Project 3: Mahoney Neuron Segmentation in Calcium Imaging

Chris Barrick, Weiwen Xu, Raj Sivakuamr • 2018-21-03

Overview

Success

- NMF
- CNMF

Biggest risk

- Dask
- U-net from scratch

Progress - NMF

Preprocessing

- Normalization across time and space
- Opening
 - Successive erosion and dilation

Thunder Extraction

- Used thunder libraries to extract regions of interest
- Initially chosen because we believed it would be faster that scikit-learn's NMF

Progress - CNMF

Accomplishments

- Scalable constrained NMF using CalmAn
- Able to produce overlapping areas

Issues

- Messy setup for CalmAn package
- A lot of dependency
- Hard coding inside the demos made it hard to integrate with our code structure

Attention areas

Risk 1: Software Stack

- Dask can be difficult to deploy
- Using CalmAn introduced several packages
- U-Net used PyTorch (never got output)
- Scikit-learn API actually sucks

Risk 2: Teamwork

- Each tool used a different stack
- No single entry point for experiments
- No unified deployment strategy
- Little reusable code

Scikit-learn + PyTorch =

Scikit-learn

- No real work in __init__.
- Must not assume shape until fit.
- Must have set_params to reset estimator.
- Cannot compute metrics in batches.

PyTorch

- Construct network in __init__.
- Must know shape to build network.
- Cannot reset optimizers.

Questions?