Eric Liu

Email: eliu4913@usc.edu · Cell: (650) 865-8068 · eliu4913.github.io/

Research Interests: ML Systems, efficient and trustworthy AI, RL, and applications of deep learning

EDUCATION

University of Southern California, Viterbi School of Engineering - Los Angeles, CA

Aug. 2020 - Dec. 2025

B.S. in Computer Science & Business Administration | GPA 3.92/4.0

M.S. in Computer Science (Progressive Degree Program) | GPA 4.0/4.0

- Courses: Optimization for Machine Learning, Deep Learning and its Applications, Machine Learning, Applied NLP,
 Computer Systems, Professional C++, Analysis of Algorithms
- Honor: Dean's Honor List in all semesters.

PUBLICATIONS

- NeurIPS 2025. Trajectory Graph Learning: Aligning with Long Trajectories in Reinforcement Learning Without Reward Design. Yunfan Li, Eric Liu, Lin Yang.
- NeurIPS 2025. SimWorld: An Open-ended Simulator for Agents in Physical and Social Worlds.

Xiaokang Ye, Jiawei Ren, Yan Zhuang, Xuhong He, Yiming Liang, Yiqing Yang, Mrinaal Dogra, Xianrui Zhong, **Eric Liu**, Kevin Benavente, Rajiv Mandya Nagaraju, Dhruv Vivek Sharma, Ziqiao Ma, Tianmin Shu, Zhiting Hu, Lianhui Qin.

RESEARCH EXPERIENCE

Research Assistant May 2025 – Present

University of Southern California

- Worked with Professor Sai Praneeth Karimireddy and PhD students Yavuz Faruk Bakman and Duygu Nur Yaldiz on researching LLM unlearning and evaluation.
- Conducting in-depth literature review on existing methods in the field of LLM unlearning.
- Implementing adversarial attacks and prompting on existing models to test the likelihood of sensitive information leakage.

Research Assistant March 2025 - Present

University of California, San Diego, PICASSO Lab

- Worked with Prof. Yufei Ding and PICASSO on ML-systems research, focusing on context parallelism for long-context LLM training.
- Implemented SOTA baselines (Per-Sequence and Per-Document context parallelism), and co-developed core components of FlashCP.
- Ran large-scale experiments on $8 \times H100$ GPUs and AWS clusters; benchmarked models up to 70B parameters across three public datasets, showing avg. $1.45 \times$ end-to-end speed-ups, and up to $1.55 \times$ vs. the baseline in attention computation and training throughput.

Research Assistant March 2025 – Present

University of California, San Diego, SimWorld Team

- Worked with Prof. Lianhui Qin and the SimWorld Team on SimWorld, an Unreal Engine 5 simulator that generates large-scale, open-ended urban environments for embodied-Al research.
- Contributed to the paper's second experiment, a LLM-driven delivery-agent benchmark, by designing task variants, implementing configuration/launch scripts, implementing baseline and ablation setups and debugging the experiment pipeline.
- Summarized the performance findings into plots and tables for the NeurIPS 2025 submission (accepted as spotlight).

Research Assistant May 2024 – Present

University of California, Los Angeles

- Worked with Prof. Lin Yang and PhD student Yunfan Li on *Trajectory Graph Learning*, a method to directly learn policies from preference-ranked trajectories data.
- Performed an in-depth literature review to guide discussions on experiment methodology and paper positioning: research questions, project framework and paper storyline.
- Implemented the full experimental pipeline: set up environments, reproduced baseline algorithms, and implemented TGL variants.
- Co-authored and submitted the resulting manuscript to NeurIPS 2025 (accepted as spotlight).

TEACHING EXPERIENCE

Course Producer (CSCI270 Introduction to Algorithms and Theory of Computing) University of Southern California, Viterbi School of Engineering

Jan. 2024 - Dec. 2024

- Conducted weekly office hours and exam review to assist 150+ students with concepts such as Greedy Algorithms, Divide and Conquer, Dynamic Programming, NP-Complete, and Network Flow.
- Proctored exams, graded assignments, and answered questions from students on discussion forums.

ACADEMIC PROJECTS

ZeRO-Offload Stages and Model Size Impact

Jan. 2025 - Apr. 2025

- Reproduced the implementation of ZeRO-Offload stages to transfer optimizer states, gradients, and model parameters from GPU VRAM to CPU memory.
- Conducted experiments on different ZeRO-Offload strategies and evaluated metrics such as peak and average memory use, final accuracy, workload tradeoffs (data transfer vs. forward/backward computations), and total throughput.
- Identified optimal strategies to balance training efficiency and scalability for large-scale transformer models.

Impact of Object Detection Methods for Game-Playing Agents

Aug. 2024 - Dec. 2024

- Developed a game-playing agent that leverages advanced object detection pipelines (e.g., YOLOv8, detection transformers) to inform decision-making, which is then used to determine the tradeoffs between detection accuracy with real-time inference performance.
- Designed and executed experiments that evaluated precision, recall, mAP, and latency, correlating these metrics with in-game performance to quantify trade-offs in detection methods.

Virtual Machine and Compiler (C++, Bison, x86 Assembly)

Oct. 2023 – Dec. 2023

- Created a Virtual Machine in C++ with fifteen 32-bit integer registers, 1 KB of stack space, and 3-bit color graphics that support turtle graphics by using template metaprograms, exceptions, and smart pointers.
- Designed a compiler that enabled the generation of assembly instructions from an Abstract Syntax Tree that streamlined code compilation and increased efficiency of 15% compared to open-source solutions.
- Optimized register usage and improved execution efficiency of operations of VM by implementing Linear Scan Register Allocation algorithm to map virtual registers to real registers.

SKILLS

Languages and Frameworks: Python (PyTorch, TensorFlow), CUDA, JAX C++, C, and Unreal Engine. Bilingual in Mandarin and English.