

Princeton University Library Interlibrary Services Department Firestone Library A-7-E

ilsborr@princeton.edu 609-258-3327

Thank you for using Princeton University Library's Interlibrary Services. We are happy to meet your research needs.

Please note that we can only host your electronic article for **21 days** from the date of delivery. After that, it will be **permanently deleted**.

As always, feel free to contact us with any questions or concerns.

WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research". If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use", that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Borrower: RAPID:PUL

Journal Title: Israel journal of chemistry

Volume: 8 Issue: 5

Month/Year: 1970 Pages: 777-789

Article Title: Vibrational Spectra and Thermodynamic Functions of the Three Isomeric Methoxyphenols

Article Author: Verma, V. N.

1 st Check	2 nd Check	
NFAC	Found	
NOS	Where?	
Other	Not Found	
Initials	Initials	
Date	Date	

Priority:

Call #: QD1 .1927

Location: Location: STACK ULIB

ILL Number: -12449090

Odyssey: 128.112.201.146

Ariel:

Printed Date: 10/26/2017 11:54 AM

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement.

VIBRATIONAL SPECTRA AND THERMODYNAMIC FUNCTIONS OF THE THREE ISOMERIC METHOXYPHENOLS

V.N. Verma, K.P.R. Nair and D.K. Rai Department of Spectroscopy, Banaras Hindu University, Varanasi-5, India

ABSTRACT

Infrared absorption spectra in the range of 250-4000 cm⁻¹ of the three isomeric methoxyphenols are reported. The para methoxyphenol is in the solid phase at room temperature and its spectrum has been investigated in the range of 700-4000 cm⁻¹ in chloroform solution in addition to the spectrum recorded for its nujol mull. Under the usual approximation of the two substituent groups taken as point masses the observed bands have been assigned to different modes of vibration. These assignments have been used to calculate the molar thermodynamic functions for these compounds.

Introduction

the vibrational and electronic spectra of a large number of substituted misoles and phenols have been reported in the literature [1-6]. The bectroscopic studies of molecules containing both methoxy and hydroxy coups in different positions in the benzene ring are, however, very Imited. A short communication on the electronic spectra of methoxyphenols has been made by Suryanarayan and Rao [7-8] and Sen [9] has reported the traviolet absorption spectrum of o-methoxyphenol in different phases. The Raman spectra of the three isomeric methoxyphenols have been studied by Reitz and Ypsilanti [10]. As a part of the programme to study the spectra of substituted benzenes, we have undertaken the study of the brational and electronic spectra of substituted phenols. The vibrational pectra and complete assignments for the three isomeric aminophenols have been reported recently by Verma and Rai [11]. The complete vibratonal assignments of the three isomeric methoxyphenols are here reorted and the fundamental frequencies observed in these studies have been used to calculate the molar thermodynamic functions of the three someric methoxyphenols assuming them to be rigid rotators and harmonic escillators.

Experimental

ure samples of the three isomeric methoxyphenols used for recording he spectra were obtained from BDH Chemicals. The liquid samples were ceived April 23, 1970

redistilled under reduced pressure and the solid one was recrystallized before use. The infrared spectra of o- and m-methoxyphenols which are liquid at room temperature were recorded in pure liquid form while the spectrum of p-methoxyphenol which is solid at room temperature was recorded in a nujol mull. A Perkin-Elmer Grating Spectrophotometer Model 521 equipped with CsBr optics was employed to record the spectra in the 250-4000 cm⁻¹ frequency range. To distinguish the methyl group vibrations from the nujol vibrations appearing in the same region the infrared spectrum of p-methoxyphenol was also recorded in the form of a liquid solution in chloroform on a 13U Perkin-Elmer Double Beam Spectrophotometer in the range of 700-4000 cm⁻¹. The accuracy of the P.E. Grating Spectrophotometer is believed to be ± 1 cm⁻¹ throughout the entire region while that of the 13U P.E. Spectrophotometer varies from ± 4 to 15 cm⁻¹. The spectra are reproduced in Figs. 1-3.

Results and Discussion

Assuming OH and OCH $_3$ groups to behave as point masses, the 30 benzene-like vibrations of o- and m-methoxyphenols may be classified under C_s symmetry whereas the similar vibrations of the p-methoxyphenol may be classified under C_{2v} symmetry. In addition to these vibrations there would be three more vibrations due to the hydroxyl group and 12 vibrations due to the methoxy group, making a total of 45 normal modes of vibrations for the actual molecules. The recommendations of the Joint Commission for Spectroscopy [12] have been followed in the choice of axes for the C_{2v} point group, i. e., the x-axis has been taken perpendicular to the plane of the molecule and the z-axis is colinear with the C_2 axis. The relevant selection rules for infrared and Raman Spectra show that vibrations belonging to all symmetry types may appear in the Raman spectrum and all except those belonging to a $_2$ symmetry are active in the infrared. The observed vibrational frequencies as well as their assignments to different modes of vibration are given in Tables I-III along with the available Raman data.

