Москва, ноябрь 2020

Теория арбитража для больших рынков

November 18, 2020

Arbitrage Pricing Theory Росса-Губермана (1976,1982), 1

Модель - последовательность $R^n \subset L^2(\Omega^n, \mathcal{F}^n, P^n)$. В k-факторной модели $R^n = \{\mathbf{H}^n \Delta \mathbf{S}^n : \mathbf{H}^n \mathbf{1} = 0\}, \ \mathbf{1} = (1, ..., 1),$

$$\Delta \mathbf{S}^n = \mathbf{m}^n + \sum_{1 \le j \le k} Z_j^n \mathbf{b}_j^n + \mathbf{Y}^n.$$

 $E^n Z_j^n = 0$, $E^n (Z_j^n)^2 < \infty$, $E^n |\mathbf{Y}^{ni}|^2 \leq C$, компоненты \mathbf{Y}^n некорелированы, жирным шрифтом — d-мерные вектора, d = d(n). Последовательность $\xi^n \in R^n$ — асимптотическая арбитражная возможность (AAO), если (a) $\lim_n E^n \xi^n = \infty$, (b) $\lim_n D^n \xi^n = 0$.

Lemma

Пусть ${\bf c}^n$ — проекция ${\bf m}^n$ на ${\cal L}_n^\perp$, где ${\cal L}_n={\rm Lin}\,\{{\bf 1},\,{\bf b}_j^n,\,j\le k\}$. Пусть NAA выполняется. Тогда $\sup_n|{\bf c}^n|<\infty$, то есть существуют последовательности $r^n,\,g_j^n,\,j\le k$, и константа A такие, что

$$|\mathbf{c}^n| = \left|\mathbf{m}^n - r^n \mathbf{1} - \sum_{1 \le j \le k} g_j^n \mathbf{b}_j^n \right|_d^2 \le A.$$

Arbitrage Pricing Theory Росса–Губермана, 2

 \mathcal{L} ок-во. Пусть $|\mathbf{c}^n| \to \infty$. Тогда $\mathbf{H}^\mathbf{n} = a^n \mathbf{c}^n$, $a^n = |\mathbf{c}^n|^{-3/2}$ является асимптотической арбитражной стратегией:

$$V^n := \mathbf{H}^n \Delta \mathbf{S}^n = a^n |\mathbf{c}^n|^2 + a^n \mathbf{c}^n \mathbf{Y}^n,$$

$$E^n V^n = a^n |\mathbf{c}^n|^2 \to \infty, \quad D^n V^n = E^n (a^n \mathbf{c}^n \mathbf{Y}^n)^2 \le \mathbf{C} (a^n)^2 |\mathbf{c}^n|^2 \to 0.$$

Наиболее интересным является стационарный случай, когда вместо общей схемы серий мы имеем вложенные расширяющиеся модели с добавлением новых активов: d(n) = n, $\mathbf{m}^n = (m_1, ..., m_n)$ etc. Центральный результат APT:

Theorem

Пусть в схеме расширяющихся моделей выполнено условие NAA. Тогда существуют константы r и g_j , $j \leq k$, такие, что

$$\sum_{i=1}^{\infty} \left(m_i - r - \sum_{1 \le j \le k} g_j b_j^i \right)^2 < \infty.$$

Proof.

Let us consider the vector space spanned by the infinite-dimensional vectors $\mathbf{1}_{\infty}=(1,1,...),\ b_j=(b_j^1,b_j^2,...),\ j\leq k.$ Without loss of generality we may assume that $\mathbf{1}_{\infty},\ b_j,\ j\leq l,$ is a basis in this space. There is n_0 such that for every $n\geq n_0$ the vectors formed by the first n components of the latter are linearly independent. For every $n\geq n_0$ we define the set

$$K^n := \left\{ (r, g_1, ..., g_l, 0, ..., 0) \in \mathbb{R}^{k+1} : \sum_{i=1}^n \left(\mu^i - r - \sum_{j=1}^k g_j b_j^i \right)^2 \le A \right\}$$

where choosing A as in the lemma ensures that K^n is non-empty. Clearly, K^n is closed and $K^{n+1} \subseteq K^n$. It is easily seen that K^n is bounded (otherwise we could construct a linear relation between the vectors assumed to be linearly independent). Thus, the sets K^n are compact, $\bigcap_{n \ge n_0} K^n \neq \emptyset$, and the result follows.

