本节内容 数据寻址2 (偏移寻址)

指令寻址 v.s. 数据寻址

> 以某个地址作为起点 形式地址视为"偏移量"

0	LDA	1000	起始 100	LDA	1000	100	LDA	1000
1	ADD	1001	101	ADD	1001	101	ADD	1001
2	DEC	1200	102	DEC	1200	102	DEC	1200
3	JMP	7	103	JMP	7	103	JMP	3
4	LDA	2000	104	LDA	2000	PC 104	LDA	2000
5	SUB	2001	105	SUB	2001	105	SUB	2001
6	INC		106	INC		106	INC	
7	LDA	1100	107	LDA	1100	107	LDA	1100
8			108	HA STATE OF THE ST		108		
				2) "			王道考研/C	SKAOYAN.CO

知识总览

偏移寻址

区别在于偏移的"起点" 不一样

不一样 我们不一样

基址寻址:以程序的起始存放地址作为"起点"

变址寻址:程序员自己决定从哪里作为"起点"

相对寻址: 以程序计数器PC所指地址作为"起点"

基址寻址

注: BR——base address register
EA——effective address

基址寻址:将CPU中<mark>基址寄存器(BR)</mark>的内容加上指令格式中的形式地址A, 而形成操作数的有效地址,即EA=(BR)+A。

在指令中指明, 要将哪个通用 寄存器作为基 址寄存器使用

(a) 采用专用寄存器BR作为基址寄存器

 P
 R₀
 A
 R₀为基址寄存器

 上存
 上存

 R₁
 上
 上

 正月
 上
 上

 以上的
 上
 上

 上方
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上
 上

 上
 上

(b) 采用通用寄存器作为基址寄存器

Tips: 可对比操作系统第三章第一节学习, OS课中的"重定位寄存器"就是"基址寄存器"

要用几个bit 指明寄存器?

根据通用寄存器 器总数判断

基址寻址的作用

基址寻址:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A, 而形成操作数的有效地址,即EA=(BR)+A。

```
int a=2,b=3,c=1,y=0;
void main(){
   y=a*b+c;
}
```


形式地址A=5

	主存	指令		沙广亚又
4	地址	操作码	地址码	注释
	0	000001	0000000101	取数a至ACC
	1	000100	0000000110	乘b得ab,存于ACC中
	2	000011	0000000111	加c得ab+c,存于ACC中
	3	000010	0000001000	将 $ab+c$,存于主存单元
	4	000110	0000000000	停机
	5	000000000000000000000000000000000000000		原始数据a=2
	6	0000000000000011		原始数据 b =3
	7	0000000000000001		原始数据 $c=1$
	8	00000000000000000		原始数据 <i>y=0</i>

变量a 的实际 存放地 址为5 拓展:程序运行前,CPU将BR的值修改为该程序的起始地址(存在操作系统PCB中)

基址寻址的作用

基址寻址:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A, 而形成操作数的有效地址,即EA=(BR)+A。

优点: 便于程序"浮动",方便实现多道程序并发运行

int a=2,b=3,c=1,y=0;
void main(){
 y=a*b+c;
}

形式地址A=5

	低地址	程序从地址 100开始存放 "PC"
	高地址 主存	.108
BR	0000 0000 0110	0 0100

指令		»}- €X
操作码	地址码	注释
000001	0000000101	取数a至ACC
000100	0000000110	乘b得ab,存于ACC中
000011	0000000111	加c得ab+c,存于ACC中
000010	0000001000	将 $ab+c$,存于主存单元
000110	0000000000	停机
000000	0000000010	原始数据a=2
000000	0000000011	原始数据 <i>b=3</i>
000000	0000000001	原始数据c=1
000000	0000000000	原始数据y=0
	操作码 000001 000100 000011 000010 000000 000000	操作码 地址码 000000101 0000100 0000110 000011 000000

采用基址 寻址无需 修改指令 中的地址 码

变量a的 实际存 放地址 为105

对巡士 进制100

基址寻址

基址寻址:将CPU中<mark>基址寄存器(BR)</mark>的内容加上指令格式中的形式地址A, 而形成操作数的有效地址,即EA=(BR)+A。

(a) 采用专用寄存器BR作为基址寄存器

(b) 采用通用寄存器作为基址寄存器

注:基址寄存器是<mark>面向操作系统</mark>的,其<mark>内容由操作系统或管理程序确定</mark>。在程序执行过程中,基址寄存器的内容不变(作为基地址),形式地址可变(作为偏移量)。 当采用通用寄存器作为基址寄存器时,可由用户决定哪个寄存器作为基址寄存器, 但其<mark>内容仍由操作系统确定</mark>。

优点:可扩大寻址范围(基址寄存器的位数大于形式地址A的位数);用户不必考虑自己的程序存于主存的哪一空间区域,故<mark>有利于多道程序设计</mark>,以及可用于<mark>编制浮动程序(整个程序在内存里边的浮动)</mark>。

变址寻址

注: IX — <u>index register</u>

变址寻址:有效地址EA等于指令字中的形式地址A与<mark>变址寄存器IX</mark>的内容相加之和,即EA=(IX)+A,其中IX可为变址寄存器(专用),也可用通用寄存器作为变址寄存器。

注:变址寄存器是<mark>面向用户</mark>的,在程序执行过程中,<mark>变址寄存器的内容可由用户改变</mark>

(IX作为偏移量),形式地址A不变(作为基地址)

基址寻址中,BR保 持不变作为基地址, A作为偏移量

变址寻址的作用

注:此处未添加"寻址特征"位,但实际上每条指令都会指明寻址方式。此处讲解仅用口头描述

for(int i=0; i<10; i++){ sum += a[i]; }

立即寻址

ACC

0

直接寻址

是时候召唤 "变址寻址" 了!

主存	2 ‡	旨令	沙子亚又
地址	操作码	地址码	注释
0	取数到ACC	#0 (立即数)	立即数 0 → ACC
	ACC加法	12(a[0]地址)	$(ACC)+a[0] \rightarrow ACC$
2	ACC加法	13(a[1]地址)	$(ACC)+a[1] \rightarrow ACC$
•••	ACC加法	14	$(ACC)+a[2] \rightarrow ACC$
9	•••	•••	
10	ACC加法	21	$(ACC)+a[9] \rightarrow ACC$
11	从ACC存数	22	(ACC)→ sum变量
12	随便	什么值	a[0]
13	13 随便什么值 21 随便什么值		a[1]
•••			•••
21			a[9]
22	初	始为0	sum变量

变址寻址的作用

for(int i=0; i<10; i++){ sum += a[i]; }

立即寻址

变址寻址

立即寻址

ACC 0

直接寻址

IX

10

在数组处理过程中,可设定A为数组的 首地址,不断改变变址寄存器IX的内 容,便可很容易形成数组中任一数据 的地址,特别**适合编制循环程序**。

	主存	沙 才	旨令	>}- ¥X
地址		操作码	地址码	注释
-	0	取数到ACC	#0	立即数 0 → ACC
	. * 1	取数到IX	#0	立即数 0 → IX
2	2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
	3	IX加法	#1	(IX) + 1 → IX
	4	IX比较	#10	比较10-(IX)
	5	条件跳转	2	若结果>0则PC跳转到2
	6	从ACC存数	17	(ACC)→ sum变量
	7	随便	什么值	a[0]
	8	随便	什么值	a[1]
	9	随便什么值		a[2]
	•••			•••
	16	随便	什么值	a[9]
	17	初	始为0	sum变量
-	THE STATE OF THE S			工法予団(して)(ハリン)

