

Sumário

- 1. Intervalos da Reta
- 2. Potenciação e Radiciação

Intervalos da Reta

Intervalos Abertos. Intervalos Fechados.

Os **intervalos** são subconjuntos da reta, definidos pela relação de ordem dada na seção anterior.

1. O **intervalo aberto** (a, b) é o conjunto de todos os números reais que são maiores que a e menores que b:

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}.$$

2. O **intervalo fechado** [a, b] é o conjunto de todos os números reais que são maiores que ou iguais a a e menores que ou iguais a b:

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}.$$

Intervalos

$$(a,b) = \{x \in \mathbb{R} | a \le x < b\}.$$

4. O **intervalo semiaberto** (a, b] é o conjunto de todos os números reais que são maiores que a e menores que ou iguais a b:

$$[a,b] = \{x \in \mathbb{R} | a < x \le b\}.$$

Exemplo 1

Abaixo, a representação na reta do intervalo semiaberto [1, 4):

Exemplo 1

Abaixo, a representação na reta do intervalo semiaberto [1, 4):

Responda: Os números 1, $\sqrt{2}$, e, $\frac{5}{2}$, π , 4, -2 e 4.7 pertencem ao intervalo [1, 4)?

Usamos os símbolos ∞ e $-\infty$ para dizer que os conjuntos são ilimitados superior e inferiormente, respectivamente.

O intervalo aberto (a, ∞) é o conjunto de todos os números reais maiores que a:

$$(a,\infty) = \{x \in \mathbb{R} | a < x\}.$$

O intervalo aberto $(-\infty,b)$ é o conjunto de todos os números reais menores que b:

$$(-\infty,b] = \{x \in \mathbb{R} | x < b\}.$$

O intervalo fechado $[a, \infty)$ é o conjunto de todos os números reais maiores que ou iguais a a:

$$[a,\infty)=\{x\in\mathbb{R}|\,a\leq x\}.$$

O intervalo fechado $(-\infty,b]$ é o conjunto de todos os números reais menores que ou iguais a b:

$$(-\infty,b]=\{x\in\mathbb{R}|x\leq b\}.$$

Exemplo 2

Dados os intervalos

$$[2,7) = \{x \in \mathbb{R} | 2 \le x < 7\}$$
 e $[5,10) = \{x \in \mathbb{R} | 5 \le x < 10\},$

vamos determinar os conjuntos $[2,7) \cup [5,10)$ e $[2,7) \cap [5,10)$.

A união destes intervalos, $[2,7) \cup [5,10)$, é o conjunto de todos os números da reta pintados em azul ou vermelho:

Neste caso, podemos escrever esta união como sendo um único intervalo:

$$[2,7) \cup [5,10) = [2,10) = \{x \in \mathbb{R} | 2 \le x < 10\}.$$

Por outro lado, $[2,7) \cap [5,20)$ é o conjunto dos números da reta que estão, ao mesmo tempo, pintados em azul e vermelho.

Por outro lado, $[2,7) \cap [5,20)$ é o conjunto dos números da reta que estão, ao mesmo tempo, pintados em azul e vermelho.

Neste caso, podemos escrever esta interseção como sendo o intervalo

$$[2,7)\cap[5,20)=[5,7).$$

No exemplo anterior, o resultado das operações entre os dois intervalos continuou sendo um intervalo. Isso geralmente não acontece, como podemos ver ao tomar os seguintes intervalos:

$$(-3, \sqrt{3}) = \{x \in \mathbb{R} | -3 < x < \sqrt{3}\} \quad e \quad [4, 5] = \{x \in \mathbb{R} | 4 \le x \le 5\}.$$

Representando esses intervalos na reta, obtemos

A união destes intervalos, $(-3, \sqrt{3}) \cup [4, 5]$, é o conjunto de todos os números da reta pintados em azul ou vermelho:

A união destes intervalos, $(-3, \sqrt{3}) \cup [4, 5]$, é o conjunto de todos os números da reta pintados em azul ou vermelho:

Neste caso, podemos escrever esta união como sendo um único intervalo:

$$(-3, \sqrt{3}) \cup [4, 5] = \{x \in \mathbb{R} | -3 < x < \sqrt{3} \text{ ou } 4 \le x \le 5\}.$$

A união destes intervalos, $(-3, \sqrt{3}) \cup [4, 5]$, é o conjunto de todos os números da reta pintados em azul ou vermelho:

Neste caso, podemos escrever esta união como sendo um único intervalo:

$$(-3, \sqrt{3}) \cup [4, 5] = \{x \in \mathbb{R} | -3 < x < \sqrt{3} \text{ ou } 4 \le x \le 5\}.$$

Como os números entre $\sqrt{3}$ e 4 não estão no intervalo vermelho ou no intervalo azul, não podemos escrever a união como um único intervalo.

Por outro lado, $(-3, \sqrt{3}) \cap [4, 5]$ é o conjunto dos números da reta que estão, ao mesmo tempo, pintados em azul e vermelho.

