信号检测与估值

段江涛 机电工程学院

2019年8月

2019年8月

2/20

主要内容

- 1 准备知识
- ② 统计检测基本模型

矢量正交

 $V_x = (V_{x1}, V_{x2}, V_{x3})$ 与 $V_y = (V_{y1}, V_{y2}, V_{y3})$, 正交的定义: 其**内积**为 0。即

$$V_x V_y = \sum_{i=1}^3 v_{xi} v_{yi} = 0$$

正交矢量集

由两两正交的矢量组成的矢量集合称为正交矢量集。

(b) 空间矢量分解

Example

如三维空间中,以矢量 $v_x = (2,0,0), v_y = (0,2,0), v_z = (0,0,2)$ 所组成的集合就是一个正交矢量集。

对于一个三维空间的矢量 A = (2,5,8),可以用一个三维正交矢量集 $\{v_x, v_y, v_z\}$ 分量的线性组合表示。即

$$A = v_x + 2.5v_y + 4v_z$$

(b) 空间矢量分解

段江涛 (LSEC,AMSS,CAS) 信号检测与估值

矢量空间正交分解的概念可推广到信号空间:在信号空间找到若干个相**互正交**的信号作为基本信号,使得信号空间中**任意信号均可表示成它们的线性组合**。

完备正交函数集

三角函数集 $\{1,\cos(n\omega t),\sin(n\omega t),\dots\}, n=1,2,\dots$ 。就是在区间 $(t_0, t_0, T), T = 2\pi/\omega$ 上的完备正交函数集。

Example (傅里叶级数的三角形式)

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + \sum_{n=1}^{\infty} b_n \sin(n\omega t)$$

傅里叶系数: $a_n = \frac{2}{T} \int_{-\frac{T}{4}}^{\frac{T}{2}} f(t) \cos(n\omega t) dt$, $b_n = \frac{2}{T} \int_{-\frac{T}{4}}^{\frac{T}{2}} f(t) \sin(n\omega t) dt$

段汀涛 (LSEC.AMSS.CAS) 信号检测与估值 2019年8月

正交级数展开

Table 1: 正交级数展开

	二维矢量	信号f(t) 傅里叶展开	信号 x(t) 正交级数
正交集	$\{v_x, v_y\}$	$\{1,\cos(n\omega t),\sin(n\omega t)\}$	$\{f_1(t),f_2(t),\ldots,f_k(t)\}$
展开系数	$C_k = 矢量A$ 在	$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega t) dt$	$x_k = \int_0^T f_k(t) x(t) dt$
(正交投影)	第 k 个坐标的投影	$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega t) dt$	
线性表示	$A = C_1 v_x + C_2 v_y$	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t)$	$x(t) = \lim_{N \to \infty} \sum_{k=1}^{N} x_k f_k(t)$
		$+\sum_{n=1}^{\infty}b_n\sin(n\omega t)$	

确知信号的正交级数展开

s(t) 是定义在 (0,T) 时间内的确知信号

随机过程的正交级数展开

随机过程 x(t) 展开的均方误差等于 0, 或者说 $\lim_{N\to\infty}\sum_{k=1}^{N}x_kf_k(t)$ 均方收敛于 x(t)

随机过程的正交级数展开

Notes

随机过程:
$$x(t) = \lim_{N \to \infty} \sum_{k=1}^{N} x_k f_k(t)$$

展开系数: $x_k = \int_0^T x(t) f_k(t) dt, k = 1, 2, \dots$

随机过程 x(t) 可以由上式求得的展开系数 x_k 来恢复,就是说 x(t) 完全由展开系数 x_k 确定。注意,这里对随机过程 x(t) 进行正交级数展开所用的正交函数集 $\{f_k(t)\}$ 并没有提出特别的要求,所以**展开系数** $x_k(k=1,2,\dots)$ 之间可能是相关的随机变量。

间题

如何根据噪声干扰的特性,正确选择随机过程展开的正交函数集 $\{f_k\}$,以使展开系数 x_k 之间是互不相关的随机变量。

x_k, s_k, n_k 之间的关系

x_k, s_k, n_k 之间的关系

$$x(t) = s(t) + n(t); \quad x_k = s_k + n_k$$

随机变量 x(t) 展开系数 x_k = 确知信号 s(t) 展开系数 s_k + 噪声 n(t) 展开系数 n_k

$$x_k = \int_0^T f_k(t)x(t)dt$$

$$= \int_0^T f_k(t)(s(t) + n(t))dt$$

$$= \int_0^T f_k(t)s(t)dt + \int_0^T f_k(t)n(t)dt$$

$$= s_k + n_k$$

段江涛 (LSEC,AMSS,CAS) 信号检测与估值 2019 年 8 月

展开系数级数展开-准备公式

- 随机过程: x(t) = s(t) + n(t)
- $\{f_k(t)\}$ 是一组正交函数集, k = 1, 2, ...
- 随机过程 x(t) 正交展开系数 x_k 是一个随机变量: $x_k = \int_0^T x(t) f_k(t) dt$
- 确知信号 s(t) 正交展开系数 s_k 是一个确定的量: $s_k = \int_0^T s(t) f_k(t) dt$
- 确知信号 s(t) 的展开系数 s_k 为确定的量,其均值就是本身: $E(s_k) = E\left[\int_0^T s(t)f_k(t)dt\right] = \int_0^T E[s(t)]f_k(t)dt = \int_0^T s(t)f_k(t)dt = s_k$
- 噪声 n(t) 是一个零均值的平稳随机过程:
 - E[n(t)] = 0
 - n(t) 的自相关函数只取决于时间间隔 $(t_k t_j)$,而与时间的起始时刻无 关, $E[n(t_i)n(t_k)] = r_n(t_k t_i)$

