SEQUENCE LISTING

<110> Hinuma, Shuji MARUYAMA, Minoru FUJII, Ryo

<120> Novel Use of EDG Receptor

<130> 3127US0P

<150> PCT/JP2003/015836

<151> 2003-12-11

<150> JP 2002-361415

<151> 2002-12-12

<160> 45

<210> 1

<211> 364

<212> PRT

<213> human

35

<400> 1

Met Ala Ala Ile Ser Thr Ser Ile Pro Val Ile Ser Gln Pro Gln Phe 5

10 15

Thr Ala Met Asn Glu Pro Gln Cys Phe Tyr Asn Glu Ser Ile Ala Phe 20 25 30

Phe Tyr Asn Arg Ser Gly Lys His Leu Ala Thr Glu Trp Asn Thr Val

45

Ser Lys Leu Val Met Gly Leu Gly Ile Thr Val Cys Ile Phe Ile Met

50 55 60

Leu Ala Asn Leu Leu Val Met Val Ala Ile Tyr Val Asn Arg Arg Phe

65 70 75 80

His Phe Pro Ile Tyr Tyr Leu Met Ala Asn Leu Ala Ala Ala Asp Phe

85 95

Phe Ala Gly Leu Ala Tyr Phe Tyr Leu Met Phe Asn Thr Gly Pro Asn

			100					105					110		
Thr	Arg	Arg	Leu	Thr	Val	Ser	Thr	Trp	Leu	Leu	Arg	Gln	Gly	Leu	Ile
		115					120					125			
Asp	Thr	Ser	Leu	Thr	Ala	Ser	Val	Ala	Asn	Leu	Leu	Ala	Ile	Ala	Ile
	130					135					140				
Glu	Arg	His	Ile	Thr	Val	Phe	Arg	Met	Gln	Leu	His	Thr	Arg	Met	Ser
145					150					155					160
Asn	Arg	Arg	Val	Val	Val	Val	Ile	Val	Val	Ile	Trp	Thr	Met	Ala	Ιlε
				165					170					175	
Val	Met	Gly	Ala	Ile	Pro	Ser	Val	Gly	Trp	Asn	Cys	Ile	Cys	Asp	Ιlε
			180					185					190		
Glu	Asn	Cys	Ser	Asn	Met	Ala	Pro	Leu	Tyr	Ser	Asp	Ser	Tyr	Leu	Val
		195					200					205			
Phe	Trp	Ala	Ile	Phe	Asn	Leu	Val	Thr	Phe	Val	Val	Met	Val	Val	Leu
	210					215					220				
Tyr	Ala	His	Ile	Phe	Gly	Tyr	Val	Arg	Gln	Arg	Thr	Met	Arg	Met	Ser
225					230					235					240
Arg	His	Ser	Ser	Gly	Pro	Arg	Arg	Asn	Arg	Asp	Thr	Met	Met	Ser	Leu
				245					250					255	
Leu	Lys	Thr	Val	Val	Ile	Val	Leu	Gly	Ala	Phe	Ile	Ile	Cys	Trp	Thr
			260					265					270		
Pro	Gly	Leu	Val	Leu	Leu	Leu	Leu	Asp	Val	Cys	Cys	Pro	Gln	Cys	Asp
		275					280					285			
Val	Leu	Ala	Tyr	Glu	Lys	Phe	Phe	Leu	Leu	Leu	Ala	Glu	Phe	Asn	Ser
	290	ė				295					300				
Ala	Met	Asn	Pro	Ile	Ile	Tyr	Ser	Tyr	Arg	Asp	Lys	Glu	Met	Ser	Ala
305					310					315					320
Thr	Phe	Arg	Gln	Ile	Leu	Cys	Cys	Gln	Arg	Ser	Glu	Asn	Pro	Thr	Gly
				325					330					335	
Pro	Tḥr	Glu	Gly	Ser	Asp	Arg	Ser	Ala	Ser	Ser	Leu	Asn	His	Thr	Ile
			340					345					350		
Leu	Ala	Gly	Val	His	Ser	Asn	Asp	His	Ser	Val	Val				
		355					360								

