Extraction plan for APCL18_095-APCL18_188

2018-07-11

This is a script for adding samples that are not in the laboratory database and have not been extracted. This is set up to handle one plate at a time.

Obtain a list of all clownfish sample ids from the Leyte database

```
# connect to leyte fieldwork db
leyte <- read_db("Leyte")
# import fish table
# select down to only sample_id numbers and remove any rows without a sample
fish <- leyte %>% tbl("clownfish") %>%
    # select only the column sample_id
select(sample_id) %>%
# remove any non-sample observations
filter(!is.na(sample_id)) %>%
distinct(sample_id) %>%
# remove any repeat sample_ids (this should not be needed)
collect()

# make sure each sample_id is only represented once
fish <- distinct(fish)</pre>
```

Select the range of samples in the plate

```
work <- fish %>%
  filter(sample_id >= params$first, sample_id <= params$last)

# define wells
plate <- data.frame(row = rep(LETTERS[1:8], 12), col = unlist(lapply(1:12, rep, 8))) %>%
  mutate(sample_id = ifelse(row == "D" & col == 2, "XXXX", NA),
        sample_id = ifelse(row == "E" & col == 8, "XXXX", sample_id))

samples <- plate %>%
  filter(is.na(sample_id)) %>%
  select(-sample_id)

plate <- anti_join(plate, samples, by = c("row", "col"))

samples <- cbind(samples, work)

plate <- rbind(plate, samples) %>%
  arrange(col, row)
```

Make a plate map of sample IDs (for knowing where to place fin clips)

```
platemap <- as.matrix(reshape2::acast(plate, plate[,1] ~ plate[,2]), value.var = plate[,3])
knitr::kable(platemap, booktabs = T) %%
# use scale_down to get map to fit within the bounds of the pdf
kable_styling(latex_options = "scale_down")</pre>
```

	1	2	3	4	5	6	7	8	9	10	11	12
A	APCL18_095	APCL18_103	APCL18_110	APCL18_118	APCL18_126	APCL18_134	APCL18_142	APCL18_150	APCL18_157	APCL18_165	APCL18_173	APCL18_181
В	APCL18_096	APCL18_104	APCL18_111	APCL18_119	APCL18_127	APCL18_135	APCL18_143	APCL18_151	APCL18_158	APCL18_166	APCL18_174	APCL18_182
C	APCL18_097	APCL18_105	APCL18_112	APCL18_120	APCL18_128	APCL18_136	APCL18_144	APCL18_152	APCL18_159	APCL18_167	APCL18_175	APCL18_183
D	APCL18_098	XXXX	APCL18_113	APCL18_121	APCL18_129	APCL18_137	APCL18_145	APCL18_153	APCL18_160	APCL18_168	APCL18_176	APCL18_184
E	$APCL18_099$	$APCL18_106$	APCL18_114	$APCL18_122$	$APCL18_130$	$APCL18_138$	$APCL18_146$	XXXX	APCL18_161	$APCL18_169$	$APCL18_177$	APCL18_185
F	APCL18_100	APCL18_107	APCL18_115	APCL18_123	APCL18_131	APCL18_139	APCL18_147	APCL18_154	APCL18_162	APCL18_170	APCL18_178	APCL18_186
G	APCL18_101	APCL18_108	APCL18_116	APCL18_124	APCL18_132	APCL18_140	APCL18_148	APCL18_155	APCL18_163	APCL18_171	APCL18_179	APCL18_187
H	$APCL18_102$	$APCL18_109$	APCL18_117	$APCL18_125$	$APCL18_133$	APCL18_141	$APCL18_149$	APCL18_156	APCL18_164	$APCL18_172$	$APCL18_180$	APCL18_188

ONLY DO THIS ONCE

Generate extract numbers for database

```
lab <- read_db("Laboratory")
extracted <- lab %>% tbl("extraction") %>%
    summarise(last = max(extraction_id, na.rm = T)) %>%
    collect() %>%
    mutate(last = substr(last, 2,5))

plate <- plate %>%
    mutate(well = 1:nrow(plate)) %>%
    mutate(extraction_id = paste("E", well + as.numeric(extracted$last), sep = "")) %>%
    mutate(well = paste(row, col, sep = "")) %>%
    mutate(method = "DNeasy96",
        final_vol = "200")

plate_name <- plate %>%
    summarise(first = min(extraction_id),
        last = max(extraction_id, na.rm = T))
```

Make a platemap with extraction ids

```
map <- plate %>%
  select(row, col, extraction_id)
  platemap <- as.matrix(reshape2::acast(map, map[,1] ~ map[,2]), value.var = map[,3])</pre>
```

Using extraction_id as value column: use value.var to override.

```
knitr::kable(platemap, booktabs = T) %>%
kable_styling()
```

	1	2	3	4	5	6	7	8	9	10	11	12
A	E4743	E4751	E4759	E4767	E4775	E4783	E4791	E4799	E4807	E4815	E4823	E4831
В	E4744	E4752	E4760	E4768	E4776	E4784	E4792	E4800	E4808	E4816	E4824	E4832
\mathbf{C}	E4745	E4753	E4761	E4769	E4777	E4785	E4793	E4801	E4809	E4817	E4825	E4833
D	E4746	E4754	E4762	E4770	E4778	E4786	E4794	E4802	E4810	E4818	E4826	E4834
\mathbf{E}	E4747	E4755	E4763	E4771	E4779	E4787	E4795	E4803	E4811	E4819	E4827	E4835
\mathbf{F}	E4748	E4756	E4764	E4772	E4780	E4788	E4796	E4804	E4812	E4820	E4828	E4836
G	E4749	E4757	E4765	E4773	E4781	E4789	E4797	E4805	E4813	E4821	E4829	E4837
H	E4750	E4758	E4766	E4774	E4782	E4790	E4798	E4806	E4814	E4822	E4830	E4838

```
plate <- plate %>%
  mutate(plate = paste(plate_name$first, plate_name$last, sep = "-")) %>%
  select(-row, -col)
```

Import the extract list into the database

Make sure you have created your output PDF for this labwork before sending to the database

```
rm(lab)
lab <- write_db("Laboratory")

## Loading required package: DBI

# dbWriteTable(lab, "extraction", plate, row.names = F, overwrite = F, append = T)

dbDisconnect(lab)

## [1] TRUE

rm(lab)</pre>
```

Load fin clips

Calculate the amount of lysis buffer to make

```
num_samples <- params$num_samples
w_error <- num_samples *1.1

mix <- readr::read_csv("num_samples_w_error, ul_prot_k, ml_ATL_buff
0,0,0") %>%
mutate(num_samples_w_error = w_error,
ul_prot_k = w_error * 20 * 0.001,
ml_ATL_buff = w_error * 180 * 0.001)
kable(mix)
```

num_samples_w_error	ul_prot_k	ml_ATL_buff
105.6	2.112	19.008

- 1. Set up tubes of fin clips into the plate formation on tube holder block according to plate map.
- 2. Create the lysis mix in a 50mL falcon tube, do not vortex (foamy), and pour into 50mL reservoir.
- 3. Place an 8 well strip of collection tubes (H position labeled with the column number) onto the loading plate and fill with $200\mathrm{uL}$ of lysis mix.
- 4. Double check that the next column of tubes matches the plate map
- 5. Place the fins in the collection tubes
- 6. Cap the tubes
- 7. When the entire plate is done, place in the incubator overnight.
- 8. Allow the plate to cool and check the caps to make sure they are on securely.
- 9. Follow the Qiagen protocol for plate extraction.

Next follow the protocol for gel and pico_plate to check quality and quantity of extracts