Funkcie

Educat - vzdelávacie centrum

23. januára 2024

Obsah

1	Teória k funkciám		1
	1.1	Spôsoby určenia funkcie	2
	1.2	Určovanie definičného oboru a oboru hodnôt	2
	1.3	Vlastnosti funkcií	2
	1.4	Extrémy funkcií	4
2	Cvičenia k funkciám		4
	2.1	Rozhodovačka	4
1	l Teória k funkciám		

Definícia 1 (Funkcia reálnej premennej). Funkciou reálnej premennej na množine $A \subseteq \mathbb{R}$ sa nazýva predpis, ktorým je každému prvku množiny A priradené práve jedno reálne číslo, ktoré nazývame funkčnou hodnotou.

Definícia 2 (Definičný obor). Množina $A \subseteq \mathbb{R}$, ktorej prvkom funkcia priradzuje ich funkčné hodnoty, sa nazýva definičný obor funkcie f a značí sa D(f).

Definícia 3 (Obor hodnôt). Množina $Y \subseteq R$, ktorej prvky sú priradené funkciou f jej definičnému oboru, sa nazýva obor hodnôt a značí sa H(f).

1.1 Spôsoby určenia funkcie

Funkciu reálnej premennej vieme graficky zobraziť v pravouhlej sradnicovej sústave. Jednotlivé body [x,y] v rovine pritom spĺňajú podmienku, že y=f(x). Takéto zobrazenie sa potom nazýva grafom funkcie f. Samotnú funkciu potom vieme určiť nasledovnými spôsobmi.

- 1. predpisom, napr. f: y = 3x 5 alebo iný zápis je f(x) = -6x + 11
- 2. vymenovaním svojich prvkov. Napr. $f = \{[2,4], [3,7], [5,11]\}$. Je to teda množina bodov v rovine.
- 3. tabuľkou . Napr.:

 x
 1
 2
 3
 4

 y
 2
 4
 8
 16
- 4. slovným opisom . Napr.: Funkcia f priraďuje každému prirodzenému číslu jeho dvojnásobok.
- 5. grafom. Napr:

1.2 Určovanie definičného oboru a oboru hodnôt

1.3 Vlastnosti funkcií

Definícia 4 (Párnosť funkcie). Funkcia f sa nazýva párnou, ak $\forall x, -x \in D(f): f(x) = f(-x)$.

Graf párnej funkcie je symetrický (dá sa zrkadlovo preklopiť) podľa y-ovej osi.

Definícia 5 (Nepárnosť funkcie). Funkcia f sa nazýva nepárnou ak $\forall x, -x \in D(f): f(x) = -f(-x)$.

Graf nepárnej funkcie je symetrický podľa počiatku súradnicovej sústavy.

Definícia 6. Funkcia f je na množine $M \subseteq D(f)$

- 1. rastúca ak $\forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- 2. klesajúca ak $\forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$
- 3. $\lceil \text{neklesajúca} \rceil$ ak $\forall x_1, x_2 \in M : x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$
- 4. nerastúca ak $\forall x_1, x_2 \in M : x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$

Ak je funkcia rastúca/klesajúca/neklesajúca/nerastúca na celom jej definičnom obore, tak skrátene hovoríme, že je rastúca/klesajúca/neklesajúca/nerastúca.

Definícia 7 (Monotónnosť). Ak je funkcia na celom definičnom obore iba rastúca, klesajúca, nelesajúca alebo nerastúca, tak ju nazývame monotónnou

Definícia 8 (Rýdza monotónnosť). Ak je funkcia na celom definičnom obore iba rastúca alebo iba klesajúca, tak ju nazývame rýdzo monotónnou.

Definícia 9 (Prostosť). Funkcia, sa nazýva prostá ak $\forall x_1, x_2 \in D(f) : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Definícia 10 (Ohraničenosť). Funkcia f sa nazýva

- 2. zhora ohraničená ak $\exists d \in \mathbb{R} : \forall y \in H(f) \ y \geq d$
- 3. ohraničená ak je ohraničená zdola aj zhora.

1.4 Extrémy funkcií

2 Cvičenia k funkciám

2.1 Rozhodovačka

https://gymmoldava.sk/ICV/CELYWEB/2/FUNKCIE/jefciatabulky.htm https://gymmoldava.sk/ICV/CELYWEB/2/FUNKCIE/jefciaAF.htm

Pre jednotlivé predpisy urči, či predstavujú funkciu, alebo nie.

1.
$$f = \{[-1, 2], [0, 0], [1, 2], [2, 3]\}$$

2.
$$g = \{[-1, 0], [0, -1], [-1, 1], [1, -1]\}$$

5. j:

6. *k* :