展开系数 x_k 均值 (推导一)

$$E[x_k] = E\left[\int_0^T f_k(t)x(t)dt\right] = E\left[\int_0^T f_k(t)(s(t) + n(t))dt\right]$$

$$= E\left[\int_0^T f_k(t)s(t)dt + \int_0^T f_k(t)n(t)dt\right]$$

$$= E[s_k + n_k]$$

$$= E[s_k] + E[n_k] \qquad \text{(by } E[n(t)] = 0 \implies E[n_k] = 0\text{)}$$

$$= E[s_k] = s_k \qquad \text{(确知信号的展开系数为确定的量, 其均值就是本身)}$$

展开系数 x_k 均值 (推导二), 课件采用

$$E[x_k] = E\left[\int_0^T f_k(t)x(t)dt\right] = E\left[\int_0^T f_k(t)(s(t) + n(t))dt\right]$$

$$= E\left[\int_0^T f_k(t)s(t)dt + \int_0^T f_k(t)n(t)dt\right]$$

$$= E\left[\int_0^T f_k(t)s(t)dt\right] + E\left[\int_0^T f_k(t)n(t)dt\right]$$

$$= E\left[\int_0^T f_k(t)s(t)dt\right] + \int_0^T f_k(t)E[n(t)]dt \quad \text{(by } E[n(t)] = 0\text{)}$$

$$= E\left[\int_0^T f_k(t)s(t)dt\right]$$

$$= E[s_k] = s_k \quad \text{(确知信号的展开系数为确定的量,其均值就是本身)}$$

段江涛 (LSEC,AMSS,CAS) 信号检测与估值 2019 年 8 月

自的均值后的乘积

展开系数 x_j 与 x_k 协方差, 在 t 时刻两个随机变量减去各

$$E[(x_{j} - E(x_{j}))(x_{k} - E(x_{k}))] = E[(x_{j} - s_{j})(x_{k} - s_{k})]$$

$$= E\left[\left(\int_{0}^{T} f_{j}(t)x(t)dt - s_{j}\right) \left(\int_{0}^{T} f_{k}(t)x(t)dt - s_{k}\right)\right]$$

$$= E\left[\left(\int_{0}^{T} f_{j}(t)(s(t) + n(t))dt - s_{j}\right) \left(\int_{0}^{T} f_{k}(t)(s(t) + n(t))dt - s_{k}\right)\right]$$

$$= E\left[\left(\int_{0}^{T} f_{j}(t)n(t)dt\right) \left(\int_{0}^{T} f_{k}(t)n(t)dt\right)\right] = E\left[\left(\int_{0}^{T} f_{j}(t)n(t)dt\right) \left(\int_{0}^{T} f_{k}(u)n(t)du\right)\right]$$

$$= E\left[\int_{0}^{T} f_{j}(t) \left[\int_{0}^{T} n(t)n(u)f_{k}(u)du\right]dt\right] = \int_{0}^{T} f_{j}(t) \left[\int_{0}^{T} E[n(t)n(u)]f_{k}(u)du\right]dt$$

$$= \int_{0}^{T} f_{j}(t) \left[\int_{0}^{T} r_{n}(t - u)f_{k}(u)du\right]dt \quad (\text{by } E[n(t_{j})n(t_{k})] = r_{n}(t_{k} - t_{j}))$$

段江涛 (LSEC,AMSS,CAS) 信号检测与估值 2019 年 8 月

2019年8月

16/20

随机过程的卡亨南-洛维展开

希望 x(t) 各展开系数 x_i 与 x_k 的协方差满足:

$$E[(x_j - E(x_j))(x_k - E(x_k))] = E[(x_j - s_j)(x_k - s_k)] = \lambda_k \delta_{jk}$$
 式中 $\delta_{jk} = \begin{cases} 1, & (j = k) \\ 0, & (j \neq k) \end{cases}$, λ_k 是展开系数 x_k 的方差, $k = 1, 2, \ldots$ 这样, 当 $j \neq k$ 时, $E[(x_j - s_j)(x_k - s_k)] = 0$,即展开式的各展开系数之间互不相关;

当 j = k 时, $E[(x_i - s_i)(x_k - s_k)] = \lambda_k$, 是展开系数 x_k 的方差。

段汀涛 (LSEC.AMSS.CAS) 信号检测与估值

随机过程的卡亨南-洛维展开

展开系数 x_i 与 x_k 协方差:

$$E[(x_j - s_j)(x_k - s_k)] = \int_0^T f_j(t) \left[\int_0^T r_n(t - u) f_k(u) du \right] dt$$

其中, $x(t) = s(t) + n(t)(0 \le t \le T)$, $r_n(t - u) = E[n(t)n(u)]$ 是零均值平稳噪声过程 n(t) 的自相关函数。

为保证 $E[(x_j - s_j)(x_k - s_k)] = \lambda_k \delta_{jk}$

$$\int_0^T r_n(t-u)f_k(u)du = \lambda_k f_k(t), 0 \le t \le T$$

该式是齐次积分方程。该方程的解 $f_k(t)$ 就是正交函数集 $\{f_k(t)\}$ 的第 k 个坐标函数。

$$E[(x_j - s_j)(x_k - s_k)] = \lambda_k \int_0^T f_j(t) f_k(t) dt = \lambda_k \delta_{jk} \implies f_j(t) - f_k(t)$$
 正交。

段汀涛 (LSEC,AMSS,CAS) 信号检测与估值 2019 年 8 月

白噪声条件下正交函数集的任意性(1)

假设接收信号为 x(t) = s(t) + n(t), n(t) 是零均值, 功率谱密度为 $P_n(\omega) = N_0/2$ 的 白噪声, 其自相关函数为: $r_n(t-u) = \frac{N_0}{2}\delta(t-u)$,(说明噪声自相关函数在 t=u 时不为 0,其他时刻都为 0,自相关性最强)

对于任意招教函数集 $\{f_k(t)\}$, 展开系数 x_j 与 x_k 协方差:

$$E[(x_{j} - s_{j})(x_{k} - s_{k})] = \int_{0}^{T} f_{j}(t) \left[\int_{0}^{T} r_{n}(t - u) f_{k}(u) du \right] dt$$

$$= \frac{N_{0}}{2} \int_{0}^{T} f_{j}(t) \left[\int_{0}^{T} \delta(t - u) f_{k}(u) du \right] dt$$

$$= \frac{N_{0}}{2} \int_{0}^{T} f_{j}(t) f_{k}(t) dt = \frac{N_{0}}{2} \delta_{jk}$$

$$\Rightarrow \begin{cases} 1, & (j = k) \\ 0, & (j \neq k) \end{cases}, \quad \delta(t - u) = \begin{cases} 1, & (t = u) \\ 0, & (t \neq u) \end{cases}$$

