The Social Cocktail

Scott Hendrickson Data Scientist, Gnip

> @gnip @DrSkippy27

March 6, 2013

Social data has unlimited value and near limitless application

Why mix social data?

<one>

Audience, perspective, coverage

Audience – Volume

Publisher	Daily Activity
Twitter	400M
Tumblr	75M
WordPress Posts	615k
WordPress Comments	1.1M
Disqus	1.3M
Engagement (likes, votes)	2.4M

Gnip

- 4,600 Tweets/second
- 1/2 M unique Tumblr Users/hour
- PowerTrack filtering on data and metadata, PowerTrack Replay, Historical...

3B+ activities/day

Signal or noise?

Con Edison Chelsea

<two> Timing, evolution

Expected: Hurricane

Unexpected: Earthquake

Classifying Events

Туре	Response	Examples
Expected	Approx.	Hurricane Sandy
	Symmetric	Olympics
Unexpected (many obs.)	Social Media Pulse	Beyoncé VMAs
		Mexico earthquake
		Steve Jobs
Unexpected Network (spread) Node	Network	Osama bin Laden
		Whitney Houston
	Models	Syrian dissidents

Social Media Pulse Half-life

time to observe half of the activities

Social media pulse

Probability of an activity from one person,

$$f(t) = \lambda \exp(-\lambda t)$$
, for $t \ge 0$.

Sum random variables $S = X_1 + ... + X_n$ gives probability distribution (PDF),

$$f_{\mathcal{S}}(t) = \frac{\beta^{-\alpha} t^{\alpha-1} \exp(\frac{-t}{\beta})}{\Gamma(\alpha)}$$

Why model half-life?

- predict total story volume
- compare half-lives
- anomalous story evolution

Story Timing

Publisher	Speed
Twitter	Fast
Tumblr	Medium
WordPress Posts	Deliberate
WordPress Comments	Medium
Disqus	Medium
Engagement (likes, votes)	Medium

<three> Content richness

Speed and Richness

Publisher	Speed	Richness
Twitter	Fast	Concise text, links
Tumblr	Medium	Multimedia, text, reblogging
WordPress	Deliberate	Rich text, multimedia
Comments	Medium	Small, medium text, threading
Engagement and Votes	Medium	Specific values

Audience Diversity-Toyota

Audience Diversity-Toyota

Social Cocktail

Thank you!

Follow us @gnip

Presentation at: github.com/DrSkippy27/SBS2013