The history and ages of the planets

Astronomy 101 Syracuse University, Fall 2017 Walter Freeman

November 13, 2017

Some of you expressed a concern: students who had lab on Monday had an advantage on the exam.

Some of you expressed a concern: students who had lab on Monday had an advantage on the exam.

How can we determine if this is true?

The difference was less than 1%, well within the margin of error.

The difference was less than 1%, well within the margin of error.

However, it looks like there might be some effect on moderately-high scoring students.

When I compare only those students scoring over 50%, the averages differ by 2%.

The difference was less than 1%, well within the margin of error.

However, it looks like there might be some effect on moderately-high scoring students.

When I compare only those students scoring over 50%, the averages differ by 2%.

I've decided to give everyone a one-point freebie – essentially, scoring the exam out of 29 rather than 30.

A spinning cloud of gas...

... bits coalesce into planets

The full picture

Complete Lecture Tutorials pp. 111-112.

... but how long ago was this?

The process used to figure out the ages of the planets is the same as the process used for more recent objects.

"Carbon dating": use the radioactive decay of carbon to figure out how old things are.

• Useful for things up to about 50,000 years old

We can use the decay of other isotopes to age much older things, though – like planets!

hydrogen 1 H 1.0079			350	20-	134	0.50		Ā		1987	28,60	62,53	100		3.5	3.50		10026
ithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Ľi	Be												B	Č	Ń	Ô	F	Ne
6,941 sodium	9,0122 magnesium												10,811 aluminium	12.011 silicon	14.007 phosphorus	15,999 sulfur	18.998 chlorine	20,180 argon
11	12												13	14	15	16	17	18
Na	Mg												ΑI	Si	Р	S	CI	Ar
22,990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cebalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti l	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	277.177.18			-	w	- CANADA (1970)		100000000000000000000000000000000000000		25.25.55	C. C							
39.098 rubidium	40.078 strontium		44.966 vttrium	47.867 zirconium	50.942 niobium	51.996	54.938 technetium	55.845 ruthenium	58,933 rhodium	58.693 palladium	63,546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922	78.96	79.904	83.90
39.098 rubidium 37	40.078		44.966	47.867		- CANADA (1970)	54.938	55.845	58,933	58.693	63,546	65.39	69.723	72.61		78,96 tellurium 52		83.90 xenon 54
rubidium 37 Rb	stronlium 38 Sr		44.956 yttrium 39	47.867 zirconium 40 Zr	41 Nb	51.996 motybdenum 42 Mo	54.938 technetium 43 TC	ruthenium 44 Ru	58.933 rhodium 45 Rh	58.693 palladium 46 Pd	63.546 silver 47 Ag	65.39 cadmium 48 Cd	69.723 indium 49 In	72.61 tin 50 Sn	74.922 antimony 51 Sb	78.96 tellurium 52 Te	79.984 lodine 53	xenon 54 Xe
737 Rb 85,468	40.078 stronlium 38 Sr 87.62		44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224	Nb 92,906	51.996 motybdenum 42 Mo 95.94	54.938 technetium 43 TC [98]	55.845 ruthenium 44 Ru 101.07	58.933 rhodium 45 Rh 102.91	58.693 palladium 46 Pd 106.42	63.546 silver 47 Ag 107.87	65.39 cadmium 48 Cd 112.41	69.723 indium 49 In	72.61 tin 50 Sn	74.922 antimony 51 Sb 121.76	78.96 tellurium 52 Te 127.60	79.984 lodine 53	83.80 xenon 54 Xe 131.29
rutedium 37 Rb	stronlium 38 Sr	57-70	44.956 yttrium 39	47.867 zirconium 40 Zr 91.224 hafnium 72	41 Nb	51.996 motybdenum 42 Mo	54.938 technetium 43 TC	ruthenium 44 Ru	58.933 rhodium 45 Rh	58.693 palladium 46 Pd	63.546 silver 47 Ag	65.39 cadmium 48 Cd	69.723 indium 49 In	72.61 tin 50 Sn	74.922 antimony 51 Sb	78.96 tellurium 52 Te	79.984 lodine 53	xenon 54 Xe
Rb 85,468 caesium 55 Cs	stronium 38 Sr 87,62 barium 56 Ba	57-70 X	44.966 yttrium 39 Y 88.906 lutetium 71 Lu	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf	Nb 92.906 tantalum 73	51.996 motybidenum 42 Mo 95.94 lungsten 74 W	54.938 technetium 43 Tc [98] thentum 75 Re	55.845 ruthenium 44 Ru 101.07 osmium 76 Os	58,933 fhodium 45 Rh 102,91 iridium 77 Ir	palladium 46 Pd 106.42 platinum 78 Pt	63.546 silver 47 Ag 107.87 gold 79 Au	65.39 cadmium 48 Cd 112.41 mercury 80 Hg	69,723 indium 49 In 114,82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.964 lodine 53 1 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
Rb 85,468 caesium 55	40.078 stronlium 38 Sr 87.62 barium 56		44.956 yttrium 39 Y 88.906 lutelium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 lungsten 74 W	54.938 technetium 43 TC [98] thenium 75	55.845 ruthenium 44 Ru 101.07 osmium 76	58.933 rhodium 45 Rh 102.91 ridium 77	palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79	65.39 eadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82 thallum 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78,96 tellurium 52 Te 127,60 polonium 84	79.984 lodine 53 1 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
rubidium 37 Rb 85.468 caesium 55 Cs 132.91	40.078 stronlium 38 Sr 87.62 barium 56 Ba 137.33 radium 88		44.966 yttrium 39 Y 88.906 lutelium 71 Lu 174.97	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 nutherfordium 104	Nb 92,906 tantalum 73 Ta 180,95	51,996 motybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium 106	54,938 technetium 43 TC 1981 thentum 75 Re 186,21 bohrum 107	55.845 ruthenum 44 Ru 101.07 osmium 76 Os 190.23 hassium 108	58,933 modium 45 Rh 102,91 ridium 77 Ir 192,22 meitnenium 109	58.693 palladium 46 Pd 106.42 platirum 78 Pt 196.08 ununnillum 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununum 111	codmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114,82 thallium 81 TI 204,38	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 urunquaxium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.964 lodine 53 1 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
Rb 85.468 caesium 55 Cs 132.91 francium	40.078 stronlium 38 Sr 87.62 barlum 56 Ba 137.33 rodium	*	44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97 lawrencium	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	Nb 92.906 tantaum 73 Ta 180.95	51,996 motybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium	54,938 technetium 43 TC 1981 thentum 75 Re 186,21 bohrum	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58,933 modum 45 Rh 102,91 iridum 77 Ir 192,22 meitnerium	58.693 palladium 46 Pd 106.42 platirum 78 Pt 196.08 ununnillum 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununum 111	codmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium	69,723 indium 49 In 114,82 thallium 81 TI 204,38	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 urunquaxium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.964 lodine 53 1 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn

*	Lan	thar	nid	e	seri	es

* * Actinide series

	57	58	59	60	61	62	63	64	65	66	67	68	69	70
0	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	cattornium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231,04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

- Each element on the periodic table has a fixed number of protons and electrons
- The chemical properties don't depend on the number of neutrons
- "Ordinary" carbon is called "carbon-12"
 - It has six protons and six neutrons, for a total of twelve nucleons in the nucleus

- Each element on the periodic table has a fixed number of protons and electrons
- The chemical properties don't depend on the number of neutrons
- "Ordinary" carbon is called "carbon-12"
 - It has six protons and six neutrons, for a total of twelve nucleons in the nucleus
- A different form of carbon is called "carbon-14"
 - It has six protons and eight neutrons, for a total of fourteen nucleons in the nucleus
- These different forms of elements, with different numbers of neutrons, are called **isotopes**

- Many isotopes are *radioactive*: they will decay into other isotopes of other elements after some time, eventually reaching a stable one
- For instance: potassium-40 decays into argon-40; carbon-14 decays into nitrogen-14; uranium-235 decays (eventually) to lead-207
- We can characterize how fast they decay by a number called the "half-life"
- One half-life: how long it takes for half of the substance to decay
 - "Carbon-14 has a half-life of 5730 years"
- We can use these decays as a clock

You give someone ten thousand pennies. Starting at noon, every hour she puts the pennies in a bucket and throws them on the floor, then removes all the ones that came up heads.

You notice that at some point she has 2493 pennies left.
About what time is it?

A: 1:00

B: 1:30

C: 2:00

D: 2:30

E: 3:00

You give someone ten thousand pennies. Starting at noon, every hour she puts the pennies in a bucket and throws them on the floor, then removes all the ones that came up heads.

You notice that at some point she has 2493 pennies left.
About what time is it?

