CS170–Spring 2019 — Homework 5 Solutions

Ran Liao, SID 3034504227

February 21, 2019

Collaborators:Jingyi Xu, Renee Pu

1 Study Group

Name	SID
Ran Liao	3034504227
Jingyi Xu	3032003885
Renee Pu	3032083302

2 Updating Labels

(a) Main Idea

Run DFS from root node r and update label whenever visit a new vertex. Suppose vertex v is currently being visited and l(v) = k. The kth ancestor of v is located on the kth element in stack counting from top (this value can be access in O(1) time, if we use an array and a pointer to simulate a stack). Donate this vertex as w, then update l(v) = l(w).

(b) Proof of Correctness

Labels are updated from root r to leaf nodes. Therefore the ancestor of a given vertex v is updated before v. This property can guarantee the correctness of algorithm.

(c) Runtime Analysis

DFS will cost O(|V| + |E|).

3 Count Four Cycle

(a) Main Idea

Suppose A is the adjacency matrix of graph G. $A_{i,j} = 1$ iff there's an edge between vertex i and j. Compute A^2 and then subtract 1 from $A_{i,i}^2$ for $\forall A_{i,j} = 1$. Then compute $A^3 = A^2A$ and subtract 1 from $A_{i,j}^3$ for $\forall A_{j,k} = 1$. Lastly, compute $A^4 = A^3A$. There's a four cycle iff $\exists A_{i,i}^4 > 0$.

(b) Proof of Correctness

A represents the number of path between every pair of vertices with length 1. A^2 represents the number of path between every pair vertices with length 2, and so on. Therefore check A^4i , i can reveal the existence of four cycles. All subtraction made previous is for eliminating invalid cycles.

(c) Runtime Analysis

The trivial matrix product will cost $O(|V|^3)$ time, and all subtraction can be finished within $O(|V|^2)$ time. Therefore, the overall runtime is $O(|V|^3)$.

4 Constrained Dijkstra

(a) Main Idea

Run Dijkstra algorithm on vertex v_0 and record shortest path in array p. Then reverse all edges in G, denote the new graph as G_M . Run Dijkstra algorithm on vertex v_0 again in new graph and record shortest path in array p_M . The shortest path between u and v can be reconstruct by combining path from v_0 to v in v0 to v1 in v2.

(b) Proof of Correctness

The path from u to v can be divided into two parts, namely, path from u to v_0 and path from v_0 to v. The shortest path from v0 to v0 can be found in G_M . The shortest path from v0 to v0 can be found in G0.

(c) Runtime Analysis

Dijkstra algorithm will cost $O((|V| + |E|) \log |V|)$

5 Arbitrage

(a) (i) Main Idea

Construct a graph G where v_i represents currency c_i . The weight of edge between v_i and v_j will be $\frac{1}{r_{i,j}}$. Run a modified Bellman-Ford on this graph start with vertex s. The update role is changed to $\operatorname{dist}(v) = \min(\operatorname{dist}(v), \operatorname{dist}(u) \times l(u, v))$. Initially, $\operatorname{dist}(s) = 1$.

(ii) Proof of Correctness

The multiplication and addition has similar associative and commutative property. All deduction for Bellman-Ford algorithm will still holds true for the modified version. In modified version, edge with weight less than 1 will be consider as a "negative" edge.

(iii) Runtime Analysis

The modification will not change Bellman-Ford algorithm's runtime. Therefore it is O(|V||E|).

(b) (i) Main Idea

Use the same graph defined in part (a) and add additional iteration to the outer loop. If some vertices is updated in the final iteration, arbitrage situation exists.

(ii) Proof of Correctness

If there's an arbitrage situation, there must exist a loop where weights' product is less than 1. This is similar to have a negative loop in the original version of Bellman-Ford algorithm. This "negative" loop will cause the shortest path never stop updating.

(iii) Runtime Analysis

The modification will not change Bellman-Ford algorithm's runtime. Therefore it is O(|V||E|).

6 Bounded Bellman-Ford

(a) Pseudocode

```
\begin{aligned} & \text{Modified-Bellman-Ford}(G=(V,E)) \{ \\ & \text{for } \forall u \in V \colon \\ & \text{dist}(u) = \infty \\ & \text{prev}(u) = \text{nil} \\ & \text{dist}(s) = 0 \\ & \text{for } i \text{ from 1 to } k \colon \\ & \text{for } \forall e = (u,v) \in E \colon \\ & \text{if}(\text{dist}(u) + l(u,v) < \text{dist}(v)) \\ & \text{dist}(v) = \min(\text{dist}(v), \text{dist}(u) + l(u,v)) \\ & \text{prev}(v) = u \\ \} \end{aligned}
```

(b) Proof of Correctness

Each iteration in outer loop will try to consider the shortest path with 1 more edges. Therefore, after k iterations, the dist will contain information about the shortest path with no more than k edges.

(c) Runtime Analysis

The outer loop will run k times, therefore the runtime is O(k|E|).