AI&ML

Project Documentation: Transfer Learning-Based Classification of Poultry Diseases for Enhanced Health Management

1. INTRODUCTION

1.1 Project Overview:

This project focuses on developing an Al-powered system for the classification of poultry diseases using transfer learning. The primary objective is to accurately identify common poultry diseases from images (e.g., images of affected birds, droppings, or lesions).

1.2 Purpose:

The main purpose is to support early detection of poultry diseases, reduce mortality rates, and improve animal health management. This tool is designed to be cost-effective, mobile-accessible, and user-friendly.

2. IDEATION PHASE

2.1 Problem Statement

Poultry diseases often goundiagnosed in early stages due to lack of expert access, especially in rural areas. Traditional diagnosis methods are time-consuming and costly. There is a need for an efficient, AI-based diagnostic solution that can be usedviasmartphones.

2.2 Empathy Map Canvas

Empathy mapping revealed challenges faced by farmers:

- Thinks: "Is thisdisease serious?", "Will I lose my flock?"
- Feels: Fear, uncertainty, financial pressure
- Says: "I can't afford to lose more birds."
 - Does: Seeks help from local sources, tries home remedies

These insights helped shape a mobile solution that is fast, reliable, and easy to use.

2.3 Brainstorming

Multiple ideas like using sensors, questionnaires, and ML-based image classification were evaluated. The image-based diagnosis using transfer learning was finalized for its practicality and accuracy.

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

- 1. Capture poultry image through the mobile app
- 2. Upload to the server or local model
- 3. Al predicts disease class
- 4. Suggests treatment or vet consultation

3.2 Solution Requirement

- Mobile App with camera/file upload
- Trained CNN Model using Transfer Learning (e.g., ResNet50)
- Backend Flask server
- Treatment suggestion system

3.3 Data Flow Diagram

3.4 Technology Stack

Frontend (User Interface)

- **HTML5, CSS3** For designing user-friendly web pages
- **JavaScript** For basic interactivity or webcam capture
- WebcamJS / MediaDevices API For image capture via camera

Backend (Application Logic)

• Flask (Python Framework) – Lightweight web framework to handle requests, load model, and return predictions

Model Development (AI/ML)

• Python 3.x – Core language used

- TensorFlow / Keras For building and fine-tuning deep learning models using transfer learning
- NumPy, Pandas For data handling and preprocessing
- Matplotlib / Seaborn For visualizing model accuracy, loss, and confusion matrices

Model Type (Deep Learning)

Transfer Learning with Pretrained CNNs

o Examples: MobileNetV2, ResNet50, EfficientNetB0

Image Classification with softmax activation for multi-class output

Tools & Environment

- Jupyter Notebook / VS Code For development and experimentation
- Git / GitHub Version control and code collaboration

4. PROJECT DESIGN

4.1 Problem-Solution Fit

Accurate, Al-driven diagnosis accessible via mobile phones fits the need for quick, rural-deployable tools for disease detection.

4.2 Proposed Solution

A transfer learning model trained on poultry disease images with high accuracy, deployed in a mobile-friendly format.

4.3 Solution Architecture

Mobile Interface → Flask API → Preprocessing → Model → Output → Suggestion

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Phase	Timeline	Tasks
Data Collection	1 2–	Collect and label images
Model Training	3 4	Train & evaluate CNN model
Backend Integration	5 6	Flask API setup
Mobile Integration		Build Android interface
Testing & Deployment		QA and optimization

6. FUNCTIONAL AND PERFORMANCE TESTING

Feature	Test Description	Expected Outcome
Image Upload	Test uploading images	Image loads and displays for Prediction
	from file system	
Camera Capture	Test image capture via	Live image is capturedand
	webcam	sent for Prediction
	Test classification of input	Correct disease label(e.g.,
Model Prediction	·	Coccidiosis, Healthy)is
	image	displayed
Treatment	Verify if treatment advice	Proper message (e.g., "Use
Suggestion	matches predicted disease	Amprolium for 3–5 days") shown
	Check if navigation links	
Navigation	(Home, About, Predict)	Smooth navigation across pages
	work properly	
Error Handling	Upload no image and click	Show message: "No image
	Predict	received."
Offline Access	Test image prediction without	
(ifbuilt-in)	internet	Model still works locally via Flask

6.1 Performance Testing

• **Accuracy**: 95%+

• Precision & Recall: Evaluated per disease

Model Latency: Below 1.5 sec per image

• Device Compatibility: Tested on Android 10+

7. RESULTS

7.1 Output Screenshots

8. ADVANTAGES & DISADVANTAGES

Advantages

- Fast diagnosis
- Easy to use
- Reduces dependency on experts
- Offline inference possible

Disadvantages

- Requires quality images
- May misclassify rare or new disease types
- Dependent on dataset quality

9. CONCLUSION

This project successfully demonstrates the potential of transfer learning in solving real-world problems like poultry disease detection. With mobile integration, it becomes a practical tool for farmers and veterinarians.

10. FUTURE SCOPE

- Expand dataset to include more diseases
- Real-time video detection
- Add multilingual voice assistance
- Cloud-based model improvements

11. Appendix

- Dataset Link: https://www.kaggle.com/datasets/chandrashekarnatesh/poultry-diseases
- Github: https://github.com/Navyatha3/Navyathasmartbridge.gitBased%20Classification%20of%20Poultry%20Diseases%20for%20Enhanced%20Health%20M anagement

/static