BGP

CS 168 - Fall 2024 - Discussion 6

Logistics

- Midterm on October 15th (Next Tuesday)
- Project 2 due on October 4th (Last Friday)
- Homework 2 due on October 14th (Next Monday)

Interdomain Routing

- Interdomain routing is between autonomous systems (AS)
 - Similar goals as intradomain routing with scalability + policy compliance
 - Autonomous systems want privacy and autonomy
- Border gateway protocol (BGP) is current design
 - Extends on top of DV (with some crucial differences)

Export & SelectionIf you are an AS:

- - Route Selection
 - Where you send your packets
 - Determine how to choose a valid route to a given IP prefix, when multiple paths through ASes
 - Route Export
 - Which ASes will receive your route
 - Other ASes will select your route and send traffic to you

Export & Selection

Export & Selection

Export & Selection

Types of ASes (domains)

- **Stub**: only sends/receives traffic for its users
 - companies, universities, etc.
- **Transit**: carries traffic for other ASes
 - Global ISPs (Tier 1): fully connected mesh
 - Regional ISPs (Tier 2)
 - Local ISPs (Tier 3)
- Lower tiers buy service from higher tiers
- What's the relationship between AS and ISP?
 - All ISPs are ASes, but not all ASes are ISPs
 - E.g. UC Berkeley is not an ISP but it is an AS

AS graph w/ business relationships

Business Relationship among ASes

- Two ASes will connect only if they have business relationship:
 - Customer-Provider
 - Provider B carries customer A's traffic for a fee
 - Peers
 - Peers A, B carry each other's traffic for free
- What roles can a global ISP (Tier 1) have?
 - Provider to Tier 2 or Tier 3
 - Peer to other global ISP (tier 1)
 - Not a customer!

Business Relationship Restrictions

- The graph of **peering** relations can be *cyclic*
 - The peer of my peer can also be my peer
 - For example, global ISPs all peer with each other
- The graph of customer-provider relations must be acyclic

The Big Picture

How does this fit with what we've learned so far?

Three parts of Gateway Protocols

eBGP

- Between border routers in different ASes
- Learn about external routes

iBGP

- Between border routers and other routers within a single AS
- Learn which border router to use to reach external destinations

IGP

- The protocol used for intradomain routing (e.g. OSPF).
 - Shortest path to subnet in the same AS
 - Shortest path to border router for given external network
- Just a different name for L3 routing as we've talked about earlier

Domain (AS)

L3: Intradomain

- Destinations are IP addresses
- **IGP**: exchange info about paths to local destinations
 - DV, LS, etc.

LAN: Intradomain

Domain (AS)

UC Berkeley

Intradomain: iBGP

- Border routers and other routers within a single AS
- To which border router should I seed packets for MIT?

Basic Messages in BGP

- Open: establishes BGP session
- Notification: report unusual conditions
- Update:
 - Format <IP prefix: route attributes>
 - Inform neighbors of new routes (announcements)
 - Inform neighbors of old routes that are no longer active (withdrawal)
- Keepalive:
 - Inform neighbors that this BGP session is still alive

What's this?

BGP Route Attributes

Attributes: Parameters used in route selection

- Local attributes
 - ASes keep them private
 - Not included in eBGP route announcements
 - E.g. LOCAL_PREF
- Nonlocal attributes:
 - propagated with eBGP route announcements
 - E.g. AS_PATH

Route Selection in Priority Order

Priority	Rule	Remarks
1	LOCAL PREF	Pick highest LOCAL PREF
2	ASPATH	Pick shortest ASPATH length
3	IGP path	Lowest IGP cost to next hop (egress router)
4	MED	Lowest MED preferred
5	Router ID	Smallest next-hop router's IP address as tie-breaker - Classless addressing is used

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1\rightarrow 0$

2 knows $2\rightarrow 0$

3 knows $3\rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3 2 prefers reaching 0 through 1 or 3

3 prefers reaching 0 through 1 or 2

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1\rightarrow 0$

2 knows $2 \rightarrow 0$

3 knows $3\rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3 2 prefers reaching 0 through 1 or 3 3 prefers reaching 0 through 1 or 2

2 3

1 advertises 1→0 to 2

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1\rightarrow 0$

2 knows $2\rightarrow 0$

3 knows $3\rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3 2 prefers reaching 0 through 1 or 3 3 prefers reaching 0 through 1 or 2

3 advertises 3→0 to 1

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1\rightarrow 0$

2 knows $2 \rightarrow 0$

3 knows $3 \rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3

2 prefers reaching 0 through 1 or 3

3 prefers reaching 0 through 1 or 2

1 withdraws its path of 1→0 from 2 (because 1 now takes 1->3->0)

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1\rightarrow 0$

2 knows $2 \rightarrow 0$

3 knows $3 \rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3

2 prefers reaching 0 through 1 or 3

3 prefers reaching 0 through 1 or 2

2 now advertises 2→0 to 3 (3 would take it as it favors its neighbor)

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1\rightarrow 0$

2 knows $2\rightarrow 0$

3 knows $3\rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3 2 prefers reaching 0 through 1 or 3 3 prefers reaching 0 through 1 or 2

3 now withdraws 3→0 from 1

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1\rightarrow 0$

2 knows $2\rightarrow 0$

3 knows $3\rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3 2 prefers reaching 0 through 1 or 3 3 prefers reaching 0 through 1 or 2

1 *again* advertises its path 1→0

Suppose **initially** each node only knows the **shortest** path to 0 (green arrow).

1 knows $1 \rightarrow 0$

2 knows $2\rightarrow 0$

3 knows $3\rightarrow 0$

Each node **prefers** route through neighbor over direct route.

1 prefers reaching 0 through 2 or 3 2 prefers reaching 0 through 1 or 3 3 prefers reaching 0 through 1 or 2

We started!

2 withdraws its path 2→0 from 3

Why doesn't this happen in reality?

Gao-Rexford

Gao-Rexford Policy

Destination prefix advertised by	Export route to
Customer	Everyone (providers, peers, other customers)
Peer	Customers
Provider	Customers

From Lecture 10

Routing Follows the Money!

Peers do not provide transit between other peers

Gao-Rexford Policy Continued

- Green arrow is where you learn the route
- Orange arrows are where you export the route
- With Gao-Rexford
 - The AS policy graph is a DAG
 - Routes are "valley free"/"single-peaked"

Gao-Rexford avoids Policy Oscillation

- Example shown before did not use Gao-Rexford (why?)
 - 1, 2, and 3 are **peers**
 - 0 is the **provider** to 1, 2, and 3
 - Peers don't advertise route learned from providers to each other
 - i.e. 1 would never advertise 1->0 (learned from 1's provider 0) to 2 (1's peer)

Destination prefix advertised by	Export route to
Peer	Customers

Feedback Form: https://tinyurl.com/cs168-disc-fa24

