FLS 6441 - Methods III: Explanation and Causation

Week 1 - Review

Jonathan Phillips

February 2019

$$Pr(A) = \frac{\text{Number of times A occurs}}{\text{Number of Trials}}$$

Joint Probability: $Pr(A \cap B) = P(A, B)$
Conditional Probability: $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$

Independence: A and B are independent iff
$$Pr(A \cap B) = Pr(A) * Pr(B)$$

Then: $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(A) * Pr(B)}{Pr(B)} = Pr(A)$

- ► A = It's raining in Osasco right now
- ▶ B = I flip this coin and get Heads
- ► Are these events independent?

- ► A = It's raining in Osasco right now
- ▶ B = I flip this coin and get Heads
- ► Are these events independent?
- Yes! One does not affect the other at all
- ► So $Pr(A \cap B) = Pr(A) * Pr(B)$
- $Pr(A \cap B) = 0.3 * 0.5 = 0.15$

- ► A = It's raining in Osasco right now
- ► B = It's raining in São Paulo right now
- ► Are these events independent?

- ► A = It's raining in Osasco right now
- ► B = It's raining in São Paulo right now
- ► Are these events independent?
- No! If you know it's raining in Osasco there's a stronger chance it will be raining in São Paulo
- ► So $Pr(A \cap B) \neq Pr(A) * Pr(B)$
- ► $Pr(A \cap B) \neq 0.3 * 0.5 = 0.15$
- ► $Pr(A \cap B) > 0.15$ (probably)

1.00

Pr(Rain in São Paulo) = 0.2 * 0.2 = 0.04 Pr(Rain in Osasco ∩ Rain in São Paulo) = 0.05 Pr(Rain in Osasco) * Pr(Rain in São Paulo) = Pr(Rain in Osasco ∩ Rain in São Paulo)

Pr(Rain in Osasco) * Pr(Rain in São Paulo) = 0.37 * 0.36 =
0.13 Pr(Rain in Osasco ∩
Rain in São Paulo) = 0.25 Pr(Rain in Osasco) * Pr(Rain in São Paulo) ≠ Pr(Rain in Osasco ∩ Rain in São Paulo)

Section 1

Explanation

▶ What does it mean to explain something?

- What does it mean to explain something?
- ► To give an account of what happens, and why
 - ► The 'chain of causation'

► Why isn't correlation enough?

- Why isn't correlation enough?
 - ► For **prediction**, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates

- ▶ Why isn't correlation enough?
 - For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates
 - ► But for **intervention**, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates

- ▶ Why isn't correlation enough?
 - For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates
 - But for intervention, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates
 - For explanation, correlation also fails it is no explanation to say that Switzerland has the most Nobel Laureates because it has the highest chocolate consumption

Causes of Effects	Effects of Causes
What caused Y?	Does D cause Y?
Why does Switzerland have so many Nobel laureates?	Does chocolate cause more Nobel laureates?

► Two perspectives on explanation:

 Identifying the source of ALL of the variation in Nobel Laureates

- Identifying the source of ALL of the variation in Nobel Laureates
- ► An infinite task!

- Identifying the source of ALL of the variation in Nobel Laureates
- ► An infinite task!

► Two perspectives on explanation:

- Identifying the source of ALL of the variation in Nobel Laureates
- ► An infinite task!

 Identifying how much ONE variable causes variation in Nobel Laureates

- Identifying the source of ALL of the variation in Nobel Laureates
- ► An infinite task!

- Identifying how much **ONE** variable causes variation in Nobel Laureates
- ► This we can do!

