Edge crossings in random arrangements

Presented by Lluís Alemany Puig

LARCA
COMPUTER SCIENCE DEPARTMENT
FACULTAT D'INFORMÀTICA DE BARCELONA (FIB)
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) - BarcelonaTech

18th December 2019

Joint research of

Mercè Mora¹

Carlos Gómez²

- 1 Universitat Politècnica de Catalunya
- 2 Universidade da Coruña
- Alemany-Puig, Ferrer-i-Cancho. Edge crossings in random arrangements. Journal of Statistical Mechanics. In press.
- Alemany-Puig, Mora, Ferrer-i-Cancho. Reappraising the distribution of the number of crossings of graphs on a sphere. In prep.
- Alemany-Puig, Ferrer-i-Cancho. Fast calculation of the variance of edge crossings in random linear arrangements. In prep.

Motivation

• Quantitative Linguistics: D vs C.

 D_{min} is the solution to the minimum linear arrangement problem.

Motivation

• Quantitative Linguistics: D vs C.

$$D_{z} = \frac{D - \mathbb{E}_{rla}[D]}{\sqrt{\mathbb{V}_{rla}[D]}}$$

$$C_{z} = \frac{C - \mathbb{E}_{rla}[C]}{\sqrt{\mathbb{V}_{rla}[C]}}$$

ullet Computation of $\mathbb{V}_{\textit{rla}}[\mathit{C}]$ in [Alemany-Puig and Ferrer-i-Cancho, 2019]

Motivation

ullet Generalisation to other embeddings - From $\mathbb{V}_{\textit{rla}}[\mathit{C}]$ to $\mathbb{V}_*[\mathit{C}]$

$$\mathbb{V}[C] = \mathbb{E}[(C - \mathbb{E}[C])^2]$$

In [Alemany-Puig and Ferrer-i-Cancho, 2020]

• Correction of previous work [Moon, 1965].

In [Alemany-Puig et al., 2020]

Concepts and notation

 $\mathbb{E}_*[C]$, $\mathbb{V}_*[C]$: expectation/variance of C in an **arbitrary layout *** such that

- **1** Only independent edges can cross, edges $\{s,t\}=st\in E, \{u,v\}=uv\in E$ are independent iff $\{s,t\}\cap \{u,v\}=\emptyset$. Then, $\{st,uv\}\in Q$.
- 2 two edges can cross only once, and
- **3** our notion of crossings is edge-pairwise defined. (e edges crossing at the same point incur in $\binom{e}{2}$ crossings)

Examples of layouts

- *: arbitrary layout, $\mathbb{E}_*[C]$, $\mathbb{V}_*[C]$.
- rla: random linear arrangement, $\mathbb{E}_{rla}[C]$, $\mathbb{V}_{rla}[C]$.
- rsa: random spherical arrangement, $\mathbb{E}_{rsa}[C]$, $\mathbb{V}_{rsa}[C]$.
- rap: random arrangement on the plane, $\mathbb{E}_{rap}[C]$, $\mathbb{V}_{rap}[C]$.

$\mathbb{V}_*[C]$, the variance of C in any layout Expectation

Given $\{st, uv\} \in Q$, let $\alpha(st, uv) = 1$ iff edges st and uv cross.

$$C = \sum_{\{st,uv\} \in Q} \alpha(st,uv),$$

$$\mathbb{E}_* [C] = \sum_{\{st,uv\} \in Q} \mathbb{E}_* [\alpha(st,uv)]$$

$$= |Q|\delta_*$$

 δ_* : probability that two independent edges cross in *. Example: $\delta_{\textit{rla}} = 1/3$, $\delta_{\textit{rsa}} = 1/8$ [Moon, 1965].

