数学分析笔记整理

BigfufuOuO

2022 年 5 月 20 日

目录

	常微分方程初步			
	1.1	一阶常微分方程		
		1.1.1	可分离变量型方程	2
		1.1.2	齐次方程	3
		1.1.3	一阶线性微分方程	4
		1.1.4	Bernoulli(伯努利) 方程	4
	1.2	可降阶	微分方程	5
		1.2.1	不显含未知函数 y 的二阶方程	5

Chapter 1

常微分方程初步

既然是初步,则要求不会太多. 提供几种常见的常微分方程. 此处常微分方程是指,只有一个自变量的未知函数 $F(x,y',y'',\cdots,y^{(n)})=0$.

1.1 一阶常微分方程

1.1.1 可分离变量型方程

对于形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x) \cdot h(y)$$

的自变量与因变量可分离的方程:

 $1^{\circ} h(y) \neq 0$ 时, 方程改写为

$$\frac{1}{h(y)}\mathrm{d}y = g(x)\mathrm{d}x$$

两边积分得 H(y) = F(x) + C. 其中 C 是任意常数 (一般统一将常数写在右边). H(y), F(x) 分别是 1/h(y), g(x) 的原函数.

此时 H(y) = F(x) + C 为隐式解. 形如 y = f(x) 的为显式解.

2° h(y) = 0 时,若 $\exists y_0$ 使得 $h(y_0) = 0$,则 $y = y_0$ 是一个特解.

例 1.1.1. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = y \ln x$.

解. $(1)y \neq 0$,则 $1/y dy = \ln x dx \Rightarrow \ln |y| = x \ln x - x + C$.

故
$$|y| = e^{x \ln x - x} \cdot e^C \Rightarrow y = \pm e^C \cdot e^{x \ln x - x}$$
.

记 $C = \pm e^C (\neq 0)$,则解为 $y = C \cdot e^{x \ln x - x} (C \neq 0)$.

或者有 $\ln |y| + \ln |C| = x \ln x - x$ 同样可得 $C \neq 0$. 这是一个容易犯错的地方.

(2)y = 0 时,可知显然成立. 故 y = 0 是方程的解,将其代入 (1) 的通解得 C = 0. 故方程的解为 $y = C \cdot e^{x \ln x - x} (C \in \mathbb{R})$.

1.1.2 齐次方程

对于形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

的方程. f 满足一定范围内的 x,y,t,均有 $f(tx,ty) = t^n f(x,y)$,则称之为 n **次齐次函数**. 对于形如

$$P(x,y)dx + Q(x,y)dy = 0$$

的微分方程,如果 $\frac{P(x,y)}{Q(x,y)}$ 是 0 次齐次函数,则称它为齐次微分方程。此时 $f(x,y) = -\frac{P(x,y)}{Q(x,y)} = \varphi(\frac{x}{y})$. 于是令 $u = y/x(x \neq 0)$,则 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{u\mathrm{d}x + x\mathrm{d}u}{dx} = u + x\frac{\mathrm{d}u}{\mathrm{d}x}$. 或 x = 0(注意! 不要漏解). 所以原方程转化为 $x\frac{\mathrm{d}u}{\mathrm{d}x} + u = \varphi(u)$,分离变量得 $\frac{\mathrm{d}u}{\varphi(u) - u} = \frac{\mathrm{d}x}{x}$ 或 $\varphi(u) - u = 0$ (注意! 不要漏解). 注意,这里 x = 0 与 $\varphi(u) - u = 0$ 不等价,因为后者是在 $x \neq 0$ 时成立的.

例 1.1.2. 解微分方程 $(y^2 - 2xy)dx + x^2dy = 0$.

解. 令 u = y/x,转化为方程 $x \frac{\mathrm{d}u}{\mathrm{d}x} = u - u^2$.

