Damaune zogame x ypony 5

1)
$$\lim_{x \to \infty} \left[\ln (x+3) - \ln x \right] = \lim_{x \to \infty} \ln \ln \frac{x+3}{x} = \lim_{x \to \infty} \ln \ln (x+3) = \frac{3}{x} = 0$$

2) $\lim_{x \to \infty} \frac{\ln (x+3) - \ln x}{\arctan 3x} = \int_{0}^{\infty} \frac{2x + O(2x)}{\arctan 3x} = \frac{x}{3x + O(3x)} = \frac{x}{3}$

3) $\lim_{x \to \infty} \frac{(x+2)^{3} - x^{2}}{x} = \frac{x^{3} + 3 \cdot x^{2} + 3 \cdot x^{2} + 3 \cdot x^{2}}{x} = \frac{x^{3} + 3 \cdot x^{2} + 4 \cdot x^{2}}{x} = \frac{x^{3} + 3 \cdot$

 $= \frac{\sqrt{2e^{2}+1'-1}}{2e^{2}} \cdot - \frac{\sqrt{2e^{2}+1'-1}}{1} = \frac{-2e^{2}+1'-1}{-\sqrt{2e^{2}+1'-1}} = \frac{-1}{-2e^{2}+1'-1} = \frac{-1}{-2e^{2}+1'-1$

(2)
$$\int f(x) = \frac{x^2 - 16}{x^2 + 4}$$
, $x_0 = -4$

line $\frac{x^2 - 16}{x^2 + 4} = \frac{|x + 4|(x - 4)|}{x^2 + 4} = -8$

line $\frac{x^2 - 16}{x^2 + 4} = -8 \Rightarrow \text{pryman Lumpspalme } 6.7. x_0 = -4$

line $\frac{x^2 - 16}{x^2 + 4} = -8 \Rightarrow \text{prymal yerpaniment}$

line $\frac{x - 16}{x^2 + 4} = -8 \Rightarrow \text{prymal yerpaniment}$

(3) $\int f(x) = \frac{x + 16}{x^2 + 4} = -1$

line $f(x) = \frac{x + 16}{x^2 + 4} = -1$

line $f(x) = \frac{1}{x^2 + 4} \Rightarrow \text{proper } \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \text{proper } \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \text{proper } \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \text{proper } \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \text{proper } \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x^2 + 4} = -\infty$
 $f(x) = \frac{1}{x^2 + 4} \Rightarrow \frac{1}{x$