COMPSCI762: Foundations of Machine Learning Ensembles

Jörg Simon Wicker
The University of Auckland

Motivation

This week we will cover

Motivation

Ensembles

Averaging

Random Forests

AdaBoost

XGBoost

Partially based on Slides from University of British Columbia

Ensembles

Ensembles

- Ensembles are classifiers that have classifiers as input
- With great names:
 - Averaging
 - Boosting
 - Bootstrapping
 - Bagging
 - Cascading
 - Random Forests
 - Stacking
- Ensemble methods often have higher accuracy than the input classifiers
- How would you build an ensemble classifier?

Ensembles

- Remember the fundamental trade-off
 - 1. E_{train} : How small you can make the training error vs.
 - 2. E_{approx} : How well training error approximates the test error
- Goal of ensemble methods is that the ensemble classifier
 - Does much better on one of these than the individual classifiers
 - Doesn't do too much worse on the other
- This suggests two types of ensemble methods
 - 1. **Boosting**: Improves training error of classifiers with high E_{train}
 - 2. Averaging: Improves approximation error of classifiers with high E_{approx}

Averaging

- Input to averaging is the predictions of a set of models, for example
 - Decision trees make one prediction
 - Naïve Bayes makes another prediction
 - KNN makes another prediction
- Simple model averaging:
 - Take the mode of the predictions (or average probabilities if probabilistic)

Stacking

- A common variation of averaging is stacking
 - Fit another classifier that use the predictions as features

- How does the training set of *decision tree #2* look like?
- Averaging or stacking often performs better than individual models
 - Typically used by Kaggle winners
 - E.g., the Netflix \$1M user-rating competition winner was a stacked classifier

Why does averaging work?

- Consider 3 binary classifiers, each independently correct with probability 0.8
- With simple averaging, the ensemble is correct if we have at least 2 right:

$$P(\text{all 3 right}) = 0.8^3$$
 = 0.512
 $P(\text{2 right, 1 wrong}) = 3 * 0.8^2(1 - 0.8)$ = 0.384
 $P(\text{1 right, 2 wrong}) = 3 * (1 - 0.8)^2 0.8$ = 0.096
 $P(\text{all 3 wrong}) = (1 - 0.8)^3$ = 0.512

- So the ensemble is right with a probability of 0.896 (=0.512+0.384)
- Note:
 - For averaging to work, classifiers need to be at least somewhat independent
 - You also want the probability of being right to be > 0.5, otherwise it will do much worse
 - Probabilities also shouldn't be to different (otherwise, it might be better to take most accurate)

Why does averaging work?

- Consider a set of classifiers that makes these predictions:
 - Classifier 1: spam
 - Classifier 2: spam
 - Classifier 3: spam
 - Classifier 4: not spam
 - Classifier 5: spam
 - Classifier 6: not spam
 - Classifier 7: spam
 - Classifier 8: spam
 - Classifier 9: spam
 - Classifier 10: spam
- I these independently get 80% accuracy, the mode will be close to 100%
 - In practice errors won't be completely independent due to noise in the labels

Why can averaging work?

- Why can averaging lead to better results?
- Consider classifiers that overfit (like deep decision trees)
 - If they all overfit in exactly the same way, averaging does nothing Why?
- But if they make **independent** errors
 - Probability that average is wrong can be lower than for each classifier
 - Less attention to specific overfitting of each classifier

Random Forests

- Random forests average a set of deep decision trees
 - Tend to be one of the best *out of the box* classifiers
 - Often close to the best performance of any method on the first run
 - And predictions are very fast
- Does averaging work if you use trees with the same parameters?
- Do deep decision trees make independent errors?
 - No: with the same training data you'll get the same decision tree
- Two key ingredients in random forests:
 - Bootstrapping
 - Random trees

- Start with a standard deck of 52 cards
 - 1. Sample a random card, put it back and re-shuffle
 - 2. Sample a random card, put it back and re-shuffle
 - Sample a random card, put it back and re-shuffle
 - 52 Sample a random card, put it back and re-shuffle
- Make a new deck of the 52 samples

