Confirmatory Data Analysis

EES 4891/5891
Probability & Statistics for Geosciences
Jonathan Gilligan

Class #14: Thursday, February 20 2025

Learning Goals

Learning Goals

- Become familiar with falsification as a scientific method
- Understand what a statistical null hypothesis is
- Learn how to use a z-test to test hypotheses when the data is normal and you know the variance
- Learn how to use a *t*-test to test hypotheses when the data is normal and you don't know the variance
 - One-sample t-test to test hypotheses about one sample of data
 - Two-sample *t*-test to test whether two sets of data were sampled from the same distribution
- Learn the general structure and logic of testing a statistical hypothesis

Testing Hypotheses

Philosophical Background

- What make science scientific?
 - Demarcation Problem:
 - How can we distinguish science from non-science or pseudo-science?
 - How does a scientific method produce truth?
- David Hume (1711–1776)
 - You can't rationally prove scientific principles from observations
- Karl Popper (1902–1994)
 - The Logic of Scientific Discovery (1934)
 - You can't prove that a scientific principle is true, but you can prove that a false principle is false

David Hume

Karl Popper

Falsification and Scientific Method

- Falsification and scientific method:
 - You can't prove that a scientific principle is true, but you can prove that a false principle is false
 - A hypothesis is scientific if it allows us to make risky predictions
 - A prediction is *risky* if a small number of observations can prove it false
 - "All swans are white"
 - "This swan is black"
 - Every time you make a risky proposition and it comes true, you gain confidence in the hypothesis
 - We can never be certain that a hypothesis is true.
 - But we can have a lot of confidence if it survives a great deal of testing

Statistics and Hypothesis Testing

- Statistical tests focus on a *null hypothesis* H_0 .
 - If data make us doubt the *null hypothesis*, then we become more confident that another hypothesis may be true.
- *Null hypothesis* should be the most conventional or boring idea.
 - "These two distributions are the same."
 - "Newton's laws of motion are correct."
- Statistical tests can't prove the null hypothesis is false
 - Why not?
 - But they can cast doubt on the null hypothesis

Which Tribe Arrived First?

Two Tribes

- Two tribes lived in an area for more than 1000 years
- There are disputes about which tribe arrived first
 - Hypothesis 1: Tribe A arrived in 622 CE
 - Hypothesis 2: Tribe B arrived in 615 CE
- Archaeologists ask you to use ¹⁴C dating to estimate ages of wood artifacts from early settlements of both tribes

$$\left\{ egin{aligned} \overline{t_A} = 650 \, \mathsf{CE} \pm 50\mathsf{y} \ \overline{t_B} = 750 \, \mathsf{CE} \pm 50\mathsf{y} \end{aligned}
ight. (1\sigma)$$

- Three questions:
 - 1. How confident are you about each date (confidence or credible intervals)
 - 2. Are the observations compatible with the hypotheses? (hypothesis tests)
 - 3. How confident are you about which tribe got there first? (*p*-values)

Confidence Intervals

- Can we assume that our estimate of $\overline{t_A}$ is drawn from a normal distribution?
- Assume $\overline{t_A} \sim \mathcal{N}(\hat{\mu}_A, \sigma_A)$
 - Find t_{\min} and t_{\max} such that $\mathbb{P}(t_{\min} \leq t_A \leq t_{\max}) = 95\%$
- Transform to a *z*-score (standardize):

$$z_A = rac{t_A - \hat{\mu}_A}{\sigma_A} \sim \mathcal{N}(0,1)$$

 The normal distribution is symmetrical, so we can write our condition:

$$\mathbb{P}(z_{\min} \leq z_A \leq z_{\max}) = \mathbb{P}(|z_A| \leq z_{\alpha})$$

• Find z_{α} such that $\mathbb{P}(|z_{A}| \leq z_{\alpha}) = (100 - \alpha)\%$

• For 95% confidence interval, lpha=0.05

$$z_{lpha} = ext{qnorm}(0.975, 0, 1)$$
 $= ext{qnorm}(0.025, 0, 1, FALSE)$
 $= 1.96$
 $t_{min} = \hat{\mu}_A - 1.96\sigma_A = 552$
 $t_{max} = \hat{\mu}_A + 1.96\sigma_A = 748$

•
$$\mathbb{P}(552 \le t_A \le 748) = 95\%$$

•
$$\mathbb{P}(652 \le t_B \le 848) = 95\%$$

Interpreting Confidence Intervals

- What does it mean to say:
 - $\mathbb{P}(552 \le t_A \le 748) = 95\%$
 - $\mathbb{P}(652 \le t_B \le 848) = 95\%$
- If you do the experiment many times, and calculate a 95% confidence interval for each,
 - then for 95% of the experiments, the true value of t_A will lie within the confidence interval for that experiment.
- It does not mean that *for your experiment*, there is a 95% probability that the true value of t_A lies within the interval.

