ECSE 326 - Cheat Sheet Albert Kragl · Vision Statement: "For [target customer] who [need or opportunity], the [product name] is [product cortegory] that [key benefit], unlike [main competitive alternative]

- · Requirements Engineering Activities: Inception, Elicitation, Analysis, Specification, VOV, Management
- · 3 Categories of NFRs: Performance, Design Constraints, Commercial Constraints

or product [statement of man differentiation]."

- · Requirements Levels: Business Rules, User Requirements, System Requirements
- Problem Statement: "The problem of __ affects __ , the inpact of which is __.

 A successful solution would be __."
- · Inception: Define product vision, product scope
- · Elicitation: "Discover" requirements by communicating with customers and system users
- · Elicitation Techniques: Interviews, Brainstorming, Existing System Analysis, Questionnaires,

 Prototyping, Observation (Artifact, Stakeholder, model, creativity, data-based)
- · Sources of Requirements: Stakeholders, system environment, current problems, previous systems, existing does, requirements checklists
- · IEEE 830-1998: Recommended practice for Software Requirements Specifications, describes the qualities and content of good SRSs.
- · IEEE 29148: 2011: More emphasis on characteristics of good requirements RE activities and processes, operations. Harmonizes IEEE 830, SweBok and 7 other standards.
- · Goal Model: Shows stakeholder dependencies with -10-
- · Personas Bio, 3 ratings, typical activities, drivers, goals, pain points. Useful when real users are not available or there are too many to interview them all.
- Domain Engineering. Elicit requirements and scope of SPL. Determine commonalities and variabilities in terms of features
- · Application Engineering: Bridge between customers and engineering terms
- · KPI Modelled with target, threshold and worst values for the conversion function (or use qualitative mapping)
- · Soltgoals: represent stakeholder concerns
- · Use Cases. Tille ID Actors Intention Preconditions Main Alternatives Post condition (5)

· < include >>: express commonality between different use cases · << extend>>: make optional interactions explicit or handle exceptional cases · User Story: "As a (role), I want (thing) so that (benefit)." · INVEST: Independent, Negotiable, Valuable, Estimable, Small, Testable (User Stories) · Misuse Cases: Threatens and Mitigetes · Quality (NFR) Requirements: - Reliability / Availability - Performance Speed · Fault - tolerant · Execution speed · Mean-time to fellure · Response time, throughput · Data backups - Robustness - Adaptability
• Ease of adding new functionality
• Reusable in other environments · Tolerates invalid input · Fail-safe / secure · Degrades gracefully under stress · Self - optimizing / healing - Security
• Controlled access to system/data
• Protection against theft - Usability - Efficiency - Scalability - Accuracy precision · Context Diagram: Darta Plow only. System in the middle, actors / things around it · Waiting Place: Timer: - Three Cs of User Stories: Card, Conversation, Confirmation · Requirements Management: - Track requirement status - Manage changes to agreed requirements - Manage relationships between - Manage changes to baseline (increments) requirements - Keep project plans synchronized with requirements
- Control versions of individual regs. and regs. does - Requirements ID: Numbering based on doc section, dynamic renumbering, DB record identification, and symbolic identification (e.g. SEC1, SEC2) · Requirement Attributes: Creation date, last update, author, stakeholders, vasion #, status, priority, stability, confidence, risk, rationale, comments, AC, test result, verification method · Triage: Requirements prioritization

· Triage Techniques: Priority ranking, 100 dollar test, prioritization scales, Kano survey, Weiger prioritization, AHP comparison (1-9)

· Kano survey: Basic, performance, excitement, indifferent, reverse (functional vs. disfunc.)
· Kano survey: Basic, performance, excitement, indifferent, reverse (functional vs. disfunc.) · Weiger's Prioritization: (cost % · cost weight) + (risk % · risk weight)
· Verification: Are we building the product right!
· Validation: Are we building the right product.
· Requirements Analysis: Works with raw, incomplete requirements as elicited from
// contracts // / / / / / / / / / / / / / / / / /
· // Techniques: Simple checks prototyping, functions
· Formal V&V: Simulations, testing, completeness/consistency testing, refinement checking, model checking, theorem proving
checking, theorem proving
· Typical Keguirements Issues.
- Requirement not clear, needs charification - Conflict who other requirements - Missing information - Unrealistic
- Missing information
- Anatomy of a Good Requirement: - Defines system under discussion - Verb w/ correct identifier (shall or may).
- Defines a positive end result - Quality criteria - Seek aut system, end result, and success measure in every requirement
- Write what, not how (i.e. no implementation) - Feasible, Needed, Testable
· Scope: defined with a context diagram
· Gral an objective or concern that guides the RE process, conveys intention
- Needs to be verifiable to become a requirement
· Interview Objectives: Record information (to be used as input for requirements analysis), discover information about interviewee, reassure interviewee
· Bainstorming Roles: Scribe, Moderator/Leader
KPT Examples:
- Average Work Time (mins) - Average Travel Time (mins) - Monthly Infrastructure Cost (\$) - Average Ongoing Cost (\$)
- Monthly Infrastructure Cost (\$) - Average Ongoing Cost (\$)
· KPI Qualifative Mapping: More flexible ways of converting real world values to satisfaction values
· Qualities of a Good Model: Abstract, Understandable, Accurate, Predictive,
Inexpensive

Activity Diagram: - on : entire activity	y, → NOS: coment flow only
AD Partitions: Swimline, Hierarchical s	Swimlane, Multidimensional Hierorinian Swimlane
Player - Role Pattern:	Abstraction - Occurrence Pattern:
Person Role	Abstract 1 Occurrence
· Context diagram: interacting systems of	od interacting users
· Systems Engineering Sandwich: Modelling + (Recylinements
· Feature Models: Variability, Commonality	Configurability
Benefits of SPLS:	
Shaden time-to-nerket	que consistency across products ce production costs
OML VS. UCH: Activity diagrams have dita	Plan use cases have dynamic stubs
· Availability: MTBF	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+ decisions made
· Traceability Challenges: Accessing + Integrating !	Etter, Krown y
· Traceability Planning: Definition of links + < queries, representation	s
. Mistakes: Failure to plan, ill-defined trace unique project-wide IDS, missing	e links, redundent trace paths, lack of g trace links, tracecubility as an afterthought
· Baseline: Non-modifiable version of a doc	ument enables comparison + management
· Suspect Links: Indicates that an element	may have been affected by a change

Activity Diagram: - on : entire activity	y, —N⊗: current flow only
AD Partitions: Suimline, Hierarchicals	Swimlane, Multidimensional Hierarchical Swimlane
Player - Role Partlern:	Abstraction - Occurrence Portlern:
Person 1 1.x Person Role	(colostract) 4 Occurrence
· Context diagram: interacting systems of Systems Engineering Sandwich: Modelling + (nd interacting users Requirements
· Feature Models: Variability, Commonality	Configurability
Benefits of SPLS: - Improve product reliability - Improve usability - Reduction - Reduction - Shorten time-to-nerket - Shorten time-to-nerket - OML VS. UCH: Activity diagrams have data - MTBF + MTBR	e production costs Plan use cases have dynamic stubs
· Trace ability Challenges: Accessing + Integrating the derica	
· Traceability Planning: Definition of links + a queries, representation	S
. Mistakes: Failure to plan, ill-defined trace unique project-wide IDS, missing	e links, redundent trace paths, lack of g trace links, tracecubility as an afterthought
· <u>Baseline</u> Non-modifiable version of a doc · <u>Suspect Links</u> : <u>Indicates that</u> an element	ument enables comparison + management