See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231391948

New Equations for Tracer Diffusion Coefficients of Solutes in Supercritical and Liquid Solvents Based on the Lennard-Jones Fluid Model

ARTICLE in INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH · JANUARY 1997 Impact Factor: 2.59 · DOI: 10.1021/ie9602318					
CITATIONS 64	READS 40				

3 AUTHORS, INCLUDING:

Hongqin Liu

Canada Border Services Agency

19 PUBLICATIONS 446 CITATIONS

SEE PROFILE

New Equations for Tracer Diffusion Coefficients of Solutes in Supercritical and Liquid Solvents Based on the Lennard-Jones Fluid Model

Hongqin Liu,† Carlos M. Silva,‡ and Eugénia A. Macedo*,‡

LSRE Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua dos Bragas, 4099 Porto Codex, Portugal, and Chemical Engineering Department, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China

In this paper, on the basis of our recent works on self-diffusion coefficients of Lennard-Jones and real fluids, prediction and correlation models are proposed for the representation of tracer diffusivities of solutes in liquids and supercritical fluids. It has been found that with the parameters obtained from self-diffusion data (the Lennard-Jones energy and diameter) it is possible to predict the tracer coefficients with acceptable accuracy by means of simple combining rules. Moreover, two correlation models involving only one binary parameter (for energy and diameter corrections, respectively) are proposed. Both models exhibit accuracies well inside the experimental uncertainties and give results comparable to the two-parameter Dymond-modified Hildbrand—Batschinski equation.

Introduction

The design of chemical reactors and separation processes involving interface mass transfer often requires the knowledge of binary diffusion coefficients. It is well-known that the lack of fundamental transport properties data has hindered the development of the supercritical fluid (SCF) extraction to a substantial commercial level. In addition, the mutual diffusivities are of great importance in providing information regarding the kind of interactions between unlike molecules.

The theories describing the diffusional mass transfer in dense gases and liquids are less developed than their counterparts in solids and dilute gases, owing to the irregularity of their molecular arrangement. Most of the existing models are based on hydrodynamic theory, kinetic theory, absolute-rate theory of Eyring, free volume theory, and models devised for simple idealized fluids.

With respect to the successful free volume theory, one may say, succinctly, that the devised equations are very simple, have a theoretical background, involve a small number of parameters (usually four at most), and have a broad range of applicability (dense gases, liquids, and supercritical phase). Following the original work of Batschinski (1913) for real liquids, later reestablished by Hildbrand (1971), the diffusion of a solute (2) at infinite dilution in solvent (1) will obey an equation of the form

$$D_{12} = B'V_{\rm f} = B'(V_{11} - V_{\rm D}) \tag{1}$$

where B' is a constant characteristic of the solute—solvent pair, $V_{\rm D}$ is a constant related primarily with the solvent, $V_{\rm f}$ is the free volume, and $V_{\rm 11}$ is the solvent molar volume. The results obtained by Dymond (1974) for the self-diffusivity of hard spheres prompted Chen et al. (1982) to suggest that instead of eq 1 the preferred equation should be

[‡] Universidade do Porto.

$$D_{12} = B\sqrt{T}(V_{11} - V_{D}) \tag{2}$$

where T is the absolute temperature. This model, hereafter referred to as DHB (Dymond-Hildbrand-Batschinski), exhibits quite different $V_{\rm D}$ s for the same solvent, which means they are system specific and, sometimes, even negative values. Such physically meaningless results have been also found in the present work.

In this work we approach the problem of tracer diffusion in liquids, dense gases, and supercritical fluids, applying the formalism of the kinetic theory of gases (Chapman and Cowling, 1970): substitute all pure parameters in a self-property equation by binary parameters obtained from appropriate combining rules. Salim and Trebble (1995) have implemented this analysis in the study of infinite dilution diffusivities of *n*-alkanes with the interacting-sphere model for selfdiffusion. In this paper we chose the two-parameter equation of Liu-Silva-Macedo (LSM) (Liu et al., 1996), because of its success in describing self-diffusivities of real fluids, except hydrogen-bonding molecules (absolute average deviation, AAD = 5.45%, for 2047 data points; its scope has been proven to comprehend molecules as polar as acetonitrile and nonspherical as *n*-hexadecane). In addition, two correlation models are proposed, both involving only one binary parameter, for energy and molecular diameter, respectively. The DHB equation has been adopted for comparison, owing to being one of the most popular equations for the representation of diffusion in liquids and SCFs. Other reference equations have not been chosen, as they are either specific to some solvents (for example, CO₂) or require predicted viscosities or are limited to a determined phase or density range.

Models Proposed in This Work

The Lennard-Jones (LJ) model of Liu-Silva-Macedo (LSM) (Liu et al., 1996) for self-diffusion coefficients, D_{11} , is

^{*} Author to whom all correspondence should be addressed.

[†] Beijing University of Chemical Technology.

$$D_{11} = 21.16 \left(\frac{1000RT}{M_{11}} \right)^{1/2} \frac{V_{11}}{N_a (\sigma_{11}^{\text{eff}})^2} \times \exp \left(-\frac{0.75\rho_{11}^*}{1.2588 - \rho_{11}^*} - \frac{0.27862}{T_{11}^*} \right)$$
(3)

where M_{11} is the molecular weight in g/mol, V_{11} is the molar volume in cm³/mol, $N_{\rm a}$ is Avogadro's constant, and ρ_{11}^* and T_{11}^* are the reduced density and temperature, respectively:

$$\rho_{11}^* = \rho(\sigma_{11}^{LJ})^3 = \frac{N_a}{V_{11}} (\sigma_{11}^{LJ})^3 \tag{4}$$

$$T_{11}^* = \frac{T}{\epsilon_{11}^{\mathrm{LJ}}/k} \tag{5}$$

Finally, $\sigma_{11}^{\rm eff},$ in eqs 3 and 4 is the effective hard sphere diameter given by

$$\sigma_{11}^{\text{eff}} = 2^{1/6} \sigma_{11}^{\text{LJ}} [1 + (1.3229 \, T_{11}^*)^{1/2}]^{-1/6} \tag{6}$$

Therefore, this model contains only two parameters: the pure component LJ energy ($\epsilon_{11}^{\rm LJ}/k$, in K) and diameter ($\sigma_{11}^{\rm LJ}$, in cm). For those substances whose self-diffusivities have been correlated with eq 3, the molecular parameters are taken from Liu et al. (1996). For other substances, the following generalized equations have been adopted to estimate these values (Silva et al., 1996)

$$\epsilon_{11}^{\text{LJ}}/k = 0.774 \, T_c \tag{7}$$

$$\sigma_{11}^{\text{LJ}} = 10^{-8} \left[0.17791 + 11.779 \frac{T_{\text{c}}}{P_{\text{c}}} - 0.049029 \left(\frac{T_{\text{c}}}{P_{\text{c}}} \right)^{2} \right]^{1/3}$$
(8)

where T_c and P_c are the critical temperature (in K) and pressure (in bar), respectively.

