BUSINESS INTELLIGENCE

LECTURE 4

OUTLINE

- Introduction
- Business Intelligence Systems
- Fundamental of Visualization
- References

BI FEATURES

Bl task

 Providing decision support for specific goals defined in the context of business activities in different domain areas.

BI foundation

 BI decision support mainly relies on empirical information based on data.

Bl realization

 The decision support has to be realized as a system using the actual capabilities in information and communication technologies (ICT).

BI delivery

 A BI system has to deliver information at the right time to the right people in an appropriate form.

Wilfried Grossmann Stefanie Rinderle-Ma, Fundamentals of Business Intelligence, Springer, 2015.

BI CONTEXT

- By scenarios
 - Standardized reports for a dedicated part of the business
 - Performance monitoring
 - A feedback on strategy formulation
 - Strategic resource
- By perspective
 - Production
 - Customer
 - Organization
 - Etc.

GOALS OF BI

- Key Performance Indicator (KPI)
 - A KPI links the activities of the business to objectives by defining a measurable quantity.
- Influential factors
 - Attributes that may influence the behavior of the KPI in any BI perspective.
- Analytical goals
 - Descriptive: reporting, segmentation, interesting behaviro detection
 - Predictive: regression, classification

DISCUSSION

BI TASKS TO DO

WHAT WOULD WE DO?

- Sales dashboard
 - Sales forecast
- Delivery performance
- Reservation performance
- Customer dashboard
 - Repeat rate
- Feedback dashboard
 - Feedback score
- Item dashboard
 - Item ABC analysis
- Etc.

BI TASKS

- Data task
- Business and data understanding task
- Modeling task
- Analysis task
- Evaluation and reporting task

DATA TASK

- A prerequisite for all BI activities
- The main goal is to organize available information about the business and its environment
- Not only retrieve data but also reorganize and collect additional data for special purposes

BUSINESS AND DATA UNDERSTANDING TASK

- Determine BI context in business
- An initial formulation of goals and KPIs
- Data needed to achieve those goals

MODELING TASK

 It aims at setting up an analytical business model, i.e., a formal model that allows precise answers for the analytical goals, and data related models

Fig. 1.2 Overview on modeling activities

Wilfried Grossmann Stefanie Rinderle-Ma, Fundamentals of Business Intelligence, Springer, 2015.

ANALYSIS TASK

- Algorithms to compute a solution for the analytical goal within the model.
 - Statistics methods
 - Data mining
 - Machine learning
 - Etc.

EVALUATION AND REPORTING TASK

- Evaluation task: view the analysis results from two different perspectives
 - The context of analytical goal
 - The context of business
- Reporting task: interprete the results to domain knowledge by description and visualization

THE iMine METHOD

Fig. 1.4 The iMine method

Wilfried Grossmann Stefanie Rinderle-Ma, Fundamentals of Business Intelligence, Springer, 2015.

DISCUSSION

DELIVERY DASHBOARD

CHART PROBLEMS

AESTHETICS IN DATA VISUALIZATION

TYPES OF DATA

Type of variable	Appropriate scale	Example
Quantitative, numerical continuous	Continuous	1.2, 5.8, 10, 3e-2
Quantitative, numerical discrete	Discrete	1, 5, 8, 12
Qualitative, categorical unordered	Discrete	Rose, Violet, Blossom
Qualitative, categorical ordered	Discrete	Bad, good, excellent
Datetime	Discrete or Continuous	2023-02-23 04:35:58
Text	None or Discrete	The cake is too burnt

DISCUSSION

DATA VISUALIZATION

Month	Day	Location	Station ID	Temperature (°F)
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2

Rank	Title	Weekend gross		
1 Star Wars: The Last Jedi		\$71,565,498		
2	Jumanji: Welcome to the Jungle	\$36,169,328		
3	Pitch Perfect 3	\$19,928,525		
4	The Greatest Showman	\$8,805,843		
5	Ferdinand	\$7,316,746		

	_	_		-
Countr 💌	Year 💌	Status	T,	Life expectancy 💌
Belgium	2001	Developed	d	78
Lithuania	2000	Developed	d	71.6
Iceland	2013	Developed	d	82.4
Iceland	2012	Developed	d	82.5
Australia	2014	Developed	d	82.7
Cyprus	2009	Developed	d	79.3
Italy	2012	Developed	d	82
Italy	2011	Developed	d	82
Italy	2010	Developed	d	81.8
Netherlan	2013	Developed	d	81.4
Singapore	2011	Developed	d	82.2
Spain	2013	Developed	d	82.4
Switzerlar	2009	Developed	d	82.1
Switzerlar	2008	Developed	d	82
Austria	2012	Developed	d	88
Cyprus	2000	Developed	d	78.1
Iceland	2002	Developed	d	84
Ireland	2011	Developed	d	84
Japan	2003	Developed	d	81.9
Japan	2002	Developed	d	81.8
Luxembou	2012	Developed	d	81.1
New Zeala	2012	Developed	d	81.1
Norway	2006	Developed	d	84
Spain	2008	Developed	d	81.3
Sweden	2004	Developed	d	83
Austria	2007	Developed	d	81
Belgium	2011	Developed	d	83
Germany	2008	Developed	d	79.9
Luxembou	2008	Developed	d	80

Fruits Sold

Gasoline Tax by US State as of July 2021

Gasoline Tax by US State as of July 2021

COVID-19 total cases per 1M population

COVID-19 new cases (7 days average) per 1M population

Sales \$ by State and Manufacturer

Average Count of Bicycles by Month

COLOR SCALE

- To represent data values
- To distinguish groups
- To highlight

COLOR TO REPRESENT VALUES

- Quantitative data values
 - E.g., income, temperature, speed
- Sequential color scale
 - Clearly indicates which values are larger or smaller than which other ones.
 - How distant two specific values are from each other.
 - The color scale needs to be perceived to vary uniformly across its entire range.

