CSCI 466: Networks

Network Layer – Data Plane

Reese Pearsall Fall 2023

Announcements

Wireshark Lab 2 due on Friday

Quiz 4 also on Friday

"Who is congesting the network???"

UDP:

meme made by reese

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Messages from Network Applications

Physical Layer

Bits being transmitted over a medium

*In the textbook, they condense it to a 5-layer model, but 7 layers is what is most used

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Messages from Network Applications

Physical Layer

Bits being transmitted over a medium

*In the textbook, they condense it to a 5-layer model, but 7 layers is what is most used

Our packet of information so far...

Transport Layer

Our packet of information so far...

Transport Layer

Transport Layer

We've only looked at protocols that are running on some **host**

Individual routing algorithm components *in each and every router* interact in the control plane

Individual routing algorithm components in each and every router interact in the control plane

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

Network Layer

Responsible for the delivery of data through a network

Forwarding

Data Plane

forwarding

Routing

Control Plane

routing

Network Layer

Internet "best effort" service model

No guarantees on:

- i. successful datagram delivery to destination
- ii. timing or order of delivery
- iii. bandwidth available to end-end flow

Router Architecture Overview

1. Destination-based forwarding

➤ Forwarding decisions are based on the **destination** of the packet

2. Generalized forwarding

Forwarding decisions based on any set of header field values

Router Architecture Overview

Router Architecture Overview

Lookup,

forwarding,

- Connection-less
- does not require startup,
- Has no idea where the final destination is

Address range	Interface (output link)
128.11.52.0 - 128.11.52.255	1
153.90.2.0 - 153.90.2.255	2
153.90.2.87 - 153.90.2.89	3

This routing table could get very big...

IP addresses need 32/64 bits of memory each

Connection-less

Routing Table

- does not require startup,
- Has no idea where the final destination is

Address range	Interface (output link)
128.11.52.0 - 128.11.52.255	1
153.90.2.0 - 153.90.2.255	2
153.90.2.87 - 153.90.2.89	3

Ranges of IP Addresses

Prefix	Link Interface	
11001000 00010111 00010	0	
11001000 00010111 00011000	1	Prefix of IP addresses
11001000 00010111 00011	2	
Otherwise	3	

Longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address

examples:

DA: 11001000 00010111 000 10110 10100001 DA: 11001000 00010111 000 11000 10101010

Lookup,

forwarding,

queueing

Longest prefix matching

Address range	Interface (output link)
11001000 00010111 00010*** ******	1
11001000 00010111 00011000 *******	2
11001000 00010111 00011*** ******	3
otherwise	4

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address

examples:

DA: 11001000 00010111 00010110 10100001 DA: 11001000 00010111 00011000 10101010

Lookup,

forwarding,

Longest prefix matching

Address range	Interface (output link)
11001000 00010111 00010*** *******	1
11001000 00010111 00011000 *******	2
11001000 00010111 00011*** ******	3
otherwise	4

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address

examples:

DA: 11001000 00010111 000 10110 10100001 DA: 11001000 00010111 000 11000 10101010

Lookup,

forwarding,

queueing

Longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address

examples:

DA: 11001000 00010111 000 10110 10100001

DA: 11001000 00010111 000 11000 10101010

Longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address

These lookups need to happen in nanoseconds for our network to function

Ternary content addressable memories (TCAMs) are used in modern routers to do **LPM**Cisco routers can carry millions of TCAM entries in their routers

Fabric Switch and Switching

Switching fabric: Mechanism that forwards data from an input port to output port

Switching via memory:

Handled by a CPU (routing processor)

Cannot forward data in parallel

Fabric Switch and Switching

Switching fabric: Mechanism that forwards data from an input port to output port

Switching via memory:

Handled by a CPU (routing processor)

Cannot forward data in parallel

Switching via bus:

Datagrams are prepended with a header

A "bus" transports input port datagrams to output ports

"keep going around the roundabout until you find your port"

Fabric Switch and Switching

Switching fabric: Mechanism that forwards data from an input port to output port

Switching via memory:

Handled by a CPU (routing processor)

Cannot forward data in parallel

Switching via bus:

Datagrams are prepended with a header

A "bus" transports input port datagrams to output ports

"keep going around the roundabout until you find your port"

Switching via network:

Input Queueing

fabric slower than input ports combined → queueing may occur at input queues

Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

Output Queueing

Packet Scheduling

Scheduling is used to determine the next packet to send on the link

FIFO (first in first out): Send in order of arrival to queue

Packet Scheduling

Scheduling is used to determine the next packet to send on the link

Priority: packets are classified into priority classes. High priority = sent over link first

Packet Scheduling

Scheduling is used to determine the next packet to send on the link

Round robin weighted fair queueing: packets are classified into priority classes. Each class gets to send one packet during a "cycle"

Packet from the priority group gets sent

Packet from the middle class gets sent

Packet from the plebian class gets sent