Escola Politécnica da USP Departamento de Engenharia de Sistemas Eletrônicos

Transformada de Laplace aplicada a circuitos elétricos

Magno T. M. Silva Agosto de 2020

Sumário

1	Introdução	2				
2	Definição	finição 4				
3	Existência e abscissa de convergência	istência e abscissa de convergência 4				
4	Transformadas de Laplace úteis em circuitos	6				
5	Propriedades	6				
6	Exemplo – Circuito RLC série	8				
7	A transformada inversa de Laplace	10				
	7.1 Tabelas de transformadas e propriedades	10				
	7.2 Fórmula de inversão	10				
	7.3 Transformada inversa de funções racionais	11				
	7.3.1 Definição de polos e zeros	11				
	7.4 Inversa de funções racionais estritamente próprias	12				
	7.5 Inversa de funções racionais impróprias	17				
R	Referências	18				

1 Introdução 2

1 Introdução

Para introduzir a transformada de Laplace, vamos estudar o comportamento livre de um circuito RL, mostrado na Figura 1.

Figura 1: Circuito RL livre com condição inicial i_0 .

Aplicando a segunda Lei de Kirchhoff ao único laço do circuito da Figura 1, obtemos a seguinte equação diferencial de primeira ordem

$$L\frac{di(t)}{dt} + Ri(t) = 0, (1)$$

ou ainda,

$$\frac{di(t)}{dt} + \frac{R}{L}i(t) = 0. (2)$$

É interessante observar que se trata de uma equação a coeficientes constantes pois supostamente os valores dos componentes R e L não variam ao longo do tempo. Para resolver essa equação, vamos aplicar uma transformação a ela e resolver a equação resultante em um domínio transformado. Depois devemos aplicar uma transformação inversa para se obter a solução no tempo.

Multiplicando ambos os lados de (2) por e^{-st} , e integrando de $t=0_-$ a $t\to\infty$, obtemos

$$\int_{0_{-}}^{\infty} \frac{di(t)}{dt} e^{-st} dt + \int_{0_{-}}^{\infty} \frac{R}{L} i(t) e^{-st} dt = 0$$

ou ainda

$$\int_{0_{-}}^{\infty} \frac{di(t)}{dt} e^{-st} dt + \frac{R}{L} \underbrace{\int_{0_{-}}^{\infty} i(t)e^{-st} dt}_{I(s)} = 0.$$

$$(3)$$

Aqui cabem três observações:

- s é uma variável complexa $s=\sigma+j\omega$ que tem dimensão de frequência. Por isso, é usualmente chamada de frequência complexa;
- a integral é calculada a partir de $t = 0_{-}$ para contemplar o caso de impulso em t = 0;

1 Introdução 3

- a segunda integral em (3) é definida como uma corrente transformada e é uma função da frequência complexa s. Por isso, é denotada como I(s).

Note que a função que aparece na primeira integral em (3) é a derivada da corrente. Para continuar, precisamos calcular a transformada da derivada de uma função. Usando integração por partes, pode-se mostrar que

$$\int_0^\infty \frac{di(t)}{dt} e^{-st} dt = sI(s) - i(0_-). \tag{4}$$

É importante observar que a transformada aplicada à derivada de uma função levou ao produto sI(s) e além disso apareceu automaticamente a condição inicial do indutor. Substituindo (4) em (3), obtemos a seguinte equação diferencial transformada

$$I(s)[s + R/L] = i_0 \Rightarrow I(s) = \frac{i_0}{s + R/L}.$$
 (5)

Com a transformação aplicada à equação diferencial (2), obtivemos uma equação algébrica simples na variável complexa s. Obter a corrente transformada é simples. No entanto, ainda precisamos obter i(t). Como obter i(t) a partir de I(s)?

Para responder essa pergunta, vamos aplicar a mesma transformação à função exponencial $Ae^{-\alpha t}H(t)$, em que H(t) representa o degrau unitário. Assim, obtemos

$$\int_{0_{-}}^{\infty} Ae^{-\alpha t}e^{-st}dt = \frac{A}{s+\alpha}.$$
 (6)

Usando esse resultado, conclui-se que

$$I(s) = \frac{i_0}{s + R/L} = \int_0^\infty i_0 e^{-(R/L)t} e^{-st} dt$$
 (7)

e portanto, a solução do problema é

$$i(t) = i_0 e^{-(R/L)t} H(t).$$
 (8)

Obter a solução de uma equação diferencial ordinária de primeira ordem e a coeficientes constantes é relativamente simples e não justifica a resolução no domínio transformado. No entanto, as equações diferenciais que descrevem circuitos elétricos podem ter ordem elevada. A solução dessa equações diferenciais corresponde à soma da solução geral da equação homogênea com a solução particular da equação completa. Obter a solução particular da equação completa pode ser complicado. Em geral, essas soluções são conhecidas para um conjunto particular de excitações como, por exemplo, degrau, impulso ou senóide. Além disso, deve-se impor as condições iniciais para resolver o problema, o que também pode ser complicado.

A resolução de equações diferenciais (ou íntegro-diferenciais) ordinárias e a coeficientes constantes em um domínio transformado facilita sobremaneira os cálculos já que a derivada de uma função é transformada em um produto e a integral em uma divisão na variável complexa s. Assim, obtemos equações algébricas no domínio transformado que levam em

2 Definição 4

conta as condições iniciais. Para obter a solução no tempo devemos aplicar a transformada inversa e para isso podemos usar técnicas bem conhecidas e relativamente simples, como a decomposição em frações parciais como veremos mais adiante. Assim, o procedimento de se aplicar a transformada de Laplace para resolução de equações diferenciais pode ser resumido através do diagrama mostrado na Figura 2.

Figura 2: Transformada de Laplace aplicada a Circuitos Elétricos.

2 Definição

Seja f(t) uma função real ou complexa definida em $[0_-, \infty]$. Sua transformada de Laplace unilateral é definida como

$$\mathcal{L}[f(t)] = F(s) \triangleq \int_{0_{-}}^{\infty} f(t)e^{-st}dt$$
(9)

sendo $s = \sigma + j\omega$ uma variável complexa.

Cabe observar que a transformada de Laplace bilateral é definida de $t \to -\infty$ a $t \to \infty$ e é importante quando se trabalha com sinais não causais (sinais que são diferentes de zero para t < 0). Em redes elétricas, um circuito sempre começa a operar a partir de um instante de tempo inicial ($t = 0_{-}$) em que há ou não energia armazenada no campo elétrico dos capacitores e no campo magnético do indutores (condições iniciais). Além disso, as excitações são aplicadas ao circuito a partir desse instante inicial. Por isso, a definição unilateral é mais conveniente para essa aplicação.

3 Existência e abscissa de convergência

Para que a transformada de Laplace exista, é necessário que a integral (9) convirja. Substituindo $s = \sigma + j\omega$ em (9), obtemos

$$F(s) = \int_{0_{-}}^{\infty} f(t)e^{-\sigma t}e^{-j\omega t}dt.$$
 (10)

Como $|e^{-j\omega t}|=1$, a integral do lado direito dessa equação converge se

$$\int_{0_{-}}^{\infty} |x(t)e^{-\sigma t}| dt < \infty. \tag{11}$$

Dessa forma, a existência da transformada de Laplace unilateral é garantida se a integral em (11) é finita para algum valor de σ . Qualquer sinal que não cresce mais rápido do que um sinal exponencial $Me^{\sigma_0 t}$ para algum M e σ_0 satisfaz a condição (11). Dessa forma, se para algum M e σ_0 ,

$$|x(t)| \le Me^{\sigma_0 t} \tag{12}$$

basta escolher $\sigma > \sigma_0$ para satisfazer (11).

Exemplo 3.1. Qual o valor de σ_0 para que a transformada de Laplace unilateral do sinal e^{2t} convirja? Calculando a transformada de Laplace desse sinal, obtemos

$$\mathcal{L}[e^{2t}] = \int_{0_{-}}^{\infty} e^{2t} e^{-st} dt = \int_{0_{-}}^{\infty} e^{2t} e^{-(\sigma+j\omega)t} dt$$
$$= \int_{0_{-}}^{\infty} e^{-(\sigma-2)t} e^{-j\omega t} dt \Rightarrow \sigma_0 = 2.$$

A região de convergência para essa transformada está mostrada na Figura 3.

