Cryptography Cryptology

3장.관용암호방식

수업 목표

- > 관용암호: 암호화와 복호화에 동일한 키 값을 사용한다.
- > 고전 관용 암호 방식을 이해한다.
 - 환자 암호
 - 전치 암호
 - 적 암호
- > 현대 암호학의 기초 개념을 이해한다.

3.1 환자 암호

- 대치(substitution) 암호 : 하나의 기호를 다른 기호로 변경.

시프트 암호

- > 평문 문자를 암호문 문자로 일대일 대응시켜 암호화
 - 항상 같은 문자로 대응 : 단일 문자 암호
- > 예

- 시프트 간격 n = 3 : Caesar 암호, 덧셈 암호 라고도 불린다.

시프트 암호

› 평문문자 M , 암호문자 C, 시프트 간격 K

$$C \equiv M + K \mod 26$$

- 영문문자를 0~25 까지 값을 순서대로 부여하면 위의 식

Α	В	С	D	Ε	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

> 복호화 : M = C - K mod 26

- > 문제: 1) K=11, 평문(M) hello 를 암호화 하시오.
- › 2) K=15, 암호문(C) WTAAD 를 복호화 하시오.

(교재)예제3.1

> K=11이다. 평문 M 'substitution cipher'을 암호화 해보자.

시프트 암호

시프트 암호

- > 실용적 암호 방식의 조건
 - 1. 암호화 , 복호화 알고리즘은 다항 시간 알고리즘 이어야 한다.
 - 2. 공격자가 암호문 C로 부터 사용된 키 K 또는 평문 M을 알 수 없어야 한다. 암호 해독
 - 소모적 공격 : 키 값 0 ~ 25 26가지를 대입하여 평문 알아내는 방법
- › → 소모적 공격은 키 값의 범위(키 공간)를 크게 하여 방지할 수 있다.

(교재)예제3.2

› 시프트 암호에 의한 암호문 C가 다음과 같다. 소모적 공격으로 평문 M을 찾아보자.

RYGKBOIYEQODDSXQYX (rygkboiyeqoddsxqyx

단순 환자 암호

> [그림3.3] 암호화 과정

평문문자	a	b	С	d	е	f	g	h	i	j	k	l	m	n	O	р	q	r	S	t	u	V	W	Х	у	Z
암호문자	D	Ε	Q	1	R	C	U	L	Χ	Α	٧	W	F	Н	М	Ν	0	J	Υ	В	Z	K	S	Т	Р	G

> [그림3.4] 복호화 과정

암호문자	A	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	O	Р	Q	R	S	Т	U	V	W	X	Y	Z
평문문자	j	t	f	a	b	m	Z	n	d	r	٧	h	0	р	q	у	С	е	W	Χ	g	k	l	i	S	u

단순 환자 암호

- › 평문 문자를 암호 문자로 치환하는 방식이 무작위로 임의의 대 응을 한다. 단순 환자 암호표를 사용.
 - 이 때 가능한 경우의 수는 26! => 약 4 x 10²⁶ 개이다.
 - 키 숫자가 많아 소모적 공격에 안전
- > 평문문자와 암호문자가 여전히 1대1 대응하므로
- › 영문 언어의 통계적 성질을 이용하여 문자 빈도수를 이용 암호 문자를 평문 문자로 쉽게 해독될 수 있다. 특히 암호문의 양이 많아지면 해독이 더욱 용이해 진다.

영문자 빈도 확률 p.69 [표3.1], p.70 [표3.2], [표3.3]

평문	빈도	평문	빈도
a	8.2%	n	6.7%
b	1.5%	0	7.5%
С	2.8%	р	1.9%
d	4.3%	q	0.1%
е	12.7%	r	6%
f	2.2%	S	6.3%
g	2%	t	9.1%
h	6.1%	u	2.8%
i	7%	V	1%
j	0.2%	W	2.3%
k	0.8%	Х	0.1%
l	4%	у	2.0%
m	2.4%	Z	0.1%

