Processors

Control Unit

Connects to the memory

Program Counter (PC)

· Keeps track of memory addresses

Response Time and Throughput

Relative Performance

- Define performance as 1/execution time
- Performance e_x / performance e_y = execution time $_y$ / execution time $_x$ = n

Measuring Execution Time

MIPS (million instructions per second), not to be confused with <u>MIPS Assembly</u>
<u>Language</u>

Elapsed Time

Total response time (processing, I/O, OS overhead, idle time)

CPU Time

- Time spent processing a given job (discounts I/O time and other jobs)
- Comprises user CPU time and system CPU time
- Different programs are affected differently by CPU and system performance

CPU Clocking

Clock Period

- Cycle time
- Ex. $250ps = 0.25ns = 250*10^{-12}s$

Clock Frequency

- Clock rate
- · Cycles per second

• Ex. $4.0GHz = 4000MHz = 4.0 * 10^9Hz$

Uniprocessors

Single core processor

Multiprocessors

- Multiple processors per chip
- Requires explicitly parallel programming
 - Software must be written with parallel execution in mind
 - Multicore processors require software to be designed with concurrent execution techniques