Figura 3: Abscissa de convergência da transformada de Laplace unilateral.

Os sinais e^{t^2} , e^{e^t} e t^t crescem com uma taxa mais rápida que $e^{\sigma_0 t}$ e consequentemente não possuem transformada de Laplace. Felizmente, esses sinais têm pouca importância na prática. Resumindo, as condições suficientes para a existência da transformada de Laplace unilateral são:

- f(t) contínua e integrável em intervalos;
- $|f(t)| \leq Me^{\sigma_0 t}$, $\forall t \in [0_-, \infty]$ para $M \in \sigma_0$ reais;
- $\exists \lim_{t\to\infty} e^{-s_0t} f(t)$ para algum valor de $s_0 = \sigma_0 + j\omega$ que é abscissa de convergência da transformada;
- a integral é convergente para $Re[s] > Re[s_0]$.

É importante observar ainda que a transformada de Laplace unilateral F(s) tem uma única inversa f(t) e por isso, não é necessário explicitar a região de convergência. Por essa razão, raramente vamos falar de região de convergência ao longo do texto.

4 Transformadas de Laplace úteis em circuitos

Usando a definição (9), pode-se obter algumas transformadas de funções úteis na análise de circuitos elétricos. Essas transformadas estão mostradas na Tabela 1.

f(t)	F(s)	f(t)	F(s)
$\delta(t)$	1	$\operatorname{sen}(\omega t)H(t)$	$\frac{\omega}{s^2 + \omega^2}$
H(t)	$\frac{1}{s}$	$\cos(\omega t)H(t)$	$\frac{s}{s^2 + \omega^2}$
kH(t)	$\frac{k}{s}$	$e^{-at}H(t)$	$\frac{1}{s+a}$

Tabela 1: Transformadas de Laplace de funções elementares.

Usando os pares de transformadas da Tabela 1, podemos derivar transformadas de Laplace de outras funções. Por exemplo, vamos calcular a transformada de Laplace da função

$$f(t) = \cos(2t + \varphi) = \cos\varphi\cos 2t - \sin\varphi\sin 2t$$
.

Como veremos a seguir, a transformada de Laplace atende à propriedade de linearidade. Por isso, podemos calcular

$$F(s) = \cos \varphi \mathcal{L}[\cos 2t] - \sin \varphi \mathcal{L}[\sin 2t] = \frac{s \cos \varphi - 2 \sin \varphi}{s^2 + 4}.$$

5 Propriedades

A seguir enumeramos as propriedades básicas da Transformada de Laplace unilateral. As demonstrações dessas propriedades seguem diretamente da definição (9) e por isso não serão mostradas.

P1- A primeira propriedade que segue diretamente da definição (9) é a linearidade, ou seja, a transformada de Laplace de uma combinação linear das funções $f_1(t)$ e $f_2(t)$ é dada pela combinação linear de suas transformadas:

$$\mathcal{L}[c_1 f_1(t) + c_2 f_2(t)] = c_1 F_1(s) + c_2 F_2(s),$$

em que c_1 e c_2 são duas constantes reais ou complexas.

5 Propriedades 7

P2- Derivada da transformada em relação a \boldsymbol{s}

$$\mathcal{L}[f(t)] = F(s) \Rightarrow -\frac{d}{ds}F(s) = \mathcal{L}[tf(t)]$$

Essa propriedade é importante para calcularmos a transformada de funções do tipo

$$\frac{t^{k-1}}{(k-1)!}e^{\alpha t}$$

com $k \geq 1$ e inteiro, que podem aparecer em circuitos elétricos. A partir do par de transformadas

 $e^{\alpha t} \leftrightarrow \frac{1}{s-\alpha}$

e usando essa propriedade, obtemos

$$te^{\alpha t} \leftrightarrow \frac{1}{(s-\alpha)^2}$$

е

$$\frac{t^2}{2}e^{\alpha t} \leftrightarrow \frac{1}{(s-\alpha)^3}.$$

Aplicando essa propriedade sucessivamente, chegamos a

$$\frac{t^{k-1}}{(k-1)!}e^{\alpha t} \leftrightarrow \frac{1}{(s-\alpha)^k}.$$

P3- Translação no campo real

$$\mathcal{L}[f(t-a)] = e^{-as}F(s)$$

P4- Translação no campo complexo

$$\mathcal{L}[e^{-at}f(t)] = F(s+a)$$

P5- Multiplicação do argumento por constante

$$\mathcal{L}[f(\omega t)] = \frac{1}{\omega} F(s/\omega)$$

P6- Transformada de funções periódicas

$$\mathcal{L}[f(t)] = \frac{1}{1 - e^{-sT}} \int_{0_{-}}^{T} e^{-st} f(t) dt$$

P7- Transformada da derivada de uma função

$$\mathcal{L}[\dot{f}(t)] = sF(s) - f(0_{-})$$

$$\mathcal{L}[\ddot{f}(t)] = s^{2}F(s) - sf(0_{-}) - \dot{f}(0_{-})$$

$$\mathcal{L}[f^{(n)}(t)] = s^{n}F(s) - s^{n-1}f(0_{-}) - s^{n-2}\dot{f}(0_{-}) - \dots - f^{(n-1)}(0_{-})$$

Caso particular: condições iniciais nulas

$$\mathcal{L}[\dot{f}(t)] = sF(s)$$

$$\mathcal{L}[f^{(n)}(t)] = s^n F(s)$$

P8- Transformada da integral de uma função

$$\mathcal{L}\left[\int_{-\infty}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s} + \frac{\int_{-\infty}^{0} f(\tau)d\tau}{s}$$

Caso particular: condições iniciais nulas

$$\mathcal{L}\left[\int_{-\infty}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s}$$

6 Exemplo – Circuito RLC série

Exemplo 6.1. Considere o circuito RLC série da Figura 4 com valores de componentes no sistema de unidades de audiofrequências, excitado por um gerador de tensão.

Figura 4: Circuito RLC série.

Aplicando a segunda Lei de Kirchhoff ao laço, obtém-se

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C} \int_0^t i(\lambda)d\lambda + v(0_-) = e_s(t)$$

Essa equação íntegro-diferencial pode ser transformada em uma equação diferencial de segunda ordem. Derivando ambos os lados em relação a t e dividindo a equação resultante por L, obtemos

$$\frac{d^2i(t)}{dt^2} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = \frac{1}{L}\frac{de_s(t)}{dt}.$$

O fator de amortecimento e a frequência própria não amortecida (frequência de ressonância) valem respectivamente

$$\alpha = \frac{R}{2L} = 2.5 \text{ ms}^{-1} \text{ e } \omega_0 = 2 \text{ krd/s}$$

Vamos estudar o comportamento livre desse circuito $(e_s(t) = 0)$. Como $\alpha > \omega_0$ o circuito livre tem um comportamento super-amortecido. A resolução da equação diferencial no tempo leva à seguinte expressão para a corrente

$$i(t) = e^{-\alpha t} \left[i_0 \left(\cosh(\beta t) - \frac{\alpha}{\beta} \operatorname{senh}(\beta t) \right) - \frac{v_0}{\beta L} \operatorname{senh}(\beta t) \right]$$

para $t \ge 0$, sendo $\beta = \sqrt{\alpha^2 - \omega_0^2}$. No problema, $\beta = 1,5 \text{ ms}^{-1}$ e a partir de manipulações algébricas chega-se a

$$i(t) = (3e^{-t} - 2e^{-4t})H(t).$$

Vamos agora obter essa expressão usando a transformada de Laplace. Usando a Propriedade P7, a equação diferencial de segunda ordem pode ser descrita no domínio transformado como

$$s^{2}I(s) - si(0_{-}) - \frac{di(0_{-})}{dt} + \frac{R}{L}I(s) - \frac{R}{L}sI(s) - \frac{R}{L}i(0_{-}) + \frac{1}{LC}I(s) = \frac{1}{L}sE_{s}(s).$$

Dessa equação, obtemos a seguinte expressão para a corrente transformada

$$I(s) = \frac{\frac{1}{L}sE_s(s) + si(0_{-}) + \left[\frac{di(0_{-})}{dt} + \frac{R}{L}i(0_{-})\right]}{s^2 + \frac{R}{L}s + \frac{1}{LC}}.$$

Não dispomos da derivada da corrente em $t = 0_{-}$, mas podemos cacular essa condição inicial a partir de $v(0_{-})$. A partir da equação integro-diferencial, calculada em $t = 0_{-}$, obtemos

$$L\frac{di(0_{-})}{dt} + Ri(0_{-}) + \frac{1}{C} \int_{0}^{0_{-}} i(\lambda)d\lambda + v(0_{-}) = e_{s}(0_{-}).$$

Dessa equação, obtemos

$$\left[\frac{di(0_{-})}{dt} + \frac{R}{L}i(0_{-}) \right] = -\frac{1}{L}v(0_{-}).$$

Usando esse resultado, a corrente transformada fica

$$I(s) = \frac{\frac{1}{L}sE_s(s) + si(0_{-}) - \frac{1}{L}v(0_{-})}{s^2 + \frac{R}{L}s + \frac{1}{LC}}.$$

Cabe observar que poderíamos obter esse resultado aplicando as Propriedades P7 e P8 diretamente na equação íntegro-diferencial. Isso evitaria o passo adicional de obter a condição inicial da derivada da corrente em função do valor inicial da tensão.

Substituindo os valores dos componentes e das condições iniciais e lembrando que para obter a resposta livre $E_s(s) = 0$, chega-se

$$I(s) = \frac{s+10}{s^2 + 5s + 4} = \frac{s+10}{(s+1)(s+4)}.$$

O próximo passo é aplicar a transformada inversa para obter a expressão da corrente no tempo. Note que, a corrente transformada pode ser reescrita da forma

$$I(s) = \frac{3}{s+1} + \frac{-2}{s+4}.$$

Usando os pares de transformadas da Tabela 1, obtemos

$$i(t) = (3e^{-t} - 2e^{-4t})H(t),$$

que coincide com o resultado da resolução da equação diferencial. O gráfico dessa corrente ao longo do tempo está mostrado na Figura 5.

Figura 5: Corrente do circuito RLC série da Figura 4; comportamento livre.

7 A transformada inversa de Laplace

Até agora vimos como calcular a transformada de Laplace unilateral e sua aplicação para resolver equações diferenciais. Como calcular a transformada inversa? Como reescrever uma expressão racional no domínio transformado como uma soma de frações parciais como fizemos no exemplo anterior? Vamos responder essas perguntas a seguir.

7.1 Tabelas de transformadas e propriedades

Lembrando que a transformada de Laplace unilateral é unívoca e linear, podemos antitransformá-la usando tabelas de pares de transformadas e de propriedades. Vamos ver isso no próximo exemplo.

Exemplo 7.1. Vamos anti-transformar a função racional

$$F(s) = \frac{s+5}{(s+2)^2} = \frac{1}{s+2} + \frac{3}{(s+2)^2}.$$

Usando o seguinte resultado

$$\frac{t^{k-1}}{(k-1)!}e^{\alpha t} \leftrightarrow \frac{1}{(s-\alpha)^k},$$

por inspeção visual obtemos $f(t) = (e^{-2t} + 3te^{-2t})H(t)$.

7.2 Fórmula de inversão

A transformada de Laplace inversa pode ser calculada a partir da fórmula de inversão

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s)e^{st}ds.$$

Para isso, devemos calcular a integral no campo complexo, o que muitas vezes é complicado. Por isso, o uso da fórmula de inversão é evitado em geral, principalmente porque a maior parte das transformadas que aparecem em circuitos elétricos são funções racionais.

7.3 Transformada inversa de funções racionais

As transformadas que aparecem em circuitos elétricos são funções racionais do tipo

$$F(s) = \frac{N(s)}{D(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

em que a_i , $i=0,1,\cdots,n$ e b_j , $j=0,1,\cdots,m$ são constantes reais e $a_0 \neq 0$ e $b_0 \neq 0$. Se n>m então F(s) é uma função racional estritamente própria e pode ser expandida em frações parciais. Se $n\leq m$ então F(s) deve ser reduzida em uma função polinomial mais um resto que é uma função racional estritamente própria, obtido a partir de divisão de polinômios. Neste caso, o resto da divisão pode ser expandido em frações parciais como veremos mais adiante.

