

Modelos de Regresión y Series de Tiempo (MRST) 2025 - 02

Clase 4 – MRLS Inferencia sobre el modelo de regresión (PH), prueba de utilidad y ANOVA

Docente: Natalia Jaramillo Quiceno

Escuela de Ingenierías

natalia.jaramilloq@upb.edu.co

Regresión lineal simple Paso a paso muy simplificado

- Análisis descriptivo de lo datos
 - Gráfico de dispersión, coeficiente de correlación de Pearson (R)

- El ajuste se realiza mediante el método de los mínimos cuadrados
- Se debe evaluar si el modelo es útil para describir la variable Y en función de X

- Es necesario evaluar la calidad del ajuste que presenta el modelo:
 - Coeficiente de determinación r² o R²: cuánta variabilidad de los datos explica el modelo lineal

- Se debe comprobar que el modelo cumple unos supuestos:
 - Validación de supuestos sobre los residuos (errores): normalidad, varianza constante

Regresión lineal simple Inferencia sobre β_0 y β_1

Propiedades de $\widehat{\beta}_1$

 $\hat{\beta}_1$ es una función lineal de variables aleatorias independientes Y_1, Y_2, \dots, Y_n , cada una de las cuales está normalmente distribuida

$$\hat{\beta}_1 = \frac{\sum (x_i - \overline{x})Y_i}{S_{xx}} = \sum c_i Y_i \quad \text{donde } c_i = (x_i - \overline{x})/S_{xx}$$

Así, se tiene que:

• $E(\widehat{\beta}_1) = \beta_1$: estimador insesgado. La distribución de $\widehat{\beta}_1$ siempre está centralizada en el valor β_1 .

•
$$V(\widehat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
 y $se(\widehat{\beta}_1) = \frac{\sigma}{\sqrt{S_{xx}}}$ (se: error estándar estimado)

• El estimador $\hat{\beta}_1$ tiene una distribución normal.

Regresión lineal simple Inferencia sobre β_0 y β_1

Propiedades de $\widehat{\beta}_0$

Para el intercepto, se puede demostrar de la misma manera que:

• $E(\widehat{\beta}_0) = \beta_0$: estimador insesgado. La distribución de $\widehat{\beta}_0$ siempre está centralizada en el valor β_0 .

•
$$V(\widehat{\boldsymbol{\beta}}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]$$
 y

- $\mathbf{se}(\widehat{\boldsymbol{\beta}}_{\mathbf{0}}) = \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]}$ (se: error estándar estimado)
- El estimador $\hat{\beta}_0$ tiene una distribución normal.

Regresión lineal simple Inferencia sobre β_0 y β_1

Resumiendo, tenemos que:

• β_0 y β_1 son combinaciones lineales de los Y_i 's que se distribuyen normal. Por tanto:

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2/S_{xx})$$
 y $\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)\right)$

• Los procedimientos inferenciales se basan en estandarizar un estimador, restando su valor medio y dividiéndolo entre su desviación estándar.

Así, para realizar inferencias (PH e IC) sobre β_0 y β_1 tenemos las siguientes variables estándar:

Para
$$\beta_0$$

$$T_0 = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)}}$$

$$T_0 = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\hat{\sigma}^2/S_{xx}}}$$

Ambos tienen una
distribución t
Con n-2 grados de
libertad

Pruebas de hipótesis para eta_1

Ahora supongamos que se desea probar la hipótesis de que la pendiente es igual a una constante, por ejemplo, $\beta_{1,0}$. Las hipótesis correspondientes son:

$$H_0$$
: $\beta_1 = \beta_{1,0}$

$$H_a$$
: $\beta_1 \neq \beta_{1,0}$

Así, el estadístico de prueba es:

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{se(\hat{\beta}_1)}$$

Y la **región de rechazo** está dada por: $\left|t_0\right| > t_{lpha/2,n-2}$

Luego, se **rechaza** H_0 con un nivel de significancia α si el valor del estadístico de prueba t_0 cae en la región de rechazo o, dicho de otra manera, si $Valor p < \alpha$.

