

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A01N 63/00		A3	(11) International Publication Number: WO 95/01098 (43) International Publication Date: 12 January 1995 (12.01.95)
(21) International Application Number: PCT/US94/07252 (22) International Filing Date: 24 June 1994 (24.06.94) (30) Priority Data: 08/083,948 28 June 1993 (28.06.93) US		(81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FL, GE, HU, JP, KE, KG, KR, KZ, LK, LV, MD, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(71) Applicant: MONSANTO COMPANY [US/US]; 800 North Lindbergh Boulevard, St. Louis, MO 63167 (US). (72) Inventors: CORBIN, David, Richard; 14453 Britannia Drive, Chesterfield, MO 63017 (US). GREENPLATE, John, Thomas; 747 Sherwick Terrace, Manchester, MO 63021 (US). JENNINGS, Michael, Girard; Apartment 307, 14550 Rialto Drive, Chesterfield, MO 63017 (US). PURCELL, John, Patrick; 615 Charbray Drive, Ballwin, MO 63011 (US). SAMMONS, Robert, Douglas; P.O. Box 69, New Melle, MO 63365 (US). (74) Agent: BOLDING, James, Clifton; Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167 (US).		(88) Date of publication of the international search report: 16 February 1995 (16.02.95)	

(54) Title: METHOD OF CONTROLLING INSECTS

(57) Abstract

3-Hydroxysteroid oxidase controls insects. Genes encoding for this enzyme may be cloned into vectors for transformation of plant-colonizing microorganisms or plants, thereby providing a method of controlling insect infestation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NB	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

INTERNATIONAL SEARCH REPORT

International application No
PCT/US 94/07252

A. CLASSIFICATION OF SUBJECT MATTER
IPC 5 A01N63/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 5 A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol.196, no.3, 15 November 1993, NEW YORK pages 1406 - 1403 J.P. PURCELL ET AL. 'Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae.' see the whole article -----	1-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- '&' document member of the same patent family

2

Date of the actual completion of the international search

Date of mailing of the international search report

5 December 1994

21.12.94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

DECORTE, D

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A01N 63/00		A2	(11) International Publication Number: WO 95/01098 (43) International Publication Date: 12 January 1995 (12.01.95)
(21) International Application Number: PCT/US94/07252 (22) International Filing Date: 24 June 1994 (24.06.94) (30) Priority Data: 08/083,948 28 June 1993 (28.06.93) US		(81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI, GE, HU, JP, KE, KG, KR, KZ, LK, LV, MD, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(71) Applicant: MONSANTO COMPANY [US/US]; 800 North Lindbergh Boulevard, St. Louis, MO 63167 (US). (72) Inventors: CORBIN, David, Richard; 14453 Britannia Drive, Chesterfield, MO 63017 (US). GREENPLATE, John, Thomas; 747 Sherwick Terrace, Manchester, MO 63021 (US). JENNINGS, Michael, Girard; Apartment 307, 14550 Rialto Drive, Chesterfield, MO 63017 (US). PURCELL, John, Patrick; 615 Charbray Drive, Ballwin, MO 63011 (US). SAMMONS, Robert, Douglas; P.O. Box 69, New Melle, MO 63365 (US). (74) Agent: BOLDING, James, Clifton; Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167 (US).			
(54) Title: METHOD OF CONTROLLING INSECTS			
(57) Abstract 3-Hydroxysteroid oxidase controls insects. Genes encoding for this enzyme may be cloned into vectors for transformation of plant-colonizing microorganisms or plants, thereby providing a method of controlling insect infestation.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

METHOD OF CONTROLLING INSECTS

FIELD OF THE INVENTION

This invention relates to a method of controlling lepidopteran insects by use of an enzyme which may be applied directly to the plant or produced thereon by microorganisms or by genetically modifying the plant to produce the enzyme, and to genes, microorganisms, and plants useful in that method.

BACKGROUND OF THE INVENTION

The use of natural products, including proteins, is a well known method of controlling many insect pests. For example, endotoxins of *Bacillus thuringiensis* (*B.t.*) are used to control both lepidopteran and coleopteran insect pests. Genes producing these endotoxins have been introduced into and expressed by various plants, including cotton, tobacco, and tomato. There are, however, several economically important insect pests that are not susceptible to *B.t.* endotoxins. There is also a need for additional proteins which control insects for which *B.t.* provides control in order to manage any development of resistance in the population.

It is therefore an object of the present invention to provide proteins capable of controlling lepidopteran insects and genes useful in producing such proteins. It is a further object of the present invention to provide genetic constructs for and methods of inserting such genetic material into microorganisms and plant cells. It is another object of the present invention to provide transformed microorganisms and plants containing such genetic material.

SUMMARY OF THE INVENTION

It has been discovered that proteins that catalyze the oxidation of 3-hydroxysteroids, for example, cholesterol, will control lepidopteran insects. They cause mortality and stunting of larvae of lepidopteran insects. The enzymes may be applied directly to plants or introduced in other ways such as through the application of plant-colonizing micro-organisms or by the plants themselves, which have been transformed to produce the enzymes.

3-Hydroxysteroid oxidases (E.C.1.1.3.6) are naturally produced by microorganisms such as *Streptomyces* sp., *Pseudomonas* sp., *Mycobacterium* sp., *Schizophyllum commune*, *Nocardia* sp., and *Rhodococcus* sp. [Smith et al., 1976, and Long et al., 1990.].

5 Preparations of enzymes from several different sources are available from Sigma Chemical Company, St. Louis, Missouri.

New *Streptomyces* genes that control the expression of 3-hydroxysteroid oxidase have been isolated and sequenced. These new genes or genes from other known producers of 3-hydroxysteroid oxidase
10 may be inserted into a transformation vector cassette which is used to transform plant-colonizing microorganisms which when applied to plants express the genes producing a 3-hydroxysteroid oxidase, thereby providing control of insects. Alternatively, genes which function in plants and encode the subject enzymes may be inserted into
15 transformation vector cassettes which may be incorporated into the genome of the plant, which then protects itself from attack by expressing the gene and producing a 3-hydroxysteroid oxidase. Additionally, the plant may also be transformed to co-express *B.t.* genes which express proteins for the control of other insects. Examples of
20 plants transformed to express *B.t.* genes are disclosed in European Patent Publication No. 0 385 962 (Fischhoff et al.).

In accomplishing the foregoing, there is provided, in accordance with one aspect of the present invention, a method of controlling insect infestation of plants comprising providing a 3-hydroxysteroid oxidase for
25 ingestion by the insect.

In accordance with another aspect of the present invention, there is provided a method of producing genetically transformed plants which express an amount of a 3-hydroxysteroid oxidase effective to control lepidopteran insects, comprising the steps of:

30 a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising
(i) a promoter which functions in plant cells to cause the production of an RNA sequence;
(ii) a structural coding sequence that encodes for
35 3-hydroxysteroid oxidase; and

(iii) a 3' non-translated region which functions in said plant cells to cause the addition of polyadenylate nucleotides to the 3' end of the RNA sequence,
wherein said promoter is heterologous with respect to the structural coding sequence and wherein said promoter is operatively linked with said structural coding sequence, which is in turn operably linked with said non-translated region;

5 b) obtaining transformed plant cells; and
c) regenerating from the transformed plant cells genetically transformed plants which express an insecticidally effective amount of sterol oxidase.

10

There is also provided, in accordance with another aspect of the present invention, bacterial and transformed plant cells that contain DNA comprised of the above-mentioned elements (i), (ii), and (iii).

15 As used herein, the term "controlling insect infestation" means reducing the number of insects which cause reduced yield, either through mortality, retardation of larval development (stunting), or reduced reproductive efficiency.

As used herein, the term "structural coding sequence" means a
20 DNA sequence which encodes for a polypeptide, which may be made by a cell following transcription of the DNA to mRNA, followed by translation to the desired polypeptide.

DETAILED DESCRIPTION OF THE INVENTION

25 3-Hydroxysteroid oxidases catalyze the oxidation of the 3-hydroxy group of 3-hydroxysteroids to produce ketosteroids and hydrogen peroxide. They are capable of catalyzing the oxidation of various 3-hydroxysteroids, such as, for example, cholesterol. Most of the previously known 3-hydroxysteroid oxidases are called "cholesterol oxidases" (enzymatically catalogued as E.C. #1.1.3.6) but cholesterol is only one of the 3-hydroxysteroid substrates. The use of all 3-hydroxy-steroid oxidases and the genes encoding such proteins, for the purpose of controlling insects, are within the scope of the present invention.

30 3-Hydroxysteroid oxidases are commercially available for use as reagents for serum cholesterol assays. For example, Sigma Chemical

Company, St. Louis, Missouri, offers three such 3-hydroxysteroid oxidases (denominated as cholesterol oxidases), one from a *Streptomyces* sp., one from a *Pseudomonas fluorescens*, and one from a *Brevibacterium*. Two other sources of 3-hydroxysteroid oxidase, two streptomycetes 5 denominated A19241 and A19249, each of which produce a 3-hydroxy-steroid oxidase, have been isolated. The organisms were collected in Madagascar. When these organisms were cultured according to usual methods the culture filtrates were found to affect insect larvae as described below.

10 A seed culture of A19249 was started in 55 mL sterile Tryptone-Yeast Extract broth, pH 6.8, in a 250 mL shake flask. The seed was agitated at 250 rpm on a rotary shaker for 3 days at 30 °C. A New Brunswick Bioflo II Bioreactor with a 2 L working volume was filled with "medium 202" ($MgSO_4 \cdot 7H_2O$ 2 g/L, KH_2PO_4 0.5 g/L, NaCl 0.5 g/L, 15 $CaCO_3$ 1 g/L, $ZnSO_4 \cdot H_2O$ (1 mg/mL stock) 5 mL/L, 100 mM FeEDTA 0.5 mL/L, Soluble Starch 5 g/L, Dextrose 2.5 g/L, Malt Extract 2.5 g/L, Soytone 5 g/L). The pH was adjusted to 6.5 with 2.5 N NaOH or 1 N HCl, and 1 mL/L of P2000, an antifoam agent was added. The bioreactor was sealed and autoclaved for 25 min at 250 °C. The seed, at 20 3 days growth, was used to inoculate the fermentor at 2% or 40 mL. The fermentation took place at 30 °C with an airflow of 1 L/min and agitation running at 500 rpm. The fermentation was harvested after 40 h.

Each of these enzymes has demonstrated control of insects as 25 shown below. The *P. fluorescens* 3-hydroxysteroid oxidase is immunologically distinct from the *Streptomyces* enzymes, but it also controls insects.

Other organisms producing 3-hydroxysteroid oxidases of the present invention may be identified by assaying culture filtrates or 30 individual proteins for 3-hydroxysteroid oxidase activity using a spectrophotometric assay, described below, which measures hydrogen peroxide production in the presence of a 3-hydroxysteroid, for example, cholesterol [Gallo, 1981].

BIOEFFICACY ASSAYS

Larval Bioassay

Lepidopteran larvae were tested on artificial agar-based diet

5 (Marrone et al., 1985) treated with the indicated amount of the A19249
 3-hydroxysteroid oxidase (cholesterol oxidase) for six days. The results
 are shown in Table 1. Percent stunting is defined as
 $\frac{\text{larval weights (Hepes control)} - \text{larval weights (cholesterol oxidase)}}{\text{larval weights (Hepes control)}}$
 $\times 100\%$

10 larval weights (Hepes control)

An extended test was performed with tobacco budworm larvae to
 test the effect of the stunting noted in the six-day test. Tobacco
 budworm eggs were added to artificial diet (as described above)
 containing either buffer or 100 ppm A19249 3-hydroxysteroid oxidase
 15 (cholesterol oxidase). After seven days, some mortality as compared to
 the controls was noted. Surviving larvae were moved to fresh diet
 (control or treated, as appropriate) every seven days. Percent mortality
 (corrected for control mortality) is reported for the 7, 10, and 14 day
 periods in Table 2. The corrected number of larvae was 23. By the 27th
 20 day only two larvae were alive; both were very stunted and never
 pupated. 92% of the control larvae survived and all survivors pupated
 by day 27. This experiment demonstrates that 3-hydroxysteroid oxidase
 essentially arrests the development of tobacco budworm larvae.

25 Table 1

Insect	Stage	Dose- $\mu\text{g/mL}$	Stunting
tobacco budworm	egg/lv	30	0
	lv	100	86%
corn earworm	lv	50	0
	lv	100	35%
fall army worm	lv	30	0
tobacco hornworm	lv	30	0
	lv	100	30%
pink bollworm	lv	50	0
35	lv	100	30%

European cornborer	lv	50	0
	lv	100	46%
beet armyworm	lv	100	76%
black cutworm	lv	100	68%

Table 2

<u>Interval (days)</u>	<u>Percent Mortality</u>
7	20
10	61
10	14
	80

MODE OF ACTION STUDIES

The following studies show that 3-hydroxysteroid oxidase has a direct effect on the insect itself and that the activity demonstrated in 15 the experiments described above cannot be attributed to the enzymes effect on the insect's diet, for example by sterol depletion. Boll weevil and lepidopteran larvae are most susceptible to the enzyme. It is believed that this specificity is due to the effect of 3-hydroxysteroid oxidase on the midgut of the insect as explained in more detail below.

20 Other insects with similar midgut physiologies may also be controlled by 3-hydroxysteroid oxidase. In addition, 3-hydroxysteroid oxidases other than those tested and reported herein may control a different spectrum of insects with different midgut physiologies.

25 Cotton Seed Diet Assay

Treatment diet was made by mixing 30 g of Pharmamedia™ (Traders Protein) cottonseed flour into 170 mL of a 1.6% agar solution at 50 °C, containing 0.13% propionic acid, 0.014% phosphoric acid, and 30 mg each of streptomycin sulfate and chlor-tetracycline. Before mixing, 30 10% KOH was used to adjust the pH to 6.2. Pharmamedia™ is a flour made up of cottonseed embryos. The diet was incubated in a water bath at 40 °C. Dilutions of the Sigma *Streptomyces* 3-hydroxysteroid oxidase (cholesterol oxidase) were incorporated into the diets. Tobacco budworm larvae are 68% stunted when exposed to 3-hydroxysteroid oxidase (100 ppm) in cottonseed diet.

Cotton Callus Diet Assay

Cotton callus assays were conducted using Coker 312 cotton callus and a 96 well insect diet tray. Each well contained 0.5 ml of gelled 5 2% agar (containing 0.13% propionic acid and 0.014% phosphoric acid) that was covered with a filter paper disc. A piece of callus (approximately 150 mg) was placed in each well. For each replicate, 25 µl of a stock solution of 3-hydroxysteroid oxidase (1.25 mg/ml stock) or 25 µl of 25 mM Hepes buffer (pH 7.5) was pipetted onto each piece of 10 callus. Tobacco budworm eggs (4-8 eggs/well, 0-12 hr from hatching) in 0.15% agar were pipetted onto the filter disc next to the callus. Individual larvae were transferred to freshly treated callus samples every three days. Larvae were weighed after 10 days.

Stunting of larvae was observed in the treated wells, although 15 reduced as compared to the artificial diet or the cottonseed diet. This reduced level of stunting with cotton callus is probably due to the pipetted enzyme solution not completely covering the callus tissue and the loss of some enzyme onto the filter paper.

20 Pre-ingestion Effect on Diet

There are no lethal or stunting effects from feeding larvae a diet sample that was incubated for one week with a 3-hydroxysteroid oxidase and then heated to 80 °C to denature the enzyme prior to using it in the above assay. This further demonstrates that the mode of action of 25 3-hydroxysteroid oxidase is not dependent on sterol depletion of the nutrient source but that the enzyme is directly active upon the insect.

Microscopy Studies

Tobacco budworm larvae were reared from eggs on artificial diet 30 containing 100 µg/ml of 3-hydroxysteroid oxidase or Hepes buffer control. After ten days, midgut epithelia were dissected and processed for microscopy as described by Purcell et al., 1993. The midguts from treated larvae exhibited a variety of histological and ultrastructural alterations as compared with Hepes buffer-treated controls. 3-Hydroxy-35 steroid oxidase induced a lateral constriction and apical-basal elongation

of the cells in the midgut epithelium, resulting in a widening of the inter-cellular spaces and the formation of an irregular and convoluted luminal surface. The cellular attenuation was also characterized by localized apical cytoplasmic blebbing and microvillar denudation. This denudation 5 occasionally generated detached cytoplasmic fragments in the lumen. Localized cytolysis was observed, but the epithelium as a whole remained intact. These observations suggest that exposure to 3-hydroxysteroid oxidase compromises the integrity of the apical plasma membrane which results in a secondary generalized cellular 10 hypersensitivity to osmotic swelling and lysis.

Cholesterol is required for the integrity and normal function of virtually all cellular membranes. A reduction in the availability of cholesterol for incorporation into and maintenance of cellular membranes due to metabolism by 3-hydroxysteroid oxidase could therefore 15 be one possible mechanism for toxicity of this agent. However, the observations described above show the most dramatic structural alterations are localized to the tips of the midgut cells in contact with the 3-hydroxysteroid oxidase in the gut lumen. This suggests that 3-hydroxysteroid oxidase may act directly to alter cholesterol already 20 incorporated into the membrane. In addition, diet treatment studies described above demonstrated that the diet was not altered prior to ingestion in a manner which compromises tobacco budworm growth, again suggesting a direct effect of the enzyme on the insect.

25 Mode of Action Theory

While not being bound by this theory, it is believed that the 3-hydroxysteroid oxidase enzyme stunts the growth of lepidopteran larvae by some action in the gut after ingestion. The bioassay and morphological data show that there was clearly a pathological condition 30 resulting from ingestion of diet containing 3-hydroxysteroid oxidase.

ENZYME IDENTIFICATION

The active proteins from the Madagascar *Streptomyces* micro-organisms were isolated, purified, partially sequenced, and identified as 35 3-hydroxysteroid oxidases.

Protein Isolation

Each culture filtrate was purified by first sizing on YM10 membranes (Amicon) to a [>10 kDa] fraction, followed by multiple chromatography runs on an FPLC Mono Q HR10/10 (Pharmacia LKB, Piscataway, NJ) column. For chromatography on the Mono Q column, the samples were loaded on the column in 25 mM Hepes pH 7.5 and eluted with a gradient to 1.0 M KCl in 25 mM Hepes pH 7.5. Fractions were collected and aliquots of each were filtered through 0.2 μ Acrodisc syringe tip filters. Each was tested in an insect assay. Aliquots of insecticidally active fractions were electrophoresed on SDS-PAGE [Laemmli, 1970] using a Daiichi Double Gel Device and 10-20% mini-gel. Proteins were visualized by silver staining using Daiichi silver stain reagent kit. The active enzymes of the present invention, isolated from the novel microorganisms, were found to be a 52.5 kDa protein.

15

Amino Acid Sequences

An SDS-PAGE gel of the protein produced by *Streptomyces* A19241, isolated as above, was blotted onto PVDF paper (Immobilon, Millipore) using the protocol of Matsudaira [Matsudaira, 1987]. The N-terminus was sequenced using automated Edman degradation chemistry. A gas phase sequencer (Applied Biosystems, Inc.) was used for the degradation using the standard sequencer cycle. The respective PTH-aa derivatives were identified by reverse phase HPLC analysis in an on-line fashion employing a PTH analyzer (Applied Biosystems, Inc.) fitted with a Brownlee 2.1 mm i.d. PTH-C18 column. For internal sequences, digestions were carried out on purified 3-hydroxysteroid oxidase from A19249 using trypsin (TPCK-treated, from Worthington Biochemicals Corp., Freehold, NJ). Fragments were then purified by reverse phase HPLC and sequenced in an N-terminal fashion.

20

The resulting partial sequences were compared to known proteins and a strong (71%) homology was found with the reported fourteen amino acid sequence at the N-terminus of a 3-hydroxysteroid oxidase isolated from a *Streptomyces* species [Ishizaki et al., 1989]. The reported enzyme has an M_r of 54.9 kDa which agrees well with the M_r of 52.5 kDa of the isolated enzyme.

25

Six internal fragments of the purified enzyme from A19249, also having homology to six regions of the reported enzyme, were sequenced. The fragments had 95, 76, 64, 58, 89, and 100 percent sequence identities.

5

Amino Acid Composition Determination and Comparison

The amino acid composition of the 3-hydroxysteroid oxidase produced by A19249 was determined and compared with the composition of the reported *Streptomyces* enzyme. The samples were 10 subjected to acid hydrolysis (6N HCl, vapor phase hydrolysis using a Water's Picotag workstation, 24 hr, 110 °C.). All analyses were performed after post-column derivation of the hydrolysates using ninhydrin [Moore et al., 1963]. A Beckman Model 6300 Auto analyzer was employed for the actual determinations. The S delta n/N statistic is 15 used to compare two compositions in order to make a prediction about their relatedness. The formula for the statistic is:

$$1/2 \sum (n_{Ai} - n_{Bi})^2/N$$

where A is one composition, B is the other composition, i is each amino acid, n is the number of each amino acid, N is the total number of amino acids in the protein. If S delta n/N is <0.42, then there is a greater than 20 95% chance that the proteins are related. The smaller the value, the more closely the determined compositions match.

The S delta n/N statistic for the A19249 protein compared to the reported enzyme is 0.36, indicating that the two are highly related.

25

3-Hydroxysteroid Oxidase Assay

The identity of the enzyme was confirmed by testing its ability to oxidize a 3-hydroxysteroid, specifically cholesterol. The enzyme is added to a reagent mixture comprising horseradish peroxidase (20 U/mL), 30 phenol (14 mM), 4-amino antipyrine (0.82 mM), Triton® X-100 (0.05%) and phosphate buffer (100 mM, pH 7). The sterol in isopropanol is then added and the absorbance at 500 nm monitored. One unit of activity is defined as the amount of enzyme required to oxidize 1 µmole of sterol per minute at 20 °C.

35 The activity levels of the enzymes are reported in Table 12 for 3-

hydroxysteroids representative of various classes of 3-hydroxysteroids.

The enzyme sources are as follows:

1 = A19249

2 = A19241

5 3 = Sigma *Streptomyces*

4 = Sigma *Pseudomonas*

Table 3
Relative Rate for Enzymes

<u>Sterol</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>
10 cholesterol	100	100	100	100
dihydrocholesterol	56	56	59	69
dehydrocholesterol	13	12	7	47
lathosterol	28	34	27	71
stigmasterol	22	28	11	21
15 sitosterol	88	65	49	50
campesterol*	65	64	45	49
fucosterol	22	20	12	68
lanosterol	<1	<1	<1	1
ecdysone	<1	<1	<1	<1
20 20-OH ecdysone	<1	<1	<1	<1

*65/35 mixture of campesterol and dihydrobrassicasterol

Immunological Comparison of Enzymes

The Sigma *Streptomyces* enzyme is immunologically related to the
 25 3-hydroxysteroid oxidases produced by the isolates of the present
 invention, numbers A19241 and 19249, as demonstrated by Western
 blotting [Burnette et al., 1981] using polyclonal antisera generated
 against the Sigma *Streptomyces* enzyme. The antisera recognized both
 enzymes produced by the isolates. The 3-hydroxysteroid oxidase from *P.*
 30 *fluorescens* was not recognized by the antisera. This demonstrates that
 immunologically distinct 3-hydroxysteroid oxidases are toxic to insects.

GENETIC IDENTIFICATION

The 3-hydroxysteroid oxidase gene was isolated from one of the
 35 *Streptomyces* microorganisms isolated in Madagascar and its sequence

determined.

Cloning of the 3-Hydroxysteroid Oxidase Gene from A19249

As discussed above, peptide sequences of purified 3-hydroxysteroid oxidase from A19249 were obtained for four regions of the protein. These peptide sequences were compared to a database of known protein sequences, and this comparison revealed that the A19249 protein showed a high degree of homology to a known 3-hydroxysteroid oxidase from *Streptomyces* [Ishizaki]. Comparing the A19249 peptide sequences to this known protein sequence, these peptides were assigned to their likely positions in the A19249 protein sequence. The sequence derived from the intact 3-hydroxysteroid oxidase from A19249 corresponded to a region near the N-terminus of the secreted form of the enzyme from the published sequence. From this it was concluded that the A19249 N-terminal peptide sequence was also likely to correspond to a "mature" secreted form of the protein lacking its putative secretory signal sequence. This was later confirmed by the DNA sequence analysis of the A19249 gene (see below). Three peptides were used to construct hybridization probes for isolation of the A19249 3-hydroxysteroid oxidase gene. Peptide N2 (SEQ ID NO:1) corresponded to N-terminal amino acids 29 - 43 of the known mature protein sequence (sequence without the putative signal peptide); peptide C1 (SEQ ID NO:2) to amino acids 434 - 449 of the mature protein sequence; and peptide C2 (SEQ ID NO:3) to amino acids 464 - 475 of the mature protein sequence.

N2 (SEQ ID NO:1):
ValSerThrLeuMetLeuGluMetGlyGlnLeuTrpAsnGlnPro

C1 (SEQ ID NO:2):
AlaPheAlaAspAspPheCysTyrHisProLeuGlyGlyCysValLeu

C2 (SEQ ID NO:3): AsnLeuTyrValThrAspGlySerLeuIleProGly

Based on these peptide sequences, three long nondegenerate oligonucleotides, corresponding to 3-hydroxysteroid oxidase peptide sequences from A19249, were designed using *Streptomyces* preferred codons. The oligonucleotides N2 (SEQ ID NO:4), C1 (SEQ ID NO:5), and C2 (SEQ ID NO:6) correspond to the peptides N2, C1, and C2 described above.

N2 Probe (SEQ ID NO:4):

gtgtccaccctgatgtggagatggccagctgttggaaaccaggccc

C1 Probe (SEQ ID NO:5):

gccttcgcgcacgacttctgttaccaccggctcgccggctgcgtcctg

5 C2 Probe (SEQ ID NO:6): aacctctacgtgaccgacggttcgctgtccgggt
Probes N2 (SEQ ID NO:4), C1 (SEQ ID NO:5), and C2 (SEQ ID
NO:6) were all used as hybridization probes on Southern blots of A19249
genomic DNA. All three probes hybridized to the same 2.2 kb band in
BamHI digested DNA, but N2 (SEQ ID NO:4) hybridized to a different
10 fragment than C1 (SEQ ID NO:5) and C2 (SEQ ID NO:6) did in SalI and
BglII digests. This indicated that SalI and BglII cut within the coding
sequence of the 3-hydroxysteroid oxidase gene from A19249, which was
confirmed by DNA sequence analysis.

The 3-hydroxysteroid oxidase gene from A19249 was isolated using
15 the three synthetic oligonucleotides as hybridization probes on a library of
DNA fragments of A19249 DNA in a lambda phage vector. A library was
made in lambda EMBL3 using partial-digest MboI DNA fragments of
A19249. These probes were used to screen approximately 72,000 lambda
phage plaques from the primary library. Primary plaque screening was
20 performed using N2 (SEQ ID NO:4) plus C2 (SEQ ID NO:6). A total of 12
recombinant plaques that hybridized to the N and C-terminal probes were
picked and purified by a second round of hybridization screening with
probes N2 (SEQ ID NO:4) and C2 (SEQ ID NO:6). Southern blot analysis
revealed that, in five of six lambda clones analyzed, a 2.2 kb BamHI frag-
25 ment hybridized to both the N and C-terminal probes. This result con-
firmed the earlier Southern hybridization analysis that indicated a 2.2 kb
BamHI fragment contained the 3-hydroxysteroid oxidase gene. This 2.2
kb DNA fragment was cloned into plasmid vector pUC18 [Yanisch-Perron
et al., 1985] in both orientations for further analysis. Restriction mapping
30 showed that there were internal SalI and BglII sites as predicted by the
Southern hybridization analysis. These sites are also conserved com-
pared to the published 3-hydroxysteroid oxidase gene sequence. The
BamHI fragment was further subcloned into four fragments for direct
DNA sequencing.

Sequence Analysis of the 3-Hydroxysteroid Oxidase Gene

A total of 1865 nucleotides of DNA sequence from the 2.2 kb BamHI fragment were determined by direct DNA sequence analysis of subclones of this fragment using the dideoxy chain termination method.

5 This sequence is identified as SEQ ID NO:7. This DNA sequence contains noncoding flanking regions at both the 3' and 5' ends. Analysis of this DNA sequence revealed a single long open reading frame that encodes a secretory signal peptide and the mature 3-hydroxysteroid oxidase protein of 43 and 504 amino acids, respectively. It is 84.37% identical to the

10 published 3-hydroxysteroid oxidase nucleotide sequence. The derived amino acid sequence is 81.685% identical to the published 3-hydroxysteroid oxidase sequence. It is identified as SEQ ID NO: 8. Examination of the A19249 DNA sequence and comparison to the N-terminal amino acid sequence of intact 3-hydroxysteroid oxidase from A19249 revealed that

15 the A19249 gene encoded a protein that includes a signal peptide sequence, which is apparently cleaved during secretion of the protein from the cells. Thus the N-terminus of the mature protein from A19249 begins with Ser-Gly-Gly-Thr-Phe, identified as SEQ ID NO:12.

20

GENETIC TRANSFORMATION

A 3-hydroxysteroid oxidase gene can be isolated from novel organisms or may be obtained from known sources, such as the *Rhodococcus* sp. described by Long et al., in WO 90 05,788. This gene may then be used to transform bacterial cells or plant cells to enable the production of 3-

25 hydroxysteroid oxidase and carry out methods of this invention. Examples of how this may be done with the gene of A19249 are given below.

Mutagenesis of the A19249 Gene

In order to incorporate the A19249 gene into vectors appropriate

30 for expression of the 3-hydroxysteroid oxidase in heterologous bacterial or plant hosts, it was necessary to introduce appropriate restriction sites near the ends of the gene. The goals of this mutagenesis were to create cassettes that included the protein coding sequence with minimal non-coding flanking sequences and to incorporate useful restriction sites to

35 mobilize these cassettes. Cassettes were designed that would allow mobili-

zation of the intact coding sequence including the signal peptide or just the mature coding sequence. To incorporate these cassettes into appropriate bacterial or plant expression vectors, an NcoI restriction site was engineered at the N-terminus of the intact protein sequence or at the

5 N-terminus of the mature protein sequence. A BamHI site was engineered just after the termination codon of the intact coding sequence.

Three mutagenesis primers were designed to create these cassettes, as shown below. Mutagenesis with primer Chosn (SEQ ID NO:9) substituted three amino acids (MAT) for valine and asparagine at the N-

10 terminus of the signal peptide of the intact protein and Chomnr (SEQ ID NO:10) added two amino acids (MA) at the N-terminus of the mature protein. This was necessary to allow incorporation of the NcoI restriction site. Mutagenesis with primer Cho3br (SEQ ID NO:11) incorporated a BamHI site at the 3' end of the coding sequence. Primers Chomnr and

15 Cho3br were used to direct formation of the antisense strand of DNA.
Chosn (SEQ ID NO:9): CTCAGGAGCACCATGGCGACCGCACAC

(NcoI site underlined)

Chomnr (SEQ ID NO:10): GTGCCGCCGGAGGCCATGGGGCGGTGGC

(NcoI site underlined)

20 Cho3br (SEQ ID NO:11):

GCCCCGCCGTCGGATCCGTCAAGAACCCG (BamHI site underlined)

The resulting modified sequences were identified as SEQ ID NO:13
encoding for the intact protein and SEQ ID NO:14 for the mature protein.

25 Expression of 3-Hydroxysteroid Oxidase in *E. coli*

The NcoI-BamHI fragments containing either the intact protein coding sequence or the mature protein coding sequence were inserted into a vector designed for protein expression in *E. coli*, vector pKK233-2 (Pharmacia LKB, Piscataway, NJ). pKK233-2 contains the IPTG-

30 inducible trc promoter. The vector containing the intact (full length) protein coding sequence as modified (SEQ ID NO:13) is designated pMON20909. The vector containing the mature protein coding sequence as modified (SEQ ID NO:14) is designated pMON20907. *E. coli* XL1 Blue cells (Statagene, San Diego, CA) modified with pMON20909 expressed 3-

35 hydroxysteroid oxidase at higher levels of enzymatic activity than cells

modified with pMON20907. The protein was extracted and purified from 4
1 of IPTG-induced *E. coli* containing pMON20909. The soluble fraction
from sonicated bacterial lysate was concentrated and dialyzed, and then
partially purified by Mono Q chromatography to yield 11 units of 3-hydroxy-
5 steroid oxidase activity. Western blot analysis indicates that the signal
sequence of the intact protein is cleaved in *E. coli*, but the exact site of
cleavage was not determined. Analysis of the recovered protein showed a
five-fold reduction in enzymatic activity relative to the A19249 protein,
but the loss has not been explained by DNA sequencing which found no
10 alterations that would explain loss of enzymatic activity in plant
protoplasts or *E. coli*.

The recovered protein was tested against tobacco budworm and
resulted in 88% stunting at a dose of 100 µg/ml.

15 Expression of 3-Hydroxysteroid Oxidase in Plant Colonizing Bacteria

To control insects, it may be desirable to express 3-hydroxysteroid
oxidase in plant colonizing bacteria, and then apply this bacteria to the
plant. As the insect feeds on the plant, it ingests a toxic dose of 3-hydroxy-
steroid oxidase produced by the plant colonizers. Plant colonizers can be
20 either those that inhabit the plant surface, such as *Pseudomonas* or *Agro-*
bacterium species, or endophytes that inhabit the plant vasculature such
as *Clavibacter* species. For surface colonizers, the 3-hydroxysteroid
oxidase gene may be inserted into a broad host range vector capable of
replicating in these Gram-negative hosts. Examples of these such vectors
25 are pKT231 of the IncQ incompatibility group [Bagdasarian et al., 1981]
or pVK100 of the IncP group [Knauf, 1982]. For endophytes the 3-hydroxy-
steroid oxidase gene can be inserted into the chromosome by homologous
recombination or by incorporation of the gene onto an appropriate trans-
poson capable of chromosomal insertion in these endophytic bacteria.

30

Plant Gene Construction

The expression of a plant gene which exists in double-stranded DNA
form involves transcription of messenger RNA (mRNA) from one strand
of the DNA by RNA polymerase enzyme, and the subsequent processing
35 of the mRNA primary transcript inside the nucleus. This processing

involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to 5 associate with the DNA and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding strand of RNA.

A number of promoters which are active in plant cells have been described in the literature. Such promoters may be obtained from plants 10 or plant viruses and include, but are not limited to, the nopaline synthase (NOS) and octopine synthase (OCS) promoters (which are carried on tumor-inducing plasmids of *Agrobacterium tumefaciens*), the cauliflower mosaic virus (CaMV) 19S and 35S promoters, the light-inducible promoter from the small subunit of ribulose 1,5-bisphosphate carboxylase 15 (ssRUBISCO, a very abundant plant polypeptide), and the Figwort Mosaic Virus (FMV) 35S promoter. All of these promoters have been used to create various types of DNA constructs which have been expressed in plants (see e.g., PCT publication WO 84/02913).

The particular promoter selected should be capable of causing 20 sufficient expression of the enzyme coding sequence to result in the production of an effective amount of 3-hydroxysteroid oxidase. A preferred promoter is a constitutive promoter such as FMV35S. It has been observed to provide more uniform expression of heterologous genes in the flowering portions of plants. Use of such a promoter with the 3-hydroxysteroid 25 oxidase gene may provide greater protection of cotton bolls and squares from insect damage, than other promoters.

The promoters used in the DNA constructs (i.e. chimeric plant genes) of the present invention may be modified, if desired, to affect their control characteristics. For example, the CaMV35S promoter may be 30 ligated to the portion of the ssRUBISCO gene that represses the expression of ssRUBISCO in the absence of light, to create a promoter which is active in leaves but not in roots. The resulting chimeric promoter may be used as described herein. For purposes of this description, the phrase "CaMV35S" promoter thus includes variations of CaMV35S promoter, 35 e.g., promoters derived by means of ligation with operator regions, random

or controlled mutagenesis, etc. Furthermore, the promoters may be altered to contain multiple "enhancer sequences" to assist in elevating gene expression. Examples of such enhancer sequences have been reported by Kay et al. (1987).

5 The RNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNA's, from
10 suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs wherein the non-translated region is derived from the 5' non-translated sequence that accompanies the promoter sequence. As shown below, a plant gene leader sequence which is useful in the present invention is the petunia heat shock protein
15 70 (Hsp70) leader. [Winter et al.]

As noted above, the 3' non-translated region of the chimeric plant genes of the present invention contains a polyadenylation signal which functions in plants to cause the addition of adenylate nucleotides to the 3' end of the RNA. Examples of preferred 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylate signal of *Agrobacterium* tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene and (2) plant genes like the soybean 7s storage protein genes and the pea ssRUBISCO E9 gene. [Fischhoff et al.]

25 Plant Transformation and Expression

A chimeric plant gene containing a structural coding sequence of the present invention can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of *Agrobacterium tumefaciens*, as well as those
30 disclosed, e.g., by Herrera-Estrella (1983), Bevan (1983), Klee (1985) and EPO publication 0 120 516 (Schilperoort et al.). In addition to plant transformation vectors derived from the Ti or root-inducing (Ri) plasmids of *Agrobacterium*, alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve,
35 for example, the use of liposomes, electroporation, chemicals that increase

free DNA uptake, free DNA delivery via microprojectile bombardment, and transformation using viruses or pollen.

A particularly useful Ti plasmid cassette vector for transformation of dicotyledonous plants is pMON11782. The expression cassette

5 pMON11782 consists of the FMV35S promoter, the petunia Hsp70 5' untranslated leader, and the 3' end including polyadenylation signals from the pea ssRUBISCO E9 gene. Between the leader and the 3' polyadenylation signals is a multilinker containing multiple restriction sites, including a BamHI site for the insertion of genes. pMON11782 also

10 contains a HindIII site before the promoter sequence.

The remainder of pMON11782 contains a segment of pBR322 (New England Biolabs, Beverly, MA) which provides an origin of replication in *E. coli*; the oriV region from the broad host range plasmid RK1 which allows replication in *Agrobacterium* strain ABI; the streptomycin-15 spectinomycin resistance gene from Tn7; and a chimeric NPTII gene, containing the CaMV35S promoter and the nopaline synthase (NOS) 3' end, which provides kanamycin resistance in transformed plant cells.

Another particularly useful Ti plasmid cassette vector is pMON17227. This vector is described by Barry et al. in WO 92/04449

20 and contains a gene encoding an enzyme conferring glyphosate resistance which is an excellent selection marker gene for many plants.

Transient Expression of 3-Hydroxysteroid Oxidase in Tobacco Plants

Both 3-hydroxysteroid oxidase gene cassettes, that is the gene

25 encoding intact protein with the signal sequence and that encoding only the mature protein, each modified at the N-terminus as described above, were mobilized as NcoI-BamHI fragments and inserted into a transient expression vector that had been cut with NcoI and BamHI. A transient expression vector is a simple plasmid containing a plant promoter with a

30 5' nontranslated leader, a 3' nontranslated polyadenylation sequence, and between them a multilinker having multiple restriction sites for insertion of a protein coding sequence. The constructed vectors placed the 3-hydroxy-steroid oxidase gene under the control of the FMV35S promoter with the petunia HSP70 leader sequence discussed above. At the 3' end terminator

35 region is the non-translated polyadenylation signal terminator region of

the nopaline synthase gene. A plasmid containing the intact protein coding sequence (SEQ ID NO:13) was identified and named pMON20910. A plasmid containing the modified mature protein coding sequence (SEQ ID NO:14) was identified and named pMON20908.

5 pMON20910 and pMON20908 are vectors for expression of 3-hydroxysteroid oxidase genes in plant cells, but these vectors lack appropriate sequences for use in *Agrobacterium*-mediated plant transformation. However, these vectors can be used for either transient expression of 3-hydroxysteroid oxidase in plant cells, or they can be used to
10 generate stably transformed cotton plants via free DNA delivery such as biolistic bombardment of cotton meristems.

For transient expression analysis, plasmid DNA samples from pMON20908 and pMON20910 vectors were purified and introduced into tobacco via electroporation. Freeze-thaw extraction followed by a nine-
15 fold concentration of soluble fractions on Centricon-10 filter concentrators allowed unambiguous detection of 3-hydroxysteroid oxidase activity in all cell lysates, immunologically by Western blot assay and enzymatically. The activity of the lysate from cells containing pMON20908, that is the coding sequence for the modified mature protein, was approximately ten-
20 fold lower than that recovered from cells containing pMON20910.

Western blot analysis indicated that the signal sequence is cleaved in protoplasts, although not necessarily with the fidelity necessary to generate a processed protein identical in form and activity to that naturally secreted by *Streptomyces* A19249.

25

Stable Transformation of Dicots with a 3-Hydroxysteroid Oxidase Gene

pMON20908 and pMON20910 were used to construct vectors for stable transformation of dicots with *Agrobacterium*. Each was partially digested with the restriction enzyme NotI to generate DNA fragments
30 containing the FMV35S promoter, the petunia HSP70 leader, either the intact [full length] or mature 3-hydroxysteroid oxidase coding sequence, and nos 3' polyadenylation site. Partial digestion was necessary because in addition to NotI sites flanking the expression cassette, there are two NotI sites within the cholesterol oxidase gene - one within the coding region
35 for the signal peptide and one within the coding region for the mature pro-

tein. The NotI partial digest fragments containing the entire expression cassettes are isolated using agarose gel electrophoresis and purified by extraction from the agarose. These NotI fragments are inserted into NotI-digested plasmid pMON17227, which is described by Barry et al. in 5 WO 92/04449. pMON20913 was identified as containing the intact coding sequence. pMON20923 was identified as containing the mature coding sequence.

These vectors were introduced into disarmed *Agrobacterium* host ABI and used to transform tobacco in tissue culture. Selection for glyphosate resistance led to several transformed lines for each vector. For 10 pMON20913, four out of 18 lines were confirmed as 3-hydroxysteroid oxidase expressors by Western blot assay. For pMON20923, four out of 29 lines were confirmed as 3-hydroxysteroid oxidase expressors by Western blot assay. Analysis of the lines transformed with pMON20913 15 confirm the presence of the 3-hydroxysteroid oxidase activity. The highest expressing plant had an expression level of 0.2% of total protein, which is equivalent to 54 ng of enzyme per mg of wet tissue.

Vectors containing the intact or mature 3-hydroxysteroid oxidase cassette express the active enzyme in the cytoplasm of the plant cell. 20 There has been no evidence of secretion outside the transformed cells. Some bacterial secretory signal sequences have been shown to function in plant cells. It may be desirable to direct most or all of the 3-hydroxysteroid oxidase protein into the plant secretory pathway. To achieve this, it may be advantageous to use a signal sequence derived from a plant 25 gene rather than a bacterial signal. An example of such a signal is that from the tobacco PR1b gene, described by Cornelissen et al. pMON 10824, disclosed in EP Publ. 0 385 962, is a plant transformation vector designed for the expression of the lepidopteran active *B.t. kurstaki* protein. In pMON10824, the *B.t.k.* coding sequence is fused to the PR1b signal 30 sequence plus 10 amino acids of the mature PR1b coding sequence. This *B.t.k.* fusion gene is driven by the CaMV35S promoter containing a duplicated enhancer. Other vectors carrying the PR1B signal and CaMV35S promoter may also serve as the source of these elements. To create a vector in which the PR1b signal is fused to the 3-hydroxysteroid 35 oxidase gene, a DNA fragment containing the CaMV35S promoter

sequence and the PR1B signal sequence is used to replace the fragment containing the FMV promoter and HSP70 leader sequences in pMON 20913 and pMON20923. This results in plasmids in which the 3-hydroxy-steroid oxidase coding sequence (either mature protein or intact protein cassette) is fused to the amino terminal secretory signal from the PR1b gene and is driven by the CaMV35S promoter. NcoI restriction enzyme sites at the 3' end of the PR1B signal-containing fragment and the 5' end of the modified 3-hydroxysteroid oxidase protein coding sequence allows in-frame translational fusions between the two elements. pMON20930 and 10 pMON20932 are plant transformation vectors that carry such fusions between PR1B signal sequence and either the intact cholesterol oxidase and the mature cholesterol oxidase, respectively. A similar plasmid may be constructed wherein the 3-hydroxysteroid oxidase gene is under the control of the FMV35S promoter. Such plasmids are mobilized into a 15 disarmed *Agrobacterium* host and used to transform dicots. Thus, these plants produce a 3-hydroxysteroid oxidase that is secreted into the extracellular space.

In some cases, proteins that enter the plant secretory pathway are targeted to different cellular compartments such as the vacuole. It may 20 be desirable to direct the 3-hydroxysteroid oxidase to the vacuole of plant cells. In this case, the vectors described above in which the PR1b signal is used are further modified to include vacuolar targeting sequences derived from known plant vacuolar enzyme genes.

It may also be desirable to retain the 3-hydroxysteroid oxidase in 25 the lumen of the endoplasmic reticulum (ER). In this case, vectors in which the PR1b signal is used to target the protein to the secretory pathway are further modified to include sequences known to encode ER retention signals. These sequences are added such that the four-amino acid-long ER retention peptides (such as HDEL (SEQ ID NO:15) and 30 KDEL (SEQ ID NO:16) are fused to the carboxy terminus of the 3-hydroxysteroid oxidase. Site-directed oligonucleotide mutagenesis is used to introduce these additions to the carboxy-terminus coding sequence of 3-hydroxysteroid oxidase. pMON20937 and pMON20938 are vectors in which the peptides HDEL (SEQ ID NO:15) and RGSEKDEL (SEQ ID 35 NO:17) are introduced, respectively, into pMON20932.

It may also be advantageous to direct the localization of the 3-hydroxysteroid oxidase protein to another cellular compartment, the chloroplast. Proteins can be directed to the chloroplast by including at their N-termini a chloroplast transit peptide (CTP). One CTP that has

5 worked to localize heterologous proteins to the chloroplast is that derived from the RUBISCO small subunit gene of *Arabidopsis*, denoted *ats1A*. A variant of this transit peptide that encodes the transit peptide, 24 amino acids of mature RUBISCO sequence, plus a reiteration of the transit peptide cleavage site has been constructed for the successful chloroplast

10 localization of the *B.t.k.* protein (Wong, 1992). Vectors containing the *Arabidopsis* *ats1A* transit peptide fused to the *B.t.k.* gene may be used as the base for constructing vectors for the chloroplast localization of the 3-hydroxysteroid oxidase protein. For example, pMON10817, constructed of the *Arabidopsis* RUBISCO small subunit promoter from the *ats1A*

15 gene, the native *ats1A* 5' untranslated leader, the *ats1A* chloroplast transit peptide variant described above and a truncated *B.t.k.* enzyme gene is digested with restriction enzymes NotI and NcoI. A NotI - NcoI DNA fragment containing the promoter, leader and transit peptide is used to replace a NotI - NcoI fragment carrying the FMV promoter and HSP70

20 leader sequences in pMON20913 and pMON20923. These reactions construct plasmids pMON20929 and pMON20931 in which the 3-hydroxysteroid oxidase coding sequence (either intact protein or mature protein cassette, respectively) is fused at its amino terminus to the chloroplast transit peptide and is transcribed from the *ats1A* promoter. Alternatively,

25 a similar plasmid may be constructed to replace the *ats1A* promoter with the CaMV35S or FMV35S promoters. Such plasmids are mobilized into disarmed *Agrobacterium* hosts and used to transform dicots. Thus, these plants produce a 3-hydroxysteroid oxidase that is localized to the chloroplast.

30 It may also be advantageous to direct the 3-hydroxysteroid oxidase to another subcellular compartment, the mitochondria. Examples of proteins that are normally localized to the mitochondria and for which the targeting sequences are known include cytochrome C1 which is localized to the mitochondrial intermembrane space (Braun, 1992) and the β

35 subunit of ATP synthase which is localized to the mitochondrial matrix

(Boutry, 1987). Mitochondrial targeting DNA sequences encoding the amino terminal mitochondrial targeting peptides are isolated using the polymerase chain reaction (PCR). Oligonucleotide primers corresponding to the amino and carboxy terminal portions of these targeting sequences 5 are used to PCR-amplify first strand cDNA that has been generated from mRNA using reverse transcriptase. The oligonucleotide primers have NcoI restriction enzyme sites attached so that the amplified product, when cleaved with NcoI, can be inserted into the NcoI sites at the amino terminus of the cloned 3-hydroxysteroid oxidase gene cassettes. Thus, 10 various forms of 3-hydroxysteroid oxidase fused to mitochondrial targeting peptides can be expressed in plants using promoters such as CaMV35S or FMV35S, and can be localized to the mitochondria.

Stable Transformation of Monocots

15 A 3-hydroxysteroid oxidase gene may be stably incorporated into the genome of monocots using the vectors and methods described in WO 93/19189 (Brown et al.). The gene can be inserted in an appropriate vector, for example pMON19653 and pMON19643, described by Brown et al. The resulting construct contains a cassette of the CaMV E35S 20 promoter, the Hsp70 intron, the CP4 glyphosate selection marker, and the NOS terminator; a cassette of the CaMV E35S promoter, the Hsp70 intron, the GOX glyphosate selection marker, and the NOS terminator; and a single NotI site for insertion of a gene expression cassette containing a 3-hydroxysteroid oxidase gene, such as SEQ ID NO:13 or 25 SEQ ID NO:14.

This vector is inserted by bombardment of embryogenic tissue culture cells using a biolistic particle gun as described by Brown et al. Transformed cells are selected for glyphosate resistance and whole plants are regenerated. Insect-resistant plants may be confirmed to be 30 expressing the gene by Western blot analysis, esterase activity assay, or insect resistance assay.

Targeting of the protein to certain cellular compartments is also possible in monocots using the signal sequences described above.

From the foregoing, it will be seen that this invention is one well 35 adapted to attain all the ends and objects hereinabove set forth together

with advantages which are obvious and which are inherent to the invention. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the
5 claims. Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

REFERENCES

Bagdasarian, M., et al. Gene, 16: 237-47, 1981.

Bevan, M. et al., Nature, 304:184, 1983.

Boutry, et al., Nature 328: 340-342, 1987.

5 Braun, et al., Mol. Gen. Genet. 231: 217-225, 1992.

Burnette, W.N. Anal. Biochem., 112: 195-203, 1981.

Cornelissen, B.J.C., et al. EMBO Journal, 5: 37-40, 1986.

Fischhoff, D.A. and Perlak, F.J. "Synthetic plant genes and method for preparation." European Patent Application, Publication Number 0
10 385 962, 1990.

Gallo, L.L. Methods Enzymol., 71: 665-7, 1981.

Herrera-Estrella, L. et al., Nature, 303:209, 1983.

Ishizaki, T., et al. Journal of Bacteriology, 171: 596-601, 1989.

Kay, R. et al., Science, 236: 1299-1302, 1987.

15 Klee, H. J. et al., Bio/Technology, 3: 637-642, 1985.

Knauf, V.C. and Nester, E. Plasmid, 8: 43-54, 1982.

Laemmli, U.K. Nature, 227: 680-5, 1970.

Long, Susan, and Ostroff, Gary R. PCT Int. Appl. WO 90 05,788.

Marrone, P.G., et al. J. Econ. Entom., 78: 290-3, 1985.

20 Matsudaira, P. J. Biol. Chem., 261: 10035-38, 1987.

Moore, S. and Stein, W.H. Methods in Enzymology, 6: 819-31, 1963.

