Curso de Estatística Básica

Aula 08 (?) Ajuste de modelos

Pavel Dodonov pdodonov@gmail.com anotherecoblog.wodrpress.com

1) Múltiplas variáveis explanatórias

2) Relações não-lineares

3) Distribuições não-normais

Seleção de modelos

Baseada em
verossimilhança
(likelihood) e na
teoria de
informação

Seleção de modelos

Explicação mais provável?

Verossimilhança

Probabilidade de que um modelo tenha gerado os dados observados

Verossimilhança

Ronald Fisher

Comparando modelos

Melhor modelo: o modelo mais próximo da realidade biológica, considerando os dados coletados

Modelos

Parâmetros

Implicam diferentes **relações** entre as variáveis

Exemplo: Comparando modelos lineares e quadráticos (Dodonov et al. 2014)

Modelos Tipo de relação

Parâmetros

Modelo linear

Intercepto = 0

Inclinações variando de 0.6 a 1.4

Modelo linear

Intercepto = 0

Inclinações variando de 0.6 a 1.4

Os **valores** do intercepto e da inclinação são **parâmetros**

Modelos → Tipo de relação

Parâmetros A forma exata da relação

Modelos

$$Y_i = \beta_0 + \beta_1 * X_i + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 * X_i + \beta_2 * X_i^2 + \epsilon_i$$

$$Y_i = \beta_0 * e^{(\beta_1 * X_i)} + \epsilon_i$$

Parâmetros

Os valores exatos de β_0 , β_1 e β_2 .

Tamanho do manguezal

Biodiversidade de formigas

Espera-se maior diversidade em manguezais maiores

Biodiversidade de formigas

Espera-se maior diversidade em manguezais maiores

Biodiversidade de formigas

Estado de conservação do manguezal

Espera-se maior diversidade em manguezais maiores

Biodiversidade de formigas

Estado de conservação do manguezal

Modelo mais simples...

Variação residual

Y: Biodiversidade de formigas (contínua)

X₁: Tamanho do manguezal (**contínua**)

X₂: Grau de conservação (**categórica** – preservado ou antropizado)

Y: Biodiversidade de formigas (contínua)

X₁: Tamanho do manguezal (**contínua**)

X₂.: Grau de conservação (categórica – preservado ou antropizado)

$$Y_i = \beta_0 + \beta_1 * X_{1i} + \beta_2 * X_{2i} + \epsilon$$

Y: Biodiversidade de formigas (contínua)

X₁: Tamanho do manguezal (**contínua**)

X₂.: Grau de conservação (**categórica** – preservado ou antropizado)

$$Y_i = \beta_0 + \beta_1 * X_{1i} + \beta_2 * X_{2i} + \epsilon$$

Diferentes nomes, mesmo princípio...

Regressão múltipla: diversas variáveis explanatórias contínuas

ANOVA multifatorial: diversas variáveis explanatórias categóricas

ANCOVA: Uma variável explanatória contínua e uma categórica

Diferentes nomes, mesmo princípio...

Regressão múltipla: diversas variáveis explanatórias contínuas

ANOVA multifatorial: diversas variáveis explanatórias categóricas

ANCOVA: Uma variável explanatória contínua e uma categórica

Modelo linear: engloba essas situações (e outras mais complexas)

Linear?

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

$$Y_i = \beta_0 e^{(\beta_1 X_i)} + \epsilon_i$$

"As coisas nem sempre são lineares!"

Modelos não-lineares

Morante-Filho et al. 2015

Modelos não-lineares

Model	Equation
Null	$Y=a+\varepsilon$
Linear	$Y=a+bX+\varepsilon$
Power	$Y=aX^{b}+\varepsilon$
Logistic	$Y = \frac{a}{1 + e^{(X-b)c}} + \varepsilon$
Piecewise	$\begin{cases} Y = a + bX + \varepsilon & \text{if } X \leq z \\ Y = c + dX + \varepsilon & \text{if } X > z \end{cases}$

Dodonov et al. 2016

Têm uma equação definida

Modelos aditivos

Não têm uma equação definida

Dodonov et al. 2014

Zuur et al. 2009

$$Y_i = \beta_0 + f(X_i) + \epsilon_i$$

"Função suavizada", ou smoother

Fig. 3.8 Illustration of fitting a cubic polynomial on four segments of data using the ISIT data from station 19. We arbitrarily choose four segments along the depth gradient. The dotted lines mark these segments, and the line in each segment is the fit from the cubic polynomial model. R code to create this graph can be found on the book website

Smoothing splines: É provavelmente o modelo aditivo mais usado. Modelos mais complexos (menos lineares) são penalizados.

λ: o quanto modelos mais complexos são penalizados.

Desvios de normalidade

Desvios de normalidade

$$Y_i = \beta_0 + \beta_1 * X_{1i} + \beta_2 * X_{2i} + \epsilon$$

$$\epsilon \sim N(0, \sigma^2)$$

Resíduos seguem distribuição normal

Desvios de normalidade

GLMs (Generalized Linear Models): Generalizam os modelos lineares para distribuições não-normais de resídus

Poisson

Binomial

Gamma

