પ્રશ્ન 1(અ) [3 ગુણ]

Public key અને Private Key cryptography વચ્ચેનો તફાવત આપો.

જવાબ:

પાસાં	Private Key Cryptography	Public Key Cryptography
Key Management	એક જ key encryption/decryption માટે	અલગ keys encryption/decryption માટે
Key Distribution	સુરક્ષિત channel જરૂરી	સુરક્ષિત channel જરૂરી નથી
Speed	ઝડપી processing	Private key કરતાં ધીમી
Security Level	key ગુપ્ત રાખવાથી ઉચ્ચ	ગાણિતિક સુરક્ષા ઉચ્ચ
ઉદાહરણ	DES, AES	RSA, ECC

ਮੇਮਣੀ ਟ੍ਰੀs: "Private Personal, Public Pair"

પ્રશ્ન 1(બ) [4 ગુણ]

CIA Triad સમજાવો.

જવાબ:

CIA Triad એ માહિતી સુરક્ષાનો પાયો છે જેમાં ત્રણ મુખ્ય સિદ્ધાંતો છે:

આકૃતિ:

- Confidentiality (ગોપનીયતા): ડેટા ફક્ત અધિકૃત વપરાશકર્તાઓ માટે ઉપલબ્ધ હોય
- Integrity (અખંડિતતા): ડેટાની સચોટતા અને સંપૂર્ણતા જાળવે
- Availability (ઉપલબ્ધતા): જરૂર પડે ત્યારે સિસ્ટમ્સ ઉપલબ્ધ હોય

મેમરી ટ્રીક: "Can I Access" (Confidentiality, Integrity, Availability)

પ્રશ્ન 1(ક) [7 ગુણ]

Md5 અલ્ગોરિધમના પગલાં સમજાવો.

જવાલ:

MD5 (Message Digest 5) એ 128-bit hash value બનાવતું cryptographic hash function છે.

અલ્ગોરિદ્યમ પગલાં:

પગલું	પ્રક્રિયા	વર્ણન
1	Padding	message length ≡ 448 (mod 512) બનાવવા bits ઉમેરવા
2	Length Addition	મૂળ message ની 64-bit length ઉમેરવી
3	Initialize Buffers	ચાર 32-bit buffers (A, B, C, D) સેટ કરવા
4	Process Blocks	512-bit blocks માં message process કરવો
5	Round Functions	16 operations ના 4 rounds લાગુ કરવા

કોડ બ્લોક:

- Round 1: $F(X,Y,Z) = (X \land Y) \lor (\neg X \land Z)$
- **Round 2**: G(X,Y,Z) = (X∧Z) ∨ (Y∧¬Z)
- **Round 3**: H(X,Y,Z) = X⊕Y⊕Z
- **Round 4**: I(X,Y,Z) = Y⊕(X∨¬Z)

ਮੇਮਣੀ ਟ੍ਰੀਡ: "My Data Needs Proper Processing"

પ્રશ્ન 1(ક અથવા) [7 ગુણ]

RSA ના શોધકોની યાદી બનાવો. RSA અલ્ગોરિધમના સ્ટેપ્સ લખો.

જવાબ:

RSA શોધકો:

- Ron Rivest (MIT)
- Adi Shamir (MIT)
- Leonard Adleman (MIT)

RSA અલ્ગોરિદ્યમ પગલાં:

પગલું	પ્રક્રિયા	સૂત્ર
1	Primes પસંદ કરો	p, q (મોટા primes) પસંદ કરો
2	n ગણતરી	$n = p \times q$
3	φ(n) ગણતરી	$\phi(n) = (p-1) \times (q-1)$
4	e પસંદ કરો	gcd(e, φ(n)) = 1
5	d ગણતરી	$d \times e \equiv 1 \pmod{\phi(n)}$
6	Encryption	C = M^e mod n
7	Decryption	M = C^d mod n

Key Pairs:

• Public Key: (n, e)

• Private Key: (n, d)

મેમરી ટ્રીક: "RSA: Rivest Shamir Adleman"

પ્રશ્ન 2(અ) [3 ગુણ]

વ્યાખ્યા આપો: Firewall. Firewall ની મર્યાદાઓની યાદી બનાવો.

જવાબ:

વ્યાખ્યા: Firewall એ network security device છે જે પૂર્વ-નિર્ધારિત સુરક્ષા નિયમોના આધારે આવતા/જતા network traffic ને monitor અને control કરે છે.

મર્યાદાઓ:

મર્યાદા	นย์า
આંતરિક ધમકીઓ	insider attacks થી સુરક્ષા આપી શકતી નથી
Application Layer	application-specific attacks સામે મર્યાદિત સુરક્ષા
Performance	network traffic ધીમી કરી શકે છે
Configuration	યોગ્ય setup અને maintenance જરૂરી
Encrypted Traffic	encrypted content ને અસરકારક રીતે inspect કરી શકતી નથી

મેમરી ટ્રીક: "Fire Walls Limit Internal Protection"

પ્રશ્ન 2(બ) [4 ગુણ]

IPsec Tunnel Mode અને Transport mode નું સ્કેચ કરો.

