Laboratory 6 - Superposition and Thevenin Equivalent

Simulation

Problem 1

Superposition Theorem

Fig 1. Circuit Diagram

--- Operating Point ---

V(c):	9.33333	voltage
V(b):	24	voltage
V(a):	12	voltage
I(R3):	0.000266667	device_current
I(R2):	-0.000933333	device_current
I(R1):	-0.000666667	device_current
I(V1):	-0.000666667	device_current
I(V2):	-0.000933333	device_current

Fig 2. Operating Points

Superposition: Voltage Source V2 Short Circuited

Fig 3a. Circuit Diagram

--- Operating Point ---

V(c):	2.22222	voltage
V(b):	12	voltage
I(R3):	-0.000222222	device_current
I(R2):	-0.000222222	device_current
I(R1):	-0.000444444	device_current
I(V1):	-0.000444444	device_current

Fig 3b. Operating Points

Superposition: Voltage Source V1 Short Circuited

Fig 4a. Circuit Diagram

--- Operating Point ---

V(c):	7.11111	voltage
V(a):	12	voltage
I(R3):	0.000488889	device_current
I(R2):	-0.000711111	device_current
I(R1):	-0.000222222	device_current
I(V2):	-0.000711111	device_current

Fig 4b. Operating Points

Note that adding the voltages in Fig 3b and 4b. gives the same value as in Fig 2. Hence for a linear network superposition theorem is successfully proved.

Problem 2

Thevenin Network Theorem

Fig 5. Circuit Diagram

--- Operating Point ---

V(n001):	20	voltage
		Voicage
V(n002):	4.03048	voltage
V(a):	1.49026	voltage
I(Rload):	0.00186283	device_current
I(R4):	0.000677392	device_current
I(R3):	0.00254022	device_current
I(R2):	-0.000857549	device current
I(R1):	-0.00339777	device current
I(V1):	-0.00339777	device current

Fig 6. Operating Points

Here V_A is the voltage across the load resistor R_L

Problem 3

Thevenin Voltage (V_{TH})

Fig 7. Circuit Diagram

--- Operating Point ---

V(n001):	20	voltage
V(n002):	5.76577	voltage
V(a):	3.96396	voltage
I(R4):	0.0018018	device current
I(R3):	0.0018018	device current
I(R2):	-0.00122676	device current
I(R1):	-0.00302856	device current
I(V1):	-0.00302856	device current

Fig 8. Operating Point

Here V_A is the Thevenin Voltage.

In analytical case the Thevenin voltage is calculated by setting sources to zero and connecting a 1V test voltage source at the output to find the resistance seen by the load.

Here R_{TH} is around 1.327 kOhms. This can be approximated as E32 series standard resistor of 1.3 kOhms.

Problem 4

Thevenin Equivalent Model

Fig 9. Circuit Diagram

--- Operating Point ---

V(n002):	1.50857	voltage
V(n001):	3.96	voltage
I (Rload) :	-0.00188571	device current
I (Rth):	-0.00188571	device current
I (Vth):	-0.00188571	device current

Fig 10. Operating Point

Here V_{N002} is the voltage across the load resistor which is same as the V_A of Fig 5 which is around 1.49026V. This difference is due to the assumption of standard E32 resistor series. Hence the Thevenin theorem is proved.

Error Percentage is around 0.667%

In case of LTSpice simulation the components are ideal and does not pose any resistance or parasitic capacitance. So, both the simulated value and calculated value will be the same.