Revision del libro: Modern classical physics¹

Juan Guarín-Rojas

Escuela de Física, Facultad de ciencias Universidad Industrial de Santander, Colombia

1 de junio de 2022

Universidad Industrial de Santander

¹ Thorne, K., Blandford, R. (2017). Modern classical physics. Princeton University Press.

1 de junio de 2022 Juan Guarín-Rojas

Capítulo 1: Newtonian Physics: Geometric point of view

Considere dos sistemas de coordenadas con una base cartesiana cada uno: $\{x_1, x_2, x_3\}$ correspondiente a $\{\mathbf{e}_i\}$, $\{\bar{x}_1, \bar{x}_2, \bar{x}_3\}$ correspondiente a

 $\{\mathbf e_{ar
u}\}$.

$$\mathbf{e}_i = \mathbf{e}_{\bar{p}} R_{\bar{p}i}$$
, $\mathbf{e}_{\bar{p}} = \mathbf{e}_i R_{i\bar{p}}$.

Donde
$$[R_{\bar{p}i}] = \begin{bmatrix} R_{\bar{1}1} & R_{\bar{1}2} & R_{\bar{1}3} \\ R_{\bar{2}1} & R_{\bar{2}2} & R_{\bar{2}3} \\ R_{\bar{3}1} & R_{\bar{3}2} & R_{\bar{3}3} \end{bmatrix}$$
.

Otro tipo de bases dependientes

Sección 1.6: Orthogonal Transformation of bases

Juan Guarín-Rojas 1 de junio de 2022

Transformaciones de componentes y coordenadas:

Componentes vectores
$$A_{ar p}=R_{ar pi}A_i$$
 Componentes tensores $T_{ar par qar r}=R_{ar pi}R_{ar qj}R_{ar rk}T_{ijk}$ Coordenadas de un punto ${\cal P}$ $x_{ar p}=R_{ar pi}x_i$

• Matrices ortogonales Partiendo de la ortogonalidad de las bases $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$, $\mathbf{e}_{\bar{p}} \cdot \mathbf{e}_{\bar{q}} = \delta_{\bar{p}\bar{q}}$ tenemos:

$$\left[R_{i\bar{p}}\right] \equiv \left[R_{\bar{p}i}\right]^{-1} = \left[R_{i\bar{p}}\right]^{T}$$

Que es valido también para $R_{\bar{p}i}$ lo que implica que: $[R_{i\bar{p}}]$, $[R_{\bar{p}i}]$ son matrices ortogonales, es decir, son solo rotaciones y reflexiones.

Sección 1.6: Orthogonal Transformation of bases

Juan Guarín-Rojas 1 de junio de 2022

Operadores diferenciales

• Sea T(P) un campo tensorial en un espacio Euclidiano tridimensional y sea A vector. Entonces

$$\nabla_{\mathbf{A}}\mathbf{T} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} (\mathbf{T}(\mathbf{x}_P + \epsilon \mathbf{A}) - \mathbf{T}(\mathbf{x}_P).$$

- Por construcción podemos ver que $\nabla_{\mathbf{A}}\mathbf{T}$ tiene el mismo rango que \mathbf{T} . Además, es posible mostrar que $\nabla_{\mathbf{A}+\mathbf{B}}\mathbf{T} = \nabla_{\mathbf{A}}\mathbf{T} + \nabla_{\mathbf{B}}\mathbf{T}$.
- Por tanto, es posible asociar un tensor de rango n+1 que sea tal que: $\nabla_{\bf A} {\bf T} = \nabla {\bf T}(\underline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } {\bf A})$
- $\nabla \mathbf{T}$ es llamado gradiente.
- En cualquier sistema de coordenadas cartesiano:

componentes
$$\nabla \mathbf{T} = T_{abc;j} = \frac{\partial T_{abc}}{\partial x_j}$$
, componentes $\nabla_{\mathbf{A}} \mathbf{T} = T_{abc;j} A_j$, $x_j \equiv (x, y, z)$

