${\bf Math~202A-Topology~\&~Analysis}$

Albert Zhang Professor Marc Rieffel

Fall 2019

Contents

1	August 29	2
	1.1 Overview	2
	1.2 Metric Spaces	2
2	September 3	4
	2.1 Metric Spaces to Topologies	5
3	September 5	6
	3.1 New Topologies From Old	7

August 29 1

Overview 1.1

First half of the semester: (Point-Set) Topology, "The mathematics of continuity"

Second half of the semester: Measure & Integration

Towards end: Functional Analysis

GSI OH: Evans 1042, MW 12:30-2pm, mitchelltaylor.berkeley.edu

1.2Metric Spaces

Definition 1 (metric). Let X be a set. A metric on X is a (distance) function $d: X \times X \to \mathbb{R}$ such that

- 1. $\forall x, d(x, x) = 0$, and if d(x, y) = 0 then x = y
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Example 1.1

Some basic metric spaces: \mathbb{R} , \mathbb{R}^n . Examples of some norms and their corresponding

- $||v||_2 = (\sum |v_j|^2)^{1/2}$, $d_2(v, w) = ||v w||_2$ $||v||_1 = \sum |v_j|$, $d_1(v, w) = ||v w||_1$
- $||v||_{\infty} = \max\{|v_j|\}, \text{ etc.}$
- $||v||_p = (\sum |v_j|^p)^{1/p}$, etc.

Consider the metric space (X,d). Let $Y \subset X$. Then the restriction of d to $Y \times Y \subseteq X \times X$ fashions Y as a new metric space with metric d.

Definition 2 (Norm). Let V be a vector space on \mathbb{R} or \mathbb{C} . A norm on V is a function $\| \ \| : V \to \mathbb{R}^+$ satisfying:

- 1. ||v|| = 0 if and only if v = 0
- 2. $\|\alpha v\| = |\alpha| \|v\|, \ \alpha \in \mathbb{R} \text{ or } \mathbb{C}$
- 3. $||v + w|| \le ||v|| + ||w||$

From each norm we get a metric on V defined by

$$d(v,w) = \|v - w\|$$

Example 1.2

Consider the vector space C([0,1]) of \mathbb{R} -valued continuous functions on [0,1]. We have the following norms:

- $||f||_2 = (\int |f(t)|^2 dt)^{1/2}$ $||f||_\infty = \sup\{|f(t)| : t \in [0, 1]\}$
- others defined similarly

Definition 3 (Convergence). Let (X,d) be a metric space, $\{x_n\}$ be a sequence of points of X. We say that $\{x_n\}$ converges to a point $x \in X$ if $\forall \epsilon > 0$ there exists an N such that for $n \geq N$ we have $d(x_n, x) < \epsilon$.

Why do we use \mathbb{R} instead of \mathbb{Q} ? Completeness. This can be formulated in terms of Cauchy sequences.

Definition 4 (Cauchy Sequence). Let (X,d) be a metric space, and let $\{x_k\}$ be a sequence in X. We say that $\{x_n\}$ is a Cauchy sequence if $\forall \epsilon > 0$, there is an N such that for $m, n \geq N$ then $d(x_m, x_n) < \epsilon$.

The problem with the rationals is that you can construct cauchy sequences that don't converge to some $x \in \mathbb{Q}$. But for \mathbb{R} they do.

Definition 5 (Completeness). A metric space X is complete if every Cauchy sequence converges to some point of X.

Therefore, in a complete metric space, we have Cauchy convergence \iff regular convergence. Furthermore, note that any closed subset of \mathbb{R}^n is complete with the Euclidean metric. Going back to the C([0,1]) example, the convergence of the $||f||_{\infty}$ norm is just uniform convergence, i.e. the uniform limit of continuous functions is continuous. This is a theorem that'll be proved later.

On the other hand, the L^1 norm $||f||_1$ is not complete. For example, consider the sequence of piecewise function that is 1 on [0, 1/2] and 0 on [1/2 + 1/n, 1] with a straight line connecting the two flat lines. It converges to the function that is 1 on [0,1/2] and 0 on (1/2,1], but this is not continuous.

Definition 6. Let (X,d) be a metric space, S a subset of X. We say that S is dense in X if every open ball in X contains a point of S. By a completion of X we mean a metric space (\bar{X},\bar{d}) together with a function $j:X\to \bar{X}$ such that j is isometric (preserves distances, i.e. d(j(x), j(y)) = d(x, y) and j(X) is dense in X.

Theorem 7

Every metric space has a completion, and this completion is essentially unique.

2 September 3

Theorem 8

Every metric space has a completion.

