Système d'exploitation

Ordonnancement

Thomas Lavergne lavergne@lisn.fr

Multiprogrammation et temps partagé

• Plusieurs processus veulent la même ressource

Multiprogrammation et temps partagé

- Plusieurs processus veulent la même ressource
- File d'attente de PCB

Multiprogrammation et temps partagé

- Plusieurs processus veulent la même ressource
- File d'attente de PCB

Ordonnancement

Choisir un processus parmi tous les processus dans une liste d'attente pour une ressource.

Multiprogrammation et temps partagé

- Plusieurs processus veulent la même ressource
- File d'attente de PCB

Ordonnancement

Choisir un processus parmi tous les processus dans une liste d'attente pour une ressource.

Exemple: Processeur

Choisir parmi les processus prêt et en exécution

Diagramme de Gantt

Représentation temporelle de l'allocation de ressources.

Diagramme de Gantt

Représentation temporelle de l'allocation de ressources.

Proc.	date	Durée		
P1	0	1		
P2	1	2		
P3	3	4		

Diagramme de Gantt

Représentation temporelle de l'allocation de ressources.

	О	1	2	3	4	5	6	7	8	9
UC										
HDD										

Proc.	date	Durée		
P1	0	1		
P2	1	2		
P3	3	4		

Diagramme de Gantt

Représentation temporelle de l'allocation de ressources.

Proc.	date	Durée			
P1	0	1			
P2	1	2			
P3	3	4			

Diagramme de Gantt

Représentation temporelle de l'allocation de ressources.

Proc.	date	Durée			
P1	0	1			
P2	1	2			
P3	3	4			

Diagramme de Gantt

Représentation temporelle de l'allocation de ressources.

Proc.	date	Durée			
P1	0	1			
P2	1	2			
P3	3	4			

Application

- Ordonnancement
- Génie logiciel
- Gestion d'équipe

Taux d'utilisation

Minimiser le temps où une ressource n'est pas utilisée.

Taux d'utilisation

Minimiser le temps où une ressource n'est pas utilisée.

Temps d'attente

Temps moyen ou maximum dans la file d'attente.

Taux d'utilisation

Minimiser le temps où une ressource n'est pas utilisée.

Temps d'attente

Temps moyen ou maximum dans la file d'attente.

Rotation

Durée moyenne totale des processus.

Taux d'utilisation

Minimiser le temps où une ressource n'est pas utilisée.

Temps d'attente

Temps moyen ou maximum dans la file d'attente.

Rotation

Durée moyenne totale des processus.

Débit

Nombre de processus fini par unité de temps.

Principe

File d'attente simple: premier arrivé, premier servi.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P1	IP2	P3	_				_		_		_	_	_	\rightarrow

Proc.	date	Durée			
P1	0	10			
P2	1	2			
P3	2	2			

Principe

File d'attente simple: premier arrivé, premier servi.

0	1							14	F
P	1	Ρ3	 	 	 	 	 	 \rightarrow	

Proc.	date	Durée			
P1	0	10			
P2	1	2			
P3	2	2			

Principe

File d'attente simple: premier arrivé, premier servi.

0 P1	1 P2	2 P3	3	4	5	6	7	8	9	10	11	12	13	14	[
					P1											

Proc.	date	Durée			
P1	0	10			
P2	1	2			
P3	2	2			

Principe

File d'attente simple: premier arrivé, premier servi.

0	1	2	3	4	5	6	7	8	9	10	1,1	1,2	13	14	Proc.	date	Durée
PI	p-2	PS			P1		_				P2			\rightarrow	P1	0	10
															P2	1	2

Principe

File d'attente simple: premier arrivé, premier servi.

0 P1	1 P2	2 P3	3	4	5	6	7	8	9	10	11	12	13	14
					P1						P2		P3	

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

File d'attente simple: premier arrivé, premier servi.

0 P1	1 P2	2 P3	3	4	5	6	7	8	9	10	11	12	13	14	
					P1						P2		P3		
														_	

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Temps d'attente

- Moyen $\frac{0+9+10}{3} \approx 6.33$
- Maximum 10

Avantages

✓ Très simple à implémenter.

Avantages

✓ Très simple à implémenter.

Inconvénients

X Peu efficace: les processus de calcul bloquent le processeur.

X Peu réactif: les petits processus attendent longtemps.

Avantages

√ Très simple à implémenter.

Inconvénients

X Peu efficace: les processus de calcul bloquent le processeur.

X Peu réactif: les petits processus attendent longtemps.

En pratique

Sert de brique de base à d'autres algorithmes.

