Home ► Electrical Engineering ► Engr 17 F16 Tatro ► Homework ► Homework 4 - Chap 3

Started on Monday, 19 September 2016, 11:59 AM

State Finished

Completed on Wednesday, 21 September 2016, 12:19 PM

Time taken 2 days

Grade 100.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

CQ3.05b

Given:

vs = 96 Volts R1 = 715 Ω (Ohms) R2 = 130 Ω (Ohms)

Find the voltage v_2 .

Answer: 14.76

Calculated question

The correct answer is: 14.77

Correct

Correct

Mark 10.00 out of 10.00

P3.16_9ed

The no-load voltage across R₂ in the voltage-divider circuit shown is 8 V. The smallest load resistor that is ever connected to the divider is 3.6 k Ω (kilo Ohm). When the divider is loaded, v_O is not to drop below 7.5V.

a) Design the divider circuit to meet the specifications just mentioned. Specify the numerical values of R_1 and R_2 when you use a single standard value for each resistor from the textbook's Appendix H. You may use up to two resistors in combination for R₁ and up to another two resistors in combination for R_2 .

$$R_1 = \boxed{1200}$$
 \checkmark Ω (Ohms) $R_2 = \boxed{300}$ \checkmark Ω (Ohms)

b) Assume the power ratings of commercially available resistors are 1/16, 1/8, 1/4, 1, and 2 W. What power rating would you specify?

$$P_{R1,rating} = \boxed{1}$$
 Watt $P_{R2,rating} = \boxed{.25}$ Watt

Numeric Answer

(a)
$$R_1 = 1,200 \Omega$$
 $R_2 = 303 \Omega$

(a) R
$$_1$$
 = 1,200 Ω $$\rm R_2$ = 303 Ω (b) $\rm P_{R1,rating}$ = 1 Watt $\rm P_{R2,rating}$ = 0.25W = 1/4 Watt

Correct

Mark 10.00 out of 10.00

CQ3.05c

Given:

vs = 88 Volts R1 = 651 Ω (Ohms) R2 = 200 Ω (Ohms)

Find the current i. i = ?? mA (milli A)

Answer: 103.41

Calculated question

The correct answer is: 103.41

Correct

Correct

Mark 10.00 out of 10.00

P3.11_9ed

a) Find v_{θ} and i_{θ} .

$$v_0 = 16$$
 Volts $i_0 = 160$ vmA (milli A)

b) Find the power dissipated in the 6 Ω (Ohm) resistor.

$$P_{6\Omega} = \boxed{15.36}$$
 Watts

c) Find the power absorbed/delivered by the current source.

$$P_{2.4A} = \boxed{57.6}$$
 Watts

"-" = "delivering" and "+" = "absorbing"

Numeric Answer

a)
$$v_0 = 16 \text{ V}$$
 $i_0 = 0.16 \text{ A}$
b) $P_{6\Omega} = 15.36 \text{ W}$
c) $P_{2.4A} = -57.6 \text{ W}$

b)
$$P_{00} = 15.36 \text{ W}$$

c)
$$P_{24A} = -57.6 \text{ W}$$

Correct

Correct

Mark 10.00 out of 10.00

P3.10_9ed

a) Find the power dissipated in the 5 Ω (Ohm) resistor.

b) Find the power dissipated in the 6 Ω (Ohm) resistor.

$$P6\Omega = 150$$
 Watts

"-" = "delivering" and "+" = "absorbing"

Numeric Answer

a)
$$P_{50} = 80 \text{ W}$$

a)
$$P_{5\Omega} = 80 \text{ W}$$

b) $P_{6\Omega} = 150 \text{ W}$

Correct

Correct

Mark 10.00 out of 10.00

P3.24_10ed

a) Use current division to find the current in the 50 Ω (Ohm) resistor..

$$I_{50\Omega} = \boxed{18}$$
 wA

b) Use $I_{50\Omega}$ result from part (a) and current division to find the current in 70 Ω (Ohm) resistor.

$$I_{70\Omega} = \boxed{7.2}$$
 mA

Numeric Answer

a)
$$I_{50W} = 18 \text{ mA}$$

b)
$$I_{70\Omega} = 7.2 \text{ mA}$$

Correct

Correct

Mark 10.00 out of 10.00

AP3.04_9ed

a) Use voltage division to determine the voltage v_{Ω} across the 40 Ω (Ohm) resistor.

$$v_0 = 20$$
 Volts

b) Use v_O from part a) to determine the current through the 40 Ω (Ohm) resistor, and use this current and current division to calculate the current in the 30 Ω (Ohm) resistor.

$$I_{30\Omega} = \boxed{166.67}$$
 wA (milli A)

c) How much power is absorbed by the 50 Ω (Ohm) resistor?

$$P_{50\Omega} = \boxed{347.22}$$
 wW (milli W)

Numeric Answer

a)
$$v_0 = 20 \text{ V}$$

b)
$$I_{30\Omega} = 166.67 \text{ mA}$$

c)
$$P_{50\Omega} = 347.22 \text{ mW}$$

Correct

Correct

Mark 10.00 out of 10.00

Numeric Answer

$$v_0 = 33.75 \text{ V}$$

The correct answer is: 33.75

Correct

Correct

Mark 10.00 out of 10.00

P3.30_10ed

Find the voltage v_1 and v_2 using voltage and/or current division.

$$v_I = \boxed{0.56}$$
 Volts

$$v_2 = \boxed{0.33}$$
 Volts

Numeric Answer

$$v_1 = 5/9 \text{ V} = 0.556 \text{ Volts}$$

 $v_2 = 3/9 \text{ V} = 0.333 \text{ Volts}$

Correct

Answer: 9

Numeric Answer

$$v_x = 9 \text{ V}$$

The correct answer is: 9

Correct