HÌNH HỌC GIẢI TÍCH TỌA ĐỘ OXY

Dạng 1. Tọa độ vectơ

1. Định nghĩa: Hệ trục tọa độ gồm hai trục vuông góc Ox và Oy với hai vecto đơn vị lần lượt là i, j. Điểm O gọi là gốc tọa độ, Ox gọi là trục hoành và Oy gọi là trục tung.

Kí hiệu Oxy hay $(O; \vec{i}, \vec{j})$

- 2. Tọa độ điểm, tọa độ vec tơ.
- + Trong hệ trục tọa độ $(O; \vec{i}, \vec{j})$ nếu $\vec{u} = x\vec{i} + y\vec{j}$ thì cặp số (x; y) được gọi là tọa độ của vector \vec{u} , kí hiệu là $\vec{u} = (x; y)$ hay $\vec{u}(x; y)$. x được gọi là hoành độ, y được gọi là tung độ của vector \vec{u}
- + Trong hệ trục tọa độ (O;i,j), tọa độ của vector OM gọi là tọa độ của điểm
 M, kí hiệu là M=(x;y) hay M(x;y). x được gọi là hoành độ, y được gọi là tung độ của điểm M.

Nhận xét: Gọi H, K lần lượt là hình chiếu của M lên Ox và Oy thì M(x;y)

$$\Leftrightarrow \overrightarrow{OM} = \overrightarrow{xi} + \overrightarrow{yj} = \overrightarrow{OH} + \overrightarrow{OK}$$

Như vậy $\overrightarrow{OH} = \overrightarrow{xi}$, $\overrightarrow{OK} = \overrightarrow{yj}$ hay $x = \overrightarrow{OH}$, $y = \overrightarrow{OK}$

- 3. Tọa độ trung điểm của đoạn thẳng. Tọa độ trọng tâm tam giác.
- + Cho $A(x_A; y_A)$, $B(x_B; y_B)$ và M là trung điểm AB. Tọa độ trung điểm

$$M(x_M; y_M)$$
 của đoạn thẳng AB là $x_M = \frac{x_A + x_B}{2}$, $y_M = \frac{y_A + y_B}{2}$

+ Cho tam giác ABC có $A(x_A;y_A)$, $B(x_B;y_B)$, $C(x_C;y_C)$. Tọa độ trọng tâm

$$G(x_G; y_G)$$
 của tam giác ABC là $x_G = \frac{x_A + x_B + x_C}{3}$, $y_G = \frac{y_A + y_B + y_C}{2}$

4. Biểu thứ tọa độ của các phép toán vecto.

Cho $\overrightarrow{u} = (x;y)$; $\overrightarrow{u'} = (x';y')$ và số thực k. Khi đó ta có:

$$+ \ \overrightarrow{u} = \overrightarrow{u'} \Leftrightarrow \begin{cases} x = x' \\ y = y' \end{cases}$$

+
$$\overrightarrow{u} \pm \overrightarrow{v} = (x \pm x'; y \pm y')$$

$$+ \vec{k.u} = (kx;ky)$$

 $+\overrightarrow{u'}$ cùng phương \overrightarrow{u} ($\overrightarrow{u} \neq \overrightarrow{0}$) khi và chỉ khi có số k sao cho $\begin{cases} x' = kx \\ y' = ky \end{cases}$

+ Cho A(
$$x_A; y_A$$
), B($x_B; y_B$) thì $\overrightarrow{AB} = (x_B - x_A; y_B - y_A)$

Ví dụ 1. Cho các vector
$$\vec{a} = (-2;3), \vec{b} = (1;-2), \vec{c} = (-3;-5)$$

1. Tìm các số m, n sao cho : $\vec{c} = \vec{ma} + \vec{nb}$

2. Tìm vector \overrightarrow{u} sao cho: $\overrightarrow{a}.\overrightarrow{u} = 15$ và $\overrightarrow{b}.\overrightarrow{u} = -11$

Lời giải

1. Ta có
$$\overrightarrow{ma} = (-2m; 3m), \overrightarrow{nb} = (n; -2n) \Rightarrow \overrightarrow{ma} + \overrightarrow{nb} = (-2m + n; 3m - 2n)$$

$$V_{a}^{2} \overrightarrow{v} = \overrightarrow{ma} + \overrightarrow{nb} \Leftrightarrow \begin{cases} -2m + n = -3 \\ 3m - n = -5 \end{cases} \Leftrightarrow \begin{cases} m = 11 \\ n = 19 \end{cases}$$

2. Gọi $\overrightarrow{u}(x;y)$

$$\begin{cases} \vec{a}.\vec{u} = 15 \\ \vec{b}.\vec{u} = -11 \end{cases} \Leftrightarrow \begin{cases} -2x + 3y = 15 \\ x - 2y = -11 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = 7 \end{cases} \Rightarrow \vec{u} = (3;7)$$

Ví dụ 2. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- **1**. Cho A(2;2), B(5;-2). Tìm trên trục hoành điểm C để $\triangle ABC$ vuông.
- **2.** Tìm trên trục hoành điểm A, cách B(2;-3), một khoảng bằng 5.
- 3. Tìm trên trục tung điểm C cách điểm D(-8;13) một khoảng bằng 17.
- **4.** Tìm điểm M trên trục tung cách đều 2 điểm A(-1;3) và B(1;4).

Lời giải

1. Gọi
$$C(x_0;0) \in Ox \Rightarrow \overrightarrow{AC} = (x_0 - 2; -2), \overrightarrow{BC} = (x_0 - 5; 2), \overrightarrow{AB} = (3; -4)$$

*
$$\triangle ABC$$
 vuông tại $A \Leftrightarrow AB \perp AC \Leftrightarrow \overrightarrow{AB}.\overrightarrow{AC} = 0 \Leftrightarrow C\left(-\frac{2}{3};0\right)$

*
$$\triangle ABC$$
 vuông tại $B \Leftrightarrow AB \perp BC \Leftrightarrow \overrightarrow{AB}.\overrightarrow{BC} = 0 \Leftrightarrow C\left(\frac{22}{3};0\right)$

*
$$\triangle ABC$$
 vuông tại $C \Leftrightarrow CA \perp CB \Leftrightarrow \overrightarrow{AC.CB} = 0 \Leftrightarrow C(1;0), C(6;0)$

2. Gọi
$$A(x_0; 0) \in Ox \Rightarrow \overrightarrow{AB} = (2 - x_0; -3), AB = 5$$

$$\Leftrightarrow (2 - x_0)^2 + (-3)^2 = 5^2 \Leftrightarrow \begin{bmatrix} x_0 = -2 \\ x_0 = 6 \end{bmatrix} \Rightarrow A(-2;0), A(6;0)$$

3. Gọi
$$C(x_0; y_0) \in Oy : \overrightarrow{CD} = (-8; 13 - y), CD = 17$$

$$\Leftrightarrow (13 - y_0)^2 + (-8)^2 = 17^2 \Rightarrow \begin{bmatrix} y_0 = -2 \\ y_0 = 28 \end{bmatrix} \Rightarrow C(0; -2), C(0; 28)$$

4. Gọi $M(0; y_0) \in Oy$. Khi đó: $MA = MB \Leftrightarrow MA^2 = MB^2$

$$\Leftrightarrow \left(-1\right)^{2} + \left(3 - y_{0}\right)^{2} = 1^{2} + \left(4 - y_{0}\right)^{2} \Rightarrow y_{0} = \frac{7}{2} \Rightarrow M\left(0; \frac{7}{2}\right)$$

- **Ví dụ 3.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho điểm A(4;2). Tìm tọa đô điểm B sao cho
- **1**. OAB là tam giác đều, $(\overrightarrow{OA}; \overrightarrow{OB}) = 60^{\circ}$.
- **2**. OAB là tam giác cân, $(\overrightarrow{OA}; \overrightarrow{OB}) = 45^0$

Lời giải

1. Ta có:
$$\tan(Ox;OA) = \tan(\alpha + 60^0) = \frac{\tan \alpha + \tan 60^0}{1 - \tan \alpha \cdot \tan 60^0}$$

$$\tan \alpha = \frac{1}{2} \Rightarrow \tan(Ox;OA) = \frac{1 + 2\sqrt{3}}{2 - \sqrt{3}}$$

Từ đó:
$$(OB)$$
: $y = \left(\frac{1+2\sqrt{3}}{2-\sqrt{3}}\right)x \Rightarrow B\left(x_0; \frac{1+2\sqrt{3}}{2-\sqrt{3}}x_0\right)$

Khi đó OA = OB
$$\Leftrightarrow x_0^2 + \left(\frac{1 + 2\sqrt{3}}{2 - \sqrt{3}}x_0\right)^2 = 20 \Leftrightarrow x_0^2 = \left(2 - \sqrt{3}\right)^2$$

Vì
$$y_0 > 0 \Rightarrow x_0 > 0 \Rightarrow x_0 = 2 - \sqrt{3} \Rightarrow B(1 - \sqrt{3}; 1 + \sqrt{3})$$

2. Turong tự $\tan(Ox;OB) = \tan(\alpha + 45^0) = \frac{\tan \alpha + \tan 45^0}{1 - \tan \alpha + \tan 45^0} = 3$

 \Rightarrow (OB): y = 3x. (AB) đi qua A và vuông góc OA nên (AB) có phương trình:

$$4(x-4)+2(y-2)=0 \Leftrightarrow 2x+y-10=0$$

B là giao điểm OB và AB nên B: $\begin{cases} y = 3x \\ 2x + y - 10 = 0 \end{cases} \Rightarrow B \big(2; 6 \big)$

