

Solution of Linear Set of Equations – 05

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

AE/ME 5830 Spring 2019

Outline

In previous lectures, we discussed direct methods for solving linear problems in which *A* was full. We will now turn our attention to indirect (iterative) methods.

Indirect Methods

- 1. Jacobi iteration
- 2. Gauss-Seidel iteration (Chapter 11)
- 3. Over/under-relaxation

Indirect (Iterative) Methods

Indirect methods use a numerical estimate to x, the solution to the linear problem Ax=b and try to iteratively improve the result until a prescribed error tolerance is achieved.

Indirect Methods for discussion:

- 1.Jacobi Iteration
- 2. Gauss-Seidel Iteration
- 3. Over/under relaxation (simple extension to iterative method)

For a matrix to be diagonally dominant, on each row, the diagonal element has to be greater than the sum of the off-diagonal elements on that row. *Diagonal dominance plays an important role in the theory and practical application of iterative methods*

For the matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 , diagonal dominance implies
$$|a_{11}| > |a_{12}| + |a_{13}|$$

$$|a_{22}| > |a_{21}| + |a_{23}|$$

$$|a_{33}| > |a_{31}| + |a_{32}|$$

AE/ME 5830 Spring 2019

Jacobi and Gauss-Seidel Example (1)

Consider the system of equations
$$2x_1+x_2=3 \Rightarrow x_1=(3-x_2)/2$$

 $x_1-3x_2=-2 \Rightarrow x_2=(-2-x_1)/(-3)$
Re-writing in matrix form, $Ax=b$, we have $\begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
where $A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}$ $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $b = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

The approach to the methods are described below:

Jacobi iteration	Gauss-Seidel iteration
$x_1^{(k+1)} = (3 - x_2^{(k)})/2$	$x_1^{(k+1)} = (3 - x_2^{(k)})/2$
$x_2^{(k+1)} = (-2 - x_1^{(k)})/(-3)$	$x_2^{(k+1)} = (-2 - x_1^{(k+1)})/(-3)$

Starting with an initial guess for x_1 and x_2 , we can iteratively apply the algorithms and tabulate the results.

Jacobi and Gauss-Seidel Example (3)

Table for numerical iteration:

Jacobi iteration			Gauss-Seidel iteration		
$x_1^{(k+1)} = (3 - x_2^{(k)})/2$; $x_2^{(k+1)} = (-2 - x_1^{(k)})/(-3)$		$x_1^{(k+1)} = (3 - x_2^{(k)})/2$; $x_2^{(k+1)} = (-2 - x_1^{(k+1)})/(-3)$			
k	x ₁	x ₂	k	x ₁	X ₂
0	0	0	0	0	0
1	3/2	2/3	1	3/2	7/6
2	7/6	7/6	2	11/12	35/36
				•••	

In general, Gauss-Seidel converges twice as fast as Jacobi Iteration.

However, many factors have to be considered when choosing a method including the computer architecture.

The matrix in this example is diagonally dominant. If the order of the equations are reversed, the values of x_1 and x_2 will diverge. Why? Because A is no longer diagonally dominant.

Jacobi Iteration (1)

Consider the system of equations:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$Ax = b \implies r(x) = b - Ax = 0$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

Note that one can define a residual vector, with the *i*th component

$$r_i = b_i - \sum_{j=1}^n a_{ij} x_j$$
, where $\{r\}$ is a vector with 'n' components

$$x_i^{k+1} = \frac{\sum_{\substack{j=1\\j\neq i}} a_{ij} x_j}{a_{ii}}$$

AE/ME 5830 Spring 2019

Jacobi Iteration (2)

The successive difference Δx^{k}_{i} is given by

$$\Delta x_i^k = x_i^{k+1} - x_i^k = \frac{\left[b_i - \sum_{j=1}^n a_{ij} x_j^k\right]}{a_{ii}}$$

$$\Rightarrow \Delta x_i^k = \frac{r_i^k}{a_{ii}}$$

$$\Rightarrow x_i^{k+1} = x_i^k + \Delta x_i^k$$

The iterative process is continued until a convergence criteria is satisfied. We are going to see different convergence criteria for the Jacobi and Gauss-Seidel Iterations in our next lecture.

