Unit-5: Combinational Circuit

Adders
Subtractor
Comparator
Parity Generator

Combinational Circuits

- output depends only on the present input
- The combinational circuit do not use any memory.
- The previous state of input does not have any effect on the present state of the circuit.

Half Adder

A combinational logic circuit with two inputs and two outputs.

The half adder circuit add two single bit Cary number

This circuit has two outputs carry and sum.

Inputs		Output	
Α	В	s c	
0	0	0 0	
0	1	1 0	
1	0	1 0	
1	1	0 1	

$$S(A, B) = \sum m (1, 2)$$

 $CY(A, B) = \sum m (3)$

Full Adder (1-bit Adder)

A combinational logic circuit with 3 inputs and 2 outputs. The Full adder circuit add 3 single bit Cary number This circuit has two outputs **carry** and **sum**.

Sum(A, B,C) = \sum m (1, 2, 4, 7) Cout(A, B, C) = \sum m (3,5,6,7)

For S:

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

$$\overline{A(BC + BC)} + A(\overline{BC} + BC)$$

$$\overline{A(B \oplus C)} + A(B\Theta C)$$

Let
$$B \oplus C = D$$

$$\overline{A}D + A\overline{D}$$

$$A \oplus D$$

$$A \oplus B \oplus C$$

For Cout

$$\overline{A}BC + A\overline{B}C + ABC + AB\overline{C}$$
 $C(\overline{A}B + A\overline{B}) + AB(C + \overline{C})$
 $(A \oplus B)C + AB$

Cout=AB+BC+AC

Full Adder using Half Adder

FA
Sum= $A \oplus B \oplus C$ Carry= $AB+(A \oplus B)C$

HA Sum= A⊕B Carry=AB

4-bit Ripple Carry Adder

Half Subtractor

Combinational circuit perform binary Subtraction Accepts 2 input and Two output Difference and Borrow

$$D(A, B) = \sum m (1, 2)$$

Br(A, B) = $\sum m (1)$

For D:

For b:

Inputs		Outputs		
Α	В	D (Difference)	b (Borrow)	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Full Subtractor

Performs subtraction of 3 bits

This circuit has three inputs and two outputs.

The three inputs A, B and C, denote the minuend, subtrahend, and previous borrow, respectively.

The two outputs, D and Bout

Input			Output		
Α	В	С	Difference	Borrow	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Sum(A,	B,C) =	∑m ((1,	2,	4,	7)
Bout(A,	B,C) =	Σm	(1,	2,3	3,7)

$$\begin{array}{lll} \textit{Difference} &=& \overline{A} \ \overline{B} \ C \ + \ \overline{A} \ \overline{B} \ \overline{C} \ + \ A \overline{B} \ \overline{C$$

$$Borrow = \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} BC + ABC$$
$$= \overline{A} B + \overline{A} C + BC$$

Full Subtractor using Half Subtractor

HS Sum= A⊕B Carry=A'B

1-BIT Magnitude Comparator

			EO	
Inp	uts	GT	Outputs	П
A	В	A > B	A = B	A < B
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

GT=AB' EQ=A'B'+AB LT=A'B

Parity Generator Circuit

Even Parity Generator

If odd number of ones present in the input, then even parity bit, P should be '1' so that the resultant word contains even number of ones.

Even Parity bit P
0
1
1
0
1
0
0
1

$$P = W'X'Y + W'XY' + WX'Y' + WXY$$

$$\Rightarrow P = W'(X'Y + XY') + W(X'Y' + XY)$$

$$\Rightarrow P = W'(X \oplus Y) + W(X \oplus Y)' = W \oplus X \oplus Y$$

Odd Parity Generator

If even number of ones present in the input, then odd parity bit, P should be '1' so that the resultant word contains odd number of ones

Binary Input WXY	Odd Parity bit P
000	1
001	0
010	0
011	1
100	0
101	1
110	1
111	0

