FBISE

MATHEMATICS

Faderal Board Islamabad Presented by:

Urdu Books Whatsapp Group

STUDY GROUP

9TH CLASS

0333-8033313 راؤاباز 7008883-0343 پاکستان زنده باد

0306-7163117 محمد سلمان سليم

Emails safid@office.com/ok

Matrices and Determinants

Guess Papers

GUESS PAPER & MODEL PAPER # 01 BASED ON UNIT # 1 (Reduced Syllabus) MATRICES AND DETERMINANTS

Unit 1	Matrices and Determinants	
Exercise 1.1	Q1; Q2; Q3	
Exercise 1.2	Q1; Q2; Q3; Q5; Q6	
Exercise 1.3	1; Q2; Q5(i, v, vi, ix, x); Q6; Q7; Q8(i, ii, iii, iv)	
Exercise 1.4	Q1; Q2; Q3; Q5; Q6	
Exercise 1.5	Q1(i, ii); Q2(i, ii); Q3(iii, iv); Q4	
Exercise 1.6	Q1(i, iii, v, vii); Q2; Q4	
Review Ex 1	Q1	

NOTE:

All Class work will be given for revision as H.W.

The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the chapters: so MCQ's will be done in class by class teacher.

SECTION-A

_	S STRUMBUT: NO INTERNITION						Marke: 15
pa;	ite: Section-A is compul per itseif. It should be perintendent. Deleting/	complet	ed in the fi	rst 20 m	inutes and hi	anded over	the question
Q.1	Encircle the correct or	tion i.e.	A/B/C/	D. All par	ts carry equa	l marks	···
(i)	The order of matrix [2	1] is	, -, -,	pro -	co com y coqua	ii iiidi ka	
	(A) 2-by-1	/R\	1-by-2	(C)	1-by-1	(D)	2-by-2
(ii)	$\begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} $ is called	matrix.	-		,	(-7	, .
	(A) zero	(B)	unit	(C)	scalar	(D)	singular
(iii)	Which is order of a squ	uare mai	trix	` ′		(-)	aguioi
	(A) 2-by-2	(B) [2 1]	1-by-2	(C)	2-by-1	(D)	3-by-2
(iv)	Order of transpose of	0 1	is				
	(A) 3-by-2	(B)	2-by-3	(C)	1-by-3	(D)	3-by-1

Emrils soft@offce.compls

Conficts +92 345 5282625

fb.com/office.com.pk

Unit # 01

Matrices and Determinants

Guess Papers

(vi) Product of $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ is.......

$$(A) \quad [2x+y]$$

(B)
$$[x-2y]$$

(C)
$$[2x-y]$$

(D)
$$\{x+2y\}$$

(A) [2x + y] (B) [x - 2y](vii) If $\begin{bmatrix} 2 & 6 \\ 3 & x \end{bmatrix} = 0$, then x is equal to...a =

(A)
$$\begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}$

$$(B) \qquad \begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is called.....matrix. (ix)

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is called.....matrix. (x)

Additive inverse of $\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$ is.... (x_i)

$$(A) \quad \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \qquad \qquad (B) \qquad \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

$$(C) \quad \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -1 & -2 \\ 0 & -1 \end{bmatrix}$$

In matrix multiplication, in general, AB.......BA.

$$(A) =$$

(xiii) Matrix A + B may be found if order of A and B is......

(xiv) A matrix is called......matrix if number of rows and columns are equal.

--6

If $\begin{bmatrix} 2 & 6 \\ 3 & x \end{bmatrix} = 0$, then x is equal to: (xv) (B)

Total Marks: 60 Note: Attempt any nine parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Log book and graph paper will be provided on demand.

SECTION - B (Marks 36)

Attempt any NINE parts from the following. All parts carry equal marks. Q.2

$$(9 \times 4 = 36)$$

Find the values of a, b, c and d which satisfy the matrix equation (i)

$$\begin{bmatrix} a+c & a+2b \\ c-1 & 4d-6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix} \quad ; \quad \text{EX } \#1.1 \text{ Q3}$$

The length of a rectangle is 4 times its width. The perimeter of the rectangle is 150 cm. (ii) Find the dimensions of the rectangle. ; EX #1.6 Q.2

Find the determinant of the following matrices. (iii)

(i)
$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

(ii)
$$B = \begin{bmatrix} 1 & 3 \\ 2 & -2 \end{bmatrix}$$
; EX #1.5 Q1. (i, ii)

If $A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$, find (i) AB (ii) BA (if possible); EX #1.4 Q2. (iv)

(v) If
$$2\begin{bmatrix} 2 & 4 \\ -3 & a \end{bmatrix} + 3\begin{bmatrix} 1 & b \\ 8 & -4 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 18 & 1 \end{bmatrix}$$
, then find a and b.; EX #1.3 Q7.

(vi) If
$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$, find (i) $3A - 2B$ (ii) $2A^t - 3B^t$.; EX #1.3 Q6.

The third angle of an isosceles triangle is 16° less—than the sum of the two equal angles. Find three angles of the triangle.; EX #1.6 Q.4

(viii) Chau whathar the points with vertices (5.2) (5.4) and (4.4) are vertices of an equilatoral

عظمت صحابه زنده باد

ختم نبوت صَالِيَّا يُمْ رُنده باد

السلام عليكم ورحمة الله وبركاته:

معزز ممبران: آپ کاوٹس ایپ گروپ ایڈ من "اردو بکس" آپ سے مخاطب ہے۔

آپ تمام ممبران سے گزارش ہے کہ:

- ب گروپ میں صرف PDF کتب پوسٹ کی جاتی ہیں لہذا کتب کے متعلق اپنے کمنٹس / ریویوز ضرور دیں۔ گروپ میں بغیر ایڈ من کی اجازت کے کسی بھی قشم کی (اسلامی وغیر اسلامی ،اخلاقی ، تحریری) پوسٹ کرنا پیخی سے منع ہے۔
- گروپ میں معزز ، پڑھے لکھے، سلجھے ہوئے ممبر ز موجود ہیں اخلاقیات کی پابندی کریں اور گروپ رولز کو فالو کریں بصورت دیگر معزز ممبر ز کی بہتری کی خاطر ریموو کر دیاجائے گا۔
 - 💠 کوئی بھی ممبر کسی بھی ممبر کوانباکس میں میسیج، مس کال، کال نہیں کرے گا۔رپورٹ پر فوری ریمو و کرکے کاروائی عمل میں لائے جائے گا۔
 - 💠 ہمارے کسی بھی گروپ میں سیاسی و فرقہ واریت کی بحث کی قطعاً کوئی گنجائش نہیں ہے۔
 - 💠 اگر کسی کو بھی گروپ کے متعلق کسی قشم کی شکایت یا تجویز کی صورت میں ایڈ من سے رابطہ کیجئے۔
 - * سبسے اہم بات:

گروپ میں کسی بھی قادیانی، مرزائی، احمدی، گتاخِ رسول، گتاخِ امہات المؤمنین، گتاخِ صحابہ و خلفائے راشدین حضرت ابو بکر صدیق، حضرت عمرفاروق، حضرت عثمان غنی، حضرت علی المرتضی، حضرت حسنین کریمین رضوان الله تعالی اجمعین، گتاخ المبیت یا ایسے غیر مسلم جو اسلام اور پاکستان کے خلاف پر اپلینڈ امیس مصروف ہیں یا ان کے روحانی و ذہنی سپورٹرز کے لئے کوئی گنجائش نہیں ہے۔ لہذا ایسے اشخاص بالکل بھی گروپ جو ائن کرنے کی زحمت نہ کریں۔ معلوم ہونے پر فوراً ریمووکر دیا جائے گا۔

- ب تمام کتب انٹر نیٹ سے تلاش / ڈاؤ نلوڈ کر کے فری آف کاسٹ وٹس ایپ گروپ میں شیئر کی جاتی ہیں۔جو کتاب نہیں ملتی اس کے لئے معذرت کر لی جاتی ہے۔جس میں محنت بھی صَرف ہوتی ہے لیکن ہمیں آپ سے صرف دعاؤں کی درخواست ہے۔
 - عمران سیریز کے شوقین کیلئے علیحدہ سے عمران سیریز گروپ موجو دہے۔

اردوکتب / عمران سیریزیاسٹڈی گروپ میں ایڈ ہونے کے لئے ایڈ من سے وٹس ایپ پر بذریعہ میسی دابطہ کریں اور جواب کا انتظار فرمائیں۔ برائے مہر بانی اخلاقیات کا خیال رکھتے ہوئے موبائل پر کال یا ایم ایس کرنے کی کوشش ہر گزنہ کریں۔ ورنہ گروپس سے توریموو کیا ہی جائے گا بلاک بھی کیا حائے گا۔
 حائے گا۔

نوٹ: ہارے کسی گروپ کی کوئی فیس نہیں ہے۔سب فی سبیل اللہ ہے

0333-8033313

0343-7008883

0306-7163117

راؤاياز

ياكستان زنده باد

محرسلمان سليم

بإكستان بإئنده باد

پاکستان زنده باد

الله تبارك تعالى جم سب كاحامى وناصر ہو

Matrices and Determinants

Guess Papers

- (x) In the $\triangle ABC$, $m \angle B = 70^{\circ}$ and $m \angle C = 45^{\circ}$. Which of the sides of the triangle is longest and which is the shortest?; EX #13.1; O.3
- (xi) The three sides of a triangle are of measure 8 x and 17 respectively. For what value of x will it become base of a right angled triangle? ; EX #15; Q.3
- (xii) Construct the following $\Delta's$ ABC. Draw the bisectors of their angles and verify their concurrency. ; $m\overline{AB} = 4.5$ cm, $m\overline{BC} = 3.1$ cm, $m\overline{AC} = 5.2$ cm ; EX #17.2 Q.1;(i)
- (xiii) The right bisectors of the three sides of a triangle are concurrent.; Theorem # 12.1.3
- (xiv) The distance of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2 cm, 1.4 cm and 1.6 cm. Find the lengths of its medians. ; EX #11.4 ; Q.1

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks. $(3 \times 8 = 24)$

- Q3. Prove that mid-point of the hypotenuse of a right triangle is equidistant from its three vertices P(-2,5), Q(1,3) and R(-1,0). ; EX #9.3; Q.3
- Q.4 If in any correspondence of two triangles, two angles and one side of a triangle are congruent to the corresponding two angles and one side of the other, the triangles are congruent. (A.S.A \cong A.S.A) ; Theorem # 10.1.1
- Q.5 Construct a quadrilateral ABCD, having $m\overline{AB} = m\overline{AC} = 5.3 \text{ cm}, m\overline{BC} = m\overline{CD} = 3.8 \text{ cm} \text{ and } m\overline{AD} = 2.8 \text{ cm}.$; EX #17.3 Q.1
- Q.6 The line segment that joins the mid-points of two sides of a triangle is parallel to the third side and is equal to one-half of its length. ; Theorem # 11.1.3
- Q.7 If three or more parallel lines make segments congruent on one transversal, they also make congruent segments on any other transversal. ; Theorem # 11.1.5

SOLUTION OF GUESS PAPER & MODEL PAPER # 1 (Reduced Syllabus)

SECTION- A (MCOs)

i. B	ii. C	iii. A	iv. B	v. A	vi. C
vii. A	viii. D	ix. A	x.B	xi. C	xii. B
xiii. B	xiv. A	xv. D			<u> </u>

SECTION - B (Marks 36)

Q.2 Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$

(i) Find the values of a, b, c and d which satisfy the matrix equation $\begin{bmatrix} a+c & a+2b \\ c-1 & 4d-6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix} \quad \text{; EX #1.1 Q3}$

$$\begin{bmatrix} a + c & a + 2b \\ c - 1 & 4d - 6 \end{bmatrix} = \begin{bmatrix} a & -7 \\ 3 & 2d \end{bmatrix}$$
; EX #1.1 Q3

Solution: As,
$$\begin{bmatrix} a + c & a + 2b \\ c - 1 & 4d - 6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2d \end{bmatrix}$$

By comparing the corresponding elements

So, $a+c=0 \Rightarrow a=-c$ (i) $a+2b=-7 \Rightarrow 2b=-(a+7)$ (ii) $c-1=3 \Rightarrow c=3+1 \Rightarrow c=4$ ------ (iii) By putting the value of "c" in equation (i), we will get

 $\alpha = -4 \qquad \qquad (iv)$

By putting the value of "a" in equation (ii), we will get

Matrices and Determinants

Guess Papers

The length of a rectangle is 4 times its width. The perimeter of the rectangle is 150 cm. (ii) Find the dimensions of the rectangle. ; EX #1.6 Q.2

Solution: By Cramer's rule:

Let length of rectangle is x cm and width of rectangle is y cm.

According to given condition x = 4y

150 cm Perimeter

150 Perimeter ≖ 2(x + y)

x + y = 75 - (ii)70

 $\begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 75 \end{bmatrix}$ By solving (i) and (ii), we get

$$A = \begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 1 & -4 \\ 1 & 1 \end{vmatrix} = 1 \times 1 - (-4) \times 1 = 1 + 4 = 5 \neq 6$$

$$A_{\chi} = \begin{bmatrix} 0 & -4 \\ 75 & 1 \end{bmatrix}$$

$$|A_x| = \begin{vmatrix} 0 & -4 \\ 75 & 1 \end{vmatrix} = 0 \times 1 - (-4) \times (75) = 0 + 300 = 300$$

$$A_y = \begin{bmatrix} 1 & 0 \\ 1 & 75 \end{bmatrix}$$

$$|A_y| = \begin{vmatrix} 1 & 0 \\ 1 & 75 \end{vmatrix} = 1 \times 75 - 0 \times 1 = 75 - 0 = 75$$

$$x = \frac{|A_x|}{|A|} = \frac{300}{5} = 60$$

$$y = \frac{|A_y|}{|A|} = \frac{75}{5} = 1$$

$$x = 60$$
, $y = 15$ So length = x = 60 cm; width = y = 15 cm.

Find the determinant of the following matrices. (iii)

(i)
$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$
 (ii) $B = \begin{bmatrix} 1 & 3 \\ 2 & -2 \end{bmatrix}$; EX #1.5 Q1. (i, ii)

Solution: (i)
$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

Determinant of matrix A is calculated as:

$$|A| = \det A = \begin{vmatrix} -1 & 1 \\ 2 & 0 \end{vmatrix} = (-1) \times 0 - 2 \times 1 = 0 - 2 = -2$$

(ii)
$$B = \begin{bmatrix} 1 & 3 \\ 2 & -2 \end{bmatrix}$$

Determinant of matrix B is calculated as:

$$|B| = \det B = \begin{vmatrix} 1 & 3 \\ 2 & -2 \end{vmatrix} = 1 \times (-2) - 2 \times 3 = -2 - 6 = -8$$

(iv) If
$$A = \begin{bmatrix} 3 & 0 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$, find (i) AB (ii) BA (if possible); EX #1.4 Q2.

$$|B| = \det B = \begin{vmatrix} 1 & 3 \\ 2 & -2 \end{vmatrix} = 1 \times (-2) - 2 \times 3 = -2 - 6 = -8$$
(iv) If $A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$, find (i) AB (ii) BA (if possible); EX #1.4 Q2.

Solution: (i) AB = $\begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \times 6 + 0 \times 5 \\ (-1) \times 6 + 2 \times 5 \end{bmatrix} = \begin{bmatrix} 18 + 0 \\ -6 + 10 \end{bmatrix} = \begin{bmatrix} 18 \\ 4 \end{bmatrix}$

So. AB =
$$\begin{bmatrix} 18 \\ 4 \end{bmatrix}$$

(ii) BA

BA is not possible (because number of columns of B is not equal to number of rows of A)

If $2\begin{bmatrix} 2 & 4 \\ -3 & a \end{bmatrix} + 3\begin{bmatrix} 1 & b \\ 8 & -4 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 18 & 1 \end{bmatrix}$, then find a and b.; EX #1.3 Q7. (v) . (1 6) (7 10)

Approximate selficion and the complete selficion

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 01

Matrices and Determinants

Guess Papers

$$= \begin{bmatrix} 2 \times 2 & 2 \times (4) \\ 2 \times (-3) & 2 \times a \end{bmatrix} + \begin{bmatrix} 3 \times 1 & 3 \times b \\ 3 \times 8 & 3 \times (-4) \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ -6 & 2a \end{bmatrix} + \begin{bmatrix} 3 & 3b \\ 24 & -12 \end{bmatrix}$$

$$= \begin{bmatrix} 4 + 3 & -8 + 3b \\ (-6) + 24 & 2a - 12 \end{bmatrix} = \begin{bmatrix} 7 & 8 + 3b \\ 18 & 2a - 12 \end{bmatrix}$$

By equating it with R.H.S, we have:

$$\begin{bmatrix} 7 & 8+3b \\ 18 & 2a-12 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 18 & 1 \end{bmatrix}$$

By comparing corresponding elements

$$8 + 3b = 10 \implies 3b = 10 - 8 \implies 3b = 2 \implies b = \frac{2}{3} - - - (eq-1)$$

 $2a - 12 = 1 \implies 2a = 1 + 12 \implies 2a = 13 \implies a = \frac{13}{2} - - - (eq-2)$

From equations "1" and "2", we get; $a = \frac{13}{2}$ and $b = \frac{2}{3}$

(vi) If
$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$, find (i) $3A - 2B$ (ii) $2A^t - 3B^t$.; EX #1.3 Q6.

$$\begin{array}{lll} & 3 \times \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} - 2 \times \begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix} \\ & = \begin{bmatrix} 3 \times 1 & 3 \times (-2) \\ 3 \times 3 & 3 \times 4 \end{bmatrix} - \begin{bmatrix} 2 \times 0 & 2 \times 7 \\ 2 \times (-3) & 2 \times 8 \end{bmatrix} & = \begin{bmatrix} 3 & -6 \\ 9 & 12 \end{bmatrix} - \begin{bmatrix} 0 & 14 \\ -6 & 16 \end{bmatrix} \\ & = \begin{bmatrix} 3 - 0 & (-6) - (14) \\ 9 - (-6) & 12 - 16 \end{bmatrix} & = \begin{bmatrix} 3 & -20 \\ 15 & -4 \end{bmatrix}$$

So,
$$3A - 2B = \begin{bmatrix} 3 & -20 \\ 15 & -4 \end{bmatrix}$$

2At - 3Bt (ii)

So,

Solution:
$$A = \begin{bmatrix} 1 & -2 \ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 7 \ -3 & 8 \end{bmatrix}$
 $A^t = \begin{bmatrix} 1 & 3 \ -2 & 4 \end{bmatrix}$, $B^t = \begin{bmatrix} 0 & -3 \ 7 & 8 \end{bmatrix}$
 $2A^t = 2 \times \begin{bmatrix} 1 & 3 \ -2 & 4 \end{bmatrix}$, $3B^t = 3 \times \begin{bmatrix} 0 & -3 \ 7 & 8 \end{bmatrix}$
 $2A^t = \begin{bmatrix} 2 \times 1 & 2 \times 3 \ 2 \times (-2) & 2 \times 4 \end{bmatrix}$, $3B^t = \begin{bmatrix} 3 \times 0 & 3 \times (-3) \ 3 \times 7 & 3 \times 8 \end{bmatrix}$
 $2A^t = \begin{bmatrix} 2 & 6 \ -4 & 8 \end{bmatrix}$, $3B^t = \begin{bmatrix} 0 & -9 \ 21 & 24 \end{bmatrix}$
 $2A^t - 3B^t = \begin{bmatrix} 2 & 6 \ -4 & 8 \end{bmatrix} - \begin{bmatrix} 0 & -9 \ 21 & 24 \end{bmatrix} = \begin{bmatrix} 2 - 0 & 6 - (-9) \ -4 - 21 & 8 - 24 \end{bmatrix} = \begin{bmatrix} 2 & 15 \ -25 & -16 \end{bmatrix}$
So, $2A^t - 3B^t = \begin{bmatrix} 2 & 15 \ -25 & -16 \end{bmatrix}$

(vii) The third angle of an isosceles triangle is 16° less than the sum of the two equal angles. Find three angles of the triangle. ; EX #1.6 Q.4

Solution: By Cramer's rule:

Let the each equal angle be x° cm and the third angle be y° cm. According to given condition:

$$2x - 16 = y$$
or $2x - y = 16$ ---- (i)
and $2x + y = 180^{\circ}$
or $2x + y = 180$ ---- (ii)
or
$$\begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 180 \end{bmatrix}$$

$$2x - y = 16$$
 ; $2x + y = 180$

$$\begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 16 \end{bmatrix}$$

[180]

Matrices and Determinants

Guess Papers

$$|A_{x}| = \begin{vmatrix} 16 & -1 \\ 180 & 1 \end{vmatrix} = 16 \times 1 - (-1) \times (180) = 16 + 180 = 196$$

$$|A_{y}| = \begin{vmatrix} 2 & 16 \\ 2 & 80 \end{vmatrix} = 2 \times 180 - 16 \times 2 = 360 - 32 = 328$$

$$|A_{y}| = \frac{|A_{x}|}{|A|} = \frac{196}{4} = 49$$

$$|A_{y}| = \frac{|A_{y}|}{|A|} = \frac{328}{4} = 82$$

$$\Rightarrow x = 49, y = 82$$

$$x + y + z = 180^{\circ} \implies 49^{\circ} + 82^{\circ} + z = 180^{\circ} \implies z = 180^{\circ} - 49^{\circ} - 82^{\circ} = 49^{\circ}$$

So the angles are 49°, 49°, 82°

(viii) Show whether the points with vertices (5,2), (5,4) and (4,-1) are vertices of an equilateral triangle or an isosceles triangle? ; EX #9.2; Q.1

Solution: Let the points be A(5,2), B(5,4) and C(-4,1).

$$|AB| = \sqrt{(5-5)^2 + (4+2)^2} = \sqrt{(0)^2 + (6)^2} = \sqrt{0 + 36} = 6$$

$$|BC| = \sqrt{(5+4)^2 + (4-1)^2} = \sqrt{(9)^2 + (3)^2} = \sqrt{81 + 9} = \sqrt{90} = \sqrt{9 \times 10} = 3\sqrt{10}$$

$$|CA| = \sqrt{(5+4)^2 + (-2-1)^2} = \sqrt{(9)^2 + (-3)^2} = \sqrt{81 + 9} = \sqrt{90} = \sqrt{9 \times 10} = 3\sqrt{10}$$

$$|BC| = |CA| = 3\sqrt{10}$$

Since two sides are equal therefore the triangle is formed is an isosceles triangle.

If two angles of a triangle are congruent, then the sides opposite to them are also (ix) ; Theorem # 10.1.2 congruent.

Solution:

Given: In AABC,

$$\angle B \cong \angle C$$

To Prove:

$$\overrightarrow{AB} \cong \overrightarrow{AC}$$

Construction:

Draw the bisector of $\angle A$, to meet $B\hat{C}$ at point D.

Proof:

Statements	Reasons
In ∆ ABD ↔ ∆ ACD	
$\overline{AD} \cong \overline{AD}$	Common
∠B ≅ ∠C	Given
∠BAD ≅ ∠CAD	Construction
∴ ∆ABD ≅ ∆ACD	A.A.S. ≅ A.A.S
Hence $\overline{AB} \cong \overline{AC}$	Corresponding angles of congruent triangles

In the $\triangle ABC$, $m \angle B = 70^{\circ}$ and $m \angle C = 45$. Which of the sides of the triangle is longest and (x) which is the shortest?; EX #13.1; Q.3

Solution:
$$m\angle B = 70^{\circ}$$
; $m\angle C = 45^{\circ}$

$$m\angle A + m\angle B + m\angle C = 180^{\circ} \implies m\angle A + 70^{\circ} + 45^{\circ} = 180^{\circ}$$

$$m\angle A + 115^{\circ} = 180^{\circ}$$
 \Rightarrow $m\angle A = 180^{\circ} - 115^{\circ} = 65^{\circ}$
Since the largest angle is B. So the longest side is opposite to B is \overline{AC} (Longest)

Since the smallest angle is C. So the shortest side is opposite to C is AB (Shortest)

Matrices and Determinants

Guess Papers

By Pythagoras Theorem;
$$(hypotenus)^2 = (base)^2 + (perpendicular)^2$$

 $(17)^2 = (x)^2 + (8)^2 \implies 289 = x^2 + 64$
 $x^2 = 289 - 64 = 225 \implies x = \sqrt{225} = 15$

(xii) Construct the following $\Delta's$ ABC. Draw the bisectors of their angles and verify their concurrency. ; $\overline{MAB} = 4.5 \text{ cm}$, $\overline{MBC} = 3.1 \text{ cm}$, $\overline{MAC} = 5.2 \text{ cm}$; EX #17.2 Q.1;(i)

Solution:

Construction:

- Take $\overline{MAB} = 4.5 \text{ cm}$. (i)
- With B as centre and radius $m\overline{BC} = 3.1$ cm draw an arc. (ii)
- With centre A and radius $\overline{\text{mAC}}$ = 5.2 cm draw another arc which (iii) intersects the first arc at C.
- (iv) Join CA and CB to complete the AABC.
- Draw bisectors of $\angle B$ and $\angle C$ meeting each other at the point I. (v)
- (vi) Now draw the bisector of the third ∠A.
- We observe that the third angle bisector also passes through (vii)

(xiii) The right bisectors of the three sides of a triangle are concurrent.; Theorem # 12.1.3

Solution: Given: ABC is a triangle

To Prove:

The right bisectors of \overline{AB} , \overline{BC} and \overline{CA} are concurrent.

Construction:

Draw the right bisectors of \overline{AB} and \overline{BC} , which meet each other at the point O. Join O to A, B and C.

roof:	
Statements	Reasons
$\overline{OA} \cong \overline{OB}$ (i) $\overline{OB} \cong \overline{OC}$ (ii)	Each point on right bisector of a segment is equidistant from its end point. From (i)
<u>OA</u> ≅ <u>OC</u> (iii)	From (i) and (ii)
(iv) Point O is on the right bisector of \overline{CA} .	O is equidistant from A and C.
(v) Point O is on the right bisector of \overline{AB} as \overline{BC} .	1d Construction
Thus, the right bisectors of the three sides of triangle are concurrent.	a From (iv) and (v)

(xiv) The distance of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2 cm, 1.4 cm and 1.6 cm. Find the lengths of its medians. ; EX #11.4; Q.1 Solution:

Let ABC be triangle with the point of concurrency of medians at G.

m \overline{AG} = 1.2 cm, m \overline{BG} = 1.4 cm and m \overline{CG} = 1.6 cm

$$m(\overline{AP}) = \frac{3}{2} (m\overline{AG}) = \frac{3}{2} \times 1.2 = 1.8 \text{ cm}$$

$$m\overline{RO} = \frac{3}{2} (m\overline{RG}) = \frac{3}{2} \times 1.4 = 2.1 \text{ cm}$$

Emails said@office.com/ok

Confict +92 345 5282625

fb.com/office.com.pk

Matrices and Determinants

Guess Papers

_IR (-1, 0)

□Q (1, 3)

P (-2, 5)

SECTION – C (Marks 24)

 $(3 \times 8 = 24)$ Note: Attempt any THREE questions. Each question carries equal marks.

Prove that mid-point of the hypotenuse of a right triangle is equidistant from its three ; EX #9.3; Q.3

vertices P(-2,5), Q(1,3) and R(-1,0).

P(-2,5), Q(1,3), R(-1,0)Solution:

Distance formula = $d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$

$$|PQ| = \sqrt{(-2-1)^2 + (5-3)^2} = \sqrt{(-3)^2 + (2)^2} = \sqrt{9+4} = \sqrt{13}$$

$$|QR| = \sqrt{(1+1)^2 + (3-0)^2} = = \sqrt{(-2)^2 + (3)^2} = \sqrt{4+9} = \sqrt{13}$$

$$|PR| = \sqrt{(-2+1)^2 + (5-0)^2}$$

$$= \sqrt{(-1)^2 + (5)^2} = \sqrt{1+25} = \sqrt{26}$$

$$|PR|^2 = 26 = |PQ|^2 + |QR|^2$$

.: PR is hypotenuse

Mid point of hypotenuse PR is $M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

$$M\left(\frac{-2-1}{2}, \frac{5+0}{2}\right) = \left(-\frac{3}{2}, \frac{5}{2}\right)$$

 $|MP|^2 = |MR|^2$

$$M\left(-\frac{3}{2},\frac{5}{2}\right)$$
 ; $R(-1,0)$

$$|MR| = \sqrt{\left(-\frac{3}{2}+1\right)^2 + \left(\frac{5}{2}-0\right)^2} \qquad = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{5}{2}\right)^2} \qquad = \sqrt{\frac{1}{4} + \frac{25}{4}} = \frac{\sqrt{26}}{2}$$

$$M\left(-\frac{3}{2},\frac{5}{2}\right) \quad ; \quad Q(1,3)$$

Now
$$|MQ| = \sqrt{\left(-\frac{3}{2} - 1\right)^{\frac{2}{3}} + \left(\frac{5}{2} - 3\right)^{2}} = \sqrt{\left(-\frac{5}{2}\right)^{2} + \left(-\frac{1}{2}\right)^{2}}$$

$$|MQ| = \sqrt{\frac{25}{4} + \frac{1}{4}} = \sqrt{\frac{26}{4}} = \frac{\sqrt{26}}{2} = |MP| = |MR|$$

Hence M the mid point of hypotenuse is equidistant from the three vertices of the triangle PQR.

Q.4 If in any correspondence of two triangles, two angles and one side of a triangle are congruent to the corresponding two angles and one side of the other, the triangles are congruent. (A.S.A \cong A.S.A) ; Theorem # 10.1.1

Solution:

Given: ξ'n $\triangle ABC \leftrightarrow \triangle DEF$ श्रीपारक कार्गिक श्रीवाचि

Conficts +92 345 5282625

fb.com/office.com.pk

Unit # 01

Matrices and Determinants

Guess Papers

Proof:

Statements	Reasons
In Δ ABC ↔ ΔD'EF	
$\overline{AB} \cong \overline{D'E}$ (i)	Construction / Supposition
BC ≅ EF(ii)	Given
∠B ≅ ∠E(iii)	Given
∴ ΔABC≅ ΔD'EF	S.A.S. Postulate
So , $\angle C \cong \angle D'EF$	Corresponding angles of congruent triangles
But ∠C≅∠DFE	Given
∴ ∠DFE ≅ ∠D'FE	Both congruent to 20
This is possible only if D and D' are the same points.	
So, $\overline{AB} \cong \overline{DE}$ (iv)	Proved that D and D'are the same points.
Thus from (ii), (iii) and (iv), we have	
ΔABC ≅ ΔDEF	S.A.S. postulate

Construct a quadrilateral ABCD, having

 $m\overline{AB} = m\overline{AC} = 5.3$ cm, $m\overline{BC} = m\overline{CD} = 3.8$ cm and $m\overline{AD} = 2.8$ cm. ; EX #17.3 O.1

Solution:

Construction:

- With centre at A and B radius 5.3 cm draw an arc. (i)
- (ii) Take $m\overline{AB}$ =5.3 cm.
- With centre at B and radius 3.8 cm draw another arc to (iii) cut the first arc at D.
- (iv) Join \overline{BC} and \overline{AC} .
- With centre at C and radius 3.8 cm draw an arc. (v)
- With centre at A and radius 2.8 c draw another arc to cut (vi) the first arc at D.
- Join \overline{AD} and \overline{DC} to complete the quadrilateral ABCD. (vii)
- (viii) Through D draw | CA meeting BA produced at P.
- (ix) Join PC.
- The $\triangle PBC$ is the required triangle. (x)
- The line segment that joins the mid-points of two sides of a triangle is parallel to the third Q.6 side and is equal to one-half of its length. ; Theorem # 11.1.3

Solution:

Given:

In $\triangle ABC$, the mid-points of \overline{AB} and \overline{AC} are L and M respectively,

To Prove:

5.3cm

Construction:

Alpinoseoffic@liffes alternal

Conficts +92 345 5282625

fb.com/office.com.pk

Guess Papers

Matrices and Determinants

Proof:

Statements	Reasons
In ∆BLN ↔ ∆ALM	Given
BL ≅ AL ∠1 ≅ ∠2	Vertical angles Construction
$\overrightarrow{NL} \cong \overrightarrow{ML}$ $\therefore \Delta BLN \cong \Delta ALM$ and $\angle A \cong \angle 3 \dots (i)$	S.A.S postulate Corresponding angles of congruent triangles
NB ≅ AM (ii)	Corresponding sides of congruent triangles
NB AM ⇒ NB MC (iii)	From (i) M is mid-point of AC
<u>MC</u> ≅ <u>AM</u> (iv)	Given
NB ≅ MC (v) ∴ BCMN is a parallelogram	From (ii) and (iv) From (iii) and (v) Opposite sides of a parallelogram BCMN
$\overrightarrow{BC} \parallel \overrightarrow{LM}$ or $\overrightarrow{BC} \parallel \overrightarrow{NL}$ $\overrightarrow{BC} \cong \overrightarrow{MN}$ (vi)	Opposite sides of a parallelogram
$m \overline{LM} = \frac{1}{2} m \overline{NM}$	From (vi) and (vii)

Q.7 If three or more parallel lines make segments congruent on one transversal, they also make congruent segments on any other transversal. ; Theorem # 11.1.5

Solution:

 \overrightarrow{LX} intersects \overrightarrow{AB} , \overrightarrow{CD} and \overrightarrow{EF} at the points M, N and P respectively, such that $\overrightarrow{MN} \cong \overrightarrow{NP} \cdot \overrightarrow{QY}$ intersects them at points R,S and firespectively.

To Prove:

$$\overline{RS} \cong \overline{ST}$$

Construction:

From R, draw \overline{RU} 1 \overline{LX} , which meets \overline{CD} at U. From S, draw SV | LX which meets EF at V and according to the figure the names of the angles are $\angle 1, \angle 2, \angle 3$ and $\angle 4$.

Proof:

Statements	Reasons
MNUR is a parallelogram	$\overline{R}\overline{U} \parallel \overline{LX}$ (construction)
	ĀB ∥ CD (given)
MN ≅ RU (i)	Opposite sides of parallelogram
Similarly	
NP ≅ SV (ii)	
But <u>MN</u> ≅ NP (iii)	Given
$RU \cong \overline{SV}$	From (i), (iii) and (iii)
Also RU SV	Each one $\parallel \widetilde{LX}$ (construction)
	A

fb.com/office.com.pk

Guess Papers

Matrices and Determinants

RU ≅ ŠV	Proved
∠1 ≅ ∠2	Proved
∠3 ≅ ∠4	Proved
∴ ∆ RUS ≅ ∆ SVT	S.A.A ≅ S.A.A
And $\overline{RS} \cong \overline{ST}$	Corresponding sides of congruent triangles

IMPORTANT QUESTIONS & ANSWERS (Reduced Syllabus)

Find the order of the following matrices. Q1.

$$A = \begin{bmatrix} 2 & 3 \\ -5 & 6 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 4 \end{bmatrix}, \quad D = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}, \qquad E = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}, \quad F = \begin{bmatrix} 2 \end{bmatrix},$$

$$G = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}, \quad H = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 6 \end{bmatrix} \quad ; \quad EX \# 1.1 \text{ Q1}$$

Solution:

Order of Matrix:

The number of rows and columns in a matrix specifies its order.

- Matrix A has two rows and two columns so it's order = number of rows × number of columns = 2-by-2. (i)
- Matrix B has two rows and two columns so it's order = number of rows \times number of columns = 2-by-2. (ii)
- Matrix C has one row and two columns so it's order = number of rows × number of columns = 1-by-2. (iii)
- Matrix D has three rows and one column so it's order = number of rows × number of columns = 3- by-1. (iv)
- Matrix E has three rows and two columns so it's order = number of rows \times number of columns = 3-by-2. (v)
- Matrix F has only one row and one column so it's order = number of rows × number of columns = 1-by-1. (vi)
- Matrix G has three rows and three columns so it's order = number of rows × number of columns = 3-by-3. (vii)
- Matrix B has two rows and three columns so it's order = number of rows × number of columns = 2-by-3. (viii)

Which of the following matrices are equal? Q2.

A = [3], B = [3 5], C = [2 4], D =
$$\begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}$$
, E = $\begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}$, F = $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$,

G = $\begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$, H = $\begin{bmatrix} 4 & 0 \\ 6 & 2 \end{bmatrix}$, I = [3 3 + 2], J = $\begin{bmatrix} 2+2 & 2-2 \\ 2+4 & 2+0 \end{bmatrix}$; EX #1.1 Q2

Solution:

Matrices are said to be equal if

- They are of same order, (ii) Their corresponding entries are equal. So, according to this definition (i)
- Matrices A and C are equal A = C. Ans. (a)
 - (b) Matrices B and I are equal B = I.
 - Matrices E, H and J are equal E = H = J. (c)
 - Matrices F and G are equal F = G.
- From the following matrices, identify unit matrices, row matrices, column matrices and Q1. null matrices.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

Matrices and Determinants

Guess Papers

Matrix A is a null matrix (because it's all entities are zero). Solution:

Matrix B is a row matrix (because it has only one row).

Matrix C is a column matrix (because it has only one column).

Matrix D is a diagonal matrix (because it's diagonal entities are 1).

Matrix E is a null matrix (because it's all entities are 0).

Matrix F is a column matrix (because it has only one column)

From the following matrices, identify Q2.

- Row matrices Rectangular matrices (c) (b) Square matrices (à) **(f)** Null matrices Column matrices (e) Identity matrices
- (d) (iii) $\begin{bmatrix} 6 & -4 \\ 3 & -2 \end{bmatrix}$ (iv) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (i)
- [3 10 -1] (vii) $\begin{bmatrix} \overline{1} \\ 0 \end{bmatrix}$ (viii) $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (ix) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$; EX #1.2 Q.2

Solution:

- (iii),(iv) and (viii) are square matrices because the number of rows are equal to number of (a) columns.
- (i),(ii),(v),(vi),(vii),(ix) are rectangular matrices because their rows and columns are not equal. (b)
- (vi) is a row matrix because it has only one row. (c)
- (ii) and (vii) are column matrices because they have only one column. (d)
- (iv) is a identity matrix as well because its diagonal elements are "1". (e)
- (ix) is a null matrix because its each entity is zero. (f)
- From the following matrices, identify diagonal, scalar and unit (identity) matrices. Q3.

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix},$$

$$E = \begin{bmatrix} 5 - 3 & 0 \\ 0 & 1 + 1 \end{bmatrix} \qquad ; \qquad EX.\#1.2 \text{ Q3}$$

Matrix A is a scalar matrix (because its diagonal entities are same). Solution:

Matrix B is a diagonal matrix (because its diagonal entities are non-zero and non diagonal Solution: entities are zero).

Matrix C is a identity matrix (because its diagonal entities are 1). Solution:

Matrix D is a diagonal matrix (because its one diagonal entity is non-zero and non-diagonal Solution: entities are zero).

Matrix E is a scalar matrix (because its diagonal entities are same). Solution:

Find the transpose of each of the following matrices: Q5.

$$A = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \qquad B = \begin{bmatrix} 5 & 1 & -6 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 0 \end{bmatrix}, \\ D = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}, \qquad E = \begin{bmatrix} 2 & 3 \\ -4 & 5 \end{bmatrix}, \qquad F = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}; EX #1.2 Q5.$$

Transpose of a matrix is obtained by converting all the columns of that matrix to the rows and all Solution: the rows to the columns So, according to the definition;

(i)
$$A^t = \begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$$
 (ii) $B^t = \begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$ (iii) $C^t = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \end{bmatrix}$ (iv) $D^t = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}$ (v) $E^t = \begin{bmatrix} 2 & -4 \\ 3 & 5 \end{bmatrix}$ (vi) $F^t = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$

Matrices and Determinants

Guess Papers

Taking transpose of BI, we will get

$$(B')^t = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} = B$$

Hence proved:

$$(B^1)^t = B$$

Q1. Which of the following matrices are conformable for addition?

A =
$$\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$
, B = $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, C = $\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 1 & -2 \end{bmatrix}$,

D = $\begin{bmatrix} 2+1 \\ 3 \end{bmatrix}$ E = $\begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, F = $\begin{bmatrix} 3 & 2 \\ 1+1 & -4 \\ 3+2 & 2+1 \end{bmatrix}$; EX #1.3 Q1

On: Matrices of same order are conformable for addition. So

Solution: Matrices of same order are conformable for addition. So, according to this definition;

- Matrices A and E are conformable for addition (because both have order 2-by-2). (i)
- Matrices B and D are conformable for addition (because both have order 1-by-1). (ii)
- Matrices C and F are conformable for addition (because both have order 3-by-2), (iii)
- Find the additive inverse of following matrices. Q2.

$$A = \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 3 \\ 3 & -2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 \\ -3 & -2 \\ 2 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad F = \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{2} \end{bmatrix} ; EX \#1.3 Q2.$$

Solution:

The additive inverse of a matrix is obtained by changing the sign of each entity. So, according to the definition;

(i) Additive inverse of A = -A =
$$\begin{bmatrix} -2 & -4 \\ 2 & -1 \end{bmatrix}$$
 (ii) Additive inverse of B = -B = $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & -3 \\ -3 & 2 & -1 \end{bmatrix}$ (iii) Additive inverse of C = -C = $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ (iv) Additive inverse of D = -D = $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & -3 \\ -3 & 2 & -1 \end{bmatrix}$

(iii) Additive inverse of
$$C = -C = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$
 (iv) Additive inverse of $D = -D = \begin{bmatrix} -1 & 0 \\ 3 & 2 \\ -2 & -1 \end{bmatrix}$

(v) Additive inverse of E =
$$\cdot$$
 E = $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ (vi) Additive inverse of F = \cdot F = $\begin{bmatrix} -\sqrt{3} & -1 \\ 1 & -\sqrt{2} \end{bmatrix}$

Q5. For the matrices
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ verify the following rules.

