TalkingData AdTracking Fraud Detection
Challenge

Can you detect fraudulent click traffic for mobile app ads?

TEAM NAME : hire-us CHHAYA CHOUDHARY, IRINA VIRNIK, VANDANA IYER

MOTIVATION

GOAL

Predict a probability for the target is_attributed variable for each click_id in the test set.

is_attributed: the target that is to be predicted, indicating the app was downloaded.

Click id	is_attributed
1	0.003
2	0.001

Evaluation:

Submissions are evaluated on area under the ROC curve between the predicted probability and the observed target.

DATASET STATISTICS

DATASET NAME	NUMBER OF ROWS	SIZE(Unzipped)
Train	187,903,890	7.5 GB
Train Sample	100,000	4.1 MB
Test	18,790,469	863.3 MB
Test supplement	57,537,505	2.7 GB

% of Negative data: 99.8% % of Positive data: 0.2%

More complicated than we initially thought

DATASET DESCRIPTION

Train Dataset

	ip	арр	device	os	channel	click_time	attributed_time	is_attributed
0	83230	3	1	13	379	2017-11-06 14:32:21	NaN	0
1	17357	3	1	19	379	2017-11-06 14:33:34	NaN	0
2	35810	3	1	13	379	2017-11-06 14:34:12	NaN	0
3	45745	14	1	13	478	2017-11-06 14:34:52	NaN	0
4	161007	3	1	13	379	2017-11-06 14:35:08	NaN	0

Test Dataset

	click_id	ip	арр	device	os	channel	click_time
0	0	5744	9	1	3	107	2017-11-10 04:00:00
1	1	119901	9	1	3	466	2017-11-10 04:00:00
2	2	72287	21	1	19	128	2017-11-10 04:00:00
3	3	78477	15	1	13	111	2017-11-10 04:00:00
4	4	123080	12	1	13	328	2017-11-10 04:00:00

OUR METHODOLOGY

- ☐ Exploratory Data Analysis Time Series Analysis
- ☐ Handling large dataset Down Sampling
- Feature Engineering Time based, Velocity based
- ☐ Model selection and preparation
- Hyperparameter tuning

Resources utilized:

- ☐ Kaggle Kernels (12GB RAM)
- ☐ Google Colab
- Google Cloud Platform (GCP) 8 Cores, 52GB RAM

RESULTS - APPROACH

Classifier	LB Public Score(AUC)	LB Private Score(AUC)
XGBoost with down sampling	0.96273	0.96549
XGBoost with training on consecutive 10M rows from end	0.95613	0.95558
XGBoost with full data	0.96107	0.95846
Gradient Boosting Classifier	0.95819	0.95673
Logistic Regression	0.60725	0.62578

ROC CURVE - VALIDATION SET

Used XGBoost:

- Learning rate = 0.3
- Objective function: binary logistic
- No. of iterations: 200
- Early Stopping : 20
- Eval metric : auc

FEATURE ENGINEERING

Day of the week Day of the year Hour of the click time Minute of the click time Second of the click time Click counts by ip ip clicks to attribution percentage Click counts by os os clicks to attribution percentage Click counts by device Device clicks to attribution percentage

BEST WORKING ALGORITHM: XGBOOST

Advantages:

- 1. Regularization It helps to reduce overfitting
- **2. Parallel Computing** It is enabled with parallel processing (using OpenMP); i.e., when you run xgboost, by default, it would use all the cores of your laptop/machine.
- **3. High Flexibility** XGBoost allow users to define custom optimization objectives and evaluation criteria
- 4. Handling missing values has an in-built routine to handle missing values
- **5. Tree Pruning** XGBoost make splits upto the max_depth specified and then start pruning the tree backwards and remove splits beyond which there is no positive gain
- **6. Built-in cross validation** XGBoost allows user to run a cross-validation at each iteration of the boosting process and thus it is easy to get the exact optimum number of boosting iterations in a single run

CHALLENGES

- Resource and memory limitations
- ☐ Working with huge imbalanced data
- ☐ Feature engineering
- ☐ Dividing tasks within a team

FUTURE WORK

- ☐ More feature Engineering
- Experimentation with neural networks
- Deploy using Flask
- ☐ Experimentation with Dask
- Turn this into a product for ad analytics

KEY TAKEAWAYS

- Learned about handling class imbalance in Click fraud data
- ☐ Hands on Google Cloud Platform (GCP)
- ☐ More data is not always useful
- ☐ Github:

https://github.com/WomenInDataScience-Seattle/talking_data_fraud_detection/tree/master/hire-us

QUESTIONS?

