Laboratorio II, modulo 2 2015-2016

LabView

Introduzione a LabVIEW

- Front Panel
 - Contiene gli oggetti visibili/accessibili all' utente, cioè la GUI
- Block Diagram
 - Contiene il codice disegnato dal programmatore
- Finestre di strumenti:
 - Tool palette
 - Function palette (per il Front Panel)
 - Controls palette (per il Block Diagram)

Un nuovo programma

- Un programma nel linguaggio di LabView è chiamato VI: Virtual Instrument
- Le strutture presenti in un programma sono:
 - Nodi
 - Wires: le linee che collegano i nodi
 - Data Packets: le informazioni che circolano fra i nodi tramite i wires. (per 'vedere muovere' i Data Packets si usa la lampadina)

Formato dei dati numerici interi

Integer Type	Abbr.	Range
Signed 32 bit	I32	-2.147.483.648 to 2.147.483.647
Signed 16 bit	I16	-32.768 to 32.767
Signed 8 bit	I8	-128 to 127
Unsigned 32 bit	U32	0 to 4.294.967.295
Unsigned 16 bit	U16	0 to 65535
Unsigned 8-bit	U8	0 to 255

Formato dei dati numerici floating

Float. Type	Abbr.	Bits	Decimal digits	Range
Extended- precision floating-point	EXT	128	varies from 15 to 33 by platform	Minimum positive number: 6.48e-4966 Maximum positive number: 1.19e+4932 Minimum negative number: -6.48e-4966 Maximum negative number: -1.19e+4932
Double-precision floating-point	DBL	64	15	Minimum positive number: 4.94e-324 Maximum positive number: 1.79e+308 Minimum negative number: -4.94e-324 Maximum negative number: -1.79e+308
Single-precision floating-point	SGL	32	6	Minimum positive number: 1.40e-45 Maximum positive number: 3.40e+38 Minimum negative number: -1.40e-45 Maximum negative number: -3.40e+38

Ancora sul formato dei dati

- I nodi accettano in ingresso, o producono in uscita, dati che possono essere:
 - Singoli numeri (interi, virgola mobile, caratteri, ...)
 - Vettori (Arrays)
 - I vettori sono insiemi omogenei di dati
 - Clusters
 - I clusters sono insiemi eterogenei di dati

Simbologia per i tipi di dati

Colore	Tipo di dati
Blu	Intero (Numerico)
Arancione	Virgola mobile (Numerico)
Magenta	Cluster che contiene tipi di dati non numerici(Booleani, clusters, arrays)
Verde	Booleani
Marrone	Cluster con dati solo numerici

Il Control Panel

- Serve per mettere nel Front Panel i controlli e gli indicatori accessibili all' utente
- Ad ogni controllo/indicatore corrisponde un nodo nel Block Diagram

Il Function Panel

- Serve per mettere nel Block Diagram i veri nodi che regolano il funzionamento del VI
- Gli oggetti inseriti utilizzando il Function Panel esistono solo nel Block Diagram: non sono accessibili/modificabili dal Front Panel

File I/O (1)

File I/O semplice

File I/O medio

File I/O avanzato

File I/O (2)

File I/O (3)

Analog input

Analog Input semplice

Analog Input medio

Analog Input avanzato

Analog Input semplice

Per acquisire un singolo campione ad un tempo t fissato dal PC (cosa avviene se usato in un loop?)

Analog Input medio (1)

Analog Input medio (2)

Acquisizione dei campioni nella CPU

Stop alla scheda e rilascio delle risorse

Quale fra CONFIG, START, READ, CLEAR può (deve) essere messo in un loop?

