파이썬(Python)으로 구현하는

오차역전파 (Back Propagation)

- 은닉층에서의 오차역전파 공식-

Review - 선형회귀 값 (Z) • 출력 값 (A), 손실 값 (E), 가중치 (W), 바이어스 (b)

입력층 선형회귀 값 (Z1)	입력 층에는 가중치가 없기 때문에 선형회귀 값은 적용하지 않음	입력층 출력 값 (A1)	$a_2^{(1)} = x_2$ $a_1^{(1)} = x_1$
은닉층 선형회귀 값 (Z2)	$z_1^{(2)} = a_1^{(1)} w_{11}^{(2)} + a_2^{(1)} w_{12}^{(2)} + b_1^{(2)}$	은닉층 출력 값 (A2)	$a_1^{(2)} = sigmoid(z_1^{(2)})$
	$z_2^{(2)} = a_1^{(1)} w_{21}^{(2)} + a_2^{(1)} w_{22}^{(2)} + b_2^{(2)}$		$a_2^{(2)} = sigmoid(z_2^{(2)})$
출력층 선형회귀 값 (Z3)	$z_1^{(3)} = a_1^{(2)} w_{11}^{(3)} + a_2^{(2)} w_{12}^{(3)} + b_1^{(3)}$	출력층 출력 값 (A3)	$a_1^{(3)} = sigmoid(z_1^{(3)})$
	$z_2^{(3)} = a_1^{(2)} w_{21}^{(3)} + a_2^{(2)} w_{22}^{(3)} + b_2^{(3)}$		$a_2^{(3)} = sigmoid(z_2^{(3)})$
W ⁽²⁾ , W ⁽³⁾	$W^{(2)} = \begin{pmatrix} w_{11}^{(2)} & w_{21}^{(2)} \\ w_{12}^{(2)} & w_{22}^{(2)} \end{pmatrix} \qquad W^{(3)} = \begin{pmatrix} w_{11}^{(3)} & w_{21}^{(3)} \\ w_{12}^{(3)} & w_{22}^{(3)} \end{pmatrix}$	b ⁽²⁾ , b ⁽³⁾	$b^{(2)} = \begin{pmatrix} b_1^{(2)} & b_2^{(2)} \end{pmatrix} b^{(3)} = \begin{pmatrix} b_1^{(3)} & b_2^{(3)} \end{pmatrix}$
최종 손실 값 (E)	$E = \frac{1}{n} \sum_{i=1}^{n} (t_i^{(3)} - a_i^{(3)})^2 = \frac{1}{2} \{ (t_1^{(3)} - a_1^{(3)})^2 + (t_2^{(3)} - a_2^{(3)})^2 \}$	$= E_1 + E_2$	$E_{1} = \frac{1}{2} (t_{1}^{(3)} - a_{1}^{(3)})^{2} \left[E_{2} = \frac{1}{2} (t_{2}^{(3)} - a_{2}^{(3)})^{2} \right]$

Review - 출력층 오차역전파 (Back Propagation) 공식

출력층 가중치 W⁽³⁾ 업데이트

출력층 바이어스 b(3) 업데이트

$$W^{(3)} = W^{(3)} - \alpha \frac{\partial E}{\partial W^{(3)}} = W^{(3)} - \alpha \times (A2^{T} \bullet loss_3) \qquad b^{(3)} = b^{(3)} - \alpha \frac{\partial E}{\partial b^{(3)}} = b^{(3)} - \alpha \times loss_3$$

$$b^{(3)} = b^{(3)} - \alpha \frac{\partial E}{\partial b^{(3)}} = b^{(3)} - \alpha \times loss_3$$

은닉층 오차역전파 공식 유도 - 은닉층 가중치 W(2) / 은닉층 바이어스 b(2)

$$\mathbf{W}^{(3)} = \mathbf{W}^{(3)} - \alpha \frac{\partial \mathbf{E}}{\partial \mathbf{W}^{(3)}}$$

$$b^{(3)} = b^{(3)} - \alpha \frac{\partial E}{\partial b^{(3)}}$$

지난시간

$$W^{(3)} = W^{(3)} - \alpha \frac{\partial E}{\partial W^{(3)}} = W^{(3)} - \alpha \times (A2^{T} \bullet loss_3)$$

$$b^{(3)} = b^{(3)} - \alpha \frac{\partial E}{\partial b^{(3)}} = b^{(3)} - \alpha \times loss_3$$

은닉층 바이어스 b(2)

이번시간

 $\partial E/\partial W^{(2)}$, $\partial E/\partial b^{(2)}$ 오차역전파 공식 유도

음식층 Self Study

$$\frac{\partial E}{\partial w_{12}^{(2)}} = (a_1^{(3)} - t_1^{(3)}) \times a_1^{(3)} (1 - a_1^{(3)}) \times w_{11}^{(3)} \times a_1^{(2)} (1 - a_1^{(2)}) \times a_2^{(1)}
+ (a_2^{(3)} - t_2^{(3)}) \times a_2^{(3)} (1 - a_2^{(3)}) \times w_{21}^{(3)} \times a_1^{(2)} (1 - a_1^{(2)}) \times a_2^{(1)}$$

$$\begin{array}{lll} \frac{\partial E}{\partial w_{21}^{(2)}} & = & (a_1^{(3)} - t_1^{(3)}) \, \times \, a_1^{(3)} (1 - a_1^{(3)}) \, \times \, w_{12}^{(3)} \, \times \, a_2^{(2)} (1 - a_2^{(2)}) \, \times \, a_1^{(1)} \\ & & + \, (a_2^{(3)} - t_2^{(3)}) \, \times \, a_2^{(3)} (1 - a_2^{(3)}) \, \times \, w_{22}^{(3)} \, \times \, a_2^{(2)} (1 - a_2^{(2)}) \, \times \, a_1^{(1)} \end{array}$$

$$\begin{array}{lll} \frac{\partial E}{\partial w_{22}^{(2)}} & = & (a_1^{(3)} - t_1^{(3)}) \, \times \, a_1^{(3)} (1 - a_1^{(3)}) \, \times \, w_{12}^{(3)} \, \times \, a_2^{(2)} (1 - a_2^{(2)}) \, \times \, a_2^{(1)} \\ & & + \, (a_2^{(3)} - t_2^{(3)}) \, \times \, a_2^{(3)} (1 - a_2^{(3)}) \, \times \, w_{22}^{(3)} \, \times \, a_2^{(2)} (1 - a_2^{(2)}) \, \times \, a_2^{(1)} \end{array}$$

$$\frac{\partial E}{\partial b_{1}^{(2)}} = \frac{(a_{1}^{(3)} - t_{1}^{(3)}) \times a_{1}^{(3)} (1 - a_{1}^{(3)}) \times w_{11}^{(3)} \times a_{1}^{(2)} (1 - a_{1}^{(2)}) \times 1}{+ (a_{2}^{(3)} - t_{2}^{(3)}) \times a_{2}^{(3)} (1 - a_{2}^{(3)}) \times w_{21}^{(3)} \times a_{1}^{(2)} (1 - a_{1}^{(2)}) \times 1}$$