(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 January 2001 (25.01.2001)

PCT

(10) International Publication Number WO 01/06019 A2

(51) International Patent Classification7: C12Q 1/70, 1/68

(21) International Application Number: PCT/US00/19896

(22) International Filing Date: 20 July 2000 (20.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/144,721 20 July 1999 (20.07.1999) US Not furnished 19 July 2000 (19.07.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/144,721 (CIP)
Filed on 20 July 1999 (20.07.1999)
US Not furnished (CIP)
Filed on 19 July 2000 (19.07.2000)

(71) Applicant (for all designated States except US): V.I. TECHNOLOGIES, INC. [US/US]; 155 Duryea Road, Melville, NY 11747 (US). (72) Inventors; and

- (75) Inventors/Applicants (for US only): LAZO, Aristides [NI/US]; 22 Westwood Street, West Newton, MA 02465 (US). ZHAO, Jenny, Xiaojuan [CN/US]; 82-30 167 Street, Queens, NY 11432 (US). TASSELLO, Jodie, Ann [US/US]; Apartment 1, 637 Tremont Street, Boston, MA 02118 (US). GIBAJA, Veronica [PE/US]; Apartment 3, 86 Walnut Street, Dorchester, MA 02122 (US).
- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovksy and Popeo, P. C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: NUCLEIC ACIDS FOR DETECTING PARVOVIRUS AND METHODS OF USING SAME

(57) Abstract: Disclosed are nucleic acids that can be used as probes for detecting parvovirus in a sample of nucleic acid molecules. The nucleic acids hybridize to regions encoding a non-structural protein or structural proteins of human parvovirus strain 19 or porcine parvovirus. Also disclosed are methods for detecting and amplifying parvovirus in a sample using the nucleic acids of the invention.

06019 A2

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 Without international search report and to be republished upon receipt of that report.

WO 01/06019 PCT/US00/19896 NUCLEIC ACIDS FOR DETECTING PARVOVIRUS AND METHODS OF USING SAME

Field of the Invention

The present invention relates generally to nucleic acids and more specifically to nucleic acid molecules that can be used as probes for detecting and amplifying parvovirus.

Background of the Invention

The parvoviruses constitute a family of viruses that have been associated with diseases or conditions in multiple mammals, including dogs and humans. Parvovirus strain B19 is associated with diseases and syndromes in humans. Parvovirus strain B19 is an iscoahedral, non-enveloped DNA virus whose genome includes a single-stranded 5.6 kb DNA molecule that encodes two structural proteins, which are designated VP1 and VP2. Also encoded in the parvoviral genome is a non-structural protein, designated NS-1, which is considered important for viral DNA replication.

Several diseases and syndromes associated with parvovirus strain B19 have been described. One disease includes ertyhema infectiosum (EI), which is a common in children and is characterized by fever, headache, nausea, and diarrhea. While these symptoms are typically mild, the consequences of parvovirus infection in some individuals, such as pregnant women, can be more severe. For example, parvovirus B19 infection during pregnancy can have significant and potentially fatal effects on the fetus.

20 Summary of the Invention

10

15

25

The invention is based in part on the discovery of oligonucleotides that can be used to detect and amplify human parvovirus B19 in a biological sample. The nucleic acids of the invention are referred to herein as PRVX nucleic acids. PRVX nucleic acids of the invention can be used to detect parvovirus in biological samples, such as those containing blood and blood-derived products.

Accordingly, in one aspect the invention features nucleic acids that specifically hybridize to regions of human B19 parvovirus encoding NS and VP. Nucleic acids of the

invention include PRV1, PRV2, and PRV3 nucleic acids. Examples of PRV1 and PRV2 nucleic acids of the invention include the primers VINS-3F and VINS-3R, respectively. These primers can be used to amplify a 106 nucleotide sequence from a region encoding a non structural ("NS") protein of a human B19 parvovirus. In some embodiments, amplification occurs in a polymerase chain reaction ("PCR"). The VINS-3F oligonucleotide includes the nucleotide sequence 5'-ATGGAGCTATTTAGAGGGGT-3' (SEQ ID NO:1). The VINS-3R oligonucleotide primer includes the sequence 5'-GTTCCCAGTCAGAAGTGTCT-3' (SEQ ID NO:2). These sequences are highly conserved among human parvovirus strain B19 isolates.

5

The PCR product generated using VINS-3F and VINS-3 can be detected using a PRV3 nucleic acid of the invention. The PRV3 nucleic acid is based on the nucleotide sequence 5'-TAATGTTCTGGACTGTGCTAACGAT-3' (SEQ ID NO:3), which recognizes a nucleotide sequence in the region amplified by the VINS-3F and VINS-3R primers.

Also within the invention are PRV4, PRV5, and PRV6 nucleic acids. These nucleic acids are based on oligonucleotides derived from a region of the human B19 parvovirus encoding the viral protein (VP). PRV4 and PRV5 nucleic acids include VIVP-1F and VIVP-1R, respectively. A VIVP-1F nucleic acid includes the sequence 5'-CCCAGAGCACCATTATAAGGTGTT-3'(SEQ ID NO:4), which is highly conserved among parvovirus B19 isolates. A VIVP-1R nucleic acid includes the sequence 5'-TTATGGGACTAATGGTGCAAACC-3' (SEQ ID NO:5), which is also highly conserved among human parvovirus B19 isolates. The VIVP-1F and VIVP-1R primer pair can specifically amplify a 95 nucleotide sequence of the human parvovirus B-19 VP region. This

is shown schematically in FIG. 1.

The identity of an amplification product obtained using VIVP-1F and VIVP-1R can be confirmed by hybridizing the PCR product to a PRV6 nucleic acid of the invention. The PRV6 nucleic acid of the invention is based on an oligonucleotide named VIVP-1P, which recognizes nucleotides found between the sequences amplified by the VIVP-1F and VIVP-1R primers. The VIVP-1P probe includes the sequence 5'-

CACAATGCCAGTGGAAAGGAGGCAA-3' (SEQ ID NO:6), which is highly conserved among human parvovirus B19 strains.

Also within the invention are PRV7, PRV8, PRV9, and PRV10 nucleic acid sequences. These nucleic acids hybridize to regions encoding a viral polypeptide ("VP") of a porcine parvovirus genome. These sequences are based on the primers VIPPVP-1F, VIPPVP-1R, VIPPVP-1P, and VIPPVP-1F(Alt), respectively. The VIPPVP-1F primer includes the sequence 5'-GACCAAGGAGAACCAACTAA-3'(SEQ ID NO:7), while the VIPPVP-1R primer includes the sequence 5'-TTCATCAGCTGCTGAGAAGT-3' (SEQ ID NO:8). The VIPPVP-1P nucleic acid sequence includes the sequence 5'-

10 AAAAGAACACGACGAAGCCTACGACAAATA-3' (SEQ ID NO:9), and the VIPPVP
F(Alt) primer includes the sequence 5'-ACAGGACTAACTCTACCAGG-3' (SEQ ID NO:10).
The VIPPVP-1R primer and either the VIPPVVP-1F or VIPPVP-1F(Alt) primer can be used to amplify a region of a porcine parvovirus encoding a VP protein. The VIPPVP-1P nucleic acid hybridizes to nucleic acids located within the sequence amplified by the VIPPVP-1R

15 primer and either the VIPPVP-1F or VIPPVP-1F(Alt) primer. Accordingly, it can be used to confirm the identity of these sequences.

