Planche d'oral de Mathématiques du CCINP

MPI Session 2025

Premier exercice sur huit points

Exercice 102 concernant le minimum de variables aléatoires.

Second exercice sur douze points

Pour $a \in [-1; 1[$, on définit pour x > 0, et $n \in \mathbb{N}^*$:

$$u_n(x) = \frac{a^n}{x+n}$$

- 1. Étudier les convergences de $\sum_{n>0} u_n$. Si existence, on note $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.
- **2.** Montrer que S est continue.
- **3.** Montrer que S est de classe \mathcal{C}^1 sur \mathbb{R}_+^*

Second exercice - Corrigé

1. Pour x > 0, $n \in \mathbb{N}^*$, et $a \in]-1;1[$:

$$|u_n(x)| \le \frac{|a|^n}{n}$$

La majoration est indépendante de la variable de u_n . Ainsi :

$$||u_n||_{\infty}^{\mathbb{R}_+^*} \le \frac{|a|^n}{n}$$

$$\le |a|^n \quad \text{car } n \in \mathbb{N}^*$$

Comme $a \in]-1;1[, \sum_{n>0}|a|^n$ converge. Par théorème de comparaison de séries à termes positifs par majoration, $\sum_{n>0}u_n$ converge normalement sur \mathbb{R}_+^* si $a \in]-1;1[$.

Pour a=-1, Le critère spécial des séries alternées s'applique pour tout x: il y a convergence simple de $\sum_{n>0} u_n$ sur \mathbb{R}_+^* . En outre :

$$|R_n(x)| \le |u_{n+1}|$$

$$= \frac{1}{n+1+x}$$

$$\le \frac{1}{n+1}$$

La majoration est indépendante de la variable de $\mathbb{R}_n.$ Ainsi :

$$||R_n||_{\infty}^{\mathbb{R}_+^*} \le \frac{1}{n+1} \xrightarrow{n \to +\infty} 0$$

On a donc la convergence uniforme sur \mathbb{R}_+^* dans le cas où a=-1. Cependant, la convergence normale est perdue :

$$2 \ge ||u_n||_{\infty}^{\mathbb{R}_+^*} \ge |u_n(x)| = \frac{1}{n+x} \underset{n \to +\infty}{\sim} \frac{1}{n}$$

Par théorème de comparaison de séries à termes positifs par minoration avec un terme semblable au terme général de la série harmonique, $\sum_{n>0} u_n$ ne converge pas normalement sur \mathbb{R}_+^* .

- 2. D'après la question précédente on a convergence uniforme sur \mathbb{R}_+^* de $\sum_{n>0} u_n$. Or $(\sum_{i=1}^n u_i)_{n\in\mathbb{N}^*}$ est une suite de fonctions continues sur \mathbb{R}_+^* , d'où la continuité de sa limite uniforme.
- 3. On applique le théorème de la classe \mathcal{C}^1 d'une limite uniforme :
 - $\sum_{n>0} u_n$ converge simplement sur \mathbb{R}_+^* . On le doit à la première question.
 - pour n > 0 et a fixé, u_n est de classe \mathcal{C}^1 :

$$u'_n(x) = \frac{-a^n}{(n+x)^2}$$

 $-\sum_{n>0} u'_n$ converge uniformément sur \mathbb{R}_+^* . En effet :

$$|u_n'(x)| \le \frac{1}{n^2}$$

La majoration est indépendante de la variable de u'_n . Ainsi :

$$\|u_n'\|_{\infty}^{\mathbb{R}_+^*} \le \frac{1}{n^2}$$

Par comparaison de séries à termes positifs par majoration avec le terme général d'une série de Riemann convergente, on a la convergence normale, et donc la converge uniforme.

D'après le théorème, S est de classe C^1 sur \mathbb{R}_+^* .