

AD-A190 868

PREPARATION AND CHARACTERIZATION OF ZRO₂ STABILIZED
WITH RU(IV) AND LA(III)(U) BROWN UNIV PROVIDENCE RI
DEPT OF CHEMISTRY Y LONG ET AL. 26 JAN 88 TR-14

F/G 7/2

1/1

UNCLASSIFIED

N88014-86-K-0234

ML

DTIC FILE COPY

(2)

AD-A190 868

OFFICE OF NAVAL RESEARCH

CONTRACT NOOO 14-86-K-0234

TECHNICAL REPORT NO. 14

Preparation and Characterization of ZrO₂ Stabilized with Ru(IV) and La(III)

by

Y-C. Long, Z-D. Zhang, K. Dwight and A. Wold

Prepared for Publication in
MATERIALS RESEARCH BULLETIN

DTIC
ELECTED
FEB 05 1988
S D
CAD

Brown University
Department of Chemistry
Providence, RI 02912

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited

88 2 01 127

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b RESTRICTIVE MARKINGS					
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED					
2b DECLASSIFICATION/DOWNGRADING SCHEDULE							
4 PERFORMING ORGANIZATION REPORT NUMBER(S) # 14		5 MONITORING ORGANIZATION REPORT NUMBER(S) NOOO 14 86 0234					
6a NAME OF PERFORMING ORGANIZATION AARON WOLD BROWN UNIVERSITY	6b OFFICE SYMBOL (if applicable)	7a NAME OF MONITORING ORGANIZATION OFFICE OF NAVAL RESEARCH DR. DAVID NELSON					
6c ADDRESS (City, State, and ZIP Code) DEPARTMENT OF CHEMISTRY PROVIDENCE, RI 02912		7b ADDRESS (City, State, and ZIP Code) CODE 472 800 N. QUINCY STREET ARLINGTON, VA 22217					
8a NAME OF FUNDING/SPONSORING ORGANIZATION	8b OFFICE SYMBOL (if applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
9c ADDRESS (City, State, and ZIP Code)		10 SOURCE OF FUNDING (if known)					
		PROGRAM ELEMENT NO	PROJECT NO	TYPE	AMOUNT		
				VC	MM		
11 TITLE (Include Security Classification) PREPARATION AND CHARACTERIZATION OF ZrO₂ STABILIZED WITH Ru(IV) AND La(III)							
12 PERSONAL AUTHORSHIP Y-C. Long, Z-D. Zhang, K. Dwight and A. Wold							
13a TYPE OF REPORT Technical	13b TIME COVERED FROM _____ TO _____		14 DATE OF REPORT January 26, 1988	15 PAGES IN SET			
16 SUPPLEMENTARY NOTATION SUBMITTED TO MATERIALS RESEARCH BULLETIN							
17 COSATI CODES		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)					
FIELD	GROUP					SUB-GROUP	
19 ABSTRACT (Continue on reverse if necessary and identify by block number) Ruthenium oxide, dispersed on oxide supports such as TiO ₂ , SiO ₂ and ZrO ₂ , are known to show Fischer-Tropsch activity. Little is known about the catalyst-support interactions which must play an important role in the catalytic activity of dispersed ruthenium oxide. The strength of catalytic support interaction may be directly related to the stability of the dispersed catalyst towards reduction. Hence, solid solutions of Ru(IV)/ZrO ₂ have been prepared, and the resulting stability of Ru(IV) toward reduction with hydrogen was measured and compared with that of bulk RuO ₂ . The observed increase in stability toward reduction was related to interaction between RuO ₂ and ZrO ₂ . The introduction of a small amount of La ₂ O ₃ with the ZrO ₂ produced further stabilization of the Ru(IV) toward reduction.							
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> SAME AS REPORT <input type="checkbox"/> APPROXIMATELY 10% OF REPORT			21 ABSTRACT SECURITY CLASSIFICATION <input type="checkbox"/> SAME AS REPORT <input type="checkbox"/> APPROXIMATELY 10% OF REPORT				
22 NAME OF FUNDING/SPONSORING INDIVIDUAL			23 FUNDING SOURCE (If known)				

3.1.1.3.3

495724573 2157-19-104 1157

8/11/2012

485784879 2009-07-14 12:28 255-625-670

1000000000

- Dr. Morris Henly**
Chemical Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91109

