REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
20-07-2012	Briefing Charts	
4. TITLE AND SUBTITLE	•	5a. CONTRACT NUMBER
Comparison of Numerical and Exper	imental Time-Resolved Near-Field Hall Thruster	5b. GRANT NUMBER
Plasma Properties		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Gonzales, A.E.; Scharfe, M.K.; Koo, J.	W.; Hargus Jr., W.A.	
		5f. WORK UNIT NUMBER
		23080535
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Air Force Research Laboratory (AFMC	")	
AFRL/RQRS		
1 Ara Drive		
Edwards AFB CA 93524-7013		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S
		ACRONYM(S)
Air Force Research Laboratory (AFMC		
AFRL/RQR		11. SPONSOR/MONITOR'S
5 Pollux Drive		NUMBER(S)
Edwards AFB CA 93524-7048		AFRL-RQ-ED-VG-2012-237
40 DIOTRIBUTION / AVAIL ABILITY OTATI		1

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited (PA #12608).

13. SUPPLEMENTARY NOTES

For presentation at the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit and 10th International Energy Conversion Engineering Conference, Atlanta, GA, 29 July – 2 August 2012.

14. ABSTRACT

The breathing mode of a xenon 600W Hall effect thruster has been studied using both temporally resolved experimental data and numerical modeling. Fluctuations in xenon neutral NIR (810-835 nm) emission in the near field thruster plume have been measured at 1 µs resolution using a high-speed intensified charge coupled device (ICCD). Oscillations in electron temperature, 3-9 eV, have been inferred using a collisional-radiative model and a two-line ratio method. The time-resolved emission and electron temperature measurements are then used to assess the accuracy of the numerical model HPHall. Simulations were found to be consistent with a -6 phase delay measured between discharge current and electron temperature cycles, but were unable to predict the magnitude of oscillations observed.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
					W.A. Hargus Jr.
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER
			SAR	24	(include area code)
Unclassified	Unclassified	Unclassified	SAK	24	N/A

Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties

Ashley E. Gonzales, AFRL
Michelle K. Scharfe, E.R.C. Inc.
Justin W. Koo, AFRL
William A. Hargus, Jr., AFRL
Spacecraft Propulsion Branch
Edwards AFB, CA

Overview

- Background
- BHT-600Thruster
- Experimental Work
- Collisional Radiative Modeling
- HPHALL Simulations
- Numerical /Experimental
 Comparison

Background: Breathing Mode

lonization

Constant neutral flow

Quasi-neutral

- Seen through low frequency (10-50k Hz) oscillations in discharge current (I_d)
- Periodic depletion & replenishment of neutrals at exit¹
- Also referred to as neutral transit time instability- scales with $L_{channel}$ $/V_{neutrals}$
- Previous time averaged measurements unable to quantify oscillations in plasma properties

[1] Boeuf, J. P.; Garrigues, L., *Journal of Applied Physics*, vol.84, no.7, pp.3541-3554, Oct 1998

Background: Diagnostics

Probe

- Measurements
 - Langmuir- T_e, density, e⁻ EDF
 - RPA ion EDF
 - Faraday- thruster beam current
- Intrusive- spatially limited
- Temporally limited due to sweeps
 - Lobbia² (10 μs resolution)
 - [2] Lobbia, RB and Gallimore, A.D., Rev. Sci. Instrum. 81, 073503, 2010

Electrostatic Probe

Emission

- Measurements
 - Line Intensity ratio- T_e
 - Absolute Intensity Density
 - Doppler Shift velocity
- Non-intrusive- capable of near field measurements
- Line of sight averaging
- Measurements on ns timescales

Emission Beam Coupler

BHT-600 Hall Effect Thruster

- Thruster tested w Xe at nominal conditions
- Extensive previous experimental work
 - Probe- RPA, Faraday, ExB³⁻⁶
 - Optical measurements-LIF^{6,7}
- [3] Ekholm et al, *JPC*, 2006.
 - [6] Hargus et al, *JPC*, 2008.
- [4] Niemela et al, *JPC*, 2006.
- [7] Nakles et al, JPC, 2008.
- [5] Nakles et al, *IEPC*, 2009.

