CS 228 : Logic in Computer Science

Krishna, S

Free and Bound Variables in MSO

- ► Free, Bound Variables and Scope same as in FO
- ▶ In a wff $\varphi = \forall X\psi$ or $\exists X\psi$ every occurrence of X in ψ is bound
- A sentence is a formula with no free first order and second order variables

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a pair of functions (α_1, α_2) , where

- ▶ $\alpha_1 : \mathcal{V}_1 \to u(\mathcal{A})$ assigns every first order variable $x \in \mathcal{V}_1$ a value $\alpha_1(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha_1(t)$ is $c^{\mathcal{A}}$.
- ▶ $\alpha_2 : \mathcal{V}_2 \to 2^{u(\mathcal{A})}$ assigns to every second order variable $X \in \mathcal{V}_2$, $\alpha_2(X) \subseteq u(\mathcal{A})$.

Binding on a Variable

For an assignment $\alpha=(\alpha_1,\alpha_2)$ over \mathcal{A} , and $x\in\mathcal{V}_i,\ i=1,2,$ $\alpha_i[x\mapsto a]$ is the assignment $\alpha_i[x\mapsto a](y)=\left\{\begin{array}{c} \alpha_i(y),\ y\neq x,\\ a,y=x \end{array}\right.$

Satisfaction

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright A \nvDash_{\alpha} \bot$
- \blacktriangleright $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha_1(t_1) = \alpha_1(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha_1(t_1),\ldots,\alpha_1(t_k)) \in R^A$
- $ightharpoonup \mathcal{A} \models_{\alpha} X(t) \text{ iff } \alpha_1(t) \in \alpha_2(X) \text{ (new)}$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright A \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(A)$, $A \models_{\alpha[x \mapsto a]} \varphi$
- ▶ $A \models_{\alpha} (\forall X) \varphi$ iff for every $S \subseteq u(A)$, $A \models_{\alpha[X \mapsto S]} \varphi$ (new)

Recall the signature for the graph structure, $\tau = \{E\}$

► The graph is 3-colorable

Recall the signature for the graph structure, $\tau = \{E\}$

► The graph is 3-colorable

$$\exists X \exists Y \exists Z (\forall x [X(x) \lor Y(x) \lor Z(x)] \land$$

$$\forall x \forall y [E(x,y) \rightarrow \{\neg (X(x) \land X(y)) \land \neg (Y(x) \land Y(y)) \land \neg (Z(x) \land Z(y))\}])$$

Recall the signature for the graph structure, $\tau = \{E\}$

▶ The graph has an independent set of size $\ge k$

Recall the signature for the graph structure, $\tau = \{E\}$

▶ The graph has an independent set of size $\ge k$

$$\exists I \{ \forall x \forall y [(\neg(x = y) \land I(x) \land I(y)) \rightarrow \neg E(x, y)] \land \\ \exists x_1 \dots x_k [\bigwedge_{i \neq j} \neg(x_i = x_j) \land \bigwedge_i I(x_i)] \}$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O \{ \forall x [(first(x) \rightarrow E(x)) \land (last(x) \rightarrow O(x))] \}$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O\{\forall x [(first(x) \to E(x)) \land (last(x) \to O(x))]$$
$$\land \forall x [(E(x) \lor O(x)) \land \neg (E(x) \land O(x))]$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O\{\forall x [(first(x) \to E(x)) \land (last(x) \to O(x))]$$

$$\land \forall x [(E(x) \lor O(x)) \land \neg (E(x) \land O(x))]$$

$$\land \forall x \forall y [S(x,y) \land O(x) \to E(y)]$$

$$\land \forall x \forall y [S(x,y) \land E(x) \to O(y)]\}$$

MSO on Words: Satisfiability

MSO on Words

- Signature τ = (Q_Σ, <, S), domain or universe = set of positions of a word
- MSO over words: Atomic formulae

$$X(x)|Q_{\Sigma}(x)|x = y|x < y|S(x,y)$$

- ▶ Given a MSO sentence φ , $L(\varphi)$ defined as usual
- ▶ A language $L \subseteq \Sigma^*$ is MSO definable iff there is an MSO formula φ such that $L = L(\varphi)$
- Given an MSO sentence φ , is it satisfiable/valid?

MSO Expressiveness

- ► Clearly, *FO* ⊆ *MSO*
- ► MSO=Regular