## Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа                     | M3217                                                              | К работе допущен                                                           |
|----------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| Студент <u>Бессо</u>       | онов Борис                                                         | Работа выполнена <u>17.10.23</u>                                           |
| Преподавател               | пь <u>Тимофеева Эльвира Олеговна</u>                               | Отчет принят                                                               |
|                            |                                                                    | окол и отчет по<br>и́ работе №1.04                                         |
| Иссл                       | едование равноускоренного враща                                    | ательного движения (Маятник Обербека)                                      |
| • •                        | а основного закона динамики враш                                   | дения.<br>положения масс относительно оси вращения.                        |
| 2. Задачи, реша            | аемые при выполнении работы.                                       |                                                                            |
| 1. Измерение в крестовине. | времени падения груза при разной                                   | массе груза и разном положении утяжелителей н                              |
| 2. Расчёт уско             | рения груза, углового ускорения к                                  | рестовины и момента силы натяжения нити.                                   |
| 3. Расчёт моме             | ента инерции крестовины с утяжел                                   | ителями и момента силы трения.                                             |
|                            | ие зависимости момента силы на<br>она динамики вращения.           | атяжения нити от углового ускорения. Проверк                               |
|                            | ие зависимости момента инерции емы Штейнера.                       | от положения масс относительно оси вращения                                |
| 3. Объект иссл             | педования.                                                         |                                                                            |
|                            | движение маятника Обербека с пр<br>га инерции маятника (расстоянию | оивязанным к нему грузом в зависимости от масснот центра до утяжелителей). |
| 4. Метод экспе             | ериментального исследования.                                       |                                                                            |

1. Списать или сфотографировать данные об установке на рабочем месте.

- 2. Ознакомится с лабораторным стендом (см. рис. 2). Отвернуть рукоятку 2 сцепления крестовин, так чтобы передняя крестовина вращалась независимо от задней.
- 3. Положение каждого утяжелителя на крестовине задается номером риски (канавки на спице), по которой выравнивается грань утяжелителя, ближайшая к оси вращения. Установить все утяжелители на первую риску.
- 4. Установить в качестве подвешенного груза каретку 10 с одной шайбой 9. Остальные три шайбы 9 закрепить наверху трубчатой направляющей 6. Измерить три раза время прохождения кареткой из неподвижного положения пути от отметки  $h_1 = 700$  мм до отметки  $h_2 = 0$ . При этом  $h = h_1 - h_2 =$ 700 мм. Массу  $m_1$  каретки с одной шайбой и результаты измерения времени  $t_1$ ,  $t_2$ ,  $t_3$  занести в соответствующие ячейки таблицы 1.
- 5. Не изменяя положение утяжелителей крестовины повторить п. 4 для каретки с двумя шайбами (масса  $m_2$ ), тремя шайбами (масса  $m_3$ ) и четырьмя шайбами (масса  $m_4$ ).
- 6. Повторить измерения пп. 4,5 при положении утяжелителей на второй, третьей, ..., шестой рисках.
- 5. Рабочие формулы и исходные данные.
  - 1. Среднее арифметическое:

$$\bar{t} = \frac{1}{N} \sum_{i=1}^{N} t_i$$

2. Абсолютная погрешность прямого измерен

$$\Delta t = t_{\alpha, N} \cdot \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

3. Ускорение груза, падающего с высоты h за время t:

$$a = \frac{2h}{t^2},$$

4. Угловое ускорение крестовины:

$$\varepsilon = \frac{2a}{d}$$

5. Момент силы натяжения нити:

$$M = \frac{md}{2}(g - a)$$

6. Абсолютная погрешность косвенного измерения:

$$\Delta_z = \sqrt{\left(\frac{\partial f}{\partial x_1} \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \Delta_{x_2}\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n} \Delta_{x_n}\right)^2}$$

7. Угловой коэффициент линейной зависимости у(x)=a+bx: 
$$b=\frac{\sum (x_i-\overline{x})(y_i-\overline{y})}{\sum (x_i-\overline{x})^2}$$

8. Свободный член линейной зависимости y(x)=a+bx:

$$a = \overline{y} - b\overline{x}$$

9. Погрешность углового коэффициента:

$$d_i = y_i - (a + bx_i)$$

$$D = \sum_i (x_i - \overline{x})^2$$

$$\Delta b = t_{\alpha, N} \cdot \sqrt{\frac{\sum_i d_i^2}{D(n-2)}}$$

10. Погрешность свободного члена:

$$\Delta a = t_{\alpha, N} \cdot \sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{D}\right) \frac{\sum d_i^2}{n - 2}}$$

