Laws of Valid Reasoning

Traditional "Laws of Thought"

- Concept that rational thought is constrained to follow certain "laws"
- Three traditional "laws" of thought date to Plato, Aristotle, and others
 - o **Identity**: Every object is equal to itself
 - Non-contradiction: No proposition is both true and not true
 - **Excluded middle**: Every proposition is either true or not true
- Formal expressions of these laws
 - o **Identity**: $\forall x, x = x$. ("For any object x, x is equal to itself")
 - Non-contradiction: $\forall x, \neg(x \land \neg x)$. ("For any *proposition*, x, x is either true or not true")
 - \circ **Excluded middle:** $\forall x, x \lor \neg x$. (For any proposition, P, P is either true or false.)
- These are understood as laws of rational reasoning

The basic idea

- Laws of valid rational thought have to be logically valid
- They have to hold true independent of any interpretation
 - E.g., equality: *no matter what x is*, it's equal to itself
 - E.g., non-contradiction: *no matter what proposition x is,* it can't be that it's both true and false
 - E.g., excluded middle: *no matter what proposition x is,* it is either true or it is false
- The logical ∀ (for all) quantifier is used to assert a universal generalization
 - It gives a name, here x, to some *arbitrary but specific* object
 - o It then asserts that some proposition (e.g., x = x) is true of any such x
 - E.g., translate to English: ∀ (n : integer), even n V odd n
 - We see here the concept of typed variables (here n as to be an integer)
 - We also see the concept of a predicate: (even n) is the proposition that n is even
- Quantifiers and predicates are central in predicate (vs propositional) logic

Inference Rules

- Inference rules are valid rules of deductive reasoning
- Today we recognize a broader range of such rules
- An inference rule is of the form
 - o if you accept propositions, ..., to be true,
 - then you can deduce that the proposition, ..., is true
- For example,
 - if you accept that x is true, and you accept that y is true,
 - \circ then you can validly deduce that $(x \land y)$ is true
- We can write this as follows: $x, y \vdash x \land y$
 - ⊢, the turnstile character, is pronounced entails
 - \circ So: x (being true) and y (being true) entails x \wedge y (being true)
 - \circ If you know or assume x : true, and y : true, you can deduce $x \land y$: true
 - The notation, x : true, represents what we will call a *truth judgment*

Natural deduction

- Natural deduction is the process of reasoning about the truth, or not, of a given proposition by deduction using the rules of inference of a given logic
- For the logics we'll study, these basic rules are organized around connectives
- Suppose * is any logical operator, such as and, or, not, or implies
- If we want to deduce the truth of a proposition with * as its main connective then we use an inference rule called an introduction rule for *
 - \circ Example, $x, y \vdash x \land y$ is the introduction rule for \land . We will call this rule \land -introduction
- If we want to decide the truth of some proposition from (or given the truth of) a
 proposition with * as its main connective, then we use an elimination rule for *
 - Example/exercise: there are two elimination rules for \(\Lambda\). Complete their statements here:
 - $x \land y \vdash$ (\land -elimination-left)
 - $x \land y \vdash$ (\land -elimination-right)

Display (vertical) notation for inference rules

```
( ∧ introduction)
\frac{X, \quad y}{X \land y}
x \wedge y (\wedge elimination left)
x \wedge y (\wedge elimination right)
```

Looking ahead: a theorem to prove

To prove: Λ is associative. What this claim means is that, for any propositions X, Y, and Z, the proposition, $(X \land Y) \land Z$, is equivalent to $X \land (Y \land Z)$. Note the difference in grouping. By equivalent to, we mean that each implies the other. A full proof is built from two smaller proofs, one in each direction. We will prove the forward direction: $(X \land Y) \land Z \rightarrow X \land (Y \land Z)$. Bear in mind that this proposition asserts that $\underline{if} (X \land Y) \land Z$ is accepted as true, then from this fact one can deduce that $X \land (Y \land Z)$ must also be true. Notably it does not assert that $(X \land Y) \land Z$ is true.

So how can we get from assuming that $(X \land Y) \land Z$ is true to showing that, in the context of this assumption, $X \land (Y \land Z)$ must be true? Let's see.

Natural Deduction Proof

Proof: We need to show that \underline{if} $(X \land Y) \land Z$ is true, then so is $X \land (Y \land Z)$. We'll start by <u>assuming</u> that $(X \land Y) \land Z$ is true. Now let's see what we can deduce with this assumption in our context.

