Szereg Laurenta, Twierdzenie o residuach

ANA2 - AiR

Ewa Stróżyna

Niech $S(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$, $z_0\in\mathbb{C}$ będzie sumą szerregu potęgowego w $\{z\in\mathbb{C}:|z-z_0|< R\}$.

Jeśli R > 0, to:

- (1) S(z) jest funkcją ciągłą w $\{z \in \mathbb{C} : |z z_0| < R\}$,
- (2) S(z) jest funkcją holomorficzną w $\{z \in \mathbb{C} : |z z_0| < R\}$ i $S'(z) = \sum_{n=1}^{\infty} a_n \cdot n(z z_0)^{n-1}$.

Niech $S(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$, $z_0\in\mathbb{C}$ będzie sumą szerregu potęgowego w $\{z\in\mathbb{C}:|z-z_0|< R\}$.

Jeśli R > 0, to:

- (1) S(z) jest funkcją ciągłą w $\{z \in \mathbb{C} : |z z_0| < R\}$,
- (2) S(z) jest funkcją holomorficzną w $\{z \in \mathbb{C} : |z z_0| < R\}$ i $S'(z) = \sum_{n=1}^{\infty} a_n \cdot n(z z_0)^{n-1}$.

Definicja

Funkcję f(z) nazywamy *całkowitą*, jeśli jest sumą szeregu potęgowego zbieżnego na całej płaszczyźnie zespolonej.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \ z \in \mathbb{C}$$

Jeśli:

- (1) $a_n = 0 \ \forall \ n \geqslant n_0 \Rightarrow f(z)$ wielomian
- (2) nie istnieje n_0 j.w. \Rightarrow szereg zawiera nieskończenie wiele wyrazów, funkcję taką nazywamy *przestępną*.

Szereg Taylora

Szereg Taylora

Twierdzenie

Jeśli funkcja f(z) jest holomorficzna w obszarze jednospójnym D o brzegu Γ , to dla każdego $z_0 \in D$ można ją rozwinąć w szereg Taylora $\sum_{n=0}^{\infty} a_n(z-z_0)^n$, gdzie

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_{K^+(z_0,r)} \frac{f(\tau)}{(\tau - z_0)^{n+1}} d\tau$$

a promień zbieżności R tego szeregu spełnia warunek $R \geqslant \min_{z \in \Gamma} |z - z_0|$.

Przykład:

$$\begin{split} f(z) &= \sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \,, \ |z| < 1 \,, \ z_0 = 0 \\ &\frac{1}{1-z} \,, \ z_0 = -1 \\ &\frac{1}{1-z} = \frac{1}{1-z-1+1} = \frac{1}{2-(z+1)} = \frac{1}{2[1-\frac{z+1}{2}]} = \left\| \begin{array}{c} \left| \frac{z+1}{2} \right| < 1 \\ |z+1| < 2 \end{array} \right\| = \\ &= \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z+1}{2} \right)^n = \sum_{n=0}^{\infty} \frac{(z+1)^n}{2^{n+1}} \end{split}$$

Szereg Laurenta

Szereg Laurenta

Pierścień

$$P\big(z_0; r, R\big) = \left\{z \in \mathbb{C} : r < |z - z_0| < R\right\}, \quad 0 \leqslant r < R \leqslant +\infty$$

Szereg Laurenta

Pierścień

$$P(z_0; r, R) = \{ z \in \mathbb{C} : r < |z - z_0| < R \}, \quad 0 \le r < R \le +\infty$$

Załóżmy, że funkcja f(z) jest holomorficzna w pierścieniu

$$P(z_0; r, R)$$
, np. $f(z) = \frac{1}{z^2 - 1}$ jest holomorficzna w

$$P(-1;0,2) = \{z : 0 < |z+1| < 2\},\$$

$$P\left(-\frac{1}{2}; \frac{1}{2}, \frac{3}{2}\right) = \left\{z : \frac{1}{2} < \left|z + \frac{1}{2}\right| < \frac{3}{2}\right\}$$

$$P(0; 1, \infty) = \{z : |z| > 1\}$$

Płaszczyzna zespolona domknięta

Sfera:
$$\rho^2 + \eta^2 + (\tau - \frac{1}{2})^2 = \frac{1}{4}$$

Dowolny punkt płaszczyzny zespolonej łączymy z punktem (0,0,1) prostą. Przecina ona sferę w $B(\rho,\eta,\tau)$:

$$\rho = \frac{{\mathsf x}}{1 + |{\mathsf z}|^2} \,, \; \eta = \frac{{\mathsf y}}{1 + |{\mathsf z}|^2} \,, \; \tau = \frac{|{\mathsf z}|^2}{1 + |{\mathsf z}|^2}$$

Jeśli $z \to \infty$, to $(\rho, \eta, \tau) \to (0, 0, 1)$ i żaden punkt płaszczyzny $\mathbb C$ nie jest przyporządkowany punktowi (0, 0, 1).

Stąd:
$$(0,0,1)\leftrightarrow\infty$$

$$\mathbb{C} \cup \{\infty\} = \overline{\mathbb{C}}$$
 – płaszczyzna zespolona domknięta

Otoczenia punktów w $\overline{\mathbb{C}}$:

$$\{z: |z-z_0| < R\}$$
 – otoczenie punktu $z_0 \in \mathbb{C}$

$$\{z: |z-z_0| > R\}$$
 – otoczenie ∞

Definicja

Szeregiem Laurenta o współczynnikach a_n i środku $z_0 \neq \infty$ w pierścieniu $P(z_0; r, R)$ nazywamy szereg postaci:

$$\sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n = \sum_{n=0}^{+\infty} a_n (z-z_0)^n + \sum_{n=1}^{+\infty} \frac{a_{-n}}{(z-z_0)^n}$$

Pierwszy szereg w powyższej sumie nazywamy *częścią regularną*, a drugi *częścią główną* szeregu Laurenta.

Definicja

Szeregiem Laurenta o współczynnikach a_n i środku $z_0 \neq \infty$ w pierścieniu $P(z_0; r, R)$ nazywamy szereg postaci:

$$\sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n = \sum_{n=0}^{+\infty} a_n (z-z_0)^n + \sum_{n=1}^{+\infty} \frac{a_{-n}}{(z-z_0)^n}$$

Pierwszy szereg w powyższej sumie nazywamy *częścią regularną*, a drugi *częścią główną* szeregu Laurenta.

Definicja

Szeregiem Laurenta o współczynnikach a_n i środku ∞ w pierścieniu $P(z_0; r, R)$ nazywamy szereg postaci:

$$\sum_{n=-\infty}^{\infty} \frac{a_n}{z^n} = \sum_{n=0}^{\infty} \frac{a_{-n}}{z^n} + \sum_{n=1}^{\infty} a_n z^n$$

Pierwszy szereg w powyższej sumie nazywamy *częścią regularną*, a drugi *częścią główną* szeregu Laurenta.

Część regularna szeregu Laurenta $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ o środku $z_0 \neq \infty$ jest szeregiem potęgowym względem $(z-z_0)$ zbieżnym wewnątrz koła $|z-z_0| < R$ i rozbieżnym na zewnątrz tego koła, gdzie $R = \frac{1}{\lambda}$ i $\lambda = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

Część regularna szeregu Laurenta $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ o środku $z_0 \neq \infty$ jest szeregiem potęgowym względem $(z-z_0)$ zbieżnym wewnątrz koła $|z-z_0| < R$ i rozbieżnym na zewnątrz tego koła, gdzie $R = \frac{1}{\lambda}$ i $\lambda = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

Część główna szeregu Laurenta $\sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n}$ jest szeregiem potęgowym względem zmiennej $u=\frac{1}{z-z_0}$, więc szereg ten jest rozbieżny wewnątrz i zbieżny na zewnątrz koła $|z-z_0| < r$, gdzie $r=\lim_{n \to \infty} \sqrt[n]{|a_{-n}|}$.

Część regularna szeregu Laurenta $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ o środku $z_0 \neq \infty$ jest szeregiem potęgowym względem $(z-z_0)$ zbieżnym wewnątrz koła $|z-z_0| < R$ i rozbieżnym na zewnątrz tego koła, gdzie $R = \frac{1}{\lambda}$ i $\lambda = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

Część główna szeregu Laurenta $\sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n}$ jest szeregiem potęgowym względem zmiennej $u=\frac{1}{z-z_0}$, więc szereg ten jest rozbieżny wewnątrz i zbieżny na zewnątrz koła $|z-z_0| < r$, gdzie $r=\lim_{n\to\infty} \sqrt[n]{|a_{-n}|}$.

Przez zbieżność (zwykłą, jednostajną, bezwzględną) szeregu Laurenta rozumiemy odpowiednią zbieżność obu jego części jednocześnie.

Suma szeregu Laurenta to suma sum obu jego części.

