Office of Naval Research

Contract Nonr-1866 (16)

NR-372-012

DIFFERENTIAL GAMES AND OPTIMAL PURSUIT-EVASION STRATEGIES

COPY 2 HARD COPY \$.1.00 MICROFICHE \$.0.50

14P

Ву Yu-Chi Ho, A.E. Bryson, Jr. &

November 4, 1964

Technical Report No. 457

Cruft Laboratory Division of Engineering and Applied Physics Harvard University . Cambridge, Massachusetts

ARCHIVE GOPY

AVAILABLE COTY

Office of Naval Research

Contract Nonr-1866(16)

NR - 372 - 012

DIFFERENTIAL GAMES AND OPTIMAL PURSUIT-EVASION STRATEGIES

by

Yu-Chi Ho, A. E. Bryson, Jr., and S. Baron*

November 4, 1964

The research reported in this document was made possible through support extended to Cruft Laboratory, Harvard University, by the U.S. Army Research Office, the U.S. Air Force Office of Scientific Research, and the U.S. Office of Naval Research under the Joint Services Electronics Program by Contract Nonr-1866 (16). Reproduction in whole or in part is permitted for any purpose of the United States Government.

*NASA, Langley Field. On leave at Harvard University.

Technical Report No. 457

Cruft Laboratory

Division of Engineering and Applied Physics

Harvard University

Cambridge, Massachusetts

DIFFERENTIAL GAMES AND OPTIMAL PURSUIT-EVASION STRATEGIES

by

Yu-Chi Ho, A.E. Bryson, Jr., and S. Baron

Division of Engineering and Applied Physics
Harvard University, Cambridge, Massachusetts

ABSTRACT

In this report, we show that variational techniques can be applied to solve games with differential constraints. Conditions for capture and for optimality are derived for a class of optimal pursuit-evasion problems.

Results are used to demonstrate that the well known "proportional navigation law" is actually an optimal intercept strategy.

I. INTRODUCTION

The theory of differential games was initiated by Issacs in 1954 [1]. It was later studied in greater detail by Fleming and Berkovitz [2]. Recently, because of the advances in the computational solution of variation problems, renewed interest has developed in this subject. * Stated simply, games are a class of two-sided optimization problem. The simplest games are the type with which we are most familiar. A function J of two discrete variables u and v is given in tabular form. Each particular value of u or v is called a strategy. The problem is the determination of the strategy for u and v such that J is a saddle point (minimax). Because of the discrete nature of the available strategies, it is generally not possible to realize a minimax with a simple choice for u and v. Instead, a mixture of strategies must be employed to realize a minimax on an average basis. The usual game theory devotes considerable effort to the study of the properties of mixed strategies. On the other hand, if u and v were to take on a continuous range of values, then a saddle point could generally be realized by a pair of pure strategies for any reasonably well behaved function J(u, v). The necessary and sufficient conditions for a saddle point are simply,

$$J_{u} = 0 \qquad J_{v} = 0$$
 for all u, v

$$J_{uu} > 0 \qquad J_{vv} < 0 \tag{2}$$

This is in direct analogy to the one sided optimization problem of calculus.

A more involved version of the game problem can be stated as that of

^{*}It is the authors' understanding that Prof. Pontriagin lectured on the subject during the month of October 1964.

TR457 -2-

determining a saddle point for J(x, u, v) subject to the restriction that $\phi(x, u, v) = 0$. In this case, u and v still have the usual meaning while the variable x is an intermediate variable indirectly determined by the constraint $\phi=0$. Of course, we can always eliminate x using the constraints and convert the problem into a simple game by writing $J=J^*(g^{-1}(u, v), u, v)$ where $x=g^{-1}(u, v) \Rightarrow \phi=0$. However, it is usually simpler both theoretically and computationally to solve the problem by the introduction of a Lagrange multiplier again in imitation of the one-sided calculus problem. From this point, it is a straightforward conceptual generalization to consider the differential game problem of determining a saddle point for

$$J = \phi(x(T), T) + \int_{0}^{T} L(x, u, v) dt$$
 (3)

subject to

$$\dot{x} = f(x, u, v, t); \quad x(t_0) = x_0$$
 (4)

where x plays the usual role of the state vector, and u, v the control vectors. Extending our analogy with the one-sided optimization problem, we expect that the techniques of variational calculus should be useful in this context. The purpose of this report is to illustrate that this is indeed so by solving a class of optimal pursuit-evasion problems and deriving conditions for optimality and capture. As an interesting by-product, we shall show that the "proportional navigation" law used in many missile guidance systems actually constitutes a form of optimal pursuit strategy, under the usual simplifying approximations to the equations of motion of the missile and the target.

II. A CLASS OF OPTIMAL PURSUIT-EVASION GAMES

We shall consider two dynamic systems

$$\dot{x}_{p} = F_{p} x_{p} + G_{p} u \tag{5}$$

$$\dot{\mathbf{x}}_{\mathbf{e}} = \mathbf{F}_{\mathbf{e}} \mathbf{x}_{\mathbf{e}} + \mathbf{G}_{\mathbf{e}} \mathbf{v} \tag{6}$$

where the subscript p and e stand for pursuer and evader respectively.

The pursuing system desires to intercept or rendezvous with the evading system at time T while the latter attempts to do the opposite. Both systems have limited energy sources. Hence, a reasonable criterion would be

$$J = \frac{1}{2} || x_{p}(T) - x_{e}(T) ||_{A}^{2} + \frac{1}{2} \int_{0}^{T} [||u||_{R_{p}}^{2} - ||v||_{R_{e}}^{2}] dt$$
 (7)

where $A \ge 0$ and R_p and $R_e > 0$. The minus sign in front of the $||v||^2$ term comes about due to the fact that we shall attempt to maximize J w.r.t. to the variable v. Following the usual variational procedure, we introduce at this point the multiplier functions $\lambda_p(t)$ and $\lambda_e(t)$ which are used to adjoin (5) and (6) to (7). Now let us take a particular pair of strategies u(t) and v(t) with the associated trajectories $x_p(t)$ and $x_e(t)$ and consider variations $\delta u(t)$ and $\delta v(t)$. The change in J to second order is

$$\begin{split} \delta J &= \left[(x_{p}(T) - x_{e}(T))^{T} A^{T} - \lambda_{p}^{T}(T) \right] \delta x_{p}(T) + \left[(x_{e}(T) - x_{p}(T))^{T} A^{T} - \lambda_{e}^{T}(T) \right] \delta x_{e}(T) \\ &+ \frac{1}{2} \left[|\delta x_{p}(T) - \delta x_{e}(T)| \right]_{A}^{2} + \int_{0}^{T} \left[(\lambda_{p} + H_{x_{p}}) \delta x_{p} + (\lambda_{e} + H_{x_{e}}) \delta x_{e} \right] \\ &+ H_{u} \delta u + H_{v} \delta v dt + \frac{1}{2} \int_{0}^{T} \left[\delta u \delta v \right]^{T} \begin{bmatrix} R_{p} & 0 \\ 0 & - R_{e} \end{bmatrix} \begin{bmatrix} \delta u \\ \delta v \end{bmatrix} dt \quad (8a) \end{split}$$

TR457 -4-

where H is the Hamiltonian

$$H = \frac{1}{2} (||u||_{R_p}^2 - ||v||_{R_e}^2) + \lambda_p^T (F_p x_p + G_p u) + \lambda_e^T (F_e x_e + G_e v)$$
 (8b)

In order that (8) vanish to first order, we immediately derive the necessary conditions

$$\dot{\lambda}_{p}^{T} = -\lambda_{p}^{T} F_{p} \qquad \lambda_{p}^{T}(T) = (x_{p}(T) - x_{e}(T))^{T} A^{T} \qquad (9)$$

$$\lambda_e^T = -\lambda_e^T F_e \qquad \lambda_e^T (T) = (x_e(T) - x_p(T))^T A^T$$
 (10)

$$H_{u} = 0 = R_{p}^{-1} G_{p}^{T} \lambda_{p}$$
 (11)

$$H_{v} = 0 = v = + R_{e}^{-1} G_{e}^{T} \lambda_{e}$$
 (12)

