MA9202 Mathematik für Physiker 2 (Analysis 1), Prof. Dr. M. Keyl Probeklausur, $18.12.15,\ 8.30-10.00$

Hilfsmittel: ein selbsterstelltes DIN-A4 Blatt. Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästen werden nur die Resultate in diesen Kästen berücksichtigt. Aufgaben ohne Kästen lösen Sie bitte auf einem separaten Bogen.

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage:

$$\sum_{k=1}^{n-1} k!k = n! - 1$$

LÖSUNG:

Induktionsbeginn (n = 1):
$$\sum_{k=1}^{n-1} k!k = 0 = 1! - 1$$
 (leere Summe)

Induktionsschritt $(n \rightarrow n+1)$:

$$\sum_{k=1}^{n} k!k \stackrel{\text{[2]}}{=} \sum_{k=1}^{n-1} k!k + n!n$$

$$\stackrel{\text{I.V.[2]}}{=} n! - 1 + n!n$$

$$\stackrel{\text{[1]}}{=} (n+1)n! - 1$$

$$\stackrel{\text{[1]}}{=} (n+1)! - 1$$

Erklärung:

[2 Punkte] für den Induktionsbeginn,

[2 Punkte] für das Zerlegen,

[2 Punkte] für das Einsetzen der Induktionsvoraussetzung,

[2 Punkte] für das Zusammenfassen.

2. Komplexe Zahlen

[6 Punkte]

(a) Geben Sie
$$z = 3i + \frac{(2-i)^2}{1+i}$$
 in Polardarstellung, $re^{i\phi}$, $r \in \mathbb{R}^+$, $\phi \in (-\pi, \pi]$, an. [3]

$$z = \frac{1}{\sqrt{2}}e^{-i\frac{3}{4}\pi}$$

(b) Geben Sie Real- und Imaginärteil von $\sqrt[3]{i}$ an.

[3]

LÖSUNG:

(a)
$$z = 3i + \frac{(2-i)^2}{1+i} = 3i + \frac{4-4i-1}{1+i} = 3i + \frac{(3-4i)(1-i)}{2} = 3i + \frac{3-4-7i}{2} = -\frac{1}{2} - \frac{1}{2}i = \frac{1}{\sqrt{2}}e^{-i\frac{3}{4}\pi}$$

(b)
$$\sqrt[3]{i} = (e^{i\frac{\pi}{2}})^{1/3} = e^{i\frac{\pi}{6}} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + i\frac{1}{2}$$
.

}	Konvergenz	von	Folgen	und	Reihen
ι.	Ronvergenz	VOII	roigen	unu	remen

[7 Punkte]

(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\sqrt{n^2+n}-n\right)$ [2]

 $\square = -\infty$ $\square = 0$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$ \square existient nicht

(b) $\lim_{n \to \infty} \sin\left(\frac{n^2 + 1}{n + 5}\right) \log\left(\frac{n^2 + 5}{n^2 + 3}\right)$ [3]

 $\square = -\infty$ $\square = -1$ $\square = 0$ $\square = 1$ $\square = \infty$ \square existient nicht

(c) Welchen Wert besitzt die Reihe $\sum_{n=0}^{\infty} \frac{2^n - 1}{3^n}$? [2]

 $\Box -\frac{3}{2} \quad \Box -1 \quad \Box 0 \quad \Box 1 \quad \boxtimes \frac{3}{2} \quad \Box 3 \quad \Box \infty \quad \Box$ undefiniert

LÖSUNG:

(a) $\lim_{n \to \infty} \left(\sqrt{n^2 + n} - n \right) = \lim_{n \to \infty} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\left(\sqrt{1 + \frac{1}{n}} + 1 \right)} = \frac{1}{2}.$

- (b) Die Folge $\log\left(\frac{n^2+5}{n^2+3}\right)$ konvergiert gegen 0, da das Argument des log gegen 1 konvergiert und log dort stetig ist. Der Faktor $\sin\left(\frac{n^2+1}{n+5}\right)$ ist vom Betrag durch 1 beschränkt und ändert nichts an der Konvergenz gegen 0.
- (c) Es handelt sich um die Differenz zweier geometrischer Reihen:

$$\sum_{n=0}^{\infty} \frac{2^n - 1}{3^n} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n - \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n = 3 - \frac{3}{2} = \frac{3}{2}$$

4. Potenzreihen [6 Punkte]

Bestimmen Sie den Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \frac{n^3}{2^n} x^n$.