Explanation

- ► A focus on a single explanatory variable *D* requires a clear definition of '**Treatment**'
- ► AND to clearly define a 'Control'
 - What is the opposite of investing \$1bn in education?
 - No investment, or investing it elsewhere?
- ▶ Define treatment:

$$D_i = \begin{cases} 1, & \text{if treated} \\ 0, & \text{if not treated} \end{cases}$$

- ▶ Defining our outcome:
 - ▶ Is it the outcome we really care about? Or just what's easy to measure?
 - Tempting to look at many outcomes, but the risk of 'cherry-picking'
 - All outcomes are probabilistic (due to all the other factors we haven't accounted for)
 - If we study 20 outcomes, on average one will show a significant effect even with no real causal effect
 - So we also want a single outcome usually

- ► What are the **units** of our analysis?
- ▶ Countries? Political Parties? Individuals?
- eg. How does electoral system affect attitudes to redistribution?
 - ► Treatment at the national level
 - Outcome at the individual level
 - Measurement needed at the lowest (individual) level
- ► Units are **time-specific**: the same person 10 minutes later is a different unit

Section 2

- ▶ Why wasn't regression enough for explanation?
 - Omitted Variables
 - 2. Reverse Causation
 - 3. Selection Bias
 - 4. Measurement Bias
 - Lack of Overlap
- In all of these cases the values in our data hid the real causal relationship

Omitted Variables

A real causal relationship:

Being misled by omitted variable bias:

▶ Reverse Causation

A real causal relationship:

Being misled by reverse causation:

▶ Reverse Causation

A real causal relationship:

Being misled by Selection Bias:

▶ In all of these cases, which units get 'treated' ($D_i = 1$) affect our estimate of the relationship between D and Y

- ▶ In all of these cases, which units get 'treated' ($D_i = 1$) affect our estimate of the relationship between D and Y
 - ► This is the Treatment Assignment Mechanism

- ▶ In all of these cases, which units get 'treated' ($D_i = 1$) affect our estimate of the relationship between D and Y
 - ► This is the **Treatment Assignment Mechanism**
- ➤ Omitted Variable Bias the Swiss consume chocolate because they're in Europe, which also affects production of Nobel Laureates

- ▶ In all of these cases, which units get 'treated' ($D_i = 1$) affect our estimate of the relationship between D and Y
 - ► This is the **Treatment Assignment Mechanism**
- Omitted Variable Bias the Swiss consume chocolate because they're in Europe, which also affects production of Nobel Laureates
- ► Reverse Causation the Swiss consume chocolate because they have a lot of Nobel laureates

- ▶ In all of these cases, which units get 'treated' ($D_i = 1$) affect our estimate of the relationship between D and Y
 - ► This is the **Treatment Assignment Mechanism**
- Omitted Variable Bias the Swiss consume chocolate because they're in Europe, which also affects production of Nobel Laureates
- ► **Reverse Causation** the Swiss consume chocolate because they have a lot of Nobel laureates
- Selection Bias the Swiss choose to eat a lot of chocolate because they know it will be really effective at producing Nobel Laureates

- ▶ In all of these cases, which units get 'treated' ($D_i = 1$) affect our estimate of the relationship between D and Y
 - ► This is the **Treatment Assignment Mechanism**
- Omitted Variable Bias the Swiss consume chocolate because they're in Europe, which also affects production of Nobel Laureates
- ► **Reverse Causation** the Swiss consume chocolate because they have a lot of Nobel laureates
- Selection Bias the Swiss choose to eat a lot of chocolate because they know it will be really effective at producing Nobel Laureates
- Messy treatment assignment mechanisms are why basic regression is no use for explanation
 - It means our control cases are really misleading
 - South Africa is our counterfactual for Switzerland
 - What would happen if the 'untreated' units got treated?

► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated

- ► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated
- ► This means comparing the **Potential Outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ Potential Outcome if unit i treated} \\ Y_{0i} \text{ Potential Outcome if unit i NOT treated} \end{cases}$$

► Individual Treatment Effect for unit $i = Y_{1i} - Y_{0i}$

► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated

- ► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated
- ► This means comparing the **Potential Outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ GDP Growth of Brazil in 2010 if a Democracy} \\ Y_{0i} \text{ GDP Growth of Brazil in 2010 if NOT a Democracy} \end{cases}$$

▶ Individual Treatment Effect for unit $i = Y_{1i} - Y_{0i}$

► We are relying on **counterfactuals**

- ► We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?

- ► We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?
 - ► Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?

