Modeling Correlation in Antibody Kinetics: A Hierarchical Bayesian Approach

Kwan Ho Lee

UC Davis

2025-08-18

Overview

- Incorporates feedback from Dr. Morrison and Dr. Aiemjoy
- Builds on (Teunis and Eijkeren 2016) framework for antibody kinetics
- Focus on covariance structure: parameter covariance within each biomarker ($\Sigma_{P,j}$, 5×5 per biomarker) and biomarker covariance across j (Σ_B , across biomarkers)
- Uses updated parameterization: $\log(y_0)$, $\log(y_1-y_0)$, $\log(t_1)$, $\log(\alpha)$, $\log(\rho-1)$
- Current stage: block-diagonal covariance (independent biomarkers)
- \bullet Planned extension: full Σ_B to capture correlation between biomarkers

Observation Model (Data Level)

Observed (log-transformed) antibody levels:

$$\log(y_{\mathsf{obs},ij}) \sim \mathcal{N}(\mu_{\log y,ij}, \tau_j^{-1}) \tag{1}$$

Where:

- ullet $y_{{\sf obs},ij}$: Observed antibody level for subject i and biomarker j
- $\mu_{\log y,ij}$ is the **expected log antibody level**, computed from the two-phase model using subject-level parameters θ_{ij} .
- θ_{ij} : Subject-level latent parameters (e.g., y_0, α, ρ) used to define the predicted antibody curve

Measurement precision prior:

$$\tau_j \sim \mathsf{Gamma}(a_j, b_j) \tag{2}$$

Parameter Summary

Table 1: Parameter summary for antibody kinetics model.

Symbol	Description
$\begin{array}{c} \mu_y \\ \mu_b \\ \gamma \end{array}$	Antibody production rate (growth phase) Pathogen replication rate Clearance rate (by antibodies)
$\alpha \rho$	Antibody decay rate Shape of antibody decay (power-law)
$egin{array}{c} t_1 \ y_1 \end{array}$	Time of peak response Peak antibody concentration

Note: Only the first 6 are typically estimated. y_1 is derived from the ODE solution at t_1 .

Within-Host ODE System (Teunis and Eijkeren 2016)

Two-phase within-host antibody kinetics:

$$\frac{dy}{dt} = \begin{cases} \mu_y y(t), & t \le t_1 \\ -\alpha y(t)^\rho, & t > t_1 \end{cases} \quad \text{with } \frac{db}{dt} = \mu_b b(t) - \gamma y(t) \tag{3}$$

Initial conditions: $y(0) = y_0$, $b(0) = b_0$

Key transition: t_1 is the time when $b(t_1)=0$

 $\mbox{ Derived quantity: } y_1 = y(t_1)$

Closed-Form Solutions

Antibody concentration y(t)

• $t \le t_1$:

$$y(t) = y_0 e^{\mu_y t}$$

• $t > t_1$:

$$y(t) = y_1 \left(1 + (\rho - 1) \alpha y_1^{\rho - 1} (t - t_1) \right)^{-\frac{1}{\rho - 1}}$$

Pathogen load b(t)

• $t \le t_1$:

$$b(t) = b_0 e^{\mu_b t} - \frac{\gamma y_0}{\mu_u - \mu_b} \left(e^{\mu_y t} - e^{\mu_b t} \right)$$

• $t > t_1$:

Time of Peak Response

Peak Time t_1

$$t_1 = \frac{1}{\mu_y - \mu_b} \log \left(1 + \frac{(\mu_y - \mu_b)b_0}{\gamma y_0} \right) \tag{4}$$

Peak Antibody Level y_1

$$y_1 = y_0 e^{\mu_y t_1} \tag{5}$$

Model Comparison: (Teunis and Eijkeren 2016) vs serodynamics

Table 2: Comparison of Teunis (2016) model and serodynamic's model assumptions.

