96 级物理实验试题

1. 甲、乙、丙二人用同一千分尺测同一物长度一次,其结果 $H \pm u(H)$ 为

甲: (1.383 ± 0.002) cm 乙: (1.382 ± 0.002) cm 丙: (1.383 ± 0.0002) cm

你的意见如何?

A、甲正确

B、乙正确 C、丙正确 D、三人都不正确

答;都不正确!

 $\Delta_{yy} = 0.0005 \text{cm}$, $u(H) = 0.0005 / \sqrt{3} = 0.0003$, $H \pm u(H) = 1.3830 \pm 0.0003$.

(区分仪器误差限和 b 类不确定度,不是一个概念! $ub = \Delta b/\sqrt{3}$)

2. 根据有效数字运算法则,下面运算中哪个结果是错误的?

A, 60.4 + 120.32 = 180.7

B, 60.40 - 58.30 = 2.10

C, $80.00 \times 1.20 = 96.00$

D, $4000 \div 100 = 40.0$

答: C, 正确解为 $80.00 \times 1.20 = 96.0$ 。

3. 根据一组测量数据 x_i y_i ($i=1,2,\ldots,k$),按最小二乘原理求出的最佳直线 y=a+bx

应满足
$$\sum_{i=1}^{k} [Y_i - (a+bX_i)]^2$$
为最小。

4. 一计算式 Y = 1 + a/b,其中"1"为常数,a = 1.000cm, b = 20cm,若要求 Y 有五位有 效数字,按有效数字运算法则, b 应有 3 位有效数字。

反推法: a/b = 0.05, Y = 1 + a/b = 1.05,有五位有效数字是 1.0500, 那么 a/b = 0.0500 应该有三位有效数字,a已有四位,b 应是三位。

5. 用计算器得出 $e^{0.0024} = 1.0024029$,根据不确定度合成的一般原则,有效数字最多可写成 $e^{0.0024} = 1.0024$ 是否正确?为什么?

正确,过程自己推导。

6. 一同学自组电桥电路测电阻 R_x ,所用另外三个电阻 R_i , R_b , R_n 中, R_n 为准确度等级 a=0.1的电阻箱,可作为标准电阻使用,另两个电阻 R_i , R_b 不知其准确值,调节 R_n , 当 $R_n=100.2\Omega$ 时电桥达到平衡,交换 R_x 和 R_n 位置,再调 R_n 为 100.4 Ω 时电桥重新平衡,又测得该电桥灵敏度 S=2 格/ Ω ,已知电阻箱仪器误差 $\Delta_{\Omega}(R_n)=a\%\cdot R_n$,求 $R_x\pm u(R_x)=?$

解:此题参照第四章的数据处理示例中电桥实验。

7. 金属电阻随温度变化的关系在温度不太高时是 $R = R_0(1 + at)$,已测得某材料温度 t 变化的实验数据如下表示。实验中的测量误差满足 $\Delta R << \Delta t$ 。要说明如何用归纳法求出电阻温度系数 a 和 0°C时的电阻值。(只要求说明方法,不要求给出线形回归的计算方式和结果)

t ℃	77.0	72.0	67.0	62.0	57.0	52.0	47.0
R (Ω)	0.3616	0.3530	0.3490	0.3440	0.3380	0.3325	()

答:由于测量误差满足 $\Delta R \ll \Delta t$,故选与R 有关的量为x,与t有关的量为y,

$$R = R_0(1+at)$$
 变成 $t = \frac{R}{\alpha R_0} - \frac{1}{\alpha}$, 令 $y = t, x = R$, 由 $y = bx + a$ 可得 :

$$b = \frac{1}{\varepsilon R_0}$$
, $a = -\frac{1}{\alpha}$ 。用一元线性回归公式 $b = \frac{\overline{x} \cdot \overline{y} - \overline{x}\overline{y}}{\overline{x}^2 - \overline{x}^2}$, $a = \overline{y} - b\overline{x}$ 计算出 $a \cdot b$ 后, $\alpha = -\frac{1}{\alpha}$, $R_0 = -\frac{b}{\alpha}$ 。

8. 有一只 0.5 级电压表,当量程选为 7.5V ,读数为 7.00V 时,其测量结果的不准确度为。

A、
$$\Delta U = 0.035V$$
 B、 $u(U) = 0.02V$ C、 $\Delta U = 0.04V$ D、 $u(U) = 0.022V$ 选 C 。 因 为 $\Delta_{\emptyset} = N_m \times a\% = 7.5 \times 0.5\% = 0.0375V$, 故 $u(U) = \Delta_{\emptyset} / \sqrt{3} = 0.0216 \approx 0.02V$ 。

9. 已知t有三位有效数字, C_0 有四位有效数字, $d_0 = 16.50cm$, $d_1 = 10.45cm$,按有效数字运算法则, $R_x = t/[(C_0 \ln(d_1/d_0)]$ 有几位有效数字?

$$\pm Y = \ln(d_1/d_0) = \ln d_1 - \ln d_0 = -0.456758$$

有
$$dy = \sqrt{\left(\frac{dd_1}{d_1}\right)^2 + \left(\frac{dd_0}{d_0}\right)^2} = \sqrt{\left(\frac{0.01}{16.50}\right)^2 + \left(\frac{0.01}{10.45}\right)^2} = 0.001133$$

故
$$y \pm u(y) = -0.457 \pm 0.001$$

10. 在声速测量实验中,接受换能器连续读出 10 个振幅极大的位置(单位: cm): 3.900, 4.456, 4.904, 5.426, 5.930, 6.450, 6.978, 7.502, 8.026, 8.526。请你用逐差法算出空气中的声波的波长 λ 。

解: 距离为 L,声波个数为 n,则有
$$L = \frac{n\lambda}{2} + L_0$$
,令 $n = x, L = y$,比较 $y = bx + a$,有

$$\frac{\lambda}{2} = b, \lambda = 2b;$$
 用公式 $b = \frac{1}{n} \sum_{i=1}^{n} \frac{y_{n+j} - y_{n}}{x_{n+j} - x_{j}}$ (n 取 5)。

11. **ZX-21** 电阻箱的铭牌如下表所示,若选用的电阻值 $R = 78.5k\Omega$,其结果应表述为 $R \pm u(R) =$ _______选用电阻值为 78.5Ω 时,其结果又应表述为______。

I	×10000	×1000	×100	×10	×1	×0.1
	1000	1000	1000	2000	5000	5000×10^{-5}

(1)
$$\Delta_{fy}(R) = 78.5k\Omega \times 0.1\% = 0.0785k\Omega$$

$$u(R) = \Delta_{\text{fiv}}(R) / \sqrt{3} = 0.0453k\Omega$$

$$R \pm u(R) = (78.50 \pm 0.05) k\Omega$$

(2)
$$\Delta_{\text{fy}}(R) = 70 \times 0.2\% + 8 \times 0.5\% + 0.5 \times 5\% = 0.205\Omega$$

$$u(R) = \Delta_{\text{fix}}(R) / \sqrt{3} = 0.018\Omega$$

$$R \pm u(R) = (78.5 \pm 0.1)\Omega$$