முழுப் பதிப்புரிமையுடையது/ All rights reserved]

Ι

Ι

— கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2022 General Certificate of Education (Adv.Level) Pilot Examination - 2022

இணைந்த கணிதம் Combined Mathematics

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடைஎழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண் (١
------------	--	--	--	--	--	--	---

அறிவுறுத்தல்கள்:

- ** இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10), **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- *** பகுதி A**:

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

- **₩ பகுதி Β**:
 - **ஜந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ☀ ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

(10) இணைந்த க	ணிதம் I
பகுதி	வினா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	

	மொத்தம
இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
1 பரிசீலித்தவர்:	
2	
மேற்பார்வை செய்தவர்:	

பகுதி А

கணிதத்தொ குத்	ந்தநுவுக்கோட்ட					இற்கும்			^	
நிறுவுக.							r=1		2	
ഗ്വ്വാപ്പോ.										
								•••••••		
••••••	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
•••••							•••••			• • • • • • •
		• • • • • • • • • • • • • • • • • • • •						• • • • • • • • • • • • • • • • • • • •		
				•••••			•••••			
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில					பரும்ப 5ம் <i>x</i>		
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில							
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில							
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில							
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில							
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2		த் திரு				
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2	< 2 %	த் திரு				
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2	< 2 %	த் திரு				
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2	< 2 %	த் திரு				
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2	< 2 %	த் திரு				
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2	< 2 %	த் திரு				
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2	< 2 %	த் திரு				
இதிலிருந்து	அல்லது 66	വழ്യഖിதமா	ക , சமனில	x+2	< 2 %	த் திரு				
இதிலிருந்து மெய்பெறுமானர்	அல்லது 6 ே ங்களின் வீச்ை	வறுவிதமா சக் காண்	க , சமனில் ரக.	x+2	< 2 %	த் திரு	ப்தியாக்கு	5 ib X	இன்	எல்லா
இதிலிருந்து மெய்பெறுமானர்	அல்லது 66	வறுவிதமா சக் காண்	க , சமனில் ரக.	x+2	< 2 %	த் திரு	ப்தியாக்கு	5 ib X	இன்	எல்லா
இதிலிருந்து மெய்பெறுமானர்	அல்லது 6 ே ங்களின் வீச்ை	வறுவிதமா சக் காண்	க , சமனில் ரக.	x+2	< 2 %	த் திரு	ப்தியாக்கு	5 ib X	இன்	எல்லா
இதிலிருந்து மெய்பெறுமானர்	அல்லது 6 ே ங்களின் வீச்ை	வறுவிதமா சக் காண்	க , சமனில் ரக.	x+2	< 2 %	த் திரு	ப்தியாக்கு	5 ib X	இன்	எல்லா
மெய்பெறுமானா	அல்லது 6 ே ங்களின் வீச்ை	வறுவிதமா சக் காண்	க , சமனில் ரக.	x+2	< 2 %	த் திரு	ப்தியாக்கு	5 ib X	இன்	எல்லா

- 3 -

சுட்டெண்

வறை இ திலிருந்து $ArgZ$ இன் இழிவுப் பெறுபானத்தைக் காண்க. $a \in \mathbb{R}$ ஆயிருக்க $\left(x^3 + \frac{a}{x}\right)^4 \cdot \left(2x^4 - \frac{1}{x}\right)^5$ என்றும்ன் ஈருறுப்பு விரீயில் உள்ள x ஐ சாராத உறுப்பு விகிதம் முறையே 16:5 ஆக இருப்பின் $a = 2$ எனக்காட்டுக.	$z=1+i, \left Z_{2}\right =2\sqrt{2}$ ஆகுமாறுள்ளன. $Z=4Z_{1}+Z_{2}$ ஆல்	$Z_1 = 1 + 1$	எண்கள்	சிக்கல்	Z_1,Z_2 ஆகிய
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு	கை கண்டு, அதை ஆகண் வரிப்படத்தில் பரும்படியாக ானத்தைக் காண்க.	ஒழுக்கை பெறுமானத்	எண் <i>Z</i> இன் இன் இழிவுப்	் சிக்கல் து <i>ArgZ</i>	வரையறுக்கப்படும் வரைக. இதிலிருந்
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
4. $a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
$a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
$a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
$a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
$a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
$a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
$a\in\mathbb{R}$ ஆயிருக்க $\left(x^3+rac{a}{x} ight)^4, \left(2x^4-rac{1}{x} ight)^5$ என்பற்றின் ஈருறுப்பு விரியில் உள்ள x ஐ சாராத உறுப்பு					
விகிதம் முறையே 16:5 ஆக இருப்பின் <i>a</i> = 2 எனக்காட்டுக.					
		என்ப <u>ந்</u> நின் ஈ	$, \left(2x^4 - \frac{1}{x}\right)^5$	$\left(x^3 + \frac{a}{x}\right)^2$	$a\in\mathbb{R}$ ஆயிருக்க
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				
	ின் ஈருறுப்பு விரியில் உள்ள $oldsymbol{x}$ ஐ சாராத உறுப்புகளின்				

$\lim_{x \to \frac{\pi}{4}} \frac{\left(\cot x - \tan x\right)}{\left(1 - \tan x\right)}$	$(x-\frac{\pi}{4})$	3					
	•••••						
	•••••						
	•••••						
<u>சதுர</u> அலகுகள்	$x=0, x=\sqrt{3}$ ஆக எனக் காட்டுக	s. பிரதேசம்	S ஆனது 2	<i>c</i> - அச்சுப்பற்ற			
சதுர அலகுகள்	எனக் காட்டுக	s. பிரதேசம்	S ஆனது 2	<i>c</i> - அச்சுப்பற்ற			
சதுர அலகுகள்		s. பிரதேசம்	S ஆனது 2	<i>c</i> - அச்சுப்பற்ற			
சதுர அலகுகள்	எனக் காட்டுக	s. பிரதேசம்	S ஆனது 2	<i>c</i> - அச்சுப்பற்ற			
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √ $3\pi - \frac{\pi}{3}$	S ஆனது 2	<i>c</i> - அச்சுப்பற்ற			
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக மத்தின் கனவள	5. பிரதேசம் வை √ $3\pi - \frac{\pi}{3}$	S ஆனது 2	<i>c</i> - அச்சுப்பற்ற	3 2π ஆரைப		சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக மத்தின் கனவள	5. பிரதேசம் வை √ $3\pi - \frac{\pi}{3}$	S ஆனது :	<i>c</i> - அச்சுப்பற்ற	3 2π ஆரைப	பன்களினூடு	சுற்ற
சதுர அலகுகள் பெநப்படும் திண்	எனக் காட்டுக மத்தின் கனவள	5. பிரதேசம் வை √ $3\pi - \frac{\pi}{2}$	S ஆனது : 7 ² எனக்காட்டு	c- அச்சுப்பற்ற க.	3 2π ஆரைப	பன்களினூட <u>ு</u>	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √ $3\pi - \frac{\pi}{3}$	S ஆனது : 7 ² எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2 <i>π</i> ஆரைப	பன்களினூட <u>ு</u>	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √ $3\pi - \frac{\pi}{2}$	S ஆனது : 	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூட <u>ு</u>	சுற் <u>ம</u>
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √3 <i>π</i> − ^{<i>π</i>}	S ஆனது ச சூர் 3 எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூடு	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √3 <i>π</i> − ^{<i>π</i>}	S ஆனது ச சூர் 3 எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூடு	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √3 <i>π</i> − ^{<i>π</i>}	S ஆனது ச சூர் 3 எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூடு	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √3 <i>π</i> − ^{<i>π</i>}	S ஆனது ச சூர் 3 எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூடு	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √3 <i>π</i> − ^{<i>π</i>}	S ஆனது ச சூர் 3 எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூடு	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √3 <i>π</i> − ^{<i>π</i>}	S ஆனது ச சூர் 3 எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூடு	சுற்ற
சதுர அலகுகள் பெறப்படும் திண்	எனக் காட்டுக	5. பிரதேசம் வை √3 <i>π</i> − ^{<i>π</i>}	S ஆனது ச சூர் 3 எனக்காட்டு	c- அச்சுப்பற்ற க.	ி 2π ஆரை	பன்களினூடு	சுற்ற

7.	நீள்வளையம் ஒன்றின் பரமானச்சமன்பாடு $x=2\cos\theta,y=\sqrt{3}\sin\theta$ என்பதால் தரப்படுகிறது. இங்கு θ
	மெயப்பரமானம் $\theta=\frac{\pi}{3}$ இல் தொடலியின் சமன்பாடு $x+2y-4=0$ எனக்காட்டுக. $\theta=\frac{\pi}{3}$ இல் செவ்வனின்
	் சமன்பாட்டைக்கண்டு, அச்செவ்வனானது நீள்வளையத்தை சந்திக்கும் வேநொரு புள்ளியின்
	பரமானப்பெறுமானம் $lpha$ ஆனது $8c\coslpha-2\sqrt{3}\sinlpha=1$ ஐ திருப்தி செய்யும் எனக்காட்டுக.
	······································
8.	$\lambda\in\mathbb{Z}$ ஆயிருக்க $Pig(\lambda,2\lambda-1ig)$ இற்கூடாகச் செல்லும் படித்திறன் $\dfrac{1}{2}$ ஐ உடையதுமான கோட்டின்
	சமன்பாட்டைக் காண்க. இக்கோடு x,y அச்சுக்களை முறையே A,B எனும் புள்ளிகளில் வெட்டின்
	$AB=rac{\sqrt{5}}{2}ig 3\lambda-2ig $ எனக்காட்டுக. $AB=2\sqrt{5}$ எனின் λ ஐக் கண்டு ΔAOB பரப்பு 4 சதுர அலகுகள்
	எனக்காட்டுக.

