Nouvelle Calédonie. Novembre 2015. Enseignement spécifique. Corrigé EXERCICE 1

Partie A

1) Représentons la situation par un arbre de probabilité.

$$p(A \cap S) = p(A) \times p_A(S) = 0,7 \times 0,17 = 0,119.$$

$$p(A \cap S) = 0,119.$$

2) D'après la formule des probabilités totales.

$$p(S) = p(A \cap S) + p(B \cap S) = 0,119 + 0,3 \times 0,1 = 0,149.$$

3) La probabilité demandée est $p_S(A)$.

$$p_S(A) = \frac{p(A \cap S)}{p(S)} = \frac{0,119}{0,149} = 0,799 \text{ arrondi au millième.}$$

4) Déterminons un intervalle de confiance au seuil de confiance de 95%. Ici, $\mathfrak{n}=1000$. D'autre part, la fréquence observée est $\mathfrak{f}=\frac{211}{1000}=0,211$. On note que $\mathfrak{n}\geqslant30$ puis que $\mathfrak{n}\mathfrak{f}=211\geqslant5$ et $\mathfrak{n}(1-\mathfrak{f})=789\geqslant5$.

Un intervalle de confiance au seuil de confiance de 95% est

$$\left[f - \frac{1}{\sqrt{n}}, f + \frac{1}{\sqrt{n}}\right] = \left[0, 211 - \frac{1}{\sqrt{1000}}, f + \frac{1}{\sqrt{1000}}\right] = [0, 179; 0, 243]$$

en arrondissant de manière à élargir un peu l'intervalle.

Partie B

- 1) La probabilité demandée est $P(6,4\leqslant X\leqslant 9,6)=P\left(\mu_X-\sigma_X\leqslant X\leqslant \mu_X+\sigma_X\right)$. La calculatrice (ou le cours) fournit $P(6,4\leqslant X\leqslant 9,6)=0,683 \text{ arrondi au millième.}$
- 2) La calculatrice fournit

$$P(X \le 6,5) = 0,174$$
 arrondi au millième.

3) D'après la phrase initiale de l'énoncé, dire que l'eau est très peu calcaire équivaut à dire que $Y \le 6, 5$. Or,

$$Y \leqslant 6, 5 \Leftrightarrow Y - 9 \leqslant -2, 5 \Leftrightarrow \frac{Y - 9}{\sigma} \leqslant -\frac{2, 5}{\sigma}.$$

La probabilité donnée dans l'énoncé est donc encore $P\left(\frac{Y-9}{\sigma}\leqslant -\frac{2,5}{\sigma}\right)$ où cette fois-ci la variable $\frac{Y-9}{\sigma}$ suit la loi normale centrée réduite. La calculatrice fournit

$$P(Y\leqslant 6,5)=0,1\Leftrightarrow P\left(\frac{Y-9}{\sigma}\leqslant -\frac{2,5}{\sigma}\right)=0,1\Leftrightarrow -\frac{2,5}{\sigma}=-1,2815\ldots\Leftrightarrow \sigma=1,951 \text{ arrondi au millième}.$$

Partie C

- 1) La fonction $x\mapsto a\cos x$ est continue et positive sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Donc, l'aire emandée, exprimée en unités d'aire est $\mathscr{A}_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} a\cos x \; dx = \left[a\sin x\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = a\left(\sin\left(\frac{\pi}{2}\right) \sin\left(-\frac{\pi}{2}\right)\right) = a(1-(-1)) = 2a.$
- 2) D'autre part, l'aire du disque est $\mathscr{A}_2=\pi\left(\frac{\alpha}{2}\right)^2=\frac{\pi\alpha^2}{4}.$

$$\mathscr{A}_2 = \mathscr{A}_1 - \mathscr{A}_2 \Leftrightarrow \frac{\pi \alpha^2}{4} = 2\alpha - \frac{\pi \alpha^2}{4} \Leftrightarrow \frac{\pi \alpha^2}{2} = 2\alpha \Leftrightarrow \alpha = \frac{4}{\pi}.$$

De plus, $\frac{4}{\pi}=1,2\ldots$ et en particulier, $\frac{4}{\pi}<1,4$. La contrainte est respectée pour $\mathfrak{a}=\frac{4}{\pi}$.

