

EMISSIONS TEST REPORT

Report Number: 101930181BOX-001b Project Number: G101930181

Report Issue Date: 03/26/2015

Product Designation: NC-2000 (originally tested as Igeacom II)

Standards: CFR47 FCC Part 15 Subpart C 15.247:2015

CFR47 FCC Part 15 Subpart B:2015 IC RSS-247 Issue 1 May 2015 IC RSS-Gen Issue 4 November 2014 IC ICES-003 Issue 5 August 2012

IC RSS-102 Issue 5 March 2015 updated December 2010

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 Client:
Mircom Technologies Ltd.
25 Interchange Way
Vaughan ON L4K 5W3
Canada

Testing was originally performed for IGEACare Solutions Inc.
163 Rivalda Road
North York M9M 2M7
Canada

Report prepared by Reviewer

Vathana F. Ven / Staff Engineer, EMC

Report reviewed by

Kouma Sinn / Staff Engineer, EMC

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	RF Output Power, Duty Cycle, and Human RF Exposure (CFR47 FCC Part 15 Subpart C 15.247(b)(3), KDB 558074, IC RSS-247 Issue 1 May 2015 5.4(4), IC RSS-102 Issue 5 March 2015)	Pass
7	6 dB Bandwidth (CFR47 FCC Part 15 Subpart C 15.247(a)(2), IC RSS-247 Issue 1 May 2015 5.2, IC RSS-Gen Section 6.6, KDB 558074)	Pass
8	Peak Power Spectral Density (FCC 15:2015 Subpart C Section 15.247 (e), RSS-247 Issue 1 May 2015 5.2(2), KDB 558074)	Pass
9	Band Edge Compliance (FCC 15:2015 Subpart C Section 15.247 (d), RSS-247 Issue 1 May 2015 5.2(2), KDB 558074)	Pass
10	Transmitter Radiated Spurious Emissions (CFR47 FCC Part 15 Subpart C 15.247(d), IC RSS-247 Issue 1 May 2015 5.5, KDB 558074)	Pass
11	Receiver Radiated Spurious Emissions (CFR47 FCC Part 15 Subpart B 15.109, IC RSS-Gen Sections 4.10 & 6.0)	Pass
12	AC Line Conducted Emissions (CFR47 FCC Part 15 Subpart B 15.207, IC RSS-Gen Section 7.2.4)	Pass
13	Revision History	

3 Client Information

This EUT was tested at the request of:

Company: Mircom Technologies Ltd.

25 Interchange Way Vaughan ON L4K 5W3

Canada

 Contact:
 Mr. Mike Mahoney

 Telephone:
 (905) 660-4655

 Fax:
 (905) 695-3538

Email: mmahoney@mircomgroup.com

4 Description of Equipment Under Test

Equipment Under Test						
Description	Manufacturer	Model Number	Serial Number			
Emergency Response	Mircom Technologies	N-2000 (originally	00000017			
Base Station	Ltd.	tested as Igeacom II	00000018			
		-				

Receive Date:	01/25/2012	Start Date:	04/24/2012
Received Condition:	Good	Complete date:	04/25/2012
Type:	Prototype		

Description of Equipment Under Test (provided by client)

The NC-2000 (originally tested as Igeacom II) is an emergency response device with Zigbee wireless application. Wireless communication to a host via an internal chip antenna and Zigbee application with O-PQSK modulation is used. The Zigbee transceiver operates in the 2400-2483.5MHz band from 2405-2480MHz using an integral antenna.

Equipment Under Test Power Configuration						
Rated Voltage	Rated Current	Rated Frequency	Number of Phases			
120VAC	200mA	60Hz	1			

Operating modes of the EUT:

Opo	ording modes of the 201.					
No.	Descriptions of EUT Exercising					
1	The device was in transmit mode					
2	The device was also tested in receive mode					

5 System Setup and Method

	Cables							
ID	Description	Length (m)	Shielding	Ferrites	Termination			
1	RJ11 cable	>3	None	None	Unterminated			
1	AC adapter cable	<3	None	None	AC mains			

Support Equipment						
Description	Manufacturer	Model Number	Serial Number			
Laptop	HP	350	N/A			
AC adapter	Direct Plug-in	35-D12-200	N/A			

5.1 Method:

Configuration as required by ANSI C 63.4:2009, ANSI C63.10:2009, FCC Part 15:2015, Subpart C Section 15.247, IC RSS-247 Issue 1 May 2015, RSS-Gen Issue 4 November 2014, and KDB 558074.

5.2 EUT Block Diagram:

6 RF Output Power, Duty Cycle, and Human RF Exposure

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, KDB 558074, ANSI C63.10, RSS-102, FCC Part 2 and KDB 447498, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 \text{ dB}_{\mu}V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

Intertek

Report Number: 101930181BOX-001b Issued: 03/26/2015

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
HORN2'	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012

Software Utilized:

<u> </u>		
Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

6.3 Results:

The EIRP must not exceed 36 dBm. The sample tested was found to Comply.

