Calidad del aire en la Comunidad de Madrid

Grupo 7

Alfonso Gallardo

Raúl Hervás

Carmen Reina

Walter Ronceros

Susana Vara

Objetivos del análisis

La salud pública y el medio ambiente son dos de los objetivos principales de los Gobiernos. Estas pueden verse mermada por altas tasas de contaminantes en el ambiente. Es necesario por ello su predicción y reducción.

 Impacto en la reducción de los niveles de la contaminación en el confinamiento de la población durante el COVID-19

 Análisis de las magnitudes de contaminantes que generan el índice de calidad del aire (ICA).

La calidad del aire a nivel mundial se mide mediante un índice denominado AQI (Air Quality Index), en español es ICA (Índice de la Calidad del Aire).

Este índice es el máximo de los valores equivalentes de 5 contaminantes: SO2 (Dióxido de Azúfre), NO2 (Dióxido de Nitrógeno), CO (Monóxido de Carbono), O3(Ozono), PM10 y PM25 (partículas) en todas las estaciones de medida de un municipio o región.

Predicción de dicha contaminación a través de diferentes modelos predictivos y su comparación para identificar cual es el que mejor predice la contaminación atmosférica en Madrid.

İndice	Calidad del Aire	Color Descriptivo
>= 0 y < 50	Buena	Verde
>= 50 y <100	Admisible	Amarillo
>=100 y <150	Mala	● Rojo
>= 150	Muy Mala	■ Marrón

Fuentes de datos

Datos tanto de contaminantes como metereológicos de los portales de datos abiertos de la comunidad de Madrid y del ayuntamiento de Madrid.

 Datos calidad del aire y metereologicos:

Formato de los dataset:

Datos horarios y en tiempo real:

Cada registro está estructurado de la siguiente forma:

PROVINCIA	MUNICIPIO	ESTACION	MAGNITUD	PUNTO_MUESTREO	ANO	MES	DIA	H01	V01	H02	V02
28	79	104	82	28079104_82_98	2019	1	1	23	V	17	V

 Magnitudes de contaminantes con sus factores de conversión para calcular el ICA (Índice de Calidad del Aire) Parcial:

codigo_mag	descripcion_magnitud	codigo_tecnica _de_medida	descripcion _tecnica_de _medida		descipcion_uni	valor_limite _diario	factor_calculo _diario	valor_limite _horario	factor_calculo _horario
1	Dióxido de azufre	38	?g/m³	microgramos por metro cúbico	SO2	125	0.800	350	0.286
6	Monóxido de carbono	48	mg/m ^a	miligramos por metro cúbico	co	10	10	10	10
7	Monóxido de nitrógeno	8	?g/m²	microgramos por metro cúbico	NO				
8	Dióxido de nitrógeno	8	?g/m³	microgramos por metro cúbico	NO2			200	0.500
9	Partículas en suspensión < PM2,5	49	?g/m³	microgramos por metro cubico	PM2,5				
10	Partículas en suspensión < PM10	49	?g/m³	microgramos por metro cubico	PM10	50	2	150	0.667
12	Óxidos de nitrógeno	8	?g/m³	microgramos por metro cúbico	NOX				
14	Ozono	6	?g/m²	microgramos por metro cubico	03	120	0.833	180	0.556
20	Tolueno	59	?g/m²	microgramos por metro cúbico	TOL				
30	Benceno	59	?g/m*	microgramos por metro cúbico	BEN				
35	Etilbenceno	59	?g/m³	microgramos por metro cúbico	EBE				
37	Metaxileno	59	?g/m³	microgramos por metro cúbico	MXY				
38	Paraxileno	59	?g/m³	microgramos por metro cúbico	PXY				
39	Ortoxileno	59	?g/m²	microgramos por metro cúbico	OXY				
42	Hidrocarburos totales				TCH				
43	Metano	2	mg/m*	miligramos por metro cúbico	CH4				
44	Hidrocarburos no metánicos	2	mg/m³	miligramos por metro cúbico	NMHC				
22	Black Carbon	7	?g/m³	microgramos por metro cúbico					
431	MetaParaXileno	59	?g/m²	microgramos por metro cúbico					

