1/5/1 (Item 1 from file: 351)

DIALOG(R) File 351: DERWENT WPI

(c)1999 Derwent Info Ltd. All rts. reserv.

010604811 **Image available**
WPI Acc No: 96-101764/199611
XRPX Acc No: N96-085194

Corresponding point extraction device - performs rotary conversion processing and multiplying factor conversion processing, before carrying out extraction processing

Patent Assignee: CANON KK (CANO)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Main IPC Week
JP 8007102 A 19960112 JP 94135495 A 19940617 G06T-007/00 199611 B

Priority Applications (No Type Date): JP 94135495 A 19940617 Patent Details:

Patent Kind Lan Pa Filing Notes Application Patent

Patent Kind Lan Pg Filing Notes Application Patent JP 8007102 A 7

Abstract (Basic): JP 8007102 A

The extraction device obtains correspondence relation between multiple images obtained by an image pick up part (11). The relation is obtained by using a corresponding point extraction processing part (16). Multiple image rotary conversion processing parts (13) are operated with respect to position of photographed object on the focussing surface.

A multiplying factor conversion processing part (15) performs conversion processing on the image size. The rotary conversion processing and the multiplying factor conversion processing are performed before the extraction processing.

ADVANTAGE - Attains high accuracy.

Dwg.1/8

Title Terms: CORRESPOND; POINT; EXTRACT; DEVICE; PERFORMANCE; ROTATING; CONVERT; PROCESS; MULTIPLICATION; FACTOR; CONVERT; PROCESS; CARRY; EXTRACT; PROCESS

Derwent Class: S02; T01; W02; W04

International Patent Class (Main): G06T-007/00

International Patent Class (Additional): G01B-011/00; H04N-005/262;

H04N-007/18 File Segment: EPI

1/5/2 (Item 1 from file: 347)

DIALOG(R) File 347: JAPIO

(c) 1999 JPO & JAPIO. All rts. reserv.

05051602 **Image available**
CORRESPONDENT POINT EXTRACTING DEVICE

PUB. NO.: 08-007102 JP 8007102 A]
PUBLISHED: January 12, 1996 (19960112)

INVENTOR(s): MORI KATSUHIKO IIJIMA KATSUMI

APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 06-135495 [JP 94135495] FILED: June 17, 1994 (19940617)

INTL CLASS: [6] G06T-007/00; G01B-011/00; H04N-005/262; H04N-007/18
JAPIO CLASS: 45.9 (INFORMATION PROCESSING -- Other); 44.6 (COMMUNICATION

-- Television); 46.1 (INSTRUMENTATION -- Measurement)

ABSTRACT

PURPOSE: To provide the correspondent point extracting device with which

high-precision correspondent point extraction is enabled by processing images provided by an image pickup system without precisely controlling that image pickup system.

CONSTITUTION: The corresponding relation of plural images provided by plural image pickup means 11 is calculated by a correspondent point extraction processing part 16. This device is provided with a rotational conversion processing part 13 for rotationally converting the plural images on the conditions that an object is positioned on a focused plane, and a magnification conversion processing part 15 for converting the size of the image. Before the correspondent point extraction processing at the correspondent point extraction processing part 16, the rotational conversion processing and the magnification conversion processing is performed. In the case of rotational conversion processing, the image is converted to a reference coordinate axis and in the case of magnification conversion processing, the size of the image is converted.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-7102

(43)公開日 平成8年(1996)1月12日

(51) Int.Cl. ⁶		酸別記号	庁内整理番号	FΙ	技術表示箇所	
G06T	7/00					
G01B	11/00	Н				
H 0 4 N	5/262					
	7/18	С				
				G06F	15/62 4 1 5	
				審査請求	未請求 請求項の数1 OL (全 7 頁)	
(21)出願番号		特顧平6-135495		(71)出願人	000001007	
					キヤノン株式会社	
(22)出顧日		平成6年(1994)6月17日			東京都大田区下丸子3丁目30番2号	
				(72)発明者	森 克彦	
					東京都大田区下丸子3丁目30番2号 キヤ	
					ノン株式会社内	
				(72)発明者	飯島 克己	
					東京都大田区下丸子3丁目30番2号 キヤ	
					ノン株式会社内	
				(74)代理人	弁理士 國分 孝悦	
				1		

