Master Theorem

The "Master Theorem" is a "cookbook result" that helps us solving recurrences of the form

$$T(n) = aT(n/b) + O(n^c)$$

for some constants $a>0,\,b>1,\,k\geq0$ and $c\geq0.$ In particular, the theorem tells us that if the above is satisfied then

$$T(n) = \begin{cases} O(n^c), & \text{if } c > \log_b a; \\ O(n^{\log_b a}), & \text{if } c < \log_b a. \end{cases}$$

Furthermore, if $c = \log_b a$ and $f(n) = n^c \cdot \log^k n$ for some $k \ge 0$, then $T(n) = O(n^c \cdot \log^{k+1} n)$.

One can even replace n/b with $\lceil n/b \rceil$ in the recursive call and still have these bounds. Also, we can replace O() by $\Theta()$ throughout (i.e. if $f(n) = \Theta(n^c)$ and $c < \log_b a$ then $T(n) = \Theta(n^{\log_b a})$.

Use the Master Theorem to find the asymptotic growth of T in the following recurrences:

1.
$$T(n) = 2T(n/4) + 1$$

2.
$$T(n) = 2T(n/4) + \sqrt{n}$$

3.
$$T(n) = 2T(n/4) + n$$

4.
$$T(n) = 2T(n/4) + \sqrt{n} \cdot \log^3 n$$

5. An optional, more difficult problem which requires some ideas beyond the basic Master Theorem: $T(n) = 2T(\sqrt{n}) + \log_2 n$