6.4 Setup Photograph:

Axis3 orientation shown in photo

6.5 Test Data:

RF Output Power

Company: IGEACare Solutions Inc Antenna & Cables: Ν Bands: N, LF, HF, SHF Model #: Igeacom II Antenna: HORN2 V3m 10-24-2012.txt HORN2 H3m 10-24-2012.txt Serial #: 000000018 Cable(s): 145-416 3mTrkB 09-04-2012.txt NONE. Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV003 NONE Filter: Project #: G100334102 Date(s): 04/24/12 Standard: FCC Part 15 Subpart C 15.247/RSS-247 33% 992mB Temp/Humidity/Pressure: 20c Receiver: R&S ESI (145128) 08-23-2012 Limit Distance (m): 3

PreAmp Used? (Y or N): N Voltage/Frequency: 102/120/138VAC/60Hz Frequency Range: Frequencies Shown

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS; RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

. oan .		Jan. Q. 7110	7. ago. 7 1 1 O			00 1 1001, 112		a Bana, Ba				
	Ant.			Antenna	Cable	Pre-amp	Distance	EIRP	EIRP			ĺ
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dBm	dBm	dB		FCC
					Note: RF O	utput Power						
1	Note: EIRP	Obtained by	applying the	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22	= dBm EIR	P	
PK	Н	2405.000	62.50	28.33	5.93	0.00	0.00	1.54	36.00	-34.46	5/10 MHz	
PK	Н	2440.000	63.09	28.43	5.98	0.00	0.00	2.28	36.00	-33.72	5/10 MHz	
PK	Н	2480.000	63.22	28.54	6.03	0.00	0.00	2.58	36.00	-33.42	5/10 MHz	ſ

Testing was performed with mains power varied between 85% and 115% of nominal voltage. No change in output power was observed.

IC

Duty Cycle

The worst-case duty cycle for typical EUT operation is shown below. The pulse train of the EUT extends beyond 100 ms as shown in the following plot. Note that the small pulse was from a support coordinator unit (CO) and that no other pulse trains are in 100 ms period.

Date: 27.APR.2012 21:54:22

This period contains one long word, as shown here. Note that the small pulse was from a supported coordinator (CO unit).

Date: 27.APR.2012 21:34:56

The long word length is 1.22 ms.

Date: 27.APR.2012 21:44:42

The duty cycle is therefore, 1.22 ms in a 100ms period, or 1.22%, for a duty cycle correction factor of 38.3 dB.

Intertek

Report Number: 101930181BOX-001b Issued: 03/26/2015

Human RF Exposure:

The EUT is a fixed installation device and was measured in a radiated fashion. The RF output power was measured using a resolution bandwidth larger than the bandwidth of the emission. The data obtained was adjusted for equipment losses and converted from a field strength reading to a power reading using the provisions of FCC KDB 558074 and RSS-Gen 4.6. The human RF exposure limit is 1 mW/cm². The power density S in mW/cm² generated by some value of EIRP in mW at a given distance d in cm is related by the equation:

 $S=EIRP/(4\pi d^2)$

The distance, given a maximum EIRP of 2.58 dBm (1.81 mW), at which the radiated power density of the EUT is equal to the human RF exposure limit is 0.38 cm from the antenna. This result does not take averaging into account.

The EUT is exempt from FCC RF exposure evaluation due to the peak output power being below $60/f_{(GHz)}$ where f is the frequency in GHz. This expression yields an exemption threshold of 24.2 mW (13.84 dBm) at 2480 MHz.

The EUT is exempt from IC SAR RF exposure evaluation as referenced in IC RSS-102 Issue 4 March 2010 section 2.5.2 because the operating frequency is above 1.5 GHz and the EIRP does not exceed 5 Watts (37.0 dBm).

Vathana Ven V Test Personnel: Test Date: 04/24/2012 Supervising/Reviewing Engineer: (Where Applicable) FCC Part 15 Subpart C Product Standard: 15.247; IC RSS-247 Test Levels: See tables 102/120/138VAC/60Hz Input Voltage: Pretest Verification w/ **Ambient Temperature:** 21 °C Ambient Signals or Relative Humidity: 41 % BB Source: Ambient Atmospheric Pressure: 991 mbars

Deviations, Additions, or Exclusions: None

7 6 dB Bandwidth

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, KDB 558074, ANSI C63.10, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
HORN2'	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012

Software Utilized:

Name	Manufacturer	Version
None		

7.3 Results:

The 99% power bandwidth, or 6 dB bandwidth, must not be less than 500 kHz. The sample tested was found to Comply.

Channel	6 dB Bandwidth	99% Power Bandwidth
Channel 11 (2405 MHz)	1.471 MHz	2.753 MHz
Channel 18 (2440 MHz)	1.450 MHz	2.710 MHz
Channel 26 (2480 MHz)	1.450 MHz	3.800 MHz

Plots were taken using an RBW of ~1-5% of the measured emission bandwidth, per KDB 558074v01 01/18/2012 and IC RSS-Gen Section 4.6.2.

7.4 Setup Photograph:

7.5 Plots/Data:

Channel 11 (2405 MHz) 6 dB Bandwidth

Date: 24.APR.2012 20:38:12

Channel 18 (2440 MHz) 6 dB Bandwidth

Channel 26 (2480 MHz) 6 dB Bandwidth

Channel 11 (2405 MHz) 99% Power Bandwidth

Channel 18 (2440 MHz) 99% Power Bandwidth

Channel 26 (2480 MHz) 99% Power Bandwidth

Intertek

Report Number: 101930181BOX-001b Issued: 03/26/2015

Vathana Ven Test Personnel: Test Date: 04/24/2012 Supervising/Reviewing Engineer: (Where Applicable) N/A FCC Part 15 Subpart C 15.247; IC RSS-247 Product Standard: Test Levels: See section 7.3 Input Voltage: 120VAC/60Hz Pretest Verification w/ Ambient Temperature: 20 °C Ambient Signals or Relative Humidity: 33 % BB Source: Ambient 992 mbars Atmospheric Pressure:

Deviations, Additions, or Exclusions: None

8 Peak Power Spectral Density

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, KDB 558074, ANSI C63.10, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 \text{ dB}_{\mu}V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

Intertek

Report Number: 101930181BOX-001b Issued: 03/26/2015

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
HORN2'	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

8.3 Results:

The peak power spectral density must not exceed 8 dBm in any 3 kHz bandwidth.

