微积分知识梳理

经院一赵心童一U202316334

摘要

本文对从实数系到不定积分前的内容进行了梳理总结,旨在回顾期中考试前的微积分知识,力求在整理资料的过程中查缺补漏.主要内容来自华东师范大学版《数学分析》[1]和《数学分析习题课讲义》[2].

目录

1	极限	;	3
	1.1	定义	3
		1.1.1 数列极限	3
		1.1.2 函数极限	3
		1.1.3 海涅定理	4
	1.2	性质	4
		1.2.1 唯一性	4
		1.2.2 有界性	4
		1.2.3 保号性	4
		1.2.4 保不等式性	4
		1.2.5 迫敛性	4
	1.3	无穷大与无穷小	4
		1.3.1 无穷小量的替换	5
	1.4	常用结论	5
2	函数	连续性	5
	2.1	连续性	5
		2.1.1 连续	5
		2.1.2 一致连续	6
	2.2	间断点	6
	2.3	连续函数的性质	6

		2.3.1	局部连续性	6											
		2.3.2	局部保号性	6											
		2.3.3	最大、最小值定理	6											
		2.3.4	介值定理	6											
		2.3.5	根的存在性定理(零点定理)	6											
3	导数	与微分		6											
	3.1	导数的	定义	6											
	3.2	导数的	」运算	7											
		3.2.1	四则运算	7											
		3.2.2	反函数求导	7											
		3.2.3	复合函数求导	7											
		3.2.4	参数方程求导	7											
	3.3	高阶导		7											
	3.4	基本初	J等函数的导数公式	7											
	3.5	微分的	7定义	7											
	3.6	微分的]运算	8											
		3.6.1	四则运算	8											
		3.6.2	复合函数求微分	8											
		3.6.3	参数方程求微分	8											
	3.7	高阶微	幼分	8											
4	微分学基本定理														
	4.1	中值定	3理	8											
		4.1.1	罗尔定理	8											
		4.1.2	拉格朗日中值定理	9											
		4.1.3	柯西中值定理	9											
	4.2	泰勒公	3式	9											
		4.2.1	Peano余项	9											
		4.2.2	Lagrange余项	9											
		4.2.3	麦克劳林公式	9											
5	函数	的图像		9											
	5.1	极值点	Í	9											
	5.2	凹凸性	<u>.</u>	10											
	5.9	坦占		10											

5.4	渐近线	Ì.																		10
5.5	曲率 .																			10
	5.5.1	引	【微:	分	公:	力														10
	5.5.2	曲	率																	10

1 极限

1.1 定义

1.1.1 数列极限

定理 1.1. 数列 $\{X_n\}$, 常数 a, $\forall \varepsilon > 0$, $\exists N > 0$, $\forall n > N$, $|Xn - a| < \varepsilon$, 则

$$\lim_{x\to\infty}Xn=a$$

.

定理 1.2 (柯西收敛准则). 数列 $\{X_n\}$, $\forall \varepsilon > 0$, $\exists N > 0$, $\forall m, n > N$, $|X_n - X_m| < \varepsilon$, 则收敛.

定理 1.3. 数列 $\{X_n\}$, $\forall \varepsilon > 0$, 若在 $U(a; \varepsilon)$ 外至多有有限项, 则收敛.

定理 1.4. 数列收敛的充要条件是其任何子列都收敛.

定理 1.5 (单调有界原理). 实数系中, 单调有界数列必有极限.

1.1.2 函数极限

 $x \to x_0$ 极限, $x \to \infty$ 极限, 左极限, 右极限.

remark. 若左右极限都存在且相等, 该点极限存在

定理 1.6 (复合函数极限).

$$\lim_{x \to a} g(x) = A, \lim_{y \to A} f(x) = B$$

若满足以下条件之一:

- 1、存在a的去心邻域,在其中 $g(x) \neq g(a)$
- 2、外层函数连续
- 3、 $A = \infty$,且 $\lim_{y \to A} f(x)$ 有意义

$$\lim_{x \to a} f(g(x)) = \lim_{y \to A} f(y) = B$$

定理 1.7 (柯西准则).

1.1.3 海涅定理

$$\{x_n\} \to x_0, \{x_n\} \neq x_0, \lim_{n \to \infty} f(x_n) = A \iff \lim_{x \to x_0} f(x) = A$$

- 1.2 性质
- 1.2.1 唯一性
- 1.2.2 有界性

I.数集

若 S 既有上界又有下界,则称 S 有界. 等价于 $\exists M > 0, \forall x \in S, |x| \leq M$.

定理 1.8 (确界原理). 若非空数集 S 有上(F)界, 则 S 有上(F)确界.

remark. 确界: ①上/下界②最小/大

remark. 确界原理: ①非空数集②有上/下界

II.数列

定理 1.9. 若一数列收敛,则该数列有界.

remark. 收敛 \rightarrow 有界, 单调+有界 \rightarrow 收敛.

