TD 08 - Convergence des variables aléatoires

Exercice 1. Second théorème de Borell Cantelli

L'objectif de cet exercice est de montrer le second théorème de Borel-Cantelli. Il donne une réciproque du theorème de Borel-Cantelli vu en cours, dans le cas où les événements sont indépendants. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements *indépendants* de probabilité p_n . On suppose que la somme $\sum_n p_n$ diverge. L'objectif de cet exercice est de montrer qu'alors, presque sûrement, une infinité d'événements A_n se réalisent.

- 1. Exprimer l'événement "une infinité d'événements A_n se réalisent" en terme d'unions et d'intersections des événements A_n .
- **2.** Soit $B_{k,\ell}$ l'événement $\bigcap_{k \leq n \leq \ell} \overline{A_n}$. Montrer que pour tout k fixé, $\lim_{\ell \to \infty} \mathbf{P}\left\{B_{k,\ell}\right\} = 0$. Indice : on pourra utiliser l'inégalité $1 + x \leq e^x$ pour tout $x \in \mathbb{R}$.
- **3.** On note $B_k = \bigcap_{n > k} \overline{A_n}$. En déduire que $\mathbf{P} \{ \bigcup_k B_k \} = 0$.
- **4.** Conclure que **P** {"une infinité d'événements A_n se réalisent"} = 1.
- 5. Application. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables de Bernoulli indépendantes de paramètre $\mathbf{P}\{X_n=1\}=p_n=1/n$. Montrer que presque sûrement la suite X_n contient un nombre infini de '1', mais seulement un nombre fini de '11'.

Exercice 2. Conditions de convergence

Soit X_n une suite infinie de variables de Bernoulli indépendantes de paramètres $1-p_n$, avec $0 \le p_n \le 1/2$ (i.e. $\mathbf{P}\{X_n=1\}=1-p_n$ et $\mathbf{P}\{X_n=0\}=p_n$).

- 1. Donner une condition nécessaire et suffisante pour que la suite X_n converge en distribution.
- 2. Donner une condition nécessaire et suffisante pour que la suite X_n converge en probabilité.
- 3. Donner une condition nécessaire et suffisante pour que la suite X_n converge presque sûrement.

Exercice 3. Convergence

- **1.** Soit $\{X_n\}$ une suite de variables aléatoires avec $\mathbf{E}[X_n] = 5$ et $\mathbf{Var}[X_n] = \frac{1}{\sqrt{n}}$ pour tout n. I Vrai ou faux : X_n converge en probabilité vers 5?
- **2.** Soient $\{X_n\}$ des variables aléatoires I.I.D. avec $\mathbf{E}[X_n] = 4$ et $\mathbf{Var}[X_n] = 9$ pour tout n. Trouver C(n,x) tel que

$$\lim_{n\to\infty} P(X_1+\cdots+X_n\leq C(n,x))=\Phi(x),$$

où
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$
.

3. Donner un example de suite $\{Y_n\}$ telle que Y_n converge en probabilité vers 0, $\frac{Y_n}{n}$ converge presque sûrement vers 0, mais Y_n ne converge pas presque sûrement vers 0.

Exercice 4. Théorème de Mycielski

La coloration d'un graphe G consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. Le nombre minimal de couleurs est appelé *nombre chromatique*, on le note $\chi(G)$. Clairement, les graphes contenant de grandes cliques ont un grand nombre chromatique, mais la réciproque n'est pas vraie. Le but de cet exercice est de prouver le théorème de Mycielski, qui montre que pour tout entier $k \geq 2$, il existe un graphe G tel que G ne contient aucun triangle et avec pourtant $\chi(G) \geq k$.

- **1.** Soit $0 < \varepsilon < \frac{1}{3}$ et soit G un graphe aléatoire avec n sommets où chaque arrête est présentte indépendemment des autres avec probabilité $p = n^{\varepsilon 1}$. Montrer que quand n tend vers l'infini, la probabilité que G ait plus de n/2 triangles tend vers 0.
- **2.** Soit $\alpha(G)$ la taille du plus grand *ensemble indépendant* de G. (Un ensemble indépendant est un ensemble de sommets deux à deux non adjacents). Montrer que $\chi(G) \ge n/\alpha(G)$.
- **3.** Soit $a = 3n^{1-\varepsilon} \ln n$. Montrer que quand $n \to +\infty$,

$$\mathbb{P}(\alpha(G) < a) \to 1.$$

En déduire qu'il existe n et G de taille n tels que G a au plus n/2 triangles et $\alpha(G) < a$.

4. Soit G un tel graphe. Soit G' un graphe obtenu à partir de G en supprimant le minimum de sommets afin que G' ne contienne aucun triangle. Montrer que

$$\chi(G') > \frac{n^{\varepsilon}}{6 \ln n}$$

et conclure la preuve du théorème de Mycielski.