EEM255 – **Project 2017**

EMG Decomposition

Zaurbek **Tsorojev**

INTRODUCTION

❖ The goal of phase II is to realize an EMG decomposition of a given signal. We want to find the number of neurons responsible for the EMG signal.

This presentation contains the results and figure of 8 building sections of the decomposition, for 3 test databases. It ends with a discussion of the results for each section, and gives different methods to explore that could potentially improve the decomposition.

Note:

- 1. EMG_example_2_fs_2k: I used channel 1
- 2. EMG_example_20s_2000Hz: I used channel 1
- 3. EMG_example_1_90s_fs_2k: I used channel 2

The columns of each step are presented in this order of databases.

INPUT FILE

EMG_example_2_fs_2k

EMG_example_20s_2000Hz

EMG_example_1_90s_fs_2k

FILTER SIGNAL

DETECT SPIKES

Find all the peaks above the threshold.

I noticed that using a slightly higher threshold than the 3*RMS gives a better result for clustering.

Threshold = **4*RMS** of baseline noise

Threshold = **4*RMS** of baseline noise

Threshold = **5*RMS** of baseline noise

ALIGN SPIKES

Plot all the spikes in the same time window.

EXTRACT FEATURES

CLUSTER SPIKES

CLUSTER SPIKES

2D View

CLASSIFY SPIKES

ANALYSIS (1)

3 clusters, but spikes red and green are ≈ same (just opposite amplitude)

2 neurons

3 clusters, and all the spikes are different

3 neurons

3 clusters, and all the spikes are different

3 neurons

ANALYSIS (2)

1110 spikes

- **540** in cluster red
- 159 in cluster blue
- 411 in cluster green

1054 spikes

- 332 in cluster red
- **518** in cluster blue
- 204 in cluster green

1208 spikes

- 486 in cluster red
- **606** in cluster blue
- 116 in cluster green

DISCUSSION (1)

- 1. **Input File:** Plot the EMG data as well as the spectrum to find the cutoff frequency for the filter.
- 2. **Filter Signal:** Differentiating the signal to improve the SNR and applying a high-pass at 150Hz helps removing the noise. The range [100,250]Hz seems to be the best for the cutoff frequency. Beyond this range, the filter does no help clustering and distorts the signal too much for higher cutoff frequency.
- 3. **Detect Spikes:** I noticed best results when using a **4***RMS or **5***RMS threshold. Increasing the threshold will take less spikes and give less clusters. Decreasing it will take too many and also give less clusters.
- 4. Align Spikes: I chose a window of 15ms to align the spikes and to represent them with enough accuracy. It corresponds to 30 samples as the sampling frequency is 2kHz.

DISCUSSION (2)

Extract Features: Using the *PCA* method, I am able to extract the principal components and output a scatterplot on the 3 most significant PC scores.

<u>Important note:</u> Matlab *pca()* function gives slightly variable results each time you run it. There might be a random component inside the method.

- 6. **Cluster Spikes:** Using the *kmeans* method, I group the features from the last step into clusters.
- 7. Classify Spikes: Based on this clustering, I show the plot from step 4, where each spikes is attributed to a cluster (color).
- 8. Analysis: Extract the spike templates allows to see the average action potentials. From that, we can find the number of neurons as being the number of different templates. I also extract the number of spikes for each cluster to see the most 'active' neuron.

CONCLUSION

The EMG decomposition gave me:

- 1. EMG_example_2_fs_2k: 2 neurons for channel 1
- 2. EMG_example_20s_2000Hz: 3 neurons for channel 1
- 3. EMG_example_1_90s_fs_2k: 3 neurons for channel 2

A couple of tracks that can be explored to improve the decomposition:

- Nonlinear Energy Operator (NEO) based spike detection for a better threshold.
- Use a different filter than Butterworth.
- Manually code PCA to optimize it (instead of using the built-in Matlab function).
- Use a different method for clustering than kmeans, such as: clusterdata or linkage.