Templates, Image Pyramids, and Filter Banks

Slides adapted from James Hays, Derek Hoiem, and Others

Template matching

- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized CrossCorrelation

Goal: find in image

Method 0: filter the image with eye patch

$$h[m,n] = \sum g[k,l] f[m+k,n+l]$$

Input

Filtered Image

f = image g = filter

What went wrong?

- Goal: find in image
- Method 1: filter the image with zero-mean eye

$$h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) (g[m+k,n+l])$$
mean of f

Input

Filtered Image (scaled)

Thresholded Image Slide: Hoiem

- Goal: find in image
- Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$

Input 1- sqrt(SSD)

Thresholded Image Slide: Hoiem

Goal: find in image

What's the potential downside of SSD?

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$

Input 1- sqrt(SSD)

Slide: Hoiem

- Goal: find in image
- Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\displaystyle\sum_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})}{\displaystyle\left(\displaystyle\sum_{k,l} (g[k,l] - \overline{g})^2 \displaystyle\sum_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Matlab: normxcorr2(template, im)

Slide: Hoiem

- Goal: find in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image Slide: Hoier

- Goal: find in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Template Matching

Q: What is the best method to use?

A: Depends

- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast

Q: What is the problem with template matching (as described so far)?

A: Template size is fixed, so we cannot find larger or smaller eyes.

Recall Sampling

Image Pyramids

Multi-scale image representation

- Widely used in CVPR
 - Template matching
 - Image registration
 - Hybrid Images

Gaussian pyramid

Template Matching with Image Pyramids

Input: Image, Template

- 1. Match template at current scale
- 2. Downsample image
- Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression

Coarse-to-fine Image Registration

- 1. Compute Gaussian pyramid
- Align with coarse pyramid
- Successively align with finer pyramids
 - Search smaller range

Example: Medical image registration

Learning Based Coarse-to-fine Image Registration, Jiang et al., CVPR 2008

Laplacian filter

Laplacian Filter

What does the Laplacian Filter do?

We will cover this filter (and edges, in general) next class.

Laplacian pyramid

Computing Gaussian/Laplacian Pyramid

Hybrid Images (hw2)

Application: Hybrid Images

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Changing expression

Sad - Surprised

Image representation

 Pixels: great for spatial resolution, poor access to frequency

Fourier transform: great for frequency, not for spatial info

 Pyramids/filter banks: balance between spatial and frequency information

Major uses of image pyramids

- Compression
- Object detection
 - Scale search
 - Features
- Detecting stable interest points

- Registration
 - Course-to-fine

Applications of Filters

- Template matching (SSD or Normxcorr2)
 - SSD is sensitive to overall intensity
- Gaussian pyramid
 - Coarse-to-fine search, multi-scale detection
- Laplacian pyramid
 - More compact image representation
 - Can be used for compositing in graphics
- Downsampling
 - Need to sufficiently low-pass before downsampling

Coming Up...

- Continue the transition from Image Processing (Phase 2) to Computer Vision (Phases 3 & 4)
 - Interest Points
 - Finding Edges & Lines
 - Image Segmentation