Priorités

Principe

- Associer à chaque processus une valeur de priorité
- Une file d'attente par priorité

Priorités

Principe

- Associer à chaque processus une valeur de priorité
- Une file d'attente par priorité

Calcul de la priorité

- Type du processus
- Durée estimée, ressources utilisées...
- Ajustement par l'utilisateur
- Variable dans le temps
- ...

Réactivité

Durée d'activité

Attention

On ne s'intéresse pas à la durée totale du processus mais au temps pendant lequel il va garder le processeur.

Durée d'activité

Attention

On ne s'intéresse pas à la durée totale du processus mais au temps pendant lequel il va garder le processeur.

Temps avant:

- qu'il se termine
- qu'il fasse une E/S

Durée d'activité

Attention

On ne s'intéresse pas à la durée totale du processus mais au temps pendant lequel il va garder le processeur.

Temps avant:

- qu'il se termine
- qu'il fasse une E/S

C'est-à-dire, le temps avant qu'il quitte les états prêt

Difficultés I

Les E/S causent beaucoup d'interruptions

ightarrow cycles processeurs très cours (2 μs)

Difficultés I

Les E/S causent beaucoup d'interruptions

— cycles processeurs très cours (2μs)

Difficultés I

Les E/S causent beaucoup d'interruptions

 \rightarrow cycles processeurs très cours (2 μs)

Réactivité

Permettre aux petits processus (E/S) d'accéder rapidement au processeur.

Difficultés II

Commutation de contexte

Le changement de processus à un coût:

- Sauvegarde de l'ancien contexte
- Exécution de l'ordonnanceur
- Restauration du nouveau contexte

Difficultés II

Commutation de contexte

Le changement de processus à un coût:

- Sauvegarde de l'ancien contexte
- Exécution de l'ordonnanceur
- Restauration du nouveau contexte

Il faut profiter des commutations naturelles

Difficultés II

Commutation de contexte

Le changement de processus à un coût:

- Sauvegarde de l'ancien contexte
 - Exécution de l'ordonnanceur
 - Restauration du nouveau contexte

Il faut profiter des commutations naturelles

Ordonnancer lorsque

• Le processus se termine

Difficultés II

Commutation de contexte

Le changement de processus à un coût:

- Sauvegarde de l'ancien contexte
 - Exécution de l'ordonnanceur
 - Restauration du nouveau contexte

Il faut profiter des commutations naturelles

Ordonnancer lorsque

- Le processus se termine
- Un processus passe dans l'état prêt

Comment rendre le système plus réactif?

Comment rendre le système plus réactif?

Préemption

Remplacement du processus actuellement en exécution par un processus arrivant dans la file des processus prêts.

Comment rendre le système plus réactif?

Préemption

Remplacement du processus actuellement en exécution par un processus arrivant dans la file des processus prêts.

Ordonnancement lorsque:

Comment rendre le système plus réactif?

Préemption

Remplacement du processus actuellement en exécution par un processus arrivant dans la file des processus prêts.

Ordonnancement lorsque:

- Le processus passe en attente ou se termine
 - O Pas de problèmes de préemtion

Comment rendre le système plus réactif?

Préemption

Remplacement du processus actuellement en exécution par un processus arrivant dans la file des processus prêts.

Ordonnancement lorsque:

- Le processus passe en attente ou se termine
 - O Pas de problèmes de préemtion
- Un processus entre dans l'état prêt
 - O Préempter?

Principe

Priorité en fonction du temps restant. (estimé)

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

Priorité en fonction du temps restant. (estimé)

0 P1	1 P2	2 P3	3	4	5	6	7	8	9	10	11	12	13	14
P	1													

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

Priorité en fonction du temps restant. (estimé) Toujours préemptif.

0 1 P1 P2	2 1P3	3	4	5	6	7	8	9	10	11	12	13	14
P1													

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

Priorité en fonction du temps restant. (estimé) Toujours préemptif.

O_{P1}	1 P2	2 P3	3	4	5	6	7	8	9	10	11	12	13	14
P	1	P2		P3										

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

Priorité en fonction du temps restant. (estimé) Toujours préemptif.

O_{P1}	1 P2	2 _{IP3}	3	4	5	6	7	8	9	10	11	12	13	14
P	1	P2		Р3					F	1				
														_

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

Priorité en fonction du temps restant. (estimé) Toujours préemptif.

0 P1	1 P2	2 P3	3	4	5	6	7	8	9	10	11	12	13	14	
P	1	P2		P3					F	1					
														_	

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Temps d'attente

- Moyen $\frac{4+0+2}{3} = 2$
- Maximum 4

File:	P1
T. IIC .	1.1

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1

0 1 2 P1 P2,P3	3 4 P4,P5	5	6	7	8	9	10	11	12	13	14
File:		P1			P2	F	23				

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1

En cas d'égalitées ?