Equations (5, 6, 9-12) represent a linear two-point boundary value problem which can be solved in terms of the fundamental matrix solution of the "p" and "e" system, $\Phi_{\rm p}(t,\tau)$ and $\Phi_{\rm e}(t,\tau)$. We have,

$$\lambda_{p}(t) = \Phi_{p}^{T}(T, t) A (x_{p}(T) - x_{e}(T))$$

$$\lambda_{e}(t) = \Phi_{e}^{T}(T, t) A (x_{e}(T) - x_{p}(T))$$
(13)

Substituting (13) into (5-6) and using (11-12), we obtain

$$x_{p}(T) = \Phi_{p}(T, t) x_{p}(t) - M_{p}A (x_{p}(T) - x_{e}(T))$$

$$x_{e}(T) = \Phi_{e}(T, t) x_{e}(t) - M_{e}A (x_{p}(T) - x_{e}(T))$$
(14)

where

$$M_{p}(T,t) \stackrel{\triangle}{=} \int_{t}^{T} \Phi_{p}(T,\tau) G_{p} R_{p}^{-1} G_{p}^{T} \Phi^{T}(T,\tau) d\tau$$
(15)

$$M_{e}(T,t) = \int_{t}^{\Delta} \Phi_{e}(T,\tau) G_{e} R_{e}^{-1} G_{e}^{T} \Phi_{e}^{T} (T,\tau) d\tau$$
 (16)

Finally, (13) and (14) combine to yield the optimal pursuit and evasive strategies

$$u(t) = -R_{p}^{-1} G_{p}^{T} \Phi_{p}^{T}(T, t) A[I + (M_{p} - M_{e}) A]^{-1} [\Phi_{p}(T, t)x_{p}(t) - \Phi_{e}(T, t)x_{e}(t)] (17)$$

$$v(t) = -R_e^{-1} G_e^{T} \Phi_e^{T}(T, t) A[I + (M_p - M_e)A]^{-1} [\Phi_p(T, t) x_p(t) - \Phi_e(T, t) x_e(t)]$$
(18)

Since $\Phi(T, t) \times (t)$ has the interpretation of the predicted terminal state of a dynamic system, the optimal pursuit-evasive strategies are simply linear combinations of the predicted terminal miss - a very reasonable result.

Examination of the second-order terms in (8) shows that the analogous Legendre-Clebsch condition for the saddle point is satisfied.

$$H_{uu} = R_p > 0$$
; $H_{vv} = -R_e < 0$ (19)

Furthermore, the accessory minimax problem is

Furthermore, the accessory minimax problem is

$$\begin{cases}
\text{"determine a saddle point for} & T \\
\delta J = \frac{1}{2} || \delta x_{p}(T) - \delta x_{e}(T) ||_{A}^{2} + \frac{1}{2} \int_{0}^{T} || \delta u ||_{R_{p}}^{2} - || \delta v ||_{R_{e}}^{2} dt
\end{cases}$$
(P)

subject to $\delta \dot{x}_{p} = F_{p} \delta x_{p} + G_{p} \delta u$; $\delta x_{p}(0) = 0$

$$\delta \dot{x}_{e} = F_{e} \delta x_{e} + G_{e} \delta v$$
; $\delta x_{e}(0) = 0$

By exactly the same argument leading to the derivation of the conjugate point conditions for the one sided variational problem [3], we find that $\delta J > 0 \quad \forall \quad \delta u \neq 0$, δv fixed, and $\delta J < 0 \quad \forall \quad \delta v \neq 0$, δu fixed, if and only if the matrix solution X(t) is nonsingular during the interval (0, T) where X(t) obeys

$$\begin{bmatrix} \dot{X} \\ \dot{A} \end{bmatrix} = \begin{bmatrix} F_{p} & 0 & -G_{p}R_{p}^{-1}G_{p}^{T} & 0 \\ 0 & F_{e} & 0 & G_{e}R_{e}^{-1}G_{e}^{T} \\ 0 & 0 & -F_{p}^{T} & 0 \\ 0 & 0 & 0 & -F_{e}^{T} \end{bmatrix} \begin{bmatrix} X & X(T) = I \\ X & X(T) =$$

