Reproducible projects with python and snakemake—a subjective user perspective

Bi-weekly ESR meetings

25th Feb 2022 - David

Why interesting?

Research today:

- many projects in parallel, from first steps to publication, several years can pass
- people leave their lab after few years
- different labs work on the same research topic and need to share their data analysis workflows with the results to enable collaboration
- ➤ Reproducibility is needed
- Things must work out of the box to be re-used

Why interesting?

- ➤ Reproducibility is needed
- Things must work out of the box to be re-used

One solution: Snakemake workflows

- description via a human readable, Python based language
- creation of reproducible and scalable data analyses
- scaling from laptop to cluster computing without modification of the workflow description
- optionally manages the software environment to execute individual steps of the workflow (via conda, docker)

Example project

 Neural data from a Utah array (96 electrodes) in monkey motor cortex

Example project

 Neural data from a Utah array (96 electrodes) in monkey motor cortex

Table 3 Overview of files (names, size, and content) for each provided dataset of monkey L and N.

From: <u>Massively parallel recordings in macaque motor cortex during an instructed delayed</u> reach-to-grasp task

monkey L		
file names	file size	file content
I101210-001.ccf	108.2 kB	cerebus configuration file
I101210-001.nev	287.7 MB	digital events, unsorted spikes times & waveforms
I101210-001-02.nev	287.7 MB	digital events, sorted spikes times & waveforms
I101210-001.ns2	8.5 MB	analog signals of object sensors
I101210-001.ns5	4.1 GB	raw neuronal signal
l101210-001.odml	2.7 MB	metadata
monkey N		
file names	file size	file content
i140703-001.ccf	187.1 kB	cerebus configuration file
i140703-001.nev	168.3 MB	digital events, unsorted spikes times & waveforms
i140703-001-03.nev	168.3 MB	digital events, sorted spikes times & waveforms
i140703-001.ns2	204.7 MB	analog signals of object sensors and LFP signals
i140703-001.ns6	5.8 GB	raw neuronal signal
i140703-001.odml	2.3 MB	metadata

Outline

- Neural data from a Utah array (96 electrodes) in monkey motor cortex
- Workflow steps to perform on the dataset:
 - Download
 - Available on online repository
 - Preprocess
 - Bandpass filter the voltages recorded at all electrodes
 - Analyze
 - Extract spikes based on thresholding the filtered voltage signals
 - Count the number of spikes recorded per electrode
 - Plot results
 - Plot raw signal and filtered signal with spikes
 - Plot histogram of the number of spikes per channel

•

Target

- Figure 1: raw signal, filtered signal, spikes
- Figure 2:
- Parameters:
- E.g. filename, filter frequencies, threshold for spike detection, file-format of the plots

Workflow Parameters

- Neural data from a Utah array (96 electrodes) in monkey motor cortex
- Workflow steps to perform on the dataset:
 - Download
 - Available on online repository
 - filename
 - Preprocess
 - Bandpass filter the voltages recorded at all electrodes
 - lower & upper filter frequency
 - Analyze
 - Extract spikes based on thresholding the filtered voltage signals
 - Count the number of spikes recorded per electrode
 - threshold for spike detection
 - Plot results
 - Plot raw signal and filtered signal with spikes
 - Plot histogram of the number of spikes per channel
 - plot parameters, e.g. file format

(many more parameters not listed here)

Workflow Parameters program to perform the step

- Neural data from a Utah array (96 electrodes) in monkey motor cortex
- Workflow steps to perform on the dataset:
 - Download curl using bash shell command
 - Available on online repository
 - filename
 - Preprocess python script
 - Bandpass filter the voltages recorded at all electrodes
 - lower & upper filter frequency
 - Analyze python script
 - Extract spikes based on thresholding the filtered voltage signals
 - Count the number of spikes recorded per electrode
 - threshold for spike detection
 - Plot results python script
 - Plot raw signal and filtered signal with spikes
 - Plot histogram of the number of spikes per channel
 - plot parameters, e.g. file format

(many more parameters not listed here)

workflow recipe

in snakemake:

- Definition of target files
 - here we want to produce 2 plots:
 - · Raw signal, filtered signal with spikes
 - Histogram of spike count per electrode
- Download curl using bash shell command
 - Available on online repository
 - filename
- Preprocess python script
 - Bandpass filter the voltages recorded at all electrodes
 - lower & upper filter frequency
- Analyze python script
 - Extract spikes based on thresholding the filtered voltage signals
 - Count the number of spikes recorded per electrode
 - threshold for spike detection
- Plot results python script
 - Plot raw signal and filtered signal with spikes
 - Plot histogram of the number of spikes per channel
 - plot parameters, e.g. file format

(many more parameters not listed here)

workflow configuration

Select the parameters to execute your workflow

- Filename to download
- lower & upper filter frequency for the bandpass filtering
- threshold for spike detection
- plot parameters, e.g. file format

(many more parameters not listed here)

workflow execution

- Generation of all combinations of figures related to the parameter range
- When expanding the parameter range, snakemake automatically manages which parameter-sets have been already calculated and only performs the necessary steps

```
my_example $ ls
                                 results Snakefile
config.yml
                i140703-001.ns6 scripts
(snakemake ephy example) david@t490:~/Documents/meeting_presentations/2022-02-23_Entrain_ESR_meeting/
 y example $ snakemake
rovided cores: 1
Rules claiming more threads will be scaled down.
Job counts:
               jobs
                all
                analyze
                download data
                plot figures
                preprocess
        12
```

(snakemake_ephy_example) david@t490:~/Documents/meeting_presentations/2022-02-23_Entrain_ESR_meeting/

workflow results (only histograms)

Bandpass filter range 500Hz-5kHz

Bandpass filter range 500Hz-7.5kHz

Additional features

- software management can be integrated
 - execution of workflow steps with individually defined condaenvironments or docker containers
- Scalable from your laptop to a cluster via execution flags
 - E.g. execute steps in parallel on X cores: snakemake -cores X
 - Run your workflow on a computing cluster with job scheduling systems, e.g. slurm: snakemake --cluster "sbatch -J snake" --jobs 95

Thanks for your patience and interest ©

For those interested, we can go into the details now ;-)