机械工程学院机械设计及理论研究所

目录

第一章	PDO 实例分析	. 1
	目的:	
二、	手段:	. 1
三、	分析:	.1
四、	过程:	.2
	4.1.对象字典的编写	. 2
	4.1.1 各节点 ID 分配表定义	
	4.1.2 对节点 1 进行对象字典编写	. 2
	4.1.3 对节点 2 进行对象字典编写	. 3
	4.1.4 对节点 3 进行对象字典编写	. 5
	4.2 节点 1 发送数据至节点 2、节点 3	. 6
	4.2.1 节点 1 发送数据至总线	. 6
	4.2.2 节点 2、节点 3 从总线接收数据	
	4.3 节点 2 发送数据至节点 3	
	4.3.1 节点 2 发送数据至总线	
	4.3.2 节点 3 从总线接收数据	. 9
参考文献	ξ	10

第一章 PDO 实例分析

一、目的:

实例的目的如图 1-1 所示,实现节点 1 的数据 $(A \times B)$ 传送到节点 2、节点 3,同时实现节点 2 传输数据 $(C \times D)$ 至节点 3。

二、手段:

使用 PDO 进行数据传送。

三、分析:

图 1-2 SDO 客户/服务器通讯模式^[1]

PDO 通信是基于生产者/消费者(Producer/Consumer)模型,主要用于传输实时数据。产生数据的节点将带有自己节点号的数据放到总线上,需要该数据的节点可以配置为接收该节点发送的数据^[3]。

四、过程:

4.1.对象字典的编写

对象字典的结构和条目对于所有设备是共同的,本例中采用索引定位,子索引确定对象的思想构建对象字典,方法是使用结构体定义子索引,子索引结构体的成员变量包含对象的属性(读写权限,数据类型,数据长度等)和指向对象的指针,定义索引时包含指向子索引的指针和子索引数目,对象字典各项在代码中采取如图 1-3 所示的方式来组织构建,这样可以方便地通过索引和子索引一找到对应的项,对象定义为指针的形式可以通过主站的 SDO 报文进行读写,实现对对象字典的灵活配置,同时这种方式实现通讯层与应用层共享数据变量的特点。对象字典的条目格式如图 1-3 所示:

索引 对象(符号名)	名称	属性	类型	强制/可选
------------	----	----	----	-------

图 1-3 对象字典模块结构图

4.1.1 各节点 ID 分配表定义

表 1-1 各节点 ID 分配表

节点	节点 1	节点 2、	节点3	主节点
NODE-ID	0x01	0x02	0x03	0x04

4.1.2 对节点 1 进行对象字典编写

节点 1 发送数据至节点 2、节点 3,故需定义 <u>TPDO</u>,我们在此处定义为 TPDO1。节点 1 的应用数据区、TPDO1 的通讯参数和映射参数在对象字典中的 定义分别如表 1-2、1-3 和 1-4 所示。

表 1-2	节点1	的应用数据区在对象字典中的定义
-------	-----	-----------------

索引	子索引	名称	类型	值	权限
7100h	00h	入口数目	U8	02h	rw
	01h	A	U16	2DFFh	rw
	02h	В	U8	C3h	rw

表 1-3 节点 1 的 TPD01 通讯参数在对象字典中的定义

1800H		TPDO	数据类型	值	权限
	00h	入口数目	U8	05h	ro
	01h	发送 PDO 标	U32	180h+NodeID	rw
		识符			
	02h	传输类型	U8	FFh	rw
	03h	禁止时间	U16	00h	rw
	04h	reserved			rw
	05h	Event timer	U16	0x0000h	rw

表 1-4 节点 1 的 TPDO1 的映射参数在对象字典中的定义

1A00h	_	TPDO1	数据类型	值	权限	
	00h	PDO 映射数目	U8	02h	rw	
	01h	A	U16	7100 01 10h	rw	
	02h	В	U8	7100 02 08h	rw	

其中 7100 01 10h 映射数据对象字典中索引为 7100h,子索引为 01h,长度为 16 位的数据。

4.1.3 对节点 2 进行对象字典编写

节点 2 接收来自节点 1 的数据(A、B),故需定义 RPDO1;此外节点 2 将数据传(C、D)送给节点 3,故需要定义 TPDO2。节点 2 的应用数据在对象字典中的定义如表 1-5 所示。

表 1-5 节点 2 的应用数据在对象字典中的定义

	农工 6 片流 2 的 <u>产加 条件</u>							
索引	子索引	名称	类型	值	权限			
7200h	00h	入口数目	U8	02h	rw			
	01h	A	U16		rw			
	02h	В	U8		rw			
7300h	00h	入口数目	U8	02h	rw			
	01h	С	U16	F3CCh	rw			
	02h	D	U8	D5h	rw			

此时索引为 7200h, 子索引为 01h, 02h 条目中起初并没有实际值,这两个条目分别用来接收节点 1 的数据 A、B。接受数据后,子索引为 01h 的条目的值为 2DFFh,子索引为 02h 的条目为 C3h。索引为 7300h,子索引为 01h,02h 条目中为数据 C、D 的索引。