But from (20),

$$X(t) \begin{bmatrix} \Phi_{p}(t,T) & 0 \\ 0 & \Phi_{e}(t,T) \end{bmatrix} \begin{bmatrix} I + M_{p}A & -M_{p}A \\ M_{e}A & I - M_{e}A \end{bmatrix}$$
(21)

Thus, the nonsingularity of X(t) (i.e., nonexistence of conjugate point) is equivalent to the condition

$$\det \begin{bmatrix} I + M_p A & -M_p A \\ M_e A & I - M_e A \end{bmatrix} = \det [I + (M_p - M_e) A] \neq 0$$
 (22)

which in view of (17) and (18) also guarantees the boundedness of the strategies.

It is also interesting to consider the limiting case where A is positive definite and infinite (e.g., infinite diagonal matrix). This is the situation where u attempts to capture v with minimal energy. Condition (22) becomes

$$\det [I + (M_p - M_e)A] \neq 0 <=> \det (A^{-1} + (M_p - M_e)) \neq 0$$

$$<=> \det (M_p - M_e) \neq 0$$
(23)

In terms of the usual definition of controllability, (23) simply says that the pursuer must be "more controllable" than the evader – an eminently reasonable conclusion. Since both M_p and $M_e > 0$ if the individual systems are controllable, then a sufficient condition for capture is simply $M_p - M_e > 0$. Furthermore, we have the following

Proposition: Let R_p and R_e in (7) be scalar, and the optimal pursuit and

evasion energy for
$$A = \infty$$
 be
$$\int_{0}^{T} ||u||^{2} dt = c_{p}, \int_{c}^{T} ||v||^{2} dt = c_{e}, \text{ respectively,}$$

then a necessary and sufficient condition for capture of an evader with energy resources c_{e} by a pursuer with energy resources c_{p} is $M_{p}-M_{e}>0$. The proof of this proposition is a direct consequence of the utility interpretation of Lagrange multipliers [4].

III. GUIDANCE LAW FOR TARGET INTERCEPTION

A special case of the class of problems treated in Section II can be formulated as follows: the equations of motion (kinematic) in space for an interceptor and a target are

$$\dot{\vec{v}}_{p} = \dot{\vec{f}}_{p} + \dot{\vec{a}}_{p}$$

$$\dot{\vec{r}}_{p} = \dot{\vec{v}}_{p}$$

$$\dot{\vec{v}}_{e} = \dot{\vec{f}}_{e} + \dot{\vec{a}}_{e}$$

$$\dot{\vec{r}}_{e} = \dot{\vec{v}}_{e}$$
(24)

TR457

-8-

where

 \vec{v} = velocity of a body in three dimensions

r = position vector of a body in three dimensions

 \vec{f} = external force per unit mass exerted on the body

 \vec{a} = control acceleration of a body

We assume that the altitutude difference between the pursuer and the evader is small enough such that $\vec{f}_p = \vec{f}_e$. Hence, if we are only interested in the difference $\vec{r}_p(t) - \vec{r}_e(t)$, the effect of the external forces can be ignored. Now consider the criterion

$$J = \frac{a}{2} (\vec{r}_{p}(T) - \vec{r}_{e}(T)) (\vec{r}_{p}(T) - \vec{r}_{e}(T))$$

$$+ \frac{1}{2} \int_{0}^{T} [c_{p}^{-1} (\vec{a}_{p} \cdot \vec{a}_{p}) - c_{e}^{-1} (\vec{a}_{e} \cdot \vec{a}_{e})] dt$$
(25)

where c_p and c_e represent the energy capacity of the pursuer and the evader, respectively. Applying the result of the last section, it can be directly verified that (17) and (18) become in this case

$$\vec{a}_{e} = \frac{-c_{e} (T-t) [\vec{r}_{p}(t) - \vec{r}_{e}(t) + (\vec{v}_{p}(t) - \vec{v}_{e}(t)) (T-t)]}{\frac{1}{a} + (c_{p} - c_{e}) (T-t)^{3}/3}$$
(27)

TR457 -9-

We note immediately that if

- (i) if $c_p > c_e$ (i.e., pursuer has more energy than the evader) then the feedback control gain is always of one sign.
- (ii) if $c_p < c_e$ (i.e., pursuer has less energy than the evader) then the feedback gain will change sign at

$$\frac{1}{a} + (c_p - c_e) (T - t)^3 / 3 = 0$$
 (28)

for T sufficiently large.

