

ROBERT v 1.2.1 2025/08/05 18:55:27

How to cite: Dalmau, D.; Alegre Requena, J. V. WIREs Comput Mol Sci. 2024, DOI: 10.1002/WCMS.1733



# Section A. ROBERT Score

This score is designed to evaluate the models using different metrics.

# No PFI (standard descriptor filter):

Model = RF · Train:Validation:Test = 81:9:10 Points(train+valid.):descriptors = 1008:6 Score = 7 / 10

# **MODERATE**



Train:  $R^2 = 0.92$ , MAE = 0.2, RMSE = 0.62 Valid. :  $R^2 = 0.84$ , MAE = 0.31, RMSE = 0.78 Test:  $R^2 = 0.69$ , MAE = 0.43, RMSE = 1.1

# Severe warnings

No severe warnings detected

## **Moderate warnings**

- Uneven y distribution (Section C)
- Potential "faulty" outliers (Section E)

### Overall assessment

Decent model, but it has limitations

# PFI (only most important descriptors):

Model = RF · Train:Validation:Test = 81:9:10 Points(train+valid.):descriptors = 1008:4 Score = 6 / 10

# **WEAK**



Train:  $R^2 = 0.87$ , MAE = 0.38, RMSE = 0.78 Valid.:  $R^2 = 0.9$ , MAE = 0.44, RMSE = 0.91 Test:  $R^2 = 0.51$ , MAE = 0.61, RMSE = 1.5

#### Severe warnings

No severe warnings detected

## **Moderate warnings**

- Uneven y distribution (Section C)
- Potential "faulty" outliers (Section E)

### **Overall assessment**

The model is unreliable

ROBERT v 1.2.1 Page 1 of 8

# Section B. Advanced Score Analysis

This section explains each component that comprises the ROBERT score.

# 1. Model vs "flawed" models (3 / 3

The model predicts right for the right reasons.

Pass: +1, Unclear: 0, Fail: -1. Details here.



## 1. Model vs "flawed" models (3 / 3

The model predicts right for the right reasons. Pass: +1, Unclear: 0, Fail: -1. *Details here.* 



# 2. Predictive ability of the model (0 / 2 )

Low predictive ability with  $R^2$  (test) = 0.69.  $R^2$  0.70-0.85: +1,  $R^2$  >0.85: +2.

# 2. Predictive ability of the model (0 / 2 )

Low predictive ability with  $R^2$  (test) = 0.51.  $R^2$  0.70-0.85: +1,  $R^2$  >0.85: +2.

#### 3. Cross-validation (5-fold CV) of the model

Overfitting analysis on the model with 3a and 3b:

3a. CV predictions train + valid. (1 / 2 )

Moderate predictive ability with  $R^2$  (5-fold CV) = 0.8.  $R^2$  0.70-0.85: +1,  $R^2$  >0.85: +2.



#### 3. Cross-validation (5-fold CV) of the model

Overfitting analysis on the model with 3a and 3b:

3a. CV predictions train + valid. (0 / 2 )

Low predictive ability with  $R^2$  (5-fold CV) = 0.68.  $R^2$  0.70-0.85: +1,  $R^2$  >0.85: +2.



ROBERT v 1.2.1 Page 2 of 8

3b. Avg. standard deviation (SD) (2 / 2 Low variation, 4\*SD (test) = 3.7 (15% y-range).

4\*SD 25-50% y-range: +1, 4\*SD < 25% y-range: +2. *Details here.* 



3b. Avg. standard deviation (SD) (2 / 2

Low variation, 4\*SD (test) = 4.5 (19% y-range). 4\*SD 25-50% y-range: +1, 4\*SD < 25% y-range: +2. Details here.



# 4. Points(train+valid.):descriptors (1 / 1

Decent number of descps. (ratio 1008:6). 5 or more points per descriptor: +1.

# 4. Points(train+valid.):descriptors (1 / 1 ===)

Decent number of descps. (ratio 1008:4). 5 or more points per descriptor: +1.



# Section C. Distribution of y Values

This section shows the distribution of y values within the training and validation sets.



# 200 - Q1 Q2 Q3 Q4 4 points 175 - 150 - 25 - 0 0 5 10 15 20 25 IDT ms values

#### y distribution analysis

x WARNING! Your data is not uniform (Q3 has 1 points while Q1 has 968)

#### y distribution analysis

x WARNING! Your data is not uniform (Q3 has 1 points while Q1 has 968)

ROBERT v 1.2.1 Page 3 of 8



# Section D. Feature Importances

This section presents feature importances measured using the validation set.



Permutation feature importances (PFIs) of RF\_90\_No\_PFI



Pearson's r heatmap\_No\_PFI



**Correlation analysis** 

o Correlations between variables are acceptable



Permutation feature importances (PFIs) of RF\_90\_PFI



Pearson's r heatmap\_PFI



# **Correlation analysis**

o Correlations between variables are acceptable

ROBERT v 1.2.1 Page 4 of 8



# Section E. Outlier Analysis

This section detects outliers using the standard deviation (SD) of errors from the training set.