In assigning the fundamental frequencies to different modes of vibrations, considerable help has been obtained from the analysis of the vibrational spectra of anisole [1,2,4] phenol [3], p-cresol [13], methoxybenzaldehydes [14] and p-bromoanisole [15]. Since no polarization measurement results for the Raman lines are available intensities and positions of the bands were the main criteria for the assignment. The observation made by Jakobsen and Brewer [5] that only 21 of the 30 benzene-like vibrations of disubstituted benzenes remain unaffected by the nature or the mass of the substitutent, has also been taken into account.

Phenyl ring vibrations

The four benzene stretching modes, namely those belonging to $\rm e_{2g}$ (1596 cm $^{-1}$), $\rm e_{1u}$ (1485 cm $^{-1}$), $\rm b_{2u}$ (1310 cm $^{-1}$) and $\rm a_{1g}$ (992 cm $^{-1}$) give rise to six ring stretching modes in substituted benzenes where the symmetry is lowered sufficiently to remove the degeneracy of the first two modes. The magnitude of the frequency which corresponds to the $\rm a_{1g}$ (992 cm $^{-1}$)

FIG. 1. Infrared absorption spectrum of o-methoxyphenol (liquid phase)

FIG. 2. Infrared absorption spectrum of m-methoxyphenol (liquid phase)

TABLE I. Vibrational frequencies and their assignments for o-Methoxyphenol

Raman frequencies (cm ⁻¹)	Infrared frequencies		
(cm) Reitz and Ypsilanti [10	(cm ⁻¹)] (liquid)	Assignments	
1	(-14020)		
184 (7b)		a"C-OCH3 bending o.p.	
237 (3b)		a" OH sensitive	
308 (5)	308 (sh)	a" O-H bending o.p.	
349 (4)	351 (1)	a' C-O-C bending i.p.	
	388 (2)	a" C-C-C- bending i.p.	
	400 (2)	0 1	
	422 (1)	A' 184 + 237 = 421	
458 (3)	460 (3)	a" OH sensitive	
492 (3)	490 (1)	a' OH sensitive	
536 (6)	536 (2)	a' OH sensitive	
	548 (4)	a' C-OCH3 bending i.p.	
583 (5)	592 (3)	a' C-C-C- bending i.p.	
	656 (1)	A" $308 + 351 = 659$	
	672 (1)	a" C-H bending o.p.	
	681 (3)	a" O-H bending o. p.	
	704 (sh)	a" C-C-C ring def. o.p.	
726 (2)	724 (sh)	a" CH ₃ wagging	
759 (14)	754 (10)	a' O-CH ₃ bending i.p.	
832 (5)	832 (sh)	a' C-C ring breathing	
	848 (4)	a" C-H bending o.p.	
	933 (3)	a" C-H bending o.p.	
	978 (1)	a" C-H bending o.p.	
	998 (sh)	a' G-G-C trigonal bending	
1028 (3)	1031 (10)	a' CH ₃ rocking	
1042 (6)	1047 (10)	a' C-H bending i.p.	
	1120 (9)	A' (C-O) stret. + (O-H) i. p.	
		bending	
1159 (8)	1164 (5)	a'O-CH ₃ stret.	
	1180 (7)	a' C-H bending i.p.	
1204 (2)	1212 (sh)	a' C-H bending i.p.	
	1229 (9)	A' (C-O) stret. + (O-H) i. p.	
	. ,	bending	
1260 (9)	1268 (10)	a' C-OCH ₃ stret.	
1302 (4)	1312 (6)	a' C-H bending i.p.	
1354 (3b)	1368 (6)	a' CH ₃ sym. def.	
	1420 (2)	A" 754 + 672 = 1426	
1456 (5b)	1454 (8)	a' CH ₃ asym. def.	
	1468 (7)	a' C-C stret.	
	1478 (8)	a' CH ₃ asym. def.	
1499 (3)	1508 (10)	a' C-C stret.	
	1564 (1)	a' C-C stret.	
1600 (9b)	1607 (7)	a' C-C stret.	
•	1615 (sh)	A' $681 + 933 = 1614$	
1754 (2)	1754 (2)	A' 754 + 998 = 1752	
	1798 (1)	A' 490 + 1312 = 1802	
	1824 (1)	A' 351 + 1468 = 1819	
	1877 (2)	A' $832 + 1047 = 1879$	
	1992 (1)	A' $490 + 1508 = 1998$	
	20'26 (2)	A" 848 + 1180 = 2028	
	2269 (2)	A' $672 + 1600 = 2272$	
	2362 (1)	A' $1047 + 1312 = 2359$	
	2439 (1)	$A'' \ 933 + 1508 = 2441$	
	2480 (1) 2480 (1) 2523 (1)	A' 1212 + 1268 = 2480 A' 1212 + 1312 = 2524	