But (28) is simply the conjugate point condition (22) specialized for this problem. Hence, for case (ii), (26) is no longer optimal for large T. This fact is, of course, obvious to start with, particularly in the case when $a = \infty$. In that case, interception is not possible when $c_p < c_e$ (cf. $M_p < M_e$). Assuming (i) and letting $a = \infty$, the control strategy for the pursuer simplifies to

$$a_{p} = \frac{-3}{(1 - \frac{c_{e}}{c_{p}}) (T-t)^{2}} \left[\vec{r}_{p}(t) - \vec{r}_{e}(t) + (\vec{v}_{p}(t) - \vec{v}_{e}(t)) (T-t) \right]$$
(29)

Let the pursuer and the target be on a nominal collision course with range R and closing velocity $V_c = R/(T-t)$. Let $x_p - x_e$ represent the lateral deviation from the collision course as shown in Fig. 1

Fig. 1 Geometry of Proportional Navigation.

Then the lateral control acceleration to be applied by the pursuer according to (29) is

a (lateral) =
$$\frac{3}{\frac{c}{c}} V_c \dot{\sigma}$$
 (30)

which is simply proportional navigation with the effective navigation constant $K_e = \frac{3}{1 - \frac{c}{c}}$. From experience it has been found that the "best" value $1 - \frac{c}{c}$

for K_e ranges between 3 to 5[5]. In view of (30), we see that the value of 3 corresponds to the case when the target is not maneuverable[6] ($c_e = 0$); while the value of 5 corresponds to $\frac{c_e}{c_p} = \frac{2}{5}$.

REFERENCES

- 1. R. Issacs, "Differential Games I, II, III, IV," RAND Corporation Research Memorandum RM-1391, 1399, 1411, 1468, 1954-56.
- 2. L. D. Berkovitz and W. H. Fleming, "On Differential Games with Integral Payoff," Annal. of Math. Study No. 39, pp. 413-435, Princeton University, 1957.
- 3. J. V. Breakwell and Y. C. Ho, "On the Conjugate Point Condition for the Control Problem," Int. Journal of Engineering Science (to appear) 1964.

 Also, Cruft Laboratory Technical Report No. 441, Harvard University, March 1964.
- 4. R. Bellman, Adaptive Control-A Guided Tour, Princeton University Press, Chapter VI, pp. 103-104, 1961.
- 5. A. Puckett and S. Ramo, Guided Missile Engineering, pp. 176-180, McGraw-Hill Book Company, New York, 1959.
- 6. A. E. Bryson, "Optimal Guidance Laws for Injection, Interception, Rendezvous, and Soft Landing," AIAA Journal (to appear).

BASIC TR DISTRIBLTION LIST Director of Defence Research & Engineering The Pentagon Washington, D. C. 23501

Chief of Naval Operations Department of the Navy Washington, D. C. 20310 Attn: OP-94

Chief of Naval Operations Department of the Mavy Washington, D. C. 20350 Atta. OP-32

Chief of Naval Operations Department of the Navy Washington, D. C. 20150 Atta. OP-67T

Casel of Naval Operations [2] Department of the Navy Washington, D. C. 20360 Atta. Code 427, Dr. A. Shoetak

Caiel of Naval Research Department of the Navy Washington, D. C. 20360 Atta. Code 421

The Director [6] Naval Research Laboratory Washington, D. G. 20190 Atta. Technical Information Code 1627 ion Office

Martin A. Garatena Physica Branch, Code 621 Office of Naval Research Washington, D. G. 20140

