Линейни пространства

Люба Конова

Октомври 2021

1 Теория:

1.1 Числово поле

Нека F е подмножество на $\mathbb C$ с поне два елемента. Ще казваме, че F е числово поле, ако за всеки две числа a и b от F е изпълнено, че: $a+b,\ a-b,\ a.b,\ \frac{a}{b}\in F$

1.2 Линейно пространство

Нека V е непразно множество, чиито елементи ще наричаме вектори. Определяме следните две операции във V:

- 1. Събиране на вектори на всеки два вектора $a,b \in V$ съпоставяме вектор от V, който означаваме a+b.
- 2. Умножение на вектор с число на всеки скалар $\lambda \in F$ и всеки вектор $a \in V$ съпоставяме вектор от V, който означаваме λa .

Определение: Множеството V с така въведените две операции се нарича линейно пространство над полето F, ако са в сила следните 8 аксиоми:

- 1. Комутативност на събирането: $a + b = b + a; a, b \in V;$
- 2. Асоциативност на събирането: $(a+b)+c=a+(b+c); a,b,c\in V;$
- 3. Съществува вектор $0 \in V,$ за който a + 0 = 0 + a = a за всеки вектор $a \in V;$
- 4. За всеки вектор $a \in V$ съществува **противоположен** вектор $a \in V$, за който a + (-a) = -a + a = 0;
- 5. $1.a = a, a \in V$;
- 6. Дистрибутивни закони: $(\lambda + \mu)a = \lambda a + \mu a, a \in V, \lambda, \mu \in F$ и $\lambda(a+b) = \lambda a + \lambda b, a, b \in V, \lambda \in F$;
- 7. $(\lambda \mu)a = \lambda(\mu a) = \mu(\lambda a), a \in V, \lambda, \mu \in F.$

Определение: Едно подмножество W на линейното пространство V се нарича **подпространство** на V, ако W е **затворено** относно операциите събиране на вектори и умножение на вектор с число, въведени във V.

2 Задачи

2.1 Основни задачи:

Задача 1: Докажете, че:

- а) полиномите са линейно пространство;
- b) полиномите от степен по-малка или равна на n са линейно пространство над дадено поле \mathbb{F} :
- (n) полиномите от степен точно (n) не са линейно пространство;
- d) полиномите със сума от коефициентите 0 са ЛП;
- е) полиномите със сума от коефициентите 2021 не са ЛП;

Задача 2: Нека \mathbb{V} е множеството от всички безкрайни редици с елементи от полето \mathbb{F} . Да се докаже, че:

- а) $\mathbb V$ е линейно пространство над $\mathbb F$ относно операциите събиране на редици и умножение на редица с число.
- b) множеството от всички финитни редици е подпространство на $\mathbb V$
- с) множеството от всички аритметични прогресии е подпространство на V
- d) множеството от всички геометрични прогресии с фиксирано частно не е $\Pi\Pi$:

Задача 3: Докажете, че:

- а) множеството от матрици $M_n(F)$ е линейно пространство.
- b) множеството от всички симетрични матрици над поле \mathbb{F} е ЛП
- c) множеството от всички антисиметрични матрици над поле \mathbb{F} е $\Pi\Pi$
- d) множеството от всички диагонални матрици над поле \mathbb{F} е $\Pi\Pi$;
- е) множеството от матриците със следа 0 над поле $\mathbb F$ е ЛП

2.2 Малки доказателства:

- 1. Докажете, че нулевият вектор е единствен;
- 2. Докажете, че противоположният вектор е единствен;