Purcell, J.P., Greenplate, J.T., and Sammons, R.P. Insect Biochem.
Molec. Biol., 22:41-47, 1992.

Purcell, J.P., et al. Biochem. Biophys. Res. Comm. 196:1406-1413, 1993.

25 Schuler, M. A. et al., Nucleic Acids Research, 10: 8225-8244, 1982.

Smith, A. G., and Brooks, C.J.W. J. Steroid Biochem., 7: 705-713, 1976.

Smith, P.K., et al. Analytical Biochemistry, 150: 76-85, 1985.

Winter et al. Mol. Gen. Genet., 221(2): 315-19, 1988.

Wong, et al., Plant Mol. Biol. 20:81-93, 1992.

30 Yanisch-Perron, C., et al. Gene, 33: 103-19, 1985.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT:
 (A) NAME: Monsanto Company
 (B) STREET: 800 North Lindbergh Boulevard
 (C) CITY: St. Louis
 (D) STATE: Missouri
10 (E) COUNTRY: United States of America
 (F) POSTAL CODE (ZIP): 63167
 (G) TELEPHONE: (314) 694-3131
 (H) TELEFAX: (314) 694-5435

15 (ii) TITLE OF INVENTION: Method of Controlling Insects

 (iii) NUMBER OF SEQUENCES: 14

20 (iv) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

25 (vi) PRIOR APPLICATION DATA:
 (A) APPLICATION NUMBER: US 07/762682
 (B) FILING DATE: 23-SEP-1991

30 (vi) PRIOR APPLICATION DATA:
 (A) APPLICATION NUMBER: US 07/937195
 (B) FILING DATE: 09-SEP-1992

35 (vi) PRIOR APPLICATION DATA:
 (A) APPLICATION NUMBER: US 08/083948
 (B) FILING DATE: 28-JUN-1993

(2) INFORMATION FOR SEQ ID NO:1:

40 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 15 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: peptide

 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

50 Val Ser Thr Leu Met Leu Glu Met Gly Gln Leu Trp Asn Gln Pro
 1 5 10 15

(2) INFORMATION FOR SEQ ID NO:2:

55 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 16 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

60 (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ala Phe Ala Asp Asp Phe Cys Tyr His Pro Leu Gly Gly Cys Val Leu
1 5 10 15

5

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 12 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Asn Leu Tyr Val Thr Asp Gly Ser Leu Ile Pro Gly
1 5 10

20

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 45 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTGTCCACCC TGATGCTGGA GATGGGCCAG CTGTGGAACC AGCCC
35 45

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

40 (A) LENGTH: 48 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GCCTTCGGCG ACGACTTCTG CTACCAACCG CTCGGCGGCT GCGTCCTG
50 48

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

55 (A) LENGTH: 36 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

60 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AACCTCTACG TGACCGACGG TTCGCTGATC CCGGGT

36

5

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

10

- (A) LENGTH: 1865 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

20

CTACTCCATG GCGTGCTGAA GGTCCGTGCC TGGCCTCCCG AGGTGTCGA GGACTTCGTG 60

AAGTGAGCGG GCACCCGCC CGTCCCCGCC CCGCAACGGC CCGTTCCGCA CACCGGGTGA 120

CCCGACCCCC TCGGCCCCCG ACGTCCGCCG ACCTCTCAGT CCCCTCTCGA AGCTCAGGAG 180

25

CAACAGCGTG AACGCACACC AGCCTCTGTC GCGCCGCCGC ATGCTCGGCC TGGCCGCC 240

GGGCGCCGCC GCACTCACCG GGCAGACCAAC GATCACCGCG GCCCCCCCGC CGGCCGCC 300

CACCGCCCCC GGCGGGCTCG GCGGCACGTT CGTGGCCGCC GTCGTGATCG GCACCGGCTA 360

30

CGGCGCGGCC GTCTCCGCC TGCGGCTCGG CGAGGGCCGG GTCTCCACCC TGATGCTGGA 420

GATGGGGCAG CTGTGGAACC AGCCCCCCCCC GGACGGCAAC GTCTCTGCG GGATGCTCAA 480

35

GCCCGACAAG CGCTCCAGCT GGTTCAAGAC CCGCACCGAG GCCCCGCTCG GCTCCCTCCT 540

CTGGCTCGAC CTCGCCAAC GGGACATCGA CCCCTACCGG GGCGTCTGG ACCGGGTCAA 600

CTTCGACCAAG ATGTCCGTGT ACGTGGGCCG CGGGGTCGGC GGCGGCTCGC TCGTCAACGG 660

40

CGGTATGGCC GTCACGCCCC GGCGCTCTTA CTTCAGGAG GTGCTGCCCG AGTCGACGC 720

CGACGGAGATG TACGGCACCT ACTTCCCAGCG CGCGAACCTCC GGCGTGCAGGG TCAACAAACAT 780

45

CGACAAGGAC TGGTTCGAGC AGACCGAGTG GTACACGTTG GCGCGCTTG CCCGTCTGCA 840

GGCCGAGAAC GCCGGCCTGA AGACCACCTT CGTGCACAAAC GTCTACGACT GGGACTACAT 900

GCGCGGTGAG GCGGACGGCA CCAACCCCAA GTCCCGCTC GCGCCGAGG TCATCTACGG 960

50

CAACAAACAC GGCAAGGTCT CCTCTGACAA GAGCTAACCTG GCGGCCGCCG TGGGCACCGG 1020

CAAGGTCAAC GTCGAGACCC TGCACCAAGGT CAAGACGATC CGTCAGCAGA ACGACGGCAC 1080

55

CTACCTGCTG ACGGTCGAGC AGAAGGACCC CGACGGCAAG CTGCTCGGGG CCAAGGAGAT 1140

CTCCCTGCCGC CACCTCTTCC TGCGGCCCG CAGCCTCGGC TCCATTGAAC TGCTGCTGG 1200

CGCCCGGGAG ACCGGCACCC TGCCCCGGCT CAGCTCCGAG ATCGGCGGGC GCTGGGGCCC 1260

60

CAACGGCAAC ATCATGACCG CCCGCCCAA CCATGTGTGG AACCCACGG GCAGCAAGCA 1320

GTCGTCGATC CCCGCCCTCG GCATCGACGA CTGGGACAAC CCCGACAACC CCGCTTCGC 1380

CGGATAGCC CCCATGCCGG CGGGCCTCGA GACCTGGTC AGCCTCTACC TGGCCATCAC 1440
 5 CAAGAACCCG GAGCGCGGCA CCTTCGTCTA CGACGCCGCC AAGGACCGGG CGGACCTGCG 1500
 CTGGACCCGG GACCAGAACG CGCCCGCGGT CGCCGCCGCC AAGTCGCTGT TCGACCGCGT 1560
 CAACAAGGCC AACACGACCA TCTACCGGTA CGACCTCTTC GGCAAGCAGA TCAAGGCAGT 1620
 10 CGCCGACGAC TTCTGCTACC ACCCGCTCGG CGGCTGCCTC CTCGGCAAGG CCACCGACAA 1680
 CTACGGCCGC GTCTCCGGGT ACAAGAACCT CTACGTACC GACGGCTCGC TCATCCCCGG 1740
 15 CAGCATCGGC GTCAACCCGT TCGTGACCAT CACGGCGCTG GCGGAGCGGA ACGTCGAGCG 1800
 CGTCATCAAG GAGGACATCG CGGGTTCCCTG ACGACCGACG GGCAGGGCGC GGCATGCAAG 1860
 CTTGG 1860
 20 (2) INFORMATION FOR SEQ ID NO:8:
 (i) SEQUENCE CHARACTERISTICS:
 25 (A) LENGTH: 547 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: peptide
 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
 Val Asn Ala His Gln Pro Leu Ser Arg Arg Arg Met Leu Gly Leu Ala
 1 5 10 15
 35 Ala Leu Gly Ala Ala Ala Leu Thr Gly Gln Thr Thr Ile Thr Ala Ala
 20 25 30
 Pro Arg Ala Ala Ala Ala Thr Ala Pro Gly Gly Ser Gly Gly Thr Phe
 40 35 40 45
 Val Pro Ala Val Val Ile Gly Thr Gly Tyr Gly Ala Ala Val Ser Ala
 50 55 60
 45 Leu Arg Leu Gly Glu Ala Gly Val Ser Thr Leu Met Leu Glu Met Gly
 65 70 75 80
 Gln Leu Trp Asn Gln Pro Gly Pro Asp Gly Asn Val Phe Cys Gly Met
 85 90 95
 50 Leu Lys Pro Asp Lys Arg Ser Ser Trp Phe Lys Thr Arg Thr Glu Ala
 100 105 110
 Pro Leu Gly Ser Phe Leu Trp Leu Asp Leu Ala Asn Arg Asp Ile Asp
 55 115 120 125
 Pro Tyr Ala Gly Val Leu Asp Arg Val Asn Phe Asp Gln Met Ser Val
 130 135 140
 Tyr Val Gly Arg Gly Val Gly Gly Ser Leu Val Asn Gly Gly Met
 60 145 150 155 160
 Ala Val Thr Pro Arg Arg Ser Tyr Phe Gln Glu Val Leu Pro Gln Val

	165	170	175
	Asp Ala Asp Glu Met Tyr Gly Thr Tyr Phe Pro Arg Ala Asn Ser Gly		
	180	185	190
5	Leu Arg Val Asn Asn Ile Asp Lys Asp Trp Phe Glu Gln Thr Glu Trp		
	195	200	205
10	Tyr Thr Phe Ala Arg Val Ala Arg Leu Gln Ala Glu Asn Ala Gly Leu		
	210	215	220
	Lys Thr Thr Phe Val Pro Asn Val Tyr Asp Trp Asp Tyr Met Arg Gly		
	225	230	235
	240		
15	Glu Ala Asp Gly Thr Asn Pro Lys Ser Ala Leu Ala Ala Glu Val Ile		
	245	250	255
	Tyr Gly Asn Asn His Gly Lys Val Ser Leu Asp Lys Ser Tyr Leu Ala		
	260	265	270
20	Ala Ala Leu Gly Thr Gly Lys Val Thr Val Glu Thr Leu His Gln Val		
	275	280	285
	Lys Thr Ile Arg Gln Gln Asn Asp Gly Thr Tyr Leu Leu Thr Val Glu		
25	290	295	300
	Gln Lys Asp Pro Asp Gly Lys Leu Leu Gly Thr Lys Glu Ile Ser Cys		
	305	310	315
	320		
30	Arg His Leu Phe Leu Gly Ala Gly Ser Leu Gly Ser Ile Glu Leu Leu		
	325	330	335
	Leu Arg Ala Arg Glu Thr Gly Thr Leu Pro Gly Leu Ser Ser Glu Ile		
	340	345	350
35	Gly Gly Gly Trp Gly Pro Asn Gly Asn Ile Met Thr Ala Arg Ala Asn		
	355	360	365
	His Val Trp Asn Pro Thr Gly Ser Lys Gln Ser Ser Ile Pro Ala Leu		
40	370	375	380
	Gly Ile Asp Asp Trp Asp Asn Pro Asp Asn Pro Val Phe Ala Glu Ile		
	385	390	395
	400		
45	Ala Pro Met Pro Ala Gly Leu Glu Thr Trp Val Ser Leu Tyr Leu Ala		
	405	410	415
	Ile Thr Lys Asn Pro Glu Arg Gly Thr Phe Val Tyr Asp Ala Ala Lys		
	420	425	430
50	Asp Arg Ala Asp Leu Arg Trp Thr Arg Asp Gln Asn Ala Pro Ala Val		
	435	440	445
	Ala Ala Ala Lys Ser Leu Phe Asp Arg Val Asn Lys Ala Asn Thr Thr		
55	450	455	460
	Ile Tyr Arg Tyr Asp Leu Phe Gly Lys Gln Ile Lys Ala Phe Ala Asp		
	465	470	475
	480		
60	Asp Phe Cys Tyr His Pro Leu Gly Gly Cys Val Leu Gly Lys Ala Thr		
	485	490	495

Asp Asn Tyr Gly Arg Val Ser Gly Tyr Lys Asn Leu Tyr Val Thr Asp
500 505 510

5 Gly Ser Leu Ile Pro Gly Ser Ile Gly Val Asn Pro Phe Val Thr Ile
515 520 525

Thr Ala Leu Ala Glu Arg Asn Val Glu Arg Val Ile Lys Glu Asp Ile
530 535 540

10 Ala Gly Ser
545

15 (2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
20 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CTCAGGAGCA CCATGGCGAC CGCACAC

27

30 (2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 29 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
35 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GTCGGCGCCGG AGGCCATGGG GGCGGTGGC

29

45 (2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
50 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GCCCCGGCCCG TCGGATCCGT CAGGAACCCG

30

60 (2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5 amino acids

(B) TYPE: amino acid
 (D) TOPOLOGY: linear

5 (iii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Ser Gly Gly Thr Phe
 1 5

10

(2) INFORMATION FOR SEQ ID NO:13:

15 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1647 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

20

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

25	ATGGCGACCG CACACCAGCC TCTGTGCGGC CGCCGCATGC TCGGCCTGGC CGCCTTGGC 60
	GCCGCCGCAC TCACCGGGCA GACCACGATC ACCGGGGCCC CCCGCGCGC CGCCGCCACC 120
	GCCCCCGGGG GCTCCGGGG CACGTTCGTG CCCGCGTCG TGATCGGCAC CGGCTACGGC 180
30	GCGGCCGTCT CCGCCCTGCG GCTCGCGAG GCCGGGGTCT CCACCCCTGAT GCTGGAGATG 240
	GGCCAGCTGT GGAACCAGCC CGGGCCGGAC GCGAACGTCT TCTGGGGAT GCTCAAGCCC 300
35	GACAAGCGCT CCAGCTGGTT CAAGACCCGC ACCGAGGCC CGCTCGGCTC CTTCCTCTGG 360
	CTCGACCTCG CCAACCGGA CATGGACCCC TACGGGGGG TCCCTGGACCG GGTCAACTTC 420
	GACCAGATGT CCGTGTACGT GGGCCGGGG GTCGCGGGCG GCTCGCTCGT CAACGGCGGT 480
40	ATGGCCGTCA CGCCCCGGCG CTCCCTACTTC CAGGAGGTGC TGCCCCAGGT CGACGCCGAC 540
	GAGATGTACG GCACCTACTT CCCCGCGCGC AACTCCGCC TGCGGGTCAA CAACATCGAC 600
	AAGGACTGGT TCGAGCAGAC CGAGTGGTAC ACGTTCGCGC GCGTTGGCCG TCTGCAGGCC 660
45	GAGAACGCCG GCCTGAAGAC CACCTTCGTG CCCAACGTCT ACGACTGGGA CTACATGCGC 720
	GGTGAGCCGG ACGGCACCAA CCCCAAGTCC GCGCTCGCCG CCGAGGTCAT CTACGGCAAC 780
50	AACCACGGCA AGGTCTCCCT CGACAAGAGC TACCTGGCGG CCGCCCTGGG CACCGGCAAG 840
	GTCACCGTCA AGACCCCTGCA CCAGGTCAAG ACGATCCGTC AGCAGAACGA CGGCACCTAC 900
	CTGCTGACGG TCGAGCAGAA GGACCCCGAC GGCAAGCTGC TCGGGACCAA GGAGATCTCC 960
55	TGCCGCCACC TCTTCCTCGG CGCCGGCAGC CTCGGCTCCA TTGAACTGCT GCTGCGGCC 1020
	CGGGAGACCG GCACCCCTGCC CGGCCTCAGC TCCGAGATCG GCGGGGGCTG GGGCCCCAAC 1080
60	GGCAACATCA TGACCGCCCC CGCCAACCAT GTGTGGAACC CCACGGGCAG CAAGCAGTCG 1140
	TCGATCCCCG CCCTCGGCAT CGACGACTGG GACAACCCCG ACAACCCGT CTTCGCCGAG 1200

ATAGCCCCCA TGCCGGCGGG CCTCGAGACC TGGGTCAGCC TCTACCTGGC CATCACCAAG 1260
 5 AACCCGGAGC GCGGCACCTT CGTCTACGAC GCCGCCAAGG ACCGGGCGGA CCTGCCCTGG 1320
 ACCCGGGACC AGAACGCGCC CGCGGTGCCC GCCGCCAAGT CGCTGTTCGA CCGCGTCAAC 1380
 AAGGCCAACA CGACCATCTA CGGGTACGAC CTCTTCGGCA ACCAGATCAA GGCGTTCGCC 1440
 10 GACGACTTCT GCTACCACCC GCTCGGCGC TGCGTCCTCG GCAAGGCCAC CGACAACCTAC 1500
 GGCGCGTCT CGGGTACAA GAACCTCTAC GTCAACCGACG GCTCGCTCAT CCCCGGCAGC 1560
 ATCGCGTCA ACCCGTTCGT GACCATCACG GCGCTGGCGG AGCGGAACGT CGAGCGCGTC 1620
 15 ATCAAGGAGG ACATCGCGGG TTCTGA 1647

(2) INFORMATION FOR SEQ ID NO:14:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1521 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ATGGCCTCCG GCGGCACGTT CGTGCCCCGC GTCGTGATCG GCACCGGCTA CGGCCGGGCC 60
 GTCTCCGCC CGAGGCCGGG GTCTCCACCC TGATGCTGGA GATGGGCCAG 120
 35 CTGTGGAACC AGCCCGGCC CGACGGCAAC GTCTTCTGCG GGATGCTCAA GCGGACAAG 180
 CGCTCCAGCT GGTTCAAGAC CGCACCAGAG GCGCCGCTCG GCTCCTTCCT CTGGCTCGAC 240
 CTCGCCAACC GGGACATCGA CCCCTACGCG GCGCTCTGG ACCGGGTCAA CTTCGACCAG 300
 40 ATGTCCGTGT ACGTGGGCCG CGGGGTCGGC GGCCTCGC TCGTCAACGG CGGTATGGCC 360
 GTCACGCCCG GCGCTCCCTA CTTCCAGGAG GTGCTGCCCC AGGTCGACGC CGACGAGATG 420
 45 TACGGCACCT ACTTCCCGCG CGCGAACCTC GGCCTGCGGG TCAACAACAT CGACAAGGAC 480
 TGGTTCGAGC AGACCGAGTC GTACACGTTG GCGCGCTTG CCCGTCTGCA GGCGAGAAC 540
 50 GCGGGCTGA AGACCACCTT CGTGCCAAC GTCTACGACT GGGACTACAT GCGCGGTGAG 600
 GCGGACGGCA CCAACCCAA GTCCCGCTC GCGCCGAGG TCATCTACGG CAACAACCAC 660
 GGCAAGGTCT CCCTCGACAA GAGCTACCTG GCGCCGCCG TGGGCACCGG CAAGGTACCC 720
 55 GTCGAGACCC TGCACCAAGT CAAGACGATC CGTCAGCAGA ACGACGGCAC CTACCTGCTG 780
 ACGGTCGAGC AGAAGGACCC CGACGGCAAG CTGCTCGGGG CCAAGGAGAT CTCCCTGCC 840
 CACCTCTTCC TCGGCGCCGG CAGCTCGGC TCCATTGAAC TGCTGCTGCG CGCCCGGGAG 900
 60 ACCGGCACCC TGCCCGCCCT CAGCTCCGAG ATCGGGGGGG GCTGGGGCCC CAACGGCAAC 960

ATCATGACCG CCCGCCCAA CCATGTGTGG AACCCCACGG GCAGCAAGCA GTCGTCGATC 1020
CCCGCCCTCG GCATCGACGA CTGGGACAAC CCCGACAACC CGGTCTTCGC CGAGATAGCC 1080
5 CCCATGCCGG CGGGCCCTCGA GACCTGGGTC AGCCTCTACC TGGCCATCAC CAAGAACCG 1140
GAGCGCGGCA CCTTCGTCTA CGACGCCGCC AAGGACCGGG CGGACCTGCG CTGGACCCGG 1200
GACCAGAACG CGCCCGCGGT CGCCGCCGCC AAGTCGCTGT TCGACCGCGT CAACAAGGCC 1260
10 AACACGACCA TCTACCGGTA CGACCTCTTC GGCAAGCAGA TCAAGGCATT CGCCGACGAC 1320
TTCTGCTACC ACCCGCTCGG CGGCTGCGTC CTCGGCAAGG CCACCGACAA CTACGGCCGC 1380
15 GTCTCCGGGT ACAAGAACCT CTACGTCACC GACGGCTCGC TCATCCCCGG CAGCATCGGC 1440
GTCAACCCGT TCGTGACCAT CACGGCGCTG GCGGAGCGGA ACGTCGAGCG CGTCATCAAG 1500
GAGGACATCG CGGGTTCCCTG A 1521
20

(2) INFORMATION FOR SEQ ID NO:15:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

His Asp Glu Leu

1

35

(2) INFORMATION FOR SEQ ID NO:16:

40 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Lys Asp Glu Leu

1

50 (2) INFORMATION FOR SEQ ID NO:17:

55 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Arg Gly Ser Glu Lys Asp Glu Leu

1

5

WHAT IS CLAIMED IS:

1. A method of controlling lepidopteran insect infestation of plants comprising providing a 3-hydroxysteroid oxidase for ingestion by the insect.
- 5 2. The method of Claim 1 wherein the insect is in a larval stage.
3. The method of Claim 1 wherein said 3-hydroxysteroid oxidase is provided by plant-colonizing microorganisms which produce 3-hydroxysteroid oxidase after application to the plant.
4. The method of Claim 1 wherein said 3-hydroxysteroid oxidase is 10 provided by expression of a gene for 3-hydroxysteroid oxidase incorporated in the plant by previous genetic transformation of a parent cell of the plant.
5. The method of Claim 4 wherein said plant is cotton or corn.
6. A method of producing a genetically transformed plant which 15 expresses an amount of a 3-hydroxysteroid oxidase effective to control lepidopteran insect infestation, comprising the steps of:
 - a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising
 - (i) a promoter which functions in plant cells to cause the 20 production of an RNA sequence;
 - (ii) a structural coding sequence that encodes for 3-hydroxysteroid oxidase;
 - (iii) a 3' non-translated region which functions in said plant cells to cause the addition of polyadenylate nucleotides to the 25 3' end of the RNA sequence,
 - wherein said promoter is heterologous with respect to said structural coding sequence and wherein said promoter is operatively linked with said structural coding sequence, which is in turn operably linked with said non-translated region;
- 30 b) obtaining transformed plant cells; and
- c) regenerating from the transformed plant cells genetically transformed plants which express an amount of 3-hydroxysteroid oxidase effective to control lepidopteran insect infestation.
7. The method of Claim 6 wherein said structural DNA sequence 35 comprises SEQ ID NO:13 or SEQ ID NO: 14.

8. The method of Claim 6 wherein said plant cell is a cotton or corn plant cell.
9. The method of Claim 6 wherein wherein the genome of said plant cell also contains one or more genes expressing *B.t.* endotoxins.

ID AF263912 standard; DNA; PRO; 123580 BP.
 XX
 AC AF263912;
 XX
 SV AF263912.1
 XX
 DT 25-MAY-2000 (Rel. 63, Created)
 DT 25-MAY-2000 (Rel. 63, Last updated, Version 1)
 XX
 DE Streptomyces noursei ATCC 11455 nystatin biosynthetic gene cluster,
 DE complete sequence.
 XX
 KW .
 XX
 OS Streptomyces noursei
 OC Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
 OC Streptomycineae; Streptomycetaceae; Streptomyces.
 XX
 RN [1]
 RP 1-123580
 RA Brautaset T., Sekurova O.N., Sletta H., Ellingsen T.E., Strom A.R.,
 RA Valla S., Zotchev S.B.;
 RT "Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces
 RT noursei ATCC 11455: analysis of the gene cluster and deduction of the
 RT biosynthetic pathway";
 RL Chem. Biol. 7(6):395-403 (2000).
 XX
 RN [2]
 RP 1-123580
 RA Brautaset T., Sekurova O.N., Sletta H., Ellingsen T.E., Strom A.R.,
 RA Valla S., Zotchev S.B.;
 RT ;
 RL Submitted (04-MAY-2000) to the RL Unigen, NTNU, O. Kyrres gt. 3, Trondheim N-
 XX
 DR SPTREMBL; Q9L4V6; Q9L4V6.
 DR SPTREMBL; Q9L4V7; Q9L4V7.
 DR SPTREMBL; Q9L4V8; Q9L4V8.
 DR SPTREMBL; Q9L4V9; Q9L4V9.
 DR SPTREMBL; Q9L4W0; Q9L4W0.
 DR SPTREMBL; Q9L4W1; Q9L4W1.
 DR SPTREMBL; Q9L4W2; Q9L4W2.
 DR SPTREMBL; Q9L4W3; Q9L4W3.
 DR SPTREMBL; Q9L4W4; Q9L4W4.
 DR SPTREMBL; Q9L4W5; Q9L4W5.
 DR SPTREMBL; Q9L4W6; Q9L4W6.
 DR SPTREMBL; Q9L4W7; Q9L4W7.
 DR SPTREMBL; Q9L4W8; Q9L4W8.
 DR SPTREMBL; Q9L4W9; Q9L4W9.
 DR SPTREMBL; Q9L4X0; Q9L4X0.
 DR SPTREMBL; Q9L4X1; Q9L4X1.
 DR SPTREMBL; Q9L4X2; Q9L4X2.
 DR SPTREMBL; Q9L4X3; Q9L4X3.
 DR SPTREMBL; Q9L4X4; Q9L4X4.
 DR SPTREMBL; Q9L4X5; Q9L4X5.
 DR SPTREMBL; Q9L4X6; Q9L4X6.
 DR SPTREMBL; Q9L4X7; Q9L4X7.
 XX
 FH Key Location/Qualifiers
 FH
 FT source 1..123580

```

FT          /db_xref="taxon:1971"
FT          /organism="Streptomyces noursei"
FT          /strain="ATCC 11455"
FT    CDS   complement(46..783)
FT          /codon_start=1
FT          /db_xref="SPTRREMBL:Q9L4X7"
FT          /note="putative 4'-phosphopantheteine transferase"
FT          /transl_table=11
FT          /gene="nysF"
FT          /function="presumably post-translationally modifies ACP
domains on PKS"
FT          /product="NysF"
FT          /protein_id="AAF71762.1"
FT          /translation="MIELILPATVATEAAYDDRPRPGDRLLSSEREVIARAVESRQREF
TTVRHLARRALRRLGHPDRAILPNRRGAPQWPPGIVGSMTHCAGYRAAAVSPAELSAAV
SIDAEPNGPLPAGVLNAIALPSERPHLVALAAHРDВHWDRLLFSAKESVFKAWYPLTQ
RELDLSEAEIVIDPTQGAFTARLLVPGLGGRRVTFPGRWHSTPALLTTAVHLPAPT
PRRDREHRTHLTNVNSPLPRPTFG"
FT    CDS   complement(867..2684)
FT          /codon_start=1
FT          /db_xref="SPTRREMBL:Q9L4X6"
FT          /note="putative transporter (ABC family)"
FT          /transl_table=11
FT          /gene="nysG"
FT          /function="presumably involved in efflux of nystatin"
FT          /product="NysG"
FT          /protein_id="AAF71763.1"
FT          /translation="MASPDDLEEERTAPRPARRLVGLLRPHRRSVALAVSMGVGGIVLN
AFGPLLLGRVTDLIADGVGGVPGPAPGIDFAIGRLLLVLALYVVASLFLMAQGRLV
ASAVWRTIHELRDAREKLTRLPLRHFDRQPAGELLSRTTNIDNLQQTLQQTLAELIT
SIFSLTMLVLMVISPLSLAVMLLSPVVSALIAARISKRAQPHYAAQWSANGTLNAHV
EEVCTGHALIKGFDRAAAEERFDACNDAVYRAAAKAQFASGAMEPVMMFVANLGYVLV
AVIGAWKTINGTLTLDVQAFLYARQFSQPIVEIASVAGRLQSGIASAQRVFTLLDAP
EQAPDPLRPGTPARAEGRVEFTDVSFRYSPDTPLIENSLTVEPGSTVAIVGPTGAGKT
TLGNLLMRFYEPDSGRILLDGTDATMTRDDLRSRFGLVLQDTWLFGGTIAENIAYGAP
GACRADIEEAARATCADRFIRTLPOQYDVTLDDESGTVSAGEKQLLTVARAFLPAVL
VLDEATSSVDTTRTEVLIQRAMNSLRAGRTSFVIAHRLSTIRDADLIVVMDAGRIVEQGT
HDQLLCAGQGLYARLHAARTHPTAGAAAG"
FT    CDS   complement(2662..4416)
FT          /codon_start=1
FT          /db_xref="SPTRREMBL:Q9L4X5"
FT          /note="putative transporter (ABC family)"
FT          /transl_table=11
FT          /gene="nysH"
FT          /function="presumably involved in efflux of nystatin"
FT          /product="NysH"
FT          /protein_id="AAF71764.1"
FT          /translation="MLLRLLRAQLRPYAWATAALVALQLVQILGTLGGALIDQG
VVRGDGGRITELGVVMGVVALVQIAAALGAAALAARTATAMGRDLRSALFRRILDFSR
EIGRGFTPSLLTRSVNDVQQVNLAQTGFGIVVCAPLMCLGSVLLALRQDVPLALLVA
LVLVVAVCFGLLARMGTYARMQLTLDRLGRLREAITGVRVVRSFVRDDHERARFAQ
TNDAFLVVSRRVGRLIATMLPVVLLMNGFTVALLWTGSHRIDAGRMPIGSLSALLSYL
SLILMSVVMLAFVFLSVPRARVCAGRIAEVLDTGSSVAPPAPQPVRGPAIGRIELCAAG
YRYPGAEEPVLRDVDLTVEPGERIAVLGSTSGKTTLLNLVRLADATEGAVRVGGTDV
RELTAAATLAAAVGFVQRPYLFSGTVASNLRFGRPDATDEELWEALRVAQAADFVARMP
DGLDAEITQGGGNVSGGQRQLSLARALLRRPEIYLFDCCFSALDQATDAALRTALVPY
TAGATVITVAQRISAGRDAIRIVVLDGRVVAQGTHDVLRTSPTYREIALSQLTEEA
AHGLAGRP"
FT    CDS   4714..5748
FT          /codon_start=1

```

```

FT          /db_xref="SPTREMBL:Q9L4X4"
FT          /note="putative dGDP-mannose-4,6-dehydratase"
FT          /transl_table=11
FT          /gene="nysDIII"
FT          /function="presumably involved in mycosamine biosynthesis"
FT          /product="NysDIII"
FT          /protein_id="AAF71765.1"
FT          /translation="MSKRALITGITGQDGSYLAEHLLSQGYQVWGLIRGQANPRKSRVS
FT          RLASELDFIDGDLMDQGSLVSAVDTVQPDEVNLGAISFVPMWSQQAELVTEVNGMGV
FT          RMLEAIRMVSGLSTSRTVSPRGQIRFYQASSSEMFGKAAETPQRETTLFHPRSPYGAAK
FT          AYGHYITRNYRESFGMYAVSGMLFNHESPRRGQEVTRKISLAVARIKQGLQDKLALGN
FT          LDAVRDWGYAGDYVRAMHMLQQDAGDDYVIGTGQMHSVRDAVRIAFEHVGLNWEDYVV
FT          IDPDLVRPAEVEVLCADSAKAQDRLGWKPVDFTLMRMMVSDLAQVSRENQYGDVLL
FT          AANW"
FT      CDS      5930..34363
FT          /codon_start=1
FT          /db_xref="SPTREMBL:Q9L4X3"
FT          /note="polyketide synthase"
FT          /transl_table=11
FT          /gene="nysI"
FT          /function="responsible for condensation steps 9 to 14 in
the nystatin polyketide backbone synthesis"
FT          /product="NysI"
FT          /protein_id="AAF71766.1"
FT          /translation="MDNEQKLRDYLKLATADLRRTRRRVHKLESAAQEPVAIIGMTCRY
PGGVRSPELDLWRMVEAGEHGVTFTPDTRGWDLEALAAAAPTASGGFLHDAPFDADFFGI
SPREAVAMDPPQRVVLESAWEAFERAGIDPTSVKGSRTGVFIGAMAQDYRVGPADGAEG
FQLTGNNTGSVLSGRISYTFTGTVGPAVTVDTACSSLVAVHLATQALRAGECTLALAGGV
TIMSGPGTFIEMGRQGGLSADGRCRSFDTADGTWAEGVGLVLERLSDAVRNIGHIEL
AVVRGTAVNQDGASNGLTAPNGPSQQQVIQQALVNARLAAGDIDVVEAHGTGTLGDPV
EAQALLATYGQNRPADRPPLLGSVKSNSHTQAAAGVAGVIKMVMAMRHGTLPTLHAE
EPTHHVDWSQGAVRLLTDWDPATGAPRRAAVSFGISGTNAHTIIIEQAPEPQPEDAA
TAQDDAAGSTPATAPVVPGVVPVLLSGRTPDALRGQAAALRAALDTGRPDLLDAHSL
ATTRAGFEHRAVLLATDHPALTDGLTALADADDPAAPAWITGTTRAETRLAVLFTGQG
AQRLGAGRELAARFPAFATALDAALDAFTPHLDRPLREVLWGTDAALLDRTAYAQPALF
AVEVALYRLIESFGVRPDHLAGHSVGEIVAHLAGVLSADAATLVAARGRLMQALPDG
GAMIAVQASEADVAPLLAGHEDQVAIAAVNGPSAVVLSGAEATVTALAEQLAADGRKTR
RLRVSHAFHSPLMEPMMDAFAVVEDLTLQPPLLPVSNLTGKPATVAQLTSADYWDH
VRHAVRFADGIDWLARHDTTAFLELGPDGVLSAMAQDCLDAADADAVTLPALRAGRPEE
HTLTTALAGLHVHGATLDWTGCFAGTGARRTDLPTYAFQRRRYWPKALQSGTADLRSVG
LGAHHPLLSAAVSLADAGGTLLTGRLSRQTHPWLAHTVRGTTLLPGTAFLAVRAG
DEVGCDRVEELTLAAPLLPEQGGVQVQLWIGNPDVSGRTVNHARPDGDDTPWTAH
ATGVLTTADASRQLPASSEQGGTPLACDPHPALDAAQWPPAGAEPLPLDGHYDRILADGG
FGYGPVFQGLRAAWGGDVVYAEVELPEAGRSDEAFLHLPALLDAALHAAPFTGLGER
GRGGLPFWSEGVLHAGGATLRLRVLTPVADDALALTVADGTGAPVLSVDSLVLRSVAT
QQLDTAAAVARDALFRLDWTPVQPTATDPGPVALLGADPFGLLTHAGFADAPAYPDLAA
LAAADGPVPTTVVSLAGTGDAAADPARSAHRCAAEEALAAVQTWLDHHERFAAARLVFV
TRGATVGRDVAAAAVWGLVRSAQSENPGCFALVLDLPGAVGAAALVAALVSGEPQLAV
RGDVLRLVARLVRRLPATEVAGAGADGTGDBGDGSCFSFSGEAVLVTGGTGLGAVLARH
LVAEYGVRLLLVRSRGERAVGAGELVAAELAGV GARVRRVACDVTDRAAVVELVGGHAV
SAVVAAGVLLDDGMVGALTGERLSA VLRPKVDAVWHLHEATRGLLDADFVVFSSLAGVF
GSPGQANYAAANAFLDALMRRRAEGLPGLSLAWGPWEQSGGMTGTLTDVDAERLARSG
VPPLSVAQGLALFDAAVAGTDATCPVRLDLPVLRARGEVPPLLRSLIRVRARRAAVAG
SATAGNLAQRLRRLDEDGRDEMVLDDLVRGQVALVLGHATGGDVDAGRAFRDLGFDLSLT
VELRNRLNTVTGLRLPATLVFDYPTVRLATYVLDLLEGTDAEVATVQPAAVAVADDPI
VIVGMACRYPGVSSPEDLWRVLTEGTD AVSGFTNREGWDVESLYHPDPDHPGTSYTRS
GGFLHEAGEFDPGFFGMSPREALATDSQQLLLESSWEAIERAGIDPVSLRGSRGTVFA
GVMYSDYSAMLASPEFEGFQGSGSSPSLASGRVAYTLGLEGPAVTVDTACSSLVAMHW
AMQALRSGECGLALAGGTVVMSTPAVFVDFARQGLSPDGRCKAFADAADGVGVSEGVG
VLVLERQSDAVRNIGHIELAVVRGSAVNQDGASNGLTAPNGPSQRVIRQALASGGLTAG

```

FT DVVVVEAHGTGTLGDPIEAQALLATYGRDREPERPLLLGSVKSNLGHQAAAGVAGVI
 FT KMVLAMRHGVVPRTLHVDAPSSHWDSEGAVELLSEQAAWPETGRVRAGVSSFGISGT
 FT NVHVIVEQAPGAKAIAAAGAARRTPGAVPVLLSGRGRSALRGQAARLLGHQLQARPAEL
 FT VDVALSLATTRSRFEQRAAVAQDRDQLIASLGALAADRPDPAVVEGEAAAGRRTAVLF
 FT TGQGSQRAAMGRELHEVQPEFAAFDAVCASFDPPLDRPLREVVFAEDGSDEAALLDET
 FT GWTQPALFAVEVALFRLVESWGVRPDFVAGHSIGEIAAAHVAGVLTLEDACRLVAARAT
 FT LMQALPTGGAMIAIQATEDEIAAHLDVTIAIAAVNGPQSIVISGDEEAETIAATFAER
 FT GRKTKRLRVSHAFHSPRMDGMLDAFRIVAEGLTYRAPRIPLVSDLTGRRADDAEVCTAE
 FT YWVRHVREAVRFADCVRTLRDAGATTFLELGSDDLTTAMAEDTLGDDHDAELVPMILRAG
 FT RAEELAAATALARLQVRGVDWAAYLAGTGARRTDLPTYAFQHAYYWPQLPTPAAALA
 FT AADPADQQLWAAVERGDARELADILGLGEQDLTPLDSLLPALTWSRRGNQEKLHLLDTLR
 FT YRVEWTRLSKPTAPVLDGTWLLVASDATAADQPALLDGLADALGSHGARVRLLLDDSC
 FT ADRAVLAERLARTADVDAATQVLSVLPDERDADDCPPLTRGLALTVALVQALADTGAQ
 FT GRLWTATRGAVSTNPADPVTHPVQAAAGLGRGVALEHPRLWGGLVLPQVFDERAGQR
 FT LAGILAVKDAPDGEDQVALRATGVSGRRLVRHTVEALPTAAEFTATGTVLITGGTGLG
 FT AEVARWLARAGAQHVLVTSRGPDAPGAAELRAELEGYGPSVSVACDVADRDALAAVL
 FT TALPEELPLTGVVHTAGVGHYGPLDTLSTAEEFAGLTAAKLAGAAHLDALLADRELDFFV
 FT LFSGSIAGVGSGNQSAYGAANAYLDALAHRRARGLAATSVAWGPWAAGMAADDAVSE
 FT TLRRQGLGLLDPAPAMTELRRAVVRQDVTVTADVDWQRYAPLFTSARPSALIAGLPEV
 FT RALAADERTEQDATGASEVVTRVRALAEPEQLRLLTDLVRTESATVLGHSSADAVPEGR
 FT AFRDVGFDSSLTAVELRKRLGAATGLSLPSTMVFDYPTPLELAQYLRAEILGAVLEVAGP
 FT VATGGADDEPIAIIGMACRFPGGVSPEQLWDLVASGTDIAISEFPVNRGWQTGHLFDPD
 FT PDRPGTTYSTQGGFLHEADDEFDPTFFGISPREALVMDPQQRLLLETTWESFERAGIRPE
 FT TLRSTLTGTFVGSSYQEYGLGAGDGTEHMVTGSSPSVLSGRLSYVFGLEGPAVTVDTA
 FT CSSSLVALHLACQSLRNGESNLAVAGGATIMTPNPFIAFSRQRALAKDGRCKAFSSDA
 FT DGMTLAEGVGVLVERLSDAQRNGHPVLAVRGSAINQDGASNGLTAPNGPSQQRVRIRQ
 FT ALANARLAPGDIDALEAHGTGTPLGDPIEAQALFATYGRDRDPESALLGSVKSIGHT
 FT QSAAGIASVIKVMVALRHSELPPTLHADAPSSHVDWSAGTVRLLTQARAWPETGRPRRA
 FT AVSSFGISGTNAHVLLQAPVADTPAERPAPAVPPIAAGVVPWVVTARSAAALRGQAE
 FT RLLAHAETVGTALPAAGPLDIGLSLVSARARFEHRAVVVPPAGTDPLAALRAVATDGPS
 FT PVVARGVADVEGRTVFVFPQGGSQWVGMGSQLLDESAVFAERIAECAAALAEFTDWSLV
 FT DVLRGVVGAPSLERVDVVQFASFAVMVSLAALWRSRGVLPAVGHSQGEIAAAVSGA
 FT LSLRDGARVVALRSQAIGRALAGRGGMMSVALSVDVLEPRLVEFEGRVSVAAVNGPRSV
 FT VVAGEPEALDALHARLTADDIRARIADVYASHSHQVEDLHHEELLEVLAELAPRTSEVP
 FT FFSTVTGDWLDTARMADAGYWFRNLRGRVRFADAVADLLAAEYRAFVEVSSHVPLSMAVQ
 FT EAIDEAGVPAVAAGTLRRDQGGTDRFLSAAEVFVRGVDWDAGLFEGTGASRIDLPTY
 FT AFQHEHLWAVPPAPEAVAAADPDDAAFWTAVEDGDVSALTAALGTDDEDSVAAVLPALTS
 FT WRRARRDRSTVDAWRYRVAWKPLGGTLPHPSLTGTWLLVTADGIDDTDVAGALETYGAE
 FT VRRLVLDEECVDRAVLRERLAGAEDVTGIVSVLAAAERTDAVPGTSLVLTALTVALIQ
 FT ALGDAEIDAPVWALTRGAVSTGRADELTAPVQAQVTGIGWTAALEHPQRWGGTLDPAA
 FT LDARAARQLAAVLSGALGSDDQLAIRPSGVFTRRIVRAEATAGRPAWTWTPRGTTLVG
 FT GSGTLAPHALARLQAQRAEHLVLISRRGTAAPGAAELVAAELAESGEATVAACDITDRD
 FT AVAALLADLKADGRTVRTVVHTAATIELHTLDATTLFDRVLHAKVTGAQVLAELLDD
 FT EELDDFVLYSSTAGMWGSGAHAAYVAGNAYLAALAEHRANGLPALSLSWGIWADDLKL
 FT GRVPQMIRRSGLEFMDPQLALSGLQRALDDNNENVLAADVADWDWETYHPVYTSGRPTPLF
 FT DEVPEVRLTAAAEQSAGTVAEGEFEAALRALSDAEQQRTLLETVRTEAASVLGLSSAE
 FT DLTDQRAFRDVGFDSSLTAVGLRNRLASTVTGLTPSTMVFDYPNPAALAAAYLHGELAGAR
 FT SAAAGAAAAPVTGAPDADDPIAVGMSCRYPGVGSAEDLWRIALDEVDAISGFPADRGW
 FT DAEGLYDPDPDRPGRTYSVQGGFLRDVAEFDPGFFGISPREALSMDPQQRLLLETAWEA
 FT FEHAGIDPVGQRGSRTGTVGASYQDYASGPVSEGSEGHMITGTLSSVLSGRVSYLFG
 FT FEGPAVTLDTACSSLVAMHLACQSLRNGESSLALAGGVSIMSTPMFSVGFSSRQRALAE
 FT DGRCKAYADGADGMLAEGVGLVLLERLSDARANGHQVLAVIRGSAVNQDGASNGLTAP
 FT NGPSQQRVIRQALANSAVAPGDIDVLEGHGTALGDPIEAQALLATYGQDRAPEPPLL
 FT LGSVKSIGHTQMAGVASVIKLVRALQEGVVPKSLHIDRPTHWDWSSGAIGLLERT
 FT PWPETGRPRRAAVSSFGISGTNVHTILEQAPADEAPTPADPPRDSLVPVLLSGRGEAAL
 FT RAQAARLLAFAVEERPEAHLTDLAHSLATSRAALERAAVIAADRTLTTRGLRALSDGRP
 FT DPGLVQGTAGRGRRTAFLFTGQGSQRPGMGREHDRYPVFDALDEVLARLDDGPDRPLR
 FT EVLFAAPDSAEEAALLDRTGYAQPALFAVEVALFRLLTSGLTPDYLGHSGVGEAAAHV
 FT AGVLSLDDACTLVAARGRLMQALPEGGAMVALEAAEDEVLPILLEGLTDRVSVAAVNGPR
 FT SVVAGVEEDVLLADLFAADGRRTKRLRVSHAFHSPLMDAMLDDFAAVARGLTYHPPT

FT NPGQANYAAANAVLDALAEQRRVLGLPATSVWGAWGCCCCGADADGADEAARRAGVGAM
 FT DPHLAVEALLRLVAEKEPTAVVAEVALDRFAGAFGGSRPSALLREFPGYREALAAQAEQ
 FT AADGGGLAARLAALPPARRLTVVDLVRTRAAQVLGYPDTEAVAAERSFRDLGVDSLGA
 FT VELRNQLSAATGLNLPATLVDHPTPLVGEHILGGLFPDEAGSDDETEIRALLASVP
 FT LDQLREIGVLEPLLQLAGRGGRAADGDDGESVDSMTVADLVRAALNGQSDL"
 FT CDS 34384..50691
 FT /codon_start=1
 FT /db_xref="SPTREMBL:Q9L4X2"
 FT /note="polyketide synthase"
 FT /transl_table=11
 FT /gene="nysJ"
 FT /function="responsible for condensation steps 15 to 17 in
 FT the nystatin polyketide backbone synthesis"
 FT /product="NysJ"
 FT /protein_id="AAF71767.1"
 FT /translation="MNAPENPETPENNVAALRAAVKETDRLRRQNRLVAAAKEPIAV
 FT VGMACRFPGAVDSPEALWEMVATGTDVISGFPDDRWDLEALRNSGTDARDTDSQRGG
 FT FLDCIADFDPGFFGISPREAVTMDPQQRLLLTTAWEAVERAGIDATTLRATRTGAFIGT
 FT NGQDYAYLLVRSLLDATGDVGTGIAASAASGRLSYTLGLEGPALTVDTACSSLVALHL
 FT AVQALRNCECGMALAGGVNMATPGSLVEFSRQGGLARDGRCKAFADAADGTGWSEGAG
 FT VLLERLSDAQRNQHPVLA VVRGS AVNQDGASNGFTAPNGPSQQRVIROQALANAGLATG
 FT DIDAVEAHGTGTPLGDPIEAQSI LATYQGDRAHPVLLGSISKNMHTQAASGVAGVIKM
 FT IMAMRHGVLPRTLHVDRPSTHVDWTGSELLTDAPHWPETGRPRRTGISSFGVSGTNA
 FT HVIVEQAPDTPAEAADDTPRTPRTLWLLSARTGAALRDQATALLDHDLRPDGDRGPT
 FT ALDTAFSLATTRAALEHRLAVVTGTDTAGRDALTAWLAHGTA PDAHEGHAAGRTRCAA
 FT LFSGQGAQRLGMGRELHARFPVFARALDTAVDLLDAELGGTLREVIWGTDAPLNETGF
 FT TQPALFAVEVALYRLIESWGVAPDFVAGHSIGEIAAAHVAGVFSLEDACTLVAARAGLM
 FT QALPRGGAMVAVEATEDEVSPLLTDGVAIAAINGPTSLVVS GDETATLAVAARLAEQGR
 FT RTTRLRVSHAFSPLMDPMLAEFRAVAEGLSYGE PQIPVVSNL TGAVADGTLLGTADYW
 FT VRHVREAVRFADGIRALTDAGVGAFL EGPDTLAALAQQSAPDAVSPVLRKDRDEEP
 FT AAVAALARLHTAGVPDVWTAFYAGTAGHRTDLPTYAFQYERYWPKATYRPADATGLGLT
 FT AADHPLLGAAMSVAGSDELLTGTLSLATHPWLA DHVVG MVFFPGTGFLELAVRAADQ
 FT VGCDRVEELMLAAMPLPATGTVQM QIAVGAADDGGDRDLRFFTRPGDDPDAAWAQHAT
 FT GRITEGERVLA LDTTWPPRDAEPV D IDGLYDRYRANGLDYGPVFRGLRAVWR RDTEIY
 FT AEVALPEGTADADAFGLHPALFD AVLHSTL FASADGDDRSLLPF AWNGVSLHAAGADAL
 FT RVRITSCGPDAVEITA VDPQGRPVVSVESLT RAA GPDAGTADHRADAGSLFRMDWTPR
 FT TVHAPATPATWA VL GTDPI GLTE ALTA AGPDTV TGL RDGV DALG EL TAGDDP VPDVVA
 FT VPLRGATDHGPAGAHD LTRTV L ALLQEW LAERFARS RLL LVTRGAVADGERGPLDAA
 FT APVWGLVRSAQSENPG RLL VLD LDD TAE SAQ L P L P ALL DAD E P QAV VREGT VVG R
 FT AR LDSGRGLVPPP GT PWRLGSRAKG SLD GL ALL PHPEARRPLTGHEVRVGIRAAGLNFR
 FT DV LN ALG M Y PG D AGL F GSE AAG VV VEV GPE VT GLAPGDR VMG ML FGG F G P L G I ADAR LL
 FT TP VPAD WS WET GAS VPLVFL TAY AL KEL GGL RAGE KV LV HAG AGG VGM AAI QIAR HG
 FT AE VF ATASE G KWD VL RSL G VADD HIA SRT LD FEE AFA E VAG DR GL DV VLN A L S GEF VD
 FT AS MRL ILG D G G R FLEM GK TD I RAAD SV PD GL SY HS F D L GM V DP E HI QRM LLD L V E LF DRG
 FT A LA ALP VRS WD V R RAGE A FR FMS L A Q HIG KIV L TV P Q PLD PG T V LL T GGT GGL A GL L A
 FT R H L V T E H G A R H L L L A G R R G P D A P G A A A L H A E L T A L G A E V T V A C D V A D R T A L A A L L A T V
 FT PA EH P L T A V V H T A G V L D D G T L T A L N P D R L A T V L R P K V D A A W H L H D L R H L D L A A F V L Y S
 FT STAGVMGGPGQANYAAGNTFLDALA A HR HAL GLP AT SLA WG AWE QGAG MTG A L T D H D L R
 FT RVSDAGGQPLLT A E R G L A LY D A A T A A D E P L I V P L G L T G G A L P A G V G V P A V L R G L V R T A G
 FT RR A R A G T A G V S R A G L A E R L A A L P E E E R T P F L V E L V R T E A A T V L G H G S T D P V D A R R E F R Q
 FT LGFD S L T A I E L R N R L G K A T G L T P A T L I F D Y P T P D R L A V H L H D E L L G A D A P V T V T A A A Q
 FT A A D P E H D P V V I V G M S C R F P G G V S S P E E L W D L V A S G T D A I T G F P A D R A W D R H P Q L A G A P G
 FT A R T G Q G G F L R D I A D F D A A F F G I S P R E A L A M D P Q Q R I L L E V A E E A R A G I D P Q T L R G S D
 FT T G V F M G V S G Q D Y A G L V M R S R D D I A G H A T T G L A V S V V S G R L A Y A L G L E G P A L S V D T A C S S
 FT S L V S L H L A A Q A L R A G E C T M A L A G G V T V M T T A A N F T G F S R M G G L A Q D G R C K A F S D S A D G T
 FT G W S E G A A V L V L E R L S D A R R A G H R V L A V V R G S A V N Q D G A S N G L T A P N G P A Q Q R V I R Q A L A
 FT N A G L T P V D V D A V E A H G T G T P L G D P I E A Q A L I A A Y G T D R D P E H P L L G S V K S N I G H T Q S A
 FT A G A A G L V K M V M A M R H G I L P Q T L H L T E P S S H V D W S A G T V R L L T E R T A W P R T D R P R R A G V S
 FT S F G I S G T N A H V I L E Q P P A E P T P A A D P G R P A P T V V A W P V S A Q T P A A L D A Q L D R L R T A A A L
 FT A P L D T A H T L A T G R S L F E H R A V L L A T V G D P A T G A P D L P E V A R G A A T P H R T A F L F S G Q G A Q

