

Wireless vs. Wired Communication

Wired	Wireless
Each cable is a different channel	Wireless medium is a shared channel
Signal attenuation is negligibly small	Signal attenuation is significantly higher
Can be physically shielded from external interference	Interference is a major concern
Stations are fixed	Stations can be mobile
BER* ~10 ⁻⁹	BER* ~10 ⁻⁴

^{*}BER: percentage of bits received in error

Wireless Importance

- Laying cables can be infeasible, e.g.
 - Cabling cost can be too high
 - Network lifetime is too short

- Mobility //
- Flexible Connectivity

Wireless Challenges

- Limited bandwidth (since a shared channel)
 - Requires more efficient utilization of bandwidth

High noise levels

- Attenuation
 - Requires higher power levels

- Security
 - Eavesdropping, false identities, ... etc

Electromagnetic Waves

Wireless communication is through EM waves

A wave is characterized by frequency

- EM wave propagation speed
 - Medium dependent
 - In vacuum = $c = speed of light = 3 x 10^8 m/s$

- Wavelength = Propagation Speed / Frequency
 - $C = \lambda f$

EM Spectrum

Wireless is a shared resource:

- Has to be tightly managed
 - International and national authorities (ITU-R, NTRA)

Radio spectrum is divided into bands

- band = name of a set of frequencies, e.g. 2.4GHz band
- Bandwidth = the range of frequencies (max min)

Capacity is a function of bandwidth

EM Wave Propagation

Wireless Channel Characteristics

- Attenuation
 - Path loss
 - Absorption

Multipath propagation

Fading

• Interference

Doppler Shift

Path Loss

Reduction in signal power due to propagation

Calculations in dB: decibel (a logarithmic unit)

$$P_r = P_t + G_t + G_r + 20 \log\left(\frac{\lambda}{4\pi d}\right)$$

- Original Friis transmission equation assumes:
 - the bandwidth is narrow enough for a single λ to represent it
 - $d\gg\lambda$ (not valid otherwise)

Absorption

• Exponential decay of signal power with distance travelled

Depends on the medium and the frequency

Path Loss = $G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2 e^{-\alpha d}$ α : absorption coefficient

Multipath Propagation

- Multiple copies of the same signal received at slightly different times
 - Caused by reflection, diffraction, and scattering

Delay spread: time between receiving the first and last copy of the

same signal

Fading

• The variation in signal strength when received at the receiver.

Fast/Small Scale Fading Slow/Large Scale Fading

Fast Fading

Rapid fluctuations in amplitude or phase

- Due to interference between multiple versions of the same Tx signal arriving at slightly different times.
- Multipath propagation due to diffraction, reflection & scattering
- Paths may add up constructively or destructively at Rx:
 - If phase difference=0, 2 signals adds up
 - If phase difference=180, 2 signals cancel each other

Slow Fading

Objects that partially absorb the transmissions lie between Tx and Rx

- Slow because the duration of the fade lasts for a long time
 - Duration of the fade may last for multiple seconds or minutes

Countering Fading

- Diversity (Time, Frequency or Space)
 - Send same signal using multiple ways
 - Different ways experience different fading
 - Redundancy reduces probability of simultaneous destructive interference
 - ► Time: send a signal and after some time send it again
 - Frequency: use multiple channels simultaneously
 - > Space: use more than one antenna at different locations

- Adaptive Modulation
 - Channel characteristics estimated
 - Fed back to Tx for adapting the modulation of the signal

Interference

- Adjacent Channel Interference:
 - Signals in nearby frequencies have components outside their allocated ranges
 - Solution: introduce guard bands between allocated frequency ranges
- Co-channel (narrow band) Interference:
 - Other nearby systems using the same transmission frequency
 - Solution: allocate bands in intelligent way → no 2 close users use the same frequency.
- Inter Symbol Interference:
 - Temporal spreading and consequent overlapping of individual pulses in the signal due to multipath propagation.
 - The spreading of the pulse beyond its allotted time interval causes it to interfere with neighboring pulses
 - Solution: adaptive equalization:
 - Estimate the channel response (training using well known periodic pulses)
 - Compensate for the time dispersion

Doppler Shift

• The change in observed frequency of received signal due to relative motion of Tx and Rx with respect to each other.

• If they are moving towards/away each other, then the received frequency will be higher/lower

$$f_d = \frac{v}{\lambda}$$

- v: relative velocity between Tx and Rx f_d : The change in frequency

