## **Multidimensional Mastery Testing with CAT**

Steven W. Nydick April 6, 2014

# **Multidimensional Mastery Testing (MMT)**

How do we conceptualize mastery testing?

- Two regions of multidimensional space
  - H<sub>0</sub>: θ<sub>i</sub> ∈ Θ<sub>n</sub>
    H<sub>1</sub>: θ<sub>i</sub> ∈ Θ<sub>m</sub>
- Classification bound function separating regions
  - Satisfies:  $g(\theta) = 0$ .
  - $g(\theta) = 0$  is a curve in two dimensions.
  - $g(\theta) = 0$  is a surface in three dimensions.

Common classification bound functions:

- Compensatory/linear task
- 2 Noncompensatory/piecewise task

## **Multidimensional Mastery Testing (MMT)**

#### Compensatory Task



#### Noncompensatory Task



# The Multidimensional SPRT: Graphically

Constrained SPRT



Projected SPRT



# The Multidimensional GLR: Graphically

Projected SPRT



#### Multidimensional GLR



# The Bayesian Credible Region Approach

An alternative option to point comparisons:

- Let  $\alpha$  and  $\beta$  be Type I/II error rates.
- Find the posterior probability of being a master.

$$Pr(m|\mathbf{y}_{i,j_{tmp}}) = \int_{\mathbf{\Theta}_m} \pi(\theta|\mathbf{y}_{i,j_{tmp}}) d\theta$$
 (1)

- If  $Pr(m|\mathbf{y}_{i,j_{tmn}}) > 1 \beta$ , classify as a master.
- If  $Pr(m|\mathbf{y}_{i,i_{tmn}}) < \alpha$ , classify as a non-master.

#### Why does this work?

"In sequential scenarios, there is no need to 'spend  $\alpha'$  for looks at the data" when using Bayesian tests because "posterior probabilities are not affected by the reason for stopping experimentation" (Berger, 2012).

# The Stocastically Curtailed SPRT

A primer on the SCSPRT:



Curtailed methods generalize directly to MIRT:

- The likelihood is a scalar function of  $\theta$ .
- The expectation is a function of  $L(\theta|\mathbf{y}_{i,j})$  and  $p_i(\theta)$ .
- The variance is a function of  $L(\theta|\mathbf{y}_{i,j})$  and  $p_j(\theta)$ .

Curtailment depends on future items.

## **Fisher Information Selection Algorithms**

Some commonly used FI item selection algorithms:

- 1 Minimize the volume of the confidence ellipsoid (D).
  - Determinant of inverse test information
- 2 Minimize the average variance across all dimensions (T).
  - · Trace of inverse test information
- 3 Minimize the variance in a particular direction (L).
  - Quadratic form of  $\boldsymbol{\lambda}^T (\sum \mathcal{I})^{-1} \boldsymbol{\lambda}$

# KL and the Expected Likelihood Ratio

How does KL divergence apply to mastery tests?

Typical method? Compare  $\theta_u$  to  $\theta_l$ :

$$\mathsf{KL}_{j}(\theta_{u}|\theta_{l}) = \mathbb{E}_{\theta_{u}} \left[ \mathsf{log} \left[ \mathsf{LR}(\theta_{u}, \theta_{l}|Y_{ij}) \right] \right] \tag{2}$$

Equation (2) assumes a priori mastery.

New method? Take expectation w.r.t. current ability estimate:

$$\mathsf{ELR}_{j}(\hat{\boldsymbol{\theta}}_{i}) = \mathbb{E}_{\hat{\boldsymbol{\theta}}_{i}} \left[ \mathsf{log} \left[ \mathsf{LR}(\boldsymbol{\theta}_{u}, \boldsymbol{\theta}_{l} | Y_{ij}) \right] \right] \tag{3}$$

Latter method shows promise in unidimensional simulations.

# **Application to Mastery Testing**

A straightforward procedure to choose next MCMT item:

- **1** Let  $\Theta_0$  be the set of points on the classification bound.
- **2** Pick a function to maximize/minimize given any  $\theta_0 \in \Theta_0$ .
  - L-Method FI with  $\lambda$  normal to the classification bound at  $\theta_0$
  - KL-divergence comparing  $\theta_u = \theta_0 + \delta \theta_{\delta}$  to  $\theta_l = \theta_0 \delta \theta_{\delta}$
  - ELR comparing  $\theta_u$  to  $\theta_l$
- **3** Choose some appropriate weight function,  $w_{ij}$ .
  - $W_{ii} = \pi(\theta)$
  - $W_{ij} = \pi(\boldsymbol{\theta}|\mathbf{y}_{i,j})$
  - $W_{ij} = L(\theta|\mathbf{y}_{i,j})$
- **4** Take the line/surface integral of the max/min function weighted by  $w_{ij}$  along the line/surface defined by  $\Theta_0$ .

