Satz 0.1. Seien $\mathfrak{a} \subset A$, dann

- a) \mathfrak{a} ist Primideal $\Leftrightarrow A/\mathfrak{p}$ ist Integritätsbereich (nullteilerfrei)
- b) \mathfrak{a} ist maximales Ideal $\Leftrightarrow A/\mathfrak{a}$ ist ein Körper.

Beweis. a) \Rightarrow Sei $a + \mathfrak{a} \in A/p$ ein Nullteiler, dann existiert $x \in A \setminus p$, sodass

$$(a+\mathfrak{a})(x+\mathfrak{a}) = ax + \mathfrak{a} = p$$

Also ist $ax \in \mathfrak{a}$ und da \mathfrak{a} Primideal folgt $a \in \mathfrak{a}$.

 \Leftarrow Sei A/\mathfrak{a} Integritätsbereich und sei $ab \in \mathfrak{a}$, dann ist

$$(a+\mathfrak{a})(b+\mathfrak{a}) = ab + \mathfrak{a} = \mathfrak{a}$$

Da A/\mathfrak{a} Integritätsbereich ist gilt $a + \mathfrak{a} = \mathfrak{a}$ oder $b + \mathfrak{a} = \mathfrak{a}$, also $a \in \mathfrak{a}$ oder $b \in \mathfrak{a}$.

b) \Rightarrow Sei I/\mathfrak{a} ein Ideal in A/\mathfrak{a} . Hierbei ist I eine Ideal in A welches \mathfrak{a} enthält, also $\mathfrak{a} \subseteq I \subseteq A$. Da \mathfrak{a} maximal ist, muss $\mathfrak{a} = I$ oder $\mathfrak{a} = A$. Also ist A/\mathfrak{a} ein Körper.

 \Leftarrow Sei I ein Ideal in A mit $\mathfrak{a} \subseteq I \subseteq A$. Dann ist I/\mathfrak{a} eine Ideal in A/\mathfrak{a} , d.h.

$$I/\mathfrak{a} = \mathfrak{a}/\mathfrak{a}$$
 oder $I/\mathfrak{a} = A/\mathfrak{a}$

Damit folgt $I = \mathfrak{a}$ oder $I = \mathfrak{A}$.

Bemerkung. Insbesondere ist jedes maximale ideal prim.

Definition 0.2. Sei $A \neq \emptyset$. Eine **Relation** auf A ist eine Teilmenge $R \subset A \times A$. R heißt **partielle Ordnung** wenn

- a) $\forall a \in A \text{ gilt } (a, a) \in R \text{ (Reflexivität)}$
- b) $\forall a,b,c \in A$ gilt $(a,b) \in R$ und $(b,c) \in R$, so gilt auch $(a,c \in R)$ (Transitivität)
- c) $\forall a, b \in A \text{ mit } (a, b \in R) \text{ und } (b, a) \in \mathbb{R}, \text{ dann gilt } a = b. \text{ (Antisymmetrie)}$

Ist R eine partielle Ordnungn auf A so schrieben wir für $(a,b) \in R$ auch $a \leq b$.

Zwei Elemente $a, b \in A$ heißen **vergleichbar**, wenn $a \leq b$ oder $b \leq a$ ist. Eine Teilmenge $B \subset A$ heißt **Kette**, wenn für alle $a, b \in B$ gilt, dass $a \leq b$ oder $b \leq a$.

Lemma 0.3. Sei $A \neq \emptyset$ partielle geordnet. Hat jede Kette $B \neq \emptyset$ in A eine obere Schranke in A, d.h. es gibt ein $a \in A$, sodass $b \leq a$ für alle $b \in B$., so besitzt A ein maximales Element.

Theorem 0.4. Sei $A \neq 0$ ein Ring, dann besitzt A ein maximales Ideal.

Beweis. Sei $\Sigma = \{I \subset A \mid I \text{ ist Ideal}\}$. Dann ist $O \in \Sigma$ und Σ ist partielle geordnet durch die mengentheoretische Inklusion. Sei $(C_i)_{i \in I}$ eine Kette in Σ . Dann ist

$$C = \bigcup_{i \in I} C_i$$

ein Ideal in A. Aus $I \notin C_i$ für alle $i \in I$ folgt, dass $I \notin C$,d.h. $C \in \Sigma$. Somit hat Σ ein maximales Element.