A: 1:00

B: 1:30

C: 2:00

D: 2:30

E: 3:00

F: Please, please, don't make this a lab

• Every hour half of her pennies come up heads and are removed

- Every hour half of her pennies come up heads and are removed
- After one hour she'll have about 5,000 pennies left

- Every hour half of her pennies come up heads and are removed
- After one hour she'll have about 5,000 pennies left
- After two hours she'll have about 2,500 pennies left

- Every hour half of her pennies come up heads and are removed
- After one hour she'll have about 5,000 pennies left
- After two hours she'll have about 2,500 pennies left
- After three hours she'll have about 1,250 pennies left,

- Every hour half of her pennies come up heads and are removed
- After one hour she'll have about 5,000 pennies left
- After two hours she'll have about 2,500 pennies left
- After three hours she'll have about 1,250 pennies left
- $\bullet \to \text{Her pennies have a half-life of 1 hour}$
- The more pennies she started with, the more accurately I can tell time this way
- There are far more atoms in a sample than pennies here

Important difference with radioactive decay:

• Radioisotopes don't decay every hour (or year or whatever); they decay continuously

There aren't many of these unstable isotopes around, as you might expect.

- Some of them, like carbon-14, are continually produced.
- Some of them, like uranium-235 and potassium-40, are left over from the supernova that produced them

If we can figure out what fraction of the original amount of a radioisotope is left in an object, we can figure out how long ago it formed.

Carbon-14 has a halflife of 5730 years and is continually produced in the atmosphere.

The fraction of carbon-14 in the atmosphere was historically nearly constant – until recently. Why might that be?

A: Explosion of nuclear weapons has increased the amount of radioactivity in the atmosphere

B: CO_2 emissions from burning fossil fuels have added only carbon-12 to the atmosphere, not carbon-14

C: The amount of cosmic rays hitting the atmosphere has changed because of the solar cycle

D: The metabolisms of plants and animals have changed with the rise of humans, absorbing carbon-12 but not carbon-14

Living things constantly recycle their carbon, so their 14C fraction is the same as the atmosphere.

But once they die and stop breathing, over time 14C is replaced by 14N.

This lets us use the amount of 14C as a clock to see how long ago they died.

Living things constantly recycle their carbon, so their 14C fraction is the same as the atmosphere.

But once they die and stop breathing, over time 14C is replaced by 14N.

This lets us use the amount of 14C as a clock to see how long ago they died.

We can use this procedure on things up to about 50,000 years old.

Past that, the 14C fraction is too small to give an accurate picture.

We need some older process to date the planets!

Other radioisotopes

There are longer-lived isotopes we can use here:

- Potassium-40: half-life of 1.251 Gyr ("gigayears" billion years). Decays into argon-40.
- Uranium-235: half-life of 0.7038 Gyr. Decays into lead-207.

This radioactive decay works the same way:

Crystals of the mineral zircon readily incorporate uranium into their structure, but *not* lead, while they are forming.

Thus any lead present in zircon got there through the decay of uranium-235.

Crystals of the mineral zircon readily incorporate uranium into their structure, but *not* lead, while they are forming.

Thus any lead present in zircon got there through the decay of uranium-235.

A zircon crystal contains as many atoms of lead-207 as uranium-235. About how old is it? (The halflife of U-235 is about 0.7 billion years.)

A: 0.7 Gyr

B: 1.4 Gyr

C: 2.1 Gyr

D: 2.8 Gyr

Crystals of the mineral zircon readily incorporate uranium into their structure, but *not* lead, while they are forming.

Thus any lead present in zircon got there through the decay of uranium-235.

Crystals of the mineral zircon readily incorporate uranium into their structure, but *not* lead, while they are forming.

Thus any lead present in zircon got there through the decay of uranium-235.

A zircon crystal contains seven atoms of lead-207 for every atom of uranium-235. About how old is it? (The halflife of U-235 is about 0.7 billion years.)

A: 0.7 Gyr

B: 2.1 Gyr

C: 4.9 Gyr

D: 5.6 Gyr

Potassium-argon dating

Argon is a noble gas. It doesn't chemically bond readily.

Thus any argon-40 present in zircon got there through the decay of potassium-40. Potassium-40 has a half-life of about 1.251 Gyr.

These two processes – lead/uranium dating and potassium/argon dating – rely on different assumptions, so they are a nice crosscheck.

Now, let's date some rocks!

Now, let's date some rocks!

(no, not like that)

- Oldest Earth rocks: 4 Gyr (a few grains are a bit older)
- Oldest Moon rocks: 4.4 Gyr
- ... can we get anything older than that? What are the most primordial things in the Solar System?

Now, let's date some rocks!

Some meteorites found on Earth date to $4.55~{\rm Gyr}$ old – the age of the condensation of the first rocks in the Solar System.

What about other planets?

```
https://www.caltech.edu/news/first-rock-dating-experiment-performed-mars-41496
We've done argon/potassium dating on Mars, giving the same results as Earth: a bit more than four billion years.
```