COLOR TO REPRESENT VALUES

- Quantitative data values
 - E.g., income, temperature, speed
- Diverging color scale
 - One of two directions relative to a neutral midpoint.
 - How far in either direction it deviates from the midpoint.
 - The midpoint normally is a light color

COLOR TO DISTINGUISH GROUPS

Groups without order

 E.g., countries on a map, manufacturers of products

Qualitative color scale

- Specific colors to look clearly distinct from each other while also being equivalent to each other.
- No one color should stand out relative to the others.
- The colors should not create the impression of an order (e.g., successively lighter)

North Carolina

COLOR TO HIGHLIGHT

- To highlight specific elements in the data.
- Accent color scale
 - Vividly stands out against the rest of the figure.
 - Contains both a set of subdued colors and a matching set of stronger, darker, and/or more saturated colors.
- It is critical that the baseline colors do not compete for attention.

FOR INSTANCE

Month	Day	Location	Station ID	Temperature (°F)
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2

Claus O. Wilke, Fundamentals of data visualization: a primer on making informative and compelling figures, O'Reilly, 2019

VISUALIZING AMOUNTS

- When we are interested in the magnitude of some set of numbers.
 - E.g., total sales of different brands, total customer in different areas
- Standard visualization
 - Simple bars
 - Grouped bars
 - Stacked bars
- Alternatives
 - Dot plot
 - Heatmap

SIMPLE BARS

Rank	Title	Weekend gross
1	Star Wars: The Last Jedi	\$71,565,498
2	Jumanji: Welcome to the Jungle	\$36,169,328
3	Pitch Perfect 3	\$19,928,525
4	The Greatest Showman	\$8,805,843
5	Ferdinand	\$7,316,746

SIMPLE BARS

GROUP BARS

STACKED BARS

DOT PLOTS

Claus O. Wilke, Fundamentals of data visualization: a primer on making informative and compelling figures, O'Reilly, 2019

DOT PLOTS

internet users / 100 people

VISUALIZING PROPORTIONS

- How some group, entity, or amount breaks down into individual pieces that each represent a proportion of the whole.
 - Pie charts
 - Stacked bars
 - Stacked densities

PIE CHARTS

STACKED BARS

Claus O. Wilke, Fundamentals of data visualization: a primer on making informative and compelling figures, O'Reilly, 2019

STACKED BARS

STACKED DENSITIES

STACKED DENSITIES

VISUALIZING DISTRIBUTIONS

- To understand how a particular variable is distributed in a dataset.
 - Histograms
 - Density plots

HISTOGRAMS

DENSITY PLOTS

VISUALIZING ASSOCIATIONS

- How these variables relate to each other
 - E.g., height and weight
- Report
 - Scatterplot
 - Bubble chart
 - Scatterplot matrix
 - Correlogram

SCATTERPLOT

BUBBLE CHART

SCATTERPLOT MATRIX

CORRELOGRAMS

$$r = \frac{\Sigma_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\Sigma_i (x_i - \bar{x})^2} \sqrt{\Sigma_i (y_i - \bar{y})^2}}$$

Claus O. Wilke, Fundamentals of data visualization: a primer on making informative and compelling figures, O'Reilly, 2019

VISUALIZING TIME SERIES

- To see pattern by time
 - Single time series
 - Multiple time series
 - Time series with two or more variables

SINGLE TIME SERIES

MULTIPLE TIME SERIES

TIME SERIES WITH TWO VARIABALES

VISUALIZING TRENDS

- To see key features of data
 - Smoothing
 - Linear
 - Curve

TIME SERIES WITH TWO VARIABALES

VISUALIZING GEOSPATIAL DATA

- To see locations in the physical world
 - Map layers (corresponding projection)
 - Choropleth maps
 - Cartogram

MAP LAYERS

Claus O. Wilke, Fundamentals of data visualization: a primer on making informative and compelling figures, O'Reilly, 2019

CHOROPLETH MAPS

CARTOGRAM

VISUALIZING UNCERTAINTY

- Data with uncertainty
 - Error bars
 - Confidence bands

ERROR BARS

CONFIDENCE BANDS

https://cloud.google.com/bigquery-ml/docs/arima-single-time-series-forecasting-tutorial

SUMMARY

- BI process and tasks
- Data visualization
 - Amount
 - Proportion
 - Distribution
 - Association
 - Time series
 - Trend
 - Geography
 - Uncertainty

QUESTIONS AND ANSWERS

Picture from: http://philadelphiasculpturegym.blogspot.com/2013/09/save-date-free-talk-and-q-on-affordable.html

REFERENCES

- [1] Tobias Zwingmann, Al-Powered Business Intelligence, Kindle Edition, O'reilly Press, 2022
- [2] Jiawei Han, Micheline Kamber, "Data Mining: Concepts and Techniques", Third Edition, Morgan Kaufmann Publishers, 2012.
- [3] Jeen Su Lim, John Heinrichs, "Digital Business Intelligence Management with Big Data Analytics" Kindle Edition, O'reilly Press, 2021.
- [4] David L. Olson, Dursun Delen, "Advanced Data Mining Techniques", Springer-Verlag, 2008.
- [5] Brian Larson, "Delivering Business Intelligence with Microsoft SQL Server 2016", McGraw-Hill Education; 4 edition, 2016.
- [6] Oracle, "Data Mining Concepts", 18c, E83730-03, 2018
- [7] Oracle, "Data Mining Application Developer's Guide", 2013.