Dr. Stephen D. Keaveny
Physics Department
University of Oregon
Eugene, Oregon 97403

Dr. David W. Kaelble
Department of Chemistry
University of Colorado
Boulder, CO 80309-0015

Dr. A. Szekey
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12180

Dr. J. M. Robertson
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. R. Houghaling
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27516

Dr. Richard L. Kenney
Department of Chemistry
University of California
Berkeley, California 94720

Dr. G. B. Smoluch
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Hunter
Naval Research Laboratory
Code 6173
Washington, D.C. 20375-5000

Dr. M. T. Berry
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sieben
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Zenneck
Quantum Surface Dynamics Branch
Code 1420
Naval Research Center
China Lake, California 93557

Dr. A. Wild
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernick
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. G. Egan
Department of Chemistry
University of California, San Diego
La Jolla, California 92093

- Dr. L. Kestenholz**
Department of Chemistry
Indiana University
Bloomington, Indiana 47401

Dr. E. C. Janga
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27516

Dr. Alan Miller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Sussex Brighton
Sussex BN1 9QH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John M. Allpress
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853

Dr. Ronald Lee
3301
Naval Surface Weapons Center
White Oak Division
Silver Spring, Maryland 20910

Dr. Robert L. Lamm
Department of Chemistry
University of Alberta
Edmonton, Alberta
T6G 2G2 Canada

- Dr. F. Carter**
Code A-10
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code A-10
Naval Research Laboratory
Washington, D.C. 20375-5000

National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. E. G. Wallin
Department of Physics
University of California
Irvine, California 92717

Dr. D. Pashley
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Remillier
Chemistry Department
University of California
Irvine, California 92717

Dr. C. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. S. Kalhoff
Code 4730, Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. J. Strobl
Department of Physics
University of California
Berkeley, California 94720

- Dr. J. C. Tamm**
Department of Chemistry
University of Tennessee
Knoxville, Tennessee 37996

Dr. A. Stalter-Gutierrez
Department of Chemistry
University of Tennessee
Knoxville, Tennessee 37996

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Co.
Schenectady, New York 12345

Dr. J. F. Ditter
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. L. Scott
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Tepfer
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. M. Ellingsen
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. R. J. Hoffmann
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. S. Werner
Department of Chemistry
University of Tennessee
Knoxville, Tennessee 37996

2013-01-3

Q 41213 86/2

ISSN 1062-1024 • VOLUME 155 • NO. 122 • APRIL 2003

TECHNICAL REPORT DISTRIBUTION LIST GEN

40.

- Dr. J. E. Jensen
Hughes Research Laboratory
1222 Bellflower Boulevard
Bellflower, California 90221

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Ferguson
Ricemaster Research Center of North Carolina
Research Triangle Park, North Carolina 27299

Dr. R. Zweig
Laboratory for Surface Science
and Technology
University of Illinois
Urbana, Illinois 61801

Dr. J. Butler
Naval Research Laboratory
Code 6535
Washington, D.C. 20375-5000

Dr. C. Ferreira
Naval Research Laboratory
Code 6535
Washington, D.C. 20375-5000

Dr. John Heiss
Chemistry and Physics Department
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. J. Suhm
Department of Chemistry
University of Georgia
Athens, Georgia 30602

Dr. P. Peeters
Geophysical Department
Bentham or Geologic Institute
Vienna, Austria 1130

Dr. Steven B. George
Georgia Institute of Technology
Department of Chemistry
Atlanta, GA 30332

Dr. Paul J. Quinn
Polymer Research Institute
Department of Chemistry
New Haven, CT 06520-3640

Dr. R. Bauer
Polymer Research Laboratory
University of Illinois
Urbana, Illinois 61801

Dr. Theodore E. Mattei
Surface Chemistry Division
Department of Chemistry
National Bureau of Standards
Washington, D.C. 20234

Dr. F. Templer
Polymer Research Institute
Department of Chemistry
New Haven, CT 06520-3640

Dr. C. J. Brinker
Department of Chemistry
University of Florida
Gainesville, Florida 32610

Dr. J. J. Kauer
Naval Research Laboratory
Code 6535
Washington, D.C. 20375-5000

Dr. C. J. Brinker
Polymer Research Institute
Department of Chemistry
New Haven, CT 06520-3640

- Office of Naval Research
Attn: Code 1113
800 4th Quincy Street
Arlington, Virginia 22212-5200

