TSACE Webinar, Wednesday December 14th 2022

Using JDemetra+ in R: from version 2 to version 3 Presentation 2: Seasonal adjustment in R

Anna Smyk and Tanguy Barthelemy With the collaboration of Alain Quartier-la-tente

Contents

- 1. Introduction
- 2. Time series tools (new in v3)
- X13 (... and some Tramo-seats)
- 4. SA of High-Frequency data
- Generating User-defined auxiliary variables
- 6. Conclusion

Outline table

Data formats

here, no workspace structure - assets - shortcomings

SA process

- testing for seasonality
- pre treatement
- decomposition
- output series
- diagnostics
- customize parameters
- repeat..

comp with GUI main panels?

rjd3 suite of packages for SA

```
in v2: in v3: more tools (tests,...)
```

Contents

- 1. Introduction
- 2. Time series tools (new in v3)
- X13 (... and some Tramo-seats)
- 4. SA of High-Frequency data
- Generating User-defined auxiliary variables
- 6. Conclusion

Testing for seasonality

Data format TS object (num vector for HF) ### Normality test

Autocorrelation

Contents

- 1. Introduction
- 2. Time series tools (new in v3)
- 3. X13 (... and some Tramo-seats)
- 3.1 Quick Launch with default specifications
- 3.2 Rerieving output and data visualization
- 3.3 Customizing specifications
- 3.4 Refreshing data
- 4. SA of High-Frequency data
- 5. Generating User-defined auxiliary variables

Quick Launch with default specifications (1)

```
specifications - x13 - regarima - x11 (one less spec in default x13)

• Specification: created with spec_x11_default(),
    spec_x13_default(), spec_regarima_default()

spec_regarima_default(name = c("rg4", "rg0", "rg1", "rg2c", "rg3",
    "rg5c"))

spec_x13_default(name = c("rsa4", "rsa0", "rsa1", "rsa2c", "rsa3",
    "rsa5c"))

spec_x11_default()
```

Quick Launch with default specifications (2)

 Apply model with x11(), x13(), fast.x13(), regarima(), fast.regarima()

Running SA estimation process

```
in version 2
# X13
sa_x13_v2<-RJDemetra::x13(y_raw, spec ="RSA5c")</pre>
#Tramo-Seats
sa_ts_v2<-RJDemetra::tramoseats(y_raw, spec ="RSAfull")</pre>
in version 3
#X13
sa x13 v3 <- rjd3x13::x13(y raw, spec= "RSA5")</pre>
#Tramo seats
sa_ts_v3 <- rjd3tramoseats::tramoseats(y_raw, spec= "RSAfull")</pre>
affichage output?
```

Running only pre-adjustment

```
in version 2
# Reg-Arima part from X13 only (different default spec names, cf
regA v2<-RJDemetra::regarima x13(y raw, spec ="RG5c")
# Tramo only
tramo v2<-RJDemetra::regarima tramoseats(y raw,
  spec = "TRfull")
in version 3
#X13
sa_regarima_v3 <- rjd3x13::regarima(y_raw)</pre>
#Tramo seats (if no spec indicated what is the defalut ?)
# retrouver en
sa_tramo_v3 <- rjd3tramoseats::tramo(y_raw)</pre>
# "fast." versions...(cf output structure)
                                                           10 / 38
```

Running only decomposition

```
in version 2
# X11 (spec option)
X11_v2<-RJDemetra::x13(y_raw, spec ="X11")</pre>
#Tramo-Seats ? you
#sa ts v2<-RJDemetra::tramoseats(y raw, spec ="RSAfull")
in version 3
#X11
x11 v3 <- rjd3x13::x11(y raw)
#Tramo seats
#sa_ts_v3 <- rjd3tramoseats::seats.decompose(y_raw)
affichage output?
```

Output structure v2

show the list of lists do a new version

Output structure v3 (cf txt file)

show the NEW list of lists

Differences from v2 to v3

highlight deifferences: - specs - specs direct accessible $+\ 2$ concepts (spec in v12 was point spec;, more about this in refresh section)