In addition to detecting the presence of a parvovirus in a sample of nucleic acids, these sequences can be used to amplify a control porcine parvovirus added to a sample suspected of containing a human parvovirus sample. In one embodiment of the invention, a PRV8 (e.g., SEQ ID NO:8) and a PRV7 or PRV10 (e.g., SEQ ID NO:7 or SEQ ID NO:10 nucleic acid is added along with a porcine parvovirus to a sample suspected of containing human parvovirus B19 strain, and a primer pair including PRV1 and PRV2 (e.g., SEQ ID NO:1 and SEQ ID NO:2) or PRV4 and PRV5 (e.g., SEQ ID NO:4 or SEQ ID NO:5), or both primer pairs, and amplification products are identified. The identity of amplification products can be confirmed using the corresponding confirmatory probe for a given primer pair, e.g. PRV10 (e.g., SEQ ID NO:10) when PRV7 and PRV8 nucleic acids are used as primers, PRV3 (e.g., SEQ ID NO:3) when PRV1 and PRV2 are used as primers, or PRV6 (e.g., SEQ ID NO:6) when PRV4 and PRV5 are used as primers.

20

Also included in the invention are reaction systems that include a target nucleic acid, a PRV nucleic acid system, and a polymerase. The PRVX nucleic acids are preferably present in pairs to allow for PCR mediated amplification of parvovirus in a target sample. Also provided by the invention are kits containing one or more PRVX nucleic acids.

The invention also provides methods for identifying a parvovirus nucleic acid in a sample by contacting a sample containing, or suspected of containing, a parvovirus nucleic acid with a PRVX nucleic acid. In some embodiments, the methods include PCR-mediated amplification of the parvoviral nucleic acid using one or more of the PRV primer pairs described herein. The methods may be used with various biological samples including, e.g., blood and /or blood-derived compositions (e.g., clotting factors, plasma, serum).

5

10

15

20

25

In additional aspects, the invention includes a method of amplifying a parvovirus nucleic acid present in a target sample, as well as methods of diagnosing diseases or conditions associated with parvovirus infection.

The PRV1, PRV2, PRV3, PRV4, PRV5 and PRV6 nucleic acids hybridize to most known parvovirus B19 strains and allow for the PCR-mediated amplification of the vast majority of parvovirus B19 strains. Also included in the invention is the use of a second parvovirus and PRV nucleic acids that specifically detect the second parvovirus. The second parvovirus, which is preferably porcine parvovirus, can be added to a human nucleic acid sample and used as an internal control to facilitate the monitoring of the overall efficiency of nucleic acid extraction and the presence of potentially interfering substances within the PCR amplification reaction. The porcine parvovirus is introduced into the samples and this parvoviral DNA is co-purified and co-amplified with the B19 DNA.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the

present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

5

Brief Description of the Drawings

FIG. 1 is a schematic illustration of the parvovirus B19 genome and the target regions which are amplified by use of the VINS and VIVP primers pairs.

10

15

20

Detailed Description of the Invention

The invention provides nucleic acids for detecting parvovirus. The nucleic acids include PRV1, PRV2, PRV3, PRV4, PRV5, PRV6, PRV7, PRV8, PRV9, and PRV10 nucleic acids. These nucleic acids are collectively referred to herein as "PRVX" nucleic acids, unless otherwise noted. They can be used, e.g., in amplification reactions, e.g., a polymerase chain reaction ("PCR"), to detect and amplify a parvovirus sample in a sample of nucleic acids.

PRVX Nucleic Acids

The PRV1, PRV2, PRV3, PRV4, PRV5, PRV6, PRV7, PRV8, PRV9, and PRV10 nucleic acids of the invention are based on oligonucleotide sequences SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, respectively. In some embodiments, the nucleic acids PRV1, PRV2, PRV3, PRV4, PRV5, PRV6, PRV7, PRV8, PRV9, and PRV10 include SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, respectively.

25

For example, included in the invention are PRV1 and PRV2 nucleic acids based on two oligonucleotides derived from a region encoding the non-structural ("NS") protein of human B19 parvovirus. The primers include VINS-3F and VINS-3R, which can be used to amplify

an NS region in a polymerase chain reaction ("PCR") to amplify a noncoding sequence ("NS") region of a parvovirus genome. The VINS-3F oligonucleotide includes the nucleic acid sequence

5'-ATGGAGCTATTTAGAGGGGT-3' (SEQ ID NO:1). This sequence is highly conserved among human parvovirus strain B19 isolates. The VINS-3R oligonucleotide primer includes the sequence 5'-GTTCCCAGTCAGAAGTGTCT-3'(SEQ ID NO:2).

The PCR product generated using VINS-3F and VINS-3 can be detected using a PRV3 nucleic acid of the invention. The PRV3 nucleic acid is based on sequence of the primer 5'-TAATGTTCTGGACTGTGCTAACGAT-3' (SEQ ID NO:3), which recognizes a sequence in the region amplified by the VINS-3F and VINS-3R primers. The VINS-3F oligonucleotide is highly conserved among parvovirus strain B19 isolates and can be used to confirm the identity of the PCR product generated using VINS-3F and VINS-3R. The VINS-3F and VINS-3R primer pair can specifically amplify a 106 nucleotide sequence of a human parvovirus NS region. This region is shown in FIG. 1.

Also within the invention are PRV4 and PRV5 nucleic acids. These nucleic acids are based on oligonucleotides derived from the viral protein (VP) region of a parvovirus. The nucleic acids include VIVP-1F and VIVP-1R. A VIVP-1F nucleic acid includes the sequence 5'-CCCAGAGCACCATTATAAGGTGTT-3'(SEQ ID NO:4), which is highly conserved among parvovirus B19 isolates. A VIVP-1R nucleic acid includes the sequence 5'-

TTATGGGACTAATGGTGCAAACC-3' (SEQ ID NO:5), which is also highly conserved among human parvovirus B19 isolates. The VIVP-1F and VIVP-1R primer pair can specifically amplify a 95 nucleotide sequence of the human parvovirus B-19 VP region, as is shown in

FIG. 1.

5

10

15

20

25

30

The identity of an amplification product obtained using VIVP-1F and VIVP-1R can be confirmed by hybridizing the PCR product to a PRV6 nucleic acid of the invention. The PRV6 nucleic acid of the invention is based on an oligonucleotide named VIVP-1P, which recognizes nucleotides in the product amplified by the VIVP-1F and VIVP-1R primers. The VIVP-1P probe includes the sequence 5'-CACAATGCCAGTGGAAAGGAGGCAA-3' (SEQ ID NO:6), which is highly conserved among human parvovirus B19 strains.

