Solutions to Selected Exercises

Chapter 2

- 2.1. (a) Regular. Every production has a lone non-terminal on its left-hand side, and the right-hand sides consist of either a single terminal, or a single terminal followed by a single non-terminal.
 - (b) Context free. Every production has a lone non-terminal on its left-hand side. The right-hand sides consist of arbitrary mixtures of terminals and/or non-terminals one of which (aAbb) does not conform to the pattern for regular right-hand sides.
- 2.2. (a) $\{a^{2i}b^{3j}: i, j \ge 1\}$ i.e. as followed by bs, any number of as divisible by two, any number of bs divisible by three
 - (b) $\{a^ia^jb^{2j}: i \ge 0, j \ge 1\}$ i.e. zero or more as, followed by one or more as followed by twice as many bs
 - (c) { } i.e. the grammar generates no strings at all, as no derivations beginning with S produce a terminal string
 - (d) $\{\varepsilon\}$ i.e. the only string generated is the empty string.
- 2.3. xyz, where $x \in (N \cup T)^*$, $y \in N$, and $z \in (N \cup T)^*$

The above translates into: "a possibly empty string of terminals and/or non-terminals, followed by a single non-terminal, followed by another possibly empty string of terminals and/or non-terminals".

2.5. For an alphabet A, A^* is the set of all strings that can be taken from A including the empty string, ε . A regular grammar to generate, say $\{a,b\}^*$ is

$$S \rightarrow \varepsilon \mid aS \mid bS$$
.

 ε is derived directly from S. Alternatively, we can derive a or b followed by a or b or ε (this last case terminates the derivation), the a or b from the last

stage being followed by a or b or ε (last case again terminates the derivation), and so on ...

Generally, for any alphabet, $\{a_1, a_2, ..., a_n\}$ the grammar

$$S \rightarrow \varepsilon |a_1S| a_2S| ... |a_nS|$$

is regular and can be similarly argued to generate $\{a_1, a_2, ..., a_n\}^*$.

2.7. (b) The following fragment of the BNF definition for Pascal, taken from Jensen and Wirth (1975), actually defines all Pascal expressions, not only Boolean expressions.

```
<expression> ::= <simple expression> |<simple expression>
  <relational operator> <simple expression>
<simple expression> :: = <term> | <sign> <term> |
  <simple expression> <adding operator> <term>
<adding operator> ::= + | - | or
<term> ::= <factor> |<term> <multiplying operator> <factor>
<multiplying operator> := * | / | div | mod | and | |
<factor> := <variable> | <unsigned constant> | (<expression>) |
  <function designator> | <set> | not <factor>
<unsigned constant> :: = <unsigned number> | <string> |
<constant identifier> | nil
<function designator> := <function identifier> |
  <function identifier> (<actual parameter>
                      {, <actual parameter>})
<function identifier> ::= <identifier>
<variable> ::= <identifier>
\langle set \rangle ::= [\langle element | list \rangle]
<element list> ::= <element> \{, <element> \} | <empty>
<empty> :: =
```

Note the use of the empty string to enable an empty <set> to be specified (see Chapter 5).

2.10. Given a finite set of strings, each string x, from the set can be generated by regular grammar productions as follows:

$$x = x_1 x_2 \dots x_n, \quad n \ge 1$$

$$S \to x_1 X_1$$

$$X_1 \to x_2 X_2$$

$$\vdots$$

$$X_{n-1} \to x_n.$$

For each string, x, we make sure the non-terminals X_i , are unique (to avoid any derivations getting "crossed").

Figure S.1. Two derivation trees for the same sentence $(a^3b^3c^3)$

This applies to any finite set of strings, so any finite set of strings is a regular language.

Chapter 3

3.1. (b) $\{a^ib^jc^k: i, j, k \ge 1, i = j \text{ or } j = k\}$

i.e. strings of as followed by bs followed by cs, where the number of as equals the number of bs, or the number of bs equals the number of cs, or both

(c) Grammar G can be used to draw two different derivation trees for the sentence $a^3b^3c^3$, as shown in Figure S.1.

The grammar is thus ambiguous.

3.2. (b) As for the Pascal example, the semantic implications should be discussed in terms of demonstrating that the same statement yields different results according to which derivation tree is chosen to represent its structure.

Chapter 4

4.1. (a) The FSR obtained directly from the productions of the grammar is shown in Figure S.2.

Figure S.2. A non-deterministic finite state recogniser

Figure S.3. A deterministic version of the FSR in Figure S.2

The FSR in Figure S.2 is non-deterministic, since it contains states (for example, state A) with more than one identically labelled outgoing arcs going to different destinations.

The deterministic version, derived using the subset method (null state removed) is in Figure S.3.

4.3. One possibility is to represent the FSR as a two-dimensional table (array), indexed according to (state, symbol) pairs. Table S.1 represents the FSR of Exercise 1(a) (Figure S.2).

In Table S.1, element (A, a), for example, represents the set of states $(\{S, B\})$ that can be directly reached from state A given the terminal a. Such a representation would be easy to create from the productions of a grammar that could be entered by the user, for example. The representation is also highly useful for creating the deterministic version. This version is also made more suitable if the language permits dynamic arrays (Pascal does not, but ADA, C, and Java are languages that do). The program also needs to keep details of which states are halt and start states.

An alternative scheme represents the FSR as a list of triples, each triple representing one arc in the machine. In languages such as Pascal or ADA, this

Table S.1. A tabular representation of the finite state recogniser in Figure S.2

	Terminal symbols		
States	a	b	
S	A	_	
Α	S, B	_	
В	_	С	
B C	_	D	
D	_	B, H	
Н	-		

Figure S.4. Part of the finite state recogniser from Figure S.2

Figure S.5. The FSR fragment from Figure S.4 represented as a linked list of (state, arc symbol, next state) triples

scheme can be implemented in linked list form. For example, consider the part of the FSR from Exercise 4.1 (Figure S.2) shown in Figure S.4.

This can be represented as depicted in Figure S.5.

This representation is particularly useful when applying the reverse operation in the minimisation algorithm (the program simply exchanges the first and third elements in each triple). It is also a suitable representation for languages such as LISP or PROLOG, where the list of triples becomes a list of three element lists.

Since FSRs can be of arbitrary size, a true solution to the problem of defining an appropriate data structure would require dynamic data structures, even down to allowing an unlimited source of names. Although this is probably taking things to extremes, you should be aware when you are making such restrictions, and what their implications are.

Chapter 5

- 5.2. First of all, consider that a DPDR is not necessarily restricted to having one halt state. You design a machine, M, that enters a halt state after reading the first a, then remains in that state while reading any more as (pushing them on to the stack, to compare with the bs, if there are any). If there are no bs, M simply stops in that halt state, otherwise on reading the first b (and popping off an a) it makes a transition to another state where it can read only bs. The rest of M is an exact copy of M_3^d , of Chapter 5. If there were no bs, any as on the stack must remain there, even though as is accepting the string. Why can we not ensure that in this situation, as clears the as from its stack, but is still deterministic?
- 5.5. The reasons are similar to why arbitrary palindromic languages are not deterministic. When the machine reads the *a*s and *b*s part of the string, it has no

way of telling if the string it is reading is of the "number of as = number of bs", or the "number of bs = number of cs" type. It thus has to assume that the input string is of the former type, and backtrack to abandon this assumption if the string is not.

