**ESQC 2024** 

Mathematical Methods Lecture 4

By Simen Kvaal



# Vector calculus

Functions, integration and differentiation, in one and several variables

## Compared to yesterday ...

• We studied Banach spaces of functions:

$$V = \{ f : \Omega \to \mathbb{F} \mid ||f|| < +\infty \}$$

- Metric measured distance between functions
- Now, we study the *function itself*:

$$f: \Omega(\subset \mathbb{R}^n) \to \mathbb{R}^m$$

• Now the metric measures distance in Euclidean space

#### Functions of several variables

• We turn to the study of vector valued functions

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
  $f: \Omega(\subset \mathbb{R}^n) \to \mathbb{R}^m$ 



Paths

$$f: \Omega(\subset \mathbb{R}^1) \to \mathbb{R}^m$$



Scalar-valued functions

$$f: \Omega(\subset \mathbb{R}^n) \to \mathbb{R}^1$$



# In quantum chemistry

• *Most* methods can be formulated as:

One of the main reasons to study vector calculus

$$E: \Omega(\subset \mathbb{F}^n) \to \mathbb{R}, \quad \mathbf{x} \mapsto \text{energy function}$$

Find  $\mathbf{x} \in \Omega$  such that

$$E(\mathbf{x}) = \min!$$
, i.e.,  $\nabla E(\mathbf{x}) = 0$ .

# A typical domain $\Omega$



## Topology of Euclidean space

• Definition of an epsilon-ball



#### Definition: Topologically important sets

- 1. A subset  $S \subset \mathbb{R}^n$  is called *open* if, for every  $\mathbf{x} \in S$ , there is an  $\varepsilon > 0$  such that  $B_{\varepsilon}(\mathbf{x}) \subset S$ .
- 2. A subset *S* is called *closed* if  $S^{\mathbb{C}} = \mathbb{R}^n \setminus S$  is open.
- 3. The *closure* cl(S) is the smallest closed set that contains S.
- 4. The *interior* int(S) is the set of all those  $\mathbf{x} \in S$  around which there exists an  $\varepsilon$ -ball in S
- 5. The *boundary*  $\partial S$  is the intersection  $\operatorname{cl}(S^{\complement}) \cap \operatorname{cl}(S) = S \setminus \operatorname{int}(S)$

# Examples



## Neighborhood of x

• Any set containing  $\mathbf{x}$  and an open ball around  $\mathbf{x}$ 



neighborhood containing x



NOT a neighborhood containing **x** 

#### **Definition: Limit**

Let  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ , where  $\Omega$  is open. Let  $\mathbf{x}_0 \in \Omega \cup \partial \Omega$ , and let N be a neighborhood of  $\mathbf{b} \in \mathbb{R}^m$ .

We say that f is eventually in N as  $\mathbf{x}$  approaches  $\mathbf{x}_0$ , if there exists a neighborhood U of  $\mathbf{x}_0$ , such that  $\mathbf{x} \in U$  but  $\mathbf{x} \neq \mathbf{x}_0$  and  $\mathbf{x} \in \Omega$  imply  $f(x) \in N$ .

We say that  $f(\mathbf{x})$  approaches **b** as **x** approaches  $\mathbf{x}_0$ ,

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \mathbf{b} \quad \text{or} \quad f(\mathbf{x}) \to \mathbf{b} \text{ as } \mathbf{x} \to \mathbf{x}_0, \tag{1}$$

when, given any neighborhood N of  $\mathbf{b}$ , f is eventually in N as  $\mathbf{x}$  approaches  $\mathbf{x}_0$ .