Связь между САРМ и АРМ

Рассмотрим однофакторную стационарную модель с торгуемым реперным активом (with traded numéraire):

$$\Delta S^{0} = \mu_{0} + b_{0}\zeta,$$

$$\Delta S^{i} = \mu_{i} + b_{i}\zeta + \eta_{i}, \quad i \geq 1.$$

где с.в. ζ и η_i некоррелированы и имеют нулевые средние, $D\eta_i \leq C$. При фиксировании значения "индекса" ΔS^0 цены остальных активов некоррелированы.

При отсутствии AA найдётся константа g такая, что

$$\sum_{i=0}^{\infty} (\mu_i - gb_i)^2 < \infty,$$

то есть $\mu_i=gb_i+u_i,\ u_i\to 0$. Если остаток u_0 мал, то $g\approx \mu_0/b_0$ и можно заключить, что $\mu_i\approx \mu_0\beta_i$ (по крайней мере для больших i), где $\beta_i:=b_i/b_0=b_ib_0/b_0^2$.

Современная версия АРТ

АРТ — важный результат, но обладает существенными недостатками: в частности, определением арбитража, резко отличающимся от концепций Харрисона и Плиски, и трудностью распространения на модели с непрерывным трейдингом, успех которых был обусловлен работами Блэка, Шоулса и Мертона. Проблема "примирения" двух теорий и распространения АРТ на модели с непрерывным временем решена в работе Kabanov-Kramkov (1994) на основе концепции асимптотического арбитража и использования техники, разработанной Липцером и Ширяевым при исследовании контигуальности вероятностных мер на пространстве с фильтрацией, и её обобщений. В рамках этой теории, которая получила дальнейшее развитие в работах Klein-Schachermayer (1996) и Kabanov-Kramkov (1998), были установлены критерии отсутствия асимптотического арбитража 1-го и 2-го рода. В модели "большого рынка Блэка-Шоулса" было получено условие ограниченности в терминах коэффициентов, аналогичное условию Росса-Губермана.

Определения, 1

Схема серий:
$$V_T^n = x^n + \varphi^n \cdot S_T^n$$
, $T = T^n ...$

Definition

Последовательность стратегий φ^n реализует асимпиотический арбитраж 1-го рода, если

- 1a) $V_t^n(\varphi^n) \geq 0 \ \forall \ t \leq T;$
- 1b) $\lim_{n} V_{0}^{n}(\varphi^{n}) = 0$ (i.e. $\lim_{n} x^{n} = 0$);
- 1c) $\lim_{n} P^{n}(V_{T}^{n}(\varphi^{n}) \geq 1) > 0.$

Можно стать бесконечно богатым...

Definition

Последовательность стратегий φ^n реализует асимптотический арбитраж 2-го рода, если

- 2a) $V_t^n(\varphi^n) > -1 \ \forall \ t < T$;
- 2b) $\lim_{n} V_{0}^{n}(\varphi^{n}) < 0;$
- 2c) $\lim_{n} P^{n}(V_{T}^{n}(\varphi^{n}) \leq -\varepsilon) = 0 \ \forall \ \varepsilon > 0.$

Определения, 2

Definition

Последовательность стратегий φ^n реализует сильный асимптотический арбитраже 1-го рода, если

- 3a) $V_t^n(\varphi^n) \geq 0 \ \forall \ t \leq T$;
- 3b) $\lim_{n} V_0^n(\varphi^n) = 0$ (i.e. $\lim_{n} x^n = 0$);
- 3c) $\lim_{n} P^{n}(V_{T}^{n}(\varphi^{n}) \geq 1) = 1.$

Можно стать бесконечно богатым наверняка ...

