Advances in Tenor Basis Modeling: Boundedness, Specification & Calibration

Andy McClelland

amcclelland@numerix.com

Director, Numerix Quantitative R&D

Numerix Webinar Series

October 10, 2019

- Concerned with e.g. 3M IBOR-vs.-6M IBOR or OIS/SOFR-vs-.3M IBOR basis spreads
- Tenor basis spreads drive CVA for tenor basis swaps
- Model for IBORs & potential non-RFR IBOR alternatives, ICE's BBI etc.
- Bound e.g. 3M IBOR-vs.-6M IBOR basis from below
- lacktriangle Level-dependent volatility specification in multi-curve Cheyette model, akin to HW ightarrow CIR
- No nonlinears for calibration, integrate historical data carefully

- Concerned with e.g. 3M IBOR-vs.-6M IBOR or OIS/SOFR-vs-.3M IBOR basis spreads
- Tenor basis spreads drive CVA for tenor basis swaps
- Model for IBORs & potential non-RFR IBOR alternatives, ICE's BBI etc.
- 4 Bound e.g. 3M IBOR-vs.-6M IBOR basis from below
- lacktriangle Level-dependent volatility specification in multi-curve Cheyette model, akin to HW ightarrow CIR
- No nonlinears for calibration, integrate historical data carefully

- Concerned with e.g. 3M IBOR-vs.-6M IBOR or OIS/SOFR-vs-.3M IBOR basis spreads
- Tenor basis spreads drive CVA for tenor basis swaps
- Model for IBORs & potential non-RFR IBOR alternatives, ICE's BBI etc.
- Bound e.g. 3M IBOR-vs.-6M IBOR basis from below
- lacktriangle Level-dependent volatility specification in multi-curve Cheyette model, akin to HW ightarrow CIR
- No nonlinears for calibration, integrate historical data carefully

Historical Basis Spread Behavior

Figure: 2002-2019 USD Basis Spreads: 2Y Swap Tenor

Figure: 5Y ON-3M Basis Swap PFEs: Stochastic vs. Deterministic Basis

- Concerned with e.g. 3M IBOR-vs.-6M IBOR or OIS/SOFR-vs-.3M IBOR basis spreads
- Tenor basis spreads drive CVA for tenor basis swaps
- Model for IBORs & potential non-RFR IBOR alternatives, ICE's BBI etc.
- Bound e.g. 3M IBOR-vs.-6M IBOR basis from below
- lacktriangle Level-dependent volatility specification in multi-curve Cheyette model, akin to HW ightarrow CIR
- No nonlinears for calibration, integrate historical data carefully

Advances in Tenor Basis Modeling: Boundedness, Specification & Calibration

Andy McClelland

amcclelland@numerix.com

Director, Numerix Quantitative R&D

Numerix Webinar Series

October 10, 2019

- Concerned with e.g. 3M IBOR-vs.-6M IBOR or OIS/SOFR-vs-.3M IBOR basis spreads
- Tenor basis spreads drive CVA for tenor basis swaps
- Model for IBORs & potential non-RFR IBOR alternatives, ICE's BBI etc.
- Bound e.g. 3M IBOR-vs.-6M IBOR basis from below
- lacktriangle Level-dependent volatility specification in multi-curve Cheyette model, akin to HW ightarrow CIR
- No nonlinears for calibration, integrate historical data carefully

Historical Basis Spread Behavior

Figure: 2002-2019 USD Basis Spreads: 2Y Swap Tenor

- Concerned with e.g. 3M IBOR-vs.-6M IBOR or OIS/SOFR-vs-.3M IBOR basis spreads
- Tenor basis spreads drive CVA for tenor basis swaps
- Model for IBORs & potential non-RFR IBOR alternatives, ICE's BBI etc.
- Bound e.g. 3M IBOR-vs.-6M IBOR basis from below
- ullet Level-dependent volatility specification in multi-curve Cheyette model, akin to HW o CIR
- No nonlinears for calibration, integrate historical data carefully

- Concerned with e.g. 3M IBOR-vs.-6M IBOR or OIS/SOFR-vs-.3M IBOR basis spreads
- Tenor basis spreads drive CVA for tenor basis swaps
- Model for IBORs & potential non-RFR IBOR alternatives, ICE's BBI etc.
- 4 Bound e.g. 3M IBOR-vs.-6M IBOR basis from below
- lacktriangle Level-dependent volatility specification in multi-curve Cheyette model, akin to HW ightarrow CIR
- No nonlinears for calibration, integrate historical data carefully

Tenor Basis Spreads & CVA

Forward IBOR =
$$R(t, T)$$

- t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

Forward IBOR =
$$R(t, T)$$

- \bullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

Forward IBOR =
$$R(t, T)$$

- t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

Forward IBOR =
$$R(t, T)$$

- t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

$$n^{th}$$
-tenor Forward IBOR off m^{th} curve $= R_m(t, T, \tau_n)$

- ullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

$$n^{th}$$
-tenor Forward IBOR off m^{th} curve $= R_m(t, T, \tau_n)$

- t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

$$n^{th}$$
-tenor Forward IBOR off m^{th} curve $= R_m(t, T, \tau_n)$

- \bullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

$$n^{th}$$
-tenor Forward IBOR off ON curve = $R_0(t, T, \tau_n)$

- \bullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

$$n^{th}$$
-tenor Forward IBOR off ON curve = $R_0(t, T, \tau_n)$

- \bullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

3M Forward IBOR off ON curve =
$$R_0(t, T, \tau_3)$$

- ullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

3M Forward IBOR off ON curve =
$$R_0(t, T, \tau_3)$$

- \bullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

3M Forward IBOR off ON curve =
$$R_0(t, T, \tau_3)$$

- ullet t is the calendar date & T is the fixing date
- $au_3 = 3\mathsf{M} \implies R_3(t,T, au_3) = 3\mathsf{M}$ IBOR, $au_6 = 6\mathsf{M} \implies R_6(t,T, au_6) = 6\mathsf{M}$ IBOR, etc.
- At fixing, $R_3(T, T, \tau_3)$ & $R_6(T, T, \tau_6)$ reflect different credit & liquidity fundamentals
- Define additive forward spread

$$S_{3,6}^+(t,T) = R_6(t,T,\tau_6) - R_3(t,T,\tau_3)$$

• Tenor basis swaps exchange e.g. 3M IBOR-plus-spread each quarter vs. 6M IBOR each half

$$\big(R_3(\textit{T}_i, \textit{T}_i, \tau_3) + \phi_{3,6}\big)\tau_3 \quad @\textit{T}_{i+1} \quad \textit{vs.} \quad R_6(\bar{\textit{T}}_j, \bar{\textit{T}}_j, \tau_6)\tau_6 \quad @\bar{\textit{T}}_{j+1}$$

Basis Swap Value
$$(t) = \sum_{j} P_0(t, \bar{T}_{j+1}) R_6(t, \bar{T}_j, \tau_6) \tau_6 - \sum_{i} P_0(t, T_{i+1}) (R_3(t, T_i, \tau_3) + \phi_{3,6}) \tau_3$$

- ullet Primary risk is difference in IBOR curves, value roughly $\propto \left(R_6^{av}(t)-R_3^{av}(t)
 ight)-\phi_{3,6}$
- Discounting (e.g. ON) curve $P_0(t, T)$ is secondary (much smaller effect)

• Tenor basis swaps exchange e.g. 3M IBOR-plus-spread each quarter vs. 6M IBOR each half

$$\left(R_3(T_i,T_i,\tau_3)+\phi_{3,6}\right)\tau_3 \quad @\,T_{i+1} \quad \textit{vs.} \quad R_6(\bar{T}_j,\bar{T}_j,\tau_6)\tau_6 \quad @\,\bar{T}_{j+1}$$

Basis Swap Value
$$(t) = \sum_{j} P_0(t, \bar{T}_{j+1}) R_6(t, \bar{T}_j, \tau_6) \tau_6 - \sum_{i} P_0(t, T_{i+1}) (R_3(t, T_i, \tau_3) + \phi_{3,6}) \tau_3$$

- ullet Primary risk is difference in IBOR curves, value roughly $\propto \left(R_6^{av}(t)-R_3^{av}(t)
 ight)-\phi_{3,6}$
- Discounting (e.g. ON) curve $P_0(t, T)$ is secondary (much smaller effect)

Tenor basis swaps exchange e.g. 3M IBOR-plus-spread each quarter vs. 6M IBOR each half

$$(R_3(T_i, T_i, \tau_3) + \phi_{3,6})\tau_3$$
 @ T_{i+1} vs. $R_6(\overline{T}_j, \overline{T}_j, \tau_6)\tau_6$ @ \overline{T}_{j+1}

Basis Swap Value
$$(t) = \sum_{j} P_0(t, \bar{T}_{j+1}) R_6(t, \bar{T}_j, \tau_6) \tau_6 - \sum_{i} P_0(t, T_{i+1}) (R_3(t, T_i, \tau_3) + \phi_{3,6}) \tau_3$$

- ullet Primary risk is difference in IBOR curves, value roughly $\propto \left(R_6^{av}(t)-R_3^{av}(t)
 ight)-\phi_{3,6}$
- Discounting (e.g. ON) curve $P_0(t, T)$ is secondary (much smaller effect)

• Tenor basis swaps exchange e.g. 3M IBOR-plus-spread each quarter vs. 6M IBOR each half

$$\big(R_3(\textit{T}_i, \textit{T}_i, \tau_3) + \phi_{3,6}\big)\tau_3 \quad @\textit{T}_{i+1} \quad \textit{vs.} \quad R_6(\bar{\textit{T}}_j, \bar{\textit{T}}_j, \tau_6)\tau_6 \quad @\bar{\textit{T}}_{j+1}$$