In view of the reliable representations accomplished by the LSM model, we propose an empirical extension of eq 3 to calculate the limiting mutual diffusion coefficients, D_{12}

$$\begin{split} D_{12} &= 21.16 \bigg(\!\frac{1000RT}{M_{12}}\!\bigg)^{\!1/2} \, \frac{V_{11}}{N_{\rm a}(\sigma_{12}^{\rm eff})^2} \times \\ &\quad \exp\!\bigg(\!\!-\!\frac{0.75\rho_{11}^*}{1.2588 - \rho_{11}^*} - \frac{0.27862}{T_{12}^*}\!\bigg) \ \, (9) \end{split}$$

 T_{12}^* and $\sigma_{12}^{\mathrm{eff}}$ are still calculated by, respectively, eqs 5 and 6 but presently defined in terms of the binary LJ parameters $\sigma_{12}^{\mathrm{LJ}}$ and $\epsilon_{12}^{\mathrm{LJ}}$. M_{12} is the reduced mass of the system

$$M_{12} = \frac{2M_{11}M_{22}}{M_{11} + M_{22}} \tag{10}$$

Prediction Model (TLSM). The energy combining rule proposed in this work is different from those presented in literature (Salim and Trebble, 1995), in order to reduce the interaction energy. For the diam-

eter, the classical empirical law has been adopted. Thus

$$\epsilon_{12}^{\text{LJ}}/k = \sqrt{(\sigma_{11}^{\text{LJ}})^3 (\epsilon_{11}^{\text{LJ}}/k) (\sigma_{22}^{\text{LJ}})^3 (\epsilon_{22}^{\text{LJ}}/k)/(\sigma_{12}^{\text{LJ}})^3}$$
 (11)

$$\sigma_{12}^{LJ} = \frac{\sigma_{11}^{LJ} + \sigma_{22}^{LJ}}{2} \tag{12}$$

This model will henceforth be labeled TLSM (Tracer Liu-Silva-Macedo).

Correlation Model with Interaction Energy Parameter (TLSM_{en}). The combining rule for $\epsilon_{12}^{\text{LJ}}/k$ is

$$\epsilon_{12}^{\text{LJ}}/k = (1 - k_{12}^{\text{en}})\sqrt{(\sigma_{11}^{\text{LJ}})^3(\epsilon_{11}^{\text{LJ}}/k)(\sigma_{22}^{\text{LJ}})^3(\epsilon_{22}^{\text{LJ}}/k)}/(\sigma_{12}^{\text{LJ}})^3}$$
 (13)

where $k_{12}^{\rm en}$ is an adjustable parameter and $\sigma_{12}^{\rm LJ}$ is given by eq 12.

Correlation Model with Interaction Diameter Parameter (TLSM_d). The combining rule for σ_{12}^{LJ} is

$$\sigma_{12}^{LJ} = (1 - k_{12}^{d}) \frac{\sigma_{11}^{LJ} + \sigma_{22}^{LJ}}{2}$$
 (14)

where $k_{12}^{\rm d}$ is an adjustable parameter and $\epsilon_{12}^{\rm LJ}/k$ is given by eq 11 with its appearing $\sigma_{12}^{\rm LJ}$ defined by eq 12, that is

$$\epsilon_{12}^{\text{LJ}}/k = \frac{8\sqrt{(\sigma_{11}^{\text{LJ}})^3(\epsilon_{11}^{\text{LJ}}/k)(\sigma_{22}^{\text{LJ}})^3(\epsilon_{22}^{\text{LJ}}/k)}}{(\sigma_{11}^{\text{LJ}} + \sigma_{22}^{\text{LJ}})^3}$$
(15)

Sources of Data

The aim of this work was the development of equations for the representation of limiting mutual diffusion coefficients of solutes in supercritical and liquid solvents. With this purpose the largest database ever used has been compiled: 77 binary systems performing 1033 data points. Table 1 contains the systems studied, along with the data sources, number of data points (NDP), and reduced ranges of temperature, pressure, and density for each system.

As much as possible, all published data were used. However, systems with less than four experimental points reported have been rejected, as well as data available only in graphical form. In addition, when a comparison from different sources clearly showed that some values were erroneous, these points were excluded from the calculations. Such question concerns especially tracer diffusivities in SCFs, where truly large deviations, or even inconsistencies, may be found, notwithstanding the low uncertainties inside individual determinations—usually 5-8% error for chromatographic peak-broadening measurements. By way of illustration, diffusion coefficients of 3-pentanone published by the same research group have been plotted in Figure 1. In this particular case the values at T = 314 K were rejected, since they violate the general trend expected: binary diffusivities increase with increasing temperature.

Calculation Results

In Table 2 all data necessary for the calculations are listed. Table 3 shows a compilation of the detailed results obtained with the three models proposed in this paper (TLSM, eqs 9+11+12; TLSM_{en}, eqs 9+12+13; TLSM_d, eqs 9+14+15) and the equation adopted for comparison (DHB, eq 2).