- No.
Copies
2 Dr. David Koenig
Code 914
N 2224
NTL - Mississauga 38522

- Dr. Bernard Davis
Naval Weapons Support Center
Code 59C
Crane, Indiana 47522-5050

- Naval Airropses Center
Attn: Dr. Sam Stearns
Chemistry Division
China Lake, California 93555

- Naval Civil Engineering Laboratory
Attn: Dr. R. W. Ortsko, Case 6-2
Port Hueneme, California 93440

- 1 Scientific Advisor
Commandant of the Marine Corps
Code 12-1
WASINBURN, D. G. - 201582

- Defense Technical Information Center 10
Building 5, Annex A-2 5000 ft²
Alexandria, Virginia 22314 quality

- er 10
high
quality U.S. Army Research & Development
Army Technical
Research Institute
Research Triangle Park, NC 27709

- DTNSRDC
Attn: Dr. H. Singerman
Applied Chemistry Division
Annapolis, Maryland 21401

- 1 Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 19110

- Dr. William Tilles
Superintendent
Chemistry Division, Code E100
Naval Research Laboratory
Washington, D.C., 20376-5000

- 1886 - 1900
Marine Survey
San Diego, California

City of Los Angeles
Department of Water and Power

PREPARATION AND CHARACTERIZATION OF ZrO_2 STABILIZED WITH Ru(IV) AND La(III)

Y-C. Long, Z-D. Chang, K. Dwight and A. Nold*
Department of Chemistry, Brown University, Providence, RI 02912

ABSTRACT

Ruthenium oxide, dispersed on oxide supports such as TiO_2 , SiO_2 and ZrO_2 , are known to show Fischer-Tropsch activity. Little is known about the catalyst-support interactions which must play an important role in the catalytic activity of dispersed ruthenium oxide. The strength of catalytic support interaction may be directly related to the stability of the dispersed catalyst towards reduction. Hence, solid solutions of Ru(IV)/ ZrO_2 have been prepared, and the resulting stability of Ru(IV) toward reduction with hydrogen was measured and compared with that of bulk RuO_2 . The observed increase in stability toward reduction was related to interaction between RuO_2 and ZrO_2 . The introduction of a small amount of La_2O_3 with the ZrO_2 produced further stabilization of the Ru(IV) toward reduction.

MATERIALS INDEX: Ruthenium oxide/zirconium oxide solid solution; ruthenium oxide/(lanthanum oxide/zirconium oxide) solid solution

Introduction

In order to determine the stability of dispersed ruthenium oxide on ZrO_2 , it is first necessary to investigate the properties of solid solutions containing Ru(IV) oxide. Such studies would result in optimizing the conditions necessary for the use of this catalyst in Fischer-Tropsch conversions of carbon monoxide to either hydrocarbons or alcohols. Solid solutions of ZrO_2 and various metal ions have been widely investigated. Collins and Ferguson (1) reported the formation of monoclinic phases when Cr_2O_3 reacts to form solid solutions with Fe_2O_3 , SnO_2 and Cr_2O_3 . Stocker and Collongues (2) prepared cubic solid solutions of ZrO_2 with M_O (M = Mg, Ni, Cd, Zn, Fe, Mn) and M₂O₃ (M = Fe, Mn, Cr, Al, V). Recently Nu (3) indicated that a tetragonal phase formed between Cr_2O_3 and ZrO_2 with less than 7.5 mole percent Cr_2O_3 and changed to cubic when the chromium content was above this level. There have been additional studies concerning the preparation and characterization of a series of cubic ZrO_2 solid solutions stabilized by Rh(III) (4), Fe(II) and Fe(III) (5), and Ni(II) (6) which were prepared by double decomposition of the nitrates. In all of these recent studies (3-6), a tetragonal form of ZrO_2 was first stabilized by the introduction of metal ions and transformed to the cubic form of ZrO_2 as the concentration of these ions was increased.

Despite the fact that ruthenium oxide shows a high catalytic activity in Fischer-Tropsch reactions (7), very little has appeared concerning the preparation and stabilization of ruthenium(IV) oxide under reducing conditions. A number of other transition metals have been shown to be stabilized when reacted with zirconium oxide. Hence this study of solid solutions between RuO₂ and ZrO₂ was undertaken. Such studies are essential in order to optimize the conditions necessary for the conversion of carbon monoxide to useful fuels.

