It is usually easier to code in "high-level" languages than in "low-level" ones. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" a series of pasteboard cards with holes punched in them. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. There exist a lot of different approaches for each of those tasks. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Normally the first step in debugging is to attempt to reproduce the problem. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Many applications use a mix of several languages in their construction and use. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Also, specific user environment and usage history can make it difficult to reproduce the problem. It is usually easier to code in "high-level" languages than in "low-level" ones. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills.