

#### **Problem Statement**

 Old and neglected neighborhoods can quickly transform into a popular and trendy neighborhood

 This causes high real estate demand and sharp increase in the real estate prices.

 If detected early, these areas can be a good real estate investment opportunity. The property will see the highest rise in housing price compared to other neighborhoods in the same city.



#### Goal

Build a model that identifies next trendy zip codes

#### Approach 1:

 The model predicts the housing price three years in advance using historical housing prices and other factors that can affect the housing price in a neighborhood.

#### Approach 2:

 The model predicts the change in housing price two years in advance using the same features



#### **Data Sources**

#### Limitations:

- Data has to be publicly available
- Data has to include location information (zip code, latitude, longitude)





#### Data:

- building permits
  - o City of Chicago Data Portal
- valid retail food licenses
  - o City of Chicago Data Portal
- crime rate
  - o City of Chicago Website
- historical housing prices
  - o <u>Zillow</u>
- zip code information
  - o <u>Cybo</u>





# **Housing Price Over Time**

- The gap between the least and most expensive housing prices has increased over time.
- Some zip codes has seen increase in real estate value while some lost value over time.





# **Housing Price Over Time**



#### **Construction and Renovation Permits Data**

- The median construction count dropped during the housing market crises but slowly increased afterwards.
- In each year there are few zip codes that are outliers and have much more construction counts compared to other zip codes.





#### **Issued Restaurants license Data**

 Yearly distribution of valid business licenses is almost uniform over time.

 Number of businesses in some zip codes such as 60654 60611 60607 increased from 2014 to 2019 however, some zip codes such as 60610, 60619, and 60623 lost some businesses.





### **Crime**

Crime rate has decreased in Chicago over time.

 Zip codes 60653 saw the highest increase in housing value over this time period and we can see that the crime rate has decreased for this zip code.

 Zip code 60603 has seen a decrease in housing value over the last 5 years.
Crime rate has increased in this zip code over this time period.







# **Relation Between Target and Features**



# **Machine Learning - preprocessing**

#### Preprocessing

- One hot encoding categorical values
- Scaling numerical values

#### • Feature engineering

- Lagged values
- o change in the lagged values
- squared
- Inversed

# • Train and Test split

# Machine Learning model 1 - predicting housing price three years in advance

Trying vanilla models

- Trying few different vanilla models with cross validation to see which ones have a better initial performance
- compared model performance to a baseline model.
- The XGBRegressor model had the best performance.

|                       |                | r2        | mae           | rmse          |
|-----------------------|----------------|-----------|---------------|---------------|
|                       | DummyRegressor | -0.001051 | 107060.851688 | 129075.791572 |
|                       | Lasso          | 0.962522  | 18607.335796  | 24937.287983  |
|                       | Ridge          | 0.964819  | 18246.757624  | 24164.317554  |
|                       | ElasticNet     | 0.928464  | 26988.190757  | 34432.882343  |
| RandomForestRegressor |                | 0.947576  | 20968.367603  | 29337.664481  |
|                       | SVR            | -0.013074 | 107007.810466 | 129848.241209 |
|                       | XGBRegressor   | 0.967864  | 17209.913725  | 23019.794011  |

# **MODEL 1 - predicting housing price three years in advance**

## **XGBOOST**

• Used mean absolute error as the scoring metric because it's less sensitive to outliers compared to root mean squared error.

| Train MAE | 13577 |
|-----------|-------|
| Test MAE  | 26247 |
| Test RMSE | 27053 |
| R squared | 0.93  |



#### **Model 1 Results**

• Feature importance by the XGBOOST model



• Successful in identifying only three zip codes in top ten zip codes with maximum value increase from 2017 to 2019

# model 2 - predicting change in housing price two years in advance

 Change the target from housing price to change in housing price over the period of two years.

|                       | r2        | mae          | rmse         |
|-----------------------|-----------|--------------|--------------|
| DummyRegressor        | -0.006572 | 47402.336147 | 54577.798528 |
| Ridge                 | 0.895511  | 13972.921566 | 17552.208541 |
| ElasticNet            | 0.781159  | 19783.143102 | 25352.492035 |
| RandomForestRegressor | 0.829703  | 15594.157266 | 22352.501965 |
| SVR                   | -0.007329 | 47202.145974 | 54657.584497 |
| XGBRegressor          | 0.830105  | 15475.961085 | 22158.292479 |

#### **Model 2 Results**

| Train MAE | 13000 |
|-----------|-------|
| Test MAE  | 13075 |
| Test RMSE | 16529 |
| R squared | 0.05  |





#### Results

- Top 10 zip codes recommended by the model: 60619, 60637, 60628, 60612, 60617, 60608, 60623, 60651, 60607, 60639
- Zip codes identified correctly by the model: 60651, 60623, 60624, 60628, 60608, 60612



#### Results

Home buyer can decide based on the top 10 recommended zip codes as well as other factors such as the

- budget,
- type of real estate (house, condo,..)
- number of schools in the area,...

to make a more informed decision



http://www.aag.com/

# **Improvements**

- More data:
  - o Zip code specific data such as demographics and population over time
  - Adding other type of data (economy, GDP...)
- More feature engineering