TAREA 7

TEMA 1

Demostrar la validez de las 12 reglas de inferencia escribiéndolas en forma tabular, simbólica y en forma de tabla de verdad.

1.] MODO DE AFIRMACIÓN (Modus pones) o Regla de la separación:

$$\frac{p}{p \to q}$$

$$\therefore q$$

2.] LEY DEL SILOGISMO:

FORMA TABULAR

$$p \to q$$

$$q \to r$$

$$\therefore p \to r$$

3.] MODUS TOLLENS (Modo de negación):

FORMA TABULAR

$$p \to q$$

$$\sim q$$

$$\therefore \sim p$$

4.] REGLA DE LA CONJUNCIÓN:

FORMA TABULAR

p

q

 $\therefore p \land q$

5.] **REGLA DEL SILOGISMO DISYUNTIVO**:

FORMA TABULAR

 $p \vee q$

~p

 $\therefore q$

6.] REGLA DE CONTRADICCIÓN:

FORMA TABULAR

$$\frac{\sim p \to F_0}{\therefore p}$$

7.] REGLA DE SIMPLIFICACIÓN CONJUNTIVA: FORMA TABULAR

 $\frac{p \wedge q}{\therefore p}$

8.] REGLA DE AMPLIFICACIÓN DISYUNTIVA:

FORMA TABULAR

 $\frac{p}{\therefore p \lor q}$

9.] REGLA DE DEMOSTRACIÓN CONDICIONAL:

FORMA TABULAR

 $p \land q$ $p \to (q \to r)$ $\therefore r$

10.] REGLA DE DEMOSTRACIÓN POR CASOS:

FORMA TABULAR

$$p \to r$$

$$q \to r$$

$$\therefore (p \lor q) \to r$$

11.] REGLA DEL DILEMA CONSTRUCTIVO:

FORMA TABULAR

$$p \to q$$

$$r \to s$$

$$\underline{p \lor r}$$

$$\therefore q \lor s$$

12.] **REGLA DEL DILEMA DESTRUCTIVO**:

FORMA TABULAR

$$p \to q$$

$$r \to s$$

$$\frac{\sim q \vee \sim s}{\sim p \vee \sim r}$$

Actividad	Correlativo	Fecha
Tarea No.7	7	

Ejercicios (80)	
TOTAL (100)	

Tarea 7

1.] MODO DE AFIRMACIÓN

$$\frac{p}{\stackrel{p}{\cdot} q}$$

2.] LEY DEL SILOGISMO:

$$\begin{aligned} p &\to q \\ \underline{q &\to r} \\ \vdots & p &\to r \end{aligned}$$

3.] MODUS TOLLENS

$$\begin{array}{c} p \to q \\ \underline{\sim} q \\ \vdots \sim p \end{array}$$

$$((p \to q) \land \sim q) \to \sim p$$

$$N = 2^2 = 4$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$p \quad q \quad p \to q \quad \sim q \quad 1 \land 2 \quad \sim p \quad 3 \to 4$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1$$

$$1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$

$$1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1$$

4.] REGLA DE LA CONJUNCIÓN:

$(p \land q) \rightarrow (p \land q)$ $N = 2^2 = 4$										
		1	2	3						
p	q	pAq	$p \land q$	1 → 2						
0	0	0	0	1						
0	1	0	0	1						
1	0	0	0	1						
1	1	1	1	1						

5.] REGLA DEL SILOGISMO DISYUNTIVO:

$$p \lor q$$

$$\frac{\sim p}{\therefore q}$$

$$((p \lor q) \land \sim p) \rightarrow q$$

$$N = 2^2 = 4$$

$$1$$

$$2$$

$$3$$

$$4$$

$$p$$

$$0$$

$$0$$

$$0$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$0$$

$$1$$

$$1$$

$$1$$

$$0$$

$$0$$

$$1$$

$$1$$

$$1$$

$$0$$

$$0$$

$$1$$

$$1$$

$$1$$

$$1$$

$$0$$

$$0$$

$$1$$

6.] REGLA DE CONTRADICCIÓN:

$$\frac{\sim p \to F_0}{\therefore p}$$

$$(\sim p \to F_0) \to p$$
$$N = 2^1 = 1$$

	1	2	3	4
p	~ p	F ₀	1 → 2	3 → p
0	1	0	0	1
1	0	0	1	1

7.] REGLA DE SIMPLIFICACIÓN CONJUNTIVA:

$$\frac{p \land q}{\therefore p}$$

$$(p \land q) \to p$$

$$N = 2^2 = 4$$

$$1$$

$$2$$

$$p \qquad q \qquad p \land q \qquad 1 \to p$$

$$0 \qquad 0 \qquad 1$$

$$0 \qquad 1 \qquad 0 \qquad 1$$

$$1 \qquad 0 \qquad 0$$

$$1 \qquad 0$$

8.] REGLA DE AMPLIFICACIÓN DISYUNTIVA:

