AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Withdrawn) A compound of the formula

$$Z_1$$
 R_8
 R_7
 R_2
 R_6
 R_5
 R_4
 R_3
 R_3
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_7
 R_7

in which

- Z₁ is an oxygen atom; or a sulfur atom;
- Z₂ is an oxygen atom; or a sulfur atom;
- R_1 is a phenyl or naphthyl group, which is substituted independently by 1 or 2 substituents R_a and optionally further substituted independently by 1 to 3 substituents $R_{\rm sc}$ or

 R_1 is heteroaryl composed of a ring having 5 or 6 ring members or of a combination of at least two rings having in each case independently of one another 5 or 6 ring members, where 1 up to and including 4 of the ring members is (are) (a) heteroatom(s) selected from the group consisting of nitrogen, oxygen and sulfur, which heteroaryl is unsubstituted or substituted independently by 1 to 4 substituents R_6 :

 R_2 is hydrogen; a C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl group, which group is unsubstituted or substituted independently by one or more substituents, selected from the group, consisting of the substituents R_6 ; a group $C(=0)R_6$; or a group $C(=S)R_6$;

 R_3 is hydrogen; a C_1 – C_6 alkyl, C_2 – C_6 alkenyl, C_2 – C_6 alkynyl or C_3 - C_6 cycloalkyl group, which group is unsubstituted or substituted independently by one or more substituents, selected from the group, consisting of the substituents R_n ; C_1 – C_6 alkoxy; halo- C_1 – C_6 alkoxy; C_3 – C_6 cycloalkoxy; C_3 – C_6 cycloalkoxy; C_3 – C_6 alkylthio; halo- C_1 – C_6 alkylthio; ci- C_6 alkylthio; C_1 – C_6 alkylthio; ci- C_6

consisting of cyano, nitro, halogen, $C_{t^{-}}C_{4}$ alkyl and $C_{t^{-}}C_{4}$ alkoxy; di-(halo- $C_{t^{-}}C_{6}$ alkyl)-amino, in which the two haloalkyl groups are the same or different; $C_{3^{-}}C_{6}$ cycloalkylamino; $N_{t^{-}}(C_{t^{-}}C_{6}$ alkoxycarbonyl; $C_{t^{-}}C_{6}$

R4 is hydrogen; a substituent R1; a substituent R6; a C1-C6alkyl, C2-C6alkenyl, C2-C6alkynyl or C₂-C₆cycloalkyl group, which group is unsubstituted or substituted independently by one or more substituents, selected from the group, consisting of the substituents Ra, the substituents Ra phenyl, benzoyl, phenoxy or heteroaryl group composed of a ring having 5 or 6 ring members or of a combination of at least two rings having in each case independently of one another 5 or 6 ring members, where 1 up to and including 4 of the ring members is (are) (a) heteroatom(s) selected from the group consisting of nitrogen, oxygen and sulfur, which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of the substituents R.; a group CH₂OR₁; a group CH₂SR₃; a group CH₂NHR₁, which group is optionally further substituted at the nitrogen atom by C₁-C₆alkyl or halo-C₁-C₆alkyl; C₁-C₆alkoxy; halo-C₁-C₆alkoxy; C₃-C₆cycloalkoxy; a group OR₁; C₁-C₆alkylthio; halo-C₁-C₆alkylthio; a group SR₁; C₁-C₆alkylsulfinyl; halo-C1-C6alkylsulfinyl; C1-C6alkylsulfonyl; halo-C1-C6alkylsulfonyl; C1-C6alkylamino; halo-C1-C6alkylsulfonyl; C₆alkylamino; di-C₁-C₆alkylamino, in which the two alkyl groups are the same or different or, taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents. selected from the group, consisting of cyano, nitro, halogen, C₁-C₄alkyl and C₁-C₄alkoxy; di-(halo-C1-C6alkyl)-amino, in which the two haloalkyl groups are the same or different; C3-C₆cycloalkylamino: N-(C₁-C₆alkyl)-N-(C₃-C₆cycloalkyl)-amino: a group NHR₁, which group is optionally further substituted at the nitrogen atom by C₁-C₆alkyl or halo-C₁-C₆alkyl; a group C(=O)R_d; a group C(=O)R_e; a group C(=S)R_d; or a group C(=S)R_e;

or R_3 and R_4 , taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 6 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyano, nitro, halogen, C_1 - C_4 alkyl and C_1 - C_4 alkoxy;

Ra is cyano: nitro; halogen; C1-Calkyl; halo-C1-Calkyl; C1-Calkoxy-C1-Calkyl; C2-Calkenyl; halo-C₂-C₆alkenyl; C₂-C₆alkynyl; halo-C₂-C₆alkynyl; C₃-C₆cycloalkyl; halo-C₃-C₆cycloalkyl; hydroxy; C1-C6alkoxy; halo-C1-C6alkoxy; C3-C6cycloalkoxy; mercapto; C1-C6alkylthio; halo-C1-C6alkylthio; C1-Calkylsulfinyl; halo-C1-Calkylsulfinyl; C1-Calkylsulfonyl; halo-C1-Calkylsulfonyl; amino; C1-C₆alkylamino; halo-C₁-C₆alkylamino; di-C₁-C₆alkylamino, in which the two alkyl groups are the same or different or, taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyano, nitro, halogen, C₁-C₄alkyl and C₁-C4alkoxy; di-(halo-C1-C6alkyl)-amino, in which the two haloalkyl groups are the same or different; C₂-C₆cycloalkylamino; N-(C₁-C₆alkyl)-N-(C₂-C₆cycloalkyl)-amino; carboxy; C₁-C₆alkoxycarbonyl; halo-C₁-C₆alkoxycarbonyl; aminocarbonyl; C₁-C₆alkylaminocarbonyl; halo-C₁-C₆alkylaminocarbonyl; di-C₁-C₆alkylaminocarbonyl, in which the two alkyl groups are the same or different or, taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents. selected from the group, consisting of cyano, nitro, halogen, C₁-C₄alkyl and C₁-C₄alkoxy; di-(halo-C1-C6alkyl)-aminocarbonyl, in which the two haloalkyl groups are the same or different; C1-Calkylcarbonyl; halo-C1-Calkylcarbonyl; or tri-C1-Calkylsilyl, in which the three alkyl groups are the same or different;

or 2 substituents R_a , which are attached to adjacent carbon atoms, taken together, are -(CH₂-)₃; -(CH₂-)₄; -(CH₂-)₅; -(CH=CH-)₂; -OCH₂O-; -O-(CH₂-)₂O-; -OCF₂O-; -(CF₂-)₂O-; -O-(CF₂-)₂; or -O-(CF₂-)₂O-;

R_b is halogen; C₁-C₆alkyl; C₂-C₆alkenyl; C₂-C₆alkynyl; C₃-C₆cycloalkyl; C₁-C₆alkoxy; C₁-C₆alkoxycarbonyl; or a phenyl, benzyl, phenoxy or heteroaryl group composed of a ring having 5 or 6 ring members or of a combination of at least two rings having in each case independently of one another 5 or 6 ring members, where 1 up to and including 4 of the ring members is (are) (a) heteroatom(s) selected from the group consisting of nitrogen, oxygen and sulfur,

which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of the substituents $R_{\rm s}$;

 R_c is a substituent R_a ; or a phenyl, benzyl, benzyl, phenoxy or heteroaryl group composed of a ring having 5 or 6 ring members or of a combination of at least two rings having in each case independently of one another 5 or 6 ring members, where 1 up to and including 4 of the ring members is (are) (a) heteroatom(s) selected from the group consisting of nitrogen, oxygen and sulfur, which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group. consisting of the substituents R_s :

 R_d is a substituent R_1 ; C_1 – C_6 alkyl; halo- C_1 – C_6 alkyl; C_1 – C_6 alkoyl; C_1 - C_6 alkyl; a group CH_2R_1 ; a group CH_2R_1 , which group is optionally further substituted at the nitrogen atom by C_1 – C_6 alkyl or halo- C_1 – C_6 alkyl; C_2 – C_6 alkenyl; halo- C_2 – C_6 alkynyl; C_3 – C_6 cycloalkyl; C_1 – C_6 alkyl; C_1 – C_6 alkyl; C_1 – C_6 alkoxy; halo- C_1 – C_6 alkylamino; halo- C_1 – C_6 alkylamino; halo- C_1 – C_6 alkylamino; di- C_1 – C_6 alkylamino; in which the two alkyl groups are the same or different or, taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyano, nitro, halogen, C_1 – C_4 alkyl and C_1 – C_4 alkoxy; di-(halo- C_1 – C_6 alkyl)-amino, in which the two haloalkyl groups are the same or different; C_3 – C_6 cycloalkylamino; N- $(C_1$ – C_6 alkyl)-N- $(C_3$ – C_6 cycloalkyl)-mino; or a group N+ R_1 , which group is optionally further substituted at the nitrogen atom by C_1 – C_6 alkyl or halo- C_1 – C_6 alkyl;

