Define test functions

$$\psi_1 = \text{Exp}[-a * r]$$

$$\psi_2 = r * Exp[-a * r]$$

$$\psi_{3} = \frac{1}{r^2 + a^2}$$

$$\psi_4 = \frac{1}{r^2 + a^2}$$

Out[151]= a > 0

Out[152]= $e^{-a r}$

Out[153]= $e^{-ar}r$

Calculate normalization coefficient

 $ln[154] = N_1 = Integrate[4 * \pi * r^2 * \psi_1^2, \{r, 0, \infty\}]$

 $N_2 = Integrate[4 * \pi * r^2 * \psi_2^2, \{r, 0, \infty\}]$

 $N_3 = Integrate[4 * \pi * r^2 * \psi_3^2, \{r, 0, \infty\}]$

 $N_4 = Integrate[4 * \pi * r^2 * \psi_4^2, \{r, 0, \infty\}]$

Out[154]= $\frac{\pi}{a^3}$

Out[155]= $\frac{3 \pi}{a^5}$

Integrate: Integral of $4 \pi r^2 \psi_3^2$ does not converge on $\{0, \infty\}$.

Integrate: Integral of $4 \pi r^2 \psi_3^2$ does not converge on $\{0, \infty\}$.

Out[156]= $\int_{0}^{\infty} 4 \pi r^{2} \psi_{3}^{2} dr$

Out[157]= $\frac{\pi^2}{a}$

Clearly the ψ_3 won't work as a test function because we can't normalize it.

Define Laplacian and Hamiltonian operators

$$In[158]:= lap[\psi_{-}, r_{-}] := \frac{1}{r^{2}} D[(r^{2}*D[\psi, r]), r]$$

$$H[\psi_{-}, r_{-}] := \frac{-h^{2}}{2\mu} * lap[\psi, r] - \frac{q^{2}}{4*\pi*e*r} * \psi$$

Calculate Hamiltonains

+

Integrate against $4\pi r^2$

$$\begin{aligned} & & \text{In}_{[163]:=} \ \ \mathbf{I_1} = \mathbf{Integrate} [4\,\pi * r^2 * \psi_1 * H \psi_1 \,, \ \{r, \ 0, \ \infty\}] \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Solve for the expectation value

In[166]:= Expec₁ = I₁ / N₁
Expec₂ = I₂ / N₂
Expec₄ = I₄ / N₄
Out[166]:=
$$\frac{a (2 \text{ a } \text{h}^2 \pi \epsilon - \text{q}^2 \mu)}{4 \pi \epsilon \mu}$$
Out[167]:=
$$\frac{a (4 \text{ a } \text{h}^2 \pi \epsilon - 3 \text{ q}^2 \mu)}{24 \pi \epsilon \mu}$$
Out[168]:=
$$\frac{\text{h}^2 \pi^2 \epsilon - 2 \text{ a } \text{q}^2 \mu}{4 \text{ a}^2 \pi^2 \epsilon \mu}$$