$$\frac{p}{p \lor q}$$

$$p \to (p \lor q)$$

	N =	$2^2 = 4$	
		1	2
р	q	p∨q	$p \rightarrow 1$
0	0	0	1
0	1	1	1
1	0	1	1
1	1	1	1

9.] REGLA DE DEMOSTRACIÓN CONDICIONAL:

$$\frac{p \land q}{p \rightarrow (q \rightarrow r)}$$

$$\therefore r$$

$$((p \land q) \land (p \rightarrow (q \rightarrow r))) \rightarrow (r)$$

$$N = 2^3 = 8$$

			1	2	3	4	5
p	q	r	$p \land q$	$q \rightarrow r$	<i>p</i> → 2	1 ∧ 3	4 → r
0	0	0	0	1	1	0	1
0	0	1	0	1	1	0	1
0	1	0	0	0	1	0	1
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

10.] REGLA DE DEMOSTRACIÓN POR CASOS:

$$\begin{array}{c} p \rightarrow r \\ \frac{q \rightarrow r}{2} \\ \therefore (p \lor q) \rightarrow r \\ \\ \\ ((p \rightarrow r) \land (q \rightarrow r)) \rightarrow ((p \lor q) \rightarrow r) \\ \\ N = 2^3 = 8 \\ \hline 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\ \\ \hline p \quad q \quad r \quad p \rightarrow r \quad q \rightarrow r \quad 1 \land 2 \quad p \lor q \quad 4 \rightarrow r \quad 3 \rightarrow 5 \\ \hline 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \\ \hline 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \\ \hline 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \\ \hline 0 \quad 1 \\ \hline 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \\ \hline 1 \quad 0 \quad 1 \\ \hline 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \\ \hline 1 \quad 1 \\ \hline 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \\ \hline 1 \quad 1 \\ \hline \end{array}$$

11.] REGLA DEL DILEMA CONSTRUCTIVO:

$$p \to q$$

$$r \to s$$

$$\frac{p \lor r}{\therefore q \lor s}$$

$$((p \to q) \land (r \to s) \land (p \lor r)) \to (q \lor s)$$

$$N = 2^4 = 16$$

				1	2	3	4	5	6	7
р	q	r	S	$p \rightarrow q$	$r \rightarrow s$	$p \lor r$	1 / 2	3 ∧ 4	$q \vee s$	5 → 6
0	Ö	0	0	1	1	0	1	0	0	1
0	0	0	1	1	1	0	1	0	1	1
0	0	1	0	1	0	1	0	0	0	1
0	0	1	1	1	1	1	1	1	1	1
0	1	0	0	1	1	0	1	0	1	1
0	1	0	1	1	1	0	1	0	1	1
0	1	1	0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	0	0	1
1	0	0	1	0	1	1	0	0	1	1
1	0	1	0	0	0	1	0	0	0	1
1	0	1	1	0	1	1	0	0	1	1
1	1	0	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1
1	1	1	0	1	0	1	0	0	1	1
1	1	1	1	1	1	1	1	1	1	1

12.] REGLA DEL DILEMA DESTRUCTIVO:

$$p \to q$$

$$r \to s$$

$$\frac{\sim q \vee \sim s}{\therefore \sim p \vee \sim r}$$

$$((p \to q) \wedge (r \to s) \wedge (\sim q \vee \sim s)) \to (\sim p \vee \sim r)$$

$$N = 2^4 = 16$$

				1	2	3	4	5	6	7	8	9	10	11
р	q	r	s	~ p	~ q	~r	~ s	$p \rightarrow q$	$r \rightarrow s$	2 V 4	5 ∧ 6	8∧7	1 V 3	9 → 10
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	0	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	0	1	0	0	1	1
0	0	1	1	1	1	0	0	1	1	1	1	1	1	1
0	1	0	0	1	0	1	1	1	1	1	1	1	1	1
0	1	0	1	1	0	1	0	1	1	0	1	0	1	1
0	1	1	0	1	0	0	1	1	0	1	0	0	1	1
0	1	1	1	1	0	0	0	1	1	0	1	0	1	1
1	0	0	0	0	1	1	1	0	1	1	0	0	1	1
1	0	0	1	0	1	1	0	0	1	1	0	0	1	1
1	0	1	0	0	1	0	1	0	0	1	0	0	1	1
1	0	1	1	0	1	0	0	0	1	1	0	0	1	1
1	1	0	0	0	0	1	1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	0	1	1	0	1	0	0	1
1	1	1	0	0	0	0	1	1	0	1	0	0	0	1
1	1	1	1	0	0	0	0	1	1	0	1	0	0	1