STENT & TRADEN

FIG. 1

FIG. 2

TITLE: Character Recognition Device And Method For Detecting Erroneously ...

INVENTORS: Toshikazu HORI, et al. SERIAL NO.: 09/661,428 DOCKET NO.: 21.1967

FIG. 3

TITLE: Character Recognition Device And Method For Detecting Erroneously ... INVENTORS: Toshikazu HORI, et al.

SERIAL NO.: 09/661,428 DOCKET NO.: 21.1967

FIG. 4

TITLE: Character Recognition Device And Method For Detecting Erroneously ...

INVENTORS: Toshikazu HORI, et al. SERIAL NO.: 09/661,428 DOCKET NO.: 21.1967

TITLE: Character Recognition Device And
Method For Detecting Erroneously ...

INVENTORS: Toshikazu HORI, et al. SERIAL NO.: 09/661,428 DOCKET NO.: 21.1967

FIG. 6

TEXT IMAGE i = 2i = 3**CHARACTER AREAS**

i = i MAX

FIG. 7A

FIG. 7B

TITLE: Character Recognition Device And Method For Detecting Erroneously ... INVENTORS: Toshikazu HORI, et al.

SERIAL NO.: 09/661,428 DOCKET NO.: 21.1967

* q EVALUATION VALUE IS GREATER THAN Q DISPLAY OBJECT = q * Q EVALUATION VALUE IS GREATER THAN q DISPLAY OBJECT = Q

IMAGE DATA	RECOGNITION RESULTS
THE PROCESS STARTS FROM A REQUEST TO CARRY OUT (1)	THE PROCESS STARTS FROM A REQUEST TO CARRY OUT (1)
MECHANICALLY [THIS CHARACTER IS PRINTED INCORRECTLY]	MECHANICALLY [THIS CHARACTER IS PRINTED INCORRECTLY]
A HUMAN ABILITY WHEN THE PATTERN RECOGNITION PROCESS	A HUMAN ABILITY WHEN THE PATTERN RECOGNITION PROCESS
DISTINGUISHES BETWEEN CHARACTERS WHEN THEY ARE	DISTINGUISHES BETWEEN CHARACTERS WHEN THEY ARE
WRITTEN AND CHARACTERS WHEN THEY ARE READ ALOUD. A	WRITTEN AND CHARACTERS WHEN THEY ARE READ ALOUD. A
GREAT DEAL OF RESEARCH HAS STOPPED AT THIS POINT.	GREAT DEAL OF RESEARCH HAS STOPPED AT THIS POINT.
CHARACTER RECOGNITION IN PARTICULAR HAS AN EXTREMELY	CHARACTER RECOGNITION IN PARTICULAR HAS AN EXTREMELY
LONG HISTORY AND IS A FIELD THAT HAS MADE GREAT (2)	LONG HISTORY AND IS A FIELD THAT HAS MADE GREAT (2)
ADVANCES [THIS PRINTED CHARACTER IS PRINTED INCORRECTLY].	ADVANCES [THIS CHARACTER IS PRINTED INCORRECTLY].
(3) WRITTEN WORDS HERE THE CHARACTERS ARE PRINTED	(3) WRITTEN WORDS [HERE THE CHARACTERS ARE WRITTEN
CORRECTLY] ARE CLOSE TO US IN OUR EVERYDAY LIVES; THEY	CORRECTLY] ARE CLOSE TO US IN OUR EVERYDAY LIVES; THEY
HAVE OUTSTANDING RECORDING CHARACTERISTICS AND GOOD	HAVE OUTSTANDING RECORDING CHARACTERISTICS AND GOOD
REPRODUCIBÎLITY. THEY GIVE LIFE TO HUMAN INTUITION AND	REPRODUCIBILITY. THEY GIVE LIFE TO HUMAN INTUITION AND
PROVIDE SUITABLE CHARACTERISTICS AS THE RAW MATERIALS	PROVIDE SUITABLE CHARACTERISTICS AS THE RAW MATERIALS
FOR PATTERN RECOGNITION RESEARCH THAT INVOLVES FITTING	FOR PATTERN RECOGNITION RESEARCH THAT INVOLVES FITTING
A CERTAIN CONCEPT TO A SINGLE WRITTEN WORD. WHAT IS MORE,	A CERTAIN CONCEPT TO A SINGLE WRITTEN WORD. WHAT IS MORE,
THE TECHNOLOGY FOR READING THESE WRITTEN WORDS IS A	THE TECHNOLOGY FOR READING THESE WRITTEN WORDS IS A
LABOR SAVING DEVICE THAT CARRIES OUT DATA INPUT TO A	LABOR SAVING DEVICE THAT CARRIES OUT DATA INPUT TO A
COMPUTER DIRECTLY WITHOUT USING A KEYBOARD.	COMPUTER DIRECTLY WITHOUT USING A KEYBOARD.

IMAGE DATA	RECOGNITION RESULTS
PATTERN RECOGNITION STARTED FROM A DESIRE TO	, PATTERN RECOGNITION STARTED FROM A DESIRE TO REALIZE
REALIZE IN A MACHINE, THE HUMAN ABILITY TO READ WORDS AND	IN A ? - CHINE, THE HUMAN ABILITY TO READ WORDS
HEAR DISCRETE DIFFERENCES BETWEEN WORDS AS THEY ARE	AND HEAR DISCRETE DIFFERENCES BETWEEN WORDS AS THEY
SPOKEN AND MUCH RESEARCH HAS BEEN CONDUCTED. CHARACTER	ARE SPOKEN AND MUCH RESEARCH HAS BEEN CONDUCTED.
RECOGNITION HAS THE LONGEST HISTORY AND IS AN AREA WHERE	CHARACTER-RECOGNITION HAS THE LONGEST HISTORY AND
ACTUAL-USE APPLICATIONS ARE THE MOST ADVANCED.	IS AN AREA WHERE ACTUAL-USE YARE THE MOST ADVANCED.
WRITING IS VERY CLOSE TO ALL OF US AND IS AN EXCELLENT	WRITING IS VERY CLOSE TO ALL OF US AND IS AN EXCELLENT
RECORDING MEDIUM. IT CAN BE EASILY REPRODUCÊD AND MAKES	RECORDING MEDIUM. IT CAN BE EASILY REPRODUCÊD AND
USE OF HUMAN INTUITION. IT HAS QUALITIES THAT MAKE IT AN	MAKES USE OF HUMAN INTUITION. IT HAS QUALITIES THAT MAKE
EXCELLENT OBJECT OF PATTERN RECOGNITION RESEARCH SUCH AS	IT AN EXCELLENT OBJECT OF PATTERN RECOGNITION RESEARCH
A ONE TO ONE CORRESPONDENCE BETWEEN CONCEPTS AND	SUCH AS A ONE-TO-ONE CORRESPONDENCE BETWEEN CONCEPTS
CHARACTERS.	AND CHARACTERS.
CHARACTER-READING TECHNOLOGY IS A LABOR-SAVING	CHARACTER READING TECHNOLOGY IS A LABOR-SAVING
DEVICE THAT ALLOWS DATA TO BE INPUT DIRECTLY INTO A	DEVICE THAT ALLOWS DATA TO BE INPUT DIRECTLY INTO A
COMPUTER WITHOUT GOING THROUGH A KEYBOARD	COMPUTER WITHOUT GOING THROUGH A KEYBOARD