## Image Processing with Deep Learning

Michael Yuhas and Subrat Panda





## Agenda

| Time      | Item                                 |
|-----------|--------------------------------------|
| 2:00-2:15 | Introduction to Convolution          |
| 2:15-2:45 | Convolutional Neural Networks (CNNs) |
| 2:45-3:15 | Classification with CNNs             |
| 3:15-3:30 | Break                                |
| 3:30-4:00 | Transfer Learning                    |
| 4:00-4:30 | Semantic Segmentation with CNNs      |
| 4:30-5:00 | Other Techniques                     |





#### A Real-World Problem...

- Imagine you run a post office
- You receive millions of letters and packages a day and need to decide where to send them
- Human labor is costly and time consuming
- How can you automate this task?



[1] S. Janprasai, MNIST Examples Modified



#### A Real-World Problem...

- This was the problem facing USPS in 1989
- How would you solve this problem?



[1] S. Janprasai, MNIST Examples Modified



## Introduction to Convolution





#### Convolution

- An image is represented as a matrix of numbers
  - Higher value = More intesity
- A *kernel* is also a matrix containing some pattern
- Slide a kernel along an image an multiply the overlapping values, and sum the result



| 30    | 3     | $2_2$   | 1 | 0 |
|-------|-------|---------|---|---|
| $0_2$ | $0_2$ | $1_{0}$ | 3 | 1 |
| 30    | 1,    | 22      | 2 | 3 |
| 2     | 0     | 0       | 2 | 2 |
| 2     | 0     | 0       | 0 | 1 |

| 12.0 | 12.0 | 17.0 |
|------|------|------|
| 10.0 | 17.0 | 19.0 |
| 9.0  | 6.0  | 14.0 |

[2] Intuitively Understanding Deep Convolution, Towards Data Science (2018)

## Edge Detection





- Sobel kernel a special kernel used for edge detection
- Yield a high value when a gradient is present in one direction



#### Exercise 1

• Write your own edge detector...



[3] Simpsons Contributor, Valve Original



[3] Simpsons Contributor, Valve Sobel



## Image Classification with CNNs





#### Learnable Filters

- What if we were able to learn kernel weights instead of crafting them ourselves
- This pattern, summing the multiplication of weights is the same thing that happens in a neural network!
- Not just limited to three color channels: can go from any arbitrary sized tensor to another



[4] <u>Intuitively Understanding Deep Convolution</u>, Towards Data Science (2018)

## Padding

- https://ezyang.github.io/convolution-visualizer/
- Reasons to pad:
  - Information loss at edges of image
  - Need to match output dimensions
- Types of padding:
  - 0's
  - 1's
  - Reflective



#### Stride

- Skip pixels while dragging the kernel
- A higher stride let's us...
  - Process data faster
  - Reduce dimensionality
- At the expense of...
  - Ignoring information in the input



[4] <u>Intuitively Understanding Deep Convolution</u>, Towards Data Science (2018)



#### Dilation

- https://ezyang.github.io/convolution-visualizer/
- Increase the receptive field of a neuron without increasing number of computations

#### Normalization

- We want to normalizae feature values to help gradient descent converge
- Two learnable parameters

• 
$$\beta = E[x]$$

• 
$$\gamma = \sqrt{var(x)}$$

Can place before or after activation function



[5] K. Doshi, <u>Batch Norm Explained Visually</u>, Towards Data Science (2021)

## Pooling

- Sometimes we want to reduce dimensionality without learning any new parameters
- Speed up computation cost
- Types:
  - Average
  - Max
  - Min



[6] O. Olu-Ipinlaye, *Pooling in Convolutional Neural Networks*, PaperSpace (2023)



## Adding Depth

- In shallow networks we learn a function that maps a feature space to an output
- In deep learning, we don't know the features, so we use one conv layer to learn them
- Repeat ad infinitum



[7] S. N. Gupta, <u>Deep Convolutional Neural Networks Explained in Layman's Terms</u>, Medium (2022).

#### LeNet

- Invented by Yann LeCun in 1989 to classify postcode digits
- 2 convolutional layers followed by 2 fully connected layers
- 28x28 black and white input image
- Surprisingly powerful (can use this to make a car follow lanes)



[8] S. Bangar, *LeNet5 Architecture Explained*, Medium (2022)



#### **NLLLoss and Softmax**

- Sometimes we want to know not just which class is most likely, but what is its probability
- With this probability value, Softmax let's us create a loss function based on probability
- We take the log of the probability to make this play nicely with optimizers (like Adam)

#### [9] Questions and Answers in MRI



$$\log \mathbb{P}(\mathcal{D}|\theta) = \sum_{i=1}^{n} \left( y_i \log \hat{y}_{\theta,i} + (1 - y_i) \log (1 - \hat{y}_{\theta,i}) \right)$$



## Exercise 2: Image Classification

- Now let's put everything we learned into practice...
- Can you solve the character recognition problem?



[1] S. Janprasai, MNIST Examples Modified



## Break Time





## Using Pretrained Models





#### Resnet



[10] S. Igbal, *Original Resnet-18 Architecture* 

- We can go deeper, but we suffer the vanishing gradient problem
- Resnet solves this with skip connections
- Comes in variants from 18 layers to over 100
- However, this comes at a cost of training time



## ImageNet



- Benchmark dataset for color image classification
- Over 1000 classes
- 1,281,167 training images
- 50,000 validation images
- 100,000 test images



## Exercise 4: Load a Pretrained Model from TorchHub

• Let's use a more complex classification model...

## Transfer Learning

- Use a model trained on one dataset to make predictions on another dataset
- We need to fine tune on some data from the second dataset
- Can greatly reduce training time



[12] Biggerj1, <u>Illustration of Transfer Learning</u>



## Exercise 5: Transfer Learning

 Can you fine-tune Resnet to classify images of Pokemon?



[13] R. Banik, *The Complete Pokemon Dataset*, Kaggle (2018)



# Semantic Segmentation with CNNs





## Unpooling



[14] <u>Visualizing and Understanding Convolutional Neural Networks</u>, CMU (2016)

- If we can reduce dimensions, we can also increase them
- Usefull for image generation, augmentation, and segmentation



#### **UNET**

- An Image Segmentation Architecture
- Classify each pixel in an input image
- Useful for lane detection, medical imaging, etc.





FIGURE 4. The eventions of the proposed II Not been D2112D exchitecture for lung ecomonistics

[15] A. Quesada, <u>U-Net: A Versatile Deep Learning Architecture for Image</u> <u>Segmentation</u>, Medium (2023)



## Image Generation with Diffusion Models