7.3.1 Definição de polos e zeros

Uma função racional pode ser fatorada da seguinte forma

$$F(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{j=1}^{n} (s - p_j)},$$
(13)

em que $K = b_0/a_0$ é um fator de escala, z_i , $i = 1, \dots, n$ são os zeros (raízes do polinômio do numerador, N(s)) e p_j , $j = 1, \dots, m$ são os polos (raízes do polinômio do denominador). Uma função racional é descrita completamente a partir dos polos, zeros e do fator de escala, como veremos no exemplo seguinte.

Exemplo 7.2. Seja

$$F(s) = 10 \frac{s^2 + 3s}{s^4 + 6s^3 + 14s^2 + 5}$$

uma função racional no domínio da transformada complexa s. Determine os polos, zeros e represente-os no plano s. A função F(s) pode ser fatorada na forma (13), ou seja,

$$F(s) = 10 \frac{s(s+3)}{(s+1)^2(s+2-j)(s+2+j)},$$

de onde podemos identificar os polos $p_{1,2}=-1$ e $p_{3,4}=-2\pm j$, os zeros $z_1=0$ e $z_2=-3$ e o fator de escala K=10. O diagrama de polos e zeros está mostrado na Figura 6.

Figura 6: Diagrama de polos e zeros da função F(s).

7.4 Inversa de funções racionais estritamente próprias

As funções racionais estritamente próprias (n>m) podem ser expandidas em frações parciais da forma

$$F(s) = \sum_{j=1}^{p} \sum_{k=1}^{m_j} A_{kj} \frac{1}{(s-p_j)^k}$$

em que A_{kj} são coeficientes reais ou complexos chamados de resíduos p_j , $j=1,\dots,p$ são os polos de F(s), cada um deles com multiplicidade m_j de modo que $m_1+m_2+\dots+m_p=n$.

Reescrever a função F(s) dessa forma é conveniente pois sabemos que

$$\frac{t^{k-1}}{(k-1)!}e^{\alpha t} \leftrightarrow \frac{1}{(s-\alpha)^k}.$$

Como calcular os resíduos? Vamos estudar o cálculo dos resíduos através de vários exemplos. As constas serão conferidas com a função residue.m do Matlab.

Exemplo 7.3. Polos simples e reais. Vamos obter a transformada de Laplace inversa da função

$$F(s) = \frac{s+3}{s^3 + 3s^2 + 2s} = \frac{s+3}{s(s+1)(s+2)}.$$

com polos $p_1=0$, $p_2=-1$ e $p_3=-2$ e zero $z_1=-3$. A expansão em frações parciais dessa função é dada por

$$F(s) = \frac{A_1}{s} + \frac{A_2}{s+1} + \frac{A_3}{s+2}.$$

O resíduo A_1 pode ser calculado, multiplicando a expansão em frações parciais de F(s) por s e calculando a expressão resultante em s = 0, ou seja,

$$A_1 = F(s)s|_{s=0} = \left[A_1 + \frac{A_2s}{s+1} + \frac{A_3s}{s+2}\right]_{s=0} = \frac{s+3}{(s+1)(s+2)}\Big|_{s=0} = 1,5.$$

O resíduo A_2 , por sua vez, pode ser calculado como

$$A_2 = F(s)(s+1)|_{s=-1} = \left[\frac{A_1(s+1)}{s} + A_2 + \frac{A_3(s+1)}{s+2} \right]_{s=-1} = -2 = \frac{s+3}{s(s+2)} \Big|_{s=-1} = -2.$$

Por fim, o resíduo A₃ é calculado de forma análoga, ou seja,

$$A_3 = F(s)(s+2)|_{s=-2} = \left[\frac{A_1(s+2)}{s} + \frac{A_2(s+2)}{(s+1)} + A_3 \right]_{s=-2} = \frac{s+3}{s(s+1)} \Big|_{s=-2} = 0, 5.$$