Twierdzenie (Abela)

Jeśli r i R oznaczają promienie zbieżności odpowiednio części głównej i części regularnej szeregu Laurenta $\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$, $z_0 \neq \infty$, to szereg ten jest jednostajnie zbieżny w każdym pierścieniu domkniętym zawartym w pierścieniu $r < |z-z_0| < R$.

Twierdzenie (Abela)

Jeśli r i R oznaczają promienie zbieżności odpowiednio części głównej i części regularnej szeregu Laurenta $\sum_{n=-\infty}^{\infty} a_n(z-z_0)^n$, $z_0 \neq \infty$, to szereg ten jest jednostajnie zbieżny w każdym pierścieniu domkniętym zawartym w pierścieniu $r < |z-z_0| < R$.

Twierdzenie (Laurenta)

Jeśli f(z) jest funkcją holomorficzną w pierścieniu $P(z_0; r, R)$, to można ją w tym pierścieniu rozwinąć w szereg Laurenta

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$$

gdzie $a_n=rac{1}{2\pi i}\oint_{K^+}rac{f(au)}{(au-z_0)^{n+1}}\,d au\,,\,\,K\subset P(z_0;r,R).$

Dowód:

Z tw. Cauchy'ego $\frac{1}{2\pi i}\oint_{C_1^+}\frac{f(\tau)}{\tau-z}\,d\tau=0$, z wzoru całkowego Cauchy'ego $\frac{1}{2\pi i}\oint_{C_2^+}\frac{f(\tau)}{\tau-z}\,d\tau=f(z)$, stąd

$$f(z) = \frac{1}{2\pi i} \oint_{C_1^+} \frac{f(\tau)}{\tau - z} d\tau + \frac{1}{2\pi i} \oint_{C_2^+} \frac{f(\tau)}{\tau - z} d\tau =$$

$$= \frac{1}{2\pi i} \left[\oint_{K_2^+} \frac{f(\tau)}{\tau - z} d\tau - \oint_{K_1^+} \frac{f(\tau)}{\tau - z} d\tau \right] =$$

 $\tau \in K_2$:

$$\frac{1}{\tau - z} = \frac{1}{\tau - z_0 - (z - z_0)} = \frac{1}{\tau - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\tau - z_0}} = \left\| \begin{array}{c} \left| \frac{z - z_0}{\tau - z_0} \right| < 1\\ |z - z_0| < |\tau - z_0| \end{array} \right\| = \\ = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\tau - z_0)^{n+1}}$$

 $\tau \in K_1$:

$$\frac{1}{\tau - z} = \frac{1}{\tau - z_0 - (z - z_0)} = -\frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{\tau - z_0}{z - z_0}} = \left\| \frac{\left| \frac{\tau - z_0}{z - z_0} \right| < 1}{\left| \tau - z_0 \right| < \left| z - z_0 \right|} \right\| = \\
= -\sum_{n=0}^{\infty} \frac{(\tau - z_0)^n}{(z - z_0)^{n+1}} = -\sum_{n=1}^{\infty} \frac{(\tau - z_0)^{n-1}}{(z - z_0)^n} \\
f(z) = \\
\frac{1}{2\pi i} \oint_{K_2^+} f(\tau) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\tau - z_0)^{n+1}} d\tau + \frac{1}{2\pi i} \oint_{K_1^+} f(\tau) \sum_{n=1}^{\infty} \frac{(\tau - z_0)^{n-1}}{(z - z_0)^n} d\tau = \\
= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_2^+} \frac{f(\tau)}{(\tau - z_0)^{n+1}} \right] (z - z_0)^n + \\
+ \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \oint_{K_1^+} \frac{f(\tau)}{(\tau - z_0)^{-n+1}} \right] (z - z_0)^{-n} = \\
= \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}$$

Uwagi:

- (1) Rozwinięcie funkcji f(z) w zadanym pierścieniu w szereg Laurenta jest jednoznaczne.
- (2) Jeśli f(z) jest holomorficzna w kole $\{z: |z-z_0| < R\}$, to szereg Laurenta staje się szeregiem Taylora, bo funkcja podcałkowa w a_{-n} jest holomorficzna:

$$a_{-n} = \frac{1}{2\pi i} \oint_{K^+} f(\tau) \cdot (\tau - z_0)^{n-1} d\tau = 0$$

Uwagi:

- (1) Rozwinięcie funkcji f(z) w zadanym pierścieniu w szereg Laurenta jest jednoznaczne.
- (2) Jeśli f(z) jest holomorficzna w kole $\{z : |z z_0| < R\}$, to szereg Laurenta staje się szeregiem Taylora, bo funkcja podcałkowa w a_{-n} jest holomorficzna:

$$a_{-n} = \frac{1}{2\pi i} \oint_{K^+} f(\tau) \cdot (\tau - z_0)^{n-1} d\tau = 0$$

Przykłady:

(1) Rozwinąć funkcję $f(z) = \frac{2}{z^2-1}$ w szereg Laurenta w pierścieniach P(2;1,3), P(-1;0,2), $P(0;1,\infty)$, $P(i;\sqrt{2},\infty)$.

$$f(z) = \frac{1}{z - 1} - \frac{1}{z + 1}$$

(a)
$$P(2;1,3) = \{z : 1 < |z-2| < 3\}$$

$$\begin{aligned} &\frac{1}{z-1} = \frac{1}{z-2+1} = \frac{1}{z-2} \cdot \frac{1}{1+\frac{1}{z-2}} = \left\| \begin{array}{c} \left| \frac{1}{z-2} \right| < 1 \\ |z-2| > 1 \end{array} \right\| = \\ &= \sum_{n=0}^{\infty} (-1)^n \cdot \frac{1}{(z-2)^{n+1}} \end{aligned}$$

$$\frac{1}{z+1} = \frac{1}{z-2+3} = \frac{1}{3} \cdot \frac{1}{1+\frac{z-2}{3}} = \left\| \begin{array}{c} \left| \frac{z-2}{3} \right| < 1\\ |z-2| < 3 \end{array} \right\| = \\ = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(z-2)^n}{3^{n+1}}$$

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3^{n+1}} (z-2)^n + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(z-2)^n}$$

(b)
$$P(-1;0,2) = \{z : 0 < |z+1| < 2\}$$

$$\frac{1}{z-1} = \frac{1}{z+1-2} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z+1}{2}} = \left\| \frac{\left| \frac{z+1}{2} \right| < 1}{|z+1| < 2} \right\| =$$

$$= -\sum_{n=0}^{\infty} \frac{(z+1)^n}{2^{n+1}}$$

$$f(z) = -\sum_{n=0}^{\infty} \frac{(z+1)^n}{2^{n+1}} - \frac{1}{z+1}$$

(b)
$$P(-1;0,2) = \{z : 0 < |z+1| < 2\}$$

$$\frac{1}{z-1} = \frac{1}{z+1-2} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z+1}{2}} = \left\| \frac{\left| \frac{z+1}{2} \right| < 1}{|z+1| < 2} \right\| = \\ = -\sum_{n=0}^{\infty} \frac{(z+1)^n}{2^{n+1}}$$

$$f(z) = -\sum_{n=0}^{\infty} \frac{(z+1)^n}{2^{n+1}} - \frac{1}{z+1}$$

(c)
$$P(0;1,\infty) = \{z : |z| > 1\}$$

$$f(z) = \frac{2}{z^2 - 1} = \frac{2}{z^2} \cdot \frac{1}{1 - \frac{1}{z^2}} = \left\| \begin{array}{c} \left| \frac{1}{z^2} \right| < 1 \\ |z| > 1 \end{array} \right\| = 2 \sum_{n=0}^{\infty} \frac{1}{z^{2n+2}}$$

(d)
$$P(i; \sqrt{2}, \infty) = \{z : |z - i| > \sqrt{2}\}$$

$$\frac{1}{z-1} = \frac{1}{z-i+i-1} = \frac{1}{z-i} \cdot \frac{1}{1+\frac{i-1}{z-i}} = \left\| \begin{array}{c} \left| \frac{i-1}{z-i} \right| < 1 \\ |z-i| > |i-1| \\ |z-i| > \sqrt{2} \end{array} \right\| =$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(i-1)^n}{(z-i)^{n+1}}$$

$$\frac{1}{z+1} = \frac{1}{z-i+i-1} = \frac{1}{z-i} \cdot \frac{1}{1+\frac{i+1}{z-i}} = \left\| \begin{array}{c} \left| \frac{i+1}{z-i} \right| < 1 \\ |z-i| > |i+1| \\ |z-i| > \sqrt{2} \end{array} \right\| = \\ = \sum_{n=0}^{\infty} (-1)^n \frac{(i+1)^n}{(z-i)^{n+1}} \\ f(z) = \sum_{n=0}^{\infty} (-1)^n \cdot \left[(i-1)^n - (i+1)^n \right] \cdot \frac{1}{(z-i)^{n+1}}$$

