Tarefa 01 de Geometria Computacional 2021.1

Aluna: Carolina Herbster Mesquita Jorge

Questão 01

Assinale V ou F nas afirmações abaixo, justificando suas respostas:

- Um algoritmo é O(f(n)) quando existe k, n0 tal que existe alguma instância de tamanho n
 ≥ n0, onde o número de passos é ≥ kf(n).
 - a. A resposta é verdadeiro, por aplicação da definição.
- 2. Um algoritmo é $\Omega(f(n))$ quando existe k, n0 tal que para qualquer instância de tamanho n \geq n0, o número de passos é \leq kf(n).
 - a. A resposta é verdadeiro, por aplicação da definição.
- 3. Se um algoritmo é O(n), ele é também O(n²).
 - a. A resposta é verdadeiro, pois f(n) = n é $O(n^2)$, porque para k = 1 e $n_0 = 1$, $n^2 \ge 1$ x n.
- 4. Todo algoritmo é pelo menos $\Omega(n)$.
 - a. A resposta é falso. Existem algoritmos, como o de busca binária, que são $O(\log n)$ e $\Omega(\log n)$.
- 5. A etapa mais importante no algoritmo de ordenação quicksort é a combinação, enquanto que no algoritmo de ordenação mergesort é a separação.
 - a. A resposta é falso. A etapa mais importante do algoritmo quicksort é a separação, através do algoritmo de particionar, no qual o vetor é dividido em dois subvetores de elementos menores e maiores que um pivô. Não é feito nenhum processamento posterior nos vetores ao combiná-los. Já no mergesort a etapa mais importante é a combinação, através do algoritmo combinar, no qual dois subvetores ordenados são combinados a fim de formar um vetor ordenado. A etapa de separação do mergesort apenas divide o vetor em dois, sem nenhum processamento.

Questão 02

Algoritmo:

```
"""
Selection sort algorithm. Receives a vector and orders it in-place
"""

def selection_sort(v):
    n = len(v)
    # At each loop iteration, the invariant is that the
    # sublist from 0..i-1 is sorted and i..n is unsorted.
```

```
for i in range(0, n):
    # Find the smallest item in the unsorted sublist
    smallest = i
    for j in range(i+1, n):
        if v[j] < v[smallest]:
            smallest = j

# Swap the smallest element with the first one in the unsorted sublist
if smallest != i:
        aux = v[i]
        v[i] = v[smallest]
        v[smallest] = aux
# Grow the sorted sublist</pre>
```

Para testar, o algoritmo foi rodado 1000 vezes com inputs aleatoriezados e a média dos tempos de execução obtida:

Average time for a random input of size 10: 2.0940303802490234e-05 Average time for a ordered input of size 10: 9.932756423950196e-06 Average time for a random input of size 100: 0.0007118461132049561 Average time for a random input of size 1000: 0.0680426483154297

Pelos tempos obtidos, podemos observar que o algoritmo é extremamente rápido para inputs pequenos, porém seu tempo de execução cresce bastante a medida que o input cresce

Questão 02

Algoritmo:

```
Quick sort algorithm

"""

def quick_sort(v, lo, hi):
    n = hi - lo + 1
    if n > 1:
        q = partition(v, lo, hi)
        quick_sort(v, lo, q-1)
        quick_sort(v, q+1, hi)
```

```
"""

Chooses the pivot element as the last element and partitions the input vector into smaller and bigger elements

"""

def partition(v, lo, hi):
    pivot = v[hi]
```

```
i = Lo
# At each loop iteration, the invariant is that the elements from
# 0..i-1 are smaller than the pivot
for j in range(lo,hi+1):
    # If we find another element that's smaller than the pivot, place
    # into the i-th position and grow i to keep the invariant
    if v[j] < pivot:
        aux = v[i]
        v[i] = v[j]
        v[j] = aux

i += 1

# Place the pivot into the correct position
aux = v[i]
    v[i] = v[hi]
    v[hi] = aux
# Return the pivot index
return i</pre>
```

Para testar, o algoritmo foi rodado 1000 vezes com inputs aleatorizados e a média dos tempos de execução obtida:

Average time for a random input of size 10: 2.7051210403442382e-05 Average time for a ordered input of size 10: 6.777572631835937e-05 Average time for a random input of size 100: 0.00041715764999389647 Average time for a random input of size 1000: 0.005378573894500732

Podemos observar que o tempo de execução do Quick Sort é um pouco maior que o Selection Sort no início, porém ele cresce menos lentamente que o Selection Sort.