Magnitudes metereologicas:

Ē				
		CODIGO DE		
CÓDIGO	DESCRIPCIÓN	TÉCNICA DE		
MAGNITUD	MAGNITUD	MEDIDA	UNIDAD	DESCRIPCIÓN UNIDAD
81	Velocidad del viento	89	m/s	metros por segundo
82	Dirección del viento	89	Grd	grados
83	Temperatura	89	ºc	grados centígrados
86	Humedad relativa	89	%	porcentaje
87	Presión atmosférica	89	mbar	milibar
88	Radiación solar	89	W/m2	vatios por metro cuadrado
89	Precipitación	89	I/m2	litros por metro cuadrado

Estaciones de medida:

CÓDIGO	CÓDIGO	
NACIONAL	MUNICIPIO	NOMBRE ESTACIÓN
28005002	5	ALCALÀ DE HENARES
28006004	6	ALCOBENDAS
28007004	7	ALCORCÓN
28009001	9	ALGETE
28013002	13	ARANJUEZ
28014002	14	ARGANDA DEL REY
28016001	16	EL ATAZAR
28045002	45	COLMENAR VIEJO
28047002	47	COLLADO VILLALBA
28049003	49	COSLADA
28058004	58	FUENLABRADA
28065014	65	GETAFE
28067001	67	GUADALIX DE LA SIERRA
28074007	74	LEGANÉS
28080003	80	MAJADAHONDA
28092005	92	MÓSTOLES
28102001	102	ORUSCO DE TAJUÑA
28120001	120	PUERTO DE COTOS
28123002	123	RIVAS-VACIAMADRID
28133002	133	SAN MARTÍN DE VALDEIGLESIAS
28148004	148	TORREJÓN DE ARDOZ
28161001	161	VALDEMORO
28171001	171	VILLA DEL PRADO
28180001	180	VILLAREJO DE SALVANÉS

ANEXO I. CÓDIGOS DE ESTACIONES				
CÓDIGO	ESTACIÓN			
28079102	J.M.D. Moratalaz			
28079103	J.M.D. Villaverde			
28079104	E.D.A.R. La China			
28079106	Centro Mpal. De Acústica			
28079107	J.M.D. Hortaleza			
28079108	Peñagrande			
28079109	J.M.D.Chamberí			
28079110	J.M.D.Centro			
28079111	J.M.D.Chamartin			
28079112	J.M.D.Vallecas 1			
28079113	J.M.D.Vallecas 2			
28079114	Matadero 01			
28079115	Matadero 02			
28079004	Plaza España			
28079008	Escuelas Aguirre			
28079016	Arturo Soria			
28079018	Farolillo			
28079024	Casa de Campo			
28079035	Plaza del Carmen			
28079036	Moratalaz			
28079038	Cuatro Caminos			
28079039	Barrio del Pilar			
28079054	Ensanche de Vallecas			
28079056	Plaza Elíptica			
28079058	El Pardo			
28079059	Juan Carlos I			

Metodología empleada y espacio colaborativo

Coordinación del equipo mediante Trello y Github:

Siguiendo las fases de la metodología CRIP-DM:

Roles

SQUAD ANALISTA DE DATOS INGENIERO DE DATOS CIENTIFICO **DE DATOS**

ARQUITECTO DE DATOS

ANALISTA DE **NEGOCIO**

Timeline

TIMELINE

Arquitectura

Preparación de los datos

Preparación de los dataset con phyton:

Los datos originales hay que tratarlos para calcular el valor del Índice de calidad del aire (ICA) de cada contaminante en cada estación de medida.

