endliche Sprache -¿ unendliche Sprache -¿ endliche Sprache

Albert Zeyer

10. Februar 2011

Inhaltsverzeichnis

1	1 Introduction									
2	Aut 2.1 2.2	omat Pfad	4 4							
3	*-S ₁ 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	$\begin{array}{c} \textbf{orachklassen} \\ \textbf{regul\"{a}re Sprachen} \\ \textbf{piece-wise testable} \\ \textbf{k-locally testable} \\ \textbf{dot-depth-}n \\ \textbf{starfree} \\ \textbf{locally modulo testable} \\ \textbf{R-trivial} \\ \textbf{endlich} \neq \textbf{co-endlich} \end{array}$	4 4 5 5 5 5 5 5 5 5							
4	3.9	endwise testable prachklassen Büchi Automat Muller Automat Rabin Automat	5 5 5 5 zu							
5	-	erationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$	5 5							
6	*-S ₁ 6.1 6.2 6.3	orachklassen regular piece-wise testable k -locally testable	7 7 7							

		dot-depth- n																	
		starfree																	
	6.6	locally modulo t	estable																. '
	6.7	10 011/101																	
	6.8	endlich / co-end	$\operatorname{lich} \dots$. '
	6.9	endwise testable																	. '
7	ω -S	prachklassen																	,
	7.1	Staiger		Wagne	r						Kl	ass	e						$\mathbf{z}_{\mathbf{l}}$
																			. '
	Op e	Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$,			

1 Introduction

...

2 Automat

Ein Automat auf dem Alphabet Σ ist gegeben durch eine Menge Q von Zuständen und einer Teilmenge $E \subset Q \times A \times Q$ von Transitionen. Außerdem ist in der Regel eine Teilmenge $I \subset Q$ von Startzuständen und eine Teilmenge $F \subset Q$ von Endzuständen gegeben.

Wir schreiben dafür: = (Q, Σ, E, I, F) .

Der Automat ist endlich genau dann, wenn Q und Σ endlich sind.

Der Automat ist deterministisch, wenn E eine Menge von Funktionen $Q \times A \to \text{und}$ wenn |I| = 1 sind.

2.1 Pfad

Zwei Transitionen $(p, a, q), (p', a', q') \in E$ sind aufeinanderfolgend, wenn q = p'.

Ein Pfad in dem Automat ist eine Folge von aufeinanderfolgenden Transitionen, geschrieben als: $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \dots$

2.2 Akzeptanz von endlichen Wörtern

Ein Automat = (Q, Σ, E, I, F) akzeptiert ein endliches Wort $w = (a_0, a_1, ..., a_n) \in \Sigma^*$ genau dann, wenn es einen Pfad $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \dots \to^{a_n} q_{n+1}$ gibt mit $q_0 \in I$ und $q_{n+1} \in F$. Die Sprache $L^*()$ ist definiert als die Menge aller Wörter, die von akzeptiert werden.

3 *-Sprachklassen

Die *-Sprachklasse ist die Menge aller Sprachen von Wörtern $w \in \Sigma^*$, also die Menge von Sprachen von endlichen Wörtern.

3.1 reguläre Sprachen

Eine Sprache ist genau dann regulär, wenn sie von einem endlichen Automat erkannt wird.

- 3.2 piece-wise testable
- 3.3 k-locally testable
- 3.4 dot-depth-n
- 3.5 starfree
- 3.6 locally modulo testable
- 3.7 R-trivial
- 3.8 endlich / co-endlich
- 3.9 endwise testable

4 ω -Sprachklassen

4.1 Büchi Automat

Ein Automat = (Q, Σ, E, I, F) Büchi-akzeptiert ein Wort $w = (a_0, a_1, a_2, ...) \in \Sigma^{\omega}$ genau dann, wenn es einen unendlichen Pfad $q_0 \to^{a_0} q_1 \to^{a_1} q_2 \to^{a_2} q_3...$ gibt mit $q_0 \in I$ und $\{q_i | q_i \in F\}$ unendlich, also der unendlich oft einen Zustand F erreicht.

Die Sprache $L^{\omega}()$ ist definiert als die Menge aller unendlichen Wörter, die von Büchiakzeptiert werden.

Man bezeichnet einen Automaten als Büchi Automat, wenn man von der Büchi-Akzeptanz ausgeht.

4.2 Muller Automat

Ein Muller Automat ist ein endlicher, deterministischer Automat mit Muller Akzeptanzbedingung und einer Menge $\in 2^Q$, genannt die Tabelle des Automaten (anstatt der Menge F). Dabei wird ein Wort $w \in \Sigma^{\omega}$ akzeptiert genau dann, wenn es einen entsprechenden Pfad p gibt mit $(p) \in$, wobei Inf(p) die Menge der unendlich oft besuchten Zustände ist.

Wir schreiben = $(Q, \Sigma, E, i,)$.

4.3 Rabin Automat

Ein Rabin Automat ist ein Tuple = $(Q, \Sigma, E, i,)$, wobei (Q, Σ, E) ein deterministischer Automat ist, i ist der Startzustand und = $\{(L_j, U_j) | j \in J\}$ ist eine Familie von Paren von Zustandsmengen. Ein Pfad p ist erfolgreich, wenn er in i beginnt und wenn es einen Index j inJ gibt, so dass p unendlich oft U_j besucht und nur endlich oft L_j . Ist der Automat endlich, so ist dies äquivalent mit $(p) \cap L_j = \emptyset$ und $(p) \cap U_j \emptyset$.

4.4 Staiger Wagner Klasse zu

5 Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$

5.1 ...

a) * alle Sprachen $K\dot{\Sigma}^{\omega} = (K), K \in$

- * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf - s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen lim BC Muller-erkennbare (BC: boolean closure?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure

alle der Form $_{i=1}^nU_i\dot{V}_i^\omega,\,U_i,V_i\in$ d) nicht suffix sensitiv

 $\overset{\,\,{}_\circ}{K}\in\Rightarrow K\dot{\Sigma}^*\in$

Hauptfrage: Für welche ergibt sich eine andere Sprache als bei =.

6 *-Sprachklassen

- 6.1 regular
- 6.2 piece-wise testable
- 6.3 k-locally testable
- 6.4 dot-depth-n
- 6.5 starfree
- 6.6 locally modulo testable
- 6.7 R-trivial
- 6.8 endlich / co-endlich
- 6.9 endwise testable
- 7 ω -Sprachklassen
- 7.1 Staiger Wagner Klasse zu
- 8 Operationen: von *-Sprache K zu ω -Sprache $L_{\omega}(K)$
- 8.1 ...
- a) * alle Sprachen $K\dot{\Sigma}^{\omega} = (K), K \in$
 - * offene G
- * Staiger Wagner Klasse http://de.wikipedia.org/wiki/Staiger-Wagner-Automat Erich Grädel, Wolfgang Thomas und Thomas Wilke (Herausgeber), Automata, Logics, and Infinite Games, LNCS 2500, 2002, Seite 20 (auf englisch) http://www.automata.rwth-aachen.de/material/skripte/areasenglish.pdf s.53
 - a') dual $\overline{K} = \omega$ -Wörter, deren alle Präfixe in K sind
 - b) Sprachen lim BC Muller-erkennbare (BC: boolean closure?)
 - b') von einer Stelle an alle Prefixe in K
 - c) Kleene-Closure

alle der Form $_{i=1}^{n}U_{i}\dot{V}_{i}^{\omega},\ U_{i},V_{i}\in$

d) nicht suffix sensitiv

 $K \in \Rightarrow K\dot{\Sigma}^* \in$

Literatur