

Session S4 Été 2017

Rapport APP6 Traitement numérique des signaux III

Michael Deslauriers desm1927 Jérôme Martel marj2430

Département de génie électrique et de génie informatique Faculté de génie Université de Sherbrooke

July 26, 2017

1 Transformation bilinéaire

Fonction de transfert normalisée

$$H(s) = \frac{A}{S+A}$$

Transformation pour un filtre passe bande

$$s = \frac{s^2 + \omega_\alpha * \omega_\alpha}{(\omega_\beta - \omega_\alpha) * s}$$

Pour un filtre chebyshev type 1, A = 1.965

$$H(s) = \frac{1.965}{\frac{s^2 + \omega_\alpha * \omega_\beta}{(\omega_\beta - \omega_\alpha) * s} + 1.965}$$

Simplifions

$$H(s) = \frac{1.965}{\frac{s^2 + \omega_{\alpha} * \omega_{\beta}}{(\omega_{\beta} - \omega_{\alpha}) * s} + 1.965} \times \frac{(\omega_{\beta} - \omega_{\alpha}) * s}{(\omega_{\beta} - \omega_{\alpha}) * s}$$

$$H(s) = \frac{1.965 * (\omega_{\beta} - \omega_{\alpha}) * s}{s^2 + \omega_{\alpha} * \omega_{\beta} + 1.965 * (\omega_{\beta} - \omega_{\alpha}) * s}$$

Transformation bilinéaire pour S

$$s = \frac{2}{T_e} * \frac{z - 1}{z + 1}$$

$$H(z) = \frac{1.965 * (\omega_{\beta} - \omega_{\alpha}) * \frac{2}{T_e} * \frac{z-1}{z+1}}{\left(\frac{2}{T_e} * \frac{z-1}{z+1}\right)^2 + \omega_{\alpha} * \omega_{\beta} + 1.965 * (\omega_{\beta} - \omega_{\alpha}) * \frac{2}{T_e} * \frac{z-1}{z+1}}$$

Simplifions

$$H(z) = \frac{1.965 * (\omega_{\beta} - \omega_{\alpha}) * \frac{2}{T_e} * \frac{z-1}{z+1}}{\left(\frac{2}{T_e} * \frac{z-1}{z+1}\right)^2 + \omega_{\alpha} * \omega_{\beta} + 1.965 * (\omega_{\beta} - \omega_{\alpha}) * \frac{2}{T_e} * \frac{z-1}{z+1}} \times \left(\frac{z+1}{z+1}\right)^2$$

$$H(z) = \frac{1.965 * (\omega_{\beta} - \omega_{\alpha}) * \frac{2}{T_e} * (z - 1) (z + 1)}{\left(\frac{2}{T_e} * (z - 1)\right)^2 + \omega_{\alpha} * \omega_{\beta} (z + 1)^2 + 1.965 * (\omega_{\beta} - \omega_{\alpha}) * \frac{2}{T_e} * (z - 1) (z + 1)}$$

$$H(z) = \frac{3.93 * \frac{\omega_{\beta} - \omega_{\alpha}}{T_{e}} * \left(z^{2} - 1\right)}{\left(\frac{4}{T_{e}^{2}} * \left(z^{2} - 2z + 1\right)\right) + \omega_{\alpha} * \omega_{\beta} \left(z^{2} + 2z + 1\right) + 1.965 * \left(\omega_{\beta} - \omega_{\alpha}\right) * \frac{2}{T_{e}} * \left(z^{2} - 1\right)}$$

$$H(z) = \frac{3.93 \frac{\omega_{\beta} - \omega_{\alpha}}{T_e} z^2 - 3.93 \frac{\omega_{\beta} - \omega_{\alpha}}{T_e}}{\frac{4}{T_e^2} z^2 - \frac{8}{T_e^2} z + \frac{4}{T_e^2} + \omega_{\alpha} \omega_{\beta} z^2 + 2\omega_{\alpha} \omega_{\beta} z + (\omega_{\beta} - \omega_{\alpha}) \frac{3.93}{T_e} z^2 - (\omega_{\beta} - \omega_{\alpha}) \frac{3.93}{T_e}}$$

$$H(z) = \frac{\left(3.93 \frac{\omega_{\beta} - \omega_{\alpha}}{T_e}\right) z^2 + \left(-3.93 \frac{\omega_{\beta} - \omega_{\alpha}}{T_e}\right)}{\left(\frac{4}{T_e^2} + \omega_{\alpha}\omega_{\beta} + (\omega_{\beta} - \omega_{\alpha})\frac{3.93}{T_e}\right) z^2 + \left(-\frac{8}{T_e^2} + 2\omega_{\alpha}\omega_{\beta}\right) z + \left(\frac{4}{T_e^2} + \omega_{\alpha}\omega_{\beta} - (\omega_{\beta} - \omega_{\alpha})\frac{3.93}{T_e}\right)}$$

Nous pouvons trouver les valeurs maquantes

$$T_e = \frac{1}{f_e} = \frac{1}{8000}$$

$$\Omega_{\alpha} = \frac{2\pi f_{\alpha}}{f_e}$$

$$\Omega_{\beta} = \frac{2\pi f_{\beta}}{f_e}$$

$$\omega_{\alpha} = \frac{2}{T_e} \tan\left(\frac{\Omega_{\alpha}}{2}\right) = 0.001143094977998$$

$$\omega_{\beta} = \frac{2}{T_e} \tan\left(\frac{\Omega_{\beta}}{2}\right) = 0.001307658218367$$

On peut maintenant trouver les coefficients de notre filtre

$$\begin{split} B_1 &= 3.93 \frac{\omega_\beta - \omega_\alpha}{T_e} = 1.655637848711896e + 08 \\ B_2 &= 0 \\ B_3 &= -3.93 \frac{\omega_\beta - \omega_\alpha}{T_e} = -1.655637848711896e + 08 \\ A_1 &= \frac{4}{T_e^2} + \omega_\alpha \omega_\beta + (\omega_\beta - \omega_\alpha) \frac{3.93}{T_e} = 1.952215988240464e + 09 \\ A_2 &= -\frac{8}{T_e^2} + 2\omega_\alpha \omega_\beta = 2.549304406738550e + 09 \\ A_3 &= \frac{4}{T_e^2} + \omega_\alpha \omega_\beta - (\omega_\beta - \omega_\alpha) \frac{3.93}{T_e} = 1.621088418498085e + 09 \end{split}$$

On peux finalement diviser tous les coefficients par ${\cal A}_1$ afin de simplifier la présentation.

$$B_1 = 0.0848$$

$$B_2 = 0$$

$$B_3 = -0.0848$$

$$A_1 = 1$$

$$A_2 = 1.3059$$

$$A_3 = 0.8304$$