2.1 math solution:

2.1 E+S
$$\stackrel{k_1}{\rightleftharpoons}$$
 ES $\stackrel{k_3}{\rightleftharpoons}$ E+P

Use C to represent ES, therefore

E+S $\stackrel{k_1}{\rightleftharpoons}$ C $\stackrel{k_3}{\rightleftharpoons}$ E+P

DE: consumption = k₁ ES

production = k₂ C+ k₃ C

2)S: consumption = k₁ ES

production = k₂ C

production = k₂ C

$$3)C$$
: consumption = $k_2C + k_3C$
 $production = k_1ES$

Production =
$$k_2C$$

therefore S $\frac{dE}{dt} = (k_1 + k_3)C - k_1 ES$ 0
 $\frac{dS}{dt} = k_2C - k_1 ES$ Θ
 $\frac{dC}{dt} = k_1 ES - Ck_1 + k_2 C$ Θ
 $\frac{dP}{dt} = k_3 C$ Θ

2.2 math solution:

2.2 use the equations in 2.1, we can know that: $0+8 \Rightarrow \frac{dE}{dt} + \frac{dC}{dt} = \frac{d(E+c)}{dt} = 0$ therefore E+C equals to a constant also know the initial concentration of E and C. SO E+C= E0+C0=E0 ⇒ E=E0-C bring E= Eo-C into equation @ and @ , we can have: $\begin{cases} \frac{ds}{dt} = -k, (E_0 - c) S + k_2 C \\ \frac{dC}{dt} = k, (E_0 - c) S - (k_2 + k_2) C \\ \parallel \theta = k_2 + k_2 \qquad \lambda = k, E_0 \end{cases}$ $\begin{cases} \frac{ds}{dt} = -\lambda s + (k_1 s + k_2)c \\ \frac{dc}{dt} = \lambda s - (0 + k_1 s)c \end{cases}$ Mittal conditions & E(0) = 1 uM S(0) = 10 MM C(0) = 0 MM P(0) = 0 MM k = 100 MM/min k = 600 MM/min K = 150 MM/min so the oringinal equations can be = $\begin{cases} \frac{dc}{dt} = \lambda s - (0+k,s)c & \xi = \xi - c \\ \frac{ds}{dt} = -\lambda s + (k,s+k,s)c & P = k_3 \int c dt \end{cases}$

2.2 python results:

Figure 1: variation of components' concentration in 30s.

We can see from this picture that the enzymatic reaction is really fast at the beginning. There is a huge change both in the concentration of enzyme and intermediate compound during the first second. After that, the concentration of intermediate compound gradually decreases to 0μ M while that of enzyme increases and stays about 1μ M.

Production is generated quickly during the first 10 second and slows down during 10-20 second. And after that, its concentration comes to a maximum and keep stable.

There is an obvious inverse relationship between the decrease of substrate concentration and the increase of product concentration.

The numeric result of concentration in each second(0-30 second, 30001 steps in total) is demonstrated in the csv file named 'concentration per step(0.001s)'.

	enzyme	substract	compound	product
0	1	10	0	0
1	0. 983588	9. 983567	0.016412	4. 10E-05
2	0.967673	9.967591	0.032327	0.000122
3	0.952239	9.952057	0.047761	0.000241
4	0.937272	9. 936952	0.062728	0.000398
5	0.922757	9. 922262	0.077243	0.000591
6	0.908679	9.907973	0.091321	0.000819
7	0.895025	9.894074	0.104975	0.001082
8	0.881781	9.880551	0.118219	0.001377
9	0.868935	9.867393	0.131065	0.001705

Figure 2: part of the numeric results of components' concentration in 30s.

2.3 math solution:

2.3

$$V = \frac{dP}{dt}$$
 we want to plot $\frac{dV}{ds}$

$$\frac{dV}{ds} = \frac{d(\frac{dP}{dt})}{ds}$$

$$\frac{dv}{ds} = \frac{d(\frac{dP}{dt})}{ds}$$

therefore
$$\frac{dv}{ds} = \frac{d(k_z C)}{ds} = \frac{k_z dC}{dt} \cdot \frac{dt}{ds} = \frac{k_z dC}{\frac{ds}{dt}}$$

$$\frac{dv}{ds} = \frac{k_3 L k_1 E S - (k_2 + k_3) c}{k_2 C - k_1 E S}$$

2.3 python results:

Figure 3: relationship between change rate of product and concentration of substrate

We can see from this picture that the change rate of product increases almost linearly during 0-9s. And it jumped into 0 during 9-10. This is reasonable because at the beginning, $10\mu M$ substrate is much large than the concentration of enzyme, therefore, the reaction will go forward, which leads P to increase sharply. And the consumption of substrate lets the concentration of P become stable. That's the reason for the almost linear change of P's rate.

The maximum value of the change rate of product P is $1.392 \mu M/s$ when the concentration of substrate is $9 \mu M$.

Reference

[1] Barazandeh Y , Ghazanfari B . Numerical Solution for Fuzzy Enzyme Kinetic Equations by the Runge–Kutta Method[J]. 2018.