Name = GAUTAM Kumar roll =B19EE031

Lab 7 report

PART 1:

Creating a MLP from scratch

- Creating a model with 3 inputs and 2 target variables. We have a hidden layer with 2 nodes.
- Both layers, the input layer and the hidden layer have a bias node.
- Sigmoid activation is used.
- Error function is mean squared error.

Initializations

- Weights: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1]
- Biases: [0.5, 0.5]
- *Inputs* : [1, 4, 5]
- *Target variables* : [0.1, 0.05]
- Learning rate : 0.01

Model

Steps involved in training

- Initializing weights and biases.
- Forward propagation through the output values.
- Using proper error or loss function. (SSE in this case)
- Backpropagation and determination of error derivatives.
- Updating the values of weights and biases after each iteration.

UPDATING PARAMETERS Updating weights Updating biases

$$b_1 := b_1 - \alpha \frac{dE}{db_1}$$

$$b_2 := b_2 - \alpha \frac{dE}{db_2}$$

UPDATING ALL PARAMETERS

```
#Updating all parameters
w1 = w1 - alpha * dE_dw1
w2 = w2 - alpha * dE dw2
w3 = w3 - alpha * dE dw3
w4 = w4 - alpha * dE dw4
w5 = w5 - alpha * dE dw5
w6 = w6 - alpha * dE dw6
w7 = w7 - alpha * dE dw7
w8 = w8 - alpha * dE dw8
w9 = w9 - alpha * dE_dw9
w10 = w10 - alpha * dE_dw10
b1 = b1 - alpha * dE db1
b2 = b2 - alpha * dE db2
wlist = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10]
blist = [b1, b2]
```

Variation of Error with each iteration

Extra Analysis: Using keras to build the same model

Epoch 1/1000
1/1 [===================================
Epoch 2/1000
1/1 [===================================
Epoch 3/1000
1/1 [===================================
Epoch 4/1000
1/1 [===================================
Epoch 5/1000
1/1 [===================================
Epoch 6/1000
1/1 [===================================
Epoch 7/1000
1/1 [===================================
Epoch 8/1000
1/1 [===================================
Epoch 9/1000
1/1 [===================================
Epoch 10/1000
1/1 [===================================
Epoch 11/1000
1/1 [===================================
Epoch 12/1000
1/1 [===================================
Epoch 13/1000
1/1 [===================================
Epoch 14/1000
1/1 [===================================

We can the loss function decreasing after each iteration.

So we can say that training error decreases with each epoch.

Accuracy is always 1
because our model is
relatively very simple and
has only one training
example.

Variation of loss with epochs in keras model

Analysis

- Derivatives were calculated to update the parameters.
- Due to subsequent derivatives, weights of initial layers are not trained properly.
- W1 = W1 alpha[d(Error)/dW2 * alpha* d(Error)/dW1]
- Here alpha is learning rate. Lower values of alpha can lead to problem of vanishing gradient and higher values can lead to improper training.
- Hence hyperparameters should be chosen properly.

Part 2: KMeans model

Unsupervised Learning
Dataset: Iris
Number of clusters = 3

Variation of feature1 with feature2

Steps involved in kmeans clustering

- First we find the number k, means the number of clusters to be made.
- Then there is random initialization of centroids.
- Then clusters are created, meaning the points closer to one of the centroid is assigned that particular cluster.
- The centroids of each cluster is calculated again and there is redistribution of cluster points.
- The same process is repeated until we have stable cluster points or reach the end of maximum iteration.

Clusters division

Redistribution stopped at 2nd iteration as there was no change in coordinates of centroids.

Clusters with centroids

Distribution of feature 2 and feature 3

Clusters division with centroids

Cluster Distribution by inbuilt kmeans

Sum of squared error: 37.05070212765958

Clusters with centroids

Extra analysis: Clusters with decision boundaries

Extra Analysis: Variation of Error with k

Analysis

- We can see that Sum of squared error decreases with increase in k, as the number of centroids increases.
- In unsupervised learning we don't have labels and we simply group the data points on the basis of clusters.
- Number of clusters, means the value of k can be found by the elbow method.
- As we can see in the graph of error as a function of k, the position of elbow vertex occurs at k=3, so that value is the most appropriate value to form k-clusters.

Conclusion

- Hence we learnt about MLP (Multi Layer Perceptron) model.
- We learnt the method to build a model from scratch.
- We also saw the working of keras model and analyzed the error as a function of epochs.
- We learnt about kmeans model.
- We found the decision boundary and calculated error as a function of k.

We also saw how to choose appropriate value of 'k' for the model.