

Stability: Given an input, a cincuit is stable when Ti=y: Vi.

Eg., Yizy, x +y2) = 20 42+20 72 = 20 42+20 75 72 = 20 75 72

Transi tim	Touble.		
Curr. state	next &	tate, output	
y2y,	X≈0 4 ^x ,	1, 20 = 1	
00	OO O	10,0	
0 (0.00	@ .9	
10	N ₂ 1	(10,1	
1 1	(1) 9/	01,0	
Stable situations			

<u>Flow Table</u> Let a=00, b=01, c=10, d=1)

curr state	next	state, output
a	(a), 0	<u>_</u> ,0
Ь	a,0	(b) 0
۲	411	G, 1
d	0,(6,0

Design: make a circuit given a verbal description.

Designs: Fundamental mode assumption: You only change one input at a time, and only do this from a stable situation.

Primitive flow table: At most one stable state por now.

<u>Steps:</u>

- 1) Derive a state diagram + How table. Legenerally, best to assume Sundamental mode + try to got a prinitive Slow toolble)
- 2) Try to reduce the flow to ble to get fever states (impl. charles + margor diagrams).
- (impl. charle + margor diagrams).

 3) Do starte assignment (avoid critical races)
- 4) Derive next state: output equations (***** derived hazards to glitches)
 5) Draw circuit.

Example: Design a circuit with inputs D&G and subjoint Q. Q=D when G=1, otherwise Q should not change. Think of "hold 0" 1010 "hold 1" 1010 states as the measured "hold 0" 00/0 "hold 1" 00/10 values DG/Q "follow 0" 01/0 "Follow 1" (11/1)