Nombre y Apellido:

Justifique todas sus respuestas

Parte práctica.

- 1. (15 pts.) Sea W el subespacio de \mathbb{R}^4 generado por el conjunto $\mathcal{B} = \{(1, 2, -1, 0), (2, 1, 0, 1), (-1, 1, 0, -1)\}.$
 - a) Probar que \mathcal{B} es una base de W y hallar las coordenadas de un vector $(x, y, z, t) \in W$ en la base \mathcal{B} .
 - b) Determinar todos los valores de a y $b \in \mathbb{R}$ tales que el vector (1, a, 2b, 1) pertenezca a W.
 - c) Sea $U = \{(x, y, z, t) \in \mathbb{R}^4 : x + 3y + 2z = 0\}$. Dar una descripción implícita y una base del subespacio $W \cap U$ y determinar su dimensión.
 - d) Hallar un subespacio W' de \mathbb{R}^4 tal que $\mathbb{R}^4 = W \oplus W'$.
- 2. (15 pts.) Sea $A = \begin{pmatrix} 0 & 1 & i \\ -i & -1 & 0 \\ 0 & -i & 1+i \end{pmatrix} \in M_{3\times 3}(\mathbb{C}).$
 - a) Calcular el determinante de A.
 - b) Probar que A es inversible y determinar su inversa.
 - c) Mostrar una base ordenada \mathcal{B} de \mathbb{C}^3 tal que A sea la matriz de cambio de base de la base ordenada canónica a la base ordenada \mathcal{B} .
- 3. (15 pts.) Sea $T: \mathbb{R}^3 \to M_{2\times 2}(\mathbb{R})$ la transformación lineal definida en la forma

$$T(x,y,z) = \begin{pmatrix} y+z & 0 \\ x-z & x+y \end{pmatrix}.$$

- a) Dar una descripción implícita de NuT, calcular su dimensión y mostrar una base.
- b) Dar una descripción implícita de $\operatorname{Im} T$, calcular su dimensión y mostrar una base.
- c) Hallar $[T]_{\mathcal{B}_1}^{\mathcal{B}_2}$ donde \mathcal{B}_1 y \mathcal{B}_2 son las bases ordenadas de \mathbb{R}^3 y $M_{2\times 2}(\mathbb{R})$ dadas, respectivamente, por

$$\mathcal{B}_1 = \{(1,0,-1),(-1,1,1),(2,0,-1)\}, \qquad \mathcal{B}_2 = \left\{ \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^5$ tal que los vectores (1,0,-1,0,0), (1,1,-1,0,0) y (1,0,-1,2,1) pertenecen a la imagen de T.
 - b) Existen subespacios U y W de \mathbb{R}^7 tal que dim U=6, dim W=5 y los vectores (1,0,-1,0,2,1,0) y (1,0,0,0,2,1,0) pertenecen a $U\cap W$.
 - c) Si $T: V \to V$ es un operador lineal tal que $T^2 = 0$ y $c \in \mathbb{F}$ es un autovalor de T, entonces c = 0.

Parte Teórica.

- 5. (20 pts.) Sea V un espacio vectorial de dimensión finita n sobre un cuerpo \mathbb{F} . Probar que:
 - a) Cualquier subconjunto de V con más de n vectores es linealmente dependiente.
 - b) Ningún subconjunto de V con menos de n vectores puede generar V.
- 6. (20 pts.) Sea A una matriz $m \times n$, con coeficientes en un cuerpo \mathbb{F} . Probar que el rango fila de A es igual a su rango columna.

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	Total	Total General
Evaluación				