

PRINSIP PRINSIP LOGIKA KOMPUTER

STT TERPADU NURUL FIKRI TEKNIK INFORMATIKA 2017

58. Al Mujaadilah

Sopan santun menghadiri majlis Nabi

يَنَأَيُّهَا ٱلَّذِينَ ءَامَنُوٓا إِذَا قِيلَ لَكُمُ تَفَسَّحُواْ فِي ٱلْمَجَلِسِ فَٱفُسَحُواْ

يَفُسَجِ ٱللَّهُ لَكُمُّ وَإِذَا قِيلَ ٱنشُرُواْ فَٱنشُرُواْ يَرُفَعِ ٱللَّهُ ٱلَّذِينَ ءَامَنُواْ

11. Hai orang-orang beriman apabila kamu dikatakan kepadamu: "Berlapang-lapanglah dalam majlis", maka lapangkanlah niscaya Allah akan memberi kelapangan untukmu. Dan apabila dikatakan: "Berdirilah kamu", maka berdirilah, niscaya Allah akan meninggikan orang-orang yang beriman di antaramu dan orang-orang yang diberi ilmu pengetahuan beberapa derajat. Dan Allah Maha Mengetahui apa yang kamu kerjakan.

PENGOLAHAN DALAM KOMPUTER

 Di dalam komputer terjadi jutaan aktivitas pengolahan data dengan aturan-aturan tertentu, membentuk suatu sistem kerja.

ATURAN DALAM PENGOLAHAN

- 1. Aritmatika (Aljabar Biasa)
 - a. Operasi Penambahan
 - b. Operasi Pengurangan
 - c. Operasi Perkalian
 - d. Operasi Pembagian
- 2. Logika (Aljabar Boolean)
 - a. Operasi AND
 - b. Operasi OR
 - c. Operasi NOT

Gerbang logika dapat **dikombinasikan** satu dengan yang lainnya untuk mendapatkan **fungsi baru**.

Istilah Aljabar adalah berasal dari nama buku matematika karangan Al-Khawarizmi

FUNGSI DASAR ALJABAR BOOLEAN (1/2)

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A F	$F = A \bullet B$ or $F = AB$	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	A F	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	A — F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0

FUNGSI DASAR ALJABAR BOOLEAN (2/2)

Name	Graphical Symbol	Algebraic Function	Truth Table
NAND	A B	$F = \overline{AB}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	A B	$F = A \oplus B$	A B F 0 0 0 0 1 1 1 0 1 1 1 0

CONTOH KOMBINASI 2 GERBANG

Α	В	$Q=A.\overline{B}$
0	0	0
0	1	1
1	0	0
1	1	0

CONTOH KOMBINASI 3 GERBANG

Persamaan:

$$F = X + \overline{Y} Z$$

Diagram Logika

Tabel Kebenaran

XYZ	$F = X + \overline{Y} \cdot Z$
000	0
001	1
010	0
011	0
100	1
101	1
110	1
111	1

IKHTISAR NILAI FUNGSI DASAR ALJABAR BOOLEAN

Operation	Expression	Output = 1 if
AND	A · B ·	All of the set {A, B,} are 1.
OR	A + B +	Any of the set {A, B,} are 1.
NAND	A • B •	Any of the set {A, B,} are 0.
NOR	A + B +	All of the set {A, B,} are 0.
XOR	A ⊕ B ⊕	The set {A, B,} contains an odd number of ones.

SIFAT-SIFAT OPERASI ALJABAR BOOLEAN

Operasi Logika (Aljabar Boolean) memiliki sifat-sifat mirip dengan Operasi Aritmatika

Basic Postulates					
$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$	A + B = B + A	Commutative Laws			
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive Laws			
$1 \cdot A = A$	0 + A = A	Identity Elements			
$\mathbf{A} \cdot \overline{\mathbf{A}} = 0$	$A + \overline{A} = 1$	Inverse Elements			
Other Identities					
$0 \cdot \mathbf{A} = 0$	1 + A = 1				
$A \cdot A = A$	A + A = A				
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Associative Laws			
$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	DeMorgan's Theorem			

SIFAT-SIFAT OPERASI ALJABAR BOOLEAN

 Hukum identitas: (i) a + 0 = a (ii) a - 1 = a 	2. Hukum idempoten: (i) a + a = a
 (ii) a · 1 = a 3. Hukum komplemen: (i) a + a' = 1 (ii) aa' = 0 	 (ii) a ⋅ a = a 4. Hukum dominansi: (i) a ⋅ 0 = 0 (ii) a + 1 = 1
 Hukum involusi: (i) (a')' = a 	6. Hukum penyerapan: (i) a + ab = a (ii) a(a + b) = a
 7. Hukum komutatif: (i) a + b = b + a (ii) ab = ba 	8. Hukum asosiatif: (i) a + (b + c) = (a + b) + c (ii) a (b c) = (a b) c
9. Hukum distributif: (i) a + (b c) = (a + b) (a + c) (ii) a (b + c) = a b + a c	10. Hukum De Morgan: (i) (a + b)' = a'b' (ii) (ab)' = a' + b'
11. Hukum 0/1 (i) 0' = 1 (ii) 1' = 0	inaldi Munir/IF2151 Mat. Diskrit