Also within the invention are PRV7 and PRV8 nucleic acid sequences. PRV7 and PRV8 nucleic acids include those that that specifically recognize and amplify regions of a

porcine parvovirus genome. In addition to detecting the presence of a parvovirus in a sample of nucleic acids, these sequences can be used to amplify a control porcine parvovirus added to a sample suspected of containing a human parvovirus sample. PRV7 and PRV8 nucleic acid sequences are based on porcine primers and are designated VIPPVP-1F and VIPPVP-1R, respectively. These primers are specific for a region encoding the structural viral protein (VP) of a porcine parvovirus nucleic acid. The VIPPVP-1F nucleic acid sequence includes 5'-GACCAAGGAGAACCAACTAA-3'(SEQ ID NO:7). The VIPPVP-1R primer includes the sequence 5'-TTCATCAGCTGCTGAGAAGT-3' (SEQ ID NO:8). While these primers possess a very high degree of homology (i.e., 70-100%) to other animal parvoviruses, they lack sequence homology to both human genomic sequences or other human viral sequences. The amplified product of VIPPVP-1F and VIPPVP-1R is 117 nucleotides.

10

20

25

30

An alternative nucleic acid for amplifying porcine parvoviral nucleic acids is PRV10, which is based on the sequence VIPPVP-1F(Alt), which includes the sequence 5'-ACAGGACTAACTCTACCAGG-3' (SE IQ NO:10). The sequence is located at 2358-2377 of the VP region. It produces a 168 bp PCR product when used in combination with the VIPPVP-1R primer.

The identity of an amplification product obtained using either VIPPVP-1F or VIPPVP-1F(Alt) and VIPPVP-1R can be confirmed by hybridizing the product to a PRV9 nucleic acid according to the invention. A PRV9 nucleic acid is based on an oligonucleotide probe named VIPPVP-1P. The VIPPVP-1P nucleic acid sequence includes the sequence 5'-AAAAGAACACGACGAAGCCTACGACAAATA-3' (SEQ ID NO:9). The VIPPVP-1P nucleic acid is highly homologous to regions of other porcine B19 isolates.

In one aspect, the invention provides a PRVX nucleic acid molecule. As nucleic acids do not require complete homology to hybridize, it will be apparent to those skilled in the art that the primer sequences specifically disclosed herein may be modified so as to be substantially homologous to the primer sequences disclosed herein without loss of utility as parvovirus specific detection and/or amplification primers. It is well-known in the art that hybridization of homologous and partially homologous nucleic acid sequences may be accomplished by adjusting the hybridization conditions to increase or decrease the stringency (i.e., adjusting the hybridization temperature or salt content of the buffer). Accordingly, a PRVX nucleic acid molecule according to the invention can be provided as an oligonucleotide, e.g., and can be less than about 100, e.g., 50, 31, 36, 25, 24, 23 or 22, and which includes at

least 15 nucleotides of the corresponding sequence SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, or SEQ ID NO:10. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments, and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA. In some embodiments, the PRV nucleic acid is specific for a NS sequence of a parvovirus. In other embodiments, the PRV nucleic acid is specific for a VP-encoding region of a parvovirus. Preferably, the PRV nucleic acid is homologous to a NS or VP-encoding region that is highly conserved among multiple PRV isolates. When a PRV nucleic acid is used as a primer in an extension reaction, it is provided with an extendible terminus, e.g., a 3' OH terminus, that can be extended by a polymerase.

5

10

15

20

25

30

In some embodiments, a PRVX nucleic acid molecule according to the invention forms a stable duplex with a target nucleic acid sequence at a temperature higher than 37° C, e.g., at greater than, 50° C, 55° C, 60° C, 65° C, 70° C, or more degrees.

In some embodiments, the PRVX nucleic acid molecule hybridizes to a region of a parvovirus genome but does not hybridize in significant amounts to an endogenous mammalian nucleic acid sequence, e.g., an endogenous non-viral human nucleic acid sequence.

A PRVX nucleic acid can be provided as a member of a pair of PRVX nucleic acids that, together, amplify a region of a parvovirus, e.g., in a PCR reaction. In some embodiments, the pair of PRV nucleic acids amplify a region encoding an NS polypeptide of a parvovirus, e.g., a NS encoding region of a human parvovirus such as human strain B19 parvovirus. Examples of a NS primer pair include PRV1 and PRV2, e.g., an oligonucleotide including SEQ ID NO:1 and SEQ ID NO:2.

In other embodiments, the pair of PRV nucleic acids hybridizes to a viral protein encoding region of a parvovirus, e.g., a VP encoding region of a human parvovirus such as human strain 19 parvovirus. Examples of a VP primer pair include, e.g., PRV4 and PRV5, e.g., SEQ ID NO:3 and SEQ ID NO:4. Additional examples of pairs of PRV nucleic acids that are specific for a VP encoding region is PRV7 and PRV8; and PRV10 an PRV8, PRV 10, and

PRV8, e.g., SEQ ID NO:7 and SEQ ID NO:8; and SEQ ID NO; 10 and SEQ ID NO:8. PRV7, PRV8, and PRV10 detect a nucleic acid encoding a porcine parvovirus VP.

5

10

15

20

30

The term "probes", as utilized herein, includes nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt) to about 1000 nt. The probes can be provided as oligonucleotides. As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues, in which oligonucleotide has a sufficient number of nucleotide bases to be used in a subsequent amplification reaction, *e.g.*, a PCR reaction. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt -1000 nt, *e.g.*, 12 nt, 13 nt, 14 nt, 15 nt, 17 nt, 18 nt, 19 nt, 20 nt, 21 nt, 22 nt, 23 nt, 24 nt, 25 nt, 31 nt, 50 nt, or 100 nt, 500 nt, or fewer nucleotides in length. Preferably, the oligonucleotides are about 18-22 nt in length, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.

A PRVX nucleic acid according to the invention can be provided as an isolated nucleic acid molecule. The term "isolated" nucleic acid molecule, as utilized herein, is one that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5'- and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.

A PRVX nucleic acid molecule of the invention can be chemically synthesized using well-known techniques for constructing nucleic acids, and the sequence information provided herein. Alternatively, a nucleic acid molecule of the invention can be isolated using standard molecular biology techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.)

For example, a PRVX nucleic acid can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and further characterized by DNA sequence analysis. Furthermore, oligonucleotides can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

5

10

15

20

25

30

The PRVX nucleic acid molecules in the invention can include modified nucleotides. Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

One or more of the PRVX nucleic acid molecules according to the invention can be provided with a label group attached thereto. For example, the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which contain parvovirus nucleic acid sequences (either parvovirus DNA or RNA, or both), such as by measuring a level of a parvovirus nucleic acid in a sample of cells from a subject.

