Variational Autoencoders for Collaborative Filtering

2021.04.08

Saehee Jeon

1. Introduction

What is Collaborative Filtering?

Collaborative filtering predicts what items a user will prefer by discovering and exploiting the similarity patterns across users and items

Latent factor models

- f Linear
- Meed Nonlinear features!
- Use Neural Networks

VAEs (Variational Auto Encoders)

Generalization of linear latent-factor models

Although VAEs have been extensively studied for image fields, there is surprisingly little work to RecSys.

* Two adjustments to get SOTA results with VAEs.

- Use a multinomial likelihood for the data distribution.

(simple but essential)

👉 outperforms Gaussian and logistic likelihoods

- Reinterpret and adjust the standard VAE objective

2. Method

Notation

```
u : index of users, u = 1,2,...,U
```

i : index of items, i = 1, 2, ..., I

x_u : a bag-of-words vector with the number of clicks for each item for user u (dim : I)

1) Model

Generative process: Similar to the deep latent Gaussian model

For each user u, the model starts by sampling a K-dim latent representation z u from a standard Gaussian prior.

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$

$$\mathbf{x}_u \sim \text{Mult}(N_u, \pi(\mathbf{z}_u)).$$

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$
 $\mathbf{x}_u \sim \operatorname{Mult}(N_u, \pi(\mathbf{z}_u)).$

Non-linear function $f_{\theta}(\cdot)$: a multilayer perceptron with parameter \theta.

- N_u : Total number of clicks $N_u = \sum_i x_{ui}$ from user u_i
- x_u : the observed bag-of-words vector(sampled from a multinomial distribution)

The log-likelihood for user u (conditioned on the latent representation) is:

$$\log p_{\theta}(\mathbf{x}_u \mid \mathbf{z}_u) \stackrel{c}{=} \sum_i x_{ui} \log \pi_i(\mathbf{z}_u). \tag{2}$$

We present two popular choices of likelihood functions used in latent-factor collaborative filtering: Gaussian and logistic likelihoods

Define
$$f_{\theta}(\mathbf{z}_u) \equiv [f_{u1}, \dots, f_{uI}]^{\top}$$
 : output of the generative function

The Gaussian log-likelihood for user u is

$$\log p_{\theta}(\mathbf{x}_u \mid \mathbf{z}_u) \stackrel{c}{=} -\sum_{i} \frac{c_{ui}}{2} (x_{ui} - f_{ui})^2.$$

The logistic log-likelihood for user u is

$$\log p_{\theta}(\mathbf{x}_u \mid \mathbf{z}_u) = \sum_{i} x_{ui} \log \sigma(f_{ui}) + (1 - x_{ui}) \log(1 - \sigma(f_{ui})),$$

Variational inference

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$

 $\mathbf{x}_u \sim \text{Mult}(N_u, \pi(\mathbf{z}_u)).$

To learn the generative model in Eq, we are interested in estimating θ

$$q(\mathbf{z}_u) = \mathcal{N}(\boldsymbol{\mu}_u, \operatorname{diag}\{\boldsymbol{\sigma}_u^2\})$$

To optimize the free variational parameters

the KL divergence $\mathrm{KL}(q(\mathbf{z}_u)\|p(\mathbf{z}_u|\mathbf{x}_u))$ is minimized.

2.1 > Amortized inference and the variational autoencoder

Too many parameters to optimize!

- f Bad for real-time recommendation
- The VAE replaces individual variational parameters with a data-dependent

function (commonly called an inference model)

$$g_{\phi}(\mathbf{x}_u) \equiv [\mu_{\phi}(\mathbf{x}_u), \sigma_{\phi}(\mathbf{x}_u)] \in \mathbb{R}^{2K}$$

parametrized by ϕ with both $\mu_{\phi}(\mathbf{x}_u)$ and $\sigma_{\phi}(\mathbf{x}_u)$ being K-vectors and sets the variational distribution as follows:

$$q_{\phi}(\mathbf{z}_u \mid \mathbf{x}_u) = \mathcal{N}(\mu_{\phi}(\mathbf{x}_u), \operatorname{diag}\{\sigma_{\phi}^2(\mathbf{x}_u)\}).$$

That is, using the observed data x_u as input, the inference model outputs the corresponding variational parameters of variational distribution q ϕ (z u | x_u).

Learning VAEs

$$\begin{split} \log p(\mathbf{x}_u; \theta) &\geq \mathbb{E}_{q_{\phi}(\mathbf{z}_u \mid \mathbf{x}_u)} \left[\log p_{\theta}(\mathbf{x}_u \mid \mathbf{z}_u) \right] - \text{KL}(q_{\phi}(\mathbf{z}_u \mid \mathbf{x}_u) || p(\mathbf{z}_u)) \\ &\equiv \mathcal{L}(\mathbf{x}_u; \theta, \phi) \end{split}$$

Reparametrize

$$\mathbf{z}_{u} = \mu_{\phi}(\mathbf{x}_{u}) + \boldsymbol{\epsilon} \odot \sigma_{\phi}(\mathbf{x}_{u}) \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}_{K})$$

Algorithm 1: VAE-SGD Training collaborative filtering VAE with stochastic gradient descent.

Input: Click matrix $\mathbf{X} \in \mathbb{R}^{U \times I}$

Randomly initialize θ , ϕ

while not converged do

Sample a batch of users \mathcal{U} forall $u \in \mathcal{U}$ do

Sample $\epsilon \sim \mathcal{N}(0, \mathbf{I}_K)$ and compute \mathbf{z}_u via reparametrization trick

Compute noisy gradient $\nabla_{\theta} \mathcal{L}$ and $\nabla_{\phi} \mathcal{L}$ with \mathbf{z}_u

end

Average noisy gradients from batch

Update θ and ϕ by taking stochastic gradient steps

end

return θ , ϕ

3. A taxonomy of autoencoders

Maximum-likelihood estimation in a regular autoencoder takes the following form:

$$\begin{split} \theta^{\text{AE}}, \phi^{\text{AE}} &= \operatorname*{arg\,max}_{\theta, \phi} \sum_{u} \mathbb{E}_{\delta(\mathbf{z}_{u} - g_{\phi}(\mathbf{x}_{u}))} \left[\log p_{\theta}(\mathbf{x}_{u} \mid \mathbf{z}_{u}) \right] \\ &= \operatorname*{arg\,max}_{\theta, \phi} \sum_{u} \log p_{\theta}(\mathbf{x}_{u} \mid g_{\phi}(\mathbf{x}_{u})) \end{split}$$

We find that learning autoencoders is extremely prone to $\$ overfitting as the network learns to put all the probability mass to the non-zero entries in x_u.

Figure 2: A taxonomy of autoencoders. The dotted arrows denote a sampling operation.

- (a) It is trained to reconstruct input with the same objective.
- (b) Adding noise to the input (or hidden representation) of an autoencoder
- (c) Use an inference model parametrized by ϕ to produce the mean and variance of the approximating variational distribution

$$\mathcal{L}_{\beta}(\mathbf{x}_{u}; \theta, \phi) \equiv \mathbb{E}_{q_{\phi}(\mathbf{z}_{u} \mid \mathbf{x}_{u})} [\log p_{\theta}(\mathbf{x}_{u} \mid \mathbf{z}_{u})] -\beta \cdot \text{KL}(q_{\phi}(\mathbf{z}_{u} \mid \mathbf{x}_{u}) || p(\mathbf{z}_{u}))$$

The original vae formulation : $\beta = 1$ Our model Multi-VAE PR : $\beta \in [0, 1]$.

4. Prediction

$$\mathbf{z}_u \sim \mathcal{N}(0, \mathbf{I}_K), \quad \pi(\mathbf{z}_u) \propto \exp\{f_{\theta}(\mathbf{z}_u)\},$$

 $\mathbf{x}_u \sim \operatorname{Mult}(N_u, \pi(\mathbf{z}_u)).$

Given a user's click history x, we **rank** all the items based on the un-normalized predicted multinomial probability f $\theta(z)$

For Multi-VAE pr, we simply take the mean of the variational distribution $z = \mu \varphi(x)$; for Mult-DAE, we take the output $z = g\varphi(x)$.

Advantages of AE

- 1. Effectively make predictions for users by evaluating two functions
 - : the inference model (encoder) g $\phi(\cdot)$ / the generative model (decoder) f $\theta(\cdot)$

2. Predictions is made cheaply and with low latency

Empirical study

We evaluate the performance of Mult-VAE PR and Mult-DAE

<Results>

- Mult-VAE^{PR} achieves state-of-the-art results on three realworld datasets when compared with various baselines, including recently proposed neural-network-based collaborative filtering models.
- For the denoising and variational autoencoder, the multinomial likelihood compares favorably over the more common Gaussian and logistic likelihoods.
- Both Mult-VAE^{PR} and Mult-DAE produce competitive empirical results. We identify when parameterizing the uncertainty explicitly as in Mult-VAE^{PR} does better/worse than the point estimate used by Mult-DAE and list pros and cons for both approaches.

