

UTFPR - Câmpus Apucarana

Curso: Engenharia de Computação Disciplina: Teoria da Computação Professor: Lucio Agostinho Rocha

Discente:

Semestre: 2023/1 Código: TCCO5A

RA:

Lista de Exercícios 2

Instruções de entrega: as respostas devem ser entregues em formato .PDF na plataforma de ensino da disciplina.

Questão 1 (1,0 pontos) Utilize o Lema do Bombeamento para verificar se as seguintes linguagens são regulares:

- (a) $L_1 = \{ww|w \text{ \'e palavra de } \{a,b\}^*\}$
- (c) $L_3 = \{10^n 1 \mid n \ge 0\}$

(b) $L_2 = \{0^n 1^n 2^n \mid n \ge 0\}$

Questão 2 (1,0 pontos) Determine as gramáticas livres de contexto que geram as seguintes linguagens:

(a) $L_1 = \{0^n 1^{2n} \mid n \ge 1\}$

(b) $L_2 = \{w \in \{0,1\}^* \mid \text{ w contém o mesmo número de 0s e 1s}\}.$

Questão 3 (1,0 pontos) Dada a gramática livre de contexto: $G_3 = (\{x,y,z\}, \{Z,A,B,C\}, \mathbb{P}, Z),$ $\mathbb{P} = \{Z \to AxByC, A \to xAx, A \to \varepsilon, B \to By, B \to \varepsilon, C \to zAz\},$ apresente para a sentença xxxyyzxxz:

- (a) A árvore sintática.
- (b) As derivações canônicas.
- (c) As sequências de reconhecimento.

Questão 4 (1,0 pontos) Dada a gramática com símbolo não-terminal e sentencial S, símbolos terminais a,b e produções: $S \to aSbS \mid bSaS \mid \varepsilon$ Mostre, usando a sentença abab, que a gramática é ambígua. Para isso, mostre para esta sentença:

- (a) Duas derivações canônicas mais à direita.
- (b) Duas derivações canônicas mais à esquerda.
- (c) Duas árvores sintáticas.
- (d) Apresente as novas regras de produção para remoção da ambiguidade.
- (e) Apresente a derivação canônica mais à direita e mais à esquerda sem ambiguidade.

Questão 5 (1,0 pontos) Considere a seguinte gramática: $G = (\{a,b\}, \{Z\}, \mathbb{P}, Z)$, tal que $\mathbb{P} = \{Z \to ZZ \mid aZa \mid bZb \mid \varepsilon\}$

- (a) Qual a linguagem gerada?
- (b) Para a palavra aabbaaaa:
 - 1) Apresente a árvore sintática de derivação.

- 2) Para a árvore construída, determine as derivações mais à esquerda e mais à direita.
- (c) A gramática é ambígua? Explique.

Questão 6 (1,0 pontos)

- (a) Dada a gramática $G = (\{a, (,)\}, \{Z, S, E\}, \mathbb{P}, Z)$, tal que: $\mathbb{P} = \{Z \to (S), S \to SE \mid \varepsilon, E \to a \mid Z\}$, apresente a gramática G na Forma Normal de Chomsky.
- (b) Dada a gramática $G=(\{b,c,d\},\{Z,B,C,D\},\mathbb{P},Z)$, tal que: $\mathbb{P}=\{Z\to CB,B\to BBD\mid b,C\to BBC\mid Dc,D\to ZD\mid d\}$, apresente a gramática G na Forma Normal de Greibach.

Questão 7 (1,0 pontos) Dada a gramática LLC com regras de produção $\mathbb{P} = \{Z \to (A), A \to Aa \mid b\}$:

- (a) Apresente a representação formal de conjuntos dessa linguagem.
- (b) Apresente as regras de produção com remoção das recursões à esquerda.
- (c) Apresente a tabela sintática de derivações.
- (d) Apresente a sequência de reconhecimento com um autômato de pilha da palavra: w = (baa)
- (e) Apresente a sequência de reconhecimento com um autômato de pilha da palavra: w = (baaab)

Questão 8 (1,0 pontos) Seja a Máquina de Turing $M_1 = (Q, \Sigma, \tau, \delta, q_1, q_{aceita}, q_{rejeita})$ para decidir a linguagem $B = \{w \# w | w \in \{0, 1\}^*\}$:

- $Q = \{q_1, ..., q_8, q_{aceita}, q_{rejeita}\}$
- $\sigma = \{0, 1, \#\}$
- $\tau = \{0, 1, \#, x, \sqcup\}$
- δ é representado pelo diagrama de estados da Figura ??:

Forneça a sequência de configurações que M_1 realiza ao receber as seguintes palavras de entrada:

- (a) 11
- (b) 1#1
- (c) 1##1
- (d) 10#11
- (e) 10#10

Questão 9 (1,0 pontos) Defina cada um dos termos:

- (a) A Tese de Church-Turing sobre linguagens decidíveis.
- (b) Decidibilidade.
- (c) Redutibilidade.

Figura 1: Diagrama de Estados de M_1 .

- (d) Linguagem Não-computável.
- (e) Problema da Parada.

Questão 10 (1,0 pontos) Defina cada um dos termos:

- (a) Classes de Complexidades de Problemas P;
- (b) Classes de Complexidades de Problemas NP;
- (c) Classes de Complexidades de Problemas NP-Completo;
- (d) Classes de Complexidades de Problemas NP Difícil;
- (e) Intratabilidade.