习顯课

- 1. (1)为了得到函数 $y = \lg \frac{x+3}{10}$ 的图像,只需把函数 $\lg x$ 的图像上的所有点()
- A. 向左平移3个单位长度,再向上平移1个单位长度;
- B. 向右平移 3 个单位长度,再向上平移 1 个单位长度;
- C. 向左平移3个单位长度,再向下平移1个单位长度;
- D. 向右平移 3 个单位长度,再向下平移 1 个单位长度.

(2).函数 $f(x) = \frac{2x+1}{x-3} + e^{x-2} - e^{4-x} + 2$ 在 [-2,8] 上的最大值和最小值分别为 M 和 N ,则

【解】(1) 因 $\lg \frac{x+3}{10} = \lg(x+3) - \lg 10 = \lg(x+3) - 1$,因此,为得到 $y = \lg \frac{x+3}{10}$ 的图像, 只需将 $y = \lg x$ 的图像向左平移3个单位长度,再向下平移1个单位长度;选C。

(2) $\frac{2x+1}{x-3}$ 的图像关于点(3,2) 对称, $e^{x-2}-e^{4-x}+2$ 的图像也关于点(3,2) 对称, 故 f(x)的 图像关于点(3,2)对称;又,区间[-2,8]的中点为3,故M+N=4

(1) 已知 $f(x) = 2^x + x$, $g(x) = \log_2 x + x$, $h(x) = x^3 + x$ 的零点分别为 a,b,c, 则 a,b,c2. 的大小顺序为()

M + N =

- A. a>b>c B. b>c>a C. c>a>b D. b>a>c

(2) 指数函数 $y = (\frac{b}{a})^x$ 的图像如图所示,则二次函数 $y = ax^2 + bx$ 图像顶点的横坐标的取 值范围____

【解】(1) 由 $2^a + a = 0$ 知 a < 0; 由 $\log_2 b + b = 0$ 知 0 < b < 1; 由 $c^3 + c = 0$ 知 c = 0; 综 上, b>c>a, 选B。

(2) 由图像知: $0 < \frac{b}{a} < 1$, 故, 二次函数 $y = ax^2 + b$ 图像顶点的横坐标为:

$$-\frac{b}{2a} = -\frac{1}{2} \times \frac{b}{a} \in (-\frac{1}{2}, 0)$$

3. 若函数 $f(x) = \log_{\frac{1}{3}}(ax^2 + 2x + 8)$ 的值域为 $[-2, +\infty)$,则 f(x) 的单调递增区间为

A.
$$(-\infty, -2)$$
 B. $(-2,1]$ C. $[1,4)$ D. $(4,+\infty)$

B.
$$(-2,1]$$

D.
$$(4, +\infty)$$

【解】令 $t = ax^2 + 2x + 8$,因 $\log_1 t$ 递减,由f(x)的值域为[$-2, +\infty$)知 $t \le 9$,

即 $ax^2 + 2x - 1 \le 0$ 恒成立,且 $ax^2 + 2x - 1$ 能取到 0,

故
$$\begin{cases} a < 0 \\ \Delta = 4 + 4a = 0 \end{cases}$$
,解得 $a = -1$,从而 $ax^2 + 2x + 8 = -x^2 + 2x + 8$,其对称轴为直线

x=1, f(x) 要递增, 则 $-x^2+2x+8$ 应递减, 故 $x \ge 1$;

考虑到 $-x^2+2x+8>0$,则-2< x<4,综合之,得 $1\le x<4$,选C。

【本题是好题】很多同学读不懂题。

4. 已知函数
$$f(x) = \begin{cases} |x+1|, & x \le 0 \\ |\log_2 x|, & x > 0 \end{cases}$$
, 若方程 $f(x) = a$ 有四个不同的解 x_1 , x_2 , x_3 , x_4 ,

且 $x_1 < x_2 < x_3 < x_4$,则 $x_3(x_1 + x_2) + \frac{1}{x_3^2 x_4}$ 的取值范围是()