<210> 2

<211> 1092

<212> DNA

<213> human

<400> 2

atggctgcca tctctacttc catccctgta atttcacagc cccagttcac agccatgaat 60 gaaccacagt gcttctacaa cgagtccatt gccttctttt ataaccgaag tggaaagcat 120 cttgccacag aatggaacac agtcagcaag ctggtgatgg gacttggaat cactgtttgt 180 atcttcatca tgttggccaa cctattggtc atggtggcaa tctatgtcaa ccgccgcttc 240 cattttccta tttattacct aatggctaat ctggctgctg cagacttctt tgctgggttg 300 360 gcctacttct atctcatgtt caacacagga cccaatactc ggagactgac tgttagcaca 420 tggctcctgc gtcagggcct cattgacacc agcctgacgg catctgtggc caacttactg 480 gctattgcaa tcgagaggca cattacggtt ttccgcatgc agctccacac acggatgagc aaccggcggg tagtggtggt cattgtggtc atctggacta tggccatcgt tatgggtgct 540 atacccagtg tgggctggaa ctgtatctgt gatattgaaa attgttccaa catggcaccc 600 ctctacagtg actcttactt agtcttctgg gccattttca acttggtgac ctttgtggta 660 720 atggtggttc tctatgctca catctttggc tatgttcgcc agaggactat gagaatgtct cggcatagtt ctggaccccg gcggaatcgg gataccatga tgagtcttct gaagactgtg 780 gtcattgtgc ttggggcctt tatcatctgc tggactcctg gattggtttt gttacttcta 840 900 gacgtgtgct gtccacagtg cgacgtgctg gcctatgaga aattcttcct tctccttgct gaattcaact ctgccatgaa ccccatcatt tactcctacc gcgacaaaga aatgagcgcc 960 acctttaggc agatcctctg ctgccagcgc agtgagaacc ccaccggccc cacagaaggc 1020 tcagaccgct cggcttcctc cctcaaccac accatcttgg ctggagttca cagcaatgac 1080 1092 cactctgtgg tt

<210> 3

<211> 364

<212> PRT

<213> Rat

<400> 3

Met Ala Ala Ser Thr Ser Ser Pro Val Ile Ser Gln Pro Gln Phe

10

Thr Ala Met Asn Glu Gln Gln Cys Phe Tyr Asn Glu Ser Ile Ala Phe 20 25

Phe Tyr Asn Arg Ser Gly Lys Tyr Leu Ala Thr Glu Trp Asn Thr Val

35 40 45

Ser Lys Leu Val Met Gly Leu Gly Ile Thr Val Cys Val Phe Ile Met 50

55

60

Leu	Ala	Asn	Leu	Leu	Val	Met	vai	Ala	He	ıyr	vaı	Asn	Arg	Arg	Phe
65					70					75					80
His	Phe	Pro	Ile	Tyr	Tyr	Leu	Met	Ala	Asn	Leu	Ala	Ala	Ala	Asp	Phe
				85					90					95	
Phe	Ala	Gly	Leu	Ala	Tyr	Phe	Tyr	Leu	Met	Phe	Asn	Thr	Gly	Pro	Asn
			100					105					110		
Thr	Arg	Arg	Leu	Thr	Val	Ser	Thr	Trp	Leu	Leu	Arg	Gln	Gly	Leu	Ile
		115					120					125			
Asp	Thr	Ser	Leu	Thr	Ala	Ser	Val	Ala	Asn	Leu	Leu	Ala	Ile	Ala	Ile
	130					135					140				
Glu	Arg	His	Ile	Thr	Val	Phe	Arg	Met	Gln	Leu	His	Thr	Arg	Met	Ser
145					150					155					160
Asn	Arg	Arg	Val	Val	Val	Val	Ile	Val	Val	Ile	Trp	Thr	Met	Ala	Ile
				165					170					175	
Val	Met	Gly	Ala	Ile	Pro	Ser	Val	Gly	Trp	Asn	Cys	Ile	Cys	Asp	Ile
			180					185					190		
Asp	His	Cys	Ser	Asn	Met	Ala	Pro	Leu	Tyr	Ser	Asp	Ser	Tyr	Leu	Val
		195					200					205			
Phe	Trp	Ala	Ile	Phe	Asn	Leu	Val	Thr	Phe	Val	Val	Met	Val	Val	Leu
	210					215					220				
Tyr	Ala	His	Ile	Phe	Gly	Tyr	Val	Arg	Gln	Arg	Thr	Met	Arg	Met	Ser
225					230					235					240
Arg	His	Ser	Ser	Gly	Pro	Arg	Arg	Asn	Arg	Asp	Thr	Met	Met	Ser	Leu
				245		-			250					255	
Leu	Lys	Thr	Val	Val	Ile	Val	Leu	Gly	Ala	Phe	Ile	Val	Cys	Trp	Thr
			260					265					270		
Pro	Gly	Leu	Val	Leu	Leu	Leu	Leu	Asp	Val	Cys	Cys	Pro	Gln	Cys	Asp
		275					280					285			
Val	Leu	Ala	Tyr	Glu	Lys	Phe	Phe	Leu	Leu	Leu	Ala	Glu	Phe	Asn	Ser
	290					295					300				
Ala	Met	Asn	Pro	Ile	Ile	Tyr	Ser	Tyr	Arg	Asp	Lys	Glu	Met	Ser	Ala
305					310					315					320
Thr	Phe	Arg	Gln	Ile	Leu	Cys	Cys	Gln	Arg	Asn	Glu	Asn	Pro	Asn	Gly
				325					330					335	
Pro	Thr	Glu	Gly	Ser	Asp	Arg	Ser	Ala	Ser	Ser	Leu	Asn	His	Thr	Ile
			340					345					350		
Leu	Ala	Glv	Val	His	Ser	Asn	Asp	His	Ser	Val	Val				