TABLE I. (Continued)

Raman frequencies (cm ⁻¹) Reitz and Ypsilanti [10]	Infrared frequencies (cm ⁻¹) (liquid)	Assignments
2842 (4)	2846 (5)	a' C-H sym. stret. in methyl group
2932 (2b)	2936 (5b)	a' C-H asym. stret. in methyl group
3023 (2)	3008 (4)	a' C-H stret. (Aromatic)
3071 (9b)	3059 (4)	a' C-H stret. (Aromatic)
2017 (20)	3275 (4)	A'' 848 + 2 × 1212 = 3272
	3290 (3)	$A' 351 + 2 \times 1468 = 3287$
	3310 (3)	A" $184 + 2 \times 1564 = 3312$
	3330 (2)	A" $388 + 2 \times 1468 = 3324$
	3341 (4)	$A' 978 + 2 \times 1180 = 3338$
	3354 (4)	$A'' 724 + 2 \times 1312 = 3348$
	3370 (5)	a' O-H stret. (Polymeric)
	3394 (5)	$A'' 460 + 2 \times 1468 = 3396$
	3401 (6)	$A" 978 + 2 \times 1212 = 3402$
	3441 (6)	$A" 237 + 2 \times 1600 = 3437$
	3472 (6)	A' $351 + 2 \times 1564 = 3479$
	3500 (3)	$A' 592 + 2 \times 1454 = 3498$
	3524 (3)	A' $2 \times 1180 + 1164 = 3524$
3544 (0)	3542 (3)	a' O-H stret. (Monomeric)
994± (°)	3571 (3)	$A'' 672 + 2 \times 1454 = 3578$
	3581 (2)	A' $1047 + 2 \times 1268 = 3583$
	3626 (2)	$A' 490 + 2 \times 1564 = 3618$
	3636 (2)	$A" 704 + 2 \times 1468 = 3640$
	3665 (2)	A" $724 + 2 \times 1468 \approx 3660$
	3846 (1)	A" $724 + 2 \times 1564 = 3852$
	3878 (1)	$A' 460 + 490 + 2 \times 1468 = 3886$
	3909 (1)	A' $998 + 2 \times 1454 = 3904$

The corresponding intensity is given in the parentheses. i.p. = in-plane; o.p. = out-of-plane; sym. = symmetric; asym. = asymmetric; sh = shoulder; def. = deformation; stret. = stretching and b = broad.

frequency of benzene is still a subject of controversy in literature. Wilmshurt and Bernstein [16] have assigned this mode at $725~{
m cm}^{-1}$ and 704 cm⁻¹ respectively in the case of m-xylene and m-xylene $-\alpha$ - α '- d_6 . The lowering was explained by them as due to the interaction between the C-CH3 stretching vibration and the ring vibration. We have assigned the corresponding mode for o-, m- and p-methoxyphenols to the frequencies 832,840 and $830~\rm cm^{-1}$ respectively. The frequency corresponding to the b_{2u} (1310) mode of benzene could not be assigned unambiguously as the spectrum in this region is complicated by the presence of frequencies due to the CH3 symmetric deformation mode as well as the OH in-plane bending mode. Out of the two components in which the e_{2g} (1596 cm⁻¹) and e_{1u} (1485 cm⁻¹) fundamentals of benzene are split one has a magnitude slightly greater than the corresponding value in benzene whereas the other component has a considerably lower magnitude. These modes have been assigned to the bands at 1607, 1564, 1508, 1468 cm⁻¹ in ortho-, 1592, 1552, 1490, $1460 \, \mathrm{cm^{-1}}$ in meta- and 1608, 1569, 1508, $1462 \, \mathrm{cm^{-1}}$ in paramethoxyphenol respectively. The four C-H stretching vibrations for disubstituted benzenes usually appear in the frequency range 3000-3100 cm⁻¹.

