Aluna: Nara Avila Moraes Nro. USP: 5716734

MAC5911/IME: Fundamentos de Estatística e Machine Learning. Prof.: Alexandre Galvão Patriota

Questão 01: Apresente um texto de no máximo duas páginas que introduza uma medida de possibilidade condicional, incluindo pelo menos um exemplo numérico e um teorema. Sugiro que leia o paper do Friedman e Halpern (1995) e busque referências adicionais sobre o assunto que estejam publicadas em revistas internacionais. Por exemplo, os autores Didier Dubois e Henry Prade estudaram o assunto em vários artigos.

Questão 02: Na discussão sobre 'The Dutch Book Argument', considere um jogador que não utiliza probabilidades e a banca escolhe uma configuração para explorar a perda certa que o jogador terá. Apresente:

- (2.1) Os valores numéricos de P(H,E) diferentes dos discutidos em sala para cada "H1", "H2", e "H1 U H2";
- (2.2) As apostas escolhidas pela banca para explorar a perda certa do jogador;
- (2.3) A tabela demonstrando que, em todas as possibilidades, o jogador perde para a banca;
- (2.4) Comentários sobre os resultados.

Resposta para o Questão 01

Resposta para o Ítem 2.1

Consideremos dois eventos mutuamente exclusivos, H_1 e H_2 . Um jogador, cujas atribuições de probabilidade não são coerentes, define os seguintes valores, diferentes de uma atribuição clássica que usaria a frequência:

- $P(H_1) = 0.4$
- $P(H_2) = 0.5$
- $P(H_1 \cup H_2) = 0.8$

A incoerência aqui reside no fato de que, para eventos mutuamente exclusivos, a soma das probabilidades deve ser

$$P(H_1 \cup H_2) = P(H_1) + P(H_2).$$

No nosso caso,

$$0.4 + 0.5 = 0.9$$
,

que é diferente de 0.8.

Resposta para o Ítem 2.2

Para explorar a incoerência do jogador, a banca oferece as seguintes apostas, assumindo que cada aposta tem valor nominal de R\$ 1,00:

- 1. **Aposta 1:** A banca compra do jogador uma aposta sobre o evento H_1 , ao preço (probabilidade) de $P(H_1) = 0.4$. A aposta paga R\$ 1,00 se H_1 não ocorrer e o jogador perde R\$ 1,00 se H_1 ocorrer.
- 2. **Aposta 2:** A banca compra do jogador uma aposta sobre o evento H_2 , ao preço (probabilidade) de $P(H_2) = 0.5$. A aposta paga R\$ 1,00 se H_2 não ocorrer e o jogador perde R\$ 1,00 se H_2 ocorrer.
- 3. **Aposta 3:** A banca vende ao jogador uma aposta sobre o evento $H_1 \cup H_2$, ao preço (probabilidade) de $P(H_1 \cup H_2) = 0.8$. A aposta paga R\$ 1,00 se $H_1 \cup H_2$ ocorrer e o jogador perde R\$ 1,00 se não ocorrer.

Em outras palavras, o jogador está disposto a:

- Pagar R\$ 0,40 para ter a chance de ganhar R\$ 1,00 se H_1 ocorrer.
- Pagar R\$ 0,50 para ter a chance de ganhar R\$ 1,00 se H_2 ocorrer.
- Vender uma aposta em $H_1 \cup H_2$ por R\$ 0,80.

O lucro inicial do jogador ao aceitar todas as apostas é:

Lucro Inicial =
$$0.80 - 0.40 - 0.50 = -0.10$$

O jogador já começa a transação com um prejuízo de R\$ 0,10.

Resposta para o Ítem 2.3

A tabela a seguir demonstra o resultado final do lucro ou prejuízo do jogador, considerando todos os cenários possíveis para os eventos H_1 e H_2 , que são mutuamente exclusivos:

Resultado	Lucro (Aposta 1)	Lucro (Aposta 2)	Lucro (Aposta 3)	Lucro Total
H_1 ocorre	+0.60	-0.50	-0.20	-0.10
H_2 ocorre	-0.40	+0.50	-0.20	-0.10
Nenhum ocorre	-0.40	-0.50	+0.80	-0.10

A tabela confirma que, independentemente do resultado dos eventos, o jogador sempre terá um prejuízo líquido de $\mathbb{R}\$$ 0,10.

Resposta para o Ítem 2.4

O "Dutch Book Argument" evidencia a importância da **coerência formal** na atribuição de probabilidades. Do ponto de vista de um estatístico clássico, o jogador não perde por causa de uma crença subjetiva, mas porque os valores que ele escolheu para suas "probabilidades" não formam uma medida de probabilidade válida.

A teoria da probabilidade, construída sobre axiomas como a aditividade finita, é uma estrutura matemática rigorosa. Qualquer sistema de atribuição de valores que viole esses axiomas é, por definição, internamente inconsistente. A perda certa, neste caso, não é uma punição, mas a consequência lógica e inevitável de operar fora das regras da lógica probabilística. O argumento reforça o princípio de que a probabilidade, para ser útil e não levar a contradições, deve ser tratada como uma medida objetiva e não como uma simples manifestação de crença pessoal.

Referências