Generative AI: GPT, DALL-E, Codex & Stable Diffusion

1. Introduction

- Generative AI refers to machine learning models that **create** new content: text, images, code, sounds.
- Key recent models include **GPT** (text generation), **DALL-E** (text-to-image), **Codex** (code generation), **Stable Diffusion** (image generation via diffusion models).
- Under the hood many of these use Transformers, Diffusion Models, sometimes
 GANs (Generative Adversarial Networks).

Purpose of this document:

 Explain how each model works, → strengths/weaknesses → compare them → real-life uses → where things are heading.

2. Core Architectures & Concepts

Architecture / Concept	What It Is	Key Ideas / Mechanisms		
Transformers	Neural network architecture introduced in "Attention Is All You Need" (Vaswani et al., 2017). Bestarion+1	Self-attention, multi-head attention, feed-forward layers; processes sequences in parallel rather than step by step (as in RNNs) Medium+1		
GANs (Generative Adversarial Networks)	Two networks: Generator + Discriminator contest each other.	Generator tries to create data to "fool" Discriminator; Discriminator distinguishes real vs fake. Good at sharp images but training unstable. Bestarion		
Diffusion Models	Start from noise; gradually denoise to produce data matching desired distribution.	Forward process adds noise; reverse process learns to remove noise step-by-step. Stable and high quality output. Bestarion+1		

3. Model Overviews

Here are summaries of the four models.

Model	Type / Task	Basic Mechanism	Inputs & Outputs	Strengths
GPT	Large	Transformer decoder /	Input: text	Great
(e.g.	Language	autoregressive: predict next	prompt;	fluency;
GPT-3,	Model (text	token given prior tokens; large	Output: text	broad
GPT-4)	generation,	pretraining on text corpora.	continuatio	general
	understand		n, answers,	knowledge;
	ing)		summaries,	very strong
			etc.	at language
				tasks;
				versatile
				(can be
				used for
				chat,
				summarizati
				on,

				translation, etc.).
Codex	Code generation & understand ing	GPT-style model (language modeling) but trained significantly on code + code-related data.	Input: prompt in (natural language + maybe code), output: code snippet, autocomple te etc.	Helps programmer s; automates boilerplate; can generate working code; integrate with tools (e.g. GitHub Copilot).
DALL- E/ DALL- E2/ DALL- E3	Text-to-Ima ge generation	Earlier versions used discrete VAE + autoregressive sequence modelling; later versions use diffusion conditioned on text embeddings (often via CLIP or similar). Wikipedia+2inceptivetechnologi es.com+2	Input: textual description prompt; Output: image fulfilling prompt.	Very good at creative image generation; high quality; increasingly good at following prompts semanticall y; usable for design, art, storyboarding etc.
Stable Diffusi on	Text-to-Ima ge (with open accessibilit y)	Diffusion model + conditioning on text embeddings; latent space diffusion (faster, more efficient) etc. inceptivetechnologies.com+1	Input: text prompt (and optionally image for image-to-im age or inpainting etc.); Output:	Open source; more customizabl e; usable on consumer-c lass GPUs; large community; supports

high	image
resolution	editing,
image.	variations
	etc.

4. Comparisons

Here's a side-by-side comparison of the models in different dimensions.

Comparison Dimension	GPT / Codex	DALL-E	Stable Diffusion
Speed of generation	Text generation is fast for short outputs; code generation depends on size.	Typically fast for images once model is loaded; earlier versions slower.	Slightly slower because diffusion needs multiple denoising steps; but latent diffusion speeds things up.
Prompt adherence / Semantic fidelity	Very good (for text); sometimes hallucinates; needs good prompt engineering.	High; often good at visualizing what prompt describes; sometimes misses details.	Also high; improvements over time; good trade-offs for resolution vs fidelity.
Resource requirements / accessibility	Large compute for training; inference can be lighter.	Image generation models require GPU; inference cost non-trivial.	Because of optimizations and open source, more accessible to developers; can run locally with decent GPUs.
Flexibility / Customization	Highly flexible for many text tasks; can be fine-tuned, adapted.	Some versions allow style, variation, editing features; version dependency.	Very flexible; many community tools, models, fine-tuning; supports image-to-image etc.
Limitations / Weaknesses	Produces incorrect info ("hallucinations"); bias in training data;	Can misinterpret prompts; may produce	Slower sampling; sometimes struggles with specific details;

\	very large models are	artifacts;	requires strong GPU
	expensive.	sometimes lacks	for best performance;
		fine detailed	data bias issues.
		control.	