Bootstrap Sampling

- The new 52-card deck is called a **bootstrap sample**
- Some cards will be missing, and some cards will be duplicated
 - So calculations on the bootstrap sample will give different results than original data
- However, the bootstrap sample roughly maintains trends:
 - Roughly 25% of the cards will be diamonds
 - Roughly 3/13 of the cards will be *face* cards
 - There will be roughly four 10 cards
- Common use: compute a statistic based on several bootstrap samples
 - Gives you an idea of how the statistic varies as you vary the data

- Bootstrap sample of a list of n examples
 - A new set of size n chosen independently with replacement

```
forall i \in 1, \ldots, n do
    j = rand(1:n); // pick a random number from \{1, 2, ..., n\}
X_{bootstrap}[i,:] = X[j,:] // use the random sample
end
```

- Gives new dataset of n examples, with some duplicated and some missing
 - For large n, approximately 63% of original examples are included (see next slide)
- Bagging: using bootstrap samples for ensemble learning Bootstrap Aggregating
 - Generate several bootstrap samples of the examples (x_i, y_i)
 - Fit a classifier to each bootstrap sample
 - At test time, average the predictions

■ Probability of an arbitrary x_i being selected in a bootstrap sample

```
p(\text{selected at least once in } n \text{ trials})
= 1 - p(\text{not selected in any of } n \text{ trials})
= 1 - (p(\text{not selected in one trial})^n //\text{trials are independent}
= 1 - (1 - \frac{1}{n})^n //prob = \frac{n-1}{n} \text{ for choosing any of the } n-1 \text{ other samples}
\approx 1 - \frac{1}{e} //((1 - \frac{1}{n})^n \to e^{-1} \text{ as } n \to \inf
\approx 0.632
```

Random Forest Ingredient 2: Random Trees

- For each split in a random tree model
 - Randomly sample a small number of possible features (typically \sqrt{d})
 - Only consider these random features when searching for the optimal rule
- Random tree 1: sample(milk, oranges)

 $\begin{array}{c} \textit{milk} > 0.5 \\ \textit{sample(egg, peanut)} & \textit{sample(lactose, gluten)} \\ \textit{egg} > 1 & \textit{lactose} > 0 \\ \end{array}$

Random tree 2:

sample(egg, lactose)

- Splits will tend to use different features in different trees
 - They will still overfit, but hopefully errors will be more independent
- So the average tends to have a much lower test error
- Empirically, random forests are one of the best classifiers
- Fernandez-Delgado et al. [2014]
 - Compared 179 classifiers on 121 datasets
 - Random forests are most likely to be the best classifier

AdaBoost

- A classic boosting algorithm for binary classification is AdaBoost
- AdaBoost assumes we have a base binary classifier that
 - Is simple enough that it does not overfit much
 - Can obtain > 50% weighted accuracy on any dataset.
- Example: decision stumps or low-depth decision trees
 - Easy to modify stumps/trees to use weighted accuracy as score

AdaBoost: Classic Boosting Algorithm

- Overview of AdaBoost:
 - 1. Fit a classifier on the training data
 - 2. Give a higher weight to examples that the classifier got wrong
 - 3. Fit a classifier on the weighted training data
 - 4. Go back to 2
 - Weight gets exponentially larger each time you are wrong.
- Final prediction: weighted vote of individual classifier predictions
 - Trees with higher (weighted) accuracy get higher weight

AdaBoost: Classic Boosting Algorithm

- Are decision stumps a good base classifier?
 - They tend not to overfit
 - Easy to get > 50% weighted accuracy
- Base classifiers that don't work:
 - Deep decision trees (no errors to boost)
 - Decision stumps with infogain (does not guarantee > 50% weighted accuracy)
 - lacktriangle Weighted logistic regression (does not guarantee >50% weighted accuracy)

- AdaBoost with shallow decision trees gives fast/accurate classifiers
 - Classically viewed as one of the best off the shelf classifiers
 - Procedure originally came from ideas in learning theory
- Many attempts to extend theory beyond binary case
 - Led to gradient boosting, which is like gradient descent with trees
- Modern boosting methods:
 - Look like AdaBoost, but don't necessarily have it as a special case

XGBoost

- Boosting has seen a recent resurgence, partially due to XGBoost:
 - A boosting implementation that allows huge datasets
 - Has been part of many recent winners of Kaggle competitions
- As base classifier, XGBoost uses regularized regression trees

- Regression trees used in XGBoost
 - Each split is based on 1 feature
 - Each leaf gives a real-valued prediction
 - Example: How many hours of video games per day?

