CMPE 257 Machine Learning Spring 2019 HW#3

Name: Akshata Deo Sisu id: 012565761

```
1. Consider a dataset with 3 data points in 2-D plane:
```

X = [[0,0],[0,-1],[-2,0]]

$$Y = [[-1],[-1],[+1]]$$

Now, the constraint optimization we are given is as follows-

 $(\frac{1}{2})w^{T}w$ Min(b,w):

Subject to: $y_n(w^Tx_n + b) >= 1$ w belongs to R^2

b belongs to R

In 2D, a hyper plane is specified by the parameters (b,w1,w2). The inequality on a particular row is the separability constraint for the corresponding data point in that row.

$$-b >= 1$$
 ----- eq 1
 $w_2 - b >= 1$ ----- eq 2

$$-2w_1 + b >= 1$$
 ---- eq 3

Combining eq (1 & 3), we get-

$$-2 w_1 >= 2$$
 => $w_1 <= -1$

 1^{st} equation gives b <= -1

from eq 2, we get-

$$w_2 <= 0$$

This means that $(\frac{1}{2})$ $(w_1^2 + w_2^2)$ is minimum when $w_1 = -1$ and $w_2 = 0$. One can easily verify that $(b^* =$ $-1, w_1* = -1, w_2* = 0$) satisfies all 3 constraints, minimizes (½) $(w_1^2 + w_2^2)$,

Therefore the optimal hyperplane is-

$$g(x) = sign(-x_1 + x_2 - 1)$$

Margin =
$$1/||w^*||$$
 => 1

2. Dual problem from above-

$$X = [[0,0],[2,2],[2,0]]$$

$$Y = [-1, -1, +1]$$

$$W = [1.2, -3.2]$$

$$b = -0.5$$

setting up the dual-

min of
$$\alpha$$
 $(1/2)\alpha^{T}G\alpha - 1^{T}\alpha$

subject to:
$$y^T\alpha = 0$$
, $\alpha > = 0$

where, $G = XsXs^{T}$

$$Xs = [[0,0],[-2,-2],[2,0]]$$

So,
$$XsXs^T = [[0,0,0],[0,8,4],[0,-4,4]]$$

min of
$$\alpha$$
 (1/2) * [α 1, α 2, α 3] * [[0,0,0],[0,8,4],[0,-4,4]] * [α 1, α 2, α 3]^T – [1,1,1] * [α 1, α 2, α 3]

min of
$$\alpha$$
 (1/2) *[0, 8\alpha_2-4\alpha_3, -4\alpha_2+4\alpha_3] * [\alpha 1, \alpha 2, \alpha 3]^T - (\alpha 1+\alpha 2+\alpha 3)

```
[0, 4\alpha_2-2\alpha_3, -2\alpha_2+2\alpha_3] * [\alpha_1, \alpha_2, \alpha_3]^T - \alpha_1-\alpha_2-\alpha_3
min of \alpha
                            (4\alpha_2)^2 - 2\alpha_2\alpha_3 - 2\alpha_2\alpha_3 + (2\alpha_3)^2 - \alpha_1 - \alpha_2 - \alpha_3
min of \alpha
                            (4\alpha_2)^2 + (2\alpha_3)^2 - 4\alpha_2\alpha_3 - \alpha_1 - \alpha_2 - \alpha_3
                                                                                                   ---- 1<sup>st</sup> equation
min of \alpha
                                                                      \alpha 1 > = 0, \alpha 2 > = 0. \alpha 3 > = 0
constraints: -\alpha 1 - \alpha 2 + \alpha 3 = 0
substitute into 1<sup>st</sup> equation,
                                                       \alpha 1 = \alpha 3 - \alpha 2
                                         (4\alpha_2)^2 + (2\alpha_3)^2 - 4\alpha_2\alpha_3 - 2\alpha_3
objective: min of α
delta J = 0
so, [[dJ/d\alpha 1], [dJ/d\alpha 2], [dJ/d\alpha 3]] = 0
[0, 8\alpha_2-4\alpha_3, 4\alpha_3-4\alpha_2-2]=0
8\alpha_2-4\alpha_3 = 0
2\alpha_2 = \alpha_3
Substitute, 4\alpha_3-4\alpha_2-2=0
4(2\alpha_2)-4\alpha_2-2=0
\alpha_2 = \frac{1}{2}, \alpha_3 = 1, \alpha_1 = \frac{1}{2}
w^* = \sum_{n=1 \text{to} 3} \, y_n \alpha_n x_n
       = \overline{-1(1/2)[[0],[0]]} + (-1)(1/2)[[2],[2]] + 1(1)[[2],[0]]
       =[[-1+2],[-1]]
      = [[-1], [+1]]
b* = -1
```

3.

(a). & (b). File attached

(c). & (d). File attached

(d). As shown in the figure, if we take random hypotheses for large data points (such as 1 million as provided in question), the alpha will be evenly distributed in the region [-1,1]

For SVM the 'a' will not be evenly distributed and create a curve with maxima at point 0. The number of 'a' will decrease if we move in either direction.

4.

(a). File attached

(b). Φ3 appears to be over fitted.

(c). File attached

(d). File attached

Refrences:

- Book forum: http://book.caltech.edu/bookforum/
- Learning from data e-book.