2

1

2

3

4

WHAT IS CLAIMED IS:

l	 A composition comprising a biologically active compound and a
2	transport moiety, wherein the transport moiety comprises a structure selected from the group
3	consisting of $(ZYZ)_nZ$, $(ZYY)_nZ$, $(ZYY)_nZ$ and $(ZYYY)_nZ$, wherein each Z is L-arginine or D-
4	arginine, and each Y is independently an amino acid that does not comprise an amidino or
5	guanidino moiety, and wherein n is an integer of from 2 to 10.

- 2. The composition according to claim 1, wherein each Y is independently selected from the group consisting of alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, tryptophan, hydroxyproline, tyrosine, γ-amino butyric acid, β-alanine, sarcosine and ε-amino caproic acid.
- 3. The composition according to claim 1, wherein the transport moiety comprises the structure (ZYZ)_nZ, and wherein n is an integer ranging from 2 to 5.
- 4. The composition according to claim 1, wherein the transport moiety comprises the structure (ZY)_nZ, and wherein n is an integer ranging from 4 to 10.
- 5. The composition according to claim 1, wherein the transport moiety comprises the structure (ZYY), Z, and wherein n is an integer ranging from 4 to 10.
- 1 6. The composition according to claim 1, wherein the transport moiety 2 comprises the structure (ZYYY)_nZ, and wherein n is an integer ranging from 4 to 10.
 - 7. The composition according to claim 1, wherein the transport moiety is attached to the biologically active compound by a linking moiety to form a conjugate.
- 1 8 The composition according to claim 1, wherein Y is a gene-encoded 2 amino acid
- 1 9. The composition according to claim 1, wherein Y is an amino acid 2 other than a gene-encoded amino acid.
- 1 10 The composition according to claim 3, wherein each Y is 2 independently selected from the group consisting of glycine, γ-amino butyric acid, β-alanine 3 and \(\epsilon\)-amino caproic acid, and n is 3 or 4.

9

10

11

12 13

14

1

- 11. The composition according to claim 4, wherein each Y is
 independently selected from the group consisting of glycine, γ-amino butyric acid, β-alanine
 and ε-amino caproic acid, and n is 6. 7 or 8.
- 1 12. The composition according to claim 5, wherein each Y is
 independently selected from the group consisting of glycine, γ-amino butyric acid, β-alanine
 and ε-amino caproic acid, and n is 6. 7 or 8.
 - 13. The composition according to claim 6, wherein each Y is independently selected from the group consisting of glycine, γ -amino butyric acid, β -alanine and ϵ -amino caproic acid, and n is 6, 7 or 8
 - 14. The composition according to claim 7, wherein the conjugate has the following structure:

wherein:

R1 is the biologically active compound;

X is a linkage between a functional group on the biologically active compound and a functional group on the linker between R¹ and R³;

Y is a linkage between a functional group on the transport moiety and a functional group on the linker between R¹ and R³:

A is N or CH;

R² is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl;

R³ is a transport moiety:

k and m are independently either 1 or 2; and

n is an integer of from 1 to 10.

1 15. The composition according to claim 14, wherein each of X and Y is
2 independently selected from the group consisting of -C(O)O-, -C(O)NH-, -OC(O)NH-, -S-S-,
3 -C(S)O-, -C(S)NH-, -NHC(O)NH-, -SO₂NH-, -SONH-, phosphate, phosphonate and
4 phosphinate.

- 1 16. The composition according to claim 14, wherein each of X and Y is
 2 independently selected from the group consisting of -C(O)O-, -C(O)NH-, -OC(O)NH- and
 3 -NHC(O)NH-.
- 1 The composition according to claim 7, wherein the conjugate has the 2 following structure:

$$R^{1}$$
 $-X$ $-(CH_{2})_{k}$ $-R^{4}$ $-(CH_{2})_{m}$ $-CH$ $-Y$ $-R^{3}$

4 wherein:

R1 is the biologically active compound;

X is a linkage between a functional group on the biologically active compound and a functional group on the linker between R^1 and R^3 ;

Y is a linkage between a functional group on the transport moiety and a functional group on the linker between R^1 and R^3 ;

R³ is a transport moiety;

R4 is S, O, NR6 or CR7R8;

R5 is OH, SH or NHR6;

R⁶ is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl;

R7 and R8 are independently hydrogen, alkyl or arylalkyl; and

k and m are independently either 1 or 2.

- 1 **20.** The composition according to claim **7**, wherein the conjugate has the 2 following structure:

3

5

7

9

10

11 12

13

14

wherein:

4

5

6 7

8

9

10

11

12

R¹ is the biologically active compound;

X is a linkage between a functional group on the biologically active compound and a functional group on the linker between R^1 and R^3 ;

Y is a linkage between a functional group on the transport moiety and a functional group on the linker between R¹ and R³;

R³ is the transport moiety;

R5 is H, OH, SH or NHR6:

R6 is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl; and

13 k is 1 or 2.