段江涛 (LSEC,AMSS,CAS)

白噪声条件下正交函数集的任意性(1)

假设接收信号为 x(t) = s(t) + n(t), n(t) 是零均值, 功率谱密度为 $P_n(\omega) = N_0/2$ 的 白噪声,其自相关函数为:

$$r_n(t-u) = \frac{N_0}{2}\delta(t-u)$$

对于任意招教函数集 $\{f_k(t)\}$, 展开系数 x_i 与 x_k 协方差:

$$E[(x_j - s_j)(x_k - s_k)] = \int_0^T f_j(t) \left[\int_0^T r_n(t - u) f_k(u) du \right] dt = \frac{N_0}{2} \delta_{jk}$$

重要结论

当 $j \neq k$ 时,展开系数 x_j 与 x_k 协方差 =0。这说明,在 n(t) 是白噪声的条件下,取任意正交函数集 $\{f_k(t)\}$ 对平稳随机过程 x(t) 进行展开,其展开系数 $x_k(k=1,2,...)$ 之间都是互不相关的。这就是白噪声条件下正交函数集的任意性。

白噪声条件下正交函数集的任意性(2)

$$r_n(t-u) = \frac{N_0}{2}\delta(t-u)$$

展开系数 x_i 与 x_k 协方差:

$$E[(x_{j} - s_{j})(x_{k} - s_{k})] = \int_{0}^{T} f_{j}(t) \left[\int_{0}^{T} r_{n}(t - u) f_{k}(u) du \right] dt$$

$$= \frac{N_{0}}{2} \int_{0}^{T} f_{j}(t) \left[\int_{0}^{T} \delta(t - u) f_{k}(u) du \right] dt$$

$$= \frac{N_{0}}{2} \int_{0}^{T} f_{j}(t) f_{k}(t) dt = \frac{N_{0}}{2} \delta_{jk}$$

二元信号波形检测

简单二元信号波形检测

$$H_0: x(t) = n(t)$$

$$H_1: x(t) = s(t) + n(t)$$

$$x(t) = \lim_{N \to \infty} \sum_{k=1}^{N} x_k f_k(t)$$

$$x_k = \int_0^T x(t) f_k(t) dt, k = 1, 2, ...$$

$$s_k = \int_0^T s(t) f_k(t) dt, k = 1, 2, ...$$

$$n_k = \int_0^T n(t) f_k(t) dt, k = 1, 2, ...$$

$$H_0: x_k = n_k, k = 1, 2, ...$$

$$H_1: x_k = s_k + n_k, k = 1, 2, ...$$

- 信号 s(t) 是确知信号,n(t) 是均值为 0, 功率 谱密度为 $P_n(\omega) = N_0/2$ 的高斯白噪声;
- 无论在假设 H₁ 下还是在假设 H₂ 下,接收信号的 x(t) 都是高斯随机过程;
- 展开系数 x_k 是高斯随机过程的积分结果,因而 x_k 是高斯随机变量;
- 展开系数 x_k 之间是互不相关的, 也是相互 统计独立的;
- 高斯随机变量由均值和方差决定。由此求出两个假设下的概率密度函数 $p(x_k|H_i), k = 1, 2, ...; j = 0, 1$ 。

简单二元信号波形检测 H_0

n(t) 是高斯白噪声

$$\implies E[n(t)n(u)] = r_n(t-u) = \frac{N_0}{2}\delta(t-u) = \frac{N_0}{2}, (\delta(t-u) = 1, t = u)$$

$$f_k(t)$$
 是一组正交函数集 $\Longrightarrow \int_0^T f_j(t) f_k(t) dt = 1, (j = k)$

$$Var[x_k|H_0] = E[n_k^2] = E\left[\int_0^T n(t)f_k(t)dt \int_0^T n(u)f_k(u)du\right]$$

$$= \int_0^T f_k(t) \left\{\int_0^T E[n(t)n(u)]f_k(u)du\right\} dt$$

$$= \int_0^T f_k(t) \left[\int_0^T \frac{N_0}{2}\delta(t-u)f_k(u)du\right] dt$$

$$= \int_0^T f_k(t) \frac{N_0}{2} f_k(t) dt$$

$$= \frac{N_0}{2}$$

简单二元信号波形检测 H₁

$$x_k = \int_0^T x(t)dt = \int_0^T [s(t) + n(t)]dt = \int_0^T s(t)dt + \int_0^T n(t)dt = s_k + n_k$$

$$x_k = s_k + n_k$$

$$E[x_k|H_1] = E[s_k + n_k]$$
 by $x_k = s_k + n_k$ $= E(s_k) + E(n_k)$ by $E(n_k) = 0$ $= E(s_k) = s_k$ (确知信号展开系数为确定量, 其均值就是本身)

$$Var[x_k|H_1] = E[(x_k - E[x_k])^2]$$
 by $x_k = s_k + n_k, E[x_k] = s_k$
 $= E[(s_k + n_k - s_k)^2]$
 $= E[n_k^2] = \frac{N_0}{2}$

或:
$$E[x_k|H_1] = E\left[\int_0^T x(t)f_k(t)dt\right] = E\left[\int_0^T (s(t) + n(t))f_k(t)dt\right]$$

= $E\left[\int_0^T s(t)dt\right] + \int_0^t E[n(t)]f_k(t)dt = E\left[\int_0^T s(t)dt\right] = E[s_k] = s_k$

