RL: Policy Search Finite Difference

Marius Lindauer

Leibniz Universität Hannover

Policy Gradient

- Assume episodic MDPs
- Policy gradient algorithms search for a local maximum in $V(s_0,\theta)$ by ascending the gradient of the policy, w.r.t parameters θ

$$\Delta \theta = \alpha \nabla_{\theta} V(s_0, \theta)$$

where α is the learning rate (step-size) and $\nabla_{\theta}V(s_0,\theta)$ is the policy gradient

$$\nabla_{\theta} V(s_0, \theta) = \begin{pmatrix} \frac{\partial V(s_0, \theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial V(s_0, \theta)}{\partial \theta_n} \end{pmatrix}$$

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - **E**stimate k-th partial derivative of objective function wrt θ
 - lacktriangle By pertubating heta by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0, \theta)}{\partial \theta_k} \approx \frac{V(s_0, \theta + \epsilon u_k) - V(s_0, \theta)}{\epsilon}$$

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - ightharpoonup Estimate k-th partial derivative of objective function wrt θ
 - lacktriangle By pertubating heta by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0, \theta)}{\partial \theta_k} \approx \frac{V(s_0, \theta + \epsilon u_k) - V(s_0, \theta)}{\epsilon}$$

- \bullet ϵ should be
 - large enough to observe a change in the policy and value function
 - small enough to have a good gradient approximation

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - **E**stimate k-th partial derivative of objective function wrt θ
 - lacktriangle By pertubating heta by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0, \theta)}{\partial \theta_k} \approx \frac{V(s_0, \theta + \epsilon u_k) - V(s_0, \theta)}{\epsilon}$$

- \bullet ϵ should be
 - large enough to observe a change in the policy and value function
 - small enough to have a good gradient approximation
- Uses $\geq n$ evaluations to compute policy gradient in n dimensions
 - → fairly inefficient for doing a single update!
 - → weight space should be small no computer vision

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - **E**stimate k-th partial derivative of objective function wrt θ
 - lacktriangle By pertubating heta by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0, \theta)}{\partial \theta_k} \approx \frac{V(s_0, \theta + \epsilon u_k) - V(s_0, \theta)}{\epsilon}$$

- \bullet ϵ should be
 - large enough to observe a change in the policy and value function
 - small enough to have a good gradient approximation
- Uses $\geq n$ evaluations to compute policy gradient in n dimensions
 - → fairly inefficient for doing a single update!
 - → weight space should be small no computer vision
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable