PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Calculators, textbooks, notes and cribsheets are **not** permitted in this examination.

Do not turn over until instructed.

- 1 (5+5+5+5+5=30 points) Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
 - (a) There is a field homomorphism $\psi : \mathbb{Q}(2^{1/4}) \to \mathbb{Q}(\sqrt{2})$.
 - (b) There is a homomorphism of finite fields $\psi : \mathbb{F}_3 \to \mathbb{F}_5$.
 - (c) If α is algebraic over a field $K \subseteq \mathbb{C}$, then $\sqrt{\alpha}$ is algebraic over K.
 - (d) It is possible to construct by ruler and compass the number $3^{1/3} + 5^{1/5}$.
 - (e) Polynomial $x^n + px^2 + px + pq \in \mathbb{Q}[x]$, where p, q are some distinct primes, is irreducible over \mathbb{Q} .
 - (f) Let L:K be a field extension, $\alpha \in L$. Then $1/\alpha$ can be expressed as a polynomial in α with coefficients in K.
- 2 (5+10+10=25 points) Let α be a root of the polynomial $f(t) = t^3 + t + 3$.
 - (a) Prove that f(t) is irreducible in $\mathbb{Q}[t]$.
 - (b) Compute the minimal polynomials for $\beta = \alpha 1$ and $\gamma = \alpha^2 + 1$ over \mathbb{Q} .
 - (c) Express β^{-1} and γ^{-1} in the form $a + b\alpha + c\alpha^2$, where $a, b, c \in \mathbb{Q}$.
- **3** (5+10=15 points) (a) Let L: K be a field extension. Suppose that $\alpha \in L$ is algebraic over K. Define what is meant by the minimal polynomial of α over K.
 - (b) Compute the minimal polynomial of $\alpha := \sqrt[5]{5 + \sqrt[3]{10}}$ over \mathbb{Q} and determine the degree of the field extension $[\mathbb{Q}(\alpha):\mathbb{Q}]$.
- 4 (5+5+5+15=30 points) (a) Define the degree of the field extension L:K.
 - (b) Consider the quotient ring $\mathbb{F}_3[t]/(t^2+t+1)$ and compute its size.
 - (c) What is the degree of the field extension $\mathbb{F}_3[t]/(t^2+t+1):\mathbb{F}_3$?
 - (d) Let $K(\alpha): K$ be a field extension, $[K(\alpha): K] = p$, where p is a prime number. Compute $[K(f(\alpha)): K]$, where $f \in K[t]$ is an arbitrary polynomial of degree strictly less than p.
- 5 (5+5+15+15=40 points) (a) Let α be algebraic over a field K. Give the definition of algebraic conjugates of α .
 - (b) Suppose that α is algebraic over a field K and α has algebraic conjugates $\alpha_1, \ldots, \alpha_d$. Let $f \in K[t]$. Compute algebraic conjugates of $f(\alpha)$.
 - (c) Compute algebraic conjugates of $\sqrt[3]{2}i + 1$ over \mathbb{Q} , then over $\mathbb{Q}(\sqrt[3]{2}i)$ and, finally, over $\mathbb{Q}(2^{2/3})$.
 - (d) Let $K \subset \mathbb{C}$ be a field, α is algebraic over K and β is transcendental over K. Consider $K(\alpha, \beta)$ and assume that α does not belong to K. Prove that there is no θ such that $K(\alpha, \beta) = K(\theta)$ (in other words, $K(\alpha, \beta) : K$ is not a simple field extension).

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (5+5+5+5+5=30 points) Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
 - (a) There is a field homomorphism $\psi: \mathbb{Q}(2^{1/4}) \to \mathbb{Q}(\sqrt{2})$.
 - (b) There is a homomorphism of finite fields $\psi : \mathbb{F}_3 \to \mathbb{F}_5$.
 - (c) If α is algebraic over a field $K \subseteq \mathbb{C}$, then $\sqrt{\alpha}$ is algebraic over K.
 - (d) It is possible to construct by ruler and compass the number $3^{1/3} + 5^{1/5}$.
 - (e) Polynomial $x^n + px^2 + px + pq \in \mathbb{Q}[x]$, where p, q are some primes, is irreducible over \mathbb{Q} .
 - (f) Let L:K be a field extension, $\alpha\in L$. Then $1/\alpha$ can be expressed as a polynomial in α with coefficients in K.

Solution: (a) TRUE. Let $\alpha = 2^{1/4}$ and put $\psi(a + b\alpha) = a + b\alpha^2$. It is easy to see that this is a homomorphism.