 R_0 is a carbocyclyl or heterocyclyl group, which group is monocyclic or bicyclic and is nonaromatic, in which group 1 or 2 of the ring members are optionally selected from the group, consisting of the groups C(=O), S(=O) and S(=O)₂, and which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyano, nitro, halogen, C_1 - C_4 alkyl and C_1 - C_4 alkoxy;

 R_s is hydrogen, C_1 - C_0 alkyl or halo- C_1 - C_0 alkyl; or forms, taken together with R_s or with a monovalent substituent attached to that atom of R_6 , via which atom R_6 is directly connected with the carbon atom, shown in the formula I, which carries R_s , one additional bond;

 R_6 and R_7 , taken together, form, together with the two carbon atoms, shown in the formula I, to which atoms they are attached, a bicyclic ring system, which ring system is carbocyclic or heterocyclic, which ring system is substituted, in the manner shown in the formula I, by the four substitutents $-N(R_2)-C(=Z_1)-R_1$, $-C(=Z_2)-N(R_3)-R_4$, R_5 and R_8 , and which ring system is optionally further substituted:

Appl No. 10/598,041 Reply to the Office action of April 16, 2010

and R_8 is hydrogen; or a C_1 - C_6 alkyl group; or forms, taken together with R_5 or with a monovalent substituent attached to that atom of R_7 , via which atom R_7 is directly connected with the carbon atom, shown in the formula I, which carries R_8 , one additional bond, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

- (Withdrawn) A compound according to claim 1 of the formula I, in which Z₁ is an oxygen atom, or, where appropriate, a tautomer thereof.
- (Withdrawn) A compound according to claim 1 of the formula I, in which Z₂ is an oxygen atom, or, where appropriate, a tautomer thereof.
- (Withdrawn) A compound according to claim 1 of the formula I, in which R₁ is a phenyl, pyridyl or pyrazolyl group, which is unsubstituted or substituted, or, where appropriate, a tautomer thereof.
- 5. (Withdrawn) A compound according to claim 4 of the formula I, in which R₁ is a pyrazol-5-yl group, which is substituted in the 3-position by halogen, halo-C₁-C₈alkyl or halo-C₁-C₈alkoxy and in the 1-position by a pyrid-2-yl group, which group is substituted in the 3-position by chlorine or bromine, or, where appropriate, a tautomer thereof.
- (Withdrawn) A compound according to claim 1 of the formula I, in which R₂ is hydrogen or C₁-C₀alkyl, or, where appropriate, a tautomer thereof.
- 7. (Withdrawn) A compound according to claim 1 of the formula I, in which R_3 is hydrogen or C_1 - C_8 alkyl, or, where appropriate, a tautomer thereof.
- (Withdrawn) A compound according to claim 1 of the formula I, in which R₄ is C₁-C₆alkyl, or, where appropriate, a tautomer thereof.
- 9. (Withdrawn) A compound according to claim 1 of the formula I, in which R_5 and R_8 , taken together, are a bond, or, where appropriate, a tautomer thereof.

- 10. (Withdrawn) A compound according to claim 1 of the formula I, in which the two carbon atoms, shown in the formula I, to which atoms R₆ and R₇ are attached, are two ring members of an aromatic ring, or, where appropriate, a tautomer thereof.
- 11. (Withdrawn) A pesticidal composition, which comprises at least one compound according to claim 1 of the formula I or, where appropriate, a tautomer thereof, in each case in free form or in agrochemically utilizable salt form, as active ingredient and at least one auxiliary.
- 12. (Withdrawn) A composition according to claim 11 for controlling insects or representatives of the order Acarina.
- 13. (Withdrawn) A method for controlling pests, which comprises applying a composition according to claim 11 to the pests or their environment.
- 14. (Withdrawn) A method according to claim 13 for controlling insects or representatives of the order Acarina.
- 15. (Withdrawn) A method according to claim 13 for the protection of plant propagation material from the attack by pests, which comprises treating the propagation material or the site, where the propagation material is planted.
- (Withdrawn) Plant propagation material treated in accordance with the method described in claim 15.
- 17. (Withdrawn) A compound of the formula B

$$R_7$$
 R_5
 R_5
 R_5
 R_5
 R_6
 R_5
 R_6
 R_5
 R_6
 R_7
 R_6
 R_7
 R_7

in which R_1 , R_5 , R_6 , R_7 and R_8 have the meanings given in claim 1 for the formula I, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

18. (Withdrawn) A compound of the formula D

in which Z_1 , R_1 , R_2 , R_5 , R_6 , R_7 and R_8 have the meanings given in claim 1 for the formula I; and R is OH, C_1 - C_4 alkoxy or Cl, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