<210> 4

<211> 1092

<212> DNA

<213> Rat

<400> 4

atggcagetg cetetactte cagecetgtg attteacage eccagtteac agecatgaae 60 gaacaacagt gcttctacaa cgagtctatc gccttcttct ataaccggag tggaaagtat 120 ctagccacag aatggaacac tgtgagcaag ctggtgatgg gactgggcat cactgtctgc 180 gtgttcatca tgctggccaa tctactggtc atggtggcaa tttacgtcaa ccgccgcttc. 240 cattlcccta tttattactt gatggccaac ctggctgctg cagacttctt cgctggactg 300 gcctacttct acctgatgtt caacacggga cctaataccc ggagactgac cgtgagcaca 360 tggcttctcc ggcagggcct catcgacacc agcctgacgg cttctgtggc caacctgctg 420 480 gccattgcca tcgagaggca catcacagtt ttccgaatgc agctccatac acgaatgagc aaccgacgtg tggtggtggt gattgtagtc atctggacta tggccattgt gatgggtgcc 540 atacccagtg tgggctggaa ctgcatctgt gatatcgatc attgttccaa catggcgccc 600 ctctacagtg actcctactt agtcttctgg gccattttca acctggtgac ctttgtggtc 660 atggtggttc tctacgctca catctttggc tatgttcgcc agaggactat gagaatgtcc 720 cggcatagtt ctggacccag gaggaatcgg gacaccatga tgagccttct gaagactgtg 780 gtcattgtgc tgggtgcctt tattgtctgc tggactccgg gattggtctt gctactgctc 840 900 gatgtgtgtt gcccgcagtg cgatgtcctg gcctatgaga agttcttcct cctcctggcc gagttcaact ctgctatgaa ccccatcatc tactcctacc gcgacaaaga gatgagcgcc 960 accttcaggc agatcctgtg ttgccagcgc aacgagaacc ccaacggccc cacggaaggc 1020 tctgaccgct cggcctcctc cctcaaccac actattctgg ctggagttca cagcaatgac 1080 cactctgtgg tt 1092