Bureau of Supe, Code 673 Department of the Navy Washington, D. C. 20360

Defense Documentation Center Cameren Station [26] Alexandria, Virginia 22314 Aren DDC-IKA

Commanding Officer [16] Office of Naval Research Branch Office Navy 100, Box 19 Fleet Poot Office New York, New York 09599

Commanding Officer [2] Office of Naval T-search 495 Summer Street Boston, Massachusetts 62110

Commanding Officer Office of Naval Research 230 N. Michigan Avenue Chicago, Illinois 60601

Commanding Officer Office of Navai Research 207 West 24th Street Pasadens, California 91101

Commanding Officer Office of Naval Research Branch Office 1000 Gearty Street San Francisco, California 94109

Commanding Officer and Director (2°, U. S. Navy Electronica Laboratory San Diego, California 92152 Attn. Library

Commanding Officer
U. S. N. Air Development Center
Johnsville, Pennsylvania 18974
Attn. NADC Library

Commander U.S. Naval Weapons Laboratory Dahlgren, Virginia 22448

Commander
U. S. Naval Ordnance Laboratory
White Oak, Silver Spring
Maryland 20910

Librarian U. S. Naval Post Graduate School Monterey, California 93940 Attn: Technical Reports Section

Atta: Technical Reports Security

Director [19]

U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07701

Atta: AMSEL-RD-DA AMSEL-PD-PC

(Distribute CD PR

on copy CT SA

to each) ND SA

NC SA

NF SA

NF SR

NR SR

P ADT

Commanding General
U.S. Army Electronice Command
Fort Monmouth, New Jersey 07703
Attn. AMSEL'SG

Director
U. S. Army Electronics Laboratories
Fort Monmouth, New Jersey 07703
Attn., Mr. Robert O. Parker
(AMSEL-RD-X)
Executive Secretary, JSTAG

Director
U.S. Arms Electronice Laboratories
Fost Monmouth, New Jersey 07703
Atth. Dr. S. Benedict Levin, Director
Institute for Exploratory Research

Director U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703

Commanding General
U. S. Army Materiel Command
Washington, D. C. 20315
Attn. AMCRD-RS-PE-E

Commanding General U.S. Army Strategic Got Washington, D. C. 20315

Commanding General Lamited Warfare Laboratory Aberdeen Proving Ground Aberdeen, Maryland 21005 Atts. Tacanical Directory

Commanding Officer
U.S. Army Ballistics Research Laborator
Aberdeer Proving Ground
Aberdeen, Maryland 21005
Atta. V. W. Richards

Commanding Officer Human Engineering Laboratories Aberdeen Proving Ground Aberdeen, Maryland 21665

Commanding Officer
U.S. Army Materials Research Agency
Atta. AMXMR-ATL
Wateriows, Massachusetts 62)72

Commanding Officer
U.S. Army Engineers
Research and Development Laboratories
Fort Beiver, Virgans. 22640
Atta. Technical Duruments Center

Director
U.S. Army Engineer Goodeby
Intelligence and Mapping
Researt, hash Development Agency
Fort Belwar, Virgina 22060

Commapling Officer
U.S. Army Engineers
Research and Development Laboratory
Furl Belweir, Virginia 22040
Atta. STINFO Branch

Commanding Officer
Harry Diamond Laboratories
Connection Ave. and Var Ness St., N. of
Washington, D. C. 2013
Atta. Mr. Berthold Altman

Commanding Officer Harry Diamond Laborator.es Connecticul Ave. and VanNess St., M. W Washington, D. C. 20418 Attu: Labrary

Chief of Research and Development Headquarters, Department of the Army Washington, D. C. 20319 Atta, Physical Sciences Division P&E.

