构造演算(The Calculus of Constructions)

读书笔记

许博

1 λ C 系统

 λ C 组合了第二章到第五章中介绍的系统,拥有四种可能的选择,即依赖于项/类型的项/类型。

 λ P 与 λ C 只有一处不同,但足以扩展 λ P 到 λ C = λ 2 + $\lambda\underline{\omega}$ + λ P:

$$(form_{\lambda \mathbf{P}}) \ \frac{\Gamma \vdash A : * \quad \Gamma, x : A \vdash B : s}{\Gamma \vdash \Pi x : A.B : s}$$

在这条规则中,关键点是 A:*,为了保证类型 $\Pi x:A.B$ 的成员(inhabitant)是项或者依赖于项的类型。但在舍弃了这个限制之后,我们就获得了我们想要的泛化:依赖于项/类型的项/类型。

看起来将 A: * 替换为 A: s,其中 s 为 * 或 \square ,就足够了,但是规则中已经出现了 s,观察 $\lambda \underline{\omega}$ 的 (form)-规则:

$$(form_{\lambda\underline{\omega}}) \ \frac{\Gamma \vdash A: s \quad \Gamma \vdash B: s}{\Gamma \vdash A \to B: s}$$

只能表示依赖于项的项和依赖于类型的类型,而不能相互交叉(crossover)。

因此在 λ C 的 (from)-规则中,使用了两个 $s: s_1$ 和 $s_2:$

$$(form_{\lambda C}) \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A.B : s_2}$$

 $\Pi x: A.B$ 的类型继承自 B,也即依赖于项/类型(1)的项/类型(2)依然是项/类型(与 2 统一)。因此有一个有趣的事实是:假设 A 中不存在与

抽象的类型变量相同的自由类型变量,* \rightarrow A 是一个类型,而 $A \rightarrow$ * 是一个种类 (kind)。