- **Ví dụ 4**. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho \triangle ABC biết A(1;1);B(-3;-2);C(0;1).
- 1. Tìm toa đô trưc tâm H của $\triangle ABC$;
- 2. Tìm tọa độ chân đường cao A' vẽ từ A

Lời giải

1. Gọi
$$H(x;y)$$
 là trực tâm $\triangle ABC \Leftrightarrow \begin{cases} \overrightarrow{AH}.\overrightarrow{BC} = 0 \\ \overrightarrow{BH}.\overrightarrow{AC} = 0 \end{cases}$ (I)
$$\overrightarrow{AH} = (x-1;y-1), \overrightarrow{BH} = (x+3;y+2), \overrightarrow{BC} = (3;3), \overrightarrow{AC} = (-1;0)$$
Khi đó (I) $\Leftrightarrow \begin{cases} 3(x-1)+3(y-1)=0 \\ -(x+3)=0 \end{cases} \Leftrightarrow \begin{cases} x=-3 \\ y=5 \end{cases} \Rightarrow H(-3;5)$

2. Gọi A'(a;b) là chân đường cao AA' $\Leftrightarrow \overrightarrow{AA}'.\overrightarrow{BC} = 0$ và \overrightarrow{BA}' cùng phương \overrightarrow{BC} $\overrightarrow{AA'} = (a-1;b-1), \overrightarrow{BA'} = (a+3;b+2), \overrightarrow{BC} = (3;3)$

$$\text{Khi đó, ta có hệ: } \begin{cases} 3\left(a-1\right)+3\left(b-1\right)=0 \\ 3\left(b+2\right)-3\left(a+3\right)=0 \end{cases} \Leftrightarrow \begin{cases} a=\frac{1}{2} \\ b=\frac{3}{2} \end{cases} \Rightarrow A'\left(\frac{1}{2};\frac{3}{2}\right)$$

Ví dụ 5. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho A(2;1), B(3;-1), C(-2;3). Tìm điểm $E \in Oy$ để ABEC là hình thang có 2 đáy AB và CE với K là giao điểm K của AC và BE.

Lời giải

• Gọi $E(0,e) \in Oy$

ABEC là hình thang có 2 đáy AB và $CE \Rightarrow \overrightarrow{AB}$ cùng phương \overrightarrow{CE} (*) $\overrightarrow{AB} = (1;-2), \overrightarrow{CE} = (2;e+3)$. Thì (*) $\Leftrightarrow e+3+4=0 \Rightarrow e=-7=E(0;-7)$

• $K = AC \cap BE \Rightarrow A, C, K$ thẳng hàng và B, E, K thẳng hàng $\Leftrightarrow \begin{cases} \overrightarrow{AC} \uparrow \uparrow \overrightarrow{AK} \\ \overrightarrow{BE} \uparrow \uparrow \overrightarrow{BK} \end{cases} (**)$

$$\begin{split} \overrightarrow{AC} = & \left(-4; -4\right), \overrightarrow{AK} = \left(x_K - 2; y_K - 1\right), \overrightarrow{BE} = \left(-3; -6\right), \overrightarrow{BK} = \left(x_K - 3; y_K + 1\right) \\ \text{Khi d\'o} \quad & \left(**\right) \Leftrightarrow \begin{cases} -4 \left(y_K - 1\right) + 4 \left(x_K - 2\right) = 0 \\ -3 \left(y_K + 1\right) + 6 \left(x_K - 3\right) = 0 \end{cases} \Leftrightarrow \begin{cases} x_K - y_K = 1 \\ 2x_K - y_K = 7 \end{cases} \Rightarrow \begin{cases} x_K = 6 \\ y_K = 5 \end{cases} \\ \Rightarrow K \left(6; 5\right) \end{split}$$

Ví dụ 6. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- **1**. Cho A(3;0) và C(-4;1) là đỉnh đối nhau của hình vuông. Tìm 2 đỉnh còn lại.
- **2.** Cho A(2;-1) và B(-1;3) là 2 đỉnh liên tiếp hình vuông. Tìm 2 đỉnh còn lại.

3. Cho A(2;4); B(1;1). Tính tọa độ C,D biết ABCD là hình vuông.

Lời giải

1. Gọi
$$I\left(-\frac{1}{2};\frac{1}{2}\right)$$
 là trung điểm AC , gọi $B(a;b)$

$$\text{Ta có} \begin{cases} \text{BI} \perp \text{AC} \\ \text{BI} = \frac{1}{2} \text{AC} \end{cases} \Rightarrow \begin{cases} \overrightarrow{\text{BI}}.\overrightarrow{\text{AC}} = 0 \\ \text{BI}^2 = \frac{1}{4} \text{AC}^2 \end{cases} \text{(I), trong dó} \quad \overrightarrow{\text{BI}} = \left(a + \frac{1}{2}; b - \frac{1}{2} \right), \overrightarrow{\text{AC}} = \left(-7; 1 \right)$$

$$T\grave{v}\left(I\right) \Leftrightarrow \begin{cases} -7\left(a+\frac{1}{2}\right)+b-\frac{1}{2}=0\\ \left(a+\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2=\frac{1}{4}\left(5\sqrt{2}\right)^2 \\ \Leftrightarrow \begin{cases} a^2+a=0\\ b=7a+4 \end{cases} \Leftrightarrow \begin{bmatrix} a=0,y=4\\ a=-1,b=-3 \end{cases}$$

Vậy
$$B(0;4)$$
 hoặc $B(-1;-3)$; $D(0;4)$ hoặc $D(-1;-3)$

$$\textbf{2. Gọi } C \big(c; d \big) \text{ là đỉnh đối diện } A \text{ . Ta có } \begin{cases} AB = BC \\ AB \perp BC \end{cases} \Leftrightarrow \begin{cases} AB^2 = BC^2 \\ \overrightarrow{AB.BC} = 0 \end{cases} \big(II \big)$$

$$\overrightarrow{AB} = (-3;4), \overrightarrow{BC} = (c+1;d-3)$$

$$(II) \Leftrightarrow \begin{cases} \left(c+1\right)^2 + \left(d-3\right)^2 = 25 \\ -3\left(c+1\right) + 4\left(d-3\right) = 0 \end{cases} \Leftrightarrow \begin{cases} c = 3, d = 6 \\ c = -5, d = 0 \end{cases} \Rightarrow \begin{cases} C\left(3; 6\right) \\ C\left(-5; 0\right) \end{cases}$$

Vì ABCD là hình vuông $\overrightarrow{AD} = \overrightarrow{BC}$

*
$$C(3;6)$$
, ta có: $\overrightarrow{BC} = (4;-3)$
 $\overrightarrow{AD} = (x-2;y+1)$ \Rightarrow $\begin{cases} x-2=4\\ y+1=3 \end{cases} \Rightarrow D(6;2)$

*
$$C(-5;0)$$
, ta có: $\overrightarrow{BC} = (-4;-3)$
 $\overrightarrow{AD} = (x-2;y+1)$ \Rightarrow $\begin{cases} x-2=-4\\ y+1=-3 \end{cases} \Rightarrow D(-2;-4)$

Vậy,
$$C(3;6)$$
; $D(6;2)$ hoặc $C(-5;0)$, $D(-2;-4)$

3. Gọi
$$C(x;y)$$
, ta có: $BA = 10$, $BC^2 = (x-1)^2 + (y-1)^2$

ABCD là hình vuông
$$\Rightarrow \begin{cases} \overrightarrow{BA} \perp \overrightarrow{BC} \Rightarrow \begin{cases} 1.(x-1)+3(y-1)=0\\ BA=BC \end{cases} \Rightarrow \begin{cases} (x-1)^2+(y-1)^2=10 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 4 \\ y = 0 \end{cases} \text{ hoặc } \begin{cases} x = -2 \\ y = 2 \end{cases}$$

TH1:
$$C(4;0) \Rightarrow \overrightarrow{AB} = \overrightarrow{DC} \Rightarrow D(5;3)$$

TH2:
$$C(-2;2) \Rightarrow \overrightarrow{AB} = \overrightarrow{DC} \Rightarrow D(-1;5)$$

Ví dụ 7. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho 2 điểm M(1;1), N(7;5) và đường thẳng (d): x+y-8=0.

- **1**. Tìm điểm $P \in (d)$ sao cho ΔPMN cân đỉnh P
- **2**. Tìm điểm $Q \in (d)$ sao cho ΔQMN vuông đỉnh Q

Lời giải

1.
$$P(x_0; y_0) \in (d) : x_0 + y_0 - 8 = 0$$

 $\Delta PMN \ c\hat{a}n \ dinh \ P \Leftrightarrow PM = PN$
 $\Leftrightarrow \sqrt{(x_0 - 1)^2 + (y_0 - 1)^2} = \sqrt{(x_0 - 7)^2 + (y_0 - 5)^2}$
 $Ta \ c\hat{o} \ h\hat{e} : \begin{cases} x_0 + y_0 - 8 = 0 \\ (x_0 - 1)^2 + (y_0 - 1)^2 = (x_0 - 7)^2 + (y_0 - 5)^2 \end{cases} \Leftrightarrow \begin{cases} x_0 = 2 \\ y_0 = 6 \end{cases} \Rightarrow P(2;6)$
2. $Q(x_1; y_1) \in (d) : x_1 + y_1 - 8 = 0. \ \overrightarrow{QM} = (1 - x_1; 1 - y_1), \ \overrightarrow{QN} = (7 - x_1; 5 - y_1)$
 $\Delta QMN \ vu\hat{o}ng \ dinh \ Q \Leftrightarrow \overrightarrow{QM} \perp \overrightarrow{QN} \Leftrightarrow (1 - x_1)(7 - x_1) + (1 - y_1)(5 - y_1) = 0$
 $Ta \ c\hat{o} \ h\hat{e} \begin{cases} x_1 + y_1 - 8 = 0 \\ (1 - x_1)(7 - x_1) + (1 - y_1)(5 - y_1) = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 = 7 \\ y_1 = 1 \end{cases} \Rightarrow Q(7;1)$

Ví dụ 8. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho ΔABC biết A(3;1), B(1;-3) trọng tâm G của ΔABC nằm trên Ox. Tìm tọa độ đỉnh C biết diện tích ΔABC bằng 3.

