Predicting Shopper Conversion For Valassis

Daniel Sprague, Eric Tay, Jane Zhang, Ethan Shen

EDA & Data Cleaning

- Initially focused on LT interests
- Heat Map
 - Subcategories with same category are correlated
- Transforming Data
 - Dictionary to vector
 - Cleaning data
 - Normalized data

Arts &

0	1			
	150	True	{'45': 0.020536141517834786, '47': 0.003117529	0
1	2	True	$ \{ {}^{\backprime}45 {}^{\backprime}: 0.001158253110658664, {}^{\backprime}592 {}^{\backprime}: 0.01546380 $	8
2	3	True	$ \{ '908'; 0.002470851264264668, '590'; 0.0021402$	0
3	4	True	$ \{ '1187' ; 0.001127974558171163, \ '1780' ; 0.00117 \\$	0
4	5	True	$ \{ '907' ; 0.025339209040149392, '1187' ; 0.006020 \\$	{'907': 0.10445132121076425, '908': 0.05651522

EDA & Data Cleaning

Visualizations

Signalled that interests such as Arts &
 Entertainment, Autos & Vehicles, News and Health
 could have significant predictive power

Model Selection, Findings & Improvements

Model 1

- Focused on LTI data for both training and testing
- Resampled data to account for class imbalance
- Tried boosted decision trees, SVMs, random forests (10 trees)
- Picked random forests! (Best performance, overfitting, ease of tuning, variable importance)
- Implemented a 3-fold Cross-Validation (CV)
- Training: Accuracy 0.637, SD 0.0103
- Test: Accuracy 0.722, AUROC 0.65
- Findings match EDA, which predicted Arts & Entertainment,

Model 2

- Focused on data with STI features, reformatted vector, and ran same process as model 1
- Training: Accuracy 0.650, SD 0.0117
- Test: Accuracy 0.743, AUROC 0.86
- STI adds enormous predictive power and significantly decreases false positives
- 2 different models for Valassis to use

Final Model & Conclusion

Model 3

- Retrained model that included data with LTI but no STI data:
 Suboptimal results with significant FPR
- Implemented 3-fold nested cross validation
- Optimized hyperparameters for random forest
 - Optimized for maximal AUROC
- \circ Training accuracy increased from 0.6153 \pm 0.011 to 0.6399 \pm 0.003
- AUROC increased from 0.62 to 0.64

