2015-11-26

3. DNA Barcode

- Plant barcodes(matK, rbcL)
- BOLD/GBIF DB
- GBIF entries of 'Palm Trees'

Plant DNA barcodes

In 2009, a collaboration of a large group of plant DNA barcode researchers proposed two chloroplast genes, rbcL and matK, taken together, as a barcode for plants. [6] Adding the nuclear internal transcribed spacer ITS2 region was proposed to provide better resolution between species. [21] As of 2015, the search for better DNA barcodes for plants continues, with the proposal that the chloroplast region ycf1 may be suitable.

https://en.wikipedia.org/wiki/DNA_barcoding

GBIF (Global Biodiversity Information Facility)

http://www.gbif.jp/bol/

GBIF Japan Node **JBIF**

Dr.Yamazaki(NBRP) supports JBIF database.

BOLD and **DDBJ** sources

Se BOLD (Barcode of Life Data)

データベースの塩基配列全件に対して比較することが可能です。

・BOLD由来のデータベース

○ COI-5P (2,807,009件) データ更新日:2015年02月06日

FASTA (380MB) リストファイル ○ COI-3P (20,898件) データ更新日:2015年02月06日

◎ rbcL (77,415件) データ更新日:2015年02月06日

FASTA (3MB) リストファイル (

FASTA (13MB) リストファイル

Barcode clusters for animals (BINs)

All Sequences

Barcode Sequences

382 631 4,321,441 3,761,354 Animals

Plants

Fungi & Other Life

154,900 58,701 16,760

Download files: GBIF matK sequences

(1)matK rpsv.list (TSV format: Accession ID, Species name, barcode name, GenBank ID)

```
lGBVH547-11↑ Guatteria olivacea↑ matK↑
                                         AY740940 +
GBVA1687-11^Biarum carduchorum^ matK^
                                         EU886521 4
                Kickxia spuria^ matK^
POWNA1560-12^
                                         JN894552 4
GBVE3433-11^Raphanus sativus var. raphanistroides
                                                     matK^
                                                              AB354261 4
GBVJ1159-11^Ceanothus foliosus var. vineatus
                                                          AF049803 •
GBVR3836-13^Cylindropuntia cholla^
                                     matK^
                                             FN997446 •
GBVD1799-11^Carex vexans^
                             matK^
                                     GU173775 🔸
GBVS4700-13^Opuntia pumila^ matK^
                                     JF786826 4
```

(2)matK_rpsv.fasta (fasta format: >Accession ID, Sequence)

ASSIGNMENT[6]

Extract matK sequences of Cocos nucifera and other palm trees and by programming and perform phylogenetic analysis

Reference: Palm trees and matk entries

PMID:*24023703* (YY Huang et al., 2013)

Genus	Ex. Species name	matK entries
Cocos	Cocos nucifera(Coconut)	1
Phoenix	Phoenix dactylifera(Date Palm)	6
Bismarckia	Bismarckia nobilis	1
Pseudophoenix	Pseudophoenix lediniana	6
Chamaedorea	Chamaedorea elegans	31
Elaeis	Elaeis guineensis(Oil Palm)	1
Calamus	Calamus sp.(Rattan)	42
Areca	Areca catechu(Betel nuts)	2
Metroxylon	Metroxylon salomonense	1

<u>2015-11-26</u>

4. NGS Read Alignment

- DDBJ Pipeline
- SAM/BAM format
- Visualization(Samtools tview)
- SRA100551(query)
- GU811709 (ref.)

Date palm: datasets of chloroplast genome

Do not download data: the next page tool imports automatically

■ Phoenix dactylifera (date palm): taxid:42345

GU811709 (reference sequence)

http://www.ncbi.nlm.nih.gov/genome/organelles/2664?

Phoenix dactylifera

							Items	s 1 - 2 of 2	<< First < Prev	Page 1 of	1 Next >
Organism	Name	RefSeq	INSDC	Size (Kb)	GC(%)	Protein	rRNA	tRNA	Other RNA	Gene	Pseudogene
Phoenix dactylifera	Pltd	NC_013991.2	GU811709.2	158.46	37.2	95	8	44	-	149	2
Phoenix dactylifera	MT	NC_016740.1	JN375330.1	715	45.1	43	3	18	-	44	1

chloroplast genome

■ SRA100551 (query sequences)

```
-<SAMPLE_center_name="The University of Texas at Austin" alias="AJW" accession="SRS478070"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="PER" accession="SRS478070"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="SUK-A" accession="SRS478078"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="DEK" accession="SRS478079"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="SUK-Q" accession="SRS478080"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="SUK-Q" accession="SRS478081"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="SHA" accession="SRS478082"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="SHA" accession="SRS478082"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478083"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478083"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMPLE>
+<SAMPLE center_name="The University of Texas at Austin" alias="MOS-A" accession="SRS478084"></SAMP
```

<LIBRARY_STRATEGY>WGS/LIBRARY_STRATEGY>
<LIBRARY_SOURCE>GENOMIC/LIBRARY_SOURCE>
whole genome sequencing

(Sabir et al., 2014)

PMID: 24718264

Whole Mitochondrial and Plastid Genome SNP Analysis of Nine Date Palm Cultivars Reveals Plastid Heteroplasmy and Close Phylogenetic Relationships among Cultivars

Jamal S. M. Sabir¹, Dhivya Arasappan², Ahmed Bahieldin^{1,3}, Salah Abo-Aba^{1,4}, Sameera Bafeel¹, Talal A. Zari¹, Sherif Edris^{1,3}, Ahmed M. Shokry^{1,5}, Nour O. Gadalla^{1,6}, Ahmed M. Ramadan^{1,5}, Ahmed Atef¹, Magdy A. Al-Kordy^{1,6}, Fotoh M. El-Domyati^{1,3}, Robert K. Jansen¹

10-epartment of Biological Sciences, King Abdulatiz University, Jeddah, Saudi Arabia, 20-epartment of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America, 30-epartment of Genetics, Antonial Research Centre, Giza, Egypt,

DDBJ pipeline: NGS read alignment

http://p.ddbj.nig.ac.jp/

DDBJ Read Annotation Pipeline

1) Create new account

done

SRA100551

DDBJ pipeline 2: Import SRA data

2015-11-25 15:04:35.272

the e-mail notification after job completed.

DDBJ pipeline 3: Confirm SRA metadata

DELETE

9) Go to next

DDBJ pipeline 4: Specify the alignment tool and generate 9 query sets

DDBJ pipeline 5: Specify the reference sequence for read alignment analysis

DDBJ pipeline 6: Set options and run all jobs

DDBJ pipeline 7: Confirm job status and outputs

Visualizing alignment reads using BAM files

ASSIGNMENT[7]

Confirming detected SNPs at 38,157-38,181 positions of "MOS-A cultivar" in the BAM file using "samtools" tview function and save figures of tview screenshot.

■ Samtools reference

- 1. http://www.htslib.org/doc/samtools.html
- 2. https://en.wikipedia.org/wiki/SAMtools

Commands in NIG supercomputer

- > qlogin
- >mkdir datepalm
- >cp /home/kaminuma/tmp_data/SRA100551/* ~/datepalm/
- >cd datepalm
- >less SRR974797_uniqout.sam
- >samtools tview SRR974797_out2.bam GU811709.fa

Cultivar	Position	Reference	Alternate
MOS-A	38,157	т	G
MOS-A	38,160	c	т
MOS-A	38,181	A	c
			_

(Table 5. Sabir et al., 2014)

Example: tview screenshot

Reference: Alignment file format (SAM/BAM, pileup)

<SAM/BAM format>

■ Reference

- 1. https://samtools.github.io/hts-specs/SAMv1.pdf
- 2. http://genome.sph.umich.edu/wiki/SAM

@SQ SN:GU811709 GU811709.2 LN:158462
@PG ID:bwa PN:bwa VN:0.6.1-r104
SRR974797.316 83 GU811709 GU811709.2 4767 60 100M =
TAAGGCAAATTGTGTGTAAATAATTACACAAAGATGGATACTAGTGACCCCCCCTTTTTTTT
DDDDDDDDBB<:CCCDEEECCDDDCCCCDCDDCC@EDC>CACC<7)DDDDDDDDDFFHHHEGHHGIGIGGJJJIHI
i:5 SM:i:25 AM:i:25 X0:i:1 X1:i:0 XM:i:5 X0:i:0 XG:i:0 MD:Z:1A2A0A2A0A
SRR974797.316 163 GU811709 GU811709.2 4416 60 80M =
ATCATTTGACTGAAGTAAAGGAAAGAAAAACCAATATGGGGTGGAGATAAACGTATCTATTTATCTACGA
IJIJHIJJIJJIJJIHFHHGFFFFF>>BBDDACCDDD <bdddadeededdecbd nm:i:0<="" td="" xt:a:u=""></bdddadeededdecbd>
i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:80
SRR974797.616 99 GU811709 GU811709.2 126748 60 100M =
ATTCTGCCGATTTCGTCCTAGATCCAATTGAGTTGATACGCCATTAGATTCGTGTTATGTACCAGAATGTAATATAC
HHHDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
i:4 SM:i:37 AM:i:37 X0:i:1 X1:i:0 XM:i:4 X0:i:0 XG:i:0 MD:Z:90T0A1G3A2
SRR974797.616 147 GU811709 GU811709.2 127124 60 80M =
ATTTCTATCCACAAAATTCCAATTACGAGAATTAAAACAAATTAGAATTCTCAATTCTCTACGACGTCTAG
IIIIIJGIGHJHHFGGIIHFIIIG <jijjjiiihjijjjjjjjjjjjjjhhh nm:i:0<="" td="" xt:a:u=""></jijjjiiihjijjjjjjjjjjjjjhhh>
i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:80
SRR974797.1164 99 GU811709 GU811709.2 130429 60 100M =
CCACCTCTTCTGCTTGATCACTATTACTAGTATTATTCGTATTAGTAATAGAATTGGTATTATTCTCATTATCAGT/
F;<:?2 E19FFFABBD9?E9?G9:?*::*:CCF@?FFD?FBCDAF:9?BFGEFF)=CFF@FGI:@FE)=@ DEFF
i:5 SM:i:25 AM:i:25 X0:i:1 X1:i:0 XM:i:5 X0:i:0 XG:i:0 MD:z:90T0T1C2C10
SRR974797.1164 147 GU811709 GU811709.2 130797 60 80M =
AATTCAAAAGAAAATGAAGTTAAGGAATTACCAATATAATTAAAAAAATGATTTACCATCATCAAGCGAATT
;@_ <ac<af??b<@feihgbf<gg:gc9fbc14bc?2@hc<hdga:@1:c:8dh nm:i:0<="" td="" xt:a:u=""></ac<af??b<@feihgbf<gg:gc9fbc14bc?2@hc<hdga:@1:c:8dh>
i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:80
SRR974797.1345 99 GU811709 GU811709.2 53843 60 93M1I6M =
TTTCTTGTCAAGATGGATATTCCATAATAATTCCACATGATAACTCTCTGATCCGTCTACTGTTAACAGATTGGTA
ĤΗĤΟΟΟΟΟΙΌΣΩΟΟΟΧΟΙΣΩΩΟΟΟΡΙΙΙΙΟΟΙΟΙΟΙΙΙΙΙΙΟΟΙΙΙΙΙΙΙΙΙΙΙΙΙ
i:5 SM:i:37 AM:i:37 X0:i:1 X1:i:0 XM:i:4 X0:i:1 XG:i:1 MD:Z:90T2A3A0A0
SRR974797.1345 147 GU811709 GU811709.2 54218 60 80M =
TGATGTATTGACTTGACTAGGAGGAAATAGCATTTACAGCCTCTACTCGTGTCCTAGCTCGTCTGAGAGCCT
HFHHGGGJIIGIGGGIHHCIIIJIIHDBJIJJJJJJJJJJJJJJJJJJJIJIHHH XT:A:U NM:i:0