(i)
$$A + C = C + A$$
 (v) $(C - B) + A + C + (A - B)$ (vi) $2A + B = A + (A + B)$

(ix)
$$A + (B - C) = (A - C) + B$$
 (x) $2A + 2B = 2(A + B)$; EX #1.3 Q5. (i, v, vi, ix, x) Solution: (i) $A + C = C + A$

L.H.S = A + C =
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + (-1) & 2 + 0 & 3 + 0 \\ 2 + 0 & 3 + (-2) & 1 + 3 \\ 1 + 1 & -1 + 1 & 0 + 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ 2 & 1 & 4 \\ 2 & 0 & 2 \end{bmatrix}$$
R.H.S = C + A =
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 + 1 & 0 + 2 & 0 + 3 \\ 0 + 2 & (-2) + 3 & 3 + 1 \\ 1 + 1 & 1 + -1 & 2 + 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ 2 & 1 & 4 \\ 2 & 0 & 2 \end{bmatrix}$$
"1" and "2", it is proved that:
$$A + C = C + A$$

From "1" and "2", it is proved that:

Unit#01

Matrices and Determinants

Guess Papers

L.H.S =
$$(C-B)+A = \begin{pmatrix} -1 & 0 & 0 \ 0 & -2 & 3 \ 1 & 1 & 2 \end{pmatrix} - \begin{bmatrix} 1 & -1 & 1 \ 2 & 2 & 3 \ 3 & 1 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 1 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1-1 & 0-(-1) & 0-1 \ 0-2 & -2-(-2) & 3-2 \ 1-3 & 1-1 & 2-3 \ 1-3 & 1-1 & 2-3 \ 1-2 & 0-1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 & -1 \ -2 & 0 & 1 \ 1 & 2 & 3 \ 1 & 1 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -2+1 & 1+2 & -1+3 \ -2+2 & 0+3 & 1+1 \ -2+1 & 0+(-1) & -1+0 \end{bmatrix} = \begin{bmatrix} -1 & 3 & 2 \ 0 & 3 & 2 \ -1 & -1 & -1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \ 2 & 3 \ 1 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 \ 0 & -2 & 3 \ 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \ 2 & -2 & 2 \ 3 & 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 \ 0 & -2 & 3 \ 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 3 & 2 \ 0 & -2 & 3 \ 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 3 & 2 \ 0 & 5 & -1 \ 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 3 & 2 \ 0 & -2 & 3 \ 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 3 & 2 \ 0 & 5 & -1 \ -2 & -2 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} -1+0 & 0+3 & 0+2 \ 0+0 & -2+5 & 3+(-1) \ 1+(-2) & 1+(-2) & 2+(-3) \end{bmatrix} = \begin{bmatrix} -1 & 3 & 2 \ 0 & 3 & 2 \ -1 & -1 & -1 \end{bmatrix} - \begin{bmatrix} -1 & 3 & 2 \ 0 & 3 & 2 \ -1 & -1 & -1 \end{bmatrix}$$
From "1" and "2", It is proved that: $(C-B)+A=C+(A-B)$

(vi) $2A+B=A+(A+B)$
Solution: $2A+B=A+(A+B)$

L.H.S = $2A+B=2 \times \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 1 & -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \ 2 & -2 & 2 \ 3 & 3 & 1 & 3 \end{bmatrix}$

$$= \begin{bmatrix} 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$$

$$S = 2A + B = 2 \times \begin{vmatrix} 2 & 3 & 1 \\ 1 & -1 & 0 \end{vmatrix} + \begin{vmatrix} 2 & -2 & 2 \\ 3 & 1 & 3 \end{vmatrix}$$

$$= \begin{bmatrix} 2 \times 1 & 2 \times 2 & 2 \times 3 \\ 2 \times 2 & 2 \times 3 & 2 \times 1 \\ 2 \times 1 & 2 \times (-1) & 2 \times 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 2 \\ 2 & -2 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 + 1 & 4 + (-1) & 6 + 1 \\ 4 + 2 & 6 + (-2) & 2 + 2 \\ 2 + 3 & (-2) + 1 & 0 + 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 7 \\ 6 & 4 & 4 \\ 5 & -1 & 3 \end{bmatrix} - (1)$$

R.H.S =
$$A + (A + B)$$

= $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 & 1 \\ 2 & 4 & 3 & 1 & 1 + 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 7 \\ 6 & 4 & 4 \\ 5 & -1 & 3 \end{bmatrix}$
= $\begin{bmatrix} 1 & 2 & 2 + 1 & 3 + 4 \\ 4 & 1 & 3 \\ 4 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 + 2 & 2 + 1 & 3 + 4 \\ 2 + 4 & 3 + 1 & 1 + 3 \\ 1 + 4 & -1 + 0 & 0 + 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 7 \\ 6 & 4 & 4 \\ 5 & -1 & 3 \end{bmatrix}$

From "1" and "2", it is proved that: 2A + B = A + (A + B)

0 2

0

1

(ix) A + (B - C) = (A - C) + B

Solution: A + (B - C) = (A - C) + B

LH.S = A+(B-C)
=
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 + $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix}$ - $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ - $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ + $\begin{bmatrix} 1 - (-1) & -1 - 0 & 1 - 0 \\ 2 - 0 & -2 - (-2) & 2 - 3 \\ 3 - 1 & 1 - 1 & 3 - 2 \end{bmatrix}$
= $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ + $\begin{bmatrix} 0 & -1 & 1 \\ 2 & 0 & -1 \end{bmatrix}$ = $\begin{bmatrix} 1 + 0 & 2 + (-1) & 3 + 1 \\ 2 + 2 & 3 + 0 & 1 + (-1) \end{bmatrix}$ = $\begin{bmatrix} 1 & 1 & 4 \\ 4 & 3 & 0 \end{bmatrix}$ -----(1)

-1 ÷ C

0+1]

{3

R.H.S = $\begin{pmatrix} A - C \end{pmatrix} + B$ $= \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \end{pmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 - (-1) & 2 - 0 & 3 - 0 \\ 2 - 0 & 3 + (-2) & 1 - 3 \\ 1 - 1 & -1 - 1 & 0 - 2 \end{bmatrix} + \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & 1 & 3 \end{bmatrix}$

 $\{0, 2, 3\}, \{1, -1, 1\}, \{0+1, 2+(-1), 3+1\}, \{1, 1, 4\}$

1+2

Emails caffil@offbco.compla

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 01

Matrices and Determinants

Guess Papers

 $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$

10+21+1Now we will take transpose of A + At

A + A^t =

$$(A + A^{i})^{t} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}^{t} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$
 (2)

 $\begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

 $[1+1 \quad 2+0]$

Matrices and Determinants

Guess Papers

$$A - A^{t} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}^{t} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 1 & 2 - 0 \\ 0 - 2 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$
 -----(i)

Now take the transpose of (i), we have:

ske the transpose of (i), we have:

$$(A - A^{t})^{t} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}^{t} = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} = (-1)\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$

$$= -\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \qquad ----- (ii)$$

$$= -(A - A^{t})$$

From (i) and (ii), it is obvious that: A – A^t is skew symmetric

Which of the following product of matrices is conformable for multiplication Q1.

(i)
$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$ (iv) $\begin{bmatrix} 1 & 2 \\ 0 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ (v) $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ -2 & 3 \end{bmatrix}$; EX #1.4 Q1.

Solution:

Two matrices are conformable for multiplication if the numbers of columns of first matrix are equal to number of rows of second matrix

So, according to the definition:

- is conformable for multiplication (because the first matrix has two columns and second matrix has same (i) number of rows).
- is conformable for multiplication (because the first matrix has two columns and second matrix has (ii) same number of rows).
- is not conformable for multiplication (because the first matrix has just one column and second matrix (iii) has two rows).
- is conformable for multiplication (because the first matrix has two columns and second matrix has same (įv) number of rows).
- is conformable for multiplication (because the first matrix has three columns and second matrix has (v) same number of rows).
- Q3. Find the following products

(i)
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \end{bmatrix}$ (iii) $\begin{bmatrix} -3 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ (iv) $\begin{bmatrix} 6 & -0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

(v)
$$\begin{bmatrix} 1 & 2 \\ -3 & 0 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 0 & -4 \end{bmatrix}$$
; EX #1.4 Q3.

(v)
$$\begin{bmatrix} -3 & 0 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 0 & -4 \end{bmatrix}$$
; EX #1.4 Q3.
Solution: (i) $\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ = $\begin{bmatrix} 1 \times 4 + 2 \times 0 \end{bmatrix}$ = $\begin{bmatrix} 4 + 0 \end{bmatrix}$ = $\begin{bmatrix} 4 \end{bmatrix}$

So,
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \end{bmatrix}$$

Solution: (ii)
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \times 5 + 2 \times (-4) \end{bmatrix} = \begin{bmatrix} 5 - 8 \end{bmatrix} = \begin{bmatrix} -3 \end{bmatrix}$$

So,
$$[1 \ 2] \begin{bmatrix} 5 \\ -4 \end{bmatrix} = [-3]$$

(iii)
$$[-3 \ 0] \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Solution: =
$$[(-3) \times 4 + 0 \times 0]$$
 = $[-12]$: So, $[-3 \ 0] \begin{bmatrix} 4 \\ 0 \end{bmatrix} = [-12]$

(iv)
$$[6 -0] \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Solution: =
$$[6 \times 4 + 0 \times 0] = [24 + 0] = [24]$$
; So, $[6 -0] \begin{bmatrix} 4 \\ 0 \end{bmatrix} = [24]$

Matrices and Determinants

Guess Papers

 $\begin{bmatrix} -1 \times 1 + 3 \times (-3) & -1 \times 2 + 3 \times (-5) \\ 2 \times 1 + 0 \times (-3) & 2 \times 2 + 0 \times (-5) \end{bmatrix} + \begin{bmatrix} -1 \times 2 + 3 \times 1 & -1 \times 1 + 3 \times 3 \\ 2 \times 2 + 0 \times 1 & 2 \times 1 + 0 \times 3 \end{bmatrix}$

[-1-9, -2-15], [-2+3, -1+9] [-10, -17] (1.8)

Emails caffil@office.complk

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 01

Matrices and Determinants

Guess Papers

 $[-2 \times 1 + 3 \times 2 \quad -2 \times (-3) + 3 \times (-5)]$ $[6 \times 1 + (-9) \times 2 \quad 6 \times (-3) + (-9) \times (-5)]$

Matrices and Determinants

Guess Papers

Find which of the following matrices are singular or non-singular? Q2.

(i)
$$A = \begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$$

(ii)
$$B = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$$
; EX #1.5 Q2. (i, ii)

(i)
$$A = \begin{bmatrix} \frac{1}{3} & \frac{7}{6} \\ 2 & 4 \end{bmatrix}$$

Solution: A matrix is said to be singular if its determinant is equal to zero, i.e. |A| = 0.

Determinant of matrix A is calculated as: $|A| = \det A = \begin{vmatrix} 3 & 6 \\ 2 & 4 \end{vmatrix} = 3 \times 4 - 2 \times 6$

IAI = 12 - 12 = 0

As, determinant of A is equal to zero so, A is a singular matrix.

(ii)
$$B = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$$

Determinant of matrix B is calculated as: $|B| = \det B = \begin{bmatrix} 4 & 1 \\ 2 & 2 \end{bmatrix} = 4 \times 2 - 3 \times 1$ Solution: IAI = 8 - 3 = 5 ± 0

As, determinant of B is not equal to zero so, B is a non singular matrix.

Find the multiplicative inverse (if it exists) of each. Q3.

(iii)
$$C = \begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix}$$

(iv)
$$D = \begin{bmatrix} 1/2 & 3/4 \\ 1 & 2 \end{bmatrix}$$
; EX #1.5 Q3. (iii, lv)

Solution: (iii)
$$C = \begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix}$$

The multiplicative inverse of matrix C is calculated as:

$$C^{-1} = \frac{Adj \, C}{|C|}$$

Adj C =
$$\begin{bmatrix} -9 & -6 \\ -3 & -2 \end{bmatrix}$$
|C| =
$$\begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix} = (-9) \times (-2) - (-3) \times (-6) = 18 - 18 = 0$$

Since it is a singular matrix therefore solution is not possible
$$C^{-1} = \frac{\begin{bmatrix} -9 & -6 \\ -3 & -2 \end{bmatrix}}{0} = \infty ; C^{-1} \text{ does not exist.}$$

(iv)
$$D = \begin{bmatrix} 1/2 & 3/4 \\ 1 & 2 \end{bmatrix}$$

The multiplicative inverse of matrix D is calculated as: Solution:

$$D^{-1} = \frac{Adj D}{|D|}$$

Adj D =
$$\begin{bmatrix} 2 & \frac{-3}{4} \\ -1 & \frac{1}{2} \end{bmatrix}$$

$$|D| = \begin{vmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & 2 \end{vmatrix} = \frac{\frac{1}{2} \times 2 - 1 \times \frac{3}{4}}{\frac{3}{4}} = 1 - \frac{3}{4}$$

$$= \frac{\frac{4-3}{4}}{\frac{4}{4}} = \frac{1}{4} \neq 0$$
Since it is a non-circular matrix therefore a the second state of the s

Since it is a non-singular matrix therefore solution is possible

D⁻¹ =
$$\begin{bmatrix} 2 & \frac{-3}{4} \\ -1 & \frac{1}{2} \end{bmatrix}$$
 =
$$\begin{bmatrix} 2 \times 4 & \frac{-3}{4} \times 4 \\ -1 \times 4 & \frac{1}{2} \times 4 \end{bmatrix}$$
 =
$$\begin{bmatrix} 8 & -3 \\ -4 & 2 \end{bmatrix}$$

$$D^{-1} = \begin{bmatrix} 8 & -3 \\ -4 & 2 \end{bmatrix}$$

24. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}$, then (i) $A(Adj A) = (Adj A) A = (det A)i$

Emells ceffil@office.compls

Matrices and Determinants

Guess Papers

(i)
$$A(Adj A) = (Adj A) A = (det A)I$$

 $Adj A = \begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix}$
 $det A = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} = 1 \times 6 - 4 \times 2 = 6 - 8 = -2$
Now, $A(Adj A) = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} \times \begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 6 + 2 \times (-4) & 1 \times (-2) + 2 \times 1 \\ 4 \times 6 + 6 \times (-4) & 4 \times (-2) + 6 \times 1 \end{bmatrix}$
 $= \begin{bmatrix} 6 - 8 & -2 + 2 \\ 24 - 24 & -8 + 6 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$ (ii)
 $A(Adj A) A$
 $= \begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 6 \times 1 + (-2) \times 4 & 6 \times 2 + (-2) \times 6 \\ -4 \times 1 + 1 \times 4 & -4 \times 2 + 1 \times 6 \end{bmatrix}$
 $= \begin{bmatrix} 6 - 8 & 12 - 12 \\ -4 + 4 & -8 + 6 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$ (iii)
 $A(Adj A) = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$ (iii)

 $BB^{-1} = I = B^{-1}B$ (ii)

Solution: As,
$$B^{-1} = \frac{Adj B}{\det B}$$

Adj $B = \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix}$
 $\det B = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix} = 3 \times (-2) - 2 \times (-1)$
 $= -6 + 2 = -4 \neq 0$
 $B^{-1} = \begin{bmatrix} -2 & 1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -2/-4 & 1/-4 \\ -2/-4 & 3/-4 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/4 \\ 1/2 & -3/4 \end{bmatrix}$

Now, BB-1

$$= \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix} \times \begin{bmatrix} 1/2 & -1/4 \\ 1/2 & -3/4 \end{bmatrix} = \begin{bmatrix} 3 \times \left(\frac{1}{2}\right) + (-1) \times \left(\frac{1}{2}\right) & 3 \times \left(-\frac{1}{4}\right) + (-1) \times \left(-\frac{3}{4}\right) \\ 2 \times \left(\frac{1}{2}\right) + (-2) \times \left(\frac{1}{2}\right) & 2 \times \left(-\frac{1}{4}\right) + (-2) \times \left(-\frac{3}{4}\right) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{2} - \left(\frac{1}{2}\right) & -\frac{3}{4} + \frac{3}{4} \\ 1 & -\frac{1}{2} + \frac{3}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \qquad (i)$$

New

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{2} & -\frac{3}{4} \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \times 3 + (-\frac{1}{4}) \times 2 & \frac{1}{2} \times (-1) + (-\frac{1}{4}) \times (-2) \\ \frac{1}{2} \times 3 + (-\frac{3}{4}) \times 2 & \frac{1}{2} \times (-1) + (-\frac{3}{4}) \times (-2) \end{bmatrix}$$

$$\begin{bmatrix} \frac{3}{2} - \frac{1}{2} & -\frac{1}{2} + \frac{1}{2} \\ \frac{3}{2} - \frac{3}{2} & -\frac{1}{2} + \frac{3}{2} \end{bmatrix} = \begin{bmatrix} \frac{3-\lambda}{2} & \frac{-1+1}{2} \\ \frac{3-3}{2} & \frac{-1+3}{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = I \qquad (ii)$$

From (i) and (ii), it is clear that: $BB^{-1} = I = B^{-1}B$ Hence proved

- Use matrices, if possible, to solve the following systems of linear equations by: Q1.
 - the matrix inverse method
- ; EX #1.6 Q1. (i , ili, v , vii) (ii) the Cramer's rule.
- 2x-2y=4; 3x+2y=6 (iii) 4x+2y=8; 3x-y=-1(i)
- 3x-2y=4; -6x+4y=7 (vii) 2x-2y=4; -5x-2y=-10(v)

Solution:

Matrices and Determinants

Guess Papers

Step 1
$$\begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

The coefficient matrix $M = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$ is non-singular Step 2

Because; det M =
$$\begin{vmatrix} 2 & -2 \\ 3 & 2 \end{vmatrix}$$
 = 2 × 2 - 3 × (-2) = 4 + 6 = 10 \neq 0

(iii)
$$4x + 2y = 8$$
; $3x - y = -1$

Solution:

Step 1
$$\begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -1 \end{bmatrix}$$

The coefficient matrix $M = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$ is non-singular Step 2

because; det M =
$$\begin{vmatrix} 4 & 2 \\ 3 & -1 \end{vmatrix}$$
 = 4 × (-1) - 2 × 3 = -4 - 6 = -10 \neq 0

Step 3

$$\begin{bmatrix} x \\ y \end{bmatrix} = M^{-1} \begin{bmatrix} 8 \\ -1 \end{bmatrix}
\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{|M|} A dj M \begin{bmatrix} 8 \\ -1 \end{bmatrix} = -\frac{1}{10} \begin{bmatrix} -1 & -2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 8 \\ -1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} (-1) \times 8 + (-2) \times (-1) \\ -3 \times 8 + 4 \times (-1) \end{bmatrix}
= -\frac{1}{10} \begin{bmatrix} -8 + 2 \\ -24 + -4 \end{bmatrix} = -\frac{1}{10} \begin{bmatrix} -6 \\ -28 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} \\ \frac{14}{10} \end{bmatrix}$$

$$\Rightarrow x = \frac{3}{5}, \quad y = \frac{14}{5}$$

(v)
$$3x - 2y = 4$$
; $-6x + 4y = 7$

Solution:

Step 1
$$\begin{bmatrix} 3 & -2 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

The coefficient matrix $\mathbf{M} = \begin{bmatrix} 3 & -2 \\ -6 & 4 \end{bmatrix}$ is singular because

$$\det M = \begin{vmatrix} 3 & -2 \\ -6 & 4 \end{vmatrix} = 3 \times 4 - (-2) \times (-6) = 12 - 12 = 0$$

So, M is a singular matrix. Hence the system of linear equations has no solution.

(vii)
$$2x - 2y = 4$$
 ; $-5x - 2y = -10$

Solution:

$$\begin{bmatrix} 2 & 2 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -10 \end{bmatrix}$$

Step 1 Step 2

The coefficient matrix $M = \begin{bmatrix} 2 & 2 \\ -5 & -2 \end{bmatrix}$ is non-singular

because : det M =
$$\begin{vmatrix} 2 & 2 \\ -5 & -2 \end{vmatrix} = 2 \times (-2) - 5 \times 2 = -4 - 10 = -14 \neq 0$$

Step 3

$$\begin{bmatrix} x \\ y \end{bmatrix} = M^{-1} \begin{bmatrix} 4 \\ -10 \end{bmatrix}$$

$$[x] = 1$$

Conficts +92 345 5282625

Unit # 01

Matrices and Determinants

Guess Papers

10

y = 0x = 2

Solution By Cramer's Rule: (ii)

(i)
$$2x-2y=4$$
 ; $3x+2y=6$

Solution:
$$\begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$$

$$\begin{array}{rcl}
A & = & \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix} \\
|A| & = & \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}
\end{array}$$

$$\begin{vmatrix} 1 & 2 & 2 & 2 \\ 3 & 2 & 2 & 2 \end{vmatrix} =$$

$$A_x = \begin{bmatrix} 4 & -2 \\ 6 & 2 \end{bmatrix}$$

$$A_{x} = \begin{bmatrix} 4 & -2 \\ 6 & 2 \end{bmatrix}$$

$$|A_{x}| = \begin{bmatrix} 4 & -2 \\ 6 & 2 \end{bmatrix}$$

$$A_{y} = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$$

$$|A_{y}| = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$$

 $2 \times 2 - 3 \times (-2)$

$$4 \times 2 - 6 \times (-2) = 8 + 12$$

12 - 12

0

4+6

$$A_y = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$$

$$|A_y| = \begin{vmatrix} 2 & 4 \\ 3 & 6 \end{vmatrix}$$

$$2 \times 6 - 3 \times 4 =$$

$$= 2$$

$$\frac{20}{10}$$
 =

$$y = \frac{|Ay|}{|A|} =$$

So,
$$x = 2$$
 and $y = 0$

X

(iii)
$$4x + 2y = 8$$
 ; $3x - y = -1$

Solution:
$$\begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$$

$$\begin{array}{rcl}
A & = & \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} \\
|A| & = & \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}
\end{array}$$

$$A_{\tau} = \begin{bmatrix} 3 & -11 \\ 8 & 2 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 4 & 2 \\ 3 & -1 \end{vmatrix}$$

$$A_x = \begin{bmatrix} 8 & 2 \\ -1 & -1 \end{bmatrix}$$

$$|A_x| = \begin{bmatrix} 8 & 2 \\ -1 & -1 \end{bmatrix}$$

$$|A_x| = \begin{bmatrix} 8 & 2 \\ -1 & -1 \end{bmatrix}$$

$$|A_y| = \begin{bmatrix} 4 & 8 \\ 3 & -1 \end{bmatrix}$$

$$|A_y| = \begin{bmatrix} 4 & 8 \\ 3 & 1 \end{bmatrix}$$

$$8 \times (-1) - 2 \times (-1)$$

 $4 \times (-1) - 3 \times 2$

$$A_y = \begin{bmatrix} 4 & 8 \\ 3 & -1 \end{bmatrix}$$

$$|A_y| = \begin{vmatrix} 4 & 8 \\ 3 & -1 \end{vmatrix}$$

$$4 \times (-1) - 3 \times 8 = -4 - 24$$

-10

0

$$x = \frac{|A_x|}{|A|} = \frac{-6}{-10} = \frac{-6}{-10}$$

$$y = \frac{|A_y|}{|A_y|} = \frac{-28}{-23} = \frac{1}{2}$$

So,
$$x = \frac{3}{5}$$
 and $y = \frac{14}{5}$

(v)
$$3x-2y=4$$
; $-6x+4y=7$

Solution:
$$\begin{bmatrix} 3 & -2 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -2 \\ -6 & 4 \end{bmatrix}$$

$$|A| = \begin{vmatrix} -6 & 4 \\ 3 & -2 \\ -6 & 4 \end{vmatrix}$$

$$|A| = \left| \frac{3}{-6} \right| = 3 \times 4 - (-6) \times (-2) = 12 - 12 =$$
Since it is singular matrix therefore solution is not possible. So, y and y are not possible in this

Emells sefficacines and a

Confict +92 345 5282625

fb.com/office.com.pk

So,

Matrices and Determinants

Guess Papers

$$A = \begin{bmatrix} 2 & -2 \\ -5 & -2 \end{bmatrix}$$

$$|A| = \begin{bmatrix} 2 & -2 \\ -5 & -2 \end{bmatrix} = 2 \times (-2) - (-5) \times (-2) = -4 - 10 = -14 \neq 0$$

$$A_x = \begin{bmatrix} 4 & -2 \\ -10 & -2 \end{bmatrix}$$

$$|A_x| = \begin{bmatrix} 4 & 2 \\ -10 & -2 \end{bmatrix} = 4 \times (-2) - (-10) \times 2 = -8 - 20 = -28$$

$$A_y = \begin{bmatrix} 2 & 4 \\ -5 & -10 \end{bmatrix}$$

$$|A_y| = \begin{bmatrix} 2 & 4 \\ -5 & -10 \end{bmatrix} = 2 \times (-10) - (-5) \times 4 = -20 + 20 = 0$$

$$x = \frac{|A_x|}{|A|} = \frac{-28}{-14} = 2$$

$$y = \frac{|A_y|}{|A|} = \frac{0}{-14} = 0$$

$$x = 2 \text{ and } y = 0$$

Select the correct answer in each of the following. Review EX #1 Q.1 Q1.

The order of matrix [2 1] is....... (i) (a) 2-by-1 (c) 1-by-1 **(b)** 1-by-2 (d) $\begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}$ is called.....matrix. (ii) (a) zero (b) unit (c) scalar (d) singular Which is order of a square matrix...... (iii) (c) (a) 2-by-2 **(b)** 1-by-2 2-by-1 (d) 3-by-2 (iv) Order of transpose of 0 1 is...... (a) 3-by-2 (b) 2-by-3 (c) 1-by-3 (d)

Ad joint of $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ is...... (v) $\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$ (d)

Product of $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ is...... (vi)

(b) [x-2y](a) [2x + y]· (c) $\{2x-y\} \tag{d}$ [x + 2y]

If $\begin{bmatrix} 2 & 6 \\ 3 & x \end{bmatrix} = 0$, then x is equal to...a =

(b) -6 (c) (d)

(a) $\begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ (d)

Answers:

(i) b	(ii) c	s (iii)	(iv) b
(v) a	(vi) c	(vii) a	(viii) d

Guess Papers

GUESS PAPER & MODEL PAPER # 02 BASED ON UNIT # 2 (Reduced Syllabus) REAL AND COMPLEX NUMBERS

Unit 2 Real and Complex Numbers			
Exercise 2.1	Q3; Q4(I, ii, iii); Q6(i, ii)		
Exercise 2.2	Q1; Q3		
Exercise 2.3	Q1(i, ii); Q3(i, ii)		
Exercise 2.4	Q1(i, iv); Q2; Q3(i, ii)		
Exercise 2.5	Q1(i, ii, iv); Q2(i, ii, iii); Q3(iv, v); Q4		
Exercise 2.6	Q1; Q2(ii, iv); Q3(ii, iv); Q4(i, iv, v); Q5(ii, iii); Q6(i, iii, iv, v); Q7(i, ii)		
-			

NOTE:

All Class work will be given for revision as H.W.

The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the chapters: so MCQ's will be done in class by class teacher.

SECTION-A

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.ofice.com.pk

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 02

Real and Complex Numbers

Guess Papers

The value of i^9 is...... (vii) (A) (B) -1 (C)ĺ (D) -1 (viii) Every real number is....... (A) a positive integer (8)a rational number. (C) a negative integer (0)a complex number. Real part of $2ab(i+i^2)$ is...... (ix) (A) (B) -Zab (C) 2abi (D) ~2abi Imaginary part of -l(3l+2) is..... (x) (C)-3 Which of the following sets have the closure property w.r.t. additi. (xi) (A) {0} (B) $\{0,-1\}$ (C) (D) $\{1,\sqrt{2},5\}$ $\left(-\frac{\sqrt{5}}{2}\right) \times 1 = -\frac{\sqrt{5}}{2}$ (xii) Name the property of real numbers used in (A) additive identity (B) additive inverse (C) multiplicative identity (£ multiplicative inverse (xiii) If z < 0 then $x < y \Rightarrow$ (A) xz < yz(B) (C) xz > yznone of these xz = yz(xiv) If $a, b \in R$ then only one of a = b or a < b or a > b holds is called (A) trichotomy property # sitive property (B)(C) additive property (D)multiplicative property A non-terminating, non-recurring decimal represents: (XY) (A) a natural number. (B) a rational number (C) an irrational number. (D) a prime number Time allowed: 2:40 hours Total Marks: 60 Note: Attempt any nine parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-P if required. Write your answers neatly and legibly. Log book and graph paper will be provided on demand. <u>SECTION</u> – B (Marks 36) Attempt any NINE parts from the following. All parts carry equal marks. Q.2 Simplify and write your answer in the form a + bi. $\frac{2-6i}{3+i} - \frac{4+i}{3+i}$ EX #2.6 Q.4; i(iv) (i) Solve the following equations for real x and y, (2-3t)(x+yt)=4+t; EX #2.6 Q.7; ;(i) (ii) $\left(\frac{a^p}{a^q}\right)^{p+q} \cdot \left(\frac{a^q}{a^r}\right)^{q+r} \div 5(a^p \cdot a^r)^{p-r}, \qquad a \neq 0 \; ; \text{Review EX #2 Q.5}$ (iii) Simplify Simplify and write your answer in the form a + bi. $\left(\frac{1+i}{t-i}\right)^2$; EX #2.6 Q.4;(v) (iv)

(v) Express each complex number in the standard form a + bi, where a and b are real numbers. $2i^2 + 6i^3 + 3i^{16} - 6i^{19} + 4i^{25}$; EX #2.6 Q.2;;(iv)

Find the value of x and y if x + ty + 1 = 4 - 3t. ; EX #2.5 Q.4 (vi)

Use laws of exponents to simplify: $\sqrt{\frac{(216)^{2/3}\times(25)^{1/2}}{(0.04)^{-1/2}}}$; EX #2.4 Q.3;;(ii)

(viii) Show that $\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} = 1$. ; EX #2.4 Q.2

 $\frac{(81)^n \cdot 3^5 - (3)^{4n-1}(243)}{(9^{2n})(3^3)} ; EX #2.4 Q.1;;(iv)$ Use laws of exponents to simplify: (ix)

Real and Complex Numbers

Guess Papers

(xi) Simplify
$$\sqrt[3]{\frac{a^l}{a^m}} \times \sqrt[3]{\frac{a^m}{a^n}} \times \sqrt[3]{\frac{a^n}{a^l}}$$

(xii) Simplify
$$\frac{(2)^{\frac{1}{3}} \times (27)^{\frac{1}{3}} \times (60)^{\frac{1}{2}}}{(180)^{\frac{1}{2}} \times (4)^{\frac{-1}{3}} \times (9)^{\frac{1}{4}}} ; EX \#2.4 Q.3;;(i)$$

$$\frac{(243)^{-2/3} (32)^{-1/5}}{\sqrt{(196)^{-1}}} ; EX #2.4 Q.1; (i)$$

(xiv) Simplify and write your answer in the form
$$a + bi$$
. $\frac{-2}{1+i}$; EX #2.6 Q.4; ;(i)

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks. $(3 \times 8 = 24)$

One angle of a parallelogram is 130°. Find the measures of its remaining angles. Q.3

EX #11.1; Q.1

- Show whether or not the points with vertices (-1,1), (5,4), (2,-2) and (-4,1) from a Q.4 square. ; EX #9.2 ; Q.2
- Prove that if two opposite sides of a quadrilateral are congruent and parallel, it is a Q.5parallelogram. ; Theorem # 11.1.2
- Any point on the right bisector of a line segment is equidistant from its end points. Q.6

; Theorem # 12.1.1

Construct the Δ ABC. Draw the bisectors of their angles and verify their concurrency. Q.7 $m\overline{AB} = 3.6 \text{ cm}, m\overline{BC} = 4.2 \text{ cm}, m\overline{CA} = 5.2 \text{ cm}. \text{ ; EX } #17.2 \text{ Q.1; (iii)}$

SOLUTION OF GUESS PAPER & MODEL PAPER # 2 (Reduced Syllabus)

SECTION- A (MCOs)

i. A	ii. C	iii. A	iv. C	v. B	vi. C
vii. C	viii. D	ix. B	x. A	xi. A	xii. C
xiii. B	xiv. A	xv. C			

SECTION - B (Marks 36)

Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$ Q.2

(i)

Q.2 Attempt any NINE parts from the following. All parts carry equal marks. (9 × 4)

(i) Simplify and write your answer in the form
$$a + bi$$
. $\frac{2-6i}{3+i} - \frac{4+i}{3+i}$ EX #2.6 Q.4; i (iv)

Solution:= $\frac{2-6i-4-i}{3+i} = \frac{-2-7i}{3+i} = \frac{-2-7i}{3+i} = \frac{-2-7i}{3+i} \times \frac{3-i}{3-i} = \frac{(-2-7i)(3-i)}{9-i^2}$

$$= \frac{-6+2i-21i+7i^2}{9+1} = \frac{-6-19i-7}{10}$$
; ($:: t^2 = -1$)

$$= \frac{-13-19i}{10} = -\frac{13}{10} \frac{19}{10}i$$

(ii) Solve the following equations for real x and y . $(2-3i)(x+yi) = 4+i$; EX #2.6 Q.7; i (iii)

(ii) Solve the following equations for real x and y, (2-3t)(x+yt)=4+t; EX #2.6 Q.7; (i)

Solution:
$$(2-3i)(x+yi) = 4+i \Rightarrow 2x+2yi-3xi-3yi^2 = 4+i$$

 $2x-3y(-1)-3xi+2yi = 4+i \Rightarrow (2x+3y)+(2y-3x)i = 4+i$

Real and Complex Numbers

Guess Papers

Now multiplying eq. (i) by 3 and eq. (ii) by 2

$$6x + 9y = 12$$
 (iii)

$$-6x + 4y = 2 \tag{iv}$$

Adding eq. (iii) and eq. (iv)

$$6x + 9y = 12$$

-6x + 4y = 2

$$13y = 14 \qquad \Rightarrow \qquad y = \frac{14}{13}$$

Put
$$y = \frac{14}{13}$$
 in eq. (i) $2x + 3y = 4$

$$2x + 3\left(\frac{14}{13}\right) = 4 \implies 2x + \frac{42}{13} = 4 \implies 2x = 4 - \frac{42}{13} = \frac{52 - 42}{13} = \frac{10}{13}$$

$$x = \frac{10}{13} \times \frac{1}{2} = \frac{5}{13} \quad \text{Hence} \quad x = \frac{5}{13} \quad \text{and} \quad y = \frac{14}{13}$$

(iii) Simplify
$$\left(\frac{a^p}{a^q}\right)^{p+q} \cdot \left(\frac{a^q}{a^r}\right)^{q+r} \div 5(a^p \cdot a^r)^{p-r}$$
, $a \neq 0$; Review EX #2 Q.5

Solution:
$$\left(\frac{a^p}{a^q}\right)^{p+q} \cdot \left(\frac{a^q}{a^r}\right)^{q+r} \div 5(a^p \cdot a^r)^{p-r}$$

$$= \left(\frac{a^p}{a^q}\right)^{p+q}, \quad \left(\frac{a^q}{a^r}\right)^{q+r} \div 5(a^p \cdot a^r)^{p-r}$$

$$= (a^{p} \cdot a^{-q})^{p+q} \cdot (a^{q} \cdot a^{-r})^{q+r} + 5(a^{p+r})^{p-r}$$

= $(a^{p-q})^{p+q} \cdot (a^{q-r})^{q+r} + 5(a^{p+r})^{p-r}$

$$= (a^{p-q})^{p+q} \cdot (a^{q-r})^{q+r} + 5(a^{p+r})^{p-r}$$

$$= a^{p^2-q^2} \cdot a^{q^2-r^2} \div 5a^{p^2-r^2} = \frac{a^{p^2-q^2+q^2-r^2}}{5a^{p^2-r^2}} = \frac{a^{p^2-r^2-p^2+r^2}}{5}$$

$$= \frac{a^0}{5} = \frac{1}{5} \qquad ; \qquad (: a^0 = 1)$$

(iv) Simplify and write your answer in the form
$$a + bi$$
. $\left(\frac{1+i}{1-i}\right)^2$; EX #2.6 Q.4;(v)

Solution:
$$= \left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^2 = \left(\frac{(1+i)^2}{1-i^2}\right)^2 = \left(\frac{1+2i+i^2}{1+1}\right)^2 = \left(\frac{1+2i-1}{2}\right)^2$$

$$= \left(\frac{2i}{2}\right)^2 = i^2 = -1 ; \quad (\forall i^2 = -1)$$

(v) Express each complex number in the standard form a + bi, where a and b are real numbers. $2i^2 + 6i^3 + 3i^{16} - 6i^{19} + 4i^{25}$; EX #2.6 Q.2;;(iv)

Solution:
$$2i^2 + 6t^3 + 3t^{16} - 6t^{19} + 4t^{25}$$

By separating real and imaginary parts, we get

$$= 2(-1) + 6i \cdot i^2 + 3(i^2)^8 - 6i^{18} \cdot i + 4i^{24} \cdot i$$

$$= -2 + 6i(-1) + 3(1) - 6(i^2)^9 i + 4(i^2)^{22} i$$

$$= -2 - 6i + 3 - 6i(-1) + 4i \quad ; \quad (\because i^2 = -1)$$

$$=$$
 $-2-6l+3+6l+4i=$ $1+4l$

Find the value of x and y if x + iy + 1 = 4 - 3i. ; EX #2.5 Q.4

Solution:
$$x + iy + 1 = 4 - 3i \Rightarrow (x + 1) + iy =$$

Adminoscoffic@Office alleria

Real and Complex Numbers

Guess Papers

(vii) Use laws of exponents to simplify:
$$\sqrt{\frac{(216)^{2/3} \times (25)^{1/2}}{(0.04)^{-1/2}}} \quad \text{; EX \# 2.4 Q.3 ; ; (ii)}$$
Solution:
$$\sqrt{\frac{(216)^{2/3} \times (25)^{1/2}}{(0.04)^{-1/2}}} = \sqrt{\frac{(2^3 \cdot 3^3)^{2/3} \cdot (5^2)^{1/2}}{\left(\frac{4}{100}\right)^{-1/2}}}$$

$$= \sqrt{2^2 \cdot 3^2 \cdot 5 \cdot \left(\frac{4}{100}\right)^{1/2}} = \sqrt{2^2 \cdot 3^2 \cdot 5 \cdot \left(\frac{2^2}{10^2}\right)^{1/2}}$$

$$= \sqrt{2^2 \cdot 3^2 \cdot 5 \cdot \left(\frac{2}{10}\right)^{2 \times \frac{1}{2}}} = \sqrt{2^2 \cdot 3^2 \cdot 5 \cdot \frac{2}{10}}$$

$$= \sqrt{2^2 \cdot 3^2} = 2 \cdot 3 = 6$$

(viii) Show that
$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} = 1.$$
; EX #2.4 Q.2

Solution: L.H.S =
$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a}$$

= $\left(x^a.x^{-b}\right)^{a+b} \times \left(x^b.x^{-c}\right)^{b+c} \times \left(x^c.x^{-a}\right)^{c+a}$
= $\left(x^{a-b}\right)^{a+b} \times \left(x^{b-c}\right)^{b+c} \times \left(x^{c-a}\right)^{c+a} = x^{a^2-b^2} \times x^{b^2-c^2} \times x^{c^2-a^2}$
= $x^{a^2-b^2+b^2-c^2+c^2-a^2} = x^0 = 1$

(ix) Use laws of exponents to simplify:
$$\frac{(81)^n \cdot 3^5 - (3)^{4n-1}(243)}{(9^{2n})(3^3)}$$
; EX #2.4 Q.1;;(iv)

Solution:
$$\frac{(81)^n \cdot 3^5 - (3)^{4n-1}(243)}{(9^{2n})(3^3)} = \frac{\frac{(3^4)^n \cdot 3^5 - (3)^{4n-1} \cdot 3^5}{(3^2)^{2n} \cdot (3^3)}}{\frac{(3^2)^{2n} \cdot (3^3)}{3^{4n+3}}} = \frac{\frac{3^{4n} \cdot 3^5 - 3^{4n-1} \cdot 3^5}{3^{4n+3}}}{\frac{3^{4n+5} - 3^{4n+4}}{3^{4n+3}}} = \frac{3^{4n+5} - 3^{4n+4}}{3^{4n+3}}$$

$$= \frac{3^{4n+4} \cdot (3-1)}{3^{4n+3}} = 3^{4n+4-4n-3} \cdot (2) = (3) \times (2) = 6$$
(a) Solve the following experience for each $n = 1$

Solve the following equations for real x and y.

$$(3-2i)(x+yi) = 2(x-2yi)+2i-1$$
; EX #2.6 Q.7;;(ii)

Solution: (3-2i)(x+yi) = 2(x-2yi) + 2i - 1

$$3x + 3yi - 2xi - 2yi^2 = 2x - 4yi + 2i - 1 \Rightarrow 3x - 2y(-1) - 3yi + 2xi = 2x - 1 - 4yi + 2i$$

Real and Complex Numbers

Guess Papers

 $\frac{(243)^{-2/3} (32)^{-1/5}}{\sqrt{(196)^{-1}}} ; EX #2.4 Q.1;;(i)$ (xiii) Use laws of exponents to simplify:

Real and Complex Numbers

Guess Papers

$$= \frac{(243)^{-2/3} (32)^{-1/5}}{(196)^{\frac{1}{2}}} = \left(\frac{1}{243}\right)^{2/3} \times \left(\frac{1}{32}\right)^{1/5} \times (196)^{1/2}$$

$$= \left(\frac{1}{3^5}\right)^{2/3} \times \left(\frac{1}{2^5}\right)^{1/5} \times (4 \times 49)^{1/2}$$

$$= \frac{1}{3^{10/3}} \times \frac{1}{2^{5/5}} \times (2^2)^{1/2} \times (7^2)^{1/2}$$

$$= \frac{1}{3^{1/3} \times 3^{9/3}} \times \frac{1}{2} \times 2 \times 7 \quad ; \quad \left(\because \frac{1}{3^{10/3}} = \frac{1}{3^{1/3} \times 3^{9/3}}\right)$$

$$= \frac{1}{3^3 \times 3^{1/3}} \times 7 \qquad = \frac{7}{3^3 \times \sqrt[3]{3}} = \frac{7}{27(\sqrt[3]{3})}$$

(xiv) Simplify and write your answer in the form
$$a+bi$$
. $\frac{-2}{1+i}$; EX #2.6 Q.4;;(i)

Solution:
$$\frac{-2}{1+i}$$

$$= \frac{-2}{1+i} \times \frac{1-i}{1-i} = \frac{-2(1-i)}{1-i^2} = \frac{-2+2i}{1+1} = \frac{-2+2i}{2} ; (: i^2 = -1)$$

$$= -1+i$$

SECTION -- C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks.

 $(3 \times 8 = 24)$

One angle of a parallelogram is 130°. Find the measures of its remaining angles,

EX #11.1; Q.1

Solution:

Opposite angles of a parallelogram

$$m\angle C = m\angle A = 50^{\circ}$$
;

So unknown angles of parallelogram are 130°, 50°

Let the points be A(-1,1), B(5,4), C(2,2) and D (-4,1)

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

$$|AB| = \sqrt{(5+1)^2 + (4-1)^2}$$
 $= \sqrt{36+9} = \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5}$

$$|BC| = \sqrt{(5-2)^2 + (4+2)^2} = \sqrt{3^2 + 6^2} = \sqrt{9+36} - \sqrt{45} = 3\sqrt{5}$$

$$|CD| = \sqrt{(2+4)^2 + (-2-1)^2} = \sqrt{6^2 + (-3)^2} = \sqrt{36+9} = \sqrt{45} = 3\sqrt{5}$$

$$|DA| = \sqrt{(-1+4)^2 + (1-1)^2} = \sqrt{(3)^2 + 0^2} = 3$$

Real and Complex Numbers

Guess Papers

Q.5 Prove that if two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram. ; Theorem # 11.1.2 $_{
m D}$

Solution:

Given:

In a quadrilateral ABCD $\overline{AB} \uparrow \overline{DC}$ and $\overline{AB} \cong \overline{DC}$

To Prove:

ABCD is a parallelogram

Construction:

Join the point B to D and in the figure name the angles as: ∠1,∠2,∠3, and ∠4

Proof:

Statements	Reasons	
∠1 ≅ ∠2	Alternate angles	
In ΔABD ↔ ΔCDB		
$\overline{AB} \cong \overline{DC}$	Given	
∠ 2 ≅ ∠1	Alternate Angles	
BD ≅ BD	Common	
$\triangle ABD \cong \triangle CDB$	S.A.S postulate	
and ∠4 ≅ ∠3(i)	corresponding angles of congruent triangles	
△	From (i)	
and $\overline{AD} \parallel \overline{DC} (iii)$	Given	
Thus ABCD is a parallelogram	From (ii) and (iii)	

Q.6 Any point on the right bisector of a line segment is equidistant from its end points.

Theorem # 12.1.1

Solution:

Given:

A line \overrightarrow{LM} intersects the line segment AB at point C such that $\overrightarrow{LM} \perp \overrightarrow{AB}$ and $\overrightarrow{AC} \cong \overrightarrow{BC}$.

To Prove:

 $\overline{PA} \cong \overline{PB}$

Construction:

Take a point P on \overrightarrow{LM} . Join P to the points A and B.

Proof:

Ti						
Statements	Reasons					
In ∆ ACP ↔ ∆ BCP						
AC ≅ BC	Given					
∠ ACP ≅ ∠ BCP	Given $(\overline{PC} \perp \overline{AB})$					
PC ≅ PC	Common					
Δ ACP ≅ Δ BCP	S.A.S. Postulate					
PA ≅ PB	Corresponding sides of congruent triangles					

Emails safid@office.com/tk

Confict +92 345 5282625

fb.com/office.com.pk

Guess Papers

Unit # 02

Real and Complex Numbers

Construction:

- Take $m\overline{BC} = 4.2 \text{ cm}$. (i)
- With B as centre and radius $m\overline{BA} = 3.6$ cm draw an arc. (ii)
- With C as centre and radius $m\overline{CA} = 5.2$ cm draw an arc. (iii)
- Join BA and CA to complete the ∆ABC. (iv)
- Draw bisectors of ∠B and ∠C meeting each other at the (v) point I.
- Now draw the bisector of the third ∠A. (vi)
- We observe that the third angle bisector also passes (vii) through the point I.
- Hence the angle bisectors of the ABC are concurrent (viii) at I.

