MTH327H LAB WORK 1 (FALL 2023)

Axioms of a number field \mathbb{Q} (\mathbb{R} , \mathbb{Z}_p)

A1 $\forall a, b, c \in \mathbb{Q}$, (a+b)+c=a+(b+c) (associativity);

A2 $\forall a, b \in \mathbb{Q}, a+b=b+a$ (commutativity);

A3 $\exists 0 \in \mathbb{Q}$ such that for any $a \in \mathbb{Q}$, a + 0 = a;

A4 $\forall a \in \mathbb{Q}, \exists -a \in \mathbb{Q} \text{ such that } a + (-a) = 0.$

Axioms A1-A4 supply \mathbb{Q} with the structure of **group** w.r.t. addition.

M1 $\forall a, b, c \in \mathbb{Q}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associativity);

M2 $\forall a, b \in \mathbb{Q}, a \cdot b = b \cdot a$ (commutativity);

M3 $\exists 1 \in \mathbb{Q}$ such that for any $a \in \mathbb{Q}$, $a \cdot 1 = a$; M4 $\forall a \neq 0 \in \mathbb{Q}$, $\exists a^{-1} \in \mathbb{Q}$ such that $a \cdot a^{-1} = 1$.

Axioms M1-M4 supply $\mathbb{Q}\setminus\{0\}$ with the structure of group w.r.t. multiplication.

Finally, we have the **distributive law**:

DL $\forall a, b, c \in \mathbb{Q}, (a+b) \cdot c = (a \cdot c) + (b \cdot c).$

Theorem. 2 Axioms A1-A4 imply

- (a) if a + b = a + c then b = c;
- (b) if a + b = a then b = 0;
- (c) if a + b = 0 then a = -b;
- (d) -(-a) = a

Proof: (a) b = b + 0 = b + (a + (-a)) = (b + a) + (-a) = (c + a) + (-a) = c + (a + (-a)) = c + 0 = c, thus proved.

- (b) a+b=a=a+0, so by statement (a) [applied with c=0], b=c=0.
- (c) a + b = 0 = a + (-a), so by statement (a) b = -a.
- (d) (-a) + (-(-a)) = 0 = (-a) + a, so, again by statement (a), -(-a) = a.

Team members:

Exercise 1 (Proof by induction). [A sequence (a_n) is an infinite ordered set of numbers a_i

enumerated by natural numbers i. In general, we do not require $a_i \neq a_j$ for $i \neq j$.] Let the sequence $(a_n) \subset \mathbb{Q}$ be defined **recursively**: $a_1 = 0$, $a_n = a_{n-1}^2 + 1/4$ for all $n \geq 2$. Prove, using induction and familiar to you relations \geq , \leq between rational numbers, that $a_n < 1/2$ for all natural n.

Base: a=0<1/2 (check, just for acrissity next couple of terms: $a_2 = a_1^2 + \frac{1}{4} = \frac{1}{4} < \frac{1}{2}$, $a_3 = a_2^2 + \frac{1}{4} = \frac{1}{16} + \frac{1}{4} = \frac{5}{16} < \frac{1}{2}$) Implication $a_{n+1} = a_{n}^2 + \frac{1}{4} < (\frac{1}{2})^2 + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ thus proved

Exercise 2. Prove the theorem

Theorem 2 Axioms M1-M4 imply

- (0) the element 1 is unique!
- (a) for $a \neq 0$, if $a \cdot b = a \cdot c$ then b = c;
- (b) for $a \neq 0$, if $a \cdot b = a$ then b = 1;
- (c) for $a \neq 0$, if $a \cdot b = 1$ then $a = b^{-1}$;
- (d) for $a \neq 0$, $(a^{-1})^{-1} = a$.

proof (0) let us have 1_1 and 1_2 , then $1_1 = 1_1 \cdot 1_2 = 1_2$ so the unit is unique

(a) $a \cdot b = a \cdot c = > (a^{-1}) \cdot a \cdot b = (a^{-1}) \cdot a \cdot c = > 1 \cdot b = 1 - c = > 6 = c$

(b) $a \cdot b = a : \text{multiply by } a^{-1} \cdot (a^{-1}) \cdot a \cdot b = (a^{-1})$

(c) for $a \neq 0$ if $a \cdot b = 1$ then $a = b^{-1}$ multiply by $a! : (a!a)b = a! = a^{-1}$, so $b = a! \cdot 1 = a'$, so $b = a' \cdot 1 = a'$, so

 $a = a \cdot b \cdot (b^{-1}) = (b^{-1})$ so $a = b^{-1}$

(a') $(\bar{a}') \cdot \bar{a}' = 1$ multiply by a: $(\bar{a}') \cdot (\bar{a}' a) = a \quad \text{or} \quad a = (\bar{a}')^{-1}$

Page 2

Let us now study interrelations between addition and multiplication:

Theorem. 3 (a) $0 \cdot a = 0 \ \forall a \in \mathbb{Q}$.

- (b) if $a \neq 0$ and $b \neq 0$ then $ab \neq 0$;
- (c) $(-a) \cdot b = -(a \cdot b) = a \cdot (-b);$
- (d) $(-a) \cdot (-b) = a \cdot b$.

Proof of (a): $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$, so by Theorem 1(b), $0 \cdot a = 0$, thus proved.

Exercise 3. Complete proofs of (b)-(d):

(b) Assume $a \neq 0$ and $b \neq 0$, but $a \cdot b = 0$. Take the product $0 = a^{-1} \cdot 0 = a^{-1} \cdot (a \cdot b) = \dots$

 $=(a^{-1})a)\cdot b=1\cdot b=b$, so b=0 -contradiction Therefore $a:b\neq 0$

(c) $0 = (a + (-a)) \cdot b = a \cdot b + (-a) \cdot b$, so ...

(-a).b = -(a.b)same, if (a.(a.+(-b)) = a.0 = 0 then

ab+ a.(-6)=0 and therefore a:(3)= -(ab)

(d) use (c): $(-a) \cdot (-b) = -(a \cdot (-b)) = \dots$ -(-ab) = ab

Additional material.

The group is a set & with operation asB=c defined

a⊗B= e defined Va.b∈G

and such that

(i) a⊗(b⊗c) = (a⊗B)⊗C

(ii) IL and IR: Vagg 1L0a=a01n=a

prove that 1=1e: 1b=1colR=1R Page ? (iii) Yaff Fai and ar: 1= aloa = aoar

prove that a'b = a'k: a'b = a'b (a oak) = (a'oa) oak = a'k