回帰分析

モデルの評価

村田 昇

講義の内容

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

• 目的変数 を 説明変数 で説明する関係式を構成

- 説明変数: $x_1, ..., x_p$ (p 次元)

- 目的変数: y(1 次元)

• 回帰係数 $\beta_0,\beta_1,\ldots,\beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 回帰式の推定: **残差平方和** の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: **正規方程式**

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

• 解の一意性 : **Gram 行列 X**^T**X** が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{y} = X\hat{\beta}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\epsilon}^{\mathsf{T}}\hat{\mathbf{v}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\beta}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

解析の事例

実データによる例

- ・ 気象庁より取得した東京の気候データ (再掲)
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

気温に影響を与える要因の分析

• データの概要

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2023-09-01	29.2	0.0	24.01	0	SSE	4.3	1012.1	71	2.0
2023-09-02	29.6	0.0	22.07	0	SSE	3.1	1010.3	72	8.0
2023-09-03	29.1	3.5	18.64	0	ENE	2.8	1010.6	74	9.3
2023-09-04	26.1	34.0	7.48	0	N	2.6	1007.5	96	10.0
2023-09-05	29.3	0.0	22.58	0	S	3.5	1005.2	77	3.5
2023-09-06	27.5	0.5	13.17	0	SSW	2.6	1003.6	79	10.0
2023-09-07	27.0	0.5	11.01	0	ENE	2.5	1007.9	72	10.0
2023-09-08	21.9	107.5	2.10	0	NW	3.4	1007.8	98	10.0
2023-09-09	24.8	1.0	8.81	0	S	2.2	1006.8	93	7.5
2023-09-10	27.8	0.0	17.57	0	S	3.1	1009.1	83	6.3
2023-09-11	28.1	0.0	17.19	0	SSE	3.1	1010.1	79	9.0
2023-09-12	27.7	0.0	20.02	0	SSE	2.8	1010.0	76	4.8
2023-09-13	28.0	0.0	22.00	0	SE	2.4	1010.9	74	4.5
2023-09-14	28.2	0.0	14.54	0	SSE	2.8	1009.9	80	7.0
2023-09-15	27.4	10.5	9.21	0	NE	2.0	1010.9	88	8.5
2023-09-16	27.9	0.0	11.78	0	SSE	2.0	1011.5	86	10.0
2023-09-17	28.7	0.0	14.84	0	S	3.2	1011.5	80	4.0
2023-09-18	28.9	0.0	19.59	0	S	4.2	1011.6	74	1.8
2023-09-19	29.0	0.0	19.93	0	S	3.3	1010.1	72	2.3
2023-09-20	27.2	6.0	10.65	0	N	1.9	1009.3	82	8.3
2023-09-21	26.7	2.0	6.65	0	S	4.1	1006.7	87	9.5
2023-09-22	24.8	59.5	6.83	0	ENE	2.5	1008.1	93	10.0
2023-09-23	22.1	4.0	4.48	0	NE	2.6	1012.5	89	10.0
2023-09-24	22.2	0.0	15.81	0	N	3.0	1017.2	67	7.0
2023-09-25	22.4	0.0	15.49	0	N	2.5	1017.1	69	6.5
2023-09-26	24.6	0.0	16.08	0	NNW	2.0	1012.7	71	6.0
2023-09-27	25.3	0.0	11.59	0	SSE	1.9	1008.1	81	9.0
2023-09-28	27.4	0.0	14.03	0	ESE	1.9	1004.7	79	5.8
2023-09-29	26.3	0.0	10.11	0	SSE	3.0	1009.0	75	8.5
2023-09-30	25.6	0.0	7.98	0	S	2.5	1007.5	77	7.0

• 気温を説明する5種類の線形回帰モデルを検討

- モデル1: 気温 = F(気圧)

- モデル2: 気温 = F(日射)

- モデル 3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

- 関連するデータの散布図
- モデル1の推定結果

Figure 1: 散布図

Figure 2: モデル 1

• モデル2の推定結果

Figure 3: モデル 2

- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 決定係数 (R², Adjusted R²)

	モデ	い1	モデ	い 2	モデ	い 3	モデ	い 4	モデ	シル 5
Characteristic	Beta	\mathbf{SE}^{I}								
気圧	-0.21	0.135			-0.36	0.090	-0.32	0.098	-0.36	0.092
日射			0.25	0.057	0.30	0.048	0.35	0.069	0.32	0.069
湿度							0.05	0.052		
雲量									0.05	0.151
R ²	0.082		0.414		0.632		0.644		0.633	
Adjusted R ²	0.049		0.393		0.604		0.603		0.591	

