# Part II

# Basic GNNs & Applications

### Lecture 06

# Introduction to Graph Attention Networks (GATs)

- ☐ Learn GATs fundamentals and its significance in graph-based data analysis.
- ☐ Understand message passing using Selfattention in GATs.
- ☐ Apply GATs to various graph-based tasks for valuable insights.





MODELS COMPARISON

# Network Sciences

# **Challenges and Limitations of GCNs**

### **Global Transition Function (Message Passing):**

• The V-GNN employs a layer-wise propagation rule:

$$\frac{H^{(k+1)}}{H^{(k)}} = \Psi(\widetilde{A}H^{(k)}W^{(k)})$$

Vanilla GNNs treat all neighbors equally.

No consideration for the difference in neighbor counts.

### **Global Transition Function (Message Passing):**

• The GCN employs a specific layer-wise propagation rule:

$$\frac{H^{(k+1)}}{H^{(k+1)}} = \Psi(\underbrace{L_{norm}H^{(k)}W^{(k)}})$$

$$L_{norm} = \widetilde{D}^{-1/2} \widetilde{A} \ \widetilde{D}^{-1/2}$$

GCNs aim to tackle the issues of vanilla **GNNs** through **normalization** 

Consideration for the difference in neighbor counts are made thanks to the normalization coefficient:

$$rac{1}{\sqrt{Deg_{(i)}}\sqrt{Deg_{(j)}}}$$



#### LIMITATIONS OF VANILLA acn

GAT

MODELS COMPARISON

# **Challenges and Limitations of GCNs**

**Static** Normalization Coefficients:

Relies on fixed coefficients, limiting adaptability.

Homophily:

Favors nodes with similar degrees due to normalization.

#### L norm:

[[0.25 0.35 0.29 0.29] [0.35 0.5 0. [0.29 0. 0.33 0.33] [0.29 0. 0.33 0.33]



**Fixed** 

Aggregation:

Uses a uniform aggregation strategy for all nodes.

Limited

**Expressiveness:** 

Struggles with diverse relationships and features.

**Lack of Feature** Importance:

Does not account for node feature significance.

In a Traffic Example, the coefficients:

- Are fixed and do not change with traffic conditions.
- Do not account for the variability of traffic flow between different cities and times.
- May not be accurate or realistic for modeling traffic flow.



models comparison

# **Challenges and Limitations of GCNs**

Static Normalization Coefficients:

Relies on **fixed coefficients**, limiting adaptability.

Homophily:

Favors nodes with similar degrees due to normalization.

Fixed

Aggregation:

Uses a uniform aggregation strategy for all nodes.

Limited

**Expressiveness:** 

Struggles with diverse relationships and features.

Lack of Feature Importance:

Does not account for **node feature significance**.

L\_norm:

[[0.25 0.35 0.29 0.29]

[0.35 0.5 0. 0.

[0.29 0. 0.33 0.33]

[0.29 0. 0.33 0.33]]



In a Traffic Example:

- Cities with similar numbers of connections, (like 4 and 3), are treated similarly by GCNs.
- In real word they have different traffic patterns.



MODELS COMPARISON

# **Challenges and Limitations of GCNs**

**Static** Normalization Coefficients:

Relies on fixed coefficients, limiting adaptability.

Homophily:

Favors nodes with similar degrees due to normalization.

L norm:

[[0.25 0.35 0.29 0.29]

[0.35 0.5 0.

[0.29 0. 0.33 0.33]

[0.29 0. 0.33 0.33]]



**Fixed** 

Aggregation:

Uses a uniform aggregation strategy for all nodes (Message Passing).

Limited

**Expressiveness:** 

Struggles with diverse relationships and features.

**Lack of Feature** Importance:

Does not account for node feature significance.

In a Traffic Example, the aggregation strategy:

- Equal Neighbors: Cities may have diverse traffic pattern. But, yet GCNs assumes equal neighbor **importance** when performing the aggregation.
- **Ignores Dynamics:** Overlooks traffic variations.



MODELS COMPARISON

# **Challenges and Limitations of GCNs**

**Static** Normalization Coefficients:

Relies on fixed coefficients, limiting adaptability.

Homophily:

Favors nodes with similar degrees due to

normalization.

**Fixed** Aggregation:

Uses a uniform aggregation strategy for all nodes.

Limited **Expressiveness:** 

Struggles with diverse relationships and features.

**Lack of Feature** Importance:

Does not account for node feature significance.

L norm:

[[0.25 0.35 0.29 0.29] [0.35 0.5 0.

[0.29 0. 0.33 0.33]

[0.29 0. 0.33 0.33]]



#### In a Traffic Example:

- Complex Traffic Factors: Weather, road quality, and urban development affect traffic.
- GCNs may struggle to capture these complexities, reducing prediction accuracy.

LIMITATIONS OF VANILLA 400

GAT

MODELS COMPARISON

# **Challenges and Limitations of GCNs**

**Static** Normalization Coefficients:

Relies on fixed coefficients, limiting adaptability.

Homophily:

Favors nodes with similar degrees due to normalization.

L norm:

[[0.25 0.35 0.29 0.29]

[0.35 0.5 0.

[0.29 0. 0.33 0.33]

[0.29 0. 0.33 0.33]]



**Fixed** 

Aggregation:

Uses a uniform aggregation strategy for all nodes.

Limited

Struggles with diverse relationships and **Expressiveness:** features.

**Lack of Feature** Importance:

Does not account for node feature significance.

#### In a Traffic Example:

- Uniform Treatment of Features: GCNs treat all city features equally, ignoring variations in the importance of data like population, geographical location, and infrastructure.
- This can lead to overlooking critical features for traffic prediction.



LIMITATIONS of Vanilla 400

GAT

MODELS COMPARISON

#### **Graph Attention Networks (GATs) Dynamic** Introduces self-attention for adaptive Normalization: coefficient calculation. Beyond Considers both connections and features for Homophily: nuanced importance. Multi-Head Enables nodes to have different importance Attention: levels for different neighbors. **Improved** Handles complex graphs with varying **Expressiveness:** relationships and features.

Network Sciences

#### What are GATs?

GATs are popular graph neural networks that are a theoretical Improvement of GCNs.

Features of a GAN Layer

- Dynamic Weights via Self-Attention: GATs dynamic weighting through attention instead of fixed normalization coefficients.
- Shared Core with Transformers: GATs share a core concept with the highly successful transformer architecture, linked to BERT and GPT-3.

**Feature** Introduces attention scores for adaptive Significance: feature focus during aggregation.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

# Introducing the Graph Attention Layer (GAL)

Network Sciences

Lets Recall about GCN Layer

### **Global Transition Function (Message Passing):**

The GCN employs a specific layer-wise propagation rule:

$$H^{(k+1)} = \Psi(L_{norm}H^{(k)}W^{(k)})$$

$$L_{norm} = \widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2}$$

$$h_i^{(k+1)} = \Psi\left(\sum_{j \in \aleph_i} \alpha_{ij}^{(k)} W^{(k)} h_i^{(k)}\right)$$

$$\frac{\alpha_{ij}^{(k)}}{\sqrt{Deg_{(i)}^{(k)}}\sqrt{Deg_{(j)}^{(k)}}}$$

Weighting factor (importance) of node j's features to node i.

**Attention Scores are Explicitly Fixed in GCNs** 





LIMITATIONS OF VANILLA 400

GAT

MODELS COMPARISON

## Introducing the Graph Attention Layer (GAL)

Attention Mechanism In GAL – One Attention Head

GAL introduces the attention mechanism as a substitute for the statically normalized convolution operation.

$$= \frac{SoftMax}{\left(e_{ij}^{(k)}\right)}$$

$$= \frac{Exp(e_{ij}^{(k)})}{\sum_{k \in \aleph_i} Exp(e_{ik}^{(k)})}$$

Self-Attention Scores

normalization SoftMax

Unnormalised Coefficients

$$oxed{e_{ij}^{(k)}} = \mathsf{LeakyReLU}\left( \overline{oldsymbol{a}^{(k)^T}} (z_i^{(k)} || z_j^{(k)} 
ight)$$

$$\boldsymbol{z}_{i}^{(k)} = \boldsymbol{W^{(k)}} \boldsymbol{h}_{i}^{(k)}$$

$$z_j^{(k)} = W^{(k)} h_i^{(k)}$$

The result of this operation gives the final attention scores for one head attention.





8 Mai 1945 - Sidi-Bel-Abbès



LIMITATIONS OF VANILLA acn

GAT

MODELS COMPARISON

# Introducing the Graph Attention Layer (GAL)

#### Attention Mechanism In GAL – Multi-head attention

- Analogous to multiple channels in ConvNet, GAT introduces multi-head attention to enrich the model capacity and to stabilize the learning process.
- Each attention head has its own parameters and their outputs can be merged in two ways:

#### Concatenation over N Heads

$$\frac{h_i^{(k+1)}}{h_i^{(k+1)}} = \left| \left| \right|_{n=1}^N \Psi \left( \sum_{j \in \aleph_i} \left( \alpha_{ij}^{(k)} \right)_n \left( W^{(k)} \right)_n \left( h_i^{(k)} \right)_n \right)$$

#### Average over N Heads

$$\frac{h_i^{(k+1)}}{h_i^{(k+1)}} = \Psi\left(\frac{1}{N}\sum_{n=1}^N\sum_{j\in\aleph_i} \left(\alpha_{ij}^{(k)}\right)_n \left(W^{(k)}\right)_n \left(h_i^{(k)}\right)_n\right)$$



