Brexit, Condorcet - paradoxy demokracie (a jejich řešení) z hlediska matematiky

Dalibor Pražák, KMA MFF UK

1 Úvod.

Dle všeobecně rozšířeného mínění spočívá demokracie v tom, že společná rozhodnutí se přijímají hlasováním. To má zaručit, že i v případě jakkoliv složitých a kontroverzních záležitostí bude přijato řešení, které je (alespoň z hlediska většiny občanů) nejvíce uspokojivé.

Skutečnost je ovšem složitější: jakmile stojíme mezi více než dvěma alternativami, může dojít k situaci, kdy každé přijaté rozhodnutí nechává většinu občanů nespokojenou. Tento paradox, objevený již před více než dvěma sty let de Condorcetem, nás inspiroval k navržení "modelu brexitu". Náš model nabízí jednoduché a snad i nekontroverzní vysvětlení patové situace, v které se momentálně¹ nachází britská politika.

Ve druhé části se zabýváme modelem jiného politického problému: totiž stanovení optimální teploty ve společné kanceláři. Jde o jakousi složitější, kvantitativní verzi Condorcetova paradoxu, která ukazuje, že hlasování může vést k nejhorší (v jistém smyslu) ze všech možných variant.

V poslední části článku se pokusíme matematicky hlouběji zamyslet nad většinou a hlasováním. Ukážeme, že Condorcetův paradox má řešení, jež je zároveň prakticky nepoužitelné, a přesto, věříme, hluboce inspirativní – přesně jako pravá matematika!

2 Model brexitu.

Připomeňme, že matematický model je pokusem o zjednodušený, schematizovaný a zároveň zpřesněný popis nějaké situace. Jeho cílem je vystihnout podstatu, či jakousi logickou kostru studovaného problému.

V našem modelu brexitu předpokládáme, že se rozhoduje mezi třemi variantami:

A	setrvání v EU
В	měkký brexit
С	tvrdý (no deal) brexit

Dále předpokládáme, že občané británie (a potažmo členové parlamentu) jsou rozdělení do následujících tří skupin:

¹Psáno v září 2019.

Skupina $V_{\rm rem}$, o síle cca 40%, si přeje setrvání v EU, tedy variantu A. Jako druhou, leč horší možnost, vidí odchod na základě dohody, tj. B. Za nejhorší, ba přímo katastrofální, považuje tvrdý brexit, tj. C.

Proti nim stojí skupina občanů $V_{\rm soft}$, o něco slabší (cca 35%), která si přeje opustit EU, leč po dobrém, tj. variantu B. Jako druhou, leč podstatně horší možnost, připouští i tvrdý brexit, tj. C. Každopádně nejhorší je pro ně varianta A, setrvání v EU.

Konečně je zde nejmenší, leč výrazná skupina $V_{\rm rad}$ radikálních brexitářů o síle cca 25%. Pro ně je první volbou samozřejmě C. Na druhé místo (trochu paradoxně) kladou A: raději v EU zůstat (aspoň prozatím), než se pustit do polovičatého řešení B (které dle nich kombinuje to nejhorší z ostatních možností).

skupina	podíl	preference
$V_{\rm rem}$	40%	$A \succ B \succ C$
$V_{ m soft}$	35%	$B \succ C \succ A$
$V_{\rm rad}$	25%	$C \succ A \succ B$

Tvrdíme, že toto je dobrý model v tom smyslu, že z něj vyplývá přesně taková politická dynamika, jakou v Británii od roku 2016 pozorujeme.

Poznámka. Čtenář nemusí souhlasit s údaji v naší tabulce a ani to není nutné. Podstatné pro náš model jsou dvě věci: žádná ze skupin V_{rem} , V_{soft} , V_{rad} netvoří většinu a za druhé, preference jednotlivých skupin jsou dokonale zacykleny v tom smyslu, že každá z variant A, B a C má právě jedno první místo, právě jedno druhé místo, a právě jedno třetí místo.