$\mathbb{V}_*[C]$, the variance of C in any layout V_{variance}

$$\mathbb{V}_*\left[C\right] = \mathbb{E}_*\left[\left(C - \mathbb{E}_*\left[C\right]\right)^2\right]$$

$\mathbb{V}_*[C]$, the variance of C in any layout V_{Ariance}

$$\mathbb{V}_* [C] = \mathbb{E}_* \left[(C - \mathbb{E}_* [C])^2 \right]$$

$$= \mathbb{E}_* \left[\left(\sum_{\{st, uv\} \in Q} \alpha(st, uv) - |Q| \delta_* \right)^2 \right]$$

$\mathbb{V}_*[C]$, the variance of C in any layout V_{variance}

$$\begin{aligned} \mathbb{V}_* \left[C \right] &= \mathbb{E}_* \left[\left(C - \mathbb{E}_* \left[C \right] \right)^2 \right] \\ &= \mathbb{E}_* \left[\left(\sum_{\{st, uv\} \in Q} \alpha(st, uv) - |Q| \delta_* \right)^2 \right] \\ &= \sum_{\{st, uv\} \in Q} \sum_{\{wx, vz\} \in Q} \mathbb{E}_* \left[\alpha(st, uv) \alpha(wx, yz) - \delta_*^2 \right] \end{aligned}$$

$\mathbb{V}_*[C]$, the variance of C in any layout V_{Ariance}

$$\begin{split} \mathbb{V}_*\left[C\right] &= \mathbb{E}_*\left[\left(C - \mathbb{E}_*\left[C\right]\right)^2\right] \\ &= \mathbb{E}_*\left[\left(\sum_{\{st,uv\} \in Q} \alpha(st,uv) - |Q|\delta_*\right)^2\right] \\ &= \sum_{\{st,uv\} \in Q} \sum_{\{wx,yz\} \in Q} \mathbb{E}_*\left[\alpha(st,uv)\alpha(wx,yz) - \delta_*^2\right] \\ &= \sum_{\omega \in \Omega} f_{\omega} \mathbb{E}_*\left[\gamma_{\omega}\right], \end{split}$$

Variance - Analysing the terms

$$\begin{split} \mathbb{V}_* \left[C \right] &= \sum_{\{st, uv\} \in Q} \sum_{\{wx, yz\} \in Q} \mathbb{E}_* \left[\alpha(st, uv) \alpha(wx, yz) - \delta_*^2 \right] \\ &= \sum_{\omega \in \Omega} f_\omega \mathbb{E}_* \left[\gamma_\omega \right] \end{split}$$

The variance is a weighted sum of

• Graph-dependent terms: f_{ω} , the amount of products $\alpha(st, uv)\alpha(wx, yz) \longrightarrow 9$ types

$$\Omega = \{00,01,021,022,03,04,12,13,24\}$$

• Layout-dependent terms:

$$\mathbb{E}_* \left[\gamma_\omega \right] = \mathbb{E}_* \left[\alpha(\mathsf{st}, \mathsf{uv}) \alpha(\mathsf{wx}, \mathsf{yz}) \right] - \delta_*^2$$
$$= \rho_{*, \omega} - \delta_*^2$$

$\mathbb{V}_*\left[\mathit{C}\right]$, the variance of C in any layout

The types of products

Classifying $\alpha(st, uv)\alpha(wx, yz)$

$$\tau = 0 \phi = 0 \qquad \tau = 0 \phi = 1 \qquad \tau = 0 \phi = 2 \text{ subtype 1} \qquad \tau = 0 \phi = 2 \text{ subtype 2} \qquad \tau = 0 \phi = 3$$

$$st \qquad wx \qquad st \qquad 1 \qquad sw \qquad st \qquad 1 \qquad sw \qquad st \qquad 1 \qquad sw$$

$$wv \qquad yz \qquad wv \qquad wx \qquad wv \qquad 1 \qquad wv \qquad 1 \qquad vw$$

$$\tau = 0 \phi = 4 \qquad \tau = 1 \phi = 2 \qquad \tau = 1 \phi = 3 \qquad \tau = 2 \phi = 4$$

$$st \qquad 1 \qquad sv \qquad st \qquad 2 \qquad st \qquad st \qquad 2 \qquad st$$

$$wv \qquad 1 \qquad vv \qquad 1 \qquad vv \qquad 1 \qquad vv$$

$$vv \qquad 1 \qquad vv \qquad 1 \qquad vv \qquad 1 \qquad vv$$

s, t, u, v, w, x, y, z represent different vertices.

