Random Forest Classification of MNIST dataset and Regression of

Particles dataset

Introduction

The purpose of this exercise was to tune the parameters of both the random forest classifier for classifying examples in the MNIST dataset as well as the random forest regressor for the Particles dataset.

Methods

I performed the method of only modifying the n_estimators or the number of trees in the random forest for both the classifier and the regressor. In the classification, I started -50 from the default and made my way up. With the regressor I started at a lower number and made my way up since it was very time costly on my first test. After discovering that the regressor was to time consuming I decided to make another test and use the optimal max_depth from my previous exercise to see if it would yield better results. The results are below -

Results

CLASSIFICATION DATA – only n_estimators parameter was modified

n_estimators	Train Time	Test Time	Accuracy
50	28.825665 secs	0.179342 secs	0.967000
100	56.486980 secs	0.354030 secs	0.969429
150	85.746600 secs	0.523751 secs	0.971286
200	114.060088 secs	0.692670 secs	0.971429
250	142.863594 secs	0.876005 secs	0.970571
300	182.422549 secs	1.100109 secs	0.970429

 $REGRESSION\ DATA-only\ n_estimators\ parameter\ was\ modified$

n_estimators	Train Time	Test Time	MSE
10	132.753099 secs	1.548245 secs	.042233
20	263.488964 secs	3.179020 secs	.040254
30	385.591375 secs	4.292018 secs	.039666
40	512.790967 secs	5.907152 secs	0.039384
50	639.141176 secs	7.237906 secs	0.039186
<mark>60</mark>	742.210262 secs	8.695497 secs	0.039052
100	1271.615759	67.963341 secs	0.038782
	secs		
150	1977.593288	1412.404979 secs	0.038656
	secs		

REGRESSION DATA – only n_estimators and max_depth parameters were modified

max_depth	N_estimators	Train Time	Test Time	MSE
12	50	276.178408 secs	0.961541 secs	0.037777
12	100	571.345402 secs	1.933005 secs	0.037768
12	150	855.273388 secs	2.904613 secs	0.037766
12	200	1125.475703 secs	3.815182 secs	0.037763
12	250	1409.710879 secs	4.409895 secs	0.037763
12	300	1669.788249 secs	5.799232 secs	0.037762

Conclusion

In conclusion as the n_estimators or number of trees in the forest increased, the accuracy and mse improved. Although they improved as the n_estimators increased, there was a threshold where they peaked and then the accuracy and mse started to decay in performance. Since the results from the classifier was sufficient I decided to keep messing with the regressor by utilizing the optimal max_depth from the last exercise which improved the mse by more than 1/10%.

References

- [1] "3.2.4.3.1. sklearn.ensemble.RandomForestClassifier¶." [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html. [Accessed: 03-Nov-2020].
- [2] "3.2.4.3.2. sklearn.ensemble.RandomForestRegressor¶," *scikit*. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html. [Accessed: 03-Nov-2020].