<210> 5

<211> 378

<212> PRT

<213> human

<400> 5

Met Ala Thr Ala Leu Pro Pro Arg Leu Gln Pro Val Arg Gly Asn Glu

5

10

15

Thr Leu Arg Glu His Tyr Gln Tyr Val Gly Lys Leu Ala Gly Arg Leu

			20					25					30		
Lys	Glu	Ala	Ser	Glu	Gly	Ser	Thr	Leu	Thr	Thr	Val	Leu	Phe	Leu	Val
		35					40					45			
Ile	Cys	Ser	Phe	Ile	Val	Leu	Glu	Asn	Leu	Met	Val	Leu	Ile	Ala	Ile
	50					55					60				
Trp	Lys	Asn	Asn	Lys	Phe	His	Asn	Arg	Met	Tyr	Phe	Phe	Ile	Gly	Asn
65	ē				70					75					80
Leu	Ala	Leu	Cys	Asp	Leu	Leu	Ala	Gly	Ile	Ala	Tyr	Lys	Val	Asn	Ile
				85					90					95	
Leu	Met	Ser	Gly	Lys	Lys	Thr	Phe	Ser	Leu	Ser	Pro	Thr	Val	Trp	Phe
			100					105					110		
Leu	Arg	Glu	Gly	Ser	Met	Phe	Val	Ala	Leu	Gly	Ala	Ser	Thr	Cys	Ser
		115					120					125			
Leu	Leu	Ala	Ile	Ala	Ile	Glu	Arg	His	Leu	Thr	Met	Ile	Lys	Met	Arg
	130				•	135					140				
Pro	Tyr	Asp	Ala	Asn	Lys	Arg	His	Arg	Val	Phe	Leu	Leu	Ile	Gly	Met
145					150					155					160
Cys	Trp	Leu	Ile	Ala	Phe	Thr	Leu	Gly	Ala	Leu	Pro	Ile	Leu	Gly	Trp
				165					170					175	
Asn	Cys	Leu	His	Asn	Leu	Pro	Asp	Cys	Ser	Thr	Ile	Leu	Pro	Leu	Tyr
			180					185					190		
Ser	Lys		Tyr	Ile	Ala	Phe		Ile	Ser	Ile	Phe		Ala	Ile	Leu
		195				_	200					205			
Val		lle	Val	Ile	Leu	•	Ala	Arg	Ile	Tyr		Leu	Val	Lys	Ser
	210			•••		215				_	220		_		
	Ser	Arg	Lys	Val		Asn	His	Asn	Asn		Glu	Arg	Ser	Met	
225	7		The	37. 3	230	т1	37 1	17 1		235	DI	T 3			240
Leu	Leu	Arg	Thr		vai	He	vai	vai		Val	Phe	lle	Ala		lrp
Con	Dago	1	Dha	245	1	DL -	I	T1 -	250	₩-1	41.	C	A	255	C1
Ser	110	Leu	Phe 260	He	Leu	rne	Leu		Asp	vai	Ala	cys		vai	GIN
Δla	Cve	Pro		Lou	Pho	Lvc	۸1۵	265	Trn	Dho	T10	Vol	270	۸1۵	Vol
ліа	Cys	275	Ile	Leu	rne	LyS	280	GIII	11 p	riie	He		Leu	на	val
1 م	Aen		Ala	Mot	Acn	Pro		Πο	Tur	Thr	Lou	285	Sor	Lvo	Gl ₁₁
Deu	290	561	111a	me t	11011	295	101	116	1 9 1	1111	300	ліа	261	r à 2	OIU
Met		Arø	Ala	Phe	Phe		Len	V ₂ 1	Cvs	Aen		Len	Val	Ara	G1 v
305	6	Б		. 110	310	5	Jou	1	~ <i>,</i> 3	315	~, ·	cu	, 41	, s.t. 2	320

<210> 6 <211> 1134

<212> DNA

<213> human

<400> 6

atggcaactg ccctcccgcc gcgtctccag ccggtgcggg ggaacgagac cctgcgggag 60 cattaccagt acgtggggaa gttggcgggc aggctgaagg aggcctccga gggcagcacg 120 ctcaccaccg tgctcttctt ggtcatctgc agcttcatcg tcttggagaa cctgatggtt 180 ttgattgcca tctggaaaaa caataaattt cacaaccgca tgtacttttt cattggcaac 240 ctggctctct gcgacctgct ggccggcatc gcttacaagg tcaacattct gatgtctggc 300 aagaagacgt tcagcctgtc tcccacggtc tggttcctca gggagggcag tatgttcgtg 360 gcccttgggg cgtccacctg cagcttactg gccatcgcca tcgagcggca cttgacaatg 420 atcaaaatga ggccttacga cgccaacaag aggcaccgcg tcttcctcct gatcgggatg 480 tgctggctca ttgccttcac gctgggcgcc ctgcccattc tgggctggaa ctgcctgcac 540 aatctccctg actgctctac catcctgccc ctctactcca agaagtacat tgccttctgc 600 atcagcatct tcacggccat cctggtgacc atcgtgatcc tctacgcacg catctacttc 660 ctggtgaagt ccagcagccg taaggtggcc aaccacaaca actcggagcg gtccatggca 720 ctgctgcgga ccgtggtgat tgtggtgagc gtgttcatcg cctgctggtc cccactcttc 780 atcetettee teattgatgt ggeetgeagg gtgeaggegt geeceateet etteaagget 840 cagtggttca tcgtgttggc tgtgctcaac tccgccatga acccggtcat ctacacgctg 900. gccagcaagg agatgcggcg ggccttcttc cgtctggtct gcaactgcct ggtcagggga 960 cggggggccc gcgcctcacc catccagcct gcgctcgacc caagcagaag taaatcaagc 1020 agcagcaaca atagcagcca ctctccgaag gtcaaggaag acctgcccca cacagacccc 1080 tcatcctgca tcatggacaa gaacgcagca cttcagaatg ggatcttctg caac 1134