Definition

Последовательность стратегий φ^n реализует сильный асимптотический арбитраже 2-го рода, если

- 4a) $V_t^n(\varphi^n) \ge -1 \ \forall \ t \le T;$
- 4b) $\lim_{n} V_{0}^{n}(\varphi^{n}) = -1;$
- 4c) $\lim_{n} P^{n}(V_{T}^{n}(\varphi^{n}) \leq -\varepsilon) = 0 \ \forall \ \varepsilon > 0.$

Определения 3

Definition

$$\overline{\mathbf{Q}}(A) := \sup_{Q \in \mathcal{Q}} Q(A), \qquad \underline{\mathbf{Q}}(A) := \inf_{Q \in \mathcal{Q}} Q(A)$$

 \mathcal{Q} — множество (локально) мартингальных мер.

Definition

Последовательность (P^n) контигуальна относительно $(\overline{\mathbb{Q}}^n)$ (обозначение: $(P^n) \triangleleft (\overline{\mathbb{Q}}^n)$), если импликация

$$\lim_{n\to\infty} \overline{\mathbf{Q}}^n(A^n) = 0 \quad \Longrightarrow \quad \lim_{n\to\infty} P^n(A^n) = 0$$

имеет место для любой последовательности $A^n \in \mathcal{F}^n, n \geq 1$.

Контигуальность $(\mathbf{Q}^n \triangleleft (P^n))$ определяется аналогично.

Определения, 4

Definition

Последовательность (P^n) (вполне) асимптотически отделима от $(\overline{\mathbb{Q}}^n)$ (обозначение: $(P^n) \triangle (\overline{\mathbb{Q}}^n)$), если существует подпоследовательность (m) с множествами $A^m \in \mathcal{F}^m$ такая, что

$$\lim_{m\to\infty} \overline{\mathbf{Q}}^m(A^m) = 0, \quad \lim_{m\to\infty} P^m(A^m) = 1.$$

Критерии NAA1

Proposition

Следующие свойства эквивалентны:

- (a) NAA1;
- (b) $(P^n) \triangleleft (\overline{\mathbf{Q}}^n)$;
- (c) существуют $R^n \in \mathcal{Q}^n$ такие, что $(P^n) \triangleleft (R^n)$.

Импликации $(c) \Rightarrow (b) \Rightarrow (a)$ очевидны. Импликация $(a) \Rightarrow (b)$ вытекает из опционального разложения процесса $X_t^n = \operatorname{ess\,sup}_{Q \in \mathcal{Q}^n} E_Q(I_{\Gamma^n}|\mathcal{F}_t^n)$, который является Q-супермартингалом $\forall Q \in \mathcal{Q}$:

$$I_{\Gamma^n} = \overline{\mathbf{Q}}^n(\Gamma^n) + \varphi^n \cdot S_T^n - C_T^n \leq \overline{\mathbf{Q}}^n(\Gamma^n) + \varphi^n \cdot S_T^n.$$

Импликация $(b) \Rightarrow (c)$ следует из минимаксной теоремы.

Критерии NAA2

Definition

Последовательность (\mathcal{Q}^n) слабо контигуальна относительно (P^n) обозначение: $(\mathcal{Q}^n) \triangleleft_w (P^n)$), если для любого $\varepsilon > 0$ существуют $\delta > 0$ и последовательность $\mathcal{Q}^n \in \mathcal{Q}^n$ такие, что для любой последовательности $A^n \in \mathcal{F}^n$ с $\limsup_n P^n(A^n) < \delta$ мы имеем $\limsup_n Q^n(A^n) < \varepsilon$.

Proposition

Следующие свойства эквивалентны:

- (a) NAA2;
- (b) $(\mathbf{Q}^n) \triangleleft (P^n)$;
- $(c)(Q^n)\triangleleft_w(P^n).$

Импликации $(c) \Rightarrow (b) \Rightarrow (a)$ очевидны.

Импликация $(a) \Rightarrow (b)$ — опциональном разложение.

 $(b)\Rightarrow (c)$ — утверждение общего характера.