தொடுபுள்ளியின்								
	y-7=0 எனக்	காட்டுக.						
•••••	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •		••••••
• • • • • • • • • • • • • • • • • • • •								•••••
எனும் வடிவில்	எடுத்துரைக்க.	இங்கு ம						
$f(x) = 6\cos^2$ எனும் வடிவில் $-7 \le f(x) \le 1$	எடுத்துரைக்க.	இங்கு ம						
எனும் வடிவில்	எடுத்துரைக்க.	இங்கு ம						
எனும் வடிவில்	எடுத்துரைக்க.	இங்கு ம						
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(> 0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில்	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(> 0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(> 0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(> 0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(> 0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(> 0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(>0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(>0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(>0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(>0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(>0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(>0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்
எனும் வடிவில் – 7 ≤ $f(x)$ ≤ 1	எடுத்துரைக்க. 3 என்பதை உ	இங்கு .ய் த்தநிக.	a(>0),b,	$\alpha \Big(0 < \alpha \Big)$	$x<rac{\pi}{2}$ என்ப ϵ	ன கணிக்கட்	படவேண்டிய	ப மாறிலிகள்

முழுப் பதிப்புரிமையுடையது/ All rights reserved]

MORA E-TAMILS 2022 நாய் Stude நேரும் நெருவர்களின் பெற்கு பெற்கு கூடிய முற்கு கடிய முற்கு கூடிய முற்கு கூடிய முற்கு கடிய முற்கு முற்கு கடிய முற்கு முற்கு முற்கு முற்கு கடிய முற்கு கடிய முற்கு கடிய முற்கு முற்கு முற்கு முற்கு முற்கு கடிய முற்கு கடிய முற்கு முற்கு முற்கு முற்கு முற்கு கடிய முற்கு முற்கு முற்கு கடிய முற்கு முற்கள் முற்கு கடிய முற்கு கடிய முற்கு முற்கள் முற்கு முற்கு முற்கு முற்கு முற்கு முற்கு முற்கு முற்கு முற்க

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2022 General Certificate of Education (Adv.Level) Pilot Examination - 2022

இணைந்த கணிதம் I
Combined Mathematics I

10 T I

பகுதி-B

🔆 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. a) இருபடிச்சமன்பாடொன்றின் மூலங்களின் பெருக்குத்தொகை மறையாக இருப்பின் அச்சமன்பாடு மெய் மூலங்களையே கொண்டிருக்கும் எனக்காட்டுக.

0 < k < 2 எனின் $(k-2)x^2 - 2(k-1)x + k = 0$ எனும் சமன்பாடு மெய்மூலங்களைக் கொண்டிருக்கும் என **உய்த்தறிக**.

0 < k < 2 ஆயிருக்க $(k-2)x^2 - 2(k-1)x + k = 0$ என்பதன் மூலங்கள் முறையே α, β எனின் $\left|\alpha\right| + \left|\beta\right| = \frac{2}{2-k}$ எனக் காட்டுக.

இதிலிருந்து, |lpha|, |eta| மூலங்களாக கொண்ட இருபடிச்சமன்பாட்டைக் காண்க.

b) $f(x) = ax^2 + 2x + 2b$ எனவும் $g(x) = cx^2 + 2x + b$ எனவும் கொள்வோம். இங்கு $a,b,c \in \mathbb{R}$ ஆகும். f(x) ஆனது (x+1),(x-2) என்பவந்நால் வகுக்கப்படும் போது மீதிகள் முறையே -6,12 ஆகவும் f(x) + g(x) என்னும் பல்லுறுப்பியிற்கு ஒரு காரணி (x+2) எனவும் தரப்படின் a,b,c இன் பெறுமானங்களைக் காண்க.

மேலும் a,b,c என்பவந்நின் இப்பெறுமானங்களுடன் எல்லா $x\in\mathbb{R}$ இந்கும் $f(x)\geq 3g(x)$ எனக்காட்டுக.

- a) SRINIVASA RAMANUJAN எனும் பெயரில் உள்ள எழுத்துக்களில் 5 எழுத்துக்களாக தெரிந்து ஆக்கப்படக்கூடிய 5 எழுத்துள்ள சொல்லில்,
 - i) 5 எழுத்துக்களும் வேறு வேறானவையாக இருப்பின்
 - ii) இரண்டு எழுத்துக்கள் A ஆயும், மற்றைய மூன்றும் A தவிர்ந்த வேறு வேறானவையாயும் இருப்பின்
 - iii) A,N தவிர்ந்த எவையேனும் 5 எழுத்துக்களாயிருப்பின் அமைக்கத்தக்க சொற்களின் எண்ணிக்கையைக் காண்க.

b) $r\in\mathbb{Z}^+$ இந்கு $U_r=rac{7r^2+14r-1}{(r+1)(r+2)}$ எனக் கொள்வோம்.

 $r\in\mathbb{Z}^+$ இற்கு $U_r=rac{Ar}{r+1}-rac{Br+C}{r+2}$ ஆக இருக்கத்தக்கதாக A,B,C எனும் மாறிலிகளின் பெறுமானங்களைக் காண்க.

இதிலிருந்து $r\in\mathbb{Z}^+$ இற்கு $\frac{1}{8^r}U_r=f(r)-f(r+1)$ ஆகுமாறு f(r) ஐக் கண்டு, $n\in\mathbb{Z}^+$ இற்கு $\sum_{r=1}^n \left(\frac{U_r}{8^r}\right) = \frac{1}{2} - \frac{(n+1)}{8^n(n+2)}$ எனக்காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^{\infty} \left(\frac{U_r}{8^r} \right)$ ஒருங்குகிறது என உய்த்தறிந்து, அதன் கூட்டுத்தொகையைக் காண்க. அத்துடன் $\frac{5}{12} \leq \sum_{r=1}^{n} \left(\frac{U_r}{8^r} \right) < \frac{1}{2}$ எனவும் காட்டுக.

$$A=egin{pmatrix} 1 & 3 \ 2 & 0 \ a & 2 \end{pmatrix}, B=egin{pmatrix} 0 & 1 \ 2 & b \ -1 & 0 \end{pmatrix}, C=egin{pmatrix} 2 & 5 \ -2 & 3 \end{pmatrix}$$
 எனக் கொள்வோம் இங்கு $a,b\in\mathbb{R}$.

 $A^TB=C$ எனவும் கொள்வோம் a=2,b=2 எனக் காட்டுக.

 $\lambda\in\mathbb{R}$ ஆயிருக்க தாயம் P ஆனது $P=A^TB+\lambda D$ என வரையறுக்கப்படுகிறது. இங்கு $D=egin{pmatrix}1&1\\1&2\end{pmatrix}$ ஆகும். λ இன் எப்பெறுமானத்திற்கும் P^{-1} உண்டு எனக்காட்டுக.

