Opgave 1: Let p be prime.

(a) Show that any ring with unit and order $|R| = p^2$ is commutative.

Solution: Assume R is not commutative. Let $a, b \in R$ such that $ab \neq ba$. By Lagrange, the order of a, b must divide p^2 . If the order of a is p^2 then a generates R so in particular $ab = aa^k = a^ka = ba$. Hence both a and b must have order p.

0.1 Eksamen 2021

Opgave 4: $f(x) = x^4 + 4x^2 + 6$.

(a) Vis, at f(x) er irreducibelt i $\mathbb{Q}[x]$.

Solution: Brøklegemet for \mathbb{Z} er \mathbb{Q} , så per Gauss' lemma er f(x) irreducibelt i $\mathbb{Q}[x]$ hvis og kun hvis det er irreducibelt i $\mathbb{Z}[x]$ idet det er monisk. Men i \mathbb{Z} er (2) et primideal, og $2 \mid 4, 6$, men $2^2 = 4 \nmid 6$, så per Eisensteins kriterium, er f(x) irreducibelt i $\mathbb{Z}[x]$ og $\mathbb{Q}[x]$.

(b) Bestem en irreducibel opløsning af f(x) i $(\mathbb{Z}/11\mathbb{Z})[x]$.

Solution: Vi har, at 1 og -1 er rødder modulo 11, så

$$x^4 + 4x^2 + 6 \equiv (x-1)(x+1)(x^2+5)$$

Vi har $\binom{-5}{11} = -1$, så højresiden er faktoriseringen i irreducible faktorer.

(c) Vis, at f(x) har en faktorisering f(x) = g(x)h(x) i $\left(\mathbb{Z}\left[\sqrt{-2}\right]\right)[x]$, hvor g(x), h(x) har grad 2.

Solution: Vi har $x^4 + 4x^2 + 6 = 0$ i $\mathbb C$ hvis og kun hvis $x^2 = \frac{-4\pm\sqrt{-8}}{2} = -2\pm\sqrt{-2}$, så

$$x^4 + 4x^2 + 6 = (x^2 - (-2 + \sqrt{-2}))(x^2 - (-2 - \sqrt{-2})).$$

(d) Vis, at f(x) ikke har nogen rod i $\mathbb{Z}\left[\sqrt{-2}\right]$.

Solution: $\mathbb{Z}\left[\sqrt{-2}\right]$ er UFD, dermed også et integritetsområde, så hvis f har rod i x_0 , må højresiden i (c) være nul og dermed en af dets faktorer være nul og dermed reducibel med en lineær faktor. Da $N\left(-2+\sqrt{-2}\right)=4+2=6$, ville $N(x_0^2)=6$, så hvis $x_0=a+b\sqrt{-2}$, er $N(x_0^2)=N(x_0)^2=(a^2+2b^2)^2=6$. Hvis b=1, fås en modstrid ved at tjekke efter, og lignende hvis b=0.

0.2 Reeksamen 2021

Opgave 4: $f(x) = x^4 - 6x^2 + 12$.

(a) Vis, at f(x) er irreducibelt i $\mathbb{Q}[x]$.

Solution: Da f(x) er monisk, er f irreducibelt i $\mathbb{Q}[x]$ hvis og kun hvis f er irreducibel i $\mathbb{Z}[x]$. I \mathbb{Z} er (3) et primideal, og 3 | -6, 12, men $3^2 \nmid 12$, så per Eisensteins kriterium, er f irreducibel i $\mathbb{Z}[x]$ og dermed også i $\mathbb{Q}[x]$.

(b) Det er klart, at ± 1 er rødder i f(x), så

$$x^4 - 6x^2 + 12 \equiv (x - 1)(x + 1)(x^2 - 5) \pmod{7}$$

De lineære faktorer er irreducible, da $\mathbb{Z}/7\mathbb{Z}$ er et integritetsområde, og da $\binom{5}{7} = \binom{2}{5} = (-1)^{\frac{24}{8}} = -1$, er $(x^2 - 5)$ også irreducible i $\mathbb{Z}/7\mathbb{Z}[x]$.

$$g(x) = x^3 + x + 4.$$

(c) Vis, at g(x) er irreducibelt i $\mathbb{Z}/5\mathbb{Z}[x]$.