Korollar 0.5. Sei A ein Ring und $I \subsetneq A$ ein Ideal, dann ist I in einem maximalen Ideal enthalten.

Korollar 0.6. Sei A ein Ring und $a \in A \setminus A^*$. Dann ist a in einem maximalen Ideal enthalten.

Beweis. Betrachte $(a) = Aa \neq A$.

0.1 Lokale Ringe

Definition 0.7. Ein Ring A mit nur eine maximalen Ideal \mathfrak{m} heißt lokaler Ring und A/\mathfrak{m} heißt Restklassenkörper von A.

Satz 0.8. Sei A ein Ring und $\mathfrak{m} \neq A$ eine Ideal in A.

Ist jedes $x \in A \setminus +m$ eine Einheit, si ist A ein lokaler Ring mit maximalen Ideal m

Beweis. Für jedes Ideal $I \subsetneq A$ gilt $I \cap A^* = \emptyset$, enthält also keine Einheiten und ist somit in \mathfrak{m} enthalten. Somit ist \mathfrak{m} das einzige maximale Ideal.

Satz 0.9. Sei A ein Ring und $\mathfrak{m} \subset A$ eine maximales Ideal, sodass jedes Element m eine Einheit in A ist. Dann ist A ein lokaler Ring.

Beispiel 0.10.1. Jedes Ideal in \mathbb{Z} ist der Form $(m) = \mathbb{Z}m$ mit $m \in \mathbb{Z}_{\geq 0}$. Es gilt, dass (m) genau dann Primideal ist, wenn m = 0 oder m Primzahl. Ist \mathfrak{p} Primzahl, so ist (p) maximal.

Sei K ein Körper und $A = K[X_1, ..., X_n]$. Dann ist der Kern des Homomorphismus $\phi: A \to K, f \mapsto f(0)$ ein maximales Ideal in A.

0.2 Radikale

Satz 0.11. Sei A eine Ring und $N = \{a \in A \mid a \text{ ist nilpotent}\}$. Dann ist N ein Ideal in A und A/N enthält keine nilpotenten $Elemente \neq 0$.

Beweis. • Zz: N ist eine additive Untergruppe von A Seien $x, y \in N$ mit $x^n = y^m = 0$. Dann ist

$$(x+y)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} x^k y^{n+m-k} = 0$$

denn kann nicht sowohl k < n, als auch n + m - k < m sein.

• Z.z. $AN \subset N$.

Sei $x \in N$ mit $x^n = 0$ und $a \in A$. Dann ist $(ax)^n = a^n x^n = 0$, also $ax \in N$.

Also ist N Ideal in A.

Sei nun $a+N\in A/N$ nilpotent. Dann ist $(a+N)^n=0$ für ein n>0. Also ist $a^n+N=0$, also $a^n\in N$.

Dann ist $(a^n)^m = 0$ udn somit $a^{nm} = 0$, also nilpotent. Es folgt, dass $a \in N$.

 \Box

Definition 0.12. Das Ideal $N = \{a \in A \mid a \text{ ist Nilpotent}\}$ heißt das **Nilradikal** von A.

Definition 0.13. Sei A ein Ring dann nennt man $J = \{x \in A \mid \forall y \in A : 1 - xy \text{ ist Einheit}\}$ das **Jacobsonradikal**.

Satz 0.14. Sei A eine Ring, dann ist

- a) das Nilradikal von A der Schnitt aller Primideal von A.
- b) das Jacobsonradikal von A der Schnitt aller Maximalen Ideale von A.

Definition 0.15. Sei A ein Ring und $\mathfrak{a} \subset A$ ein Ideal in A. Dann wird

$$r(a) := \{ x \in A \mid x^n \in \mathfrak{a} \text{ für ein } n > 0 \}$$

als **Radikal** von \mathfrak{a} bezeichnet. (auch Rad (\mathfrak{a}) , $\sqrt{\mathfrak{a}}$)

Beweis. Sei $\pi: A \to A/\mathfrak{a}$ die Kanonische Projektion. Dann ist $r(a) = \pi^{-1} \left(N_{A/\mathfrak{a}} \right)$. Also ist r(a) ein Ideal.