A.
$$(-1,+\infty)$$

B.
$$(-1,1]$$

A.
$$(-1,+\infty)$$
 B. $(-1,1]$ C. $(-\infty,1)$ D. $[-1,1)$

D.
$$[-1,1]$$

【解】由题意知,
$$f(x) = \begin{cases} -x-1, & (x \le -1) \\ x+1, & (-1 < x \le 0) \\ -\log_2 x, & (0 < x \le 1) \end{cases}$$
, $\log_2 x, & (x > 1)$

从图像上看, f(x)=a 要有四个不同的根,需有 $a\in(0,1]$,此时,有 $x_1 + x_2 = -2$, $-\log_2 x_3 = \log_2 x_4 = a$, $\text{Min} x_3 x_4 = 1$, $\text{H} x_3 = 2^{-a}$, $x_4 = 2^a$

所以,
$$x_3(x_1+x_2)+\frac{1}{{x_3}^2x_4}=-2x_3+\frac{1}{x_3}=-2\times 2^{-a}+2^a (a\in(0,1])$$
 令 $g(a)=-2\times 2^{-a}+2^a (a\in(0,1])$,显然 $g(a)$ 为关于 a 的单调递增函数,故其值域为 $(-1,1]$,

即 $x_3(x_1+x_2)+\frac{1}{x_2^2x_4}$ 的取值范围为(-1,1],选 B。

5. 已知函数 $f(x) = \ln(\sqrt{x^2 + 1} + x) + \frac{a^x}{a^x - 1}(a > 0$ 且 $a \neq 1$),若 $f(\lg(\log_2 3)) = \frac{1}{3}$,则 $f(\lg(\log_3 2)) = ()$

B. $\frac{1}{2}$

C. $\frac{2}{2}$

显然, f(x)+f(-x)=1, 故, 由 $f(x_0)=\frac{1}{3}$ 知 $f(-x_0)=\frac{2}{3}$, 即 $f(\lg(\log_3 2))=\frac{2}{3}$, 选

 C_{\circ}

设函数 $f(x)=e^x+2x-a$ ($a \in R, e$ 为自然对数的底数),若存在实数 $b \in [0,1]$ 使 f(f(b)) = b 成立,则实数 a 的取值范围是(

A. $\begin{bmatrix} 0, e \end{bmatrix}$

B. [1,1+e] C. [1,2+e]

D. [0,1]

【解】 $\Diamond f(b) = \lambda$,则 $f(\lambda) = b$,易知f(x)单调递增,

如 $\lambda > b$,则 $f(\lambda) > f(b)$,即 $b > \lambda$,矛盾

如 $\lambda < b$,则 $f(\lambda) < f(b)$,即 $b < \lambda$,也矛盾

故, $\lambda = b$, 即 f(b) = b, 从而 $e^b + 2b - a = b \Rightarrow a = e^b + b$,

因 $b \in [0,1]$,故 $e^b + b \in [1,e+1]$,选B。

已知[x]表示不超过实数 x 的最大整数, f(x) = [x]为取整函数, x_0 是方程 $e^x - \frac{4}{x} = 0$ 的根(e = 2.718..., 为自然对数的底数),则 $f(x_0)$ 等于(

A. 4

B. 3

D. 1

【解】 $\Rightarrow g(x) = e^x - \frac{4}{x}$, 显然, x < 0 时, g(x) = 0 无解

而x>0时,易知g(x)单调递增,故g(x)如有零点,则仅有一个,

因 g(1) = e - 4 < 0, $g(2) = e^2 - 2 > 0$,故 g(x) 有唯一零点 $x_0 \in (1,2)$,从而 $f(x_0) = [x_0] = 1$,选 D。

8. 已知函数 $f(x) = \begin{cases} 2x + 3, x \le 0 \\ (x - 2)^2, x > 0 \end{cases}$,则函数 $g(x) = [f(x)]^2 - f[f(x)]$ 的所有零点之和为

【解】
$$\diamondsuit f(x) = t$$
 , 则 $g(x) = 0 \Rightarrow t^2 - f(t) = 0 \Rightarrow f(t) = t^2$, 显然 $t \neq 0$;

如
$$t > 0$$
,则 $f(t) = t^2 \Rightarrow (t-2)^2 = t^2 \Rightarrow t = 1$,

此时,
$$f(x)=1$$
有 $x_1=-1, x_2=1, x_3=3$ 三个根;

