

GENSIM scientific school 24-28 oct. 2016 – Porticcio, Corsica

Workflow automation tools

Simon Rouchier, Ph.D. Université Savoie Mont-Blanc simon.rouchier@univ-smb.fr

Why do we need workflow automation tools?

- better post-processing capabilities
- setting up series of simulations (parametric studies, optimisation, system identification...)
- parallel computing

Workflow

Option 1: direct coupling between Modelica and Python

Option 2: using FMUs

Software prerequisites

- Modelica environment (preferably Dymola)
- Python environment https://www.continuum.io/downloads
- Python packages
 - BuildingsPy
 - o PyFMI

http://simulationresearch.lbl.gov/modelica/buildingspy/

https://pypi.python.org/pypi/PyFMI

BuildingsPy

BuildingsPy

http://simulationresearch.lbl.gov/modelica/buildingspy/

class Simulator

Used to run Modelica simulations, add model modifiers, parameter declarations, set solver type, results directory, stop time...

class Reader

reads *.mat files that were generated by Dymola or OpenModelica

Buildings.Controls.Continuous.Examples.PIDHysteresis

Exercise 1 – Single simulation Load and run the PIDHysteresis model

Exercise 2 – Several simulations 2 simulations with different PID offsets

Exercise 3 – Without recompilation

4 simulations with different integrator time constants

PyFMI

PyFMI

Can read input files outside of the Modelica model Does not rely on Dymola for the simulation

Only compatible with Python 2.7 Debatable user-friendliness

Buildings.Controls.Continuous.Examples.PIDHysteresis

Exercise 1 – Single simulation Load and run the PIDHysteresis model with a different temperature set point

Exercise 2 - optimisation

Find which value of the PID gain results in the smallest temperature quadratic error