Commandant U.S. Army Air Defense School Affa. Missale Science Div., G&S Dept P.O. Bay 1990 Fort Blus, Texas. 79916

Commanding General
U.S. Army Missile Command
Redstone Arrenal, Alabama 35409

Commanding General Frankford Arserul Philidelphia, Pennsylvania 19137 Alla SMUFA-1310, Dr Sidney Rosa

Commanding Officer Picatinny Areenal Dover, New Jersey 07801 Attn Technical Information Branch

U. S. Army Command and General Stall College Library Division
Fort Leavenworth, Kansas 66027

Superintendent U.S. Army Military Academy West Point, New York 10996

The Walter Reed Institute of Research Welfar Reed Army Medical Center Washington, D. C. 20012

Mr. A. D. Bedrosian U. S. Army Electronice Laboratories Signal Corps. Laisson Office Building 26 - Reym 131 Massachusette Institute of Technology Cambridge, Massachusette 02119

Commanding Officer
U.S. Army Electronics R&D Activity
Fort Huschuca, Atizona 85613

Commending Officer
U.S. Army Signal Missile Support Agency
White Sands Missile Range
White Sands, New Mexico \$8002
Atto. SIGWS-MEW
Mr. T. S. Beliows

Commanding Officer
U.S. Army Electronics R&B Activity
White Sanda Missale Range
New Mexico. 88002

ti S. Azmy Research Office - Durham P. O. Box CM, Dake Storow Durham, North Carolina 27706 Attn. Dr. H. Robl, Deputy Director

Commanding Officer
U. S. Army Research Office - Dutham
Box GM, Duke Station
Durham, North Carolina 27706
Attn CRS-AA-IP, Me. Usen

Dr. Chalmers W. Sherwin Deputy Director (Revenuch & Technology) GDDR & B. GUDR & E Room 3E-1660, The Pentagon Washington, D. C. 20301

Dr Edward M Reilley Assistant Director (Res) Office of Defense Res & Eng Department of Defense Washington, D C 20301

Dr. James A. Ward Office of Deputy Director Research and Information, Rm. 3D 1037 Department of Defense Department of Defense
The Persagon
Washington, D C 20301

Chief of Research and Development Headquarters, Department of the Army Washington, D. C. 20301 Attn. Physical Sciences Division P. & E.

Research Pions Office U.S. Arms Research Office 3085 Columbia Pibe Arl ogton, Virgiala 22254

Department of the Army Foreign Service and Tocho Municipa Building Washington, D. G. 20315

Commonding Ciff. er V S Army Secondy Agent Arthagine, Virginia 22212

Director
Advanced Research Projects Agent's
Department of Defence
Washington, D. C. 2004

Mr. Czaries Yost Adranced Research Projects Agency Department of Defense Washington, D. C. 20351

Headquartere Air Research and Develope Andrews Air Force Bane Washington, D. C. 20331

Air Force Office of Scientific Research Washington, D. C. 2033 ANN. SRPP Air Furce Systems Command (SCTR) Andrews Air Force Base Washington, D. C. 2031)

He AFCRL (CRXL)
L G Hans. on Deld
Bedford, Massichaetta C1731
2 CRXL
1 CRXL CRIT
1 CRF
14 CRF
15 CRF

6576 AMRL (MRRSL, Library) Wright-Patterson Air Force Base Obs. 45433

Director, Air University (2) Library ly La Aug Bosca Base, Alabama 36112

AFMTC Technical Library Patrick Air Force Base, Florida 32925

RADC (EMILAL-1) Grifice Air Force Base, New York 13442 Ama Documento Library

Director National Security Agency Fort George Meade, Maryland 22755 Atta R4, Dr. H. Compaigne

National Security Agency Physical Sciences Division Fort George Meads, Maryland 20755 Attn. Dr. Alvin Meckler

AFWL (WLIL) Kirtland Air Force Base New Mexico 87137

Systems Engineering Group
Deputy for Systems Engineering
Directorate of Technical Publications and
Specifications (SEPRR)
Wright-Partition Air Force Base
Ohio 45433

Air Force Institute of Technology Isbrary AFIT-LIB Building 124, Area B Wright-Pillerson Air Force Base Onto 45433

Microwave Laberatory Stanford Towersity Stanford, California 94305 Atta Librarian

Sandia Corporation ORG 1425 Sandia Base Albuquerque, New Mexico 87115 Attn Technical Library

