X EDUCATION - LEAD SCORING CASE STUDY

IDENTIFYING HIGH-POTENTIAL LEADS TO FOCUS MARKETING EFFORTS AND ENHANCE CONVERSION RATES FOR X EDUCATION.

M Babitha Lavanya

TABLE OF CONTENTS

- Overview of X Education Company
- Problem Statement & Objective of the Study
- Lead Conversion
- Analysis Approach
- Data Cleaning
- EDA
- Data Preparation
- Model Building (RFE & Manual fine tuning)
- Model Evaluation
- Recommendation based on Final Model

OVERVIEW OF X EDUCATION COMPANY

- An education company named X Education sells online courses to industry professionals.
- On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- The company markets its courses on several websites and search engines like Google.
- Once these people land on the website, they might browse the courses, fill out a course form, or watch some videos.
- When these people fill up a form providing their email address or phone number, they are classified to be a lead.
- Once these leads are acquired, employees from the sales team start making calls, writing emails, etc.
- •Through this process, some of the leads get converted while most do not.
- The typical lead conversion rate at X education is around 30%.

PROBLEM STATEMENT & OBJECTIVE OF THE STUDY

Problem Statement:

- X Education gets a lot of leads, but its lead conversion rate is very poor at around 30%
- X Education wants to make the lead conversion process more efficient by identifying the most potential leads, also known as Hot Leads
- Their sales team wants to know this potential set of leads, which they will be focusing more on communicating rather than making calls to everyone.

The objective of the Study:

- To help X Education select the most promising leads, i.e., the leads that are most likely to convert into paying customers.
- The company requires us to build a model wherein we need to assign a lead score to each of the leads such that the customers with a higher lead score have a higher conversion chance and the customers with a lower lead score have a lower conversion chance.
- The CEO has given a ballpark of the target lead conversion rate to be around 80%.

Website visitors (100%)

Leads who interact (~60%)

Leads contacted by sales (~30%)

Hot Leads prioritized, improving conversion rate (~80%)

DATA CLEANING

- "Select" level represents null values for some categorical variables, as customers did not choose any option from the list.
- Columns with over 40% null values were dropped.
- Missing values in categorical columns were handled based on value counts and certain considerations.
- Drop columns that don't add any insight or value to the study objective (tags, country).
- Imputation was used for some categorical variables.
- Additional categories were created for some variables.
- Columns with no use for modeling (Prospect ID, Lead Number) or only one category of response were dropped.
- Numerical data was imputed with mode after checking distribution.

EDA

Data is imbalanced while analyzing target variable.

Leads Converted

- ☐ Conversion rate is of 38.5%, meaning only 38.5% of the people have converted to leads.(Minority).
- ☐ While 61.5% of the people didn't convert to leads. (Majority).

EDA

Univariate Analysis – Categorical Variables

 Lead Source: 58% Lead source is from Google & Direct Traffic combined.

Last Activity: 68% of customers contribution in SMS
 Sent & Email Opened activities.

EDA

Univariate Analysis – Categorical Variables

Lead Origin: "Landing Page Submission" identified 53% of customers, "API" identified 39%.

Current_occupation: It has 90% of the customers as Unemployed.

0.1%

Lead Origin:

- Around 52% of all leads originated from "Landing Page Submission" with a lead conversion rate (LCR) of 36%.
- The "API" identified approximately 39% of customers with a lead conversion rate (LCR) of 31%.

Current_occupation:

- Around 90% of the customers are Unemployed, with lead conversion rate (LCR) of 34%.
- While Working Professional contribute only 7.6% of total customers with almost 92% Lead conversion rate (LCR).

Do Not Email:

• 92% of the people has opted that they don't want to be emailed about the course & 40% of them are converted to leads.

Lead Source:

- Google has LCR of 40% out of 31% customers,
- Direct Traffic contributes 32% LCR with 27% customers, which is lower than Google,
- Organic Search also gives 37.8% of LCR, but the contribution is by only 12.5% of customers,
- Reference has LCR of 91%, but there are only around 6% of customers through this Lead Source.

Last Activity:

- 'SMS Sent' has high lead conversion rate of 63% with 30% contribution from last activities,
- 'Email Opened' activity contributed 38% of last activities performed by the customers, with 37% lead conversion rate.

Specialization:

 Marketing Management, HR Management, and Finance Management contribute more to Lead conversion than other specializations.

• Past leads who spend more time on the website have a higher chance of being successfully converted than those who spend less time, as seen in the box plot.

DATA PREPARATION BEFORE MODEL BUILDING

- Binary-level categorical columns were already mapped to 1 / 0 in previous steps.
- Created dummy features (one-hot encoded) for categorical variables Lead Origin, Lead Source, Last Activity, Specialization, Current_occupation.

Splitting Train & Test Sets:

• A 70:30 % ratio was chosen for the split.

Feature scaling:

- The Standardization method was used to scale the features.
- Checking the correlations Predictor variables that were highly correlated with each other were dropped (Lead Origin_Lead Import and Lead Origin_Lead Add Form).

