Листок 12

Тема 12(3.3). Лемма Гензеля, сравнения и кольцо целых р-адических чисел

Упражнения и задачи

- 1. Пусть k произвольное поле, $F(X) \in k[x]$. Докажите формулу Тейлора для формальной производной F'.
- 2. Докажите, что порядок фактор группы $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$ равен 8. Укажите соответствующее множество представителей.
- 3. Пусть $p \neq 2$, $\alpha, \beta \in \mathbb{Z}_p$, $p \nmid \alpha, p \nmid \beta$. Докажите, что разрешимость сравнения $\alpha x^p \equiv \beta \pmod{p^2}$ достаточна для разрешимости уравнения $\alpha x^p = \beta$ в \mathbb{Q}_p .
- 4. Пусть $p \neq 2$, $U = U(\mathbb{Z}_p)$ группа p-адических единиц, $U_n = 1 + p^n \mathbb{Z}_p$. ($U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, т.е. $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p : \nu_p(\alpha 1) \geqslant n\}$, $U_n = \{\alpha \in \mathbb{Z}_p :$
 - $U_n/U_{n+1} = \mathbb{Z}/p\mathbb{Z}, U = \lim_{n \to \infty} U_n;$
 - $U = U_1 V$, где V циклическая подгруппа корней степени p-1 из единицы;
 - Если $\alpha \in U_n \setminus U_{n+1}$, то $\alpha^p \in U_{n+1} \setminus U_{n+2}$;
 - U_1/U_n циклическая группа, $U_1 \cong \mathbb{Z}_p$.

Сделайте вывод о структуре мультипликативной группы \mathbb{Q}_p : $\mathbb{Q}_p^* \cong \mathbb{Z} \times \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$.

- 5. *Пусть $F(x_1, ..., x_n) \in \mathbb{Z}_p[x_1, ..., x_n], N_m$ число решений сравнения $F \equiv 0 \pmod{p^m},$ $L_F(u) = \sum_{m=0}^{\infty} N_m u^m$ так называемый ряд Пуанкаре (вспомните дзета функцию Артина).
 - Найдите ряд Пуанкаре для $F = \alpha_1 x_1 + \dots + \alpha_n x_n$, где $\alpha_i \in \mathbb{Z}_p^*$. Убедитесь, что в этом случае $L_F(u)$ рациональная функция.
 - Найдите ряд Пуанкаре для многочлена $F(x_1, ..., x_n)$, обладающего свойством: для всякого решения сравнения $F(x_1, ..., x_n) \equiv 0 \pmod{p}$ при некотором i имеем $F'_{x_i}(x_1, ..., x_n) \not\equiv 0 \pmod{p}$;
 - Найдите ряд Пуанкаре для $F(x,y) = x^2 y^3$;
 - Докажите рациональность ряда Пуанкаре для многочленов одной переменной.

(Существует теорема (Игусы) о том, что L_F всегда является рациональной функцией).

- 6. Докажите p-адический критерий Эйзенштейна: пусть $f \in \mathbb{Z}_p[x]$, $f(x) = a_0 x^n + \dots a_n$, f неприводим, если $p \nmid a_0$, $p \mid a_i \ 1 \leqslant i \leqslant n$, $p^2 \nmid a_n$.
- 7. Верно ли следующее: $f \in \mathbb{Z}[x]$ неприводим в $f \in \mathbb{Q}[x] \Leftrightarrow f$ неприводим в $\mathbb{Q}_p[x] \ \forall p \leqslant \infty$?
- 8. Докажите, что уравнение $(x^2-2)(x^2-17)(x^2-34)=0$ разрешимо в $\mathbb{Q}_p \ \forall p\leqslant \infty$ но не разрешимо в \mathbb{Q} .

SageMath

- Исследуйте функции SageMath для работы с многочленами с *p*-адическими коэффициентами:
 - Разложение многочлена: factor().
 - В контексте Леммы Гензеля: hensel_lift().

Темы для самостоятельного изучения

- Разрешимость уравнений с квадратичными формами над полем p-адических чисел ([БШ §1.6 п.2).
- Приложение теоремы Минковского-Хассе для квадратичной формы от трёх переменных ([Gouv §4.8]).