

National School of Business Management

BSc in Software Engineering / Computer Networks / Computer Security (Plymouth)

BSc in Management Information Systems

BSc in Computer Science Degrees – 16.1 / 16.2

1st Year 1st Semester

Mathematics-1: Sample Paper

Calculators are allowed.

Answer any 5 questions.

Time: 3 hours

Date: xx/xx/xxxx

Question 1 (Set Theory)

[20 marks]

- 1. Fill in the blanks with \in , \notin , \subseteq , = or \neq . Recall that Z is the set of all integers and φ is the empty set. (5 marks)
- 2. Given the universal set $U = \{a, b, c, d, e, f, g, h, i, j\}$, $A = \{a, e, i\}$, $B = \{b, c, d, f, g, h, j\}$, $C = \{b, d, e, h, i\}$, $D = \{2,3\}$ find the following.

i.	$A \cap C$	(2 marks)
ii.	B ∩ (A ∪ C')	(2 marks)
iii.	A' – C'	(2 marks)
iv.	AxD	(2 marks)
٧.	Find all subsets of A.	(3 marks)

In a class of 30 students, 21 students like Science, 16 like English, 6 students do not like
 Science or English. How many Students like both Science and English? (4 marks)

Question 2 (Propositional Logic)

[20 marks]

- 1. Given that p, q and r are propositions, construct truth tables and verify the following:
 - i. $\sim (p \lor q) = \sim p \land \sim q$ (4 marks)
 - ii. $p \wedge (q \wedge r) = (p \wedge q) \wedge r$ (4 marks)
 - iii. $\sim ((p \lor q) \land r) = (\sim p \land \sim q) \lor \sim r$ (4 marks)
- 2. Determine whether the following compound propositions are tautologies, contradictions or contingent propositions?
 - i. $p \land (q \land \sim q)$ (4 marks)
 - ii. $p \le (\sim p \land q)$ (4 marks)

Question 3 (Matrix Algebra)

[20 marks]

If $A = \begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ -5 & 1 \end{bmatrix}$

- 1. Find the following:
 - i. A + B (2 marks)
 - ii. Determinant of A B (3 marks)
 - iii. AB (3 marks)
- 2. Solve the following system of linear equations using matrix inversion. (12 marks)

$$3x - y + z = 8$$

 $x - 3y + 2z = 9$
 $-x + y - 4z = -1$

Question 4 (Coordinate Geometry)

[20 marks]

- 1. The general form of the equation of a straight line(L_1) is 6x-2y-5=0.
 - i. Write L_1 in y=mx+c format. (2 marks)
 - ii. What is the slope? (2 marks)
 - iii. What is the intercept? (2 marks)
 - iv. Find the line equation parallel to L_1 going through the point (5, 2) (2 marks)
- 2. Suppose the lines L_1 : 2x y 3 = 0, L_2 : x + 2y 4 = 0, and L_3 : 7x + 4y 48 = 0 are sides of a triangle. Answer the questions given below.
 - i. Find the vertices of the triangle. (4 marks)
 - ii. Find the equation of the circle that goes through the above three vertices.

(6 marks)

iii. Hence show that the radius of the circle is given by $\frac{\sqrt{65}}{2}$ (2 marks)

Question 5(Logarithms)

[20 marks]

- 1. Use the Laws of Logarithms to expand each expression.
 - i. $\log_3 3x^2$ (2 marks)
 - ii. $\log_2(x^2y^{-3})$ (3 marks)
 - iii. $\ln\left(\frac{a^2\sqrt{b^3}}{\sqrt[5]{c^2}}\right)$ (3 marks)
- 2. Evaluate the following:
 - i. $\log_7 5$ (4 marks)
 - ii. $\log_3 81 \log_5 0.008 \log_8 0.125$ (4 marks)

3. Solve the following equation

$$2\log_2(x+15) - \log_2 x = 6$$
 (4 marks)

Question 6 20 marks

- 1. Briefly describe 'Median' and 'Mode' giving examples? (2 marks)
- 2. The scores of a batsman who played 11 consecutive 20 over matches in a tournament are given below.

Find the following:

a. Median (2 marks)

b. Mode (2 marks)

c. Interquartile range (3 marks)

3. The table given below is a frequency distribution that shows the profit made by 100 businesses.

Profit (Rs.)	Number of companies
20,000 – 30,000	12
30,000 – 40,000	20
40,000 – 50,000	35
50,000 – 60,000	25
60,000 – 70,000	8

Calculate the following statistical parameters:

a. Median (3 marks)

b. Mode (3 marks)

c. Standard Deviation. (5 marks

Note: Median, Mode and Standard Deviation for grouped data are calculated as follows:

$$Median = L + \frac{(\frac{n}{2}) - m}{f} \times c \quad Mode = L + \frac{(f_1 - f_0)}{(f_1 - f_0) + (f_1 - f_2)} \times c \quad Std = \sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{n - 1}}$$