Homework 4

March 29, 2024

- You are required to use Jupyter notebook to finish this quantitative exercise. You
 may refer to QuantEcon for help. Use university computer lab if you do not have
 a personal computer.
- This homework must be finished independently!
- You must submit your solution before the end of Apr 5. Submit your notebook file (the .ipynb file) to the following URL https://yunbiz.wps.cn/c/collect/cGHaoyR1jwb.

Optimal Growth Model in Recursive View

Consider a social planner who solves the following optimization problem:

$$\max_{c_t, k_{t+1}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma},$$

s.t.

$$c_t + k_{t+1} = k_t^{\alpha} + (1 - \delta) k_t,$$

where $k_t \geq 0$, $c_t \geq 0$, k_0 is given. c is consumption, k is the capital stock, $\alpha \in (0,1)$ is a production function parameter and $\beta, \delta \in (0,1)$ are the subjective discount factor and the depreciation rate of capital respectively. Denote the steady state of capital as k^* . Let $\alpha = 1/3$, $\beta = 0.95$, $\delta = 0.1$, $\gamma = 1.5$.

- 1. Use value function iteration to solve this problem numerically with the following optimization. Specifically, use a grid for k uniformly distributed in $[0.5*k^*, 1.5*k^*]$ with a total of **1000** grid points. Impose a tolerance of 10^{-6} for convergence. Report the computation time for your algorithm and compare it with the benchmark algorithm from your previous homework assignment.
 - (a) concave value function only
 - (b) increasing policy function only
 - (c) both concave value function and increasing policy function
- 2. Redo Q1 with multigrid method (for example, 100+1000 girds). Afterward, report the computation time and compare it with your result in Q1.
- 3. (optional) redo Q1 and Q2 and attempt to optimize your code using numba. Afterward, report the computation time and compare it with your result in Q1 and Q2.