变址寻址

变址寻址:有效地址EA等于指令字中的形式地址A与变址寄存器IX的内容相加之和,即EA=(IX)+A,其中IX可为变址寄存器(专用),也可用通用寄存器作为变址寄存器。

注: 变址寄存器是**面向用户的**,在程序执行过程中,**变址寄存器的内容可由用户改变** (作为偏移量),形式地址A不变(作为基地址)。

优点:在数组处理过程中,可设定A为数组的首地址,不断改变变址寄存器IX的内容,便可很容易形成数组中任一数据的地址,特别<mark>适合编制循环程序</mark>。

基址&变址复合寻址

注:实际应用中往往需要多种寻址方式复合使用(可理解为复合函数)

基址寻址: EA=(BR)+A 变址寻址: EA=(IX)+A

先基址后变址寻址: EA=(IX)+(BR)+A

低地址 基址、变址 寻址的复合 100 108 访问目标 主存 高地址 BR 100

_				
	主存	指令		沙子亚文
	地址	操作码	地址码	注释
	0	取数到ACC	#0	立即数 0 → ACC
	. 1	取数到IX	#0	立即数 0 → IX
A	2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
	3	IX加法	#1	$(IX) + 1 \rightarrow IX$
	4	IX比较	#10	比较10-(IX)
	5	条件跳转	2	若结果>0则PC跳转到2
	6	从ACC存数	17	(ACC)→ sum变量
	7	随便	計合值	a[0]
	8	随便	計合值	a[1]
	9	随便	什么值	a[2]
	•••		•••	•••
	16	随便	什么值	a[9]
	17	初	始为0	sum变量
	111			エ海老畑心のバックハット

相对寻址

相对寻址:把程序计数器PC的内容加上指令格式中的形式地址A而形成操作数的有效地址,即EA=(PC)+A,其中A是相对于PC所指地址的位移量,可正可负,补码表示。

注: 王道书的小错误——"A是相对于当前指令地址的位移量"×

因此取出当前指令后PC可能为 1002 or 1004

相对寻址的作用

```
for(int i=0; i<10; i++){
    sum += a[i];
}
```

问题:随着代码越写越多,你想挪动for循环的位置

注:站在 汇编语言 程序员的 角度思考 for循环主体

直接寻址

	主存	指令		沙子亚文
	地址	操作码	地址码	注释
Ì	0	取数到ACC	#0	立即数 0 → ACC
	. 1	取数到IX	#0	立即数 0 → IX
Ī	2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
	3	IX加法	#1	$(IX) + 1 \rightarrow IX$
Ì	4	IX比较	#10	比较10-(IX)
-	5	条件跳转	2	若结果>0则PC跳转到2
	6	从ACC存数	17	(ACC)→ sum变量
	7	随便	什么值	a[0]
	8	随便什么值		a[1]
	9	随便	什么值	a[2]
			•••	•••
	16	随便什么值		a[9]
	17	初	始为0	sum变量
				工道多班/CCKVOVVI C

相对寻址的作用

for(int i=0; i<10; i++){ sum += a[i]; }

问题:随着代码越写越多,你想挪动for循环的位置

注:站在 汇编语言 程序员的 角度思考

for循环主体

采用直接寻址 会出现错误

	N / 1 /
1	M+4

				a filt
	主存	沙 才	旨令	沙 → 蛇▽
	地址	操作码	地址码	注释
	0	取数到ACC	#0	立即数 0 → ACC
	. 1	取数到IX	#0	立即数 0 → IX
2	2	•••	•••	其他代码
	3	•••	•••	其他代码
	4	•••	(3)	其他代码
	5	•••	•••	其他代码
	•••	•••	•••	其他代码
	M	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
	M+1	IX加法	#1	(IX) + 1 → IX
	M+2	IX比较	#10	比较10-(IX)
	M+3	条件跳转	2	若结果>0则PC跳转到2
•	M+4		•••	•••
	(7)	A .	•••	•••
_				王道老研/CSKAOYAN C