평문	빈도	평문	빈도	평문	빈도
th	3.88%	to	1.17%	tha	0.59%
he	3.68%	or	1.15%	ere	0.56%
in	2.28%	it	1.13%	for	0.55%
er	2.18%	is	1.11%	ent	0.53%
an	2.14%	hi	1.10%	ion	0.50%
re	1.75%	es	1.10%	ter	0.46%
nd	1.56%	ng	1.05%	was	0.46%
on	1.42%	the	3.50%	you	0.43%
en	1.38%	and	1.59%	ith	0.43%
at	1.34%	ing	1.15%	ver	0.43%
ou	1.29%	her	0.82%	all	0.42%
ed	1.26%	hat	0.65%	wit	0.39%
ha	1.25%	his	0.60%	thi	0.39%

곱셈 암호

- > 암호 알고리즘 : 평문에 키를 곱함.
- > 복호 알고리즘: 암호문을 키로 나눔. 즉 키의 역원을 곱함
 - 역원이 존재하려면 키는 Z_{26}^{*} 의 원소. 키 공간이 작음.

Korea College of Information & Technology 2020 [김소희]

Affine 암호

- $\Lambda = C \times K^{-1} \mod 26$ $\Lambda = C \times K^{-1} \mod 26$
 - 이 때 암호 문자 M 이 평문 문자 C로 유일하게 복원되어야 하므로 gcd(K, 26) = 1 ※ gcd(a,m) = 1 이면 modulus m 에 대한 a의 역원이 존재함. K = 1,3,5,7,9,11,15,17,19,21,23,25 12개 → 키공간이 적어 취약함
- > 키를 추가하여 개선 : $C = K_1 M + K_2 \mod 26$, $K_1, K_2 \in Z_{26}$ ($K_1 = 1$ 이면 단순 시프트 암호)

 $K_1M \equiv C - K_2 \mod 26 \%$ $ax = b \mod m$ 에서 gcd(a,m)=1 이면 유일한 해 x 존재함

- Affine 암호방식도 암호문이 유일한 평문으로 복원되어야 하므로 $gcd(K_1, 26) = 1$
- 12개의 K_1 과 26개의 K_2 의 조합이 키가 될 수 있으므로 키 숫자는 12*26=312

Affine 암호

 $> K_1$ 의 키는 Z_{26}^* 의 원소, K_2 의 키는 Z_{26} 의 원소. 키 공간은 12x26

Korea College of Information & Technology 2020 [김소희]

(교재)예제3.3

> 예제 : K_1 =3, K_2 =15 일 때 information security를 Affine 암호화하자.

Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	٧	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

 $i: 8 \times 3 + 15 = > 39 \equiv 13 \mod 26$

 $> n : 13 \times 3 + 15 = > 54 \equiv 2 \mod 26$

> f:

동음이의 환자 암호(단성 암호화)

- > 평문 문자를 여러 개의 다른 암호문 문자로 암호화
 - 암호문 부호(문자개수보다 많은 부호가 생성)의 빈도 통계를 혼동시킴
 - 암호문 부호의 빈도수를 균일하게 하는 것이 목적. 일-대-다 대응
- > 영문자 26개를 1000개의 부호 중 하나로 암호화 할 때
 - 문자 A는 8.2% 빈도 → A를 암호화 하는데 82개를 할당
 - 문자 B는 1.5% 빈도 → B를 암호화 하는데 15개를 할당
 - 문자 C는 2.8% 빈도 → C를 암호화 하는데 28개를 할당
- › 암호화 할 때 해당 문자와 대응되는 그룹의 암호문 부호를 무작 위로 선택.
- > 문제점: 2문자, 3문자 연속의 빈도 분석은 가능.

(교재)예제3.4 - 동음이의 환자 암호표

평문	빈도	암호문 부호(할당 숫자)	평문	빈도	암호문 부호(할당 숫자)
a	8.2%	44,35,12,38,01,29,56,20	n	6.7%	89,84,73,78,68,98
b	1.5%	04	0	7.5%	67,41,62,46,43,33,16
С	2.8%	11,95	р	1.9%	06,43
d	4.3%	64,71,47,39	q	0.1%	10
е	12.7%	48,25,19,72,80,91,93,02,92,82,79,58,97	r	6%	13,66,86,88,63,36
f	2.2%	21,30	S	6.3%	77,94,09,87,45,22
g	2%	81,18	t	9.1%	65,55,76,23,85,74,54,57,14
h	6.1%	03,59,49,70,31,17	u	2.8%	08,15,99
i	7%	27,42,07,83,90,60,32	V	1%	24
j	0.2%	52	W	2.3%	75,40
k	0.8%	96	Х	0.1%	37
l	4%	61,69,51,53	у	2.0%	26,05 KIM SO
m	2.4%	50,34	Z	0.1%	28