Satz 0.16. Sei a, b ein Ideal, dann gilt

- $a) \ \mathfrak{a} \subseteq r(\mathfrak{a})$
- b) $r(r(\mathfrak{a})) = r(\mathfrak{a})$
- c) $r(\mathfrak{aa}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- $d) \ r(\mathfrak{a}) = A \Leftrightarrow \mathfrak{a} = A.$
- $e) r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$

0.2.1 Operationen auf Radikalen

Definition 0.17. Sein A ein Ring.

a) Seien $\mathfrak{a}, \mathfrak{b} \subset A$ Ideale in A. Dann ist

$$a + b =: \{x + y \mid x \in \mathfrak{a}, y \in \mathfrak{b}\}\$$

ein Ideal in A.

b) Analog: Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist

$$\sum_{i \in I} \mathfrak{a}_i =: \left\{ \sum_{i \in I} x_i \mid x_i \in \mathfrak{a}_i \text{ und fast alle } x_i = 0 \right\}$$

ein Ideal in A.

c) Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist der Schnitt

$$\bigcap_{i\in I}\mathfrak{a}_i$$

ein Ideal in A.

d) Seien $\mathfrak{a},\mathfrak{b}\subset A$ Ideal in A. Dann ist

$$\mathfrak{ab} = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, n \in \mathbb{N} \right\}$$

ein Ideal in A.

Satz 0.18. Die Operationen Summe, Durchschnitt und Produkt auf Idealen sind kommutativ und Assoziativ und es gilt das Distributivgesetz.

Definition 0.19. Sei A ein Ring. Zwei Ideale $\mathfrak{a}, \mathfrak{b} \subseteq A$ heißen **teilerfremd**, wenn $\mathfrak{a} + \mathfrak{b} = A = (1)$.

Satz 0.20. Sei A ein Ring, \mathfrak{a} , $\mathfrak{b} \subset A$ Ideale in A. Dann sind äquivalent:

- a) a, b sind Teilerfremd
- b) Es gibt ein $x \in \mathfrak{a}, y \in \mathfrak{b}$, sodass x + y = 1.

Beweis. 2) \Rightarrow 1) Sei $z \in A$ und $x \in \mathfrak{a}, y \in \mathfrak{b}$, mit x + y = 1. Dann ist z = zx + zy, wobei $zx \in \mathfrak{a}, zy \in \mathfrak{b}$, also $z \in \mathfrak{a} + \mathfrak{b}$.

$$1){\Rightarrow}2)$$

Satz 0.21. Sei A ein Ring und seinen $\mathfrak{a}_1,...,\mathfrak{a}_n$ paarweise teilerfremde Ideal in A. Dann gilt

- a) Jedes \mathfrak{a}_i ist teilerfremd zu $\prod_{\substack{j=1\\j\neq i}}^n \mathfrak{a}_j$.
- b) Es gilt

$$\prod_{i=1}^n \mathfrak{a}_i = \bigcap_{i=1}^n \mathfrak{a}_i$$

Beweis. a) Sei i fest. Es gibt Elemente $x_j \in \mathfrak{a}_i, y_j \in \mathfrak{a}_j$ mit $1 = x_j + y_j$ für $i \neq j$. Dann ist

$$1 = \prod_{\substack{j=1\\j\neq i}} (x_j + y_j) = \underbrace{x}_{\in \mathfrak{a}_i} + \prod_{\substack{j=1\\j\neq i}\\\in \prod_{j=1} \mathfrak{a}_j} \in \mathfrak{a}_i + \prod_{\substack{j=1\\j\neq i}} \mathfrak{a}_j$$

b) Durch Induktion über n.

n=2 Sei $z\in \mathfrak{a}\cap \mathfrak{b}.$ Schreie
b1=x+ymit $x\in \mathfrak{a},y\in \mathfrak{b}.$ Dann is
t $z=zx+zy\in \mathfrak{ab}.$

n>2 Sei

$$\mathfrak{b} = \prod_{i=1}^{n-1} a_i$$

Wir nehmen an es gelte

$$\prod_{i=1}^{n-1} a_i = \prod_{i=1}^{n-1} \mathfrak{a}_i$$

Dann ist aber

$$\prod_{i=1}^n \mathfrak{a}_i = \mathfrak{a}_i \mathfrak{b}_i = \mathfrak{a}_i \cap \mathfrak{b} = \bigcap_{i=1}^n a_i$$

