Analysis of Algorithms

Introduction

The Course

- Purpose: a rigorous introduction to the design and analysis of algorithms
 - § Not a lab or programming course
 - § Not a math course, either
- Textbook: *Introduction to Algorithms*, Cormen, Leiserson, Rivest, Stein
 - § The "Big White Book"
 - § Second edition: now "Smaller Green Book"
 - § An excellent reference you should own

The Course

• Grading policy:

§ Final: 50%

§ Homework: 5%§ Quizzes: 20%§ Mid Term: 25%

3 10/1:

Algorithm

- What is the best Algorithm for a given Problem?
- Three Things you will learn
 - § Design a good Algorithm
 - § Analyze it.
 - § Know when to stop (lower bounds)
- The word "algorithm" derived from Mohammed Al-Khowarizmi, 9th century Persian mathematician.

Definition

- An Algorithm is any well defined computational procedure that some value, or set of values, as input and produces some value, or set of values, as output.
- A correct algorithm halts with the correct output for every instance. We can then say the algorithm solves the problem.

Famous Algorithms

- · Construction of Euclid
- Newton's root finding
- Fast Fourier Transform
- Compression (Huffman, Lempel-Ziv, GIF, MPEG)
- DES, RSA encryption
- Simplex algorithm for linear programming
- Shortest Path Algorithm (Dijkstra, Bellman Ford)
- Dynamic Programming
- Error correcting codes (CDs, DVDs)

Famous Algorithms

- TCP congestion control, IP routing
- Pattern matching (Genomics)
- Delaunay Triangulation (FEM. Simulation)

Course Outline

0/17/2002

10/17/2002

Review: Induction

- Suppose
 - § S(k) is true for fixed constant k
 - o Often k = 0
 - § S(n) à S(n+1) for all n >= k
- Then S(n) is true for all $n \ge k$

10/17/200

Proof By Induction

- Claim:S(n) is true for all $n \ge k$
- Basis:
 - § Show formula is true when n = k
- Inductive hypothesis:
 - § Assume formula is true for an arbitrary n
- Step:
 - § Show that formula is then true for n+1

10/

Induction Example: Gaussian Closed Form

- Prove 1 + 2 + 3 + ... + n = n(n+1) / 2
 - § Basis:
 - o If n = 0, then 0 = 0(0+1) / 2
 - § Inductive hypothesis:
 - o Assume 1 + 2 + 3 + ... + n = n(n+1) / 2
 - § Step (show true for n+1):

$$\begin{aligned} 1+2+\ldots+n+n+1 &= (1+2+\ldots+n)+(n+1) \\ &= n(n+1)/2+n+1 = [n(n+1)+2(n+1)]/2 \\ &= (n+1)(n+2)/2 = (n+1)(n+1+1)/2 \end{aligned}$$

10/17/20

Induction Example: Geometric Closed Form

- Prove $a^0 + a^1 + ... + a^n = (a^{n+1} 1)/(a 1)$ for all $a \ne 1$
 - § Basis: show that $a^0 = (a^{0+1} 1)/(a 1)$ $a^0 = 1 = (a^1 - 1)/(a - 1)$
 - § Inductive hypothesis:
 - o Assume $a^0 + a^1 + ... + a^n = (a^{n+1} 1)/(a 1)$
 - § Step (show true for n+1):

$$\begin{split} &a^0+a^1+\ldots+a^{n+1}=a^0+a^1+\ldots+a^n+a^{n+1}\\ &=(a^{n+1}-1)/(a-1)+a^{n+1}=(a^{n+1+1}-1)/(a-1) \end{split}$$

Analyzing Algorithm

How does the algorithm behave as the problem size gets very large?

- o Running time
- o Memory/storage requirements
- o Bandwidth/power requirements/logic gates/etc.

