Électrocinétique – chapitre 5

TD: circuits électriques en RSF

I | Impédance équivalente

Déterminer l'impédance complexe équivalente de chacun des dipôles ci-dessous en RSF.

II | Circuit RL série en RSF

On considère le circuit ci-contre en régime sinusoïdal forcé, où la source de tension impose $e(t)=E\cos(\omega t)$ avec E>0.

- 1) Déterminer l'amplitude de u à « très haute » $(\omega \to \infty)$ et « très basse » $(\omega \to 0)$ fréquence.
- 2) Exprimer l'amplitude complexe \underline{U} de u(t) en fonction de $E,\,R,\,L$ et $\omega.$
- 3) Les tensions e et u peuvent-elles être en phase? En opposition de phase? En quadrature de phase? Préciser le cas échéant pour quelle(s) pulsation(s).

III Exploitation d'un oscillogramme en RSF

On considère le circuit ci-dessous. On pose $e(t) = E_m \cos(\omega t)$ et $u(t) = U_m \cos(\omega t + \varphi)$. La figure ci-dessous représente un oscillogramme réalisé à la fréquence $f = 1,2 \times 10^3 \,\mathrm{Hz}$, avec $R = 1,0 \,\mathrm{k}\Omega$ et $C = 0,10 \,\mathrm{pF}$.

- 1) Déduire de cet oscillogramme les valeurs expérimentales de E_m , U_m et φ .
- 2) Exprimer U_m et φ en fonction des composants du circuit.
- 3) En déduire la valeur numérique de l'inductance L de la bobine.

IV Comportement d'un circuit à haute et basse fréquence

On considère le circuit ci-contre. On pose $e(t) = E_m \cos(\omega t)$ et $u(t) = U_m \cos(\omega t + \varphi)$.

- 1) Définir les signaux complexes $\underline{e}(t)$ et $\underline{u}(t)$ puis les amplitudes complexes \underline{E} et \underline{U} associées aux tensions e(t) et u(t), respectivement.
- 2) Établir l'expression de \underline{U} en fonction de E_m , R, L, C et ω .
- 3) En déduire les expressions de U_m et de φ en fonction de $E_m,\,R,\,L,\,C$ et $\omega.$
- 4) Déterminer les valeurs limites de U_m à très basse et très haute fréquence. Ces résultats étaient-ils prévisibles par une analyse qualitative du montage?

\mathbf{V}

Dipôle inconnu

Dans le montage ci-contre, le GBF délivre une tension e(t) sinusoïdale de pulsation ω , R est une résistance et D un dipôle inconnu. On note $u(t) = U_m \cos(\omega t)$ et $v(t) = V_m \cos(\omega t + \phi)$ les tensions aux bornes respectivement de R et D. On visualise à l'oscilloscope v(t) et u(t), et on obtient le graphe ci-dessous.

L'unité de l'axe des temps est 10^{-2} s, et celle de l'axe des tensions est 1 V. On utilise ces résultats graphiques pour déterminer les caractéristiques de D, sachant que $R = 100 \,\Omega$.

- 1) Déterminer $V_m,\,U_m$ ainsi que la pulsation ω des signaux utilisés.
- 2) La tension v est-elle en avance ou en retard sur la tension u? En déduire le signe de ϕ . Déterminer la valeur de ϕ à partir du graphe.
- 3) On note $\underline{Z} = X + jY$ l'impédance complexe du dipôle D.
 - a Déterminer les valeurs de X et Y à partir des résultats précédents.
 - b Par quel dipôle (condensateur, bobine, résistance) peut-on modéliser D?

${ m VI}^{\parallel}$ Obtention d'une équation différentielle

En utilisant les complexes, montrer que la tension u(t) est solution de l'équation différentielle

$$4\tau^{2} \frac{\mathrm{d}^{2} u}{\mathrm{d}t^{2}} + R\tau \frac{\mathrm{d}u}{\mathrm{d}t} + u(t) = e(t) \quad \text{avec} \quad \tau = RC$$

VII Déphasage, pulsation et impédance

On considère le circuit en RSF. Déterminer l'expression de la pulsation w de la tension sinusoïdale $e(t) = E\cos(\omega t)$ pour que le courant i(t) soit en phase avec e(t).

Indication : utiliser l'impédance équivalente constituée de C, L et R_2 .

VIII Oscillateur à quartz

Un quartz piézo-électrique se modélise par un condensateur (de capacité C_0) placé en parallèle avec un condensateur (de capacité C) en série avec une inductance L. On se place en régime sinusoïdal forcé de pulsation ω .

- 1) Donner l'impédance équivalente \underline{Z} de l'oscillateur.
- 2) Trouver la pulsation pour laquelle l'impédance de l'ensemble est nulle, puis celle pour laquelle elle est infinie.
- 3) Tracer l'allure de $|\underline{Z}(\omega)|$.
- 4) Comment la courbe précédente serait-elle modifiée si on prenant en compte les résistances de chacun des composants?