定理 1.10 (致密性定理). 有界数列一定有收敛子列.

remark. 任何数列都存在单调子列.

III.函数

若 $\exists M > 0$, 在定义域内 $|f(x)| \leq M$, 则 f(x) 有界.

定理 1.11. 若函数在某点极限存在,则函数在该点的某个去心邻域内局部有界.

- 1.2.3 保号性
- 1.2.4 保不等式性
- 1.2.5 迫敛性

1.3 无穷大与无穷小

f(x) = o(1), f(x) 无穷小. f(x) = o(g(x)), f(x) 是g(x)的高阶无穷小.

f(x) = O(1), f(x)有界. $f(x) = O(g(x)), \frac{f(x)}{g(x)}$ 有界.

 $\frac{f(x)}{g(x)} = k$, 同阶. k = 1, 等价, $f(x) \sim g(x)$.

remark. 在含有o, O的等式中,含o, O的部分表示集合, 例如o(x)表示x的高阶无 穷小的集合. f(x) = o(x)表示 $f(x) \in o(x)$.

1.3.1 无穷小量的替换

乘除可以直接替换,加减保留高阶无穷小量.

1.4 常用结论

定理 **1.12.** 若 $\lim_{n\to\infty} a_n = a$, 则:

- ② $\exists a_i > 0 (i = 1, 2, ..., n), \lim_{n \to \infty} \sqrt[n]{a_1 a_2 ... a_n} = a$

定理 1.13 (Stolz定理). 若满足下列条件之一:

- ① $(\frac{*}{\infty})\{a_n\}$ 严格单调递减且 $a_n \to \infty$
- $2(\frac{0}{0})\{a_n\}$ 严格单调递减且 $a_n \to 0$

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \lim_{n \to \infty} \frac{b_n - b_{n-1}}{a_n - a_{n-1}}$$

定理 1.14 (洛必达法则). 使用条件① $\frac{*}{\infty}$ 或 $\frac{0}{0}$ ②所求函数在该点连续

remark. 满足条件时, 若使用洛必达后仍为未定式, 可继续使用洛必达法则判断.

remark. 如果使用洛必达后得到极限不存在, 不能说明原极限不存在.

remark. 若条件为函数n阶可导,可以使用洛必达法则n-1次,第n次用定义;若条件为n阶连续可导,可使用洛必达法则n次.

remark. 对于抽象函数f(x), 可导和连续情况未知, 只能通过题设条件判断.

2 函数连续性

2.1 连续性

2.1.1 连续

若 $\lim_{x\to x_0} f(x) = f(x_0)$,则称f(x)在点 x_0 处连续.

remark. 有极限一定连续

2.1.2 一致连续

f(x)定义在区间I上,若 $\forall \varepsilon > 0$, $\exists \sigma > 0$,对于 $\forall x_1, x_2 \in I$,当 $|x_1 - x_2| < \sigma$,有 $|f(x_1) - f(x_2)| < \varepsilon$,则f(x)一致连续.

2.2 间断点

第一类间断点(左右极限都存在):可去间断点、跳跃间断点 第二类间断点

2.3 连续函数的性质

- 2.3.1 局部连续性
- 2.3.2 局部保号性
- 2.3.3 最大、最小值定理

若f(x)在闭区间上连续,则f(x)在区间内一定有最大最小值(有界).

2.3.4 介值定理

f(x)在[a,b]上连续, $f(a) \neq f(b)$, 不妨设f(b) > f(a), 则 $\forall m \in (f(a),f(b))$, $\exists c \in (a,b), f(c) = m$.

2.3.5 根的存在性定理(零点定理)

3 导数与微分

3.1 导数的定义

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

remark. 若某点可导, 该点一定连续

- 3.2 导数的运算
- 3.2.1 四则运算
- 3.2.2 反函数求导

f(x)为g(x)反函数,则 $g'(x) = \frac{1}{f'(x)}$.

3.2.3 复合函数求导

$$(f(g(x)))' = f'(g(x))g'(x)$$

3.2.4 参数方程求导

对参数方程x = x(t), y = y(t), 其导数为 $\frac{y'(t)}{x'(t)}$

remark. 二阶导数为 $\frac{(\frac{y'(t)}{x'(t)})'}{x'(t)}$

3.3 高阶导数

由上一阶导数通过定义或公式求.

定理 3.1 (莱布尼茨公式).

3.4 基本初等函数的导数公式

$$(\tan x)' = \sec^2 x, (\cot x)' = -\csc^2 x.$$

$$(\sec x)' = \sec x \tan x, (\csc x)' = -\csc x \cot x.$$

$$(\arctan x)' = \frac{1}{1+x^2}, (arccot x) = -\frac{1}{1+x^2}.$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \ (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}.$$

3.5 微分的定义

若 $\Delta y = A\Delta x + o(\Delta x)$, 称f(x)在该点可微, 记 $dy = A\Delta x$. 其中A = f'(x), $\Delta x = dx$,从而dy = f'(x)dx

remark. 微分是增量 Δy 的线性主部.

remark. 在一元函数中, 可导与可微等价.

