Chapter 4: Sets

CS1231 Discrete Structures

Wong Tin Lok

National University of Singapore

2022/23 Semester 1

Plan

- ► membership ∈
- ways to specify sets
 - the set of all . . .
 - roster notation
 - set-builder notation
 - replacement notation
 - the unique set that satisfies a property
- set equality =
- ▶ inclusion ⊆
- ightharpoonup power sets \mathcal{P}
- ▶ unions \cup , intersections \cap , complements $\overline{\cdot}$
- > set identities and their proofs
- Venn diagrams
- ► (extra) Russell's Paradox

Sets

Why sets?

- ▶ The language of sets is an important part of modern mathematical discourse.
- ► Sets are interesting mathematical objects.
- ► For this module, they provide a topic on which we practise writing and understanding proofs.

Definition 4.1.1

- (1) A set is an unordered collection of objects.
- (2) These objects are called the *members* or *elements* of the set.
- (3) Write $x \in A$ for x is an element of A; $x \notin A$ for x is not an element of A; $x, y \in A$ for x, y are elements of A; $x, y \notin A$ for x, y are not elements of A;
- (4) We may read $x \in A$ also as "x is in A" or "A contains x (as an element)".

Warning 4.1.2. Some use "contains" for the subset relation, but we do not.

etc.

Specifying a set by listing out all its elements

Definition 4.1.3 (roster notation)

- (1) The set whose only elements are x_1, x_2, \ldots, x_n is denoted $\{x_1, x_2, \ldots, x_n\}$.
- (2) The set whose only elements are x_1, x_2, x_3, \ldots is denoted $\{x_1, x_2, x_3, \ldots\}$.

Note 4.1.4

Example 4.1.5

For all objects x_1, x_2, \ldots, x_n, z .

 $z \in \{x_1, x_2, \dots, x_n\} \Leftrightarrow z$ appears in the list x_1, x_2, \dots, x_n .

$$., x_n, z,$$

(1) The only elements of $A = \{1, 5, 6, 3, 3, 3\}$ are 1, 5, 6 and 3.

So $6 \in A$ but $7 \notin A$. (2) The only elements of $B = \{0, 2, 4, 6, 8, \dots\}$ are the non-negative even integers. So $4 \in B$ but $5 \notin B$.

Question

What are the elements of $\{2, 3, \dots\}$? All integers $x \ge 2$?

Specifying a set by describing its elements

Definition 4.1.6 (set-builder notation)

Let U be a set and P(x) be a predicate over U. Then the set of all elements $x \in U$ such that P(x) is true is denoted

$$\{x \in U : P(x)\}\ \ \, \text{or}\ \ \, \{x \in U \mid P(x)\}.$$

This is read as "the set of all x in U such that P(x)".

Note 4.1.7

Let U be a set and P(x) be a predicate over U. For all objects z,

$$z \in \{x \in U : P(x)\} \Leftrightarrow z \in U \text{ and } P(z) \text{ is true.}$$

th∕os∕e∕

those x satisfying P(x)

Example 4.1.8

- (1) The elements of $C = \{x \in \mathbb{Z}_{\geq 0} : x \text{ is even}\}$ are precisely the elements of $\mathbb{Z}_{\geq 0}$ that are even, i.e., the non-negative even integers. So $6 \in C$ but $7 \notin C$.
- (2) The elements of $D = \{x \in \mathbb{Z} : x \text{ is a prime number}\}$ are precisely the elements of \mathbb{Z} that are prime numbers, i.e., the prime integers. So $7 \in D$ but $9 \notin D$.

Specifying a set by replacement

Definition 4.1.9 (replacement notation)

Let A be a set and t(x) be (the name of) an object for each element x of A. Then the set of all objects of the form t(x) where x ranges over the elements of A is denoted

$$\{t(x) : x \in A\}$$
 or $\{t(x) \mid x \in A\}$.

This is read as "the set of all t(x) where $x \in A$ ".

