Cuadrice pe ecuația redusă

Problema 10.1. Să se determine punctele de intersecție ale elipsoidului

$$\frac{x^2}{16} + \frac{y^2}{12} + \frac{z^2}{4} - 1 = 0$$

cu dreapta

$$x = 4 + 2t$$
, $y = -6 - 3t$, $z = -2 - 2t$.

Problema 10.2. Să se scrie ecuația planului tangent la hiperboloidul cu o pânză

$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{1} = 1$$

în punctul M(2,3,1). Să se arate că acest plan tangent taie suprafața după două drepte reale și să se calculeze unghiul format de cele două drepte.

Problema 10.3. Să se scrie ecuațiile planelor tangente în punctele de intersecție ale dreptei x=y=z

- a) paraboloidul eliptic $\frac{x^2}{2} + \frac{y^2}{4} = 9z$;
- b) paraboloidul hiperbolic $\frac{x^2}{2} \frac{y^2}{4} = 9z$.

Problema 10.4. Să se scrie ecuația planelor tangente la:

- a) paraboloidul eliptic $\frac{x^2}{5} + \frac{y^2}{3} = z;$
- b) paraboloidul hiperbolic $x^2 \frac{y^2}{4} = z$,

paralele cu planul

$$x - 3y + 2z - 1 = 0.$$

Problema 10.5. Să se determine generatoarele rectilinii ale paraboloidului hiperbolic $4x^2 - 9y^2 = 36z$ care trec prin punctul $P(3\sqrt{2}, 2, 1)$.

Problema 10.6. Să se scrie ecuațiile generatoarelor rectilinii ale paraboloidului hiperbolic

$$\frac{x^2}{16} - \frac{y^2}{4} = z$$

care sunt paralele cu planul

$$3x + 2y - 4z = 0.$$

Problema 10.7. Să se afle generatoarele rectilinii ale suprafeței

$$\frac{x^2}{36} + \frac{y^2}{9} - \frac{z^2}{4} = 1$$

care sunt paralele cu planul

$$x + y + z = 0.$$

Problema 10.8. Să se găsească un punct al elipsoidului

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0, \quad a > b > c > 0.$$

astfel încât planul tangent în acest punct să taie segmente de lungime egală pe axele de coordonate.

Problema 10.9. Să se găsească punctele de pe elipsoidul

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0, \quad a > b > c > 0.$$

în care normalele intersectează axa Oz.

Problema 10.10. Ce condiții trebuie să îndeplinească semiaxele unui elipsoid astfel încât normalele sale să treacă prin centrul său?

Problema 10.11. Să se găsească locul geometric al punctelor de pe cuadrica

$$y^2 - z^2 = 2x$$

prin care trec generatoare rectilinii perpendiculare.

Problema 10.12. Să se găsească ecuația proiecției pe planul xOy a curbei de intersecție a elipsoidului

$$\frac{x^2}{1} + \frac{y^2}{9} + \frac{z^2}{4} - 1 = 0$$

cu planul

$$x + y + z - 1 = 0.$$

Problema 10.13. Să se găsească locul geometric al punctelor M de pe suprafața $x^2 - y^2 = z$ pentru care normala în M la suprafață formează un unghi constant cu axa Oz. Să se arate că proiecția acestui loc geometric pe planul xOy este un cerc a cărui ecuație se cere.

Problema 10.14. Să se determine ecuația hiperboloidului cu o pânză care are ca axe de simetrie axele de coordonate, este tangent la planul

$$6x - 3y + 2z - 6 = 0$$

și pentru care dreapta

$$\begin{cases} 4x - z - 5 = 0, \\ 6x + 5z + 9 = 0 \end{cases}$$

este o generatoare rectilinie.

Problema 10.15. Să se scrie ecuația normalei în punctul P(-2,2,-1) la cuadrica

$$\frac{x^2}{8} - \frac{y^2}{2} + \frac{z^2}{2} + 1 = 0.$$

Să se determine coordonatele punctului în care normala înțeapă a doua oară suprafața.

Problema 10.16. Să se determine planele care conțin dreapta

$$\frac{x+1}{2} = \frac{y}{-1} = \frac{z}{0}$$

și sunt tangente la hiperboloidul cu două pânze

$$x^2 + 2y^2 - z^2 + 1 = 0.$$

Problema 10.17. Să se afle distanța cea mai scurtă dintre paraboloidul eliptic

$$\frac{x^2}{12} + \frac{y^2}{4} = z$$

și planul

$$x - y - 2z = 0.$$

Problema 10.18. Să se arate că dreapta

$$\frac{x-2}{0} = \frac{y-3}{-1} = \frac{z-6}{2}$$

este tangentă elipsoidului

$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} - 1 = 0$$

și să se determine coordonatele punctului de tangență.