SIFAT-SIFAT ALJABAR BOOLEAN

Fungsi Identitas

$$a + 0 = a$$

 $a.1 = a$

Fungsi Komunikatif

$$a + b = b + a$$
$$a \cdot b = b \cdot a$$

Fungsi Distributif

$$a.(b+c) = (a.b) + (a.c)$$

 $a + (b.c) = (a+b).(a+c)$

Fungsi Komplement

$$a + \bar{a} = 1$$

 $a. \bar{a} = 0$

BUKTIKAN

- Buktikan sifat distributive!
- Dua ekspresi Boolean dikatakan ekivalen (dilambangkan dengan "=") jika keduanya mempunyai nilai yang sama untuk setiap pemberian nilai-nilai kepada n peubah.
- Contoh sifat distributive
- Buktikan $a + \bar{a} \cdot b = a + b$
- Sebenarnya tanda titik dapat dihilangkan dari penulisan ekspersi Boolean kecuali jika ada penekanan

SOAL ALJABAR BOOLEAN

Sama dengan aljabar biasa, misal mencari bentuk paling sederhana.

Contoh:

Aljabar Biasa:

$$\frac{4x^{2} + 4x}{2x} = ?$$

$$= \frac{2x(2x+2)}{2x}$$

$$= 2x + 2$$

Aljabar Boolean: $ABC + AB\bar{C} + B = ?$

MENYEDERHANAKAN PERSAMAAN

Secara Aljabar Boolean

Y =
$$ABC + AB\overline{C} + B$$

= $AB(C + \overline{C}) + B$
= $AB.1 + B$
= $AB + B$
= $(A+1)B$
= $1.B$
= B

BUKTI TABEL KEBENARAN

$$Y = ABC + AB\bar{C} + B$$

Α	В	С	<u>C</u>	ABC	AB <u>C</u>	ABC+AB <u>C</u>	Y=ABC+AB <u>C</u> +B
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	1	0	1	0	1	1	1
1	1	1	0	1	0	1	1

Problems

- 20.1 Construct a truth table for the following Boolean expressions:
 - a. $ABC + \overline{A} \overline{B} \overline{C}$
 - b. $ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$
 - c. $A(B\overline{C} + \overline{B}C)$
 - d. $(A + B)(A + C)(\overline{A} + \overline{B})$
- 20.2 Simplify the following expressions according to the commutative law:
 - a. $\mathbf{A} \cdot \overline{\mathbf{B}} + \overline{\mathbf{B}} \cdot \mathbf{A} + \mathbf{C} \cdot \mathbf{D} \cdot \mathbf{E} + \overline{\mathbf{C}} \cdot \mathbf{D} \cdot \mathbf{E} + \mathbf{E} \cdot \overline{\mathbf{C}} \cdot \mathbf{D}$
 - b. $A \cdot B + A \cdot C + B \cdot A$
 - c. $(L \cdot M \cdot N)(A \cdot B)(C \cdot D \cdot E)(M \cdot N \cdot L)$
 - d. $F \cdot (K + R) + S \cdot V + W \cdot \overline{X} + V \cdot S + \overline{X} \cdot W + (R + K) \cdot F$
- 20.3 Apply DeMorgan's theorem to the following equations:
 - a. $F = \overline{V + A + L}$
 - b. $F = \overline{A} + \overline{B} + \overline{C} + \overline{D}$
- 20.4 Simplify the following expressions:
 - a. $A = S \cdot T + V \cdot W + R \cdot S \cdot T$
 - b. $\mathbf{A} = \mathbf{T} \cdot \mathbf{U} \cdot \mathbf{V} + \mathbf{X} \cdot \mathbf{Y} + \mathbf{Y}$
 - c. $A = F \cdot (E + F + G)$
 - d. $A = (P \cdot Q + R + S \cdot T)T \cdot S$

Merupakan rangkaian interkoneksi beberapa gerbang yang outputnya pada suatu waktu bergantung pada inputnya di waktu yang sama.

Contoh:

- 1. Implementasi Rangkaian Aljabar Boolean
- 2. Decoder
- 3. Multiplexer
- 4. Adder

Merupakan rangkaian interkoneksi beberapa gerbang yang outputnya pada suatu waktu bergantung pada inputnya di waktu yang sama dan input-input sebelumnya.

Contoh:

- 1. Flip flop
- 2. Register
- 3. Counter

TERIMA KASIH

Thank you very much for your kind attention