Note 4.1.10

Let A be a set and t(x) be an object for each element x of A. For all objects z,

$$z \in \{t(x) : x \in A\} \Leftrightarrow \exists x \in A \ z = t(x).$$

 $\{t(x):x\in A\}$

Example 4.1.11

- (1) The elements of $E = \{x + 1 : x \in \mathbb{Z}_{\geq 0}\}$ are precisely those x + 1 where $x \in \mathbb{Z}_{\geq 0}$, i.e., the positive integers. So $1 = 0 + 1 \in E$ but $0 \notin E$.
- (2) The elements of $F = \{x y : x, y \in \mathbb{Z}_{\geq 0}\}$ are precisely those x y where $x, y \in \mathbb{Z}_{\geq 0}$, i.e., the integers. \varnothing 4a So $-1 = 1 2 \in F$ but $\sqrt{2} \notin F$.

Set specification

Question

- Is any of these notations ambiguous?
- ▶ In other words, does each of these specify a unique set?

Definition 4.1.12

Two sets are equal if they have the same elements, i.e., for all sets A, B,

$$A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$$

Equality of sets: examples

Example 4.1.13

 $\{1,5,6,3,3,3\}=\{1,5,6,3\}=\{1,3,5,6\}.$

Slogan 4.1.14. Order and repetition do not matter.

Example 4.1.15

 $\{y^2: y \text{ is an odd integer}\} = \{x \in \mathbb{Z}: x = y^2 \text{ for some odd integer } y\} = \{1^2, 3^2, 5^2, \dots\}.$

Example 4.1.16

 ${x \in \mathbb{Z} : x^2 = 1} = {1, -1}.$

Proof

$$(\Rightarrow)$$
 Take any $z\in\{x\in\mathbb{Z}:x^2=1\}$. Then $z\in\mathbb{Z}$ and $z^2=1$. So $z^2-1=(z-1)(z+1)=0$.

$$z - 1 = 0$$
 or $z + 1 = 0$.

$$\therefore$$
 $z=1$ or $z=-1$.

This means $z \in \{1, -1\}$.

(⇐) Take any
$$z \in \{1, -1\}$$
. Then $z = 1$ or $z = -1$. In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$. So $z \in \{x \in \mathbb{Z} : x^2 = 1\}$.

The empty set

Theorem 4.1.18

There exists a unique set with no element, i.e.,

there is a set with no element; and

- (existence part)
- ▶ for all sets A, B, if both A and B have no element, then A = B. (uniqueness part)

Proof

- ► (existence part) The set {} has no element.
- ightharpoonup (uniqueness part) Let A, B be sets with no element. Then vacuously,

$$\forall z \ (z \in A \Rightarrow z \in B) \quad \text{and} \quad \forall z \ (z \in B \Rightarrow z \in A)$$

because the hypotheses in the implications are never true. So A=B.

Definition 4.1.19

The set with no element is called the *empty set*. It is denoted by \emptyset .

Inclusion of sets

Let A, B be sets.

Definition 4.2.1

Call A a <u>subset</u> of B, and write $A \subseteq B$, if

$$\forall z \ (z \in A \Rightarrow z \in B).$$

Alternatively, we may say that B includes A, and write $B \supset A$ in this case.

Example 4.2.3 and Example 4.2.6

Remark 4.2.4 (1) $A \nsubseteq B \Leftrightarrow \exists z \ (z \in A \text{ and } z \notin B).$

$$A \subseteq B \Leftrightarrow \exists z \ (z \in A \text{ and } z \notin B)$$

$$A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A.$$

(2) $A = B \Leftrightarrow A \subseteq B \text{ and}$ (3) $A \subseteq A$.

Definition 4.2.5

Call A a proper subset of B, write $A \subsetneq B$, if $A \subseteq B$ and $A \neq B$. In this case, we may say that the inclusion of A in B is proper or strict.

different meanings to

different people.

Vacuous inclusion

Proposition 4.2.7

The empty set is a subset of any set, i.e., for any set A,

$$\varnothing \subseteq A$$
.

Proof

Vacuously,

$$\forall z \ (z \in \varnothing \Rightarrow z \in A)$$

because the hypothesis in the implication is never true. So $\varnothing \subseteq A$ by the definition of \subseteq .

Sets of sets

Note 4.2.8

Sets can be elements of sets.

Example 4.2.9

(1) The set $A = \{\emptyset\}$ has exactly 1 element, namely the empty set.

