

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SEMESTER | Examinations 2010

CHEM 10030

Chemistry for Engineers

Professor Wayne

Professor Powell

Professor Waghorne

Dr. Sullivan* Dr. Baldelli

Time Allowed: 2 Hours

Instructions for Candidates

The assignment of marks to each part of a question is indicated.

Use a separate answer book provided for each question.

No loose rough work sheets are to be used. The rough work for each question should be included in the answer book for that question.

Instructions for Invigilators

The use of electronic calculators is permitted A Periodic Table of the Elements is also attached to these sheets

© UCD 2010/11

Page 1 of 6

Answer both questions.

Q1. A separate answer book must be used for each question.

Answer any three sections (a) - (e).

(a) Answer all parts (i) - (iii).

The Rydberg constant = $2.18 \times 10^{-18} \text{ J}$ Planck's constant = $6.626 \times 10^{-34} \text{ Js}$ $c = 3 \times 10^8 \text{ ms}^{-1}$.

- (i) Discuss, with appropriate diagrams, the hydrogen emission spectrum in terms of the Bohr model of an atom. (15)
- (ii) What is the maximum number of emission lines that can be expected if electrons relax from the n = 3 level of the H atom. Use an energy-level diagram to illustrate your answer. (10)
- (iii) For a hydrogen atom, calculate the wavelength of the line in the hydrogen emission spectrum that results from the transition n = 6 to n = 2. (8)
- (b) Answer both parts (i) and (ii).
 - (i) Draw and label the apparatus Marie Curie used when she studied the radioactive decomposition of uranium. Clearly label the component parts and *explain* the results of the experiment. (20)
 - (ii) Describe the effect of magnetic or electric fields on the movement of a charged particle. Use diagrams to illustrate the different features you discuss. (13)

Sections (c) to (e) of question 1 are continued on the following pages...

© UCD 2010/11

- (c) Answer both parts (i) and (ii).
 - (i) Given the following data, *roughly* sketch (on one plot) the potential-energy curves for the formation of C–O, C=O and C≡O bonds (carbon–oxygen single, double and triple bonds).

	Bond length / pm	Bond strength / kJ mol ⁻¹
C-O	141	358
C=O	132	745
C≣O	119	1046

Comment on the relationship between bond order, bond length and bond strength and explain each part of one of the energy profiles in terms of the changes in the attractive and repulsive forces experienced by the components of the atoms as a function of the inter-nuclear distance. (20)

- (ii) Explain, in terms of total bond energies of reactants and products, why certain reactions are exothermic and others endothermic. (13)
- (d) Answer all parts (i) (iv).

1 a.m.u. =
$$1.661 \times 10^{-27}$$
 kg
1 neutron has a mass of 1.008665 a.m.u.
1 proton has a mass of 1.007276 a.m.u.
 $c = 3 \times 10^8$ m s⁻¹

$$1 \text{ kg m}^2 \text{s}^{-2} = 1 \text{ J}$$

- (i) Explain, with relevant diagrams, the principle of operation of a mass spectrometer. (10)
- (ii) An element consists of two isotopes. The abundance of one isotope is 95.72% and its atomic mass is 114.9041 a.m.u. The atomic mass of the second isotope is 112.9043 a.m.u. Name the element and determine its average mass? (5)
- (iii) Discuss the force which holds the nucleus of an atom together. (10)
- (iv) Determine the binding energy (BE) of a Carbon 12 nucleus (in J) assuming its mass is 12.00 a.m.u. (8)

© UCD 2010/11 Page 3 of 6

- (e) Answer both parts (i) and (ii).
 - Draw the Lewis structures and predict the shapes and the bond angles of the (i) following molecules and ions:
- (20)

- (A) CCl₄
- **(B)** H_3O^+ **(C)** NO_3^- **(D)** SF_4
- High levels of the aromatic organic compound benzene C₆H₆ are found in (ii) unleaded gasoline.
 - (A) What is the weight % of carbon and hydrogen in benzene?

(4)

- (B) Write a balanced equation for the combustion of C₆H₆ that takes place in a gasoline engine.
- (4)
- (C) What mass of CO₂ and how many moles of H₂O are formed from the complete combustion of 2 kg of benzene?
- (5)

Q2. A separate answer book must be used for each question.

Answer **all** sections (a) - (c).

(a) Determine the equilibrium constant *K*p of the following reaction:

$$2NH_3(g) \rightleftharpoons N_2(g) + 3NH_2(g)$$

at 400 °C given that, at T = 400 °C, 1 mole of NH₃(g) placed in a 5 L reactor produces an $N_2(g)$ concentration of 0.086 mol dm⁻³ at equilibrium.

(40)

$$(R = 8.205 \times 10^{-2} \text{ dm}^3 \text{ atm } \text{K}^{-1} \text{mol}^{-1})$$

Sections (b) and (c) of question 2 are continued on the following page...

(b) Answer both parts (i) and (ii).