简单二元信号波形检测-判决式预备公式

$$\ln \lambda(\mathbf{x}_{N}) = \frac{p(\mathbf{x}_{N}|H_{1})}{p(\mathbf{x}_{N}|H_{0})} = \frac{2}{N_{0}} \sum_{k=1}^{N} x_{k} s_{k} - \frac{1}{N_{0}} \sum_{k=1}^{N} s_{k}^{2} \underset{H_{0}}{\overset{H_{1}}{\geq}} \ln \eta$$

$$x(t) = \lim_{N \to \infty} \sum_{k=1}^{N} x_{k} f_{k}(t)$$

$$x_{k} = \int_{0}^{T} x(t) f_{k}(t) dt, k = 1, 2, \dots$$

$$s(t) = \lim_{N \to \infty} \sum_{k=1}^{N} s_{k} f_{k}(t)$$

$$s_{k} = \int_{0}^{T} s(t) f_{k}(t) dt, k = 1, 2, \dots$$

$$E_{s} = \int_{0}^{T} s^{2}(t) dt$$

简单二元信号波形检测-判决式推导(1)

$$\lim_{N \to \infty} \sum_{k=1}^{N} x_k s_k = \left[\lim_{N \to \infty} \sum_{k=1}^{N} x_k \right] s_k$$

$$= \left[\lim_{N \to \infty} \sum_{k=1}^{N} x_k \right] \int_0^T s(t) f_k(t) dt$$

$$= \int_0^T s(t) \left[\lim_{N \to \infty} \sum_{k=1}^{N} x_k f_k(t) \right] dt$$

$$= \int_0^T s(t) x(t) dt$$

段江涛 (LSEC,AMSS,CAS) 信号检测与估值

简单二元信号波形检测-判决式推导(2)

$$\lim_{N \to \infty} \sum_{k=1}^{N} s_k^2 = \left[\lim_{N \to \infty} \sum_{k=1}^{N} s_k \right] s_k$$

$$= \left[\lim_{N \to \infty} \sum_{k=1}^{N} s_k \right] \int_0^T s(t) f_k(t) dt$$

$$= \int_0^T s(t) \left[\lim_{N \to \infty} \sum_{k=1}^{N} s_k f_k(t) \right] dt$$

$$= \int_0^T s(t) s(t) dt = \int_0^T s^2(t) dt = E_s$$

简单二元信号波形检测-检测性能(1)

判决表达式:

$$l[x(t)] \stackrel{def}{=} \int_0^T x(t)s(t)dt \underset{H_0}{\gtrless} \frac{N_0}{2} \ln \eta + \frac{E_s}{2} \stackrel{def}{=} \gamma$$

检验统计量 I[x(t)] 无论在假设 H_0 下,还是在假设 H_1 下,都是由高斯随机过程 $x(t)s(t)(0 \le t \le T)$ 经积分得到的,所以I[x(t)] 是高斯随机变量。

- 求出检验统计量 l[x(t)] 在两个假设下的均值 $E(l|H_j)$ 和方差 $Var(l|H_i), j = 0, 1$;
- ② 求各种判决概率 $P(H_i|H_j)$, i,j=0,1; 简单二元信号检测与雷达信号检测相对应: $P(H_1|H_0) \stackrel{def}{=} P_F$ (称为虚警概率), $P(H_1|H_1) \stackrel{def}{=} P_D$ (称为检测概率)
- 3 计算检测性能。

简单二元信号波形检测-检测性能(2)

- ① 定义统计量: $l \stackrel{def}{=} \int_0^T x(t)s(t)dt$
- ② 假设 H_0, H_1 下检验统计量 l[x(t)] 的均值和方差分别为 $E[l|H_0] = E\left[\int_0^T x(t)s(t)dt|H_0\right] = E\left[\int_0^T n(t)s(t)dt\right] = 0$ $Var[l|H_0] = E[((l|H_0) E(l|H_0))^2] = \frac{N_0}{2}E_s$ $E[l|H_1] = E\left[\int_0^T x(t)s(t)dt|H_1\right] = E\left[\int_0^T (s(t) + n(t))s(t)dt\right] = E_s$ $Var[l|H_1] = E[((l|H_1) E(l|H_1))^2] = \frac{N_0}{2}E_s$
- lacksquare 假设 H_0, H_1 下服从高斯分布的检验统计量 l[x(t)] 的概率密度函数分别为

$$p(l|H_0) = \left(\frac{1}{\pi N_0 E_s}\right)^{1/2} \exp\left(-\frac{l^2}{N_0 E_s}\right)$$
$$p(l|H_1) = \left(\frac{1}{\pi N_0 E_s}\right)^{1/2} \exp\left(-\frac{(l - E_s)^2}{N_0 E_s}\right)$$

段江涛 (LSEC,AMSS,CAS) 信号检测与估值 2019 年 8 月

简单二元信号波形检测-检测性能(3)

① 求各种判决概率 $P(H_{l}|H_{j}), i, j = 0, 1$ 虚警概率: $P(H_{1}|H_{0}) \stackrel{def}{=} P_{F} = Q \left[\frac{\ln \eta}{d} + \frac{d}{2} \right]$ 检测概率: $P(H_{1}|H_{1}) \stackrel{def}{=} P_{D} = Q \left[\frac{\ln \eta}{d} - \frac{d}{2} \right]$ $P(H_{0}|H_{1}) = 1 - P(H_{1}|H_{1}) = 1 - Q \left[\frac{\ln \eta}{d} - \frac{d}{2} \right]$ $P(H_{0}|H_{0}) = 1 - P(H_{1}|H_{0}) = 1 - Q \left[\frac{\ln \eta}{d} + \frac{d}{2} \right]$ $d^{2} \stackrel{def}{=} \frac{(E(l|H_{1}) - E(l|H_{0}))^{2}}{Var(l|H_{0})} = \frac{2E_{s}}{N_{0}}$ 偏移系数 d^{2} 表示功率信噪比

