Lineare Algebra Übungsstunde 4

Wiona Glänzer

12.10.2020

Wiederholung mit Kahoot

https://create.kahoot.it/v2/share/ubungsstunde-4/c19082fc-78d0-41d1-8e22-fbeef8589a51

Definition: Gruppe

Eine Menge G zusammen mit einer Verknüpfung * heisst eine **Gruppe** falls das folgende gilt:

- 1. a*(b*c) = (a*b)*c für alle $a,b,c \in G$ (Assoziativgesetz),
- 2. Es gibt ein **neutrales Element** $e \in G$ so dass:
 - 2.1 e * a = a, für alle $a \in G$,
 - 2.2 zu jedem $a \in G$ gibt es ein **inverses Element** $a' \in G$, d.h. a' * a = e.

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn:

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn: \Leftarrow Gilt $e \in H$ so folgt direkt $H \neq \emptyset$.

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn:

- \Leftarrow Gilt $e \in H$ so folgt direkt $H \neq \emptyset$.
- \Rightarrow Es gelten Bedingungen 1,2 und 3.

Dann existiert nach 1. ein $a \in H$.

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn:

- \Leftarrow Gilt $e \in H$ so folgt direkt $H \neq \emptyset$.
- \Rightarrow Es gelten Bedingungen 1,2 und 3.

Dann existiert nach 1. ein $a \in H$.

Da $a \in H$ existiert nach 3. ein $a^{-1} \in H$ sodass $a * a^{-1} = e$.

Mit 2. folgt $e \in H$.

Gruppenhomomorphismen

Seien G, und H Gruppen mit Verknüpfungen \cdot , und \odot , so heisst eine Abbildung

$$\varphi\colon G\to H$$
,

Homomorphismus von Gruppen, wenn

$$\varphi(a \cdot b) = \varphi(a) \odot \varphi(b), \quad \forall a, b \in G.$$

Ein Homomorphismus, der auch bijektiv ist, heisst Isomorphismus.

Definition: Ringe

Eine Menge R mit zwei Verknüpfungen

$$+: R \times R \to R, (a, b) \mapsto a + b,$$

 $: R \times R \to R, (a, b) \mapsto a \cdot b$

heisst Ring falls folgendes gilt:

- 1. R zusammen mit + ist eine abelsche Gruppe.
- 2. Die Multiplikation ist assoziativ.
- 3. Es gelten die Distributivgesetze, d.h. für alle $a,b,c\in R$ gilt

$$a + (b + c) = (a + b) + c$$
, und $a \cdot (b \cdot c) = a \cdot (b \cdot c)$.

Restklassenring $\mathbb{Z}/n\mathbb{Z}$

- ▶ Definiert über Äquivalenzrelation: $a \sim b \Leftrightarrow a = bn$ für alle $a, b \in \mathbb{Z}$
- ▶ $\bar{0}$ bezeichnet die Äquivalenzklasse von n, also alle $a \in \mathbb{Z}$ für die ein $b \in \mathbb{Z}$ existiert, sodass a = bn.

Betrachte den Körper $\mathbb{F}_5=\mathbb{Z}/5\mathbb{Z}.$ $\overline{4}^{2018}$

Definition: Körper

Eine Menge K mit zwei Verknüpfungen

$$+: K \times K \to K, (a, b) \mapsto a + b,$$

 $\cdot: K \times K \to K, (a, b) \mapsto a \cdot b$

heisst Körper falls folgendes gilt:

- 1. K zusammen mit + ist eine abelsche Gruppe
- 2. Bezeichnet $K^* = K \setminus \{0\}$, so gilt für $a, b \in K^*$ auch $a \cdot b \in K^*$, und K^* mit der so erhaltene Multiplikation ist eine abelsche Gruppe.
- 3. Es gelten die Distributivgesetze, d.h. für alle $a, b, c \in K$ gilt

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, und $(a+b) \cdot c = a \cdot c + b \cdot c$.

Sind Restklassenringe auch Körper?