(2) Znaleźć obszar zbieżności i sumę szeregu Laurenta

$$\sum_{n=-\infty}^{\infty} a_n z^n$$
, gdzie

$$(a) a_n = \begin{cases} 2^{-n}, & n \geqslant 0 \\ 1, & n < 0 \end{cases}$$

(b)
$$a_n = \begin{cases} \frac{1}{2^n}, & n \geqslant 0 \\ 2^{-n}, & n < 0 \end{cases}$$

(2) Znaleźć obszar zbieżności i sumę szeregu Laurenta $\sum_{n=-\infty}^{\infty} a_n z^n$, gdzie

(a)
$$a_n = \begin{cases} 2^{-n}, & n \geqslant 0 \\ 1, & n < 0 \end{cases}$$

(b)
$$a_n = \begin{cases} \frac{1}{2^n}, & n \geqslant 0 \\ 2^{-n}, & n < 0 \end{cases}$$

(a) część regularna ma postać $\sum_{n=0}^{\infty} 2^{-n} z^n$, więc

$$\lambda = \lim_{n \to \infty} \sqrt[n]{|2^{-n}|} = \frac{1}{2} \Rightarrow R = 2,$$

część główna to $\sum_{n=0}^{\infty} z^{-n}$, więc

$$r = \lim_{n \to \infty} \sqrt[n]{|a_{-n}|} = \lim_{n \to \infty} 1 = 1$$
, więc obszar zbieżności

szeregu jest pierścieniem 1 < |z| < 2, suma szeregu

$$f(z) = f_1(z) + f_2(z)$$
, gdzie

$$f_1(z) = \sum_{n=0}^{\infty} 2^{-n} z^n$$
, $f_2(z) = \sum_{n=0}^{\infty} z^{-n}$

$$f_1(z) = \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \frac{1}{1-\frac{z}{2}} = \frac{2}{2-z} \,, \quad \left|\frac{z}{2}\right| < 1 \equiv |z| < 2$$

$$f_2(z) = \sum_{n=1}^{\infty} \left(\frac{1}{z}\right)^n = \frac{\frac{1}{z}}{1-\frac{1}{z}} = \frac{1}{z-1}, \quad \left|\frac{1}{z}\right| < 1 \equiv |z| > 1$$

$$f(z) = \frac{2}{2-z} + \frac{1}{z-1} = \frac{z}{(2-z)(z-1)}$$

$$\textstyle f_1(z) = \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \frac{1}{1-\frac{z}{2}} = \frac{2}{2-z} \,, \quad \left|\frac{z}{2}\right| < 1 \equiv |z| < 2$$

$$f_2(z) = \sum_{n=1}^{\infty} \left(\frac{1}{z}\right)^n = \frac{\frac{1}{z}}{1 - \frac{1}{z}} = \frac{1}{z - 1}, \quad \left|\frac{1}{z}\right| < 1 \equiv |z| > 1$$

$$f(z) = \frac{2}{2-z} + \frac{1}{z-1} = \frac{z}{(2-z)(z-1)}$$

(b) część regularna
$$\sum_{n=0}^{\infty} \frac{1}{2^n} z^n \Rightarrow \lambda = \lim_{n \to \infty} \sqrt[n]{\frac{1}{2^n}} = \frac{1}{2} \Rightarrow R = 2$$

część główna
$$\sum_{n=0}^{\infty} 2^{-n} z^n \Rightarrow r = \lim_{n \to \infty} \sqrt[n]{2^{-n}} = \frac{1}{2}$$

obszar zbieżności: $\frac{1}{2} < |z| < 2$

suma szeregu:
$$f(z) = f_1(z) + f_2(z)$$

$$f_1(z) = \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \frac{1}{1-\frac{z}{2}} = \frac{2}{2-z}, \quad \left|\frac{z}{2}\right| < 1 \equiv |z| < 2$$

$$f_2(z) = \sum_{n=1}^{\infty} \frac{1}{(2z)^n} = \frac{\frac{1}{2z}}{1-\frac{1}{2z}} = \frac{1}{2z-1}, \quad \left|\frac{1}{2z}\right| < 1 \equiv |z| > \frac{1}{2}$$

$$f(z) = \frac{2}{2-z} + \frac{1}{2z-1} = \frac{3z}{(2-z)(2z-1)}$$

(3) Znaleźć rozwinięcie funkcji $f(z) = \frac{1}{(z-1)(z-2)}$ w pierścieniu P(0;1,2)

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1}, \quad 1 < |z| < 2$$

$$\frac{1}{z-2} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} = \left\| \begin{array}{c} \left| \frac{z}{2} \right| < 1 \\ |z| < 2 \end{array} \right\| = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$$

$$\frac{1}{z-1} = \frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} = \left\| \begin{array}{c} \left| \frac{1}{z} \right| < 1 \\ |z| > 1 \end{array} \right\| = \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} = \sum_{n=1}^{\infty} \frac{1}{z^n}$$

$$\Rightarrow f(z) = \sum_{n=-\infty}^{\infty} a_n z^n, \quad a_n = \left\{ \begin{array}{cc} -\frac{1}{2^{n+1}}, & n \geqslant 0 \\ 1, & n < 0 \end{array} \right.$$

(4) Znaleźć rozwinięcie w szereg Laurenta funkcji $f(z) = \frac{1}{z^2-1}$ w pierścieniu P(1;0,2)

$$f(z) = \frac{1}{2} \left[\frac{1}{z-1} - \frac{1}{z+1} \right], \quad 0 < |z-1| < 2$$

$$\frac{1}{z+1} = \frac{1}{z-1+2} = \frac{1}{2} \cdot \frac{1}{1+\frac{z-1}{2}} = \left\| \begin{array}{c} \left| \frac{z-1}{2} \right| < 1 \\ |z-1| < 2 \end{array} \right\| = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(z-1)^n}{2^{n+1}}$$

$$f(z) = \frac{1}{2} \cdot \frac{1}{z-1} + \sum_{n=0}^{\infty} (-1)^{n+1} \cdot \frac{1}{2^{n+2}} (z-1)^n = \sum_{n=-\infty}^{\infty} a_n (z-1)^n$$

$$a_n = \begin{cases} (-1)^{n+1} \cdot \frac{1}{2^{n+2}}, & n \geqslant 0 \\ \frac{1}{2}, & n = -1 \\ 0, & n < -1 \end{cases}$$

f(z) - holomorficzna w obszarze D i $z_0 \in D \Rightarrow f(z)$ rozwija się w szereg Taylora: $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$

f(z) - holomorficzna w obszarze D i $z_0 \in D \Rightarrow f(z)$ rozwija się w szereg Taylora: $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$

Definicja

Punkt $z_0 \in \mathbb{C}$ jest *miejscem zerowym* funkcji f(z), jeśli $f(z_0) = 0$.

Punkt $z_0 \in \mathbb{C}$ jest zerem k - krotnym funkcji f(z), jeśli współczynniki szeregu Taylora $a_0 = a_1 = \ldots = a_{k-1} = 0$ i $a_k \neq 0$.

f(z) - holomorficzna w obszarze D i $z_0 \in D \Rightarrow f(z)$ rozwija się w szereg Taylora: $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$

Definicja

Punkt $z_0 \in \mathbb{C}$ jest *miejscem zerowym* funkcji f(z), jeśli $f(z_0) = 0$.

Punkt $z_0 \in \mathbb{C}$ jest zerem k - krotnym funkcji f(z), jeśli współczynniki szeregu Taylora $a_0 = a_1 = \ldots = a_{k-1} = 0$ i $a_k \neq 0$.

Uwagi:

(1)
$$z_0$$
 jest zerem k - krotnym funkcji $f(z) \iff f(z_0) = f'(z_0) = \ldots = f^{(k-1)}(z_0) = 0$ i $f^{(k)}(z_0) \neq 0$

- (2) Jeśli z_0 zero k -krotne funkcji f(z), to $f(z) = (z z_0)^k \cdot \Phi(z)$, gdzie $\Phi(z) = \sum_{l=0}^{\infty} a_{k+l} (z z_0)^l$, tzn.
- $\Phi(z_0) \neq 0$ i Φ ciągła i holomorficzna w pewnym otoczeniu $z_0 \Rightarrow \Phi(z) \neq 0$ w pewnym otoczeniu punktu z_0 , czyli z_0 jest jedynym miejscem zerowym f(z) w tym otoczeniu.

- (2) Jeśli z_0 zero k -krotne funkcji f(z), to $f(z) = (z z_0)^k \cdot \Phi(z)$, gdzie $\Phi(z) = \sum_{l=0}^{\infty} a_{k+l} (z z_0)^l$, tzn.
- $\Phi(z_0) \neq 0$ i Φ ciągła i holomorficzna w pewnym otoczeniu $z_0 \Rightarrow \Phi(z) \neq 0$ w pewnym otoczeniu punktu z_0 , czyli z_0 jest jedynym miejscem zerowym f(z) w tym otoczeniu.

Przykłady:

(1)
$$f(z) = 2z^3 \cdot \sin^2 \frac{z}{2} = z^3 (1 - \cos z) = z^3 \left(\frac{z^2}{2!} - \frac{z^4}{4!} + \dots \right) =$$

= $z^5 \left(\frac{1}{2!} - \frac{z^2}{4!} + \dots \right) \Rightarrow z = 0$ - zero 5 - krotne, bo
 $\Phi(z) = \frac{1}{2!} - \frac{z^2}{4!} + \dots$ - holomorficzna i $\Phi(0) \neq 0$

inaczej:
$$f(z) = z^3 \left(1 - \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \right) =$$

= $z^3 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n}}{(2n)!} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n+3}}{(2n)!}$
 $n = 1 \Rightarrow 2n + 3 = 5 \Rightarrow z = 0$ - zero 5 -krotne

$$(2) \ f(z) = (e^{z} - 1)^{2}, \quad z_{0} = 0$$

$$f(0) = 0$$

$$f'(z) = 2(e^{z} - 1) \cdot e^{z}, \quad f'(0) = 0$$

$$f''(z) = 2(2e^{2z} - e^{z}), \quad f''(0) \neq 0$$

$$\Rightarrow z = 0 - \text{zero } 2 - \text{krotne}$$

$$\text{inaczej: } (e^{z} - 1)^{2} = \left(z + \frac{z^{2}}{2!} + \dots\right) \left(z + \frac{z^{2}}{2!} + \dots\right) =$$

$$= z^{2} + z^{3} \cdot \left(\frac{1}{2} + \frac{1}{2}\right) + \dots = z^{2} [1 + z + \dots]$$

 $\Phi(z) = 1 + z + \dots i \Phi(0) \neq 0$

Punkty osobliwe

Punkty osobliwe

Definicja

Punkt z_0 jest punktem regularnym funkcji f(z), jeśli f(z) jest holomorficzna w otoczeniu z_0 .

Punkt z_0 jest punktem osobliwym (odosobnionym) funkcji f(z), jeśli f nie jest holomorficzna w z_0 i jest holomorficzna w otoczeniu pierścieniowym z_0 , tzn. w $\{z: 0 < |z-z_0| < R\}$.

Punkty osobliwe

Definicja

Punkt z_0 jest punktem regularnym funkcji f(z), jeśli f(z) jest holomorficzna w otoczeniu z_0 .

Punkt z_0 jest punktem osobliwym (odosobnionym) funkcji f(z), jeśli f nie jest holomorficzna w z_0 i jest holomorficzna w otoczeniu pierścieniowym z_0 , tzn. w $\{z: 0 < |z-z_0| < R\}$.

Wyróżniamy trzy rodzaje punktów osobliwych.

Niech z_0 będzie punktem osobliwym funkcji $f(z) \Rightarrow f(z)$ można rozwinąć w szereg Laurenta w pierścieniu $P(z_0; 0, R)$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}$$

Niech z_0 będzie punktem osobliwym funkcji $f(z) \Rightarrow f(z)$ można rozwinąć w szereg Laurenta w pierścieniu $P(z_0; 0, R)$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n}$$

Definicja

Punkt z_0 jest punktem pozornie osobliwym funkcji f(z), jeśli część główna szeregu Laurenta tej funkcji redukuje się do zera.

Punkt z_0 jest biegunem k - krotnym funkcji f(z), jeśli część główna szeregu Laurenta tej funkcji zawiera skończenie wiele wyrazów, $a_{-k} \neq 0$ i $a_{-n} = 0 \quad \forall n > k$.

Punkt z_0 jest punktem istotnie osobliwym funkcji f(z), jeśli część główna szeregu Laurenta tej funkcji zawiera nieskończenie wiele wyrazów różnych od zera.

(I) Punkty pozornie osobliwe

Wszystkie współczynniki części głównej są równe zeru.

Przyjmując $f(z_0) = a_0$ otrzymujemy funkcję holomorficzną w całym kole $|z - z_0| < R$, a punkt z_0 staje się punktem regularnym.

np.
$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} = \frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots \Rightarrow z = 0$$
 - punkt pozornie osobliwy

(I) Punkty pozornie osobliwe

Wszystkie współczynniki części głównej są równe zeru.

Przyjmując $f(z_0) = a_0$ otrzymujemy funkcję holomorficzną w całym kole $|z - z_0| < R$, a punkt z_0 staje się punktem regularnym.

np.
$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n+1)!} = \frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots \Rightarrow z = 0$$
 - punkt pozornie osobliwy

Twierdzenie

Jeśli $\lim_{z\to z_0} f(z) = g$, gdzie g jest liczbą skończoną, to z_0 jest punktem pozornie osobliwym f(z).

(II) Bieguny

Dla bieguna k - krotnego:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{a_{-1}}{z - z_0} + \frac{a_{-2}}{(z - z_0)^2} + \dots + \frac{a_{-k}}{(z - z_0)^k}$$

$$a_{-k} \neq 0, \ a_{-n} = 0 \quad \forall \ n > k$$

np.
$$f(z) = \frac{\sin z}{z^3} = \frac{1}{z^3} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n-2}}{(2n+1)!} = \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n-2}}{(2n+1)!} + \frac{1}{z^2} = \frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots}{z^3} = \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} - \dots \Rightarrow z = 0 - \text{biegun 2 - krotny}$$

(II) Bieguny

Dla bieguna k - krotnego:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{a_{-1}}{z - z_0} + \frac{a_{-2}}{(z - z_0)^2} + \ldots + \frac{a_{-k}}{(z - z_0)^k}$$

 $a_{-k} \neq 0, \ a_{-n} = 0 \quad \forall \ n > k$

np.
$$f(z) = \frac{\sin z}{z^3} = \frac{1}{z^3} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n-2}}{(2n+1)!} = \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n-2}}{(2n+1)!} + \frac{1}{z^2} = \frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots}{z^3} = \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} - \dots \Rightarrow z = 0 - \text{biegun 2 - krotny}$$

Twierdzenie

Jeśli $\lim_{z\to z_0} f(z) = \infty$, to punkt z_0 jest biegunem funkcji f(z).

Uwagi:

- (1) z_0 biegun k krotny funkcji $f(z) \iff \lim_{z \to z_0} (z z_0)^k f(z) = a_{-k} \neq 0$ i $\lim_{z \to z_0} (z z_0)^{k+n} f(z) = 0$ dla $n \in \mathbb{N}$.
- (2) Jeśli z_0 jest biegunem k krotnym funkcji f(z), to dla funkcji $\frac{1}{f(z)}$ jest on zerem k krotnym i odwrotnie, jeśli z_0 jest zerem k -krotnym funkcji g(z), to dla funkcji $\frac{1}{g(z)}$ jest on biegunem k krotnym.

Uwagi:

- (1) z_0 biegun k krotny funkcji $f(z) \iff \lim_{z \to z_0} (z z_0)^k f(z) = a_{-k} \neq 0$ i $\lim_{z \to z_0} (z z_0)^{k+n} f(z) = 0$ dla $n \in \mathbb{N}$.
- (2) Jeśli z_0 jest biegunem k krotnym funkcji f(z), to dla funkcji $\frac{1}{f(z)}$ jest on zerem k krotnym i odwrotnie, jeśli z_0 jest zerem k -krotnym funkcji g(z), to dla funkcji $\frac{1}{g(z)}$ jest on biegunem k krotnym.

Twierdzenie

Jeśli z_0 jest zerem m - krotnym funkcji f(z) i jest zerem n - krotnym funkcji g(z), to

- (1) jeśli $m \ge n$, to z_0 jest punktem pozornie osobliwym f-cji $\frac{f(z)}{g(z)}$,
- (2) jeśli m < n, to z_0 jest biegunem (n-m) krotnym funkcji $\frac{f(z)}{g(z)}$.

Przykład:

$$f(z) = \frac{\cos z}{(2z-3\pi)(2z-\pi)^3}$$

 $z=rac{\pi}{2}$ - zero 1 - krotne licznika i 3 - krotne mianownika,

 $z=\frac{3}{2}\pi$ - zero 1 - krotne licznika i mianownika \Rightarrow

 $z=\frac{\pi}{2}$ jest biegunem 2 - krotnym

 $z = \frac{3}{2}\pi$ jest punktem pozornie osobliwym

Przykład:

$$f(z) = \frac{\cos z}{(2z-3\pi)(2z-\pi)^3}$$

 $z=\frac{\pi}{2}$ - zero 1 - krotne licznika i 3 - krotne mianownika,

 $z=rac{3}{2}\pi$ - zero 1 - krotne licznika i mianownika \Rightarrow

 $z=\frac{\pi}{2}$ jest biegunem 2 - krotnym

 $z = \frac{3}{2}\pi$ jest punktem pozornie osobliwym

Twierdzenie

Jeśli funkcje f(z), g(z) są holomorficzne w pewnym otoczeniu punktu z_0 i $f(z_0) = g(z_0) = 0$ oraz istnieje granica $\lim_{z \to z_0} \frac{f'(z)}{g'(z)} = K$, to $\lim_{z \to z_0} \frac{f(z)}{g(z)} = K$.

Dowód:

$$f(z) = (z - z_0)\varphi(z) \Rightarrow f'(z) = \varphi(z) + (z - z_0)\varphi'(z)$$

$$g(z) = (z - z_0)\psi(z) \Rightarrow g'(z) = \psi(z) + (z - z_0)\psi'(z)$$

$$K = \lim_{z \to z_0} \frac{f'(z)}{g'(z)} = \lim_{z \to z_0} \frac{\varphi(z) + (z - z_0)\varphi'(z)}{\psi(z) + (z - z_0)\psi'(z)} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} = \lim_{z \to z_0} \frac{f(z)}{\varphi(z)}$$

Dowód:

$$\begin{split} f(z) &= (z - z_0)\varphi(z) \Rightarrow f'(z) = \varphi(z) + (z - z_0)\varphi'(z) \\ g(z) &= (z - z_0)\psi(z) \Rightarrow g'(z) = \psi(z) + (z - z_0)\psi'(z) \\ K &= \lim_{z \to z_0} \frac{f'(z)}{g'(z)} = \lim_{z \to z_0} \frac{\varphi(z) + (z - z_0)\varphi'(z)}{\psi(z) + (z - z_0)\psi'(z)} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} = \\ &= \lim_{z \to z_0} \frac{\varphi(z)(z - z_0)}{\psi(z)(z - z_0)} = \lim_{z \to z_0} \frac{f(z)}{g(z)} \\ \text{np. } \lim_{z \to 0} \frac{\sin z}{z} = \lim_{z \to 0} \frac{\cos z}{z} = 1 \end{split}$$

Dowód:

$$\begin{split} f(z) &= (z - z_0)\varphi(z) \Rightarrow f'(z) = \varphi(z) + (z - z_0)\varphi'(z) \\ g(z) &= (z - z_0)\psi(z) \Rightarrow g'(z) = \psi(z) + (z - z_0)\psi'(z) \\ K &= \lim_{z \to z_0} \frac{f'(z)}{g'(z)} = \lim_{z \to z_0} \frac{\varphi(z) + (z - z_0)\varphi'(z)}{\psi(z) + (z - z_0)\psi'(z)} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} = \\ &= \lim_{z \to z_0} \frac{\varphi(z)(z - z_0)}{\psi(z)(z - z_0)} = \lim_{z \to z_0} \frac{f(z)}{g(z)} \end{split}$$

np.
$$\lim_{z\to 0} \frac{\sin z}{z} = \lim_{z\to 0} \frac{\cos z}{1} = 1$$

(III) Punkty istotnie osobliwe

np. funkcja
$$f(z) = e^{\frac{1}{z}}$$
 - holomorficzna w $\{z: |z| > 0\}$

$$e^{\frac{1}{z}}=\sum_{n=0}^{\infty}\frac{1}{z^n\cdot n!}=1+\frac{1}{z}+\frac{1}{z^2\cdot 2!}+\ldots\Rightarrow z=0$$
 - punkt istotnie osobliwy

Twierdzenie

Jeśli $\lim_{z\to z_0} f(z)$ nie istnieje, to punkt z_0 jest punktem istotnie osobliwym.

Twierdzenie

Jeśli $\lim_{z\to z_0} f(z)$ nie istnieje, to punkt z_0 jest punktem istotnie osobliwym.

Punkty osobliwe w ∞

Twierdzenie

Jeśli $\lim_{z\to z_0} f(z)$ nie istnieje, to punkt z_0 jest punktem istotnie osobliwym.

Punkty osobliwe w ∞

Aby otrzymać rozwinięcie w szereg Laurenta funkcji f(z) holomorficznej w otoczeniu pierścieniowym punktu ∞ , czyli dla $R<|z|<\infty$, podstawiamy $z=\frac{1}{\zeta}$ i rozwijamy w szereg Laurenta funkcję $\varphi(\zeta)=f\left(\frac{1}{z}\right)$ w otoczeniu pierścieniowym punktu $\zeta=0$, czyli dla $0<|\zeta|<\frac{1}{R}$, a następnie wracamy do zmiennej z otrzymując żądane rozwinięcie.

Z tw. Laurenta wynika, że rozwinięcie w szereg Laurenta funkcji f(z) w otoczeniu punktu ∞ , czyli dla $R<|z|<\infty$, ma postać:

$$f(z) = \sum_{n=0}^{\infty} \frac{a_{-n}}{z^n} + \sum_{n=1}^{\infty} a_n z^n$$

W zależności od tego, czy szereg $\sum_{n=1}^{\infty} a_n z^n$, który jest częścią główną szeregu Laurenta, jest równy zeru, czy ma skończoną liczbę wyrazów niezerowych, czy ma nieskończenie wiele wyrazów różnych od zera, punkt $z=\infty$ nazywamy odpowiednio punktem pozornie osobliwym, biegunem lub punktem istotnie osobliwym funkcji f(z).

Jeśli f(z) ma w ∞ punkt pozornie osobliwy, to

$$f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

Przyjmując $\lim_{z\to\infty}f(z)=a_0$ otrzymujemy funkcję holomorficzną w ∞ .

Jeśli f(z) ma w ∞ punkt pozornie osobliwy, to

$$f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

Przyjmując $\lim_{z\to\infty}f(z)=a_0$ otrzymujemy funkcję holomorficzną w ∞ .

Jeśli w szczególności $\lim_{z\to\infty} f(z) = a_0 = 0$ i $a_{-1} \neq 0$, to punkt ∞ nazywamy zerem jednokrotnym f(z).

Jeśli f(z) ma w ∞ punkt pozornie osobliwy, to

$$f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

Przyjmując $\lim_{z\to\infty}f(z)=a_0$ otrzymujemy funkcję holomorficzną w ∞ .

Jeśli w szczególności $\lim_{z\to\infty} f(z) = a_0 = 0$ i $a_{-1} \neq 0$, to punkt ∞ nazywamy zerem jednokrotnym f(z).

Gdy funkcja f(z) ma w ∞ biegun k - krotny, to jej rozwinięcie w szereg Laurenta w otoczeniu pierścieniowym tego punktu ma postać:

$$f(z) = \sum_{n=0}^{\infty} \frac{a_{-n}}{z^n} + a_1 z + a_2 z^2 + \ldots + a_k z^k, \quad a_k \neq 0, \ a_n = 0 \quad \forall \ n > k$$

Część główna tego rozwinięcia jest wtedy wielomianem stopnia k.

Residuum funkcji

Residuum funkcji

Załóżmy, że funkcja f(z) jest holomorficzna w pierścieniu $P(z_0;0,R)=\{z\in\mathbb{C}:0<|z-z_0|< R\}\Rightarrow f(z)=\sum_{n=-\infty}^{+\infty}a_n(z-z_0)^n,\quad K(z_0,R)\subset P(z_0;0,R)$

Residuum funkcji

Załóżmy, że funkcja f(z) jest holomorficzna w pierścieniu

$$P(z_0; 0, R) = \{ z \in \mathbb{C} : 0 < |z - z_0| < R \} \Rightarrow f(z) = \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n, \quad K(z_0, R) \subset P(z_0; 0, R)$$

Wtedy
$$\oint_{K^+(z_0,r)} f(z) dz = \oint_{K^+(z_0,r)} \sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n dz = \sum_{n=-\infty}^{+\infty} a_n \oint_{K^+(z_0,r)} (z-z_0)^n dz = a_{-1} \cdot 2\pi i$$

Definicja

Residuum funkcji w punkcie $z_0 \neq \infty$ jest to wartość całki

$$\operatorname{res}_{z_0} f(z) = \frac{1}{2\pi i} \oint_{C^+} f(z) \, dz$$

gdzie $C \subset P(z_0; 0, R)$ - krzywa zamknięta zwykła kawałkami gładka.

Definicja

Residuum funkcji w punkcie $z_0 \neq \infty$ jest to wartość całki

$$\operatorname{res}_{z_0} f(z) = \frac{1}{2\pi i} \oint_{C^+} f(z) \, dz$$

gdzie $C \subset P(z_0; 0, R)$ - krzywa zamknięta zwykła kawałkami gładka.

Uwaga

$$\operatorname{res}_{z_0} f(z) = a_{-1} \quad \text{dla} \quad f(z) = \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n$$

w rozwinięciu f(z) w szereg Laurenta w $P(z_0; 0, R)$, gdzie $a_n = \frac{1}{2\pi i} \oint_{C^+} \frac{f(\tau)}{(\tau - z_0)^{n+1}} d\tau$, $n \in \mathbb{N}$

• Dla punktu regularnego lub pozornie osobliwego z_0 funkcji f(z):

$${\rm res}_{z_0}f(z)=0$$

• Dla punktu regularnego lub pozornie osobliwego z_0 funkcji f(z):

$$\operatorname{res}_{z_0} f(z) = 0$$

• Jeśli z_0 - biegun rzędu 1 funkcji f(z):

$$f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots, \quad a_{-1} \neq 0 \Rightarrow$$

$$\Rightarrow (z - z_0) \cdot f(z) = a_{-1} + a_0(z - z_0) + a_1(z - z_0)^2 + \dots$$

$$z o z_0$$
 : $\lim_{z o z_0} (z-z_0) f(z) = \lim_{z o z_0} [a_{-1} + a_0(z-z_0) + \ldots] = a_{-1}$ stąd

$$\operatorname{res}_{z_0} f(z) = \lim_{z \to z_0} (z - z_0) \cdot f(z)$$

Jeśli $f(z)=\frac{P(z)}{Q(z)}$ - iloraz funkcji holomorficznych takich, że $P(z_0)\neq 0$, $Q(z_0)=0$, $Q'(z_0)\neq 0$, to:

$$\lim_{z \to z_0} (z - z_0) \frac{P(z)}{Q(z)} = \lim_{z \to z_0} \frac{P(z)}{\frac{Q(z) - Q(z_0)}{z - z_0}} = \frac{P(z_0)}{Q'(z_0)}$$
 stạd

$$\operatorname{res}_{z_0}\frac{P(z)}{Q(z)} = \frac{P(z_0)}{Q'(z_0)}$$

Jeśli $f(z) = \frac{P(z)}{Q(z)}$ - iloraz funkcji holomorficznych takich, że $P(z_0) \neq 0$, $Q(z_0) = 0$, $Q'(z_0) \neq 0$, to:

$$\lim_{z \to z_0} (z - z_0) \frac{P(z)}{Q(z)} = \lim_{z \to z_0} \frac{P(z)}{\frac{Q(z) - Q(z_0)}{z - z_0}} = \frac{P(z_0)}{Q'(z_0)}$$
 stạd

$$\operatorname{res}_{z_0}\frac{P(z)}{Q(z)}=\frac{P(z_0)}{Q'(z_0)}$$

Przykłady:

$$\begin{array}{l} (1) \ f(z) = \frac{1}{z^2-1} = \frac{1}{(z-1)(z+1)} \,, \quad z = \pm 1 \text{ - bieguny } 1 \text{ - krotne} \\ \\ \operatorname{res}_1 f(z) = \lim_{z \to 1} (z-1) \cdot \frac{1}{z^2-1} = \lim_{z \to 1} \frac{1}{z+1} = \frac{1}{2} \\ \\ \operatorname{res}_{-1} f(z) = \lim_{z \to -1} (z+1) \cdot \frac{1}{z^2-1} = \lim_{z \to -1} \frac{1}{z-1} = -\frac{1}{2} \end{array}$$

(2)
$$f(z) = \frac{10}{(z^2+1)(z^2-2z+2)}$$

$$P(z) = 10$$
, $Q(z) = (z - i)(z + i)(z - 1 - i)(z - 1 + i)$,
 $Q'(z) = 2z(z^2 - 2z + 2) + (z^2 + 1)(2z - 2)$

$$Q'(i) = 4 + 2i$$
, $Q'(-i) = -4 - 2i$, $Q'(1 + i) = -4 + 2i$, $Q'(1 - i) = 4 - 2i$

$$\operatorname{res}_{i} f(z) = \frac{P(i)}{Q'(i)} = 2 - i \,, \ \operatorname{res}_{-i} f(z) = \frac{P(-i)}{Q'(-i)} = -2 + i$$

$$\operatorname{res}_{1+i} f(z) = \frac{P(1+i)}{Q'(1+i)} = -2 - i \,, \ \operatorname{res}_{1-i} f(z) = \frac{P(1-i)}{Q'(1-i)} = 2 + i$$

• Jeśli z_0 - biegun k - krotny funkcji f(z), k > 1:

$$f(z) = \frac{a_{-k}}{(z-z_0)^k} + \ldots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \ldots, \ a_{-k} \neq 0$$

$$(z-z_0)^k f(z) = a_{-k} + \ldots + a_{-1}(z-z_0)^{k-1} + a_0(z-z_0)^k + \ldots$$

różniczkujemy k-1 razy, dzielimy przez otrzymany przy a_{-1} współczynnik i otrzymujemy, że

$$\operatorname{res}_{z_0} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1}}{dz^{k-1}} \left[(z - z_0)^k \cdot f(z) \right]$$

• Jeśli z_0 - biegun k - krotny funkcji f(z), k > 1:

$$f(z) = \frac{a_{-k}}{(z-z_0)^k} + \ldots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \ldots, \ a_{-k} \neq 0$$

$$(z-z_0)^k f(z) = a_{-k} + \ldots + a_{-1}(z-z_0)^{k-1} + a_0(z-z_0)^k + \ldots$$

różniczkujemy k-1 razy, dzielimy przez otrzymany przy a_{-1} współczynnik i otrzymujemy, że

$$\operatorname{res}_{z_0} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1}}{dz^{k-1}} \left[(z - z_0)^k \cdot f(z) \right]$$

Przykład:

 $f(z) = \frac{e^z - 1}{z^3}$, z = 0 - biegun 2 - krotny (zero 1 - krotne licznika i zero 3 - krotne mianownika)

$$\begin{split} & \operatorname{res}_0 f(z) = \frac{1}{1!} \lim_{z \to 0} \frac{d}{dz} \left[z^2 \cdot \frac{e^z - 1}{z^3} \right] = \lim_{z \to 0} \left(\frac{e^z - 1}{z} \right)' = \\ & = \lim_{z \to 0} \frac{z e^z - (e^z - 1)}{z^2} = \lim_{z \to 0} \frac{z e^z + e^z - e^z}{2z} = \frac{1}{2} \end{split}$$

(do granicy wyrażenia nieoznaczonego stosujemy odpowiednik tw. de l'Hospitala)

Inaczej:
$$f(z) = \frac{e^z - 1}{z^3} = \frac{z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots}{z^3} = \frac{1}{z^2} + \frac{1}{2} \cdot \frac{1}{z} + \frac{1}{3!} + \dots \Rightarrow$$

 $\Rightarrow a_{-1} = \text{res}_0 f(z) = \frac{1}{2}$

Inaczej:
$$f(z) = \frac{e^z - 1}{z^3} = \frac{z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots}{z^3} = \frac{1}{z^2} + \frac{1}{2} \cdot \frac{1}{z} + \frac{1}{3!} + \dots \Rightarrow a_{-1} = \text{res}_0 f(z) = \frac{1}{2}$$

• Jeśli $z_0 \neq \infty$ - punkt istotnie osobliwy f(z) to residuum wyznaczamy z rozwinięcia funkcji w szereg Laurenta:

$$\operatorname{res}_{z_0} f(z) = a_{-1}$$

Inaczej:
$$f(z) = \frac{e^z - 1}{z^3} = \frac{z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots}{z^3} = \frac{1}{z^2} + \frac{1}{2} \cdot \frac{1}{z} + \frac{1}{3!} + \dots \Rightarrow a_{-1} = \text{res}_0 f(z) = \frac{1}{2}$$

• Jeśli $z_0 \neq \infty$ - punkt istotnie osobliwy f(z) to residuum wyznaczamy z rozwinięcia funkcji w szereg Laurenta:

$$\operatorname{res}_{z_0} f(z) = a_{-1}$$

Przykład:

$$f(z)=\sin\frac{1}{z-1}\,, \quad z=1$$
 - punkt istotnie osobliwy $\sin\frac{1}{z-1}=\frac{1}{z-1}-\frac{1}{3!(z-1)^3}+\ldots\Rightarrow \mathrm{res}_1 f(z)=1$ bo $\sin z=z-\frac{z^3}{2!}+\ldots$

Tw. (całkowe o residuach)

Jeśli f(z) jest holomorficzna w obszarze jednospójnym D z wyjątkiem punktów $z_1,\ldots,z_m\in D$, to dla każdej krzywej zwykłej zamkniętej $C\subset D$ zawierającej punkty z_1,\ldots,z_m zachodzi wzór:

$$\oint_{C^+} f(z) dz = 2\pi i \sum_{k=1}^m \operatorname{res}_{z_k} f(z)$$

Tw. (całkowe o residuach)

Jeśli f(z) jest holomorficzna w obszarze jednospójnym D z wyjątkiem punktów $z_1,\ldots,z_m\in D$, to dla każdej krzywej zwykłej zamkniętej $C\subset D$ zawierającej punkty z_1,\ldots,z_m zachodzi wzór:

$$\oint_{C^+} f(z) dz = 2\pi i \sum_{k=1}^m \operatorname{res}_{z_k} f(z)$$

Dowód:

$$\oint_{C^+} f(z) dz = \sum_{l=1}^m \oint_{K_l^+} f(z) dz = \sum_{l=1}^m 2\pi i \cdot res_{z_l} f(z)$$

Przykład:

$$\oint_{C^{+}} z \cdot e^{\frac{1}{z-1}} dz , \text{ gdzie } C : |z-1| = 1$$

$$\oint_{C^{+}} z \cdot e^{\frac{1}{z-1}} dz = 2\pi i \cdot \operatorname{res}_{1} z \cdot e^{\frac{1}{z-1}}$$

$$z \cdot e^{\frac{1}{z-1}} = [(z-1)+1] \cdot e^{\frac{1}{z-1}} =$$

$$= [(z-1)+1] \cdot \left[1 + \frac{1}{z-1} + \frac{1}{2!(z-1)^{2}} + \ldots\right] = \frac{1}{z-1} \cdot \left(1 + \frac{1}{2!}\right) + \ldots$$

$$\operatorname{res}_{1} f(z) = a_{-1} = \frac{3}{2} \Rightarrow$$

$$\oint_{C^{+}} z \cdot e^{\frac{1}{z-1}} dz = 2\pi i \cdot \frac{3}{2} = 3\pi i$$

Uwaga:

Na podstawie tw. o residuach można obliczać wartości całek niewłaściwych funkcji rzeczywistych.