结论

对简单二元信号来讲,只要保持确知信号 s(t) 的能量不变,信号波形可以任意设计,检测性能不发生变化。

计算 $E[l|H_0]$

$$E[l|H_0] = E\left[\int_0^T x(t)s(t)dt|H_0\right] \qquad \text{by } H_0: x(t) = n(t)$$

$$= E\left[\int_0^T n(t)s(t)dt\right]$$

$$= \int_0^T E[n(t)]s(t)dt = 0 \qquad \text{by } E[n(t)] = 0$$

计算 Var[l|H₀]

$$\begin{split} H_0: x(t) &= n(t), E(l|H_0) = 0, E_s = \int_0^T s^2(t) dt \\ E[n(t)n(u)] &= r_n(t-u) = \frac{N_0}{2} \delta(t-u) = \frac{N_0}{2}, (t=u, \delta(t-u) = 1) \\ Var[l|H_0] &= E[((l|H_0) - E(l|H_0))^2] = E[(l|H_0)^2] = E\left[\left(\int_0^T x(t)s(t) dt\right)^2\right] \\ &= E\left[\int_0^T n(t)s(t) dt \int_0^T n(t)s(t) dt\right] = E\left[\int_0^T n(t)s(t) dt \int_0^T n(u)s(u) du\right] \\ &= \int_0^T s(t) \left\{\int_0^T E[n(u)n(t)]s(u) du\right\} dt = \int_0^T s(t) \left[\int_0^T \frac{N_0}{2} \delta(t-u)s(u) du\right] dt \\ &= \frac{N_0}{2} \int_0^T s(t) \left(\int_0^T s(u) du\right) dt = \frac{N_0}{2} \int_0^T s^2(t) dt \\ &= \frac{N_0}{2} E_s \end{split}$$

计算 $p(l|H_0)$

$$\begin{split} E[l|H_0] &= 0, Var[l|H_0] = \frac{N_0}{2}E_s \\ p(l|H_0) &= \left(\frac{1}{2\pi Var[l|H_0]}\right)^{1/2} \exp\left(-\frac{(l-E[l|H_0])^2}{2Var[l|H_0]}\right) \\ &= \frac{1}{\sqrt{\pi N_0 E_s}} \exp\left(-\frac{l^2}{N_0 E_s}\right) \end{split}$$

计算 E[l|H₁]

$$E[l|H_1] = E\left[\int_0^T x(t)s(t)dt|H_1\right] \qquad \text{by } H_1 : x(t) = s(t) + n(t)$$

$$= E\left[\int_0^T (s(t) + n(t))s(t)dt\right]$$

$$= E\left[\int_0^T s^2(t)dt\right] + \int_0^T E[n(t)]s(t)dt \qquad \text{by } E[n(t)] = 0$$

$$= E\left[\int_0^T s^2(t)dt\right] \qquad \text{by } E_s = \int_0^T s^2(t)dt = E_s$$

计算 Var[l|H₁]

$$\begin{split} H_1: x(t) &= s(t) + n(t), E(l|H_1) = E_s, E_s = \int_0^T s^2(t) dt \\ E[n(t)n(u)] &= r_n(t - u) = \frac{N_0}{2} \delta(t - u) = \frac{N_0}{2}, (t = u, \delta(t - u) = 1) \\ Var[l|H_1] &= E[((l|H_1) - E(l|H_1))^2] = E\left[\left(\int_0^T (s(t) + n(t))s(t) dt - E_s\right)^2\right] \\ &= E\left[\left(\int_0^T (s^2(t) dt + \int_0^T n(t)s(t) dt - E_s\right)^2\right] = E\left[\left(\int_0^T n(t)s(t) dt\right)^2\right] \\ &= E\left[\int_0^T n(t)s(t) dt \int_0^T n(t)s(t) dt\right] = E\left[\int_0^T n(t)s(t) dt \int_0^T n(u)s(u) du\right] \\ &= \int_0^T s(t) \left\{\int_0^T E[n(u)n(t)]s(u) du\right\} dt = \int_0^T s(t) \left[\int_0^T \frac{N_0}{2} \delta(t - u)s(u) du\right] dt \\ &= \frac{N_0}{2} \int_0^T s(t) \left(\int_0^T s(u) du\right) dt = \frac{N_0}{2} \int_0^T s^2(t) dt = \frac{N_0}{2} E_s \end{split}$$

计算 $p(l|H_1)$

$$E[l|H_1] = E_s, Var[l|H_1] = \frac{N_0}{2} E_s$$

$$p(l|H_1) = \left(\frac{1}{2\pi Var[l|H_1]}\right)^{1/2} \exp\left(-\frac{(l - E[l|H_1])^2}{2Var[l|H_1]}\right)$$

$$= \frac{1}{\sqrt{\pi N_0 E_s}} \exp\left(-\frac{(l - E_s)^2}{N_0 E_s}\right)$$

计算 $P(H_1|H_0)$

$$P(H_{1}|H_{0}) \stackrel{def}{=} P_{F} = \int_{\gamma}^{\infty} p(l|H_{0})dl$$

$$= \int_{\gamma}^{\infty} \left(\frac{1}{\pi N_{0}E_{s}}\right)^{1/2} \exp\left(-\frac{l^{2}}{N_{0}E_{s}}\right) dl$$

$$u = \frac{l}{\sqrt{N_{0}E_{s}/2}} \int_{\frac{\gamma}{\sqrt{N_{0}E_{s}/2}}}^{\infty} \left(\frac{1}{2\pi}\right)^{1/2} \exp\left(-\frac{u^{2}}{2}\right) du$$

$$= Q\left[\frac{\gamma}{\sqrt{N_{0}E_{s}/2}}\right]^{\gamma = \frac{N_{0}}{2} \ln \eta + \frac{E_{s}}{2}} Q\left[\frac{\frac{N_{0}}{2} \ln \eta + \frac{E_{s}}{2}}{\sqrt{N_{0}E_{s}/2}}\right]$$

$$= Q\left[\frac{\ln \eta}{d} + \frac{d}{2}\right] \qquad d^{2} = \frac{2E_{s}}{N_{0}}$$

