## VFI, PFI and DP in Stochastic Environments

Macroeconomics 3: TA class #3

Andrea Pasqualini

Bocconi University

15 February 2021

# Plan for Today

Objective: Solve numerically for V(K, A) and K'(K, A)

Operating example: Neoclassical Growth Model (stochastic version)

$$V(K, A) \equiv \max_{C, K'} \frac{C^{1-\gamma}}{1-\gamma} + \beta \mathbf{E} \left( V(K', A') | A \right)$$
s.t. 
$$\begin{cases} C + K' \le A K^{\alpha} + (1-\delta)K \\ C, K' > 0 \\ \log(A') = (1-\rho)\log(\mu) + \rho\log(A) + \epsilon \end{cases}$$

$$\epsilon \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

- Same methods as last time
- Same objects of interest
- Adding discretization methods for time series processes

Shocks are operationally useful

- Simulations
- Impulse-Response Functions
- Forecast Error-Variance Decomposition

#### The Discretization Problem

#### Objective: approximate a continuous stochastic process with a discrete one

Same problem faced in our last class: the computer has no concept of set density

$$\log(A') = (1 - \rho) \log(\mu) + \rho \log(A) + \epsilon \qquad \qquad \epsilon \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

$$\underbrace{\begin{bmatrix} \log(A_1) \\ \log(A_2) \\ \vdots \\ \log(A_m) \end{bmatrix}}_{\text{grid for } \log(A)} = \underbrace{\begin{bmatrix} \Pi_{1,1} & \Pi_{1,2} & \cdots & \Pi_{1,m} \\ \Pi_{2,1} & \Pi_{2,2} & \cdots & \Pi_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ \Pi_{m,1} & \Pi_{m,2} & \cdots & \Pi_{m,m} \end{bmatrix}}_{\text{transition probabilities, } \Pi} \cdot \underbrace{\begin{bmatrix} \log(A_1) \\ \log(A_2) \\ \vdots \\ \log(A_m) \end{bmatrix}}_{\text{grid for } \log(A)}$$

- Need to set up a grid for A (same as before)
- Need to figure out the transition probabilities (new!)
  - Important to compute the conditional expected continuation value  $\mathbf{E}(V(K',A')|A)$

3/14

# The Discretization Problem (cont'd)

#### Objective: approximate a continuous stochastic process with a discrete one

#### Must match

- Unconditional exp. value
- Conditional exp. value
- Unconditional variance
- Conditional variance
- (Optional) skewness
- (Optional) kurtosis
- (Optional) higher-order moments



Note: the parameters in this figure are chosen exclusively for illustration purposes

### Overview of Methods

#### **Tauchen**

- Constructs a histogram for a conditional distribution function
- Can control the grid directly
- Easy to code, easy intuition
- Approximation errors with high-persistence processes

### Tauchen-Hussey

- Constructs a histogram for a conditional distribution function
- Imposes a fancy grid, no control over it (except for no. of points)
- Approximation errors with high-persistence processes

#### Rouwenhorst

- Recursively approximates a conditional distribution function
- No control on grid (except for no. of points)
- Robust to high-persistence processes
- "It just works," non-obvious intuition

# The Tauchen Algorithm

1. Forget about the unconditional average of the process

(will recover it later)

- 2. Create a grid for the support *S* of the probability distribution function
- (this is a vector)

3. Compute all possible transitions  $S' - \rho S$ 

(this is a matrix)

- 4. Evaluate the relevant CDF (e.g., Gaussian) at the possible transitions
- 5. Make the resulting matrix such that each row sums to one
- 6. Shift the grid by the unconditional average, if needed

# The Tauchen-Hussey Algorithm

1. Forget about the unconditional average of the process

- (will recover it later)
- 2. Obtain the grid for S by computing the zeros of a Gauss-Hermite polynomial of degree m
- 3. Rescale the grid points by  $\sqrt{2\sigma^2}$

(this is a vector)

4. Compute the relevant *conditional* PDF at the possible transitions

(this is a matrix)

- 5. Rescale the computed conditional PDF to account for discrete points
- 6. Normalize the matrix so that rows sum to one
- 7. Shift the grid by the unconditional average, if needed

# The Rouwenhorst Algorithm

- 1. Set  $p, q \in (0, 1)$
- 2. For m = 2 grid points, construct  $\Pi_2$  as

$$\Pi_2 = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}$$

- 3. For m > 2 grid points
  - 3.1 Construct  $\Pi_m$  as

$$\Pi_{m} = p \begin{bmatrix} \Pi_{m-1} & 0 \\ 0 & 0 \end{bmatrix} + (1-p) \begin{bmatrix} 0 & \Pi_{m-1} \\ 0 & 0 \end{bmatrix} + (1-q) \begin{bmatrix} 0 & 0 \\ \Pi_{m-1} & 0 \end{bmatrix} + q \begin{bmatrix} 0 & 0 \\ 0 & \Pi_{m-1} \end{bmatrix}$$

