

Hadoop安全体系介绍以及实践分享

杨威@明略数据

促进软件开发领域知识与创新的传播

实践第一

案例为主

时间: 2015年12月18-19日/地点:北京·国际会议中心

欢迎您参加ArchSummit北京2015,技术因你而不同

ArchSummit北京二维码

[**北京站**] 2016年04月21日-23日

关注InfoQ官方信息 及时获取OCon演讲视频信息

风险

• 外部风险

● 恶意用户入侵 – 密码破解

• 内部风险

• 内部用户 - 违规操作、失误操作、越权访问

●数据风险

• 数据被泄漏、篡改、删除

●服务风险

• 服务非法使用、资源超限使用、系统可用性风险

Hadoop平台"安全"的两个方面

•数据安全

- 保障平台上的数据不被恶意用户所窃取、破坏和泄漏
- 保障平台上的服务不被恶意操作和使用
- 网络安全、主机安全、服务安全、数据安全

•运维安全

- 即工业界常提的安全生产
- 提升平台的稳定性和可靠性,保障服务的正常运行
- 权限独立管理、资源统一管理、服务热备双活

Hadoop 之 数据安全

- ●缺乏安全配置的Hadoop平台有哪些隐患?
 - · SIMPLE的身份验证机制
 - nobody都可以冒充superuser
 - · 基于Linux用户组信息的文件访问控制
 - 本地权限可被恶意用户利用
 - · 不经授权的数据访问和粗粒度的数据访问控制
 - _ 不经授权的获取关键数据
 - · 不设防的底层文件存储
 - 偷走文件即偷走了数据内容

不设防的身份验证

- · SIMPLE的身份验证机制
 - 认为系统内的所有节点都是可信赖的
 - 认为用户的身份都是他自己所宣称的

・后果

- 任意机器可伪装成为集群的一个节点加入
 - ·伪装成DataNode,NodeManager甚至NameNode
 - ·破坏集群的正常运转
- 集群任意节点的任意帐号可伪装成超级用户或者其他用户
 - ·任意偷取、破坏数据
 - •任意提交任务占用集群资源
 - •等等你能想到的一切最坏情况

基于Linux用户组信息的文件访问控制

- 模拟Linux的文件系统权限:RWX* (Owner, Group, Other)
- 可利用本地权限获得平台权限
 - 开给某个应用的跳板机上,假设A, B 两个帐号分属不同组,都可以访问Hadoop
 - A将其文件设置为了Group可读
 - 假如B拿到了该跳板机的Root权限,即可把自己的属组改为和A相同,即可访问A的文件

不经授权的数据访问

- · Hive的数据表通常没有设置访问权限
- 表级别的权限控制不能限制敏感数据的访问

• أ	ID	Name	Cardbin	Addres s	Orde r	Merchan t	Transaction
	1	张三	8888-9999-6666- 1111	北京	123	家乐福	100.00
	2	李四	8888-9999-6666- 2222	北京	321	沃尔玛	10000.00
	3	Tom	8888-9999-6666- 3333	深圳	222	海底捞	330.01
	4	Cat	8888-9999-6666- 4444	深圳	456	香格里拉	299.99

Brought by InfoQ

不设防的底层文件存储

- · 再好的上层身份认证、 权限控制系统都抵不住 底层文件直接泄漏
 - HIVE中的数据文件以明 文或者近似明文的方式 存储
 - 恶意用户可直接copy走 文件来绕过上层的权限 管理系统
 - 恶意用户甚至可直接 copy走DataNode上的 DataBlock来窃取数据

Hadoop平台之安全体系

操作安全

安全审计安全运维

服务安全

服务访问授权服务权限分割

数据安全

数据传输加密 底层数据加密 数据访问授权

周边安全

网络安全、系统安全 身份系统、安全认证

Hadoop平台之安全体系

- 身份认证
 - Kerberos
- 身份管理
 - LDAP
- 授权访问
 - 服务授权访问: Policy File
 - 文件授权访问: HDFS ACL
 - 数据授权访问:SENTRY

- 安全审计
 - 审计日志
- 数据加密
 - HDFS crypto
 - Hadoop Key Management Server (KMS)
- 传输加密
- 通信加密
- REST加密与认证

进出请刷卡!——列宁也遵守!**O**I

身份认证

要证明你是你

- 你有打开锁的钥匙
- 你能对上暗号

在俄国革命胜利后,身为最高苏维埃主席的列宁,一次去克里母林宫开会,在大 门口因未带证件被卫兵拦住,门内走出一人,一声对卫兵说:这是列宁同志,你怎么 能不让他进去呢?卫兵说:我知道他是列宁,但他没带证件,列宁立即制止来人,并 对卫兵说:同志,你做得对!

