1. IDENTIFICACIÓN.

Materia: DISEÑO DE PLANTAS I

 Códigos:
 SIRE: 6105
 EIQ: IQ-5028

 Prelación:
 IQ-5017, IQ-5027, IQ-5036

Ubicación: Octavo Semestre

TPLU: 3-2-0-4 Condición: Obligatoria

Departamento: Operaciones Unitarias y Proyectos

2. JUSTIFICACION.

Para Complementar la formación del Ingeniero Químico, es conveniente incluir en su plan de estudios una asignatura que permita al estudiante aplicar los conocimientos adquiridos a lo largo de su carrera en un proyecto específico. El curso de Diseño de Plantas I se ha estructurado en forma de proyectos a ser realizados por grupos de estudiantes bajo la supervisión del profesor, y los cuáles consistirán en la selección de un proceso para la instalación de una planta a nivel industrial y llevar a cabo los pasos preliminares para el diseño de una planta completa.

3. REQUERIMIENTOS.

El participante debe haber aprobado las asignaturas Operaciones Unitarias III, Operaciones Unitarias IV y Química Industrial I.

4. OBJETIVOS.

GENERALES

El objetivo general es que el estudiante desarrolle capacidades que le permitan realizar el balance de masa y energía de una planta de procesos, así como también aprender a manejar los paquetes de simulación para el diseño de equipos.

ESPECIFICOS

• Informar al estudiante sobre los aspectos relacionados con la definición técnica de un proyecto de instalación de una planta industrial. Tales aspectos incluyen:

Definición de la tecnología y el proceso de producción.

Utilización de los balances de masa y Energía.

Ingeniería del Proyecto.

• Familiarizar al estudiante con el uso de paquetes de computación para el diseño de diferentes equipos de procesos.

• Lograr que el estudiante integre, a través de un balance de materia y energía, la información que se imparte en el curso con los conocimientos técnicos adquiridos a lo largo de su carrera.

5. CONTENIDO PROGRAMATICO

CAPITULO 1. SERVICIOS INDUSTRIALES Y CRITERIOS. APLICACIÓN AL PROCESO..

Los servicios industriales. Energía eléctrica. Agua de proceso. Agua de enfriamiento. Combustibles. Vapor. Aire. Sistema de gas a mechurrio. Tratamiento de efluentes. Otros fluidos de servicio.

CAPITULO 2. DEFINICION DEL PROYECTO.

Definición del proyecto. Selección del Proceso de Producción. Adecuación del diagrama de flujo. Generalidades sobre el diseño de plantas. Balance de materia y energía.

CAPITULO 3. LOCALIZACION Y TAMAÑO DE LA PLANTA

Métodos para la localización de la planta. Cálculo del tamaño óptimo de una planta.

CAPITULO 4. DIAGRAMAS DE FLUJO.

Tipos de Diagrama. Representaciones del Balance de materia y energía. Nomenclaturas para la identificación de equipos, tuberías e instrumentación. Utilización de normas ISA. .Diagramas DTI y DFP. Otros diagramas.

CAPITULO 5. INTRODUCCION A LA SIMULACION

Uso básico de paquetes de simulación en el diseño de equipos de Proceso tales como: ASPEN, PROVISION. Alcance y limitaciones de cada programa. Construcción del modelo. Utilización de las Operaciones Unitarias definidas en cada paquete. Análisis de sensibilidad. Ejemplos de cálculo.

CAPITULO 6. TANQUES DE ALMACENAMIENTO

Criterios de selección. Tipos. Dimensionamiento. Selección de material y operaciones básicas de mantenimiento. Ejemplos de cálculo.

CAPITULO 7. MANEJO DE SÓLIDOS..

Reducción de tamaño. Clasificación por tamaño. Transporte de sólidos. Equipos. Almacenamiento.

CAPITULO 8. EYECTORES Y BOMBAS DE VACÍO.

Usos. Criterios de selección. Tipos. Dimensionamiento

CAPITULO 9. VISITAS A PLANTAS.

Visitas dirigidas a diversas plantas de proceso.

6. METODOLOGIA

El curso se dicta durante 5 horas/semana, 18 semanas/semestre. En las clases se imparten teorías sobre aspectos relacionados con la formulación técnica de un proyecto. A medida que avanza el curso, el estudiante debe adquirir los conocimientos para localizar la planta en el país, estimar su tamaño óptimo, completar el balance de materia y energía de la planta seleccionada, así como también, diseñar algunos equipos.

7. **RECURSOS.**

Marcadores, pizarrón, proyectores y paquetes de simulación

8. EVALUACIÓN.

Tres (3) evaluaciones, tareas. Presentación, por grupo, en forma escrita y oral del balance de materia y energía del proyecto industrial seleccionado en formato de Diagrama de Flujo de Proceso (DFP).

9. **BIBLIOGRAFÍA**

- Baca G. "Evaluación de Proyectos", Mc Graw Hill Interamericana de México, México, D.F., 1990.
- Peters M S. y Timmerhaus K. D. "Plant Design and Economics for Chemical Engineers". McGraw Hill Inc., New York, N.Y., 1980.
- Ulrich G. D. "A Guide to Chemical Engineering Process Design and Economics". John Wiley & Sons, New York, N.Y., 1984.
- Ludwig E. "Applied Process Design for chemical and Petrochemical Plants", Volume 1, 2, 3, Gulf Publishing Company, Houston Texas, 1997.
- Cheremisinoff, N. P., "Handbook of Chemical Processing Equipment", Butterworth-Heinemann, 2000.
- Turton, R.; Bailie, R.; Whiting, W. & Shaeiwitz, J. "Analysis, Synthesis and Design of Chemical Processes", Prentice Hall, USA, 1998.
- Walas, S. M., "Chemical Process Equipment Selection and Design". Butterworth-Heinemann, 1990.

10. **VIGENTE:**

Desde Semestre B-2007