Solucions segona prova parcial

Consideramos el vocabulario $\sigma = \{P^1, Q^2, f^1\}$ y la interpretación con dominio $\{1, 2, 3, 4\}$ definida por:

$$I(P) = \{1,2\} \text{ y } I(Q) = \{(1,2), (2,2), (3,2), (4,1)\}$$

$$I(f(1)) = 2$$
, $I(f(2)) = 3$, $I(f(3)) = 4$, $I(f(4)) = 1$

Determinar si las siguientes fórmulas son ciertas o falsas en I.

- (a) $\exists x (Px \to \exists y Qyx)$
- (b) $\forall x \forall y (Qxy \rightarrow Px)$
- (c) $\forall x \exists y (Qxy \lor \neg Px)$
- (d) $\forall x \forall y (Qxy \rightarrow Qf(x)y)$
- (e) $\forall x (Pf(x) \rightarrow Qxf(x))$
- (a) $\exists x(Px \to \exists yQyx)$ és cert, ja que per a x = 1 i y = 4, $\overline{P1} = V$ i $\overline{Q41} = V$. Per tant,

$$\overline{P1} \rightarrow \overline{Q41} = V \rightarrow V = V$$

(b) $\forall x \forall y (Qxy \rightarrow Px)$ és fals, ja que per a x=3 i y=2, $\overline{Q32}=V$ però $\overline{P3}=F$. Per tant,

$$\overline{Q32} \rightarrow \overline{P3} = V \rightarrow F = F$$

- (c) $\forall x \exists y (Qxy \lor \neg Px)$ és cert. Ho comprovem per a totes les x:
 - x = 1: per a y = 2, $\overline{Q12} \lor \neg \overline{P1} = V \lor F = V$.
 - x = 2: per a y = 2, $\overline{Q22} \lor \neg \overline{P2} = V \lor F = V$.
 - x = 3: per a y = 2, $\overline{Q32} \lor \neg \overline{P3} = V \lor V = V$.
 - x = 4: per a y = 1, $\overline{Q41} \lor \neg \overline{P4} = V \lor V = V$.
- (d) $\forall x \forall y (Qxy \rightarrow Qf(x)y)$ és fals ja que per a x=3 i y=2, $\overline{Q32}=V$ però $\overline{Qf(3)2}=\overline{Q42}=F$. Per tant,

$$\overline{Q32} \to \overline{Qf(3)2} = V \to F = F$$

- (e) $\forall x (Pf(x) \rightarrow Qxf(x))$ és cert. Ho comprovem per a totes les x:
 - x = 1: $\overline{Pf(1)} = \overline{P2} = V$ i $\overline{Q1f(1)} = \overline{Q12} = V$. Per tant, $V \to V = V$.
 - x = 2: $\overline{Pf(2)} = \overline{P3} = F$ i $\overline{Q2f(3)} = \overline{Q23} = F$. Per tant, $F \to F = V$.
 - x = 3: $\overline{Pf(3)} = \overline{P4} = F$ i $\overline{Q3f(3)} = \overline{Q34} = V$. Per tant, $F \to F = V$.
 - x = 4: $\overline{Pf(4)} = \overline{P1} = V$ i $\overline{Q4f(4)} = \overline{Q41} = V$. Per tant, $V \to V = V$.

Lògica i Llenguatges 2022-23

2 Consideramos las siguientes fórmulas:

$$\varphi_{1} = \forall x (Px \to Qx)$$

$$\varphi_{2} = \forall x (\exists y (Ry \land Syx) \to \neg Qx)$$

$$\varphi_{3} = Ra$$

$$\varphi = \neg \exists x (Px \land Sax)$$

- (a) Calcular formas clausales de φ_1 , φ_2 y φ_3 .
- (b) Demostrar por resolución que la fórmula φ es consecuencia lógica de φ_1 , φ_2 , y φ_3 .
- (a) Primer desenvolupem utilitzant equivalències.

$$\forall x (Px \to Qx) \equiv \forall x (\neg Px \lor Qx)$$

$$\forall x (\exists y (Ry \land Syx) \to \neg Qx) \equiv \forall x (\neg \exists y (Ry \land Syx) \lor \neg Qx)$$

$$\equiv \forall x (\forall y (\neg Ry \lor \neg Syx) \lor \neg Qx)$$

$$\equiv \forall x \forall y (\neg Ry \lor \neg Syx \lor \neg Qx)$$

Les formes clausals són:

$$\varphi_1^{cl} = \forall x (\neg Px \lor Qx)$$

$$\varphi_2^{cl} = \forall x \forall y (\neg Ry \lor \neg Syx \lor \neg Qx)$$

$$\varphi_3^{cl} = Ra$$

(b) Per demostrar per resolució que la fórmula φ és conseqüència lògica de φ_1 , φ_2 i φ_3 necessitem escriure en forma clausal també la fórmula $\neg \varphi$. Tenim que $\neg \varphi \equiv \exists x (Px \land Sax)$. Per tant, una forma clausal de $\neg \varphi$ és $Pb \land Sab$. Aquesta fórmula consta de dues clàusules, per tant constarà com a dues entrades diferents en l'algoritme de resolució.

Ara escrivim les entrades per l'algoritme de resolució agafant només els nuclis de les formes clausals de φ_1 , φ_2 , φ_3 i $\neg \varphi$, canviant el nom de les variables si és necessari.

- 1. $\neg Px \lor Qx$
- 2. $\neg Ry \lor \neg Syz \lor \neg Oz$
- 3. *Ra*
- 4. Pb
- 5. Sab

Els àtoms Qx i $\neg Qz$ són unificables per $\{x=z\}$. Resolent 1 i 2 obtenim

6.
$$\neg Pz \lor \neg Ry \lor \neg Syz$$

Ara, els àtoms $\neg Ry$ i Ra són unificables per $\{y = a\}$. Resolent 3 i 6 obtenim

7.
$$\neg Pz \lor \neg Saz$$

Finalment, els àtoms $\neg Pz$ i Pb són unificables per $\{z=b\}$. Resolent 4 i 7 obtenim

8. $\neg Sab$

I ja podem deduïr la clàusula buida resolent 4 i 8

9. □

Així doncs, hem demostrat que la fórmula φ és conseqüència lògica de φ_1 , φ_2 i φ_3 .