Experimental

Samples of members of the system Ru(IV)/ZrO₂ were prepared to give compositions containing 5, 10 and 15 atomic percent Ru(IV). Calculated quantities of Ru(NO)(NO₃)₃ and ZrO(NO₃)₂ were dissolved in water. The solution then was dried at 150°C for 12 hours and predecomposed at 550°C for 24 hours in order to drive off nitrogen oxides, and then allowed to cool to room temperature.

Ternary oxide samples of La₂O₃, RuO₂ and ZrO₂ were prepared by decomposing the required mixture of ruthenium nitrosyl nitrate Ru(NO)(NO₃)₃, lanthanum nitrate, and zirconyl nitrate ZrO(NO₃)₂. The triple salt was decomposed by the same procedure as described above except that the samples were finally heated at 850°C for 24 hours.

In order to make certain of the proper decomposition conditions, temperature programmed decompositions of both the double salt of ruthenium nitrosyl nitrate and zirconyl nitrate, and the triple salt of lanthanum nitrate, ruthenium nitrosyl nitrate, and zirconyl nitrate were carried out in a Cahn System 113 thermal balance. Both the double salt and the triple salt were dissolved in water and dried at 150°C for 12 hours. The partially decomposed products were then decomposed under a predried oxygen atmosphere at a flow rate of 60 cc/min. The samples were heated to 1000°C at a rate of 100°C/hr.

Temperature programmed reductions (TPR) of ruthenium-containing samples were carried out using the same balance. Before reduction was started, the sample was preheated in dry oxygen up to 600°C in order to drive off any adsorbed water. After the sample was allowed to cool to room temperature, the gas was changed from oxygen to a 85%Ar/15%H₂ mixture predried over P₂O₅. The flow rate over a 25 mg sample was 60 cc/min. The temperature was then increased to 600°C at a rate of 50°C/hr. For the system of La(III) - Ru(IV) - ZrO₂ the reduction was carried out to 1000°C.

Characterization of the Products

X-ray powder diffraction patterns of the samples were obtained using a Philips diffractometer and monochromated high intensity CuK_α radiation ($\lambda = 1.5405 \text{ \AA}$). Polycrystalline samples were analyzed by x-ray diffraction. Fast scans were recorded at a speed of 1° 2^o/min and slow scans at a speed of 0.13 2^o/min. The lattice parameters were determined by a least squares refinement of the observed peak positions by a computer program which corrected for the systematic errors inherent in the measurement.

Results and Discussion

Samples of the system Ru(IV)/ ZrO_2 were prepared by double decomposition of $Ru(NO_3)_3$ and $ZrO(NO_3)_2$. A previous study (8) has indicated that the nitrates decompose completely at 900°C. In this study, however, complete decomposition occurred at 550°C. Therefore, the samples were heated at 550° for 24 hours. Compositions of Ru(IV)/ ZrO_2 up to 10 atomic percent ruthenium crystallized in the tetragonal system. These phases were stable in air up to 700°C. At 800°C, x-ray analysis indicated the formation of monoclinic ZrO_2 . Because of poor crystallinity, the cell parameters of the tetragonal phases up to 10 atomic percent ruthenium appeared to remain constant with $a = 5.07 \text{ \AA}$ and $c = 5.16 \text{ \AA}$. In order to determine whether the ruthenium oxide actually reacted to form a solid solution with ZrO_2 , temperature programmed reduction of each sample was carried out. The results of these studies are shown in Fig. 1. It can readily be seen that there is stabilization of the ruthenium toward hydrogen reduction, and this must be related to an interaction between RuO_2 and ZrO_2 . The temperature programmed reduction of the 15 mole percent ruthenium oxide sample shown in Fig. 1 indicates a two-step reduction. The first plateau is achieved by the reduction of unreacted excess RuO_2 and the second step is due to the gradual reduction of the stabilized RuO_2 . This is also consistent with the appearance of diffraction lines due to excess RuO_2 in the x-ray pattern of the 15% RuO_2/ZrO_2 sample.

