东南大学学生会

Students' Union of Southeast University

07-08-2几代B

一. (21%) 填空题

1. 若矩阵
$$A = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$$
, n 是正整数,则 $A^n = \underline{\hspace{1cm}}$;

- 2. 假设 4 阶方阵 $A = (\alpha, \gamma_1, \gamma_2, \gamma_3), B = (\beta, \gamma_1, \gamma_2, \gamma_3)$ 的行列式分别等于 2,3, 矩阵 A+B 的行列式 |A+B|=
- 3. 点 P(1,2,3) 到平面 2x+y-z=5 的距离为

- 5. 矩阵 $A = \begin{pmatrix} x & x \\ x & 2 \end{pmatrix}$ 正定的充分必要条件是参数 x 满足条件
- 6. 已知二次型 $f(x, y, z) = x^2 + y^2 + 2z^2 + 2xz 2tyz$,若 f(x, y, z) = 1表示直角坐标系 中的单叶双曲面,则参数t满足条件
- 7. 设n > s,若A是 $s \times n$ 矩阵,则n阶方阵 $A^T A$ 的行列式 $\left|A^T A\right| =$
- 二. (9%) 选择题
 - 1. 假设矩阵 $A = \begin{pmatrix} a & b \\ c & 1 \end{pmatrix}$,若对任意 2 阶方阵 B 都有 AB = BA,则 $(a,b,c) = \underline{\hspace{1cm}}$;

- B. (1,0,0); C. (0,1,0); D. (0,0,1)

2. 假设矩阵
$$A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
。 下述结论中完全正确

- <u>B. A与C</u>相似, B与D合同; B. A与C合同, B与D相似; A 与 C 与 D 相似; C 与 D 相似
- A 与 B 相似,C 与 D 合同; D. A 与 B 合同,C 与 D 相似.
- 3. 假设A, B都是n阶可逆矩阵,则必定有____
 - A. 存在可逆矩阵 P ,使得 $P^{-1}AP = B$; B. 存在可逆矩阵 P ,使得 $P^{T}AP = B$
 - C. 存在可逆矩阵 P,Q,使得 PAQ=B; D. A(A+B)B是可逆矩阵.

东南大学学生会

Students' Union of Southeast University

- 三. (16%) 已知平面 π 的方程为x-y+z=1,直线l的方程为 $\begin{cases} x+ty+z=-7\\ 3x-2y+tz=1 \end{cases}$ 。
 - 1. 问: 当t取何值时,l与 π 有惟一交点?
 - 2. 问: 当t取何值时, l与 π 没有公共交点?
 - 3. 问: 当t取何值时, l在 π 内? 求这时l的对称方程。
- 四. (14%) 假设矩阵 $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{pmatrix}$,求矩阵 X ,使得 $A^{-1}X = 2X B$ 。
- 五. (16%) 已知矩阵 $A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 3 & -2 \\ -3 & -3 & a \end{pmatrix}$ 与 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似。
 - 1.求参数 a,b 的值;
 - 2.求一可逆矩阵 P 使得 $P^{-1}AP = B$ 。
 - 3.问:是否存在正交矩阵Q,使得 $Q^TAQ = B$?为什么?
- 六. (8%) 已知空间直角坐标系中曲线 Γ 的方程为 $\begin{cases} 3z = (y+1)(y-1) \\ x = 0 \end{cases}$, 平面 π_1 的方程

为x+z=2。记 π ,是 Γ 绕z轴旋转所得的旋转曲面。

- $1. 求 \pi$,的方程;
- 2. 求 π_1 与 π_2 的交线在xOy平面上的投影曲线 Ω 的方程。
- 七. (12%) 假设A 是 2 阶方阵,x 是 2 维非零列向量,并且x 不是A 的特征向量。
 - a) 证明: *x*, *Ax* 线性无关;

 - \dot{E} $\dot{A}^2x + Ax 6x = 0$,求 \dot{A} 的特征值,并问: \dot{A} 是否相似于对角阵? 为什么?
- 八. (4%) 证明: 对于任意 $s \times n$ 实矩阵 B, n 阶方阵 $A = I + B^T B$ 的特征值全大于零。