MODEL BUILDING

Feature Selection

- The data set has lots of dimensions and a large number of features.
- This will reduce model performance and might take high computation time.
- Hence it is important to perform Recursive Feature Elimination (RFE) and to select only the important columns.
 Then we can manually fine-tune the model.
- RFE outcome o Pre RFE 48 columns & Post RFE 15 columns

RECOMMENDATION BASED ON FINAL MODEL

- As per the problem statement, increasing lead conversion is crucial for the growth and success of X Education. To achieve this, we have developed a regression model that can help us identify the most significant factors that impact lead conversion.
- We have determined the following features that have the highest positive coefficients, and these features should be given priority in our marketing and sales efforts to increase lead conversion.
- Lead Source_Welingak Website: 5.44
- Lead Source_Reference: 2.91
- Last Activity_SMS Sent: 2.20
- Current_occupation_Working Professional: 2.10
- Last Activity_Others: 1.405963
- Total Time Spent on Website: 1.09
- Last Activity_Email Opened: 1.05
- Lead Source_Olark Chat: 0.8

MODEL BUILDING

- Manual Feature Reduction process was used to build models by dropping variables with p-value greater than 0.05.
- Model 4 looks stable after four iterations with: significant p-values within the threshold (p-values < 0.05)
 and No sign of multicollinearity with VIFs less than 5
- Hence, logm4 will be our final model, and we will use it for Model Evaluation which further will be used to make predictions.

MODEL EVALUATION

Train Data Set

 It was decided to go ahead with 0.345 as cutoff after checking evaluation metrics coming from both plots

Confusion Matrix & Evaluation Metrics with 0.345 as cutoff

Confusion Matrix [[3230 772] [492 1974]]

True Negative : 3230 True Positive : 1974 False Negative : 492 False Positve : 772 Model Accuracy : 0.8046 Model Sensitivity : 0.8005 Model Specificity : 0.8071 Model Precision : 0.7189 Model Recall : 0.8005 Model True Positive Rate (TPR) : 0.8005 Model False Positive Rate (FPR) : 0.1929

Confusion Matrix & Evaluation Metrics with 0.41 as cutoff

Confusion Matrix [[3406 596] [596 1870]]

True Negative : 3406 True Positive : 1870 False Negative : 596 False Positve : 596 Model Accuracy : 0.8157 Model Sensitivity : 0.7583 Model Specificity : 0.8511 Model Precision : 0.7583 Model Recall : 0.7583 Model True Positive Rate (TPR) : 0.7583 Model False Positive Rate (FPR) : 0.1489

MODEL EVALUATION

ROC Curve – Train Data Set

- The area under ROC curve is 0.88 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.

ROC Curve – Test Data Set

- The area under ROC curve is 0.87 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.

MODEL EVALUATION

Confusion Matrix & Metrics

Train Data Set

```
Confusion Matrix
[[3408 594]
[598 1868]]
```

True Negative : 3408 True Positive : 1868 False Negative : 598 False Positve : 594 Model Accuracy : 0.8157 Model Sensitivity : 0.7575 Model Specificity : 0.8516 Model Precision : 0.7587 Model Recall : 0.7575 Model True Positive Rate (TPR) : 0.7575 Model False Positive Rate (FPR) : 0.1484

Test Data Set

Confusion Matrix [[1351 326] [222 873]]

True Negative : 1351 True Positive 873 False Negative 222 False Positve 326 Model Accuracy 0.8023 Model Sensitivity 0.7973 Model Specificity 0.8056 Model Precision : 0.7281 Model Recall : 0.7973 Model True Positive Rate (TPR) : 0.7973 Model False Positive Rate (FPR) : 0.1944

- Using a cut-off value of 0.345, the model achieved a sensitivity of 75.75% in the train set and 79.73% in the test set.
- Sensitivity in this case indicates how many leads the model identifies correctly out of all potential leads that are converting.
- The CEO of X Education had set a target sensitivity of around 80%.
- The model also achieved an accuracy of 80.23%, which is in line with the study's objectives.

We have also identified features with negative coefficients that may indicate potential areas for improvement.

These include:

- Specialization in Hospitality Management: -1.10
- Specialization in Others: -1.21
- Lead Origin of Landing Page Submission: -1.25

RECOMMENDATION BASED ON FINAL MODEL

To increase our Lead Conversion Rates:

- > Focus on features with positive coefficients for targeted marketing strategies.
- > Develop strategies to attract high-quality leads from top-performing lead sources.
- Optimize communication channels based on lead engagement impact.
- Engage working professionals with a tailored message.
- More budget/spending can be done on the Welingak Website in terms of advertising, etc.
- > Incentives/discounts for providing references that convert to lead, encourage providing more references.
- Working professionals to be aggressively targeted as they have a high conversion rate and will have a better financial situation to pay higher fees too.

To identify areas of improvement:

- Analyze negative coefficients in specialization offerings.
- Review landing page submission process for areas of improvement.

THANK YOU