

Cómo compilar el kernel Linux

Guillermo Valdés Lozano

Documento protegido por GFDL

Copyright (c) 2008 Guillermo Valdés Lozano.

e-mail: guillermo(en)movimientolibre.com

http://www.movimientolibre.com/

Se otorga permiso para copiar, distribuir y/o modificar este documento bajo los términos de la Licencia de Documentación Libre de GNU, Versión 1.2 o cualquier otra versión posterior publicada por la Free Software Foundation; sin Secciones Invariantes ni Textos de Cubierta Delantera ni Textos de Cubierta Trasera.

Una copia de la licencia está en

http://www.movimientolibre.com/licencias/gfdl.html

Introducción

- Linux es el núcleo o kernel del sistema operativo libre denominado GNU/Linux (también llamado Linux).
- Linux fue creado por Linus Torvalds en 1991.
- Linux está protegido por la licencia GPL y está escrito en C.

¿Qué es el kernel?

- Cada computadora, lector de discos, disco duro, tarjeta de video, etc. es diferente.
- El kernel es el programa que sabe que hacer para que esos componentes ejecuten su tarea como abrir un documento, borrarlo de un disco o mostrar una imagen en pantalla.
- El kernel debe saber cómo hablar a esos diferentes componentes materiales y controlar las labores corrientes que hacemos a diario con nuestras computadoras.

Algunas versiones de Linux

Fecha	Versión	Líneas código
septiembre de 1991	0.01	10,239
14 de marzo de 1994	1.0.0	176,250
marzo de 1995	1.2.0	310,950
25 de enero de 1999	2.2.0	1,800,847
4 de enero de 2001	2.4.0	3,377,902
17 de diciembre de 2003	2.6.0	5,929,913

Kernel genérico vs personalizado

- Un kernel genérico es aquel capaz de funcionar en muchos tipos de equipos y que tiene los controladores de la mayoría de los componentes que se pudiera encontar.
- Un kernel personalizado está optimizado al 100 % para nuestra máquina.
 - Añadimos los módulos que necesitamos.
 - Es más ligero, se carga más rapido.
 - Reconoce nuevos componentes y puede tener mejoras en su código.

Descargas en Debian

Instale estos paquetes y sus dependencias.

```
$ su
# apt-get install kernel-package
# apt-get install build-essential
# apt-get install linux-source-2.6.18
# apt-get install libncurses-dev
# apt-get install fakeroot
```

Desempacaque el archivo comprimido.

```
# cd /usr/src
# tar xjf /usr/src/linux-source-2.6.18.tar.bz2
```

Haga un enlace directo.

```
# ln -s linux-source-2.6.18 linux
```

Descargas en Gentoo

Sincronizamos el *portage* y buscamos *sources*.

```
$ su
# emerge --sync
# emerge -s sources
```

Se recomienda *gentoo-sources*.

```
# emerge -pu gentoo-sources
# rm /usr/src/linux
# emerge -u gentoo-sources
```

Las fuentes del kernel estarán en /usr/src/linux.

Tome nota de los componentes

Abra el gabinete y tome nota de los componentes. Ejemplo:

- T. Madre Biostar P4TDP, Fury DDR 533
 - El disco duro y el CD-ROM se conectan por cintas IDE.
 - Tiene una ranura para tarjeta de video AGP.
 - Chip VIA VT6202 0208CD.
 - Chip de audio integrado C3DX CMI 8738/PCI-6ch-LX.
 - Chip ATA 100.
 - Tiene puertos USB por delante y por detrás.
- T. de Video AGP de 32 MB con etiqueta TAVCATG1293A
- T. de Audio Genius con chip C3DX CMI 8738/PCI-6ch-LX
- T. de Red con chip DM9102AF

