Распределённые трассировки

В чём (ещё) польза распределённых трассировок?

Григорий Кошелев Контур

Gregory Koshelev

Кому-нибудь интересно послушать на DevOops про то, какие штуки можно делать при помощи распределённых трассировок? Дистиллят из двух главных книг о распределённых трассировках + личный опыт построения инфраструктуры для телеметрии.

Gregory Koshelev

// 18:29

Gregory Koshelev

Кому-нибудь интересно послушать на DevOops про то, какие штуки можно делать при помощи распределённ...

Рассказать про пользу от распределённых трассировок на DevOops?

Anonymous Poll

70% Да, интересно послушать про применение трассировок

24% Да, но только про хитрые и неочевидные сценарии использования

4% Нет, тема не интересна

2% Нет, сам могу рассказать больше

•

О чём будет доклад

- Какие штуки можно делать
 при помощи распределённых трассировок
- Дистиллят из двух главных книг про распределённые трассировки
- Личный опыт построения инфраструктуры для телеметрии

Личный опыт

```
https://www.youtube.com/watch?v=qg3yRmV-fHs
```

Vostok Hercules: 3 года доставляем телеметрию — полёт нормальный (JPoint 2022)

https://www.youtube.com/watch?v=aDtJB3neHUQ

Vostok Hercules — make telemetry great again! (DUMP 2019)

Две главные книги

- Mastering DistributedTracing, 2019
- Distributed Tracing
 in Practice, 2020

Distributed Tracing in Practice

Copyrighted Material

Austin Parker,
Daniel Spoonhower,
Jonathan Mace
& Rebecca Isaacs
Foreword by Ben Sigelman
Copyrighted Material

У кого поучиться

- Uber (Jaeger)
- Twitter (Zipkin)
- Google (Dapper)
- AWS (X-Ray)
- Lightstep
- New Relic
- OpenTracing + OpenCensus → OpenTelemetry

+/-

Вы применяете распределённые трассировки?

У вас есть биллинг инфраструктуры?

У вас есть SLO и инструменты для автоматизации расчёта?

Вы тестируете на продакшене?

Вы применяете Chaos Engineering?

Во всех ваших web-сервисах единообразное покрытие HTTP-метриками?

Вы автоматически управляете репликами на основе метрик здоровья?

Вы анализируете высокоуровневую архитектуру проекта?

Тезис «С распределёнными трассировками задачи 1...7 упрощаются»

Тезис «С распределёнными трассировками задачи 1...7 упрощаются»

Но есть нюанс

Sampling — Семплирование

3 подхода:

- Обрабатывается весь поток спанов
- Трассировки семплируются в момент создания (head based sampling)
- Трассировки семплируются по завершению (tail based sampling)

Sampling — Семплирование

3 подхода:

- Обрабатывается весь поток спанов
- Трассировки семплируются в момент создания (head based sampling)
- Трассировки семплируются по завершению (tail based sampling)

2.5 – 3 млн спанов / сек

3 подхода:

- Black-box
- В коде
- Agent-based (модификация исполняемого кода)

3 подхода:

- Black-box
- В коде
- Agent-based (модификация исполняемого кода)

3 подхода:

- Black-box
- В коде
- Agent-based (модификация исполняемого кода)

А как же Service Mesh?

3 подхода:

- Black-box
- В коде
- Agent-based (модификация исполняемого кода)

А как же Service Mesh?

Распределённая трассировка не работает без инструментации внутри приложения (копирование заголовков)

Зачем нужны трассировки

• • •

We replaced our monolith with micro services so that every outage could be more like a murder mystery.