# Intiuition



## Intiuition



## Intiuition



#### **Definition: Continuity**

Let  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ . Let  $\mathbf{x}_0 \in \Omega$ . We say that f is *continuous at*  $\mathbf{x}_0$  if

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=f(\mathbf{x}_0).$$

Multidimensional version of "unbroken graph"

#### Discontinuous in 1d

 $f: \mathbb{R} \to \mathbb{R}$  makes a jump



#### Discontinuous in 1d

 $f: \mathbb{R} \to \mathbb{R}$  makes a jump



## Example

- Is the following function continuous at (0,0)?
- (Show notebook)



- No, because the limit does not exist.
- Different limit candidates if we approach from different directions
- The definition of limit is designed to detect



### More subtle, in 1D

• Is the following function continuous?

$$f:(0,1)\to\mathbb{R},\quad x\mapsto\sin(1/x)$$



- Yes, at every *x* in the interior of the domain
- But f is discontinuous at the boundary point x = 0

#### Theorem: Properties of continuous functions

Let  $f, g : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$  be functions with a common domain  $\Omega$ , continuous at  $\mathbf{x}_0$ : Then:

- 1. f + g and  $\alpha f$  for any  $\alpha \in \mathbb{R}$  are continuous at  $\mathbf{x}_0$ .
- 2. In the scalar-valued case m = 1, the product fg is continuous at  $\mathbf{x}_0$
- 3. If  $f \neq 0$  in all of  $\Omega$ , then 1/f is continuous at  $\mathbf{x}_0$
- 4. The component functions  $f_i : \Omega \to \mathbb{R}$  are all continuous at  $\mathbf{x}_0$ . The converse is also true.

#### Theorem: Compositions of functions

Let  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$  be continuous at  $\mathbf{x}_0 \in \Omega$ , and  $g: \Omega' \subset \mathbb{R}^m \to \mathbb{R}^o$ . Suppose  $f[\Omega] \subset \Omega'$ , and let g be continuous at  $\mathbf{y}_0 = f(\mathbf{x}_0)$ . Then  $h: \Omega \subset \mathbb{R}^n \to \mathbb{R}^o$ ,

$$h(\mathbf{x}) = g(f(\mathbf{x}_0))$$

is continuous at  $\mathbf{x}_0$ .

These two theorems can be used to decide continuity of very complicated functions, once simpler functions are proven to be continuous

### Examples

- polynomials in any variable
- exponential function
- sine, cosine ...
- any composition of such
- careful with division!

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad f(\mathbf{x}) = \exp[-||\mathbf{x}||^4 + \cos(x_1)]x_1x_2x_3^4(1+x_1^2)^{-2}$$

#### **Definition: Partial derivative**

Let  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$  be a scalar-valued function,  $\Omega$  open. The partial derivatives with respect to the variable  $x_i$  are defined by

$$\frac{\partial}{\partial x_i} f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\vec{x})}{h}$$

if the limit exists.

In the case  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ , the the partial derivatives are defined componentwise, i.e.,

$$\frac{\partial}{\partial x_i} f_j(\mathbf{x}).$$

## Example

$$f(x,y) = xy$$

$$\frac{\partial}{\partial x} f(x, y) = \lim_{h \to 0} \frac{(x+h)y - xy}{h}$$
$$= \lim_{h \to 0} \frac{hy}{y} = \lim_{h \to 0} y = y$$

## Single-variable functions

• For "ordinary" functions  $f: [a,b] \subset \mathbb{R} \to \mathbb{R}$ , consider the derivative:

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

if the limit exists.

- Indeed, for vector-valued functions, the partial derivative is calculated as if *f* was a1-variable function!
- All the other variables are "held constant"

#### Derivative as slope

- Derivative is the *slope of tangent at x*
- When f(x) has a derivative at x, the function  $can\ be$  approximated

$$f(y) = f(x) + f'(x)(y - x) + \text{small error}$$

• Here y is close to x

Want something like this for vector-valued funcs



### Derivative as slope/tangent





• Partial derivative is the rate of change as one moves in one direction

# Existence of partial derivatives seems good ...

#### Example

let  $f : \mathbb{R}^2 \to \mathbb{R}$ ,  $(x, y) \mapsto f(x, 0) = 0$  and f(0, y) = 0,

$$\frac{\partial}{\partial x}f(0,0) = \frac{\partial}{\partial y}f(0,0)$$

But along the "diagonal"

$$g(x) = f(x, x) = x^{2/3}$$
.

