VOISINAGES INFINITÉSIMAUX DE DROITES PROJECTIVES COMPLEXES ET CORRESPONDANCE TWISTORIELLE.

BASILE PILLET

Table des matières

0.1.	. Résumé	1
1.	Plan	1
1.1.	. Théorie des Épaississements	2
•		2
1.2.	. Correspondance de Buchdahl	3
1.3.	. Relation épaississement-courbure	3
1.4.	. Applications	3
2.	Idées	4
3.	Références	4

0.1. **Résumé.** Les correspondances twistorielles sont des constructions géométriques qui associent à chaque point d'une variété, une droite projective complexe dans un autre espace appelé "espace des twisteurs". En dimension 4, on a une interprétation physique : cette correspondance associe à un point de l'espace-temps la sphère (droite projective complexe) de tous les rayons lumineux arrivant à ce point à cet instant.

Dans cet exposé on présentera les objets de base de la géométrie complexe infinitésimale (épaississements de sous-variétés, de fibrés) et on verra qu'ils se traduisent à travers la correspondance twistorielle en propriétés riemanniennes (connexions et courbures).

1. Plan

1.0.1. Contexte. On se fixe une variété complexe Z fibrée sur \mathbb{P}^1 .

On fait 2 hypothèses :

- Il y a des sections particulières (verticales) Une par chaque point.
- Si L est l'image d'une section de $f: Z \to \mathbb{P}^1$ (droite), alors $N_{L/Z}$ est une somme de $\mathcal{O}(1)$. En particulier $H^1(L, N_{L/Z}) = 0$ et donc dans toutes les directions cette section se déforme. Les droites de Z peuvent se déformer dans Z.

En particulier Z est une variété rationnellement connexe.

$1.0.2.\ EG.$

• Correspondance des twisteurs physique. C'est une forme de philosophie platonicienne : Est-ce que la réalité physique du monde c'est un espace temps qui est une variété pseudoriemannienne de dimension 4 (ou quelque chose de plus compliqué) ou simplement la réalité se limite à ce qu'on observe (les rayons lumineux qui arrivent à nos yeux). Il se trouve que si on mathématise cette idée en considérant non plus l'espace temps, mais l'espace de toutes

Date: Mai 2017.

les directions de rayons lumineux en tout point, on trouve une variété de dimension 6 appelée Espace des twisteurs et qui miraculeusement est munie d'une structure de variété complexe. Cette idée a été initialement développée par Sir Roger Penrose dans les années 60.

- Espace total de $\mathcal{O}(1) \oplus \mathcal{O}(1)$,
- Espace des twisteurs d'une surface K3 (ou var HK),
- 1.1. Théorie des Épaississements. Point de vu GA : définir un objet géométrique c'est définir les fonctions dessus. On veut définir ce que sont les voisinages infinitésimaux d'une droite dans Z

La droite L est représentée par son faisceau de fonctions \mathcal{O}_L qui est lié aux fonctions sur Z par la suite exacte

$$0 \to \mathcal{I}_L \to \mathcal{O}_Z \to i_* \mathcal{O}_L \to 0$$

où $i:L\hookrightarrow Z$ et \mathcal{I}_L l'idéal des fonctions sur Z qui s'annulent sur L.

C'est-à-dire : Une fonction sur L provient d'une fonction sur Z modulo les fonctions qui s'annulent sur L. (où tout est à comprendre au sens "local")

1.1.1. Épaississement. Il suffit de définir $\mathcal{O}_L^{(n)}$ le faisceau des fonctions

$$0 \to \mathcal{I}_L^{n+1} \to \mathcal{O}_Z \to i_* \, \mathcal{O}_L^{(n)} \to 0$$

sur Z modulo celles qui s'annulent à l'ordre n+1 sur L.

La <u>variété épaissie</u> $L^{(n)}$ est alors l'espace topologique L mais possédant beaucoup plus de fonctions : $\mathcal{O}_L^{(n)}$.

Une fonction sur $L^{(n)}$ est un jet d'ordre n de fonctions sur L.