Uwaga:

Na podstawie tw. o residuach można obliczać wartości całek niewłaściwych funkcji rzeczywistych.

Lemat 1

Jeśli spełnione są następujące warunki:

 $1^{\circ}\ R(x)=rac{P(x)}{Q(x)}$ jest funkcją wymierną zmiennej rzeczywistej x taką, że $\deg Q\geqslant \deg P+2$,

 $2^{\circ} \ Q(z)$ nie ma pierwiastków rzeczywistych,

to istnieje całka niewłaściwa zmiennej rzeczywistej $\int_{-\infty}^{+\infty} R(x) \, dx$ i wyraża się wzorem:

$$\int_{-\infty}^{+\infty} R(x) dx = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z_k} R(z), \quad \operatorname{Im} z_k > 0$$

Lemat 2

Jeśli spełnione są następujące warunki:

$$1^{\circ} f(z) = e^{imz} F(z), \ m > 0, \ F(z) \rightarrow 0, \ z \rightarrow \infty \ \ \mathsf{dla} \ \mathrm{Im} \ z \geqslant 0,$$

 $2^{\circ} f(z)$ jest holomorficzna w $\mathrm{Im}\,z\geqslant 0$ poza skończoną liczbą punktów osobliwych z_1,\ldots,z_n leżących w górnej półpłaszczyźnie $\mathrm{Im}\,z>0$,

to istnieje całka niewłaściwa zmiennej rzeczywistej $\int_{-\infty}^{+\infty} f(x) dx$ i wyraża się wzorem:

$$\int_{-\infty}^{+\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z_{k}} f(z), \quad \operatorname{Im} z_{k} > 0$$

Bo kontur $C = \Gamma \cup [-R, R]$ (półokrąg) zawiera wszystkie punkty z_1, \ldots, z_n i $\Gamma = \{z : z = Re^{it}, t \in [0, \pi]\}$

z tw. o residuach:

$$\oint_{C^{+}} f(z) dz = \int_{-R}^{R} f(x) dx + \int_{\Gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} res_{z_{k}} f(z)$$

$$R o \infty \Rightarrow \int_{-R}^{R} f(x) dx o \int_{-\infty}^{+\infty} f(x) dx$$
 i

$$\int_{\Gamma} f(z) dz \to 0$$
, bo $\left| \int_{\Gamma} f(z) dz \right| \leqslant \frac{M}{R^{\alpha}} \cdot \pi R = \frac{\pi M}{R^{\alpha - 1}}$, $\alpha \geqslant 2$

Bo kontur $C = \Gamma \cup [-R, R]$ (półokrąg) zawiera wszystkie punkty z_1, \ldots, z_n i $\Gamma = \{z : z = Re^{it}, t \in [0, \pi]\}$

z tw. o residuach:

$$\oint_{C^{+}} f(z) dz = \int_{-R}^{R} f(x) dx + \int_{\Gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} res_{z_{k}} f(z)$$

$$R \to \infty \Rightarrow \int_{-R}^{R} f(x) dx \to \int_{-\infty}^{+\infty} f(x) dx$$
 i

$$\int_{\Gamma} f(z) dz \to 0$$
, bo $\left| \int_{\Gamma} f(z) dz \right| \leqslant \frac{M}{R^{\alpha}} \cdot \pi R = \frac{\pi M}{R^{\alpha - 1}}$, $\alpha \geqslant 2$

Przykłady:

(1) Obliczyć
$$\int_{-\infty}^{+\infty} \frac{10}{(x^2+1)(x^2-2x+2)} dx$$

$$f(z) = \frac{10}{(z^2+1)(z^2-2z+2)}$$
 tylko punkty osobliwe

$$z_1 = 1, \ z_2 = 1 + i \in \text{Im } z > 0 \Rightarrow$$

$$\int_{-\infty}^{+\infty} \frac{10}{(x^2+1)(x^2-2x+2)} dx = 2\pi i \left[\operatorname{res}_{z_1} f(z) + \operatorname{res}_{z_2} f(z) \right] = 4\pi$$

(2) Obliczyć
$$\int_{-\infty}^{+\infty} \frac{\cos 2x}{x^2+1} dx$$

 $\int_{-\infty}^{+\infty} \frac{dx}{x^2+1}$ – zbieżna $\Rightarrow \int_{-\infty}^{+\infty} \frac{\cos 2x}{x^2+1} dx$, $\int_{-\infty}^{+\infty} \frac{\sin 2x}{x^2+1} dx$ są zbieżne bezwzględnie, więc można je obliczyć z wartości głównej:

$$\int_{-\infty}^{+\infty} \frac{\cos 2x}{x^2+1} dx = P \int_{-\infty}^{+\infty} \frac{\cos 2x}{x^2+1} dx = \lim_{T \to \infty} \int_{-T}^{T} \frac{\cos 2x}{x^2+1} dx$$

$$\int_{-\infty}^{+\infty} \frac{\sin 2x}{x^2 + 1} \, dx = P \, \int_{-\infty}^{+\infty} \frac{\sin 2x}{x^2 + 1} \, dx = \lim_{T \to \infty} \int_{-T}^{T} \frac{\sin 2x}{x^2 + 1} \, dx = 0$$

$$\Rightarrow \int_{-\infty}^{+\infty} \frac{\cos 2x}{x^2 + 1} \, dx = \int_{-\infty}^{+\infty} \frac{\cos 2x}{x^2 + 1} \, dx + i \int_{-\infty}^{+\infty} \frac{\sin 2x}{x^2 + 1} \, dx = \\ = \int_{-\infty}^{+\infty} \frac{e^{i2x}}{x^2 + 1} \, dx = \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{i2x}}{x^2 + 1} \, dx$$

$$f(z) = rac{e^{2iz}}{z^2+1}\,,\;\; z=\pm i$$
 – punkty nieholomorficzności

 $C = C_R \cup [-R, R]$, R > 1, gdzie C_R – półokrąg o promieniu R leżący w górnej półpłaszczyźnie

$$\oint_{C^+} f(z) dz = 2\pi i \cdot \operatorname{res}_i \frac{e^{2iz}}{z^2 + 1} = 2\pi i \cdot \lim_{z \to i} \frac{e^{2iz}}{z + i} = \frac{\pi}{e^2}$$

 $\oint_{C^+} f(z) dz = \int_{C_R} f(z) dz + \int_{-R}^R f(x) dx$ i szacujemy pierwszą całkę:

$$\begin{split} \left| \int_{C_R} f(z) \, dz \right| & \leqslant \pi R \cdot \sup_{z \in C_R} |f(z)| \leqslant \frac{\pi R}{R^2 - 1} \to 0 \quad R \to \infty \\ \text{bo } \left| \frac{e^{2iz}}{z^2 + 1} \right| &= \frac{e^{-2y}}{|z^2 + 1|} \leqslant \frac{1}{|z^2 + 1|} \leqslant \frac{1}{R^2 - 1} \,, \quad |z^2 + 1| > |z|^2 - 1 \end{split}$$

$$R o \infty \Rightarrow \int_{-R}^{R} rac{\mathrm{e}^{2\mathrm{i}x}}{x^2+1} \, dx o \int_{-\infty}^{\infty} rac{\mathrm{e}^{2\mathrm{i}x}}{x^2+1} \, dx$$

Stąd:
$$\int_{-\infty}^{+\infty} \frac{\cos 2x}{x^2+1} dx = \frac{\pi}{e^2}$$

(3) Obliczyć
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2}$$

Rozważamy funkcję $R(z)=\frac{1}{(z^2+1)^2}$, dla wartości rzeczywistych z=x dostajemy funkcję podcałkową $R(x)=\frac{1}{(x^2+1)^2}$, która spełnia założenia Lematu 1. Funkcja R(z) ma bieguny 2 - krotne w $z_1=i$, $z_2=-i$, ale tylko $z_1=i\in\{{\rm Im}\, z>0\}$

