ELK 307 İletişim Kuramı-l

Nihat KABAOĞLU

Ders 3

Dersin İçeriği

- Sinyaller ve Sistemlerin Temelleri
 - Enerji ve Güç Spektral Yoğunluğu
 - Öz ve Çapraz İlinti Fonksiyonları
 - □ Hilbert Transformu ve Özellikleri
 - □ Ön Zarf ve Kompleks Zarf Kavramları
 - □ Bant Geçiren Sinyal ve Sistemler
 - □ Faz ve Grup Gecikmesi

Kısım-2

Sinyaller ve Sistemlerin Temelleri

Enerji ve Güç Spektrumları

- Hem deterministik hem de periyodik olmayan sinyaller enerji sinyalleridir.
- Periyodik sinyaller ve rasgele sinyaller güç sinyalleridir.

Enerji Spektral Yoğunluğu

$$E = \int_{-\infty}^{\infty} f^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^{2} d\omega = \int_{-\infty}^{\infty} |F(f)|^{2} df$$

Bu ilişki <u>Parseval teoremi</u> olarak bilinir ve şunu ifade eder: <u>Bir f(t) sinyalinin toplam enerjisi f(t) nin tüm frekans bileşenlerinin toplam enerjisine eşittir.</u>

ķΑ

Enerji ve Güç Spektrumları

 $|F(\omega)|, f(t)'$ nin genlik spektrumu

 $\Psi_{\rm f}(\omega) = |F(\omega)|^2$ enerji spektral yoğunluğu olarak tanımlanır.

Enerji Spektral Yoğunluğunun birimi [Joule / Hz]' dir.

$$F(\omega) = H(\omega)G(\omega)$$

$$\Psi_{f}\left(\omega\right) = \left|F\left(\omega\right)\right|^{2} = \left|H\left(\omega\right)G\left(\omega\right)\right|^{2} = \left|H\left(\omega\right)\right|^{2} \left|G\left(\omega\right)\right|^{2}$$

$$\left|\Psi_{f}\left(\omega\right)=\left|H\left(\omega
ight)
ight|^{2}\Psi_{g}\left(\omega
ight)
ight|$$

Enerji ve Güç Spektrumları

Güç Spektral Yoğunluğu

f(t) bir güç sinyali ise $(-\infty,\infty)$ aralığında sonsuz bir enerjiye sahiptir. Fourier dönüşümünü bulmak için f(t) nin kesilmiş hali olan $f_{\tau}(t)$ sinyali kullanılmalı.

$$f_{T}(t) = \begin{cases} f(t) &, |t| \leq \frac{T}{2} \\ 0 &, |t| > \frac{T}{2} \end{cases}$$

$$P_{f} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f_{T}^{2}(t) dt = \lim_{T \to \infty} \frac{1}{T} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \left| F_{T}(\omega) \right|^{2} d\omega \right)$$

$$P_{f} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{\left|F_{T}(\omega)\right|^{2}}{T} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{f}(\omega) d\omega$$

Enerji ve Güç Spektrumları

Bu durumda f(t)' nin güç spektral yoğunluğu

$$S_{f}\left(\omega
ight) = \lim_{T o \infty} rac{\left|F_{T}\left(\omega
ight)
ight|^{2}}{T} \quad \Rightarrow \quad S_{f}\left(\omega
ight) = \lim_{T o \infty} rac{\Psi_{f}\left(\omega
ight)}{T}$$

Güç Spektral Yoğunluğunun birimi [Watt / Hz]' dir.

$$S_{f}\left(\omega\right) = \left|H\left(\omega\right)\right|^{2} S_{g}\left(\omega\right)$$

Ozilinti Fonksiyonu

- Özilinti fonksiyonu, bir sinyalin belli bir miktar geciktirilmiş hali ile kendisi arasındaki benzerlik veya uyumun bir ölçüsüdür.
 - □ Enerji Sinyalleri İçin:

$$R_{g}(\tau) = \int_{-\infty}^{\infty} g(t)g^{*}(t-\tau)dt = \int_{-\infty}^{\infty} g(t+\tau)g^{*}(t)dt$$

