Dynamic Programming

- ▼ Inductive definitions ... Recursive programs
 - Factorial

```
egin{array}{ll} \circ & fact(0) = 1 \ \circ & fact(n) = n 	imes fact(n-1) \end{array}
```

· Insertion sort

```
egin{aligned} &\circ \ isort([]) = [] \ &\circ \ isort([x_0, x_1, \ldots, x_n]) = insert(isort([x_0, x_1, \ldots, x_{n-1}]), x_n) \end{aligned}
```

```
def fact(n):
    if n <= 0:
        return 1

return n * fact(n - 1)</pre>
```

```
def isort(l):
    if l == []:
        return l

return insert(isort(l[:-1]), l[-1])
```

Optimal substructure property

- Solution to original problem can be derived by combining solutions to subproblems
- fact(n-1) is a subproblem of fact(n)
 - \circ So are $fact(n-2), fact(n-3), \ldots, fact(0)$
- $ullet \ isort([x_0,x_1,\ldots,x_{n-1}]) \ ext{is a subproblem of} \ isort([x_0,x_1,\ldots,x_n])$
 - $\circ~$ So is $isort([x_i, \ldots, x_j])$ for any $0 \leq i < j \leq n$

Interval scheduling

- · IIT Madras has a special video classroom for delivering online lectures
- · Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)
- · Slots may overlap, so not all bookings can be honoured

 Choose a subset of bookings to maximize the number of teachers who get to use the room

Subproblems

Each subset of bookings is a subproblem

Generic greedy strategy

- Pick one request from those in contention
- · Eliminate bookings in conflict with this choice
- Solve the resulting subproblem

Subproblems

- · Each subset of bookings is a subproblem
- ullet Given N bookings, 2^N subproblems
- · Greedy strategy looks at only a small fraction of subproblems
 - Each choice rules out a large number of subproblems
 - Greedy strategy needs a proof of optimality

Weighted Interval Scheduling Problem

- · Same scenario as before but each request comes with a weight
 - For instance, the room rent for using the resource
- Revised goal: maximizethe total weight of the bookings that are selected
 - Not the same as maximizing the number of bookings selected
- · Greedy strategy for unweighted case
 - Select request with earliest finish time
- Not a valid strategy any more

weight 1

weight 3

weight 1

- · Search for another greedy strategy that works ...
- ... or look for an inclusive solution that is "obviously" correct

Weighted Interval Scheduling

- Order by bookings by starting time, b_1, b_2, \ldots, b_n
- Begin with b_1
 - $\circ~$ Either b_1 is part of the optimal solution, or it is not
 - \circ Include $b_1 \Longrightarrow$ eliminate conflicting requests in b_2,\ldots,b_n and solve resulting subproblem
 - \circ Exclude $b_1 \Longrightarrow$ solve subproblem b_2,\ldots,b_n
 - · Evaluate both options, choose the maximum
- Inductive solution considers all options
 - $\circ~$ For each b_j , optimal solution either has b_j or does not
 - $\circ~$ For b_1 , we have explicitly checked both cases
 - \circ If b_2 is not in conflict with b_1 , it will be considered in both subproblems with and without b_1
 - \circ If b_2 is in conflict with b_1 , it will be considered in the subproblem where b_1 is excluded

The challenge

- b_1 is in conflict with b_2 , but both are compatible with b_3, b_4, \dots, b_n
 - \circ Choose $b_1 \implies$ subproblem b_3,\ldots,b_n

- $\circ \;\; \mathsf{Exclude} \; b_1 \implies \mathsf{subproblem} \; b_2, \dots b_n$
- Next stage
 - Choose/exclude b_2
 - lacksquare Both choices result in b_3,\ldots,b_n , same subproblem
- Inductive solution generates same subproblem at different stages
- Naive recursion implementation evaluates each instance of subproblem from scratch
- Can we avoid this wasteful recomputation
- Memoization and Dynamic Programming?

