Assignment(matrix theory)

ee24btech11056 - S.Kavya Anvitha

A Fill in the blanks

- 1. The larger of $\cos(\ln \theta)$ and $\ln(\cos \theta)$ if $e^{-\frac{\pi}{2}} < \theta < \frac{\pi}{2}$ (1983 - 1 Mark)
- 2. The function $y = 2x^2 \ln|x|$ is monotonically increasing for values of $x(\neq 0)$ satisfying the inequalities and monotonically decreasing for values of x satisfying the inequalities

(1983 - 2 Marks)

- 3. The set of all x for which $ln(1 + x) \le x$ is equal (1987 - 2 Marks)
- 4. Let P be a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$
- 1 with foci F_1 and F_2 . If A is the area of the triangle PF_1F_2 then the maximum value of A is (1994 - 2 Marks)
- 5. Let C be the curve y^3 3xy + 2 = 0. If H is the set of points on the curve C where the tangent is horizontal and V is the set of the point on the curve C where the tangent is vertical then H = and V =(1994 - 2 Marks)

B True / False

1. If x-r is a factor of the polynomial f(x) = $a_n x^4 + \dots + a_0$, repeated m times $(1 < m \le n)$, then r is a root of f'(x)=0 repeated m times.

(1983 - 1 Mark)

2. For 0 < a < x, the minimum value of the function $log_a x + log_x a$ is 2. (1984 - 1 Mark)

C MCQs with One Correct Answer

- 1. If a+b+c=0, then the quadratic equation $3ax^2$ + 2bx + c = 0 has (1983 - 1 Mark)
 - a. at least one root in [0,1]
 - b. one root in [2,3] and other in [-2,-1]
 - c. imaginary roots
 - d. none of these
- 2. AB is a diameter of a circle and C is any point on the circumference of the circle. Then

(1983 - 1 Mark)

- a. the area of \triangle ABC is maximum when it is isosceles
- b. the area of Δ ABC is minimum when it is isosceles

c. the perimeter of Δ ABC is minimumwhen it is isosceles

1

- d. none of these
- 3. The normal to the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$ at any point '\theta' is such that (1983 - 1 Mark)
 - a. it makes constant angle with the x axis
 - b. it passes through the origin
 - c. it is at a constant distance from the origin
 - d. none of these
- 4. If $y = a \ln x + bx^2 + x$ has its extremum values at x = -1 and x = 2, then (1983 - 1 Mark)
- a. a = 2, b = -1b. a = 2, $b = \frac{-1}{2}$ c. a = -2, $b = \frac{1}{2}$ d. none of these

- 5. Which one of the following curves cut the parabola $y^2 = 4ax$ at right angles? (1994)
- a. $x^2 + y^2 = a^2$ c. y = axb. $e^{\frac{-x}{2a}}$ d. $x^2 = 4ay$

- 6. The function defined by $f(x) = (x+2)e^{-x}$ is (1994)
 - a. decreasing for all x
 - b. decreasing in $(-\infty, -1)$ and increasing in $(-1,\infty)$
 - c. increasing for all x
 - d. decreasing in $(-1, \infty,)$ and increasing in $(-\infty, -1)$
- 7. The function $f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$ is (1995S)
 - a. increasing on $(0, \infty)$
 - b. decreasing on $(0, \infty)$
 - c. increasing on $(0, \frac{\pi}{e})$, decreasing on $(\frac{\pi}{e}, \infty)$ d. decreasing on $(0, \frac{e}{e})$, increasing on $(\frac{\pi}{e}, \infty)$
- 8. On the interval [0, 1] the function $x^{25}(1-x)^{25}$ takes its maximum value at the point

- a. 0 b. $\frac{1}{4}$ c. $\frac{1}{2}$ d. $\frac{1}{3}$