表 1-6 节点 2 的 RPDO1 通讯参数在对象字典中的定义

1400h	_	RPDO1	数据类型	值	权限
	00h	入口数目	U8	05h	ro
	01h	接收 PDO 标识符	U32	180h+NodeID	rw

	02h	传输类型	U8	FFh	rw
	03h	禁止时间	U16	0	rw
	04h	Reserved			rw
	05h	event timer	U16	0x0000h	rw

节点 2 定义 RPDO1 的 COB-ID 为 181h,对应节点 1 的 TPDO 的 COB-ID, 实现节点1与节点2之间的数据传输。

表 1-7 节占 2 的 RPDO1 映射参数在对象字曲中的定义

	农1-7 7点2的RIDOT 欧别多数任为家了共中的定义								
1600h		RPDO	数据类型	值	权限				
	00h	PDO 映射数目	U8	02h	rw				
	01h	A	U16	7200 01 10h	rw				
	02h	В	U8	7200 02 08h	rw				

其中 7200 01 10h 表示映射到对象字典中索引为 7200h, 子索引为 01h, 长 度为16位的数据。

因为节点 2 发送数据至节点 3, 故需在对象字典中定义 TPDO, 在此定义为 TPDO2, 其通讯参数和映射参数定义如表 1-8 和 1-9 所示。

1800	_	TPDO2	数据类型	值	权限
	00h	入口数目	U8	05h	ro
	01h	发送 PDO 标识符	U32	280h+NodeID	rw
	02h	传输类型	U8	FFh	rw
	03h	禁止时间	U16	00h	rw
	04h	Reserved			rw
	05h	event timer	U16	0x0000h	rw

节点 2 的 TPDO2 的 COB-ID 为 282h。

表 1-9 节点 2 中 TPDO2 映射参数在对象字典中的定义

1A00	_	TPDO1	数据类型	值	权限
	00h	PDO映射数目	U8	02h	rw
	01h	С	U16	7300 01 10h	rw
	02h	D	U8	7300 02 08h	rw

其中 7300 01 10h 表示映射到对象字典中索引为 7300h, 子索引为 01h, 长度为 16 位的数据

4.1.4 对节点 3 进行对象字典编写

节点 3 分别接受节点 1、节点 2 的数据,需在节点 3 的对象字典中定义 RPDO1、RPDO2, 其中 RPDO1 的 COB-ID 需与节点 1 的 TPDO1 的 COB-ID 一致, RPDO2 的 COB-ID 需与节点 2 的 TPDO2 的 COB-ID 一致。

表 1-10 节点 3 的应用数据在对象字典中的定义

索引	子索引	名称	类型	值	权限
7100h	00h	入口数目	U8	02h	rw
	01h	A	U16		rw
	02h	В	U8		rw
7200h	00h	入口数目	U8	02h	rw
	01h	С	U16		rw
	02h	D	U8		rw

其中名称为 A、B、C、D 的条目起初并没有实际值,接受节点 1 和节点 2 的数据后,这些条目才具有相应的值。

表 1-11 节点 3 的 RPDO1 的通讯参数在对象字典中的定义

1400h	_	RPDO1	数据类型	值	权限
	00h	入口数目	U8	05h	ro
	01h	接收 PDO 标识符	U32	180h+Nod eID	rw
	02h	传输类型	U8	FFh	rw
	03h	禁止时间	U16	0	rw
	04h	Reserved			rw

05h	event timer	U16	0x0000h	rw

其中 RPDO1 的 COB-ID 为 181h,与节点 1 的 TPDO1 的 COB-ID 一致,实现节点 1 与节点 3 之间的数据传输。

表 4-11 节点 3 的 RPDO1 的映射参数在对象字典中的定义

1600h		RPDO1	数据类型	值	权限
	00h	PDO 映射数目	U8	02h	rw
	01h	A	U32	7100 01 10h	rw
	02h	В	U32	7100 02 08h	rw

表 4-12 节点 3 的 RPDO2 的通讯参数在对象字典中的定义

	次 112 下流 5 H 14 D 0 2 H 12 M 2 X E 1 3 C 1 X 1 H 1 1 E X						
1401h	_	RPDO2	数据类型	值	权限		
	00h	入口数目	U8	05h	ro		
	01h	接收 PDO 标识符	U32	280h+NodeID	rw		
	02h	传输类型	U8	FFh	rw		
	03h	禁止时间	U16	0	rw		
	04h	Reserved			rw		
	05h	event timer	U16	0x0000h	rw		

其中 RPDO2 的 COB-ID 为 282h,与节点 2 的 TPDO2 的 COB-ID 一致,实现节点 2 与节点 3 之间的数据传输。

表 4-13 节点 3 的 RPDO2 的映射参数在对象字典中的定义

1601h	_	RPDO2	数据类型	值	权限
	00h	PDO 映射数目	U8	02h	rw
	01h	С	U32	7200 01 10h	rw
	02h	D	U32	7200 02 08h	rw