The types of products

Classifying $\alpha(st, uv)\alpha(wx, yz)$

$\omega \in \Omega$	$({e_1, e_2}, {e_3, e_4})$	au	ϕ	$p_{{ m rla,}~\omega}$	$\mathbb{E}_{ extit{rla}}\left[\gamma_{\omega} ight]$
00	$(\{st, uv\}, \{wx, yz\})$	0	0	1/9	0
24	$(\{st, uv\}, \{st, uv\})$	2	4	1/3	2/9
13	$(\{st, uv\}, \{st, uw\})$	1	3	1/6	1/18
12	$(\{st, uv\}, \{st, wx\})$	1	2	2/15	1/45
04	$(\{st,uv\},\{su,tv\})$	0	4	0	-1/9
03	$(\{st, uv\}, \{su, vw\})$	0	3	1/12	-1/36
021	$(\{st, uv\}, \{su, wx\})$	0	2	1/10	-1/90
022	$(\{st, uv\}, \{sw, ux\})$	0	2	7/60	1/180
01	$(\{st,uv\},\{sw,xy\})$	0	1	1/9	0

where

$$p_{*, \omega} = \mathbb{P}r\left[\alpha(e_1, e_2)\alpha(e_3, e_4) = 1\right]$$

with $\{e_1, e_2\}, \{e_3, e_4\} \in Q$.

The types of products

Classifying $\alpha(st, uv)\alpha(wx, yz)$: subgraphs

$$\mathbb{P}r\left[\alpha(e_1,e_2)\alpha(e_3,e_4)=1\right]$$

$$f_{\omega}=a_{\omega}n_G(F_{\omega})$$

$\omega\in\Omega$	a_{ω}	F_{ω}
00	6	$\mathcal{L}_2 \oplus \mathcal{L}_2 \oplus \mathcal{L}_2 \oplus \mathcal{L}_2$
24	1	$\mathcal{L}_2 \oplus \mathcal{L}_2$
13	2	$\mathcal{L}_3 \oplus \mathcal{L}_2$
12	6	$\mathcal{L}_2 \oplus \mathcal{L}_2 \oplus \mathcal{L}_2$
04	2	\mathcal{C}_{4}
03	2	\mathcal{L}_5
021	2	$\mathcal{L}_4 \oplus \mathcal{L}_2$
022	4	$\mathcal{L}_3 \oplus \mathcal{L}_3$
01	4	$\mathcal{L}_3 \oplus \mathcal{L}_2 \oplus \mathcal{L}_2$

Probabilities of the types of products

$$p_{*,\,\omega}=\mathbb{P}[lpha(\mathit{st},\mathit{uv})lpha(\mathit{wx},\mathit{yz})=1]$$
, for $lpha(\mathit{st},\mathit{uv})lpha(\mathit{wx},\mathit{yz})$ of type ω

$$p_{*,00} = \delta_{*}^{2},$$
 $E_{*} [\gamma_{00}] = 0,$ $p_{*,01} = \delta_{*}^{2},$ $E_{*} [\gamma_{01}] = 0,$ $p_{*,24} = \delta_{*},$ $E_{*} [\gamma_{01}] = 0,$ $E_{*} [\gamma_{02}] = \delta_{*}(1 - \delta_{*}),$ $E_{rla} [\gamma_{04}] = -\delta_{rla}^{2},$ $p_{rap,04} = 0,$ $E_{rap} [\gamma_{04}] = -\delta_{rap}^{2},$ $p_{rsa,04} = 0,$ $E_{rsa} [\gamma_{04}] = -\delta_{rsa}^{2}.$

Variance in types of graphs with known structure

$$\mathbb{V}_*\left[C\right] = \sum_{\omega \in \Omega} f_\omega \mathbb{E}_*\left[\gamma_\omega\right]$$

Complete graphs Complete bipartite graphs Cycle graphs Path graphs

...

Variance in types of graphs with known structure

$$\mathbb{V}_*\left[C\right] = \sum_{\omega \in \Omega} f_\omega \mathbb{E}_*\left[\gamma_\omega\right]$$

Complete graphs

$$\begin{split} \mathbb{V}_* \left[C(\mathcal{K}_n) \right] &= 3 \binom{n}{4} ((n-4)(n-5)(\mathbb{E}_* \left[\gamma_{12} \right] + 4(\mathbb{E}_* \left[\gamma_{021} \right] + \mathbb{E}_* \left[\gamma_{022} \right])) \\ &+ 4(n-4)(\mathbb{E}_* \left[\gamma_{13} \right] + 2\mathbb{E}_* \left[\gamma_{03} \right]) \\ &+ 2\mathbb{E}_* \left[\gamma_{04} \right] + \mathbb{E}_* \left[\gamma_{24} \right]) \\ \mathbb{V}_{\textit{rla}} \left[C(\mathcal{K}_n) \right] &= 0 \end{split}$$

Complete bipartite graphs Cycle graphs Path graphs

...

