问题一:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?

解:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有 3+2=5 种不同的走法。

分类计数原理 完成一件事,有n类方式,在第1类方式中有m₁种不同的方法,在第2类方式中有m₂种不同的方法, ···, 在第 n类方式中有m_n种不同的方法, 那么完成这件事共有:

$$N = m_1 + m_2 + \dots + m_n$$

种不同的方法。

分类计数原理又称为加法原理。

问题二:从甲地到乙地,要从甲地选乘火车到两地,再于次日从两地乘汽车到乙地。一天中,火车有3班,汽车有2班。那么两天中,从甲地到乙地共有多少种不同的走法?

这个问题与前一个问题有什么区别?

在前一个问题中,采用乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到乙地.

解:因为乘火车有3种走法,乘汽车有2种走法, 所以乘一次火车再接乘一次汽车从甲地到乙地, 共有 $3\times2=6$ 种不同的走法。

分步计数原理 完成一件事,需要分成n个步骤,做第1步有 m_1 种不同的方法,做第2步有 m_2 种不同的方法,…,做第n步时有 m_n 种不同的方法。那么完成这件事共有

$$N = m_1 \times m_2 \times \cdots \times m_n$$

种不同的方法。

分步计数原理又称为乘法原理。

分类计数原理(加法原理)中,"完成一件事,有n类方式",即每种方式都可以独立地完成这件事。进行分类时,要求各类方式彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事。只有满足这个条件,才能直接用加法原理,否则不可以。

分步计数原理(乘法原理)中, "完成一件事, 需要分成n个步骤", 是说每个步骤都不足以完成这件事。如果完成一件事需要分成几个步骤, 各步骤都不可缺少, 需要依次完成所有步骤才能完成这件事, 而各步要求相互独立, 即相对于前一步的每一种方法, 下一步有m种不同的方法, 那么完成这件事的方法数就可以直接用乘法原理。

应用这两个原理的关键是看完成这件 事情是"分类"还是"分步"。

例1、某班共有男生28名、女生20名, 从该班选出学生代表参加校学代会。

- (1) 若学校分配给该班1名代表, 有多少种不同的选法?
 - (2) 若学校分配给该班2名代表, 且男女

生代表各1名, 有多少种不同的选法?

例2、为了确保电子信箱的安全, 在注册 时,通常要设置电子信箱密码。在某网站设 **(1)** 置的信箱中. 密码为4位。每位均为0到9这10个数字中的一 个数字,这样的密码共有多少个?(2)密码 为4位, 每位均为0到9这10个数字中的一个. 或是从A到Z这26个英文字母中的1个。这样的 (3) 密码 密码共有多少个? 为4到6位,每位均为0到9这10个数字中的一 个。这样的密码共有多少个?

- 7/19页 -

引例

问题1 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法?解决这个问题,需分2个步骤:

第1步,确定参加上午活动的同学,从3人中任选1人有 3种方法;

第2步,确定参加下午活动的同学,只能从余下的2人 中选,有2种方法.

根据分步计数原理, 共有: 3×2=6种不同的方法.

问题2:从a、b、c这3个字母中,每次取出2个按顺序排成一列,共有多少种不同的排法?并列出所有不同的排法。

这里的每一种排法就是一个排列。

讨论题

由数字**1**, **2**, **3**, **4**可以组成多少个没有重复数字的三位数?

排列定义

一般地,从n个不同元素中取出m($m \le n$)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

排列的定义中包含两个基本内容:

一是"取出元素";二是"按照一定顺序排列"."一定顺序"就是与位置有关,这也是判断一个问题是不是排列问题的重要标志.

根据排列的定义,两个排列相同,当且仅当这两个排列的<u>元素完全相同</u>,而且元素的<u>排列顺序也完全相同</u>.

