AULA 6: APRENDIZADO DE MÁQUINAS

INTRODUÇÃO A CIÊNCIA DE DADOS NA ENGENHARIA DE PETRÓLEO

Calendário

DATA	ATIVIDADE	
26/08	Introdução	
02/09	Tipos de dados/ Pré-processamento	
09/09	Aula Prática 1	
16/09	Aula Prática 2	
23/09	Aula Prática 3	
30/09	Introdução ML	
07/10	ML Classificação	
14/10	Aula Prática 4	
21/10	ML Regressão/ML Agrupamento	
28/10	Feriado	
04/11	Aula Prática 5	
11/11	Entrega dos Trabalhos	

Tópicos

- □ Ciência dos dados: Etapas do Processo
- □ Modelo de dados: Artificial Intelligence, Machine Learning e Deep Learning.
- □ Tipos de Modelos de Machine Learning
 - Aprendizado Supervisionados
 - Aprendizado Não Supervisionados
 - Aprendizado por reforço
- Aprendizado
- □ Etapas da Modelagem de Dados
 - Série treino/teste
 - Bias e Variância
 - Validação Cruzada

Ciência dos dados Etapas do Processo

- □ Revendo Etapas do Processo
 - 1. Definição do Problema.
 - 2. Seleção do Conjunto de dados.
 - 3. Análise Exploratória e limpeza dos dados no pré-processamento.
 - 4. Modelagem e Avaliação dos resultados.

MODELO DE DADOS

Inteligência Artificial, Machine Learning e Deep Learning

https://blog.finxter.com/artificial-intelligence-machine-learning-deep-learning-and-data-science-whats-the-difference/

Inteligência Artificial (Artificial Intelligence):

- Técnicas que capacitam máquinas a imitar a inteligência humana.
- Lógicas, regras de associação, NLP, ML, DL.

Aprendizado de Máquinas (Machine Learning):

 Métodos estatísticos que permitem máquinas aprenderem a partir de dados de programação.

Aprendizado Profundo (Deep Learning):

- Tipo de ML que utilizam modelos mais complexos, de várias camadas para obtenção de resultados mais acurados.
- Redes Neurais Profundas.

Aprendizado de Máquinas (Machine Learning)

MACHINE LEARNING:

- Utiliza uma variedade de algoritmos que aprendem iterativamente a partir dos dados de treinamento para melhorar, descrever dados e prever resultados.
- ☐ Busca de padrões no conjunto de dados.

Aprendizado de Máquinas Tipos de Modelos

Modelos Supervisionados

□ Regressão:

Idade	Tipo	Despesa		
30	E	R\$ 500,00		
50	С	R\$ 600,00		
25	E	R\$ 200,00	Treinamento	
20	V	R\$ 300,00		
35	С	R\$ 500,00		
20	Е	R\$ 1 <i>5</i> 0,00	<u> </u>	
34	С	?	_ Novo	
			Registro	
	<	У		
↓				
Variáveis Dependentes:				
Contínuas				

Classificação:

Idade	Tipo	Classe		
30	E	Sim		
50	С	Não		
25	E	Sim	├ Treinamento	
20	V	Sim		
35	С	Não		
20	E	Sim		
34	С	?	Novo	
			Registro	
	X	У		
↓				
Variáveis Dependentes:				
Discretas				

Modelos Supervisionados Regressão

- □ Realizar estimativa do valor da variável de saída numérica a partir das variáveis de entrada.
- □ Avaliação da predição:
 - □ Função do erro de predição (Valor Predito Valor Correto).

Modelos Lineares

Modelos não lineares

Chandrasekaran et al. (2020).

Modelos Supervisionados Classificação

- □ Realizar estimativa do valor da variável de saída discreta a partir das variáveis de entrada.
- □ Avaliação da predição:
 - Precisão na predição da classe correta

Modelos Não Supervisionados Agrupamento

Encontrar grupos de registros similares.

Quantos grupos dividir?

Como avaliar a qualidade do resultado do agrupamento?

Evsukoff (2020)

Dificuldade na definição de uma estatística de desempenho.

Modelos por Reforço

□ Programa um agente que aprende sozinho a realizar uma tarefa com base em <u>tentativa e erro</u>, ou seja, *feedback* que recebe de suas ações.

Maximizar a Recompensa total

https://medium.com/@bernardo.rcoutinho/aprendizagem-por-refor%C3%A7o-introdu%C3%A7%C3%A3o-ff159c2ec9b

de treinamento

□Aprendizado = Representação + Avaliação + Otimização

Representação: Seleção do tipo e da estrutura do modelo.

Representação:

$$h_{\theta} = \theta_1 x + \theta_0$$

□Aprendizado = Representação + Avaliação + Otimização

Avaliação:

Medida para avaliar a qualidade da instância.

Diferentes combinações de $heta_1$ e $heta_0$

Como determinar os parâmetros do modelo?

Avaliação

□ Aprendizado = Representação + Avaliação + Otimização

Caso $\theta_1 = 0$ e $\theta_0 = 22,6$.

$$h_{\theta} = \theta_1 x + \theta_0$$

Soma do quadrado dos resíduos:

$$SQR = (y_1 - \theta_1 x_1 - \theta_0)^2 + (y_2 - \theta_1 x_2 - \theta_0)^2 + \dots + (y_n - \theta_1 x_n - \theta_0)^2$$

$$SQR = \sum_{i=1}^{n} (y_i - \theta_1 x_i - \theta_0)^2$$

Método dos mínimos quadrados

Métrica de Avaliação:

$$\begin{aligned} \text{M\'inimo}(\text{SQR}) &= \\ \text{M\'inimo}(\sum_{i=1}^{n} (y_i - \theta_1 x_i - \theta_0)^2) \end{aligned}$$

□Aprendizado = Representação + Avaliação + Otimização

https://slideplayer.com/slide/15834222/

Otimização:

Método que irá encontrar o melhor conjunto de parâmetros.

Como iremos encontrar a resposta da equação?

$$Minimo(\sum_{i=1}^{n} (y_i - \theta_1 x_i - \theta_0)^2)$$

□Aprendizado = Representação + Avaliação + Otimização

Diferentes parâmetros de ajustes

Melhor reta com o mínimo valor da soma do quadrado dos resíduos

1. Divisão em Série de Treino e Teste

1. Divisão em Série de Treino e Teste

ldade	Tipo	Classe
30	Е	Sim
50	С	Não
25	E	Sim
20	V	Sim
35	С	Não
20	Е	Sim
34	С	?

Ex2: Esta divisão é boa?

ldade	Tipo	Classe
30	Е	Sim
50	С	Não
25	E	Sim
20	V	Sim
35 /	С	Não
20	E	Sim
34	С	3

 Em problemas de classificação, atentar para ter as diferentes classes no treino e no teste.

2. Modelagem dos Dados

□ Como escolher o melhor modelo?

Conjunto de Treino

- Testar diferentes modelos.
- Ajuste dos parâmetros do modelo.
- Avaliação dos resultados por métricas.

Modelo: Quanto mais próximo possível da relação real, melhor será o desempenho do modelo para predição de novos dados.

Bias x Variância

□ Como escolher o melhor modelo?

Conjunto de Treino

Polinômio de Grau 20

Qual o melhor modelo?

Nenhum!

Primeiro: sub-ajuste do comportamento real dos dados.

Segundo: Super ajuste do comportamento real dos dados.

Bias x Variância

□ Como escolher o melhor modelo?

Conjunto de Treino e Teste

ETAPAS DA MODELAGEM DOS DADOS Bias x Variância

□ Como escolher o melhor modelo?

Bias x Variância

□ Como escolher o melhor modelo?

o Erro de viés:

- Algoritmo n\u00e3o \u00e9 capaz de expressar o fen\u00f3meno.
- Mesmo com amostras diferentes ou maiores, nunca irá se aproximar do valor real, pois o modelo não é capaz.

Bias x Variância

□ Como escolher o melhor modelo?

o Erro de variância:

- Erro de sensibilidade.
- Não tem como garantir que a estimativa será boa no conjunto de teste.
- Modelo tem complexidade maior que a complexidade da relação.

Bias x Variância

□ Como escolher o melhor modelo?

Underfitting

Underfitting. O que fazer?

- O Aumentar número de variáveis.
- Aumentar a complexidade dos modelo.
- Diminuir a regularização.

Bom Modelo

 R^2 treino = 0.93 R^2 teste = 0.93

Overfitting

Overfitting. O que fazer?

- Aumentar número de observações.
- Diminuir número de variáveis (menor complexidade).
- Aumentar regularização.

VALIDAÇÃO CRUZADA

- Técnica que consegue controlar o erro de variância.
- Garante diferentes.
 treinos/testes, de forma a
 avaliar diferentes partes do
 conjunto de dados.

VALIDAÇÃO CRUZADA

Parte 1
Divisão Treino e Teste

Parte 2 Validação Cruzada k =3

Referências Bibliográficas

- Chandrasekaran, Sridharan & Govindarajan, Suresh Kumar. (2020). Drilling Efficiency Improvement and Rate of Penetration Optimization by Machine Learning and Data Analytics. International Journal of Mathematical, Engineering and Management Sciences.
- □ Evsukoff, A G. INTELIGÊNCIA COMPUTACIONAL Fundamentos e aplicações. 2020.
- Li, H., Yu, H., Cao, N. *et al.* Applications of Artificial Intelligence in Oil and Gas Development. *Arch Computat Methods Eng* (2020). https://doi.org/10.1007/s11831-020-09402-8.
- □ VanderPlas, J. **Python Data Science Handbook**. 2016.