- ightharpoonup für p Primzahl ist \mathbb{Z} /p \mathbb{Z} ein Körper
- Dies wir gezeigt über die Nullteilerfreiheit.
- Für n keine Primzahl ist \mathbb{Z} /n \mathbb{Z} **kein** Körper.
- ▶ Denn es existieren $a, b \neq 0 \in \mathbb{Z}$, sodass ab = n = 0

Betrachte den Körper $\mathbb{F}_5=\mathbb{Z}/5\mathbb{Z}.$ $\overline{4}^{2018}.$

$$\overline{4}^{2018} = \overline{4^2}^{1009} = \overline{16}^{1009} = \overline{1}^{1009} = \overline{1}.$$

Betrachte den Körper $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$.

$$\frac{\bar{3}}{4} + \frac{\bar{1}}{3} = ?$$

Wir bearbeiten den ersten Term zuerst, und benutzen, dass

$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{1}$$
, also $\overline{\frac{1}{3}} = \overline{3}^{-1} = \overline{2}$

$$\frac{\overline{2}}{\overline{3}} = \overline{2} \cdot \overline{2} = \overline{4}.$$

Betrachte den Körper $\mathbb{F}_5=\mathbb{Z}/5\mathbb{Z}.$

$$\frac{\bar{3}}{\bar{4}} + \frac{\bar{1}}{\bar{3}} = ?$$

Wir bearbeiten den ersten Term zuerst, und benutzen, dass $\overline{2}$, $\overline{2}$, $\overline{6}$, $\overline{1}$, also $\overline{1}$, $\overline{2}^{-1}$, $\overline{2}$

$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{1}$$
, also $\overline{\frac{1}{3}} = \overline{3}^{-1} = \overline{2}$

$$\frac{\overline{2}}{\overline{3}} = \overline{2} \cdot \overline{2} = \overline{4}.$$

Weiter ist
$$\overline{4} \cdot \overline{4} = \overline{1}$$
, also $\frac{\overline{1}}{\overline{4}} = \overline{4}^{-1} = \overline{4}$ und

$$\frac{\overline{1}}{\overline{4}} = \overline{1} \cdot \overline{4} = \overline{4}.$$

Betrachte den Körper $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$.

$$\frac{\bar{3}}{\bar{4}} + \frac{\bar{1}}{\bar{3}} = ?$$

Wir bearbeiten den ersten Term zuerst, und benutzen, dass

$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{1}$$
, also $\frac{\overline{1}}{\overline{3}} = \overline{3}^{-1} = \overline{2}$

$$\frac{\overline{2}}{\overline{3}} = \overline{2} \cdot \overline{2} = \overline{4}.$$

Weiter ist $\overline{4} \cdot \overline{4} = \overline{1}$, also $\frac{\overline{1}}{\overline{4}} = \overline{4}^{-1} = \overline{4}$ und

$$\frac{\overline{1}}{\overline{4}} = \overline{1} \cdot \overline{4} = \overline{4}.$$

Also

$$\frac{\overline{2}}{\overline{3}} + \frac{\overline{1}}{\overline{4}} = \overline{4} + \overline{4} = \overline{3}.$$

Sei ${\mathbb F}$ ein Körper. Zeigen oder widerlegen Sie die folgenden Aussagen.

Tipp: Für das Widerlegen genügt es, ein Gegenbeispiel zu finden.

- Für alle $a, b \in \mathbb{F}$ gilt -(a b) = b a.
- Für $a, b \in \mathbb{F}$ folgt aus a + a + a = b + b + b, dass a = b
- Für $a, b \in \mathbb{F}$ folgt aus a + a + a + a = b + b + b + b, dass a = b

Gibt es ein surjektiven Gruppenhomomorphismus von $\mathbb{Z}/6\mathbb{Z}$ nach $\mathbb{Z}/2\mathbb{Z}?$

Gibt es ein surjektiven Gruppenhomomorphismus von $\mathbb{Z}/5\mathbb{Z}$ nach $\mathbb{Z}/2\mathbb{Z}?$

Seien $G_1, G_2, ..., G_n$ Gruppen, mit neutralen Elementen $e_i \in G_i$ für $i \in \{1, ..., n\}$, und betrachte das kartesische Produkt $G = G_1 \times G_2 \times \cdots \times G_n$. Definiere die Verknüpfung in G als $(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 h_1, g_2 h_2, \ldots, g_n h_n)$. Zeige: Die Menge G mit Verknüpfung * ist eine Gruppe.

Lösungen der Übungsaufgaben

1 Beispielrechnungen

Betrachte den Körper $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$. Seine Elemente sind $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}$, wobei jeweils \overline{n} die Restklasse von n modulo 5 bedeutet.

