Semantic search and similarity ranking

Ane Berasategi 18. July 2019

Why is this interesting?

- Contextual embeddings have achieved unprecedented results in many tasks
 - Natural language understanding
 - Question answering
 - NER
- But what are they, how do they work, how do they represent language?
- Do they follow (my) intuition on sentence similarity?
 - A invited B for lunch vs.
 - A did not invite B for lunch vs.
 - B invited A for lunch

Plan

Part 1: Semantic search

Ontology matching

Part 2: Similarity ranking

- Word vectors
- Contextualized word embeddings
- ELMo
- BERT
- Flair

Part 3: Experiments

- Word order
- Lexical similarity
- Synonyms
- Out of vocab words

Part 4: Conclusion

1. Semantic search

- Lexical search: literal matches of the query words
 - Anthony Hopkins <u>age</u> → relevant results
 - <u>How old</u> is Anthony Hopkins? → not relevant results
- Semantic search: search with meaning, understand the intention of the user
 - Why is my laptop overheating?
 - How many continents are there in the world?

1.1. Ontology matching

The search engine has a huge knowledge graph / ontology with past searches

• Ontology: a representation of semantic relations between documents.

Pipeline:

- 1. New query arrives
- 2. Query broken into root terms: POS tagging removal, NER, conversion to embeddings, etc
- 3. Return the closest/more relevant/semantically most similar documents from the ontology (similarity ranking)

Plan

Part 1: Semantic search

Ontology matching

Part 2: Similarity ranking

- Word vectors
- Contextualized word embeddings
- ELMo
- BERT
- Flair

Part 3: Experiments

- Word order
- Lexical similarity
- Synonyms
- Out of vocab words

Part 4: Conclusion

2.1. Word vectors: history

- Pre-trained word embeddings became the norm (word2vec, GloVe, FastText) as input to NNs
- Each word gets an embedding vector \rightarrow Irrelevant of the context, part of speech, polysemy

2.2. Contextualized word embeddings

2.2. Contextualized word embeddings

- TagLM: semi-supervised approach to add contextual embeddings to word embeddings from bidirectional language models
 - ForwLM + backLM embeddings has better performance than just forwLM embeddings
- Output from TagLM: a single context-independent representation for each word, the output layer of the LSTM.

2.3. ELMo: Embeddings from Language Models

• Why just the last layer of the LSTM? Use all layers + share weights between forwLM and backLM

2.3. ELMo: Embeddings from Language Models

- Why just the last layer of the LSTM? Use all layers + share weights between forwLM and backLM
- Higher-level layers of the LSTM capture context-dependent aspects of word meaning
- Lower-level layers of the LSTM capture aspects of syntax and can be used for POS tagging

2.3. ELMo: Embeddings from Language Models

- Why just the last layer of the LSTM? Use all layers + share weights between forwLM and backLM
- Higher-level layers of the LSTM capture context-dependent aspects of word meaning
- Lower-level layers of the LSTM capture aspects of syntax and can be used for POS tagging
- ELMo is a feature-based approach for contextual embeddings:
 - different architectures for different NLP tasks
 - The embeddings are added as additional inputs to the NLP task

Embedding of 'stick' in 'Let's stick to': step #1

Embedding of 'stick' in 'Let's stick to': step #2

The Illustrated BERT, ELMo, and co., Jay Alammar, 2018

2.4. The Transformer vs LSTM

2.4. The Transformer vs LSTM

- Recurrent, sequential models can't parallelize well → bottleneck at longer sequence lengths
- The Transformer:
 - No sequence, based solely on attention mechanisms
 - Deals with long-term dependencies better than LSTMs
 - More parallelizable than LSTMs
 - First transduction model relying entirely on **self-attention** to compute representations without using sequencealigned networks

2.4. BERT: Bidirectional Embedding Representations from Transformers

2.4. BERT: Bidirectional Embedding Representations from Transformers

- BERT jointly conditions on both left and right context in all layers (unlike ELMo)
- BERT is fine-tuned
 - to use it with a specific task, just fine-tune all pre-trained parameters end-to-end

2.4. BERT: Bidirectional Embedding Representations from Transformers

BERT jointly conditions on both left and right context in all layers (unlike ELMo)

- BERT is fine-tuned
 - to use it with a specific task, just fine-tune all pre-trained parameters end-to-end
- Pre-trained BERT can be used to create contextualized embeddings

Generate Contexualized Embeddings

Generate Contexualized Embeddings

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

Which contextualized embedding do we take for 'Help' in this context?

- The layer(s) to use depend on the NLP task
- Some tasks look at similarities between sentences, others care more about syntax and POS tagging
- Higher-level layers of the LM capture context-dependent aspects of word meaning
- Lower-level layers of the LM capture aspects of syntax
- For NER CoNLLTask 2003:

Which contextualized embedding do we take for 'Help' in this context?