Definition 0.22. Sei A ein Ring und seinen $\mathfrak{a}_i,, \mathfrak{a}_n$ Ideale in A. Wir definieren die Abbildung

$$\phi: A \to \prod_{i=1}^{n} (A/\mathfrak{a}_{i})$$
$$a \mapsto (a + \mathfrak{a}_{1}, ..., a + \mathfrak{a}_{n})$$

Proposition 0.23. a) ϕ ist ein Ringhomomorphismus und

$$\operatorname{Kern}(\phi) = \bigcap_{i=1}^{n} \mathfrak{a}_i$$

b) ϕ ist genau dann surjektiv, wenn die \mathfrak{a}_i paarweise disjunkt sind. Insbesondere ist

$$A/\prod_{i=1}^n \mathfrak{a}_i \simeq \prod_{i=1}^n A/\mathfrak{a}_i$$

Beweis. b) \Rightarrow Sei ϕ surjektiv. Wir zeigen, dass \mathfrak{a}_1 und \mathfrak{a}_2 teilerfremd sind.

Es gibt ein $x \in A$ mit $\phi(x) = (1_{A/a_1}, 0, ..., 0)$.

Also ist $x = 1 \mod \mathfrak{a}_i$ und $x = x \mod \mathfrak{a}_2$.

Dann ist

$$1 = \underbrace{(1-x)}_{\in \mathfrak{a}_i} + \underbrace{x}_{\in \mathfrak{a}_2} \in \mathfrak{a}_1 + \mathfrak{a}_2$$

 \Leftarrow Seien un die \mathfrak{a}_i paarweise teilerfremd.

Es reicht zu zeigen, dass es Elemente $x_i \in A$ mit

$$\phi(x_i) = (0, ..., 0, 1, 0, ..., 0)$$

(1 an der *i*-ten Position) gibt.

Wir zeigen für i = 1:

Da $\mathfrak{a}_1+\mathfrak{a}_j=A$ für alle j>1, gibt es $x_j\in\mathfrak{a}_1,y_j\in\mathfrak{a}_j$ mit $x_j+y_j=1$ Sei nun

$$x := \prod_{i=2}^{n} y_j = \prod_{i=2}^{n} 1 - x_j = 1 \mod \mathfrak{a}_1$$

und $x = 0 \mod \mathfrak{a}_j$ für j > 1.

0.3 Ringe von Brüchen

Definition 0.24. Sei A ein Ring. Eine Teilmenge $S \subset A$ heißt **multiplikativ** abgeschlossen, wenn

- a) Für alle $s, t \in S$ gilt, dass $st \in S$
- b) $1 \in S$.

Bemerkung 0.25. Auf $A \times S$ wird durch

$$(a,s) \sim (b,t) \Leftrightarrow (at-bs)u = 0$$
 für ein $u \in S$

eine Äquivalenzklasse definiert.

Für die Transitivität wird die multiplikative Abgeschlossenheit von S benötigt.

Die Äquivalenzklassen von (a, s) wird mit a/s bezeichnet.

Die Menge der Äquivalenzklasssen wir als $S^{-1}A$ geschrieben.

Definition 0.26. Seien $a/s, b/t \in S^{-1}A$. Man definiert

- a/s + b/t := (at + bs)/st
- $a/s \cdot b/t := ab/st$

Definition 0.27. Diese Verknüpfungen sind wohldefiniert und versehen $S^{-1}A$ mit einer Ringstruktur.

 $S^{-1}A$ wird als der Ring der Brüche von A bezüglich S bezeichnet.

Beispiel 0.28. Sei $A = \mathbb{Z}$ und $S = \mathbb{Z} \setminus \{0\}$. Dann ist $S^{-1}A$ isomorph zu \mathbb{Q} .

Korollar 0.29. Die Abbildung

$$\varphi_S: A \to S^{-1}A$$
$$a \mapsto a/1$$

hat folgende Eigenschaften:

- a) φ_S ist ein Ringhomomorphismus. (i.A. nicht injektiv)
- b) Sei $s \in S$, dann ist $\varphi_S(s)$ eine Einheit in $S^{-1}A$.
- c) $\operatorname{Kern}(\varphi_S) = \{ a \in A \mid as = 0 \text{ für ein } s \in S \}.$
- d) Jedes Element in $S^{-1}A$ ist der Form $\varphi_S(a)\varphi_S(s)^{-1}$ für ein $a \in A$, $s \in S$.

