

AKADEMIA INNOWACYJNYCH ZASTOSOWAŃ TECHNOLOGII CYFROWYCH (AI TECH)

"Uczenie maszynowe" – laboratorium

Laboratorium 0

Wprowadzenie do Pythona

data aktualizacji: 29.02.2024

Cel ćwiczenia

Celem ćwiczenia laboratoryjnego jest uruchomienie (wraz z instalacją) środowiska programistycznego języka Python oraz narzędzi potrzebnych do realizacji zadań następnych list. W trakcie realizacji zadania wczytane zostaną standardowe zbiory danych, które będą podstawą dokładniejszej analizy. Użyty zostanie algorytm PCA i biblioteki wizualizacji danych.

Dostępność materiałów i narzędzi

Narzędzia oraz ich dokumentacja jest ogólnodostępna w sieci Internet na licencji opensource.

Sugerowane narzędzia

- Python w wersji 3.x jako język i środowisko oprogramowania https://www.python.org/
- Jupyter (notebook) środowisko programowania/generowania dokumentacji https://jupyter.org/

- scikit-learn biblioteka python modeli do uczenia maszynowego https://scikit-learn.org/stable/
- scipy zbiór bibliotek python do operacji na danych https://www.scipy.org/ Szczególnie przydatne:
 - o numpy podstawowa biblioteka do obliczeń w python https://numpy.org/
 - o pandas struktury danych i analizy https://pandas.pydata.org/
 - matplotlib biblioteka do wizualizacji (wykresy) w python –
 https://matplotlib.org/stable/

Mogą być też przydatne:

• seaborn – zaawansowana biblioteka do wizualizacji danych – https://seaborn.pydata.org/

Alternatywnie można korzystać ze środowiska Conda: https://docs.conda.io/en/latest/

Użyte zbiory danych

W ćwiczeniu użyte będą powszechnie używane zbiory:

- IRIS https://archive.ics.uci.edu/ml/datasets/iris
- GLASS https://archive.ics.uci.edu/ml/datasets/glass+identification
- Wine https://archive.ics.uci.edu/ml/datasets/wine

Zbiory IRIS oraz Wine dostępne są bezpośrednio z poziomu modułu scikit-learn:

https://scikit-learn.org/stable/datasets/toy_dataset.html

Przebieg ćwiczenia

- 1. Instalacja Python oraz konfiguracja środowiska wirtualnego wraz z instalacją niezbędnych bibliotek, sugerowane: numpy, scikit-learn, pandas itp.
- 2. Instalacja środowiska programistycznego (np. jupyter)
- 3. Wczytanie zbioru IRIS, Wine, GLASS
- 4. Analiza zbiorów IRIS, Wine, GLASS: klasy (liczba, interpretacja), instancje, atrybuty, dystrybucja klas w zbiorze.

5. Wyrysowanie wykresu zależności długości/szerokości płatków IRIS a klasą (z kolorem)

Wykres 1. Zależność długość i szerokości kielicha (sepal) dla IRIS (użyto: seaborn lmplot)

6. Użycie PCA i narysowanie wykresu na wyniku działania PCA

Algorytm PCA (ang. *principal component analysis*) tj. wyznaczania głównych składowych analizowanego zbioru. PCA stosuje się do zmniejszenia wymiarowości zbioru.

Tutorial PCA: https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60

Wykres 2. Zależność długość i szerokości płatka dla IRIS (użyto: seaborn PairGrid)

Punktacja

Przy realizacji zadania student może otrzymać max 5 punktów wedle poniższej punktacji.

1	Instalacja środowiska z niezbędnymi bibliotekami
1	Wczytanie zbioru IRIS, wyrysowanie wykresu zależności długości/szerokości płatków (jak Wykres 1), Analiza zbioru i wizualizacja rozkładu danych (jak Wykres 2)
1	Wczytanie zbioru GLASS, wyrysowanie wykresu zależności wybranych atrybutów (jak Wykres 1), Analiza zbioru i wizualizacja rozkładu danych (jak Wykres 2)
1	Wczytanie zbioru Wine, wyrysowanie wykresu zależności wybranych atrybutów (jak Wykres 1), Analiza zbioru i wizualizacja rozkładu danych (jak Wykres 2)
1	Użycie PCA i narysowanie wykresu wynikowego dla trzech zbiorów

Jako wynik tego zadania wystarczy prosty Jupyter notebook.

Pytania pomocnicze

- 1. Czym się różnią zbiory danych analizowane w treści zadania? Na czym może polegać "trudność" analizy. Który z nich wydaje się być łatwiejszy/trudniejszy?
- 2. Czy nierównomierny rozkład klas w zbiorze może stanowić problem dla analizy i dalszej budowy modelu danych?
- 3. Jak działa PCA i kiedy warto go stosować?

Literatura

- 1. Materiały do wykładu
- 2. Cichosz P. "Systemy uczące się", WNT Warszawa
- 3. Zasoby Internetu, słowa kluczowe: uczenie maszynowe (machine learning), data mining, PCA

Kontakt

W przypadku pytań/uwag proszę o kontakt mejlowy z prowadzącym.