DP Formulation

October 2021

1 Model Formulation

There are n products offered, and each product corresponds to one resource. Let $N = \{1, 2, ..., n\}$ be the set of products. At time t, the price for product j is $r_{t,j}$. The consumption matrix is an $n \times n$ diagonal matrix. The jth column A^j is the incidence vector for product j. There are T discrete time periods that are counted forward, so period T is the last period.

In each period, there is one customer arrival with probability λ , and no customer arrival with probability $1-\lambda$. When a customer arrives, the firm must decide how to price all products (if they are available). Let $r_t \subseteq R(x)$ be the pricing policy, and R(x) is the set of all possible pricing policies. Given the pricing policy r_t , the customer chooses the product j with probability $P_j(r_t)$, and makes no purchase with probability $1 - \sum_j P_j(r_t)$.

The state x at the beginning of any period t is an n-vector of unsold products. So the state space is $X = \{0, 1, ..., c_1\} * \{0, 1, ..., c_2\} * ... * \{0, 1, ..., c_n\}, c_n$ is the capacity of product n. Let $v_t(x)$ be the maximum total expected revenue over periods, starting at state x at the beginning of period t. The optimality equation is

$$V_{t}(x) = \max_{r_{t} \subseteq R(x)} \left\{ \sum_{j=1}^{n} \lambda P_{j}(r_{t}) \left(r_{t,j} + V_{t+1} \left(x - A^{j} \right) \right) + \left(\lambda P_{0}(r_{t}) + 1 - \lambda \right) V_{t+1}(x) \right\}$$

$$(1)$$

Affine approximation:

$$v_t(x) \approx \theta_t + \sum_{j=1}^n V_{t,j} x_j \tag{2}$$

Plugging into the linear programming:

$$\min_{\theta, V} \theta_1 + \sum_{j=1}^n V_{1,j} c_j \tag{3}$$

$$\theta_{t} - \theta_{t+1} + \sum_{j=1}^{n} \left(V_{t,j} x_{j} - V_{t+1,j} \left(x_{j} - \lambda P_{j}(r_{t}) \right) \right) \ge \sum_{j=1}^{n} \lambda P_{j}(r_{t}) r_{t,j} \quad \forall t, x, r_{t} \subseteq R(x)$$

$$(4)$$

The boundary conditions are

$$v_{T+1}(x) = 0, \forall x \tag{5}$$

$$v_t(0) = 0, \forall t \tag{6}$$

Number of variables: T + T * n (They are continuous variables)

Number of constraints: $T*3^n*c_1^n$ (For each product, we have 3 optional prices and $c_1=c_2=\ldots=c_n$)

2 Model Setting

2.1 MNL Choice model

Input: pricing policy r_t

$$P_{j}(r_{t}) = \frac{exp(a_{j} - \beta r_{t,j})}{1 + \sum_{i=1}^{n} exp(a_{i} - \beta r_{t,i})}$$
(7)

Output: choice probability for each product $P_1(r_t), P_2(r_t), ..., P_n(r_t)$