Hw 4

1.
$$M = 17 \times 19 \times 23 \times 29 = 223483$$

 $M_1 = 13147$ $M_2 = 11764$ $M_3 = 9712$ $M_4 = 7709$
 $y_1 = 3$ $y_2 = 13$ $y_3 = 4$ $y_4 = 23$
 $X = (b_1 \times 13147 \times 3 + b_2 \times 11764 \times 13 + b_3 \times 9712 \times 4 + b_4 \times 7709 \times 23)$ mod $z_{23}483$

2.
$$\chi = 15t_1 + b_1 = 21t_2 + b_2$$

 t_1, t_2 have solutions \iff $gcd(15, 21) | b_1 - b_1$
 $gcd(15, 21) = 3$ i.d. $3| b_2 - b_1$

3.
$$\forall x, \gamma, t \in M_2(IR)$$

 $\det x \gamma = \det x \cdot \det \gamma \neq 0 \Rightarrow x \gamma \in M_2(IR)$
 $X \gamma = X \gamma \in M_2(IR)$
 $E = (10)$
 $E = (10)$
 $E = X \in X$

$$\forall x$$
, $\det x \neq 0$. $\Rightarrow \exists x'', xx' = x'x = E$
50. it is a group.

but
$$(\begin{array}{c} 1 \\ 0 \end{array}) - (\begin{array}{c} 0 \\ 0 \end{array}) = (\begin{array}{c} 0 \\ 0 \end{array})$$

$$\begin{pmatrix} \begin{pmatrix} 0 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} \end{pmatrix}$$

so not Abelian.

4. let K= m.o(a) + t o = t < o(a) if $a^{k} = | \Rightarrow a^{m \cdot o(a) + t} = a^{t} = |$ but o(a) is the smallest one. $\Rightarrow t=0$ 50 0(a) K 5. if (i,m)=1 $g^i=g^{i/m}$ so, we only need considero-i < m $e g g^2 - g^{m-1} \Rightarrow g^m = e , i, d o(g) = m$ consider e gi (g²)i --- (gm-)i if $(g^{k})^{\hat{i}} = (g^{k})^{\hat{i}}$ $g^{(k_{i}-k_{i})\hat{i}} = e$ but we have proved that in question 4 that $\forall t$, $g^t = e \Rightarrow o(g) | t$ So $m/(k_2-k_1)i$ but $(m,i)=| \rightarrow m/k_1-k_1$ $-m < k_2 - k_1 < m$ So $k_2 - k_1 = 0$ $k_1 = k_2$ SO. if (m,i)=|go can be a generator of G the number of i is $\phi(m)$ so we only need to prove that if (m. i) +1, gi cannot be a generator if gcd (m,i)=k Consider $(g^{\hat{i}})' (g^{\hat{i}})^2 ... (g^{\hat{i}})^{\frac{m}{k}}$ So $(g^{\hat{i}})^{\frac{m}{k}} = g^{\frac{m\hat{i}}{k}} = (g^m)^{\frac{\hat{i}}{k}} = e$

so o(gi) ≤ m/k < m In confusion. the number of i is \$(m)