P1

File:

Proc.	date	Durée		
P1	0	5		
P2	1	2		
P3	1	1		
P4	3	1		
P5	3	1		

En cas d'égalitées ?

P1

File:

• Priorité au processus en cours d'exécution

0 P1	1 P2,F	2	3 1P4,1	4 P51	5	6	7	8	9	10	11	12	13	14
P1	P	P2	2											

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1

- Priorité au processus en cours d'exécution
- Puis en fonction de l'ordre d'arrivée

0	1 P2,P3	2	3	4	5	6	7	8	9	10	11	12	13	14
P1	P2,P3	3	P4,	P5										\rightarrow
P	1 P3		P2											,

File:	P1	P4 P5	

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1

- Priorité au processus en cours d'exécution
- Puis en fonction de l'ordre d'arrivée

0	1	2	3 1P4.1	4	5	6	7	8	9	10	11	12	13	14
		_	1 -71	_	_									\rightarrow
P	1 P3	L	P2	F	4									,
							_	_						

File:	P1	P

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1

- Priorité au processus en cours d'exécution
- Puis en fonction de l'ordre d'arrivée

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P	1P	3	P2	F	4P	5								\rightarrow
_				_		_								

File:	P1

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1

En cas d'égalitées ?

- Priorité au processus en cours d'exécution
- Puis en fonction de l'ordre d'arrivée

0	1	2	3 1P4.	4	5	6	7	8	9	10	11	12	13	14
\mathbf{P}^{1}	1 P	3	P ₄ ,	P	4 P	5	_	P1	_					→
_	_	_		_		_								

File:

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1

En cas d'égalitées ?

- Priorité au processus en cours d'exécution
- Puis en fonction de l'ordre d'arrivée

File:

Proc.	date	Durée
P1	0	5
P2	1	2
P3	1	1
P4	3	1
P5	3	1
P3 P4	3	

Temps d'attente

- Moyenne $\frac{5+1+0+1+2}{5} = 1.8$
- Maximum 5

Problème

Comment connaître le temps restant?

(avant requête ou interuption)

Problème

Comment connaître le temps restant?

(avant requête ou interuption)

Estimation:

Moyenne exponentielles des cycles précédents:

Problème

Comment connaître le temps restant?

(avant requête ou interuption)

Estimation:

Moyenne exponentielles des cycles précédents:

- P_t la durée estimée au temps t
- R_t la durée réelle au temps t

Problème

Comment connaître le temps restant?

(avant requête ou interuption)

Estimation:

Moyenne exponentielles des cycles précédents:

- P_t la durée estimée au temps t
- R_t la durée réelle au temps t

$$P_{t+1} = \alpha P_t + (1 - \alpha) R_t$$

Généralement $\alpha = 0.5$

Avantages

- ✓ Réactif: les petits processus passent en premier
- ✓ Optimal sur le temps d'attente moyen

Avantages

- ✓ Réactif: les petits processus passent en premier
- ✓ Optimal sur le temps d'attente moyen

Inconvénients

- X Les processus de calcul on peu le processeur
- X Non équitable: famine pour les gros processus

Avantages

- ✓ Réactif: les petits processus passent en premier
- ✓ Optimal sur le temps d'attente moyen

Inconvénients

- X Les processus de calcul on peu le processeur
- X Non équitable: famine pour les gros processus

Définition

On parle de famine lorsqu'un processus en attente n'a jamais accès à une ressource.

Équité

FIFO

Un processus long peut monopoliser l'UC.

OTIT

Un processus long peut monopoliser l'UC.

Plus court d'abord

Des processus courts peuvent monopoliser l'UC.

OTIT

Un processus long peut monopoliser l'UC.

Plus court d'abord

Des processus courts peuvent monopoliser l'UC.

Solution équitable

- Paramètres de l'algorithme non-manipulables
- Temps limite par processus avant préemption

Round robin

Principe

FIFO avec quantum de temps.

0 P1	1 P2	2 P3	3	4	5	6	7	8	9	10	11	12	13	14

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Quantum = 2

Round robin

Principe

FIFO avec quantum de temps.

Rarement préemptif.

						10		
PI	IP2	P3		 		 	 	_ 1 >
	Ρ1							,

Quantum	=	2
& aaii aiii		-

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Round robin

Principe

FIFO avec quantum de temps.

Rarement préemptif.

Quantum	_	•
Quantum	=	4

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

FIFO avec quantum de temps.

Rarement préemptif.

Quantum — 2	Qu	antum	=	2
-------------	----	-------	---	---

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Principe

FIFO avec quantum de temps.

Rarement préemptif.