இப்போது $\lambda=1$ எனக்கொள்வோம். P^{-1} ஜ எழுதி, **இதிலிருந்து** $EP=A^TB+2D$ ஆகுமாறு 2×2 பருமனுள்ள தாயம் E ஐக் காண்க.

b) Z எனும் சிக்கல் எண் $Z=r(\cos\theta+i\sin\theta)$; r>0, $0<\theta<\frac{\pi}{2}$ எனக்கொள்வோம். P என்பது சிக்கல் எண் Z ஐ ஆகண் வரிப்படத்தில் வகைகுறிக்கும் புள்ளியாகும். இது (2,0) ஐ மையமாகவும், உற்பத்தி ஊடாகவும் செல்லும் வட்டத்தில் உள்ளது. Q என்பது (Z-2) எனும் சிக்கல் எண்ணை வகைக்குறிக்கும் புள்ளியாகும். ஆகண் வரிப்படத்தில் Q ஐக் குறித்து, **இதிலிருந்து** $Z-2=2(\cos 2\theta+i\sin 2\theta)$ எனக்காட்டுக.

இப்போது $heta=\frac{\pi}{6}$ எனக்கொள்வோம். R ஆனது 2i எனும் சிக்கல் எண் வகைக்குறிக்கும் புள்ளியாகும். $\left\{(Z-2)+2i\right\}$ எனும் சிக்கல் எண் ஆகண் வரிப்படத்தில் வகைக்குறிக்கும் புள்ளி S எனின், S இருக்கும் இடத்தை விளக்கி $an\left(\frac{\pi}{12}\right)=2-\sqrt{3}$ என்பதை **உய்த்தறிக**.

c) $(\cos\theta+i\sin\theta)^3=(4\cos^3\theta-3\cos\theta)+i(3\sin\theta-4\sin^3\theta)$ எனக் காட்டுக. இம்முடிவையும், த மோய்வரின் தேற்றத்தையும் பயன்படுத்தி,

i)
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
 எனவும்

ii) $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ எனவும் காட்டுக.

14. a) $x \neq 1$ இற்கு $f(x) = \frac{6x^2 + 9x + 5}{(x - 1)^3}$ எனக்கொள்வோம். $x \neq 1$ இற்கு f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = \frac{-6(x + 1)(x + 4)}{(x - 1)^4}$ இனால் தரப்படுகிறது எனக்காட்டுக.

இதிலிருந்து, f(x) திடமாக அதிகரிக்கும், திடமாகக் குறையும் x இன் வீச்சுக்களைக் காண்க.

அணுகு கோடுகள், வெட்டுத்துண்டு, திரும்பல் புள்ளிகள் ஆகியவற்றைக் காட்டி y=f(x) இன் வரைபை பரும்படியாக வரைக.

 $x \neq 1$ இந்கு f(x) இன் இரண்டாம் பெறுதி f''(x) ஆனது $f'''(x) = \frac{6(x+7)(2x+3)}{(x-1)^5}$ எனத்தரப்படின், y = f(x) இன் வரைபின் விபத்திப் புள்ளிகளின் x ஆள்கூறுகளைக் காண்க.

b) அருகில் உள்ள உருவில் நிழந்நப்பட்ட பிரதேசம் AB = y m, BC = x m எனும் ്ര്ബ, ஆனது அகலங்களையும், மாநாச்சுந்நளவு 2pmஐயும் கொண்ட செவ்வகத்தில் இருந்து ஒவ்வொரு உச்சிகளையும் மையமாகவும் $\frac{x}{2} m$ ஐ ஆரையாகவும் கொண்ட நீக்கிப் பெருப்பட்ட வட்டங்கள் காட்டுகிறது. 0 < x < pஇந்கு புற்தரையைக்

புந்நரையின் பரப்பளவு $\Delta(x)$ ஆனது $\Delta(x) = \left\{ px - \left(\frac{\pi+4}{4}\right)x^2 \right\} m^2$ இனால் தரப்படுகிநது எனக்காட்டுக.

 $x=rac{2\,p}{\pi+4}$ m இல் பரப்பு Δ உயர்வு எனக்காட்டி, அப்போது $x:y=2:\left(\pi+2
ight)$ எனவும் காட்டுக.

15. a) எல்லா $x \in \mathbb{R}$ இந்கு,

 $x^5 - 4x^4 - 27x^2 - 10x - 28 \equiv \lambda(x+1)(x^2+4)^2 + \mu(x^2+4)^2 + \gamma(x+1)^2(x^2+4) + \delta x(x+1)^2$ ஆகுமாறு $\lambda, \mu, \gamma, \delta$ ஆகிய மாநிலிகளின் பெறுமானங்களைக் காண்க.

இதிலிருந்து $\frac{x^5 - 4x^4 - 27x^2 - 10x - 28}{(x+1)^2(x^2+4)^2}$ ஜப் பகுதிப் பின்னங்களில் எழுதி,

$$\int \frac{x^5 - 4x^4 - 27x^2 - 10x - 28}{(x+1)^2(x^2+4)^2} dx$$
 ஐக் காண்க.

b)
$$I = \int_{\frac{1}{\sqrt{2}}}^{1} \tan^{-1} \sqrt{2x^2 - 1} \ dx$$
 எனக்கொள்வோம்

$$I = \frac{\pi}{4} - \int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{\sqrt{2x^2 - 1}} dx$$
 எனக்காட்டி,

 $\cos^{-1}\!\left(\frac{1}{\sqrt{2}x}\right) = \theta$ எனும் பிரதியீட்டைப் பயன்படுத்தி, I இன் பெறுமானத்தைக் காண்க.

c)
$$\frac{d}{dx}\ln\left(\sqrt{x+1}+\sqrt{x+4}\right)=\frac{1}{2\sqrt{(x+1)(x+4)}}$$
 எனக்காட்டுக. இங்கு $x>-1$.

இதிலிருந்து
$$\int \frac{1}{\sqrt{(x+1)(x+4)}} \, dx$$
 ஐக் கண்டு,

$$\int_{0}^{1} \frac{1}{\sqrt{(x+1)(x+4)}} \, dx = \frac{1}{2} \ln \left(\frac{\sqrt{5} + \sqrt{2}}{3} \right)$$
 எனக்காட்டுக.

a ஒரு மாறிலியாக உள்ளபோது பேறு $\int\limits_0^a f(x)dx = \int\limits_0^a f(a-x)dx$ ஐப்பயன்படுத்தி,

$$\int\limits_0^1 \frac{1}{\sqrt{(x-2)(x-5)}} dx$$
 இன் பெறுமானத்தைக் காண்க.

16. $P\equiv(\alpha,\beta)$ எனவும் l என்பது ax+by+c=0 இனால் தரப்படும் நேர்கோடு எனவும் கொள்வோம், P

இலிருந்து
$$l$$
 இற்கு வரையும் செங்குத்து தூரம் $\dfrac{\left|a \alpha + b \beta + c \right|}{\sqrt{a^2 + b^2}}$ என நிறுவுக.

கோடு l ஆனது 3x-4y+15a=0 எனக்கொள்வோம். இங்கு $a\neq 0$ ஆகும் . $A\equiv (a,2a),$

 $B\equiv (2a,4a)$ என்பன கோடு l இற்கு ஒரே பக்கத்தில் இருக்கின்றன எனக் காட்டுக.

l ஐத் தொடுவனவும், முறையே A,B ஐ மையங்களாக கொண்டுள்ளனவாகவும் உள்ள S_1,S_2 எனும் வட்டங்களின் சமன்பாடுகளை a இன் சார்பில் காண்க.

a(
eq 0) இன் எல்லா பெறுமானங்களிற்கும் S_1, S_2 என்பன நிமிர் கோணத்தில் வெட்டும் எனக்காட்டுக.

இப்போது a=2 எனக் கொள்வோம். வட்டங்கள் S_1,S_2 என்பவற்றின் சமன்பாடுகளை எழுதுக.

கோடு l இனதும் கோடு AB இனதும் வெட்டுப்புள்ளி C எனக் கொள்வோம். C இன் ஆள்கூறுகளைக் காண்க.

 S_1, S_2 ஆகியவற்றிற்கு $\,C\,$ இனூடாக உள்ள மற்றைய தொடலியின் சமன்பாட்டை காண்க.

17. a) $\sin(A+B),\cos(A+B)$ என்பவந்நின் விரிவுகளை $\sin A,\cos A,\sin B,\cos B$ ஆகியவந்நில்

எழுதுக. **இதிலிருந்து**

- i) $\sin 2\theta = 2\sin \theta \cos \theta$
- ii) $\cos 2\theta = 1 2\sin^2 \theta$
- $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$ என்பவற்றைக் காட்டுக.

 $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ என்பதை உய்த்தறிக.

 $\sin 3\theta$, $\cos 3\theta$ ஆகியவற்றின் முடிவுகளைப் பயன்படுத்தி $\sin 3x + \sin x + \cos 3x - \cos x = 0$ ஐத் தீர்க்க.

b) வழக்கமான குறிப்பீட்டில் முக்கோணி ABC இல் சைன் நெறி, கோசைன் நெறியைக் கூறுக.