Ю.М.Кабанов Теория арбитража 12 / 21

Критерии SAA1

Proposition

Следующие свойства эквивалентны:

- (a) SAA1;
- (b) $(P^n) \triangle (\overline{\mathbf{Q}}^n)$;
- (c) SAA2)
- (d) $(\underline{\mathbf{Q}}^n) \triangle (P^n)$;
- (e) (P^n) riangle (Q^n) для любой последовательности $Q^n \in \mathcal{Q}^n$.

Большой БС-рынок, 1

Пусть $(\Omega, \mathcal{F}, \mathbf{F} = (\mathcal{F}_t), P)$ — стохастический базис со счётным числом независимых винеровских процессов w^i , $i \geq 0$, $\mathbf{w}^n := (w^0, \dots, w^n)$; пусть $\mathbf{F}^n = (\mathcal{F}_t^n)$ — подфильтрация \mathbf{F} такая, что $(\mathbf{w}^n, \mathbf{F}^n)$ — винеровский процесс, т.е. мартингал с $\langle \mathbf{w}^n \rangle_t = t I_{n+1}$. Заметим, что \mathbf{F}^n может быть шире фильтрации , порождённой \mathbf{w}^n .

Динамика цен активов:

$$\begin{split} dX_t^0 &= \mu_0 X_t^0 dt + \sigma_0 X_t^0 dw_t^0, \\ dX_t^i &= \mu_i X_t^i dt + \sigma_i X_t^i (\gamma_i dw_t^0 + \bar{\gamma}_i dw_t^i), \quad i \geq 1, \end{split}$$

начальные условия — детерминированные,

$$\int_0^t |\mu_i(s)|^2 ds < \infty, \qquad \int_0^t |\sigma_i(s)|^2 ds < \infty, \qquad t < \infty,$$

$$\gamma_i^2 + \bar{\gamma}_i^2 = 1, \ \sigma_i > 0, \ \bar{\gamma}_i > 0.$$

14 / 21

Большой БС-рынок, 2

Положим

$$\beta_i := \frac{\gamma_i \sigma_i}{\sigma_0} = \frac{\gamma_i \sigma_i \sigma_0}{\sigma_0^2}.$$

В случае детерминированных коэффициентов β_i — ковариация между доходами от i-го актива и индекса, деленная на дисперсию дохода от индекса.

Пусть $T^n = T$,

$$U_T := \int_0^T \left[\left(\frac{\mu_0}{\sigma_0} \right)^2 + \sum_{i=1}^\infty \left(\frac{\mu_i - \beta_i \mu_0}{\sigma_i \bar{\gamma}_i} \right)^2 \right] ds.$$

Proposition

NAA1 \Leftrightarrow $U_T < \infty$ Р-п.н.

Proposition

$$SAA1(2) \Leftrightarrow U_T < \infty P$$
-п.н.

Критерии контигуальности $(\underline{\mathbf{Q}}^n) \triangleleft (P^n)$

Proposition

Предположим, что для каждого $n \ge 1$ задано вероятностное пространство $(\Omega^n, \mathcal{F}^n, P^n)$ с выпуклым доминированным множеством \mathcal{Q}^n вероятностных мер. Тогда следующие свойства эквивалентны:

- (a) $(\underline{\mathbf{Q}}^n) \triangleleft (P^n)$;
- (b) $(Q^n) \triangleleft_w (P^n)$;
- (с) имеет место равенство:

$$\lim_{\alpha\downarrow 0} \liminf_n \sup_{Q\in\mathcal{Q}^n} H(\alpha,P^n,Q) = 1;$$

(d) имеет место равенство:

$$\lim_{K\to\infty}\limsup_n\inf_{Q\in\mathcal{Q}^n}Q\left(\frac{dQ}{dP^n}\geq K\right)=0.$$