Lời giải

*
$$G(x;0) \in Ox$$
, G là trọng tâm $\triangle ABC \Leftrightarrow AG = \frac{2}{3}AM \Leftrightarrow 3AG = 2AM$ $\Leftrightarrow 2\overrightarrow{AG} = 3\overrightarrow{AM}$; $\overrightarrow{AG} = (x-3;-1), \overrightarrow{AM} = (x_M-3;y_M-1)$
$$2\overrightarrow{AG} = 3\overrightarrow{AM} \Leftrightarrow \begin{cases} 3(x-3) = 2(x_M-3) \\ -3 = 2(y_M-1) \end{cases} \Leftrightarrow \begin{cases} x_M = \frac{3}{2}(x-1) \\ y_M = -\frac{1}{2} \end{cases} \Rightarrow M\left(\frac{3}{2}(x-1); -\frac{1}{2}\right)$$

* Mặt khác M là trung điểm BC

$$\Leftrightarrow \begin{cases} x_{M} = \frac{x_{B} + x_{C}}{2} \\ y_{M} = \frac{y_{B} + y_{C}}{2} \end{cases} \Leftrightarrow \begin{cases} \frac{3}{2}(x-1) = \frac{1+x_{C}}{2} \\ -\frac{1}{2} = \frac{-3+y_{C}}{2} \end{cases} \Leftrightarrow \begin{cases} x_{C} = 3x-4 \\ y_{C} = 2 \end{cases} \Rightarrow C(3x-4;2)$$

$$\Leftrightarrow \begin{cases} x_{M} = \frac{x_{B} + x_{C}}{2} \\ y_{M} = \frac{y_{B} + y_{C}}{2} \end{cases} \Leftrightarrow \begin{cases} \frac{3}{2}(x-1) = \frac{1+x_{C}}{2} \\ -\frac{1}{2} = \frac{-3+y_{C}}{2} \end{cases} \Leftrightarrow \begin{cases} x_{C} = 3x-4 \\ y_{C} = 2 \end{cases} \Rightarrow C(3x-4;2)$$

$$\overrightarrow{CA} = (7-3x;-1), \overrightarrow{CB} = (5-3x;-5)$$

$$S_{\Delta ABC} = 3 \Leftrightarrow 3 = \frac{1}{2} \left\| \det(\overrightarrow{CA}, \overrightarrow{CB}) \right\| \Leftrightarrow 6 = \left| -5(7-3x) + (5-3x) \right|$$

$$\Leftrightarrow \left| 2x-5 \right| = 1 \Leftrightarrow x = 3 \text{ hoặc } x = 2$$

$$V\hat{a}y, C(2;2) \text{ hoặc } C(3;2) \text{ là tọa độ cần tìm.}$$

Ví dụ 9. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho hình thoi ABCD biết A(3;1), B(-2;4) và giao điểm I của 2 đường chéo nằm trên Ox. Hãy xác định tọa độ điểm C và D.

Ví dụ 10. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- **1.** Cho tứ giác ABCD có A(-2;14), B(4;-2), C(6;-2), D(6;10). Tìm tọa độ M giao điểm 2 đường chéo AC và BD.
- **2**. Cho $\triangle ABC$ với A(3;5), B(-5;1), C(5;-9). Tính góc \widehat{BAD} , AD là trung tuyến.

Lời giải

1.
$$\begin{cases}
\overrightarrow{BM} = (x_{M} - 4; y_{M} + 2) \\
\overrightarrow{BD} = (2; 12)
\end{cases} \Rightarrow 12(x_{M} - 2) - 2(y_{M} + 2) = 0 \Leftrightarrow 6x_{M} - y_{M} - 26 = 0$$

$$\begin{cases}
\overrightarrow{CM} = (x_{M} - 6; y_{M} + 2) \\
\overrightarrow{CA} = (-8; 16)
\end{cases} \Rightarrow 16(x_{M} - 6) + 8(y_{M} + 2) = 0 \Leftrightarrow 2x_{M} + y_{M} - 10 = 0$$

$$Ta có : \begin{cases}
6x_{M} - y_{M} - 26 = 0 \\
2x_{M} + y_{M} - 10 = 0
\end{cases} \Rightarrow \begin{cases}
x_{M} = \frac{9}{2} \Rightarrow M(\frac{9}{2}; 1)
\end{cases}$$
2.
$$D(1; -4) có \overrightarrow{AB} = (-8; -4), \overrightarrow{AD} = (-3; -9)$$

$$\cos \widehat{BAD} = \cos(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\overrightarrow{AB}.\overrightarrow{AD}}{AB.AD} = \frac{24 + 36}{4\sqrt{5}} = \frac{1}{3\sqrt{10}} \Rightarrow \widehat{BAD} = 45^{0}$$

Ví dụ 11. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho điểm A(a;b) và $b(0;a\sqrt{3}-b)$ với $a,b\neq 0$. Tìm điểm C trên trục Ox sao cho ΔABC cân tại C. Khi đó chứng tỏ ABC còn là tam giác đều.

Lời giải

Gọi
$$C(x_0;0) \in Ox$$

Do ABC là tam giác cân tại $C \Leftrightarrow AB = BC \Leftrightarrow AC^2 = BC^2$

$$\Leftrightarrow \left(x_0 - a\right)^2 + \left(0 - b\right)^2 = \left(x_0 - 0\right)^2 + \left(0 - a\sqrt{3} + b\right)^2 \Leftrightarrow x_0 = \sqrt{3}b - a \Rightarrow C\left(b\sqrt{3} - a; 0\right)$$

Với
$$C(b\sqrt{3}-a;0)$$
 \Rightarrow $\begin{cases} AB^2 = 4a^2 - 4ab\sqrt{3} + 4b^2 \\ AC^2 = 4a^2 - 4ab\sqrt{3} + 4b^2 \end{cases}$ $\Rightarrow AB^2 = AC^2 \Rightarrow AB = AC$

Vậy ∆ABC là tam giác đều

Ví dụ 12. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- **1.** Cho 4 điểm A(-2;-6), B(4;-4), C(2;-2), D(-1;-3). Chứng minh rằng tam giác ABC vuông và tứ giác ABCD là hình thang.
- 2. Cho M(1;1-cosa), N(3;4). Tính OM, MN . Tính giá trị lớn nhất và nhỏ nhất của $y = \sqrt{\cos^2 a 2\cos a + 2} + \sqrt{\cos^2 a + 6\cos a + 13}$

Lời giải

Ví dụ 13. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- **1.** Cho $\triangle ABC$ có các đỉnh A(2;6), B(-3;-4), C(5;0). Xác định tọa độ chân đường phân giác AD.
- 2. cho $\triangle ABC$ có A(5;4), B(-1;1), C(3;-2), M là điểm di động thỏa $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = \overrightarrow{0}$ $\left(\alpha^2 + \beta^2 > 0\right)$. Xác định M để $\left|\overrightarrow{MA} + \overrightarrow{MC}\right|$ nhỏ nhất.

1.
$$AB = \sqrt{(-5)^2 + (-10)^2} = 5\sqrt{5}$$
, $AC = \sqrt{(3)^2 + (-6)^2} = 3\sqrt{5}$

$$\frac{BD}{DC} = \frac{AB}{AC} = \frac{5}{3} \Rightarrow \overrightarrow{DB} = -\frac{5}{3}\overrightarrow{DC}$$
, D chia BC theo ti $k = -\frac{5}{3}$

$$\begin{cases} x_D = \frac{-3 + \frac{5}{3}.5}{1 + \frac{5}{3}} = 2 \\ y_D = \frac{-4 + \frac{5}{3}.0}{1 + \frac{5}{3}} = -\frac{3}{2} \end{cases}$$

$$\textbf{2.} \ \text{N\'eu} \begin{cases} \beta \neq 0 \\ \alpha \neq 0 \end{cases} \ \text{thì} \begin{cases} \overrightarrow{AB} = -\frac{\alpha + \beta}{\beta} \overrightarrow{MA} \\ \overrightarrow{AB} = \frac{\alpha + \beta}{\alpha} \overrightarrow{MB} \end{cases} \Rightarrow M \ \text{nằm trên } AB \, .$$

Gọi I là trung điểm AC thì $\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MI} \Rightarrow \left| \overrightarrow{MA} + \overrightarrow{MB} \right|$ nhỏ nhất khi $\left| 2\overrightarrow{MI} \right|$ nhỏ nhất. Do I cố định nên MI nhỏ nhất khi M là hình chiếu của I trên AB

$$\overrightarrow{AM} \parallel \overrightarrow{AB} \Leftrightarrow \frac{x_M - 5}{-6} = \frac{y_M - 4}{-3} \Rightarrow x_M - 2y_M + 3 = 0$$

$$\overrightarrow{IM} \perp \overrightarrow{AB} \Rightarrow \overrightarrow{IM} \cdot AB = 0; (I(4;1)) \Leftrightarrow 2x_M + y_M - 9 = 0$$

Vậy , tọa độ điểm M là nghiệm hệ:
$$\begin{cases} x_M - 2y_M + 3 = 0 \\ 2x_M + y_M - 9 = 0 \end{cases} \Leftrightarrow \begin{cases} x_M = 3 \\ y_M = 3 \end{cases} \Rightarrow M (3;3)$$

Ví dụ 14. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường thẳng (d): 2x - y + 2 = 0 và 2 điểm A(4;6), B(0;-4). Tìm trên đường thẳng (d) điểm M sao cho vecto: $\overrightarrow{AM} + \overrightarrow{BM}$ có độ dài nhỏ nhất.