如
$$t < 0$$
,则 $f(t) = t^2 \Rightarrow 2t + 3 = t^2 \Rightarrow t = -1$,

此时,
$$f(x) = -1$$
 有 $x_4 = -2$ 一个根;

综上, g(x)的所有零点之和为 1, 选 D。

9. (2024 年 1 月清华大学中学生标准学术能力测试)若不等式 $\sqrt{x^2-4x+5}+\sqrt{x^2-8x+17}\le 4$ 的解集为[a,b],则a+b 的值为(

B.
$$4\sqrt{2}$$

D. 7

【解】原不等式变形为
$$\sqrt{(x-2)^2+1}+\sqrt{(4-x)^2+1} \le 4$$
,

令
$$f(x) = \sqrt{x^2 + 1}$$
, 则原不等式为 $f(x-2) + f(4-x) \le 4$ 。

由于函数 g(x)=f(x-2)+f(4-x)的图像关于直线 x=3 对称,故 $g(x)\le 4$ 的解集 [a,b]一定关于 3 对称,因此 a+b=6,选 C。

【法二】由题意得 $\sqrt{x^2-4x+5} \le 4-\sqrt{x^2-8x+17}$, 两边平方并化简得

$$2\sqrt{x^2-8x+17} \le 7-x$$
,两边在平方,并化简得 $3x^2-18x+19 \le 0$,

由题意知: x = a, x = b 一定为方程 $3x^2 - 18x + 19 = 0$ 的两个根,故由韦达定理得

$$a+b=\frac{18}{3}=6$$
, 选 C.

10. (2022 年全国乙卷) 已知函数 f(x),g(x) 的定义域均为 R,且 f(x)+g(2-x)=5,g(x)-f(x-4)=7,若y=g(x)的图像关于直线x=2对称,g(2)=4,

$$\operatorname{III} \sum_{k=1}^{22} f(k) =$$

A-21

B.-22

C.-23

D.-24

【解】由题意得
$$\begin{cases} f(x)+g(2-x)=5\\ g(2-x)-f(-2-x)=7 \end{cases}$$
 $\Rightarrow f(x)+f(-2-x)=-2$,

故f(x)的图像关于点(-1,-1)中心对称;

因g(x)的图像关于直线x=2对称,故

$$f(x)+g(2-x)=5 \Rightarrow f(-x)+g(2+x)=5 \Rightarrow f(-x)+g(2-x)=5 \Rightarrow f(x)=f(-x)$$
,

故f(x)为偶函数,且周期为4。

由
$$g(2) = 4$$
 得 $f(0) = 1$; 由 $f(-1) = -1$ 得 $f(1) = -1$,

利用
$$f(x+2) = -2 - f(x)$$
, 得: $f(2) = -3$, $f(3) = -1$, $f(4) = 1$,

故
$$\sum_{k=1}^{22} f(k) = \sum_{k=1}^{20} f(k) + f(21) + f(22) = -24$$
, 选 D。

11. 以 $\max M$ 表示数集 M 中最大的数。设 0 < a < b < c < 1,已知 $b \ge 2a$ 或 $a + b \le 1$,则 $\max \left\{ b - a, c - b, 1 - c \right\}$ 的最小值为_____。

【解】
$$\Leftrightarrow$$
 max $\{b-a,c-b,1-c\}=y$

如果
$$b \ge 2a$$
 ,即 $a \le \frac{b}{2}$,则 $y = \max\{b-a,c-b,1-c\} \ge \max\{\frac{b}{2},c-b,1-c\}$

因此:
$$y \ge \frac{b}{2} \Rightarrow 2y \ge b$$
, $y \ge c - b$, $y \ge 1 - c$,

三式相加得:
$$4y \ge 1 \Rightarrow y \ge \frac{1}{4}$$
, 当且仅当 $\frac{b}{2} = c - b = 1 - c$, 即 $\left(a, b, c\right) = \left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right)$ 时取等