Solution: (b) FALSE. $0 = \psi(0) = \psi(1+1+1) = \psi(1) + \psi(1) + \psi(1) = 3 \neq 0$ in \mathbb{F}_5 .

Solution: (c) TRUE. We know that there is $f \in K[t]$ s.t. $f(\alpha) = 0$. Put $g(x) = f(x^2) \in K[x]$. Then $g(\sqrt{\alpha}) = f(\alpha) = 0$ and thus $\sqrt{\alpha}$ is an algebraic number.

Solution: (d) FALSE. The degree of $3^{1/3}$ is three; therefore, the degree of $3^{1/3} + 5^{1/5}$ is divisible by three. But we know that any constructible number must have degree 2^n for some n.

Solution: (e) TRUE. It follows from Eisenstein's criterion.

Solution: (f) FALSE. Let α be transcendental over K, then $K[\alpha] \neq K(\alpha)$.

- 2 (5+10+10=25 points) Let α be a root of the polynomial $f(t) = t^3 + t + 3$.
 - (a) Prove that f(t) is irreducible in $\mathbb{Q}[t]$.
 - (b) Compute the minimal polynomials for $\beta = \alpha 1$ and $\gamma = \alpha^2 + 1$ over \mathbb{Q} .
 - (c) Express β^{-1} and γ^{-1} in the form $a + b\alpha + c\alpha^2$, where $a, b, c \in \mathbb{Q}$.

Solution: (a) This polynomial of degree 3 is irreducible since it has no rational roots.

(b) The equation $\alpha^3 + \alpha + 3 = 0$ implies $\beta^3 + 3\beta^2 + 4\beta + 5 = 0$. This is a cubic polynomial again, and it is easy to check that it has no rational roots. Thus, this is the minimal polynomial for β . Now the equation $\alpha^3 + \alpha + 3 = 0$ implies $\alpha + 3 = 0$ and hence $\gamma = -3/\alpha$. Thus

$$\gamma^2 = \frac{9}{\alpha^2} = \frac{9}{\gamma - 1} \,.$$

It follows that γ is a root of the polynomial $t^3 - t^2 - 9 = 0$, which is also irreducible and hence minimal.

- (c) We know that $\beta^3 + 3\beta^2 + 4\beta + 5 = 0$. It follows that $5\beta^{-1} = -(\beta^2 + 3\beta + 4) = -\alpha^2 \alpha 2$. From $\alpha\gamma + 3 = 0$ we see that $\gamma^{-1} = -\alpha/3$.
- **3** (5+10=15 points) (a) Let L: K be a field extension. Suppose that $\alpha \in L$ is algebraic over K. Define what is meant by the minimal polynomial of α over K.
 - (b) Compute the minimal polynomial of $\alpha := \sqrt[5]{5 + \sqrt[3]{10}}$ over \mathbb{Q} and determine the degree of the field extension $[\mathbb{Q}(\alpha):\mathbb{Q}]$.

Solution: (a) The minimal polynomial of α over K is the unique monic polynomial μ_{α}^{K} such that $\mu_{\alpha}^{K}(\alpha) = 0$ and μ_{α}^{K} has the smallest degree among all polynomials over K such that $f(\alpha) = 0$.

(b) We have $\alpha^5 - 5 = \sqrt[3]{10}$ and hence $(\alpha^5 - 5)^3 = 10$. Thus the minimal polynomial of α divides $f(t) = (t^5 - 5)^3 - 10$ and we see that the leading coefficient of f(t) is 1, all other coefficients are divisible by 5, and the constant coefficient $5^3 - 10$ is not divisible by 5^2 . Then by Eisenstein's criterion f(t) is the minimal polynomial of α .

- 4 (5+5+5+15=30 points) (a) Define the degree of the field extension L:K.
 - (b) Consider the quotient ring $\mathbb{F}_3[t]/(t^2+t+1)$ and compute its size.
 - (c) What is the degree of the field extension $\mathbb{F}_3[t]/(t^2+t+1):\mathbb{F}_3$?
 - (d) Let $K(\alpha): K$ be a field extension, $[K(\alpha): K] = p$, where p is a prime number. Compute $[K(f(\alpha)): K]$, where $f \in K[t]$ is an arbitrary polynomial of degree strictly less than p.

Solution: (a) This is just the dimension of L as a vector space over K.