Let (X, d) be a metric space, and CS(X, d) be the set of all Cauchy sequences in (X, d). We want to try to define a distance on CS(X, d). Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences, we claim that the sequence $\{d(x_n, y_n)\}$ in \mathbb{R} is a Cauchy sequence. Set

$$\tilde{d}(\{x_n\}, \{y_n\}) = \lim \{d(x_n, y_n)\}.$$

Recall that we have

$$|d(x,y) - d(x,z)| \le d(z,y)$$

from the triangle inequality. We have

$$|d(x_n, y_n) - d(x_m, y_m)| = |d(x_n, y_n) - d(x_n, y_m) + d(x_n, y_m) - d(x_m, y_m)|$$

$$\leq |d(x_n, y_n) - d(x_n, y_m)| + |d(x_n, y_m) - d(x_m, y_m)|$$

$$\leq d(y_n, y_m) + d(x_n, x_m)$$

which goes to 0 as n, m go to ∞ . We may verify all the properties of a metric except for the one where different pints cannot have a distance of 0 (different cauchy sequences may converge to the same point). Therefore \tilde{d} is a *semi-metric*.

Example 2.1

Consider the function space C[0,1]. Let f_1 be defined as 0 on [0,1/2) and 1 on [1/2,1], whereas f_2 be defined as 0 on [0,1/2] and 1 on (1/2,1]. Then we have

$$||f_1 - f_2|| = \int |f_1 - f_2| = 0$$

yet $f_1 \neq f_2$. Therefore our \mathcal{L}^1 norm is a semi-metric.

So let (X,d) be a semi-metric space. Define an equivalence relation for X by $x \sim y$ if d(x,y)=0. It forms a partition of X. Let X/\sim denote the set of equivalence classes induced by our equivalence relation, and define \hat{d} on X/\sim by

$$\hat{d}([x],[y]) = d(x,y).$$

It is a simple exercise to check that this is well-defined independent of choice of class. Furthermore, \hat{d} is a metric on X/\sim .

Now, we may redefine \tilde{d} on CS(X,d) on the set of equivalence classes. The equivalence relation is

$$d(\{x_n\}, \{y_n\}) = \lim_{n \to \infty} d(x_n, y_n) = 0 \implies \{x_n\} \sim \{y_n\}.$$

Embed (X, d) in $CS(X, d)/\sim$ by sending x to a Cauchy sequence $x_n=x$ for all n. That is, $\varphi(x)=\{x_n=x\}$, and

$$\tilde{d}(\varphi(x), \varphi(y)) = \lim d(x_n, y_n) = \lim d(x, y) = d(x, y).$$

So φ is an isometry of X from $CS(X,d) \to CS(X,d)/\sim$. We now want to show that the image of X through $\tilde{\varphi}$ is dense in $CS(X,d)/\sim$. We do this now.

Let $\{x_n\}$ be any Cauchy sequence. Given $\epsilon > 0$, there is an N such that for $m, n \geq N$ we have $d(x_m, x_n) < \epsilon$. Consider $\varphi(x_N)$. Then $\tilde{d}(\{x_n\}, \varphi(x_n)) = \lim_{n \to \infty} d(x_n, x_N) < \epsilon$. Now what's left is to show that $CS(X, d) / \sim$ equipped with \tilde{d} is complete. For each m let $S^m = \{x_n^m\}_{n=1}^{\infty} \in CS(X, d)$. Assume the sequence $\{S^m\}$ is a Cauchy sequence in CS(X, d). For each k find $x_k \in X$ such that $d(\varphi(x_k), S^m) < 1/k$. Then $S = \{x_k\}_{k=1}^{\infty}$ is a Cauchy sequence, and as $m \to \infty$, $d(S^m, S) \to 0$.

2.1 Metric Spaces to Topologies

Let (X, d_X) and (Y, d_Y) be metric spaces. Consider a mapping $f: X \to Y$. Let $x_0 \in X$. We say that f is continuous at x_0 if for all $\epsilon > 0$, there is a $\delta > 0$ such that $d_Y(f(x) - f(x_0)) < \epsilon$ if $d_X(x - x_0) < \delta$.

Denote by B(x, r) the open ball centered at x with radius r. Then the above statement says that if $x \in B(x_0, \delta) = B$, then $f(x) \in B(f(x_0), \epsilon) = C$. Or in other words, if $x \in B$, then $f(x) \in C$, i.e. $x \in B \subseteq f^{-1}(X)$.

Definition 9. A set $A \subseteq X$ is an open subset (for the given metric d) if for each $x \in A$, there is an open ball about x contained in A.

Reformulating: if f is continuous at all points, then let O be an open set in Y and $x_0 \in f^{-1}(O)$. Then O contains a ball about $f(x_0)$ and for any ball B in O about $f(x_0)$ there is an open ball C about x_0 such that $x_0 \in C \subseteq f^{-1}(B)$, thus $C \subseteq f^{-1}(O)$. That is, $f^{-1}(O)$ is open.

Conversely, let f be any function from X to Y. If it is true that the preimage of any open set O in Y is open in X, then f is continuous. Proof: Let $x_0 \in X$. Given $\epsilon > 0$, let $O = B(f(x_0), \epsilon)$. Then $f^{-1}(O)$ is open in X. So there is a ball $B(x_0, \delta)$ contained in the preimage $f^{-1}(O)$.

Theorem 10 (Properties of Open Sets)

For the collection of open sets of a metric space, we have

- 1. An arbitrary union of open sets is open
- 2. A finite intersection of open sets is open
- 3. X and \emptyset are open

These properties are what we want to define a topology.

3 September 5

Definition 11 (Topology). Let X be a set. By a topology of X we mean a collection \mathcal{T} of subsets of X, usually known as the open sets, satisfying

- i. \mathcal{T} is closed under arbitrary unions
- ii. \mathcal{T} is closed under finite intersections
- iii. $X, \emptyset \in \mathcal{T}$

There are some topologies which do not come from metric spaces (i.e. it is a broader class of possibilities).

Definition 12. Let \mathcal{T} be a topology for X. Then a set $A \subseteq X$ is said to be *closed* if A^C is in \mathcal{T} , i.e. the complement is open.

Properties of closed sets:

- i. arbitrary intersection of closed sets is closed
- ii. finite union of closed sets is closed
- iii. X and \emptyset are closed

Definition 13. Let $A \subseteq X$. By the *closure* \bar{A} of A we mean the smallest closed set which contains A, i.e. the intersection of all closed sets that contain A. By the *interior* of A we mean the biggest open set contained in A, i.e. the union of all open sets that are contained in A. Let C be a closed set and $A \subseteq C$. We say that A is *dense* in C if $\bar{A} = C$.

Definition 14. Let X be a set, and $S \subset 2^X$. The smallest topology containing S is said to be the topology generated by S, and S is called a *sub-base* for that topology.

Note: If \mathcal{C} is a collection of topologies for X, then $\cap \{\mathcal{T} \in \mathcal{C}\}$ is a topology for X.

We usually require the union of all sets in this sub-base to equal X.

Example 3.1

Let X be a set, and \mathcal{D} be the collection of all subsets of X. then \mathcal{D} is called the *discrete topology* for X. It is given by the metric

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Note: it is the largest possible topology on X.

Example 3.2

Let X be a set, then the smallest topology on X is given by $\mathcal{T} = \{X, \emptyset\}$, known as the indiscrete topology.

If $\mathcal{T}_1 \subseteq \mathcal{T}_2$ are topologies on X, we say the former is smaller, coarser, or weaker than the latter, which is bigger, finer, or stronger.

Definition 15. A collection S of subsets of X is a base for a topology if the set of all arbitrary unions of S is a topology.

For S to be a base, it must have the property that:

All finite intersections of sets in S must be a union of elements of S.

If S is any collection of subsets of X, then the collection of all finite intersections of elements of S is a base for a topology.

Definition 16. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f: X \to Y$ be a function. We say that f is continuous if

$$\forall O \in \mathcal{T}_Y, f^{-1}(O) \in \mathcal{T}_X$$

Let $f: X \to Y$ and $\{A_i\}$ be a collection of subsets of Y. Then

- (i) $f^-(\cup A_i) = \cup f^{-1}(A_i)$
- (ii) $f^{-1}(\cap A_i) = \cap f^{-1}(A_i)$
- (iii) If $A, B \subseteq Y$, then $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$

Theorem 17

Given the topological spaces in the definition above and f: XtoY. Then to verify that f is continuous it suffices to check that $f^{-1}(A) \in \mathcal{T}_X$ for all $A \in S$ where S is a sub-base for \mathcal{T}_Y .

3.1 New Topologies From Old

Let X be a set, and (X_i, \mathcal{T}_i) be a collection of topological spaces. Let there be functions $f_i: X_i \to X$, and \mathcal{T} be the retrospect topology on X such that all the f_i 's are continuous. Given i_0, f_{i_0} . If $A \subseteq X$ then if A is to be open, we must have $f_{i_0}^{-1}(A) \in \mathcal{T}_{i_0}$.

Let $S_{i_0} = \{A \subseteq X : f_{i_0}^{-1}(A) \in \mathcal{T}_{i_0}\}$. It is the strongest topology of X making f_{i_0} continuous. Then the strongest topology making all the f_i continuous is the intersection of all the S_{i_0} .

Let (X, \mathcal{T}) be a topological space, Y a set, and $f: X \to Y$. Then $\{A \subseteq Y : f^{-1}(A) \in \mathcal{T}_X\}$ is the strongest topology making f continuous. We usually want f to be onto Y. This topology is the *quotient topology* determined by f.

Let X, Y be sets, with $f: X \to Y$ onto. Define an equivalence relation \sim on X by $x_1 \sim x_2$ if $f(x_1) = f(x_2)$. Each class in X is called a fiber over the point $y \in Y$. A set $B \subseteq X$ is saturated for this equivalence relation if whenever xinB and $x' \sim x$, then $x' \in B$.

The open sets of the quotient topology on Y for f are in one to one correspondence with the saturated open subsets of X.