Predicting Primary Car Crash Cause

Phase 4 Project.

Datasets.

Traffic Crashes - Vehicles

Traffic Crashes - People

Traffic Crashes - Crashes

Datasets.

CAR CRASHES - CRASHES

CAR CRASHES - VEHICLES

CAR CRASHES-PEOPLE

Traffic Crashes - People

- Dataset size: 1877321x29.
- Driver's age, sex, physical condition.
- Passengers, Pedestrians, Cyclists.
- vehicle_id, crash_record_id.

Traffic Crashes - Vehicles

- Dataset size: 1743922 x 71.
- Vehicle Type, Make, Model.
- Vehicle Use.
- vehicle_id, crash_record_id.

Traffic Crashes - Crashes

- Dataset Size: 854910 x 48.
- Crash scene related information: weather, roadway, signals, etc..
- Primary and Secondary Crash Causes.
- crash_record_id.

Dataset issues.

Missing Information.

Number of features.

How are we going to approach the problem?

Identify relevant to Primary Contributory Cause columns in each dataset. 2

Explore and clean relevant information.

3

Merge Crashes-People and Crashes-Vehicles on vehicle_id. 4

Merge Crashes-Crashes on crash_record_id. 5

Perform EDA.

Transforming Datasets

People:1877321x29.

Vehicles: 1743922 x 71.

Crashes: 854910 x 48.

Resulting Dataset: 1541625 x 60.

Exploratory Analysis.

- Most of the crashes occur in clear weather, have no injures, and are in 30-35 mph speed limit zone.
- Most of the crashes involve 2 cars, followed by one car.
- Most frequent type of crash is parked vehicle followed by rear-ending.
- Most typical environment is an undivided road without traffic controls.
- 2/3 of cashes in our dataset have Unknown or Not Applicable primary crash cause.
- Women are 2x as likely to be labeled "distressed".
- Men are 2.5x more impaired.

Preparing Dataset for ML.

Use 15% of the data as a holdout set.

Use 30% of the data for training and testing (70%-30%).

Modelling Results.

XGBOOST (71%).

KNN (70%).

RANDOM FOREST (70%).

DEEP NEURAL NETWORK (69%).

XGBoost	sted Driving -	58	617	190	172	927	453	41
	Experience -	182	199	738	839	928	2393	97
 Accuracy 72%. Most important feature: first_crash_type_Rear En 	lure to Yield -	1451	17	91	15788	761	5398	27
		31	118	56	241	20450	1116	15
	aper Driving -	240	103	360	3373	877	25489	76
	less Driving -	67	90	168	227	312	809	209
		rding Traffic Control -	Distracted Driving -	Driver Experience -	Failure to Yield -	ollowing Too Closely -	Improper Driving -	Reckless Driving -