

Goals for Chapter 24

- Capacitors store electric charge
- Capacitance
- Capacitors in series and parallel
- Energy stored in a capacitor
- Dielectrics

24.1 Capacitors and capacitance

- Two conductors separated by an insulator (or a vacuum) form a capacitor.
- When the capacitor is charged, the two conductors have charges with equal magnitude and opposite sign, and the net charge on the capacitor as a whole is zero.
- Symbols of capacitor: ⊢ ⊢

Capacitance

- One common way to charge a capacitor is to connect the two conductors to opposite terminals of a battery.
- The potential difference V_{ab} between the conductors becomes equal to the voltage of the battery.
- The ratio of charge to potential difference is called the capacitance *C* of the capacitor:

Capacitance of a capacitor
$$C = \frac{Q}{V_{ab}}$$
 Nagnitude of charge on each conductor of a capacitor $C = \frac{Q}{V_{ab}}$ Potential difference between conductors (a has charge $+Q$, b has charge $-Q$)

- SI unit of capacitance: farad, F = C/V
- The capacitance depends on the geometry of the capacitor.

Parallel-plate capacitor

- The field between the plates is essentially uniform, and the charges are uniformly distributed over their opposing surfaces.
 - (a) Arrangement of the capacitor plates

(b) Side view of the electric field \vec{E}

$$E = \frac{\sigma}{\epsilon_0} \text{ (from chap.22)}$$

$$C = \frac{Q}{V_{ab}} = \frac{\sigma A}{Ed} = \frac{\epsilon_0 E A}{Ed} = \frac{\epsilon_0 A}{d}$$
$$= \frac{\epsilon_0 \Phi_E}{V_{ab}}$$

← Storage capacity of charge (or electric flux)

Capacitance of a parallel-plate capacitor in vacuum

$$C = \frac{Q}{V_{ab}} = \epsilon_0 \frac{A}{d}$$
Area of each plate Distance between plates

Potential difference between plates

Electric constant

A spherical capacitor

Two concentric spherical conducting shells are separated by vacuum (Fig. 24.5). The inner shell has total charge +Q and outer radius r_a , and the outer shell has charge -Q and inner radius r_b . Find the capacitance of this spherical capacitor.

$$V_{ab} = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right)$$

$$\Rightarrow C = \frac{Q}{|V_{ab}|} = 4\pi\epsilon_0 \frac{r_b r_a}{r_b - r_a}$$

A cylindrical capacitor

Two long, coaxial cylindrical conductors are separated by vacuum (Fig. 24.6). The inner cylinder has radius r_a and linear charge density $+\lambda$. The outer cylinder has inner radius r_b and linear charge density $-\lambda$. Find the capacitance per unit length for this capacitor.

$$V_{ab} = \frac{\lambda}{2\pi\epsilon_0} \ln \frac{r_b}{r_a}$$

$$\Rightarrow C = \frac{\lambda L}{V_{ab}} = \frac{2\pi\epsilon_0 L}{\ln(r_b/r_a)}$$

The capacitance per unit length,
$$\frac{C}{L} = \frac{2\pi\epsilon_0}{\ln(r_b/r_a)}$$

24.2 Capacitors in series and parallel

Capacitors in series

- Capacitors are in series if they are connected one after the other.
 Both capacitors have the same charge Q.
- Equivalent capacitor

Capacitors in series:

- The capacitors have the same charge Q.
- Their potential differences add:

$$V_{ac} + V_{cb} = V_{ab}$$
.

$$\begin{array}{rcl} V_{ab} & = & V_1 + V_2 \\ \frac{Q}{C_{\rm eq}} & \equiv & \frac{Q}{C_1} + \frac{Q}{C_2} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)Q \end{array}$$

Capacitors in parallel

• Capacitors are connected in parallel between a and b. The potential difference V_{ab} is the same for all the capacitors.

Capacitors in parallel:

- The capacitors have the same potential *V*.
- The charge on each capacitor depends on its capacitance: $Q_1 = C_1 V$, $Q_2 = C_2 V$.

$$Q = Q_1 + Q_2$$

$$C_{eq}V = C_1V + C_2V$$

$$\Rightarrow C_{eq} = C_1 + C_2$$

Several capacitors in series and parallel

• In series, the charges on the individual capacitors are same.

Capacitors in series:
$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$
Equivalent capacitance of series combination individual capacitors

• In parallel, the voltage differences of the individual capacitors are same.

