DIS_{3B}

Sunday, July 1, 2018

10:42 PM

Topics: Erasure Errors General Errors.

Secret Sharing

- Motivation: we want a scheme such that k officials come together would know the secret, and even k-1 officials come together would know nothing.
 Work in GF(p).
 - Encode the secret as ao.

Now, we have a degree | K-1 polynomial p.

- · Pick K-1 points randomly in fo,..., p-13
- Cuive the ith official (i, P(i))

Erasure Errors

mo m1 m2 ... mn-2 m1-1

K of them are dropped ... What should we do?

- Reed Solomon Codes
 - · Encode mi's in a degree n-1 polynomial

· Send ntk points

<		General Errors
		m_0 m_1 m_2 m_{n-1} m_{n-1}
		modify! modify
		If the channel modifies K packets, we want to send ntak packets.
		Intiution: K additional packets are used to identify which ones are
		Corrupted, the other K additional packets are used to recover.
		Berlekamp-Welch Decoding Algorithm: [this's not what really is happening but it
		• Encode mi's in a degree n-1 polynomial helps to remember why we need ak more packets
		· Send n+2K points
	Q 2.	Send: P(0) P(1) P(2) ··· P(n+2K-1)
	•	Receive: ro r rz rn+2k-1
		(a) ri = P(i) when packet is good
		ri = P(i) when packet is corrupted
		(b) We want to send in packets, so degree of P(x) should be at most n-1.
		(() k general errors: send n+ ak paukets
		(d) Define $E(x) = (x - x_1) \cdots (x - x_K) \Rightarrow Degree at most K$
		Roots of E are the locations of corrupted packets.
		The receiver does not know the roots of E(X).
		Define $Q(x) = P(x) E(x) \Rightarrow Degree at most n+K-1$
		(e) Claim: Q(i) = P(i) E(i) = r; E(i) is always true.
		Pf: [idea: equation holds for uncorrupted packets.
		E(x) "forces" the equality for corrupted packets.
		If P(i)=ri, then P(i)E(i)=riE(i).
		If $P(c) \neq \Gamma_i$, then $E(i) = 0$.
		(f) Q(x): n+k unknowns ? n+ak unknowns
		E(X): k unknowns
		We have ntak packets (equations)!
		(g) Recover P(x) using $P(x) = \frac{O(x)}{E(x)}$
		Recover messages by evaluating P(i) at 1≤i≤n.
		, ,