4:10 AM · 8 οκτ. 2015 г. · Buffer

2 900 ретвитов **73** твита с цитатами **2 709** отметок «Нравится»

5 задач трассировок

- Мониторинг распределённых транзакций
- Оптимизация производительности (latency)
- Поиск причин ошибок и деградаций
- Анализ зависимости сервисов
- Распространение контекста

5 задач трассировок

- Мониторинг распределённых транзакций
- Оптимизация производительности (latency)
- Поиск причин ошибок и деградаций
- Анализ зависимости сервисов
- Распространение контекста

Визуальный анализ трассировки

Critical path — Критический путь

Critical path — Критический путь

Critical path — Критический путь

Интеграция с логами

Grafana

- Tempo
- Jaeger
- Zipkin

Интеграция с логами

Grafana

- Tempo
- Jaeger
- Zipkin

Логи не нужны

Логи не нужны

events в OpenTelemetry logs в OpenTracing

Сервисный граф

Сервисный граф

Сервисный граф

На всём множестве спанов

Обнаружение архитектурных проблем

Netflix Vizceral

5 задач трассировок

- Мониторинг распределённых транзакций
- Оптимизация производительности (latency)
- Поиск причин (ошибок, деградации)
- Анализ зависимости сервисов
- Распространение контекста

W3C Trace Context

https://www.w3.org/TR/trace-context/

W3C Trace Context

https://www.w3.org/TR/trace-context/

Recommendation, 23 ноября 2021

W3C Trace Context

https://www.w3.org/TR/trace-context/

Recommendation, 23 ноября 2021

W3C recommends the wide deployment of a Recommendation as a standard for the Web.

Когда полезно навешивать ярлыки

Разметка спанов различными тегами

Разметка спанов различными тегами

— ДЦ, FQDN, host

Разметка спанов различными тегами

- ДЦ, FQDN, host
- Продукт

Разметка спанов различными тегами

- ДЦ, FQDN, host
- Продукт
- Клиент / пользователь

Разметка спанов различными тегами

- ДЦ, FQDN, host
- Продукт
- Клиент / пользователь

• • •

Разметка спанов различными тегами

- ДЦ, FQDN, host
- Продукт
- Клиент / пользователь

• • •

Должно быть консистентно во всех системах (конвенция именования)

Поиск по тегам

Поиск по тегам

Поиск по тегам

«Интересные» трассировки

«Интересные» трассировки

— Ошибки (HTTP: 4xx, 5xx)

«Интересные» трассировки

- Ошибки (HTTP: 4xx, 5xx)
- Долгие запросы (время выполнения > 1 сек)

Долгие запросы из-за повторных попыток?(retry = true)

Долгие запросы из-за повторных попыток?(retry = true)

— Отсутствие данных в кэше даёт основной вклад в latency? (cache = miss)

Долгие запросы из-за повторных попыток?(retry = true)

- Отсутствие данных в кэше даёт основной вклад в latency? (cache = miss)
- Долгие запросы из-за промежуточных таймаутов? (status code = 499)

Тестирование на проде

Тестирование на проде

Специальный тег для тестовых аккаунтов

Тестирование на проде

Специальный тег для тестовых аккаунтов

— Автоматический перевод в read-only режим

Тестирование на проде

Специальный тег для тестовых аккаунтов

- Автоматический перевод в read-only режим
- Отправлять синтетический трафик на staging при роутинге

Тестирование на проде

Специальный тег для тестовых аккаунтов

- Автоматический перевод в read-only режим
- Отправлять синтетический трафик на staging при роутинге
- Multi-tenancy: не паниковать при росте нагрузки из-за тестов

Теги со специальными инструкциями:

Теги со специальными инструкциями:

— увеличить latency

Теги со специальными инструкциями:

- увеличить latency
- завершиться с timeout

Теги со специальными инструкциями:

- увеличить latency
- завершиться с timeout
- завершиться с определённой ошибкой

Теги со специальными инструкциями:

- увеличить latency
- завершиться с timeout
- завершиться с определённой ошибкой

• • •

Отладка на проде

Squash Debugger — отладка микросервисов в Kubernetes

Разработка в проде

Разработка в проде

Разработка в проде

Фиксация утилизации ресурсов по нужному тегу

Фиксация утилизации ресурсов по нужному тегу

- организация / пользователь
- сессия / подписка
- root-сервис

Сервис X прирастёт на 30%

Сервис X прирастёт на 30%

— Планирование ресурсов

Сервис X прирастёт на 30%

- Планирование ресурсов
- Затраты на сервис в инфраструктуре

Сервис X прирастёт на 30%

- Планирование ресурсов
- Затраты на сервис в инфраструктуре любом другом сервисе

Трассировки -> Метрики

Трассировки -> Метрики

Трассировки — инструмент диагностики

Трассировки -> Метрики

Трассировки — инструмент диагностики Метрики — инструмент обнаружения

4 Golden Signals

- 4 Golden Signals
- traffic
- errors
- saturation
- latency

- 4 Golden Signals
- traffic
- errors
- saturation
- latency

- **RED** method
- rate
- errors
- duration

- 4 Golden Signals
- **t**raffic
- errors
- saturation
- latency

- **RED** method
- rate
- errors
- duration

- **USE** method
- utilization
- saturation
- errors

4 Golden Signals

- **t**raffic
- errors
- saturation
- latency

Стандартные теги у спана

- время начала и завершения
- размер тела запроса и ответа
- код ответа

RED method

- rate
- errors
- duration

USE method

- utilization
- saturation
- errors

4 Golden Signals

- **t**raffic
- errors
- saturation
- latency

Стандартные теги у спана

- время начала и завершения
- размер тела запроса и ответа
- код ответа

RED method

- rate
- errors
- duration

USE method

- utilization
- saturation
- errors

Тегированные метрики

Добавление контекста метрикам

Тегированные метрики

Добавление контекста метрикам

Пример: к метрике request latency добавляем теги

- версия сервиса
- хост / ДЦ

«Экземпляры»

Мат.статистика

Гистограмма latency

Гистограмма latency

Различные performance-профили в зависимости от параметров запроса

Гистограмма latency

Различные performance-профили в зависимости от параметров запроса

dustin curtis

@dcurtis

"At any moment, Justin Bieber uses 3% of our infrastructure. Racks of servers are dedicated to him. - A guy who works at Twitter

6:56 AM · 7 сент. 2010 г. · Twitter for iPhone

Различные performance-профили в зависимости от параметров запроса

— Нужно смотреть на распределение

Различные performance-профили в зависимости от параметров запроса

- Нужно смотреть на распределение
- Сравнение запросов из разных модальностей

Цель: увидеть деградацию как можно раньше

Цель: увидеть деградацию как можно раньше

— p99.9 latency сейчас и месяц назад

Цель: увидеть деградацию как можно раньше

- p99.9 latency сейчас и месяц назад
- Гистограмма latency сейчас и месяц назад

График за сутки для p99.9 latency

График за сутки для p99.9 latency

График за сутки для p99.9 latency

В чём причина?

График за сутки для p99.9 latency

Анализ корреляции

Анализ корреляции

Выявление корреляции между latency и тегами

Анализ корреляции

Выявление корреляции между latency и тегами

Получение гипотез о деградации на основе мат.статистики

Trace Driven Development

Проектирование

Тестирование

Тестирование

Описание тестового сценария на языке спанов

Чеклист для запуска сервиса

Чеклист для запуска сервиса

• • •

— Настроить Health Check

Чеклист для запуска сервиса

• • •

- Настроить Health Check
- Сделать тестовый запрос и сравнить с эталонной трассировкой

5 задач трассировок

- Мониторинг распределённых транзакций
- Оптимизация производительности (latency)
- Поиск причин (ошибок, деградации)
- Анализ зависимости сервисов
- Распространение контекста

5N задач трассировок

- Мониторинг распределённых транзакций
- Оптимизация производительности (latency)
- Поиск причин (ошибок, деградации)
- Анализ зависимости сервисов
- Распространение контекста

Q/A

- chnl_GregoryKoshelev
- gnkoshelev