3 Cyklická dynamika

Co tedy plyne z našeho modelu? Za prvé je jasné, že referendum dopadne v poměru 60% ku 40% ve prospěch "leave". Všimněme si však již nyní, že referendum odhlíží od (klíčové) otázky, zda má být odchod tvrdý či měkký, a že vítězná většina $V_{\rm soft} \cup V_{\rm rad}$ není v tomto bodě jednotná.

Vlády se ujímá Theresa M., která, ač sama zastánkyní A, se poctivě snaží realizovat variantu B. To je v dané situaci rozumné řešení, nicméně nejvíce vyhovuje pouze menšině $V_{\rm soft}$. Proti tomu se konstituuje nespokojená většina $V_{\rm rem} \cup V_{\rm rad}$. I tato většina je nejednotná v tom smyslu, že skupina $V_{\rm rem}$ stále doufá v možnost A, zatímco $V_{\rm rad}$ si naopak přeje radikálnější C. Buď jak buď, plán B se v parlamentu schválit nepodaří.

Vlády se ujímá Boris J.; na pořad dne se dostává možnost C. Tato situace, kterou nyní² pozorujeme, sjednotí k odporu $V_{\rm rem}$ a $V_{\rm soft}$, kteří tvrdý brexit považují za potenciální katastrofu. Je pravděpodobné, že se odchod z EU opět odloží. To ovšem prakticky znamená setrvání při variantě A, v rozporu s výsledkem referenda. Ocitáme se na počátku celého bludného kruhu. Paradox, který zde pozorujeme, byl objeven markýzem de Condorcet již před více než dvěma sty lety. Tzv. Condorcetův cyklus spočívá v tom, že hlasujeme-li o jednotlivých variantách, pak většina (totiž $V_{\rm rem} \cup V_{\rm rad}$) preferuje A před B. Většina (totiž $V_{\rm rem} \cup V_{\rm soft}$) také preferuje

²Viz poznámku č. 1.

B před C. Leč opět většina (totiž $V_{\text{soft}} \cup V_{\text{rad}}$) preferujem C před A. Vzniká tedy cyklické uspořádání většinové (či chceme-li, demokratické) preference

$$A \succ B \succ C \succ A$$

Důsledkem je právě pozorovaná nestabilita, či nekonzistence: jakýkoliv výsledek hlasování je znovu odvoláván a jeví se tedy jako libovolný.

4 Problém teploty v kanceláři.

Na jednom zapadlém úřadě pracují tři úředníci. Pracovní pohodu však začne nahlodávat spor o to, jak teplo by v kanceláři mělo být. Zatímco úředník U_1 je pro zachování současné teploty (varianta A), úředník U_2 by si přál teplotu nižší (varianta B). Naopak úředník U_3 se domnívá, že by se mělo více topit (varianta C).

Pokusme se navrhnout přesnější, kvantitativní model. Budeme předpokládat, že úředník i má definovanou jistou optimální, tj. nejvíce žádoucí teplotu T_i^{opt} . Je-li v místnosti teplota T, pak míra nespokojenosti úředníka i je rovna rozdílu (v absolutní hodnotě) mezi současnou a optimální teplotou, tj.

$$\mathcal{N}_i(T) = |T - T_i^{\text{opt}}| \tag{1}$$

V kanceláři je ústřední topení (ovládané centrálním úřadem), které udržuje stálou teplotu $T_{\rm A}=22^{\circ}C$. Předpokládejme, že U_1 považuje za optimální $T_1^{\rm opt}=21^{\circ}C$, otužilec U_2 se cítí nejlépe při $T_2^{\rm opt}=19^{\circ}C$, zatímco zimomřivý U_3 by byl nejšťastnější při $T_3^{\rm opt}=27^{\circ}C$.

Vzoreček (1) nám tedy říká, že míra nespokojenosti jednotlivých pracovníků se současným stavem je po řadě $\mathcal{N}_1(T_A) = 1$, leč $\mathcal{N}_2(T_A) = 3$, a dokonce $\mathcal{N}_3(T_A) = 5$.