#### No PFI (standard descriptor filter):

# Outliers (max. 10 shown)

Train: 33 outliers out of 907 datapoints (3.6%)

- 101 (7.4 SDs)
- 102 (6.0 SDs)
- 105 (3.2 SDs)
- 292 (5.9 SDs)
- 293 (6.2 SDs)
- 294 (6.4 SDs)
- 204 (0.4 000)
- 295 (6.5 SDs)
- 296 (3.0 SDs)- 297 (2.4 SDs)
- 300 (3.0 SDs)

Validation: 6 outliers out of 101 datapoints (5.9%)

- 322 (9.7 SDs)
- 524 (3.4 SDs)
- 648 (2.2 SDs)
- 662 (2.9 SDs)
- 664 (2.1 SDs)
- 989 (3.4 SDs)

Test: 11 outliers out of 112 datapoints (9.8%)

- 301 (9.8 SDs)
- 140 (2.3 SDs)
- 560 (6.3 SDs)
- 1118 (2.7 SDs)
- 683 (3.9 SDs)
- 991 (5.5 SDs)
- 363 (4.5 SDs)
- 362 (6.0 SDs) - 710 (2.4 SDs)
- 324 (6.3 SDs)

# 10.0 7.5 5.0 9 0.0 -2.5 -5.0 -7.5 -10.0 -7.5 -5.0 -2.5 SD of the errors

## PFI (only most important descriptors):

# Outliers (max. 10 shown)

Train: 33 outliers out of 907 datapoints (3.6%)

- 27 (3.1 SDs)
- 292 (2.5 SDs)
- 293 (2.8 SDs)
- 294 (3.0 SDs)
- 295 (3.1 SDs)
- 296 (5.9 SDs)
- 298 (5.5 SDs)
- 299 (3.8 SDs)
- 300 (4.0 SDs) - 302 (7.1 SDs)

Validation: 6 outliers out of 101 datapoints (5.9%)

- 319 (6.3 SDs)
- 322 (6.5 SDs)
- 444 (2.9 SDs)
- 524 (3.1 SDs)
- 662 (2.8 SDs)
- 664 (2.5 SDs)

Test: 11 outliers out of 112 datapoints (9.8%)

- 301 (7.0 SDs)
- 560 (6.9 SDs)
- 1118 (3.1 SDs)
- 683 (3.3 SDs)
- 378 (3.3 SDs)
- 991 (1.4e+01 SDs)
- 363 (2.9 SDs)
- 362 (4.2 SDs)
- 710 (3.4 SDs)
- 324 (6.2 SDs)



ROBERT v 1.2.1 Page 5 of 8

#### Section F. Model Screening

This section compares different combinations of hyperoptimized algorithms and partition sizes.







# Section G. Reproducibility

This section provides all the instructions to reproduce the results presented.

# 1. Download these files (the authors should have uploaded the files as supporting information!):

- CSV database (JetFuel\_Ignition.csv)

# 2. Install and adjust the versions of the following Python modules:

- Install ROBERT and its dependencies: conda install -y -c conda-forge robert
- Adjust ROBERT version: pip install robert==1.2.1
- Install scikit-learn-intelex: pip install scikit-learn-intelex==2024.7.0

(if scikit-learn-intelex is not installed, slightly different results might be obtained)

# 3. Run ROBERT using this command line in the folder with the CSV database:

python -m robert --names "Point" --y "IDT ms" --model "[RF,GB,NN]" --csv name "JetFuel Ignition.csv"

# 4. Execution time, Python version and OS:

Originally run in Python 3.12.2 using Linux #1 SMP Fri Apr 20 16:44:24 UTC 2018

Total execution time: 473.05 seconds (the number of processors should be specified by the user)

ROBERT v 1.2.1 Page 6 of 8



# Section H. Transparency

This section contains important parameters used in scikit-learn models and ROBERT.

# 1. Parameters of the scikit-learn models (same keywords as used in scikit-learn):

#### No PFI (standard descriptor filter): PFI (only most important descriptors):

sklearn model: RandomForestRegressor sklearn model: RandomForestRegressor

random state: 0 random state: 43 names: Point names: Point n estimators: 5 n estimators: 5 max depth: 60 max depth: 5 max features: 1.0 max features: 1.0 min samples split: 2 min samples split: 2 min\_samples\_leaf: 1 min\_samples\_leaf: 1

min\_weight\_fraction\_leaf: 0 min\_weight\_fraction\_leaf: 0

ccp\_alpha: 0 ccp\_alpha: 0 oob\_score: False oob\_score: True max\_samples: 0.75 max\_samples: 0.75

# 2. ROBERT options for data split (KN or RND), predict type (REG or CLAS) and hyperopt error (RMSE, etc.):

#### No PFI (standard descriptor filter): PFI (only most important descriptors):

split: KN split: KN type: reg type: reg

error\_type: rmse error\_type: rmse



# Section I. Abbreviations

Reference section for the abbreviations used.

ACC: accuracy KN: k-nearest neighbors **REG:** Regression ADAB: AdaBoost MAE: root-mean-square error RF: random forest

CSV: comma separated values RMSE: root mean square error MCC: Matthew's correl. coefficient

**CLAS:** classification ML: machine learning RND: random

CV: cross-validation MVL: multivariate lineal models SHAP: Shapley additive explanations

F1 score: balanced F-score NN: neural network VR: voting regressor

GB: gradient boosting PFI: permutation feature importance R2: coefficient of determination GP: gaussian process

ROBERT v 1.2.1 Page 7 of 8

#### Miscellaneous

General tips to improve the models and instructions to predict new values.

#### Some general tips to improve the score

1. Adding meaningful datapoints might help to improve the model. Also, using a uniform population of datapoints across the whole range of y values usually helps to obtain reliable predictions across the whole range. More information about the range of y values used is available in Section C.

2. Adding meaningful descriptors or replacing/deleting the least useful descriptors used might help. Feature importances are gathered in Section D.

#### How to predict new values with these models?

- 1. Create a CSV database with the new points, including the necessary descriptors.
- 2. Place the CSV file in the parent folder (i.e., where the module folders were created)
- 3. Run the PREDICT module as 'python -m robert --predict --csv\_test FILENAME.csv'.
- 4. The predictions will be shown at the end of the resulting PDF report and will be stored in the last column of two CSV files called MODEL\_SIZE\_test(\_No)\_PFI.csv, which are in the PREDICT folder.

ROBERT v 1.2.1 Page 8 of 8