*

- (1) Droite dans \mathbb{P}^3 Considérons \mathbb{P}^3 avec coordonnées homogènes $[X_0:X_1:X_2:X_3]$ et définissons L la droite d'équation $X_1=X_2=0$. Le faisceau \mathcal{I}_L est localement engendré par
 - $x = X_1/X_0$ et $y = X_2/X_0$ sur U_0
 - $u = X_1/X_3$ et $v = X_2/X_3$ sur U_3

Les coordonnées associées sur L sont données par

- $z = X_3/X_0 \text{ sur } U_0$
- $w = X_0/X_3 \operatorname{sur} U_3$

Ainsi sur U_0 , un germe de fonction qui s'annule sur L s'écrit (pas forcément de manière unique)

$$xf(x,y,z) + yg(x,y,z)$$

et un germe de \mathcal{I}^n

$$x^{n} f_{n}(x, y, z) + x^{n-1} y f_{n-1}(x, y, z) + \dots + y^{n} f_{0}(x, y, z)$$

Par exemple $x \in \mathcal{O}_{\mathbb{P}^3} | U_0$ donne par restriction à L la fonction nulle sur $L \cap U_0$, mais définit une fonction locale non-nulle sur $L^{(1)}$; cette fonction χ vérifie $\chi^2 = 0$. (On peut la voir comme un dx, ou un ε quand on néglige les termes d'ordre 2).

1.1.2. Épaississement de fibrés. Avec les notations du paragraphe précédent, soit $E \to X$ un fibré vectoriel. On appelle épaississement de E à l'ordre m sur $X^{(m)}$ un faisceau localement libre \mathcal{F} de \mathcal{O}_X -modules tel que

$$\mathcal{O}_X \otimes_{\mathcal{O}^{(m)}} \mathcal{F} \simeq \mathcal{O}_X(E)$$

c'est-à-dire il étend le fibré E sur X à $X^{(m)}$.

On note
$$\mathcal{F} = \mathcal{O}_X^{(m)}(E^{(m)})$$
.

Lien avec les vecteurs tangents; exemples

C'est le faisceau des sections sur $X^{(m)}$ d'un "fibré vectoriel". Si on se restreint aux sections obtenues avec des vrais fonctions locales de L, on retrouve E.

1.1.3. Épaississements de connexions. Là ça devient plus complexe!

Rappel : L'existence d'une connexion ∇ sur un faisceau cohérent \mathcal{F} entraı̂ne que \mathcal{F} est localement libre. [Malgrange]

https://justinsmath.wordpress.com/2012/05/30/a-coherent-sheaf-with-connection-is-locally-free/

Une connexion sur un faisceau **rigidifie** le faisceau. Dans notre contexte : Soit $\nabla^{(m)}$ une connexion sur $E^{(m)}$. Alors elle définit de manière unique un épaississement $E^{(m+1)}$ de $E^{(m)}$!

Ainsi épaissir les fibrés à connexion est un ping-pong entre d'une part l'épaississement de la connexion sur un fibré fixé et d'autre part le choix de l'épaississement du fibré. Il y a des obstruction à chaque cran qu'il faut gérer.

- (1) Exemple?
- 1.2. Correspondance de Buchdahl. On s'intéresse aux voisinages infinitésimaux d'une droite dans Z.
- 1.2.1. Espace des sections et correspondance twistorielle. Soit C l'espace des sections de Z (espace de Douady, espace des cycles de Barlett).

$$(T_C)_s \simeq H^0(L_s, N_{L_s/Z})$$

Mais comme le H^1 s'annule ((à finir))

- 1.2.2. EG. Grassmanienne des 2 -plans privée d'un point et d'un \mathbb{P}^1 .
- 1.2.3. Fibré L-triviaux.
- 1.2.4. Fibré à connexion associé.
- 1.2.5. EQV catégorie. On a le théorème

Théorème 1

Il y a une équivalence de catégories
$$\begin{cases} Fibré \text{ à connexion sur } C \\ + restriction de courbure \end{cases} \leftrightarrow \begin{cases} Fibré \text{ vectoriel holomorphe sur } Z \\ + trivial \text{ sur les droites} \end{cases}$$

- 1.3. Relation épaississement-courbure.
- $1.3.1.\ Th\'{e}or\`{e}me.$ On a le th\'eorème

Théorème 2

- 1.3.2. Idée de la preuve?
- 1.4. Applications.

BASILE PILLET

- 2. Idées
- \bullet Épaississements ; correspondance de Buchdahl ; courbure
 - 3. Références

 \bullet Buchdahl