

Feature-based target tracking

Theresa Wakonig

Bachelor Thesis
Supervised by Timothy Sandy and Luca Bartolomei

Motivation

High accuracy tracking of feature-based targets

- Tracking: continuous localization
- Set of (noisy) sensor measurements
- Real-time

Starting point:

- Camera, IMU, tags
- ConFusion package [1]: estimated camera poses from tags and IMU fusion

Aim:

Using tracked features for sensor fusion → remove tags

Setup

Bag file

TH zürich

Progress so far

3D reconstruction

- Pinhole camera model
- Detect keypoints, compute descriptors, check keyframe criteria → match features
- Obtain depth information via triangulation
- Match extracted features from new images to triangulated points

Triangulation

Linear approximation → 3D point initialization

$$\lambda \cdot p_i = M_i \cdot P \qquad \rightarrow \qquad p_i \times M_i \cdot P = 0 \qquad \rightarrow \qquad [p_i]_\times \cdot M_i \cdot P = 0$$
parallel

[2]

р	projected point on image plane
Μ	projection matrix
Κ	camera matrix (intrinsic)
R	rotation matrix
t	translation vector
Ρ	3D point coordinates
i	keyframe

Point cloud

Features detected in frames

Triangulated points from keyframes

Current challenges and next steps

- Timing, retrieving transformation info (include message filter?)
- Fuse point observations over time

Schedule

Two weeks of writing, hand in: 22.06.2020

ETH zürich

References

[1] T. Sandy, L. Stadelmann, S. Kerscher and J. Buchli, "ConFusion: Sensor Fusion for Complex Robotic Systems Using Nonlinear Optimization," in IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1093-1100, April 2019.

[2] D. Scaramuzza. (2019). Multiple View Geometry 1 [PowerPoint slides]. Available: http://rpg.ifi.uzh.ch/docs/teaching/2019/07_multiple_view_geometry_1.pdf

