Adam Kosiorek IMAT: 03661883

Machine Learnig Homework 7

Problem 1

If the data set is linearly separable, any decision boundary separating the two classes will have the property

$$w^{T}\phi(x^{n}) = \begin{cases} \geq 0 & \text{if } z^{n} = 1, \\ < 0 & \text{otherwise.} \end{cases}$$
 (1)

Moreover, the log-likelihood

$$L(w) = \log p(\{z^i\} | w, \{\phi(x^i)\})$$
(2)

$$= \sum_{n=1}^{N} \left[z^n \log \sigma(w^T \phi(x^n)) + (1 - z^n) (\log(1 - \sigma(w^T \phi(x^n)))) \right]$$
 (3)

will be maximized when $y^n = \sigma(w^T \phi(x^n)) = z^n \ \forall n$. This will be the case when the sigmoid function is saturated, which occurs when its argument, $w^T \phi$, goes to $\pm \inf$, i.e., when the magnitude of w goes to infinity.

Problem 2

The basis function

$$\phi(x_1, x_2) = x_1 x_2 \tag{4}$$

enables us to linearly seperate the crosses from the circles. The hyperplane would go through the origin of the coordinate system.

Problem 5

Let $\mathbf{w}^0 = \mathbf{0}$ be an initial set of weights and $b^0 = 0$ an initial bias. Let $z_k^i \in \{-1, 1\}$ denote the classification result of the i^{th} training sample $\mathbf{x}^i, i = 1, \dots, N$ using weights \mathbf{w}^k and bias b^k . The training algorithm iterates as long as there is at least one misclassification and computes:

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \sum_{t^i \neq z_k^i} t^i \mathbf{x}^i$$

$$b^{k+1} = b^k + \sum_{t^i \neq z_k^i} t^i$$
(5)

Adam Kosiorek IMAT: 03661883

Figure 1: Decision boundary after 0-3 iterations.

Problem 6

Figure 1 shows the decision boundary after 0-3 training iterations. After the third iteration it does not change anymore; The norm of the weights $||\mathbf{w}^k||$ grows to infinity, however.

Problem 7

Let $z_k^i \in \{-1,1\}$ denote the classification result of the i^{th} training sample \mathbf{x}^i , $i=1,\ldots,N$. Since \mathbf{x}^i are linearly separable, it holds that $\mathbf{x}^i > 0 \implies t^i \widetilde{\mathbf{w}}^T \mathbf{x}^i > 0$. If we define $\gamma = \min_i t^i \widetilde{\mathbf{w}}^T \mathbf{x}^i$ then:

$$\widetilde{\mathbf{w}}^T \mathbf{w}^k = \widetilde{\mathbf{w}}^T \mathbf{w}^{k-1} + \sum_{t^i \neq z_{k-1}^i} t^i \widetilde{\mathbf{w}}^T \mathbf{x}^i \ge \widetilde{\mathbf{w}}^T \mathbf{w}^{k-1} + \gamma \ge \widetilde{\mathbf{w}}^T \mathbf{w}^0 + k\gamma = k\gamma$$
 (6)

Problem 8

From equation 5 and since $||\mathbf{x}^i|| < R$ and the number of misclassified samples at each iteration is at most N we have

Adam Kosiorek IMAT: 03661883

$$||\mathbf{w}^{k}||^{2} \leq ||\mathbf{w}^{k-1}||^{2} + \sum_{t^{i} \neq z_{k-1}^{i}} ||\mathbf{x}^{i}||^{2}$$

$$\leq ||\mathbf{w}^{k-1}||^{2} + \sum_{t^{i} \neq z_{k-1}^{i}} R^{2}$$

$$\leq ||\mathbf{w}^{k-1}||^{2} + NR^{2}$$

$$\leq kNR^{2}$$
(7)

Problem 9

From problems 7 and 8 we know that $||\widetilde{\mathbf{w}}^T\mathbf{w}^k|| \ge k\gamma$ and $||\mathbf{w}^k||^2 < kR^2$. Therefore:

$$\frac{k^2 \gamma^2}{kR^2} = \frac{k\gamma^2}{R^2} \le \frac{\left(\widetilde{\mathbf{w}}^T \mathbf{w}^k\right)^2}{||\mathbf{w}^k||^2} \tag{8}$$

Since $(\widetilde{\mathbf{w}}^T \mathbf{w}^k)^2 = \sum_i \widetilde{\mathbf{w}}_i^2 (\mathbf{w}^k)_i^2 = \sum_i \widetilde{\mathbf{w}}_i^2 \sum_i (\mathbf{w}^k)_i^2 = ||\widetilde{\mathbf{w}}||^2 ||\mathbf{w}^k||^2$ and

$$\frac{k\gamma^2}{R^2} \le \||\widetilde{\mathbf{w}}||^2 \tag{9}$$

$$k \le \frac{||\widetilde{R^2 \mathbf{w}}||^2}{\gamma^2} \tag{10}$$