The sample tested was found to Comply.

8.4 Setup Photograph:

8.5 Test Data:

Radiated Emissions

Company: IGEACare Solutions Inc

Antenna & Cables: N Bands: N, LF, HF, SHF

Model #: Igeacom II

Antenna: HORN2 V3m 10-24-2012.txt HORN2 H3m 10-24-2012.txt

Serial #: 000000018 Cable(s): 145-416 3mTrkB 09-04-2012.txt NONE.

Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV003 Filter: NONE

Project #: G100334102 Date(s): 04/24/12

Standard: FCC Part 15 Subpart C 15.247/RSS-247 Temp/Humidity/Pressure: 20c 33% 992mB

PreAmp Used? (Y or N): N Voltage/Frequency: 102/120/138VAC/60Hz Frequency Range: Frequencies Shown

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

		Jan. 4. 7.116	7. ago. 7 tt o		,					.0.00 00 1.12	
	Ant.			Antenna	Cable	Pre-amp	Distance	EIRP	EIRP		
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dBm	dBm	dB	
Peak F	Power Spec	tral Density,	normalized	from 100kl	Hz to 3 kHz	using Band	width Corre	ction Factor	r 10LOG(3/1	100 kHz)=-1	15.2 dB
N	Note: EIRP Obtained by applying the path loss correction for a 3m test distance, E(dBuV/m)@3m - 95.22 = dBm EIRP						Р				
PK	Η	2405.000	55.35	28.33	5.93	0.00	0.00	-20.81	8.00	-28.81	100/300 kHz
PK	Η	2440.000	57.57	28.43	5.98	0.00	0.00	-18.44	8.00	-26.44	100/300 kHz
PK	Η	2480.000	57.72	28.54	6.03	0.00	0.00	-18.12	8.00	-26.12	100/300 kHz
	Note: Power Density measured in a 3 kHz RBW										
PK	Η	2405.000	51.50	28.33	5.93	0.00	0.00	-9.46	8.00	-17.46	3/10 kHz
PK	Н	2440.000	52.44	28.43	5.98	0.00	0.00	-8.37	8.00	-16.37	3/10 kHz
PK	Н	2480.000	52.55	28.54	6.03	0.00	0.00	-8.09	8.00	-16.09	3/10 kHz

Vathana Ven Test Personnel: Test Date: 04/24/2012 Supervising/Reviewing Engineer: (Where Applicable) N/A FCC Part 15 Subpart C 15.247; IC RSS-247 Product Standard: Test Levels: See section 8.3 120VAC/60Hz Input Voltage: Pretest Verification w/ Ambient Temperature: 20 °C Ambient Signals or Relative Humidity: 33 % BB Source: **Ambient** 992 mbars Atmospheric Pressure:

Deviations, Additions, or Exclusions: None

9 Band Edge Compliance

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, *KDB 558074*, ANSI C63.10, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, $U_{\it lab}$ (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

Intertek

Report Number: 101930181BOX-001b Issued: 03/26/2015

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
HORN2'	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

9.3 Results:

Spurious emissions at the band edges must be at least 20 dB lower than the fundamental field strength when measured with a 100 kHz bandwidth, without the need to be below the general limits of FCC Part 15 Section 15.209 and of RSS-Gen 7.2.5 Table 5. Emissions in restricted bands must meet the general limits of FCC Part 15 Section 15.209 and of RSS-Gen 7.2.5 Table 5.

The sample tested was found to Comply.

9.4 Setup Photograph:

9.5 Test Data:

Special Radiated Emissions

 Company: IGEACare Solutions Inc
 Antenna & Cables:
 N
 Bands: N, LF, HF, SHF

 Model #: Igeacom II
 Antenna: HORN2 V3m 10-24-2012.txt
 HORN2 H3m 10-24-2012.txt

 Serial #: 000000018
 Cable(s): 145-416 3mTrkB 09-04-2012.txt
 CBL030, MEG005

Engineers: Vathana Ven

Cable(s): 145-416 3mTrkB 09-04-2012.txt CBL030, MEG005

Engineers: Vathana Ven

Location: 10m Chamber Barometer: DAV003 Filter: REA004

Project #: G100334102 Date(s): 04/25/12

Standard: FCC Part 15 Subpart C 15.247/RSS-247 Temp/Humidity/Pressure: 21c 34% `1001mB

PreAmp Used? (Y or N): N Voltage/Frequency: 120VAC/60Hz Frequency Range: See Frequencies

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
	Note: Upper Band Edge Compliance, Integrated to 1 MHz RBW Equivalent										
PK	Н	2484.000	28.04	28.56	6.04	0.00	0.00	62.63	74.00	-11.37	10 kHz/30 kHz
AVG	Н	2484.000	-10.26	28.56	6.04	0.00	0.00	24.33	54.00	-29.67	10 kHz/30 kHz
	Note: Upper Band Edge Compliance, Integrated to 1 MHz RBW Equivalent										
PK	Н	2484.000	29.74	28.56	6.04	0.00	0.00	64.33	74.00	-9.67	100/300kHz
AVG	Н	2484.000	-8.56	28.56	6.04	0.00	0.00	26.03	54.00	-27.97	100/300kHz
	Note: Upper Band Edge Compliance, Integrated to 1 MHz RBW Equivalent										
PK	Η	2484.000	31.02	28.56	6.04	0.00	0.00	65.61	74.00	-8.39	500kHz/3MHz
AVG	Н	2484.000	-7.28	28.56	6.04	0.00	0.00	27.31	54.00	-26.69	500kHz/3MHz