Operadores diferenciales

 Como la derivada direccional se construyó similarmente a la derivada usual, ésta cumple con la regla de Leibniz:

$$\nabla_{\mathbf{A}}(\mathbf{S} \otimes \mathbf{T}) = (\nabla_{\mathbf{A}}\mathbf{S}) \otimes \mathbf{T} + \mathbf{S} \otimes (\nabla_{\mathbf{A}}\mathbf{T}).$$

• Dado que g_{ab} son constantes en cualquier sistema cartesiano:

$$\nabla \mathbf{g} = \mathbf{0} \iff \mathbf{g}_{ab;j} = 0.$$

Operadores diferenciales

- Divergencia $\longrightarrow \nabla \cdot \mathbf{A} = \text{contraction } \nabla \mathbf{A} = \mathbf{A}^a_{;a}$
- Divergencia Tensor \longrightarrow $T_{abc;b}$ y $T_{abc;c}$
- Laplaciano $\longrightarrow \nabla^2 \mathbf{T} \equiv (\nabla \cdot \nabla) \mathbf{T} \iff T_{abc,jj}$

Tensor de Levi-Civita

El tensor de Levi-Civita ϵ enmarca la noción espacial de volumen.

Tensor de Levi-Civita

a) Definición implícita de ϵ

El tensor de Levi-Civita es un tensor de rango n definido de manera tal que al ser evaluado en los vectores $\mathbf{A}, \mathbf{B}, \dots, \mathbf{F}$ este devuelve una medida de volumen volumen $= \boldsymbol{\epsilon}(\mathbf{A}, \mathbf{B}, \dots, \mathbf{F})$.

Propiedad de volumen aditivo. Dado que es un tensor cumple la propiedad de linealidad $\epsilon(\mathbf{P}_1 + \alpha \mathbf{P}_2) = \epsilon(\mathbf{P}_1) + \alpha \epsilon(\mathbf{P}_2)$. Paralelepípedo

b) Definición directa espacio tridimensional

Dado un espacio tridimensional elegimos un volumen elemental y un signo:

$$\epsilon_{123} = \epsilon(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = +1,$$

Siendo $\{e_i\}$ una base ortonormal dextrógira.

Segundo, imponemos que ϵ tenga antisimetría:

$$\epsilon_{ijk} = -\epsilon_{jik}$$
, $\epsilon_{ijk} = -\epsilon_{ikj}$, $\epsilon_{ijk} = -\epsilon_{kji}$.

Entonces:

$$\epsilon_{abc} = \begin{cases} +1 & \text{si } (a, b, c) = \text{permutacion par}(1,2,3) \\ -1 & \text{si } (a, b, c) = \text{permutacion impar}(1,2,3) \end{cases}$$

Como ϵ representa un volumen, entonces siempre que alguna de sus entradas este repetida, la componente debe ser cero.

$$\epsilon_{112} = \epsilon(\mathbf{e}_1, \mathbf{e}_1, \mathbf{e}_3) = 0$$
, i.e., $\epsilon_{abc} = 0$ si $a = b \lor a = c \lor b = c$

Producto cruz y rotacional

 Dados A, B vectores en un espacio tridimensional, podemos definir el producto cruz y el rotacional como:

$$\mathbf{A} \times \mathbf{B} = \boldsymbol{\epsilon}(\underline{\hspace{0.3cm}}, \mathbf{A}, \mathbf{B})$$

$$\nabla \times \mathbf{A} \equiv \epsilon_{ijk} A_{k;j} \ \mathbf{e}_{i}$$

En un espacio tridimensional con una base ortonormal dextrógira:

$$\epsilon_{ijk}\epsilon_{\ell mk} = \delta^{ij}_{\ell m} \equiv \delta^i_{\ell}\delta^j_m - \delta^i_m\delta^j_{\ell}$$

Usando esta notación podemos demostrar:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$$

$$(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = [(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{D}]\mathbf{C} - [(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}]\mathbf{D}$$
Que podemos verificar usando un C.A.S.