Memoization

▼ Evaluating Subproblems

```
    Fibonacci numbers
```

```
egin{array}{ll} \circ & fib(0) = 0 \ \circ & fib(1) = 1 \ \circ & fib(n) = fib(n-1) + fib(n-2) \end{array}
```

```
def fib(n):
    if n <= 1:
       value = n
    else:
      value = fib(n - 1) + fib(n - 2)

return value</pre>
```

- · Wasteful recomputation
- Computation tree grows exponentially

Evaluating fib(5)

Evaluating Subproblems

• Build a table of values already computed

- Memory table
- Memoization
 - o Check if the value to be computed was already seen before
- Store each newly computed value in a table
- · Look up the table before making a recursive call
- Computation tree becomes linear

k	1	0	2	3	4	5
fib(k)	1	0	1	2	3	5

Memoizing recursive implementations

```
def fib(n):
   if n in fibtable.keys():
     return fibtable[n]

if n <= 1:
    value = n
   else:
    value = fib(n - 1) + fib(n - 2)</pre>
```

```
fibtable[n] = value
return value
```

In general

```
def f(x, y, z):
   if (x, y, z) in ftable.keys():
     return ftable[(x, y, z)]

recursively compute values
   from subproblems

ftable[(x, y, z)] = value
   return value
```

Dynamic programming

- Anticipate the structure of subproblems
 - Derive from inductive definition
 - Dependencies form a DAG
- Solve subproblems in topological order
 - Never need to make a recursive call

Evaluating fib(5)

Summary

Memoization

- Store subproblem values in a table
- Look up the table before making a recursive call

Dynamic programming

- Solve subproblems in a topological order of dependency
 - Dependencies must form a DAG
- · Iterative evaluation of subproblems, no recursion

- Grid Paths

Grid Paths

- Rectangular paths of one-way roads
- Can only go up and right
- How many paths form (0,0) to (m,n)?

Combinatorial solution

- Every path from (0,0) to (5,10) has 15 segments
 - $\circ~$ In general, m+n segments from (0,0) to (m,n)

- Out of 15, exactly 5 are right moves, 10 are up moves
- Fix the position of the $5\ \text{right}$ moves among the $15\ \text{positions}$ overall

$$\circ \ C_5^{15} = \frac{15!}{10!.5!} = 3003$$

 $\begin{array}{l} \circ \ \, C_5^{15} = \frac{15!}{10!.5!} = 3003 \\ \circ \ \, {\rm Same \ as} \ C_{10}^{15} - {\rm fix \ the} \ 10 \ {\rm up \ moves} \end{array}$

Holes

(0,0)

- · What if an intersection is blocked?
 - \circ For instance, (2,4)
- Need to discard paths passing through $\left(2,4\right)$
 - o Two of our earlier examples are invalid paths

Combinatorial solution for holes

- Discard paths passing through (2,4)
- Every path via (2,4) combines a path from (0,0) to (2,4) with a path from (2,4) to (5, 10)
 - Count these separately

 - $\begin{array}{ccc} \cdot & \cdot & \cdot \\ \circ & C_2^{2+4} = 15 \, \text{paths from} \, (0,0) \, \, \text{to} \, (2,4) \\ \circ & C_3^{3+6} = 84 \, \text{paths from} \, (2,4) \, \, \text{to} \, (5,10) \\ \end{array}$
- 15 imes 84 = 1,260 paths via (2,4)
- 3,003-1,260=1,743 valid paths avoiding (2,4)

More holes

- · What if two intersections are blocked?
- Discard paths via (2,4),(4,4)
 - Some paths are counted twice
- Add back the paths that pass through both holes
- Inclusion-exculsion -- counting is messy

Inductive formulation

- How can a path reach (i, j)
 - \circ Move up from (i,j-1)
 - $\circ \;$ Move right from (i-1,j)
- Each path to these neighbours extends to a unique path to (i,j)
- Recurrence for P(i,j), number of paths from (0,0) to (i,j)
 - $\circ \ P(i,j) = P(i-1,j) + P(i,j-1)$
 - $\circ P(0,0) = 1$ base case
 - $\circ \ P(i,0) = P(i-1,0)$ bottom row
 - $\circ \ P(0,j) = P(0,j-1)$ left column
- P(i,j)=0 if there is a hole at (i,j)

$$(i-1,j) \longrightarrow (i,j)$$

$$\uparrow$$

$$(i,j-1)$$

Computing \$P(i,j)

