Adopted Levels, Gammas

 $Q(\beta^-)=22190 \text{ syst}; S(n)=1920 \text{ syst}; S(p)=22300 \text{ syst}; Q(\alpha)=-21440 \text{ syst}$ 2021Wa16

 $\Delta Q(\beta^{-}) = 720, \ \Delta S(n) = 300, \ \Delta S(p) = 840, \ \Delta Q(\alpha) = 860 \ (syst, 2021Wa16).$

 $S(2n)=2090 \ 810, \ Q(\beta^-n)=21440 \ 670 \ (syst, 2021Wa16).$

Isotope discovery (2012Th10): Ir(p,X)³⁵Na at CERN (1983La12).

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J, π , mass, $T_{1/2}$): 2022Ot01, 2020Ts03, 2013Li39, 2013Sh05, 2009Ly01, 2004Ge02, 2004Lu10, 2002Sa08, 1997Mo25, 1991Pa19, 1991Pa21, 1989Ly01, 1987SaZQ, 1985Ly02, 1975Ca27.

35Na Levels

Cross Reference (XREF) Flags

A 9Be(48Ca,35Na)

B $C(^{36}Mg,^{35}Na\gamma)$

E(level)
$$J^{\pi \dagger}$$
 $T_{1/2}$ XRED

Comments

 $\%\beta^-=100; \%\beta^-n>0; \%\beta^-2n=?; \%\beta^-3n=?; \%\beta^-4n=?$

The β^- n decay mode was observed by 1983La12, but $\%\beta^-$ n was not deduced. According to the theoretical calculations (2003Mo09 and 2016Ma12), almost 100% decay is through delayed-neutron branches. In β -delayed γ -ray spectrum, 2013StZY observed one γ ray at 661 keV from the decay of 35 Na, which was proposed either a transition from the first 2^+ in 34 Mg or from an excited state in 35 Mg. Based on theoretical predictions of strong delayed-neutron branches, this γ ray most likely is from the first 2^+ state in 34 Mg.

Theoretical $\%\beta^-1$ n=73.5, $\%\beta^-2$ n=20.1, $\%\beta^-3$ n=4.8 (2021Mi17).

Theoretical $\%\beta^-1n=73.0$, $\%\beta^-2n=10.0$, $\%\beta^-3n=3.0$ (2019Mo01).

 $T_{1/2}$: weighted average of 2.4 ms 3 (stat) 2 (syst) (2022Cr03, implant- β correlation), 2.4 ms 3 (stat) 6 (syst) (2013StZY, implant- β correlation), and 1.5 ms 5 (1983La12,1984La03, decay curve of β -coincident neutrons).

$$373^{\ddagger} 5$$
 $(5/2^{+})$ B $1014^{\ddagger} 17$ $(7/2^{+})$ B

 $\gamma(^{35}Na)$

$$\frac{\mathbf{E}_{i}(\text{level})}{373}$$
 $\frac{\mathbf{J}_{i}^{\pi}}{(5/2^{+})}$ $\frac{\mathbf{E}_{\gamma}^{\dagger}}{373}$ $\frac{\mathbf{E}_{f}}{0.0}$ $\frac{\mathbf{J}_{f}^{\pi}}{(3/2^{+})}$ $\frac{1014}{0.00}$ $\frac{(3/2^{+})}{0.00}$ $\frac{1}{0.00}$

[†] From Monte-Carlo shell-Model calculations using the SPDF-M effective interaction (2014Do05).

[‡] Band(A): K^{π} =(3/2⁺) rotational band predicted by the shell model (2014Do05).

[†] From C(³⁶Mg, ³⁵Nay).

Adopted Levels, Gammas

<u>Level Scheme</u>

Adopted Levels, Gammas

Band(A): K^{π} =(3/2⁺) rotational band predicted by the shell model (2014Do05)