Dessa forma, a expansão em frações parciais de F(s) se reduz a

$$F(s) = \frac{1.5}{s} + \frac{-2}{s+1} + \frac{0.5}{s+2}$$

cuja transformada inversa é dada por

$$f(t) = \left[1, 5 - 2e^{-t} + 0, 5e^{-2t}\right] H(t).$$

Podemos obter esses resíduos usando a função residue.m do Matlab. Entrando com os coeficientes do polinômio do numerador e do denominador, obtemos os resíduos na variável R, os polos na variável P e coeficientes na variável K, que aparecem caso a função não seja estritamente própria. Ou seja, a expansão em frações parciais é do tipo

$$B(s)$$
 $R(1)$ $R(2)$ $R(n)$
---- = ------ + ----- + ... + ----- + $K(s)$
 $A(s)$ $s - P(1)$ $s - P(2)$ $s - P(n)$

Para o nosso exemplo, obtemos

$$R = 0.5000 \\ -2.0000 \\ 1.5000$$

$$K = []$$

Exemplo 7.4. Polos simples e complexos conjugados. Quando há polos complexos conjugados p_k e p_k^* , uma parcela da expansão em frações parciais de F(s) é dada por

$$F_k(s) = \frac{A_k}{s - p_k} + \frac{A_k^*}{s - p_k^*},$$

sendo $A_k = |A_k|e^{j\phi_k}$ e $A_k^* = |A_k|e^{-j\phi_k}$ resíduos que também são complexos conjugados e estão relacionados ao polos $p_k = \sigma_k + j\omega_k$ e $p_k^* = \sigma_k - j\omega_k$, respectivamente. A transformada inversa de $F_k(s)$ é dada por

$$f_k(t) = A_k e^{p_k t} + A_k^* e^{p_k^* t} = 2 \operatorname{Re} \{ A_k e^{p_k t} \}.$$

Usando a descrição do polo p_k em parte real e imaginária e do resíduo A_k em módulo e fase, podemos reescrever essa função como

$$f_k(t) = 2|A_k|e^{\sigma_k t}\cos(\omega_k + \phi_k).$$

Vamos então calcular a transformada inversa da função

$$F(s) = 20 \frac{s+3}{s^4 + 5s^3 + 13s^2 + 19s + 10}.$$

Usando a função residue.m do Matlab obtemos

```
b=20*[1 3];
a=[ 1
          5
                             10];
                13
                      19
[R,P,K]=residue(b,a)
R =
  -3.0000 + 1.0000i
  -3.0000 - 1.0000i
  -4.0000
  10.0000
P =
  -1.0000 + 2.0000i
  -1.0000 - 2.0000i
  -2.0000
  -1.0000
K = []
```

Novamente, a variável K é vazia pois F(s) é uma função racional estritamente própria. Neste caso temos dois polos complexos conjugados e dois reais e um zero real, como podemos ver no diagrama de polos e zeros de F(s) e no gráfico do |F(s)| em função da parte real σ e parte imaginária ω da variável complexa s, mostrados nas Figuras 7 e s, respectivamente. Na Figura 7, a reta tracejada indica a abscissa de convergência de s.

Figura 7: Diagrama de polos e zeros da função F(s).

Figura 8: Módulo de F(s) em dB em função da parte real σ e parte imaginária ω da variável complexa s.

Usando os resultados da função residue.m, a expansão em frações parciais de F(s) é dada por

$$F(s) = \frac{\sqrt{10}e^{j161,6^{\circ}}}{s+1-2j} + \frac{\sqrt{10}e^{-j161,6^{\circ}}}{s+1+2j} + \frac{-4}{s+2} + \frac{10}{s+1}.$$

Usando o resultado anterior para anti-transformar parcelas complexas conjugadas, obtém-se

$$f(t) = \left[2\sqrt{10}e^{-t}\cos(2t + 161,6^{\circ}) - 4e^{-2t} + 10e^{-t}\right]H(t).$$