Por outro lado, $(-3, \sqrt{3}) \cap [4, 5]$ é o conjunto dos números da reta que estão, ao mesmo tempo, pintados em azul e vermelho.

Neste caso, não há número real que satisfaça esta condição. Quando um conjunto não possui elementos, denotamos por conjunto vazio e escrevemos:

$$(-3,\sqrt{3})\cap [4,5]=\varnothing.$$

Potenciação e Radiciação

Definição 1

Potenciação é uma operação do tipo

$$a^b = c$$

onde o número a é chamado de **base**, b de **expoente** e c de **potência**.

Se a é um número real positivo ($a \in \mathbb{R}^+$) e b é um número inteiro positivo ($b \in \mathbb{Z}^+$), então podemos escrever

$$a^b = \underbrace{a \times a \times \cdots \times a}_{b \text{ fatores}}$$

Se a é um número real positivo ($a \in \mathbb{R}^+$) e b é um número inteiro negativo ($b \in \mathbb{Z}^-$), então -b é um número inteiro positivo e podemos escrever

$$a^{b} = a^{-(-b)} = (a^{-b})^{-1}$$

$$= \frac{1}{a^{-b}}$$

$$= \underbrace{\frac{1}{a \times a \times \cdots \times a}}_{-b \text{ fatores}}$$

Você consegue demonstrar por que $a^0 = 1$, qualquer que seja o número real a > 0?

▶ Por que não podemos usar a mesma ideia para concluir algo sobre 0°?

Radiciação

Definição 2

Radiciação é uma operação do tipo

$$\sqrt[n]{c} = a \Leftrightarrow a^n = c$$

onde o número a é chamado de **raiz n-ésima** de c, $c \ge 0$ de **radicando** e $n \in \mathbb{Z}$ de **índice da raiz**.

Exemplo 4

- a) $\sqrt[3]{2} = 2^{1/3}$
- b) $\sqrt{\pi}=\pi^{1/2}$ (Não escrevemos o 2 nas raízes quadradas.) c) $\frac{1}{\sqrt[3]{2}}=2^{-1/3}$

c)
$$\frac{1}{\sqrt[3]{2}} = 2^{-1/3}$$

Potências Racionais

Se a é um número real positivo ($a \in \mathbb{R}^+$) e $b = \frac{n}{d}$ é um número racional positivo ($b \in \mathbb{Q}^+$), então podemos escrever

$$a^b = a^{\frac{n}{d}} = \sqrt[d]{a^n}$$

Potências Racionais

Se a é um número real positivo ($a \in \mathbb{R}^+$) e $b = \frac{n}{d}$ é um número racional positivo ($b \in \mathbb{Q}^+$), então podemos escrever

$$a^b = a^{\frac{n}{d}} = \sqrt[d]{a^n}$$

 Ou seja, transforma-se a potenciação com números racionais em uma radiciação, e vice-versa.

Potências Irracionais

- Se a é um número real positivo ($a \in \mathbb{R}^+$) e b é um número irracional ($b \in \mathbb{I}$), então a^b é obtido através de limite de sequências de potências racionais (isso fica para o curso de Análise!).
- ▶ Basta usar a calculadora e ela te dará uma aproximação dos valores destas potências.

- ▶ É preciso investigar o caso das potências com base real negativa.
- ▶ Já vimos que para bases positivas, racionais ou reais, a potência pode sempre ser definida, para qualquer expoente real não nulo.

O que ocorre com a base negativa?

O que ocorre com a base negativa?

Não há problemas, se o expoente for inteiro: $(-2)^3 = (-2) \cdot (-2) \cdot (-2) = -8$.

O que ocorre com a base negativa?

- Não há problemas, se o expoente for inteiro: $(-2)^3 = (-2) \cdot (-2) \cdot (-2) = -8$.
- ► Mas com expoente racional, é preciso atenção: $(-4)^{\frac{1}{2}}$ não é um número real!
 - O produto de um número real por ele mesmo é sempre um número positivo ou igual a zero:

▶ Da definição,

$$(-4)^{\frac{1}{2}}=a\Leftrightarrow a^2=-4.$$

▶ Não é possível encontrar número real *a* que seu quadrado seja negativo.

► Da definição,

$$(-4)^{\frac{1}{2}}=a\Leftrightarrow a^2=-4.$$

- Não é possível encontrar número real *a* que seu quadrado seja negativo.
- Isso acontece com TODAS as raízes PARES.

Propriedades

Sejam *a*, *b*, *m* e *n* números reais. A potenciação, quando possível, possui as seguintes propriedades:

- i) $1^n = 1$;
- ii) $a^{n}a^{m} = a^{m+n}$;
- iii) $(a^n)^m = a^{mn}$;
- iv) $a^nb^n=(ab)^n$;
- $v) \ \frac{a^m}{a^n} = a^{m-n}.$