 El pre-procesamiento y análisis lo realizamos con colab de google y jupyter notebook:

Analizamos las variables de calidad del aire, las metereológicas y el Índice de Calidad del Aire (ICA)

Preparación de los datos

 Preparación de los datos para el modelado, normalización de las variables y del índice de calidad de aire (ICA) que será nuestra variable a predecir. Observamos los datos atípicos y la matriz de correlaciones

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

- Preparamos el dataframe para estudiar con los algoritmos:
 - Creamos el Índice de calidad del aire binario (0/1) para aplicar los modelos
 # Preparamos dataframe

Modelado. Algoritmos

K-NN

Regresión logística

AdaBoost

```
adaMod = AdaBoostClassifier(base_estimator=None, n_estimators=200, learning_rate=1.0)

adaMod.fit(X_train, y_train)
adaMod.score(X_test, y_test)

1.0

test_labels=adaMod.predict_proba(np.array(X_test.values))[:,1]]
roc_auc_score(y_test,test_labels , average='macro', sample_weight=None)

1.0
```

GradientBoosting

RandomForest

Los resultados con los algoritmos predictivos usados demuestran que tenemos un modelo de datos sesgado, esto se debe a una serie de factores, tales como:

- ☐ Análisis de un periodo de tiempo demasiado breve (inferior a 6 meses).
- ☐ Mediciones con demasiados outliers en las magnitudes meteorológicas.
- El valor de la variable ICA parcial se basa en el peor valor de los 5 contaminantes analizados.
- Datos faltantes por motivos diversos averías en el suministro eléctrico, en las comunicaciones, o en el propio equipo analizador.

Modelado. Métricas

MATRIZ DE CONFUSIÓN

La Matriz de Confusión es una de las métricas más intuitivas y sencillas que se utiliza para encontrar la precisión y exactitud del modelo.

```
# Dibujamos la matrix de Confusión
confusion_matrix = pd.crosstab(datostop['y_Actual'], datostop['y_Predicted'], rownames=['Actual'], colnames=['Predicción'])
sns.heatmap(confusion_matrix, annot=True)
plt.show()

# Resultados matrix confusion
results = confusion_matrix(datostop['y_Actual'], datostop['y_Predicted'])

print ('Confusion Matrix :')
print(confusion Matrix :')
print ('Accuracy Score :'),accuracy_score(datostop['y_Actual'], datostop['y_Predicted'])
print ('Neport : ')
print( classification_report(datostop['y_Actual'], datostop['y_Predicted']) )
```



```
Confusion Matrix :
     49 49951
 [14956
Accuracy Score :
)Report :
              precision
                            recall f1-score
                                               support
         0.0
                    0.00
                              0.01
                                        0.00
                                                   5044
         1.0
                    0.00
                              0.00
                                        0.00
                                                  14956
    accuracy
                                        0.00
                                                  20000
   macro avg
                    0.00
                              0.00
                                        0.00
                                                  20000
weighted avg
                    0.00
                              0.00
                                        0.00
                                                  20000
```

Evaluación Modelos

CURVA ROC

La curva AUC-ROC es la métrica de selección de modelo para el problema de clasificación de dos clases múltiples.

```
# Definimos funcion para trazar la Curva ROC

def plot_roc_curve(fpr, tpr):
    plt.plot(fpr, tpr, color='orange', label='ROC')
    plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--')
    plt.xlabel('Ratio Falsos Positivos (FP)')
    plt.ylabel('Ratio Verdadores Positivos (VP)')
    plt.title('Curva (ROC)')
    plt.legend()
    plt.show()
```

```
# Obtener la curva ROC.
fpr, tpr, thresholds = roc_curve(datostop['y_Actual'], datostop['y_Predicted'])

# Dibujamos la curva ROC
plot_roc_curve(fpr, tpr)
```

```
# Ajustamos el modelo con los datos
model = RandomForestClassifier()
model.fit(X_train, y_train)

Presenta la sifier (bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm start=False)
```


Visualización

- Gráfica por TAGs sobre ICAs parciales.
 - Agrupación por magnitudes
 - Valores ICAs parciales más repetidos

.5 4.5 2.5 0.5

3.0

5.0 2.0

2.57400000000000000

2.28800000000000003

máximos Dióxido de azufre

ICAs máximos Dióxido d... () (3) ICAs máximos Dióxido de azufre ()

6.0 7.0 3.0 2.0 1.0

0.6004800000000001 0.51152000000000001 0.7228000000000001 0.5170800000000001 0.695000000000000001

37.80800000000001 38.92 1.112 36.14 40.032000000000004 31.6920000000000004

6.67 5.336 3.335 6.003 4.0020000000000001 $4.6690000000000005^{2.6}$

ica_parcial.keyword: Descending - ICAs máximos Partículas en suspensión < PM10

Gráfica geolocalizada por estación.

