Chapitre XVII

Fonctions Trigonométriques

I. DÉFINITION ET PROPRIÉTÉS

A. RAPPEL

Soit un réel x et M le point correspondant sur le cercle trigonométrique dans une repère orthonormé (O ; $\vec{\imath}$, $\vec{\jmath}$)

Le cosinus de x est noté cos(x), où cos(x) est l'abscisse du point M. Le sinus de x est noté sin(x), où sin(x) est l'ordonnée du point M.

FIGURE 17.1. – Cercle Trigonométrique

B. Définitions

La fonction qui à tout réel x associe le nombre $\cos(x)$ est appelée fonction cosinus. La fonction qui à tout réel x associe le nombre $\sin(x)$ est appelée fonction sinus.

C. Propriété

Quel que soit le réel x, $\cos(-x) = \cos(x)$, la fonction est donc paire. Quel que soit le réel x, $\sin(-x) = -\sin(x)$, la fonction est donc impaire.

D. Propriété (Periodicité)

Pour tout réel x, $\cos(x+2\pi) = \cos(x)$ et $\sin(x+2\pi) = \sin(x)$

Les fonctions cosinus et sinus sont donc périodiques de période 2π (2π -périodiques)

E. REMARQUE

Ces deux propriétés permettent de réduire l'intervalle d'étude des fonctions cosinus et sinus à $[\ 0\ ;\ \pi\]$

Par parité, on peut déduire $[-\pi; 0]$, donc $[-\pi; \pi]$.

Par périodicité on peut déduire les résultats sur $\mathbb R$

II. DÉRIVABILITÉ

A. ÉTUDE DES FONCTIONS SINUS ET COSINUS

1. Théorème

Les fonctions sinus et cosinus sont dérivables sur \mathbb{R} , et pour tout réel x:

$$\sin'(x) = \cos(x)$$
 et $\cos'(x) = -\sin(x)$

2. Tableaux de Variation

x	0	$\frac{\pi}{2}$	π	х	0	$\frac{\pi}{2}$	π
$\cos'(x) = -\sin(x)$	0	_	0	$\sin'(x) = \cos(x)$	+	0	+
cos	1 -	_0~	-1	sin	0	, 1	0

FIGURE 17.2. – Tableaux de Variation des Fonctions cosinus et sinus

3. Courbes Représentatives

FIGURE 17.3. – Représentation Graphique des Fonctions cosinus et sinus

B. Complément

1. Théorème

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\cos\left(x - \frac{\pi}{2}\right)}{x} = 1$$

A. DÉMONSTRATION

La fonction sinus est continue et dérivable en 0 :

$$\lim_{h \to 0} \frac{\sin(0+h) - \sin(0)}{h} = \sin'(0) = \cos(0) = 1$$

$$\lim_{h \to 0} \frac{\cos(-\frac{\pi}{2} + h) - \cos(-\frac{\pi}{2})}{h} = \cos'(-\frac{\pi}{2}) = -\sin(-\frac{\pi}{2}) = 1$$