BUSEK

Dimensions

R_{inner} 24 mm

R_{outer} 32 mm

Channel Depth 10 mm

Nominal Conditions

Anode Flow Rate 2.45 mg/s

Cathode Flow Rate 197 µg/s

Anode Potential 300 V

Anode Current 2.05 A

Magnetic Current 2.0 A

Performance

Thrust 42 mN

Specific Impulse 1650 s

Anode Efficiency 55.0%

BHT-600: Breathing Mode Oscillations

Discharge Currect (AC)
Passive inductive probe
Band pass:120Hz- 20MHz

Discharge Current FFT Spectrum Analyzer with FFT averaging

Timing System

Timing System

System Schematic

Wavelength (nm)

Sample Emission Measurement

Collisional Radiative Modeling (CRM)

- Predicts emission by modeling collisional excitation and allowed radiative decay paths
- KCD⁸ Metastable Modeling
 - Treated as virtual ground
 - Assumed in equilibrium

<u>Simplified Xe Collisional</u> <u>Excitation Processes</u>

$$e^{-} + Xe \rightarrow Xe^{*} + e^{-}$$

 $Xe^{+} + Xe \rightarrow Xe^{*} + Xe^{+*}$
 $Xe^{2+} + Xe \rightarrow Xe^{*} + Xe^{2+*}$
 $e^{-} + Xe_{m} \rightarrow Xe^{*} + e^{-}$

[8] Karabadzhak et al., Journal of Applied Physics, 2006

CRM: KCD Model

E x B probe measurements

$$I_{XeI}(\lambda) = \frac{\hbar c}{4\pi\lambda} (N_0 N_e) \left[k_{e0}^{\lambda} + \alpha k_{10}^{\lambda} + \frac{1-\alpha}{2} k_{20}^{\lambda} \right. \\ \left. + \left\{ \frac{N_m}{N_0} \right\} k_{em}^{\lambda} \right]$$

$$k_{\underline{i0}}^{\lambda} = \int_0^{\infty} \underline{f_i(E_i)} \sigma_{\underline{i0}}^{\lambda}(E_i) u_i \ dE_i \qquad f(T_e, \alpha) \approx 0.01\% - 0.3\%$$
*Equilibrium assumption

- · Ions- uniform velocity, LIF
- e⁻ Maxwellian EDF=f(T_e)

Empirical excitation cross sections^{9,10}

$$\frac{I_{XeI}(\lambda_1)}{I_{XeI}(\lambda_2)} = f(\alpha, u_1, T_e)$$

[9]Chiu et al, Journal of Applied Physics, 2006.

[10] Sommerville et al, Journal of Prop. & Power, 2008.

CRM: KCD Model

Normalized Emission Measurements

- Intensity in phase with discharge current oscillations
- Similar visible emission fluctuations seen by Liu et al.¹¹ in thruster high speed imaging
- Small phase shift (~2 μs) seen between intensity and discharge current
 - Corresponding to a 8 km/s electron axial velocity
 - In agreement with 5-10 km/s electron axial velocity predicted by HPHall¹²

[11] Liu et al., IEEE T. Plasma. Sci., (in press)

[12] Scharfe, M K, Koo, J W, personal communication, 2011

Electron Temperature

- Line ratio method divergence in cooling phase of the cycle may be due to:
 - Non-maxwellian EEDF

- Low emission signal (SNR=1.9 dB) in low I_d portion of cycle
 - Higher uncertainties in T_e

Electron Temperature

		I_{823}/I_{828}	I_{834}/I_{828}
$\overline{T_e}$	eV	6.6 ± 0.6	6.2 ± 1.8
$\widetilde{T_e}/\overline{T_e}$	%	27 ± 4	38 ± 15
$ au_d$	μs	-4	-6
~			

Comments

- High SNR
- Lower T_e uncertainty
- Low SNR
- Higher T_e uncertainty
- Independent of metastable approximation

HPHall: Overview

Radial-axial hybrid particle-in-cell (PIC)

- Fluid electrons
- PIC ions and neutrals
- Quasineutral
- Electron mobility- axially varying effective mobility

Simulations

- Time step = $0.25 \mu s$
- Varying Inverse Hall Parameter K_B/16
- Properties evaluated at 4 axial locations:
 - A) Channel Near Anode
- C) Near Plume
- B) Channel Near exit
- D) Far Plume

– Experimental/numerical comparison:

- Time-averaged quantities
- Breathing mode behavior

HPHall: Case Comparison

	Units	Measured	HPHall Case 1	HPHall Case 2	HPHall Case 3	HPHall Case 4
T	mN	39	38	38	38	41
I_{SP}	S	1530	1530	1510	1530	1660
f_{BM}	kHz	38	34 ± 5	54 ± 5	31 ± 5	22 ± 5
$\overline{I_d}$	A	2.05	2.18	2.21	2.20	3.64
$\widetilde{I_d}/\overline{I_d}$		32%	7 %	11 %	7 %	6 %
$\frac{T_e}{T_e}$	eV	6.6 ± 0.6	12.4	10.4	12.7	25.8
$\widetilde{T_e}/\overline{T_e}$		32 ± 8 %	4%	6%	4%	2%

- Accurate thruster performance—within 10%
- Difficulty with predicting breathing mode behavior
 - Oscillations in I_d and T_e significantly lower than observed
 - Higher than observed T_e possible mechanism to increase mobility
- Inverse Hall parameter-strong influence on breathing mode
 - Variation in breathing mode frequency and amplitude of oscillations