Testing Hypotheses

Testing Hypotheses

- Assume t_A is normally distributed
- Null hypothesis: H_0 : $\mu_A = 622$ CE

Known Variance: **Z**-test

Assume we know the precision of the measurements

$$egin{aligned} \sigma_A &= \sigma_B = \sigma \ z_A &= rac{t_A - \mu_A}{\sigma} = rac{t_A - 622}{50} \ z_A &\sim \mathcal{N}(0,1) \end{aligned}$$

• Use the Z test, based on the cumulative probability of the normal distribution.

Unknown Variance: *t*-test

- We don't know the precision of the measurements
- Take n_A measurements and estimate precision from sample variance S^2
- Calculate the *T* statistic

$$\hat{T}_A = rac{\overline{t_A} - \mu_A}{S_A / \sqrt{n_A}}$$

use Student's *t*-test, which is based on the
 T-distribution.

Known Variance: Z-test

- We know the precision of the measurements: $\sigma_A = \sigma_B = \sigma$
- Null hypothesis:
 - $H_{0,A}$: $\mu_A = 622$

$$egin{align} z_A &= rac{t_A - \mu_A}{\sigma} = rac{t_A - 622}{50} \ z_A &\sim \mathcal{N}(0,1) \ \mathbb{P}(t_A \geq 650) = \mathbb{P}\left(z_A \geq rac{650 - 622}{50}
ight) \ &= \mathbb{P}\left(z_A \geq 0.56
ight) \ &= 1 - \Phi(0.56) pprox 29\% \ \end{cases}$$

There is a very good chance that we could measure a date of 650 CE or later if $\mu_A=622$.

- Null Hypothesis:
 - $H_{0,B}$: $\mu_B = 615$

$$egin{aligned} z_B &= rac{t_B - \mu_B}{\sigma} = rac{t_B - 615}{50} \ z_B &\sim \mathcal{N}(0,1) \ \mathbb{P}(t_B \geq 750) = \mathbb{P}\left(z_B \geq rac{750 - 615}{50}
ight) \ &= \mathbb{P}\left(z_B \geq 2.7
ight) \ &= 1 - \Phi(2.7) pprox 0.35\% \end{aligned}$$

• It is very unlikely that we'd measure a date of 750 CE or later if $\mu_B=615$.

Unknown Variance: t-test

- Take n_A measurements of artifacts from tribe A, which give dates of $\{t_{A,1}, t_{A,2}, \ldots, t_{A,n_A}\}$
- Assume t_A are normally distributed: $t_A \sim \mathcal{N}(\mu_A, \sigma_A)$.
- The Central Limit Theorem tells us that

$$E(\overline{t_A}) = \mu_A$$
 $V(\overline{t_A}) = \frac{\sigma_A^2}{n_A},$

but we don't know σ_A , so we estimate it from the sample variance:

$$S_A^2 = \frac{1}{n_A - 1} \sum_{i=1}^{n_A} (t_{A,i} - \overline{t_A})^2$$

• $t_{A,i} - \overline{t_A}$ have independent values drawn from a normal distribution $\mathcal{N}(0, \sigma_A)$, so we can scale them:

$$\frac{1}{\sigma_A}(t_{A,i}-\overline{t_A})$$

will have unit variance.

The quantity

$$(n-1)\frac{S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (t_i - \bar{t})^2$$

is distributed according to the χ^2_{ν} , or *chisquared* distribution for $\nu=n-1$ degrees of freedom.

Chi-Squared Distribution

• If t_i are n independent normally distributed measurements with variance σ^2 , then

$$(n-1)\frac{S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (t_i - \bar{t})^2$$

follows the $\chi^2_
u$, or *chi-squared* distribution for u=n-1 degrees of freedom.

- What are "degrees of freedom"?
 - The number of measurements that could change independently.
 - We lose one degree of freedom for each constraint on the data.
 - \circ If the data have to average to t, this removes one degree of freedom
 - \circ If n=1, then $ar t=t_1$, so you can't change the measurement without changing ar t and you have zero degrees of freedom (1-1=0)
 - \circ If n=2, then you can change one variable, $t_1 \to t_1 + \delta$, but t_2 would have to make the opposite change $t_2 \to t_2 \delta$, so there is 1 degree of freedom (2-1=1).
 - For n=3, if $t_1 \to t_1 + \delta_1$ and $t_2 \to t_2 + \delta_2$, then you have to have $t_3 \to t_3 (\delta_1 + \delta_2)$. t_3 isn't independent from t_1 and t_2 , so there are 2 degrees of freedom (3 1 = 2).

Student's t-test

One-Sample t-test

- Null hypothesis H_0 : $\mu_A=622$
- Alternate hypothesis H_a : $\mu_A > 622$
- One-sided, one-sample *t*-test:
 - *T*-statistic

$$\hat{T} = rac{\overline{t_A} - \mu_A}{S_A/\sqrt{n_A}}$$

• Compute $\mathbb{P}(t > \hat{T}) = 1 - F_{t_{\nu}}(\hat{T})$, where $F_{t_{\nu}}$ is the cumulative distribution function of the t-distribution for ν degrees of freedom.

- Suppose $\hat{T} = 1.94$.
 - If $n_A = 4$, $1 F_{t_4}(1.94) = 13\%$, so we can't reject H_0
 - If $n_A = 12$, $1 F_{t_{12}}(1.94) = 4\%$, so we reject H_0 at the 5% level.
- 4 measurements aren't enough to tell the difference between tribe A arriving at 622 versus 650 CE.
 - 12 measurements are sufficient to tell the difference, and confidently say that the tribe probably arrived after 622.

One-Sample t-Test in R

Sample some data:

```
set.seed(2357)
t_A <- rnorm(4, 650, 50)
```

Run a t-test

```
t.test(t_A, mu = 622, alternative = "greater")
```

Now try with 12 samples

```
t_A <- rnorm(12, 650, 50)
t.test(t_A, mu = 622, alternative = "greater")</pre>
```

Two-Sample *t*-Test

- Null hypothesis H_0 : $\mu_A = \mu_B$
- Alternate hypothesis H_a : $\mu_B > \mu_A$
- One-sided two-sample *t*-test:
 - \blacksquare Compute the two-sample T-statistic

$$\hat{T}=rac{ar{t_B}-ar{t_A}}{\sqrt{rac{S_B^2}{n_B}+rac{S_A^2}{n_A}}}\sim t_{
u'}$$

where ν' depends on what we know about whether t_A and t_B have the same variance.

lacktriangleright R will calculate u' so we don't have to worry about the formulas in the textbook

• Try it in R

```
##
## Two Sample t-test
##
## data: t_B and t_A
## t = 3.074, df = 19, p-value = 0.9969
## alternative hypothesis: true difference in
means is less than 0
## 95 percent confidence interval:
## -Inf 102.8415
## sample estimates:
## mean of x mean of y
## 729.9636 664.1454
```

The Logic of Statistical Tests

The Logic of Statistical Tests

- Five Steps:
 - 1. Identify the appropriate test and test statistic
 - e.g., *t*-test and *T* statistic
 - 2. Define the null hypothesis
 - e.g., H_0 : $\mu_1 = \mu_2$
 - 3. Define an alternate hypothesis:
 - lacksquare e.g., H_a : $\mu_1>\mu_2$ (one-sided)
 - H_a : $\mu_1 \neq \mu_2$ (two-sided)
 - 4. Obtain the *null distribution*
 - Distribution of the test statistic if H_0 is true

- 5. Compute *p*-value
 - Probability that you'd see values as extreme as the observed test statistic if H_0 is true
 - Compare to test level lpha
 - e.g., $\alpha = 0.05$
 - $p < \alpha$: Reject H_0 (guilty)
 - $p \ge \alpha$: Insufficient evidence to reject H_0 (not guilty \ne innocent)