PRÁCTICA DIRIGIDA 1

Alumna: Hernández Cáceres, Yasuri Ester

Código: 23140298

Correo institucional: yasuri.hernandez@unmsm.edu.pe

 En la cocina de Juanita encontramos diferentes tipos de materia. Clasificalas como: elemento (E), compuesto (C), mezcla homogénea (MHo) o heterogénea (MHe).

Olla de aluminio (Al)	E	Cafeína (C ₈ H ₁₀ N ₄ O ₂)	С	Gasolina de 90 octanos	Mho
Aceite de Oliva (75%	МНо	Edulcorante	С	Gas doméstico GLP(60%	МНо
ácido oleico)		aspartamo (C ₁₄ H ₁₈ N ₂ O ₅)		propano y 40% butano)	
Cloruro de sodio (NaCl)	С	Ensalada de frutas	МНе	Vino	МНо
Vinagre (5% de ácido	МНо	Azafate de acero	МНо	Soda caústica (95% NaOH)	МНо
acético)		inoxidable			

2. Clasifica las siguientes características con el estado físico (sólido, líquido y gas) que corresponda:

Características	Estado físico
Posee forma y volumen definido.	Sólido
Las partículas sólo poseen movimiento de vibración.	Sólido
Las fuerzas de repulsión son similares a las fuerzas de cohesión.	Líquido
Posee volumen definido y adopta la forma del recipiente que lo contiene.	Líquido
Puede comprimirse.	Gaseoso
Las fuerzas de cohesión superan a las fuerzas de repulsión.	Sólido
No posee volumen definido. Adopta la forma del recipiente que lo contiene.	Gaseoso

3. Clasifica las siguientes características con el estado físico (sólido, líquido y gas) que corresponda:

Suceso	C. Físico	C. Químico
Se evapora nitrógeno líquido en el ambiente.	Х	
Picar hielo.	Х	
Al colocar una tableta de Sal de Andrews en agua seproduce		Х
efervescencia.		
Al aumentar la temperatura el hielo seco (dióxido decarbono	Х	
solido) se sublima.		

- 4. Teniendo en cuenta las propiedades listadas, identifica las propiedades físicas y químicas que corresponde al agua (H₂O), cobre (Cu), propano (C₃H₈) y acero. Ubícalas correctamente en la tabla.
 - a) Color: Es de color gris plateado. √
 - b) Oxidación: Expuesto largo tiempo al aire húmedo, forma una capa de carbonato de cobre de color verde. √

- c) Compresibilidad: Fácilmente comprimible.
- d) Ductilidad: Fácilmente se puede convertir en alambres.
- e) Temperatura de ebullición: Pasa de estado líquido a gaseoso a 100°C
 y 1 atm de presión.
- f) Resistencia Mecánica: Presenta alta resistencia mecánica al someterlo a esfuerzos detracción y compresión.
- g) Magnetismo: Posee propiedades magnéticas
- h) Conductividad eléctrica: Gracias a su gran conductividad eléctrica se le suele usar enlas redes eléctricas.
- i) Electrolizable: Mediante electrólisis se descompone en H₂ y O₂.
- j) Combustibilidad: Combustiona formando CO₂ y H₂O.
- k) Conductividad térmica: Buen conductor del calor.

Tipo de	(H2O) agua	(Cu) cobre	(C3H8) propano	Acero: (0,7%C, 90%
Propiedad				Fe)
			SAS DAIL	
		1	GAS	
Propiedades	e)	d)	c)	a)
físicas		f)		f)
		h)		g)
		k)		
Propiedades	i)	b).	j)	
químicas				

5. En Moscú, al finalizar cada partido de futbol, se realiza la limpieza de los estadios. Se está haciendouna campaña para reutilizar el vidrio separado de los materiales recolectados en estas actividades, además, se aprovechará este procedimiento para recuperar cloruro de magnesio (usado como anticongelante dado la intensa ola de frío) que será vendido para obtener magnesio metálico. Las características de los componentes recolectados se muestran en la siguiente tabla.

