TD1-Études de suites

1 Suites du type $u_{n+1} = f(u_n)$

Exercice 1

Soit f la définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R} \ f(x) = (1 - x)^3 + x.$$

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0,4$ et $u_{n+1}=f(u_n)$ pour tout $n\in\mathbb{N}$.

- 1. Démontrer que pour tout $n \in \mathbb{N}$, $0 < u_n < 1$.
- 2. Monter que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 3. La suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle? Si oui, déterminer sa limite.

Exercice 2

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = e^{u_n} - 1 \end{cases}$.

On note f la fonction définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = e^x - 1$.

- 1. Étudier les variations de f.
- 2. Monter que l'équation f(x) = x possède comme unique solution 0. En déduire le signe de $x \mapsto f(x) x$.
- *3.* Montrer que pour tout $n \in \mathbb{N}$, on a

$$1 < u_n < u_{n+1}$$
.

4. En déduire la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 3

On considère la fonction f définie sur $]0, +\infty[$ par

$$\forall x > 0, \quad f(x) = x + \frac{1}{x}$$

et la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1. Étudier les variations de f.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et à termes strictement positifs.

- 3. Étudier les variations de $(u_n)_{n\in\mathbb{N}}$.
- 4. Déterminer les points fixes de f et en déduire que $(u_n)_{n\in\mathbb{N}}$ diverge.
- 5. Écrire un programme Scilab qui demande à l'utilisateur d'entrer un entier naturel n et qui calcule et affiche la valeur de u_n .

Exercice 4 (Ecricome 2013)

On considère l'application φ définie sur \mathbb{R}_+^* par :

$$\forall x \in \mathbb{R}_{+}^{*}, \quad \varphi(x) = \frac{x \ln(x) - 1}{x}.$$

et on définie une suite u par la relation de récurrence suivante :

$$\begin{cases}
 u_0 = e \\
 \forall n \in \mathbb{N}, u_{n+1} = \varphi(u_n) + u_n
\end{cases}$$

- 1. Dresser le tableau de variations de φ en faisant apparître les limites en 0 et $+\infty$.
- 2. Prouver l'existence d'un unique réel $\alpha \in \mathbb{R}_+^*$ tel que : $\varphi(\alpha) = 0$. Justifier que $\alpha \in [1;e]$
- 3. Démontrer que pour tout entier n, u_n existe et $u_n > \alpha$.
- 4. Si cette suite est convergente de limite finie L, que peut valoir L?
- 5. Prouver que la suite u est strictement croissante.
- 6. Étudier la convergence de u.

Exercice 5 (EML 2018)

Soit f la fonction définie sur $]0, +\infty[$ par :

$$\forall x \in]0, +\infty[, f(x) = x - \ln(x).$$

- 1. Dresser le tableau de variations de f en précisant ses limites en 0 et en $+\infty$.
- 2. Montrer que l'équation f(x) = 2, d'inconnue $x \in]0, +\infty[$, admet exactement deux solutions, que l'on note a et b, telles que 0 < a < 1 < b.
- *3. Montrer* : *b* ∈ [2;4]. *On note* $ln(2) \approx 0,7$.

On pose :
$$u_0 = 4$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \ln(u_n) + 2$.

4. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que l'on a :

$$\forall n \in \mathbb{N}, \quad u_n \in [b, +\infty[.$$

- 5. Déterminer la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$. En déduire qu'elle converge et préciser sa limite.
- 6. (a) Montrer: $\forall n \in \mathbb{N}, u_{n+1} b \le \frac{1}{2}(u_n b).$
 - (b) En déduire : $\forall n \in \mathbb{N}, 0 \le u_n b \le \frac{1}{2^{n-1}}$.
- 7. (a) Écrire une fonction Scilab d'en-tête function u = suite(n) qui, prenant en argument un entier n de \mathbb{N} , renvoie la valeur de u_n .
 - (b) Recopier et compléter la ligne 3 de la fonction Scilab suivante afin que, prenant en argument un réel epsilon strictement positif, elle renvoie une valeur approchée de b à epsilon près.

```
function b = valeur_approchee(epsilon)
n = 0
while .....
n = n+1
end
b = suite(n)
endfunction
```

Exercice 6

Soit f la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) = x^2 + \frac{3}{16}$$

et $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=\frac{1}{2}$ et $\forall n\in\mathbb{N}$, $u_{n+1}=f(u_n)$.

