

通联魔方分析报告指标解释

基础符号	含义	
r_i^P, r_i^B 组合与基准在第 i 期的收益		
a	年化因子,具体指一年中包含几个周期。例	
q	如,频率为月,则 q=12,日频 q=250,周频 q=52.	

私募基金/股票型基金指标解释

#	指标	计算规则	含义	备注
1	年化总收益 Annual total return	$r_{annual}^{P} = \left(\prod_{i=1}^{T} \left(1 + r_i^{P}\right)\right)^{q/T} - 1$	将时间段拉伸到 一年,衡量其收 益	T为总期数; 下文中,在不造成 混淆的情况下会 用 r^P 替换 r^P_{annual} 。
2	年化主动收 益 Annual Active return	$r_{annual}^A = r_{annual}^P - r_{annual}^B$	将组合的年化总 收益减去基准的 年化总收益。年 化收益计算方式 见#1	
3	年化总风险 Annual total risk	$\sigma_{P} = \sqrt{\frac{q}{T} \cdot \sum_{1 \le i \le T} \left(r_{i}^{P} - \overline{r_{i}^{P}}\right)^{2}}$	先算组合收益序 列 r_i^P 的标准差, 再年化;	
4	年化主动风 险 Annual Active risk	$\sigma_{P} = \sqrt{\frac{q}{T} \cdot \sum_{1 \le i \le T} \left(r_{i}^{A} - \overline{r_{i}^{A}}\right)^{2}}$	先算主动收益序 列 r_i^A 的标准差, 再年化;	每期主动收益是 $r_i^A = r_i^P - r_i^B$
5	实现阿尔法 Realized alpha	回归下式: $\mathbf{r}_{\mathbf{i}}^{\mathbf{p}} - r_{f} = \alpha + \beta \cdot \left(\mathbf{r}_{\mathbf{i}}^{\mathbf{B}} - r_{f}\right) + \varepsilon ,$		$\mathbf{r_{i}^{P}}, \mathbf{r_{i}^{B}}$ 为对应组合 和基准的收益序 列。 $\mathbf{r_{f}}$ 为相应周期
6	实现贝塔 Realized beta	得到截距α和斜率β		的无风险利率。
7	残差风险 Residual risk	上式中ε的标准差		
8	信息比率(IR) information ratio	$IR = \frac{r^{A}}{\sigma^{A}}$	主动收益 / 主动 风险	主动收益见 2,主 动风险计算方法 见 3
9	夏普比率 (SharpeRatio)	$SR = \frac{r^P - r_f}{\sigma_P}$	超额收益(r^P – r_f)与组合标准 差之比值;	左式r _f 为年化无风 险利率,本系统用 固定 3%
10	持股集中	计算每一期的前十大重仓股的		

地址:上海市虹口区塘沽路 463 号华虹国际大厦 16 楼

	度 average concentration	仓位和,多期求平均		
11	平均持股 数 average holding number	多期持股数量的平均		
12	平均规模 average asset	多期规模的平均		
13	年化转手率 Annual turnover	针对连续两期持仓,其中发生的 交易金额占前一期持仓金额的 比例;针对多期,先求平均,再 年化;		
14	卡玛比率 Calmar ratio	$Calmar = \frac{r^P}{MD_1}$	年化收益率r ^P 与选定时间区间 内最大回撤的比 值,该值越高, 表明基金业绩表 现越好	MD ₁ 为选定时间区 间内的净值最大 损失,即 Max Drawdown
15	特雷诺比率 Treynor ratio	$TR = \frac{r^P - r_f}{\beta_p}$	超额收益(r^P – r_f)与市场相关系数的比值,表明基金承担单位系统风险所获得的超额收益。	eta_p 为前文中的"实现贝塔",是投资组合对市场基准敏感性的度量
16	赫斯特指数 Hurst	$\frac{\text{Range}(r_1, r_2, \cdots, r_n)}{\sigma(r_1, r_2, \cdots, r_n)}$	衡量基金业绩持 续性的指标	
17	STUTZER 指 数	$I_{p} = \max_{\theta} \left[-\log \left(\frac{1}{T} \sum_{t=1}^{T} e^{\theta r_{t}} \right) \right]$ $Stutzer = \frac{Abs(\bar{r})}{\bar{r}} \sqrt{2I_{p}}$	风险调整收益指标,当基金收益满足正态分布时,等同于夏普比率	$r_{\!t}$ 是超额收益
18	索提诺比率 Sortino ratio	Sortino = $\frac{r^P - r_h}{\sqrt[2]{LPM_2(r_h)}}$		LPM_n $=\sum_{i=1}^{T}[Max(0,(r_h-R_i))]^n/(T-1)$ 其中 r_h 为最小可接受收益率,计算中设置为 3.5%
19	最大回撤及 其修复期数 Max Draw down and	历史最大回撤幅度,及其恢复到 历史高点花费的期数	历史最大回撤幅 度	如果到目前还没 有恢复,则填- 1 .