Back up

Partiendo de la ortogonalidad de las bases $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$, $\mathbf{e}_{\bar{p}} \cdot \mathbf{e}_{\bar{q}} = \delta_{\bar{p}\bar{q}}$ podemos demostrar:

$$\left[R_{i\bar{p}}\right] = \left[R_{\bar{p}i}\right]^{-1} = \left[R_{i\bar{p}}\right]^{T}$$

$$\delta_{ij} = \mathbf{e}_{i} \cdot \mathbf{e}_{j} = (\mathbf{e}_{\bar{p}} R_{\bar{p}i}) \cdot (\mathbf{e}_{\bar{q}} R_{\bar{q}j})$$

$$= R_{\bar{p}i} R_{\bar{q}j} (\mathbf{e}_{\bar{p}} \cdot \mathbf{e}_{\bar{q}})$$

$$= R_{\bar{p}i} R_{\bar{q}j} \delta_{\bar{p}\bar{q}}$$

$$= R_{\bar{p}i} R_{\bar{p}j}$$

$$= R_{\bar{1}i} R_{\bar{1}j} + R_{\bar{2}i} R_{\bar{2}j} + R_{\bar{3}i} R_{\bar{3}j}$$

Lo anterior representa multiplicación $\operatorname{columna}_i \cdot \operatorname{columna}_j$, lo que podemos escribir cómo: $\left[R_{\bar{p}i}\right]^T \cdot \left[R_{\bar{p}j}\right] = \left[\delta_{ij}\right]$ lo que implica $\left[R_{\bar{p}i}\right]^T = \left[R_{\bar{p}i}\right]^{-1}$

$$\begin{bmatrix} R_{\overline{1}1} & R_{\overline{1}2} & R_{\overline{1}3} \\ R_{\overline{2}1} & R_{\overline{2}2} & R_{\overline{2}3} \\ R_{\overline{3}1} & R_{\overline{3}2} & R_{\overline{3}3} \end{bmatrix} \begin{bmatrix} R_{\overline{1}1} & R_{\overline{1}2} & R_{\overline{1}3} \\ R_{\overline{2}1} & R_{\overline{2}2} & R_{\overline{2}3} \\ R_{\overline{3}1} & R_{\overline{3}2} & R_{\overline{3}3} \end{bmatrix} \begin{bmatrix} R_{\overline{1}1} & R_{\overline{1}2} & R_{\overline{1}3} \\ R_{\overline{2}2} & R_{\overline{2}3} & R_{\overline{3}3} \end{bmatrix} \longrightarrow \begin{array}{c} (i,j) = (1,2) \\ R_{\overline{1}1}R_{\overline{1}2} + R_{\overline{2}1}R_{\overline{2}2} + R_{\overline{3}1}R_{\overline{3}2} \\ R_{\overline{3}1} & R_{\overline{3}2} & R_{\overline{3}3} \end{bmatrix}$$

Capítulo 1: Newtonian Physics: Geometric point of view

Un paralelepípedo formado por aristas A, B, ..., F tiene un volumen de:

volumen =
$$\epsilon(A, B, ..., F)$$

El cual satisface la propiedad de antisimetría completamente:

$$\epsilon(A, B, ..., F) = -\epsilon(B, A, ..., F)$$

- Observaciones (Ex 1.7):
 - i. volumen = 0 a menos que todos los vectores de entrada sean L.I.
 - ii. Todos los volúmenes están determinados por el volumen de un solo paralelepípedo.
 - iii. Entonces requerimos de un número y la propiedad antisimétrica para determinar ϵ .
 - iv. Además de la antisimetría necesitamos un signo: la elección de qué paralelepípedos tienen volumen positio y negativo.
- En coordenadas cartesianas y bajo una base ortonormal dextrógira:

Número elegido
$$\epsilon_{123} = +1$$

$$\epsilon_{abc} = \begin{cases} +1 & \text{si } (a,b,c) = \text{permutacion par}(1,2,3) \\ -1 & \text{si } (a,b,c) = \text{permutacion impar}(1,2,3) \\ 0 & \text{si } a = b \ \lor a = c \lor b = c \end{cases}$$