

Sensor reading = 0 at T_1

Before arriving at the sensor

Sensor reading = 1 at T_2

Blocking the sensor

Sensor reading = 0 at T_3

After passing the sensor

You can access the sensor reading through conv1inf.sensor_reading_r for conveyor 1

If production length l is 5 cm long and the product contacts the conveyor at $t_0=0$, can you calculate the six time points

 t_1t_2 at which the product reaches and leaves the Obstruction Sensor,

 t_3 its centre reaches the Barcode Reader,

t₄ its front edge reaches Gate 1,

 t_5 its centre reaches the Weighing Sensor,

 t_6 and its front edge reaches Gate 2 based on the parameters in the diagram?

T1: g_obstructionSensor = 0

$$T_2 = T_1 + \frac{d_0 - (\frac{Length}{2})}{v_1}$$
 Read the bar code

Your design should take into account the situation where there will be multiple items on the conveyor belt.

Report Structure

- Your CW report must clearly articulate your:
 - Design approach
 - Justification of design choices
 - Implementation details
 - Testing methodology
 - Final conclusions

Code Presentation

- It is not recommended to include screenshots of code in your report
- This is because you will be required to submit your complete code separately anyway
- Focus on explaining your approach rather than reproducing code

Code Template Selection

- Three template options have been provided for you:
 - A blank simulator template
 - A template with some example code
 - A template with more comprehensive example code
- Choose one template and stick with it throughout your implementation
- Switching between different templates is not advised as they may be incompatible
- The blank template is recommended as your first choice for implementing your own code

Code Originality

- If you extensively reuse the provided example code with minimal changes, your marks will be significantly limited
- The example code represents just one of many possible design approaches
- You are expected to demonstrate your own understanding and creativity

Preparation

- Before you begin coding, ensure you have thoroughly understood all the concepts discussed in class
- Review the code from laboratory practical sessions
- Establish a clear plan before implementation

Support

- I cannot debug code individually for every student
- However, I can provide general guidance on code optimisation strategies
- Make use of LLM like ChatGPT and self-debugging techniques

Remember

- This coursework is designed to assess your understanding of realtime embedded systems
- Your implementation should demonstrate application of principles discussed in lectures
- Original approaches that meet the requirements will be valued highly

Design of the example Code

Design of the example Code

High-level diagram to show the main modules and their interdependencies.

