



#### **GENERAL GUIDELINES**

- Maintain absolute discipline and decorum inside the Campus.
- 85% attendance is a mandatory requirement.
- Mobile phones are strictly prohibited and not to be carried to college.
- Bring this Course Information Booklet to the class, daily.
- Be well on time.
- Keep the classrooms, laboratories, workshop, amenities and the surroundings always clean.
- Show due respect to all staff.
- Clarify your doubts in the respective subjects with faculty by taking prior appointment.
- Inform your parents to follow up your progress at regular intervals with the college authorities.
- Avail the facility of Suggestions box to convey your suggestions.

#### NOTE

- If you secure less than 60% in the ESA examination and / or in the internal test you have to go through Student Academic Support Program compulsorily
- The questions indicated in the question bank have appeared in the previous examination question papers / model papers
- T − Text Book
- R Reference Book

### STUDENT SELF APPRAISAL SESSION: Aug – Dec 2019

| Course Name                          | Ma     | ırks   | Atten    | dance    |
|--------------------------------------|--------|--------|----------|----------|
| Course Name                          | Test 1 | Test 2 | Report 1 | Report 2 |
| Engineering Mathematics III          |        |        |          |          |
| Network Analysis and Synthesis       |        |        |          |          |
| Signals and Systems                  |        |        |          |          |
| CMOS Analog Circuit Design           |        |        |          |          |
| Digital Circuit Design using HDL     |        |        |          |          |
| CMOS Analog Circuit Design LAB       |        |        |          |          |
| Digital Circuit Design LAB using HDL |        |        |          |          |





#### **INDEX SHEET**

| # | Subject code | Subject                                 | Faculty Handling                                                                                                                                                                                                                                                                                                                                        |
|---|--------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | UE18MA201    | Engineering Mathematics III             | Dr.Leela V /Dr.Anitha N                                                                                                                                                                                                                                                                                                                                 |
| 2 | UE18EC201    | Network Analysis and<br>Synthesis       | Dr. Koshy George K/Dr. Anuradha M/ Dr. R G<br>Kulkarni /Prof. Karpagavalli S/ Prof.Thippeswamy<br>E                                                                                                                                                                                                                                                     |
| 3 | UE18EC202    | Signals and Systems                     | Dr.Chandar T S/Dr. Manikandan J/Prof. Rajini M/Prof.R Swetha/Prof. Sarita U/                                                                                                                                                                                                                                                                            |
| 4 | UE18EC203    | CMOS Analog Circuit Design              | Prof. S.S Rekha/Prof.K R Savithri/<br>Prof. Annapurna K.Y.                                                                                                                                                                                                                                                                                              |
| 5 | UE18EC204    | Digital Circuit Design using HDL        | Prof.Nagaraj L J/ Prof. Vanishree P/ Prof. Ravikant G. Biradar/ Prof. S Veena/                                                                                                                                                                                                                                                                          |
| 6 | UE18EC205    | CMOS Analog Circuit Design<br>LAB       | Prof. S.S Rekha/Prof.M S Sunitha/Dr.Chethan K S/<br>Prof. Annapurna K.Y./Prof.Shruthi M L J/ Prof.K R<br>Savithri/Prof.ShwethaG/Prof.Thippeswamy/Prof.R<br>Swetha/Prof.M G Purvidatta/Prof.Ranjan<br>Chaudhuri/Prof.Lavanya /Prof.Hema N                                                                                                                |
| 7 | UE18EC206    | Digital Circuit Design LAB<br>using HDL | Prof.Nagaraj L J/ Prof. Vanishree P/ Prof. Ravikant G. Biradar/ Prof. S Veena/Prof.Suganthi J, Prof.M Rajasekar/Prof.Sahana Srikanth,Prof.Melisa, Dr.Purushotham/Prof.Kedar/Prof. Sumanth/Prof.M Pavithra/Prof.Santha Meena/Prof.Rajini M/ Prof.Sudeendra K/Prof.Y J Pavithra/Prof.Bharathi / Prof.Shilpa/Prof.Nishitha/Prof.Karpagavalli/ Prof.Ashwini |





