STAT 332: Sampling and Experimental Design

Professor Riley Metzger LATEXer Iris Jiang

Spring 2020

Contents

1	PPI	DAC	2
	1.1	Problem	2
	1.2	Plan	2
	1.3	Data	2
	1.4	Analysis	2
	1.5	Conclusion	4
	1.6	Errors	9
2	Mo		9
	2.1	Model I	9
	2.2	Independent vs. Dependent Groups	ç
		2.2.1 Ways of Creating Dependency	

1 PPDAC

Problem, Plan, Data, Analysis, Conclusion

1.1 Problem

Define the proble:

- Target Population (T.P.): The group of units referred to in the problem step
- Response: The answer provided by the T.P. to the problem
- Attribute: statistic of the response

Example 1.1. What is the average grade of students in STAT 101?

Solution.

- T.P.: All STAT 101 students
- Response: Grade of a STAT 101 student
- Attribute: Average grade

1.2 Plan

How?

• Study population (S.P.): The set of unites you can study

Example 1.2. Problem: Does a drug reduce hair loss

Solution. You can not use untested drug directly on people out of ethical concerns

T.P.: People

S.P: Mice

• Sample: A subset of the study population

1.3 Data

Collect the data, according to the plan.

1.4 Analysis

Analyse the data.

1.5 Conclusion

Refers back to the problem.

1.6 Errors

• Study Error: The attribute of the T.P. differs from the parameter of the S.P.

Example 1.3. $a(T.P.) - \mu$

• Sample Error: The parameter differs from the sample statistic (estimate).

Example 1.4. $\mu - \bar{x}$

• Measurement Error: The difference between what we want to calculate and what we do calculate.

2 Models

Definition 2.1 (Model). A model relates a parameter to a response.

2.1 Model I

$$Y_{i} = \mu + R_{i}, \ R_{i} \sim N(0, \sigma^{2})$$

- y_j : The response of unit j, it is random.
- μ : S.P. mean, it is not random and it is unknown
- R_i : The distribution of responses about μ

Note.

- 1. R_j 's are always independent.
- 2. Gaus's Theorem: Any Linear combination of normal R.V.s is normal
- 3. $Y_i \sim N(\mu, \sigma^2)$,

$$E(Y_j) = E(\mu + R_j) = E(\mu) + \mu + 0 = \mu$$

 $V(Y_j) = V(\mu + R_j) = V(R_j) = \sigma^2$

Example 2.1. Average grade of STAT 101: $Y_j = \mu + R_j, \ R_j \sim N(0, \sigma^2)$

2.2 Independent vs. Dependent Groups

Definition 2.2 (Dependent). We randomly select one group and we find a match, having the same explanatory variates, for each unit of the first group.

2.2.1 Ways of Creating Dependency

• Twins

• Reuse

Definition 2.3 (Independent). Are formed when we select units at random from mutually exclusive groups.

• No relationship between chosen groups

Example 2.2. Broken parts and non-broken parts

2.3 Model 2A

Independent groups where we assume the groups have the same standard deviation.

$$Y_{ij} = \mu_i + R_{ij}, \ R_{ij} \sim (0, \sigma^2)$$

- Y_{ij} : Response of unit j in group i
- μ_i : Mean for group i; not random; unknown
- R_{ij} : The distribution of responses about μ_i

2.4 Model 2B

Independent groups but $\sigma_1 \neq \sigma_2$