 $(1)u - u^2 \neq 0$,即 $u \neq 0, 1$ 时,分离变量得 $\frac{\mathrm{d}u}{u - u^2} = \frac{\mathrm{d}x}{x} \Rightarrow \ln|u| - \ln|1 - u| = \ln|x| + \ln|C|$. 化简得 $\frac{y}{x - y} = Cx(C \in \mathbb{R})$.

(2)u = 0,1 时,得 y = 0 或 y = x.

 $2^{\circ} x = 0$ 代入原方程成立.

故解为
$$\frac{y}{x-y} = Cx(C \in \mathbb{R}), y = 0, y = x, x = 0.$$

例 1.1.3. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x + y \tan \frac{x}{y}}$.

解 (**简要**). 化简得 $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{x}{y} + \tan\frac{x}{y}$. 注意此时 x 在分子,故令 u = x/y,其余做法与例1.1.2类似.

例 1.1.4. 解微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$, 其中 $a_i, b_i, c_i (i = 1, 2)$ 为常数.

 \mathbf{m} (简要). 由于 c_1, c_2 的存在, RHS^1 无法齐次化 (即同除以 x 或 y). 但可以配凑系数使得 c_1, c_2 消失. 即

$$c_1 = a_1 h + b_1 k$$
$$c_2 = a_2 h + b_2 k$$

代入原式得
$$\frac{\mathrm{d}(y+k)}{\mathrm{d}(x+h)} = \frac{a_1(x+h) + b_1(y+k)}{a_2(x+h) + b_2(y+k)}$$
. \diamondsuit $u = \frac{y+k}{x+h}$ 即可. 然后再解出 h,k 代入.

¹右式. LHS 表示左式.

1.1.3 一阶线性微分方程

最好的办法:记公式.

形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)\mathrm{d}x = Q(x)$$

的方程称为**一阶线性齐次微分方程**. 为方便起见,今后用 y' 表示 $\frac{\mathrm{d}y}{\mathrm{d}x}$,用 y'' 表示 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$. 对于方程

$$y' + P(x)y = 0 (1.1.1)$$

$$y' + P(x)y = Q(x) (1.1.2)$$

方程1.1.1的解为 $y=Ce^{\int -P(x)\mathrm{d}x}(C\in\mathbb{R})$. 方程1.1.2的解为 $y=e^{-\int P(x)\mathrm{d}x}(\int Q(x)e^{P(x)\mathrm{d}x}\mathrm{d}x+C)$. $(C\in\mathbb{R})$. 若 y_1,y_2 是方程1.1.2的解,则 y_1-y_2 是方程1.1.1的解.

例 1.1.5. 解微分方程 $xy' - 2y = 2x^4$.

解. 当 $x \neq 0$ 时,化为标准形式为 $y' - \frac{2}{x}y = 2x^3$.

使用公式得 $y = e^{\int \frac{2}{x} dx} (\int 2x^3 e^{\int \frac{-2}{x} dx} dx + C) = x^2 (x^2 + C).(C \in \mathbb{R}).$

当
$$x=0$$
 时, $y=0$, 可并入上通解.

例 1.1.6. 解微分方程 $y \ln y dx + (x - \ln y) dy = 0$

解(简要). 将 y 看作自变量, x 看作未知函数 x = x(y), 则原方程转化为

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\ln y - x}{y \ln y} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} + \frac{1}{y \ln y}x = \frac{1}{y}$$

然后使用公式即可.

例 1.1.7. 解微分方程 $xe^y - xy' = 2$.

解. 这里出现了 e^y ,想办法将其消去. 故使两边同时乘以 e^{-y} ,得 $x-xe^{-y}y'=2e^{-y}$. 换元化简,令 $z=e^{-y}$,则 $y'=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}x}=-\frac{1}{z}z'$. 所以原式写为 x+xz'=2z. 若 $x\neq 0$,套公式得 $z=x^2(1/x+C)$,即 $e^{-y}=x+Cx^2$.

若
$$x = 0$$
,不符合原方程,因而 $x \neq 0$ 不是解.