## UE18MA202-Engineering Mathematics-III (3-1-1-0-4)

No. of Periods: 52 Credits: 04

| Class<br>Number | Portion to be covered                                                                                                    | Percentage<br>covered/<br>Marks<br>allotted |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1               | Unit-I. Complex Function Theory: Introduction to Complex                                                                 |                                             |
| 1               | Functions, Limit, Continuity and Derivative of complex functions                                                         |                                             |
| 2-3             | Cauchy-Riemann equations in Cartesian form, Analytic Functions,                                                          |                                             |
| 4               | Cauchy-Riemann equations in Polar form.                                                                                  |                                             |
| 5               | Harmonic functions &Orthogonal Trajectories with applications to flow problems                                           | 20%                                         |
| 6               | Milne Thompson method                                                                                                    | 20% 20 marks                                |
| 7               | Lab-1 Introduction to finite differences & Scilab.                                                                       | 20 Illarks                                  |
| 8               | Geometrical representation of $w=f(z)$ , Conformal Transformation $w=z^{2}$ .                                            |                                             |
| 9               | Conformal Mapping: w = e <sup>z</sup>                                                                                    |                                             |
| 10              | Conformal Mapping: $w = z+a^2/z$ ( $z \neq 0$ )                                                                          |                                             |
| 11              | Application problems.                                                                                                    |                                             |
| 12              | Lab-2. Newtons Forward and Backward Interpolation Formulae.                                                              |                                             |
| 13              | Unit-II Complex Integration: Line integral of a complex function.                                                        |                                             |
| 14-15           | Cauchy's theorem and consequences of Cauchy theorem.                                                                     |                                             |
| 16-17           | Cauchy's integral formula & its generalization                                                                           | 400/                                        |
| 18              | Series of complex terms-Taylor's series and Laurent's series                                                             | 40%<br>20 marks                             |
| 19              | Lab-3. Lagrange's Interpolation Formlae.                                                                                 | ZU IIIdIKS                                  |
| 20              | Singularities and Poles                                                                                                  | ]                                           |
| 21-22           | Residues, Cauchy's residue Theorem.                                                                                      |                                             |
| 23              | Lab-4. Trapezoidal Rule.                                                                                                 |                                             |
| 24              | Unit-III . Probability and Discrete Random Variable:Probability review, Basic Terminology.                               |                                             |
| 25-26           | Independent events, combined events, axioms of probability, compound law of probability, Bernoulli trials.               |                                             |
| 27-28           | Baye's Theorem and formula.                                                                                              | 1                                           |
| 29              | Lab-5. Simpson's one third and three eighth rule.                                                                        | 60%                                         |
|                 | Random variable, Discrete random variable, discrete probability                                                          | 20 marks                                    |
| 30              | distribution.                                                                                                            |                                             |
| 31-32           | Binomial distribution.                                                                                                   | 1                                           |
| 33              | Poisson distribution.                                                                                                    | 1                                           |
| 34              | Uniform distribution.                                                                                                    | 1                                           |
| 35              | Lab-5. Modified Euler's method.                                                                                          |                                             |
| 36-37           | Unit- 4. Concept (Continuous random variable), continuous probability distribution and cumulative distribution function. | 80%<br>20 marks                             |







| 38    | Gaussian random variable and distribution.                         |          |
|-------|--------------------------------------------------------------------|----------|
| 39    | Expectation, expected value of a random variable and function of a |          |
| 39    | random variable, conditional expected value.                       |          |
| 40-41 | Transformation of a random variable, conditional density and       |          |
| 40-41 | distribution function.                                             |          |
| 42    | Rayleigh random variable.                                          |          |
| 43    | Lab-5. Runge-kutta fourth order method.                            |          |
| 44    | Unit-IV. Formation of PDEs by the method of separation of          |          |
| 44    | variables .                                                        |          |
| 45-46 | Linear PDE's of first order- Lagrange's linear equation            | 100%     |
| 47    | solution of PDE by direct method                                   | 20 Marks |
| 48-49 | Solution of homogeneous linear PDE with constant co-efficients     |          |
| 50-51 | Non homogeneous linear PDE.                                        |          |
| 52    | Lab Test Evaluation.                                               |          |





