Quiz 1

Problem 1. Solve the following systems simultaneously:

$$x_1 + 2x_2 = 1$$
 $x_1 + 2x_2 = 0$
 $3x_1 + 4x_2 = 0$ $3x_1 + 4x_2 = 1$

Do this by forming

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & I \end{bmatrix}$$

where A is the coefficient matrix. Use row operations to reduce A to reduced row echelon form Show all the steps. You end up with

$$\begin{bmatrix} 1 & 0 & b_{11} & b_{12} \\ 0 & 1 & b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} I & B \end{bmatrix}$$

The vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_{12} \\ b_{22} \end{bmatrix}$ are solutions to the initial systems. Verify this by showing AB = I. Also show that BA = I.

Problem 2. Consider a new operation on matrices $A \otimes B \stackrel{\text{df}}{=} AB - BA$.

Decide if each of the following are true or false and provide a small proof or counterexample in each case.

(a) _____ \otimes is commutative. For all $A, B \in \mathbb{R}^{n \times n}, A \otimes B = B \otimes A$.

(b) _____ \otimes is associative. For all $A, B, C \in \mathbb{R}^{n \times n}$, $(A \otimes B) \otimes C = A \otimes (B \otimes C)$.

(c) _____ For all $A \in \mathbb{R}^{n \times n}$, there is an \otimes -identity, E so that $E \otimes A = A \otimes E = A$.

(d) _____ For all $A, B \in \mathbb{R}^{n \times n}$, $(A \otimes B)^T = B^T \otimes A^T$.

Notation: " $\stackrel{\text{df.}}{=}$ " means "is defined to be" and $\mathbb{R}^{n \times n}$ is the set/space of all $n \times n$ matrices with real entries.