东南大学考试卷 A 卷

13-14-3 课程名称 线性代数 A 考试学期 得 分 考试时间长度 适用专业 非电类专业 考试形式 120 分钟 闭 卷 题号 \equiv 四 七 五. 六 得分

- . (30%)填空题(*E*表示单位矩阵)
 - 1. 设 $A = \begin{pmatrix} 2 & -3 \\ 2 & -8 \end{pmatrix}$,则行列式 $|A^T A| =$ _____
 - 2. 若矩阵 A 满足 $A^2 + 2A 3E = O$, 则 $(A + E)^{-1} =$
 - 3. 若向量组 $\alpha_1 = (1,a,a), \alpha_2 = (a,1,a), \alpha_3 = (a,a,1)$ 线性相关,则参数a可能的值
 - 4. 设 A, B 都是 5×5 矩阵, 且 A 的秩 r(A) = 2。若 AB = O,则矩阵 B 的秩 r(B) 的 最大值为
 - 5. R^2 的从基 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ 到基 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 的过渡矩阵是______;
 - 6. 若矩阵 $A = \begin{pmatrix} 1 & 2 \\ 3 & x \end{pmatrix}$ 与 $\begin{pmatrix} 2 & 1 \\ y & 3 \end{pmatrix}$ 相似,则(x, y) =______;
 - 7. 设向量组(I): $\alpha_1, \alpha_2, \dots, \alpha_r$ 可由向量组(II): $\beta_1, \beta_2, \dots, \beta_s$ 线性表示,则下述论断 中成立的那一项是 (A). 当r < s时,(II) 必线性相关; (B). 当r > s时,(II) 必线性相关;
- (C). 当r < s时,(I) 必线性相关:
- (D). 当r > s时,(I) 必线性相关。
- 8. 如果 3×3 矩阵 A 的特征值是1,2,3,则 A 的伴随矩阵 A^* 的特征值为
- 9. 设 $A = \begin{pmatrix} x-1 & 17 & 23 \\ 56 & x+2 & 88 \\ 29 & 78 & x-3 \end{pmatrix}$, 则多项式 $f(x) = |A| + x^2$ 的系数是______;
- 10. 若 $s \land n \times n$ 可逆实对称矩阵互不合同,则s 的最大值为

二. (10%) 计算行列式
$$\begin{vmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 3 & 0 \\ 3 & 2 & 1 & 4 \\ -1 & 1 & 2 & 3 \end{vmatrix}$$
。

三. (14%) 假设
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ p & q \end{pmatrix}$ 。(1) 如果 $AX - XB = C$

有解,求p,q的值;(2)求矩阵方程AX - XB = O的所有解。

四. (12%) 已知
$$\eta = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & 2 & a \\ 0 & 3 & 1 \\ 0 & 0 & b \end{pmatrix}$ 的特征向量。(1) 求参数 a,b 的值

以及与 η 对应的特征值; (2) 判断 A 是否与对角阵相似。如果相似于对角阵,给出 该对角阵以及相应的相似变换矩阵; 如果不相似于对角阵, 请给出理由。

(12%) 已知 3×3 实对称矩阵 A 不可逆, 1,-1 是都是 A 的特征值,并且 $\alpha = (1,0,-1)^T$, $\beta = (1,1,a)^T$ 分别是 A 的属于特征值1,-1的特征向量。(1) 求 a 的 值; (2) 求矩阵 A²⁰¹⁵。

六. (12%) 已知二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 + x_3^2 + 2kx_1x_3$ 。(1) 求一可逆线性变换 x = Cy 将 f 变成标准形; (2) 根据参数 k 讨论 f 的秩和正惯性指数; (3) 问: k 取 何值时 f 是正定的。

七. (10%)证明题:

- 1. 设 α 为n维列向量, $\alpha^T\alpha=1$,方阵 $A=E-\alpha\alpha^T$,证明|A|=0.
- 2. 已知n维实列向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关,证明: 矩阵 $A = \sum_{k=1}^n k \alpha_k \alpha_k^T$ 的特征值 都大于零。