Ferienkurs

Theoretische Physik: Elektrodynamik

Übungsblatt 2

1 Stromdurchflossener Draht

Lösen Sie die Feldgleichung $\Delta \vec{A} = -4\pi \vec{j}/c$ für einen unendlich langen, zylindrischen Draht (Radius R), der homogen vom Strim I durchflossen wird. Geben Sie das dazugehörige \vec{B} - Feld an

2 Lokalisierte Stromverteilung

Die Stromverteilung $\vec{j}(\vec{r})$ sei räumlich begrenzt. Leiten Sie:

$$\int d^3r \vec{j}(\vec{r}) = 0 \tag{1}$$

aus $div \vec{j}(\vec{r}) = 0$ ab. Verwenden Sie dazu $\vec{j} = (\vec{j} \cdot \vec{\nabla})\vec{r}$.

3 Kleiner Permanentmagnet

Ein kleiner Permanentmagnet (Dipolmoment $\vec{\mu}$) ist bei $\vec{d} = d\vec{e}_x$ so gelagert, dass er sich innerhalb der x - y- Ebene frei drehen kann. Auf den Magnnet wirkt ein homogenes Magnetfeld $\vec{B}_0 = B_0 \vec{e}_x$.

In welche Richtung zeigt $\vec{\mu}$ im Gleichgewicht? In welche Richtung zeigt $\vec{\mu}$ im Gleichgewicht, wenn es zusätlich noch einen Draht mit der Stromdichte $\vec{j} = I\delta(x)\delta(y)\vec{e}_z$ gibt?

4 Oberflächenströme der homogen magnetisierten Kugel

Das Magnetfeld:

Für r < R:

$$\vec{B} = B_0 \vec{e}_z \tag{2}$$

Für r > R:

$$\vec{B} = \frac{r\vec{r}(\vec{r} \cdot \vec{\mu}) - \vec{\mu}r^2}{r^5} \tag{3}$$

gehört zu einer homogen magnetisierten Kugel mit dem Dipolmoment $\vec{\mu} = \mu \vec{e}_z$. In den Bereichen r < R und r > R gelten jeweils $div\vec{B} = 0$ und $rot\vec{B} = 0$. Als Quellen des Feldes kommen daher nur Ströme auf der Oberfläche in Frage.

Wegen der Zylindersymmetrie sind die Oberflächenströme von der From:

$$\vec{j} = \frac{I(\vartheta)}{\pi R} \delta(r - R) \vec{e}_{\varphi} \tag{4}$$

Bestimmen Sie den Strom $I(\vartheta)$ und das magnetische Moment μ . Leiten Sie dazu aus den Feldgleichungen folgende Beziehungen ab:

$$B_r(R+\varepsilon) - B_r(R-\varepsilon) = 0 \tag{5}$$

$$B_{\vartheta}(R+\varepsilon) - B_{\vartheta}(R-\varepsilon) = \frac{4\pi}{c} \frac{I(\vartheta)}{\pi R}$$
 (6)

5 Dicht gewickelte Spule

Gegeben sei eine sehr dicht gewickelte Spule der Länge L (Spulenradius R, Windungszahl n), die vom Gleichstrom I durchflossen wird.

- 1. Berechnen Sie die magnetische Induktion auf der Achse (z Richtung).
- 2. Diskutieren Sie die Grenzfälle $L \gg R$ und $L \ll R$.
- 3. Berechnen Sie das magnetische Moment \vec{m} der Spule.
- 4. Wie sieht die magnetische Induktion $\vec{B}(\vec{r})$ in großer Entferungn vom Spulenmittelpunkt aus?

6 Helmholtz-Spulen

Zwei parallele kreisförmige Leiterschleifen werden beide vom Strom I in gleicher Richtung durchflossen. Die Kreise liegen parallel zur x-y- Ebene, sie haben beide den Radius R und ihre Mittelpunkte liegen bei (x, y, z) = (0, 0, b) und (0, 0, -b).

Bestimmen Sie das Vektorpotential der einzelnen Leiterschleifen. Entwickeln Sie das Vektorpotential in der Nähe des Koordinatenursprungs bis zur Ordnung $O(\rho^3, \rho z^2)$. Welche Beziehung muss zwischen dem Radius R und dem Abstand D = 2b der Kreise gelten, damit das Magnetfeld in diesem Bereich möglichst homogen ist?

7 Magnetische Momente

Berechnen Sie die magnetischen Momente der folgenden Systeme.

- 1. Vollkugel (Radius R, Ladung Q), die mit konstanter Winkelgeschwindigkeit ω um eine raumfeste Achse durch den Kugelmittlepunkt rotiert.
- 2. Hohlkugel (Radius R) mit der Ladungsdichte

$$\rho(\vec{r}) = \sigma_0 \delta(r - R) \cos^2 \theta \tag{7}$$

die mit konstanter Winkelgeschwindigkeit ω um eine raumfeste Achse durch den Kugelmittelpunkt rotiert $(\vartheta = \angle(\vec{\omega}, \vec{r}))$.