20 bài tập - Khoảng cách từ điểm đến mặt phẳng (Dạng 1) - File word có lời giải chi tiết

Câu 1. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc $ABC = 60^{\circ}$. Mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy. Trên cạnh SC lấy điểm M sao cho MC = 2MS. Khoảng cách từ điểm M đến mặt phẳng (SAB) bằng:

A.
$$\frac{a}{3}$$

B.
$$\frac{a\sqrt{3}}{6}$$

C.
$$\frac{a\sqrt{2}}{3}$$

D.
$$\frac{a\sqrt{3}}{3}$$

Câu 2. Cho hình chóp S.ABCD có đáy là hình bình hành với $BC = a\sqrt{2}$, $ABC = 60^{\circ}$. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ điểm D đến mặt phẳng (SAB) bằng:

A.
$$\frac{a\sqrt{6}}{2}$$

B.
$$\frac{a\sqrt{2}}{2}$$

C.
$$a\sqrt{2}$$

D.
$$\frac{2a\sqrt{6}}{3}$$

Câu 3. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc $ABC = 60^{\circ}$. Cạnh SA vuông góc với mặt phẳng đáy. Trên cạnh BC và CD lần lượt lấy hai điểm M và N sao cho MB = MC và NC = 2ND. Gọi P là giao điểm của AC và MN. Khoảng cách từ điểm P đến mặt phẳng (SAB) bằng:

A.
$$\frac{a\sqrt{3}}{8}$$

B.
$$\frac{5a\sqrt{3}}{12}$$
 C. $\frac{5a\sqrt{3}}{14}$ **D.** $\frac{3a\sqrt{3}}{10}$

C.
$$\frac{5a\sqrt{3}}{14}$$

D.
$$\frac{3a\sqrt{3}}{10}$$

Câu 4. Cho hình chóp S.ABC có đáy ABC là tam giac vuông tại B, AB = a, $BC = a\sqrt{3}$. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của cạnh AC. Biết $SB = a\sqrt{2}$. Tính theo a khoảng cách từ điểm Hđến mặt phẳng (SAB).

A.
$$\frac{a\sqrt{21}}{3}$$

B.
$$\frac{a\sqrt{21}}{7}$$

C.
$$\frac{3a\sqrt{21}}{7}$$
 D. $\frac{7a\sqrt{21}}{3}$

D.
$$\frac{7a\sqrt{21}}{3}$$

Câu 5. Cho hình chóp S.ABCD có đáy là hình chữ nhật, diện tích tứ giác ABCD bằng $6a^2\sqrt{6}$. Cạnh $SA = a\sqrt{\frac{110}{3}}$ và vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SC và mặt phẳng đáy bằng 30° .

Khoảng cách từ điểm B đến mặt phẳng (SAC) gần nhất với giá trị nào sau đây:

Đăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$\frac{13a}{10}$$

B.
$$\frac{7a}{5}$$

C.
$$\frac{3a}{2}$$

D.
$$\frac{8a}{5}$$

Câu 6. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2AB = 2BC, $CD = 2a\sqrt{2}$. Hình chiếu vuông góc của S trên mặt đáy là trung điểm M của cạnh CD. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng:

A.
$$\frac{3a\sqrt{10}}{10}$$

B.
$$\frac{3a\sqrt{10}}{5}$$

C.
$$\frac{3a\sqrt{10}}{2}$$

D.
$$\frac{a\sqrt{10}}{3}$$

Câu 7. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2AB = 2BC, $CD = 2a\sqrt{2}$. Hình chiếu vuông góc của S trên mặt đáy là trung điểm M của cạnh CD. Khoảng cách từ trọng tâm G của tam giác SAD đến mặt phẳng (SBM) bằng

A.
$$\frac{4a\sqrt{10}}{15}$$

B.
$$\frac{3a\sqrt{10}}{5}$$

C.
$$\frac{a\sqrt{10}}{5}$$

D.
$$\frac{3a\sqrt{10}}{15}$$

Câu 8. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành có diện tích bằng $2a^2$, $AB = a\sqrt{2}$, BC = 2a. Gọi M là trung điểm của CD. Hai mặt phẳng (SBD) và (SAM) cùng vuông góc với đáy. Khoảng cách từ điểm B đến mặt phẳng (SAM) bằng

