Young Digital Maker

ทีมวิทยากร

- Full-time lecturers at IT, Mahanakorn University of Technology.
- ดร. เอกรัฐ รัฐกาญจน์ (อ. ป๊อก)
- ดร. ภากร จูเหล็ง (อ. น๊อต)
- อ.มุกระวี มะดะเรส (อ. มุก)

Day 1 (เช้า)

- เรียนรู้การใช้ Simulation design tool (Tinkercad)
- พื้นฐานอิเลคทรอนิก
- แนะนำ Arduino
- อุปกรณ์อิเลคทรอนิกที่ใช้ในการเรียน

Day 1 (บ่าย)

- ติดตั้ง Arduino IDE
- เรียนรู้การสร้าง electronic เบื้องต้น จาก simulation สู่ปฏิบัติจริง

Day 2 (เช้า)

- การทดลอง LED: ไฟกระพริบหลายดวง
- การทดลอง LED: ไฟวิ่ง
- การทดลอง LED: 7-Segment

Day 2 (บ่าย)

- การทดลอง LED + Button
- การทดลอง Sensor แสง
- การทดลอง Sensor อุณหภูมิ

Day 3 (เช้า)

- การทดลอง Sensors วัดระยะทาง
- การทดลอง Motor
- แบ่งกลุ่มระดมสมองออกแบบโปรเจค

Day 3 (บ่าย)

- ลงมือสร้างโปรเจค
- เสนอโปรเจค

1.1 พื้นฐานอิเลคทรอนิก

https://www.tinkercad.com

1.1 Current

1.1 Current

Conventional flow notation

Electric charge moves from the positive (surplus) side of the battery to the negative (deficiency) side.

1.2 Voltage

- A battery positive terminal (+) and a negative terminal (-). The difference in charge between each terminal is the potential energy the battery can provide. This is labeled in units of volts.

1.2 Voltage

1.3 Resistance

Constriction creates
Resistance to water flow

Resistor creates
Resistance to current
flow

Summation

Experiment 1

Experiment 1 (Explain)

1.2 Digital & Analog

Digital? Analog?

- Digital only has two values: on/off
- Analog has many (infinite) values

1.3 แนะนำ Arduino

Arduino Board

1.4 อุปกรณ์ที่ใช้ในการเรียน

อุปกรณ์

1. Arduino

2. Breadboard

3. สายไฟ (Jumper)

อุปกรณ์

4. resistor, LED, และ switches แบบต่างๆ

5. 7-Segment LED

6. Sensor แสง

อุปกรณ์

6. Ultrasonic วัด ระยะทาง

7. Sensor อุณหภูมิ

8. Servo motor

1.5 ติดตั**้**ง Ardunio IDE

https://www.arduino.cc/en/Main/Software

Run Program

```
sketch_oct14a
void setup() {
  // put your setup code here, to run once:
void loop() {
 // put your main code here, to run repeatedly:
                                                                                                         Arduino/Genuino Uno on /dev/ttyACM0
```

1.6 Hello world

วงจร Hello world: LED กระพริบ

Code: Hello world: LED กระพริบ

```
void setup()
    pinMode(13, OUTPUT);
void loop()
     digitalWrite(13, HIGH);
     delay(1000);
     digitalWrite(13, LOW);
     delay(1000);
```

2.1 การทดลอง LED: ไฟกระพริบหลายดวง

วงจร LED กระพริบหลายดวง

วงจร LED ไฟวิ่ง

Code: LED ไฟวิ่ง

```
void setup()
      pinMode(5, OUTPUT);
      pinMode(9, OUTPUT);
      pinMode(13, OUTPUT);
void loop()
      digitalWrite(13, HIGH);
      digitalWrite(5,LOW);
      delay(1000);
      digitalWrite(13, LOW);
      digitalWrite(9, HIGH);
      delay(1000);
      digitalWrite(9, LOW);
      digitalWrite(5, HIGH);
      delay(1000);
```