Lời giải

Gọi
$$M(x_0; y_0) \in (d): 2x_0 - y_0 + 2 = 0 \Rightarrow y_0 = 2x_0 + 2 \Rightarrow M(x_0; 2x_0 + 2)$$

Ta có
$$\begin{cases} AM = (x_0 - 4; y_0 - 6) \\ BM = (x_0; y_0 + 4) \end{cases} \Rightarrow \overrightarrow{AM} + \overrightarrow{BM} = (2x_0 - 4; 2y_0 - 2)$$

$$\Rightarrow \left|\overrightarrow{AM} + \overrightarrow{BM}\right| = \sqrt{\left(2x_0 - 4\right)^2 + \left(2y_0 - 2\right)^2} = \sqrt{20x_0^2 - 32x_0 + 20}$$

Cách 1: $f(x_0) = 20x_0^2 - 32x_0 + 20$ là hàm bậc 2, có hệ số a = 5 > 0 nên

$$\min f(x_0) \Leftrightarrow x_0 = x_5 = -\frac{b}{2a} = \frac{32}{20} = \frac{4}{5} \Rightarrow y_0 = \frac{18}{5} \Rightarrow M\left(\frac{4}{5}; \frac{18}{5}\right)$$

$$\textit{Cách 2}: \text{Đặt } f\left(x_{0}\right) = 20x_{0}^{2} - 32x_{0} + 20 \text{ có } f'\left(x_{0}\right) = 40x_{0} - 32 = 0 \Leftrightarrow x_{0} = \frac{4}{5}$$

\mathbf{x}_0	$-\infty$	$\underline{4}$		$+\infty$
		5		
$f'(x_0)$	-	0	+	
$f(x_0)$	+∞	36 5	<u></u>	+∞

$$\Rightarrow$$
 min $f(x_0) = \frac{36}{5}$ tại $x_0 = \frac{4}{5} \Rightarrow y_0 = \frac{18}{5}$

Vậy
$$M\left(\frac{4}{5};\frac{18}{5}\right)$$
 thì độ dài $\left|\overrightarrow{AM}+\overrightarrow{BM}\right|=\sqrt{\frac{36}{5}}=\frac{6\sqrt{5}}{5}$ đạt giá trị nhỏ nhất

Bài tập tự luyện

Bài tập 1. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- **a.** Cho A(1;2), B(3;-1) và hình vuông ABCD theo chiều dương. Tìm tọa độ đỉnh C,D.
- **b.** Cho 2 điểm A(4;3), B(2;5). Tìm trong mặt phẳng một điểm C để tam giác ABC là tam giác vuông cân.

Bài tập 2. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- a. Cho tam giác ABC có A(1;-1), B(5;-3) và $C \in Oy$, trọng tâm G của tam giác ở trên Ox. Xác đinh toa độ C và G.
- **b.** Cho 4 điểm A(3;2), B(7;4), C(4;5), D(2;4). Chứng minh ABCD là hình thang vuông. Tính chu vi và diện tích ABCD.
- **Bài tập 3.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho điểm A(-3;2), B(4;3).
 - **a.** Tìm điểm $M \in Ox$ sao cho ΔMAB vuông tại M.
 - $\boldsymbol{b}.$ Gọi C là điểm nằm trên Oy và G là trọng tâm ΔABC . Tìm tọa độ điểm C , biết G nằm trên Ox .

Bài tập 4. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho 2 điểm B(2;1), C(6;1)

- **a.** Tìm điểm A(x;y),(x>0,y>0) sao cho tam giác ABC đều.
- b. Tìm A' đối xứng với A qua C.
- **c.** Tìm tọa độ điểm D sao cho $\overrightarrow{AD} 3\overrightarrow{BD} + 4\overrightarrow{CD} = 0$.
- d. Tìm điểm M sao cho tứ giác ABCM là hình bình hành. Xác định tâm của nó.
- **Bài tập 5.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho tứ giác ABCD có A(-2;14), B(4;-2), C(5;-4), D(5;8). Tìm tọa độ giao điểm của 2 đường chéo AC và BD.
- **Bài tập 6.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, tam giác ABC có trung điểm các cạnh BC, AC, AB lần lượt là M(2;4), N(-3;0), P(2;1)
 - a. Tìm tọa độ đỉnh của tam giác ABC.
 - $\boldsymbol{b}.$ Tìm tọa độ trọng tâm $\,G\,$ của tam giác $\,ABC$; chứng mình $\,G\,$ cũng là trọng tâm của tam giác $\,MNP$.

- **Bài tập 7.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho 3 điểm A(1;-2), B(2;3), C(-1;-2). Tìm điểm D trên Oy sao cho ABCD là hình thang có cạnh đáy là AD. Tìm giao điểm I của 2 đường chéo.
- **Bài tập 8.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho 4 điểm A(-2;-3),

$$B(4;-1), C(2;1), D(-1;0)$$

- a. Chứng minh ABCD là hình thang
- b. Tìm giao điểm của AB với Ox
- c. Tìm điểm M trên đường thẳng CD, biết $y_M = 2$. Khi đó ABMD là hình gì?
- d. Tìm giao điểm của AC và BD
- **Bài tập 9.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho ΔABC , biết A(4;6),

$$B(-4;0), C(-1;-4)$$

- $\boldsymbol{a}.$ Tìm tọa độ trực tâm H , trọng tâm G , tâm I và bán kính R đường tròn ngoại tiếp ΔABC
- b. Kẻ đường cao AD. Tìm tọa độ D
- c. Tìm độ dài trung tuyến BE
- **Bài tập 10.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho A(-2;3), B(2;5).

Đỉnh C nằm trên đường thẳng x-3y=5 . Tâm $I\left(1;2\right)$ đường tròn ngoại tiếp tam giác .

- a. Tìm tọa độ C.
- **b.** Tìm toa đô trong tâm G, trưc tâm H. Chứng minh rằng: G,H,I thẳng hàng.
- **Bài tập 11.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho điểm A(2;1). Tìm tọa độ điểm B biết rằng đường thẳng AB cắt Oy tại C chia đoạn AB theo tỉ số $\frac{2}{3}$ và đường thẳng AB cắt Ox tại D chia đoạn AB theo tỉ số $-\frac{3}{4}$.
- **Bài tập 12.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho 3 điểm A(-3;6), B(1;-2), C(6;3).
 - a. Chứng minh A, B, C là 3 đỉnh của một tam giác.
 - b. Tìm tọa độ chân đường cao A' xuất phát từ A.
 - ${f c}$. Tính tọa độ trọng tâm G, trực tâm H và tâm I của tam giác ABC. Có nhận xét gì về điểm G,H,I?
- **Bài tập 13.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho điểm A(0;4), và

đường thẳng y = 8. Tìm trên đường thẳng y = 0 điểm $B(x_B; 0)$ và trên đường thẳng y = 8 điểm $C(x_C; 8)$ sao cho AB = AC và tam giác ABC có diện tích bằng 24.

Bài tập 14. Trong mặt phẳng toạ độ đề các vuông góc Oxy, 3 điểm

- a. Tìm toa đô trong tâm G, trực tâm H, tìm chân đường cao A' của AA'.
- b. Xác định tọa độ tâm I đường tròn ngoại tiếp ΔABC . Chứng minh G,H,I thẳng hàng.

Bài tập 15. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho 3 điểm A(3;1), B(-1;-1), C(6;0). Tìm tọa độ đỉnh D của hình thang cân cạnh đáy AB,CD.

Bài tập 16. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- $\begin{array}{l} \textbf{a.} \ \text{Cho 2 diểm A(a;0),C(2a;3a). Dường thẳng đi qua A và vuông góc với AC cắt đường thẳng $x+2a=0$ tại điểm B. Chứng minh tam giác ABC là tam giác cân.} \\ \textbf{b.} \ \text{Cho 2 đường thẳng } 3x-4y+6=0 \ \text{và } 4x-3y-9=0 \ . Tìm một điểm M trên trục } \end{array}$
- **b.** Cho 2 đường thẳng 3x-4y+6=0 và 4x-3y-9=0. Tìm một điểm M trên trục Oy cách đều 2 đường thẳng ấy.
- **c.** Cho \triangle ABC với A(1;3),B(0;1),C(-4;-1). Tìm tọa độ chân đường cao H kẻ từ A
- **d.** Tìm tọa độ A,B, biết đường thẳng (d) đi qua M(-4;3) và cắt trục hoành, trục tung lần lượt tại A,B thỏa $\overrightarrow{AM}: \overrightarrow{MB} = 3:5$

Bài tập 17. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- **a.** Cho 3 điểm A(2;3), B(-1;4), C(x;-2). Xác định hoành độ của điểm C để tổng AC+CB đạt giá trị nhỏ nhất.
- **b.** Cho 2 điểm A(1;-1), B(5;-3) và đường thẳng $(\Delta):5x-12y+32=0$. Tìm M để MA=MB và khoảng cách từ M đến (Δ) bằng 4.