A.
$$\frac{4a\sqrt{10}}{15}$$

B.
$$\frac{3a\sqrt{10}}{5}$$

C.
$$\frac{2a\sqrt{10}}{5}$$

D.
$$\frac{3a\sqrt{10}}{5}$$

Câu 9. Cho hình chóp S.ABCD có đáy là hình vuông, hình chiếu vuông góc của đỉnh S lên mặt đáy trùng với trọng tâm G của tam giác ABD. Biết khoảng cách từ C đến mặt phẳng (SDG) bằng $\sqrt{5}$ và SG=1. Thể tích khối chóp đã cho là

A.
$$\frac{25}{12}$$

B.
$$\frac{4}{3}$$

D.
$$\frac{12}{25}$$

Câu 10. Cho hình chóp S.ABC có đáy ABC là tam giác đều có cạnh bằng a. Gọi M là trung điểm của AC. Hình chiếu của S trên mặt đáy là điểm H thuộc đoạn BM sao cho HM = 2HB. Khoảng cách từ điểm A đến mặt phẳng (SHC) bằng

A.
$$\frac{2a\sqrt{7}}{14}$$

B.
$$\frac{a\sqrt{7}}{14}$$

C.
$$\frac{3a\sqrt{7}}{14}$$

D.
$$\frac{2a\sqrt{7}}{7}$$

Câu 11. Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân có AC = BC = 3a. Đường thẳng A'C tạo với đáy một góc 60° . Trên cạnh A'C lấy điểm M sao cho A'M = 2MC. Biết rằng $A'B = a\sqrt{31}$. Khoảng cách từ M đến mặt phẳng (ABB'A') là:

A.
$$\frac{3a\sqrt{2}}{4}$$

B.
$$\frac{4a\sqrt{2}}{3}$$

C.
$$3a\sqrt{2}$$

D.
$$2a\sqrt{2}$$

Câu 12. Cho khối chóp S.ABCD có đáy là hình chữ nhật ABCD với AB = a. Hình chiếu vuông góc của đỉnh S lên mặt đáy trùng với trọng tâm tam giác ABD. Biết $SC = 2a\sqrt{2}$ và tạo với đáy một góc 45° . Khoảng cách từ trung điểm của SD đến mặt phẳng (SAC) là:

A.
$$\frac{a\sqrt{2}}{3}$$

B.
$$\frac{a\sqrt{3}}{3}$$

C.
$$\frac{2a}{3}$$

D.
$$\frac{4\sqrt{2}a}{3}$$

Câu 13. Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có $AD = a\sqrt{3}$. Tam giác SAB là tam giác đều và thuộc mặt phẳng vuông góc với đáy. Gọi M là trung điểm của AD, H là trung điểm của AB. Biết rằng SD = 2a. Khoảng cách từ A đến mặt phẳng (SHM) là:

A.
$$\frac{a\sqrt{2}}{4}$$

B.
$$\frac{a\sqrt{3}}{4}$$

C.
$$\frac{a\sqrt{2}}{2}$$

D.
$$\frac{a\sqrt{3}}{2}$$

Câu 14. Cho khối chóp S.ABC có đáy là tam giác vuông tại A có AC = a. Tam giác SAB vuông tại S và hình chiếu vuông góc của đỉnh S trên mặt đáy là điểm H thuộc cạnh AB sao cho HB = 2HA. Biết $SH = 2a\sqrt{2}$, khoảng cách từ B đến mặt phẳng (SHC) là:

A.
$$\frac{2a}{\sqrt{5}}$$

B.
$$\frac{a}{\sqrt{5}}$$

C.
$$\frac{4a}{\sqrt{5}}$$

D.
$$\frac{3a}{\sqrt{5}}$$

Câu 15. Cho hình lăng trụ ABCD.A'B'C'D' có đáy là hình chữ nhật với $AD = a\sqrt{3}$. Tam giác A'AC vuông tại A' và thuộc mặt phẳng vuông góc với đáy. Biết rằng $A'A = a\sqrt{2}$. Khoảng cách từ D' đến mặt phẳng (A'ACC') là:

Dăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$\frac{a\sqrt{3}}{4}$$

B.
$$\frac{a\sqrt{2}}{2}$$

C.
$$\frac{a\sqrt{2}}{4}$$

D.
$$\frac{a\sqrt{3}}{2}$$

Câu 16. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, $BC = a\sqrt{3}$. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của cạnh AC. Biết $SB = a\sqrt{2}$. Tính theo a khoảng cách từ điểm H đến mặt phẳng (SBC).

