

A Theory of Regularized Markov Decision Processes

Matthieu Geist 1 Bruno Scherrer 2 Olivier Pietquin 1

【强化学习 95】Regularized MDP

张楚珩 💙

清华大学 交叉信息院博士在读

26 人赞同了该文章

正则化的 Bellman 算子,导出了一系列的常见算法,比如 TRPO、SQL、SAC、DPP 等。

原文传送门

Geist, Matthieu, Bruno Scherrer, and Olivier Pietquin. "A Theory of Regularized Markov Decision Processes." arXiv preprint arXiv:1901.11275 (2019).

特色

搞了一套理论能够涵盖之前的很多算法;用到了 Lefendre-Fenchel transform;能够分析算法的 error propagation。

过程

1. Legendre-Fenchel transform

考虑一个内积 $_{(,\cdot):\Delta_{A}\times\mathbb{R}^{A}\to\mathbb{R}}$ 。对于一个 strongly convex 的函数 $_{\Omega:\Delta_{A}\to\mathbb{R}}$,它的 convex conjugate $_{\Omega^{*}:\mathbb{R}^{A}\to\mathbb{R}}$ 为

$$\forall q_s \in \mathbb{R}^{\mathcal{A}}, \ \Omega^*(q_s) = \max_{\pi_s \in \Delta_{\mathcal{A}}} \langle \pi_s, q_s \rangle - \Omega(\pi_s).$$

可以证明它满足如下性质:

- i Unique maximizing argument: $\nabla \Omega^*$ is Lipschitz and satisfies $\nabla \Omega^*(q_s) = \operatorname{argmax}_{\pi_s \in \Delta_A} \langle \pi_s, q_s \rangle \Omega(\pi_s)$.
- ii Boundedness: if there are constants L_{Ω} and U_{Ω} such that for all $\pi_s \in \Delta_{\mathcal{A}}$, we have $L_{\Omega} \leq \Omega(\pi_s) \leq U_{\Omega}$, then $\max_{a \in \mathcal{A}} q_s(a) U_{\Omega} \leq \Omega^*(q_s) \leq \max_{a \in \mathcal{A}} q_s(a) L_{\Omega}$.
- iii Distributivity: for any $c \in \mathbb{R}$ (and 1 the vector of ones), we have $\Omega^*(q_s + c\mathbf{1}) = \Omega^*(q_s) + c$.
- iv Monotonicity: $q_{s,1} \leq q_{s,2} \Rightarrow \Omega^*(q_{s,1}) \leq \Omega^*(q_{s,2})$ 更 @张楚珩

【证明】第一条,令 $x'=argmex(x,q_0)-\Omega(n)$,然后又 $\Omega^*(q_0)=(x',q_0)-\Omega(x')$,两边求导可得 $x'=\nabla\Omega^*(q_0)$ 。第二条容易。第三条展开写出来就可以了,注意到 (x,1)=1 。第四条注意到向量的小于等于表示每个元素都小于等于,如果只有 q 中的一个元素变大,根据 pi 的非负性,最后的内积肯定也变大,因此有单调性。

2. 算子

Regularized Bellman Operator

 $T_{\pi,\Omega}v = T_{\pi}v - \Omega(\pi) = \langle \pi,q \rangle - \Omega(\pi), \qquad q = r + \gamma Pv$

Regularized value function

Regularized value 是 regularized Bellman operator 的不动点,即

Definition 2 (Regularized value function of policy π). Noted $v_{\pi,\Omega}$, it is defined as the unique fixed point of the operator $T_{\pi,\Omega}$: $v_{\pi,\Omega} = T_{\pi,\Omega}v_{\pi,\Omega}$. We also define the associated state-action value function $q_{\pi,\Omega}$ as

$$q_{\pi,\Omega}(s,a) = r(s,a) + \gamma \mathbb{E}_{s'|s,a}[v_{\pi,\Omega}(s')]$$

with $v_{\pi,\Omega}(s) = \mathbb{E}_{a \sim \pi(.|s)}[q_{\pi,\Omega}(s,a)] - \Omega(\pi知的)$ 企業趋折

Regularized Bellman optimality Operator

$$T_{*,\Omega}: v \in \mathbb{R}^{\mathcal{S}} \to T_{*,\Omega}v = \max_{\pi \in \Delta_{\mathcal{A}}^{\mathcal{S}}} T_{\pi,\Omega}v = \Omega^{*}(q) \in \mathbb{R}^{\mathcal{S}},$$

Regularized optimal value function

Regularized optimal value function 是 Regularized Bellman optimality Operator 的不动点,即

Definition 3 (Regularized optimal value function). Noted $v_{*,\Omega}$, it is the unique fixed point of the operator $T_{*,\Omega}$: $v_{*,\Omega} = T_{*,\Omega}v_{*,\Omega}$ We also define the associated state-action value function $q_{*,\Omega}(s,a)$ as

$$q_{*,\Omega}(s,a)=r(s,a)+\gamma\mathbb{E}_{s'|s,a}[v_{*,\Omega}(s')]$$

with $v_{*,\Omega}(s)=\Omega^*(q_{*,\Omega}(s,.))$.

