

Peter the Great St. Petersburg Polytechnic University Institute of computer science and cybersecurity Higher school of artificial intelligence

An explainable ML approach for hospital ED visits forecasting using continuous training and multi-model regression

Student: Salimli A. Gr. 5130201/20102

Supervisor: Ph.D in Technical Science, D.E Motorin

Autumn 2024

Introduction

Significance:

Explainability and Continuous Model Adaptation in Forecasting Emergency Department Visits

Area of expertise:

- Forecasting emergency department (ED) visits
- Machine learning methods
- Continuous training

Graph of visits by years Pamplona

Problem statement

- Resource allocation
- Waiting time
- Old and classic ML methods
- Real-time data

Continuous Adaptation for Machine Learning System to Data Changes (TF)

Datasets

Real datas from two branches of hospital «Clínica Universidad de Navarra»:

- Pamplona (Navarre)
- Madrid (est. 2018)

Date	Day_of_week	Holiday	Moon_Phase	Average_Temp	Max_temp	Average_wind	Max_wind	Average_mslp	Total_precipitation	Holiday_prev	ED_1
08/09/2018	6	0	5	295.01	299.3	2.56	3.96	101703.64	0.00281	0.0	12.0
09/09/2018	7	0	1	295.68	302.16	1.26	3.03	101901.04	0.00012	0.0	12.0
10/09/2018	1	0	0	296.24	302.14	2.44	3.57	102190.41	0.00014	0.0	16.0
11/09/2018	2	0	1	296.4	303.19	2.36	3.57	102223.68	0.00139	0.0	21.0
12/09/2018	3	0	4	297.18	303.88	1.39	2.95	102153.5	1e-05	0.0	14.0
13/09/2018	4	0	10	299.03	306.49	1.14	1.8	101790.55	0.0	0.0	14.0
14/09/2018	5	0	17	298.79	305.69	1.67	2.79	101689.64	0.00013	0.0	17.0
15/09/2018	6	0	25	297.6	303.66	2.26	4.24	101878.94	0.00019	0.0	19.0
16/09/2018	7	0	35	297.1	304.5	0.99	1.6	101960.37	0.0	0.0	17.0
17/09/2018	1	0	46	296.91	304.45	2.54	4.4	101674.67	0.00428	0.0	19.0
18/09/2018	2	0	56	295.57	301.54	1.48	3.08	101663.15	0.00026	0.0	22.0
19/09/2018	3	0	66	297.15	304.5	1.21	2.13	101951.79	0.0	0.0	15.0
20/09/2018	4	0	76	297.6	304.83	1.54	2.41	101878.47	0.0	0.0	26.0
21/09/2018	5	0	84	298.13	305.4	1.42	2.62	101812.55	0.0	0.0	18.0
22/09/2018	6	0	91	298.76	306.65	1.93	2.71	102134.65	0.0	0.0	18.0
23/09/2018	7	0	96	299.17	307.51	1.93	3.18	102160.0	0.0	0.0	16.0
24/09/2018	1	0	99	299.19	306.35	3.03	4.54	102104.86	0.0	0.0	23.0

Part of dataset. Example (Madrid)

Approaches

- Threshold-based data segmentation using specific predictor variables.
- Cluster-based ensemble learning with machine learning models trained for each cluster.

Clustering example for 5 clusters (K-means)

Threshold-based segmentation example on image

F

Models

Predicting the number of emergency department (ED) attendance with linear regression, metric regression(distance of points with parameters) and support vector regression (SVR) (for errors and NL)

$$\begin{aligned} MAE &= \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}| \\ MSE &= \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2 \\ RMSE &= \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2} \\ R^2 &= 1 - \frac{\sum (y_i - \hat{y})^2}{\sum (y_i - \bar{y})^2} \\ \end{aligned}$$
 Where, $\hat{y} - predicted \ value \ of \ y$

 \bar{y} – mean value of y

Models

To improve the accuracy of long-term forecasts based on dynamically changing data in ED Used in the experiment

- Extreme Learning Machine (ELM) and
- Fully Connected Deep Neural Network

ELM architecture

Models

Methods to stop overfitting

- Random forests
- Decision tree

Decision tree example

Random forest architecture

XAI

Explainable AI (XAI) - ensures transparency in predictions.

- •Highlights key factors driving results (e.g., weather, day of the week).
- •Builds trust among ED workers.
- •Helps decision-makers understand and confidently use the model.