AE/ME 5830 Spring 2019

Gauss-Seidel Iterative Algorithm

The Gauss-Seidel method differs from Jacobi iteration by always using the latest estimate for the unknown quantities. The algorithm is:

$$x_i^{k+1} = \frac{\left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{n} a_{ij} x_j^k\right]}{a_{ii}} \Rightarrow \Delta x_i^k = \frac{\left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i}^{n} a_{ij} x_j^k\right]}{a_{ii}}$$

$$\sum_{j=i}^{n} a_{ij} x_{j}^{k} = \sum_{j=1}^{n} a_{ij} x_{j}^{k} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{k}$$

Note that
$$\sum_{j=i}^{n} a_{ij} x_{j}^{k} = \sum_{j=1}^{n} a_{ij} x_{j}^{k} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{k}$$

$$\Delta x_{i}^{k} = \frac{\left[b_{i} - \sum_{j=1}^{i-1} a_{ij} (x_{j}^{k+1} - x_{j}^{k}) - \sum_{j=1}^{n} a_{ij} x_{j}^{k}\right]}{a_{ii}}$$

$$\Rightarrow \Delta x_i^k = \frac{\left[r_i^k - \sum_{j=1}^{i-1} a_{ij} \Delta x_j^k\right]}{a_{ii}} \quad (i=1,2,...n) \to (1)$$

$$\Rightarrow x_i^{k+1} = x_i^k + \Delta x_i^k \qquad \to (2)$$

AE/ME 5830 Spring 2019

Matrix Form of Jacobi and Gauss-Seidel Iterations (1)

It is frequently convenient to examine (and code) the matrix form of these methods. Consider a different decomposition of A

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

such that A = D - L - U where

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & & 0 \\ \vdots & & \ddots & \\ 0 & & & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & \dots & 0 \\ -a_{21} & \ddots & \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \dots & -a_{nn-1} 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & -a_{n-1n} \\ 0 & \dots & & 0 \end{bmatrix}$$

$$A = D$$
 - L - U
AE/ME 5830 Spring 2019

Matrix Form of Jacobi and Gauss-Seidel Iterations (2)

The problem

$$Ax=b$$

$$(D - L - U)x=b$$

$$Dx=(L+U)x+b$$

$$D^{-1} = \begin{bmatrix} a_{11}^{-1} & 0 & \dots & 0 \\ 0 & a_{22}^{-1} & & 0 \\ \vdots & & \ddots & \\ 0 & & & a_{nn}^{-1} \end{bmatrix}$$

$$x = D^{-1}(L+U)x + D^{-1}b$$

$$x^{(k+1)} = D^{-1}(L+U)x^{(k)} + D^{-1}b$$

= $x^{(k)} + D^{-1}r^{(k)}$

$$\Delta x^{(k)} = D^{-1}r^{(k)}$$

$$r^{(k)} = b - A x^{(k)}$$

$$(D - L) x^{(k+1)} = U x^{(k)} + b$$

$$(D - L) (x^{(k+1)} - x^{(k)}) = r^{(k)}$$

$$(D-L) \Delta x^{(k)} = r^{(k)}$$

Solution strategy for the Matrix Form of the Gauss-Seidel Iteration

$$(D-L)\Delta x^k = r^k$$

$$\begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} \Delta x_1^k \\ \Delta x_2^k \\ \Delta x_3^k \\ \vdots \\ \Delta x_n^k \end{bmatrix} = \begin{bmatrix} r_1^k \\ r_2^k \\ r_3^k \\ \vdots \\ r_n^k \\ r_n^k \end{bmatrix}$$

Note that (D-L) is a lower triangular matrix. Therefore we can use forward substitution to find Δx_i^k

$$\Delta x_1^k = \frac{r_1^k}{a_{11}}$$

$$x_i^k - \sum_{j=1}^{i-1} a_{ij} \Delta x_j^k$$

$$\Delta x_i^k = \frac{1}{a_{ii}} (i = 2, 3, ..., n)$$

11

Summary

In this lecture

 We developed the Jacobi and Gauss-Seidel iterative methods for solving Ax=b. Talked about the importance of ordering the matrix to achieve diagonal dominance if possible.

Next lecture,

- We will define different vector norms and the convergence criteria for the iterative methods
- Learn over/under relaxation