Exercise 1

1.1 ให้ทำวงจรไฟ LED วิ่งไปแล้ววิ่งกลับ

7 Segment

Code: 7 Segment

```
void setup()
     pinMode(6, OUTPUT);
     pinMode(7, OUTPUT);
     pinMode(8, OUTPUT);
     pinMode(9, OUTPUT);
     pinMode(10, OUTPUT);
     pinMode(11, OUTPUT);
     pinMode(12, OUTPUT);
     pinMode(13, OUTPUT);
```

Code: 7 Segment (Cont.)

```
void loop()
        digitalWrite(6, HIGH);
        digitalWrite(7, HIGH);
        digitalWrite(8, HIGH);
        digitalWrite(9, HIGH);
        digitalWrite(10, HIGH);
        digitalWrite(11, HIGH);
        digitalWrite(12, HIGH);
        digitalWrite(13, HIGH);
        delay(1000);
        digitalWrite(6, LOW);
        digitalWrite(7, LOW);
        digitalWrite(8, LOW);
        digitalWrite(9, LOW);
        digitalWrite(10, LOW);
        digitalWrite(11, LOW);
        digitalWrite(12, LOW);
        digitalWrite(13, LOW);
        delay(1000);
```

Exercise 2

- 2.1 ให้ทำวงจรนับเลข 0-9 ที่ 7 segment
- 2.2 ให้ทำวงจรนับเลข 2 หลัก โดยที่หลักหน่วยแสดงผล ที่ 7 segment หลักสิบแสดงผลเป็นจำนวนไฟ LED

LED + Button

Code: LED + Button

```
void setup()
    pinMode(9, OUTPUT);
     pinMode(7, INPUT);
void loop()
    // read from the button pin
    int button = digitalRead(7);
    if (button==HIGH)
         digitalWrite(9,HIGH);
      else
          digitalWrite(9, LOW);
```

Exercise 3

3.1 ทำ Counter นับเลข 2 หลัก โดยที่หลักหน่วยแสดง ผลที่ 7 segment หลักสิบแสดงผลเป็นจำนวนไฟ LED ซึ่งจะนับเลขเมื่อมีการกด button

Sensor แสง

Code: Sensor แสง

```
void setup()
     pinMode(13, OUTPUT);
     Serial.begin(9600);
void loop()
     int val = analogRead(A0);
     Serial.println(val);
     if(val > = 200){
          digitalWrite(13,HIGH);
     else {
          digitalWrite(13,LOW);
```

Sensor อุณหภูมิ

Sensor วัดระยะทาง

Code: Sensor วัดระยะทาง

```
#define ping 13
void setup () {
     Serial.begin(9600);
void loop() {
     int duration;
     int cm;
     pinMode(ping,OUTPUT);
     digitalWrite(ping,HIGH);
     digitalWrite(ping,LOW);
     pinMode(ping,INPUT);
     duration=pulseIn(ping,HIGH);
     cm=(duration/2)/29; //Sound's speed is 340 m/sec or 29 microsecs/cm.
     Serial.print(cm);
     Serial.println("cm");
     delay(1000);
```

Motor

Code: Motor

```
#include <Servo.h>
Servo myservo; // สร้านออปเจ็กชื่อ myservo จากคลาส Servo เพื่อควบคุม servo micro
int potpin = 0; // ขาอะนาล็อกใช้ต่อกับตัวต้านทานปรับค่าได้
               // ใช้เก็บค่าที่อ่านได้จากตัวต้านทานปรับค่าได้
int val:
void setup()
 myservo.attach(9); // บอกว่าจะต่อ servo ที่ขา 9
void loop()
                                   // อ่านค่าอะนาล็อกจากตัวต้านทานปรับค่าได้
 val = analogRead(potpin);
                                   // แปลงช่วง 0-1023 ที่อ่านได้ ให้อยู่ในช่วง 0-179
 val = map(val, 0, 1023, 0, 179);
                                      // ส่งค่าไปควบคุม servo
 myservo.write(val);
                                 // หน่วงเวลาให้ servo ได้ทำงาน
 delay(15);
```

แบ่งกลุ่มระดมสมองสร้างโปรเจค