Retrieve output series

input and output = TS objects (not when using specific extensions for HF data) - final series : different

```
# Version 2 (affichage main, d tables in user def output)
sa x13 v2$final$series
```

```
##
                    у
                              sa
                                         t
                                                    S
##
  Jan 1990
             74.93056
                       60.11430
                                  58.51831 1.2464681 1.0272733
  Feb 1990
             67.27349
                       58.94740
                                  58.61627 1.1412462 1.0056490
## Mar 1990
             71.60221
                       57.49983
                                  58.74645 1.2452595 0.9787797
## Apr 1990
             54.76262
                       58.27019
                                  58.85384 0.9398051 0.9900831
  May 1990
             50.01400
                       57.65493
                                  58.98080 0.8674714 0.9775203
  Jun 1990
             56.43779
                       59.44801
                                  59.14528 0.9493639 1.0051185
## Jul 1990
             58.72544
                       61.02377
                                  59.34659 0.9623372 1.0282607
  Aug 1990
             60.09017
                       58.91973
                                  59.54885 1.0198650 0.9894351
  Sep 1990
                       59.69652
             56.82430
                                  59.72004 0.9518864 0.9996061
             57.86107
                       59.44146
                                  59.80266 0.9734127 0.9939601
## Oct 1990
                       60.01217
                                  59.73370 0.9135851 1.0046617
  Nov 1990
             54.82622
  Dec 1990
             49.32696
                       60.92179
                                  59.49030 0.8096769 1.0240625
             72.89074
                       59.85221
                                  59.07795 1.2178454 1.
## Jan 1991
```

Series from preadjustement

Version 2 (affichage main, d tables in user def output)
sa_x13_v2\$regarima\$model\$effects # data frame

```
##
              y lin
                              t.de
                                              omhe out t
  Jan 1990 4.281143
                     0.0354192655
                                  0.00000000
  Feb 1990 4.217655 -0.0088889474
                                  0.00000000
  Mar 1990 4.257676 -0.0039103497
                                  0.017360471
                                                 0
  Apr 1990 4.035447 -0.0150790633
                                  -0.017360471
  May 1990 3.896360
                     0.0159430184
                                  0.00000000
                                                 0
  Jun 1990 4.034003 -0.0008639551
                                  0.00000000
  Jul 1990 4.075459 -0.0025860708
                                  0.00000000
                                                 0
                                  0.00000000
  Aug 1990 4.072815 0.0230308669
                                                 0
  Sep 1990 4.091918 -0.0519537119
                                  0.00000000
                                  0.00000000
## Oct 1990 4.022626 0.0354192655
  Nov 1990 3.987634 0.0165344464
                                  0.00000000
  Dec 1990 3.933995 -0.0355238594
                                  0.00000000
                                                 0
                                  0.00000000
  Jan 1991 4.273019
                     0.0159430184
  Feb 1991 4.205955 -0.0088889474
                                  0.00000000
                                                 0
  Mar 1991 4.346519 -0.0323728709
                                  -0.028085787
                                                 0
                                                     16 / 38
A AAAAAE707
```

Series from decompostion

```
# Version 2 (affichage main, d tables in user def output)
# D tables accessible via user-defined output,
# forecast accessible only via user defined output (cf below)
# Version 3: "x11 names" : preadjustement effets as stored in the
# add doc on names
sa x13 v3$result$decomposition$d5 # tables from D1 to D13
##
              Jan
                        Feb
                                  Mar
                                            Apr
                                                      May
## 1990 1.1923683 1.1475372 1.2360235 0.9704338 0.8556732
## 1991 1.1923683 1.1475372 1.2360235 0.9704338 0.8556732
```

1992 1.1849743 1.1510465 1.2435127 0.9749012 0.8612511
1993 1.1807324 1.1566905 1.2605805 0.9885448 0.8669907
1994 1.1922639 1.1523619 1.2757969 1.0068935 0.8695447
1995 1.2166191 1.1249847 1.2721669 1.0121162 0.8688322
1996 1.2450179 1.0834820 1.2454913 1.0023317 0.8656880
1997 1.2555405 1.0495401 1.2271165 0.9904221 0.8486 17/38

Retrieve Diagnostics

Just fetch the needed objects in the relevant par of the output structure or print the whole "model"

```
# Version 2
print(sa_x13_v2)
## ^^[[4m^^[[1mRegARIMA^^[[22m^^[[24m
## y = regression model + arima (0, 1, 1, 0, 1, 1)
## Log-transformation: yes
## Coefficients:
##
            Estimate Std. Error
## Theta(1) -0.7247
                         0.038
## BTheta(1) -0.5637
                         0.047
##
              Estimate Std. Error
##
              0.016430
                           0.009
## Monday
## Tuesday 0.012493
                           0.009
  Wednesday 0.006496
                           0.009
  Thursday
             -0.003046
                           0.009
              0.019581
                           0.009
## Friday
```