EXERCICE 2

1) Soit $\mathfrak a$ un réel. La fonction $\mathfrak f_{\mathfrak a}$ est dérivable sur $\mathbb R$ en tant que somme de fonctions dérivables sur $\mathbb R$ et pour tout réel $\mathfrak x$,

$$f'_{\alpha}(x) = e^{x-\alpha} - 2$$
.

Soit x un réel.

$$\begin{split} f_\alpha'(x) > 0 &\Leftrightarrow e^{x-\alpha} - 2 > 0 \Leftrightarrow e^{x-\alpha} > 2 \\ &\Leftrightarrow x - \alpha > \ln 2 \text{ (par stricte croissance de la fonction exponentielle sur } \mathbb{R}) \\ &\Leftrightarrow x > \alpha + \ln 2, \end{split}$$

et de même, $f_{\alpha}'(x) = 0 \Leftrightarrow x = \alpha + \ln 2$. La fonction f_{α}' est strictement positive sur $]\alpha + \ln 2, +\infty[$, s'annule en $\alpha + \ln 2$ et est strictement négative sur $]-\infty, \alpha + \ln 2[$. On en déduit que la fonction f_{α} est strictement décroissante sur $]-\infty, \alpha + \ln 2]$ et est strictement croissante sur $[\alpha + \ln 2, +\infty[$ puis que

la fonction f_{α} admet un minimum en $\alpha + \ln 2$.

$$2) \text{ Ce minimum est } f_{\alpha}(\alpha+\ln 2) = e^{\alpha+\ln 2-\alpha} - 2(\alpha+\ln 2) + e^{\alpha} = e^{\ln 2} - 2\alpha - 2\ln 2 + e^{\alpha} = 2 - 2\alpha - 2\ln 2 + e^{\alpha}.$$
 Pour $\alpha\in\mathbb{R}$, posons $g(\alpha)=e^{\alpha}-2\alpha+2-2\ln 2$. La fonction g est dérivable sur \mathbb{R} et pour tout réel α ,

$$g'(\alpha) = e^{\alpha} - 2$$
.

La fonction g' est strictement négative sur $]-\infty$, $\ln 2[$ et strictement positive sur $]\ln 2$, $+\infty[$. La fonction g admet donc un minimum en $\ln 2$ et ce minimum est égal à

$$q(\ln 2) = e^{\ln 2} - 2 \ln 2 + 2 - 2 \ln 2 = 2 + 2 - 4 \ln 2 = 4 - 4 \ln 2.$$

Le minimum de f_{α} est minimum quand $\alpha = \ln 2$ et le minimum correspondant est $4 - 4 \ln 2$.

EXERCICE 3

Partie A

Prenons x = y = z = 1. On a $x^2 + y^2 + z^2 = 3 \geqslant \frac{1}{3}$ mais $x + y + z = 3 \neq 1$. Donc l'implication (P_2) .

Partie B

1) a) La droite (BE) est contenue dans le plan (ABE) et le point D n'appartient pas à ce plan. Donc le point D n'appartient pas à la droite (BE) ou encore les points B, D et E ne sont pas alignés. On en déduit que les points B, D et E définissent un unique plan, le plan (BDE).

Les points B, D et E ont pour coordonnées respectives (1,0,0), (0,1,0) et (0,0,1). Les coordonnées de chacun de ces points vérifient l'équation x + y + z = 1. Donc, le plan d'équation x + y + z = 1 est le plan (BDE).

b) $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CG} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$. Donc, le point G a pour coordonnées (1,1,1). D'autre part, le point A a pour coordonnées (0,0,0) et donc le vecteur \overrightarrow{AG} a pour coordonnées (1,1,1).