Beweis. b) Sei $s \in S$, dann ist $s/1 \cdot 1/s = s/s = 1/1 = 1_{S^{-1}A}$

c) Sei $a \in \text{Kern}(\varphi_S)$, dann ist a/1 = 0/1, also (a1 - 01)s = 0 für ein $s \in S$. Also ist as = 0 für ein $s \in S$. d) Sei $a/s \in S^{-1}A$. Dann ist

$$\varphi_S(a) = a/1$$
 $\qquad \varphi_S(s) = s/1$ $\qquad \varphi_S(s)^{-1} = 1/s$

Es folgt

$$\varphi_S(a)\varphi(s)^{-1} = a/1 \cdot 1/s = a/s$$

Satz 0.30. Seien A, B Ringe und $S \subset A$ multiplikativ abgeschlossen. Sei $g: A \to B$ ein Ringhomomorphismus, der 1)-3) aus erfüllt, dann gibt es einen eindeutigen Isomorphismus $h: S^{-1}A \to B$ mit $h \circ \varphi_S = g$.

$$A \xrightarrow{g} B$$

$$\downarrow^{\varphi_S} \xrightarrow{h}$$

$$S^{-1}A$$

Definition 0.31. Sei A ein Integritätsbereich und $S = A \setminus \{0\}$. Dann nennt man $S^{-1}A$ den **Quotientenkörper**

Lemma 0.32. Der Quotientenkörper ist ein Körper, φ_S ist injektiv und wir können A mit seinem Bild in $S^{-1}A$ identifizieren.

Definition 0.33. Sei A ein Ring. Sei \mathfrak{p} ein Primideal in A. Man schreibt $A_{\mathfrak{p}}$ für $S^{-1}A$ und nennt $A_{\mathfrak{p}}$ die **Lokalisierung** von A bezüglich \mathfrak{p} .

Lemma 0.34. Sei A ein Ring. Sei \mathfrak{p} ein Primideal in A. Dann ist $S = A \setminus \mathfrak{p}$ multiplikativ Abgeschlossen.

Lemma 0.35. Sei $A = \mathbb{Z}$ und $p \in \mathbb{Z}$ eine Primzahl. Dann ist $\mathbb{Z}_{(p)} = \{m/n \mid m/n \in \mathbb{Q}, p \not | n\}$.

Satz 0.36. Sei A ein Ring und $S \subset A$ multiplikativ abgeschlossen. Dann ist

- a) Ist I ein Ideal in A so ist auch $S^{-1}I = \{a/s \mid a \in I\}$ ein Ideal in $S^{-1}A$
- b) Die Ideale in $S^{-1}A$ sind der Form $S^{-1}I$, wobei I ein Ideal in A ist.
- c) Sind I, J Ideal in A, dann gilt

$$S^{-1}(I+J) = S^{-1}I + S^{-1}J$$

$$S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$$

$$S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$$

Beweis. Wir beweisen nur 2).

Sei J ein Ideal in $S^{-1}A$. Dann ist $I=\varphi_S^{-1}(J)$ ein Ideal in A und $J=S^{-1}I$: Sei $a/s\in S^{-1}I$. Aus $I=\varphi_S^{-1}(J)$ folgt, dass $\varphi_S(a)\in J$. Also ist

$$a/s = \underbrace{a/1}_{\varphi_S(a)} \cdot \underbrace{1/s}_{\in S^{-1}A} \in J$$

d.h.
$$s \in \varphi_S^{-1}(J) = I$$
 und $a/s \in S^{-1}I$.

0.4 Integritätsbereiche und Hauptidealringe

Definition 0.37. Sei A ein Ring. Ein Ideal der Form (a) = Aa heißt **Hauptideal**.

Definition 0.38. Ein Ring A heißt **Hauptidealring**, wenn jede Ideal in A Hauptideal ist.

Definition 0.39. Ein Ring A heißt $\mathbf{euklidisch}$, wenn es eine Abbildung

$$\lambda: A \setminus \{0\} \to \mathbb{N}_0$$

gibt, sodass zu je zwei Elementen $a,b\in A$ mit $b\neq 0$ Elemente $q,r\in A$ existieren mit a=qb+r wobei $\lambda(r)<\lambda(b)$ oder r=0.

Beispiel 0.40. a) \mathbb{Z} ist euklidisch unter $\lambda(x) = |x|$.

b) Sei K ein Körper. Dann ist K[X] euklidisch mit $\lambda(f) = \deg(f)$.