[문제]

› hello elle high 를 암호화 해보자.

```
24-
                              33-
30-
                    32-
                                                  35-
                                                            36-
                                                                      37-
                                                                                38-
          31-
                                        34-
                                                                                          39-
40-
          41-
                    42-
                              43-
                                        44-
                                                  45-
                                                            46-
                                                                      47-
                                                                                48-
                                                                                          49-
                    52-
                              53-
                                                  55-
                                                                                          59-
          51-
                                                            56-
                                                                      57-
                                                                                58-
50-
                                        54-
                    62-
                              63-
                                                                                          69-
60-
          61-
                                        64-
                                                  65-
                                                                      67-
                                                                                68-
                                                                                                g
                    72-
                              73-
                                                                                78-
70-
          71-
                                        74-
                                                  75-
                                                            76-
                                                                      77-
                                                                                          79-
                                                                                          89-
80-
          81-
                    82-
                              83-
                                        84-
                                                  85-
                                                            86-
                                                                      87-
                                                                                88-
90-
                    92-
                              93-
                                        94-
                                                   95-
                                                             96-
                                                                       97- f
                                                                                 98-
                                                                                           99-
          91-
                                              €
```


다표식 환자 암호

- > 언어의 통계학적 성질을 없애기 위한 방식.
- › Vigenere (비즈네르) 암호 : 위치 의존성을 이용
 - (교재)예제3.5 : 평문 this crypto system 를 key 단어 security로 암호화

평문	t	h	i	S	С	r	у	p	t	0	S	у	S	t	е	m
키워드	S	е	С	u	r	i	t	у	S	е	С	u	r	i	t	Υ
암호문	L	L	K	M	Т	Z										

- 참고

Vignere 암호 방식

- > 키워드 길이가 d 일 때 , 키 공간의 크기 : 26d
 - $-d = 5 일 \text{ W}, \quad 26^5 \rightarrow \text{ } \% 10^7$
 - d = 13 일 때, 26^{13} → 약 4.2×10^{39}
- > 키워드의 길이를 알게 되면 소모적 공격이 가능하다.

Playfair 플레이페어 암호

- > 5 x 5 의 25자 영문자(J는 제외)를 임의로 나열하여 전처리후 암호화 한다.
- > 평문 문자를 두 문자씩(바이그램) 작동시킨다.
- › 예 : 평문 NATTERJACK TOAD 에 대한 전처리
 - 1. J를 I로 대체한다. → NATTERIACKTOAD
 - 2. 문자를 2개씩 나눈다. → NA TT ER IA CK TO AD
 - 3. 같은 문자가 있는 짝은 사이에 'Z'(임의 문자)를 삽입하고 짝을 재구성한다. → NA TZ TE RI AC KT OA D
 - 4. 홀수 문자 개수이므로 마지막에 'Z' '(임의 문자) 를 추가 한다.
 - → NA TZ TE RI AC KT OA DZ

Playfair 플레이페어 암호

- > 전처리 결과 암호화 하기
- > 플레이페어 암호표-예

S	Т	Α	Ν	D		S	Т	Α	N	D
Е	R	С	Н	В	플레이페어 스퀘어	Ε	R	С	Н	В
K	F	G	ı	L		K	F	G	I	L
М	O	Р	Q	U		М	0	Р	Q	U
V	W	Χ	Y	Z		V	W	Χ	Y	Z

- 같은 행이면 오른쪽 문자, 같은 열이면 아래 문자로 대체한다.
- NA TZ TE RI AC KT OA DZ → DN DW SR HF CG FS PT BD

(교재)예제3.7

> 평문 INFORMATION SECURITY 를 아래 플레이페어 암호표로

암호화 하자.

(단, J → X , 기수문자 짝 X로 한다.)

- > IN FO RM AT IO NS EC UR IT YX
- > TO HN DU SI AW VF CL GI ZY

Т	- 1	G	Ε	R
S	Α	В	C	D
F	Н	K	L	М
Ν	0	Р	Q	U
V	W	X	Υ	Z

- > 플레이페어 암호 특징
 - 키공간의 크기 25!
 - 문자의 빈도수를 숨길 수 있으나 두문자의 빈도를 테스트하는 공격은 가능하다.