□ Özellikleri

$$\left| R_g \left(\tau \right) \right| \leq R_g \left(0 \right), \quad \forall \, \tau$$

$$R_g(0) = \int_{-\infty}^{\infty} |g(t)|^2 dt$$

Ozilinti Fonksiyonu

□ Güç Sinyalleri (Periyodik) için:

$$R_{gp}(\tau) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} g_p(t) g_p^*(t-\tau) dt$$

□ Özellikleri:

•
$$R_{gp}(0) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} |g_p(t)|^2 dt$$
 • $R_{gp}(\tau) = R_{gp}(\tau + nT_0), n = 1, 2, ...$

Karşılıklı İlinti Fonksiyonu

Bir sinyal ile, başka bir sinyalin belli bir miktar geciktirilmiş hali arasındaki benzerlik veya uyumun bir ölçüsüdür.

$$R_{12}(\tau) = \int_{-\infty}^{\infty} g_1(t)g_2^*(t-\tau)dt = \int_{-\infty}^{\infty} g_2(t)g_1^*(t-\tau)dt$$

□ Özellikleri

$$\int_{-\infty}^{\infty} g_1(t) g_2^*(t) dt = 0 \Rightarrow R_{12}(\tau) = 0$$

$$\qquad R_{12}\left(\tau\right) = R_{21}^*\left(-\tau\right) \Longrightarrow R_{12}\left(\tau\right) \neq R_{21}\left(\tau\right)$$

$$\qquad R_{12}(\tau) \longleftrightarrow G_1(f)G_2^*(f)$$

Karşılıklı İlinti Fonksiyonu

□ Güç Sinyalleri (Periyodik) için:

$$R_{12}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g_1(t) g_2^*(t - \tau) dt$$

Sinyallerin periyodu aynı ve T_0 ise,

•
$$R_{12}(\tau) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} g_{p1}(t) g_{p2}^*(t) dt$$

$$R_{12}(\tau) \longleftrightarrow \frac{1}{T_0^2} \sum_{n=-\infty}^{\infty} G_1\left(\frac{n}{T_0}\right) G_2^* \left(\frac{n}{T_0}\right) \mathcal{S}\left(f - \frac{n}{T_0}\right)$$

Doğrusal Sistemlerden İletim

Zaman Bölgesi

$$h(t) = \int_{-\infty}^{\infty} H(f)e^{-j2\pi ft}df$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Frekans Bölgesi

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft}dt$$

$$Y(f) = H(f)X(f)$$

$$H(f) = |H(f)|e^{j\beta(f)}$$

Genlik Cevabı

Faz Cevabı

Giriş ve Çıkış Arasındaki Enerji Spektral Yoğunluğu İlişkisi

Doğrusal Sistemlerden İletim

Genlik cevabının sıfır frekanstaki değerinin $1/\sqrt{2}$ ' sine düştüğü frekans aralığına 3dB bant genişliği denir.

Bozulmasız İletim

$$y(t) = Kx(t - t_0) \longleftrightarrow Y(f) = KX(f)e^{-j2\pi f t_0}$$

$$H(f) = \frac{Y(f)}{X(f)} = Ke^{-j2\pi f t_0}$$

Daha genel bir ifadeyle,

$$H(f) = Ke^{j(-2\pi f t_0 \pm n\pi)}$$

Öyleyse,
$$|H(f)| = K$$
 ve $\beta(f) = -2\pi f t_0 \pm n\pi$ olmalıdır.