முக்கோணி ABC இல் வழக்கமான குறிப்பீட்டுடன் $\cos(A-B)=\frac{61}{64}$ எனின் $2\sin(A+B)\cos(A-B)=\sin 2A+\sin 2B$ எனும் முடிவையும், சைன் நெறியையும் பயன்படுத்தி $a\cos A+b\cos B=\frac{61}{64}c$ எனக்காட்டுக.

இதிலிருந்து a=2,b=3 எனின் c=4 எனக்காட்டுக.

c) $\sin^{-1}\left(e^{-x}\sqrt{e^{2x}-1}\right) + \cos^{-1}(e^{-x}) = \frac{\pi}{2}$ எனும் சமன்பாட்டை தீர்க்க.

* * *

முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS 2022 | பார் Stude நட்கு நெர்கள்கள் University of Moratuwa வெறுட்டுவைப் பல்கலைக்கு பொற்போடு பார்கள் பார்களை பார்கள் பார்

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2022 General Certificate of Education (Adv.Level) Pilot Examination - 2022

இணைந்த கணிதம் II Combined Mathematics II 10 T II

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடைஎழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண்:

அறிவுறுத்தல்கள்:

- lpha இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10) **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- ∗ பகுதி **A**:

எல்லா விணாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

- அந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- lpha வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10) 🙎)ணைந்த கணி	தம் II
பகுதி	ഖിனா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	ச தவீத ம்	
L		

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி A

1.	உருவிற் காணப்படுகின்றவாறு முறையே $2m,m$ திணிவுள்ள A,B எனும் இரு துணிக்கைகள் ஒரு ஒப்பமான கிடை மேசை மீது வைக்கப்பட்டு ஒரே நேர்கோட்டில் ஆனால் எதிர்த் திசைகளில் இயங்கிக்கொண்டு நேரடியாக மோதுகின்றன.
	மோதுகைக்குச் சற்று முன்னர் A,B ஆகியவற்றின் வேகங்கள் முறையே $3u,2u$
	ஆகும். மோதுகையின் பின்னர் B யானது சுவரை நோக்கி $8u/3$ எனும் வேகத்துடன் இயங்குகின்றது எனின்
	துணிக்கைகளுக்கு இடையிலான மீளமைவுக் குணகத்தைக் காண்க. தொடரும் இயக்கத்தில் \emph{B} யானது சுவருடன்
	மோதும் போது துணிக்கை மீது வழங்கப்படும் கணத்தாக்கு $\frac{14mu}{3}$ எனின் B யிற்கும் சுவருக்கும் இடையிலான
	மீளமைவுக் குணகம் $\frac{3}{4}$ எனக் காட்டுக.
2.	படத்தில் காட்டியவாறு h உயரமான கூடைப்பந்தாட்ட வீரர் ஒருவர் தன்னிலிருந்து d தூரத்தில் H உயரத்திலுள்ள கூடையினுள் பந்து
	விழுமாறு கிடையுடன் $ heta=\pi/4$ சாய்வில் v கதியுடன் பந்து ஒன்றை h
	எறிகின்றார். பந்தானது சரியாக கூடையினுள் விழுகின்றது எனின் 🗸 🗸 📗
	$v^2 = rac{gd^2}{d+h-H}$ எனக்காட்டுக. இதிலிருந்து $H < d+h$ எனக்காட்டுக.

3.	திணிவு m ஐ உடைய ஒரு துணிக்கை P ஓர் ஒப்பமான கிடைமேசை மீது A
	கப்பிகளுக்கு மேலாகச் செல்லும் ஒரு இலேசான நீளா இழையினால் ஓர் இலேசான கட்பி C யுடன் இணைக்கப்பட்டுள்ளது. முறையே $m, \lambda m (\lambda > 1)$ திணிவுள்ள
	Q,R எனும் இரு துணிக்கைகள் கப்பி C யின் மேலாகச் செல்லும் ஓர் இலேசான நீட்டமுடியாத $ extstyle C$
	வேறோர் இழையினால் படத்தில் காட்டியவாறு இணைக்கப்பட்டுள்ளன. துணிக்கைகளும் இழைகளும் ஒரே நிலைக்குத்துத் தளத்தில் இருக்கின்றன. இழைகள் இறுக்கமாக இருக்க தொகுதி ஓய்விலிருந்து
	விடுவிக்கப்படுகின்றது. Q,R இனை இணைக்கும் இழையில் உள்ள இழுவையைத் துணிவதற்குப் $Q \stackrel{m}{}$
	போதுமான சமன்பாடுகளை எழுதுக.
	$(\lambda m)R$
4.	M~kg திணிவும் $P~kW$ எனும் மாறா வலுவையும் உஞற்றும் கார் ஒன்று கிடையுடன் $lpha$ சாய்வில் உள்ள பாதை
٦.	
	ஒன்றில் λMg எனும் மாறாத்தடைவிசைக்கு எதிராக μg எனும் சீரான ஆர்முடுகலுடன் மேல்நோக்கிச் செல்லும்
	போது அதன் கதி v_1 எனவும் μg எனும் ஆர்முடுகலுடன் கீழ்நோக்கிச் செல்லும்போது அதன் கதி v_2 எனவும்
	தரப்படின் $\dfrac{v_1}{v_2}=\dfrac{\lambda+\mu-\sinlpha}{\lambda+\mu+\sinlpha}$ எனக்காட்டுக.
	$v_2 = \lambda + \mu + \sin \alpha$

Э.	O இனை மையமாகவும் K இனை ஆரையாகவும் உடைய ஒப்பமான O'
	அரைக்கோளம் ஒன்று அதன் தளமுகம் ஒரு கிடைத்தளம் மீது இருக்குமாறு \uparrow நிலைப்படுத்தப்பட்டுள்ளது. m திணிவுள்ள துணிக்கை P யானது R நீளமான ஒரு
	இலேசான நீட்டமுற்றாக இறை ஒன்றின் ஒரு முனைக்கு இணைக்கப்பட்டு இறையின் R / L
	மறுமுனை O இற்கு நிலைக்குத்தாக மேலே $2h$ உயரத்தில் உள்ள O' எனும்
	நிலைத்த புள்ளிக்கு இணைக்கப்பட்டுள்ளது. P யானது அரைக்கோள மேற்பரப்பின் ω
	மீது ஓர் கிடை வட்டப்பாதையில் $arphi$ எனும் கோண வேகத்துடன் உருவில் $igwedge 'igwedge 'igwedge '$
	காட்டியாவாறு இயங்குகின்றது. துணிக்கையானது அரைக்கோள மேற்பரப்பை விட்டு \nearrow \nearrow \nearrow \nearrow
	வெளியேறும் தறுவாயில் உள்ளது எனின் $\omega = \sqrt{\frac{g}{h}}$ எனவும் இழையில் உள்ள
	இழுவை $\dfrac{mgR}{h}$ எனவும் காட்டுக.
6.	வழக்கமான குறிப்பீட்டில், ஓர் உற்பத்தி O வைக்குறித்து A,B,C எனும் மூன்று புள்ளிகளின் தானக்காவிகள்
	முறையே $3\mathbf{i}+6\mathbf{j}, 6\mathbf{i}+3\mathbf{j}, \mathbf{i}+2\mathbf{j}$ ஆகும். P ஆனது AB மீது $AB\perp CP$ ஆகுமாறு உள்ள புள்ளி எனின்
	P யின் தானக்காவியைக் கண்டு P ஆனது AB இனை $1\!:\!2$ எனும் விகிதத்தில் பிரிக்கின்றது எனக் காட்டுக.

7.	AB ஆனது $4a$ நீளமும் $2w$ நிறையும் உடைய ஒரு சீரான கோலாகும். AB ஆனது A யில் பிணைக்கப்பட்டு முனை B யிற்கு w நிறை இணைக்கப்பட்டு கோலின் மீது உள்ள C எனும் புள்ளிக்கு இணைக்கப்பட்ட ஒரு இலேசான நீட்டமுடியாத இழையினால் படத்தில் காட்டியவாறு சமனிலையில் பேணப்படுகின்றது. சமனிலையில் AB கிடையாகவும் இழை
	கோலுடன் அமைக்கும் கோணம் $lpha$ ஆகவும் உள்ளது. A யில் உள்ள A $2w$ C
	3
	எனத்தரப்படின் $lpha$ இனைக் கண்டு இழையில் உள்ள இழுவை $T=rac{10w}{3}$ எனவும் $AC=3a$ எனவும் காட்டுக.
8.	2a நீளமும் w நிறையும் உடைய ஒரு சீரான கோல் AB யின் ஒரு முனை A
	A யிற்கு இலேசான வளையம் ஒன்று இணைக்கப்பட்டுள்ளது. இவ்வளையமானது கரடான கிடைக்கம்பி ஒன்றில் கோர்க்கப்பட்டு B யில் தாக்கும் ஒரு கிடை விசை
	P யினால் உருவில் காட்டியவாறு சமனிலையில் பேணப்படுகின்றது. கம்பிக்கும் வளையத்திற்கும் இடையிலான உராய்வுக் குணகம் μ ஆகும். சமனிலையில் கோல்
	நிலைக்குத்துடன் அமைக்கும் கோணம் $ heta$ எனின் $ heta \leq an^{-1}(2\mu)$ எனக் காட்டுக.