So A is not empty.

So $\{1\} \in B$, but $1 \notin B$.

(2) The set $B = \{\{1\}, \{2,3\}\}$ has exactly 2 elements, namely $\{1\}, \{2,3\}$.

Representation

$$(0,1) = d$$
 $c = (1,1)$
 $(0,0) = a$
 $b = (1,0)$

How can one use a set to represent the square above?

- If one only wants to represent the connectivity between the points, then use
 - $\{\{a,b\},\{b,c\},\{c,d\},\{d,a\}\}.$
- ▶ If one also wants to represent the positions of the lines, then use

$$\{(x,y): (x=0 \text{ and } y \in [0,1]) \text{ or } (x=1 \text{ and } y \in [0,1])$$

or $(y=0 \text{ and } x \in [0,1]) \text{ or } (y=1 \text{ and } x \in [0,1])\}.$

Power set

Definition 4.2.12

Let A be a set. The set of all subsets of A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example 4.2.13

- (1) $\mathcal{P}(\emptyset) = \{\emptyset\}$
- (2) $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}.$
- (3) $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$
- (4) The following are subsets of \mathbb{N} and thus are elements of $\mathcal{P}(\mathbb{N})$.

$$\varnothing, \{0\}, \{1\}, \{2\}, \dots \{0, 1\}, \{0, 2\}, \{0, 3\}, \dots \{1, 2\}, \{1, 3\}, \{1, 4\}, \dots$$
 $\{2, 3\}, \{2, 4\}, \{2, 5\}, \dots \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \dots$
 $\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \dots \{2, 3, 4\}, \{2, 3, 5\}, \{2, 3, 6\}, \dots$
 $\mathbb{N}, \mathbb{N}_{\geqslant 1}, \mathbb{N}_{\geqslant 2}, \dots \{0, 2, 4, \dots\}, \{1, 3, 5, \dots\}, \{2, 4, 6, \dots\}, \{3, 5, 7, \dots\}, \dots$
 $\{x \in \mathbb{N} : (x - 1)(x - 2) < 0\}, \{x \in \mathbb{N} : (x - 2)(x - 3) < 0\}, \dots$
 $\{3x + 2 : x \in \mathbb{N}\}, \{4x + 3 : x \in \mathbb{N}\}, \{5x + 4 : x \in \mathbb{N}\}, \dots$

Membership vs inclusion

Note 4 2 10

Membership and inclusion can be different.

Question 4.2.11

Let $C = \{\{1\}, 2, \{3\}, 3, \{\{4\}\}\}\$. Which of the following are true?

- ▶ $\{1\} \in C$.
 - ▶ $\{2\} \in C$.
- **▶** {3} ∈ *C*.
- (4) = 6
- $\blacktriangleright \ \{4\} \in C.$

ightharpoonup $\{1\} \subseteq C$.

4b

- ▶ ${3} \subseteq C$.
- $\blacktriangleright \{4\} \subseteq C.$

Definition 4 3 1

- (1) The *union* of A and B, denoted $A \cup B$, is defined by read as 'A union B' $\longrightarrow A \cup B = \{x : x \in A \text{ or } x \in B\}$.
- (2) The *intersection* of A and B, denoted $A \cap B$, is defined by read as 'A intersect B' $\longrightarrow A \cap B = \{x : x \in A \text{ and } x \in B\}$.
- (3) The *complement* of B in A, denoted A B or $A \setminus B$, is defined by read as 'A minus B' $\longrightarrow A \setminus B = \{x : x \in A \text{ and } x \notin B\}$.

Convention and terminology 4.3.2

When working in a particular context, one usually works within a fixed set U which includes all the sets one may talk about, so that one only needs to consider the elements of U when proving set equality and inclusion. This U is called a *universal set*.

Definition 4.3.3

In a context where U is the universal set (so that implicitly $U \supseteq B$), the *complement* of B, denoted \overline{B} or B^c , is defined by $\overline{B} = U \setminus B$.

