Calculus: MA101

Course Coordinator: Dr. Arvind K. Gupta Room No. 239-B (Transit Campus), Email: akgupta@iitrpr.ac.in

https://sites.google.com/iitrpr.ac.in/ma101/home

Text Books/Reference Books

- G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry, 9thed., Addison-Wesley/Narosa, 1998.
- James Stewart, Calculus, Brooks Cole, 2015.
- Gilbert Strang, Calculus, Wellesley-Cambridge Press; 2nd edition, 2010.
- Tom M. Apostol, Calculus, Vol 1 and Vol II, Wiely, 2007.
- Thomas, Weir, Hass, Calculus, Thirteenth Edition, Pearson.

Grading Scheme:

Apart from Mid Semester and End Semester examinations, there will be 2 quizzes (1 quiz before Mid Semester Examination, and 1 quiz after Mid Semester Examination). The minimum pass mark for this course will be 30%.

Mark Distribution:

- Mid Semester: 25 Marks,
- End Semester: 45 Marks,
- Quizzes: 20 Marks,
- Quizzes during Tutorials: 10 Marks (TA's will inform the details)

Information/Instructions:

Tentative dates of Quizzes: Quiz - 1: 09 September, 2023

Quiz - 2: 04 November, 2023

- If anyone fails to write any exam, then NO make-up exam will be conducted except on a medical grounds (in this case, there MUST be a prior information to the course coordinator/instructor).
- Institute rules will be followed if a student fails to have minimum 75 percent attendance both in lectures and tutorials.
- Students can approach corresponding instructor for any doubts / clarifications during the
 office hour given in the course plan.
- All details of this course including lecture notes (PPT) will be uploaded in the ACADLY: https://app.acadly.com/
- Attendance will be taken through ACADLY App.

Differential Calculus

Functions of Single Variable

Limit, Continuity, Differentiability

- **□** Limit & Continuity: $\epsilon \delta$ Definition
- ☐ Differentiability: Differentials, Geometrical Interpretation

Limit of a Functions of One Variable

We say
$$\lim_{x \to x_0} f(x) = L$$
, if for every $\epsilon > 0$, there exists $\delta > 0$, such that $\forall x$,
$$0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$$

In other words,

If we can make the difference |f(x) - L| as small as we like by considering a small enough neighborhood around x_0 , then we say that

$$\lim_{x \to x_0} f(x) = L$$

Example:
$$\lim_{x \to 1} (3x + 1) = 4$$

Show that for a given $\epsilon > 0$, there exist a δ so that

$$0 < |x - 1| < \delta \implies |(3x + 1) - 4| < \epsilon$$

We start with the difference

$$|(3x+1)-4| = |3x-3| = 3|x-1| < 3\delta \le \epsilon$$

If we choose $\delta \leq \frac{\epsilon}{3}$ Then for any given ϵ , we have

$$|(3x+1)-4| < \epsilon$$
 whenever $0 < |x-1| < \delta$

Example:
$$\lim_{x\to 1} (3x+1) = 4$$
 Alternative Approach!

Show that for a given $\epsilon > 0$, there exist a δ so that

$$0 < |x-1| < \delta \implies |(3x+1)-4| < \epsilon$$

Solve the inequality:

$$|(3x+1)-4| < \epsilon \Rightarrow |3x-3| < \epsilon \Rightarrow 1 - \frac{\epsilon}{3} < x < 1 + \frac{\epsilon}{3}$$

If we choose $\delta \leq \frac{\epsilon}{3}$ Then for any given ϵ , we have

$$|(3x+1)-4| < \epsilon$$
 whenever $0 < |x-1| < \delta$

Note that the interval $\left(1-\frac{\epsilon}{3},1+\frac{\epsilon}{3}\right)$ contains the point $x_0=1$

Example: Suppose we test $\lim_{x\to 1} (3x + 1) = 7$

Trying to show that for a given $\epsilon > 0$, there exist a δ so that

$$|x-1| < \delta \implies |(3x+1)-4| < \epsilon$$

Solve the inequality:

$$|(3x+1)-7| < \epsilon \Rightarrow |3x-6| < \epsilon \Rightarrow 2 - \frac{\epsilon}{3} < x < 2 + \frac{\epsilon}{3}$$

Note that the interval $\left(2-\frac{\epsilon}{3},2+\frac{\epsilon}{3}\right)$ does not contains the point $x_0=1$ for any values of ϵ .