- The layer(s) to use depend on the NLP task
- Some tasks look at similarities between sentences, others care more about syntax and POS tagging
- Higher-level layers of the LM capture context-dependent aspects of word meaning
- Lower-level layers of the LM capture aspects of syntax
- For NER CoNLLTask 2003:

2.5. flair

- New contextual string embeddings, trained without an explicit notion of what a word is
 - Models words as sequences of characters
 - The same word has different embeddings depending on its context
- Character-level LM is independent of tokenization and has a fixed vocabulary
- Deal with rare and out of vocabulary words better

Plan

Part 1: Semantic search

Ontology matching

Part 2: Similarity ranking

- Word vectors
- Contextualized word embeddings
- ELMo
- BERT
- Flair

Part 3: Experiments

- Word order
- Lexical similarity
- Synonyms
- Out of vocab words

Part 4: Conclusion

3. Experiments

- Experiment with contextual embeddings in English and multilingual (basque)
- Import ELMo, BERT-cased, BERT-uncased, and flair embeddings
 - BERT-uncased: text is lowercased before tokenisation and strips out accent markers
 - BERT paper: "uncased is typically better unless you know that case information is relevant to your task"
- For each experiment, create a reference sentence and several (dis-)similar sentences and rank them based on intuitive similarity
- Obtain contextual embeddings for each embedding type
- Calculate similarity between embedding(reference) and embedding(similar_sentence)
- Visualizations

3. Experiments

	Input text type	Vocabulary size
ELMo	word	700k words
BERT	subword	30k tokens
BERT multilingual	subword	120k tokens in total for 104 languages
flair	character	~256 characters (depending on the language)

3.1. Does word order matter?

the doctor invited the patient for lunch	Change	
0. the patient invited the doctor for lunch	Switch subject and object ('opposite' sentence)	
1. the lunch invited the doctor for the patient	Change semantic role	
2. for invited patient the doctor the lunch	Random ordering	

3.2. What is the impact of lexical similarity?

the doctor invited the patient for lunch	Change		Change
O. the patient invited the doctor for lunch	'opposite' sentence	3. the doctor told the patient he was a fraud	Subj. and obj. overlap
1. the doctor did not invite the patient for lunch	negation	4. that is a matter between the doctor and the patient	Subj. and obj. overlap
2. the child invited the grandfather for lunch	Subj. and obj. change	5. the child and the grandfather got invited for lunch	Invite, lunch overlap

3.3. What is the impact of synonyms?

the doctor invited the patient for lunch	Change		Change
O. the surgeon invited the patient for lunch	Synonym of subj.	3. the doctor invited the patient for a meal	More general word
1. the doctor invited the sick person for lunch	More general synonym of obj.	4. the doctor took the patient out for tea	More general expression
2. the professor invited the patient for lunch	Synonym in different context	5. the doctor paid for the patient's lunch	Implicit action

3.4. What is the impact of out of vocabulary words?

the doctor invited the patient for lunch	Change		Change
O. the doctor invitted the patient for lunch	Туро	3. the doctor invited the patient for sushi	Specific food
1. the doctor kartoffeled the patient for lunch	Wrong word	4. the doctor invited the patent for lunch	Typo / different word
2. Stefan invited the patient for lunch	Proper name	5. the doctor invited the patent for linch	Typo / different word

3. Experiment takeaways

- BERT overall shows extremely high similarities
 - Mystery: especially <u>BERT cased</u>: lowest achieved was 85% with random sentences
- Sentences in the same semantic scope are evaluated as similar, even negation or opposite sentences
- Word order is not very relevant → bag of word-like approach?
 - In Basque, random ordering has ~75% similarity in ELMo and flair and 95% in BERT
- A lexical overlap of 50% can raise similarity to 90%
 - Mystery: ELMo (word-based) shows much lower similarities than flair (character-based)
 - In Basque as well, while BERT shows similarities of 90%+ in all cases
- With synonyms that change context, similarities are still high ('professor invited patient')
- Typos don't affect similarity much

Plan

Part 1: Semantic search

Ontology matching

Part 2: Similarity ranking

- Word vectors
- Contextualized word embeddings
- ELMo
- BERT
- Flair

Part 3: Experiments

- Word order
- Lexical similarity
- Synonyms
- Out of vocab words

Part 4: Conclusion

4. Conclusion

- Semantic search → ontology matching → document ranking → experiments on sentence ranking with contextual embeddings
- In my specific examples:
 - word order doesn't seem to be relevant
 - they don't generalize very well to context
 - slightly worse results for basque: because multilingual, low-resource language?
 - typos don't have much impact
- Future work
 - research extreme high similarities of bert_cased
 - research cause of similarity differences in bert_cased and bert_uncased
 - research impact of word ordering and lexical overlap
 - research impact of word-based embeddings vs character-based ones
 - try more phenomena/examples

Semantic search and similarity ranking

Ane Berasategi 18. July 2019