3.2 Divide by 2 all but the top and bottom rows of  $\Pi_m$ 

- (those rows in the middle sum to 2)
- 4. Create a grid of linearly spaced points for the support of the PDF
  - 4.1 Compute  $f = \sqrt{N-1} \cdot \sigma / \sqrt{1-\rho^2}$  (it relates to the uncond. variance of the AR(1))
  - 4.2 Create  $A = \{a_1, ..., a_m\}$  with  $a_1 = -f$  and  $a_m = f$
  - 4.3 Shift A by the unconditional average, if necessary
- ightharpoonup Setting p=q ensures homoskedasticity in the structure of shocks/innovations
- ▶ Setting  $p = q = (1 + \rho)/2$  matches the variance of the original AR(1) process

# **Ergodic Distribution**

Objective: Compute the ergodic PDF of a Markov Chain

The ergodic distribution  $\pi$  of a Markov Chain with transition matrix  $\Pi$  is such that

$$\begin{cases} \pi = \Pi' \pi \\ \pi \iota = 1 \end{cases}$$

where  $\iota$  is a vector of 1's

The system of equations above says that

- The vector  $\pi$  is one eigenvector of the matrix Π...
- ... in particular, the one whose elements sum to one

There are countless ways to compute the ergodic distribution, but this one works quite well

### Calibration

| Symbol   | Meaning                        | Value |
|----------|--------------------------------|-------|
| α        | Capital intensity in PF        | 0.30  |
| β        | Discount parameter             | 0.95  |
| $\gamma$ | CRRA parameter                 | 1.50  |
| δ        | Capital depreciation           | 0.10  |
| $\mu$    | Uncond. avg. of productivity   | 1.00  |
| $\rho$   | Persistence of productivity    | 0.70  |
| $\sigma$ | St.dev. of productivity shocks | 0.10  |

The same disclaimer as in the previous class applies

ightarrow The calibration presented here is not credible in any meaningful empirical setting

#### Simulation

Consider the necessary and sufficient conditions for the equilibrium in any model with rational expectations

$$\mathbf{E}_{t}\left(f\left(X_{t-1},X_{t},X_{t+1}\right)\right)=0$$

The solution to such model is a "policy function"  $g(\cdot)$  such that

$$X_{t+1}=g(X_{t-1},X_t)$$

What we call here "policy function"  $g(\cdot)$  is a vector function containing

- ► The policy functions (strictly speaking) from the Bellman problem
- The laws of motion (e.g., the one for capital)
- Exogenous stochastic processes (e.g., the one for productivity)

A simulation takes some initial conditions for  $X_{t-1}$  and  $X_t$  and applies the function  $g(\cdot)$  repeatedly for a given series of shocks

# Simulation (cont'd)

#### Steps to simulate from the Stochastic Neoclassical Growth Model

- 1. Set a number of periods *T* to simulate
- 2. Set  $K_0$ , that is the initial condition
- 3. For each  $t \in \{0, ..., T\}$ 
  - 3.1 Draw a state  $A_t$  from the relevant CDF
  - 3.2 Compute current consumption and future capital holdings using the policy functions  $C_t = C(K_t, A_t)$  and  $K_{t+1} = K'(K_t, A_t)$
  - 3.3 Compute all other endogenous variables using other equations of the model (e.g., production, investment)

# Impulse-Response Functions

Objective: Marginal effect of an exogenous shock on an endogenous variable

IRFs are the marginal effects of shocks on endogenous variables predicted by the model

Formally, the response at horizon h of variable  $X_{t+h}$  to a shock (impulse) to  $S_t$  is

$$IRF_{X,S}(h) \equiv \frac{\partial X_{t+h}}{\partial S_t}$$

IRFs are simple simulations

- The initial condition is typically the steady state of the model
- At time t, a sudden unexpected shock realizes
- At time t + h, for all h > 0, all shocks are shut down

#### Exercises

- 1. Use the code for VFI/PFI I have shown in class #2
  - 1.1 Write code that, given an initial condition for the state variable, simulates the model
  - 1.2 In what sense such simulation is uninteresting?
- 2. Use the code for VFI I have shown in this class
  - 2.1 How would the discretization of the stochastic process work if  $\rho = 0$  (i.e., the process of A itself is a sequence of i.i.d. random variables)?
  - 2.2 Code up the related discretization method and solve for the policy function
- 3. Consider the code I have shown in this class for simulating the model
  - 3.1 My code forces the shock to be on the grid for A: how would you modify the numerical policy functions (and those only!) to accommodate for any  $A \in \mathbb{R}$ ?
  - 3.2 Code up your answer to the previous question
  - 3.3 Simulate the model for some periods (e.g., T = 250)
  - 3.4 Compute the impulse-response functions of consumption, investment and production to a one-standard deviation shock to productivity
  - 3.5 Provide the economic intuition behind the the IRFs you have obtained