A FOODIE'S QUEST TO PREDICT YELP RESTAURANT RATINGS

Lina Lavitsky
General Assembly ~ May 24, 2017

PROJECT OVERVIEW

Can I predict Yelp ratings for restaurants using business characteristics?

Applications:

 Helpful for restaurant owners to know what features affect their ratings

DATA

- 72000 businesses of which 22000 are restaurants
- 89 different features, of which I isolated the ones that I thought could be most helpful in predicting rating review:

```
cols_to_keep = ['stars','state', 'review_count','Noise Level', 'Attire', 'Price_Range',
'Delivery', 'Good_for_Groups', 'Waiter_Service', 'Number_of_Checkins', 'Take_Out',
'Number_of_Tips']
```

- To simplify the question and make the distribution more even, I created a new variable in which I placed above median ratings into "good rating" bucket and median and below ratings into "not good rating" bucket
- Kept the 5 largest states (some states only had a few values each)
- Got rid of rows with null values in the columns I cared about
- Combined "\$\$\$" and "\$\$\$\$" into one price category because there were fewer
 of those values
- Final data: 14,325 restaurants

LOGISTIC REGRESSION RESULTS - EXPANDED MODEL

Logit Regression Results

Dep. Variable: Model:	overall_rating Logit		No. Observations: Df Residuals:		14325 14309	
	ethod: MLE ate: Sat, 20 May 2017		Df Model: Pseudo R-squ.: Log-Likelihood:		15 0.06840 -8912.0 -9566.4 7.221e-270	
Date:						
Time:						
convergeu.						
	coef	std err	z	P> z	[95.0% Con	f. Int.]
log reviews	0.4981	0.018	27.669	0.000	0.463	0.533
deliv_1.0	-0.0806	0.047	-1.700	0.089	-0.173	0.012
groups_1.0	-0.0097	0.065	-0.149	0.882	-0.137	0.118
waiter_1.0	-0.1075	0.046	-2.350	0.019	-0.197	-0.018
takeout_1.0	-0.1620	0.096	-1.685	0.092	-0.350	0.026
price_2	-0.4236	0.045	-9.323	0.000	-0.513	-0.335
price_3	-0.0924	0.126	-0.735	0.462	-0.339	0.154
noise_1	2.0456	0.180	11.345	0.000	1.692	2.399
noise_2	1.5246	0.178	8.581	0.000	1.176	1.873
noise_3	0.7927	0.193	4.112	0.000	0.415	1.170
attire_1	-0.2740	0.147	-1.864	0.062	-0.562	0.014
state_AZ	-0.1616	0.082	-1.983	0.047	-0.321	-0.002
state_NC	-0.0535	0.094	-0.572	0.567	-0.237	0.130
state_NV	-0.4448	0.085	-5.243	0.000	-0.611	-0.279
state_PA	0.2345	0.099	2.367	0.018	0.040	0.429
intercept	-3.0195	0.258	-11.688	0.000	-3.526	-2.513

LOGISTIC REGRESSION RESULTS - SIMPLIFIED MODEL

Logit Regression Results

Dep. Variable:	overall rating	No. Observations:	14325
Model:	Logit	Df Residuals:	14317
Method:	MLE	Df Model:	7
Date:	Sat, 20 May 2017	Pseudo R-squ.:	0.06719
Time:	15:29:28	Log-Likelihood:	-8923.6
converged:	True	LL-Null:	-9566.4
		LLR p-value:	2.204e-273

	coef	std err	z	P> z	[95.0% Con	f. Int.]
log_reviews	0.4922	0.017	28.887	0.000	0.459	0.526
price 2	-0.4741	0.038	-12.386	0.000	-0.549	-0.399
noise 1	2.0118	0.180	11.196	0.000	1.660	2.364
noise 2	1.5045	0.177	8.493	0.000	1.157	1.852
noise 3	0.7907	0.192	4.110	0.000	0.414	1.168
state NV	-0.3059	0.041	-7.415	0.000	-0.387	-0.225
state PA	0.3589	0.067	5.384	0.000	0.228	0.489
intercept	-3.5949	0.184	-19.487	0.000	-3.956	-3.233

After gridsearch: ROC_AUC = 0.67

Odds Ratio:

0.622435
7.476790
4.501933
2.204840
0.736481
1.431698

RANDOM FOREST MODEL

n trees: 1, CV AUC [0.56481514 0.56790506 0.53308935],

Average AUC 0.555269854439

n trees: 11, CV AUC [0.60284402 0.6044822 0.56650098],

Average AUC 0.591275731953

n trees: 21, CV AUC [0.60835283 0.60477434 0.56921241],

Average AUC 0.594113194136

n trees: 31, CV AUC [0.60694837 0.60245463 0.56526492],

Average AUC 0.591555975863

n trees: 41, CV AUC [0.60650619 0.60501957 0.56891859],

Average AUC 0.593481449823

Average AUC 0.593496376828

n trees: 61, CV AUC [0.60625067 0.60361555 0.56885687],

Average AUC 0.592907696157

n trees: 71, CV AUC [0.60848918 0.60535004 0.56916224],

Average AUC 0.594333820187

n trees: 81, CV AUC [0.60654662 0.60545404 0.56815328],

Average AUC 0.593384650726

Average AUC 0.594421736393

	Features	Importance Score		
0	log_reviews	0.790777		
5	price_2	0.025441		
1	deliv_1.0	0.023570		
3	waiter_1.0	0.021824		
2	groups_1.0	0.019122		
7	noise_1	0.015856		
8	noise_2	0.014770		
13	state_NV	0.014271		
4	takeout_1.0	0.013811		
11	state_AZ	0.013804		
12	state_NC	0.011004		
9	noise_3	0.010232		
14	state_PA	0.009770		
6	price_3	0.008230		
10	attire_1	0.007518		
15	intercept	0.000000		

VISUALIZING RESULTS - LOGISTIC REGRESSION

VISUALIZING RESULTS - RANDOM FOREST

VISUALIZING RESULTS - COMPARISON

BONUS: CAN WE PREDICT REVIEWS USING TEXT COMMENTS?

- Downloaded yelp user reviews json file
- Had 4,153,151 text reviews; randomly sampled 10,000 of them
- ALso created an "overall rating category"
- Ran CountVectorizer and TfidfVectorizer, then fit and transformed the data, and then used a Random Forest Classifier
 - Count Vectorizor: converts collection of text into matrix of features
 - Term Frequency and Inverse Document Frequency: provides count of features as well as uniqueness of features
- Count Vectorizer Average AUC: 0.81
- Term Frequency Inverse Document Frequency Average AUC: 0.82

FUTURE WORK...

- Can use multinomial logistic regression model to run it use all the different rating categories instead of the two that I used
- Can combine the text reviews and business features into one model to see if predictive power improves
- Can run using different kind of cuisines as features
- Can also incorporate user profiles to see different types of users rate the same restaurant in different ways
- Partial dependence plots to more clearly see results from random forest models

THANK YOU!