Basis Swap Value
$$(t) = \sum_{j} P_0(t, \bar{T}_{j+1}) R_6(t, \bar{T}_j, \tau_6) \tau_6 - \sum_{i} P_0(t, T_{i+1}) (R_3(t, T_i, \tau_3) + \phi_{3,6}) \tau_3$$

- ullet Primary risk is difference in IBOR curves, value roughly $\propto \left(R_6^{av}(t)-R_3^{av}(t)
 ight)-\phi_{3,6}$
- Discounting (e.g. ON) curve $P_0(t, T)$ is secondary (much smaller effect)

• Tenor basis swaps exchange e.g. 3M IBOR-plus-spread each quarter vs. 6M IBOR each half

$$\big(R_3(\textit{T}_i, \textit{T}_i, \tau_3) + \phi_{3,6}\big)\tau_3 \quad @\textit{T}_{i+1} \quad \textit{vs.} \quad R_6(\bar{\textit{T}}_j, \bar{\textit{T}}_j, \tau_6)\tau_6 \quad @\bar{\textit{T}}_{j+1}$$

Basis Swap Value
$$(t) = \sum_{j} P_0(t, \bar{T}_{j+1}) R_6(t, \bar{T}_j, \tau_6) \tau_6 - \sum_{i} P_0(t, T_{i+1}) (R_3(t, T_i, \tau_3) + \phi_{3,6}) \tau_3$$

- ullet Primary risk is difference in IBOR curves, value roughly $\propto \left(R_6^{av}(t)-R_3^{av}(t)
 ight)-\phi_{3,6}$
- Discounting (e.g. ON) curve $P_0(t, T)$ is secondary (much smaller effect)

Historical Basis Spread Behavior

Figure: 2002-2019 USD Basis Spreads: 2Y Swap Tenor

$$\mathsf{CVA} pprox \int_0^\infty \mathbb{E}_0 ig[ig(V(t)ig)^+ig] \, dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

$$\mathsf{CVA} pprox \int_0^\infty \mathbb{E}_0 \big[ig(rac{\mathsf{V}(t)}{t} ig)^+ \big] dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

$$\mathsf{CVA} pprox \int_0^\infty \mathbb{E}_0 ig[ig(\mathsf{Swap} \ \mathsf{Value} \, (t) ig)^+ ig] \, dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

$$\mathsf{CVA} pprox \int_0^\infty \mathsf{Swaption} \, \mathsf{Value} \, (T^\mathsf{ex} = t) \, dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

$$\mathsf{CVA} pprox \int_0^\infty \mathbb{E}_0 \big[\big(\mathsf{Basis} \; \mathsf{Swap} \; \mathsf{Value} \, (t) \big)^+ \big] \, dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

• CVA is lifetime expected exposure, ignore credit, discounting etc.

$$\text{CVA} \approx \int_0^\infty \text{Basis Swaption Value} (T^{\text{ex}} = t) dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

• CVA is lifetime expected exposure, ignore credit, discounting etc.

$$\mathsf{CVA} pprox \int_0^\infty \mathsf{Basis} \; \mathsf{Swaption} \; \mathsf{Value} \, (\mathcal{T}^\mathsf{ex} = t) \, dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

• CVA is lifetime expected exposure, ignore credit, discounting etc.

$$\mathsf{CVA} pprox \int_0^\infty \mathsf{Basis} \; \mathsf{Swaption} \; \mathsf{Value} \, (\mathcal{T}^\mathsf{ex} = t) \, dt$$

- Essentially have a "tenor basis swaption", which would be an ideal calibration instrument
- ... explains lack of pre-'08 tenor basis modeling efforts
- No tenor basis volatility ⇒ low CVA, PFEs, CCR capital (& FVA, some MVA effect)

Figure: 5Y ON-3M Basis Swap Exposures: Stochastic Basis

Figure: 5Y ON-3M Basis Swap Exposures: Deterministic Basis

Figure: 5Y ON-3M Basis Swap PFEs: Stochastic Basis

Figure: 5Y ON-3M Basis Swap PFEs: Stochastic vs. Deterministic Basis

A Cheyette-Style Multi-Curve Model with Lower Bounds

- ON curve is "base" curve, modeled outright, used for $R_0(t, T, \tau_n)$
- $f_0(t,T)$ is instantaneous ON forward curve, used for discount bonds $P_0(t,T)$ & $R_0(t,T,\tau_3)$

$$P(t,T) = e^{-\int_t^T f_0(t,u) \, du}$$

$$R_0(t,T, au_3) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}-1igg) = rac{1}{ au_3}igg(e^{\int_T^{T+ au_3}f_0(t,u)\,du}-1igg)$$

• Risk-neutral model with Cheyette ('96) dynamics, a.k.a. Markovian HJM dynamics

$$df_0(t,T) = \mu_0(t,T) dt + \psi_0(t) e^{-\kappa_0(T-t)} dW_0(t)$$

$$\int_t^T \mu_0(t,u) \, du = \frac{1}{2} \biggl(\int_t^T \psi_0(t) e^{-\kappa_0(u-t)} \, du \biggr)^2 \implies \mu_0(t,T) = \frac{1}{\kappa_0} \psi_0^2(t) \bigl(e^{-\kappa_0(T-t)} - e^{-2\kappa_0(T-t)} \bigr) = 0$$

- ON curve is "base" curve, modeled outright, used for $R_0(t, T, \tau_n)$
- $f_0(t,T)$ is instantaneous ON forward curve, used for discount bonds $P_0(t,T)$ & $R_0(t,T,\tau_3)$

$$P(t,T) = e^{-\int_t^T f_0(t,u) du}$$

$$R_0(t,T, au_3) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}-1igg) = rac{1}{ au_3}igg(e^{\int_T^{T+ au_3}f_0(t,u)\,du}-1igg)$$

• Risk-neutral model with Cheyette ('96) dynamics, a.k.a. Markovian HJM dynamics

$$df_0(t, T) = \mu_0(t, T) dt + \psi_0(t) e^{-\kappa_0(T-t)} dW_0(t)$$

$$\int_{t}^{T} \mu_{0}(t,u) \, du = \frac{1}{2} \left(\int_{t}^{T} \psi_{0}(t) e^{-\kappa_{0}(u-t)} \, du \right)^{2} \implies \mu_{0}(t,T) = \frac{1}{\kappa_{0}} \psi_{0}^{2}(t) \left(e^{-\kappa_{0}(T-t)} - e^{-2\kappa_{0}(T-t)} \right)$$

- ON curve is "base" curve, modeled outright, used for $R_0(t, T, \tau_n)$
- $f_0(t,T)$ is instantaneous ON forward curve, used for discount bonds $P_0(t,T)$ & $R_0(t,T,\tau_3)$

$$P(t,T) = e^{-\int_t^T f_0(t,u) \, du}$$

$$R_0(t,T, au_1) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}-1igg) = rac{1}{ au_3}igg(e^{\int_T^{T+ au_3} f_0(t,u)\,du}-1igg)$$

• Risk-neutral model with Cheyette ('96) dynamics, a.k.a. Markovian HJM dynamics

$$df_0(t,T) = \mu_0(t,T) dt + \psi_0(t) e^{-\kappa_0(T-t)} dW_0(t)$$

$$\int_{t}^{T} \mu_{0}(t,u) \, du = \frac{1}{2} \left(\int_{t}^{T} \psi_{0}(t) e^{-\kappa_{0}(u-t)} \, du \right)^{2} \implies \mu_{0}(t,T) = \frac{1}{\kappa_{0}} \psi_{0}^{2}(t) \left(e^{-\kappa_{0}(T-t)} - e^{-2\kappa_{0}(T-t)} \right)$$

- ON curve is "base" curve, modeled outright, used for $R_0(t, T, \tau_n)$
- $f_0(t,T)$ is instantaneous ON forward curve, used for discount bonds $P_0(t,T)$ & $R_0(t,T,\tau_3)$

$$P(t,T) = e^{-\int_t^T f_0(t,u) \, du}$$

$$R_0(t,T, au_1) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}-1igg) = rac{1}{ au_3}igg(e^{\int_T^{T+ au_3}f_0(t,u)\,du}-1igg)$$

• Risk-neutral model with Cheyette ('96) dynamics, a.k.a. Markovian HJM dynamics

$$df_0(t,T) = \mu_0(t,T) dt + \psi_0(t) e^{-\kappa_0(T-t)} dW_0(t)$$

$$\int_{t}^{T} \mu_{0}(t,u) \, du = \frac{1}{2} \left(\int_{t}^{T} \psi_{0}(t) e^{-\kappa_{0}(u-t)} \, du \right)^{2} \implies \mu_{0}(t,T) = \frac{1}{\kappa_{0}} \psi_{0}^{2}(t) \left(e^{-\kappa_{0}(T-t)} - e^{-2\kappa_{0}(T-t)} \right)$$

- ON curve is "base" curve, modeled outright, used for $R_0(t, T, \tau_n)$
- $f_0(t,T)$ is instantaneous ON forward curve, used for discount bonds $P_0(t,T)$ & $R_0(t,T,\tau_3)$

$$P(t,T) = e^{-\int_t^T f_0(t,u) \, du}$$

$$R_0(t,T, au_3) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}-1igg) = rac{1}{ au_3}igg(e^{\int_T^{T+ au_3}f_0(t,u)\,du}-1igg)$$

• Risk-neutral model with Cheyette ('96) dynamics, a.k.a. Markovian HJM dynamics

$$df_0(t,T) = \mu_0(t,T) dt + \psi_0(t) e^{-\kappa_0(T-t)} dW_0(t)$$

$$\int_t^T \mu_0(t,u) \, du = \frac{1}{2} \biggl(\int_t^T \psi_0(t) e^{-\kappa_0(u-t)} \, du \biggr)^2 \implies \mu_0(t,T) = \frac{1}{\kappa_0} \psi_0^2(t) \bigl(e^{-\kappa_0(T-t)} - e^{-2\kappa_0(T-t)} \bigr) = 0$$

