Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Eléctrica IEE2753 - Diseño de Circuitos Integrados Digitales

Tarea 6

11 de junio de 2020

Agustín Campeny

1. Factor de actividad

1.1.

Para este ejercicio se calcula la probabilidad para cada nodo, y luego su factor de actividad, definido como $\alpha = P_i \overline{P_i}$.

- n_0 : Como la probabilidad de todas las entradas del circuito son de 0.5, y la probabilidad de una puerta NAND2 es de $P_{\text{NAND2}} = 1 P_A P_B$, la probabilidad $P_{n_0} = 0.75$, y el factor de actividad $\alpha_{n_0} = 0.1875$.
- n_1 : El inversor solo invierte la probabilidad del nodo de entrada, pero no modifica el factor de actividad, por lo tanto $P_{n_1} = 0.25$ y $\alpha_{n_1} = 0.1875$.
- n_2 : Se utiliza la probabilidad de n_1 y de la nueva entrada. El valor $P_{n_2}=0.875$ y $\alpha_{n_2}=0.109375$.
- n_3 : Este nodo es idéntico a n_2 , por lo tanto $P_{n_3} = 0.875$ y $\alpha_{n_3} = 0.109375$.

1.2.

Despreciando la potencia interna, se define la potencia dinámica como la suma de las potencias de switching en las entradas de cada compuerta y en la capacitancia de carga. De esta forma:

$$P_{\text{dynamic}} = (0.5C_{in} + 0.1875C_1 + 0.875C_2 + 0.21875C_{Load})V_{DD}^2 f$$
(1.1)

2. Low Power Placement

Se quiere minimizar el factor de actividad en los nodos con capacitores. Para esto primero se determina el valor del factor de actividad con respecto a las entradas:

$$\alpha_1 = \left(1 - \overline{P_{in1}P_{in2}}\right) \cdot \overline{P_{in1}P_{in2}} \tag{2.1}$$

$$\alpha_2 = \left(1 - \overline{P_{int}P_{in3}}\right) \cdot \overline{P_{int}P_{in3}} \tag{2.2}$$

(2.3)

Como el nodo de salida es una función de las tres entradas, su factor de actividad es el mismo sin importar el orden de estas. Se busca entonces minimizar α_1 .

El orden que minimiza este valor es $P_{in1}=0.1$ y $P_{in2}=0.2$, correspondiendo a un factor de actividad $\alpha_1^{\min}=0.0196$.

El orden que maximiza este valor es $P_{in1}=0.2$ y $P_{in2}=0.5$, correspondiendo a un factor de actividad $\alpha_1^{\min}=0.09$.