Utilidad (significancia) del modelo - Pruebas de hipótesis **especial** para $oldsymbol{eta_1}$

Caso especial muy importante:

 H_0 : $\beta_1 = 0$

 H_a : $\beta_1 \neq 0$

Estas hipótesis se relacionan con la **utilidad de la regresión**

No rechazar H_0 : no hay relación lineal entre x y y.

El mejor estimador para cualquier x es $\widehat{y} = \overline{y}$

Rechazar H_0 : x sí tiene valor para explicar la variabilidad de y.

Utilidad (significancia) del modelo - Pruebas de hipótesis **especial** para $oldsymbol{eta_1}$

Prueba de utilidad para el ejemplo de inversión en I+D y ganancias de la empresa

 \sim Valor dado por H_0

Estadístico de prueba:

Ayudida
$$\rightarrow S_{\chi\chi} = 50$$

Región de rechazo:

Prueba de utilidad con — Ejemplo ganancias en R

```
> summary(modelo) _____
                            Comando en R para generar resumen del modelo
 Coefficients:
              Estimate Std. Error t value Pr(>|t|)
 (Intercept) 20.0000 \leftarrow \beta_0 2.6458 7.559 0.00164 ** Valor P de la prueba
 inv 2.0000 \leftarrow \hat{\beta}_1 0.4583 4.364 0.01202 * de utilidad, usando
                                                                 estadístico t para \beta_1
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 3.24 on 4 degrees of freedom
 Multiple R-squared: 0.8264, Adjusted R-squared: 0.7831
                                                                   iValores P
 F-statistic: 19.05 on 1 and 4 DF, p-value: 0.01202
                                                                 equivalentes!
```

Sumas cuadráticas y análisis de varianza - ANOVA

Variabilidad total de la variable y (SST)

Explicada por la línea de regresión (SSR) (SSE)

La identidad fundamental del análisis de varianza para un modelo de regresión:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SST = SSR + SSE$$

Para efectos de cálculo de las sumas de cuadrados se utilizan las siguientes expresiones:

$$SST = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2 = \frac{S_{yy}}{n-1}$$
 $SSR = \hat{\beta}_1 S_{xy}$ y $SSE = SST - SSR$

Sumas cuadráticas y análisis de varianza - ANOVA

Cada una de las sumas de cuadrados tiene asociado un parámetro llamado grados de libertad (gl), que define el número de observaciones independientes disponibles en la suma, y que están dados por:

$$SST = SSR + SSE$$

$$(n-1) = 1 + (n-2)$$

Con base a lo anterior se construyen estimaciones independientes para la varianza explicada por cada componente (modelo y error), usando la respectiva suma de cuadrados dividida por sus grados de libertad, así:

$$MSR = SSR/1$$
 y $MSE = SSE/n - 2$

Al analizar la razón entre el MSR y el MSE estamos comparando varianzas...a este ejercicio le llamaremos:

Análisis de varianza -> Método alternativo para realizar la prueba de utilidad (significancia) del MRLS.

Prueba de utilidad (significancia) utilizando ANOVA

¿Cómo evaluamos la relación entre el MSR y el MSE?

Aquí aparece el **estadístico** *F*:

$$F_0 = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/n - 2} \sim F_{1,n-2}$$

Este también puede utilizarse para evaluar la hipótesis de la **prueba de utilidad:** $\begin{cases} H_0: \ \beta_1 = 0 \\ H_a: \ \beta_1 \neq 0 \end{cases}$

$$\begin{cases} H_0: \beta_1 = 0 \\ H \cdot \beta_1 \neq 0 \end{cases}$$

¿Cómo interpretamos el estadístico F y sacamos una conclusión?

- **1.** Definir nivel de significancia de α (0,05 por ejemplo...el más común)
- **2a.** Hallar $F_{\alpha/2,1,n-2}$ (tablas) y se **rechaza** H_0 si $F_0 > F_{\alpha/2,1,n-2}$ o...