IMPORTANT QUESTIONS & ANSWERS (Reduced Syllabus)

- Which of the following statements are true and which are false? Q3.
- z is an irrational number. π is an irrational number. (i) (ii)
- is a terminating fraction. is a terminating fraction. (iv) (iii)
- is a recurring fraction. ; EX #2.1 Q.3 (v)

True (iii) False (iv) True $\{v\}$ Solution: False (ii)

Represent the following numbers on the number line. ; EX #2.1 Q.4 (i , ii, iii) 4.

Express the following recurring decimals as the rational number $\frac{p}{2}$ where p,q are integers Qб.

0. 13 ; EX #2.1 Q.6 (i, ii) (ii) and $q \neq 0$. 0.5

0.5 (i)

 $x = 0.\overline{5}$ Solution: Let

O.

Since we have only one digit i.e., 3 repeating indefinitely therefore multiplying both sides by 10

Emails safid@office.com/pk

Real and Complex Numbers

Guess Papers

0.13 (ii)

Solution: Let
$$x = 0.\overline{13}$$

x = 0.131313...

Since we have only two digit i.e., 13 repeating indefinitely therefore multiplying both sides by 100

100x = 13.131313...(ii)

Subtracting (i) from (ii), we get

 $100x - x = (13.1313 \dots) - (0.1313 \dots)$

99x = 13.000

Hence $x = \frac{13}{99}$

Identify the property used in the following Q1.

a+b=b+a (ii) (ab)c-a(bc) (iii) $7 \times 1 = 7$ (iv) x > y or x = y or x < y(i)

(v) ab = ba(vi)

 $a+c=b+c \Rightarrow a=b$ (vii) 5+(-5)=8 (viii) $7\times\frac{1}{7}=1$

 $a > b \Rightarrow ac > bc (c > 0)$; EX #2.2 Q.1

Solution: (i) Commutative Property w.r.t Addition

 Associative Property w.r.t. Multiplication (ii)

(iii) Multiplicative identity

(v) Commutative Property w.r.t Multiplication

(vi) Cancellation Property of Addition

(vii) Additive Inverse

(viii) Multiplicative Inverse

Trichotomy Property

(ix) Multiplicative Property Give the name of property used in the following.

 $\sqrt{24} + 0 = \sqrt{24}$ (i)

(ii) $+\frac{2}{3}\left(5+\frac{7}{3}\right) + \left(-\frac{2}{3}\int_{0}^{\pi}(5) + \left(-\frac{2}{3}\right)\left(\frac{1}{2}\right) - (iii) - \pi + (-\pi) = 0$

 $\sqrt{3}$. $\sqrt{3}$ is a real number (v) $\left(\frac{3}{4}\right) = 1$; EX #2.2 Q.3 (iv)

Solution:

Q3.

Additive Identity (ii) Distributive Property w.r.t. Multiplication (i)

Additive Inverse (iv) Closure Property (v) Multiplicative Inverse (iii)

Write each radical expression in exponential notation and each exponential expression in 01. radical notation. Do not simplify. ; EX #2.3 Q.1 ;(i , ii)

Solution: (i)

(i)
$$\sqrt[3]{-64} = (-64)^{1/3}$$

 $2^{3/5}$ $(2^3)^{1/5}$ (ii)

Q3. Simplify the following radical expressions: ; EX #2.3 Q.3 ;(i , ii)

∛-125 (i)

 $(-5)^{3 \times \frac{1}{3}}$ Solution: = $\sqrt[3]{(-5)^3}$

√32 (ii)

Solution: = $\sqrt{2^5}$

= $\sqrt[4]{2} \cdot (2)^{4 \times \frac{1}{2}}$ √2.√24 **12.2**

; EX #2.5 Q.1;;(i, ii, iv) Evaluate Q1.

Solution: (i) t^7

Solution: (ii) i⁵⁰

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

Unit # 02

Real and Complex Numbers

Guess Papers

```
(-1)^4
                                = 1
      Write the conjugate of the following numbers. ; EX #2.5 Q.2 ; ;(i , ii , iii)
Q2.
(i)
                         2+3i; Then
                                            ž
Solution: Let z
(ii)
      3 - 5i
                         = 3 - 5i; Then \overline{z}
                                                                3 + 5i
Solution: Let
(iii) ' --i
                         = -i; Then \ddot{z}
Solution: Let
      Write the real and imaginary part of the following numbers. ; EX #2.5 \, Q.3 ; ;(iv , v)
Q3.
                 -2-2i Re(z) =
                                                   lm(z) =
                                          -2
Solution: (iv)
                                                   -3
                                      lm(z) =
                   Re(z) =
                                0
(V)
      -3i
      Identify the following statements as true or false. EX #2.6 Q.1
Q1.
     \sqrt{-3}\sqrt{-3} = 3 (ii) t^{73} = -i (iii)
(i)
(iv) Complex conjugate of (-6t + t^2) is (-1 + 6t)
     Difference of a complex number z = a + bi and its conjugate is a real number.
(v)
      If (a-1) - (b+3)i = 5 + 8i, then a = 6 and
                                                   b = -11
(vi)
(vii) Product of a complex number and its conjugate is always a non-negative real number.
Solution:
                   False (iii) True (iv) True (v) False (vi) True (vii) True
(î)
      Express each complex number in the standard form a+bi, where a and b are real
Q2.
numbers. ; EX #2.6 Q.2 ; ;(ii)
                   2(5 + 4i) - 3(7 + 4i)
Solution: (ii)
Solution: By separating real and imaginary parts, we get = 10 + 8i - 21 - 12i =
                                                                                  -11 - 41
Q3. Simplify and write your answer in the form a + bi. EX #2.6 Q.3; (ii , iv)
Solution: (ii) (2-\sqrt{-4})(3-\sqrt{-4})
Solution: (2-2i)(3-2i)
            6-4l-6l+4l^2 = 6-10l+4(-1) = 6-10l-4; (v l^2 = -1)
             2 - 10i
      I
(iv) (2-3t)(3-2t)
Solution:= (2-3i)(3+2i) = 6+4i-9i-6i^2
= 6-5i-6(-1); (:i^2=-1)
             6 + 6 - 51
                                12 - 5i
      Ξ
                   (a) \overline{z} (b) z + \overline{z} (c) z - \overline{z} (d) z \overline{z} for each of the following
Q5.
      Calculate
                   (ii) z = 2 + l (iii) z = \frac{1+l}{1-l} ; EX #2.6 Q.5; ;(ii, iii)
       Solution:
(ii)
      z=2+i
(a)
      \overline{z} = 2 - i
      z+\ddot{z}=2\div i+2-i=4
(b)
      z - \overline{z} = 2 + i - 2 + i = 2i
(c)
```

 $z = \frac{1+i}{1-i}$ (iii) $z = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{(1+i)^2}{1-i^2} = \frac{1+2i+i^2}{1-(-1)} = \frac{1+2i-1}{1+1} = \frac{2i}{2} = 0 + i \text{ (a)} \quad \overline{z} = 0 - i = -i$

 $z\tilde{z} = (2+i)(2-i) = 4-i^2 = 4-(-1) = 4+1 = 5$

(d)

Emrils seffil@offee.complx

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 02

Real and Complex Numbers

Guess Papers

Q6. If
$$z = 2 + 3i$$
 and $w = 5 - 4i$, show that (i) $\overline{z + w} = \overline{z} + \overline{w}$ (iii) $\overline{z \, \overline{w}} = \overline{z} \, \overline{w}$ (iv) $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$, where $w \neq 0$. (v) $\frac{1}{2}(z + \overline{z})$ is the real part of z.; EX #2.6 Q.6; ; (i , iii , iv , v)

Solution:
$$z = 2 + 3i$$
 \Rightarrow $\overline{z} = 2 - 3i$
 $w = 5 - 4i$ \Rightarrow $\overline{w} = 5 + 4i$

(i)
$$\overline{z+w} = \overline{z} + \overline{w}$$

 $z+w = 2+3i+5-4i=7-i$

L.H.S. =
$$\overline{z + w} = 7 + i$$

R.H.S. = $\overline{z} + \overline{w} = 2 - 3i + 5 + 4i = 7 + i$

Hence L.H.S. = R.H.S.

(iii)
$$\overline{zw} = \overline{z}\overline{w}$$

 $zw = (2+3i)(5-4i) = 10-8i+15i-12i^2 = 10+7i+12(-1)$
 $= 10+12+7i = 22+7i$

L.H.S. =
$$\overline{z}\overline{w} = 22 - 7i$$

R.H.S. =
$$\overline{z} \, \overline{w} = (2 - 3l)(5 + 4l) = 10 + 8l - 15l - 12l^2$$

= $10 - 7l - 12(-1) = 10 + 12 - 7l = 22 - 7l$

Hence L.H.S. = R.H.S.

(iv)
$$\frac{z}{w} = \frac{\overline{z}}{\overline{w}}$$
, where $w \neq 0$,

$$\frac{z}{w} = \frac{2+3i}{5-4i} = \frac{2+3i}{5-4i} \times \frac{5+4i}{5+4i} = \frac{(2+3i)(5+4i)}{25-16i^2} \neq \frac{10+8i+15i+12i^2}{25-16(-1)}$$

$$= \frac{10+23i-12}{25+16} = \frac{-2+23i}{41} = -\frac{2}{4i} + \frac{23}{4i}i \qquad (\because i^2 = -1)$$

L.H.S. =
$$\frac{\left(\frac{z}{w}\right)}{\left(\frac{z}{w}\right)} = -\frac{2}{41} - \frac{23}{41}i$$

R.H.S. = $\frac{\overline{z}}{\overline{w}} = \frac{2-3i}{5+4i} = \frac{2-3i}{5+4i} \times \frac{5-4i}{5-4i} = \frac{(2-3i)(5-4i)}{25-16i^2}$
= $\frac{10-8i-15i+12i^2}{25-16(-1)} = \frac{10-12-23i}{25+16} = \frac{-2-23i}{41} = -\frac{2}{41} - \frac{23}{41}i$

Hence L.H.S. = R.H.S.

(v)
$$\frac{1}{2}(z+\overline{z})$$
 is the real part of z.
 $\frac{1}{2}(z+\overline{z}) = \frac{1}{2}(2+3i+2-3i)$ $= \frac{1}{2}(4) = 2$ is real part of z

Multiple Choice Questions. Choose the correct answer. ; Review EX #2 Q.1 Q1.

(i)
$$(27x^{-1})^{-2/3}$$
.....

(a)
$$\frac{\sqrt[3]{x^2}}{\frac{9}{9}}$$
 (b) $\frac{\sqrt[3]{x^3}}{9}$ (c) $\frac{\sqrt[3]{x^2}}{8}$ (d) $\frac{\sqrt{x^3}}{8}$

Write $\sqrt[4]{x}$ in exponential form...... (ii)

(a)
$$x$$
 (b) x^7 (c) $x^{1/7}$ (d) $x^{7/2}$

Write 42/3 with radical sign..... (iii)

(a)
$$\sqrt[3]{4^2}$$
 (b) $\sqrt{4^3}$ (c) $\sqrt[2]{4^3}$ (d) $\sqrt{4^6}$

In $\sqrt[3]{35}$ the radicand is...... (iv)

(a) 3 (b)
$$\frac{1}{3}$$
 (c) 35 (d) none of these

Alpunoscoffic@iffee alterna

Guess Papers

Unit # 02

Real and Complex Numbers

(vi)	ine	conjugate	Of 5 + 46 F	S.,					
	(a)			-5 - 4i	(c)	5 – 4i		(d)	5 + 4i
(vii)	The	value of ℓ^9	S						
	(a)	1	(b)	-1	(c)	t		(d)	-i
(viii)	Ever	y real num	ber is	••==					
	(a)	a positive	integer	•		(b)	a rati	onal numbe
	(c)	a negativ	e integer			(d)	a con	iplex numb
(xi)	Real	part of 2a	$b(t+t^2)$ is						
•	(a)	2ab	(b)	-2ab	(c)	2abi		(d)	-2abi
(x)	Imag	ginary part	of $-l(3l \cdot$	+ 2) is					
	(a)	-2	(b)	2	(c)	3		(d)	-3
(xi)	Whic	th of the fo	llowing s	ets have the	e closure	e property	/ W	r.t. add	lition
	(2)	{0}	(b)	(0,-1)	(c)	{0,1}		(d) {	1,√2, 5)
(xii)	Name	the prope	rtv of rea	l numbers u	sed in ($\left(-\frac{\sqrt{5}}{2}\right) \times 1$	=	<u> </u>	
	(a)	additive id			,			2 additive	
	(c)		tive identity	;			ď)		cative invers
(iiix)		0 then x		•		`	-,		
, ,	(a)	xz < yz	•			(b)	x2 >	VZ
	(c)	xz = yz					d)		of these
(viv)		-	only one	of $a = b$ or	a < b or				
` '	(a)		y property			· • (tive propert
	(c)	additive p	,				d)		ative proper
(xv)	A nor	,	, ,	curring decim	al repres		,	·	
	(a)	a natural			-		b)	a ratio	onal numbe
	(c)	an irration	ial number			· · · (e	d)	a prin	ne number

i. a	ii. c	iii. a	iv. c	v. b	vi. c
vii. c	viii. d	ix. b	x. a	xi. a	xii. c
xiii. b	xiv. a	xv. c			

Q2.	True or false? Identify. ; Review EX #2 Q.2	
(i)	Division is not an associative operation.	•
(ii)	Every whole number is a natural number.	*****
(iii)	Multiplicative inverse of 0.02 is 50.	
(vi)	n is a rational number.	****
(v)	Every integer is a rational number.	
(vi)	Subtraction is a commutative operation.	11577
(vii)	Every real number is a rational number.	41177
(viii)	Decimal representation of a rational number is either terminating or recurring.	
•	•	••••
(ix)	$1.\overline{8} = 1 + \frac{8}{9}$	4447

Answers:

(ii) Faise . (i) (iii) True True (iv) False

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

श्रीपारकस्क्रीरिक्किशीहरू श्रीहताडी

Confict +92 345 5282625

fb.com/office.com.pk

Logarithms

Guess Papers

- GUESS PAPER & MODEL PAPER # 03 BASED ON UNIT # 3 (Reduced Syllabus). LOGARITHMS

Unit 3	Logarithms
Exercise 3.1	Q1(i, ii, iv, vi); Q2(iii, iv)
Exercise 3.2	Q1(i, iii); Q3; Q4(ii, iv); Q5
Exercise 3.3	Q1(iv, v, vi); Q2; Q3(iii, iv); Q4
Exercise 3.4	Q1(i, iii, iv, vi); Q2; Q5
Review Ex 3	Q1; Q2

NOTE:

All Class work will be given for revision as H.W.

The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the chapters: so MCQ's will be done in class by class teacher.

Unit # 03

Logarithms

Guess Papers

(ix)	log. z	× log, b can be w	ritten a	•				
()	(A)	log _a ¢	(B)	log _c a	(C)	log b	(D)	las A
(x)	٠,	will be equal to	• • •	1050	, (C)	log _a b	(D)	log _b c
()	,	log _z x	1-744	$\log_{\mathbf{x}} \mathbf{z}$		log _z x		los v
	(A)	log _y z	(B)	 	(C)		(D)	log ₂ y
(xi)	Ear o	-3	the ha	logy z		log₂ y		log₂ x
141)	(A)	ommon logarithms		5e is 10	(C)		(6)	
(xii)		ntagral nart of the	(B)		(C)	e enlled the	(D)	0
(AII)	(A)	ntegral part of the characteristics	(B)	Mantissa				Later
(viii)		ecimal part of the			(C)	Antilogarithm	(0)	Integer
(~,,	(A)	characteristics	(B)	Mantissa				1-1
(xiv)		logy, then y is ca			(C)	Antilogarithm	(U)	integer
()	(A)	characteristics	(B)	Mantissa	(C)	Antilogarithm	(0)	luta a a -
(xv)		characteristic of t			(L) ric 1 th:	Antilogarithm	(U) Lbava	Integer
,,	its int	egral part.	ne logu	removia numbe	1 15 A, UIC	ir unimbet Mit	ı nave	aigits in
	(A)	1	(B)	10	(C)	۵	(D)	^
Time	. ,	2:40 hours	(0)	10	(0)	e	(D)	2 Total Marks: 60
Not	e: Atte	mpt any nine parts	from S	ection 'B' and any	three a	uestions from	Soction	on 'C' on the
sep	arately	provided answer	book. U	ise supplementar	v answei	r sheet in Si	root_B	on C on upe
Wri	te your	answers neatly ar	ıd legibl	v. Log book and s	ranh nai	ner will he no	widad widad	on domand
							rideu	On demand.
				<u> ION – B (Ma</u>	<u> </u>	2}		
	ATTAM							
Q.2	F	pt any NINE parts	from th	e following. All pa	arts carry	equal marks	•	$(9 \times 4 = 36)$
Q.2 (i)	Expre	ss each of the follo	wing n	ie following. Ali pa umbers in scientif	arts carry ic notatio	equal marks	•	(9 × 4 = 36)
(i)	Expre	ss each of the follo 5700	wing ni (ii)	e following. All pa umbers in scientif 49,800,000	arts carry ic notation EX #3.1	equal marks on. O.1;(i , ii)	•	(9 × 4 = 36)
	Expre (i) Expre	ss each of the follo 5700 ss each of the follo	wing ni (ii) wing ni	ie following. All pa umbers in scientif 49,800,000 ; umbers in scientif	arts carry ic notation EX #3.1 ic notation	/ equal marks on. Q.1;(i , ii) on.	•	(9 × 4 = 36)
(i) (ii)	Expre (i) Expre (iv)	ss each of the follo 5700 ss each of the follo 416.9	wing ni (ii) wing na (vi)	ie following. All pa umbers in scientif 49,800,000 ; umbers in scientif 0.00643 ; EX#	arts carry ic notation EX #3.1 ic notation 3.1 Q.1;	/ equal marks on. Q.1;(i , ii) on.	•	(9 × 4 = 36)
(i)	Expre (i) Expre (iv) Expres	ss each of the follo 5700 ss each of the follo 416.9 ss the following nu	owing no (ii) owing no (vi) ombers i	ie following. All pa umbers in scientif 49,800,000 ; umbers in scientif 0.00643 ; EX# in ordinary notation	arts carry ic notation EX #3.1 ic notation 3.1 Q.1;	y equal marks on. Q.1;(i , ii) on. (iv , vi)	•	(9 × 4 = 36)
(i) (ii) (iii)	Expre (i) Expre (iv) Expre (iii) 9	ss each of the follo 5700 ss each of the follo 416.9 ss the following nu 0.018×10^{-6}	owing no (ii) owing no (vi) ombers i (iv)	ie following. All pa umbers in scientif 49,800,000 ; umbers in scientif 0.00643 ; EX # in ordinary notation 7.865 × 10° ; E	arts carry ic notation EX #3.1 ic notation (3.1 Q.1; on. EX #3.1 (y equal marks on. Q.1;(i , ii) on. (iv , vi) Q.2;(iii , iv)		
(i) (ii) (iii)	Expre (i) Expre (iv) Expre (iii) 9	ss each of the follo 5700 ss each of the follo 416.9 ss the following nu 0.018×10^{-6}	owing no (ii) owing no (vi) ombers i (iv)	ie following. All pa umbers in scientif 49,800,000 ; umbers in scientif 0.00643 ; EX # in ordinary notation 7.865 × 10° ; E	arts carry ic notation EX #3.1 ic notation (3.1 Q.1; on. EX #3.1 (y equal marks on. Q.1;(i , ii) on. (iv , vi) Q.2;(iii , iv)		
(i) (ii) (iii) (iv)	Expre (i) Expre (iv) Expres (iii) S Evalua	ss each of the follows: 5700 ss each of the follows: 416.9 ss the following number 3.018×10^{-6} ate (i) $\log 2$	wing numbers in (ii) owing numbers in (iv) $\frac{1}{128}$	ie following. All parties in scientif 49,800,000 ; imbers in scientif 0.00643 ; EX # in ordinary notation 7.865 × 104 ; E ii) leg 512 to	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (the base	y equal marks on. Q.1;(i , ii) on. (iv , vi) Q.2;(iii , iv) 2√2 ; EX #	3.2 Q.	.5
(i) (ii) (iii) (iv) (v)	Expre (i) Expre (iv) Expre (iii) S Evalua Expres	ss each of the following seach of the following number 10°5 ate (i) $\log x - 2 \log x = 10^{-6}$	wing no (ii) owing no (vi) smbers $\frac{1}{128}$ ($\frac{1}{128}$ ($\frac{1}{3}$ $\log($	ie following. All parambers in scientif 49,800,000; ambers in scientif 0.00643; EX # in ordinary notation 7.865×10^4 ; Ex ii) $\log 512$ to $(x+1) - \log(x^2 - 1)$	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (the base 1) as a s	equal marks on. Q.1;(i, ii) on. (iv, vi) Q.2;(iii, iv) $2\sqrt{2}$; EX # single logarith	3.2 Q.	.5 EX #3.3 0.2
(i) (ii) (iii) (iv) (v) (vi)	Expre (i) Expre (iv) Expre (iii) 9 Evalua Expres Calcul	ss each of the following seach of the following number of the following number of the following number of the following: $ 1000000000000000000000000000000000000$	wing numbers (ii) wing numbers (iv) $\frac{1}{128}$ (i) $\frac{1}{109}$	ie following. All parameters in scientiff 49,800,000; smbers in scientiff 0.00643; EX # in ordinary notation 7.865×10^4 ; Ex ii) $\log 512$ to $(x+1) - \log(x^2 + \log_3 2 \times \log_2 81$	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (the base 1) as a s (ii)	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith $\log_5 3 \times \log_2 2$;	3.2 Q.	.5 EX #3.3 0.2
(i) (ii) (iii) (iv) (vi) (vii)	Expre (i) Expre (iv) Expre (iii) S Evalua Expres Calcul Use lo	ss each of the following state (i) log 2 state the following number $\log x - 2 \log x + 3 $	wing not (ii) owing not (vi) smbers $\frac{1}{128}$ ($\frac{1}{1$	ie following. All parambers in scientif 49,800,000; ambers in scientif 0.00643; EX # in ordinary notation $x + 1$ $\log 512$ to $\cos x + 1$ $\cos	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. X #3.1 (the base 1) as a s (ii)	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith $\log_5 3 \times \log_3 2!$ 3.4 Q.1;(i)	3.2 Q.	.5 EX #3.3 O.2
(i) (ii) (iii) (iv) (v) (vi)	Expre (i) Expre (iv) Expre (iii) S Evalua Expres Calcul Use lo	ss each of the following state (i) log 2 state the following number $\log x - 2 \log x + 3 $	wing not (ii) owing not (vi) smbers $\frac{1}{128}$ ($\frac{1}{1$	ie following. All parambers in scientif 49,800,000; ambers in scientif 0.00643; EX # in ordinary notation $x + 1$ $\log 512$ to $\cos x + 1$ $\cos	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. X #3.1 (the base 1) as a s (ii)	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith $\log_5 3 \times \log_3 2!$ 3.4 Q.1;(i)	3.2 Q.	.5 EX #3.3 O.2
(i) (ii) (iii) (iv) (vi) (vii)	Expre- (iv) Expre- (iv) Expre- (iii) 9 Evalua Expre- Calcul Use lo	ss each of the following seach of the following number of the following number of the following number of the following: at the following: g tables to find the g tables to find the	wing no (ii) wing no (vi) smbers in (iv) 2 128 128 129 (i) 1 2 value of	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (the base 1) as a s (ii) 1 1; EX #3.4	equal marks on. Q.1;(i , ii) on. (iv , vi) $2\sqrt{2}$; EX # single logarith $og_5 3 \times log_3 25$ 3.4 Q.1;(ii)	3.2 Q. m. ; I 5 ; EX	.5 EX #3.3 O.2
(i) (ii) (iii) (iv) (vi) (vii) (viii) (ix)	Expre- (i) Expre- (iv) Expre- (iii) 9 Evalua Expre- Calcul Use lo Use lo	ss each of the following seach of the following numbers the following numbers $\log x + 2 \log x + 3 \log x + $	wing no (ii) owing no (vi) imbers in (iv) in 128 128 4 3 log((i) in 2 value of 2 value of 2 value of	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (the base 1) as a s (ii)	y equal marks on. Q.1;(i , ii) On. (iv , vi) $2\sqrt{2} = ; EX # single logarith og_5 3 × log_3 25 3.4 Q.1;(i) Q.1;(iii) X #3.4 Q.1;(ii)$	3.2 Q. ım. ; l 5 ; EX v)	.5 EX #3.3 O.2
(i) (ii) (iii) (iv) (vi) (vii) (viii) (ix)	Expre- (i) Expre- (iv) Expre- (iii) 9 Evalua Expre- Calcul Use lo Use lo	ss each of the following seach of the following numbers the following numbers $\log x + 2 \log x + 3 \log x + $	wing no (ii) owing no (vi) imbers in (iv) in 128 128 4 3 log((i) in 2 value of 2 value of 2 value of	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (the base 1) as a s (ii)	y equal marks on. Q.1;(i , ii) On. (iv , vi) $2\sqrt{2} = ; EX # single logarith og_5 3 × log_3 25 3.4 Q.1;(i) Q.1;(iii) X #3.4 Q.1;(ii)$	3.2 Q. ım. ; l 5 ; EX v)	.5 EX #3.3 O.2
(i) (ii) (iii) (iv) (vi) (viii) (viii) (ix) (x)	Expre- (i) Expre- (iv) Expre- (iii) Evalua Expre- Calcul Use lo Use lo Use lo Use lo	ss each of the following seach of the following numbers the following numbers $\log x - 2 \log x + 10^{-6}$ ate the following: g tables to find the g	wing no (ii) wing no (vi) mbers in (iv) the transfer of (i) value of value of (i) value of (i) value of (i) value of (i)	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (a) the base (ii) 1	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith ogs $3 \times \log_3 2!$ 3.4 Q.1;(i) Q.1;(iii) X #3.4 Q.1;(vi)	3.2 Q. m. ; I 5 ; EX v)	5 EX #3.3 Q.2 #3.3 Q.4
(i) (ii) (iii) (iv) (vi) (viii) (viii) (ix) (x)	Expre- (i) Expre- (iv) Expre- (iii) Evalua Expre- Calcul Use lo Use lo Use lo Use lo	ss each of the following seach of the following numbers the following numbers $\log x - 2 \log x + 10^{-6}$ ate the following: g tables to find the g	wing no (ii) wing no (vi) mbers in (iv) the transfer of (i) value of value of (i) value of (i) value of (i) value of (i)	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (a) the base (ii) 1	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith ogs $3 \times \log_3 2!$ 3.4 Q.1;(i) Q.1;(iii) X #3.4 Q.1;(vi)	3.2 Q. m. ; I 5 ; EX v)	5 EX #3.3 Q.2 #3.3 Q.4
(i) (ii) (iii) (iv) (vi) (vii) (viii) (ix) (xi)	Expres (iv) Expres (iv) Expres (iii) 9 Evalua Expres Calcul Use lo Use lo Use lo Use lo	ss each of the following seach of the following numbers the following numbers $\log x + 2 \log x + 3 \log x + $	wing no (ii) owing no (vi) sembers if (iv) if 128 (ii) if 2 value of value of value of when many when when many when when many when when when when when when when when	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. ix #3.1 (the base 1) as a s (ii) 1; EX #3.4 239 ; EX ; ind	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith ogs 3 × logs 2! 3.4 Q.1;(ii) Q.1;(iii) X #3.4 Q.1;(ii) #3.4 Q.1;(vi) $h = 4.2$.	3.2 Q. m. ; I 5 ; EX v)	5 EX #3.3 Q.2 #3.3 Q.4 *3.4 Q.5
(i) (ii) (iii) (iv) (vi) (vii) (viii) (ix) (xi)	Expredictly Expredictly Expredictly Evaluate Expredictly Expredictly Use for	ss each of the following ss each of the following numbers the following numbers $\log x + 2 \log x + 3 \log x + 3 \log x + 3 \log x + 3 \sin x $	wing no (ii) owing no (vi) smbers in (iv) in (The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. iX #3.1 (the base 1) as a s (ii) i	requal marks on. Q.1;(i, ii) on. (iv, vi) Q.2;(iii, iv) $2\sqrt{2}$; EX # single logarith og ₅ 3 × log ₃ 25 3.4 Q.1;(i) Q.1;(iii) X #3.4 Q.1;(ii) $h = 4.2$. ill make the single make the single	3.2 Q. m. ; I 5 ; EX v)	5 EX #3.3 Q.2 #3.3 Q.4 *3.4 Q.5
(i) (ii) (iii) (iv) (vi) (vii) (ix) (xi) (xii)	Expres (i) Expres (iv) Expres (iii) Evalua Expres Calcul Use los	ss each of the following seach of the following numbers the following numbers $\log x - 2 \log x + 10^{-6}$ ate (i) $\log 2 \log x - 2 \log x + 10^{-6}$ ate the following: g tables to find the g tables to find th	wing no (ii) owing no (vi) simbers if 128 (iv) if 128 (iv) if 2 value of value of value of when me unkno (iv)	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. iX #3.1 (the base 1) as a s (ii) 1; EX #3.4 239 ; EX ind owing with i.2 Q.4;(i)	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith ogs 3 × logs 2! 3.4 Q.1;(ii) Q.1;(iii) X #3.4 Q.1;(iii) $(4, 2, 1)$ $(4, 3, 4, 1)$ $(4, 4, 2,$	3.2 Q. m. ; I 5 ; EX v) tateme	5 EX #3.3 Q.2 #3.3 Q.4 *3.4 Q.5 ent true?
(i) (ii) (iii) (iv) (vi) (vii) (viii) (xii) (xiii)	Expre- (i) Expre- (iv) Expre- (iii) S Evalua Expre- Calcul Use lo Ose lo	ss each of the following ss each of the following numbers the following numbers log $x - 2 \log x + 3 \log x + 2 \log x + 3 \log $	wing no (ii) owing no (vi) owing no (vi) owing no (iv) owing to (iv)	The following of the f	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. iX #3.1 (the base 1) as a s (ii) 1; EX #3.4 239 ; EX ind owing with i.2 Q.4;(i)	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith ogs 3 × logs 2! 3.4 Q.1;(ii) Q.1;(iii) X #3.4 Q.1;(iii) $(4, 2, 1)$ $(4, 3, 4, 1)$ $(4, 4, 2,$	3.2 Q. m. ; I 5 ; EX v) tateme	5 EX #3.3 Q.2 #3.3 Q.4 *3.4 Q.5 ent true?
(i) (ii) (iii) (iv) (vi) (vii) (viii) (xi) (xii) (xiii)	Expredictly Expred	ss each of the following seach of the following numbers the following numbers log $x - 2 \log x + 3 \log x + 2 \log x + 3 \log x $	wing no (ii) owing no (vi) owing no (vi) owing no (iv) owing to (iv) owing to (iv) owing to (iv) owing to (iv)	The following. All parameters in scientify 49,800,000; ambers in scientify 0.00643; EX # in ordinary notation $(x + 1) - \log(x^2 - \log_3 2 \times \log_2 81)$ of $(x + 1) - \log(x^2 - \log_3 2 \times \log_2 81)$ of $(x + 1) - \log(x^2 - \log_3 2 \times \log_2 81)$ of $(x + 1) - \log(x^2 - \log_3 2 \times \log_2 81)$ of $(x + 1) - \log(x^2 - \log_3 2 \times \log_2 81)$ of $(x + 1) - \log(x^2 - \log_3 2 \times \log_2 81)$ of $(x + 1) - \log(x^2 - \log_3 2 \times \log_2 81)$ of $(x + 1) - \log(x^2 - \log_3 2 \times \log_3$	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. iX #3.1 (the base 1) as a s (ii) 1; EX #3.4 239 ; EX ; EX; and owing w (.2 Q.4;(i) Find	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith ogs 3 × logs 2! 3.4 Q.1;(ii) Q.1;(iii) X #3.4 Q.1;(iii) $(4, 2, 1)$ $(4, 3, 4, 1)$ $(4, 4, 2,$	3.2 Q. m. ; I 5 ; EX v) tateme	5 EX #3.3 Q.2 #3.3 Q.4 *3.4 Q.5 ent true?
(i) (ii) (iii) (iv) (vi) (vii) (xi) (xii) (xii) (xiv)	Expredictly Expredictly Expredictly Evaluate Expredictly Use for Use f	ss each of the following ss each of the following numbers the following numbers log $x - 2 \log x + 3 \log x + 2 \log x + 3 \log $	wing no (ii) owing no (vi) smbers in (iv) in 128 (i) in 2 value of value of value of value of (iv) ding to the form of (iv) the (iv) the form of (iv) the form of (iv) the form of (iv) the form	the following. All property in scientify 49,800,000; the following in scientify 49,800,000; the following in scientify 0.00643; EX # in ordinary notation 7.865×10^{4} ; Ex # in ordinary notation 7.865×10^{4} ; Ex # in each of following in each of ea	arts carry ic notation EX #3.1 ic notation 3.1 Q.1; on. EX #3.1 (the base 1) as a s (ii) EX #3.4 239 : EX Cowing with a cow	equal marks on. Q.1;(i, ii) on. (iv, vi) $2\sqrt{2}$; EX # single logarith ogs $3 \times \log_3 2!$ 3.4 Q.1;(ii) Q.1;(iii) X #3.4 Q.1;(vi) $h = 4.2$. ill make the sin, iv) C when $p = 4.4$	3.2 Q. m. ; I 5 ; EX v) tateme	5 EX #3.3 Q.2 #3.3 Q.4 *3.4 Q.5 ent true? v = 3.1 and

Prepared By: Safid or Rehman Subject: Guess Papers (Mathematics 9th) www.office.com.pk

Alpinoseofficologica alterna

Confict: +92 345 5282625

fb.com/office.com.pk

Unit # 03

Logarithms

Guess Papers

- Q.3 Show whether or not the points coordinates (1,3), (4,2) and (-2,6) are vertices of a right triangle. ; EX #9.2; Q.3
- Q.4 One exterior angle formed on producing one side of a parallelogram is 40°. Find the measures of its interior angles.; EX #11.1; Q.2
- Q.5 Each point on the bisector of an angle is equidistant from its arms.; Theorem # 12.1.4
- Q.6 Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure is possible for the third side? ; EX #13.1; Q.1
 - (a) 5 cm (b) 20 cm (c) 25 cm (d) 30 cm
- Q.7 Construct a \triangle equal in area to the quadrilateral ABCD, having $m\overline{AB}=6cm$, $m\overline{BC}=4cm$, $m\overline{AC}=7.2~cm$, $m\angle BAD=105^{\circ}$ and $m\overline{BD}=8cm$.; EX #17.3 Q.3

SOLUTION OF GUESS PAPER & MODEL PAPER # 3 (Reduced Syllabus)

SECTION- A (MCQs)

i. C	ii. B	iii, D	ìv. A	ν. Β	vi. A
vii. D	viii. C	ix. B	x. C	χi. B	xii. A
xiii. B	xiv. C	xv. D			

SECTION - B (Marks 36)

- Q.2 Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$
- (i) Express each of the following numbers in scientific notation.
 - (i) 5700
- (ii) 49,800,000 ; EX #3.1 Q.1;(i,ii)

Solution: (i) 5700

$$=\frac{5700}{1000}\times1000=5.7\times10^3$$

(ii) 498 00 000

$$= \frac{49800000}{10000000} \times 100000000 = 4.98 \times 10^{7}$$

Note: A number written in the form $a \times 10^n$, where $1 \le a \le 10$ and n is an integer, is called the scientific notation.

(ii) Express each of the following numbers in scientific notation.

(iv) 416.9

(vi) 0.00643 ; EX #3.1 Q.1;(iv , vi)

Solution: (iv) 416.9

$$\frac{4169}{10} = 4169 \times 10^{-1} \implies \frac{4169}{1000} \times 1000 \times 10^{-1} = 4.169 \times 10^{3-1} = 4.169 \times 10^{2}$$

(vi) 0.00643

$$\frac{00643}{100000} = 643 \times 10^{-5} \quad \Rightarrow \quad \frac{643}{100} \times 100 \times 10^{-5} = 6.43 \times 10^{2-5} = 6.43 \times 10^{-3}$$

(iii) Express the following numbers in ordinary notation.

(iii)
$$9.018 \times 10^4$$
 (iv) 7.865×10^6 ; EX #3.1 Q.2;(iii, iv)

Solution: (iii) 9.018×10^{-6}

$$= \frac{9018}{1000} \times 10^{-6} = 9018 \times 10^{-6-3}$$

$$= 9018 \times 10^{-9} = \frac{9018}{1000000000} = 0.000009018$$

Emails safid@office.com/pk

Conficts +92 345 5282625

fb.com/office.com.pk

Unit # 03

Logarithms

Guess Papers

```
(i) \log 2 \frac{1}{120} (ii) \log 512 to the base 2\sqrt{2}; EX #3.2 Q.5
(iv)
      Evaluate
```

Solution: (i)
$$\log 2 \frac{1}{128}$$
; Let $\log 2 \frac{1}{128} = x$

Exponential form is
$$\therefore 2^x = \frac{1}{128} \Rightarrow \therefore 2^x = \frac{1}{2^7} \Rightarrow \text{ or } 2^x = 2^{-7} \Rightarrow \qquad x = -7$$

log 512 to the base $2\sqrt{2}$ (ii)

Let
$$\log_{2\sqrt{2}} 512 = x$$
; Exponential form is $(2\sqrt{2})^x = 512$

$$\left(2 \times 2^{\frac{1}{2}}\right)^{x} = 2^{9} \implies \left(2^{3/2}\right)^{x} = 2^{9} \implies \left(1 + \frac{1}{2} = \frac{3}{2}\right) \implies 2^{3x/2} = 2^{9} \implies \frac{3x}{2} = 9$$

$$x = \frac{9 \times 7}{3} = \frac{18}{3} = 6$$

(v) Express
$$\log x - 2 \log x + 3 \log(x + 1) - \log(x^2 - 1)$$
 as a single logarithm. ; EX #3.3 Q.2

Solution:
$$\log x - 2 \log x + 3 \log (x + 1) - \log (x^2 - 1)$$

$$= (1-2)\log x + 3\log(x+1) - \log(x+1)(x-1)$$

$$= -\log x + 3\log(x+1) - [\log(x+1) + \log(x-1)]$$

$$= -\log x + 3\log(x+1) - \log(x+1) - \log(x-1) = 2\log(x+1) - \log x - \log(x-1)$$

$$= 2 \log (x+1) - \log [\log x + \log (x-1)] = \log (x+1)^2 - \log x(x-1)$$

$$= log \frac{(x+1)^2}{x(x-1)}$$

(vi) Calculate the following: (i)
$$log_3 2 \times log_2 81$$
 4 (ii) $log_5 3 \times log_3 25$; EX.#3.3 Q.4

Solution: (i) $log_32 \times log_281$

$$= \frac{\log 2}{\log 3} \times \frac{\log 81}{\log 2} = \frac{\log 81}{\log 3} = \frac{\log 3^4}{\log 3} = \frac{4 \log 3}{\log 3} = \frac{4 \log 3}{\log 3}$$

(ii) $log_53 \times log_325$

$$= \frac{\log 3}{\log 5} \times \frac{\log 25}{3} = \frac{\log 25}{\log 5} = \frac{\log 5^2}{\log 3} = \frac{2 \log 5}{\log 5} = 2$$

Use log tables to find the value of $0.8176 \times 13.64 \cdot EX \#3.4 \ Q.1;(i)$

Solution: 0.8176×13.64

Lat
$$x = 0.8176 \times 13.64$$

$$x = 0.8176 \times 13.64$$

 $\log x = \log (0.8176 \times 13.64) = \log 0.8176 + \log 13.64$
 $= 1.9125 + 1.1348 = -1 + 0.9125 + 1 + 0.134$

$$=$$
 $\overline{1}$, 9125 + 1.1348 $=$ -1 + 0.9125 + 1 + 0.1348

$$\log x = 0.9125 + 0.1348$$

$$\log x = 1.0473$$

A 470 v 0 04

Taking antilog on both side

(viii) Use log tables to find the value of
$$\frac{0.678 \times 9.91}{0.0234}$$
; EX #3.4 Q.1;(iii)

Solu	tion:		0234
Let	x	Ξ.	0.678 × 9.01 0.0234
	log x	#	$\log \frac{0.678 \times 9.01}{0.0234} = \log 0.678 + \log 9.91 - \log 0.0234$
		=	$1.8312 + 0.9547 - 2.3692 = -1 + 0.8312 + 0.9547 - 2 \cdot 0.3692$
		=	-1 + 2 + 1.7859 - 0.3692 = 1 + 1.4167

log x ≂ Taking antilog

 $V = 22 \times 25^2 \times \frac{2}{10}$

 $\log (22 \times 35^2 \times \frac{2}{3})$

Unit # 03

Logarithms

Guess Papers

```
Use log tables to find the value of \sqrt[5]{2.709} \times \sqrt[7]{1.239}; EX #3.4 Q.1;(iv)
(ix)
                   \sqrt[5]{2.709} \times \sqrt[7]{1.239}
Solution:
                             \sqrt[5]{2.709} \times \sqrt[7]{1.239}
Let
         x = (2.709)^{1/5} \times (1.239)^{1/7}

\log x = \log [(2.709)^{1/5} \times (1.239)^{1/7}]
                   = \log (2.709)^{1/5} + \log (1.239)^{1/7} = \frac{1}{5} (0.4328) + \frac{1}{7} \log 1.239= \frac{1}{5} (0.4328) + \frac{1}{7} (0.0931) = 0.08656 + 0.0133
                            0.0999
         log x =
Taking antilog on both side
                                       = Antilog (0.999)
         Antilog (log x)
                                       1.258
         Use log tables to find the value of \sqrt[3]{\frac{0.7214 \times 20.37}{60.8}}; EX #3.4 Q.1;(vi)
(x)
                   \sqrt[3]{\frac{0.7214 \times 20.37}{60.8}}
Solution:
                         \sqrt[3]{\frac{0.7214 \times 20.37}{60.8}} = \left(\frac{0.7214 \times 2.37}{60.8}\right)^{\frac{1}{3}}
Let
         \log x = \log \left( \frac{0.7214 \times 2.37}{60.8} \right)^{\frac{1}{3}}
= \frac{1}{3} \log \frac{0.7214 \times 20.37}{60.8} = \frac{1}{3} \{ (\log 0.7214 \times \log 20.37) - \log 60.8 \}
                       \frac{1}{3} \{ \log 0.7214 + \log 20.37 - \log 60.8 \}
                   = \frac{1}{3} \{ \overline{1}.8581 + 1.3090 - 1.7839 \}
                   = \frac{1}{3} \{-1 + 0.8581 + 1 + 0.3090 - 1.7839\} = \frac{1}{3} \{1.1671 - 1.7839\}= \frac{1}{3} \{-3 + 3 + 1.1671 - 1.7839\} = \frac{1}{3} \{-3 + 4.1671 - 1.7839\}
                   = \frac{1}{3} \{-3 + 2.3832\} = -1 + 0.7944
                            1.7944
Taking antilog on both side Antilog (log x) = Antilog (\overline{1}.7944)
(xi) If V = \frac{1}{3}\pi r^2 h, find V, when \pi = \frac{22}{7}, r = 2.5 and h = 4.2.; EX #3.4 Q.5
                   V = \frac{1}{2}\pi r^2 h
Solution:
By putting the values V = \frac{1}{3} \times \frac{22}{7} \times 25^2 \times 4.2
                   = 22 \times 25^2 \times 0.2
```

Guess Papers

Unit # 03

Logarithms

```
1.3424 + 2.7959 + 0.3010 - 1
logV =
          4.4393
```

Taking antilog on both side Antilog (log V) = Antilog (4.4393)27.50

(xii) What replacement for the unknown in each of following will make the statement true?