FT RSGMGRRELHAAFPVFAAFDEVAVLDAELGSDADGGVSLREVMWGGGSELLDRTRFTQ
 FT PALFAVEVALFRLVASWVGPEFVAGHSVGEIAAAHVAGVFSLVDACRLVVARASLMDA
 FT LPVGGVMVAVEAAEAEVVPLVDGVIAIAAVNGPVSVVSGVEAAVGQVVDQLVERGRRV
 FT RRLAVSHAFHSPLMDPMLDAFRAVAEGLEYHQPRIPVVSNTGEVAAAELCAADYWVR
 FT HVRATVRFADGVRTLAERGATAFLIEIGPDGVLSALARGVLPAAEALVTPTLRKDRDEESA
 FT LLAGLARLHVAGVTVDWSAALTGTGARGTDLPTYAFQRERYWPELAAEPAGGGADAADA
 FT EFWAAVERADATALAAHLDIDGDQLGAVALPALSARTRRRRTSATNALRHRESWEPLSL
 FT AGTPHTGGVLVLVPAAATTDPWADVVAALGPDARRVDVPADGTDRAALAALLTEAADD
 FT TAPTAVSSLALDETSGDDAVPAGTTATAALVQALADTGAPAPLWALTRGAVAALPDEQ
 FT PTAPAPAQAAVWGLGRIAALELPRHWGGLVLPADLDERTARRLPAALADAGDEDQLALRA
 FT TGAYGRITPAPAPDDAPGTGWQPTGVLITGGTGALGRHTARWLAAHGAEHLLLSRS
 FT GPDAPGAAELTTELALGARVTLVACDAADREQLTRVLAEVPRDCPLTVVHTAGVLDD
 FT GVLTGLTPDRFATVFRAKVASAVLDELTRDRAFTALFSSVAGAVGNPGQAGYAAAN
 FT AVLDALAARRRAQGLAGTSIAWGAWAGDMAARHTRPGAEPVGLLDPDLAVPALARAVT
 FT EPQPTLVLADLQQPRLLESLLALRSPPLSRLPAARTAARAVQEADRRRAGAAADLRDQ
 FT LAGTAPADRHAVALRLVRTTAAAVLGHGTGADAIRADKPFRDLGFDSDLTAVELSSALAAA
 FT TGLALPPSLVFDHPSPRALADHLRAELTGDRPESAPAAPPAPVPAADDPIVVVMACR
 FT FPGGVTITPEEFWQULLAEGRDGIDAFPTDRGWLDLVGRRRPGPQRPPRSAASSYDAAAF
 FT DPGFFDISPREALAMDQPQQLLETAWEAVERTGTDPTRLRGSRGTVFVGTNGQDYAGL
 FT VLRAQEDVEGHAGTGLAASVISGRLAYAFGFEGPAVTVDTACSSSLVALHWAVQALRAG
 FT ECLSLALAGGTVMTTSTSFAFGTRQGGLAPDHCKAFSDSADGTGWSEGVGVLVVERRS
 FT DALRNGHEILAVVRSASVNQDGASNGLTAPNGPAQQRVIROQALANAGLAPGDVDAVEAH
 FT GTGTVLGDPPIEAQALLATYQDQDRPADRPLWLGSVKSIGHTQAAAGAAGLMKMVLALQH
 FT GTPRTHVTEPSTRVDWSAGAVRLLTERTVWPRTDRPRAVGSSFGISGTNAHVILEQ
 FT PPAEPTPTAPADRPTRTPAVLPWVVSARSATALDAQLARLRAFAAERPDLP PADVAHSL
 FT VTSRATFEHRAVLLAAPDGITAARAEEARERSTAFLSGQGAQRSGMGRRELHAAFPVFA
 FT AAFDEVAVLDAELATGSGGVSLREVMWGGGSELLDRTRFTQPALFAVEVALFRLVAS
 FT WVGPEFVAGHSVGEIAAAVAGVFSLVDACRLVVARASLMDALPVGGVMVAVEAAEAE
 FT VVPLLDGVIAIAVNGPVSVVSGVEAAVGQVVDQLVERGRRVRLAVSHAFHSPLMDP
 FT MLDAFRAVAEGLEYHQPRIPVVSNTGEVAAAELCAADYWVRHVRATVRFADGVRTLA
 FT ERGATAFLIEIGPDGVLSALAAACLFDTDAEVVPAWRKGRPEEHTALTAAAQLHVAGVDI
 FT DWTAVALAGTGGRRIALPTYAFQRERYWPSLAAQAPGDAGGLGLEAGRHPPLLGAATTVAG
 FT SAEILLTGRSLSTTAQPWLAVYEADGRTVLPAAVLAELAVRAGDQADCPVVAELTVAPL
 FT VLTGAAAQRQLQVRVAAPDDTGRRALSVHARPDDSPDSPWTLHATAVLTHDTPQPPPAPDT
 FT GWPPERAVPLDALPTATGPARIAAAWQWGDELCAIEIPEPGPAERAFAHPALLDTAV
 FT RAGGLLDGDATLDALGWRGLALHAASATALRVRLPDGTDWTALLEATDPQGAPVSVTG
 FT LTGPTVDRSGAGAADDGATLLDLEWWPAPQAAPTGGDHPYAVLGDQLAELDQLRI
 FT AGDGPGRVASLAAALLDGGAPLPRVLVAPVLGVPTGEGLPAAVRGTTTAVLELLQRWTA
 FT DARTADSHLVIVTRGAVAAGAEDVHDLAAAPVWGLVRSQAQSEHPGSFLLLDLDPADPAG
 FT ASRAAAPATLAALLDAGETQAAVRADTLTVARLTRAADGPEATAGHPVWDRDGTVLI
 FT TGGTGGLGGLLARHLVTGHGIKHLLLAGRRGPDAPGARALRDELAALGAEVTVAACDVA
 FT DRAALDRLLAQLPPEHPLTAVVHTAGVLDATVGTLPRLDTVLRKADAAWHLHDAT
 FT RDRDLAGFVLYSSVAGVTGGPGQGNYAAGNTFLDALAAHRAAQGLPGLSLAWGPWGQDA
 FT GMTGTIGAADLARLERSGMPPLTPEQGLALFDAAGARGDGFAVAVRLARGAAAPGADEV
 FT PAVLRALVRGRRRTAAAAGHAGVLARRLAALDAEQRHQALLDLVRRTETAAVLGHGADA
 FT VPAERDFNRLGFDLSLMAVELTRLATATGARLPATLVDHPTDAVARHLASTLPGGTA
 FT AGPDRSPLAELDRIAELSPEGADDATRQGVVGRRLHLLAQWDGTRQDGGGTTVDDRIE
 FT AASAEELVAFIDHELGRQADS"
 FT CDS 50747..56947
 FT /codon_start=1
 FT /db_xref="SPTREMBL:Q9L4X1"
 FT /note="polyketide synthase/thioesterase; contains a
 FT C-terminal thioesterase domain"
 FT /transl_table=11
 FT /gene="nysK"
 FT /function="responsible for the last condensation step in
 FT the nystatin polyketide backbone synthesis"
 FT /product="NysK"
 FT /protein_id="AAF71768.1"
 FT /translation="MPDEKKLVVDYLKWTKDLHQTRQRLQEVAGRHEPVAIVGMACRF"

FT PGGVRSPEDLWELLSAGRDIGPFPADRGWDLAALAGDGPGRSATQEGGFLPDAAAFDP
 FT GFFDISPREALAMPQQRLLETAWEAVERSGIDPAGLGSRTGVFVGNTNGQDYAHVL
 FT AAQDDMMGGYAGNGLAASVLSGRLAFALGLEGPATLDTACSSLVTLHAAQAVRAGEC
 FT GLALAGGVTVMTTSSSFAGFSLQGGLAPDGRCKAFAEAADGTGWSEGIGLLLVERLSDA
 FT QRNGHPVLAVRGSAVNQDGASNGLSAPNGPSQQRVIRQALAGAGLPGDVAEAEHG
 FT GTRLGDPIEAGALLATYQDPRPADRPLWLSVKSNLGHTQAAAGVAGVIKMVLALRHGV
 FT LPQTLHVDAPSSHVDWESGAVRLLTAPVAWSEGDRVRRAVGSSFGISGTNAHVILEQA
 FT PDQPEPTAEETAAAAPGGTAAERAAPVAPRWPVAAARTAGALDAQLVRVRALTAP
 FT GRTAADVGHALATARTPFEHRALLVHEGGAVTEVARAVPTGDRGGLAVLFSGQGSQRP
 FT GMGRELHARYPVFAAAFDETVALLDARLGTSLRDIVWDQDRTRLDDTRHTQPALFAVEV
 FT ALYRLLAŠWGIRPDHVTGHSIGEITAAHVAGVLTADACTLVAARATAMSELPPGAMV
 FT ALEATEDEVRPLLTDLAIAVNAPRSVVVAGAEDAALAVRRHFDDLRRTTRLPVSH
 FT FHSPLMDPMLDAFRTALAPLTFAEPEIPVVSNLTGLPATAEELATPHYWVCHVRQAVRF
 FT GDGVRALADRGVRTFLELGPDGVL SALVRENLEPGLVAVPVLKERPEETTVLAALGT
 FT LWAHGADWDWDAVFAGTRTPQADPVELPTYAFQRARYWPTL GARHGD PADLGQTAAAH
 FT LLGAAVTLADADEVTLTGRLALPSHPWLGHDHRSDGRITVPGVAFAELAVRAGDLSGTPH
 FT LARLDLPA PLTLGDGDTVTLQVRVGAPDPAGHRPLTVHARLAATEDAPWTTCATGLLAP
 FT DAPEAAPADPIGPADAGWPPRDPARPVPVADLAAAATAAGRHYGHFQGLTGLWRRDGEVF
 FT AEVALPTATAADRAFGIHPALLATALRATAALDDDHAGHTPEPTGITGLALHATGATA
 FT LRVRLTATGPDTVALAAADATGGAVLTADTVTLGSPQDRPAPAPAGHTGQGGLFHLDWV
 FT PVDPGSRATGTRWA VVGDDELDLYGAHLRADET VSAYAASLGGAI GDSGLAPDVFLV
 FT VGGPDAGPDAVHA VTA RALG LQEWLN PRLAGARL VFVTRG AVAPGETVTD PAGAAV
 FT WGLL RSAQ TENPGS LLLV DLD AFRSAGMLPHV LTL DEQQLV VRD HAV RAAR LARL PEP
 FT AAGTAPARAWDPDGTVLITGGTGGLGAALARHLVTVRGARHLLLAGRRGPEAPGAGELV
 FT AELTAQGADVRV AACDVGDR TAL DALLA T VPAAHPLTAVVHTAGV LDDA LIGSLTPDQL
 FT ATVLRPKADA AWHLHDATRGLDLAGFVLYSSVSGV LGSPG QNYAAANAYLDALARHRA
 FT DQGLPALS LAWG PWGRGSGMTAS VSDA DLER MARGGLPPLTVEDGLA LFDAAVGRPEPA
 FT LVPSR INVAGL RDQ QALP ALWRD L VPRARR TAATAD RSPVTR RERL RHL DETGQ EQLI
 FT DLV VGYTAGLLGHDPTAVDPERGFLELGFD SLSV G L RNQ L A EILGLRLPSSIVFD SK
 FT SPVKLARWLHQELANGPQPGATGPAA DARPA VRS SDDTLEG LFYNA VRGGK LVEAMRML
 FT KAVANTRPMFDT PAE EEL SEP VTLADGP GRP RLI FV S A PGATGGV H Q YARIA AHFRGS
 FT RH VS ALPLMGFAPGELLPATSEAAARI VAE SVL MASEGE PFVMVG H STGG SLAYLAAGV
 FT LEDTWDVRPEAVVLLDTAS I RYN PGE GNDL RTR FYLAD IDSPS VTL NSAR M SAMAHW
 FT FMAMTDI QAPAPTAP TLL VRAAR ALDG F RL DTSS VP ADEV RD IDAD H L SLAKE H SALTA
 FT QAIEGWLAELPDPA A"
 FT CDS 57095 . . 58279
 FT /codon_start=1
 FT /db_xref="SPTREMBL:Q9L4X0"
 FT /note="P450 monooxygenase"
 FT /transl_table=11
 FT /gene="nysL"
 FT /function="presumably involved in modification of the
 FT nystatin macrolactone ring"
 FT /product="NysL"
 FT /protein_id="AAF71769.1"
 FT /translation="MSTPTAPPSLKAEVPPVRLSPLLRELQS RAPVCKV RTPAGDEGW
 FT LVTRHTELKQLLHDDR LARAHAD PANAPRYVHNPF LDLLVVDDFDLARTLHAE MRS LFT
 FT PQFSARRVMDLTPRVEALAEGVLAHFVAQGPPADLHND FSLPFSLSVLCALIGVPAEEQ
 FT GK LIA ALTKLGELDDPARVQEGQDELFG LLSGLARRKRITP EDDVISRLCLKVPSDERI
 FT GPIASGLLFA GLD S VASHIDL GTVLF I QHPDQ LAA ALADEKLMRG AVEE ILR SAKAGGS
 FT VLPRYATADVPIGDVTIRAGDLVLLDFL VNFD RTVFDEPELFDIRRAPNPHLT FG HGM
 FT WHCIGAPLARVNLR TAYTLLFTRLPGLR LVRPVEELRVLSGQLSAGL TELPVTW"
 FT CDS complement (58378 . . 58572)
 FT /codon_start=1
 FT /db_xref="SPTREMBL:Q9L4W9"
 FT /note="ferredoxin"
 FT /transl_table=11
 FT /gene="nysM"
 FT /function="participates in electron transfer in P450
 FT monooxygenase systems"

```

FT          /product="NysM"
FT          /protein_id="AAF71770.1"
FT          /translation="MRITVDPGRCVGAGQCVLTAPDLFDQDDDGLVTLAGAADAADPG
FT          DVRDAALCPSGAISVAAD"
FT          CDS      complement(58637..59833)
FT          /codon_start=1
FT          /db_xref="SPTREMBL:Q9L4W8"
FT          /note="P450 monooxygenase"
FT          /transl_table=11
FT          /gene="nysN"
FT          /function="presumably involved in modification of the
FT          nystatin macrolactone ring"
FT          /product="NysN"
FT          /protein_id="AAF71771.1"
FT          /translation="MSTEADARTAAPQCPVAFPLRRPGRPPPEYATYRGGAGLVRSE
FT          LPSGPVWLVTRHEDVRAVLTDPRISADPSKPGFPKAGRTGGAPSQYEVPGVFVAMDPE
FT          HGRFRKTLIPEFTVRKVRELRLPVIQQIVDERIDAMLAAGTSADLVESFALPVPSLVISS
FT          LLGVPVKVDRDFFEDRTRVLVRLSSTDEERDKATQALLRLYLGRLIQIKQRRPGDDLISRL
FT          IAAGTLSRQELSGVAMLLIAGHETTANNIGLVVQLLTNPRWIGDDRIVEELLRRYSV
FT          ADLVAFRVAVEDVEIGGQLIRAGEGIVPLIAANHDATAFAAPSEFDPERSARSHVAFG
FT          YGVHQCLGQNLVREEMDIAYRTLFAIRPSLTLAVPVEELPLKYDGVLFGLHELPVTWK"
FT          CDS      complement(59830..60888)
FT          /codon_start=1
FT          /db_xref="SPTREMBL:Q9L4W7"
FT          /note="putative aminotransferase"
FT          /transl_table=11
FT          /gene="nysDII"
FT          /function="presumably involved in mycosamine biosynthesis"
FT          /product="NysDII"
FT          /protein_id="AAF71772.1"
FT          /translation="MSFTYPVSMMPWLQGRELDYVTEAVGGGISSQGPYVRRFEEAAAYNDV
FT          PFGVACSSGTTALTLRALGVPGDEVIPFETMIASAWAVTYTGATPVFVDCG
FT          DDLNIDVSRIEKEITPRTKVIMPVHIYGRQCDMDAVLNLAYEYNLRVVEDSAEAHGVRP
FT          RGDIACFSLFANKIISAGEGGVCLTHDPHLAEQMAHLRAMAFTKDHSFLHKKLAYNFRM
FT          TNMQAAVALAQTEQLDTILALRRDIEKRYDEALRDIPGITLMPPRDVLMWYDILRAERRD
FT          ELCAYLAGEGIETRVFFKPMRSQPGYFSADWPALNAARLSADGFYLPTHTGLTAQECEF
FT          ITGRIRAFYGVA"
FT          CDS      complement(60909..62429)
FT          /codon_start=1
FT          /db_xref="SPTREMBL:Q9L4W6"
FT          /note="putative glycosyltransferase"
FT          /transl_table=11
FT          /gene="nysDI"
FT          /function="presumably responsible for attachment of the
FT          dGDP-mycosamine to the nystatin macrolactone ring"
FT          /product="NysDI"
FT          /protein_id="AAF71773.1"
FT          /translation="MTLPNGNTRLGWRRRRMHSPGDRAGRVRGARARRPATFRGVLSMG
FT          ANRRPILFVSYAESGLLNPLLVLAGELSRRDVAFLWFATDEKARDEVAAVVDGS
FT          PVRFA SLGDTVSQMSAVTWDDATYAEVTQRSRFKAHAAVIRHSFAPESRMAKYRRL
FT          LEEIVEEVE PALMVIESMCQFGYELAITKGIPFVLGVFPVPSNVLTSHVPFAKS
FT          YTPSGFPVPHSGLP AAMSLAQRRIENQLFRLRTLGMFLTSDVRKVVEEDNRV
FT          RTELGIAPIQARQMMARIDHAEQ VLCYSVRELDYPFPFMHPKLR
FT          LVGTMVPLPQAPDDDGLSDWLSAQKS
FT          VVYMGFGTITRL TREQVASLVEVARLDGRGHQVLWKLPRGQQELLPPAAELPDNL
FT          RIEGWVPSQLDVLAH PNVKAFTP
FT          THAGGN
FT          GYHEGLYFGKPLVVRPLWVD
FT          CDDQAIRGQDFGVSLTLD
FT          RPE
FT          TD
FT          DVLDKITRVL
FT          DQPSFTERAEHFAGLLR
FT          DAGGRAAAADLLLGLPALATD"
FT          CDS      62659..66759
FT          /codon_start=1
FT          /db_xref="SPTREMBL:Q9L4W5"
FT          /note="polyketide synthase; contains KS domain with"

```

FT Cys->Ser substitution in the active site"
 FT /transl_table=11
 FT /gene="nysA"
 FT /function="presumed loading module of the nystatin PKS complex"
 FT /product="NysA"
 FT /protein_id="AAF71774.1"
 FT /translation="MTIGADEDPVVVGMACRPGGVAGPEDLWELVRTGRDATTAFPD
 DRGWDLAALAGDGGGRSATREGGFLTGAADFDAAFFGMSPREAVSTDPPQQLVLETAWE
 ALERAGIDPHSLRGSRGRTGVFGASQDYAAVTHASPDDLDGHALTGLAPGVASGRAYV
 LGLEGPAVTVDTSSSLVALHWAVRALRAGECSTALAGGVTVMSTPAAFVGHTRQGL
 APDGRCKPFSDDADGTAWAEVGIVVLEHLSTARAAGNPVLAVLRGSAVNQDGASDGLT
 APSGPAQERVIRALAALADARLAPADIDLVEAHGTGTRLGDPVEARALLAAYGQDRDPDRP
 LRLGSLKSTLGHQAQAAAGIGGVIKTVLTLRHGLMPRIRHLATPTRQVDWSQGAVA
 LTD HTPWPPADRPRRAGVSSFGISGTNAHVILEEAPPADVPVTRPGTLRPSTWP
 PVSAATPEALDAQLARLRAHLRTHSDLPLDVGSLATGRAALRRAVLLPPADGTA
 AADAVEHARG AAHQRRRTAVLFSQGGSQRPGMGRLEAARFPVFADALDDALRALDRHLDGP
 VREVMWGTD AALLDRITGWTPQPALFAVEVALHRLVASLGVTPDFVGGHSGVEIAAAH
 VAGVLSLEDACRLVAARATLMMQALPAGGAMAAL EATEDEVAPLLGAHLALA
 AVNGPTAVVAGAEDAVRQL TARFADRRRTSRLAVSHAFHSPLMEPM
 LDAFRDVSVSLTFHQPSIPLVSNLTGELAGS EITSAEYWVRHVRDTVR
 FADGITALAKAGADVIELGPGGVLSAMARDTLGP
 DTTDVVPALSKGRPEETAFAGALGRHLTLGVPVDWPAFYAGTGARRVELPTYAFQH
 VRHWPTPPR PNGAGPGALGHPLLGS
 SAVELADGGGTCVCSGALSRLTHPWLA
 DHTVAGR
 VVLPAT
 ALLEL AVRAGDEAGCDVLHELH
 LTT
 P
 PALPDDA
 ALHVQVHGVPADTTGRR
 RAVTVHTRPDHPAG DWTRCATGTLG
 STPPS
 S
 AAEATGGT
 PAWPP
 P
 ADAEPLD
 LADHYER
 LADRGFDYGP
 TFRG LRAAWRRGAE
 IFADVECP
 PG
 TADDAPDHGLHP
 ALLDAARHAAM
 A
 VDGT
 VPAWHGVRLH AVGATALRV
 RIRP
 TTG
 TL
 T
 A
 DVHG
 APV
 VT
 VEALT
 TARPL
 DEERA
 A
 PR
 PRQARGE TPADARP
 PARP
 A
 A
 RGP
 PAGE
 PL
 P
 DTT
 GSHPT
 AGH
 L
 A
 ALP
 PA
 ERQ
 RL
 L
 V
 FN
 P
 T
 PERA
 AHLGE LLAATAPLD
 PG
 GAY
 GEEL
 TR
 FEA
 I
 VT
 NL
 PQD
 GP
 RERR
 A
 DRL
 DA
 I
 VS
 ALR
 QNS
 SPA
 VPSS DEDIDTV
 SVDR
 LDI
 IDEEFETT"
 FT CDS 66805..76383
 FT /codon_start=1
 FT /db_xref="SPTREMBL:Q9L4W4"
 FT /note="polyketide synthase"
 FT /transl_table=11
 FT /gene="nysB"
 FT /function="responsible for condensation steps 1 and 2 in
 the nystatin polyketide backbone synthesis"
 FT /product="NysB"
 FT /protein_id="AAF71775.1"
 FT /translation="MQEPQQQPDQQEKIVDYLRRVTSDLRRARRIGELESKDNEPIA
 IVGMGCRLPGGVNSPESLWDLVRSGGDAISGF
 PVDRGDLET
 LTGNGDGSSATHEGGFL
 YDAAEFDAAFFGISPRE
 ATAMD
 PQQL
 LEVA
 WEALERAGI
 APTALRG
 GRS
 RSGV
 FG
 SYH
 WGAPSADA
 AATEL
 HGHALT
 GT
 AAS
 VLS
 G
 R
 L
 AY
 TG
 LEG
 PA
 VT
 D
 T
 AC
 SS
 SL
 VAL
 H
 LAAQS
 LRV
 GESS
 L
 A
 V
 I
 G
 G
 V
 T
 I
 L
 T
 E
 P
 S
 V
 F
 E
 F
 S
 A
 Q
 G
 G
 L
 A
 P
 D
 G
 R
 C
 K
 A
 F
 S
 D
 A
 AD
 GT
 G
 W
 A
 E
 G
 V
 G
 V
 L
 V
 A
 E
 R
 L
 S
 D
 A
 Q
 R
 N
 H
 G
 P
 V
 L
 A
 V
 L
 R
 G
 S
 A
 V
 N
 Q
 D
 G
 A
 S
 N
 G
 L
 T
 A
 P
 N
 G
 P
 S
 Q
 E
 R
 V
 I
 Q
 Q
 A
 L
 A
 R
 V
 T
 G
 L
 T
 P
 A
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S
 V
 R
 L
 L
 T
 E
 G
 Q
 Q
 W
 P
 E
 T
 G
 R
 P
 R
 R
 A
 A
 V
 S
 F
 G
 I
 S
 G
 T
 N
 A
 H
 A
 L
 L
 E
 Q
 A
 P
 H
 P
 A
 D
 T
 A
 D
 G
 D
 D
 A
 P
 T
 E
 P
 A
 G
 A
 P
 A
 L
 P
 W
 I
 V
 S
 G
 H
 S
 P
 Q
 A
 L
 R
 D
 Q
 A
 A
 A
 L
 A
 R
 V
 E
 T
 D
 P
 A
 R
 P
 Q
 D
 I
 G
 H
 T
 L
 H
 T
 A
 R
 A
 L
 L
 R
 A
 V
 V
 V
 A
 P
 D
 R
 A
 E
 L
 A
 A
 T
 H
 E
 L
 A
 A
 G
 R
 S
 A
 N
 A
 V
 V
 E
 G
 L
 A
 D
 V
 E
 G
 R
 T
 V
 F
 V
 P
 G
 Q
 G
 S
 Q
 W
 V
 G
 M
 G
 A
 Q
 L
 L
 D
 E
 S
 A
 V
 F
 A
 E
 R
 I
 A
 E
 C
 A
 A
 A
 L
 E
 F
 T
 D
 W
 S
 L
 D
 V
 L
 R
 G
 V
 V
 G
 A
 P
 S
 L
 E
 R
 V
 D
 V
 W
 S
 A
 G
 S

FT FATGSPDPVTRPLQSQIAGVGWTTALEHPQRWGGTVDLPDTLDARAAQRLAAALSGALG
 FT AEDQLAVRAAGVLARRIVRAGHRAGRPARTWAPRGTTLITGGSGTLAPQLARWLAERGA
 FT EHVVLSVSRRGADAPGAPELIAEAAESGETVACDITDRDAVAALLADLTADGRTLRT
 FT VIHAAAIELSALADTTVAEFADVHAKVTGARIIDELDDAELDDFVLYSSTAGMWGS
 FT GVHAAYVAGNAYLSALAEQRARRGLRTTSIHWGKPDDRARELADPHRIRRSGLEYLDP
 FT ELALTALQHVLDDETVIGLMDIDWDTYHDVFTAGRPAHLFDQIPEVRRRLDQASVPDP
 FT AGPAADGLAARLHGLAAAEQDRLLLTLVRTEAAAVLGHASAESFPERRAFRDLGFDSVT
 FT AVDLRNRLVAGTGLRLPSTMFDHPNCALAFLKTTALGVPGAPQQHAATGTPADDD
 FT PIAVIGMSCRYPGGAATPEELLRLALDGADVISEFPADRGWDARGLYDPDPDRPGHTYS
 FT VQGGFLHEAAGFDPGFFGISPREAVAMPQQLLETSWEAFERAGIDPASLRGSAAGT
 FT FFGASYQDYSSSTVQNGTGESEAHMVTGTAASVLSGRVSYLLLEGPAVTVDTACSSLV
 FT ALHLACQSLRDGESSLALAGGAAMATPHAFVGFSRQRALAKDGRCKPFSDTADGMTLA
 FT EGVGVVLLERLSHARANGHRLAVIRGSAVNQDGASNGLTAPNGPSQQRVIRQALANAG
 FT LTGADVDAVEAHGTGKLDPIEAQALLATYGQDRDAERPLLGSVKSNIIGHTQAAAGV
 FT AGVIKMVLAMDAGELPGTLHLDAPSSHWDWTAGAVEELLRGRTWPWESGRPRRAGVSSFG
 FT ISGTNAHLILEQAPATEPPADPDRLRDTATDTVVPWPLAAKSPAALRAQAARLLATVEH
 FT DPDLPPAPVGHALATTRAALEHRAVVGERREDFLRGLAALSTGASTAGLVSGIAGPDP
 FT EGAVFVFPQGSQWGMGRELLATSEVFRTAIDDCATALAPYVDWSLHDVLAGEGDPAL
 FT LERVDVQQPALFAMMVGLSALWRSHGVPAAVVGHSGQEIAAACVAGALSLADAARVVA
 FT LRSQALPQLSGRGGMMSVSAPVERVTALLAPWQEALSVAAVNGPSSVVSGDTDALDAL
 FT HTACQEQQVARKVSVDYASHGRHVEAVRDELARVLAPEVDFPRAPEVPFYSTVTGDRVDD
 FT AAFDGYWYTNLRQTVRMEEATRALLAAGHGRFIEVSPHPVLAAPIQETQEAVAEATGG
 FT SAVVLGSLRRDEGGPRRFLTSLAEATHGAPVDWTTTFARSAVQPVDLPTYPFQRQDFW
 FT PEARPATPAAGADASDAFWQLVENQDLAALADALGVPADDEHTALGTVLPALSAWRAK
 FT AQARTRIDEPLYHVQWTRVAEPAAAPTGRLLVAVPPDHADAPWVAAALDALGTDVRF
 FT EAKGTDragwaaQIAQLVEDGEEFTGVVSLLAAAEDLHPDFGSVPLGLGQTLVQLG
 FT DAGLTAPLWCLTRGAVATGRDDALDSPTQGALWGLGRVVALEHPDRWGLLIDLPAIDL
 FT RAAARLTGLLADPAGEDQLA VRATGVLA RRMVHAAPSAPRTGRRWRGRGTCLITGGTGG
 FT IGGRVARWMAEHGA AHLVLT SRRGPDA PGAA ALRAE LEAL GARV TLAAC DVAD RD ALAA
 FT LLADLPADQPLTSV FH SAGVADGDARA ADL TL DQL D ALL RAKL TAA HH HEL TAP LD
 FT AFVLFSSGA AVW GSG QPG YAA ANAY LD ALA AH RR SLD LPG AS VAW GTW GEV GMAT VPE
 FT VHERLHRQGV RAMEPD HAIG AL QQ MLE DDD TT LA VT LMD WE AFAPS FT ATR PS AL FST V
 FT PEAVR A VT GDP GT TAG DDV DS AT PPL RR HLE EL SAA ER GR AL VE A V R AE A S AT LG HD TP
 FT DAI PAGRA FRD VG FD S VT AVEL RN RL RT AL GL PL PA AL VF D H PT P T AL AGH LG ALL FGT
 FT APEDAGT GRP DDP D AR I REAL AT VP I GRL R KAG L LD MV L K L ADG DAT D A P A P E A D A P S E
 FT SLDDMDA E ALL R L A T E N S A N "

FT CDS 76403..109693
 FT /codon_start=1
 FT /db_xref="SPREMBL:Q9L4W3"
 FT /note="polyketide synthase"
 FT /transl_table=11
 FT /gene="nysC"
 FT /function="responsible for condensation steps 3 to 8 in the
 FT nystatin polyketide backbone synthesis"
 FT /product="NysC"
 FT /protein_id="AAF71776.1"
 FT /translation="MSTNPDKYVEALRSSLKEIERLRRQNEQLVAAVEPVAVVGIGCR
 FT FPGGVTSPEDLWELVAEGRDVIGPFPQDRGWDEKLGGEGGSLAQVGGFVEDAAGFD
 FT PGFFG I SP REAVAMPQQRILLEITWEALERAGIDPSTLRTGPTGVFGTTGQDYGEVI
 FT KASAEDVEVYSTTGHAA SVISGR LS YTLGAEGPAVTVDTGCSSSLVALHWAVQALRGGE
 FT CSMALAGGASIMATPGPFVAF TAQSGL AADGRCKPFSRADGTGWGE GAGMLVLMRLSD
 FT AQREGRPVLA VLR GSAINQDGASNGLTAPNGPSQQRVIRAALDSAHLTAADIDAVEAHG
 FT TGTTLGDPIEAQALLATYGQDRPRPLWLGSVKSNIIGHTQAA SG AAGVI K MIMAL QRGVL
 FT PRSLHATEPTTDWDTAGSV DLLDETVAW PETGRARRAGV SFG ISGTNAH VILEQAPT
 FT APEEPTTEPTVRAVVPWALSARTAA ALDAQRARLTGHADTPADPLDVGYALADGRA
 FT TFEHRAVLLPDGT E LAHGTAGEGPCAVLFSGQGSQRP GMGRELHARFPVFAA AFDEITA
 FT LLDTHLDRPLREVWGT DADLLNDT GW A QP ALFAVEVALYRLV AS LGVTPDFVGGHSIG
 FT ELAAA HVAGV L SLED ACTLVAARARL M QAL PRGGAM LAIRATEDEVTPH LT D DV SIAAV
 FT NGPTSVV VAGTEE A VAAIGARFTAQDRKTTRLRV SHAFHSP LMDPMLAEFRAVAAGLTY
 FT HEPRIPVLSNL TGTVA AVADLC SAD YWVRHV REAVRFADGV TAL D RGVT TL VELGP DG

FT VLSAMAQESLPDGAAAVPLLKDRPEELSAVTGLARAHVRGVTVRWAGLFDGTGARRAD
 FT LPTYPFQHQRFWPTAARAAQDVTAAGLGAADHPILLGATVELADGAGYLFTSRLSVRTHP
 FT WLADHGIVQGRALLPGTAFVELAVRAGDEAGCDRVEELTLAAPLVPERGGVQLQVRVGA
 FT PDAAGRRTLGIFSRSVEDGFDLPWQSQHATGVLTAGAGAPDPTFDATWPPSGAEPVDTLG
 FT AYERLAALGFQYGPQFQGLRAAWRRDTEVYAEVALPDGADTDPAAFGLHPALLDAAQHA
 FT AAYADLGAISRGGLPFAWEVSLAAAGATTVRARIAPAGEDTVTIavyDAAGGTVLSDV
 FT SLVSREVPADAPGAAGTVHRDSLHVETPLQGRGPAPATVAVLGPDPDALADTLRAT
 FT GIRTТАPRDLAALADAEGPVPDLVTTLTTPGAPVPDAAHATTAAVLALAQQWLADDR
 FT FADARLVLVTRGATDGTDPAAAAGGLIRTARTENPGRFALLDAPDTGRPDPTLATA
 FT LAASHDEPDLAVRGTDVHAARLARVPLATEPTTWNPDTVLIITGGTGGLGAVLARHLVA
 FT THGVRHLLLASRRGPAADGADDLTAELTGLGATVHIAACDVADPAALADLLGTVPAGHP
 FT LTVVVHTAGVVDGVLGSLTPQRLLTVLRPKADAAWHLHEATHLDLDAFVLFSSVAAT
 FT LGSPGQANYAAGNAFLDALAARRAATGLPATSLAWGPWTQSGMTSSLSDLVERIARS
 FT GMPPLTLEQGTALFDAALAAGPAALAPVRDLPVIRTQGDIAPLLRGLIRTPTVRRTAAQ
 FT VSQTADGLAQRLAGLDAARREALLELVRTQIAQVLGHADATEVETGRQFQDLGFDLSLT
 FT AVELRNALNTATGLRLPATMVFDPYPTPHALADHLRDELLGTEAESTTAVPVPTRTAGTD
 FT DPIVIVGMACRYPGGIASPEDLWRVLVSQGADATGPFPNTNGWDLDNLYDPDPDRPGRTH
 FT VRAGGFLHDAGSFADFFGMSPREAMATDSQQRLLLELSWEAVERAGIDPASLRDSDGTG
 FT VFAGVMYNDYGTTLGDEYEAFRGNGSAPSVASGRVSYTLGLEGPAVTVDTACSSSLVA
 FT LHWAQAQLRAGECSSLALAGGTVMSTPSTFVEFSRQRGLAPDGRSKAFAEAADGVAWSE
 FT GVGMLVLERQSDAVRNGHEILAVVRGSAVNQDGASNGLTAPNGPSQQRVIRQALASGL
 FT STADVDAVEAHGTGTTLGDPIEAQALLATYGRDRDPENPLLGSIKSNIGHTQAAAGVA
 FT GVIKVMAMRHGVLPQTLHVDAPSSHWDWSVGAVELLTEQTAWPETGRARRAGVSSFGI
 FT SGTNAHHVIEQSPTAVPATPASADRSVEEPPAVPWALSGKTPDALRDQAARLLAHVEAH
 FT PALRPVDISYSLIATRTAFDHRAVVLGTDRAEALRALTALAAGETDPAALTGTVRTGRT
 FT AFLFSGQGSQRLGMRVLYERFPFAEAELDTVLTALDAELGHPLRDIIWGEDAQLVDRT
 FT GYTQPALFAIEVALFRILLEAWGITPDFVAGHSIGEIAAAHVAGVLSLGDACRLVVARAV
 FT LMQSLPEGGAMIAVQATEDEVLPPLTDDVSIAAVNSPTSVVSGYENATLAVARHFADQ
 FT GRRTRLRVSHAFHSPLMAPMLDDFRAVVESLTFTAPTPVVSNLTGELAPAEALCSAD
 FT YWVRHVREAVRFADGIRTLADRGVTTFVELGPDSVLSAMAQESAPEGAGTIPLLRRDRP
 FT EEQAVLAALCHLQLVGLVEADWSATFRGLDPVRVDLPTYAFQHRWFPAARPDDVRA
 FT AGLGAAEHPLLGAAVQLPDDDGALFTGRLSLRTHPWLAHTVLTGTVLLPGTALVELAVR
 FT AGDETGGSHLEELTLAAPLTLPEDGATLLQVRVGSADDTGRRTVTVHARPDDTADRTWT
 FT LHATGVLATTPPAAAFTDTTVWPPADAEPLTDDCYAHFTTHRFAVGPAFQGLRAAWRA
 FT GDVLYAEVALPESATDEAAAFGLHPALLDAGLHAALLADDRDTGLPFSWEGVTLHASGA
 FT TALRVRLAPNGPNGLSVTAADPAGNPVATVTRLLARPLDAEQLTIHSALTRDALFHLDW
 FT TPVPLPDTANSAPPALLGPDTAVLADALGDPavarhatLDDLLAGDTTPATVLPVPLGA
 FT PLDGDTAQHAAHALTRSALTLVQQWLATDRLADSRLVFTVHGAVATDDAPPTDLAAAIVW
 FT GLIRSAQNTENPGTFULLLDTEPDSTTALSALTLDPEPQLLRAGRARAARLRTPTAPT
 FT TTTHTPWSADGTVLVTGGTGGLGLVARHLVRSCGVRHLLTSRGVGAAGAAGLVAEL
 FT ESLGARVVVAACDVGDSAVAELVAGVSESYPLSAVVAAGVLDGVVGSLTPERLA
 FT LRPKVDGAWLHEATRGDDAFAVVFSSVAGVFGAGQANYAAGNAFLDALMVHRVAG
 FT LPGVSLAWGAWDQGVGMTAGTERDVRAAESGMPLLTVDQVALFDAALATGSAALVP
 FT VRIDLAAALRTRGDIAPLLRGLVRAPLRTAATGLATGADTGLVQRLGRDHAQRHEALL
 FT DMVRSSAALVLGHADGNAIDAERAFRDLGFDLSITAVELRNRLRTATGLHLSATMVFDP
 FT TLSALAEHLRDELFGAVESEVRVPVQALPPTADDPIVVVGMACRFPGGVTSPELWRLV
 FT DDGTDIAITFTPTNRGWLDLNLYDPDPEHFGTSYTRSGGFLHEAGEFDPAFFGMSPREAL
 FT ATDSQQRLLLESSWEAIEERAGIDPLTLRGSATGVFAGVMSDYGSILGGKEFEGFQGQG
 FT SAGSVASGRVSYALGFEGPAVTVDTACSSLVALHWAAQALRAGECSSLALAGGTVMST
 FT PSTFVEFSRQRGLAPDGRSKAFAEAADGVGWSEGVGILVLERQSDAVRNGHEILAVIRG
 FT SAVNQDGASNGLTAPNGPSQQRVIRQALASGGLSTADVDAVEAHGTGTLGDPIEAQAL
 FT LATYGRDRDPENPLWGLSLKSIGHTQAAAGVAGVIKMVMAMRHGVLPQTLHVDAPSSH
 FT VDWSVGAVELLTEQTAWPETGRVRRAGVSSFGISGTNAHVIVEQPALVESPAAEPSGRE
 FT PGVVPLPLSGKSPEALRDQAARLLLAGLAERPALRPLDLGYSLATTRSAFDHRAVVLATD
 FT RADAVALTALAADADLSAVVGDTRTGRHAVLFSQGQSQLGMGRELYERFPVFAEAL
 FT DVAIDHDLAALPAQASLREVWMGDDVELLDETGWTPQALFAVEVALFRLIVESWGVPDF
 FT VAGHSIGEIAAAHVGVFSLEDACRLVAARATLMOQALPTGGAMIAIQAAEDEVTKHLD
 FT DVSIAAVNGPTSVVSGAESAAARTVADRLAENGRTTRLRVSHAFHSPLMDPMIAEFRA
 FT VAEGLSYATPTLPVVSNLTRGLATADDLCSAEYWARHVREAVRFADGVSTLENEGVTTF
 FT LELGPDGVLSSAMAQQSLTGDAATVPALRKDRDEETSALTALAHHTAGLRVDWAFFAG

FT SGATRVDLPTYAFQHATYWPTGTLPTAHAAGLTAEEHPLNGSVELAEGEGLFTGR
 FT LSLQSHPWLAHDHAVMGQVLLPGTALLELAFRAGDEAGCDRVEELTLAALPVLPERGAVQ
 FT TQVRVGADDTGRTVTVHSRPEHATDVSWTQHATGTLTMGSAPADTGFDATAWPADA
 FT EPLATDDCYARFTTLLGFAYGPVQGLRAAWRAGDVLYAEVALAESTGDEATAFGLHPAL
 FT LDAALHASLVAHEGEESNGGLPFWSWEGATLYATGATALRVRLPTGTGDRSVAIAVADT
 FT AGRPVAIAIDNLVSRRVSGDQLTGAAGLARDALFTLDWNPVPPENLPVPENPVPPENTGGHA
 FT QDQDGRPAATVALVGADGTAIAADLTAAIGIHTTLHPDLTTADVPKTVLIPLTG
 FT TGTGTGTTESTDGIGTGAESDASAPSVAEVAHTLSTAALALVQEWTQAERFAGSRLA
 FT FVTTGATAAGGTDVMVAAAAGWGLVRSQAQSEAPDTFVLIDRDPGPAGTHDRTAAERG
 FT QLLRALHTDEPQLALRDGGVLAARLARFDTAAALTPPADRAWLDSTAKGSLNGLALT
 FT PYPAALAPLTGHEVRVEVRAAGLNFRDVLNALGMYPGDDVGSFGSEAAGVVVEGPEVT
 FT GLAPGDQVMGMITGSFGSLAVDDARRLARLPEDWSWETGASVPLVFLTAYALKELGGL
 FT RAGEKVLVHAGAGGVGMAAIQIARHVGAEVFATASEGKWDVLRSLGVADDHIASSRTLD
 FT FEEAAFEVAGDRGLDVVLNSLAGDFDASMRLLGDRGFLLEMGKTDIARAADSVPDGLSY
 FT QSFDLAWVVVPETIGTMLAELMDLFRTGALRPLPVRTWDVRHAKDAFRFMSMAKHIGKIV
 FT LTLPRSWKPEGTVLVTGGTGLGGLVARHLVRSCGVRHLLTSRGVGAAGAAGLVAEL
 FT ESLGARVVVAACDVGDSAVAELVAGVSESYPLSAVVAAGVLDDGVVGSLTPERLAAV
 FT LRPKVDAWNLHEATRGLDLDFAVVFSSVAGVFGGAGQANYAAGNAFLDALMVHRVAGG
 FT LPGVSLAWGAWDQGVGMTAGLTERDVRRAAESGMPPLTVDQGVALFDAALATGSAALVP
 FT VRLDLAALRTRGDIAPLLRGLVKAPIRRAAATTGPDGLAEQLTRLQRAERRDTLLALV
 FT RDQAAMVLGHTSGDGVDPSSRAFRDGLFDSLTAVELRNRRIGAATGLRLPATAVFDYPTAD
 FT ALAAHLLTELLGPDAESDPDEPGPTAGPTDDPIIIGMSCRFPGDIGSPEDLWRLLG
 FT GADVVTDFPTNRGWLDNLYDPPDAHAGTSYARTGGFLHDAADFDADFFGMSPREAMAT
 FT DSQQRLLLESSWEAIEGAGIDPLTLRDSRTGVFAGVMYSGYGRLDGAEFEGFQGQGSA
 FT LSVASGRVSYTFEGPAMTVDTACSSLVALHAAQALRGGECLALAGGVTVMSIPD
 FT TFIERSRQRGLAPDGRSKPSESADGVWSEGVGMLLERQSDAVRNHQILAVVRGSA
 FT VNQDGASNGLTAPNGPSQQRVIRQALASGGLSTADAVEAHGTGTTLGDPIEAQALLA
 FT TYGRDRDPENPLLGSISKNLGHQTAAAGVAGVIKMVMAMRHGVLPRLSNIPESSHVD
 FT WSAGAVERLLEQTAWPETGRARRAGISFGISGTNAHVILEQPEAARHSAPEEADTAEA
 FT AAKAPATAHLPVMPWALSGKTPEALRAQAARLLAHLQQRPELAPADIALSLATQRSQFT
 FT HRAVVLSTDREATRALSLATTAASDPSALTGTVTMRCAVLFSQGSQRLGMGRELY
 FT ERFPVFAEALDVVIDHDLAALPAQAGLREVMWGDDVELLNETGWTQPALFAIEVALFRL
 FT VESWGRPDFVAGHSIGEIAAAHVVGVSLEDACRLVAARATLMQALPAGGAMIAVQAT
 FT EDEVIPHLTDEVAIAAVNGPTSVISGAAEATQTVQHFAQGRRRTALRVSHAFHSPL
 FT MMLAEFRAVAEGLSYATPTLPVVSNLTGQVATADELCSAEYWRHVREAVRFADGVTAL
 FT EAEGVRTFLELGPDVLAAMARETVADDVTVPVLRNMPEERTLLTALGRLHTTGPI
 FT DWAALLAPTGARPVDLPTYAFQHRFWPSGPRDTADAAAVGIAGASHPLLNGIVELADE
 FT EGLLFTGRSLQSHPWLAHDHAVMGQVLLPGTALLEALRAGDEVGCDHVEELTLAALP
 FT LPERGAVQTQVRGVADTTGRRVTIHSRPARATTTSDTHTGTDTPWTQHATGVLVAG
 FT LPATATVPFDATWPPAHAEPVLDLADFYASRAGEFGYGPAGFQGLRAAWRDRGEVFA
 FT ALPEAGRTEAEAYGLHPALLDAGLHAALVAPDGEPTRTGSVPFWRGVFLAASGASSV
 FT RVRLGRDSDGTLSLAIADTTGAPVASVQALSMRTVSVTALSATAGLARDALFRDWASA
 FT PEPACQPDDTVTVIPAVAVVGETSELSETAALRAAGADVDRVTTLSTDEPAPALIA
 FT LPLVVASDQTGTAAAPVPAVHDLTRALALVQTRLQEQQHFADTKFVVTGATVGRDV
 FT AAAAVWGLVRSQAQSENPGCFALVLDLDPDGAvgAAALVAALVSGEPQLAVRGDVLRV
 FT VRRPLTEVGAGADGTGDBGVGGSGVFSGEGAVLVTGGTGLGAVLARHLVAEYGRDL
 FT LLVSRSGERAvgAGELVAELAGVGarVrvvACDVTDRAAVVELVGGHAvSAVVAAGVL
 FT DDGMVGALTGERLSAVLPKDAWHLHEATRGLDLDFAVVFSSLAGVFGSPGQANYAA
 FT ANAFLDALMTRRAEGLPGLSLAWGPWSLTDGTSGMLADAEDRLTRSGVPPPLTAEQGL
 FT ALFDAALATGATCVPVRLDSLARAQGEVPPLLRSLIRGRSRAAAESATATGLRER
 FT LVGLNPVERQEVLIDLVRGQVALVLGHADADDVHPARAFRELGFDSLTSVELRNRLNTV
 FT TGLRLPATMVFDPYPTVEVLVSYVLDLLELGTDAEVATVQPAAVAVADDPIIVGMACRYP
 FT GGVASPDDLWRLVTGDAVSPFPPTNRGWDVESLYHPDPDHLGTSYTRSGGFLHEAGEF
 FT DPGFFGMSPREALATDSQQRLLLESSWEAIEGAGIDPVSRLGSRTGVFAGVMYSDYSAM
 FT LASPEFEGFQGSGSSPSLASGRVAYTLGLEGPATVDTACSSLVAMHWAMQALRSGEC
 FT GLALAGGVTVMSPTAVFDFARQRGLSPDRCKAFADAADGVWSEGVGVVLVLERQSDA
 FT VRNGHEILAVVVRGSAVNQDGASNGLTAPNGPSQQRVIRQALASGGLTAGDVVVEAHGT
 FT GTTLGDPIEAQALLATYGRDREPERPLLLGSVKSNLGHQTAAAGVAGVIKMVLAMRHGV
 FT VPRTLHVDAPSSHVDWSEGAVELLSEQAAWPETGRVRRAGVSSFGISGTNAHVILERPE
 FT AARRPMETNTVEPSTVPWVLSGKTPREALRAQAALKLSSIEERPELRLVDVGMSLVGR

