香港考試及評核局2012年香港中學交憑考試

化學 試卷二

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 本試卷共有甲、乙和丙三部。考生須選答任何兩部中的全部試題。
- (二) 答案須寫在所提供的 DSE(D) 答題簿內,每題(非指分題)必須另起新頁作答。
- (三) 本試卷的第 8 頁印有周期表。考生可從該周期表得到元素的原子序及相對原子質量。

考試結束前不可 將試卷攜離試場

甲部 工業化學

回答試題的所有部分。

1. (a) 以哈柏法於大約 500°C 和 200 atm,並在一催化劑存在下,經氦和氫的反應可生產氨。 該反應的化學方程式如下所示:

 $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g) \qquad \Delta H < 0$

- (i) (1) 在哈柏法中所用的催化劑是什麼?
 - (2) 解釋催化劑對一個化學反應的影響。

(3分)

(ii) 提出如何獲取氫以進行哈柏法,並寫出所涉及的一條化學方程式。

(2分)

(iii) 已知於 300° C 和 1000 atm 下從 $N_2(g)$ 和 $H_2(g)$ 生成 $NH_3(g)$,在平衡時 $NH_3(g)$ 的產率 約爲 98%。然而,在工業上哈柏法的操作條件卻定於約 500° C 和 200 atm ,在平衡時 $NH_3(g)$ 的產率約爲 20%。參照所給資料,解釋爲什麼在工業上選擇了這樣的操作條件。

(2分)

(iv) 在哈柏法中,於產率達到約 20 % 前便從反應室移除產物混合物。解釋爲何如此。

(2分)

- (b) 甲醇是化學工業中的一個重要化合物。從甲烷製成的合成氣可生產甲醇。
 - (i) 爲什麼甲醇是化學工業中的一個重要化合物?

(1分)

(ii) 寫出從合成氣生產甲醇的反應的化學方程式,並寫出所需的各條件。

(3分)

(iii) 寫出在生產甲醇科技上的一個改進。解釋爲什麼它被視爲一個改進。

(2分)

1. (c) 爲研習以下反應的動力學,在相同的溫度下進行了三次實驗。

 $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$

下表顯示所得的數據:

實驗次數	NO(g) 的初始濃度 / mol dm ⁻³	H ₂ (g) 的初始濃度 / mol dm ⁻³	對應 N ₂ (g) 的初速 / mol dm ⁻³ s ⁻¹
1	2.50×10^{-2}	5.00×10^{-3}	1.20×10^{-6}
2	2.50×10^{-2}	1.00×10^{-2}	2.40 × 10 ⁻⁶
3	1.25×10^{-2}	1.00×10^{-2}	6.00×10^{-7}

(i) 解釋爲什麼通常使用「初速」來研習一個反應的動力學。

(1分)

(ii) 推定分別對應 NO(g) 和 H₂(g) 的反應級數。

(2分)

(iii) 寫出這反應的速率方程式,並計算它在實驗溫度下的速率常數。

(2分)

甲部完

乙部 物料化學

回答試題的所有部分。

2. (a) 凱庫勒和尼龍-6,6的結構顯示如下:

- (i) (1) 繪畫製造凱庫勒的各單體的結構。
 - (2) 寫出由各單體生成凱庫勒的反應類別的名稱。 (3 分)
- (ii) 化合物 A 是在工業上製造尼龍-6,6 的其中一個單體。以下方程式顯示可生產 A 的兩個反應:

- (1) 繪畫 A 的結構。
- (2) 反應(1)被視爲比反應(2)較綠色。提出三個原因。
- (3) 兩個反應在哪一方面均被視爲<u>不</u>綠色? (5 分)
- (iii) 參照凱庫勒和尼龍-6,6的結構,解釋它們於機械強度的差異。 (2分)

2. (b) 天然橡膠的部分結構顯示如下:

$$CH_2$$
 CH_2 CH_2 CH_3 CH_3 CH_3

(i) 天然橡膠須先以硫處理,才可用來製造輪胎。寫出這處理過程的名稱、註明其 目的,以及解釋其背後的原理。

(3分)