Component	(Teunis and Eijkeren 2016)	serodynamics
Pathogen ODE	$\mu_0 b(t) - cy(t)$	$\mu_b b(t) - \gamma y(t)$
Antibody ODE	$\mu y(t)$	$\mu_{u}y(t)$
$(pre-t_1)$		<i>y</i> ,
Antibody ODE	$-\alpha y(t)^r$	$-\alpha y(t)^{ ho}$
$(post\text{-}t_1)$		
Antibody growth type	Pathogen-driven	Self-driven exponential
Antibody rate name	μ	μ_{y}
t_1 formula	Uses μ_0 , μ , b_0 , c , y_0	Uses μ_b , μ_y , etc.

Note:

Full Parameter Model (7 Parameters)

Subject-level parameters:

$$\theta_{ij} \sim \mathcal{N}(\mu_j, \, \Sigma_{P,j}), \quad \theta_{ij} = \begin{bmatrix} y_{0,ij} \\ b_{0,ij} \\ \mu_{b,ij} \\ \mu_{y,ij} \\ \gamma_{ij} \\ \alpha_{ij} \\ \rho_{ij} \end{bmatrix}$$

Where:

- ullet θ_{ij} : parameter vector for subject i, biomarker j
- \bullet $\;\mu_j$: population-level mean vector for biomarker j
- $\Sigma_{P,j}^{\circ} \in \mathbb{R}^{7 \times 7}$: covariance matrix **across parameters** for biomarker j
 - lacksquare Subscript P: denotes that this is covariance over the ${f P}$ parameters
 - Subscript *j*: indicates the biomarker index

From Full 7 Parameters to 5 Latent Parameters

• Although the model estimates 7 parameters, for modeling antibody kinetics y(t), we focus on **5-parameter subset**:

$$y_0, \ t_1(\text{derived}), \ y_1(\text{derived}), \ \alpha, \ \rho$$

• These 5 parameters are **log-transformed** into the latent parameters $\theta_{-}ij$ used for modeling.

5 Core Parameters Used for Curve Drawing

In this presentation, we focus on **5 key parameters** required to draw antibody curves:

- y_0 : initial antibody level
- t_1 : time of peak antibody response
- y_1 : peak antibody level
- α : decay rate
- ρ : shape of decay

Note: t_1 and y_1 are $\mbox{derived}\mbox{ from the full model}$ - These 5 are sufficient for prediction and plotting

Classifying Model Parameters ((Teunis and Eijkeren 2016) Structure)

Estimated Parameters (7 total):

- Core model parameters (5): μ_b , μ_y , γ , α , ρ
- Initial conditions (2): y_0 , b_0

Derived Quantity (not estimated):

ullet y_1 : peak antibody level computed as $y(t_1)$

Subject-Level Parameters (Latent Version = serodynamics)

Each subject i and biomarker j has latent parameters:

$$\theta_{ij} = \begin{bmatrix} \log(y_{0,ij}) \\ \log(y_{1,ij} - y_{0,ij}) \\ \log(t_{1,ij}) \\ \log(\alpha_{ij}) \\ \log(\rho_{ij} - 1) \end{bmatrix} \in \mathbb{R}^5$$
 (6)

Distribution:

$$\theta_{ij} \sim \mathcal{N}(\mu_j, \Sigma_{P,j})$$

Where:

- μ_i : population-level mean vector for biomarker j
- $\Sigma_{P,j} \in \mathbb{R}^{5 \times 5}$: covariance matrix across the P=5 parameters for biomarker j

Why y_1 Is Not Fit Directly

• y_1 is the antibody level at the time the pathogen is cleared:

$$y_1 = y(t_1)$$
 where $b(t_1) = 0$

- y_1 is not an "input" it is **computed** from:
 - μ_{y} , y_{0} , b_{0} , μ_{b} , γ
 - \bullet via solution of ODEs to find t_1 and compute $y(t_1)$

In other words: y_1 is a **derived output**, not a fit parameter.