# **UE18EC201 NETWORK ANALYSIS AND SYNTHESIS (3-0-0-3)**

Faculty: Dr. Koshy George K/Dr. Anuradha M/Dr. R G Kulkarni /Prof. Karpagavalli S/Prof.Thippeswamy E

Credits: 03 No. of Periods: 42

| <b>6</b> 1 | Chapter Title/                             | % Portions Covered                                            |            | Covered    |
|------------|--------------------------------------------|---------------------------------------------------------------|------------|------------|
| Class #    | Reference Literature                       | Topics to be Covered                                          | Individual | Cumulative |
|            |                                            | Basic Analysis                                                |            | •          |
|            |                                            | Reference directions, conventions and                         |            |            |
| 1-2        |                                            | notations. Passive components. Dot                            |            |            |
|            |                                            | conventions.                                                  |            |            |
|            |                                            | Active components. Physical devices                           |            |            |
| 3-4        |                                            | and approximations: linearity; time-                          |            |            |
|            |                                            | invariance; lumped parameters                                 |            |            |
|            | R1: Chap 1, 2, 3<br>R2: Chap 2, 3, 4, 5, 7 | Kirchhoff's laws; independent network                         | 19.0       | 19.0       |
| 5-6        | 112. Chap 2, 3, 4, 3, 7                    | equations. Node and mesh analysis                             |            |            |
|            |                                            | with dc excitation. Duality.                                  |            |            |
| _          |                                            | Source transformations. Star-delta                            | -          |            |
| 7          |                                            | transformations.                                              |            |            |
| 0          |                                            | More examples of network analysis                             |            |            |
| 8          |                                            | with dc excitation.                                           |            |            |
|            |                                            | Transient Behaviour                                           | •          | -          |
| 9-10       |                                            | First order circuits; time constants.                         |            |            |
|            |                                            | Initial conditions and their evaluation.                      |            |            |
| 11-12      | _                                          | Second order circuits; damping.                               |            |            |
| 13         |                                            | Laplace transforms; properties; the Dirac delta               |            |            |
|            | R1: Chap 4, 5, 6,                          | s-domain analysis of first and second                         |            |            |
| 14-16      | parts of 7, 8, 9, 10                       | order circuits.                                               |            |            |
| 17         | R2: Chap 8, 9, 10, 11,<br>13, 14, 15       | Waveform synthesis                                            | 26.0       | 45.0       |
|            | 15, 14, 15                                 | Evaluation of initial and final values;                       |            |            |
| 18         |                                            | Impedance, admittance and                                     |            |            |
| 10         |                                            | immittance functions. Network                                 |            |            |
|            | _                                          | More examples of network analysis                             |            |            |
| 19         |                                            | More examples of network analysis with dc and ac excitations. |            |            |
|            | •                                          | Network Theorems                                              | L          | 1          |
|            |                                            |                                                               |            |            |





