Байесовские сети: независимость

Владимир Судаков

[на основе курса http://ai.berkeley.edu.]

Резюме по вероятностям

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

■ Правило произведения

$$P(x,y) = P(x|y)P(y)$$

- X, Y независимы тогда и только тогда: $\forall x, y : P(x, y) = P(x)P(y)$
- Х и Y условно независимы при данном Z тогда и только тогда:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \qquad X \perp \!\!\!\perp Y|Z$$

Сеть Байеса

Байесовская сеть —
 это эффективное
 кодирование вероятностной
 модели предметной области.

- Вопросы, которые мы можем задать:
 - Вывод: при фиксированной сети Байеса, что представляет собой Р(X | e)?
 - Представление: учитывая граф сети Байеса, какие типы распределений он может кодировать?
 - Моделирование: какая сеть Байеса наиболее подходит для данной предметной области?

Семантика Байесовской сети

- Направленный ациклический граф, по одному узлу на случайную величину
- Таблица условной вероятности (СРТ) для каждого узла
 - Набор распределений по X, по одному для каждой комбинации родительских значений: $P(X|a_1\dots a_n)$
- Сети Байеса неявно кодируют совместные распределения
 - Как произведение локальных условных распределений
 - Чтобы увидеть, какую вероятность сеть дает для полного назначения, перемножьте все соответствующие условные вероятности:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Пример: Сигнализация

Α	J	P(J A)
+a	+j	0.9
+a	<u>.</u>	0.1
-a	+j	0.05
-a	ij	0.95

	Α	M	P(M A)
	+a	+m	0.7
	+a	-m	0.3
)	٦	+m	0.01
	-a	-m	0.99

P(E)

0.002

0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

P	(+b,	-e,	+a,	-j	+m	=
	\ ' /	,	• ,	• • • • • • • • • • • • • • • • • • • •	•	,

Пример: Сигнализация

A	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

			-
	Α	M	P(M A)
	+a	+m	0.7
	+a	-m	0.3
)	-a	+m	0.01
	-a	-m	0.99

P(E)

0.002

0.998

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

Т.		
E	Α	P(A B,E)
+e	+a	0.95
+e	-a	0.05
-e	+a	0.94
-e	-a	0.06
+e	+a	0.29
+e	-a	0.71
-e	+a	0.001
-e	-a	0.999
	+e +e -e +e +e -e	+e +a +e -a -e +a +e +a +e -a +e +a +e -a -e +a

Размер байесовской сети

 Насколько велико совместное распределение по N булевым переменным?

 2^N

 Насколько велика сеть из N узлов, если узлы имеют до k родителей?

 $O(N * 2^{k+1})$

• Оба дают вам возможность вычислить

$$P(X_1, X_2, \dots X_n)$$

- Сеть Баейса: Огромная экономия пространства!
- Также легче выявить местные СРТ
- Также быстрее отвечать на вопросы (прошлая лекция!)

Байесовская сеть

- **✓**Вероятностный вывод
 - Условная независимость
 - Сэмплирование
 - Обучение Байесовской сети на данных

Условная независимость

Х и Y независимы если

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\!\perp Y$$

Х и Y условно независимы при данном Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \perp Y|Z$$

• (Условная) независимость это свойство распределения

■ Пример: $Alarm \bot Fire | Smoke$

Сеть Байеса: Предположение

 Предположения, которые мы должны сделать, чтобы определить байесовскую сеть при заданном графе:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Помимо приведенных выше предположений условной независимости «цепное правило → байесовская сеть»
 - Часто дополнительные дополнительные условные независимости
 - Их можно увидеть на графе
- Важно для моделирования: понимать предположения, сделанные при выборе графа байесовской сети.

• Предположения условной независимости непосредственно из упрощений в цепном правиле: $\mathbf{p}(x) = \mathbf{p}(x) \mathbf{p$

$$R(x \downarrow y Z \nmid Yw) = P(x)P(y|x)P(z|x,y)P(w|x,y,z)$$

• Дополнительные подразумеваемые предположения об условной независимости?

$$W \perp \!\!\! \perp X | Y$$

Независимость в сети Байеса

- Важный вопрос о сети Байеса:
 - Являются ли два узла независимыми при наличии определенных доказательств?
 - Если да, то следует доказать с помощью алгебры (утомительно в общем)
 - Если нет, следует доказать контрпримером
 - Пример:

- Вопрос: обязательно ли X и Z независимы?
 - Ответ: нет. Пример: низкое давление вызывает дождь, который вызывает пробки.
 - X может влиять на Z, Z может влиять на X (через Y)
 - Приложение: они могут быть независимыми: как?

D-разделимость: План

D-разделимость: План

- Изучение свойств независимости для троек
 - Почему тройки?
- Анализ сложных случаев с точки зрения троек элементов
- D-разделение: условие/алгоритм ответа на такие запросы

Причинные цепочки

 Эта конфигурация представляет собой «причинно-следственную цепочку»

P(x, y, z) = P(x)P(y|x)P(z|y)

- Гарантированная независимость X от Z ?
- Hem!
 - Одного примера набора СРТ, для которых X не является независимым от Z, достаточно, чтобы показать, что эта независимость не гарантируется.
 - Пример:
 - Низкое давление вызывает дождь, вызывает пробки, высокое давление не вызывает дождя не вызывает трафик
 - В числах:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Причинные цепочки

 Это конфигурация «причинной цепочки»

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

■ Гарантирована независимость X от Z при заданном Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$

Да!