(54) 【発明の名称】 対応点抽出装置

(57)【要約】

【目的】 撮像系を厳密に制御することなく、その撮像 系により得られた画像を画像処理することにより、高精 度の対応点抽出を行い得る対応点抽出装置を提供する。

【構成】 対応点抽出処理部16にて、複数の撮像手段11によって得られた複数の画像間の対応関係を求め得るように構成されている。被写体が合焦面に位置する条件下で複数の画像を回転変換処理する回転変換処理部13と、画像の大きさを変換処理する倍率変換処理部15と、を備えている。対応点抽出処理部16における対応点抽出処理の前に、回転変換処理及び倍率変換処理が行われるようにしたものである。回転変換処理では、基準となる座標軸に対して画像を変換させ、また倍率変換処理では、画像の大きさを変換させる。

1

【特許請求の範囲】

【請求項1】 対応点抽出処理部にて、複数の撮像手段によって得られた複数の画像間の対応関係を求め得るように構成された対応点抽出装置において、

被写体が合焦面に位置する条件下で前記複数の画像を回 転変換処理する回転変換処理部と、画像の大きさを変換 処理する倍率変換処理部と、を備え、

前記対応点抽出処理部における対応点抽出処理の前に、 前記回転変換処理及び前記倍率変換処理が行われるよう にしたことを特徴とする対応点抽出装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、特に複数画像間の対応 関係を明らかにするために用いる対応点抽出装置に関す るものである。

[0002]

【従来の技術】従来より複数の画像を同時に得るための 手段として、例えば図6に示したように複数の撮像系を 有する撮像装置が知られている。このような撮像装置で 得られた画像を使用して、例えば、被写体までの距離を 20 測ったり、或いは合成してパノラマ画像の作成等を行う ことができる。そして、これら測距等を目的とする場合 には、画像間の対応関係を明らかにする所謂、対応点抽 出処理が必要になる。

【0003】従来、かかる撮像装置の設置に際して、対応点抽出精度の向上を図るため、図6に示されるように撮像系61,62を同じ高さに設置し、また図7に示されるようにそれらの撮像系61,62の光軸71,72を平行に設置していた。

【0004】また、被写体73を立体的に撮影する場合 30 等においては、図8に示したように撮像系61,62のそれぞれ光軸81,82の交点Mが被写体73上に存在するように、撮像系61,62における輻輳角を制御するようにしていた。

[0005]

【発明が解決しようとする課題】しかしながら、上述した従来の撮像装置において、特に複数の撮像系61,62を同じ高さに設置し(図6)、或いは複数の撮像系61,62の光軸71,72が正確に平行になるように設定すること(図7)は、極めて困難である。更に、図8に示した例の場合において、複数の撮像系61,62の光軸71,72の交点Mが被写体73上に存在するように輻輳角を制御することは極めて困難であった。また特に、輻輳角をつけて撮影する場合には、その輻輳角の影響によって各画像中の被写体の写り方が異なり、そのままでは対応点抽出の精度が劣化してしまうという問題点があった。

【0006】本発明はかかる実情に鑑み、撮像系を厳密 それぞれ示している。この場合、被写体21は2軸の方に制御することなく、その撮像系により得られた画像を 向に存在しているものとする。また、 ω は撮像系22の画像処理することにより、高精度の対応点抽出を行い得 50 X1 軸を基準にした時の撮像系23のXr 軸まわり(Y

2

る対応点抽出装置を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明の対応点抽出装置は、対応点抽出処理部にて、複数の撮像手段によって得られた複数の画像間の対応関係を求め得るように構成されているが、特に被写体が合焦面に位置する条件下で前記複数の画像を回転変換処理する回転変換処理部と、画像の大きさを変換処理する倍率変換処理部と、を備え、前記対応点抽出処理部における対応点抽出処理の前に、前記回転変換処理及び前記倍率変換処理が行われるようにしたものである。

[0008]

【作用】本発明によれば、対応点抽出処理の前処理として、撮像装置により得られた画像に対して、回転変換処理と倍率変換処理を行なう。この場合、回転変換処理は、基準となる座標軸に対して画像を変換させ、倍率変換処理は、画像の大きさを変換させるものである。