<210> 7

<211> 222

<212> PRT <213> Rat

<400> 7

Arg Met Tyr Phe Phe Ile Gly Asn Leu Ala Leu Cys Asp Leu Leu Ala
5 10 15

Gly Ile Ala Tyr Lys Val Asn Ile Leu Met Ser Gly Arg Lys Thr Phe 20 25 30

Ser Leu Ser Pro Thr Val Trp Phe Leu Arg Glu Gly Ser Met Phe Val 35 40 45

Ala Leu Gly Ala Ser Thr Cys Ser Leu Leu Ala Ile Ala Ile Glu Arg 50 55 60

His Leu Thr Met Ile Lys Met Arg Pro Tyr Asp Ala Asn Lys Lys His
65 70 75 80

Arg Val Phe Leu Leu Ile Gly Met Cys Trp Leu Ile Ala Phe Ser Leu 85 90 95

Gly Ala Leu Pro Ile Leu Gly Trp Asn Cys Leu Glu Asn Phe Pro Asp 100 105 110

Cys Ser Thr Ile Leu Pro Leu Tyr Ser Lys Lys Tyr Ile Ala Phe Leu 115 120 125

Ile Ser Ile Phe Thr Ala Ile Leu Val Thr Ile Val Ile Leu Tyr Ala 130 135 140

Arg Ile Tyr Phe Leu Val Lys Ser Ser Ser Arg Arg Val Ala Asn His 145 150 155 160

Asn Ser Glu Arg Ser Met Ala Leu Leu Arg Thr Val Val Ile Val Val

165 170 175

Ser Val Phe Ile Ala Cys Trp Ser Pro Leu Phe Ile Leu Phe Leu Ile 180 185 190

Asp Val Ala Cys Arg Ala Lys Glu Cys Ser Ile Leu Phe Lys Ser Gln
195 200 205

Trp Phe Ile Met Leu Ala Val Leu Asn Ser Ala Met Asn Pro 210 215 220

<210> 8

<211> 666

<212> DNA

<213> Rat

120

180

240

300

360

420

480

540

600

660

666

<400> 8 cgcatgtact ttttcattgg caacttggct ctctgcgacc tgctggccgg catagcctac aaggtcaaca ttctgatgtc cggtaggaag acgttcagcc tgtctccaac agtgtggttc ctcagggagg gcagtatgtt cgtagccctg ggcgcatcca catgcagctt attggccatt gccattgagc ggcacctgac catgatcaag atgaggccgt acgacgccaa caagaagcac atcctgggct ggaactgcct ggagaacttt cccgactgct ctaccatctt gcccctctac tccaagaaat acattgcctt tctcatcagc atcttcacag ccattctggt gaccatcgtc atcttgtacg cgcgcatcta cttcctggtc aagtccagca gccgcagggt ggccaaccac aactccgaga gatccatggc ccttctgcgg accgtagtga tcgtggtgag cgtgttcatc gcctgttggt ccccctttt catcctcttc ctcatcgatg tggcctgcag ggcgaaggag tgctccatcc tcttcaagag tcagtggttc atcatgctgg ctgtcctcaa ctccgccatg aaccca <210> 9 <211> 353 <212> PRT <213> human <400> 9 Met Gly Ser Leu Tyr Ser Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu 5 10 15 His Tyr Asn Tyr Thr Lys Glu Thr Leu Glu Thr Gln Glu Thr Thr Ser 25 Arg Gln Val Ala Ser Ala Phe Ile Val Ile Leu Cys Cys Ala Ile Val 35 40 45 Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe 50 55 60 His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu 65 70 Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Ser Val 85 90 Thr Leu Arg Leu Thr Pro Val Gln Trp Phe Ala Arg Glu Gly Ser Ala 100 105 110