1.1.4 Bernoulli(伯努利) 方程

其实是一种特殊的一阶方程转化为线性方程的方法. 对于方程

$$y' + P(x)y = Q(x)y^n$$

先将方程两边同时除以 y^n 得到

$$y^{-n}y' + P(x)y^{1-n} = Q(x)$$

作代换 $u = y^{1-n}$ 得

$$u' + (1 - n)P(x) = (1 - n)Q(x)$$

注意: 若 1-n 是小于 0 的整数,表明 y 做分母 $(y \neq 0)$,不要忘了考虑 y=0 的特解.

例 1.1.8. 解微分方程 $y' = xy + x^3y^3$

解. 作变量代换 $u=y^{-2}$ 得 $u'+2ux=-2x^3$. 求得通解 $u=1-x^2+Ce^{-x^2}(C\in\mathbb{R})$. 故通解为 $1/y^2=1-x^2+Ce^{-x^2}$. 以及特解 y=0.

1.2 可降阶微分方程

一般二阶微分方程的形式为 F(x,y,y',y'')=0,以下是其中特殊的两种形式.

1.2.1 不显含未知函数 y 的二阶方程

即方程少了 y,变为 F(x,y',y'')-0. 令 p=y',则 y''=p'. 所以方程转化为 F(x,p,p')=0,即转化为一个一阶方程了.

例 1.2.1. 解微分方程 $xy'' + (x^2 - 1)(y' - 1) = 0$

解. 令 p = y',方程转化为 $xp' = (1 - x^2)(p - 1)$.

(1) 若 $p \neq 1$,注意 x = 0 不是原方程的解 (因为 x = 0 则 y' = 1,所以 y = x + C = C,这与 y' = 1 矛盾),则分离变量得 $\frac{\mathrm{d}p}{p-1} = \frac{1-x^2}{x}$.两边积分即得 $y' = p = C_1 x e^{-\frac{1}{2}x^2} + 1$.故 $y = -C_1 e^{-\frac{x^2}{2}} + x + C_2$. $(C_1 \neq 0)$ (2) p = 1 是方程的解,可以并入上述通解.

故通解为
$$y = -C_1 e^{-\frac{x^2}{2}} + x + C_2 \cdot (C_1 \neq 0, C_2 \in \mathbb{R})$$

例 1.2.2. 解微分方程 $xy'' = y' \ln \frac{y'}{x}$.

解. 令 p=y',方程转化为 $p'=\frac{p}{x}\ln\frac{p}{x}$. 可以看出,这是一个齐次方程.

于是令 $u=\frac{p}{x}$,题目已经要求了 $x\neq 0$,所以方程转化为 $xu'=u(\ln u-1)$. 分离变量,当 $\ln u-1\neq 0$ 时,得 $u=e^{C_1x+1}(C_1\neq 0)$. 而 $\ln u-1=0$ 也是解,此时 $C_1=0$ 并入通

分离变量,当 $\ln u - 1 \neq 0$ 时,得 $u = e^{C_1 x + 1} (C_1 \neq 0)$. 而 $\ln u - 1 = 0$ 也是解,此时 $C_1 = 0$ 并入通解中. 故 $u = e^{C_1 x + 1}$.

所以 $y' = xe^{C_1x+1}$. 注意,直接积分无法得出. 采用分部积分法. 有

$$y = \int xe^{C_1x+1} dx + C_2 = \int \frac{1}{C_1} x d(e^{C_1x+1}) = \frac{1}{C_1} (xe^{C_1x+1} - \frac{1}{C_1} e^{C_1x+1}) + C_2(C_1 \neq 0)$$

而当 $C_1 = 0$ 时, $y = \frac{1}{2}ex^2 + C_2$.

综上,
$$y = \begin{cases} \frac{1}{C_1} (xe^{C_1x+1} - \frac{1}{C_1}e^{C_1x+1}) + C_2, & C_1 \neq 0 \\ \frac{1}{2}ex^2 + C_2, & C_1 = 0 \end{cases}$$
.