- ON curve is "base" curve, modeled outright, used for $R_0(t, T, \tau_n)$
- $f_0(t,T)$ is instantaneous ON forward curve, used for discount bonds $P_0(t,T)$ & $R_0(t,T,\tau_3)$

$$P(t,T) = e^{-\int_t^T f_0(t,u) \, du}$$

$$R_0(t,T, au_3) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}-1igg) = rac{1}{ au_3}igg(e^{\int_T^{T+ au_3} f_0(t,u)\,du}-1igg)$$

• Risk-neutral model with Cheyette ('96) dynamics, a.k.a. Markovian HJM dynamics

$$df_0(t,T) = \mu_0(t,T) dt + \psi_0(t) e^{-\kappa_0(T-t)} dW_0(t)$$

$$\int_{t}^{T} \mu_{0}(t,u) \, du = \frac{1}{2} \left(\int_{t}^{T} \psi_{0}(t) e^{-\kappa_{0}(u-t)} \, du \right)^{2} \implies \mu_{0}(t,T) = \frac{1}{\kappa_{0}} \psi_{0}^{2}(t) \left(e^{-\kappa_{0}(T-t)} - e^{-2\kappa_{0}(T-t)} \right)$$

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t, T, \tau) = e^{\int_T^{T+\tau} s_3(t, u) du}$$

$$R_0(t, T, \tau_3) = \frac{1}{\tau_3} \left(\frac{P(t, T)}{P(t, T + \tau_3)} - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T+\tau_3} f_0(t, u) du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions¹
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{^{1}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t, T, \tau) = e^{\int_T^{T+\tau} s_3(t, u) du}$$

$$R_0(t, T, \tau_3) = \frac{1}{\tau_3} \left(\frac{P(t, T)}{P(t, T + \tau_3)} - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T+\tau_3} f_0(t, u) du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{^2s_3(t,T)}$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_{\mathbf{0}}(t, T, \tau_{3}) = \frac{1}{\tau_{3}} \left(\frac{P(t, T)}{P(t, T + \tau_{3})} - 1 \right) = \frac{1}{\tau_{3}} \left(e^{\int_{T}^{T + \tau_{3}} f_{\mathbf{0}}(t, u) du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions³
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{^3}s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T,\tau) = e^{\int_T^{T+\tau} s_3(t,u) \, du}$$

$$R_3(t, T, \tau_3) = \frac{1}{\tau_3} \left(\frac{P(t, T)}{P(t, T + \tau_3)} S_3(t, T, \tau_3) - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T + \tau_3} f_0(t, u) du + \int_T^{T + \tau_3} s_3(t, u) du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions⁴
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{^4}s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t, T, \tau) = e^{\int_T^{T+\tau} s_3(t, u) du}$$

$$R_3(t, T, \tau_3) = \frac{1}{\tau_3} \left(\frac{P(t, T)}{P(t, T + \tau_3)} S_3(t, T, \tau_3) - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T+\tau_3} f_0(t, u) du + \int_T^{T+\tau_3} s_3(t, u) du} - 1 \right)$$

$$au_3 \left(P(t, T + au_3) \right) au_3 \left(\right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions⁵
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{^{5}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au) = e^{\int_T^{T+ au} s_3(t,u) du}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \left(\frac{P(t,T)}{P(t,T+\tau_3)} S_3(t,T,\tau_3) - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T+\tau_3} f_0(t,u) \, du + \int_T^{T+\tau_3} s_3(t,u) \, du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions⁶
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $⁶s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t, T, \tau) = S(0, T, \tau)e^{\cdots + \int_0^t \sigma_3(v, T) dW_3(t)}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \left(\frac{P(t,T)}{P(t,T+\tau_3)} S_3(t,T,\tau_3) - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions⁷
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

ullet We assume zero correlation without loss of generality \Longrightarrow Martingale $S_3(t,T)$

 $^{^{7}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T,\tau) = e^{\int_T^{T+\tau} s_3(t,u) \, du}$$

$$R_3(t, T, \tau_3) = \frac{1}{\tau_3} \left(\frac{P(t, T)}{P(t, T + \tau_3)} S_3(t, T, \tau_3) - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T + \tau_3} f_0(t, u) \, du + \int_T^{T + \tau_3} s_3(t, u) \, du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions⁸
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $⁸s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \left(\frac{P(t,T)}{P(t,T+\tau_3)} S_3(t,T,\tau_3) - 1 \right) \approx f_0(t,T) + s_3(t,T)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions $s_3(t,T)$
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $⁹s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T,\tau) = e^{\int_T^{T+\tau} s_3(t,u) \, du}$$

$$R_3(t, T, \tau_3) = \frac{1}{\tau_3} \left(\frac{P(t, T)}{P(t, T + \tau_3)} S_3(t, T, \tau_3) - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T + \tau_3} f_0(t, u) \, du + \int_T^{T + \tau_3} s_3(t, u) \, du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions¹⁰
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $¹⁰_{53}(t, T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t, T)$: Henrard ('14), $S_3^+(t, T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=\mathrm{e}^{\int_{ au}^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \left(\frac{P(t,T)}{P(t,T+\tau_3)} S_3(t,T,\tau_3) - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T+\tau_3} f_0(t,u) \, du + \int_T^{T+\tau_3} s_3(t,u) \, du} - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions¹¹
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{}^{11}s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T,\tau) = e^{\int_T^{T+\tau} s_3(t,u) du}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \left(\frac{P(t,T)}{P(t,T+\tau_3)} S_3(t,T,\tau_3) - 1 \right) = \frac{1}{\tau_3} \left(e^{\int_T^{T+\tau_3} f_0(t,u) du + \int_T^{T+\tau_3} s_3(t,u) du} - 1 \right)$$

$$\eta_3 \left(F(t, T + \eta_3) \right) \qquad \qquad \eta_3 \left(\right)$$

• $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions¹²

Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $¹²s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

 $R_3(t, T, \tau_3) = \mathbb{E}_t^{T+\tau_3} [R_3(T, T, \tau_3)] \quad \text{for} \quad P^*(T, T+\tau_3) = P(T, T+\tau_3) e^{-\int_T^{T+\tau_3} \lambda(u) \, du}$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time- T credit & liquidity contributions¹³
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{}^{13}s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

 $R_3(t, T, \tau_3) = \mathbb{E}_t^{T+\tau_3} [R_3(T, T, \tau_3)] \quad \text{for} \quad P^*(T, T+\tau_3) = P(T, T+\tau_3) e^{-\int_T^{T+\tau_3} \lambda(u) \, du}$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions¹⁴
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{1^{4}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=\mathrm{e}^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t, T, \tau_3) = \frac{1}{\tau_3} \mathbb{E}_t^{T + \tau_3} \left[\frac{1}{P^*(T, T + \tau_3)} - 1 \right] \quad \text{for} \quad P^*(T, T + \tau_3) = P(T, T + \tau_3) e^{-\int_T^{T + \tau_3} \lambda(u) \, du}$$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions¹⁵
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{^{15}s_3(t,T)}$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \mathbb{E}_t^{T+\tau_3} \left[\frac{e^{\int_T^{T+\tau_3} \lambda(u) \, du}}{P(T,T+\tau_3)} - 1 \right] \quad \text{for} \quad P^*(T,T+\tau_3) = P(T,T+\tau_3) e^{-\int_T^{T+\tau_3} \lambda(u) \, du}$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions 16
- Introduce similar risk-neutral Cheyette model

$$ds_3(t, T) = \mu_3(t, T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{^{16}s_3(t,T)}$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$R_3(t,T, au_3) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}e^{\int_T^{T+ au_3}\lambda(u)\,du}-1igg)$$

• $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions t_1

 $S_3(t,T,\tau)=e^{\int_T^{T+\tau}s_3(t,u)\,du}$

Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{}^{17}s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=\mathrm{e}^{\int_T^{T+ au}s_{\mathbf{3}}(t,u)\,du}$$

$$R_3(t,T, au_3)=rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}S_3(t,T, au_3)-1igg)$$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions 18
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $¹⁸s_3(t, T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t, T)$: Henrard ('14), $S_3^+(t, T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T, au_3) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)} extstyle{S_3(t,T, au_3)}-1igg)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions¹⁹
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{}^{19}s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T,\tau)=e^{\int_T^{T+\tau}s_3(t,u)\,du}$$

$$R_3(t, T, \tau_3) = \frac{1}{\tau_3} \left(\frac{P(t, T)}{P(t, T + \tau_3)} - 1 \right) + S_3^+(t, T, \tau_3) = R_0(t, T, \tau_3) + S_3^+(t, T, \tau_3)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²⁰
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{^{20}s_3(t,T)}$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T, au_3)=rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}S_3(t,T, au_3)-1igg)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²¹
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{1}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t, T, au_3) = rac{1}{ au_3} igg(rac{P(t, T)}{P(t, T + au_3)} S_3(t, T, au_3) - 1igg)$$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²²
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{2}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t, T, \tau) = e^{\int_T^{T+\tau} s_3(t, u) du}$$

$$R_3(t, T, \tau_3) = \frac{1}{T_2} \left(e^{\int_T^{T+\tau} f_0(t, u) + s_3(t, u) du} - 1 \right)$$

$$au_3$$
 ,

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²³
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{3}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t, T, au_3) = rac{1}{ au_3} igg(rac{P(t, T)}{P(t, T + au_3)} S_3(t, T, au_3) - 1igg)$$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²⁴
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{4}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t, T, au_3) = rac{1}{ au_3}igg(rac{P(t, T)}{P(t, T + au_3)}S_3(t, T, au_3) - 1igg)$$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²⁵
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{5}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T, au_3)=rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}S_3(t,T, au_3)-1igg).$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²⁶
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{6}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=\mathrm{e}^{\int_T^{T+ au}s_{\mathbf{3}}(t,u)\,du}$$

$$R_3(t,T, au_3)=rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}S_3(t,T, au_3)-1igg).$$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²⁷
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{^{27}s_3(t,T)}$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=\mathrm{e}^{\int_T^{T+ au}s_{\mathbf{3}}(t,u)\,du}$$

$$R_3(t, T, au_3) = rac{1}{ au_3} igg(rac{P(t, T)}{P(t, T + au_3)} S_3(t, T, au_3) - 1igg)$$

- $s_3(t, T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²⁸
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{8}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \left(\frac{P(t,T)}{P(t,T+\tau_3)} S_3(t,T,\tau_3) - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions²⁹
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{2^{9}}s_{3}(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_{3}(t,T)$: Henrard ('14), $S_{3}^{+}(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T,\tau_3) = \frac{1}{\tau_3} \left(\frac{P(t,T)}{P(t,T+\tau_3)} S_3(t,T,\tau_3) - 1 \right)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions 30
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $³⁰s_3(t,T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T, au_3) = rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}S_3(t,T, au_3) - 1igg)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions³¹
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $[\]overline{^{31}s_3(t,T)}$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t,T)$: Henrard ('14), $S_3^+(t,T)$: Mercurio ('10)

• 3M IBOR curve, $R_3(t, T, \tau_3)$, built from $R_0(t, T, \tau_3)$ & "spread multiplier" $S_3(t, T, \tau)$

$$S_3(t,T, au)=e^{\int_T^{T+ au}s_3(t,u)\,du}$$

$$R_3(t,T, au_3)=rac{1}{ au_3}igg(rac{P(t,T)}{P(t,T+ au_3)}S_3(t,T, au_3)-1igg)$$

- $s_3(t,T)$ is instantaneous 3M-ON spread curve, capturing time-T credit & liquidity contributions 32
- Introduce similar risk-neutral Cheyette model

$$ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$$

 $^{3^2} s_3(t, T)$: Martinez ('09), Grbac & Runggaldier ('15), $S_3(t, T)$: Henrard ('14), $S_3^+(t, T)$: Mercurio ('10)

- Recall $S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) du}$ where $ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$
- ullet Enforcing $S_3(t,T)$ Martingality reduces to $\mathbb{E}_t[dS_3(t,T)]=0$

$$\mathbb{E}_{t}[dS_{3}(t,T)] = S_{3}(t,T) \left(\left(\int_{T}^{T+\tau_{3}} \mu_{3}(t,u) \, du \right) + \frac{1}{2} \left(\int_{T}^{T+\tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u-t)} \, du \right)^{2} \right) dt = 0$$

$$\implies \int_{T}^{T+\tau_3} \mu_3(t,u) du = -\frac{1}{2} \left(\int_{T}^{T+\tau_3} \psi_3(t) e^{-\kappa_3(u-t)} du \right)^2$$

- Recall $S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du}$ where $ds_3(t,T) = \mu_3(t,T) \, dt + \psi_3(t) \, e^{-\kappa_3(T-t)} \, dW_3(t)$
- Enforcing $S_3(t, T)$ Martingality reduces to $\mathbb{E}_t[dS_3(t, T)] = 0$

$$\mathbb{E}_{t}[dS_{3}(t,T)] = S_{3}(t,T) \left(\left(\int_{T}^{T+\tau_{3}} \mu_{3}(t,u) \, du \right) + \frac{1}{2} \left(\int_{T}^{T+\tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u-t)} \, du \right)^{2} \right) dt = 0$$

$$\implies \int_{T}^{T+\tau_3} \mu_3(t,u) du = -\frac{1}{2} \left(\int_{T}^{T+\tau_3} \psi_3(t) e^{-\kappa_3(u-t)} du \right)^2$$

- Recall $S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) du}$ where $ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$
- Enforcing $S_3(t,T)$ Martingality reduces to $\mathbb{E}_t[dS_3(t,T)]=0$

$$\mathbb{E}_{t}[dS_{3}(t,T)] = S_{3}(t,T) \left(\left(\int_{T}^{T+\tau_{3}} \mu_{3}(t,u) \, du \right) + \frac{1}{2} \left(\int_{T}^{T+\tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u-t)} \, du \right)^{2} \right) dt = 0$$

$$\implies \int_{T}^{T+\tau_3} \mu_3(t,u) du = -\frac{1}{2} \left(\int_{T}^{T+\tau_3} \psi_3(t) e^{-\kappa_3(u-t)} du \right)^2$$

- Recall $S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) du}$ where $ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$
- Enforcing $S_3(t,T)$ Martingality reduces to $\mathbb{E}_t[dS_3(t,T)]=0$

$$\mathbb{E}_{t}[dS_{3}(t,T)] = S_{3}(t,T) \left(\left(\int_{T}^{T+\tau_{3}} \mu_{3}(t,u) \, du \right) + \frac{1}{2} \left(\int_{T}^{T+\tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u-t)} \, du \right)^{2} \right) dt = 0$$

$$\implies \int_{\mathbf{T}}^{\mathbf{T}+\tau_3} \mu_3(t,u) \, du = -\frac{1}{2} \left(\int_{\mathbf{T}}^{\mathbf{T}+\tau_3} \psi_3(t) e^{-\kappa_3(u-t)} \, du \right)^2$$

ullet Differentiate over T to ensure agreement for all T, i.e. all coverage periods $[T,T+ au_3)$

$$\mu_{3}(t, T + \tau_{3}) - \mu_{3}(t, T) = -\left(\int_{T}^{T + \tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u - t)} du\right) (\psi_{3}(t) e^{-\kappa_{3}(T + \tau_{3} - t)} - \psi_{3}(t) e^{-\kappa_{3}(T - t)})$$

$$= \frac{\psi_{3}(t)^{2}}{\kappa_{3}} e^{-2\kappa_{3}(T - t)} (1 - e^{-\kappa_{3}\tau_{3}})^{2}$$

• Unusual... involves a difference of drifts at $T \& T + \tau_3$

$$S_3(t,T) = e^{\int_T^{T+ au_3} s_3(t,u) \, du} \implies T \to T + \epsilon \text{ pulls in } s_3(t,T+ au_3+\epsilon) \text{ but drops } s_3(t,T)$$

ullet $\mu_3(t,T+ au_3)$ compensates for the loss of convexity offset from $\mu_3(t,T)$

ullet Differentiate over T to ensure agreement for all T, i.e. all coverage periods $[T,T+ au_3)$

$$\mu_{3}(t, T + \tau_{3}) - \mu_{3}(t, T) = -\left(\int_{T}^{T + \tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u - t)} du\right) (\psi_{3}(t) e^{-\kappa_{3}(T + \tau_{3} - t)} - \psi_{3}(t) e^{-\kappa_{3}(T - t)})$$

$$= \frac{\psi_{3}(t)^{2}}{\kappa_{3}} e^{-2\kappa_{3}(T - t)} (1 - e^{-\kappa_{3}\tau_{3}})^{2}$$

ullet Unusual... involves a difference of drifts at T & $T+ au_3$

$$S_3(t,T) = e^{\int_T^{T+ au_3} s_3(t,u) \, du} \implies T \to T + \epsilon \text{ pulls in } s_3(t,T+ au_3+\epsilon) \text{ but drops } s_3(t,T)$$

ullet $\mu_3(t,T+ au_3)$ compensates for the loss of convexity offset from $\mu_3(t,T)$

Modeling the Overnight Curve

- ON curve is "base" curve, modeled outright, used for $R_0(t, T, \tau_n)$
- $f_0(t,T)$ is instantaneous ON forward curve, used for discount bonds $P_0(t,T)$ & $R_0(t,T,\tau_3)$

$$P(t,T) = e^{-\int_t^T f_0(t,u) \, du}$$

$$R_0(t,T, au_1) = rac{1}{ au_1}igg(rac{P(t,T)}{P(t,T+ au_1)}-1igg) = rac{1}{ au_1}igg(e^{\int_T^{T+ au_1} f_0(t,u)\,du}-1igg)$$

• Risk-neutral model with Cheyette ('96) dynamics, a.k.a. Markovian HJM dynamics

$$df_0(t,T) = \mu_0(t,T) dt + \psi_0(t) e^{-\kappa_0(T-t)} dW_0(t)$$

Encounter "usual" HJM no-arbitrage drift condition

$$\int_{t}^{T} \mu_{0}(t,u) \, du = \frac{1}{2} \left(\int_{t}^{T} \psi_{0}(t) e^{-\kappa_{0}(u-t)} \, du \right)^{2} \implies \mu_{0}(t,T) = \frac{1}{\kappa_{0}} \psi_{0}^{2}(t) \left(e^{-\kappa_{0}(T-t)} - e^{-2\kappa_{0}(T-t)} \right)$$

ullet Differentiate over T to ensure agreement for all T, i.e. all coverage periods $[T,T+ au_3)$

$$\mu_{3}(t, T + \tau_{3}) - \mu_{3}(t, T) = -\left(\int_{T}^{T + \tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u - t)} du\right) (\psi_{3}(t) e^{-\kappa_{3}(T + \tau_{3} - t)} - \psi_{3}(t) e^{-\kappa_{3}(T - t)})$$

$$= \frac{\psi_{3}(t)^{2}}{\kappa_{3}} e^{-2\kappa_{3}(T - t)} (1 - e^{-\kappa_{3}\tau_{3}})^{2}$$

• Unusual... involves a difference of drifts at $T \& T + \tau_3$

$$S_3(t,T) = e^{\int_T^{T+ au_3} s_3(t,u) \, du} \implies T \to T + \epsilon \text{ pulls in } s_3(t,T+ au_3+\epsilon) \text{ but drops } s_3(t,T)$$

ullet $\mu_3(t,T+ au_3)$ compensates for the loss of convexity offset from $\mu_3(t,T)$

ullet Differentiate over T to ensure agreement for all T, i.e. all coverage periods $[T,T+ au_3)$

$$\mu_{3}(t, T + \tau_{3}) - \mu_{3}(t, T) = -\left(\int_{T}^{T + \tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u - t)} du\right) \left(\psi_{3}(t) e^{-\kappa_{3}(T + \tau_{3} - t)} - \psi_{3}(t) e^{-\kappa_{3}(T - t)}\right)$$

$$= \frac{\psi_{3}(t)^{2}}{\kappa_{3}} e^{-2\kappa_{3}(T - t)} \left(1 - e^{-\kappa_{3}\tau_{3}}\right)^{2}$$

• Unusual... involves a difference of drifts at $T \& T + \tau_3$

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) du} \implies T \rightarrow T + \epsilon \text{ pulls in } s_3(t,T+ au_3+\epsilon) \text{ but drops } s_3(t,T)$$

ullet $\mu_3(t,T+ au_3)$ compensates for the loss of convexity offset from $\mu_3(t,T)$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_3(t,T) = \exp\left(\int_T^{T+\tau_3} s_3(t,u) \, du\right)$$

$$= S_3(0,T) \exp\left(-\frac{1}{2} \int_0^t \left(\int_T^{T+\tau_3} \sigma_3(v,u) \, du\right)^2 dv + \int_0^t \int_T^{T+\tau_3} \sigma_3(v,u) \, du \, dW_3(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_3(t,T) = \exp\left(\int_T^{T+\tau_3} s_3(t,u) \, du\right)$$

$$= S_3(0,T) \exp\left(-\frac{1}{2} \int_0^t \left(\int_T^{T+\tau_3} \sigma_3(v,u) \, du\right)^2 dv + \int_0^t \int_T^{T+\tau_3} \sigma_3(v,u) \, du \, dW_3(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_3(t,T) = \exp\left(\int_T^{T+\tau_3} s_3(t,u) \, du\right)$$

$$= S_3(0,T) \exp\left(-\frac{1}{2} \int_0^t \left(\int_T^{T+\tau_3} \sigma_3(v,u) \, du\right)^2 dv + \int_0^t \int_T^{T+\tau_3} \sigma_3(v,u) \, du \, dW_3(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = \exp\left(\int_{T}^{T+\tau_{3}} s_{3}(t,u) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = \exp\left(\int_{T}^{T+\tau_{3}} s_{3}(0,u) + \int_{0}^{t} \mu_{3}(v,u) du + \int_{0}^{t} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- Recall $S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) du}$ where $ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$
- Enforcing $S_3(t,T)$ Martingality reduces to $\mathbb{E}_t[dS_3(t,T)]=0$

$$\mathbb{E}_{t}[dS_{3}(t,T)] = S_{3}(t,T) \left(\left(\int_{T}^{T+\tau_{3}} \mu_{3}(t,u) \, du \right) + \frac{1}{2} \left(\int_{T}^{T+\tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u-t)} \, du \right)^{2} \right) dt = 0$$

$$\implies \int_{T}^{T+\tau_3} \mu_3(t,u) du = -\frac{1}{2} \left(\int_{T}^{T+\tau_3} \psi_3(t) e^{-\kappa_3(u-t)} du \right)^2$$

- Recall $S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) du}$ where $ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$
- Enforcing $S_3(t,T)$ Martingality reduces to $\mathbb{E}_t[dS_3(t,T)]=0$

$$\mathbb{E}_{t}[dS_{3}(t,T)] = S_{3}(t,T) \left(\left(\int_{T}^{T+\tau_{3}} \mu_{3}(t,u) \, du \right) + \frac{1}{2} \left(\int_{T}^{T+\tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u-t)} \, du \right)^{2} \right) dt = 0$$

$$\implies \int_{T}^{T+\tau_3} \mu_3(t,u) \, du = -\frac{1}{2} \left(\int_{T}^{T+\tau_3} \sigma_3(t,u) \, du \right)^2$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \psi_3(t)e^{-\kappa_3(T-t)}$
- IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$S_{3}(t,T) = S_{3}(0,T) \exp\left(\int_{0}^{t} \int_{T}^{T+\tau_{3}} \mu_{3}(v,u) du + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) dW_{3}(v) du\right)$$

$$= S_{3}(0,T) \exp\left(-\frac{1}{2} \int_{0}^{t} \left(\int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du\right)^{2} dv + \int_{0}^{t} \int_{T}^{T+\tau_{3}} \sigma_{3}(v,u) du dW_{3}(v)\right).$$

- This restriction on $\mu_3(t,T)$ discovered earlier by others but without a solution
- See Martinez ('09), & jointly by Grbac & Runggaldier ('15) & Miglietta ('15)
- G&R advanced without $\mu_3(t,T)$ for Gaussian model, $\sigma_3(t,T) = \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)}$
- ullet IBOR dynamics can be written down, swaps & swaptions can be priced, without $\mu_3(t,T)$

$$\begin{split} S_3(t,T) &= S_3(0,T) \exp\biggl(\int_0^t \int_T^{T+\tau_3} \mu_3(v,u) \, du + \int_0^t \int_T^{T+\tau_3} \sigma_3(v,u) \, dW_3(v) \, du \biggr) \\ &= S_3(0,T) \exp\biggl(-\frac{1}{2} \int_0^t \biggl(\int_T^{T+\tau_3} \sqrt{s_3(v,v)} \, du \biggr)^2 \, dv + \int_0^t \int_T^{T+\tau_3} \sqrt{s_3(v,v)} \, du \, dW_3(v) \biggr) \, . \end{split}$$

• Must solve a difference equation for $\mu_3(t,T)$ in the variable T

$$\mu_3(t, T + \tau_3) - \mu_3(t, T) = \frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} (1 - e^{-\kappa_3 \tau_3})^2$$

- As a function of T we basically just have $\mu_3(T+\tau_3)-\mu_3(T)=\mathcal{C}(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$
- Postulate a functional form $\mu_3(t,T)=A(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$ and substitute, solve for $A(t;\kappa_3,\tau_3)$

$$\mu_3(t,T) = -\frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} \frac{\left(1 - e^{-\kappa_3 \tau_3}\right)}{\left(1 + e^{-\kappa_3 \tau_3}\right)}$$

• Must solve a difference equation for $\mu_3(t,T)$ in the variable T

$$\mu_3(t, T + \tau_3) - \mu_3(t, T) = \frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} (1 - e^{-\kappa_3 \tau_3})^2$$

- As a function of T we basically just have $\mu_3(T+\tau_3)-\mu_3(T)=C(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$
- Postulate a functional form $\mu_3(t,T)=A(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$ and substitute, solve for $A(t;\kappa_3,\tau_3)$

$$\mu_3(t,T) = -\frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} \frac{\left(1 - e^{-\kappa_3\tau_3}\right)}{\left(1 + e^{-\kappa_3\tau_3}\right)}$$

• Must solve a difference equation for $\mu_3(t,T)$ in the variable T

$$\mu_3(t, T + \tau_3) - \mu_3(t, T) = \frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} (1 - e^{-\kappa_3 \tau_3})^2$$

- As a function of T we basically just have $\mu_3(T+\tau_3)-\mu_3(T)=C(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$
- Postulate a functional form $\mu_3(t,T) = A(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$ and substitute, solve for $A(t;\kappa_3,\tau_3)$

$$\mu_3(t,T) = -\frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} \frac{\left(1 - e^{-\kappa_3\tau_3}\right)}{\left(1 + e^{-\kappa_3\tau_3}\right)}$$

• Must solve a difference equation for $\mu_3(t,T)$ in the variable T

$$\mu_3(t, T + \tau_3) - \mu_3(t, T) = \frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} (1 - e^{-\kappa_3\tau_3})^2$$

- As a function of T we basically just have $\mu_3(T+\tau_3)-\mu_3(T)=C(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$
- Postulate a functional form $\mu_3(t,T) = A(t;\kappa_3,\tau_3)e^{-2\kappa_3T}$ and substitute, solve for $A(t;\kappa_3,\tau_3)$

$$\mu_3(t,T) = -\frac{\psi_3(t)^2}{\kappa_3} e^{-2\kappa_3(T-t)} \frac{\left(1 - e^{-\kappa_3 \tau_3}\right)}{\left(1 + e^{-\kappa_3 \tau_3}\right)}$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

• Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}$$

- Recall $S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) du}$ where $ds_3(t,T) = \mu_3(t,T) dt + \psi_3(t) e^{-\kappa_3(T-t)} dW_3(t)$
- Enforcing $S_3(t,T)$ Martingality reduces to $\mathbb{E}_t[dS_3(t,T)]=0$

$$\mathbb{E}_{t}[dS_{3}(t,T)] = S_{3}(t,T) \left(\left(\int_{T}^{T+\tau_{3}} \mu_{3}(t,u) \, du \right) + \frac{1}{2} \left(\int_{T}^{T+\tau_{3}} \psi_{3}(t) e^{-\kappa_{3}(u-t)} \, du \right)^{2} \right) dt = 0$$

• As such, no-arbitrage condition on $\mu_3(t,T)$ can be inferred from integral condition

$$\implies \int_{T}^{T+\tau_3} \mu_3(t,u) du = -\frac{1}{2} \left(\int_{T}^{T+\tau_3} \psi_3(t) e^{-\kappa_3(u-t)} du \right)^2$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + \frac{k(t,T)}{m} \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

• Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}$$

- ullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

• Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + \frac{k(t,T)}{m} \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

• Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

ullet Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}(0,t,T)$$

- ullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

• Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}(0,t,T)$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

ullet Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}(0,t,T)$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

ullet Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}(0,t,T)$$

- ullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

• Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}(0,t,T)$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + \frac{k(t,T)}{m} \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

ullet Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + \frac{h(t,u)}{t} \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}(0,t,T)$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

• Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + \text{Convexity Adj.}(0,t,T)$$

- \bullet $\mu_3(t,T)$ not uniquely determined by no-arbitrage conditions, pointed out by G&R & Miglietta
- Add function k(t, T) integrating to zero over any $[T, T + \tau_3)$, e.g. $a(t) \cos((2\pi/\tau_3)T)$

$$\mu_3'(t,T) = \mu_3(t,T) + k(t,T) \implies \int_T^{T+\tau_1} \mu_3'(t,u) du = \int_T^{T+\tau_1} \mu_3(t,u) du$$

ullet Miglietta points out rightly that the definition of $s_3(t,T)$ in $S_3(t,T)$ is not unique

$$S_3(t,T) = e^{\int_T^{T+\tau_3} s_3(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) \, du + \int_T^{T+\tau_3} h(t,u) \, du} = e^{\int_T^{T+\tau_3} s_3(t,u) + h(t,u) \, du}$$

$$\mathbb{E}_0[s_3(t,T)] = s_3(0,T) + h(t,T) + \text{Convexity Adj } (0,t,T)$$

ullet $s_3(t,T)$ in general has nonzero lower bound & CEV dependence, square-root for affine machinery

$$ds_3(t,T) = \mu_3(t,T) dt + \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)} dW_3(t)$$

• Cheyette-style representation similar to that for $f_0(t,T)$

$$s_3(t,T) = s_3(0,T) + e^{-\kappa_3(T-t)} (X_3(t) + (1 - e^{-\kappa_3(T-t)}) Y_3(t))$$

$$\lambda_3(t) = s_3(0,t) + X_3(t)$$

$$dX_3(t) = \kappa_3 (Y_3(t) - \eta_3 \nu_3(t)^2 \lambda_3(t) - X_3(t)) dt + \nu_3(t) \sqrt{\lambda_3(t)} dW_1(t)$$

$$dY_3(t) = 2\kappa_1 ((\eta_1/2)\nu_3(t)^2 \lambda_3(t) - Y_3(t)) dt$$

ullet $s_3(t,T)$ in general has nonzero lower bound & CEV dependence, square-root for affine machinery

$$ds_3(t,T) = \mu_3(t,T) dt + \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)} dW_3(t)$$

• Cheyette-style representation similar to that for $f_0(t,T)$

$$s_3(t,T) = s_3(0,T) + e^{-\kappa_3(T-t)} (X_3(t) + (1 - e^{-\kappa_3(T-t)}) Y_3(t))$$

$$\lambda_3(t) = s_3(0,t) + X_3(t)$$

$$dX_3(t) = \kappa_3 (Y_3(t) - \eta_3 \nu_3(t)^2 \lambda_3(t) - X_3(t)) dt + \nu_3(t) \sqrt{\lambda_3(t)} dW_1(t)$$

$$dY_3(t) = 2\kappa_1 ((\eta_1/2)\nu_3(t)^2 \lambda_3(t) - Y_3(t)) dt$$

ullet $s_3(t,T)$ in general has nonzero lower bound & CEV dependence, square-root for affine machinery

$$ds_3(t,T) = \mu_3(t,T) dt + \nu_3(t) (s_3(t,t) - l_3(t))^{\beta} e^{-\kappa_3(T-t)} dW_3(t)$$

• Cheyette-style representation similar to that for $f_0(t,T)$

$$s_3(t,T) = s_3(0,T) + e^{-\kappa_3(T-t)} (X_3(t) + (1 - e^{-\kappa_3(T-t)}) Y_3(t))$$

$$\lambda_3(t) = s_3(0,t) + X_3(t)$$

$$dX_3(t) = \kappa_3 (Y_3(t) - \eta_3 \nu_3(t)^2 \lambda_3(t) - X_3(t)) dt + \nu_3(t) \sqrt{\lambda_3(t)} dW_1(t)$$

$$dY_3(t) = 2\kappa_1 ((\eta_1/2)\nu_3(t)^2 \lambda_3(t) - Y_3(t)) dt$$

ullet $s_3(t,T)$ in general has nonzero lower bound & CEV dependence, square-root for affine machinery

$$ds_3(t,T) = \mu_3(t,T) dt + \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)} dW_3(t)$$

• Cheyette-style representation similar to that for $f_0(t,T)$

$$s_3(t,T) = s_3(0,T) + e^{-\kappa_3(T-t)} (X_3(t) + (1 - e^{-\kappa_3(T-t)}) Y_3(t))$$

$$\lambda_3(t) = s_3(0,t) + X_3(t)$$

$$dX_3(t) = \kappa_3 (Y_3(t) - \eta_3 \nu_3(t)^2 \lambda_3(t) - X_3(t)) dt + \nu_3(t) \sqrt{\lambda_3(t)} dW_1(t)$$

$$dY_3(t) = 2\kappa_1 ((\eta_1/2)\nu_3(t)^2 \lambda_3(t) - Y_3(t)) dt$$

ullet $s_3(t,T)$ in general has nonzero lower bound & CEV dependence, square-root for affine machinery

$$ds_3(t,T) = \mu_3(t,T) dt + \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)} dW_3(t)$$

• Cheyette-style representation similar to that for $f_0(t, T)$

$$s_3(t,T) = s_3(0,T) + e^{-\kappa_3(T-t)} (X_3(t) + (1 - e^{-\kappa_3(T-t)}) Y_3(t))$$

$$\lambda_3(t) = s_3(0,t) + X_3(t)$$

$$dX_3(t) = \kappa_3 (Y_3(t) - \eta_3 \nu_3(t)^2 \lambda_3(t) - X_3(t)) dt + \nu_3(t) \sqrt{\lambda_3(t)} dW_1(t)$$

$$dY_3(t) = 2\kappa_1 ((\eta_1/2)\nu_3(t)^2 \lambda_3(t) - Y_3(t)) dt$$

ullet $s_3(t,T)$ in general has nonzero lower bound & CEV dependence, square-root for affine machinery

$$ds_3(t,T) = \mu_3(t,T) dt + \nu_3(t) \sqrt{s_3(t,t)} e^{-\kappa_3(T-t)} dW_3(t)$$

• Cheyette-style representation similar to that for $f_0(t,T)$

$$s_3(t,T) = s_3(0,T) + e^{-\kappa_3(T-t)} (X_3(t) + (1 - e^{-\kappa_3(T-t)}) Y_3(t))$$

$$\lambda_3(t) = s_3(0,t) + X_3(t)$$

$$dX_3(t) = \kappa_3 (Y_3(t) - \eta_3 \nu_3(t)^2 \lambda_3(t) - X_3(t)) dt + \nu_3(t) \sqrt{\lambda_3(t)} dW_1(t)$$

$$dY_3(t) = 2\kappa_1 ((\eta_1/2)\nu_3(t)^2 \lambda_3(t) - Y_3(t)) dt$$

Approximate Swaprate Dynamics

- Can use frozen coefficients³³ approach to determine approximate swaprate dynamics
- ullet Let $\omega_3(t)$ denote IRS rate and $\phi_{0,3}(t)$ denote basis swap rate

$$d\omega_{3}(t) = \gamma_{0} e^{-\kappa_{0}(T-t)} \nu_{0}(t) d\overline{W}_{0}(t) + \gamma_{3} e^{-\kappa_{3}(T-t)} \nu_{3}(t) \sqrt{\lambda_{3}(t)} d\overline{W}_{3}(t)$$

$$d\phi_{0,3}(t) = \gamma'_{0} e^{-\kappa_{0}(T-t)} \nu_{0}(t) d\overline{W}_{0}(t) + \gamma'_{3} e^{-\kappa_{3}(T-t)} \nu_{3}(t) \sqrt{\lambda_{3}(t)} d\overline{W}_{3}(t)$$

ullet For affine setup compute swaption prices 34 & (co-)moments via Fourier methods

$$\overline{\mathbb{E}}_t \big[\omega_3(T)^m \phi_{0,3}(T)^n \big] = \partial_{\theta_\omega}^m \partial_{\theta_\phi}^n \overline{\mathbb{E}}_t \big[e^{\theta_\omega \omega_3(T) + \theta_\phi \phi_{0,3}(T)} \big] \big|_{\theta_\omega = \theta_\phi = 0}$$

³³Schrager and Pelsser ('06) techniques for affine short-rate models can be adapted

³⁴e g Fang & Oosterlee ('10)

Approximate Swaprate Dynamics

- Can use frozen coefficients³⁵ approach to determine approximate swaprate dynamics
- ullet Let $\omega_3(t)$ denote IRS rate and $\phi_{0,3}(t)$ denote basis swap rate

$$d\omega_{3}(t) = \gamma_{0} e^{-\kappa_{0}(T-t)} \nu_{0}(t) d\overline{W}_{0}(t) + \gamma_{3} e^{-\kappa_{3}(T-t)} \nu_{3}(t) \sqrt{\lambda_{3}(t)} d\overline{W}_{3}(t)$$

$$d\phi_{0,3}(t) = \gamma'_{0} e^{-\kappa_{0}(T-t)} \nu_{0}(t) d\overline{W}_{0}(t) + \gamma'_{3} e^{-\kappa_{3}(T-t)} \nu_{3}(t) \sqrt{\lambda_{3}(t)} d\overline{W}_{3}(t)$$

ullet For affine setup compute swaption prices 36 & (co-)moments via Fourier methods

$$\overline{\mathbb{E}}_t \big[\omega_3(T)^m \phi_{0,3}(T)^n \big] = \partial_{\theta_\omega}^m \partial_{\theta_\phi}^n \overline{\mathbb{E}}_t \big[e^{\theta_\omega \omega_3(T) + \theta_\phi \phi_{0,3}(T)} \big] \big|_{\theta_\omega = \theta_\phi = 0}$$

³⁵Schrager and Pelsser ('06) techniques for affine short-rate models can be adapted

³⁶e g Fang & Oosterlee ('10)

Joint Calibration to Historical Data & Implied Data

- Formally swaption volatilities $v(k, T^{ex})$ reflect $\nu_0(t)$ and $\nu_3(t)$
- Skew does respond to $\nu_3(t)$, but $\nu_3(t)$ is present for other purposes
- Could require extreme $\nu_3(t)$ to mimic skew if $f_0(t,T)$ skew is flat, & skew varies over time
- The base model $f_0(t,T)$ should be augmented to hit skew before turning to $s_3(t,T)$ model
- Stochastic $s_3(t, T)$ to produce sensible basis dynamics, as compared with history³⁷

 $^{^{37}}$ Hull & White ('16), Henrard ('16) also note the use of historical data

- Formally swaption volatilities $v(k, T^{ex})$ reflect $v_0(t)$ and $v_3(t)$
- Skew does respond to $\nu_3(t)$, but $\nu_3(t)$ is present for other purposes
- Could require extreme $\nu_3(t)$ to mimic skew if $f_0(t,T)$ skew is flat, & skew varies over time
- The base model $f_0(t,T)$ should be augmented to hit skew before turning to $s_3(t,T)$ model
- Stochastic $s_3(t, T)$ to produce sensible basis dynamics, as compared with history³⁸

³⁸Hull & White ('16), Henrard ('16) also note the use of historical data

- Formally swaption volatilities $v(k, T^{ex})$ reflect $\nu_0(t)$ and $\nu_3(t)$
- Skew does respond to $\nu_3(t)$, but $\nu_3(t)$ is present for other purposes
- Could require extreme $\nu_3(t)$ to mimic skew if $f_0(t,T)$ skew is flat, & skew varies over time
- The base model $f_0(t,T)$ should be augmented to hit skew before turning to $s_3(t,T)$ model
- Stochastic $s_3(t, T)$ to produce sensible basis dynamics, as compared with history³⁹

³⁹Hull & White ('16), Henrard ('16) also note the use of historical data

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$\nu_0(t), \ \nu_3$$

$$\upsilon(k_1, T_1^{ex}), \ldots, \upsilon(k_{N_\upsilon}, T_{N_\upsilon}^{ex}), \operatorname{vol}_{hs}(\phi_{0,3}(T^{hz}))$$

- Calibration targets $v(k_n, T_n^{ex})$, $vol_{hs}(\phi_{0,3}(T^{hz}))$ available via Fourier methods
- ullet Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T_1^{hz}))$, $\operatorname{vol}_{fc}(\phi_3(T_2^{hz}))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$\nu_0(t), \ \nu_3$$

$$\upsilon(k_1, T_1^{ex}), \ldots, \upsilon(k_{N_\upsilon}, T_{N_\upsilon}^{ex}), \operatorname{vol}_{hs}(\phi_{0,3}(T^{hz}))$$

- Calibration targets $v(k_n, T_n^{ex})$, $vol_{hs}(\phi_{0,3}(T^{hz}))$ available via Fourier methods
- ullet Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_1))$, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_2))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$\nu_0(t), \ \nu_3$$

$$\upsilon(k_1, T_1^{\text{ex}}), \ldots, \upsilon(k_{N_\upsilon}, T_{N_\upsilon}^{\text{ex}}), \operatorname{vol}_{hs}(\phi_{0,3}(T^{hz}))$$

- Calibration targets $v(k_n, T_n^{ex})$, $vol_{hs}(\phi_{0,3}(T^{hz}))$ available via Fourier methods
- ullet Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_1))$, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_2))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$\nu_0(t), \ \nu_3$$

$$\upsilon(k_1, T_1^{\mathsf{ex}}), \ \ldots, \ \upsilon(k_{\mathsf{N}_\upsilon}, T_{\mathsf{N}_\upsilon}^{\mathsf{ex}}), \ \mathsf{vol}_{\mathsf{hs}}(\phi_{0,3}(T^{\mathsf{hz}}))$$

- Calibration targets $v(k_n, T_n^{ex})$, $vol_{hs}(\phi_{0,3}(T^{hz}))$ available via Fourier methods
- ullet Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_1))$, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_2))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$u_0(t),\
u_3$$
bestfit to $v(k_1,T_1^{
m ex}),\ \dots,\ v(k_{N_v},T_{N_v}^{
m ex})$ subject to

 $vol_{mod}(\phi_{0,3}(T^{hz})) = vol_{hs}(\phi_{0,3}(T^{hz}))$

- Calibration targets $v(k_n, T_n^{\text{ex}})$, $\text{vol}_{hs}(\phi_{0,3}(T^{hz}))$ avaliable via Fourier methods
- Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T_1^{hz}))$, $\operatorname{vol}_{fc}(\phi_3(T_2^{hz}))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$\nu_0(t), \ \nu_3$$

$$\upsilon(k_1, T_1^{\text{ex}}), \ldots, \upsilon(k_{N_\upsilon}, T_{N_\upsilon}^{\text{ex}}), \operatorname{vol}_{hs}(\phi_{0,3}(T^{hz}))$$

- Calibration targets $v(k_n, T_n^{ex})$, $vol_{hs}(\phi_{0,3}(T^{hz}))$ available via Fourier methods
- ullet Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T_1^{hz}))$, $\operatorname{vol}_{fc}(\phi_3(T_2^{hz}))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$\nu_0(t), \ \nu_3$$

$$v(k_1, T_1^{ex}), \ldots, v(k_{N_v}, T_{N_v}^{ex}), \operatorname{vol}_{hs}(\phi_{0,3}(T^{hz}))$$

- Calibration targets $v(k_n, T_n^{ex})$, $vol_{hs}(\phi_{0,3}(T^{hz}))$ avaliable via Fourier methods
- Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_1))$, $\operatorname{vol}_{fc}(\phi_3(T^{hz}_2))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

• Simple example: bestfit $\nu_0(t)$ & constant ν_3 to swaption vols & historical $\phi_{0,3}(T^{hz})$ vol

$$\nu_0(t), \ \nu_3$$

$$\upsilon(k_1, T_1^{\text{ex}}), \ldots, \upsilon(k_{N_\upsilon}, T_{N_\upsilon}^{\text{ex}}), \operatorname{vol}_{hs}(\phi_{0,3}(T^{hz}))$$

- Calibration targets $v(k_n, T_n^{ex})$, $vol_{hs}(\phi_{0,3}(T^{hz}))$ available via Fourier methods
- ullet Can replace $\operatorname{vol}_{hs}(\phi_3(T^{hz}))$ with EWMA/GARCH forecast, $\operatorname{vol}_{fc}(\phi_3(T_1^{hz}))$, $\operatorname{vol}_{fc}(\phi_3(T_2^{hz}))$, . . .
- In general can also tease out κ_0 , κ_3 and correlations from co-historical moments

- Behavior of basis spreads and importance for CVA
- Multi-curve Cheyette model which enforces desired lower bounds through level dependence
- Integration of historical data into calibration of basis dynamics

- Behavior of basis spreads and importance for CVA
- Multi-curve Cheyette model which enforces desired lower bounds through level dependence
- Integration of historical data into calibration of basis dynamics

- Behavior of basis spreads and importance for CVA
- Multi-curve Cheyette model which enforces desired lower bounds through level dependence
- Integration of historical data into calibration of basis dynamics

- Behavior of basis spreads and importance for CVA
- Multi-curve Cheyette model which enforces desired lower bounds through level dependence
- Integration of historical data into calibration of basis dynamics

Impact of Basis Volatility on Implied Volatilities

• Why bother getting rigorous with tenor basis models now?

• LIBOR for USD, GBP, EUR, etc., being phased out by 2021

- EUR EURIBOR, JPY TIBOR being reformed, CAD CORA, AUD BBSW, etc. to remain 40
- Uncertainty over timelines, legal disputes, market disruptions, non-uniformity across jurisdictions
- New indices reflecting term credit & liquidity? e.g. BBI.⁴¹ Why are IBORs utilized?⁴²

⁴⁰https://www.fsb.org/2018/11/reforming-major-interest-rate-benchmarks-progress-report/

⁴¹https://www.theice.com/publicdocs/futures/Bank_Yield_Index_WP.pdf

⁴²Schrimpf & Suskko ('19) https://www.bis.org/publ/qtrpdf/r_qt1903e.htm

- Why bother getting rigorous with tenor basis models now?
- LIBOR for USD, GBP, EUR, etc., being phased out by 2021

EUR EURIBOR, JPY TIBOR being reformed, CAD CORA, AUD BBSW, etc. to remain⁴³

- Uncertainty over timelines, legal disputes, market disruptions, non-uniformity across jurisdictions
- New indices reflecting term credit & liquidity? e.g. BBI.⁴⁴ Why are IBORs utilized?⁴⁵

⁴³https://www.fsb.org/2018/11/reforming-major-interest-rate-benchmarks-progress-report/

⁴⁴https://www.theice.com/publicdocs/futures/Bank_Yield_Index_WP.pdf

⁴⁵Schrimpf & Suskko ('19) https://www.bis.org/publ/qtrpdf/r_qt1903e.htm

CVA for Tenor Basis Swaps

Appendix A - Mapping of major interest rate benchmarks to alternative reference rates

Currency	Interest rate benchmark	Alternative reference rate (candidates)	Type of alternative reference rate	Remarks	Key milestones
AUD	BBSW	RBA Cash Rate	Unsecured	Multiple-rate approach has been adopted	
BRL	DI rate	Selic	Secured	Multiple-rate approach has been adopted	
CAD	CDOR	Enhanced CORRA	Secured	Multiple-rate approach has been adopted Term RFR to be developed in 2019	White paper on enhanced CORRA is to be published in Q1 2019.
CHF	LIBOR	SARON	Secured	Transition is necessary. Compounded SARON is recommended. A forward-looking term rate seems not feasible. 101	The FCA has said it will not use its powers to maintain LIBOR beyond end-2021.
EUR	LIBOR	ESTER or Euribor	Unsecured	EUR LIBOR is not in scope of the working group on euro RFR owing to its limited market usage as compared to Euribor. Possible alternatives could be ESTER or the reformed Euribor.	The FCA has said it will not use its powers to maintain LIBOR beyond end-2021.
EUR	Euribor	ESTER	Unsecured	Term RFR under consideration, meanwhile Euribor is being reformed to meet BMR requirements.	A phase-in to a new hybrid methodology for Euribor is expected in the course of 2019.
EUR	EONIA	ESTER	Unsecured	A possible recommendation on a specific path for transition is planned around end-2018.	Usage of EONIA is to be prohibited for new contracts at the end of the BMR's transitional period, i.e. from 1 January 2020.

¹⁰¹ See minutes of the 20th NWG meeting, available at https://www.snb.ch/en/ifor/finmkt/fnmkt_benchm/id/finmkt_NWG_documents

Figure: 5Y ON-3M Basis Swap PFEs: Stochastic vs. Deterministic Basis

• Why bother getting rigorous with tenor basis models now?

• LIBOR for USD, GBP, EUR, etc., being phased out by 2021

- EUR EURIBOR, JPY TIBOR being reformed, CAD CORA, AUD BBSW, etc. to remain⁴⁶
- Uncertainty over timelines, legal disputes, market disruptions, non-uniformity across jurisdictions
- New indices reflecting term credit & liquidity? e.g. BBI.⁴⁷ Why are IBORs utilized?⁴⁸

⁴⁶https://www.fsb.org/2018/11/reforming-major-interest-rate-benchmarks-progress-report/

 $^{^{47}} https://www.theice.com/publicdocs/futures/Bank_Yield_Index_WP.pdf$

⁴⁸Schrimpf & Suskko ('19) https://www.bis.org/publ/qtrpdf/r_qt1903e.htm

- Why bother getting rigorous with tenor basis models now?
- LIBOR for USD, GBP, EUR, etc., being phased out by 2021
 EUR EURIBOR, JPY TIBOR being reformed, CAD CORA, AUD BBSW, etc. to remain⁴⁹
- Uncertainty over timelines, legal disputes, market disruptions, non-uniformity across jurisdictions
- New indices reflecting term credit & liquidity? e.g. BBI.⁵⁰ Why are IBORs utilized?⁵¹

⁴⁹https://www.fsb.org/2018/11/reforming-major-interest-rate-benchmarks-progress-report/

⁵⁰https://www.theice.com/publicdocs/futures/Bank_Yield_Index_WP.pdf

⁵¹Schrimpf & Suskko ('19) https://www.bis.org/publ/qtrpdf/r_qt1903e.htm

- Why bother getting rigorous with tenor basis models now?
- LIBOR for USD, GBP, EUR, etc., being phased out by 2021
 EUR EURIBOR, JPY TIBOR being reformed, CAD CORA, AUD BBSW, etc. to remain⁵²
- Uncertainty over timelines, legal disputes, market disruptions, non-uniformity across jurisdictions
- New indices reflecting term credit & liquidity? e.g. BBI.⁵³ Why are IBORs utilized?⁵⁴

⁵²https://www.fsb.org/2018/11/reforming-major-interest-rate-benchmarks-progress-report/

⁵³https://www.theice.com/publicdocs/futures/Bank_Yield_Index_WP.pdf

⁵⁴Schrimpf & Suskko ('19) https://www.bis.org/publ/qtrpdf/r_qt1903e.htm

- Swaptions over IBOR-referencing swaps: assume 3M floating leg $R_3(T_i, T_i, \tau_3)$
- Decompose 3M IBOR into equivalent 3M IBOR off ON curve plus hypothetical 3M-ON spread

$$R_3(t, T, \tau_3) = R_0(t, T, \tau_3) + S_{0,3}^+(t, T)$$

$$\sigma_{R_3}^2 = \sigma_{R_0}^2 + \sigma_{S_{0,3}^+}^2 + 2\rho_{R_3,S_{0,3}^+} \cdot \sigma_{R_0} \cdot \sigma_{S_{0,3}^+}$$

- Swaption volatilities $v(k, T^{ex})$ should reflect both as well
- Deterministic tenor basis spread during calibration \implies all vol packed onto ON curve
- Impacts pricing of nonlinears in ON, long-dated convex EQ/FX, CVA on OIS trades, etc.

- Swaptions over IBOR-referencing swaps: assume 3M floating leg $R_3(T_i, T_i, \tau_3)$
- Decompose 3M IBOR into equivalent 3M IBOR off ON curve plus hypothetical 3M-ON spread

$$R_3(t, T, \tau_3) = R_0(t, T, \tau_3) + S_{0,3}^+(t, T)$$

$$\sigma_{R_3}^2 = \sigma_{R_0}^2 + \sigma_{S_{0,3}^+}^2 + 2\rho_{R_3,S_{0,3}^+} \cdot \sigma_{R_0} \cdot \sigma_{S_{0,3}^+}$$

- Swaption volatilities $v(k, T^{ex})$ should reflect both as well
- Deterministic tenor basis spread during calibration

 all vol packed onto ON curve
- Impacts pricing of nonlinears in ON, long-dated convex EQ/FX, CVA on OIS trades, etc.

- Swaptions over IBOR-referencing swaps: assume 3M floating leg $R_3(T_i, T_i, \tau_3)$
- Decompose 3M IBOR into equivalent 3M IBOR off ON curve plus hypothetical 3M-ON spread

$$R_3(t, T, \tau_3) = R_0(t, T, \tau_3) + S_{0,3}^+(t, T)$$

$$\sigma_{R_3}^2 = \sigma_{R_0}^2 + \sigma_{S_{0,3}^+}^2 + 2\rho_{R_3,S_{0,3}^+} \cdot \sigma_{R_0} \cdot \sigma_{S_{0,3}^+}$$

- Swaption volatilities $v(k, T^{ex})$ should reflect both as well
- Deterministic tenor basis spread during calibration \implies all vol packed onto ON curve
- Impacts pricing of nonlinears in ON, long-dated convex EQ/FX, CVA on OIS trades, etc.

Historical IRS Component Behavior

Figure: 2002-2019 Historical Swap and Basis Swap Volatilities: 2Y Tenor

Historical Volatility Components

Historical OIS Volatility	59.7 bps
Historical ON-vs3M Volatility	22.2 bps
Historical OIS, ON-vs3M Correlation	-0.015
Historical IRS Volatility	63.0 bps
"Theoretical" IRS Volatility	63.4 bps

- Swaptions over IBOR-referencing swaps: assume 3M floating leg $R_3(T_i, T_i, \tau_3)$
- Decompose 3M IBOR into equivalent 3M IBOR off ON curve plus hypothetical 3M-ON spread

$$R_3(t, T, \tau_3) = R_0(t, T, \tau_3) + S_{0,3}^+(t, T)$$

$$\sigma_{R_3}^2 = \sigma_{R_0}^2 + \sigma_{S_{0,3}^+}^2 + 2\rho_{R_3,S_{0,3}^+} \cdot \sigma_{R_0} \cdot \sigma_{S_{0,3}^+}$$

- Swaption volatilities $v(k, T^{ex})$ should reflect both as well
- Deterministic tenor basis spread during calibration \implies all vol packed onto ON curve
- Impacts pricing of nonlinears in ON, long-dated convex EQ/FX, CVA on OIS trades, etc.

- Swaptions over IBOR-referencing swaps: assume 3M floating leg $R_3(T_i, T_i, \tau_3)$
- Decompose 3M IBOR into equivalent 3M IBOR off ON curve plus hypothetical 3M-ON spread

$$R_3(t, T, \tau_3) = R_0(t, T, \tau_3) + S_{0,3}^+(t, T)$$

$$\sigma_{R_3}^2 = \sigma_{R_0}^2 + \sigma_{S_{0,3}^+}^2 + 2 \rho_{R_3,S_{0,3}^+} \cdot \sigma_{R_0} \cdot \sigma_{S_{0,3}^+}$$

- Swaption volatilities $v(k, T^{ex})$ should reflect both as well
- Deterministic tenor basis spread during calibration \implies all vol packed onto ON curve
- Impacts pricing of nonlinears in ON, long-dated convex EQ/FX, CVA on OIS trades, etc.

- Swaptions over IBOR-referencing swaps: assume 3M floating leg $R_3(T_i, T_i, \tau_3)$
- Decompose 3M IBOR into equivalent 3M IBOR off ON curve plus hypothetical 3M-ON spread

$$R_3(t, T, \tau_3) = R_0(t, T, \tau_3) + S_{0,3}^+(t, T)$$

$$\sigma_{R_{\mathbf{3}}}^2 = \sigma_{R_{\mathbf{0}}}^2$$

- Swaption volatilities $v(k, T^{ex})$ should reflect both as well
- ullet Deterministic tenor basis spread during calibration \Longrightarrow all vol packed onto ON curve
- Impacts pricing of nonlinears in ON, long-dated convex EQ/FX, CVA on OIS trades, etc.

- Swaptions over IBOR-referencing swaps: assume 3M floating leg $R_3(T_i, T_i, \tau_3)$
- Decompose 3M IBOR into equivalent 3M IBOR off ON curve plus hypothetical 3M-ON spread

$$R_3(t, T, \tau_3) = R_0(t, T, \tau_3) + S_{0,3}^+(t, T)$$

$$\sigma_{R_{\mathbf{3}}}^2 = \sigma_{R_{\mathbf{0}}}^2$$

- Swaption volatilities $v(k, T^{ex})$ should reflect both as well
- ullet Deterministic tenor basis spread during calibration \Longrightarrow all vol packed onto ON curve
- Impacts pricing of nonlinears in ON, long-dated convex EQ/FX, CVA on OIS trades, etc.