A label is a substance that can be covalently attached to or firmly associated with a nucleic acid probe that will result in the ability to detect the probe. For example, a level may be a radioisotope, an enzyme substrate or inhibitor, an enzyme, a radiopaque substance (including colloidal metals), a fluorescers, a chemiluminescent molecule, liposomes containing any of the above labels, or a specific binding pair member. A suitable label will not lose the quality responsible for detectability during amplification.

Those skilled in the diagnostic art will be familiar with suitable detectable labels for use in *in vitro* detection assays. For example, suitable radioisotopes for *in vitro* use include ³H, ¹²¹I, ³²P, ³⁴C, and ³⁵S. Radio-labeled amplified fragments may be detected directly by gamma counter or by densitometry of autoradiographs, by Southern blotting of the amplified fragments combined with densitometry.

Examples of suitable chemiluminescent molecules are acridines or luminol. Target sequences hybridized with probes derivatized with acridium ester are protected from hydrolysis by intercalation. Examples of suitable fluorescers are fluorescein, phycobiliprotein, rare earth chelates, dansyl or rhodamine.

The term "labeled" is intended to encompass direct labeling of the probe by coupling (i.e., physically linking) a detectable substance to a PRV nucleic acid, as well as indirect labeling of a PRV nucleic acid by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin.

Detection Systems and Kits for Identifying Parvovirus Nucleic Acids

5

10

15

20

25

30

Also provided in the invention is a nucleic acid detection system for detecting a target nucleic acid. The system includes a target nucleic acid, one or more PRVX nucleic acids that can hybridize specifically to a parvovirus nucleic acid, and a polymerase. The system can additionally include, e.g., a control parvovirus. A preferred control parvovirus is porcine parvovirus. The system may further include reaction buffers, labels, and detection means for identifying labeled nucleic acids, e.g., labeled amplification products indicative of the presence of a parvovirus nucleic acid in the sample.

In some embodiments, two or more PRVX nucleic acids are provided in the detection system. For example, the PRV nucleic acids can be provided as a pair of PRV1 and PRV2 nucleic acids, e.g., a pair of oligonucleotides in which a PRV1 is a primer less than 31 nucleotides in length and which includes at least 15 nucleotides of SEQ ID NO:1, and a PRV2 nucleic acid is provided as a second primer less than 31 nucleotides in length and which includes at least 15 nucleotides of SEQ ID NO:2. If desired, a PRV3 nucleic acid, e.g., a nucleic acid that includes SEQ ID NO:3, can also be included in the sample.

In other embodiments, the PRV nucleic acids are provided as a pair of PRV4 and PRV5 nucleic acids. For example, the PRV4 nucleic acid can include a primer less than 31 nucleotides in length and which includes at least 15 nucleotides of SEQ ID NO:4. The PRV5 nucleic acid can be provided as a primer less than 31 nucleotides in length and including at least 15 nucleotides of SEQ ID NO:5. If desired, a PRV6 nucleic acid, e.g., a nucleic acid that includes SEQ ID NO:6, can be included in the sample.

In a further embodiment, the PRV nucleic acids in the detection system can be provided as a pair of either PRV7 or PRV10, and PRV8 nucleic acids. For example, the PRV7 nucleic acid can be provided as a primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:7, the PRV10 nucleic acid can be provided as a primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:10, and the PRV8 nucleic acid can be provided as a primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:8. If desired, a PRV9 nucleic acid, e.g., a nucleic acid that includes SEQ ID NO:9, can be included in the sample.

In still further embodiments, the reaction system includes multiple pairs of PRVX nucleic acids. For example, the reaction system can include two or more pairs of a PRV1 and PRV2 nucleic acid (and optionally a PRV3 nucleic acid), a PRV4 and PRV5 nucleic acid (and optionally a PRV6 nucleic acid), and a PRV8 nucleic acid and either PRV7 or PRV 10 nucleic acid (and optionally a PRV9 nucleic acid).

The invention also encompasses kits for detecting the presence of a parvovirus nucleic acid in a biological sample. For example, the kit can include one or more PRVX nucleic acids. The kit may alternatively, or in addition, include a control parvovirus (e.g., a porcine parvovirus) or control parvovirus nucleic acid, a labeled compound or agent capable of detecting parvovirus DNA or mRNA in a biological sample, a means for determining the amount of a parvovirus nucleic acid in the sample; and a means for comparing the amount of parvovirus in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect a parvovirus nucleic acid.

Method of Detecting a Parvovirus Nucleic Acid

10

15

20

25

The invention also provides a method of detecting a nucleic acid molecule, e.g., a parvovirus nucleic acid molecule, in a sample of nucleic acid molecules. The method includes providing a sample that includes a target nucleic acid molecule, contacting the sample with a PRV nucleic acid under conditions that allow for formation of a stable duplex between the annealed PRV nucleic acid and the target nucleic acid molecule. The annealed PRV nucleic acid can be detected directly, if desired. Alternatively, the annealed target nucleic acid molecule complex can be extended with a polymerase to form a first extended primer sequence. The extended primer sequence is identified, thereby identifying the target nucleic acid molecule in the sample of nucleic acid molecules.

5

10

15

20

25

30

In some embodiments, the first extended primer sequence is contacted with a second PRV nucleic acid to form a second annealed primer-target nucleic acid molecule complex. The second annealed target nucleic acid molecule complex is then extended with a polymerase to form a second extended primer sequence. The second extended primer sequence can be detected, if desired, or can be hybridized to the first PRV nucleic acid and used in additional cycles of amplification.

In some embodiments, a reference parvovirus is added to the sample, and one or more PRV nucleic acids capable of specifically detecting the reference parvovirus are added. A preferred reference parvovirus is porcine parvovirus, and preferred PRVX nucleic acids for detecting the parvovirus is PRV7, PRV8, PRV9, and PPRV10.

Extension with a polymerase can be used in conjunction with in any method of nucleic acid amplification known in the art. Any polymerase known in the art can be used. One of ordinary skill in the art will a recognize, for example, that an RNA-directed polymerase can be used when the PRVX nucleic acid is provided as an RNA molecule, and a DNA-directed DNA polymerase can be used when the PRVX nucleic acid is provided as a DNA molecule. Polymerase-based extension methods include, e.g., Polymerase Chain Reaction (PCR; described in U.S. Pat. Nos. 4,683,195, 4,683,202, 4,800,159, 4,965,188). PCR is an in vitro method for the enzymatic synthesis of specific DNA or RNA sequences using oligonucleotide primers that hybridize to specific nucleic acid sequences and flank the region of interest in target nucleic acid. A repetitive series of cycles of template denaturation, primer annealing and enzymatic extension of the annealed primers results in an exponential accumulation of a

specific nucleic acid fragment defined at its termini by the 5' ends of the primers. The resulting

products (PCR products) synthesized in one cycle act as templates for the next; consequently, the number of target nucleic acid copies approximately doubles in every cycle.

