Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження арифметичних циклічних алгоритмів»

Варіант 17

Виконав студент ІП-15 Куркчі Юрій

Перевірив

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 17

Задано прямокутник розміром $m \times n$, де m, n - цілі числа і <math>m > 0, n > 0. Обчислити площу прямокутника на основі залежності:

$$S(n,m) = \begin{cases} 1, \text{ якщо } n = m = 1; \\ S(n-1,m) + m, \text{ якщо } n > 1; \\ S(n,m-1) + 1, \text{ якщо } m > 1. \end{cases}$$

Постановка задачі

вводитьсяідва натуральні числа m, n за умови ,що(m, n >0) та алгоритм обчислює площу прямокутника, сторони якого дорівнюють n та m.

Побудова математичної моделі

Змінна	Тип	Ім я	Призначення
Довжина	Натуральний	Catethus1	Початкові
першого			данні
катету			
Довжина	Натуральний	Catethus2	Початкові
другого			данні
катета			
Перший	Натуральний	n	Проміжніі
параметр			данні
функції			
Другий	Натуральний	m	Проміжні
параметр			данні
функції			
Значення	Натуральний	S	Кінцеві данні
площі			

Функція square(n,m) розраховує площу прямокутника.

Площу розраховуємо за допомогою функції square(n,m) з фактичними параметрами:

n:= Catethus 1, m:= Catethus 2. Якщо n>1, з кожним викликом функція зменшує параметр n та додає до поточного значення m square (n,m):= square (n-1,m)+m. Значення результата ϵ square (1,m)+(n-1)*m. Якщо m>1 з кожним викликом функція зменшує параметр m та додає до поточного значення m square m0, m1, m2, m3, m3, m4, m5, m6, m7, m8, m8, m9, m9,

Розв'язання

- 1. Визначимо основні дії.
- 2. Деталізуємо дію розрахунку площі прямокутника.
- 3. Деталізуємо дію рекурсивного виклику функції square(n, m) залежно від заданих параметраметрів

Псевдокод алгоритму

Крок 1

Початок

Введення Catethus 1, Catethus 2.

Обчислення площі прямокутника

Виведення S

Кінець

Підпрограма square(n, m) Обислення функції залежно від умов Кінець підпрограми

```
Крок 2
Початок
Введення Catethus1, Catethus2.
S:=square(Catethus1, Catethus2)
Виведення S
Кінець
Підпрограма square(n, m)
Обислення функції залежно від умов
Кінець підпрограми
Крок 3
Початок
Введення Catethus1, Catethus2.
S:=square(Catethus1, Catethus2.)
Виведення S
Кінець
Підпрограма square(n, m)
якщо n>1
     то повернути square(n-1, m)+m
інакше якщо m>1
```

то повернути square(n-1, m)+m

інакше

то повернути 1

кінець підпрограми

Блок-схеми Крок 1

Крок 2

Крок 3

Випробування

No	Дія
	Початок
1	Введення Catethus 1= 2, Catethus 2=3.
2	S=square(2,3)
3	Обислення підпрограми square(2,3)
	square(2,3)=square(1,3)+3
	square(1,3)=square(1,2)+1
	square(1,2)=square(1,1)+1
	square(1,1)=1
	square(1,2)=2
	square(1,3)=3
	square(2,3)=6
4	Вивід S
	S=6
	кінець

Код

```
#include <iostream>
     #include <math.h>
     using namespace std;
     int square(int, int);
     int cathetus1, cathetus2, S;
     int main (){
11
        cout << "enter m: ";</pre>
12
        cin >> cathetus1;
13
          cout << "enter n: ";</pre>
        cin >> cathetus2;
15
16
        S=square(cathetus1, cathetus2);
       cout << "Square equals " << S;</pre>
18
     return 0;
21
      int square(int n, int m){
23
        if(n>1){
24
         return square(n-1,m)+m;
        }
        else if(m>1){
        return square(n, m-1)+1;
        else {
30
        return 1;
      }
```

терминал

```
enter m: 2
enter n: 3
Square equals 6
```

Висновок

Після виконання лабораторної роботи я навчився використовувати рекурсивні алгоритми, було створено алгоритм для розрахунку площі прямокутника після введення двох натуральних чисел.