Satz 0.41. Sei A ein euklidischer Ring. Dann ist A ein Hauptidealring.

Beweis. Sei $\mathfrak{a} \neq 0$ in Ideal in A. Dann hat

$$\lambda(x) \mid x \in a, x \neq 0$$

ein kleinstes Element, d.h. es gibt ein $x \in \mathfrak{a} \setminus \{0\}$ mit $\lambda(x) \leq \lambda(y)$ für alle $y \in \mathfrak{a} \setminus \{0\}$.

Es gilt $\mathfrak{a} = (x)$.

Sei $y \in a \setminus \{0\}$. Schreibe y = qx + r mit r = 0 oder $\lambda(r) < \lambda(x)$.

Dann ist $r \in \mathfrak{a}$ und aus der Minimalität von $\lambda(x)$ folgt r = 0 und damit $\mathfrak{a} \subset (x)$.

Definition 0.42. Sei A ein Ring und seinen $a, b \in A$.

 $d \in A$ heißt Größter gemeinsamer Teiler von a und b, wenn gilt

- a) d|a und d|b.
- b) Wenn es $g \in A$ gibt mit g|a und g|b, dann muss g|d.

Wir schreiben $d = \gcd(a, b) = (a, b)$

Definition 0.43. Sei A ein Ring und seinen $a, b \in A$.

 $d \in A$ heißt kleinstes gemeinsames Vielfaches von a und b, wenn gilt

- a) a|v und b|v.
- b) Wenn es $g \in A$ gibt mit a|g und b|g, dann muss v|v.

Wir schreiben v = lcm(a, b) = (a, b)

Satz 0.44. Sei A ein Hauptidealring und seien $a, b \in A$.

Dann existiert ein $d = \gcd(a, b)$ und $v = \operatorname{lcm}(a, b)$ von a, b und es gilt

- a) (a) + (b) = (d)
- $b) \ (a) \cap (b) = (v)$

Beweis. • Da A ein Hauptidealring ist, gilt (a) + (b) = (d) für ein $d \in A$. Es gilt $a, b \in (d)$, also d|a und d|b. Sei $g \in A$ mit g|a und g|b. Dann ist $(a) \subset (g)$ und $(b) \subset (g)$. Daraus folgt, dass $(a) + (b) \subseteq (g)$, also $(d) \subset (g)$. Damit folgt g|d.

• Analog für lcm.

Definition 0.45. Sei A in Integritätsbereich. Zwei Elemente $a,b\in A$ heißen assoziiert, wenn

- a|b und b|a.
- (äquivalent) a = bu für ein $u \in A^*$.
- (äquivalent) (a) = (b).

Man schreibt dann $a \sim b$.

Definition 0.46. Sei A in Integritätsbereich. Ein Element $p \in A$ heißt **prim**, **Primelement**, wenn

- $p \notin A^*$, $p \neq 0$ und aus p|ab folgt p|a oder p|b.
- (äquivalent) $p \neq 0$ und (p) ist Primideal.

Definition 0.47. Sei A in Integritätsbereich. $c \in A$ heißt **irreduzibel** oder **unzerlegbar**, wenn

- a) für $c \notin A^*$ und $c \neq 0$ aus c = ab folgt, dass $a \in A^*$ oder $b \in A^*$.
- b) (äquivalent) für $c \neq 0$ für alle $a \in A$ gilt, dass aus $(c) \subset (a)$ folgt, dass (a) = A oder (a) = (c).

Satz 0.48. Sei A ein Integritätsbereich und $p \in A$ prim. Dann ist p irreduzibel.

Beweis. Sei p=ab, dann gilt p|ab. Es folgt p|a oder p|b. Angenommen p|a, dann ist a=px für ein $x\in A$ und p=pxb. Es folgt, dass p(1-bx)=0 und da A Integritätsbereich ist 1-bx=0. Also muss bx=1 also ist $b\in A^*$.

Satz 0.49. Sei A ein Hauptidealring und Integritätsbereich. Dann gilt für $c \in A$

 $c prim \Leftrightarrow c irreduzibel$

Beweis. Sei c irreduzibel, also ist (c) maximal. Daraus folgt, dass (c) Primideal ist und somit c prim.