拓展: ACC加法指令的地址码,可采用"分段"方式解决,即程序段、数据段分开。

```
for(int i=0; i<10; i++){
    sum += a[i];
}
```

问题:随着代码越写越多,你想挪动for循环的位置

相对寻址: EA=(PC)+A, 其中A是相对于PC所指地址的位移量,可正可负,补码表示

优点:这段代码在程序内浮动时不用更改跳转指令的地址码

for循环 主体

用相对寻址

PC

M+4

相对寻址的作用

主存			沙土亚又
地址	操作码	地址码	注释
0	取数到ACC	#0	立即数 0 → ACC
1	取数到IX	#0	立即数 0 → IX
2	•••	•••	其他代码
3	•••	•••	其他代码
4	•••	(3)	其他代码
5	•••	•••	其他代码
•••	•••		其他代码
M	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
M+1	IX加法	#1	$(IX) + 1 \rightarrow IX$
M+2	IX比较	#10	比较10-(IX)
M+3	条件跳转	-4(补码表示)	若结果>0则PC跳转到M
M+4		•••	•••
(6)	4.	•••	•••
			王道考研/CSKAOYAN.C

相对寻址

相对寻址:把程序计数器PC的内容加上指令格式中的形式地址A而形成操作数的有效地址,即EA=(PC)+A,其中A是相对于PC所指地址的位移量,可正可负,补码表示。

优点:操作数的地址不是固定的,它随着PC值的变化而变化,并且与指令地址之间总是相差一个固定值,因此便于程序浮动(一段代码在程序内部的浮动)。相对寻址广泛应用于转移指令。

本节回顾

寻址方式	有效地址	访存次数(指令执行期间)
隐含寻址	程序指定	0
立即寻址	A即是操作数	0
直接寻址	EA=A	1
一次间接寻址	EA=(A)	2
寄存器寻址	EA=R _i	0
寄存器间接一次寻址	EA=(R _i)	1
转移指令 相对寻址	EA=(PC)+A	1
多道程序 基址寻址	EA=(BR)+A	1
循环程序 变址寻址 数组问题	EA=(IX)+A	1

偏移寻址

注意:取出当前指令后,PC会指向下一条指令,相对寻址是相对于下一条指令的偏移

见角: 硬件如何实现数的"比较"

注:无条件转移指令 jmp 2,就不会管PSW的各种标志位

高级语言视角: if (a>b){

... } else { 汇编语言中,条件跳转指令有

很多种,如 je 2 表示当比较结

果为 a=b 时跳转到2

jg 2 表示当比较结果为a>b时跳

转到2

硬件视角:

通过"cmp指令"比较 a 和 b (如 cmp a, b),实质上是用 a-b

• 相减的结果信息会记录在程序 状态字寄存器中(PSW)

• 根据PSW的某几个标志位进行 条件判断,来决定是否转移 有的机器把 PSW称为"标 志寄存器"

PSW中有几个比特位记录上次运算的结果

- 进位/借位标志 CF: 最高位有进位/借位时CF=1
- 零标志 ZF: 运算结果为0则 ZF=1, 否则ZF=0
- 符号标志 SF: 运算结果为负, SF=1, 否则为0
- 溢出标志 OF: 运算结果有溢出OF=1否则为0

主存地址	指令		沙子亚又
	操作码	地址码	注释
0	取数到ACC	#0	立即数 0 → ACC
1	取数到IX	#0	立即数 0 → IX
2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
3	IX加法	#1	$(IX) + 1 \rightarrow IX$
4	IX比较	#10	比较10-(IX)
5	条件跳转	2	若结果>0则PC跳转到2
6	从ACC存数	17	(ACC)→ sum变量
7	随便什么值		a[0]
8	随便什么值		a[1]
9	随便什么值		a[2]
•••	•••		•••
16	随便什么值		a[9]
17	初始为0		sum变量

△ 公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研