Concepts of Mathematics EXCEL - Session 3

Topics: Induction, Strong Induction Session Date: Monday 25 February 2019 **EXCEL Leader: Sam Yong** Email: myong @andrew.cmu.edu Academic Development Cyert Hall B5 1 Induction Walkthrough This exercise helps you review the structure of an induction proof. The following is a partial solution using strong induction. Complete the proof. Prove that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all $n \ge 0$. Proof. We want to show that _____ using _____. Base Case 1: We have $5^{2n+1}+2^{2n+1}=$ _____ = ____. This is divisible by 7. Base Case 2: ___ We have $5^{2n+1}+2^{2n+1}=$ _____ = ____. This is divisible by 7. Induction Step. We assume _____ (Induction Hypothesis). We want to show

By _____ we are done.

2 Everything You Need to Know About Leonardus Pisanus

Define the Fibonacci sequence $F_1=1, F_2=1, F_n=F_{n-1}+F_{n-2}$ for $n\geq 3$. Prove the following properties.

Let
$$A$$
 be the 2×2 matrix $A=\begin{pmatrix}1&1\\1&0\end{pmatrix}$. Let $A^n=\begin{pmatrix}a_n&b_n\\c_n&d_n\end{pmatrix}$ denote this matrix multiplied by itself n times. Find and prove a formula for the four entries a_n,b_n,c_n,d_n .

Prove that the Fibonacci numbers follow the pattern odd, odd, even: that is, show that for any positive integer m, F_{3m-2}, F_{3m-1} are odd and F_{3m} is even.

Prove that $F_{n+1}<\left(rac{7}{4}
ight)^n$ for all n>1.

Prove Cassini's identity: $F_{n+1}F_{n-1}-F_n^2=(-1)^n$.

Prove that
$$\sum_{i=1}^n F_i^2 = F_n F_{n+1}$$
.

Following are some magical Fibonacci identities/properties/proofs.

- Prove Cassini's identity using the spiral diagram.
- Prove the square sum identity using the spiral diagram.
- Prove Cassini's identity using the matrix identity.
- Fibonacci numbers are diagonal sums of the Pascal triangle.
- Sum of ten numbers trick with recurrent additions.
- Generate Pythagorean triples with four Fibonacci numbers.

3 Omnipotent Induction

Following are a few exercises to use induction to prove all sorts of mathematical conclusions.

Prove, by induction, that a set of n elements has 2^n subsets.

Suppose the product of two odd numbers is odd. Show that if x_1, x_2, \ldots, x_n are odd numbers, the product $x_1 x_2 \ldots x_n$ is odd.

Determine which postage amounts can be created using the stamps of 3 and 7 cents. In other words, determine the exact set of positive integers n that can be written in the form n=3x+7y with x,y non-negative integers.

(Hint: Check the first few values of n directly, then use strong induction to show that, from a certain point n_0 onwards, all numbers n have such a representation.)

Prove that for $n\in\mathbb{Z}^+$, a $2^n\times 2^n$ chessboard with any one square removed can be tiled by the 3-square "L" tiles.

What is the maximum number of regions into which a plane can be divided by n straight lines?

LIFE GOALS

- ☐ MEET SKRILLEX IN PHOENIX
- □ STUDY ZYMURGY
- ☐ GET A PET AXOLOTL NAMED HEXXUS
- □ OBSERVE A SYZYGY FROM ZZYZX, CALIFORNIA
- □ PORT THE GAMES ZZYZZYXX AND XEXYZ TO XBOX
- □ PUBLISH A ZZZAX/MISTER MXYZPTLK CROSSOVER
- □ BIKE FROM XHAFZOTAJ, ALBANIA TO QAZAXBƏYLI, AZERBAIJAN
- □ PAINT AN ARCHAEOPTERYX FIGHTING A MUZQUIZOPTERYX
- ☐ FINISH A GAME OF SCRABBLE WITHOUT GETTING PUNCHED