

Incorporating Spatio-Temporal Smoothness for Air Quality Inference

Xiangyu Zhao^{1,2}, Tong Xu¹, Yanjie Fu³, Enhong Chen¹, Hao Guo¹

1 University of Science and Technology of China 2 Michigan State University 3 Missouri University of Science and Technology

Motivation

- □ Increasing concern of urban air quality
 - □ Life quality of residents
 - □ Sustainable development of city

Motivation

- Challenge:
 - □ The number of monitoring stations is limited
 - □ Monitoring stations are not evenly distributed

Motivation

- □ Two Intuitive Assumptions:
 - □ **Temporal dependence**: *intra-station* time dependence within a single monitoring station, as current AQI value won't change a lot compared with air quality in the near future.
 - □ **Spatial relatedness** : *inter-station* spatial relatedness across all the stations, as two stations which located nearby should have similar AQI.

Urban Air Quality Inference Framework

- Spatio-Temporal Smoothness:
 - □ Basic model

$$\min_{\mathbf{W}_{:,k}} L_k = \|\mathbf{Y}_{:,k} - \mathbf{X}_{:,k} \odot \mathbf{W}_{:,k}\|_2^2 + \gamma \|\mathbf{W}_{:,k}\|_F^2$$

□ Distance-based Spatial Smoothness

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} D_{ij} \|\mathbf{W}_{i,k} - \mathbf{W}_{j,k}\|_{2}^{2}$$

□ Temporal Smoothness

$$\sum_{n=1}^{N} \left(\sum_{k=2}^{K} \| \mathbf{W}_{n,k} - \mathbf{W}_{n,k-1} \|_{2}^{2} \right)$$

Urban Air Quality Inference Framework

- Spatio-Temporal Smoothness:
 - □ Real-Time Feature-based Smoothness

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} F_{ij}^{k} \| \mathbf{W}_{i,k} - \mathbf{W}_{j,k} \|_{2}^{2}$$

$$F_{ij}^{k} = cosine(\mathbf{X}_{i,k}, \mathbf{X}_{j,k}) = \frac{\mathbf{X}_{i,k} \cdot \mathbf{X}_{j,k}}{\|\mathbf{X}_{i,k}\| \|\mathbf{X}_{j,k}\|}$$

Urban Air Quality Inference Framework

$$\min_{\mathbf{W}} L = \sum_{k=1}^{K} \left(\|\mathbf{Y}_{:,k} - \mathbf{X}_{:,k} \odot \mathbf{W}_{:,k}\|_{2}^{2} + \gamma \|\mathbf{W}_{:,k}\|_{F}^{2} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\alpha D_{ij} + \beta F_{ij}^{k} \right) \|\mathbf{W}_{i,k} - \mathbf{W}_{j,k}\|_{2}^{2} \right)
+ \lambda \sum_{n=1}^{N} \left(\sum_{k=2}^{K} \|\mathbf{W}_{n,k} - \mathbf{W}_{n,k-1}\|_{2}^{2} \right)$$

Experiment Setting

- Datasets:
 - □ Shanghai City, China
 - □ April 1 to April 30, 2015

- Metric
 - □ Average root-mean-square-error (RMSE)

$$RMSE = \frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{1}{K} \sum_{k=1}^{K} (y_k - \hat{y_k})^2}$$

Experiment Results

Temporal	1 hour	3 hour	Spatial	real-time
ARIMA	30.225	45.787	Average	46.563
VAR	28.756	42.907	IDW+	39.016
LASSO	25.387	38.653	CoKriging	35.291
stMTL	18.176	30.009	ANN	29.667
stMTMV	13.989	24.239	SFST	25.290
stfMTR	12.595	20.562	stfMTR	22.633

Fig. 3. Performance comparison on model components.

- Our **stfMTR** performs the best with integrating *spatial* and *temporal* smoothness
- Feature similarity could be more important compared with distance proximity

Conclusion

- □ *Intra-station* time dependences and the *inter-station* spatial relatedness are both beneficial.
- Feature similarity will enrich the spatial smoothness with removing the bias.
- □ Theoretically, given the *features* and *historical AQI*, we could predict AQI in any place.

Thanks

http://www.cse.msu.edu/~zhaoxi35/