Variance in types of graphs with known structure

$$\mathbb{V}_*\left[C\right] = \sum_{\omega \in \Omega} f_\omega \mathbb{E}_*\left[\gamma_\omega\right]$$

Complete graphs
Complete bipartite graphs

$$\begin{split} \mathbb{V}_{*}\left[C(\mathcal{K}_{n_{1},n_{2}})\right] &= 2(\mathbb{E}_{*}\left[\gamma_{24}\right] + \mathbb{E}_{*}\left[\gamma_{04}\right])\binom{n_{1}}{2}\binom{n_{2}}{2} \\ &+ 12(\mathbb{E}_{*}\left[\gamma_{03}\right] + \mathbb{E}_{*}\left[\gamma_{13}\right])\left[\binom{n_{1}}{3}\binom{n_{2}}{2} + \binom{n_{1}}{2}\binom{n_{2}}{3}\right] \\ &+ 36(\mathbb{E}_{*}\left[\gamma_{12}\right] + \mathbb{E}_{*}\left[\gamma_{022}\right] + 2\mathbb{E}_{*}\left[\gamma_{021}\right])\binom{n_{1}}{3}\binom{n_{2}}{3} \\ &+ 24\mathbb{E}_{*}\left[\gamma_{022}\right]\left[\binom{n_{1}}{2}\binom{n_{2}}{4} + \binom{n_{1}}{4}\binom{n_{2}}{2}\right] \\ \mathbb{V}_{\textit{rla}}\left[C(\mathcal{K}_{n_{1},n_{2}})\right] &= \frac{1}{90}\binom{n_{1}}{2}\binom{n_{2}}{2}((n_{1}+n_{2})^{2} + n_{1} + n_{2}) \end{split}$$

Cycle graphs Path graphs

Variance in types of graphs with known structure

$$\mathbb{V}_*\left[C\right] = \sum_{\omega \in \Omega} f_\omega \mathbb{E}_*\left[\gamma_\omega\right]$$

Complete graphs Complete bipartite graphs Cycle graphs

$$\begin{split} \mathbb{V}_* \left[C(\mathcal{C}_n) \right] &= \frac{1}{2} n (4(n-4) \mathbb{E}_* \left[\gamma_{13} \right] + (n-3) \mathbb{E}_* \left[\gamma_{24} \right] + 4 \mathbb{E}_* \left[\gamma_{03} \right] \\ &+ (n-5) [2(n-4) \mathbb{E}_* \left[\gamma_{12} \right] + 4 (\mathbb{E}_* \left[\gamma_{021} \right] + \mathbb{E}_* \left[\gamma_{022} \right])]) \\ \mathbb{V}_{rla} \left[C(\mathcal{C}_n) \right] &= \frac{1}{45} n^3 + \frac{1}{90} n^2 - \frac{1}{3} n \end{split}$$

Path graphs

...

Variance in types of graphs with known structure

$$\mathbb{V}_*\left[C\right] = \sum_{\omega \in \Omega} f_\omega \mathbb{E}_*\left[\gamma_\omega\right]$$

Complete graphs Complete bipartite graphs Cycle graphs Path graphs

$$\begin{split} \mathbb{V}_* \left[C(\mathcal{L}_n) \right] &= \frac{1}{2} (4(n-3)(n-4) \mathbb{E}_* \left[\gamma_{13} \right] + (n-2)(n-3) \mathbb{E}_* \left[\gamma_{24} \right] + 4(n-4) \mathbb{E}_* \left[\gamma_{03} \right] \\ &+ (n-4)(n-5)(2(n-3) \mathbb{E}_* \left[\gamma_{12} \right] + 4(\mathbb{E}_* \left[\gamma_{021} \right] + \mathbb{E}_* \left[\gamma_{022} \right]))) \\ \mathbb{V}_{\textit{rla}} \left[C(\mathcal{L}_n) \right] &= \frac{1}{45} n^3 - \frac{1}{18} n^2 - \frac{11}{45} n + \frac{2}{3} \end{split}$$

. . .