- Naive recursion recomputes same subproblem repeatedly
 - $\circ \ P(5,10)$ requires P(4,10), P(5,9)
 - $\circ \ \, \mathsf{Both}\, P(4,10), P(5,9) \ \mathsf{require}\, P(4,9) \\$
- Use memoization ...
- · ... or find a suitable order to compute the subproblems

Dynamic Programming

- Identify the DAG structure
- ullet P(0,0) has no dependencies

- Start at (0,0)
- Fill row by row

• Fill column by column

• Fill diagonal by diagonal

Memoization vs Dynamic Programming

- Barrier of holes just inside the border
- Memoization never explores the shaded region
- ullet Memo table has O(m+n) entries
- ullet Dynamic programming blindly fills all mn cells of the table
- Tradeoff between recursion and iteration
 - o "Wasteful" dynamic programming still better in general

Common Subwords and Sequences

Longest common subword

- · Given 2 strings, find the (length of the) longest common subword
 - \circ "secret", "secretary" -- "secret", length 6
 - \circ "bisect", "trisect" -- "isect", length 5
 - "bisect", "secret" -- "sec", length 3
 - \circ "director", "secretary" -- "ee", "re", length 2
- Formally
 - $u = a_0 a_1 \dots a_{m-1}$
 - $v = b_0 b_1 \dots b_{n-1}$
 - \circ Common subword of length k for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
 - \circ Find the largest such k length of the longest common subword

Brute force

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_i b_{i+1} b_{i+k-1}$
- ullet Try every pair of starting positions i in u, jin v
 - \circ Match $(a_i,b_j),(a_{i+1},b_{j+1})...$ as far as possible
 - Keep track of longest match
- Assuming m > n, this is $O(mn^2)$
 - $\circ \hspace{0.1in} mn$ pairs of starting positions
 - $\circ~$ From each starting position, scan could be O(n)

Inductive structure

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- ullet Find the largest k such that for some positions i and j, $a_i a_{i+1} a_{i+k-1} = b_j b_{j+1} b_{j+k-1}$
- LCW(i,j) length of the longest common subword in $a_i \, a_{i+1} \ldots a_{m-1} \, , b_j \, b_{j+1} \ldots b_{n-1}$
 - $\circ \:$ If $a_i
 eq b_j$, LCW(i,j) = 0
 - $\circ \:$ If $a_i = b_j$, LCW(i,j) = 1 + LCW(i+1,j+1)
 - $\circ \;\;$ Base case: LCW(m,n)=0

- \circ In general, LCW(i,n)=0 for all $0\leq i\leq m$
- $\circ~$ In general, LCW(m,j)=0 for all $0\leq j\leq n$

▼ Subproblem dependency

- Subproblems are LCW(i,j) , for $0 \leq i \leq m, 0 \leq j \leq n$
- $\bullet \ \ {\rm Table \ of \ } (m+1). \, (n+1) \ {\rm values}$
- ullet LCW(i,j) depends on LCW(i+1,j+1)
- Start at the bottom right and fill row by row or column by column

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i				K			
2	s							
3	е			K				
4	С						K	
5	t							
6	•				. 40		= .	

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

- Find entry (i, j) with the largest LCW value
- · Read off the actual subword diagonally

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	s	3	0	0	0	0	0	0
3	е	0	3	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

▼ Implementation

```
def LCW(u, v):
    import numpy as np
    (m, n) = (len(u), len(v))
    lcw = np.zeros((m + 1, n + 1))
    max_lcw = 0

for c in range(n - 1, -1, -1):
    for r in range(m - 1, -1, -1):
        if u[r] == v[c]:
            lcw[r, c] = 1 + lcw[r + 1, c + 1]
        else:
            lcw[r, c] = 0

    if lcw[r, c] > max_lcw:
        max_lcw = lcw[r, c]
```

return max 1cw

Complexity

- Recall that the brute force was $O(mn^2)$
- ullet Inductive solution is O(mn), using dynamic programming or memoization
 - \circ Fill a table of size O(mn)
 - Each table entry takes constant time to compute