DİKKAT!

lletimde iki tür bozulma olabilir: 1. Genlik bozulması

2. Faz bozulması

Hilbert Dönüşümü

Hilbert Dönüşümü

Ters Hilbert Dönüşümü

$$\hat{g}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{g(\tau)}{(t-\tau)} d\tau$$

$$g(t) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\hat{g}(\tau)}{(t-\tau)} d\tau$$

$$g(t) \longrightarrow h(t) = 1/\pi t \qquad \qquad \hat{g}(t) \qquad \hat{g}(t) = g(t) * \frac{1}{\pi t}$$

$$\hat{g}(t) = g(t) * \frac{1}{\pi t}$$

$$G(f) \longrightarrow H(f) = -j \operatorname{sgn}(f) \longrightarrow \hat{G}(f) = -j \operatorname{sgn}(f) G(f)$$

$$\hat{G}(f) = -j\operatorname{sgn}(f)G(f)$$

<u>Örnek</u>

$$g(t) = \cos(2\pi f_c t)$$

$$\hat{G}(f) = -j\operatorname{sgn}(f)G(f) = \frac{-j}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] \operatorname{sgn}(f)$$

$$= \frac{1}{2j} \left[\delta(f - f_c) + \delta(f + f_c) \right]$$

$$\mathscr{F}^{-1}\left\{\hat{G}(f)\right\} = \hat{g}(t) = \sin(2\pi f_c t)$$

Aynı şekilde, $g(t) = \sin(2\pi f_c t)$ için

$$\hat{g}(t) = -\cos(2\pi f_c t)$$

Hilbert Dönüşümünün Özellikleri

- **g**(t) ve $\hat{g}(t)$ ' nin spektral yoğunlukları aynıdır.
- g(t) ve $\hat{g}(t)$ 'nin özilinti fonksiyonları aynıdır.
- $\mathbf{g}(t)$ ve $\hat{g}(t)$ birbirine diktir.
- $\hat{g}(t)$ 'nin Hilbert Dönüşümü -g(t) 'dir.

Hilbert Dönüşümü' nün Fiziksel Anlamı

Bu filtre güçlendirme ya da zayıflatma yapmaz, frekans bileşenlerinin genlikleri değişmez. Ancak, bu filtre her frekans bileşeninin fazını 90° kaydırır. Her frekans bileşenine 90° 'lik faz kayması vermek sinyale sabit bir gecikme vermek anlamına gelmez. Çünkü, 90° 'lik faz farkı her frekans bileşeni için farklı sürelerde gecikmelere karşı gelir.

Ön Zarf

$$g_{+}(t) = g(t) + j\hat{g}(t)$$

$$G_{+}(f) = G(f) + j \left[-j \operatorname{sgn}(f) \right] G(f)$$

$$G_{+}(f) = egin{cases} 2G(f) & , & f > 0 \ G(0) & , & f = 0 \ 0 & , & f < 0 \end{cases}$$

$$g_{+}(t) = 2\int_{0}^{\infty} G(f) e^{j2\pi f t} df$$

Kompleks Zarf

■ Dar bantlı bir g(t) sinyalinin ön zarfının temel bant şekli Kompleks Zarf olarak adlandırılır ve $\tilde{g}(t)$ ile gösterilir.

Yani,
$$g_{+}(t) = \tilde{g}(t)e^{j2\pi f_{c}t}$$
 ya da $\tilde{g}(t) = g_{+}(t)e^{-j2\pi f_{c}t}$ $g(t) = \text{Re}[g_{+}(t)]$ olduğundan $g(t) = \text{Re}[\tilde{g}(t)e^{j2\pi f_{c}t}]$

$$\tilde{g}(t) = g_c(t) + jg_s(t)$$
 $g_s(t)$: Eş Fazlı Bileşen $g_s(t)$: Dik Fazlı Bileşen alçak geçiren

$$\widetilde{g}(t) = a(t)e^{j\phi(t)} \qquad g(t) = a(t)\cos(2\pi f_c t) \qquad a(t): \text{ Doğal Zarf}$$

$$\tilde{g}(t) = g_c(t)\cos(2\pi f_c t) - g_s(t)\sin(2\pi f_c t)$$
 Kanonik Yapı

Eş ve Dik Fazlı Bileşenler

100

Zarf Örnekleri

þė

<u>Örnek</u>

$$g(t) = Arect\left(\frac{t}{T}\right)\cos(2\pi f_c t) \quad , \quad G(f) \approx \begin{cases} \frac{AT}{2} \operatorname{sinc}[T(f - f_c)] \ , \quad f > 0 \\ \frac{AT}{2} \operatorname{sinc}[T(f + f_c)] \ , \quad f < 0 \end{cases}$$