Solution: $\mathbb{Z}/5\mathbb{Z}$ er et legeme, så hvis g(x) var reducibelt, ville den have rod i $\mathbb{Z}/5\mathbb{Z}$ - dvs. en lineær faktor -, men ved indsættelse ses g(0) = 4, g(1) = 6, g(2) = 4, g(3) = 4, g(4) = 2 alle modulo 5, så da g ikke har nogen rod, er g irreducibel i $\mathbb{Z}/5\mathbb{Z}[x]$.

1

(d) Vis, at g(x) er irreducibelt i $\mathbb{Q}[x]$.

Solution: Per rationel rod testen, er de eneste mulige rødder i \mathbb{Q} netop $\pm 1, \pm 2$ og ± 4 . Men det er klart, at for alle positive versioner, er g(x) > 0, og g(-1) = 2, g(-2) = -6, g(-3) = -26, så ingen af disse er rødder. Dermed har g ingen rødder i $\mathbb{Q}[x]$. Da \mathbb{Q} er et legeme, følger derfor, at g ikke har nogen lineære faktorer og er dermed ikke reducibel.

0.3 Prøveeksamen

1:

(a) Vi har, at $0 \neq \overline{a} \in \mathbb{Z}/15\mathbb{Z}$ er en nuldivisor, hvis og kun hvis $ab \in 15\mathbb{Z}$ for et $\overline{b} \neq 0$. Da \mathbb{Z} er UFD og $15 = 3 \cdot 5$, må $3, 5 \mid ab$. Vi kan ikke have, at $3, 5 \mid b$, da $\overline{b} \neq 0$, så enten må $3 \mid a$ eller $5 \mid a$. Vi kan heller ikke have $3, 5 \mid a$ af samme grund. Så vi får $\overline{a} = 3$ eller $\overline{a} = 5$.

For alle andre $\overline{a} \in \mathbb{Z}/15\mathbb{Z}$, må (a,15)=1, så per Bezout eksisterer $s,t\in\mathbb{Z}$ så as+15t=1, så $\overline{as}=1$, hvormed a er en enhed.

- (b) Vi har, at $N(2+\sqrt{6})=4-6=-2$, som er \pm et primtal, hvormed den er irreducibel per Generel bemærkning 1.
- (c) Det er det ikke. \mathbb{C} er et legeme og dermed et integritetsområde. Vi har nu $x^2 \cdot x = x^3 \in (x^3)$. Hvis x^2 eller $x \in (x^3)$, ville $x^2 = x^3 q(x)$ eller $x = x^3 q(x)$, men da det er et integritetsområde, fås $2 = degx^2 = degx^3 + degq = 3 + degq \geq 3$, som er en modstrid.
- (d) $\frac{x}{1}$ er ikke en enhed i $\mathbb{C}[x]_{(x)}$. Antag for modstrid, at $\frac{x}{1}\frac{r}{s} = \frac{1}{1}$, så må $xru(x) = su(x) \in \mathbb{C}[x] \setminus (x)$, men $xru(x) = su(x) \in (x)$; dermed modstrid, da s, u.
- (e) 7 og x er ikke enheder og ikke nul i $\mathbb{Z}[x]$. De er desuden irreducible, da 7 er irreducibel i \mathbb{Z} og dermed i $\mathbb{Z}[x]$ og da x er primitiv og irreducibel i $\mathbb{Q}[x]$ og dermed i $\mathbb{Z}[x]$. Dermed er 7x reducibel i $\mathbb{Z}[x]$. 7x er dog irreducibel i $\mathbb{Q}[x]$, da den er en lineær faktor og

Opgave 2:

(a)

$$x^{7} + x^{5} - 3x^{2} - 3 = (x^{6} + x^{5} - 3x - 3)(x - 1) + 2x^{5} - 6$$
$$(x^{6} + x^{5} - 3x - 3) = (2x^{5} - 6)(\frac{1}{2}x + \frac{1}{2})$$

Så gcd er derfor $2x^5 - 6$, som er associeret til $x^5 - 3$.

