Bayesian SIR Model

Rob Deardon (Calgary) and Caitlin Ward (Minnesota)

Writing the SIR model

```
library(nimble)
## nimble version 0.12.2 is loaded.
## For more information on NIMBLE and a User Manual,
## please visit https://R-nimble.org.
## Attaching package: 'nimble'
## The following object is masked from 'package:stats':
##
       simulate
SIR_code <- nimbleCode({</pre>
    S[1] \leftarrow N - IO - RO
    I[1] <- IO
    R[1] <- RO
    probIR <- 1 - exp(-gamma)</pre>
    ### loop over time
    for(t in 1:tau) {
        probSI[t] \leftarrow 1 - exp(- beta * I[t] / N)
        Istar[t] ~ dbin(probSI[t], S[t])
        Rstar[t] ~ dbin(probIR, I[t])
         # update S, I, R
        S[t + 1] \leftarrow S[t] - Istar[t]
        I[t + 1] \leftarrow I[t] + Istar[t] - Rstar[t]
        R[t + 1] \leftarrow R[t] + Rstar[t]
    }
    # priors
    beta ~ dgamma(1, 1)
    gamma ~ dgamma(aa, bb)
})
```

Simulating epidemics

Here we specify the population size N = 10,000, 5 initially infectious individuals, and simulate 100 days of the epidemic.

```
constantsList <- list(N = 10000,</pre>
                       IO = 5.
                       RO = 0,
                       tau = 100)
sirModel <- nimbleModel(SIR code,</pre>
                         constants = constantsList)
## Defining model
## Building model
## Running calculate on model
     [Note] Any error reports that follow may simply reflect missing values in model variables.
## Checking model sizes and dimensions
##
     [Note] This model is not fully initialized. This is not an error.
##
            To see which variables are not initialized, use model$initializeInfo().
##
            For more information on model initialization, see help(modelInitialization).
# exclude data from parent nodes
dataNodes <- c('Istar', 'Rstar')</pre>
dataNodes <- sirModel$expandNodeNames(dataNodes, returnScalarComponents = TRUE)
parentNodes <- sirModel$getParents(dataNodes, stochOnly = TRUE)</pre>
parentNodes <- parentNodes[-which(parentNodes %in% dataNodes)]</pre>
parentNodes <- sirModel$expandNodeNames(parentNodes, returnScalarComponents = TRUE)</pre>
nodesToSim <- sirModel$getDependencies(parentNodes, self = FALSE, downstream = T)</pre>
```

We can simulate using various values of β and γ to specify various reproductive numbers.

In all simulations the mean infectious period is 5 days.

```
plot(sirModel$I, type = 'l', col = pal[1], ylim = c(0, 5000),
     main = paste0('R0 = ', sirModel$beta / sirModel$gamma), lwd = 2, ylab = "Population Count")
# simulation 2
initsList <- list(beta = 0.4,</pre>
                  gamma = 0.2)
sirModel$setInits(initsList)
set.seed(1)
sirModel$simulate(nodesToSim, includeData = TRUE)
plot(sirModel$S, type = 'l', col = pal[1], ylim = c(0, 10000),
     main = pasteO('RO = ', sirModel$beta / sirModel$gamma), lwd = 2, ylab = "Population Count")
lines(sirModel$I, col = pal[2], lwd = 2)
lines(sirModel$R, col = pal[3], lwd = 2)
legend('topright', c('S', 'I', 'R'), col = pal, lwd = 2,
       bty = 'n', horiz = T)
plot(sirModel$I, type = 'l', col = pal[1], ylim = c(0, 2000),
    main = pasteO('RO = ', sirModel$beta / sirModel$gamma), lwd = 2)
```


Epidemics are Stochastic

Here we simulate 100 epidemics from the same parameter values and plot the observed incidence curve from each simulation.

Model fitting to simulated data

Simulate data, then use it to fit the model.

Model Specifications

Before fitting the model, we need to determine a reasonable prior for γ . The true value corresponds to a mean infectious period of 5 days, so we choose a prior that puts 90% probability on the mean infectious period between 4 and 6 days and is centered on 5 days.

```
bb <- 348
aa <- 0.2 * bb
pgamma(1/4, aa, bb) - pgamma(1/6, aa, bb)

## [1] 0.900183
```

curve(dgamma(x, aa, bb))

0.0

0.4

0.2

Χ

8.0

1.0

0.6

Defining model

```
## Building model
```

Setting data and initial values

Running calculate on model

[Note] Any error reports that follow may simply reflect missing values in model variables.

Checking model sizes and dimensions

NIMBLE automatically calculates S, I, and R from Istar and Rstar, so these do not need to be inputs to the model

```
with(sirModelFit, cbind(S, Istar, I, Rstar, R))[1:20,]
```

Warning in cbind(S, Istar, I, Rstar, R): number of rows of result is not a ## multiple of vector length (arg 2)

##		S	${\tt Istar}$	I	${\tt Rstar}$	R
##	[1,]	9995	2	5	1	0
##	[2,]	9993	6	6	1	1
##	[3,]	9987	10	11	1	2
##	[4,]	9977	13	20	7	3
##	[5,]	9964	10	26	5	10
##	[6,]	9954	14	31	4	15
##	[7,]	9940	23	41	9	19
##	[8,]	9917	24	55	12	28
##	[9,]	9893	41	67	10	40
##	[10,]	9852	67	98	15	50
##	[11,]	9785	102	150	26	65
##	[12,]	9683	144	226	36	91
##	[13,]	9539	181	334	68	127
##	[14,]	9358	243	447	75	195
##	[15,]	9115	330	615	120	270
##	[16,]	8785	446	825	149	390
##	[17,]	8339	557	1122	226	539
##	[18,]	7782	644	1453	284	765
##	[19,]	7138	716	1813	304	1049
##	[20,]	6422	790	2225	409	1353

Use Default Configurations and Obtain Samples

Plotted with burn-in included here

```
myConfig <- configureMCMC(sirModelFit)</pre>
## ===== Monitors =====
## thin = 1: beta, gamma
## ===== Samplers =====
## RW sampler (2)
    - beta
##
    - gamma
myMCMC <- buildMCMC(myConfig)</pre>
system.time({
   compiled <- compileNimble(sirModelFit, myMCMC)</pre>
   samples <- runMCMC(compiled$myMCMC, niter = 50000, setSeed = 3)</pre>
})
## Compiling
    [Note] This may take a minute.
    [Note] Use 'showCompilerOutput = TRUE' to see C++ compilation details.
##
## Running chain 1 ...
## |-----|-----|
## |-----|
##
     user system elapsed
## 21.482
           0.844 22.784
head(samples)
            beta
                     gamma
## [1,] 0.1848823 0.2114557
## [2,] 0.4436705 0.2114557
## [3,] 0.6394533 0.2114557
## [4,] 0.6394533 0.2114557
## [5,] 0.6394533 0.2114557
## [6,] 0.6394533 0.2114557
par(mfrow = c(2,2))
plot(samples[,'beta'], type = 'l', main = 'MCMC trace plot (beta)')
abline(h = 0.6, col = 'red')
plot(samples[,'gamma'], type = 'l', main = 'MCMC trace plot (gamma)')
abline(h = 0.2, col = 'red')
hist(samples[1000:50000,'beta'], main = 'Posterior (beta)')
hist(samples[1000:50000, 'gamma'], main = 'Posterior (gamma)')
```


97.5%

##

2.5% ## 0.1953116 0.2032225 knitr::knit_exit()