- Agrupación por estación
- Nº de mediciones realizadas en 5 meses

Implementación

Entorno de visualización preparado con ELK apoyándonos en Dockers.

- ✓ Instalación de Docker Desktop
- Descarga de contenedor sebp/elk
- Arrancar el contender donde se levanta distintos puertos para Elastic, Logstash y Kibana
- Copiar dataset al contenedor para procesarlo con Logstash
- Crear config para Logstash para su carga posterior en ElasticSearch

```
input {
    file {
        path => "/opt/kibana/src/plugins/home/server/services/sample_data/data_sets/calidadaire.csv"
        start_position => "beginning"
    }
}
filter {
    csv {
        columns => [ "id", "id_merge", "fechahora", "fecha", "hora", "estacion_real", "magnitud", "descrip
        cion_magnitud", "factor_calculo_horario", "ica_parcial", "valor_magnitud", "provincia", "municipio", "
        dia_de_la_semana", "mag81_vel_viento", "mag82_dir_viento", "mag83_temperatura", "mag86_humedad", "mag8
        _ separator => ";"
    }
    date{
        match => ["fechahora", "yyyy-M-d HH:mm"]
        target => "fechahora", "yyyy-M-d HH:mm"]
    }
output {
        elasticsearch {
        hosts => ["59f96e65d9bd:9280"]
        index => "global_info"
    }
}
```

 En la UI de ElasticSearch levantada, se creción un mapping para el tipo de dato geo_point

- Ejecutamos logstash para realizar carga con el comando: logstash -f /opt/logstash/config/grupo7_BigData_global.config
- Creación de indexPattern desde la UI de ElastichSearch tras la carga desde Logstash para pasar a la parte
 Discover de Kibana.

Conclusiones y estudio posterior

Conclusiones:

- Las medidas de distanciamiento han tenido un efecto enorme en los niveles de contaminación atmosférica
- ✓ Pese a lo que pueda parecer a priori, las **condiciones meteorológicas influyen mucho menos en la calidad del aire** de lo que cabía esperar, no existiendo una fuerte relación entre ninguna de las magnitudes meteorológicas y las magnitudes de calidad del aire.
- ✓ El Índice de Calidad del Aire (ICA) debería estar conformado de forma ponderada por todos los agentes contaminantes del aire que se consideren (actualmente 6) por que, ¿Qué ocurre si el ICA parcial de cada uno de ellos quedara en 74? Estaríamos con un ICA indicando calidad del aire buena cuando todos ellos están en el umbral y muy probablemente el aire sea bastante perjudicial para la salud para cierto sector de la población.
- ✓ El análisis de las observaciones horarias de NO2 en Madrid, indica una reducción promedio respectiva de 62%. Otro resultado destacado es que los valores pico máximos por hora también muestran reducciones significativas, con relaciones entre 1.2 y 1.7. La mejora en la calidad del aire ha ocurrido ampliamente, afectando tanto a los centros de las ciudades como a las áreas periféricas.
- ✓ El periodo de confinamiento ha demostrado por tanto que el confinamiento de la sociedad ha influido positivamente en la calidad del aire, siendo (como es lógico) la acción social el verdadero impulsor de la contaminación ambiental. Y aunque se ha apreciado una disminución de monóxido de carbono a partir de marzo aunque no es la magnitud más próxima a convertirse en ICA en ninguna de las mediciones.

Propuesta de Estudio posterior:

- A la vista de las conclusiones obtenidas en el trabajo, proponemos un estudio posterior sobre la composición del ICA.
- El ICA debería estar conformado de forma ponderada por todos los agentes contaminantes del aire que se consideren (actualmente 6) por que, ¿Qué ocurre si el ICA parcial de cada uno de ellos quedara en 74? Estaríamos con un ICA indicando calidad del aire buena cuando todos ellos están en el umbral y muy probablemente el aire sea bastante perjudicial para la salud para cierto sector de la población.

En recuerdo a todas las personas afectas directa o indirectamente por la covid-19.