偏移系数 d² 表示功率信噪比。

计算 $P(H_0|H_1)$

$$P(H_{1}|H_{1}) \stackrel{\text{def}}{=} P_{D} = \int_{\gamma}^{\infty} p(l|H_{1}) dl$$

$$= \int_{\gamma}^{\infty} \left(\frac{1}{\pi N_{0} E_{s}}\right)^{1/2} \exp\left(-\frac{(l-E_{s})^{2}}{N_{0} E_{s}}\right) dl$$

$$= \frac{l-E_{s}}{\sqrt{N_{0} E_{s}/2}} \int_{\frac{\gamma-E_{s}}{\sqrt{N_{0} E_{s}/2}}}^{\infty} \left(\frac{1}{2\pi}\right)^{1/2} \exp\left(-\frac{u^{2}}{2}\right) du$$

$$= Q\left[\frac{\gamma-E_{s}}{\sqrt{N_{0} E_{s}/2}}\right]^{\gamma=\frac{N_{0}}{2}} = \eta^{+\frac{E_{s}}{2}} Q\left[\frac{\frac{N_{0}}{2} \ln \eta - \frac{E_{s}}{2}}{\sqrt{N_{0} E_{s}/2}}\right]$$

$$= Q\left[\frac{\ln \eta}{d} - \frac{d}{2}\right] \qquad d^{2} = \frac{2E_{s}}{N_{0}}$$

偏移系数 d² 表示功率信噪比。

充分量统计法, 巧取 $f_i(t)$

相互正交的函数集
$$\{f_k(t)\}(k=1,2,\dots)$$
 $\Longrightarrow \int_0^T f_j(t)f_k(t)dt = \begin{cases} 1, & j=k \\ 0, & j \neq k \end{cases}$ 设 $f_1(t) = \frac{1}{\sqrt{E_s}}s(t) \Longrightarrow s(t) = \sqrt{E_s}f_1(t)$ 由于 $f_1(t)$ 与 $f_k(t)(k \ge 2)$ 正交 $\Longrightarrow s(t)$ 与 $f_k(t)(k \ge 2)$ 正交 \Longrightarrow 确知信号 $s(t)$ 在 $f_k(t)(k \ge 2)$ 上的投影等于 0 , 即 $s_k = 0$, $(k \ge 2)$ $s_k = \int_0^T s(t)f_k(t)dt = \int_0^T \sqrt{E_s}f_1(t)f_k(t)dt = \sqrt{E_s}f_1(t)f_k(t)$ $k = 1, \quad f_1(t)f_k(t) = 1 \Longrightarrow s_1 = \sqrt{E_s}; \qquad k > 2, \quad f_1(t)f_k(t) = 0 \Longrightarrow s_k = 0$

进一步, 由于 x(t) = s(t) + n(t), $x_k = s_k + n_k$, n(t) 是高斯白噪声过程。

结论

 $x_1 = s_1 + n_1 = \sqrt{E_s} + n_1 \implies x_1$ 是高斯随机变量。含有确知信号 s(t) 信息。 $x_k = s_k + n_k = n_k \quad (k \ge 2) \implies x_k (k \ge 2)$ 是高斯随机变量,且相互统计独立。不含确知信号 s(t) 信息,对判决没有影响。

40/20

充分量统计法(1)

(2) 利用构造的正交函数集 $f_1(t)$ 和 $\{f_k(t)|k \ge 2\}$, 对接收信号进行正交展开

假设 $H_0: x(t) = n(t)$ 下, 展开系数

$$x_1 = \int_0^T x(t)f_1(t)dt = \int_0^T n(t)f_1(t)dt = n_1$$

$$x_k = \int_0^T x(t)f_k(t)dt = \int_0^T n(t)f_k(t)dt = n_k \qquad k \ge 2$$

假设 $H_1: x(t) = s(t) + n(t)$ 下,展开系数

$$x_{1} = \int_{0}^{T} x(t)f_{1}(t)dt = \int_{0}^{T} [s(t) + n(t)]f_{1}(t)dt = \int_{0}^{T} s(t)f_{1}(t)dt + \int_{0}^{T} n(t)f_{1}(t)dt$$

$$= \int_{0}^{T} s(t) \left[\frac{1}{\sqrt{E_{s}}}s(t)\right]dt + n_{1} = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} s^{2}(t)dt + n_{1}$$

$$= \sqrt{E_{s}} + n_{1} \quad (\text{by } f_{1}(t) = \frac{1}{\sqrt{E_{s}}}s(t), E_{s} = \int_{0}^{T} s^{2}(t)dt)$$

$$x_{k} = \int_{0}^{T} x(t)f_{k}(t)dt = \int_{0}^{T} [s(t) + n(t)]f_{k}(t)dt = \int_{0}^{T} [\sqrt{E_{s}}f_{1}(t) + n(t)]f_{k}(t)dt$$

$$= \int_{0}^{T} n(t)f_{k}(t)dt = n_{k} \quad k \geq 2 \quad (\text{by} \quad s(t) = \sqrt{E_{s}}f_{1}(t), \int_{0}^{T} f_{1}(t)f_{k}(t)dt = 0, k \geq 2)$$

41/20

充分量统计法(2)

(2) 利用构造的正交函数集 $f_1(t)$ 和 $\{f_k(t)|k \ge 2\}$, 对接收信号进行正交展开

假设 $H_0: x(t) = n(t)$ 下, 展开系数

$$x_1 = \int_0^T x(t)f_1(t)dt = \int_0^T n(t)f_1(t)dt = n_1 \implies$$
 不含接收信号信息
 $x_k = \int_0^T x(t)f_k(t)dt = \int_0^T n(t)f_k(t)dt = n_k \qquad k \ge 2$

假设 $H_1: x(t) = s(t) + n(t)$ 下,展开系数

$$x_1 = \int_0^T x(t)f_1(t)dt = \int_0^T [s(t) + n(t)]f_1(t)dt = \sqrt{E_s} + n_1 \implies x_1$$
 是高斯随机变量,含有接收信号/确知信号 $s(t)$ 信息

$$x_k = \int_0^T x(t) f_k(t) dt = \int_0^T [s(t) + n(t)] f_k(t) dt = n_k$$
 $k \ge 2 \implies x_k$ 是高斯随机变量,且相互统计独立。但不含有接收信号/确知信号 $s(t)$ 信息

