I03 - Bayesian parameter estimation

STAT 5870 (Engineering) Iowa State University

November 22, 2024

Outline

- Bayesian parameter estimation
 - Condition on what is known
 - Describe **belief** using probability
 - Terminology
 - ullet Prior o posterior
 - Posterior expectation
 - Credible intervals
 - Binomial example
 - Beta distribution

A Bayesian statistician

Let

- y be the data we will collect from an experiment,
- \bullet K be everything we know for certain about the world (aside from y), and
- \bullet θ be anything we don't know for certain.

My definition of a Bayesian statistician is an individual who makes decisions based on the probability distribution of those things we don't know conditional on what we know, i.e.

$$p(\theta|y,K)$$
.

Typically, the K is dropped from the notation.

Bayes' Rule

Bayes' Rule applied to a partition $P = \{A_1, A_2, \ldots\}$,

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{\infty} P(B|A_i)P(A_i)}$$

Bayes' Rule also applies to probability density (or mass) functions, e.g.

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

where the integral plays the role of the sum in the previous statement.

Parameter estimation

Let y be data from some model with unknown parameter (vector) θ . Then

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

and we use the following terminology

Terminology	Notation
Posterior	$p(\theta y)$
Prior	p(heta)
Model (likelihood)	$p(y \theta)$
Prior predictive	p(y)
(marginal likelihood)	

Bayesian parameter estimation involves updating your prior belief about θ , $p(\theta)$, into a posterior belief about θ , $p(\theta|y)$, based on the data observed.

Bayesian notation

We now have two distributions for our parameter θ : prior and posterior. To distinguish these two, we will have no conditioning in the prior and we will condition on y in the posterior. For example,

	Prior	Posterior
Density	$p(\theta)$	$p(\theta y)$
Expectation	E[heta]	$E[\theta y]$
Variance	$Var[\theta]$	$Var[\theta y]$
Probabilities	$P(\theta < c)$	$P(\theta < c y)$

Binomial model

Suppose $Y \sim Bin(n, \theta)$, then

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}.$$

A reasonable default prior is the uniform distribution on the interval (0,1)

$$p(\theta) = I(0 < \theta < 1).$$

Using Bayes Rule, you can find

$$\theta|y \sim Be(1+y, 1+n-y).$$

Beta distribution

The beta distribution defines a distribution for a probability, i.e. a number on the interval (0,1). The probability density function is

$$p(\theta) = \frac{\theta^{a-1} (1-\theta)^{b-1}}{Beta(a,b)} I(0 < \theta < 1)$$

where a, b > 0 and Beta is the beta function, i.e.

$$Beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \quad \text{and} \quad \Gamma(a) = \int_0^\infty x^{a-1}e^{-x}dx.$$

The beta distribution has the following properties:

- $E[\theta] = \frac{a}{a+b}$,
- ullet $Var[heta]=rac{ab}{(a+b)^2(a+b+1)}$, and
- $Be(1,1) \stackrel{d}{=} Unif(0,1)$.

Beta densities

Beta posterior

Suppose we have made 100 sensors according to a particular protocol and 2 have a sensitivity below a pre-determined threshold. Let Y be the number below the threshold. Assume $Y \sim Bin(n,\theta)$ with n=100 and $\theta \sim Be(1,1)$, then

$$\theta | y \sim Be(1+y, 1+n-y) \stackrel{d}{=} Be(3,99).$$

Posterior density

Posterior density

Posterior expectation

Often times it is inconvenient to provide a full posterior and so we often summarize using a point estimate from the posterior. For a point estimate, we can use the posterior expectation:

$$\hat{\theta}_{Bayes} = E[\theta|y] = \frac{1+y}{(1+y)+(1+n-y)} = \frac{1+y}{2+n}$$

Note that this is close, but not exactly equal to $\hat{\theta}_{MLE}=y/n$. Since the MLE is unbiased, this posterior expectation will generally be biased but it is still consistent since $\hat{\theta}_{Bayes} \to \hat{\theta}_{MLE}$.

Credible intervals

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

An equal-tail 100(1-a)% credible interval is the interval (L,U) such that

$$a/2 = \int_{-\infty}^{L} p(\theta|y) d\theta = \int_{U}^{\infty} p(\theta|y) d\theta.$$

```
# 95% credible interval is
ci <- qbeta(c(.025, .975), 1 + y, 1 + n - y)
round(ci, 3)
```

[1] 0.006 0.070

Equal-tail 95% credible interval

Posterior density with 95% area shaded

Summary

Bayesian parameter estimation involves

- 1. Specifying a model $p(y|\theta)$ for your data.
- 2. Specifying a prior $p(\theta)$ for the parameter.
- 3. Deriving the posterior

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} \propto p(y|\theta)p(\theta).$$

This equation updates your prior belief, $p(\theta)$, about the unknown parameter θ into your posterior belief, $p(\theta|y)$, about θ .

- 4. Calculating quantities of interest, e.g.
 - Posterior expectation, $E[\theta|y]$
 - Credible interval

Bayesian analysis for binomial model summary

Let $Y \sim Bin(n,\theta)$ and assume $\theta \sim Be(a,b)$. Then

$$\theta|y \sim Be(a+y,b+n-y).$$

A default prior is $\theta \sim Be(1,1) \stackrel{d}{=} Unif(0,1)$.

R code for binomial analysis:

```
a <- 1: b <- 1
                                     # default uniform prior
v \le 3: n \le 10
                                     # data
curve(dbeta(x, av, b + n - v)) # posterior (pdf)
(a + y)/(a + b + n)
                                 # posterior mean
gbeta(.5, a + v, b + n - v) # posterior median
qbeta(c(.025, .975), a + y, b + n - y) # 95% equal tail credible interval
# Probabilities
pbeta(0.5, a + v, b + n - v)
                                    \# P(theta < 0.5/u)
# Special cases
gbeta(c(0, .95), a + v, b + n - v) # if y=0, use a lower one-sided CI
qbeta(c(.05, 1), a + y, b + n - y)
                                     # if y=n, use a upper one-sided CI
```