Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

> ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА № 2 ПО ДИСЦИПЛИНЕ "МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Выполнил студент: Шарапов Сергей Андреевич группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николаевич

Содержание

		Стр.
1.	Постановка задачи	4
2.	Теория	4
3.	Реализация	4
4.	Результаты	4
5.	Обсуждение	7
6.	Литература	7
7.	Приложения	7

Список таблиц

1	Стандартное нормальное распределение	5
2	Стандартное распределение Коши	5
3	Распределение Лапласа	6
4	Равномерное распределение	6
5	Распределение Пуассона	7

1 Постановка задачи

Для 5-ти рапределений:

Нормальное распределение N(x,0,1)

Распределение Коши C(x,0,1)

Распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$

Распределение Пуассона P(k,10)

Равномерное Распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10, 50 и 1000 элементов. Для каждой выборки вычислить \overline{x} , $med\ x,\ Z_R,\ Z_Q,\ Z_{tr}$, при $r=\frac{n}{4}$.

2 Теория

1. Выборочное среднее [?]:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

2. Выборочная медиана [?]:

$$med \ x = \begin{cases} x_{k+1}, & n = 2k+1\\ \frac{1}{2}(x_k + x_{k+1}), & n = 2k \end{cases}$$
 (2)

3. Полусумма экстремальных значений [?]:

$$Z_R = \frac{1}{2} (x_1 + x_n) \tag{3}$$

4. Полусумма квартилей [?]:

$$Z_Q = \frac{1}{2} \left(Z_{\frac{1}{4}} + Z_{\frac{3}{4}} \right) \tag{4}$$

5. Усечённое среднее [?]:

$$Z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i \tag{5}$$

3 Реализация

Для генерации случайных чисел с различными распределениями был использован модуль random библиотеки numpy языка Python 3.7.

Находится среднее значение и дисперсия характеристик положения, вычисленных 1000 раз соответственно для каждой выборки случайных величин.

$$E(z) = \frac{1}{n} \sum_{i=1}^{n} z_i$$
 (6)

$$D(z) = E(z^2) - E^2(z)$$
(7)

4 Результаты

Таблица 1: Стандартное нормальное распределение.

n = 10	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	0.005297	0.015403	0.021111	-0.009959	0.013976
D	0.101458	0.133031	0.187362	0.115324	0.114476
n = 50	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	0.000719	-0.001342	-0.004275	0.001699	0.005564
D	0.019609	0.029693	0.110879	0.024677	0.024038
n = 1000	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	0.001184	0.001000	-0.013008	0.001177	-0.000275
D	0.000928	0.001663	0.059513	0.001236	0.001242

Таблица 2: Стандартное распределение Коши.

n = 10	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	-0.319254	0.024949	6.982362	-0.001801	0.040391
D	670.600888	0.302832	162314.003180	0.864187	0.502972
n = 50	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	-1.420225	0.006327	35.566377	0.021015	-0.009626
D	2199.943350	0.051529	2232378.360638	0.116504	0.058279
n = 1000	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	1.780575	0.000466	-305.497498	0.000033	-0.000062
D	8616.995434	0.002359	423497953.536583	0.005100	0.002570

Таблица 3: Распределение Лапласа.

n = 10	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	0.006363	-0.014246	0.018853	0.009576	-0.006166
D	0.102775	0.073902	0.392076	0.084050	0.074362
n = 50	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	-0.002482	0.000467	-0.008382	0.000912	-0.002586
D	0.019700	0.012041	0.358796	0.022115	0.013840
n = 1000	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	0.000146	-0.000398	-0.007065	-0.001085	0.000651
D	0.000963	0.000548	0.395445	0.000963	0.000607

Таблица 4: Равномерное распределение.

n = 10	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	0.007588	0.000271	-0.002337	-0.006710	0.012790
D	0.102617	0.213312	0.045118	0.128278	0.155731
n = 50	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	0.000194	0.003962	0.001675	-0.006786	-0.000866
D	0.021960	0.059408	0.002284	0.028139	0.040116
n = 1000	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	-0.001022	0.000446	0.000010	-0.000872	0.000480
D	0.001016	0.003196	0.000006	0.001494	0.002030

Таблица 5: Распределение Пуассона.

n = 10	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	9.987300	9.871500	10.296000	9.923500	9.838167
D	0.903949	1.386238	1.917384	1.171210	1.088727
n = 50	average	$_{ m med}$	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	10.015180	9.860000	10.779500	9.887000	9.868500
D	0.199307	0.376400	1.220630	0.261418	0.244221
n = 1000	average	med	Z_R	Z_Q	$Z_{tr}, r = \frac{n}{4}$
E	10.000135	9.998500	11.637500	9.992625	9.852002
D	0.009556	0.001248	0.614344	0.003492	0.010797

5 Обсуждение

Дисперсия не могла гарантировать получаемое точное значение, поэтому некоторое число знаков после запятой не учитывались при вычислении средних значений. Исключение - стандартное распределение Коши, оно имеет бесконечную дисперсию, а значит не может гарантировать никакой точности.

6 Литература

Модуль питру

7 Приложения

Код лаборатрной