Lab 9 – Pamela the Pediatrician

In 2017, a Pamela the Pediatrician was interested in the heights of children (measured in cm). She collected three random samples from three populations according to birth month and did a one-way ANOVA analysis with the data.

Pamela wanted to test this hypothesis: H_0 : $\mu_1 = \mu_2 = \mu_3$

Group 1	Group 2	Group 3
born Mar. 2013	born Dec. 2012	born Sept. 2012
104	106	110
106	101	114
105	107	115
102	106	110
99	109	118
	101	118
		113
5	6	7
103.2	105	114
7.7	10.8	11

sample size sample mean sample variance

Find \overline{X} , the overall mean among all 18 observations in the study. Since the sample sizes are not all equal to each other, \overline{X} will not simply equal the average of the three sample means!

Compute SSA by hand. Use a calculator, but show your work.

Compute SSE by hand. Use a calculator, but show your work.

Complete the ANOVA table:

Source	d.o.f.	SS	MS	F
Treatment	k-1	SSA	$MSA = \frac{SSA}{k-1}$	$F = \frac{MSA}{MSE}$
Error	n-k	SSE	$MSE = \frac{SSE}{n-k}$	
Total	n-1	SS Total		

Source	d.o.f.	SS	MS	F
Treatment				
Error				
Total				

Draw the Rejection Region on the appropriate curve and label the critical value ($\alpha = .05$).

Did Pamela have significant evidence that H_0 : $\mu_1 = \mu_2 = \mu_3$ is false?

Use both SAS and R to confirm your previous answers (see SAS10 and R10 handouts). The data is in a file named pamela.csv

Fisher's Least Significant Difference = LSD = t_{n-k} , $\alpha_{/2}$ · $\sqrt{\text{MSE}}$ · $\sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$
Find Fisher's LSD for each pair of sample means ($\alpha=.05$). Notice that since the three sample sizes are different, Fisher's LSD will be slightly different for each pair.

LSD for \overline{X}_1 and \overline{X}_2 :
$\overline{X}_1 - \overline{X}_2 =$
Are \overline{X}_1 and \overline{X}_2 significantly different?

LSD for \overline{X}_1 and \overline{X}_3 :
$\overline{X}_1 - \overline{X}_3 =$
Are \overline{X}_1 and \overline{X}_3 significantly different?

LSD for \overline{X}_2 and \overline{X}_3 :
$\overline{X}_2 - \overline{X}_3 =$
Are \overline{X}_2 and \overline{X}_3 significantly different?

air(s) of means are significantly different from each other:	
*******************************	****

After you have completed this handout, complete the Canvas quiz titled:

<u>Lab 08 – Pamela the Pediatrician</u>