FT STFEHRAVVLAADRADAARALSAIAADEADAAAATGRVGAGRHAVLFGQGAQRLGMGR
 FT ELYERFPVFAEALDVVVDHLDAALPAQAGLREVMWGDDAELLNETGWTQPALFAIEVAL
 FT FRLVESWGVRPDFVAGHSIGEIAAAHVAGVFSLEDACRLVAARATLMQALPAGGAMIAV
 FT QATEDEVTPHLTDDVAIAAINGPNALVVSGVEDAAVEIGARFAAEGRRTTRLHVSHAFH
 FT SPLMDPMLAEFRVVAEGLSYAAPSLPVVSNLTGQVATADELCSAEYWVRHVREAVRFAD
 FT GVTALEAEGVRTFLELGPDVLAAMAGASLTESSLAVPLLKDRPEEPALAALAQLHI
 FT AGARWDWPVLFAGVGAGRVELPTYAFQRGFWPVGRRGVGGDVGAVGLGSAGHPLGAA
 FT VELAAGAGVVLTGRLSLSHGWLADHAVMGRVFVPGTALLEVMRAGDEVGCRVEELT
 FT LAAPLVLPERGGVRVQVAVDAPDAAGRRGVGVYSCPDGVGQAVWSQHAVGVLASGVADQ
 FT VGGFGDGGVWPPQGAVSVDAEGCYELFADAGFGYGPVFQGLRAVWRGEELFAEVALSD
 FT EVAESADTTATGFGLHPALLDSLHASLSSLEGQSADGGPALPFAWEGVSLFASGATAL
 FT RVRLAPAGEHAVSVTAVDPTGAPVISIDALRTRRLTLDEVNASHQLSDALFGVQWTTV
 FT PSTPAADHPSVAIIGTDHGLAEALSSSAGATTAAAYESLDALIAAGPEVSPDV
 FT TLIGLTTEDAIAQYNDHDATAVAGQGTIGAGAAAADAARRLTAEARLTIQAWLADERLA
 FT ARRLVFVTRGAADGQDVAAAAVQGLVRSQAQTENPGTFGLLDLGTEASTAVLGEALTSD
 FT EPQLLLRDGHLHAARLTRLASPDTAVPTEWNADGTVLITGGTGGLGAQFARHLVDRYG
 FT VRNLLLVSRRGPDPGTTELVAELTAHGAEVAVQACDVADGDAVAALVAGVPDEHPLRA
 FT VVHTAGVLDDGVIGSLTEERLATVLRPKADAAWHLHEATRGLDLDADFVVFSSVAGVFGG
 FT AGQANYAAANAFLDALMAQRRAAGLPGSLAWGPWDQTGGMTGMLSDEADRLARSZIP
 FT PLSAEQGLALFDAALALAGTSTPDRAGSAAASTSGTDTIAIPAAALVAPVRLDAAAL
 FT AAQGEVPAILRGLVRTRRTAAGGSVTVAGLVNRLSGLTADERRQELLEVRTQAALV
 FT LGHADPASVDSQAQFRDLGFDLSLTAVELRNRLSTATGLRLTATLVDYPTNDALAEHLR
 FT DELFGAVESEVRVPVQALPPTADDPIVVVGMACRFPGGVTSPEDLWRLDAGTDAITTF
 FT PTNRGDWLESLYDPDPAHGLTSYTRSGGLHEAGEFDPAFFGMSPREALATDSQQRLLL
 FT ESSWEAIERAGIDPLTLRGSATGVFAGVMSDYGSI LGGKEFEGFQGQGSAGSVASGRV
 FT SYTLGFECPAVTVDTACSSSLVALHAAQALRAGECTLALAGGVTVMSTPGTFVEFSRQ
 FT RGLAPDGRSKAFAAADGVGWSEGVGIVLVERQSDAVRNGHEILAVIRGSANQDGASN
 FT GLTAPNGPSQQRVIRQALASGLLSTADVDAVEAHGTGTLGDPIEAQALLATYGRDRDP
 FT ENPLLLGSIKSNLIGHTQAAAGVAGVIKMVMAMRHGVLPTLHVDAPESSHVDWSVGA
 FT ELEQTVWPETGRVRRAGVSSFGISGTNAHVILEQPEAVQRLAPGAAETVEPVAIKPSAE
 FT PSLVPWALSGKSPERALRAQAARLDFLAERPEPRSIDIGHSLAVTRSQFDHRAIVLVDD
 FT AKAPADSLAALAALASGVADPAVSDAVSTGGSAVLFTGQGAQRLGMGRELYGRFPVFA
 FT EALDVVVDHDLAALPAQAGLREVMWGDDVELLNNETGWTQPALFAVEVALFRLVERWGR
 FT PDFVAGHSIGEIAAAHVAGVFSLEDACRLVAARATLMQALPTGGAMIAVQATEDEVTPH
 FT LTDEVAIAAVNGPTSVISGAEEATQTVAQHFADQGRRTTALRVSHAFHSPLMDPMLAE
 FT FRAVAEGLSYATPSLPVVSNLTGWLATADELCSAEYWVRHVREAVRFADGITLAEVG
 FT RTFLELGPDGILSALAQSLAGEAVTPVLRKDRGEESTALTARAHLHTRGLIEDWQDF
 FT FAGVGAGRVELPTYAFQRGFWPVGRRGVGGDVGAVGLGSAGHPLLGAASELAAGAGVV
 FT LTGRLSLSHGWLADHAVMGRVFAPGTALLEVMRAGDEVGCRVEELTLAPLVLP
 FT GGVRVQAVDAPDAAGRRGVGVYSCPDGVGQAVWSQHAVGVLASGAADQVGGFGDGGVW
 FT PPQGAVSVDAEGCYELFADAGFGYGPVFQGLRAVWRGEELFAEVALSDEVAESADTAT
 FT GFGLHPALLDSLHASLSSLEGQSADGGPALPFAWEGVSLFASGATALRVRLAPAGEH
 FT AVSVTAVDPTGAPVISIDALRTRRLTLDEVNASHQLSDALFGVQWTTVSPADHPS
 FT VAIIGTDPGLADGLSDALPLVEERGLAALAASEHPVPLVLPVAGTRRTGVPADAE
 FT GHDTAGTSMDLRSVREATAQVLEQIQQWLADDRFEAARL VFVTRGAVSVGEGGIADLAA
 FT SAVWGLVRSAQSENPGCFGLLDLDDLALDSLAPAEVDIERDRDRDPVGGTVQPALAAA
 FT LHATADEPQLALRGGTVQAARLTRIPAPQTDRAETDPAETDRPEIDTRRPGBTVLITGGT
 FT GGLGGLLARHLVAERGVRSVLASRSGLAAEGAELVADLEALGAVVAQTCVDADGDA
 FT VAALVAGSDEYPLTAVVHTAGVLDDGVIGSLTEERLATVLRPKADAAWHLHEATRDL
 FT LDADVFVSSLAGVLLGGAGQANYAAANTFLDALMAQRRAAGLPGVSLAWGPWDAGGM
 FT TLSDAEADRLARSJVPPISAEGLALYDAATAGERPLVVPVRLDLAALRGLGDVALLR
 FT GLVRTPARRAAAGAAPSADVLTRQLAGLGGAEQEEVLLRLVRGQAAVVLGHADGSAIG
 FT AGRQFQELGFDSTAVERFRNRLNAATGLRLPATLLFDYPTPADVVGHLRGLGTGEVSG
 FT AGSVLAALDNLEAVIAGLSDDDAGEHQLVAGRLEVLRAKADMRSAECAVGDGGADVDIE
 FT EASDDDMFALLDELGLN"
 FT CDS 110113..110868
 FT /codon_start=1
 FT /db_xref="SPTREMBL:Q9L4W2"
 FT /note="putative thioesterase"
 FT /transl_table=11

```

FT          /gene="nysE"
FT          /product="NysE"
FT          /protein_id="AAF71777.1"
FT          /translation="MTTSTEESLWARCFHPAPAAPVRLFCFPAGGSASFYFPVSAQLS
FT          SVAEVFAIQYPGRQDRRKEAGVSDLATLADQVYDALRPLLKERPSTFFGHSMGATLAFE
FT          VARRFEADDGDLVRLFASGRAPSVRREEAVHRRSDDGIVEELKLLAGTNALLGDDEI
FT          LRMILPAIRSDYQAIETYRCPDVTVRAPLTGDRDPKTSLDEAEAWRGHTGDFDL
FT          KVLPGGHFFVSSEAPAIIDLRLAHLAGNG"
FT      CDS  111258..114158
FT          /codon_start=1
FT          /db_xref="SPTRREMBL:Q9L4W1"
FT          /note="transcriptional regulator"
FT          /transl_table=11
FT          /gene="nysRI"
FT          /function="transcriptional activator for the nystatin
FT          biosynthesis genes"
FT          /product="NysRI"
FT          /protein_id="AAF71778.1"
FT          /translation="MRKQSGSSGLTTLVGRDDELRTLARHAAAARDGRAGLVLLHGPA
FT          GMGKTSLLRSFTASDVCRGMTVLYGTGETVAGAGYGGVRELLGGLGLSGGDARRSPLL
FT          EGLAARALPALTADPAGPDAATGAYPVLHGLYWLAARLMAQRPLVVLVLDVHWCDERSL
FT          AWIDFLRRAEDLPLLVLAWRSEAEVAPAVLADIAAAQRRTVLGLHPLGPDDIGEMV
FT          RRVFRRTAAPSFVSRVAAVSGGNPLALARLLDELRAEGVRPDAAGERRAAEVGSHVLR
FT          SVRCLLERPPVRGVARAIAVLGPECTELLAALAGVPAATVDEALLVLRAGILAADR
FT          VDFVHDVVRSAVLDDVAPPTELAEERTNAALLLSDAGRSEELAGQMLLPVLDQPWMAA
FT          VLRDAAAQAESRGAPEAGVRCLYRVELEVPDNVAVRIMARALAEINPPEAMRLLKEAL
FT          SLAGDVTRAQVAVQYGFCTCLAVQESPAGVRLMLEDALAEELTAELGPEPGPVDRRELRTLV
FT          ESVLLIVGADEKVITIGAVRDRRAARLTMPGDTPAQRQMLAMTTVLTAMDGRDARSADVQ
FT          ARRALRAPGVELEPWSSLASFALS LADEVADAQYALDLMQYQDNAAVWTYVLALST
FT          RALLHHGVGAFPEALADAQTAVEILGEERWADGAVLPRVALATALVDRGEPEERAEHVLD
FT          GITRPRLERFVIEYHWYLQARAYARWVRGDFQGALDLLLACGRSLEESRFSNPFPVPWW
FT          ADGAVLLATLDRHDQARELAAYGSELAEERWTARGLGLAFMAQGVAAPGRAGIDHLTEA
FT          VSLLADSPARAMEARAELLGH AHLKRDDLRAAREHLRAAADLAQRCGAVKLGVDARKL
FT          LVTAGGRVRRMTASPLDMLTGMERTVADLAVTGASNRAIAEALFVTVRTIETHLTSVYR
FT          KLGVGGRAELSAVLETRTATSGRQPPAWVSQARGRA"
FT      CDS  114182..117043
FT          /codon_start=1
FT          /db_xref="SPTRREMBL:Q9L4W0"
FT          /note="putative transcriptional regulator"
FT          /transl_table=11
FT          /gene="nysRII"
FT          /function="presumable transcriptional activator involved in
FT          regulation of nystatin biosynthesis"
FT          /product="NysRII"
FT          /protein_id="AAF71779.1"
FT          /translation="MPRSKARNQPTTCTPQCAPDAHGDPTMILECGREQRLIGDLLHRL
FT          GQGRPSVLSLTGRPQHAQNALVRWGACRARHDGLVRLRAQATPAEREELYGAVLQLLAV
FT          LDGPHGSTLDAAIRHDGPPPLPVPGIEVLRRTGTAPTLVVVEDVQWLDPASLTWLQIL
FT          LRHLGPDTPLAVLASSCGTTAFDTPKAPAVPGPPDTVPVARFVVPALTDRGVAATVR
FT          AVCGTPGDEFIAALTSATAGNPAILRDALRAFDVHGLPADADHLP EHLTAGVVGDH
FT          TVRALDGLPAEVNAVLRALAVCGDLLDFHRVRALAGAHSLS EDIRTLASVGLTVSVG
FT          DVKHIFPASKARVIEDMPAAERADLYVRAAEELTHSCGVNDEDVAHLLRSSPLGAPWV
FT          VPLLRRGFAAALRREDHHRACACLSRALQEPLDPRERSLLTLEAAAEEAVARPEAGDRR
FT          LGELVRSTVADTDPTSSGEGVGVRайдLG FARGNSEWRRTAGEALPYAGPADREELVA
FT          LFWLAAVRDDDAPMI PVVPLPDRPVPQAGARAWQLATA GEADAKRK LARIALTGG
FT          VNESLMMPKLAACAALFATDDNDEAVHGLDTMLTAARSAHLSMAARI FNLRARIHLCA
FT          ARLEAAERDLSAERALPPTSWHPRALPNLIATRILVSMETGRPDRARRLAEAPVPAGG
FT          EEGVWWPALLRARVAADDGDWEEARLRLSRECGRWLFRRH WANPAML SWRPLAAEACL
FT          KLGDVTEARRLRDEELFFADRWGTASARGIARLTTRRLFDDDGDRAVR IREAAALLRD
FT          SPARLAYLWSRLSQAGAETAHGDTAAAARSWQAVARMTAAHPASRLATAARTLTVPSVP

```

FT VATAPPTAVVPPGWRDLSEAEKDTVLLAARGHGNRQIAEQLAVSRTVELRLSNAYRKL
 FT RIGGRKELYLLLEALEGPVADAS"
 FT CDS 117033..119816
 FT /codon_start=1
 FT /db_xref="SPTRREMBL:Q9L4V9"
 FT /note="transcriptional regulator"
 FT /transl_table=11
 FT /gene="nysRIII"
 FT /function="presumable transcriptional activator involved in
 regulation of nystatin biosynthesis"
 FT /product="NysRIII"
 FT /protein_id="AAF71780.1"
 FT /translation="MLLERENELARIRAALDAEAGDSSLINGPLGSGRSALLRRIP
 ELAGDGTRVLRASAARERDFPFGIAROLFDHLLSGAGGAGPAERTAGAEHFSRLMDTG
 DRPTGTGPALEVSAQVLQGAQALLADASAERRLLILVDDLQWADGPSLRWLAHLTRRLH
 GLRALLVCTLADGDHGRGYPLVREVAGAAHTVRLAPLSRDATRVLLAGPQGRPPQDAL
 VRAVYEASRGNPLFLTAFRSALRATGRPPGGDHFGAVRELSPVLRDRLAGHLRIQPQP
 VREVAVAVAALGDHSDPVLLAQLAGVDEIGFAGARRALVDAGLLARGRDRVVFHVVRD
 AVDSLTLDERERSHDDAADLLYRCGRPAEQVAGHLLAVVHPGRPWSEAVRSAAHNAL
 RAGRPAADAARYLRLALLHHRTQDGCRARILVDDATAERALDPDACVRHVSQAVALLDTS
 RDRAAVLIRIPPSLLAAPSPSAVELVQAAAGLDEPGQRDEEGADELALRLEAWLRHSG
 HENPVELASSVARLRRMGRAPPVDSVAERELVAVILLSAGALSGRLSAAEIADTGNRILE
 REPATAAAHAHTPLPLVMLSLFVAESVQGVASWLASEQHTRRRYATGADDVLLTAERAFAV
 LVTQGRPAAAREHVERALVMDAGDWSEPAVMFAAVAFELRDPALSERILERIRDRRPA
 GLALTATGQMLQAAVDVHFGRGRDALDTLLACGRRLETGVWRNSALLPWRPYAIGLHQR
 LGETDAALQLAEDELRWAREWGATTNLGRALRLKGWLLQDEGLLLLRESVEILRASSYA
 TELARTLVVLGRRLPGGPEAEAVLREAAGIAAACGVPWLAERAELGLGSAIVPPVATLT
 PSERRVASLVSRGTLTNQAIATELGVSSRAVEKHLTSAYRKLGVSGRRELVNALPGR"
 FT CDS 120268..120900
 FT /codon_start=1
 FT /db_xref="SPTRREMBL:Q9L4V8"
 FT /note="putative transcriptional regulator"
 FT /transl_table=11
 FT /function="presumable transcriptional response regulator"
 FT /product="ORF4"
 FT /protein_id="AAF71781.1"
 FT /translation="MISAQTAPAGESVGPGMASLDRDLTIKHANQEFRRFDDSGADV
 CGRSFRDLMHPSVQQPLMRQFSRLIEGKRHRFASHVVAvgQDAAFAGTLTASAVTGKT
 PDIAGILVLMDSGAADAADAGVVTQSQQKFLTEIDARILEGIAAGLSTIPLASRLYLSR
 QGEYHVTGLLRKLVPNRAALVSRAYSMGILNVGTWPPKVDDFIK"
 FT CDS 121589..122350
 FT /codon_start=1
 FT /db_xref="SPTRREMBL:Q9L4V7"
 FT /note="putative repressor"
 FT /transl_table=11
 FT /function="presumable transcriptional repressor (DeoR
 type)"
 FT /product="ORF3"
 FT /protein_id="AAF71782.1"
 FT /translation="MDAEGRRRDMLELIRRSGSADVVRALAEFAVSKETVRRDLNVLEG
 HGLIRRHHGGAYPMVRPGSEAVFSRTAQPIPEESRIATAAAELLSEAETVFIGEFTP
 QLIADALPRDRPLTIVTASLPVVSFATSPQANVLLGGRRVRRGTTATVDHWAVHMLSG
 FVIDLAFLGAEGISRRYGLTPDPAVAEVKAQAIRVARRPVLAGVHTKFGTASFCRFGE
 VGDLETIVTGAAGLPVAEAHRYHLMGPVKLRV"
 FT CDS complement(122404..123468)
 FT /codon_start=1
 FT /db_xref="SPTRREMBL:Q9L4V6"
 FT /note="putative transcriptional regulator"
 FT /transl_table=11
 FT /product="ORF2"

FT /protein_id="AAF71783.1"
 FT /translation="MAQDSGQTPRS LDHVQALVHALQITPRASWTRIGSVLGLDAVT
 FT ARRWNRLVETGAAWISCHPAPVLAASGQGCLAFVEIDCAPGRLLDVARALAAPHVVAL
 FT SHVTGDRDLQLNVMARDPAMLSRWVTHDLAALDGVRATHLAGPVHTEGSRWRRLALG
 FT RHQVARLAADASRHTDTPAFVLDDELQQLVTALSVDGRATYRALAEQCGAGPDTVRRR
 FT VQRLFAADMLHARCEVARPLSEWPVTVSFWGQVPAARLREVTRRVGMREVRLCASVIS
 FT RHNLHLVAWRSLLDAQRFEVRLAERAADLTTERAVALWHMKHGGHLLDEEGYRVGVT
 FT PLALWREPTDARRG"
 XX

SQ Sequence 123580 BP; 15426 A; 49056 C; 42187 G; 16911 T; 0 other;
 gtatgacccta tttcgccccc tggcgtaagg agtagccggc aggtttcatc cgaagggtggg 60
 ggcggggagc ggcgagttga ccgtgaggtg cgtgcggtgt tcccggtcgc gccgggggggt 120
 gggggccggc aggtggaccg ccgtggtcag cagggcgggg gtgctgtgcc agcggccggg 180
 gaagaccgtg accccggcgc acggccagcag gggccccggg accaggagtc gggcggtgaa 240
 ggcgcctgtgtcggc tgacgatctc ggctcggag aagtccagtt cgcgctgggt 300
 caggggatac caccccttga agacgctctc cttggcgctg aagagcagcc ggtcccagtg 360
 gacgtccggc cgatggggcc acaggggccac gagatggcgcc cggtccgagg gcagggcgat 420
 ggcgttcagg acgcggccgc acggccggacc gttcggttcg ggcgtcgatgc tcaccggcggc 480
 cgacagctcc gcgaaaaaaa cggcgccggc gcggtagccg ggcgcagtgcg tcatgctgccc 540
 gacgatgccc ggcggccact gggggggcc ggcggccatttgc ggcagtatgg cccgggtccgg 600
 gtggccgagc cggccgcaggg cccggcgccc gagatggcgcc acgggtgtga actcgccgtg 660
 cccggactcc acggccccggg cgatgaccc ggcgtcccgag gagacgacc ggtcgccggg 720
 ggcggccggg tcgtcgta cgcgttcggg ggcgaccgtg gccggcagga tcagttcgat 780
 caccgcatac ctccggcgaa cggtaagaac aggggggttc ttcggggcac ggttccgtcc 840
 ttgacggggc gccgtggcg gccgggtcag cccggcgccgg cgcggccqgt gggagtggtgg 900
 gtgcgggctg cgtcgaccc ggcgtacagg ccctgcgcgc acaggagttt atcgtgggtg 960
 ccctgctcga cgatgcggcc ggcgtccatc acgacgatca ggtccgcgtc gccgatcggt 1020
 gacaggcggt ggcgcatcac gaagctgtc cggcccgccc gcaggagtt catggcgctg 1080
 tggatcagga cctcggtccg ggtgtccacg gagctgggtgg cctcggtccag cacgaggacg 1140
 gccggctctgg cgaggaaggc cccggccacg gtcagcagct gcttctcgcc ggcgtcgac 1200
 gtgcccgaact cgtcgccag caccgtgtcg tagccctcg gcaagggtgcg gatgaagcgg 1260
 tcggcacagg tcgcggccgc cgcctcccg atgtccgcac ggcaggacc ggggtgcggcc 1320
 tacgcgtatgt ttcgcgcgtt ggtggccgg aacagccagg tgccttgag caccagcccg 1380
 aagcgggacc gcaggtcgcc gcccggatcatc gtcgcgggtt cgggtccgtc caggaggatg 1440
 cggccggagt ccgggtcgta gaagcgcaccc aggggttgc cgggggtggg tttggccggc 1500
 cccgtggggc cgacgatcgcc caccgtgtccg cccgggttcca cggtcagcga gaggttctcg 1560
 atgagggcgc tgtcgggggaa gtagcgaaag gacacgtcg gtaactcgac gcccggctcg 1620
 ggcggccgg gctgtccggg cccggagccggg tccggggcct gctcgggggc gtcgagcagg 1680
 gtgaagacgc gctggggcgg ggcgtatgcg gactggagcc ggcggccac cgaggcgatc 1740
 tccacgatcg gctggctgaa ctggcgccgg tagaggatga acgcctgcac gtcaccggagg 1800
 gtcagggtgc cgtttatgac cttccaggcg cccatgcaccc ccaccagcac atagccgagg 1860
 ttggcgacga acatcatgac cgggtccatc gcaccggagg cgaactcgcc cttggccgca 1920
 gcccggtaga ccgcgtcggtt gcaggcgctcg aacgcgtccct cggccggccgc ggcgggtcg 1980
 aagcccttga tcagcgcatg accgggtcaca accctcttca catggcggtt gagggtgcgg 2040
 ttgcgggacc actgcgcggc gtagtggggc tgccgcgcgt tgctgatccg ggcggcgatc 2100
 aacgcccggaga ccggcacgtt gagcagccatc accacggccca ggcacggcga gatcaccagc 2160
 atcagcacca gcatcgtaa cagcgagaag atcgaggtga tcagctcgcc gagggtctgc 2220
 tggagggtct gttggaggtt gtcgtatgcg ttgtgggtgc ggctgagcag ctcaccggcc 2280
 ggctgcccgtt cgaagtggcg cggccggccgc cgggtcgatctccggc gtcgcccgc 2340
 agttcgttga tggcgccca caccggcgac gccaccagcc ggcctcgcc cagcatgaac 2400
 agcgacgcca cgacgttagag cggccggccgc accagcagca gccggccatc cgcggcgaag 2460
 tcgatccccggc ggcggccggcc cgggacggccg cccggccatc cgtcgccgtatc gatcggttg 2520
 accccggccga gcagcgccgg gccgaacgcg ttgagcacga tcccgccgc gcccacatcgac 2580
 acggcgagtgc ccacggagcc gccggcgccg cccggccatc cgtcgccgtatc acgtggccggc 2640
 cggggcgccgg tccgtccctc ctcaagggtcg tccggcgagg ccatggccgg cttccctcc 2700
 ggtcagctgc gagagcgccg tccgtcgatc ggtcgccgtt gtcgcagca gcaacgtcgatc 2760
 ggtgcggccgtt ggcggccatc gccggccgtt caccggccatc atccggccgtt cgtcgccggc 2820
 ggcggggatc cgctcgccca cgggtatccac cgtggcgccc gccgggttacg gcaaccaggc 2880
 ggtcccgccgc gccggccatcgg tggccgtgtc gagcgcccgag aaacagtcgt cgaagagata 2940
 gatctccggc cggccggcc gaggacagg cgttggcgatc ggcggccggc 3000

gacattgccg ccgcctggg tcatctccgc gtcgaggccg tccggcatcc gcgccacgaa	3060
gtcgccccc tggcgaccc gcagcgcctc ccacagctcc tcgtcggtgg cgtcggccg	3120
cccgaaagcgc agattgctcg ccacggtgcc ggagaacagg tacggccgt gcggcacgaa	3180
cccgacggcg gcggcgagcg tggccgggt cagctcgccg acgtcggtgc cgccgaccgg	3240
caccggcccc tcggtggcgt cggccagccg cagcaccaag ttcaacaggg tcgtcttgcc	3300
gctggcggtg ctgcccggca cggcgatccg ctcggccggc tcgacggtaa ggtcgacgta	3360
cccgacgcacg ggctctcg cggccggta gcggtacccg gccgcgcaca gtccgatccg	3420
gccggcgggc ccgacgcaccc gctgcggcgc ggccggcgcc gccacgtcg acccggtgtc	3480
caggacccctc cgcgtccggc cggcacagac cggggcccg ggcacccgaca ggaacacgaa	3540
ggcgagcatc acgacggaca tcaggatcg cggagatag ctcaaggaggg cgctgagcga	3600
gccgatcgac atccggcccg cgtcgatccg gtgggagccg gtccacagca gggctacgg	3660
gaaaccgttc atcagcagca gcacgacccg cagcatcgta gcatcgaccc gacccacccg	3720
ccgcgcacacc acgaggaacg cgtcggtgt ctgcgcgaac cgccgcgcgt cgtggcgta	3780
gccccgacgaag gacccggacca cccgcacccc ggtgatcgcc tcgcgcagca gccgccccag	3840
ccgggtccagg gtcagctgca tccgcgcgtc cagggtgccc atccgggcca gcagcaggcc	3900
gaagcagacc gccaccacca gcaccagcgc caccaggcgc agtgcgcagcg gaacgtcctg	3960
gccccggccccc agcagcaccgc tgcccaggca catcagcgcc ggcacccgacgaa cgatgcccggaa	4020
gccccgtctgg gcgaggttct gcacctgctg cacgtcgcc accgaccggg tcagcaggga	4080
gggggtgcgg aaccggccga tctcgcggc ggagaagtcc aggtacgcgc ggaagagcgc	4140
ggacccgcaga tcgcggccca tcgcgtcg cgtccggcg gccagcgcgg ccgcaccggag	4200
cgcggcgccggc atctgcacca ggcgcaccc gccatcacc acacccagct cggtgatcg	4260
cccgccgtcg cgcgcacca cccctggc gataagtgcg gcccgcacg tcggcagcag	4320
caaagtgcac aggatctgga cgagttgaag ggcacgaga gcccgcgtt gcccggcgta	4380
ggggcgcagc tgtgcccgcga aaagtctcaa cagcacggag gacaccccg gttgacggcg	4440
ggctgcggcc ggcgggtggc cggagtcggc cggccggccg accccgtcat tgaccggcag	4500
tccgcgtccga aatttacta gtgttgggg tggcaacggc cttttgcacgg cccgtactc	4560
gtgaattccc tagaaagccc gggatgcgtt gacagcatct tccgcggctt gcgagcgtgc	4620
gggtgtctat cgtccggact ggcgtattcgta cgccaggctcg tggccgagct caagcgttt	4680
gacggtctct ttcgtgttcg agaagggtt gccatgtcca aacgagcgct gatcaccgg	4740
atcaccggcc aggacggctc ctatctcgac gggcacctgc tggcccgagg ctaccagg	4800
tggggtctga tccgcggcca ggccaatccc cgcaagtc gggcagccg cctcgccctcc	4860
gaactcgact tcatcgacgg ggacctgatg gaccaggcga gcttgcgttc cgccgtcgac	4920
accgtgcagc ccgacgaggt ctacaaccc ggcgcacatcg ttttcgtgcc gatgtcctgg	4980
cagcaggccg agctggtcac cgaggtcaac ggcacggcg tgcgtcgcat gctggaaagcc	5040
atccgcattgg tcagcggact gtccacccctc cgacgggtca gcccgcgg ccagatccgc	5100
ttctaccagg cgtcccgactc ggagatgttc ggcacggccg ccgagacgccc gcaacgcgag	5160
accacccttc tccacccgcg cagccctac ggcgcggcaa aggctacgg gcaactacatc	5220
acccgcacact accgcgagtc cttcggcatg tacgtcggtct cggcatgct cttaaccac	5280
gaatccccgc gccgcggcca ggaattcgcc acccgcaaga tcagcttgc ggtcgccccgc	5340
atcaagcaag gcctccaggaa caagctggca ctccggcaacc tcgacgggt ggcgcactgg	5400
ggctatgcgc ggcactacgt cccgcgcattg cacctgatgc tccagcagga cggccggcgcac	5460
gactacgtca tcggcaccgg gcaagatgcac tcggtgcgcg acgggttcg gatcgcttc	5520
gaacacgtcg gcctgaactg ggaggactac gtcgtcatcg accccgaccc ggtgcggccc	5580
gccgagggtcg aggtgtcg cggccacagg gccaaggccc aggaccgcg cgcttggaa	5640
ccggacgtcg acttccccac cctcatgcgc atgatggtcg attccgaccc ggcgcaggtt	5700
tcccgcggaaa accaatacgg cgacgtcgct ctcggccgca actggtagca gttctcaagc	5760
tttcgaaaaac tagtgaattc ctgcggaaat tccgacgaca ctgcacccat ggattcccc	5820
ggtgagtggc gaatccaggt ggcgaatccg aacgtacccg cggaaacggcg tggagaagtc	5880
ggacgcattt cacgtgcggc cgtcggtgt cgagatgggt tggatggaga tggacaacga	5940
acaaaaactc cgggattacc tcaagcttgc gacggccgac cttcgacgc gcccggccgc	6000
cgtccacaag ctggagtcgg cggcccgagg accgggtggcc atcatcgca tgacctgtcg	6060
ctacccggc ggcgtccgc gccccgaaaga cctctggcgc atggcgagg cggcgagca	6120
cgccgtcacc ccgttccccca cggacccggg ttgggacctg gaggcgctgg cccggcgcc	6180
gaccggctcc ggccggattcc tgcacgcaccc acccgacttc gacgcggact tttcgccat	6240
ctcgccgcgc gagggcggtcg ccatggaccc gcaacacgcg gtcgtctgg aatccgcctg	6300
ggaggcggttc gaaacgcgcgc gcatcgaccc gacgtccgtg aagggcagcc gacccggagt	6360
cttcatcgcc gcgatggccc aggactaccg ggtcgcccccc gccgacggcg cggagggtct	6420
ccaaactcacc ggcaacacccg gcaacgcgtct gtcggccgcg atctccatcaca cttcgccac	6480
ggtcggcccc ggcgtcaccg tcgacaccgc ctgcgtcc tccctcgccg ccttcggcac	6540
cgccacccag ggcgtcgccgg cggcgagtg caccctcgcc ctgcggccgc ggcgtcaccat	6600

catgtccggc	cccggcacct	tcatcgaaat	gggcccgcag	ggcgggctct	ccgcgcacgg	6660
ccgctgccgc	tccttcggcg	acaccgcccga	cggcacccggc	tgggccaag	gcgtcgccat	6720
cctcgccctg	gaacggctgt	ccgacgcgt	ccgcaacggc	cacgagatcc	tgcgcgtcg	6780
ccgcggcacc	gccgtcaacc	aggacggcgc	ctccaacggc	ctgaccgccc	ccaacggccc	6840
ctcccagcag	caggcatcc	agcaggccct	ggtaaacgcc	cgactcgccg	ccggggacat	6900
cgacgtcgctc	gaggcgacg	gcaccggcac	caccctcgcc	gaccggctcg	aggcccaggc	6960
cctgctcgcc	acctacgggc	agaaccggcc	ggcgacccgg	cgctgctgc	tggctcggt	7020
caagtccaa	ctcagccaca	cccaggccgc	cgccggcg	gccggcgta	tcaagatgg	7080
catggcgatg	cggcacggca	ccctgcccgc	caccctgcac	gccgaggagc	ccacccacca	7140
cgtcgactgg	tcgcagggcg	ccgtgcggct	gctgaccgac	accaccgact	ggcccgccac	7200
cggggcgccg	cgccgcgcgc	ccgtctctc	cttcggcata	agcggcacca	acgcccacac	7260
catcatcgag	cagggccccg	aaccgcagcc	cgaggacgcc	gcgaccgcgc	aggacgacgc	7320
cgcggcagc	acgcggcaca	ccgccccgt	agtgcggcgc	gtcgaccgg	tcttgctctc	7380
cggccgcacc	ccggacgccc	tgcgccggca	ggccgcggcc	ctgcgcggc	ccctcgacac	7440
cggccggcg	cccgcacgtc	tcgacctcg	acactccctc	gccaccaccc	gcgcgggtt	7500
cgagcaccgc	gccgtctcc	tcgaccacga	ccaccccgcc	ctgaccgacg	gcctcaccgc	7560
cctcgccgac	gccgacgacc	cggccgcgc	ccccgcctgg	atcaccggca	ccacccgggc	7620
cgagacccgg	ctcgccgtcc	tgttcacccg	ccaggggcgcc	caacgcctcg	gcgcgggacg	7680
ggaactcgcc	gcccgtttcc	cggcgttcgc	caccgcctc	gacgcggcgc	tcgacgcctt	7740
caccccgcac	ctcgaccgca	ccctgcgcga	ggtctctgtgg	ggcaccgacg	ccgcctgtct	7800
cgaccgcacc	gcatacgccc	agccggccct	cttcggcgtc	gaagtggcgc	tctaccggct	7860
gatcgaaatcg	ttcggcgtcc	gccccgacca	cctcgccggc	caactcg	gcgagatcg	7920
cgccgcgcac	ctcgccgggg	tcctctccct	ggccgacgca	gccaccctcg	tgcggccccc	7980
cggtcgcctg	atgcaggcgc	tgcgcacgg	cgggggcgatg	atgcgcgtcc	aggcgtcgga	8040
agccgacgtc	gccccgctgc	tcgcccggca	cgaggaccag	gtcgcgatcg	ccgcgtcaa	8100
cggccctcc	gccgtcgcc	tgtccggcgc	cgaagccacc	gtcaccgcgc	tgcggaaaca	8160
gtcgccgccc	gacggccgca	agacccgccc	gctgcgcgtc	tcgcacgcct	tccactcgcc	8220
gctcatggag	ccgatgctcg	acgccttccg	cgccgtcg	gaagacctca	cgtccagcc	8280
gccgctctg	ccggcgtct	ccaacctgac	cgccaagccc	gccaccgtcg	cccaactcac	8340
ctccgcccac	tactgggtcg	accacgtccg	gcacgcgc	cgatcgccg	acggcatcg	8400
ctggctcgcc	cggcacgaca	ccaccgcct	cctcgactc	ggcccccacg	gcgtgtgtgc	8460
cgccatggcc	caggactgcc	tggacgcgc	cgacgcagac	gccgtcacc	tcccgccct	8520
gcgcgcccgg	cgcccccggagg	agcacaccc	caccacccgc	ctegccggtc	tgacgttcca	8580
cgggccacc	ctggactgga	ccggctgttt	cgccggcacc	gggcccgc	gcaccgaccc	8640
gccgacctac	gccttccagc	gccgcgccta	ctggcccaag	gcctccaga	gccccaccgc	8700
cgacctcgcc	tcggcgcc	tcgggtccgc	ccaccacccg	ctgctctccg	ccgcgtctc	8760
cctcgccgac	gcaggcggca	ccctgctcac	cgccgcgc	tcccgccaga	cccaaccctg	8820
gctcgccgac	cacaccgtcc	gcccgcac	cctgtcgccc	gttaccgcct	tcctcgaaact	8880
cgccgtccgc	gccggcgacg	aggtcggtcg	cgaccgcgc	gaggaactca	ccctcgccgc	8940
accgctctg	ctgcccgaac	agggcgccgt	ccaggtccag	tttgtggatcg	gcaaccccg	9000
cgtgtccgg	cgccgcacccg	tcaacgttca	cgccgcgc	gacaccggcg	acgacaccc	9060
ctggaccgccc	cacgcccacc	gcgtcctcac	caccgcgc	gcctccgc	agctcccg	9120
tgcgtccgag	cagggcgca	ccccctcg	cggcgcaccc	cacccccc	tgcacgcgc	9180
ccagtgcccc	ccggccggcg	ccgaaccgct	ggcgtggac	ggccactacg	accgcctcg	9240
cgacggccgc	ttcggtacg	gcccggctt	ccagggcctg	cgccgcgc	ggcgcggcg	9300
cgacgtcg	tacggccagg	tgcagctgc	cgaggccgc	cggtccgcacg	ccgaggcg	9360
cgccctccac	cccgccctgc	tcgacgcgc	cctgcacgc	gcgccttca	ccggcctcg	9420
cgaacgcggc	cgggcgcc	tgccgttcc	ctgggagg	gtctccctcc	acgcggcg	9480
cgccaccacc	ctccgcgtcc	gcctgaccc	ggtgcgcac	gacgcgtcg	ccctgaccgt	9540
cgccgacggc	accggcgcc	ccgtgtcg	cgtcgactcg	ctcgcttc	gcagcg	9600
gacccaacag	ctcgacacgg	ccgcccgcgt	cgcccgtac	gccttcc	gcctcgact	9660
gaccccg	cagccgaccc	ccaccgaccc	cgggccgc	gcctcctcg	gcgcgcaccc	9720
cttcggcc	ctcaccac	ccggattcg	cgacgcgc	gcataccgg	acctcgcc	9780
cctcgccgc	ggggacggcc	cggtccgc	caccgtcg	ctgtccctcg	ccggcaccgg	9840
ggacgcacgc	ggcgacccgg	ccgggtccgc	acaccgtgc	gccgcggagg	ccctcgccgc	9900
cgtacagacc	tggctcgacc	accatgagcg	cttcgcgc	gcccgcctgg	tcttcgtac	9960
ccgtgg	acggtcgggc	gtatgttgc	tgcgtcg	gtgtgggtc	tggatgttgc	10020
ggcgcagtcg	gagaatccgg	gtgttttgc	tctggatcgat	ctggatccgg	atggtgcgt	10080
gggtgcggct	gcgcgtcg	ctgcgttgc	cagtggatgc	ccgcagtt	cggtgcgc	10140
tgatgtgttgc	cggtgcgc	gtctggatgc	ccggccgc	accgaggatcg	gtgcgggtgc	10200

tgtatggcacc	ggggatggcg	tcggggatgg	ctctggtgtg	tcgttctcg	gtgagggtgc	10260
ggtcctggc	actggtgta	cgggtggct	gggtgcggtg	ttggcgcgtc	atctggtgtc	10320
cgagtatgg	gtgcgggatc	tgctgttgg	cagtgcagt	ggtaacgt	ccgtgggtgc	10380
tggggagt	gtggcgagc	ttgcgggt	gggtgcgcgg	gtgcgggtgg	ttgcgtgtga	10440
tgtgaccat	cgtccccgg	tggtgagtt	ggtggcggg	catgcggtgt	ccgcgggtgt	10500
tcatgcgg	ggtgtgctgg	atgacggcat	ggtgggtgc	ttgaccgggg	agcggttgtc	10560
cgcgggtctg	cggccgaagg	tggatgtgt	ctggcatcta	catgaggcga	cccgccgcct	10620
ggacctggac	gcgttcgtcg	tcttcctc	cctcgccggg	gtcttcggca	gtccccggcca	10680
ggccaactac	cgccccgca	acgccttct	ggacgcgt	atgacgcggc	gccggggcga	10740
gggactgccc	ggccgtcac	tcgcatgggg	accgtggag	cagtgcggcg	gaatgacggg	10800
caccctgacg	gacgtcgacg	ccgaacgct	ggcccgtcc	ggtgtccgc	cgctctccgt	10860
ggcgcagg	ctggccctct	tcgacgtcg	cgtggccggg	accgacgcca	cctgcgttcc	10920
gttccgcctg	gaccccccg	tcctccgc	acggggtgaa	gtgccgcgc	tgctgagg	10980
gttgcgttgc	gtccccggc	gcccggcgc	cgtgcgggg	tccgcaccc	cgggcaacct	11040
cgcggcgc	ctgcggcc	tggacgagga	cggccgcac	gagatggtcc	tgacactcg	11100
cgcgggtcag	gtcgccctcg	tcctcgcc	cgcgaccgg	ggcgcacgtcg	acgcggcccg	11160
tgccttccgc	gacccgtgg	tcgactcg	gaccgcgtc	gaactgcgc	accgcctcaa	11220
cacccgtacc	ggccgtcgcc	tgccgcac	cctggtctc	gactacccga	ccgtccggca	11280
cctcgccacg	tacgtcctgg	acgagttt	ggcacggat	gccgagggtgg	cgaccgtgca	11340
gcccggcc	gttgcgggtgg	cgacgtatcc	gatcgatc	gtgggcatgg	cctgccccta	11400
ccccgggtgc	gtcagctccc	ccgaggac	gtggcgctg	ctcaccgaag	gcaccgacgc	11460
cgtctcg	ttcccgacca	accgtgg	ggacgtcgaa	tccctctatc	accggaccc	11520
tgaccaccc	ggtacccct	acacgcgtc	gggtgggttc	ctgcgttgc	cgggggagtt	11580
cgatccggg	ttctcg	tgagtccgc	ggaggcg	gcgaccgatt	cccagcagcg	11640
gttgcgttgc	gagtcgtcg	gggaggcgat	cgacggggcc	gttattgtatc	cgttgcgtt	11700
gcggggtagt	cgacgggtg	tggtcg	gggtatgtac	agcgattaca	gcgcgtgtt	11760
ggcgagtcc	gagtcgagg	gttccagg	cagtggag	tcgcccgtt	tggcgtcg	11820
tcgggtggcc	tacacgttgg	gttggaaagg	ccggcggtg	acggtgata	cgccgtgtt	11880
gtcgtcg	gtggcgatgc	actggcgat	gcaggcg	cgtatgg	agtgtgggtt	11940
ggcggtggcc	ggtgggtgt	cggtgatgc	gacgcgtcg	gttgcgttgg	actttgtcg	12000
gcagcggtt	ttgtcgccgg	atggccgtt	caaggcg	gcggatgcgg	ccgatgggt	12060
gggctggtcc	gaggcgctg	gctgttgg	cctggagcg	cagtgcgac	cgtgcgc	12120
tggtc	acacgag	atttggctg	ttggcg	aaccaggat	gtgcgtccaa	12180
tggttgc	gcccata	gtccgtcg	gcacgggt	atccggcagg	cgttggccag	12240
tggtgg	acggcggt	acgtggatgt	ggtgagg	catggtacgg	gtacgacgt	12300
cgggtatcc	atcgaggc	aggcg	ggcgtat	ggcgggatc	gtgagcctg	12360
cgccgcgtt	ttgtgggtt	cggtga	aatctgg	catacgcagg	ctgtcg	12420
tgtggcg	gttatcaaga	tggtgttgc	gatcg	ggtgtgg	cgcggacgtt	12480
gcatgtt	gcccatttt	cgcatgtt	ctgtcc	ggtgcgttgg	agctgtcg	12540
tgagcagg	gcctggccgg	agacgg	ggtgcgg	gcgggtgtt	cctcattcg	12600
catcagcg	accaatgt	atgtcatcg	cgacgagg	cgggcgc	aggcgatcg	12660
cgccgcgt	cgccgcgc	gcacgc	tgccgtcg	gtgctgtct	cggggcgtt	12720
ccggagtgc	ctgcggggcc	aggcc	cctgtcg	caccc	ccgcacccg	12780
cgccgaactc	gtcgatgt	cactgtcg	ggc	cgttcccg	tcgacgacg	12840
ggccgcgtc	gtggcg	accgcgac	gctgtcg	tcgctgg	cgtggccgc	12900
cgaccgcccc	gacc	tcgtcg	cgaggcc	ggacgcgg	ggaccgcgg	12960
gctgttca	ggacagg	gcccac	ggccatgg	cgtgactcc	acgagg	13020
gccggag	gccgcgg	tcgacgc	gtgtgc	ttcgcac	gtttggac	13080
gccgcgtc	gagg	tcg	gg	tcgttgc	ccgttgc	13140
gaccgg	acgc	ctctgtt	cg	ggggcc	tgacgg	13200
gagttgg	gtccgtcc	acttgc	gg	gtgtgtt	gggtgtt	13260
gcacgtcg	gggtgt	cg	gg	ctgggtt	cgccgg	13320
gctgtat	gtgtac	cg	gg	tcgttgc	ccgcgg	13380
gatcg	gcgc	ccggcg	gtat	atccagg	ccgagg	13440
gggtatctt	gtgtac	acacgg	gtat	gtcaacgg	ccgcgtt	13500
g	gggt	ggcgtt	aa	gtcac	ccgac	13560
gcgc	gggt	ggcgtt	gg	gttgc	ccgcgg	13620
gctgg	gggt	ggcgtt	gg	ggatcc	ccgcgtt	13680
cgtctccg	gtccggat	ccgt	gg	gtgtgc	ccgagg	13740
ggtgcgg	gtccgg	ccgt	gg	ccgcgtt	ccgcgtt	13800
ccggcc	accc	acttgc	ccac	gtgacc	ccgcgtt	

caccctcggt	gacgaccacg	acgcccgaact	ggtgccgatg	ctgcgcgccc	ggcgcgcccga	13860
ggaactggcc	gcggccacccg	ccctggcccc	cetccaggtg	cgcgccgtgg	acgtggactg	13920
ggcggcgta	ctcgccggca	ccggcgcccc	acgcacccgac	ctgcgcgaccc	acgccttcca	13980
gcacgcgtac	tactggccgc	agctgccgac	cccggccgccc	gccctcgccc	ccgcgcgatcc	14040
cgccgaccag	cagctgtggg	ccgctgtgga	gcccggcgac	gcccgcgaac	tcgcgcacat	14100
cctcgccctg	ggcgaacagg	acctcacccc	gtggactcc	ctgctgccc	ccctcacctc	14160
gtggcgccgc	ggcaaccagg	agaagcacct	cctggacacc	ctgcgcgtacc	gcgtggagtg	14220
gacacgactg	agcaagccga	ccgccccgt	cctcgacggc	acctggctgc	tggtcgcctc	14280
cgacgcacc	gcggccgacc	agccagccct	cctcgacggc	ctggccgacg	ccctcggtctc	14340
gcacggcgcg	cgggtgcgtc	gcctgtttct	ggacgactcc	tgcgcgacc	gcccgggtct	14400
cgccgaacga	ctggcgccga	ccgcccacgt	ggacgcccgcg	acccaggtgc	tgtccgtgt	14460
gccgctcgac	gagcgggacg	ccgacgactg	cccggccgtc	acccgcggac	tggcgtgac	14520
cgtcgcgtc	gtccaggccc	tcgcgcacac	ccggcggccag	ggccggctgt	ggaccgcccac	14580
cccgccgcgc	gtctccacca	accccgcga	cccggtcacc	cacccgtcc	aggccgctgc	14640
ctggggcctg	ggccggggcg	tcgccttga	gcacccacgg	ctgtggggcg	gcctggtcga	14700
cctgcccag	gtcttcgacg	agcgggcccgg	acagcggctc	gccgggatcc	tcgcgtcaa	14760
ggacgcacccg	gacggcgagg	accaggtggc	gctgcggggcc	acccggagtct	ccggccgcgc	14820
gctcgccgc	cacacccgtc	aagcgtcc	cacggccgcgc	gagttcaccc	ccacccggcac	14880
tgtctctgatc	actggtgga	ccgggtggct	gggcgcggag	gtgcggcggt	ggctggccc	14940
cgccggcgcc	cagcacccgt	tcctgaccag	ccggcgcggc	ccggacgcgc	ccggcgcgcgc	15000
cgaactccgg	ggcgaactgg	agggtacgg	ggcgtcggtg	tccgtcgctc	ctcgcgacgt	15060
cgccgaccgg	gacgcgtcg	ccggcgctct	caccgcactg	cccgagaaac	tgcgcgtgac	15120
cggtgtcg	cacacccgcag	gcgtcgccca	ctacggcccg	ctggacaccc	tgagcaccgc	15180
cgagttcgcc	ggcctcaccg	ccgccaagct	cgccggcgcc	gcccaccc	acccctgtct	15240
cgccgaccgc	gaactggact	tcttcgttct	cttcggctcc	atgcgggtg	tctggggcag	15300
tggcaacccag	agcgcctacg	gcgcgcacaa	cgctctaccc	gacgcgtcg	ccctgcaccc	15360
ccgcgcgcgc	ggcctcgcgc	cgacccctgt	cgctggggc	ccgtggggcg	aggccggcat	15420
ggccgcgcac	gatgcgttt	ccgagaccc	gcgcgcgcag	ggcctcgcc	tgtctgaccc	15480
ggcccccggcc	atgaccgagc	tgcgcgcgc	cgtcgtccgg	caggacgtca	ccgtcaccgt	15540
cgccgacgtg	gactggcagc	gctacgcacc	gctgttcacc	tccgcggcgc	ccagcgccct	15600
gatgcgcggc	ctgcccggag	tccgcgcct	cgccgcgcac	gagcgcaccc	agcaggacgc	15660
caccggcgcc	tccgaggtcg	tcaccccggt	ccgcgcctc	gccgaaccc	agcaactgcg	15720
cctgctgacc	gaccccgatcc	gcacccgatc	cgccaccgc	ctcgccaca	gtccgcacca	15780
cgccgtgccc	gagggccgcg	cctccgcga	cgtcggctc	gactcgctg	ccgcgggtcg	15840
gctccgcaag	cgccctggcg	ccgcgaccgg	gctgtccctg	cccagcacca	tgtcttgcg	15900
ctaccgcaca	ccgctggaac	tcgcccagta	cctgcggccg	gagatcctcg	gcccgggtcg	15960
ggaagtcgcc	ggcccggtcg	ccacccggcg	cgccgacgac	gagccgatcg	ccatcatcg	16020
catggcctgc	cgcttccccc	cgggcgctcg	ctccccggaa	cagctgtggg	acctggtcgc	16080
ctccggcacc	gacgcgatca	gcgagttccc	cgtaaccgc	ggctggcaga	ccgggcaccc	16140
cttcgacccg	gaccccgacc	ggcccgac	cacctactcc	acccaggccg	gottcctcca	16200
cgaggccgac	gagttcgacc	ccacccctt	cggtatctcg	ccccggcgagg	cgctggtcat	16260
ggacccgcag	cagcgctcc	tgctggagac	cacctggag	tccttcgac	gcccggggat	16320
ccgccccggaa	accctccgat	ccacccgtac	cggcaccc	gtcggctcca	gttaccagga	16380
gtacggcctg	ggcgccggcg	acggcaccga	gggcacatg	gtcacccggca	gcaagccccag	16440
tgtgctctcc	ggccgactgt	cgtacgttt	cggtctggaa	ggcccgccgg	tcaccgtcg	16500
caccgcctgc	tcgtctctcg	tcgtggcgct	gcacctggcc	tgccagtcgc	tgcgcaacgg	16560
cgagagcaac	ctggccgtcg	ccggcgccgc	cacgatcatg	acgacgccc	acccgttcat	16620
cgcggttcacg	cgcgacgcgc	ccctcgccaa	ggacggccgc	tgcaaggcgt	tctccgacga	16680
cgcgacacgc	atgacgctcg	cgagggcgt	cggtcgctc	ctcgctcgac	ggctctccga	16740
cgcgacacgc	aacggccacc	cggtctctggc	cgtcctccgc	ggctccgcca	tcaaccagga	16800
cgcgccctcc	aacggcctga	ccgcgcacccaa	cgggccgtcc	cagcagaggg	tcatccgcca	16860
ggccctcgcc	aaccccgcc	tcgcgcgg	ggacatcgac	gccctggagg	cgcacggc	16920
ccgcacaccc	ctcgccgacc	ccatcgaggc	ccaggcactg	ttcgccaccc	acggccgcga	16980
ccgcgcaccc	gagagcgcgc	tgctgtcg	ctcggtgaag	tccaacatcg	gccacaccc	17040
gtccgcgcgc	ggcatcgcca	gggtatcaa	gatggtcatg	gctgtcgcc	actccgaa	17100
ccgcgcacc	ctgcacgcgc	acgcgcgc	ctcgacgtg	gactggtcgg	ccgggacgg	17160
ccggctgtcg	acccaggccgc	gcgcctggcc	ggagacccgt	cgcccgccgc	ggcccgccgg	17220
gttcctcgcc	ggcatcagcg	gtaccaacgc	ccatgtctcg	ctggagcagg	cgcccgtcg	17280
ggacaccccg	gcccggggagc	ggcccgccgt	ggcgcggc	ccgatcgcc	ccggcgtcg	17340
cccggtgggt	gtcaccggccc	gcagcgccgc	cccccgtcg	ggccaggccg	agcgccctcc	17400