(40)

The standard enthalpy change, $\Delta H^{\Theta}_{rxn,}$ for the combustion of monoclinic sulphur, S(mon), to sulphur dioxide SO₂(g) is -297.16 kJ mol⁻¹ while the standard enthalpy change, $\Delta H^{\Theta}_{rxn,}$ for the combustion of rhombic sulphur, S(rhom) to SO₂(g) is -296.83 kJ mol⁻¹.

$$S(mon) + O_2(g) \rightarrow SO_2(g) \Delta H^{\Theta}_{rxn} = -297.16 \text{ kJ mol}^{-1}$$

$$S(rhom) + O_2(g) \rightarrow SO_2(g) \Delta H^{\odot}_{rxn} = -296.83 \text{ kJ mol}^{-1}$$

(i) Determine the heat (gained or lost) from the transformation of 1.345 g of monoclinic sulphur if the reaction below takes place (assume constant pressure).

$$S(mon) \rightarrow S(rhom)$$

- (ii) Is this an endothermic or an exothermic reaction?
- (c) Answer both parts (i) and (ii).

(20)

Given the general reaction

$$A \rightarrow P$$

Determine

(i) The initial rate of the reaction, v_i , given that:

[A] (at
$$t = 0$$
 s) = 0.187 mol L⁻¹
[A] (at $t = 0.44$ s) = 0.183 mol L⁻¹

(ii) The average reaction rate in the time period between 60.2s and 80.3s, given that:

[A]
$$(t = 60.2) = 0.55 \text{ mol L}^{-1}$$

[A] $(t = 80.3 \text{ s}) = 0.54 \text{ mol L}^{-1}$

000

Periodic Table of the Elements

								Τ	_										_				
18 ⊠	2 Helium He 4.0026	10 Neon	Ne	20.18	18 Argon	Āŗ	39.94	36	Krypto	ゞ	83.80	54	Xenon	×e	131.29	98	Rador	조	222				
17 VII		9 Fluorine	L	18.9984	17 Ontorine	ਹ	35.453	35	Bromine	ፙ	79.904	23	lodine		126.904	82	Astatine	¥	210				
2 5		8 Oxygen		15.9994	16 Sulfur	S	32.066	34	Selenium	Se		25	Tellurium	e H	127.60	84	Polonium	Po	209				
2 >		7 Nitrogen	Ž	14.0067	15 Phosphorus	Δ	30.9738	1	-	As	74.922	51	Antimony	gs	121.75	83	Bismuth	<u></u>	208.98				
4 ≥		6 Carbon	ပ	12.0112	14 Silicon	S	28.086	32	Germanium	g		20			118 71	82	Lead	<u>а</u>	207.19				
≘ 3		5 Boron	Ω	10.811	13 Auminium	A	26.9815	1	_	Ğ	69.723	49	Indium		114.82	81	Thallium	F	204.38				
			,			12		30	Zinc	Z	62.39	48	Cadmium	ප	112.411	80	Mercury	Ê	200.59				
						7		29	Copper	రె				Ag		79	<u>8</u>	Au	196.967				
						10		28	Nicket	Z	58,69	46	Palladium	Pq	106.42	78	Hatinum	置	195.09				
ation) Ition)	nber Ss					o		27	Cobalt	රි	က	45	Rhodium	동	102.905	22	Ligin	<u>-</u>	192.22	109	Meltherium	M M	268
Group (new notation) Group (old notation)	Atomic number Name Symbol Atomic mass					80		26		Fe	55.847	44	Ruthenium	Ru	101.07	9/	Osmium	SO	190.2			ဟ I	269
Group Grou	N Name Mass					7		25	Manganese	Z	54.938		<u>8</u>	ည	_	75			186.207	107			264
						9		24	Chromium	ර්	51.996	42	Molybdenum	Š	95.94	74	Tungsten	>	183.85	106	Seaborgium	S S	266
						2		23	Vanadium	>	50.942	41	Niobium	<u>S</u>	92.906	73	Tantalum	۳ م	180.948	105		9	262
						4		22	Titanium	۲	47.87	40	Zirconium	Ž	91.224	7.2	Hafnium	Ï	178.49	104	Autherrordur	<u></u>	261
	4	-				ო		21	Scandium	သွ	44.956	39	Yttrium	>	88.905	25	Lanthanun	g	138.91	68	Actinium	Ac	227
2 =		4 Beryllium		9.0122	12 Magnesium	Z	24.305	20	Calcium	ပ္ပ	40.08	38	Strontium	ડં	87.62	99	Barium	ga	137.34	88	Kadium	Ϋ́	226
	1 Hydrogen H 1.0079	3 Lithium	1	6.941	11 Sodium	N N	22.989	19	Potassium	¥	39.0983	37	Rubidium	& 8	85.468	55	Cesium	క	132.905	87	Francium	Ì	223

	58	59	90	61	_		64		99	67	89	69	70	7.1
	Cerium	Praesodymium	Neodymium	Promethium			Gadoloinium		Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
Lanthanides	ပ္ပ	ቯ	Ž	Pa	Sm	Ш	පි	q L	Q	유	ш	ᄪ	Yb	3
	140.12	140.907	144.24	144.913			157.25		162.50	164.93	167.26	168.934	173.04	174.97
L	06	91	92	93			96		86	66	100	101	102	103
*. •,	Thorium	Proactinium	Uranium	Neptunium			Curium		Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
Actinides	ᆮ	Th Pa	>	2 Z			ဦ		ರ	ШS	표	Md	°	ئ
	232.038	232.038 231.036	238.03	237.048			247		242.058	254	257.095	258.10	259.101	260.105