The derivative of g(x) is

$$g'(x) = \frac{2}{3}x^{-1/3} \to +\infty \text{ as } x \to 0$$
 (3)

Existence of partial derivatives at a point is NOT GOOD ENOUGH!



#### **Definition: Differentiable**

Let  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ , with  $\Omega$  open. We say that f is differentiable at  $\mathbf{x}_0 \in \Omega$  if the partial derivatives all exist at  $\mathbf{x}_0$ , and if

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{\|f(\mathbf{x})-f(\mathbf{x}_0)-M(\mathbf{x}-\mathbf{x}_0)\|}{\|\mathbf{x}-\mathbf{x}_0\|}=0,$$

What does this mean?

where  $M = Df(\mathbf{x}_0)$ , the *derivative*, is the matrix of partial derivatives,

$$M_{ij} = \frac{\partial f_i(\mathbf{x}_0)}{\partial x_j}.$$

and where  $M(\mathbf{x}-\mathbf{x}_0)$  is the matrix-vector product applied to  $\mathbf{x}-\mathbf{x}_0$ .

Interpretation of diffability condition

• Condition for a first-order Taylor polynomial at  $\mathbf{x}_0$ 

Small error term

$$f(\mathbf{x}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + o(||\mathbf{x} - \mathbf{x}_0||^2)$$

• Generalization of the slope of the tangent line to higher dimensions

#### Theorem 1

Intuitive, and good to know

If f is differetiable at  $\mathbf{x}_0$ , it is continuous at  $\mathbf{x}_0$ .

Resolves the ugly example

#### Theorem 2: Condition for differentiability

Let  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ , with  $\Omega$  open. Suppose the partial derivatives all exist at  $\mathbf{x}_0$ , and furthermore that they are all continuous in a neighborhood of  $\mathbf{x}_0$ . Then f is differentiable at  $\mathbf{x}_0$ .

## Continuously differentiable functions

• These functions can always be approximated by first-order Polynomials

#### Definition 1: $C^1$ functions

A function whose partial derivatives exist and are continuous throughout its open domain  $\Omega$  is said to be of class  $C^1$ .

#### Theorem: Properties of the derivative

1. Let  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$  be differentiable at  $\mathbf{x}_0 \in \Omega$ , and let  $c \in \mathbb{R}$ . Then  $h(\mathbf{x}) = cf(\mathbf{x})$  is differentiable at  $\mathbf{x}_0$ , and

$$Dh(\mathbf{x}_0) = cDf(\mathbf{x}_0).$$

Linearity

2. Let  $g: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$  be another function differentiable at  $\mathbf{x}_0$ . Then  $h(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$  is differentiable at  $\mathbf{x}_0$ , and

$$Dh(\mathbf{x}_0) = Df(\mathbf{x}_0) + Dg(\mathbf{x}_0). \tag{2}$$

3. Let  $f, g : \Omega \subset \mathbb{R}^n \to \mathbb{R}$  be *scalar-valued* functions, differentiable at  $\mathbf{x}_0 \in \Omega$ . Then  $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$  is differentiable at  $\mathbf{x})_0$ , and

$$Dh(\mathbf{x}_0) = g(\mathbf{x}_0)Df(\mathbf{x}_0) + f(\mathbf{x}_0)Dg(\mathbf{x}_0).$$

Product rule

4. As in 3, and additionally that g > 0 thrughout  $\Omega$ . Then  $h(\mathbf{x}_0) = f(\mathbf{x}_0)/g(\mathbf{x}_0)$  is differentiable at  $\mathbf{x}_0$ , and

$$Dh(\mathbf{x}_0) = \frac{g(\mathbf{x}_0)Df(\mathbf{x}_0) - f(\mathbf{x}_0)}{[g(\mathbf{x}_0)]^2}$$

Quotient rule

#### Theorem: Chain rule

Let  $\Omega \subset \mathbb{R}^n$  and  $\Omega' \subset \mathbb{R}^m$  be open sets, and let  $g: \Omega \to \mathbb{R}^m$  with  $g[\Omega] \subset \Omega'$ . Let  $f: \Omega' \to \mathbb{R}^o$ . Thus,  $h = f \circ g: \Omega \to \mathbb{R}^o$  is defined. Suppose g is differentiable at  $\mathbf{x}_0 \in \Omega$ , and f is differentiable at  $\mathbf{y}_0 = f(\mathbf{x}_0) \in \Omega'$ . Then  $f \circ h$  is differentiable at  $\mathbf{x}_0$  with derivative

$$D(f \circ g)(\mathbf{x}_0) = Df(\mathbf{y}_0)Df(\mathbf{x}_0),$$

i.e., the matrix product of the Jacobian matrices.