(ii)
$$\log_3 6 = 0.5$$
 (iv) $10^9 = 4$; EX #3.2 Q.4;(ii, iv)

Solution:

(ii)
$$\log_a 6 = 0.5 \Rightarrow a^{0.5} = 6 \Rightarrow a^{1/2} = 6 \Rightarrow \sqrt{a} = 6$$

By squaring on both sides $a = 36$

(iv)
$$10^p = 4$$

Taking log on both sides $\log 10^p = \log 4$

or
$$p \log 10 = \log 4 \implies p \times 1 = 0.6021$$
; (*: $\log 10 = 1$) $p = 0.6021$

(xiii) A gas is expanding according to the law $pV^n=0$. Find C when p=80 , v=3.1 and $n = \frac{5}{4}$, ; EX #3.4 Q.2

Solution:
$$pv^n = C$$

Substituting
$$p=80$$
, $v=3.1$, $n=\frac{5}{4}$

tuting
$$p = 80$$
, $v = 3.1$, $n = \frac{7}{4}$

$$\log C = \log 80 (3.1)^{\frac{5}{4}} = \log 80 + \frac{5}{4} \log 3.1$$

$$= 1.9031 + \frac{5}{4} (0.4914) = 1.9031 + \frac{2.570}{4} = 1.9031 + 0.6143$$

$$\log C = 2.5174$$

$$\log C = 2.5174$$

Taking antilog on both side Antilog (log C) = Antilog (2.5174)

(xiv) Write the following in the form of a single logarithm.

(iii)
$$2 \log x - 3 \log y$$
 (iv) $\log 5 + \log 6 - \log 2$; EX #3.3 Q.3; (iii, iv)

Solution: (iii)
$$2 \log x - 3 \log y$$
 = $\log x^2 \times \log y^3$ = $\log \frac{x^2}{y^3}$

(iii)
$$2 \log x - 3 \log y = \log x^2 \times \log y^3 = \log \frac{x^2}{y^3}$$

(iv) $\log 5 + \log 6 - \log 2 = \log 5 \times 6 - \log 2 = \log \frac{5 \times 6}{2}$

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks. $(3 \times 8 = 24)$

Show whether or not the points coordinates (1,3), (4,2) and (-2,6) are vertices of a right Q,3 ; EX #9.2 ; Q.3 tria**n**ale.

Let the given points be A(1,3), B(4,2) and C(-2,6). Solution:

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

 $|AB| = \sqrt{(4-1)^2 + (2-3)^2} = \sqrt{(3)^2 + (-1)^2}$ $= \sqrt{9+1} = \sqrt{10}$
 $|BC| = \sqrt{(4+2)^2 + (2-6)^2} = \sqrt{(6)^2 + (-4)^2}$ $= \sqrt{36+16} = \sqrt{52}$
 $|CA| = \sqrt{(1+2)^2 + (3-6)^2} = \sqrt{(6)^2 + (-4)^2}$ $= \sqrt{9+9} = \sqrt{18}$

$$|CA| = \sqrt{(1+2)^2 + (3-6)^2} = \sqrt{(6)^2 + (-4)^2} = \sqrt{9+9} = \sqrt{19}$$

 $|BC|^2 = 52$

$$\overline{|AB|^2} + \overline{|CA|^2} = 10 + 18 = 28 \neq |BC|^2$$

Since given points does not obey the Pythagoras theorem therefore the coordinates are not the vertices of right angle triangle.

D

Unit # 03

Logarithms

Guess Papers

m∠ABC + 40° = 180°

ABL is a straight line

Opposite angles of a parallelogram

Opposite angles of parallelogram

So the measures of interior angles of the parallelogram are 140°, 40°, 140° and 40°.

Q.5 Each point on the bisector of an angle is equidistant from its arms.; Theorem # 12.1.4 Solution:

Given:

A point P is on \overrightarrow{OX} , the bisector of $\angle AOB$

To prove:

 $\overline{PQ} \cong \overline{PR}$ i.e., P is equidistant from \overline{OA} and \overline{OB}

Construction:

Draw $\overline{PR} \perp \overline{OA}$ and $\overline{PQ} \perp \overline{OB}$

Proof:

Statements	Reasons
In $\triangle POQ \leftrightarrow \triangle POR$	
$\overline{OP} \cong \overline{OP}$	Common
∠PRO ≅∠PQO	Construction
∠POQ ≅∠POR	Given
$\Delta POQ \cong \Delta POR$	S.A.A. ≅ S.A.A.
and \overline{PQ} ≅ \overline{PR}	Corresponding sides of congruent triangles

Q.6 Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure is possible for the third side? ; EX #13.1; Q.1

(a) 5 cm (b) 20 cm (c) 25 cm (d) 30 cm

Solution: (a) Measure of sides are 10 cm, 15 cm and 5 cm

As
$$10 + 5 = 15$$

Since the sum of two sides is equal to the third side therefore:

So 5 cm is not possible.

(b) Sides are 10 cm, 15 cm and 20 cm

$$10 + 15 > 20$$

$$10 + 20 > 15$$

$$15 + 20 > 10$$

Since the sum of two sides is greater than third side therefore:

20 cm is possible for third side.

(c) Sides are 10 cm, 15 cm and 25 cm

As
$$10 + 15 = 25$$

Since the sum of two sides is equal to the third side therefore:

- So 25 cm is not possible.
- (d) Sides are 10 cm, 15 cm and 30 cm

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Emails saffid@office.com/ik Confict +92 345 5282625 fb.com/office.com.pk

Unit # 03

Logarithms

Guess Papers

Construct a Δ equal in area to the quadrilateral ABCD, having $m\overline{AB}=6cm,\ m\overline{BC}=4cm$ Q.7 $m\overline{AC} = 7.2 \text{ cm}, m\angle BAD = 105^{\circ} \text{ and } m\overline{BD} = 8 \text{ cm}$. ; EX #17.3 Q.3

Solution:

Construction:

- Take $m\overline{AB} = 6cm$. (i)
- With centre at the end point A and radius 7.2 cm draw an arc. (ii)
- With B as centre and radius 4 cm draw another arc to cut AL (iii) at the point D.
- Join \overline{AC} and \overline{BC} . (iv)
- At the end point A make m∠BAL = 105° (v)
- With B as centre and radius 8 cm draw arc to cut AL at the point D. (yi)
- Join DC to complete the quadrilateral ABCD. (vii)
- Draw $\overline{DP} \parallel \overline{CA}$ to meet BA produced at P. (viii)
- Join P to C. (ix)
- Then PBC is the required triangle. (x)

IMPORTANT QUESTIONS & ANSWERS (Reduced Syllabus)

- Find the common logarithms of the following numbers. Q1.
 - 232.92 (i)
- 0.00032 (iii)
- ; EX #3.2 Q.1;(i, iii)

Solution: (i) 232.92

232.92 can be rounded off as 232.9. The characteristic is 2 as there are 3 digits.

To find mantissa we follow the row of 23 and reach the column of 2 to get 3655. In the same row in the difference column of 9 we see 17. Add 3655 and 17 and get mantissa .3672.

2.3672 log 232.92 So

0.000 32 (iii)

The characteristic is -4 as which is written as 4.

To find mantissa we follow the row of 32 and reach the column of 0 to get 5051. So mantissa is $\bar{4}.5051$ $\log 0.00032 =$ 0.5051. So

Find the numbers whose common logarithms are (i) 3.5621 (ii) 1.7427; EX #3.2 Q.3 Q3.

Reading along the row corresponding to .56 we get 3648 at the intersection of this row and column of 2. The number at the intersection of this row and the mean difference column of 1 is Adding 3648 and 1 we get 3649.

Since the characteristic is 3, the number has four digits. So the required number is 3649.

1.7427 (ii)

Reading along the row corresponding to .74 we get 5521 at the intersection of this row and column of 2. The number at the intersection of this row and the mean difference column of 7 is 9. Adding 5521 and 9 we get 5530.

Since the characteristics is $\overline{1}$. So the required number is 0.5530.

- Write the following into sum or difference. Q1.
 - (iv) $\log^{3} \frac{7}{7}$ (v) $\log \frac{(22)^{3}}{7}$

(vi) $\log \frac{25 \times 47}{2}$: EX #3.3 O.1:(iv. v. vi)

Emails safid@office.com/ok

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 03

Logarithms

Guess Papers

$$= \frac{1}{3} \log \frac{7}{15} = \frac{1}{3} [\log 7 - \log 15]$$

(v)
$$\log \frac{(22)^{\frac{1}{3}}}{5^3}$$
 = $\log (22)^{\frac{1}{3}} + \log 5^3 = \frac{1}{3} \log 22 - 3 \log 5$

(vi)
$$\log \frac{25 \times 47}{79}$$
 = $\log (25 \times 47) + \log 29$ = $\log 25 + \log 47 + \log 29$

Multiple Choice Questions. Choose the correct answer.; Review EX #3 Q.1 Q1.

If $a^x = n$, then...... (i)

(a)
$$a = \log_x n$$
 (b) $x = \log_n a$ (c) $x = \log_a n$ (d) $a = \log_n x$

(ii) The relation $y = \log_x x$ implies

(a)
$$x^y = z$$
 (b) $z^y = x$ (c) $x^z = y$ (d) $y^z = z$

(iii) The logarithm of unity to any base is.......

(d) 10 (a) (b)

The logarithm of any number to itself as base is....... (iv) (d) 10 (b)

 $\log e = \dots$, where $e \approx 2.718$ (v) 1 (d) 0.4343 (c)

The value of $\log \left(\frac{p}{q}\right)$ is...... (vi)

(a)
$$\log p - \log q$$
 (b) $\frac{\log p}{\log q}$ (c) $\log p + \log q$ (d) $\log q - \log p$

(ilv) $\log p - \log q$ is same as......

log_v z

(a)
$$\log\left(\frac{q}{p}\right)$$
 (b) $\log(p-q)$ (c) $\frac{\log p}{\log q}$ (d) $\log\left(\frac{p}{q}\right)$

log (m") can be written as......

log(mn) (d) $(\log m)^n$ (c) n log m (b) m log n

 log_b a \times log_c b can be written as...... (ix) (d) log_b c (c) log_a b log₂ ¢ (b) log, a (a)

log_v x will be equal to...... (x)

 $log_v z$

 $\{d\}$ (c) log_z y

Solution:

(a)

(i) c	(ii) b	(iii) d	(iv) a	(v) b
(vi) a	(vii) đ	(viii) c	(ix) b	(x) c

Complete the following.; Review EX #3 Q.2 Q2.

(b)

- For common logarithms, the base is...... (i)
- The integral part of the common logarithm of a number is called the...... (ii)
- The decimal part of the common logarithm of a number is called the...... (iii)
- (iv) If $x = \log y$, then y is called the.....of x.
- f the characteristic of the logarithm of a number is $\overline{2}$, that number will have....zero(s) (v) immediately after the decimal point.
- If the characteristic of the logarithm of a number is 1, that number will have.....digits in its (iv) integral part.

Answers:

Upit # 04

ALgebraic Expressions & Algebraic Formulas

Guess Papers

GUESS PAPER & MODEL PAPER # 04 BASED ON UNIT # 4 (Reduced Syllabus) ALGEBRAIC EXPRESSIONS AND ALGEBRAIC FORMULAS

Unit 4	Algebraic Expressions and Algebraic Formulas
Exercise 4.1	Q1; Q2; Q3(iii, iv, v, vii, viii); Q5(ii, iv, vi); Q6(ii, iii, iv, v)
Exercise 4.2	Q1; Q2; Q4; Q6; Q8; Q10; Q13; Q15(i, ii, iii)
Exercise 4,3	Q1(iii, iv); Q2(ii, iii); Q3(i, ii); Q4(iii, v)
Exercise 4.4	Q1(iii, iv, vii); Q2(i, ii); Q3(i); Q4(i, ii); Q5(ii)
Review Ex 4	Q1; Q2

NOTE:

All Class work will be given for revision as H.W.

The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the chapters: so MCQ's will be done in class by class teacher.

SECTION-A

Through the self of the self o

Confict +92 345 5282625

fb.com/office.com.pk

ALgebraic Expressions & Algebraic Formulas

Guess Papers

(vii)
$$\frac{a^2-b^2}{a+b}$$
 is equal to.....

$$(A) \quad (a-b)^2$$

(B)
$$(a+b)^2$$

$$(C)$$
 $a+!$

(D)
$$a - b$$

(viii)
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$$
 is equal to.....

$$(A) \quad a^2 + b^2$$

(B)
$$a^2 - b^2$$

(C)
$$a - b$$

(D)
$$a + b$$

(ix) The degree of the polynomial
$$x^2y^2 + 3xy + y^3$$
 is......

(x)
$$x^2 - 4 = \dots$$

(A)
$$(x-2)(x-2)$$

(B)
$$(x+2)(x-2)$$

(C)
$$(x+2)(x+2)$$

(D)
$$x + 2$$

(xi)
$$x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)$$
(.....).

(A)
$$x^2 - 1 + \frac{1}{x^2}$$

$$x^2 + 1 + \frac{1}{x^2}$$
 (C)

$$x^2 - 2 + \frac{1}{x^2}$$
 (D)

$$x^2 - 1 - \frac{1}{x^2}$$

(A)
$$x^2 - 1 + \frac{1}{x^2}$$
 (B) $x^2 + 1 + \frac{1}{x^2}$ (C) $x^2 - 2 + \frac{1}{x^2}$ (D) $x^2 - 1 - \frac{1}{x^2}$ (xii) $2(a^2 + b^2) = (a + b)^2 + (\dots)^2$.

(B)
$$(a+b)^2(a+b)^2$$

(A)
$$a^2 + b^2$$

(C) $(a+b)^2(a-b)^2$

$$(D)$$
 $a+b$

(xiii)
$$\left(x - \frac{1}{x}\right)^2 = \dots$$

(A)
$$x^2 - 1 + \frac{1}{x^2}$$

(A)
$$x^2 - 1 + \frac{1}{x^2}$$
 (B) $x^2 + 1 + \frac{1}{x^2}$ (C) $x^2 - 2 + \frac{1}{x^2}$ (D) $x^2 - 1 - \frac{1}{x^2}$

(xiv) Order of surd $\sqrt[3]{x}$ is

(xv)
$$\frac{1}{2-\sqrt{3}} = \dots$$

(A)
$$2 + \sqrt{3}$$

(B)
$$2+\sqrt{3}$$

$$2 - \sqrt{3}$$
 (C) $-2 - \sqrt{3}$

(D)
$$2 - \sqrt{-3}$$

Time allowed: 2:40 hours

Total Marks: 60

Note: Attempt any nine parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Log book and graph paper will be provided on demand.

SECTION - B (Marks 36)

Q.2 $(9 \times 4 = 36)$ Attempt any NINE parts from the following. All parts carry equal marks.

 $\frac{0}{\sqrt{8}\sqrt{27}}$; EX #4.4 Q.1;(iii) (i) Rationalize the denominator of the following.

(ii) Simplify
$$\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$$
; EX #4.4 Q.4;(i)

(iii) Simplify
$$\frac{1}{2+\sqrt{3}} + \frac{2}{\sqrt{5}-\sqrt{3}} + \frac{1}{2+\sqrt{5}}$$
; EX #4.4 Q.4;(ii)

(iv) If
$$\left(5x - \frac{1}{5x}\right) = 6$$
, then find the value of $\left(125x^3 - \frac{1}{125x^3}\right)$; EX #4.2 Q.13

(v) If
$$x + \frac{1}{x} = 3$$
, then find the value of $x^3 + \frac{1}{x^3}$. ; EX #4.2 Q.10

(vi) If
$$x - y = 4$$
 and $xy = 21$, then find the value of $x^3 - y^3$.; EX #4.2 Q.8

(vii) If
$$x + y = 7$$
 and $xy = 12$, then find the value of $x^3 + y^3 + z^3$.; EX #4.2 Q.6

(viii) If
$$x + y + z = 78$$
 and $xy + yz + zx = 59$, find the value of $x + y + z$.; EX #4.2 Q.4

(ix) If
$$a+b=5$$
, $a-b=\sqrt{17}$, then find the value of ab .; EX #4.2 Q.1

(x) If
$$a^2 + b^2 + c^2 = 45$$
 and $a + b + c = -1$, find the value of $ab + be + ca$. ; EX #4.2 Q.2

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 04

ALgebraic Expressions & Algebraic Formulas

Guess Papers

(xill) Perform the indicated operation and simplify.

$$\frac{1}{x-1} - \frac{1}{x+1} - \frac{2}{x^2+1} - \frac{4}{x^4-1}; EX \#4.1 Q.5;(vi)$$
(xiv) If $a + b = 10$ and $a - b = 6$, then find the value of $(a^2 + b^2)$.; EX #4.2 Q.1

SECTION – C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks.

 $(3 \times 8 = 24)$

- Use the distance formula to prove whether or not the points (1,1), (-2,-8) and (4,10) lie on Q.3 a straight line?; EX #9.2; Q.4
- If two sides of a triangle are unequal in length, the longer side has an angle of greater Q.4 measure opposite to it.; Theorem # 13.1.1
- A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8 m away from Q.5 the base of the wall. How high up the wall will the ladder reach? ; EX #15; Q.8
- Construct a right-angled Δ measure of whose hypotenuse is 5 cm and one side is 3.2 cm. Q.6

; EX #17.1 Q.3

Construct a 4 with sides 4 cm, 5 cm and 6 cm and construct a rectangle having its area Q.7 equal to that of the Δ . Measure its diagonals. Are they equal? ; EX #17.4 Q.1

SOLUTION OF GUESS PAPER & MODEL PAPER # 4 (Reduced Syllabus)

SECTION- A (MCQs)

i, A	ii. D	iii. B	iv. A	v. B	vi. B
vii. B	viii. C	ix. D	x. B	xi. A	xii. C
xiii. Ç	xiv. C	xv. A			

SECTION - B (Marks 36)

Attempt any NINE parts from the following. All parts carry equal marks. Q.2 $(9 \times 4 = 36)$

 $\frac{6}{\sqrt{9}\sqrt{27}}$; EX #4.4 Q.1;(iii) (i) Rationalize the denominator of the following,

Solution:
$$\frac{6}{\sqrt{8}\sqrt{27}}$$

= $\frac{6}{\sqrt{8}\sqrt{27}} \times \frac{\sqrt{8}\sqrt{27}}{\sqrt{6}\sqrt{27}} = \frac{6}{8 \times 27}$, $\sqrt{8}\sqrt{27} = \frac{1}{36}$, $\sqrt{4 \cdot 2}$, $\sqrt{9 \cdot 3}$
= $\frac{1}{4 \times 9} \times 2 \times 3$, $\sqrt{2}\sqrt{3} = \frac{1}{6}\sqrt{6} = \frac{\sqrt{6}}{6}$

(ii) Simplify
$$\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}$$
 ; EX #4.4 Q.4;(i)

Solution:
$$\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$$

$$= \frac{(1+\sqrt{2})(\sqrt{5}-\sqrt{3})+(1-\sqrt{2})(\sqrt{5}+\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{\sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6}+\sqrt{5}+\sqrt{3}-\sqrt{10}-\sqrt{6}}{(\sqrt{5})^2-(\sqrt{3})^2}$$

$$= \frac{2\sqrt{5}-2\sqrt{6}}{5-3} = \frac{2(\sqrt{5}-\sqrt{6})}{2} = \sqrt{5}-\sqrt{6}$$

So

Unit # 04 ALgebraic Expressions & Algebraic Formulas

Guess Papers

$$= \frac{2 - \sqrt{3}}{4 - 3} + \frac{2(\sqrt{5} + \sqrt{3})}{5 - 3} + \frac{2 - \sqrt{5}}{4 - 5} = \frac{2 - \sqrt{3}}{1} + \frac{2(\sqrt{5} + \sqrt{3})}{2} + \frac{2 - \sqrt{5}}{-1}$$
$$= 2 - \sqrt{3} + \sqrt{5} + \sqrt{3} - 2 + \sqrt{5} = 2\sqrt{5}$$

(iv) If
$$\left(5x - \frac{1}{5x}\right) = 6$$
, then find the value of $\left(125x^3 - \frac{1}{125x^3}\right)$; EX #4.2 Q.13

Solution:
$$\left(5x - \frac{1}{5x}\right) = 6$$

$$\left(5x - \frac{1}{5x}\right)^3 = (5x)^3 - \left(\frac{1}{5x}\right)^3 - 3(5x)\left(\frac{1}{5x}\right)\left(5x - \frac{1}{5x}\right)$$

$$(6)^3 = 125 x^3 - \frac{1}{125 x^3} - 3(6) \Rightarrow 216 = 125 x^3 - \frac{1}{125 x^3} - 18$$

So
$$125 x^3 - \frac{1}{125 x^3} = 216 + 18 \Rightarrow 125 x^3 - \frac{1}{125 x^3} = 234$$

(v) If $x + \frac{1}{x} = 3$, then find the value of $x^3 + \frac{1}{x^3}$, ; EX #4.2 Q.10

Solution:
$$x + \frac{1}{x} = 3$$

$$\left(x + \frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3x\left(\frac{1}{x}\right)\left(x + \frac{1}{x}\right) \Rightarrow (3)^3 = x^3 + \frac{1}{x^3} + 3(3)$$

$$27 = x^3 + \frac{1}{x^3} + 9 \qquad \Rightarrow \qquad x^3 + \frac{1}{x^3} = 27 - 9 = 18$$

(vi) If x - y = 4 and xy = 21, then find the value of $x^3 - y^3$, ; EX #4.2 Q.8

Solution: x - y = 4, xy = 21

$$(x-y)^3 = x^3 - y^3 - 3xy(x-y) \implies (4)^3 = x^3 - y^3 - 3(21)(4)$$

$$64 = x^3 - y^3 - 252 \implies x^3 - y^3 = 64 + 252 = 316$$

(vii) If x + y = 7 and xy = 12, then find the value of $x^3 + y^3 + z^3$.; EX #4.2 Q.6

Solution: x + y = 7, xy = 12

$$(x+y)^3 = x^3 + y^3 + 3xy(x+y) \implies (7)^3 = x^3 + y^3 + 3(12)(7)$$

$$343 = x^3 + y^3 + 252 \qquad \implies x^3 + y^3 = 343 - 252 = 91$$

(viii) If x + y + z = 78 and xy + yz + zx = 59, find the value of x + y + z. ; EX #4.2 Q.4

Solution: $x^2 + y^2 + z^2 = 78$, xy + yz + zx = 59

$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy+yz+zx) = 78 + 2(59)$$

$$(x+y+z)^2 = 78 + 118 = 196$$

$$\Rightarrow x + y + z = \pm \sqrt{196} = +14$$

If a+b=5, $a-b=\sqrt{17}$, then find the value of ab.; EX #4.2 Q.1

 $a+b=5, \qquad a-b=\sqrt{17}$ Solution:

$$(a+b)^2 - (a-b)^2 = 4ab$$
 \Rightarrow $(5)^2 - (\sqrt{17})^2 = 4ab$

$$25 - 17 = 4ab \implies 4ab = 8 \implies ab = 2$$

If $a^2+b^2+c^2=45$ and a+b+c=-1, find the value of ab+be+ca. ; EX #4.2 Q.2

Solution:
$$a^2 + b^2 + c^2 = 45$$
, $a + b + c = -1$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

$$(-1)^2 = 45 + 2(ab + bc + ca) \Rightarrow 1 = 45 + 2(ab + bc + ca)$$

$$1-45=2(ab+bc+ca) \Rightarrow 2(ab+bc+ca)=-44 \Rightarrow ab+bc+ca=-22$$

Unit # 04 ALgebraic Expressions & Algebraic Formulas

Guess Papers

$$=\frac{(1+2x)^2-(1-2x)^2}{(1-2x)(1+2x)} = \frac{1+4x+4x^2-(1-4x+4x^2)}{(1-2x)(1+2x)} = \frac{1+4x+4x^2-1+4x-4x^2}{(1-2x)(1+2x)} = \frac{6x}{1-4x^2}$$

(xii) Perform the indicated operation and simplify. $\frac{x}{x-y} = \frac{y}{x+y} = \frac{2xy}{x^2-y^2}$; EX #4.1 Q.5 (iv)

Solution:
$$\frac{x}{x-y} - \frac{y}{x+y} - \frac{2xy}{x^2 - y^2}$$

= $\frac{x}{x-y} - \frac{y}{x+y} - \frac{2xy}{(x+y)(x-y)} = \frac{x(x+y) - y(x-y) - 2xy}{(x+y)(x-y)}$
= $\frac{x^2 + xy - xy + y^2 - 2xy}{(x+y)(x-y)} = \frac{x^2 + y^2 - 2xy}{(x+y)(x-y)} = \frac{(x-y)^2}{(x+y)(x-y)} = \frac{x-y}{x+y}$
(viii) Perform the indicated operation and simplify.

(xiii) Perform the indicated operation and simplify

(xiii) Perform the indicated operation and simplify.

$$\frac{\frac{1}{x-1} - \frac{1}{x+1} - \frac{2}{x^2+1} - \frac{4}{x^4-1}}{\frac{2}{x^2+1} - \frac{2}{x^4-1}} = \frac{1}{x+1} - \frac{2}{x^2+1} - \frac{4}{(x^2+1)(x+1)(x-1)}$$
Solution:
$$\frac{\frac{1}{x-1} - \frac{1}{x+1} - \frac{2}{x^2+1} - \frac{4}{x^4-1}}{\frac{2}{x^2+1} - \frac{2}{x^4-1}} = \frac{1}{x+1} - \frac{2}{x^2+1} - \frac{4}{(x^2+1)(x+1)(x-1)}$$

$$= \frac{(x^2+1)(x+1) - (x^2+1)(x-1) - 2(x+1)(x-1) - 4}{(x^2+1)(x+1)(x-1)} = \frac{x^3+x^2+x+1-(x^3-x^2+x-1)-2(x^2-1)-4}{x^4-1}$$

$$= \frac{x^3+x^2+x+1-x^3+x^2-x+1-2x^2+2-4}{x^4-1} = 0$$
(viv) If $x + b = 10$ and $x = b = 6$, then find the value of $(a^2 + b^2)$, $x \in X$ #4.2 Q.1

(xiv) If a + b = 10 and a - b = 6, then find the value of $(a^2 + b^2)$.; EX #4.2 Q.1 a + b = 10. a - b = 6Solution:

$$(a+b)^{2} + (a-b)^{2} = 2(a^{2} + b^{2}) \implies (10)^{2} + (6)^{2} = 2(a^{2} + b^{2})$$

$$100 + 36 = 2(a^{2} + b^{2}) \implies 2(a^{2} + b^{2}) = 136 \implies a^{2} + b^{2} = 68$$

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks.

Use the distance formula to prove whether or not the points (1,1),(-2,-8) and (4,10) lie on a straight line?; EX #9.2; Q.4

Let the given points be A(1,1), B(-2,8) and (4,10).

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

 $|AB| = \sqrt{(1+2)^2 + (1+8)^2} = \sqrt{(3)^2 + (9)^2} = \sqrt{9+81} = \sqrt{90} = \sqrt{9 \times 10}$
 $|BC| = \sqrt{(4+2)^2 + (10+8)^2} = \sqrt{(6)^2 + (18)^2} = \sqrt{36+324} \times \sqrt{360} = 6\sqrt{10}$
 $|AC| = \sqrt{(4-1)^2 + (10-1)^2} = \sqrt{(3)^2 + (9)^2} = \sqrt{9+81} = \sqrt{90} = 3\sqrt{10}$

By applying the condition of collinear points

 $|AB| + |AC| = 3\sqrt{10} + 3\sqrt{10} = 6\sqrt{10} = |BC|$ So the points A, B, C are on the same straight line. OR the given points are collinear

If two sides of a triangle are unequal in length, the longer side has an angle of greater Q,4 measure opposite to it.; Theorem # 13.1.1 Solution:

Given:

As.

In
$$\triangle ABC$$
,
 $m \overline{AC} > m \overline{AB}$

To prove:

 $m \angle ABC > m \angle ACB$

Emails safid@office.com/ok

Consider +92 345 5282625

fb.com/office.com.pk

ALgebraic Expressions & Algebraic Formulas

Guess Papers

Proof:

Reasons			
Angles opposite to congruent sides;			
An exterior angle of triangle is greater than every non adjacent interior angle.			
By (i) and (II)			
Postulate of addition of measure of angles.			
By (iii) and (iv)			
Transitive property of inequality of real numbers.			

A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8 m away from Q.5 the base of the wall. How high up the wall will the ladder reach? ; EX #15; Q.8

Solution: By Pythagoras Theorem

$$(m\overline{AB})^{2} = (m\overline{AC})^{2} + (m\overline{BC})^{2}$$

$$(17)^{2} = (m\overline{AC})^{2} + (8)^{2}$$

$$(m\overline{AC})^{2} = (17)^{2} - (8)^{2}$$

$$= 289 - 64 = 225$$

$$m\overline{AC} = \sqrt{225} = 15 \text{ cm}$$

Construct a right-angled Δ measure of whose hypotenuse is 5 cm and one side is 3.2 cm. Q.6 (Hint: Angle in a semi-circle is a right angle). : EX #17.1 O.3

Solution:

Construction:

- **(I)** Draw a line segment $\overline{MAB} = 5.2$ cm.
- (li) Find the mid-point O of AB.
- With centre at O and radius equal to \overline{OA} draw and semi (HI) circle.
- Join C to A and B. (iv) Then ABC is the required triangle.

Construct a Δ with sides 4 cm, 5 cm and 6 cm and construct a rectangle having its area Q.7 equal to that of the A. Measure its diagonals. Are they equal? EX #17.4 O.1

Solution:

Construction:

- Draw a line segment $m\overline{BC} = 6 cm$. (1)
- With centre at the point B and radius as 4 cm draw an (H)arc.
- With centre at the point C with radius 5 cm draw w (iii) another are cut the first are at the point A.

Unit # 04

ALgebraic Expressions & Algebraic Formulas

Guess Papers

Draw perpendicular \overline{DP} to meet AL at P. (vii)

(viii) Cut off $\overline{PQ} = \overline{DC}$

Join Q to C. (ix)

Then PQCD is the required rectangle. Measure the diagonal \overline{DQ} = 4.5 cm

IMPORTANT QUESTIONS & ANSWERS (Reduced Syllabus)

Identify whether the following algebraic expressions are polynomials (yes or not). Q1.

(i)
$$3x^2 + \frac{1}{x} - 5$$

(ii)
$$3x^3 - 4x^2 - x\sqrt{x} + 3$$

(iii)
$$x^2 - 3x + \sqrt{2}$$

(iv)
$$\frac{3x}{2x-1} + 8$$
; EX #4.1 Q.1

Solution:

State whether each of the following expression is a rational expression or not. Q2.

(i)
$$\frac{3\sqrt{x}}{2\sqrt{x}+5}$$
 (ii)

$$\frac{x^3 - 2x^2 + \sqrt{3}}{2 + 3x - x^2} \quad \text{(iii)} \quad \frac{x^2 + 6x + 9}{x^2 - 9} \qquad \text{(iv)} \quad \frac{2\sqrt{x} + 3}{2\sqrt{x} - 3} \; \text{; EX #4.1 Q.2}$$

(iv)
$$\frac{2\sqrt{x}+3}{2\sqrt{x}-3}$$
 ; EX #4.1 Q.2

Solution:

Reduce the following rational expressions to the lowest forms. Q3.

(iii)
$$\frac{(x+y)^2-4xy}{(x-y)^2}$$

(iv)
$$\frac{(x^2-y^2)(x^2-2xy+y^2)}{(x-y)(x^2+xy+y^2)}$$

$$(v) = \frac{(x+1)(x^2-1)}{(x+1)(x^2-4)}$$

(iv)
$$\frac{(x^3 - y^3)(x^2 - 2xy + y^2)}{(x - y)(x^2 + xy + y^2)}$$
(vii)
$$\frac{64x^5 - 64x}{(8x^2 + 8)(2x + 2)}$$
 (viii)
$$\frac{9x^2 - (x^2 - 4)^2}{4 + 3x - x^2}$$

(viii)
$$\frac{9x^2 - (x^2 - 4)^2}{4 + 3x - x^2}$$

EX #4.1 Q.3;(iii, iv, v, vii, viii)

 $\frac{(x+y)^2-4xy}{(x-y)^2} = \frac{x^2+y^2+2xy-4xy}{(x-y)^2}$ Solution: (iii)

$$= \frac{x^2 + y^2 - 2xy}{(x - y)^2} = \frac{(x - y)^2}{(x - y)^2} = 1$$

(iv)
$$\frac{(x^3-y^3)(x^2-2xy+y^2)}{(x-y)(x^2+xy+y^2)} = \frac{(x^3-y^3)(x-y)^2}{(x-y)(x^2+xy+y^2)} = \frac{(x-y)^2}{(x-y)(x^2+xy+y^2)} = \frac{(x-y)^2}{(x-y)(x^2+xy+y^2)} = (x-y)^2$$

(v)
$$\frac{(x+1)(x^2-1)}{(x+1)(x^2-4)} = \frac{(x+2)(x+1)(x-1)}{(x+1)(x+2)(x-1)} = \frac{x-1}{x-2}$$

$$= \frac{4x(x^2-1)}{x+1} = \frac{4x(x+1)(x-1)}{x+1} = 4x(x-1)$$

(viii)
$$\frac{9x^2 - (x^2 - 4)^2}{4 + 3x - x^2} = \frac{\frac{(3x)^2 - (x^2 - 4)^2}{4 + 3x - x^2}}{\frac{(3x + x^2 - 4)(3x - x^2 + 4)}{4 + 3x - x^2}} = \frac{\frac{[3x + (x^2 - 4)][3x - (x^2 - 4)]}{4 + 3x - x^2}}{\frac{(x^2 + 3x - 4)(4 + 3x - x^2)}{4 + 3x - x^2}} = x^2 + 3x - 4$$

Unit # 04 ALgebraic Expressions & Algebraic Formulas

Guess Papers

(iv)
$$\frac{x^2-1}{x^2+2x+1}$$
, $\frac{x+5}{1-x}$ (v) $\frac{x^2+xy}{y(x+y)}$, $\frac{x^2+xy}{y(x+y)}$ \div $\frac{x^2-x}{xy-2y}$; EX #4.1 Q.6;(ii , iii , iv, v)

Solution: (ii)
$$\frac{4x-12}{x^2-9} \div \frac{18-2x^2}{x^2+.6x+9} = \frac{4x-12}{x^2-9} \times \frac{x^2+6x+9}{18-2x^2} = \frac{4(x-3)}{(x+3)(x-3)} \times \frac{(x+3)^3}{2(9-x^2)}$$
$$= \frac{2(x-3)\times(x+3)\times(x+3)}{(x+3)(x-3)(3-x)(3+x)} = \frac{-2(3-x)(3+x)(x+3)}{(x+3)(x-3)(3-x)(x+3)} = \frac{-2}{x-3} = \frac{2}{3-x}$$

(iii)
$$\frac{x^6 - y^6}{x^2 - y^2} \div (x^4 + x^2y^2 + y^4)$$

$$= \frac{x^6 - y^6}{x^2 - y^2} \times \frac{1}{x^4 + x^2y^2 + y^4} = \frac{(x^3 + y^3)(x^3 - y^3)}{(x + y)(x - y)} \times \frac{1}{x^4 + 2x^2y^2 + y^4 - x^2y^2}$$

$$= \frac{(x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)}{(x + y)(x - y)((x^2 + y^2)^2 - (xy)^2)} = \frac{(x^2 - xy + y^2)(x^2 + xy + y^2)}{(x^2 + xy + y^2)(x^2 - xy + y^2)} = 1$$

(iv)
$$\frac{x^2-1}{x^2+2x+1} \cdot \frac{x+5}{1-x} = \frac{(x+1)(x-1)}{(x+1)^2} \cdot \frac{x+5}{1-x} = \frac{-(x+1)(1-x)(x+5)}{(x+1)(x+1)(1-x)} = \frac{-(x+5)}{x+1}$$

$$(v) \qquad \frac{x^2 + xy}{y(x+y)} \cdot \frac{x^2 + xy}{y(x+y)} \div \frac{x^2 - x}{xy - 2y} = \frac{x^2 + xy}{y(x+y)} \cdot \frac{x^2 + xy}{y(x+y)} \cdot \frac{xy - 2y}{x^2 - x} = \frac{x(x+y)}{y(x+y)} \cdot \frac{x(x+y)}{y(x+y)} \cdot \frac{y(x-2)}{y(x+y)} = \frac{x(x-2)}{y(x+1)}$$

Q15. Find the products, using formulas.

(i)
$$(x^2 + y^2)(x^4 - x^2y^2 + y^4)$$
. (ii) $(x^3 - y^3)(x^6 + x^3y^3 + y^6)$

(iii)
$$(x-y)(x+y)(x^2+y^2)(x^2+xy+y^2)(x^2-xy+y^2)(x^4-x^2y^2+y^4)$$

; EX #4.2 Q.15;(i, ii, iii)

Solution: (i)
$$(x^2 + y^2)(x^4 - x^2y^2 + y^4)$$

= $[x^2 + y^2][(x^2)^2 - x^2y^2 + (y^2)^2]$ = $(x^2)^3 + (y^2)^3 = x^6 + y^6$

(ii)
$$(x^3 - y^3)(x^6 + x^3y^3 + y^6) = [x^3 - y^3][(x^3)^2 + x^3y^3 + (y^3)^2] = (x^3)^3 - (y^3)^3 = x^9 - y^9$$

(iii)
$$(x-y)(x+y)(x^2+y^2)(x^2+xy+y^2)(x^2-xy+y^2)(x^4-x^2y^2+y^4)$$

$$= [(x-y)(x^2+xy+y^2)][(x+y)(x^2-xy+y^2)]\{(x^2+y^2)(x^4-x^2y^2+y^4)]$$

$$= (x^3-y^3)(x^3+y^3)[(x^2)^3+(y^2)^3] = [(x^3)^2-(y^3)^2](x^5+y^6)$$

$$= [x^6-y^6](x^6+y^6) = (x^6)^2-(y^6)^2 = x^{12}-y^{12}$$

Express each of the following surds in the simplest form. Q1.

(iii)
$$\frac{3}{4}\sqrt[3]{128}$$
 (iv) $\sqrt[5]{96} x^6 y^7 z^8$; EX #4.3 Q.1;(iii, iv)

Solution: (iii)
$$\frac{3}{4}\sqrt[3]{128}$$

= $\frac{3}{4}\sqrt[3]{64 \times 2}$ = $\frac{3}{4}\sqrt[3]{4^3 \times 2}$ = $\frac{3}{4}\sqrt[3]{4}\sqrt[3]{2} = 3\sqrt[3]{2}$
(iv) $\sqrt[5]{96}x^6y^7z^8$

(iv)
$$\sqrt[5]{96} x^6 y^7 z^8$$

= $\sqrt[5]{32.3.x^5.x.y^5.y^3.z^5.z^3}$ = $\sqrt[5]{(2xyz)^5.3xy^2z^3}$ = $2xyz \sqrt[5]{3xy^2z^3}$

Q2. Simplify (ii)
$$\frac{\sqrt{21}\sqrt{9}}{\sqrt{63}}$$
 (iii) $\sqrt[5]{243} x^5 y^{10} z^{15}$; EX #4.3 Q.2;(ii, iii)

Solution: (ii)
$$\frac{\sqrt{21}\sqrt{9}}{\sqrt{63}}$$
 $\Rightarrow \frac{\sqrt{21}\times 9}{\sqrt{63}} = \frac{\sqrt{189}}{\sqrt{63}} = \sqrt{\frac{189}{63}} = \sqrt{3}$

(iii)
$$\sqrt[5]{243 \, x^5 \, y^{10} z^{15}} = \left(3^5 \, x^5 \, y^{10} \, z^{15}\right)^{\frac{1}{5}} = 3x \, y^2 \, z^3$$

Confict 492 345 5282625

Unit # 04 Algebraic Expressions & Algebraic Formulas Guess Papers

$$= 3\sqrt{5} - 6\sqrt{5} + 4\sqrt{5} = (3 - 6 + 4)\sqrt{5} = \sqrt{5}$$
(ii) $4\sqrt{12} + 5\sqrt{27} - 3\sqrt{75} + \sqrt{300} = 4\sqrt{4 \times 3} + 5\sqrt{9 \times 3} - 3\sqrt{25 \times 3} + \sqrt{100 \times 3}$

$$= 4 \times 2 \times \sqrt{3} + 5 \times 3 \times \sqrt{3} - 3 \times 5 \times \sqrt{3} + 10 \times \sqrt{3}$$

$$= 8\sqrt{3} + 15\sqrt{3} - 15\sqrt{3} + 10\sqrt{3} = (8 + 15 - 15 + 10)\sqrt{3} = 18\sqrt{3}$$
Q4. Simplify
(iii) $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$ (v) $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})(x + y)(x^2 + y^2)$; EX #4.3 Q.4;(iii, v) Solution: (iii) $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2$

(v)
$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})(x + y)(x^2 + y^2) = [(\sqrt{x})^2 - (\sqrt{y})^2](x + y)(x^2 + y^2)$$

 $= (x - y)(x + y)(x^2 + y^2) = (x^2 - y^2)(x^2 + y^2) = (x^2)^2 - (y^2)^2 = x^4 - y^4$
Q1. Rationalize the denominator of the following. (iv) $\frac{1}{3 + 2\sqrt{5}}$; EX #4.4 Q.1;(iv)

Q1. Rationalize the denominator of the following. (iv)
$$\frac{1}{3+2\sqrt{5}}$$
; EX #4.4 Q.1;(iv)

Solution:
$$= \frac{1}{3+2\sqrt{5}} \cdot \frac{3-2\sqrt{5}}{3-2\sqrt{5}} = \frac{3-2\sqrt{5}}{(3)^2-(2\sqrt{5})^2} = \frac{3-2\sqrt{5}}{9-20} = \frac{3-2\sqrt{5}}{-11} = -\frac{1}{11} (3-2\sqrt{5})$$

Q1. Rationalize the denominator of the following. (vii)
$$\frac{\sqrt{3}-1}{\sqrt{3}+1}$$
; EX #4.4 Q.1;(vii)

Q2. Find the conjugate of
$$x + \sqrt{y}$$
. (i) $3 + \sqrt{7}$ (ii) $4 - \sqrt{5}$; EX #4.4 Q.2;(i, ii)

Solution: (i) Conjugate of $3 + \sqrt{7}$ is $3 - \sqrt{7}$. (ii) Conjugate of $4 - \sqrt{5}$ is $4 + \sqrt{5}$.