જવાબ:

IPsec Modes Comparison:

```
Transport Mode:
+-----+----+
| Original | IPsec | Original |
| IP Header | Header | Payload |
+-----+

Tunnel Mode:
+----+----+
| New IP | IPsec | Original | Original |
| Header | Header | IP Header | Payload |
+-----+----+-----+
```

મુખ્ય તફાવતો:

પાસું	Transport Mode	Tunnel Mode
सुरक्षा	इ ड त Payload	સંપૂર્ણ packet
ઉપયોગ	End-to-end	Gateway-to-gateway
Overhead	ઓછું	વધારે
IP Header	મૂળ જાળવાચેલું	નવું header ઉમેર્યું

મેમરી ટ્રીક: "Transport Travels, Tunnel Total"

પ્રશ્ન 2(ક) [7 ગુણ]

વિવિધ પ્રકારના Active અને Passive attacks નું વિગતવાર વર્ણન કરો.

જવાબ:

Attack વર્ગીકરણ:

Active Attacks:

प्रકार	นย์่า	ઉદાહરણ
Masquerade	અન્ય entity નો નકલી અવતાર	Fake identity
Replay	captured data ને ફરીથી transmit કરવું	Session replay
Modification	message content ને બદલવું	Data tampering
DoS	service availability નો ઇનકાર	Server flooding

Passive Attacks:

увіг	વર્ણન	અસર
Eavesdropping	communications સાંભળવું	Data theft
Traffic Analysis	communication patterns नुं analysis	Privacy breach
Monitoring	network activity नुं observation	Information gathering

- **Active attacks** system resources અથવા data ને modify કરે છે
- Passive attacks માહિતી observe અને collect કરે છે
- **Detection**: Active attacks passive કરતાં વધારે detect થાય છે

મેમરી ટ્રીક: "Active Acts, Passive Peeks"

પ્રશ્ન 2(અ અથવા) [3 ગુણ]

વ્યાખ્યા આપો: Digital Signature. Digital Signature ના વિવિધ એપ્લિકેશન ક્ષેત્રોરની ચર્ચા કરો.

જવાબ:

વ્યાખ્યા: Digital Signature એ cryptographic technique છે જે public key cryptography ના ઉપયોગથી digital messages અથવા documents ની authenticity અને integrity ને validate કરે છે.

એપ્લિકેશન ક્ષેત્રો:

क्षेत्र	ઉપયોગ
E-commerce	Online transactions, contracts
Banking	Electronic fund transfers, cheques
Government	Digital certificates, સરકારી documents
Healthcare	Patient records, prescriptions
Legal	Electronic contracts, court documents

મેમરી ટ્રીક: "Digital Documents Demand Authentic Approval"

પ્રશ્ન 2(બ અથવા) [4 ગુણ]

HTTP અને HTTPS વચ્ચેનો તફાવત આપો.

જવાબ:

પેરામીટર	НТТР	HTTPS
સુરક્ષા	કોઈ encryption નથી	SSL/TLS encryption
Port	80	443
Protocol	Hypertext Transfer Protocol	HTTP + SSL/TLS
ડેટા સુરક્ષા	Plain text	Encrypted
Authentication	Server verification નથી	Server certificate validation
Speed	વધારે ઝડપી	થોડી ધીમી
URL Prefix	http://	https://

આકૃતિ:

```
HTTP:
Client ----Plain Text----> Server

HTTPS:
Client ----Encrypted-----> Server
<---Certificate----
```

મેમરી ટ્રીક: "HTTPS Has Security"

પ્રશ્ન 2(ક અથવા) [7 ગુણ]

વ્યાખ્યા આપો: Malicious software. Virus, Worm, Keylogger, Trojans ને વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Malicious software (Malware) એ એવા software છે જે computer systems ને નુકસાન પહોંચાડવા, exploit કરવા અથવા unauthorized access મેળવવા માટે design કરવામાં આવે છે.

Malware ના પ્રકારો:

уѕіғ	લક્ષણો	นด์ำ
Virus	Host file જરૂરી	Programs સાથે attach થાય, execute થતાં spread થાય
Worm	Self-replicating	Networks દ્વારા સ્વતંત્ર રીતે spread થાય
Keylogger	Keystrokes record કરે	Passwords અને sensitive data steal કરે
Trojan	Legitimate તરીકે disguise	Attackers ને backdoor access આપે

વિગતવાર સમજૂતી:

Virus:

- Execute થવા માટે host program જરૂરી
- Infected files દ્વારા spread થાય
- Data corrupt અથવા delete કરી શકે

Worm:

- Self-propagating malware
- Network vulnerabilities exploit ระ
- Network bandwidth consume ระ

Keylogger:

- User keystrokes record ระ
- Login credentials capture ระ
- Hardware અથવા software-based હોઈ શકે

Trojan:

- Legitimate software તરીકે દેખાય
- Remote access માટે backdoor બનાવે
- Self-replicate થતું નથી

મેમરી ટ્રીક: "Viruses Visit, Worms Wander, Keys Captured, Trojans Trick"

પ્રશ્ન 3(અ) [3 ગુણ]

વ્યાખ્યા આપો: Cybercrime. Cyber Law ની જરૂરિયાતો વિશે ચર્ચા કરો.