A.
$$\frac{a\sqrt{3}}{5}$$

B.
$$\frac{2a\sqrt{3}}{5}$$

C.
$$\frac{a\sqrt{5}}{5}$$

D.
$$\frac{2a\sqrt{5}}{5}$$

Câu 17. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, $BC = 2a\sqrt{2}$, $OD = a\sqrt{3}$. Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy. Gọi O là giao điểm của AC và BD. Tính khoảng cách d từ điểm O đến mặt phẳng (SAB).

A.
$$d = a$$

B.
$$d = a\sqrt{2}$$

C.
$$d = a\sqrt{3}$$

D.
$$d = 2a$$

Câu 18. Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có AD = k.AB. Hình chiếu vuông góc của đỉnh S xuống mặt đáy là H thỏa mãn $\overrightarrow{HB} = -2\overrightarrow{HA}$. Tỷ số khoảng cách từ A đến mặt phẳng (SDH) và khoảng cách từ B đến mặt phẳng (SHC) là:

A.
$$\sqrt{\frac{4+9k^2}{1+9k^2}}$$

B.
$$\frac{1}{2} \cdot \sqrt{\frac{4+9k^2}{1+9k^2}}$$

C.
$$\frac{1}{2}$$

D.
$$\frac{1}{2k}$$

Câu 19. Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác ABC vuông cân tại B, điểm E thuộc BC sao cho BC = 3EC. Biết hình chiếu vuông góc của A' lên mặt đáy trùng với trung điểm H của AB. Cạnh bên AA' = 2a và tạo với đáy một góc 60° . Khoảng cách từ B đến mặt phẳng A' là

A.
$$\frac{a\sqrt{39}}{3}$$

B.
$$\frac{3a}{5}$$

C.
$$\frac{3a}{4}$$

D.
$$\frac{4a}{5}$$

Câu 20. Cho hình chóp S.ABCD có đáy là hình chữ nhật tâm O. Tam giác SAC đều và thuộc mặt phẳng vuông góc với đáy. Biết rằng SA = 2AB = 2a, khoảng cách từ D đến mặt phẳng (SAC) là:

A.
$$\frac{a\sqrt{5}}{2}$$

B.
$$\frac{a\sqrt{3}}{2}$$

C.
$$\frac{a\sqrt{2}}{2}$$

D.
$$\frac{a}{2}$$

HƯỚNG DẪN GIẢI

Câu 1. Chọn đáp án B

Dựng $CH \perp AB \Rightarrow CH \perp (SAB)$

Do
$$\frac{d(C,(SAB))}{d(M,(SAB))} = \frac{CS}{MS} = \frac{3}{2}$$

$$\Rightarrow d\left(M,(SAB)\right) = \frac{2}{3}d\left(C,(SAB)\right) = \frac{2}{3}CH = \frac{2}{3}\cdot\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{6}$$

Câu 2. Chọn đáp án A

Dung $SH \perp AB$,

do
$$(SAB) \perp (ABCD) \Rightarrow SH \perp (ABCD)$$

Dựng $CK \perp AB$, có $CK \perp SH \Rightarrow CK \perp (SAB)$

Do
$$CD/AB \Rightarrow d(D,(SAB)) = d(C,(SAB)) = CK$$

$$= BC \sin 60^\circ = a\sqrt{2} \cdot \frac{\sqrt{3}}{2} = \frac{a\sqrt{6}}{2}$$

