Recurrent Deep Residual Network for Lung Cancer Classification

Beibei Du and Cole Springate-Combs Contributions from Hongyan Wang

Outline

- Introduction
 - Problem statement
 - Solutions we proposed
- Related work
- Approaches
 - Using LightGBM on top of pre-trained model features
 - Using LSTM on top of pre-trained model features
- Experiments and Results
 - Datasets
 - Evaluation metrics
 - Results
- Conclusion

Introduction - Problem

Cancer or not Cancer?

Related Work and Motivation

Transfer learning:

transfer learning from AlexNet and GoogleLeNet pre-trained on imagenet [1]

3D CNN:

Success with nodule detection and identification [2]

Simple mean:

Reasonable results with mean of slices, transfer learning [3]

RNN:

RNN applied to traditional CNN on fixed amount of slices [4]

Contribution

Use transfer learning from 2D network to "2.5D" data

Add RNN LSTM features:

allow the model to learn 3D information deal with the varying number of slices per patient

Use whole images, train one network

"High mean" layer

Introduction - solution

- CNN + LightGBM
- CNN + LSTM

Two pre-trained model: Vgg19 and ResNet50

Dataset

285380 Chest CT Scans

Dimension: Slices of 512 x 512 (b/w)

1397 patients, each with a varying number of slices

Dataset

Approaches - Basic CNN Architecture

Approaches - Extract Features

Approaches - Train classifiers

LightGBM

- Mean features
- Label every image, use all features
- Combine two pre-trained model features
- LSTM

Approaches - Train LightGBM (ResNet50)

ResNet50	Approach 1	Appoach 2
Train Data Shape	(1397, 2048)	(81942, 2048)
Train Time (seconds)	577.780	5299.740
Stopping Rounds	3164	5000
Final Train Log Loss	0.435	0.414

Approaches - Train LightGBM (VGG19)

VGG19	Approach 1	Appoach 2
Train Data Shape	(1397, 25088)	(81942, 25088)
Train Time (seconds)	6419.99	46979.59
Stopping Rounds	2890	5000
Final Train Log Loss	0.4337	0.4026

Approaches - Train LightGBM (combine two)

Combine Two	
Train Data Shape	(1397, 27316)
Train Time (seconds)	6574.270
Stopping Rounds	3553
Final Train Log Loss	0.436

Approaches - Prediction

- Using LightGBM
- Using LSTM

Max Pooling with Stride 2 Leaky Relu Batch Normalization

Model Parameters

Optimizer: Adam

Learning rate of 0.001, momentum of 0.9

Initialization: Glorot normal (aka Xavier normal)
fan in = number of input units in the weight
fan out = number of output units

$$\mathcal{N}\left(0,\sqrt{\frac{2}{fan\ in+fan\ out}}\right)$$

Loss: LogLoss on Softmax

"High-mean" layer

Motivation:

Cancerous nodes only on some slices

RNN not working well

Max, Mean not sensitive

Get mean of slices whose mean is above the patient's mean

- Evaluation Metrics
 - Log Loss

LogLoss =
$$-\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)],$$

where

- · n is the number of patients in the test set
- $\backslash \backslash \hat{y}_i$ is the predicted probability of the image belonging to a patient with cancer
- \\y_i is 1 if the diagnosis is cancer, 0 otherwise
- \\log(\\) is the natural basee logarithm

Note: the actual submitted predicted probabilities are replaced with $\mbox{max}(min(p, 1 - 10^{-15}, 10^{-15})\\)$. A smaller log loss is better.

- Evaluation metrics
 - ROC curve

Results - Log Loss Comparison

Model - VGG19_1		Log Loss	
		Train dataset	Val dataser
		0.434	0.557
VGG19_2	Avg	0.403	0.582
	Max		0.773
	Min		0.609
ResNet50_1		0.435	0.576
ResNet50_2	Avg	0.414	0.585
	Max		0.617
	Min		0.623
Combine Two model		0.436	0.560

Results - ROC curve comparison (ResNet50)

Results - ROC curve comparison (VGG19)

Results - ROC curve comparison (ResNet50 and VGG19)

Experiments and Results - Approach 2

Experiments and Results - Approach 2

Experiments and Results - Approach 2

Model	LOSS	AUC
cnn + mean	2.09	0.64
cnn + rnn	3.06	0.52
cnn + rnn + mean	3.17	0.623
cnn + rnn + highmean v2	9.49	0.59
cnn + rnn + highmean v1	9.94	0.6
cnn + rnn + max	2.93	0.63
rnn + mean	2.77	0.61
rnn	2.9	0.53
data combo, cnn+rnn+mean	2.66	0.57

Conclusions

Transfer learning was successful

RNN performance was disappointing Sequence too long?

Performance wall?

Easy to overfit

Future improvements

Ideas:

Up/Down-sample to fixed number of slices

Bucketing

More network after RNN (requires fixed length)

More data to help overfitting

References

- [1] Ramaswamy and Truong. "Pulmonary Nodule Classification with Convolutional Neural Networks." (2016).
- [2] Anirudh, Rushil, et al. "Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data." SPIE Medical Imaging. International Society for Optics and Photonics, 2016.
- [3] Fierro, Miguel, Ye Xing, and Tao Wu. "Quick-Start Guide to the Data Science Bowl Lung Cancer Detection Challenge, Using Deep Learning, Microsoft Cognitive Toolkit and Azure GPU VMs." Blog post. Cortana Intelligence and Machine Learning Blog. Microsoft, 17 Feb. 2017. Web. 10 Mar. 2017.
- [4] Ypsilantis, Petros-Pavlos, and Giovanni Montana. "Recurrent Convolutional Networks for Pulmonary Nodule Detection in CT Imaging." arXiv preprint arXiv:1609.09143 (2016).