LIMITATIONS OF VANILLA acn

GAT

MODELS COMPARISON



# **Graph Attention Network Implementation**

Implementation the GAT using a built-in GAL:

```
Class Overview
01
```

- \_init\_\_() 02
- forward() 03

```
from torch_geometric.nn import GATv2Conv
# Create a new class named GAT
class GAT(nn.Module):
  def __init__(self, dim_in, dim_h, dim_out, head=hd):
     # Initialize the GAT class with input, hidden,
        output layer dimensions, and number of heads
  def forward(self, x, edge_index):
     # Perform the forward pass of the GAT
   def accuracy(self, y pred, y true):
     # Calculate the accuracy of predictions
   def fit(self, data, epochs):
      # Train the model
   def test(self, data):
     # Evaluate the model
```





MODELS COMPARISON







## **Graph Attention Network Implementation**

Implementation the GAT using a built-in GAL:

```
Class Overview
01
```

```
init__()
01
```

forward() 02

```
from torch geometric.nn import GATv2Conv
# class named GAT
class GAT(nn.Module):
  def __init__(self, dim_in, dim_h, dim_out, heads=heads):
        super().__init__()
        self.gat1 = GATv2Conv(dim_in, dim_h, heads)
        self.gat2 = GATv2Conv(dim_h*heads, dim_out, heads)
```



LIMITATIONS OF VANILLA 4cn

GAT

MODELS COMPARISON

# **Graph Attention Network Implementation**

Implementation the GAT using a built-in GAL:

Class Overview 01

02 \_init\_\_()

forward() 03

```
# class named GAT
class GAT(nn.Module):
    def forward(self, x, edge index):
       # Pass the input features to the 1st GAT layer (gat1)
        h = self.gat1(h, edge index)
        # Apply Exponential Linear Unit (ELU) activation
          function
        h = F.elu(h)
        # Pass the output to the 2nd GAT layer (gat2)
        h = self.gat2(h, edge index)
       # Apply log softmax to the final output and return the
        result
        return F.log_softmax(h, dim=1)
```





LIMITATIONS OF VAPILLA 4cn

GAT

MODELS COMPARISON

# **Graph Attention Network Implementation**

### Implementation the GAT using a built-in GAL:

- Class Overview 01
- init\_\_() 02

ECOLE SUPÉRIEURE EN INFORMATIQUE

8 Mai 1945 - Sidi-Bel-Abbès

- forward() 03
- Building, Training, and 04 Testing the GCN

```
# Create a GAT instance with specified input, hidden, and output
dimensions, and heads
gat = GAT(dataset.num_features, 32, dataset.num_classes)
# Print the model architecture
print(gat)
```

```
GAT(
  (gat1): GATv2Conv(1433, 32, heads=8)
  (gat2): GATv2Conv(256, 7, heads=1)
```





Val Acc: 11.80%

Val Acc: 67.60%

Val Acc: 70.80%

Val Acc: 69.00%

#### LIMITATIONS OF VAPILLA 4cn

GAT

MODELS COMPARISON

# **Graph Attention Network Implementation**

Epoch

Network Sciences

Implementation the GAT using a built-in GAL:

Class Overview 01

# Train the GCN model on the given data for a specified number of epochs (100 in this case) and the adjacency matrix. gat.fit(data, epochs=100)

```
init__()
02
```

```
Train Loss: 1.969
                                                  Val Loss: 1.96
                               Train Acc: 15.00% |
           Train Loss: 0.259
                                                  Val Loss: 1.10
Epoch
      20
                               Train Acc: 96.43% |
           Train Loss: 0.163
                                                  Val Loss: 0.90
Epoch 40
                              Train Acc: 98.57% |
           Train Loss: 0.205
                              Train Acc: 98.57% | Val Loss: 0.96
Epoch
     60
                               Train Acc: 100.00% | Val Loss: 0.91
           Train Loss: 0.130
Epoch
      80
```

```
forward()
03
```

```
| Val Acc: 70.80%
            Train Loss: 0.148
                                Train Acc: 99.29% | Val Loss: 0.90
                                                                     Val Acc: 73.00%
Epoch 100
```

```
Building, Training, and
04
       Testing the GCN
```

```
# Test the model and get accuracy
test acc = gat.test(data)
print(f'\nGAT test accuracy: {test acc*100:.2f}%')
```

GAT test accuracy: 82.00%



LIMITATIONS of Vanilla gen

GAT

MODELS COMPARISON

# **Models Comparison**

| Dataset | MLP    | Vanilla GNN | GCN     | GAT     |
|---------|--------|-------------|---------|---------|
| Cora    | 51.90% | 72.50%      | 79.70%  | 82%     |
|         |        | +20.60%     | +27.80% | +30.10% |



# **Models Comparison**

LIMITATIONS of Vanilla gen

GAT

MODELS COMPARISON



# Feature Importance:

# •Uniform treatment of features. Multi-Head Attention:

•No built-in support

Aggregation Strategy:

# •Uniform aggregation for all nodes. Normalization Coefficients:

•Static coefficients, limiting adaptability.

# GATS Feature Importance:

• Explicit feature importance with learned coefficients.

•Multiple attention heads for diverse information.

•Fine-grained aggregation with multiple attention heads.

# THANK YOU