| 21-22 | R2: Chap 5                 | Thevenin's and Norton's theorems                                      |      |      |
|-------|----------------------------|-----------------------------------------------------------------------|------|------|
| 23-24 |                            | Maximum power transfer and reciprocity theorems.                      |      |      |
| 25-26 |                            | Millmann's and Tellegen's theorems.                                   |      |      |
| 27    |                            | More examples of network analysis with dc and ac excitations.         |      |      |
|       |                            | Two-ports                                                             |      |      |
| 28    |                            | One-ports: review                                                     |      |      |
| 29    |                            | z-parameters: open circuit analysis                                   |      |      |
| 30    |                            | y-parameters: short circuit analysis                                  |      |      |
| 31    | R1: Chap 11<br>R2: Chap 17 | h- and t-parameters                                                   | 17.0 | 81.0 |
| 32    | R3: Chap 9                 | Relations between parameter sets                                      | 17.0 | 81.0 |
| 33    |                            | Interconnections of two-port networks                                 |      |      |
| 34    |                            | More examples                                                         |      |      |
|       |                            | Network Synthesis                                                     |      |      |
| 35    |                            | Causality and stability                                               |      |      |
| 36    |                            | Hurwitz polynomials; positive-real functions.                         |      |      |
| 37-38 |                            | Elementary synthesis procedures.                                      |      |      |
| 39    | R3: Chap 10, 11            | Properties of RC impedance, RL admittance and LC immitance functions. | 19.0 | 100  |
| 40-42 |                            | Foster forms I and II;<br>Cauer forms I and II                        |      |      |

Note: A maximum of 14 additional hours can be considered as tutorials which have been factored into the timetable.

#### Reference Books:

- 1. M.E Van Valkenburg, Network Analysis, Third Edition, PHI, 2006.
- 2. W.H. Hayt, J.E. Kemmerly, S.M. Durbin, Engineering Circuit Analysis, Seventh Edition, TMH, 2007.
- 3. F. F Kuo, Network Analysis and Synthesis, Second Edition, Wiley India, 2006.
- 4. C. K Alexander, M. N. Sadiku, Fundamentals of Electric Circuits, Third Edition, McGraw Hill, 2010.
- 5. R. L. Boylestad, Introductory Circuit Analysis, Tenth Edition, Prentice Hall, 2002.
- 6. J. O'Malley, Theory and Problems of Basic Circuit Analysis, Second Edition, McGraw Hill, 1992.





### **UE18EC202 - SIGNALS AND SYSTEMS**

Credits: 3 No. of Hours: 42

Faculty: Dr. T. S. Chandar (TSC), Dr. J. Manikandan (JMK), Mrs. Rajini M. (RMM), Mrs. R. Swetha (RS), Ms. Saritha U (SU), Ms. Lavanya K (LK), Dr. Sanjoy Mondal, Prof. Shreyus

#### **LESSON PLAN**

| Class #          | Chapter Title /                                                                                                            | Topics to be covered                                                                                                                                                                                                                                                                                                                                             | % of Porti        | on covered |
|------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
| Class #          | Reference Literature                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  | Reference<br>Unit | Cumulative |
| 1-8<br>(8 hrs)   | UNIT-1 Signals and Systems (R1 – Sec. 1.1 – 1.6)                                                                           | Classification of signals, Continuous-time and discrete-time signals, Transformations of the independent variable, Exponential and sinusoidal signals, The unit impulse and unit step functions, Sa (x) / Sinc functions, Importance of Sinc function, Continuous-time and discrete-time systems, Basic system properties.                                       | 19%               | 19%        |
| 9-16<br>(8 hrs)  | UNIT-II<br>LTI Systems<br>(R1 – Sec. 2.1 – 2.4)                                                                            | Discrete-time LTI systems: The convolution sum, Continuous-time LTI systems: The convolution integral, Properties of LTI systems, Causal LTI systems described by difference and differential equations (Natural, Forced, and Complete Response).                                                                                                                | 19%               | 38%        |
| 17-24<br>(8 hrs) | UNIT-III  Representation of Periodic (Continuous-time & Discrete-time) signals using Fourier series. (R1 – Sec. 3.1 – 3.7) | Explanation of Complex Exponentials, Response of LTI systems to complex exponentials, Trigonometric Fourier Series, Fourier series representation of continuoustime periodic signals, Convergence of the Fourier series (brief discussion only), Properties of continuous-time Fourier series (CTFS), Introduction to Fourier series representation of discrete- | 19%               | 57%        |