Computation of $V_*[C]$

Complexity

	Cost		
Algorithm	Time	Space	
Naive algorithm Fast algorithm (general graphs)	$O\left(m^4\right) \\ O\left(k_{max}n\langle k^2\rangle\right)$	O(1) O(n)	

where

$$k_{max}$$
: max degree, $n\langle k^2 \rangle = \sum_{u \in V} k_u^2$, $O\left(k_{max} n\langle k^2 \rangle\right) = o\left(nm^2\right)$

Computation of $V_*[C]$

$$\begin{split} f_{24} &= q \\ f_{13} &= K - 4q - 2n_G(\mathcal{L}_4) \\ f_{12} &= 2[(m+2)q + n_G(\mathcal{L}_4) - K] \\ f_{04} &= 2n_G(\mathcal{C}_4) \\ f_{03} &= \Lambda_1 - 2n_G(\mathcal{L}_4) - 8n_G(\mathcal{C}_4) - 2n_G(Z) \\ f_{021} &= 2q + (m+5)n_G(\mathcal{L}_4) + 8n_G(\mathcal{C}_4) + 3n_G(Z) + \Phi_1 \\ &\qquad - n_G(Y) - \Lambda_1 - \Lambda_2 - K \\ f_{022} &= 4q + 5n_G(\mathcal{L}_4) + 2n_G(Z) + 4n_G(\mathcal{C}_4) + \Phi_2 - \Lambda_2 - 2K - n_G(\mathcal{L}_5) \end{split}$$

Z: paw graph, $Y = \mathcal{C}_3 \oplus \mathcal{L}_2$

Computation of $V_*[C]$

$$\begin{split} \mathbb{V}_*\left[\mathcal{C}\right] &= \quad q(\mathbb{E}_*\left[\gamma_{24}\right] - 4\mathbb{E}_*\left[\gamma_{13}\right] + 2(m+2)\mathbb{E}_*\left[\gamma_{12}\right] + 2\mathbb{E}_*\left[\gamma_{021}\right] + 4\mathbb{E}_*\left[\gamma_{022}\right]) \\ &+ \mathcal{K}(\mathbb{E}_*\left[\gamma_{13}\right] - 2\mathbb{E}_*\left[\gamma_{12}\right] - \mathbb{E}_*\left[\gamma_{021}\right] - 2\mathbb{E}_*\left[\gamma_{022}\right]) \\ &+ n_G(\mathcal{L}_4)(-2\mathbb{E}_*\left[\gamma_{13}\right] + 2\mathbb{E}_*\left[\gamma_{12}\right] - 2\mathbb{E}_*\left[\gamma_{03}\right] + (m+5)\mathbb{E}_*\left[\gamma_{021}\right] + 5\mathbb{E}_*\left[\gamma_{022}\right]) \\ &+ n_G(\mathcal{C}_4)(2\mathbb{E}_*\left[\gamma_{04}\right] - 8\mathbb{E}_*\left[\gamma_{03}\right] + 8\mathbb{E}_*\left[\gamma_{021}\right] + 4\mathbb{E}_*\left[\gamma_{022}\right]) \\ &+ n_G(\mathcal{Z})(-2\mathbb{E}_*\left[\gamma_{03}\right] + 3\mathbb{E}_*\left[\gamma_{021}\right] + 2\mathbb{E}_*\left[\gamma_{022}\right]) \\ &- n_G(\mathcal{L}_5)\mathbb{E}_*\left[\gamma_{022}\right] - n_G(Y)\mathbb{E}_*\left[\gamma_{021}\right] \\ &+ \Lambda_1(\mathbb{E}_*\left[\gamma_{03}\right] - \mathbb{E}_*\left[\gamma_{021}\right]) \\ &- \Lambda_2(\mathbb{E}_*\left[\gamma_{021}\right] + \mathbb{E}_*\left[\gamma_{022}\right]) \\ &+ \Phi_1\mathbb{E}_*\left[\gamma_{021}\right] + \Phi_2\mathbb{E}_*\left[\gamma_{022}\right] \end{split}$$