通过两个假设下的展开系数 x_1 即可判定假设 H_1 为真,还是 H_0 为真。

充分量统计法,接收信号 $x_1(t)$

因为
$$f_1(t) = \frac{1}{\sqrt{E_s}} s(t), x_1 | H_0 = n_1, x_1 | H_1 = \sqrt{E_s} + n_1$$

 $x_1 = \int_0^T x(t) f_1(t) dt = \frac{1}{\sqrt{E_s}} \int_0^T x(t) s(t) dt$
所以充分统计量 x_1 是高斯随机变量,可用假设 H_0 和假设 H_1 下的均值和方差表示。

42/20

充分量统计法, 判决表达式

判决表达式:

$$l[x(t)] \stackrel{\text{def}}{=} \int_0^T x(t)s(t)dt \underset{H_0}{\gtrless} \frac{N_0}{2} \ln \eta + \frac{E_s}{2} \stackrel{\text{def}}{=} \gamma$$

结论

由任意正交函数集对 x(t) 进行正交级数展开法与由充分统计量法导出的判决表 达式是完全一样的,因而也具有相同的检测系统结构和相同的检测性能。

推导 $E[x_1|H_0]$

$$f_1(t) = \frac{1}{\sqrt{E_s}} s(t), x_1 | H_0 = n_1, x_1 | H_1 = \sqrt{E_s} + n_1$$

$$x_1 = \int_0^T x(t) f_1(t) dt = \frac{1}{\sqrt{E_s}} \int_0^T x(t) s(t) dt$$

$$E[x_1 | H_0] = E[n_1] = 0$$

$$\overrightarrow{\text{pl}}:$$

$$E[x_1|H_0] = E\left[\frac{1}{\sqrt{E_s}} \int_0^T x(t)s(t)dt\right]$$
$$= E\left[\frac{1}{\sqrt{E_s}} \int_0^T n(t)s(t)dt\right]$$
$$= \frac{1}{\sqrt{E_s}} \int_0^T E[n(t)]s(t)dt = 0$$

by
$$H_0: x(t) = n(t)$$

by $E[n(t)] = 0$

44/20

推导 Vax[x₁|H₀](方法 1)

$$H_{0}: x(t) = n(t), E(x_{1}|H_{0}) = 0, E_{s} = \int_{0}^{T} s^{2}(t)dt$$

$$E[n(t)n(u)] = r_{n}(t - u) = \frac{N_{0}}{2}\delta(t - u) = \frac{N_{0}}{2}, (t = u, \delta(t - u) = 1)$$

$$f_{1}(t) = \frac{1}{\sqrt{E_{s}}}s(t), x_{1}|H_{0} = n_{1}, x_{1}|H_{1} = \sqrt{E_{s}} + n_{1}$$

$$x_{1} = \int_{0}^{T} x(t)f_{1}(t)dt = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} x(t)s(t)dt, x_{1}|H_{0} = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt$$

$$Var[x_{1}|H_{0}] = E[((x_{1}|H_{0}) - E(x_{1}|H_{0}))^{2}] = E[(x_{1}|H_{0})^{2}] = E\left[\left(\frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt\right)^{2}\right]$$

$$= \frac{1}{E_{s}}E\left[\int_{0}^{T} n(t)s(t)dt\int_{0}^{T} n(t)s(t)dt\right] = \frac{1}{E_{s}}E\left[\int_{0}^{T} n(t)s(t)dt\int_{0}^{T} n(u)s(u)du\right]$$

$$= \frac{1}{E_{s}}\int_{0}^{T} s(t)\left\{\int_{0}^{T} E[n(u)n(t)]s(u)du\right\}dt = \frac{1}{E_{s}}\int_{0}^{T} s(t)\left[\int_{0}^{T} \frac{N_{0}}{2}\delta(t - u)s(u)du\right]dt$$

$$= \frac{N_{0}}{2E_{s}}\int_{0}^{T} s(t)\left(\int_{0}^{T} s(u)du\right)dt = \frac{N_{0}}{2E_{s}}\int_{0}^{T} s^{2}(t)dt = \frac{N_{0}}{2}$$

推导 Vax[x₁|H₀](方法 2)

$$H_{0}: x(t) = n(t), E(x_{1}|H_{0}) = 0, E_{s} = \int_{0}^{1} s^{2}(t)dt$$

$$E[n(t)n(u)] = r_{n}(t - u) = \frac{N_{0}}{2}\delta(t - u) = \frac{N_{0}}{2}, (t = u, \delta(t - u) = 1)$$

$$f_{1}(t) = \frac{1}{\sqrt{E_{s}}}s(t), x_{1}|H_{0} = n_{1}, x_{1}|H_{1} = \sqrt{E_{s}} + n_{1}$$

$$x_{1} = \int_{0}^{T} x(t)f_{1}(t)dt = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} x(t)s(t)dt, x_{1}|H_{0} = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt$$

$$n_{1} = \int_{0}^{T} n(t)f_{1}(t)dt = \int_{0}^{T} n(t)\frac{1}{\sqrt{E_{s}}}s(t)dt = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt$$

$$Var[x_{1}|H_{0}] = E[((x_{1}|H_{0}) - E(x_{1}|H_{0}))^{2}] = E[(x_{1}|H_{0})^{2}] = E[n_{1}^{2}]$$

$$= E\left[\left(\frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt\right)^{2}\right] \qquad (\text{U.T.} \exists \text{T.T.} \pm 1)$$

$$= \frac{N_{0}}{2}$$

段江涛 (LSEC,AMSS,CAS) 信号检测与估值 2019 年 8 月

46/20

推导 $p(x_1|H_0)$

$$E[x_1|H_0] = 0, Var[x_1|H_0] = \frac{N_0}{2}$$

$$p(x_1|H_0) = \left(\frac{1}{2\pi Var[x_1|H_0]}\right)^{1/2} \exp\left(-\frac{(x_1 - E[x_1|H_0])^2}{2Var[x_1|H_0]}\right)$$

$$= \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{x_1^2}{N_0}\right)$$

推导 $E[x_1|H_1]$

$$x_1|H_1=\sqrt{E_s}+n_1$$

$$E[x|H_1] = E\left[\sqrt{E_s} + n_1\right]$$
$$= E[\sqrt{E_s}] + E[n_1]$$
$$= E[\sqrt{E_s}] = \sqrt{E_s}$$

