

Overview

- Data is everywhere
- Statistics is a science dealing with collection, analysis, interpretation, and presentation of data
 - It is important that the statistical reports are accurate and unbiased

Application of Statistics

Advertising

• Evaluate post-campaign to determine the effectiveness of advertising strategies

Operations

Investigate existing and emerging trends

Biology and medicine

• Study collected data to uncover reasons for the occurrence of diseases

Finance and economics

• Track a firm's performance and assess economic growth

Application of Statistics

Agriculture

Forecast agricultural output and identify variables that influence crop growth

Marketing research

Conduct and analyze consumer surveys to determine needs and wants

Weather

Forecast changes and fluctuations in climate conditions

Categories of Statistics

- Descriptive statistics
 - Deal with summarizing and describing the main features of a set of data
 - Involve using measures, such as mean, median, mode, to describe the distribution of data and its central tendencies
- Inferential statistics
 - Use sample data to make inferences about a larger population
 - Involve using statistical techniques to make predictions, estimate population parameters,
 and test hypotheses about relationships between variables

Activity 1

Population vs. Sample

- The entire set of data being studied is referred to as the **population**
- A portion of this data, chosen for analysis, is referred to as a sample

Population vs. Sample

• If the population is **small enough** and it is **possible to gather data on every member** of the population, this method of data collection is referred to as a **census**

Why Sample?

- Study a population may be
 - Impossible
 - Impractical
 - Too costly
- → Sample may be used instead

Parameter vs. Statistic

- A parameter is a numerical value that describes a population characteristic
 - A fixed value that is true for the entire population
- A **statistic** is a numerical value that summarizes a characteristic of a **sample**
 - An estimate of a population parameter based on a sample of data
 - Since statistics are based on a sample, they will vary from sample to sample, and are subject to sampling error

Simple Random Sample

- A subset of a population that each member of the population has an equal chance to be selected
 - Help to minimize bias
 - Ensure the sample represents the population more accurate inferences and predictions

Biased Sample

- A type of sample that does not accurately represent the population from which it was drawn
- This occurs when the selection process is not random and systematic
 - Some members of the population have a higher/lower chance of being selected than others
- A biased sample can lead to **inaccurate conclusions and inferences** about the population

Reasons of Biased Sample

- Convenience sampling
 - Select individuals who are readily available or easy to access
- Self-selection sampling
 - Allow individuals to volunteer to be part of the sample
- Voluntary response sampling
 - Ask individuals to respond to a survey voluntarily
- Non-response bias
 - When certain individuals do not respond to the survey

Simple Random Sample vs. Biased Sample

Simple Random Sample

Biased Sample

Data

What is Data?

- Data refers to a set of measurements collected from a population to investigate some certain characteristics, also known as observations
 - Database is a collection of data points organized into rows(records) and columns (fields)

First Name	Last Name	Date Of Birth	Department	Email	Salary
John	Rodriguez	1980-06-15	Marketing	john123@gmail.com	\$50,000
Jane	Kim	1990-12-23	HR	janekim456@yahoo.com	\$75,000
Johnson	Patel	1985-03-07	IT	pateljohnson789@hotmail.com	\$45,000

The Sources of Data

Primary Data

- Collected directly from original sources for a specific purpose
 - Often collected through methods such as surveys, interviews, or experiments
 - The most accurate and relevant type of data for a specific research or analysis
- Disadvantages
 - Can be expensive and time consuming to gather

The Sources of Data

Secondary Data

- Previously collected by someone else and is used for another purpose
 - Readily available, usually less expensive and time-consuming to obtain than primary data
 - Can come from sources like government reports, industry publications, and online databases
 - May require further verification or analysis to ensure its accuracy and relevance
- Disadvantages
 - Data quality may suffer if not gathered and recorded properly
 - No control over the data collecting process

The Sources of Data

Activity 2

Qualitative Data

- Use descriptive terms to **classify and label** something of interest
- Examples
 - Gender (male, female, etc.)
 - Marital status (married, single, divorced, etc.)
 - Education level (high school, bachelor's, master's, etc.)
 - Occupation (teacher, doctor, engineer, etc.)
- Mathematical operations, like addition, subtraction, multiplication, and division, cannot be applied to qualitative data

Quantitative Data

- Use numerical values obtained by a **measurement or count** to describe something of interest
- Examples
 - Age
 - Height
 - Weight
- Note that quantitative data can either be **continuous** (value within a range, such as height) or **discrete** (only take specific values, such as number of siblings)

Scales of Measurement

Scales of Measurement

Data Type	Level	Description	Example
Qualitative	Nominal	 Lowest level of measurement Categorize data into distinct groups Do not have any inherent order or structure 	Gender (male, female)Eye color (brown, blue, green)
	Ordinal	 Builds upon nominal by adding a level of order/ranking Can be ranked or ordered The difference between categories is not meaningful 	 School grades (A, B, C) Income brackets (low, middle, high)
Quantitative	Interval	 There is order and difference between two values is meaningful Defined zero point Zero point doesn't represent the absence of the quantity measured 	Calendar year (2018, 2019)
	Ratio	 Includes all the characteristics of interval measurement, but also has a meaningful zero point The difference between two values can be expressed as a ratio 	Weight (5kg, 15kg)Distance (20km, 50km)

Activity 3

Time Series Data

- Set of data collected over time
- Used to observe trends, patterns, and changes in the data
- Often used in fields such as economics, finance, and environmental studies to track changes in variables such as GDP, stock prices, and temperature over time

Cross-Sectional Data

- Collected at a single point in time from a sample of individuals, firms, or other units
- Used to make comparisons across units at a specific point in time
- Often used in fields such as sociology, psychology, and marketing to compare characteristics such as income, education, or brand loyalty across individuals or groups

• In summary, time series data tracks changes in a single variable over time, while cross-sectional data compares variables across units at a specific point in time

Visualization

Time Series Data

Cross-Sectional Data

Any Questions?

Website www.canadianctb.ca

Email info@canadianctb.ca

Telephone +1 604-515-7880

Address 626 West Pender Street - Suite 600

Vancouver, British Columbia, V6B 1V9, Canada

Connect with CCTB

@CanadianCTB

DLI 0134304821852