જવાબ:

વ્યાખ્યા: Cybercrime એ computers, networks અથવા digital devices ને tools અથવા targets તરીકે ઉપયોગ કરીને કરવામાં આવતી ગુનાહિત પ્રવૃત્તિઓ છે.

Cyber Law ની જરૂરિયાતો:

જરૂરિયાત	સમર્થન	
કાનૂની માળખું	Cyber અપરાધોની સ્પષ્ટ વ્યાખ્યા સ્થાપિત કરવી	
અધિકારક્ષેત્ર	ભૌગોલિક સીમાઓમાં સત્તાની વ્યાખ્યા	
પુરાવા	Digital evidence collection માટે guidelines	
સજા	Cybercriminals માટે deterrent પગલાં	
સુરક્ષા	વ્યક્તિગત અને સંસ્થાકીય અધિકારોનું રક્ષણ	

મેમરી ટ્રીક: "Cyber Laws Create Legal Protection"

પ્રશ્ન 3(બ) [4 ગુણ]

Cyber spying અને Cyber theft સમજાવો.

જવાબ:

Cyber Spying:

- વ્યાખ્યા: Digital communications અને activities ની unauthorized surveillance
- પદ્ધતિઓ: Malware, phishing, social engineering
- **दक्ष्यो**: Government, corporate secrets, personal data
- พละ: National security threats, competitive disadvantage

Cyber Theft:

- વ્યાખ્યા: Digital assets અથવા information નું unauthorized taking
- **มรเ**: Identity theft, financial fraud, intellectual property theft
- પદ્ધતિઓ: Hacking, social engineering, insider threats
- **นโะยเม**้: Financial loss, reputation damage

તુલના કોષ્ટક:

પાસું	Cyber Spying	Cyber Theft
હેતુ	Information gathering	Asset acquisition
Detection	ઘણીવાર undetected	Notice થઈ શકે
અવધિ	Long-term monitoring	One-time અથવા periodic
પ્રેરણા	Intelligence/espionage	Financial gain

મેમરી ટ્રીક: "Spies Spy, Thieves Take"

પ્રશ્ન 3(ક) [7 ગુણ]

Cyber Law ની કલમ 66 સમજાવો.

જવાબ:

કલમ 66 - Computer Related Offences (IT Act 2008):

મુખ્ય જોગવાઈઓ:

પેટા-કલમ	અપરાદ્ય	સજા
66(1)	બેઈમાનીથી/છેતરપિંડીથી computer resource damage	3 વર્ષ સુધી કેદ + ₹5 લાખ સુધી દંડ
66A	અપમાનજનક સંદેશા મોકલવા	3 વર્ષ સુધી + દંડ
66B	ચોરેલા computer resource receive કરવા	3 વર્ષ + ₹1 લાખ સુધી દંડ
66C	Identity theft	3 વર્ષ + ₹1 લાખ સુધી દંડ
66D	Computer વાપરીને personation દ્વારા છેતરપિંડી	3 વર્ષ + ₹1 લાખ સુધી દંડ
66E	Privacy નું ઉલ્લંઘન	3 વર્ષ + ₹2 લાખ સુધી દંડ
66F	Cyber terrorism	આજીવન કેદ

વિગતવાર કવરેજ:

કલમ 66 મુખ્ય અપરાધો:

• Hacking: Computer systems หi unauthorized access

• Data Theft: પરવાનગી વિના data steal અથવા copy કરવું

• **System Damage**: Computer data destroy અથવા alter કરવું

• **વાયરસ પ્રવેશ**: Malicious code દાખલ કરવું

જરૂરી તત્વો:

• **ઈરાદો**: બેઈમાન અથવા છેતરપિંડીનો ઈરાદો

• પ્રવેશ: માલિકની પરવાનગી વિના

• નુકસાન: System અથવા data ને હાનિ પહોંચાડવી

• જાણકારી: Unauthorized access ની જાણકારી

કાનૂની માળખું:

• Cognizable: Police warrant વિના arrest કરી શકે

• Non-bailable: Court ના વિવેકબુદ્ધિથી bail

• પુરાવા: Digital evidence court માં admissible

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Section 66 Stops Cyber Sins"

પ્રશ્ન 3(અ અથવા) [3 ગુણ]

Cyber terrorism સમજાવો.

જવાલ:

વ્યાખ્યા: Cyber terrorism એ રાજકીય, ધાર્મિક અથવા વૈચારિક હેતુઓ માટે ભય, વિક્ષેપ અથવા નુકસાન સર્જવા માટે digital technologies નો ઉપયોગ છે.

લક્ષણો:

પાસું	વર્ણન
લક્ષ્ય	Critical infrastructure, government systems
પદ્ધતિ	DDoS attacks, system infiltration, data destruction
પ્રેરણા	Political, religious, ideological goals
અસર	Public fear, economic disruption, national security

ઉદાહરણો:

- Power grid पर attacks
- Transportation system disruption
- Financial system targeting

भेभरी ट्रीड: "Terror Through Technology"

પ્રશ્ન 3(બ અથવા) [4 ગુણ]

Cyber bullying & Cyber stalking સમજાવો.