(ii) 某技術員穿上一對天然橡膠製的手套並進行一個涉及溴的實驗。溴濺在手套上,然後手套變脆。解釋這現象。

(2分)

- (c) (i) 考慮固體鐵的體心立方結構。
 - (1) 繪畫鐵的一個晶胞。
 - (2) 推定在該晶胞的鐵原子數目。

(2分)

(ii) 参照加入鐵內以生成不銹鋼的各元素,解釋爲什麼不銹鋼適合於製造刀。 (3 分)

乙部完

丙部 分析化學

回答試題的所有部分。

3. (a) 化合物 X (摩爾質量 < 118 g) 含有一個 $-C_6H_5$ 基團。對 X 進行了兩個化學測試,其結果如

測試(1): X 使酸化重鉻酸鉀溶液變成綠色。

測試(2):以2,4-二硝基苯肼測試,X得出陰性結果。

只參照測試(1)的結果,提出X可能有的m個官能基。 (i) (2分)

(ii) (1) 在測試(2)使用2,4-二硝基苯肼的目的是什麼?

> (2) 寫出在測試(2)中,如果 X 得出陽性結果的預期觀察。

> > (2分)

參照測試(1)和測試(2)兩者的結果,提出一個可能存在於X的官能基。 (iii)

(1分)

(iv) X的質譜如下所示:

爲在 m/z = 91 和 108 的每個訊號,提出一個對應的化學物種。

(2分)

繪畫X的一個可能結構。 (v)

(1分)

- 3. (b) 空氣中的二噁英水平一般是以儀器分析量度所得,而非使用重量分析或容量分析。
 - (i) 提出空氣中的二噁英的一個來源。

(1分)

(ii) 解釋爲什麼需要量度空氣中的二噁英水平。

(1分)

(iii) 建議一個量度空氣中的二噁英水平的儀器分析方法,並寫出爲什麼使用這方法 而不使用基於重量分析或容量分析的方法。

(2分)

- (c) 某水溶液只含 HCl(aq) 和 HI(aq) 。基於 AgCl(s) 可溶於過量的 $NH_3(aq)$,而 AgI(s) 卻不然 的事實,計劃一重量分析以測定在該溶液中 $C\Gamma(aq)$ 對 $\Gamma(aq)$ 的摩爾比率。
 - (i) 建議在這分析中應使用的兩個試劑(去離子水除外)。

(2分)

(ii) 概述在這分析中所涉及的實驗步驟。

(4分)

(iii) 利用上面從 (ii) 所得的數據,概述計算該溶液中 $C\Gamma(aq)$ 對 $\Gamma(aq)$ 的摩爾比率的各步驟。

(2分)

丙部完

試卷完

PERIODIC TABLE 周期表

н	н	ć
ł		
	}	
Ś	=)
ί	,	j

	C			VI VII 4.0		ĬΨ	19.0	17	ū	35.5	35	Br	79.9	53	-	126.9	84 85 86	Ą	(210)
				ŀ													83		
				AI III													81 82		
				Ĺ	5		1,1	\prod		2				-			80 8		_
								٠			29	n C	63.5	47	Ag	107.9	79	Au	197.0
								相對原子質量		ŀ							78		
	原子序									ŀ				_			1.1		
	number 原							atomic mass		ı			\neg			_	9/		
	atomic n						,	relative					- 1			- 1	75		
		<u></u>			/	/				J			- 1				74		
		1	H (ŀ			\dashv		_		73		
																	72		
							1			_			-			_ 1	57 *		
Ķ			Ħ														26		
			_	- (ر :	I	6.9	11	g ;	23.0	19	×	39.1	37	各	85.5	55	ű	132.9

	5		,	,,										
	28	66	09	61	62	63	4	65	99		89	69	70	71
	ပီ	P.	PN	Рш	Sm	Ð	рS	Tp	Ď	Ho		<u>.</u>	Ϋ́	F
_	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
	06	91	92	93	94	95	96	16	86	66	100	101	103	133
	Th	Pa	n	aN	Pu	Am	Cm	BK	۲	KS.	E E	Ϋ́	Z	} =
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)