VERMES MIKLÓS Fizikaverseny

II. forduló 2014. április 12. IX. osztály

JAVÍTÓKULCS

I. feladat

1.) a)
$$\frac{1}{x'_2} - \frac{1}{x'_1} = \frac{1}{f'}$$
 \Rightarrow $x'_2 = \frac{x'_1 f'}{x'_1 + f'} = -6cm$

$$x_1'' = x_2' - d = -26cm$$
, $x_2'' = = \frac{x_1'' f''}{x_1'' + f''} = -195cm$ \Rightarrow $L = (x_2'' (-d = 175cm))$ 1 p

- b) Helyes szerkesztés, az első lencse látszólagos képe valódi tárgy a második lencse számára 1,5 p
- c) A kép nagyságát az optikai tengellyel párhuzamos sugár konjugáltja határozza meg, mely párhuzamos az optikai tengellyel. Így ha eltoljuk a tárgyat a kép mérete változatlan 1,5 p (A rendszer afokális, transzverzális lineáris nagyítása $\beta = -\frac{f''}{f'}$ független a tárgy helyzetétől)
- 2.) Annak a feltétele, hogy egy fénysugár teljes visszaverődést szenvedjen a belső gömbön, γ beesési szöge nagyobb, vagy legalább akkora kell legyen mint az L határszög ($\gamma \ge L$, 1.ábra)

Az 1. ábra alapján $x = R \sin \alpha$, de $\sin \alpha = n \sin \beta$ és

az AOC háromszögből
$$\frac{\sin \beta}{R - d} = \frac{\sin(180 - L)}{R} = \frac{\sin L}{R}$$
 1 p

$$\sin L = \frac{1}{n} \implies \sin \beta = \frac{R - d}{R} \cdot \frac{1}{n} \implies x = R - d$$
, tehát $x \ge R - d$

Ahhoz, hogy teljes visszaverődés jöhessen létre, a megtört fénysugárnak el kell érnie a gömbhéj belső falát (2. ábra).

Az ábra alapján $\sin \beta = \frac{R - d}{R}$ és $x = R \sin \alpha = Rn \sin \beta = n(R - d)$

$$\Rightarrow$$
 $x \le n(R-d)$, tehát $(R-d) \le x \le n(R-d)$

II. feladat

a) $\frac{1}{F} = \frac{1}{f} + \frac{1}{f} = \frac{2}{f}$ -ből az illesztett lencsék gyújtótávolsága $F = \frac{f}{2}$ 1 p A nagyobb átmérőjű lencse szélső részén áthaladó sugarak adják a nagyobb képet, melynek x_2' helyzetét az $\frac{1}{x_2'} - \frac{1}{x_1} = \frac{1}{f}$ összefüggés határozza meg, míg az illesztett lencséken áthaladó sugarak adják a kisebb képet, ennek x_2'' helyzetét az $\frac{1}{x_2''} - \frac{1}{x_1} = \frac{2}{f}$ összefüggés határozza meg 2 p $y_2' = 3y_2''$ képek nagysága közötti kapcsolatból $x_2' = 3x_2''$ 1 p A képalkotási egyenleteket felhasználva $f = -x_1/2 = 30cm$ 1 p

b) A képalkotási egyenletből $x_2' = 60cm$ és $x_2'' = 20cm$. A távolabbi kép látszólagos tárgy a tükör számára és erről alkot valódi képet az optikai tengelyre merőleges irányban, $20\ cm$ -re $2\ p$ Ez utóbbi látszólagos tárgya a levegő-víz sík törőfelületnek, melyről $x_2 = 20cm$ -re kell valódi képet alkosson. A képalkotási egyenletből $x_1 = \frac{n_1}{n_2}x_2 = 15cm$, így az edény alja $25\ cm$ -re kell legyen az optikai tengelytől $2\ p$ (Vagy a vízréteg, mint síkpárhuzamos lemez a látszólagos tárgyról $\Delta x = h\left(1 - \frac{1}{n}\right) = 5\ cm$ -rel távolabb alkot valódi képet

c) Mivel a sík törőfelület és a síktükör nagyítása 1, és a tárgy a nagyobbik átmérőjű lencsétől kétszeres fókusztávolságnyira van a végső kép ugyanakkora, mint a tárgy. 1 p

III. feladat

a) Helyes rajz

$$mg\cos\alpha \ge mg\sin\alpha \quad \Rightarrow \quad a \ge g \cdot tg\alpha \quad \Rightarrow \quad a_{\min} = g \cdot tg\alpha \approx 5.8 \, m/s^2$$

b) Ha
$$a = n \cdot a_{\min}$$
 a test gyorsulása a lejtőhöz viszonyítva $a_1 = n \cdot a_{\min} \cos \alpha - g \sin \alpha \Rightarrow$

$$\Rightarrow a_1 = (n-1)g \sin \alpha = 10 m/s^2 \Rightarrow 1 p$$

A test lejtőhöz viszonyított sebessége a lejtő csúcsán $v_1 = \sqrt{2(n-1)gL\sin\alpha} = 4m/s$ 0,5 p

A test mozgásának ideje a lejtőn
$$t_1 = \frac{v_1}{a_1} = \sqrt{\frac{2L}{(n-1)g\sin\alpha}} = 0.4s$$
 0.5 p

A lejtő Földhöz viszonyított sebessége

$$v_2 = n \cdot a_{\min} t_1 = ng \cdot tg\alpha \sqrt{\frac{2L}{(n-1)g\sin\alpha}} = \frac{n}{(n-1)\cos\alpha} v_1 = \sqrt{3}v_1$$

A test Földhöz viszonyított sebessége: $v = v_1 + v_2$ Helyes rajz

$$v = \sqrt{v_1^2 + v_2^2 - 2v_1v_2\cos\alpha} = v_1$$

A test Földhöz viszonyított sebességének vektora 30°-os szöget zár be a vízszintessel és a lejtő gyorsulásával megegyező irányú 0,5 p

c)
$$h_{\text{max}} = L \sin \alpha + \frac{v_1^2 \sin^2 \alpha}{2g} = L \sin \alpha \left(\cos^2 \alpha + n \sin^2 \alpha\right) = 0.6m$$

d) A test ferde hajítást végez L magasságról. Mozgásának teljes ideje

$$t = t_{em} + t_{es} = \frac{v \sin \alpha}{g} + \sqrt{\frac{2h_{\text{max}}}{g}} = 0.2(1 + \sqrt{3}) = 0.546s$$
 1 p

$$s = s_1 - s_2 = v_2 t + \frac{at^2}{2} - v \cos \alpha \cdot t = v_1 t \left(\sqrt{3} - \frac{\sqrt{3}}{2} \right) + \frac{at^2}{2} = \left[\frac{\sqrt{3}}{2} v_1 + \frac{na_{\min}}{2} t \right] \cdot t = 4,48m$$