号。

如
$$a+b \le 1$$
,即 $a \le 1-b$,则 $y = \max\{b-a, c-b, 1-c\} \ge \max\{2b-1, c-b, 1-c\}$

$$to y ≥ 2b-1 \Rightarrow \frac{y}{2} ≥ b-\frac{1}{2}, y ≥ c-b, y ≥ 1-c$$

三式相加得
$$\frac{5}{2}$$
 $y \ge \frac{1}{2}$ \Rightarrow $y \ge \frac{1}{5}$, 当且仅当 $2b-1=c-b=1-c$, 即 $(a,b,c)=\left(\frac{2}{5},\frac{3}{5},\frac{4}{5}\right)$ 取

等号。

综上, $\max\{b-a,c-b,1-c\}$ 的最小值为 $\frac{1}{5}$ 。

12. (1) 已知实数
$$x_1, x_2$$
 满足 $x_1e^{x_1} = e^3, x_2(\ln x_2 - 2) = e^5$,则 $x_1x_2 =$ _____

(2) 已知实数
$$a,b$$
 满足 $a^3 - 3a^2 + 5a = 1, b^3 - 3b^2 + 5b = 5$,则 $a+b =$

【解析】(1) 利用同构的思想。题中两式两边取对数得 $\begin{cases} x_1 + \ln x_1 = 3 \\ \ln x_2 + \ln(\ln x_2 - 2) = 5 \end{cases}$

也即
$$\left\{ \begin{aligned} x_1 + \ln x_1 - 3 &= 0 \\ (\ln x_2 - 2) + \ln(\ln x_2 - 2) &= 3 \\ \end{aligned} \right. ,$$

令 $f(x) = x + \ln x - 3$,则 f(x) 单调递增,且 $f(x_1) = f(\ln x_2 - 2) = 0$,故 $x_1 = \ln x_2 - 2$,

从而,由 $\ln x_2 + \ln(\ln x_2 - 2) = 5$ 得 $\ln x_2 + \ln x_1 = 5$,即 $\ln x_1 x_2 = 5$,得 $x_1 x_2 = e^5$

(2) 由题意知:
$$a^3 - 3a^2 + 5a - 3 = -2$$
, $b^3 - 3b^2 + 5b - 3 = 2$

$$\Rightarrow f(x) = x^3 - 3x^2 + 5x - 3$$
, $y = f(a) = -2$, $f(b) = 2$

又, 易知 f(x) 的图像关于点(1,0) 对称, 故 a+b=2。

【注意】三次函数 $f(x) = ax^3 + bx^2 + cx + d$ 的图像关于 $(-\frac{b}{3a}, f(-\frac{b}{3a}))$ 中心对称。

13. (1) 不等式
$$\frac{8}{(x+1)^3} + \frac{10}{x+1} - x^3 - 5x > 0$$
 的解集为_____

A.
$$\frac{5}{2}$$

C.
$$\frac{7}{2}$$

【解】(1) 原不等式
$$\Leftrightarrow (\frac{2}{x+1})^3 + 5 \cdot \frac{2}{x+1} > x^3 + 5x$$
,

令 $f(x) = x^3 + 5x$,则 f(x) 单调递增,且原不等式等价于 $f(\frac{2}{x+1}) > f(x)$,故 $\frac{2}{x+1} > x$,解得其解集为 $\{x \mid x < -2$ 或 $-1 < x < 1\}$

(2) 【巧解】由题意知: $2x_1 + 2^{x_1} = 5$ 知,故 $1 < x_1 < \frac{3}{2}$;

同理, $2 < x_2 < \frac{5}{2}$,故 $3 < x_1 + x_2 < 4$,只能选 C。

【法二】仍然利用同构的思想。由题意知

$$\begin{cases} 2x_1 + 2^{x_1} = 5 \\ 2x_2 + 2\log_2(x_2 - 1) = 5 \end{cases} \Rightarrow \begin{cases} x_1 + 2^{x_1 - 1} = \frac{5}{2} \\ x_2 + \log_2(x_2 - 1) = \frac{5}{2} \end{cases} \Rightarrow \begin{cases} (x_1 - 1) + 2^{x_1 - 1} = \frac{3}{2} \\ (x_2 - 1) + \log_2(x_2 - 1) = \frac{3}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 2^{x_1-1} + \log_2 2^{x_1-1} = \frac{3}{2} \\ (x_2-1) + \log_2 (x_2-1) = \frac{3}{2} \end{cases}$$

$$\Leftrightarrow f(x) = x + \log_2 x$$
, $\text{ MJ } f(2^{x_1-1}) = f(x_2-1) = \frac{3}{2}$,

