AMENDMENTS TO THE CLAIMS

1	1.	(Currently A	mended) An architecture for confirming the identity of a		
2	message sender on a remote services system, comprising:				
3	a communications module operable to transmit a message;				
4	a cryptographic module in said communication module for providing encryption				
5	of a data stream in said message;				
6	a mid-level manager operating in conjunction with said communications module				
7	for controlling the flow of messages in said remote services system and for				
8	verifying the identity of a sender by comparing first and second data				
9	identities in said data stream, wherein said first data identity comprises				
10	data in a network software layer, said second data identity comprises data				
11	in an application software layer.				
1	2.	(canceled)			
1	3.	(Original)	The architecture according to claim 2, said cryptographic		
2	module emp	loying secure s	ocket layer encryption.		
1	4.	(Original)	The architecture according to claim 2, said mid-level		
2	manager controlling data flow between a customer proxy and an applications server.				
1	5.	(Original)	The architecture according to claim 4, wherein said mid-		
2	level manager is a customer mid-level manager.				
1	6.	(Original)	The architecture according to claim 4, wherein said mid-		
2	level manager is an aggregation mid-level manager.				
1	7.	(Original)	The architecture according to claim 2, wherein transmission		
2	of said message is conditioned on HTTP.				
1	8.	(Original)	The architecture according to claim 2, wherein transmission		
2		, ,			
/	of said message is conditioned on email protocol.				

I	9. (Currently Amended) A method of confirming the identity of a message					
2	sender on a remote services system, comprising:					
3	obtaining a first identity related to a message, said first identity being obtained					
4	from a first network software layer in said remote services system;					
5	obtaining a second identity related to the sender of a messages, said second					
6	identity being obtained from a second an application software layer in said					
7	remote services system; and					
3	comparing said first identity with said second identity to verify the identity of the					
9	sender of said message.					
l	10. (Canceled)					
1	11. (Original) The method according to claim 10, further comprising					
2	encrypting said message and said identities in an encryption module in said remote					
3	services system.					
ł	12. (Original) The method according to claim 11, said encryption of said					
2	data and said identities being performed in accordance with secure socket layer protocol.					
l	13. (Original) The method according to claim 12, said message being					
2	transmitted in said system using HTTP protocol.					
ĺ	14. (Original) The method according to claim 12, said message being					
2	transmitted in said system using email protocol.					
l	15. (Currently Amended) A method of confirming the identity of a message					
2	sender on a remote services system, comprising:					
3	transmitting a message using a communications module of said remote services					
1	system;					
5	encrypting a data stream in said message using an encryption module in said					
5	communications module; and					
7	controlling the flow of said message in said remote services system using a mid-					
3	level manager, said mid-level manager verifying the identity of a sender					

9		by comparing	first and second data identities in said data stream, wherein		
10		said first iden	tity comprises encrypted data in a network software layer of		
11		said remote so	ervices system, said second identity comprises encrypted data		
12		in an application software layer of said remote services system.			
1	16.	(Canceled)	The method according to claim 15,.		
1	17.	(Original)	The method according to claim 15, said encryption module		
2	using secure s	ng secure socket layer protocol to encrypt said data stream.			
1	18.	(Original)	The method according to claim 17, said mid-level manager		
2	controlling da	data flow between a customer proxy and an applications server.			
1	19.	(Original)	The method according to claim 15, wherein said mid-level		
2	manager is a customer mid-level manager.				
1	20.	(Original)	The method according to claim 15, wherein said mid-level		
2	manager is an aggregation mid-level manager.				