5.6. One possibility is to represent the PDR in a similar way to the list representation of the FSR described above (sample answer to Exercise 4.3, Chapter 4). In the case of the PDR, the "current state, input symbol, next state" triples would become "quintuples" of the form:

current state, input sym, pop sym, push string, new state

The program could read in a description of a PDR as a list (a file perhaps) of such "rules", along with details of which states were start and halt states.

The program would need an appropriate dynamic data structure (for example, linked list) to represent a stack. It may therefore be useful to design the stack and its operations first, as a separate exercise.

Having stored the rules, the program would then execute the algorithm in Table S.2.

As the PDR is deterministic, the program can assume that only one quintuple will be applicable at any stage, and can also halt its processing of invalid strings as soon as an applicable quintuple cannot be found. The non-deterministic machine is much more complex to model: I leave it to you to consider the details.

Table S.2. An algorithm to simulate the behaviour of a deterministic push down recogniser. The PDR is represented as quintuples

```
can-go := true
C:= the start state of the PDR
while not(end-of-input) and can-go
  if there is a quintuple, Q, such that
    Q's current state = C, and
    Q's pop sym = the current symbol "on top" of the stack, and
    O's read sym = the next symbol in the input
  then
    remove the top symbol from the stack
    set up ready to read the next symbol in the input
    push Q's push string onto the stack
    set C to be Q's next state
    can-go := false
  endif
endwhile
if end-of-input and C is a halt state then
  return("yes")
else
  return("no")
endif
```

Chapter 6

- 6.3. Any FSR that has a loop on some path linking its start and halt states in which there is one or more arcs not labelled with ε recognises an infinite language.
- 6.4. In both cases, it is clear that the *v* part of the *uvw* form can consist only of *as* or *bs* or *cs*. If this were not the case, we would end up with symbols out of their respective correct order. Then one simply argues that when the *v* is repeated the required numeric relationship between *as*, *bs*, and *cs* is not maintained.
- 6.5. The language specified in this case is the set of all strings consisting of two copies of any string of as and/or bs. To prove that it is not a CFL, it is useful to use the fact that we know we can find a uvwxy form for which $|vwx| \le 2^n$, and n is the number of non-terminals in a Chomsky Normal Form grammar to generate our language. Let $k=2^n$. There are many sentences in our language of the form $a^nb^na^nb^n$, where n>k. Consider the vwx form as described immediately above. I leave it to you to complete the proof.

Chapter 7

7.1. This can be done by adding an arc labelled x/x (N) for each symbol, x in the alphabet of the particular machine (including the blank) from each of the halt states of the machine to a new halt state. The original halt states are then designated as non-halt states. The new machine reaches its single halt state leaving the tape/head configuration exactly as did the original machine.

Chapter 8

- 8.1. (The "or" FST). Assuming that the two input binary strings are of the same length, and are interleaved on the tape, a bitwise *or* FST is shown in Figure S.6.
- 8.2. An appropriate FST is depicted in Figure S.7.

Figure S.6. A bitwise "or" finite state transducer. The two binary numbers are the same length, and interleaved when presented to the machine. The machine outputs "*" on the first digit of each pair

Figure S.7. A finite state transducer that converts a binary number into an octal number. The input number is presented to the machine in reverse, and terminated with "*". The answer is also output in reverse

Chapter 9

9.4. Functions are discussed in more detail in Chapter 11. A specification of a function describes what is computed and does not go into detail about how the computation is done. In this case, then, the TM computes the function:

$$f(y) = y \operatorname{div} 2, y \ge 1.$$

- 9.5. (a) tape on entry to loop: $d1^{x+1}e$ tape on exit: $df^{x+1}e1^{x+1}$ i.e. the machine copies the x+1 1s between d and e to the right of e, replacing the original 1s by fs.
 - (b) f(x) = 2x + 3.

Chapter 10

10.3. The sextuple (1, a, A, R, 2, 2) of the three tape machine M might be represented as shown in Figure S.8.

Chapter 11

11.1. Assume the TM, *P*, solves the printing problem by halting with output 1 or 0 according to whether *M* would, or would not, write the symbol *s*.

P would need to be able to solve the halting problem, or in cases where *M* was not going to halt *P* would not be able to write a 0, for "no".

Figure 5.8. A sketch of how a single tape TM, S, could model the sextuple (1, a, A, R, 2, 2) of a 3-tape machine, M, from Chapter 10. For how the 3 tapes are coded onto S's single tape, see Figures 10.21 and 10.22. This sequence of states applies when S is modelling state 1 of M and S's read write head is on the symbol representing the current symbol of M's tape 1

Chapter 12

12.1. There are two worst case scenarios. One is that the element we are looking for is in position (n, 1), i.e. the leftmost element of the last row. The other is that the element is not in the array at all, but is greater than every element at the end of a row except the one at the end of the last row, and smaller than every element on the last row. In both of these cases we inspect every element at the end of a row (there are n of these), then every element on the

last row (there are n-1 of these, as we already inspected the last one). Thus, we inspect 2n-1 elements. This represents time O(n).

There are also two average case scenarios. One is that the element is found midway along the middle row. The other is that the element is not in the array at all, but is greater than every element at the end of a row above the middle row, smaller than every element in the second half of the middle row and greater than the element to the left of the middle element in the middle row. In this case, we inspect half of the elements at the end of the rows (there are n/2 of these), and we then inspect half of the elements on the middle row (there are n/2-1) of these, since we already inspected the element at the end of the middle row. We thus make n/2+n/2-1=n-1 comparisons. This, once again, is O(n).

12.3. (c) A further form of useless state, apart from those from which the halt state cannot be reached, is one that cannot be reached from the start state. To find these, we simply examine the row in the connectivity matrix for the start state, S, of the machine. Any entry on that row (apart from position S, S) that is not a 1 indicates a state that cannot be reached from S, and is thus useless. If there are n states in the machine, this operation requires time O(n).

With respect to part (b) of the question, the *column* for a state indicates the states from which that state can be reached. Entries that are not 1 in the column for the halt state(s) indicate states from which the halt state cannot be reached (except, of course for entry H, H where H is the halt state in question). This operation is $O(m \times n)$ where n is the total number of states, and m is the number of halt states. The running time is thus never worse that $O(n^2)$ which would be the case if all states were halt states. For machines with a single halt state it is, of course O(n).

12.4. Table S.3 shows the result of applying the subset algorithm (Table 4.6) to the finite state recogniser of Figure 12.10. For an example see the finite state recogniser in Figure S.2, which is represented in tabular form in Table S.1.