Q3. (i) If
$$x = 2 - \sqrt{3}$$
, find $\frac{1}{x}$; EX #4.4 Q.3;(i)
Solution: (i) $x = 2 - \sqrt{3}$

$$\frac{1}{x} = \frac{1}{2 - \sqrt{3}} = \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2 + \sqrt{3}}{(2)^2 - (\sqrt{3})^2} = \frac{2 + \sqrt{3}}{4 - 3} = \frac{2 + \sqrt{3}}{1} = 2 + \sqrt{3}$$

Q5. (ii) Q14. If
$$x = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}$$
, find the value of $x + \frac{1}{x}$, $x^2 + \frac{1}{x^2}$ and $x^3 + \frac{1}{x^3}$,
; EX #4.4 Q.5;(ii)

Solution:
$$x = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}$$

$$\frac{1}{x} = \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \Rightarrow x + \frac{1}{x} = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} + \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{(\sqrt{5} - \sqrt{2})^2 + (\sqrt{5} + \sqrt{2})^2}{(\sqrt{5})^2 + (\sqrt{2})^2}$$

$$= \frac{(\sqrt{5})^2 + (\sqrt{2})^2 + (\sqrt{5})^2 + (\sqrt{2})^2}{5 - 2} = \frac{5 + 2 + 5 + 2}{3} = \frac{14}{3}$$

$$\left(x + \frac{1}{x}\right)^2 = \left(\frac{14}{3}\right)^2 \Rightarrow x^2 + \frac{1}{x^2} + 2 = \frac{196}{9}$$

$$\Rightarrow x^2 + \frac{1}{x^2} = \frac{196}{9} - 2 = \frac{196 - 18}{9} = \frac{178}{9}$$

$$\Rightarrow x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right) = \left(\frac{14}{3}\right)^3 - 3\left(\frac{14}{3}\right)$$

$$= \frac{2744}{27} - \frac{14}{1} = \frac{2744 - 378}{27} = \frac{2366}{27}$$

Emails safid@office.com/ok

fb.com/office.com.pk

Unit # 04

ALgebraic Expressions & Algebraic Formulas

Guess Papers

 $a^3 + b^3$ is equal to...... (iii)

(a)
$$(a-b)(a^2 + ab + b^2)$$

(b)
$$(a + b)(a^2 - ab + b^2)$$

(c)
$$(a - b)(a^2 - ab + b^2)$$

(d)
$$(a - b)(a^2 + ab - b^2)$$

 $(3 + \sqrt{2})(3 + \sqrt{2})$ is equal to....... (iv)

Conjugate of surd $a + \sqrt{b}$ is...... (v)

(a)
$$-a + \sqrt{b}$$

(c)
$$\sqrt{a} + \sqrt{b}$$

(d)
$$\sqrt{a} - \sqrt{b}$$

 $-\frac{1}{a+b}$ is equal to (vi)

(a)
$$\frac{2a}{a^2-b^2}$$

$$(b) \qquad \frac{2b}{a^2-b^2}$$

(c)
$$\frac{-2a}{a^2-h^2}$$

(d)
$$\frac{-2b}{a^2-b^2}$$

(a) $\frac{2a}{a^2 - b^2}$ (b) $\frac{a^2 - b^2}{a + b}$ is equal to..... (iiv)

(a)
$$(a-b)^2$$

(b)
$$(a + b)$$

(viii) $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$ is equal to.....

(a)
$$a^2 + b^2$$
 (b)

(c)
$$a - b$$

Answers:

(i) a	(ii) d	(iii) b	(iv) a
(v) b	(vi) b	(vii) b	(viii) c

Review EX #4 Q.2 Fill in the blanks. Q2.

Fill in the blanks. ; Review EX #4 Q. The degree of the polynomial $x^2y^2 + 3xy + y^3$ is....... (i)

(ii)
$$x^2 - 4 = \dots$$

(iii)
$$x^3 + \frac{1}{r^3} = \left(x + \frac{1}{r}\right)(\dots \dots)$$

(iv)
$$2(a^2+b^2)=(a+b)^2+(\dots\dots)^2$$
 (v) $(x-\frac{1}{x})^2=\dots\dots$

$$\left(x-\frac{1}{r}\right)^2=\dots\dots$$

(vi) Order of surd
$$\sqrt[3]{x}$$
 is

(vii)
$$\frac{1}{2-\sqrt{3}} = \dots$$

(i) Answers:

(ii)
$$(x+2)(x-2)$$

(ii)
$$(x+2)(x-2)$$
 (iii) $x^2-1+\frac{1}{x^2}$

(iv)
$$(a+b)^2(a-b)^2$$
 (v) $x^2-2+\frac{1}{x^2}$

(v)
$$x^2 - 2 + \frac{1}{x^2}$$

(vii) $2 + \sqrt{3}$

Emails safid@office.com/ok

fb.com/office.com.pk

Unit # 05

Factorization

Guess Papers

GUESS PAPER & MODEL PAPER # 05 BASED ON UNIT # 5 (Reduced Syllabus) **FACTORIZATION**

Unit 5	Factorization
Exercise 5.1	Q1(i, v, vi); Q2(iii, iv); Q3(i, iii); Q4(ii, iv); Q5(i, ii, iii)
Exercise 5.2	Q1(i, iv, v); Q2(i, iii); Q3(ii, v, viii); Q4(i, iii, v); Q5(i, ii); Q6(i, ii)
Exercise 5.3	Q1(i, iii); Q2(i); Q3(i); Q5; Q7; Q9
Review Ex 5	Q1; Q2

NOTE:

- All Class work will be given for revision as H.W.
- The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the chapters: so MCQ's will be done in class by class teacher.

SECTION-A

Note: Section-A is compulsory. All parts of this section are to be answered on the question paper itself. It should be completed in the first 20 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q.1 Encircle the correct option i.e. A / B / C / D. All parts carry equal marks.

The factors of $x^2 - 5x + 6$ are $\frac{1}{100}$ (i)

(A) x + 1, x - 6

Time allowed: 20 Minutes

 $x - 2 \cdot x - 3$ (8)

(C) x + 6, x - 1

x + 2, x + 3(D)

Factors of $8x^3 + 27y^3$ are..... (ii)

(2x+3y), $(4x^2+9y^2)$

 $(2x-3y), (4x^2-9y^2)$ (B)

(2x + 3y), $(4x^2 - 6xy + 9y^2)$ (C)

(2x-3y), $(4x^2+6xy+9y^2)$ (D)

Factors of 3^{x^2} -x-2 are...... (iii)

> (x + 1), (3x - 2)(A)

(B) (x + 1), (3x + 2)

(C) (x-1)(3x-2)

 $(2x - 3y), (4x^2 + 6xy)$ (D)

Factors of $a^4 - x - 2$ are (iv)

 $(a - b), (a + b), (a^2 + 4b^2)$ (A)

 $(a^2-2b^2), (a^2+2b^2)$ (8)

(a-b), (a+b), (a^2-4b^2)

 $(a - 2b), (a^2 + 2b^2)$ (D)

(v) What will be added to complete the square of $9a^2 - 12ab$?

 $-16b^{2}$ (A)

16b2

4h2

(D) $-4h^{2}$

Find m so that $x^2 + 4x + m$ is a complete square... (vi)

Factorization

Guess Papers

(viii) Factors of $27x^3 - \frac{1}{x^3}$

(A)
$$\left(3x - \frac{1}{x}\right), \left(9x^2 + 3 + \frac{1}{x^2}\right)$$

(B)
$$\left(3x + \frac{1}{x}\right), \left(9x^2 + 3 + \frac{1}{x^2}\right)$$

(C)
$$(3x - \frac{1}{x}), (9x^2 - 3 + \frac{1}{x^2})$$

(x-2)(x+3)

(D)
$$(3x + \frac{1}{x}), (9x^2 - 3 + \frac{1}{x^2})$$

x + 5x + 6 =(ix)

(A)
$$(x+2)(x-3)$$

(B)
$$(x+2)(x+3)$$

(D) $(x-2)(x-3)$

4a2 - 16 = (x)

(C)

(A)
$$4(a+2)(a+2)$$

(B)
$$4(a+2)(a+3)$$

(C)
$$(a-2)(a+3)$$

(D)
$$4(a-2)(a+2)$$

 $4a^2 + 4ab + (\dots)$ is a complete square (xi)

(8)
$$16b^2$$

(C)
$$4b^2$$

(D)
$$-4b^2$$

(xii)
$$\frac{x^2}{y^2} - 2 + \frac{y^2}{x^2} = \dots$$

(A)
$$\left(\frac{x}{y} - \frac{y}{x}\right)^2$$
 (B) $\left(\frac{x}{y} + \frac{y}{x}\right)^2$ (C) $\left(\frac{y}{x}\right)^2$

(B)
$$\left(\frac{x}{y} + \frac{y}{x}\right)^2$$

$$\left(\frac{y}{x}\right)^{x}$$

$$(D) \qquad \left(\frac{x}{y}\right)$$

(xiii) $(x + y)(x^2 - xy + y^2) = \dots$ (A) $-x^3 - y^3$ (B)

$$(A) \qquad -x^3-y^3$$

(B)
$$-x^3 + y^3$$

(C)
$$x^3 + y$$

(D)
$$x^3 - y^3$$

(xiv) Factored form of $x^4 - 16$ is

(A)
$$(x-2)(x-2)(x^2-4)$$

(B)
$$(x-2)(x+2)(x^2+4)$$

(C)
$$(x+2)(x+2)(x^2+4)$$

(D)
$$(x-2)(x+2)(x^2-4)$$

(XV) If x - 2 is factor of $p(x) = x^2 + 2kx + 8$, then k =

(D)
$$-3$$

Time allowed: 2:40 hours

Total Marks: 60

Note: Attempt any nine parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Log book and graph paper will be provided on demand.

SECTION - B (Marks 36)

- Q.2 Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$
- Factorize (i) $144a^2 + 24a + 1$; (iii) $(x + y)^2 14z(x + y) + 49z^2$; EX #5.1 Q.3;(i, iii) (i)

(ii) Factorize
$$\left(5x - \frac{1}{x}\right)^2 + 4\left(5x - \frac{1}{x}\right) + 4$$
; EX #5.2 Q.3;(viii)

- (iii) Factorize (i) $(x^2 + 5x + 4)(x^2 + 5x + 6) - 3$; EX #5.2 Q.4;(i)
- (iv) Factorize (x+2)(x+3)(x+4)(x+5)-15; EX #5.2 Q.4;(iii)
- $(x+1)(x+2)(x+3)(x+6)-3x^2$; EX #5.2 Q.4;(v) (v) Factorize |
- Factorize (i) $x^3 + 48x 12x^2 64$; (ii) $8x^3 + 60x^2 + 150x + 125$; EX #5.2 Q.5; (i, ii) (vi)
- $27 + 8x^3$; (ii) $125x^3 216y^3$; EX #5.2 Q.6;(i, ii) (vii)
- If (x+2) is a factor of $x^2-4kx-4k^2$, then find the value(s) of k.; EX #5.3 Q.2;(i) (viii)
- (ix) Without actual long division determine whether (x-2) and (x-3) are factors of $p(x) = x^3 - 12x^2 + 44x - 48$; EX #5.3 Q.3;(i)
- (x) Determine the value of k if $p(x) = kx^3 + 4x^2 + 3x - 4$ and $q(x) = x^3 - 4x + k$ leaves the same remainder when divided by (x-3); EX #5.3 Q.5
- The polynomial $x^3 + lx^2 + mx + 24$ has factor (x + 4) and it leaves a remainder of 36 when (xi) divided by (x-2). Find the values of l and m. ; EX #5.3 Q.7
- The expression $ax^3 9x^2 + bx + 3a$ is exactly divisible $x^2 5x + 6$. Find the values of a and (xii)

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

Alpinoseoffic@office effects

Confict: +92 345 5282625

fb.com/office.com.pk

Unit # 05

Factorization

Guess Papers

(xiv) Use Remainder theorem to find the remainder when $6x^4 + 2x^3 - x + 2$ is divided by (x+2); EX #5.3 Q.1;(iii)

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks. $(3 \times 8 = 24)$

- Q.3 Show that the diagonals of the parallelogram having vertices A(1,2), B(4,2), C(-1,-3) and D(-4,-3) bisect each other. ; EX #9.3; Q.5
- Q.4 The sum of lengths of any two sides of a triangle is greater than the length of the third side. ; Theorem # 13.1.3
- Q.5 Find k, given that the point (2,k) is equidistant from (3,7) and (9,1), ; Ex #9.2; Q.5
- Q.6 The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.; Theorem # 14.1.3
- Q.7 Construct $\triangle ABC$ such that $m\overline{AB}=3cm, \ m\overline{BC}=3.8\ cm, m\overline{AC}=4.8\ cm$. Construct a rectangle equal in area to the $\triangle ABC$, and measure its sides. ; EX #17.4 Q.3

SOLUTION OF GUESS PAPER & MODEL PAPER # 5 (Reduced Syllabus)

SECTION- A (MCOs)

i. B	íi. C	iii. D	iv. B	v. C	vi. C
vii. C	viii, A	ix, B	x. D	xi. A	xii. A
xiii. C	xiv. B	xv. D		·	

SECTION - B (Marks 36)

Q.2 Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$

(i) Factorize (i)
$$144a^2 + 24a + 1$$
; (iii) $(x+y)^2 - 14z(x+y) + 49z^2$; EX #5.1 Q.3;(i, iii) (i) $144a^2 + 24a + 1$ = $12a(12a+1) + 1(12a+1)$

$$= (12a+1)(12a+1) = (12a+1)^{2}$$
(iii) $(x+y)^{2} - 14z(x+y) + 49z^{2}$

$$= (x+z)^{2} - 2(x+z)(2z) + (7z)^{2}$$

$$= (x+y)^2 - 2(x+y)(7z) + (7z)^2 = (x+y-7z)^2$$

(ii) Factorize
$$\left(5x - \frac{1}{x}\right)^2 + 4\left(5x - \frac{1}{x}\right) + 4$$
; EX #5.2 Q.3;(viii)

Solution: Let
$$5x - \frac{1}{x} = y$$

= $y^2 + 4y + 4$

$$= (y + 2)^{2} = (y + 2)(y + 2)$$

By putting value of $y = 5x - \frac{1}{x}$ = $(5x - \frac{1}{x}) / 5x - \frac{1}{x} = 2$

$$= \left(5x - \frac{1}{x} + 2\right)\left(5x - \frac{1}{x} + 2\right)$$

(iii) Factorize (i) $(x^2 + 5x + 4)(x^2 + 5x + 6) - 3$; EX #5.2 Q.4;(i) Solution: Let $x^2 + 5x = y$

Solution: Let
$$x^2 + 5x = y$$

 $(y+4)(y+6) - 3 = y^2 + 6y + 4y + 24 - 3 = y^2 + 10y + 21$

$$= y^2 + 7y + 3y + 21 = y(y+7) + 3(y+7)$$
$$= (y+7)(y+2)$$

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Confects +92 345 5282625

Emails safid@office.com/ok

k = -1

 $: \qquad k = 3$

fb.com/office.com.pk

Guess Papers

Unit # 05 **Factorization**

```
(iv)
                      (x+2)(x+3)(x+4)(x+5)-15; EX #5.2 Q.4;(iii)
Solution:
               By using commutative property of addition As 2 + 5 = 3 + 4
               =(x+2)(x+5)(x+3)(x+4)-15
               = (x^2 + 7x + 10)(x^2 + 7x + 12) - 15
              x^2 + 7x = v
       Let
               = (y+10)(y+12)-15
                                               = y^2 + 22y + 120 - 15
               = y^2 + 22y + 120 - 15
                                                   = y^2 + 22y + 105
               = y^2 + 15y + 7y + 105
                                                   = y(y + 15) + 7(y + 15)
               = (y + 15)(y + 7)
       By putting value of y = x^2 + 7x
               = (x^2 + 7x + 15)(x^2 + 7x + 7)
                     (x+1)(x+2)(x+3)(x+6)-3x^2; EX #5.2 Q.4;(v)
(v)
Solution:
              By using commutative property of multiplication
              1 \times 6 = 2 \times 3
       As
                      = (x+1)(x+6)(x+2)(x+3) - 3x^2
                      = (x^2 + 7x + 6)(x^2 + 5x + 6) - 3x^2 = (x^2 + 6 + 7x)(x^2 + 6 + 5x) - 3x^2
              x^2 + 6 = y
       Let
                      = (y + 7x) (y + 5x) - 3x^2
                     = y^{2} + 5xy + 7xy + 35x^{2} - 3x^{2} = y^{2} + 12xy + 32x^{2}
= y^{2} + 8xy + 4xy + 32x^{2} = y(y + 8x) + 4x(y + 8x)
                     = (y + 8x)(y + 4x)
       By putting value of y = x^2 + 6
                     = (x^2 + 6 + 8x)(x^2 + 6 + 4x)
                     = (x^2 + 8x + 6)(x^2 + 4x + 6) = x(x + 8 + \frac{6}{x}) \cdot x(x + 4 + \frac{6}{x})
                     =x^{2}\left(x+\frac{6}{r}+8\right)\left(x+\frac{6}{r}+4\right)
       Factorize (i) x^3 + 48x - 12x^2 - 64; (ii) 8x^3 + 60x^2 + 150x + 125; EX #5.2 Q.5;(i, ii)
Solution: (i) x^3 + 48x - 12x^2 - 64
              = x^3 - 12x^2 + 48x - 64 \qquad = x^3 - 3 \cdot x^2 \cdot 4 + 3 \cdot x \cdot 4^2 - 4^3 = (x - 4)^3
(ii)
       8x^3 + 60x^2 + 150x + 125
              = (2x)^3 + 3 \cdot (2x)^2 \cdot 5 + 3 \cdot (2x) \cdot 5^2 + 5^3
Solution:
                                                                = (2x - 5y)^3
                            27 + 8x^3; (ii) 125x^3 - 216y^3; EX #5.2 Q.6;(i, ii)
(vii) Factorize (I)
Solution: (i)
                     27 + 8x^3
              = (3)^2 + (2x)^3 = (3+2x)[3^2 - 3.2x + 2(x)^2] = (3+2x)(9-6x+4x^2)
       125x^3 - 216y^3
(ii)
              = (5x)^3 - (6y)^3 = (5x - 6y) [(5x)^2 + 5x \cdot 6y + (6y)^2]  = (5x - 6y)(25x^2 + 30xy + 36y^2)
(viii) If (x+2) is a factor of x^2-4kx-4k^2, then find the value(s) of k.; EX #5.3 Q.2;(i)
Solution:
              Let
                   p(x) = 3x^2 - 4kx - 4k^2
             x+2=x-(-2) is a factor of p(x)
      As
             p(-2)=0
      So
             3(-2)^2 - 4k(-2) - 4k^2 = 0
                                                                12 + 8k - 4k^2 = 0
                                                  ⇒
             3+2k-k^2=0
      Or
                                                                3 + 3k - k - k^2 = 0
                                                  ⇒
              3(1+k) - k(1+k) = 0
                                                  ⇒
                                                                (1+k)(3-k)=0
      1+k=0
                                   3-k=0
```

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

ક્ષાના જન્મ કાર્યો છે. જે કાર્યા કાર

Confict +92 345 5282625

fb.com/office.com.pk

Factorization

Guess Papers

The remainder for x - 2 is

$$p(2) = (2)^3 - 12(2)^2 + 44(2) - 48 = 8 - 48 + 88 - 48 = 0$$

Since remainder = 0, therefore x - 2 is a factor of p(x)

The remainder for x - 3 is

$$p(3) = (3)^3 + 2(4)^2 + 44(3) - 48$$
 = 27 - 108 + 132 - 48 = 3 \neq 0

Since remainder $\neq 0$, therefore x - 3 is not a factor of p(x)

Determine the value of k if $p(x) = kx^3 + 4x^2 + 3x - 4$ and $q(x) = x^3 - 4x + k$ leaves the same remainder when divided by (x-3); EX #5.3 Q.5

 $p(x) = kx^3 + 4x^2 + 3x - 4$ Solution:

When p(x) is divided by x - 3, then the remainder p(3) = 0

$$p(3) = k(3)^3 + 4(3)^2 + 3(3) - 4 = 27k + 36 + 9 - 4 = 27k + 41$$

$$q(x) = x^3 - 4x + k$$

When q(x) is divided by x-3 then the remainder q(3)=0

$$q(3) = (3)^2 - 4(3) + k = 27 - 12 + k = 15 + k$$

According to given condition p(3) = q(3)

$$27k + 41 = 15 + k \implies 26k = -26 \implies k = -1$$

The polynomial $x^3 + tx^2 + mx + 24$ has factor (x + 4) and it leaves a remainder of 36 when (ix) divided by (x-2). Find the values of l and m. ; EX #5.3 Q.7

 $p(x) = x^3 + ix^2 + mx + 24$ Solution:

As
$$x + 4$$
 is a factor of $p(x)$; i.e. $(-4)^3 + l(-4)^2 + m(-4) + 24 = 0$

$$-64 + 16l - 4m + 24 = 0$$

or
$$16l - 4m = 40$$
 or $4l - m = 10$ (i)

When p(x) is divided by x-2 When the remainder is p(2)Then p(2) = 36

$$x^3 + ix^2 + mx + 24 = 36 \implies (2)^3 + i(2)^2 + m(2) + 24 = 36$$

$$8 + 4l + 2m + 24 = 36 \implies 4l + 2m = 4$$

or
$$2l + 3m = 2$$
 (ii)

6l = 12By adding eq. (i) and eq. (ii), we get

By putting
$$l=2$$
 in eq. (i), we get; $8-m=10$

$$-m=2 \Rightarrow m=-2 \Rightarrow$$
 So $l=2$, $m=-2$

(xii) The expression $ax^3 - 9x^2 + bx + 3a$ is exactly divisible $x^2 - 5x + 6$. Find the values of a and b. ; EX #5.3 Q.9

Solution: Let
$$p(x) = ax^3 - 9x^2 + bx + 3a$$
 and $q(x) = x^2 - 5x + 6$
= $x^2 - 3x - 2x + 6$ = $x(x - 3) - 2(x - 3)$ = $(x - 3)(x - 2)$

As p(x) is exactly divisible by q(x). So p(x) is exactly divisible by x-2 and x-3

[:
$$x = 2$$
 and $x = 3$]; Hence $p(2) = 0$ And $p(3) = 0$
 $p(2) = 2(2)^3 - 9(2)^2 + b(2) + 3a = 0$

$$8a - 36 + 2b + 3a = 0 \implies 11a + 2b = 36$$

Now
$$p(3) = a(3)^3 - 9(3)^2 + b(3) + 3a = 0 \implies 27a - 81 + 3b + 3a = 0$$

 $30a + 3b = 81 \implies 10a + b = 27$

By multiplying eq. (ii) by 2 and subtract from eq. (i), we get

$$11a + 2b = 36$$

$$\pm 20a \pm 2b = \pm 54$$

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Confict +92 345 5282625 fb.com/office.com.pk

Emails safil@office.complk

Factorization

Guess Papers

(xiii) Use Remainder theorem to find the remainder when $3x^3 - 10x^2 + 13x - 6$ is divided by EX #5.3 Q.1;(i)

 $p(x) = 3x^3 - 10x^2 + 13x - 6$ Solution: Let

When p(x) is divided by x-2; The remainder R = p(2)

 $p(2) = 3(2)^3 - 10(2)^2 + 13(2) - 6$

p(2) = 24 - 40 + 26 - 6 = 4; Therefore remainder = 4

 $6x^4 + 2x^3 - x + 2$ is divided by (xiv) Use Remainder theorem to find the remainder when (x+2); EX #5.3 Q.1;(iii)

 $p(x) = 6x^4 + 2x^3 - x + 2$ Solution: Let

When p(x) is divided by x + 2; The remainder R=p(-2)

 $p(-2) = 6(-2)^4 + 2(-2)^3 - 2 + 2 = 96 - 16 + 2 + 2 = 84$ Therefore remainder = 84

SECTION – C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks. $(3 \times 8 = 24)$

Show that the diagonals of the parallelogram having vertices $A(1,2),\ B(4,2),\ C(-1,-3)$ and 0.3 D(-4, -3) bisect each other.; EX #9.3; Q.5

D (-4, -3)

Solution:

$$M_1$$
 mid point of AC is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{1 - 1}{2}, \frac{2 - 3}{2}\right)$

Or
$$\left(\frac{0}{2}, \frac{-1}{2}\right)$$
 Or $M_1\left(0, -\frac{1}{2}\right)$

$$M_2$$
 mid point of BD is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-4 + 4}{2}, \frac{-3 + 2}{2}\right)$

or
$$\left(\frac{0}{2}, -\frac{1}{2}\right)$$
 Or $M_1\left(0, -\frac{1}{2}\right)$

Since both the diagonals have same midpoint therefore they bisect each other.

The sum of lengths of any two sides of a triangle is greater than the length of the third 0.4 side. ; Theorem # 13.1.3

Solution:

Given:

A triangle ABC

To prove:

(i)
$$m\overline{AB} + m\overline{BC} > m\overline{AC}$$

(ii)
$$m\overline{AC} + m\overline{AB} > m\overline{BC}$$

(iii)
$$m\overline{AC} + m\overline{BC} > m\overline{AB}$$

Draw the bisector of $\angle B$ to meet the side \overline{AC} at the point D. Construction: Proof:

Reasons Statements In A CBD Exterior angle is greater than non adjacent $m \angle 3 > m \angle 2 \dots (i)$ interior angle Construction $m \angle 2 = m \angle 1 \dots (ii)$ By (i) and(ii) ∴ m∠3 > m∠1

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

Emails saffid@office.com/ik

Confects +92 345 5282625

fb.com/office.com.pk

Unit # 05

Factorization

Guess Papers

 $m\overline{AB} + m\overline{BC} > m\overline{AD} + m\overline{DC}$

or $m\overline{AB} + m\overline{BC} > m\overline{AC}$

Similarly by drawing angle bisector of $\angle A$ and ∠C it canbe proved that

 $mAC + m\overline{AB} > m\overline{BC}$

and $m\overline{AC} + m\overline{BC} > m\overline{AB}$

Adding (iii) and (iv)

 $\dot{m} = m\overline{AD} + m\overline{DC} = m\overline{AC}$

Find k, given that the point (2, k) is equidistant from (3, 7) and (9, 1).; EX #9.2; Q.5 Q.5 **Solution:** Let the given points be P(2, k) and A(3, 7), B(9, 1).

As the points P is equidistant from A and B.

|PA| = |PB|

Distance formula = $d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$

 $\sqrt{(2-3)^2+(k-7)^2} = \sqrt{(2-9)+(k-1)}$ i.e.

Squaring both sides we have

 $(-1) + (5-7)^2 = (-7)^2 + (k-1)^2$

 $1 + k^2 - 14k + 49 = 49 + k^2 - 2k + 1 \Rightarrow$ $50 + k^2 - 14k = 50 + k^2 - 2k$

 $-14 + 2k = 0 \Rightarrow$ $-12k = 0 \implies$

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of Q.6 the lengths of the sides containing the angle. ; Theorem # 14.1,3

Given: In $\triangle ABC$ internal angle bisector of angle A intersects \overline{CB} at the point D.

To Prove: mBD; mDC = mAB; mAC

Draw a line segment $\overline{BE}||\overline{DA}|$ to meet \overline{CA} produced, at E. Construction:

Proof:

Statements	Reasons		
· AD EB and EC intersects there at A	Constructions		
and E, so $m \angle 1 = m \angle 2$	Corresponding angles		
Again AD EB	,		
And AB intersects them	1		
So $m \angle 3 = m \angle 4 \dots$ (ii)	Alternate angles		
But $m \angle 1 = m \angle 3$	Construction (given)		
$\therefore m \angle 2 = m \angle 4$			

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

श्रीनुसारकम्ब्यारिकीरिहेन्द्र श्रीचराही

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 05

Factorization

Guess Papers

$$\therefore \frac{m\overline{BD}}{m\overline{DC}} = \frac{m\overline{EA}}{m\overline{AC}}$$
or
$$\frac{m\overline{BD}}{m\overline{DC}} = \frac{m\overline{EA}}{m\overline{AC}}$$

$$m\overline{BD}: m\overline{DC} = m\overline{AB}: m\overline{AC}$$

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

$$\triangle m\overline{EA} = m\overline{AB}$$
 (Proved)

Q.7 Construct $\triangle ABC$ such that $m\overrightarrow{AB} = 3cm$, $m\overrightarrow{BC} = 3.8 cm$, $m\overrightarrow{AC} = 4.8 cm$.

Construct a rectangle equal in area to the ABC, and measure its sides. ; EX #17.4 Q.3

Solution:

Construction:

- (i) Draw a line segment $m\overline{AC} = 4.8 cm$.
- (ii) With centre at A and radius 3 cm draw an arc.
- (iii) With centre at C and radius 3.8 cm draw another arc to cut the first arc at B.
- (iv) Join \overline{AB} and \overline{BC} to complete the $\triangle ABC$.
- (v) Draw BL \$ AC.
- (vi) Draw \overline{DP} the perpendicular bisector of \overline{AC} to meet \overline{BL} at P.
- (vii) Cut off $m\overline{PQ} = m\overline{DC}$.
- (viii) Join Q to C.
- (ix) Then PQCD is the required rectangle.
- (x) Measure the sides of the rectangle, $m\overline{DC} = 2.4 cm$ and $m\overline{DP} = 2.3 cm$

IMPORTANT QUESTIONS & ANSWERS (Reduced Syllabus)

Q1. Factorize (i)
$$2abc - 4abx + 2abd$$
; EX #5.1 Q.1;(i, v, vi)
 $2abc - 4abx + 2abd = 2ab(c - 2x + d)$
(v) $3x^3y(x - 3y) - (7x^2y^2(x - 3y))$
 $= (x - 3y)(3x^3y - 7x^2y^2)$ $= (x - 3y)x^2y(3x - 7y) = x^2y(x - 3y)x^2y(3x - 7y)$
(vi) $2xy^3(x^2 + 5) + 8xy^2(x^2 + 5)$

$$= (x^2 + 5) (2xy^3 + 8xy^2) = (x^2 + 5) (2xy^2)(y + 4) = 2xy^2(x^2 + 5)(y + 4)$$
Q2.Factorize $x^3 + 3xy^2 - 2x^2 - 6y^3$; EX #5.1 Q.2;(iii, iv)

(iii)
$$x^3 + 3xy^2 - 2x^2 - 6y^3 = x(x^2 + 3y^2) - 2y(x^2 + 3y^2) = (x^2 + 3y^2)(x - 2y)$$

(iv) $(x^2 - y^2)z + (y^2 - z^2)x = x^2z - y^2z + y^2x - z^2x = x^2z - z^2x + y^2x - y^2z$
 $= xz(x - z) + y^2x - y^2z = (x - z)(xz + y^2)$

Q4.Factorize EX #5.1 Q.4;(ii , iv)

(ii)
$$x(x-1) - y(y-1) = x^2 - x - y^2 + y = x^2 - y^2 - x + y$$

= $(x+y)(x-y) - 1(x-y) = (x-y)(x+y-1)$

(iv) $3x - 243x^3$ = $3x(1 - 81x^2)$ = $3x\{(1)^2 - (9x)^2\}$ = 3x(1 + 9x)(1 - 9x)

Q5. Factorize EX #5.1 Q.5;(i, ii, iii)

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Conficts +92 345 5282625

Emails safid@office.com/tk

(i)

(v)

fb.com/office.com.pk

Guess Papers

Factorization

(ii)
$$x^2 - a^2 + 2a - 1$$

 $= x^2 - (a^2 - 2a + 1)$ $= x^2 - [(a)^2 - 2(a)(1) + (1)^2]$ $= x^2 - (a - 1)^2$
 $= (x)^2 - (a - 1)^2$ $= [x + (a - 1)][x - (a + 1)]$ $= (x + a - 1)(x - a + 1)$
(iii) $4x^2 - y^2 - 4x - 2y + 3$
 $= 4x^2 - (y^2 + 2y + 1) = (2x)^2 - (y + 1)^2$
 $= [2x + (y + 1)][2x - (y + 1)]$ $= (2x + y - 1)(2x - y - 1)$
Q1. Factorize EX #5.2 Q.1;(i, iv, v)
(i) $x^4 + \frac{1}{x^4} - 3$
Solution: $= x^4 + \frac{1}{x^4} - 2 - 1 = x^4 - 2 + \frac{1}{x^4} - 1$
 $= \left(x^2 - \frac{1}{x^2}\right)^2 - 1^2 = \left[\left(x^2 - \frac{1}{x^2}\right) + 1\right]\left[\left(x^2 - \frac{1}{x^2}\right) - 1\right] = \left(x^2 - \frac{1}{x^2} + 1\right)\left(x^2 - \frac{1}{x^2} - 1\right)$
(iv) $4x^4 + 81$
Solution: $= (2x^2)^2 + (9)^2 + 36x - 36x^2 = (2x^2 + 9)^2 - (6x)^2$
 $= (2x^2 + 9 + 6x)(2x^2 + 9 - 6x) = (2x^2 + 6x + 9)(2x^2 - 6x + 9)$
(v) $x^4 + x^2 + 25$
Solution: $= x^4 + 10x^2 + 25 - 9x^2$
 $= (x^2)^2 + 2(x^2)5 - 9x^2 = (x^2 + 5)^2 - (3x)^2$
 $= (x^2 + 5 + 3x)(x^2 + 5 - 3x) = (x^2 + 2x + 4)(x^2 - 2x + 4)$
Factorize (i) $x^2 + 14x + 48$; EX #5.2 Q.2;(i, iii)
Solution: $= x^2 + 8x + 6x + 48 = x(x + 8) + 6(x + 8) = (x + 8)(x + 6)$
(iii) $x^2 - 11x - 42$
Solution: $= x^2 - 14x + 3x - 42 = x(x - 14) + 3(x - 14) = (x - 14)(x + 3)$
Q3.Factorize EX #5.2 Q.3;(ii, v)
(ii) $30x^2 + 7x - 15$
Solution: $30x^2 + 7x - 15$
Solution: $30x^2 + 7x - 15$
Solution: $30x^2 + 25x - 18x - 15 = 5x(6x + 5) - 3(6x + 5) = (6x + 5)(5x - 3)$

 $4x^2 - 17xy + 4y^2$

Solution: $4x^2 - 16xy - xy + 4y^2$ = 4x(x-4y) - y(x-4y) = (x-4y)(4x-y)

Multiple choice questions. Choose the correct answer. Review EX #5 Q.1

The factors of $x^2 - 5x + 6$ are..... (i)

(b) x-2, x-3x + 1, x - 6(a) (d) x + 2, x + 3x+6,x-1(c)

Factors of $8x^3 + 27y^3$ are...... (ii)

 $(2x-3y),(4x^2-9y^2)$ $(2x+3y), (4x^2+9y^2)$ (b) (a)

 $(2x - 3y)(4x^2 + 6xy + 9y^2)$ $(2x + 3y), (4x^2 - 6xy + 9y^2)$ (d) (c)

Factors of 3^{x^2} -x-2 are...... (iii)

(x + 1), (3x + 2)(b) (a) (x + 1), (3x - 2)

 $(2x - 3y), (4x^2 + 6xy)$ (c) (x-1), (3x-2)(d)

Factors of $\alpha^4 - x - 2$ are (iv)

 $(a^2-2b^2), (a^2+2b^2)$ (a) $\{a-b\}, \{a+b\}, (a^2+4b^2)$ (b)

(a-b), (a+b), (a^2-4b^2) $(a - 2b), (a^2 + 2b^2)$ (d) (c)

Guess Papers

Factorization

Find m so that $x^2 + 4x + m$ is a complete square... (vi) -8

- (b)
- (d) 16

Factors of $5x^2 - 17xy - 12y^2$ are..... (vii)

(x + 4y), (5x + 3y)

(x - 4y), (5x - 3y)(b)

(c) (x - 4y), (5x + 3y)

(d) (5x - 4y), (x + 3y)

(viii) Factors of $27x^3 - \frac{1}{x^3}$

 $(3x-\frac{1}{x}),(9x^2+3+\frac{1}{x^2})$

(c) $\left(3x - \frac{1}{r}\right), \left(9x^2 - 3 + \frac{1}{r^2}\right)$

(b) $\left(3x + \frac{1}{x}\right) \cdot \left(9x^2 + 3 + \frac{1}{x^2}\right)$ (d) $\left(3x + \frac{1}{x}\right) \cdot \left(9x^2 - 3 + \frac{1}{x^2}\right)$

Answers:

(l) b	(ii) c	(iii) d	(iv) b
(v) c	(vi) c	(vii) c	(viii) a

Review EX #5 0.2

Complete items. Fill in the blanks. Q2.

- (i) $x + 5x + 6 = \dots$
- $4a^2 16 = \dots$ (ii)
- $4a^2 + 4ab + (....)$ is a complete square
- (iv) $\frac{x^2}{v^2} 2 + \frac{y^2}{v^2} = \dots$
- $(x+y)(x^2-xy+y^2) = \dots$ (v)
- Factored form of $x^4 16$ is (vi)
- (vii) If x 2 is factor of $p(x) = x^2 + 2kx + 8$, then k = ...

Answers:

(i) (x+2)(x+3)

4(a-2)(a+2)

(iii) b^2 (iv) $\left(\frac{x}{y} - \frac{y}{x}\right)^2$

 $x^3 + y^3$ (v)

 $(x-2)(x+2)(x^2+4)$ (vi)

(iiv) -3

fb.com/office.com.pk

Algebraic Manipulation

Guess Papers

GUESS PAPER & MODEL PAPER # 06 BASED ON UNIT # 6 (Reduced Syllabus) ALGEBRAIC MANIPULATION

Unit 6	Algebraic Manipulation	
Exercise 6.1	Q1; Q2(i, li, iil); Q3(i, iii); Q4; Q5(ii, iii); Q6; Q8; Q9	
Exercise 6.2	Q1; Q2; Q4; Q6; Q9; Q11; Q13	
Exercise 6.3	Q1(i, iv, vi, vii); Q2(i, iv, v); Q3(i); Q4(i)	
Review Ex 6	Q1; Q8	

NOTE:

- All Class work will be given for revision as H.W.
- The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the chapters: so MCQ's will be done in class by class teacher.

Approximation allering

Confict +92 345 5282625

fb.com/office.com.pk

Guess Papers

Unit # 06

Algebraic Manipulation

Simplify $\frac{a}{9a^2-b^2} + \frac{1}{3a-b} = \cdots$ (xi)

(A)
$$\frac{4a}{a^2-b^2} + \frac{3a-b}{3a-b}$$

(B)
$$\frac{4a-b}{9a^2-b^2}$$

(C)
$$\frac{4a+b}{9a^2-b^2}$$

$$(D) = \frac{b}{9a^2-b^2}$$

Simplify $\frac{a^2 + 5a - 14}{a^2 - 3a - 18} \times \frac{a + 3}{a - 2} = \cdots$

$$(A) \qquad \frac{a+7}{a-6}$$

(B)
$$\frac{a+7}{a-2}$$

$$(C) \qquad \frac{a+3}{a+5}$$

(D)
$$\frac{a-2}{a+3}$$

$$(A) = \frac{1}{a+b}$$

(B)
$$\frac{1}{a-b}$$

(C)
$$\frac{a-b}{a^2+b^2}$$

(D)
$$\frac{a+b}{a^2+b^2}$$

(A) $\frac{a+7}{a-6}$ (B) $\frac{a+7}{a-2}$ (xiii) Simplify $\frac{a^3-b^3}{a^4-b^4} \div \frac{a^2+ab+b^2}{a^2+b^2} = \cdots$ (A) $\frac{1}{a+b}$ (B) $\frac{1}{a-b}$ (xiv) Simplify $\left(\frac{2x+y}{x+y}-1\right) \div \left(1-\frac{x}{x+y}\right) = \cdots$

$$(A) \qquad \frac{x}{x+y}$$

(B)
$$\frac{y}{x+y}$$

The square root of $a^2 - 2a + 1$ is..... (XV)

$$(A) \qquad \pm (a+1)$$

(B)
$$\pm (a - 1)$$

(C)
$$\mathbf{a} = \mathbf{a}$$

(D)
$$a+1$$

Time allowed: 2:40 hours

Total Marke: 60

Note: Attempt any nine parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Log book and graph paper will be provided on demand.

SECTION - B (Marks 36)

Attempt any NINE parts from the following. All parts carry equal marks. Q.2

For what value of k is (x + 4) the H.C.F of $(x^2 + x - (2k + 2))$ and $2x^2 + kx - 12$? (i)

EX #6.1 Q.6

 $\frac{x^2-x-6}{x^2-x-12} + \frac{x^2+2x-24}{x^2-x-12}$ Simplify each of the following as a rational expression. (ii)

; EX #6.2 O.3 (iii) Simplify each of the following as a rational expression. A $-\frac{1}{\Lambda}$ where A $=\frac{a+1}{a-1}$

(iv) Perform the indicated operations and simplify to the lowest forms. $\frac{x^2+x-6}{x^2-x-6} \times \frac{x^2-4}{x^2-9}$

EX #6.2 Q.9

Perform the indicated operations and simplify to the lowest forms. (v)

$$\left[\frac{x^2+y^4}{x^2-y^2} - \frac{x^2-y^2}{x^2+y^2}\right] \div \left[\frac{x+y}{x-y} - \frac{x-y}{x+y}\right] \; ; \; EX \; \#6.2 \; Q.13$$

Find the value of k for which the following expressions will become a perfect square. (vi) $4x^4 - 12x^3 + 37x^2 - 42x + k$; EX #6.3 Q.3;(i)

Find square root by using division method. $\frac{4x^2}{y^2} + \frac{20x}{y} + 13 - \frac{30y}{y} + \frac{9y^2}{y^2}(x \neq 0)(y \neq 0)$

Review EX #6 Q.8

(viii) Find the value of t and m for which the following expressions will become a perfect $x^4 + 4x^3 + 16x^2 - lx + m$: EX #6.3 Q.4;(i)

(ix) Perform the indicated operations and simplify to the lowest forms.

$$\frac{x^4 - 8x}{2x^2 + 5x - 3} \times \frac{2x - 1}{x^2 + 2x + 4} \times \frac{x + 3}{x^2 - 2x}$$
 ; EX #6.2 Q.11

Unit # 06

Algebraic Manipulation

Guess Papers

(xi) Simplify each of the following as a rational expression. $\left[\frac{x+1}{x-1} - \frac{x-1}{x+1} - \frac{4x}{x^2+1}\right] + \frac{4x}{x^4-1}$ EX #6.2 Q.2

- (xii) Let $p(x) = 10(x^2 9)(x^2 3x + 2)$ and $q(x) = 10x(x + 3)(x 1)^2$. If the H.C.F. of p(x), q(x) is 10(x + 3)(x 1), find their L.C.M.; EX #6.1 Q.9
- (xiii) The L.C.M. and H.C.F. of two polynomials p(x) and q(x) are $2(x^4-1)$ and $(x+1)(x^2+1)$ respectively. If $p(x)=x^3+x^2+x+1$, find q(x); EX #6.1 Q.8
- (xiv) Find the H.C.F. of the following by division method. $x^3 + 3x^2 16x + 12$, $x^3 + x^2 10x + 8$; EX #6.1 Q.3;(i)

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks. $(3 \times 8 = 24)$

Q.3 Use distance formula to verify that the points A(0,7), B(3,-5), C(-2,15) are collinear.

