МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

"ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Розрахунково-графічна робота

з дисципліни

«Дискретна математика»

Виконав:

студент групи КН-112

Калітовський Роман

Викладач:

Мельникова Н.І.

ІНДИВІДУАЛЬНІ ЗАВДАННЯ

Завдання № 1

Виконати наступні операції над графами: 1) знайти доповнення до першого графу, 2) об'єднання графів, 3) кільцеву сумму G1 та G2 (G1+G2), 4) розмножити вершину у другому графі, 5) виділити підграф А - що скадається з 3-х вершин в G1 6) добуток графів.

1)Доповнення

G1\G2:

2)об'єднання графів:

3) Кільцева сума:

4)Розщепити вершину у другому графі:

Розщепимо вершину 7

5) Виділити підграф А,що складається з V={1,3,7} в G1 і знайти стягнення A в G1

G1

Стягуємо 7 в 1

Стягуємо 1,7 в 3

Стягуємо 3,7,1 в 4

6)Добуток графів

Завдання № 2

Скласти таблицю суміжності для графа.

Таблиця суміжності:

	1)	2)	3)	4)	5)	6)	7)	8)	9)
1)	0	1	0	0	1	0	0	1	0
2)	1	0	1	0	1	0	0	1	0
3)	0	1	0	1	1	0	0	1	0
4)	0	0	1	0	1	1	1	1	0
5)	1	1	1	1	0	1	0	0	1
6)	0	0	0	1	1	0	1	1	0
7)	0	0	0	1	0	1	0	1	0
8)	1	1	1	1	0	1	1	0	0
9)	0	0	0	0	1	0	0	0	0

Завдання № 3

Для графа з другого завдання знайти діаметр. Найдовший шлях від V7 до V9 і V8 до V9 Діаметр = 3

Завдання № 4

Для графа з другого завдання виконати обхід дерева вглиб (варіант закінчується на непарне число) або вшир (закінчується на парне число). Обхід вшир:

Номер	Номер вершини	Черга
0	-	-
1	1	1
2	2	12
3	5	125
4	8	1258
5	-	258
6	3	2583
7	-	583
8	4	5834
9	6	58346
10	9	583469
11	-	83469
12	7	834697
13	-	34697
14	-	4697
15	-	697
16	-	97
17	-	7
18	-	-

```
#include<queue>
  using namespace std;
       int val;
|
|};
|@int matrix[v][v] = {
      {1, 0, 1, 1, 0, 0, 1, 1},
{1, 1, 0, 1, 0, 1, 1, 0},
      {1, 1, 1, 0, 0, 0, 1,0},
      {0, 0, 0, 0, 0, 1, 7, 0},
      {1, 0, 0, 0, 1, 0, 1, 0},
{1, 1, 1, 1, 1, 1,0,0},
        {0,1,0,0,0,0,0,0,0}
);
⊟void bfs(n* verh, n s) {
       n u;
int i, j;
       queue<n> que;
for (i = 0; i < v; i++) {
             verh[i].st = 0;
       verh[s.val].st = 1;
       que.push(s);
while (!que.empty()) {
            u = que.front();
             que.pop();
             cout << u.val+1 << " ";
             for (i = 0; i < v; i++) {
    if (matrix[i][u.val]) {</pre>
```

```
verh[s.val].st = 1;
       que.push(s);
       while (!que.empty()) {
    u = que.front();
            que.pop();
            cout << u.val+1 << " ";
            for (i = 0; i < v; i++) {
    if (matrix[i][u.val]) {</pre>
                       if (verh[i].st == 0) {
    verh[i].st = 1;
                             que.push(verh[i]);
            u.st = 2;
mint main() {
      n verh[v];
       n start;
       int s; for (int i = \theta; i < v; i++) {
            verh[i].val = i;
       start.val = s - 65;
       cout << "bfs: ";
bfs(verh, start);</pre>
       cout << endl;
```

btf		
0		
1	1	1
2	2	12
3	5	125
4	8	1258
1 2 3 4 5		258
6 7	3	2583
		583
8	4	5834
9	6	58346
10	9	583469
11		83469
12	7	834697
13		34697
14		4697
15		697
16		97
17		7
18		