Table 1. Systems Studied and Data Sources

system	solute	$T_{ m r}$	$P_{ m r}$	0	NDP	data sources
ethylene (C ₂ H ₄)	carbon dioxide	1.056-1.233	$\frac{P_{\rm r}}{0.217-3.724}$	$\frac{ ho_{ m r}}{0.051-1.593}$	49	a a
carbon dioxide (CO) ₂	ethylene	0.980-1.145	0.217 - 3.724 $0.148 - 3.159$	0.037 1.333	48	a a
	<i>n</i> -pentane	0.983 - 1.013	1.235 - 1.441	1.562 - 1.748	5	b
	<i>n</i> -hexane	0.983-1.013	1.235-1.441	1.562-1.748	5	b
	<i>n</i> -heptane <i>n</i> -octane	0.983 - 1.013 $0.983 - 1.013$	1.235 - 1.441 $1.235 - 1.441$	1.562 - 1.748 $1.562 - 1.748$	5 5	b b
	<i>n</i> -nonane	0.983-1.013	1.235 - 1.441 $1.235 - 1.441$	1.562 - 1.748	5	$\stackrel{\scriptstyle D}{b}$
	<i>n</i> -decane	0.983 - 1.013	1.235 - 1.441	1.562 - 1.748	5	b
	<i>n</i> -undecane	0.983-1.013	1.235-1.441	1.562-1.748	5	b
	<i>n</i> -dodecane <i>n</i> -tetradecane	0.983 - 1.013 $0.983 - 1.013$	1.235 - 1.441 $1.235 - 1.441$	1.562 - 1.748 $1.562 - 1.748$	5 5	b b
	benzene	0.983 - 1.013 $0.997 - 1.095$	1.098-4.804	0.598 - 2.001	43	c, d, e
	toluene	1.013-1.095	1.104-4.804	0.703-2.001	29	d, f
	ethylbenzene	1.029 - 1.095	2.059 - 4.804	1.298 - 2.001	15	d
	<i>n</i> -propylbenzene	1.029-1.095	2.059-4.804	1.298-2.001	34	c,d
	<i>i</i> -propylbenzene 1,3,5-trimethylbenzene	1.029 - 1.095 $0.997 - 1.095$	2.059 - 4.804 $1.167 - 3.638$	1.298 - 2.001 $0.762 - 1.889$	15 17	d c, e
	naphthalene	0.915 - 1.095	0.922-13.727	1.082-2.378	44	e, g, h
	phenanthrene	0.997 - 1.095	1.579-3.638	1.090-1.881	7	e e
	phenol	1.013 - 1.078	1.104 - 1.985	0.703 - 1.719	21	f
	diethyl ether	1.029-1.095	1.098-2.196	0.417-1.707	15	i
	diisopropyl ether tetrahydrofuran	1.029 - 1.095 $1.029 - 1.095$	1.098 - 2.196 $1.098 - 2.196$	0.419 - 1.707 $0.419 - 1.707$	15 15	i i
	acetone	0.983-1.095	1.235-3.638	1.084-1.889	21	b, e, k
	2-butanone	1.033	1.304 - 2.471	1.173 - 1.741	15	\boldsymbol{k}
	2-pentanone	1.033	1.304-2.471	1.173-1.741	14	k
	3-pentanone benzoic acid	1.029-1.033	1.373-2.334	1.299-1.701	20	k l
	ethyl acetate	0.982 - 1.048 $1.013 - 1.078$	0.975 - 3.445 $1.038 - 1.963$	1.148 - 1.836 $0.455 - 1.723$	7 15	$\stackrel{I}{f}$
	DHA methyl ester	1.013-1.045	1.327-2.889	1.290-1.819	17	m
	DHA ethyl ester	1.013 - 1.045	1.327 - 2.889	1.290 - 1.819	17	m
	EPA methyl ester	1.013-1.045	1.327-2.889	1.290-1.819	17	m
chlorotrifluoromethane (CClF ₃)	caffeine <i>p</i> -xylene	1.013-1.078 1.053	1.102 - 1.968 $1.222 - 2.819$	0.913 - 1.723 $0.691 - 1.727$	21 8	f_{i}
chiorott muoromethane (CCn-3)	acetone	1.033	1.150 - 2.093	0.687-1.651	10	j
sulfur hexafluoride (SF ₆)	carbon tetrachloride	1.029	1.117-3.816	0.681-1.906	6	j
	benzene	1.029	0.931 - 3.816	0.408 - 1.906	9	j j j j
	toluene	1.029	0.931-3.816	0.408-1.906	11	j
	<i>p</i> -xylene 1,3,5-trimethylbenzene	0.888 - 1.061 1.029	0.798 - 3.989 $1.117 - 3.816$	0.408 - 2.246 $0.681 - 1.906$	52 10	j
	naphthalene	0.998-1.030	1.729 - 3.191	1.509-2.028	5	n n
	benzoic acid	1.030 - 1.061	1.729 - 3.191	1.248 - 1.906	6	n
2,3-dimethylbutane (2,3-DMB)	benzene	1.046 - 1.096	1.710 - 5.080	1.432 - 1.908	11	0
	toluene	1.046-1.096	2.005 - 5.080 $1.710 - 5.080$	1.432-1.908	10 9	0
	naphthalene phenanthrene	1.046 - 1.096 $1.046 - 1.096$	1.710 - 5.080 $1.710 - 5.080$	1.432 - 1.908 $1.432 - 1.908$	11	o o
11 (6)						
cyclohexane (cC ₆)	benzene toluene	0.539 - 0.945 $0.539 - 0.945$	3.93; sat.p. ^u 3.93; sat.p.	1.757 - 2.862 $1.757 - 2.862$	12 12	p, q
	<i>p</i> -xylene	0.539 - 0.945	sat.p.	1.757 2.802	8	p,q p
	1,3,5-trimethylbenzene	0.539 - 0.945	3.93; sat.p	1.757 - 2.862	12	р, q
	naphthalene	0.539 - 0.945	3.93; sat.p	1.757-2.862	12	p, q
n havana (nC.)	phenanthrene carbon disulfide	0.539-0.945	sat.p. 0.332-127.58	1.757-2.833	8 10	p
n-hexane (n C ₆)	benzene	$0.588 \\ 0.588 - 1.070$	0.332-127.36 V	2.812 - 3.467 $1.348 - 3.459$	31	r q, r, s
	toluene	0.588-1.070	W	1.348-3.459	28	q, r, s q, r, s
	<i>m</i> -xylene	0.597 - 0.657	0.498; 0.532	2.752 - 2.864	5	$\hat{m{q}}$
	<i>p</i> -xylene	0.617-1.070	X	1.348-2.864	17	q, s
	1,3,5-trimethylbenzene naphthalene	0.597 - 1.070 $0.597 - 1.070$	X X	2.752 - 2.864 $1.348 - 2.864$	20 20	q, s
	phenanthrene	0.657 - 1.070	sat.p.; $P_r > 1$	1.348 2.671	15	q, s s
	acetone	0.597 - 0.657	0.498; 0.532	2.752 - 2.864	5	q
	acetonitrile	0.588	0.034-128.11	2.812-3.467	7	r
n-heptane (n C ₇)	<i>n</i> -octane	0.553-0.883	0.037-1.268	2.235-2.929	4	t
	<i>n</i> -decane <i>n</i> -dodecane	0.553 - 0.883 $0.553 - 0.883$	$0.037 - 1.268 \\ 0.037 - 1.296$	2.235 - 2.929 $2.235 - 2.944$	5 5	t t
	<i>n</i> -tetradecane	0.553 - 0.883	0.037 1.296	2.235-2.944	5	t t
	n-hexadecane	0.553 - 0.883	0.037-1.296	2.164 - 2.944	8	t
n-dodecane (n C ₁₂)	benzene	0.461-0.506	8.790	3.068-3.152	4	q
	toluene	0.461 - 0.506	8.790 8.700	3.068 - 3.152	4	q
	<i>m</i> -xylene 1,3,5-trimethylbenzene	0.461 - 0.506 $0.461 - 0.506$	8.790 8.790	3.068 - 3.152 $3.068 - 3.152$	4 4	$q \ q$
	naphthalene	0.461 - 0.500 $0.461 - 0.521$	8.790	3.039 - 3.152	5	$q \over q$
	<i>n</i> -octane	0.462 - 0.860	0.776 - 1.890	2.190 - 3.106	9	ť