- ► We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?
 - Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - ► Would Brazil have won the 2014 World Cup if Neymar had not been injured?

- ► We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?
 - Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - ► Would Brazil have won the 2014 World Cup if Neymar had not been injured?

Potential Outcomes are just another Variable

	GDP Growth if Democracy	GDP Growth if NOT Democ- racy	
	Y ₁	Y ₀	Treatment Effect
Brasil	4	2	2
Argentina	7	3	4
Bolivia	2	4	-2
Colombia	11	11	0
Peru	6	2	4

► Political Science is not about explaining individual events

- ► Political Science is not about explaining individual events
- ► We ideally want general theories that apply to many situations

- Political Science is not about explaining individual events
- We ideally want general theories that apply to many situations
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons

- Political Science is not about explaining individual events
- We ideally want general theories that apply to many situations
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- ► We know how democracy works in Europe; the question is what will happen if it becomes more common in Africa?

- ▶ Political Science is not about explaining individual events
- We ideally want general theories that apply to many situations
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- ► We know how democracy works in Europe; the question is what will happen if it becomes more common in Africa?

Average Treatment Effect

We want to calculate an Average Treatment Effect

- ▶ Political Science is not about explaining individual events
- We ideally want general theories that apply to many situations
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- We know how democracy works in Europe; the question is what will happen if it becomes more common in Africa?

Average Treatment Effect

We want to calculate an Average Treatment Effect

$$ATE = \frac{\sum_{i} (Y_{1i} - Y_{0i})}{N}$$

Potential Outcomes are just another Variable

Average Treatment Effect	5	4	1
Peru	5	4	1
Colombia	7	7	0
Bolivia	2	4	-2
Argentina	7	3	4
Brasil	4	2	2
	Y ₁	Y ₀	Treatment Effect
	Democracy	NOT Democ- racy	
	GDP Growth if	GDP Growth if	

The Fundamental Problem of Causal Inference

- No units can receive **both** treatment and control
- ▶ So we can never observe both Y_1 and Y_0 for the same unit
- Individual Treatment Effects are Impossible to Estimate

Potential Outcomes Example

	PR Sys- tem?	Investment in Education if PR system	Investment in Education if FPTP system	
	Di	Y ₁	Y ₀	Treatment Effect
Brasil	1	8	?	?
Argentina	1	10	?	?
Bolivia	0	?	4	?
Colombia	0	?	11	?
Peru	0	?	2	?

- We can't even look at the change in countries that switch to a PR system
 - What if all countries had started to invest more in education at the same time, for different reasons?
 - The potential outcome for Country X in time 1 is different to at time 2
- ➤ So we need to consider the **counterfactual** what would have happened if the country had **not** switched to a PR system?
- So we can only estimate the effect by comparing across units
- ► That is why we are doing causal **inference**, not causal proof

➤ So we need to consider the exact **counterfactual** - what would have happened if the country had **not** switched to a PR system?

- ➤ So we need to consider the exact **counterfactual** what would have happened if the country had **not** switched to a PR system?
 - ► This is **impossible** to know

- ➤ So we need to consider the exact **counterfactual** what would have happened if the country had **not** switched to a PR system?
 - ► This is **impossible** to know
 - We can only estimate the effect by comparing across units in some way

- ➤ So we need to consider the exact **counterfactual** what would have happened if the country had **not** switched to a PR system?
 - ► This is **impossible** to know
 - We can only estimate the effect by comparing across units in some way
 - ► That is why we are doing causal **inference**, not causal proof

- ► To compare across units we need counterfactuals: **control** units that do not receive treatment
- Control units can never be perfect substitutes
- Causal Inference is all about identifying a plausible counterfactual
 - Plausible means that the potential outcomes of the control unit are the same as those of the treated unit

- ► The comparability of treatment and control units depends on how they got to be treated
 - On the treatement assignment mechanism
- If we 'treated' an outlier like Búzios in Rio, could we find a comparable control unit?
- Comparisons are easier where the treatment assignment mechanism is independent of potential outcomes
 - This makes it more likely that potential outcomes are 'balanced' and comparable