Sandia Corporation P. O. Box 5800

P.O.Box 5850 Sandia Base Albuquerque, New Mexico 87115 Aitc: Technical Library Librarian
U. S. Department of Communice
National Bureau of Standards
Boulder, Colorado 80301

Libratian National Bureau of Standards Room 301, Northwest Building Washington, D. C. 20234

U S. Coast Guard 1300 E Street N W. Washinglish, D G 20226

Bartelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Attn. G. J. Falkenbach

Stanford Electronics Laboratory
Stanford University
Stanford Callifornic 79305
Attn Document Library
Applied Electronics Laboratory

Engineering Division
Case Institute of Technology
Cleveland, Chic 44106
Attn. H. R. Nara
Associate Director

Antenna Laboratory Department of Electrical Engineering Tro Oh. State University 2014 Nest Avenue Columbas, Ohio 43210 Attn. Reports Libratian

Polytechase Institute of Brooklyn Graduate Center Labrary Route 110 Farmingdale, L. 1, New York 11735

The University of New Mexico Department of Electrical Engineering Albuquerque, New Mexico 87106

Carlyle Barton Laboratories Johns Hopenns University Charles and 34th Street Baltimors, Maryland 21218

47462

Massachusette Lesitule of Technole Engineer og Libraty Briklag 10 - Room 450 Cambrolge, Massachusette G2137 Atta - Technical Reports Cullecter

Massa, husette Institute of Technology Research Laboratory of Electronics Document Office, Burding 26, Room Cambridge, Massachasette 62139 Arts. Mr. John Hearth

Massachusetts Just-rate of Technology Lucule Laboratory P. O. Bat. 73 Laboration, Massachusetts 02173 Attn. Laboratio, A-382

Accepty Group of Electron Devices 346 Broadway, by Figer New York, New York, 10013

Caarles C. H. Tang Bell Telephone Laboratories 2D-347 Murray H.D., New Jersey, 67972

Research Materials Information Conter Oak Ridge National Laboratory P. O. Bou. X Oak Ridge, Tennessee, 37831

Institute of Science and Technole The University of Michigan P O Bon 618 Ann Arbor, Michigan 48107 Ava Walliam Wolfe Group Supervisor, IRIA

O'R Representative (Mr. R.P. Thocker) Research Administration Building The University of Michigan Ann Arbor, Michigan 44105

Churg King University

Department of Electrical Engineering

Taisan. Taiwan Department of Mectrics Augme-Taisan, Taiwan Republic of Chian Atta Prof. Chan-Het-Chou Head, English Department

Gordon McKay Labrary [2] Prerce Hail, Hervard University Cambridge, Massachusetts 02138 Atta Technical Reports Collectio

Editorial Office [4] Pierce Hall 210, Harvard University Cambridge, Massachusetts 02138 Atta Technical Reports Reserve

Assat Dean F. K. Willenbrock Pierce Hall 214, Harvard University Cambridge, Massachusetts 02138

Prof. R. W. P. King [4] 301 Gordon McKey Laborstory Harvard Units esty Cambridge, Massachusette 02134

Dr. Damel Alpert, Director Coordinated Science Laboratory University of Himoin Urbana, Lilinoin 61803

Prof. Z. A. Kapriellan Electronics Sciences Laboratory University of Southern California Los Angeles, California 90007

Dr Robert Novick, Director Columbia Radiation Laboratory Columbia University 518 West 120th Street New York, New York 10027

Prof D J Angelskos Acting Director Electronics Research Laboratory University of California Berkeley, California 94720

Prof A A Dougal
Department of Electrical Engineering
University of Texas
Austin, Texas 18712

Contract Nonr-1866(28) ONLY

Deportment of Electrical Engineering King's Gellege Newcastle upon Type England

National Aeronautics and Space Administration Langing Research Centes Langing Station Hampton, Virginia 23365 Atto Mrs. Elizabeth B Ciliman, sabrarian Lieu Stop 185

Contract None-1866(12) ONLY

U S Atomic Energy Commission
Division of Technical Information Extension
P O Box 62
Oak Ridge, Tennessee 37831

One copy to each address, unless otherwise indicated by numbers endicated by numbers endicated an brackets