cgcgcacgcc	gaaaccgtcg	gaaccgcct	gccggccgccc	ggaccgcgtcg	acatcgccct	17460
gtcgctggtc	tcccgccgcg	cccgtttgcga	gcaccgtgcc	gtcgctgtcc	cgcggcgggg	17520
caccgaccgg	ctggccgccc	tgcgcgcgt	cgcgacggac	gggcctcg	ccgtggtcgc	17580
ccgtggcgtg	cgggacgtcg	agggtcgac	ggtgttcgtg	ttccccggtc	agggttcgca	17640
gtgggtgggg	atggggtccc	aactccttga	tgagtcggcg	gtgttcgccc	agcggattgc	17700
cgagtgtgcg	cgggactcg	ccgagttcac	cgactggtcg	ctggtcgatg	tgctgcgggg	17760
tgtggtggtt	gcccgtcg	tggagcgggt	cgatgtggt	cagccggcgt	cggtcgccgt	17820
gatgggtgtcg	ttggctcg	tgtggcggtc	ccgtgggtgt	ttgcccggatg	cggtgggtggg	17880
gcattcgca	ggtgagatcg	ctgctcggt	gggtcgccgt	gcgtgtcg	tgccggacgg	17940
ggcgcgggtg	gtggcgctgc	ggagtcagggc	cattggtcgt	gcgttggcgg	ggcggggagg	18000
gatgatgtcc	gtcgctgt	cggtggacgt	gtcgaaaccg	cggttggtcg	atgtcgaggg	18060
gcgggtgtcg	gtggccgccc	tcaacggccc	gcgtccgtc	gtggtcggc	gcaagcccg	18120
ggcgtggac	gcgtgcacg	cccgctgtac	cgccgacgc	atccgggccc	gccggatcgc	18180
gttggactac	gcctcgact	cgcaccagg	cgaggacctg	cacgaggaac	tgctggaggt	18240
gctggcgagg	ctggcgccgc	gcacgtcg	ggtgcgttc	ttctcgaccg	tgaccggcga	18300
ctggctggac	accgcgcgga	tggacgcgg	ctactggttc	cgcaacctgc	gcccacgggt	18360
gcgggtcg	gacgcgggt	cgacgtgt	ggccgcggag	taccgcgt	tcgtcgaggt	18420
cagctcgac	ccgggtgt	cgatggcggt	gcaggaggg	atcgacgagg	ccggcgtgcc	18480
ggccgtcgcc	gccggcaccc	tgcgcgcga	ccagggcgcc	accgaccg	tcctgtgtc	18540
ggccgcggag	gtcttcgtgc	gccccgttga	cgtggactgg	gcggggctgt	tcgaggggac	18600
cggtgcgtcc	cgatcgacc	tgcgcaccta	cgccctccaa	cacgaacacc	tgtggccgt	18660
cccgcccc	ccggaggccg	tcgcgcgc	cgacccggac	gacgcggcct	tctggaccgc	18720
gttcgaggac	ggtgcacgtct	ccgcgtcgac	cgccgcgtc	ggcaccgacg	aggactccgt	18780
cgccgcgtg	ctgcccgc	tgacccctcg	gcgcggggcc	cgccgcgacc	gctccaccgt	18840
ggacgcctgg	cgctaccgcg	tcgcctggaa	accctcgcc	ggcaccctgc	cgacccgc	18900
cctgaccggc	acctggctgc	tggtcaccgc	cgacggcata	gacgacaccg	atgtggcagg	18960
ggcgttggag	acctacggcg	ccgagggtcg	ccgctggtc	ctggacgagg	atgtcggtcg	19020
ccgcgcgtc	ctgccccggc	ggctggccg	cgccgaggac	gtgacccgca	tcgtctccgt	19080
cctcgccccc	gccgagcgga	ccgacgcgt	accgggacc	tccctggtgc	tcggcaccgc	19140
cctgaccgtg	gcactgatcc	aggccctcg	cgacgcgc	atcgacgctc	ccgtatggc	19200
gttgaccggc	ggcgcgggtct	ccaccggcc	ggccgacgag	ctgaccgc	ccgtccaggc	19260
acaggtcacc	ggcatcggt	ggaccgcggc	gctggagcac	ccgcagcg	ggggcggcac	19320
cctegaccc	ccgcgcgc	tcgacgcgg	ggccgcggcc	cggtcgcc	ccgtgtgtc	19380
cgccgcgc	ggcagcgacg	accagctgc	catccggccc	tccgggtct	tcacccgcgc	19440
catctgtgcgg	gccgaggcca	ccgccccggc	gcccgcggc	acctggacgc	cgccgcggcac	19500
cacactggc	accggcggt	ccggcaccc	cgccccgcac	ctcgccgct	ggctggccca	19560
acggcgcc	gagcacctgg	tcctgatcg	ccggcgccgc	acggccccc	cgggcgccgc	19620
cgaactcg	gcgaaactgg	ccgagtcg	caccgaggcg	accgtcgcc	cctgcgacat	19680
caccgaccgc	gacgcggcgt	ccgcgtcg	ggccgaccc	aaggccacg	ggcgcaccgt	19740
ccgcaccgtc	gtgcacaccg	ccgcaccat	cgagctgcac	accctggacg	ccaccaccct	19800
ggcggacttc	gaccgggtgc	tgcacgc	ggtcacccggc	gcccaggtcc	tcgccgaact	19860
gctcgacgac	gaagagctgg	acgacttcgt	cctgtactcc	tccaccgc	gcatgtgggg	19920
cagcggcc	cacccgcct	acgtcgccg	caacgcctac	ctcgcgcgc	tcgcccagca	19980
ccgcggggcc	aacggactgc	ccgcctgtc	gctgtctgg	ggcatctgg	ccgacgaccc	20040
caaactggc	cggtcgatc	cccagatgt	ccggcgacg	ggcctggagt	tcatggaccc	20100
gcagctggcc	ctgagcggcc	tgcagcggc	gctggacgac	aacgagaacg	tcgtcgccgt	20160
cgccgacgtg	gactgggaga	cctaccaccc	cgtctacacc	tccggccgac	ccaccccgct	20220
cttcgacgag	gtgcggagg	tccgcgcgt	caccgcggcc	gcccggcaga	gcccggggac	20280
cgtcgcgc	ggcgagttcg	ccgcgcgc	gcccgcct	tccgcgcgc	agcagcagcg	20340
caccctgtc	gagaccgtcc	gcaccgg	ggcgtccgtc	ctcggcgt	cctccgcgc	20400
ggacctcacc	gaccagcg	ccttcgcga	cgtcggttc	gactcgctg	ccgcgcgtcg	20460
cctgcgcaac	cggtcgcc	ccgtcaccgg	cctgacgt	ccctcgacg	tgtcttcga	20520
ctaccccaac	ccggccgcgc	tgcgcgc	tctgcacggc	gagctggccg	gcccgggtc	20580
cgccgcgc	ggcgcgcgc	ccgtcccgac	cgccgcggcc	gacgcgcacg	accgcgtcg	20640
gatctgcgc	atgagctgc	gtacccgg	cggggtcg	tccgcgc	gggggggg	20700
gategcctg	gacgaggtcg	acgcgatctc	cggttcccc	gcccggcgc	gctggggacgc	20760
cgagggcctc	tacgaccgg	accccgaccc	gcccggccgc	acctactcc	tccaggggcgc	20820
attcctgcgc	gacgtcgcc	agttcgaccc	gggttcctt	ggatctcg	cgccgcgaggc	20880
gctgtcgatg	gaccggcagc	agcggtctt	gctggagacc	gcctggagg	cggtcgagca	20940
cgccggcata	gaccggcgtc	gccagcgcgg	cagccgcacc	ggcaccc	tccggccca	21000

ctaccaggac tacgcctccg gcgtgcccaa cagcgaggc tccgaaggcc acatgatcac	21060
cggcacgctc tccagtgtgc tgccggccg ggtgcctac ctcttcggct tcgaggccc	21120
cggcgtcacg ctgcacaccg cctgccttc ctccctggc gccatgcacc tgccctgcca	21180
gtccctgcgc aacggggaga gtcgctggc cctggccggc ggctcagca tcatgtccac	21240
cccgtatgtcg ttgcgtcgct tcagccggca gcgcgcctc gccgaggacg gccgctgcaa	21300
ggcgtacgca gacggcgccg acggatgac cctgcggag ggcgtcgcc tgggtgtgct	21360
ggagcggctg tccgacgccc gcgccaacgg gcaccagggtg ctgcgtcgta tccgcggctc	21420
cggcgtcaac caggacggcg cctccaacgg cctgaccgca cccaaacggcc cgccccagca	21480
gcgcgtcatc cgccaggcgc tggcaactc cgccgtggcg cccggcaca tcgacgtcct	21540
ggagggccac ggcaccggta ccgcctcgg cgacccatc gaggcgcagg ccctgtcgc	21600
cacctacggc caggaccgcg cccccgaacg gccgtgctg ctgcgtcg tgaagtccaa	21660
catcgccac acccagatgg catccggctg cgccagcgatc atcaagctcg tccgcgcct	21720
ccaggaaggc gtggtgccca agtccctgca catcgaccgg ccctccaccc acgtcgactg	21780
gtcctcgggc gccatcgggc tgctcaccga accgacccccc tggcccgaga cccggccggcc	21840
gcgcgcgccc gccgtctctt ccttcggcat cagcggcacc aacgtccaca ccatcctcga	21900
acaggccccc gcggacgagg cgcccacggc cgccgaccgg ccgcggacg gcttggtgcc	21960
ggtcctgctc tccggccgca gcgaggccgc gtcgcccggc caggccccc gctgtcgc	22020
tttcgtcgag gagccggcccg aggcccacct caccgaccc gcccactccc tgcacaccc	22080
gcgcgcgccc ctggAACGCGC ggcgcgcgt catgcggcc gaccgcaca ccgtgacccc	22140
cggcctgcgc gccctgtccg acggccggcc cgaccccgcc ctggtccagg gacccgggg	22200
acgcggcccg accgccttcc tgttcaccgg acagggcagc cagcgcggcc gcatggccg	22260
cgaactccac gaccgttacc cgggtttcg cgcgcgtcg gacgagggtc tggcccggt	22320
cgacgacgga ccggaccggc cgctgcgcga ggtgtgttc gccgcgcgg actccgcgc	22380
ggccgcgctc ctggaccggc ccggctacgc ccagcccgcc ctgttgcggc tgcaggtcgc	22440
gctgttccgc ctgctgacgt cctggggctt gacccggac tacctggccg gcaactccgt	22500
cggcgaactc gccgcgcgc acgtgcgcgg cgtgtgtcg ctggacacg cctgcactct	22560
ggtcgcgcgc cgccgcgcgc tcattgcaggc gtcgcccgg ggcggcgcga tggtcgcct	22620
ggaggccgcg gaggacgagg tcctggcgct cttggagggg ctcaccgacc ggtgtccgt	22680
cgccgcgcgc aacggggccgc ggtccgttgt ctgcgcgcgc gtcgaggagg acgtgtcct	22740
cctcgccgac ctctcgccg ccgacggccg ccggacccaag cggctgcggg ttagccatgc	22800
cttccactcg ccgcgtatgg acgcacatgt cgacgacttc gccgcgtcg cccgcggct	22860
gacctaccac ccgcgcacga tcccgttctg gtcaaacgtc agcggccggc tggccaccgc	22920
cgaacaggtc cgcaegcccg actactggg cggcacgtc cggccgcgg tccgttgc	22980
cgacggcatc gactggctcg ccacccaggg cgacgtccac acettctgg agctggccc	23040
ggacggcggtg ctcaagcgcca tggccggga gacccctacc gacccgtccc gcacggcact	23100
gctgccgacc ctgcgcggcg accggcccgaa ggaacctgcc ctggtcaccg cgtcgccgc	23160
ggcccacgcg cacggcgccc gcgtcgactg gagcgggtac ttgcgcgacc acggcgccgc	23220
ccggaccacg ctgcgcgaccc acgcgttcca acgcgagcgg tactggcccg acaccaccgc	23280
cggcgcgagc gcccacacgc ccggatccgc ctcgcacgc gaggctctgg ccgcgtcga	23340
gcgggacgac gtcgcgcgc tgcgcgcctc cttggacctg gacgacgcca cgtcaccgc	23400
gatggtcccc ggcgtcaccg cctggcgccg gcgcgcgcg gacgaccccg aactggactc	23460
ctggcgctac cgctgcaccc ggaagccgcg cggccgcgc accgcaccccg ccgcctcac	23520
cggccgcgtt ctgcgtctcg tcccgcacga ccaccaggac cgtcaggacg acgcgaccgc	23580
ggcctggca gccgacgtcg agaccgcctt gggcaccacc accgtccggc tgcacggtcac	23640
caccaccgac cgccgcgcgc tggccggccg gatcaccgaa gccgcggcg accaggccc	23700
gttcagcggt gtgtgtccc tgctggcgct cgccacccggc gacgcccggc accccgggtc	23760
gcccgcgcgc ctcaccccta ccaccacgc cgtccaggcc ctgcgcacg ccggcatcga	23820
cgcgcgcgtg tggAACGTCA cccgcggggc cttggccgtc ggccgcgcg aacaggtcac	23880
cgcgcgcgaa caggccgcgc tctggggctt gggccgcgc gtcgcctgg aactgcggc	23940
ccgggttcggc ggcacccctcg acctgcccgc caccctggac ggccaggccg cccgcgggt	24000
gcgcgcggtg ctcgcggcta ccgcacggcgaa ggacgcgggtg gccctgcggc cttccggcgt	24060
cttcctccgc cgcctggccc acgcgcgcgc cggcccccgc accgcacgc ccccttcga	24120
ccggcgccgc ggcacccgtcc tgatcaccgg cggcacccggc ggcacgcgc gccaacgtcgc	24180
cggccgcctg gcccgcacg ggcgcacccca cttgtgtctc accagccgc cggcccccggc	24240
cgccccccggc gccgacgcgc tccgcgcgcgactggaggaa ctggcgccc ggttcaccct	24300
cgccgcgtc gacggcgccg accgcacgc gtcggccgcg ctccgtcccg aactgcccga	24360
cgacgccccg ctgtgcgcgg tggttccacac cgccggcgctc gtcgaggacc acgtcggtgg	24420
cgcgtctaca ccggagaact tgcgcgcgtt gtcgcgcgc aagaccgtcg ccgcacccca	24480
cctgcacgag ctgaccgcgc acctggaccc cgcgcgtttc gtgtttctt cttccacggc	24540
cggcgccctc ggcgcgcgcg gacagggcaa ctacgcgcgc gccaacgcac acctggacgc	24600

cctcgccgaa	caccggccgt	cccacggcct	gaccgcgctg	tccgtcgcc	ggggccccgtg	24660
ggccggctcc	ggcatggtcg	ccgacgcgc	cgaactcacc	gaccgggtac	ggcgccggcg	24720
cttcgaacct	ctcgcccccg	aaccggccgt	gcccgcctg	ctgcgcgcca	tccagaacga	24780
cgacaccacc	gtcgcgctcg	ccgacatcga	ctggagcgc	ttccagcg	ccttcgcgc	24840
gttccgcccc	ctgcgcgtcg	tcgcccacct	ccccgagacc	ggccgggcca	cccccgcgac	24900
cgccaccggc	gccgcccaccc	gcctgcgca	gcaactcgcc	gaactgccc	agcacgagcg	24960
cccgccggcg	gtccctggacc	tgctgcgtac	ccaggtcgcc	gcccgtctcg	gccacgcccga	25020
cccgccgacc	gtcgaggacg	accacgcctt	ccgcgcacctg	ggcttcgact	cgtgaccat	25080
cctggaaactg	cgcaacgccc	tcaacgcgc	caccggcctg	agcctgccc	ccaccctgg	25140
ctacgacctg	cccaccccg	gcgagatggc	ggacttcctg	ctcgccgaac	tcctcggcac	25200
cctgcccacc	gacaccggcg	cgaccgtcg	cagcacggcc	tccccaagc	tctcagttc	25260
tttcgagcag	ggcgttaccc	ccttcgacga	cccgcgc	gtcategca	tcggctgccc	25320
tttccccggc	ggcgtcacca	ccccggagga	gctctggcag	ctcctcgacg	aggggccgca	25380
cggcatacgc	cgcttccccg	acgaccggcg	ctgggacctc	gcccgcgtgg	gcccggcg	25440
ctccgacacc	ctggagggcg	gttccctgac	cggcgtcgcc	gacttcgacg	cccggttctt	25500
cggcatactcg	cccccgagg	cgctggccat	ggaccccccag	cagcggtc	tgtggagac	25560
cacctggag	gctggagc	ggggccggcat	cgacccgacc	acgctgcgc	gtccaccac	25620
cggcgtctc	gtcgccacca	acggccagga	ctacccgacg	ctgttgcgc	gtccgcctc	25680
ggacgtggcc	ggctacgtcg	ccacccggaa	caccgcgc	gtgatgtcc	gcccctgtc	25740
ctacgcgc	ggcctcgaag	gcccggccgt	caccatcgac	accgcctgt	ccttcctcg	25800
cgteccccgt	cactgggccc	gcccggcgct	gctgcgcggc	gagtgcacc	tcgtgggtgg	25860
cggcggcg	tcggatcg	ccagcccgga	ctccctcg	gagttctcca	cccaaggggcg	25920
cctggcaccc	gacgggcgct	gcaaggcg	ctccgcaccc	gcccacggca	ccgcctggc	25980
cgaaaggcgtc	ggcatactcg	tccttggaa	ccttcgc	gcccgcgc	acggccacca	26040
gttcctcg	ctgatcccg	gcaccgcgt	caaccaggac	ggcgcgtcca	acggcctgac	26100
cgcccccac	ggcctctccc	agcagcgcgt	catcgccc	gactcgcc	acgcccgc	26160
gcccggcc	gacatcgac	cgatcgaggc	gacggcacc	ggcaccaccc	tcggcgacc	26220
gatcgaggcc	cgccccc	tcaccgccta	cgccggggac	cgggacgc	aacggccg	26280
gctgtggc	accgtcaag	ccaacatcg	gacaccc	gcccgcgc	gtccgcgc	26340
cgtcatcaag	atgtgtatgg	cgatgcgc	cgccaccc	cccaggac	tgacgtgg	26400
caccccg	agccacgtcg	actggagcg	cgccaccc	gctcctcg	acgacgcgc	26460
gccctggcc	cgaccggg	agccgcgc	cgccggc	tccgcctcg	gctcagcg	26520
caccaacccc	cacgtcg	tcgagcaggc	ccccggaaacc	gaagcccc	ccgccccgg	26580
cgccgagcc	gcccggagg	ccacgc	cgctgtccc	tgggtcg	ccggacgc	26640
ccggaaagcg	ctccaggcgc	agctggacc	gctaccgc	cacacc	cccacccgc	26700
gctgcgc	gcccgcgt	gcccgcgt	ggcaccgc	cgacgc	tccgcacc	26760
cgccgtcg	ctcgccggcc	cgacggg	gcccgcgc	gcccgcgc	ccgcgc	26820
caccccg	cgacccgcgt	tcctgttctc	cgacagg	gcccac	ccctgtatgg	26880
ccacgac	taccagcg	tcccg	cgccgac	ctggac	tcctcgcc	26940
gttcgacacc	gtgtggac	tcccg	cgccgcgt	ttcgcgc	cgccac	27000
cgaggcc	ctccggacc	agacgg	caccag	gctgttgc	ccgtcgag	27060
cgca	cggtcgcc	agtcctgg	gctgacgc	gacttcgt	ccggccact	27120
catcgccgag	atcgccgc	cgacgtcg	cggggtgt	tccctgg	acgcctgc	27180
gctggtc	gcccgcgc	ccctcatc	gcaactgc	cgggacgt	cgatgtgg	27240
cctggaa	accgaggac	agg	gtgtc	gacggcgt	cactcgcc	27300
ggtcaacggc	ccccgtcg	tgg	cg	gacggcgt	gcccgtcg	27360
cgaccggc	gcccgcac	gcccgc	ccgcgg	acggta	acgccttca	27420
ctcgccgt	atggaccc	tgtc	cc	gtcg	gagg	27480
ccacgagg	cgcatcccc	tgtc	tcc	gctgt	gaccta	27540
gctgca	gactactgg	tgcgg	acgt	gtgcgtt	ccgacggcg	27600
gctgccc	cacgacgc	gcccgc	cttcgt	gtgcgtt	atcgcccg	27660
cacccgc	acc	ccctcg	ac	gac	acggcg	27720
gcccgtcc	cgccgc	gcccgc	cc	ggcgc	cccccg	27780
gcacacc	ggcac	cgctctgg	cg	ctgg	agg	27840
gaccgat	ccac	ccttcc	cg	gg	ggccac	27900
cg	cc	cc	gg	gg	ccgc	27960
cccgcc	cccc	cccc	gg	gg	ggcc	28020
ccgcac	gg	ccgc	cc	gg	ccgt	28080
cgaa	cc	cc	gg	gg	ccac	28140
gg	cc	cc	gg	gg	ccgc	28200

cctccctcgcc accctggacg aggccggcgt gcacgcgccc ctgtggtgcg tcaccgcgg	28260
cgccgtcgcg gtcgcggggg aggccccgac cgccgtcgcc caggccgccc tgggggcct	28320
ggcccggtc gccgegctgg accacccgga ccgcttcggc ggcttgcgc acctgcccgc	28380
cgacacccgac ggcacacgccc cgggctgtct cgccgcgcac ctggccgcgc cggcacccga	28440
ggccgagatc gcggtccgcg ccacccggcgt ccacgcccgt cgcttgcgtcc gtacgcgcgg	28500
cgccgcgcac ggtgccacct ggctggcgc cggcacccgt ctggttgtcg gccgcacccgg	28560
cggcaccggc accatggcgc gccgggcgc cgcgtggctg gtccgcgagg gcccgcaca	28620
cctcgctctg accggcccccg acggcaccac gaccgcgcg gacaccgagg ccgtacggc	28680
cgaaactggcc ggcgtcgccg cccggatcac cgctgtggac cacgacccca cccggggcga	28740
cggttcgccc ggcgttctcg acggactgcg cgacgacacc cgcgtcaccg cggtcggtta	28800
cgcgcggag gccgacgcgc cccgggcac cgccggcggag ctgtccgcgc cactgcggcc	28860
cgtcaccggc ctagggcgcg ccctcaccgg ccggccgtcg gacgccttcg tcctttcgg	28920
ctccatcgcc gggctctggg gctgtgcgcg ccggccgcgc gaggccgcgt cccggcgccta	28980
cctcgacgcc ttcggccgcg cctgcccgcg cccgggcacc cccgcactgg ccgtcgctcg	29040
gggcgcctgg gccgacctgg tcggccgc cctcgccgcg cactgcgga tgaacggcct	29100
gcccgtatg gacgggaca cccgactgac cgccctcage cggggcgtcg ccgcacgggtc	29160
cgccgcggag gcggtcgccg acgtccgtcg ggagacccgt ggcgcctcc accacgaggc	29220
ccggccgacc gcccgttcg acggccctgcg cgaggccgcg ggcgcgtcg cgaggccgc	29280
ccgggaccgc gccgaccgga agaccgcgc cggcgactac ggccgggtggc tcgcccggca	29340
gcccgcgcg gaccacgacg ccattctgtcg ggcaactggc accgagaagg cccgcaccgt	29400
cctcgccac gccgaccacg acctgctcg acccgacccgt cccttcgcg acctgggctt	29460
cgactcgctg accggggctcg acctgcgcaa ccagctcacc gcggaaacccg gcctcaccc	29520
gcccgcacc ctcgtttcg accacccaa cccggccgc ctcgcgcgc acctgcgcgc	29580
ccaactcctc ggcgaggcga ggcactccgc cgcaccggcgt gccgcggcc tcgcctcg	29640
tgccgacgac gacgcgatcg tcatcgctcg catggcctgc cgctaccccg gccccgtac	29700
ctcgcccgag gacctgtggc agctggctcg cgacgagggtc gacgcgtcg ggcacttccc	29760
gaccgaccgc ggctgggacc tggccgcgt ccgcggcgc gggccggcc gcaactgccc	29820
cgcccaggcg ggattcctct acgacgcac cgcacttcgac cccggcctgt tcggcatctc	29880
gcccgcgcg gcccgtgtg tggacccgcg cgcggatc ctgctgaaa cgtcctggga	29940
ggccctggag cggggccgcg tgcacccggc gacgctgcgc ggcagccgc ccacccgcgt	30000
ttcgtcgcc ggcggctccg ggcactaccg gccgcggag gaggccggc agtggcagac	30060
cgcccagtcc gccagcctgc tctccgtcg cctgcctac acttcgca tcaggggccc	30120
caccgtgtcg tgcaccccg cctgctctc gtgcgtggc ggcgtgcacc tgccgcgcga	30180
ggccctgcgc gccggcgaat gtcgatcgc gctggccggc ggcgtcaccg tgcactggcc	30240
cccggtgggc ttctcgact tcagcgcacc gggcccccgt tcgcggacg gccgtgcgc	30300
cgccctctcc gacgacgcac acggcaccgg ctggtccgaa ggcgtggcgt tgctcgctcg	30360
cgaacggcgc tccgacgcgc gcccgaacgg ccaccgcgc ctcgcgtgc tccgcggc	30420
cgccatcaac caggacggcg cgtccaaacgg cctgaccgc cccagccgc ccccccagca	30480
gcgcgtcata cgccaggccc tgcacaacgc cgcactgcgc cccggcgcata tcgacgcgcgt	30540
cgaggccac ggcacccgcg ccaggctcg cgacccatc gaggccagg ccctgtcg	30600
cacctacggc caggacccgcg agccggccgt gctgctcg tcgctcaagt ccaacatcg	30660
ccacaccccg gcccctccg gcgtcgccgg cgtcatcaag atggctctcg ccatgcagca	30720
cgccgaactg cccgcgtccc tgtacggca gaacccctcg tcgcacgtgg actggaccgc	30780
cgccgcgcgc caccgtctca cgcaggac cccgtggccc gactccgtc ggcgcgcgc	30840
cgccgcgcgc tcctccttcg ggcgcgcgg cacaacgcg caccgcattc tggagcagcc	30900
gcccgcgcg gaaactcccg cgcgcgcgc ggacgacggc gcccgctgc cgttcttgc	30960
ctccggccgc tcgcagaacg ccctgcgcgc ccaggccgcg cgcacttcgg cccgcctcac	31020
cgcccacccc gacacccggg cgcgcgcac ggcgtactcc ctggcgacca cccggccgc	31080
ttcgtcgac cggggccgcg tcacccgcac cgaccacgc ggcctccgc cccgcctgc	31140
cgccgtcgcc gagggcacca cccggccgc caccacccgc agggcacccgg	31200
aaagcgccgc gtgtcttcg cccggcaggc ctcccgacgc ctggcgatgg gccgcgaact	31260
gcacgagcgc caccgggtgt tcgcgcggc gttcgactcc gtactggccc gcctcgacga	31320
ccggctcgac accccctgc gggacgtcg ctggggcacc gacgaggagg cgctgcacgc	31380
caccggaaac acccagcccg ccctgttcgc cgctgaagtc ggcgtctacc gcctgatcg	31440
atccctgggc gtgcggcccg acttcgtggc cggccactcc gtcggcgacg tcgcccggc	31500
ccacgtcgcc ggggtctct ccctggacga cgcctgcgc ctggcgccg cccgcgcgc	31560
cctcatcgac cgcctcccg cccggccgc ccatgatcgcc gtcgaggcga cccgaggacga	31620
ggtcaccccg ctccatcgac acggcggtcg cctgcgcgc gtcacacggc cgcaccgcgt	31680
ggtcctctcc ggccggggcg acggcggtac cgcctggc caggcgctgg cccgaacgggg	31740
ccaccgcacc accccgcgtgc gggtcagcca cgcctccac tcgcacactca tggaccgc	31800

gctggcggac ttccgcaccg tcgcccggg ccttggaaatac caccggccgc gcatccccgt	31860
ggtctccaac ctcaccgggg acgtcgccga cgccggccgac ctgtgtcccg ccgactactg	31920
ggtgcgcccc acgtcgccga cccgtacgtt cgccgacggc gtgcgcacca tgccgcaccc	31980
cggcggtcac ctcttcctcg aactcgcccc ggacgcgttg ctgtcgccca tgccgcaccc	32040
gtgcgcaccc gacggcgtcg tcgtcccccc ccttgcgcgc aaccgcgacg aggacgagac	32100
gctggtcggc gccgtcgccg gactgcacgt ccacggcgcg ggtccgcgtt gggacgcgtta	32160
tttcgcggc cgcggcgccc agtggcttga ccttccgacg tacccttcc agcgcggccg	32220
tttctggccg gagtccttc cgggcgcgc atcggccgc cccgcagccg gacagccgc	32280
cgagaccgac gccgccttc gggacgcgtt cgacaggag gacttcaccc cattggaaatc	32340
cgtactcgac gtcgagagcg acgcactgtc caagggtctg ccggccctga tggactggcg	32400
cagccgccag gccgacgagt cccaaactggc aggtggcgc caccgcacg tcttggaaagcg	32460
gctcaccggc gccgccttgg cacaccgcaa ggcgttcacg ggcaccttgc tcgcgggtgg	32520
ccccgagggc ttccggacg acccctgggt gaccaccacc ctggacggcc tcggtaacca	32580
cctcggtcat ctggaggtcg cggaggccg cccggccgcg ctggccgcg cgtatcgccgc	32640
ccgcaccggc gacggcaccc gtttcggcg cgtaatctcc ctgctggccc tgccgagga	32700
gctcaccggc gccgtgcccc aggggaccgc cctgaccacc acccttcctcc aggccttcgg	32760
cgacgcggc gtcgacgcac cgctgtggt cgtcacccgc agcgcgttcc cccgcggccg	32820
caccgaccgg ccgcaccgcg cgcttccaaagg cgccgtctgg ggcctggcc ggttcgccgc	32880
ccttgagtac ccgcagcgct gggggcgccct ggtggacctg ccggaggagc ccgacgagcg	32940
gtccgcggcc ggcctcgccg ccgttcttgc cggctctggac ggcgaggacc agtgcgcgt	33000
gcccggccacc gccgtgctcg cccgcgcctt ggtgcggct cccggccgc accgcgtcccg	33060
gccctggac ccgtccggca cccgttgcgcg cccgcgcctt ggcgttgcgc accggccccc	33120
cgtcgccgcg cgcctggcca cccggacgtt cccggacgtt cccggacgtt gacgcgttgg	33180
ccccgacgtt cccggacgtt cccggacgtt cccggacgtt gacgcgttgg gacaccgacgt	33240
cacggtcggc gcttcgacg cccggacgtt cccggacgtt acggccgtcc tggacgcgt	33300
gcccggcacc cccggacgtt cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33360
actggacccgg ctcacccccc gacgggttcca gggagggttc cccggacgtt gacgcgttgg	33420
cctgctgtt gacggacgtt cccggacgtt cccggacgtt gacgcgttgg tcccttcctt	33480
ccgcctccggc gccgtcgacg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33540
ggacgcgttc gccgaacacgc cccgggtgtt cccggacgtt gacgcgttgg acgcacggcgt	33600
tgcctggggg ggcggccggca cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33660
ccggcgtcgcc gccatggacc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33720
gaaggagccg accgcgttgg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33780
ccgcagccga cccagcgccc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33840
ccaggccggag caggccggcg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33900
ccgcgcgcgc ctggacaccgc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	33960
ctacccggac accgaagcg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34020
gctcgccgcg gtcgagcttc gcaaccaact gacggccggcc accggccgtt acgcacggcgt	34080
gacgctgggtt ttcgaccacc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34140
cttccggac gagccggccg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34200
cgtccggctc gaccaacttc gacggccggcc accggccgtt acgcacggcgt	34260
acgcggccggc cggccggccg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34320
agacctgggtt cggccggccg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34380
acgatgaacg cggccggaa cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34440
gcccggtca aggagaccga cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34500
aaggaaccga tcggccgtgt cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34560
gaagcgctgt gggagatggt cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34620
ccggcgttgg acctggaggc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34680
agccagcgcc gccgttggc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34740
tcacccggcc agggcggtcac cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34800
gaggccgtcg agccggccgg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34860
ttccatcgac ccaacggcca gacggccggcc accggccgtt acgcacggcgt	34920
acccggcgacg tcggcaccgg cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	34980
ctcgccctcg aaggcccccc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	35040
ctgcacccgtt ccgtcgaggc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	35100
gtcaacgtt gggccacacc cccggacgtt cccggacgtt gacgcgttgg acgcacggcgt	35160
ccggacggcc gctgcaaggc gttcgccggac cccggacgtt cccggacgtt gacgcgttggc	35220
gcccggcgcc tgcgttggaa acggcccttc gacggccggcc accggccgtt acgcacggcgt	35280
gcccgttggcc gccgttggcc cgtcaaccag gacggccggcc accggccgtt acgcacggcgt	35340
aacggccctt cccagcagcg cgtcatccgc cccggacgtt cccggacgtt gacgcgttggc	35400

ggcgacatcg acgcggtcga ggccgacggg accggcaccc cgctcggcga ccccacatcgag	35460
gcccggccac ctacggccag gaccggcggcc acccggtgct gctcggctcg	35520
atcaagtcta acatggggca caccggccg gctccggcg tcgcccgggt gatcaagatg	35580
atcatggcg tgcggcacgg cgtccctcccg cggaccctgc acgtcgaccg gccctccacc	35640
cacgtcgact ggaccaccgg cagcgtcgaa ctccctaccgg acgccccaccc gtggcccgag	35700
actggcaggc cgcggccgac cggcatctcc tccttcggcg tcagcggcac caacggccac	35760
gtcatcgctcg aacaggcccc cgacaccccc gcccggggcg ctgacgacac tccggcccg	35820
accccgcgga ccctgcccgtg gctgctctcc gcccgcaccc gcccggccct ggcgcaccag	35880
gccaccgcgc tgctcgacca cctcgaccgc cccgacggcg accggggcc caccggccctg	35940
gacaccgcgt tctccctcgcc caccaccgcg gcccggctgg aacaccggct cggcgtcgtc	36000
acccggcaccc acggcacccgc cggacgggac gcccgtgaccg cctggctggc gcacggcacc	36060
gcccccgacg cccacgaagg acacgcccgc ggacgcaccc gctgcggcgc cctttctcc	36120
ggccaggggcg cccacgcctt gggcatggc cgcaactcc acgcccgtt cccgggttcc	36180
gcacgggccc tcgacaccgc cgtggacctg ctgcacgccc aactggcg aaccctgcegg	36240
gaggtgatct ggggcaccga cgacgcggcg ctcaacgaga cccgcttcac ccagcccgcc	36300
ctgttcgcgg tcgagggtcgc cctctaccgc ctgatcgaaat cctggggcg gccccccggac	36360
ttcgtcgcgg gccactccat cggcgagatc gcccggcgc acgtcgccgg ggttgttctcc	36420
ctggaggacg cctgcacgcg ggtggccgcg cggccggggc tgatcgaggc gtcggccgc	36480
ggcggggcgta tggtcgccgt cgaggccacc gaggacgagg tcagcccgct getcaccgac	36540
ggcgtcgoga tcgcccggat caacggcccc accctcgctcg tcgtctccgg cgacgagacc	36600
gccaccctcg ccgtcgccgc cggactcgcc gaacaggggcc gccgacccac cggctgcgg	36660
gtcagccacg cttccactc gcccgtgatg gaccgcgtgc tcgcccggat tccggccggc	36720
gccgaggggcc tgtctacgg cgaaccgcag atccgggtgg tctccaacct caccggcg	36780
gtcggccacg gcaccctgtc cggcaactgca gactactggg tccggcacgt cccgcggcg	36840
gtccgcttcg ccgacggcat cccgcctc accgacgccc gctcggccgc cttectcgaa	36900
ctcgcccccgg acggcacgcg cccgcctcg gcccggcgt acccccccg cggcgctctcc	36960
gtccccgtcc tgcgcaagga cggggacgag gagccggccg cggtcggccgc actggccgg	37020
ctgcacaccg cccgcgtccc ggtggactgg acggcggttct acgcccggac cggcccccac	37080
cgcaccgacc tgccgaccta cgcctccag tacgagcgct actggcccaa gcccacctac	37140
cggcccgccg acggcacccg cctcgccctg accggccggc accaccggct gtcggccgc	37200
gccatgtccg tcgcccgggtc cgacgagctc ctgctcaccgc gacccctgtc gtcggccacc	37260
cacccctggc tcgcccggat cgtcgccggc ggcatggctc tctcccccgg caccggcttc	37320
ctggaacttgg cgggtccgcgc cggccgaccag gtccggctgcg accgggtcga ggaactcatg	37380
ctcgccgcgc cgctgatctt gcccgcacc ggcacccgtcc agatcgagat cggcgccggc	37440
gcccgccggacg acgacggccgg cccgcacctg cgcttcttca cccggcccccgg ggacgaccgg	37500
gacgcccgcct gggcccagca cggccacccggc cggatcaccgc agggcgagcg cgtcctcgcc	37560
ctcgacacca ccacctggcc gccccggcgc gggaaaccccg tcgacatcgaa cggcctctac	37620
gaccgctacc ggcaccaacgg actcgactac gggccgtct tccggccct ggcggccgt	37680
tggcgccgcg acaccggat ctacggccag gtccggccgtc cggaaaggc acccgcacgc	37740
gacgccttcg gcctgcaccc gggccctttc gacccgtccg tgcacacgc cctcttcgc	37800
tccggccacg gcgacgaccgc cggccctctg cggccgtccgt ggaacggcg gtcggccac	37860
gcccgccggcg cggacgcgcgt gcgccgtccgg atcaccagct gggcccccgg cggccgtggag	37920
atcaccggcc tgcacccgcg gggccggcccc gtcgtctccg tcgaatcgat gacgctgcgc	37980
gccggccggcc cggacggccgg caccggccgc caccgtggccg acggggctc cctctccgc	38040
atggacttgg cggcccccgc cgtccacgc cccggccaccc cggccacctg gggccgtctc	38100
ggtacccggacc cgatcgccct gaccggccg ctacccggccg cggggcccccga caccgtcaccg	38160
ggactccgcg acgggtcgaa cggccctcgcc gaactcaccgc cggccgacga cggccgggtg	38220
cccgacgtgg tgcgggtacc gtcggccgcg cccacccggc acggggccgc cgggtcccccac	38280
gacctgaccc gcaccgtctt gggccctgtc caggaatggc tggccggagga gcgcttcgc	38340
cgctccggcc tgcgtctcgat caccggccgc ggggtccgc acggcgacgc cggcccgctc	38400
gacctggccg cccggccgtt ctggggctcg gtccgtctcg cccagtcga gaacccggc	38460
cgactgtcg tcgtcgaccc cgacgacacc gcccggatcccg cccgttgcgt	38520
ccggccctcc tggacggccg cggccaccc gccgtggtcc gcgaggccac cgtccgggtc	38580
ggccggctcg cccgcctggc ctccggccgc ggcctcgcc cggccggccgg cacccctgg	38640
cgcctggca gccccggccaa gggcggccctc gacggccctcg ccctgtcgcc caccggccag	38700
gcccggacac ccctcaccgg ccaacgggtc cggcgccgc tccggccgc gggccgt	38760
ttccgtgacg tgctcaacgc gttggggatg tatccgggg atgcggggct gttcggttcc	38820
gaggcgcccg gtgtggctgt cgaggtcgaa cggaggtca cggccctggc accccggccac	38880
cgggtcatgg gcatgtctt cggccggcttc ggacccgtcg gcatcgccga cggccggctg	38940
ctcaccccg tcccgccgaa ctggcgtccgg gagacgggtg cgtcggtgc gttgggttcc	39000

ctcaccgcgt	actacgccc	taaaggagtt	ggtgttctgc	gggcggggga	gaagggtctg	39060
gtgcatcccg	gtgcgggtgg	tgtcggtatg	gcggcgatcc	agatcccccg	gcatgtcggt	39120
gccgagggtgt	tcgcacggc	cagtggggc	aagtgggacg	tgctcgctc	cctggggcgtg	39180
gccgacgacc	acatcgctc	ctcccgaccc	ctcgacttcg	aggcggccctt	cggcgaagtc	39240
gccggcgacc	gcggcctgga	cgtcgtaactg	aacgcgctgt	ccggcgagtt	cgtcgacgccc	39300
tcgatgcggc	tgctcgccga	cggcgccgg	ttccctggaga	tggcaagac	cgacatccgc	39360
gccgcccgt	ccgttcccga	cggcctctcc	taccactct	tcgacctcg	catggtcgt	39420
ccggaacaca	tccagcggt	gctgctcgac	ctcgctcgagc	tgttcgaccg	cggcgcgctg	39480
gccgcgttgc	cggtccgcag	ctgggacgt	cgccgcgccc	gcgaggcg	ccgttcatg	39540
agcctggccc	agcacatcg	caagatcg	ctcaccgtgc	cgcaaccct	cgaccccgac	39600
ggcaccgtgc	tcctcaccgg	ccgcacccggc	ggcctggccg	gcctgctcgc	ccgcacccctg	39660
gtcaccgagc	acggcgccc	ccacactgt	ctggccggcc	ggcgcggccc	cgacgcgccc	39720
ggcgcgcgcg	cactccacgc	cgaactgacc	gcctggggcg	ccgaggtcac	cgtcgccgccc	39780
tgcgacgtcg	ccgaccgcac	cgcgctcgcc	gcgctgtcg	ccaccgtgcc	cgccgaacac	39840
ccccctcaccg	cggtcgta	caccgcggc	gtcctggacg	acggcaccc	caccgcctg	39900
aaccccgacc	gcctcgccac	cgtcctacgg	ccaaagggtgg	acgcccctg	gcacctgcac	39960
gacctcaccc	gccacacca	cctggcccg	ttcgtgtct	actcctccac	ccgcggcg	40020
atgggcggac	cgggcggcag	caactacgc	gcccggcaaca	ctttcctcga	cgcgctcgcc	40080
gcccaccgcac	acgcaccc	cctgccc	acctcgctg	cctggggcgc	ctgggagcag	40140
ggcgcgcggca	tgaccggcgc	actgaccgc	cacgacactgc	gccgggtcag	cgacgcgcggc	40200
ggccaaccgc	tgctcaccgc	cgaacgcggc	ctgcacctct	acgacgcgc	caccgcggc	40260
gacgaacccc	tgatcgccc	gtcggcctc	accgggggtg	cgctgcccgc	cggggtcgcc	40320
gtcccccggc	tgctcgccgg	cctggtccgc	accggggggc	gccggggcag	ggccggcacc	40380
gcccggct	cccgccgg	cctcgccgaa	cgcctcgccg	ccctgcccga	ggaggagcgc	40440
accccttcc	tcgtcgagct	ggtgcgcacc	gaggccgcca	ccgtcctcg	ccacggctcc	40500
accgacc	tggacgcgg	ccgcgagtt	cgcacactcg	gttcgactc	gtcgaccgc	40560
atcgaactgc	gcaaccgact	cggcaaggcc	acggcctca	ccctgcccgc	caccctcattc	40620
tgcactacc	cgacccccc	cgcctcgcc	gtccacactc	acgacgaact	cctcgccg	40680
gacgccccgg	tgaccgtac	cgccgcggc	caggccg	acccggagca	cgacccgg	40740
gtcatcg	gcatgagct	ccgcccc	ggcggcg	gtcccccga	ggagctgtgg	40800
gacctgg	catccggc	cgacgcgatc	acccgg	ccgcgcacc	cgatgggac	40860
cgccacccgc	agctcgccg	cgccccccgg	gcccgcacc	gccagggcg	atccctccgc	40920
gacatcgcc	acttgcacgc	cgcctt	ggcatctcg	cgcgcg	cctggccatg	40980
gacccgcac	agcgcac	cctcga	gcctgggagg	ccgcgcac	cgccggc	41040
gacccgcaga	ccctgcgcgg	cagcgacacc	ggcgttca	tggcgtc	cggccaggac	41100
tacgcgc	tcgtgatgc	ctccgcg	gacatcgcc	gccacg	caccggc	41160
gccgtcagcg	tcgtctccgg	ccgcctcg	tacgcg	gcctggagg	ccggcc	41220
tccgtggaca	ccgcctgctc	ctccctc	gtgtcg	acctggccgc	ccaggcg	41280
cgcgcgggg	agtgcaccat	ggccctgg	ggcggcg	ccgtcatg	caccgcgc	41340
aacttcacc	gcttctcccg	gatggcgg	ctcgcc	acggccg	caaggcg	41400
tccgactcc	ccgacggc	cggtctgg	gagggcg	ccgtctt	cctggaa	41460
ctctccgac	cccggcgc	ccgc	acttgc	tggtgc	ctcgccg	41520
aaccaggac	gtgcgtccaa	cgg	tcgtac	gccc	gcagcg	41580
atccggcagg	ccctggccaa	cgccgg	acc	gtccgc	ccgtgagg	41640
cacggcacc	gcacccgc	cg	ccgt	acgtgg	cg	41700
ggcaccgacc	gcaacccg	acaccc	ctg	cggt	cgatcg	41760
cacaccc	ccggccgg	cgccgg	ctgg	caacat	cgcc	41820
ggcattcc	cgcagac	gcac	ctc	cgac	cgatcg	41880
ggcacgg	ggctg	cgag	cg	cgat	ccgtcg	41940
gccgggg	cctcg	catc	cg	ccgc	ccgtcg	42000
cccgg	gagc	acca	ac	acgt	catct	42060
cccg	ccac	ccgc	cc	gga	acagcc	42120
cccg	ccac	ggcc	cc	gtc	ccgt	42180
cccg	ccac	ccgc	cc	gtc	ccgt	42240
gagg	tcg	cac	cc	ccg	ccgt	42300
gctc	cggt	cgat	cc	ccg	ccgt	42360
ttcg	acgg	gtat	cc	ccg	ccgt	42420
tcg	cgat	gtat	cc	ccg	ccgt	42480
cagccgg	gtat	gggg	cc	ccg	ccgt	42540
ggcc	cggt	gggg	cc	ccg	ccgt	42600

gtgttctcggt	tggggatgc	gtgtcgtttgc	gtggtggcgc	gggcttcgtt	gatggatgcg	42660
ttggccgggtgg	gtggcgat	gttgcgttg	gaggcggccg	aggcggaggt	ggtgcgcgtg	42720
ttggtcgatg	gggtggcgat	cgcgcgttc	aacggggccgg	tctcggttgt	gttctccgg	42780
gtggaggccgg	ccgttggca	ggtcgttgat	cagttggtgt	agcggggccg	gcgggtccgt	42840
cggttggccgg	tcagtcatgc	tttccactcg	ccgttgcgtgg	atccgatgtt	ggatgccttc	42900
cgggccgtcg	ccgagggcct	ggagtaccac	cagccgcgc	tccccgttgt	gtccaaacgtg	42960
acggggcgagg	tggccgcggc	ggaggagctg	tgccgcggcc	actactgggt	gcggcacgtc	43020
cgggccgacgg	tgcgttgc	cgacggcg	cgcacccctgg	ccgagcgcgg	cgccaccg	43080
tccctggaga	tcggccccga	cgcgtaactg	tccgcgtcg	cccgcggcgt	cctgcccgg	43140
gaggcgctcg	tgacgcccac	cctccgaag	gaccgcgacg	aggagagcgc	cctgctcgcc	43200
gactggccc	ggctgcacgt	cgcggcg	accgtcgact	ggagcgcgc	cctgaccggc	43260
accggcgccgc	cgccgaccga	cctgcccacc	tacgccttc	aacgcgagcg	gtactggccg	43320
gagttggccgg	ccgaacccgc	ggggcgccgc	gcggatgcgc	cgacgcgg	gttctgggc	43380
gcggtgagc	gcgcggacgc	caccgcgtc	gccgcccacc	tggacatcga	cgcgacc	43440
ctcggcgccg	tgcgtcccg	actgtccgc	tggccaccc	ggcgcgcac	cacatcg	43500
accaacgccc	tgcgcacccg	ggagagttg	gaaccgcgt	cgctcgcc	cacgcgcac	43560
accggcgccgc	tccctgtgt	ggtgcggcc	gcccgcacca	ccgacccctg	gttcgcgcac	43620
gtcgtcgccg	ccctcgcc	ggacgcccgc	cgggtggacg	tcccgccg	cgacccgcac	43680
cgggccgcgc	tgcgcgcct	gctcaccgaa	gcgcgcacg	acaccgc	gaccgcgcgt	43740
gtctccctgc	tgcgcgtcg	cgagaccgc	ggcgcacgacg	cggtacccgc	cgccaccacc	43800
gccaccgcgc	cgctcg	ggccctcgcc	gacaccggc	ccccggcccc	gctgtgggc	43860
ctgaccgcgg	gcgcggcgc	cgcgctcccc	gacgagcgc	cgaccgc	cgcccaggcc	43920
gccgtctggg	gcctcgcc	gatcgcc	ctcgactcc	cgcgccact	ggcgactg	43980
gtcgacctgc	ccgcgcac	cgacgacgc	accgcacgc	gactgc	cgactggcc	44040
gacccgcgc	acgaggacca	gctcg	cgccacccg	gcgcctac	ccgcggatc	44100
acccggcg	ccgcgc	cgacgc	ggcaccgg	ggcagcc	cgacccgc	44160
ctgatcaccg	cgccgacccg	cgcgctcg	cgccacaccg	ccgcgtgg	ccgcgcac	44220
ggcgccgagc	acctgtgt	gctcagccgc	agggcccc	acgcgc	cgccgcgaa	44280
ctcaccaccc	aactcaccgc	cctcgcc	cgcg	tcgtggct	cgacccgc	44340
gaccgggagc	agctgaccag	gtcctcg	gaggta	ggactg	gctgaccgg	44400
gtggtgacaca	ccgcggagt	gctcg	acgac	ccggcct	cccgacccgg	44460
tccgcccacgg	tctccgc	caagg	tccgcgt	tcctcg	gtgacccgg	44520
gacaccgacc	tggcg	tgcgtt	tgcgt	cgggcg	cgcaacccc	44580
ggccaggccg	gta	cgccaa	gtcctcg	ccctcg	ccgcgcgg	44640
ggccaggccg	tggccggac	ctcgatcg	tgggtgc	ggccgg	cgcatggc	44700
ggccgtcaca	cccgcgc	cgccgaa	gtcg	tcgac	cctcgccgt	44760
ccggccctgg	cccgcgc	gacgg	cccc	tcgtc	cgaccc	44820
cagccgcgc	tgcgt	gatc	tcgt	cccc	ccgcgc	44880
ccgcgcgc	gcaccgc	ccgcgc	caga	ccgc	accgcgc	44940
gcggccgacc	tgcgc	actcg	accgc	ccgacc	ccgcgtc	45000
ctccgcctgg	tgcgg	gaccac	ggccgc	acacc	cgacccatc	45060
cgggccgaca	agccctccg	cgac	tcgc	tcacc	ggactgagc	45120
agcgctctcg	ccgcgc	cgcc	ctcc	gcctcg	cgaccaccc	45180
tccccgcgg	cgctcg	ccac	tcgc	ccgg	ccggatcc	45240
ccccccgcgg	ccccccgc	accgg	cccc	ccgg	cgatccat	45300
ggcatggcct	gccgttccc	ccgc	accac	ccgg	cgatcg	45360
gccgaggggcc	gggacggcat	cgac	cccac	ccgg	ctcgacgt	45420
ctcgccgcgc	gacggccagg	gcc	ccac	ccgg	cttac	45480
ggggccgcct	tgcaccc	cc	ccac	ccgg	cgatggcc	45540
ccgcacgc	ggctgtgt	tt	ggagac	ccgg	ccatggac	45600
ccgacccgc	tgcgc	ccgc	gttt	ccac	ccgcac	45660
gccggccctcg	tcctcg	ccagg	aggac	ccgg	actggcc	45720
gccagcgtga	tctcg	cctcg	tcgt	ccgg	cgactggcc	45780
gtcgacaccg	cctcg	tcgt	ccct	ccgg	cccg	45840
gcggggggagt	gtccctgg	cctgg	ccac	ccgg	gtcg	45900
ttcgcccgt	tcacccgg	gggcgg	cgt	ccgg	acgt	45960
gactccgcgc	acggcaccgg	ctgg	gggt	ccgg	ttctcc	46020
tccgacgcgc	tccgcaacgg	ccat	gagatc	tcg	cgac	46080
caggacgggt	ctgtcaacgg	tctg	acggc	ccgg	ccat	46140
cggcaggcc	tggccaacgc	gggc	cgt	ccgg	cgatc	46200

