Building a Medical Device with R

Ron Keizer
Chief Scientific Officer

What do we build?

Drugs

Antibiotics Chemotherapy Transplantation

Populations

Neonates / children Elderly Critically ill

- cloud-based web-application
- based on pharmacology models
- integrated clinical workflow

What is a medical device?

What is software as a medical device?

Clinical Decision Support (CDS)

Regulatory process: stages

1. pre-development

- decide which class medical device
 - what claims are you making?
 - what are the risks involved?
- set up quality system (US: 21 CFR 820, EU: 93/42/EC)

2. product development

under design controls

3. verification

Applying test framework

4. validation

• File with FDA (510k)

5. release

Regulatory process: documents


```
Insight RX
```

json2test package

API payload

```
"drug": "vancomycin",
    "doses_given: [ ... ],
    "patient_chars: [ ... ],
    "conc_measured: [ ... ],
    ...
}
```

Reference JSON

```
{
    "dose.value": 500,
    "dose.unit": "mg",
    "conc.value": {
        "value": 15,
        "delta": 0.01
    }
}
```

json2test

API output

```
"dose.value": 500,
"dose.unit": "mg",
"conc.value": 15,
"conc.unit": "mg/L",
...
}
```

Benefits

- no writing test scenarios, just specify relevant reference values
- faster implementation

Other requirements

Client requirements

Computations
Architecture
Scaleability
API frameworks

Computations

- Models are systems of differential equations
- Open source package PKPDsim
- Compiled code (Rcpp)
- In-house developed: beneficial for regulatory

PKPDsim package: models as packages

Benefits

- Easy to add / update models
- Generate documentation from metadata

Architecture

Architecture

Architecture

Scaleability

API requirements

API requirements

API requirements

API frameworks

API frameworks

- **1. Custom**, written in NodeJS
- 2. OpenCPU, exposes R packages as APIs
 - initially AWS::EC2
 - later using AWS::Fargate (Docker, "infrastructure-as-code")

3. Plumber

- use inline comments to expose functions as API calls
- deploy to cloud server / docker, or to RStudio Connect
- 4. AWS::Lambda
- 5. ...

Take-home messages

- Medical device in R? Yes!
- Functional testing is important
- Store as much in metadata (vs code) as possible
- Write your own (core) code!

Acknowledgements

InsightRX

Ranvir Mangat Sirj Goswami Jasmine Hughes Alan Potosnak Marc Meyer Dominic Tong Andro Hsu Vikram Matange Lena Schneider

Deccus Biomedical

AJ Lambert Grace Bartoo

And...

Rstudio, PBC **U**sers of our open-source packages

Precision dosing done right.