PCR techniques are described in, e.g., U.S. Pat. No. 4,683,195 and 4,683,202 to Mullis et al, the disclosures of which are incorporated herein as examples of the conventional techniques for performance of the PCR. The methods may also use assays that have been developed which utilize modifications of that technique. These modifications are well-known in the art

5

10

15

20

25

30

A PCR technique which provides an internal amplification standard using a competitor template which differs from the target nucleic acid in sequence and size is described in Gilliland et al., Proc.Natl.Acad.Sci.USA 87:2725-29 (1990). Another technique for performing "competitive" PCR which uses templates which differ in sequence but not in size is described in Kohsaka et al., Nuc. Acids. Res. 21:3469-72 (1993). This technique is a particularly preferred technique for its use of enzyme-linked immunoabsorbent assay (ELISA) technology to analyze the amplified nucleic acid(s). A noncompetitive PCR technique which utilizes site-specific oligonucleotides to detect mutations or polymorphisims in genes which may also be applied to the method of the invention is described in Saike et al., Proc.Natl.Acad.Sci.USA (1989) 86:6230-34.

For further background, those skilled in the art may wish to refer to Innis, et al., "Optimization of PCR's", PCR Protocols: A Guide to Methods and Applications (Acad.Press, 1990). This publication summarizes techniques to influence the specificity, fidelity and yield of the desired PCR products.

Other amplification techniques include, e.g., Strand Displacement Amplification (SDA; described by G. Walker et al., Proc. Nat. Acad. Sci. USA 89, 392 (1992); G. Walker et al., Nucl. Acids Res. 20, 1691 (1992); U.S. Pat. No. 5,270,184, the disclosure of which is hereby incorporated in its entirety by reference), thermophilic Strand Displacement Amplification (tSDA; EP 0 684 315 to Frasier et al.), Self-Sustained Sequence Replication (3SR; J. C. Guatelli et al., Proc Natl. Acad. Sci. USA 87, 1874-78 (1990)), Nucleic Acid Sequence-Based Amplification (NASBA; U.S. Pat. No. 5,130,238 to Cangene), the Q.crclbar. replicase system (P. Lizardi et al., BioTechnology 6, 1197 (1988)), or transcription based amplification (D. Y. Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173-77 (1989)).

For use in the methods of the invention, a biological sample is obtained which is suspected of containing parvovirus nucleic acid, e.g., a human parvovirus nucleic acid. For

example, the sample may comprise body fluid or cells, e.g., from a cell line, tissue or tumor. Such samples are obtained using methods known in the clinical art, e.g., tumor cells may be acquired by biopsy or surgical resection. Preferably, the cells are essentially free from "contaminants"; e.g., cells, proteins and similar components which are likely to falsify the result of the method of the invention.

Alternatively, samples can be obtained from purified, or partially purified biological fluids, e.g., blood products, or blood-derived products.

5

10

15

20

25

30

The nucleic acid to be amplified in the sample will include genomic or wild-type DNA which would normally be expected to contain parvovirus. This DNA to be amplified is obtainable from a eukaryote, preferably a mammal, e.g., a human. The sample containing the DNA of interest can be any biological sample, e.g., cells, tissues, and bodily fluids. Cells can include, e.g., erythroid precursor cells. Bodily fluids can include, e.g., blood, blood-derived products, blood-associated components such as plasma, serum or other blood-derived products. Biological fluids can also include, e.g., respiratory secretions, feces, urine, synvovial fluid, cerebrospinal fluid, lymphatic fluid and semen.

Nucleic acids can be isolated according to methods known in the art, e.g., the method described by Maniatis, et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Habor Laboratory, 1982). However, those skilled in the art will recognize that other suitable means of obtaining nucleic acids can be used.

Once the sample is obtained, the sample containing (or suspected of containing) parvovirus nucleic acid it is subjected to conditions favoring the selective amplification of the target nucleic acid. Preferably, the target nucleic acid will be a polynucleotide portion of a parvovirus sequence (i.e., the "target polynucleotide"). Preferably, the target polynucleotide is amplified by PCR.

Once the amplification step is complete, the PCR products are assayed to determine whether a parvovirus nucleic acid is present in the sample. For example, the double-stranded PCR products can be bound to a solid-phase so their strands may be separated by denaturation. This technique allows sequence-specific probes to hybridize to the bound antisense strand of the PCR product to detect the gene. Alternatively, the PCR products can be removed from the reaction environment and separated from the amplification mixture prior to the addition of probes for hybridization to the double-stranded PCR products. In this latter approach, the PCR products are separated from the amplification mixture according to methods known in the art

with regard to the particular method chosen for detection; e.g., by gel exclusion, electrophoresis, or affinity chromatography.

5

10

15

20

25

30

Detection of the amplified product may also be achieved by using hybridization probes which are stably associated with a detectable label. Examples of suitable enzyme substrates or inhibitors are compounds which will specifically-bind to horseradish peroxidase, glucose oxidase, glucose-6-phosphate dehydrogenase, beta-galactosidase, pyruvate kinase, or alkaline phosphatase acetylcholinesterase. Examples of radiopaque substance are colloidal gold or magnetic particles. The failure to detect sequences homologous to a PRVX nucleic acid indicates that no parvovirus is present in the sample.

In some embodiments, a control parvovirus nucleic acid is added to the sample, along with PRVX probes that detect the control nucleic acid. Preferably the control nucleic acid does not hybridize to PRV nucleic acids used to detect the parvovirus nucleic acid in the sample of target nucleic acids. For example, when the target nucleic acid is a human parvovirus, and PRV1 and PRV2 nucleic acids or PRV4 and PRV5 nucleic acids are used in the sample, a preferable control parvovirus nucleic acid is porcine parvovirus nucleic acid. The control porcine parvovirus is preferably detected using PRV7 and PRV8 probes.

Preferably, the porcine parvovirus nucleic acid is provided as a virus. The addition of a control virus allows for the recovery of nucleic acid in the test sample to be monitored. For example, when porcine parvovirus is added to the sample before sample centrifugation and nucleic acid extraction, the amount of sample lost to sample manipulation, e.g., during sample centrifugation, nucleic acid extraction, can be assessed. The presence of potentially inhibitory substances interfering with nucleic acid hybridization and amplification can also be determined. Introduction of a control nucleic acid thus minimizes the potential for false negative results.

The invention also provides a method of amplifying a parvovirus nucleic acid in a target nucleic acid molecule. The method includes providing a sample that includes a target nucleic acid molecule, contacting the sample with one or more PRVX nucleic acids, e.g., at least one member of a primer pair that includes PRV1 and PRV2 nucleic acids, a PRV4 and PRV5 nucleic acid, and/or a PRV7 and PRV8 nucleic acids. The PRVX nucleic acid is contacted under conditions that allow for annealing of the PRVX nucleic acid to a parvovirus target nucleic acid in the sample under conditions that allow for formation of a annealed primer-target nucleic acid molecule complex. The complex is extended with a polymerase to

form a first extended primer sequence, thereby amplifying said target nucleic acid molecule. If desired, the first extended primer sequence is contacted with the second member of the primer pair to form a second annealed primer-target nucleic acid molecule complex, and the second annealed target nucleic acid molecule complex is extended with a polymerase to form a second extended primer sequence.

