Задача А. Спортивные программисты

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Ассоциация спортивных программистов Казахстана решила организовать забег перед Олимпиадой. В забеге приняло участие N человек. На старте бегуны расположились друг за другом в линию в порядке от 1 до N.

Когда был дан свисток, участники забега ринулись с мест, при этом поддерживая порядок кто за кем бежит. Участник с номером 1 бежит первым, а участник с номером N — последним. Но какой же это забег, если никто никого не обгоняет? Обгон происходит, когда у одного из участников развязываются шнурки на кроссовках. Пока бегун завязывает свои шнурки, следующие за ним участники могут его обогнать.

Рассмотрим на примере. При N=5 изначальная линия бегунов выглядит так: 1 2 3 4 5. В процессе у участника с номером 2 развязываются шнурки. Пока он их завязывает, предположим, что двоим участникам удается его обогнать. Тогда порядок участников становится: 1 3 4 2 5. Если теперь у бегуна с номером 4 возникнут проблемы со шнурками, из-за чего он пропустит, например, одного человека вперед, то линия станет: 1 3 2 4 5.

Вам дается N и порядок в котором бегуны финишировали. Вам необходимо узнать минимальное количество участников, у которых могли развязаться шнурки во время забега.

Формат входных данных

В первой строке находится одно целое число $N(1 \le N \le 200000)$.

Во второй строке находятся N целых чисел $p_1, p_2, \ldots, p_N (1 \leqslant p_i \leqslant N, p_i \neq p_j$ если $i \neq j)$ — первым финишировал бегун p_1 , вторым был p_2, \ldots , последним — p_N .

Формат выходных данных

Выведите одно целое число — ответ на задачу.

Система оценки

Подзадача	Дополнительные ограничения	Баллы	Необходимые подзадачи
0	Примеры	0	_
1	n=2	15	_
2	$n \leqslant 8$	20	0,1
3	$n \leqslant 2000$	30	0, 1, 2
4	_	35	0, 1, 2, 3

Примеры

стандартный ввод	стандартный вывод		
6	2		
1 2 5 4 3 6			
3	0		
1 2 3			

Замечание

Разберем первый пример. Изначальная линия: 1 2 3 4 5 6. Один из возможных вариантов событий:

Сначала развязался шнурок у бегуна с номером 4 и его обогнал 5-й. Линия стала равной $1\ 2\ 3\ 5$ $4\ 6$. После этого развязался шнурок у бегуна с номером 3 и его обогнали бегуны 5 и 4. Линия стала равной $1\ 2\ 5\ 4\ 3\ 6$.

Можно показать, что если бы шнурки развязались у менее чем двух бегунов, тогда невозможно было бы получить нужный порядок.

Задача В. Уникальная задача

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Легендарный «LeGross» Арлан дал следующую задачу своим фанатам:

Вам даны два массива целых чисел a и b размера n и m, соответственно. Все элементы массива b попарно различны.

Вам нужно найти количество способов разделить массив a на m отрезков $(l_1, r_1), \ldots, (l_m, r_m)$ так, чтобы выполнялись следующие условия:

- ullet Каждый элемент массива a принадлежит ровно одному отрезку.
- Для каждого $1 \le i \le m$, число b_i встречается ровно один раз среди чисел $(a_{l_i}, \dots, a_{r_i})$ (отрезки нумеруются по возрастанию левой границы).

Так как ответ может быть слишком большим, выведите его остаток при делении на 998244353.

Формат входных данных

Первая строка содержит из два целых числа — n и m ($1 \le n, m \le 5 \cdot 10^5$).

Вторая строка содержит n целых чисел a_1, a_2, \ldots, a_n $(1 \le a_i \le 5 \cdot 10^5)$ — массив a.

Третья строка содержит m целых чисел b_1, b_2, \ldots, b_m $(1 \le b_i \le 5 \cdot 10^5)$ — массив b.

Формат выходных данных

Выведите одно целое число — ответ на задачу Арлана по модулю 998244353.

Система оценки

Подзадача	Дополнительные ограничения	Баллы	Необходимые подзадачи
0	Примеры	0	_
1	$m = 1, n \leqslant 10^5$	13	_
2	$n, m \leqslant 300$	25	0
3	$n, m \leqslant 3000$	22	2
4	_	40	3

Примеры

стандартный вывод		
1		
0		

Замечание

В первом примере можно разделить массив на отрезки (1,2) и (3,4).

Задача С. Восстановление строки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Вам дана строка s длины n, состоящая из строчных латинских букв и символов '?'. Также, вам даны m условий. Каждое условие описывается тремя целыми числами l_1 , l_2 и x, которые означают что подстрока $(s_{l_1} \dots s_{l_1+x-1})$ должна быть равна подстроке $(s_{l_2} \dots s_{l_2+x-1})$.

Вам нужно заменить каждый символ '?' на строчную латинскую букву так чтобы выполнялись все m условия. Среди всех таких строк, найдите **лексикографически минимальную**.

Формат входных данных

В первой строке находится одно целое число $n(1 \le n \le 300000)$.

Во второй строке находится строка s, состоящая из n строчных латинских букв и символов '?'.

В третьей строке находится одно целое число $m(1 \le m \le 300000)$.

В следующих m строках записаны по три целых числа l_1, l_2 и x $(1 \le l_1, l_2 \le n-x+1)$, означающие что подстрока $(s_{l_1} \dots s_{l_1+x-1})$ равна подстроке $(s_{l_2} \dots s_{l_2+x-1})$.

Формат выходных данных

Выведите лексикографически минимальную строку, которая удовлетворяет всем условиям, либо -1, если такой строки не существует.

Система оценки

Подзадача	Дополнительные ограничения	Баллы	Необходимые подзадачи
0	$n, m \leq 10, s_i = \{a, b, ?\}$	7	_
1	$n, m \leqslant 1000, count(`?') = 0$	8	_
2	$n, m \leqslant 300000, count('?') = 0$	20	1
3	$count('?') \leqslant 100$	17	1, 2
4	$n, m \leqslant 1000$	13	0
5	$n, m \leqslant 300000$	35	0, 1, 2, 3, 4

count(`?') — количество вопросительных знаков в строке.

Примеры

стандартный ввод	стандартный вывод
10	abbabbbbbb
a?b?b???b?	
3	
1 4 3	
7 9 2	
3 10 1	
6	-1
a????b	
5	
1 2 1	
2 3 1	
3 4 1	
4 5 1	
5 6 1	