¡Siempre nos

2b. Obtener $Valor\ p$ (herramienta computacional, R o Excel) y se $\operatorname{rechaza}\ H_0$ si $Valor\ p < lpha$

Regresión lineal simple Prueba de utilidad utilizando ANOVA

Toda la información de la prueba de utilidad (significancia) de la regresión se puede resumir en una tabla conocida como tabla ANOVA:

Fuente de variación	SS	gl	MS	F	Valor P
Regresión	$SSR = \hat{\beta}_1 S_{xy}$	1	MSR = SSR/1	MCD	
Error	$SSE = SST - \hat{\beta}_1 S_{xy}$	n-2	MSE = SSE/n - 2	$F_0 = \frac{MSR}{MSE}$	Clave
Total	SST	n-1			

Nota: Ambas formas para probar la utilidad (significancia) de la regresión son equivalentes y el valor P de las dos pruebas es el mismo.

Prueba de utilidad con — Ejemplo ganancias en R

```
> anova (modelo) — Comando en R para generar ANOVA del modelo
Analysis of Variance Table
                           MS ↓
Response: gan
          Df Sum Sq Mean Sq F value Pr(>F)
inv 1 200 ← SSR 200.0 19.048 0.01202 *
Residuals 4 42 \leftarrow SSE 10.5 \mathbf{F_0}
Signif. codes: 0 '***' ***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Coefficients:
             Estimate Std. Error t value Pr(>|t|)
  (Intercept) 20.0000 2.6458 7.559 0.00164 **
                                                                       iValores P
              2.0000 \blacktriangleleft \widehat{\beta}_1
                           0.4583 4.364 0.01202 *
                                                                      equivalentes!
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Residual standard error: 3.24 on 4 degrees of freedom
  Multiple R-squared: 0.8264, Adjusted R-squared: 0.7831
  F-statistic: 19.05 on 1 and 4 DF, p-value: 0.01202
```

Coeficiente de determinación

Partiendo de las sumas de cuadrados, podríamos obtener un coeficiente que nos indique:

Qué fracción o proporción de la variabilidad de $oldsymbol{y}$ es explicada por el modelo ajustado

¿Cómo?

Evaluando la razón
$$\Rightarrow \frac{SSR}{SST} = R^2$$

A esta medida se le conoce como **COEFICIENTE DE DETERMINACIÓN** y me indica qué tan bueno es el ajuste realizado.

El coeficiente de determinación se expresa siempre como r^2 o R^2 y toma valores entre 0 y 1.

Truquito: en el caso de RLS el coeficiente de determinación se puede obtener al elevar al cuadrado el coeficiente de correlación.

Coeficiente de determinación - Ejemplo ganancias en R

```
> summary(modelo) ______
                         Comando en R para generar resumen del modelo
 Coefficients:
            Estimate Std. Error t value Pr(>|t|)
 (Intercept) 20.0000 2.6458 7.559 0.00164 **
                          0.4583 4.364 0.01202 *
 inv 2.0000
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 3.24 on 4 degrees of freedom
 Multiple R-squared: 0.8264, Adjusted R-squared: 0.7831
 F-statistic: 19.05 on 1 and 4 DF, p-value: 0.01202
```

Regresión lineal simple Preguntas de interpretación

- ¿Cuál de las siguientes es una interpretación correcta del \mathbb{R}^2 obtenido para el modelo ajustado a las ganancias de la empresa como función de la inversión en I+D?
 - a) El 82,64% de las veces la inversión en I+D predice correctamente las ganancias esperadas.
 - b) El 17,36% de la variabilidad de las ganancias es explicada por el modelo.
 - c) El 82,64% de la variabilidad de la inversión en I+D es explicada por el modelo.
 - d) El 82,64% de la variabilidad de las ganacias es explicada por el modelo.

Regresión lineal simple Preguntas de interpretación

Si para otro caso, se tiene un coeficiente de correlación de -0.75 ¿Cuál será el valor de \mathbb{R}^2 ?

Se tiene el siguiente gráfico de dispersión, el valor de \mathbb{R}^2 para la relación descrita es de 92,16% ¿Cuál será entonces el coeficiente de correlación para este caso?

Fuente: https://www.coursera.org/learn/linear-regression-model

MUCHAS GRACIAS

Natalia Jaramillo Quiceno

e-mail: natalia.jaramilloq@upb.edu.co