[0009]

【実施例】以下、図面を参照して、本発明による対応点 抽出装置の好適な実施例を説明する。図1は、本発明装 置の構成例を示している。図において、11は被写体を 撮像するカメラ、12は複数の画像を獲得した時に各撮 像系の輻輳角等の情報を得ることにより、特定の撮像系 の光軸の向きを基準にした時の別の撮像系の光軸の方向 を検出する撮像系相対位置検出部、13は撮像系相対位 置検出部12で得られた撮像系の相対位置に基づき、後 述する回転変換処理において画像を回転変換させる回転 変換部、14は画像を獲得した時の各撮像系の輻輳角、 焦点距離等の情報を得ることにより、後述する倍率変換 処理において回転変換部13で得られた回転変換後の画 像を倍率変換するための倍率を計算する倍率計算部、1 5は倍率計算部14で得られた倍率に基づき画像を倍率 変換させる倍率変換部、16は画像間の対応点抽出処理 を行なう対応点抽出処理部である。

【0010】ここで、本実施例における回転変換処理と 倍率変換処理について説明する。先ず、回転変換処理に おいては、図2に示したように複数の撮像系22,23 によって被写体21を撮影するものとする。また、これ らの撮像系22,23は、同一高さに配置されておら ず、更に撮像系22,23の光軸が相互に平行ではな く、そして撮像系22,23の光軸の交点が被写体21 上に存在しないものとする。

【0011】次に、上記のような条件下で画像間の対応 点抽出処理の精度を上げるために行なう回転変換処理を 説明する。図3は、撮像系22,23の座標系を示して いる。図において、X1,Y1,Z1は撮像系22の座 標軸を、またXr,Yr,Zrは撮像系23の座標軸を それぞれ示している。この場合、被写体21はZ軸の方 向に存在しているものとする。また、ωは撮像系22の X1軸を基準にした時の撮像系23のXr軸まわり(Y

r-2r 面)の回転を示す。同様に ϕ はY1 軸を基準にした時のYr 軸まわりの回転を示し、 χ はZ1 軸を基準にした時のZr 軸まわりの回転を示す。

【0012】また図3において、dxは撮像X220X1, Y1, Z1 軸を基準にした時の撮像X220レンズ中心O1 と撮像X230レンズ中心Or 0X1 軸方向の距離を示す。同様にdyはY1 軸方向の距離、またdzはZ1 軸方向の距離を示す。更に、f1 は撮像X220 焦点距離を、また fr は撮像X230焦点距離をそれぞれ示している。

【0013】回転変換処理において、撮像系22のXl

$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} X_1 \\ Y_1 \\ - f_1 \end{pmatrix}$$

【0016】また、一方の撮像系22のレンズ中心Ol と、他方の撮像系23のレンズ中心Or とが(dx, dy, dz)だけ離れているとし、そのOr を原点とする座標軸(Xr, Yr, Zr)が、Ol を原点とする座標軸(Xl, Yl, Zl) に対してそれぞれ角度(ω ,

2の画像を相対回転角度 ω , ϕ , χ だけ逆回転させて、 撮像系 2 2 と撮像系 2 3 の光軸が平行になるように変換 するために、以下の変換式に従って行われる。

, Y1, Z1 軸を基準にして、撮像系23の画像面3

【0014】一般的に、図3に示すように、一方の撮像系22のレンズ中心O1を原点として、その座標軸(X1,Y1,Z1)を設定した時、焦点距離f1だけ離れて存在する画像面31上の座標軸(X1″,Y1″)に対して、次式が成立する。

10 [0015]

【数1】

 ϕ , χ) 回転している時、Or から焦点距離 fr だけ離れて存在する画像面 32 上の座標軸(Xr '' , Yr '')に対して、次の式が成立する。

[0017]

【数 2 】

$$\begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\omega & \sin\omega \\ 0 - \sin\omega & \cos\omega \end{pmatrix} \begin{pmatrix} \cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{pmatrix} \\
\begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix} + \begin{pmatrix} 1 \\ d & d \\ d & d \end{pmatrix} \cdots (2)$$