Longest Common Subsequence

- Subsequence can drop letters in between
- Given two strings, find the (length of the) longest common subsequence

```
"secret", "secretary" - "secret", length 6
"bisect", "trisect" -- "isect", length 5
"bisect", "secret" -- "sec", length 3
"director", "secretary" -- "ee", "re", length 2
```

• LCS is the longest path connecting non-zero LCW entries, moving right/down

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	0	0	0	0	0	0	0
1	i	0	0	0	0	0	0	0
2	S	3	0	0	0	0	0	0
3	е	0	2	0	0	1	0	0
4	С	0	0	1	0	0	0	0
5	t	0	0	0	0	0	1	0
6	•	0	0	0	0	0	0	0

Applications

· Analyzing genes

- o DNA is a long string over A, T, G, C
- o Two species are similar if their DNA has long common subsequences
- diff command in Unix/Linux
 - Compares text files
 - Find the longest matching subsequence of lines
 - Each line of text is a "character"

Inductive structure

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- LCS(i,j) length of longest common subsequence in $a_i a_{i+1} \ldots a_{m-1}, b_j b_{j+1} \ldots b_{n-1}$
- If $a_i=b_j, LCS(i,j)=1+LCS(i+1,j+1)$
 - \circ Can assume (a_i,b_i) is part of LCS
- If $a_i
 eq b_j, a_i$ and b_j cannot both be part of LCS
 - Which one should we drop?
 - $\circ~$ Solve LCS(i,j+1) and LCS(i+1,j) and take the minimum
- ullet Base cases as with LCW
 - $\circ \ LCS(i,n) = 0 \text{ for all } 0 \leq i \leq m$
 - $\circ \ LCS(m,j) = 0 \text{ for all } 0 \leq j \leq n$

Subproblem dependency

- Subproblems are LCS(i,j) , for $0 \leq i \leq m, 0 \leq j \leq n$
- Table of (m+1). (n+1) values
- LCS(i,j) depends on LCS(i+1,j+1), LCS(i,j+1), LCS(i+1,j)

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i							
2	S							
3	е							
4	С							
5	t							
6	•							

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i				槟			
2	s							
3	е			槟				
4	С						槟	
5	t							
6	•							

• No dependency for LCS(m,n) - start at bottom right and fill by row, column or diagonal

Reading off the solution

- · Trace back the path by which each entry was filled
- ullet Each diagonal step is an element of LCS

```
def LCS(u, v):
    import numpy as np
    (m, n) = (len(u), len(v))
    lcs = np.zeros((m + 1, n + 1))

for c in range(n - 1, -1, -1):
    for r in range(m - 1, -1, -1):
        if u[r] == v[c]:
            lcs[r, c] = 1 + lcs[r + 1, c + 1]
        else:
            lcs[r, c] = max(lcs[r + 1, c], lcs[r, c + 1])

return lcs[0,0]
```

Complexity

- Again O(mn), using dynamic programming or memoization
 - \circ Fill a table of size O(mn)
 - · Each table entry takes constant time to compute

Edit Distance

Document similarity

- "The students were able to appreciate the concept optimal substructure property and its use in designing algorithms"
- "The lecture taught the students to appreciate how the concept of optimal substructures can be used in designing algorithms"
- Edit operations to transform documents
 - Insert a character
 - Delete a character
 - Substitute one character by another
- "The <u>lecture taught the</u> students were able to appreciate <u>how</u> the concept <u>of</u> optimal substructures <u>property</u> <u>cand</u> itbse used in designing algorithms"
- insert, delete, substitute

Edit distance

- Minimum number of edit operations needed
- In our example, 24 characters inserted, 18 deleted, 2 substituted
- · Edit distance is at most 44