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Quantum = 2

Principe

FIFO avec quantum de temps.

Rarement préemptif.

Proc.	date	Durée
P1	0	10
P2	1	2
P3	2	2

Temps d'attente

- Moyenne $\frac{4+1+2}{3} \approx 2.33$
- Maximum 4

Avantages

- ✓ Équitable: tous ont l'UC aussi rapidement
- √ Réactif: les petits processus attendent peu

Avantages

- ✓ Équitable: tous ont l'UC aussi rapidement
- √ Réactif: les petits processus attendent peu

Inconvénients

- X Temps d'attente moyen plus élevé
- X Beaucoup de commutation (surcoût)

Avantages

- ✓ Équitable: tous ont l'UC aussi rapidement
- ✓ Réactif: les petits processus attendent peu

Inconvénients

- X Temps d'attente moyen plus élevé
- X Beaucoup de commutation (surcoût)

En pratique

Efficace dès que la durée réelle de 80% des processus est inférieure au quantum.

Exemples concrets

Solaris (1993–2000)

Principe

- Priorités dynamique
- Quantum selon priorité

Solaris (1993–2000)

Principe

- Priorités dynamique
- Quantum selon priorité

P.	Q.	PN	PES
0	200	0	50
5	200	0	50
10	160	0	51
15	160	5	51
20	120	10	52
25	120	15	52
30	80	20	53
35	80	25	54
40	40	30	55
45	40	35	56
50	40	40	57
55	40	45	58
60	20	49	59

Solaris (1993-2000)

Principe

- Priorités dynamique
- Quantum selon priorité

- Prioritaire = grand quantum
- Calcul = plus prioritaire
- E/S = moins prioritaire

P. Q. PN PES 0 200 0 50 5 200 0 50 10 160 0 51 15 160 5 51 20 120 10 52 25 120 15 52 30 80 20 53 35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58 60 20 49 59				
5 200 0 50 10 160 0 51 15 160 5 51 20 120 10 52 25 120 15 52 30 80 20 53 35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	P.	Q.	PN	PES
10 160 0 51 15 160 5 51 20 120 10 52 25 120 15 52 30 80 20 53 35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	0	200	0	50
15 160 5 51 20 120 10 52 25 120 15 52 30 80 20 53 35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	5	200	0	50
20 120 10 52 25 120 15 52 30 80 20 53 35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	10	160	0	51
25 120 15 52 30 80 20 53 35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	15	160	5	51
30 80 20 53 35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	20	120	10	52
35 80 25 54 40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	25	120	15	52
40 40 30 55 45 40 35 56 50 40 40 57 55 40 45 58	30	80	20	53
45 40 35 56 50 40 40 57 55 40 45 58	35	80	25	54
50 40 40 57 55 40 45 58	40	40	30	55
55 40 45 58	45	40	35	56
	50	40	40	57
60 20 49 59	55	40	45	58
	60	20	49	59

Windows (depuis XP)

Multi-level Feedback Queue

32 niveaux de priorités + Round-Robin

Windows (depuis XP)

Multi-level Feedback Queue

32 niveaux de priorités + Round-Robin

Priorités dynamiques

- Quantum consommé entièrement :
 - ightarrow Priorité diminuée
- Retour d'entrée/sortie
 - → Priorité augmenté

Windows (depuis XP)

Multi-level Feedback Queue

32 niveaux de priorités + Round-Robin

Priorités dynamiques

- Quantum consommé entièrement :
 - ightarrow Priorité diminuée
- Retour d'entrée/sortie
 - ightarrow Priorité augmenté

Favorise l'interface graphique

Système de crédit

- Chaque processus à des crédits (priorité)
 - Le plus riche gagne (avec préemption)
 - Perte d'1 crédit à la fin du quantum

Système de crédit

- Chaque processus à des crédits (priorité)
 - Le plus riche gagne (avec préemption)
- Perte d'1 crédit à la fin du quantum

Tous les processus prêts à 0

Tous les processus sont recrédités

$$cred = \frac{cred}{2} + prio$$

Système de crédit

- Chaque processus à des crédits (priorité)
 - Le plus riche gagne (avec préemption)
- Perte d'1 crédit à la fin du quantum

Tous les processus prêts à 0

Tous les processus sont recrédités

$$cred = \frac{cred}{2} + prio$$

Crédits accumulés pendant les E/S

Système de crédit

- Chaque processus à des crédits (priorité)
 - Le plus riche gagne (avec préemption)
- Perte d'1 crédit à la fin du quantum

Tous les processus prêts à 0

Tous les processus sont recrédités

$$cred = \frac{cred}{2} + prio$$

Crédits accumulés pendant les E/S

Favorise l'interface graphique