1. Datasets

1) MovieLens-20M (ML-20M)

2) Netflix Prize (Netflix)

3) Million Song Dataset (MSD)

Table 1: Attributes of datasets after preprocessing. Interactions are non-zero entries. % of interactions refers to the density of the user-item click matrix X. # of the held-out users is the number of validation/test users out of the total number of users in the first row.

	ML-20M	Netflix	MSD
# of users	136,677	463,435	571,355
# of items	20,108	17,769	41,140
# of interactions	10.0M	56.9M	33.6M
% of interactions	0.36%	0.69%	0.14%
# of held-out users	10,000	40,000	50,000

2. Metrics

1) Recall@R

Recall@
$$R(u, \omega) := \frac{\sum_{r=1}^{R} \mathbb{I}[\omega(r) \in I_u]}{\min(M, |I_u|)}$$
.

All items ranked within the first R to be equally important

2) NDCG@R

$$\mathrm{DCG}@R(u,\omega) := \sum_{r=1}^R \frac{2^{\mathbb{I}[\omega(r) \in I_u]} - 1}{\log(r+1)}$$

5. Experimental results and analysis

Aim to answer the following two questions

- 1. How does **multinomial** likelihood compare with other commonly used likelihood models for collaborative filtering?
- 2. When does **Mult-VAE PR** perform better/worse than Mult-DAE?

Quantitative results

(a) ML-20M				
	Recall@20	Recall@50	NDCG@100	
Mult-VAEPR	0.395	0.537	0.426	
Mult-DAE	0.387	0.524	0.419	
WMF	0.360	0.498	0.386	
SLIM	0.370	0.495	0.401	
CDAE	0.391	0.523	0.418	

(b) Netflix			
v	Recall@20	Recall@50	NDCG@100
Mult-VAEPR	0.351	0.444	0.386
Mult-DAE	0.344	0.438	0.380
WMF	0.316	0.404	0.351
SLIM	0.347	0.428	0.379
CDAE	0.343	0.428	0.376

(c) MSD			
Recall@20	Recall@50	NDCG@100	
0.266	0.364	0.316	
0.266	0.363	0.313	
0.211	0.312	0.257	
_	_	_	
0.188	0.283	0.237	
	Recall@20 0.266 0.266 0.211	Recall@20 Recall@50 0.266 0.364 0.266 0.363 0.211 0.312 - -	

Table 3: Comparison between NCF and Mult-DAE with $[I \rightarrow 200 \rightarrow I]$ architecture. We take the results of NCF from He et al. [14]. Mult-DAE model significantly outperforms NCF without pre-training on both datasets and further improves on Pinterest even comparing with pre-trained NCF.

(a) ML-1M

(-/				
	NCF	NCF (pre-train)	Mult-DAE	
Recall@10	0.705	0.730	0.722	
NDCG@10	0.426	0.447	0.446	
	(b)) Pinterest		
	(b)	Pinterest NCF (pre-train)	Mult-DAE	
Recall@10			Mult-DAE 0.886	

Multinomial likelihood really performs well?

Table 4: Comparison of Mult-VAE PR and Mult-DAE with different likelihood functions at the output layer on ML-20M. The standard error is around 0.002 (the results on the other two datasets are similar.) The multinomial likelihood performs better than the other two commonly-used likelihoods from the collaborative filtering literature.

	Recall@20	Recall@50	NDCG@100
Mult-VAEPR	0.395	0.537	0.426
Gaussian-VAEPR	0.383	0.523	0.415
Logistic-VAEPR	0.388	0.523	0.419
Mult-DAE	0.387	0.524	0.419
Gaussian-DAE	0.376	0.515	0.409
Logistic-DAE	0.381	0.516	0.414

When does Mult-VAE PR perform better/worse than Mult-DAE?

Intuitively, Mult- VAE PR imposes stronger modeling assumptions and therefore could be more robust when user-item interaction data is scarce.

Figure 3: NDCG@ 100 breakdown for users with increasing levels of activity (starting from 0%), measured by how many items a user clicked on in the fold-in set. The error bars represents one standard error. For each subplot, a paired t-test is performed and * indicates statistical significance at $\alpha=0.05$ level, ** at $\alpha=0.01$ level, and *** at $\alpha=0.001$ level. Although details vary across datasets, Mult-VAE consistently improves recommendation performance for users who have only clicked on a small number of items.

Conclusion

We introduce a generative model with a multinomial likelihood function parameterized by neural network.

*Multinomial likelihood is particularly well suited to modeling user-item implicit feedback data.

