EI-27003: Electronics Devices and Circuits Lecture - 9

Subject Incharge: Mr. Rajesh Khatri Associate Professor

LECTURE - 9

Year: 2020-21

MOS Operation-3

- Till now we have seen:
- In NMOS if V_{GS}>V_t, Channel forms but NO
 Current flows till V_{DS} is applied (Fig.1).
- Now (V_{GS} V_t)>0, and V_{DS} is slowly increased the current I_D flows from, drain to source. It will also increase as VDS increases. The channel in this case is tapered. (Fig.2)
- ➤ The depth of channel at drain side reduces if we goes on increasing V_{DS}. (Fig.3)
- \rightarrow At $V_{DS}=(V_{GS}-V_t)$, the channel gets pinch-off.

V_{DS} Versus I_D Characteristics

- Thus from previous discussion, in NMOS if V_{GS}>V_t and V_{DS} is slowly increases, then drain current I_D also increases linearly till V_{DS}=V_{GS}-V_t is reached.
- > So as shown in fig, for condition $V_{DS} < (V_{GS} V_t)$,
- The MOS is said to be in linear or triode Region.

At V_{DS}=(V_{GS}-V_t), channel gets pinched off and MOS is said to be just at edge of Saturation

NMOS in Deep Saturation

If V_{DS} is further increased i.e.

$$V_{DS} >> (V_{GS} - V_t)$$
 then since the channel is pinched off, only constant drain current I_D will flow and NMOS is said to be in saturation.

There is no effect of increasing V_{DS} on the drain current I_{D.}

Summary: In NMOS (V_{GS}>V_{t)}

if $V_{DS} < (V_{GS} - V_t)$ ---- NMOS in linear or triode region

if $V_{DS}=(V_{GS}-V_t)$ ---- NMOS is pinched-off or Just on verge of sat.

if V_{DS} >(V_{GS} - V_t) ---- NMOS is in Saturation region.

Channel Length Modulation

- If we further increase VDS, beyond (V_{GS}-V_t), as shown in fig.
- Then the length of channel reduces L as shown in fig.
- \triangleright This L is proportional to V_{DS} .
- i.e. if we increase or decrease the
 VDS beyond (VGS-Vt), the channel
 length increases or decreases respectively.

This effect is called as Channel Length modulation effect

Its Quiz Time

https://forms.gle/hQGdVbhuYpLxn3rq6