Greedy policy

$$\pi' = \mathcal{G}_{\Omega}(v) = \nabla \Omega^*(q) \Leftrightarrow T_{\pi',\Omega}v = T_{*,\Omega}v,$$

性质

Proposition 2. The operator $T_{\pi,\Omega}$ is affine and we have the following properties.

i Monotonicity: let $v_1, v_2 \in \mathbb{R}^S$ such that $v_1 \geq v_2$. Then,

$$T_{\pi,\Omega}v_1 \geq T_{\pi,\Omega}v_2$$
 and $T_{*,\Omega}v_1 \geq T_{*,\Omega}v_2$.

ii Distributivity: for any $c \in \mathbb{R}$, we have that

$$T_{\pi,\Omega}(v+c\mathbf{1}) = T_{\pi,\Omega}v + \gamma c\mathbf{1}$$

and $T_{*,\Omega}(v+c\mathbf{1}) = T_{*,\Omega}v + \gamma c\mathbf{1}$.

iii Contraction: both operators are γ -contractions in supremum norm. For any $v_1, v_2 \in \mathbb{R}^S$,

$$\|T_{\pi,\Omega}v_1 - T_{\pi,\Omega}v_2\|_{\infty} \le \gamma \|v_1 - v_2\|_{\infty}$$
 and $\|T_{*,\Omega}v_1 - T_{*,\Omega}v_2\|_{\infty} \le \gamma \|v_1 - v_2\|_{\infty}$. 必然楚珩

Theorem 1 (Optimal regularized policy). The policy $\pi_{*,\Omega} = \mathcal{G}_{\Omega}(v_{*,\Omega})$ is the unique optimal regularized policy, in the sense that for all $\pi \in \Delta_{\mathcal{A}}^{\mathcal{S}}$, $v_{\pi_{*,\Omega},\Omega} = v_{*,\Omega} \geq v_{\pi,\Omega}$.

Proposition 3. Assume that $L_{\Omega} \leq \Omega \leq U_{\Omega}$. Let π be any policy. We have that $v_{\pi} - \frac{U_{\Omega}}{1-\gamma} \mathbf{1} \leq v_{\pi,\Omega} \leq v_{\pi} - \frac{L_{\Omega}}{1-\gamma} \mathbf{1}$ and $v_{*} - \frac{U_{\Omega}}{1-\gamma} \mathbf{1} \leq v_{*,\Omega} \leq v_{*} - \frac{L_{\Omega}}{1-\gamma} \mathbf{1}$.

Theorem 2. Assume that $L_{\Omega} \leq \Omega \leq U_{\Omega}$. We have that

$$v_* - rac{U_\Omega - L_\Omega}{1 - \gamma} \leq v_{\pi_{*,\Omega}} \leq v_*.$$
 知乎 @张楚珩

3. Regularized Modified Policy Iteration

Policy iteration 和 value iteration 可以被统一写成如下形式。

$$\begin{cases} \pi_{k+1} = \mathcal{G}_{\Omega}(v_k) \\ v_{k+1} = (T_{\pi_{k+1},\Omega})^m v_k \end{cases}$$
 (1)

当 m=1 时,为 value iteration,上下两个方程合并之后就是 ••+1 = T₁, n v₂ ; 当 m=∞ 时,为 policy iteration,即分为 policy improvement 和 policy evaluation 两步。

Value iteration

先讨论 m=1 的情形,即 value iteration,这里参数化的是 Q 函数。在 unregularized 的情况下,这种情形就是 Q-learning;相应地,regularized 时为

$$J(\theta) = \hat{\mathbb{E}}\left[(\hat{q}_i - q_{\theta}(s_i, a_i))^2 \right]$$
 with $\hat{q}_i = r_i + \gamma \Omega^*(q_{\bar{\theta}}(s_i', \cdot)).$ (2)

注意到,区别在于这里用 $_{\Omega}$ 代替了原来的 $_{\Omega}$ 代替了原来的 $_{\Omega}$,其实道理是一样的,因为本身其定义就是 maximum over all policies。

考虑正则项为 negative entropy $\Omega(\pi_{\bullet}) = \sum_{\alpha} \pi_{\bullet}(\alpha) \ln \pi_{\bullet}(\alpha)$,可以解得 $\Omega^{*}(g_{\bullet}) = \ln \sum_{\alpha} \exp g_{\bullet}(\alpha)$ 。这样,上述算法就对应的是 soft Q-learning。

Policy iteration

还可以做 policy iteration,一般用 actor-critic 方法,参数化策略和价值函数。价值函数的更新和前面类似,只不过不是做 \mathbf{r}_{L} 而是 \mathbf{r}_{L} ,即

$$J(\theta) = \hat{\mathbb{E}}[(\hat{q}_i - q_{\theta}(s_i, a_i))^2]$$
 with
$$\hat{q}_i = r_i + \gamma(\mathbb{E}_{a \sim \pi(\cdot | s_i')}[q_{\bar{\theta}}(s_i', a)] - \Omega(\pi(\cdot, s_i')).$$

策略的更新有两种方式: 在能解析地写出 greedy policy 的形式 $_{\mathbf{r}=\mathbf{v}\mathbf{r}^{\mathbf{c}}(\mathbf{c})}$ 的时候,策略的更新可以直接最小化参数化策略和 greedy policy 之间的距离(SAC 和 MPO 就是这样做的)

$$J(w) = \hat{\mathbb{E}}[KL(\pi_w(\cdot|s_i)||\nabla\Omega^*(q_k(s_i,.)))].$$
(3)

在不能解析地写出的时候,可以直接策略梯度去优化如下目标(TRPO 就是把下面的目标转化为了 hard constraint 来解)

$$J(w) = \hat{\mathbb{E}}\left[\mathbb{E}_{a \sim \pi_w(\cdot|s_i)}[q_k(s_i, a)] - \Omega(\pi_w(\cdot|s_i))\right]. \quad (5)$$

Error propagation

这一块其实没太弄明白。总体来说,想研究的问题是,如果 policy improvement 和 policy evaluation 这两个步骤都有一定的误差,那么误差会如何传播,以至于影响最后找到的策略的性能。即考虑带误差的 modified policy iteration:

$$\begin{cases} \pi_{k+1} = \mathcal{G}_{\Omega}^{\epsilon'_{k+1}}(v_k) \\ v_{k+1} = (T_{\pi_{k+1},\Omega})^m v_k + \epsilon_{k+1} \end{cases}, \tag{6}$$

其中,policy evaluation 步的误差项比较好理解,就是估计的不准产生的误差;policy improvement 步的误差项就是说不存在另一个策略使得 $T_{x_0 v_k} \leq T_{v_{t+1} v_t} v_t + \epsilon_{t+1}$ 。 分析的是 k 步之后所找到策略的性能 相比于不动点的差距 $v_{t+1} v_{t+1} v_{t+1} v_t + \epsilon_{t+1} v_t + \epsilon_{t+1$

4. Mirror Descent Modified Policy Iteration

前面考虑的 convex regularization **n** 是一个固定的凸函数,这里考虑它每次迭代变化。每次做 policy improvement 的时候,限定得到的策略,需要和前一轮的策略差距不太大。这个其实就是 conservative policy iteration,一样的道理。即

$$\pi_{k+1}=\mathcal{G}_{\Omega_{\pi_k}}(v_k)$$
, that is $\pi_{k+1}=rgmax\langle q_k,\pi
angle-D_\Omega(\pi||\pi_k)$ 知乎 @张楚珩

$$\Omega_{\pi'}(\pi) = D_{\Omega}(\pi||\pi') = \Omega(\pi) - \Omega(\pi') - \langle \nabla \Omega(\pi'), \pi - \pi' \rangle.$$

注意到,如果 $_{\mathbf{n}}$ 是 negative entropy 的话, $_{\mathbf{\Omega}_{\mathbf{r}'}(\mathbf{n})=\mathit{KL}(\mathbf{n}|\mathbf{r}')}$ 就是 KL divergence,对应的 $\Omega^{a}_{\pi_{b}}(q_{s}) = \ln \sum_{a} \pi_{a}(a) \exp q_{s}(a)$, 对应的 greedy policy 为 $\nabla \Omega^{a}_{\pi_{b}}(q_{s}) = \frac{\pi_{a} \exp q_{s}}{\sum_{a} \pi_{s}(a) \exp q_{s}(a)}$ 。

文章给出了两种对应的算法:

$$\begin{cases} \pi_{k+1} = \mathcal{G}_{\Omega_{\pi_k}}(v_k) \\ v_{k+1} = (T_{\pi_{k+1},\Omega_{\pi_k}})^m v_k \end{cases}, \begin{cases} \pi_{k+1} = \mathcal{G}_{\Omega_{\pi_k}}(v_k) \\ v_{k+1} = (T_{\pi_{k+1}})^m v_k \end{cases}$$

注意到 $T_{\pi_{k+1},\Omega_{\pi_{k+1}}} = T_{\pi_{k+1}}$ 。

前一种除了在 policy improvement 步中考虑正则,在 policy evaluation 的时候也考虑一样的正则, 这种情况下,当 $_{m=1}$ 时,两步就可以合并为 $_{v_{k+1}=T_{k}\Omega_{k}v_{k}}$ 。DPP 就是这一种 $_{m=1}$ 的情形。

后一种情况中,policy evaluation 步中估计的是正常的函数。TRPO、MPO 属于这种情形。

后面的 error propagation 实在没看懂,就不写了。

发布于 2019-10-16

强化学习 (Reinforcement Learning) 算法 机器学习

▲ 赞同 26 ▼ ● 1条评论 ▼ 分享 ● 喜欢 ★ 收藏 …

文章被以下专栏收录

进入专栏