NYU FRE 7773 - Week 7

Machine Learning in Financial Engineering
Ethan Rosenthal

Time Series Machine Learning

Machine Learning in Financial Engineering
Ethan Rosenthal

Time

Uber trips

https://eng.uber.com/neural-networks/

Amazon weekly item sales

DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

https://arxiv.org/abs/1704.04110

No Citi Bikes

No Docks

time

"Classical" Time Series Modeling

State Space Models

Nonlinear PDE's

ARIMA

Can you skip all of this?

Inference

Prediction

Where's the X Matrix?

```
f.fit(X, y)
y_new = f.predict(X_new)
```

In the beginning, there was y


```
Autoregressive / Lag Features
X = \begin{bmatrix} 1 \end{bmatrix}
for idx in range(len(y) - window):
     X.append(y[idx:idx + window])
X = np.array(X)
                                                        y: array([0,
                                                                      3.
                        X: array([[0, 1, 2, 3, 4], \longrightarrow 5,
                                      [1, 2, 3, 4, 5], \longrightarrow 6,
                                      [2, 3, 4, 5, 6], \longrightarrow 7,
```

 $[3, 4, 5, 6, 7], \longrightarrow 8,$

 $[4. 5. 6. 7. 8]. \longrightarrow 9.$

 $[5, 6, 7, 8, 9]]) \longrightarrow 10])$

$\mathbf{X}\beta = \hat{\mathbf{y}}$

$$\begin{bmatrix} y_0 & y_1 & y_2 & \dots & y_{w-1} \\ y_1 & y_2 & y_3 & \dots & y_w \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{t-2-w} & y_{t-1-w} & y_{t-w} & \dots & y_{t-2} \\ y_{t-1-w} & y_{t-w} & y_{t-w+1} & \dots & y_{t-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{w-2} \\ \beta_{w-1} \end{bmatrix} = \begin{bmatrix} \hat{y}_w \\ \hat{y}_{w+1} \\ \vdots \\ \hat{y}_{t-1} \\ \hat{y}_t \end{bmatrix}$$

Modeling

- Not limited to Linear Regression. Use trees, neural nets, whatever you want!
- Not limited to regression. Classification, quantile regression, etc...

Preprocessing and Feature Engineering

- Differencing
- Rolling Mean
- Filters
- Fourier components
- Seasonal lags
- etc...

```
for idx in range(len(y) - window):
    X.append(y[idx:idx + window])
X = np.array(X)
X = np.hstack((X, X_features))
                                                       y: array([0,
                            Lag Features Extra Features
             X: array([[0, 1, 2, 3, 4, .5, -.1], \longrightarrow
                         [1, 2, 3, 4, 5, 2.3, .2], \longrightarrow
                         [2, 3, 4, 5, 6, -.2, .4], \longrightarrow
                         [3, 4, 5, 6, 7, .9, 1.1], \longrightarrow
                         [4, 5, 6, 7, 8, 1.2, .5], \longrightarrow
                         [5, 6, 7, 8, 9, -.7, -.2]]) \longrightarrow 10])
```

X = | |

Adding "Exogenous" Features

```
Adding "Exogenous" Features
X = | |
for idx in range(len(y) - window):
    X.append(y[idx:idx + window])
X = np.array(X)
X = np.hstack((X, X_features))
                                        Complicated to y: array([0,
                                        construct!
                             Lag Features Extra Features
              X: array([[0, 1, 2, 3, 4, .5, -.1], \longrightarrow
                         [1, 2, 3, 4, 5, 2.3, .2], \longrightarrow
                         [2, 3, 4, 5, 6, -.2, .4], \longrightarrow
                         [3, 4, 5, 6, 7, .9, 1.1], \longrightarrow
                          [4, 5, 6, 7, 8, 1.2, .5], \longrightarrow
                          [5, 6, 7, 8, 9, -.7, -.2]]) \longrightarrow
```

Recap

- Take your time series y.
- Treat each point in **y** as a point that you want to predict.
- Construct **X** from any data you want that comes *prior* to the point in **y** that you want to predict.
 $\mathbf{X}_t = \mathbf{y}_{t' < t}$

Fit a regression model on X and y.

• For each point in **y**, use model to predict the next point.

$$\hat{y}_t = f(\mathbf{X}_t)$$

$$\hat{y}_t = f(\mathbf{y}_{t' < t-1})$$


```
def recursive_forecast(model, input_data, num_points_in_future):
    for point in range(num points in future):
        prediction = model.predict(input_data)
        # Append prediction to the input data
        input_data = np.hstack((input_data, prediction))
    return prediction
```

Optimize for next step

Pray recursive steps work

Horizon Forecasting

More info: "Machine learning strategies for multi-step-ahead time series forecasting", Souhaib Ben Taieb https://souhaib-bentaieb.com/papers/2014_phd.pdf

Horizon Forecasting


```
[ 1., 2., 3.],
        1.,
                           [2., 3., 4.],
        2.,
                           [ 3., 4., 5.],
        3.,
                           [ 4., 5., 6.],
        5.,
                          [5., 6., 7.],
                           [6., 7., 8.],
        6.,
        7.,
                           [7., 8., 9.],
                           [8., 9., 10.],
        8.,
        9.,
                           [nan, nan, nan],
       10.])
                           [nan, nan, nan]])
```

Predicting multiple targets

- sklearn.multioutput.MultiOutputRegressor
- Train an individual model for each target.
- Pros:
 - Very simple
 - Works with any model
- Cons
 - Resource intensive
 - No sharing of knowledge

Predicting multiple targets

- Deep learning model with multiple outputs.
- Pros:
 - Potentially less resource intensive
 - Direct optimization
 - Sharing of knowledge
- Cons:
 - All the caveats of deep learning
 - Limited to the horizon

Forecasting Views

Forecasting Views

Forecasting Views

Metrics Aggregation

What do you know when you predict?

What do you know when you predict?

What do you know when you predict?