Raman frequencies (cm ⁻¹) Reitz and Ypsilanti [10]	Infrared frequencies (cm ⁻¹) (liquid)	Assignments
237 (2)		a" OH sensitive
231 (2)	349 (2)	a' C-O-C bending i.p.
	395 (2)	0 -
	454 (2)	a" OH sensitive
472 (00)	469 (2)	a" OH sensitive
	517 (2)	a' OH sensitive
520 (0)	522 (2)	a' OH sensitive
•	573 (2)	a' $C-OCH_3$ bending i.p.
	588 (2)	A" 349 + 237 = 586
616 (00)	599 (2)	a' G-G-C bending i.p.
	669 (3)	a" C-H bending o.p.
	685 (6)	a" O-H bending o.p.
727 (3)	· 731 (3)	a" CH ₃ wagging
	764 (5)	a' O-CH ₃ bending i.p.
	840 (4)	a' C-C ring breathing
	845 (sh)	a" C-H bending o.p.
	922 (3)	a" C-H bending o.p.
270.45	943 (5)	a" C-H bending o.p.
989 (5)	995 (2)	a' C-C-C trigonal bending
1000 (0)	1039 (5)	a' CH ₃ rocking
1079 (0)	1075 (2)	a' C-H bending i.p.
1156 (0)	1149 (10)	A' (C-O) stret. +,(O-H) bending i.p.
	1166 (sh)	a' O-CH3 stret.
	1196 (6)	a' C-H bending i.p.
	1225 (sh,b)	A' $(C-O)$ stret. $+ (O-H)$ bending i.p.
1283 (1)	1285 (6)	a' C-OCH ₃ stret.
	1310 (1)	a' C-H bending i.p.
	1329 (2)	a' CH_3 sym. def. in methyl group
1445 (0)	1443 (4)	a' CH ₃ asym. def. in methy group
	1460 (6)	a' C-C stret.
	1490 (6)	a' G-C stret.
	1552 (sh)	a' C-C stret.
1601 (2b)	1592 (9)	a' C-C stret.
	1873 (1)	A' 840 + 1039 = 1879
	1938 (1)	A" 943 + 995 = 1938
	1990 (1)	A' $2 \times 995 = 1990$
	2232 (1)	A' $2 \times 517 + 1196 = 2230$
	2292 (1)	A' $2 \times 349 + 1592 = 2290$
	2460 (1)	A' 2 × 573 + 1310 = 2456
	2598 (1) 2836 (3)	A' $2 \times 522 + 1552 = 2596$ a' C-H sym. stret. in methy group
	2950 (3)	a' C-H asym. stret. in meth group
	3000 (2)	a' C-H stret. (Aromatic)
	3028 (2)	a' C-H stret. (Aromatic)
3092 (0)	3088 (2b)	a' C-H stret. (Aromatic)
ζ-/	3150 (2)	·

TABLE II. (Continued)

Raman frequencies (cm ⁻¹) Reitz and Ypsilanti [10]	Infrared frequencies (cm ⁻¹) (liquid)	Assignments
	3192 (4)	A' 2 x1592 = 3184
	3225 (4)	$A' 3 \times 1075 = 3225$
	3269 (2)	A' $1285 + 2 \times 995 = 3275$
	3320 (2)	$A' 349 + 2 \times 1490 = 3329$
	3334 (3)	$A" 943 + 2 \times 1196 = 3335$
	3345 (3)	$A" 237 + 2 \times 1552 = 3341$
	3362 (4)	a' O-H stret. (Polymeric)
	3386 (3)	$A'' 469 + 2 \times 1460 = 3389$
	3430 (2)	A' $517 + 2 \times 1460 = 3437$
	3460 (2)	$A' 349 + 2 \times 1552 = 3452$
	3536 (2)	a' O-H stret. (Monomeric)
	3556 (1)	A" $669 + 2 \times 1443 = 3552$
	3579 (1)	$A" 922 + 2 \times 1329 = 3580$
	3619 (1)	$A' 517 + 2 \times 1552 = 3621$
	3657 (1)	A" $731 + 2 \times 1460 = 3651$
	3690 (1)	A' $1075 + 2 \times 1310 = 3695$
	3793 (1)	A' $1166 + 2 \times 1310 = 3786$
	3840 (1)	A" $731 + 2 \times 1552 = 3835$
	3880 (1)	A' $1310 + 2 \times 1285 = 3880$
	3903 (1)	$A'' \times 922 + 2 \times 1490 = 3902$
	3930 (1)	A'828 + 2 ×1552 = 3932

Similar results have been obtained in the present investigation and since this region is comparatively free from complicating features, the assignments are straightforward. These are given in the tables. The C-H in-plane bending modes and C-H out-of-plane bending modes of vibrations appear in the range of $1000-1350~\rm cm^{-1}$ and $650-1000~\rm cm^{-1}$ respectively. The C-H in-plane bending modes arise from a_{2g} ($1340~\rm cm^{-1}$), e_{2g} ($1178~\rm cm^{-1}$), b_{2u} ($1152~\rm cm^{-1}$) and e_{1u} ($1037~\rm cm^{-1}$) modes of benzene. Bands observed at 1312, 1212, 1180, $1047~\rm cm^{-1}$ for ortho-, at 1310, 1196, $1075~\rm cm^{-1}$ for meta- and at 1301, 1219, 1180 and $1012~\rm cm^{-1}$ for para-methoxyphenols have been ascribed to this mode. The C-H out of plane bending modes derived from b_{2u} ($995~\rm cm^{-1}$), e_{2u} ($975~\rm cm^{-1}$), e_{2g} ($850~\rm cm^{-1}$) and a_{2u} ($673~\rm cm^{-1}$) modes of benzene are identified at 978, 933, 848, $672~\rm cm^{-1}$ for ortho- and 943, 922, 845, $669~\rm cm^{-1}$ for meta- methoxyphenols. In the case of p-methoxyphenol only three bands ascribed to these modes are observed at 982, $925~\rm and$ $656~\rm cm^{-1}$. Two in-plane and two out of plane C-H bending vibrations become C-substituent vibrations in disubstituted benzenes and have been discussed along with the substituent vibrations.

OH group vibrations

In principle the three vibrations of the OH group could be assigned easily by analogy to the vibrational assignments of the OH modes in phenol,

The state of the s

ABLE III. Vibrational frequencies and their assignments for p-methoxyphenol

Raman frequencies (cm ⁻¹)	Infrared frequencies (cm ⁻¹).		A*
Reitz and Ypsilanti		*	Assignments
[10]	(Nujol)	(CHCl ₃)	
252 (½)			b ₁ OH sensitive
	329 (1)	•	b ₁ OH sensitive
371 (4)	368 (1)		a ₁ C-O-C bending i.p.
$391(\frac{1}{2})$	389 (1)	,	b ₁ C-C-C bending o.p.
439 (2)	442 (2)		b ₁ OH sensitive
522 (1)	518 (6)		b ₁ OH sensitive
	537 (6)		b ₁ OH sensitive
,	557 (4)		b ₂ C-OCH ₃ bending i.p.
	596'(1)		b ₂ C-C-C bending i. p.
640 (4)	642 (1)	*	b ₁ O-H bending o.p.
0 = 4, (=)	656 (1)		b ₁ C-H bending o.p.
703 (3)	706 (sh)		b ₁ CH ₃ wagging
, (.)	741 (9)	•	a ₁ O-CH ₃ bending i.p.
	814 (4)		$A_1 = 368 + 442 = 810$
830 (8)	830 (9)	825 (10)	a ₁ G-C ring breathing
847 (8)	090 (a)	020 (10)	a ₁ C-C ring breathing a ₂ C-H bending o.p.
071 (0)	925 (sh)	928 (2)	b ₁ C-H bending o.p.
	982 (2)	020 (Z)	
υ.			b ₁ C-H bending o.p.
*	997 (sh)	•	a ₁ G-C-C trigonal bending
1006 (1)	1012 (4)	1000 (10)	a ₁ C-H bending i.p.
$1026 \left(\frac{1}{2}\right)$	1030 (9)	1032 (10)	b ₂ CH ₃ rocking
**	1106 (8)	1100 (9)	A_1 (C-O) stret. + (O-H)
1100 (46)	1150 (4)		bending i.p.
1166 (4b)	1159 (4)	•	a ₁ O-CH ₃ stret.
	1180 (8)	•	b ₁ C-H bending i.p.
	1219 (sh)		b ₂ C-H bending i.p.
	1232 (9)	1226 (10b)	A ₁ (C-O) sttet. + (O-H)
4054 451)	40-0		bending i.p.
1274 (5b)	1276 (7)		a ₁ C-OCH ₃ stret.
	1301 (6)	1298 (6)	b ₂ C-H bending i.p.
	1349 (sh)	1351 (8)	a ₁ CH ₃ sym. def. in methyl group
1452 (2b)	1452 (10)	1451 (10)	b ₂ CH ₃ asym. def. in methyl
,	` ,	, ,	group
	1462 (10)		b ₂ C-C stret.
	1508 (6)	1510 (10)	a ₁ C-C stret.
	1569 (1)	` ,	b ₂ G-C stret.
1613 (5b)	1608 (3)		a ₁ C-C stret.
• •	1632 (1)		$A_1 2 \times 814 = 1628$
	1670 (1)		B ₁ 2 × 518 + 642 = 1678
	1700 (1)		$B_1 \ 2 \times 389 + 925 = 1703$
	1714 (1)	1710 (1)	$B_1 \times 368 + 982 = 1718$
	1734 (1)	1734 (1)	$A_2 \ 2 \times 442 + 847 = 1731$
•.	1753 (1)	- · · · · · · · · · · · · · · · · · · ·	$B_1 2 \times 557 + 642 = 1756$
	1856 (3)	1857 (2)	$B_2 \ 1030 + 830 = 1860$
	1879 (1)		$A_2 \ 2 \times 518 + 847 = 1883$
	1905 (1)		$A_1 \ 2 \times 368 + 1159 \mp 1895$
	2000 (1)	2000 (3) .	$B_1 \times 537 + 925 = 1999$
	2047 (1)		$A_1 \ 2 \times 518 + 1012 = 2048$
	2189 (1)		$B_2 \ 2 \times 576 + 1030 = 2180$
the state of the s	- a - a - a - a - a - a - a - a - a - a	the search with the second	. Dy D A 0 10 1 1000 - 2100