125

Ser Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile

120

115

	Glu	Arg 130	His	Val	Ala	Ile		Lys	Val	Lys	Leu		Gly	Ser	Asp	Lys
	_			.			135		0.1			140			_	
		Cys	Arg	Met	Leu		Leu	He	Gly	Ala		Irp	Leu	He	Ser	
	145					150					155					160
	Val	Leu	Gly	Gly	Leu	Pro	Ile	Leu	Gly	Trp	Asn	Cys	Leu	Gly	His	Leu
					165					170					175	
	Glu	Ala	Cys	Ser	Thr	Val	Leu	Pro	Leu	Tyr	Ala	Lys	His	Tyr	Val	Leu
				180					185					190		
	Cys	Val	Val	Thr	Ile	Phe	Ser	Ile	Ile	Leu	Leu	Ala	Ile	Val	Ala	Leu
			195					200					205			
	Tyr	Val	Arg	Ile	Tyr	Cys	Val	Val	Arg	Ser	Ser	His	Ala	Asp	Met	Ala
		210					215					220				
	Ala	Pro	Gln	Thr	Leu	Ala	Leu	Leu	Lys	Thr	Val	Thr	Ile	Val	Leu	Gly
	225					230					235					240
	Val	Phe	Ile	Val	Cys	Trp	Leu	Pro	Ala	Phe	Ser	Ile	Leu	Leu	Leu	Asp
					245					250					255	
	Tyr	Ala	Cys	Pro	Val	His	Ser	Cys	Pro	Ile	Leu	Tyr	Lys	Ala	His	Tyr
				260					265			·	·	270		•
	Phe	Phe	Ala	Val	Ser	Thr	Leu	Asn		Leu	Leu	Asn	Pro		Ile	Tvr
			275					280					285			- , -
	Thr	Trp		Ser	Arg	Asp	Leu		Arg	G1u	Val	Leu		Pro	Leu	Gln
		290			Ü	•	295	0	0			300				~
	Cvs		Arg	Pro	Glv	Val		Va1	Gln	Gl v	Arø		Aro	Val	Gly	Thr
	305				01)	310		, 41	0111	OIJ	315	6	8		01)	320
		Glv	Hic	Hic	ا ا ا		Pro	Lau	Δησ	Sor		Sor	Sor	Lou	Glu	
	. 10	Oly	1113	1113	325	Deu	110	Leu	шg	330	261	261	561	Leu	335	AI g
	C1 v	Mot	Hi o	Mot		Thr	Son	Dmo	Thm		Lou	C1	C1	۸	Thr	V-1
,	огу	Met	1112		110	1111	361	110		rne	Leu	GIU	GIY		IIII	vai
,	Vol			340					345					350		
	Val															
	<21n	> 10)													
		> 10														
		> 10														
		> hu														
	\ 213	/ IIU	maii													
	/ / / / / ^	\ 10	,													
•	\400	> 10	,													

 ${\tt atgggcagct\ tgtactcgga\ gtacctgaac\ cccaacaagg\ tccaggaaca\ ctataattat}$

accaaggaga cgctggaaac gcaggagacg acctcccgcc aggtggcctc ggccttcatc 120 gtcatcctct gttgcgccat tgtggtggaa aaccttctgg tgctcattgc ggtggcccga 180 aacagcaagt tccactcggc aatgtacctg tttctgggca acctggccgc ctccgatcta 240 ctggcaggcg tggccttcgt agccaatacc ttgctctctg gctctgtcac gctgaggctg 300 acgcctgtgc agtggtttgc ccgggagggc tctgcctcca tcacgctctc ggcctctgtc 360 ttcagcctcc tggccatcgc cattgagcgc cacgtggcca ttgccaaggt caagctgtat 420 ggcagcgaca agagctgccg catgcttctg ctcatcgggg cctcgtggct catctcgctg 480 gtcctcggtg gcctgcccat ccttggctgg aactgcctgg gccacctcga ggcctgctcc 540 actgtcctgc ctctctacgc caagcattat gtgctgtgcg tggtgaccat cttctccatc 600 atcctgttgg ccatcgtggc cctgtacgtg cgcatctact gcgtggtccg ctcaagccac 660 gctgacatgg ccgccccgca gacgctagcc ctgctcaaga cggtcaccat cgtgctaggc 720 gtctttatcg tctgctggct gcccgccttc agcatcctcc ttctggacta tgcctgtccc 780 gtccactcct gcccgatcct ctacaaagcc cactactttt tcgccgtctc caccctgaat 840 tccctgctca accccgtcat ctacacgtgg cgcagccggg acctgcggcg ggaggtgctt 900 cggccgctgc agtgctggcg gccgggggtg ggggtgcaag gacggaggcg ggtcgggacc 960 ccgggccacc acctcctgcc actccgcagc tccagctccc tggagagggg catgcacatg 1020 cccacgtcac ccacgtttct ggagggcaac acggtggtc 1059

⟨210⟩ 11

<211> 352

<212> PRT

<213> Rat

<400> 11

Met Gly Gly Leu Tyr Ser Glu Tyr Leu Asn Pro Glu Lys Val Gln Glu
5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Asp Met Gln Glu Thr Pro Ser
20 25 30

Arg Lys Val Ala Ser Ala Phe Ile Ile Ile Leu Cys Cys Ala Ile Val 35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe
50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu 65 70 75 80

Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Pro Val
85 90 95

Thr Leu Ser Leu Thr Pro Leu Gln Trp Phe Ala Arg Glu Gly Ser Ala

			100					105					110		
Phe	Ile	Thr	Leu	Ser	Ala	Ser	Val	Phe	Ser	Leu	Leu	Ala	Ile	Ala	Ile
		115					120					125			
Glu	Arg	Gln	Val	Ala	Ile	Ala	Lys	Val	Lys	Leu	Tyr	Gly	Ser	Asp	Lys
	130					135					140				
Ser	Cys	Arg	Met	Leu	Met	Leu	Ile	Gly	Ala	Ser	Trp	Leu	Ile	Ser	Leu
145					150					155					160
Ile	Leu	Gly	Gly	Leu	Pro	Ile	Leu	Gly	Trp	Asn	Cys	Leu	Asp	His	Leu
				165		•			170					175	
Glu	Ala	Cys	Ser	Thr	Val	Leu	Pro	Leu	Tyr	Ala	Lys	His	Tyr	Val	Leu
			180					185					190		
Cys	Val	Val	Thr	Ile	Phe	Ser	Val	Ile	Leu	Leu	Ala	Ile	Val	Ala	Leu
		195					200					205			
Tyr	Val	Arg	Ile	Tyr	Phe	Val	Val	Arg	Ser	Ser	His	Ala	Asp	Val	Ala
	210					215					220				
Gly	Pro	Gln	Thr	Leu	Ala	Leu	Leu	Lys	Thr	Val	Thr	Ile	Val	Leu	Gly
225					230					235					240
Val	Phe	Ile	Ile	Cys	Trp	Leu	Pro	Ala	Phe	Ser	Ile	Leu	Leu	Leu	Asp
				245					250					255	
Ser	Thr	Cys	Pro	Val	Arg	Ala	Cys	Pro	Val	Leu	Tyr	Lys	Ala	His	Tyr
			260					265					270		
Phe	Phe		Phe	Ala	Thr	Leu	Asn	Ser	Leu	Leu	Asn	Pro	Val	Ile	Tyr
		275					280					285			
Thr		Arg	Ser	Arg	Asp	Leu	Arg	Arg	Glu	Val	Leu	Arg	Pro	Leu	Leu
	290					295					300				
	Trp	Arg	Gln	Gly		Gly	Ala	Thr	Gly		Arg	Gly	Gly	Asn	
305					310			•		315					320
Gly	His	Arg	Leu		Pro	Leu	Arg	Ser		Ser	Ser	Leu	Glu		Gly
			_	325	_	_			330					335	
Leu	His	Met		Thr	Ser	Pro	Thr		Leu	Glu	Gly	Asn		Val	Val
			340					345					350		

<210> 12

<211> 1056

<212> DNA

<213> Rat

<400> 12 60 atgggcggtt tatactcaga gtacctcaat cctgagaagg ttcaggaaca ctacaattac accaaggaga cgctggacat gcaggagacg ccctcccgca aggtggcctc cgccttcatc 120 atcattttat gctgtgccat cgtggtggag aaccttctgg tgctaatcgc agtggccagg 180 aacagcaagt tccactcagc catgtacctg ttcctcggca acctggcagc ctccgacctg 240 300 ctggcaggcg tggccttcgt ggccaacacc ttgctctccg gacctgtcac cctgtcctta 360 actcccttgc agtggtttgc ccgagagggt tcagccttca tcacgctctc tgcctcggtc 420 ttcagcctcc tggccattgc catcgagaga caagtggcca tcgccaaggt caagctctac 480 ggcagtgaca aaagctgtcg aatgttgatg ctcattgggg cctcttggct gatatcgctg attctgggtg gcttgcccat cctgggctgg aattgtctgg accatctgga ggcttgctcc 540 actgtgctgc ccctctatgc taagcactat gtgctctgcg tggtcaccat cttctctgtc 600 660 atcttactgg ctatcgtggc cttgtacgtc cgaatctact tcgtagtccg ctcaagccat 720 gcggacgttg ctggtcctca gacgctggcc ctgctcaaga cagtcaccat cgtactgggt 780 gttttcatca tctgctggct gccggctttt agcatccttc tcttagactc tacctgtccc gtccgggcct gtcctgtcct ctacaaagcc cattatttct ttgccttcgc caccctcaac 840 900 tetetgetea accetgteat etatacatgg egtageeggg acctteggag ggaggtactg 960 aggcccctgc tgtgctggcg gcaggggaag ggagcaacag ggcgcagagg tgggaaccct ggtcaccgac teetgeeect eegeagetee ageteeetgg agagaggett geatatgeet 1020 1056 acategecaa catttetgga gggcaacaca gtggte