4.2 节点 1 发送数据至节点 2、节点 3

4.2.1 节点 1 发送数据至总线

节点 1 的 TPDO1 报文组装如图 1-4 所示:

图 1-4 节点 1 的 TPDO1 报文组装形式图

节点1根据映射参数扫描对象字典,将相应的数据总存储器中调出,与通信参数组合后再组装成报文格式,发送到 CAN 总线当中。

此例中传输至总线的数据为 181 2DFF C3。

4.2.2 节点 2、节点 3 从总线接收数据

由于节点 2 的 RPDO、节点 3 中的 RPDO1 的 COB-ID 与节点 1 的 TPDO 的 COB-ID 一致,故而节点 2,节点 3 可以顺利通过报文滤波从总线中接收节点 1 所传输的报文。

对于节点 2, 其接收报文的形式如图 1-5 所示:

图 1-5 节点 2 的 RPDO1 报文接收形式图

节点 2 接收到的 RPDO 为 181 2DFF C3。

对于节点 3, 其接收报文的形式如图 1-6 所示:

图 1-6 节点 3 的 RPDO1 报文接收形式图

节点 3 接收到的 RPDO 为 181 2DFF C3。

由于 PDO 的发送为广播形式,当节点 1 的 TPDO 报文传输到总线上时,理论上所有节点都能接收该报文,实际上只有与节点 1 的 TPDO 的 COB-ID 一致的 RPDO 才能接收该报文。本例中,节点 2、节点 3 中都定义了与节点 1 的 TPDO 的 COB-ID 一致的 RPDO,故而节点 2,节点 3 能接收节点 1 的报文。

当节点 2、节点 3 接收节点 1 的 TPDO 报文后,由于已经事先定义好了报文的映射,TPDO 中的数据(此例中为 2DFFh, C3h)可直接映射到相应的对象字典条目中。

PDO 可以高速传输数据就在于,其实际传输过程中只传输实际数据,无需定义传输数据的来源,接收数据后该存放的地址。因为数据的来源、存放地址等信息已在事先就由工程师定义完成(即对象字典的编写)。

4.3 节点 2 发送数据至节点 3

4.3.1 节点 2 发送数据至总线

节点 2 的 TPDO 报文组装如图 1-7 所示:

图 1-7 节点 2 的 TPDO2 报文组装形式图

节点 2 根据映射参数扫描对象字典,将相应的数据总存储器中调出,与通信参数组合后再组装成报文格式,发送到总线当中。

此例中传输至总线的数据为 282 F3CC D5。

4.3.2 节点 3 从总线接收数据

由于节点 3 的 RPDO2 的 COB-ID 与节点 2 的 TPDO 的 COB-ID 一致,故而节点 3 可以顺利通过报文滤波从总线中接收节点 1 所传输的报文。 其接收形式如图 1-8 所示:

图 1-8 节点 3 的 RPDO2 报文接收形式图

此例中节点 3 接收到的 RPDO2 为 282 F3CC D5。

参考文献

- [1] 王芳. 基于汽车总线模型的 CANopen 协议的实现 [D]. 2008.
- [2] 董石峰. 混合动力电动汽车车载网络 CANopen 协议及其应用研究 [D]. 2010.
- [3] 叶浩峰. CANopen 总线的原理以及实现 [D]. 2005.
- [4] 张厚林. CANopen 通讯协议设计与实现 [D]. 2009.
- [5] 闫士珍. CANopen 主栈及混合动力电动汽车 CANopen 行规设计 [D]. 2008.
- [6] 周跃峰. CANopen 协议在冗余系统中的应用研究 [D]. 2009.
- [7] 田山. 基于 CANopen 协议的网络主控制器的设计 [D]. 2008.
- [8] 宋晓强. CAN bus 高层协议 CANopen 的研究以及在模块化 CAN 控制器上的实现 [D]. 2004.
- [9] 蒋智康. 基于 CANopen 协议的分布式控制系统的研究 [D]. 2008.
- [10] 王瑞鹏. 基于 CANopen+uC/OS_II 平台的主从节点通信 [D]. 2007.
- [11] 张晓阳. 基于 CANopen 协议的分布式控制系统智能从站设计 [D]. 2010.
- [12] 陈涛. 汽车仪表的 CANopen 节点通信的研究与实现 [D]. 2007.
- [13] 宋威. CANOPEN 现场总线应用层协议主站的开发与实现 [D]. 2008.
- [14] 李昱. 基于 CANopen 协议的工程车辆网络系统的设计与实现 [D]. 2008.
- [15] CANopen Application Layer and Communication Profile. CiA Draft Standard 301, Version 4.02,2002
- [16] 饶运涛等.现场总线 CAN 原理与应用技术(第2版).北京: 北京航天航空大学出版社.2007
- [17] 广州周立功单片机发展有限公司.CANopen 协议介绍