

GEOMETRÍA

Capítulo 1

TRIÁNGULOS

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales y por lo tanto, el conocimiento de sus teoremas, clasificación, etc., es básico para comprender mejor a las demás figuras geométricas que estudiaremos posteriormente. Esta figura tiene en la actualidad diferentes usos y aplicaciones como podemos observar.

Definición.

Si A, B y C son tres puntos no colineales, entonces la unión de los segmentos AB, BC y AC se denomina triángulo.

NOTACIÓN:

ΔABC: Se lee, triángulo ABC

ELEMENTOS

VÉRTICES: A, B y C

• LADOS: \overline{AB} , \overline{BC} y \overline{CA}

ÁNGULOS EN UN TRIÁNGULO

Medida de los ángulos:

- INTERNOS: α , β y θ
- EXTERNOS: δ, ω y φ

INTERIOR Y EXTERIOR DE UN TRIÁNGULO

PERÍMETRO DE UN TRIÁNGULO

Es la suma de las longitudes de los lados del triángulo. Se denota con 2p.

$$2p_{(ABC)} = a + b + c$$

La suma de las medidas de los ángulos internos de un triángulo es igual a 180°.

$$\alpha + \beta + \theta = 180^{\circ}$$

En un triángulo, la suma de las medidas de los ángulos externos considerados uno por vértice es igual a 360°.

En un triángulo, la medida de un ángulo externo es igual a la suma de las medidas de dos ángulos internos no adyacentes a él.

$$x = \alpha + \beta$$

En todo triángulo, la longitud de un lado es mayor que la diferencia de las longitudes de los otros dos y menor que la suma de las longitudes de dichos lados. (Teorema de existencia)

Si: a > b

Entonces:

$$a - b < x < a + b$$

En un triángulo al lado de mayor longitud se opone el ángulo de mayor medida y viceversa. (Teorema de correspondencia)

Si
$$a > b \Leftrightarrow \beta > \alpha$$

TEOREMAS ADICIONALES

HELICO | THEORY

$$\alpha + \beta = \theta + \phi$$

$$x = \alpha + \beta + \theta$$

$$\phi + \theta = \alpha + \beta$$

$$\phi + \theta = \alpha + \beta$$

CLASIFICACIÓN DE LOS TRIÁNGULOS

I. SEGÚN LA LONGITUD DE SUS LADOS

TRIÁNGULO ESCALENO

Tienen los tres lados de diferente longitud.

TRIÁNGULO ISÓSCELES

Tienen dos lados de igual longitud.

TRIÁNGULO EQUILÁTERO

Tienen sus tres lados de igual longitud.

II. SEGÚN LAS MEDIDAS DE SUS ÁNGULOS

TRIÁNGULO RECTÁNGULO

Tiene un ángulo interno que mide 90°.

TRIÁNGULOS OBLICUÁNGULOS

TRIÁNG. ACUTÁNGULO

Los ángulos internos son agudos.

TRIÁNG. OBTUSÁNGULO

Un ángulo interno es obtuso.

1. En la figura, halle el valor de x.

Resolución

- Piden: x
- En el ∆ABC:

$$3\beta + 5\beta + \beta = 180^{\circ}$$

 $\beta = 20^{\circ}$

En el ∆DEC:

$$2\beta + \beta + x = 180^{\circ}$$

 $3\beta + x = 180^{\circ}$
 $3(20^{\circ}) + x = 180^{\circ}$

 $x = 120^{\circ}$

2. En el gráfico, halle el valor de x, si AB = AC.

Resolución

Piden: x

ABC: Isósceles

$$4x + 3x + 3x = 180^{\circ}$$

$$10x = 180^{\circ}$$

$$x = 18^{\circ}$$

3. Las longitudes de los lados de un triángulo son 6 y 13. Calcule la diferencia entre el máximo y el mínimo valor entero que puede tomar la longitud del tercer lado.

Resolución

- Piden: x_{máx} x_{min}
- Aplicando el teorema de la existencia.

$$x = (8); 9; 10; ...; 16; 17; (18)$$

$$x_{máx} - x_{min} = 10$$

4. En el gráfico, halle el valor de x.

Resolución

- Piden: x
- Aplicando el teorema:

$$7x + 5x + 120^{\circ} = 360^{\circ}$$

$$12x = 240^{\circ}$$

$$x = 20^{\circ}$$

5. En la figura, AB = AC = CD. Halle el valor de x.

Resolución

- Piden: x
- Se traza \overline{BC} .
- △ABC: Equilátero
- △BCD: Isósceles
- Aplicando el teorema:

$$x = 60^{\circ} + 80^{\circ} + 20^{\circ}$$

$$x = 160^{\circ}$$

01

6. Cuando Aldo viajó a provincia, observó el siguiente paisaje y recordó un ejercicio que no pudo resolver en el colegio. Ayúdelo a calcular el valor de x si $\alpha + \beta + \theta + \omega = 250^{\circ}$

- Piden: x
- Aplicando teorema de la medida de un ángulo externo.
- En ∆FCG: teorema de la suma de las medidas de los ángulos externos.

7. En la figura se muestra el piso de una pileta en forma de región ∆ABC. Del punto P se distribuye agua por tubos hacia los puntos A, B y C. Si el perímetro del piso es 16 m, determine el menor número entero de metros de tubo, que se deben comprar para hacer dichas conexiones.

Resolución

- Piden: $(a + b + c)_{menor}$
- $2p_{(ABC)} = 16 \text{ m}$ (m + n + t = 16)
- Aplicando el teorema de existencia:

 $(a+b+c)_{min} = 9 \text{ m}$