Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Optimizing Neural Networks

Class Logistics and Agenda

- Logistics
 - Grading
- Agenda:
 - Finish Town Hall
 - Practical Multi-layer Architectures
 - Programming Examples
- Next Time: More MLPs

Class Overview, by topic

Tyler Rablin @Mr_Rablin · 2d You're not grading assignments.

You're collecting evidence to determine student progress and pointing them towards their next steps.

Make the mental switch. It matters.

Town Hall

Review: More Advanced Architectures: MLP

- The multi-layer perceptron (MLP):
 - two layers shown, but could be arbitrarily many layers

each row of **yhat**is no longer
independent of
the rows in **W**so we cannot
optimize using
one versus all!!!

 $\begin{array}{c} \phi(_{row=1}\mathbf{w}^{(2)}\cdot\,\phi(\mathbf{W}^{(1)}\mathbf{a}^{(1)})\;)\\ \\ \mathbf{yhat}^{(i)}=\\ \\ \text{one hot} \\ \end{array}$

Review: The Rosenblatt-Widrow-Hoff Dilemma

 1960's: Rosenblatt got into a public academic argument with Marvin Minsky and Seymour Papert

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

Minsky and Papert publish limitations paper, 1969:

"the style of research being done on the perceptron is doomed to failure because of these limitations."

- Widrow and Rosenblatt try to build bigger networks without limitations and fail
 - Neural Networks research basically stops for 17 years
- Until: researchers revisit training bigger networks
 - neural networks with multiple layers

Review: More Advanced Architectures: history

- 1986: Rumelhart, Hinton, and Williams popularize gradient calculation for multi-layer network
 - actually introduced by Werbos in 1982
- difference: Rumelhart et al. validated ideas with a computer
- until this point no one could train a multiple layer network consistently
- algorithm is popularly called **Back-Propagation**
- wins pattern recognition prize in 1993, becomes de-facto machine learning algorithm until: SVMs and Random Forests in ~2004
- would eventually see a resurgence for its ability to train algorithms for Deep Learning applications: **Hinton is widely considered the**

founder of deep learning

David Rumelhar

Geoffrey Hinton

Review: Back propagation

- Steps:
 - propagate weights forward
 - calculate gradient at final layer
 - back propagate gradient for each layer
 - · via recurrence relation

$$J(\mathbf{W}) = ||\mathbf{Y} - \mathbf{\hat{Y}}||^2$$

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

**Recall from Flipped Assignment!

Review: Back Propagation Summary

Where is the problem of vanishing gradients introduced?

**Recall from Flipped Assignment!

Lightning Demo

07. MLP Neural Networks.ipynb

same as Flipped Assignment! with regularization and vectorization and mini-batching

Problems with Advanced Architectures

- Numerous weights to find gradient update
 - minimize number of instances
 - solution: mini-batch
- new problem: mini-batch gradient can be erratic
 - solution: momentum
 - use previous update in current update

Common Adaptive Strategies

 $\mathbf{W}_{k+1} = \mathbf{W}_k - \rho_k$

Momentum

$$\rho_k = \alpha \nabla J(\mathbf{W}_k) + \beta \nabla J(\mathbf{W}_{k-1})$$

Nesterov's Accelerated Gradient

$$\rho_k = \beta \nabla J \left(\mathbf{W}_k + \alpha \nabla J(\mathbf{W}_{k-1}) \right) + \alpha \nabla J(\mathbf{W}_{k-1})$$
step twice

Adaptive Strategy: Cooling

- Space is no longer convex
 - One solution:
 - · start with large step size
 - "cool down" by decreasing step size for higher iterations