Capacitor network

24.3 Energy storage in capacitors and E-field energy

• The work dW needed to add charge dQ in a capacitor already at the voltage difference V:

$$dW = VdQ = \frac{Q}{C}dQ$$

• Total work required to charge *Q*:

$$W = \int_0^Q \frac{Q}{C} dQ = \frac{Q^2}{2C}$$

• The potential energy stored in a capacitor is:

Magnitude of charge on each plate

Potential energy stored in a capacitor
$$U = \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

Capacitance Potential difference between plates

Electric field energy density

- The capacitor energy is considered to be stored in the electric field between the plates.
- The energy density of the electric field is

$$u = \frac{U}{Ad} = \frac{1}{2} \frac{CV^2}{Ad} = \frac{1}{2} \epsilon_0 \frac{V^2}{d^2} = \frac{1}{2} \epsilon_0 E^2 \quad \left(= \frac{\sigma^2}{2\epsilon_0} \right)$$

Electric energy density
$$u = \frac{1}{2} \epsilon_0 E^2$$
 Magnitude of electric field Electric constant

24.4 Dielectrics

- A dielectric is a nonconducting material such as glass, paraffin, or polystyrene.
- When a dielectric is inserted between the plates of a capacitor, the electric field decreases by a factor K (dielectric constant) due to induced surface charges via polarization within the dielectric.

$$E = \frac{1}{K}E_0 = \frac{\sigma}{K\epsilon_0} \equiv \frac{\sigma}{\epsilon}$$

 $\epsilon = K\epsilon_0$, permittivity

 E_0 : electric field produced by "free" charges.

For a given charge density σ , the induced charges on the dielectric's surfaces reduce the electric field between the plates.

Behavior of a dielectric in four steps

Capacitator filled with a dielectric material

$$Q = CV = CEd = CE_0d/K$$
$$= Q_0 = C_0E_0d \Rightarrow C = KC_0$$

• The new capacitance C is greater than C_0 by the factor K.

- The stored energy increases with *K* for a given *V*: $U = \frac{1}{2}CV^2 = \frac{1}{2}KC_0V^2$
- The stored energy decreases with K for a given Q: $U = \frac{Q^2}{2C} = \frac{Q^2}{2KC_0}$
- The energy density increases with *K* for a given *E*:

Electric energy density
$$u = \frac{1}{2}K\epsilon_0 E^2 = \frac{1}{2}\epsilon E^2$$
Electric constant Magnitude of electric field

24.6 Gauss's law in dielectrics

• The Gaussian surface is a rectangular box that lies half in the conductor and half in the dielectric.

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl-total}}}{\epsilon_0}$$

$$\oint K\vec{E} \cdot d\vec{A} = \oint \vec{E_0} \cdot d\vec{A} = \frac{\sigma A}{\epsilon_0} = \frac{Q_{\text{encl-free}}}{\epsilon_0}$$

Gauss's law becomes:

where $Q_{\text{encl-free}}$ is the total **free charge** $(=\sigma A)$ enclosed by the Gaussian surface.

Induced charge density

From Gauss's law

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl-total}}}{\epsilon_0} \Rightarrow E = \frac{\sigma - \sigma_i}{\epsilon_0} \equiv \frac{E_0}{K} = \frac{\sigma}{\epsilon_0 K}$$

 \Rightarrow the induced charge density,

$$\sigma_i = \left(1 - \frac{1}{K}\right)\sigma$$

24.5 Molecular model of induced charge*

• **Polar molecules**, such as H₂O, have **intrinsic dipoles**. These tend to align along an external electric field.

 Nonpolar molecules become polar when an external electric field is applied - polarization. These induced dipoles align along the external electric field

Table 24.1—Some dielectric constants

TABLE 24.1 Values of Dielectric Constant K at 20°C

Material	K	Material	K
Vacuum	1	Polyvinyl chloride	3.18
Air (1 atm)	1.00059	Plexiglas [®]	3.40
Air (100 atm)	1.0548	Glass	5-10
Teflon	2.1	Neoprene	6.70
Polyethylene	2.25	Germanium	16
Benzene	2.28	Glycerin	42.5
Mica	3–6	Water	80.4
Mylar	3.1	Strontium titanate	310

24 Summary

- Capacitors and capacitance
- Capacitors in series and parallel
- Energy in a capacitor
- Dielectrics