易知 f(x) 为单调递增函数,故 $2^{x_1-1}=x_2-1$,从而 $\log_2(x_2-1)=x_1-1$,

故
$$(x_2-1)+\log_2(x_2-1)=\frac{3}{2}$$
 ⇒ $(x_2-1)+(x_1-1)=\frac{3}{2}$ ⇒ $x_1+x_2=\frac{7}{2}$

14. 设函数 $f_k(x) = 2^x + (k-1)2^{-x} (x \in R, k \in Z)$ 。若

$$2m + f_1(m) = 5$$
, $\log_2 f_1(2n) + 2\log_2(n-1) = 5$, $\bowtie m+n =$ _______.

【解】
$$2m + f_1(m) = 5 \Rightarrow 2m + 2^m = 5 \Rightarrow 2^{m-1} = \frac{5}{2} - m$$

$$\log_2 f_1(2n) + 2\log_2(n-1) = 5 \Rightarrow \log_2 2^{2n} + 2\log_2(n-1) = 5$$

$$\Rightarrow 2n + 2\log_2(n-1) = 5 \Rightarrow \log_2(n-1) = \frac{5}{2} - n$$

因 $y=2^x$ 与 $y=\log_2 x$ 互为反函数,其图像关于直线 y=x 对称,因此 $y=2^{x-1}$ 与 $y=\log_2(x-1)$ 的图像关于直线 y=x-1 对称;

又,易知点 $P(m, \frac{5}{2}-m)$, $Q(n, \frac{5}{2}-n)$ 分别为曲线 $y=2^{x-1}$ 、 $y=\log_2(x-1)$ 与直线 $y=\frac{5}{2}-x$ 的交点;而直线 $y=\frac{5}{2}-x$ 与直线 y=x-1垂直,

故 $P(m, \frac{5}{2} - m)$, $Q(n, \frac{5}{2} - n)$ 的中点 $M(x_0, y_0)$ 即为直线 $y = \frac{5}{2} - x$ 与直线 y = x - 1 的交点

【解法二】(同构的思想) 前面相同,易知: $2^{m-1} = \frac{5}{2} - m$, $\log_2(n-1) = \frac{5}{2} - n$, 即

$$2^{m-1} + (m-1) - \frac{3}{2} = 0 \tag{1}$$

$$\log_2(n-1) + (n-1) - \frac{3}{2} = 0$$
, (2)

②变形,得
$$\log_2(n-1) + 2^{\log_2(n-1)} - \frac{3}{2} = 0$$
 ③

令
$$f(x) = 2^{x} + x - \frac{3}{2}$$
, 显然 $f(x)$ 单调递增,

由① ③知
$$f(m-1) = f(\log_2(n-1))$$
,故 $m-1 = \log_2(n-1)$,

由②知
$$\log_2(n-1) = \frac{3}{2} - (n-1)$$
,代入上式得

故
$$m-1=\frac{3}{2}-(n-1)$$
, 整理即得 $m+n=\frac{7}{2}$

15. (2023 年重庆高联赛) 若实数 x, y 满足 $4x^2 - 2xy + 2y^2 = 1$,则 $3x^2 + xy + y^2$ 的最大值与最小值之和为____。

【分析】本题有好几种方法,比如这样变形 $3x^2 + xy + y^2 = \frac{3x^2 + xy + y^2}{4x^2 - 2xy + 2y^2}$,然后求解;这里,我们应用另一种齐次化思想,并结合判别式法完成

【解】 齐次化思想。令 $3x^2 + xy + y^2 = k$,则 $3x^2 + xy + y^2 = k(4x^2 - 2xy + 2y^2)$,整理成关于x的方程,得 $(4k-3)x^2 - (4k+1)xy + (2k-1)y^2 = 0$,

由于k不可能恒为 $\frac{3}{4}$,上面方程可看成是关于x的一元二次方程,由于其有解,故

$$\Delta = (4k+1)^2 y^2 - 4(4k-3)(2k-1)y^2 \ge 0,$$

由于 y 不可能恒为 0,由上面不等式得 $-16k^2 + 48k - 11 \ge 0$,解得 $\frac{1}{4} \le k \le \frac{11}{4}$,且均能取等,