Le vecteur \overrightarrow{AG} est un vecteur normal au plan d'équation $1 \times x + 1 \times y + 1 \times z = 1$ qui est le plan (BDE). Donc la droite (AG) est orthogonale au plan (BDE).

c) La droite (AG) est la droite passant par A(0,0,0) et de vecteur directeur $\overrightarrow{AG}(1,1,1)$. Un système d'équations paramétriques de la droite (AG) est donc $\begin{cases} x=t \\ y=t \\ z=t \end{cases}, t \in \mathbb{R}.$

Soit M(t, t, t), $t \in \mathbb{R}$, un point de la droite (AG).

$$M \in (BDE) \Leftrightarrow t + t + t = 1 \Leftrightarrow t = \frac{1}{3}.$$

Quand $t = \frac{1}{3}$, on obtient les coordonnées du point d'intersection de la droite (AG) et du plan (BDE) : le point K de coordonnées $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

- 2) Les longueurs BD, BE et DE sont toutes trois égales à la longueur de la diagonale d'un carré de côté 1 à savoir $\sqrt{2}$. Donc, le triangle BDE est équilatéral.
- 3) a) Soit M un point du plan (BDE) distinct de M. Le point K est le projeté orthogonal du point A sur le plan (BDE). Donc le triangle AKM est rectangle en K. D'après le théorème de PYTHAGORE,

$$AM^2 = AK^2 + KM^2.$$

Cette égalité reste vraie quand M=K car alors $AK^2+KM^2=AK^2+0=AK^2$.

- b) Pour tout point M du plan (BDE), on a $MK^2 \ge 0$ puis $AK^2 + MK^2 \ge AK^2$ et donc $AM^2 \ge AK^2$.
- c) Soient x, y et z trois réels tels que x + y + z = 1. Soit M le point de l'espace dont les coordonnées sont (x, y, z). D'après la question 1), M est un point du plan (BDE). D'après la question 3)b), $AM^2 \ge AK^2$. Or

$$AM^2 = (x-0)^2 + (y-0)^2 + (z-0)^2 = x^2 + y^2 + z^2$$
.

D'autre part, d'après la question 1)c)

$$AK^{2} = \left(\frac{1}{3} - 0\right)^{2} + \left(\frac{1}{3} - 0\right)^{2} + \left(\frac{1}{3} - 0\right)^{2} = \frac{3}{9} = \frac{1}{3}.$$

Donc, $x^2 + y^2 + z^2 \ge \frac{1}{3}$. On a montré que l'implication (P_1) est vraie.

EXERCICE 4.

1)
$$d_1 = \frac{1}{2}d_0 + 100 = \frac{1}{2} \times 300 + 100 = 250 \text{ et } \alpha_1 = \frac{1}{2}d_0 + \frac{1}{2}\alpha_0 + 70 = \frac{1}{2} \times 300 + \frac{1}{2} \times 450 + 70 = 445.$$

$$d_1 = 250 \text{ et } \alpha_1 = 445.$$

2) a) L'algorithme affiche D=250 qui est bien la valeur de d_1 mais ensuite l'algorithme affiche A=420 qui n'est pas la valeur de α_1 .

b) Algorithme modifié: 1ère solution

Variables:	n et k sont des entiers naturels D et A sont des réels
Initialisation:	D prend la valeur 300 A prend la valeur 450 Saisir la valeur de n
Traitement:	Pour k variant de 1 à n A prend la valeur $\frac{A}{2} + \frac{D}{2} + 70$ D prend la valeur $\frac{D}{2} + 100$ Fin pour
Sortie:	Afficher D Afficher A

Algorithme modifié: 2ème solution

Variables :	n et k sont des entiers naturels M, D et A sont des réels
Initialisation:	D prend la valeur 300 A prend la valeur 450 Saisir la valeur de n
Traitement :	Pour k variant de 1 à n M prend la valeur D D prend la valeur $\frac{M}{2} + 100$ A prend la valeur $\frac{A}{2} + \frac{M}{2} + 70$ Fin pour
Sortie:	Afficher D Afficher A

