- 1. This question concerns the statement $R: \forall a \in \mathbb{R}, \exists b \in \mathbb{R}, b^2 = a$
 - (a) Is this statement true or false?

False (because if a is negative there is no k for which $b^2 = a$.)

(b) Form the negation R, and simplify.

(c) Write R as an English sentence.

For any real number a, there is a real number b for which $b^2 = a$

(d) Write $\sim R$ as an English sentence.

There exists a real number a for which $b^2 \pm a$ for all real numbers b.

. . .

.

- 1. This question concerns the statement $R: \forall a \in \mathbb{R}, \exists b \in \mathbb{R}, b^3 = a$
 - (a) Is this statement true or false?

True, because it asserts that any real number has a cube root, which is true.

(b) Form the negation R, and simplify.

(c) Write R as an English sentence.

For every real number a, there exists a real number b for which $b^3 = a$

(d) Write $\sim R$ as an English sentence.

There is a real number a for which $a \neq b^3$ for all real numbers b.