Greibach Theorem

Every CFL L where $\epsilon \notin L$ can be generated by a CFG in Greibach normal form.

Proof idea: Let $G=(V,\Sigma,R,S)$ be a CFG generating L. Assume that G is in Chomsky normal form

- Let $V = \{A_1, A_2, \dots, A_m\}$ be an ordering of nonterminals.
- Construct the Greibach normal form from Chomsky normal form

Greibach Theorem

Every CFL L where $\epsilon \notin L$ can be generated by a CFG in Greibach normal form.

Proof idea: Let $G=(V,\Sigma,R,S)$ be a CFG generating L. Assume that G is in Chomsky normal form

- Let $V = \{A_1, A_2, \dots, A_m\}$ be an ordering of nonterminals.
- Construct the Greibach normal form from Chomsky normal form

1...Idx be all B rules emma a jule et al obtained from · removing

Greibach Theorem

Every CFL L where $\epsilon \notin L$ can be generated by a CFG in Greibach normal form.

Proof idea: Let $G=(V,\Sigma,R,S)$ be a CFG generating L. Assume that G is in Chomsky normal form

- Let $V = \{A_1, A_2, \dots, A_m\}$ be an ordering of nonterminals.
- Construct the Greibach normal form from Chomsky normal form

Construction

Aim: Make all rules forward recursive.

- 1. Modify the rules in R so that if $A_i \to A_j \gamma \in R$ then j > i
- 2. Starting with A_1 and proceeding to A_m this is done as follows:
 - (a) Assume that productions have been modified so that for $1 \le i \le k, \, A_i \to A_j \gamma \in R$ only if j > i
 - (b) If $A_k \to A_j \gamma$ is a production with j < k, generate a new set of productions substituting for the A_j the rhs of each A_j production
 - (c) Repeating (b) at most k-1 times we obtain rules of the form $A_k \to A_p \gamma, \ p \ge k$
 - (d) Replace rules $A_k \to A_k \gamma$ by removing left-recursive rules

Construction

- 1. Modify the rules in R so that if $A_i \to A_j \gamma \in R$ then j > i
- 2. Starting with A_1 and proceeding to A_m this is done as follows:
 - (a) Assume that productions have been modified so that for $1 \le i \le k$, $A_i \to A_j \gamma \in R$ only if j > i
 - (b) If $A_k \to A_j \gamma$ is a production with j < k, generate a new set of productions substituting for the A_j the rhs of each A_j production
 - (c) Repeating (b) at most k-1 times we obtain rules of the form $A_k \to A_p \gamma$, $p \ge k$
 - (d) Replace rules $A_k \to A_k \gamma$ by removing left-recursive rules

Construction

- 1. Modify the rules in R so that if $A_i o A_j \gamma \in R$ then j>i
- 2. Starting with A_1 and proceeding to A_m this is done as follows:
 - (a) Assume that productions have been modified so that for $1 \le i \le k, \, A_i \to A_j \gamma \in R$ only if j > i
 - (b) If $A_k \to A_j \gamma$ is a production with j < k, generate a new set of productions substituting for the A_j the rhs of each A_j production
 - (c) Repeating (b) at most k-1 times we obtain rules of the form $A_k \to A_p \gamma, \ p \ge k$
 - (d) Replace rules $A_k \to A_k \gamma$ by removing left-recursive rules

Removing left-recursion

Left-recursion can be eliminated by the following scheme:

- If $A \to A\alpha_1 | A\alpha_2 \dots | A\alpha_r$ are all A left recursive rules, and $A \to \beta_1 | \beta_2 | \dots | \beta_s$ are all remaining A-rules then chose a new nonterminal, say B
- Add the new *B*-rules $B \to \alpha_i | \alpha_i B$, $1 \le i \le r$
- Replace the *A*-rules by $A \to \beta_i | \beta_i B$, $1 \le i \le s$

This construction preserve the language L.

Removing left-recursion

A-) Adj-> Adjd, = Adman - xy -> Bidminds

Left-recursion can be eliminated by the following scheme:

- If $A \to A\alpha_1 | A\alpha_2 \dots | A\alpha_r$ are all A left recursive rules, and $A \to \beta_1 | \beta_2 | \dots | \beta_s$ are all remaining A-rules then chose a new nonterminal, say B
- Add the new *B*-rules $B \to \alpha_i | \alpha_i B$, $1 \le i \le r$
- Replace the A-rules_by $A \to \beta_i | \beta_i B$, $1 \le i \le s$

391

This construction preserve the language L.

Removing left-recursion

Left-recursion can be eliminated by the following scheme:

- If $A \to A\alpha_1 | A\alpha_2 \dots | A\alpha_r$ are all A left recursive rules, and $A \to \beta_1 | \beta_2 | \dots | \beta_s$ are all remaining A-rules then chose a new nonterminal, say B
- Add the new *B*-rules $B \to \alpha_i | \alpha_i B$, $1 \le i \le r$
- Replace the A-rules by $A \to \beta_i | \beta_i B$, $1 \le i \le s$

This construction preserve the language L.