Câu 3. Chọn đáp án C

Dung $CH \perp AB \Rightarrow CH \perp (SAB)$

Giả sử MN cắt AD tại F. Theo định lý Talet ta có:

$$\frac{DF}{MC} = \frac{ND}{NC} = \frac{1}{2} \Rightarrow DF = \frac{MC}{2} = \frac{a}{4}.$$

Khi đó
$$\frac{PA}{PC} = \frac{AF}{MC} = \frac{5}{2} \Rightarrow \frac{CA}{PA} = \frac{7}{5}$$

Do đó
$$d(P,(SAB)) = \frac{5}{7}d(C,(sAB)) = \frac{5}{7}CH$$

$$=\frac{5}{7}.\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}$$

Câu 4. Chọn đáp án B

$$AC = \sqrt{AB^2 + BC^2} = 2a \rightarrow BH = \frac{AC}{2} = a$$

Do vậy $SH = \sqrt{SB^2 - BH^2} = a$. Dựng $HE \perp AB; HF \perp SE$

Ta có:
$$HE = \frac{BC}{2} = \frac{a\sqrt{3}}{2} \Rightarrow d\left(H,(SAB)\right) = \frac{SH.HE}{\sqrt{SH^2 + HE^2}} = \frac{a\sqrt{21}}{7}$$

Câu 5. Chọn đáp án B

Dựng $BH \perp AC$, lại có $BH \perp SA \Rightarrow BH \perp (SAC)$

C6
$$SA \perp (ABCD) \Rightarrow (SC, (ABCD)) = SCA$$

Ta có:
$$AC \tan 30^\circ = SA = a\sqrt{\frac{110}{3}} \Rightarrow AC = a\sqrt{110}$$

Do vậy
$$BH = \frac{2S_{ABC}}{AC} = \frac{6a^2\sqrt{6}}{\sqrt{110}} \approx 1, 4a = \frac{7}{5}a$$

Câu 6. Chọn đáp án B

Gọi E là trung điểm của AD ta có CE = AB = ED. Có $CD = 2a\sqrt{2} \Rightarrow CE = ED = 2a$

Do vậy AD = 4a; BD = 2a. Gọi N là trung điểm của AB suy ra MN = 3a, $S_{MAB} = \frac{1}{2}NM$. $AB = 3a^2$

$$MA = \sqrt{AN^2 + NM^2} = a\sqrt{10}$$
. Dựng $BK \perp AM \Rightarrow d(B,(SAM)) = BK = \frac{2S_{ABM}}{AM} = \frac{3a\sqrt{10}}{5}$

Câu 7. Chọn đáp án A

Gọi E là trung điểm của AD ta có CE = AB = ED. Có $CD = 2a\sqrt{2} \Rightarrow CE = ED = 2a$

Do vậy AD = 4a; BD = 2a. Gọi N là trung điểm của AB suy ra MN = 3a, $S_{MAB} = \frac{1}{2}NM$. $AB = 3a^2$

 $MA = \sqrt{AN^2 + NM^2} = a\sqrt{10} = MB$. Gọi L là trung điểm của DE ta có LA = 3a và L là trung điểm của AP.

Khi đó
$$LP = 3a \Rightarrow EP = 4a; PA = 6a. \frac{d(A,(SBM))}{d(E,(SBM))} = \frac{6}{4} = \frac{3}{2}, d(E,(SBM)) = \frac{3}{2}d(G,(SMB))$$

Do đó
$$d(G,(SBM)) = \frac{4}{9}d(A,(SMB)) = \frac{4}{9}AF = \frac{4}{9}.\frac{3a\sqrt{10}}{5} = \frac{4a\sqrt{10}}{15}$$

Câu 8. Chọn đáp án C

Gọi $H = AM \cap BD$.

Ta có:
$$\begin{cases} (SBD) \perp (ABC) \\ (SAM) \perp (ABC) \end{cases} \Rightarrow SH \perp (ABC)$$

Lại có
$$\frac{HB}{HD} = \frac{AB}{DM} = 2 \Rightarrow d(D,(SAM)) = \frac{1}{2}d(B,(SAM))$$

$$S_{ADM} = \frac{1}{2} S_{ADC} = \frac{1}{4} S_{ABCD} = \frac{a^2}{2}$$
.

