

Tema 4 Estructures No Lineals: Arbres Sessió Teo 7

Maria Salamó Llorente Estructura de Dades

Grau en Enginyeria Informàtica Facultat de Matemàtiques i Informàtica, Universitat de Barcelona

Contingut

- 4.1 Introducció als arbres
- 4.2 Arbres binaris
- 4.3 Arbres binaris de cerca
- 4.4. Recorreguts en arbres binaris
- 4.5. Arbres AVL

Contingut

Sessió Teoria 7 (Teo 7)

- 4.1 Introducció als arbres
- 4.2 Arbres binaris

Sessió Teoria 8 (Teo 8)

4.3 Arbres binaris de cerca

Sessió Teoria 9 (Teo 9)

4.4. Recorreguts en arbres binaris

Sessió Teoria 10 (Teo 10)

4.5. Arbres AVL

4.1 Introducció als arbres

Introducció

- Les Ilistes encadenades són estructures de dades lineals
 - Són sequencials, un element darrera de l'altre
 - Cercar i recuperar informació té un cost computacional O(n)

El arbres

- Junt amb els grafs són estructures de dades no lineals
- Són jeràrquics
- Solventen els inconvenients de les llistes
- Ofereixen diferents tipus de recorreguts
- Perquè són útils els arbres?
 - Són útils per cercar i recuperar informació més ràpidament que a les estructures lineals

Arbres

- Model abstracte d'una estructura jeràrquica
- Un arbre consisteix en nodes que tenen una relació pare-fill
- Aplicacions:
 - Organització de mapes
 - Sistemes de fitxers
 - Entorns de programació

Terminologia

- Arrel: node sense pare (A)
- Node intern: node amb com a mínim un fill (A, B, C, F)
- Node extern (fulla): node sense fills (E, I, J, K, G, H, D)
- Ancestres d'un node: pare, avi, besavi, etc.
- Profunditat d'un node: nombre d'ancestres
- Alçada d'un arbre: màxima profunditat de qualsevol node (4)
- Descendent d'un node: fill, net, besnét, etc.

 Subarbre: arbre format per un node i els seus descendents

Exemple estructura de directoris i fitxers

Exemple d'arbre d'etiquetes d'una pàgina web

Exemple joc tres en ratlla

Propietats d'un arbre

 Primera propietat: els arbres són jeràrquics

• **Segona propietat**: Tots els fills d'un node són independents

 Tercera propietat: El camí fins a qualsevol node extern (fulla) és únic

TAD Arbre (Tree)

Mètodes genèrics:

- integer size()
- boolean empty()
- list<position>
 positions()

Mètodes d'accés:

- position root()
- position p.parent()
- list<position>
 p.children()

Mètodes de consulta:

- boolean p.isRoot()
- boolean p.isExternal()

Mètodes modificadors:

 Es poden definir diferents mètodes de modificació segons la implementació escollida de l'arbre

Excepcions:

- Posició invàlida, Arbre buit
- Sobrepassar la frontera de l'arbre

Arbres en estructura encadenada

 Un node es representa per un objecte que guarda

- l'Element
- El node pare
- La seqüència de nodes fills
- Els objectes Node implementen el TAD Position

Interfície en C++ (no està completa)

```
template <class E>
class Position<E>{
public:
    E& operator*();
    Position parent() const;
    PositionList children() const;
    bool isRoot() const;
    bool isExternal() const;
};
```

- Les posicions d'un arbre són els seus nodes
- operator* s'usa per retonar l'element que guarda el node

Interfície en C++ (no està completa)

```
template <class E>
class Tree<E>{
public:
  int size() const;
  bool empty() const;
  Position root() const;
  PositionList positions() const;
};
```

- PositionList segueix l'estàndar TAD llista
 - Es podria implementar amb std::list<Position>

Definició recursiva d'arbre

- Definició recursiva: l'arbre és un conjunt finit de nodes que compleix:
 - Existeix un node arrel
 - La resta de nodes estan en n (n>= 0)
 particions de conjunts disjunts T1, T2, ..., Tn
 on cadascun d'aquests conjunts és un arbre

• T1, T2, ..., Tn són els subarbres del node arrel

- Profunditat, Alçada d'un arbre
- Nivell d'un node,
- Grau d'un arbre

Es calculen de forma recursiva

Són arbres?

Solució: Són arbres?