LÖSUNG:

 $\limsup_{n\to\infty} \sqrt[n]{\frac{n^3}{2^n}} = \lim_{n\to\infty} \frac{n^{3/n}}{2} = \tfrac{1}{2} \lim_{n\to\infty} (n^{1/n})^3 = \tfrac{1}{2}.$ Der Konvergenzradius ist also 2.

5. Stetige Funktionen

[8 Punkte]

Die Temperaturverteilung eines dünnen Metallrings entlang seines Umfangs kann als stetige Funktion $f:[0,2\pi]\to\mathbb{R}$ mit $f(0)=f(2\pi)$ aufgefasst werden. Zeigen Sie, dass es mindestens ein Paar entgegengesetzter Punkte auf dem Ring gibt, die exakt die gleiche Temperatur haben.

Hinweis: Man betrachte $f(x) - f(x + \pi)$ auf $[0, \pi]$.

LÖSUNG:

Wir betrachten die Funktion $F:[0,\pi]\to\mathbb{R},\,F(x)=f(x)-f(x+\pi).$ [1]

Es ist $F(0) = f(0) - f(\pi)$ und $F(\pi) = f(\pi) - f(2\pi) = -F(0)$. [2]

Entweder sind beide Randwerte also Null, oder Sie haben unterschiedliches Vorzeichen. [2]

Da F wie f stetig ist, gibt es nach dem Zwischenwertsatz mindestens eine Nullstelle x_0 von F in $[0, \pi]$.

Somit gilt $f(x_0) = f(x_0 + \pi)$. [1]

Berechnen Sie die ersten und zweiten Ableitungen der folgenden Funktionen für alle Punkte im jeweils maximalen Definitionsbereich $\subset \mathbb{R}$.

$$f_1(x) = xe^{\cos(x)}, \qquad f'_1(x) = e^{\cos(x)} - x e^{\cos(x)} \sin(x)$$
 [1]

$$f_1''(x) = x e^{\cos(x)} \sin(x)^2 - 2 e^{\cos(x)} \sin(x) - x e^{\cos(x)} \cos(x)$$
 [2]

$$f_2(x) = \ln\left(\sqrt{x^2 + 1}\right), \quad f'_2(x) = \frac{x}{x^2 + 1}$$
 [1]

$$f_2''(x) = \frac{1}{x^2 + 1} - \frac{2x^2}{(x^2 + 1)^2}$$
 [2]

$$f_3(x) = x^2 \tan(x), \qquad f_3'(x) = 2x \tan(x) + x^2 \sec(x)^2$$
 [1]

$$f_3''(x) = 2x^2 \sec(x)^2 \tan(x) + 2\tan(x) + 4x \sec(x)^2$$
 [2]

[2]

[2]

7. Funktionenfolgen [10 Punkte]

Für die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$, $f_n:\mathbb{R}\to\mathbb{R}$, $f_n(x)=\arctan(nx)$ gilt:

(a) (f_n) konvergiert punktweise gegen $f: \mathbb{R} \to \mathbb{R}$, mit [3]

$$f(x) = \begin{cases} \frac{\pi}{2}, & x > 0\\ 0, & x = 0\\ -\frac{\pi}{2}, & x < 0 \end{cases}$$

- (b) \square Weil f stetig ist, konvergiert (f_n) gleichmäßig gegen f.
 - \square Weil f stetig ist, konvergiert (f_n) nicht gleichmäßig gegen f.
 - \square Weil f unstetig ist, konvergiert (f_n) gleichmäßig gegen f.
 - \boxtimes Weil f unstetig ist, konvergiert (f_n) nicht gleichmäßig gegen f.

(c) Berechnen Sie die Ableitungen $f'_n(x)$ und skizzieren Sie sie.

$$f_n'(x) = \frac{n}{1 + (nx)^2}$$

[3]

LÖSUNG:

(a)
$$f(x) = \lim_{n \to \infty} \arctan(nx) = \begin{cases} \frac{\pi}{2}, & x > 0\\ 0, & x = 0.\\ -\frac{\pi}{2}, & x < 0 \end{cases}$$

- (b) Wäre die Konvergenz sogar gleichmäßig, so müßte f stetig sein. Da dies nicht der Fall ist, kann die Konvergenz nicht gleichmäßig sein.
- (c) s.o.