ggcaccggca	ccgtcctcg	cgaccccatt	gaggcccagg	cgctgctcgc	cacctacggc	46260
caggaccggc	ccgcccacgg	gccgttgg	ctcgctcg	tgaagtccaa	catcgccac	46320
acccaggcgg	ccgcggcgc	ccccggctg	atgaagatgg	tgctggccct	ccaacacggc	46380
acgctgccc	gcacccctga	cgtcaccgg	ccctcgaccc	gggtcgactg	gtcgccggc	46440
gcgggtcgcc	tgctcaccga	gcggaccgtc	tggccgsgga	cggatcgccc	gcgtcgggccc	46500
ggggtctct	cgttcggcat	cagcggcacc	aacgcccacg	tcatcctgga	acagccgccc	46560
gccgagccca	cccccacggc	ccctgcccac	cgccccaccc	ggacgcccgc	cgtcctccca	46620
tgggtcgct	cggcccgatc	ggccaccggc	ctcgacgccc	agctcgccgc	actgcgggccc	46680
ttcgcccgg	agcggcccgga	cctgcccggc	gccgacgtcg	cccactcgct	cgtcaccagc	46740
cgcgcccacct	tcgaacacccg	ggcggtcctg	ctggccgccc	ccgacggcat	caccgcccggc	46800
gcccgcggc	aggcccggca	acgcagcacc	gcgttccct	tctcgggca	gggtgctcag	46860
cggtcgggga	tggggcggt	actgcatgt	gctttccccc	tgttcggcgc	ggcggttcgac	46920
gaggtgggt	cggtgttgg	tgccggagtt	gcgacgggtt	ccgggtgggg	tgtgtcgctg	46980
cgggaggtga	tgtggggcg	ggggtccgg	ttgttggatc	ggacgcgttt	cacgcagccg	47040
gcgttggtc	cggtgaggt	ggcggttgc	cgtttggtgg	cctcggtggg	ggtggggccct	47100
gagttcggt	cggggcattc	ggtgggttag	attgcggcgg	cgtatgtggc	cgggggtgttc	47160
tcgttgggt	atgcgtgtcg	tttgggtgt	gcgcgggctt	cgttatgttgc	tgcgttgcgc	47220
gtgggtggc	tgatgggtgc	ggtgaggcgc	gccgaggcgg	aggtggtgc	gtgttggtc	47280
gatgggggtgg	cgatcgccgc	ggtaacccgg	ccgggttccgg	tgggtgttc	cgtgtgtggag	47340
gcggccgttg	ggcagggtcg	ggatcagg	gtggagcggg	cccgccgggt	ccgtcgggttgc	47400
gcggtcagtc	atgccttcca	ctcgccgttgc	atggatccga	tgttggatgc	cttcggggcc	47460
gtcgccgagg	gcctggagta	ccaccaggcc	cgcatcccc	tggtgccaa	cgtgacgggc	47520
gaggtggccg	cggccggagga	gctgtcgcc	gccgactact	gggtgcggca	cgtccggggcc	47580
accgtgcgt	tcgcccacgg	cgtccgcacc	ctggccgagc	gcggcccccac	cgcccttcctg	47640
gagatcgccc	ccgacggcgt	actgtccgc	ctggccgccc	cctgcctgtt	cgacacggac	47700
gccgaagtgg	tgcggcgct	gcccgggggg	cgccccggagg	agcacaccgc	cctcaccgc	47760
gccgccccaa	tccacgtggc	ccgcgtggac	atcgactgg	ccgcggctt	ggccggccacc	47820
ggcggggcgcc	ggatcgccct	gcccacccat	gccttccagc	gcaagcggt	ctggccctcg	47880
ctegccgac	aggccccccgg	cgacggccgg	gggctcggcc	tggaaaggccg	ggggcaccccg	47940
ctgctcgggg	ccgcgaccac	cgtcggcgg	tcccgggaga	tcctgctcac	cgcgcgcctg	48000
tccaccaccc	cccagccgt	gctcgcggtc	tacgaggcgg	acggccgcac	cgtcctgcgc	48060
gcccggtcc	tgcggcaact	cgccgtccgc	gccccggcacc	aggccgactg	cccgaccgtg	48120
gcggaaactga	ccgtcgccgc	accgctcg	ctcaccggcgc	cggcggccca	gcgcctccag	48180
gtccgggtgg	ccgccccccgg	cgacaccggc	cgccgcgcgc	tgtccgtca	cgcccgacc	48240
gacgactccc	ccgacagcccc	ctggacgct	cacggccacc	cggtccctac	ccacgacacc	48300
ccgcagcccc	cgggccggga	caccggctgg	ccggccggagc	gcgcgtgcc	gctcgacgc	48360
ctgcccaccc	ccacggcccc	ggcccgatc	gcggcggcct	ggcagtgggg	cgacgaactc	48420
tgcgcccaga	tcaactcc	cgaacccggc	ccggccggagc	gggcattcgc	cctgcaccccg	48480
gcgcgtctgg	acaccggcgt	ccgcgcggc	ggcctgttgc	acggcgacgc	caccctggac	48540
gcctcggt	ggcgccccct	cgccctgcac	gccgcgtccg	ccaccggccct	gccccgtccgc	48600
ctcacccccc	acggcacgg	cacccggct	ctggaggcca	ccgacccgc	gggcgtcccg	48660
gtcgctccg	tcacccggct	cacccggc	acgcccacc	tcgacccgtc	ggggggccggg	48720
gcggccgatg	acggcgccac	cctgctcgac	ctggagttgg	tgcggcgcc	gcaggccgc	48780
cccacccggc	gcgaccaccc	cccgta	gtgtcgccgc	atcaactcg	ggagctggac	48840
gggcagttga	ggatcgccgg	cgacggggcc	gggcgcgtcg	catcgctggc	cgcgtctg	48900
gacggccgg	cgccgtcgcc	ccggctcg	ctcgccgg	tgctggcg	gccgaccggg	48960
gaaggcgacc	tgcggccgc	ggtgcgccc	accaccacgg	cggtgcgttgc	gtgtcgctg	49020
cgctggacc	ccgacggccc	caccggc	agccaccc	tgtatcg	ccgcggccgc	49080
gtcgccgg	ggggcgagga	cgtc	ctggccggc	ccccggct	gggcctggtc	49140
cgctcgccac	agtccgaaca	ccccggc	ttccctgtc	tcgaccc	ccccggccat	49200
cccggggag	cctcccgcc	cgccgc	gccaccctgg	cgccctgt	cgacgcccgg	49260
gagacccagg	ccgcgggtcg	cgccgacac	ctcaccgtcg	cccggtcgac	ccggggccgc	49320
gacggacc	aggccaccgc	cgacaccc	gtgcgggact	gggaccgcga	cgccaccgtc	49380
ctgatcaccc	gccccacc	cggcctggc	ggcctcttgc	ccgcaccc	ggtcaccgg	49440
cacggcatca	agcaccc	gtcgccgg	cgccgcgg	cgaccccc	cgccgcgcgg	49500
gccctcgcc	acgaactggc	cggcc	ccgcggat	ccgtcgccgc	ctgcgacgt	49560
gccgaccgt	ccgactgg	cgcact	gcgcac	cgccggagca	cccgctgacc	49620
gccgtcg	acaccgg	cgtc	gacgccc	tcggcacc	gacgcccgg	49680
cggctggaca	ccgtcctcg	cgccaa	ggccggc	ggcacct	cgacgcccacc	49740
cgcgacc	cgtcg	tact	ccctcg	tcgcccgt	caccggccgg	49800

cccgcccaagg gcaactacgc cgccggcaac acgttctcg acgcgctcgc cgcgccaccgc	49860
gccgcccagg gcctgcccgg actgtcgctg gcctggggac cgtggggca ggacgcccggc	49920
atgaccggca ccctcgccgc cgccgactcg gcccgcctgg agcgctccgg catgcccggc	49980
ctcaccccg aacagggcct ggccctgttc gacgcccggc gogcccgccg cgacgggttc	50040
gccccggcgg tgccgctcgc ccgtggccgc gcccacccgg gogccgacga gttccccggc	50100
gtgctgcgtg ccctggtgcg cggccggccgc cgacacggcgg cccggccgg gCACGCCGGT	50160
gtactggccc gccggctggc cggccctggac gcccagcagc ggcattcaggc gctgctcgac	50220
ctggtccgca ccgagacggc cggcgtgtc ggccactccg gggccgacgc cgtcccggcc	50280
gagccggact tcaaccggct gggcttcgac tcgctgtatgg cggtcgaact gcccacggcgg	50340
ctggccaccc ccaccggagc cccggctggc gccaacgctcg tcttcgacca cccgacggcc	50400
gacgcggctc cccggcacct cgcgtcgacg ctgcccggtg ggaccggcggc cggccggac	50460
cgttccccgc tggccgaact cgaccggatc gcccggaggt tgtcgcggaa gggccggac	50520
gacgccaccc gacagggcgt cgtcggccgg ctgcggcacc tgctggcga gtgggacggc	50580
acccgacagg acggcggtgg gacgaccgtc gacgaccgca tcgaagggc gaggccgaa	50640
gaggtcctcg ctttcatcg ccacgagctc ggccggcagg cggactctg acccgccccca	50700
ctcccgctcg tcgcgcgcac cacatctgag gaagggttca cggaccatgc cgacgaaaa	50760
gaagctcgta gactatctga agtgggtcac gaaggacctc caccagaccc gccagcgcct	50820
tcaaggaggtg gaggcggggc gccacgaaacc cgtggcgtac gtcggcatgg cctgcccgtt	50880
ccccggcggt gtgcgtccccc cggaggacct gtgggagctg ctgtccggg gccgggacgg	50940
catcgccggc ttccccggcg acccgccgtg ggacctggcg gcgctggccg gcaacggggcc	51000
cggtcgcaacg gccaacccagg aaggcggtt cctggccgac gcccggcct tcgacccggg	51060
cttcttcgac atctccccgc gcgaggcgct cgccatggac cccgacgacg ggctgctgtct	51120
ggagaccggc tggaggccg tcgaacgctc cggcatcgac cggccggg gtcgcggca	51180
ccgcacccggc gtttcgtcg gcaccaacgg ccaggactac ggcacactgg tcctcgccgc	51240
gcaggacgac atggcggtc acgcgggcaa cggcctggcc gccagcgtgc tcctcgccgc	51300
actggccttc ggcgtcgcc tggaggccc ggccgtcacc ctcgacaccg cctgctccctc	51360
gtcaactggtg accctgcacc tggccgcaca ggccgtgc gccggcgaat gccgcctcg	51420
cctggccggc ggcgtacgg tcatgacgac ctcgtcgacg ttcgcccgt tcagcctcca	51480
ggggccgtc ggcgggacg ggcgtgcaaa ggcttcgccc gaggcgccg acggcaccgg	51540
ctggccgag ggcatcgcc tgcttcgtcg cagcggctc tccgacgcg acgcacacgg	51600
ccacccgggt ctcgcgtc tgccggctc cggcgtcaac caggacggcg cgtccaaacgg	51660
cctcagcgcg cccaaacggtc cgtcccagca gcccgtcatc cgccaggcgc tggccggcgc	51720
cggaactcgtc cccggcgacg tggacggcgt cgaggcgcac ggcacccggca cccggctcg	51780
cgaccccatc gaggcggtg cgctgctcg cacc tacggc caggacggc cggccgaccg	51840
gccgttgtgg ctggcgtcg tgaagtccaa cctcgccac acccaggccg cccggggcgt	51900
cgccggcgctc atcaagatgg tgctggccct gcccgtatggc gtcctccgc agaccctgc	51960
cgtggacgcg ccctctcgac acgtcgactg ggagacggc gccgtgcggc tgctcaccgc	52020
acccgtcgcc tggccgagg gcaacgaccg ggtgcgcgg gccggcgtct cgtcggtcg	52080
catcagcgcc accaaacggcc acgtcatcct cgaacaagcc cccgatcagc cggaaacccgac	52140
cgccggaaagag acggctgccc cggcgcccg cggcaccggc gaggagcgaa cccggcgtcc	52200
cgtgcccccg cgccgcgtc cgtggccggc cggggcaccgc accggccggc ccctcgacgc	52260
ccaaactggtc cgggtccgcg cgctgaccac cggcccccggc cgcacccggc cggacgtcg	52320
tcacgcgtcg gccaccggcc gtacccctt cgacccggc ggcgtgtctt tccacgagg	52380
cgccggccgtc accgagggtgg cgcggccgc cgtccccacc ggtgaccggg gccggctgg	52440
cgtgctgttc tccggacagg gtcggcaacc gccggcatg gggcgcgaac tccacgccc	52500
ctaccgggtc ttccggccgc cttcgacga gaccgtcgcc ctgcgtcgac cccggctcg	52560
cacgtcgctc cgccgacatcg tctggacca ggaccggacc cggctcgacg acaccggca	52620
cacccagggcc ggcgtgttcg cctcgaggt cgccgtgtac cgcctgtctt cctctgggg	52680
catccggggcc gaccacgtca cgggacactc catcgccgag atcaccggc cgcacgtcg	52740
cgggtgtgtc accctcgccg acgcctcgac cctgggtggcc gcccggccca cccggatgag	52800
cgaactggcc cccggcgccg ccattggc gctggaggcc accgaggacg aggtgcgtcc	52860
gctgctcacc gacgaccccg cgatcgccgc ggtcaacggc cccgggtccg tggcgctcg	52920
cgccggccgag gacgcccggc tcggcgccg cggcacttc gacgacccgg gccggccggac	52980
cacccgggtc cggcgtaccc acgccttcca ctcggccgtc atggacccga tgctcgacgc	53040
cttccggacg gcccgtcccg cgctgacccctt cggcggccg gagatccgg tctgtctccaa	53100
cctcaccggc ctccccggccca cggccgagga actcgccacc cggcactact ggggtgtgc	53160
cgtccggcag gcccgtccgt tcggcgacgg cgtgcgcgc ctcgcccacc gccggcgtgc	53220
gacccgttc tcaactcgcc cggacggcgt gtcgtccggc ctggccggg agaacctccc	53280
cgagccgggc ctggcgccg tgccgtgtc ggcgaaggag cggccggagg agaccaccgt	53340
gctggccgccc ctggaaaccc tggggcgca cggcgccgac gtggactggg acgcgggtt	53400

cgccggcacc	cgcacccccgc	aggcccaccc	cgtcgagctg	ccgacgtacg	ccttccaacg	53460
cgcccgctac	tggcccaccc	tcggcgcccc	ccacggcgac	ccggccgacc	tcgggcagac	53520
cgccggcc	caccggctgc	tgggcgcgc	cgtcaccctc	gccgacgccc	acgagaccgt	53580
gctcaccggc	cgcctcgcc	tgccttccca	cccttggctc	ggcgaccacc	gcagcgacgg	53640
ccggatacc	gtccccggcg	tcgccttcgc	cgaactcgcc	gtcccgcccg	gcgacctgag	53700
cggcaccccg	cacottggcg	ggctcgacct	gcccggcgccg	ctcaccctcg	gcgacggcga	53760
caccgtcacc	ctccagggtcc	gggtcgccgc	ccccgacccc	cggggcacc	ggccgctgac	53820
cgtccacgcc	cgcctcgcc	ccaccggagga	cgccccctgg	accacctcg	cgaccggct	53880
gctcgcccc	gacgcccccg	aagcgcccg	ggatccgatc	ggcccgcccg	acgcccggtg	53940
gccgcccgg	gacgcccggc	cggtgcccgt	cgccgaccc	gacgccccgg	ccaccggccgc	54000
aggccgcccc	tacggccccc	atttccaggg	cctgaccggg	ctctggccgc	gcgacggcga	54060
ggtcttcgcc	gaggtggccc	tgcccacccg	caccggccgc	gaccgcgcct	tcggcatcca	54120
ccccgcgtc	ctggccaccg	cgctccgcgc	caccggccgc	ctggacgacg	accacaccgc	54180
cggccacacc	cccgaaaccg	ccggcatcac	cggaactcgcc	ctgcacgcca	ccggggccac	54240
cgcactgcgg	gtccggctca	cccgacccgg	gcccgcaccc	gtggccctcg	ccggcgccga	54300
cggccacgggc	ggcgccgtcc	tgaccgcga	caccgtcacc	ctcggtcccc	cgaggaccg	54360
cccggtctcc	gcaccggccg	gccacaccgg	gcaaggccggc	ctgttccacc	tcgactgggt	54420
gcccgtcgac	cccgccagecc	gagccacccgg	caccggctgg	gccgtcgctg	gacgacgacga	54480
actcgaccc	ggctacgccc	tgcaccgcgc	cgacgagacg	gtcagtgcct	acgcccgcgc	54540
gctggcgga	gccatcggcg	acagccgtct	ggcccccgcac	gtcttcctcg	tccccgtcgt	54600
cggccggcccg	gacgcccggc	ccgacgcgg	gcacgcgc	accgcggcg	ccctggggct	54660
gctccaggag	tggctgaacg	agccgcgtt	ggccggcgcc	cgccctgtct	tcgtcaccctg	54720
cggccgcgtc	gcggtggcc	gcgagacccgt	caccggaccc	gccggccccc	ccgtctgggg	54780
cctgctgcgc	tccgcccaga	ccgagaaccc	ggcagttctg	ctgctggctg	acctcgacga	54840
cgcgttccgg	tccgcccgg	tgctgcgc	cgtcctcacc	ctcgacgaac	agcagctcg	54900
cgtccgcgac	cacgcgggtcc	cgccgcgc	cctggccccc	ctgcccggc	cgccgcgcgg	54960
caccgcgc	gcccgcgc	gggacccgga	ccgcacccgc	ctgatcacc	gccccaccgc	55020
cggcctggc	gccgcgc	ccgcaccc	ggtcacccgc	cgccgcgc	gcacactgct	55080
gctcgccggc	cgccgcggcc	ccgaggccgc	gggcgcgc	gaactgg	cgagctgac	55140
cgcacagg	gcccgcgtc	gggtggccgc	ctgcgcacgc	ggcgcaccc	cccccctcga	55200
cgcgtcc	gccacgg	ccgcggc	cccgtgacc	gccgtcg	acaccgcgg	55260
cgtcctggac	gacgc	tcggctcg	caccccgac	caactgg	ccgtcgta	55320
gccccagg	gacgc	ggcatctg	cgacgc	cgccgc	ccctggccgg	55380
cttcgtcc	tactcctcg	tctccgg	cctggc	cccgcc	gcaactacgc	55440
cggcccaac	gcctac	acgc	ccgc	gccgac	gcctccgg	55500
gctcc	gcctgg	cctgg	ggcag	atgacc	cg	55560
cggc	gac	ggcgat	cg	ctgacc	aggacggc	55620
ggcc	ctgt	tcg	cc	ctgg	ccca	55680
cgtc	ccgg	tcg	cc	tcg	cc	55740
ggcc	ccgc	acc	cc	cc	cc	55800
ccac	ctcg	gag	cc	cc	cc	55860
cggc	ctgc	gag	cc	cc	cc	55920
gggc	ttcg	ac	cc	cc	cc	55980
gccc	tcgt	cc	cc	cc	cc	56040
gcac	agg	aa	cc	cc	cc	56100
ccgt	ccc	tcg	cc	cc	cc	56160
cggc	aa	gtc	cc	cc	cc	56220
cgac	cccc	gac	cc	cc	cc	56280
ccgg	cccg	gg	cc	cc	cc	56340
cg	at	cc	cc	cc	cc	56400
cgg	cc	cc	cc	cc	cc	56460
cgtc	ctgt	cc	cc	cc	cc	56520
gctgg	cctac	tc	cc	cc	cc	56580
ggtc	ctcg	cc	cc	cc	cc	56640
cacc	ac	cc	cc	cc	cc	56700
gatgtcc	cc	cc	cc	cc	cc	56760
cgc	cccc	cc	cc	cc	cc	56820
gtcc	gtcc	cc	cc	cc	cc	56880
gcact	cgg	cc	cc	cc	cc	56940
ggcct	gtat	cc	cc	cc	cc	57000

cgccacccag	gtgcgccccg	gcccgcgg	ccccgcgcag	gcagccggag	cgcccatccc	57060
cccgatggc	accacccctcc	agaggagtcc	tccatgagc	acaccgacccg	caccgcctc	57120
cctgaaagcg	gagggtggcgc	ccgtctgtcg	cctgagcccg	ctgtcgccgc	aactccagtc	57180
ccgcgc(ccc	gtctgcagg	tccgcaccc	cgcggcgcac	gagggtctggc	tgttgaccccg	57240
gcacaccgaa	ctcaaggcgc	tgctgcacga	cgaccggctg	gcccgc(ccc	acgcccaccc	57300
ggccaacgcc	ccgcgttatg	tgcacaaccc	gttctggac	ctgtctgtcg	tcgacgactt	57360
cgacctggcc	cgcacgctgc	acgcccagat	gcgtctttg	ttcaccccg	agttctcgcc	57420
ccgcgcgtc	atggacctga	cgccgagggt	ggaagccctc	gccgaggggg	tactggccca	57480
cttcgtcgcc	cagggaccgc	ccgcccacct	gcacaacgcac	tttcgcgtgc	cgttctccct	57540
gtcggtgtcg	tgcgcgtcta	tcggcgtccc	ggccgaggaa	cagggaaagc	tgatcgccgc	57600
cctcacaaa	ctggcgaac	tcgacgaccc	ggcacgcgtc	caggaaggcc	aggacgagct	57660
gttcggctcg	ctgtccggcc	tggcacgccc	caagcgcata	acacccgagg	acgacgtcat	57720
ctccccggc	tgcctgaagg	tgcctccga	cgagcgcata	ggcccgatcg	cctccggctct	57780
gctttcgcc	ggcctggaca	gcgtcgccag	ccacatcgac	ctgggacacgg	tgttgttcat	57840
ccagcacccg	gaccagctcg	ccgcggccct	ggccgacgag	aagctgatgc	gcccgc(ccgt	57900
cgaggagatc	ctgcggtccg	ccaaggccgg	cgttctgg	ctcccgccgt	acgcgaccgc	57960
cgatgtaccc	atcggcgacg	tgaccatcag	ggccggcgcac	ctgggtctgc	tggacttcac	58020
cctggtaaac	ttcggaccga	cggtcttga	cgagccggag	ctttcgaca	tccggcgccgc	58080
ccccaaacccg	cacctgacgt	tcggccacgg	catgtggcac	tgcattggcg	cgccgctggc	58140
ccgggtcaat	ctgcgcaccg	cctacaccc	gctgttcacc	cgccctggcc	gcctgcggct	58200
ggtgcgc(ccc	gtcgaggaac	tgcgggtgt	gtcggggcag	ttgtcgccg	gcctgacgga	58260
gctgcccgtc	acctgggtac	gtgtatgtcg	acccgc(ccgg	cccggttccg	ggcaggcgga	58320
agtgaggggc	cccgc(ccccgc	tcggccgggg	gccttcacgc	acgggggagc	gggttctca	58380
gtccgcgcgc	acgctgatcg	ccccggacgg	gcagagcgcc	gccgcgtcgc	gtacgtcgcc	58440
gggatccgcg	gcgtccgcgc	ccccggccag	gacggtcacc	agaccgtcgt	cgtcctggtc	58500
gaacaggtcc	ggtgcggta	ggacgcactg	gccccccccg	acacagcgcc	cggggtccac	58560
ggtgatgcgc	acgatcggtc	ctccggagggt	cgttctgtcg	ccgggggtcgg	gccgcgc(ccg	58620
ggcggccccc	ccgggctcac	ttccaggta	cgggcagttc	gtgcagggcg	aacagcacc	58680
cgtcgtaact	caacggcagt	tcctccaccc	gcacggcgcag	cgtgaggggag	gggatccggg	58740
cgaagagcgt	gcggtaggcg	atgtccatct	cctcccgac	caggttctgg	cccaaggcact	58800
ggtggacacc	gtagccgaac	gccacgtgcg	agcgcgcgcg	gcgcgttggg	tcaactcccg	58860
agggcgc(ccc	gaaggccgt	gcgtcgttgt	tggcggcgcc	gatcagcgcc	acgatgcct	58920
cggccgc(ccc	gatcagctga	ccgcccac	ccacgtcetc	gacggccacc	cgaatgcca	58980
ccagatcgcc	caccggatag	tagcgcagca	gttcttcgac	gatccggtcg	tcgcgcac	59040
accgcgggtt	ggtgagcaac	tgcaccacgc	ccaggcccgat	gttgttcgcc	gtcgtctcg	59100
gcccggcgat	cagcagcgc	atcgccaccc	cgacagac	ctgcccggac	agtgtgccc	59160
cggcgatcag	ccggctgatc	aggtcg	cggtcgccg	ctgttgc	tggatgagtc	59220
ggcccgagata	gcgcagcgc	gcctgggtcg	ccttgcgcg	ctccctcg	gtcgaactga	59280
gccggaccag	cacccgggtc	cggtcctcga	agaagtcccg	gtcgcac	ggcacccccg	59340
gcagacttgg	gatcaccagg	gacggcacc	gcagcgcgaa	ggactcgac	aggtccgc	59400
agggtccccg	ggccagcata	gcgtcgatcc	gctcgccac	gatctgtgg	atcacccggc	59460
gcagttcccg	cacccgtgc	acggtaact	cggggatcaa	gttcttg	ggccggccgt	59520
gctccgggtgg	gtccatcgcc	acgaaccacc	ccggcac	gtactgc	ggggccccac	59580
cggtccgacc	ggcccttgggg	aaaccgggtt	tggaggggtc	ggcgtc	gggggtcg	59640
tcagcaccgc	ccggacgtcc	tcgtgc	tcaccaacca	gaccggccg	ctggggagtt	59700
cggagcggac	caggccgc	ccggcgcgtt	aggtcg	ctccggc	gggaaggggc	59760
ggcccgccct	gcgcagcggg	aaggccacc	ggcact	cgccggc	cgccgcgtcg	59820
tttcgggtct	catggcactc	cgtagaac	cgcgatcc	ccgg	gtatc	59880
ctgtcggtc	agtccgggt	cgctcg	cgat	cgat	cgccgc	59940
gttcaacgcg	ggccagtcgg	cggagaagta	accgggt	cggtc	atcg	60000
gacccgggtc	tcgatgc	ccggcgc	gtacgc	gttgc	ac	60060
ccgcaggtcg	tacatccaca	gcacgt	cgccgg	ccgt	ccggatgtc	60120
gcgcagcgcc	tcgtcgtagc	gcttctcgat	gtcg	aggcg	atgggtccag	60180
ctgctcggtc	tgcgcgagcg	ccacc	ctgc	gtc	gttgc	60240
cagcttcttg	tgcaggaac	tgtgt	gttgc	atcg	ggatggccat	60300
ctgctcggtc	agggtcggtt	cgtgg	cgac	ccct	ccggatgt	60360
cttggggc	aagagcgaga	aacaggc	gtcg	cg	ccggatgt	60420
ggcggagtc	tccaccaccc	cgagg	gtcg	ccgt	ccgtcg	60480
gtcgactgc	cggccgtaga	tgtgcac	catgat	cgat	ccat	60540
tcctcgatg	cggacac	cgat	gtcg	cgat	ccat	60600

ggcaccgggtg taggtcaccg	cccaggcgga cgcgatcatc	gtgaactccg ggacgatcac	60660
ctcgtcaccg gggccgacgc	ccagcgcgcg cagcgccagc	gtcagcgcggc tggtgccgga	60720
ggagcaggcg acgccaacg	gcacgtgtt gtacgcggcg	aacgcctct cgaaccgcct	60780
gacgtacggc ccctgcgaag	agatccagcc gccgccgacg	gcctccgtca catagtcgag	60840
ctcgccgccc tggagccacg	gcatggacac cggatacgt	aaggacatgg gtttgagtc	60900
ttcctcggtc agtcgggtgc	cagggcggga aggccgagca	gcaggtccgc cggcggccgc	60960
cggccgcccgg cgtccccgag	cagccccggcg aagtgcgtccg	cgcgctcggt gaaggagggt	61020
tggtcgagca cgccgggtat	cttgtccagg acgtcctcg	tgtccacggc ctccggccgg	61080
tccagggtca ggctcacc	gaagtcctgg ccccgatcg	cctggtcgtc geagtccacc	61140
cacaacggcc ggaccaccag	cggcttccg aagtacagggc	cctcggtta ggcgttgcca	61200
ccggcatggg tgaagaacgc	cttcacgttc ggatgggcca	gcacgtccag ctgcgacggc	61260
acccagccct cgatccgcag	gttgtccggc agctcggcg	ccggcggcag caactcctgt	61320
tggccgcgcg ggagttcca	caacacctgg tggcccccggc	cgtccagtc cccggcggacc	61380
tccaccagcg acgcacac	ctcacgggtc agcgggggtga	tcgtgcgaa gcccatgtac	61440
accacggact tctgcgcga	cagccagtc gacaggccgt	cgtcgccgg tgccctgggc	61500
agcggccggca ccatcg	caccagccgc agttcggtat	gcatcgaa cggtagtcc	61560
aactccctta cggagtagca	caagacctgc tccgcatgtt	cgatccgcgc catcatctgc	61620
cgcgcctggg gcgcgatgc	cagctcggtg cggaccgggt	tgtccctctc gacgacattg	61680
cggacgtccg acgtcaggaa	catcccgagc gtccgcagcc	ggaacagctg gttctcgatc	61740
cgtctagcca gggacatcgc	ggccggcagc cccgagtg	gcaccggaa acccgacggg	61800
gtgttaggact tggcgaacgg	gacgtgcgag gtgaggacgt	tgctcgac gAACGGCACC	61860
ccgagcacga acgaaatgc	cttggtgatc gccagctcg	acccgaactg gcacatgctc	61920
tcgatcacc tcagcgccgg	ctcgacccccc tcgacgatct	cctccaggcg gccgtacttc	61980
gccatccgcg actccggcgc	gaacgaatgc cgaatcacc	ccgcgtgcgc cttgaaccgc	62040
gaccgctgcg tcacccgc	atacgtcg	tgaccggcga catctgcgag	62100
acgggtgcgc cgagcgacgc	gaaccgaacc gggctccgt	ccaccacggc cggcacctcg	62160
tcgcgcgtt tctcggt	ggcgaaccac aggtccgca	cgtcgcccg ggacaattcc	62220
ccggccagca cgagcagcg	attgagcagg cccgttccg	cataactgac gaacaggatc	62280
ggccgcgcgt tcgcgcgc	ggacaacacc cctcggaatg	tggccggccg cccggccgc	62340
gcgcacgc cccgcgcgc	ccggtcgccg ggtgagtgc	ttcgcgcacg cccgcacccg	62400
aggcgcgtgt tgccggaagg	aagggtcacc ggccggcacc	cggAACGCGC CGCGTGGAAA	62460
acgggtcggt tacttgct	catgccacgg accggggaaat	cactagtctt cggcgcgcga	62520
cggcccttc cggccgcgt	ggccaatgcc cgtccccggc	gcccgtcatt ccttagggaa	62580
aagtacagcg tttgcgaacg	tacgatccgg cacgcagagg	tgacctgagg ccaacttttc	62640
cgcagggggtg agcaaggcat	gacgatcgga gccgacgagg	acccgggtgt ggtcgctcg	62700
atggcctgccc gttatccgg	tgggtcgcc ggccggagg	acctgtggaa actggtccgc	62760
accggccgcg acgcgaccac	cgcctcccg gacgaccgcg	gctggaccc ggcgcactg	62820
gccggcgcacg gaccggccg	cagcgcgacc cgcgaggccg	gattccac cggcgcgcgc	62880
gacttcgacg ccgccttctt	cggcatgtcg ccccgcgagg	cgtctccac cgacccgcaa	62940
cagcgcctcg tcctggagac	cgcctggaa gccctggagc	gcccggcat cgacccgcac	63000
tccctgcgcg gcagccgcac	cgggtcttc gtcggcgca	gcccggcagga ctacggcgc	63060
gtcacccacg ctcgcgcga	cgacctggac ggacacgccc	tcacccgcct ggcccccggc	63120
gtcgccctcg gtcgcctgg	gtacgtctcg ggcctcgaa	gccccggcgt caccgtcgac	63180
accacgtct cctcgct	ggtcgcgctg cactggcg	tccgcgcct ggcgcgggg	63240
gagtgcagca ccgccttgc	cggcggcgct acggtgatgt	ccacccggc cgccttcgtc	63300
ggccacaccc gacaggcg	cctcgccccc gacggccgct	gcaaggcggtt ctccgacgac	63360
gccgacggca ccgcctggc	ggagggcgct ggcacgtcg	tcctggagca cctgtccacc	63420
gcccgcgcgc cggcaaccc	cgtcctcgcc gtgtcgcg	gctcgccgt caaccaggac	63480
ggcgcctccg acggcctac	cgcacccagc ggtccccc	aggAACGCGT catccgcgc	63540
gccctcgccg acgccccact	cgcacccgc gacatcgatc	tcgtcgaggc gacggcacc	63600
ggcacccggc tcggcgcac	cgtcgaggcc cggcgctgc	tcgcgccta cggcaggac	63660
cgggacccgg accgaccgct	gcgcctcggt tcctgaagt	ccacccctgg ccacgcacag	63720
gccgcgcgc gcatcgccg	agtgtcaag accgtctga	ccctgcggca cggcctgtat	63780
ccgcgcatcc ggcacctgg	caccccccacc cgccaagtcg	actggtccc gggccgcgt	63840
gccccctca ccgaccacac	gccctggcca cggccgacc	gaccggccgg cggccggcgt	63900
tcctccctcg gcatcgccg	caccaacgcc catgtgatcc	tcgaagaggc gccgcggc	63960
gacgtccctcg tcacccggcc	cggcacccctc cggcccgagca	ccgtccctcg gccgtctcc	64020
gccgcacgc ccgaagccct	cgaacccaa ctcgcggc	tccgcgccta cctgcgcacc	64080
cactcgacc tggacccgct	ggacgtcgcc tactccctgg	ccacccggccg cggcgcgtc	64140
cgccaccggg cggtccctct	gacggcaccg cgcggacgc	ccgcggacgc cgtcgagcac	64200

gcccgcggtg	cggcccacca	gcgcccgcacc	gccgtctct	tctccggcca	gggcagccag	64260
cggccggca	tggccgcga	actgcgcgc	cgcttccccgg	tgttcggcga	cgcaactggac	64320
gacgcgctgc	gcccctgga	ccggcacctg	gacggccccgg	tgcgcgaggt	gatgtggggc	64380
accgacgcg	cgcttctgga	ccggaccggc	tggaccacgc	ccgcccctgtt	cgccgtcgag	64440
gtcgccctcc	accgccttgtt	cgcgtccctc	ggcgtcaccc	ccgacttcgt	cggcggccac	64500
tccgtcgccg	agatgcgcgc	cggccacgtc	gcccgggtcc	tgagcctgga	ggacgcctgc	64560
cgcctggtgg	ccgcccgcgc	cacgctgatg	caggcgtcc	cgccggcg	cgcgatggcc	64620
gcgcgtggagg	ccacccgagga	cgaagtggcc	ccgcgtctcg	gcmcacac	cgcgctggcc	64680
gccgtcaacg	gcccaccgc	ggtcgtcg	gcccggagccg	aggacccgt	gcccgaactg	64740
accgcccgt	tcgcccaccc	cggccggcgc	accageccggc	tggccgtctc	gcacgccttc	64800
cactcgccgc	tgatggagcc	catgctcgac	gccttccggg	acgtcgtgag	ccgactgacc	64860
ttccaccaggc	cgtcgatccc	gctggcttcc	aacctcaccg	gtgaactcgc	cggcagttag	64920
atcaccagcg	ccgagtaactg	ggtccggcac	gtccgcgaca	ccgtccgctt	cgccgacggc	64980
atcaccgcac	tggccaaggc	cggccggcgc	gtcctgatecg	aactcgccc	cggcggcg	65040
ctgtccgcga	tggcccgcga	caccctcg	ccgcacagca	ccaccgacgt	cgtccccgccc	65100
ctgagcaagg	gacgcccga	ggagaccggc	tgcggccgg	ccctcgccg	cctgcacacc	65160
ctcgccgtcc	ccgtcgactg	gcccgcctt	tacccggca	ccggccccc	cgcgtcgaa	65220
ctgcccaccc	acgccttca	gcacgtcg	cactggccca	cccccccc	ccgcacggc	65280
gcccggcccg	gcccctcg	ccacccctg	ctcggctcg	ccgtcgaact	cgccgacggc	65340
ggcggcaccg	tctgctccgg	cgccctctcc	ctccgcaccc	accctggct	cgccgaccac	65400
accgtcgccg	ggcgggtcg	gtgcgggccc	accgcgtgc	tggaactcgc	cgtgcgcg	65460
ggcgcacgagg	cgggctcg	cgtccctgcac	gaactccacc	tcaccacccc	gccggccctg	65520
cccgcacgcg	ccgcctcg	cgtccaggt	cacgtcg	ccgcgcacac	caccggggcgc	65580
cgcgcgtca	ccgtccacac	ccgcggc	caccacccgg	ccggcga	cacccgatgc	65640
gccaccggca	ccctcg	cacccggc	tccgcagccg	aagccggc	ggcgggcacc	65700
ccggccgcct	ggccggcggc	cgacggc	cccctcgacc	tcgcgacca	ctacgacgg	65760
ctcgccgacc	gcccgtcg	ctacggcc	acccctcg	gcctgcgg	cgcctggcg	65820
cgcggcgccgg	agatctcg	ggacgtggaa	tgcccggcc	gcaccggc	cgacgcccc	65880
gaccacggac	tgcaccccg	cctgctcgac	gcccggggc	acgccc	ggcgggtggac	65940
ggcaccgtgc	ccgtcgctg	gcacggc	cggctgcac	ccgtcg	caccgcgt	66000
cgggtcccgca	tccggccac	cacgacccg	acgtgaccc	tcaccgcg	cgacgtgcac	66060
ggcgcgcccgg	tgcgtaccgt	cgaggcc	accggcc	cgctgacca	cgaggaacgc	66120
gcccggcccg	ggacggccgg	gcaggcc	ggcagacgc	ccgcgcac	ccgcccggcc	66180
cgcccccgg	cgcccgccc	cgcccccgg	ggcgaacccc	tccggacac	caccgggtcc	66240
cacccacccg	ccggccaccc	cgccgcgt	ccggccggcc	ccgggagcg	ccagctgt	66300
gacctggtgc	gcacccaggg	cgccgcgt	ctggccacc	ccggccccc	ggccgtcg	66360
acccgcacgc	tcttcaagga	gctggcc	gactcg	ccggcgt	actcgccgac	66420
cggctcaccg	cccgcacccg	actgcgc	ccggcc	tcgtcttca	cttccccacc	66480
cccgaacgtg	ctgcccaccc	cctcg	ccctcg	caaccgg	cctcgacccc	66540
ggggcgtacg	gagaggaact	caccagg	gaggc	tgacga	acct gccgcaggac	66600
ggcccccgaac	gccggggccgt	cgcg	ttgacg	tcgtctcc	actccgcac	66660
aactcgcc	cagaggtg	ctcc	gaggac	acacgg	ggtgcacaga	66720
ctgctcgaca	tcatcgatga	agat	accacat	aaaatt	tttcgtt	66780
cgacccgt	acgaggacgg	accgat	gaaaaat	ttcgcc	ccgcgc	66840
gagaaaatcg	tcgactatct	ccgg	acttc	ccgcgc	ccgcgc	66900
attggcgaac	tggaatccaa	ggacaac	ccatcg	tcgtcg	ggctgccc	66960
cttcccggcg	gcgtcaattc	gccg	ctgtgg	ttgtcg	cgccggcg	67020
gccatttcg	gatccccgt	cgacc	ttggac	cgcc	ccgaaacggc	67080
gacggcagca	gcccaccca	cgaagg	ctt	ccgc	attcgacg	67140
gccttctcg	gcatctcg	gcgc	ccgt	ccgc	cgcctctc	67200
ctcgaagtcg	cctggagggc	gctgg	ccgc	ccccc	cctcg	67260
agcegg	tcgttctgt	cgg	cact	ccgc	cgcgc	67320
accgaactgc	acggccacgc	cctg	gggg	ccgc	ccgcgc	67380
gcctacaccc	tccgcctcg	agg	ccgc	ccgt	ccgcgc	67440
ctcgtcgccc	tgcacctggc	ggcc	gtacc	ccgc	cctctt	67500
atcggcggcg	tcacgatcc	cacc	gtcg	ccgc	ccgcgt	67560
ggcctggcac	cggacggccg	ctg	ccgt	ccgc	cgcgc	67620
ggcgaggccg	tcgggtct	cgt	ccgc	ccgc	ccgcgc	67680
ccgtcctcg	ccgtgtcg	cgg	gtcaacc	ccgc	ccgcgc	67740
accgccccca	acggccctc	ccag	aggc	ccgc	ccgcgc	67800

ctgacccccc	ccgacatcg	cgccgtcgag	gcgcacggca	ccggcaccccg	gctcgccgac	67860
cccatcgagg	cccaggccct	gctccacc	tacggccagg	gacacacccc	cgaccagccg	67920
ctgtggctcg	gtccatcgaa	gtccaacatc	ggcacacacc	aggcgccgc	cggcgtcgcc	67980
ggtgtcatca	agatggtcat	ggcgctcg	cacggccacc	tgccgcgac	cctgcacgccc	68040
gacgcgcct	cctcgacgt	ggactggtcc	gccggatcg	tacgcctgct	gaccgagggc	68100
cagcagtggc	cggagaccgg	acgtcccg	cggccgcgg	tgtcctcg	cggcatcagc	68160
ggcaccaacg	cgcacgcct	gttggaaacag	gcacccacc	ccgccccac	cgccgacgccc	68220
ggcgacgacg	ccgcgcac	cgaaccgg	ggcgccccc	ccgcgtcg	ctggatcg	68280
tccggacact	cccccgaggc	gctgcgcac	cagggcccg	ccctggccgc	cagggtcgag	68340
accgaccccg	cgctccgccc	ccaggacatc	ggcacacacc	tgcacaccgc	ccgcgcct	68400
ctcgaacgac	gcccgtcg	cgtcgcccc	gaccgcgcg	aactcctcg	ggttacccac	68460
gagttggccg	ccggccgtc	cgcgaacgc	gtcgtcgagg	gcctcg	cgtcgagggt	68520
cgacgggtgt	tcgtttccc	cggtcagggt	tcgcagtgg	tgggatgg	ggcccaactc	68580
ctcgatgagt	cggcggtgtt	cgcggagcg	attgcccagt	gtgcggcgg	actcgccgag	68640
ttcaccgact	ggtcgttgtt	cgatgtgt	cggggtgtgg	tgggtgc	gtcggtggag	68700
cgggtcgatg	tgggtcagcc	ggcgctgtt	gcgtgtatgg	tgcgttgg	tgcgttgg	68760
ggttcccg	gtgttgttgc	ggatgcgt	gtggggcatt	cgcagggt	gatcgctg	68820
gccccgtgt	cgggtgcgt	gtcggtcg	gacggggcgc	gggtgtgg	gtcgccgag	68880
caggccatg	gtcggtcg	ggcggggcgg	gggggatga	tgcgtcg	gtgtcggt	68940
gacgtgctcg	aaccgcgtt	gttcgagtt	gagggggcgg	tgcgttgg	cgcgtcaac	69000
ggccgcgt	ccgtcggtt	cgcggcgg	cccggggcgc	tggacgcgt	gcacgcgg	69060
ctgaccgcg	acgacatccg	ggccgcgg	atcgccgt	actacgcctc	gcactcg	69120
caggtcgagg	acctgcacga	ggaactgt	gagggtgt	cgagactgg	gccgcgcac	69180
tcggaggtgc	cggtttctc	gaccgtgacc	ggcactgg	tggacaccgc	gcggatgg	69240
gccggctact	gttccgcaa	cctgcgcgg	cgggtcg	tgcggacgc	gtggcgg	69300
ctgctggcg	cggagtaccg	cgcgttcgt	gaggtcag	cgcacccgt	gtgacgtat	69360
gcggcttgg	acctgtatcg	ggaggccgg	gtcacggcc	tgcgaccgg	caccctgc	69420
cgtgaccagg	gtggcgccgg	cgcgttcgt	ctgtcg	ccgagggtt	cgtcgccgt	69480
gtggacgtgg	actgggcgg	ggcggtcg	gggaccgg	cggtccgg	cgacctgccc	69540
acctacgcct	tccagcgcga	gcggtaactgg	aacacccgc	ccgcccgg	ccgcaccccg	69600
gccgacgccc	cgatggacgc	cgaattctgg	ggcccg	aacaggcg	cgttcccg	69660
ctgaccgcg	cgctcgac	cgacgaggac	tccgtcg	ccatctcg	cgcctcacc	69720
tcctggcgcc	gggcccgtc	ccagcgcacc	accctegact	cctggcg	ccgcgtcacc	69780
tggacgc	tcgcccaggt	gccccgcgc	accctgacc	gcacctgg	gtggtcacc	69840
accgacggca	tcgacgacac	cgatgtgc	ggggcg	agactacgg	cggcagggt	69900
cgcggctgg	tcctggacga	ggagtgcacc	gaccgcgc	tcctgcgg	gcccgtgg	69960
ggcgccgg	acgtgaccgg	catcgctcc	gtctcg	ccgcccgg	cgacgcgc	70020
cgcaccccg	gcctcacc	gggactcg	ctcaccgt	ccctcg	ggccctgg	70080
gacgcccgg	cgaccgcgc	gctgtgtt	ctgaccgc	gcccctcg	caccggcc	70140
tccgaccccg	tcacccggcc	cctgcagagc	cagatcg	gctcg	gaccaccgc	70200
ctggagcacc	cgcacgcgt	ggcggcacc	gtggac	ccgacacc	cgacgcgg	70260
gccgccc	ggctcgcc	cgcgtgt	ggccccc	gcccgg	ccagctcg	70320
gtccgcgc	ccgggtact	ggcccg	atcg	ccggacacc	cgcggac	70380
cggcacgg	cctggcgcc	gcccggacc	accctgatc	ccggcg	cgcacc	70440
gccccgc	tcgcccgt	gctggccaa	cgcggc	agcacgt	gtggtc	70500
cggcgcgt	cgcacggcc	cggagcgc	gaactcatcg	cgaggc	cgagtcgg	70560
accgagggt	ccgtcgcc	ctgcgacatc	accgaccgc	acgcgg	cgcgtcg	70620
gccgaccta	cggccgacgg	cgcaccc	cgacgt	tccacccgc	cggccatc	70680
gagctgtcc	cgctcgcc	caccacc	cgccgt	ccgacgt	gcacgcca	70740
gtcaccggcg	cacggatct	cgacgact	ctcgac	cggaact	cgacttc	70800
ctgtactc	ccaccgc	catgtgg	agccgcgt	acgcgc	cgcgtcg	70860
aacgcctatc	tgtcccg	cgccgac	cgccgc	gcccac	caccac	70920
atccactgg	gcaagtggcc	cgacgacc	gcacgc	tggcc	gacccggatc	70980
cgcgc	gtctggagta	cctgcac	gagctgg	tcacc	ccagc	71040
ctggacgac	acgagaccgt	catcg	atggacatcg	actgg	acac	71100
gttaccc	cggccgg	cgcac	ttcgacc	tcccc	gagggt	71160
ctcgacc	cattcg	ggaccc	ggccgg	ccgacgg	ggccgc	71220
ctgcacgg	tcgcgc	cgaac	cggctgt	tcacc	ccgcacc	71280
gccccgc	tcctggcc	cgcc	gagtttcc	ccgagc	ccgcgttcc	71340
gaccc	tcgactcg	cacc	cgccgt	accgc	ccgcgg	71400