3) a) Soit n un entier naturel.

$$e_{n+1} = d_{n+1} - 200 = \frac{1}{2}d_n + 100 - 200 = \frac{1}{2}d_n - 100 = \frac{1}{2}(d_n - 200) = \frac{1}{2}e_n.$$

Don la suite $(e_n)_{n\in\mathbb{N}}$ est géométrique de raison $q=\frac{1}{2}$.

b) D'autre part, $e_0=d_0-200=300-200=100.$ On sait alors que pour tout entier naturel $\mathfrak{n},$

$$e_n = e_0 \times q^n = 100 \times \left(\frac{1}{2}\right)^n$$
.

On en déduit encore que pour tout entier naturel $n, d_n = e_n + 200 = 200 + 100 \times \left(\frac{1}{2}\right)^n$.

Pour tout entier naturel n,
$$d_n = 200 + 100 \times \left(\frac{1}{2}\right)^n$$
.

 $\mathbf{c}) \text{ Puisque } -1 < \frac{1}{2} < 1, \text{ on sait que } \lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0. \text{ On en déduit que la suite } \left(d_n\right)_{n \in \mathbb{N}} \text{ converge et } d_n$

$$\lim_{n\to +\infty} d_n = 200.$$

4) a) Soit n un entier naturel supérieur ou égal à 3.

$$2n^2 - (n+1)^2 = 2n^2 - n^2 - 2n - 1 = n^2 - 2n - 1 = (n-1)^2 - 2.$$

Ensuite, $n\geqslant 3\Rightarrow n-1\geqslant 2\Rightarrow (n-1)^2\geqslant 4\Rightarrow (n-1)^2-2\geqslant 2$. En particulier, $(n-1)^2-2\geqslant 0$ ou encore $2n^2-(n+1)^2\geqslant 0$ ou enfin $2n^2\geqslant (n+1)^2$.

- b) Montrons par récurrence que pour tout $n \ge 4$, $2^n \ge n^2$.
 - $2^4=16$ et $4^2=16$. Donc, $2^4\geqslant 4^2$. L'inégalité à démontrer est vraie quand $\mathfrak{n}=4$.
 - Soit $n \ge 4$. Supposons que $2^n \ge n^2$. Alors,

$$\begin{split} 2^{n+1} &= 2 \times 2^n \\ &\geqslant 2 \times n^2 \text{ (par hypothèse de récurrence)} \\ &\geqslant (n+1)^2 \text{ (d'après la question précédente et car } n \geqslant 4 \Rightarrow n \geqslant 3). \end{split}$$

On a montré par récurrence que pour tout $n \ge 4$, $2^n \ge n^2$.

c) Soit n un entier supérieur ou égal à 4.

$$0 < n^2 \leqslant 2^n \Rightarrow \frac{1}{2^n} \leqslant \frac{1}{n^2} \Rightarrow \left(\frac{1}{2}\right)^n \leqslant \frac{1}{n^2} \Rightarrow 100n \left(\frac{1}{2}\right)^n \leqslant \frac{100n}{n^2}$$
$$\Rightarrow 100n \left(\frac{1}{2}\right)^n \leqslant \frac{100}{n}.$$

d) Pour tout $n \geqslant 4$, $0 \leqslant 100 n \left(\frac{1}{2}\right)^n \leqslant \frac{100}{n}$ avec $\lim_{n \to +\infty} \frac{100}{n} = 0$. Le théorème des gendarmes permet d'affirmer que $\lim_{n \to +\infty} 100 n \left(\frac{1}{2}\right)^n = 0$. D'autre part, $\lim_{n \to +\infty} 110 \left(\frac{1}{2}\right)^n = 0$. On en déduit que

$$\lim_{n\to+\infty}a_n=340.$$