- 1. $(X \land Y) \land Z \vdash (X \land Y)$ and-elim left gives us $X \land Y$:
- 2. $(X \land Y) \land Z \vdash Z$ and-elim right gives us Z : true
- 3. $(X \land Y) \vdash X$ and-elim left gives us X : true
- 4. $(X \land Y) \vdash Y$ and-elim right gives us Y : true
- 5. Y, $Z \vdash (Y \land Z)$ and-intro applied to Y, Z
- 6. X, $(Y \land Z) \vdash X \land (Y \land Z)$ and intro. QED ("yay!" in mathspeak)

English language proof

The great thing about an English proof (*proof summary* would be more accurate) is we can skip details that we can reasonably assume readers will understand. Here's an example.

Prove: For any propositions, X, Y, and Z, $(X \land Y) \land Z \rightarrow X \land (Y \land Z)$

Proof: To start ,we'll <u>assume</u> $(X \land Y) \land Z$. From this we can deduce X, Y, and Z (by applying and-elimination several times). From Y, and Z, we can deduce $(Y \land Z)$. (by and-introduction). Next, from X and $(Y \land Z)$, we can deduce $(Y \land Z)$. And so what we have shown is that $\underline{if}(X \land Y) \land Z$ is true, *then* so must be $(Y \land Z)$, which is what we mean by $(X \land Y) \land Z \rightarrow X \land (Y \land Z)$. QED.

A bit more reasoning

- On the last pages, we proved a universal generalization: for *any propositions*, X, Y, and Z, it is the case that $(X \land Y) \land Z \rightarrow X \land (Y \land Z)$.
- We can write this more concisely as: \forall (X Y Z), (X \land Y) \land Z \rightarrow X \land (Y \land Z)
- This is a shorthand for \forall X, \forall Y, \forall Z, $(X \land Y) \land Z \rightarrow X \land (Y \land Z)$
- Clearly the converse is also true: ∀ (X Y Z), X ∧ (Y ∧ Z) → (X ∧ Y) ∧ Z.
- We can now apply (new information!) the bi-implication introduction rule to conclude ∀ (X Y Z), (X ∧ Y) ∧ Z ↔ X ∧ (Y ∧ Z). NB: the arrow goes both ways.
- What we have proved is that no matter what propositions X, Y, and Z are, the two expressions are equivalent: you can always move parentheses to group elements connected by Λ without changing the meaning of the expression.

The power of theorems!

- We now have that \forall (X Y Z), (X \land Y) \land Z \leftrightarrow X \land (Y \land Z) is a <u>theorem</u>
- A theorem is a mathematical statement that has been proved to be valid
- The theorem we've proved here shows that <u>∧ is associative</u>
 - Theorems are given names to we can refer to them later. Let's call this <u>\(\Lambda \) -associative</u>
 - Note: Any operator, *, is said to be associative iff (X * Y) * Z = X * (Y * Z)
 - \circ Note: we're conflating equivalence of propositions (\leftrightarrow) and equality (=) here a detail
- Key point: We can now apply a theorem as if it were a new inference rule
 - Suppose we know (SkyBlue /\ WaterGreen) /\ EarthBrown
 - Suppose we want to prove SkyBlue ∧ (WaterGreen ∧ EarthBrown)
 - All we have to say is that this is true by applying the theorem that states that *∧* is associative
- Every time we prove a theorem, it adds a new tool to our reasoning toolkit

Why Natural Deduction Proofs When We Can Use Z3?

- Suppose that X, Y, and Z, are propositional (Boolean) variables
- Now proving $(X \land Y) \land Z \leftrightarrow X \land (Y \land Z)$ means showing that it is *valid*
- We know that we can use Z3 as a SAT solver to check such problems for
 - Satisfiability there is at least one interpretation that makes the formula true (a model)
 - Unsatisfiability that no interpretation makes the formula true
- You can easily check for validity (all interpretations are models) by checking to see if the negation of a formula is <u>unsatisfiable</u>. Fill in the blank.
- The logics of SAT and SMT solvers are limited in what they can express
- There are no general-purpose "solvers" for finding models or proving the validity of arbitrary propositions (otherwise we wouldn't need mathematicians)
- It's in this context of more expressive logics that proof by natural deduction becomes essential