| Convergence (ROC) for the Z-transform, The inverse Z-transform, Properties of the Z-transform, Properties of the Z-transform, Z-transform pairs, Analysis and characterization of LTI systems using Z- | 25-34<br>(10 hrs) | UNIT-IV  Continuous-time / Discret-time Fourier Transform.  (R1 – Sec. 4.1 – 4.5, 5.1 – 5.3) | time periodic signals, Properties of Discrete-time Fourier Series (DTFS).  Representation of aperiodic signals: Continuous-time Fourier transform (CTFT), The Fourier transform for periodic signals, Properties of continuous-time Fourier transform, Fourier transform pairs. Discrete-time Fourier transform: Representation of aperiodic signals: the discrete-time Fourier transform (DTFT), The Fourier transform for discrete periodic signals, Properties of discrete-time Fourier transform, Fourier transform pairs, Duality, Introduction to Sampling: Sampling theorem, Nyquist Criterion. | 23% | 80%  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| transforms. The unilateral Z-<br>transform and solution of<br>difference equations.                                                                                                                    |                   | Z-Transforms<br>(R1 – 10.1 – 10.3,                                                           | transform, The inverse Z-transform, Properties of the Z-transform, Z-transform pairs, Analysis and characterization of LTI systems using Z-transforms. The unilateral Z-transform and solution of                                                                                                                                                                                                                                                                                                                                                                                                      | 20% | 100% |

Note: A total of 14 hours need to be earmarked over above the allotted 42 hours, for Tutorials. The same needs to be distributed evenly across the 5 Units.





## **References:**

| Book Type             | Code | Title & Author                                                    |                 | Publication Info             |      |
|-----------------------|------|-------------------------------------------------------------------|-----------------|------------------------------|------|
|                       |      |                                                                   | Edition         | Publisher                    | Year |
| Text Book - 1         | R1   | Signals and<br>Systems by Alan<br>V Oppenheim,<br>Alan S. Willsky | 2 <sup>nd</sup> | Pearson<br>Education<br>Asia | 2013 |
| Reference<br>Book - 1 | R2   | Signals & Systems Simon Haykin & Barry Van Veen                   | 2 <sup>nd</sup> | John Wiley &<br>Sons         | 2002 |
| Reference<br>Book - 2 | R3   | Signals Processing and Linear Systems. B.P. Lathi                 | 1 <sup>st</sup> | Ind Press                    | 2006 |
| Reference<br>Book - 3 | R4   | "Analog and Digital Signal Processing"Ashok Ambardar              | 2 <sup>nd</sup> |                              | 1999 |

