Collab

```
In [ ]:
      fastai has a function get_emb_sz that returns recommended sizes for embedding matrices for your data, based on a heuristic that fast.ai has found tends to work well in practice:
In [ ]:
       embs = get_emb_sz(dls)
       embs # [(944, 74), (1665, 102)]
       # matlab 74 features for users, 102 features for movies
In [ ]:
In [ ]:
       from fastai.collab import *
       from fastai.tabular.all import *
       dls = CollabDataLoaders.from_csv(path/'ratings.csv')
       learn = collab_learner(dls, y_range=(0.5,5.5))
       learn.fine_tune(10)
       # epoch train_loss
                                valid_loss
                                                  time
                1.515542
                                1.374456
                                                  00:00
       # epoch train_loss
                                valid_loss
                                                  time
               1.377571
                                1.317657
                                                  00:00
                1.276605
                                1.144093
       # 1
                                                  00:00
       # ..
       # 8
                0.599054
                                0.683095
                                                  00:00
       # 9
                0.612227
                                0.682993
                                                  00:00
       learn.show_results()
                        movieId rating rating_pred
       # userId
       # 0
                74.0
                        39.0
                                3.0
                                         4.015666
                39.0
                       56.0
                                5.0
                                         4.028876
       # 1
       # 7
                37.0
                       13.0
                                5.0
                                         3.406052
                       43.0
       # 8
                51.0
                                5.0
                                         3.713690
```

main thing to learn about users and movies are latent factors

we want to fill missing gaps

	mov	ield													
	27	49	57	72	79	89	92	99	143	179	180	197	402	417	505
은 14	3.0	5.0	1.0	3.0	4.0	4.0	5.0	2.0	5.0	5.0	4.0	5.0	5.0	2.0	5.0
14 29	5.0	5.0	5.0	4.0	5.0	4.0	4.0	5.0	4.0	4.0	5.0	5.0	3.0	4.0	5.0
72	4.0	5.0	5.0	4.0	5.0	3.0	4.5	5.0	4.5	5.0	5.0	5.0	4.5	5.0	4.0
211	5.0	4.0	4.0	3.0	5.0	3.0	4.0	4.5	4.0		3.0	3.0	5.0	3.0	
212	2.5		2.0	5.0		4.0	2.5		5.0	5.0	3.0	3.0	4.0	3.0	2.0
293	3.0		4.0	4.0	4.0	3.0		3.0	4.0	4.0	4.5	4.0	4.5	4.0	
310	3.0	3.0	5.0	4.5	5.0	4.5	2.0	4.5	4.0	3.0	4.5	4.5	4.0	3.0	4.0
379	5.0	5.0	5.0	4.0		4.0	5.0	4.0	4.0	4.0		3.0	5.0	4.0	4.0
451	4.0	5.0	4.0	5.0	4.0	4.0	5.0	5.0	4.0	4.0	4.0	4.0	2.0	3.5	5.0
467	3.0	3.5	3.0	2.5			3.0	3.5	3.5	3.0	3.5	3.0	3.0	4.0	4.0
508	5.0	5.0	4.0	3.0	5.0	2.0	4.0	4.0	5.0	5.0	5.0	3.0	4.5	3.0	4.5
546		5.0	2.0	3.0	5.0		5.0	5.0		2.5	2.0	3.5	3.5	3.5	5.0
563	1.0	5.0	3.0	5.0	4.0	5.0	5.0		2.0	5.0	5.0	3.0	3.0	4.0	5.0
579	4.5	4.5	3.5	3.0	4.0	4.5	4.0	4.0	4.0	4.0	3.5	3.0	4.5	4.0	4.5
623		5.0	3.0	3.0		3.0	5.0		5.0	5.0	5.0	5.0	2.0	5.0	4.0

	user	movie	rating	timestamp	title
0	196	242	3	881250949	Kolya (1996)
1	63	242	3	875747190	Kolya (1996)
2	226	242	5	883888671	Kolya (1996)
3	154	242	3	879138235	Kolya (1996)
4	306	242	5	876503793	Kolya (1996)

Ratings df looks like

By default, DataLoaders takes the first column for the user, the second column for the item (item_name)- movies, and the third column for the ratings.

```
dls = CollabDataLoaders.from_df(ratings, item_name='title', bs=64)
dls.show_batch()
              title rating
       user
# 0
       542
               My Left Foot (1989)
# 1
       422
               Event Horizon (1997) 3
# 2
       311
               African Queen, The (1951)
               Face/Off (1997) 4
# 3
       595
```

force those predictions to be between 0 and 5. For this, we just need to use sigmoid_range, like in <>.

