Soft Physics Deformation Script Documentation

Overview

The Soft Physics Deformation Script is a Unity component designed to produce dynamic, wave-like deformation effects on 3D meshes during collisions. It simulates soft, elastic responses for visually engaging interactions in real-time.

Installation

- 1. Add the Script: Attach the script to a GameObject with the following components:
 - o MeshFilter: Holds the mesh to be deformed.
 - MeshCollider: Enables collision detection.
 - o Rigidbody: Provides the physics interactions required for deformation.
- 2. Verify Mesh Compatibility: Ensure the GameObject uses a deformable mesh (set to dynamic if applicable).

Script Parameters

Deformation Properties

- waveAmplitude
 - Defines the intensity of vertex displacement caused by collisions. Higher values create more dramatic deformations.
- waveFrequency
 - Controls the wavelength of the deformation waves. A lower frequency creates broader waves, while higher values produce finer ripples.
- waveSpeed
 - Adjusts the propagation speed of the deformation waves across the mesh.
- smoothing
 - Determines the smoothness of vertex interpolation. Higher values result in softer transitions between deformed and non-deformed areas.
- waveSpread
 Specifies how quickly the deformation dissipates from the point of impact.

Physics Properties

damping
 Gradually reduces the collision force over time, simulating energy loss.

stiffness

Regulates how the collision force translates into deformation. Higher stiffness values produce more resistant materials.

gravityInfluence

Adds a vertical deformation bias, enhancing the effect at higher positions relative to the ground.

maxWaveForce

Sets a cap on the maximum deformation force to prevent unrealistic distortions.

collisionCooldown

Prevents repeated collision processing in quick succession, ensuring stable performance.

Customization Tips

Material Behaviors:

- o Increase waveAmplitude for rubbery or soft material effects.
- Reduce smoothing for sharp, jagged deformations.

Wave Characteristics:

- Use lower waveFrequency and slower waveSpeed for more dramatic, slowmotion effects.
- o Increase waveSpread for broader, more diffuse deformations.

Gravity Effects:

 Experiment with gravityInfluence to create visually dynamic top-heavy or ground-based deformation behaviors.

Performance Considerations

Best Mesh Types:

Designed for low-polygon meshes to ensure smooth, real-time performance.

Optimization:

The script is lightweight and optimized for minimal computational overhead, making it suitable for most real-time applications.

Example Use Cases

Soft Body Simulation:

Simulate objects like jelly, rubber, or other flexible materials.

• Dynamic Mesh Deformation:

Add realism to interactive objects like collapsing walls or deformable terrain.

• Impact Visualization:

Create visually engaging collision effects for gameplay or visual demos.

Limitations

• Simplified Physics:

The script is not a complete soft-body physics simulation but focuses on wave-based deformation.

Mesh Complexity:

High-polygon or overly complex meshes may impact performance or reduce visual quality.

Realism:

Works best for stylized effects rather than precise material behavior simulations.

Troubleshooting

1. Required Components:

Ensure the GameObject has a MeshFilter, MeshCollider, and Rigidbody attached.

2. Dynamic Mesh Settings:

Check that the mesh is set to dynamic or deformable in Unity's settings.

3. Parameter Adjustments:

Fine-tune parameters like waveAmplitude and waveSpread to achieve your desired effect.