimetic as claimed in Claim 124 where R¹ and R² ≠H.

Claim 126 (new): A peptide mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is CH_2 , Z^1 =H and R^C is $C(O)Pg^C$.

Claim 127 (new): A peptide mimetic as claimed in Claim 126 where R^1 and $R^2 \neq H$.

Claim 128 (new): A peptide mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is $-C(O)N(Q^5)CH(R)C(O)-$, $Z^1=H$ and R^C is $C(O)Pg^C$.

Claim 129 (new): A peptide mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is $-C(O)N(Q^5)CH(R)CH_2$ -, Z^1 =H and R^C is $C(O)Pg^C$.

Claim 130 (new): A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $-CH(R^2)C(O)$, Q^3 is C(O), $Z^1=R^1$ and R^C is $C(O)Pg^C$.

Claim 131 (new): A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $-CH(R^2)C(O)$ -, Q^3 is CH_2 , $Z^1=R^1$ and R^C is $C(O)Pg^C$.

Claim 132 (new): A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is – $CH_2CH(R^2)C(O)$ -, Q^3 is C(O), $Z^1=R^1$ and R^C is $C(O)Pg^C$.

Claim 133 (new): A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is – $CH_2CH(R^2)C(O)$ -, Q^3 is CH_2 , $Z^1=R^1$ and R^C is $C(O)Pg^C$.