- 1. Calculer u_1 .
- 2. Déterminer les limites (finies) possibles de la suite.
- 3. Montrer que $f\left(\left[0,\frac{7}{16}\right]\right)\subset\left[0,\frac{7}{16}\right]$. En déduire que pour tout $n\geq1$, $u_n\in\left[0,\frac{7}{16}\right]$.
- 4. Montrer que pour tout $n \ge 1$, $\left| u_{n+1} \frac{1}{4} \right| \le \frac{7}{8} \left| u_n \frac{1}{4} \right|$.
- 5. En déduire que pour tout $n \ge 1$, $\left| u_n \frac{1}{4} \right| \le \left(\frac{7}{8} \right)^{n-1} \frac{7}{16}$.
- 6. En déduire la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 7

On considère la fonction f définie sur $]-1,+\infty[$ par $f(x)=\frac{3}{2}\ln{(x+1)}.$

- 1. Étudier les variations de f.
- 2. Montrer que l'équation f(x) = x admet une unique solution α dans [1,2]. On pourra utiliser le fait que $7 < e^2 < 8$.
- 3. On pose $u_0 = 3$ et pour tout entier $n \ge 0$: $u_{n+1} = f(u_n)$. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est bien définie et que

$$\forall n \in \mathbb{N} \ u_n \geq \alpha$$
.

4. Montrer que pour tout $x \in [1, +\infty[$,

$$0 \le f'(x) \le \frac{3}{4}.$$

5. En déduire que

$$\forall n \in \mathbb{N} \quad 0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha)$$

puis que

$$\forall n \in \mathbb{N} \quad 0 \le u_n - \alpha \le \left(\frac{3}{4}\right)^n (u_0 - \alpha)$$

6. En déduire la convergence de $(u_n)_{n\in\mathbb{N}}$.

Exercice 8 (EML 2014)

On considère l'application $\varphi:]0; +\infty[\to \mathbb{R}, x \mapsto e^x - xe^{\frac{1}{x}}]$. On admet que 2 < e < 3.

- 1. Montrer que φ est de classe C^3 sur $]0; +\infty[$, calculer, pour tout x de $]0; +\infty[$, $\varphi'(x)$ et $\varphi''(x)$ et montrer : $\forall x \in]0; +\infty[$, $\varphi'''(x) = e^x + \frac{3x+1}{x^5}e^{\frac{1}{x}}$.
- 2. Étudier le sens de variation de φ'' et calculer $\varphi''(1)$. En déduire le sens de variation de φ' , et montrer : $\forall x \in]0; +\infty[, \varphi'(x) \geqslant e$.
- 3. Déterminer la limite de $\varphi(x)$ lorsque x tend vers 0 par valeurs strictement positives.
- 4. Déterminer la limite de $\frac{\varphi(x)}{x}$ lorsque x tend vers $+\infty$, et la limite de $\varphi(x)$ lorsque x tend vers $+\infty$.
- 5. On admet: $15 < \varphi(3) < 16$. Montrer: $\forall x \in [3; +\infty[, \varphi(x) \geqslant ex$.

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et : $\forall n\in\mathbb{N}, u_{n+1}=\varphi(u_n)$.

- 6. Montrer que, pour tout n de \mathbb{N} , u_n existe et $u_n \geqslant 3e^n$.
- 7. Montrer que la suite (u_n) est strictement croissante et que u_n tend vers $+\infty$ lorsque n tend vers l'infini.
- 8. Écrire un programme en Scilab qui affiche et calcule le plus petit entier n tel que $u_n \ge 10^3$.

