In [1]:

```
# 필요한 라이브러리 import
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
import seaborn as sns

from sklearn.preprocessing import scale
import sklearn.linear_model as skl_lm
from sklearn.metrics import mean_squared_error, r2_score
import statsmodels.api as sm
import statsmodels.formula.api as smf

%matplotlib inline
plt.style.use('seaborn-white')
```

In [20]:

```
1 df = pd.read_excel("교통사고.xlsx")
2 df
```

Out[20]:

	Unnamed: 0	자치구	날짜	하수관로 비율	사고[건]
0	NaN	종로	20180601	0.009084	4
1	NaN	종로	20180602	0.008864	4
2	NaN	종로	20180603	0.008182	3
3	NaN	종로	20180604	0.008745	2
4	NaN	종로	20180605	0.008753	8
11495	NaN	강동	20220827	0.069436	6
11496	NaN	강동	20220828	0.06221	4
11497	NaN	강동	20220829	0.066022	2
11498	NaN	강동	20220830	0.090625	5
11499	NaN	강동	20220831	0.067902	4

11500 rows × 5 columns

In [25]:

```
1 df.info()
2
3 df['하수관로 비율'] = pd.to_numeric(df['하수관로 비율'], errors='coerce')
4 print(df.dtypes)
5 df.fillna(0)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11500 entries, 0 to 11499 Data columns (total 5 columns): # Column Non-Null Count Dtype Unnamed: 0 0 non-null 0 float64 11500 non-null object 자치구 1 2 날짜 11500 non-null int64 하수관로 비율 3 11287 non-null float64 사고[건] 11500 non-null int64 4 dtypes: float64(2), int64(2), object(1) memory usage: 449.3+ KB Unnamed: 0 float64 자치구 object 날짜 int64 하수관로 비율 float64 사고[건] int64 dtype: object

Out [25]:

	Unnamed: 0	자치구	날짜	하수관로 비율	사고[건]
0	0.0	종로	20180601	0.009084	4
1	0.0	종로	20180602	0.008864	4
2	0.0	종로	20180603	0.008182	3
3	0.0	종로	20180604	0.008745	2
4	0.0	종로	20180605	0.008753	8
11495	0.0	강동	20220827	0.069436	6
11496	0.0	강동	20220828	0.062210	4
11497	0.0	강동	20220829	0.066022	2
11498	0.0	강동	20220830	0.090625	5
11499	0.0	강동	20220831	0.067902	4

11500 rows × 5 columns

In [39]:

```
1 df1 = df.drop(['Unnamed: 0','날짜'], axis=1)
2 corr = df1.corr(method = 'pearson')
4 corr
```

Out[39]:

	하수관로 비율	사고[건]
하수관로 비율	1.000000	0.117504
사고[건]	0.117504	1.000000

In [45]:

```
1
   ## 시각화
   fig = plt.figure(figsize=(30,30))
   fig.set_facecolor('white')
   plt.rcParams['font.family'] = 'NanumGothic'
   plt.title('하수관로 비율과 교통사고의 상관관계', fontsize=40)
6
7
   font_size = 40
   plt.scatter(df['하수관로 비율'],df['사고[건]'])
8
9
   plt.xlabel('하수관로 비율', fontsize=font_size)
10
   plt.ylabel('사고[건]',fontsize=font_size)
11
12
   plt.xticks(fontsize=40)
13
   plt.yticks(fontsize=40)
   plt.show()
14
```