Úředníci nemohou ovládat ústřední topení, v kanceláři však objeví starou, nikdy nepoužívanou klimatizační jednotku. Ta dokáže buď ochladit místnost na teplotu $T_{\rm B}=18^{\circ}C$, nebo naopak ohřát na $T_{\rm C}=25^{\circ}C$. Nyní už můžeme sestavit celkovou tabulku nespokojenosti vůči všem třem variantám:

	A	В	С
U_1	1	3	4
U_2	3	1	6
U_3	5	9	2

Odsud lehce vyplývají individuální preference:

úředník	preference	
U_1	$A \succ B \succ C$	
U_2	$B \succ A \succ C$	
U_3	$C \succ A \succ B$	

Jaké jsou tedy preference většiny? Zřejmě většina se domnívá, že $A \succ B$, $B \succ C$ a také $A \succ C$. Tedy máme lineární (necyklické) uspořádání:

$$A \succ B \succ C$$
.

Z hlediska většiny se tedy nejlepší volbou nakonec jeví varianta A, zachování stávající teplotu $22^{\circ}C$. Druhá nejlepší možnost je B, snížení teploty na $18^{\circ}C$; nejhorší pak je C, její zvýšení na $25^{\circ}C$.

Co když je to ale jinak? Náš kvantitativní model nám totiž umožní vypočítat i *celkovou míru nespokojenosti*, kterou definujeme jako součet nespokojeností jednotlivých úředníků (při dané teplotě):

$$\mathcal{N}_{\Sigma}(T) = \mathcal{N}_1(T) + \mathcal{N}_2(T) + \mathcal{N}_3(T) \tag{2}$$

Tedy např. celková míra nespokojenosti při $T_A = 22^{\circ}C$ jest 1+3+5=9. Rozšíříme předchozí tabulku

	A	В	С
U_1	1	3	4
U_2	3	1	6
U_3	5	9	2
\sum	9	13	12

a zjišťujeme, že měřeno celkovou mírou nespokojenosti, varianta A je stále nejlepší, ovšem varianta C se nyní jeví jako mírně lepší než varianta B.

Představme si následující scénář: nejprve se hlasuje o otázce "chceme změnit teplotu v kanceláři?". Většina (totiž U_2 spolu s U_3) hlasuje pro. Tedy varianta A je ze hry venku. (Je také možné, že se prostě ukáže, že klimatizační jednotku lze zapnout či přepnout, nikoliv však už vypnout.) V dalším hlasování ovšem vítězí B nad C (většina U_1 spolu s U_2). Demokratická procedura tedy, ve svém důsledku, ústí do situace, kdy je celková míra nespokojenosti v kanceláři největší možná (tedy 13 oproti 12 či původním 9).

5 Demokracie a nekonečno

Co totiž znamená, v hlubším smyslu, rozhodovat "demokraticky"? Každý ví, co to znamená většina – lze na tom objevit něco hlubšího? Hlubší pohled (přesněji řečeno, obecnější či abstraktnější pohled) se pokusíme vyjádřit v následující definici.

Definice. Demokracií na množině V rozumíme systém podmnožin \mathcal{Z} , splňující následující axiomy:

- (D1) $\emptyset \notin \mathcal{Z}, V \in \mathcal{Z}$
- (D2) $M \in \mathcal{Z}$ a $M \subset N \implies N \in \mathcal{Z}$
- (D3) $M \in \mathcal{Z} \implies (V \setminus M) \notin \mathcal{Z}$

Názorně řečeno, V je množina všech voličů, zatímco \mathcal{Z} je systém všech zákonodárných množin (nebo též zobecněných většin) – tedy takových podmnožin V, jimž přiznáváme právo učinit nějaké rozhodnutí. Uvedené axiomy neurčují \mathcal{Z} jednoznačně, spíše vyjadřujé jisté obecné, minimální podmínky na to, aby takový systém rozhodování rozumně fungoval.

Za prvé: nemá být přijatou rozhodnutí, které nikdo nepodporuje, naopak má být přijato rozhodnutí, na němž se shodnou všichni. Za druhé, je-li jistá skupina M oprávněna učinit

rozhodnutí, pak tím spíše i větší skupina N je oprávněna učinit rozhodnutí. Třetí axiom lze zformulovat ekvivalentně takto: jestliže V rozdělíme na dvě disjunktní množiny, pak právo učinit rozhodnutí lze přiznat nejvýše jedné z nich.