Bài tập 18. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường thẳng

$$(\Delta): 2x + y - 2 = 0$$
 và 3 điểm $A(8;1), B(-3;2)C(1;4)$

- **a**. Tìm trên (Δ) một điểm M để tổng MA + MB có độ dài nhỏ nhất.
- $\boldsymbol{b}.$ Tìm trên $\left(\Delta\right)$ một điểm N để tổng NA+NC có độ dài nhỏ nhất.

Bài tập 19. Trong mặt phẳng toạ độ đề các vuông góc Oxy

a. Trên đường thẳng x-2y+10=0, tìm điểm M sao cho $\overrightarrow{AM}+\overrightarrow{BM}$ có độ dài nhỏ nhất, với $A\left(6;\sqrt{5}\right), B\left(-4;\sqrt{5}\right)$

b. Cho A(1;2), B(2;4). Tìm trên trục hoành điểm P sao cho (AP+PB) nhỏ nhất. **c.** Cho đường thẳng (d): x-2y+2=0 và A(0;6), B(2;5). Tìm trên (d) điểm M sao cho |MA-MB| lớn nhất; (MA+MB) nhỏ nhất.

- **Bài tập 20.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho A(1;6), B(-3;-4) và đường thẳng $(\Delta): 2x-y-1=0$. Tìm điểm M trên (Δ) sao cho vecto: $\overrightarrow{AM}+\overrightarrow{BM}$ có độ dài nhỏ nhất.
- **Bài tập 21.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho (Δ) : 2x + y + 1 = 0, M(0;3), N(1;5).
 - **a.** Tìm $I \in \Delta$ sao cho : (IM + IN) min .
 - **b.** Tìm $J \in \Delta$ sao cho : $|JM JN| \max$.
- Bài tập 22. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường thẳng

$$\left(T\right): 2x - y - 1 = 0 \text{ và 5 diểm } A\left(0; -1\right), B\left(2; 3\right), C\left(\frac{1}{2}; 0\right), E\left(1; 6\right), F\left(-3; -4\right)$$

- a. Tìm trên (T) điểm D sao cho 4 điểm A,B,C,D lập thành hàng điểm điều hòa.
- **b**. TÌm điểm M trên (T) sao cho $\overrightarrow{EM} + \overrightarrow{FM}$ có độ dài nhỏ nhất.

Bài tập 23. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- a. Cho 2 điểm A(1;-3), B(5;-1). Tìm M trên Ox sao cho AM + BM ngắn nhất.
- **b.** Tìm trên trục hoành sao cho tổng khoảng cách từ M đến 2 điểm A(1;2), B(3;4) là nhỏ nhất.
- **c.** Cho 2 điểm A(0;5), B(4;1) và đường thẳng $(\Delta): x-4y+7=0$. Tìm một điểm C trên (Δ) sao cho ΔABC là tam giác cân, đáy AB.
- **Bài tập 24.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho tam giác ABC, biết A(6;4), B(-4;-1), C(2;-4)
 - a. Tìm tọa độ chân đường phân giác trong AD của góc A. Tính độ dài AD.
 - b. Tìm tâm đường tròn nội tiếp tam giác ABC.

Bài tập 25. Trong mặt phẳng toạ độ đề các vuông góc Oxy

a. Cho tam giác ABC với A(1;5), B(-4;-5), C(4;-1). Tìm tọa độ chân đường phân giác trong và ngoài góc A. Tìm tọa độ tâm đường tròn nội tiếp ΔABC .

b. Cho điểm A(4;-3), B(3;1). Tìm điểm M trên trục Ox sao cho $\widehat{AMB} = \frac{\pi}{4}$.

c. Cho các điểm A(2;1), B(0;1), C(3;5), D(-3;-1). Tính tọa độ các đỉnh hình vuông có 2 cạnh song song đi qua A và C, C0, cạnh song song còn lại đi qua C1 và C2 cạnh song tọa độ các đỉnh hình vuông đều dương.

Bài tập 26. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho Δ ABC có A $\left(-3;6\right)$, B $\left(1;-2\right)$. Đỉnh C có tọa độ thỏa $x_C-2y_C=0$. Tâm đường tròn ngoại tiếp là I $\left(1;3\right)$. Tìm tọa độ đỉnh C và bán kính nội tiếp Δ ABC.

Bài tập 27. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho ΔABC , A(1;6), B(-4;-4), C(4;0). Tìm tọa độ chân đường phân giác trong và ngoài góc A và tọa độ tâm đường tròn nội tiếp ΔABC .

Hướng dẫn giải

Bài tập 1. a.
$$\overrightarrow{AB} = (2; -3)$$
 mà
$$\begin{cases} AD = AB \\ AD \perp AB \end{cases} \Rightarrow \overrightarrow{AD} = (3; 2) \Rightarrow \begin{cases} x_D = 4 \\ y_D = 4 \end{cases} \Rightarrow D(4; 4)$$

$$\overrightarrow{DC} = \overrightarrow{AB} \Rightarrow \begin{cases} x_C = 6 \\ y_C = 1 \end{cases} \Rightarrow C(6;1)$$

b.*
$$\triangle ABC$$
 vuông cân tại $C \Leftrightarrow \begin{cases} CA \perp CB \\ CA = CB \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{CA} \cdot \overrightarrow{CB} = 0 \\ CA^2 = CB^2 \end{cases}$

$$\Leftrightarrow \begin{cases} x^2 + y^2 - 6x - 8y + 23 = 0 \\ x - y + 1 = 0 \end{cases} \Rightarrow C(4;5) \text{ và } C'(2;3)$$

*
$$\triangle ABC$$
 vuông tại $A \Leftrightarrow \begin{cases} CA \perp BA \\ CA = BA \end{cases} \Leftrightarrow \begin{cases} C(6;5) \\ C'(2;1) \end{cases}$

* $\triangle ABC$ vuông cân tại $B \Leftrightarrow C(0;3),C'(4;7)$

Bài tập 2. a. Gọi G(x;0), C(0;y). Trung điểm I của $AB: \Rightarrow I(3;-2)$

Ta có
$$\overrightarrow{IC} = 3\overrightarrow{IG} \Leftrightarrow \begin{cases} -3 = 3(x-3) \\ y+2 = 3(0+2) \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 4 \end{cases} \Rightarrow \begin{cases} G(2;0) \\ C(0;4) \end{cases}$$

b.
$$AB = 2\sqrt{5}$$
, $CD = AD = \sqrt{5}$, $BC = \sqrt{10} \Rightarrow \begin{cases} \overrightarrow{AB} = 2\overrightarrow{DC} \\ \overrightarrow{AD}.\overrightarrow{AB} = 0 \end{cases} \Rightarrow ABCD$ là hình thang vuông.
 $P = AB + BC + CD + AD = 4\sqrt{5} + \sqrt{10}$, $S = \frac{1}{2}(AB + CD).AD = \frac{15}{2}$

Bài tập 3. a.
$$M \in Ox \Rightarrow M(m;0) \Rightarrow \overrightarrow{MB} = (4-m;3), \overrightarrow{MA} = (-3-m;2)$$

$$\Delta MAB \text{ vuông tại } M \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0 \Leftrightarrow (4-m)(-3-m) + 6 = 0$$

$$\Leftrightarrow m^2 - m - 12 = 0 \Leftrightarrow \begin{bmatrix} m = 4 \\ m = -3 \end{bmatrix} \Rightarrow \begin{bmatrix} M(4;0) \\ M(-3;0) \end{bmatrix}$$
b. $C \in Oy \Rightarrow C(0;y_C)$, $G \in Ox \Rightarrow G(x_G;0)$

$$G \text{ là trọng tâm } \Delta ABC$$
, ta có
$$\begin{cases} 3x_G = x_A + x_B + x_C \\ 3y_G = y_A + y_B + y_C \end{cases} \Leftrightarrow \begin{cases} 3x_G = -3 + 4 \\ 0 = 2 + 3 + y_C \end{cases} \Rightarrow \begin{cases} x_G = \frac{1}{3} \\ y_C = -5 \end{cases}$$

$$\Rightarrow G\left(\frac{1}{3};0\right), C(0;-5).$$

Bài tập 4.a.. Tam giác ABC đều
$$\Leftrightarrow$$

$$\begin{cases} AB^2 = BC^2 \\ AC^2 = BC^2 \end{cases} \Leftrightarrow \begin{cases} \left(x-2\right)^2 + \left(y-1\right)^2 = 4^2 \\ \left(x-6\right)^2 + \left(y-1\right)^2 = 4^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 4 \\ y = 1 + 2\sqrt{3} \end{cases} \Rightarrow A\left(4; 1 + 2\sqrt{3}\right)$$

$$\textbf{b}. \ A' \ \text{đối xứng } A \ \text{qua } C \Leftrightarrow C\big(6;1\big) \ \text{là trung điểm } A' \Leftrightarrow \begin{cases} x_C = \frac{x_A + x_{A'}}{2} \\ y_c = \frac{y_A + y_{A'}}{2} \end{cases}$$

$$\Rightarrow \begin{cases} x_{A'} = 8 \\ y_{A'} = 1 - 2\sqrt{3} \end{cases}$$

c.
$$\overrightarrow{AD} = (x-4; y-1-2\sqrt{3}), \overrightarrow{BD} = (x-2; y-1), \overrightarrow{CD} = (x-6; y-1)$$

$$\overrightarrow{AD} - 3\overrightarrow{BD} + 4\overrightarrow{CD} = 0 \Leftrightarrow x = 11, y = -1 - \sqrt{3}$$

d. ABCM là hình bình hành
$$\Leftrightarrow \overrightarrow{AM} = \overrightarrow{BC}, \overrightarrow{AM} = \left(x - 4; y - 1 - 2\sqrt{2}\right), \overrightarrow{BC} = \left(4; 0\right)$$