Table S.3. The deterministic version of the finite state recogniser from Figure 12.10, as produced by the
subset algorithm of Chapter 4 (Table 4.6). There are eight states, which is the maximum number of states
that can be created by the algorithm from a 3-state machine

	Terminal symbols					
States	a	b	С	d	е	f
l (start state)	1_2	1_2_3	N	1_3	3	2
2	N	N	2_3	N	N	N
3 (halt state)	N	N	N	N	N	N
1_2	1 2	1_2_3	2_3	1_3	3	2
1_3 (halt state)	1_2	1_2_3	N	1_3	3	2
2_3 (halt state)	N	N	2_3	N	N	N
1_2_3 (halt state)	1_2	1_2_3	2_3	1_3	3	2
N (null state)	N	N	N	N	N	N

Here, the tabular form is used in preference to a diagram, as the machine has a rather complex structure when rendered pictorially.

Chapter 13

- 13.1. The NOR gate representation of the and operator is depicted in Figure S.9 (cf. de Morgan's law for the intersection of two sets, in Figure 6.7). The truth table in Table S.4 verifies the representation. Note the similarity between this representation and the NAND gate representation of the or operator given in Figure 13.5.
- 13.2. (a) Figure S.10 shows the engineer's circuit built up entirely from *NAND* gates. Note that we have taken advantage of one of de Morgan's laws (Table 13.12), to express $C + \sim D$ as $\sim (\sim C \cdot D)$, i.e. $(\sim C \cdot NAND \cdot D)$. This involves an intermediate stage of expressing $C + \sim D$ as $\sim \sim (C + \sim D)$ rule 1 of Table 13.12.

Figure S.9. The NOR gate representation of the Boolean and (.) operator

Table S.4. Verification by truth table that the NOR gate representation, $\sim (\sim (A+A)+\sim (B+B))$ is equivalent to A.B

A	В	(P) $A + A$	(R) ∼P	(Q) $B+B$	(S) ∼Q	(T) $R+S$	$(Result\ 1)$ $\sim T$	(Result 2) A . B
0	0	0	1	0	1	1	0	0
0	1	0	1	1	0	1	0	0
1	0	1	0	0	1	1	0	0
1	1	1	0	1	0	0	1	1

Figure S.10. The engineer's circuit of Chapter 13, i.e. \sim (A . B) . (C + \sim D), using only NAND gates

Table S.5. Verification by truth table that $p \wedge p$ is equivalent to p		
P	$p \wedge p$	
0	0	
1	1	

13.5. (c) The truth table showing the equivalence of $(p \land p)$ with p is given in Table S.5.

The significance of this is that whenever we have a proposition of this form, for example $(s \rightarrow t) \land (s \rightarrow t)$, we can simply remove one of the equal parts, in this case giving $(s \rightarrow t)$.

Chapter 14

14.5. The representation of the problem statement, and the reasoning required to solve the problem, are given in Table S.6.

Table S.6. Classical reasoning in FOPL

FOPL	Comments
A1. $(\forall x)$ (politician(x) \rightarrow (liar(x) \vee cheat(x))) A2. $(\forall y)$ ((married(y) \wedge cheat(y)) \rightarrow affair(y)) A3. \sim affair(Alg) A4. \sim liar(Alg)	Axioms
P: $married(Alg) \rightarrow \sim politician(Alg)$	Statement to be proved
$politician(Alg) \rightarrow (liar(Alg) \lor cheat(Alg))$	From A1
\sim politician(Alg) \vee (liar(Alg) \vee cheat(Alg))	$(p \to q) \leftrightarrow (\sim p \lor q)$
~politician(Alg) \(\sigma \text{cheat}(Alg) \)	(X) With A4: $\hat{p} \lor 0 \leftrightarrow p$ (see Exercise 5(e), Chapter 13)
$politician(Alg) \rightarrow cheat(Alg)$	$(p \to q) \leftrightarrow (\sim p \lor q)$
$(married(Alg) \land cheat(Alg)) \rightarrow affair(Alg)$	From A2
\sim (married(Alg) \wedge cheat(Alg))	With A3: modus tollens
\sim married(Alg) $\vee \sim$ cheat(Alg)	de Morgan's law
$cheat(Alg) \rightarrow \sim married(Alg)$	$(Y) (p \rightarrow q) \leftrightarrow (\sim p \lor q)$
$(politician(Alg) \rightarrow cheat(Alg)) \land$	$X \wedge Y$
$(cheat(Alg) \rightarrow \sim married(Alg))$	
$politician(Alg) \rightarrow \sim married(Alg)$	Transitivity of implication (see Exercise 5(a), Chapter 13)
\sim politician(Alg) $\vee \sim$ married(Alg)	$(p \to q) \leftrightarrow (\sim p \lor q)$
~married(Alg) \ ~politician(Alg)	14 A' ' A ' A'
$married(Alg) \rightarrow \sim politician(Alg)$	P is proved

Chapter 15

15.1. The representation of the problem statement, and the resolutions required to solve the problem, are given in Table S.7.

Table S.7. Proof by resolution. This is the same problem as Exercise 14.5 of Chapter 14

Proof	Comments
A1. $(\forall x)(politician(x) \rightarrow (liar(x) \lor cheat(x)))$ A2. $(\forall y)(married(y) \land cheat(y)) \rightarrow affair(y))$ A3. $\sim affair(Alg)$ A4. $\sim liar(Alg)$	Axioms
P: $married(Alg) \rightarrow \sim politician(Alg)$	Statement to be proved
$C1. \sim politician(x) \vee liar(x) \vee cheat(x)$	From A1
C2. \sim married(y) $\vee \sim$ cheat(y) \vee affair(y)	From A2
C3. ~affair(Alg)	A3
C4. ~liar(Alg)	A4
C5. married(Alg)	From $\sim P$ (negated statement to be proved)
C6. politician(Alg)	
C7. \sim politician(x) \vee liar(x) \vee \sim married(x) \vee affair (x)	C1 and C2 resolved
C8. $liar(Alg) \lor \sim married(Alg) \lor affair(Alg)$	C6 and C7 resolved
C9. $liar(Alg) \lor affair(Alg)$	C8 and C5 resolved
C10. affair(Alg)	C9 and C4 resolved
C11. <empty></empty>	C10 and C3 resolved. P is proved

15.2. The representation of the problem statement, and the resolutions required to solve the problem, are given in Table S.8.

Table S.8. Using the transitivity of the *greater than* relation to prove that 26 > 1 by resolution

Proof	Comments		
$A1. (\forall x, y, z) (p(x, y) \land p(y, z)) \rightarrow p(x, z))$	Axioms		
A2. p(24,3)	24 > 3		
A3.p(26,24)	26 > 24		
A4.p(3,1)	3 > 1		
P. p(26, 1)	Statement to be proved		
$C1. \sim p(x, y) \vee \sim p(y, z) \vee p(x, z)$	From A1		
C2. p(24,3)	A2		
C3. p(26, 24)	A3		
C4.p(3,1)	A4		
$C5. \sim p(26, 1)$	$\sim P$ (negated statement to be proved)		
C6. $\sim p(24, z) \vee p(26, z)$	C1 and C3 resolved		
C7. p(26, 3)	C6 and C2 resolved		
$C8. \sim p(3, z) \vee p(26, z)$	C7 and C1 resolved		
C9. p(26, 1)	C8 and C4 resolved		
C10. <empty></empty>	C9 and C5 resolved. P is proved		

Further Reading

The following are some suggested titles for further reading. Notes accompany most of the items. Some of the titles refer to articles that describe practical applications of concepts from this book.