TABLE III. (Continued)

Raman frequencies (cm ⁻¹)	Infrared frequencies (cm ⁻¹)		Assignments	
Reitz and Ypsilanti [10]	(Nujol)	(CHCl ₃)	0	
	2293 (1)	2284 (2)	$B_1 \ 2 \times 656 + 982 = 2294$	
	2328 (2)		$B_2 \ 2 \times 557 + 1219 = 2333$	
	2354 (2)		$B_1 656 + 2 \times 847 = 2350$	
	2468 (1)	2470 (2)	$A_1 \ 2 \times 656 + 1159 = 2477$	
	2612 (2)		$B_2 2 \times 656 + 1301 = 2613$	
	2673 (1)		$A_1 2 \times 830 + 1012 = 2672$	
	2713 (2)	2730 (2)	$A_1 2 \times 706 + 1301 = 2713$	
2835 (2)	2838 (10)	2840 (5)	a ₁ C-H sym. stret. in methy group	
2951 (0)	2943 (10)	2960 (7)	b ₂ C-H asym. stret. in methyl group	
$3007(\frac{1}{2})$	3007 (sh)		b ₂ C-H stret. (Aromatic)	
- ' (5)	3042 (sh)		b ₂ C-H stret. (Aromatic)	
3069 (5b)	3070 (sh)	3065 (8)	a ₁ C-H stret. (Aromatic)	
	3142 (3)	. ,	$B_2 706 + 2 \times 1219 = 3144$	
	3181 (2)		$B_2 1569 + 1608 = 3177$	
	3205 (4)		$A_1 741 + 2 \times 1232 = 3205$	
	3223 (3)		$A_1 2 \times 1608 = 3216$	
	3234 (3)		a ₁ O-H stret. (Polymeric)	
	3260 (4)		$B_1 656 + 2 \times 1301 = 3258$	
	3283 (4)		$A_1 814 + 2 \times 1232 = 3278$	
	3299 (5)		$A_1 368 + 2 \times 1462 = 3292$	
	3331 (3)		$A_1 997 + 2 \times 1159 = 3323$	
	3354 (4)		$A_1 997 + 2 \times 1180 = 3357$	
	3417 (3)	3415 (10)	a ₁ O-H stret. (Monomeric)	
	3457 (2)		$B_1 537 + 2 \times 1462 = 3461$	
	3489 (2)		$B_2 1030 + 2 \times 1232 = 3494$	
	3565 (1)		$B_2 557 + 2 \times 1604 = 3565$	
	3610 (1)	•	$B_1 706 + 2 \times 1452 = 3610$	
	3626 (1)		$B_2 1030 + 2 \times 1301 = 3632$	
	3642 (2)		$B_1 1180 + 2 \times 1232 = 3644$	
	3768 (1)	3760 (1)	$B_2 1462 + 2 \times 1159 = 3772$	
	3778 (1)	- 😯	$B_2 557 + 2 \times 1608 = 3773$	
	3833 (2)		$B_1 925 + 2 \times 1452 = 3829$	
	3887 (1)		$B_1 982 + 2 \times 1452 = 3886$	

TABLE IV. Moments of inertia in $10^{-40}~\mathrm{gm~cm^2}$ for the three isomeric methoxyphenols

Moments of inertia	o-Methoxyphenol	m-Methoxyphenol	p-Methoxypheno
Ix	1119.714	1119.714	877.359
I_{v}	354.901	354.901	140.395
$\mathbf{I}_{\mathbf{Z}}^{\mathbf{y}}$	764.813	764.813	736.964

phenol -d₅ and phenol -OD. However, the presence of monomeric and polymeric OH vibrations complicate the assignment somewhat. In the present investigation the bands observed at 3542 and 3370 cm⁻¹ for ortho-, 3536 and 3362 cm⁻¹ for meta- and 3417 and 3234 cm⁻¹ for para-methoxyphenols have been assigned as due to the monomeric and polymeric OH stretching vibrations respectively. In the associated molecules, Davies [17] assigned a broad band in the region 600-700 cm⁻¹ to the OH out of plane bending mode. Evans has assigned the band at ~650 cm⁻¹ and ~300 cm⁻¹ to the monomeric and polymeric OH out of plane bending modes respectively in phenol. In the present investigation we have identified these corresponding modes at 681,308 cm⁻¹ in ortho- and at 642,329 cm⁻¹ in para-methoxyphenol. However, in the case of meta-methoxyphenol only one band due to the monomeric OH out of plane bending mode could be observed at 685 cm⁻¹.