推导 $Var[x_1|H_1]$

$$x_1|H_1 = \sqrt{E_s} + n_1, E(x_1|H_1) = \sqrt{E_s}$$

$$Var[x|H_1] = E[((x|H_1) - E(x|H_1))^2] = E[n_1^2]$$

$$= Var[x_1|H_0]$$

$$= \frac{N_0}{2}$$

推导 $p(x_1|H_1)$

$$E[x_1|H_1] = \sqrt{E_s}, Var[x_1|H_1] = \frac{N_0}{2}$$

$$p(x_1|H_1) = \left(\frac{1}{2\pi Var[x_1|H_1]}\right)^{1/2} \exp\left(-\frac{(x_1 - E[x_1|H_1])^2}{2Var[x_1|H_1]}\right)$$

$$= \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{(x_1 - \sqrt{E_s})^2}{N_0}\right)$$

51/20

最佳信号波形设计

波形相关系数:
$$\rho \stackrel{def}{=} \frac{1}{\sqrt{E_0 E_1}} \int_0^T s_0(t) s_1(t) dt$$
, $(|\rho| \le 1)$

偏移系数:
$$d^2 \stackrel{def}{=} \frac{(E(l|H_1) - E(l|H_0))^2}{Var(l|H_0)} = \frac{2}{N_0} (E_1 + E_0 - 2\rho\sqrt{E_1E_0})$$

最检波形设计
$$\rho = -1, s_0(t) = -s_1(t), d^2 = \frac{8}{N_0} E_s, E_0 = E_1 = E_s$$

在高斯白噪声条件下,对于确知一般二元信号的波形检测,当两个信号设计成互 反信号时,可在信号能量给定的约束下获得最好的检测性能。

正交波形设计
$$\rho = 0, d^2 = \frac{4}{N_0} E_s, E_0 = E_1 = E_s$$

信号的检测性能差于同信号能量的反相信号。

不合理波形设计 $0 < \rho \le 1, E_0 = E_1 = E_s$

$$\frac{4}{N_0}E_s > d^2 \ge 0 \implies \rho \to 1, d^2 \to 0,$$
 检测性能逐步变差。

检测性能

简单二元信号,检测性能与 d^2 有关; 一般二元信号,检测性能不但与 d^2 有关,还与相关系数 ρ 有关, $\rho = -1$ 时,可获得最佳性能。

积分

$$\int \sin^2(x)dx = \frac{x}{2} - \frac{1}{4}\sin(2x) + C$$

$$\int_0^T a^2 \sin^2(\omega t)dt = \frac{a^2T}{2}, T = 2\pi/\omega$$

$$E_s = \int_0^T s^2(t)dt$$

$$= \int_0^{2\pi} (5\sin(t))^2 dt$$

$$= 25\pi$$

$$s(t) = \lim_{N \to \infty} \sum_{k=1}^N s_k f_k(t)$$

E[n(t)n(u)]

$$E[n(t)n(u)] = r_n(t-u) = \frac{N_0}{2}\delta(t-u) = \frac{N_0}{2}, (t=u,\delta(t-u)=1)$$

$$E[n(t)n(u)] = \frac{N_0}{2}$$

白噪声功率谱密度
$$P_n(\omega) = \frac{N_0}{2}$$
, $(N_0$ 是常数)

δ_{jk}

$$\delta_{jk} = \begin{cases} 1, & (j=k) \\ 0, & (j\neq k) \end{cases}, k = 1, 2, \dots$$

2019年8月

56/20

积分均值互换推导

$$\mu_{x}(t) \stackrel{def}{=} E[x(t)] = \int_{-\infty}^{\infty} xp(x;t)dx$$

$$E[\int_{0}^{T} x(t)f_{k}(t)dt] = \int_{-\infty}^{\infty} \int_{0}^{T} x(t)f_{k}(t)dtp(x;t)dx$$

$$= \int_{0}^{T} \int_{-\infty}^{\infty} x(t)f_{k}(t)p(x;t)dxdt$$

$$= \int_{0}^{T} \left(\int_{-\infty}^{\infty} x(t)p(x;t)dx\right)f_{k}(t)dt$$

$$= \int_{0}^{T} E[x(t)]f_{k}(t)dt$$

$$E_{s_0} + E_{s_1} = 2E_s$$

若两个正数之和为 α 常数,则当这两个正数各为 $\alpha/2$ 时其乘积最大。

正交

Theorem

组成三角级数的函数系 $\{1,\cos x,\sin x,\cos 2x,\sin 2x,\ldots,\cos nx,\sin nx,\ldots\}$ 在 $[-\pi,\pi]$ 上正交,即其中任意两个不同的函数之积在 $[-\pi,pi]$ 上的积分等于 0.

Proof.

$$\int_{-\pi}^{\pi} 1 \cdot \cos nx dx = \int_{-\pi}^{\pi} 1 \cdot \sin nx dx = 0 \quad (n = 1, 2, ...)$$

$$\int_{-\pi}^{\pi} \cos kx \cos nx dx = \frac{1}{2} \int_{-\pi}^{\pi} [\cos(k+n)x + \cos(k-n)x] dx = 0 \quad (k \neq n)$$

同理可证:

$$\int_{-\pi}^{\pi} \sin kx \sin nx dx = 0, \int_{-\pi}^{\pi} \cos kx \sin nx dx = 0 \quad (k \neq n)$$

58/20

temp

 $5\sin(2t)$

n(t)

x(t)

$$\int_0^T s_1(t)x(t)dt$$

$$\int_0^T s_0(t)x(t)dt$$

l(x)

欢迎批评指正!