Ta có:
$$S_{ADM} = \frac{1}{2}AD.DM \sin D \Rightarrow \sin D = \frac{\sqrt{2}}{2} \Rightarrow D = 45^{\circ}$$

Do vậy
$$AM = \sqrt{AD^2 + DM^2 - 2AD.DM \cos 45^\circ} = \frac{\sqrt{10}}{2}a$$

Do vậy
$$DK = \frac{2S_{ADM}}{AM} = \frac{2a}{\sqrt{10}} = \frac{a\sqrt{10}}{5}$$
.

Câu 9. Chọn đáp án A

Ta có: $CG = 2AG \Rightarrow d(C,(SDG)) = 2d(A,(SDG))$

Suy ra
$$d(A,(SDG)) = \frac{\sqrt{5}}{2}$$
. Dựng $AH \perp DG$

Mặt khác
$$AH \perp SG \Rightarrow AH \perp (SDG) \Rightarrow AH = \frac{\sqrt{5}}{2}$$
.

Đặt
$$AB = x \Rightarrow AH = \frac{AD.AM}{\sqrt{AD^2 + AM^2}} = \frac{x}{\sqrt{5}} = \frac{\sqrt{5}}{2} \Rightarrow x = \frac{5}{2}$$

Vậy
$$V_{S.ABCD} = \frac{1}{3} SG.S_{ABCD} = \frac{25}{12}$$

Câu 10. Chọn đáp án D

ADOBA

$$d(A,(SCH)) = 2d(M,(SHC))$$
. Dung $MK \perp CH$

Khi đó
$$d(A,(SCH)) = 2MK$$

Mặt khác
$$BM = \frac{a\sqrt{3}}{2} \Rightarrow MH = \frac{2}{3}BM = \frac{a\sqrt{3}}{3}; MC = \frac{a}{2}$$

Suy ra
$$MK = \frac{MH.MC}{\sqrt{MH^2 + MC^2}} = \frac{a}{\sqrt{7}}$$
 do đó $d = 2MK = \frac{2a\sqrt{7}}{7}$

Câu 11. Chọn đáp án B

Ta có: $A'A = AC \tan 60^\circ = 3a\sqrt{3}$

Suy ra
$$AB = \sqrt{A'B^2 - AA'^2} = 2a$$

Do vậy
$$CH = \sqrt{AC^2 - AH^2} = 2a\sqrt{2}$$

$$d(M,(ABB'A')) = \frac{2}{3}d(C,(ABB'A')) = \frac{2}{3}CH = \frac{4a\sqrt{2}}{3}$$

Câu 12. Chọn đáp án A

Ta có
$$SC = 2a\sqrt{2} \Rightarrow GC = 2a \Rightarrow AC = 3a$$

Khi đó $CD = 2a\sqrt{2}$ suy ra $DH = \frac{2a\sqrt{2}}{3}$

Do vậy $d(M,(SAC)) = \frac{1}{2}DH = \frac{a\sqrt{2}}{3}$

Câu 13. Chọn đáp án B

Ta có:
$$SA = \sqrt{SD^2 - AD^2} = a = AB$$
.

Khi đó
$$AK = \frac{AH.AM}{\sqrt{AH^2 + AM^2}} = \frac{a\sqrt{3}}{4}$$

Câu 14. Chọn đáp án C

Ta có: $SH^2 = HA.HB = 2HA^2$

Suy ra
$$8a^2 = 2HA^2 \Rightarrow HA = 2a$$

Do vậy
$$AM = \frac{2a}{\sqrt{5}} \Rightarrow d_C = 2AM = \frac{4a}{\sqrt{5}}$$

Câu 15. Chọn đáp án D

Ta có $AC = A'A\sqrt{2} = 2a \Rightarrow CD = a \Rightarrow d(D,(A'AC)) = DH = \frac{a\sqrt{3}}{2}$ (Do DD'/AA')

Câu 16. Chọn đáp án C

+) Kė $HK \perp BC, HP \perp SK \Rightarrow d(H,(SBC)) = HP$.