为确保小区业主的生命财产安全,出入小区及车库 请自觉刷卡,并主动配合服务人员的检查和指引。

身份认证

- · 基于Kerberos的服务与用户的身份认证 机制
 - 80年代中期产生,93年加入RFC协议,已成为网络中可信任的第三认证服务的事实标准
 - Principal, Realm
 - KDC(Key distribution center),
 AS(Authentication service), TGS(Ticket-granting service)
- 基于口令/密钥认证
- · 一次登录,全局认证,适用于分布式系统

KEY DISTRIBUTION CENTER (KDC) Authertication Service (AS) Network Services

4 Here is your Service Ticket

> 5 Here is my Service Ticket,

> > Client/Server Session

USER LOGINS

TO GAIN NETWOK KERBEROS TICKET EXCHANGE

身份认证

当前需要进行Keberos认证的组件

- Zookeeper
- HDFS
- YARN
- HBase
- Hive
- Impala
- Oozie
- Sqoop2
- Flume
- HUE
- Kafka(on the way)

身份认证

■Kerberos登录方式

命令式

[hdfs@d196 ~]\$ kinit -k -t .secret/hdfs.keytab hdfs/196.mininglamp.com

程序代码

```
帐号家码
```

```
LoginContext context = new LoginContext("loginContext", null,
    new UsernamePasswordCallbackHandler(principal, password), new KerberosConfiguration());
context.login();
return context.getSubject();
```

Keytab文件

ugi = UserGroupInformation.loginUserFromKeytabAndReturnUGI(princ, keyTab);

独立身份系统

- 与Linux用户组信息无关的用户管理
- 所有的权限控制基于此用户管理系统统一进行
- 基于Kerberos的用户身份
 - Kerberos Pricipal -> Hadoop User
 - Etlman/hadoop@mininglamp.com

独立身份系统

- 基于LDAP独立管理的用户组信息
 - Hadoop User -> Hadoop Group

- hadoop.security.groups.cache.secs
- Hadoop.security.group.mapping.ldap.bind.passwordfile

Impersonation - Proxy User

可动态生效, 无需重启服务

bin/hdfs dfsadmin –refreshSuperUserGroupsConfiguration bin/yarn rmadmin –refreshSuperUserGroupsConfiguration

一些建议

• Kerberos备份

- Kerberos应配合LinuxContainerExecutor一起使用
 - 不使用LinuxContainerExecutor,所有的container会以yarn用户执行, container之间可以 互相访问本地目录
 - 每个机器上运行的任务是以提交任务的用户UID执行, container之间不可互相访问数据
- LinuxContainerExcecutor可考虑配合cgroups
 - 严格的cpu、内存使用限制

授权访问

- 通过了身份认证,只证明了你是你
- 想要使用平台的服务,还需进行授权访问
 - 获得你的详细信息,比如你是谁,你是哪个组的
 - 服务授权,授权你使用哪个服务的哪些功能
 - 数据授权,授权你访问哪些文件、目录,哪个表的哪些行、哪些列

服务授权访问

- 限制用户使用哪些服务的哪些功能
- · 覆盖了主要的存储(HDFS、Hbase)和计算资源(Yarn,Oozie)的使用
- 基于用户和组的访问控制列表
- 细粒度的访问权限控制
 - 控制能否访问NameNode/DataNode
 - 能否提交任务/杀死任务/查看任务状态
 - Hbase表查询/表管理操作等
 - Oozie任务提交、查看操作等
- 服务访问控制动态生效

一些建议

- HDFS服务的授权访问
 - 关闭HDFS超级用户的权限
 - 增加集群管理员组、HDFS文件系统超级用户组、HDFS文件系统用户组
 - 审计需求
 - 便于管理

```
<name>dfs.cluster.administrators
<value>hdfs hadoop-admins</value>
```


一些建议

- YARN服务的授权访问
 - 增加YARN集群管理员组、YARN Scheduler管理员组、YARN用户组
 - 增加job historyserver的管理员组
 - 要求用户提交任务时指定队列

```
property>
 <name>yarn.resourcemanager.scheduler.class</name>
 <value>
   org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler
 </value>
</property>
cproperty>
                                                             cproperty>
 <name>yarn.scheduler.fair.user-as-default-queue</name>
 <value>false</value>
                                                               <name>mapreduce.jobhistory.admin.acl</name>
</property>
                                                               <value>mapred hadoop-admins</value>
cproperty>
                                                             </property>
 <name>yarn.scheduler.fair.allow-undeclared-pools</name>
 <value>false</value>
</property>
```


HDFS ACL

unnamed user (file owner)	文件的拥有者
unnamed group (file group)	文件的所属组
named user	除了文件的拥有者和拥有组之外,的其它用户
named group	除了文件的拥有者和拥有组之外,的其它用户
mask	权限掩码,用于过滤named user和named group的权限

```
[hadoop@master ~]$ hdfs dfs -getfacl /input/acl
                                                     【初始权限】
# file: /input/acl
# owner: hadoop
# group: supergroup
user::rwx
group::r-x
mask::r-x
other::r-x
[hadoop@master ~]$ hdfs dfs -setfacl -m user:mapred:rwx /input/acl
                                                         【mapred用户拥有rwx权限,但mask为r-x,则
[hadoop@master ~]$ hdfs dfs -getfacl /input/acl
mask自动改为rwx】
# file: /input/acl
# owner: hadoop
# group: supergroup
user::rwx
user:mapred:rwx
group::r-x
mask::rwx
other::r-x
```


