Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

КУРСОВАЯ РАБОТА ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70301

Мустафаев Шамиль

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	1 Постановка задачи	2
2	2 Теория 2.1 Критерий Крамера-Мизеса-Смирнова 2.2 Распределения	
3	3 Реализация	3
4	4 Результаты 4.1 Результаты использования критерия ω^2	3
5	5 Обсуждение	5
6	6 Приложения	5
C	Список таблиц	
	1 Таблица критерия ω^2 для выборок, распределен мощностей	
	ных мощностей	
	3 Вычисление χ^2 в при проверке гипотезы H_0 о в пределения $U(-\sqrt{3},\sqrt{3})$ при ${\bf n}=100$	
C	Список иллюстраций	
	1 Гистограмма для выборки, распределенной ран	вномерно, мощностью 100 4

1 Постановка задачи

Реализовать критерий Мизеса-Смирнова, проверить на выборках разной мощности и с разными функциями распределения.

2 Теория

2.1 Критерий Крамера-Мизеса-Смирнова

Данный критерий применяется для проверки гипотез вида $H_0: F_n(x) = F(x,\theta)$ с известным набором параметров теоретического закона.

Статистика критерия Крамера-Мизеса-Смирнова
(иначе - критерия ω^2) имеет вид:

$$S = n\omega^2 = \frac{1}{12n} + \sum_{i=1}^{n} \left(F(x_i, \Theta) - \frac{2i-1}{2n} \right)^2, \tag{1}$$

где n - объем выборки, x_i - элемент выборки, упорядоченной по возрастанию.

При справедливости гипотезы статистика критерия должна подчиняться асимптотическому закону $a_1(S)$.[3]

Таким образом, при использовании критерия необходимо:

- 1. Вычислить значение статистики по формуле для S(1).
- 2. По таблице из [2] определить значение a функции распределения $a_1(S)$ для только что вычисленного результата.
- 3. Выбрать уровень значимости α .
- 4. Если $a \ge 1-\alpha$, то гипотезу о согласии эмпирического и теоретического распределений отвергают, в противном случае гипотеза принята.

2.2 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \tag{2}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (3)

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Использованы библиотеки питру для простоты использования различных статистических функций, всіру для простоты вычислений. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Результаты использования критерия ω^2

В качестве уровня значимости рекомендуется брать $\alpha=0.1$ или 0.2. Выберем $\alpha=0.1$.

В качестве гипотезы рассмотрим H_0 о нормальном законе распределения N(0,1). Теперь возьмем и проверим согласованность распределений для выборок, сгенерированных по нормальному закону. Представим данные в виде таблицы:

Distribution	$S = n\omega^2$	$a_1(S)$	$1-\alpha$	Result
Normal, $n = 10$	0.039	0.02568	0.9	True
Normal, $n = 100$	0.04	0.06685	0.9	True
Normal, $n = 500$	0.16	0.63951	0.9	True

Таблица 1: Таблица критерия ω^2 для выборок, распределенных нормально, разных мошностей

Заметим, что мы так же могли бы взять $\alpha = 0.2$. Теперь рассмотрим чувствительность критерия. Для этого сгенерируем несколько выборок разных мощностей, распределенных по равномерному закону $U(-\sqrt{3},\sqrt{3})$.

Distribution	$\mathrm{S}=n\omega^2$	$a_1(S)$	$1-\alpha$	Result
Uniform, $n = 10$	0.12	0.50457	0.9	Normal
Uniform, $n = 100$	0.29	0.85573	0.9	Normal
Uniform, $n = 500$	0.97	0.9971	0.9	Not normal

Таблица 2: Таблица критерия ω^2 для выборок, распределенных равномерно, разных мощностей

Для выборки равномерного распределения мощностью 100 элементов построим гистограмму:

Рис. 1: Гистограмма для выборки, распределенной равномерно, мощностью 100

Проверим также выборку на нормальность с помощью критерия χ^2 , описанного ранее.

i	Границы $\Delta_i(a_{i-1},a_i]$	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -1.4]$	7	0.0808	8.08	-1.08	0.14
2	(-1.4, -0.7]	18	0.1612	16.12	1.88	0.22
3	(-0.7, 0.0]	24	0.258	25.8	-1.8	0.13
4	(0.0, 0.7]	23	0.258	25.8	-2.8	0.3
5	(0.7, 1.4]	16	0.1612	16.12	-0.12	0
6	$(1.4, \infty)$	12	0.0808	8.08	3.92	1.91
\sum	-	100	1	100	0	2.7

Таблица 3: Вычисление χ^2 в при проверке гипотезы H_0 о нормальном законе распределения $U(-\sqrt{3},\sqrt{3})$ при n = 100

Теоретический квантиль для выбранного уровня значимости α : $\chi^2_{0.9}\approx 9.24$. Как видно из таблицы (3), $\chi^2_B=2.7$.

 $\chi_B^2 < \chi_{0.9}^2$, следовательно, данный критерий также не отвергает гипотезу нормальности.

5 Обсуждение

Из таблицы (1) видно, что для нормального распределения критерий Крамера-Мизеса-Смирнова принимает верную гипотезу H_0 для различных мощностей выборки. Также заметно, что можно использовать различные уровни значимости. Однако, чувствительность критерия проявляется только на выборках большого размера. Для распределения $U(-\sqrt{3},\sqrt{3})$ критерий отвергает гипотезу о нормальности распределения лишь при n=500, но при этом при мощности выборки 100 элементов значение, получаемое из $a_1(S)$ уже близко к граничному.

6 Приложения

Код программы на GitHub, URL: https://github.com/sh4mik/MathStat

Список литературы

- [1] СРАВНИТЕЛЬНЫЙ АНАЛИЗ МОЩНОСТИ КРИТЕРИЕВ СОГЛАСИЯ ПРИ БЛИЗКИХ КОНКУРИРУЮЩИХ ГИПОТЕЗАХ. І. ПРОВЕРКА ПРОСТЫХ ГИПОТЕЗ. Б. Ю. Лемешко, С. Б. Лемешко, С. Н. Постовалов
- [2] Большев Л.Н., Смирнов Н.В. Таблицы математической статистики.
- [3] Критерий Крамера-Мизеса-Смирнова