Table 1 (Continued)

	system					
solvent	solute	$T_{ m r}$	$P_{ m r}$	$ ho_{ m r}$	NDP	data sources
	<i>n</i> -decane	0.462-0.860	0.776-0.796	2.190-3.106	5	t
	<i>n</i> -tetradecane	0.462 - 0.860	0.776 - 0.796	2.190 - 3.106	5	t
	<i>n</i> -hexadecane	0.462 - 0.860	0.776 - 0.796	2.190 - 3.106	5	t
	acetone	0.461 - 0.521	8.790	3.039 - 3.152	5	q

^a Takahashi and Hongo (1982). ^b Umezawa and Nagashima (1992). ^c Swaid and Schneider (1979). ^d Suárez et al. (1993). ^e Sassiat et al. (1987). ^fLai and Tan (1995). ^gLamb et al. (1989). ^hLauer et al. (1983). ^lSilva and Macedo (1994). ^fKnoper et al. (1987). ^kDahmen et al. (1990a). ¹Catchpole and King (1994). ^m Liong et al. (1992). ⁿ Debenedetti and Reid (1986). ^o Sun and Chen (1985a). ^p Sun and Chen (1985b). ^q Funazukuri et al. (1994). ^r Dymond and Woolf (1982). ^s Sun and Chen (1985c). ^t Matthews and Akgerman (1987). ^u sat.p.: saturation pressure. ${}^{v}P_{r}$ from 0.034 to 122.69 and at saturation pressure. ${}^{w}P_{r}$ from 0.034 to 124.58 and at saturation pressure. 0.498 and 0.532, at saturation pressure and other points at $P_{\rm r} > 1$.

Table 2. Data for Pure Substances

substance	M_{11}	$T_{\rm c}$ (K)	$P_{\rm c}$ (bar)	$\sigma_{11}^{\mathrm{LJ}}$ (Å)	$\epsilon_{11}^{\mathrm{LJ}}/k$ (K)
carbon dioxide	44.01	304.19	73.00	3.261 92	500.71
ethylene	28.05	282.40	50.40	4.048 38	169.08
n-pentane ^a	72.15	469.70	33.70	5.369 67	363.55
<i>n</i> -ĥexane	86.18	507.50	30.10	5.618 41	434.76
<i>n</i> -heptane	100.20	540.30	27.40	5.943 56	404.05
<i>n</i> -octane	114.23	568.80	24.90	6.173 28	478.32
<i>n</i> -nonane	128.26	594.60	22.90	6.430 57	497.35
<i>n</i> -decane	142.29	617.70	21.20	6.713 95	434.86
<i>n</i> -undecane ^a	156.30	637.00	19.90	6.889 33	493.04
<i>n</i> -dodecane	170.34	658.20	18.20	7.004 51	672.90
n-tetradecane ^a	198.39	693.00	14.40	7.682 86	536.38
n-hexadecane	224.43	717.00	13.30	7.364 80	1669.19
cyclohexane	84.16	553.50	40.70	5.730 75	224.87
2,3-dimethylbutane ^a	86.18	500.00	31.30	5.602 27	387.00
benzene	78.11	562.20	48.90	5.191 65	308.43
toluene	92.14	591.80	41.00	5.454 50	350.74
ethylbenzene ^a	106.17	617.20	36.00	5.725 72	477.71
<i>p</i> -xylene ^a	106.17	616.20	35.10	5.767 54	476.94
<i>m</i> -xylene ^a	106.17	617.10	35.40	5.755 07	477.64
<i>n</i> -propylbenzene ^a	120.19	638.20	32.00	5.996 24	493.97
<i>i</i> -propylbenzene ^a	120.19	631.20	32.10	5.970 57	488.55
1,3,5-trimethylbenzene ^a	120.19	664.50	34.50	5.933 17	514.32
naphthalene ^a	128.17	748.40	40.50	5.858 74	579.26
phenanthrene ^a	178.20	873.00	32.40^{c}	6.557 37	675.70
caffeine ^a	194.20	803.40^{b}	33.30^{b}	6.348 12	621.83
phenol ^a	94.11	694.20	61.30	5.030 26	537.31
diethyl ether ^a	74.12	466.70	36.40	5.231 05	361.22
diisopropyl ether ^a	102.18	500.30	28.80	5.748 91	387.23
tetrahydrofuran ^a	72.11	540.10	51.90	4.897 19	418.04
acetone	58.08	508.10	47.00	4.670 12	332.97
2-butanone ^a	72.11	536.80	42.10	5.221 95	415.48
2-pentanone ^a	86.13	561.10	36.90	5.517 33	434.29
3-pentanone ^a	86.13	561.00	37.30	5.498 58	434.21
benzoic acid ^a	122.10	752.00	45.60	5.657 63	582.05
ethyl acetate ^a	88.11	523.20	38.30	5.336 06	404.96
DHA methyl ester ^a	342.50	852.40^{c}	10.35^{c}	8.607 47	659.76
DHA ethyl ester ^a	356.50	867.10^{c}	11.02^{c}	8.542 81	671.14
EPA methyl ester ^a	316.50	823.40^{c}	11.34^{c}	8.420 06	637.31
carbon tetrachloride	153.82	556.40	45.60	5.292 40	418.84
sulfur hexafluoride	146.05	318.70	37.60	4.766 29	271.68
carbon disulfide	76.13	552.00	79.00	4.299 01	376.51
chlorotrifluoromethane	104.46	302.00	38.70	4.376 36	410.79
acetonitrile	41.05	545.50	48.30	4.024 24	652.53

^a Lennard-Jones parameters (diameter and energy) estimated according to Silva et al. (1996). ^b Estimated by the Joback method (Reid et al., 1987). ^c From Liu and Macedo (1995).