- (b) Vi har, at $x^5 3$ er monisk, så den er reducibel i $\mathbb{Q}[x]$ hvis og kun hvis den er reducibel i $\mathbb{Z}[x]$, men i $\mathbb{Z}[x]$ er den Eisenstein i 3, så dermed irreducibel.
- (c) Vi har, at $\mathbb{Q}[x]$ er Euklidisk så specielt PID, da \mathbb{Q} er et legeme. Dermed for (f(x), g(x)) = (d(x)), og da d(x) er irreducibel, er $\mathbb{Q}[x]/(d(x))$ et legeme per en opgave.

Opgaven: Hvis \mathbb{F} er et legeme, og $f(x) \in \mathbb{F}[x]$ er irreducibel, da er $\mathbb{F}[x]/(f(x))$ et legeme.

Bevis: I et PID er et ikke-nul primideal et maksimalideal og irreducible elementer er primelementer, så (f(x)) er et maksimalideal.

(d) Vi har

$$x^5 - 3 = x \cdot x^4 - 3$$
.

så i legemet, er $\overline{x} \cdot \frac{1}{3} \overline{x^4} = \overline{1}$.

Opgave 3:

- (a) Vi har $x^2 (x+1)x = -x$ og x+1+-x=1, så for $a_1 = x^2$ og $a_2 = -(x+1)x + (x+1)$, fås $a_1 + a_2 = 1$. Dermed er (x^2) og (x+1) komaksimale.
- (b) Vi har, $(x^2)(x+1) = ((x^2)(x+1)) = (x^3 + x^2)$, så per den kinesiske restklassesætning, er

$$\mathbb{R}[x]/(x^3+x^2) \cong \mathbb{R}[x]/(x^2) \times \mathbb{R}[x]/(x+1)$$

ved $[f(x)] \to ([f]_{(x^2)}, [f]_{(x+1)}).$

(c) Den inverse afbildning er givet ved

$$([a], [b]) \rightarrow [aa_2 + ba_1],$$

så
$$(x,1) \to [x(x+1)(1-x) + x^2] = [-x^3 + x^2 + x].$$

(d) Lad $\varphi \colon R[x] \to \mathbb{R}$ ved evaluaring i -1.

Denne er klart surjektiv og har kerne (x + 1).

Da $\varphi(f+g) = (f+g)(-1) = f(-1)+g(-1) = \varphi(f)+\varphi(g)$ og $\varphi(fg) = (fg)(-1) = f(-1)g(-1) = \varphi(f)\varphi(g)$ er φ en ringhomomorfi, som etablerer den givne isomorfi.

Opgave 4: $f(x) = x^5 + 21x + 63$.

- (a) Da f er primitiv, er f irreducibel i $\mathbb{Q}[x]$ hvis og kun hvis den er irreducibel i $\mathbb{Z}[x]$. Men f er Eisenstein i 7 i $\mathbb{Z}[x]$, og dermed irreducibel.
- (b) Da $\lim_{x\to\infty} f(x) = \infty$ og $\lim_{x\to-\infty} f(x) = -\infty$ og f er kontinuert, har f en rod i \mathbb{R} . Dermed har den en lineær faktor $(x-\alpha)$ for et $\alpha\in\mathbb{R}$.
- (c) I $(\mathbb{Z}/2\mathbb{Z})[x]$ er $f(x)=x^5+x+1$. f har ingen rod i $\mathbb{Z}/2\mathbb{Z}$, så en faktorisering ville skulle have form

$$x^5 + x + 1 = (x^3 + ax^2 + bx + c)(x^2 + dx + e) = x^5 + ax^4 + (e + ad + b)x^3 + (a + bd + c)x^2 + (be + cd)x + ce$$

så
$$a = 0$$
, og $e + b = 0$, $bd + c = 0$, $be + cd = 1$, $ce = 1$.

Da må $cd - b^2 = 1$. Vi har e = 1, så b = 1, så $cd = 0 \implies d = 0$. Dette giver

$$x^5 + x + 1 = (x^3 + x + 1)(x^2 + 1).$$

(d) Da $N(7)=49=7^2$, ville en faktorisering have faktornorm 7, men $a^2+2b^2=7$ er umuligt, så 7 er irreducibel i $\mathbb{Z}\left[\sqrt{-2}\right]$ og dermed også i $\mathbb{Z}\left[\sqrt{-2}\right][x]$. Da f er Eisenstein i 7, som dermed også er et primelementer, da $\mathbb{Z}\left[\sqrt{-2}\right]$ er PID, er f irreducibelt.