- Hive \ Impala Sentry
 - Apache Sentry 是一个加强的细粒度的基于角色的授权系统,针对存储在 Hadoop 集群中的数据和元数据。

- Hive \ Impala Sentry
 - Apache Sentry 是一个加强的细粒度的基于角色的授权系统,针对存储在 Hadoop 集群中的数据和元数据。

Acre是明略数据研发的在Hive、Impala、Spark SQL上支持行列(Cell)级别访问控制的组件

特性

- 支持基于ACL和RBAC的混合授权模型 (Note: 可以限制开发人员)
- •支持Hive、Impala、Spark的统一授权管理
- 支持行列 (Cell) 基本访问控制
- 基于访问过滤的实现无需修改原数据库/表结构

行为审计

- 凡做过必留下痕迹
- 管理操作审计
 - 服务操作审计,包括安装、配置、卸载、启停、管理等操作
 - 机器操作审计,包含安装、卸载、管理等
- 服务访问审计
 - HDFS
 - Hbase
 - Hive
 - YARN

数据加密

- 偷到也白给
- · 基于HDFS crypto提供静态加密区(目录)
- 基于 Hadoop KMS (Key Management Server)提供加密 密钥管理
- 对应用透明的文件系统层加密
 - Hive、MR、Hbase、HDFS操作等均透明
- 超级用户也无法获取解密数据
 - 只有通过Kerberos认证的数据区拥有者,且通过HDFS的权限认证, 方可访问数据

通信加密

· RPC通信

hadoop.rpc.protection = privacy

• 数据传输

- dfs.encrypt.data.transfer = true"
- dfs.encrypt.data.transfer.algorith =3des
- dfs.encrypt.data.transfer.cipher.suites = AES

· 安全DataNode

- · 基于SASL的身份认证和数据加密机制
 - SASL可以认为是认证+加密两部分组成
 - 通过Kerberos进行身份认证
 - 通过Digest-Md5进行数据加密

接口保护

- API接口
 - · Kerberos认证
 - Hadoop.rpc.protection
- REST接口
 - Httpfs HTTPS

I/NI ax

Advantage	Description			
Simplified access	Entend Hadoop's REST/HTTP services by encapsulating Kerberos within the cluster			
Enhanced security	Expose Hadoop's REST/HTTP services without revealing network details, with SSL provided out of box			
Centralized control	Centrally enforce REST API security and route requests to multiple Hadoop clusters			
Enterprise integration	Support LDAP, Active Directory, SSO, SAML and other authentication systems			

KNox

Web Console

- NameNode, ResourceManager Web 界面
 - · 支持HTTP SPNEGO验证机制
 - SPNEGO底层基于Kerberos,是使用标准HTTP协议为WEB应用 进行Kerberos扩展的一种机制

平台安全的更多层次

网络安全 网络隔离

分段管理

• 安全性

- 网络安全
- 主机安全
- 服务安全
- 数据安全

Hadoop平台"安全"的两个方面

•数据安全

- 保障平台上的数据不被恶意用户所窃取、破坏和泄漏
- 保障平台上的服务不被恶意操作和使用
- 网络安全、主机安全、服务安全、数据安全

• 运维安全

- 即工业界常提的安全生产
- 提升平台的稳定性和可靠性,保障服务的正常运行
- 权限独立管理、资源统一管理、服务热备双活

服务高可用

- HDFS NameNode HA
- YARN ResourceManager HA
 - 基于Zookeeper, 内置 "zkfc", ActiveStandbyElector
 - **只负责**ApplicationMaster的状态维护和容错恢复,而AppMaster内部的容错需要自行管理
 - RM切换会导致常驻服务重启,如Storm, HBase, thriftserver
 - Slider项目
- HBase Master HA
 - 基于Zookeeper
 - ActiveMasterManagement

服务高可用

- ●服务热备
 - Oozie

服务高可用

- HiveServer2 HA
 - HAProxy

平台可靠性

• Everything On Yarn, 资源统一管理和分配,保障关键服务的资源使用

如何评估安全需求

●用户

- 业务线 开发者/数据分析师/平台管理员/安全审计人员...
- 访问方式 Shell登录/API访问/WEB访问
- 使用服务 HDFS/HBase/Hive..
- 访问数据 日志文件/交易数据/个人身份信息...

●环境

- 网络环境 内网、外网, 网络结构
- 系统环境 操作系统、端口设定、漏洞补丁等
- 云服务

THANKS