Домашнее задание 9

Дайте обоснованные ответы на следующие вопросы.

Д9.1. Рассмотрим бесконечные последовательности из 0, 1 и 2, в которых никакая цифра не встречается два раза подряд. Верно ли, что мощность множества таких последовательностей имеет мощность континуум?

Представим последовательность a размера n как начальный элемент + последовательность 0,1 размера n-1 по такому принципу. Пусть мы знаем последовательность до i-ого элемента, если $a_i=0$, в последовательность 0, если $a_{i+1}=1$, 1, если $a_{i+1}=2$. Аналогично, если $a_i=1$, запишем 0, если $a_{i+1}=0$, 1, если $a_{i+1}=2$. Для $a_i=2$, если $a_{i+1}=0$, запишем 0, иначе 1. Получается, что мы построили биекцию из множества заданных последовательностей в множество $\{0,1,2\} \times \{0,1\}_{n=1}^{\infty} \Rightarrow |\{0,1,2\}| = |\{0,1\}_{n=1}^{\infty}| = C$

Ответ: Да

Д9.2. Рассмотрим множество пар различных действительных чисел, то есть

$$\bar{D} = \{(x, y) : x \neq y, \ x, y \in \mathbb{R}\}.$$

Является ли множество \bar{D} континуальным?

$$|D|=|\mathbb{R}\times\mathbb{R}|, |\mathbb{R}\times\mathbb{R}|=|\mathbb{R}|$$
 (из лекции), значит $|D|=|\mathbb{R}|=C$

Ответ: Да

Д9.3. Является ли множество всех тотальных функций $\mathbb{R} \to \mathbb{R}$ континуальным?

Множество всех тотальных функций $\mathbb{R} \to \mathbb{R}$ имеет мощность $\mathbb{R}^{\mathbb{R}}$

Мощность всех подмножеств $\mathbb{R} \to \mathbb{R}$ имеет мощность $2^{\mathbb{R}}$. $\mathbb{R}^{\mathbb{R}} > 2^{\mathbb{R}}$, $|2^{\mathbb{R}}| > |\mathbb{R}| = C \Rightarrow |\mathbb{R}^{\mathbb{R}}| > C$

Ответ: Нет

Д9.4. Функция периодическая, если для некоторого числа T>0 (периода) и любого x выполняется f(x+T)=f(x). Счётно ли множество множество периодических функций $f\colon \mathbb{Q}\to \mathbb{Q}$? Период считайте рациональным.

Можем от каждой функции оставить только ее первый положительный переиод, то есть когда первый аргумент в периоде положителен. Получим биекцию из множества $\mathbb{Q} \to \mathbb{Q}$ в множетсво полуотрезков на множестве \mathbb{Q} , так как по условию функция тотальная (мы подставляем в функцию любой x). Каждый полуотрезок отрезок можно задать парой рациональный чисел - началом и концом. Получаем биекцию в множество $\mathbb{Q} \times \mathbb{Q}$, так как $|\mathbb{Q}| = |\mathbb{N}|$, то можно построить биекцию в множество $\mathbb{N} \times \mathbb{N}$, которое счетно, потому что его можно разбить в в объединение счётного числа счётных множеств $\{0\} \times N, \{1\} \times N, \{2\} \times \mathbb{N}, \cdots$.

Ответ: Да