In Table 4 the average results for the supercritical and liquid systems are given (supercritical, C₂H₄, CO₂, $CClF_3$, SF_6 , 2,3-DMB; liquid, cC_6 , nC_6 , nC_7 , nC_{12}).

A few authors do not report the densities for carbon dioxide. In these cases they have been calculated using the empirical correlation of Pitzer and Schreiber (1988), since it exhibits excellent agreement very near the critical point.

Discussion

The three models suggested in this paper extend our previous work (Liu et al., 1996) centered on LJ self-

diffusion coefficients to the infinitely diluted binary case, following the combining rules formalism of the kinetic theory of gases (Chapman and Cowling, 1970), in much the same way as Salim and Trebble (1995) did. The legitimacy of this extension emerges from the reliable results furnished by the self-diffusion equation employed.

With regard to the first proposed model (TLSM), we detach the following comments: (1) It is a merely predictive model. The only input data required are the temperature, the solvent density, and, for both components, the molecular weight and the LJ force constants.

Table 3. Calculation Results

	system		TLSM	TLSM	en	TLSM	\mathbf{I}_{d}	-	DHB	
solvent	solute	NDP	AAD	$k_{12}^{ m en}$	AAD	$k_{12}^{ m d}$	AAD	$B \times 10^7$	$V_{ m D}$	AAD
C_2H_4	carbon dioxide	49	7.32	0.028 94	7.28	-0.004 88	7.27	3.0974	5.29	3.52
CO_2	ethylene	48	9.60	-0.278~22	5.12	-0.04751	5.18	2.9026	-3.87	4.79
	<i>n</i> -pentane	5 5	$20.78 \\ 29.46$	0.428 02 0.607 74	3.29 3.00	0.096 61	3.15 2.85	4.0589 3.9841	35.83 35.55	1.67 2.09
	<i>n</i> -hexane <i>n</i> -heptane	5 5	33.06	0.723 30	3.55	0.148 99 0.175 61	3.31	3.9423	35.67	1.00
	<i>n</i> -octane	5	38.38	0.779 81	3.83	0.202 86	3.65	4.1530	37.05	1.66
	<i>n</i> -nonane	5	41.27	0.834 07	3.93	0.222 51	3.65	4.0607	37.02	1.43
	<i>n</i> -decane	5	41.44	0.861 56	3.96	0.225 32	3.70	3.8445	36.48	1.48
	<i>n</i> -undecane <i>n</i> -dodecane	5	44.35	0.884 43	4.76	0.242 25	4.48	4.1555	38.28	1.85
	<i>n</i> -tetradecane	5 5	47.20 43.50	0.884 31 0.896 47	5.73 8.06	0.259 36 0.246 96	5.40 7.77	4.3508 4.3701	39.93 41.99	3.00 3.32
	benzene	43	9.19	0.039 87	9.03	0.007 80	9.03	1.1224	-13.70	9.94
	toluene	29	11.31	0.241 60	5.07	0.049 46	5.10	1.3285	0.48	6.32
	ethylbenzene	15	17.50	0.394 05	2.08	0.091 52	2.07	1.8248	18.85	2.28
	<i>n</i> -propylbenzene <i>i</i> -propylbenzene	34 15	15.07 17.97	0.317 34 0.404 38	9.52 2.12	$0.07371 \\ 0.09359$	$9.46 \\ 2.23$	$0.8647 \\ 1.6274$	$-17.49 \\ 17.00$	5.03 2.00
	1,3,5-trimethylbenzene	17	14.98	0.191 35	13.70	0.045 70	13.66	0.7266	-30.12	7.82
	naphthalene	44	20.68	0.475 83	7.64	0.122 10	7.93	1.6782	18.13	7.28
	phenanthrene	7	27.91	0.549 96	3.97	0.142 90	3.80	1.5452	18.89	4.98
	phenol	21	11.39	0.175 50	7.79	0.045 23	7.80	1.0232	-19.06	5.52
	diethyl ether diisopropyl ether	15 15	16.97 14.80	$-0.10092 \\ 0.16369$	16.58 12.56	$-0.020\ 81\ 0.034\ 01$	16.55 12.61	1.0475 1.0781	$-26.57 \\ -16.30$	4.98 7.87
	tetrahydrofuran	15	14.80	0.163 69	14.67	0.034 01	14.70	1.1871	-16.30 -22.19	4.99
	acetone	21	12.99	0.166 02	10.38	0.013 50	10.36	2.7511	21.17	11.97
	2-butanone	15	38.02	0.820 13	5.04	0.212 43	5.04	3.6337	27.82	3.16
	2-pentanone	14	40.14	0.841 54	5.00	0.221 62	5.00	3.5454	29.16	2.65
	3-pentanone	20 7	40.95 25.05	0.851 06	4.51	0.226 48	4.51	3.8953	31.22 9.17	2.72 2.39
	benzoic acid ethyl acetate	15	25.05 19.65	0.523 37 0.079 62	3.10 19.60	0.133 48 0.017 30	3.28 19.64	1.5072 0.8254	-49.61	6.71
	DHA methyl ester	17	22.59	0.522 55	3.11	0.119 70	3.00	1.2079	25.70	0.71
	DHA ethyl ester	17	21.23	0.470 66	3.09	0.107 92	2.99	1.2010	26.01	0.87
	EPA methyl ester	17	21.00	0.481 93	3.67	0.110 65	3.63	1.2964	27.43	0.49
