Hierarchical Bayesian Models for SN la in the Optical and NIR

SN la NIR Meeting U. Pittsburgh 12 April 2018 Kaisey Mandel
Institute of Astronomy
Statistical Laboratory
University of Cambridge

Outline

- Simple-BayeSN: (Mandel, Scolnic, Shariff, Foley & Kirshner 2017)
 - A statistical model for the SN la colour-magnitude relation (with intrinsic variation and dust effects)
 - Implications for Optical and NIR
- BayeSN Optical+NIR LC model (Mandel et al. 2011)

Current State of Play

- Current optical surveys are now limited by systematic uncertainties, e.g. photometric calibration error and modeling error, rather than "statistical" (number of supernovae).
- Conventional analysis method (SALT2) does not distinguish between different physical effects of intrinsic SN variations and extrinsic host galaxy dust extinction/reddening
- Scolnic et al. 2014: a different colour/mag modeling interpretation of the Hubble Diagram scatter results in a 4% systematic shift in w
- Confounding of host galaxy dust extinction/reddening with intrinsic SN la optical color variations systematically limits the accuracy and precision of SN la distances & cosmological constraints

Conventional Approach

- SALT2 continuous light curve model fit to irregularly samples, noisy optical data (SN2007le, BVR, CfA4)
- Estimates peak apparent magnitude m_B , peak apparent color c = (B-V), and light curve shape x

Conventional Tripp Formula

Abs Mag =
$$m_B - \mu = M_0 + \alpha \cdot x + \beta \cdot c$$

- A Simplistic Linear Model for Absolute Magnitude with width-luminosity (α) and color-luminosity trends (β)
- Typically find $\beta \approx [\Delta Mag \text{ in B } / \Delta Color \text{ B-V}] \approx 3$ Unusually low β compared to normal MW interstellar dust c.f. $R_B \approx 4.1 \ (R_V = R_B - I \approx 3.1)$.
- \bullet Problem: Regresses dust-extinguished magnitude $M_s^{\rm ext}$ vs dust-reddened apparent color $c_s^{\rm app}$

$$m_B^s - \mu_s = M_s^{\text{ext}} = M_0^{\text{ext}} + \alpha \cdot x_s + \beta \cdot c_s^{\text{app}}$$

- Does not distinguish between intrinsic SN la variations and host galaxy dust (only one β for all color-mag effects)
- Realistically, SN la magnitudes and colors contain both intrinsic SN la variations and host galaxy dust effects

$$M_s^{\text{ext}} = M_s^{\text{int}} + A_B^s$$
 $c_s^{\text{app}} = c_s^{\text{int}} + E(B - V)_s$

Problem with Conventional Tripp Formula

Two Color-Mag effects (intrinsic β_{int} , dust R_B), one β Slope parameter!

Words (and Notation) Matter!

"Intrinsic": Latent parameters of SN in absence of host galaxy dust

- ullet Intrinsic Abs. Mag: $\,M_s^{
 m int}$
- Intrinsic Color: $c_s^{
 m int}$

Effects of Host Galaxy Dust for each SN (only positive!)

- Reddening $E_s \equiv E(B-V)_s$
- Extinction (dimming)

$$A_B^s = R_B \times E(B - V)_s$$

"Dusty": Latent parameters of SN including effects of host galaxy dust

- Extinguished Abs. Mag $\,M_s^{
 m ext} = M_s^{
 m int} \,+\,A_B^s\,$
- Apparent Color $c_s^{\mathrm{app}} = c_s^{\mathrm{int}} + E(B-V)_s$

Two Physically distinct correlations cannot be captured with one β color-mag relation!

$$M_s^{\mathrm{int}} \sim c_s^{\mathrm{int}}$$

 $A_B^s \sim E(B-V)_s$

What about the host galaxy dust?

Dust Absorption vs. Wavelength of Light

Fig. 3.—Comparison between the mean optical/NIR R_{ν} -dependent extinction law from eqs. (2) and (3) and three lines of sight with largely separated R_{ν} values. The wavelength position of the various broad-band filters from which the data were obtained are labeled (see Table 3). The "error" bars represent the computed standard deviation of the data about the best fit of $A(\lambda)/A(V)$ vs. R_{ν}^{-1} with $a(x) + b(x)/R_{\nu}$ where $x \equiv \lambda^{-1}$. The effect of varying R_{ν} on the shape of the extinction curves is quite apparent, particularly at the shorter wavelengths.

- Absorption of light (dimming)
 depends on λ, causing reddening
- Interstellar lines of sight to SN in different galaxies can pass through different random amounts of dust
- Key Parameters of Interstellar Dust (different for each SN)
 - A_B ~ Amount of Dust Absorption (dimming)
 - $R_B = A_B/E(B-V) \sim Wavelength$ Dependence of Dust Absorption
- Don't really know a priori which SN are unaffected by dust; must model probabilistically

My Approach (Mandel+09, 11, 14, 17):

Hierarchical Bayesian / Probabilistic Generative Model

Observed SN la Data = Sum of latent random effects: intrinsic variation, dust, measurement error (Simple-BayeSN)

Understanding the Probabilistic Generative Model via Forward Simulation

Intrinsic Color-Luminosity Variations

Intrinsic Color

Host Galaxy Dust Effects:

Reddening: $c_s^{app} = c_s^{int} + E(B - V)_s$

Extinction: $M_s^{\text{ext}} = M_s^{\text{int}} + A_B^s$

Dust Law: $R_B = R_V + 1 = A_B/E(B - V)$

Dust
Extinction &
Reddening
are Only
Positive!
(E_s > 0)

SN la Color-Mag Distribution (intrinsic vs dusty)

(Black: Conventional Tripp Fit)

$$m_B^s - \mu_s = M_B^{\text{ext}} = M_0^{\text{ext}} + \alpha \cdot x_s + \beta \cdot c_s^{\text{app}}$$

Effective "Dusty" Color-Magnitude Distribution is a Convolution of the Intrinsic & Dust Distributions: Effective Color-Mag Trend is a Curve!

Model Predicts
Positive Distance
Bias for Linear
Tripp Fit
in the tails of
apparent color
distribution

Tripp Fit is a linear approx. to curve near mean apparent color

Inverse Problem: Statistical inference with SN la

- SN la cosmology inference based on empirical relations
- Statistical models for SN la are learned from the data
- Several Sources of Randomness & Uncertainty
 - I. Photometric (Measurement) & LC Fitting errors
 - 2. "Intrinsic Variation" = Population Distribution of SN la
 - 3. Random Peculiar Velocities in Hubble Flow
 - 4. Host Galaxy Dust: extinction and reddening.
- Observed Distributions are convolutions of these effects
- How to incorporate this all into a coherent statistical model? (How to "de-convolve"?) - Hierarchical Bayes!

Advantages of Hierarchical Models

- Incorporate multiple sources of randomness & uncertainty underlying the observed data
- Express structured probability models adapted to conceptual / physical data-generating forward process
- Hierarchically Model (Physical) Populations and Individuals simultaneously: e.g. intrinsic SN Ia properties and Dust Reddening/Absorption
- Inference = probabilistically de-convolves multiple latent effects underlying data
- Full Posterior probability distribution = Global, coherent quantification of uncertainties at individual and population levels

Directed Acyclic Graph for SN la Inference with Hierarchical Bayesian Model (Simple-BayeSN) (Mandel et al. 2016)

- Intrinsic Variation of SN la
- Dust Extinction & Reddening
- Peculiar Velocities
- Measurement Error

Global Joint
Posterior
Probability
Density
Conditional
on all SN
Data

Probabilistic
Graphical Model

The Data:

Optical LC fits for 248 nearby (low-z < 0.1) SN Ia (CfA, CSP) cross-calibrated with Pan-STARRS [Scolnic+15]

Bayesian Posterior Inference & Statistical Computation

- Estimate Intrinsic
 Relation, Dust Law,
 Dust Population, etc.
- Gibbs Sampling utilizes conditionals of full posterior to update MCMC steps
- Explore joint posterior probability of all parameters

Four Parallel MCMC Chains

Results: Discerning Dust vs. Intrinsic Variations

Intrinsic Color-Magnitude Slope \neq Dust Reddening Vector! (Color-Magnitude Effects NOT described by a single slope β !)

Effective Colour-Mag Distribution

Nonlinear Mean Apparent Colour-Magnitude Relation

Results: Inferring Dust Extinction/Reddening (R_B) vs. Intrinsic Color-Luminosity Trend (β_{int})

Dust Reddening Vector consistent with Milky Way dust $(R_V = 3.1)$! Intrinsic Color-Magnitude Slope \neq Dust Reddening Vector!

Results: Inferring Population Distributions of SN la Intrinsic Color vs Host Galaxy Dust

Roughly Equal Contributions to Total Apparent Color Variance

Hubble Diagram: Use Trained Model Hyperparameters to Predict Photometric Distances based on SN Ia Light Curve Data:

$$P(\mu_s | d_s, \hat{\Theta}_{SN}, \hat{\tau}, \hat{R}_B)$$

Hubble Residuals

Simple-BayeSN
Corrects ~ 0.1 mag bias
in tails of SN Ia
color distribution
relative to Linear Tripp fit

Main Effect of Model

Implications for / Advantages of NIR change effective τ = Avg. Dust

Using M_{NIR} for standard candle, would expect a significant suppression of effect

For any combination of M_F and c_{F-G} , effect depends on relative colour-mag slopes and dispersions of intrinsic vs. dust components

BayeSN: Optical+NIR LC model

Mandel, Narayan & Kirshner 2011

Optical+NIR Hierarchical Model Inference

PTEL+CfA3 Light-curves (Moderate Extinction)

Mandel, Narayan & Kirshner (2011)

Marginal Posterior of Dust

BayeSN: Modeling SN Ia Light curves: Learning the population distribution of LCs

Beyond one parameter: a "non-parametric" approach

Mandel, Narayan & Kirshner 2011

- Many Local Parameters
 describing intrinsic absolute
 magnitude and shape of LC
 over short time segments at
 each rest-frame λ-filter
- Goal: Learn from the data the (non-stationary) Covariance Structure of SN Ia intrinsic absolute light curves over multiple λ-filters and phases t
- Models Gaussian Process joint intrinsic distribution of LCs (over t and λ-filter)

BayeSN Light Curve Population Analysis

Mandel, Narayan & Kirshner 2011

-0.5

Learning the Intrinsic Covariance of SN Ia LC Population

Draws from Population Distribution

Correlation Map for Luminosities and LC Decline Rates

Peak M_E

Н

Η