19. (Withdrawn) A compound of the formula AA

$$R_{7}$$
 R_{7}
 R_{2}
 R_{5}
 R_{5}
 R_{3}
 R_{3}
 R_{4}
 R_{3}

in which R_2 , R_3 , R_4 , R_5 , R_6 , R_7 and R_8 have the meanings given in claim 1 for the formula I, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

20. (Currently Amended) A Compounds compound of either formulae VIIa and VIIb

$$\begin{array}{c} R_{\text{OIO}} \\ R_{\text{OE}} \\ R_{\text{OI}} \\ R_{\text{OE}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ R_{\text{OS}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI} \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \end{array} \\ \begin{array}{c} R_{\text{OI}} \\ \\ \\ \end{array}$$

wherein

R₀₁ is hydrogen[[;]], amino, or nitro; R₀₂ is hydrogen or C₁-C₄alkyl;

R₀₃ is C₁-C₄alkyl, C₁-C₄alkyl mono- or disubstituted by cyano, COOH, nitro, C₁-C₄alkoxy or cyclopropyl; C₂-C₈alkenyl[[,]]; C₂-C₈alkenyl substituted by halogen; C₁-C₄alkoxy[[,]]; C₃-C₆alkinylalkynyl[[,]]; cyclopropyl[[,]]; cyclobutyl[[,]]; cyclopentyl[[,]]; cyclohexyl[[,]]; cyclopropyl substituted by C₁-C₄alkyl, pyridyl, phenyl-C₂-C₆alkenyl or cyclopropyl; cyclobutyl substituted by C₁-C4alkyl; cyclopentylthio-C1-C4alkyl[[,]]; benzyloxy[[,]]; benzyloxy substituted by halogen; benzylthio-C₁-C₄alkyl, wherein the benzyl group may itself be substituted by C₁-C₄alkyl; thiophenyl substituted by halophenyl; phenoxy-C₁-C₄alkyl, wherein the phenyl group may be mono- or disubstituted by halogen; phenyl-C₁-C₄alkyl, wherein the phenyl group may itself be mono- or disubstituted by substituents selected from halogen, nitro, benzothiazol-2-yloxy, C₁-C₄haloalkyl, C₁-C₄alkoxy and C₁-C4alkyl: 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl[[,1]; 1,2,3,4-tetrahydro-naphthalenyl substituted by C₁-C₄alkoxy; C₂-C₆alkenyloxy[[,]]; isoxazolyl substituted by C₁-C₄alkyl; thiazolyl, C₁-C₄alkoxycarbonyl-C₁-C₄alkyl[I,1]; phenyl substituted by hydroxy, halophenyloxy, C₁-C₄alkyl-silyl(C₁-C₄-alkyl)₃ or C₂-C₆-alkinylalkynyl; pyridyl substituted by C₁-C₄alkoxy; C₁-C₆alkylthio-C₁-C₄alkyl[[,]]; C2-C6alkenylthio-C1-C4alkyl[[,]]; C3-C6alkinylthio-C1-C4alkyl[[,]]; dioxolan-2-yl-C1-C4alkyl[[,]]; (C1-C4alkyl-dioxolan-2-yl)-C1-C4alkyl[[,]]; triazolyl-C1-C4alkyl[[,]]; thienyl-C1-C4alkyl[[,]]; morpholinyl-C1-C4alkyl[[,]]; C1-C4alkylthio-C1-C4alkyl[[,]]; 2,3-dihydro-1H-isoindolyl[[,]]; halo-substituted-thiazolyl-C1-C₄alkyl[,]; C₁-C₄alkylsulfonyl-C₁-C₄alkyl; or quinolylthio-C₁-C₄alkyl, wherein the quinoline group may be substituted by C₁-C₄haloalkyl;

R₀₄ is C₁-C₄haloalkyl;

R₀₅ is halogen;

each of R_{06} and R_{010} , which may be the same or different, represents hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyloxy, C_1 - C_6 alkylcarbonylamino, hydroxy, cyano, halogen or C_1 - C_6 lkexyalkoxy:

R₀₇ is hydrogen, nitro or halogen;

Y₀₁ is C(R₀₈), sulfur, nitrogen or a chemical bond;

R₀₈ is hydrogen, halogen, C₁-C₄alkyl or nitro;

 Y_{02} is $C(R_{00})$, a chemical bond, or is nitrogen or sulfur; and R_{00} is hydrogen, phenyl, phenyl substituted by halogen, or halogen.