Section 3

Rest of the Course

➤ The rest of the course is mostly about the types of treatment assignment mechanisms that **avoid these biases** and provide plausible counterfactuals

- 1. **Controlled Experiments** where we **control** the treatment assignment
 - ► Field Experiments
 - Survey Experiments
 - Lab Experiments

- 2. **Natural Experiments** where the assignment mechanism creates balanced potential outcomes
 - Randomized natural experiments
 - Regression Discontinuities
 - Instrumental Variables

- 3. **Observable Studies:** What if no suitable treatment assignments are available?
 - No historical examples of natural experiments
 - Not feasible or ethical to run a field experiment
 - Remember the purpose of using these specific treatment assignment mechanisms is to achieve comparable potential outcomes
 - One alternative way of making potential outcomes comparable is to selectively use Observable Data
 - Difference-in-Differences
 - Controlling for confouding variables
 - Matching

Analysis Types and Assumptions

Week	Assumption:	Researcher Controls Treatment Assign- ment?	Treatment Assign- ment Inde- pendent of Potential Outcomes	SUTVA	Additional Assump- tions
	Controlled Experiments				
1	Field Experiments	√	√	√	
2	Survey and Lab Experiments	√	√	√	Controlled Environment for treatment exposure
	Natural Experiments				
3	Randomized Natural Experiments	х	√	√	
4	Instrumental Variables	Х	√	√	First stage and Exclusion Re- striction (Instrument explains treatment but not outcome)
5	Regression Discontinuity	х	√	✓	Continuity of covariates; No manipulation; No compounding discontinuities
	Observational Studies				
6	Difference-in-Differences	Х	X	√	No Time-varying confounders; Parallel Trends
7	Controlling for Confounding	х	х	√	Blocking all Back-door paths
8	Matching	X	Х	√	Overlap in sample characteristics

- 4. **Small-N studies:** Some research questions have few units available
 - How do we learn about the political economy of development with few units?
 - ▶ We can at least avoid some key biases:
 - Comparative Case Studies
 - Process Tracing

- ▶ But **how much** can we learn from a causal analysis?
- Is this an accurate representation of what would happen in the real-world?
 - What was the policy problem (/academic question) you were trying to solve?
 What datails differ? For context of how treatment was applied.
 - What details differ? Eg. context of how treatment was applied
- Generalizability to other units (External validity)
 - Would the same thing happen in another country? Next year?
 - ► Look out for variation in treatment, context, spillovers, learning etc.
- ► Any generalization requires assumptions

- ► We will try to identify abstract, portable processes
 - Causal Mechanisms
- ► **Portable:** If the weather affects election turnout ONLY in Acre, is that a useful causal mechanism?
- ► **Abstract:** If unions are good at mobilizing support, but so are churches, the mechanism is collective action, not union organization
- ► We still need to define the **scope conditions** in which we think this causal mechanism will operate as expected

- ► Examples of Causal Mechanisms:
 - Citizens
 - Electoral Accountability
 - ▶ Client Power
 - ► Collective Action
 - Social Trust/Sanctioning
 - Wealth Effects
 - Elites
 - Violence/Coercion
 - Brokerage/Patronage
 - Persuasion/Framing
 - ► Incumbency Power
 - Institutions
 - ► Power Devolution/Median Voter
 - Network Effects
 - ► Evolutionary Selection
 - ► Conversion/Layering/Drift/Replacement

- Examples of Causal Mechanisms:
 - Citizens
 - Electoral Accountability Class 5
 - ► Client Power Class 6
 - ► Collective Action Class 11
 - Social Trust/Sanctioning Class 4
 - Wealth Effects
 - Elites
 - Violence/Coercion Class 8
 - Brokerage/Patronage Class 9
 - ► Persuasion/Framing
 - ► Incumbency Power Class 7
 - Institutions
 - Power Devolution/Median Voter Class 3
 - Network Effects
 - ► Evolutionary Selection
 - Conversion/Layering/Drift/Replacement Class 12