In v2 or v3 : define a vector of objects your wish to add

Lists of avaible diagnostics or series

```
# Version 2
user_defined_variables("X13-ARIMA")
user_defined_variables("TRAMO-SEATS")
# Version 3: more specific functions
userdefined_variables_tramoseats("tramoseats")
userdefined_variables_tramoseats("tramo") # restriction

userdefined_variables_x13("regarima") #restrction
userdefined_variables_x13()
```

Retrieve user defined-output (2/2)

Select the objects and customize estimation function

```
# version 3
ud <- userdefined variables x13()[15:17] # b series
ud
## [1] "decomposition.b1" "decomposition.b10"
## [3] "decomposition.b11"
sa x13 v3 UD<-rjd3x13::x13(y raw, "RSA5c", userdefined=ud)
sa_x13_v3_UD$user_defined # remainder of the names
## Names of additional variables (3):
## decomposition.b1, decomposition.b10, decomposition.b11
# retrieve the object
sa_x13_v3_UD$user_defined$decomposition.b1
```

```
##
              Jan
                         Feb
                                    Mar
                                                         May
                                              Apr
## 1990 72.32302
                   67.87415 70.64560
                                         56.56822
                                                    49.22295
## 1991
         71.73786 67.08462
                              77.20924
                                         50.20607
                                                   43.31047
                                                   44.75^{\frac{20}{10}}
## 1992
         63.44092
                    61.27638
                              66.91835
                                         51.81981
```

Plots and data visualisation (1/2) (1)

In version 2 3 kinds of plots : final (2 types), regarima and SI ratios

```
# version 2
# for class 'final' : 2 types
# syntaxe min
plot(sa_x13_v2, type_chart = "sa-trend", first_date = c(2015, 1))
```

Plots and data visualisation (1/2) (2)

Plots and data visualisation (2/2)

In version 3 - final + NEW "autoplot" layout - regarima not available (yet ?)

- SI ratios + NEW ggplot layout

```
# version 3
# remotes::install_github("AQLT/ggdemetra3",INSTALL_opts = "--no-
# library(ggdemetra3)
ggdemetra3::siratioplot(sa_x13_v3)
```


Customizing specifications: general steps

To customize a specification you must - start with a valid specification, usually one of the defaut specs (equivalent to cloning a spec in GUI) - create a new spec - apply the new spec to a series

Some differences between v2 and v3

Customizing specifications: in version 2

Direct parameter modification as arguments of the spec function

```
# version 2
# changing estimation span, imposing additive model and adding us
# first create a new spec modifying the previous one
spec_1 < x13_spec(sa_x13_v2)
spec 2 < -x13 spec(spec 1, estimate.from = "2004-01-01",
                  usrdef.outliersEnabled = TRUE.
                             usrdef.outliersType = c("LS", "AO"),
                             usrdef.outliersDate = c("2008-10-01"
                             transform.function = "None") # addit
# here the reg-arima model will be estimated from "2004-01-01"
# the decomposition will be run on the whole span
# new sa processing
sa_x13_v2_2<-RJDemetra::x13(serie_brute,spec_2)</pre>
sa_x13_v2_2$final$series
```

Customizing specifications: in version 3

Use direct and specific \mathtt{set} functions - for the preprocessing step (functions defined in $\mathtt{rjd3modelling}$):

```
set_arima(), set_automodel(), set_basic(), set_easter(),
set_estimate(), set_outlier(), set_tradingdays(),
set_transform(), add_outlier() and remove_outlier(), add_ramp()
and remove_ramp(), add_usrdefvar()
```

- for the decomposition step in X13 (function defined in rjd3x13): set_x11()
- for the decomposition step in Tramo-Seats (function defined in rjd3tramoseats): set_seats()
- for the benchmarking step (function defined in rjd3modelling): set_benchmarking()

New v3 feature, same options available as in GUI.