### **ISA Evaluation Pattern:**

ISA – 1 – weightage 15 Marks ISA – 2 – weightage 15 Marks Assignment – 10 Marks

Total - 40 Marks





# **UE18EC203 CMOS ANALOG CIRCUIT DESIGN (4-0-0-4)**

Faculty: Dr.ST, Prof.MAS, Prof.SSR, Prof.KRS, Prof. AKY

Credits: 04 No. of Classes: 56

| Class # Reference Literature   Topics to be Covered   Topics to be Covered   Individual   Cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | Credits.             | 140. UI Classe                      |            |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|-------------------------------------|------------|------------|
| Reference Literature  PHYSICS OF MOS TRANSISTORS  Introduction to Analog Design, Structure of MOSFET: Qualitative Analysis, Derivation of I-V Characteristics, Channel-Length Modulation, MOS Traconductance, Body effect  MOS device Models: Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71) Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Class # | Chapter Title/       | Tonics to be Covered                | % Portio   | ns Covered |
| 1-2    Introduction to Analog Design,   Structure of MOSFET:   Operation of MOSFET:   Qualitative Analysis,   Derivation of I-V Characteristics ,   Derivation of I-V Characteristics ,  | Class # | Reference Literature | Topics to be covered                | Individual | Cumulative |
| 3-7 R1: Chapter 6  Channel-Length Modulation, MOS Traconductance, Body effect  MOS device Models: Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  R2: Chapter 3  R2: Chapter 3  R2: Chapter 3  R2: Chapter 3  R3: Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                      |                                     |            |            |
| Structure of MOSFET Operation of MOSFET: Qualitative Analysis, Derivation of I-V Characteristics, Channel-Length Modulation, MOS Traconductance, Body effect  MOS device Models: Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71) Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2     |                      | Introduction to Analog Design,      |            |            |
| 3-7 R1: Chapter 6  R2: Chapter 7  R2: Chapter 7  R2: Chapter 7  R2: Chapter 7  R3: Chapter 7  R4: Chapter 7  R5: Chapter 7  R5: Chapter 7  R6: Chapter 7  R6: Chapter 7  R6: Chapter 7  R7: Chapter 7  R8: Chapter 8  R8 | 1-2     |                      | Structure of MOSFET                 |            |            |
| 3-7 R1: Chapter 6  R1: Chapter 6  Channel-Length Modulation, MOS Traconductance, Body effect  MOS device Models: Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                      | Operation of MOSFET:                |            |            |
| R1: Chapter 6  Channel-Length Modulation, MOS Traconductance, Body effect  MOS device Models: Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71) Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                      | Qualitative Analysis,               |            |            |
| MOS Traconductance, Body effect  MOS device Models: Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-7     |                      | Derivation of I-V Characteristics , |            |            |
| MOS Traconductance, Body effect  MOS device Models: Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | R1: Chapter 6        | Channel-Length Modulation,          | 100/       | 100/       |
| 8-10  Large Signal Model, Small Signal Model, PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage: 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                      | MOS Traconductance, Body effect     | 19%        | 19%        |
| Small Signal Model,  PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage:  1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                      | MOS device Models:                  | _          |            |
| PMOS transistor, CMOS technology  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage:  1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-10    |                      | Large Signal Model,                 |            |            |
| SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage:  1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                      | Small Signal Model,                 |            |            |
| SINGLE STAGE AMPLIFIER  SINGLE STAGE AMPLIFIER  Basic Concepts, Common Source stage:  1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11      |                      | PMOS transistor,                    | -          |            |
| Basic Concepts, Common Source stage:  1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11      |                      | CMOS technology                     |            |            |
| Common Source stage:  1. Resistive Load: Av  2. Diode Connected Load: Av  3. Source Degeneration: Av, Rout  (Till Page 64)  Source follower: Av and Rout  (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                      | SINGLE STAGE AMPLIFIER              |            |            |
| 1. Resistive Load: Av 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                      | Basic Concepts,                     |            |            |
| 2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                      | Common Source stage:                |            |            |
| R2: Chapter 3  2. Diode Connected Load: Av 3. Source Degeneration: Av, Rout (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 17   |                      | 1. Resistive Load: Av               |            |            |
| 18-19 R2: Chapter 3 (Till Page 64)  Source follower: Av and Rout (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-17   |                      | 2. Diode Connected Load: Av         |            |            |
| (Till Page 64)  Source follower: Av and Rout  (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | D2: Chantar 2        | 3. Source Degeneration: Av, Rout    | 240/       | 400/       |
| 18-19 (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | K2: Chapter 3        | (Till Page 64)                      | 21%        | 40%        |
| (Till Page 71)  Common gate stage: Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 10   |                      | Source follower: Av and Rout        |            |            |
| 20-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10-13   |                      | (Till Page 71)                      |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.21   |                      | Common gate stage: Av               | -          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ZU-ZI   |                      | (Till Page 77)                      |            |            |