Test Personnel: Vathana Ven VIV Test Date: 04/25/2012

Supervising/Reviewing Engineer:

(Where Applicable) N/A

FCC Part 15 Subpart C 15.247; IC RSS-247

Product Standard: 15.247; IC RSS-24 120VAC/60Hz

Pretest Verification w/ Ambient Signals or

BB Source: Ambient

Test Levels: See section 9.3

Ambient Temperature: 21 °C Relative Humidity: 29 %

Atmospheric Pressure: 997 mbars

Deviations, Additions, or Exclusions: None

10 Transmitter Radiated Spurious Emissions

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, KDB 558074, ANSI C63.10, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 \text{ dB}_{\mu}V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
~145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
~145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/04/2011	10/04/2012
~145 128	EMI Test Receiver (20Hz - 40GHz)	Rohde & Schwarz	ESI	837771/027	08/23/2011	08/23/2012
~145-410	Cables 145-400 145-406 145-407 145-405 145-403	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
~145-416	Cables 145-400 145-408 145-402 145-404	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
~HORN2	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012
~145 014	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/16/2011	12/16/2012
~DAV002	Weather Station	Davis Instruments	7400	PE80519A93	08/17/2011	08/17/2012
~PRE9	100MHz-40GHz Preamp	MITEQ	NSP4000-NFG	1260417	05/12/2011	05/12/2012
~CBL030	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	02/08/2012	02/08/2013
~EMC04	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	02/08/2012	02/08/2013

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

10.3 Results:

Spurious emissions at the band edges must be at least 20 dB lower than the fundamental field strength when measured with a 100 kHz bandwidth, without the need to be below the general limits of FCC Part 15 Section 15.209 and of RSS-Gen 7.2.5 Table 5. Emissions in restricted bands must meet the general limits of FCC Part 15 Section 15.209 and of RSS-Gen 7.2.5 Table 5.

The sample tested was found to Comply.

10.4 Setup Photographs:

30-1000MHz

1-18GHz

18-25GHz Hand scans

10.5 Plots/Data:

Spurious Emissions 30-1000MHz

Information

Test Details User Input

Project: model igeacom II
Test Notes: 997mB, CH11 Tx mode
Temperature: 21 deg C

Temperature: 21 deg C
Humidity: 29%
Tested by: Vathana Ven

Test Started: Apr 25 2012 16 : 45

Measured Peak Value
Measured Quasi Peak Value
Measured Average Value
Maximum Value of Mast and Turntable
Level (dBuV/m) = AF + CL + PA + Raw
AF = Antenna Factor
CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: QP **RBW** Frequency Level Limit Margin Hor (--), Angle AF PA+CL Detector (dB) (Hz) (dBuV/m) (dBuV/m) (Deg) Height(m) (Hz) Ver (|) 30.484591487 M QP 16.36 20.412 -26.107 29.54 -13.18 269 3.59 120 k 323.566332553 M 14.371 -24.042 35.54 -24.93 192 3.11 QP 120 k 10.61 QΡ 352.634980922 M 11.30 14.705 -23.963 35.54 -24.24 225 3.32 120 k 964.466933846 M 23.72 23.400 -22.386 43.54 -19.82 183 1.78 QΡ 120 k

Test Information

Test Details User Input

model igeacom II Project: 997mB, CH11 Tx mode Test Notes:

Temperature: 21 deg C Humidity: 29% Tested by: Vathana Ven

Test Started: Apr 25 2012 17:20

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/r	Margin m) (dB)	Hor (),	Ver (Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
30.845936299 M	16.58	20.5	23	-26.106	29.54	-12.96		114	3.20	QP	120 k
126.093498064 M	11.85	14.0	000	-24.970	33.04	-21.19		98	3.61	QP	120 k
490.763393337 M	15.16	17.9	985	-24.037	35.54	-20.38		69	2.67	QP	120 k
958 301135587 M	23.00	22.8	Ω	-22 400	35 54	-12 54		241	3 18	OΡ	120 k

Test Information

Test Details User Input

Project: model igeacom II
Test Notes: 997mB, CH18 Tx mode

Temperature: 21 deg C Humidity: 29% Tested by: Vathana Ven

Test Started: Apr 25 2012 18 : 32

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level (dBuV/m)	AF PA	ı+CL Limi (dBı	t uV/m)	J	or (), er ()	Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
31.487842451 M	15.56	19.610	-26.104	29.54	-13.98	- 1	9	7 3.07	' QP	120 k
472.366176862 M	14.65	17.447	-24.005	35.54	-20.89	T.	25	50 2.76	S QP	120 k
624.783455816 M	17.45	19.591	-23.962	35.54	-18.09	<u> </u>	2	7 1.93	QP	120 k
626.89040306 M	17.35	19.600	-23.955	35.54	-18.19	l'	26	3 2.34	QP	120 k

Test Information Test Details

User Input

Project: model igeacom II
Test Notes: 997mB, CH18 Tx mode
Temperature: 21 deg C

Temperature:
Humidity:
Tested by:

29% Vathana Ven

Test Started: Apr 25 2012 17 : 58

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level (dBuV/m)	AF PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
34.735827066 M	13.52	17.911	-26.094 2	29.54	-16.02	45	3.91	QP	120 k
492.510353984 M	15.25	17.950	-24.040	35.54	-20.29	68	2.91	QP	120 k
659.550011283 M	17.65	19.791	-23.841 3	5.54 -	17.89	255	1.95	QP	120 k
789.67871288 M	20.01	21.094	-23.249 3	5.54 -	15.53	195	2.19	QP	120 k

Test Information Test Details

User Input

Project: model igeacom II
Test Notes: 997mB, CH26 Tx mode
Temperature: 21 deg C

Temperature:
Humidity:
Tested by:

Test Started: Apr 25 2012 19:07

29% Vathana Ven

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level (dBuV/m)	AF PA+CL	Limit (dBuV/m)	Margin (dB)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
31.186706882 M	15.91	19.851	-26.105 2	9.54	-13.63	350	3.43	QP	120 k
330.032754367 M	10.90	14.499	-24.023 3	5.54	-24.64	246	1.30	QP	120 k
507.623357846 M	15.56	17.905	-24.044	35.54	-19.98	3	3 2.15	QP	120 k
674.411556513 M	18.15	20.000	-23.787 3	5.54	-17.39	202	1.36	QP	120 k

Test Information

Test Details User Input

Project: model igeacom II
Test Notes: 997mB, CH26 Tx mode

Temperature: 21 deg C Humidity: 29% Tested by: Vathana Ven

Test Started: Apr 25 2012 19 : 42

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level (dBuV/m)	AF PA+CL	Limit (dBuV/m)	Margin (dB)	Hor (),)	Ver (Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
32.768826565 M	15.07	19.239	-26.100	29.54	-14.47		101	3.46	QP	120 k
288.142062044 M	9.59	13.437	-24.132 35	5.54	-25.95		218	3.80	QP	120 k
945.032531679 M	22.75	22.700	-22.444	35.54	-12.79		189	3.05	QP	120 k
951.770184701 M	22.71	22.735	-22.414	35.54	-12.83		334	3.06	QP	120 k

Tx Spurious Emissions above 1GHz

Company: IGEACare Solutions Inc
Antenna & Cables: N Bands: N, LF, HF, SHF
Model #: Igeacom II Antenna: HORN2 V3m 10-24-2012.txt HORN2 H3m 10-24-2012.txt E

 Model #: Igeacom II
 Antenna: HORN2 V3m 10-24-2012.txt
 HORN2 H3m 10-24-2012.txt
 EMC04

 Serial #: 000000018
 Cable(s): 145-416 3mTr/kB 09-04-2012.txt
 CBL030, MEG005

Serial #: 000000018 Cable(s): 145-416 3mTrkB 09-04-2012.txt CBL030, MEG005
Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV003 Filter: REA004

 Project #: G100334102
 Date(s): 04/24/12

 Standard: FCC Part 15 Subpart C 15.247/RSS-247
 Temp/Humidity/Pressure: 20c
 33%
 992mB

PreAmp Used? (Y or N): Y Voltage/Frequency: 120VAC/60Hz Frequency Range: 1-25GHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS: NF = Noise Floor, RB = Restricted Band: Randwidth denoted as RBW//RW