જવાબ:

Cyber Bullying:

• વ્યાખ્યા: અન્યોને harass, intimidate અથવા harm કરવા માટે digital platforms નો ઉપયોગ

• प्લेटફोर्म: Social media, messaging apps, online forums

• **ตลุย**เi: Repetitive, intentional harm, power imbalance

• ਅਜ਼ਣ: Psychological trauma, depression, social isolation

Cyber Stalking:

• વ્યાખ્યા: ભય અથવા emotional distress ઉત્પન્ન કરતું persistent online harassment

• પદ્ધતિઓ: Unwanted messages, tracking, identity theft

• **अ4ย**: Long-term, continuous behavior

• รเฟู- สะแ jurisdictions หi criminal offense

तुसना:

પાસું	Cyber Bullying	Cyber Stalking
અવધિ	Episodes	Persistent
વયજૂથ	મુખ્યત્વે minors	બધી ઉંમર
પ્રેરણા	Social dominance	Obsession/control
પ્લેટફોર્મ	Public/semi-public	Private/public

મેમરી ટ્રીક: "Bullies Bother, Stalkers Stalk"

પ્રશ્ન 3(ક અથવા) [7 ગુણ]

Cyber Law ની કલમ 67 સમજાવો.

જવાબ:

કલમ 67 - અશ્લીલ માહિતી પ્રકાશિત કરવું (IT Act 2008):

મુખ્ય જોગવાઈઓ:

કલમ	વિષય-વસ્તુ	સજા
67	અશ્લીલ સામગ્રી પ્રકાશિત કરવી	પ્રથમ દોષિત: 3 વર્ષ + ₹5 લાખ દંડ
67A	લૈંગિક સ્પષ્ટ સામગ્રી	5 વર્ષ સુધી + ₹10 લાખ દંડ
67B	બાળ અશ્લીલતા	પ્રથમ: 5 વર્ષ + ₹10 લાખ, આવર્તક: 7 વર્ષ + ₹10 લાખ
67C	મધ્યવર્તી જવાબદારી	ગેરકાયદેસર content remove કરવામાં નિષ્ફળતા

મુખ્ય તત્વો:

કલમ 67 - અશ્લીલતા:

• પ્રકાશન: Electronic form માં ઉપલબ્ધ કરાવવું

- વિષય-વસ્તુ: કામુક, લૈંગિક સ્પષ્ટ સામગ્રી
- **พเผม**: Website, email, social media
- **ઈરાદો**: દર્શકોને corrupt અથવા deprave કરવાનો

કલમ 67A - લેંગિક સ્પષ્ટ:

- સામાન્ય અશ્લીલતા કરતાં **વધારે સજા**
- સ્પષ્ટ sexual content માટે વ્યાપક અવકાશ
- વ્યાવસાયિક હેતુ aggravating factor તરીકે ગણાય

કલમ 67B - બાળ સુરક્ષા:

- બાળ શોષણ માટે શૂન્ય સહનશીલતા
- Possession અને distribution માટે **કડક જવાબદારી**
- ગંભીરતા દર્શાવતી ઉચ્ચ સજાઓ
- Platforms માટે **વય ચકાસણી** જરૂરિયાતો

ઉપલબ્ધ બચાવ:

- વૈજ્ઞાનિક/શિક્ષણિક હેતુ
- **કલાત્મક ગુણવત્તા** ની ધ્યાનમાં લેવાઈ
- કેટલાક કિસ્સાઓમાં **ખાનગી જોવાઈ**
- Content ના **સ્વભાવ વિશે જાણકારીનો** અભાવ

ડિજિટલ પુરાવાની જરૂરિયાતો:

- Chain of custody ની જાળવણી
- તકનીકી અધિકૃતતા નો પુરાવો
- સ્રોત ઓળખ પદ્ધતિઓ
- Electronic evidence नुं **संरक्ष**ध

મેમરી ટ્રીક: "Section 67 Stops Shameful Sharing"

પ્રશ્ન 4(અ) [3 ગુણ]

હેકર્સના પ્રકારોની ચર્ચા કરો.

જવાલ:

હેકર વર્ગીકરણ:

увіг	પ્રેરણા	પ્રવૃત્તિઓ
White Hat	નૈતિક સુરક્ષા પરીક્ષણ	અધિકૃત penetration testing
Black Hat	દુર્ભાવનાપૂર્ણ ઈરાદો	ગેરકાયદેસર system breaking
Gray Hat	મિશ્ર પ્રેરણાઓ	Unauthorized પણ non-malicious
Script Kiddie	માન્યતા/મજા	હાલના tools નો ઉપયોગ
Hacktivist	રાજકીય/સામાજિક કારણો	Hacking દ્વારા વિરોધ

વિગતવાર પ્રકારો:

• White Hat: નૈતિક hackers, સુરક્ષા વ્યાવસાયિકો

• Black Hat: નફો અથવા નુકસાન શોધતા cybercriminals

• **Gray Hat**: નૈતિક અને દુર્ભાવનાપૂર્ણ વચ્ચે

મેમરી ટ્રીક: "Hats Have Hacker Hierarchy"

પ્રશ્ન 4(બ) [4 ગુણ]

RAT સમજાવો.