9. A,B	ஆகியன	ஒரு	மாதிரி	வெளி	Ω	96	ர் இரு	5 நிக	ழ்வுகெ	ளனக்	கொஎ்	வோம்	வழக்க	கமான	குறிப்பீட்டி
P(A) =	$=\frac{1}{3}$, $P(E)$	<i>B</i> <i>A</i>) =	$=\frac{3}{5}, P$	$(A' \cap$	$\cap B)$ =	$=\frac{2}{5}$	எனத்த	நரப்படி	ன் P	$(A \cap I)$	B), P((B), F	$P(A \cup E)$	3) <u>ə</u>	ൃകിധഖന്റ്ന്വെ
காண்க. குறிக்கின்		A, B	ஆகிய	பன ச	пуп р	நிகழ்வ	புகள் 6	ானக் &	காட்டுக	. இங்கு	ь A'	ஆனது	<i>A</i> இன்	நிரப்ப	பு நிகழ்வை
•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••		•••••	•••••	•••••		•••••	••••••			• • • • • • • • • • • • • • • • • • • •
•••••			••••••		•••••	•••••	•••••	•••••			•••••	••••••		•••••	
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	•••••	• • • • • • •	•••••	••••••	• • • • • • •	• • • • • • • •		•••••	••••••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • •	• • • • • • •	•••••	• • • • • • •	••••••		• • • • • • •	• • • • • • •		•••••	•••••
•••••															•••••
	•••••			•••••		• • • • • •				•••••	• • • • • • • •		•••••		
•••••	•••••			• • • • • •		• • • • • •				• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		
•••••			•••••		• • • • • •		• • • • • • •				• • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			•••••		•••••		•••••	• • • • • • •			• • • • • • •	• • • • • • •		• • • • • • • • •	
•••••			•••••		• • • • • •						•••••	•••••			
$X = \{x_1$	$x_1, x_2,$	$, x_{10}$	តស់្ប	ы 10	மாண	ளவர்க(ளுக்கு	பரீட்ை	சயில்	வழங்க	ப்பட்ட	புள்ளிக	கள் ஆஞ	தம். <i>y</i>	$x_i = 10x_i +$
ഒത്വഥ് ഉ	உருமாற்ற	சமன்	பாட்பை	டப் ப	யன்ப	டுத்தி	Y =	$\{y_1, y_1\}$	2,	$, y_{10}$	எனும்	புள்ளி	கள் ெ	பறப்படு	கின்றன.
இனது (இடை, நூ	വ്നന ഉ	വിலகல்	என்	பன	முறை	யേ 8	5, 5	எனக்	கணிக்க	கப்பட்ட	து. மீ	ள்பரிசோ	ர தனை ப	വിல് $x_3=$
ஆனது த	தவறுதல	rњ <i>x</i> ₃	=8 எ	னப் ப	தியப்	பட்டத	ு கண்ட	_நியப்၊	பட்டு தி	ிருத்தப்	படுகின்	நுது. த	ிருத்திய	ப பின்வ	வர் Y இன
இடையை	பக் கண்(டு, நியா	മഖി കെ	ல் 5∿	$\sqrt{10}$	எனக்	காட்டு	க.							
				. .											
					••••									•••••	

முழுப் பதிப்புரிமை உடையது / All Rights Reserved

MORA E-TAMILS 2022 | Tamil Studies (Engineering, University of Moratuwa மாறட்டுவைப் பல்கலைக்கழக பொற்போர்கள் (According to Moratuwa) மாறம் இவர் மானவர்கள் (According to Moratuwa) மாறம் இவர் மானவர்கள் (According to Moratuwa) மாறம் இவர் மானவர்கள் (According to Moratuwa) Moratuwa | Moratuwa

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2022 General Certificate of Education (Adv.Level) Pilot Examination - 2022

இணைந்த கணிதம் II Combined Mathematics II

பகுதி B

- ☀ ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- 11.(a) ஓர் நேர் வீதியில் உள்ள A,B எனும் இரு வீதி சமிக்ஞைகளுக்கு இடையிலான தூரம் d ஆகும். ஒரு காரானது A யிலிருந்து ஓய்விலிருந்து புறப்பட்டு f எனும் சீரான ஆர்முடுகலுடன் இயங்கி v எனும் கதியை அடைந்து அக்கதியுடன் T நேரம் பயணித்து பின்னர் 2f எனும் அமர்முடுகலுடன் B யில் ஓய்வுக்கு வருகின்றது. காரின் இயக்கத்திற்கான வேக நேர வரைபை வரைந்து $T = \frac{d}{v} \frac{3v}{4f}$ எனக் காட்டுக.

காரானது A யிலிருந்து புறப்பட்டு $t_0 \Biggl(< \frac{v}{f} \Biggr)$ நேரத்தின் பின்னர் மோட்டார் சைக்கிள் ஒன்று A யிலிருந்து ஓய்விலிருந்து புறப்பட்டு a எனும் சீரான ஆர்முடுகலுடன் B இனை நோக்கி பயணிக்கின்றது. மோட்டார் சைக்கிளானது C எனும் புள்ளியில் காரை கடக்கின்றது. AC = D(< d) எனவும் மோட்டார் சைக்கிள் காரை கடக்கும்போது காரின் கதி v எனவும் தரப்பட்டுள்ளது. மோட்டார் சைக்கிளின் இயக்கத்திற்கான வேக — நேர வரையை அதே படத்தில் வரைந்து $t_0 = \frac{D}{v} + \frac{v}{2f} - \left(\frac{2D}{a}\right)^{\frac{1}{2}}$ எனக் காட்டுக.

 $(b\)\ b$ அகலமானதும் சமாந்தரமான கரைகளையும் உடைய ஆறு ஒன்று சீரான வேகம் ${f u}$ உடன் படத்தில் காட்டப்பட்டவாறு பாய்கின்றது. A,C என்பன ஆற்றின் ஒரு கரையிலும் B ஆனது ஆற்றின் மறுகரையிலும் \overrightarrow{AB} ஆனது ${f u}$ உடன் கூர்ங்கோணம் α உம் $BC\perp AC$ ஆகுமாறும் உள்ளது. நீர் தொடர்பாக $\sqrt{2}\,u$ கதியுடன் நீந்தக்கூடிய சிறுவன் ஒருவன் A யிலிருந்து B யிற்கும் பின்னர் B யிலிருந்து C யிற்கும் நீந்துகிறான். இங்கு $|{f u}|=u$ ஆகும். A யிலிருந்து B யிற்கும் பின்னர் B யிலிருந்து

C யிற்குமான இயக்கங்களுக்கான வேக முக்கோணிகளை ஒரே படத்தில் பரும்படியாக வரைக. **இதிலிருந்து** A யிலிருந்து B யிற்கு செல்லும்போது நீர் தொடர்பாக சிறுவனின் வேகம் \overline{AB} உடன் θ கோணம் அமைக்கின்றது எனின் $\sin\theta=\frac{1}{\sqrt{2}}\sin\alpha$ எனக் காட்டுக. மேலும் B யிலிருந்து C யிற்குச் செல்லும்போது நீர் தொடர்பாக சிறுவனின் வேகம் \overline{BC} உடன் $\pi/4$ கோணம் அமைக்கின்றது எனக் காட்டுக. சிறுவன் A யிலிருந்து B யிற்கு நீந்த எடுத்த நேரம் T_1 எனவும் B யிலிருந்து C யிற்கு நீந்த எடுத்த நேரம் T_2 எனவும் கொள்க. $T_2=2T_1\sin2\alpha$ எனின் $\cos\theta=\frac{3}{\sqrt{2}}\cos\alpha$ எனக் காட்டுக. $\sin\theta$, $\cos\theta$ ஆகியவற்றுக்கான

மேற்குறித்த கோவைகளைப் பயன்படுத்தி $lpha=\cos^{-1}\!\left(rac{1}{2\sqrt{2}}
ight)$ என உய்த்தறிக.

