Homework 8

Problem 1. Which of the following statements about graph G and H are true?

- 1. G and H are isomorphic if and only if for every map $f: V(G) \to V(H)$ and for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 2. G and H are isomorphic if and only if there exists a bijection $f: E(G) \rightarrow E(H)$.
- 3. If there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u), then G and H are isomorphic.
- 4. If G and H are isomorphic, then there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u).
- 5. If G and H are isomorphic, then there exists a bijection $f: E(G) \to E(H)$.
- 6. G and H are isomorphic if and only if there exists a map $f: V(G) \rightarrow V(H)$ such that for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 7. Every graph on n vertices is isomorphic to some graph on the vertex set $\{1, 2, ..., n\}$.
- 8. Every graph on $n \ge 1$ vertices is isomorphic to infinitely many graphs.

Problem 2. Two simple graphs G = (V, E) and G' = (V', E'). A map $f : V \to V'$. Now if f satisfies:

- i) It is a bijective function;
- ii) $\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E'$;

Then we say that graph G and G' are isomorphic to each other. We use $G \cong G'$ to stand for the isomorphism relation.

Consider the following questions:

1. $G = K_n$ (Recall: K_n is a clique with n vertices), $g: V \to V'$ is a function which only satisfies requirement ii). Prove that G' must contain a subgraph which is a clique with n-vertices.

2. $G = K_{n,m}$ (Recall: $K_{n,m}$ is the so-called complete bipartite graphs), g is the same as in question 1. What will be the simplest G' that is related to G under the new relation.

Problem 3. How many graphs on the vertex set $\{1, 2, ..., 2n\}$ are isomorphic to the graph consisting of n vertex-disjoint edges (i.e. with edge set $\{\{1,2\},\{3,4\},...,\{2n-1,2n\}\}$?

Problem 4. Construct an example of a sequence of length n in which each term is some of the numbers $1, 2, \ldots, n-1$ and which has an even number of odd terms, and yet the sequence is not a graph score. Show why it is not a graph score.

Problem 5. Let G be a graph with 9 vertices, each of degree 5 or 6. Prove that it has at least 5 vertices of degree 6 or at least 6 vertices of degree 5.

Problem 6. Given a sequence (d_1, d_2, \dots, d_n) of positive integers (where $n \ge 1$):

- (i) There exists a tree with score (d_1, d_2, \dots, d_n) .
- (ii) $\sum_{i=1}^{n} d_i = 2n 2$.

Prove that (i) and (ii) are equivalent.

Problem 7. Let N_k denote the number of spanning trees of K_n in which the vertex n has degree k, k = 1, 2, ..., n - 1 (recall that we assume $V(K_n) = \{1, 2, ..., n\}$).

- i) Prove that $(n 1 k)N_k = k(n 1)N_{k+1}$.
- ii) Using i), derive $N_k = \binom{n-2}{k-1}(n-1)^{n-1-k}$.
- iii) Prove Cayley's formula from ii).