

Stereotype Stratification and Math Gender Stereotypes in Elementary Age Girls

Early Childhood Interaction Lab

Hanna-Sophia Shine, Gillian E. Grose, Ateret P. Frank, Geetha B. Ramani University of Maryland, College Park

INTRODUCTION

- The *math gender stereotype* is the belief that men are better at mathematics than women.
- The math gender stereotype develops in elementary school children as young as six¹ and can affect performance on math-related tasks when gender identity is made salient².
- Stereotype stratification is a process in which a subgroup of a negatively stereotyped in-group feels as if that negative stereotype is not applicable to them³.
- Previous work has shown elementary age girls engage in stereotype stratification.
- Girls were more likely to draw girls when asked to draw a child mathematician³.
- Girls were more likely to draw adult men when asked to draw an adult mathematician³.

RESEARCH QUESTION

• The current research explores the impact of identity and action-based language used to describe the act of doing math on gender selection in response to forced-choice and open-ended questions.

The 3 main research questions include

- Will girls select more girls than boys during the math forced-choice questioning regardless of the language condition they are in?
- Are girls more likely to mention adults or children in the open-ended questions?
- Are girls more likely to mention more adult men than adult women during the mathematician condition?

CURRENT RESEARCH

Participants

160 children between the ages of four and seven (Mean age = 6.2 years; 80 girls, 80 boys)

Methods

- Participants were assigned to one of two conditions: action-based (do math) or identity-based language (mathematician).
- Children completed a series of forced choice and open-ended questions.
- Forced choice questions.
- Children answered 4 questions in which they were prompted to select students from a fictional classroom of four boys and four girls.
- Questions matched their assigned condition (e.g., "who looks like they do math?" in the action condition or "who looks like a mathematician?" in the identity condition).
- Participants were asked about math, science, art, and writing.

Open-ended questions

- Children were asked "can you tell me about someone you know who____" and "can you tell me about someone in your class who____?".
- Questions matched assigned condition (e.g. "who is a mathematician" or "who does math".
- Additional prompting was provided (eg. "Can you tell me a little about them?").

TRANSCRIPTION AND CODING

Transcription

Participant's responses to the open-ended questions were transcribed by five undergraduate research assistants.

Coding

- Age (child versus adult): transcriptions were coded based on the assumed age of the subject of the participants response (e.g., "my mom is a mathematician" would be coded as adult while "my brother does math" would be coded as child).
- Gender: transcriptions were coded based on the assumed gender of the subject of the participants response which was determined through pronoun usage.

RESULTS

Differences in gender selection in response to math forced-choice question:

A logistic regression was run to test girls' gender selection in response to the math forced-choice question.

Results were non significant indicating that girls did not select more girls than boys in response to the math forced-choice question.

(Across Conditions for Girls M = .54, SD = .5).

Girls' Response to Q1: "can you tell me about someone you know who..."

N= 52 Overall, participants selected more children in the action-based language condition and more adults in the identity-based language condition.

Condition	No Response
Do Math	6
Mathematician	22

Analysis Looking at Adults and Gender (Q1)

Condition	Adult Male	Adult Female	Cannot Infer	Total
Do Math	2	2	0	4
Mathematician	4	4	2	10

Girls' Response to Q2: "can you tell me about someone in your class who..."

N= 47
Participants selected more children overall regardless of condition.

Q2:Condition	No Response
Do Math	12
Mathematician	21

Analysis Looking at Adults and Gender (Q2)

Condition	Adult Male	Adult Female	Cannot Infer	Total
Do Math	0	0	1	1
Mathematician	0	4	3	7

EXPLORATORY RESULTS

Gender selection in response to forced-choice questions related to math, science, art, and writing.

DISCUSSION

- Elementary age girls did not choose girls over boys significantly more in response to the math forced-choice question.
- Condition did not affect responses.
- Across both open-ended questions, participants selected more children than adults within the action-based language condition.
- Identity-based and action-based language can affect whether participants envision a child or adult in response to open-ended questioning.
- Based on our current sample size we can not make any conclusions about the interaction between gender and age in the open-ended questions
- Ongoing analyses are being conducted to understand the differences in gender choices in other domains such as writing, science, and art.

Future Directions:

- Determine level of understanding within elementary school age participants regarding what a mathematician is (identity language).
- Replication with larger sample size to account for the disparity in response rate between conditions.
- Explore stereotyping with cross-sectional/longitudinal design over ages 4-7.

Acknowledgements:

- I would like to thank my fellow undergraduate research assistants in the Early Childhood Interaction Lab for their assistance in testing, coding, and transcription.
- Thank you to all the families who participated in our study.

References:

- 1. Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math–gender stereotypes in elementary school children. *Child development*, 82(3), 766-779; Galdi, S., Cadinu, M. and Tomasetto, C. (2014). The Roots of Stereotype Threat: When Automatic Associations Disrupt Girls' Math Performance. *Child Development*, 85: 250-263. https://doi.org/10.1111/cdev.12128
- Neuville, E., & Croizet, J.-C. (2007). Can salience of gender identity impair math performance among 7-8 years old girls? The moderating role of task difficulty. *European Journal of Psychology of Education*, 22(3), 307–316. http://www.jstor.org/stable/23421747
 Steele, J. (2003). Children's gender stereotypes about math: The role of stereotype stratification. *Journal of Applied Social Psychology*, 33:
- 2587-2606. https://doi.org/10.1111/j.1559-1816.2003.tb02782.x
 4. Rhodes, M., Leslie, S.-J., Yee, K. M., & Saunders, K. (2019). Subtle linguistic cues increase girls' engagement in science. *Psychological Science*, 30(3), 455–466. https://doi.org/10.1177/0956797618823670