AL/2022/10/T-II

 $12.\,(a)$ உருவில் ABC ஆனது $B\hat{A}C=rac{\pi}{2}$ ஆகவும் AB ஐக் கொண்டுள்ள

முகம் ஓர் ஓப்பமான கிடைமேசை மீதும் இருக்குமாறு வைக்கப்பட்ட திணிவு M ஐ உடைய ஓர் ஒப்பமான சீரான ஆப்பின் புவியீர்ப்பு மையத்தினூடான நிலைக்குத்து குறுக்குவெட்டாகும். DE ஆனது ஆப்பினுள் வெட்டப்பட்ட ஒப்பமான துவாரம் எனவும் DE, BC ஆகியன கிடையுடன் α கோணம் அமைக்கின்றன எனவும் தரப்பட்டுள்ளது. முறையே m, 2m திணிவுள்ள P, Q என்னும் இரு துணிக்கைகள் முறையே DE, CB மீது வைக்கப்பட்டு D, C யில் பொருத்தப்பட்ட ஒப்பமான கப்பிகளுக்கு மேலாகச் செல்லும் ஒரு முனைகளுக்கு இணைக்கப்பட்டுள்ளன. மேலும் 3m திணிவுள்ள 2m நின் இருவருக்கு இரைக்கு இரைக்கப்பட்டுள்ளன. மேலும் 3m திணிவுள்ள பொருக்குப்பட்ட ஒப்பமான கப்பியின் மேலாகக் செல்லும் ஒரு இலகுக்கும் காகர்கள் இருவருக்கு இரைக்கு இரைக்கு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு கொல்லும் ஒரு இலகுக்கு கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவது காகர்கள் கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவது காகர்கள் கொல்லும் ஒரு இருவது காகர்கள் கொல்லும் ஒரு இருவருக்கு காகர்கள் கொல்லும் ஒரு இருவது காகர்கள் கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவது காகர்கள் கொல்லும் ஒரு இருவது காகர்கள் கொல்லும் ஒரு இருவருக்கு காகர்கள் கொல்லும் ஒரு இருவருக்கு கொல்லும் ஒரு இருவருக்கு காகர்கள் கொல்லும் இருக்கு காகர்கள் கொல்லும் இருக்கு காகர்கள் கொல்கு காகர்கள் காகர்கள் காகர்கள் கொல்கு காகர்கள் காகர

பொருத்தப்பட்ட ஒப்பமான கப்பிகளுக்கு மேலாகச் செல்லும் ஒரு இலேசான நீட்டமுடியாத இழையின் 3m திணிவுள்ள துணிக்கை R ஆனது F இல் பொருத்தப்பட்ட ஒப்பமான கப்பியின் மேலாகச் செல்லும் ஒரு இலேசான நீட்டமுடியாத இழையினால் படத்தில் காட்டியவாறு ஆப்புடன் இணைக்கப்பட்டுள்ளது. தொகுதியானது உருவில் காட்டப்பட்டவாறு AF=s ஆகுமாறு பிடிக்கப்பட்டு ஓய்விலிருந்து ഖിடுவிக்கப்படுகின்றது. மேசையின் விளிம்பு F இனை இருக்க ஆப்பு அடையும்வரை $\,P\,$ துவாரத்தினுள் உள்ளது எனக் கொள்க. ஆப்பானது மேசையின் விளிம்பை அடையும்போது அதன் வேகம், அந்நேரத்தில் P துவாரத்தினுள் பயணித்த தூரம் ஆகியவற்றைத் துணிவதற்கு போதிய சமன்பாடுகளைப் பெறுக.

(b) O ஐ மையமாகவும் a இனை ஆரையாகவும் உடைய ஒரு ஒப்பமான மெல்லிய குழாய் AB யும் O' ஐ மையமாகவும் a இனை ஆரையாகவும் உடைய ஒரு ஒப்பமான மெல்லிய குழாய் CD யும் படத்தில் காட்டப்பட்டவாறு ஓர் நிலைக்குத்துத் தளத்தில் நிலைப்படுத்தப்பட்டுள்ளன. BC ஆனது B, C யில் குழாய்களுக்கு தொடலியாக இருக்குமாறு உள்ள ஒரு கரடான தளமாகும். $A\hat{O}B = \frac{5\pi}{6}$ எனவும் $C\hat{O}'D = \frac{\pi}{3}$ எனவும் தரப்பட்டுள்ளது. மேலும்

 $BC=\sqrt{3}~a$ ஆகும். திணிவு m ஐ உடைய ஒரு சிறிய ஒப்பமான மணி P யானது A யில் வைக்கப்பட்டு நிலைக்குத்தாக கீழ்நோக்கி u எனும் கதி வழங்கப்படும் போது அது குழாயின் வழியே இயங்கத் தொடங்குகின்றது. P ஆனது குழாய் AB யில் உள்ளபோது \overrightarrow{OP} ஆனது \overrightarrow{OA} உடன் $\theta\left(0 \le \theta \le \frac{5\pi}{6}\right)$ கோணம் அமைக்கும்போது அதன் கதி v ஆனது $v^2=u^2+2ag\sin\theta$ இனால் தரப்படுகின்றது எனவும் அதன் மீதுள்ள மறுதாக்கம் R ஆனது $R=\frac{m}{a}\left(u^2+3ag\sin\theta\right)$ இனால் தரப்படுகின்றது எனவும் காட்டுக.

தொடரும் இயக்கத்தில் மணியானது குழாய் AB யிலிருந்து B யில் வெளியேறி பின் கரடான தளம் BC மீது இயங்குகின்றது. துணிக்கை BC வழியே பயணிக்கும் போது அதன் மீது பிரயோகிக்கப்படும் உராய்வு விசையின் பருமன் $\frac{mg}{2\sqrt{3}}$ எனத்தரப்பட்டுள்ளது. மணி P யானது குழாய் CD யினுள் C யில் புகுந்து D யினை

அடைகின்றது எனின் $u^2 \ge 4ag$ எனக் காட்டுக. மேலும் மணி P யானது D யிலிருந்து வெளியேறி புவியீர்ப்பின்கீழ் இயங்கி தரையை கிடையுடன் $\frac{\pi}{4}$ சாய்வில் அடிக்கின்றது எனின் $u = 3\sqrt{ag}$ எனக் காட்டுக.

13. ஒரே இயற்கை நீளம் 4a உம் 3mg, λmg மீள்தன்மை மட்டும் உடைய A,B எனும் இரு இழைகளின் ஒரு நுனி 2m திணிவுடைய ஒரு துணிக்கை P யிற்கும் மற்றைய நுனி கிடையான சீலிங்கில் உள்ள ஒரு நிலைத்த புள்ளி O விற்கும் உருவில் காட்டியவாறு இணைக்கப்பட்டுள்ளன. துணிக்கை O விற்கு கீழே 5a தூரத்தில் நாப்பத்தில் தொங்குகின்றது. இந்நிலையில் இழைகள் A,B ஆகியவற்றில் உள்ள இழுவைகள் முறையே T_1,T_2 எனின், T_1,T_2 ஆகியவற்றுக்கான கோவைகளை தனித்தனியே எழுதி $\lambda=5$ எனக் காட்டுக.

காண்க.

நிலைக்குத்தாக கீழே $\frac{3a}{2}$ தூரத்தில் இருந்து P இனை நோக்கி $\sqrt{2ag}$ எனும் கதியுடன் எறியப்படுகின்றது. Q ஆனது P உடன் நேரடியாக மோதி இணைந்து ஒரு சேர்த்தித் துணிக்கை R ஐ ஆக்குகின்றது. R ஆனது இயங்கத் தொடங்கும் வேகம் $2\sqrt{ag}$ எனக் காட்டுக.

இழை தளர்வுறாமல் இருந்து பின்னர் நடைபெறும் இயக்கத்தில் சேர்த்தித் துணிக்கை R இற்கு O விலிருந்து உள்ள தூரம் x ஆனது $\ddot{x}+rac{g}{3a}(x-7a)=0$ எனும் சமன்பாட்டைத் திருப்தியாக்குகின்றது எனக் காட்டுக.

மேலும் X=x-7a என எழுதுவதன் மூலம் $\ddot{X}+\omega^2X=0$ எனக் காட்டுக. இங்கு $\omega=\sqrt{\frac{g}{3a}}$ ஆகும்.

மேற்குறித்த எளிய இசை இயக்கத்தின் மையத்தையும், $\dot{X}^2 = \omega^2 (A^2 - X^2)$ எனும் சூத்திரத்தைப் பயன்படுத்தி வீச்சம் A ஐயும் காண்க.

