

Fast Thresholded SC-Flip Decoding of Polar Codes

Furkan Ercan* and Warren J. Gross

Integrated Systems for Information Processing (ISIP) Lab McGill University Montréal, Québec, Canada

June 8-11, 2020

5G Use Cases

Enhanced Mobile Broadband (eMBB)

High throughput

Ultra-Reliable Low-Latency Communications (URLLC)

Massive Machine-Type

Communications (mMTC)

- Low latency
- High reliability

- Massive connectivity
- Energy efficiency

- 5G prioritizes various targets based on the use case.

5G Use Cases

Enhanced Mobile Broadband (eMBB)

High throughput

Ultra-Reliable Low-Latency Communications (URLLC)

- Massive connectivity
- Energy efficiency

- Low latency
- High reliability

- ▶ 5G prioritizes various targets based on the use case.
- Polar codes provably achieve channel capacity.
- They are involved in 5G eMBB control channel.

•

5G Use Cases

Enhanced Mobile Broadband (eMBB)

Ultra-Reliable Low-Latency

Communications (URLLC)

- Massive connectivity
 - Energy efficiency

High throughput

- Low latency
- High reliability

- 5G prioritizes various targets based on the use case.
- Polar codes provably achieve channel capacity.
- They are involved in 5G eMBB control channel.
- Currently, polar codes are being evaluated for other use cases.

Base Algorithms: SC [Arikan'09]

Successive Cancellation (SC) Decoding

- Simple encoding/decoding
- Mediocre performance at practical lengths
- Sequential, long latency

Fast-SSC Decoding

- √ ≈ 10× less latency
 - No error correction performance degradation

Base Algorithms:

Practical Implementations:

SC-List (SCL) Decoding

- ✓ Improved performance
- Increased complexity

Base Algorithms:

Practical Implementations:

SC-List (SCL) Decoding

- ✓ Improved performance
- Increased complexity

- ✓ Some improved performance
- Low complexity
- Variable latency

Practical Implementations:

- ✓ Some improved performance
- Low complexity
- Variable latency

Thresholded SCF (TSCF) Decoding

✓ Better improved performance

- Lower complexity
- A lot of precomputations

This Work

- No precomputations
- Introduce fast decoding techniques
- ✓ Hardware implementation

Legend

Frozen bitInformation bit

Decoding Trajectory

Problems with the SCF Algorithm

▶ Metric for SCF for node index i: $|L_i|$ where L is LLR.

Problems with the SCF Algorithm

- ▶ Metric for SCF for node index i: $|L_i|$ where L is LLR.
- Performance improvement of SCF is limited:
 - Metric cannot distinguish channel errors from propagated errors.

Thresholded SC-Flip (TSCF) Decoding

Thresholded SC-Flip (TSCF) algorithm is an improvement over SCF decoding:

- The search for bit-flipping is simplified by introducing a critical set.
 - Constructed empirically (precomputations)
 - ▶ Reduced search effort → reduced complexity

Thresholded SC-Flip (TSCF) Decoding

Thresholded SC-Flip (TSCF) algorithm is an improvement over SCF decoding:

- The search for bit-flipping is simplified by introducing a critical set.
 - Constructed empirically (precomputations)
 - ▶ Reduced search effort → reduced complexity
- An LLR threshold can filter erroneous indices efficiently.
 - Constructed empirically (precomputations)
 - ▶ Efficient index identification → improved performance

Demonstration: Critical Set

• Example: PC(N, K) = PC(1024, 170)

Demonstration: LLR Threshold

• Example: PC(N, K) = PC(1024, 170)

Demonstration: LLR Threshold

• Example: PC(N, K) = PC(1024, 170)

- Example: PC(1024, 512), 16 bit CRC, $T_{max} = 10$.
- Ω for TSCF is optimized for $E_b/N_0 = 2.5$ dB.

- Example: PC(1024, 512), 16 bit CRC, $T_{max} = 10$.
- Ω for TSCF is optimized for $E_b/N_0 = 2.5$ dB.

- Example: PC(1024, 512), 16 bit CRC, $T_{max} = 10$.
- Ω for TSCF is optimized for $E_b/N_0 = 2.5$ dB.

- Example: PC(1024, 512), 16 bit CRC, $T_{max} = 10$.
- Ω for TSCF is optimized for $E_h/N_0 = 2.5$ dB.

TSCF Algorithm - Pros and Cons

Pros:

- Reduced search complexity
- Improved decoding performance

TSCF Algorithm - Pros and Cons

Pros:

- Reduced search complexity
- Improved decoding performance

Cons:

- Precomputations for LLR threshold
- Precomputations for critical set
- No fast decoding techniques
- No practical implementation

A New Approach to LLR Thresholding

A New Approach to LLR Thresholding

A New Approach to LLR Thresholding

LLR Threshold Regression

5G polar codes

LLR Threshold Regression

•
$$\Omega_{(approx)} = 2 \times E_b/N_0(dB) + 6$$

^[1] Z. Zhang, K. Qin, L. Zhang and G. T. Chen, "Progressive Bit-Flipping Decoding of Polar Codes: A Critical-Set Based Tree Search Approach," in IEEE Access, vol. 6, pp. 57738-57750, 2018.

^[1] Z. Zhang, K. Qin, L. Zhang and G. T. Chen, "Progressive Bit-Flipping Decoding of Polar Codes: A Critical-Set Based Tree Search Approach," in IEEE Access, vol. 6, pp. 57738-57750, 2018.

^[1] Z. Zhang, K. Qin, L. Zhang and G. T. Chen, "Progressive Bit-Flipping Decoding of Polar Codes: A Critical-Set Based Tree Search Approach," in IEEE Access, vol. 6, pp. 57738-57750, 2018.

^[1] Z. Zhang, K. Qin, L. Zhang and G. T. Chen, "Progressive Bit-Flipping Decoding of Polar Codes: A Critical-Set Based Tree Search Approach," in IEEE Access, vol. 6, pp. 57738-57750, 2018.

^[1] Z. Zhang, K. Qin, L. Zhang and G. T. Chen, "Progressive Bit-Flipping Decoding of Polar Codes: A Critical-Set Based Tree Search Approach," in IEEE Access, vol. 6, pp. 57738-57750, 2018.

- ► $FER_{SC} = 1 \left[\prod_{i \in \mathcal{X}} (1 Pr(error_i)) \right].$
- $ightharpoonup \mathcal{X}$ can be information bits, or a critical set \mathcal{C} .
- ► 5G polar code, N=1024.

- ► FER_{SC} = 1 $\left[\prod_{i \in \mathcal{X}} (1 Pr(error_i))\right]$.
- $ightharpoonup \mathcal{X}$ can be information bits, or a critical set \mathcal{C} .
- ▶ 5G polar code, N=1024.

- ► FER_{SC} = 1 $\left[\prod_{i \in \mathcal{X}} (1 Pr(error_i))\right]$.
- $ightharpoonup \mathcal{X}$ can be information bits, or a critical set \mathcal{C} .
- ▶ 5G polar code, N=1024.

- ► $FER_{SC} = 1 \left[\prod_{i \in \mathcal{X}} (1 Pr(error_i)) \right].$
- $ightharpoonup \mathcal{X}$ can be information bits, or a critical set \mathcal{C} .
- ▶ 5G polar code, N=1024.

- ► $FER_{SC} = 1 \left[\prod_{i \in \mathcal{X}} (1 Pr(error_i)) \right].$
- $ightharpoonup \mathcal{X}$ can be information bits, or a critical set \mathcal{C} .
- ► 5G polar code, N=1024.

- ► FER_{SC} = 1 $\left[\prod_{i \in \mathcal{X}} (1 Pr(error_i))\right]$.
- $ightharpoonup \mathcal{X}$ can be information bits, or a critical set \mathcal{C} .
- ▶ 5G polar code, N=1024.

- ► $FER_{SC} = 1 \left[\prod_{i \in \mathcal{X}} (1 Pr(error_i)) \right].$
- $ightharpoonup \mathcal{X}$ can be information bits, or a critical set \mathcal{C} .
- ▶ 5G polar code, N=1024.

Fast-TSCF Decoding

- New critical set approach allows for fast decoding.
- Special nodes: Repetition, single parity check (SPC), Rate-1
- Use LLR thresholding at the top of the special nodes.

Decoding of Special Nodes

- Decoding of special nodes for SCF algorithm was implemented previously (Fast-SCF decoding) [1].
- Idea: Use thresholding at the top-node calculations.
- Example: Rate-1 nodes

$$\eta_{\text{Rate-1}} = \begin{cases} \arg \, \min |\alpha_{0:N_v-1}^S|, & \text{if } \min |\alpha_{0:N_v-1}^S| \leq \Omega \\ \varnothing, & \text{otherwise}. \end{cases}$$

^[1] F. Ercan, T. Tonnellier, and W. J. Gross, Energy-efficient hardware architectures for fast polar decoders, IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 114, 2019.

Decoding of Special Nodes

- Decoding of special nodes for SCF algorithm was implemented previously (Fast-SCF decoding) [1].
- Idea: Use thresholding at the top-node calculations.
- Example: Rate-1 nodes

^[1] F. Ercan, T. Tonnellier, and W. J. Gross, Energy-efficient hardware architectures for fast polar decoders, IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 114, 2019.

Decoding of Special Nodes

- Decoding of special nodes for SCF algorithm was implemented previously (Fast-SCF decoding) [1].
- Idea: Use thresholding at the top-node calculations.
- Example: Rate-1 nodes

Threshold condition

^[1] F. Ercan, T. Tonnellier, and W. J. Gross, Energy-efficient hardware architectures for fast polar decoders, IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 114, 2019.

Hardware Implementation

- Fast-SCF decoder is modified to implement the Fast-TSCF decoder:
 - Sorter is not required in TSCF algorithm.
 - Channel estimation is introduced as an input for Ω .
 - All fast decoding techniques are modified with Ω.
- Implemented in VHDL, validated with test benches.

Results: Performance

► PC(1024, 512), 16 bit CRC, $T_{max} = 10$.

Results: Performance

▶ PC(1024, 512), 16 bit CRC, $T_{max} = 10$.

Results: Latency

▶ PC(1024,512), 16 bit CRC, $T_{max} = 10$.

Results: Latency

▶ PC(1024,512), 16 bit CRC, $T_{max} = 10$.

Results: Latency

▶ PC(1024,512), 16 bit CRC, $T_{max} = 10$.

Results: ASIC Synthesis

Table: TSMC 65 nm CMOS synthesis results comparison for Fast-TSCF decoding against state-of-the-art, using *PC*(1024, 512).

	Fast-TSCF	Fast-SCF ^[1]	Fast-SSCL[2]
Technology (nm)	65	65	65
Supply(V)	1.0	1.0	N/A
Frequency (MHz)	480	455	885
Avg. Coded T/P (Mbps)	1595 ^(a)	1511 ^(a)	1861
Area (mm²)	0.49	0.56	1.05
Area Efficiency (Gbps/mm ²)	3.2	2.71	1.78

⁽a) Average value at target FER= 10^{-4} .

⁽b) List size for Fast-SSCL is L = 2.

^[1] F. Ercan, T. Tonnellier, and W. J. Gross, Energy-efficient hardware architectures for fast polar decoders, IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 114, 2019.

^[2] S. A. Hashemi, C. Condo, and W. J. Gross, Fast and flexible successive cancellation list decoders for polar codes, IEEE Transactions on Signal Processing, vol. 65, no. 21, pp. 57565769, Nov 2017.

Conclusion

Answering how to make TSCF algorithm practical and fast

Conclusion

- Answering how to make TSCF algorithm practical and fast
- We showed how to:
 - ▶ Replace empirical threshold with a function of E_b/N_0 .
 - Correlate empirical critical set with an analytical one.
 - Introduce fast decoding techniques for TSCF.
 - Hardware implementation.

Conclusion

- Answering how to make TSCF algorithm practical and fast
- We showed how to:
 - ▶ Replace empirical threshold with a function of E_b/N_0 .
 - Correlate empirical critical set with an analytical one.
 - Introduce fast decoding techniques for TSCF.
 - Hardware implementation.
- Compared to
 - Fast-SCF: 0.24 dB performance improvement.
 - Fast-SSCL: 82% better area efficiency.
 - TSCF: 88% fewer decoding steps & no precomputational dependencies.

Thank you for your attention!