COLE	caffeine	21	11.51	0.207 22	8.05	0.050 15	8.05	0.7164	-17.53	4.87
CClF ₃	<i>p</i> -xylene acetone	8 10	23.14 26.73	$-0.522\ 27 \\ -0.697\ 08$	11.82 5.96	-0.12174 -0.14536	$11.82 \\ 5.96$	$0.4851 \\ 0.9096$	-13.32 19.58	2.28 2.56
SF_6	carbon tetrachloride	6	3.24	-0.03708 -0.02846	3.18	$-0.145\ 30$ $-0.005\ 31$	3.18	0.6877	35.40	5.18
0	benzene	9	14.27	$-0.211\ 13$	8.42	-0.03509	8.42	0.6679	1.44	10.58
	toluene	11	14.35	$-0.367\ 51$	11.40	$-0.063\ 45$	11.40	0.5288	-18.56	9.73
	p-xylene	52	9.78	0.151 73	7.46	-0.03304	7.58	0.5781	19.72	12.40
	1,3,5-trimethylbenzene naphthalene	10 5	11.26 15.98	$-0.212\ 56\ 0.366\ 74$	10.37 5.60	$-0.042\ 18\ 0.079\ 80$	10.37 5.47	0.5377 1.1687	18.96 67.42	4.59 5.52
	benzoic acid	6	12.30	$-0.322\ 41$	5.03	-0.06593	4.99	0.6061	40.87	2.61
2,3-DMB	benzene	11	8.74	$-0.288\ 48$	1.64	$-0.038\ 17$	1.65	0.9661	70.08	1.56
	toluene	10	5.32	$-0.203\ 63$	1.40	-0.02892	1.41	0.9458	77.91	1.79
	naphthalene	9	3.05	0.080 00	2.08	0.013 41	2.07	0.7527	66.74	1.75
_	phenanthrene	11	5.49	0.163 23	2.90	0.029 30	2.91	0.5871	54.23	1.53
cC ₆	benzene	12	6.35	0.135 55	5.83	0.011 16	6.12	1.4520	101.34	3.04
	toluene <i>p</i> -xylene	12 8	8.98 10.86	0.276 86 0.289 98	7.11 6.96	0.041 52 0.028 81	7.95 7.65	1.3305 1.2210	100.99 100.22	2.84 3.88
	1,3,5-trimethylbenzene	12	8.09	0.212 76	6.10	0.039 08	6.95	1.1194	101.54	2.42
	naphthalene	12	13.98	0.399 51	6.11	0.072 28	7.71	1.1611	101.24	2.99
_	phenanthrene	8	13.58	0.373 75	5.06	0.048 05	6.35	0.9775	101.00	4.31
nC_6	carbon disulfide	10	10.58	0.195 88	4.81	0.044 36	4.81	1.1409	102.23	4.66
	benzene toluene	31 28	8.78 5.95	$-0.16042 \\ -0.07562$	6.12 5.49	$-0.02772 \\ -0.01213$	5.93 5.45	1.1322 1.0354	103.77 102.80	15.05 16.17
	<i>m</i> -xylene	5	2.90	0.011 20	2.81	0.002 80	2.80	1.3600	115.15	2.00
	<i>p</i> -xylene	17	7.72	0.130 59	7.27	0.023 18	7.24	0.9088	93.68	16.35
	1,3,5-trimethylbenzene	20	5.22	$-0.008\ 17$	5.20	$-0.001\ 40$	5.21	0.8743	101.17	14.54
	naphthalene	20	9.51	0.208 46	6.23	0.040 50	6.67	0.8828	98.34	15.14
	phenanthrene	15	11.53 15.23	0.29787 -0.30030	$6.20 \\ 2.32$	$0.06272 \\ -0.06249$	$6.55 \\ 2.31$	0.6767 1.4801	81.65 111.01	11.81 3.03
	acetone acetonitrile	5 7	5.85	0.000 28	5.85	0.000 08	5.85	1.4601	102.14	5.93
nC_7	<i>n</i> -octane	4	4.34	0.064 17	2.38	0.015 72	2.11	1.1427	133.32	1.92
,	<i>n</i> -decane	5	1.94	0.037 41	1.50	0.006 78	1.51	0.9631	132.45	1.65
	<i>n</i> -dodecane	5	8.84	0.158 84	2.17	0.036 46	2.04	0.8855	132.67	2.18
n-tetradecane		5	4.95	0.087 02	1.76	0.021 36	1.82	0.8028	133.05	2.96
nC_{12}	<i>n</i> -hexadecane benzene	8 4	21.96 26.62	$0.340\ 35 \\ -0.520\ 83$	2.00 1.01	$0.110\ 41$ $-0.125\ 64$	2.80 0.81	0.7500 0.6766	133.82 214.82	3.09 1.30
1012	toluene	4	20.02 18.55	-0.32083 -0.36908	1.51	-0.12564 -0.09422	1.50	0.6372	214.82	2.02
	<i>m</i> -xylene	4	10.01	-0.17375	1.42	-0.05065	1.16	0.5477	214.25	1.54
	1,3,5-trimethylbenzene	4	17.43	$-0.256\ 13$	2.01	-0.08883	1.57	0.4609	213.97	0.79
	naphthalene	5	3.86	$-0.054\ 52$	1.82	$-0.016\ 20$	1.77	0.5064	214.04	1.41
	<i>n</i> -octane	9	5.93	-0.13371	2.26	-0.02953	1.50	0.6640	218.97	1.48
	<i>n</i> -decane <i>n</i> -tetradecane	5 5	$6.85 \\ 6.50$	-0.17983 -0.19714	3.06 3.69	-0.03173 -0.04036	2.20 3.70	$0.5822 \\ 0.4729$	219.24 221.14	2.98 7.84
	<i>n</i> -tetradecane <i>n</i> -hexadecane	5 5	6.50 16.96	-0.19714 0.24946	3.69 2.52	$-0.040\ 36$ $0.085\ 06$	3.70 4.46	0.4729	221.14 221.99	6.69
	acetone	5	32.07	$-0.625\ 13$	1.44	$-0.148\ 59$	1.17	0.4400	215.52	1.68
			υω.U1	0.020 10	1.17	0.110 00	1.11	0.0×11	~10.02	1.00

Figure 1. Example of inconsistencies found between available tracer diffusivities in SCF; illustration for 3-pentanone. (Note that the diffusion coefficients should increase with rising temperature.)