Input Size

- Time and space complexity
 - § This is generally a function of the input size
 - o E.g., sorting, multiplication
 - § How we characterize input size depends:
 - o Sorting: number of input items
 - o Multiplication: total number of bits
 - o Graph algorithms: number of nodes & edges
 - o Etc

10/17/

Running Time

- Number of primitive steps that are executed
 - § Except for time of executing a function call most statements roughly require the same amount of time

```
o y = m * x + b
```

$$oc = 5/9 * (t - 32)$$

$$_{\textbf{o}} \ z = f(x) + g(y)$$

• We can be more exact if need be

10/17/200

Analysis

- Worst case
 - § Provides an upper bound on running time
 - § An absolute guarantee
- Average case
 - § Provides the expected running time
 - § Very useful, but treat with care: what is "average"?
 - o Random (equally likely) inputs
 - o Real-life inputs

10/17/2002

10/17/2002

```
InsertionSort(A, n) {
 for i = 2 to n {
    key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
         A[j+1] = A[j]
          j = j - 1
     A[j+1] = key
 }
}
```

 $A[j+1] = \emptyset$

An Example: Insertion Sort

```
i = \emptyset j = \emptyset key = \emptyset
10
      40
                          A[j] = \emptyset
    InsertionSort(A, n) {
```

}

}

```
for i = 2 to n \{
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      A[j+1] = key
  }
}
```

An Example: Insertion Sort

An Example: Insertion Sort

An Example: Insertion Sort

```
i = 2 j = 1
                                     key = 10
         40
             20
30
    30
                      A[j] = 30
                                     A[j+1] = 30
     2
         3
       InsertionSort(A, n) {
          for i = 2 to n {
             key = A[i]
              j = i - 1;
              while (j > 0) and (A[j] > key) {
                   A[j+1] = A[j]
                    j = j - 1
             A[j+1] = key
         }
       }
```

An Example: Insertion Sort

10/17/2002

10/17/2002

An Example: Insertion Sort

```
i = 2 j = 0 key = 10
    30
         40
30
                       A[j] = \emptyset
                                      A[j+1] = 30
    2
         3
        InsertionSort(A, n) {
          for i = 2 to n {
              key = A[i]
              j = i - 1;
              while (j > 0) and (A[j] > key) {
                    A[j+1] = A[j]
              A[j+1] = key
          }
       }
```

An Example: Insertion Sort

```
i = 2 j = 0 key = 10
30
    40
         20
                  A[j] = \emptyset
                                 A[j+1] = 10
   InsertionSort(A, n) {
     for i = 2 to n {
         key = A[i]
         j = i - 1;
         while (j > 0) and (A[j] > key) {
               A[j+1] = A[j]
               j = j - 1
         A[j+1] = key
     }
   }
```

10 30 40 20 1 2 3 4

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

1

An Example: Insertion Sort

$$i = 3$$
 $j = 0$ $key = 40$
 $A[j] = \emptyset$ $A[j+1] = 10$

10/1

An Example: Insertion Sort

$$\begin{vmatrix} i = 3 & j = 0 & \text{key} = 40 \\ A[j] = \emptyset & A[j+1] = 10 \end{vmatrix}$$

1

An Example: Insertion Sort

$$i = 3$$
 $j = 2$ $key = 40$ $A[j] = 30$ $A[j+1] = 40$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
              A[j+1] = A[j]
              j = j - 1
        }
        A[j+1] = key
    }
}
```

10/17/2

An Example: Insertion Sort

$$i = 3$$
 $j = 2$ $key = 40$
 $A[j] = 30$ $A[j+1] = 40$

```
InsertionSort(A, n) {
  for i = 2 to n {
    key = A[i]
    j = i - 1;
    while (j > 0) and (A[j] > key) {
        A[j+1] = A[j]
        j = j - 1
    }
    A[j+1] = key
}
```

An Example: Insertion Sort

$$i = 3$$
 $j = 2$ $key = 40$
 $A[j] = 30$ $A[j+1] = 40$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

10/17/2002

10/17/2002

An Example: Insertion Sort

$$i = 4$$
 $j = 2$ $key = 40$
 $A[j] = 30$ $A[j+1] = 40$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

10/17/2002

An Example: Insertion Sort

$$i = 4$$
 $j = 2$ $key = 20$
 $A[j] = 30$ $A[j+1] = 40$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

10/17/200

10 30 40 20 1 2 3 4

$$i = 4$$
 $j = 2$ $key = 20$ $A[j] = 30$ $A[j+1] = 40$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

10

An Example: Insertion Sort

$$i = 4$$
 $j = 3$ $key = 20$
 $A[j] = 40$ $A[j+1] = 20$

10/

An Example: Insertion Sort

$$i = 4$$
 $j = 3$ $key = 20$
 $A[j] = 40$ $A[j+1] = 20$