# Ex: Drone measuring temperature

 $g(t) = f(\mathbf{c}(t)) \in \mathbb{R}$  temperature along path

Total time derivative of temperature measured:

$$\frac{\mathrm{d}g}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial t}.$$



## Higher derivatives

- f is of class  $C^2$  if the partial derivatives (matrix elements of Df) are of class  $C^1$
- Matrix elements of  $D(Df) = D^2f$ : Iterated partial derivatives

$$[D^2 f(\mathbf{x})]_{ijk} = \frac{\partial^2}{\partial x_i \partial x_k} f_i(\mathbf{x}) = \frac{\partial^2}{\partial x_k \partial x_j} f_i(\mathbf{x})$$

• Fact: If  $C^2$ , then partial derivatives are symmetric

#### Theorem: Second-order Taylor formula

Important for optimization!

et  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$  be of class  $C^2$ . Then we may write

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0)\mathbf{h} + \frac{1}{2}\mathbf{h}^T D^2 f(\mathbf{x}_0)\mathbf{h} + R_2(\mathbf{h}, \mathbf{x}_0),$$

where the *remainder* satisfies  $R_2(\mathbf{h}, \mathbf{x}_0)/||\mathbf{h}||^2 - 0$  as  $\mathbf{h} \to 0$ , written

$$R_2(\mathbf{h}, \mathbf{x}_0) = o(||\mathbf{h}||^2).$$

Polynomial!

The symbol  $D^2 f(\mathbf{x}_0)$  is the *Hessian* of f, the matrix of second-order mixed partial derivatives, a symmetric matrix.

#### Example

Compute the second-order Taylor polynomial of  $f(x, y) = \exp(-x^2 - y^2)$  at (0, 0).

$$Df(x,y) = [-2xf(x,y), -2yf(x,y)],$$
(1)

$$D^{2}f(x,y) = \begin{bmatrix} (4x^{2} - 2)f(x,y) & 4xyf(x,y) \\ 4xyf(x,y) & (4y^{2} - 2)f(x,y) \end{bmatrix}$$
(2)

$$f(0,0) = 1$$
,  $Df(0,0) = [0,0]$ ,  $D^2 f(0,0) = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$  (3)

$$f(x,y) = 1 - (x^2 + y^2) + o(x^2 + y^2).$$
 (4)



### Critical points

- Jacobian is zero
- Archetypal examples of *local maximum*, *local minimum*, *and saddle point*



$$x^2 + y^2$$



$$-x^2-y^2$$



$$x^2 - y^2$$

#### Theorem: Classification of critical points

et  $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ , with  $\Omega$  being an open domain. Let f be of class  $C^2$ . Let  $H = D^2 f(\mathbf{x})$  be the second derivative (Hessian) at a critical point  $\mathbf{x} \in \Omega$ , i.e.,  $Df(\mathbf{x}) = 0$ . Then we have:

- 1. If all the eigenvalues of H are positive, then  $\mathbf{x}$  is a local minimium.
- 2. If all the eigenvalues of H are negative, then  $\mathbf{x}$  is a local maximum.
- 3. If there are eigenvalues of H with both positive and negative values, but no zero eigenvalues, then  $\mathbf{x}$  is a saddle point.
- 4. If some eigenvalues are zero, we cannot conclude based on second-order Taylor polynomials.

### Further topics

- Series and convergece of series
- Integration over curves, surfaces, volumes ...
- Vector operations: curl, divergence, gradient ...
- Gauss' and Stoke's theorems for integration
- My presentation is based on  $\rightarrow$

