

AD-A106 273 AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) F/B 1/3
RESONANCE TESTS ON A PIPER PA-32R TAILPLANE BEFORE AND AFTER DA--ETC(U)
APR 81 A GOLDMAN, B QUINN
UNCLASSIFIED ARL/STRUC-TN-328 NL

100
20
ARL/STRUC

END
DATE
LIMED
111 R
DTIC

UNCLASSIFIED

12

ARL-STRUC-TECH-MEMO-328

AR-002-276

ADA106273

**DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES**

MELBOURNE, VICTORIA

Structures Technical Memorandum 328

**RESONANCE TESTS ON A PIPER PA-32R TAILPLANE
BEFORE AND AFTER DAMAGE**

A. / GOLDMAN and B. / QUINN

DTC FILE COPY

Approved for Public Release.

A

© COMMONWEALTH OF AUSTRALIA 1981

COPY No 21

APRIL 1981

81 10 29 030

UNCLASSIFIED

AR-002-276

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

Structures Technical Memorandum 323

RESONANCE TESTS ON A PIPER PA-32R TAILPLANE
BEFORE AND AFTER DAMAGE

A. GOLDMAN and B. QUINN

SUMMARY

Investigations have been carried out, on the tailplane of a Piper PA-32R aircraft, to determine the effect of damage, in the form of a split in the underside skin, on the modes of vibration of the tailplane. Details and results of the investigations are described.

POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories,
P.O. Box 4331, Melbourne, Victoria, 3001, Australia.

DOCUMENT CONTROL DATA SHEET

Security classification of this page: UNCLASSIFIED

1. DOCUMENT NUMBERS	2. SECURITY CLASSIFICATION
a. AR Number: AR-002-276	a. Complete document: UNCLASSIFIED
b. Document Series and Number. STRUCTURES TECHNICAL MEMORANDUM 328	b. Title in isolation: UNCLASSIFIED
c. Report Number: ARL-STRUC-TECH-MEMO-328	c. Summary in isolation: UNCLASSIFIED

3. TITLE:

RESONANCE TESTS ON A PIPER PA-32R TAILPLANE
BEFORE AND AFTER DAMAGE

4. PERSONAL AUTHORS:	5. DOCUMENT DATE:
GOLDMAN, A. and QUINN, B.	APRIL, 1981
	6. TYPE OF REPORT AND PERIOD COVERED: TECH. MEMO. FEB-JULY 1980
7. CORPORATE AUTHOR(S): Aeronautical Research Laboratories	8. REFERENCE NUMBERS
9. COST CODE: 21 5086	a. Task: AUS 79/005
10. IMPRINT: Aeronautical Research Laboratories, Melbourne	b. Sponsoring Agency: Dept. of Transport
	11. COMPUTER PROGRAM(S) (Title(s) and language(s))

12. RELEASE LIMITATIONS (of the document)

Approved for Public Release.

12.0. OVERSEAS: N.O. | P.R. | 1 | A | B | C | D | E |

13. ANNOUNCEMENT LIMITATIONS (of the information on this page):

No Limitation

14 DESCRIPTORS: Resonance testing Resonant frequency Airfoils Elevators (control surfaces) Horizontal tail surfaces	15. COSATI CODES: 0103
--	---------------------------

16. ABSTRACT:

Investigations have been carried out, on the tailplane of a Piper PA-32R aircraft, to determine the effect of a split, in the underside skin, on the modes of vibration of the tailplane. Details and results of the investigations are described.

CONTENTS

PAGE NO.

1. INTRODUCTION	1
2. DESCRIPTION OF TESTS	1
3. DISCUSSION AND CONCLUSION	2

REFERENCE

TABLE

FIGURES

DISTRIBUTION

1. INTRODUCTION

During investigations into the cause of the crash of a Piper PA-32R aircraft, to be reported in Ref. 1, Department of Transport inspectors found a split in the port lower skin of the all-moving tailplane. The tests described below were carried out to determine the effect of this split on the modes of vibration up to 50 hertz.

2. DESCRIPTION OF TESTS

An undamaged tailplane, without the control tab, was mounted on a central support in a similar manner to that in the aircraft. The tailplane was prevented from rotating by a rod attaching the control arm to the central support. The structure was excited, at the leading and trailing edges of each tip, by shakers connected to the surface by push rods. Refer Fig. 1.

An accelerometer was fixed to the top surface above each shaker attachment point, and measuring stations marked out as shown in Fig. 2. The shakers were driven by an oscillator and four amplifiers. The modes of vibration were tuned by adjusting frequency and excitation forces until the acceleration responses at all forcing stations were 90 degrees out of phase with the exciting force. This was monitored on an oscilloscope by use of a display of four Lissajous figures.

At each resonant frequency, determined as described above, the mode of vibration was plotted using a travelling accelerometer on a rubber suction cup to measure the acceleration response of the structure at the sixteen measuring stations shown on Fig. 2.

