Атмосфера солнца

Фотосфера

Прямо над фотосферой, атмосфера простирается на несколько сотен тысяч километров. Давайте подробнее рассмотрим строение атмосферы Солнца.

Хромосфера

Следующий слой известен как хромосфера. Она находится на расстоянии всего лишь около 10.000 км от поверхности. В верхней части хромосферы, температура может достигать 20000 К. Хромосфера невидима без специального оборудования, в котором используются узкополосные оптические фильтры. Гигантские солнечные протуберанцы могут подниматься в хромосфере на высоту 150.000 км.

Над хромосферой располагается переходный слой. Ниже этого слоя, гравитация является доминирующей силой. Над переходной областью, температура поднимается быстро, потому что гелий становится полностью ионизованным.

Солнечная корона

Следующий слой за хромосферой — корона Солнца, и она распространяется от звезды на миллионы километров в космосе. Вы можете увидеть корону во время полного затмения, когда диск светила закрыт Луной. Температура короны примерно в 200 раз горячее поверхности.

Гелиосфера

Верхняя часть атмосферы называется гелиосфера. Это пузырь пространства, заполненный солнечным ветром, он простирается примерно на 20 астрономических единиц (1 а.е. это расстояние от Земли до Солнца). В конечном итоге, гелиосфера постепенно переходит в межзвездную среду.

Внутреннее строение Солнца

Солнечное ядро

Центральная часть Солнца с радиусом примерно 150—175 тыс. км (то есть 20—25 % от радиуса Солнца), в которой идут термоядерные реакции, называется солнечным ядром [33]. Плотность вещества в ядре составляет примерно 150 000 кг/м [34] (в 150 раз выше плотности воды и в \sim 6,6 раз выше плотности самого плотного металла на Земле — осмия), а температура в центре ядра — более 14 млн К.Ядро — единственное

место на Солнце, в котором энергия и тепло получается от термоядерной реакции, остальная часть звезды нагрета этой энергией. Вся энергия ядра последовательно проходит сквозь слои, вплоть до фотосферы, с которой излучается в виде солнечного света и кинетической энергии

Зона лучистого переноса

Над ядром, на расстояниях примерно от 0,2—0,25 до 0,7 радиуса Солнца от его центра, находится зона лучистого переноса. В этой зоне перенос энергии происходит главным образом с помощью излучения и поглощения фотонов. При этом направление каждого конкретного фотона, излучённого слоем плазмы, никак не зависит от того, какие фотоны плазмой поглощались, поэтому он может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлучённый фотон (изначально возникший в ядре) достигает конвективной зоны, согласно современным моделям Солнца, может лежать в пределах от 10 тысяч до 170 тысяч лет (иногда встречающаяся цифра в миллионы лет считается завышенной)^[40].

Перепад температур в данной зоне составляет от 2 млн К на поверхности до 7 млн К в глубине

Конвективная зона Солнца

лиже к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества. С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причём оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца толщиной примерно 200 000 км, где она происходит, — конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа до менее 1/1000 плотности земного воздуха^[41].