Finite Automata

CSE 105 Week 2 Discussion

Deadlines and Logistics

- Schedule your tests asap on <u>PrairieTest</u>!
- Do review quizzes on <u>PrairieLearn</u>
- HW2 due Thur 1/30/25 at 5pm (late submission open until 8am next morning)

DFA Definition

DEFINITION A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where 2. Σ is a finite set called the *alphabet*, 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, 1 4. $q_0 \in Q$ is the *start state*, and 5. $F \subseteq Q$ is the *set of accept states*. 2 O or more auent states

DFA State Diagram to Formal Definition

Write out the formal definition of the above DFA

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.²

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$S = \{a, b\}$$

$$Q_0 = \{q_0, q_1, q_2, q_3\}$$

$$Q_1, q_2, q_3$$

$$Q_2, q_3, q_4$$

$$Q_2, q_4$$

$$Q_3, q_4$$

$$Q_4, q_4$$

DFA Computation

any String of length 2 are faily

flap.js link

- What are some example strings accepted by this DFA?
- What is the language recognized by this DFA? [aa, ab, ba, bb]
- What is a regular expression that describes this language?

?
$$L(aub) = \{a,b\}$$

$$= \{a,b\}$$

$$= \{aub\} \cdot (aub)^2$$

$$= \{aub\} \cdot (aub)$$

DFA Design

deterministic

Consider the alphabet $\Sigma = \{a, b\}$, design DFA that recognizes:

Complement; {w | w does not contain the substring **ab**} w contains substring orby {w | w begins with **a** and ends with **b**} flip accept/non-accept states we've just read a "b".

NFA Definition

DEFINITION

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states, power set. 2. Σ is a finite alphabet, would be a set of states
- $\rightarrow \mathcal{P}(Q)$ is the transition function,
- 5. $F \subseteq Q$ is the set of accept states. Symbol: OFA: $\delta: Q \times I \rightarrow Q$

overload meaning of symbol:

9: 01 a string represents empty string.

here is an arrow label

arrow labels, Symbols from alphabet or (2)

NFA Transition Function

Consider alphabet $\Sigma = \{0, 1\}$

Complete the transition function of the NFA

NFA vs. DFA

- Nondeterministic: when an NFA is in a given state and reads the next input symbol, there is a set of possible next states, i.e. several choices (or no choice) may exist for the next state
- E-transitions: spontaneously moving without reading any input symbols
- Acceptance condition: there is a computation of the machine on the string that processes the whole string and ends in an accept state

FIGURE 1.28
Deterministic and nondeterministic computations with an accepting branch

NFA Computation

Computation of the NFA on string 010110

Questions?

Good luck for HW 2!