Customizing specifications in version 3: example

```
######## spec custo in v3
# start with default spec
spec 1 = spec x13 default("RSA3")
# or start with existing spec (no extraction function needed)
spec 1<-sa x13 v3 UD$estimation spec
# set a new spec
## add outliers
spec_2 = rjd3modelling::add_outlier(spec_1,
                  type = c("AO"), c("2015-01-01", "2010-01-01"))
## set trading days
spec_2<-rjd3modelling::set_tradingdays(spec_2,</pre>
    option = "workingdays" )
# set x11 options
spec_2<-set_x11(spec_2, henderson.filter = 13)</pre>
# apply with `fast.x13` (results only)
fast.x13(y,spec 2)
```

Adding user-defined regressors

In version 2: regressors added directly to the specification

In version 3: new notion of "context" an additionnal concept designed to - -

Adding user-defined regressors in v2

```
# defining user defined trading days
spec 4 \leftarrow x13 \text{ spec(spec 1,}
tradingdays.option = "UserDefined",
tradingdays.test ="None",
usrdef.varEnabled = TRUE,
# the user defined variable will be assigned to the calendar comp
usrdef.varType="Calendar",
usrdef.var=td_regs ) # regressors have to be a single or multiple
# new sa processing
sa_x13_v2_4<-x13(serie_brute,spec_4)</pre>
# user defined intervention variable
spec_5 \leftarrow x13_spec(spec_1,
                    usrdef.varEnabled = TRUE,
                    # the user defined variable will be assigned t
                    usrdef.varType="Trend",
                    usrdef.var=x ) # x has to to be a single or mu
# new sa processing
sa x13 v2 5<-x13(serie brute, spec 5)
```

Adding user-defined regressors in version 3

```
# defining user defined trading days
td reg1<- rjd3modelling::td(12, start=start(y raw),length = lengt
context<-rjd3modelling::modelling_context(variables=list(a=xvar))</pre>
spec <- rjd3x13::spec_regarima_default(name = "rg3") |>
  rjd3modelling::add_usrdefvar(id = "r.a")
reg_a_estimation<-rjd3x13::regarima(window(ts, start=1985, end=20
# if user_def variable to tren d? how to chose component ?
# regressors have to be added one by one
```

Estimation spec vs result_spec

Possibility of refreshing data is new feature of version 3.

The "sa_model" generated with an estimation: - new handling of spec (no extraction needed) - notion of - estimation spec (domain spec): set of customizable constraints

 ${\tt sa_x13_v3\$estimation_spec\$regarima\$arima}$

- result spec (or point spec)
 - in v2 could only retrieve point spec
 - in v3 your are able to restimate the result spec inside the domain (estimation spec) freeing constriants on some parameters: just like in GUI

Steps for refreshing data

```
current_result_spec<-sa_x13_v3$result_spec</pre>
current domain spec<-sa x13 v3$estimation spec
# generate NEW spec for refresh
refreshed spec<-x13.refresh(current spec, # point spec to be refr
            current domain spec, #domain spec (set of constraints
            policy = "Outliers",
            period = 12, # monthly series
            start = "2017-01-01".
            end = NULL)
# apply the new spec on new data : y_new = y_raw + 3 months
sa_x13_v3_refresh<-x13(y_new,refreshed_spec)</pre>
# what will be the domain spec here ?
# domain spec = point spec ?
```

Outliers identification: more flaxible the last ouliers or all outleirs in v2, here the span can be customized (Warning: x13.refresh hasn't been thouroughly tested yet)

Refresh Policies

- "FreeParameters",
- "Complete":
- "Outliers_StochasticComponent",
- "Outliers",
- "FixedParameters",
- "FixedAutoRegressiveParameters",
- "Fixed",

User-defined parameters: summary

- what's new ?
- whats's missing?

Contents

- 1. Introduction
- 2. Time series tools (new in v3)
- 3. X13 (... and some Tramo-seats)
- 4. SA of High-Frequency data
- 5. Generating User-defined auxilary variables
- 6. Conclusion

SA of High-Frequency data

High-frequency data can

In github repo full presnetations about {rjd3highfreq}

Contents

- 1. Introduction
- 2. Time series tools (new in v3)
- 3. X13 (... and some Tramo-seats)
- 4. SA of High-Frequency data
- 5. Generating User-defined auxiliary variables
- 5.1 calendars
- 5.2 outliers and intervention variables
- 6. Conclusion

calendars

here new functionnality of v3, rjd3modelling package

outliers and intervention variables

(using this variables already presented, now focus on generation) intervention bug in rj3modelling ?

Contents

- 1. Introduction
- 2. Time series tools (new in v3)
- X13 (... and some Tramo-seats)
- 4. SA of High-Frequency data
- 5. Generating User-defined auxiliary variables
- 6. Conclusion

Conclusion on SA in R

What has v3 brought to the table?