Comando Ispci

Ispci lista los dispositivos PCI. Ejemplo:

```
$ lspci
00:00.0 Host bridge: Intel Corporation 82845 845 (Brookdale)
Chipset Host Bridge (rev 04)
00:01.0 PCI bridge: Intel Corporation 82845 845 (Brookdale)
Chipset AGP Bridge (rev 04)
00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 05)
00:1f.0 ISA bridge: Intel Corporation 82801BA ISA Bridge (LPC) (rev 05)
00:1f.1 IDE interface: Intel Corporation 82801BA IDE U100 (rev 05)
00:1f.2 USB Controller: Intel Corporation 82801BA/BAM USB (Hub #1) (rev 0
00:1f.3 SMBus: Intel Corporation 82801BA/BAM SMBus (rev 05)
00:1f.4 USB Controller: Intel Corporation 82801BA/BAM USB (Hub #2) (rev 0
01:00.0 VGA compatible controller: Silicon Integrated Systems
[SiS] 300/305 PCI/AGP VGA Display Adapter (rev 90)
02:00.0 Multimedia audio controller: C-Media Electronics Inc CM8738 (rev
02:04.0 Ethernet controller: Davicom Semiconductor, Inc. 21x4x
DEC-Tulip compatible 10/100 Ethernet (rev 31)
02:05.0 USB Controller: VIA Technologies, Inc. VT82xxxxx
UHCI USB 1.1 Controller (rev 50)
02:05.1 USB Controller: VIA Technologies, Inc. VT82xxxxx
UHCI USB 1.1 Controller (rev 50)
02:05.2 USB Controller: VIA Technologies, Inc. USB 2.0 (rev 51)
```

Observar los módulos cargados

Ismod muestra los módulos cargados.

1smod

Módulo	Descripción	
sis	Controlador de la tarjeta de video SIS	
partport_pc	Puerto paralelo	
gameport	Hay un puerto de juegos/midi	
floppy	Controlador del lector de floppys	
snd_cmipci	Controlador de la tarjeta de sonido Genius	
i2c_i801	Tiene que ver con un chip intel	
psmouse	Mouse por el puerto PS/2	
intel_agp	Ranura AGP de la tarjeta madre	
usbhid, ehci_hcd, uhci_hcd	Tienen que ver con el USB	
ide_cd, ide_disk	Controladores del CD-ROM y del disco duro	
dmfe	Controlador de la tarjeta de red Tulip/Davicom	

Bitácora del kernel

dmesg muestra la bitácora del kernel.

dmesg | more

Fragmento de la salida de dmesg, ejemplo:

hda: IC35L120AVV207-0, ATA DISK drive
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
Probing IDE interface ide1...
hdc: HL-DT-ST GCE-8520B, ATAPI CD/DVD-ROM drive
hdd: HL-DT-ST DVDRAM GSA-H10A, ATAPI CD/DVD-ROM drive
ide1 at 0x170-0x177,0x376 on irq 15
hda: max request size: 512KiB
hda: 241254720 sectors (123522 MB) w/1821KiB Cache,
CHS=16383/255/63, UDMA(100)
hda: cache flushes supported
hda: hda1 hda2 hda3 hda4 < hda5 hda6 hda7 hda8 hda9 hda10 >
hdc: ATAPI 40X CD-ROM CD-R/RW drive, 2048kB Cache, UDMA(33)
Uniform CD-ROM driver Revision: 3.20
hdd: ATAPI 48X DVD-ROM DVD-R-RAM CD-R/RW drive,
2048kB Cache, UDMA(33)

Procesador


```
# cat /proc/cpuinfo
processor
vendor id : GenuineIntel
cpu family : 15
model
model name : Intel(R) Pentium(R) 4 CPU 1.70GHz
stepping
cpu MHz : 1700.335
cache size : 256 KB
fdiv_bug
           : no
hlt_bug
             : no
f00f bug
             : no
coma bug
             : no
fpu
             : yes
fpu exception : yes
cpuid level
             : yes
qw
flags
             : fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush dts acpi
mmx fxsr sse sse2 ss ht tm up
bogomips : 3404.16
```

Interfaz de configuración

Vaya al directorio de las fuentes.

```
# cd /usr/src/linux
```

Puede iniciar con la configuración por defecto.

```
# make defconfig
```

Interfaz basada en ncurses (recomendada):

make menuconfig

Intefaz basada en GTK:

make gconfig

Intefaz basada en QT:

make xconfig

Interfaz de configuración bajo neurse

Forma de usuarla:

- Use las flechas para navegar.
- Estando sobre una opción presione Y para incluirla dentro del kernel, N para excluirla o M para que sea un módulo.
- Las opciones marcadas con [*] serán incluídas en el kernel, las marcadas con <M> serán compiladas como módulos y las vacías no serán compiladas.
- Presione ? para mostrar la ayuda de la opción iluminada.
- Presione ESC para bajar una rama o para salir si está en el menú raíz.
- Al salir le preguntará si quiere guardar los cambios.