Example 4.3.4 on Boolean operations

Let
$$A = \{x \in \mathbb{Z} : x \le 10\}$$
 and $B = \{x \in \mathbb{Z} : 5 \le x \le 15\}$. Then $A \cup B = \{x \in \mathbb{Z} : (x \le 10) \lor (5 \le x \le 15)\} = \{x \in \mathbb{Z} : x \le 15\};$ $A \cap B = \{x \in \mathbb{Z} : (x \le 10) \land (5 \le x \le 15)\} = \{x \in \mathbb{Z} : 5 \le x \le 10\};$ $A \setminus B = \{x \in \mathbb{Z} : (x \le 10) \land \neg (5 \le x \le 15)\} = \{x \in \mathbb{Z} : x < 5\};$ $\overline{B} = \{x \in \mathbb{Z} : \neg (5 \le x \le 15)\} = \{x \in \mathbb{Z} : (x < 5) \lor (x > 15)\},$

in a context where $\ensuremath{\mathbb{Z}}$ is the universal set. To show the first equation, one shows

$$\forall x \in \mathbb{Z} \ \big((x \leqslant 10) \lor (5 \leqslant x \leqslant 15) \Leftrightarrow (x \leqslant 15) \big),$$

etc.

For all set A, B, C in a context where U is the universal set, the following hold. Commutativity $A \cup B = B \cup A$ $A \cap B = B \cap A$ $(A \cup B) \cup C = A \cup (B \cup C)$ Associativity $(A \cap B) \cap C = A \cap (B \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Set identities (Theorem 4.3.5)

Distributivity

Idempotence Absorption

Identities

 $A \cup A = A$ $A \cap A = A$ $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ $\overline{A \sqcup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \sqcup \overline{B}$ De Morgan's Laws

 $A \cup \emptyset = A$ $A \cap U = A$ $A \cup U = U$ $A \cap \emptyset = \emptyset$

Annihilators $A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$

Complement $\overline{(\overline{A})} = A$ Double Complement Law

 $\overline{\varnothing} = U$ $\overline{II} = \varnothing$

Top and bottom Set difference $A \setminus B = A \cap \overline{B}$

Venn diagrams

One of De Morgan's Laws. Work in the universal set U. For all sets A,B, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

In the left diagram, hatch the regions representing A and B with \square and \square respectively. In the right diagram, hatch the regions representing \overline{A} and \overline{B} with \square and \square respectively.

Then the \square region represents $\overline{A \cup B}$ on the left diagram, and the \boxtimes region represents $\overline{A} \cap \overline{B}$ on the right diagram. Since these regions occupy the same region in the respective diagrams, we infer that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Note 4.3.6. This argument depends on the fact that each possibility for membership in A and B is represented by a region in the diagram.

Proving set identities using truth tables

One of De Morgan's Laws. Work in the universal set
$$U$$
. For all sets A,B , $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof #1

The rows in the following table list all the possibilities for an element $x \in U$:

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in \overline{A \cup B}$	$x \in \overline{A}$	$x \in \overline{B}$	$x \in \overline{A} \cap \overline{B}$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	T	Т	Т	T

Since the columns under " $x \in \overline{A \cup B}$ " and " $x \in \overline{A} \cap \overline{B}$ " are the same, for any $x \in U$,

$$x \in \overline{A \cup B} \quad \Leftrightarrow \quad x \in \overline{A} \cap \overline{B}$$

no matter in which case we are. So $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proving set identities directly

One of De Morgan's Laws. Work in the universal set
$$U$$
. For all sets A,B , $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof #2

Let $z \in U$. Then

$$z \in \overline{A \cup B}$$

$$\Leftrightarrow z \notin A \cup B \qquad \text{by the definition of } \overline{\cdot};$$

$$\Leftrightarrow \neg((z \in A) \lor (z \in B)) \qquad \text{by the definition of } \cup;$$

$$\Leftrightarrow (z \notin A) \land (z \notin B) \qquad \text{by De Morgan's Laws for propositions;}$$

$$\Leftrightarrow (z \in \overline{A}) \land (z \in \overline{B}) \qquad \text{by the definition of } \overline{\cdot};$$

$$\Leftrightarrow z \in \overline{A} \cap \overline{B} \qquad \text{by the definition of } \cap.$$

Applications of the set identities

Example 4.3.7

Under the universal set U, show that $(A \cap B) \cup (A \setminus B) = A$ for all sets A, B.