How y_1 Is Computed

• y_1 is computed by solving the ODE system:

$$\frac{dy}{dt} = \mu_y y(t), \quad \frac{db}{dt} = \mu_b b(t) - \gamma y(t)$$

• Evaluate y(t) at $t = t_1$ using ODE solution:

$$y_1=y(t_1;\mu_y,y_0,b_0,\mu_b,\gamma)$$

Recap: What We Estimate

Seven model parameters (7-parameter model for full dynamics):

- μ_b , μ_u , γ , α , ρ (biological process)
- y_0 , b_0 (initial state)

Derived quantity:

ullet $y_1=y(t_1)$ — not directly estimated, computed

5-parameter subset for curve visualization:

 $\bullet \ y_0, \ y_1, \ t_1, \ \alpha, \ \rho$

Hierarchical Bayesian Structure (serodynamics)

Individual parameters:

$$\theta_{ij} = \begin{bmatrix} \log(y_{0,ij}) \\ \log(y_{1,ij} - y_{0,ij}) \\ \log(t_{1,ij}) \\ \log(\alpha_{ij}) \\ \log(\rho_{ij} - 1) \end{bmatrix} \sim \mathcal{N}(\mu_j, \, \Sigma_{P,j})$$

Hyperparameters:

- ullet μ_i : population-level mean vector for biomarker j
- $\Sigma_{P,j} \in \mathbb{R}^{P \times P}, \ P = 5$: covariance matrix across the parameters for biomarker j

Subject-Level Parameters: θ_{ij}

$$\theta_{ij} \sim \mathcal{N}(\mu_j,\, \Sigma_{P,j}), \quad \theta_{ij} \in \mathbb{R}^5$$

Where:

$$\theta_{ij} = \begin{bmatrix} \log(y_{0,ij}) \\ \log(y_{1,ij} - y_{0,ij}) \\ \log(t_{1,ij}) \\ \log(\alpha_{ij}) \\ \log(\rho_{ij} - 1) \end{bmatrix}, \quad \Sigma_{P,j} \in \mathbb{R}^{P \times P}, \ P = 5$$

Each subject i has a unique 5-parameter vector per biomarker j, capturing individual-level variation in antibody dynamics.

Hyperparameters: Priors on Population Means

Population-level means:

$$\boldsymbol{\mu}_j \sim \mathcal{N}(\boldsymbol{\mu}_{\mathrm{hyp},j}, \boldsymbol{\Omega}_{\mathrm{hyp},j})$$

Interpretation:

- ullet μ_{j} : average parameter vector for biomarker j
- $\mu_{\text{hyp.},i}$: prior guess (e.g., vector of zeros)
- \bullet $\Omega_{{
 m hyp},j}^{(1)}$: covariance matrix encoding uncertainty

Example:

$$\mu_{\mathrm{hyp},j} = 0, \quad \Omega_{\mathrm{hyp},j} = 100 \cdot I_5$$

Hyperparameters: Priors on Covariance

Covariance across parameters:

$$\Sigma_{P,j}^{-1} \sim \mathcal{W}(\Omega_j,\nu_j)$$

- $\Sigma_{P,j}$: 5×5 covariance matrix of subject-level parameters for biomarker j
- Ω_i : prior scale matrix (dimension 5×5)
- ν_i : degrees of freedom

Example:

$$\Omega_j = 0.1 \cdot I_5, \quad \nu_j = 6$$

Measurement Error and Precision Priors

Observed antibody levels:

$$\log(y_{\mathsf{obs},ij}) \sim \mathcal{N}(\log(y_{\mathsf{pred},ij}), \tau_j^{-1})$$

Precision prior:

$$\tau_j \sim \mathsf{Gamma}(a_j,b_j)$$

- ullet au_j : shared measurement precision for biomarker j
- Gamma prior allows flexible noise modeling

Matrix Algebra Computation

Let P=5 (parameters), B biomarkers. Then:

$$\Theta_i = \begin{bmatrix} \theta_{i1} & \theta_{i2} & \cdots & \theta_{iB} \end{bmatrix} \in \mathbb{R}^{P \times B}$$

Assume:

$$\mathrm{vec}(\Theta_i) \sim \mathcal{N}(\mathrm{vec}(M), \Sigma_P \otimes I_B)$$

