## PREDICTION OF CRYPTOCURRENCY PRICES USING HISTORICAL & TWITTER DATA

Team Data Pirates (17)







Bitcoin increased its value in 2017 before plunging in 2018







Average number of tweets shared per day related to Bitcoin







#### Bitcoin hits \$50,000 as Elon Musk's tweet sends Shiba Inu soaring



#### Genshin Impact Cancels Elon Musk Event Following Fan Pushback

I am convinced that I have died and gone to hell. Last night, the official Genshin Impact Twitter account tweeted a contest in which the...



#### Reuters

#### Musk tweets he is in talks with airlines to install Starlink broadband

Oct 14 (Reuters) - Billionaire entrepreneur Elon Musk said in a tweet on Thursday he was in talks with airlines about installing Starlink,...



#### ✓ Yahoo Finance

#### Elon Musk dogecoin tweet lifts bitcoin

Cryptocurrencies were broadly up on Thursday morning as Tesla (TESLA) CEO Elon Musk tweeted in support of the meme-based cryptocurrency...







### TABLE OF CONTENTS

01

**Problem Statement** 

02

Aim

03

Our Approach

04

**Technical Exposition** 

05

**Performance Metrics** 

06
Areas of further exploration







## PROBLEM STATEMENT

We believe that AI has endless possibilities, and it should not be limited to a certain theme. Therefore, the task is to build an AI-based solution that we are passionate about.





Bitcoin

## OUR AIM

We aim to analyze the historical data, i.e., the open, high, low, and close prices of the Bitcoin cryptocurrency, along with real-time sentimental analysis of the tweets centered around the same for a similar time to predict the weighted price of the token by the end of the trading market.





### **OUR APPROACH**





#### TECHNICAL EXPOSITION

Obtain data from Twitter, perform Sentiment Analysis and merge with Alpha Vantage API

Data Processing

Collection and Curation

Organize the dataset in such a manner that can be used for analysis further.

Train various models such as MLP, LSTM, RF, Linear Regression, SVM

**Model Fitting** 

Checking Accuracy

RSME and MAE of fit of models





## COLLECTION, CURATION AND PROCESSING



# kaggle



|   | Open    | High    | Low     | Close   | Compound_Score | Total Volume of Tweets | Weighted_Price |
|---|---------|---------|---------|---------|----------------|------------------------|----------------|
| 0 | 2763.23 | 2763.24 | 2761.41 | 2762.00 | 0.082893       | 1027.0                 | 2761.710702    |
| 1 | 2768.07 | 2772.97 | 2768.07 | 2768.07 | 0.053160       | 778.0                  | 2772.411512    |
| 2 | 2779.77 | 2779.78 | 2779.77 | 2779.78 | 0.124251       | 836.0                  | 2779.774992    |
| 3 | 2790.55 | 2793.25 | 2790.55 | 2790.55 | -0.021037      | 984.0                  | 2792.693685    |
| 4 | 2837.44 | 2837.44 | 2831.40 | 2831.40 | 0.055437       | 751.0                  | 2832.734750    |

Final, cleaned dataset prepared



## MACHINE LEARNING MODELS



RANDOM FOREST







```
clf = svm.SVR(kernel='rbf')
clf.fit(X_train, y_train)
```



#### MACHINE LEARNING MODELS







#### MULTILAYER PERCEPTRON

```
mlp = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=100)
mlp.fit(X_train, y_train.Weighted_Price.ravel())
```

## LONG-SHORT TERM MEMORY

```
regressor = Sequential()
regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(Dropout(0.2))
regressor.add(Dropout(0.2))
regressor.add(Dropout(0.2))
regressor.add(Dense(units = 1))
regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')
regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)
```



## PERFORMANCE METRICS

| MODEL                           | ROOT MEAN SQUARED ERROR | MEAN ABSOLUTE ERROR  |
|---------------------------------|-------------------------|----------------------|
| Multi-variate Linear Regression | 4.731893281133085       | 2.6001870657470194   |
| Random Forest Regression        | 0.0                     | 813.6578657865787    |
| Support Vector Machine          | 2631.633668587859       | 1669.4916573941057   |
| Multilayer Perceptron           | 340.324490855283        | 170.01980198019803   |
| Long-Short Term Memory          | 0.0041880845267927985   | 0.003205464143801855 |



AREAS OF FURTHER EXPLORATION











AND SO ON...







Bloomberg

AND SO ON..





# Thank you!