Edit distance

- · Minimum number of editing operations needed to transform one document to the other
 - Insert a character
 - Delete a character
 - Substitute one character by another
- · Also called Levenshtein distance
 - Vladimir Levenshtein, 1965
- Applications
 - Suggestions for spelling correction
 - o Genetic similarity of species

Edit distance and LCS

- Longest common subsequence of u, v
 - Minimum number of deletes needed to make them equal
- Deleting a letter from u is equivalent to inserting it in v

- bisect, secret LCS is sect
- o Delete b, i in bisect and r, e in secret
- o Delete b, i and then insert r, e in bisect
- LCS equivalent to edit distance without substitution

Inductive structure for edit distance

- $u = a_0 a_1 \dots a_{m-1}$
- $v = b_0 b_1 \dots b_{n-1}$
- Recall LCS
- If $a_i = b_i$, LCS(i, j) = 1 + LCS(i + 1, j + 1)
- if $a_i \neq b_j$, $LCS(i,j) = \max(LCS(i,j+1), LCS(i+1,j))$
- ullet Edit distance aim is to transform u to v
- If $a_i = b_i$, nothing to be done
- If $a_i
 eq b_j$, best among
 - \circ Substitute a_i by b_i
 - \circ Delete a_i
 - \circ Insert b_i before a_i
- ED(i,j) edit distance for $a_i a_{i+1} \ldots a_{m-1}, b_j b_{j+1} \ldots b_{n-1}$
- If $a_i = b_j$, ED(i,j) = ED(i+1,j+1)
- If $a_i
 eq b_j$, ED(i,j) = 1 + min(ED(i+1,j+1), ED(i+1,j), ED(i,j+1))
- · Base case
 - $\circ ED(m,n)=0$
 - $\circ \ ED(i,n) = m-i$ for all $0 \leq i \leq m$, Delete $a_i a_{i+1} \ldots a_{m-1}$ fro u
 - $\circ \ ED(m,j) = n-j$ for all $0 \leq j \leq n$, Insert $b_j b_{j+1} \dots b_{n-1}$ into u

Subproblem dependency

- Subproblems are ED(i, j), for $0 \le i \le m, 0 \le j \le n$
- Table of (m+1). (n+1) values

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i							
2	s							
3	е							
4	С							
5	t							
6	•							

- Like LCS, ED(i,j) depends on ED(i+1,j+1), ED(i,j+1), ED(i+1,j)

		0	1	2	3	4	5	6
		s	е	С	r	е	t	•
0	b							
1	i				槟			
2	s							
3	е			た				
4	С						槟	_
5	t							
6	•							

		0	1	2	3	4	5	6
		S	е	С	r	е	t	•
0	b	4	4	4	4	4	5	6
1	i	3	4	3	3	3	4	5
2	s	1	3	3	2	2	3	4
3	е	3	2	3	2	1	2	3
4	С	4	3	2	2	1	1	2
5	t	5	4	3	2	4	-0	1
			-		_	•	-	_
6	•	6	5	4	3	2	1	0

ullet No dependency for ED(m,n) - start at bottom right and fill by row, column or diagonal

Reading off the solution

- Transform bisect to secret
- Delete b, Delete i, Insert r, Insert e

```
def ED(u, v):
    import numpy as np
    (m, n) = (len(u), len(v))
    ed = np.zeros((m + 1, n + 1))

for i in range(m - 1, -1, -1):
    ed[i, n] = m - i
    for j in range(n - 1, -1, -1):
    ed[m, j] = n - j

for j in range(m - 1, -1, -1):
    for i in range(m - 1, -1, -1):
        if u[i] == v[j]:
            ed[i, j] = ed[i + 1, j + 1]
        else:
        ed[i, j] = 1 + min(ed[i + 1, j + 1], ed[i, j + 1], ed[i
```

Complexity

- Again, O(mn), using dynamic programming or memoization
 - $\circ~$ Fill a table of size O(mn)
 - o Each table entry takes constant time to compute

