In the first case, the point $(1 + \theta, \theta, 0, 3)$ is a feasible solution for all $\theta \ge 0$ and the value of the objective function if $1 + \theta$, and in the second case, the point $(1 - \theta, 0, \theta, 3 - \theta)$ is a feasible solution iff $0 \le \theta \le 1$ and the value of the objective function is $1 - \theta$. This time, we are in the situation where the points

$$(1 + \theta, \theta, 0, 3) = (1, 0, 0, 3) + \theta(1, 1, 0, 0), \quad \theta > 0$$

form an infinite ray in the set of feasible solutions, and the objective function $1 + \theta$ is unbounded from above on this ray. This indicates that our linear program, although feasible, is unbounded.

Let us now describe a step of the simplex algorithm in general.

46.2 The Simplex Algorithm in General

We assume that we already have an initial vertex u_0 to start from. This vertex corresponds to a basic feasible solution with basis K_0 . We will show later that it is always possible to find a basic feasible solution of a Linear Program (P) is standard form, or to detect that (P) has no feasible solution.

The idea behind the simplex algorithm is this: Given a pair (u, K) consisting of a basic feasible solution u and a basis K for u, find another pair (u^+, K^+) consisting of another basic feasible solution u^+ and a basis K^+ for u^+ , such that K^+ is obtained from K by deleting some basic index $k^- \in K$ and adding some nonbasic index $j^+ \notin K$, in such a way that the value of the objective function increases (preferably strictly). The step which consists in swapping the vectors A^{k^-} and A^{j^+} is called a pivoting step.

Let u be a given vertex corresponds to a basic feasible solution with basis K. Since the m vectors A^k corresponding to indices $k \in K$ are linearly independent, they form a basis, so for every nonbasic $j \notin K$, we write

$$A^j = \sum_{k \in K} \gamma_k^j A^k. \tag{*}$$

We let $\gamma_K^j \in \mathbb{R}^m$ be the vector given by $\gamma_K^j = (\gamma_k^j)_{k \in K}$. Actually, since the vector γ_K^j depends on K, to be very precise we should denote its components by $(\gamma_K^j)_k$, but to simplify notation we usually write γ_k^j instead of $(\gamma_K^j)_k$ (unless confusion arises). We will explain later how the coefficients γ_k^j can be computed efficiently.

Since u is a feasible solution we have $u \ge 0$ and Au = b, that is,

$$\sum_{k \in K} u_k A^k = b. \tag{**}$$

For every nonbasic $j \notin K$, a candidate for entering the basis K, we try to find a new vertex $u(\theta)$ that improves the objective function, and for this we add $-\theta A^j + \theta A^j = 0$ to b in