Table 4. Percent Deviations for Each Phase

		prediction model		rameter dels	two-parameter	
solvent	NDP	TLSM (present work) ^a	TLSM _{en} (present work) ^b	TLSM _d (present work) ^c	DHB (eq 2)	
SCF	734	16.88	7.16	7.17	5.36	
liquid	299	9.58	4.88	5.10	8.32	
total	1033	14.77	6.50	6.57	6.22	

^a Eqs 9 + 11 + 12. ^b Correlation model with energy parameter (eqs 9+12+13). ^c Correlation model with diameter parameter (eqs 9 + 14 + 15).

These last values are available for a large number of substances (Liu et al., 1996) or may be easily estimated from the knowledge of the critical temperature and pressure (Silva et al., 1996). (2) The calculation results in Table 4 show that the TLSM equation is reliable for liquids and SCFs (grand AAD = 14.77%; maximum error = 47.20%). The better performance for liquids (AAD = 9.58%; maximum error = 32.07%) was expected in advance, since most self-diffusivity data used in the optimization of the LJ parameters refer to that state (Liu et al., 1996; Silva et al., 1996). (3) Taking into account the discrepancies or even incongruences observed between different published data for the same substance, we may consider the AAD found for supercritical solvents (AAD = 16.88%) an acceptable result. (4) This work does not include hydrogen-bonding solvents, since the LSM equation is not applicable in these cases. According to Silva et al. (1996), accurate selfdiffusion predictions exact at least four parameters. (5) It is remarkable the good execution achieved for systems completely unknown, that is, with all LJ parameters estimated: AAD(2,3-DMB/naphthalene) = 3.05%, AAD-(2,3-DMB/phenanthrene) = 5.49%. It is also surprising the satisfactory result attained for the very important system CO_2 /caffeine (AAD = 11.51%), in light of the fact that the critical temperature and pressure and the LJ energy and molecular diameter have been estimated.

Concerning the one-parameter correlations presented in this paper, we emphasize the following points: (1) It has been found that both equations give similar results, (from Table 4, $AAD_{en} = 6.50\%$ and $AAD_{d} = 6.57\%$), the type of correction performed (energy or diameter) being irrelevant. (2) The better performance for liquids closely resembles the pure predictive model mentioned above.

(3) One binary parameter seems sufficient for good representations of tracer diffusivities for all the systems studied, which makes them confident correlations. Its introduction has diminished significantly the AADs of the TLSM prediction (please see the systems CO₂/nalkanes), which reveals that these k_{ij} s go through the real interpretation of the diffusive phenomenon, akin to the thermodynamic binary corrections. (It is wellknown that mixtures of hard spheres, whose components interact by a hard-core potential diameter given by eq 12, are possibly deprived of typical phenomena of fluid mixtures, such as demixing or partial mixing of the components). (4) Despite of possessing two parameters, the DHB equation (AAD = 6.22%) exhibits results comparable to our one-parameter correlations (AADs = 6.50% and 6.57%). Besides, this reference equation has presented two physically meaningless results: quite different minimum diffusive free volumes (V_D) for the same solvent and, sometimes, even negative values (please see Table 3).

Conclusions

In this paper we seek to interpret the diffusive phenomenon in terms of a LJ model. The related force constants (energy and diameter) should be obtained from our previous works (Liu et al., 1996; Silva et al., 1996).

According to the present results we recommend our prediction model (TLSM) to estimate tracer diffusivities with acceptable accuracy, if there is no experimental data available. On the other hand, when a few data points can be found, one of our correlation models (TLSM_{en} and TLSM_d) can be used with confidence, by first optimizing one binary parameter. For liquids these models perform better than for SCFs, as discussed

Concerning DHB model, it has been realized that its interest is confined to correlative purposes, due to the physically meaningless regressed values of V_D . Nevertheless, in literature there have been many attempts to get predictive models by generalizing their two parameters (for instance, in terms of molecular weights and critical volume).

Acknowledgment

H.L. expresses his gratitude for the financial support provided by Fundação Oriente (Lisboa, Portugal), and C.M.S. acknowledges with thanks the financial support granted by the Junta Nacional de Investigação Científica e Tecnológica (Lisboa, Portugal).

Nomenclature

AAD = average absolute deviation: $(100/\text{NDP})\sum_{i=1}^{\text{NDP}}|D_{12,i}^{\text{*cal}} - D_{12,i}^{\text{*exp}}|/D_{12,i}^{\text{*exp}}$ B = parameter in eqs 1 and 2 $D = \text{diffusion coefficient, cm}^2/\text{s}$ DHB = Dymond-Hildbrand-Batschinski $k_{12} = \text{binary parameter}$ LJ = Lennard-JonesTLSM = Tracer Liu-Silva-Macedo equations suggested in this work M =molecular weight, g/mol N_a = Avogadro's constant NDP = number of data points