	recovery days			
	最大连涨涨			
	幅	连续上涨的所有区间内,涨幅最		同理,最大连跌跌
20	max	大的那一段;		幅
	continuous	2		
	gain			
	最大连涨期			
	数	 连续上涨的所有区间内, 上涨时		同理. 最大连跌期
21	max	间段最长的那一段;		
	continuous	四校取区印刷 校,		90
	periods			
	下行风险	1 5		$T_{\mathrm{d}} = \sum_{1 \le t \le T, R_t < 0} 1,$
22	Downside	$SD = \sqrt{\frac{1}{T_d}} \sum_{1 \le t \le T, R_t < 0} (R_t - \bar{R})^2$		和R是下行收益的
	risk	$\sqrt{1 \le t \le T, R_t < 0}$		均值
	VaR (95%)	基于过去 100 个交易日的收益		· 这店 - 县级油甘圹
23	value at risk	序列,找到排序在倒数 5%的收		
	(95%)	益;		
			该值衡量组合达	
			到基准的风险水	S是组合的夏普比
24	M²测度	$M^2 = S \times \sigma_B + r_f$	平时的超额收益	率。 σ_B 是基准超额
			大小。该值越大	收益率的标准差。
			越好	
			偏度反映了数据	
			系列分布形态的	
			偏斜程度。偏度	
			大于0表示其数	
			据分布形态与正	
			态分布相比为正	
			偏或右偏,即有	S S E
		$\left[\left(n^{p} - \frac{n^{p}}{n^{p}} \right)^{3} \right] \dots$	一条长尾巴拖在	, 具二阶由水结
		$E\left[\left(\frac{r_t^p - \overline{r^p}}{\sigma}\right)^3\right] = \frac{\mu_3}{\sigma^3}$	右边,数据右端	同理,最大连跌期数 $T_d = \sum_{1 \le t \le T, R_t < 0} 1$,和R是下行值 该值,最终要 t
25	/è·辛		有较多的极端	
25	偏度	$E\left[\left(r_{r}^{p}-\overline{r^{p}}\right)^{3}\right]$	值,即有更大的	
		$=\frac{E\left[\left(r_{t}^{p}-\overline{r^{p}}\right)^{3}\right]}{\left(E\left[\left(r_{t}^{p}-\overline{r^{p}}\right)^{2}\right]\right)^{3/2}}$	概率产生较大	
		$\left(E\left[\left(r_t^p-\overline{r^p}\right)^2\right]\right)^{r}$	值;偏度小于0	平。
			表示其数据分布	
			形态与正态分布	
			相比为负偏或左	
			偏,即有一条长	
			尾拖在左边,数	
			据左端有较多的	
			极端值,即有更	
		<u> </u>	//·四山,叶月人	

			大的概率产生较 小值。投资者应 当注意左偏风 险。	
26	峰度	$Kurt[X] = \frac{\mu_4}{\sigma^4}$ $= \frac{E[(r_t^p - \overline{r^p})^4]}{(E[(r_t^p - \overline{r^p})^2])^2}$	峰大系越列中存峰若峰明收高值未动度,列多的来在肥收度该产率概免分看明尾益较产率概换发来的人人,的相取话剧对数端据线现"征布则预对极说烈对战据值序图为尖。的说期较端,波较越据值序图为尖。的说期较端,波较	μ ₄ 是四阶中心矩, σ是标准差。
27	个股 / 行业贡 献	定义 $x_t^{(i)} = w_{t-1}^{(i)} \cdot r_t^{(i)}$,其中 $w_{t-1}^{(i)}$ 和 $r_t^{(i)}$ 分别为组合中第 i 类资产在 t-1 时刻的权重和 t 收益率。定义 $A_k = \prod_{t=1}^{k} (1 + \sum_i x_t^i)$ 为组合在第 k 期的净值,其中 $A_0 = 1$ 。定义 $C_k^i = A_0 \cdot x_1^{(i)} + A_1 \cdot x_2^{(i)} + \cdots + A_{k-1} \cdot x_k^{(i)}$ 为第 i 个资产累计到第 k 期的贡献。在计算区间 1T 时刻每个资产的累积贡献时,需要计算每个 C_T^i	每个资产市值贡 献的增长率	第 i 类资产可以是个股或行业。 $x_t^{(i)}$ 为第 i 个资产第 t 期的加权收益率,权重为该资产在组合中的比率。 $\Sigma_i x_t^i$ 为第 t 期资产所有资产收益率的和,即组合在第 t 期的收益率。
28	Brinson 归因 (仓位管理收 益) Position allocation Brinson 归因 (行业选择收	$(W_p - W_b) \cdot R_b$ 第 s 个行业的行业选择收益为	在现金和股票之间做选择,而带来的针对基准的超额收益; 在不同行业间配	在 Brinson 归因模 块,我们按照时间 序列将这四个值 依次展示; 在页面开头,将时 间维度捏合起来, 形成对应的总和。
	益) Sector allocation	$W_p \cdot (rac{W_p^s}{W_p} - rac{W_b^s}{W_b}) \cdot R_b^s$ 把所有行业求和得到组合的行业选择收益	置,而带来的针 对基准的超额收 益;	W_p 是组合中股票 的仓位占比, W_b 是