|       |               | Cascode stage: Input & Output            |      |       |
|-------|---------------|------------------------------------------|------|-------|
| 22-23 |               | Characteristics, Small Signal and Rout   |      |       |
|       |               | (Till Page 85)                           |      |       |
|       |               | DIFFERENTIAL AMPLIFIER                   |      |       |
| 24    |               | Single Ended and Differential            |      |       |
| 24    |               | operation                                |      |       |
|       |               | Basic differential pair:                 |      |       |
|       |               | 1. Qualitative Analysis(Till Page 106)   |      |       |
| 25-29 | P2: Chapter 4 | 2. Small Signal behaviour of             |      |       |
|       | R2: Chapter 4 | differential pairs-Half Circuit Analysis | 18%  | 58%   |
|       |               | only                                     |      |       |
| 30-32 |               | Common Mode response: Av,cm              |      |       |
| 30-32 |               | (Till Page 119)                          |      |       |
| 33    |               | Differential Pair with MOS loads         |      |       |
| 33    |               |                                          |      |       |
|       |               | PASSIVE AND ACTIVE CURRENT MIRRORS       |      |       |
| 34-35 |               | Basic current mirror                     |      |       |
| 36-37 |               | Cascode current mirrors                  |      |       |
| 30-37 |               | (Till Page 142)                          |      |       |
|       |               | Active Current Mirror: Av of             |      |       |
| 38-40 | P2: Chantar E | Differential Pair with Current Source    |      |       |
|       | R2: Chapter 5 | Load (Till Page 147)                     | 20%  | 78%   |
| 41-42 |               | Large signal analysis of active current  |      |       |
| 41-42 |               | mirror                                   |      |       |
|       |               | Small signal analysis of active current  |      |       |
| 43-44 |               | mirror: Av with First Approach only      |      |       |
|       |               | (Till page 152)                          |      |       |
|       | <b>'</b>      | FREQUENCY RESPONSE                       |      |       |
| 45    | R2: Chapter 6 | Miller Effect,                           | 220/ | 1000/ |
| 46-47 | Chapter 8     | Common source stage                      | 22%  | 100%  |





|       | Feedback                              |  |
|-------|---------------------------------------|--|
| 48-50 | General Consideration Properties of   |  |
|       | negative feedback                     |  |
|       | (Till Page 255)                       |  |
|       | Feedback Topologies-                  |  |
| 51-54 | Different Types of Feedback           |  |
| 31-34 | Topologies with effect of feedback on |  |
|       | input and output impedance            |  |
|       | Effect of Loading                     |  |
| 55-56 | 1. Two Port Network Model             |  |
|       | 2. Loading in Voltage –Voltage        |  |
|       | feedback                              |  |





# **DIGITAL DESIGN USING HDL**

**Subject Code: UE18EC204** No of Hours: 56

## **LESSON PLAN**

| Class | Chapter Title                                                   | Topics to be covered                                                                                                                                                                                                                                                          | % of Portions covered |            |
|-------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| #     |                                                                 |                                                                                                                                                                                                                                                                               | Reference<br>Chapter  | Cumulative |
| 1-16  | Unit-1  Gate-level minimization and Introduction to Verilog HDL | Introduction to Boolean Functions, K Map-Method: 2- Variable, 3-Variable, 4- Variable, Five Variable map, POS Simplification, Don't Care Conditions, NAND NOR Implementation, Other Two Level Implementations, Quine-McCluskey Minimization Methods;                          | 28%                   | 28%        |
|       |                                                                 | HDL Flow, Module<br>Declaration, Gate Delays,<br>Boolean Expression<br>Assignment, User Defined<br>Primitives                                                                                                                                                                 |                       |            |
| 17-29 | <b>Unit-2</b> Combinational Logic Circuit                       | Design Procedure, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders and Encoders, Multiplexers and Demultiplexers; Verilog Models of CLC: Gate Level Modeling, Three State Gates, Data Flow modeling, Behavioral Modeling, Test Bench | 23%                   | 51%        |