Matrix Algebra - Simplified Structure

Setup:
$$\Theta_i \in \mathbb{R}^{P \times B}$$

Model:

$$\mathrm{vec}(\Theta_i) \sim \mathcal{N}(\mathrm{vec}(M), \Sigma_P \otimes I_B)$$

- Σ_P : 5×5 covariance (same across biomarkers)
- \bullet I_B : biomarkers assumed uncorrelated
- Block-diagonal covariance

Understanding $vec(\Theta_i)$

Each $\theta_{ij} \in \mathbb{R}^5$:

$$\theta_{ij} = \begin{bmatrix} \log(y_{0,ij}) \\ \log(y_{1,ij} - y_{0,ij}) \\ \log(t_{1,ij}) \\ \log(\alpha_{ij}) \\ \log(\rho_{ij} - 1) \end{bmatrix}$$

Flattening:

$$\mathrm{vec}(\Theta_i) \in \mathbb{R}^{5B \times 1}$$

Understanding vec(M)

Let
$$M = [\mu_1 \, \mu_2 \, \cdots \, \mu_B] \in \mathbb{R}^{5 \times B}$$

Example for B=3:

$$M = \begin{bmatrix} \mu_{1,1} & \mu_{1,2} & \mu_{1,3} \\ \mu_{2,1} & \mu_{2,2} & \mu_{2,3} \\ \mu_{3,1} & \mu_{3,2} & \mu_{3,3} \\ \mu_{4,1} & \mu_{4,2} & \mu_{4,3} \\ \mu_{5,1} & \mu_{5,2} & \mu_{5,3} \end{bmatrix}$$

Covariance Structure: $\Sigma_P \otimes I_B$

$$\mathsf{Cov}(\mathsf{vec}(\Theta_i)) = \Sigma_P \otimes I_B$$

- Σ_P : parameter covariance matrix
- ullet I_B : biomarker-wise independence
- Kronecker product yields block-diagonal matrix

Example: Kronecker Product with P=5, B=3

Let:

$$\Sigma_P = \begin{bmatrix} \sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,t_1} & \sigma_{y_0,\alpha} & \sigma_{y_0,\rho-1} \\ \sigma_{y_1-y_0,y_0} & \sigma_{y_1-y_0,y_1-y_0} & \sigma_{y_1-y_0,t_1} & \sigma_{y_1-y_0,\alpha} & \sigma_{y_1-y_0,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{\alpha,y_0} & \sigma_{\alpha,y_1-y_0} & \sigma_{\alpha,t_1} & \sigma_{\alpha,\alpha} & \sigma_{\alpha,\rho-1} \\ \sigma_{\rho-1,y_0} & \sigma_{\rho-1,y_1-y_0} & \sigma_{\rho-1,t_1} & \sigma_{\rho-1,\alpha} & \sigma_{\rho-1,\rho-1} \end{bmatrix}, \quad I_B = \begin{bmatrix} \sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,\rho-1} \\ \sigma_{x_0,y_0} & \sigma_{x_0,y_1-y_0} & \sigma_{x_0,\rho-1} & \sigma_{x_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} \\ \sigma_{x_0,y_0} & \sigma_{x_0,y_1-y_0} & \sigma_{x_0,\rho-1} & \sigma_{x_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{x_0,y_1-y_0} & \sigma_{x_0,\rho-1} & \sigma_{x_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{x_0,y_1-y_0} & \sigma_{x_0,\rho-1} & \sigma_{x_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{x_0,y_1-y_0} & \sigma_{x_0,\rho-1} & \sigma_{x_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{x_0,y_1-y_0} & \sigma_{x_0,\rho-1} & \sigma_{x_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} & \sigma_{y_0,\rho-1} \\ \sigma_{y_0,y_0} & \sigma_{y_$$