从而 $3x^2 + xy + y^2$ 的最大值与最小值之和为 3。

- 16. (1) .若函数 f(x) 是 **R** 上的单调函数,且对任意的实数 x 都有 $f\left[f(x) + \frac{2}{2^x + 1}\right] = \frac{1}{3}$,则 $f(\log,3) =$
- (2) 若对于满足 $-1 \le t \le 3$ 的一切实数t,不等式 $x^2 (t^2 + t 3)x + t^2(t 3) > 0$ 恒成立,则x的取值范围为____
- 【解】(1) 由 f(x) 是 R 上的单调函数知:存在唯一实数 t,使得 $f(t) = \frac{1}{3}$,于是 $f(x) + \frac{2}{2^x + 1} = t$,

即
$$f(x) = t - \frac{2}{2^x + 1}$$
 , 从而 $f(t) = t - \frac{2}{2^t + 1} = \frac{1}{3}$,

因
$$f(t) = t - \frac{2}{2^t + 1}$$
 关于 t 单调递增,且 $f(1) = \frac{1}{3}$,故, $t = 1$,即 $f(x) = 1 - \frac{2}{2^x + 1}$

故
$$f(\log_2 3) = \frac{1}{2}$$

(2) 原不等式化为 $(x-t^2)[x-(t-3)] > 0$, $(x-t^2)[x-(t-3)] = 0$ 之二根为

$$x_1 = t^2, x_2 = t - 3$$

$$\therefore x_1 - x_2 = (t - \frac{1}{2})^2 + 3 - \frac{1}{4} > 0 , \quad \therefore x < t - 3 \implies x > t^2 ,$$

∴
$$x < (t-3)_{\min} = -4 \implies x > \{t^2\}_{\max} = 9$$

17. (全国高联赛) 若实数 a,b,c 满足 $2^a + 4^b = 2^c$, $4^a + 2^b = 4^c$, 则 c 的最小值是______

【解】设
$$2^a = x, 2^b = y, 2^c = z$$
,则 $x, y, z > 0$,由条件知 $x + y^2 = z$, $x^2 + y = z^2$

故
$$z^2 - y = x^2 = (z - y^2)^2 = z^2 - 2y^2z + y^4$$

故
$$z = \frac{y^4 + y}{2y^2} = \frac{1}{4} \left(2y^2 + \frac{1}{y} + \frac{1}{y} \right) \ge \frac{1}{4} \cdot 3\sqrt[3]{2} = \frac{3\sqrt[3]{2}}{4}$$

当且仅当 $2y^2 = \frac{1}{y}$, 即 $y = \frac{1}{\sqrt[3]{2}}$, z 的最小值为 $\frac{3\sqrt[3]{2}}{4}$

由于
$$c = \log_2 z$$
,故 c 的最小值为 $\log_2 \frac{3\sqrt[3]{2}}{4} = \log_2 3 - \frac{5}{3}$

18. 已知函数 $f(x) = \frac{4^x + k \cdot 2^x + 1}{4^x + 2^x + 1}$, 若对于任意的实数 x_1, x_2, x_3 均存在以

$$f(x_1), f(x_2), f(x_3)$$
为三边长的三角形,则实数 k 的取值范围是_____

【解】
$$f(x) = \frac{4^x + k \cdot 2^x + 1}{4^x + 2^x + 1} = \frac{4^x + 2^x + 1 + (k - 1)2^x}{4^x + 2^x + 1} = 1 + \frac{k - 1}{2^x + \frac{1}{2^x} + 1} = 1 + (k - 1)g(x)$$

其中
$$g(x) = \frac{1}{2^x + \frac{1}{2^x} + 1} \in \left(0, \frac{1}{3}\right]$$

首先,我们要保证对 $\forall x \in R$,有f(x) > 0;

 $k \ge 0$ 时显然,如k < 0,则需 $1 + \frac{k-1}{3} > 0$,即k > -2;