HPHall: Case Comparison

	Units	Measured	HPHall	HPHall	HPHall	HPHall
			Case 1	Case 2	Case 3	Case 4
T	mN	39	38	38	38	41
I_{SP}	S	1530	1530	1510	1530	1660
f_{BM}	kHz	38	34 ± 5	54 ± 5	31 ± 5	22 ± 5
$ar{I_d}$	A	2.05	2.18	2.21	2.20	3.64
$\widetilde{I_d}/\overline{I_d}$		32%	7 %	11 %	7 %	6 %
$\frac{T_e}{T_e}$	eV	6.6 ± 0.6	12.4	10.4	12.7	25.8
$\widetilde{T_e}/\overline{T_e}$		32 ± 8 %	4%	6%	4%	2%
	·					

- Accurate thruster performance—within 10%
- Difficulty with predicting breathing mode behavior
 - Oscillations in I_d and T_e significantly lower than observed
 - Higher than observed T_e possible mechanism to increase mobility
- Inverse Hall parameter-strong influence on breathing mode
 - Variation in breathing mode frequency and amplitude of oscillations
- Further analysis based on Case 1

HPHall Results: Time-Resolved

- T_e Slight correlation with I_d seen in plume, and near anode
 - Out of phase with discharge current– similar to experimental observations
- N₀ Little correlation with I_d except for near anode

- N_i/N_e – strong correlation with I_d at all axial locations
 - Oscillations nearly in phase with discharge current oscillations

HPHall Results: Cross Correlation

- T_e Slight correlation with I_d seen in plume, and near anode
 - Out of phase with discharge current– similar to experimental observations
- N₀ Little correlation with I_d except for near anode

- N_i/N_e – strong correlation with I_d at all axial locations
 - Oscillations nearly in phase with discharge current oscillations

HPHall Results

HPHall Results

	Axial Location	$\overline{\mathbf{x}}$	$\widetilde{\mathbf{X}}/\overline{\mathbf{X}}$	freq (kHz)	τ _{delay} (μs)	$\phi_{\mathrm{I}_{\mathrm{d},\mathcal{X}}}$ (degrees)	R
Discharge Current $I_{\rm d}$		2.2 A	7%	34			1.00
	Α	9.5E+18 m ⁻³	4%	33	6.4	77	0.75
Neutral	В	2.1E+18 m ⁻³	5%	33	-22.9	-275	0.26
$\begin{array}{c} \textbf{Density} \\ \textbf{n}_0 \end{array}$	С	5.6E+17 m ⁻³	7%	28	7.1	73	0.11
0	D	3.9E+17 m ⁻³	7%	33	5.6	68	0.09
	Α	1.2E+24 m ⁻³	8%	33	1.9	23	0.90
Ionization	В	1.7E+23 m ⁻³	9%	34	1.1	14	0.75
Rate n _i	С	1.9E+22 m ⁻³	12%	34	0.4	5	0.76
	D	6.3E+21 m ⁻³	13%	33	0.4	5	0.76
Electron Density n _e	Α	1.1E+18 m ⁻³	7%	34	0.4	5	0.91
	В	6.4E+17 m ⁻³	8%	34	0.4	5	0.93
	С	3.5E+17 m ⁻³	8%	34	-1.1	-14	0.90
	D	2.4E+17 m ⁻³	9%	33	-1.1	-14	0.89
Electron $ \begin{array}{c} \textbf{Electron} \\ \textbf{Temperature} \\ \textbf{T}_{e} \end{array} $	Α	27.3 eV	2%	34	-7.1	-87	0.60
	В	23.0 eV	2%	34	-11.6	-143	0.31
	С	16.5 eV	4%	34	5.6	68	0.48
	D	12.5 eV	5%	34	4.9	59	0.58

Summary

Time resolved emission measurements:

- Emission of 823, 828, and 834 nm lines found to fluctuate nearly in phase with I_d
- T_e fluctuations of 32% ± 8%, -5 ± 1 µs out of phase with I_d

HPHall simulations run with varying effective mobility profiles:

- Profile choice strong influence on breathing mode oscillations (frequency, amplitude)
- Little effect on overall performance, all cases w/in 10% of observed values

HPHall Breathing mode predictions:

- Significantly under predict oscillation magnitude for both I_d and T_e
- Higher than observed T_e values maybe be result of need for increased mobility
- Phase shifts found to be consistent with current observations

	Units	Measured	HPHall Case 1
T	mN	39	38
I_{SP}	S	1530	1530
f_{BM}	kHz	38	34 ± 5
$ar{I_d}$	A	2.05	2.18
$\widetilde{I_d}/\overline{I_d}$		32%	7 %
$\overline{T_e}$	eV	6.6 ± 0.6	12.4
$\widetilde{T_e}/\overline{T_e}$		32 ± 8 %	4%
ϕ_{I,T_e}	deg	$68^{\circ} \pm 14^{\circ}$	68°