Comparação de modelos preditivos de doenças cardíacas usando técnicas de classificação de aprendizado de máquina

Aprendizado de Máquina(2023-2) – Prof^a Flávia Bernardini Italo Leite Ferreira Portinho – aluno de Mestrado do PGC da UFF

Sumário

- 1) Prevalência das doenças cardiovasculares
- 2) Resultados anteriores
- 3) O Dataset
- 4) O experimento

Doenças Cardiovasculares

- Desordens do coração e dos vasos sanguíneos
- Maior causa de morte no mundo, segundo a OMS
- Doenças cardiovasculares no Brasil
- Fatores de risco
- Identificação dos sintomas e tratamento adequado
- Aprendizado de máquina e doenças cardíacas

- Eldouh et al.(2023)
- Neutrosophic AHP(analytical hierarchy process)
- Pesos para cada atributo e regras de associação
- Matriz de comparação
- Atributos de maior suporte são usados
- Random Forest, Bagging & DTree

Table 3, Comparison matrix between 13 features.

Column									
name in dataset	class	support	support	Support	confidence	lift	leverage	Conviction	
Age	0	0.8537	0.9756	0.8293	0.9714	0.9957	-0.0036	0.8537	
	1	0.9756	0.8537	0.8293	0.8500	0.9957	-0.0036	0.9756	
Sex	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
CP	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
trestbps	0	0.7755	0.7959	0.5714	0.7368	0.9258	-0.0458	0.7755	
	1	0.7959	0.7755	0.5714	0.7179	0.9258	-0.0458	0.7959	
fbs	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
restecg	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
thalach	0	0.7363	0.7802	0.5165	0.7015	0.8991	-0.058	0.7363	
	1	0.7802	0.7363	0.5165	0.6620	0.8991	-0.058	0.7802	
exang	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
oldpeak	0	0.650	0.875	0.525	0.8077	0.9231	-0.0437	0.650	
	1	0.875	0.650	0.525	0.6000	0.9231	-0.0437	0.875	
slope	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
ca	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
thal	0	1.0	1.0	1.0	1.0	1.0	0.0	Inf	
tnal	1	1.0	1.0	1.0	1.0	1.0	0.0	Inf	

Figure 6. The confusion matrices.

- Sabay et al. (2018)
- Datasets médicos carecem de poucos registros;
- Preocupação com dados sensíveis e pessoais
- Dados sintéticos
- Linguagem R e o pacote SynthPop
- 60.000 registros no dataset

- Dataset Cleveland 14, disponibilizado pela UCI
- Dataset original possui 76 atributos
- Porção relevante
- Muito usado em outros estudos
- Descrição dos atributos
- 303 registros, 14 atributos

Tabela 1. Descrição dos atributos do dataset.

Tubela 1. Descrição dos atribatos do dataset.					
Atributo	Descrição				
age	Idade em anos				
sex	gênero (1 = masculino; 0 = feminino)				
cp	Dor torácica (0 = angina típica; 1 = angina atípica; 2 = não anginosa; 3 = assintomático)				
trtbps	Pressão arterial em repouso (mm Hg)				
chol	Colesterol Total				
fbs	Glicemia em jejum > 120 mg/dl (1 = verdadeiro; 0 = falso)				
restecg	Eletrocardiograma(0 = normal; 1 = ST-T anormal; 2 = hipertrofia do ventrículo esquerdo)				
thalachh	Frequência cardíaca máxima				
exng	Angina induzida por atividade física (1 = sim; 0 = não)				
oldpeak	Depressão do ST induzida por atividade física em relação ao repouso				
slp	Inclinação do segmento ST durante exercício (0 = aclive; 1 = linear; 2 = declive)				
caa	Número de vasos coloridos na fluoroscopia (0 – 3)				
thall	0 = normal; 1 = dano irreversível; 3 = dano reversível				
output	Diagnóstico (0 = normal; 1 = chance aumentada para doença cardíaca)				

Figura 1. Distribuição dos valores nas classes do atributo alvo

Confirma inexistência de atributos não preenchidos dataset.isnull().sum()

```
age
sex
ср
trtbps
chol
fbs
restecg
thalachh
exng
            0
oldpeak
slp
            0
caa
thall
output
dtype: int64
```

O Experimento

- Colab, Jupyter, Python 3, SkLearn, TensorFlow
- KNN, SVM, Dtree, Random Forest, Naive Bayes & RNA
- Holdout e Validação Cruzada(0.47%)
- Acurácia, matriz de confusão, f1 score e curva ROC

O Experimento

Tabela 3. Matrizes de confusão dos modelos gerados pelos algoritmos

KNN	Bayes	DTree	R.Forest	SVM	MLP	
27 2	29 3	27 2	26 3	30 5	28 4	
3 29	4 31	8 24	4 28	4 37	4 31	

O Experimento

Tabela 2. Desempenho dos modelos gerados pelos algoritmos

			<u></u> -		
	Acurácia	F1	TVP	TFP	
KNN	91.8	92.06	93.10	9.38	
Bayes	89.55	89.85	90.63	12.12	
DTREE	83.6	82.75	93.10	25.00	
Random Forest	88.52	88.88	89.66	12.50	
SVM	88.15	89.15	85.7	9.76	
MLP	88.06	88.57	87.50	12.12	

FIM

Muito Obrigado!!!