 $^{^{}I}$ SE = Standard Error

あてはめ値の性質

あてはめ値

• さまざまな表現

Figure 4: モデル 3

Figure 5: モデルの比較

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$$

$$(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$
(B)

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は 誤差項 の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は 誤差の重み付けの和 で表される

ハット行列

• 定義

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

• ハット行列 H による表現

$$\hat{y} = Hy$$

$$\hat{\epsilon} = (I - H)\epsilon$$

- あてはめ値や残差は H を用いて簡潔に表現される

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分 (テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_i = (H)_{ij}y_i + (それ以外のデータの寄与)$$

- (A)_{ij} は行列 A の (i, j) 成分
- テコ比が小さい:他のデータでも予測が可能
- テコ比が大きい:他のデータでは予測が困難

演習

問題

- ハット行列 H について以下を示しなさい
 - H は対称行列であること
 - H は冪等であること

$$H^2 = H$$
, $(I - H)^2 = I - H$

- 以下の等式が成り立つこと

$$HX = X$$
, $X^{\mathsf{T}}H = X^{\mathsf{T}}$

ヒント

• いずれも H の定義にもとづいて計算すればよい

$$H^{\mathsf{T}} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})^{\mathsf{T}}$$

$$H^{2} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})(X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})$$

$$(I - H)^{2} = I - 2H + H^{2}$$

$$HX = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})X$$

$$X^{\mathsf{T}}H = (HX)^{\mathsf{T}}$$

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

正規分布の重要な性質 (再生性)正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

- ・ 誤差の仮定: 独立、平均0分散 σ^2 の正規分布
- 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^{2} (X^{\mathsf{T}} X)^{-1}$$

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2} (X^{\mathsf{T}} X)^{-1})$$

演習

問題

- 誤差が独立で、平均0分散 σ^2 の正規分布に従うとき、最小二乗推定量 $\hat{\beta}$ について以下を示しなさい
 - 平均は **β**(真の母数) となること
 - 共分散行列は $\sigma^2(X^\mathsf{T}X)^{-1}$ となること

解答例

• 定義にもとづいて計算する

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta}$$

- 定義にもとづいて計算する

$$Cov(\hat{\boldsymbol{\beta}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}]$$

$$= \mathbb{E}[(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}X(X^{\mathsf{T}}X)^{-1}]$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}]X(X^{\mathsf{T}}X)^{-1}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(\sigma^{2}I)X(X^{\mathsf{T}}X)^{-1}$$

$$= \sigma^{2}(X^{\mathsf{T}}X)^{-1}$$

誤差の評価

寄与率 (再掲)

- 決定係数 (R-squared)
 - 回帰式で説明できるばらつきの比率

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- 自由度調整済み決定係数 (adjusted R-squared)
 - 決定係数を不偏分散で補正

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

各係数の推定量の分布

- 推定された回帰係数の精度を評価
 - 誤差 ϵ の分布は平均 0 分散 σ^2 の正規分布
 - **β** の分布: p+1 変量正規分布

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

 $-\hat{\beta}_i$ の分布: 1 変量正規分布

$$\begin{split} \hat{\beta}_{j} \sim \mathcal{N}(\beta_{j}, \sigma^{2}((X^{\mathsf{T}}X)^{-1})_{jj}) &= \mathcal{N}(\beta_{j}, \sigma^{2}\zeta_{j}^{2}) \\ * (A)_{jj} は行列 A の (j, j) (対角) 成分 \end{split}$$

標準誤差

- 標準誤差 (standard error)
 - $-\hat{\beta}_i$ の標準偏差の推定量

$$\mathrm{s.e.}(\hat{\beta}_j) = \hat{\sigma}\zeta_j = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^\mathsf{T}X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- $-\hat{\beta}_i$ の精度の評価指標

演習

問題

- 以下を示しなさい
 - 不偏分散 $\hat{\sigma}^2$ が母数 σ^2 の不偏な推定量となる 以下が成り立つことを示せばよい

$$\mathbb{E}\left[\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}\right] = (n-p-1)\sigma^{2}$$

解答例

• ハット行列 H を用いた表現を利用する

$$\hat{\boldsymbol{\epsilon}} = (I_n - H)\boldsymbol{\epsilon}$$

$$\mathbb{E}\left[\sum_{i=1}^n \hat{\boldsymbol{\epsilon}}_i^2\right] = \mathbb{E}[\hat{\boldsymbol{\epsilon}}^\mathsf{T}\hat{\boldsymbol{\epsilon}}]$$

$$= \mathbb{E}[\operatorname{tr}(\hat{\boldsymbol{\epsilon}}\hat{\boldsymbol{\epsilon}}^\mathsf{T})]$$

$$= \mathbb{E}[\operatorname{tr}(I_n - H)\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\mathsf{T}(I_n - H)]$$

$$= \operatorname{tr}(I_n - H)\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\mathsf{T}](I_n - H)$$

$$= \operatorname{tr}(I_n - H)(\sigma^2 I_n)(I_n - H)$$

$$= \sigma^2 \operatorname{tr}(I_n - H)$$

- I_n は $n \times n$ 単位行列
- さらに以下が成立する

$$trH = trX(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$
$$= tr(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X$$
$$= trI_{p+1}$$
$$= p+1$$

- 行列のサイズに注意

係数の評価

t 統計量

- 回帰係数の分布 に関する定理
 - t 統計量 (t-statistic)

$$t = \frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_i)} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_j}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - * $\hat{\sigma}^2$ と $\hat{\beta}$ は独立となる
 - * $(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - * $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\boldsymbol{\beta}})/\sigma^2$ は自由度 n-p-1 の χ^2 分布に従う

t 統計量による検定

- 回帰係数 β_i が回帰式に寄与するか否かを検定
 - 帰無仮説 H_0 : $\beta_i = 0$ (t 統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p値:確率変数の絶対値が |t| を超える確率
 - f(x) は自由度 n-p-1 の t 分布の確率密度関数

$$(p \ \ \text{値}) = 2 \int_{|t|}^{\infty} f(x) dx \quad (両側検定)$$

帰無仮説 H_0 が正しければ p 値は小さくならない

回帰係数の信頼区間

• 以下の確率変数は自由度 n-p-1 の t 分布に従う

$$\frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_j)} = \frac{(\hat{\beta}_j - \beta_j)/\sqrt{\text{Var}(\hat{\beta}_j)}}{\sqrt{(n-p-1)\text{s.e.}(\hat{\beta}_j)^2/(n-p-1)\text{Var}(\hat{\beta}_j)}}$$

• $\gamma \in (0,1)$ に対する β_i の $1-\gamma$ 信頼区間

$$[\hat{\beta}_i - t_{1-\gamma/2}(n-p-1) \cdot \text{s.e.}(\hat{\beta}_i), \ \hat{\beta}_i + t_{1-\gamma/2}(n-p-1) \cdot \text{s.e.}(\hat{\beta}_i)]$$

モデルの評価

F 統計量

・ ばらつきの比 に関する定理

$$\beta_1 = \cdots = \beta_p = 0$$
 ならば F 統計量 (F -statistic)

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{n-p-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F 分布に従う

- 証明には以下の性質を用いる

- * S_r と S は独立となる
- * S_r/σ^2 は自由度 p の χ^2 分布に従う
- * S/σ^2 は自由度 n-p-1 の χ^2 分布に従う

F統計量を用いた検定

- 説明変数のうち1つでも役に立つか否かを検定
 - 帰無仮説 $H_0: \beta_1 = \cdots = \beta_p = 0$ $(S_r$ が χ^2 分布になる)
 - 対立仮説 H_1 : ∃j $β_i$ ≠ 0
- p値:確率変数の値がFを超える確率
 - f(x) は自由度 p, n-p-1 の F 分布の確率密度関数

$$(p \ \mbox{\'e}) = \int_{F}^{\infty} f(x) dx$$
 (片側検定)

帰無仮説 H_0 が正しければ p 値は小さくならない

解析の事例

気温に影響を与える要因の分析 (再掲)

• データの概要

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2023-09-01	29.2	0.0	24.01	0	SSE	4.3	1012.1	71	2.0
2023-09-02	29.6	0.0	22.07	0	SSE	3.1	1010.3	72	8.0
2023-09-03	29.1	3.5	18.64	0	ENE	2.8	1010.6	74	9.3
2023-09-04	26.1	34.0	7.48	0	N	2.6	1007.5	96	10.0
2023-09-05	29.3	0.0	22.58	0	S	3.5	1005.2	77	3.5
2023-09-06	27.5	0.5	13.17	0	SSW	2.6	1003.6	79	10.0
2023-09-07	27.0	0.5	11.01	0	ENE	2.5	1007.9	72	10.0
2023-09-08	21.9	107.5	2.10	0	NW	3.4	1007.8	98	10.0
2023-09-09	24.8	1.0	8.81	0	S	2.2	1006.8	93	7.5
2023-09-10	27.8	0.0	17.57	0	S	3.1	1009.1	83	6.3
2023-09-11	28.1	0.0	17.19	0	SSE	3.1	1010.1	79	9.0
2023-09-12	27.7	0.0	20.02	0	SSE	2.8	1010.0	76	4.8
2023-09-13	28.0	0.0	22.00	0	SE	2.4	1010.9	74	4.5
2023-09-14	28.2	0.0	14.54	0	SSE	2.8	1009.9	80	7.0
2023-09-15	27.4	10.5	9.21	0	NE	2.0	1010.9	88	8.5
2023-09-16	27.9	0.0	11.78	0	SSE	2.0	1011.5	86	10.0
2023-09-17	28.7	0.0	14.84	0	S	3.2	1011.5	80	4.0
2023-09-18	28.9	0.0	19.59	0	S	4.2	1011.6	74	1.8
2023-09-19	29.0	0.0	19.93	0	S	3.3	1010.1	72	2.3
2023-09-20	27.2	6.0	10.65	0	N	1.9	1009.3	82	8.3
2023-09-21	26.7	2.0	6.65	0	S	4.1	1006.7	87	9.5
2023-09-22	24.8	59.5	6.83	0	ENE	2.5	1008.1	93	10.0
2023-09-23	22.1	4.0	4.48	0	NE	2.6	1012.5	89	10.0
2023-09-24	22.2	0.0	15.81	0	N	3.0	1017.2	67	7.0
2023-09-25	22.4	0.0	15.49	0	N	2.5	1017.1	69	6.5
2023-09-26	24.6	0.0	16.08	0	NNW	2.0	1012.7	71	6.0
2023-09-27	25.3	0.0	11.59	0	SSE	1.9	1008.1	81	9.0
2023-09-28	27.4	0.0	14.03	0	ESE	1.9	1004.7	79	5.8
2023-09-29	26.3	0.0	10.11	0	SSE	3.0	1009.0	75	8.5
2023-09-30	25.6	0.0	7.98	0	S	2.5	1007.5	77	7.0

• 気温を説明する5種類の線形回帰モデルを検討

- モデル1: 気温 = F(気圧)

- モデル2: 気温 = F(日射)

- モデル 3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化 (再掲)

• 関連するデータの散布図

Figure 6: 散布図

• 観測値とあてはめ値の比較

モデルの評価

• t 統計量・F 統計量によるモデルの比較

		€	デル 1			ŧ	デル 2			ŧ	デル 3			÷.	デル 4			ŧ	デル 5	
Characteristic	Beta	SE^{I}	Statistic	p-value	Beta	SE^I	Statistic	p-value	Beta	SE^{I}	Statistic	p-value	Beta	SE^I	Statistic	p-value	Beta	SE^{I}	Statistic	p-value
(Intercept) 気圧	243 -0.21	137 0.135	1.78 -1.58	0.086 0.12	23	0.855	27.1	< 0.001	386 -0.36	91.0 0.090	4.25 -3.99	<0.001 <0.001	346 -0.32	101 0.098	3.44 -3.32	0.002 0.003	384 -0.36	92.8 0.092	4.13 -3.90	<0.001 <0.001
日射湿度	0.21	0.155	1.50	0.12	0.25	0.057	4.45	< 0.001	0.30	0.048	6.35	< 0.001	0.35	0.069	5.05 0.948	<0.001	0.32	0.069	4.62	<0.001
雲量																	0.05	0.151	0.317	0.8
Statistic p-value	2.51 0.12				19.8 <0.001				23.1 <0.001				15.7 <0.001				14.9 <0.001			

SE = Standard Error

• 様々な統計量によるモデルの比較

モデル 1	モデル 2	モデル 3	モデル 4	モデル 5	

Characteristic	Beta (95% CI) ^{1,2}				
(Intercept)	243 (-37, 523)	23 (21, 25)***	386 (200, 573)***	346 (139, 553)**	384 (193, 575)***
気圧	-0.21 (-0.49, 0.06)		-0.36 (-0.55, -0.18)***	-0.32 (-0.53, -0.12)**	-0.36 (-0.55, -0.17)***
日射		0.25 (0.14, 0.37)***	0.30 (0.20, 0.40)***	0.35 (0.21, 0.49)***	0.32 (0.18, 0.46)***
湿度				0.05 (-0.06, 0.16)	
雲量					0.05 (-0.26, 0.36)
R ²	0.082	0.414	0.632	0.644	0.633
Adjusted R ²	0.049	0.393	0.604	0.603	0.591
Statistic	2.51	19.8	23.1	15.7	14.9
p-value	0.12	< 0.001	< 0.001	< 0.001	< 0.001

¹*p<0.05; **p<0.01; ***p<0.001 ²CI = Confidence Interval

次回の予定

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

• 第3回:モデルによる予測と発展的なモデル

Figure 7: モデルの比較