| Class<br># | Chapter Title                                                   | Topics to be covered                                                                                                                                                                                                                                                                                                                                    | % of Portions covered |            |  |
|------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|--|
|            |                                                                 |                                                                                                                                                                                                                                                                                                                                                         | Reference<br>Chapter  | Cumulative |  |
|            |                                                                 | Г                                                                                                                                                                                                                                                                                                                                                       | 1                     |            |  |
| 1-16       | Unit-1  Gate-level minimization and Introduction to Verilog HDL | Introduction to Boolean Functions, K Map-Method: 2- Variable, 3-Variable, 4- Variable, Five Variable map, POS Simplification, Don't Care Conditions, NAND NOR Implementation, Other Two Level Implementations, Quine-McCluskey Minimization Methods;  HDL Flow, Module Declaration, Gate Delays, Boolean Expression Assignment, User Defined Primitives | 28%                   | 28%        |  |
| 30-40      | Unit-3 Sequential Logic Circuits                                | Introduction to Sequential Circuits, Storage Elements- Latches, Storage Elements- Flip- Flop, Analysis of Clocked Sequential Circuits; Verilog Models of SLC: Verilog Models of Flipflops and Latches, State Diagram Based HDL Models, Structural Description of Clocked Sequential Circuits                                                            | 20%                   | 71%        |  |
| 41-49      | Unit-4 Registers and Counters                                   | Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring and Johnson Counters; Verilog Models of Registers and Counters: Shift Register, Synchronous counters, Ripple Counter                                                                                                                                                            | 16%                   | 87%        |  |





| Class<br># | Chapter Title                                                      | Topics to be covered                                                                                                                                                                                                                                                                                                                                    | % of Portions covered |            |  |
|------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|--|
|            |                                                                    |                                                                                                                                                                                                                                                                                                                                                         | Reference<br>Chapter  | Cumulative |  |
|            |                                                                    |                                                                                                                                                                                                                                                                                                                                                         | 1                     |            |  |
| 1-16       | Unit-1  Gate-level  minimization and  Introduction to  Verilog HDL | Introduction to Boolean Functions, K Map-Method: 2- Variable, 3-Variable, 4- Variable, Five Variable map, POS Simplification, Don't Care Conditions, NAND NOR Implementation, Other Two Level Implementations, Quine-McCluskey Minimization Methods;  HDL Flow, Module Declaration, Gate Delays, Boolean Expression Assignment, User Defined Primitives | 28%                   | 28%        |  |
| 50-56      | Unit-5  Memories and Programmable Logic                            | Random Access Memory,<br>Memory Decoding, Error<br>Detection and Correction, Read<br>Only Memory, PLA, PAL,<br>Sequential Programmable<br>Device                                                                                                                                                                                                        | 13%                   | 100%       |  |





# Literature:

| Pools Tyme     | Title O Assilves                                                                                     | Publication Info            |                  |      |
|----------------|------------------------------------------------------------------------------------------------------|-----------------------------|------------------|------|
| Book Type      | Title & Author                                                                                       | Edition                     | Publisher        | Year |
| Reference Book | M. Morris Mano Michael D. Ciletti, "Digital Design with an Introduction to the Verilog HDL"          | 5 <sup>th</sup> Edition     | Pearson          | 2013 |
| Reference Book | Stephen Brown and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design",              | 2 <sup>nd</sup><br>Edition  | McGraw Hil       | 2003 |
| Reference Book | Ronalad J Tocci, Neal S Widmer,<br>Gregory L Moss, "Digital Systems<br>Principles and Applications", | 10 <sup>th</sup><br>Edition | Prentice<br>Hall | 2006 |
| Reference Book | J. Bhasker, "Verilog HDL Synthesis A<br>Practical Primer",                                           |                             | BSP              | 2001 |
| Reference Book | Joseph Cavanagh, "Verilog HDL: Digital Design and Modeling",                                         |                             | CRC press        | 2007 |
| Reference Book | Michael D Ciletti, "Advanced digital design with Verilog HDL",,,.                                    | 2 <sup>nd</sup><br>Edition  | Pearson          | 2003 |

# **Evaluation criterion:**

**ISA-I: 20 M ISA-II: 20 M** 

**ESA: 60 M**