Existuje více způsobů, jak definovat demokracii v našem smyslu. Speciálně sem patří všechny běžné rozhodovací mechanismy. Necháváme na čtenáři, aby ověřil, že všechny níže uvedené příklady opravdu vyhovují axiomům (D1)–(D3).

- 0 Triviální příklad $\mathcal{Z}=\{V\}$ odpovídá požadavku jednomyslnosti přijato je pouze rozhodnutí, na němž se shodne celé V.
- ① Nechť #M značí počet prvků množiny M. Potom

$$\mathcal{Z} = \left\{ M \subset V; \ \#M > \frac{1}{2} \#V \right\}$$

je systém právě všech podmnožin V, které tvoří většinu v obvyklém smyslu.

(2) Zvolme pevně nějaký prvek $\Delta \in V$ a definujme

$$\mathcal{Z} = \{ M \subset V; \ \Delta \in M \}$$

Právo činit rozhodnutí dáme skupině M právě tehdy, je-li v ní občan Δ . Speciálně, právo činit rozhodutí má jednoprvková množina $\{\Delta\}$, tedy občan Δ sám. Vidíme, že náš pojem demokracie zahrnuje speciálně i diktaturu.

 $\ \, \ \,$ Matematika samozřejmě hned napadne otázka, jak definovat většinu, je-li Vnekonečná. Definice z bodu 1 nefunguje, ale můžeme položit

$$\mathcal{Z} = \big\{ M \subset V; \ \#(V \setminus M) < \infty \big\}$$

Tedy v nekonečném parlamentu bychom za schválené považovali ty zákony, s nimiž souhlasí všichni až na konečně výjimek.

Nyní však zpátky ke Condorcetově paradoxu a nešťastné nekonzistentní většině. Abstraktní pohled nám umožňuje vidět, kde je jádro problému: určitá většina schválí nějaké (částečné) rozhodnutí, leč tváří v tvář dalšímu rozhodnutí se rozkládá na dvě menšiny. Potřebovali bychom zesílit poslední axiom:

Definice. Demokracii \mathcal{Z} nazveme efektivní, pokud navíc platí (D4): jestliže $M_1 \cap M_2 = \emptyset$ a $M_1 \cup M_2 \in \mathcal{Z}$, pak buď (i) $M_1 \in \mathcal{Z}$, nebo (ii) $M_2 \in \mathcal{Z}$.

Jinými slovy: pokud libovolnou zákonodárnou množinu rozdělíme na dvě disjunktní části, tak právě jedna z nich bude i nadále zákonodárná.

Lze ukázat, že v demokracii řídící se axiomem (D4) nemůže nastat Condorcetův cyklus; rozhodnutí většiny jsou vždy lineárně uspořádaná (tedy za předpokladu, že lineárně jsou uspořádané i preference jednolivých voličů). Na druhou stranu už není tak zřejmé, zda tomuto axiomu lze také vyhovět – z uvedených příkladů je to pouze diktatura, pro niž platí. Bohužel, slavnou větu Kennetha Arrowa lze formulovat právě takto:

Věta 1. [Arrow 1950.] Jedinou efektivní demokracií je diktatura.

Je to tedy s demokracií opravdu tak špatné? Ne tak docela; neboť Arrowův výsledek podstatně využívá (zdánlivě samozřejmý?) přepoklad konečnosti V. Ve skutečnosti platí pozoruhodné upřesnění:

Věta 2. [Fishburn 1970, Kirman a Sondermann 1972.] Nechť V je nekonečná. Potom na V existuje efektivní demokracie, v níž žádná konečná množina není zákonodárná. Speciálně: \mathcal{Z} není diktaturou, ani oligarchií.

Je zřejmé, že uvedená matematická věta nemůže sloužit jako praktický návod na reformu volebního systému (poznamenejme, že věta využívá tzv. axiom výběru a jde tedy o silně nekonstruktivní existenční výrok). Na druhou stranu věříme, že tváří v tvář konkrétním politickým sporům může inspirovat k širšímu pohledu sub specie infinitatis.