Limites de suites Terminale S

Lycée Pierre Mendes France - Tunis

Table des matières

1	Définitions	:
	1.1 Limite finie et suites convergentes	
	1.2 Suites divergentes	
2	Limites et opérations	4
	2.1 Somme	
	2.2 Produit	
	2.3 Quotient	
3	Limites et comparaisons	
	3.1 Limite infinie	
	3.2 Limite finie	
4	Suites géométriques, suites monotones	9
	4.1 Suites du type (q^n)	
	4.2 Suites monotones	

1 Définitions

1.1 Limite finie et suites convergentes

Définition 1

Soit ℓ un réel. On dit qu'une suite (u_n) a pour limite ℓ quand n tend vers $+\infty$ lorsque tout intervalle ouvert contenant ℓ contient tous les termes u_n à partir d'un certain rang. On dit alors que (u_n) est une suite **convergente** et converge vers ℓ .

Reformulation.

Cette définition revient à dire que la suite (u_n) converge vers ℓ lorsque, pour tout r > 0, il existe un rang N tel que pour tout $n \ge N$, $|u_n - \ell| < r$. $|u_n - \ell|$ désigne la distance de u_n à ℓ .

Illustration.

Propriété 1

Démonstration. Accrochez-vous...

La limite d'une suite (u_n) convergente est **unique**. On note $\lim_{n\to+\infty} u_n = \ell$.

Propriété 2 (Admise)

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \text{ et } \lim_{n \to +\infty} \frac{1}{n^k} = 0, \text{ où } k \text{ est un entier naturel non nul.}$$

1.2 Suites divergentes

Définition 2

On dit qu'une suite est divergente lorsqu'elle n'est pas convergente (tout simplement).

Définition 3

Une suite (u_n) tend vers $+\infty$ lorsque tout intervalle de la forme $[A; +\infty[$ contient tous les termes u_n à partir d'un certain rang.

On note
$$\lim_{n\to+\infty} u_n = +\infty$$
.

Reformulation.

Cette définition revient à dire que la suite (u_n) diverge vers $+\infty$ lorsque, pour tout tout réel A, il existe un rang N tel que pour tout $n \ge N$, $u_n \ge A$.

Illustration.

Exercice à faire à la maison.	
Énoncer une définition similaire pour $\lim_{n\to+\infty}u_n=-\infty$.	

Remarque.

Certaines suites n'ont pas de limites, par exemple la suite (u_n) définie pour tout entier n par $u_n = (-1)^n$.

De telles suites sont bien divergentes, puisqu'elles ne sont pas convergentes.

Il existe donc deux types de suites divergentes, celles qui tendent vers l'infini, et celles qui n'ont pas de limite.

Propriété 3 (Admise)

$$\lim_{n \to +\infty} \sqrt{n} = +\infty \text{ et } \lim_{n \to +\infty} n^k = +\infty, \text{ où } k \text{ est un entier naturel non nul.}$$

2 Limites et opérations

Dans cette partie, (u_n) et (v_n) désignent deux suites; ℓ et ℓ' sont deux réels. Les symbole ∞ , s'il se présente seul, désigne soit $+\infty$, soit $-\infty$.

2.1 Somme

Propriété 4 (Admise)

$Si \lim_{n \to +\infty} u_n =$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
$et \lim_{n \to +\infty} v_n =$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$alors \lim_{n \to +\infty} (u_n + v_n) =$						

2.2 Produit

Propriété 5 (Admise)

$Si \lim_{n \to +\infty} u_n =$	ℓ	$\ell \neq 0$	∞	0
$et \lim_{n \to +\infty} v_n =$	ℓ'	∞	∞	∞
$alors \lim_{n \to +\infty} (u_n \times v_n) =$				

2.3 Quotient

Propriété 6 (Admise)

$Si \lim_{n \to +\infty} u_n =$	ℓ	$\ell \neq 0$	∞	ℓ ou ∞	0	∞
$et \lim_{n \to +\infty} v_n =$	$\ell' \neq 0$	∞	$\ell' \neq 0$	0 avec v_n de signe constant	0	∞
$alors \lim_{n \to +\infty} \frac{u_n}{v_n} =$						

Exercice.

Déterminer, en justifiant rigoureusement, les limites suivantes.

