```
import pandas as pd
import numpy as np
```

▼ Understanding The Data

```
df = pd.read_csv('/content/Mall Customers.csv')
```

df.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

df.shape

(200, 5)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype		
0	CustomerID	200 non-null	int64		
1	Gender	200 non-null	object		
2	Age	200 non-null	int64		
3	Annual Income (k\$)	200 non-null	int64		
4	Spending Score (1-100)	200 non-null	int64		
<pre>dtypes: int64(4), object(1)</pre>					
memory usage: 7.9+ KB					

df.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

df.isnull().sum()

CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

df.Gender.value_counts()

Female 112 Male 88

Name: Gender, dtype: int64

▼ Data Preprocessing

```
new_df = df
new_df = new_df.drop(['CustomerID'],axis=1)
```

new df.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

```
new_df['Gender'] = le.fit_transform(new_df['Gender'])
```

new_df.head()

	Gender	Age	Annual Income ((k\$) S	Spending Score (1-	100)
0	1	19		15		39
1	1	21		15		81
2	0	20		16		6
3	0	23		16		77
4	0	31		17		40

▼ K-Means Algorithm

41000.8742213207, 37649.69225429742]

```
from sklearn import cluster
error = []
for i in range(1,11):
   kmeans = cluster.KMeans(n_clusters=i,init='k-means++',random_state=0)
   kmeans.fit(new df)
    error.append(kmeans.inertia_)
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will
             warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will
             warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will
          /usr/local/lib/python 3.10/dist-packages/sklearn/cluster/\_kmeans.py: 870: Future Warning: The default value of `n\_init` will be a constant of the constant o
              warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` wil.
              warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will
             warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will
              warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will
              warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will
          /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will
             warnings.warn(
          1308862.06000000006.
            212889.44245524303,
            143391,59236035676,
            104414.67534220168,
            75399.61541401484,
            58348.641363315044,
            51132.703212576904,
            44392.11566567935,
```

```
import matplotlib.pyplot as plt
plt.plot(range(1,11),error)
```

[<matplotlib.lines.Line2D at 0x792c5ccb4880>]


```
km_model = cluster.KMeans(n_clusters=5,init="k-means++",random_state=0)
km model.fit(new df)
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will warnings.warn(

```
KMeans
KMeans(n_clusters=5, random_state=0)
```

km_model.predict(new_df)

```
array([0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4,
```

Predicting Random Values

```
km_model.predict([[1,20,50,35]])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans
      warnings.warn(
    array([2], dtype=int32)
km_model.predict([[0,22,50,35]])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMean:
      warnings.warn(
    array([2], dtype=int32)
km model.predict([[0,50,100,50]])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMean:
      warnings.warn(
    array([3], dtype=int32)
km_model.predict([[0,43,60,20]])
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMean:
      warnings.warn(
    array([3], dtype=int32)
```