如果两个排列所含的元素不完全一样,那么就可以肯定是不同的排列;如果两个排列所含的元素完全一样,但 摆的顺序不同,那么也是不同的排列. 从n个不同的元素中取出 $m(m \leq n)$ 个元素的所有排列的个数,叫做从n个不同的元素中取出m个元素的排列数。用符号表示。 A_n^m

问题1: 从3个不同的元素中取出2个元素的排列

数,记为

$$A_3^2 = 3 \times 2 = 6$$

问题2: 从4个不同的元素中取出3个元素的排

列数,记为

$$A_4^3 = 4 \times 3 \times 2 = 24$$

从n个不同元素中取出2个元素的排列数

$$A_n^3$$
呢? A_n^m 呢

排列数公式 $A_n^m = n (n-1) (n-2) \cdots (n-m+1)$

1. 排列数公式的特点:第一个因数是n,后面每一个因

数比它前面一个因数少1,最后一个因数是n-m+1,共有m个因数。

- 2. 全排列: 当n=m 时即n个不同元素全部取出的一个排列. 全排列数: $A_n^n=n\times(n-1)\times(n-2)\times\cdots\times 2\times 1=n!$ (叫做n的阶乘)
- 3. 公式变形: $A_n^m = n \times (n-1) \times \cdots \times (n-m+1)$ $= \frac{n \times (n-1) \times \cdots \times 2 \times 1}{(n-m) \times (n-m-1) \times \cdots \times 2 \times 1} = \frac{n!}{(n-m)!}$

注:规定0!=1,其中 $m \leq n$

小结

排列问题,是取出*m*个元素后,还要按一定的顺序排成一列,取出同样的*m*个元素,只要排列顺序不同,就视为完成这件事的两种不同的方法(两个不同的排列).

由排列的定义可知,排列与元素的顺序有关,也 就是说与位置有关的问题才能归结为排列问题. 当元 素较少时,可以根据排列的意义写出所有的排列.

问题推广一组合

组合:从n个不同元素中取出m(m≤n)个元素并成

①n个不同元素

② 0≤m≤n,

(m、n是自然数)

- ③组合与元素的顺序无关,排列与元素的顺序有关
- ④两个组合的元素完全相同为相同组合

组合数:从n个不同元素中取出m(m≤n)个元素的

所有组合的个数, 叫做从n个不同元素中取出m个元

素的组合数

表示方法

第一步四名同学中选出两个旗手共有

第二步确定旗手顺序共

$$A$$
 $\frac{2}{2}$ = 2 种不同的方法

所以总共有6×2=12种不同的方法

$$A_4^2 - C_4^2 A_2^2 \longrightarrow C_4^2$$

$$C_4^2 = \frac{A_4^2}{A_2^2}$$

雨课堂 Rain Classroom

探求组合数2

返回

(abc) (abc, acb, bac, bca, cab, cba)

abd)

(abd, adb, bad, bda, dab, dba)

(acd)

(acd, adc, cad, cda, dac, dca)

bcd)

(bcd, bdc, cbd, cdb, dbc, dcb)

A A A

$$C_4^3 = 4$$
 $A^3 = C^3 \times$

$$C_4^*$$

 $\frac{3}{3}$

$$C_4^3 = \frac{A_4^3}{A_3^3}$$

是多少呢?

问题推广一组合

组合:从n个不同元素中取出m(m≤n)个元素并成 一组,叫做从n个不同元素中取出m个元素的一个组

合

①n个不同元素

(m、n是自然数)

- ③组合与元素的顺序无关,排列与元素的顺序有关
- ④两个组合的元素完全相同为相同组合

组合数:从n个不同元素中取出m(m≤n)个元素的 所有组合的个数,叫做从n个不同元素中取出m个元

素的组合数

表示方法

排列数(number of arrangement)公式 组合数(number of combination)公式

$$A_{n}^{m} = (n-1)(n-2) \cdots (n-m+1)$$

$$= \frac{n!}{(n-m)!}$$

$$C_n^m = \frac{A_n^m}{A_n^m}$$

m!

注:

(1)
$$A_{n}^{n} = n!$$

$$(2)$$
 0!=1

(4)
$$C_n^0 = 1$$

排列: arrangement

组合: combination