Classification of Road Accident Severity

G Chan

14 Sep 2020

Introduction	2
Data Understanding	
Data Sources	2
Target Variable Definition	3
Data Selection	3
Data Manipulation	4
Methodology	5
Modelling	5
Results	6
Discussion	6
Conclusion	6

1. Introduction

1.1 Background

Road accident can occur anytime and anywhere and it may cause heavy casualties.

The cause of traffic accident could be attributed to various factors such as weather, road quality , drivers and pedestrian's awareness

To minimize the occurrence, we may leverage a machine learning model to classify the severity of the road accident to remind public

1.2 Problem

Data that might contribute to determining road safety might cover weather, road quality, drivers and pedestrian's awareness. This project is to classify road accident severity.

1.3 Interest

Transportation Bureau , drivers and public would be very interested in indicative information about road accident severity . Maths , Statistic major students and data scientist would also be interested in the development of classification model

2. Data Understanding

2.1 Data Sources

The data is source by public transportation data for Seattle city

Link: https://github.com/garness/testing/blob/master/Data-Collisions.zip

2.2 Target Variable Definition

SEVERITYCODE is a target variable "y" for model development

```
In [8]: M df.SEVERITYCODE.value_counts()

Out[8]: 1 108515
2 45036
Name: SEVERITYCODE, dtype: int64

1.Before data input, remove duplicated field"severitycode" in the original csv file

2.Severitycode is the target variable,y

3.Remove result related variables to avoid data leakage,eg.SEVERITYDESC

4.convert character to numeric data,eg.ROADCOND
```

2.3 Data Selection

Remove result related variables to avoid data leakage,eg.SEVERITYDESC

```
In [16]: M df[['SEVERITYDESC', 'SEVERITYCODE']].groupby(['SEVERITYDESC']).agg(['min', 'max'])

Out[16]:

SEVERITYCODE

min max

SEVERITYDESC

Injury Collision 2 2

Property Damage Only Collision 1 1
```

Other meaningless variable are also removed

2.4 Data Manipulation

Assign missing to the field Weather, Roadcond, lightcond

```
Out[76]: Clear
                                  86878
           Raining
                                  26468
                                  22300
          Overcast
                                  15912
          Unknown
           Snowing
                                    704
          Other
                                    701
           Fog/Smog/Smoke
                                    442
           Sleet/Hail/Freezing Rain
                                    96
          Blowing Sand/Dirt
                                    34
           Severe Crosswind
                                    16
           Name: WEATHER, dtype: int64
In [77]: | dataset['ROADCOND']=dataset['ROADCOND'].fillna(value='Other')
dataset['ROADCOND'].value_counts()
   Out[77]: Dry
                         97842
                         37741
          Wet
          Unknown
                         13827
          Other
                          2085
          Ice
                          1035
           Snow/Slush
                           811
           Standing Water
                            96
           Sand/Mud/Dirt
                            66
          011
                            48
          Name: ROADCOND, dtype: int64
Out[78]: Daylight
           Dark - Street Lights On
                                  38829
          Unknown
                                  12464
          Dusk
                                   4707
```

Convert the string to number

3. Methodology

For model development, Variables X and Y are necessary

As no continuous variables are involved, no need to apply normalization

Split the data into training set(70%) and testing set(30%)

```
In [16]: • from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)
    print ('Train set:', X_train.shape, y_train.shape)
    print ('Test set:', X_test.shape, y_test.shape)

    Train set: (155738, 3) (155738,)
    Test set: (38935, 3) (38935,)
```

4. Modelling

KNN would be used as machine learning model developement

K-Nearest Neighbors is an algorithm for supervised learning. Where the data is 'trained' with data points corresponding to their classification. Once a point is to be predicted, it takes into account the 'K' nearest points to it to determine it's classification.

When K=8, the accuracy reached the highest, accuracy rate around 55%

5. Result

Apart from accuracy, there are other measurement about model performance.

- 1. Jaccard index: Similarity for the two sets of data, with a range 0% to 100%
- 2. F1 score:Model accuracy on a dataset

6. Discussion

- 1. The suitable data is limited. IF more data such as car type, drivers' condition, car speed are available in model development, there is a change the accuracy can be enhanced
- 2. Suggest number of KNN be limited within 10 to avoid wide range of group. It may be too difficult to apply in practical implement if number of K is too large

7. Conclusion

KNN with K=8 is selected to be a classification model about road severity in Seattle city