Kernel monolítico vs kernel modular

Desde un punto de vista extremista:

- Un kernel monolítico tiene todas las opciones marcadas con **Y**.
- Un kernel modular es aquel con la mayoría de las opciones marcadas con M.

Use un kernel monolítico si el hardware no cambia. En cambio un kernel modular puede:

- Tener un tamaño menor que si fuera monolítico.
- Puede cargar a voluntad o automáticamente los módulos que necesite.
- Pero NO marque como módulos los controladores indispensables para el arranque.

Cambios de versión

Tener la versión más reciente del kernel le brinda:

- Código mejorado y *bugs* solicionados.
- Soporte de nuevo hardware
- Posiblemente mejor desempeño.

El constante crecimiento y mejora del kernel Linux ocasiona que:

- El menú de configuración cambie de una versión a otra.
- Ocurre el aviso y luego el retiro de código (DEPRECATED).

Para que aparezcan las opciones de tipo experimental:

```
Code maturity level options --->
[*] Prompt for development and/or incomplete co
```

Para que cuando conecte un dispositivo externo el módulo se cargue por sí sólo:

```
Loadable module support --->
[*] Enable loadable module support
[*] Module unloading
[*] Forced module unloading
[*] Automatic kernel module loading
```


Seleccione la familia del procesador:

```
Processor type and features --->
  Processor family (Pentium-4/Celeron(P4-based)/F
```

Si tiene un procesador *Intel* con capacidad *HyperThreading* (HT), o bien, con dos o más procesadores, debe activar:

```
Processor type and features --->
[*] Symmetric multi-processing support
```


Si tiene particiones formateadas en Ext2 y Ext3:

```
File systems --->
<*> Second extended fs support
[*] Ext2 extended attributes
<*> Ext3 journalling file system support
[*] Ext3 extended attributes
```

Para que los administradores de archivos muestren los cambios sin necesidad de refrescar:

```
File systems --->
[*] Inotify file change notification support
[*] Inotify support for userspace
Pseudo filesystems --->
    --- /proc file system support
    [*] /proc/kcore support
    [*] Virtual memory file system support (former shm fs)
```


Para pertenecer a una red:

```
Networking --->
  [*] Networking support
   Networking options --->
      <*> Packet socket
      [*] Packet socket: mmapped IO
      <*> Unix domain sockets
      [*] TCP/IP networking
      [*] Network packet filtering (replaces ipchains)
        Core Netfilter Configuration
          <*> Netfilter Xtables support (required for ip_tables)
          <*> "limit" match support
          <*> "mac" address match support
          <*> "state" match support
       IP: Netfilter Configuration --->
          <*> Connection tracking (required for masq/NAT)
          <*> FTP protocol support
          <*> IP tables support (required for filtering/masg/NAT)
          <*> Packet filtering
```

Dispositivos de almacenamiento

Muy recomendado:

```
Device Drivers --->
  Block devices --->
  <*> Normal floppy disk support
  <*> Loopback device support
  <*> RAM disk support
  [*] Initial RAM filesystem and RAM disk (initract)
  <*> Packet writing on CD/DVD media
```

Unidades ATA

Discos por cinta IDE (maestro, esclavo) chipset Intel:

```
Device Drivers
  ATA/ATAPI/MFM/RLL support
  <*> ATA/ATAPI/MFM/RLL support
        Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support
  <*>
          Include IDE/ATA-2 DISK support
  < *>
          Include IDE/ATAPI CDROM support
  < *>
          Include IDE/ATAPI FLOPPY support
  <*>
  <*>
          generic/default IDE chipset support
  [ * ]
          PCI IDE chipset support
            Sharing PCI IDE interrupts support
  [ * ]
            Generic PCI IDE Chipset Support
  <*>
  [ * ]
            Generic PCI bus-master DMA support
  [ * ]
              Use PCI DMA by default when available
              Intel PIIXn chipsets support
  < *>
```