综上, 我们有k > -2。

当 $k \ge 1$ 时, $1 < f(x) \le \frac{k+2}{3}$, 当且仅当 x = 0 时取等号

因
$$f(x_1)+f(x_2)>f(x_3)$$
 对任意的 x_1,x_2,x_3 恒成立,故 $2 \ge \frac{k+2}{3}$,所以 $1 \le k \le 4$

当
$$k < 1$$
时, $\frac{k+2}{3} \le f(x) < 1$,当且仅当 $x = 0$ 时取等号,由 $f(x_1) + f(x_2) > f(x_3)$ 对任

意
$$x_1, x_2, x_3$$
 恒成立,知 $2 \cdot \frac{k+2}{3} \ge 1$,解得 $-\frac{1}{2} \le k < 1$

综上可得,
$$-\frac{1}{2} \le k \le 4$$

19. 若正数 a,b 满足 $\log_2 a + \log_4 b = 8, \log_4 a + \log_8 b = 2$,则 $\log_8 a + \log_2 b =$ _____。

【解】由题意

$$\log_2 a + \log_4 b = 8 \Rightarrow 3\log_8 a + \frac{1}{2}\log_2 b = 8$$
 (1)

$$\log_4 a + \log_8 b = 2 \Rightarrow \frac{3}{2} \log_8 a + \frac{1}{3} \log_2 b = 2$$
 (2)

由①②解得
$$\log_8 a = \frac{20}{3}$$
, $\log_2 b = -24$

故,
$$\log_8 a + \log_2 b = -\frac{52}{3}$$

20. (北京大学夏令营)若 $4x^2 + 2xy + y^2 - 2ax - ay + 2 \ge 0$ 对任意的 $x, y \in R$ 恒成立,则 a 的最大值为 ____

【解】 将题目所给不等式看成是关于x的一元二次不等式,即 $4x^2 + (2y - 2a)x + y^2 - ay + 2 \ge 0$,

因其恒成立,故 $\Delta_1 = (2y-2a)^2-16(y^2-ay+2) \le 0$,化简得 $3y^2-2ay-a^2+8 \ge 0$,由于此不等式也恒成立,故 $\Delta_2 = 4a^2-12(-a^2+8) \le 0$,解得 $-\sqrt{6} \le a \le \sqrt{6}$,故,a的最大值为 $\sqrt{6}$ 。

【注意】本题中, 我们两次利用了判别式法, 足见该法的重要性

21. (2024 年 中 科 大 强 基 计 划) 函 数 $f:R \to R$ 满 足 $\forall x, y \in R, f(x+f(y)) = f(f(x)) + y$, 且 f(1) = 2024, 则 $f(2024) = ______$ 。

【解析】
$$\Leftrightarrow x = 0$$
 ,可得 $f(f(y)) = f(f(0)) + y$, (*

从而
$$f(f(f(y))) = f(f(0)) + f(y)$$
;

另一方面,
$$f(f(f(y))) = f(f(f(0)) + y) = f(f(y)) + f(0)$$
, 因此

$$f(f(0))+f(y)=f(f(y))+f(0)=f(f(0))+y+f(0)$$

即
$$f(y) = y + f(0)$$
, $\Rightarrow y = 1$ 得 $f(0) = 2023$, 故 $f(2024) = 2024 + 2023 = 4047$

22. 设函数 $f(x) = |\lg(x+1)|$, 实数 a,b(a < b) 满足 $f(a) = f(-\frac{b+1}{b+2})$, $f(10a+6b+21) = 4\lg 2$, 求a,b的值.

【解】因为
$$f(a) = f(-\frac{b+1}{b+2})$$
,

所以,
$$|\lg(a+1)| = |\lg(-\frac{b+1}{b+2}+1)| = |\lg(\frac{1}{b+2})| = |\lg(b+2)|$$
,

所以a+1=b+2或(a+1)(b+2)=1,

又因为a < b,所以 $a+1 \neq b+2$,

所以
$$(a+1)(b+2)=1$$
 ①

易知 a+1>0,故 a+1<1,b+2>1,故 10a+6b+22=10(a+1)+6(b+2)>1从而 $f(10a+6b+21)=4\lg 2\Rightarrow \left|\lg\left(10a+6b+22\right)\right|=\lg 16\Rightarrow 10a+6b+22=16$ ⇒ 5a+3b=-3

联立① ②解得: $a = -\frac{2}{5}$, $b = -\frac{1}{3}$ 或a = 0, b = -1, 与a < b矛盾, 舍去。

综上,
$$a = -\frac{2}{5}$$
, $b = -\frac{1}{3}$ 。

23. 已知函数 g(x) = ax + b, $h(x) = x^2 + 1$, $f(x) = \frac{g(x)}{h(x)}$, 若曲线 g(x)与h(x)恰有一个交点且交点横坐标为 1.

- (1) 求a,b的值及f(x);
- (2) 判断函数 f(x) 在区间(0,1) 上的单调性,并利用定义证明你的结论;
- (3) 已知 $\forall x_1, x_2 \in (0, +\infty)$,且 $x_1 < x_2$,若 $f(x_1) = f(x_2)$,试证: $x_1 + x_2 > 2$

【解】(1) 由题意知方程 g(x) = h(x) 有唯一一根 x = 1, 即 $x^2 - ax - b + 1 = 0$ 有唯一一根

$$x=1$$
,由韦达定理得 $\begin{cases} a=2 \\ -b+1=1 \end{cases}$,解得 $\begin{cases} a=2 \\ b=0 \end{cases}$,故 $f(x) = \frac{2x}{x^2+1} (x \in R)$

(2) 函数 f(x) 在区间(0,1) 上单调递增,证明如下:

假设 $x_1 < x_2$,则 $x_1 - x_2 < 0$, $1 - x_1 x_2 > 0$ 。故

$$f(x_1) - f(x_2) = \frac{2x_1}{x_1^2 + 1} - \frac{2x_2}{x_2^2 + 1} = 2\frac{x_1x_2^2 + x_1 - x_2x_1^2 - x_2}{\left(x_1^2 + 1\right)\left(x_2^2 + 1\right)} = 2\frac{\left(x_1 - x_2\right)\left(1 - x_1x_2\right)}{\left(x_1^2 + 1\right)\left(x_2^2 + 1\right)} < 0,$$

(3) 由 (2) 可得: 函数 f(x) 在区间(0,1) 上单调递增, 在 $(1,+\infty)$ 上单调递减,

$$\boxtimes f(x_1) = f(x_2), \ \boxtimes x_1, x_2 \in (0, +\infty), \ x_1 < x_2, \ \boxtimes x_1 \in (0, 1), x_2 \in (1, +\infty), 2 - x_1 \in (1, +\infty),$$

要证 $x_1+x_2>2$,即证 $x_2>2-x_1$,只需证明 $f\left(x_2\right)< f\left(2-x_1\right)$,由于 $f\left(x_1\right)=f\left(x_2\right)$,故只需证明 $f\left(x_1\right)< f\left(2-x_1\right)$

$$\mathbb{Z}, \ f(x_1) < f(2-x_1) \Leftrightarrow \frac{2x_1}{x_1^2+1} < \frac{2(2-x_1)}{(2-x_1)^2+1} \Leftrightarrow \frac{x_1}{x_1^2+1} - \frac{2-x_1}{(2-x_1)^2+1} < 0$$

$$\Leftrightarrow \frac{x_1 \left[(2 - x_1)^2 + 1 \right] - (2 - x_1) \left(x_1^2 + 1 \right)}{\left(x_1^2 + 1 \right) \left[(2 - x_1)^2 + 1 \right]} < 0 \Leftrightarrow \frac{2 \left(x_1 - 1 \right)^3}{\left(x_1^2 + 1 \right) \left[(2 - x_1)^2 + 1 \right]} < 0,$$

由于 $x_1 \in (0,1)$, 上面不等式显然成立, 故 $f(x_1) < f(2-x_1)$, 即 $x_1 + x_2 > 2$, 证毕。

(3) **另证**: 记 $f(x_1) = f(x_2) = t$,则 x_1, x_2 是方程 f(x) = t,也即 $tx^2 - 2x + t = 0$ 的两个正根,显然 $t \neq 0$,由韦达定理得 $x_1x_2 = 1$,由于 $x_1 \neq x_2$,故 $x_1 + x_2 > 2\sqrt{x_1x_2} = 2$ 。证毕。