Pictain:

$$fn \in \mathbb{N}$$
 $(2+2^2+2^3+\cdots+2^n=2^{n+1}-2)$

let $m = 2+2^2+2^3+\cdots+2^n$
 $2m = 2(2+2^2+2^3+\cdots+2^n) = 2^2+2^3+2^4+\cdots+2^{n+1}$
 $2m = 2(2+2^2+2^3+\cdots+2^n) = 2^2+2^3+2^4+\cdots+2^{n+1}$

Note that $m = 2m-m = 2^2+2^3+2^4+\cdots+2^n$)

 $most Terms \ Cancel, except for Two :

 $= 2^{n+1}-2$

Therefore $m = 2^{n+1}-2$ or

 $= 2^{n+1}-2$

Alternala proof by induction

 $mewrite \ claim \ M = 2^n+2^n$
 $mewrite \ claim \ M = 2^n+2^n$

Show for $n=1$ that $claim \ M = 2^n+2^n$
 $= 2^n+2^n$

Show for $n=1$ that $claim \ M = 2^n+2^n$
 $= 2^n+2^n$

Assume $A(n) = \sum_{k=1}^n 2^k = 2^{n+1}-2$
 $= 2^n+2^n$

Assume $A(n) = \sum_{k=1}^n 2^k = 2^{n+1}-2$

Now show $A(n+1) = \sum_{k=1}^n 2^k = 2^k+2^n$
 $= 2^n+2^n$
 $= 2^n+2^n$

And 2^n+2^n
 $= 2^n+2^n$
 $= 2^n+2^n$$

but by Assumtion A(n) in true and $\sum_{k=1}^{n} 2^k = 2^{n+1} - 2$ we subst into eg (a)

$$A(n+1) = \sum_{h=1}^{50} Z^h = Z^{(n+1)+1} - Z$$
 is true

hence by mathematical Induction, claim in proved,