Z: paw graph, $Y = \mathcal{C}_3 \oplus \mathcal{L}_2$

Computation of $\mathbb{V}_*[C]$

The terms [Alemany-Puig and Ferrer-i-Cancho, 2019]

$$q = \sum_{\{st,uv\}\in Q} 1 = |Q| = \frac{1}{2} \left[m(m+1) - \sum_{u \in V} k_u^2 \right]$$

$$K = \sum_{\{st,uv\}\in Q} (k_s + k_t + k_u + k_v)$$

$$\Phi_1 = \sum_{\{st,uv\}\in Q} (k_s k_t + k_u k_v)$$

$$\Phi_2 = \sum_{\{st,uv\}\in Q} (k_s + k_t)(k_u + k_v)$$

$$\Lambda_1 = \sum_{\{st,uv\}\in Q} (a_{su}(k_t + k_v) + a_{sv}(k_t + k_u) + a_{tu}(k_s + k_v) + a_{tv}(k_s + k_u))$$

$$\Lambda_2 = \sum_{\{st,uv\}\in Q} (a_{su} + a_{sv} + a_{tu} + a_{tv})(k_s + k_t + k_u + k_v)$$

Computation of $\mathbb{V}_*[C]$

Complexity

	Cost	
Algorithm	Time	Space
Naive algorithm	$O\left(m^4\right)$	0(1)
Fast algorithm (general graphs)	$O\left(k_{max}n\langle k^2\rangle\right)$	$O\left(n\right)$
Faster algorithm (general graphs)	$O(k_{max}g)$	O(n+g)
Forests	O(n)	O(n)

where

$$k_{max}$$
: max degree, $n\langle k^2 \rangle = \sum_{u \in V} k_u^2$, $O\left(k_{max} n \langle k^2 \rangle\right) = o\left(n m^2\right)$, $g = O\left(m + n_G(\mathcal{L}_3) - n_G(\mathcal{C}_3)\right)$

Finding a relationship between D and C

Finding a relationship between D and C

600

900

300

1200

Finding a relationship between D_z and C_z

$$D_{z} = \frac{D - \mathbb{E}_{rla}[D]}{\sqrt{\mathbb{V}_{rla}[D]}}, \quad C_{z} = \frac{C - \mathbb{E}_{rla}[C]}{\sqrt{\mathbb{V}_{rla}[C]}}$$

Catalan (UD 2.3) – D vs C all lengths, # obs=16382

Finding a relationship between D_z and C_z

$$D_z = \frac{D - \mathbb{E}_{\textit{rla}}\left[D\right]}{\sqrt{\mathbb{V}_{\textit{rla}}\left[D\right]}}, \quad C_z = \frac{C - \mathbb{E}_{\textit{rla}}\left[C\right]}{\sqrt{\mathbb{V}_{\textit{rla}}\left[C\right]}}$$

$$\mathbb{V}_{\mathit{rsa}}\left[\mathit{C}
ight] = \sum_{\omega \in \Omega} \mathit{f}_{\omega} \mathbb{E}_{\mathit{rsa}}\left[\gamma_{\omega}
ight]$$

$$\begin{aligned} p_{rsa, \ 00} &= \left(\int_0^\pi \frac{\alpha}{4\pi} f(\alpha) d\alpha \right)^2 = \frac{1}{64} \\ p_{rsa, \ 12} &= \int_0^\pi \left(\frac{\alpha}{4\pi} \right)^2 f(\alpha) d\alpha = \frac{\pi^2 - 8}{64\pi^2} \\ p_{rsa, \ 021} &= 2 \iiint_0^\pi \frac{a - b - c + \pi}{4\pi} \frac{\beta}{4\pi} f(\alpha, \beta, c) \, d\alpha \, d\beta \, dc \approx 0.0126651, \\ p_{rsa, \ 022} &= 4 \int \cdots \int_0^\pi \left(\frac{b - a - c + \pi}{4\pi} \right) \left(\frac{b' - a' - c' + \pi}{4\pi} \right) f(\alpha, \beta, c) d\alpha d\beta d\beta' dcdc' \\ &\approx 0.01856605 \end{aligned}$$

