Contrôle de Mathématiques

Merci de répondre sur la grille fournie et de rendre le sujet avec la grille.

- 1. L'ensemble des solutions de l'inéquation -3x + 2 < 5 est :
 - (a) R
 - (b) $]-1,+\infty[$
 - (c) $]-\infty,1]$
- 2. L'ensemble des solutions de l'inéquation $-3x + 8 \ge 5$
 - (a) R
 - (b) $[1, +\infty[$
 - (c) $]-\infty,1]$
- 3. Le nombre $\frac{1}{6}$
 - (a) est solution de l'équation 6x + 1 = 0
 - (b) est solution de l'équation x + 6 = 0
 - (c) est solution de l'inéquation 3x + 3 > 0
- 4. Le nombre $\sqrt{6}$
 - (a) est solution de l'équation $x^2 + 6 = 0$
 - (b) est solution de l'équation $x^3 6x = 0$
 - (c) est solution de l'inéquation -6x + 2 > 0

- 5. Le nombre $\frac{1}{8}$
 - (a) est solution de l'équation 8x 1 = 0
 - (b) est solution de l'équation 7x + 1 = 0
 - (c) est solution de l'inéquation 8x + 3 < 0
- 6. Le couple solution du système $\left\{ \begin{array}{ll} 5x+2y=-7 \\ x-8y=-35 \end{array} \right. \text{ est}$
 - (a) (6;4)
 - (b) (-3;4)
 - (c) (2; -3)
- 7. L'ensemble des solutions de l'équation $x^2 + 2x 24 = 0$ est :
 - (a) $\{4; -6\}$
 - (b) ∅
 - (c) $\{4; 6\}$
- 8. $\frac{12}{5} \frac{5}{4} \times 2 =$
 - (a) $\frac{23}{10}$
 - (b) $-\frac{1}{10}$
 - (c) $\frac{23}{20}$
- $9. \ \frac{\frac{9}{5} 1}{\frac{1}{8} + 1} =$
 - (a) $\frac{72}{5}$
 - (b) $\frac{32}{45}$
 - (c) $\frac{9}{10}$
- 10. Dans un triangle ABC rectangle en A, si AB = 4 et BC = 10, alors
 - (a) $\sin(\hat{B}) = \frac{2}{5}$
 - (b) $\cos(\hat{C}) = \frac{2}{5}$
 - (c) $AC = \sqrt{84}$

11.	Dans un triangle ABC rectangle en A , si $AB=4$ et $BC=14$, alors
	(a) $\tan(\hat{C}) = \frac{2}{7}$
	(b) $\cos(\hat{B}) = \frac{2}{7}$
	(c) $AC = \sqrt{212}$
12.	Dans un triangle ABC rectangle en A , si $AB=2\mathrm{cm}$ et $AC=35\mathrm{mm}$, alors $\hat{B}=1$
	(a) $\arctan\left(\frac{35}{20}\right)$
	(b) $20 \times \arctan(35)$
	(c) $\frac{\arctan\left(\frac{7}{2}\right)}{2}$
13.	Dans un triangle ABC rectangle en $B,$ si $\widehat{A}=20^\circ$ alors
	(a) $\hat{C} = 80^{\circ}$
	(b) $\hat{C} = 65^{\circ}$
	(c) $\hat{C} = 70^{\circ}$
14.	Dans un triangle ABC rectangle en B , si $\widehat{A}=60^\circ$ alors
	(a) $\hat{C} = 40^{\circ}$
	(a) $\hat{C} = 40^{\circ}$ (b) $\hat{C} = 30^{\circ}$
	(c) $\hat{C} = 15^{\circ}$
15.	Si ABC est un triangle rectangle en B tel que $AB=35\mathrm{cm}$ et $BC=12\mathrm{cm},$ alors le segment $[AC]$ mesure :
	(a) 47cm
	(b) 37cm
	(c) 23cm
16.	Si ABC est un triangle rectangle en B tel que $AB=13\mathrm{cm}$ et $AC=85\mathrm{cm},$ alors le segment $[BC]$ mesure :
	(a) 47cm

(b) 98cm

(c) 84cm

- 17. Dans quel cas le triangle ABC est-il rectangle?
 - (a) AB = 48cm, AC = 50cm et BC = 14cm
 - (b) AB = 48cm, AC = 62cm et BC = 14cm
 - (c) AB = 48cm, AC = 34cm et BC = 14cm
- 18. On considère deux triangles non plat ABC et A'B'C' tels que (AB) // (A'B'), (AC) // (A'C') et (CB) // (C'B'). Si on a AB = 6cm, AC = 36cm et A'B' = 9mm, alors A'C' = 1
 - (a) 54mm
 - (b) 4cm
 - (c) 24cm
- 19. On considère deux triangles non plat ABC et A'B'C' tels que (AB) // (A'B'), (AC) // (A'C') et (CB) // (C'B'). Si on a AB = 5mm, AC = 30mm et $A'B' = \frac{25}{2}$ cm, alors A'C' =
 - (a) 12mm
 - (b) 750mm
 - (c) 12cm
- 20. On considère deux triangles non plat ABC et A'B'C' tels que (AB)//(A'B') et (CB)//(C'B'). On a (AC)//(A'C') si on a :
 - (a) AB = 21m, AC = 84m, A'B' = 49cm et A'C' = 36cm
 - (b) AB = 21m, AC = 84m, A'B' = 49cm et A'C' = 196cm
 - (c) AB = 21m, AC = 84m, A'B' = 49cm et A'C' = 9cm