Practical No.2

1. Create Pandas DataFrame to enter employee database which includes Sr No, Name, Mobile No, City

Implementation:

• Program:

• Output:

Employee_Details						
	Sr No	Name	Mobile No	City		
0	101	Sneha	9011235123	Chiplun		
1	102	Tanay	9850564568	Kankavali		
2	103	Preeti	9645569841	Satara		
3	104	Rupesh	9565231452	Pune		
4	105	Vedant	9856321456	Mumbai		
5	106	Nimish	9654123215	Sangali		
6	107	Vaishnavi	99856412365	Satara		

2. Use Iris Dataset from Github and perform all basic operations on Iris Dataset

Implementation:

• Program:

url='https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw
/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv'
iris2=pd.read_csv(url)
iris2.head()

• Output:

	sepal length	sepal width	petal_length	petal width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

• Program:

url='https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw
/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv'
iris3=pd.read_csv(url)
iris3.tail()

• Output:

	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

• Program:

iris2.shape

• Output:

(150, 5)

• Program:

iris2.describe()

• Output:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

• Program:

iris1.iloc[5:10,2:]

• Output:

1.4 0.2 Iris-setosa

5	1.4	0.3	Iris-setosa
6	1.5	0.2	Iris-setosa
7	1.4	0.2	Iris-setosa
8	1.5	0.1	Iris-setosa
9	1.5	0.2	Iris-setosa

• Program:

iris2.iloc[5:10,1:]

• Output:

sepal_width petal_length petal_width species

5	3.9	1.7	0.4	setosa
6	3.4	1.4	0.3	setosa
7	3.4	1.5	0.2	setosa
8	2.9	1.4	0.2	setosa
9	3.1	1.5	0.1	setosa

• Program:

iris2.iloc[5:9,3:]

• Output:

petal_width species

5	0.4	setosa
6	0.3	setosa
7	0.2	setosa
8	0.2	setosa

• Program:

iris2.loc[0:4,"sepal width"]

• Output:

```
0 3.5
1 3.0
2 3.2
```

3 3.1

4 3.6

Name: sepal_width, dtype: float64

• Program:

iris2.loc[0:3,"petal_width"]

• Output:

```
0 0.2
```

1 0.2

2 0.2

3 0.2

Name: petal_width, dtype: float64

• Program:

iris2.drop('species',axis=1)

• Output:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

• Program:

iris2['species'].value counts()

• Output:

```
setosa 50
versicolor 50
virginica 50
Name: species, dtype: int64
```

3. Use matplotlib to plot bar chart using dictionary

Implementation:

• Program:

```
#Bar Chart
student={"Amey":1, "Anil":2, "Ram":3, "Raj":4}

name=list(student.keys())
rollno=list(student.values())

plt.subplot(2,2,1)
plt.bar(name,rollno,color='m')

plt.subplot(2,2,2)
plt.barh(name,rollno,color='g')

plt.grid(True)
```

plt.show()

• Output:

4. Use matplotlib to scatter graph and histogram

Implementation:

• Program:

```
#Scatter Graph
x=[1,2,3,4,5,6,7]
y=[2,3,4,1,7,8,9]
y1=[5,8,7,1,2,3,4]

plt.subplot(2,2,1)
plt.scatter(x,y,color='r',marker='*')

plt.subplot(2,2,2)
plt.scatter(x,y1,color='g')
plt.show()
```

• Output:

• Program:

```
#Histogram
primeNo=np.array([2,3,5,7,11,13,17,19,23,29,37,31,41,43,47,53,59,61,67,
71,73,79,83,89,97])

bins=[0,20,40,60,80,100]
plt.title("Prime Numbers Between 1 to 100")
plt.ylabel("Prime Numbers")
plt.ylabel("Count")

plt.klabel("Count")
```

• Output:

