

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name: Dylan Tua	
UB Person Number: 5 0 2 3 8 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work.
1 2 3 4 5	6 7 TOTAL GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

a)
$$x_{1}v_{1} + x_{2}v_{2} + x_{3}v_{3} = W$$

$$\begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & b \end{bmatrix} + (1) \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 1 & -2 & -1 & 2 + b \end{bmatrix} + (1)$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & -1 & -2 & -2 & -2 \\ 0 & -1 & -2 & -2 & -2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & -1 & -2 & -2 & -2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 0 & 0 & -b \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 0 & 0 & -b \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 0 & 0 & -b \\ 0 & 0 & 0 & -b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 0 & 0 & -b \\ 0 & 0 & 0 &$$

b) The set {v, va, v3} is not lin. independent; it has more than one, trivial solution. ?

2. (10 points) Consider the following matrix:

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$B = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{array} \right]$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 2 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix} \Rightarrow (A^{-1})^{T} = \begin{bmatrix} -2 & 2 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$(A^{-1})^{T} \cdot B = C \qquad \begin{bmatrix} -2 & 2 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & -1 & -6 \end{bmatrix} = \begin{bmatrix} -2 + 8 + 6 & 47 + 10 + 47 & -6 + 8 + 2 \\ 3 - 4 - 6 & 8 - 5 - 47 & 9 - 4 - 2 \\ -1 + 1 + 3 & -2 + 5 + 2 & -3 + 4 + 1 \\ -7 & -3 & 3 \\ 6 & 2 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 12 & 13 & 47 \\ -7 & -3 & 3 \\ 6 & 2 & 2 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -\lambda \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$$

- a) Find the standard matrix of T.

a) Find the standard matrix of
$$T$$
.
b) Find all vectors \mathbf{u} satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$A = [T(e_1) T(e_2)]$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$T(e_1) = T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 10/6 \\ 11/10 \\ 01/3 \end{bmatrix} \Rightarrow \begin{bmatrix} 10/6 \\ 01/3 \\ 11/10 \end{bmatrix} \Rightarrow \begin{bmatrix} 10/6 \\ 01/3 \\ 00/1 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

a) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{cases}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$
c) $\begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 &$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True; since $u \in \text{Span}(u, v)$, then if $w + u \in \text{Span}(u, v)$ then $w \in \text{Modern in } v$ then $w \in \text{Modern in } v$.

Span(u, v). Therefore, $w \in \text{Span}(u, v)$.

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

A set is lin. ind. when $x_1u + x_2v + x_3w = 0$ has only one solution, where u,v,w=0, If the set $\{u,v,w\}$ is lin. ind., then either combination of two of these vectors must also be lin, ind. Therefore, this statement is true.

This could be explained more clearly...

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False, the matrix A can cause Au, Av to become lin. dependent even if u, v are lin. independent.

Example?

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True; let $u = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $A = \begin{bmatrix} 11 \\ 01 \end{bmatrix}$ $T(w) = \begin{bmatrix} 11 \\ 01 \end{bmatrix} \begin{bmatrix} 21 \\ 21 \end{bmatrix} = \begin{bmatrix} 31 \\ 21 \end{bmatrix}$ $T(w) = \begin{bmatrix} 11 \\ 01 \end{bmatrix} \begin{bmatrix} 21 \\ 21 \end{bmatrix} = \begin{bmatrix} 32 \\ 21 \end{bmatrix}$ $T(w) = \begin{bmatrix} 11 \\ 01 \end{bmatrix} \begin{bmatrix} 21 \\ 21 \end{bmatrix} = \begin{bmatrix} 32 \\ 21 \end{bmatrix}$ Span(T(v), T(w)) $T(w) = \begin{bmatrix} 11 \\ 01 \end{bmatrix} \begin{bmatrix} 21 \\ 21 \end{bmatrix} = \begin{bmatrix} 32 \\ 21 \end{bmatrix}$ Span(T(v), T(w))

An example does not show that this is always true.