Math 173
Problem Set 2
September 24, 2018

1 (Lax 3.14) Let \mathcal{V} be a vector space of arbitrary dimension and $T: \mathcal{V} \to \mathcal{V}$ be rank 1.

- (a) Show there exists a unique number c such that $T^2=cT$.
- (b) Assuming dim $\mathcal{V} < \infty$, show that $c \neq 1$ implies I T has an inverse.

1

- **2** Let \mathcal{V} be a vector space, and recall that two linear spaces are isomorphic if there exists an invertible linear map from one to the other.
- (a) If \mathcal{V} is infinite dimensional, prove that $\dim \mathcal{V} < \dim \mathcal{V}'$, or in other words that there exists a linear injection from \mathcal{V} to \mathcal{V}' that is not a surjection.
- (b) On the other hand, if \mathcal{V} is finite dimensional prove that \mathcal{V} is isomorphic to \mathcal{V}' .

3

- (a) Prove that the set of diagonalizable matrices is dense in the set of all matrices under the metric $d(A, B) = \max_{ij} |A_{ij} B_{ij}|$ on $\mathsf{M}_n(\mathbb{C})$.
- (b) Using this, prove that the trace of a matrix is the sum of its eigenvalues, and that the determinant of a matrix is the product of its eigenvalues.

4 Let $A, B : \ell^2(\mathbb{C}) \to \ell^2(\mathbb{C})$ be linear operators on the space of square summable sequences. If $\sum_{i,j} |A_{ij}|^2 < \infty$ we call A a Hilbert-Schmidt operator. Prove that the functional

$$\langle A, B \rangle = \sum_{ij} A_{ij} \overline{B}_{ij}$$

is an inner product. That is, prove that $\langle \cdot, \cdot \rangle$

- (a) is well-defined between Hilbert-Schmidt operators.
- (b) is linear in the first coordinate.
- (c) satisfies $\langle A, B \rangle = \overline{\langle B, A \rangle}$
- (d) requires A = 0 if $\langle A, A \rangle = 0$.