જવાબ:

RAT (Remote Administration Tool):

વ્યાખ્યા: Software જે computer system ના remote control ની મંજૂરી આપે છે, ઘણીવાર unauthorized access માટે દુર્ભાવનાપૂર્ણ રીતે ઉપયોગ થાય છે.

લક્ષણો:

ફીચર	વર્ણન
Remote Control	અંતરથી સંપૂર્ણ system access
Stealth Mode	User detection થી છુપાયેલું
Data Theft	ફાઈલ access અને transfer ક્ષમતાઓ
Keylogging	Keystroke recording
Screen Capture	Desktop monitoring

સામાન્ય RATs:

- BackOrifice
- NetBus
- DarkComet

• Poison Ivy

Detection પદ્ધતિઓ:

- Antivirus software
- Network monitoring
- Process analysis
- Behavioral detection

ਮੇਮਣੀ ਟੀਡ: "RATs Run Remote Access Tactics"

પ્રશ્ન 4(ક) [7 ગુણ]

હેકિંગના પાંચ સ્ટેપ્સ સમજાવો.

જવાબ:

પાંચ-તબક્કાની હેકિંગ પદ્ધતિ:

વિગતવાર પગલાં:

તબક્કો	હેતુ	તકનીકો	સાદ્યનો
1. Reconnaissance	માહિતી એકત્રીકરણ	OSINT, Social Engineering	Google, Shodan, WHOIS
2. Scanning	Vulnerabilities ઓળખવી	Port scanning, Network mapping	Nmap, Nessus
3. Gaining Access	Vulnerabilities નો દુરુપયોગ	Password attacks, Code injection	Metasploit, Hydra
4. Maintaining Access	સતત નિયંત્રણ	Backdoors, Rootkits	RATs, Trojans
5. Covering Tracks	પુરાવા છુપાવવા	Log deletion, Steganography	CCleaner, File wipers

તબક્કો 1 - Reconnaissance:

• Passive: જાહેર માહિતી એકત્રીકરણ

• **Active**: પ્રત્યક્ષ target interaction

• **पक्ष**: Target infrastructure नुं mapping

તબક્કો 2 - Scanning:

• Network scanning: Live system identification

• Port scanning: Service discovery

• Vulnerability scanning: Weakness identification

તબક્કો 3 - Gaining Access:

• Exploitation: Vulnerability utilization

• Authentication attacks: Password cracking

• Privilege escalation: Higher access levels

તબક્કો 4 - Maintaining Access:

• Backdoor installation: ଜାଦିଷ୍ୟ access

• System modification: Persistence mechanisms

• Data collection: Information harvesting

તબક્કો 5 - Covering Tracks:

• Log manipulation: Evidence removal

• File deletion: Trace elimination

• Timeline modification: Activity concealment

મેમરી ટ્રીક: "Real Smart Guys Make Choices" (Reconnaissance, Scanning, Gaining, Maintaining, Covering)

પ્રશ્ન 4(અ અથવા) [3 ગુણ]

Brute force attack સમજાવો.

જવાબ:

વ્યાખ્યા: Brute force attack એ trial-and-error પદ્ધતિ છે જે બધા સંભવિત combinations ને વ્યવસ્થિત રીતે try કરીને encrypted data ને decode કરવા માટે ઉપયોગ થાય છે.

લક્ષણો:

પાસું	વર્ણન
પદ્ધતિ	Exhaustive key search
સમય	Computationally intensive
સફળતા	બાંચધરી આપેલી પણ સમય લેવાડતી
લક્ષ્ય	Passwords, encryption keys
સાધનો	Automated software

પ્રકારો:

• Simple Brute Force: બધા સંભવિત combinations

• Dictionary Attack: સામાન્ય passwords

• Hybrid Attack: Dictionary + variations

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Brute Force Breaks By Trying"

પ્રશ્ન 4(બ અથવા) [4 ગુણ]

વ્યાખ્યા આપો: Vulnerability, Threat, Exploit

જવાબ:

સુરક્ષા પરિભાષા:

90€	લાખ્યા	ઉદાહરણ
Vulnerability	System/software માં નબળાઈ	Unpatched software bug
Threat	Asset માટે સંભવિત ખતરો	Malicious hacker
Exploit	Vulnerability નો ફાયદો ઉઠાવતો code	Buffer overflow attack

સંબંધ:

ઉદાહરણો:

• Vulnerability: SQL injection พเभी

• Threat: Cybercriminal

• Exploit: SQL injection payload

જોખમ સૂત્ર:

Risk = Threat × Vulnerability × Asset Value

મેમરી ટ્રીક: "Threats Target Vulnerable Exploits"

પ્રશ્ન 4(ક અથવા) [7 ગુણ]

kali Linux ના કોઈપણ ત્રણ કમાન્ડ ઉદાહરણ આપીને સમજાવો.