Peak: Pl	Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW													
	Ant.			Antenna	Cable	Pre-amp	Distance							
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth			
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC	Harmonic?
				Note: S	Spurious En	nissions Ref	erence							
PK	Н	2405.000	56.90	28.33	5.93	0.00	0.00	91.16	-	-	100/300 kHz			No pre-amp
PK	Н	2440.000	57.57	28.43	5.98	0.00	0.00	91.98	-	-	100/300 kHz			No pre-amp
PK	PK H 2480.000 57.72 28.54 6.03 0.00 0.00 92.30 100/300							100/300 kHz			No pre-amp			
				Tx CH 11, F	= 2405 MI	Hz, Spurious	s emissions							
PK	Н	4810.000	35.50	32.86	9.17	34.54	0.00	42.98	74.00	-31.02	1/3 MHz	RB	Noise Floor	
AVG	Н	4810.000	26.30	32.86	9.17	34.54	0.00	33.78	54.00	-20.22	1/3 MHz	RB	Noise Floor	
PK	V	7215.000	27.98	36.12	10.85	35.66	9.54	29.75	71.16	-41.41	100/300 kHz		Noise Floor	1 meter
PK	V	9620.000	28.59	37.89	13.16	35.85	9.54	34.25	71.16	-36.91	100/300 kHz		Noise Floor	1 meter
PK	V	12025.000	35.75	39.52	14.97	35.38	9.54	45.32	74.00	-28.68	1/3 MHz	RB	Noise Floor	1 meter
AVG	V	12025.000	25.40	39.52	14.97	35.38	9.54	34.97	54.00	-19.03	1/3 MHz	RB	Noise Floor	1 meter
PK	V	14430.000	26.10	42.14	15.16	34.64	9.54	39.22	71.16	-31.94	100/300 kHz		Noise Floor	1 meter
PK	V	16835.000	23.40	39.85	25.50	37.74	9.54	41.48	71.16	-29.68	100/300 kHz		Noise Floor	1 meter
	Tx CH 18, F = 2440 MHz, Spurious emissions													
PK	V	4880.000	39.60	33.13	9.28	34.41	0.00	47.60	74.00	-26.40	1/3 MHz	RB	Noise Floor	
AVG	V	4880.000	27.00	33.13	9.28	34.41	0.00	35.00	54.00	-19.00	1/3 MHz	RB	Noise Floor	1 meter
PK	V	7320.000	42.17	36.46	10.97	35.73	9.54	44.33	74.00	-29.67	1/3 MHz	RB	Noise Floor	1 meter
AVG	V	7320.000	30.80	36.46	10.97	35.73	9.54	32.96	54.00	-21.04	1/3 MHz	RB	Noise Floor	1 meter
PK	V	9760.000	31.20	38.04	13.35	35.35	9.54	37.70	71.98	-34.28	100/300 kHz		Noise Floor	1 meter
PK	V	12200.000	39.80	39.18	14.88	35.45	9.54	48.88	54.00	-5.12	1/3 MHz		Noise Floor	1 meter
AVG	V	12200.000	30.50	39.18	14.88	35.45	9.54	39.58	54.00	-14.42	1/3 MHz		Noise Floor	1 meter
PK	V	14640.000	25.00	41.60	15.25	34.87	9.54	37.44	71.98	-34.54	100/300 kHz		Noise Floor	1 meter
PK	V	17080.000	23.21	40.72	18.66	37.60	9.54	35.45	71.98	-36.53	100/300 kHz		Noise Floor	1 meter
				Tx CH 26,	F = 2480 M	Hz, Spuriou	s emissions							
PK	V	4960.000	39.24	33.30	9.41	34.25	0.00	47.69	74.00	-26.31	1/3 MHz	RB	Noise Floor	
AVG	V	4960.000	27.92	33.30	9.41	34.25	0.00	36.37	54.00	-17.63	1/3 MHz	RB	Noise Floor	
PK	V	7440.000	40.89	36.58	11.10	35.81	9.54	43.21	74.00	-30.79	1/3 MHz	RB	Noise Floor	1 meter
AVG	V	7440.000	30.90	36.58	11.10	35.81	9.54	33.22	54.00	-20.78	1/3 MHz	RB	Noise Floor	1 meter
PK	V	9920.000	30.88	38.27	13.57	34.78	9.54	38.39	72.20	-33.81	100/300 kHz		Noise Floor	1 meter
PK	V	12400.000	41.24	38.98	14.79	35.52	9.54	49.95	54.00	-4.05	1/3 MHz	RB	Noise Floor	1 meter
AVG	V	12400.000	30.85	38.98	14.79	35.52	9.54	39.56	54.00	-14.44	1/3 MHz		Noise Floor	1 meter
PK	V	14880.000	31.92	40.37	15.75	35.32	9.54	43.18	72.30	-29.12	100/300 kHz		Noise Floor	1 meter
PK	V	17360.000	30.50	42.09	23.22	36.91	9.54	49.36	72.30	-22.94	100/300 kHz		Noise Floor	1 meter

Hand scans were performed from 18-25GHz, no emissions were detected above the measuring equipment noise floor.

Test Personnel:	Vathana Ven	Test Date:	04/24/2012, 04/25/2012
Supervising/Reviewing			
Engineer:			
(Where Applicable)	N/A		
	FCC Part 15 Subpart C		
Product Standard:	15.247; IC RSS-247	Test Levels:	See tables
Input Voltage:	120VAC/60Hz		
Pretest Verification w/		Ambient Temperature:	see tables
Ambient Signals or	Ambiant	Relative Humidity:	see tables
BB Source:	Ambient		
		Atmospheric Pressure:	See tables

Deviations, Additions, or Exclusions: None

11 Receiver Radiated Spurious Emissions

11.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart B 15.109, IC RSS-Gen Sections 4.10 & 6.0.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz)

< $U_{\it CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 \text{ dB}_{\mu}V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \text{ }\mu\text{V/m}$

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
~145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
~145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/04/2011	10/04/2012
~145 128	EMI Test Receiver (20Hz - 40GHz)	Rohde & Schwarz	ESI	837771/027	08/23/2011	08/23/2012
~145-410	Cables 145-400 145-406 145-407 145-405 145-403	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
~145-416	Cables 145-400 145-408 145-402 145-404	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
~HORN3	HORN ANTENNA	EMCO	3115	9610-4980	03/28/2011	03/28/2012
~145 014	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/16/2011	12/16/2012
~DAV003	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

11.3 Results:

Emissions must be below the general limits of FCC 15.109 and IC RSS-Gen Issue 3 December 2010 Section 6.0 Table 2.

The sample tested was found to Comply.

11.4 Setup Photographs:

30-1000MHz

1-13GHz

11.5 Plots/Data:

Rx Spurious Emissions 30-1000MHz

User Input

Test Information Test Details Project:

Test Notes:

model igeacom II 997mB, CH18 Rx mode 21 deg C

29%

Temperature: Humidity:

Tested by: Vathana Ven
Test Started: Apr 25 2012 20 : 57

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor

CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level (dBuV/m)	AF PA+CL	Limit (dBuV/m)	Margin (dB)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
31.815497707 M	15.30	19.348	-26.103 2	9.54	-14.24	284	3.39	QP	120 k
38.736873778 M	10.89	14.811	-26.083 2	9.54	-18.65	270	3.70	QP	120 k
956.616833717 M	23.60	23.400	-22.403	35.54	-11.94	93	3.60	QP	120 k
967.312558593 M	23.78	23.446	-22.380 4	3.54	-19.76	360	3.96	QP	120 k

Test Information

Test Details User Input

Project: model igeacom II
Test Notes: 997mB, CH18 Rx mode

Temperature: 21 deg C Humidity: 29% Tested by: Vathana Ven

Test Started: Apr 25 2012 20 : 21

Measured Peak Value
Measured Quasi Peak Value
Measured Average Value
Meximum Value of Most and

Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw AF = Antenna Factor

CL = Cable Losses PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Frequency (Hz)	Level (dBuV/m)	AF PA+CL	Limit (dBuV/m)	Margin (dB)	Hor (),	Ver (Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
34.111534218 M	14.13	18.411	-26.096	29.54	-15.41		312	3.23	QP	120 k
121.27668677 M	11.47	13.900	-25.034	33.04	-21.57		322	2.57	QP	120 k
747.993030491 M	19.41	20.660	-23.413	35.54	-16.13		48	1.61	QP	120 k
791.995413178 M	20.18	21.140	-23.240	35.54	-15.36		8	1.58	QP	120 k

Rx Spurious Emissions above 1GHz

Test Information

Test Details User Input

Project: model igeacom 300
Test Notes: 997mB, CH18 Rx mode

Temperature: 21 deg C
Humidity: 29%
Tested by: Vathana Ven
Test Started: Apr 25 2012 22 : 10

Measured Peak Value
Measured Quasi Peak Value
Measured Average Value

Maximum Value of Mast and Turntable Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Intertek

Report Number: 101930181BOX-001b	Issued: 03/26/2015

report rumber.	1013301	101330101000							133000.00	5/20/2013
Measured: PEAK										
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dB)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
2.96756758 G 4.804088621 G 5.249678023 G 6.779655311 G 8.595061679 G 8.626549543 G 10.607459808 G 10.933251837 G	42.54 47.15 55.61 57.45 53.56 53.95 57.35 57.33	30.018 32.842 33.717 35.062 37.463 37.488 38.400 38.277	-27.165 -25.375 -19.389 -24.536 -23.252 -23.224 -20.042 -19.574	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-31.46 -26.85 -18.39 -16.55 -20.44 -20.05 -16.65 -16.67	 - - -	162 297 16 337 117 214 120 334	1.47 1.65 1.19 1.84 2.54 1.72 2.23 1.69	PEAK PEAK PEAK PEAK PEAK PEAK PEAK	1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M
Measured: AVERAG	E							Mast		
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dB)	Hor (), Ver ()	Angle (Deg)	Mast Height (m)	Detector	RBW (Hz)
2.96756758 G 4.804088621 G 5.249678023 G 6.779655311 G 8.595061679 G 8.626549543 G 10.607459808 G 10.933251837 G	32.41 36.05 44.47 46.76 43.61 43.66 46.77 46.94	30.018 32.842 33.717 35.062 37.463 37.488 38.400 38.277	-27.165 -25.375 -19.389 -24.536 -23.252 -23.224 -20.042 -19.574	54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00	-21.59 -17.95 -9.53 -7.24 -10.39 -10.34 -7.23 -7.06	 	162 297 16 337 117 214 120 334	1.47 1.65 1.19 1.84 2.54 1.72 2.23 1.69	AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE	1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M
Test Person	nel: Vatha	ana Ven V	fv			Te	st Date:	04/25/2	012	
Supervising/Review Engine	ving									
(Where Applical		Part 15 Su	ubpart B; IC							
Product Standa	RSS-	247, IC R	SS-Gen, IC			Test	Levels:	Class B	.	
		AC/60Hz			А	mbient Temp		21 °C		
Ambient Signals	s or	ent			,,	Relative H		29 %		
23 Goul	Tallo	<u> </u>			At	tmospheric P	ressure:	997 mb	ars	

Deviations, Additions, or Exclusions: None

12 AC Mains Conducted Emissions

12.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart B 15.207, IC RSS-Gen Section 7.2.4.

TEST SITE: AMAP (Bump Out)

<u>The AMAP Building and Lab</u> includes general lab space that can be used for testing where a shielded/enclosed environment is not required.

Measurement Uncertainty

For conducted emissions, $U_{\it lab}$ (3.2 dB in worst case) < $U_{\it CISPR}$ (3.6 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

$$\label{eq:NF} \begin{split} NF &= RF + LF + CF + AF \\ Where \quad NF &= Net \ Reading \ in \ dB_{\mu}V \\ RF &= Reading \ from \ receiver \ in \ dB_{\mu}V \\ LF &= LISN \ Correction \ Factor \ in \ dB \\ CF &= Cable \ Correction \ Factor \ in \ dB \\ AF &= Attenuator \ Loss \ Factor \ in \ dB \end{split}$$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \text{ dB}\mu\text{V}$$
 UF = $10^{(49.1 \text{ dB}\mu\text{V} / 20)} = 285.1 \text{ }\mu\text{V/m}$

Intertek

Report Number: 101930181BOX-001b Issued: 03/26/2015

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012
ROS002	9kHz to 3GHz EMI Test Receiver	Rohde & Schwartz	ESCI 1166.5950K03	100067	04/15/2011	05/15/2012
CBLBNC51	Cable BNC/BNC, 30'	ITS	BNC-30	CBLBNC51	09/08/2011	09/08/2012
LISN10	LISN, 50uH, .01 - 50MHz, 24A	Solar Electronics	9252-50-R-24-BNC	941712	01/27/2012	01/27/2013
DS32	Attenuator, 3dB	Mini Circuits	3dB, 50 ohm	DS32	02/08/2012	02/08/2013
145-141A	Power Supply NSG 1007-5-208	California Instr. Co	5kVa	56119	03/22/2012	03/22/2014
145-141B	Power Supply NSG 1007-5-208	California Instr. Co	5kVa	56120	03/22/2012	03/22/2014
145-141C	Power Supply NSG 1007-5-208	California Instr. Co	5kVa	56121	03/22/2012	03/22/2014

Software Utilized:

Name	Manufacturer	Version		
EMI Boxborough	Intertek	8/27/2010		

12.3 Results:

The sample tested was found to Comply.

