IP Addressing & Subnetting

Presented By

Md. Zahirul Islam

Lecturer

Dept. of Computer Science & Engineering

Rajshahi University of Engineering & Technology

What Is an IP Address?

- An IP address is 32 bit combination.
- An IP addresses are written in dotted decimal format.
- Four sections are separated by dots.
- Each section contains a number between 0 and 255.

What Is an IP Address?

Why is each section a number between 0 and 255?

- Computers operate in binary, humans operate in decimal.
- Computers treat IP addresses as a single large 32 digit binary number, but this is hard for people to do.
- So, we split them up into four smaller sections so we can remember and work with them better!

What Is an IP Address?

- Each device on a network is assigned an IP address.
- Each IP address has two fundamental parts:
 - which describes the physical wire the device is attached to.
 - ✓ The *host* portion, which identifies the host on that wire.
 - can we tell difference between the two sections?

IP Address Classes

In classful addressing the address space is divided into 5 classes:

- 1. Class A
- 2. Class B
- 3. Class C
- 4. Class D
- 5. And Class E.

Finding the class in binary notation

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

Finding the class in binary notation

Finding the class in decimal notation

	First byte	Second byte	Third byte	Fourth byte
Class A	0 to 127			
Class B [128 to 191			
Class C [192 to 223			
Class D [224 to 239			
Class E [240 to 255			

Wake Up Please

Find the class of the following addresses 158.223.1.108 227.13.14.88

Wake Up Please

Find the class of the following addresses 158.223.1.108 227.13.14.88

```
•158.223.1.108

1st byte = 158 (128<158<191) class B

•227.13.14.88

1st byte = 227 (224<227<239) class D
```

Netid and hostid

IP Class	Default Subnet	Network bits	Host bits	Total hosts	Valid hosts
А	255.0.0.0	First 8 bits	Last 24 bits	16, 777, 216	16, 777, 214
В	255.255.0.0	First 16 bits	Last 16 bits	65,536	65,534
С	255.255.255.0	First 24 bits	Last 8 bits	256	254

Network Addresses

•

The network address is the first address.

The network address defines the network to the rest of the Internet.

Given the network address, we can find the class of the address, the block, and the range of the addresses in the block

Response Please

Given the network address 132.21.0.0, find the class, the netid, and the range of the addresses

2

Response Please

Given the network address 132.21.0.0, find the class, the netid, and the range of the addresses

The 1st byte is between 128 and 191.

Hence, Class B,

netid of 132.21.

The addresses range from 132.21.0.0 to 132.21.255.255.

)

Mask

- Class A default mask is 255.0.0.0
- Class B default mask is 255.255.0.0
- Class C Default mask 255.255.255.0

Subnetting

Subnetting is done by borrowing bits from the host part and add them the network part.

Boardcast Address: 192.168.10.127 255.255.255.128

Subnetting

N=1 (No of subnet= $2^{N}=2^{1}=2$) H=7 (No of host= $2^{H}-2=2^{7}-2=126$) [-2 due to 1 for network address and another for broadcast address]

Subnets	Subnet 1	Subnet 2
Network ID	0	128
First host	1	129
Last host	126	254
Broadcast ID	127	255

Subnetting

N=2 (No of subnet= $2^{N}=2^{2}=4$) H=6 (No of host= $2^{H}-2=2^{6}-2=62$)

Subnets	Subnet 1	Subnet 2	Subnet 3	Subnet 4
Network ID	0	64	128	192
First host	1	65	129	193
Last host	62	126	190	254
Broadcast ID	63	127	191	255

Please Help ME ©

If N=3 and H=5

- •How many subnet is possible?
- •How many valid host per subnet?
- •What is the subnet mask?
- •CIDR value=?
- •Make a subnet table like previous.

Please Help ME ©

If N=3 and H=5

- •How many subnet is possible?
- •How many valid host per subnet?
- •What is the subnet mask?
- •CIDR value=?
- Make a subnet table like previous.

Subnets	Sub 1	Sub 2	Sub 3	Sub 4	Sub 5	Sub 6	Sub 7	Sub 8
Network ID	0	32	64	96	128	160	192	224
First host	1	33	65	97	129	161	193	225
Last host	30	62	94	126	158	190	222	254
Broadcast ID	31	63	95	127	159	191	223	255

Default mask and subnet mask

Learn Yourself

What is the subnetwork address if the destination address is 200.45.34.56 and the subnet mask is 255.255.240.0?

Learn Yourself

What is the subnetwork address if destination address is 200.45.34.56 and the subnet mask is 255.255.240.0? 11001000 00101101 00100010 00111000 11111111 11111111 11110000 00000000 11001000 00101101 00100000 00000000

The subnetwork address is **200.45.32.0**.

- VLSM Subnets a subnet
 - ✓ VLSM divides a network into subnets of various sizes to prevent wasting IP addresses
- Uses up wasted addresses
- Conserves address space on WAN links
 - ✓ Point-to-point link only needs 2 addresses
 - ✓ With VLSM point-to-point links can use a /30 mask

- Variable Length Subnet Masking allows division of address space based on the size of networks
 - ✓ Start with network requiring the most addresses
 - ✓ Create a subnet mask
 - (use CIDR Classless Inter Domain Routing)
 - ✓ Subnet the subnet as needed to provide address space required for other subnets
 - Be logical start at beginning or end or address space
 - Addresses must be contiguous to enable route summarization

Subnets of Varying Sizes

One subnet was further divided to create 8 smaller subnets of 4 hosts each

- You are required to connect two networks in Brisbane to those in Perth, having the following requirements:
- Brisbane needs to support 25 hosts each on the two networks
- Perth office needs to support 5 and 10 hosts in its two offices
- You may use only 128.186.1.0 /24

Office	#hosts	#host bits	#usable hosts	subnet
Brisbane	25	5	30	/27
Brisbane	25	5	30	/27
Perth	10	4	14	/28
Perth	5	3	6	/29
WAN	2	2	2	/30