3.6 微分的运算

3.6.1 四则运算

与导数运算相似

3.6.2 复合函数求微分

$$d(f(g(x))) = f'(g(x))g'(x)dx = f'(g(x))d(g(x))$$

remark (一阶微分形式的不变性). $d(f(\square)) = f'(\square)d(\square)$, 无论 \square 是自变量还是一个函数.

3.6.3 参数方程求微分

对参数方程 $x = x(t), y = y(t), \frac{dy}{dx} = \frac{d(x(t))}{d(y(t))}.$

3.7 高阶微分

以 $y=x^2$ 为例. 以下为当x为中间变量时的化简结果. 而当x为自变量时, 由于d(dx)=0, 可进一步化简为 $d^2y=2(dx)^2$.

$$y = x^2 \tag{1}$$

$$dy = 2xdx (2)$$

$$d(dy) = 2d(xdx) \tag{3}$$

$$d^2y = 2(dx)^2 + 2xd(dx) (4)$$

remark. 说明高阶微分不具有形式上的不变性.

4 微分学基本定理

remark. 连续可微(可导): 可导且导函数连续.

4.1 中值定理

4.1.1 罗尔定理

f(x)闭区间[a,b]连续, 开区间(a,b)可导, f(a) = f(b), $\exists c \in (a,b)$, f'(c) = 0.

4.1.2 拉格朗日中值定理

f(x)闭区间[a,b]连续, 开区间(a,b)可导, $\exists c \in (a,b), f'(c) = \frac{f(a) - f(b)}{a - b}.$

4.1.3 柯西中值定理

f(x)和g(x)闭区间[a,b]连续, 开区间(a,b)可导, $\exists c \in (a,b), \frac{f'(c)}{g'(c)} = \frac{f(a)-f(b)}{g(a)-g(b)}.$

4.2 泰勒公式

4.2.1 Peano余项

若f(x)在点 x_0 存在n阶导数, $\forall x \in O(x_0), x \neq x_0$:

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + o((x - x_0)^n)$$

4.2.2 Lagrange余项

泰勒定理: $\overline{A}f(x)$ 在点 x_0 存在n+1阶导数, $\forall x \in O(x_0), x \neq x_0$, 在x π x_0 间存在 ξ :

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

4.2.3 麦克劳林公式

$$f(x) = f(0) + f'(0)x + \frac{f^{(2)}(0)}{2!}x^2 + \dots + R_n(x)$$

5 函数的图像

5.1 极值点

定理 5.1 (费马定理). 若 x_0 是f(x)的极值点且 $f'(x_0)$ 存在,则 $f'(x_0) = 0$.

remark. 考虑f(x) = |x|.

remark. 极值点必须是区间的内点(有时也称处于区间端点的最值点为单侧极值点).

若f(x)二阶可导, $f'(x_0) = 0$, $f''(x_0) \neq 0$,则 x_0 为极值点.

若f(x)n阶可微, 且在 x_0 点前n-1阶导数为零, $f^{(n)}(x_0) \neq 0$:

- ①n为奇数, x_0 不是极值点.
- ②n为偶数,极值点.

remark. 以上为充分不必要条件. 目前尚不知道极值点的充分必要条件.

remark. 极值点的一阶导数要么为0, 要么不存在.

5.2 凹凸性

凹凸性: ①二阶导的正负. ② $f(x + \Delta x) = f(x) + f'(x) \Delta x$ 的大小关系.

5.3 拐点

拐点(凹凸分界点): 若f(x)二阶可导, $f''(x_0) = 0$ 是 x_0 为拐点的充分条件.

remark. 拐点处的导数可能不存在. 如 $f(x) = \sqrt[1]{x}$ 及其拐点x = 0.

5.4 渐近线

当 $x \to \infty$, f(x)上的动点m到直线的距离 $d \to 0$.

remark. 水平/垂直/斜渐近线

5.5 曲率

5.5.1 弧微分公式

$$ds = \sqrt{1 + f'^2(x)} dx$$

5.5.2 曲率

②对参数方程
$$x = x(t), y = y(t)$$
: $K = \frac{|x'y'' - x''y'|}{\sqrt[3]{x'^2 + y'^2}}$

③曲率半径: $R = \frac{1}{k}, (k \neq 0)$

参考文献

- [1] 华东师范大学数学科学学院. 数学分析(第五版). 高等教育出版社, 2019.
- [2] 谢惠民, 恽自求, 易法槐, and 钱定边. 数学分析习题课讲义(第二版). 高等教育出版社, 2018.