Lingo基础

2014年4月11日 0:07

总结:

- 1.title 模型取名函数,可有可无
- 2.model/end 模型开始、结束标志,可有可无
- 3.要想以一个符号代表一个长式子,直接写等式即可,lingo默认为约束条件
- 4.为使求解速度加快,可以使用变量初始化,init: ... endinit,因为lingo是上下震荡找最优解的
- 5.数据初始化和数据输入部分不能给集中单独的元素赋值,要想赋值,其它值可以缺省,但还是需以集属性名作为输入部分
- 6.最好只用lingo解线性规划,非线性规划除非变量非常少才使用,否则即使多加几万个变量也要转换为线性规划(P-中位问题)

sets:	sets:	sets:
person/cong,zhu,zhe/:old;	yu/13/:y,x;	yu/Nov2012Jan2013/:y;
<pre>index/cong,zhe/:i;</pre>	endsets	cong/w,q/:i;
endsets	data:	meng(yu,cong);
data:	y=2,?,4;	zhu(yu, meng);
i=1,3;	enddata	endsets
old=2,3,4;	init:	data:
enddata	x=1,,3;	y=1,2,3;
<pre>min=@sum(index(j):old(i));</pre>	endinit	i=1,3;
	<pre>min=@max(yu(i):x*y);</pre>	enddata
	<pre>@for(yu(i):@bnd(1,x,3));</pre>	min=@sum(zhu(l,j,k):y(i));

模版:

对于左边这个模型: cong, zhu, zhe是person集里的成员(其实设置成员名称一般没有什么实际意义,更多是为了起标示符作用,因此,一般采用隐式成员写法),cong, zhe是集index里的成员,old是person集里每个成员的通用属性,i是index集里每个成员的通用属性,1,3则对应index集里每个成员的i属性值,2,3,4则对应person集里每个成员的old属性值。目标函数的index(j)为遍历index集(j从1取到n——index集中成员的个数,j为默认的遍历系数,默认的遍历系数一般为i,j,k,1等,因此,除非特殊情况,不要把属性名写成这些默认的遍历系数),每一次遍历,以j为每项最底层属性角标,然后向外层扩展,得到相应返回值(因此,这就是为什么可以略去脚标的原因),最后通过集函数对所有返回值进行处理(例如,最左边i为最底层属性,遍历后依次返回i(1),i(2),然后向外层扩展,依次做old的脚标,即old(1),old(3),最后sum函数对old(1),old(3)进行相加处理)。对于中间这个模型,用的就是隐式成员说明,y、x是每个成员的通用属性,2,字,4对应每个成员的y属性值(字指在运行时输入值)。当数据不确定或故意缺省时采用,,记录。init代表初始化值,一般用于比较确定条件下的初始化或者非线性规划中。右边为连续派生集,遍历效果相当于嵌套的for循环,若表达式某单项最底层属性没有脚标,则默认用派生集最右边的集脚标。

隐式成员说明:

隐式成员列表形式	示例	所产生集成员
1n	15	1,2,3,4,5
StringMStringN	Car2car14	Car2, Car3, Car4,, Car14
DayMDayN	MonFri	Mon, Tue, Wed, Thu, Fri
MonthMMonthN	OctJan	Oct, Nov, Dec, Jan
MonthYearMMonthYearN	Oct2001Jan2002	Oct2001, Nov2001, Dec2001, Jan2002

结果表达:

object value:目标函数结果

Global optimal solution found at iteration: 迭代的次数, 越少算法越好, 越快速

Variable 模型中的变量	Variable Value 对应最优解	Reduced Cost 对应最优解的微小变化带来的目标函数的变化 率
Row 约束条件的对应编号	Row Slack or Surplus 对应约束条件的剩余值	Dual Price 对应约束的微小变动带来的目标函数变化率

<mark>灵敏度分析</mark>(当系数或者限制条件变化时的最优解、最优基、最优值的变化情况——只针对线性规划) 最优基:

Variabl e	Current Coefficient	Allowable Increase	Allowable Decrease
	当前目标函数系数	系数允许增加量(保证最优解不变,但最优值改 变)	系数允许减少量(保证最优解不变,但最优值改 变)
Row	Current RHS	Allowable Increase	Allowable Decrease
	当前约束条件右边常 数项	常数项允许增加量(保证最优基不变,但最优解、 最优值都改变)	常数项允许减少量(保证最优基不变,但最优解、 最优值都改变)

运算符及函数:

算术运算符		关系运算符		逻辑运算符	
_	取反	=	等于	#not#	否定该操作数的逻辑值, # not # 是一个一元运算符
^	乘方	<=	小于等于	#eq#	若两个运算数相等,则为true; 否则为flase
*	乘	>=	大于等于	#ne#	若两个运算符不相等,则为true;否则为flase
/	除	>(不支 持)	用a+e>b表示(限制e为很小 值)	#gt#	若左边的运算符严格大于右边的运算符,则为true;否则为flase
+	加	< (不支 持)	用a+e <b表示(限制e为很小 值)</b表示(限制e为很小 	#ge#	若左边的运算符大于或等于右边的运算符,则为true;否则为flase
_	减			#lt#	若左边的运算符严格小于右边的运算符,则为true;否则为flase
				#le#	若左边的运算符小于或等于右边的运算符,则为true;否则为flase
				#and#	仅当两个参数都为true时,结果为true; 否则为flase
				#or#	仅当两个参数都为false时,结果为false; 否则为true

符号优先级

高	#not# - (取反)
	^
	* /
	+ -
	#eq# #ne# #gt# #ge# #lt# #le#
	#and# #or#
低	<= = >=

辅助函数	
@if(条件 约束条件,成立返回值,不成立返回值)	约束条件用逻辑运算符,条件用逻辑运算符
@warn ('',条件)	条件为真时,返回写有"下文字的对话框,条件用逻辑运算符

循环函数	
@for (集名 约束条件:表达式)	约束条件用逻辑运算符,表达式用关系运算符
@sum(集名 约束条件:表达式)	约束条件用逻辑运算符
@min(集名 约束条件:表达式)	约束条件用逻辑运算符(@max)

集操作函数	
@in(集名, a,b)	a,b在集中返回1,不在返回0
@size(集名) @index(集名,集成员) @wrap(a,b)	查看集的成员个数 返回集成员在派生集中的脚标,不能用于派生 集 返回a (mod) b+1

变量定界函数	
@bin(x)	限制x为0或1
<pre>@bnd(L,x,U)</pre>	限制L≤x≤U
@free(x)	取消对变量x的默认下界为0的限制,即x可以取任意实数
@gin(x)	限制x为整数

数学函数	
@abs(x)	返回x的绝对值
@sin(x)	返回x的正弦值,x采用弧度制(@cos(x)、@tan(x))
@exp(x)	返回常数e的x次方
@log(x)	返回x的自然对数
@sign(x)	如果x<0返回-1;否则,返回1
@floor(x)	返回x的整数部分。当x>=0时,返回不超过x的最大整数;当x<0时,返回不低于x的最大整数
@smax(x1,x2,,xn)	返回x1, x2,, xn中的最大值(@smin(x1,x2,,xn))

文件函数(@ole为导入excel数据,但有数据多少限制,且很麻烦,忽略)	
@file ('位置文件名')	导入txt文件的数据
@text ('位置文件名')	到处数据到txt文件

概率函数	
a=@qrand(产生随机矩阵返回给a, a必须是集,返回矩阵的元素都在0~1之间,行内元素没关系,行间均匀, 只能在数据输入初始时用
@psn(x)	标准正态分布在x累计函数值(@ptd(x)——t分布)