

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

CONVOLUTIONAL NEURAL NETWORK

- Neural Networks that use convolution in place of general matrix multiplication in at least one layer
- There are three types of layers in the convolutional network,
 - Convolution layer (Conv)
 - Pooling layer (Pool)
 - Fully connected layer (FC)

CNN ... Stride

$$n \times n$$
 image,

$$f \times f$$
 filter

padding p,

stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

$$\lfloor z \rfloor = floor(z)$$

If the fraction is not an integer, then we will get floor of the result.

CNN ... Multiple Filters (Example)

□ If we use 100 filters, we get 100 feature maps

CONVOLUTION OVER VOLUME

RGB Images ... Convolution

- □ We have only considered a 2-D image previously,
- □ We could operate on volumes as well, e.g.,
 - RGB Images have depth 3 input, a filter would have the same depth,

Height × Width × Channel

The channels/depths should be the same

$$n \times n \times n_c$$
 image,

$$f \times f \times f_c$$
 filter

$$n-f+1 \times n-f+1 \times n'_c$$

CNN ... NOTATIONS

If layer l is the convolution layers,

- $\Box f^{[l]} = \text{filter size}$
- $p^{[l]} = padding$
- \Box $s^{[l]} = \text{stride}$

□ Input image,

$$n^{[l-1]} \times n^{[l-1]} \times n_c^{[l-1]}$$

Input image with different height and width,

$$n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$$

Output,

$$n^{[l]} \times n^{[l]} \times n_c^{[l]}$$

$$n^{[l]} = \left\lfloor \frac{n^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right\rfloor$$

 Output: when input image is with different height and width, $n_{\mu}^{[l]} \times n_{\mu}^{[l]} \times n_{c}^{[l]}$

$$n_H^{[l]} = \left[\frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right] \quad n_W^{[l]} = \left[\frac{n_W^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right]$$

$$n_W^{[l]} = \left[\frac{n_W^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right]$$

□ Output,

$$n^{[l]} \times n^{[l]} \times n_c^{[l]}$$

$$n^{[l]} = \left[\frac{n^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right]$$

- $n_c^{[l]} = \text{number of filters},$
- □ Each filters,

$$f^{[l]} \times f^{[l]} \times n_c^{[l-1]}$$

Activations:

$$a^{[l]} = n^{[l]} \times n^{[l]} \times n_c^{[l]}$$

For **multiple activations** in case of batch gradient descent (vectorized implementation)

$$A^{[l]} = M \times n^{[l]} \times n^{[l]} \times n_c^{[l]}$$

Weights:

$$w^{[l]} = f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$$

Bias:

$$b^{[l]} = n_c^{[l]}$$

This bias can be represented as a matrix as,

$$b^{[l]} = (1, 1, 1, n_c^{[l]})$$

CNN ... Example

$$z^{[1]} = (a^{[0]} \times w^{[1]}) + b^{[1]}$$
$$a^{[1]} = g(z^{[1]})$$

Where g is the activation function (apply non-linearity)

Here, in that case, we may apply Rectified Linear Unit (ReLU) as an activation function.

ReLU

□ Rectified Linear Unit (ReLU)

$$f(x) = \max(0, x)$$

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason, (one sided)
- 3. Efficient gradient propagation (accelerate (e.g. a factor of 6) the convergence of stochastic gradient descent compared to the sigmoid/tanh functions.)
- 4. Scale-invariant
- 5. Sparse activation

CNN ... POOLING

Pooling

Other options: Average pooling, L2-norm pooling, random pooling

Dr. Hashim Yasin

Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Max Pooling ... Example

1	3	2	1	3
2				5
1				2
8				0
5	6	1	2	9

Filter:	f	=	3
---------	---	---	---

Stride: s = 1

9	9	5
9	9	5
8	6	9

Pooling Layer ... Over Volume

on each channel

Pooling Layer ... Average Pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Filter: f = 2Stride: s = 2

Pooling Layer ... Hyperparameters

The hyperparameters for pooling layers are:

- \Box f: filter size
- □ S: stride
- □ Max or average pooling
- Padding
 - (which is very rarely used)

Pooling Layer

Input:

$$n_H$$
 \times n_W \times n_C

Output:

$$\left\lfloor \frac{n_H - f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n_W - f}{s} + 1 \right\rfloor \times n_C$$

Note: There is NO parameter to learn in the pooling layer

CNN ... EXAMPLE

CNN ... Example 3

Construct the CNN with the following specifications,

- \square The RGB image of size 32×32 is given as input
- Layer 1-Conv1: There are 6 filters of size 5×5 , stride = 1 and no padding,
- □ Layer 1-Pool1: There are 6 filters of size 2×2 , stride = 2 and no padding,
- □ Layer 2-Conv2: There are 16 filters of size 5×5 , stride = 1 and no padding,
- □ Layer 2-Pool2: There are 16 filters of size 2×2 , stride = 2 and no padding,
- Layer 3-FC3: There are 120 neurons in FC3.
- Layer 4-FC4: There are 84 neurons in FC4.
- Output Layer: with 10 classes.

CNN ... Example 3 (Summary)

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	3,072	0
CONV1 (f=5, s=1)	(28,28,6)	4,704	$(5 \times 5 \times 3 + 1) \times 6 = 456$
POOL1	(14,14,6)	1,176	0
CONV2 (f=5, s=1)	(10,10,16)	1,600	$(5 \times 5 \times 6 + 1) \times 16 = 2416$
POOL2	(5,5,16)	400	0
FC3	(120,1)	120	400×120 + 120 = 48120
FC4	(84,1)	84	120×84 + 84 = 10164
Softmax	(10,1)	10	84×10 + 10 = 850

Acknowledgements

Stuart J. Russell and Peter Norvig, Tom M. Mitchell, Jiwon Jeong, Floydhub, Andrej Karpathy