ASSIGNMENT 1

EE24BTECH11011 - PRANAY

1) If the boolean expression $(p \land q) \odot (p \oplus q)$ is a tautology, then \odot and \oplus are respectively given by:

a) \land , \rightarrow

a) monotonic on $(0,\infty)$ only

b) Non monotonic on $(-\infty, 0)$ and $(0, \infty)$

c) \vee , \rightarrow

b) \rightarrow , \rightarrow	d) ∨, ∧	
2) Let the tangent to the circle $x^2 + y^2$ P and Q , respectively. If <i>r</i> is the racentre at the incentre of triangle OPQ	dius of the circle passing through the	•
a) $\frac{625}{72}$	c) $\frac{125}{72}$	
b) $\frac{585}{66}$	d) $\frac{529}{64}$	
3) Let a computer program generate only of occurence of 0 at even places be $\frac{1}{2}$ the probability that '10' is followed by	and probability of occurence of 0 at the	
a) $\frac{1}{6}$	c) $\frac{1}{9}$	
b) $\frac{1}{18}$	d) $\frac{1}{3}$	
4) The number of solutions of the equations	tion $x + 2 \tan x = \frac{\pi}{2}$ in the interval $[0, 2]$	2π]
a) 5b) 2	c) 4 d) 3	
5) If the equation of plane passing through	ugh the mirror image of point (2, 3, 1)	with respect to the line
	$\frac{x+1}{2} = \frac{y-3}{2} = \frac{z+2}{-1}$	(1)
and containing the line		
	$\frac{x-2}{3} = \frac{1-y}{3} = \frac{z+1}{2}$	(2)
is $\alpha x + \beta y + \gamma z = 24$ then $\alpha + \beta + \gamma$ is	is equal to:	
a) 21b) 19	c) 18 d) 20	
6) Consider the function $f: \mathbf{R} \to \mathbf{R}$ def	fined by $f(x) = \begin{cases} \left(2 - \sin\left(\frac{1}{x}\right)\right) x & ,x \neq 0 \\ 0 & ,x = 0 \end{cases}$	$\frac{0}{0}$. Then f is

c) monotonic on $(-\infty, 0)$ d) monotonic on $(-\infty, 0) \cup (0, \infty)$	
7) Let O be the origin. Let $\mathbf{OP} = x\hat{i} + y\hat{j} - \hat{k}$ $ \mathbf{PQ} = \sqrt{20}$ and the vector \mathbf{OP} is perpend with \mathbf{OP} and \mathbf{OQ} , then the value of $x^2 + y$	\hat{k} and $\mathbf{OQ} = -\hat{i} + 2\hat{j} + 3x\hat{k}, x, y \in \mathbf{R}, x > 0$ be such that icular to \mathbf{OQ} . If $\mathbf{OR} = 3\hat{i} + z\hat{j} - 7\hat{k}, z \in \mathbf{R}$, is coplanar $z^2 + z^2$ is equal to:
a) 2b) 9	c) 1 d) 7
8) Let L be a tangent line to the parabola y^2 $\frac{x^2}{2} + \frac{y^2}{b} = 1$, then the value of <i>b</i> is equal to	= $4x - 20$ at $(6,2)$ If L is also a tangent to the ellipse:
a) 20b) 14c) 16	d) 11
9) Let $f : \mathbf{R} \to \mathbf{R}$ be defined as $f(x) = e^{-x} \sin F(x) = \int_0^x f(t) dt$, Then the value of $\int_0^1 (F(t))^2 dt$	x. If $F: [0,1] \to \mathbf{R}$ is a differentiable function such that $f(x) + f(x) e^x dx$ lies in the interval:
a) $\left[\frac{330}{360}, \frac{331}{360}\right]$	c) $\left[\frac{327}{360}, \frac{329}{360}\right]$
b) $\left[\frac{331}{360}, \frac{334}{360}\right]$	d) $\left[\frac{335}{360}, \frac{336}{360}\right]$
10) If x, y, z are in arithmetic progression with	the common difference $d, x \neq 3d$ and the determinent of
the matrix $\begin{pmatrix} 3 & 4\sqrt{2} & x \\ 4 & 5\sqrt{2} & y \\ 5 & k & z \end{pmatrix}$ is zero, then the v	value of k^2 is:
a) 6 b) 36	c) 72 d) 12
11) If the integral	
$\int_0^{10} \frac{\left[\sin 2x\right]}{e^{ x }}$	$\frac{\pi x}{dx} = \alpha e^{-1} + \beta e^{\frac{-1}{2}} + \gamma $ (3)
, where α, β, γ are integers and $[x]$ denote value of $\alpha + \beta + \gamma$ is equal to :	s the greatest integer less than or equal to x , then the

12) Let y = y(x) be the solution of the differential equation

$$(\cos 3 \sin x + \cos x + 3) dy = (1 + y \sin x (3 \sin x + \cos x + 3)) dx, 0 \le x \le \frac{\pi}{2}, y(0) = 0$$
 (4)

c) 25

d) 10

Then $y\left(\frac{\pi}{3}\right)$ is equal to:

a) 20

b) 0

a)
$$3 \log_e \left(\frac{2\sqrt{3}+10}{11} \right)$$

c)
$$2\log_e\left(\frac{3\sqrt{3}-8}{4}\right)$$

b)
$$2\log_e\left(\frac{\sqrt{3}+7}{2}\right)$$

d)
$$3\log_e(\frac{2\sqrt{3}+9}{6})$$

13) The value of the limit $\lim_{x\to 0} \frac{\tan(\pi\cos^2\theta)}{\sin(2\pi\sin^2\theta)}$ is equal to :

a)
$$\frac{-1}{2}$$

b)
$$\frac{-1}{4}$$

d)
$$\frac{1}{4}$$

14) If the curve y = y(x) is the solution of the differential equation

$$2(x^{2} + x^{\frac{5}{4}})dy - y(x + x^{\frac{1}{4}})dx = 2x^{\frac{9}{4}}, x > 0$$
(5)

which passes through the point $(1, 1 - \frac{4}{3} \log_e 2)$ then the value of y(16) is equal to :

a)
$$\left(\frac{31}{3} - \frac{8}{3} \log_e 3\right)$$

c)
$$\left(\frac{31}{3} + \frac{8}{3} \log_e 3\right)$$

b)
$$4\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$$

d)
$$4\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$$

15) Let S_1 , S_2 and S_3 be three sets defined as

$$S_1 = \left\{ z \in \mathbb{C} : |z - 1| \le \sqrt{2} \right\}$$

$$S_2 = \left\{ z \in \mathbb{C} : \operatorname{Re} \left((1 - i) z \right) \ge 1 \right\}$$

$$S_3 = \left\{ z \in \mathbb{C} : \operatorname{Im} (z) \le 1 \right\}$$

Then the set $S_1 \cap S_2 \cap S_3$

- a) Has infinitely many elements
- b) Has exactly 2 elements
- c) has exactly 3 elements
- d) is singleton