(Sorry for this example!)

■ We would predict 2.5 hours for a 14-year-old who owns an Xbox

Regression Trees

- How can we fit a regression tree?
- Simple approach:
 - Predict: at each leaf, predict mean of the training y_i assigned to the leaf
 - Weight w_L at leaf L is set to $mean(y_i)$ among y_i at the leaf node
 - Train: set the w_L values by minimizing the squared error

$$f(w_1, w_2, \ldots) = \sum_{i=1}^n (w_{L_i} - y_i)^2$$

- Same speed as fitting decision trees from earlier in the semester
 - Use mean instead of mode, and use squared error instead of accuracy / infogain
- Use greedy strategy for growing tree, as earlier

- Consider an ensemble of regression trees
 - For an example i, they each make a continuous prediction

$$\hat{y}_{i_3}=0.1$$

■ In XGBoost, final prediction is the sum of individual predictions

$$\hat{y}_i = \hat{y}_{i_1} + \hat{y}_{i_2} + \hat{y}_{i_3} + \ldots + \hat{y}_{i_k}$$

= 0.2 + (-0.1) + 0.1 + \ldots + (-0.01)

- Notice we are **not using the mean** as we would with random forests
 - What we do instead?
 - In boosting, each tree is **not individually trying to predict the true** y_i value (we assume they underfit)
 - Instead, each new tree tries to fix the prediction made by the old trees, so that sum is y_i

■ Consider the following *gradient tree boosting* procedure:

```
    Tree[1] = fit(X, y)
    ŷ = Tree[1].predict(X)
    Tree[2] = fit(X, y − ŷ)
    ŷ = ŷ + Tree[2].predict(X)
    Tree[3] = fit(X, y − ŷ)
    ŷ = ŷ + Tree[3].predict(X)
    Tree[4] = fit(X, y − ŷ)
    ŷ = ŷ + Tree[4].predict(X)
```

- **Each** tree is trying to predict *residuals* $(\hat{y}_i y_i)$ of current prediction
 - "True label is 0.9, old prediction is 0.8, so I can improve \hat{y}_i by predicting 0.1"

- Procedure monotonically decreases the training error
 - As long as not all $w_L = 0$, each tree decreases training error
- Can it overfit?
 - It can overfit if trees are too deep or you have too many trees
 - To restrict depth, add L0-regularization (stop splitting if $w_L = 0$)

$$f(w_1, w_1, \ldots) = \sum_{i=1}^n (w_{L_i} - r_i) + \lambda_0 ||w||_0$$

- Only split if you decrease squared error by λ_0 .
- To further fight overfitting, XGBoost also adds L2-regularization of w

$$f(w_1, w_1, \ldots) = \sum_{i=1}^n (w_{L_i} - r_i) + \lambda_0 ||w||_0 + \lambda_2 ||w||^2$$

- Instead of pruning trees if score does not improve, grows full trees
 - And then prunes parts that don't improve score with L0-regularizer added
- Cost of fitting trees in XGBoostis same as usual decision tree cost
 - XGBoost includes a lot of tricks to make this efficient
 - But cannot be done in parallel like random forest Why?
- In XGBoost, it's the residuals that act like the weights in AdaBoost
 - Focuses on decreasing error in examples with large residuals
- How do you maintain efficiency if not using squared error?
 - For non-quadratic losses like logistic, there is no closed-form solution
 - Approximates non-quadratic losses with second-order Taylor expansion
 - Maintains least squares efficiency for other losses (by approximating with quadratic)

Summary

- Ensembles combine predictions of base classifiers
- Averaging
 - Improves predictions of multiple classifiers if errors are independent
- Bagging
 - Ensemble method where we apply same classifier to bootstrap samples
- Boosting
 - Ensemble methods that improve training error
- XGBoost: modern boosting method based on regression trees
 - Each tree modifies the prediction made by the previous trees

Discussion

- In which cases would you **not** use Ensembles?
- How would you handle preprocessing in ensembles?
 - How about feature selection / importance?

Literature

- Chapter 14 in Bishop
- Chapter 11 in Peter Flach's *Machine Learning* (short)

SCIENCE
SCHOOL OF COMPUTER SCIENCE
MACHINE LEARNING

Thank you for your attention!

https://ml.auckland.ac.nz