Matrix Multiplication

Multiplying matrices

• Multiple matrices A, B

$$\circ \ AB[i,j] = \sum_{k=0}^{n-1} A[i,k]B[k,j]$$

- Dimensions must be compatible
 - $\circ A: m \times n, B: n \times p$
 - $\circ AB: m \times p$
- Computing each entry in AB is O(n)
- Overall, computing AB is O(mnp)
- · Matrix multiplication is associative
 - $\circ ABC = (AB)C = A(BC)$
 - · Brackting does not change answer
 - ... but can affect the complexity
- Let $A: 1 \times 100, B: 100 \times 1, C: 1 \times 100$
- Computing A(BC)
 - $\circ~BC:100 imes100$, takes 100.1.100=10000 steps to compute
 - $\circ~~A(BC): 1 imes 100$, takes 1.100.100=10000 steps to compute
- Computing (AB)C
 - $\circ~AB:1 imes1$, takes 1.100.1=100 steps to compute
 - $\circ~(AB)C: 1 imes 100$, takes 1.1.100 = 100 steps to compute
- 20000 steps vs 200 steps
- ullet Given n matrices $M_0: r_0 imes c_0$, $M_1: r_1 imes c_1, \ldots, M_{n-1}: r_{n-1} imes c_{n-1}$
 - $\circ \;$ Dimensions match: $r_j = c_{j-1}, 0 < j < n$
 - \circ Product $M_0.\,M_1.\,..\,M_{n-1}$ can be computed
- Find the optimal order to compute the product
 - Multiple 2 matrices at a time
 - Bracket the expression optimally

Inductive Structure

- Final step combines two subproducts $(M_0.\,M_1\ldots M_{k-1}).\,(M_k.\,M_{k+1}\ldots M_{n-1})$ for some 0 < k < n
- ullet First factor is $r_0 imes c_{k-1}$, second is $r_k imes c_{n-1}$, where $r_k = c_{k-1}$

- Let C(0, n-1) denote the overall cost
- Final multiplication is $O(r_0r_kc_{n-1})$
- ullet Inductively, costs of factors are C(0,k-1) and C(k,n-1)
- $C(0, n-1) = C(0, k-1) + C(k, n-1) + r_0 r_k c_{n-1}$
- Which k should we choose?
 - Try all and choose the minimum!
- Subproblems?
 - $\circ \ M_0.\, M_1 \ldots M_{k-1}$ would decompose as $(M_0 \ldots M_{j-1}).\, (M_j \ldots M_{k-1})$
 - \circ Generic subproblem is $M_j.M_{j+1}...M_k$
- $C(j,k) = min_{j < l \le k} [C(j,l-1) + C(l,k) + r_j r_l c_k]$
- Base case: C(j,j) = 0 for $0 \le j < n$

Subproblem dependency

- Compute $C(i,j), 0 \le i, j < n$
 - \circ Only for $i \leq j$
 - o Entries above main diagonal

	0	 i	 	j	 n-1
0					
i					
j					
n-1					

	0	• • •	i	• • •	• • •	j	 n-1
0							
i							
j							
n-1							
n-1							
n-1	0		i			j	 n-1
n-1 0	0		i			j	 n-1
	0		i			j	 n-1
	0		i ←			j	 n-1
0	0		i	•••	•••	j	 n-1
0	0	•••	i			j	 n-1

n-1

	0	 i	 	j	 n-1
0					
i					
j					
n-1					
	0	 i	 	i	 n-1
	0	 i	 	j	 n-1
0	0	 i	 	j	 <i>n</i> −1
	0	 i	 	j	 <i>n</i> −1
0	0	 i	 	j	 <i>n</i> −1
0	0	 i		j	 <i>n</i> −1
0	0	 i		j	 <i>n</i> −1
0 i	0	i		j	 <i>n</i> −1

- C(i,j) depends on C(i,k-1), C(k,j) for every $i < k \leq j$ O(n) dependencies per entry, unlike LCW, LCS and ED
- Diagonal entries are base case
- Fill matrix by diagonal, from main diagonal

▼ Implementation

return C[0, n - 1]

Complexity

- We have to fill a table of size ${\cal O}(n^2)$
- Filling each entry takes O(n)
- $\bullet \ \ \text{Overall, } O(n^3)$