【0018】よって、撮像系22を基準にして、次式により表される座標変換を行なう。

【0015 【数3】

【0020】上記(1), (2)及び(3)式の変換により、被写体が合焦面に存在するとした場合における撮像系22,23の光軸を平行にした時の画像が得られる。

【0021】次に、倍率変換処理について説明する。図4は、上述した回転変換処理後の合焦面等を模式的に示している。なお、この図4では、説明を簡単化するため、図3に示したdy及びdzの値をそれぞれdy=0,dx=0とし、また撮像系22及び23の焦点距離fr及びflの値をfr=fl=fとしている。更に、撮像系22の座標軸を基準にした時の撮像系23の座標軸の回転は、Yr軸まわりの ϕ のみとする。そして、 θ 1= θ rとし、 ϕ = θ r- θ 1とする。また θ 1= π - θ r= θ としておくが、撮像系22のセンサ47と撮像系23のセンサ48はポジ面にあるとする。

【0022】さて、図4において平面被写体402を撮像系22,23で撮影する場合を考える。撮像系22の50

光軸43と撮像系23の光軸44との交点が平面被写体402上に存在せず、撮像系22の合焦面45と撮像系23の合焦面46とが図示のように設定されているものとする。そして、Yr 軸まわりの回転φに対して回転変換処理を行なうと撮像系22の合焦面46は回転変換した合焦面49に変換されて、光軸43と回転変換された40光軸50は平行になっていることがわかる。

【0023】上記のような条件下で平面被写体402を 撮影し、回転変換処理された画像を図5に示す。図5

(A) において、左側画像51は、撮像系22で平面被写体402を撮影した画像であり、また回転変換された画像52は、撮像系23で平面被写体402を撮影して得た画像を回転変換した画像である。

【0024】この左画像51と回転変換された画像52 において、平面被写体402中の同一部位が撮影されて 成る重複部54が同じ大きさに撮影されていれば、テン プレートマッチング法等を用いた対応点抽出処理におい

て高精度な結果が得られる。ところが、図4から明らかなように、撮像系22の合焦面45と回転変換した合焦面49とは連続していない。即ち、両者の2方向の距離が異なるため、この2枚の画像51,52の重複部54をそのまま重ねると、図5(B)に示されるようにその重ねられた画像53において被写体の大きさが食い違ってしまう。従って、このままでは高精度の対応点抽出処理を行うことができない。

【0025】そこで、合焦面の2方向の位置ずれを考慮して、画像の倍率変換を行なうが、次に倍率変換処理の 10 倍率の計算について説明する。図4中の撮像系22の合焦面45と回転変換した合焦面49とが連続するように

倍率変換処理するための比は、 回転変換された撮像系レンズ中心Or ' から撮像系 23 の合唱面 46 及び光軸 44 の交点Kまでの距離 f / β (f =焦点距離であり、 β =拡大率である)と、 回転変換された撮像系のレンズ中心Or ' から倍率変換された合焦面 401 及び回転変換された光軸 50 の交点K' までの距離 f / β - (d x - $2 \cdot f$ / β \cdot c o s θ c o s θ との比である。【0026】つまり、この倍率変換処理で使用する倍率

6

[0027]

は次式により与えられる。

【数4】

O'' K' O' $K = 1 + (2 \cos \theta - \beta / f dx) \cos \theta$

... (4)

【0028】回転変換処理された画像に対して、上式で表される倍率を用いて倍率変換処理を行なうことにより、図5(C)に示したように倍率変換処理後に重ねた画像55が得られ、この画像55によれば被写体の大きさを揃えることが可能となり、高精度な対応点抽出処理 20を実現することができる。

【0029】なお、以上の説明においては、輻輳角 θ のみが存在する場合($\phi \neq 0$, $\omega = 0$ 及び $\chi = 0$)を説明したが、 $\omega \neq 0$, $\chi \neq 0$ の場合においても上記と同様な作用効果が得られる。