SAM format (by aligned read)

[compressed]

BAM format

<DDBJ Pipeline download panel>

Command	Start time	End time	Log1	Log2	Result	ME
Create BWA Index File	2015-11-	2015-11-				
owa index [-a is]	25	25		View		
3U811709_151125154120962	16:59:23	17:05:51				
BWA : Alignment	2015-11-	2015-11-				
owa aln GU811709 151125154120962	25	26		View		
3RR974797_1.fastq > 1.sai	17:05:52	04:04:54				
BWA : Alignment	2015-11-	2015-11-				
owa aln GU811709 151125154120962	26	26		View		
SRR974797_2.fastq > 2.sai	04:04:54	04:18:38				
BWA : SAMPE	2015-11-	2015-11-				
owa sampe GU811709_151125154120962	26	26		Minus	Download/5.8.CD\	3.45
1.sai 2.sai SRR974797_1.fastq	04:18:39	04:27:57		View	Download(5.6 GB)	ME
SRR974797_2.fastq > out.sam						
Extract Unmapped Reads	2015-11-	2015-11-				
oython extractUnmappedFASTQ.py	26	26			Download(6.3 GB)	ME
SRR974797_1.fastq SRR974797_2.fastq	05:04:47	05:17:29			Download(0.3 GB)	IVIL
out.sam						
Convert SAM to BAM	2015-11-	2015-11-				
samtools view -bS -o out.bam out.sam	26	26		View	Download(5.6 GB)	ME
	06:16:01	06:32:03				_
Sort BAM File	2015-11-	2015-11-				
samtools sort out.bam out2	26	26		View	Download(5.5 GB)	ME
	06:36:10	06:58:34				
Create BAM Index File	2015-11-	2015-11-				
samtools index out2.bam	26	26			Download(759 byte)	ME
	07:02:39	07:04:04				
Uniquify SAM (Remove Multiple Hits)	2015-11-	2015-11-		4		
perl sam2uniq.pl out.sam UBE > uniqout.sam	26	26		1	Download(22.7 MB)	ME
	07:04:15	07:10:06		_		
Convert SAM to BAM [For Unique SAM]	2015-11-	2015-11-				
samtools view -bS -o uniqout.bam uniqout.sam	26	26		View	Download(46.2 MB)	ME
	07:10:17	07:10:28				
Sort BAM File [For Unique SAM]	2015-11-	2015-11-		2/		
samtools sort uniqout.bam out2	26	26		2 (Download(17.6 MB)	ME
•	07:10:50	07:11:00		_		
Create BAM Index File [For Unique SAM]	2015-11-	2015-11-		3		
samtools index out2.bam	26	26) J	Download(445 byte)	ME
	07:11:12	07:11:22				

- 1. SRR974797_uniqout.sam
- 2. SRR974797 out2.bam
- 3. SRR974797 out2.bam.bai

Extracting 9 cultivar sequences at psaA/psaB genes by programming

mpileup format

<u>ls -l */SRA100551/pileup/*.pileup</u>

http://samtools.sourceforge.net/mpileup.shtml

Genomic coordinate↑

Reference base↑

Query aligned base↑

Ref. http://www.ebi.ac.uk/ena/data/view/GU811709

Example output: Tab-separated(TSV) file

← 9 cultivar names

1st column: genomic pos. $2^{nd} \sim 10^{th}$ column:

Aligned base by cultivars

ASSIGNMENT[8]

Extract 9 cultivar genomic sequences from analyzed mpileup files with psaA gene

(genomic position: 40117..42369), and psaB gene (37887..40091) by programming.