CE357: ARTIFICIAL INTELLIGENCE

Credit and Hours:

Teaching Scheme	Theory	Practical	Total	Credit
Hours/week	3	2	5	4
Marks	100	50	150	-

Pre-requisite courses:

- Linear algebra (vectors, matrices, derivatives)
- Calculus.
- Basic probability theory.
- Python programming.

Outline of the course:

Sr No.	Title of the unit	Minimum number of			
		hours			
1.	Fundamental concepts	04			
2.	Heuristic Search Techniques Problems, Problems	08			
2.	Space and Search, Heuristic Search Techniques	00			
3.	Knowledge Representation and Logic	05			
4.	Reasoning	06			
5.	Weak Slot-And-Filler Structure, Game Playing and	06			
J.	Planning	00			
6.	Natural Language Processing (NLP), Text Analytics	08			
0.	and Neural Networks	00			
7.	Advanced Topics	08			
	Total hours (Theory):	45			
	Total hours (Lab):	30			
	Total hours:	75			

Detailed Syllabus:

1	Fundamental concepts	04 hours	10%
	The History of Artificial Intelligence, The AI Problems, AI		
	Techniques, Applications of AI, Strong AI vs Weak AI, The		
	Turing Test, Agents and Environments, The concept of		
	Rationality, The Nature of Environments and the Structure of		
	Agents.		
2	Problems, Problems Space and Search, Heuristic Search	08 hours	18%

	Techniques		
	Defining the Problems as a State Space Search, Production		
	Systems, Problem Characteristics, Production System		
	Characteristics, Issues in The Design of Search Programs,		
	Generate-And-Test, Hill Climbing, Simulated Annealing, Best-		
	First Search, A*, AO*, Branch and Bound Problem Reduction,		
	Constraint Satisfaction, Means-Ends Analysis.		
3	Knowledge Representation and Logic	05 hours	12%
	Knowledge Representations and Mappings, Approaches to		
	Knowledge Representation., Issues in Knowledge		
	Representation, Representing Knowledge using Rules:		
	Procedural Versus Declarative Knowledge, Logic Programming,		
	Forward Versus Backward Reasoning, Matching, Control		
	Knowledge.		
	Logic: Instance and ISA Relationship, Computable Functions		
	and Predicates, Resolution.		
4	Reasoning	06 hours	12%
	Symbolic Reasoning Under Uncertainty and Statistical		
	Reasoning: Introduction to Non-monotonic Reasoning.		
	Statistical Reasoning: Probability and Bayes' Theorem,		
	Certainty Factors and Rule-Base Systems, Bayesian Networks,		
	Dempster-Shafer Theory, Fuzzy Logic.		
5	Weak Slot-And-Filler Structure, Game Playing and Planning	06 hours	12%
	Weak Slot-And-Filler Structure: Semantic Nets, Frames.		
	Game Playing: The MiniMax Search Procedure, Adding Alpha-		
	Beta Cutoffs, Additional Refinements, Iterative, Deepening.		
	Planning: Blocks World, STRIPS, Constraint Satisfaction,		
	Basics of Probabilistic Planning.		
6	Natural Language Processing (NLP), Text Analytics and	08 hours	18%
	Neural Networks		
	NLP and Text Analytics: Introduction, Syntactic Processing,		
	Semantic Analysis, Semantic Analysis, Discourse and Pragmatic		
	Processing, Text Analytics, Text pre-processing, Bag of Words,		
	Word Cloud, Machine Translation, sentiment analysis.		
	Neural Networks: Introduction: Simple Perceptron, Hopfield		
	Network, Learning in Neural Network, Application of Neural		
	Networks, Recurrent Networks, Deep Neural Networks,		
	Convolution Network, Restricted Boltzmann machine, Transfer		
	learning		
7	Advanced Topics	08 hours	18%
	Optimization Techniques: Genetic Algorithm (GA), Ant Colony		
	Optimization (ACO), Particle Swarm Optimization (PSO), Tabu		
	Search, Introduction to topics like Computer Vision, Expert		
	Systems, Big data, Neuro Computing, Robotics, Web Search.		

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Understand the various searching techniques, constraint satisfaction problem and example problems- game playing techniques.
CO2	Apply these techniques in applications, which involve perception, reasoning and learning.
СОЗ	Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations.
CO4	Demonstrate awareness and a fundamental understanding of various applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
CO5	Demonstrate proficiency-developing applications in an 'AI language', expert system shell, or data-mining tool.
CO6	Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	1	1	1	1	-	-	2	2	2	3
CO2	2	2	-	-	-	-	-	1	2	1	1	1	2	-
СОЗ	3	1	1	-	-	1	1	-	-	-	-	-	2	-
CO4	3	2	3	3	-	-	-	1	2	2	2	2	3	3
CO5	3	2	2	2	3	2	2	-	-	-	-	-	2	-
CO6	2	1	1	-	-	3	-	-	-	-	2	2	3	3

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

Recommended Study Material:

***** Text Books:

- 1. "Artificial Intelligence" -By Elaine Rich and Kevin Knight (2nd Edition) Tata Mcgraw-Hill.
- 2. Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Ed., Prentice Hall, 2009. Can also use 2nd Ed., Pearson Education International, 2003.
- 3. Introduction to Prolog Programming by Carl Townsend.

***** Reference Books:

1. Artificial Intelligence and Expert System by D.W. Patterson, PHI

© CHARUSAT 2021

- 2. Introduction to Applied Fuzzy Logic by Ahmed Abraham, PHI
- 3. Nils Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998.
- 4. David Poole, Alan Mackworth, Artificial Intelligence: Foundations for Computational Agents, Cambridge Univ. Press, 2010.
- 5. Artificial Intelligence & design of expert systems, Lager, Benjamin/Cummings.
- 6. Artificial Intelligence An Engineering Approach, Schalkoff R. J., McGraw-Hill.
- 7. Expert Systems: Theory & Practice, Jean-Louis Ermine, Prentice-Hall India,1997.
- 8. Programming with PROLOG" -By Klocksin and Mellish.

***** Web Material:

- 1. http://stanford.edu/~cpiech/cs221/
- https://www.expertsystem.com/examples-natural-language-processing-systemsartificial-intelligence/
- 3. https://www.linkedin.com/pulse/sentiment-analysis-cognitive-computing-jaish-mathews
- 4. https://www.johanahlen.info/en/2017/04/text-analytics-and-sentiment-analysis-with-microsoft-cognitive-services/

Software:

- 1. Python
- 2. SWI Prolog