The signal from the accelerometer was fed to a transfer function analyser which measured the in-phase and quadrature components of the acceleration with reference to the forcing signal. Only the quadrature component was used to plot the mode shape.

On completion of the measurement of all modes of vibration up to 50 hertz, the tailplane was removed from the rig and, following other structural tests, a slit, 406 millimetres long, was made in the port lower skin as indicated in Figures 3 and 4.

The tailplane was remounted in the test rig and the modes of vibration measured again. In Figures 5 to 8 details are given of the individual mode shapes for both the undamaged and damaged conditions and the associated resonant frequencies are listed in Table 1.

3. DISCUSSION AND CONCLUSION

The frequencies of the various mode shapes plotted were well separated with the exception of the pitch mode where two identical modes were found quite close together by varying the force input. This was probably caused by non-linearity in the supporting rig.

The modes of vibration up to 50 hertz have been plotted for the undamaged and damaged tailplane; the changes brought about by the reduced stiffness are slight.

REFERENCE

1. Department of Transport Crash Investigation Report (in course of preparation), File Ref. M116/1/20.

TABLE 1

SUMMARY OF VIBRATION MODES AND RESONANT FREQUENCIES

MODE DESCRIPTION	FREQUENCY UNDAMAGED TAIL PLANE	FREQUENCY DAMAGED TAIL PLANE
Roll about Attachment Point	16.85 Hz	16.2 Hz
Fundamental Bending	18.55 Hz	18.25 Hz
Pitch about Attachment Point	26.8 Hz (not shown) 30.4 Hz	27.9 Hz (not shown) 29.5 Hz
Antisymmetric Torsion	50.03 Hz	48.8 Hz

FIG. 1 GENERAL ARRANGEMENT OF TAILPLANE, SUPPORT, AND SHAKERS

O and X indicate measuring stations for plotting of mode shapes.
Refer to Figs. 4 to 7.
Shakers and fixed accelerometers mounted at locations marked S.

FIG.2 PLAN OF TAILPLANE SHOWING LOCATION OF SHAKERS AND MEASURING STATIONS.

FIG.3 TAILPLANE SHOWING LOCATION OF SPLIT IN LOWER SKIN

FIG.4 CLOSE-UP OF SPLIT IN LOWER SKIN ALONG A RIVETTED SEAM
AT THE MAIN SPAR

FIG. 5 (a) UNDAMAGED TAILPLANE MODE AT 16.85 Hz

FIG. 5 (b) DAMAGED TAILPLANE MODE AT 16.2 Hz

FIG.6 (a) UNDAMAGED TAILPLANE MODE AT 18.55 Hz

FIG.6 (b) DAMAGED TAILPLANE MODE AT 18.25 Hz

FIG.7 (a) UNDAMAGED TAILPLANE MODE AT 30.4 Hz

FIG.7 (b) DAMAGED TAILPLANE MODE AT 29.5 Hz

FIG.8 (a) UNDAMAGED TAILPLANE MODE AT 56.05 Hz

FIG.8 (b) DAMAGED TAILPLANE MODE AT 48.8 Hz

DISTRIBUTION

COPY NO.

AUSTRALIA

Department of Defence

Central Office

Chief Defence Scientist	1
Deputy Chief Defence Scientist	2
Superintendent, Science and Technology Programmes	3
Aust. Defence Scientific & Technical Rep. (UK)	-
Counsellor, Defence Science (USA)	-
Defence Central Library	4
Document Exchange Centre, D.I.S.B.	5-21
Director General Army Development (NGO)	22-25
Joint Intelligence Organisation	26

Aeronautical Research Laboratories

Chief Superintendent	27
Library	26
Superintendent - Structures Division	29
Divisional File - Structures	30
Authors: A. Goldman	31
B. Quinn	32
P.A. Farrell	33
G. Long	34
B. Emslie	35
P.M. Cox	36

Materials Research Laboratories

Library	37
---------	----

Defence Research Centre

Library	38
---------	----

Central Studies Establishment

Information Centre	39
--------------------	----

Victorian Regional Office

Library	40
---------	----

DISTRIBUTION (CONT'D.)

COPY NO.

Air Force Office

Aircraft Research & Development Unit,	
Scientific Flight Group	41
Air Force Scientific Adviser	42
Technical Division Library	43
Director General Aircraft Engineering	44
HQ Support Command (SENGSO)	45
RAAF Academy, Point Cook	46

Department of Industry and Commerce

Government Aircraft Factories

Library	47
---------	----

Department of Transport

Secretary	48
Library	49
Flying Operations and Airworthiness Division	50
Air Safety Investigation Branch, Mr. S. Woodbury	51

Statutory & State Authorities & Industry

Qantas, Chief Aircraft Evaluation Engineer	52
Trans-Australia Airlines, Library	53
Ansett Airlines of Australia, Library	54
Commonwealth Aircraft Corporation, Library	55
Hawker De Havilland Pty Ltd.	
Librarian, Bankstown	56
Manager, Lidcombe	57

SPARES	58-67
--------	-------

END

DATE

FILMED

11-81

DTIC