Componentes de la mezcla	Tamaño de partícula	Solubilidad en
	(ø)	Agua
le magnesio (MgCl ₂) utilizado enpreparación	0,84 mm	Soluble

atantes.		
Vidrio de vasos y botellas.	3,0 a 4,0 mm	Insoluble
Trozos de aleación de hierro de discos de	3,50 mm	Insoluble
lanzamiento.		
Arena procedente del pozo de salto largo	0,84 a 0,42 mm	Insoluble

Proponga un diagrama de separación para recuperar el vidrio y el cloruro de magnesio.

Nota: Si usa tamiz indicar el tamaño de abertura (mm)

Dadas las características de los componentes, para poder separar el vidrio del cloruro de sodio propongo los siguientes métodos:

Tamizaje: por el tamaño de las partículas con el diámetro de las aberturas de las malla de un tamizador de: 0,84 mm(cloruro de magnesio), 3,0 a 4,0 mm(vidrios de vasos y botellas), 3,50 mm Trozos de aleación de hierro) y 0,84 a 0,42 mm(arena).

Disolución, filtración y evaporación: porque no todos los componentes son solubles al agua, solamente el cloruro de magnesio. Lo que podemos hacer es disolver el cloruro de magnesio para separarlo de los componentes insolubles. Luego de eso filtrarlo y así poder tener los materiales no solubles. Después evaporar el agua y así quedarnos finalmente con el cloruro de magnesio

6. Complete la siguiente tabla

Notación atómica	Composición atómica	Átomo neutro/	Notación atómica	Composición del ion	Átomo neutro/
		Catión/Anión			Catión/Anión
	#Protones:30	Átomo neutro	05 0	#Protones:30	Catión
65_{Zn}	#Electrones30		65_{Zn}^{+2}	#Electrones:28	
30	#Neutrones:35		30	#Neutrones:35	
35_{Zn}	#Protones:17	Átomo neutro		#Protones:17	Anión
17	#Electrones:17		35 CI ¹⁻	#Electrones:18	
	#Neutrones:18		17	#Neutrones:18	

7. Completa el siguiente cuadro:

Notación atómica	24 Mg 12	32 s +2 16	39 _{K} +1 19
#e-	12	18	18
#p⁺	12	16	19
#nº	12	16	20
Clasificación: átomo neutro/catión/anión	Átomo neutro	Anión	Catión

8. Completa la siguiente tabla con la información solicitada:

Elemento	Configuración electrónica	Nivel de valencia	e-de valencia	Notación Lewis
11Na	1s ² 2s ² 2p ⁶ 3s ¹	3	1	Na .
13AI	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	3	3	 Al .
33As] ₁₈ Ar[3d ¹⁰ 4s ² 4p ³	4	5	 As :
54Xe	₃₆ Kr ₁ 4d ¹⁰ 5s ² 5p ⁶	5	8	 : Xe :

9. En función a la configuración electrónica de los siguientes elementos representativos, identifica el nivel y electrones de valencia, grupo y periodo al cual pertenecen:

Elemento	Configuración Electrónica	Nivel de valencia	e- de valencia	Periodo	Grupo
6C	1s ² 2s ² 2p ²	2	4	2	IVA
7N	1s ² 2s ² 2p ³	2	5	2	VA
12Mg	1s ² 2s ² 2p ⁶ 3s ²	3	2	3	IIA
13Al	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	3	3	3	IIIA
15P	1s ² 2s ² 2p ⁶ 3s ² 3p ³	3	5	3	VA
35Br	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵	4	7	4	VIIA

¿Qué elementos probablemente tengan propiedades químicas similares? El nitrógeno(7N) y el fosforo(15P) ya que coinciden en la configuración de sus electrones de valencia, la cual se refleja en el grupo que se encuentran; la configuración electrónica de su ultima capa es igual, variando únicamente el periodo del elemento 2 y 3 respectivamente. Nos damos cuenta de que estos electrones de valencia tienen propiedades químicas similares ya que estos electrones son los que determinan la reactividad química de un átomo.

10. Determina sin hacer la configuración electrónica (sólo utilizando la TP), el nivel de valencia, los electrones devalencia y la notación Lewis de los siguientes elementos.

Elemento	Período	Grupo	Nivel de valencia	Electrones de valencia	Notación Lewis
17Cl	3	VIIA	3	7	. CI :
20C a	4	IIA	4	2	 Ca
36Kr	4	VIIIA	4	8	 : Kr :