P = pressure, bar

R = 8.3144 J/(mol K), gas constant

SCF = supercritical fluid

T = temperature, K

 $V = \text{molar volume, cm}^3/\text{mol}$

 $V_{\rm D} = {\rm parameter~in~eqs~1~and~2}$

 $V_{\rm f} =$ free volume

Greek Letters

 ϵ/k = Lennard-Jones energy parameter, K

 σ = Lennard-Jones molecular diameter, cm

 $\rho = \text{number density, cm}^{-3}$

Subscripts

1 = solvent

2 =solute

11, 22 = pure property

12 = binary property

c = critical property

d = refers to diameter correlation

en = refers to energy correlation

r = reduced property

Superscripts

* = reduced property

eff = refers to the effective hard sphere diameter

LJ = Lennard-Jones

Literature Cited

- Batschinski, A. J. Investigations of the Internal Friction of Fluids. Z. Phys. Chem. **1913**, 84, 643.
- Chapman, S.; Cowling, T. C. *The Mathematical Theory of Non-Uniform Gases*; Cambridge University Press, Cambridge, 1970.
- Chen, S. H.; Davis, H. T.; Evans, D. F. Tracer Diffusion in Polyatomic Liquids. III. J. Chem. Phys. 1982, 77 (5), 2540.
- Dahmen, N.; Kordikowski, A.; Schneider, G. M. Determination of Binary Diffusion Coefficients of Organic Compounds in Supercritical Carbon Dioxide by Supercritical Fluid Chromatography. *J. Chromatogr.* **1990a**, *505*, 169.
- Dahmen, N.; Dulberg, A.; Schneider, G. M. Determination of Binary Diffusion Coefficients in Supercritical Carbon Dioxide with Supercritical Fluid Chromatography (SFC). Ber. Bunsen-Ges. Phys. Chem. 1990b, 94, 384.
- Debenedetti, P. G.; Reid, R. C. Diffusion and Mass Transfer in Supercritical Fluids. *AIChE J.* **1986**, *32*, 2034.
- Dymond, J. H. Corrected Enskog Theory and the Transport Coefficient of Liquids. J. Chem. Phys. 1974, 60 (3), 969.
- Dymond, J. H.; Woolf, L. A. Tracer Diffusion of Organic Solutes in n-Hexane at Pressures up to 400 MPa. *J. Chem. Soc. Faraday Trans.* 1 1982, 78, 991.
- Funazukuri, T.; Nishimoto, N.; Wakao, N. Binary Diffusion Coefficients of Organic Compounds in Hexane, Dodecane, and Cyclohexane at 303.2–333.2 K and 16.0 MPa. *J. Chem. Eng. Data* **1994**, *39*, 911.
- Hildbrand, J. H. Motions of Molecules in Liquids: Viscosity and Diffusivity. Science 1971, 174, 490.
- Kopner, A.; Hamm, A.; Ellert, J.; Feist, R.; Schneider, G. M. Determination of Binary Diffusion Coefficients in Supercritical Chlorotrifluoromethane and Sulfur—Hexafluoride with Supercritical Fluid Chromatography (SFC). Chem. Eng. Sci. 1987, 42, 2213.
- Lai, C.-C.; Tan, C.-S. Measurement of Molecular Diffusion Coefficients in Supercritical Carbon Dioxide Using a Coated Capillary Column. *Ind. Eng. Chem. Res.* 1995, 34, 674.
- Lamb, D. M.; Adamy, S. T.; Woo, K. W.; Jonas, J. Transport and Relaxation of Naphthalene in Supercritical Fluids. *J. Phys. Chem.* 1989, 93, 5002.
- Lauer, H. H.; McManigill, D.; Board, R. D. Mobile-Phase Transport Properties of Liquefied Gases in Near-Critical and Supercritical Fluid Chromatography. Anal. Chem. 1983, 55, 1370.

- Liong, K. K.; Wells, P. A.; Foster, N. R. Diffusion of Fatty Acid Esters in Supercritical Carbon Dioxide. *Ind. Eng. Chem. Res.* 1992, 31, 390.
- Liu, H.; Macedo, E. A. A Study on the Models for Infinite Dilution Partial Molar Volumes of Solutes in Supercritical Fluids. *Ind. Eng. Chem. Res.* 1995, 34, 2029.
- Liu, H.; Silva, C. M.; Macedo, E. A. Unified Approach to the Self-Diffusion Coefficients of Dense Fluids over Wide Ranges of Temperature and Pressure Hard Sphere, Square Well, Lennard-Jones and Real Substances. Submitted for publication in *Chem. Eng. Sci.*
- Matthews, M. A.; Akgerman, A. Diffusion Coefficients for Binary Alkane Mixtures to 573 K and 3.5 MPa. *AIChE J.* **1987**, *33*, 881
- Pitzer, K. S.; Schreiber, D. R. Improving Equations-of-State Accuracy in the Critical Region; Equations for Carbon Dioxide and Neopentane as Examples. *Fluid Phase Equilib.* **1988**, *41*, 1.
- Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill Book Company: New York, 1987.
- Salim, P. H.; Trebble, M. A. Modified Interacting-Sphere Model for Self-Diffusion and Infinite-Dilution Mutual-Diffusivity of n-Alkanes. *J. Chem. Soc., Faraday Trans.* **1995**, *91* (2), 245.
- Sassiat, P. R.; Mourier, P.; Caude, M. H.; Rosset, R. Measurement of Diffusion Coefficients in Supercritical Carbon Dioxide and Correlation with the Equation of Wilke and Chang. *Anal. Chem.* 1987, 59, 1164.
- Silva, C. M.; Macedo, E. A. Diffusion Coefficients of Ethers in Supercritical Carbon Dioxide. 14th European Seminar on Applied Thermodynamics, Athens, Greece, 1994.
- Silva, C. M.; Liu, H.; Macedo, E. A. Models for Self-Diffusion Coefficients of Dense Fluids, Including Hydrogen-Bonding Substances. Submitted for publication in *Chem. Eng. Sci.*
- Suárez, J. J.; Bueno, J. L.; Medina, I. Determination of Binary Diffusion Coefficients of Benzene and Derivatives in Supercritical Carbon Dioxide. *Chem. Eng. Sci.* **1993**, *48*, 2419.
- Sun, C. K. J.; Chen, S. H. Diffusion of Benzene, Toluene, Naphthalene, and Phenanthrene in Supercritical Dense 2,3-Dimethylbutane. *AIChE J.* **1985a**, *31*, 1904.
- Sun, C. K. J.; Chen, S. H. Tracer Diffusion of Aromatic Hydrocarbons in Liquid Cyclohexane up to its Critical Temperature. AIChE J. 1985b, 31, 1510.
- Sun, C. K. J.; Chen, S. H. Tracer Diffusion of Aromatic Hydrocarbons in n-Hexadecane up to the Supercritical Region. *Chem. Eng. Sci.* 1985c, 40, 2217.
- Swaid, I.; Schneider, G. M. Determination of Binary Diffusion Coefficients of Benzene and some Alkylbenzenes in Supercritical CO₂ between 308 and 328 K in the Pressure Range 80 to 160 bar with Supercritical Fluid Chromatography (SFC). Ber. Bunsen-Ges. Phys. Chem. 1979, 83, 969.
- Takahashi, S.; Hongo, M. Diffusion Coefficients of Gases at High Pressures in the CO₂-C₂H₄ System. *J. Chem. Eng. Jpn.* **1982**, *15*, 57.
- Umezawa, S.; Nagashima, A. Measurement of the Diffusion Coefficients of Acetone, Benzene, and Alkane in Supercritical CO₂ by the Taylor Dispersion Method. *J. Supercrit. Fluids* **1992**, *5*, 242.

Received for review April 22, 1996 Revised manuscript received October 8, 1996 Accepted October 22, 1996[®]

IE9602318

[®] Abstract published in Advance ACS Abstracts, December 15, 1996.