

UNIVERSITY OF MORATUWA, SRI LANKA

Faculty of Engineering
Department of Electronic and Telecommunication Engineering
B.Sc. Engineering
Semester 4 - Batch 2018
Assignment 1

EN2570—DIGITAL SIGNAL PROCESSING

Total Marks: 70 January 2021

- Q1. With proper justification, determine whether each of the following signals is periodic. If the signal is periodic, find its period. [10]
 - (a) $2\cos(\pi n/8)$
 - (b) $\cos(3\pi n/4)$
 - (c) $3\cos(n/2)$
 - (d) $2\cos(\pi n/8) + \cos(3\pi n/4)$.
- **Q2**. (a) The impulse response h[n] of an LTI system is $a^n u[-n-1]$, where a > 1. Determine the output y[n] of the LTI system if the input x[n] is u[n]. [15]
 - (b) Using the answer in **Q2(a)** and relevant properties of the system, find the the output of the LTI system if [15]
 - i. $h[n] = 3^n u[-n-1]$ and x[n] = u[n-3]
 - ii. $h[n] = 2^n u[-n-3]$ and x[n] = u[n] u[n-1].
- **Q3**. The impulse response of an LTI system is $h[n] = a^n u[n] + b^n u[-n-1]$, where $a, b \in \mathbb{C}$. Determine the conditions that should be satisfied by a and b in order to have a stable system. [10]
- **Q4**. Consider the two signals $x_1(t) = 2\cos(40\pi t)$ and $x_2(t) = 2\cos(70\pi t)$.
 - (a) If the signals $x_1(t)$ and $x_2(t)$ are sampled with 100π rad/s, find the digital angular frequencies (measured in rad/sample) of the corresponding discrete-time signals $x_1[n]$ and $x_2[n]$. [4]
 - (b) Consider the signal x[n] defined by $x[n] = x_1[n] + x_2[n]$. Sketch the frequency spectrum $X(e^{j\omega})$ of x[n] in the range $-3\pi \le \omega \le 3\pi$, where ω is the digital angular frequency. [10]
 - (c) Assume that the signal x[n] is applied to an ideal reconstruction filter of which the output is $\hat{x}(t) = A_1 \cos(\Omega_1 t) + A_2 \cos(\Omega_2 t)$, where A_1 , A_2 , Ω_1 , and Ω_2 are constants. What are the values of analog angular frequencies Ω_1 and Ω_2 ?