The C-O stretching mode [18] occurs in the range 1030-1200 cm-1 and interacts with the OH in plane bending mode. The resulting vibrations are observed at 1120, 1229 cm⁻¹ in ortho-, 1149, 1225 cm⁻¹ in meta- and 1106, 1232 cm^{-1} in the *para*-isomer respectively. This is in accordance with a similar assignment by Hadzi and Sheppard [19]. In phenol Evans has attributed six modes as substituent sensitive. In the present case also six OH sensitive vibrations are obtained, two of them have been discussed earlier as the C-O stretching mode and the OH in plane bending mode. The other OH sensitive modes are observed at 536, 490, 460 and 237 cm⁻¹ for ortho-, at 522, 517, 454 and 237 cm⁻¹ for meta- and at 537, 518, 442 and $252~\mathrm{cm^{-1}}$ for para-methoxyphenols respectively. Out of these the 490 and 237 cm^{-1} frequencies of ortho- 517 and 237 cm⁻¹ bands of meta- and 518 and 252 cm⁻¹ frequencies of the *para*-isomer may be assigned as substituent sensitive ring vibrations. These are single component each of the 606 cm⁻¹ and 404 cm⁻¹ vibrations of benzene. The remaining two vibrations may then be attributed to the C-OH in plane and out of plane bending modes.

OCH₃ group vibrations

The strong band observed at 1268, 1285 and 1276 cm⁻¹ respectively for o-, m- and p-methoxyphenol has been assigned to the C-OCH₃ stretching mode. This mode of vibration has been identified at 1242, 1268 and 1255 cm⁻¹ in o-, m- and p-methoxybenzaldehyde [14]. The C-OCH₃ in plane bending mode could be identified in bands observed at 548, 573 and 557 cm⁻¹ for o-, m- and p-methoxyphenol respectively. But in the present investigation no bands ascribable to C-OCH₃ out of plane mode is observed in the infrared spectra. Bands arising from the OCH₃ stretching mode have been reported in the literature near 1150 cm⁻¹. We have assigned this mode to bands observed at 1164, 1166 and 1159 cm⁻¹ for o-, m- and p-methoxyphenols respectively. The O-CH₃ in plane bending mode has been observed in the case of o-, m- and p-methoxyphenols at 754, 764 and 741 cm⁻¹ respectively.

Fox and Martin [20] examined a large number of hydrocarbons containing methyl group and assigned two strong bands observed in the neighbourhood of 2962 and 2872 cm⁻¹ to the C-H asymmetric and symmetric stretching modes, respectively of in the methyl group. The bands observed at 2936 and 2846 cm⁻¹; 2950 and 2836 cm⁻¹ and 2943 and 2838 cm⁻¹ in the spectrum of o-, m- and p-methoxyphenol respectively have been assigned to these

TABLE V. Thermodynamic functions (in cal/Mole/°K) of the three isomeric methoxyphenols for the ideal gas state

T _O K	c _v ^O	$(H \xrightarrow{O} \underset{C}{0})/T$	$-(G^{O}-E_{O}^{O})/T$	s ^O
	-	o-Methoxypheno	1	
100.	9.34	8.84	53.48	62.32
200	18.82	12.35	60.59	72.94
298.16	29.04	17.48 .	66.27	83.75
300	29.22	17.72	66.35	84.07
400	38.44	21.68	71.86	93.55
500	44.14	27.08	77.27	104.35
600	51.70	30.44	82.50	112.93
700	55.90	34.02	87.37	121.39
800	59.20	37.21	92.16	129.37
900	61.7 8	40.05	96.66	136.71
1000	63.70	42.62	101.24	143.86
1100	65.10	44.67	105.17	149.85
1200	66.29	46.52	109.13	155.65
1300	67.27	48.25	112.97	161.22
1400	68.04	49.76	116.52	166.28
1500	68.72	51.17	120.12	171.29
		m-Methoxyphenol		•
100	7.57	8.31	53.30	61.61
200	15.01	10.66	°59.66	70.32
298.16	24.55	14.32	64.48	78.79
300	24.72	14.39	64.55	78.94
400	33.60	18.61	69.26	87.88
500	40.83	22,74	73.86	96.60
600	46.44	26.60	78.38	104.97
700	50.56	29.99	82.68	112.67
800	53 . 73	33.02	86.94	113.96
900	56.17	35.80	91.06	126.86
1000	58.04	38.10	94.99	133.10
1100	59.48	40.13	98.74	138.87
1200	60.68	41.95	102.27	144.22
1300	61.57	43.58	105.72	149.30
1400	62.33	45.04	109.03	154.07
1500	63.96	46.34	112.14	158.48
		p-Methoxyphenol	L	
100	7.98	8.37	50.73	59.11
200	16.74	11.22	57.29	68.52
298.16	26.61	15.34	62.53	77.87
300	26.76	15.40	62.58	77.99
400	35.78	19.88	67.67	87.57
500	42.97	24.11	72.57	96.69
600	48.51	28.15	77.36	105.51
700	52.67	31.67	81.97	113.64
800	55.81	34.76	86.41	121.16
900	58.22	37.48	90.70	128.18
1000	60.07	37.84	94.73	134.57
1100	61.52	41.93	98.67	140.67
1200	62.66	43.77	102.36	146.13
1300	63.58	45.40	105.97	151,38
1400	64.32	46.87	109.31	156.18
1500	64.97	48.20	112.66	160.87

