武汉大学 2011—2012 学年度第二学期期末考试

《高频电子线路》试卷(A)(电科/电信/电波)

- 一、(15分)如题图 1 为调幅超外差无线广播系统示意图,试问答以下问题:
- (1) 试画出 A、B、C、D、E、F、G 及 H 点的示意波形; (4分)
- (2) 无线通信系统中为什么要使用高频信号? 给出高频信号的频率区间; (5分)
- (3) 题图 1 中,"混频器"的作用是什么?如果接收信号的频率是 1900MHz,希望把它变成 70MHz 的中频,给出 E、F及 G点的频率;(6分)

题图1 调幅超外差无线广播系统示意图

二、(15分)

- (1) 串联回路如题图 2 所示。信号源频率 $f_0 = 1MH_Z$,电压振幅 $V_{om} = 0.1V$,将 11 端短接,电容 C 调用 100pF 时谐振。此时,电容 C 两端的电压为 10V。如 11 端开路再串接一个阻抗 Zx (电阻与电容串联),则回路失谐,C 调到 200pF 时重新谐振,此时在 C 电容两端电压变成 2.5V。试求线圈的电感量 L、回路品质因数 Q_0 的值以及未知阻抗 Z_x 。(10 分)
- (2) 并联谐振回路如题图 3 所示。已知通频带 $2\Delta f_{0.7}$,电容 C。若回路总电导为 $g_{\Sigma} \left(g_{\Sigma} = g_s + G_P + G_L\right)$ 试证明: $g_{\Sigma} = 4\pi\Delta f_{0.7}C$ 。(5分)

三、(15 分) 有一高频小信号放大器,其交流等效电路如题图 4 所示。已知: 工作频率 $f_0=30MHz$,回路电容 $C=20pF,Q_0=60,R_1=10k\Omega$,管子正向传输导纳 $\left|y_{fe}\right|=39mS$,输出电导 g_{oe} =0.4mS,输入电导 $g_{ie}=1.2mS$,接入系数 $p_1=0.4,p_2=0.23$,管子输出电容 $C_{oe}=9pF$,输入电容 $C_{ie}=12pF$ 。求: (1) 求放大器的带宽 $BW_{0.7}$,增益 A_{uo} ; (2) 若去掉 R_1 ,但仍要保持上面的带宽 $BW_{0.7}$,问接入系数 p_1 、 p_2 应加大还是减小?电容 C 应怎么修改?为什么?(提示: $\dot{A}_{om}=-\frac{p_1p_2y_{fe}}{g_\Sigma}$, $BW_{0.7}=\frac{f_0}{Q_L}$, $g_\Sigma=4\pi\Delta f_{0.7}C$)

四、(15分)

- (1) 简述丙类高频放大器的特点,若该功率放大器工作在临界状态,使集电极供电电压增大,其他电路参数不变,则放大器工作状态将如何变化?使基极偏压增加,其他参数不变,放大器工作状态又如何变化?(5分)
- (2)若该功率放大器放大器采用复合输出回路,在临界工作状态时,中介回路和天线回路均已调谐好,晶体管的转移特性如题图 5 所示。已知 $|V_{BB}|$ =1.4V (基极偏置),管子截止偏压 $V_{BZ}=0.6V$,导通角 $\theta_C=70^\circ$,电源电压 $V_{CC}=24V$,电压利用系数 $\xi=0.9$,中介回路品质因数 $Q_0=100$, $Q_L=10$, $\cos 70^\circ=0.342$ 。试求:管子集电极输出功率 Po;天线功率 P_A ;放大器的总效率 η 。

$$\alpha_{0}(70^{o}) = 0.253, \alpha_{1}(70^{o}) = 0.436, \cos\theta_{c} = \frac{V_{BZ} + |V_{BB}|}{V_{bm}},$$
(提示:
$$i_{C \max} = g_{c}V_{bm}(1 - \cos\theta_{C}), P_{A} = P_{o}(1 - \frac{Q_{L}}{Q_{c}}), \eta_{k} = \frac{P_{A}}{P_{o}}, \eta = \eta_{c} \times \eta_{k}$$

五、(10 分) 题图 6,7 均为晶体振荡器, J_{T1} 的标称频率为 10MHz, J_{T2} 的标称频率为 25MHz。 (1) 说明晶体在电路中的作用;(2) 计算振荡器的工作频率和反馈系数。

六、(30分)

(1) 已知负载 R_L 上调幅波的表达式为 $\upsilon(t) = \left[50 + 20\cos(4\pi \times 10^3 t)\right]\sin(2\pi \times 10^4 t)V$ 试求:载波电压振幅 V_{cm} ;载波频率 ω_C ;调制度 m_a ;已调波的最大振幅 V_{max} ;最小振幅值

 V_{\min} ; 若 $R_L = 1k\Omega$,它吸收的总边带功率 P_{Ω} 的值;画出v(t)的波形图及频谱图。(10 分) (2)已知 $v(t) = 500\cos(2\pi \times 10^8 t + 20\sin 2\pi \times 10^3 t)(mV)$,试根据要求求解:(A)若为调频波,试求 f_c ,调制频率 F,调频指数 m_f ,最大频偏,有效带宽,平均功率 P_{av} (取负载为 50 欧);(B)若为调相波,试求调相指数 m_p ,调制信号 $v_{\Omega}(t)$ (设 kp=5rad/V),最大频偏。(10 分)

(3) 描述矢量合成法间接调频原理、双失谐回路斜率鉴频器原理、乘积型鉴相器原理。(可用方框图表示)(10分)