தொடரும் இயக்கத்தில் R ஆனது O இந்கு கீழே 10a தூரத்தில் உள்ள கிடைத்தரையை அடிக்கின்றது. P,Q இணைந்த கணத்திலிருந்து R தரையை அடிப்பதற்கான நேரம் $\sqrt{\frac{3a}{g}} \left(\frac{2\pi}{3} - \cos^{-1} \left(\frac{3}{4} \right) \right)$ எனக் காட்டுக.

R ஆனது தரையை மோதும் கணத்தில் இழை B ஆனது கணத்தாக்கு எதுவுமின்றி அறுகின்றது எனவும் தரைக்கும் R இற்கும் இடையிலான மீளமைவுக்குணகம் $\sqrt{\frac{3}{7}}$ எனவும் தரப்படின் மோதுகையின் பின்னர் R இன்

கதி \sqrt{ag} எனக் காட்டுக. தொடரும் இயக்கத்தில் OR=y எனின் y ஆனது $\ddot{y}+\frac{g}{8a}(y-12a)=0$ எனும் சமன்பாட்டைத் திருப்தி செய்யும் எனக்காட்டி இவ் எளிய இசை இயக்கத்தின் அலைவு மையத்தையும் வீச்சத்தையும் காண்க.

14. (a) OACB ஆனது $\overrightarrow{OA}=\mathbf{a}$, $\overrightarrow{OB}=\mathbf{b}$ ஆகுமாறுள்ள ஒரு இணைகரம் ஆகும். D ஆனது OA இன் நடுப்புள்ளியும் E ஆனது OB மீது $\overrightarrow{OE}=k\overrightarrow{OB}$ ஆகுமாறும் உள்ள புள்ளிகள் ஆகும். \overrightarrow{OC} , \overrightarrow{DE} ஆகியவற்றை \mathbf{a} , \mathbf{b} ஆகியவற்றின் சார்பில் கண்டு \overrightarrow{OC} . $\overrightarrow{DE}=-\frac{1}{2}\left|\mathbf{a}\right|^2+\left(k-\frac{1}{2}\right)(\mathbf{a}\cdot\mathbf{b})+k\left|\mathbf{b}\right|^2$ எனக் காட்டுக.

 $A\hat{O}B=rac{\pi}{3}$ எனவும் $k=rac{1}{5}$ ஆகவும் உள்ள போது \overrightarrow{OC} , \overrightarrow{DE} ஆகியன ஒன்றுக்கொன்று செங்குத்தானவை எனின் $|\mathbf{b}|=2|\mathbf{a}|$ எனக் காட்டுக.

OC,DE ஆகியன இடைவெட்டும் புள்ளி F ஆகும். $\overrightarrow{OF}=\lambda\overrightarrow{OC}$ எனவும் $\overrightarrow{FE}=\mu\overrightarrow{DE}$ எனவும் கொள்க. முக்கோணி OFE இல் காவிக்கூட்டலைப் பயன்படுத்துவதன் மூலம் $\left(\lambda-\frac{\mu}{2}\right)\mathbf{a}+\left(\lambda+\frac{\mu}{5}-\frac{1}{5}\right)\mathbf{b}=\mathbf{0}$ எனக் காட்டுக.

இதிலிருந்து λ, μ இன் பெறுமானங்களைக் கண்டு F ஆனது OC இனை பிரிக்கும் விகிதத்தைக் காண்க.

(b) ABCDEF ஆனது ஒரு பக்க நீளம் a ஆகவுள்ள ஓர் ஒழுங்கான அறுகோணி ஆகும். $2P, 4P, \alpha P, P, 3P, P$ என்னும் பருமனுடைய விசைகள் முறையே $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}, \overrightarrow{ED}, \overrightarrow{EF}, \overrightarrow{AF}$ வழியே தாக்குகின்றன. இவ் விசைத்தொகுதியின் விளையுள் \overrightarrow{AD} இற்கு சமாந்தரமாக தாக்குகின்றது எனின் α இனைக் கண்டு தொகுதியின் விளையுள் R இன் பருமனைக் காண்க. இவ்விளையுள் விசையினது தாக்கக்கோடு நீட்டப்பட்ட AB ஐ சந்திக்கும் புள்ளிக்கு A இலிருந்து உள்ள தூரத்தைக் காண்க. இவ் விசைத்தொகுதி A இனூடாகத் தாக்கும் R பருமனுடைய ஒரு தனி விசையுடன் பருமன் G உடைய ஓர் இணைக்கு சமவலுவானது எனின் G இன் பருமன், போக்கு ஆகியவற்றை காண்க. $\overrightarrow{CA}, \overrightarrow{FB}$ வழியே முறையே $\beta P, \gamma P$ பருமனுள்ள விசைகளைச் சேர்க்கும்போது தொகுதியானது ஓர்

இணைக்கு ஒடுங்குகின்றது எனின் eta,γ ஆகியவற்றையும் அவ் இணையின் பருமன், போக்கு என்பவற்றையும்

15. (a) ஒவ்வொன்றும் நீளம் 2a ஐ உடைய $AB,\,BC,\,CD$ எனும் சீரான கோல்கள் முனைகள் B, C யில் ஒப்பமாக மூன்று மூட்டப்பட்டுளன. $AB,\,BC,\,CD$ ஆகிய கோல்களின் நிறைகள் முறையே kw, w, 3w ஆகும். முனை A ஒரு கிடை நிலத்தின் மீதுள்ள நிலைத்த புள்ளியில் ஒப்பமாகப் BCபிணைக்கப்பட்டுள்ளது. தொகுதியானது கிடையாகவும் $\hat{DAB} = \hat{ADC} = 60^\circ$ ஆகவும் கோல் CD இன் முனைப் புள்ளி

D ஓர் கரடான கிடைத்தரையின்மீது இருக்குமாறும் உள்ளது. மேலும் படத்தில் காட்டியவாறு கோல்கள் இருக்கும் அதே நிலைக்குத்துத் தளத்தில் B யில் கிடையுடன் 60° சாய்வில் $\frac{w}{2\sqrt{3}}$ பருமனுடைய விசை பிரயோகிக்கப்படுகின்றது. கோல் BC இனால் CD மீது உஞற்றப்படும் மறுதாக்கத்தின் கிடை, நிலைக்குத்துக் கூறுகளைக் கண்டு k=2 எனக் காட்டுக.

D யில் தரையினால் கோல் CD இந்கு வழங்கப்படும் செவ்வன் மறுதாக்கம் $\frac{7w}{2}$ எனக்காட்டி கோலுக்கும் தரைக்கும் இடையிலான உராய்வு விசையைக் காண்க. மேலும் கோல் CD யிற்கும் தரைக்கும் இடையிலான உராய்வுக் குணகம் μ எனத்தரப்படின் தொகுதி சமனிலையில் இருக்கும்போது $\mu \ge \frac{4\sqrt{3}}{21}$ எனக்காட்டுக.

(b) உருவில் காட்டப்பட்டுள்ள சட்டப்படல் அவற்றின் முனைகளில் ஓப்பமாக மூட்டப்பட்ட $AB,\,BC,\,CD,\,DE,BE,\,BD$ எனும் ஆறு சம நீளமுள்ள இலேசான கோல்களைக் கொண்டுள்ளது. 3w, wC,D யில் பருமனுடைய விசைகள் முறையே தாக்கும் அதேவேளை சட்டப்படல் Aயில் ஒரு நிலைத்த புள்ளியில் ஓப்பமாகப் பிணைக்கப்பட்டு E யில் கிடையுடன் 30° சாய்வில் தாக்கும் விசை $P\,,\,\,\,B\,$ யில் நிலைக்குத்தாக மேல்நோக்கி தாக்கும் AB, BC, DEഖിசെ என்பவந்நால் ஆகிய கோல்கள்

விசை Q என்பவந்நால் $AB,\,BC,\,DE$ ஆகிய கோல்கள் கிடையாக இருக்குமாறு நாப்பத்தில் வைக்கப்படுகின்றது. போவின் குறிப்பீட்டைப் பயன்படுத்தி C,D,E,B ஆகிய மூட்டுகளுக்கு ஒரு தகைப்பு வரிப்படத்தை வரைக. **இதிலிருந்து**

- (i) P, Q இன் பெறுமானங்களைக் காண்க.
- (ii) கோல்களில் உள்ள தகைப்புக்களை அவை இழுவைகளா உதைப்புக்களா எனக் குறிப்பிட்டுக் காண்க.
- **16.** (i) உரு-I இல் காட்டப்பட்டவாறு ஆரை R ஐயும் பரப்படர்த்தி ஐயும் உடைய சீரான பொள் அரைக்கோள ஓட்டினை அதன் ഖட்ட விளிம்பிற்கு சமாந்தரமானதும் மையம் O இலிருந்து H தூரத்தில் உள்ளதுமான ஒரு தளத்தினால் வெட்டுவதன் மூலம் அடித்துண்டு ஒன்று பெறப்படுகின்றது. தொகையிடலைப் பயன்படுத்தி இவ் அடித்துண்டின் திணிவு $2\pi RH\sigma$ எனவும் அதன் திணிவு மையம் Oதூரத்தில் இருக்கும் எனவும் காட்டுக.