- (b) One has $t^2 + t + 1 = (t 1)^2$ and thus our polynomial is reducible in $\mathbb{F}_3[t]$. Anyway the ring $\mathbb{F}_3[t]/(t^2 + t + 1)$ is isomorphic to $S := \{a + bt : a, b \in \mathbb{F}_3\}$ and therefore has size 9.
- (c) The set S is a vector space over \mathbb{F}_3 of dimension two but S is not a field. For example, $(t-1)^2 \equiv 0$ (t^2+t+1) and we have zero divisors. Hence this is not field extension.

After some thought, I came to the conclusion that points (b) and (c) are overcomplicated, so I give full marks to any reasonable argument.

- (d) Since $K(f(\alpha)) \subseteq K(\alpha)$, we have the field tower $K K(f(\alpha)) K(\alpha)$ and hence by the tower law we have $p = [K(\alpha) : K] = [K(\alpha) : K(f(\alpha))][K(f(\alpha)) : K]$ and therefore $[K(f(\alpha)) : K] \in \{1, p\}$. But $g(x) = f(x) f(\alpha)$ belongs to $K(f(\alpha))$ and $g(\alpha) = 0$. Thus $[K(\alpha) : K(f(\alpha))] \le \deg f < p$. It follows that $[K(f(\alpha)) : K] = p$.
- 5 (5+5+15+15=40 points) (a) Let α be algebraic over a field K. Give the definition of algebraic conjugates of α .
 - (b) Suppose that α is algebraic over a field K and α has algebraic conjugates $\alpha_1, \ldots, \alpha_d$. Let $f \in K[t]$. Compute algebraic conjugates of $f(\alpha)$.
 - (c) Compute algebraic conjugates of $\sqrt[3]{2}i + 1$ over \mathbb{Q} , then over $\mathbb{Q}(\sqrt[3]{2}i)$ and, finally, over $\mathbb{Q}(2^{2/3})$.
 - (d) Let $K \subset \mathbb{C}$ be a field, α is algebraic over K and β is transcendental over K. Consider $K(\alpha, \beta)$ and assume that α does not belong to K. Prove that there is no θ such that $K(\alpha, \beta) = K(\theta)$ (in other words, $K(\alpha, \beta) : K$ is not a simple field extension).

Solution: (a) Suppose that $\mu_{\alpha}^{K}(x) = \prod_{j=1}^{d} (x - \alpha_{j})$, where α_{j} belong to a certain extension of K. Then $\alpha_{1}, \ldots, \alpha_{d}$ are algebraic conjugates of α .

- (b) These are $f(\alpha_1), \ldots, f(\alpha_d)$, see lectures.
- (c) Let $\alpha = \sqrt[3]{2}i + 1$. We have $(\alpha 1)^6 = -4$ and therefore α is a root of the polynomial $f(t) = (t 1)^6 + 4$. Other roots of f are $\pm \sqrt[3]{2}i + 1$ and $\pm \sqrt[3]{2}\varepsilon_{\pm} + 1$, where $\varepsilon_{\pm} = \pm \frac{\sqrt{3}}{2} + \frac{i}{2}$. Using Vieta's formulae, one can check that f(t) is the minimal polynomial. Thus all these roots are algebraic conjugates of α . Over $\mathbb{Q}(\sqrt[3]{2}i)$ the minimal polynomial is $t \alpha$ and hence α is the only algebraic conjugate of α . Now

$$(t - \sqrt[3]{2}i - 1)(t + \sqrt[3]{2}i - 1) = (t - 1)^2 + 2^{2/3} \in \mathbb{Q}(2^{2/3}),$$

and this is, obviously, the minimal polynomial of α over $\mathbb{Q}(2^{2/3})$. Hence $\pm \sqrt[3]{2}i + 1$ are algebraic conjugates of α over $\mathbb{Q}(2^{2/3})$.

(d) Suppose that $K(\alpha, \beta) = K(\theta)$. Clearly, θ is transcendental over K. Further, we have $\alpha = f(\theta)/g(\theta)$, where $f, g \in K[t], g(\theta) \neq 0$ and hence $h(t) := \alpha g(t) - f(t)$ belongs to $K(\alpha)[t]$ and is obviously nonzero (recall that $\alpha \notin K$ and $g(\theta) \neq 0$). One has $h(\theta) = 0$ and therefore θ is algebraic over $K(\alpha)$. But this gives us a contradiction with the tower law: $\infty = [K(\theta) : K] = [K(\theta) : K(\alpha)][K(\alpha) : K] < \infty$.