Notes on Inequalities and Embedding

Kiyuob Jung

1 Introduction

In this note, we always denote $x = (x_1, x_2, \dots, x_n)$ to be a point in \mathbb{R}^n .

2 Definition

가나다라마바사

2.1 Definitions

3 Inequalities

4 Sobolev Embedding

In this section, we deal with embeddings of diverse Sobolev spaces into others. Given a Sobolev space, it automatically belongs to certain other space, depending on the relationship between the integrability p and the dimension n. There are three cases:

$$p \in [1, n),$$
$$p = n,$$

 $p \in (n, \infty].$

In particular, the second case p = n is called the *borderline case*.

4.1 The case $p \in [1, n)$

Definition 4.1. If $p \in [1, n)$, the Sobolev conjugate p^* of p is defined by

$$p^* := \frac{np}{n-p}.$$

Remark 4.2. A simple calculation shows the following:

- (i) $p^* > p$,
- (ii) $\frac{1}{p^*} = \frac{1}{p} \frac{1}{n}$.

 $\Omega \subset \mathbb{R}^n$ to be open and

Theorem 4.3 (Hypothesis). . The following are equivalent:

- (i) text.
- (ii) text.
- (iii) text.

Lemma 4.4 (Hypothesis). . The following hold:

- (a) text
- (b) text
- (c) text

$$= \begin{cases} , & \text{if} \\ , & \text{if} \\ , & \text{if} \end{cases}$$

then

- 1. the direct scattery problem is to determine u^s from u^i ;
- 2. the inverse scattery problem is to determine the nature of inhomogeneity to reconstruct the differential equation and/or its domain from a knowledge of the asymptotic behavior u^s .