Wyznaczanie zależności przewodnictwa od temperatury dla półprzewodników i przewodników doświadczenie 203 (sala 217A)

Sebastian Maciejewski 132275 i Jan Techner 132332

8 grudnia 2017

1 Wstęp teorytyczny

Przewodnictwo właściwe materiałów zależy od temperatury. Dla metali (przewodników) spada przy wzroście temperatury ze względu na spadek ruchliwości nośników. W przypadku półprzewodnika samoistnego zdolność przewodzenia prądu rośnie wykładniczo przy wzroście temperatury. Dzieje się tak, gdyż rośnie koncentracja nośników. Ruchliwość spada podobnie jak w metalach, zmiany te są jednak niewielkie w porównaniu ze zmianami koncentracji.

Takie właściwości półprzewodnika wynikają z tego, iż nośnikami prądu są w nim elektrony w paśmie przewodnictwa i dziury w paśmie walencyjnym. Elektrony są dostarczane do pasma przewodnictwa z pasma walencyjnego (w półprzewodnikach samoistnych) lub z poziomów domieszkowych (w półprzewodnikach domieszkowanych). Dziury natomiast powstają w paśmie walencyjnym po przejściu elektronu do pasma przewodnictwa.

Liczba elektronów przechodzących na wyższy poziom energetyczny zależy wykładniczo min. od temperatury i wyraża się (dla półprzewodników samoistnych) wzorem:

$$n = n_{0s} e^{\frac{E_g}{2kT}} \tag{1}$$

gdzie ${\cal E}_g$ to szerokość pasma zabronionego, kto stała Boltzmana a T temperatura.

Opis doświadczenia

2 Wyniki pomiarów

Dla ogrzewania i chłodzenia przewodnika i półprzewodnika otrzymaliśmy następujące odczyty oporu:

Temperatura (K)	Opór półprzewodnika $(k\Omega)$	Opór przewodnika (Ω)	
295,95	208,0	109,1	
299,45	177,0	110,4	
304,45	144,0	112,1	
309,45	117,0	114,1	
314,45	95,0	116,0	
319,45	80,1	117,9	
324,45	66,5	119,8	
329,45	54,7	121,7	
334,45	46,4	123,5	
339,45	39,2	125,3	
344,45	33,0	127,1	
349,45	28,0	129,1	
354,45	23,9	130,8	
359,45	20,4	132,6	
354,45	26,8	131,3	
349,45	31,6	129,9	
344,45	38,1	128,1	
339,45	44,9	126,4	
334,45	52,7	124,6	
329,45	61,2	122,9	
324,45	73,4	120,7	
319,45	87,0	118,6	
314,45	103,6	116,6	
309,45	124,7	114,6	
304,45	149,9	112,5	
299,45	181,6	110,5	
298,05	191,7	109,9	

3 Opracowanie wyników

Dla zależności:

$$ln(1/R) = f(1/T) \tag{2}$$

wyliczymy teraz, korzystając z metody regresji liniowej, współczynnik nachylenia prostej. Przyjmujemy, że ln(1/R) = y i 1/T = x. Posługując się metodą regresji liniowej opisaną wzorem:

$$a = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2},\tag{3}$$

wyznaczamy współczynnik nachylenia prostej a, oraz jego niepewność.

$$a = -3869, 397 \left[\frac{K}{\Omega} \right] \tag{4}$$

Następnie korzystając z równania:

$$a = \frac{E_A}{2k} \Rightarrow E_A = 2ak \tag{5}$$

obliczamy energię aktywacji (E_A) , która wynosi:

$$E_A = -1,068 * 10^- 19 \frac{J}{K} = -0,667 \frac{eV}{K}$$

Błąd wyznaczenia wielkości a:

$$\Delta a = \sqrt{\frac{n(\Sigma y_i^2 - a\Sigma x_i y_i - b\Sigma y_i)}{(n-2)(n\Sigma x_i^2 - (\Sigma x_i)^2)}} =$$

Zatem ostateczne wartości a i E_A wyglądają następująco:

	a	$E_A[\frac{J}{K}]$	$E_A[\frac{eV}{K}]$
pomiar	-3869, 39702854943	$-1,068*10^{-19}$	-0,667
dokładność	TODO	TODO	TODO
po zaokrągleniu	TODO	TODO	TODO

Tablica 1: Współczynnik nachylenia linii ai energia aktywacji E_A wraz z dokładnościami Δa i ΔE_A