5

10

15

20

25

30

Also within the invention are methods of diagnosing a disease or condition, or assessing a susceptibility to a disease or condition, based on the presence of a parvovirus nucleic acid in the sample. The method includes providing a nucleic acid from a subject, e.g., a human subject, suspected of having or being at risk for, the parvovirus-associated disease. The sample is contacted with one or more PRVX nucleic acids, e.g., at least one member of a primer pair that includes PRV1 and PRV2 nucleic acids, a PRV4 and PRV5 nucleic acid, and/or a PRV7 and PRV8 nucleic acids. The PRVX nucleic acid is contacted under conditions that allow for annealing of the PRVX nucleic acid to a parvovirus target nucleic acid in the sample under conditions that allow for formation of an annealed primer-target nucleic acid molecule complex. The complex can be detected directly, if desired. Alternatively, the complex annealed parvovirus target is amplified, and the amplified product is detected. Amplification can occur by extending the complex with a polymerase to form a first extended primer sequence. If desired, the first extended primer sequence is contacted with the second member of the primer pair to form a second annealed primer-target nucleic acid molecule complex, and the second annealed target nucleic acid molecule complex is extended with a polymerase to form a second extended primer sequence. The presence of the complex, or of the amplified parvovirus nucleic acid, indicates the presence of, or susceptibility to, of the disease, in the subject.

The parvovirus associated diseases or conditions can include, e.g., aplastic crises, including transient aplastic crises occurring as a result of cessation of erythropoiesis.

Transient aplastic crisis (TAC) is the abrupt cessation of erythropoiesis characterized by reticulocytopenia, absent erythroid precursors in the bone marrow and precipitous worsening of anemia. TAC, due to B19 infection, has been described in a wide-range of patients with underlying hemolytic disorders, including, e.g., hereditary spherocytosis; thalassemia; red cell enzymopathies (e.g., pyruvate kinase deficiency), and autoimmune hemolymic anemia. Other diseases include, e.g., erythema infectiosum (which is also referred to as fifth disease, slapped

disease, academy rash, Sticker's disease), polyarthorpathy syndrome, hydrops, myocarditis, and neurological disease.

The invention will be further illustrated in the following examples, which do not limit the scope of the appended claims.

Example 1. PCR Amplification and Detection of Parvovirus Using PRVX Nucleic Acids

PCR-mediated amplification is performed using a multiplexed or single primer pair reaction tube. The multiplexed reaction includes the addition of the NS primers VINS-3F and VINS-3R, the VP primers VIVP-1F and VIVP-1R, and the porcine parvovirus primers VIPPVP-1F and VIPPVP-1R to a single reaction tube. The amplification reaction results in the formation of three PCR products: one for the NS region; one for the VP region; and one for the VP region of the PPV internal control. The single primer pair reaction amplification is performed in three separate reaction tubes: one containing the NS primers; one containing the VP primers; and one containing the PPVVP primer.

10

15

20

25

30

Three primer pairs are used within individual tubes which contain the following reaction mixtures: 10-20 μM of each primer, 1x Reaction Buffer (10 mM Tris-HCl, pH 8.3; 50 mM KCl), 2.0-4.0 mM MgCl₂, 200-300 μM each of dATP, dGTP, dCTP and dTTP (the dTTP is usually substituted with 200-600 μM of dUTP when AmpErase® is used), 0.2 to 1.0 units of AmpErase®, and 1-2 units of *Taq* polymerase. Amplification is achieved through 40-43 PCR cycles consisting of: denaturing at 95°C for 10-30 seconds, annealing at 55-62°C for 15-45 seconds, and extension at 72°C for 15-45 seconds, followed by 10 minutes at 72°C.

The three primer pairs are used together in a single reaction tube (i.e., all primers contained within one tube).

The resulting PCR products are detected using two different methods.

Method 1: PCR products are separated by agarose and/or polyacrylamide gel electrophoresis, stained with SYBR green dye (Molecular Probes, Eugene, OR), ethidium bromide, and visualized by exposure to a suitable light source, e.g. 254 nm UV light source. The product is identified as B19-specific or PPV-specific by liquid or Southern blot hybridization with the specific B19 or PPV probes previously discussed in Sections 1-3.

Method 2: The second method of detection is based upon fluorophore-labeled probes that hybridize to the specific PCR product (i.e., B19 or PPV) and emits light of a known-wave length upon exposure to a UV light. These detection methods include the TaqMan® and Molecular Beacons® detection methods developed by Roche Molecular Systems, Inc. New Jersey and Dr. Fred Kramer Public Health Research Institute, New York, respectively. The emitted light, which is a function of the overall quantity of the PCR products, can be quantitated by use of a very sensitive diode detector. The later system allows amplification and detection of multiple targets in the same PCR by labeling each probe with a different fluorophore.

10 Other Embodiments

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

What is claimed is:

An isolated nucleic acid molecule less than 31 nucleotides and comprising at least 15 nucleotides of a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO:2,
 SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, and SEQ ID NO:9.

- 2. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule forms a stable duplex with a target nucleic acid sequence at a temperature of at least 50° C.
- 3. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule is less than 22 nucleotides in length.
- 4. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule includes a label.
 - 5. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule is DNA.
- 6. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule does not hybridize to an endogenous human nucleic acid sequence.
 - 7. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule hybridizes to nucleic acid encoding a non-structural protein of a parvovirus.
- 25 8. The nucleic acid molecule of claim 7, wherein said human parvovirus is strain B19 parvovirus.
 - 9. The nucleic acid molecule of claim 7, wherein said nucleic acid molecule comprises SEQ ID NO:1.

30

10. The nucleic acid molecule of claim 7, wherein said nucleic acid molecule comprises SEQ ID NO:2.

- 11. The nucleic acid molecule of claim 7, wherein said nucleic acid molecule comprises SEQ ID NO:3.
 - 12. The nucleic acid molecule of claim 12, wherein said nucleic acid molecule hybridizes to a viral protein (VP)-encoding region of a parvovirus.
- 10 13. The nucleic acid of claim 12, wherein said parvovirus is a human strain B19 parvovirus.
 - 14. The nucleic acid molecule of claim 13, wherein said nucleic acid molecule comprises at least 15 nucleotides of a sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6.
 - 15. The nucleic acid molecule of claim 13, wherein said nucleic acid molecule comprises SEQ ID NO:4.
- 20 16. The nucleic acid molecule of claim 13, wherein said nucleic acid molecule comprises SEQ ID NO:5.
 - 17. The nucleic acid molecule of claim 13, wherein said nucleic acid molecule comprises SEQ ID NO:6.

