Lineare Differenzengleichungen mit konstanten Koeffizienten

Es seien k, n, $n_0 \in \mathbb{N}$, $k \ge 1$, $n \ge n_0 + k$. Dann heißt die Gleichung

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + ... + a_k x_{n-k} + h_n$$
 (1)

lineare Differenzengleichung (oder lineare Rekursionsgleichung) mit konstanten Koeffizienten. Eine Indexverschiebung ist möglich (z.B. um k)

$$x_{n+k} = a_1 x_{n+k-1} + ... + a_k x_n + h_{n+k}$$
.

Wichtig ist die Differenz zwischen höchstem und niedrigstem Index von x (= Ordnung der Differenzengleichung).

Die Gleichung (1) heißt homogen, falls $h_n=0$ (für alle n) sonst inhomogen. Zur Lösung von (1):

A) Bestimmung der allgemeinen Lösung $\mathbf{x_n}^{(h)}$ der zugehörigen homogenen Gleichung

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + ... + a_k x_{n-k}$$
 (2)

Diese allgemeine Lösung von (2) lässt sich stets in der Gestalt

$$x_n^{(h)} = C_1 x_n^{(1)} + ... + C_k x_n^{(k)}$$

mit k speziellen Lösungen $\mathbf{x_n}^{(1)}, \dots, \mathbf{x_n}^{(k)}$ von (2) schreiben. Mit dem Ansatz

 $x_n^{~(h)} = \lambda^n~(\lambda \neq 0)$ erhält man über die charakteristische Gleichung

$$\lambda^{k} = a_{1}\lambda^{k-1} + a_{2}\lambda^{k-2} + \dots + a_{k-1}\lambda + a_{k}$$
(3)

bei k verschiedenen Lösungen $\lambda_1, \dots, \lambda_k$ von (3):

$$\boxed{x_n^{(h)} = C_1 \lambda_1^{n} + ... + C_k \lambda_k^{n}} \quad \text{. Falls z. B. } \lambda_1 \quad \text{2-fach (3-fach ...) auftritt,} \\ dann \quad x_n^{(h)} = C_1 \lambda_1^{n} + C_2 \lambda_1^{n} n + (C_3 \lambda_1^{n} n^2 ...).$$

B) Bestimmung einer Partikulärlösung $x_n^{(p)}$ der inhomogenen Gleichung. Dafür gibt es in wichtigen Fällen spezielle Ansätze mit unbestimmten Koeffizienten A, A_0 , ... (s. Tabelle unten). Diese Koeffizienten sind durch Einsetzen in (1) und Koeffizientenvergleich zu ermitteln.

Inhomogenität h _n	Bedingung	Ansatz für $x_n^{(p)}$
Polynom in n, Grad $r \ge 0$	λ=1 ist keine*) Lösung von (3)	Polynom gleichen Grades mit unbestimmten Koeffizienten
Potenzfunktion b ⁿ	λ=b ist keine*)	$x_n^{(p)} = A \cdot b^n$
	Lösung von (3)	11

- *) bei ρ -facher Lösung ist der Ansatz mit \mathbf{n}^{ρ} zu multiplizieren
- C) Allgemeine Lösung von (1): $x_n = x_n^{(h)} + x_n^{(p)}$
- D) Anfangsbedingungen (AB) erfüllen (erste k Glieder vorgegeben).