Nivell d'un node

- El **nivell** d'un node es defineix com:
 - El nivell del node arrel és 0
 - Si un node està en el nivell
 L, els seus fills estan en el nivell L+1
- La profunditat d'un arbre és el màxim nivell
- L'alçada d'un arbre és el màxim nivell + 1

Nivell d'un node

- En aquest cas l'alçada de l'arbre és 4
- L'arbre té 3 nivells
 - El node A està al nivell 0
 - Els nodes B, C, D estan al nivell 1
 - Els nodes E, F, G, H, I, Jestan al nivell 2
 - Els nodes K, L, M estan al nivell 3
- La profunditat de l'arbre és de 3

Com es mesura el grau d'un arbre

- El nombre de fills d'un node és el grau del node
 - Les fulles o nodes externs tenen grau zero

 Grau d'un arbre: és el màxim grau dels seus nodes

Com es mesura el grau d'un arbre

- El grau d'un node del B és 2
 - El node B i el E tenen grau de 2
 - El node D té un grau de 3
 - El node C i H tenen grau de 1

Grau de l'arbre: 3

 Ja que el màxim grau de qualsevol node correspon al node D amb 3 fills

Profunditat d'un node

```
int depth(const Position & p)
// calculeu aquí la profunditat d'un node
de forma recursiva fent servir les funcions
definides a la classe Position
// Recordeu que per trobar la profunditat
d'un node cal saber quants ancestres té el
node
```


Profunditat d'un node

Profunditat de l'arrel és 0

```
template <class E>
class Position<E>{
public:
    E& operator*();
    Position parent() const;
    PositionList children() const;
    bool isRoot() const;
    bool isExternal() const;
}
```

```
template <class E>
class Tree<E>{
public:
   int size() const;
   bool empty() const;
   Position root() const;
   PositionList positions() const;
   private: Position<E> *root;
};
```


Solució: Profunditat d'un node

```
int depth(const Position & p)
 if (p.isRoot())
  return 0;
 else
  return 1 + depth(p.parent());
```


Alçada 1

```
int height1(const Tree& T)
// calculeu aquí l'alçada de l'arbre de
forma recursiva fent servir les funcions
definides a la classe Position i a Tree
// Una manera de calcular-ho pot ser mirant
quins nodes de l'arbre són externs i veure
quina és la profunditat d'aquests nodes,
l'alçada de l'arbre serà la màxima
profunditat dels seus nodes +1
```


Height 1

Profunditat de l'arrel és 0

```
template <class E>
class Position <E>{
public:
    E& operator*();
    Position parent() const;
    PositionList children() const
    bool isRoot() const;
    bool isExternal() const;
};
```



```
template <class E>
class Tree<E>{
public:
   int size() const;
   bool empty() const;
   Position root() const;
   PositionList positions() const;
private: Position<E> *root;
};
```


Solució: Alçada 1

```
int height1(const Tree& T)
 int h = 0;
 PositionList nodes = T.positions();
 for (Iterator q= nodes.begin();
      q!= nodes.end(); ++q)
   if (q->isExternal())
      h = max(h, depth (*q));
 return h+1;
```


Alçada 2

```
int height2(const Tree& T, const Position& p)
// calculeu aquí l'alçada de l'arbre de forma
recursiva fent servir les funcions definides a la
classe Position. Inicialment a la funció se li passa
la Position del node arrel.
// Una altra manera de calcular-ho pot ser mirant
quina és l'alçada de cada node. Des del node arrel a
les fulles. Recordeu que l'alçada d'una fulla és 1.
```


Height 2

Profunditat o alçada de l'arrel és 0

```
template <class E>
class Position<E>{
public:
 E& operator*();
 Position parent() const;
 PositionList children() const;
 bool isRoot() const;
 bool isExternal() const;
```


Solució: Alçada 2

```
int height2(const Position& p)
 if (p.isExternal()) return 0;
 int h = 1;
 PositionList ch = p.children();
 for (Iterator q= ch.begin();
      q! = ch.end(); ++q)
   h = max(h, height2(*q));
 return 1+h;
```


Recorreguts en arbres

- Un recorregut visita els nodes d'un arbre d'una manera sistemàtica
- Les dues maneres més habituals són:
 - Recorregut en preordre: un node es visita abans que els seus descendents
 - Recorregut en postordre: Un node es visita després dels seus nodes descendents
- En arbres binaris veurem més tipus de recorreguts.

Recorreguts en arbres

- Exemple aplicació:
 - Imprimir la taula de continguts d'un document estructurat

Recorregut en preordre

- En un recorregut en preordre, un node es visita abans que els seus descendents
- Exemple aplicació: imprimir la taula de continguts d'un document estructurat

```
Algorithm preOrder(v)

visit(v)

for each child w of v

preOrder (w)
```


Recorregut en postordre

- En un recorregut en postordre: Un node es visita després dels seus nodes descendents
- Exemple aplicació: calcular l'espai usat pels fitxers en un directori i subdirectoris

```
Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)
```


Exercicis

36

4.2 Arbres binaris

Arbres binaris

- □ Un arbre binari és un arbre amb les següents **propietats**:
 - Cada node intern té com a màxim dos fills
 - Pot ser 0, 1, o 2 fills.
 - Els fills d'un node són un parell ordenat
- □ Els fills d'un node intern s'anomenen fill esquerra i fill dret
- Exemples d'ús:
 - Expressions aritmètiques
 - Processos de decisió (s'anomenen arbres de decisió)
 - Cerques

Arbre d'expressions aritmètiques

- Es pot associar un arbre binari a una expressió aritmètica
 - nodes interns: operadors
 - nodes externs: operands
- Fent un recorregut de l'arbre es pot fer l'avaluació de l'expressió aritmètica

• Exemple: $(2 \times (a - 1) + (3 \times b))$

Arbre de decisió

- Es pot associar un arbre binari a un procés de decisió
 - nodes interns: preguntes amb resposta si/no
 - nodes externs: decisions
- Fent un recorregut de l'arbre es pot prendre la decisió
- Exemple: decisió per on anar a sopar

Propietats dels arbres binaris

Notació

- *n* nombre de nodes
- e nombre de nodes externs
- i nombre de nodes interns
- h alçada

Propietats:

$$e = i + 1$$

■
$$n = 2e - 1$$

$$h \leq i+1$$

■
$$h \le (n-1)/2$$

$$e \le 2^h$$

■
$$h \ge \log_2 e$$

■
$$h \ge \log_2(n+1) - 1$$

TAD BinaryTree

- El TAD arbre binari (TAD BinaryTree) estén el TAD Tree
 - hereta tots els mètodes del TAD Tree
- Mètodes addicionals:
 - position p.left()
 - position p.right()

 Arbre binari complet: Cada node té 0, 1 o 2 fills.

Interfície en C++ (no està completa)

```
template <class E>
class Position<E>{
public:
 E& operator*(); // getElement
 Position left() const;
 Position right() const;
 Position parent() const;
 bool isRoot() const;
bool isExternal() const;
```

- Les posicions d'un arbre són els seus nodes
- operator* s'usa per retonar l'element que guarda el node

Interfície en C++ (no està completa)

```
template <class E>
class BinaryTree<E>{
public:
  int size() const;
  bool empty() const;
  Position root() const;
  PositionList positions() const;
};
```

- PositionList segueix l'estàndar TAD llista
 - Es podria implementar amb std::list<Position>

Implementacions del TAD BinaryTree

La implementació dels arbres binaris es pot fer de dues maneres:

- 1. Implementació usant vectors o arrays
 - En aquest cas s'ha de definir el màxim nombre d'elements que hi haurà a l'arbre
- 2. Implementació usant nodes enllaçats
 - En aquest cas, no hi ha limitació d'espai

A continuació veurem les dues implementacions

UNIVERSITAT : Implementació basada en vectors

• Els nodes es guarden en un array A

- □ Els nodes tenen una posició fixa respecte al pare.
 - La posició 0 de l'array A no s'utilitza
 - A[1] guardarà el node arrel (root)
 - si el node és fill esquerra del seu pare
 - si a la casella *i* està el node pare, a la casella A[2*i] estarà el fill esquerra
 - si el node és fill dret del seu pare
 - si a la casella *i* està el node pare, a la casella A[2*i +1] estarà el fill dret

Exercici

1. Passeu l'arbre del dibuix a les caselles, posant el node arrel a la casella 1.

2. Feu el mateix, posant el node arrel a la casella 0. Definiu la formula d'on trobarà un pare al seu fill esquerra i al seu fill dret.

Solució del segon

 Noteu que hi ha caselles de l'array que queden buides perquè hi ha nodes que no tenen fills

Arbres binaris en estructura encadenada (LinkedBinaryTree)

 Un node es representa per un objecte que guarda

Com representar arbres amb arbres binaris

Propietat: Un arbre de qualsevol grau es pot representar com un arbre binari

Regla per convertir-lo en binari:

Els fills esquerres continuen sent fills esquerres i els seus germans passen a ser fills drets

Arbre binari perfecte

 Un arbre binari és perfecte si cada nivell està completament ple

Complet

- Un arbre binari és quasi-complet (o complet)
 si:
 - Cada nivell està completament ple, excloent el nivell més baix
 - Tots estan el màxim a l'esquerra possible

Conclusions

- Els arbres binaris utilitzen la mateixa terminologia que els arbres.
- Els arbres complets són arbres que optimitzen l'ús de memòria.
- Hi ha dues maneres per representar un arbre binari:
 - Representació amb vectors òptima per arbres binaris complets.
 - Representació amb enllaços òptima respecte a la inserció i eliminació de nodes i no malgasta memòria.
 - Però necessita gestionar els enllaços dels nodes.

Tema 4 Estructures No Lineals: Arbres Sessió Teo 7

Maria Salamó Llorente Estructura de Dades

Grau en Enginyeria Informàtica Facultat de Matemàtiques i Informàtica, Universitat de Barcelona