Computación Científica I Laboratorio 1

Raquel Pezoa raquel.pezoa@usm.cl

Paola Arce paola.arce@usm.cl

Luz Martínez lmartine@alumnos.inf.usm.cl

Jorge Nacer jnacer@alumnos.inf.usm.cl

25 de abril de 2012

1. Objetivos

- Familiarizarse con el manejo de Python y Octave para el uso de los métodos y algoritmos matemáticos para matrices.
- Familiarizarse con la biblioteca SciPy y conocer algunas de sus herramientas.
- Utilizar de forma práctica los conocimientos adquiridos en el ramo de Computación Científica I.

2. Reglas del juego

- El laboratorio está conformado por dos entregables: los códigos y un informe.
- Los laboratorios son individuales.

2.1. Informe

El informe debe contener la siguiente estructura:

- Introducción
- Análisis de Resultados

- Conclusiones
- Anexos

Además, se debe tener presente las siguientes consideraciones:

- La ortografía y redacción del informe serán evaluadas.
- En los anexos deben ir los casos de prueba que se utilizaron, especificando claramente input(s) y output(s) (en caso de que el ejercicio lo requiera).
- El informe debe estar elaborado en LATEX, de forma obligatoria. Asimismo, se tendrá en consideración el correcto uso del formato (en especial ecuaciones y otras fórmulas matemáticas).

2.2. Código

- Se puede trabajar en python, matlab y octave.
- Se evaluará el orden (indentación y claridad) y la documentación del código.
- No se permite el uso parcial o total de códigos encontrados en Internet o en libros.
- Debe respetarse el(los) input(s) solicitado(s) en el ejercicio, en caso contrario el ejercicio no se revisará y será evaluado con nota cero (0).
- Los nombres de los archivos deben llevar el mismo nombre de la función, por ejemplo, si se pide una función llamada funcion1, su archivo debe llamarse funcion1.py.

3. Scipy

SciPy es una colección de algoritmos matemáticos y funciones contruidas sobre la extensión Numpy para Python. Agrega una potencia signifícativa al momento de interactuar con Python, permitiendo al usuario trabajar con comandos de alto nivel para la manipulación y visualización de datos. Con SciPy, una sesión interactiva de Python se convierte en un procesador de datos y un ambiente de prototipo de sistema compitiendo con sistemas como MATLAB, IDL, Octave, R-Lab y SciLab. Para más información y documentación de esta interesante biblioteca se recomienda acudir a SciPy community SciPy Reference Guide. 2011

4. Ejercicios

- 1. Dadas las siguientes matrices¹ de Vandermonde², Sparse³ y Random⁴, programe la función MatrixMul(met,A,B), donde met es el método (prod_punto, enf_col, enf_row, enf_col_row), A y B las matrices de entrada, usando los 4 métodos vistos para multiplicación de matrices. Haga un benchmark comparativo entre los distintos métodos calculando el tiempo de computo. Las Multiplicaciones serán: Vandermonde*Random, Sparse*Random y Vandermonde*Sparse.
- 2. Confeccione la función str = prop(A), donde A es una matriz MxN. La función retornara un string con uno de los siguientes valores: simétrica, hermítica, ortogonal o unitaria, según sea el caso de la matriz. En el caso en que la matriz A cumpla mas de un caso, el string debe tener todos los valores correspondientes separados por un espacio. Matrices propuestas para probar la función:

Simétrica
$$\begin{pmatrix} -1 & 2 & -3 \\ 2 & 0 & 5 \\ -3 & 5 & 1 \end{pmatrix}$$
 Hermítica
$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 Ortogonal
$$\begin{pmatrix} 6 & -2 \\ 2 & 6 \end{pmatrix}$$
 Unitaria
$$\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$

3. Con la siguiente imagen dada cree dos funciones **transr** y **transd** que apliquen las transformaciones lineales de Rotación y Dilatación sobre la imagen y grafique la transformación resultante. Demuestre por que las funciones creadas son transformaciones lineales.

Las matrices de Rotación y Dilatación cuentan con la siguiente forma:

¹Las matrices serán entregadas en formato CSV. Para poder leer este tipo de archivo se cuenta con dlm-read para Octave http://www.gnu.org/software/octave/doc/interpreter/Simple-File-I_002f0.html#doc\%2dcsvread y csv.reader para Python http://docs.python.org/library/csv.html

²http://es.wikipedia.org/wiki/Matriz_de_Vandermonde

³http://en.wikipedia.org/wiki/Sparse_matrix

⁴Con valores entre 0 y 1

Imagen Original:

■ Matriz de Rotación

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Imagen Rotada:

Matriz de Dilatación

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Imagen Dilatada:

Para importar y manejar imágenes con Python debe ocupar la librería PyLab, para importar la imagen se puede usar el siguiente código:

```
from pylab import *
# Lectura de la imagen
A = imread("../imagen.png")

Para octave sería así la lectura

A= imread('imagen.png');
imshow(a);
```

4. Realice la función graph(n,norm) que debe generar un número n de vectores(x,y) con valores aleatorios. Debe dividirlos por su norma, multiplicarlos por el valor norm que recibe la función y graficarlos. Realice distintas pruebas y concluya. La norma se puede calcular con la siguiente fórmula:

$$Norma1: \sqrt{\sum_{i=1}^{m} a_i^2}$$

Nota: Considerar que los valores de x e y pueden ser negativos o positivos.

5. Sobre la entrega

- El plazo máximo de entrega es el Lunes 7 de Mayo, a las 23:55 hrs, vía moodle.
- El archivo ha ser enviado debe denominarse lab1-InicialnombreApellido1.tar.gz,(ejemplo lab1-lmartinez.tar.gz) y cual debe contener una carpeta llamada Informe que contenga los archivos .pdf y .tex correspondientes y una carpeta llamada Códigos con los archivos correspondientes.
- Se sancionará con 15 puntos menos en la nota del laboratorio por día de atraso
- Las copias serán sancionadas con nota cero (0) para todos los involucrados.

6. Evaluación

Item	Puntaje
Ejercicio 1	20
Ejercicio 2	20
Ejercicio 3	20
Ejercicio 4	20
Análisis de resultados	12
Redacción y Ortografía	8
Descuento: Código desordenado, no comentado y mal explicado	10