$$G_{+}(f) = \begin{cases} AT \operatorname{sinc}[T(f - f_{c})] & f > 0 \\ 0 & f \leq 0 \end{cases} \qquad g_{+}(t) = A\operatorname{rect}\left(\frac{t}{T}\right) \exp(j2\pi f_{c}t)$$

$$f_{c}T >> 1 \qquad g(t) = A\operatorname{rect}\left(\frac{t}{T}\right)$$

$$g(t) = A\operatorname{rect}\left(\frac{t}{T}\right)$$

$$a(t) = |\widetilde{g}(t)| = A\operatorname{rect}\left(\frac{t}{T}\right)$$

Zarflara Genel Bakış

- Ön Zarf $g_+(t) = g(t) + j\hat{g}(t)$
 - Alçak veya bant geçiren olabilir.
 - Kompleks değerlidir.
- Kompleks Zarf $\tilde{g}(t) = g_+(t)e^{-j2\pi f_c t}$
 - Genellikle kompleks değerlidir.
 - Alçak geçiren bir sinyaldir.
 - Ön zarfın ötelenmiş halidir.
- Doğal Zarf $a(t) = |\tilde{g}(t)| = |g_+(t)|$
 - Kompleks veya ön zarfın genliğidir.
 - Her zaman gerçel değerli ve alçak geçirendir.

Bantgeçiren Sistemler

Bantgeçiren sistemler de, bantgeçiren sinyaller gibi kanonik formda veya kompleks zarf cinsinden temsil edilirler. Birim dürtü cevabı h(t) olan bantgeçiren bir sistem için:

$$h(t) = h_c(t)\cos(2\pi f_c t) - h_s(t)\sin(2\pi f_c t)$$

$$\tilde{h}(t) = h_c(t) + jh_s(t)$$

$$h(t) = \text{Re}\big[\tilde{h}(t)\exp(2\pi f_c t)\big]$$

Bantgeçiren bir sistemin bantgeçiren bir sinyale cevabı:

$$x(t) \longrightarrow \begin{array}{c} \text{Bantgeçiren} \\ \text{Sistem} \\ h(t) \end{array} \longrightarrow y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

Bantgeçiren Sistemler

Kompleks zarflar yardımıyla daha basit olarak

$$y(t) = \operatorname{Re}\left[\tilde{y}(t)e^{j2\pi f_c t}\right]$$

çıkış ifadesine ulaşmak mümkündür.

ķΑ

<u>Örnek</u>

İdeal bant geçiren süzgecin RF darbesine cevabını bulunuz.

$$x(t) = A \operatorname{rect}\left(\frac{t}{T}\right) \cos(2\pi f_c t)$$

$$\widetilde{x}(t) = A \operatorname{rect}\left(\frac{t}{T}\right)$$

$$-2A$$

$$\widetilde{H}(f) = \begin{cases} 2\exp(-j2\pi f t_o), & -B < f < B \\ 0, & |f > B| \end{cases}$$

$$\widetilde{h}(t) = 4B \operatorname{sinc}[2B(t - t_o)]$$

$$\widetilde{y}(t) = \frac{2A}{\pi} \left\{ Si \left[2\pi B \left(t + \frac{T}{2} - t_o \right) \right] - Si \left[2\pi B \left(t - \frac{T}{2} - t_o \right) \right] \right\}$$

 \rightarrow $_{2B}$ $\left|\leftarrow$ $_{1}$ $\right|$ |H(f)|

$$y(t) = \widetilde{y}(t)\cos(2\pi f_c t)$$

Grup ve Faz Gecikmesi

■ Fazı $\beta(f)$ olan aşağıdaki doğrusal olmayan sistemi ele alalım.

$$x(t) = x_c(t)\cos(2\pi f_c t) \longrightarrow H(f) \longrightarrow y(t) = Kx_c(t - \tau_g)\cos[2\pi f_c(t - \tau_p)]$$