<210> 13

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 13

ccaccgaccc atgtactatt tt

22

<210> 14

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Primer
<400> 14
tgtaggctac tcctgccaac ag
                                                     22
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 15
ttggcaatct ggccctctca ga
                                                     22
<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
⟨400⟩ 16
                                                     21
actgtcagca catggctcct t
<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 17
                                                     21
```

accgtaatgt gcctctcgat t

<210> 18	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Probe, labeled 5'-terminal with FAM</pre>	A and 3'-terminal with TAMRA
<400> 18	
attgacacca gcctgacggc at	22
atigacacca geetgaegge at	22
<210> 19	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 19	
ccgtgctctt cttggtcat	19
<210> 20	•
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 20	
ccagatggca atcaaaacc	19
<210> 21	
<210> 21 <211> 26	
<212> DNA	

<213> Artificial Sequence			
⟨220⟩	•		
<223> Probe, labeled 5'-terminal with FAM	and 3'-te	rminal with	TAMRA
<400> 21			
tgcagcttca tcgtcttgga gaacct		26	
<210> 22	•		
<211> 22			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Primer			
<400> 22			
cctggtcaag actgttgtca tc		22	
		22	•
⟨210⟩ 23			
<211> 19			
<212> DNA			•
<213> Artificial Sequence	•		
(000)			
<220>			
<223> Primer			
⟨400⟩ 23			
caggacattg caggactca	• -	19	
<210> 24			
<211> 27			
<212> DNA			·
<213> Artificial Sequence			
⟨220⟩			
<pre><223> Probe, labeled 5'-terminal with FAM</pre>	and 3'-te	erminal with	TAMRA

<400> 24	
tggtactgct cctggatggt ttaggct	27
<210> 25	
<211> 19	
<212> DNA	
<213> Artificial Sequence	·
(000)	
<220>	
<223> Primer	
<400> 25	
ccaacaaggt ccaggaaca	19
<210> 26	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 26	
aggttttcca ccacaatgg	19
<210> 27	
<211> 28	•
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Probe, labeled 5'-terminal with FAM</pre>	and 3' -towning 1 th TAME
1220/ 1100e, labeled b -terminal with FAM	and 5 -terminal with IAMK
<400> 27	
aattatacca aggagacgct ggaaacgc	28

<210>	28		
<211>	19		
<212>	DNA		
<213>	Artificial Sequence		
•			
<220>			
<223>	Primer		
/ / / 0 0 0 0	00		
<400>		10	
gaact	gcctg tgcgccttt	19	
<210>	29		
<211>	20		
<212>	DNA		
	Artificial Sequence		
	·		
<220>			
<223>	Primer		
	·		
<400>	29		
ccata	gaggc ccatgatggt	20	
<210>	30		
<211>	28		
<212>	DNA		
<213>	Artificial Sequence		
(000)			
<220>	Decker labeled 52 and 1 and 1		tal manna
(223)	Probe, labeled 5'-terminal with	FAM and 3 -terminal	with TAMRA
<400>	30		
	cctc tactccaagc gctacatc	28	
- 650	0000000	20	
<210>	31		
<211>	19		
<212>	DNA		
<213>	Artificial Sequence		

```
<220>
<223> Primer
<400> 31
tgactgcttc cctcaccaa
                                                     19
<210> 32
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 32
gcatcctcat gattgacatg tg
                                                      22
<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 33
                                                      22
ttgctggtta tcgccgtgga ga
<210> 34
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 34	
cttgctccac tgtcttgcc	19
<210> 35	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 35	
tagagtgcac agatcgcgg	19
<210> 36	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FA	minal with TAMRA
	minal with TAMRA
	minal with TAMRA
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	minal with TAMRA 28
$<\!223\!>$ Probe, labeled 5'-terminal with FAM and 3'-terminal $<\!400\!>$ 36	
$<\!223\!>$ Probe, labeled 5'-terminal with FAM and 3'-terminal $<\!400\!>$ 36	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with FAM and	

<210> 38

⟨211⟩ 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 38	
ggtccccttc tcttttccaa a	21
<210> 39	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe, labeled 5'-terminal w	ith FAM and 3'-terminal with TAMRA
<400> 39	
atgaacttgc ttggtagccc ccatcttc	28
<210> 40	
⟨211⟩ 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 40	•
atcttgtacg cgcgcatcta	20
<210> 41	
<211> 22	
<212> DNA	
<213> Artificial Sequence	

```
<220>
<223> Primer
<400> 41
tggatctctc ggagttgtgg tt
                                                      22
<210> 42
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 42
                                                      22
tggtcaagtc cagcagccgc ag
<210> 43
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 43
gtttgcccga gagggttca
                                                      19
<210> 44
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 44

cttgtctctc	gatggcaatg	g

<210> 45

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA

<400> 45

cttcatcacg ctctctgcct cggtctt

27