INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY NEW DELHI

Department of Computer Science & Engineering

CSE 556: Natural Language Processing (NLP)

Prof. Shad Akhtar

Baseline Results

Anant Kumar Kaushal (2022067) Anikait Agrawal (2022072) Ansh Varshney (2022083)

Procedure Description:

1. Seed Initialization:

 set_seed(seed=42) sets seeds across Python's random, NumPy, and PyTorch libraries for reproducibility.

2. Dataset Loading:

 Training and validation datasets are loaded from CSV files (train.csv, validation.csv) into Pandas DataFrames.

3. Dataset Conversion:

 DataFrames are converted into Hugging Face Datasets (Dataset.from_pandas) for compatibility with Hugging Face Transformers.

4.Preprocessing Function (preprocess_function()):

- Combines the intent (csType) and hate speech (hatespeech) into a single formatted input string: "intent: [INTENT] hatespeech: [HATESPEECH]".
- Tokenizes the combined input and target counterspeech using BART tokenizer (BartTokenizer.from_pretrained('facebook/bart-b ase')), with truncation and padding set to a maximum length of 256 tokens.

 Labels (target counterspeech) are tokenized separately using tokenizer's target tokenizer context (tokenizer.as_target_tokenizer()).

5. Dataset Formatting:

 Preprocessed datasets are formatted into PyTorch tensors (set_format) for input_ids, attention mask, and labels.

6. Model Initialization:

- Loads pre-trained BART model (facebook/bart-base) for sequence-to-sequence generation.
- Initializes DataCollatorForSeq2Seq for dynamic padding during batch processing.

7. Metrics Setup (compute_metrics()):

- Computes BLEU score (lexical overlap) and BERTScore (semantic similarity) using Hugging Face's evaluate library.
- Decodes model predictions and labels into readable strings for metric computation.

8. Training Configuration

(Seq2SeqTrainingArguments):

 Defines hyperparameters such as learning rate (5e-5), number of epochs (3), batch size (8), and evaluation strategy (epoch).

9. Model Training (Seq2SeqTrainer.train()):

Initiates training using Hugging Face's
 Seq2SeqTrainer, which automatically handles
 training loops, evaluation, and checkpointing.

10. Model Evaluation:

 Evaluates trained model on validation dataset and outputs evaluation metrics (BLEU and BERTScore).

Epoch	Training Loss	Validation Loss	Bleu	Bertscore F1
1	0.366300	0.312772	0.019733	0.861040
2	0.310000	0.296851	0.021457	0.864379
3	0.286700	0.291956	0.022827	0.866201

		[3576/3576 42:17, Epoch 3/3]			
Epoch	Training Loss	Validation Loss	Bleu	Bertscore F1	
1	0.366300	0.312772	0.019733	0.861040	
2	0.310000	0.296851	0.021457	0.864379	
3	0.286700	0.291956	0.022827	0.866201	

```
[184/184 01:50]

=== Validation Evaluation Results ===
{'eval_loss': 0.2919559180736542, 'eval_bleu': 0.022827409129051245,
```

'eval_steps_per_second': 1.426, 'epoch': 3.0}

We can conclude from the results that the eval_bertscore is satisfactory but the eval_bleu score needs to improve.

Possible reasons for this:

- 1.Inherent Subjectivity: Multiple valid responses reduce exact token-level matches, inherently lowering BLEU scores.
- 2. Lexical Diversity: High semantic similarity despite varying word choices leads to lower lexical overlap, negatively impacting BLEU scores.

Possible solutions (will be implemented):

- 1. Two-stage Model Architecture (Baseline 2):
 - First stage: Train a lexical reconstruction module explicitly aimed at token-level accuracy.
 - Second stage: Fine-tune the model for intent-conditioned generation to preserve semantic coherence.

- 2. Use of Reinforcement Learning or Fine-tuning with BLEU as a Reward:
 - Introduce BLEU-oriented training through reinforcement learning (e.g., Self-critical Sequence Training) to directly optimize token overlap.