Model

Changing and emergence of new data in real time require model adaptability

So solution is - continuous training

Continuous training model

Prediction procedure after the training data segmentation has been performed.

Experiment

Set-up

- A. Database construction
- B. Training test split
- C. Parameters
- D. Metric regression

$$MAE = \frac{1}{N} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Metric regression to the two proposed problems MAE

Pamplona time series

Day_of_week-

Holiday ·

Moon_phase-

Maximum_temperature -

Average_temperature ·

Average_Wind_speed-

Maximum_Wind_speed ·

MSL_average ·

Total_precipitation -

Holiday_previous_day ·

ED_visits_1_previous_day-

ED_visits_2_previous_day ·

ED_visits_3_previous_day

ED_visits_4_previous_day-

ED_visits_5_previous_day-

ED_visits_6_previous_day ·

ED_visits_7_previous_day-

Target_1 ·

Target_2 ·

Target_3

Target_4 ·

Target_5

Target_6

Target_7 ·

Experiment

- Real ED visitors datasets from Pamplona and Madrid branch
- Including meteorological, calendar and autoregressive principles.
- Testing and training data's splitting to 70% and 30%
- Clustering to improve accuracy
- 6 ML models including CT

h+6, h-3 till h-1 Day_of_week Wind_speed_average 0.75 Maximum_temperature Minimum_temperature 0.50 MSL_average Holiday previous_day 0.25 ED_visits_1_previous_day ED_visits_2_previous_day ED_visits_3_previous_day 0.00 ED_visits_4_previous_day ED_visits_5_previous_day -0.25ED_visits_6_previous_day ED_visits_7_previous_day Target_1 -0.50Target_2

Correlation coefficient among the variables belong to Pamplona DS

Target_3

Target_4

Target_5

Target_6

Target_7

- Continuous training improved prediction accuracy by 8-19% for Pamplona and 3-5% for Madrid.
- Data segmentation methods have shown better results in predictions compared to baseline models.
- Data clustering provided additional improvements in certain scenarios.
- Using SVR and metric-regression to improve forecast accuracy

Results (MAE) for Madrid database after applying the continuous training approach.

	+1 day	+2 days	+3 days	+4 days	+5 days	+6 days	+7 days
LR	8.45	9.01	9.20	9.46	9.51	9.58	9.71
RT	10.25	10.42	10.44	10.77	10.83	10.72	10.88
RF	8.72	9.13	9.59	9.70	9.54	9.76	10.18
SVR	8.53	9.02	9.22	9.45	9.51	9.56	9.79
ELM	8.77	8.90	9.25	9.56	9.57	9.63	9.89
FCDNN	8.64	9.01	9.31	9.74	9.51	9.68	9.95
Average	8.89	9.25	9.50	9.78	9.75	9.82	10.07
Improvement	4.20%	4.84%	4.71%	3.74%	4.88%	4.10%	4.10%

Results (MAE) for Madrid database applying the threshold-based segmentation approach.

	+1 day	+2 days	+3 days	+4 days	+5 days	+6 days	+7 days
LR	8.38	8.96	9.17	9.43	9.47	9.50	9.68
RT	9.20	9.73	9.78	9.94	9.84	10.06	10.36
RF	8.66	9.08	9.42	9.43	9.48	9.73	10.04
SVR	8.44	8.99	9.18	9.43	9.47	9.52	9.79
ELM	8.48	8.88	9.14	10.97	9.54	9.63	11.11
FCDNN	8.47	8.93	9.24	9.45	9.43	9.54	9.89
Average	8.61	9.10	9.32	9.78	9.54	9.66	10.15
Improvement	3.15%	1.62%	1.89%	0.00%	2.15%	1.63%	-0.79%

Threshold-based segmentation

Base models vs continuous training

Final results (real vs estimated) Madrid (SVR)

Final results (real vs estimated) Madrid (ELM)

Averaged performance evaluation of the six ML models, assessed in terms of MAE

Comparison of MAE results for the top-performing models acquired through each methodology for each time horizon

Conclusion

- Improved prediction precision by 8-19% for Pamplona and 3-5% for Madrid
- Threshold-based segmentation enhanced model performance by up to 10%.
- Cluster-based models provided reliable accuracy with data-specific clustering.
- Continuous training improved real-time forecasting and adaptability to new data.
- Increased efficiency in hospital resource management and scheduling.

Thank you for listening!