Feature Pyramid Networks for Object Detection

Tsung-Yi Lin^{1,2}, Piotr Dollár¹, Ross Girshick¹, Kaiming He¹, Bharath Hariharan¹, and Serge Belongie²

针对目标检测任务 cocoAP提升2.3个点 pascalAP提升3.8个点

¹Facebook AI Research (FAIR) ²Cornell University and Cornell Tech

2016
Computer Vision and Pattern Recognition

https://arxiv.org/abs/1612.03144

Figure 3. A building block illustrating the lateral connection and the top-down pathway, merged by addition.

注意: P6只用于RPN部分, 不在Fast-RCNN部分使用

anchors on a specific level. Instead, we assign anchors of a single scale to each level. Formally, we define the anchors to have areas of $\{32^2, 64^2, 128^2, 256^2, 512^2\}$ pixels on $\{P_2, P_3, P_4, P_5, P_6\}$ respectively. As in [29] we also use anchors of multiple aspect ratios $\{1:2, 1:1, 2:1\}$ at each level. So in total there are 15 anchors over the pyramid.

注意:针对不同的预测特征层,RPN和Fast RCNN的权重共享

We view our feature pyramid as if it were produced from an image pyramid. Thus we can adapt the assignment strategy of region-based detectors [15, 11] in the case when they are run on image pyramids. Formally, we assign an RoI of width w and height h (on the input image to the network) to the level P_k of our feature pyramid by:

$$k = \lfloor k_0 + \log_2(\sqrt{wh}/224) \rfloor. \tag{1}$$

Here 224 is the canonical ImageNet pre-training size, and k_0 is the target level on which an RoI with $w \times h = 224^2$ should be mapped into. Analogous to the ResNet-based Faster R-CNN system [16] that uses C_4 as the single-scale feature map, we set k_0 to 4. Intuitively, Eqn. (1) means that if the RoI's scale becomes smaller (say, 1/2 of 224), it should be mapped into a faer-resolution level (say, k = 3).

沟通方式

1.github

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

2.bilibili

https://space.bilibili.com/18161609/channel/index

3.CSDN

https://blog.csdn.net/qq_37541097/article/details/103482003