Definition 0.50. Ein Integritätsbereich heißt faktoriell, wenn

- a) Jedes $a \in A \setminus A^*$, $a \neq 0$ zerfällt in ein Produkt von irreduziblen Elementen.
- b) Die Zerlegung ist bis auf Reihenfolge und Einheiten eindeutig. D.h.

D.h. wenn $a = c_1 \cdot ... \cdot c_m = d_1 \cdot ... \cdot d_n$ mit c_1, d_1 irreduzibel, so folgt m = n und es gibt $\pi \in S_n$ mit $c_1 \sim d_{\pi(i)}$ für alle i = 1, ..., n.

Bemerkung 0.51. Die Eindeutigkeit der Faktorisierung impliziert, dass es irreduzibles Element in einem faktoriellen Integritätsbereich prim ist.

Lemma 0.52. Sei A ein Hauptidealring und S eine nichtleere Menge von Idealen in A. Dann hat S ein maximales Element (bezüglich \subset)

Beweis. Angenommen S hat kein maximales Element. Dann gibt es zu jedem $\mathfrak{a}_1 \in S$ ein $\mathfrak{a}_2 \in S$ mit $\mathfrak{a}_1 \subsetneq \mathfrak{a}_2$. Es gibt also eine unendliche Kette

$$\mathfrak{a}_1 \subsetneq \mathfrak{a}_2 \subsetneq \dots$$

von Idealen in S. Sei nun $\mathfrak{a} := \bigcup_{j=1}^{\infty} \mathfrak{a}_i$.

Dann ist a ein Ideal in A, also ist \mathfrak{a} ein Hauptideal und $\mathfrak{a} = (x)$ für ein $x \in A$. Dann folgt insbesondere, dass $x \in \mathfrak{a}$. Damit folgt, dass es $j_0 \in \mathbb{N}$ gibt, mit $x \in \mathfrak{a}_{j_0}$.

Somit ist $(x) \subset \mathfrak{a}_{j_0}$ und somit $\mathfrak{a} = \mathfrak{a}_{j_0}$.

Dies bedeutet aber, dass die Kette stationär wird, was ein Widerspruch zur Annahme ist. $\hfill\Box$

Theorem 0.53. Sei A ein Integritätsbereich. Ist A ein Hauptidealring, so ist A faktoriell.

Beweis. Zerlegbarkeit der Elemente Sei $S = \{(a) \mid a \in A, a \notin A^*, a \neq 0 \text{ a zerfällt nicht in irreduzible Faktoren}\}.$

Angenommen $S \neq \emptyset$. Dann hat S eine maximales Element (a) und a ist nicht irreduzibel.

Dann gibt es $b, c \in A \setminus A^*$, mit a = bc.

Also ist $(a) \subsetneq (b)$ und $(a) \subsetneq (c)$. Da (a) maximal in S ist folgt daraus, dass $(b), (c) \notin S$.

Somit zerfallen b,c in irreduzible Faktoren und damit gilt $a \in S.$ Widerspruch!.

Eindeutigkeit der Zerlegung Sei $a \in A$. Angenommen es gäbe zwei irreduzible Zerlegungen $a = c_1...c_m = d_1...d_n$ mit $m \le n$.

Dann ist c_1 irreduzibel und somit prim. Also muss $c_1|d_i$ für ein i gelte.

Nach Umnummerierung gilt $c_1|d_1$, also $d_1 = u_1c_1$ für $u_1 \in A^*$.

Also ist

$$c_1...c_m = u_1c_1d_2...d_n$$

$$\Rightarrow c_2...c_m = d_2...d_n$$

Fortsetzen des Argumentes liefert

$$1 = u_1...u_m d_{m+1}...d_n$$

für geeignete $u_i \in A^*$.

Dann sind aber $d_{m+1}, ..., d_n$ Einheiten und damit Eindeutig bis auf Einheiten und Reihenfolge.

0.5 Inverse und direkte Limiten

Definition 0.54. Man nennt I eine unter \leq partiell geordnete Menge, wenn für alle $x, y, z \in I$ gilt

- a) $x \leq x$.
- b) Aus $x \leq y$ und $y \leq z$ folgt $x \leq z$.
- c) Aus $x \le y$ und $y \le x$ folgt x = y.

