UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ESTATÍSTICA E CIÊNCIA DE DADOS

PROVA III - Probabilidade (PPGECD000000001) - 24/07/2025

Professor: Raydonal Ospina Martinez.

Regras

Leia com atenção as perguntas. Todas as resoluções devem ser DETALHADAS. Seja claro e organizado.

Problema 1

Seja X uma variável aleatória com distribuição de probabilidade f(x) = P(X = x) e seja $A \in \mathcal{B}(\mathbb{R})$ um conjunto de Borel em \mathbb{R} tal que $p = P(X \in A) > 0$. Definimos a função de distribuição de probabilidade condicional de X dado o evento $(X \in A)$ como

$$f(x|A) = \frac{1}{p}f(x)\mathbb{I}_A(x) = \begin{cases} \frac{1}{p}f(x), & \text{se } x \in A, \\ 0, & \text{caso contrário.} \end{cases}$$

Para f(x) definida por

$$f(x) = P(X = x) = \begin{cases} \frac{1}{2n+1}, & \text{se } x \in \mathcal{M}, \\ 0 & \text{caso contrário,} \end{cases}$$

em que $\mathcal{M}=\{-n,-(n-1),\ldots,-2,-1,0,1,2,\ldots,(n-1),n\}$ e $A=\{0,1,2,3,\ldots,n-1,n\}$. Compare f(x) e f(x|A) em termos dos valores esperados E(aX+b) e E(aX+b|A), com $a,b\in\mathbb{R}$ constantes conhecidas, respectivamente. **Dica:** $\sum_{i=1}^n i=1+2+3+\cdots+n=\frac{n(n+1)}{2}$ e $\sum_{i=m}^n 1=n+1-m$.

Problema 2

Seja X uma variável aleatória uniforme no intervalo (0,1) e $Y=X^2$. Calcular o coeficiente de correlação $\rho(X,Y)$. São X e Y independentes? Explique.

Problema 3

Seja X uma variável aleatória **não negativa** $(P(X \ge 0) = 1)$ e seja $\varphi : [0, \infty) \to [0, \infty)$ uma função **convexa** e **estritamente crescente**. Demonstre que para qualquer constante $\epsilon > 0$:

$$P(X \ge \epsilon) \le \frac{\varphi^{-1}(E[\varphi(X)])}{\epsilon}$$

em que φ^{-1} é a função inversa de φ .

Problema 4

Suponha que as sequências de variáveis aleatórias $\{X_n\}_{n\geq 1}$ e $\{Y_n\}_{n\geq 1}$ são tais que $X_n \xrightarrow{p} x$ e $Y_n \xrightarrow{p} y$, em que x e y são dois números reais fixos. Demonstre que:

$$X_n + Y_n \xrightarrow{p} x + y.$$

Aqui, $(\stackrel{p}{\rightarrow})$ indica convergência em probabilidade.

Problema 5

Seja X com distribuição uniforme discreta no conjunto $\{0,1\}$. Demonstre que a seguinte sucessão de variáveis aleatórias converge em distribuição, mas não converge em probabilidade.

$$X_n = \begin{cases} X & \text{se } n \text{ \'e par,} \\ 1 - X & \text{se } n \text{ \'e impar.} \end{cases}$$