Computational Linguistics

Lecture 3

Dr. Dina Khattab

dina.khattab@cis.asu.edu.eg

FSA EXERCISES

Consider the finite-state automaton A. Which of the strings are accepted by A?

i. 11

ii. 0101

iii. 011011

iv. 00110

 \triangleright What is the language accepted by A?

- What language do you think this accepts?
- This accepts all strings over a ,b that start with an 'a'.

- What language do you think this accepts?
- This accepts all strings over a ,b that end with two 'a's.

Draw a graph for a FSA that accepts the language that consists of strings containing exactly 4 b's and $\Sigma = \{a, b\}$.

REGULAR EXPRESSION (REGEX)

Regular Expressions

- Easy way to generate a language that is accepted by FSA
- > Rules:
 - ε is a regular expression
 - Any symbol in Σ is a regular expression

If r and s are any regular expressions then so is:

- r s denotes union e.g. "ror s"
- *rs* denotes *r* followed by *s* (concatination)
- (r)* denotes concatination of r with itself zero or more times (Kleene closure).
- (r)+ denotes concatination of r with itself one or more times (positive closure).
- () used for controlling order of operations

Example Regular Expressions

Regular Expression	Corresponding Language
ε	ε
a	a
abc	abc
a b c	a, b, c
ab*	a, ab, abb, abbb,
ab+	ab, abb, abbb,
(ab)*	ε, ab, abab, ababab,
(a b c)*	ε, a, b, c, aa, ab, ac, aaa,
a b*	ε, a, b, bb, bbb,
a b c z A B Z	Any letter
0 1 2 9	Any digit

Precedence in Regular Expressions

>* has highest precedence, left associative.

Concatenation has second highest precedence, left associative.

has lowest associative, left associative.