Cálculos Circuitos

Javier Estevez, Edgar Gallegos, Pablo Gualotuña 25 de Agosto de 2020

Determinación del V_o y corriente para los circuitos (1a) y (1b), además del cálculo de la reactancia

Datos: f = 0, 10, 50, 100, 500, 1000 Hz y $V_p = 10 V$

Figura 1: Circuitos de la practica

Formulas que se van a emplear:

$$Z_C = \frac{1}{jwC} \tag{1}$$

$$Z_L = jwL (2)$$

$$w = 2\pi f \tag{3}$$

$$V_{rms} = \frac{V_{pico}}{\sqrt{2}} \tag{4}$$

Con f=10Hz

En el grafico (1a) y empleando las ecuaciones de antes, también

$$C_{eq} = C_1 + C_2 = 20 \,\mu F$$

$$Z_C = -795,77j\Omega = (795,77/ - 90^o)\Omega$$

$$I_{rms} = \frac{\frac{10}{\sqrt{2}}}{100 - 795,775j} = (1.01 \times 10^{-3} + 8.75 \times 10^{-3}j)A = (8.8 \times 10^{-3}/ - 83,42^o)A$$

$$I_p = \frac{10}{100 - 795,775j} = (1.55 \times 10^{-3} + 0.012j)A = (0.012/81,2^o)A$$

$$V_{rms_o} = I_{rms} * Z_C = (7.01/ - 6.58^o)V$$

$$V_{p_o} = I_p * Z_C = (9.63/ - 8.8^o)V$$

Siguiendo ese proceso con todos los datos de frecuencia. Obtenemos:

VOLTAJE Vo					
	CIRCUITO CON CAPACITORES 10 [μF]				
FRECUENCIA (Hz)	CALCULADO VOLTAJE EFICAZ [V]	CALCULADO VOLTAJE PICO [V]	MULTÍMETRO [V]	OSCILOSCOPIO [V]	
0	0	0	0	0	
10	7.01	9.63	7.04	9.75	
50	5.7	8.43	6	8.5	
100	4.37	6.13	4.38	6.25	
500	1.09	1.5	1.10	1.5	
1000	0.55	0.78	0.55	0.75	

Figura 2: Valores de capacitores de voltaje

CORRIENTE Io			
CIRCUITO CON CAPACITORES 10 [μF]			
FRECUENCIA (Hz)	CALCULADO CORRIENTE [A]	MULTÍMETRO [A]	
0	0	0	
10	8.8x10 ⁻³	$8.8x10^{-3}$	
50	0.036	0.03	
100	0.055	0.05	
500	0.069	0.07	
1000	0.07	0.07	

Figura 3: Valores de capacitores de corriente

Parte 2

En el grafico (1b) y empleando las ecuaciones de antes, también $L_{eq}=\frac{L_1L_2}{L_1+L_2}=0.05\;H$

$$Z_C = 3.14j\Omega = (3.14/90^o)\Omega$$

$$I_{rms} = \frac{\frac{10}{\sqrt{2}}}{100 + 3.14j} = (0.071 - 2.22 \times 10^{-3}j)A = (0.071/1.8^o)A$$

$$I_p = \frac{10}{100 - 795,775j} = (0.099 - 3.14 \times 10^{-3}j)A = (0.099/1.82^o)A$$

$$V_{rms_o} = I_{rms} * Z_C = (0.22/91.8^o)V$$

$$V_{p_o} = I_p * Z_C = (0.31/91.82^o)V$$

Siguiendo ese proceso con todos los datos de frecuencia. Obtenemos:

VOLTAJE Vo					
	CIRCUITO CON BOBINAS 100 [mH]				
FRECUENCIA (Hz)	CALCULADO VOLTAJE EFICAZ [V]	CALCULADO VOLTAJE PICO [V]	MULTÍMETRO [V]	OSCILOSCOPIO [V]	
0	0	0	0	0	
10	0.22	0.31	0.23	0.3	
50	1.08	1.54	1.11	1.6	
100	2.11	2.96	2.14	3	
500	5.82	8.4	5.98	8.4	
1000	6.6	9.43	6.74	9.5	

Figura 4: Valores de bobinas de voltaje

CORRIENTE IO					
CIF	CIRCUITO CON BOBINAS 100 [mH]				
FRECUENCIA (Hz)	CALCULADO CORRIENTE [A]	MULTÍMETRO [A]			
0	0	0			
10	0.071	0.07			
50	0.069	0.07			
100	0.067	0.06			
500	0.037	0.03			
1000	0.021	0.02			

Figura 5: Valores de bobinas de corriente

Calculo de la reactancia

Con la formula

$$X = \frac{V_o}{I} \tag{5}$$

Por ejemplo

$$X_C = \frac{7,04}{8.8 \times 10^{-3}} = 800\Omega$$
$$X_L = \frac{0,23}{0,07} = 3,286\Omega$$

Repetimos ese proceso para los valores de voltaje y corriente tanto para el circuito 1 como para el circuito 2. Obtenemos:

CIRCUITO 1				
CAPACITANCIAS				
FRECUENCIA (Hz)	VOLTAJE [V]	CORRIENTE [A]	REACTANCIA [Ω]	Ceq [μF]
0	0	0	0	20
10	7.04	$8.8x10^{-3}$	800	20
50	6	0.03	200	20
100	4.38	0.05	87.6	20
500	1.10	0.07	15.71	20
1000	0.55	0.07	7.857	20

Figura 6: Valores de reactancia de capacitores

		CIRCUITO 2		
	INDUCTANCIAS			
FRECUENCIA (Hz)	VOLTAJE [V]	CORRIENTE [A]	REACTANCIA [Ω]	Leq [mH]
0	0	0	0	50
10	0.23	0.07	3.286	50
50	1.11	0.07	15.71	50
100	2.14	0.06	35.67	50
500	5.98	0.03	199.33	50
1000	6.74	0.02	337	50

Figura 7: Valores de reactancia de bobina

Porcentaje de Error

Ejemplo de calculo del porcentaje de error en el circuito 1

$$\%Error_{V_{rms}} = \frac{|7,01 - 7,04|}{7,01} (100\%) = 0,04\%$$

$$\%Error_{V_p} = \frac{|9,63 - 9,75|}{9,63} (100\%) = 1,2\%$$

$$\%Error_{I_C} = \frac{|0,0088 - 0,0088|}{0.0088} (100\%) = 0,0\%$$

Ejemplo de calculo del porcentaje de error en el circuito 2

$$\%Error_{V_{rms}} = \frac{|0.22 - 0.31|}{0.22} (100\%) = 4.5\%$$

$$\%Error_{V_p} = \frac{|-9.75|}{9.63} (100\%) = 3.8\%$$

$$\%Error_{I_L} = \frac{|0.071 - 0.07|}{0.0088} (100\%) = 1.4\%$$