One thing we discovered empirically is that it's better to have the **range go a little bit over 5, so we use** (0, 5.5)

```
# neeche dekhenge DotProduct kaisa hota hai
# basically it returns two embedding matrices
# model.user_factors is Embedding(944, 50) since 944 users
# model.movie_factors is Embedding(1665, 50) since 1665 users

model = DotProduct(n_users, n_movies, 50)
```

```
# or
       learn = collab_learner(dls, n_factors=50, y_range=(0, 5.5))
       learn.fit one cycle(5, 5e-3, wd=0.1) # wd is weight decay (optional but useful for regularisation)
       movie_bias = learn.model.movie_bias.squeeze()
       idxs = movie_bias.argsort(descending=True)[:2]
       [dls.classes['title'][i] for i in idxs]
       # ['Titanic (1997)',
       # 'Shawshank Redemption, The (1994)']
In [ ]:
       # when collablearner use kiya tab ka
       learn.model
       # EmbeddingDotBias(
       # (u_weight): Embedding(944, 50)
       # (i_weight): Embedding(1665, 50)
       # (u_bias): Embedding(944, 1)
       # (i_bias): Embedding(1665, 1)
       # )
       learn.model.i_bias.weight.squeeze().argsort(descending=True)
       # gets movies with highest bias
       # tensor([ 373, 1591, 374, ..., 1649, 690, 644])
       movie_bias = learn.model.i_bias.weight.squeeze()
       idxs = movie_bias.argsort(descending=True)[:5]
       [dls.classes['title'][i] for i in idxs] # gives 5 top movies, result may be different here
     shows what our movies look like based on two of the strongest PCA components.
       #hide input
       #id img_pca_movie
       #caption Representation of movies based on two strongest PCA components
       #alt Representation of movies based on two strongest PCA components
       g = ratings.groupby('title')['rating'].count()
       top_movies = g.sort_values(ascending=False).index.values[:1000]
       top_idxs = tensor([learn.dls.classes['title'].o2i[m] for m in top_movies])
```

learn = Learner(dls, model, loss_func=MSELossFlat())

```
movie_w = learn.model.movie_factors[top_idxs].cpu().detach()
movie_pca = movie_w.pca(3)
fac0,fac1,fac2 = movie_pca.t()
idxs = list(range(50))
X = fac0[idxs]
Y = fac2[idxs]
plt.figure(figsize=(12,12))
plt.scatter(X, Y)
for i, x, y in zip(top_movies[idxs], X, Y):
    plt.text(x,y,i, color=np.random.rand(3)*0.7, fontsize=11)
plt.show()
```


model seems to have discovered a concept of classic versus pop culture movies, or perhaps it is critically acclaimed that is represented here.

```
In []:

In []:
```

CollabNN creates our Embedding layers in the same way as previous classes in this chapter, except that we now use the embs sizes. self.layers is identical to the mini-neural net we created in chapter_mnist_basics for MNIST. Then, in forward, we apply the embeddings, concatenate the results, and pass this through the mini-neural net. Finally, we apply sigmoid_range as we have in previous models.

```
model = CollabNN(*embs)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.01)
# epoch train_loss
                       valid_loss
                                       time
# 0
       0.946587
                       0.959500
                                       00:11
# 1
       0.914668
                       0.900304
                                       00:11
# 2
       0.850525
                       0.884657
                                       00:11
# 3
       0.814607
                       0.877216
                                       00:11
# 4
       0.769289
                       0.879043
                                       00:11
```

fastai provides this model in fastai.collab if you pass use_nn=True in your call to collab_learner (including calling get_emb_sz for you), and it lets you easily create more layers. For instance, here we're creating two hidden layers, of size 100 and 50, respectively:

```
learn = collab_learner(dls, use_nn=True, y_range=(0, 5.5), layers=[100,50])
learn.fit_one_cycle(5, 5e-3, wd=0.1)
# epoch train_loss
                       valid_loss
                                       time
       1.006306
                       0.993857
                                       00:14
# 0
# 1
       0.878367
                       0.927818
                                       00:15
# 2
       0.883003
                       0.899196
                                       00:15
       0.813805
                       0.864728
                                       00:15
# 3
```