Завдання № 5

Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Метод Краскала V= $\{1,2\}$ E= $\{(1,2)\}$

V={1,2,7,9} E={(1,2),(7,9),(2,7)}

 $V=\{1,2,7,9,5\} E=\{(1,2),(7,9),(2,7),(5,9)\}$

 $V=\{1,2,7,9,5,4,6\} E=\{(1,2),(7,9),(2,7),(5,9),(4,6)\}$

 $V = \{1,2,7,9,5,4,6\} \ E = \{(1,2),(7,9),(2,7),(5,9),(4,6),(1,4)\}$

 $V = \{1,2,7,9,5,4,6,10\} E = \{(1,2),(7,9),(2,7),(5,9),(4,6),(1,4)(6,10)\}$

 $V = \{1, 2, 7, 9, 5, 4, 6, 10, 11\} E = \{(1, 2), (7, 9), (2, 7), (5, 9), (4, 6), (1, 4), (6, 10), (10, 11)\}$

 $V=\{1,2,7,9,5,4,6,10,11,8\}$ $E=\{(1,2),(7,9),(2,7),(5,9),(4,6),(1,4),(6,10),(10,11),(5,8)\}$

 $V = \{1,2,7,9,5,4,6,10,11,8,3\}$ $E = \{(1,2),(7,9),(2,7),(5,9),(4,6),(1,4),(6,10),(10,11),(5,8),(6,3)\}$

Weight=27

```
V={1,2,7,9,5,4,6,10,11,8,3}
E={(1,2),(7,9),(2,7),(5,9),(4,6),(1,4),(6,10),(10,11),(5,8),(6,3)}
```

Метод Прима:

V={1,2} E={(1,2)}

 $V{=}\{1,2,7,9\}~E{=}\{(1,2),(2,7),(7,9)\}$

 $V=\{1,2,7,9,5\} E=\{(1,2),(2,7),(7,9),(9,5)\}$

 $V=\{1,2,7,9,5,4\} E=\{(1,2),(2,7),(7,9),(9,5),(1,4)\}$

 $V = \{1,2,7,9,5,4,6\} \ E = \{(1,2),(2,7),(7,9),(9,5),(1,4),(4,6)\}$

 $V = \{1,2,7,9,5,4,6,10\} E = \{(1,2),(2,7),(7,9),(9,5),(1,4),(4,6),(6,10)\}$

 $V = \{1,2,7,9,5,4,6,10,11\} \ E = \{(1,2),(2,7),(7,9),(9,5),(1,4),(4,6),(6,10),(10,11)\}$

 $V = \{1,2,7,9,5,4,6,10,11,8\}$ $E = \{(1,2),(2,7),(7,9),(9,5),(1,4),(4,6),(6,10),(10,11),(5,8)\}$

 $V = \{1,2,7,9,5,4,6,10,11,8,3\}$ $E = \{(1,2),(2,7),(7,9),(9,5),(1,4),(4,6),(6,10),(10,11),(5,8),(6,3)\}$

Weight=27.

```
V={1,2,7,9,5,4,6,10,11,8,3}
E={(1,2),(7,9),(2,7),(5,9),(4,6),(1,4),(6,10),(10,11),(5,8),(6,3)}
```

Завдання № 6

Розв'язати задачу комівояжера для повного 8-ми вершинного графа методом «іди у найближчий», матриця вагів якого має вигляд:

	1	2	3	4	5	6	7	8
1	100	5	6	5	4 1 1 5	4	5	5
2	5	00	1	5	1	1	1	1
3	6	1	90	1	1	3	2	1
4	5	5	1	90	5	5	7	5
5	4	1	1	5	90	3	2	5
6	4	1	3	5	3	00	5	6
7	5	1	2	7	∞ 3 2 5	5	90	1
8	5	1	1	5	5	6	1	oc

Почнемо з 1-ої вершини:

1

Найближча до 1-ої вершина - 5

1->5

Довжина шляху: 4

найближча до 5-ої вершини - 2

1->5->2

Довжина шляху: 4+1

найближча до 2-ої вершини - 3

1->5->2->3

Довжина шляху: 4+1+1

найближча до 3-ої вершини - 4

1->5->2->3->4

Довжина шляху: 4+1+1+1

найближча до 4-ої вершини - 6

1->5->2->3->4->6

Довжина шляху: 4+1+1+1+5

найближча до 6-ої вершини - 7

1->5->2->3->4->6->7

Довжина шляху: 4+1+1+1+5+5

найближча до 7-ої вершини - 8

1->5->2->3->4->6->7->8

Довжина шляху: 4+1+1+1+5+5+1

Всі вершини пройдені, повертаємось у початкову

1->5->2->3->4->6->7->8->1

Довжина шляху: 4+1+1+1+5+5+1+5=23.

Завдання № 7

За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі між парою вершин V0 і V * .

12)

Найкоротший шлях:


```
1;
         int d[SIZE];
int v[SIZE];
int temp, minindex, min;
int begin_index = 0;
         for (int i = 0; i < SIZE; i++)
        {
    d[i] = 10000;
    v[i] = 1;
         d[begin_index] = 0;
            minindex = 10000;
            min = 10000;
for (int i = 0; i<SIZE; i++)
{
                if ((v[i] -- 1) && (d[i] min))
              f ((v[i] == 1)
{
    min = d[i];
    minindex = i;
             if (minindex != 10000)
            for (int i = 0; i < SIZE; i++)
                   if (a[minindex][i] > 0)
                 {
  temp = min = a[minindex][i];
  if (temp < d[i])
  {
    d[i] = temp;</pre>
                    }
}
}
                   v[minindex] = 0;
            } while (minindex < 10000);</pre>
           cout<<"Вивід найкоротшого шляху; "<<endl;
for (int i = k - 1; i >= 0; i--)
cout<<ver[i];
getchar(); getchar();
return 0;
```

Завдання № 8

Знайти ейлеровий цикл в ейлеровому графі двома методами: а) Флері; б) елементарних циклів.

Метод флері:

1

1->2->3->11->5->6->7->8->9->10->8->6->4->8->11->10->4->2->10->1

метод елементарних циклів:

Знайдено всі елементарні цикли, ось результат їх поєднання:


```
#include <iostream>
#include <stack>
#include <algorithm>
#include <algo
```

```
graf[y].push_back(x);
++stp[x];

/* +stp[y];

/* if (any_of(stp.begin() + 1, stp.end(), [](int i) {return i & 1; }))

/* cout << "Vidsutnii eilerovi zikl";

/* head.push(1);

/* while (!head.empty())

/* while (stp[head.top()])

/* int v = graf[head.top()].back();
/* graf[head.top()];
/* praf[head.top()];
/* head.push(v);
--stp[head.top()];
/* head.push(v);
--stp[v];

/* while (!head.empty() && !stp[head.top()])

/* vidpovid.push(head.top());
/* head.pop();
/* while (!vidpovid.empty())
/* cout << vidpovid.top() << ' ';
/* vidpovid.pop();
/* cout << vidpovid.top() << ' ';
/* vidpovid.pop();
/* vidpovid.pop();
/* cout << vidpovid.top() << ' ';
/* vidpovid.pop();
/* vidpovid.pop();</pre>
```

```
1->2->3->11->5->6->7->8->9->10->8->6->4->8->11->10->4->2->10->1
```

Завдання №9

Спростити формули (привести їх до скороченої ДНФ).

12. $\bar{x}y \vee x\bar{y}\bar{z}$

Скорочена ДНФ (англ. Reduced disjunctive normal form) - форма запису функції, що володіє наступними властивостями:

- 1) будь-які два доданки відрізняються як мінімум в двох позиціях,
- 2) жоден з Кон'юнктів не міститься в іншому.

Наша функція відповідає цим вимогам, тому можемо стверджувати що ця функція вже ϵ скороченою ДНФ, і спростити її не можна.