```
InsertionSort(A, n) {
   for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
   }
}
```

An Example: Insertion Sort

$$i = 4$$
 $j = 3$ $key = 20$ $A[j] = 40$ $A[j+1] = 40$

An Example: Insertion Sort

10 30 40 40 1 2 3 4

$$i = 4$$
 $j = 3$ $key = 20$
 $A[j] = 40$ $A[j+1] = 40$

10/17/2002

An Example: Insertion Sort

$$i = 4$$
 $j = 3$ $key = 20$
 $A[j] = 40$ $A[j+1] = 40$

10/17/2002

An Example: Insertion Sort

$$i = 4$$
 $j = 2$ key = 20
A[j] = 30 A[j+1] = 40

```
InsertionSort(A, n) {
   for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      }
      A[j+1] = key
   }
}
```

10/17/2002

An Example: Insertion Sort

$$i = 4$$
 $j = 2$ key = 20
A[j] = 30 A[j+1] = 40

```
InsertionSort(A, n) {
   for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      }
      A[j+1] = key
   }
}
```

10 30 30 40 1 2 3 4

$$i = 4$$
 $j = 2$ $key = 20$ $A[j] = 30$ $A[j+1] = 30$

An Example: Insertion Sort

10 30 30 40 1 2 3 4

$$i = 4$$
 $j = 2$ $key = 20$ $A[j] = 30$ $A[j+1] = 30$

```
InsertionSort(A, n) {
  for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     }
     A[j+1] = key
}
```

1

An Example: Insertion Sort

$$i = 4$$
 $j = 1$ key = 20
A[j] = 10 A[j+1] = 30

```
InsertionSort(A, n) {
  for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
               A[j+1] = A[j]
               j = j - 1
               }
               A[j+1] = key
               }
}
```

An Example: Insertion Sort

$$i = 4$$
 $j = 1$ $key = 20$ $A[j] = 10$ $A[j+1] = 30$

```
InsertionSort(A, n) {
  for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     }
     A[j+1] = key
}
```

An Example: Insertion Sort

$$i = 4$$
 $j = 1$ $key = 20$
 $A[j] = 10$ $A[j+1] = 20$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

An Example: Insertion Sort

$$i = 4$$
 $j = 1$ $key = 20$
 $A[j] = 10$ $A[j+1] = 20$

```
InsertionSort(A, n) {
  for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     }
     A[j+1] = key
}

Done!
```

10/17/2002

10/17/2002

Animating Insertion Sort

• Check out the Animator, a java applet at:

http://www.cs.hope.edu/~alganim/animator/Animator.html

 Try it out with random, ascending, and descending inputs

10/17/2002

Insertion Sort

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

48

Insertion Sort

```
InsertionSort(A, n) {
  for i = 2 to n {
    key = A[i]
    j = i - 1;
    while (j > 0) and (A[j] > key) {
        A[j+1] = A[j]
        j = j - 1
    }
    A[j+1] = key
}
How many times will
this loop execute?
```

10/17/

Insertion Sort

Statement	Effort
<pre>InsertionSort(A, n) {</pre>	
for i = 2 to n {	$c_1 n$
key = A[i]	$c_2(n-1)$
j = i - 1;	$c_3(n-1)$
while $(j > 0)$ and $(A[j] > key)$ {	$c_4 \Sigma t_i$
A[j+1] = A[j]	$c_5 \Sigma(t_{j-1})$
j = j - 1	$c_6 \Sigma(t_{j-1})$
}	
A[j+1] = key	$c_7(n-1)$
}	
}	

.

Analyzing Insertion Sort

- $T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{2 \le j \le n} t_j + c_5 \sum_{2 \le j \le n} (t_j 1) + c_6 \sum_{2 \le j \le n} (t_j 1) + c$
- What can T be?
 - § Best case -- inner loop body never executed o $t_i = 1$ \grave{e} T(n) is a linear function
 - § Worst case -- inner loop body executed for all previous
 - o $t_i = i \stackrel{\bullet}{\textbf{e}} T(n)$ is a quadratic function
 - § Average case

o ???