Процесс Хеллингера

Пусть P и Q — вероятностные меры на пространстве с фильтрацией, $Y(\alpha):=z_P^{\alpha}z_Q^{1-\alpha}$, где $\alpha\in]0,1[$, z_P , z_Q - процессы плотности P и Q относительно $\nu=(P+Q)/2$. Ограниченный ν -супермартингал $Y(\alpha)$ допускает представление

$$Y(\alpha) = M(\alpha)\mathcal{E}(-h(\alpha))$$

где $M(\alpha)$ — локальный ν -мартингал до момента σ , когда $Y(\alpha)$ достигнет нуля, $h(\alpha)$ - предсказуемый возрастающий процесс, $\mathcal{E}(-h(\alpha))$ — стохастическая экспонента, т.е. решение линейного уравнения

$$\mathcal{E}(-h(\alpha)) = 1 - \mathcal{E}_{-}(-h(\alpha)) \cdot h(\alpha),$$

Мультипликативное разложение вытекает из разложения Дуба-Мейера

$$Y(\alpha) = 1 - A(\alpha) + M(\alpha) = 1 - Y_{-}(\alpha) \cdot h(\alpha) + M(\alpha). \tag{1}$$

Процесс $h(\alpha) = h(\alpha, Q, P)$ называется процессом Хеллингера.

Критерии контигуальности и процесс Хеллингера

Theorem

Следующие свойства эквивалентны: (a) $(P^n) \triangleleft (\overline{\mathbb{Q}}^n)$; (b) $\forall \varepsilon > 0$

$$\lim_{\alpha \downarrow 0} \limsup_{n} \inf_{Q \in \operatorname{conv} \mathcal{Q}^{n}} P^{n}(h_{\infty}(\alpha, Q, P^{n}) \geq \varepsilon) = 0.$$

Theorem

Предположим, что семейство Q^n выпукло и доминировано при каждом n. Тогда следующие свойства эквивалентны:

(a)
$$(\mathbf{Q}^n) \triangleleft (P^n)$$
;

(b)
$$\forall \varepsilon > 0$$

$$\lim_{\alpha\downarrow 0} \limsup_{n} \inf_{Q\in\mathcal{Q}^{n}} Q(h_{\infty}(\alpha, P^{n}, Q) \geq \varepsilon) = 0.$$

- Huberman G.
 - A simple approach to Arbitrage Pricing Theory. *Journal of Economic Theory*, **28** (1982), 1.
- Kabanov Yu. M., Kramkov D.O.

 No-arbitrage and equivalent martingale measure: an elementary
 - proof of the Harrison–Pliska theorem. *Probability Theory and Its Applications*, **39** (1994), 3.
- Kabanov Yu. M., Kramkov D.O.
 Asymptotic arbitrage in large financial markets. *Finance and Stochastics*, **2** (1998), 2.
- Klein I., Schachermayer W.
 Asymptotic arbitrage in non-complete large financial markets.

 Probability Theory and its Applications, 41 (1996), 4.
- Ross S. A.
 The arbitrage theory of asset pricing. *Journal of Economic Theory*, **13** (1976), 1.

Мартингальный дефлятор

В недавних статьях Кардарас и Такаока показали, что условие NAA1 (называемое в также ВК, NUPR) в "стационарной" модели эквивалентно существованию (локально-)мартингального дефлятора, т .е. строго положительного процесса, умножение на который превращает стоимость любого портфеля в локальный мартингал. Хотя Кардарас рассматривал только скалярный случай, его результат более точный:

Theorem

В любой окрестности базисной вероятностной меры можно найти эквивалентную ей вероятностную меру для которой существует реперный портфель (market portfolio), т.е. строго положительный процесс вида $1+H\cdot S$ такой, что обратный к нему является мартингальным дефлятором.

NAA1

Условие NAA1 может быть записано в следующем виде:

(ВК) Множество $K_0^1 := \{ H \cdot S_T : \ H \cdot S \ge -1 \}$ ограничено по вероятности.

Помимо прочего, интерес к свойству обусловлен следующим утверждением:

Lemma

(Delbaen–Schachermayer) NFLVR ⇔ NA & NAA1.

NFLVR означает, что $\bar{C}^* \cap L^0_+ = 0$, где $C := (K^1_0 - L^0_+) \cap L^\infty$. В отличие от Такаока, Кардарас не использовал теорему Дельбана–Шахермайера. Его результат даёт новое доказательство последней, но, к сожалению, только для скалярного случая...