Concours d'Entrée

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

Durée: 4 heures

Calculatrice autorisée

OPTION A

Le sujet est composé d'un exercice et de deux problèmes tous indépendants.

EXERCICE

On considère l'équation différentielle

(E):
$$(x^2-1)$$
 $y' + x y = x^3 - x$.

- 1. Déterminer une fonction polynôme p solution de l'équation (E) sur \mathbb{R} .
- 2. Résoudre l'équation (E) sur chacun des intervalles $]-\infty$, -1[,]-1, 1[et]1, $+\infty[$.
- 3. Expliquer pourquoi la seule solution de (E) sur \mathbb{R} est la fonction p.

PROBLEME I

1. Question préliminaire

On considère la matrice
$$A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- a. Exprimer ${}^{t}A$ en fonction de A et déterminer le rang de A.
- b. La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?

Dans la suite, E est un espace vectoriel euclidien de dimension n c'est à dire un \mathbb{R} -espace vectoriel muni d'un produit scalaire que l'on notera (\mid) . La norme associée à ce produit scalaire est notée $\| \ \|$.

Un endomorphisme u de E est **antisymétrique** si pour tout couple (x, y) de vecteurs de E on a :

$$(u(x) \mid y) = -(x \mid u(y)).$$

On notera $\mathcal{A}(E)$ l'ensemble des endomorphismes antisymétriques de E.

- 2. Montrer que $u \in \mathcal{A}(E)$ si et seulement si, pour tout vecteur x de E on a $(u(x) \mid x) = 0$.
- 3. Soit u un endomorphisme de E, soit \mathcal{B} une base orthonormée de E et A la matrice de u dans la base \mathcal{B} . Montrer que $u \in \mathcal{A}(E)$ si et seulement si, ${}^t A = -A$.
- 4. Montrer que $\mathcal{A}(E)$ est un \mathbb{R} -espace vectoriel dont on déterminera la dimension.
- 5. Exemple

On suppose que dim $E = n \ge 3$, a et b sont deux vecteurs non nuls et orthogonaux de E, on définit u pour tout vecteur x de E par : $u(x) = \begin{pmatrix} a & x \end{pmatrix} b - \begin{pmatrix} b & x \end{pmatrix} a$.

- a. Montrer que $u \in \mathcal{A}(E)$.
- b. On pose $e_1 = \frac{a}{\|a\|}$, $e_2 = \frac{b}{\|b\|}$ et on complète cette famille pour obtenir une base orthonormée $(e_1, e_2, e_3, ..., e_n)$ de E.

Écrire la matrice de *u* dans cette base et donner son polynôme caractéristique.

6. Valeurs propres

Soit $u \in \mathcal{A}(E)$.

- a. Montrer que la seule valeur propre réelle possible de *u* est 0.
- b. L'endomorphisme u est-il diagonalisable dans le \mathbb{R} -espace vectoriel E?
- c. Montrer que $u \circ u$ est un endomorphisme symétrique réel.
- d. Montrer que si λ est une valeur propre complexe non nulle de u alors λ est imaginaire pur.
- 7. Soit $u \in \mathcal{A}(E)$.
 - a. Montrer que si n est impair le déterminant de u est nul.
 - b. Montrer que les espaces Ker u et Im u sont orthogonaux.
 - c. On note v l'endomorphisme induit par u sur Im u, montrer que v est bijectif.
 - d. En déduire que le rang de *u* est pair.
- 8. Soit $u \in \mathcal{A}(E)$, justifier qu'il existe un entier naturel p et p réels $a_1, a_2, ..., a_p$ strictement positifs tels que le polynôme caractéristique de u soit :

$$(-1)^n X^{n-2p} (X^2 + a_1)(X^2 + a_2)...(X^2 + a_n)$$
.

PROBLEME II

A. Règle de Cauchy

Soit $\sum u_n$ une série à termes réels strictement positifs telle qu'il existe un réel L vérifiant $\lim_{n \to +\infty} \sqrt[n]{u_n} = L$ (c'est-à-dire

$$\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = \lim_{n \to +\infty} e^{\frac{1}{n} \ln u_n} = L.$$

- 1. On suppose que L < 1.
 - $\text{a.}\quad \text{Soit } k\in \]L,\ 1[\ \text{, montrer qu'il existe}\ n_0\in \mathbb{N},\ \text{tel que pour tout}\ n\in \mathbb{N},\ n\geq n_0\Rightarrow u_n< k^n\,.$
 - b. En déduire que la série $\sum u_n$ converge.
- 2. On suppose que L > 1.
 - a. Montrer qu'il existe $n_0 \in \mathbb{N}$, tel que pour tout $n \in \mathbb{N}, \ n \ge n_0 \Rightarrow u_n > 1$.
 - b. En déduire que $\sum u_n$ diverge.
- 3. Montrer que si L=1, on ne peut pas conclure.
- 4. Exemples : en utilisant la règle de Cauchy que l'on vient de prouver étudier la nature des séries $\sum_{n\geq 0} \left(\frac{n}{n+1}\right)^{n^2}$ et

$$\sum_{n > 0} \left(\frac{n+2}{n+1} \right)^{n^2+n} .$$

B. Comparaison avec la règle de d'Alembert

On pourra utiliser librement, le théorème de Cesàro :

si la suite de réels (u_n) converge vers un réel l alors

la suite
$$\left(\frac{u_1 + u_2 + ... + u_n}{n}\right)$$
 converge vers le réel l .

- 5. Soit (w_n) une suite de réels telle que $\lim_{n \to +\infty} (w_n w_{n-1}) = l$, montrer que $\lim_{n \to +\infty} \frac{w_n}{n} = l$.
- 6. Soit $l \in]0$, $+\infty[$ et (u_n) une suite de réels strictement positifs telle que $\lim_{n \to +\infty} \frac{u_n}{u_{n-1}} = l$, montrer que $\lim_{n \to +\infty} \sqrt[n]{u_n} = l$.

7. Étudier la réciproque en considérant la suite (u_n) telle que, pour tout entier naturel $p,\ u_{2p}=u_{2p+1}=3^p$.

C. Application aux séries entières

On considère la série entière de la variable réelle $\sum a_n \ x^n$.

8. Montrer que si la suite $\left(\sqrt[n]{|a_n|}\right)$ converge vers un réel l non nul alors le rayon de convergence de la série est :

$$R = \frac{1}{l}$$

(on admet que ce résultat reste valable : si l = 0, $R = +\infty$ et si $l = +\infty$, R = 0).

- 9. Applications
 - a. Déterminer le rayon de convergence des séries entières

$$\sum 2^n \ x^n \ \text{et} \ \sum n^{(-1)^n} \ x^n \ .$$

b. Discuter en fonction du réel a > 0 le rayon de la série entière $\sum a^{n^2} x^n$.