For an arbitrary given ϵ , δ does not exist and hence the limit can not be 7

Example: Show that
$$\lim_{x\to 5} \sqrt{x-1} = 2$$

Show that for a given $\epsilon > 0$, there exist a δ so that

$$|x-5| < \delta \implies |\sqrt{x-1}-2| < \epsilon$$

Solve the inequality:

$$|\sqrt{x-1}-2|<\epsilon \quad \Rightarrow -\epsilon<\sqrt{x-1}-2<\epsilon \quad \Rightarrow (2-\epsilon)^2+1< x<(2+\epsilon)^2+1$$

Note that there exists a δ such that the interval $(5 - \delta, 5 + \delta)$ lies inside the interval $((2 - \epsilon)^2 + 1, (2 + \epsilon)^2 + 1)$

$$\delta \le \min(5 - (2 - \epsilon)^2 - 1, (2 + \epsilon)^2 + 1 - 5)$$

e.g., $\epsilon = 1$, the interval (2, 10) contains $(5 - \delta, 5 + \delta)$ for $\delta \leq 3$.

Non-Existence of Limit

For a given ϵ , there does not exist any δ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - x_0| < \delta$

Basic Properties:

If l, m, c and x_0 are real numbers, $n \in \mathbb{N}$ and $\lim_{x \to x_0} f(x) = l$ and $\lim_{x \to x_0} g(x) = m$, then

- (i) $\lim_{x \to x_0} (f(x) \pm g(x)) = l \pm m$
- (ii) $\lim_{x \to x_0} (rf(x)) = r.l$
- (iii) $\lim_{x \to x_0} (f(x), g(x)) = l.m$
- (iv) If $m \neq 0$, $g(x) \neq 0 \ \forall x$, then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l}{m}$
- (v) If $\lim_{x \to x_0} f(x) \ge 0 \ \forall x \text{ then } l \ge 0 \text{ and } \lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{l}$

Consequences:

(i) If
$$P$$
 is a Polynomial function i.e., $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\lim_{x \to x_0} P(x) = P(x_0) = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_0$.

(ii) If P and Q are Polynomial functions on \mathbb{R} and if $Q(x) \neq 0$, then $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$

(iii) (The sandwich theorem / The squeeze theorem)

Suppose that $g(x) \le f(x) \le h(x) \ \forall x$, in some open interval containing x_0 , except possibly at $x = x_0$ itself.

Suppose also that
$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} h(x) = l$$
. Then
$$\lim_{x\to x_0} f(x) = l.$$

Example: Given that $1 - \frac{x^2}{4} \le f(x) \le 1 + \frac{x^2}{2}$; $\forall x \ne 0$. Find $\lim_{x \to 0} f(x)$.

(no matter how complicated f(x) is)

Sol:- Since
$$\lim_{x\to 0} \left(1 - \frac{x^2}{4}\right) = 1$$
 and $\lim_{x\to 0} \left(1 + \frac{x^2}{2}\right) = 1$

By Sandwich theorem, $\lim_{x\to 0} f(x) = 1$.

One-sided Limit of a Functions of One Variable

We say $\lim_{x\to x_0+} f(x) = L$ (right hand limit), if for every $\epsilon > 0$, there exists $\delta > 0$, such that $\forall x$,

$$x_0 < x < x_0 + \delta \Rightarrow |f(x) - L| < \epsilon$$

We say $\lim_{x\to x_0-} f(x) = L$ (left hand limit), if for every $\epsilon > 0$, there exists $\delta > 0$, such that $\forall x$,

$$x_0 - \delta < x < x_0 \Rightarrow |f(x) - L| < \epsilon$$

Example: Show that
$$\lim_{x\to 1+} \sqrt{x-1} = 0$$

We need to show that for given any $\epsilon>0$ there exists a $\delta>0$ such that

$$\left| \left(\sqrt{x - 1} - 0 \right) \right| < \epsilon, \quad \text{if} \quad 1 < x < 1 + \delta$$

OR
$$\sqrt{x-1} < \epsilon$$
, if $1 < x < 1 + \delta$

Solving the inequality $\sqrt{x-1} < \epsilon$, we get $1 < x < \epsilon^2 + 1$

So if we can choose $\delta \leq \epsilon^2$, then

$$1 < x < 1 + \delta \Rightarrow \left| \left(\sqrt{x - 1} - 0 \right) \right| < \epsilon$$