

# LVIS and GEDI for post-fire vegetation growth Jasper Slingsby



#### Light Detection and Ranging - lidar / LiDAR

- Active remote sensing
- Fires energy pulses ("laser beam")
- Measures the return
  - Height ~ Time to return
  - Surface properties ~ reflectance

 Most sensors use wavelength in the region 1000-1100 nm (water absorption)







Purkis and Klemas 2011

#### Discrete-return lidar (in Fynbos)



Large Proteaceae shrubs (dark green) among lower ericoid shrubs and graminoids



## Discrete-return lidar (in Fynbos)





Point cloud from https://www.neonscience.org/resources/learning-hub/tutorials/lidar-basics

From http://dx.doi.org/10.13140/RG.2.2.19444.09609



#### Full waveform lidar...





From https://www.neonscience.org/resources/learning-hub/tutorials/lidar-basics







#### Full waveform lidar...





#### Full waveform lidar...





From Luo et al. 2023, https://doi.org/10.3390/rs15184529

#### Discrete-return (e.g. SAEON plane) vs Full waveform (GEDI, LVIS)



- Point measurements (creates a point cloud)
- One or multiple returns per point
- Point density (e.g. points/m²)
  - Depends on instrument and flight height...
  - Can estimate distribution by aggregating points to a grid
- "Better" for airborne or UAV (closer)
  - High energy requirement
  - Tricky to have high point density if high altitude or moving fast...



- Full waveform (creates a distribution)
- Distribution return per footprint
- Footprint
  - ground sample distance / pixel size

- "Better" for orbital
  - Lower energy requirement
  - Further away



## Veg height in The Greater Cape Floristic Region (GCFR)





Forest (up to ~40m)

Fynbos (0 to 5m)



## Veg height in The Greater Cape Floristic Region (GCFR)





Milkwood "Forest" (2-10m)

Fynbos (0 to 5m)



## **Veg height in Fynbos (Cape Point)**





Milkwood "Forest" (2-10m)



## **Veg height in Fynbos (in Cape Point)**





Sandstone fynbos (0-1m)

Sand dune fynbos (~3m)





## Veg height in Fynbos (in Cape Point)



Variation with vegetation type...



# **Veg height in Fynbos**





Fire!!!

# **Veg height in Fynbos**



Post-fire vegetation growth...





Old: Few, large, tall(er)

Young: Many, small, short(er)







Old: Few, large, tall(er)

Nothing or Young: Many, small, short(er)

Also note small forest patch in fire refuge (hard to map with imaging!)





## **Veg height in Fynbos (in Cape Point)**



Variation with fire...



#### Fire and veg type create much variation in height distribution in the GCFR



bioscape.io