LECTURE 6-2

SOFTMAX CLASSIFICATION: SOFTMAX& COST FUNCTION

Sung Kim <hunkim+ml@gmail.com> http://hunkim.github.io/ml

$$\begin{bmatrix} w_{A1} & w_{A2} & w_{A3} \\ w_{B1} & w_{B2} & w_{B3} \\ w_{C1} & w_{C2} & w_{C3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_{A1}x_1 + w_{A2}x_2 + w_{A3}x_3 \\ w_{B1}x_1 + w_{B2}x_2 + w_{B3}x_3 \\ w_{C1}x_1 + w_{C2}x_2 + w_{C3}x_3 \end{bmatrix} = \begin{bmatrix} \bar{Y}_A \\ \bar{Y}_B \\ \bar{Y}_C \end{bmatrix}$$

$$X \rightarrow y_A \rightarrow y_A$$

Sigmoid?

Softmax

< Scores >

< Probabilities >

Softmax

Y		S(Y)		'One-Hot' Encoding	
2.0		0.7		1.0	\rightarrow a
1.0	\rightarrow	0.2	; ↔	0.0	\rightarrow (k)
0.1		0.1		0.0	\rightarrow

Cost Function

Cross - Entropy

$$D(S,L) = -\sum_{i} L_{i} log(S_{i})$$

S(Y)	L
0.7	1.0
0.2	0.0
0.1	0.0

Cross-Entropy Cost Function

$$-\sum_{i} L_{i} \log(S_{i})$$
 $-\sum_{i} L_{i} l_{i}$

$$-\sum_{i}L_{i}\log(\bar{Y}_{i})=\sum_{i}L_{i}\times-\log(\bar{Y}_{i})$$

Cross-Entropy Cost Function

$$-\sum_{i} L_{i} log(S_{i})$$

$$\bar{Y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\bar{\mathbf{Y}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$-\sum_{i}L_{i}\log(\bar{Y}_{i})=\sum_{i}L_{i}\times-\log(\bar{Y}_{i})$$

Cross-Entropy Cost Function

$$-\sum_{i} L_{i} log(S_{i})$$

$$\bar{\mathsf{Y}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\bar{Y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$-\sum_{i}L_{i}\log(\bar{Y}_{i})=\sum_{i}L_{i}\times-\log(\bar{Y}_{i})$$

Logistic Cost vs Cross Entropy

$$c(H(x),y) = ylog(H(x))-(1-y)log(1-H(x))$$

$$D(S,L) = -\sum_{i} L_{i} log(S_{i})$$

Cost Function

Gradient Descent

NEXT LECTURE

APPLICATION & TIPS