12.4 Setup Photograph:

12.5 Test Data:

Conducted Emissions

 Company: IGEACare Solutions Inc
 Receiver: R&S ESCI (ROS002) 05-15-2012

 Model #: Igeacom II
 Cable: CBLBNC51_9-08-2012.txt

 Serial #: 000000018
 LISN 1: LISN 10_line 1_01-27-2013.txt

Engineer(s): Vathana Ven

Location: 10m Chamber

LISN 2: LISN10_line 2_01-27-2013.txt

Project #: G100334102 Date: 04/24/12 LISN 3: NONE.

Notes: Tx mode

Standard: FCC Part 15 Subpart C 15.247/RSS-Gen LISN 4: NONE.

Barometer: DAV003 Temp/Humidity/Pressure: 20 deg C 29% 1001 mB Attenuator: DS32 02-08-13.txt

Voltage/Frequency: 120VAC/60Hz Frequency Range: 0.150-30MHz

Net is the sum of worst-case lisn, cable, & attenuator losses, and initial reading, factors are not shown Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor; Bandwidth denoted as RBW/VBW

Tour. The Quality Car. Quality Control Time, Time, Time, Time, Time, Daniaman Control Control									
		Reading	Reading	Reading	Reading		QP		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
QP	0.152	32.10	29.70			35.18	65.89	-30.71	9/30 kHz
QP	0.164	31.90	29.30			34.98	65.26	-30.28	9/30 kHz
QP	0.269	29.10	24.60			32.15	61.15	-29.00	9/30 kHz
QP	0.435	28.40	16.00			31.45	57.16	-25.71	9/30 kHz
QP	0.551	22.90	10.10			25.96	56.00	-30.04	9/30 kHz
QP	1.170	9.00	-2.20			12.08	56.00	-43.92	9/30 kHz

		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
AVG	0.152	13.50	4.20			16.58	55.89	-39.31	9/30 kHz
AVG	0.164	21.50	9.80			24.58	55.26	-30.68	9/30 kHz
AVG	0.269	12.00	0.00			15.05	51.15	-36.10	9/30 kHz
AVG	0.435	7.00	-5.10			10.05	47.16	-37.11	9/30 kHz
AVG	0.551	-1.60	6.90			9.96	46.00	-36.04	9/30 kHz
AVG	1.170	-8.20	-9.90			-5.12	46.00	-51.12	9/30 kHz

Conducted Emissions

 Company: IGEACare Solutions Inc
 Receiver: R&S ESCI (ROS002) 05-15-2012

 Model #: Igeacom II
 Cable: CBLBNC51_9-08-2012.txt

 Serial #: 000000018
 LISN 1: LISN10_line 1_01-27-2013.txt

Engineer(s): Vathana Ven

Location: 10m Chamber LISN 2: LISN10_line 2_01-27-2013.txt

Project #: G100334102 Date: 04/24/12 LISN 3: NONE.

Notes: Rx mode
Standard: FCC Part 15 Subpart C 15.247/RSS-Gen
LISN 4: NONE.

Barometer: DAV003 Temp/Humidity/Pressure: 20 deg C 29% 1001 mB Attenuator: DS32 02-08-13.txt

Voltage/Frequency: 120VAC/60Hz Frequency Range: 0.150-30MHz

Net is the sum of worst-case lisn, cable, & attenuator losses, and initial reading, factors are not shown Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor; Bandwidth denoted as RBW/VBW

		Reading	Reading	Reading	Reading		QP		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
QP	0.152	31.40	32.00			35.08	65.89	-30.81	9/30 kHz
QP	0.164	36.70	30.60			39.78	65.26	-25.48	9/30 kHz
QP	0.269	29.10	25.80			32.15	61.15	-29.00	9/30 kHz
QP	0.435	28.60	25.80			31.65	57.16	-25.51	9/30 kHz
QP	0.551	22.90	7.70			25.96	56.00	-30.04	9/30 kHz
QP	1.170	22.90	-1.20			25.98	56.00	-30.02	9/30 kHz

		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Type	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
AVG	0.152	12.60	4.80			15.68	55.89	-40.21	9/30 kHz
AVG	0.164	7.70	10.00			13.07	55.26	-42.19	9/30 kHz
AVG	0.269	12.00	1.40			15.05	51.15	-36.10	9/30 kHz
AVG	0.435	1.20	1.60			4.66	47.16	-42.50	9/30 kHz
AVG	0.551	-4.20	-10.10			-1.14	46.00	-47.14	9/30 kHz
AVG	1.170	-2.90	-12.40			0.18	46.00	-45.82	9/30 kHz

Test Personnel: Vathana Ven V5V Test Date: 04/24/2012

Supervising/Reviewing
Engineer:

(Where Applicable) N/A

FCC Part 15 Subpart B; IC

RSS-247, IC RSS-Gen, IC

Product Standard: ICES-003
Input Voltage: 120VAC/60Hz

Pretest Verification w/

Ambient Signals or

BB Source: Ambient

Test Levels: Class B

Ambient Temperature: 20 °C

Relative Humidity: 29 %

Atmospheric Pressure: 1001 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 101930181BOX-001b Issued: 03/26/2015

13 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	04/29/2012	100334102BOX-023	VEV	Rb initials	Original
1	04/29/2012	101930181BOX-001b	VHV	KPS 43	Company name and model number changed