EX #9.2; Q.6

- Q.4 From a point, outside a line, the perpendicular is the shortest distance from the point to the line. ; Theorem # 13.1.4
- Q.5 Verify that the Δs having the following measures of sides are right angled.
 - (i) a = 5cm, b = 12cm, c = 13 (ii) a = 1.5 cm, b = 2cm, 2.5cm
 - (iii) a = 9cm, b = 12cm, c = 15cm (iv) a = 16cm, b = 30cm, c = 34cm

EX #15; Q.1

- Q.6 A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. How much distance will it travel to land at the airport?; EX #15; Q.7
- Q.7 Construct the following $\Delta's$ XYZ. Draw their three medians and show that they are concurrent? $m\overline{XY} = 4.5$ cm, $m\overline{YZ} = 3.4$ cm, $m\overline{ZX} = 5.6$; EX #17.2 Q.4;(ii)

SOLUTION OF GUESS PAPER & MODEL PAPER # 6 (Reduced Syllabus)

SECTION- A (MCQs)

i. B	ii. A	iîi. C	iv. B	v. A	vi. A
vii. A	viii. 8	ix. C	x. C	xi. C	xii. A
xiii. A	χίν. D	xv. B			

SECTION - B (Marks 36)

- Q.2 Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$
- (i) For what value of k is (x + 4) the H.C.F of $fx^2 + x + (2k + 2)$ and $2x^2 + kx 12$? EX #6.1 Q.6

Solution: Let $P(x) = x^2 + x - (2k+2)$ And $q(x) = 2x^2 + kx - 12$

As x + 4 is H.C.F. of p(x) and q(x). So p(x) is exactly divisible by x + 4 and thus p(-4) = 0

i.e. $(-4)^2 + (-4) - (2k+2) = 0 \implies 16 - 4 - 2k - 2 = 0$

 $\Rightarrow 10 - 2k = 0 \Rightarrow 2k = 10 \Rightarrow k = 5$

 $x^7...x=6$ $x^2+2x=24$

Emails safid@office.com/ok

Confict +92 345 5282625

fb.com/office.com.pk

Unit # 06

Algebraic Manipulation

Guess Papers

$$= \frac{x^2 - 3x + 2x - 6}{x^2 - 3^2} + \frac{x^2 + 6x - 4x - 24}{x^2 - 4x + 3x - 12} = \frac{x(x - 3) + 2(x - 3)}{(x + 3)(x - 3)} + \frac{x(x + 6) - 4(x + 6)}{x(x - 4) + 3(x - 4)}$$
$$= \frac{(x - 3)(x + 2)}{(x + 3)(x - 3)} + \frac{(x + 6)(x - 4)}{(x - 4)(x + 3)} = \frac{x + 2}{x + 3} + \frac{x + 6}{x + 3} = \frac{x + 2 + x + 6}{x + 3} = \frac{2x + 8}{x + 3} = \frac{2(x + 4)}{x + 3}$$

(iii) Simplify each of the following as a rational expression. $A = \frac{1}{A}$, where $A = \frac{a+1}{a-1}$ EX #6.2 O.6

Solution:
$$A - \frac{1}{A} = \frac{a+1}{a-1} - \frac{a-1}{a+1} = \frac{(a+1)^2 - (a-1)^2}{(a-1)(a+1)} = \frac{a^2 + 2a + 1 - (a^2 - 2a + 1)}{a^2 - 1} = \frac{a^2 + 2a + 1 - a^2 + 2a - 1}{a^2 - 1} = \frac{4a}{a^2 - 1}$$

(iv) Perform the indicated operations and simplify to the lowest forms. $\frac{x^2+x-6}{x^2-x-6} \times \frac{x^2-4}{x^2-9}$

EX #6.2 O.9

Solution:
$$\frac{x^2 + x - 6}{x^2 - x - 6} \times \frac{x^2 - 4}{x^2 - 9}$$

$$= \frac{x^2 + 3x - 2x - 6}{x^2 - 3x + 2x - 6} \times \frac{x^2 - 2^2}{x^2 - 3^2} = \frac{x(x + 3) - 2(x + 3)}{x(x - 3) + 2(x - 3)} \times \frac{(x + 2)(x - 2)}{(x + 3)(x - 3)} = \frac{(x + 3)(x - 2)}{(x - 3)(x + 2)} \times \frac{(x + 2)(x - 2)}{(x + 3)(x - 3)}$$

$$= \frac{(x + 3)(x - 2)}{(x - 3)(x + 2)} = \frac{(x - 2)^2}{(x - 3)^2}$$

Perform the indicated operations and simplify to the lowest forms. (v)

$$\left[\frac{x^2+y^2}{x^2-y^2} - \frac{x^2-y^2}{x^2+y^2}\right] \div \left[\frac{x+y}{x-y} - \frac{x-y}{x+y}\right] \; ; \; \; \text{EX \#6.2 Q.13}$$

Solution:
$$\frac{\left[\frac{x^2+y^2}{x^2-y^2} - \frac{x^2-y^2}{x^2+y^2}\right] \div \left[\frac{x+y}{x-y} - \frac{x-y}{x+y}\right] }{\left[\frac{x+y}{(x^2-y^2)(x^2+y^2)} \div \frac{(x+y)^2-(x-y)^2}{(x-y)(x+y)}\right] }{ = \frac{\frac{x^4+2x^2y^2+y^4-(x^4-2x^2y^2+y^4)}{(x^2-y^2)(x^2+y^2)} \div \frac{x^2+2xy+y^2-(x^2-2xy+y^2)}{(x-y)(x+y)} }{ = \frac{\frac{x^4+2x^2y^2+y^4-x^4+2x^2y^2-y^4}{(x^2-y^2)(x^2+y^2)} \div \frac{x^2+2xy+y^2-x^2+2xy-y^2}{(x-y)(x+y)} }{ = \frac{4x^2y^2}{(x^2-y^2)(x^2+y^2)} \div \frac{4xy}{(x^2-y^2)} = \frac{4x^2y^2}{(x^2-y^2)(x^2+y^2)} \times \frac{x^2-y^2}{4xy} = \frac{xy}{x^2+y^2}$$
(vi) Find the value of k for which the following expressions will become

Find the value of k for which the following expressions will become a perfect square. $4x^4 - 12x^3 + 37x^2 - 42x + k$; EX #6.3 Q.3;(i)

Solution:

$$\begin{array}{r}
2x^2 - 3x + 7 \\
4x^4 - 12x^3 + 37x^2 - 42x + k \\
\pm 4x^4 \\
4x^2 - 3x \\
4x^2 - 6x + 7
\end{array}$$

$$\begin{array}{r}
-12x^3 + 37x^2 \\
\mp 12x^3 \pm 9x^2 \\
\hline
28x^2 - 42x + k \\
\pm 28x^2 \mp 42x \pm 49 \\
\hline
k - 49$$

The given expression will be perfect equate when remainder = 0

Unit # 06

Algebraic Manipulation

Guess Papers

$$\frac{4x^2}{y^2} + \frac{20x}{y} + 13 - \frac{30y}{x} + \frac{9y^2}{x^2} (x \neq 0) (y \neq 0)$$

Review EX #6 Q.8

Solution:
$$\frac{4x^2}{y^2} + \frac{20x}{y} + 13 - \frac{30y}{x} + \frac{9y^2}{x^2}$$

$$\frac{\frac{2x}{y} + 5 - \frac{3y}{x}}{\frac{4x^2}{y^2} + \frac{20x}{y} + 13 - \frac{30y}{x} + \frac{9y^2}{x^2}}{\frac{4x^2}{y^2}}$$

$$\frac{\frac{4x}{y} + 5}{\frac{4x^2}{y^2}} + \frac{\frac{20x}{y} + 13}{\frac{7}{y^2}} + \frac{13}{x^2}$$

$$\frac{\frac{2x}{y} + 5 - \frac{3y}{x}}{\frac{4x^2}{y^2}} + \frac{9y^2}{x^2}$$

$$\frac{\frac{4x^2}{y^2} + \frac{20x}{y} + 13}{\frac{7}{y^2}} + \frac{13}{y^2}$$

$$\frac{\frac{20x}{y} + 13}{\frac{7}{y}} + \frac{20x}{y} + \frac{13}{y^2}$$

$$\frac{4x}{y} + 10 - \frac{3y}{x}$$

$$\frac{1}{y} + 13 - \frac{30y}{x} + \frac{9y^2}{x^2}$$

$$\frac{1}{y} + 13 - \frac{30y}{x} + \frac{9y^2}{x^2}$$

$$\frac{1}{y} + 12 + \frac{30y}{x} + \frac{9y^2}{x^2}$$

$$\frac{1}{y} + 12 + \frac{30y}{x} + \frac{9y^2}{x^2}$$

So the required root is $\pm \left(\frac{2x}{y} + 5 - \frac{3y}{y}\right)$

(viii) Find the value of l and m for which the following expressions will become a perfect squares. $x^4 + 4x^3 + 16x^2 - lx + m$; EX #6.3 Q.4;(i)

Solution: $x^4 + 4x^3 + 16x^2 - lx + m$

$$x^{2} + 2x + 6$$

$$x^{2} + 4x^{3} + 16x^{2} + lx + m$$

$$\pm x^{4}$$

$$2x^{2} + 2x$$

$$4x^{3} + 16x^{2} + lx + m$$

$$\pm 4x^{3} \pm 4x^{2}$$

$$2x^{2} + 4x + 6$$

$$12x^{2} + lx + m$$

$$\pm 12x^{2} \pm 24x \pm 36$$

$$(l - 24)x - (m - 36)$$

The given expression will be perfect square when remainder = 0

if
$$l-24=0$$

and $m-36=0$
 $l=24$, $m=3$

m = 36.(ix) Perform the indicated operations and simplify to the lowest forms.

$$\frac{x^{4}-8x}{2x^{2}+5x-3} \times \frac{2x-1}{x^{2}+2x+4} \times \frac{x+3}{x^{2}-2x}$$
 ; EX #6.2 Q.11

Solution:
$$\frac{x^4 - 8x}{2x^2 + 5x - 3} \times \frac{2x - 1}{x^2 + 2x + 4} \times \frac{x + 3}{x^2 - 2x}$$

$$= \frac{x(x^3 - 8)}{2x^2 + 6x - x - 3} \times \frac{2x - 1}{x^2 + 2x + 4} \times \frac{x + 3}{x(x - 2)} = \frac{x(x - 2)(x^2 + 2x + 4)}{2x(x + 3) - 1(x + 3)} \times \frac{2x - 1}{x^2 + 2x + 4} \times \frac{x + 3}{x(x - 2)}$$

$$= \frac{x(x-2)(x^2+2x+4)}{2x(x+3)-1(x+3)} \times \frac{2x-1}{x^2+2x+4} \times \frac{x+3}{x(x-2)}$$

Guess Papers

Unit # 06

Algebraic Manipulation

 $\frac{(x+2)(x+3)}{x^2-9} + \frac{(x+2)(2x^2-32)}{(x-4)(x^2-x-6)}$ (x) Simplify each of the following as a rational expression. EX #6.2 Q.4

Solution:
$$\frac{(x+2)(x+3)}{x^2-9} + \frac{(x+2)(2x^2-32)}{(x-4)(x^2-x-6)}$$

$$= \frac{(x+2)(x+3)}{x^2-3^2} + \frac{(x+2).2(x^2-16)}{(x-4)(x^2-3x+2x-6)} = \frac{(x+2)(x+3)}{(x+3)(x-3)} + \frac{2(x+2).(x+4).(x-4)}{(x-4)[x(x-3)+2(x-3)]}$$

$$= \frac{x+2}{x-3} + \frac{2(x+2).(x+4)}{(x-3)(x+2)} = \frac{x+2}{x-3} + \frac{2.(x+4)}{x-3} = \frac{x+2+2x+8}{x-3} = \frac{3x+16}{x-3}$$

(xi) Simplify each of the following as a rational expression. $\left[\frac{x+1}{x+1} - \frac{x-1}{x+1} - \frac{4x}{x^2+1}\right] + \frac{4x}{x^4-1}$

Solution:
$$\frac{\left[\frac{x+1}{x-1} - \frac{x-1}{x+1} - \frac{4x}{x^2+1}\right] + \frac{4x}{x^4-1}}{(x-1)(x+1)(x^2+1) - 4x(x-1)(x+1)} + \frac{4x}{x^4-1}$$

$$= \frac{(x^2+2x+1)(x^2+1) - (x^2-2x+1)(x^2+1) - 4x(x^2-1)}{(x^2-1)(x^2+1)} + \frac{4x}{x^4-1}$$

$$= \frac{x^4+x^2+2x^3+2x+1 - (x^4+x^2-2x^3-2x+x^2+1) - (4x^3-4x)}{x^4-1} + \frac{4x}{x^4-1}$$

$$= \frac{x^4+2x^3+2x^2+2x+1 - x^4+2x^3-2x^2+2x-1 - 4x^3+4x}{x^4-1} + \frac{4x}{x^4-1} = \frac{4x^3+4x-4x^3+4x}{x^4-1} + \frac{4x}{x^4-1}$$

$$= \frac{8x}{x^4-1} + \frac{4x}{x^4-1} = \frac{8x+4x}{x^4-1} = \frac{12x}{x^4-1}$$

Let $p(x) = 10(x^2 - 9)(x^2 - 3x + 2)$ and $q(x) = 10x(x + 3)(x - 1)^2$. If the H.C.F. of p(x), q(x)is 10(x+3)(x+1), find their L.C.M.; EX #6.1 Q.9

Solution:
$$p(x) = 10(x^2 - 9)(x^2 - 3x + 2)$$
; $q(x) = 10x(x + 3)(x - 1)^2$
 $H. C. F. = 10(x + 3)(x - 1)$

L. C. M.
$$= \frac{p(x) \times q(x)}{H.C.F.} = \frac{10(x^2 - 9)(x^2 - 3x + 2)10x(x + 3)(x - 1)^2}{10(x + 3)(x - 1)}$$

$$= 10(x^2 - 9)(x^2 - 3x + 2).x(x - 1)$$

$$= 10(x^2 - 9)[(x^2 - 2x - x + 2)x.(x - 1)]$$

$$= 10(x^2 - 9)[x(x - 2) - 1(x - 2].x.(x - 1)$$

$$= 10(x^2 - 9)(x - 2)(x - 1).x.(x - 1)$$

$$= 10(x^2 - 9)(x - 2).x.(x - 1)^2$$

$$= 10x(x - 2)(x - 1)^2(x^2 - 9)$$

(xiii) The L.C.M. and H.C.F. of two polynomials p(x) and q(x) are $2(x^4-1)$ and $(x+1)(x^2+1)$ respectively. If $p(x) = x^3 + x^2 + x + 1$, find q(x).; EX #6.1 Q.8 **Solution:** L.C.M. = $2(x^4 - 1)$; H.C.F. = $(x + 1)(x^2 + 1)$ $p(x) = x^3 + x^2 + x + 1$

$$q(x) = \frac{(L.C.M.) \times (H.C.F.)}{n(x)} = \frac{2(x^4 - 1)(x + 1)(x^2 + 1)}{x^3 + x^2 + x + 4} = \frac{2(x^4 - 1)x^3 + x + x^2 + 1}{x^3 + x^2 + x + 4}$$

Unit # 06

Algebraic Manipulation

Guess Papers

(xiv) Find the H.C.F. of the following by division method.

$$x^3 + 3x^2 - 16x + 12$$
, $x^3 + x^2 - 10x + 8$; EX #6.1 Q.3;(i)

Solution:

$$\begin{array}{c|c}
x^3 + x^2 - 10x + 8 & \hline
 x^3 + 3x^2 - 16x + 12 \\
 & \pm x^3 \pm x^2 \mp 10x \pm 8 \\
\hline
 2x^2 - 6x + 4 \\
 2(x^2 - 3x + 2)
\end{array}$$

By Ignoring 2

H. C. F. =
$$x^2 - 3x + 2$$

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks. $(3 \times 8 = 24)$

Q.3 Use distance formula to verify that the points A(0,7), B(3,-5), C(-2,15) are collinear.

EX #9.2; Q.6

Solution: Let the points be A(0,7), B(3,5) and C(-2,15).

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

$$|AB| = \sqrt{(0-3)^2 + (7+5)^2} = \sqrt{(-3)^2 + (12)^2} = \sqrt{9+144} = \sqrt{153} = \sqrt{9 \times 17} = 3\sqrt{17}$$

$$|BC| = \sqrt{(-2-3)^2 + (15+5)^2} = \sqrt{(-5)^2 + (20)^2} = \sqrt{25+400} = \sqrt{425} = \sqrt{25 \times 17} = 5\sqrt{17}$$

$$|CA| = \sqrt{(0+2)^2 + (7-15)^2} = \sqrt{(2)^2 + (-8)^2} = \sqrt{4+64} = \sqrt{68} = 2\sqrt{17}$$

 $|CA| = \sqrt{(0+2)^2 + (7-15)^2} = \sqrt{(2)^2 + (-8)^2} = \sqrt{4+64} = \sqrt{68} = 2\sqrt{17}$ By applying the condition of collinear points $|AB| + |CA| = 3\sqrt{17} + 2\sqrt{17} = (3+2)\sqrt{17}$

By applying the condition of collinear points $|AB| + |CA| = 3\sqrt{17} + 2\sqrt{17} = (3+2)\sqrt{17} = 5\sqrt{17} = |BC|$; \therefore the given points are collinear.

Q.4 From a point, outside a line, the perpendicular is the shortest distance from the point to the line. ; Theorem # 13.1.4

Solution:

Given:

A line \overline{AB} and a point C (not lying on \overline{AB}) and a point D on \overline{AB} such that \overline{CD} is perpendicular to \overline{AB} .

To prove:

 $m\overline{CD}$ is the shortest distance from point to the line AB.

Construction:

Take a point E on AB. Join C a ♣ 40 get a △ CDE.

Proof:

Statements	Reasons				
If ∆ CDE					
m∠CDB > m∠CED	Ал exterior angle of a triangle is greater than				
But $m \angle CDB = m \angle CDE$	every поп adjacent interior angle. Supplement of right angle.				

Unit # 06

Algebraic Manipulation

Guess Papers

BUT E was any point on AB

Hence $m\overline{CD}$ is the shortest distance from C to ΆB.

- Q.5 Verify that the As having the following measures of sides are right angled.
 - a = 5cm, b = 12cm, c = 13(i)
- (ii) a = 1.5 cm, b = 2cm, 2.5cm
- a = 9cm, b = 12cm, c = 15cm
- (iv) a = 16cm, b = 30cm, c = 34cm

EX #15; Q.1

Solution: (i) a = 5cm, b = 12cm, c = 13

 $a^2 + b^2 = (5)^2 + (12)^2$ By Pythagoras theorem

$$= 25 + 144 = 169 \implies c^2 = (13)^2 = 169 \implies \qquad a^2 + b^2 = c^2$$

Thus the triangle is right angled triangle.

- a = 1.5 cm, b = 2 cm, 2.5 cm(ii)
- $a^2 + b^2 = (1.5) + (2)$ Solution: By Pythagoras theorem
 - $= 2.25 + 4 = 6.25 \Rightarrow$ $x^2 = (2.5)^2 = 6.25 \Rightarrow$

 $a^2 + b^2 = c^2$

Thus the triangle is right angled triangle.

- (iii) a = 9cm, b = 12cm, c = 15cm
- Solution: By Pythagoras theorem

rem
$$a^2 + b^2 = (9)^2 + (12)^2$$

 $44 = 225 \Rightarrow c^2 = (15) = 225 \Rightarrow$

- $= 81 + 144 = 225 \Rightarrow$
- $a^2 + b^2 = c^2$

Hence the triangle is right angled triangle.

(iv) a = 16cm, b = 30cm, c = 34cm

Solution: By Pythagoras theorem $= 256 + 900 = 1156 \Rightarrow$

$$a^2 + b^2 = (16)^2 + (2)^2$$

 $c^2 = (34)^2 = 1156 \Rightarrow \therefore a^2 + b^2 = c^2$

Hence the triangle is right angled triangle.

A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. Q.6 How much distance will it travel to land at the airport?; EX #15; Q.7

Solution:

mBC = 500 m; mAC = 300 m

By Pythagoras theorem $m\overline{AB^2} = m\overline{BC^2} + m\overline{AC^2}$

$$m\overline{AB^2} = (500)^2 + (300)^2$$

$$= 250000 + 90000$$

$$= 340000 \qquad = \sqrt{34 \times 10000}$$

 $m\overline{AB} = 100\sqrt{34} m$

Q.7 Construct the following $\Delta's$ XYZ. Draw their three medians and show that they are concurrent? $m\overline{XY} = 4.5$ cm, $m\overline{YZ} = 3.4$ cm, $m\overline{ZX} = 5.6$; EX #17.2 Q.4;(ii)

Solution: Construction:

- Take $m\overline{ZX} = 5.6$ cm. (i)
- With centre Z and radius $m\overline{Z}\overline{Y} = 3.4$ cm draw an arc. (ii)
- With centre X and radius $m\overline{XY} = 4.5$ cm which intersects (iii) the first arc at Y.
- (iv) Join \overline{ZY} and \overline{XY} to get the ΔXYZ .
- Draw the perpendicular bisectors of the sides \overline{XY} , \overline{YZ} and (v) \overline{ZX} of the AXYZ and mark their mid points 1. M and 31

Algebraic Manipulation

Guess Papers

- (viii) The medians XL and YM meet in the point G.
- Now draw the third median ZN. (ix)
- We observe that the third median also passes through the point of intersection G of first two (x) medians.
- (xi) Hence the three medians of the AXYZ pass through the same point G. That is, they are concurrent at G.

IMPORTANT QUESTIONS & ANSWERS (Reduced Syllabus)

```
Q1.
      Find the H.C.F. of the following expressions.; EX #6.1 Q.1
```

 $39x^{7}y^{3}z$ and $91x^{5}y^{6}z^{7}$ (i)

Solution:
$$39x^7y^3z = 3 \times 13 x^7y^3z$$
 ; $91x^5y^6z^7 = 13 \times 7 x^5y^6z^7$
H. C. F. = $13 x^5y^3z$

 $102 \text{ xy}^2 \text{z}$, $85 \text{ x}^2 \text{yz}$ and 187 xyz^2 (ii)

Solution:
$$102 xy^2z = 2 \times 3 \times 17 xy^2z$$

 $85 x^2yz = 5 \times 17 x^2yz$; $187 xyz^2 = 11 \times 17 xyz^2$
H. C. F. = 17xvz

Find the H.C.F. of the following expressions by factorization.; EX #6.1 Q.2;(i, ii, iii) Q2.

(i)
$$x^2 + 5x + 6$$
, $x^2 - 4x - 12$

Solution:
$$x^2 + 5x + 6 = x^2 + 3x + 2x + 6$$

= $x(x+3) + 2(x+3) = (x+3)(x+2)$
 $x^2 - 4x - 12 = x^2 - 6x + 2x - 12 = x(x-6) + 2(x-6) = (x-6)(x+2)$
H. C. F. = $x + 2$

(ii)
$$x^3-27$$
, $x^2+6x-27$, $2x^2-18$

Solution:
$$x^3 - 27 = (x)^3 - (3)^3 = (x - 3)(x^2 + 3x + 9)$$

 $x^2 + 6x - 27 = x^2 + 9x - 3x - 27 = x(x + 9) - 3(x + 9)$ $= (x + 9)(x - 3)$
 $2x^2 - 18 = 2(x^2 - 9) = 2(x^2 - 3^2) = 2(x + 3)(x - 3)$
H. C. F. $= x - 3$

(iii)
$$x^3 - 2x^2 + x$$
, $x^2 + 2x - 3$, $x^2 + 3x - 4$

Solution:
$$x^3 - 2x^2 + x = x(x^2 - 2x + 1) = x(x - 1)^2 = x(x - 1)(x - 1)$$

 $x^2 + 2x - 3 = x^2 + 3x - x - 3 = x(x + 3) - 1(x + 3) = (x + 3)(x - 1)$
 $x^2 + 3x - 4 = x^2 + 4x - x - 4 = x(x + 4) - 1(x + 4) = (x + 4)(x - 1)$
H. C. F. = $x - 1$

Q3. Find the H.C.F. of the following by division method.; EX #6.1 Q.3;(iii)

(iii)
$$2x^5 - 4x^4 - 6x$$
, $x^5 + x^4 - 3x^3 - 3x^2$

Solution:
$$2x^5 - 4x^4 - 6x = 2x(x^4 - 2x^3 - 3)$$

 $x^5 + x^4 - 3x^3 - 3x^2 = x^2(x^3 + x^2 - 3x - 3)$

In this case H.C.F. of 2x and x^2 is x

Now we find H.C.F. of $x^4 - 2x^3$ and $x^3 + x^2 - 3x - 3$

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Emails safid@office.com.pk Gonasts 492 345 5282625 fb.com/office.com.pk

Unit # 06

Algebraic Manipulation

Guess Papers

; EX #6.3 Q.1;(i, iv, vi, vii)

 $\begin{array}{r}
x+2 \\
x^3+x^2-3x-3 \\
\underline{+x^3 \mp x^2 \mp 2x} \\
2x^2-x-3 \\
\underline{+2x^2 \mp 2x \mp 4} \\
x+1
\end{array}$

Then

$$\begin{array}{r}
x-2 \\
x^2-x-2 \\
\underline{+x^2 \pm x} \\
-2x-2 \\
\overline{+2x \mp 2} \\
0
\end{array}$$

H. C. F. = x + 1

Hence the H.C.F. of the given expression is $x \times (x+1) = x^2 + x$

- Q4. Find the L.C.M. of the following expressions.; EX #6.1 Q.4
- (i) $39x^7y^3z$ and $91x^5y^6z^7$

Solution: $39x^7y^3z = 3 \times 13 \ x^7y^3z$; $91x^5y^6z^7 = 13 \times 7 \ x^5y^6z^7$ L. C. M. = $3 \times 7 \times 13 \ x^7y^6z^7$ = $273 \ x^7y^6z^7$

(ii) 102 xy²z, 85 x²yz and 187 xyz²

Solution: $102 xy^2z = 2 \times 3 \times 17 xy^2z$; $85 x^2yz = 5 \times 17 x^2yz$ $187 xyz^2 = 11 \times 17 xyz^2$ L. C. M. = $2 \times 3 \times 5 \times 11 \times 17x^2y^2z^2 = 5610 x^2y^2z^2$

Q5. Find the L.C.M. of the following expressions by factorization.; EX #6.1 Q.5;(ii, iii)

(ii) $x^2 + 4x + 4$, $x^2 - 4$, $2x^2 + x - 6$

Solution: $x^2 + 4x + 4 = (x+2)^2$ $x^2 - 4 = (x+2)(x-2)$ $2x^2 + x - 6 = 2x^2 + 4x - 3x - 6 = 3$

 $2x^2 + x - 6 = 2x^2 + 4x - 3x - 6 = 2x(x+2) - 3(x+2) = (x+2)(2x-3)$

L.C.M. = $(x+2)^2(x-2)(2x-3)$

(iii) $2(x^4-y^4)$, $3(x^3+2x^2y-xy^2-2y^3)$

Solution: $2(x^4 - y^4) = 2(x^2 - y^2)(x^2 + y^2) = 2(x - y)(x + y) = 2(x^2 - y^2)(x^2 + y^2)(x^2 + y^2)$ $3(x^3 + 2x^2y - xy^2 - 2y^3) = 3[x^2(x + 2y) - y^2(x + 2y)]$ $= 3(x + 2y)(x^2 + y^2) = 3(x + y)(x - y)(x + 2y)$

L. C. M. = $2 \cdot 3(x - y)(x + y)(x^2 + y^2)(x + 2y)$ = $6(x^2 - y^2)(x^2 + y^2)(x + 2y) = 6(x^4 - y^4)(x + 2y)$

Q1. Use factorization to find the square root of the following expressions.

(i) $4x^2 - 12xy + 9y^2$

Solution: $(2x)^2 - 2(2x)(3y) + (3y)^2 = (2x - 3y)^2 = \sqrt{(2x - 3y)^2}$

Required square root is $\pm (2x - 3y)$

(iv) $4(a+b)^2 - 12(a^2-b^2) + 9(a-b)^2$

Solution: $= [2(a+b)]^2 - 2[2(a+b)][3(a-b)] + [3(a-b)]^2$ $= [2(a+b) - 3(a-b)]^2 = (2a+2b-3a+3b)^2 = (5b-a)^2$

Required square root is $\pm (5b - a)$

(vi) $\left(x + \frac{1}{x}\right)^2 - 4\left(x - \frac{1}{x}\right)$; $(x \neq 0)$

Unit # 06

Algebraic Manipulation

Guess Papers

$$= \left(x - \frac{1}{x}\right)^2 - 2\left(x - \frac{1}{x}\right) \cdot 2 + (2)^2 = \left[\left(x - \frac{1}{x}\right) - 2\right]^2$$
Required agrees and in $+\left[\left(x - \frac{1}{x}\right) - 2\right]^2$

$$\therefore \qquad \text{Required square root is } \pm \left[\left(x - \frac{1}{x} \right) - 2 \right]$$

(vii)
$$\left(x^2 + \frac{1}{x^2}\right)^2 - 4\left(x + \frac{1}{x}\right)^2 + 12$$
 $(x \neq 0)$

Solution:
$$= x^4 + 2 + \frac{1}{x^4} - 4\left(x^2 + 2 + \frac{1}{x^2}\right) + 12 = \left(x^2 + \frac{1}{x^2}\right)^2 - 4\left(x^2 + \frac{1}{x^2}\right) - 8 + 12$$

$$= \left(x^2 + \frac{1}{x^2}\right)^2 - 4\left(x^2 + \frac{1}{x^2}\right) + 4 \qquad = \left(x^2 + \frac{1}{x^2}\right)^2 - 2\left(x^2 + \frac{1}{x^2}\right) \cdot 2 + (2)^2$$

$$= \left[\left(x^2 + \frac{1}{x^2}\right) + 2\right]^2 \qquad \therefore \qquad \text{Required square root is } \pm \left[\left(x^2 + \frac{1}{x^2}\right) - 2\right] \quad \text{EX \#6.3 Q.2;(i, iv, v)}$$

Q2. Use division method to find the square root of the following expressions.

(i)
$$4x^2 + 12xy + 9y^2 + 16x + 24y + 16$$

Solution:

The square root is $\pm (2x + 3y + 4)$ (iv) $4 + 25x^2 - 12x - 24x^3 + 16x^4$

Solution:

$$4x^{2} - 3x + 2$$

$$4x^{2}$$

$$16x^{4} - 24x^{3} + 25x^{2} - 12x + 4$$

$$\pm 16x^{4}$$

$$8x^{2} - 3x$$

$$-24x^{3} + 25x^{2}$$

$$\mp 24x^{3} \pm 9x^{2}$$

$$8x^{2} - 6x + 2$$

$$16x^{2} - 12x + 4$$

$$\pm 16x^{2} \mp 12x \pm 4$$

The square root is $\pm (4x^2 - 3x + 2)$.

(v)
$$\frac{x^2}{v^2} - 10\frac{x}{v} + 27 - 10\frac{x}{v} + \frac{x^2}{v^2}$$
 ; $(x \neq 0)(y \neq 0)$

Solution:

$$\frac{\frac{x}{y} - 5 + \frac{y}{x}}{\frac{x^{2}}{y^{2}} - 10\frac{x}{y} + 27 - 10\frac{x}{y} + \frac{x^{2}}{y^{2}}}$$

$$\pm \frac{x^{2}}{y^{2}}$$

$$\pm \frac{x^{2}}{y^{2}}$$

$$-10\frac{x}{y} + 27$$

$$\mp 10\frac{x}{y} \pm 25$$

$$2\frac{x}{y} - 10 + \frac{y}{x}$$

$$2 - 10\frac{x}{y} + \frac{y^{2}}{x^{2}}$$

(v)

(vi)

(vii)

(ix)

(x)

(xii)

Algebraic Manipulation

Review EX #6 Q.1

 $p^2q^2(p-q)$

100x5y5

 $(a - b)^2$

 $a^2 + ab + b^2$

15xyz

 $a^4 - b^4$

Product

(c)

(c)

(c)

(c)

(c)

(c)

(c)

(c)

(¢)

(c)

(c)

(c)

Difference

Guess Papers

 $pq(p^3-q^3)$

5xv

x + 6

 $a^{2} + b^{2}$

 $a^{2} - ab + b^{2}$

(x + 4)(x + 1)

15x²yz

Quotient

(d)

So th	e square root is $\pm \left(\frac{x}{y} - 5 + \frac{y}{x}\right)$.
Q1.	Choose the correct answer.
(i)	H.C.F. of $p^3q - pq^3$ and p^5q^2

(i) H.C.F. of
$$p^3q - pq^3$$
 and $p^5q^2 - p^2q^5$ is.....
(a) $pq(p^2 - q^2)$ (b) $pq(p - q)$

(ii) H.C.F. of
$$5x^2y^2$$
 and $20x^3y^3$ is......

(a)
$$5x^2y^2$$
 (b) $20x^3y^3$ (iii) H.C.F. of $x-2$ and x^2+x-6 is......

(a)
$$x^2 + x - 6$$
 (b) $x + 3$
(iv) H.C.F. of $a^3 + b^3$ and $a^2 - ab + b^2$ is.....

(a)
$$a + b$$
 (b) $a^2 - ab + b^2$ (c)

H.C.F. of
$$x^2 - 5x + 6$$
 and $x^2 - x - 6$ is......

(a)
$$x - 3$$
 (b) $x - 3$
H.C.F. of $a^2 - b^2$ and $a^3 - b^3$ is.....

n.c.r. or
$$a^a = b^a$$
 and $a^a = b^a$ is......
(a) $a = b$ (b) $a + b$

H.C.F. of
$$x^2 + 3x + 2$$
, $x^2 + 4x + 3$ and $x^2 + 5x + 4$ is.....

1.C.P. Of
$$x^2 + 3x + 2$$
, $x^2 + 4x + 3$ and $x^2 + 5x + 4$ is......
a) $x + 1$ (b) $(x + 1)(x + 2)$ (c)

L.C.M. of
$$a^2 + b^2$$
 and $a^4 - b^4$ is

(a)
$$a^2 + b^2$$
 (b) $a^2 - b^2$

(a) Sum (b)
(xi) Simplify
$$\frac{a}{a^2 + b^2} + \frac{1}{2a + b} = \cdots$$

Simplify
$$\frac{9a^2-b^2}{9a^2-b^2} + \frac{3a-b}{3a-b} = \cdots$$
(a) $\frac{4a}{3a^2-b^2}$

Simplify
$$\frac{a^2 + 5a - 14}{a^2 + 5a - 14} \times \frac{a + 3}{a + 3} = \cdots$$

Simplify
$$\frac{a^2 + 5a - 14}{a^2 - 3a - 18} \times \frac{a + 3}{a - 2} = \cdots$$

(a)
$$\frac{a+b}{a-6}$$
 (b) $a^3-b^3 + a^2+ab+b^2 =$

(xiii) Simplify
$$\frac{a^3-b^3}{a^4-b^4} \div \frac{a^2+ab+b^2}{a^2+b^2} = \cdots$$

(a)
$$\frac{1}{a+b}$$
 (b) $\frac{1}{a+b}$

(xiv) Simplify
$$\left(\frac{2x+y}{x+y}-1\right) \div \left(1-\frac{x}{x+y}\right) = \cdots$$

(a)
$$\frac{1}{x+y}$$
 (b) $\frac{2}{x+y}$

(xv) The square root of
$$a^2 - 2a + 1$$
 is.....

(a)
$$\pm (a+1)$$
 (b) $\pm (a-1)$

(xvi) What should be added to complete the square of
$$x^4 + 64$$

(a) $8x^2$ (b) $-8x^2$ (c) $16x^2$

(xvii) The square root of
$$x^4 + \frac{1}{x^4} + 2$$
 is......

(a)
$$\pm (x + \frac{1}{x})$$
 (b) $(x^2 + \frac{1}{x^4})$

$$\pm \left(x + \frac{1}{x}\right) \qquad \qquad \text{(b)} \quad \left(x^2 + \frac{1}{x^2}\right) \qquad \text{(c)} \quad \pm \left(x - \frac{1}{x}\right)$$

(c)
$$\pm \left(x - \frac{1}{x}\right)$$

<u>у</u> х

a – 1

16x²

$$(d) \qquad \pm \left(x^2 - \frac{1}{x^2}\right)$$

a + 1

4x²

Answers:

'•				
(i) b	(ii) a	(iii) c	(iv) b	(v) a
(vi) a	(vii) a	(viii) b	(ix) c	(x) c

Emails safid@office.com/ok

Consider +92 3/45 52/22/62/5

fb.com/office.com.pk

Guess Papers

Linear Equations & Inequalities

GUESS PAPER & MODEL PAPER # 07 BASED ON UNIT # 7 (Reduced Syllabus) LINEAR EQUATIONS AND INEQUALITIES

Unit 7	Linear Equations and Inequalities
Exercise 7.1	Q1(i, iii, v, vii, ix); Q2(i, ii, v, viii)
Exercise 7.2	Q1; Q2(ii, iv, v, vii)
Exercise 7.3	Q1(i, ii, iv, vii); Q2(i, ii, iii, viii)
Review Ex 7	Q1; Q2

NOTE:

Time allowed: 20 Minutes

- All Class work will be given for revision as H.W.
- The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the chapters: so MCQ's will be done in class by class teacher.

SECTION-A

31-		h! h :						Marks: 15
pa	per its	eir. It snoul	ia pe co	ory. All parts of ompleted in the verwriting is not	first 20 m	inutes and I	hande	ered on the question d over to the Centre cil.
Q.1	Encir	rcle the corr	ect opti	ion i.e. A / B / C	/ D. All nar	ts carm equ	al mar	te.
(i)	Whic	h of the foll	lowing i	s the solution of	the inequa	lity -4r < 1	ar mai 1 7	NS.
	(A)	-8	(B)	-2	(C)	-4	(D)	None of these
(ii)	A sta	tement invo	olving a	ny of the symbo	ls <, >, ≤ oı	≥ is called.	\-, •••••	
	(A)	equation	(8)	identity	(C)	inequality	(D)	linear equation
(iii)	x = .	is a solu	ation of	the inequality –	$2 < x < \frac{3}{2}$		- ,	1
	(A)	-5	(B)	3	(C)	0	(D)	$\frac{3}{2}$
(iv)	If x is	s no larger t	han 10.	then	. ,		(-)	2
` '	(A)	x > 8		x < 10	(C)	x < 10	(D)	x > 10
(v)	If the	e capacity c	of an el	evator is at mos	t 1600 pou	nds, then		X > 10
	(A)	c < 1600	(8)	c > 1600	(Ċ)	c < 1600	(D)	c > 1600
(vi)				e inequality			1-7	0.1000
	(A)	x > 0			(C)	x + 2 < 0	(D)	x - 2 < 0
(vii)	Solut	ion set of	$\frac{2}{3}x - \frac{1}{2}$	$x = x + \frac{1}{6} \text{ is}$				
	(A)	$\left\{ -\frac{1}{2}\right\}$	(B)	<u>[1]</u>	<i>(</i> 0)	(13)		(4)

Approximation of the state of t

Confict +92 345 5282625

fb.com/office.com.pl

Linear Equations & Inequalities

Guess Papers

Solution set of $\sqrt[3]{2-t} = \sqrt[3]{2t-28}$ is..... (lx)

(B) **{10**}

(C)**(6)**

(D) **{5**}

Solution set of $\frac{1}{2}|x+3|+21=9$ is...... (x)

(B) $\{-1\}$

{5}

(D)

(A) $\{0\}$ (B) $\{-1\}$ Solution set of 3x + 1 < 5x - 4 is...... (xi)

 $\left\{x \mid x > \frac{3}{2}\right\}$ (B) $\left\{x \mid x > \frac{5}{2}\right\}$

(C) $\left\{x \mid x > \frac{2}{2}\right\}$ (D) $\left\{x \mid x > \frac{1}{2}\right\}$

Solution set of $4 - \frac{1}{2}x \ge -7 + \frac{1}{4}x$ is.....

 $\left\{x \mid x > \frac{41}{2}\right\}$ (B) $\left\{x \mid x > \frac{46}{2}\right\}$

(C) $\left\{x \middle| x \leq \frac{44}{3}\right\}$ (D) $\left\{x \middle| x \leq \frac{42}{3}\right\}$

(xiii) Solution set of |3x + 14| - 2 = 5x is.....

(A)

(B) {-12,0}

(C) $\{2,0\}$

(D) ${3,-1}$

(xiv) Solution set of $-3 < \frac{1-2x}{5} < 1$ is..........

 $(x \mid x < 13)$ (B) $\{x \mid 2 > x > -1\}$

(C) $\{x \mid 8 > x > -2\}$

(D) $\{x \mid x \ge 12\}$

(xv) Solution set of $\left|\frac{x+5}{2-x}\right| = 6$ is.....

 $\left\{1,\frac{17}{5}\right\}$ (A)

(B) $\left\{-1, \frac{17}{r}\right\}$

(C) $\left\{1, \frac{12}{5}\right\}$

Time allowed: 2:40 hours

Note: Attempt any nine parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Log book and graph paper will be provided on demand.

SECTION - B (Marks 36)

Attempt any NINE parts from the following. All parts carry equal marks. Q.2 $(9 \times 4 = 36)$

Solve the following equations. $\frac{2}{3}x - \frac{1}{2}x = x + \frac{1}{6}$; EX #7.1 Q.1;(i) (i)

Solve for x, $\frac{1}{2}|3x+2|-4=11$; EX #7.2 Q.2;(ii) (ii)

Solve the following inequalities. (iii) -4 < 3x + 5 < 8; EX #7.3 Q.2;(i)

Solve for x. $\left| \frac{3x-5}{4} \right| - \frac{1}{3} = \frac{2}{3}$; EX #7.2 Q.2;(vii) (iv)

 $\frac{\frac{2}{x^2-1} - \frac{1}{x+1} = \frac{1}{x+1}}{\frac{2x}{2x+5}} = \frac{2}{3} - \frac{5}{4x+10}$; $x \neq \pm 1$; EX #7.1 Q.1;(ix) Solve the following equations. (v)

Solve the following equations. (vi)

Solve for x, |3+2x|=|6x-7|; EX #7.2 Q.2;(iv) (vii)

Solve the following inequalities. 3x-2<2x+1<4x+17 ; EX #7.3 Q.2;(viii) (viii)

Solve the following inequalities. $-6 < \frac{x-2}{4} < 6$; EX #7.3 Q.2;(iii) (ix)

 $-5 \le \frac{4-3x}{2} < 1$; EX #7.3 Q.2;(ii) Solve the following inequalities. (x)

Solve for x. |x+2|-3=5-|x+2|; EX #7.2 Q.2;(v) (xi)

Solve the following equations. $\frac{5(x-3)}{6} - x = 1 - \frac{x}{9}$; EX #7.1 Q.1;(v) (xii)

(xiii) Solve the following equations. $\frac{1}{2}\left(x-\frac{1}{6}\right)+\frac{2}{3}=\frac{5}{6}+\frac{1}{3}\left(\frac{1}{2}-3x\right)$; EX #7.1 Q.1;(iii)

Prepared By: Safid or Rehman Subject: Guess Papers (Mathematics 9th) www.office.com.pk Emells selfil@office.compls Confict +92 345 5282625 fb.com/office.com.pk

Linear Equations & Inequalities

Guess Papers

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks.

 $(3 \times 8 = 24)$

- Show that the points M(-1,4), N(-5,3), P(1,-3) and Q(5,-2) are the vertices of a Q.3 parallelogram.; EX #9.2; Q.9
- In an isosceles Δ , the base $\overline{BC}=28~cm$, and $\overline{AB}=\overline{AC}=50~cm$. If $\overline{AD}\pm\overline{BC}$, then find 0.4
 - Area of $\triangle ABC$; EX #15; Q.4 (ii)
- In a right angled triangle, the square of the length of hypotenuse is equal to the sum of Q.5 the squares of the lengths of the other two sides. ; Theorem # 15.1.1
- In a parallelogram ABCD, $\overline{mAB}=10$ cm. The altitudes corresponding to sides AB and AD are 0.6 respectively 7 cm and 8 cm. find \overline{AD} .; EX #16.1; Q.2
- Construct a right-angled isosceles triangle whose hypotenuse is 5.2 cm long. Q.7

EX #17.1 Q.4;(i)

SOLUTION OF GUESS PAPER & MODEL PAPER # 7 (Reduced Syllabus)

SECTION- A (MCQs)

i. B	ii. C	iii. C	iv. B	v. C	vi. D
vii. A	viii. C	ix. B	x. D	xi. B	xii. C
xiii. A	xiv. C	xv. A			

SECTION – B (Marks 36)

- Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$ 0.2
- Solve the following equations. $\frac{2}{3}x \frac{1}{2}x = x + \frac{1}{6}$; EX #7.1 Q.1;(i) (i)

Solution: $\frac{2}{3}x - \frac{1}{3}x = x + \frac{1}{6}$

 $4x - 3x = 6x + 1 \Rightarrow x = 6x + 1$ Multiplying both sides by 6 we get;

$$\Rightarrow -5x = -\frac{1}{5} ; \qquad \therefore \text{ Solution set } = \left\{-\frac{1}{5}\right\}$$

Solve for x. $\frac{1}{2}|3x+2|-4=11$; EX #7.2 Q.2;(ii)

Solution:
$$\frac{1}{2}|3x+2|-4=11$$

$$\frac{1}{2}|3x+2|=15 \Rightarrow |3x+3|=30$$

The equation is equivalent to

$$3x + 2 = 30$$
 or $3x + 2$
 $x = 30 - 2$ or $3x = -30 - 2$

$$x = 30 - 2$$
 or $3x = -30 - 2$

$$x = 30 - 2$$
 or $3x = -30 - 2$
 $3x = 28$ or $3x = -32$
 $x = \frac{28}{3}$ or $x = \frac{-32}{3}$

Solution set =
$$\left\{\frac{28}{3}, -\frac{32}{3}\right\}$$

(iii) Solve the following inequalities. -4 < 3x + 5 < 8; EX #7.3 Q.2;(i)

The airen equality represents two inequalities

The control of the co

fb.com/office.com.pk

...

