Electrical Engineering Technology

RC LPF – In Class Problem

Find:

- a) fc
- b) Sketch the magnitude response (dB) and phase response
- c) Vo one octave above fc
- d) Vo one decade below fc

Electrical Engineering Technology

RC LPF - In Class Problem

(a)
$$f_c = \frac{1}{2\pi Rc}$$

= $\frac{1}{2\pi (4700a)(500pF)}$

Find:

- a) Fc
- b) Sketch the magnitude response (dB) and phase response

Electrical Engineering Technology

RC LPF – In Class Problem

Find:

- c) Vo one octave above fc
- d) Vo one decade below fc

(c)
$$\frac{\vec{V}_{0}}{\vec{V}_{i}}$$
 (f) = $\frac{1}{1+j(2\pi fRC)}$
@ f = $2f_{c} = 135.5 \text{ kHz}$;
 $\frac{\vec{V}_{0}}{\vec{V}_{i}} = 0.447 \text{ $\chi = 63.4}^{\circ}$
 $(-7dB)$

$$\vec{V}_{0} = (0.447 \, \text{χ} - 63.4^{\circ}) \cdot \vec{V}_{1}$$

$$\vec{V}_{0} = 0.224 \, \text{V} \times 4 - 63.4^{\circ}$$

(d)
$$\theta = 0.1 f_c = 6.77 \text{ kHz}$$

 $\frac{\vec{V}_0}{\vec{V}_1} = 0.995 \text{ Å} - 5.71^\circ$
 $\frac{\vec{V}_0}{\vec{V}_1} = 0.995 \text{ Å} - 5.71^\circ$