The numbers in parentheses in the notes refer to chapters in this book.

Church A. (1936) An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics, 58, 345-363.

Church and Turing were contemporaneously addressing the same problems by different, but equivalent means. Hence, in books such as Harel's we find references to the "Church-Turing thesis", rather than "Turing's thesis". (9–11).

Cohen D. I. A. (1996) Introduction to Computer Theory. John Wiley, New York. 2nd edition.

Covers some additional material such as regular expressions, Moore and Mealy machines (in this book our FSTs are Mealy machines) (8). Discusses relationship between multi-stack PDRs (5) and TMs.

Floyd R.W. and Beigel R. (1994) The Language of Machines: An Introduction to Computability and Formal Languages. W.H. Freeman, New York.

Includes a discussion of regular expressions (4), as used in the UNIX™ utility "egrep". Good example of formal treatment of minimisation of FSRs (using equivalence classes)(4).

Harel D. (1992) Algorithmics: The Spirit of Computing. Addison-Wesley, Reading, MA. 2nd edition. Study of algorithms and their properties, such as complexity, big O running time (12) and decidability (11). Discusses application of finite state machines to modelling simple systems (8). Focuses on 'counter programs': simple programs in a hypothetical programming language.

Harrison M.A. (1978) Introduction to Formal Language Theory. Addison-Wesley, Reading, MA. Many formal proofs and theorems. Contains much on closure properties of languages (6).

Hopcroft J.E. and Ullman J.D. (1979) Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, MA.

Discusses linear bounded TMs for context sensitive languages (11).

Jensen K. and Wirth N. (1975) Pascal User Manual and Report. Springer-Verlag, New York.

Contains the BNF and Syntax chart descriptions of the Pascal syntax (2). Also contains notes referring to the ambiguity in the "if" statement (3).

Kain R.Y. (1972) Automata Theory: Machines and Languages. McGraw-Hill, New York.

Formal treatment. Develops Turing machines before going on to the other abstract machines.

Discusses non-standard PDRs (5) applied to context sensitive languages.

Minsky M.L. (1967) Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, NJ. A classic text, devoted to an investigation into effective procedures (11). Very detailed on most aspects of computer science. Of particular relevance is description of Shannon's 2-state TM result (12), and reference to unsolvable problems (11). The proof we use in this book to show that FSTs cannot perform arbitrary multiplication (8) is based on Minsky's.

Murdocca M. (2000) Principles of Computer Architecture. Addison Wesley, Reading, MA.

Computer architecture books usually provide useful material on Boolean logic and its application in digital logic circuits (13). This book also has sections on reduction of logical circuits.

Kelley D. (1998) Automata and Formal Languages: An Introduction. Prentice Hall, London.

Covers most of the introductory material on regular (4) and context free (5) languages, also has chapters on Turing machine language processing (7), decidability (11) and computational complexity (12).

342 Further Reading

Post E. (1936) Finite Combinatory Processes – Formulation 1. Journal of Symbolic Logic, 1, 103–105. Post formulated a simple abstract string manipulation machine at the same time as did Turing (9). Cohen (see above) devotes a chapter to these "Post" machines.

Rayward-Smith V.J. (1983) A First Course in Formal Language Theory. Blackwell, Oxford, UK.

The notation and terminology for formal languages we use in this book is based on Rayward-Smith. Very formal treatment of regular languages (plus regular expressions), FSRs (4), and context free languages and PDRs (5). Includes Greibach normal form (as does Floyd and Beigel) an alternative CFG manipulation process to Chomsky Normal Form (5). Much material on top-down and bottom-up parsing (3), LL and LR grammars (5), but treatment very formal.

Rich E. and Knight K. (1991) Artificial Intelligence. McGraw-Hill, New York.

Artificial intelligence makes much use of representations such as grammars and abstract machines. In particular, machines called recursive transition networks and augmented transition networks (equivalent to TMs) are used in natural language processing. AI books are usually good for learning about first order predicate logic and resolution (14–15), since AI practitioners are interested in using FOPL to solve real world reasoning problems.

Tanenbaum A.S. (1998) Computer Networks. Prentice-Hall, London. 3rd edition.

Discusses FSTs (8) for modelling protocol machines (sender or receiver systems in computer networks).

Turing A. (1936) On Computable Numbers with an Application to the Entscheidungs problem. Proceedings of the London Mathematical Society, 42, 230–265.

The paper in which Turing introduces his abstract machine, in terms of computable numbers rather than computable functions. Also includes his notion of a universal machine (10). A paper of remarkable contemporary applicability, considering that Turing was considering the human as computer, and not machines.

Winston P.H. (1992) Artificial Intelligence. Addison-Wesley, Reading, MA (see Rich), 3rd edition.

Wood D. (1987) Theory of Computation. John Wiley, Chichester, UK.

Describes several extensions to PDRs (5). Introduction to proof methods, including the pigeonhole principle (also mentioned by Harel) on which both the repeat state theorem (6, 8) and the *uvwxy* theorem (6) are based.

Index

shatus at marshing 1 2 122	
abstract machine 1-3, 133	sorted 256–257
computational model 117, 130, 136, 204	three dimensional 255
efficiency 250, 256	two dimensional 199, 255, 261
model of time 249, 251, 256	see also search algorithm, sort algorithm
clock 166, 251–252	and Turing machine
relationship to languages 42, 232	asymmetric relation 306
acceptable language 151-158, 228, 242-245	atomic symbol 11
ADA [programming language] 330	automaton 1, 245
Algol 44	axiom 316
Algol60 42, 45	
Algol68 44	- 1. 1
algorithm	Backtracking 61, 102, 148, 251, 305, 323, 332
complexity 4	computational problems of 61
termination condition 79, 240	Backus-Naur form 20-22, 36, 43, 328
theoretical significance 270, 289	big O analysis 249, 254-258, 260-269, 270-272,
see also running time of algorithm	335–336
alphabet 11-12, 90, 108, 165-167	dominant expression 255, 267
as a set 11	see also running time of algorithm
finiteness of 11	binary number system, universality of 172,
ambiguity 37, 42–47, 295	196–197, 232, 250–251
ambiguous grammar 50	binary search 258–260
definition of 45	analogous to telephone directory 257
ambiguous language	vs. linear search 260
definition of 42	worst case 260
general lack of solution 45	see also big O analysis, linear one
implications	dimensional array search, running time
compilation 43-45	of algorithm
logical expressions 46	binary tree 89
programming language definition 44-45	blocks world problem 299–300, 306
programs 45	BNF, see Backus-Naur form
semantic 43-44, 46, 329	Boole, George 275
inherently ambiguous language 46	Boolean logic 1, 4, 47, 178, 275-282, 284
natural language 42, 45	circuit 178, 276
Krushchev 45	expression (statement) 36, 47, 275-276,
Pascal 42-44	279–281, 293, 328
solution 44–45	operator 4, 46–47, 178, 275–276, 278–281
unambiguous grammar 45	and 276, 337
unambiguous language 44	not 276
unambiguous logical expressions 46	or 276, 337
array 12-13, 256-257, 263, 271-272	problem solving 276–278, 287
dynamic 13, 330	role in computing 278–281
indexes 330	digital circuitry 278
one dimensional 256	information retrieval 280-281

