Lecture 4: Two-Factor Studies with Equal Sample Sizes

STA 106: Analysis of Variance

Suggested reading: ALSM Chapter 19

Two-Factor Studies with Equal Sample Sizes

Strategy of Analysis of Two-Factor Studies

Scientific inquiry is guided by the principle:

simple, parsimonious explanations of observed phenomena tend to be the most effective

Additive factor effects: much simpler explanation of factor effects

Interaction effects complicates the explanation

When both main effects and interaction effects are present, only comparison of treatment means μ_{ij} makes sense, as treatment A has differential effect depending on the level of treatment B.

Often, insights can be gained by looking at how treatment means differ for levels of one factor, while fixing levels of another factor.

Compare effect of gender at different age levels?

Multiple Comparison Procedure: Bonferroni

Suppose we're interested in making infernece about multiple quantities, that are linear combinations of treatment means,

$$\mathscr{L} = \{L_1 = \sum_{i} \sum_{j} c_{ij}^1 \mu_{ij}, ..., L_g = \sum_{i} \sum_{j} c_{ij}^g \mu_{ij} \}$$

$$\hat{L} = \sum_{i} \sum_{j} c_{ij} \bar{Y}_{ij}. \quad s^{2}(\hat{L}) = \frac{MSE}{n} \sum_{i} c_{ij}^{2}$$

Bonferroni's idea:

One very easy and conservative way to control family-wise error rate at α is to control individual test's significance level at $\alpha_0 = \frac{\alpha}{g}$

This procedure includes any inference about a single quantity as special case, just take g=1.

 $(1 - \alpha)100\%$ confidence interval for individual quantity in this family:

$$\hat{L}_i \pm Bs\left(\hat{L}_i\right)$$
 for $i = 1...g$

$$B = t \left(1 - \frac{\alpha}{2g}; ab(n-1) \right)$$

Guarantee:

family-wise confidence coefficient is at least $(1 - \alpha)100\%$

Meaning:

in at least $(1 - \alpha)100\%$ of repetition of experiments, all the intervals in the family cover the true corresponding L_i 's $\alpha\%$ of repetition of experiments, some tests in the family made false discovery when the null hypothesis was true.

Hypothesis testing (t-test) for individual quantity in this family:

$$H_0^i: L_i = 0 \ H_a^i: L_i \neq 0$$

$$t^* = \frac{\hat{L}_i}{s(\hat{L}_i)} \sim t_{n_T - r}$$
if H_0 is true

If $|t^*| \leq B$, conclude H_0

If $|t^*| > B$, conclude H_a

Guarantee:

family-wise Type I error is at most α

Meaning:

in at most α % of repetition of experiments, some tests in the family made false discovery when the null hypothesis was true.

Suppose we're interested in making inference about <u>all possible contracts of factor A level means</u> i.e., a family containing all possible contracts of factor A level means

$$\mathcal{L} = \{ L = \sum_{i} \sum_{j} c_{ij} \mu_{ij} \text{ where } \sum_{i} \sum_{j} c_{ij} = 0 \}$$

Infinitely many claims or quantities

$$\hat{L} = \sum_{i} \sum_{j} c_{ij} \bar{Y}_{ij}. \qquad s^{2}(\hat{L}) = \frac{MSE}{n} \sum_{i} \sum_{j} c_{ij}^{2}$$

 $(1 - \alpha)100\%$ confidence interval for individual quantity in this family:

$$\hat{L}_i \pm Ss\left(\hat{L}_i\right)$$

$$S = \sqrt{(ab-1)F(1-\alpha; ab-1, ab(n-1))}$$

Guarantee:

family-wise confidence coefficient is at least $(1 - \alpha)100\%$

Meaning:

in at least $(1 - \alpha)100\%$ of repetition of experiments, all the intervals in the family cover the true corresponding L_i 's $\alpha\%$ of repetition of experiments, some tests in the family made false discovery when the null hypothesis was true.

Hypothesis testing (t-test) for individual quantity in this family:

$$H_0^i: L_i = 0 \ H_a^i: L_i \neq 0$$

$$t^* = \frac{\hat{L}_i}{s(\hat{L}_i)}$$

If $|t^*| \leq S$, conclude H_0

If $|t^*| > S$, conclude H_a

Guarantee:

family-wise Type I error is at most α

Meaning:

in at most α % of repetition of experiments, some tests in the family made false discovery when the null hypothesis was true.

Suppose we're interested in making inference about all pairwise comparisons of factor level means i.e., a family containing all pairwise comparisons of factor level means

$$\mathcal{L} = \{D = \mu_{ij} - \mu_{i'j'} \text{ for } (i,j) \neq (i',j')\}$$

$$\frac{ab(ab-1)}{2} \text{Pairwise comparisons}$$

$$\hat{D} = \bar{Y}_{ij.} - \bar{Y}_{i'j'.} \qquad s^2(\hat{D}) = MSE \frac{2}{n}$$

 $(1 - \alpha)100\%$ confidence interval for individual quantity in this family:

$$\hat{D}_{ii'} \pm Ts \left(\hat{D}_{ii'}\right)$$

$$T = \frac{1}{\sqrt{2}}q(1-\alpha;ab,ab(n-1))$$

Guarantee:

family-wise confidence coefficient is at least $(1 - \alpha)100\%$

Meaning:

in at least $(1 - \alpha)100\%$ of repetition of experiments, all the intervals in the family cover the true corresponding L_i 's $\alpha\%$ of repetition of experiments, some tests in the family made false discovery when the null hypothesis was true.

Hypothesis testing (t-test) for individual quantity in this family:

$$H_0^i: D_{ii'} = 0 \ H_a^i: D_{ii'} = \neq 0$$

$$q^* = \frac{\hat{D_{ii'}}}{s(\hat{D}_{ii'})}$$

If
$$|q^*| \le T$$
, conclude H_0

If
$$|q^*| > T$$
, conclude H_a

Guarantee:

family-wise Type I error is at most α

Meaning:

in at most α % of repetition of experiments, some tests in the family made false discovery when the null hypothesis was true.

Summary

