Math 326 – Homework 04 (9.2 - 9.5)Due (via upload to Canvas) Friday, February 18, 2022 at 11:59 PM

1. Let X_1, X_2, \ldots, X_n be a random sample from a uniform distribution on the interval $(\theta, \theta + 1)$. Let

$$\hat{\theta}_1 = \bar{X} - \frac{1}{2}$$
, and $\hat{\theta}_2 = X_{(n)} - \frac{n}{n+1}$.

- (a) Show that both $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimators of θ .
- (b) Show that both estimators are consistent estimators.
- (c) Find the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$
- (d) Which is the better estimator and why?
- 2. Suppose the population has a gamma distribution and we know β but α is unknown. Let X_1, X_2, \ldots, X_n denote a random sample from the distribution. Determine the likelihood function, compute the factorization, and using the Factorization Theorem, show that $T = \sum_{i=1}^{n} \ln(X_i)$ is a sufficient statistic for α .
- 3. Let X_1, X_2, \ldots, X_n be iid from a Bernoulli distribution with probability p. We are going to construct and MVUE for variance pq. Recall that in class we showed that $S = \sum X_i$ is a sufficient statistic for p.
 - (a) Define the statistic

$$T = \tau(x_1, \dots, x_n) = \begin{cases} 1, & \text{if } X_1 = 1 \text{ and } X_2 = 0 \\ 0, & \text{otherwise} \end{cases}.$$

Show that τ is an unbiased estimator for pq.

(b) Show that

$$P(T = 1|S = s) = \frac{s(n-s)}{n(n-1)}.$$

(c) Using the Rao-Blackwell Theorem states that to find an MVUE of pq, we define a new statistic $\phi(s) = E[T|S=s]$. Show that

$$\phi(s) = \frac{n}{n-1} \left[\bar{X} \left(1 - \bar{X} \right) \right]$$

is the minimum variance unbiased estimator of pq.