Questão 03

Algoritmo:

```
Merge sort algorithm. Receives a vector and returns an ordered
version of it
"""

def merge_sort(v):
    n = len(v)
    if n > 1:
        mid = floor(n/2)
        l1 = merge_sort(v[0:mid])
        l2 = merge_sort(v[mid:n])
        return merge(l1, l2)
    return v
```

```
def merge(l1,l2):
    # The merged list
   m = []
    i1 = 0
    n1 = len(l1)
    i2 = 0
    n2 = len(L2)
    # While there are still elements to copy from on both lists,
    # copy the smallest element
    while i1 < n1 and i2 < n2:
        if L1[i1] <= L2[i2]:
            m.append(l1[i1])
            m.append(L2[i2])
            i2 += 1
    # If only the elements of 11 remain, copy them all to the merged
    # list. Else, copy the elements of 12.
    if i1 < n1:</pre>
        m.extend(L1[i1:n1])
    elif i2 < n2:</pre>
        m.extend(L2[i2:n2])
    return m
```

Para testar, o algoritmo foi rodado 1000 vezes com inputs aleatorizados e a média dos tempos de execução obtida:

Average time for a random input of size 10: 6.192159652709961e-05 Average time for a ordered input of size 10: 5.099797248840332e-05 Average time for a random input of size 100: 0.0006983215808868408 Average time for a random input of size 1000: 0.00808120584487915

Assim como o Quick Sort, a média dos tempos cresce mais lentamente com o crescimento do input, porém a performance em inputs menores é mais lenta que no Quick Sort.

Questão 05

Uma tabela comparando os tempos dos algoritmos encontra-se a seguida:

Avg of 1000 runs	Selection Sort	Insertion Sort	Merge Sort	Quick Sort
10 random entries	0.000022	0.000024	0.000053	0.000034
10 ordered entries	0.000012	0.000016	0.000057	0.000069
100 random entries	0.000684	0.001525	0.000795	0.000548
1000 random entries	0.077338	0.152426	0.008895	0.005912

Através da tabela, podemos perceber que o Selection Sort e Insertion Sort obtém um menor tempo em inputs pequenos, especialmente quando eles estão ordenados. Já o Quick Sort é mais lento em inputs pequenos ordenados, e o Merge sort mais lento em inputs pequenos aleatórios. Porém, a medida que o tamanho do input cresce, podemos perceber que o Merge Sort e Quick Sort tornam-se melhores, especialmente o Quick Sort.

Questão 06

Para resolver o problema da linha poligonal através da redução, podemos transformá-lo em um problema de ordenação. Após ordenar os vértices de entrada em seus respectivos eixos em uma ordem definida (ex: x, y, z), a linha poligonal será formada pela sequência ordenada de vértices. Como existem algoritmos de ordenação cuja ordem é $\Theta(nlogn)$, e a redução envolve apenas dispor os vértices de entrada em um vetor, esta é de ordem $\Theta(n)$, ou seja, linear.

A seguida, encontram-se os tempos dos algoritmos de linha poligonal através da redução, medidos como a média de 100 execuções aleatorizadas:

Avg of 100 runs	Selection Sort	Insertion Sort	Merge Sort	Quick Sort
10 random entries	0.000098	0.000027	0.000103	0.000035
10 ordered entries	0.000010	0.000000	0.000067	0.000026
100 random entries	0.000873	0.001660	0.000782	0.000549
1000 random entries	0.128753	0.162386	0.009568	0.006277

Na tabela, podemos ver relações semelhantes à análise anterior, com algumas pequenas diferenças como o Selection Sort não ser tão rápido para inputs pequenos. Uma possível causa disso seria a que como Selection Sort precisa realizar mais comparações, e esta operação tornou-se mais cara (pois devemos comparar 3 números representando as coordenadas de cada ponto em vez de apenas 1), isso refletiu-se no tempo do algoritmo.