(ii) உயரம் h ஐ உடைய ஒரு சீரான பொட் செவ்வட்ட கூம்பின் திணிவு மையம் அதன் அடியின் மையத்திலிருந்து தூரம் $rac{1}{3}h$ இல் உள்ளதெனக் காட்டுக.

உரு-II இல் காட்டப்பட்டவாறு σ பரப்படர்த்தியும் 4a ஆரையும் உடைய சீரான பொள் அரைக்கோளத்திலிருந்து பெறப்பட்ட 3a உயரமான அடித்துண்டிற்கு $\sqrt{7}a$ ஆரையும் σ பரப்படர்த்தியும் O' இனை மையமாகவும் கொண்ட சீரான வட்ட தகடு ஒன்று விறைப்பாக பொருத்தப்பட்டு பானை ஒன்றின் அடிப்பகுதி பெறப்படுகின்றது. மேலும் மேல்வட்ட விளிம்பினதும் கீழ்வட்ட விளிம்பினதும் ஆரைகள் முறையே a,4a ஆகவும்

உயரம் 4a , சாயுயரம் 5a ஆகவும் பரப்படர்த்தி σ ஆகவும் உள்ள பொட்கூம்பின் அடித்துண்டு, a ஆரையும் $rac{a}{2}$ உயரமும் 4σ பரப்படர்த்தியும் உடைய பொட் செவ்வட்ட உருளையின் வடிவமுள்ள சீரான மெல்லிய ஓடு

ஆகியவற்றை உரு-II இல் காட்டியவாறு அவற்றின் விளிம்புகள் வழியே விறைப்பாக பொருந்துவதன் மூலம் ஒரு பானை செய்யப்படுகின்றது.

 O^\prime இலிருந்து பானையின் திணிவு மையத்திற்கான தூரம் 3a எனக் காட்டுக.

பானையின் மேல் விளிம்பில் உள்ள ஒரு புள்ளி A யிலிருந்து பானை ஒரு நிலைக்குத்து இழையினால் சுயாதீனமாக தொங்கவிடப்படும்போது நாப்பத்தானத்தில் O' இனூடான அதன் சமச்சீர் அச்சு கீழ்முக நிலைக்குத்துடன் ஆக்கும் கூர்ங்கோணம் $\tan^{-1}\left(\frac{2}{9}\right)$ எனக் காட்டுக.

17. (a) விருந்து நிகழ்வு ஒன்றிற்கு வரும் விருந்தினர்களுக்கு Coke, Pepsi எனும் இருவகையான குளிர்பானங்களில் ஒன்று சிறிய ஒரு கேளிக்கை விளையாட்டின் ஊடாகத் தெரிவுசெய்யப்படுகின்றது. ஜோன் என்பவர் விருந்துக்குச் செல்லும்போது முதலில் ஒரு கோடாத சதுரமுகித் தாயக்கட்டையை எறியுமாறு அறிவுறுத்தப்படுகின்றார். தாயக்கட்டையில் 1 விழுந்தால் குளிர்சாதனப்பெட்டி A யிலிருந்தும் 2 அல்லது 4 விழுந்தால் குளிர்சாதனப்பெட்டி B யில் இருந்தும் 3 அல்லது 5 அல்லது 6 விழுந்தால் குளிர்சாதனப் பெட்டி C யில் இருந்தும் ஓர் குளிர்பானப் போத்தலை எழுமாற்றாகத் தெரிய வேண்டும். ஜோன் சென்றவேளை குளிர்சாதனப் பெட்டிகளில் உள்ள குளிர்பானப் போத்தல்களின் எண்ணிக்கைகள் பின்வருமாறு உள்ளன.

$$A: 6-Coke, 4-Pepsi$$
 $B: 3-Coke, 7-Pepsi$ $C: 2-Coke, 3-Pepsi$

ஜோன் விதிமுறைகளுக்கு அமைய தனக்கான குளிர்பானப் போத்தலைத் தெரிவுசெய்கின்றார். ஜோன் குளிர்சாதனப்பெட்டி $A,\,B,\,C$ ஆகியவற்றைத் தெரிவதற்கான நிகழ்தகவுகளைத் தனித்தனியே காண்க.

ஜோன் Coke மீது அதிக விருப்பமுடையவர் எனின் அவர் விரும்பும் குளிர்பானப் போத்தலைப் பெறுவதற்கான நிகழ்தகவை மொத்த நிகழ்தகவுத் தேற்றத்தைப் பயன்படுத்தி அல்லது வேறுவிதமாகக் காண்க. ஜோன் தனக்கு விருப்பமான குளிர்பானப் போத்தலைப் பெற்றுக்கொண்டார் எனின் அது குளிர்சாதனப் பெட்டி A யிலிருந்து பெருப்பட்டிருப்பதற்கான நிகழ்தகவு 0.25 எனக்காட்டுக.

இதிலிருந்து ஜோன் விரும்பிய குளிர்பானத்தைப் பெற்றுக்கொண்டார் எனின் அது குளிர்சாதனப்பெட்டி B அல்லது C யிலிருந்து பெறப்பட்டிருப்பதற்கான நிகழ்தகவை உய்த்தறிக.

(b) $X = \{x_1, x_2, x_3,x_n\}$ என்பது n எண்ணிக்கையான எண்கள் ஆகும். $Y (\subset X)$ ஆனது X இலிருக்கும் m எண்ணிக்கையான எண்களைக் கொண்ட தொடை ஆகும். Z ஆனது தொடை X இலிருந்து தொடை Y இல் உள்ள எண்களை நீக்குவதன் மூலம் பெறப்படுகின்றது. $Y = \{y_1, y_2,y_m\}$ எனவும் $Z = \{z_1, z_2,z_{n-m}\}$ எனவும் கொள்க. தொடை X இன் இடை, நியம விலகல் முறையே μ_x , σ_x எனவும் தொடை Y இன் இடை, நியம விலகல் முறையே μ_y , σ_y எனவும் கொள்க.

தொடை Z இல் உள்ள n-m எண்ணிக்கையான எண்களின் இடை $\mu_z = \frac{n\mu_x - m\mu_y}{n-m}$ எனக்காட்டுக.

மேலும்
$$d_1=\mu_z-\mu_x$$
 எனின் $\sum_{i=1}^n(x_i-\mu_z)^2=n(\sigma_x^{\ 2}+d_1^{\ 2})$ எனக் காட்டுக.

மேலும் $d_2=\mu_z-\mu_y$ எனின் $\sum_{i=1}^m (y_i-\mu_z)^2$ இந்கு இயல்பொத்த கோவை ஒன்றை எழுதுக.

இதிலிருந்து
$$\sigma_z^2 = \frac{n(\sigma_x^2 + d_1^2) - m(\sigma_y^2 + d_2^2)}{n - m}$$
 என உய்த்தறிக.

அணு உலை ஒன்றின் வெளி வெப்பநிலை 120 நாட்களுக்கு தொடர்ச்சியாக அளக்கப்பட்டு அதன் இடை, நியம விலகல் என்பன முறையே $42^{\circ}C$, $4^{\circ}C$ எனக் கணிக்கப்பட்டது. உபகரணங்களை சரிபார்க்க வந்த தொழில்நுட்ப உத்தியோகத்தர் வெப்பமானி பழுதடைந்திருப்பதை அவதானித்து இறுதி 20 நாட்களாகப் பெறப்பட்ட அளவீடு பிழையானது எனத் தெரிவிக்கின்றார். இறுதி 20 நாட்கள் பெறப்பட்ட பிழையான வாசிப்புகளின் இடை, நியம விலகல் முறையே $37^{\circ}C$, $2^{\circ}C$ எனத் தரப்படின் முதல் 100 நாட்களில் பெறப்பட்ட சரியான வாசிப்புகளின் இடை, நியம விலகல் ஆகியவற்றைக் காண்க.