11. Расстояние от центра крестовины до центра утяжелителя:

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

где 11 — расстояние до первой риски от центра, n — номер риски, 10 — расстояние между соседними рисками, b — размер утяжелителя вдоль спицы.

$$11=(57\pm0.5)$$
 MM

$$10=(25\pm0.)$$
 MM

$$b=(40\pm0.) \text{ MM}$$

- 12. Диаметр ступицы:  $d = (46.0 \pm 0.5)$  мм
- 13. Высота сброса груза:

$$h = (700 \pm 0.5) \text{ MM}$$

- 14. Коэффициент Стьюдента для  $\alpha = 0.95$ , N = 3:  $t_{0.95,3} = 4.3$
- 15. Ускорение свободного падения в Санкт-Петербурге:

$$g = 9.82 \text{ M/c}^2$$

- 16. Второй закон Ньютона: ma = mg T
  - т масса груза, создающего натяжение нити
  - а ускорение груза, создающего натяжение нити
  - g ускорение свободного падения
  - Т сила натяжения нити

6. Измерительные приборы.

| № n/n | Наименование | Тип прибора | Используемый<br>диапазон | Погрешность<br>прибора |  |
|-------|--------------|-------------|--------------------------|------------------------|--|
| 1     | Секундомер   | цифровой    | 0-15 с                   | 10 мс                  |  |
| 2     | Линейка      | аналоговый  | 0-700 мм                 | 0.5 мм                 |  |

## 7. Схема установки (перечень схем, которые составляют Приложение 1).



1 — основание, 2 — рукоятка сцепления крестовин, 3 — устройство принудительного трения, 4 — поперечина, 5 — груз крестовины, 6 — трубчатая направляющая, 7 — передняя крестовина, 8 — задняя крестовина, 9 — шайбы каретки, 10 — каретка, 11 — система передних стоек

# 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

| Macca    | Положение утяжелителей |         |         |         |         |         |  |
|----------|------------------------|---------|---------|---------|---------|---------|--|
| груза, г | 1 риска                | 2 риска | 3 риска | 4 риска | 5 риска | 6 риска |  |
| 0.27     | 5,12                   | 5,85    | 6,92    | 8,15    | 9,5     | 11,02   |  |
|          | 4,97                   | 5,93    | 6,8     | 7,87    | 9,39    | 10,92   |  |
|          | 4,83                   | 5,92    | 6,77    | 8,02    | 9,47    | 10,79   |  |
|          | 4,9                    | 5,9     | 6,83    | 8,01    | 9,45    | 10,91   |  |
|          | 3,27                   | 4,02    | 4,63    | 5,3     | 6,55    | 6,65    |  |
| 0.49     | 3,53                   | 4,13    | 4,77    | 5,62    | 6,48    | 6,78    |  |
|          | 3,26                   | 3,95    | 4,55    | 5,43    | 6,48    | 6,47    |  |
|          | 3,35                   | 4,03    | 4,65    | 5,45    | 6,50    | 6,63    |  |
| 0.71     | 2,71                   | 3,08    | 3,63    | 4,43    | 5,18    | 5,37    |  |

|      | 2,38 | 3    | 3,72 | 4,25 | 4,93 | 5,17 |
|------|------|------|------|------|------|------|
|      | 2,71 | 3,12 | 3,86 | 4,38 | 4,9  | 6,19 |
|      | 2,60 | 3,07 | 3,74 | 4,35 | 5,00 | 5,58 |
| 0.93 | 2,23 | 2,73 | 3,06 | 3,8  | 4,63 | 5,22 |
|      | 2,2  | 2,85 | 3,15 | 3,67 | 4,23 | 4,5  |
|      | 2,3  | 2,7  | 3,06 | 3,73 | 4,39 | 4,85 |
|      | 2,24 | 2,76 | 3,09 | 3,73 | 4,42 | 4,86 |

# 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Вычисленное ускорение а груза, угловое ускорение  $\varepsilon$  крестовины и момент M силы натяжения нити с помощью формул:

| Масса груза, г | $t_{cp}, c$ | $a, m/c^2$ | ε, c <sup>-2</sup> | М, Н*м |
|----------------|-------------|------------|--------------------|--------|
|                | 4,96        | 0,06       | 2,54               | 0,06   |
|                | 5,90        | 0,04       | 1,75               | 0,06   |
| 0,27           | 6,83        | 0,03       | 1,30               | 0,06   |
| 0,27           | 8,01        | 0,02       | 0,95               | 0,06   |
|                | 9,45        | 0,02       | 0,68               | 0,06   |
|                | 10,91       | 0,01       | 0,51               | 0,06   |
|                | 3,35        | 0,12       | 5,42               | 0,11   |
|                | 4,03        | 0,09       | 3,75               | 0,11   |
| 0,49           | 4,65        | 0,06       | 2,82               | 0,11   |
| 0,49           | 5,45        | 0,05       | 2,05               | 0,11   |
|                | 6,50        | 0,03       | 1,44               | 0,11   |
|                | 6,63        | 0,03       | 1,38               | 0,11   |
|                | 2,60        | 0,21       | 9,00               | 0,16   |
|                | 3,07        | 0,15       | 6,46               | 0,16   |
| 0,71           | 3,74        | 0,10       | 4,35               | 0,16   |
| 0,71           | 4,35        | 0,07       | 3,22               | 0,16   |
|                | 5,00        | 0,06       | 2,43               | 0,16   |
|                | 5,58        | 0,04       | 1,95               | 0,16   |
|                | 2,24        | 0,28       | 12,13              | 0,20   |
|                | 2,76        | 0,18       | 7,99               | 0,21   |
| 0,93           | 3,09        | 0,15       | 6,38               | 0,21   |
| 0,93           | 3,73        | 0,10       | 4,38               | 0,21   |
|                | 4,42        | 0,07       | 3,12               | 0,21   |
|                | 4,86        | 0,06       | 2,58               | 0,21   |

| Номера | 1        | 2        | 3        | 4        | 5        | 6        |
|--------|----------|----------|----------|----------|----------|----------|
| рисок  |          |          |          |          |          |          |
| R      | 0,077    | 0,102    | 0,127    | 0,152    | 0,177    | 0,202    |
| R2     | 0,005929 | 0,010404 | 0,016129 | 0,023104 | 0,031329 | 0,040804 |
| I      | 0,01     | 0,02     | 0,03     | 0,04     | 0,06     | 0,07     |

### 10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$t_{cp}(m=0,27, pucka 1) = \frac{5,12+4,92+4,83+4,9}{4} = ^{-4},96$$

$$t_{cp}(m=0,27, pucka 2) = \frac{5,85+5,93+5,92+5,9}{4} = ^{-5},9$$

$$t_{cp}(m=0,27, pucka 3) = \frac{6,92+6,8+6,77+6,83}{4} = ^{-6},83$$

$$t_{cp}(m=0,27, pucka 4) = \frac{8,15+7,87+8,02+8p1}{4} = ^{-8},01$$

$$t_{cp}(m=0,27, pucka 4) = \frac{9,5+9,39+9,47+9,46}{4} = ^{-9},95$$

$$t_{cp}(m=0,27, pucka 6) = \frac{9,5+9,39+9,47+9,46}{4} = ^{-9},95$$

По формуле 5, вычислим  $\Delta t$  (коэф. Стьюдента = 4.303) для первого  $t_{\rm cp}$ 



 $\Delta t = 0.758 - абсолютная$   $\varepsilon_x = 15\%$  - относительная

Для а Доверительный интервал 0,01 Абсолютная погрешность 0,67

Для  $\varepsilon$  Доверительный интервал 0,29 Абсолютная погрешность 0,73

Для M Доверительный интервал  $\sim 0.00$  Абсолютная погрешность 0.67

### 11. Графики (перечень графиков, которые составляют Приложение 2).



График зависимости М от є для разных положений утяжелителей



По МНК:

$$I_0 = 0.004$$
  
 $m_{\rm vr} = 0.42$ 

12. Окончательные результаты.

$$\Delta t = 0.758 - абсолютная$$
  $\varepsilon_x = 15\%$  - относительная

Для а

Доверительный интервал 0,01 Абсолютная погрешность 0,67

Для  $\varepsilon$ 

Доверительный интервал 0,29 Абсолютная погрешность 0,73

Для M Доверительный интервал  $\sim$ 0,00 Абсолютная погрешность 0,67

$$I_0 = 0.004$$
  
 $m_{\text{VT}} = 0.42$ 

13. Выводы и анализ результатов работы.

В результате исследования был получен График 1 зависимости  $M = I\varepsilon - M_{\rm Tp}$ , который лежит в пределе погрешностей экспериментально полученных точек, а с увеличением расстояние между грузиками и осью вращения и, соответственно, увеличением момента инерции I крестовины увеличивается угол наклона графика. Следовательно, проверка основного закона динамики вращения была успешной.

Также мы убедились, что момент инерции крестовины зависит от положения масс относительно оси вращения. На Графике 2 можно увидеть, что зависимость похожа на  $I(R^2) = I_0 + 4m_{vt}R^2$ 

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

#### Примечание:

- 1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколеотчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.