25

- 18. The nucleic acid of claim 12, wherein said parvovirus is a human strain B19 parvovirus.
- The nucleic acid molecule of claim 18, wherein said nucleic acid molecule comprises
 at least 15 nucleotides of a sequence selected from the group consisting of SEQ ID NO:7, SEQ
 ID NO:8, and SEQ ID NO:9

20. The nucleic acid molecule of clam 18, wherein said nucleic acid molecule comprises SEQ ID NO:7.

- 21. The nucleic acid molecule of claim 18, wherein said nucleic acid molecule comprises SEQ ID NO:8.
 - 22. The nucleic acid molecule of claim 9, wherein said nucleic acid molecule comprises SEO ID NO:9.
- 10 23. A nucleic acid detection system comprising
 - a target nucleic acid;

15

20

25

a first and second primer elected from the group consisting of

a first primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:1, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:2; a

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:4, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:5; and

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:7, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:8; and a polymerase.

- 24. The nucleic acid detection system of claim 23, further comprising a nucleic acid selected from the group consisting of SEQ ID NO:3, SEQ ID NO:6, and SEQ ID NO:9.
 - 25. The nucleic acid detection system of claim 24, further comprising a control parvovirus nucleic acid.
- 30 26. The nucleic acid system of claim 23, wherein said detection system comprises two of said primer pairs.

27. The nucleic acid system of claim 23, wherein said detection system comprises three of said primer pairs.

- The nucleic acid system of claim 26, wherein said detection system comprises two or
 more nucleic acids from the group consisting of SEQ ID NO:3, SEQ ID NO:6, and SEQ ID NO:9.
 - 29. The nucleic acid system of claim 26, wherein said detection system comprises two or more nucleic acids from the group consisting of SEQ ID NO:3, SEQ ID NO:6, and SEQ ID NO:9
 - 30. A kit comprising in one or more containers one or more of the nucleic acids selected from the group consisting of
- a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:1;

10

20

25

30

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:2;

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:3;

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:4;

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO: 5;

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:6;

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:7;

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:8; and

a nucleic acid less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:9.

31. A method of detecting a parvovirus nucleic acid molecule in a sample of nucleic acid molecules, the method comprising:

providing a sample comprising a target nucleic acid molecule;

contacting said sample with at least one member of a primer pair under conditions that allow annealing of said primer pair member to a homologous target nucleic acid molecule in said sample, thereby forming a first annealed primer-target nucleic acid molecule complex, wherein said primer pair includes a first or second primer elected from the group consisting of

a first primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:1, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:2; a

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:4, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:5; and

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:7, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:8;

extending said first annealed target nucleic acid molecule complex with a polymerase to form a first extended primer sequence; and

20

5

10

15

identifying said extended primer sequence, thereby identifying a nucleic acid molecule in said sample of nucleic acid molecules.

- 32. The method of claim 31, further comprising
- contacting the first extended primer sequence with the second member of said primer pair to form a second annealed primer-target nucleic acid molecule complex; and

extending said second annealed target nucleic acid molecule complex with a polymerase to form a second extended primer sequence.

30 33. The method of claim 31, wherein said sample includes a reference parvovirus nucleic acid.

34. The method of claim 31, wherein said reference parvovirus is a porcine parvovirus.

- 35. The method of claim 31, wherein said extended primer is identified using a third primer selected from the group consisting of SEQ ID NO:3, SEQ ID NO:6, or SEQ ID NO:9.
- 36. The method of claim 31, wherein said target nucleic acid is contacted with at least two of said primer pairs.
- 37. A method of detecting a human parvovirus nucleic acid molecule in a sample of nucleic acid molecules, the method comprising:

5

15

20

25

30

providing a sample comprising a target nucleic acid molecule and a control porcine parvovirus nucleic acid;

contacting said sample with at least one member of a first primer pair and a second primer pair under conditions that allow annealing of said first and second primer pair member to a homologous target nucleic acid molecule in said sample, thereby forming a first and second annealed primer-target nucleic acid molecule complex, wherein said primer pair includes a first or second primer elected from the group consisting of

a first primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:1, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:2; and

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:4, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:5, wherein said second primer pair includes a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:7, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:8;

extending said first and second annealed target nucleic acid molecule complex with a polymerase to form a first and second extended primer sequences; and

identifying said first and second extended primer sequences; thereby identifying a nucleic acid molecule in said sample of nucleic acid molecules.

38. The method of claim 37, wherein said extended primer is identified using a third primer selected from the group consisting of SEQ ID NO:3, SEQ ID NO:6, or SEQ ID NO:9.

- 39. The method of claim 37, wherein said method comprises contacting said nucleic acid with two of said first primer pairs.
 - 40. A method of amplifying a target nucleic acid molecule; the method comprising providing a sample comprising a target nucleic acid molecule;

contacting said sample with at least one member of a primer pair under conditions that

allow annealing of said primer pair member to a homologous target nucleic acid molecule in
said sample, thereby forming a first annealed primer-target nucleic acid molecule complex;
wherein said primer pair includes a first or second primer elected from the group consisting of

15

20

30

a first primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:1, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:2; a

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:4, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:5; and

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:7, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:8;

extending said first annealed target nucleic acid molecule complex with a polymerase to form a first extended primer sequence, thereby amplifying said target nucleic acid molecule.

- 25 41. The method of claim 40, said method further comprising

 contacting the first extended primer sequence with the second member of said primer

 pair to form a second annealed primer-target nucleic acid molecule complex; and

 extending said second annealed target nucleic acid molecule complex with a

 polymerase to form a second extended primer sequence.
 - 42. A method for diagnosing the presence or susceptibility associated with a disease or condition associated with parvovirus infection in a subject, the method comprising

providing a sample comprising a nucleic acid from said subject;

5

10

15

contacting said sample with at least one member of a primer pair under conditions that allow annealing of said primer pair member to a homologous target nucleic acid molecule in said sample, thereby forming a first annealed primer-target nucleic acid molecule complex, wherein said primer pair includes a first or second primer elected from the group consisting of

a first primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:1, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:2; a

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:4, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:5; and

a first primer less then 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:7, and a second primer less than 31 nucleotides in length and comprising at least 15 nucleotides of SEQ ID NO:8;

extending said first annealed target nucleic acid molecule complex with a polymerase to form a first extended primer sequence; and

identifying said extended primer sequence, wherein the identification of an extended primer sequence indicates that said subject has or susceptible to a disease or condition associated with parvovirus infection.

FIG. 1

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 January 2001 (25.01.2001)

PCT

(10) International Publication Number WO 01/06019 A3

(51) International Patent Classification7: C12Q 1/70, 1/68

(21) International Application Number: PCT/US00/19896

(22) International Filing Date: 20 July 2000 (20.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/144,721 20 July 1999 (20.07.1999) US 09/619,420 19 July 2000 (19.07.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/144,721 (CIP)
Filed on 20 July 1999 (20.07.1999)
US Not furnished (CIP)
Filed on 19 July 2000 (19.07.2000)

(71) Applicant (for all designated States except US): V.I. TECHNOLOGIES, INC. [US/US]; 155 Duryea Road, Melville, NY 11747 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LAZO, Aristides [NI/US]; 22 Westwood Street, West Newton, MA 02465 (US). ZHAO, Jenny, Xiaojuan [CN/US]; 82-30 167 Street, Queens, NY 11432 (US). TASSELLO, Jodie, Ann [US/US]; Apartment 1, 637 Tremont Street, Boston, MA 02118 (US). GIBAJA, Veronica [PE/US]; Apartment 3, 86 Walnut Street, Dorchester, MA 02122 (US).

- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovksy and Popeo, P. C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 16 August 2001

[Continued on next page]

(54) Title: NUCLEIC ACIDS FOR DETECTING PARVOVIRUS AND METHODS OF USING SAME

(57) Abstract: Disclosed are nucleic acids that can be used as probes for detecting parvovirus in a sample of nucleic acid molecules. The nucleic acids hybridize to regions encoding a non-structural protein or structural proteins of human parvovirus strain 19 or porcine parvovirus. Also disclosed are methods for detecting and amplifying parvovirus in a sample using the nucleic acids of the invention.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Inte ional Application No PCT/US 00/19896

A. CLASS IPC 7	ification of subject matter C12Q1/70 C12Q1/68		
According t	o International Patent Classification (IPC) or to both national classif	lication and IPC	
B. FIELDS	SEARCHED		
IPC 7	ocumentation searched (classification system followed by classification C12Q		
Documenta	tion searched other than minimum documentation to the extent that	t such documents are included in the fields s	searched .
Electronic d	lata base consulted during the international search (name of data t	base and, where practical, search terms use	d)
WPI Da	ta, STRAND, EPO-Internal, BIOSIS, F	PAJ, MEDLINE, EMBASE	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
х	DURIGON EDISON L ET AL: "Multip pairs for polymerase chain react amplification of human parvoviru DNA."	ion (PCR)	1-42
	JOURNAL OF VIROLOGICAL METHODS, vol. 44, no. 2-3, 1993, pages 15 XP000982119 ISSN: 0166-0934		
	the whole document	,	
	•	-/	
	· ·		
	·		
X Furth	er documents are listed in the continuation of box C.	Patent family members are listed	in annex.
•	egories of cited documents :	"T" later document published after the inte or priority date and not in conflict with	ernational filing date
conside	nt defining the general state of the art which is not ered to be of particular relevance ocument but published on or after the international	cited to understand the principle or th invention	eory underlying the
filing da	ate nt which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do	be considered to
citation	s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cannot be considered to involve an in	ventive step when the
other m "P" documen	neans nt published prior to the international filling date but	document is combined with one or moments, such combination being obvious in the art.	us to a person skilled
later the	an the priority date claimed ctual completion of the international search	*8* document member of the same patent Date of mailing of the international sea	
	5 February 2001	01/03/2001	
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	•
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fav (-31-70) 340-3016	Reuter, U	

Inte ional Application No
PCT/US 00/19896

0 (0 1)		PCT/US 00/19896
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Delevent to object to
oulogoly .	ondivir of occurrent, with indication, where appropriate, of the resevant passages	Relevant to claim No.
X	CARRIERE CHRISTIAN ET AL: "Rapid and sensitive method for the detection of B19 virus DNA using the polymerase chain reaction with nested primers." JOURNAL OF VIROLOGICAL METHODS, vol. 44, no. 2-3, 1993, pages 221-234, XP000982116 ISSN: 0166-0934 the whole document	1-42
X	A HEMAUER ET AL: "Sequence variability among different parvovirus B19 isolates" JOURNAL OF GENERAL VIROLOGY, GB, SOCIETY FOR GENERAL MICROBIOLOGY, READING, no. 77, 1996, pages 1781-1785, XP002079559 ISSN: 0022-1317 the whole document	1-42
x	FR 2 771 751 A (ASSIST PUBL HOPITAUX DE PARIS) 4 June 1999 (1999-06-04) page 1-4; examples 4,5	1-8,10, 30
X	WO 96 09391 A (VON POBLOTZKI ANDREAS ; WOLF HANS (DE); GIGLER ANDREAS (DE); MODROW) 28 March 1996 (1996-03-28) page 2; figures 1,2; examples 1,5	1-9,30
X	WO 98 05769 A (WRIGHT JIM A ;YOUNG AIPING H (CA); GENESENSE TECHNOLOGIES INC (CA)) 12 February 1998 (1998-02-12) page 48, line 19	1-8, 12-15,18
X .	WO 98 24913 A (RIBOZYME PHARM INC) 11 June 1998 (1998-06-11)	1,2,4-8, 12,13, 18,19,21
	page 40, line 21	
	SHADE R O ET AL: "NUCLEOTIDE SEQUENCE AND GENOME ORGANIZATION OF HUMAN PARVOVIRUS B19 ISOLATED FROM THE SERUM OF A CHILD DURING APLASTIC CRISIS" JOURNAL OF VIROLOGY,US,NEW YORK, US, vol. 58, no. 3, 1 June 1986 (1986-06-01), pages 921-936, XP002005737 ISSN: 0022-538X the whole document	1-42
	-/ 	
	•	·
	•	
	•	

Inte ional Application No
PCT/US 00/19896

		PCT/US 00/19896
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	NIKKARI SIMO ET AL: "A rapid and safe method to detect fetal parvovirus B19 infection in amniotic fluid by polymerase chain reaction: Report of a case." AMERICAN JOURNAL OF PERINATOLOGY, vol. 12, no. 6, 1995, pages 447-449, XP000982103 ISSN: 0735-1631 abstract; figure 1	1-42
A	NGUYEN QT ET AL: "Detection of an erythrovirus sequence distinct from B19 in a child with acute anaemia (letter)" LANCET THE,GB,LANCET LIMITED. LONDON, vol. 352, no. 9139, 7 November 1998 (1998-11-07), page 1524 XP002102846 ISSN: 0140-6736 the whole document	1-42
A	BERGERON J ET AL: "Genomic organization and mapping of transcription and translation products of the NADL-2 strain of porcine parvovirus." VIROLOGY, vol. 197, no. 1, 1993, pages 86-98, XP002160563 ISSN: 0042-6822 the whole document	1-42

Information on patent family members

Inte Ional Application No PCT/US 00/19896

Patent document cited in search report	t	Publication date		Patent family member(s)	Publication date
FR 2771751	A	04-06-1999	AU EP WO	1440399 A 1037916 A 9928439 A	16-06-1999 27-09-2000 10-06-1999
WO 9609391	A	28-03-1996	AU EP	3698595 A 0783580 A	09-04-1996 16-07-1997
WO 9805769	Α	12-02-1998	AU CN EP JP 2 US	3617597 A 1231694 A 0917569 A 000517167 T 5998383 A	25-02-1998 13-10-1999 26-05-1999 26-12-2000 07-12-1999
W0 9824913	Α	11-06-1998	US AU	5807743 A 7625898 A	15-09-1998 29-06-1998