ggactgcggc	tgccttcgac	gatggcttc	gaccacccca	actgcgcggc	gctgcggcg	71460
ttcctgaaga	cgacggcgct	cggcgcccc	ggcgccgac	cgcagcagca	cgccgcgtacc	71520
ggcacccccc	ccgacgacga	cccgatcgcc	gtgatcgca	tgagctgccg	ctaccccgcc	71580
ggcgccgcca	cccccgagga	actgctcg	ctcgccctcg	acggcgccga	cgatctcg	71640
gagttccccg	cggaccgcgg	ctggacgcc	cggggctgt	acgacccgga	ccccgaccgc	71700
cccgccaca	cctactccgt	ccagggcgcc	ttccctcacg	aggccgcccgg	cttcgatccc	71760
ggcttcttcg	ggatctccc	gchgagcg	gtcgccatgg	acccgcagca	goggctctg	71820
ctggagacct	cctgggaggc	gttcgaacgc	gcccgtatcg	accccgcgtc	actgcgcggc	71880
agcgccgccc	gcacccctt	cgcgccagc	tacaggact	actcctccac	cgtcagaac	71940
ggcacgggg	agtccgaggc	gcacatgtg	acggcaccg	cgcccaagtgt	cctgtccggc	72000
cgggtctct	acctgctcg	cctggagggc	cccgccgtca	ccgtggacac	cgccctgctcc	72060
tcctcaactgg	tcgcctcg	cctggctgc	cagtccctgc	gchacggcga	gagctccctc	72120
ggcgctggcc	gccccggc	cgtgatgccc	accccgcacg	cgttcgtcg	cttcagccgg	72180
cagcgtcccc	tggccaagg	cgggcgctc	aaggcgttct	ccgacaccgc	cgacggcatg	72240
acgctcgcc	aggcgctcg	cgtegtctg	ctggagcgcc	tgtcccacgc	ccgcggcaac	72300
gggcaccggg	tactggccgt	gatcccggtt	tcccgctca	accaggacgg	cgccctcaac	72360
ggcctgaccg	cgcccaacgg	cccgtccag	cagcgtgtca	tccgccaggc	gctgcggcaac	72420
gccccctg	ccggcgccg	cgtcgaacgc	gtcgaggcgc	acggcaccgg	caccaagctg	72480
ggcgacccca	tcgaggccca	ggccctgtc	gccacactacg	gccaggacgg	cgacggccgaa	72540
cggccgctgc	tgctgggctc	ggtgaagtcc	aacatcgcc	acacccaggc	cgccggccggc	72600
gtcgccggc	tcatcaagat	ggtgctgccc	atggacgccc	cgcaactgccc	cgccaccctg	72660
cacctcgacg	cgccctccag	ccacgtcgac	tggaccggcc	cgccctgtga	actgctgcgc	72720
gggcgcaccc	cgtggcccg	gagcggggcgc	ccccgggggg	ccgggtgtc	ctcggtcg	72780
atcagcgcc	ccaaacggcc	cctgatctc	gaacaggccc	cgccacccga	gccggccagcc	72840
gaccccgacc	gcctccggg	caccggccacc	gacaccgtcg	tccctggcc	gctcgccgccc	72900
aagtccccgg	ccgcctcg	cgcccaggcc	gcccggctcc	tcgcccacgt	cgagcacgcac	72960
ccgcaccc	cgcccgcccc	cgtggccac	gcccctggca	ccacccgcgc	cgccctcgaa	73020
caccgcgcg	tcgtcg	cgagcgcgc	gaggacttcc	tgcgcggcct	ggccggccctg	73080
tccaccggcg	cctcga	cggectggc	agcggcatcg	ccggccccga	ccccgaggga	73140
gcgggtctcg	tcttccccgg	ccaggatcc	cagtgggtgg	gaatggccg	cgaactcctc	73200
gccacgtcc	agggtttccg	caccgcgtac	gatgactgc	cgacggccct	cgcccccgtac	73260
gtcgacttgt	cgctgcacga	cgtcctggcc	ggcgaggccg	accccccct	gtggagcgg	73320
gtggacgtgg	tccagccgc	gtgttcc	atgatggtcg	ggctgtccgc	gtctggcgc	73380
tcccacggcg	tcgtcccg	ggccgtggc	ggccactcgc	agggcgagat	cgccggccgc	73440
tgctcgccg	gagccctcg	cctggccgac	gccgcccgg	tggtgccgt	gcccggccag	73500
gcactgccc	aactgtccgg	acgcggccgc	atgatgtcg	tctccggccc	cgtagagcgg	73560
gtcaccgcac	tcctcgcccc	gtggcaggag	gcgtgtcc	tcgcccgg	caacggcccc	73620
tcgtccgtgg	tcgtctccgg	cgacaccgac	gcgtcgac	ccctgcacac	cgccctgcca	73680
gaacagggcg	tgcccccccg	caaggtgtcc	gtggactacg	cctcgcacgg	gccccacgtc	73740
gaggccgtcc	gcgacgaact	cgcccgcgtc	ctcgcgcccgg	tcgaccggcg	cgccccccgag	73800
gtccgttct	actcgacgt	caccggcgac	cgcggtggac	acgcccctt	cgacggcgcc	73860
tactggtaca	ccaaaccccg	ccagaccgtc	cgcatggagg	aggccacccg	cgccctccctc	73920
gccgcggac	accgcgtctt	catcgaggc	agccgcacc	cggtgtcg	cgcccccgatc	73980
caggagacgc	aggaggccgt	agcggaggcc	acccgggggt	ccgcgggtgt	cctcggtcg	74040
ctccgcgcg	acgaggccgg	cccgccggc	ttctgtacgt	cgctcgcc	ggcccacacc	74100
cacggccccc	cggcgact	gaccaccacc	ttcgcccggt	ccgcctacca	gccccgtggac	74160
ctggcgaccc	acccttcca	acgacaggac	ttctggcccg	aggcccccggc	cgccaccccg	74220
gccgcggcg	ccgacgcgtc	cgacggccgc	ttctggcaac	tggtcgagaa	ccaggaccc	74280
gccgcgtcg	ccgacgcgtc	cgcggtcccc	gcccacgc	agcacaccgc	gtcggcacc	74340
gtgctcgccg	ccctgtccgc	ctggcgcc	aaggcccagg	ccgcaccccg	gatcgacgaa	74400
ctccgttacc	acgtccagt	gaccgggtc	gcccggcccg	cgccggcccc	caccaccggc	74460
cggctgtgg	tcggcg	ccggaccac	gccgacgccc	cctgggtcg	cgccggcgctc	74520
gacggccctgg	gcacccgac	cgccgcgttc	gaggccaaagg	gcacccgaccg	cgccggatgg	74580
gccgcacaga	tcgccccact	cgtcgaggac	ggcgaggagt	tcacccgggt	ggtgtcgctg	74640
ctggccggcc	cggaggatct	ccacccggac	ttcggctcg	taccgtgg	gctggggcag	74700
accctcgcc	tcgtccaggc	cctcgccgac	gccggccctga	ccgcgcct	gtgggtcc	74760
acccgcggcg	ccgtcgccac	ccggccgcgc	gacgcctcg	acagccgcac	ccagggcgcc	74820
ctgtggggcc	tcggccgggt	cgtggccctg	gaacaccccg	accgctgggg	cgccctgatc	74880
gacctgcggc	ccaccctcg	cgccgcgc	gccccgcgc	tcacccggct	gctcgccgac	74940
ccgcgcggcg	aggaccaact	cgccgtccgc	gccaccggcg	tgctcgcccg	ccgcacgggt	75000

cacggccgcgc	cgtccgcgccc	ccgcacccggg	cgccgctggc	ggggccgcgg	cacctgcctg	75060
atcacccggc	gcaccggcgg	catcggccgc	cgggtcgccc	gctggatggc	cgagcacggc	75120
ggccgcccacc	tggtcttgac	cagccggcgc	ggcccgacg	caccggcgc	cgccgcactc	75180
cgggccgaac	tggaggccct	gggcgcccgc	gtcaccctcg	ccgcctgcga	cgtcgcccac	75240
cgcgaecccc	tggccgcct	gctggccgac	ctccccgccc	accagccgct	cacctccgtc	75300
ttccactccg	ccggcgtggc	cgacgggac	gcccgggacg	ccgacctgac	cctagatcag	75360
ctcgacgcgc	tgctgcgcgc	caaactgacc	gcccccacc	acctgcacga	gctgaccggc	75420
ccccctcgacc	tcgacgcgtt	cgtgttcc	tcctccggcg	ccgcggcttg	ggcagcgcc	75480
ggccagcccg	gctacgcgc	cgccaacgc	tacctcgacg	ccctcgccgc	ccaccgcagg	75540
ccccctcgacc	tgcccgccgc	gtccgtgcgc	tggggcacct	ggggcgaggt	cgcatggcc	75600
accgtccccg	agggtccacga	gcpactgcac	cgccaagggg	tccgcgcccatt	gaaaccggac	75660
cacgcgatcg	gcgcgctcca	gcagatgtg	gaggacgacg	acaccaccc	cgccgtgacc	75720
ctcatggact	gggaggcggtt	cgcacccgagc	ttcaccgcga	cccgacc	cgccctgttc	75780
agcacgggtc	ccgaagccgt	ccgcgcgtgt	acccggcacc	cgggcaccac	ggccggcgac	75840
gacgtggact	ccgcgaccccc	gccgcgtccgc	cgccacctgg	aggagctgtc	cgccgcccag	75900
cgccggccggg	ccctggtcga	ggcggtccgc	gcccaggcg	ccgcgacc	cgccacgcac	75960
accccccacg	ccatccccgc	cgcccggtgc	ttccgcgacg	tccgcgttgc	ctcggttacc	76020
ggcgtegaac	tgcgcaacccg	gtcgccacc	gcctcggcc	tccgcgttgc	ggccgcgttc	76080
gtcttcgacc	accccacccc	cacgccctc	gcccgcacc	tccgcgttgc	gtcttcggc	76140
acccgccccg	aggacgcccgg	caccggccgc	ccgacgacc	ccgacgccc	catccgcgag	76200
gogctegcca	ccgtccccat	cgacggctg	cgcaaggcg	gcctcctcga	catggtctg	76260
aaactcgccg	acggagacgc	gaccgaccc	cccgc	aggccgacgc	ccctcgaa	76320
ccccctcgacg	acatggacgc	cgaagccctg	ctcggtctgg	ccaccgagaa	ctcgccgaa	76380
tgaaaagagag	ctggagccca	ccatgagcac	gaaccccgac	aagtacgtc	aggactccg	76440
gtcgccctcg	aaggagatcg	agcggctgcg	ccggcagaac	gaacagctgg	tggccggcggc	76500
ggtcgagccc	gtcgccgtcg	tcggcattcg	ctggcgttcc	cccgccggcg	tcacctcccc	76560
cgaggacctg	tggagctgg	tcggcgaggg	gcmcgcgtc	atcgccgt	tcccgcagga	76620
ccgcggctgg	gacctggaga	agttggccgg	cgccggcgag	ggccgcagcc	tcgcgcaggt	76680
ccgcggcttc	gtcgaggacg	ccgcggctt	cgaccccg	ttcttcggca	tctccccgg	76740
cgaagcggtc	gccatggacc	cgcacgc	catccgtctg	gagatcacct	ggaagccct	76800
ggaacgcgccc	ggcatcgacc	cgtccaccc	gcgcgttacc	cccacccgg	tcttcgtcgg	76860
caccaccggc	caggactacg	gcpaggtcat	caaggcgtcc	gcccggacg	tcgaggtcta	76920
ctcgaccacc	ggccacgcgc	ccagcgtcat	ctccggccgg	ctctcata	ccctcgccgc	76980
cgaggccccc	gccgttacc	tcgacaccgg	ctgtctctcg	tccctggctc	ccctgcactg	77040
ggccgtccag	gctgtcgccg	gcccgcagtg	ctccatggcc	ctggccggcg	gcccgtccat	77100
catggccacc	ccggcccg	tcgtcgctt	caccgcgc	agcggcttg	ccgcgcacgg	77160
ccgctgcaag	ccctctccg	accggccga	cgccacccgg	tggggcgagg	gcccggcat	77220
gtcttcgtcg	atgcggctct	ccgacgc	gcccgcggc	cgcccggtcc	tcgcgtgt	77280
gcccggctcc	gccatcaacc	aggacggccg	ctccaacggc	ctgaccgtc	ccaacggccc	77340
ctccccagcag	cgctcatacc	gcccggcgct	ggacagcgcc	cacccatcc	ccgcgcacat	77400
cgacgcccgtc	gaggccca	gcacccggc	cacccctcg	gacccgatcg	aggcccaggc	77460
gtccctggcg	acctacggac	aggaccggc	gcccgcctg	tggctcgct	cggtgaagtc	77520
caacatcgcc	cacacccagg	ccgcctccg	tgcgcggc	gtatcaaaa	tatcatggc	77580
gttgcagcgc	ggcgctcg	cgccgcggct	gcacgcacc	gaacccacca	cgacgtcg	77640
ctggaccggc	ggctccgtcg	acccctcg	cgacgcggc	gcctggcccg	agacccggacg	77700
cgcccccggc	gccggcgctt	cctccctcg	catcagcg	accacgc	acgtcatct	77760
cgaacaggcc	cccacccgccc	ccgaagagcc	caccaccgaa	cccacccgtcc	gccccggccgt	77820
cgccccgtgg	gegctctccg	ccgcacccgc	cgccgcctc	gaccccggc	gcccggccct	77880
caccggccac	ctcgccgaca	ccccgcacgc	cgacccctc	gacgtcg	acgcgtcgc	77940
cgacggacgc	gccacccctcg	aacaccgc	cgtctcg	ccgcacggc	ccgaactcgc	78000
ccacggaaacc	gccggcgaag	gcccctcg	cgtctcttc	tccggccagg	gctcccagcg	78060
cccgccgcac	ggacgcgaac	tccacgc	cttcccggt	tccgcgcgg	ccttcgacga	78120
gatcacagcg	ctccctcgaca	cccaccc	ccgcgcgt	cgcgaggctc	tctggggcac	78180
cgacgcccac	ctgctgaacg	acaccggctg	ggcccaaccc	ccctgttgc	cgctcgaggt	78240
cgccccctac	cgccctgg	cgtccctcg	cgtacccccc	gacttcgtc	gcccgcactc	78300
catcgccgag	ctcgccgc	cgacgc	cggggtctc	tccctcgaa	acgcctgcac	78360
cctcgcc	gcccgcgc	gcctcg	ggccctgc	cgccggcg	cgatcg	78420
gatccgcgc	accgaggacg	aggtcac	ccaccc	gacgcacgt	cgatcgccgc	78480
cgtcaacggg	cccaccc	tcgtcg	cgccacc	gaagccgtcg	ccgcgcgttccg	78540
ggcgccgttc	accgccc	accgc	caccgg	cggtcagcc	acgccttcca	78600

ctcgccgctc atggacccga	tgcgtggcgga	attccggcgcc	gtcggccgaa	gctgtaccta	78660
ccacgagccg cgcatcccg	tcctctccaa	cctcacccggc	accgtcgccg	ccgtcgccga	78720
cctgtgctcc gccgactact	gggtccggca	cgtccgcegag	gcccgtcgct	tgcggacgg	78780
cgtcaccggc ctcaccgacc	gcggcgtgac	cacgctcgtc	gaactcgcc	cggacggcggt	78840
gctgtccgcc atggcccagg	aatccctgcc	ggacggcgcc	gcccggctgc	cgtgtctgctg	78900
caaggaccgc cccgaggagc	tctccgccccgt	caccggccctg	gcccggccccc	acgtccgccc	78960
cgtcacggc cgctggccg	gcctcttoga	cgccacccggc	gcgcgcgcg	ccgacactgccc	79020
cacctacccc ttccagcacc	agcggttctg	gccgacccggc	gcccggcccg	cccaggacgt	79080
caccgcccggc ggactggcg	ccgcccacca	cccgtcgctc	ggcgccacccg	tgcactcgcc	79140
cgacggggcc ggctacttgt	tcaccagccg	gtctccgctc	cggacccacc	cctggctcgcc	79200
cgaccacggg gtccagggcc	ggggccctgt	gcccggcacc	gccttcgtcg	aactggccgt	79260
ccgcgcggc gacgaggccg	gctgcgaccg	cgtcgaggaa	ctgaccctgg	ccggggggcc	79320
ggtgctgccc gagcgcggcg	gctgtccaact	ccaggtccgc	gtcggccccc	ccgacgcccgc	79380
cggccgccc accctcgga	tcttctcccg	cgtcgaggac	ggcttcgacc	tgccttggtc	79440
gcaacacgcc accggcgtcc	tgaccggccgg	cgccggcgcc	cccgacccca	ccttcgacgc	79500
caccgtctgg ccccccagcg	gcgcgcgaacc	cgtcgacctc	accggcgctg	acgagcgccct	79560
ggccgcactc ggctccagt	acggccccgc	ctttcaggcc	ctgcgcggc	cctggcgccg	79620
cgacaccgag gtctacgccc	aagtggccct	gcccgaecggc	geggacacccg	accccgccgc	79680
cttcggactg caccggccc	tgctggacgc	cgcacaacac	gcccggccct	acggcgaccc	79740
cggcgccatc agccgcggcg	gcctggccgt	cgcctggaa	ggcgctctgc	tgcggccgc	79800
cggcgccacc accgtcccgcc	ccggatcg	cccgccggcc	gaggacacccg	tcaccatcg	79860
cgtctacgac gccggccggcg	gcaccgtgt	gtccgtcgac	tccctgtct	cccgcgaggt	79920
ccccggccac gcacccggcg	ccgcccggac	cgtccaccgc	gactccctct	tccacgtcga	79980
gtggaccccg ctccagggcc	gcccggggcc	cgcacccggc	accgtcgccg	tccctggccc	80040
cgaccggac gcccctcgcc	acaccctccg	cgcacccggc	atccggacca	ccggggggcc	80100
cgacctggcc gcccctcgcc	acgcccgaagg	gcccgtcccc	gacctggctcg	tcaccaccc	80160
caccaccacc ccggggcgccc	ccgtccccga	cgcgcgcac	gccaccacccg	ccggcgccct	80220
cgcctctgccc caacagtggc	tcggcgcacga	ccgcttcgccc	gacgcccggc	tgtctctcg	80280
cacccggccgc gccaccgacg	gcaccgaccc	cgcgcggcg	gcccggggcg	gcctgtatccg	80340
cacccggccgc accgagaacc	ccggccgtt	cgccttcctc	gacctcgccc	ccgacacccg	80400
ccggcccgac cccgagaccc	tggccacccg	cctggccggcc	agccacacg	agcccgaccc	80460
cggcgccgc ggcacccgacg	tgcacgcgc	ccgcctggcc	cgtgtcccc	tgcggccacca	80520
acccaccacc tggAACCCGG	acggcacccgt	cctgatcacc	ggcggcaccg	ggggcttggg	80580
cgcggccctc gcccggccacc	tggctggccac	ccacggcg	cgccacccgtc	tgcctcgccag	80640
ccgcgcggcc ccggccggcc	acggcgccga	cgacctgacg	gccaactca	ccgggctcg	80700
cgcaccgc accatcgccg	cctgacgt	cgcacccggc	gcccggctcg	ccgacactgct	80760
cggcaccgtc ccggccgggc	acccgctcac	cgtcgctg	cacaccggc	gcgtcgctga	80820
cgacggcgcc ctccgtcccc	tcaccccgca	gcgcctggac	accgtctgc	ggcccaaggc	80880
cgacggccccc tggcacctgc	acgaggcgac	ccgcaccc	gacctggacg	ccttcgtcc	80940
cttctcgccc gtcggcccca	ccctcgccag	cccgccggacag	gccaactacg	ccggccggcaa	81000
cgccttcctg gacggccctcg	ccgcccggcg	cgcgcacc	ggcctggcc	ccacccctcc	81060
cgcctggggc ccgtggaccc	agagcgctgg	catgacaacg	agcctgtccg	acccgtacgt	81120
cgagcgcatc gcccgtccg	gcatgcccc	gctgacccctg	gaacaggcc	ccgcctctt	81180
cgacgcggcc ctggccggcc	ggcccggcc	cctcgcccc	gtccgcctcg	acctggccgt	81240
cctgcgcacc cagggcgaca	tgcggccgt	gctgcgcggc	ctgatccga	ccccgtcg	81300
gcccacccgc gcccagggtct	cgcagacccg	cgacggccctc	gcccacccggc	tgcggccct	81360
cgacgcggcc gcccggccgg	aaggccctct	ggaactcg	cgcacccaga	tgcggccagg	81420
cctcgccac gcgacccgca	ccgagggtgg	gaccggccgc	cagtccagg	acctcggtt	81480
cgactccctc accggccgtcg	aactccgaa	cgcctgaac	accgcacccg	gcctcgccgt	81540
gcccggccacc atgggtttcg	actaccggac	accacaccc	ctcgccgacc	acctcgccga	81600
cgaactccctg ggcacccgagg	ccgagtcgac	caccggccgtc	cccggtccga	cccgatccgc	81660
cggcaccgc gacccgatcg	tcatcgctgg	catggccctgc	cgctaccccg	gccccatcg	81720
ctcaccggag gacctctggc	gcctggctcg	ccagggcgcc	gacgccaactg	gcgggttccc	81780
caccaaccgc ggctgggacc	tggacaacct	ctacgacccc	gaccccgacc	gccggggccg	81840
cacccacgtc cgccggccgg	gcttcctgca	cgacggccggc	tccttcgacg	ccgacttctt	81900
cgggatgagc ccgcgcgagg	cgatggccac	cgactccag	cagcgctgc	tgcctcgact	81960
ctcctggggaa gccgtcgaa	gcgcggccat	cgaccccgcc	tcactcgccg	actccggcac	82020
cggcgctctc gcccggctca	tgtacaacga	ctacggacc	accctgaccc	gcgacgagta	82080
cgaggcgctc cgcgccaaacg	gcagcgcccc	gagcgctcgcc	tccggcccg	tctcctacac	82140
cctcgccctg gaaggcccg	ccgtacgggt	ggacaccggc	tgcttcct	ctctggctcg	82200

cctgcactgg	gcggcgccagg	cgttgcgggc	gggggaggtgc	tcgttggcgt	tggccgggtgg	82260
tgtgacggtg	atgtcgacgc	cgagcacatt	cgtggagttc	tcgcggcagc	ggggctctggc	82320
gcctgtatgtt	cgttcaagg	cgttgcgcga	ggccgcggac	ggcgtggcct	gttccgaggg	82380
cgtcggcatg	ctggctctgg	agcggcagtc	ggacgcggtg	cgcaacggtc	acgagatcct	82440
ggccgtggtg	cgcgctcg	cggtaaccca	ggacggtgcg	tccaacggtc	tgaccgcgcc	82500
caacggcccg	tcccagcage	gggtgatccg	tcagggcggt	gccagtggcg	gcctgtccac	82560
ggccgacgtg	gacggcgtt	aggcgcacgg	cacgggtacg	acgctcggt	acccgatcga	82620
ggcccaggcg	ctccctggca	cctacggtcg	cgaccgcgcac	cccgagaacc	cgctgctgct	82680
cggctcgatc	aagtccaaaca	tcggtcacac	ccaggcagcg	gccggtgtcg	ccggtgtcat	82740
caagatggtc	atggcgatgc	ggcacggcgt	gctgcgcag	accctgatc	tcgacgcgc	82800
gtcctcgac	gtcgattgga	gcgtcgccgc	cgtcaactg	ctcaccgagc	agaccgcctg	82860
gccggagacc	ggccgggccc	gtcgcgccgg	tgttctctcc	ttcggcatca	gccccacccaa	82920
cggccacgtc	gtcatcgagc	agttcccgac	cgccgtcccc	gccacgccc	cgccccccga	82980
ccggtccgtc	gaggaaccgc	cgccgtcccc	ctggggccctg	tccggcaaga	ccccgacgc	83040
cctccgcgac	caggccgccc	gcctcctcgc	ccacgtcgag	gcccaccccg	cactgcgc	83100
cgtcgacatc	agctactccc	tgatcgccac	ccgcacccg	ttcgaccacc	gccccgtcg	83160
cctcggcacc	gaccgcgcgc	aggccctgcg	cgccctcacc	gcccctcg	ccggcgagac	83220
cgaccggccc	gcccctcaccg	gcaccgtccg	cacccggccgc	accgccttcc	tcttctccgg	83280
ccagggctcc	caacggctcg	gcatggggcg	cgttctctac	gagcggttcc	ccgccttcgc	83340
cgaagccctc	gacaccgtcc	tcaccgcct	cgacgcggaa	ctcggccacc	ccctccgcga	83400
catcatctgg	ggcgaggacg	ctcaactcgt	cgaccggacc	ggctacaccc	aaccgcct	83460
gttcgcccattc	gaggtggcac	tcttccgcct	ccttgaagcc	tggggcatca	caccggactt	83520
cgtggccggc	caactccatcg	gcpagatcg	cgccgcacac	gtcggccggcg	tgtctccct	83580
cgccgacgccc	tgccgcctcg	tcgtggcccg	cgccgtgtcg	atgcagtgc	tgcccgaagg	83640
cgccgcatg	atcgccgtcc	aggccaccga	ggacgaggtc	ctgcccctcc	tcaccgacga	83700
cgtctcgatc	gccggcgtca	acagcccac	ctccgtcg	gtctccggct	acgagaacgc	83760
caccctcgcc	gtcgccccgc	acttcgccga	ccaggggccgc	cgccaccacgc	ggctgcgcgt	83820
cagccacgccc	tccactcgc	cgctgatggc	gccatgtctc	gacgacttcc	gccccgtcg	83880
cgagagccctc	accttcaccg	ccccacac	ccccgtcg	tccaaacctga	ccggcgaact	83940
ggcccccggcc	gaggcgctct	gtcggccga	ctactgggtc	cgccacgtcc	gccccgggt	84000
ccgcttcgccc	gacggcatcc	gcaccctcgc	cgaccgcggc	gtcaccaccc	tgcgtgaact	84060
cggcccccac	agcgtgtctgt	ccgcatggc	ccaggagtc	gcccccaag	gccccggcac	84120
cattccgtcc	ctgcggccgc	acggggccga	ggaacaggcc	gtcctggccg	ccctctgc	84180
cctccaggtg	ctcggcgtcg	aggccactg	gtccgcccacc	ttccggggcc	tgcaccccg	84240
ccgcgtcgac	ctgcgcaccc	acgccttcca	gcaccgtctgg	ttctggggcc	ccggccgacc	84300
cgcccgcccc	gacgacgtcc	gcccgcgcgg	cctgggcgc	gcccacacc	ccctctcg	84360
cgccgcgcgt	caactccccg	acgacgacgg	cgcaacttcc	accggccgc	tctccctcg	84420
caccaccccg	tggctggccg	accacaccgt	cctgggcacc	gtcctgtcc	cgccacccgc	84480
actggtgaa	ctcggcgtcc	gcccggccga	cgagacccggc	agcggccacc	tgcagaagaact	84540
caccctcgcc	gcccgcctga	ccctccccga	ggacggccgc	accctctcc	aggtccgcgt	84600
cggatccgccc	gacgacacccg	gcccgcgcac	cgtcaccgtc	cacgcccgc	ccgacgcacac	84660
cgccgacccgc	acctggacgc	tgcacccac	cggtgtgtcg	gccaccacgc	caccggccgc	84720
cgccggcgttc	gacaccacgg	tctggccgc	cgccgacgac	gaaaaacca	ccaccgacga	84780
ctgctacgca	cacttcacca	cccaccgtt	cgcttacggc	cccgccctcc	agggctcg	84840
ggccgcctgg	cgcgcggcg	acgtgtctga	cgccgaggtc	gcccgtccg	agtcggccac	84900
cgacgaagcg	gccccttcg	gcctgcaccc	ggcgtctctg	gacgcccggcc	tgcacgcgc	84960
gtccctcgcc	gacgaccgcg	acaccggact	cccggttctcc	tgggaaggcg	tcaactctgca	85020
cgccctccggc	gccaccgcgc	tacggtcccg	gtcggccccc	aacggcccca	acggcctgtc	85080
cgtcaccgc	gccgaccggc	ccggcaaccc	cgtcgcacc	gtcaccgc	tgcctcgcc	85140
ccccctggac	gccgagcgt	tgaccatcca	cagccgcctg	acccgcacg	cgcttccca	85200
cctggactgg	accocggtcc	cgcttccga	caccgcac	tccgcgc	ccggccctcc	85260
cgcccccggac	accgcgtgc	tcgcccacgc	cctggcgac	ccggccgtcg	cacgcacgc	85320
aaccctcgac	gaccccttgg	ccggggacac	cacccgc	gccacggtcc	tgcctccccc	85380
cggcgcggca	ctcgacggcg	acaccgc	gacgcgcac	gccctcacc	gacgcgcgt	85440
gaccctcgtc	cagcagtggc	tcgcccacgc	cacgcgtcg	gactccgc	tggcttcgt	85500
cacccacgg	gccgtcgcca	ccgacgacgc	gccccccacc	gacctggccg	ccggccgggt	85560
ctggggcctg	atccgctccg	cgcagaccga	gaaaaacccggc	acccgcaccc	tccctcgaccc	85620
cgacaccgg	cccgactcga	ccaccgcgt	cagccgcgc	ctgaccctcg	acgaaccaca	85680
gctccctcc	cgcgcggcc	gccccggc	ccccggcctc	acccgcaccc	ccggcccccac	85740
caccaccacc	cacacgcgcgt	ggtccgcgga	cggaacgggt	ttgggtacgg	ttgggtacgg	85800

tggctctgggt	gggttggtgg	ccggcatct	ggtcggtcg	tgtgggtgc	gcattttgtt	85860
gttgcacagt	cgttctgggt	tgggtgcgc	gggtgcggcc	gggttggtcg	cggagtttgg	85920
gtcggtggc	gcgcggggtt	tgggtgcggc	gtgtatgt	gtgtatggct	cggctgttgc	85980
ggagttgggtt	gccggtgtgt	cggagtcgt	tccgttgct	gcccgtgtgc	atgcggctgg	86040
tgtgttggat	gacggtgtgg	tgggttcgtt	gacgccggag	cggttgctg	cgtgttgcg	86100
tccgaagggt	gatggtgcgt	gaaacctca	tgaggcgacg	cgtggtctgg	atctggacgc	86160
gtttgttgc	ttctcgctg	ttgcgggtt	tttcgggggt	gcgggtcagg	ccaactatgc	86220
ggcggttaat	gcgttttgg	acgcgttgc	gttcatcg	gtggctgttgc	ggttgcctgg	86280
tgtgtcggtt	gcgtgggttgc	cttggatca	gggtgtgggg	atgacggcgg	ggctgacgg	86340
gcgggatgtc	cgtcgctgt	ctgagtcggg	tatggcggtt	ttgacggttgc	atcagggtgt	86400
ggcggtgttc	gatgcggcgt	tggcgacggg	gagtgcgcgc	ttgggtccgg	tccgtctgg	86460
cctggccgca	ctgcgcaccc	ggggcgacat	cgacccgc	ctccgcggcc	tgcgtccgcgc	86520
accgctgcgc	cgcaccgcgg	ccaccggct	cgccacccggc	gcccacaccg	gcctcgctcca	86580
acggctcgcc	cgactcgacc	acgcccacg	ccacgaggca	ctgctcgaca	tggccgcag	86640
cagcgccgcg	ctcgccctcg	gccacccgc	cgcaacgc	atcgacccgc	aacgcgcctt	86700
cccgacccgc	ggcttcgact	cgctcacccgc	ggtcgaactc	cgcaaccgc	tgcgcacccgc	86760
caccggccgt	cacctgtcg	ccaccatgtt	cttcgaccac	cccaccctgt	ccgccttcgc	86820
ggagcacctg	cgggacgagt	tgttcggcgc	ggtcgagagc	gaggtgcggg	tggccgttcca	86880
ggcactgcgc	ccgaccgcgg	acgatccat	cgtgttgggt	ggcatggcct	gcccgttccc	86940
cgggtgtgt	acctcgcccc	aggacctgt	gcccctggc	gacgacggca	ccgacgcacat	87000
caccaccc	ccgaccaacc	gcccgtggg	cctggacaac	ctctacgacc	cgacccccga	87060
gcacttcggc	acgtcgata	cccgctccgg	tggcttcctg	cacgaggcgg	ggaggttcga	87120
cccgcggttc	ttcggaatga	gcccgcgt	ggcgtggca	accgactccc	aacagcgtct	87180
cctgctggaa	tcctctggg	aggcgatcg	gcggggccggc	atcgacccgc	tgaccctcg	87240
cggcagcgcc	accggcgtct	tcgcggcg	gatgtacagc	gactacggg	gcatctcg	87300
cggaaggag	tgcagggtc	tccaaaggcca	ggaaagtgcg	ggcagcgtgg	cctcgccggc	87360
cgtctccat	gcctcggt	tgcaggggccc	ggccgtc	gtggacacgg	cttgccttc	87420
ctctctggc	gcctcgact	gggcggcg	ggcgttgcgg	gccccggagt	gctcggttgc	87480
gttggccgt	gggtgtacgg	tgtatgtcg	gcccggac	ttcgtggagt	tctcgccg	87540
gcgggtctg	gcgcctgat	gtcggttcaa	ggcgttgc	gaggccgcgg	acggcgtc	87600
ctggtccgag	ggcgctggca	tcctcgctt	ggagcgccag	tcggacgcgg	tgcgaac	87660
ccacgagatc	ctcgccgt	tccgcggct	ggcggtaac	caggacgg	cgtccaac	87720
cctgaccgcg	cccaacggcc	cgtccca	gcccgtc	cgtcaggcgt	tggccagtgg	87780
cggcctgtcc	acggccgacg	tggacccgt	cgaggcgc	ggcacggta	cgacgctc	87840
tgaccgc	gaggcccagg	cgctcctgg	cacccac	cgtaaccgc	accccgagaa	87900
ccccctgtgg	ctgggctccc	tgaagtccaa	catcg	acccaggc	cggccgg	87960
cggcgtgtc	atcaagatgg	tcatggcgat	gcccacgg	gtgtgcgc	agaccctgc	88020
tgtcgacgc	ccgtcctcg	acgtcgatt	gagcgtcg	gccgtcg	tgctcacc	88080
gcagaccgc	tggccggaga	ccggccgggt	ccgtcg	ggtgtcttct	ccttcgg	88140
cagcgccacc	aacgcccacg	tcatcg	acagccgg	ctcg	gaaa	88200
ggagccgagc	ggacgcga	ccggcgt	tccgtcg	ctgtccgg	atgtcccc	88260
ggccctgcgc	gaccaggcc	cacgcct	ggccgggt	gcccggc	ccgcgtc	88320
cccgctcgac	ctcggtact	cgctggcg	gaccgtt	gcgttc	accgggg	88380
ggtgctcgcc	accgaccgc	ccgatgc	ccgcgtc	acggcgtc	ccgcgg	88440
cgcggatctc	tccgcgt	tccgc	ccgcacgg	cgtc	acgcgg	88500
gggtcagggc	tcgcaacgc	tggcatgg	gggtgagtt	tacg	cgatgtt	88560
cggcggaggt	ctcgatgtcg	cgatcg	ccctggac	gccttgc	cccaggcc	88620
tctgcgtgag	gtgtatgtgg	gcgacgat	cgagctgt	gacg	gacgac	88680
gccggctctg	ttcggcgt	agggtgg	gttccgg	gtgg	gaggtt	88740
tccggactt	gtggccgg	atccatcg	ttagatcg	gcccgc	atcg	88800
gttctcgct	gaggacgc	ggcg	ggcccccgt	gcccgc	tgcagg	88860
gccgaccggc	ggcgcat	tccgc	ggccgc	gacg	gacgc	88920
gactgacgac	gtctcgat	ccgcgt	ccgcgc	tccgt	tctccgg	88980
cgagagcg	gccccac	tggccg	gctcg	aa	ccgcgc	89040
gctcggtgc	tcgatcg	tccact	gttgc	ccgat	cggtt	89100
tgcgggtgg	gaggacgc	cctac	ccgcac	cccgt	cgtac	89160
ggggccgg	gccacggcc	atgac	ctcgcc	tact	ggccgc	89220
cgaggccgg	cgctcg	acggcgt	caccctgg	aac	gaggcc	89280
cctggaaact	ggacggac	gcgtgt	cgccatgg	cagc	atcg	89340
cgccgcacc	gtccgg	tccgcaag	ccgcgac	gagac	gtcc	89400

cctcgccccac	ctccacacgg	caggctcccg	cgtcgactgg	gcggcggttct	tgcggcggcag	89460
cgcgccacc	cgcgccgacc	tgccgaccta	cgccctccag	cacgccacct	actggcccac	89520
cggcaccc	cccacccgcgc	acggccggc	cgtggcctc	accggccgg	agacacccgt	89580
gctgaacggt	tcggtcgaac	tcgcccgaagg	cgaagggggtg	ttgttccaccg	gacggctgtc	89640
actgcagtca	catccgtggc	tggccgacca	cgcgtcatg	ggacagggtcc	tgtgcccgg	89700
caccgcactg	ctggaaactgg	ctggccggc	cggcgacgag	gcccgttgcg	accgcgtcga	89760
gaaactgacg	ctcgccgac	cgctcgctct	gcccggagcgc	ggtgcggta	agacccaggt	89820
ccgggtcggc	gtcgccgacg	acaccggccg	ccgtaccgtc	accgtccact	cccgccgg	89880
gcacgcgacc	gacgtgtcg	ggacccagca	cgcgaccggc	accctgacca	tgggctccgc	89940
cccggccgac	accgtttcg	acgcccactgc	ctggccggcc	gcccacgccc	aaccctcgc	90000
caccgacgac	tgctacgcgc	gcttcacgac	gctcggttc	gcctacggc	cgttcttcca	90060
gggcctcgg	gccgcctggc	gcccgggtg	cgtgtgtac	gcccgggtgg	ccctggcgga	90120
gtccaccggc	gacgaggcga	ccgccttcgg	tctgcacccc	gactgtcg	acgcccggct	90180
gcacgcctcc	ctcgctgccc	acgagggcga	ggagagcaac	ggcggactgc	cgttcttcgt	90240
ggagggcgcg	accctctacg	cgaccggcgc	caccggcgt	cgcgccggc	tgaccccgac	90300
gggcacccgac	ggccgttcgg	tggccatcg	cgtggccgac	accgcggc	gtccggcgc	90360
cgccatcgac	aacctcgct	cgcgcccgt	ctccggcgc	cagttgac	gcccggcgg	90420
actggccccc	gaccccgt	tcacccctgg	ctgaaacccc	gtaccggaga	acctcgta	90480
ggagaaccct	gtacggaga	acaccggcg	ggccacgac	caggaccagg	acggccggcc	90540
cgccgcggcc	accgtcgac	tggtcggcgc	ggacggcacc	gcatcgcc	ccgacactgac	90600
cgccgcggc	atccacacca	ccctccaccc	cgacctcacc	accctcgcca	cgaccgacgc	90660
cgacgttccg	aagacggtcc	tcatccccct	caccggaaacc	gaaacggaa	ccggcaccgg	90720
gactgagtcc	acggacggaa	tcgggacggg	ggccggcggag	tcggacgcgt	ccgccccctc	90780
cccgcccgag	gtcgccccaca	ccctgtccac	cgcgcactc	gcccctgtcc	aggagtggac	90840
cgcacaggag	cgctcgccg	gctcccgct	ggcggtcg	acgacccggg	cgacggccgc	90900
cgcggttacc	gacgtcatgg	acgtggccgc	cgcgcggc	tggggcttgg	tccgatccgc	90960
ccagtcggaa	gccccggaca	ccttcgtct	gatcgaccgt	gacccggcc	cggccggc	91020
gcacgaccgc	acagccggcg	ccgaacgggg	ccaactgctc	ctacggcac	tgcacaccga	91080
cgaaccgcag	ctcgccctgc	gtacggccg	cgtgtcgcc	gcccgcctgg	ccgcgttcga	91140
caccgcggcc	gwgctcacc	cgccggccga	ccgggcctgg	cggctcgaca	gacggccaa	91200
gggcagcc	aacggccctcg	ccctgacccc	gtatccggcg	gcaactggc	cgtcaccgg	91260
ccacgagggt	cgggtcgagg	tgcgtccgc	gggcctgaac	ttccgtgac	tgtcaacgc	91320
gttggggatg	tatccgggt	atgatgtcg	atcggtcggt	tcggaggcgg	ccgggttgt	91380
cgtcgagggtc	ggacgggagg	tgaccggct	ggcccccggc	gaccaggta	tgggcatgat	91440
caccggc	tgcggctcgc	tgcggctgga	cgacggccgg	cgctcgccc	gcctggccg	91500
ggactggtcc	tggagacgg	tgcgctcggt	gcccgttgg	ttccctcacc	cgtaactacgc	91560
cctgaaggag	ttgggtggc	tgcggtgggg	ggagaagggt	ctgggtgat	ccgggtccgg	91620
ttgtgtcggt	atggcgccg	tccagatcg	ccggcatgt	ggtggccagg	tgttcgccc	91680
ggccagttag	ggcaagtggg	acgtgttgc	ctcgctcg	gtggccgac	accacatcg	91740
ctccctccgc	accctcgact	tcgaggccgc	cttcgccc	gtcgccggcg	accggccct	91800
ggacgtcg	ctcaactccc	tcgcccgt	ttcgtcgac	gcctcgat	ggtgtcg	91860
cgacggccgc	cgggtccctgg	agatggcaa	gaccgacatc	cgccggcgg	actccgttcc	91920
cgacggcc	tcctaccgt	ccttcgac	cgcctgggt	gtggccgaaa	ccatcgac	91980
catgtggcc	gagctgtatgg	acctttcc	caccggcg	ctgcccac	tcccgtcc	92040
cacctgggac	gtccggc	ccaaggacgc	gttccgtt	atgagcat	ccaagcacat	92100
cggaagatc	gtgtcacc	tgccccgtc	ctgaaagccc	gagggaaacgg	tgttggtgac	92160
gggtggta	gggtggctgg	gtgggttgg	ggccggcat	ctgggtcg	cgtgtgggg	92220
cgccgattt	ttgtgtacca	gtcggttctgg	tgtgggtgt	gcccgtcg	ccgggttgg	92280
cgccgagg	gagtcgttgg	cgccgcgggt	tgtgggtcg	cggtgtat	tgggtgtatgg	92340
ctcggtgtt	cgccgagg	ttgcccgtgt	gtcggtcg	tatccgtt	ctgcgggtgg	92400
gcatgcgg	ggtgtgttgg	atgacgtgt	ggtgggttc	ttgacggc	agcgggttgg	92460
tgcgggtt	cgtccgaagg	tggatgg	gtggAACCTG	catgaggc	cgcgtgg	92520
ggatctggac	cggtttgtt	tcttcgtc	tgttgcgggt	gtgttccgg	gtcgccgtca	92580
ggccaactat	gccccgggt	atgcgtttt	ggacgcgtt	atggttcatc	gggtggctgg	92640
tgggttgc	gggtgtcg	tggcgtggg	tgcttgggt	cagggtgtgg	ggatgacggc	92700
ggggctgacg	gagcgggatg	tccgtcg	tgctgagtc	ggtatggcgt	tgttgcgg	92760
tgatcagggt	gtggcggt	tcgatgcgg	gttggcag	gggagtgcc	cgttggtg	92820
ggtccgtcg	gacccggcc	cactgcgcac	ccggggcgac	atgcacccgc	tcctccgg	92880
cctggta	gccccatcc	gcccgcac	cgccaccaca	cccggcgaca	ccggactcg	92940
cgagcagctc	accggctcc	agcgcgccg	gacggacgg	accctctcg	cgctcg	93000

cgaccaggcc	gcatggtcc	tcggccacac	ctcgccgcac	ggcgtcgacc	cgtcccgcgc	93060
cttcgcac	ctcggttcg	actcgctcac	cgccgtcgaa	ctccgcAAC	gatcgccgc	93120
ggccaccggc	ctgcggctac	cgccacggc	cgcttcgac	taccccaaccg	cgatgccc	93180
cgccgcacac	ctgctcaccg	aactgctcg	ccccgacgcc	gagtcgacc	ccgacgagcc	93240
cgccgacccc	accgcgggac	cgaccgacga	ccccatcg	atcatcgca	tgagctgccc	93300
cttccccggc	gacatcggt	cgccggagga	cctgtggcgc	ctgctcg	acggcgccga	93360
cgctgtcacc	gactcccga	ccaaccggg	ctgggacctg	gacaacct	acgaccccga	93420
ccccgcgeac	gccggcacct	cgtaccccc	caccggcggt	ttcctgcac	acggcgccga	93480
cttcgacgcc	gacttctcg	gcatgagccc	cccgagggc	atggccacgg	actcccagca	93540
gcccctgt	ttggagtct	cgtgggaggc	gatcgagcgg	gccggcatcg	acccgctgac	93600
cctgcgcac	agccgcacccg	gcgtcttcgc	cgccgtcatg	tacagcggt	acggcacccc	93660
cctcgacggc	gccgaattcg	aaggcttcca	ggggcagggc	agcgcactga	gctggccctc	93720
cggccggggtc	tcctacacct	tcggcttcga	aggcccggc	atgacggtcg	acaccgcctg	93780
ctccttcctcg	ctggtcgccc	tgcacctcgc	cgacacaggca	ctccgcggcg	gtgagtgac	93840
cctcgccctc	gccgggtggt	tcaccgtat	gtccatccc	gacaccc	tcgagttctc	93900
ccggcagcgc	ggactggccc	ccgacggccg	ctccaagccg	ttctccgagt	ccggcagcgg	93960
cgtcggctgg	tccgagggcg	tcggaatgt	gctctggag	cgccagtcgg	acggcgtcg	94020
caacggccac	cagatcctgg	ccgtggtgcg	cggtctggcg	gtcaaccagg	acggtgcgtc	94080
caacggccctg	accgcggccca	acggcccg	ccagcagcgg	gtgatccgtc	aggcgttggc	94140
cagcggccgc	ctgtccacgg	ccgacgtgga	cgccgtcgag	gfcacaggca	cgggcaccac	94200
gctcggtgcac	ccgatcgagg	cccaggccct	cctggccacc	tacggcccg	acccgacccc	94260
cgagaacccg	ctgtgtctcg	gttcgatcaa	gtccaaacctc	ggccacaccc	agcagccgc	94320
cggtgtcgcc	ggcgtcatca	agatggtcat	ggcgtatgcg	cacggcgtgc	tgccccgcag	94380
cctgaacatc	accgagccgt	cctcgacacgt	cgattggagc	gccggcccg	tcgaactgt	94440
caccgagcag	accgcctggc	cgagagaccgg	ccggggccgt	cgcggcgta	tctccctcct	94500
cgcatcagc	ggcacaacg	cccacgtcat	cctggagcag	ccggaggccg	cgccgcactc	94560
ggcgcggaa	gaagccgaca	cgcgaggagc	agccgccaag	gfcgcggcca	ccgcgcaccc	94620
gcccgtaatg	ccgtgggcac	tgtccggcaa	gacgcccggag	gccctgcgt	cccaggccgc	94680
acgcctcctc	gcccaccc	agcagcgc	cgaaactcgca	cccggccaca	tcgcccgtc	94740
cctcgccacc	cagcgctccc	agttcaccca	ccggcagtc	gtcctgagca	ccgaccgtga	94800
cgagggcacc	cgcgctgt	ccggccctcg	caccaccgc	gctcccgacc	cctcggccct	94860
caccggcacc	gtcaccatgg	gacgttgcgc	ggtgtgtt	tcgggtcagg	gctcgcaacg	94920
tctgggcatg	ggcgtgagt	tgtacgagc	tttcccggt	ttcgcggagg	ctctcgatgt	94980
cgtgatcgat	cacctggacg	ccgccttgcc	cgcccaggcc	ggtttgcgt	aggtgtatgt	95040
gggcgcacat	gtcgagttgc	tgaacgagac	gggttggacc	cagcccgcgc	tcttcgcac	95100
cgaggtggcg	ctgtttcgcc	tggtgagag	ttgggtgtc	cgtccggact	tcgtggccgg	95160
tcattccatc	ggtgagatcg	cgccggcgca	tgtcgctggg	gttgcgt	tggaggacgc	95220
gtccgcgtcg	gtggccgcgc	gggcgcacgt	gatgcaggcg	ttgcccggc	gtggcgcgt	95280
gatcgccgtc	caggcgaccg	aggacgaagt	catccgcac	ctgaccgacg	aggtggcgt	95340
cgccggccgtc	aacggcccg	cctccgtgt	gatctcg	gcagaagagg	ccacgcagac	95400
cgtggcaca	cacttcgccc	accaggggcg	ccggacgacc	gfcgtcg	tctcgatgc	95460
gttccactcg	ccgtgtatga	tgcgtgg	gttccgtcg	gtggccgagg	gcctgtccta	95520
cgccaccccg	accctcccc	tgcgtctcgaa	tctgacgggc	caggtggcca	cgccgcacga	95580
actctgtcg	gcccgtact	gggtgcgca	cgccgtcg	gcccgtcg	tcgcccacgg	95640
tgtgacggcc	ctcgaaagccg	agggcgtcg	gaccttcctg	gaactcg	ccgacggcg	95700
cctcgccccc	atggccaggg	aaaccgtcgc	cgacgacacg	gtcaccgtcc	ccgtccctcg	95760
caggaacatg	cccggaggaac	ggaccctgt	caccgcactc	ggccggctcc	acaccacccg	95820
aaccccgatc	gactgggccc	ccctccgtgc	cccgacccgc	gcccggccgg	tgacccgtcc	95880
gacatacg	ttccaacacc	gtccctctg	gcctccggc	ccccgcgaca	ccgcggatgc	95940
cgccgcgcgtc	ggcatcgccg	gfcgcagc	ccgcgtcc	aacggcatcg	tgcactcg	96000
cgacgaagag	ggcgtgtt	tcaccggacg	gctgtact	cagtcgc	cgtggctg	96060
cgaccaccc	gtcatggac	aggcctcg	gcccggcacc	gactgtcg	aactcgcc	96120
gfcgcggccgc	gacgagggtcg	gctgtacca	cggtcgaggaa	ctgacgtcg	ccgcaccg	96180
cgtcctgc	gagcgccggc	cggtacagac	ccaggtcccg	gtcggcgtcg	ccgacaccac	96240
cgggcgcgc	accgtcacga	tccactcg	tcccgacgc	gccacgacca	ccgacagtg	96300
cacccacacc	ggcaccgaca	ccccgtggac	ccaaacacgc	accggcg	tcgtcgccgg	96360
cctgcggccg	acggcaaccg	tcccgttgc	tgccaccgt	tggccggccgg	cgcacgccc	96420
acccgttgcac	ctggcggact	tctacgcgtc	ccggggccggc	gaaggattcg	gctacgggccc	96480
cgctttccag	ggcctgcgag	ccgcctggcg	ccgcgcacgc	gaggtgttgc	ccgatgtcg	96540
actgcggag	gccggccgt	ccgaagccga	ggcgtacggg	ctgcatccgg	cactgctcg	96600