Stạd:
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2} = 2\pi i \cdot \operatorname{res}_{z_1} R(z)$$

$$\operatorname{res}_{z_1} R(z) = \frac{1}{1!} \lim_{z \to i} \frac{d}{dz} \left[\frac{1}{(z+i)^2} \right] = \lim_{z \to i} \frac{-2}{(z+i)^3} = \frac{-2}{8i^3} = -\frac{i}{4}$$

wiec
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2} = 2\pi i \cdot \left(-\frac{i}{4}\right) = \frac{\pi}{2}$$

(4) Obliczyć
$$\int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 - 2x + 10} dx$$

Bierzemy pod uwagę funkcję $f(z)=\frac{ze^{iz}}{z^2-2z+10}$ taką że $\operatorname{Re} f(z)=\frac{x\cos x}{x^2-2x+10}$. Funkcja f(z) spełnia założenia Lematu 2 i ma dwa bieguny rzędu 1 w $z_1=1+3i$, $z_2=1-3i$, z których tylko z_1 leży w górnej półpłaszczyźnie.

Stạd:
$$\int_{-\infty}^{+\infty} \frac{xe^{ix}}{x^2 - 2x + 10} dx = 2\pi i \cdot \operatorname{res}_{z_1} f(z)$$

$$\operatorname{res}_{z_1} f(z) = \frac{ze^{iz}}{(z^2 - 2z + 10)^i} \bigg|_{z=1+3i} = \frac{(1+3i)e^{-3+i}}{6i}$$

$$\int_{-\infty}^{+\infty} \frac{xe^{ix}}{x^2 - 2x + 10} dx = \frac{\pi}{3}(1+3i)e^{-3}e^i = \frac{\pi}{3e^3}(1+3i)(\cos 1 + i\sin 1) =$$

$$= \frac{\pi}{3e^3} [(\cos 1 - 3\sin 1) + i(3\cos 1 + \sin 1)] =$$

$$= \int_{-\infty}^{+\infty} \frac{x\cos x}{x^2 - 2x + 10} dx + i \int_{-\infty}^{+\infty} \frac{x\sin x}{x^2 - 2x + 10} dx$$

$$\Rightarrow \int_{-\infty}^{+\infty} \frac{x\cos x}{x^2 - 2x + 10} dx = \frac{\pi}{3e^3} (\cos 1 - 3\sin 1),$$

$$\int_{-\infty}^{+\infty} \frac{x\sin x}{x^2 - 2x + 10} dx = \frac{\pi}{3e^3} (3\cos 1 + \sin 1)$$

Residuum funkcji w ∞

Residuum funkcji w ∞

Definicja

Residuum funkcji w punkcie osobliwym w ∞ jest to wartość całki

$$\operatorname{res}_{\infty} f(z) = \frac{1}{2\pi i} \oint_{C^{-}} f(z) \, dz$$

gdzie C - krzywa zamknięta ujemnie skierowana zawarta w otoczeniu pierścieniowym ∞ (tzn. w $\{R < |z| < \infty\}$).

Uwagi:

(1) Z definicji wynika, że $\operatorname{res}_{\infty} f(z) = -a_{-1}$, gdzie a_{-1} – współczynnik przy $\frac{1}{z}$ w rozwinięciu w szereg Laurenta funkcji w otoczeniu pierścieniowym punktu $z=\infty$.

Uwagi:

- (1) Z definicji wynika, że $\operatorname{res}_{\infty} f(z) = -a_{-1}$, gdzie a_{-1} współczynnik przy $\frac{1}{z}$ w rozwinięciu w szereg Laurenta funkcji w otoczeniu pierścieniowym punktu $z=\infty$.
- (2) W tym przypadku wyraz $\frac{1}{z}$ należy do części regularnej, a nie do części głównej szeregu Laurenta, więc residuum funkcji f(z) w punkcie ∞ , który jest punktem pozornie osobliwym nie musi być równe zeru.

np. dla $f(z)=rac{1}{z}$ punkt $z=\infty$ jest pozornie osobliwy, a ${
m res}_{\infty}f(z)=-1
eq 0$

Przykład:

$$f(z) = z^{2} \cdot e^{-\frac{1}{z}} = z^{2} \left(1 - \frac{1}{z} + \frac{1}{2!z^{2}} - \frac{1}{3!z^{3}} + \ldots \right) =$$

$$= z^{2} - z + \frac{1}{2!} - \frac{1}{3!} \cdot \frac{1}{z} + \ldots$$

$$\operatorname{res}_{\infty} f(z) = -a_{-1} = \frac{1}{6}$$

Przykład:

$$f(z) = z^{2} \cdot e^{-\frac{1}{z}} = z^{2} \left(1 - \frac{1}{z} + \frac{1}{2!z^{2}} - \frac{1}{3!z^{3}} + \ldots \right) =$$

$$= z^{2} - z + \frac{1}{2!} - \frac{1}{3!} \cdot \frac{1}{z} + \ldots$$

$$\operatorname{res}_{\infty} f(z) = -a_{-1} = \frac{1}{6}$$

Twierdzenie

Jeśli funkcja f(z) jest holomorficzna w $\overline{\mathbb{C}}$ z wyjątkiem skończonej liczby punktów osobliwych odosobnionych, to

$$\sum_{k=1}^{n} \operatorname{res}_{z_{k}} f(z) + \operatorname{res}_{\infty} f(z) = 0$$

Dowód:

K – krzywa zawierająca punkty osobliwe z_1, \ldots, z_n

$$0 = \oint_{K^+} f(z) dz - \oint_{K^+} f(z) dz = \oint_{K^+} f(z) dz + \oint_{K^-} f(z) dz = 2\pi i \sum_{k=1}^{\infty} \operatorname{res}_{z_k} f(z) + 2\pi i \cdot \operatorname{res}_{\infty} f(z)$$

Dowód:

K – krzywa zawierająca punkty osobliwe z_1, \ldots, z_n

$$0 = \oint_{K^{+}} f(z) dz - \oint_{K^{+}} f(z) dz = \oint_{K^{+}} f(z) dz + \oint_{K^{-}} f(z) dz = 2\pi i \sum_{k=1}^{\infty} \operatorname{res}_{z_{k}} f(z) + 2\pi i \cdot \operatorname{res}_{\infty} f(z)$$

Przykłady:

(1)
$$\oint_{C^+} \frac{z}{z^4+1} dz$$
, gdzie $C: |z| = 2$

$$\oint_{C^+} \frac{z}{z^4+1} dz = 2\pi i \left[res_{z_1} f(z) + res_{z_2} f(z) + res_{z_3} f(z) + res_{z_4} f(z) \right] = -2\pi i \cdot res_{\infty} f(z)$$

gdzie
$$z_1, \ldots, z_4$$
 – pierwiastki $\sqrt[4]{-1}$

$$f(z) = \frac{z}{z^4 + 1} = \frac{z}{z^4 \left(1 + \frac{1}{z^4}\right)} = \frac{1}{z^3} \sum_{n=0}^{\infty} (-1)^n \cdot \frac{1}{z^{4n}} = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{1}{z^{4n+3}}$$

$$\mathsf{dla}\,\left|\tfrac{1}{z^4}\right| < 1 \equiv |z| > 1$$

Stad
$$a_{-1}=0=\mathrm{res}_{\infty}f(z)$$
 i $\oint_{C^+}rac{z}{z^4+1}\,dz=0$

Stad
$$a_{-1}=0=\mathrm{res}_{\infty}f(z)$$
 i $\oint_{C^+}rac{z}{z^4+1}\,dz=0$

(2)
$$\oint_{K^+(z_0,R)} \frac{dz}{z-z_0} = 2\pi i \cdot \operatorname{res}_{z_0} \frac{1}{z-z_0} = 2\pi i$$

$$\oint_{K^+(z_0,R)} \frac{dz}{z-z_0} = -2\pi i \cdot \text{res}_{\infty} \frac{1}{z-z_0} = -2\pi i \cdot (-1) = 2\pi i$$

bo
$$\frac{1}{z-z_0}=\frac{1}{z\left(1-\frac{z_0}{z}\right)}=\left\|\begin{array}{c}\left|\frac{z_0}{z}\right|<1\\|z|>|z_0|\end{array}\right\|=\frac{1}{z}\sum_{n=0}^{\infty}\left(\frac{z_0}{z}\right)^n=$$

$$= \sum_{n=0}^{\infty} \frac{z_0^n}{z^{n+1}} = \frac{1}{z} + \frac{z_0}{z^2} + \frac{z_0^2}{z^3} + \dots \Rightarrow a_{-1} = 1$$