Proof

$$(A \cap B) \cup (A \setminus B) = (A \cap B) \cup (A \cap \overline{B})$$
 by the set identified $= A \cap (B \cup \overline{B})$ by distributivity; by the set identified $= A$ by the set identified $= A$ as U is an identified $= A$.

by the set identity on set difference;

by the set identity on complement; as U is an identity for \cap .

Definition 4.3.8

Two set A and B are disjoint if $A \cap B = \emptyset$.

Boolean operations and inclusion

Example 4.3.9(1)

Show that $A \cap B \subseteq A$ for all sets A, B.

Proof

By the definition of \subseteq , we need to show that

$$\forall z \ (z \in A \cap B \Rightarrow z \in A).$$

Example 4.3.9(2)

Show that $A \subseteq A \cup B$ for all sets A, B.

Exercise 4.3.10

Show that for all sets A, B, C, if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

$$(A \setminus B) \cup (B \setminus C) = A \setminus C \text{ for all sets } A, B, C.$$

A set that is an element of itself?

Note 4.2.8 (recall)

Sets can be elements of sets.

Example 4.4.1

- (1) $\varnothing \not\in \varnothing$.
- (2) $\mathbb{Z} \notin \mathbb{Z}$.
- (3) $\{\emptyset\} \notin \{\emptyset\}$.

Question 4.4.2

Is there a set x such that $x \in x$? \varnothing 4f

Hogarth (1754)

Consternation

There is just one point where I have encountered a difficulty. Russell (1902)

(*)

Theorem 4.4.3 (Russell 1901)

There is no set R such that

$$\forall x \ (x \in R \quad \Leftrightarrow \quad x \notin x).$$

 $\{x: x \notin x\}$?

Proof (by contradiction)

Suppose R is a set satisfying (*). Applying (*) to x = R gives

$$R \in R \quad \Leftrightarrow \quad R \notin R.$$
 (†)

Question 4.4.4. Can you write a proof that does not mention contradiction?

Split into two cases.

- ▶ Case 1: assume $R \in R$. Then $R \notin R$ by the \Rightarrow part of (†). This contradicts our assumption that $R \in R$.
- ▶ Case 2: assume $R \notin R$. Then $R \in R$ by the \Leftarrow part of (†). This contradicts our assumption that $R \notin R$.

Consternation? Theorem 4.4.3 (Russell 1901)

There is no set R such that

 $\forall x \ (x \in R \Leftrightarrow x \notin x).$

There is just one point where I have encountered a difficulty. Russell (1902)

 $\{x:x\not\in x\}$?

Morals

- Some predicates do not correspond to any set.
- ▶ The set of all sets, if it exists, needs to be handled with extreme care.

Suppose a contradiction were to be found in the axioms of set theory. Do you seriously believe that that bridge would fall down? (reportedly) Ramsey

Summary

Let A, B be sets.

Replacement notation.

Definition 4.2.5.

Definition 4.1.1(3). Write $x \in A$ for "x is an element of A"

Roster notation. $\{x_1, x_2, \dots$

Set-builder notation. {x $\{ \in U : P(x) \}$ where P(x) is a predicate over a set U $\{t(x)\}$ $\{x \in A\}$ where t(x) is an object for each $x \in A$

Slogan 4.1.14. Order and

repetition do not matter.

Definition 4.1.12. $A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$

 $A \subseteq B \Leftrightarrow \forall z \ (z \in A \Rightarrow z \in B).$ Definition 4.2.1.

The *empty set* \varnothing is the unique set with no element. Definition 4.1.19.

Definition 4.2.12. The power set $\mathcal{P}(A)$ of a set A is the set of all subsets of A.

 $A \subseteq B \Leftrightarrow A \subseteq B \text{ and } A \neq B.$

Definitions 4.3.1 and 4.3.3. In a context where U is the universal set.

$$A \cup B = \{x : (x \in A) \lor (x \in B)\},$$
 $A \cap B = \{x : (x \in A) \land (x \in B)\},$

$$A \setminus B = \{x : (x \in A) \land (x \notin B)\},$$
 $\overline{B} = \{x \in U : x \notin B\}.$