Linear Equations & Inequalities

Guess Papers

$$3x > -9 \Rightarrow x > -\frac{9}{3} \Rightarrow x > -3 \Rightarrow -3 < x$$
(i)

The second inequality 3x + 5 < 8 gives

$$3x < 3 \Rightarrow 0r$$
 $x < 1$ (ii)

Combining (i) and (ii), we have

Solution set is $\{x \mid -3 < x < 1\}$

(iv) Solve for x.
$$\left| \frac{3x-5}{4} \right| - \frac{1}{3} = \frac{2}{3}$$
; EX #7.2 Q.2;(vii)

Solution:
$$\left| \frac{3x-5}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

 $\left| \frac{3-5x}{4} \right| = \frac{2}{3} + \frac{1}{8} = 1$

The given equation is equivalent to $\left| \frac{3-5x}{4} \right| = \pm 1$ or $3-5x = \pm 4$

i.e.
$$3-5x=4$$
 or $3-5x=-4$

$$-5x = 4$$
 or $-5x = -4 - 3$
 $-5x = 1$ or $-5x = -7$

$$x = -\frac{1}{5} \qquad \text{or} \qquad x = \frac{7}{5}$$

Solution set =
$$\left\{-\frac{1}{7}, \frac{7}{5}\right\}$$

(v) Solve the following equations.
$$\frac{2}{x^2-1} - \frac{1}{x+1} = \frac{1}{x+1}, \qquad x \neq \pm 1 \quad \text{; EX #7.1 Q.1; (ix)}$$

Solution:
$$\frac{2}{x^2-1} - \frac{1}{x+1} = \frac{1}{x+1}$$

Multiplying both sides by $x^2 - 1$

$$2-(x-1) = x-1 \Rightarrow 2-x+1 = x-1 \Rightarrow -x-x = -1-2-1$$

 $-2x = -4 \Rightarrow x = 2$; So solution set = $\{2\}$

(vi) Solve the following equations.
$$\frac{2x}{2x+5} = \frac{2}{3} - \frac{5}{4x+10}$$
; $x \neq -\frac{5}{2}$; EX #7.1 Q.1;(vii)

Solution:
$$\frac{2x}{2x+5} = \frac{2}{3} - \frac{5}{2(2x+5)}$$

Multiplying both sides by 6(2x+5) we get; 6(2x) = 4(2x+5) - 15

Or
$$12x = 8x + 20 - 15$$

$$x = \frac{5}{4}$$
; So solution set = $\left\{\frac{5}{4}\right\}$

(vii) Solve for
$$x$$
, $|3+2x| = |6x-7|$; EX #7.2 Q.2;(iv)

Solution: |3 + 2x| = |6x - 7|

The given equation is equivalent to $3+2x=\pm(6x-7)$

i.e.
$$3+2x=6x-7$$
 or $3+2x=-6(6x-7)$

i.e.
$$2x-6x=-7$$
 or $2x+6x=7-3$

i.e.
$$-4x = -10$$
 or $8x = 4$ $x = \frac{5}{2}$ or $x = \frac{1}{2}$; Solution set $\left\{\frac{5}{2}, \frac{1}{2}\right\}$

(viii) Solve the following inequalities,
$$3x-2 < 2x+1 < 4x+17$$
; EX #7.3 Q.2; (viii)

Solution:
$$3x - 2 < 2x + 1 < 4x + 17$$

or

This is equivalent to
$$3x-2 < 2x+1$$
 And $2x+1 < 4x+17$

The first inequality gives
$$3x-2 < 2x+1$$

$$3x - 2x < 1 + 2 \Rightarrow \text{ or } x < 3 \dots (i)$$
The second inequality gives

The second inequality gives 3-11-4-6

Linear Equations & Inequalities

Guess Papers

solution set is $\{x \mid -8 < x < 3\}$

Solve the following inequalities. $-6 < \frac{x-2}{4} < 6$; EX #7.3 Q.2;(iii)

Solution: $-6 < \frac{x-2}{4} < 6$

 $-6 < \frac{x-z}{4}$ This inequality is equivalent to two inequalities

 $\frac{x-2}{4} < 6$ And

> The first inequality gives -24 < x - 2-22 < x (i) $-24+2 < x \Rightarrow$

x - 2 < 24The second inequality gives

x < 26° x < 24 + 2 Or _ ,.,...(II) -22 < x < 26Combining (i) and (ii) we have

Solution set is $\{x\} - 22 < x < 26\}$ ä

 $-5 \le \frac{4-3x}{2} < 1$; EX #7.3 Q.2;(ii) Solve the following inequalities. (x)

Solution: $-5 \le \frac{4-3x}{2} < 1$

 $-5 \le \frac{4-3x}{2} \quad \text{And} \quad$ The given inequality represents two inequalities $-5 \leq \frac{4-3x}{2}$ The first inequality gives

 $-10 \le 4 - 3x \quad \Rightarrow \quad -10 - 4 \le -3x \Rightarrow \quad 14 \ge 3x \Rightarrow \quad \frac{14}{3} \ge x \qquad \dots$

The second inequality gives $\frac{4-3x}{2} < 1$

 $4-3x < 2 \Rightarrow 4-2 < 3x \Rightarrow 2 < 3x \Rightarrow \frac{2}{3} < x \dots \dots \dots$

Combining (i) and (ii) $\frac{2}{3} < x \le \frac{14}{3}$; : Solution set is $\left\{x \mid \frac{2}{3} < x < \frac{14}{3}\right\}$

Solve for x. |x+2|-3=5-|x+2|; EX #7.2 Q.2;(v) (xi)

Solution: |x + 2| - 3 = 5 - |x + 2|

|x+2|+|x+2|=5+3 $2|x+2| = 8 \Rightarrow |x+2| = 4$ x+2=4 or x+2=-4

This equation is equivalent to x = -6; : Solution set = $\{2, -6\}$ or

(xii) Solve the following equations. $\frac{5(x-3)}{4} - x = 1 - \frac{x}{5}$; EX #7.1 Q.1;(v)

Solution: $\frac{5(x-3)}{6} - x = 1 - \frac{x}{6}$

Multiplying both sides by 18 we get; 15(x-3)-18x=18-2x $15x - 45 - 18x = 18 - 2x \Rightarrow$ 15x - 18x + 2x = 18 + 45O٢ x = -63; \therefore Solution set = {--63} -x = 63

(xiii) Solve the following equations. $\frac{1}{2}\left(x-\frac{1}{6}\right)+\frac{2}{3}=\frac{5}{6}+\frac{1}{3}\left(\frac{1}{2}-3x\right)$; EX #7.1 Q.1;(iii)

Solution: $\frac{1}{2}(x-\frac{1}{6})+\frac{2}{3}=\frac{5}{6}+\frac{1}{3}(\frac{1}{3}-3x)$ Or $\frac{6x-1}{12} + \frac{2}{2} = \frac{5}{4} + \frac{1-6x}{4}$ $\frac{1}{2}\left(\frac{6x-1}{6}\right) + \frac{2}{3} = \frac{5}{6} + \frac{1}{3}\left(\frac{1-6x}{2}\right)$

Multiplying both sides by 12

Emails saffil@office.complx

Conget +92 345 5282625

fb.com/office.com.pk

Guess Papers

Linear Equations & Inequalities

 $\sqrt{\frac{x+1}{2x+5}} = 2 \; ; \; x \neq \frac{5}{2}$ EX #7.1 Q.2;(viii)

Solution:
$$\sqrt{\frac{x+1}{2x+5}} = 2$$
 ; Squaring both sides $\frac{x+1}{2x+5} = 4$
 $x+1 = 4(2x+5) \Rightarrow x-1 = 8x+20 \Rightarrow x-8x = 20-1$
 $-7x = 19 \Rightarrow x = -\frac{19}{7}$; ... Solution set = $\left\{-\frac{19}{7}\right\}$

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks.

 $(3 \times 8 = 24)$

Q.3 Show that the points
$$M(-1,4), N(-5,3), P(1,-3)$$
 and $Q(5,-2)$ are the vertices of a parallelogram.; EX #9.2; Q.9

Solution:

Points are
$$M(-1,4), N(-5,3), P(1,-3)$$
 and $Q(5,-2)$

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

$$|MN| = \sqrt{(-1+5)^2 + (4-3)^2} = \sqrt{(4)^2 + (1)^2}$$

$$|PQ| = \sqrt{(5-1)^2 + (4-3)^2} = \sqrt{(4)^2 + (1)^2}$$

$$|NP| = \sqrt{(1+5)^2 + (-3-3)^2} = \sqrt{(6)^2 + (-6)^2}$$

$$|MQ| = \sqrt{(5+1)^2 + (-2-4)^2} = \sqrt{(6)^2 + (-6)^2}$$

$$|QN| = \sqrt{(5+5)^2 + (-2-3)^2} = \sqrt{(10)^2 + (-5)^2}$$

$$|NP|^2 + |PQ|^2 = 72 + 17 = 89 \neq 125 \approx |QN|^2$$

$$= \sqrt{16+1} = \sqrt{17}$$

$$= \sqrt{36+36} = \sqrt{72} = 6\sqrt{2}$$

$$= \sqrt{36+36} = 6\sqrt{2}$$

$$= \sqrt{100+25} = \sqrt{125} = 5\sqrt{5}$$

But |MN| = |PQ| = |NQ| = |MO|Hence the given points from a parallelogram.

In an isosceles Δ , the base $\overline{BC}=28~cm$, and $\overline{AB}=\overline{AC}=50~cm$. If $\overline{AD}\perp\overline{BC}$, then find Q.4 length of \overline{AD} (ii) Area of ΔABC; EX #15; Q.4 Solution:

(1)AD L BC

D is mid point for \overline{BC}

So
$$m\overline{BD} = \frac{1}{2}(28) = 14 cm$$

From right angled $\triangle ABD$
 $(m\overline{AB})^2 = (m\overline{BD})^2 + (m\overline{AD})^2$
 $(50)^2 = (14)^2 + (m\overline{AD})^2$
 $(m\overline{AD})^2 = (50)^2 - (14)^2 = 2500 - 196 = 2304$

Area of AAR(= here violations = $\frac{1}{2}$ (m \overline{PC}) \vee (m \overline{AB}) an

 $(m\overline{AD})^2 = (50)^2 - (14)^2 = 2500 - 196 = 2304$ $m\overline{AD} = \sqrt{2304} = 48cm$

Linear Equations & Inequalities

Guess Papers

In a right angled triangle, the square of the length of hypotenuse is equal to the sum of Q.5 the squares of the lengths of the other two sides. ; Theorem # 15.1.1

Given:

 $\triangle ACB$ is a right angle triangle in which $m\angle C=90$ and $m\overline{BC}=a$, $m\overline{AC}=b$ and $m\overline{AB}=c$

To Prove:
$$c^2 = a^2 + b^2$$

Construction:

Draw \overline{CD} perpendicular from C on \overline{AB} . Let $m\overline{CD} = h$, $m\overline{AD} = x$ and $m\overline{BD} = y$. Line segment \overline{CD} splits AABC into two triangles ADC and BDC which are separately shown in figure ii (a) and ii (b) respectively.

Proof:

ot: Statements	Reasons
In the correspondence	
∆ADC ↔ ∆ACB	
$\angle A \cong \angle A$	Refer to figure ii (a) and (i) common-self congruent
∠ADC ≅ ∠ACB	Construction given both measure 90°
∠C ≅ ∠B	$\angle C$ and $\angle B$, complements of $\angle A$
$\triangle ADC \cong \Delta ACB$	Congruency of three angles
$\therefore \frac{x}{b} = \frac{b}{c}$	Measure of corresponding sides of similar triangles is similar.
Again in the correspondence	Refer to figure ii(b) and (i)
ΔBDC ↔ ΔBCA	
∠B≅∠B	Common self congruent
∠BDC ≅ ∠BCA	Construction given, both measure 90°
∠C ≅ ∠A	$\angle C$ and $\angle A$, complements of $\angle B$
∴ ∆BDC ≅ ∆BCA	Congruency of three angles.
$\frac{y}{a} = \frac{a}{a}$	Sides of similar triangles are proportional. (Theorem 6)
$\operatorname{or}^{\alpha} y = \frac{a}{c^2} \dots \text{(ii)}$	
But $y + x = c$	Supposition
a^2 b^2	By (i) and (ii)
<u> </u>	

Linear Equations & Inequalities

Guess Papers

In a parallelogram ABCD, $m\overline{AB}=10~cm$. The altitudes corresponding to sides AB and AD are Q.6

respectively 7 cm and 8 cm. Find \overline{AD} .; EX #16.1; Q.2 Solution:

Given:

ABCD is a parallelogram.

$$\overline{MAB} = 10 \text{ cm}$$
, \overline{DL} and \overline{BM} are altitudes $\overline{MDL} = 7 \text{ cm}$, $\overline{MBM} = 8 \text{ cm}$

To prove:

$$m\overline{A}\overline{D} = ?$$

Proof: Area of a parallelogram = base xaltitude

Area of a parallelogram ABCD $m\overline{A}\overline{B} \times m\overline{D}\overline{L} = m\overline{A}\overline{D} \times m\overline{B}\overline{M}$

$$10 \times 7 = m\overline{AD} \times 8$$

$$m\overline{AD} = \frac{10 \times 7}{8} = \frac{35}{8} = 8.75 \text{ cm}$$

Construct a right-angled isosceles triangle whose hypotenuse is 5.2 cm long. Q.7

EX #17.1 Q.4;(i)

Solution:

Construction:

- Draw a line segment mAB = 5 cm.
- (ii) Draw LM the right bisector of AB cutting it at the point O.
- (iii) With centre at the point O and \overline{AB} as diameter draw a semi-circle to cut 1.M at the point C.
- (iv) Join C to A and B.

So the required triangle is ABC.

IMPORTANT QUESTIONS & ANSWERS (Reduced Syllabus)

Solve each equation and check for extraneous solution, if any.; EX #7.1 Q.2;(i, ii, v) 02.

When raising each side of the equation to a certain power may produce a Extraneous solution: nonequivalent equation that has more solutions than the original equation. These additional solutions are called extraneous solutions. We must check our answer(s) for such solutions when working with radical equations.

(i)
$$\sqrt{3x+4}=2$$

Solution: Taking square of both sides

$$3x + 4 = 4 \Rightarrow$$

$$3x = 4 - 4 \Rightarrow$$

2x = 12

$$3x = 0$$
 Or

$$x = 0$$
 : \cdot

Solution set $= \{0\}$

(ii)
$$\sqrt[3]{2x-4}-2=0$$

Solution: $\sqrt[3]{3x-4}=2$:

Taking cube of both sides;

$$x = 12$$
 Or $x = 6$; \therefore

$$2x - 4 = 2^3 = 8$$

Solution set = $\{6\}$

 $2x = 8 + 4 \Rightarrow$ Or $\sqrt[3]{2x+3} = \sqrt[3]{x-2}$ (v)

Taking cube of both sides Solution:

$$2x + 3 = x - 2$$

$$2x-x = -2-3 \Rightarrow$$

$$x = -5$$
; \triangle Solution set = $\{-5\}$

fb.com/office.com.pk

Linear Equations & Inequalities

Guess Papers

- (iii) The equation |x| = 2 is equivalent to x = 2 or x = -2.
- (iv) The equation |x 4| = -4 has no solution.
- The equation |2x-3|=5 is equivalent to 2x-3=5 or 2x+3=5. (v)

Answers:

(i) T	(ii) F	(iii) T	(iv) T	(v) F

- Solve the following inequalities. ; EX #7.3 Q.1;(i , ii ,iv , vii) Q1.
- (1)3x + 1 < 5x - 4

 $3x - 5x < -4 - 1 \Rightarrow -2x < -5 \Rightarrow -2x > 5 \Rightarrow x > \frac{5}{2}$; ... Solution set is $\left\{x \mid x > \frac{5}{2}\right\}$ Solution:

(ii) $4x - 10.3 \le 21x - 1.8$

 $4x - 21x \le -1.8 + 10.3$ Solution:

 $17x \le 8.5 \Rightarrow x \ge -0.5$; :: Solution set is $\{x \mid x \ge -0.5\}$

(iv) $x-2(5-2x) \ge 6x-3\frac{1}{2}$

Solution: $x - 0 + 4x \ge 10 - \frac{7}{2} \implies 5x - 6x \ge 10 - \frac{7}{2}$

 $-x \ge \frac{13}{7} \Rightarrow -x \ge 6.5 \Rightarrow x \le -6.5$; \therefore Solution set is $\{x | x \le -6.5\}$

(vii) 3(x-1)-(x-2) > -2(x+4)

 $3x-3-x+2>-2x-8 \Rightarrow$ $2x-1>-2x+8\Rightarrow$ 2x + 2x < -0 + 1Solution: $4x > -\frac{7}{4}$; : Solution set is $\left\{x \mid x > -\frac{7}{4}\right\}$

- Choose the correct answer.; Review EX #7 Q.1 Q1.
- Which of the following is the solution of the inequality $-4x \le 11$?..... (i)

(d) None of these (b) -2 (c) (a)

A statement involving any of the symbols <, >, \le or \ge is called (ii) (b) identity (c) inequality linear equation

 $x = \dots$ is a solution of the inequality $-2 < x < \frac{3}{2}$ (III)

(d) (b) (a)

If x is no larger than 10, then..... (iv)

x < 10(c) x < 10(d)x > 10(a) x > 8(b)

If the capacity c of an elevator is at most 1600 pounds, then..... (v)

c < 1600c > 1600c > 1600 (c) **c** < 1600 (b)

x = 0 is a solution of the inequality..... (vi)

3x + 5 < 0 (c) x + 2 < 0(d) x - 2 < 0(b) x>0 (a)

Answers:

(i) b	(ii) c	(iii) c	d (vi)	(v) c	(vi) d		

- Identify the following statements as True or False.; Review EX #7 Q.2 Q2.
- The equation 3x 5 = 7 x is a linear equation. (i)
- The equation x = 0.3x = 0.7x is an identity. (ii)
- The equation -2x + 3 = 8 is equivalent to -2x = 11. (iii)
- To eliminate fractions, we multiply each side of an equation by the L.C.M. of denominators. (iv)
- 4(x + 3) = x + 3 is a conditional equation. (v)
- The equation 2(3x+5)=6x+12 is ah inconsistent equation. (vi)
- To solve $\frac{x}{2}x = 1.2$, we should multiply each side by $\frac{x}{2}$. (vii)
- (uiii) Equations having exactly the same solution are called equivalent equations

GUESS PAPER & MODEL PAPER # 08 BASED ON UNIT # 8 (Reduced Syllabus) LINEAR GRAPHS AND THEIR APPLICATION

Unit 8	Linear Graphs and their Applications
Exercise 8.1	Q1; Q2(i, ii, iii, iv, v, vl, vll, xiii, xiv); Q5
Exercise 8.2	Q3(a, b, c); Q4
Exercise 8.3	Q1; Q2; Q3
Review Ex 8	Q1; Q2

NOTE:

- All Class work will be given for revision as H.W. Þ
- The MCQ's Portion of the annual paper will be taken from MCQ's exercise at the end of the Þ chapters: so MCQ's will be done in class by class teacher.

			<u>SECTION</u>	ON-A		
Time	allowed: 20 Minut	95				Marke: 15
pap	er itself. It sho perintendent, Del	uld be completed eting/overwritin	d in the first g is not allo	t 20 minutes : wed. Do not u:	and handed se lead penci	
Q.1	Encircle the cor	rrect option i.e. A	/ B / C / D.	All parts carry	equal mark	s.
(i)	If $(x-1, y+1)$	= (0, 0), then (>	c, y) is		•	
		(B) (-1, 1)) (C)	(1, 1)	(D)	(-1, -1)
(ii)	If(x,0)=(0,y)), then (x, y) is		•		•
	(A) (0, 1)	(B) (1,0)	(C)	(0, 0)	(D)	(1, 1)
(iii)	Point (2, −3) lie	es in quadrant				•
	(A) I	(B) II	(C)	M	(D)	IV
(iv)	_	lies in quadrant				
	(A) I	(B) II	(C)	III	(D)	IV
(v)	If $y = 2x + 1$, x	•				
	(A) 2	(B) 3	(C)	4	(D)	5
(vi)		pair satisfy the e	•	2x.		
	(A) (1, 2)	(B) (2, 1)	(C)	(2, 2)	(D)	(0, 1)
(vii)	Point (5, -2) lie	•				
	(A)	(B) II	(C)	Ш	(D)	IV
(viii)		e points (2, -2) a		•		
	(A) (2, 2)	(B) (-2, -2)		(0, 0)	(D)	(1, 1)
(ix)		ig all sides differ				
	(A) Isosceles	(B) Scalen		Equilateral	(Đ)	None of these
(x)	A triangle havin	ig two sides cong	ruent is call	ed		

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Approximate selfide and a self-control of the control of the contr Conficts +92 345 5282625 fb.com/office.com.pk

Unit # 08 Linear Graphs & Their Application **Guess Papers**

(xii)	Dista	nce betwee	n points	(0, 0) and	(1, 1) is			
	(A)	0	(B)	1	(C)	2	(D)	$\sqrt{2}$
(xiii)	The r	nedians of a	, .	e cut each		the ratio	(0)	γZ
	(A)	4:1	(B)	3:1	(C)	2:1	(D)	1:1
(xiv)	The r	ight bisecto	rs of the	three side	s of a tri	angle are	1-7	
	(A)	congruent	(B)	collinear	(C)	concurrent	(D)	parallel
(xv)	The d	liagonals of	a parall		each ot	her,	` ,	
	(A)	bisect	(B)	trisect	(C)	bisect at right angle	(D)	none of these
		2:40 hours	_					Total Marks: 60
Not	e: Atte	mpt any nin	e parts	from Secti	on 'B' an	d any three question	is fro	n Section 'C' on the
sep	arately	r provided a	nswer t	юок. Use :	suppleme	entary answer sheet	ie 9	heat-R if required
Wri	te your	answers ne	atly and	d legibly. L	og book :	and graph paper wil	be pr	ovided on demand.
			-	SECTIO	N B	(Marks 36)		
Q.2	Atten	pt any NINI	E parts !	rom the fo	llowing.	All parts carry equal	maek	s. (9 × 4 = 36)
(i)	Draw	the graph o	f the fol	lowing, x	= 2 : E	(#8.1 Q.2;(i)		5. (3×4=30)
(ii)	Draw	the graph o	f the fol	lowing, x	= -3 :1	X #8.1 Q.2;(ii)		•
(iii)	Draw	the graph or	f the fol	lowing. v	= -1 :	EX #8.1 Q.2;(iii)		
(iv)	Draw	the graph o	f the fol	lowing, v	= 3 : EX	K #8.1 Q.2;(iv)		
(v)	Draw	the graph of	f the fol	lowing. v	= 0 : EX	#8.1 Q.2;(v)		
(vi)	Draw	the graph of	f the fol	lowing. x	= 0 : E	(#8.1 Q.2;(vi)		
(vii)	Draw	the graph of	f the fol	lowing, v	=3r:8	X #8.1 Q.2;(vii)		
(viii)	Draw	the graph of	f the fol	lowing r	- 3w ± 1	= 0; EX #8.1 Q.:	1.5	
(ix)	Draw	the graph of	the fol	lowing, 2	- 7ν ± 1 - 7ν ± 1	= 0 ; EX #8.1 Q.2	G(XIII)	1
(x)	Sketcl	h the graph i	for folio	wing line.	Y - 31	+ 2 = 0 ; EX #8.2	(XIV)	
(xi)	Sketch	the graph i	for follo	wing line.	3x - 2	2y-1=0; EX #8.2	7.3/(c	1) (h)
(xii)		the graph i				+ 2 = 0 ; EX #8.2	. Q.3,	(<i>u)</i> · 1
(xiii)	Solve	the followin	g pair o	f equations	s in x and	y graphically.	K -21/4	• •
		x + y = 0 ar	nd 2x –	y + 3 = 0	; EX #8.	3; Q.1		
(xiv)	Solve	the followin	g pair o	f equations	in x and	y graphically.		
	x y +	+1 = 0 and $=$	x – 2y =	-1; EX	#8.3 ; Q	.2		
								
			5	ECTIO	<u>v – C (</u>	<u> Marks 24)</u>		
Note:	Attem	pt any THRE	È quest	ions. Each	question	carries equal marks	i_	$(3 \times 8 = 24)$

- Construct the following $\Delta's$ XYZ. Draw their three medians and show that they are Q.3 concurrent? $m\overline{YZ} = 4.1$ cm, $m\angle X = 75^{\circ}$, $m\angle Y = 60^{\circ}$; EX #17.2 Q.4;(i)
- Construct the following triangles ABC. Draw the perpendicular bisectors of their sides and Q.4 verify their concurrency. Do you meet inside the triangle? $\overline{MAB} = 5.3 \text{ cm}, \, m\angle A = 45^{\circ}, \, m\angle B = 30^{\circ}; \, EX \#17.2 \, Q.3;(i)$
- Construct the following $\Delta's$ PQR. Draw their altitudes and show that they are concurrent. Q.5 $\overline{mPQ} = 6 \text{ cm}, \overline{mQR} = 4.5 \text{ cm}, \overline{mPR} = 5.5 \text{ ; } EX #17.2 Q.2;(i)$
- Parallelograms on the same base and between the same parallel lines (or of the same Q.6 altitude) are equal in area. ; ; Theorem # 16.1.1
- The end point of a line segment PQ is (-3,6) and its mid-point is (5,8). Find the coordinates Q.7 of the end point Q. ; EX #9.3; Q.2

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Emails safid@office.com.pk Genasis 492 345 5282625 fb.com/office.com.pk

Unit # 08

Linear Graphs & Their Application

Guess Papers

SOLUTION OF GUESS PAPER & MODEL PAPER # 8 (Reduced Syllabus)

SECTION- A (MCQs)

i. A	ii. C	iii. D	iv. C	v. D	vi. A
vii. D	viii. C	ix. B	x, D	xi. Ç	xii. D
xiii. C	xiv. C	xv. A			

SECTION - B (Marks 36)

- Q.2 Attempt any NINE parts from the following. All parts carry equal marks. $(9 \times 4 = 36)$
- (i) Draw the graph of the following. x = 2; EX #8.1 Q.2;(i)

Solution: x = 2

Table for the points of the equation x = 2 is as under:

x	2	2	2	2	2	2	2
У		-2	-1	0	1	2	

Thus the graph of the equation x = 2 is as shown below.

(ii) Draw the graph of the following, x = -3; EX #8.1 Q.2;(ii)

Solution: x = -3

Table for the points of the equation x = -3 is as under:

x	-3	-3	-3	-3	-3	-3	-3
_ر_ا		-2	-1	0	1	2	11.4

Thus the graph of the equation x = -3 is as shown below.

					Г		Τ	Т			
	X=	-3		r	Ī	T	✝	 -			
	7	L		Ι.	Y	Г	Τ			Τ-	
				4	Γ	-			1	Г	İ⊤
				3	Г		_	T	Т	Г	Г
				2	Г	T	1	T			-
_				1	Г	Г	Г	T	\vdash	<u> </u>	
Ī	4	-3	2	-1	0	1	2	3	4	X	
				-1							
				-2					\vdash		
				-3			T	1			

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Emails saffil@office.com/ik Conficts +92 345 5282625

fb.com/office.com.pk

Unit # 08

Linear Graphs & Their Application

Guess Papers

Draw the graph of the following. y = -1; EX #8.1 Q.2;(iii) (iii)

Solution: y = -1

Table for the points of the equation y = -1 is as under:

x		-2	-1	0	1	2	
y	-1	-1	-1	-1	-1	1	-1

Plotting these points and joined them we get the graph of y = -1 as under:

Draw the graph of the following. y = 3; EX #8.1 Q.2;(iv) (iv)

Solution: y = 3

Table for the points of the equation y = 3 is as under:

x		-2	-1	0	1	2	
y	3	3	3	3	3	3	3

Plotting these points and joined them we get the graph of v = 3 as under:

VILIE O	BIIU	Jon	184	ritor	*	yer	VIII C	Aigi	211 0	7	, , ,	3 (1)	461
	ļ _		L										
	1						Y						
┌						4							
						3							
						1		Ξ	•			Yź	
						1		•	•				
						_							
	ľ		1	7	2	1						I	N.
							Ţ						
<u> </u>													

Draw the graph of the following. y = 0; EX #8.1 Q.2;(v) (v)

Solution: y = 0

Table for the points of the equation y = 0 is as under:

	χ	111	2	-1	0_	1	2	
Γ	ν	0	Ö	0	0	0	0	0

Prepared Bys Saffd or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk िमार्ची। हर्वाचि@र्वीक्ट-क्टाम्मीर दिलाबर्टर +92 ३४५ ५२८२६२५ (b.com/office.com.pk

Unit # 08

Linear Graphs & Their Application

Guess Papers

(vi) Draw the graph of the following. x = 0; EX #8.1 Q.2;(vi) Solution: x = 0

Table for the points of the equation x = 0 is as under:

Į	x	0	0	0	0	0	0	C
	y .	:	-2	–1	0	1	2	4.,

Plotting these points we see that all the points are on y-axis. So the graph of the equation x = 0 is y-axis as shown below.

(vii) Draw the graph of the following. y = 3x; EX #8.1 Q.2;(vii)

Solution: y = 3x

Table for the points of the equation y = 3x is as under:

Х	– 2	-1	O	1	2
y	6	-3	Ô	3	6.

The points (x, y) are plotted in the plane as shown below: Joining them we get the graph of the line y = 3x as under:

1.25.		100 101	 	VA 9.	<u> </u>	UIIU	<u> </u>
	<u> </u>	<u>L.</u>				l]
			-	Y	1		
			4		7		
			3	7			
			2	/у	=	3 x	· · ·
			T				
X	•	2 -	4 /	0	1	2	X
			7				
			7-2				

Unit # 08 Linear Graphs & Their Application

Guess Papers

(viii) Draw the graph of the following. x - 3y + 1 = 0; EX #8.1 Q.2;(xiii)

Solution: x - 3y + 1 = 0

i.e.

x = 3y - 1 or $y = \frac{x+1}{3}$

Table for the points of equation is as under:

ļ	x	-2	-1	0	1	2
	у	-4	-2	0	2	4

The points are plotted in the plane. By joining the plotted points we get the graph of the equation as under:

Draw the graph of the following. 3x - 2y + 1 = 0; EX #8.1 Q.2;(xiv) (ix)

Solution: 3x - 2y + 1 = 0

or $y = \frac{3x+1}{x}$

Table for the points of the equation is as under:

x	3	-2	–1	0	1
y	-4	$-2\frac{i}{2}$	1	5	2

The points are plotted in the plane and by joining them we get the graph of the equation as under:

Conficts +92 345 5282625

fb.com/office.com.pk

Unit # 08 Linear Graphs & Their Application

Guess Papers

X	-2	-1	0	1	2	3	4
у	0	0.3	0.66	1	1.3	2.66	2

Plotting these points we get the graph of the equation as under:

Sketch the graph for following line.

3x - 2y - 1 = 0; EX #8.2 Q.3;(b)

Solution: 3x - 2y - 1 = 0

or
$$3x - 1 = 2y$$
 or $y = \frac{3x - 1}{2}$

We tabulate the values of (x, y) as under:

١.	141540	U. (A,)	40 0	101.				
	x	-3	-2	- <u>1</u>	0	1	2	3
	y	-5	-3.5	-2	-0.5	1	2,5	4

Plotting the values of x and y and joining these we get the graph of the equation as under:

(xii) Sketch the graph for following line.

Solution: 2y - x + 2 = 0

or
$$2y = x - 2$$
 or $y = \frac{x - 2}{2}$

We calculate the values (x, v) as under:

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

Alpunoscoffic@lifters alternal

Conficts +92 345 5282625

fb.com/office.com.pk

Guess Papers

Unit # 08 Linear Graphs & Their Application

Plotting these points and joining them we get the graph of the equation as under:

(xiii) Solve the following pair of equations in x and y graphically.

$$x + y = 0$$
 and $2x - y + 3 = 0$; EX #8.3; Q.1

Let the system of the equations be Solution:

$$x + y = 0$$

$$2x - y + 3 = 0$$

For (i) y = -x the table of values is

x	0	-1	2
у	0	1	-2

For (ii) y = 2x + 3, the table of values is

х	0	-1.5	-1
y	3	0	1

By plotting the points we get the following graph.

Guess Papers

Unit # 08 Linear Graphs & Their Application

(xiv) Solve the following pair of equations in x and y graphically.

x-y+1=0 and x-2y=-1; EX #8.3; Q.2

Solution: Let the system of equations be

$$x-y+1=0$$
(i);

For (i) y = x + 1, the table of values is

х	0	-1	1
у	1	0	2

For (ii) $y = \frac{x+1}{2}$, the table of values is

X	O	-1	1
у	0.5	0	1

By plotting the points we get the following graph.

The solution of the system is the point R where the two lines meet i.e. R(-1, 0) x = -1, y = 0.

SECTION - C (Marks 24)

Note: Attempt any THREE questions. Each question carries equal marks.

 $(3 \times 8 = 24)$

Construct the following $\Delta's$ XYZ. Draw their three medians and show that they are Q.3 concurrent? $m\overline{YZ} = 4.1 \text{ cm}, m \angle X = 75^{\circ}, m \angle Y = 60^{\circ}; EX #17.2 Q.4;(i)$

 $m\angle X = 75^{\circ}, m\angle Y = 60^{\circ}$ Solution:

Construction:

- Take $m\overline{YZ} = 4.1$ cm. (i)
- At the point Y make $m \angle XYZ = 60^{\circ}$. (ii)
- At the point Z make $m \angle XYZ = 45^{\circ}$. (iii)
- The terminal sides of the two angles meet at X and we get the (iv) ΔXYZ.
- Draw perpendicular bisectors of the sides \overline{XY} , \overline{YZ} and \overline{XZ} of (v) the AXYZ and mark their mid points L, M and N respectively.
- Join X to L to get the median XL. (vi)
- Join Y to M to get the median YM. (vii)

fb.com/office.com.pk

Unit # 08

Linear Graphs & Their Application

Guess Papers

- We observe that the third median also passes through the point of intersection of first two (x)
- Hence the three medians of the AXYZ pass through the same point G i.e. they are concurrent at (xi) the point G.
- Construct the following triangles ABC. Draw the perpendicular bisectors of their sides and Q.4 verify their concurrency. Do you meet inside the triangle? $m\overline{AB} = 5.3 \text{ cm}, m\angle A = 45^{\circ}, m\angle B = 30^{\circ}; EX #17.2 Q.3;(i)$

Solution:

Construction:

- (i) Take $\overline{MAB} = 5.3$ cm.
- At the point A make $m\angle BAC = 45^{\circ}$. (ii)
- (iii) At the point B make m∠ABC = 30°.
- The terminal sides of these angles meet at C and ABC (iv) is the required triangle.
- Draw perpendicular bisectors of BC and CA meeting (v) each other at the point O.
- Now draw the perpendicular bisector of third side \overline{AB} . (vi)
- We observe that it also passes through O, the point of (vii) intersection of first two perpendicular bisectors.
- Hence the three perpendicular bisectors of sides of \triangle ABC are concurrent at O. (vii)
- Construct the following $\Delta's$ PQR. Draw their altitudes and show that they are concurrent. Q.5 $m\overline{PQ} = 6 \text{ cm}, m\overline{QR} = 4.5 \text{ cm}, m\overline{PR} = 5.5; EX #17.2 Q.2;(i)$

Solution:

Construction:

- (i) Take $m\overline{P0} = 6 \text{ cm}$.
- With P as centre and radius equal to 5.5 cm draw an arc. (li)
- With Q as centre and radius equal to 4.5 cm draw another (iii) arc to cut the first arc at R.
- Join \overline{PR} and \overline{QR} to complete the triangle ΔPQR . (iv)
- From the vertex P draw $\overline{PL} \perp \overline{QR}$. (v)
- From the vertex Q draw QM ± PR. These two altitudes meet (vi) in the point O inside the APQR.
- (vii) Now from the third vertex 'R' draw $\overline{RN} \perp \overline{PQ}$.
- (viii) We observe that this third altitude also passes through the point of intersection O of the first two altitudes.
- (viii) Hence the three altitudes of the APQR are concurrent at O.
- Parallelograms on the same base and between the same parallel lines (or of the same Q.6 altitude) are equal in area. ; ; Theorem # 16.1.1

Solution:

Linear Graphs & Their Application

Guess Papers

Given: Two parallelograms ABCD and ABEF having the same base AB and between the same parallel lines AB and DE.

Area of parallelogram ABCD = Area of parallelogram ABEF To Prove:

Proof:

Statements	Reasons
area of (parallelogram ABCD)	
= area of (quadrilateral ABED) + area of (ACBE) (1)	Area addition axiom
= area of (quadrilateral ABED) + area of (ADAF) (2)	Area addition axiom
mCB = mDA	Opposite sides of a parallelogram
mBĒ = mAF	Opposite sides of a parallelogram
¿CBE = ¿DAF	Opposite sides of a parallelogram
∴ ∆CBE ≅ ∆DAF	S.A.S. congruent Axiom
area of (∆CBE) = area of (∆DAF)(3)	Congruent area axiom
Hence area of (parallelogram ABCD)	
= area of (parallelogram ABEF)	from (1), (2) and (3)

The end point of a line segment PQ is (-3,6) and its mid-point is (5,8). Find the coordinates 0.7 of the end point Q_{ij} ; EX #9.3; Q.2

Solution:

$$P(-3, 6)$$
 M $(5, 8)$ Q (x, y)

Let Q be the point (x,y), M(5,8) is the mid point of PQ

 $x = \frac{x_1 + x_2}{2} \Rightarrow 5 = \frac{-3 + x}{2}$ by mind point formula we have

 $10 = -3 + x \Rightarrow 10 + 3 = x \Rightarrow x = 13$ Now $y = \frac{y_1 + y_2}{2} \Rightarrow 8 = \frac{6 + y}{2} \Rightarrow 16 = 6 + y \Rightarrow 16 - 6 = y \Rightarrow$ Hence point Q is (13, 10)

IMPORTANT QUESTIONS & ANSWERS 🏂 (Reduced Syllabus)

Determine the quadrant of the coordinate plane in which the following points lie: Q1. P(-4,3), Q(-5,-2), R(2,2) and S(2,-6). ; EX #8.1 Q.1

lies in Third quadrant. lies in Second quadrant. ; Q(-5, -2)Solution: lies in Fourth quadrant. lies in First quadrant.; S(2,-6)R(2,2)

Verify whether the following point lies on the line 2x - y + 1 = 0 or not. Q5.

(iv) (2, 5) (v) (5, 3) (ii) (0,0) (iii) (-1,1) (i) (2, 3)EX #8.1 Q.5 (2, 3)(i)

The line is 2x - y + 1 = 0 for the point (2, 3)

 $2(2) - 3 + 1 = 4 - 3 + 1 = 2 \neq 0$; A point does not lie on the line

(ii) (0, 0)

The line is 2x - y + 1: For the point (0, 0): $2(0) - 0 + 1 = 0 - 0 = 1 \neq 0$ Solution: point does not lie on the line

(-1, 1)

The line is 2x - y + 1 = 0 for (-1, 1) Solution:

Guess Papers

Linear Graphs & Their Application

2(2) - 5 + 1 = 4 - 5 + 1 = 0; the point lies on the line

(5, 3)(v)

The line is 2x - y + 1 = 0 for the point (5, 3)Solution:

> $2(5) - 3 + 1 = 10 - 3 + 1 = 8 \neq 0$; the point does not lie on the line.

Draw the graph for following relations. EX #8.2 Q.4 Q4.

One mile = 1.6 km (i)

One Acre = 0.4 Hectare

 $F = \frac{9}{7}C + 32$ (iii)

One Rupee = $\frac{1}{64}$ \$ (iv)

Solution: (i) One mile = 1.6 km

y = 1.6 x; We tabulate value of x and y as under:

х	0	1	2	3	4	
y	0	1.6	3.2	4.8	6.4	

Mile is taken along x-axis and Km along y-axis. We plot the point (x, y) and joining them we get the graph of $y = 1.6 \times i.e.$ conversion graph of miles and km.

On Acre = 0.4 Hectare (ii)

If Acre is measured along x-axis and hectare along y-axis then y = 0.4 x

The ordered pairs are tabulated in the following table.

x	0	1	2	4
у	0	0.4	0.8	1.2

The corresponding points (0, 0), (1, 1.4), (2, 0.8) etc. are plotted in the xy-plane. Join of which

forms the graph of conversion of v = 0.4 x

												L.
	\Box	Y									7	Ĺ
П	1.6						L			Z		L
\top				[L	y =	0.4	X				
	1.2					L			(3,	1.2)	
11	\Box				Γ_{-}		\mathbb{Z}					
\top	0.8						(2,0	8			Ľ.	
	1		Г	I								
77	0.4		Г			Γ				L^-		
			7	(1)	p. 4	1)	Ţ			Ī. <u>.</u> .		
7.1	\top	Z			Ī							
1	\top	0	Г	1		2	T	3		4		ľ

Unit # 08 Linea

Linear Graphs & Their Application

Guess Papers

(iii)
$$F = \frac{9}{5}C + 32$$

We tabulate the values of C and F

C	0°	10°	20°	30°	40°
F	32°	50°	68	86°	104°

Plotting these points and joining them we get the required graph of F = $\frac{3}{5}$ C + 32 as under:

(iv) One Rupee =
$$\frac{1}{86}$$
\$

or One Rupee = 0.01\$

If \$ y is an expression of Rs. X, expressed under the rule y = 0.01 x

We tabulate the value of x and y as under:

х	0	10	20	30	40	
у	0	0.1	0.2	0.3	0.4	

Plotting the points corresponding to the ordered pairs (x, y) from the table and joining them we get the required graph.

EX #8.3; Q.3

Solve the following pair of equations in x and y graphically.

Q3.
$$2x + y = 0$$
 and $x + 2y = 2$

Solution: Let the system of equations be

$$2x + y = 0 \qquad (i)$$

$$x + 2y = 2 \qquad (ii)$$

For (i) y = -2x, the table of values is

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk

Emerile cerifici@office.com/rfk

Confict +92 345 5282625

fb.com/office.com.pk

Guess Papers

Unit # 08

Linear Graphs & Their Application

For (ii) $y = \frac{2-x}{2}$, the table of values is

X	0	٤.	-2
у	1	O-	2

By plotting the points we get the following graph.