1. $\overline{4}^{2018}$:

$$\overline{4}^{2018} = \overline{4^2}^{1009} = \overline{16}^{1009} = \overline{1}^{1009} = \overline{1}.$$

2. $\frac{\overline{2}}{\overline{3}} + \frac{\overline{1}}{\overline{4}}$: Wir bearbeiten den ersten Term zuerst, und benutzen, dass $\overline{3} \cdot \overline{2} = \overline{6} = \overline{1}$, also $\frac{\overline{1}}{\overline{3}} = \overline{3}^{-1} = \overline{2}$

$$\frac{\overline{2}}{\overline{3}} = \overline{2} \cdot \overline{2} = \overline{4}.$$

Weiter ist $\overline{4} \cdot \overline{4} = \overline{1}$, also $\frac{\overline{1}}{\overline{4}} = \overline{4}^{-1} = \overline{4}$ und

$$\frac{\overline{1}}{\overline{4}} = \overline{1} \cdot \overline{4} = \overline{4}.$$

Also

$$\frac{\overline{2}}{\overline{3}} + \frac{\overline{1}}{\overline{4}} = \overline{4} + \overline{4} = \overline{3}.$$

2 Aufgabe 1

1. Sei F ein Körper. Zeigen oder wiederlegen Sie die folgenden Aussagen.

(a) Für alle $a, b \in \mathbb{F}$ gilt, -(a - b) = b - a:

Das Element -(a-b) ist die Inverse von (a-b). Da Inverse Elemente eindeutig sind, genügt es zu zeigen, dass b-a auch die Inverse von a-b ist. D.h., wir müssen zeigen, dass (a-b)+(b-a)=e:

$$(a-b) + (b-a) = (a+(-b)) + (b+(-a)) = (a+((-b)+b)) + (-a)$$

Assoziativität (Induktion mit 4 Elemente)

$$= (a + e) + (-a) = a + (-a) = e.$$

(b) Für $a, b \in \mathbb{F}$ folgt aus a + a + a = b + b + b, dass a = b:

Nein. Sei $\mathbb{F} = \mathbb{Z}/3\mathbb{Z}$, und $a = \overline{0}, b = \overline{1}$. Dann ist $a + a + a = \overline{0} = b + b + b$.

(c) Für $a, b \in \mathbb{F}$ folgt aus a+a+a+a=b+b+b+b, dass a=b: Nein. Sei $\mathbb{F}=\mathbb{Z}/2\mathbb{Z}$, und $a=\overline{0}, b=\overline{1}$. Dann ist $a+a+a+a=\overline{0}=b+b+b+b$.

3 Aufgabe 2

2. Gibt es ein surjektiven Gruppenhomomorphismus von $\mathbb{Z}/6\mathbb{Z}$ nach $\mathbb{Z}/2\mathbb{Z}$? **Lösung:** Ja, wir betrachten das folgende Diagramm:

$$\mathbb{Z} \xrightarrow{\pi_6} \mathbb{Z}/6\mathbb{Z}$$

$$\downarrow^{\varphi}$$

$$\mathbb{Z}/2\mathbb{Z},$$

wobei $\pi_6 \colon \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$, und $\pi_2 \colon \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ die Projektionen sind. Wir können dann φ wie folgt definieren:

$$\varphi(\overline{n}) \coloneqq \pi_2(n),$$

wobei n ein Repräsentant der Restklasse $\overline{n} \in \mathbb{Z}/6\mathbb{Z}$ ist. Man muss jetzt überprüfen dass so eine Abbildung wohldefiniert ist. D.h., falls wir vershieden Repräsentanten derselben Restklasse nehmen, sollte φ beide zum selben Element schicken. Sei nun $n, n' \in \mathbb{Z}$, und nehmen wir an, dass $\overline{n} = \overline{n'}$, d.h. $\pi_6(n) = \pi_6(n')$. Dann ist $\overline{n-n'} = \overline{n} - \overline{n'} = \overline{0}$. D.h. n-n' ist durch 6 teilbar. D.h. dass n-n' auch teilbar durch 2 ist, da 6 teilbar durch 2 ist. Damit ist

$$\varphi(\overline{n}) = \pi_2(n) = \pi_2(n - n' + n') = \pi_2(n - n') + \pi_2(n') = \overline{0} + \pi_2(n') = \varphi(\overline{n'}).$$

F"ur die Surjektivität, nehmen wir nur $\overline{0} \in \mathbb{Z}//\mathbb{Z}6\mathbb{Z}$, dann ist $\varphi(\overline{0}) = \overline{0} \in \mathbb{Z}/2\mathbb{Z}$, und für $\overline{1} \in \mathbb{Z}/6\mathbb{Z}$, ist $\varphi(\overline{1}) = \overline{1} \in \mathbb{Z}/6\mathbb{Z}.$