【0030】さて、本発明装置に係る回転変換処理及び 倍率変換処理について具体的に説明したが、次に本発明 装置における実際の動作について順に説明する。図2に 示されるように、被写体21を撮影する際の光軸がその 被写体21上の一点で必ずしも交差しない2つの撮像系 30 22,23を有するカメラ11が設置され、このカメラ 11から画像が入力される。そして、そのときの各撮像 系22,23の輻輳角等をはじめとする光軸方向の情報 等がエンコーダ(図示されていない)等によって計測さ れ、それらの情報は撮像系相対位置検出部12へ入力さ れる。

【0031】撮像系相対位置検出部12において、図3に示した撮像系22の座標軸X1, Y1, Z1を基準にして、それらの入力された情報からX1軸方向の撮像系のずれdx, Y1軸方向のずれdy, Z1軸方向のずれ 40dzや、X1軸まわりの回転 α , Y1軸まわりの回転 α , Y1軸まわりの回転 α , Y1軸まわりの回転 α , X1軸まわりの回転 α , X1軸まわりの回転 α , X1軸まわりの回転 α , X1軸まわりの回転 α , X1 軸まわりの回転 α , X1 軸まのの回転 α , X1 軸まりの回転 α , X1 軸まのの回転 α , X1 軸まのの回転 α , X1 由まのの回転 α , X1 由まのの回転 α , X1 由まのの回転

【0032】続いて、倍率計算部14に対して焦点距離 50

等のレンズ情報や輻輳角等の撮像系の位置情報が入力され、前述した倍率変換処理を行うために用いる倍率を計算する。そして、回転変換部13にて回転変換された画像と、倍率計算部14にて計算された倍率とが倍率変換部15に入力される。倍率変換部15において、入力された倍率に基づいて、回転変換処理の画像を変換する。このときの変換では、画像を拡大し、或いは縮小するが、その場合には線形補間やスプライン補間等の補間処理が必要的に行われる。

【0033】そして、対応点抽出処理部16に対して、 基準となった撮像系からの画像と、回転変換処理及び倍 率変換処理が行われた画像とが入力され、それらの画像 間にてテンプレートマッチング法等を用いた対応点抽出 処理が行われる。このように対応点抽出処理の前処理と して、回転変換処理及び倍率変換処理が行われることに より、高い精度の対応点抽出処理を実現することができ る。

【0034】なお、上記実施例において、複数の撮像系を使用する場合の例を説明したが、1台の撮像系でその光軸の方向を変化させるようにした場合の対応点抽出においても用いることができ、上記実施例と実質的に同様な作用効果を得ることができる。また、上記実施例において、一方の撮像系の座標軸を基準にした例を説明したが、絶対座標を基準にしたこれに合わせるように複数の画像を変換させるようにしてもよい。

[0035]

【発明の効果】以上説明したように本発明によれば、特に複数の撮像系の光軸が相互に平行でなく、或いはまた複数の撮像系の光軸の交点が被写体上に存在しない場合において、撮像装置の位置や光軸の方向等の装置情報を使用して、得られた画像に対して前処理として回転変換処理及び倍率変換処理が行われることにより、高い精度の対応点抽出処理を実現することができる等の優れた効果を有している。

【図面の簡単な説明】

【図1】本発明の対応点抽出装置の実施例における構成 例を示す図である。

【図2】本発明の対応点抽出装置の実施例における被写体と撮像装置の位置関係を示す図である。

【図3】本発明の対応点抽出装置に係る座標系の示す図である。

【図4】本発明の対応点抽出装置の実施例における倍率 変換処理を原理的に示す図である。

【図5】本発明の対応点抽出装置の実施例における平面被写体を撮像した場合の画像形成の例を示す図である。

【図6】従来の複数の撮像系を有する撮像装置を示す図である。

【図7】従来の撮像装置における光軸が平行な場合の例 を示す図である。

【図8】従来の撮像装置における光軸の交点が被写体上 に存在する場合の例を示す図である。

【符号の説明】

11 カメラ

12 撮像系相対位置検出部

8

13 回転変換部

14 倍率計算部

15 倍率変換部

16 対応点抽出処理部

21 被写体

22,23 撮像系

31,32 画像面

7 40 平面被写体

43,44 光軸

46 合焦面

47,48 センサ

50 光軸

51,52 画像

5 4 重複部

【図1】

【図4】

【図2】

【図8】