cggccggactg	cacgcagcct	ggctcgctcg	ccccggacggg	gagcccacac	ggacgggcag	96660
cgtgccgttc	tcgtggcg	gcgttttcc	ggccgcttcc	ggtccttc	cgtcccgcg	96720
ccgactcg	cgca	actccg	acggaa	gaggc	atcgccaca	96780
accgggtcg	tccgtacagg	ccctctccat	gcccac	tcgg	tcggtgacgg	96840
caccgcgg	ctcgcccc	acgcgtt	ccgcctgg	tg	ccctgagcgc	96900
ggcgtg	ccggac	cggtgacc	gatcccgg	gtcg	cggtcg	96960
aacctccgaa	ctcac	tcctccg	agtc	ggcc	tcggtacgg	97020
cgtccgcac	acc	ctgtcg	ccgat	cgcc	ccgacgtcg	97080
cgcc	cac	ccgac	ccgaga	ggc	ccggcc	97140
cacccg	ccg	ccgtac	ccgcct	gagc	tcgggac	97200
gaagt	tcgt	ttcg	gtgt	gt	tcgtcg	97260
gtgggg	tcgt	gtcg	cg	tcgt	tcgtcg	97320
gatccg	gtgc	cggt	gtgc	gcgt	gtgtgagc	97380
gcag	ttgc	gtgc	atgt	gtcg	ctgg	97440
cgagg	tcgt	gtgg	atgg	ggcc	ggccgtc	97500
gttctcg	gggg	tcct	ggcc	gggg	ctgg	97560
ggcgcgt	cat	ctgg	atgt	gggg	gtgc	97620
tgaac	gtgc	gtgg	gggag	gtgg	gtgc	97680
gcggg	gtgt	tgacc	tgcc	gtgg	gtgc	97740
tgcgg	gttc	atgc	cggt	gtgt	gtgg	97800
gaccgg	cggt	cggt	gcca	gatg	gtgt	97860
tgagg	gcacc	atctgg	ggca	atct	ggcc	97920
cttcgg	ca	actac	ggcc	cc	cttc	97980
gacgcgg	ccgg	gact	cc	cc	cc	98040
gaccgat	atcg	tgct	cgcc	gatc	ccgt	98100
agtgc	acc	ctg	ggact	gacg	ccgg	98160
tgac	ccacc	tcgc	ttcc	tcgt	ccgg	98220
gccgc	cctg	ctcg	cc	tcgt	ccgg	98280
ggcaacc	accgg	ggaa	ctgt	cgcc	ccgg	98340
agtcc	cctg	gacc	ccgt	cc	cc	98400
cgacgtt	cat	ccgg	cctc	actc	cc	98460
actgc	caac	ccgt	acc	tc	cc	98520
ctatcc	gacc	gtcg	acc	tc	cc	98580
cgagg	tgcc	acc	ggcc	gtc	cc	98640
gggc	atgg	tc	gggg	cc	cc	98700
cacgg	acgg	tg	cc	cc	cc	98760
cctctat	ccgg	accat	tc	ac	cc	98820
gcat	gagg	gggg	cc	tc	cc	98880
gaccg	attc	cagc	cc	cc	cc	98940
tattg	atcc	gtgt	gggg	cc	cc	99000
cgatt	ac	gggt	atcg	cc	cc	99060
gccg	agtt	gggt	gggg	cc	cc	99120
gg	tgcc	gggt	gggt	cc	cc	99180
tag	gtgg	cc	gggt	cc	cc	99240
gtt	gtgg	cc	gggg	cc	cc	99300
ggat	gcgg	cc	gggt	cc	cc	99360
gtcgg	ac	gtcg	cc	cc	cc	99420
ccagg	at	gtc	cc	cc	cc	99480
ccgg	ca	ac	cc	cc	cc	99540
tgg	cc	gtat	cc	cc	cc	99600
tgg	tc	cc	cc	cc	cc	99660
tac	cg	cc	cc	cc	cc	99720
tgt	gg	cc	cc	cc	cc	99780
tgc	gg	cc	cc	cc	cc	99840
gggt	gt	cc	cc	cc	cc	99900
ggcc	cg	cc	cc	cc	cc	99960
gctt	cc	cc	cc	cc	cc	100020
cgag	ac	cc	cc	cc	cc	100080
gacc	tt	cc	cc	cc	cc	100140
gtcg	cc	cc	cc	cc	cc	100200

tcgtcacgcg	gtgctgttct	cgggtcaggg	tgctcaacgt	ctgggcattgg	ggcggtgagtt	100260
gtacgagcgt	ttcccggtct	tcgcccaggc	tctcgatgtc	gtggtcgacc	acctggacgc	100320
cgccttgc	ccccaggccg	gtttgcgtga	ggtgatgtgg	ggcgacgatg	cggagttgtct	100380
gaacgagacg	ggttggacgc	agccggctct	gttcggccatc	gaggtggcgc	tgttccggct	100440
ggtggagagt	tgggtgtcc	gtccggactt	cgtggccgg	cattccatcg	gtgagatcgc	100500
ggcggcgc	catgtcgcggg	tgttctcgct	ggaggacgcc	tgccgcctgg	tggccgcccc	100560
tgcgacgc	atgcaggcgt	tgccggccgg	cggtgcatgc	atcgcggtcc	aggcgaccga	100620
ggacgaagtc	accccgatc	tgaccgacga	cgtagcgatc	gccgcacatca	acggggccgaa	100680
cgcactggc	gtatcggtg	tggaggatgc	cgcgtcgc	atcggggcgc	ggttcgcggc	100740
cgaggggcgt	cgcacgaccc	gactccatgt	gtcgcatgc	ttccactcgc	cgttcatgg	100800
tccgatgt	gccccgttcc	gtgtgggtgc	ggagggcctg	tcctatgtct	ctccgtccct	100860
ccccgtc	tcgaatctga	cgggcccagg	ggccacggcc	gacgaactgt	gctcgccgaa	100920
gtactgggt	cgccacgtcc	gcgaggccgg	ccgcttcgc	gacggggta	cggccctcga	100980
agccgagggc	gtgcccacct	tcctggaaact	cgccccggac	ggcgtcctcg	ccgccatggc	101040
aggagcctcg	ctcaccgaat	cctccctcgc	ggtaccgctg	ctccgtaaagg	acccggccgaa	101100
gaaaccggc	gcactcgccg	ccctggccca	gttgcacatc	gccggcgccgc	gcgtcgattt	101160
ccccgtc	ttcgcgtgt	tgggtgcggg	gcgggtggag	ttgcccacgt	atgcgttcca	101220
gcgtgggtt	ttctggccgg	ttggtcgggt	tgggttttgt	ggtatgtgg	gtgctgtgg	101280
gcttgggtct	gccccggatc	cgttgttggg	tgtgcgggt	gagttggctg	cgggtgcggg	101340
ggtgggttgt	acgggtcg	tgtcggttgc	gtcgcatgtt	tggttggctg	atcatgcgg	101400
gatggggcgg	gtgtttgttc	ctggtaacggc	gttgcgtggag	atggtgatgc	gtgctgtgg	101460
tgaggtgggg	tgtgtcg	ttgaggagct	gacgttggcg	gcgcgttgg	tgttgcctga	101520
gcgtgggtt	gtgcgggttc	agggtgcgt	ggatgcctt	gatgtcg	gtcgctgtgg	101580
tgtgggggtt	tattcg	ctgtatgtt	gggtcaggcg	gtgtggcgc	agatgtctgt	101640
cgggtgtt	gcctctgg	tggctgacca	gtcgggtgg	ttcggtgac	gtgggtgtgt	101700
gccgcgc	ggtgcgggt	cgggtggatgc	tgagggctgc	tacgagctgt	ttcggtatgc	101760
tgggttc	tatggcccg	tgttccaggg	gttgcgtgc	gtgtggcgc	gcggcgagga	101820
actttcg	gaggtcgccc	tgtcggacga	ggttgcgttag	agcgtgtata	cggcgaccgg	101880
tttgggtt	caccggcgt	tgctggatgc	ctcgctccat	gcctcg	tctccctccct	101940
tgaaggta	tccggcgat	gtgggcctgc	gttgcgttc	gcgtgggagg	gttgcgttcc	102000
tttcgc	ggtgcgacgg	cttgcgcgt	gcgttggcg	ccggcggtg	agatgcgg	102060
gtcggt	gccccggatc	cgaccggc	gcccgtatt	tccatcgac	cgttcgtac	102120
cgcgc	accctcgat	aggtaacgc	atccacacc	cagctgac	atgcgttctt	102180
cggcg	tggaccacgg	tcccggac	ccccggccgc	gaccacccgt	cggtagccat	102240
catcg	gaccacctgg	ggctcgccga	agcgtcagc	agttcctctg	ctggcgccac	102300
cacgaccacg	accggccgc	cgtacgagag	ccttgacgc	ctgatcg	cgggggccg	102360
agtgtcc	cctgacgtca	cactcatcg	tctaccacc	gaggaccca	tcgtcagta	102420
cgtga	cacgacgca	cgggtggcc	ccaaggcacc	atcgagcc	gcgcggcg	102480
cgtagac	gtcgccg	tcaccggc	gcctcgcc	acgtccagg	catgggtgg	102540
cgcac	ctggcg	ggcgcttgg	cttcgtgacc	cgccggcg	ccgacgggca	102600
ggatgtc	gcggcgcc	tccaggcc	gttgcgtcc	gcccagacc	agaacccgg	102660
cac	ttcg	tcgacggac	cgaggcg	accgcgttcc	tcggcgagg	102720
tctcac	tcc	aactgttct	gcccgttcc	cacctgcac	ccgcccagg	102780
gac	gacaccgc	gtcgatgc	cggtcccacg	gagtggaa	cggacggcac	102840
gac	cccg	ccgacacgg	cgtgtccacg	ggatggaa	cggtggcc	102900
ggt	gtcg	ccggcggtt	cggtggcc	ttcgacggc	acctcg	102960
cagg	tacggc	gtccgcaatc	tcctgtcg	cagccggcgc	ggccccatg	103020
cacgg	gatgtt	gtcgccg	tgacggccga	cggtggcc	gtggccgtgc	103080
cgtgg	ccgt	ggcgtatgc	tggcgccgtt	gttgcgtcc	aggatgtga	103140
gagg	gggt	gtccacacgg	cggtgtgtt	ggacgacgg	gtatcggt	103200
ggag	gggt	gccaccgtcc	tgcggccaa	ggcgatgc	gcctggatc	103260
gac	cccg	ctggacctgg	acgcgttgc	cgttcttc	tccgtcg	103320
cgg	ccgg	caggccaa	acgcgcggc	caacgcctt	ctggatgc	103380
gcgc	ccgg	gtcgcc	ccggacttcc	gttgcgtcc	tgatggcc	103440
cgga	atgt	ggcatgtgt	cggacgcga	ggccgaccgc	ctcgcccg	103500
gccc	gtcg	ggcgacgc	gtcgatgc	gcaactcg	ttggcc	103560
cac	acgc	gacagggc	ccggcagc	cgccgccc	acgtcg	103620
gat	ccgc	ccggccg	ccctcg	accgtccgg	cgcgct	103680
cgc	cgcc	cgatgttcc	cgattctcg	cgactgttg	cgacccgca	103740
ggc	ggcc	ggtccgtca	ccgtggccgg	actcgtaac	cgcctgtcc	103800
cgac	cgcc	cgccagga	ttctcg	ggtccgact	caggcagccc	103800

gcacgcccgt	ccggcggtccg	tggactccac	cgcacagttc	cgtgacctcg	gcctcgactc	103860
gctgaccgccc	gtcgagctgc	gcaaccggct	gagcacggcc	accggcctgc	gcctgaccgc	103920
aaccctggtc	ttcgactacc	cgaacaccga	tgcctcgcg	gagcacctgc	gggacgagtt	103980
gttcggcgcg	gtcgagagcg	aggtgcgggt	gccggtccag	gcactgccgc	cgaccgcccga	104040
cgatccccatc	gtggtgttgg	gcatggcctg	ccgtttcccc	ggtggtgtga	cctcgcccga	104100
ggacctgtgg	cgccctggtcg	acgcccgcac	cgacgcccattc	accacccccc	cgaccaaccg	104160
cggtctgggac	ctcgaaatcgc	tctacgaccc	ggaccccccga	cacccctcgca	cctccctacac	104220
ccgctccgggt	ggcttcctgc	acgaggcggg	ggagttcgac	ccggcgttct	tcgaaatgag	104280
cccgcgtgag	gcfctggcaa	ccgactccca	acagcgtctc	ctgcttggaa	cctccctggga	104340
ggcgatcgag	cgggccggca	tgcaccccgct	gaccctcgcc	ggcagcggca	ccggcgttct	104400
cgccggcggt	atgtacagcg	actacgggag	catttcggc	ggcaaggagt	tcgagggctt	104460
ccaaggccag	ggaagtgcgg	gcagcgtggc	ctcgggccgc	gttccttaca	ccctcggtt	104520
cgaaggccc	gccgttaccgc	tggataccgc	ctgcttcc	tccctggtc	ccctgcaccc	104580
ggcagccca	gcccctcggg	cggtttagtgc	cacgctcgcc	ctgcccgtt	gtgtgacgg	104640
gatgtccac	ccaggcacgt	tcgtggagtt	ctcgccggc	cggggtctgg	cgctgtatgg	104700
tcgttccaa	gcgttcggcc	aggccgcgg	cggtgtcgcc	tggtccgagg	gcgtcggtat	104760
cctcgccctg	gagcgccagt	cggacccgt	gcfcaacggc	cacgagatcc	tcgcccgtat	104820
ccgcggctcg	gcggtaacc	aggacgggtc	gtccaaacggc	ctgaccggc	ccaaacggccc	104880
gtcccagcag	cgcgttcatcc	gtcaggcggt	ggccagttgc	ggcctgttca	cgggccgacgt	104940
ggacgcccgc	gaggcgacac	gcacgggtac	gacgctcggt	gaccggatcg	aggcccaggc	105000
gctccctggcc	acctacggcc	gcfaccggcga	ccccgagaac	ccgctgtgc	tcgggttcgat	105060
caagtccaa	ctcgccaca	cccaggcagc	ggccgggtgc	gccgggttca	tcaagatgg	105120
catggcgat	cggtcacggcg	tgctgccc	gaccctgtat	gtcgacggc	cgtccctcgca	105180
cgtcgattgg	agcgtcggcg	ccgtcgaact	gctcaccgag	cagaccgtct	ggccggagac	105240
cgggccgggc	cgtcgcccg	gtgtcttcc	cttcggcata	agcggcacca	acgcccacgt	105300
catccctggaa	cagccggagg	ccgtgcagcg	cctggcaccg	ggagcagcag	agaccgttgg	105360
gccggtcgccc	atcaagccgt	cggtggaaacc	gtccctgggt	ccgtggcgc	tgtccggcaa	105420
gtcaccccgag	gcccgtcgcc	cccaggccgc	acgcctccgt	gacttccgtt	cggaacggcc	105480
cgaaccggcgc	tgcgtatcgaca	tcggccactc	actggccgtc	acacgtcgc	agttcgacca	105540
ccgcgcgatc	gtgtggtcg	acgatgcgaa	ggcccccggc	gacagcctgg	ccgccttcgc	105600
ggccctggcc	tccgggttgg	ccgatcccgc	cgtegtctcc	gacgcggtat	cgaccggcgg	105660
ttcggcagtg	ctgttccacag	gtcagggtgc	tcaacgtctg	ggcatggggc	gtgagttgt	105720
cgggccgttc	ccggcttc	ccgaggtctc	cgatgtcg	gtcgaccacc	tggacgcccgc	105780
cttggcccgcc	caggccgtt	tgcgttgggt	gatgtggggc	gacgatgtcg	agttgtgtt	105840
cgagacgggt	tggaccacgc	ccgcgttctt	cgccgtcgag	gtggcgctgt	tccggctgtt	105900
ggagcggttgg	ggtgtccgtc	cggtacttgc	ggccgggtat	tccatcggtt	agatcgccggc	105960
ggcgcgtatc	gcccgggtgt	tctcgcttgc	ggacgcctgc	cgctctgggt	ccgcccgtgc	106020
gacgctgtat	caggcgctgc	cgaccggcgg	cgcgatgtatc	gccccgttcc	ccaccggagga	106080
cgaagtgtacc	ccgcacccgt	ccgacggatgt	ggcgatcg	ggcgtaaacg	gccccaccc	106140
cgtgggtatc	tccggccgc	aagaggccac	gcagaccgt	gcacaacact	tcgcccacca	106200
ggggcgccgg	acgaccggcgc	tgcgggttcc	gcatgcgttc	cactcgccgc	tgtatggatcc	106260
gatgtccggc	gagttccgt	cggtggcgga	aggactgtcc	tacggccacc	cgcccttc	106320
cgtcgcttc	aatctgtacgg	gctggcttgc	cacggccgac	gaactgtgt	cgcccgagta	106380
ctgggtcgcc	cacgtcccg	aggcggttcc	cttcggccac	ggcatccca	ccctcgaaag	106440
cgagggcggt	cggtacccgtt	tggaaactcgg	cccgacggc	atccgtcc	cgctggctca	106500
gcagtccctc	gcccgtcgaa	ccgttccacgt	gcccgttcc	cgcaaggacc	gcccgttgg	106560
gtccacggcc	ctgacggccc	gagcgcatct	ccacaccgc	ggactgtatcg	aagactggca	106620
ggacttctt	gctgggttgg	gtggggggcg	ggtggagttt	ccgacgtatg	cgttccacgc	106680
tgggtgggtt	tggccgttgg	gtcggttgg	tgttgggtt	gatgtgggt	ctgtggggct	106740
tgggtctcg	gggcattccgt	tgttgggtgc	tgcgggttgg	ttggctcg	gtgcgggggt	106800
ggtgggttgc	ggtcgtctgt	cggtgtcg	gcatgggttgg	ttggctgtatc	atgcgggtat	106860
ggggcggttgg	tttgcgttgc	gtacggcg	gctggagatg	gtgatgtcg	ctgggtatgt	106920
ggtgggggtt	ggtcgttgc	aggaactgac	gttggcgccg	ccgttgggtt	tgcctgagcg	106980
tggtgggggtt	cggttccagg	ttgtgttgc	tgcgttgc	gctgcgggtc	gtcggttgc	107040
gggggtgtat	tcgtgttgc	atgggttgg	tcaggcggt	tggtgc	cagcgttgc	107100
tgtgttggcc	tctgggtcg	ctgaccagg	cggtgggtt	ggtgacgggt	gtgtgtggcc	107160
gccgcagggt	gcccgtcg	tggatgttgc	gggtgtctac	gagctgtttt	cggtatgttgc	107220
gttcgggtat	ggcccggttgc	tccagggtt	gctgtcggt	tggcgtcg	gcgaggaact	107280
cttcgcagag	gtgcgttgc	cggtacgggt	tgcgttgc	gctgatccgg	cgaccgggtt	107340
cggttgcac	ccggcggttgc	tggatgttgc	gctccatgc	tgcgttcttgc	cctcccttgc	107400

aggtaatcc	gccgatggtg	ggcctgcgtt	gccgttcgcg	tgggagggtg	tttccctctt	107460
cgcctcggt	gcgacggctt	tgcgctgcg	gttggcgccg	gcgggtgagc	atgcgtgtc	107520
gttgaccgcg	gtggatccga	ccggtgccgc	ggtagttcc	atcgacgcgc	tgcgtacccg	107580
tcgcctcacc	ctcgatgagg	tcaacgcattc	ccacacccag	ctgagcgatg	cgctcttcgg	107640
cgtccaatgg	accacggtcc	cgagcacccc	ggccgcccac	caccctcggt	tagccatcat	107700
cggAACCGAC	cccttcggcc	tcgcagacgg	ccttcggac	gccttgcggcc	tggtcgagga	107760
gcgcgggtgac	ctcgcgccgc	tcgcagcgctc	ggagcaccccg	gtaccggacc	tgcgtctcggt	107820
cccggttagcg	ggcaccccgcc	gcacaggcg	acctgcggac	gccgaaggac	acaccgacgc	107880
cgggacatcc	gacatgtctcc	gatccgtgcg	tgaggccacc	gcacaggta	tggagcagat	107940
ccagcagtgg	ttggcggacg	accggttcga	ggccgcgcgg	ctggtgttgc	tgacgcgcgg	108000
ggcggtttcc	gtgggtgagg	gcggcatcgc	cgacctggcg	gcctcgccg	tctgggtct	108060
gttgcggtgcg	gcgcagtcgg	agaatccggg	ctgcttcgggt	tttctcgacc	tcgacctcga	108120
cctcgccccctt	gactccgacc	ttgcccccg	ggtcgacatc	gagcgcgacc	gtgaccgcga	108180
tccggtcgggt	gggaccgtgc	agcccgcgct	cgccgcggcc	ctgcacgcga	ccgcccacga	108240
gccgcagttg	gcactgcgcg	gcgggaccgt	gcaggccgccc	cgactgaccc	gaatccccgc	108300
gccgcagacc	gaccgtgcgc	agaccgaccc	tgccgagacc	gaccgtccgg	agatcgacac	108360
ccggcggccc	ggcacgggtgc	tcatcacccg	tggtaccgg	gcctcggtg	ggttgcgc	108420
ccggcaccc	gtcggcgagc	ggggggta	gaggctgggt	ctgcacagcc	ggagcggtct	108480
cgcgcccgag	ggagcggaga	agctggtcgc	cgacccctcga	gcgcgcgtg	ccgtgggtgc	108540
cgtgcagacg	tgtatgtgg	ccgatggcga	tgcgggtggc	gcgttggtgc	ccggcgtgtc	108600
ggacgagta	ccgctgacgg	cggtcg	cacggccgg	gtgttggacg	acggagtgtat	108660
cggtcgctc	accgaggagc	ggctcgccac	cgtcctgcgg	cccaaggcgg	atgcgcctg	108720
gcatactgcac	gaggcgaccc	gcgatcttga	cctggacgcg	ttcgtcgct	tctcctccct	108780
cgccggcg	ctcggtggcg	ccggtcaggc	caactacgcg	gcggcgaaca	cgttccttgg	108840
cgccttgatg	gcgcagcg	gcgcgcgg	gttccgggt	gtgtcg	cgtgggggtc	108900
gtgggaccgg	gccggcgca	tgacggggac	cctgtcgac	gcgcgaggccg	accgcctcgc	108960
ccgctccgg	gttccgcccga	tctcgccg	gcagggcctt	gcgctgtacg	acgcggcgac	109020
cgccggtgag	cgccgctgg	tggtgcgg	gcgcgtgg	ctgcgcgc	tccgcgggct	109080
cggtgatgtc	cgccgctgc	tgcgccgact	gttccggacg	cccgccggc	ggaccggcgg	109140
ggccggtg	gcccgtcg	ccgatgtct	cacccggcag	ttggccggc	tccgcggggc	109200
ggagcaggag	gaggctctgc	tgaggctgg	gcgcggtc	gcgcggtgg	tgtctcggt	109260
cgccgcacggc	tcggcgatcg	gtgcggggc	acagttccag	gagttggct	tgcactcgct	109320
gaccgcgg	gagtccgca	accgactaa	cgccggccacc	ggactgcgc	tccgcggccac	109380
cctgtgttc	gactacccga	cgccggccga	cgtcgccgg	cacctgcgc	gccggctcgg	109440
cacccgggag	gtgtcgggtg	cgggctcggt	gctggcggc	ctggacaacc	ttgaggcgg	109500
gatcgccggg	ctgtccctcg	acgacgcgg	ggagcaccag	ttggtggcc	gccggcttgc	109560
ggtcctcagg	gcgaagtgg	cgacatgcg	aagcgcggag	ggagctgtgg	acgcgggtgc	109620
ggacgtcgac	atcgaggagg	cgtcggacga	cgacatgtt	gcgctgtgg	acgacgagct	109680
ggggctgaac	tgagccg	cgcatgagca	gttccgcacc	agaagtccca	cagtggcttgc	109740
gtccacatgt	acctggtcca	cagtgagct	ttccacagcg	acctgttcc	cggcggttcc	109800
gtatgtagcc	gttccgctta	ggcgaaa	cgggggcccc	gtggtggac	gcgttattcc	109860
ggccaccggg	agcgtcaa	cgccctt	taaagaaagg	gaaagaacta	ggaaacacacc	109920
cacagcccg	tcatgtc	tgaattccgt	ggctcgaaa	accattcg	ggccatggag	109980
ttacggtgc	atcacgtgc	cgtacggc	tgacggcgt	cacgggttgc	cacggcaggt	110040
ccccggccg	ggcgtctcc	cgctgctgc	cgccgggtgc	tgccgcttgg	ttcgtccctta	110100
ggaggtcccc	ccatgaccac	gtccaccgg	gagacgcctgt	ggggccgg	cttccatcca	110160
gcaccggccg	ccccgtcc	gtcttcgt	ttcccacatg	cgggcgctc	ggcccttcc	110220
tactcccg	tgtcgccca	actgtcc	gttccggagg	tgttccat	ccagtacccg	110280
gggcgc	accggcgaa	ggaagccgt	gtcagtgc	tcgcgac	ggccgaccag	110340
gtctacgacg	cgctcgcc	cctgctga	gagcggccg	gcacgtt	cgccacacgc	110400
atgggcgcg	cgctggc	cgaggtgg	cggcgtt	aggccgacga	cgtgacacgt	110460
gtccggctgt	tcgcctccgg	gcgcggg	ccctcccg	tgcgtaa	ggccgtgcac	110520
cgccggctcg	acgacggc	cgtcgagg	ctgaagctgc	tcgcgc	caacacccgc	110580
ctgctcgcc	acgaggagat	cctgcggat	atctgc	cgatcc	cgactaccag	110640
gccatcgaga	cctaccg	cccggcc	gtcaccgt	gggcgcg	gaccgtc	110700
accggcgacc	gcaaaaa	gacccct	gacgaggcc	aggcgtgg	cgccacacc	110760
accggggact	tgcac	ggtgc	ggtgggc	tcttcgt	ctccgaggc	110820
ccggcgatca	tcgatctgc	ccggcg	ctgcgcgg	acggctag	ggcgca	110880
ggcaggccgg	cggtgc	ctggc	gccccgc	cgctgagac	ggcaccatgc	110940
cacccggcga	cgcgcgttgc	gtgcgc	ggagcaccgt	ccgcgt	tacgcggg	111000

cgcggaggac	gtgctcgccc	ggccggatgt	cctggaggag	accattcgga	aaacgtcaaa	111060
tgtctgacag	ctgctgctca	tttactccag	cccgcactat	atgatcttgc	ggtggggcat	111120
gtacggagcg	tgccactcgt	tcgctccctgg	tgcatccate	ccgaccgtcc	ggatttgcgt	111180
gcaccggacg	gccgtggtcc	tggtacgcgt	cggcgcgagg	tcggctcctg	ttctcacccc	111240
acgtggagga	acgcgtatg	cgaaagcagt	cggttcttc	cggcttactg	accacgctgg	111300
tgggacgcga	cgacgaactg	cgcaccctcg	ccggcacgc	cgcggccgcc	cgcgacggc	111360
gggcccggct	ggtctctgtc	cacgggcccc	ccggcatggg	caagaccagt	ctgctgcggt	111420
ccttcacggc	gagcgatgtc	tgccgcgca	tgacgggtgc	gtacggcacc	tgcgccgaga	111480
ccgtcgccgg	cgccgggtac	ggcgggtgtc	gcgaactcct	ccgcgggctc	ggctgagcg	111540
gcggcgcacgc	ccggcgctcg	ccccctctgg	agggcctggc	ggcccgcgq	ctgcccgcac	111600
tcacccgcaga	ccccccgggt	cccgacggcg	ccacgggtgc	ctacccgggt	ctgacacggcc	111660
tgtactggct	cgccgcccgc	ctcatggcc	aacggccgct	ggtcctcgtc	ctcgacgacg	111720
tccactgggt	cgacaaacgc	tccctggct	ggatcgactt	cctgctgcga	cgcgccgagg	111780
acctggccgt	gttgtcgtc	ctggccttggc	gcagcgaggc	cgaaccggtc	gcccggcg	111840
tgctcgccga	catcgccgccc	cagcgccccc	ccaccgtgc	ccgcctgcac	ccgctcgccc	111900
ccgacgacat	aggcgaaaatg	gtgcgtcg	tctccggac	cacggccgca	ccgtcggtcg	111960
tcagccgggt	cgccgcccgt	tccggcgca	atccgctggc	cctcgcccgc	ctctcgacg	112020
aactccgcgc	cgaggccgtc	cgggccggacg	ccggcggggga	gcgcggggcc	gccgagggtcg	112080
gcagtcacgt	cctcgcccgc	tcgggtgcgt	gcctgttgg	gcgcggggcc	ccctgggtgc	112140
gcggcgtgac	ccgtgcccata	gccgtactcg	gccggagtg	caccgagttg	ctggcggcgc	112200
tccggccgt	cccggccgacg	accgtcgacg	aggccctgtt	gtgtctgcgc	aggccggca	112260
tcctggccgc	cgaccgcgt	gacttcgtcc	atgacgtcg	ccgctccgc	gtgtcgacg	112320
acgtcgcccc	gcccacccgt	gccgaactgc	gcaccaacgc	cgcgtgttgc	ctgagcgacg	112380
ccggccgcgc	ctccgaggag	ctcgccgccc	agctcatgt	gtgcgggtgc	ctcgaccagc	112440
cgtggatggc	cgcggtgtcg	cgcgacggcg	ccggccaggc	ggagagccgc	ggccccccgg	112500
aggccgggt	gcgcgtgc	taccgggtgt	tggaggtgg	gcgcggacaac	gttgcgtcc	112560
gatccagat	ggcccgcgcg	ctcgccgaga	tcaacccgccc	cgaggcgatg	cgccctcctca	112620
aggaagcgct	ctccctcgcc	ggggacgtcc	gcacccgcgc	ccaggtcgcc	gtccagtacg	112680
gttcacccgt	cctcgccgt	caggaatccc	cgtccgggtt	gcggatgtcg	gaggacgcgc	112740
tcggcgagct	gaccggcga	ctgggcccc	aaccaggggc	cgtggaccgg	gagttgcgg	112800
ccctcggtga	gtccgtgtcg	ctcatcg	ggggcgcacg	gaaggtgacg	atcggtgccg	112860
tccgcgaccc	ggcggccccc	ctcaccatgc	cgcggccgc	cacaccggcc	cagccgcaga	112920
tgctggccat	gaccaccgt	ctgaccgcga	tggacggcc	ggacgcccgg	tcggccgtcg	112980
accaggcccg	ccgcgcctcg	cgcgcacccg	gcgtcgagct	ggaacccctgg	tcgctgtcg	113040
ccgcctcctt	cgccctctcc	ctggccgacg	aggtcgccga	cgcgcgtac	gcactggacc	113100
tcatgtctca	gtacggccag	gacaacgcgg	cggtgtggac	gtacgtctcg	gctctctcca	113160
cgcgcgcct	gtccaccac	gggggtggcg	cctcccccga	ggccctggcc	gacgcccaga	113220
ccgcccgtga	gatcctcg	gaggagcgct	ggggggacgg	cgccgtgtcg	ccccgtgtcg	113280
cgctggccac	cgccctcg	gaccgcggcg	agcccgagcg	cgccgaacac	gtccctcgacg	113340
gatcaccac	ccccgcctc	gaacgcttcg	tcatcgata	ccactgtac	ctccaggccc	113400
gcgcctacgc	ccgctgggtc	cgcggggatt	tccaaaggagc	cctggaccc	cttctcgcc	113460
gcgggtcggtc	cctggaggag	tcgcgtctca	gcaacccggc	gttcgtccg	tggtggcccg	113520
atggcgcggt	gtctctggcg	accctggacc	gccacgacca	ggcgcgcgaa	ctcgcccgat	113580
acggaagcg	gttggccgag	cgttggggga	cggcgcgcgg	cctcgactg	gccttcatgg	113640
cccaggccgt	cgccgcaccc	ggccgcgcgg	gatcgatca	cctcaccgag	gcgggtctcgc	113700
tgctcgccga	ctcccccggcc	cgggccatgg	aggcccgggc	cgaacttctt	ctcggacacg	113760
cccacctgaa	gcgcgacgcac	ctgccccggc	cccggaaca	cctgcgcgc	gccgcccgc	113820
tcgcccagcg	ctgccccggcc	gtgaagctcg	gcgtcgacgc	cagaaaactg	ctggtcaccg	113880
cgggtgggtcg	ggtacgcagg	atgaccgcct	ccccactcg	catgctgacc	ggatggaaac	113940
gcacgggtggc	ggacactcg	gtgaccggcg	cgagcaacccg	ggccatcg	gaagccctct	114000
tcgtgactgt	aaggaccatc	gaaacccatc	tcacgacgt	ctaccggaa	ctcgccgtcg	114060
gcggggcggtc	ggagctgtcc	gccgtccctgg	agaccaggac	cgcgcctcc	ggtcggcagc	114120
cgccggccctg	ggtctcccag	gcacgcggac	gcgttgcg	cgaacaggac	gagaggtagc	114180
ggtgccccgg	agcaaggcg	ggaaccaacc	gaccacgtc	acgcccgcgt	gcccacccga	114240
cgcgcacccgc	gacccacca	tgctcctcg	atgcggccgg	gaacagcg	tcatcgccga	114300
cctccctcgac	cgcctcg	agggggcgcc	atcggtgc	agcctgaccg	gcggcccccgg	114360
gcacggccac	aacggccctgg	tccgctgggg	cgcgtgc	gccaggac	acgggtcg	114420
cgtccctcgac	gcccaggcg	cgcgcgcg	acgggaactc	cgctacggcg	ccgttctcca	114480
actgctggcc	gtccctcgacg	gcccgcacgg	cagcaccctg	gacgcccgc	tccgcccacg	114540
cggcccccccg	ccactgccc	tgcccgccat	cgaggaggtg	ctgcggcg	ccggcacggc	114600

accacccctg	gtcggttcg	aagacgtcca	gtggttggac	ccggcctcgc	tgaatgtggtt	114660
gcagatctg	ctgcgccacc	tcggggccgga	caccccgctc	gccgtctgg	ccagcagctg	114720
cggtgacacc	acggccttcg	acaccgaccc	gaaggcccc	gccgtcccgg	ggccgcccgg	114780
caccgtgccc	gtcgccgct	tcgtggtgcc	cgcgtcacc	gaccgcgggg	tcgcccac	114840
cgtccgcgcc	gtctcgccca	ccccccggca	cgaggagttc	atcgccgcgc	tcacacctccgc	114900
caccgcccgc	aaccggcca	tcctgcggga	cgccctgcgc	gccttcgtcg	accacggcct	114960
ccccggccac	gccgaccacc	tcccgagct	gcacgcctc	accgctggcg	tcgtcgccga	115020
ccacaccgtg	cgcgccttgg	acggcctgcc	cgcgaagtc	aacgcgtcc	tgccggccct	115080
ggccgtctgc	ggcgacctgc	tcgacttcca	ccgagtccgg	gccctcgccg	gcccgcactc	115140
gctgtcccgag	gaccggatcc	gcaccctgt	ggcgagcg	ggcctgaccg	tgtccgtcg	115200
cgacaagggt	cacatccgct	tcccccgcctc	caaggcacgc	gtcatcgagg	acatggccgc	115260
cgccggagcgc	gccgatctgt	acgtccgcgc	ggcgaactc	acccacagtt	gcccgtcaa	115320
cgacaggagac	gtcgcggccatc	tgctgtcg	ctcgcccg	ctcgccgac	cctgggtcg	115380
gcccgtcgc	cgccgggat	tcgcccgcgc	gctgcgggg	gaggaccacc	accgggcctg	115440
tgcctgcctc	tcccgcggcc	tcgaggaacc	cctcgacccc	cgggaaacgca	gcctgtcgac	115500
gttggaaactg	gccggggccg	aagccgtcgc	ccggccggag	cggggggatc	gacgccttgg	115560
ggaactcgctc	cgcagcaccg	tcgcccac	cgaccccaacg	tcgtccgt	aggggttgg	115620
ggtccgcgcc	atcgacactgg	gttgcggcc	ggcaacacg	aatgggtcc	gcccgcaccc	115680
ggggcgaggcc	ctgcccgtacg	ccggggccggc	cgaccggggag	gaactgtcg	cgctgttctg	115740
gttggccgccc	gtgcgggacg	acgacgcgc	gatgatcccc	gtgggtcccc	gtttggccga	115800
ccggccgggt	ccgcgggccc	aggccggcgc	ccgtgcctgg	cagctggcca	cggcgaaaa	115860
ggacgcggac	aaggccagga	agctcgcccc	gatcgccctc	accggccggg	tgaacgagag	115920
cctgatgtg	ccgaaaactgg	cggcctgcgc	cgcgtgttc	gccacccgac	acaacgacga	115980
ggcggtgcac	ggccctggaca	ccatgctcac	cgcgcggccgc	agtgcaccacc	tgcgcagcat	116040
ggccgcggcc	atttcaacc	tacggggcc	gatacacctg	tgcgcggccc	ggctggaggc	116100
cgccgaacgc	gatctggaca	gcccgcggcg	cgcctgcgc	ccgacgagtt	ggcacccccc	116160
tgcgtgcctc	aacctgtatcg	ccacccgc	cctcgatc	atggagacgg	gcccggggga	116220
ccggggccgc	cgactcgccg	aggccccgg	ccccggccgc	ggcgaggagg	gtgtgttgg	116280
gcccgcctg	ctgctgcggc	gcccgggt	ggccggccgc	gacggtgact	gggaggaggc	116340
cctgcggctg	tcgcggag	cgccgcgt	gcttttcgc	cggaactgg	ccaaacccggc	116400
catgctcagt	tggcgccgc	tggccggcga	ggcgtgtctg	aagctcgccg	acgtgacgga	116460
ggcgcgccgg	ctgcgggacg	aggagctgtt	cttcgcgc	cgctggggca	ccgcgcagcgc	116520
ccgcgggatc	gcccgcctga	cgacgcggcg	actttcgac	gacgacggcg	accggggccgt	116580
ccggcggtatc	cgcgaggccg	ccgcctgt	ccgcgactcg	ccgcggccgc	tggcttaccc	116640
gtggagccgg	ctgagccagg	ccgggtccga	gacggccac	ggcgacaccg	ccgcggccgc	116700
acgctctgg	caggcggtcg	cccgatgac	cgcgcggccac	cccgcacggcc	gcctcgccac	116760
cgccgcggcc	accctgaccg	tccgtccgt	tccgtcgcc	accgcgcgc	ccaccgcgc	116820
cgtcccaccc	ggatggcg	acctgtccga	ggcggagaag	gacaccgtgc	tgctcgccgc	116880
cccgccggcc	ggcaacccgc	agatcgccg	acaactcgcc	gtcagcaggc	gcaccgtgg	116940
gctccggctg	agcaacgcct	accgcaagct	gaggatcg	ggacgcaagg	agctgtaccc	117000
gctcctggag	gcgtgtgg	gaccgggtcg	ggatgtttct	tgagcgggg	aacgaactgg	117060
cccgatccg	ggccgcctg	gacggccgg	aagcgccg	cttcctcg	cttcctgtatc	117120
acggtccct	cggcagcggg	cggtcgcc	tgctcgcc	gataccggag	ctggccggcg	117180
acggcacccg	cgtccctgcgg	gccagcgc	cctggccgg	acgcgacttc	cccttcggg	117240
tcgcccggca	actttcgac	cacccgt	ccggggccgg	cgccgcagg	ccggccgaa	117300
gcaccgcgg	ggeagagcac	ttcagccgac	tatggacac	cgccgcacccgc	cctaccggg	117360
ccggccggcc	cctggagg	tccaggcag	tgctccagg	cgcccaggcg	ctgctcgcc	117420
acgctccgc	ggagcgccgc	ctgctatcc	tggtcgac	cctccagtgg	ggcgacggcc	117480
cgtccctcg	ctggctggcc	cacccatcc	ggcgctgca	cggcctgcgg	gcgtgtctgg	117540
tgtgcacgt	ggccgacggc	gaccacgg	gcaggtaccc	cctggccgg	gaggtcgcc	117600
ggccgcgc	caccgtctg	cgccctgcgc	cgtgtcccg	ggacgcccacc	cgcgtctgc	117660
tcgccccggc	ccagggccgg	ccggccgcagg	acgcactgg	gcccgcgtg	tacgaggcg	117720
ccagggc	cccgctgttc	ctgaccgc	tccggagcgc	tctgcgc	accggaaggc	117780
cgcccgccgg	cgaccacttc	ggcgccgtcc	ggagactg	ccgcacgg	ctgcgcgatc	117840
ggctcgccgg	ccatctgcgg	atccaggccg	agccggtg	cgagg	gtggccgtgg	117900
ccgcgcgtgg	cgaccacagc	gatccgg	tgcgtccca	gctcggccgg	gtcgatgaaa	117960
tcggtttcgc	cggtgcggcc	cgccgcgtgg	tgcgtccgg	cctgtggcc	cggggacgg	118020
acgtccgc	cgtccacggc	gtcgccgc	atgcgg	ctccctgt	accctcgac	118080
agcgggaacg	ctcgacacg	gacgcgc	atctgtgt	ccgctgcgg	ccggccggcc	118140
agcaggtcg	cgcccatctg	ctggccgtgg	tccaccggg	ccggccctgg	tcggaggcg	118200

tcctgcgctc	cgcggcccac	aacgcgctgc	gcgccggccg	gcccgcgcac	gccccgggt	118260
acctgcgcg	cgccctgctg	caccaccgca	cccaggacgg	ctgcccgcgc	cgcatcctgg	118320
tcgatctggc	caccggcag	cgccgcctcg	accccgatgc	ctgtgtacgc	cacgtcagcc	118380
aggcggtcgc	gctgctggac	acctcgccgg	atcgggccgc	cgccgtgtt	cgcatccccgc	118440
cgtccctgt	cgccgcggcc	agcccggtcc	ccgtcgagtt	ggtgcggcag	gccgcgcggc	118500
ggctcgacga	accggggcag	cgggacgagg	aggagagccga	cgaaactcgcc	ctgcgcctgg	118560
aggcggtggct	gcggcactcc	ggccacgaga	accccggtcga	gctggcgtcc	tcggtgccgc	118620
ggctgcggcg	catgggggca	cgccgcgcgg	tggacagcgt	cgccgaacgc	gagttggctcg	118680
ccgtgctgtt	gagtgcgggc	gctgcagcg	gccggctcag	cgccgcggag	atcgccgaca	118740
ccggcaaccg	catcctcgaa	cgtgagccgg	ccaccgcgc	ccatgcccac	acccgctgc	118800
cgctggtgat	gcttcgcgt	ttcgtcgccg	agtcggtgca	gggcgtggcc	tcctggctgg	118860
ccagcgaaca	gcacacccgg	cgccggta	cgaccggcgc	ggacgtgt	ctgctgaccg	118920
ccgagcgggc	cttcgtcctg	gtgacgcagg	gccgcggccgc	cgccgcgcgg	gagcacgtcg	118980
aacgcgcct	ggtcatggac	gccggcgact	ggtcggaacc	cgccgtcatg	atgttcgcgg	119040
cggtcgcctt	cgaactgcgc	gacccggct	tgagcgaacg	catcctggaa	cgatccgcg	119100
accgcggcc	ggccggactg	gctcaccg	ccaccggta	gatgctccag	gccgcgcgtcg	119160
acgtgcaact	cggccggggg	cgggacgccc	tggacacgct	gctggctgt	ggccgacgccc	119220
tggagaccgt	gggatggcgc	aattccgcac	tgcgtccctg	gctgcgttat	gcaatcgggc	119280
tgcaccagcg	gctcggcgcag	accgatgcgg	cgctgcact	cgccgaggac	gagctgaggt	119340
gggcccggga	gtgggggtcg	acgacgaacc	tggccgggc	cctgcgcctg	aagggtggc	119400
tgttgcagga	cgagggactg	gatctgctgc	gtgagagcgt	cgagatcc	cgcgcttcgt	119460
cctacgcgcac	ggaactggcg	cgcacccctcg	tcgtcctcg	gctgcggctg	ccgggtgggc	119520
cggaggccga	ggcggtgtt	cgggaggccg	cggggatcgc	cgccgcctgt	ggtgttccct	119580
ggctgcgcga	acgggcccga	ctcggtctgg	gca	gtgcgcgcg	gtgcgcaccc	119640
tgaccccccag	cgagcggcga	gtggcgtcgc	tggtagccg	gggcctgacc	aaccaggcca	119700
tcgcgaccga	actcggtgt	agtcgggg	cggtggagaa	gcaccc	agcgccat	119760
gcaagctcgg	cgttccggc	cgccgcgagt	tggtaatgc	gctcccgggt	cgttgcacgc	119820
cgcggccgtc	ccgttccgg	cgatcacaat	cctctgtg	tgtcagccct	gtgggtgcgg	119880
cgtcggtgtc	gtacgcccgt	ccggtcatg	cagcaatcct	caacaaaagc	taaaacggaa	119940
gcggggccag	gtgcacccac	ccatcacca	atgtctcg	tgttacttt	ggcccaccgt	120000
agttggact	ctcgccgaccg	tacctcg	atgacggacc	acggatttag	gggtgcgtag	120060
atgtgtcg	ttgacgtgc	gagttgtggc	taactacgct	ccgtttc	gaaatcgaaa	120120
ctttcggcg	tgaatcg	cgaaactc	tcgaattctg	gattccgtt	ctcagaaggc	120180
taaaagacga	cgggggttat	cgaaaggat	ggcggtctcg	tgactatcac	tcacctcact	120240
gactcgaatc	accgtacgac	cgccgggtg	atatccgtc	agaccgcacc	ggccggggag	120300
tccgtcggcc	ccgggctgat	ggcgtccctc	gaccgtgacc	tcaccatcaa	gcacgccaac	120360
caggagtcc	gccgcgcctt	cgacgatcc	gccgggtacg	tctgcgg	cagctccgg	120420
gacctgatgc	acccgagcgt	gcagcagccg	ctgatgcgc	agttctccg	gctgatcgag	120480
ggcaagcggc	accgttcgc	ctcgacgt	gtcgcgtt	gcccgcagga	cgccgccttc	120540
gcgggcaccc	tcaccgcctc	cgccgtcacc	ggcaagaccc	cgacatcg	cgggatcctg	120600
gtgctcatgg	actcgccgg	cgccgcgac	gccgcgtat	ccggcgtcg	gaccagccag	120660
aagaagtcc	tgaccgagat	cgatgcgc	atctcgaa	gatcgcgc	cgggctgtcg	120720
accattccgc	tcgcctcg	gctctac	agccgcagg	gctggagta	ccacgtcacc	120780
gggctgtgc	ggaagtgc	ggtgccaac	cgccgcgc	tcgtctcg	cgccact	120840
atgggcatcc	tgaacgtcg	cac	ccaaaggatcg	tggacgactt	catcaagtga	120900
cgcggcccg	gcctgtcccg	cac	ccaccgtcgg	accgctgtcc	cgcacgc	120960
tgtcgccgac	gcccgcctc	cac	ggggcgtt	tcgtgc	tcgtgc	121020
gtcgatgtt	atccattctc	acgttacg	ccc	catgcgc	gattccggcc	121080
actttcg	ccgtcgta	caa	actgc	gtcatatcg	ttccactgac	121140
gtccgcgt	tgcacactt	gcccact	gacgcgc	ccacgggtcg	cgagcggc	121200
ccgaatactc	acgtaaacc	ccgttctc	tgttggagtt	ccccgcgt	cacattc	121260
cgtgcctcg	gcggcgtggc	tcgccc	tc	cgacagac	attgttacaa	121320
cgacgacaca	gagcgggggt	ggtcgaccc	tc	ggcgacgt	agcggaa	121380
ctgctcgat	ttcg	ccc	gttcttgg	tgacc	ttt	121440
ccggccgtt	ggggcgtat	ccgccc	ttt	caacgatcg	ttcggccgc	121500
ccaccacggc	cg	gaggctgtt	gga	ccaccc	ggggccgt	121560
tgtggccgg	acacgcagga	gaa	ccaccc	gatgtcg	gag	121620
ggagctgatc	cg	ggatcg	ggatcg	ggccgc	gggacatgt	121680
cagcaaggaa	acgtccg	gg	ggac	tcgc	agg	121740
cg	ggc	ccat	ccat	tcgt	ccgt	121800

gaccgcacag ccgatcccg aggagtcccc gatcgccacc gcggccgcgg aactcctcag	121860
cgaggccgag acggtcttca tcgacgaggg cttcaccccg caactcatcg ccgacgcgcct	121920
gccgcgcgac cggccgcgtga ccatacgtaac cgctcgctc ccgggtgtca gcgccttcgc	121980
gacgagccca caggccaacg tgctgctctt gggcgccgg gtccgcgggg gcacgacggc	122040
caccgtcgac cactggcccg tccacatgt gtccggcttc gtcatcgacc tgcccttcct	122100
cggcgcggag gggatctcgc gcaggtacgg cctgaccacc cccgaccgg cggtcgccga	122160
ggtcaaggcc caggccatcc gctcgccgcg ccgcgggtc ctgcgggggg tgacacaccaa	122220
gttcggcacg gcgagcttctt gccgggttcgg agaggtgggc gacctggaga cgatcgtcac	122280
cggcgcggc ctggccgtcg ccgaggccca ccgttaccac ctcatggcc ccaagggttt	122340
acgggtgtga cggccgcggg gctcccggcc gcccggccac ggcctggcgc gcgcgggtgc	122400
gggtcagccg cgtcgccgt ccgtcggttc ccgcagagt gcgagcggtg tcaccccccac	122460
ccggtagccc tcctcgtcga ggagatggcc gccgtgttc atgtgcaga gggcgaccgc	122520
gcgttcggtg acggtcaggt ccgcggcccg ttccggcaggt cggacccgtga agcgctgggc	122580
gtcgtcgagg gagcgcaccc aggccacccag gtgcagggtt tgccggctga tgacgctcgc	122640
gcacaggccg acctcgca tcccggtgac ccggcggtc acctcgca gcctcgccgc	122700
cgggacctgc cccccagaagc tcaccgtgac cggccactcg gacagcgggc gggcgaccc	122760
gcaccggcgc tgcaacatgt ccgcggcga gagccgttgg acgcgacggc gcacgggtgc	122820
ggggccggcg ccgcactgtc ccgcgcg gcgtaggtg gccccggcgt ccacggacag	122880
cgcggtgacc agctgttgtt ctagctcgta gaggacgaag gcgggggtgt ccgtgcggtg	122940
tctggacgcg tcggccggcga gccggccgac ctggtgccgg ccgaggcccc gcaggcgcca	123000
ccggctgccc tcggtgtgca ccggccggc caggtcgctc cggggccccc ggacgcgcgtc	123060
caacgcggcg aggtcggtgg tcacccaaacg ggagagcatg gccggatcgc gggccatgac	123120
gtttagttgg aggtcacggt ccccggtgac gtggggagagc gccaccacgt gcggcgccgc	123180
ggccaacgcc cgccgcacgt cgagcagtgc gccggggagcg cagtcgatct cgacgaacgc	123240
caggcaccac tggcccgacg ccgcgcac ccggggccggg tggcagctga tccaggcgcc	123300
gccccgtctcg accagccgtt tccagcgctt ggcaccgtc acggcgcca gtccgaggac	123360
ggagccgatc cgggtccagc tggcccgccgg cgtgatctgc agcgcgtgca ccagggcctg	123420
atccacatgg tccagggacc ggggggtctg cccggaaatcc tgccacgg gccacccct	123480
tgcgtgtttc cggccggattc gggccgcggg tcggctcaac cttcagccctg gactcggttgc	123540
cggccggacc gtaccaggca accccggag caacaggagt	123580

//