 Свидетельство в цепи "блокирует" влияние

Общие причины

Эта конфигурация "общей причины"

Z: Лаборатория заполнена

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

- Гарантировано что X независимо от Z ?
- Hem!
 - Одного примера СРТ, для которых X не является независимым от Z, достаточно, чтобы показать, что эта независимость не гарантируется.
 - Пример:
 - Из-за срока выполнения проекта форумы заняты и лаборатория полная
 - В числах:

$$P(+x \mid +y) = 1, P(-x \mid -y) = 1,$$

 $P(+z \mid +y) = 1, P(-z \mid -y) = 1$

Общая причина

Эта конфигурация "общей причины"

Z: Лаборатория заполнена

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Гарантируется ли что X и Z независимы при заданном Y?

$$P(z|x,y) = rac{P(x,y,z)}{P(x,y)}$$

$$= rac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Да!

 Наблюдение за причиной блокирует влияние между следствиями.

Общий эффект

Последняя конфигурация: две причины одного следствия (v-структуры)

- Хи У независимы?
 - Да: футбол и дождь вызывают пробки, но они не коррелированы
- Доказательство:

$$P(x,y) = \sum_{z} P(x,y,z)$$

$$= \sum_{z} P(x)P(y)P(z|x,y)$$

$$= P(x)P(y)\sum_{z} P(z|x,y)$$

$$= P(x)P(y)$$

Общий эффект

Последняя конфигурация: две причины одного следствия (v-структуры)

- Х и Y независимы?
 - Да: футбол и дождь вызывают пробки, но они не коррелированы
 - (Доказано выше)
- Хи У независимы при заданном Z?
 - *Hem*: наблюдая пробки, дождь и футбол соревнуются в качестве объяснения.
- Это обратное поведение от других случаев
 - Наблюдение за следствием активирует влияние между возможными причинами.

Общий случай

Общий случай

• Общий вопрос: в данной сети две переменные независимы (при наличии наблюдений)?

• Решение: анализ графа

 Любой сложный пример можно разбить на повторения трех канонических случаев

Достижимость

- Рецепт: заштриховывать узлы свидетельств, искать пути в полученном графе
- Попытка 1: если два узла не соединены никаким ненаправленным путем, не заблокированным заштрихованным узлом, они условно независимы
- Почти работает, но не совсем
 - Где он ломается?
 - Ответ: v-структура в Т не считается ссылкой в пути, если только она не «активна».

Активные / Неактивные Пути

- Вопрос: Являются ли X и Y условно независимыми при заданных переменных свидетельства {Z}?
 - Да, если X и Y «d-разделены» Z
 - Рассмотрим все (ненаправленные) пути из X в Y
 - Нет активных путей = независимость!
- Путь активен, если активна каждая тройка:
 - Причинно-следственная цепочка A -> B -> C, где B не наблюдается (в любом направлении)
 - Общая причина A <- B -> C, где B не наблюдается
 - Общий эффект (он же v-структура)
 A -> B <- С, где наблюдается В или один из его потомков
- Все, что нужно, чтобы заблокировать путь, это один неактивный сегмент.

Active Triples

Inactive Triples

D-Разделимость

- Запрос: $X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}$?
- lacktriangle Проверить все (неориентированные!) пути между X_i и X_j
 - Если один или несколько активно, то независимость не гарантируется

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

■ В противном случае (т.е. если все пути неактивны), тогда независимость гарантирована

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 $R \bot \!\!\! \bot B$ Да $R \bot \!\!\!\! \bot B | T$

• Переменные:

■ R: Дождь

■ Т: Пробки

■ D: Капли с крыши

■ S: Мне грустно

• Запросы:

Значение структуры

 Учитывая структуру байесовской сети, можно запустить алгоритм d-разделения, чтобы построить полный список условных зависимостей, которые обязательно верны для формы

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 Этот список определяет множество вероятностных распределений, которые могут быть представлены

Вычисление всех независимостей

Распределения ограничений топологии

- Учитывая некоторую топологию графа G, можно закодировать только определенные совместные распределения.
- Структура графа гарантирует определенные (условные) независимости
- (Там может быть больше независимостей)
- Добавление дуг увеличивает набор распределений, но влечет затраты
- Полное обусловливание может кодировать любое распределение

Резюме по представлению байесовских сетей

- Сети Байеса компактно кодируют совместные распределения (используя условную независимость!)
- Гарантированная независимость распределений может быть выведена из структуры графа.
- D-разделение дает точные гарантии условной независимости прямо из графа.
- Совместное распределение байесовской сети может иметь дополнительную (условную) независимость, которую невозможно обнаружить, пока вы не проверите ее конкретное распределение.

Байесовские сети

- Перечисление (точное, экспоненциальная сложность)
- Исключение переменных (точное, наихудший случай экспоненциальная сложность, часто лучше)
- Вероятностный вывод является NP-полным
- Условная независимость
 - Сэмплирование
 - Обучение на данных