Разведочный анализ данных. Исследование и визуализация данных

Цель лабораторной работы: изучение различных методов визуализация данных.

Задание: Создать ноутбук, который содержит следующие разделы: Текстовое описание выбранного Вами набора данных. Основные характеристики датасета. Визуальное исследование датасета. Информация о корреляции признаков.

In [1]:

import numpy as np import pandas as pd from sklearn import datasets import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline

In [2]:

Будем анализировать данные только на обучающей выборке df = datasets.load_wine()

In [3]:

print(df.DESCR)

.. _wine_dataset:

Wine recognition dataset

Data Set Characteristics:

:Number of Instances: 178 (50 in each of three classes)

:Number of Attributes: 13 numeric, predictive attributes and the class

:Attribute Information:

- Alcohol
- Malic acid
- Ash
- Alcalinity of ash
- Magnesium
- Total phenols - Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline
- class:
 - class_0
 - class_1
 - class_2

:Summary Statistics:

Min Max Mean SD _______________ Alcohol: 11.0 14.8 13.0 0.8 Alconor.

Malic Acid: 0.74 5.50 2...

Ash: 1.36 3.23 2.36 0.27

10.6 30.0 19.5 3 0.74 5.80 2.34 1.12 Alcalinity of Ash: 10.6 30.0 19.5 3.3 Magnesium: 70.0 162.0 99.7 14.3 Total Phenols: 0.98 3.88 2.29 0.63 Flavanoids: 0.34 5.08 2.03 1.00 Nonflavanoid Phenols: 0.13 0.66 0.36 0.12 Proanthocyanins: 0.41 3.58 1.59 0.57 Colour Intensity: 1.3 13.0 5.1 2.3 Colour Intensity: 0.48 1.71 0.96 0.23 Hue:

OD280/OD315 of diluted wines: 1.27 4.00 2.61 0.71 Proline:

278 1680 746 315 :Missing Attribute Values: None

:Class Distribution: class_0 (59), class_1 (71), class_2 (48)

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

This is a copy of UCI ML Wine recognition datasets. https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

The data is the results of a chemical analysis of wines grown in the same region in Italy by three different cultivators. There are thirteen different measurements taken for different constituents found in the three types of wine.

Original Owners:

Forina, M. et al, PARVUS -

An Extendible Package for Data Exploration, Classification and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.

Citation:

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

.. topic:: References

(1) S. Aeberhard, D. Coomans and O. de Vel, Comparison of Classifiers in High Dimensional Settings, Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. (Also submitted to Technometrics).

The data was used with many others for comparing various classifiers. The classes are separable, though only RDA has achieved 100% correct classification. (RDA: 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data)) (All results using the leave-one-out technique)

(2) S. Aeberhard, D. Coomans and O. de Vel, "THE CLASSIFICATION PERFORMANCE OF RDA" Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. (Also submitted to Journal of Chemometrics).

In [4]:

df = pd.DataFrame(data= np.c_[df['data'], df['target']], columns= df['feature_names'] + ['target']) df.head()

Out[4]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	oc
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	
4												Þ

In [5]:

df.dtypes

Out[5]:

alcohol	float64
malic_acid	float64
ash	float64
alcalinity_of_ash	float64
magnesium	float64
total_phenols	float64
flavanoide	float64

nonflavanoid_phenols float64 proanthocyanins float64 float64 color_intensity float64 hue od280/od315_of_diluted_wines float64 float64 proline target float64 dtype: object In [6]: # Размер датасета df.shape Out[6]: (178, 14)In [7]: # Список колонок df.columns Out[7]: Index(['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline', 'target'], dtype='object') In [8]: # Проверим наличие пустых значений # Цикл по колонкам датасета for col in df.columns: # Количество пустых значений - все значения заполнены temp_null_count = df[df[col].isnull()].shape[0] print('{} - {}'.format(col, temp_null_count)) alcohol - 0 malic_acid - 0 ash - 0 alcalinity_of_ash - 0 magnesium - 0 total_phenols - 0 flavanoids - 0 nonflavanoid_phenols - 0 proanthocyanins - 0 color_intensity - 0 hue - 0 od280/od315_of_diluted_wines - 0 proline - 0 target - 0

In [9]:

navanolus

Основные статистические характеристки набора данных df.describe()

Ţ

Out[9]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_int
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.0
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.0
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.3
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.2
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.2
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.6
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.2
may	14.020000	E 000000	2 220000	20.00000	162 000000	2 220000	E 000000	0.660000	2 500000	12.0

In [10]:

#Комбинация гистограмм и диаграмм рассеивания для всего набора данных. sns.pairplot(data= df)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x1b905944f28>

In [11]:

df.corr()

Out[11]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proantho
alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929	
malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-1

ash	alcohol 0.211545	malic acid 0.164045	1.000000	alcalinity of ash	magnesium 0.286587	total_phenols 0.128980	flavanoids 0.115077	nonflavanoid_phenols 0.186230	proantho
alcalinity_of_ash	0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922	-1
magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294	
total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	1
flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	
nonflavanoid_phenols	0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-1
proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845	
color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057	-1
hue	0.071747	-0.561296	0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640	
od280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270	
proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	-0.311385	
target	0.328222	0.437776	0.049643	0.517859	-0.209179	-0.719163	-0.847498	0.489109	-1

In [12]:

sns.heatmap(df.corr())

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b90a4ab9b0>