Vậy
$$\overrightarrow{AM} = \overrightarrow{BC} \Leftrightarrow x = 8, y = 1 + 2\sqrt{3}$$

Gọi I là tâm hình bình hành ABCM khi I là trung điểm AC

$$\Leftrightarrow \begin{cases} x_{I} = \frac{x_{A} + x_{C}}{2} \\ y_{I} = \frac{y_{A} + y_{C}}{2} \end{cases} \Leftrightarrow \begin{cases} x_{I} = 5 \\ y_{I} = 1 + \sqrt{3} \end{cases} \Rightarrow I(5; 1 + \sqrt{3})$$

Bài tập 5. Gọi I(x;y) là giao điểm 2 đường chéo AC, BD

$$\Leftrightarrow \begin{cases} \overrightarrow{AI} & \uparrow \uparrow \overrightarrow{AC} \\ \overrightarrow{BI} & \uparrow \uparrow \uparrow \overrightarrow{BD} \end{cases} \quad \text{v\'oi} \begin{cases} \overrightarrow{AI} = (x+2;y+4), \overrightarrow{AC} = (7;-18) \\ \overrightarrow{BI} = (x-4;y+2), \overrightarrow{BD} = (1;10) \end{cases}$$

$$\Leftrightarrow \begin{cases} 7(y-14)+18(x+2)=0 \\ 10(x-4)-(y+2)=0 \end{cases} \Leftrightarrow \begin{cases} x=\frac{89}{22} \\ y=-\frac{17}{11} \end{cases} \Rightarrow I\left(\frac{89}{22};-\frac{17}{11}\right)$$

Bài tập 6a. Ta có
$$\overrightarrow{PA} = \overrightarrow{MN} \Leftrightarrow \begin{cases} x_A - 2 = -3 - 2 \\ y_A - 1 = 0 - 4 \end{cases} \Leftrightarrow \begin{cases} x_A = -3 \\ y_A = -3 \end{cases}$$

$$:A(-3;-3);B(7;5);C(-3;3)$$

$$\textbf{b.} \ \text{Goi M là trung điểm BC} \ . \ \text{Ta có} : \ \overrightarrow{AM} = 3\overrightarrow{GM} \Leftrightarrow \begin{cases} 2 - \left(-3\right) = 3\left(2 - x_G\right) \\ 4 - \left(-3\right) = 3\left(4 - y_G\right) \end{cases} \Rightarrow G\left(\frac{1}{3}; \frac{5}{3}\right)$$

 $\overrightarrow{GM} + \overrightarrow{GN} + \overrightarrow{GP} = 0 \Rightarrow G$ là trọng tâm ΔMNP .

Bài tập 7. Ta có $\{\overrightarrow{AB} = (1;5) \atop \overrightarrow{AC} = (-2;0)\} \Rightarrow \frac{-2}{1} \neq \frac{0}{5} \Rightarrow \overrightarrow{AB} \text{ không cùng phương } \overrightarrow{AC}. \text{ Do đó } A, B, C \}$

không thẳng hàng.

$$D(0; y_0) \in Oy$$
 $\overrightarrow{CB} = (3; 5); \overrightarrow{AD} = (-1; y_0 + 2)$

* ABCD là hình thang có đáy AD $\Leftrightarrow \overrightarrow{AD}$ cùng phương \overrightarrow{CD}

$$\Leftrightarrow$$
 3. $(y_0 + 2) - (-1).5 = 0 \Rightarrow y_0 = \frac{-11}{3} \Rightarrow D(0; \frac{-11}{3})$

Gọi I(a,b) là giao điểm 2 đường chéo AC và BD

Ta có:
$$\overrightarrow{AC} = (-2;0); \overrightarrow{AI} = (a-1;b+2); \overrightarrow{BD} = (-2;\frac{-20}{3}); \overrightarrow{BI} = (a-2;b-3)$$

I là giao điểm AC và BD \Leftrightarrow A,I,C thẳng hàng và B,I,D thẳng hàng \Leftrightarrow \overrightarrow{AC} cùng phương \overrightarrow{AI} và \overrightarrow{BD} cùng phương \overrightarrow{BI}

$$\Leftrightarrow \begin{cases} -2.(b+2)-0.(a-1)=0\\ -2.(b-3)+\frac{20}{3}.(a-2)=0 \end{cases} \Leftrightarrow \begin{cases} a=\frac{1}{2}\\ b=-2 \end{cases} \Rightarrow I\left(\frac{1}{2};-2\right)$$

Bài tập 8a. $\begin{cases} \overrightarrow{AB} = (6;2) \\ \overrightarrow{DC} = (3;1) \end{cases} \Rightarrow \overrightarrow{AB} = 2\overrightarrow{DC} \Rightarrow \overrightarrow{AB}, \overrightarrow{DC} \text{ cùng phương hay ABCD là hình}$

thang

b.
$$(AB) \cap Ox = N(x_0; 0) \Leftrightarrow \overrightarrow{AN}$$
 cùng phương \overrightarrow{AB} với $\overrightarrow{AN} = (x_0 + 2; 3); \overrightarrow{AB} = (6; 2)$
 $\overrightarrow{AN} \parallel \overrightarrow{AB} \Leftrightarrow 2(x_0 + 2) - 3.6 = 0 \Leftrightarrow x_0 = 7 \Rightarrow N(7; 0)$

c.
$$M \in (CD) \Leftrightarrow \overrightarrow{CM}$$
 cùng phương CD với $\overrightarrow{CM} = (x-2;1); \overrightarrow{CD} = (-3;-1)$

$$\frac{x-2}{-3} = \frac{1}{-1} \Leftrightarrow x = 5 \Rightarrow M(5;2) \Rightarrow \overrightarrow{DM} = (6;2) = \overrightarrow{AB}$$

⇒ ABMD là hình bình hành.

d. Tương tự trên
$$I\left(\frac{2}{3}; \frac{-1}{3}\right)$$

Bài tập 9a. * H(x;y) là tọa độ trực tâm H của ΔABC , ta có

$$\begin{cases} AH \perp BC \Leftrightarrow \begin{cases} AH.BC = 0 \\ BH \perp AC \end{cases} & (I) \end{cases}$$

$$m\grave{a} \begin{cases} \overrightarrow{AH} = (x - 4; y - 6) \\ \overrightarrow{BC} = (3; -4) \end{cases} ; \begin{cases} \overrightarrow{BH} = (x + 4; y) \\ \overrightarrow{AC} = (-5; -4) \end{cases} \quad v\grave{a} (I) \Leftrightarrow \begin{cases} 3(x - 4) - 4(y - 6) = 0 \\ -5(x + 4) - 10y = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -4 \\ v = 0 \end{cases} \Rightarrow H(-4;0) : H = B \Rightarrow \Delta ABC \text{ vuông tại B}$$

* Trọng tâm
$$G: \begin{cases} x_G = \frac{x_G + x_B + x_C}{3} = -\frac{1}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} = \frac{2}{3} \end{cases} \Rightarrow G\left(-\frac{1}{3}; \frac{2}{3}\right)$$

* Tọa độ tâm I $\left(a;b\right)$ của đường tròn ngoại tiếp ΔABC là giao điểm của 2 đường trung trực

Gọi M,N lần lượt là trung điểm AB,BC, ta có
$$\begin{cases} x_{M} = \frac{1}{2} \left(x_{A} + x_{B} \right) = 0 \\ y_{M} = \frac{1}{2} \left(y_{A} + y_{B} \right) = 3 \end{cases}$$

$$\begin{cases} x_{N} = \frac{1}{2}(x_{B} + x_{C}) \\ y_{N} = \frac{1}{2}(y_{B} + y_{C}) \end{cases} \Rightarrow M(0;3); N\left(-\frac{5}{2}; -2\right)$$

$$\text{Theo bài toán ta có}: \begin{cases} MI \perp AB \\ NI \perp BC \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{MI}.\overrightarrow{AB} = 0 \\ \overrightarrow{NI}.\overrightarrow{BC} = 0 \end{cases} \quad \left(II\right) \text{ mà } \begin{cases} \overrightarrow{MI} = \left(a;b-3\right) \\ \overrightarrow{NI} = \left(a+\frac{5}{2};b+2\right) \end{cases}$$

$$\overrightarrow{AB} = (-8; -6); \overrightarrow{BC} = (3; -4)$$

$$V \hat{a} y \left(II \right) \Leftrightarrow \begin{cases} 4a + 3(b - 3) = 0 \\ 3\left(a + \frac{5}{2}\right) - 4(b + 2) = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{3}{2} \Rightarrow I\left(\frac{3}{2}; 1\right) \\ b = 1 \end{cases}$$

