

Intuition

Decompose a complex sound into its frequency components

From time to frequency domain

From time to frequency domain

From time to frequency domain

Compare signal with sinusoids of various frequencies

- Compare signal with sinusoids of various frequencies
- For each frequency we get a magnitude and a phase

- Compare signal with sinusoids of various frequencies
- For each frequency we get a magnitude and a phase
- High magnitude indicates high similarity between the signal and a sinusoid

Sine wave

$$sin(2\pi \cdot (ft - \varphi))$$

- Compare signal with sinusoids of various frequencies
- For each frequency we get a magnitude and a phase
- High magnitude indicates high similarity between the signal and a sinusoid

Choose a frequency

$$\varphi_f = argmax_{\varphi \in [0,1)} \left(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

$$\varphi_f = argmax_{\varphi \in [0,1)} \Bigg(\int \underbrace{s(t) \cdot sin(2\pi \cdot (ft - \varphi))}_{\text{Multiply signal and sinusoid}} \cdot dt \Bigg)$$

$$\varphi_f = argmax_{\varphi \in [0,1)} \left(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

Calculate area

$$\varphi_f = \underbrace{argmax_{\varphi \in [0,1)}} \Biggl(\int s(t) \cdot sin(2\pi \cdot (ft-\varphi)) \cdot dt \Biggr)$$
 Select phase in [0, 1) that maximises the area

$$\varphi_f = argmax_{\varphi \in [0,1)} \left(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

$$d_f = \max_{\varphi \in [0,1)} \left(\int s(t) \cdot \sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

$$\varphi_f = argmax_{\varphi \in [0,1)} \left(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

$$d_f = \max_{\varphi \in [0,1)} \left(\int s(t) \cdot \sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

Select max area

$$\varphi_f = argmax_{\varphi \in [0,1)} \left(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

$$\mathbf{t} \in \mathbf{R}$$

$$d_f = \max_{\varphi \in [0,1)} \left(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \right)$$

$$\varphi_f = argmax_{\varphi \in [0,1)} \Biggl(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \Biggr)$$

$$f \in \mathbf{R}$$

$$d_f = \max_{\varphi \in [0,1)} \Biggl(\int s(t) \cdot sin(2\pi \cdot (ft - \varphi)) \cdot dt \Biggr)$$

• Superimpose sinusoids

- Superimpose sinusoids
- Weight them by the relative magnitude

- Superimpose sinusoids
- Weight them by the relative magnitude
- Use relative phase

- Superimpose sinusoids
- Weight them by the relative magnitude
- Use relative phase
- Original signal and FT have same information

Inverse Fourier transform

Inverse Fourier transform

Inverse Fourier transform

Additive synthesis

What's up next?

Complex numbers