જવાબ:

આવશ્યક Kali Linux કમાન્ડ્સ:

1. NMAP (Network Mapper):

```
# Port scanning
nmap -sS target_ip
nmap -A -T4 192.168.1.1
```

વિકલ્પ	હેતુ	ઉદાહરણ
-sS	SYN scan	nmap -sS 192.168.1.1
-A	Aggressive scan	nmap -A target.com
-р	Specific ports	nmap -p 80,443 target.com

2. Metasploit:

```
# Metasploit શરૂ કરો
msfconsole
# Exploits શોધો
search apache
# Exploit ઉપયોગ કરો
use exploit/windows/smb/ms17_010_eternalblue
```

કમાન્ડ્સ:

• search: Exploits/payloads ยเโยนเ

• use: Module પસંદ કરવું

• set: Options configure કરવા

• **exploit**: Attack લોંચ કરવા

3. Wireshark:

```
# Command line version

tshark -i eth0

# Traffic filter Sel

tshark -i eth0 -f "port 80"
```

કીચર્સ:

• Packet capture: Real-time network monitoring

• Protocol analysis: Deep packet inspection

• Filter options: Targeted traffic analysis

• **GUI interface**: User-friendly analysis

વધારાની કમાન્ડ્સ:

4. Hydra (Password Cracking):

```
hydra -l admin -P passwords.txt ssh://192.168.1.1
```

5. John the Ripper:

```
john --wordlist=rockyou.txt hashes.txt
```

6. Aircrack-ng (WiFi Security):

airmon-ng start wlan0
airodump-ng wlan0mon

કમાન્ડ કેટેગરીઝ:

કેટેગરી	સાધનો	હેતુ
Network Scanning	nmap, masscan	Host/port discovery
Vulnerability Assessment	OpenVAS, Nessus	Security scanning
Exploitation	Metasploit, SQLmap	Vulnerability exploitation
Password Attacks	Hydra, John	Credential cracking
Wireless Security	Aircrack-ng	WiFi penetration testing

भेभरी ट्रीร: "Network Maps Make Security"

પ્રશ્ન 5(અ) [3 ગુણ]

Digital Forensics ની શાખાઓની સૂચિ બનાવો

જવાબ:

Digital Forensics શાખાઓ:

શાખા	ફોકસ વિસ્તાર	એપ્લિકેશન્સ
Computer Forensics	Desktop/laptop systems	Hard drive analysis
Network Forensics	Network traffic analysis	Intrusion investigation
Mobile Forensics	Smartphones/tablets	Call logs, messages
Database Forensics	Database systems	Data integrity verification
Malware Forensics	Malicious software	Malware analysis
Email Forensics	Email communications	Email header analysis
Memory Forensics	RAM analysis	Live system investigation

વિશેષિત વિસ્તારો:

- Cloud Forensics
- IoT Forensics
- Blockchain Forensics

મેમરી ટ્રીક: "Digital Detectives Discover Many Clues"

પ્રશ્ન 5(બ) [4 ગુણ]

Digital Forensics માં લોકાર્ડના વિનિમયના સિદ્ધાંતની ચર્ચા કરો.

જવાબ:

લોકાર્ડનો વિનિમય સિદ્ધાંત:

મૂળ સિદ્ધાંત: "દરેક સંપર્ક નિશાન છોડે છે"

ડિજિટલ એપ્લિકેશન:

ડિજિટલ પ્રવૃત્તિ	છોડવામાં આવેલ નિશાન	સ્થાન
File Access	Access timestamps	File metadata
Web Browsing	Browser history, cookies	Browser cache
Email Communication	Headers, logs	Mail servers
Network Activity	Connection logs	Network devices
USB Usage	Device artifacts	Registry/logs

ડિજિટલ પુરાવાના નિશાનો:

સિસ્ટમ સ્તર:

• Registry entries: સિસ્ટમ ફેરફારો

• Log files: પ્રવૃત્તિ રેકોર્ડ્સ

• Temporary files: Process artifacts

• Metadata: ફાઈલ માહિતી

નેટવર્ક સ્તર:

• Router logs: Traffic records

• Firewall logs: Connection attempts

• DNS queries: Website visits

• Packet captures: Communication content

એપ્લિકેશન સ્તર:

• Browser artifacts: Web activity

• Application logs: Software usage

• Database changes: Data modifications

• Cache files: Temporary storage

ફોરેન્સિક અસરો:

• સંપૂર્ણ ગુનો નથી: ડિજિટલ નિશાનો હંમેશા અસ્તિત્વમાં છે

પુરાવાનું સ્થાન: અનેક સ્રોતો ઉપલબ્ધ
સમર્થન: અનેક નિશાન validation
Timeline પુનર્નિમાંણ: પ્રવૃત્તિ ક્રમ

મેમરી ટ્રીક: "Every Exchange Exists Electronically"

પ્રશ્ન 5(ક) [7 ગુણ]

Digital Evidence સાચવવા માટેના મહત્વના પગલાઓની યાદી બનાવો.

