INDIAN INSTITUTE OF TECHNOLOGY BHUBANESWAR

Introduction to Electronics Laboratory

School of Electrical Sciences

Name: Shorya Sharma Roll Number: 19EE01017

CONTENTS:

- > Objective of Experiment
- > Input characteristics
- > Output characteristics
- > Transfer characteristics
- > Conclusion

Objective:

- Measuring Input Characteristics of Common Emitter BJT
- ➤ Measuring Output Characteristics of Common Emitter BJT
- ➤ Measuring Transfer Characteristics of Common Emitter BJT
- ➤ Measuring the Base-Emitter Resistance
- Measuring the Output Resistance
- ➤ Measuring the Early Voltage
- ➤ Measuring the Transconductance

Measuring Input Characteristics:

In this experiment, we will be dealing with Common-Emitter BJT.

 $I_B {=} I_S e^{Vbe/nVt}$, $\textbf{V}_{\textbf{T}} {=} \textbf{26mV}$

 $\Delta V_{BE}/\Delta I_B = r_{BE} = Base-Emitter Resistance$

Circuit Diagram:

We plotted graph between I_B vs V_{BE} by using DC sweep for V_{BE} and by keeping V_{CC} constant. Here we took 3 different values for V_{CC} .

Here V_{CC} =20V ΔV_{BE} =11.726384mV , ΔI_{B} = 20.293 μ A and $\Delta V_{BE}/\Delta I_{B}$ = r_{BE1} = 5780hm.

Here V_{cc} =0V ΔV_{BE} = 8.360477mV , ΔI_{B} = 17.942775 μ A and $\Delta V_{BE}/\Delta I_{B}$ = r_{BE2} =466ohm.

Here V_{CC} =10V ΔV_{BE} = 9.12mV , ΔI_B = 17.084 μA and $\Delta V_{BE}/\Delta I_B$ = r_{BE3} =533.8ohm.

Measuring Output Characteristics:

 $I_c \! = \! I_S e^{Vbe/nVt} (1 \! + V_{CE}/V_A)$, $V_A \! = \! Early \, Voltage$.

But ideally V_A is very large .So , $I_c = I_S e^{Vbe/nVt}$.

Circuit Diagram:

Here we will be using DC sweep for V_{CC} and keep V_{BE} as constant. We will be plotting output characteristics by taking 3 different values for V_{BB} .

And $r_0 = \Delta V_{CE}/\Delta I_C = V_A/I_C =$ output resistance.

 I_C vs V_{CE}

Here $\textbf{V}_{BB}\text{=}\textbf{2V}$ $\Delta V_{CE}\text{=}1.3452V$, $\Delta I_{C}\text{=}299.365\mu\text{A}$ and $\Delta V_{CE}/\Delta I_{C}\text{=}$ $\textbf{r}_{O}\text{=}4493.55ohm$.

We can measure Early voltage by taking the linear part of the graph.

 I_{C^-} 12.19mA = slope x (V_{CE} - 2.8033V) and it cuts x-axis at - V_A .

So, by keeping $I_C=0$ we get $V_{CE}=-51.97V$. So, the Early Voltage $V_A=51.97V$.

Here V_{BB} =6V ΔV_{CE} = 0.85V, ΔI_{C} = 640.9 μA and $\Delta V_{CE}/\Delta I_{C}$ = r_{O} = 1326.63ohm .

We can measure Early voltage by taking the linear part of the graph.

 I_{C} - 40.307mA = slope x (V_{CE} – 1.5738V) and it cuts x-axis at - V_{A} .

So, by keeping $I_C=0$ we get $V_{CE}=-51.89V$. So, the Early Voltage $V_A=51.89V$.

Here V_{BB} =10V ΔV_{CE} = 0.423V, ΔI_{C} = 497.224 μA and $\Delta V_{CE}/\Delta I_{C}$ = r_{O} = 850.71ohm .

We can measure Early voltage by taking the linear part of the graph.

 I_{C} - 62.289mA = slope x (V_{CE} - 1.12V) and it cuts x-axis at - V_{A} .

So, by keeping $I_C=0$ we get $V_{CE}=-51.86V$. So, the Early Voltage $V_A=51.86V$.

Measuring Transfer Characteristics:

Here the plot is between I_C and V_{BE} .

 $\Delta I_C/\Delta V_{BE} = g_m = Transconductance.$

Circuit Diagram:

Here we will be using DC sweep for V_{BB} and keeping V_{CE} as constant. We will be plotting transfer characteristics by taking 3 different values of V_{CC} and finding transconductance in each case.

 $I_C \quad vs \quad V_{BE}$

Here V_{CC} =5V and ΔI_C = 7.869mA , ΔV_{BE} = 10.88mV g_{m1} = $\Delta I_C/\Delta V_{BE}$ = 723.188 mA/V

Sep. 25

Here V_{CC} =15V and ΔI_C = 10.848mA, ΔV_{BE} = 10.88139mV g_{m2} = $\Delta I_C/\Delta V_{BE}$ = 996.9 mA/V

Here V_{CC} =25V and ΔI_{C} = 12.4612mA, ΔV_{BE} = 10.881393mV g_{m3} = $\Delta I_{C}/\Delta V_{BE}$ =1145.2mA/V

CONCLUSION:

In 1st part (input characteristics), we got the Base-Emitter Resistance values as

R_{BE1}=466ohm for V_{CC}=0V

 R_{BE2} = 533.80hm for V_{CC} =10V

 R_{BE3} = 578ohm for V_{CC} =20V

So, from this we understand that as we increase the constant V_{CC} value the Base-Emitter resistance increases which indicates slope($1/R_{BE}$) decreases in the linear part of the graph. So, the graph with higher V_{CC} will be less steep.

In Output Characteristics, we got the output resistance and early voltage values as

 R_{01} = 4493.55ohm, V_{A1} =51.97V for V_{BB1} =2V

 R_{02} = 1326.63ohm, V_{A2} =51.89V for V_{BB1} =6V

 R_{O3} = 850.71ohm, V_{A3} =51.86V for V_{BB1} =10V

As the constant V_{BB} is increasing output resistance is decreasing. We also have relation that $R_O = \Delta V_{CE}/\Delta I_C = V_A/I_C$. We can clearly observe that the early voltages for different values of V_{BB} are almost same and equal to $V_A \approx 52V$.

So this means that when the linear part of the plots are extended they cut the –ve x-axis at same point.

Finally, in transfer characteristics, we got the transconductance values as

 g_{m1} = 723.188 mA/V for V_{CC} =5V

 g_{m2} = 996.9mA/V for V_{CC} =15V

 g_{m3} = 1145.2mA/V for V_{CC} =25V

We can observe that as we increase the constant V_{CC} the transconductance increases which implies graph with higher V_{CC} is more steeper and we can verify it from the graph below.

