

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of	29/ 07 / 2024	Batch No:	A 2
Performance:	29/ 0/ / 2024	Daten No.	A_2
Faculty Name:		Roll No:	16010123032
Faculty Sign &		Grade/Marks:	/25
Date:		Graue/Marks:	/25

Experiment No: 2

Title: Binary Adders and Subtractors

Aim and Objective of the Experiment:	
To implement half and full adder–subtractor using gates and IC 7483	
COs to be achieved:	
CO2 : Use different minimization technique and solve combinational circuits.	

Tools used:	
Trainer kits	

Theory:

Adder: The addition of two binary digits is the most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is a combinational logic circuit with two inputs and two outputs. It is the basic building block for the addition of two single-bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi-bit addition is performed. for this purpose, a third input terminal is added and this circuit is to add A, B, and C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder.

Subtractor: Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractors:

Semester: III

• Half subtractor

Academic	Year:	2024-25
Roll No:		

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

• Full subtractor

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multi-bit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1'scomplement of that no.

e.g. 2's complement of $+(10)_{10} = 1010$ is

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

Semester: III

Academic Year: 2024-25 Roll No:

(A Constituent College of Somaiya Vidyavihar University)

Half Adder Circuit

Semester: III Academic Year: 2024-25

Roll No:____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Truth Table for Half Adder

Inputs		Outputs		
A	В	A	В	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

From the truth table (with steps):

$$S = A \oplus B = AB' + A'B$$

$$C = A \cdot B$$

Full Adder Block Diagram

Full Adder Circuit

Digital Design Laboratory

Roll No:_____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Truth Table for Full Adder

Inputs			Outputs		
Α	В	C _{in}	Sum	Carry	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

From the truth table (with steps):

Academic Year: 2024-25 Roll No:____

(A Constituent College of Somaiya Vidyavihar University)

S=A'B'Cin + A'BCin' + AB'Cin + ABCin

Cout = ACin + AB + BCin

Half Subtractor Block Diagram

Half Subtractor Circuit

Truth Table for Half Subtractor

DIFFERENCE(D A B BORROW(Bo)

Roll No:___

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

From the truth table (with steps):

Difference(D)=A'B+AB' Borrow(B)=A'B

Full Subtractor Block Diagram

Full Subtractor Circuit

Academic Year: 2024-25 Roll No:

(A Constituent College of Somaiya Vidyavihar University)

Semester: III

Circuit Diagram

Truth Table for Full subtractor

A	В	$\mathbf{B_{IN}}$	D	BOR _{OUT}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

From the truth table (with steps):

Difference(D)= A'B'Bin+A'BBin'+AB'Bin'+ABBin

BORout=A'B+A'Bin+BBin

Example:

Academic Year: 2024-25 Roll No:

(A Constituent College of Somaiya Vidyavihar University)

Semester: III

Pin Diagram IC7483

Digital Design Laboratory

Academic Year: 2024-25
Roll No:

(A Constituent College of Somaiya Vidyavihar University)

Semester: III

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Implementation Details

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- 2) Connect 1^{st} input no. to A4-A1 input slot and 2^{nd} (negative) no. to B4-B1 through 4-not gates (1C of 2^{nd} no.)
- 3) Connect high input to Co so that it will get added with 1C of 2nd no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Semester: III

Lab work:

	Bi	nary Ac	lder '	Suplantos	Date: /	1
1	A		_		. Hotto	1 (8
5 0	00	-			111011 11	
Ci.	Half	-adder			. 600066 1	A
1 7			0	1 0		
1437	A	В	8	C	7	
V-	0	100	0	0	000000	
T.	0	Julia		0	\$0000	
	1	000		0	100 100	
0	001-		0			
1/2	ne				ETELANCE.	
	0000					
	S	= AB	+ AB		7	
OH:	30,000	= AG	B		14	
-	0.3		19			al
13	C	= AB			10 "	186
	DATE -	1	M	486		1
		2	17)	35		
	U II UI	Ch.	11	5	14	
-	-	A	74	08		
	0 40	2	13	(, /	7408	
		8			- Q	
			-		00	
-					Xu,	
		- 10			Ne of	
				Maria		
					DEPOSITION NAMED IN	

Academic Year: 2024-25 Roll No:

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Post Lab Subjective/Objective type Questions:

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

1. Design a full adder using two half adders.

2. Perform the following Binary subtraction with the help of appropriate ICs: a. 6-4 b.5-8 c.7-9

92.)	a) 6-4
	6 = 0110 , y = 0100
	~4 [2's complement]
	1011
	+1
	1100
	adding: - 0110+ 1100
	= 10010
	₽ → 0010
	b) 5-8
	5=0101, 8=1000, ~8=0111 [2's complement].
	0111
	1000
	0101+1000 => 1101
	01017 10009 1101
	c·) 7-9
	7 = 0111, $9 = 1001$, $-9 = 0110$ (2's complement) adding $1 = 0110$
	1 2 0110
	adding 1
	0111
	wow, 0111+0111 > 1110
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Semester: III Academic Year: 2024-25

Roll No:____

Semester: III

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

_			
_			
	Conclusion:		
	OHICHISIOH:		

We learnt how to successfully implement half and full adder subtractor using gates and IC 7483

Signature of faculty in-charge with Date:

Academic Year: 2024-25 Roll No: