ALGORITHMES POUR MAXIMISER LES BÉNÉFICES

Aide à la décision dans le processus d'achats d'actions

1 Problème

2 Algorithmes

Plan

3 Comparaison des résultats

4 Conclusion

Problème

- Comment maximiser le profit total des actions achetées, sous les contraintes :
 - > Chaque action : achetée qu'une seule fois.
 - Acheter une fraction d'action : non
 - > Dépense maximal : 500 euros
 - => Problème du sac à dos (the 0/1 Knapsack Problem)

Algorithmes

- Les algorithmes pour résoudre le problème :
 - >> Brute Force
 - Dynamic Programming
 - >> Greedy
 - »Etc.

Représenter le problème

- Étant donnée n actions : A1, A2, ..., An
- Noter Ci le coût de Ai
- Noter Pi le profit de la action Ai
 => Le profit total de Ai : Ci*Pi
 (Si Pi représente en « % », le profit total de Ai : Ci*Pi*0.01)
- Le problème est de trouver : (ici, $C_{max} = 500$)

$$Max(\sum_{i} C_{i} * P_{i})$$
 sous la constrainte $\sum_{i} C_{i} \leq C_{max}$

Algorithme Brute Force

- Lister toutes les différentes combinaisons d'actions
- Pour chaque combinaison, calculer le profit total
- La solution est la combinaison ayant le profit total le plus grand et le coût total ne dépasse pas C_{max}

Brute Force - Exemple avec 3 actions

- Les combinaisons (lire l'arbre de gauche à droite):
 - 1. A1A2A3
 - 2. A1A2
 - 3. A1 A3
 - 4. A1
 - 5. A2A3
 - 6. A2
 - 7. A3
 - 8.0

Ai-1 : Ai est choisi

Ai-0 : Ai n'est pas choisi

Exemple en binaire: 111, 110, ..., 011 (=11), ..., 001 (=1), 000 (=0)

L'arbre représente les choix dans l'algorithme Brute Force

Brute Force - Pseudocode

Complexité

Mémoire / Temporelle O(n) $O(n*2^n)$

```
n = nombre_de_actions
nombre_de_combinaisons = 2^n
solution = []
                                                     => n éléments
Pour k de 0 à nombre de combinaisons -1:
                                                                    => 2^n opérateurs
    choix = représenter k en binaire (en n chiffres binaires)
                                                     => n éléments
    combinaison = []
    Pour chaque élément-i dans le choix :
                                                                      => n opérateurs
          Si élémént-i == 1 :
              action-i est choisie donc l'ajouter à la combinaison
    Si le coût total de la combinaison \leq C
          Si le profit total de la combinaison > le profit total de la solution :
              solution = combinaison
```

Algorithme Programmation dynamique

- Construire la solution optimale du problème à i actions à partir du problème à i-1 actions (les actions sont numérotées 1, 2, ..., n)
- Les solutions de sous-problèmes sont pré-calculées et stockées dans un tableau

Trancher le problème avec Cmax en des sous problèmes avec le coût max 1, 2, ..., Cmax

	1	2	•••	j	 C _{max}
0	0	0	•••	0	 0
A1	P({A1}, 1)	P({A1}, 2)	•••	P({A1}, j)	 P({A1}, C _{max})
A2	P({A1, A2}, 1)	P({A1, A2}, 1)		P({A1, A2}, j)	 P({A1, A2}, C _{max})

Profit total maximisé

Coût maximal: j

Algorithme Programmation dynamique

	1	•••	 C _{max}
An-1		P({A1,,An-1}, C _{max} - Cn)	 P({A1,, An-1}, C _{max})
An	•••		 P({A1,, An-1, An}, C _{max})

Programmation dynamique Pseudocode

Complexité

Mémoire / Temporelle O(n*m) O(n*m)

```
n = nombre_de_actions + 1
m = int(C_{max}) + 1
                                                                 => n*m éléments
B = matrice de taille n*m initialisée avec 0
     pour stocker les profits totales optimales de sous problèmes
# remplir la matrice B
                                                                                  => n*m
Pour i de 1 à n :
                                                                                  opérateurs
  Pour j de 1 à m :
     Si coût(action-i) < j :
       l'action-i est ajoutée dans la liste des actions à choisir donc
       B[i][j] = max(B[i-1][j], B[i-1][j - coût(action-i)] + profit(action-i))
     Sinon:
       B[i][j] = B[i-1][j]
                                                                ~ n éléments
solution = []
# tracer la solution
                                                                                  ~ n*m opérateurs
Tant que C_{max} \ge 0 et n \ge 0:
     Si B[n][C_{max}] == B[n-1][C_{max} - coût(action-n)] + profit(action-n):
          l'action-n est choisie donc l'ajouter dans la solution
          C_{\text{max}} = C_{\text{max}} - \text{coût}(\text{action}-n)
     n = n - 1
```

Résumé

n : nombre d'actions

m : coût total maximal autorisé

	Complexité en mémoire	Complexité temporelle	Remarque
Brute Force	O(n)	O(n*2 ⁿ)	Temps de calcul exponentiel
Programmation dynamique	O(n*m)	O(n*m)	- Temps de calcul important si m est grand
			- Coût total autorisé et le coût de chaque action doivent être un nombre entier