A part of the system $RuO_2/(La_2O_3/ZrO_2)$ was studied in order to determine the effect of lanthanum oxide on the stabilization of ruthenium(IV) in ZrO_2 . Samples of ZrO_2 containing Ru(IV) and La(III) were prepared by decomposing mixtures of nitrates at 850°C for 24 hours. Temperature programmed decomposition studies indicated that decomposition of the mixtures was not complete below this temperature. The concentration of La_2O_3 was kept constant at 5 mole percent relative to that of ZrO_2 since this level of solid solution with ZrO_2 has previously been studied for the system $Rh_2O_3/(La_2O_3/ZrO_2)$. Therefore, the preparations which were studied can best be represented by the general formula: mole% RuO_2 /(5 mole% La_2O_3/ZrO_2).

At five mole percent lanthanum oxide, the stabilized cubic structure of ZrO_2 is maintained for ruthenium(IV) oxide loading up to 10 mole percent. The variation in the cell constants with increased ruthenium concentration is shown in Fig. 2. The temperature programmed reduction studies were carried out with the Cahn balance using predried gas, and the results are shown in Fig. 3. It can be seen that 2.5 atomic percent ruthenium loading is completely stable towards reduction up to 800°C; this may be compared to the reduction of bulk RuO_2 at 90°C. The sample at 5 atomic percent ruthenium loading shows that a part of the ruthenium oxide behaves just as RuO_2/ZrO_2 did under reducing conditions. However, the effect of lanthanum on the further stabilization of ruthenium(IV) towards reduction is evident for the compositions containing both 5 and 10 atomic percent ruthenium. Fig. 1 summarizes the change of cell parameters as a function of reduction temperature for each sample studied. It can be seen that there is some reduction of the ruthenium - lanthanum - zirconium oxide samples below 700°C. But at 850°C all of the ruthenium is reduced, and the cell parameters return to that of lanthanum oxide/zirconium oxide not containing ruthenium.

Conclusions

Solid solution of Ru(IV) oxide in ZrO_2 increases the stability towards hydrogen reduction from under 90° to over 200°C. The further addition of 5 mole % of lanthanum(III) oxide significantly increases the stability of dispersed RuO_2 to 800°C. The Fischer-Tropsch process depends upon the presence of oxide as well as reduced metal. Whereas pure RuO_2 is catalytically inactive because of the low temperature at which it can be reduced, it is possible that a proper combination of La_2O_3 , RuO_2 and ZrO_2 might result in optimal conversion of carbon monoxide to useful hydrocarbons.

Fig. 1. Variation of relative weight with increasing temperature during temperature programmed reduction (TPR) of RuO_2 and members of the system $\text{Ru}_x\text{Zr}_{1-x}\text{O}_2$ in 85%Ar/15%H₂.

Fig. 2. Change of cell parameter with RuO₂ concentrations in the system RuO₂/5 mole% La₂O₃/ZrO₂.

Fig. 3. Variation of relative weight with increasing temperature during temperature programmed reduction of RuO₂ and members of the system RuO₂(5 mole% La₂O₃/ZrO₂) in 85% Ar + 15% H₂.

Fig. 4. Cell parameters of members of the system RuO_2 (5 mole% $\text{La}_2\text{O}_3/\text{ZrO}_2$) as prepared and after reduction in 85%Ar/15%H₂ at 400° and 850° C.

Acknowledgments

This research was supported in part by the Office of Naval Research and Eastman Kodak Company, Rochester, NY. The authors also wish to acknowledge the support of the National Science Foundation for the partial support of K. Dwight and the use of the Materials Research Laboratory at Brown University which is funded by the National Science Foundation.

References

1. J. F. Collins and I. F. Ferguson, *J. Chem. Soc. A*, **4** (1968).
2. J. Stocker and R. Collongues, *Compt. Rend.* **245**, 695 (1957).
3. P. Wu, R. Kershaw, K. Dwight and A. Nold, *J. Mat. Sci. Letts.* **6**, 753 (1987).
4. Y-C. Zhang, R. Kershaw, K. Dwight and A. Nold. To be published JSSC.
5. S. Davison, R. Kershaw, D. Dwight and A. Nold. To be published JSSC.
6. K. E. Smith, R. Kershaw, K. Dwight and A. Nold, *Mat. Res. Bull.* **22**, 1125 (1987).
7. S. R. Morris, R. B. Moyes and P. B. Neils, *Metal Support and Metal Additive Effects in Catalysis*, B. Imelik et al., eds., "Elsevier Sci. Pub. Co., Amsterdam, (1982) 217.
8. Y-C. Zhang, K. Dwight and A. Nold, *Mat. Res. Bull.*, **21**, 853 (1986).

END

DATE

FILED

5- 88
DTIC