4 Aufgabe 3

3. Gibt es ein surjektiven Gruppenhomomorphismus von $\mathbb{Z}/5\mathbb{Z}$ nach $\mathbb{Z}/2\mathbb{Z}$?

Lösung: Nein: Nehmen wir an, dass es ein Gruppenhomomorphismus $\varphi \colon \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ existiert. Dann muss φ das neutrale Element in $\mathbb{Z}/5\mathbb{Z}$ zum neutralen Element in $\mathbb{Z}/2\mathbb{Z}$ schicken: $\varphi(\overline{0}) = \overline{0}$. Nun gibt es zwei Möglichkeiten für wo $\overline{1} \in \mathbb{Z}/5\mathbb{Z}$ geschickt werden kann:

(a) $\varphi(\overline{1}) = \overline{0}$: $\overline{\text{Dann ist}} \varphi$ nicht surjektiv: Sei $\overline{n} \in \mathbb{Z}/5\mathbb{Z}$. Wir können dann \overline{n} so schreiben ($\mathbb{Z}/5\mathbb{Z}$ ist zyklisch!):

$$\overline{n} = \underbrace{\overline{1 + \dots + \overline{1}}}_{n-\text{Mal}}.$$

D.h.

$$\varphi(\overline{n}) = \varphi(\overline{1}) + \dots + \varphi(\overline{1}) = \overline{0} + \dots + \overline{0}.$$
ist ein Homeomorphismus

D.h., $\varphi(\overline{n}) = \overline{0}$ für alle $\overline{n} \in \mathbb{Z}/5\mathbb{Z}$.

(b) $\varphi(\overline{1}) = \overline{1}$: Dann gilt

$$\overline{0} = \varphi(\overline{0}) = \varphi(\overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1}) = \varphi(\overline{1}) + \varphi(\overline{1}) + \varphi(\overline{1}) + \varphi(\overline{1}) + \varphi(\overline{1}) = \overline{1}.$$

Dies widerspricht dass φ ein Gruppenhomomorphismus ist.

5 Aufgabe 4

4. Löse den folgenden Gleichungssystem in \mathbb{F}_7 :

$$3x - y = 7$$
$$2x + 8y + \frac{\overline{1}}{2}z = -4$$
$$6y + \frac{\overline{1}}{2}z = 0.$$

Wir berechnen die Brüche zuerst:

$$\overline{2} \cdot \overline{4} = \overline{1}$$
, also $\frac{\overline{1}}{2} = \overline{1} \cdot \overline{4} = \overline{4}$

 $\overline{2} \cdot \overline{4} = \overline{1}$, also $\frac{\overline{1}}{2} = \overline{1} \cdot \overline{4} = \overline{4}$ Und da $\overline{7} = \overline{0}, \overline{-1} = \overline{6}, \overline{8} = \overline{1}$ und $\overline{-4} = \overline{3}$, ist die erweiterte Koeffizientenmatrix

$$\begin{pmatrix} 3 & 6 & 0 & 0 & 0 \\ 2 & 1 & 4 & 3 & 0 \\ 0 & 6 & 4 & 0 & 0 \end{pmatrix} \xrightarrow{L_3/2 \to L_3, L_1/3 \to L_1} \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 2 & 1 & 4 & 3 & 0 \\ 0 & 3 & 2 & 0 & 0 \end{pmatrix} \xrightarrow{L_2 - 2L_1 \to L_2} \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & -3 & 4 & 3 & 0 \\ 0 & 3 & 2 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{L_3 - L_2 \to L_3} \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & -3 & 4 & 3 & 0 \\ 0 & 0 & 6 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 4 & 2 & 3 & 0 \\ 0 & 0 & 6 & 3 & 0 \end{pmatrix}$$

Wir bekommen dann

$$\overline{6}z = \overline{3} \implies z = \frac{\overline{1}}{\overline{2}} = \overline{4}.$$

Für die zweite Zeile:

$$\overline{4}y + \overline{4} \cdot \overline{4} = \overline{3} \iff \overline{4}y + \overline{16} = \overline{3} \iff \overline{4}y + \overline{2} = \overline{3} \implies y = \frac{\overline{1}}{\overline{4}} = \overline{2}.$$

Für die letzte Gleichung haben wir:

$$x + \overline{2}y = \overline{0} \iff x + \overline{2} \cdot \overline{2} = \overline{0} \implies x = \overline{-4} = \overline{3}.$$