* Do
$$\triangle ABC$$
 vuông tại B nên $R = \frac{1}{2}AC = \frac{5\sqrt{5}}{2}$

b. Gọi D là tọa độ chân đường cao thì :
$$\begin{cases} AD \perp BD \\ AD \perp CD \end{cases}$$

$$Ta c\acute{o} h\mathring{e} \begin{cases} \overrightarrow{AD}.\overrightarrow{BD} = 0 \\ \overrightarrow{AD}.\overrightarrow{CD} = 0 \end{cases} \Leftrightarrow \begin{cases} (x-4)(x+4) + y(y-6) = 0 \\ (x-4)(x+1) + (y+4)(y-6) = 0 \end{cases} \Leftrightarrow \begin{cases} x^2 - 16 = 0 \\ y = 3 + \frac{3}{4}x \end{cases}$$

$$\Rightarrow \begin{bmatrix} x = -4; y = 0; B(-4; 0) \\ x = 4; y = 6; A(4; 6) \end{bmatrix} \Rightarrow D \equiv B = (-4; 0)$$

Cách khác: Do $\triangle ABC$ vuông tại B, nên $D \equiv B$

c. E là trung điểm BC nên
$$E\left(\frac{3}{2};1\right)$$
; $E \equiv I$ và $\overrightarrow{BE} = \left(\frac{11}{2};1\right) \Rightarrow BE = \frac{5\sqrt{2}}{2} = R$

Chú ý: học sinh làm lại bài này nếu thay tọa độ A,B,C là A(2;2),B(-5;1),C(3;-5)

Bài tập 10.
$$C(x_C; y_C) \in x - 3y = 5 \Rightarrow x_C = 5 + 3y_C \Rightarrow C(5 + 3y_C; y_C)$$

a. I là tâm đường trong ngoại tiếp $\triangle ABC \Leftrightarrow IA = IC$ (1)

$$IA^2 = 10$$
, $IC^2 = (6 + 3y_C)^2 + (y_C - 2)^2$

(1)
$$\Leftrightarrow$$
 IA² = IC² \Leftrightarrow $(6+3y_C)^2 + (y_C-2)^2 = 10 \Leftrightarrow y_C^2 + 2y_C + 1 = 0$
 $\Leftrightarrow y_C = -1 \Rightarrow x_C = 2 \Rightarrow C(2;-1)$

b. Trong tâm G:
$$\begin{cases} x_G = \frac{2}{3} \\ y_G = \frac{7}{3} \end{cases} \Rightarrow G\left(\frac{2}{3}; \frac{7}{3}\right)$$

$$\begin{split} & \text{Trực tâm } H \colon \Leftrightarrow \begin{cases} \overrightarrow{AH}.\overrightarrow{BC} = 0 \\ \overrightarrow{BH}.\overrightarrow{AC} = 0 \end{cases} \Leftrightarrow \begin{cases} 6\big(y_H - 3\big) = 0 \\ 4\big(x_H - 2\big) - 4\big(y_H - 5\big) = 0 \end{cases} \Leftrightarrow \begin{cases} y_H = 3 \\ x_H = 0 \end{cases} \Rightarrow H\big(0;3\big) \\ & \overrightarrow{IG} = \left(-\frac{1}{3};\frac{1}{3}\right) = \frac{1}{3}\big(-1;1\big) \\ & \overrightarrow{GH} = \left(-\frac{2}{3};\frac{2}{3}\right) = \frac{2}{3}\big(-1;1\big) \end{cases} \Rightarrow \overrightarrow{GH} = 2\overrightarrow{IG} \Rightarrow I,H,G \text{ thẳng hàng.} \end{split}$$

Bài tập 11. Gọi $C(0;c) \in Oy$, ta có :

$$\frac{\overrightarrow{CA}}{\overrightarrow{CB}} = \frac{2}{3} \Rightarrow x_C = \frac{x_A - k.x_B}{1 - k} \Leftrightarrow 0 = \frac{2 - \frac{2}{3}.x_B}{1 - \frac{2}{3}} \Rightarrow x_B = 3$$

$$D(d;0) \in Ox, \text{ ta có:} \quad \frac{DA}{DB} = -\frac{3}{4} \Rightarrow y_D = \frac{y_A - ky_B}{1 - k} \Leftrightarrow y_B = -\frac{4}{3} \Rightarrow B\left(3; -\frac{4}{3}\right)$$

Bài tập 12a.
$$\begin{cases} \overrightarrow{AB} = (4; -8) \\ \overrightarrow{AC} = (9; -3) \end{cases}$$
 và $\frac{4}{9} \neq \frac{-8}{-3} \Rightarrow A, B, C$ không thẳng hàng.

b.
$$\begin{cases} \overrightarrow{BC} = (5;5) \\ \overrightarrow{BA'} = (a-1;b+2); A'(a;b) \end{cases}$$

$$Vi \begin{cases} \overrightarrow{\overrightarrow{BC}} \parallel \overrightarrow{\overrightarrow{BA'}} \\ \overrightarrow{AA'}.\overrightarrow{BC} = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{a-1}{5} = \frac{b+2}{5} \\ (a+3).5 + (b-6).5 = 0 \end{cases} \Leftrightarrow \begin{cases} a=3 \\ b=0 \end{cases} \Rightarrow A'(3;0)$$

c.
$$\begin{cases} AH \perp BC \Leftrightarrow \begin{cases} \overrightarrow{AH}.\overrightarrow{BC} = 0 \\ \overrightarrow{BH}.\overrightarrow{AC} = 0 \end{cases} \Leftrightarrow \begin{cases} 5(x_H + 3) + 5(y_H - 6) = 0 \\ 9(x_H - 1) + (-3)(y_H + 2) = 0 \end{cases} \Rightarrow H(2;1)$$

$$\begin{cases} x_{G} = \frac{x_{A} + x_{B} + x_{C}}{3} = \frac{4}{3} \\ y_{G} = \frac{y_{A} + y_{B} + y_{C}}{3} = \frac{7}{3} \end{cases} \Rightarrow G\left(\frac{4}{3}; \frac{7}{3}\right)$$

I là tâm đường tròn ngoại tiếp $\Delta ABC \Rightarrow IA = IB = IC$

$$\Leftrightarrow \begin{cases} IA^2 = IB^2 \\ IA^2 = IC^2 \end{cases} \Leftrightarrow \begin{cases} x_I = 1 \\ y_I = 3 \end{cases} \Rightarrow I(1;3)$$

Ta có:
$$\begin{cases} \overrightarrow{IH} = (1;-2) \\ \overrightarrow{IG} = \left(\frac{1}{3}; \frac{-2}{3}\right) = \frac{1}{3}(1;-2) = \frac{1}{3}\overrightarrow{IH} \Rightarrow \overrightarrow{IG} \parallel \overrightarrow{IH} . \text{ Hay } G,H,I \text{ thẳng hàng.} \end{cases}$$

$$\begin{split} \textbf{B\grave{a}i t\^{a}p 13.} \ V\acute{o}i \ \begin{cases} B\big(x_B;0\big) \in y = 0 \\ C\big(x_C;0\big) \in y = 8 \end{cases} \Rightarrow \begin{cases} AB = \sqrt{x_B^2 + 16} \\ AC = \sqrt{x_C^2 + 16} \end{cases} \Rightarrow AB = AC \Leftrightarrow x_B^2 - x_C^2 = 0 \\ \overrightarrow{AB} = \big(x_B; -4\big), \overrightarrow{AC} = \big(x_C; 4\big) \Rightarrow S = \frac{1}{2} \begin{vmatrix} x_B - 4 \\ x_C - 4 \end{vmatrix} = 24 \Leftrightarrow \big|x_B + x_C\big| = 24 \end{cases} \\ V\^{a}y, \begin{cases} x_B^2 - x_C^2 = 0 \\ |x_B - x_C| = 14 \Leftrightarrow \begin{cases} x_B = 6 \\ x_C = 6 \end{cases} & \text{hoặc} \end{cases} \begin{cases} x_B = -6 \\ x_C = -6 \end{cases} \Rightarrow \begin{cases} B\big(6; 0\big) \\ C\big(6; 8\big) \end{cases} & \text{hoặc} \end{cases} \begin{cases} B'\big(-6; 0\big) \\ C'\big(-6; 8\big) \end{cases} \end{split}$$

Bài tập 14. a. * Tọa độ trọng tâm G của tam giác ABC:

$$G \begin{cases} x_{G} = \frac{x_{A} + x_{B} + x_{C}}{3} = 3 \\ y_{B} = \frac{y_{A} + y_{B} + y_{C}}{3} = \frac{8}{3} \Rightarrow G\left(3; \frac{8}{3}\right) \end{cases}$$

* H(x;y) là tọa độ trực tâm của tam giác ABC với

$$\begin{cases} \overrightarrow{AH} = (x-3; y-5); \overrightarrow{BC} = (4;-1) \\ \overrightarrow{BH} = (x-1; y-2); \overrightarrow{AC} = (2;-4) \end{cases}$$

Thỏa:
$$\begin{cases} \overrightarrow{AH}.\overrightarrow{BC} = 0 \\ \overrightarrow{BH}.\overrightarrow{AC} = 0 \end{cases} \Leftrightarrow \begin{cases} 4(x-3) + (y-5)(-1) = 0 \\ 2(x-1) + (y-2)(-4) = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{17}{7} \\ y = \frac{19}{7} \end{cases} \Rightarrow H\left(\frac{17}{7}; \frac{19}{7}\right)$$

* A'(x;y) là chân đường cao AA' khi $\overrightarrow{AA'} \perp \overrightarrow{BC}$ và \overrightarrow{BC} cùng phương $\overrightarrow{BA'}$ (*)