Từ
$$\begin{cases} HK \perp BC \\ AB \perp BC \end{cases} \Rightarrow HK / /AB \Rightarrow \frac{HK}{AB} = \frac{CH}{CA} = \frac{1}{2} \Rightarrow HK = \frac{AB}{2} = \frac{a}{2}.$$

+) $\triangle ABC$ vuông tại B có H là trung điểm của cạnh AC

$$\Rightarrow HB = \frac{1}{2}AC = \frac{1}{2}\sqrt{AB^2 + BC^2} = \frac{1}{2}\sqrt{a^2 + 3a^2} = a \Rightarrow HS = \sqrt{SB^2 - HB^2} = \sqrt{2a^2 - a^2} = a$$

$$\Rightarrow \frac{1}{HP^2} = \frac{1}{HS^2} + \frac{1}{HK^2} = \frac{1}{a^2} + \frac{4}{a^2} \Rightarrow HP = \frac{a\sqrt{5}}{5} \Rightarrow d\left(H, (SBC)\right) = \frac{a\sqrt{5}}{5}$$

Câu 17. Chọn đáp án B

+) Ta có $(SAB) \perp (ABCD)$, kẻ $OP \perp (SAB) \Rightarrow d(O,(SAB)) = OP$.

+) Từ
$$\begin{cases} AB = 2a \\ BC = 2a\sqrt{2} \Rightarrow AB^2 + AD^2 = 4a^2 + 8a^2 = 12a^2 = (20D)^2 = BD^2 \\ OD = a\sqrt{3} \end{cases}$$

 \Rightarrow $\triangle BAD$ vuông tại A, trên (ABCD), ta có $\begin{cases} OP \perp AB \\ AD \perp AB \end{cases} \Rightarrow OP //AD$.

Mà
$$O$$
 là trung điểm của $BD \Rightarrow OP = \frac{1}{2}AD = \frac{1}{2}.2a\sqrt{2} = a\sqrt{2} \Rightarrow d\left(O,(SAB)\right) = a\sqrt{2}$

Câu 18. Chọn đáp án B

Không mất tính tổng quát. Đặt $AB = 3 \Rightarrow AD = 3k$

Dựng $AE \perp DH$, lại có $AE \perp SH \Rightarrow AE \perp (SDH)$

Do đó
$$d(A,(SDH)) = AE = \frac{AH.AD}{\sqrt{AH^2 + AD^2}} = d_1$$

Tương tự dựng $BF \perp HC$ ta có:

$$d(B,(SHC)) = BF = \frac{BH.BC}{\sqrt{BH^2 + BC^2}} = d_2$$

Do vậy
$$\frac{d_1}{d_2} = \frac{AH}{BH} \cdot \frac{\sqrt{BH^2 + BC^2}}{\sqrt{AH^2 + AD^2}} = \frac{1}{2} \sqrt{\frac{4 + 9k^2}{1 + 9k^2}}$$

Câu 19. Chọn đáp án D

Ta có AA' tạo với đáy một góc 60° nên $A'AH = 60^{\circ}$.

Khi đó
$$AH = A'A \cdot \cos 60^{\circ} = a \Rightarrow AB = BC = 2a$$
.

Do vậy
$$BH = a$$
; $BE = \frac{4a}{3}$

Dựng $BK \perp HE$, lại có $BK \perp A'H \Rightarrow BK \perp (A'HE)$

Do đó
$$d(B,(A'HE)) = BK = \frac{BH.BE}{\sqrt{BH^2 + BE^2}} = \frac{4a}{5}$$

Câu 20. Chọn đáp án B

Ta có: $SO \perp AC$, mặt khác $(SAC) \perp (ABCD)$

Suy ra
$$SO \perp (ABCD)$$
. Lại có $SA = AC = SC = 2a$

Do đó
$$AD = \sqrt{AC^2 - CD^2} = a\sqrt{3}$$

Dựng $DH \perp AC$, lại có $DH \perp SO \Rightarrow DH \perp (SAC)$

Do vậy
$$d(D,(SAC)) = DH = \frac{AD.CD}{AC} = \frac{a\sqrt{3}}{2}$$