A -> Adz Adzadze -> Adzeni - dzi -> BSZni dzi A -> B-B-B-> Bid 2mB -> Bdzindzm B -> Adzm dzB


```
begin
            for k := 1 to m do
    1)
                begin
                     for j := 1 to k - 1 do
                         for each production of the form A_k \to A_j \alpha do
   2)
   3)
                             begin
                                 for all productions A_j \rightarrow \beta do
   4)
                                     add production A_k \to \beta \alpha;
   5)
                                 remove production A_k \to A_j \alpha
  6)
                            end;
                    for each production of the form A_k \to A_k \alpha do
  7)
                        begin
                            add productions B_k \to \alpha and B_k \to \alpha B_k;
  8)
                            remove production A_k \to A_k \alpha
  9)
                       end;
                   for each production A_k \to \beta, where \beta does not
10)
                       begin with A_k do
                            add production A_k \to \beta B_k
11)
              end
```

end

More on Greibach NF

See Introduction to Automata Theory, Languages, and Computation, J.E, Hopcroft and J.D Ullman, Addison-Wesley 1979, p. 94–96

Example

Convert the CFG

$$G = (\{A_1, A_2, A_3\}, \{a, b\}, R, A_1)$$

where

$$R = \{A_1 \rightarrow A_2 A_3, A_2 \rightarrow A_3 A_1 | b, A_3 \rightarrow A_1 A_2 | a\}$$

into Greibach normal form.

Example

Convert the CFG

$$G = (\{A_1, A_2, A_3\}, \{a, b\}, R, A_1)$$

where

$$R = \{A_1 \rightarrow A_2 A_3, A_2 \rightarrow A_3 A_1 | b, A_3 \rightarrow A_1 A_2 | a\}$$

into Greibach normal form.

Example

Convert the CFG

 $G = (\{A_1, A_2, A_3\}, \{a, b\}, R, A_1)$

where

$$R = \{A_1 \to A_2 A_3, A_2 \to A_3 A_1 | b, A_3 \to A_1 A_2 | a\}$$

into Greibach normal form.

· A3>A2A3A219

Solution

- 1. Step 1: ordering the rules: (Only A_3 rules violate ordering conditions, hence only A_3 rules need to be changed). Following the procedure we replace A_3 rules by: $A_3 \rightarrow A_3 A_1 A_3 A_2 |bA_3 A_2| a$
- 2. Eliminating left-recursion we get: $A_3 \rightarrow bA_3A_2B_3|aB_3|bA_3A_2|a$, $B_3 \rightarrow A_1A_3A_2|A_1A_3A_2B_3$
- 3. All A_3 rules start with a terminal. We use them to replace $A_1 \to A_2 A_3$. This introduces the rules $B_3 \to A_1 A_3 A_2 |A_1 A_3 A_2 B_3|$
- 4. Use A_1 production to make them start with a terminal

Solution

- 1. Step 1: ordering the rules: (Only A_3 rules violate ordering conditions, hence only A_3 rules need to be changed). Following the procedure we replace A_3 rules by: $A_3 \rightarrow A_3 A_1 A_3 A_2 |bA_3 A_2| a$
- 2. Eliminating left-recursion we get: $A_3 \rightarrow bA_3A_2B_3|aB_3|bA_3A_2|a$, $B_3 \rightarrow A_1A_3A_2|A_1A_3A_2B_3$
- 3. All A_3 rules start with a terminal. We use them to replace $A_1 \to A_2 A_3$. This introduces the rules $B_3 \to A_1 A_3 A_2 |A_1 A_3 A_2 B_3$
- 4. Use A_1 production to make them start with a terminal

Solution

- 1. Step 1: ordering the rules: (Only A_3 rules violate ordering conditions, hence only A_3 rules need to be changed). Following the procedure we replace A_3 rules by: $A_3 \rightarrow A_3 A_1 A_3 A_2 |bA_3 A_2| a$
- 2. Eliminating left-recursion we get: $A_3 \rightarrow bA_3A_2B_3|aB_3|bA_3A_2|a$, $B_3 \rightarrow A_1A_3A_2|A_1A_3A_2B_3$
- 3. All A_3 rules start with a terminal. We use them to replace $A_1 \to A_2 A_3$. This introduces the rules $B_3 \to A_1 A_3 A_2 |A_1 A_3 A_2 B_3$
- 4. Use A_1 production to make them start with a terminal

							_															
\vdash									+				_						+			
\vdash				++			_		+				_				++	+	-			
\vdash							_		_		_		_					+				
\vdash							_		+				_	_	+			+	+			
\vdash					+	+	_		+		+		_	_	+		++		+			
																		+				
\Box							_		_				_				++					
																	\perp	_				
							_		_	_			_									
							_		_				_									
Ш																						
													_									