Unveiling Latent Structural Collapse:

A Discrete Morse
Perspective on SAE
Representations for Gene
Expression

Kaijie Zhang

Motivation

- Autoencoders compress data nonlinearly
- Accuracy drops non-linearly with lower latent dims
- At some point: sudden collapse of meaningful structure
- We need to **detect** that collapse

Dataset: PBMC Gene Expression

- Single-cell gene classification task
- High-dimensional, naturally structured data
- Structure matters for accurate classification.
- Used in downstream BERT classifier

Label	Count	Percentage
1	1970	19.33%
2	1540	15.11%
3	967	9.49%
4	878	8.61%
5	753	7.39%
6	630	6.18%
7	606	5.94%
8	534	5.24%
9	468	4.59%
10	384	3.77%
11	353	3.46%
12	328	3.22%
13	278	2.73%
14	259	2.54%
15	246	2.41%
	Total	10194 samples

Table 1: Train Set Label Distribution

Pipeline Overview: SAE + BERT

- Use BERT-style classifier on latent features + Train SAE to compress gene vectors (→ latent dim 512/256/.../2)
- Track classification performance. But performance alone doesn't explain why collapse happens

Persistent Diagram Analysis

- We tried using persistent homology (H₀/H₁/H₂)
- Misleading behavior:
 - → Topological features appear stronger **after collapse**
- Conclusion: PH is sensitive to distortion X

dim	H_0	H_1	H_2
2	1000	231	2
4	1000	344	34
8	1000	253	18
16	1000	102	2
32	1000	126	3
64	1000	154	5
128	1000	88	1
256	1000	46	2
512	1000	56	0

Table 1: Persistence counts at different scales for H_0 , H_1 , and H_2

Discrete Morse Skeleton

- Construct skeleton from PCA-lowered latent space (dim=2)
- Highlights 1-stable manifolds (i.e., structural pathways)
- Persistence simplification filters noise
- Better reflects true connectivity in compressed space

Skeleton captures structural collapse

- At high dim (e.g. 512): smooth, coherent skeleton
- At low dim (e.g. 16): disconnected, fragmented skeleton
- Collapse visible as topological fracture
- Matches the accuracy cliff in classification

Dim = 32: 248 nodes, 125 edges
Discrete-Morse skeleton (2D)

0.8

0.7

0.6

0.5

0.4

0.5

Dim	Train Loss	Val Acc	Test Acc
128	1.254	0.538	0.538
64	1.488	0.474	0.487
32	1.742	0.393	0.389
16	2.077	0.271	0.273
8	2.484	0.204	0.206

0.8

0.9

1.0

0.7

0.6

Performance of CellBERT with varying latent dimensions

Conclusion

- DMS provides interpretable signal of latent degradation
- Better than persistent diagrams in nonlinear AE settings
- Can serve as a factor for structure loss
- Future: Integrate DMS into training, adaptive SAE dim selection

Reference

- [1] T. K. Dey, J. Wang, and Y. Wang. Graph Reconstruction by Discrete Morse Theory. arXiv preprint arXiv:1803.05093, 2018. Available at: https://arxiv.org/abs/1803.05093.
- [2] M. Moor, M. Horn, B. Rieck, and K. Borgwardt. Topological Autoencoders. arXiv preprint arXiv:1906.00722, 2019. Available at: https://arxiv.org/abs/1906.00722.
- [3] Y. Li, A. Potapenko, M. Raghu, and A. Achille. The Geometry of Concepts: Sparse Autoencoder Feature Structure. arXiv preprint arXiv:2410.19750, 2024. Available at: https://arxiv.org/abs/2410_19750.
- [4] T. Gebhart, P. Schrater, and A. Hylton. Characterizing the Shape of Activation Space in Deep Neural Networks. arXiv preprint arXiv:1901.09496, 2019. Available at: https://arxiv.org/abs/1901.09496.
- [5] L. Alessandri, F. Cordero, M. Beccuti, N. Licheri, M. Arigoni, M. Olivero, M. F. Di Renzo, A. Sapino, and R. Calogero. Sparsely-connected Autoencoder (SCA) for single cell RNAseq data mining. npj Systems Biology and Applications, 7, Article number: 1, 2021. Available at: https://www.nature.com/articles/s41540-020-00162-6.
- [6] 10x Genomics. PBMCs from a Healthy Donor 3 Gene Expression. 10x Genomics Dataset Resource, 2021. Available at: https://www.10xgenomics.com/resources/datasets.
- [7] W. Wang, F. Yang, Y. Fang, D. Tang, J. Huang, H. Lu, and J. Yao. scBERT: a Large-scale Pretrained Deep Language Model for Cell Type Annotation of Single-cell RNA-seq Data. bioRxiv, 2021. Available at: https://doi.org/10.1101/2021.12.05.471261.