Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Лабораторная работа по дисциплине «Биометрия и нейротехнологии» «Анализ фотоплетизмограммы»

Выполнили: студенты
Кобик Никита Алексеевич
Маликов Глеб Игоревич
Чайкин Вадим Константинович
группа Р3324

Принял: преподаватель

Штенников Дмитрий Геннадьевич

Задание лабораторной работы

Целью лабораторной работы является анализ фотоплетизмограммы для оценки состояния сердечно-сосудистой системы. С помощью программы *Pulse Lite Control*:

- 1. Провести контурный анализ пульсовой волны.
- 2. Провести анализ вариабельности сердечного ритма (ВСР).
- 3. Составить отчёт автоматического анализа.

Выполнение лабораторной работы

Был скачан пример записи фотоплетизмограммы и открыт в программе для просмотра и заполнены данные об испытуемом что важно для рассчитывания индекса жесткости.

Puc. 1. Сведения об испытуемом.

В соответствии с инструкцией был проведен контурный анализ пульсовой волны. Для этого были установлены маркеры на ключевые точки сердечного цикла: В1 (начало), В2 (максимальное расширение сосуда), В3 (протодиастолический период), В4 (начало диастолы), В5 (конец сердечного цикла).

Puc. 2. Пульсовая волна с выставленными на ней маркерами для контурного анализа.

После установки маркеров программа автоматически рассчитала амплитудно-временные параметры пульсовой волны и индексы: индекс жесткости, индекс отражения, амплитуды волн и другие параметры.

Параметр	Значение
B1(t;a)	0; 0,000
B2(t;a)	0,162; 0,552
B3(t;a)	0,324; 0,424
B4(t;a)	0,412; 0,387
B5(t;a)	0,728; 0,000
АДВ=В4-В5, о.е.	0,387
AΠB=B2-B1, o.e.	0,551
ВИ=В3-В5, о.е.	0,424
BH=B2-B1, c	0,162
BOB=B4-B2, c	0,251
ДАФ=ВЗ-В1, с	0,324
ДД=В5-В4, с	0,316
ДДФ=В5-В4, с	0,316
ДПВ=В5-В1, с	0,728
ДС=В4-В1, с	0,412
ДФИ=В5-В3, с	0,404
ИВВ=(B2-B1)/(B5-B1)	22
идв=(вз-в5)/(в2-в1)	76
ИЖ, м/с	7
ИО, (B4-B5)/(B2-B1)*	70
ЧСС=60/ДПВ, уд/мин	82,5

Рис. 3. Показатели контурного анализа пульсовой волны.

Для анализа ЧСС был выделен фрагмент фотоплетизмограммы, и на основе данных ЧСС была построена ритмограмма.

Рис. 4. Пульсограмма и ритмограмма мгновенной ЧСС (анализ ЧСС).

Далее был проведен анализ BCP. Выделен фрагмент длительностью 5 минут, проведено спектральное и статистическое исследование BCP.

Puc. 5. Ритмограмма участка записи, корреляционная ритмограмма, вариационная пульсограмма сердечного ритма (анализ BCP).

Рис. 6. Диаграмма спектральных компонентов ВСР (анализ ВСР).

Результаты выполнения лабораторной работы

Общий отчет с результатами анализов показаны на следующей странице. Можно отметить следующие значения:

Анализа пульсовой волны:

- 1. Индекс жесткости (ИЖ): 9 м/с (норма: 5–9 м/с).
- 2. Индекс отражения (ИО): 74% (норма: 40–70 %).
- 3. Амплитуды пульсовой и дикротической волн (АПВ, АДВ): 0,614 и 0,823 соответственно.
- 4. Высота инцизуры (ВИ): 0,664
- 5. Индекс дикротической волны (ИДВ): 80% (норма: 50-75%)
- 6. Длительность пульсовой волны (ДПВ): 0,816 (норма: 0,7-1,1)

Показателей ВСР:

- 1. Средняя частота сердечных сокращений за минуту (ЧСС): 83,07 уд / мин (норма: 55–85 уд / мин).
- 2. Среднеквадратичное отклонение (СКО): 36 (норма: 30-100).
- 3. Процент интервалов от общего числа последовательных пар интервалов, различающихся более, чем на 50 мс, полученный за весь период записи. (PNN50,%): 4 (норма: 30-100).
- 4. Амплитуда моды (Amo): 0,5066 (норма: 0,3-0,4).
- 5. Мода (Мо, мс): 722 (норма: 700-1100)
- 6. Вариационный размах (MxDMn, мс): 227 (норма: 200-400)
- 7. Индекс напряжения регуляторных систем (стресс-индекс): 153 (норма: 50-150 о.е.)

Иванов Иван Иванович

0,6

0,6

0,7

0,8

Возраст: 22; Рост: 176 см; Вес: 80 кг; АД: 760 мм.рт.ст. Запись произведена 26.09.2018 14:14:42; Отчет подготовлен 16.09.2024 14:32:17

Результаты автоматической диагностики

3–9

30-100

Индекс централизации

Коэ<mark>ффициент вариаци</mark>и

Среднеквадратичное отклонение

2,16852

36

{pulsus tardus} Повышенное периферическое сопротивление мелких сосудов, может быть вызвано проявлениями атеросклероза.

CKO(SDNN), MC

Повышенная жесткость} Повышение жесткости сосудистой стенки, снижение эластичности сосудов, что может быть связано с артериальной гипертензией и/ или эндотелиальной дисфункцией.

Выводы

В ходе лабораторной работы были проведены анализы пульсовой волны и вариабельности сердечного ритма на основе данных фотоплетизмограммы и ЭКГ.

В результате анализа пульсовой волны были получены значения, большинство из которых находятся в пределах нормы, за исключением индекса жесткости (ИЖ), который достиг верхней границы нормы (9 м/c), и индекса отражения (ИО), который превышает норму (74%). Это может свидетельствовать о повышенной жесткости артерий и увеличенном сосудистом тонусе, что указывает на возможное начало атеросклеротических изменений.

При анализе вариабельности сердечного ритма (BCP) было выявлено, что большинство показателей соответствуют нормальным значениям. Однако процент интервалов PNN50 (4%) и амплитуда моды (Amo = 0.5066) отклоняются от нормы, что может говорить о сниженной вариабельности ритма, указывающей на стрессовые нагрузки или нарушения регуляции сердечного ритма.

Эти результаты могут сигнализировать о начале изменений в сердечно-сосудистой системе и необходимости дополнительного контроля и профилактики для предотвращения более серьезных нарушений.