9. Quelle est la nature de la série de terme général $\frac{1}{u_n}$?

2 Suites définies implicitement

Exercice 9

On considère la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R} \quad f(x) = x + e^x.$$

- 1. Montrer que f définie une bijection de $\mathbb R$ sur un intervalle que l'on précisera.
- 2. Soit $n \in \mathbb{N}$. Justifier que l'équation f(x) = n possède une unique solution x_n .
- 3. Quelle est la monotonie de la suite $(x_n)_{n\in\mathbb{N}}$?
- 4. Déterminer la limite de $(x_n)_{n\in\mathbb{N}}$.

Exercice 10

On considère la fonction f définie sur \mathbb{R}_+ par

$$\forall x \in \mathbb{R}_+ \quad f(x) = xe^{-x}.$$

- 1. Étudier les variations de f et déterminer sa limite en $+\infty$.
- 2. Soit $n \ge 3$. Justifier que l'équation $f(x) = \frac{1}{n}$ possède deux solutions. On notera u_n et v_n ces solutions avec $u_n < v_n$.
- 3. Justifier que pour tout $n \ge 3$ on a $u_n \in [0,1]$ et $v_n \in [1,+\infty[$.
- 4. Étudier la monotonie de des suites $(u_n)_{n>3}$ et $(v_n)_{n>3}$.
- 5. Déterminer la limite de chacune des deux suites.

Exercice 11

Pour tout entier n non nul, on note f_n la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}$$
 $f_n(x) = x + 1 - \frac{e^x}{n}$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique réel négatif x_n tel que $f_n(x_n) = 0$.
- 2. Montrer que la suite (x_n) est décroissante et convergente.
- 3. Déterminer sa limite.

Exercice 12 (Ecricome 2019)

Pour tout entier n non nul, on note h_n la fonction définie sur \mathbb{R}^{+*} par :

$$\forall x > 0 \qquad h_n(x) = x^n + 1 + \frac{1}{x^n}$$

- 1. Démontrer que, pour tout entier naturel n non nul, la fonction h_n est strictement décroissante sur]0,1] et strictement croissante sur $[1,+\infty[$.
- 2. En déduire que pour tout entier n non nul, l'équation : $h_n(x) = 4$ admet exactement deux solutions, notées u_n et v_n et vérifiant : $0 < u_n < 1 < v_n$.
- 3. (a) Démontrer que :

$$\forall x > 0, \quad \forall n \in \mathbb{N}^*, \qquad h_{n+1}(x) - h_n(x) = \frac{(x-1)(x^{2n+1}-1)}{x^{n+1}}$$

- (b) En déduire que : $\forall n \in \mathbb{N}^* \quad h_{n+1}(v_n) \geq 4$.
- (c) Montrer alors que la suite (v_n) est décroissante.
- 4. (a) Démontrer que la suite (v_n) converge vers un réel ℓ et montrer que $\ell \geq 1$.
 - (b) En supposant que $\ell > 1$, démontrer que : $\lim_{n \to +\infty} v_n^n = +\infty$. En déduire une contradiction.
 - (c) Déterminer la limite de (v_n) .
- 5. (a) Montrer que : $\forall n \geq 1 \quad v_n \leq 3$
 - (b) Écrire une fonction Scilab d'en-tête function y=h(n,x) qui renvoie la valeur de $h_n(x)$ lorsqu'on lui fournit un entier naturel n non nul et un réel $x \in \mathbb{R}^{+*}$ en entrée.
 - (c) Compléter la fonction suivante pour qu'elle renvoie une valeur approchée à 10^{-5} près de v_n par la méthode de dichotomie lorsqu'on lui fournit un entier $n \ge 1$ en entrée :

```
function res=v(n)
2
3
        b=3
4
        while (b-a)>10^{(-5)}
5
            c = (a+b)/2
6
            if h(n,c) < 4 then ......
                 else ......
8
            end
9
         end
10
   endfunction
11
```

- (d) Montrer que: $\forall n \geq 1$, $(v_n)^n = \frac{3+\sqrt{5}}{2}$
- (e) Retrouver ainsi le résultat de la question 4) c.

3