$1. \lim_{n \to +\infty} n^2 + n - 6$	$4. \lim_{n \to +\infty} \frac{2n-4}{3+n}$
$2. \lim_{n \to +\infty} (2 - 5n) \sqrt{n}$	
3. $\lim_{n \to +\infty} n^2 - 10n + 5$	5. $\lim_{n \to +\infty} \frac{5n^2 - n}{n^3 + 1}$
•••••	

3 Limites et comparaisons

3.1 Limite infinie

Théorème 1	(dit théorème	de comparaison)
------------	---------------	-----------------

Soit N un entier naturel.
Soient (u_n) et (v_n) deux suites telles que, pour tout $n \geq N$ (à partir du rang N en fait),
$u_n \leq v_n$.
• $Si \lim_{n \to +\infty} u_n = +\infty$, $alors \lim_{n \to +\infty} v_n = \dots$
G:
• Si
Exemple.
Déterminer $\lim_{n \to +\infty} n + \cos(n)$.
Démonstration.

3.2Limite finie

Théorème 2 (dit théorème des gendarmes ou théorème sandwich. Admis.) Soit N un entier naturel et soit ℓ un réel. Soient (u_n) , (v_n) et (w_n) trois suites telles que, pour tout $n \geq N$ (à partir du rang N en fait), $u_n \leq v_n \leq w_n$. Si (u_n) et (w_n) convergent vers la même limite ℓ , alors . . . Illustration Les deux propriétés qui suivent sont moins utilisées. Propriété 7 Soient N un entier naturel, ℓ et ℓ' deux réels. Soient (u_n) et (v_n) deux suites telles que, pour tout $n \geq N$, $u_n \leq v_n$. Si (u_n) et (v_n) convergent vers ℓ et ℓ' respectivement, alors . . . Propriété 8 Soit ℓ un réel et (u_n) une suite définie pour tout entier naturel n. • Si (u_n) est croissante et converge vers ℓ , alors, pour tout $n \in \mathbb{N}$, $u_n \leq \ell$. • Si Exercice à faire à la maison. Démontrer les deux propriétés. Exercice. Déterminer les limites suivantes :

$1. \lim_{n \to +\infty} n + \sqrt{\frac{1}{n+1}}$	$3. \lim_{n \to +\infty} \frac{1}{n + \cos(n)}$
2. $\lim_{n \to +\infty} -n^2 + (-1)^n$	4. $\lim_{n \to +\infty} 1 + \frac{2 + (-1)^n}{n^2 + 1}$

4 Suites géométriques, suites monotones

4.1	Suites du type (q^n)
Pro	opriété 9
	Soit q un réel.
	1. Si $q \leq -1$, alors la suite (q^n)
	2. $Si-1 < q < 1$, alors la suite (q^n)
	3. Si $q = 1$, alors la suite (q^n)
	4. Si $q > 1$, alors la suite (q^n)
Ex	 emple 1.
Dát	terminar $\lim_{n \to \infty} \frac{1}{n}$ at $\lim_{n \to \infty} \frac{5^n}{n}$
	terminer $\lim_{n \to +\infty} \frac{1}{2^n}$ et $\lim_{n \to +\infty} \frac{5^n}{3^{n+1}}$
• • •	
	emple 2. \mathbb{N} dier la convergence de chacune des suites suivantes définies sur \mathbb{N} .
	1. (w_n) , suite géométrique de raison $-\frac{5}{3}$ et de premier terme égal à 5.
	2. (z_n) , suite géométrique de raison e et de premier terme égal à -2.
• • •	
• • •	
• • •	

4.2	Suites	monotones

Soit (u_n) une suite de nombres réels. Soient M et m deux réels.
Théorème 3 (Théorème de convergence monotone. Très utilisé. Admis)
• Si la suite (u_n) est croissante et majorée, alors elle est
• Si la suite (u_n)
Remarque. Éviter le piège suivant. Le théorème assure l'existence de la limite ℓ , mais ne donne pas la valeur de ℓ .
$rac{ ext{Th\'eor\`eme 4}}{ ext{Th\'eor\'eme 4}}$
• $Si(u_n)$ est croissante et non majorée, alors (u_n)
• $Si(u_n)$ est décroissante et non minorée, alors
Exercice.
Soit la suite (u_n) définie par $u_0 = 4$ et, pour tout entier naturel n , $u_{n+1} = \frac{1}{2}u_n + 1$.
1. Montrer par récurrence que la suite (u_n) est minorée par 2.
2. En déduire que la que (u_n) est décroissante.
3. Que peut-on en déduire?