$$\mathbb{V}_{\mathit{rsa}}\left[\mathit{C}
ight] = \sum_{\omega \in \Omega} f_{\omega} \mathbb{E}_{\mathit{rsa}}\left[\gamma_{\omega}
ight]$$

$$\begin{split} \mathbb{E}_{\textit{rsa}}\left[\gamma_{00}\right] &= 0, & \mathbb{E}_{\textit{rsa}}\left[\gamma_{01}\right] &= 0, \\ \mathbb{E}_{\textit{rsa}}\left[\gamma_{24}\right] &= \frac{7}{64}, & \mathbb{E}_{\textit{rsa}}\left[\gamma_{04}\right] &= -\frac{1}{64}, \\ \mathbb{E}_{\textit{rsa}}\left[\gamma_{12}\right] &= \frac{\pi^2 - 8}{64\pi^2}, & \mathbb{E}_{\textit{rsa}}\left[\gamma_{13}\right] \approx 0.031265, \\ \mathbb{E}_{\textit{rsa}}\left[\gamma_{03}\right] &\approx -0.0052083334, & \mathbb{E}_{\textit{rsa}}\left[\gamma_{021}\right] \approx -0.0029598521, \\ \mathbb{E}_{\textit{rsa}}\left[\gamma_{022}\right] &\approx 0.00294105. \end{split}$$

Revising [Moon, 1965]

Complete graphs \mathcal{K}_n

Revising [Moon, 1965]

Revising [Moon, 1965]

Revising [Moon, 1965]

Revising [Moon, 1965]

Revising [Moon, 1965]

"in most cases the two variables appearing are independent and hence the expectation of their product equals the product of their individual expectations, i.e., zero" [Moon, 1965]

$$\begin{split} \mathbb{E}_{\textit{rsa}} \left[\gamma_{021} \right] &= 0, & \mathbb{E}_{\textit{rsa}} \left[\gamma_{03} \right] &= 0, \\ \mathbb{E}_{\textit{rsa}} \left[\gamma_{022} \right] &= 0, & \mathbb{E}_{\textit{rsa}} \left[\gamma_{13} \right] &= \frac{\pi^2 - 8}{64 \pi^2} \approx 0.0029598, \end{split}$$

Our results:

$$\mathbb{E}_{\textit{rsa}}\left[\gamma_{021}\right] pprox -0.0029598521, \qquad \mathbb{E}_{\textit{rsa}}\left[\gamma_{03}\right] pprox -0.0052083334, \\ \mathbb{E}_{\textit{rsa}}\left[\gamma_{022}\right] pprox 0.00294105, \qquad \mathbb{E}_{\textit{rsa}}\left[\gamma_{13}\right] pprox 0.0156249999.$$

Conclusions

- Three papers: [Alemany-Puig and Ferrer-i-Cancho, 2020],
 [Alemany-Puig et al., 2020], [Alemany-Puig and Ferrer-i-Cancho, 2019]
- Algorithms are templates that solve a subgraph counting.
- We have revised Moon's work. Apply this theory to other works?
- Extend this research to road networks.
- New linguistic law?
- Future research: calculate $\mathbb{E}_* [\gamma_\omega]$ in other layouts (calculate δ_* , and $\mathbb{E}_* [\gamma_\omega]$ for $\omega \in \{021,022,03,12,13\}$)

Bibliography I

Alemany-Puig, L. and Ferrer-i-Cancho, R. (2019).

Fast calculation of the variance of edge crossings in random linear arrangements.

in preparation.

Alemany-Puig, L. and Ferrer-i-Cancho, R. (2020). Edge crossings in random linear arrangements. Journal of Statistical Mechanics, page 023403. http://dx.doi.org/10.1088/1742-5468/ab6845.

Alemany-Puig, L., Mora, M., and i Cancho, R. F. (2020). Reappraising the distribution of the number of edge crossings of graphs on a sphere.

Journal of Statistical Mechanics, page in press.

Bibliography II

Moon, J. W. (1965).

On the distribution of crossings in random complete graphs. *Journal of the Society for Industrial and Applied Mathematics*, 13(2):506–510.

The end

Questions?