Unidades SATA

Ejemplo soporte SATA para Intel (kernel 2.6.20):

```
Device Drivers --->
   Serial ATA (prod) and Parallel ATA (experimentate)
   <*> ATA device support
   <*> Intel PIIX/ICH SATA support
```

Soporte SCSI

Algo indispensable para el montaje de los dispositivos de almacenamiento que conecte vía *USB* (por ejemplo una memoria USB) y para los quemadores de CD y DVD es el soporte *SCSI*:

```
Device Drivers --->
   SCSI device support --->
   [*] legacy /proc/scsi/ support
   <*> SCSI disk support
   <*> SCSI CDROM support
   <*> SCSI generic support
```

Dispositivos USB


```
Device Drivers
 USB support
    <*> Support for Host-side USB
          USB device filesystem
        EHCI HCD (USB 2.0) support
    <M>
    [ * ]
            Full speed ISO transactions (EXPERIMENTAL)
            Root Hub Transaction Translators (EXPERIMENTAL)
    [ * ]
       OHCI HCD support
    <M>
    <M>
       UHCI HCD (most Intel and VIA) support
    <M>
       USB Printer support
    <*> USB Mass Storage support
    <M> USB Human Interface Device (full HID) support
    [ * ]
          HID input layer support
```

Tarjeta de red

Marque el controlador de su tarjeta de red alámbrica. Ejemplo para la tarjeta Davicom:

Tarjeta de red inalámbrica

Ejemplo para Intel PRO/Wireless 2200BG:

```
Networking
  --- Networking support
        Generic IEEE 802.11 Networking Stack
  < M >
          IEEE 802.11 WEP encryption (802.1x)
  <M>
  <M>
          IEEE 802.11i CCMP support
          IEEE 802.11i TKIP encryption
  <M>
Device Drivers --->
  Network device support
    [*] Network device support
    Wireless LAN (non-hamradio)
      [*] Wireless LAN drivers (non-hamradio) & Wireless Extensions
            Intel PRO/Wireless 2200BG and 2915ABG Network Connection
      [ * ]
              Enable promiscuous mode
      [ * ]
             Enable OoS support
Cryptographic options
     Cryptographic API
        Cryptographic algorithm manager
  < M >
        SHA1 digest algorithm
  <M>
  <M>
        SHA256 digest algorithm
  <M>
        ECB support
  <M>
        CBC support
        AES cipher algorithms
  <M>
        AES cipher algorithms (i586)
  <M>
        ARC4 cipher algorithm •
  <M>
  <M>
        Michael MIC keyed digest algorithm
```

Tarjeta de video

Ejemplo para una tarjeta ATI Radeon:

```
Device Drivers --->
Character devices --->

<*> /dev/agpgart (AGP Support)
<M> ATI chipset support

<*> Direct Rendering Manager (XFree86 4.1.0 a

<M> ATI Radeon
[*] HPET - High Precision Event Timer
[*] Allow mmap of HPET

<*> Hangcheck timer
```

Tarjeta de audio


```
Device Drivers
 Sound --->
    <*> Sound card support
    Advanced Linux Sound Architecture
      <M> Advanced Linux Sound Architecture
      <M>
            Sequencer support
          OSS Mixer API
      <M>
      <M> OSS PCM (digital audio) API
      [ * ]
              OSS PCM (digital audio) API - Include plugin system
          OSS Sequencer API
      [ * ]
         RTC Timer support
      <M>
      [ * ]
              Use RTC as default sequencer timer
            Support old ALSA API
      PCI devices --->
        <M> C-Media 8738, 8338
    Open Sound System --->
      < > Open Sound System (DEPRECATED)
```

Guardar la configuración

- Revise la configuración que ha elaborado.
- Guarde los cambios hechos.
- Puede respaldar el archivo .config

Compilar en Debian

Puede solicitar que se eliminen las compilaciones hechas con anterioridad con:

```
# make-kpkg clean
```

Para crear un kernel sin initrd:

```
# fakeroot make-kpkg \
   --revision=personal.1.0 kernel_image
```

Para crear un kernel con initrd:

```
# fakeroot make-kpkg --initrd \
    --revision=personal.1.0 kernel_image
```

Y tome un café en lo que su equipo compila.