- 21. The composition according to claim 20, wherein each of X and Y is independently selected from the group consisting of -C(O)O-, -C(O)NH-, -OC(O)NH-, -S-S-, -C(S)O-, -C(S)NH-, -NHC(O)NH-, -SO₂NH-, -SONH-, phosphate, phosphonate and phosphinate.
- 22. The composition according to claim 20, wherein each of X and Y is independently selected from the group consisting of -C(O)O-, -C(O)NH-, -OC(O)NH- and -NHC(O)NH-.
- 23. The composition according to claim 7, wherein the conjugate has the following structure:

$$\mathsf{R}^{1}$$
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

wherein:

R1 is the biologically active compound;

X is a linkage between a functional group on the biologically active compound and a functional group on the linker between R¹ and R³:

Y is a linkage between a functional group on the transport moiety and a functional group on the linker between R^1 and R^3 ;

Ar is a substituted or unsubstituted aryl group, wherein the methylene and oxygen substituents are either *ortho* or *para* to one another;

R³ is the transport moiety;

R4 is S, O, NR6 or CR7R8;

R5 is H, OH, SH, CONHR6 or NHR6;

15	R ⁶ is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl;		
16	R ⁷ and R ⁸ are independently hydrogen or alkyl; and,		
17	k and m are independently either 1 or 2.		
1	24. The composition according to claim 23, wherein each of X and Y is		
2	independently selected from the group consisting of -C(O)O-, -C(O)NH-, -OC(O)NH-, -S-S-,		
3	-C(S)O-, -C(S)NH-, -NHC(O)NH-, -SO ₂ NH-, -SONH-, phosphate, phosphonate and		
4	phosphinate.		
1	25. The composition according to claim 23, wherein each of X and Y is		
2	independently selected from the group consisting of -C(O)O-, -C(O)NH-, -OC(O)NH- and		
3	-NHC(O)NH		
)			
1	26. The composition according to claim 12, wherein A is N, R ² is benzyl,		
2	2 k, m and n are 1, and X is $-C(O)O$		
2 1	27 m		
1	27. The composition according to claim 13, wherein R ⁴ is S, R ⁵ is NHR ⁶ ,		
2	R ⁶ is hydrogen, methyl, allyl, butyl or phenyl, k and m are 1 and X is -C(O)O		
. 1	28. The composition according to claim 14, wherein R ⁵ is NHR ⁶ , R ⁶ is		
2	hydrogen, methyl, allyl, butyl or phenyl, k is 2 and X is -C(O)O		
1			
1	29. The composition according to claim 15, wherein Ar is an unsubstituted		
2	aryl group, R^4 is S , R^5 is NHR 6 , R^6 is hydrogen, methyl, allyl, butyl or phenyl, k and m are 1		
3	and X is $-C(O)O-$.		
1	30. A method for increasing the transport of a biologically active		
2	compound across a biological membrane comprising:		
3	administering a composition comprising a biologically active compound and a		
4	transport moiety, wherein the transport compound comprises a structure selected from the		
5	group consisting of (ZYZ) _n Z, (ZY) _n Z, (ZYY) _n Z and (ZYYY) _n Z, wherein Z is L-arginine or		
6	D-arginine, and wherein Y is an amino acid that does not comprise an amidino or guanidino		
7	moiety, and wherein n is an integer ranging from 2 to 10,		
8	wherein transport of the biologically active compound across the biological		
9	membrane is increased relative to transport of the biologically active compound in the		

absence of said transport moiety.

2

3

5

6 7

8

10

11

12

- 31. The method according to claim 20, wherein the biologically active compound is attached to the transport moiety by a linking moiety to form a conjugate.
- 1 32. The method of claim 21, wherein the conjugate has the following

2 structure:

11

2

3

4 wherein:

R1 is the biologically active compound;

X is a linkage between a functional group on the biologically active compound and a functional group on the linker between R^1 and R^3 ;

Y is a linkage between a functional group on the transport moiety and a functional group on the linker between R¹ and R³;

A is N or CH:

R² is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl;

R3 is a transport moiety;

k and m are independently either 1 or 2; and

n is an integer of from 1 to 10.

33. The method of claim 21, wherein the conjugate has the following

structure:

$$R^{5}$$

 R^{1} —X—(CH₂)_k— R^{4} —(CH₂)_m—CH—Y— R^{3}

4 wherein:

R1 is the biologically active compound;

X is a linkage between a functional group on the biologically active compound and a functional group on the linker between R^1 and R^3 ;

Y is a linkage between a functional group on the transport moiety and a functional group on the linker between R^1 and R^3 ;

R³ is a transport moiety;

R⁴ is S, O, NR⁶ or CR⁷R⁸:

R5 is OH, SH or NHR6;

12

13

14

R⁶ is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl; 13 R7 and R8 are independently hydrogen, alkyl or arylalkyl; and 14 15 k and m are independently either 1 or 2. 1 34. The method of claim 21, wherein the conjugate has the following 2 structure: R⁵ R¹—X—(CH₂)—CH—Y—R³ 3 wherein: R1 is the biologically active compound: 5 X is a linkage between a functional group on the biologically active compound and a functional group on the linker between R1 and R3: Y is a linkage between a functional group on the transport moiety and a functional group on the linker between R1 and R3; R³ is the transport mojety: R5 is H. OH. SH or NHR6: R⁶ is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl; and k is 1 or 2. 35. The method of claim 21, wherein the conjugate is of the following structure: O R⁵ R¹—X—CH₂—Ar—O—C—(CH₂),—R⁴—(CH₂)...—CH-Y—R³ 3 4 wherein: R1 is the biologically active compound: 5 X is a linkage between a functional group on the biologically active compound 6 7 and a functional group on the linker between R1 and R3; Y is a linkage between a functional group on the transport moiety and a functional 8 group on the linker between R1 and R3: 9 10 Ar is a substituted or unsubstituted aryl group, wherein the methylene and oxygen

R⁴ is S, O, NR⁶ or CR⁷R⁸;

R⁵ is H, OH, SH, CONHR⁶ or NHR⁶;

R³ is the transport moiety;

substituents are either ortho or para to one another;

15	R' is hydrogen, aikyi, aryi, aryiaikyi, acyi or ailyi;
16	$\ensuremath{\mbox{R}}^7$ and $\ensuremath{\mbox{R}}^8$ are independently hydrogen or alkyl; and,
17	k and m are independently either 1 or 2.