modes of vibrations. The CH₃ asymmetric deformation modes have identified at 1478 and 1454 cm⁻¹ in o-methoxyphenol. But in the case m- and p-isomers only one band at 1443 and 1452 cm⁻¹ respectively has been observed. The CH₃ symmetric deformation mode has been assigned 1368, 1329 and 1349 cm⁻¹ respectively for the o-, m- and p-isomers. The frequencies caused by the CH₃ rocking and wagging modes have been bund at 1031, 1039, 1030 cm⁻¹ and at 724, 731, 706 cm⁻¹ in the case of o-, m- and p-methoxyphenol respectively.

Thermodynamic Functions

The thermodynamic functions were calculated for the ideal vapour at one tmosphere pressure in the standard manner [21] using the harmonic scillator, rigid rotator approximation. The moments of inertia I_x , I_y and along the coordinate axes x, y and z have been calculated considering he molecule as a planar one and the substituent groups as single mass soints. The moments of inertia calculated thus are given in Table IV, and he values of C_v^0 (heat capacity), $(H^0-E_0^0)/T$ (enthalpy function), $(G^0-E_0^0)/T$ (free energy function) and S^0 (entropy) at various temperatures ranging from $100-1500\,^{\circ}$ K for the three isomeric methoxyphenols are presented in Table V. Here E_0^0 is the energy of one mole of an ideal gas at absolute zero, H^0 is its enthalpy and G^0 is its free energy. No experimental value for these compounds have been available in literature.

ACKNOWLEDGEMENT

The authors are thankful to Prof. N.L. Singh for valuable discussions and proper guidance.

REFERENCES

- 1. J.H.S.GREEN, Spectrochim. Acta., 18, 39 (1962)
- 2, E.F. MOONEY, Spectrochim. Acta., 19, 877 (1963)
- 3. J.C.EVANS, Spectrochim. Acta., 16, 1382 (1960)
- 4. C.V.STEPHENSON, W.C.COBURN, Jr. and W.S.WILCOX, Spectrochim. Acta., 17, 933 (1961)
- 5. R.J.JAKOBSEN and E.J. BREWER, Appl. Spectry., 16, 32 (1962)
- 6. L.N. TRIPATHI and G.N.R. TRIPATHI, Proceeding of the International Conference on Spectroscopy held at Bombay (India), Jan. 9-18 (1967)
- 7. V. SURYANARAYAN and V. RAMAKRISHNA RAO, J. Sci. Ind. Res. (India), 15B, 260 (1956)
- 8. V.SURYANARAYAN and V.RAMAKRISHNA RAO, J. Sci. Ind. Res. (India), 15B, 548 (1956)
- 9. S.K.SEN, Ind. J. Phys., 30, 553 (1956)
- 0. A.W.REITZ and Gr. PRINZ YPSILANTI, Monatsch. Chem., 66, 299 (1935)
- 11. V.N. VERMA and D.K. RAI, Appl. Spectry., 24, 445 (1970)
- 12. Report on notation of polyatomic molecules, J. Chem. Phys., 23, 1997 (1955)
- 13. R.J.JAKOBSEN, Spectrochim. Acta., 21, 433 (1965)
- 🐉 M.P.SRIVASTAVA, O.N.SINGH and I.S.SINGH, Current Sci. (India), 37, 100 (1968).
- 15. V.B.SINGH, Current Sci. (India), 36, 427 (1967)
- 16. J.K. WILMSHURT and H.J. BERNSTEIN, Can. J. Chem., 35, 911 (1957)
- 17. M. DAVIES, J. Chem. Phys., 16, 274 (1948)
- 8. H.H. ZEISS and M. TSUTSUI, J. Amer. Chem. Soc., 75, 897 (1953)
- 9. D. HADZI and N.SHEPPARD, Proc. Roy. Soc. (London), A216, 247 (1953)
- ²⁰ J.J. FOX and A.E. MARTIN, Proc. Roy. Soc. (London), A175, 208 (1940)
- N. B. COLTHUP, L. H. DALY and S. E. WIBERLEY, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, p. 463 (1964)