Some Math 347 sample questions for review

Know the definitions of the terms used and the proofs of the main theorems- see various review materials on Blackboard for some guidance there.

- **Q** 1 State Lagrange's theorem and use it to prove that every group of prime order is cyclic.
- **Q 2** Find a group isomorphism between the real numbers \mathbb{R} under addition and the positive real numbers \mathbb{R}^+ under multiplication or show that no such isomorphism exists.
- **Q** 3 Use the definition of normality to show that if H is a normal subgroup of G, then $ghg^{-1} \in H$ for all $g \in G, h \in H$.
- **Q** 4 Draw an example of a Frieze pattern (plane figure with a symmetry group containing parallel translations) which contains vertical reflections but no horizontal reflection.
- **Q** 5 Prove the following or give a counterexample to show that it is false: there is no injective automorphism from the cyclic group of order 4 to the non-zero complex numbers \mathbb{C}^* under multiplication.
- **Q** 6 For a, b and c non-zero integers with a and b relatively prime, prove that if a|bc then a|c.
- Q 7 Each statement is FALSE. Give an example to show that it is false.
 - Every group of order 24 is abelian.
 - The product of a two-cycle and a three-cycle in S_6 is always a five-cycle.
 - If ϕ is a homomorphism from G to H, then for every element g in G, the order of g is the same as the order of $\phi(g)$.
 - Every abelian group is a cyclic group.
 - \bullet In any group G, the product of two elements of order 2 is either order 2 or the identity.
 - In the alternating group A_6 , there is no element of order 4.
 - In the alternating group A_4 , there is no element of order 2.
 - In the symmetric group S_{10} , there is no element of order 21.
 - In the symmetric group S_5 , the product of two odd permutations is an even permutation.
 - In a finite abelian group, the product of two elements has order which is the product of the orders of the two elements.

- **Q** 8 Prove the following or give a counterexample to show that it is false: every monomorphism (injection homomorphism) from \mathbb{Z} to \mathbb{Z} is an automorphism.
- **Q** 9 Find an embedding of the cyclic group of order 6 into a group of permutations.
- **Q 10** Draw a figure with a symmetry group which is isomorphic to the dihedral group D_4 which contains a letter from your first name.
- **Q 11** List the left cosets of the alternating group A_4 as a subgroup of S_4 .
- **Q 12** Let G be the cyclic group of order 12 generated by a. List all subgroups of G and indicate the order and index of each subgroup. For all nontrivial subgroups of order 5 or fewer, list all generators of each subgroup.
- **Q 13** Prove the following or give a counterexample to show that it is false: If ϕ is a homomorphism from G to H, then the order of $\phi(g)$ must divide the order of g for all $g \in G$.
- **Q 14** Prove the following or give a counterexample to show that it is false: If $\phi: G \to H$ is a homomorphism of groups, then the kernel of ϕ is a normal subgroup of G.
- **Q 15** Recall that the center of a group Z(G) is the set of $a \in G$ such that ax = xa for all $x \in G$.

Prove the following or give a counterexample to show that it is false: the center of a group is a subgroup of G.

Q 16 Give an example of non-identity automorphisms of the integers \mathbb{Z} , the rationals \mathbb{Q} , and the real numbers \mathbb{R} .