Linear Algebra and Optimization Review

Thai Dinh

November 10, 2018

About me

- B.Sc., Summa cum Laude, University of Oklahoma
- M.Sc., University of Wisconsin-Madison
- Publication venues: Mathematical Programming, Nature Energy
- Academic father: Stephen Wright (Numerical Optimization author)
- Academic grandfather: George Nemhauser (John von Neumann Theory Prize winner)
- Just goes to show how an apple can fall VERY far from its tree

Matrices and vectors
Addition and scalar multiplication
Matrix multiplication
Determinant, rank, inverse, and transpose
Eigenvalues and eigenvectors
Positive definite/semidefinite matrices

Outline

- 1 Linear Algebra
 - Matrices and vectors
 - Addition and scalar multiplication
 - Matrix multiplication
 - Determinant, rank, inverse, and transpose
 - Eigenvalues and eigenvectors
 - Positive definite/semidefinite matrices
- Optimization
 - Convex sets and convex functions
 - Matrix calculus
 - Unconstrained convex optimization

Matrices and vectors

• Matrix: Rectangular array of numbers

$$m1 = \begin{bmatrix} 23 & 402 \\ 69 & 221 \\ 118 & 0 \end{bmatrix}$$

- Dimension of matrix: number of rows x number of columns
- Vector: n x 1 matrix

$$v1 = \begin{bmatrix} 149 \\ 92 \\ 313 \end{bmatrix}$$

Matrices and vectors

```
import numpy as np
m1 = np.array([[23,402],[69,221],[118,0]])
print("m1={}".format(m1))
print(m1.shape)
v1 = np.array([149,92,313])
print("v1={}".format(v1))
```

Matrix multiplication Positive definite/semidefinite matrices

Matrix addition

$$\begin{bmatrix} 23 & 402 \\ 69 & 221 \\ 118 & 0 \end{bmatrix} + \begin{bmatrix} 93 & 21 \\ 223 & 11 \\ 123 & 6 \end{bmatrix} = \begin{bmatrix} 116 & 423 \\ 292 & 232 \\ 241 & 6 \end{bmatrix}$$
$$\begin{bmatrix} 23 & 402 \\ 69 & 221 \\ 118 & 0 \end{bmatrix} + \begin{bmatrix} 93 & 21 \\ 223 & 11 \end{bmatrix} = ????$$

Matrix addition

```
import numpy as np
m1 = np. array([[23,402],[69,221],[118,0]])
m2 = np. array([[93,21],[223,11],[123,6]])
print("m1+m2={}" . format(m1+m2))
```

Scalar multiplication

$$3x \begin{bmatrix} 23 & 402 \\ 69 & 221 \\ 118 & 0 \end{bmatrix} = \begin{bmatrix} 69 & 1206 \\ 207 & 663 \\ 354 & 0 \end{bmatrix}$$

```
import numpy as np m1 = np.array([[23,402],[69,221],[118,0]]) print("3*m1=\{\}".format(3*m1))
```

Positive definite/semidefinite matrices

Vector-vector multiplication

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1x4 + 2x5 + 3x6 \end{bmatrix} = 32$$

Matrix-vector multiplication

ullet Multiply each row of the matrix with the vector ullet an element of the resulting vector

$$\begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 16 \\ 4 \\ 7 \end{bmatrix}$$

 An m x n matrix multiplied by an n x 1 vector is an m x 1 vector

Determinant, rank, inverse, and transpose Eigenvalues and eigenvectors Positive definite/semidefinite matrices

Matrix-matrix multiplication

ullet Multiply the left hand side matrix with each column of the right hand side matrix ullet a column of the resulting matrix

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 11 & 10 \\ 9 & 14 \end{bmatrix}$$

 An m x n matrix multiplied by an n x p matrix is an m x p matrix

Determinant, rank, inverse, and transpose Eigenvalues and eigenvectors Positive definite/semidefinite matrices

Matrix-matrix multiplication

```
import numpy as np
m1 = np.array([[1,3,2],[4,0,1]])
m2 = np.array([[1,3],[0,1],[5,2]])
assert(m1.shape[1]==m2.shape[0])
m3 = np.dot(m1,m2)
print("m1*m2={}".format(m3))
print((m1.shape[0],m2.shape[1])==m3.shape)
```

Determinant, rank, inverse, and transpose Eigenvalues and eigenvectors Positive definite/semidefinite matrices

Matrix multiplication properties

- Matrix multiplication is associative: (AB)C = A(BC)
- Matrix multiplication is distributive: A(B+C) = AB + AC
- \bullet Matrix Multiplication is NOT commutative in general, that is $AB \neq BA$

Eigenvalues and eigenvectors

Positive definite/semidefinite matrices

Determinant

- Determinant of **square** matrix A is denoted det(A) or |A|
- In case of a 2 x 2 matrix

$$|A| = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

• In case of an n x n matrix with n > 2...