Definition 0.55. Für jedes $i \in I$ sei A_i ein Ring und sei für jedes Paar $i, j \in I$ mit $i \leq j$ die Abbildung $f_{ij} : A_j \to A_i$ ein Ringhomomorphismus, sodass

- a) $f_{ii} = \mathrm{id}_{A_i}$ für alle $i \in I$
- b) $f_{ik} = f_{ij} \circ f_{jk}$ falls $i \leq j \leq k$.

Dann nennt man das System $(A_i, f_{ij})_{i,j \in I}$ projektives System von Ringen.

Definition 0.56. Ein Ring A zusammen mit dem Homomorphismus $f_i: A \to A_i$, sodass $f_i = f_{ij} \circ f_j$ für $i \leq j$ heißt **projektiver Limes** oder **inverser Limes** des Systems (A_i, f_{ij}) , wenn folgende universelle Eingenschaft erfüllt ist: Sind $h_u: B \to A_i$ für alle $i \in I$ Ringhomomorphismen mit $h_i = f_{ij} \circ h_j$ für $i \leq j$, so existiert genau ein Ringhomomorphismus $h: B \to A$ mit $h_i = f_i \circ h$ für alle $i \in I$.

Bemerkung 0.57. Falls ein projektiver Limes existiert, so ist er bis auf kanonische Isomorphie eindeutig:

Sind (A, f_i) und (B, h_i) projektive Limiten von (A_i, f_{ij}) , so gibt es Homomorphismen $h: B \to A$ und $g: A \to B$, die die oben beschrieben Verträglichkeitsbedingungen erfüllen.

Durch Zusammensetzen dieser Homomorphismen erhalten wir Abbildungen Die Eindeutigkeitsbedingung Impliziert nun, dass $g \circ h = \mathrm{id}_B$ und $h \circ g = \mathrm{id}_A$.

Man schreibt auch $A = \varprojlim_{i \in I} A_i$ für den projektiven Limes des Systems (A_i, f_{ij}) .

Existenz des Projektiven Limes. Sei $(A_i, f_{ij})_{i,j \in I}$ ein projektives System von Ringen.

Setze

$$A = \{(x_i)_{i \in I \mid f_{ij}(x_j) = x_i \text{ für } i \leq j}\} \subset \prod_{i \in I} A_i$$

und $h_j: A \to A_j, (x_i)_{i \in I} \mapsto x_j$.

Dann ist $(A, h_i)_{i \in I}$ ein projektiver Limes von (A_i, f_{ij}) .

Insebsondere definiert jede Famiele $(x_i)_{i \in I}$ mit $f_{ij}(x_j) = x_i$ ein eindeutiges Element $x \in \lim_{i \in I} A_i$.

 $Beispiel\ 0.58.$ Ein Beispiel für einen projektiven Limes sind die $p\text{-}\mathrm{adisches}$ ganzen Zahlen.

Sei $p \in \mathbb{Z}$ eine Primzahl, $I = \mathbb{N}$, mit der Ordnung \leq . Für $n \geq 1$ sei $A_n = \mathbb{Z}/p^n\mathbb{Z}$. Sei

$$f_{mn}: A_n = \mathbb{Z}/p^n\mathbb{Z} \to A_m = \mathbb{Z}/p^m\mathbb{Z}$$

 $x \mapsto x \mod p^m$

Dann ist $(A_m, f_{mn})_{m,n\geq 1}$ ein projektives System. Der projektive Limes wird als Ring der p-adischen ganzen Zahlen

$$\mathbb{Z}_p = \varprojlim_{n \ge 1} A_n$$

bezeichnet. Also ist

$$\mathbb{Z}_p = \{ (x_n)_{n \ge 1} \mid x_n \in \mathbb{Z}/p^n \mathbb{Z}, f_{mn}(x_n) = x_n \text{ für } m \le n \}$$
$$= \{ (x_n)_{n \ge 1} \mid x_n \in \mathbb{Z}/p^n \mathbb{Z}, x_n \mod p^{n-1} = x_{n-1} \}$$

Wir schreiben die Elemente aus \mathbb{Z}_p auch als Folgen

$$x = (x_n)_{n \ge 1} = (..., x_{n+1}, x_n,, x_1)$$

mit $x_n \mod p^{n-1} = x_{n-1}$. Addition und Multiplikation erfolgen komponentenweise. Sie Abbildung

$$\mathbb{Z} \to \mathbb{Z}_p$$

 $m \mapsto (..., m + p^n, ..., m + p)$

ist in injektiver Ringhomomorphismus.