Instalar el kernel en Debian

Después de la compilación, tendrá el archivo **.deb** en **/usr/src**. Para instalar:

```
# cd /usr/src
# dpkg -i linux-image-2.6.18_personal.1.0_i386.de
```

Este comando hará por usted todos estos pasos:

- Instalará en **/boot** el nuevo kernel junto con el *initrd* si fue solicitado.
- Copiará los módulos al directorio /lib/modules/version-del-kernel
- Agregará la opción para seleccionarlo en el gestor de arranque Grub o Lilo.

Compilar en Gentoo

En Gentoo Linux se hace la compilación al estilo tradicional. Puede hacer una *limpia* con el comando:

make clean

Para compilarlo simplemente ejecute:

make

Tome un descanso en lo que su equipo compila.

Instalar el kernel en Gentoo

Monte la partición /boot y copie el kernel a la misma.

```
# mount /boot
```

cp arch/i386/boot/bzImage /boot/kernel-2.6.20-r

Una buena sugerencia es hacer una copia de la configuración.

```
# cp .config /boot/config-2.6.20-r8
```

Instalar los módulos

Instale los módulos compilados:

make modules_install

Si desea que se carguen siempre algunos módulos en el arranque:

```
# nano -w /etc/modules.autoload.d/kernel-2.6
```

update-modules

Modificar GRUB

Modifique el gestor de arranque:

```
# nano -w /boot/grub/menu.lst
```

Ejemplo:

```
title Mi kernel Linux personalizado 2.6.20-r8
root (hd0,0)
kernel /kernel-2.6.20-r8 root=/dev/hda3
```

Primer arranque

Para probar su nuevo kernel, reinicie y selecciónelo en su gestor de arranque.

- La probabilidad de que funcione perfectamente al primer arranque es poca.
- Si falla, tendrá que revisar de nuevo la configuración y volver a compilar, instalar y probar.
- Haga una búsqueda en internet, puede que encuentre la solución a su problema.

Revisión

Si el arranque es satisfactorio, no deje de revisar:

- La bitácora con dmesg | more, busque mensajes de error.
- Que se hayan cargado los módulos que necesite con el comando Ismod.
- Revise que funcionen correctamente los principales dispositivos (video, red, audio, teclado, ratón).
- Pruebe los dispositivos que no estén siempre conectados al equipo, como memorias USB.

Eliminar un kernel anterior

Ejemplo para remover un kernel en Debian:

```
# dpkg -r linux-image-2.6.17
```

Ejemplo para remover un kernel en Gentoo:

```
# mount /boot
# rm /boot/kernel-2.6.17-r4
# nano -w /boot/grub/menu.lst
# rm -fr /lib/modules/2.6.17-gentoo-r4
```

Remover las fuentes

Las fuentes del kernel consumen mucho espacio:

- El directorio /usr/src/linux-2.6.20-gentoo-r8 me consume 364 MB.
- Después del comando make clean el espacio ocupado descendió a 282 MB.

Para eliminar las fuentes de kernel no usado (ejemplo):

rm -rf /usr/src/linux-2.6.17-gentoo-r4

Conclusiones

- Compilar su propio kernel puede llegar a ser una de las cosas más fantásticas que haga con GNU/Linux.
- O una de las más frustrantes.
- Los kernels más recientes soportan más hardware, tienen más *bugs* reparados y mejor desempeño.
- Una de las bondades del Software Libre es que usted puede ESTUDIARLO y MODIFICARLO.

Referencias

- Debian Kernel Handbook
 http://kernel-handbook.alioth.debian.org/
- initrd From Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Initramfs
- Gentoo Handbook

 http://www.gentoo.org/doc/en/handbook/index.xml
- Guía de instalación de Debian GNU/Linux

http://www.debian.org/releases/stable/i386/index.html.es