Week 3: Loop Invariants

Week 03 Tutorial 01 — MiniJava 2.0

Week 03 Tutorial 01 — MiniJava 2.0

```
1. rand x:
```

Assigns a random value to variable x,

2. $x = either e_0, \ldots, e_k$:

Assigns one of the values of the expressions e_0, \ldots, e_k to variable x non-deterministically,

3. x = e in a, b:

Assigns the value 1 to variable x, if the value of expression ${f e}$ is in the range [a,b] and 0 if ${f e}$ is not in the range or the range is empty (a>b),

4. stop:

Immediately stops the program.

Define the weakest precondition operator $\mathbf{WP}[\![\ldots]\!](B)$ for each of these statements.

Week 03 Tutorial 01 — MiniJava 2.0

- 1. Discuss the problem that arises when computing weakest preconditions to prove Z.
- 2. How can you use weakest preconditions to prove $oldsymbol{Z}$ anyway?

- \circ a) How has a useful loop invariant be related to Z?
- o b) What happens if the loop invariant is chosen too strong?
- o c) What happens if the loop invariant is chosen too weak?

Week 03 Task 3: Why is this not on Artemis?

Week 03 Task 3: Why is this not on Artemis?