The solution of the system is the point R where the two lines meet i.e. R $\left(-\frac{2}{3},\frac{4}{3}\right)$

$$x = -\frac{2}{3}$$
 , $y = \frac{4}{3}$

- Choose the correct answer.; Review EX #8; Q.1 Q1.
- (i) If (x - 1, y + 1) = (0, 0), then (x, y) is
 - (1, -1)(b)
 - (-1, 1) (c) (1, 1)
- (-1, -1)(d)

- (ii) If (x, 0) = (0, y), then (x, y) is
 - (0, 1)
- (¢) (b)
- (0, 0)
- (d) (1, 1)

- (iii) Point (2, -3) lies in quadrant
 - (a)
- (b)
- Ш (c)
- IV (d)

- (iv) Point (~3, ~3) lies in quadrant
- (C) Ш
- I۷ (d)

- (b) (v) If y = 2x + 1, x = 2 then y is
- (b)
- (c)
- (d) 5
- (vi) Which ordered pair satisfy the equation y = 2x.
 - (1, 2)(a)
- (2, 1)(b)
- (d) $(0 \ 1)$

Answers:

į	(i) a	(ii) c	(iii) đ	(iv) c	(v) d	(vi) a

- Identify the following statements as True or False.; Review EX #8; Q.2 Q2.
- The point O(0, 0) is in quadrant II. (i)
- (ii) The point P(2, 0) lies on x-axis.
- The graph of x = -2 is a vertical line. (iii)
- (iv) 3 - y = 0 is a horizontal line.
- (v) The point Q(-1, 2) is in quadrant III.
- (vi) The point R(--1, --2) is in quadrant IV.
- y = x is a line on which origin lies. (ilv)
- The point P(1, 1) lies on the line x + y = 0(iiiv)
- The point R(0, 1) lies on the x-axis. The point S(1, --3) lies in quadrant lil. (x) (ix)

Geometry Portion _Unit#9101112413141516617

Guess Papers

Important Questions & Answers (Reduced Syllabus Geometry Portion) UNIT # 9,10,11,12,13,14,15,16,17

Find the distance between the following pairs of points. EX #9.1; Q.1;(a,d,e) **Solution:** (a) A(9,2), B(7,2)

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

 $|AB| = \sqrt{(7-9)^2 + (2-2)^2} = \sqrt{(-2)^2 + (0)^2} = \sqrt{4+0} = \sqrt{4} = 2$

(d) $A(-4,\sqrt{2})$, B(-4,-3)

Solution:
$$AB = \sqrt{[-4 - (-4)]^2 + [-3 - \sqrt{2}]^2} = \sqrt{(-4 + 4)^2 + (-3 - \sqrt{2})^2}$$

$$= \sqrt{(0)^2 4(-3 - \sqrt{2})^2} = |-3 - \sqrt{2}|$$

$$= 3 + \sqrt{2}$$

(e) A(3,11), B(3,4)

Solution:
$$|AB| = \sqrt{(3-3)^2 + [-4 - (-11)]^2} = \sqrt{(0)^2 + (7)^2} = 7$$

(f) A(0,0), B(0,5)

Solution:
$$|AB| = \sqrt{(0-0)^2 + (-5-0)^2} = \sqrt{(0)^2 + (-5)^2} = \sqrt{0+25} = \sqrt{25} = 5$$

Let P be the point on x-axis with x-coordinate a and Q be the point on y-axis with y-Q2. coordinate b as given below. Find the distance between P and Q. EX #9.1; Q.2;(i, ii)

(i) a = 9, b = 7

.. P is (9,0) and Q is (0,7)

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

 $|PQ| = \sqrt{(0-9)^2 + (7-0)^2} = \sqrt{81 + 49} = \sqrt{130}$

(ii) a=2, b=3

A = P is (2,0) and Q is (0,3)

Distance formula =
$$d = \pm \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

 $|AB| = \sqrt{(0-2)^2 + (3-0)^2} = \sqrt{4+9} = \sqrt{13}$

Find the mid-point of the line segment joining each of the following pairs of points. Q1.

(a) A(9,2), B(7,2) EX #9.3; Q.1;(a, c, f)

Solution: Mid-point M is
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{9 + 7}{2}, \frac{2 + 2}{2}\right)$$
 Or $\left(\frac{16}{2}, \frac{4}{2}\right)$ Or (8, 2)

A(3,-11),8 (3,-4) (c)

Solution: Mid-point M is
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-8 + 6}{2}, \frac{1 + 1}{2}\right)$$
 Or $\left(\frac{-2}{2}, \frac{2}{2}\right)$ Or $(-1, 1)$

(f) A(0,0), B(0,-5)

Solution: Midpoint M is
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 ; $\left(\frac{0 + 0}{2}, \frac{0 - 5}{2}\right)$ or $\left(\frac{0}{2}, \frac{-5}{2}\right) = (0, -2.5)$

Choose the correct answer. Review EX #9; Q.1 01.

Distance between points (0, 0) and (1, 1) is

Emeils ceifid@office.com/pk

Confict +92 345 5282625

fb.com/office.com.pk

Geometry Portion _Unit #9101111213141516617

Guess Papers

- (iii) Mid-point of the points (2, 2) and (0, 0) is
- (1, 0)(b)
- (0, 1)

(0, 0)

(d) (-1, -1)

- Mid-point of the points (2, -2) and (-2, 2) is (iv)
 - (2, 2)(a)
- (-2, -2) (c)

(d) (1, 1)

- (v) A triangle having all sides equal is called
 - sosceles
- Scalene (c) (b) Equilateral
- (d) None of these

- A triangle having all sides different is called (vi)
 - Isosceles (a)
- (b) Scalene (c) Equilateral
- (d) None of these

Answers:

(i) d (ii) c (iii) a (iv) (v) (vi) b Ç

- Answer the following, which is true and which is false. ; Review EX #9 ; 0.2 Q2.
 - A line has two end points. (i)
 - (ii) A line segment has one end point.
 - (iii) A triangle is formed by three collinear points.
 - Each side of a triangle has two collinear vertices. (iv)
 - The end points of each side of a rectangle are cottinear. (v)
 - All the points that lie on the x-axis are collinear. (vi)
 - Origin is the only point collinear with the points of both the axes separately. (vii)

Answers:

(i) F	(ii) F	(iii) F	(iv) T	(v) T
(vi) T	(vii) T			

EX #10.1; Q.1

In the given figure, Q1.

 $\overline{AB} \cong \overline{CB}, \angle 1 \cong \angle 2.$

Prove that

∆ABD ≅ ∆CBE

Solution:

Given:

In the given figure $\angle 1 \cong \angle 2$ and $\overline{AB} \cong \overline{CB}$

To prove:

ΔABD ≅ ΔCBE

Proof:

Statements	Reasons		
In ΔABD ↔ ΔCBE			
AB ≅ CB	Given		
∠BAD ≅ ∠BCE	Given ∠ 1 ≅ ∠2		
∠ABD ≅ ∠CBE	Common		
∴ AABD ≅ ACBE	S. A. A ≅ S. A. A		

EX #10.3; Q.1

In the given figure, $\overline{AB} \cong \overline{DC}$, $\overline{AD} \cong \overline{BC}$. Q1.

Prove that $\angle A \cong \angle C$, $\angle ABC \cong \angle ADC$

Solution:

Given:

In the figure $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$

To prove:

∠ **≃ ∠C** $\angle ARC \simeq \angle ADC$

Prepared Bys Safid or Rehman Subjects Guess Papers (Mathematics 9th) www.office.com.pk Emells selfid@office.comuck fb.com/office.com.pk

Conficts +92 345 5282625

Geometry Portion . Unit #910111213141516617

Guess Papers

Statements	Reasons
In ΔABD ↔ ΔCDB \[\overline{AB} \cong \overline{DC} \] \[\overline{AD} \cong \overline{CD} \] \[\overline{DD} \cong \overline{DB} \] \[\overline{ABC} \cong \overline{ACDB} \] \[\overline{A} \cong \overline{ACDB} \] \[\overline{ABC} \cong \overline{ACDB} \] \[\overline{ACDB} \] \[\overline{ABC} \cong \overline{ACDB} \] \[\overline{ABC} \cong \overline{ACDB} \] \[\overline{ACDB} \] \[\overline{ABC} \cong \overline{ACDB} \] \[\overline{ACDB} \] \[\overline{ABC} \cong \overline{ACDB} \] \[\overline	Given Given Common S.S.S. \cong S.S.S. Corresponding sides of \cong Δs Corresponding sides of \cong Δs .
$\hat{i} + \hat{x} = \hat{2} + \hat{y}$ or $\angle ABC \cong \angle ADC$	Addition of angles

EX #10.4; Q.1

In \triangle PAB of figure, $\overrightarrow{PQ} \perp \overrightarrow{AB}$, and $\overrightarrow{PA} \cong \overrightarrow{PB}$, Prove that $\overrightarrow{AQ} \cong \overrightarrow{BQ}$, and $\angle APQ \cong \angle BPQ$.

Solution:

Given:

ΔΡΑΒ,

PA ≅ PB PQ 1 AB. and

To prove:

 $\overline{AQ} \cong \overline{BQ}$

/APA ≈ /RPA and

Proof:

Statements	Reasons
In ΔAPQ ↔ ΔBPQ	
PA ≅ PB	Glven
∠AQP ≅ ∠BQP	Given PQ 1 AB
PO ≅ PO	Common
∴ ΔAPQ ≅ ΔBPQ	H.S.≅ Ĥ.S.
So $\overline{AQ} \cong \overline{BQ}$	Corresponding sides of $\cong \Delta s$.
and ∠APQ≅∠BPQ	Corresponding sides of $\cong \Delta s$.

EX #10.4; Q.2

In the figure, $m\angle C = m\angle D = 90^{\circ}$ and $\overline{BC} \cong \overline{AD}$. Q2.

Prove that $\overline{AC} \cong \overline{BD}$, and $\angle BAC \cong \angle ABD$.

Solution:

Given:

in the figure,

 $m\angle C = m\angle D = 90^{\circ}$

 $BC \cong AD$ and

Guess Papers

Geometry Portion _Unit #910111213141516617

Statements	Reasons	
In ΔABD ↔ ΔBAC		
Ď ≅ Ĉ	Given	
AD ≅ BC	Given	
AB ≅ B A	Common	
∴ ∆ABD ≅ ∆BAC	H. S. ≅ H. S.	
So $\overrightarrow{AC} \cong \overrightarrow{BD}$	Corresponding sides of $\cong \Delta'$ s.	
and ∠BAC≅∠ABD	Corresponding sides of $\cong \Delta'$ s,	

- Q1. Which of the following are true and which are faise?; Review EX #10; Q.1
 - A ray has two end points. (i)
 - In a triangle, there can be only right angle. (ii)
 - Three points are said to be collinear if they lie on same ane. (iii)
 - Two parallel lines intersect only at a point. (iv)
 - Two lines can intersect only at one point. (v)
 - A triangle of congruent sides has non-congruent angles. (vi)

Answers:

Review EX #10; Q.3

If $\triangle ABC = \triangle LMN$, then find the unknown x. 03.

Solution:

Given that
$$\Delta ABC = \Delta LMN$$

$$\Rightarrow$$
 60° = x°

$$\Rightarrow x = 60^{\circ}$$

Review EX #10 ; Q.4

Find the value unknowns for the given congruent triangles. 04.

Solution:

$$\Delta ADB \cong \Delta ADC$$

$$\overline{BD} \cong \overline{CD}$$

Corresponding sides of $\cong \Delta's$.

$$\Rightarrow$$
 5m - 3 = 2m + 6

or
$$5m-2m=6+3$$

 $3m=9$
 $\angle B \cong \angle C$

Corresponding sides of
$$\cong \Delta's$$
.

$$55^{\circ} \simeq (5x + 5)^{\circ}$$

$$\Rightarrow$$
 55 = 5x + 5

Geometry Portion Unit #9101111213141516617

Guess Papers

Review EX #10 ; Q.5

If PQR \cong ABC, then find the unknowns. Q5.

Solution:

Corresponding sides of $\cong \Delta's$.

$$\Rightarrow$$
 x = 3 cm

$$\overline{PR} \cong \overline{AC}$$

Corresponding sides of $\cong \Delta's$.

$$\Rightarrow$$
 5 = y - 1

$$y = 5 + 1$$

Corresponding sides of $\cong \Delta's$.

$$m\overline{QR} \cong m\overline{BC} \implies 4 cm = z \implies or$$

$$z = 4 cm$$

4 cm

Review EX #11; Q.1

Fill in the blanks. Q1.

- In a parallelogram opposite sides are (i)
- In a parallelogram opposite angles are (ii)
- Diagonals of a parallelogram each other at a point. (iii)
- Medians of a triangle are (iv)
- (v) Diagonals of a parallelogram divides the parallelogram into two triangles.

Answers:

- (i) parallel/congruent (iv) concurrent
- equal/congruent (ii) congruent
- (iii) intersect

Review EX #11; Q.2

Q2. In parallelogram ABCD

- mAB mDC (1)
- mBC mAD (ii)
- (iii) m∠1 ≅
- (iv) m∠2 ≅

Answers:

- (i)
- (ii)
- (ill) m∠3
- (iv) m∠1

Review EX #11 ; Q.3

Find the unknowns in the given figure. 03.

Solution:

- ก° ≊ 75°
- opposite angles are congruent
- n = 75
 - y°≅ n°
- Alternate angles
- y* ≅ n° ≅ 75°
- v = 45
 - x° + y° = 180°
- Supplementary angles
- x + y = 180
- x + 75 = 180
- x = 180 75 = 105

Unit#2000012121313131316&17

Guess Papers

Review EX #11; Q.4

Q4. If the given figure ABCD is a parallelogram, then find x, m.

Solution:

11x^b
$$\cong$$
 55° opposite angles
11x = 55
x = 5°
(5m + 10)° + 55° = 180°
Sum of interior angles of § lines
5m + 10 +55 = 180
5m + 65 = 180
m = 23°

Review EX #11; Q.5

Q5. The given figure LMNP is a parallelogram. Find the value of m, n.

Solution:

10

As opposite sides of a parallelogram are congruent

Review EX #12 ; Q.1

- Q1. Which of the following are true and which are false?
- (i) Bisection means to divide into two parts.
- (ii) Right bisection of line segment means to draw perpendicular which passes through the mid-point of line segment.
- (iii) Any point on the right bisector of a line segment is not equidistant from its end points.
- (iv) Any point equidistant from the end points of a line segment is on the right bisector of it.

n = 2

- (v) The right bisector of the sides of a triangle is not concurrent.
- (vi) The bisectors of the angles of a triangle are concurrent
- (vii) Any point on the bisector of an angle is not equidistant from its arm.
- (viii) Any point inside an angle, equidistant from its arms, is on the bisector of it.

Answers:

(4) T	/33 T	(iii) E	find T
137	1 (")	(101)	<u> </u>
(v) F	/vi\ T	/wii\ E	(viii) T

Geometry Portion . Unii #9101111213141516617

Guess Papers

Review EX #12; Q.2

If \overrightarrow{CD} is right bisector of line segment \overrightarrow{AB} , then Q2.

(i)
$$m \overline{OA} = \dots$$

(ii)
$$m \overline{AQ} = \dots$$

Answers:

_	
(i) $m \overline{OB}$	(2) - 70
MI WOD	(ii) m BQ

Review EX #12 ; Q.4

The given triangle ABC is equilateral triangle and \overline{AD} is bisector of angle A, then find the values of unknown x^0 , y^0 and z^0 .

Solution:

AABC is equilateral

$$= m \angle A = m \angle B = m \angle C = 60^{\circ}$$

$$z^o = 60^o$$

 \overrightarrow{AD} is bisector of $\angle A$

$$x^{0} = y^{0} = \frac{1}{2} m \angle A$$
$$= \frac{1}{2} (60^{\circ}) = 30^{\circ} : x^{0} = y^{0} = 30^{\circ}$$

Review EX #12 ; 0.5

In the given congruent triangles LMO and LNO, find the unknowns x and m. Q5. Solution:

Corresponding sides of congruent triangles ΔLMO and ΔLNO .

$$\overline{LM} \cong \overline{LN}$$

$$a = 2x + 6 = 18$$

$$2x = 18 - 6 = 12$$

$$x = \frac{12}{6} = 6$$

Given that $m \overline{ON} = 12$

Since given triangles are congruent therefore

$$m \overline{OM} = m \overline{ON} = 12$$

$$m \overline{OM} = m = 12$$

Review EX #12; Q.6

 $\overline{\it CD}$ is the right bisector of the line segment AB. Q6.

(i) If
$$m \overline{AB} = 6 cm$$
, then find the $m \overline{AL}$ and $m \overline{LB}$

(ii) If
$$m \overline{BD} = 4 cm$$
, then find the $m \overline{AD}$

Solution: CD is right bisector

$$m\overline{AL} = m\overline{BL}$$

$$=\frac{1}{2}(m\overline{AB}) \qquad =\frac{1}{2}(6\ cm)=3cm$$

$$m\overline{AL} = m\overline{BL} = 3 \text{ cm}$$

$$\begin{array}{ll}
\ln & \Delta A L D \leftrightarrow \Delta B L D \\
\overline{AL} \cong \overline{BL}
\end{array}$$

Geometry Portion _Unit #9101111213141516&17

Guess Papers

EX #13.2; Q.1

- In the figure, P is any point and AB is a line. Which of the following is the shortest distance Q1. between the point P and the line AB.
 - (a) mPL
- (b) mPM
- (c) mPN
- (d) $m\overline{PO}$

Solution:

We know that form a point outside a line, the perpendicular is the shortest distance from the point to the line.

As PN is perpendicular to AB

PN is the shortest distance. So

EX #13.2 ; Q.2

- In the figure, P is any point lying away from the line AB. Then $m\overline{PL}$ will be the shortest Q2. distance if
 - (a) $m\angle PLA = 80^{\circ}$
 - $m \angle PLB = 100^{\circ}$ (b)
 - $m \angle PLA = 90^{\circ}$ (c)

Solution: We know that for a point outside a line, the shortest distance from the point to the line is perpendicular to the line.

mPL is shortest, Aз

So PL is perpendicular to AB.

 $m\angle PLA = 90^{\circ}$ So

In the figure, \overline{PL} is perpendicular to the line AB and $\overline{mLN} > m\overline{LM}$. Prove that $\overline{mPN} > m\overline{PM}$. Q3.

Solution:

Given:

 \overline{PL} is perpendicular to \overline{AB} and $\overline{mLN} > m\overline{LM}$.

To prove:

 $m\overline{PN} > m\overline{PM}$

Proof:

Statements	Reasons	
in ALPN		
m∠PLN = 90*	Given	
∴ m∠PLN < 90° (i)	Angle of a triangle	
ln ΔPLM		
mzPMN > mzPLM	Exterior angle	
∴ m∠PMN < 90° (ii)	$\angle PLM = 90^{\circ}$	
in ΔPMN		

| Unit#910111213141516&17

Guess Papers

- Which of the following are true and which are false?; Review EX #13; Q.1 Q1,
 - The angle opposite to the longer side is greater. (i)
 - In a right-angled triangle greater angle is of 60°. (ii)
 - In an isosceles right-angled triangle, angles other than right angle are each of 60° . (iii)
 - A triangle having two congruent sides is called equilateral triangle. (iv)
 - A perpendicular from a point to line is shortest distance. (v)
 - Perpendicular to line form an angle of 60°. (vi)
 - A point outside the line is collinear. (vii)
 - Sum of two sides of triangle is greater than the third. (yiii)
 - The distance between a line a point on it is zero. (ix)
 - Triangle can be formed of lengths 2 cm, 3 cm and 5 cm. (x)

Solution:

OT	(ii) F	(iii) T	(iv) F	(v) T
(vi) T	(vii) F	(viii) T	(lx) T	(x) F

D

3.6 cm

24

EX #14.1; Q.1

Q1. In AABC, DE || BC.

Solution:

٠.

EC

(i)
$$\overline{AD} = 1.5 \text{ cm}, \overline{BD} = 3 \text{ cm}, \overline{AE} = 1.3 \text{ cm}, \overline{CE} = ?$$

$$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$3 \qquad mEC$$

$$\Rightarrow \qquad 1.5(mEC) = (1.3)3$$

$$mEC = \frac{1.3 \times 1.3}{1.5} = \frac{13 \times 3 \times 10}{10 \times 15}$$
$$= \frac{13 \times 3}{15} = \frac{13}{5} = 2.6 \text{ cm}$$

(ii)
$$\overrightarrow{AD} = 2.4 \text{ cm}, \overrightarrow{AE} = 3.2 \text{ cm}, \overrightarrow{EC} = 4.8 \text{ cm}, \overrightarrow{AB} = ?$$

In
$$\triangle ABC$$
, $\overline{DE} \parallel \overline{BC}$; As $\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$

$$\frac{2.4}{m\overline{DB}} = \frac{3.2}{4.8}$$

$$3.2(m\overline{DB}) = (2.4) (4.8)$$

$$m\overline{DB}$$
 = $\frac{(2.4)(4.8)}{3.2}$ = $\frac{24 \times 10 \times 48}{10 \times 32 \times 10} = \frac{36}{10}$

$$mAB = mAD + mDB = 2.4 + 3.6 = 6.0 cm$$

8

(iii)
$$\frac{\overline{AB}}{\overline{DB}} = \frac{3}{5}$$
, $\overline{AC} = 4.8$, $\overline{AE} = ?$; In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$

As
$$\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$$
; $\therefore \frac{3}{5} = \frac{AE}{\overline{EC}}$
 $\therefore \frac{3}{5} + 1 = \frac{\overline{AE}}{\overline{EC}} + 1$; $\frac{8}{5} = \frac{\overline{AE} + \overline{EC}}{\overline{EC}} = \frac{\overline{AC}}{\overline{EC}}$
 $\frac{8}{5} = \frac{4.8}{\overline{EC}} \Rightarrow 8\overline{EC} = 4.8 \times 5 = \overline{EC}$
 $\overline{EC} = \frac{24}{\overline{EC}} = 3$

Emells ceffd@offlee.com/sk

Confict +92 345 5282625

fb.com/office.com.pk

Guess Papers

Geometry Portion

.Unit#910111213141516&17

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}} = \frac{\overline{DE}}{\overline{BC}} \Rightarrow \therefore \quad \frac{2.4}{\overline{AB}} = \frac{3.2}{\overline{AC}} = \frac{2}{5}$$

$$2(\overline{AB}) = 5(2.4) = 12$$

$$\overline{AB} = \frac{12}{2} = 6 \text{ cm} \Rightarrow 2(\overline{AC}) = (3.2)5 = 16$$

$$\overline{AC} = \frac{16}{2} = 8 \text{ cm} \Rightarrow \overline{DE} = \overline{AB} - \overline{AD} = 6 - 2.4 = 3.6 \text{ cm}$$

$$\overline{CE} = \overline{AC} - \overline{AE} = 8 - 3.2 = 4.8 \text{ cm}$$

(v)
$$\overrightarrow{AD} = 4x - 3$$
, $\overrightarrow{AE} = 8x - 7$, $\overrightarrow{BD} = 3x - 1$, $\overrightarrow{CE} = 5x - 3$, find x. in $\triangle ABC$, $\overrightarrow{DE} \parallel \overrightarrow{BC}$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}} \Rightarrow \frac{4x-3}{3x-1} = \frac{8x-3}{5x-3}$$

$$(4x-3)(5x-3) = (8x-7)(3x-1)$$

$$20x^{2} - 12x - 15x + 9 = 24x^{2} - 8x - 21x + 7 \text{ or } 20x^{2} - 24x^{2} - 27x + 29x + 9 - 7 = 0$$

$$-4x^{2} + 2x + 2 = 0 \text{ or } 2x^{2} - x - 1 = 0$$

$$2x^{2} - 2x + x - 1 = 0 \Rightarrow 2x(x - 1) + (x - 1) = 0 + (x - 1)(2x + 1) = 0$$

$$x = 1, -\frac{1}{7}; \text{ For } x = -\frac{1}{7} \text{ sides become negative.}; \text{ So } x = 1$$

EX #14.2; Q.1

Solution:

In ∆ABC, CD bisect ∠ C meets AB at D.

As $\overline{\text{CD}}$ is the internal bisector of $\angle C$

So
$$\frac{\frac{mBD}{mDA}}{\frac{mBD}{6}} = \frac{\frac{mBC}{mCA}}{\frac{mBD}{12}}$$

$$\frac{mBD}{6} = \frac{10}{12}$$

$$mBD = 6 \times \frac{10}{12} = 5$$
So the correct answer is (a).

EX #14.2; Q.2

Q2. In
$$\triangle ABC$$
 shown in the figure, \overrightarrow{CD} bisects $\angle C$. If $\overrightarrow{mAC} = 3$, $\overrightarrow{mCB} = 6$ and $\overrightarrow{mAB} = 7$, then find \overrightarrow{mAD} and \overrightarrow{mDB} .

Solution:

$$m\overline{CB} = 6$$
, $m\overline{AB} = 7$

then
$$m\overline{DB} = 7 - x$$

As
$$\overrightarrow{CD}$$
 is internal bisector of $\angle C$

So
$$\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AC}}{mCB} \Rightarrow \frac{x}{7-x} = \frac{3}{6}$$

$$6x = 21 - 3x \Rightarrow 9x = 21$$

$$x = \frac{21}{9} \Rightarrow m\overline{AD} = \frac{21}{9} = \frac{7}{3}$$

$$m\overline{DB} = m\overline{AB} - m\overline{AD} \implies m\overline{DB} = 7 - \frac{21}{9} = \frac{63 - 21}{9} = \frac{42}{9} = \frac{14}{3}$$

- Which of the following are true and which are false? Review EX #14; Q.1 Q1.
 - Congruent triangles are of same size and shape.

Confict +92 345 5282625

Geometry Portion Unit #910111213141516617

Guess Papers

- Congruent triangles are similar. (v)
- Similar triangles are congruent. (vi)
- A line segment has only one mid-point. (vii)
- (viil) One and only one line can be drawn through two points.
- Proportion is non-equality of two ratios. (ix)
- Ratio has no unit. (x)

Answers:

(i) T	(ii) T	(iii) F	(iv) F	(v) T
(vi) F	(vii) T	(viii) T	(ix) F	(x) T

Review EX #14 ; Q.4

In the shown figure, let $m\overline{P}\overline{A}=8x-7$, $m\overline{P}\overline{B}=4x-3$, $m\overline{A}\overline{Q}=5x-3$, $m\overline{B}\overline{R}=3x-1$. Find the value of x if AB | QR.

Solution:

$$\overline{MPA} = 8x - 7$$
, $\overline{MPB} = 4x - 3$
 $\overline{MAQ} = 5x - 3$, $\overline{MBR} = 3x - 1$

AB∥ QR A5

$$\frac{mPA}{mAQ} = \frac{mPB}{mBR}$$

$$\frac{8x-7}{8x-3} = \frac{4x-3}{8x-3}$$

$$\frac{5x-3}{5x-3} = \frac{4x-5}{3x-1}$$

$$(8x - 7)(3x - 1) = (4x - 3)(5x - 3)$$

$$24x^2 - 8x - 21x + 7 = 20x^2 - 12x - 15x + 9 \Rightarrow 24x^2 - 20x^2 - 29x + 27x + 7 = 9$$

$$4x^2 - 2x + 7 = 9 \implies 4x^2 - 2x - 2 = 0 \implies 2x^2 - x - 1 = 0 \implies 2x^2 - 2x + x - 1$$

$$2x(x-1) + (x-1) = 0 \Rightarrow (x-1)(2x+1) = 0 \quad x = 1, -\frac{1}{2}$$
; $x = 1$ is the required value.

In \triangle LMN show in the figure, \overrightarrow{LA} bisect $\angle L$. If $\overrightarrow{mLN} = 4 \ \overrightarrow{mLM} = 6$, $\overrightarrow{mMN} = 8$, then find Q5. mMA and mAN. Review EX #14; Q.5

Solution:

$$m\overline{LN} = 4$$
, $m\overline{LN} = 6$, $m\overline{MN} = 8$

$$\frac{\overline{MMA}}{\overline{MNA}} = \frac{\overline{mLM}}{\overline{mLN}} = \frac{6}{4}$$

i.e.
$$\overline{MMA}$$
: \overline{MNA} = 6:4

but
$$m\overline{MN} = m\overline{MA} + m\overline{AN} = 8$$

$$m\overline{MA} = \frac{6}{10} \times 8 = \frac{48}{10} = 4.8$$
and
$$m\overline{AN} = \frac{4}{10} \times 8 = \frac{32}{10} = 3.2$$

and
$$m\overline{AN} = \frac{4}{10} \times 8 = \frac{32}{10} = 3.2$$

In isosceles APOR shown in the figure, find the value Q6. of x and y. Review EX #14; Q.6

Solution:

PM 1 QR where PQR is an isosceles triangle

<u> | Unit#910114124134441546&17</u>

Guess Papers

EX #15; Q.6

Q6. (i) In the $\triangle ABC$ as shown in the figure, $m\angle ACB = 90^{\circ}$ and $\overline{CD} \perp \overline{AB}$. Find the lengths a, h and b if

$$m\overline{BD} = 5$$
 units and $m\overline{AD} = 7$ units

Solution:
$$m\overline{AB} = 5 + 7 = 12$$

In right angled ABDC

$$a^2 = 25 + h^2$$
 (1)

In right angled AADC

$$b^2 = 49 + h^2$$
 (2)

In right angled ∆ABC

$$a^2 + b^2 = 144$$
 (3)

Adding (1) and (2)

$$a^2 + b^2 = 74 + 2h^2,...$$
 (4)

 $74 + 2h^2 = 144$ From (3) and (4)

$$2h^2 = 144 - 74 = 70 \implies h^2 = 35 \implies h = \sqrt{35} \text{ units}$$

 $a^2 = 25 + 35 = 60$ Put $h^2 = 35 \text{ in (1)}$:

$$a = \sqrt{60} = 2\sqrt{15} \text{ units}; \quad \text{Put } h^2 = 35 \text{ in (2)}; \quad b^2 = 49 + 35 \Rightarrow \quad b^2 = 84$$

15cm

$$b = \sqrt{84} = 2\sqrt{21} \text{ units}$$
; So $a = 2\sqrt{15} \text{ units}$; $h = \sqrt{35} \text{ units}$;

 $b = 2\sqrt{21}$ units

i3cm

Find the value of x in the shown figure. (ii)

Solution:

From AADC

$$(m\overline{AC})^2 = (m\overline{AD})^2 + (m\overline{DC})^2$$

 $(13)^2 = (m\overline{AD})^2 + (5)^2$
 $169 = (m\overline{AD})^2 + 25$
 $(m\overline{AD})^2 = 169 - 25 = 144$

$$m\overline{AD} = 12cm$$

From
$$\triangle ABD$$
; $(m\overline{AB})^2 = (m\overline{AD})^2 + (m\overline{BD})^2$
(15)² = (12)² + (x)² \Rightarrow 225 - 1

$$(15)^2 = (12)^2 + (x)^2 \Rightarrow 225 = 144 + x^2 \Rightarrow x^2 = 225 - 144 = 81 \Rightarrow x = 0.000$$

- Which of the following is true and which are false?; Review EX #15; Q.1 Q1.
- In a right angled triangle greater angle is of 90°. (i)
- In a right angled triangle right angle is of 60°. (ii)
- In a right triangle hypotenuse is a side opposite to right angle. (iii)
- If a, b, c are sides of right angled triangle with c as longer side then $c^2 = a^2 + b^2$ (iv)
- If 3 cm and 4 cm are two sides of a right angled triangle, then hypotenuse is 5 cm. (v)
- If hypotenuse of an isosceles right triangle is $\sqrt{2}$ cm then each of other side is of length 2 cm. (vi)

Answers:

(ii)

(i) T	(ii) F	(iii) T	(iv) T	(v) T	(vi) F
1.7	<u>/</u>	<u> </u>		. ` ' — -	1, ,

Review EX #15 : 0.2

- Find the unknown value in each of the following figures. Q2,
- (i) By Pythagoras Theorem $x^2 = 4^2 + 3^2 = 16 + 9 = 25$ $x^2 = \sqrt{25} = 5 \text{ cm}$

LUnit #,9:10:11:12:13:14:15:16:&:17

Guess Papers

(iii)

By Pythagoras Theorem

$$(13)^2 = (x)^2 + (5)^2$$
$$169 = x^2 + 25$$

$$x^2 = 169 - 25$$

$$x = \sqrt{144} = 12 \text{ cm}$$

(iv)

By Pythagoras Theorem

$$(\sqrt{2})^2 = (x)^2 + (1)^2$$
$$2 = x^2 + 1$$

$$2 = x^2 +$$

$$x^2 = \sqrt{1} = 1 cm$$

Review EX #16; 0.1

Which of the following are true and which are false?

- Area of a figure means region enclosed by bounding lines of closed figure. (i)
- (ii) Similar figure have same area.
- (iii) Congruent figures have same area.
- A diagonal of a parallelogram divides it into two non-congruent triangles. (iv)
- (v) Altitude of a triangle means perpendicular from vertex to the opposite side (base).
- (vi) Area of parallelogram is equal to the product of base and height.

Answers:

,					
(i) T	(ii) F	(iii) T	(iv) F	(v) T	(vi) T

Review EX #16; Q.2

Q2. Find the area of the following.

(i)

(ii)

(iii)

Solution:

- (i) Area of rectangle = Length \times Width = $6 \times 3 = 18 \text{ cm}^2$
- Area of square = Side \times Side = $4 \times 4 = 16 \text{ cm}^2$ (ä)
- Area of rectangle = Length \times Width = $8 \times 4 = 32 \text{ cm}^2$ (iii)
- Area of triangle = $\frac{1}{2}$ base × altitude = $\frac{1}{2} \times 10 \times 16 = 80$ cm² (iv)

EX #17.1 Q.1;(i)

- Construct a ABC, in which Q1.
- (i) $\overline{\text{mAB}} = 3.2 \text{ cm}, \overline{\text{mBC}} = 4.2 \text{ cm},$ mCA = 5.2 cm

Solution:

Construction:

Geometry Portion Unit #9:10:1112:13:14:15:16 & 17

Guess Papers

(iv) Join BC and AB. Then ABC is the required triangle.

EX #17.1 Q.1;(iv)

Q1. Construct a AABC, in which

(iv) $\overline{MAB} = 3 \text{ cm}, \overline{MAC} = 3.2 \text{ cm}, \overline{MAC} = 45^{\circ}$ Solution:

Construction:

- Draw a line segment mAC = 3.2 cm. (i)
- At the end A of \overline{AC} make $\angle CAB = 45^{\circ}$. (ii)
- Cut off $\overrightarrow{mAB} = 3$ cm. (iii)
- Join B to C (iv) So ABC is the required triangle

EX #17.1 Q.1;(v)

Q1. Construct a AABC, in which

 $\overline{mBC} = 4.2 \text{ cm}, \overline{mCA} = 3.5 \text{ cm}, \overline{m} \angle C = 75^{\circ}$ (v) Solution:

Construction:

- Draw a line segment $m\overline{BC} = 4.2$ cm. (i)
- (ii) At the end C of $B\bar{C}$ make $\angle BCA = 70^{\circ}$.
- Cut off $m\overline{CA} = 3.5$ cm. (iii)

EX #17.1 Q.2;(i)

Construct a AXYZ, in which Q2.

 $m\overline{YZ} = 7.6$ cm, $m\overline{XY} = 6.1$ and $m\angle X = 90^{\circ}$ (i) Solution:

Construction:

- Draw a line segment mXY = 6.1 cm. (i)
- (ii) At the end point X of \overline{XY} make $\angle YXL = 90^{\circ}$.
- (iii) With centre Y and radius equal to 7.6 cm draw an arc to cut XL at point Z.
- Join T to Z. (iv) Then XYZ is the required A.

EX #17.1 Q.2;(ii)

Q2. Construct a AXYZ, in which

 $m\overline{Y}\overline{Z} = 2.4$ and $m \angle Y = 90^{\circ}$ (ii) $m\overline{ZX} = 6.4 \text{ cm}$ Solution:

Construction:

- Draw a line segment $m\overline{YZ} = 2.4$ cm. (i)
- At the end point Y of \overline{YZ} make $\angle XYZ = 90^{\circ}$. (ii)
- With centre Z and radius equal to 6.4 cm draw an arc (iii) to cut \overline{YL} at point X.

Join X to Z (iv)

Geometry Portion _Unit #9101111213141516617

Guess Papers

EX #17.1 Q.4;(ii)

- Construct a right-angled isosceles triangle whose hypotenuse is
- (ii)

Solution:

Construction:

- Draw a line segment $\overline{MAB} = 4.8$ cm. (i)
- (ii) Draw LM the right bisector of AB cutting it at the point O.
- (iii) With O as centre and AB as diameter draw a semi-circle to cut LM at the point C.
- Join C to A and B. (iv) Then the required triangle is ABC.

EX #17.2 Q.2;(iii)

- Construct the following $\Lambda's$ PQR. Draw their altitudes and show that they are concurrent. Q2.
- $mRP = 3.6 \text{ cm}, m\angle Q = 30^{\circ}, m\angle P = 105^{\circ}$ (iii)

Solution:

$$m\angle Q$$
 = 30°, $m\angle P$ = 105°
 $m\angle P + m\angle Q + m\angle R$ = 180°
 $105^{\circ} + 30^{\circ} + m\angle R$ = 180°
 $m\angle R$ = 180° - 135 = 45°

Construction:

- Take $m\overline{RP} = 3.6 \text{ cm}$. (i)
- (ii) Draw $m \angle QRS = 45^{\circ}$ and $m \angle RPQ = 105^{\circ}$ to complete APQR.
- (iii) From the vertex P drop $PL \perp QR$.
- (iv) From the vertex Q drop QM 1 RP produced. These two altitudes meet at the point O.
- (v) Now from the third vertex R drop $\overline{RN} \perp \overline{OP}$ produced.
- We observe that the third altitude also passes through the point of intersection O of the first two (vi) altitudes.
- Hence the three altitudes of APQR are concurrent at O. (vii)

EX #17.2 Q.3;(iii)

- Q3. Construct the following triangles ABC. Draw the perpendicular bisectors of their sides and verify their concurrency. Do you meet inside the triangle?
- (iii) $mAB = 2.4 \text{ cm}, mCA = 3.2 \text{ cm}, m \angle A = 120^{\circ}$ Solution:

Construction:

Take $\overrightarrow{mAB} = 2.4 \text{ cm}$. (i)

•	-	•		ரநூக			_	-				www.office.	
Ik conji	1@ 01	ilco-coi	•						28262	_		om/office.	com
metry	Porti	ion U	hft#2	XII	\mathbf{M}	D	Ð	DE.	BC	S	71	Guess Pa	ape
(v)			cular bisect						ach othe	r at the	point (0.	
(vi)			perpendicul					B.					
(vii)	bisec	ctors.									first tv	wo perpendicu	ılar
(vii)	Henc	e the three	e perpendic	ular bi	secto	rs of AA	BC ar	e co	mcurrer	it at O.			
Q1.	Filler	i the follo	wing biank	is to m	iake t	he stat	emen	t true	a: Revie	:w EX #	17 Q.	.1	
(i)	1 Ne 3	ride of a fil	ght angled t	triange	e opp	osite to	90° is	caller	d				
(ii)	i ne u	ine segme	nt joining a	Vertex	(01 a 1	triangle	to the	: mid-	point of	its oppo	osite s	ide is called a	
(iii)	the tr	e grawn m riangle.	om a vertex	(OT a s	riang	e which	ì is	to m	ts oppos	site side	e is cal	lled an altitude	of
(iv)		•	of the three	anniae	· of a f	-denela	~=~						
(v)	The t	naectors o	n are arree. Tachtrency	of the	·V: a c ·riaht	italiyi s . hicarta	are	tha th	hrne end	^* 2 6 4 h		igle isfrom	
1.1	vertic	:es.	mourrons	VI the	High	からせいい	/15 U:	the m	Hee Siu	85 OT U1	e man	igle istrom	its
(vi)			rlangles ar	e said	to b	e simila	ar if t	nev a	វម ខន្ធប្រវែ	ackinni	and n	neasures of th	air
• •	corre	sponding	sides are		<u></u>	F			,0 04	"igaisi	allu A	MAGSHICS OF AL	en
(vii)		-	f a rìght tria		re con	icurrent	at the	o f	f the rigt	nt angle	L.		
Answ	ers:		•	-					•		•		
	(i)	hypoten			(ii)	medi	ian		^	(iii)	per	pendicular	
	(iv)	concurre	ent		(v)	equir	distan	it	0.	(vi)	•	portional	
	(vii)	vertex		_•					\bigcirc	-	•	•	
Q2.	Multi	ple Choice	e Question:	5. Choo	ose th	ie corre	ct an	swer.	.; Revie	w EX #	17 Q.	2	
(i)			ng two side										
/at\	(a)	scalene dellatoral	Service on	(b)	rignt -1	angled	(C)	eq	uilateral		(d)	isosceles	
(ii)	A qua	paralielog paralielog	l having ead							7-1 0			
(iii)			tors of the	(b) three	recta	ingle (c)	AUEJI olove:	3ZIUITI		(d)	rhon	mbus	
(m)	(a)	congruent		(b)		iear (c)				(4)		-U-1	
(iv)		_	s of an iso:							(d)	para	illei	
٧٠,	(a)	two	O'UI WALLEY	(b)	three	-	four			(4)	None	_	
(v)	, ,		tant from t						ent is or	(d) a its	none	e	
	(a)	bisector		(b)	right-	-bisector	((c)		rpendicul		(d)	median	
(vi)		congruent	triangles (mad	e by joi	ning t	he m	id-point	es of the	e sides	of a triangle.	
•	(a)	three	-	(b)	four	(c)	five	#***	Fo	(d)	e sides two	on a usangie.	
(vii)			of a paralle							1-1			
	(a)	bisect		(b)	trised	ot (c)	bised	ot at riv	ight angle	e (d)	none	e of these	
(viii)			i a triangle				the rat	tio					
Cal	(a)	4:1	4. 4	(b)	3.1		21			(d)	1:1		
(ix)	one a	ingle on t	ne base of	an is	oscele	es trian	gle is	30°.	What i	s the n	neasur	re of its vertic	al
	angle.	30°	(6)	600 /-		001							
(x)			(b)	60° (c)) do seo	90*		hila mara d	(d)	120°			
(^)	(a)	equilateral	itudes of a	տ <i>ւ</i> գույ. (b)		angled (tne triai sceles	igle is			
(xi)	• •		of a triang							مط الن	(d)	acute angled	í
(1.0)	(a)	isosceles		(b)		atera⊦ (c			engle wi It angled		 (d)	acuta analasi	
Answe				1-7	94		,	9.	it drigital		(u)	acute angled	'
			(i) d	(ii)	Б	(iii) c		iv) a	(v)	Ь			
			(vi) b	(vii)		(viii) c		ix) d					
			(11)	175.57		1411176	+ \	<u>≎1 °</u>	- 11/1 /	a			

Geometry Portion - Unit # 9:10:11:12:13:14:15:16 & 17

Guess Papers

Laws of Logarithm

Prove that $log_a(mn) = log_a m + log_a n$ (Law of logarithm) Q1.

 $\Rightarrow a^x = m$; (exponential form) Solution: Let $log_a m = x$,

> $\Rightarrow a^y = n \ ; (exponential form)$ and $log_a n = y$

 $\therefore a^x \times a^y = mn \qquad \Rightarrow a^{x+y} = mn$ $\Rightarrow \log_a(mn) = x + y = \log_a m + \log_a n$

Hence $log_a(mn) = log_a m + log_a n$

Prove that $\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$ (Law of logarithm)

 $\Rightarrow a^x = m \quad ; (exponential form)$ Solution: Let $log_a m = x$,

> $\Rightarrow a^y = * \P(exponential form)$ and $log_a n = y$

 $\Rightarrow \log_a \left(\frac{m}{n} \right) = x - y = \log_a m - \log_a n$ $\therefore \frac{a^x}{a^y} = \frac{m}{n} \implies a^{x-y} = \frac{m}{n}$

Hence $log_a\left(\frac{m}{n}\right) = log_a m - log_a n$ Proved

Prove that $log(m^n) = nlog_a m$ (Law of logarithm) Q3.

 $\log_a m^n = x,$ i.e., $a^x = m^n$ Let Solution:

i.e., $a^y = m$ and $log_a m = y$,

Then $a^x = m^n \pm (a^y)^n$

i.e., $a^x = (a^y)^n = a^{yn} \implies x = ny$

i.e., $log_a m^h = n log_a m$

Prove that: $log_a^R = log_b^R \times log_a^b$ (Law of logarithm) Q4.

Solution: $log_a^a = log_b^n \times log_a^b$

Let $log_h^n = x$ (i)

 $n = b^x$ (Exponential form)

 $log_a^n = x log_a^{b^x}$

 $\log_a^n = (x) \log_a^n$