5. Real-Life Applications & Use Cases

• GPT / Language Models

- Chatbots & virtual assistants (customer support)
- Content generation: articles, marketing copy, summarization, translation
- Legal, medical, technical writing assistance

• Codex / Code Generators

- Autocomplete / code suggestion tools (e.g. GitHub Copilot)
- Learning aid: explain code, generate examples
- Automating repetitive coding tasks

```
### SESSION['_CAPTOM']['config'] = serialize($captcha_config);

### Session['CAPTOM']['config'] = serialize($captcha_config);

### Session['CA
```

DALL-E / Stable Diffusion

- Art & illustration: concept art, storyboards, design mockups
- Marketing & advertising visuals
- Product visualisation (e.g. furniture, fashion)
- Image editing: inpainting, image variation, style transfer

• Hybrid / Multimodal Uses

- Generating images from text prompts within chat interfaces (e.g. using GPT + image models)
- Tools for creators: combining code, text, and images

- GANs were historically very popular: high fidelity output, fast sampling; but problematic training (mode collapse, instability). Bestarion+1
- Diffusion models offer more stable training, better diversity, often better visual quality especially under prompt conditioning. <u>Bestarion+2arXiv+2</u>
- The trade-off is that diffusion often requires more computational work at inference (multiple iterative steps) vs GANs which can generate in a single forward pass.

7. Tables: Architectures & Trade-offs

e (text)

parameters

Here are two comparative tables you can include:

Table A: Architecture & Training Differences

Table A: Architecture & Training Differences						
Feature	9	GANs	Diffusion Mode	ls	Transfoi (Autoreg GPT)	rmers gressive e.g.
Training	gstability	Often unstable; issues like mode collapse	More stable, well-behaved training			hen scaled; ng + fine-tuning ell
Inferen	ce speed	Very fast (single pass)	Slower (many diffusion steps)			text generation; s on model size outputs
Output safety	diversity /	Risk of missing modes; sometimes less diverse	Good diversity; r	more		code, risk of ation, bias but ability
Conditi control prompt adherer	(style,	Possible but tricky	Strong in prompt conditioning; sty control improvin	/le	_	n prompts; via prompt design ning
Table B: Model Comparison — GPT vs Codex vs DALL-E vs Stable Diffusion						
Model	Primary	Approx. Model Size / Training		Best	Use	Weakness /
. 10400	Domain	Data	Ca		Э	Caveat
GPT	0 0	Very large text corp	pora; billions of	Writi	ng,	May produce

summarizati incorrect/fabric

			on, chat, knowledge tasks	ated info; bias; large resource usage
Codex	Code + Languag e	Code dataset + natural text; tuned to code style	Generate code, help developers, auto-comple te	Sometimes produces incorrect or insecure code; not always context-aware
DALL-E	Text→Ima ge	Large image-text paired datasets; uses CLIP and diffusion/autoregressive parts Wikipedia+2inceptivetechnologies .com+2	High quality image generation from text; creative art	Cost / compute; limitations in detail & control; prompt sensitivity
	Text→Ima ge (open access)	Uses latent diffusion; somewhat more efficient; trained on diverse image-text pairs inceptivetechnologies.com+1	Customized art, image editing, community use, inpainting	Slower generation (many steps); sometimes artifacts; dependency on prompt/data quality

8. Limitations, Ethical & Practical Challenges

- Bias & fairness: Models reflect biases in their training data; can generate biased or inappropriate content.
- Hallucination (in text models): GPT may produce statements that are grammatically correct but factually false.
- Prompt sensitivity: Small changes in prompt can lead to very different outputs.
- Resource & energy cost: Very large models need massive compute and power for training and inference.
- Intellectual property & copyright issues: Training on large scraped datasets raises questions of ownership, copyright.

9. Future Directions

- Better efficiency (faster inference, fewer parameters) using techniques like distillation, quantization, sparse / efficient transformer variants.
- More controllability: controlling style, safety, details, reducing unwanted outputs.
- Multimodal models that combine text, images, video, audio more seamlessly.
- Democratization: open-source models, tools accessible to smaller groups (Stable Diffusion is an example).
- Ethical & regulatory frameworks for use, dataset sourcing, bias mitigation.

10. Conclusion

- GPT, Codex, DALL-E, Stable Diffusion represent a new age of generative Al capabilities. Each has its domain and strengths.
- Diffusion models are pushing image generation quality forward, while transformers remain central for language, text, code.
- In real use, often the best solutions come from combining models or using hybrid pipelines.
- As technology matures, concerns of cost, ethics, interpretability & controllability will be as important as raw capability.