		E3		
	Brinson 归因 (选股收益) Sector selection	第 s 个行业的选股收益为 $W_p \cdot \frac{W_b^s}{W_b} \cdot (R_p^s - R_b^s)$ 把所有行业求和得到组合的选股收益	在行业内部选择 个股,而带来的 针对基准的超额 收益;	基准中股票的仓位占比, W_b^s 是组合在第 s 个行业上股票配置的仓位占比, W_b^s 是基准在第
	Brinson 归因 (其它收益) Sector interaction	第 s 个行业的其他收益为 $W_p \cdot (\frac{W_p^s}{W_p} - \frac{W_b^s}{W_b}) \cdot (R_p^s - R_b^s)$ 把所有行业求和得到组合的其他收益	在组合的行业配置下,组合的个股选择带来的针对基准的超额收益;	s个行业上股票配置的仓位占比,R _b 是基准中股票部分的收益率。R _b 是组合股票部分在第s个行业的收益率,R _b 是基准股票部分在第s个行业的收益率,R _b 是基准股票的负在第s个行业的收益率
	行业归因(主 动权重) active weight	$\frac{W_p^s}{W_p} - \frac{W_b^s}{W_b}$	针对基准,组合 超配/低配某个 行业的权重;	Wp 的基位在票比。
	行业归因(主 动收益) Active return	$\frac{W_p^s}{W_p} \cdot R_p^s - \frac{W_b^s}{W_b} \cdot R_b^s$	针对基准,组合 超配/低配一个 行业,而带来的 超额收益;	
29	行业归因(主 动风险) Active risk	$\frac{(H_p^s - H_b^s) \cdot V \cdot (H_p - H_b)}{\sqrt{(H_p - H_b) \cdot V \cdot (H_p - H_b)}}$	针对基准,组合 行风动计算型, 是, 明祖的人们的主部模型, 是, 明祖的人们的人们,但是是, 明祖的人们,是是, 明祖的人们,是一个的主部模型, 是一风行情况, 是一风行情	

	风格归因(因 子主动权重) Active weight	$X^T \cdot \left(\mathbf{h}_p - h_b\right) = \beta_a$	组合和基准在各不上,并不是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,	
30	风格归因(因 子主动收益) Active return	$\beta_a \times f$	对应主动权重带 来的收益; 计算 因子主动收益 时, f表示因子 的收益率列向 量,符号×表示 按位相乘。	基于风险模型。图 例中行业是若干 个行业因子与国 家因子加和起来 的; 主动持仓是指组 合的持仓与基准
	风格归因(因 子主动风险) Active risk	$\frac{\beta_a \times (F \cdot \beta_a)}{\sqrt{(h_p - h_b) \cdot V \cdot (h_p - h_b)}}$	对应主动权重带来的边际风险; 计算因子主动风险时,F表示因 险时,F表示因子之间的协方差 矩阵,V表示个股之间的协方差	的持仓之差。
	风格归因(特 殊性成分收 益) Specific return	$(h_p - h_b) \cdot s$	针对基准,组合 主动管理带来的 收益;计算特异 性成分收益时,s 表示个股的特异 性回报列向量。	
	风格归因(特 殊性成分风 险) Specific risk	$\frac{(h_p - h_b) \cdot D \cdot (h_p - h_b)}{\sqrt{(h_p - h_b) \cdot V \cdot (h_p - h_b)}}$	针对基准,组合 主动管理带来的 风险;计算特异 性成分风险时, D表示个股的特	

让摄资更穷易

	异性风险,这里	
	用对角矩阵表	
	示。	