

Università degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia Anno accademico 2019-2020

PRESHOWER ATTIVO PER L'ESPERIMENTO ELIOT

Laurea Triennale in Fisica

CANDIDATO:
Martina Mozzanica
Matricola 733128

 $\begin{tabular}{ll} Relatore: \\ Prof.ssa & Michela & Prest \\ & Correlatore: \\ \end{tabular}$

Dr. Federico Ronchetti

Como, Dicembre 2020

Indice

- La fisica dei cristalli
- Il progetto ELIOT
- Setup sperimentale
- Analisi della traccia
- Selezione degli eventi d'interesse
- Misura dell'efficienza

Cristalli vs materiali amorfi

Materiale amorfo:

Perdita energia per ionizzazione Collisioni non correlate ightarrow scattering multipli

Cristallo:

Reticolo periodico → pot. periodico Collisioni meno frequenti Fenomeni coerenti

Applicazioni

- Deflettono particelle cariche
- Producono lo stesso effetto di un campo magnetico elevato
- Utilizzati per la collimazione, l'estrazione e la produzione di fasci di fotoni
- ullet Se attraversato da particelle leggere o emissione di radiazione elettromagnetica

Emissione di radiazione

- La particella interagisce con il potenziale interplanare
- Channelling (linea rossa) → moto di oscillazione tra i piani cristallini
- Radiazione emessa: radiazione di channelling o bremsstrahlung coerente

ELIOT Collaboration. ELIOT - ELectromagnetic processes In Oriented crysTals. Internal communication.

Test su fascio estratto per ELIOT

• ELIOT: ELectromagnetic processes

In Oriented crysTals

Scopo:

generare sorgenti di raggi γ intense tramite cristalli orientati attraversati da un fascio di e^- e/o e^+

- ullet Energia totale della radiazione o calorimetro ad alta risoluzione
- Molteplicità dei fotoni → preshower
- Linea di fascio TB21 dell'acceleratore DESY
- Fascio di elettroni di energia tra 0.45-6.3 GeV

Setup sperimentale di ELIOT

Il preshower

- Il preshower è un calorimetro a campionamento costituito da strati alternati di scintillatore e di piombo
- Fornisce informazioni sulla molteplicità dei fotoni prodotti
- Il primo piano (C) deve fungere da veto
- I piani successivi (G) devono essere spessi
- Si testano due scintillatori organici plastici (CHICO e GUMMO) di diverso spessore, letti da fibre WLS e collegati ai PM

Scintillatori

- CHICO (sottile): 25x25x0.3 cm³
 GUMMO (spesso): 25x25x0.9 cm³
- Superficie divisa in 25 celle 5x5 cm²
- Fibre WLS: 25 per CHICO
 75 per GUMMO

- La radiazione che attraversa lo scintillatore eccita gli atomi e le molecole causando l'emissione di luce di scintillazione
- Scintillatore organico plastico
- Tempo di risposta di 2-3 ns

Fotomoltiplicatori e Fibre WLS

- Modello: XP2008 con diametro di 32 mm

- Modello: Y-11
- Shifter dal blu al verde
- Si basano sul fenomeno di riflessione totale interna (TIR)

4 D F 4 B F 4 B F 4 B F

Scintillatori, fibre e PM

Setup sperimentale

- 2 scintillatori organici plastici per generare il trigger 10x10x4 cm³
- 2 beam chamber: microstrip di silicio single side 9.5x9.5x0.041 cm³
- CHICO e GUMMO con fibre WLS ricoperti da PVC e collegati ai PM

Dati acquisiti:

- punto di passaggio della particella nelle BC
- ampiezza del segnale visto dai PM, proporzionale alla quantità di luce depositata dal raggio cosmico negli scintillatori
- istante di tempo in cui è avvenuto questo deposito

Ricostruzione della traccia

- $I_1 = 5.4$ cm
- d=35 cm
- si analizzano i dati relativi alle coordinate x e y della particella incidente sulle Beam Chamber (BC1 e BC2)

$$\theta = \arctan\left(\frac{x_2 - x_1}{I_1}\right)$$

$$x_s = x_2 + d \cdot \tan(\theta)$$

Selezione degli eventi in PH e in tempo

70000

- Selezione degli eventi per CHICO
 - PH corrispondente al massimo valore della forma d'onda campionata dal digitizer.

Soglia: 300 ADC

Tempi corrispondenti alla posizione di tale massimo.

Soglie: 380 e 450 ns

Profilo dei raggi cosmici

- Arancione:
 raggi cosmici
 che hanno
 attraversato le
 beam chamber
- Blu: raggi cosmici che hanno attraversato CHICO

Efficienza

asse z ir scala log

- Efficienza = rapporto tra particelle rivelate e particelle incidenti totali
- Se non vengono interfacciate le fibre WLS alle fibre bianche → segnale anche fuori dalla regione sensibile dello scintillatore

Fit di una slice

- Si divide orizzontalmente la superficie in 50 slice
- Si esegue un fit lineare dell'efficienza in funzione della coordinata x per una fissata coordinata y

Fit dell'efficienza

- Ogni punto indica l'efficienza stimata per una coordinata y fissata
- Si esegue un fit con una costante nella zona di plateau dell'efficienza

Rivelatore	Efficienza	Errore sull'efficienza	χ^2 ridotto
CHICO	0.86	0.03	0.28
GUMMO	0.88	0.03	0.97

Conclusioni

Risultati ottenuti:

- Le efficienze risultano più basse rispetto all'efficienza ideale di 1
- Ci si aspetterebbe un'efficienza maggiore per GUMMO (maggior deposito di energia)
- Invece si ottengono due efficienze molto simili

Considerazioni finali:

- CHICO (sottile) limita la probabilità che i fotoni diano inizio a uno sciame elettromagnetico ma ha un'efficienza adeguata per agire come veto
- Per migliorare l'efficienza dello scintillatore spesso (GUMMO) sarà necessario agire sugli elementi critici della meccanica
- Si ipotizzano che i principali problemi della costruzione siano l'interfacciamento tra fibre WLS e fibre bianche e quello tra fibre bianche e PM.

GRAZIE PER L'ATTENZIONE

Particella in un cristallo curvo

- Il channelling ($\theta < \theta_c$)= fenomeno per cui una particella resta incanalata tra i piani cristallografici.
- Esiste un intervallo della posizione di allineamento iniziale in cui la traiettoria della particella diventa tangente al piano del cristallo \rightarrow due effetti ($\theta > \theta_c$): volume capture o volume reflection

• eliminazione del fondo dopo il taglio in PH seguito dal taglio in tempo

Rivelatore	m	Errore su m	q	Errore su q
CHICO	-0.001	0.009	0.9	0.1
GUMMO	0.002	0.01	0.9	0.1