Chapter 9 Operational Amplifiers

Important Parameters

Gain
Small-Signal Bandwidth
Large-Signal Bandwidth
Output Swing
Linearity
Noise and Offset
Supply Rejection

One-Stage Op Amps

One-Stage Op Amp in Unity Gain Configuration

Cascode Op Amps

Unity Gain One Stage Cascode

Folded Cascode Op Amps

Folded Cascode Stages (cont.)

Folded Cascode (cont.)

Folded Cascode (cont.)

$$|A_v| \approx g_{m1} \{ [(g_{m3} + g_{mb3}) r_{o3} (r_{o1} || r_{o5})] || [(g_{m7} + g_{mb7}) r_{o7} r_{o9}] \}$$

Telescopic vs. Folded Cascode Pole

Example Folded-Cascode Op Amp

See Example 9.6

Single-Ended Output Cascode Op Amps

Triple Cascode

 A_v app. $(g_m r_o)^3/2$ Limited Output Swing Complex biasing

Two-Stage Op Amps

Design Approach for Two-Stage Op Amps

Single-Ended Output Two-Stage Op Amp

Simple Implementation of a Two-Stage Op-Amp

Two-Stage Op-Amp employing Cascading

Output Impedance Enhancement With Feedback

$$Rout = A_1 g_{m2} r_{o2} r_{o1}$$

Gain Boosting in Cascode Stage

Differential Gain Boosting

Differential Gain Boosting (cont.)

Differential Gain Boosting (cont.)

Gain Boosting applied to both signal path and load devices

Comparison

	Gain	Output Swing	Speed	Power Dissipation	Noise
Telescopic	Medium	Medium	Highest	Low	Low
Folded-Cascode	Medium	Medium	High	Medium	Medium
Two-Stage	High	Highest	Low	Medium	Low
Gain-Boosted	High	Medium	Medium	High	Medium

Common-Mode Feedback

Common-Mode Feedback (cont.)

High Gain Amp Model

Common-Mode Feedback (cont.)

Resistive Sensing

Source-Follower Buffering

Deep Triode FET CM Sensing

CMFB Example

Alternative CMFB for Folded Cascode

Simplified CMFB with Triode Devices

CMFB Triode Example with Reference

CMFB Triode Example with Reference (cont.)

CMFB Triode Example with Reference (cont.)

Differential Pair with CMFB

Input Range Limitations

Unity-Gain Buffer

Extension of Input CM Range

Variation of equivalent transconductance with the input CM level

Two Folded Cascode op amp

with constant equivalent transconductance

Slew Rate

Linear RC Step Response

Slewing in Op Amp

Small-Signal Operation of Op Amp

Op Amp Slewing

Slew rate = V/S = I/C

Op Amp Slewing (cont.)

Slewing in Telescopic Op Amp

Folded-Cascode Slewing

Folded-Cascode (cont.)

Slewing Recovery

Slewing Recovery (cont.)

Power Supply Rejection