Boolean logic (continued)	empty string
programming languages 279	ε production 83–84
variable 275	removal of 81, 83-84, 89, 94, 105
bubble (exchange) sort 263, 271	non unit production 86
best case 263-264, 271	secondary production 87
worst case 263-264	unit production 76, 85-87
	graph 85–86
	removal of 85–86
C [programming language] 330	see also context free language and push
CFG, see context free grammar	down recogniser
CFL, see context free language	context free language 32, 81–82, 89–90, 97,
Chomsky hierarchy 2, 11, 26, 30–32, 35, 49, 81,	99–106, 112–118, 121, 128–130, 136,
103, 107, 130–131, 145, 155, 158, 179,	141–143, 145, 333
213, 242, 245–247	closure properties 112–118
classification of grammars 30-32, 33, 35	complement 117–118
Chomsky Noam 2, 26	implications 117–118
see also Chomsky hierarchy and Chomsky	concatenation 115–116
Normal Form	intersection 116–117
Chomsky normal form for CFGs 85, 89, 105, 122,	union 113–115
127–128, 130	
	deterministic 81, 100–101, 102, 104, 105, 113
equivalence with CFGs 85, 89	115-118, 122, 131, 140-141
Church Alonzo 204	closure properties
clausal database, see conjunctive normal form	complement 118
database	concatenation 115-116
clever two dimensional array search 262-263, 271	intersection 116–117
average case 271, 336	union 115
worst case 271, 335-336	restricted palindromic language 102-103
see also big O analysis, linear two	non deterministic 81, 101–103, 104, 115, 117
dimensional array search, running time	141–143
of algorithm	lack of equivalence with deterministic
closure (of language) 107-118, 122	CFLs 81, 99, 101–102, 104, 105
see also context free language and regular	proper 97
language	proper subset of type 0 languages 118
CNF, see Chomsky normal form	uvwxy theorem 107, 118, 122-130, 333
compiler 1-2, 18-19, 37, 40, 43-44, 45, 68, 82, 145,	see also context free grammar and push
197, 207, 234	down recogniser
see also ambiguity, decision program and	context sensitive grammar 30, 129, 146,
Pascal	150–152
completeness 241-242, 315, 322	context sensitive language 128-129, 145-146, 152
vs. consistency 241, 325	233
see also first order predicate logic and	see also under Turing machine
resolution	
computable language 1-3, 145, 152, 155, 158-159,	
242, 245	database, see conjunctive normal form database
TM-computable 242	de Morgan, Augustus 284
see also under Turing machine	de Morgan's laws 110-111, 117, 284, 290, 337
see also acceptable language, decidability,	see also propositional logic and set
decidable language	decidability 155-157, 231, 234, 242, 245-247, 304,
conjunctive normal form 307-308, 312-314	316
see also conjunctive normal form database	decidable language 155-157, 158, 228, 242, 245
and resolution	vs. acceptable 156-157
conjunctive normal form database 312-314,	decidable problem 234
319–320	decision problem 234, 241
clause 312-322, 326	decision program 17-19, 30
consistency of 315, 317-318	compiler as 18–19
inference in 315–316	language definition by 17, 30, 32, 176, 289
see also resolution	relationship to grammars 32
consistency 241	sentence determination by 17–18
context free grammar 30–32, 33, 38, 42, 46, 77–78,	derivation 23, 26, 27–29, 33–34, 35–40, 45, 50, 87,
81-89, 92-98, 101-105, 113-116, 120,	88, 122–129, 327
	see also derivation tree
122–130, 151, 158, 159, 267, 305, 327	see aiso activation tiee

derivation tree 37, 38–45, 50, 58–59, 89, 122–128,	deterministic (DFSR) 49, 61–76, 78–79, 96,
129, 329	99–100, 108–112, 120, 131, 139–140, 163
context free derivation 38-39	256, 330
Chomsky normal form 89	linear time algorithm 256
empty string in 38	empty move 76–77, 82
reading 38	equivalence with regular languages 51,
see also derivation	56-59, 76-77, 89, 103, 140, 145, 234
deterministic context free language, see under	intersection machine 110-112
context free language	list representation 331
deterministic finite state recogniser (DFSR), see	minimal 49, 68-76, 78, 234, 331
under finite state recogniser	non deterministic 59-68, 70-76, 78, 79, 96,
deterministic pushdown recogniser (DPDR), see	99, 251
under pushdown recogniser	equivalent to deterministic FSR 61-68, 78
deterministic Turing machine, see under Turing	96, 234, 330
machine	rejection conditions 54
digital computer	reverse form 70–76, 331
regarded as FST 176-178, 180	state 90
state 177	acceptance 53, 54
see also under finite state transducer	multiple start states 70, 77, 109-110
directed graph 85-86, 265-266, 298	name 62, 70–73, 77
transitive closure 265	null 61, 68, 70, 100, 108
division by repeated subtraction 190, 192-193	rejection 53–54
· -	useless 267, 271, 336
	union machine 109-110
effective procedure 204, 211, 232, 233-234, 241,	finite state transducer 3, 163-178, 179-180, 189,
244, 289, 325	234, 247, 250, 333–334
empty string 12-13	computation 163-164, 167, 179
see also under context free grammar,	binary addition 168–172
derivation tree, grammar, parsing,	binary subtraction 168–172
Pascal, pushdown recogniser, regular	input preparation 167–168
grammar, string concatenation	limitations 163, 172–173
ε production, see under context free grammar	inability to perform arbitrary
and regular grammar	multiplication 173, 176, 179, 189
E, see empty string	output interpretation 167-169
equivalence problem for regular languages 234	restricted division 171–172
see also decision problem	number of states 176
equivalence problem for Turing machines 241	restricted modular arithmetic 171-172
see also decision problem and halting	restricted multiplication 167-168,
problem	172–176
existential quantifier, see under first order	number of states 176
predicate logic	limited computational model 3, 176–178
	logical operation or 333
	memory 163, 250
finite state generator 51	shift operation 164–167
see also finite state recogniser	no halt state 164
finite state recogniser (FSR) 49, 51-79, 82, 87,	regular language recogniser 164
89-90, 92-93, 96-97, 100-101, 103,	restricted TM 163, 179
109-112, 118-121, 131, 133, 135,	time 166-167, 250
139-140, 143, 145, 164, 234, 247,	clock 166-167
265–268, 329–331	first order predicate logic (FOPL) 1, 4-5, 281,
acceptable string 56-61, 63-68, 93	291-306, 307-312, 313-314, 322, 323,
acceptance conditions 53-55	324–325, 326
acceptance conditions 35-35	•
adjacency matrix representation 265–266,	argument 292, 294-295, 316
330, 336	atom 294–295, 312
behaviour 51, 53-56	classical reasoning 4-5, 301, 303-304,
loop 118–119, 120, 333	305–306, 307, 317, 322, 326, 338
complement machine 108-109, 110-111,	completeness 304
131	computational complexity 304-305, 307
computational limitations of memory	constant 292, 293, 294-295, 310, 314-316
89–90	existential quantifier 291, 296-298, 299-300
decision program 49, 61, 68-69	309-312, 315

first order predicate logic (FOPL) (continued)	see also context free grammar, context
function 291, 292, 293–294, 311–312,	sensitive grammar, regular grammar,
313-314, 315-316, 324	unrestricted grammar
arithmetic 294	guard 54–55
nested call 293-294	
interpretation (meaning) 292-294, 300-301,	halking mushlam 4 170 205 221 224 242 245
309–310	halting problem 4, 178, 205, 231, 234–242, 245,
validity 301, 304	247, 304, 325, 334
monotonicity 305, 317, 322	human implications 242
predicate 291–296, 299–301, 306, 312–313,	linguistic implications 4
316-320, 322-324	partial solvability of 4, 235, 240
arithmetic comparison 293	programming implications 231, 234,
vs. function 293–294	240-241, 247
problem solving 291, 301, 303–304	reduction to 240–241, 247, 334
quantified statement 296–299, 306	theoretical implications 240, 241-242
quantifier removal 312, 313	see also equivalence problem for Turing
representation of time 299	machines and printing problem for
rules of inference 299, 301–304, 308–309,	Turing machines
312–313	higher order logic 295–296
universal quantifier 291, 298–300, 301–303,	
308-309, 314-316	
variable 292, 294, 314, 315–316, 317	implication, see under propositional logic
quantified 296–297, 303, 308–311,	infinite loop 117, 177, 234–240, 242
314–316	infix operator 171, 293, 294
scope 297	
vs. type 0 language 304–305	T
well formed formula (sentence) 291,	Java [programming language] 330
294–295, 305	
FOPL, see first order predicate logic	
formal language 1, 2, 4, 6, 11, 14-22, 25, 37-38, 42,	k-tape Turing machine, see under Turing
108, 118, 131, 159, 242–243, 245–247,	machine
247,300	
acceptability of 246–247	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
computational properties 30, 34	lazy drunken students problem 304, 306, 307,
definition 14–22, 108, 131	312-313, 314, 321-322, 323-324
see also set definition	leaf node 38
finite 16	linear one dimensional array search 256–257, 260
infinite 16, 112, 118, 120–121, 127, 128,	linear two dimensional array search 261–262
333	average case 261-262
non computable 242–243	worst case 262
FSR, see finite state recogniser	see also big O analysis, clever two
FST, see finite state transducer	dimensional array search, running time
function 231–233, 249–250, 251	of algorithm
association between values 232, 334	LISP [programming language] 12, 331
(TM) computable 232–233	list 256, 330–331, 332
represented by program 232	logarithm 258–260
vs. problem 232–233, 245–246	base 10 259
see also under first order predicate logic and	base 2 259–260
set definition	estimation method 259-260
	logic gate 278
0.11m	modelling basic Boolean operators 279–280
Gödel Kurt 241, 325	NAND 278-280, 284, 290, 337
Gödel's theorem 5, 241, 325	NOR 278-279, 284, 290, 337
grammar 11, 22–36	see also Boolean logic
(N, T, P, S) form 26–27	logical consequence 304, 319
empty string in 26, 30	logical implication, see under propositional
language generated by 26, 29-30	logic
phrase structure 22-23, 26-27, 29, 30-31, 37,	logical system
45, 81, 82, 158	computational properties 271
rule 19,22	linguistic properties 271
see also production	role in argumentation 271

see also Boolean Logic, first order predicate	problems caused by 82, 84, 153-155,
logic, propositional logic	look ahead 104–105
LR(k) language 105	reduction method 41-42, 50, 89, 146-151,
LR(1) 105	152–155
	Chomsky normal form 89
1 11	reductions vs. productions 41, 89
membership problem for language 233, 242-243,	top-down 40-41
245–246	Pascal 2, 12, 19–22, 37, 42–45, 68, 77–78, 82, 89,
monotonicity, see under first order predicate logic and resolution	121, 145, 180, 328, 329, 330 arithmetic expression 43–44
multiplication language 104, 105, 129–130, 158	beginend construct 78, 121
computational properties 34	Boolean expression 43-44
not a context free language 104, 105,	case statement 82
129–130, 158	char data type 68
multiplication, shift and add method 180,	compiler error 145
185–186, 188	compound statement 44
base 10 form 185-186	defined by syntax diagrams 19-22
binary form 185-186	defined in Backus-Naur form 20-22, 328
multi-tape Turing machine, see under Turing	empty string 82
machine	compilation 82
	function 180
	identifier 19-21, 77, 328
NAND gate, see logic gate	if statement 82
node 38, 86, 89, 126, 127, 129, 265–266	non regular language 78, 121
see also terminal node and leaf node	procedure 180
non determinism, computational implications	program construct 19-21
104, 270	record data type 89
non deterministic context free language, see	source code 207
under context free language	scope of variable 297
non deterministic finite state recogniser, see	PDR, see pushdown recogniser
under finite state recogniser	phrase structure language 30, 145, 155, 242, 246 see also phrase structure grammar
non deterministic pushdown recogniser, see under pushdown recogniser	P = NP problem 269–270
non deterministic Turing machine, see under	unsolved 249, 254, 270
Turing machine	see also decision problem, see also under
non deterministic Turing machine, see under	Turing machine
Turing machine	pop, see under push down recogniser
non terminal symbol 22-23, 26-28, 33-34, 35, 38,	Post, Emile
43, 49, 58, 76, 81, 83–84, 85–89, 113, 122,	abstract machine theory 204
125-130, 145, 265, 327, 328, 333	predicate logic, see first order predicate logic
NOR gate, see logic gate	printing problem for Turing machine 247
NPDR, see under pushdown recogniser	see also decision problem, halting problem
octal (base 8) number system 178	problem 231–232
	question associated with function 232–233
11. 1	see also decidable problem, decision
palindromic string 101-103, 104-105, 141-143,	problem, halting problem, membership
331	problem, $P = NP$ problem,
parallel computation 213, 249, 251–254, 268, 269,	semidecidable problem, solvable
288	problem, unsolvable problem production 22-23, 25-32, 38, 41, 49, 58, 61, 76-77,
implications 254 non deterministic Turing machine 251–252,	•
253–254, 268, 270	81, 82-89, 94, 145-148, 150-155, 267, 288, 327, 328, 329
linear running time 268	program correctness
polynomial running time 268, 269–270	lack of algorithmic solution 240
see also running time of algorithm	partial 240
see also under Turing machine	programming language 1-2, 12, 18-19, 20-22, 32,
parsing 39-45, 49, 50-51, 60-61, 68, 77, 82, 84, 89,	37, 42–43, 44–45, 77–78, 82, 84, 104, 117,
105, 117, 146–150, 152–155, 288	118, 121, 171, 205, 279, 297, 324
aim of 40-41	statement 15
bottom-up 39, 40-41	if statement 15
empty string	implications of non deterministic CFLs 104

348 Index

programming language (continued)	simulation by program 332
integer division (div) 172, 173	stack 81, 90-94, 95-96, 104, 105, 141, 247,
modulus (mod) 172	331, 332
scope of variable 297	bottom 90, 101
source code 37, 40, 82	operation
subroutine 180	pop 90–91, 97
syntax definition 19, 20-22	push 90-91, 97, 102
unconditional jump (goto) 68	empty string 90, 91
vs. natural language 20, 40, 45	top 90, 94, 97
PROLOG 5, 12, 307, 323–325, 331	
backtracking mechanism 323	
program execution 323-324	queue 90
vs. other programming languages 324–325	relationship to stack 90
propositional logic 1, 4, 275, 281–289, 290,	quicksort 260, 261, 262, 271
291–292, 299, 301, 305	pivot 260, 272
computational complexity 286, 288–289	vs. $O(n^2)$ algorithm 260
connective 281	
consistency 288	
equivalence operator 283	recursive definition 159, 294
role in reasoning 284	well formed parentheses 159
expressive limitations 4, 289, 291	well formed formula, see under first order
implication operator 4, 282-285, 303, 314	predicate logic
necessary condition 282-283, 323	recursive function theory 204
sufficient condition 282–285	reductio ad absurdum 117, 121, 128, 130, 176, 307,
interpretation (meaning) 281	320
problem solving 284, 285–288	reduction parsing, see under parsing
proposition 281–282, 283, 289, 291, 296	reflexive relation 306
atomic 281, 285, 287, 289, 291	regular expression
rules of inference 5, 282, 284-286, 288, 290,	equivalence with regular languages 77
299, 301-302	in text editor 77
de Morgan's laws 284, 313, 321	regular grammar 35, 36, 38, 42, 49-51, 56-60, 68,
modus ponens 285, 287, 303, 323	70, 76–78, 84, 87, 89, 100, 103, 112, 113,
modus tollens 285	121, 145, 234, 271, 327–328
theorem 287	empty string 84
PSG, see phrase structure grammar	ε production 84
PSL, see phrase structure language	removal 84
push, see under push down recogniser	useless production 267
pushdown recogniser (PDR) 81, 90, 92–105, 106,	see also finite state recogniser, regular
113, 115, 117–118, 122, 130, 133, 136,	expression, regular language
141, 143, 152, 158, 331–332	regular language 35, 36, 49, 50, 64, 68, 77–78, 81,
computational limitations of 103, 130, 158	97, 99–101, 103, 104, 107–112, 116, 117,
deterministic (DPDR) 81, 96–103, 104, 105,	118, 122, 128, 131, 140, 145, 164, 247, 329
	as deterministic CFL 99-100
106, 114, 332	finite 36, 329
acceptance conditions 101 difference from NPDR 101	
	proper subset of CFLs 104, 120–122
behaviour 97–98, 106	closure properties
characterisation of 97	complement 108–109
modelling DFSR 100	concatenation 112, 113
unable to clear stack 331	intersection 110-112, 117
equivalence with context free languages 81,	union 107, 109–110, 111
103-104, 141, 145	repeat state theorem for FSRs 107, 118-122, 128,
non deterministic (NPDR) 81, 92-96, 97, 99,	131, 176, 177, 179, 203, 333
101, 103-104, 105, 106, 117, 133, 141,	resolution 5, 305, 307, 314, 317
143, 152	application 316, 322, 338-339
acceptance conditions 93	completeness 322
behaviour 94	computational complexity 322
characterisation of 94	justification 322–323
lack of equivalence with DPDRs 97, 99,	monotonicity 317, 322
101–104	resolvent 317, 320, 322
quintuple representation 332	set of support strategy 322
relation to FSR 90	unit preference strategy 322

running time of algorithm 4, 249, 250–251,	finite 328
255–265, 267–268, 270–272, 288–289,	infinite 108
336	intersection 17, 107, 110, 116–117
average case 256	subset 58, 108
best case 256	non proper 14
dominant process 255	proper 14, 30, 118, 122, 131
exponential 249, 256, 267-270, 288	union 17, 107, 109–110, 113–115
implications 268–270	Shannon, Claude 250
implications 270	Skolem, A. T 312
linear 249, 255, 256-257, 260, 263, 264, 268,	Skolemisation 312
271, 272, 336	Skolem constant 312
logarithmic 249, 255-256, 258-259, 260, 261	Skolem function 312, 315
vs. linear 260	see also first order predicate logic
optimal 255, 270	solvability 231, 232–234, 242, 246
polynomial 249, 255, 256, 260–267, 268,	partial 233
269–270, 336	total 233, 234
worst case 256, 261–262, 264	vs. decidability 233, 246
Worldt edide 250, 201 202, 201	see also problem
	solvable problem 233, 246
search algorithm, see binary search, clever two	sort algorithm, see bubble (exchange) sort and
dimensional array search, linear one	quicksort
dimensional array search, linear two	space requirement 249, 251
dimensional array search, self reference 325	of program 249–250
	of Turing machine 250
in logical systems 241	stack, see under push down recogniser, see also
in Turing machines 241, 325	queue
semantics 20, 37–38, 46, 47, 300, 308, 325, 329	start symbol 22-23, 25-29, 38, 41, 58, 84, 86, 89,
of programs 20, 37	94, 147, 151
vs. syntax 20, 37–38	string (dynamic data structure) 12–13
semidecidability of first order predicate logic	string (formal) 12–14
304-305	defining properties 12
semidecidable language 231, 245	see also empty string, palindromic string, string
semidecidable problem 304	concatenation, string index operator,
sentence 11, 15, 17–19, 22, 24, 28–29, 33–34,	string power operator
37–38, 40–41, 45, 58, 117, 122, 130,	string concatenation 12, 16, 82, 112, 115
155–156, 233, 242, 245	empty string in 12
word as synonym for 15	string index operator 12, 16, 58, 68
see also sentential form and terminal string	string power operator 12, 16, 112
sentence symbol, see start symbol	sub-machine TM 180, 182, 190, 227
sentential form 28–29, 33–34, 38, 89, 304–305	ADD 180–190, 192–193, 197, 198, 199, 227,
sequence 256	228
sequential search, see linear one dimensional	COMPARE 194–196, 197, 199, 232
array search and linear two	COPY-L 187-188
dimensional array search	COPY-R 188
serial computation	INVERT 192
deterministic 4-tape machine 252-254, 268	SUBTRACT 190-193, 197, 199, 227
exponential running time 268–269	TWOS-COMP 192
polynomial running time 270	WRITE-A-ONE 180-181, 182-183
vs. parallel 249, 251, 252–254, 268–270	WRITE-A-ZERO 180, 181, 183
see also under Turing machine	see also Turing machine
set definition (of formal language) 15-17, 19,	subset construction algorithm for FSRs 62-65,
29-30, 35, 50, 81, 85	70-76, 78-79, 109, 267-268, 271, 330,
set	336
complement 108-109, 110-112, 117-118, 131	exponential time 267-268
concatenation 112, 115-116	termination condition 79
de Morgan's law 110-111, 117, 284, 290, 337	worst case 267-268, 336
difference 17, 99, 108	see also big O analysis, finite state
empty 14, 267	recogniser, running time of algorithm
enumerable (countable) 14, 217	substring 23, 41, 119, 121, 123, 125–129, 147
systematic generation (by TM) 216-222,	see also string (formal) and empty string
229, 243–244,	subtraction by addition 191–192
,,	

350 Index

symmetric relation 306	arbitrary integer division 190, 193-194
syntax 2, 19-22, 32, 34, 37, 44, 78, 82, 117, 197, 294,	DIV 190, 193-196, 199, 227, 232
300, 308, 325	arbitrary multiplication 180, 185-190
syntax diagram19-22	MULT 185-190, 193, 199, 207, 227-228,
see also Backus-Naur form and Pascal	232
	binary addition 180-186, 192-193, 194,
	199
terminal node 38, 58, 89, 127	binary subtraction 191-193
terminal string 24-26, 28, 29, 40-41, 86-88, 115,	most powerful device 177, 203, 247
123, 147, 155, 265, 327	power exceeds computer 3-4, 159, 177,
see also sentence	179–180, 196–199, 205, 249–250
terminal symbol 22, 23-24, 26-29, 38	vs. FST 177, 178
TM, see Turing machine	configuration
transitive relation 298, 303, 326	input 138–139, 143, 148, 155, 182, 186, 187,
truth table 4, 275-278, 282, 283, 286-289, 290,	194, 200, 201, 253, 268
337–338	output 139, 143, 194
as decision program 289	deterministic 243–244
as Turing computable function 289	function 200
see also function	instantaneous description 251
exponential nature 289	language processing 133, 139, 247
statement decomposition 267	equivalence with type 0 languages 158,
Turing machine 2-4, 34, 130, 133-159, 163, 177,	228
179-202, 203-229, 231-247, 249-254,	palindromic language 141–143
269-270, 289, 305, 325, 333, 334-335	type 0 language recogniser 130-131, 133,
abstraction over real machines 205	145, 152, 158, 228, 242, 245–247
architecture	type 1 language recogniser 130, 146, 152,
alphabet 134, 136	246-247
blank 133–136, 137, 138, 139–141,	vs. FSR 133, 140-141, 155, 247
148-150, 151, 152-153, 163, 180-181,	vs. PDR 133, 141-144, 155, 247
187, 188, 206, 216, 217, 222, 223, 226.	logical operations 179, 197, 199
233, 235, 333	comparison of two numbers 194-196
read/write head 133-135, 136, 139, 141,	model of computer 179-180
180, 186, 203, 214, 222–227, 233, 235,	multi-tape (k-tape) version 4, 203, 208-209,
251, 333, 335	213-214, 222, 226-228
tape 4, 133–144, 151–152, 155–156, 158,	4-tape example 214–216, 218–222, 226,
163, 177, 180–190, 193–195, 200–201,	252
204, 205, 207–229, 233, 240, 241,	convenience 227–228
250–252, 254, 268, 333, 334–335	equivalence with single-tape version 203,
packed 148, 151, 216, 233	209, 211, 213–214, 222, 227–228
square 133–135, 137, 148, 149, 151, 153,	sextuple representation 222, 226, 229, 335
193, 214, 215, 216, 223, 226–227, 233,	simulation by 1-tape TM 222, 226, 229
250	coding 3 tapes onto 1 223, 225-226
behaviour 4, 135–139	simulation of non deterministic TM
erasing 188, 193, 204, 215, 223, 235, 335	214-222, 252-254
moving 133, 136	non deterministic 147–148, 152, 155, 203,
reading 133	213, 222, 228, 242, 251, 254, 268, 269–270
scanning 148, 151	equivalence with deterministic k-tape TM
shuffling 137, 148-149, 151, 152, 153, 188,	203, 213, 222, 228
193–194, 226–227	equivalence with deterministic TMs 152,
skipping 138, 151	213, 228, 254, 269–270
ticking off 142, 188, 218	problem solving process 213
writing 134	quintuple representation 206–207, 208,
blank tape assumption 140, 141, 155	210-213, 215-218, 222-224, 226, 228,
coding of 4, 203, 232, 235, 239, 243–245	235, 240, 241, 244, 252–254, 268–269
direction symbols 206–207	simulation of computer 196–197
input tape 205–206, 208–209	memory & array access 179, 199, 200, 250
machine 203, 205, 208	program execution 198, 199
complexity	state
number of states vs. number of symbols	halt state 138–139
250–251 computation 158–159, 179, 199	single 140, 159, 333 Turing machine simulation program 228–229
COMPUISION 138-139.1/9.199	THE THE THACKING SIMULATION DEOPERIN 220-229

Turing, Alan 2, 133, 204
Turing's thesis 4, 5, 193, 203–204, 211, 213, 217, 231, 243, 250, 324, 325
evidence in support of 204
vs. theorem 203–204, 325
twos complement number 191–192
type 1 grammar, see context sensitive grammar type 1 language, see context sensitive language

unacceptable (non computable) language 243-244 undecidable language 231, 245 unification 307, 314, 315-316, 320, 323 of predicates 316-317, 318, 320, 322 rules of 315-316 substitution 314-317 totally decidable 316 see also conjunctive normal form database and first order predicate logic unit production graph, see context free grammar unit production, see context free grammar universal logic gate, see logic gate universal quantifier, see under first order predicate logic universal Turing machine 3, 203, 205, 207, 208-213, 228, 232, 235, 244 3-tape version 203, 208-212 behaviour 210-212, 235 implications 211, 213

input configuration 209-211 model of stored program computer 211 partially solves halting problem 234-240, simulation of TM 208-211, 213 see also Turing machine and halting problem unrestricted grammar 32-34, 35, 130, 145-146, 152-155, 158-159, 213 see unrestricted language unrestricted language 118, 130-131, 158, 203, 213, 228, 247, 304 see Turing machine and unrestricted grammar unsolvability 231, 233, 234-235, 239-242, 247 total 233, 247 unsolvable problem 205, 325 useless production, see under regular grammar useless state, see under finite state recogniser uvwxy theorem for CFLs See Under Context Free Language

Wang machines
vs. TMs 204
Warshall's algorithm 265–267, 271
applied to adjacency matrix 265–267
connectivity matrix 266
see also finite state recognisers