# Friedrich-Alexander-Universität Erlangen-Nürnberg



# **Decision theory**

Exercise 1

Michael Hartisch, Lundra Resyli

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Mathematik April 22, 2024



#### **Definition: Relation**

A relation R on a set M is a subset

$$R \subseteq M \times M = \{(m_1, m_2) : m_1, m_2 \in M\}.$$

For  $(m_1, m_2) \in R$ , we also write  $m_1Rm_2$ .



#### **Definition: Relation**

A relation R on a set M is a subset

$$R \subseteq M \times M = \{(m_1, m_2) : m_1, m_2 \in M\}.$$

For  $(m_1, m_2) \in R$ , we also write  $m_1 R m_2$ .

### Example

•  $M = \{m_1, m_2, m_3\}$  with  $m_1 = \square, m_2 = \blacktriangle, m_3 = \triangle$ 



#### **Definition: Relation**

A relation R on a set M is a subset

$$R \subseteq M \times M = \{(m_1, m_2) : m_1, m_2 \in M\}.$$

For  $(m_1, m_2) \in R$ , we also write  $m_1 R m_2$ .

- $M = \{m_1, m_2, m_3\}$  with  $m_1 = \square, m_2 = \blacktriangle, m_3 = \triangle$
- $M \times M = \{(m_1, m_1), (m_1, m_2), (m_1, m_3), (m_2, m_1), (m_2, m_2), (m_2, m_3), (m_3, m_1), (m_3, m_2), (m_3, m_3)\}$



#### **Definition: Relation**

A relation R on a set M is a subset

$$R \subseteq M \times M = \{(m_1, m_2) : m_1, m_2 \in M\}.$$

For  $(m_1, m_2) \in R$ , we also write  $m_1 R m_2$ .

- $M = \{m_1, m_2, m_3\}$  with  $m_1 = \square, m_2 = \blacktriangle, m_3 = \triangle$
- $M \times M = \{(m_1, m_1), (m_1, m_2), (m_1, m_3), (m_2, m_1), (m_2, m_2), (m_2, m_3), (m_3, m_1), (m_3, m_2), (m_3, m_3)\}$
- There are 2<sup>9</sup> different relations possible



#### **Definition: Relation**

A relation R on a set M is a subset

$$R \subseteq M \times M = \{(m_1, m_2) : m_1, m_2 \in M\}.$$

For  $(m_1, m_2) \in R$ , we also write  $m_1Rm_2$ .

- $M = \{m_1, m_2, m_3\}$  with  $m_1 = \square, m_2 = \blacktriangle, m_3 = \triangle$
- $M \times M = \{(m_1, m_1), (m_1, m_2), (m_1, m_3), (m_2, m_1), (m_2, m_2), (m_2, m_3), (m_3, m_1), (m_3, m_2), (m_3, m_3)\}$
- There are 2<sup>9</sup> different relations possible
- "exactly one triangle"  $R = \{(m_1, m_2), (m_1, m_3), (m_2, m_1), (m_3, m_1)\}$



#### **Definition: Relation**

A relation R on a set M is a subset

$$R \subseteq M \times M = \{(m_1, m_2) : m_1, m_2 \in M\}.$$

For  $(m_1, m_2) \in R$ , we also write  $m_1Rm_2$ .

- $M = \{m_1, m_2, m_3\}$  with  $m_1 = \square$ ,  $m_2 = \blacktriangle$ ,  $m_3 = \triangle$
- $M \times M = \{(m_1, m_1), (m_1, m_2), (m_1, m_3), (m_2, m_1), (m_2, m_2), (m_2, m_3), (m_3, m_1), (m_3, m_2), (m_3, m_3)\}$
- There are 2<sup>9</sup> different relations possible
- "exactly one triangle"  $R = \{(m_1, m_2), (m_1, m_3), (m_2, m_1), (m_3, m_1)\}$
- "no triangle"  $R = \{(m_1, m_1)\}$



### **Definition: Transitivity**

A relation R on a set M is transitive, when for all  $m_1, m_2, m_3 \in M$  with  $m_1Rm_2, m_2Rm_3$  also  $m_1Rm_3$  holds.



#### **Definition: Transitivity**

A relation R on a set M is transitive, when for all  $m_1, m_2, m_3 \in M$  with  $m_1Rm_2, m_2Rm_3$  also  $m_1Rm_3$  holds.

To disapprove a property, we only need a counterexample.



#### **Definition: Transitivity**

A relation R on a set M is transitive, when for all  $m_1, m_2, m_3 \in M$  with  $m_1Rm_2, m_2Rm_3$  also  $m_1Rm_3$  holds.

- To disapprove a property, we only need a counterexample.
- To prove a property, we need to find a statement about all elements in  $M \times M$ .



#### Exercise 1: Transitive or not?

- $M = \mathbb{R}$ 
  - a)  $xRy \Leftrightarrow x \leq y + 1$
  - b)  $xRy \Leftrightarrow x \leq y-1$
  - c)  $xRy \Leftrightarrow x^2 \leq y^2$
- M = {Students in Erlangen}
  - d) aRb, if a and b have attended at least one lecture together
  - e) aRb, if the student ID of a is smaller than of b



#### **Exercise 2: Transitive or not?**

- a)  $(\mathbb{R},<)$
- b)  $(\mathbb{R}, \leq)$
- c)  $(\mathbb{R},=)$
- d)  $(\mathbb{R}, \neq)$
- e) (Subset of  $\mathbb{R},\subseteq$ )
- f)  $M = \{1, 2, 3\}, R = \{(1, 1), (2, 2), (3, 3)\}$
- g)  $M = \{1, 2, 3, 4, 5\}, R = \{(3, 1), (1, 5), (2, 2), (2, 5), (3, 5)\}$



#### **Basic Model**

A system consisting of:

- $A = \{a_1, \dots, \}$  a non-empty set of alternatives
- $S = \{s_1, \ldots, \}$  a non-empty set of scenarios, possibly also with probabilities  $p_i$
- E a set of outcomes with  $g: A \times S \rightarrow E$

#### **Decision Tree**

• Decision:

• Event: O

State: ◀



### **Exercise 3: Lottery**

A numbered ball is randomly drawn from a drum containing 100 balls in a lottery. Create a decision matrix and a decision tree.

### Lottary A

100% Chance of 1 Mio EUR

#### Lottery B

- 10% Chance of 5 Mio EUR
- 89% Chance of 1 Mio EUR
- 1% Chance of 0 EUR



#### **Exercise 4: Lottery**

A numbered ball is randomly drawn from a drum containing 100 balls in a lottery. Create a decision matrix and a decision tree.

### **Lottery C**

- 11% Chance of 1 Mio EUR
- 89% Chance of 0 EUR

### **Lotterie D**

- 10% Chance of 5 Mio EUR
- 90% Chance of 0 EUR



#### **Exercise 5**

Convert the following decision matrix into a decision tree:

|       | <i>S</i> <sub>1</sub> | <i>S</i> <sub>2</sub> |
|-------|-----------------------|-----------------------|
|       | 0.5                   | 0.5                   |
| $a_1$ | 5                     | 6                     |
| $a_2$ | 7                     | 4                     |





#### Exercise 7

Convert the following decision tree into a decision matrix