જવાબ:

ડિજિટલ પુરાવા સંરક્ષણ પ્રક્રિયા:

મહત્વપૂર્ણ સંરક્ષણ પગલાં:

પગલું	પ્રક્રિયા	હેતુ	સાધનો
1. ઓળખ	સંભવિત પુરાવા શોધવા	અવકાશ નક્કી કરવો	દ્રશ્ય નિરીક્ષણ
2. દસ્તાવેજીકરણ	દ્રશ્ય વિગતો record કરવી	Chain of custody જાળવવું	ફોટોગ્રાફી, નોંધો
3. અલગીકરણ	દૂષણ અટકાવવું	અખંડિતતા જાળવવી	Network disconnection
4. Imaging	Bit-by-bit copy બનાવવી	મૂળ સાચવવું	dd, FTK Imager
5. Hashing	Integrity checks બનાવવા	અધિકૃતતા ચકાસવી	MD5, SHA-256
6. સંગ્રહ	સુરક્ષિત પુરાવા સંગ્રહ	છેડછાડ અટકાવવી	Write-protected media
7. Chain of Custody	Handling દસ્તાવેજીકરણ	કાનૂની સ્વીકાર્યતા	Forensic forms

વિગતવાર સંરક્ષણ પદ્ધતિઓ:

ભૌતિક સંરક્ષણ:

• Power management: યોગ્ય shutdown procedures

• Hardware protection: Anti-static นาเล่

• પર્યાવરણીય નિયંત્રણ: તાપમાન/ભેજ

• **પ્રવેશ પ્રતિબંધ**: અધિકૃત કર્મચારીઓ માત્ર

તર્કસંગત સંરક્ષણ:

• **Bit-stream imaging**: હૂબહૂ disk copies

• Hash verification: અખંડિતતા પુષ્ટિ

• Write blocking: ફેરફારો અટકાવવા

• Metadata preservation: Timestamp સુરક્ષા

કાનૂની સંરક્ષણ:

• દસ્તાવેજીકરણ ધોરણો: વિગતવાર રેકોર્ડ્સ

• Chain of custody: Handling log

• **પ્રામાણિકતા**: પુરાવા ચકાસણી

• સ્વીકાર્યતા: કોર્ટ જરૂરિયાતો

શ્રેષ્ઠ પ્રથાઓ:

કરવા જેવું:

- પુરાવાની **અનેક નકલો બનાવવી**
- Forensically sound સાધનો ઉપયોગ કરવા
- દરેક ક્રિયા નોંધવી
- Chain of custody ชางฯ ชุ่
- Hash સાથે અખં**ડિતતા ચકાસવી**

ન કરવા જેવું:

- કદી મૂળ પુરાવા પર કામ ન કરવું
- દ્રશ્યનું **દૂષણ ટાળવું**
- Suspect systems ने **power on न इरया**
- પુરાવાને modify ન કરવા
- Chain of custody તોડવું નહીં

ગુણવત્તા ખાતરી:

ચેક	ચકાસણી પદ્ધતિ	આવર્તન
Hash Validation	Original vs copy સરખામણી	પહેલાં/પછી operations
Tool Calibration	Tool accuracy ચકાસવી	Regular intervals
Process Review	Procedures audit કરવી	Case completion
Documentation Check	સંપૂર્ણતા ચકાસવી	દરેક પગલે

કાનૂની વિચારણાઓ:

• સ્વીકાર્યતા જરૂરિયાતો: કોર્ટ ધોરણો

• **નિષ્ણાત સાક્ષી**: તકનીકી સમજૂતી

• **ઉલટ-સવાલ**: પ્રક્રિયા validation

• ધોરણ અનુપાલન: ઉદ્યોગ શ્રેષ્ઠ પ્રથાઓ

મેમરી ટ્રીક: "Proper Preservation Prevents Problems"

પ્રશ્ન 5(અ અથવા) [3 ગુણ]

Malware forensics સમજાવો.

જવાબ:

વ્યાખ્યા: Malware forensics માં infected systems પર તેના વર્તન, મૂળ અને અસરને સમજવા માટે malicious software નું analysis કરવામાં આવે છે.

મુખ્ય ઘટકો:

ยะร	વર્ણન
Static Analysis	Execution વિના malware ની તપાસ
Dynamic Analysis	Controlled environment માં malware ચલાવવું
Code Analysis	Malware code नुं reverse engineering
Behavioral Analysis	Malware actions નો અભ્યાસ

પ્રક્રિયા:

• Sample collection: Malware acquisition

• **Isolation**: Sandbox environment

• Analysis: Behavior observation

• **Reporting**: Findings documentation

મેમરી ટ્રીક: "Malware Makes Mysteries"

પ્રશ્ન 5(બ અથવા) [4 ગુણ]

Digital Forensics તપાસમાં પુરાવા તરીકે CCTV શા માટે મહત્વની ભૂમિકા ભજવે છે તે સમજાવો.