Python snippet

import numpy as np
m1 = np.array([[23,42,79],[69,6,21],[8,0,9]])
print(np.linalg.det(m1))

Eigenvalues and eigenvectors
Positive definite/semidefinite matrices

Rank

Linearly independent

A set of vectors $x_1, x_2, ..., x_n$ is said to be linearly independent if no vector can be represented as a linear combination of the remaining vectors

- Rank of a matrix A is the size of the largest subset of columns of A that constitute a linearly independent set
- For an n x m matrix A, $rank(A) = rank(A^T)$ and $rank(A) \le min(m, n)$. If rank(A) = min(m, n), then A is **full** rank

Eigenvalues and eigenvectors
Positive definite/semidefinite matrices

Identity matrix

- Denoted I or $I_{n \times n}$
- Examples of identity matrices

$$|I_{2\times 2}| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• For any matrix A, AI = IA = A

Eigenvalues and eigenvectors

Positive definite/semidefinite matrices

Inverse

- Not all numbers have an inverse (e.g., 0)
- If a square matrix A has an inverse (denoted A^{-1}): $AA^{-1} = A^{-1}A = I$
- Matrices that don't have an inverse are singular or degenerate
- A matrix is singular iff its determinant is 0
- How to invert a matrix <a href="http://http

```
//www.macs.hw.ac.uk/~markl/teaching/Inverses.pdf
```

```
import numpy as np
m1 = np.array([[0,5],[.5,0]])
print("inv(m1)={}".format(np.linalg.inv(m1)))
```

Transpose

Let A be an n x m matrix and let $B = A^T$. Then B is an m x n matrix and $B_{ij} = A_{ji}$

Properties

For any matrices X and Y

•
$$(X^T)^T = X$$

$$\bullet (XY)^T = Y^T X^T$$

$$(X + Y)^T = X^T + Y^T$$

Positive definite/semidefinite matrices

Eigenvalues and eigenvectors

For a square matrix A, λ is an eigenvalue and x is the coresponding eigenvector if $Ax = \lambda x$

How to find eigenvalues and eigenvectors

- For an eigenvalue λ of a matrix A, $(A \lambda I)$ must not be singular (why?)
- Solve $det(A \lambda I) = 0$ for λ
- Once you have an eigenvalue λ , solve $(\lambda I A)x = 0$ to find the coresponding eigenvector x

Matrices and vectors Addition and scalar multiplication Matrix multiplication Determinant, rank, inverse, and transpose

Positive definite/semidefinite matrices

Eigenvalues and eigenvectors

```
import numpy as np
m1 = np.diag(((1,2,3)))
w,v=np.linalg.eig(m1)
print("eigenvalues:{}".format(w))
print("eigenvectors:{}".format(v))
```

Quadratic forms

For an n x n matrix A and a vector x, the scalar value $x^T A x$ is referred to as quadratic form

$$x^T A x = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

Positive definite and positive semidefinite

- A matrix A is said to be **positive definite** if for all non-zero vectors x, $x^T A x > 0$
- A matrix A is said to be **positive semidefinite** if for all non-zero vectors x, $x^T A x \ge 0$

Outline

- Linear Algebra
 - Matrices and vectors
 - Addition and scalar multiplication
 - Matrix multiplication
 - Determinant, rank, inverse, and transpose
 - Eigenvalues and eigenvectors
 - Positive definite/semidefinite matrices
- 2 Optimization
 - Convex sets and convex functions
 - Matrix calculus
 - Unconstrained convex optimization

Convex sets

A set X is **convex** if $\forall x, y \in X, \lambda x + (1 - \lambda)y \in X$ for any $\lambda \in [0, 1]$

(a) convex set

(b) non-convex set

Convex functions

A function f is **convex** if its domain (denoted D(f)) is a convex set and if, for all $x, y \in D(f)$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Gradient and hessian

Gradient

$$(\nabla f(x))_i = \frac{\delta f(x)}{\delta x_i}$$

Hessian

$$(\nabla^2 f(x))_{ij} = \frac{\delta^2 f(x)}{\delta x_i \delta x_j}$$

Common forms of derivatives

$$\frac{\delta(x^T a)}{\delta x} = \frac{\delta(a^T x)}{\delta x} = a$$

$$\frac{\delta(x^T A x)}{\delta x} = (A + A^T) x$$

Taylor's theorem

 Suppose f is a continuously differentiable function and p is any vector,

$$f(x+p) = f(x) + \nabla f(x+tp)^{T} p,$$

for some $t \in (0,1)$.

• Moreover, if *f* is twice continuously differentiable,

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+tp) p,$$

for some $t \in (0,1)$

Local/global solutions

- A point x^* is a global minimizer if $f(x^*) \le f(x)$ for all x
- A point x^* is a local minimizer if there is a neighborhood N of x^* such that $f(x^*) \le f(x)$ for $x \in N$
- A point x* is an isolated local minimizer if there is a neighborhood N of x* such that x* is the only local minimizer in N
- A point x^* is a strict local minimizer if there is a neighborhood N of x^* such that $f(x^*) < f(x)$ for all $x \in N$ and $x \neq x^*$

Necessary and sufficient conditions

- First-order necessary conditions: If x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$
- Second-order necessary conditions: If x^* is a local minimizer of f and $\nabla^2 f$ exists and is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite
- Second-order sufficient conditions: Suppose $\nabla^2 f$ is continuous in an open neighborhood of x^* and that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimizer of f
- Bonus: When f is convex, any local minimizer x^* is a global minimizer of f

Line search methods

Overview: Algorithm chooses a direction and searches along this direction from the current iterate for a new iterate with a lower function value

Updates: $x_{k+1} = x_k + \alpha_k p_k$

Search directions:

- Descent directions: $p_k^T \nabla f_k < 0$
- Widely chosen: $p_k = -B_k^{-1} \nabla f_k$
- $B_k = I \rightarrow \text{Gradient Descent Method}$
- $B_k \approx \nabla^2 f(x_k) \to \text{Quasi-Newton Methods}$