Improving Softmax Regression on MNIST

Last update: November 9, 2024

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Stochastic Gradient Descent (SGD)

Error function on training data

$$E_{train}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} e\left(h_{\mathbf{w}}(\mathbf{x}^{(n)}), y^{(n)}\right)$$

$$\mathbf{Minimize}\,E_{train}(\mathbf{w})$$

Gradient Descent (GD):

$$\begin{aligned} \mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla E_{train}(\mathbf{w}) \\ \nabla E_{train}(\mathbf{w}) &= \frac{1}{N} \sum_{n=1}^{N} \nabla e\left(h_{\mathbf{w}}(\mathbf{x}^{(n)}), y^{(n)}\right) \end{aligned}$$

To take a step, GD needs to go through ${\cal N}$ training examples

ightarrow Slow when N is large

$\mathbf{Minimize}\,E_{train}(\mathbf{w})$

Stochastic Gradient Descent (SGD): let's use a subset of B $(B\ll N)$ examples — called a mini-batch — to estimate $\nabla E_{train}(\mathbf{w})$

 $\ensuremath{\mathsf{Q}}\xspace$. How should we choose B examples from N examples?

A: Choose randomly

Q: What is the effect of B on the quality of estimating $\nabla E_{train}(\mathbf{w})$?

A: The larger B , the better quality of estimating $\nabla E_{train}(\mathbf{w})$

$\text{Minimize } E_{train}(\mathbf{w})$

Image source: https://datascience.stackexchange.com/a/94355

$\mathbf{Minimize}\,E_{train}(\mathbf{w})$

Q: So, with a step of SGD, we do it faster than GD, but we pay the price of worse quality. Is it worth it?

A: Yes. In reality, people often see that: with the same starting point and the same amount of time, SGD runs much more steps than GD and ends up with much smaller E_{train} than GD $\,$

$\mathbf{Minimize}\ E_{train}(\mathbf{w})$

Sketch of SGD implementation:

- Initialize w
- 2. Repeat until termination criteria are satisfied:
 - a. Shuffle the order of training examples
 - b. For mini-batch $b=1,...,\frac{N}{B}$:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \tfrac{1}{B} \sum_{n=(b-1)B+1}^{bB} \nabla e\left(h_{\mathbf{w}}(\mathbf{x}^{(n)}), y^{(n)}\right)$$

Deslanting digit image

Q:
$$O[r, c] = I[r, ?]$$

Hint: **?** can be computed from c, center_r - r, tan α

A: ? = c + (center_r - r)
$$\times$$
 tan α

A data point (a white point) represents row index and column index of a pixel corresponding to pen stroke

The green point is simply the average of all data points!

A data point (a white point) represents row index and column index of a pixel corresponding to pen stroke

The violet line is the best-fit line for all data points! Q: Which is the form of this line: (1) row = $a \times column + b$, or (2) column = $a \times row + b$?

A data point (a white point) represents row index and column index of a pixel corresponding to pen stroke

The violet line is the best-fit line for all data points! Q: Which is the form of this line: (1) row = $a \times \text{column} + b$, or (2) column = $a \times \text{row} + b$? A: (2)

12

A data point (a white point) represents row index and column index of a pixel corresponding to pen stroke

The violet line is the best-fit line for all data points! Q: Assume we have found the best-fit line "column = a \times row + b". What is the formula to compute tan α from a? A: tan α = -a