Exemplo 7.5. Polos múltiplos. Neste exemplo vamos calcular a inversa de uma função racional estritamente própria que tem polos múltiplos. Seja a seguinte função racional estritamente própria

$$F(s) = \frac{s+2}{s^3 + 2s^2 + s} = \frac{s+2}{s(s+1)^2}$$

com zero $z_1 = -2$ e polos em $p_1 = 0$ e $p_2 = p_3 = -1$ (multiplicidade 2). A decomposição em frações parciais dessa função é dada por

$$F(s) = \frac{A_{11}}{s} + \frac{A_{12}}{(s+1)} + \frac{A_{22}}{(s+1)^2}.$$

Os resíduos A_{11} e A_{22} são calculados como nos casos anteriores, ou seja

$$A_{11} = sF(s)|_{s=0} = 2$$

 $A_{22} = (s+1)^2 F(s)|_{s=-1} = -1.$

Com os valores de A_{11} e A_{22} , é possível calcular o resíduo A_{12} igualando a expansão em frações parciais a F(s), ou seja,

$$\frac{A_{11}(s+1)^2 + A_{12}(s+1) + A_{22}s}{s(s+1)^2} = \frac{s+2}{s(s+1)^2}.$$

Os numeradores dessas funções racionais devem ser iguais para todo s na região de convergência de F(s). Em particular para s=1, obtemos

$$2(2)^{2} + A_{12}(2)1 + (-1)1 = 3 \Rightarrow 2A_{12} = -4 \Rightarrow A_{12} = -2.$$

Assim, a expansão em frações parciais fica

$$F(s) = \frac{2}{s} + \frac{-2}{(s+1)} + \frac{-1}{(s+1)^2}$$

e a transformada inversa \acute{e} dada por

$$f(t) = [2 - 2e^{-t} - te^{-t}]H(t).$$

Usando a função residue.m do Matlab, obtemos

[R,P,K]=residue(b,a)

R =

-2

-1

2

P =

-1

-1

0

$$K = []$$

 \acute{E} importante observar que no caso em que um polo

$$P(j) = \dots = P(j+m-1)$$

aparece com multiplicidade m, a expansão em frações parciais inclui termos da forma

Usando essa expressão podemos identificar os resíduos e relacioná-los com os termos da expansão.

7.5 Inversa de funções racionais impróprias

Quando o grau do numerador da função racional é maior ou igual que o grau do denominador $m \geq n$, temos uma função racional imprópria. Neste caso, antes de fazer a expansão em frações parciais, devemos fazer uma divisão de polinômios de modo a escrever a função F(s) como a soma de um polinômio em s e uma função racional estritamente própria.

Exemplo 7.6. Vamos anti-transformar a função imprópria

$$F(s) = \frac{s^4 + 5s^3 + 4s^2 + 3^2 + 1}{s^3 + 3s^2 + 2s}.$$

Devemos fazer primeiramente uma divisão de polinômios até obtermos uma função estritamente própria. Dessa forma, chega-se a

$$F(s) = s + 2 + \frac{-4s^2 - s + 1}{s^3 + 3s^2 + 2s}.$$

Usando a função residue.m do Matlab, obtemos

-6.5000

2.0000

0.5000

Neste caso, a variável K não é vazia e corresponde aos coeficientes do polinômio s+2 que aparece em F(s), através da divisão de polinômios. Os resíduos e os polos obtidos com essa função correspondem à expansão em frações parciais da parcela estritamente própria de F(s). Assim,

$$F(s) = s + 2 + \frac{-6.5}{s+2} + \frac{2}{s+1} + \frac{0.5}{s}.$$

Para transformar a parcela s devemos lembrar que a transformada do impulso $\delta(n)$ é igual a 1. Usando a Propriedade P7, obtemos

$$\mathcal{L}\left[\frac{d^{(n)}\delta(n)}{dt}\right] = s^n.$$

REFERÊNCIAS 18

Assim, f(t) 'e dado por

$$f(t) = \frac{d\delta(n)}{dt} + 2\delta(n) + 0.5u(n) + 2e^{-t}u(n) - 6.5e^{-2t}u(n).$$

Referências

- [1] OPPENHEIM, A. V.; WILLSKY, A. S. Signals and Systems, Prentice Hall, 2ª edição, 1997.
- [2] LATHI B. P., Linear systems and signals, Oxford, 2ª edição, 2005.
- [3] ORSINI, L. Q.; CONSONNI, D. Curso de Circuitos Elétricos, Edgard Blucher, vol.1, 2ª edição, 2002.
- [4] NILSSON, J. W.; RIEDEL, S. A. Riedel *Electric Circuits*, 7ª edição, Prentice Hall, 2004.
- [5] HAYKIN, S.; VAN VEEN, B. Signals and Systems, 2ª edição, Wiley, 2002