જવાબ:

Digital Forensics मां CCTV:

CCTV પુરાવાનું મહત્વ:

ભૂમિકા	વર્ણન	ફાયદો
દ્રશ્ય દસ્તાવેજીકરણ	વાસ્તવિક ઘટનાઓ record કરે	Objective પુરાવા
Timeline સ્થાપના	પ્રવૃત્તિઓ timestamps કરે	કાલક્રમિક ક્રમ
ઓળખ ચકાસણી	Suspect images capture કરે	વ્યક્તિ ઓળખ
સમર્થન	અન્ય પુરાવાઓને support કરે	કેસ મજબૂત બનાવે

ડિજિટલ પુરાવા ગુણધર્મો:

તકનીકી પાસાઓ:

• Metadata preservation: Timestamp, camera ID, settings

• Chain of custody: સુરક્ષિત handling procedures

• Format integrity: หุด file structure maintenance

• Authentication: Digital signatures, hash values

ફોરેન્સિક મૂલ્ય:

• Real-time documentation: Live incident recording

• Unbiased testimony: યાંત્રિક સાક્ષી

• High resolution: સ્પષ્ટ image quality

• Audio capture: વધારાના sensory પુરાવા

Analysis પદ્ધતિઓ:

• Frame-by-frame examination: વિગતવાર scrutiny

• Enhancement techniques: Image improvement

• Comparison analysis: Multiple angle correlation

• Motion tracking: Subject movement patterns

કાનૂની સ્વીકાર્યતા:

• Authenticity verification: Chain of custody

• Technical validation: Equipment calibration

• Expert testimony: Forensic analysis explanation

• Standard compliance: Industry best practices

મેમરી ટ્રીક: "CCTV Captures Criminal Conduct Clearly"

પ્રશ્ન 5(ક અથવા) [7 ગુણ]

Digital forensic તપાસના તબક્કાઓ સમજાવો.

જવાબ:

Digital Forensic તપાસ પ્રક્રિયા:

તબક્કાવાર વિભાજન:

તબક્કો	હેતુ	પ્રવૃત્તિઓ	આઉટપુટ
1. તૈયારી	તત્પરતા સ્થાપના	Tool setup, training	Forensic kit
2. ઓળખ	પુરાવાનું સ્થાન	Survey, documentation	Evidence list
3. સંગ્રહ	પુરાવા પ્રાપ્તિ	Imaging, copying	Digital copies
4. સંરક્ષણ	અખંડિતતા જાળવણી	Hashing, storage	Verified evidence
5. વિશ્લેષણ	ડેટા તપાસ	Investigation, correlation	Findings
6. પ્રસ્તુતિ	પરિણામો સંપ્રેષણ	Reporting, testimony	Final report

વિગતવાર તબક્કો વિશ્લેષણ:

તબક્કો 1 - તૈયારી:

• Tool readiness: Forensic software installation

• Hardware setup: Write blockers, imaging devices

• **Documentation templates**: Chain of custody forms

• Team preparation: Role assignments, training

• Legal preparation: Warrant requirements, permissions

તબક્કો 2 - ઓળખ:

• Scene survey: Evidence location mapping

• **Device inventory**: System identification

• Volatile evidence: Memory, network connections

• Priority assessment: Critical evidence first

• Photography: Scene documentation

તબક્કો 3 - સંગ્રહ:

• Live system analysis: Memory acquisition

• **Disk imaging**: Bit-for-bit copies

• Network evidence: Log files, packet captures

• Mobile devices: Physical/logical extraction

• Cloud evidence: Remote data acquisition

તબક્કો 4 - સંરક્ષણ:

- Hash generation: MD5, SHA-256 checksums
- Write protection: Hardware/software blocking
- Storage security: Tamper-evident containers
- Chain of custody: Handling documentation
- Backup creation: Multiple evidence copies

તબક્કો 5 - વિશ્લેષણ:

- File system examination: Directory structure analysis
- Deleted data recovery: Unallocated space searching
- Timeline creation: Event chronology
- Keyword searching: Relevant content identification
- Pattern recognition: Behavioral analysis

તબક્કો 6 - પ્રસ્તુતિ:

- Report writing: Findings documentation
- Visual aids: Charts, diagrams, screenshots
- Expert testimony: Court presentation
- Peer review: Quality assurance
- Archive maintenance: Case file storage

શ્રેષ્ઠ પ્રથાઓ:

તકનીકી ધોરણો:

- Tool validation: Regular calibration
- Methodology consistency: Standard procedures
- Quality control: Verification checks
- Documentation completeness: Detailed records

કાનુની જરૂરિયાતો:

- Admissibility standards: Court requirements
- Chain of custody: Unbroken documentation
- Expert qualifications: Professional certification
- Cross-examination preparation: Defense against challenges

ગુણવત્તા ખાતરી:

ચેક પોઈન્ટ	યકાસણી	દસ્તાવેજીકરણ
Evidence integrity	Hash comparison	Verification logs
Tool reliability	Calibration tests	Certification records
Process compliance	Standard adherence	Procedure checklists
Report accuracy	Peer review	Review signatures

સામાન્ય પડકારો:

• Encryption: Data protection barriers

• Anti-forensics: Evidence hiding techniques

• Volume: Large data sets

• Volatility: Temporary evidence

• Legal complexity: Jurisdiction issues

સફળતાના પરિબળો:

• Systematic approach: Methodical investigation

• Technical expertise: Skilled personnel

• **Proper tools**: Adequate resources

• Legal knowledge: Compliance understanding

• **Documentation discipline**: Thorough records

ਮੇਮਣੀ ਟ੍ਰੀs: "Proper Planning Prevents Poor Performance" (Preparation, Preservation, Processing, Presentation, Proof)