Với
$$\overrightarrow{AA'} = (x-3; y-5); \overrightarrow{BC} = (4;-1), \overrightarrow{BA'} = (x+1; y-2)$$

$$(*) \Leftrightarrow \begin{cases} \overrightarrow{AA'}.\overrightarrow{BC} = 0 \\ \overrightarrow{BC} \uparrow \uparrow \overrightarrow{BA'} \end{cases} \Leftrightarrow \begin{cases} 4(x-3) - (y-5) = 0 \\ 4(y-2) + (x-1) = 0 \end{cases} \Leftrightarrow \begin{cases} 4x - y - 7 = 0 \\ x + 4y - 9 = 0 \end{cases} \Rightarrow A' \left(\frac{37}{7}; \frac{99}{7}\right)$$

b. * I(x;y) là tâm đường tròn ngoại tiếp $\triangle ABC$

$$\Leftrightarrow \begin{cases} IA^{2} = IB^{2} \\ IA^{2} = IC^{2} \end{cases} \Leftrightarrow \begin{cases} (x-3)^{2} + (y-5)^{2} = (x-1)^{2} + (y-2)^{2} \\ (x-3)^{2} + (y-5)^{2} = (x-5)^{2} + (y-1)^{2} \end{cases} \Leftrightarrow \begin{cases} x = \frac{23}{7} \\ y = \frac{37}{14} \end{cases} \Rightarrow I\left(\frac{23}{7}; \frac{37}{14}\right)$$

*
$$G\left(3; \frac{8}{3}\right), H\left(\frac{17}{7}; \frac{19}{7}\right), I\left(\frac{23}{7}; \frac{37}{14}\right)$$

$$\overrightarrow{BH} = \left(-\frac{4}{7}; \frac{1}{21}\right)$$

$$\overrightarrow{HI} = \left(\frac{6}{7}; -\frac{1}{14}\right)$$

$$\Rightarrow \overrightarrow{GH}.\overrightarrow{HI} = \left(-\frac{4}{7}\right)\left(-\frac{1}{14}\right) - \left(\frac{1}{21}\right)\left(\frac{6}{7}\right) = 0$$

 $\Rightarrow \overrightarrow{GI}$ và \overrightarrow{HI} cùng phương hay G,H,I thẳng hàng.

Bài tập 15. Gọi D(x;y).

$$\overrightarrow{CD} = (x - 6; y), \overrightarrow{BD} = (x + 1; y + 1), \overrightarrow{AB} = (-4; -2), \overrightarrow{AC} = (3; -1)$$

$$\overrightarrow{Ba} \text{ toán} \Leftrightarrow \begin{cases} \overrightarrow{CD} \parallel \overrightarrow{AB} \\ \overrightarrow{BD} = \overrightarrow{AC} \end{cases} \Leftrightarrow \begin{cases} -2(x - 6) + 4.y = 0 \\ \sqrt{(x + 1)^2 + (y + 1)^2} = \sqrt{10} \end{cases} \Leftrightarrow \begin{cases} x = -2 \\ y = -4 \end{cases} \Rightarrow D(-2; -4)$$

Bài tập 16.a. B(-2a;-a), $AB^2 = AC^2 = 10a^2$

b.
$$M(0;15), M'(0;-\frac{3}{7})$$

$$\textbf{c. Goi} \ \ H\big(a;b\big) \text{, ta có}: \begin{cases} AH \perp BC \\ \overline{BH} \uparrow \uparrow \overline{BC} \end{cases} \Leftrightarrow \begin{cases} 4\big(a-1\big)+2\big(b-2\big)=0 \\ 2\big(a-0\big)-4\big(b-1\big)=0 \end{cases} \Leftrightarrow H\bigg(\frac{8}{5};\frac{9}{5}\bigg)$$

d.
$$A(a;0), B(0;b).\overrightarrow{MA}: \overrightarrow{MB} = 3:5 \Leftrightarrow 5\overrightarrow{AM} = 3\overrightarrow{MB}$$

$$\Leftrightarrow 5\left(\overrightarrow{OM} - \overrightarrow{OA}\right) = 3\left(\overrightarrow{OB} - \overrightarrow{OM}\right) \Rightarrow 5\overrightarrow{OA} + 3\overrightarrow{OB} = 8\overrightarrow{OM} \Rightarrow A\left(-\frac{32}{5};0\right), B(0;8)$$

Bài tập 17.a. AC+CB nhỏ nhất khi A,B,C thẳng hàng và $x_C = 17$

b.
$$M(4;0), M'\left(\frac{180}{19}; \frac{208}{19}\right)$$

Bài tập 18. a.
$$(MA + MB)_{min}$$
 khi A, M, B thẳng hàng và $(\Delta) \cap (AB) = M(\frac{1}{7}; \frac{12}{7})$

b. Gọi A' đối xứng A qua
$$(\Delta)$$
 thì $(A'C) \cap (\Delta) = N\left(-\frac{1}{19}; \frac{40}{19}\right)$

Bài tập 19.a.
$$(\overrightarrow{AM} + \overrightarrow{MB})_{min}$$
 khi $M\left(1 + \frac{2}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right)$

b. Gọi
$$P(x_0; 0)$$
, có $AP + PB = \sqrt{(x_0 - 1)^2 + 4} + \sqrt{(x_0 - 3)^2 + 16}$

Xét
$$\vec{a} = (x_0 - 1; 2), \vec{b} = (3 - x_0; 4)$$

Ta có
$$AP + PB = \left| \vec{a} \right| + \left| \vec{b} \right| \ge \left| \vec{a} + \vec{b} \right| = 2\sqrt{10} \Rightarrow \left(AP + PM\right)_{min} = 2\sqrt{10}$$

Khi
$$\vec{a} \uparrow \uparrow \vec{b} \Leftrightarrow \frac{x_0 - 2}{2} = \frac{3 - x_0}{4} \Leftrightarrow x_0 = \frac{5}{3} \Rightarrow P\left(\frac{5}{3}; 0\right)$$

Bài tập 22. a. A, B, C, D lập thành điểm điều hòa
$$\Leftrightarrow \frac{\overrightarrow{CA}}{\overrightarrow{CB}} = -\frac{\overrightarrow{DA}}{\overrightarrow{DB}}$$
 với
$$\begin{cases} \overrightarrow{CA} = \left(-\frac{1}{2}; -1\right) \\ \overrightarrow{CB} = \left(\frac{3}{2}; 3\right) \end{cases}$$

$$\begin{split} &\Rightarrow \frac{\overrightarrow{DA}}{\overrightarrow{DB}} = \frac{1}{3}; \left(k = \frac{1}{3}\right) \Leftrightarrow \begin{cases} x_D = \frac{x_A - k.x_B}{1 - k} = -1 \\ y_D = \frac{y_A - k.y_B}{1 - k} = -3 \end{cases} \Rightarrow D(-1;-3) \\ &\text{b. } Goi \ M(x_0; y_0) \in (T), \ 2x_0 - y_0 - 1 = 0 \Leftrightarrow y_0 = 2x_0 - 1 \\ \begin{cases} \overrightarrow{EM} = \left(x_0 - 1; y_0 - 6\right) \\ \overrightarrow{FM} = \left(x_0 + 3; y_0 + 4\right) \end{cases} \Rightarrow \overrightarrow{EM} + \overrightarrow{FM} = \left(2x_0 + 2; 2y_0 - 2\right) \\ \Rightarrow \left| \overrightarrow{EM} + \overrightarrow{FM} \right| = \sqrt{\left(2x_0 + 2\right)^2 + \left(2y_0 - 2\right)^2} = 2\sqrt{5}.\sqrt{\left(x_0 - \frac{3}{5}\right)^2 + \frac{16}{25}} \ ; \ y_0 = 2x_0 - 1 \\ V_0^2 y \left| \overrightarrow{EM} + \overrightarrow{FM} \right| = \frac{8\sqrt{5}}{5} \ khi \left(x_0 - \frac{3}{5}\right)^2 = 0 \Leftrightarrow x_0 = \frac{3}{5} \Rightarrow y_0 = \frac{1}{5} \Rightarrow M\left(\frac{3}{5}; \frac{1}{5}\right) \end{cases} \\ \textbf{Bài tâp 23. a. } M(4;0) \qquad \textbf{b. } M\left(\frac{5}{3}; 0\right) \qquad \textbf{c. } C(1;2) \\ \textbf{Bài tâp 24. a. } D\left(-\frac{2}{3}; -\frac{8}{3}\right), AD = \frac{20}{3}\sqrt{2} \qquad \textbf{b. } I(1;-1) \\ \textbf{Bài tâp 25. a. } \left(1; \frac{5}{2}\right), (16;5), (1;0) \qquad \textbf{b. } M\left(\frac{11 + \sqrt{33}}{2}; 0\right) \end{cases} \\ \textbf{Bài tâp 27. } \begin{cases} x_D = \frac{x_B - k.x_C}{1 - k} \\ y_D = \frac{y_B - k.x_C}{1 - k} \Rightarrow \begin{cases} D\left(1; -\frac{3}{2}\right) \\ k = \frac{AB}{AC} = \frac{5}{3} \end{cases} \end{cases} \\ E\left(16; 6\right) \Rightarrow \begin{cases} x_J = \frac{x_A - k'.x_D}{1 - k'} \\ y_J = \frac{y_A - k'.y_D}{1 - k'} \Rightarrow \begin{cases} I(1;1) \\ k' = \frac{BA}{BD} = -2 \end{cases} \end{cases} \end{cases}$$