Sprawozdanie z zajęć numer 2 Systemy i sieci przemysłowe

Maciej Misiewicz 215305 Oskar Zieliński 215373 Dariusz Witek vel Witkowski 215364

Szymon Panek 215319

28 października 2020

Spis treści

2	Realizacja ćwiczenia											
	2.1	Konfig	guracja połączenia z robotem									
	2.2	Zadan	ia									
		2.2.1	Ustawienie cyklu pracy układu lokalnego 30ms									
		2.2.2	Ustawienie cyklicznego odczytu danych z akcelerometru									
		2.2.3	Ustawienie cyklicznego odczytu danych z czujników odległości									
		2.2.4	Zmienić położenie serwa 1 i serwa 2									
		2.2.5	Zmienić cykl pracy układu lokalnego na 50ms									

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z komunikacją za pomocą protokołu CAN na przykładzie połączenia z częścią składową robota hipermobilnego Wheeeler. Ćwiczenie obejmowało wysyłanie rozkazów oraz odbieranie informacji od lokalnego sterownika za pomocą ramek danych.

2 Realizacja ćwiczenia

2.1 Konfiguracja połączenia z robotem

Konfiguracja połączenia z robotem ograniczała się do określenia dwóch parametrów - prędkości transmisji jako 1Mbit/s oraz formatu identyfikatora jako format extended.

Rysunek 1: Okno nawiązywania połączenia

Po udanym połączeniu zostały odebrane trzy ramki danych.

CAN-ID V	Туре	Length	Data
00000046h		8	14 00 00 00 08 00 02 64
00000026h		8	01 02 03 04 05 06 07 15
00000016h		8	32 8F 21 3F 10 00 01 30

Rysunek 2: Odebrane ramki danych

Rysunek 3: Widok interfejsu w programie PCANView.

Rysunek 4: Kreator rozkazów

2.2 Zadania

2.2.1 Ustawienie cyklu pracy układu lokalnego 30ms

Ustawienie cyklu pracy układu lokalnego odbywa się za pomocą 6 bajtu, podana w nim wartość w zakresie 2-20 (dec) zwiększających cykl co 10ms. Bajt 7 odpowiada za ustawienie zadanych wartości w instrukcji. Ramka realizująca zadanie wygląda następująco:

 $00000006h\ 00\ 00\ 00\ 00\ 00\ 00\ 03\ 40$

CAN-ID V	Type	Length	Data	Cycle Time
00000046h		8	14 00 00 00 08 00 02 64	3630,8
00000026h		8	01 02 03 04 05 06 07 15	
00000016h		8	31 C0 20 60 10 07 01 47	30,0

2.2.2 Ustawienie cyklicznego odczytu danych z akcelerometru

Ustawienie odczytu danych z akcelerometru odbywa się za pomocą 4 bajtu. Ustawiona wartość 07 jest składową odczytu osi X, Y i Z. Bajt 7 odpowiada za cykliczne odczytywanie pomiarów. Ramka realizujaca zadanie wygląda następująco:

 $00000006h\ 00\ 00\ 00\ 00\ 00\ 07\ 00\ 20$

2.2.3 Ustawienie cyklicznego odczytu danych z czujników odległości

Ustawienie odczytu danych z czujników odległości odbywa się za pomocą 6 bajtu. Ustawiona wartość F0 jest składową adresów 4 czujników odległości. Bajt 7 odpowiada za cykliczne odczytywanie pomiarów. 00000006h 00 00 00 00 00 00 F0 20

2.2.4 Zmienić położenie serwa 1 i serwa 2

Zakres roboczy obu serw mieści się między 0 a 300 (dec), naszym zadaniem było ustawienie 3 zadanych pozycji: minimalnej, środkowej oraz maksymalnej. Wysterowanie pojedynczego serwa odbywa się przy pomocy dwóch bajtów. Dla serwa 1 jest to bajt0 oraz bajt1, natomiast dla serwa 2 bajt2 oraz bajt3.

 \max

 $00000006h\ 2C\ 01\ 2C\ 01\ 00\ 00\ 00\ 40$

middle 00000006h 96 00 96 00 00 00 00 40

2.2.5 Zmienić cykl pracy układu lokalnego na 50ms

Analogicznie do punktu 2.2.1, zmianie uległa jedynie zadana długość cyklu. 00000006h 00 00 00 00 00 00 05 40

CAN-ID ~	Type	Length	Data	Cycle Time
00000046h		8	14 00 00 00 08 00 02 64	3630,8
00000026h		8	01 02 03 04 05 06 07 15	
00000016h		8	32 8F 21 3F 10 00 01 30	50,0

3 Wnioski i spostrzeżenia

Oprogramowanie PCANView jest łatwym, czytelnym i intuicyjnym narzędziem. Bezpośrednio pokazuje komunikację za pomocą ramek, dzieląc je na przychodzące i wysyłane. Jest dobrym programem do testowania oraz podglądu transmisji protokołem CAN. Zaletą jest także możliwość wyboru sposobu wysyłania rozkazów. Możemy wysłać ramkę pojedynczo manualnie lub wysyłać cyklicznie w zadanym interwale. Program sygnalizuje status połączenia w protokole.