Die Lösung ist also $(x, y, z) = (\overline{3}, \overline{2}, \overline{4}).$

6 Beispiele von Gruppen

Beispiel 6.1. Wir betrachten die folgende Teilmenge der Gruppe $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$ (mit Multiplikation als Verknüpfung):

$$\mathbb{S}^1 := \{ z \in \mathbb{C} : |z| = 1 \}.$$

Wir möchten zeigen, dass \mathbb{S}^1 eine Untergruppe von \mathbb{C}^{\times} ist:

- 1. \mathbb{S}^1 ist nicht leer, da $1 \in \mathbb{S}^1$,
- 2. Seien $z, w \in \mathbb{S}^1$, dann gilt

$$|zw| = |z||w| = 1 \cdot 1 = 1,$$

d.h. $zw \in \mathbb{S}^1$,

3. Sei $z\in\mathbb{S}^1$. Das inverse Element von z ist $1/z\in\mathbb{C}^{\times}$ (da |z|=1, ist $z\neq 0$). Und

$$\left|\frac{1}{z}\right| = \frac{1}{|z|} = 1,$$

d.h. $1/z \in \mathbb{S}^1$.

Also \mathbb{S}^1 ist eine Untergruppe von $\mathbb{C}!$

Frage: Sind alle Kreise in \mathbb{C} auch Untegruppen? D.h. für $r \in \mathbb{R}_{>0}$, und $r \neq 1$, ist die Teilmenge von \mathbb{C}

$$\mathbb{S}(r) = \{ z \in \mathbb{C} : |z| = r \}$$

auch eine Untergruppe?

Antwort: Nein! S(r) hat keine der Eigenschaften (a),(b), oder (c):

- 1. $1 \notin \mathbb{S}(r)$, da $|1| = 1 \neq r$.
- 2. Sei $z, w \in H$, dann ist

$$|zw| = |z||w| = r^2 \neq 1$$
,

 $da r \neq 1$,

3. Sei $z \in \mathbb{S}(r)$, dann ist

$$\left|\frac{1}{z}\right| = \frac{1}{|z|} = \frac{1}{r} \neq 1,$$

da $r \neq 1$.

Beispiel 6.2. Wir können jetzt dasselbe machen, aber mit dem kartesischen Produkt

$$\mathbb{S}^1 \times \mathbb{S}^1 = \{(z, w) : |z| = 1, |w| = 1\} \subset \mathbb{C} \times \mathbb{C},$$

und man kann es sich so vorstellen:

Wir müssen aber eine Verknüpfung auf $\mathbb{S}^1 \times \mathbb{S}^1$ definieren. Aber da wir schon eine Verknüpfung auf jeden Faktor haben, können wir die Verknüpfung wie folgt definieren. Seien $(z_1, w_1), (z_2, w_2) \in \mathbb{S}^1 \times \mathbb{S}^1$, und definiere

$$(z_1, w_1) * (z_2, w_2) = (z_1 z_2, w_1 w_2).$$

Wir können in diesen Fall auch überprüfen, dass $\mathbb{S}^1 \times \mathbb{S}^1$ mit dieser Verknüpfung auch eine Gruppe ist. Wir bemerken zuerst, dass falls $(z_1, w_1), (z_2, w_2) \in \mathbb{S}^1 \times \mathbb{S}^1$, dann ist $(z_1 z_2, w_1 w_2) \in \mathbb{S}^1 \times \mathbb{S}^1$, da

$$|z_1 z_2| = |z_1||z_2| = 1$$
, and $|w_1, w_2| = |w_1||w_2| = 1$.

1. Seien $(z_1, w_1), (z_2, w_2), (z_3, w_3) \in \mathbb{S}^1 \times \mathbb{S}^1$, dann gilt

$$(z_1, w_1) * ((z_2, w_2) * (z_3, w_3)) = (z_1, w_1) * (z_2 z_3, w_2 w_3) = (z_1 z_2 z_3, w_1 w_2 w_3)$$
$$= (z_1 z_2, w_1 w_1) * (z_3, w_3) = ((z_1, w_1) * (z_2, w_2)) * (z_3, w_3).$$

- 2. Das neutrale Element ist (1,1):
 - (a) (1,1)*(z,w)=(z,w), für alle $(z,w)\in\mathbb{S}^1\times\mathbb{S}^1$,
 - (b) Sei $(z,w) \in \mathbb{S}^1 \times \mathbb{S}^1$. Dann ist (1/z,1/w) das inverse Element (da |1/z|=|1/w|=1, ist $(1/z,1/w) \in \mathbb{S}^1 \times \mathbb{S}^1$), und

$$(z, w) * (1/z, 1/w) = (z/z, w/w) = (1, 1).$$