### **Item Bank and IRT Model**

- Size of Item Bank
  - *J* = 900
- 2 Models
  - C-MIRT
- 3 Dimensions
  - K = 2
- 4 Item Banks
  - · Within-Item Multidimensionality
  - · Between-Item Multidimensionality

#### **Latent Trait and Classification Bound**

- A Latent Trait Distribution
  - K = 2
  - $\theta \sim N(0, \begin{bmatrix} 1 & \rho \\ 0 & 1 \end{bmatrix})$  where  $\rho \in \{.00, .33, .67\}$ .
- Classification Bound Function
  - Compensatory:  $\theta_2 + \theta_1 = 0$
  - Noncompensatory:  $\theta_1 > 0$  and  $\theta_2 > 0$

## **Item Selection Algorithms**

- **1** D-Method FI at  $\hat{\boldsymbol{\theta}}_0$
- **2** L-Method FI at  $\hat{\boldsymbol{\theta}}_0$
- **3** L-Method ELR at  $\hat{\boldsymbol{\theta}}_0$
- **4** L-Method KL at  $\hat{\theta}_0$ 
  - $\lambda$  normal to the classification bound function
- **6** Surface KL
  - $\lambda$  normal to the classification bound function
  - $\bullet \ \ \textit{W}_{\textit{ij}} = \pi(\pmb{\theta}|\pmb{y}_{\textit{i},\textit{j}})$

# **Stopping Rules**

- P-SPRT, C-SPRT, and M-GLR
  - $\delta \in \{.15, .25\}$
  - $\alpha = \beta = .1$
- M-SCSPRT
  - · C-SPRT as the base SPRT method
  - $\delta \in \{.15, .25\}$
  - $\alpha = \beta = .1$
  - $\epsilon_1 = \epsilon_2 = .05$
- BCR
  - $\alpha = \beta \in \{.05, .10\}$ .

#### **Procedure and Conditions Table**

- 1 Test Length
  - J = 4 items randomly selected
  - Minimum: J = 10
  - Maximum: J = 100
- 2 Ability Estimation
  - MLE bounded within  $[-4,4] \times [-4,4]$

#### Conditions Table

| $\overline{\rho}$      | 3 (.00, .33, .67)                 |
|------------------------|-----------------------------------|
| <b>Bound Functions</b> | 2 (Comp, Non-Comp)                |
| Item Banks             | 2 (B/w, W/in Dimensions)          |
| Item Selection         | 5 (D-FI, L-FI, L-ELR, L-KL, S-KL) |
| Stopping Rules         | 10 (5 × 2)                        |
| Overall                | 600                               |

# **Length and Accuracy: Item Selection**



# **Length and Accuracy: Bank by Select**



#### **Compensatory Classification Bound**



# **Length and Accuracy: Bank by Select**





#### Non-Compensatory Classification Bound



## **Length and Accuracy: Stopping Rule**





#### Non-Compensatory Classification Bound



# Length and Accuracy: Bank by Stop



## Length and Accuracy: Bank by Stop

#### Non-Compensatory Classification Bound



#### Non-Compensatory Classification Bound



What are the answers to the following questions?

- **1** Have any of the stopping rules been adequately generalized to multidimensional classification problems?
- 2 Are there differences between P- and C- SPRT algorithms in terms of test length and classification accuracy?
- 3 Do different item banks yield differential performance for different classification bound functions?
- 4 Do variables other than stopping rule or item bank affect test length or classification accuracy?

Yes. All of the stopping rules except for P-SPRT and M-SCSPRT appear to work in multidimensional mastery tests.

What are the answers to the following questions?

- 1 All of the stopping rules except for P-SPRT and M-SCSPRT appear to work in multidimensional mastery tests.
- 2 Are there differences between P- and C-SPRT algorithms in terms of test length and classification accuracy?
- 3 Do different item banks yield differential performance for different classification bound functions?
- 4 Do variables other than stopping rule or item bank affect test length or classification accuracy?

Yes. P-SPRT and C-SPRT differ only when the classification bound does not align with the contours of the log-lik function.

What are the answers to the following questions?

- 1 All of the stopping rules except for P-SPRT and M-SCSPRT appear to work in multidimensional mastery tests.
- 2 P-SPRT and C-SPRT differ only when the classification bound does not align with the contours of the log-lik function.
- **3** Do different item banks yield differential performance for different classification bound functions?
- 4 Do variables other than stopping rule or item bank affect test length or classification accuracy?

Yes. Between-item multidimensionality works best given a non-compensatory classification bound function.

What are the answers to the following questions?

- 1 All of the stopping rules except for P-SPRT and M-SCSPRT appear to work in multidimensional mastery tests.
- 2 P-SPRT and C-SPRT differ only when the classification bound does not align with the contours of the log-likelihood function.
- 3 Between-item multidimensionality works best given a non-compensatory classification bound function.
- 4 Do variables other than stopping rule or item bank affect test length or classification accuracy?

Not really. Most of the item selection algorithms performed similarly given a reasonable item bank and stopping rule.

#### **Conclusions**

More research is needed in multidimensional CCT.

- Should one use Bayesian estimation procedures?
- · Can one circumvent computational limitations?
- Do these methods generalize to more than two classification regions?
- How do practitioners consider selection constraints?

# Thank You!