Then:

$$\Sigma_P \otimes I_B \in \mathbb{R}^{15 \times 15}$$

Expanded Matrix: $\Sigma_P \otimes I_B$

$$\Sigma_P \otimes I_B = \begin{bmatrix} \Sigma_P & 0 & 0 \\ 0 & \Sigma_P & 0 \\ 0 & 0 & \Sigma_P \end{bmatrix} \in \mathbb{R}^{15 \times 15}$$

where each block Σ_P is the 5×5 covariance across parameters:

$$\Sigma_P = \begin{bmatrix} \sigma_{y_0,y_0} & \cdots & \sigma_{y_0,\rho-1} \\ \vdots & \ddots & \vdots \\ \sigma_{\rho-1,y_0} & \cdots & \sigma_{\rho-1,\rho-1} \end{bmatrix}$$

Next Steps: Modeling Correlation Across Biomarkers

Current Limitation:

ullet Biomarkers assumed independent: I_B

Planned Extension:

• Use full covariance Σ_B :

$$\mathsf{Cov}(\mathsf{vec}(\Theta_i)) = \Sigma_P \otimes \Sigma_B$$

Extending to Correlated Biomarkers

Assume P=5, B=3

Define:

$$\Sigma_P = \begin{bmatrix} \sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,t_1} & \sigma_{y_0,\alpha} & \sigma_{y_0,\rho-1} \\ \sigma_{y_1-y_0,y_0} & \sigma_{y_1-y_0,y_1-y_0} & \sigma_{y_1-y_0,t_1} & \sigma_{y_1-y_0,\alpha} & \sigma_{y_1-y_0,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{\alpha,y_0} & \sigma_{\alpha,y_1-y_0} & \sigma_{\alpha,t_1} & \sigma_{\alpha,\alpha} & \sigma_{\alpha,\rho-1} \\ \sigma_{\rho-1,y_0} & \sigma_{\rho-1,y_1-y_0} & \sigma_{\rho-1,t_1} & \sigma_{\rho-1,\alpha} & \sigma_{\rho-1,\rho-1} \end{bmatrix}, \quad \Sigma_B = \begin{bmatrix} \sigma_{y_0,y_0} & \sigma_{y_0,y_1-y_0} & \sigma_{y_0,t_1} & \sigma_{y_0,\alpha} & \sigma_{y_0,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\rho-1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\alpha} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\alpha} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,\alpha} & \sigma_{t_1,\alpha} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,y_1-y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,y_0} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_1} \\ \sigma_{t_1,t_1} & \sigma_{t_1,t_1} & \sigma_{t_1,t_$$

Here:

- Σ_P : covariance across the 5 parameters (size 5×5)
- Σ_B : covariance across the B biomarkers (size $B \times B$)

Kronecker Product Structure: $\Sigma_P \otimes \Sigma_B$

$$\mathsf{Cov}(\mathsf{vec}(\Theta_i)) = \Sigma_P \otimes \Sigma_B$$

- Σ_P : 5×5 covariance across parameters
- ullet Σ_B : B imes B covariance across biomarkers
- ullet The Kronecker product expands to a (5B) imes (5B) covariance matrix
- Not block-diagonal allows both parameter correlations and cross-biomarker correlations

Practical To-Do List (for Chapter 2)

Model Implementation:

- ullet Define parameter covariance $\Sigma_{P,j}$ (within each biomarker j)
- Define biomarker covariance Σ_B (across biomarkers)
- \bullet Full covariance structure: $\mathsf{Cov}(\mathsf{vec}(\theta_i)) = \Sigma_P \otimes \Sigma_B$
- \bullet Priors: $\Sigma_{P,j}^{-1} \sim \mathcal{W}(\Omega_j,\nu_j)$, $\Sigma_B^{-1} \sim \mathcal{W}(\Omega_B,\nu_B)$

Simulation Study (first step):

- \bullet Generate fake longitudinal data with known Σ_P and Σ_B
- ullet Fit independence model (I_B) vs. correlated model (Σ_B)
- Evaluate recovery of true covariance structure

Validation on Real Data (next step):

- Apply to Shigella longitudinal data
- Compare independence vs. correlated models (DIC, WAIC, posterior predictive checks)
- Summarize implications for epidemiologic utility