Soft Actor Critic

Oliver, Leon Büttinghaus, Thilo Röthemeyer

18. April 2021

Contents

- Part 1
- 2 Soft Actor-Critic im kontinuierlichen Raum
 - SAC Grundprinzip
 - SAC Update Regeln
 - SAC Algorithmus
- 3 Ergebnisse
 - Vergleich mit anderen Algortihmen
 - Zusammenfassung
- 4 Literaturverzeichnis

Part 1

Kontinuierlicher Aktionsraum

- kontinuierliche Aktionsräume benötigen
 - ⇒ Approximation für Q-Funktion
 - \Rightarrow Approximation für Strategie
- Schritt von Tabellen zu DNNs
- Optimierung mittels gradient descent

Funktionen und deren Netzwerke

State Value Funktion:

$$V_{\psi}(s_t) \rightarrow \text{Skalar als Ausgabe}$$

Q-Funktion:

$$Q_{\theta}(s_t, a_t) \rightarrow \text{Skalar als Ausgabe}$$

Strategie:

$$\pi_\phi(s_t|a_t) o \mathsf{Mittelwert}$$
 und Kovarianz als Ausgabe $\Rightarrow \mathsf{Gauss}$

Mit Parametervektoren ψ , θ und ϕ

State Value Funktion

- eigenes Netzwetk nicht notwendig, aber
 - stabilisiert Training
 - macht simultanes Training aller Netzwerke möglich

Optimierung State Value Funktion

Q-Funktion

Optimierung Q-Funktion

Optimierung der Strategie

Algorithmus (1/2)

Algorithmus (2/2)

Ziel der Experimente

- Stabilität und Sample Komplexität im Vergleich zu anderen Algorithmen
 - kontinuierliche Aufgaben
 - verschiedene Schwierigkeitgrade
- OpenAl gym und rllab

Vergleich zu anderen Algorithmen

- SAC
 - Durchschnittswert (mean action)
 - feste und variable Temperatur(Anpassung im neuen Paper)
- PPO, DDPG
 - kein Explorationsrauschen
- TD3
- SQL mit zwei Q Funktionen
 - Evaluation mit Explorationsrauschen

Vergleich zu anderen Algorithmen

- 5 Instanzen mit einer Evaluation alle 1000 Schritte
- Total average return shown in the following
- Schattierter Verlauf zeigt min und max der fünf Durchläufe

Ergebnisse

Humanoid (rllab)

Ergebnisse

Zusammenfassung

- soft actor critic vorgestellt
 - off policy Algorithmus
 - Entropiemaximierung verbessert Stabilität
 - Besser als state-of-the-art Algorithmen
 - Gradientenbasiertes Temperatur Tuning

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. *CoRR*, abs/1801.01290, 2018.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥QQ