Fonctions et équations du 2nd degré

1 Résolution d'une équation du 2nd degré

Définition

Une équation du 2nd degré est une équation de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec : $a \neq 0$.

Une solution de cette équation s'appelle une **racine** du trinôme $ax^2 + bx + c$.

Exemple

L'équation $3x^2 - 6x - 2 = 0$ est une équation du 2nd degré.

1.1 Définition

On appelle **discriminant** du trinôme $ax^2 + bx + c$, le nombre réel, noté Δ , égal à $b^2 - 4ac$.

Propriété

Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si $\Delta < 0$: L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle. Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une unique solution : $x_0 = \frac{-b}{2a}$.
- Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Méthode : Résoudre une équation du 2nd degré

Résoudre les équations suivantes : (@) $2x^2 - x - 6 = 0$ (@) $2x^2 - 3x + \frac{9}{8} = 0$ (@) $x^2 + 3x + 10 = 0$

— Calculons le discriminant de l'équation $2x^2 - x - 6 = 0$:

$$a = 2, b = -1 \text{ et } c = -6 \text{ donc } \Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49.$$

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$

et
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$$

— Calculons le discriminant de l'équation $2x^2 - 3x + \frac{9}{8} = 0$:

$$a=2,\; b=-3 \text{ et } c=\frac{9}{8} \text{ donc } \Delta=b^2-4ac=(-3)^2-4\times 2\times \frac{9}{8}=0.$$

Comme $\Delta=0$, l'équation possède une unique solution : $x_0=-\frac{b}{2a}=-\frac{-3}{2\times 2}=\frac{3}{4}$

— Calculons le discriminant de l'équation $x^2 + 3x + 10 = 0$:

$$a=1,\ b=3\ {\rm et}\ c=10\ {\rm donc}\ \Delta=b^2-4ac=3^2-4\times 1\times 10=-31.$$

Comme $\Delta 0$, l'équation ne possède pas de solution réelle.

Propriété

La somme S et le produit P des racines d'un polynôme du 2^{nd} degré de la forme $ax^2 + bx + c = 0$ sont donnés par :

$$S = -\frac{b}{a}$$
 et $P = \frac{c}{a}$.

Exercice : Démontrer ces deux formules.

Soit x_1 et x_2 les solutions de $x^2 + bx + c = 0$ alors

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Donc $S = x_1 + x_2$:

$$S = x_1 + x_2$$

$$= \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{(-b - \sqrt{\Delta}) + (-b + \sqrt{\Delta})}{2a}$$

$$= \frac{-2b}{2a} = \frac{-b}{a}$$

Pour le produit, $P = x_1 \times x_2$:

$$P = x_1 \times x_2$$

$$= \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{(-b - \sqrt{\Delta}) \times (-b + \sqrt{\Delta})}{2a \times 2a}$$

$$= \frac{(-b)^2 + ((-b) \times \sqrt{\Delta}) + (-\sqrt{\Delta} \times (-b)) + (-\sqrt{\Delta} \times \sqrt{\Delta})}{4a^2}$$

$$= \frac{b^2 - \Delta}{4a^2} = \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2}$$

$$= \frac{c}{a}$$

2 Factorisation d'un trinôme

Démonstration

La fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous sa forme canonique :

$$f(x) = a(x - \alpha)^2 + \beta$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{b^2 - 4ac}{4a}$.

Donc:

 $ax^2 + bx + c = 0$ peut s'écrire :

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2} \quad \text{car } a \neq 0$$

- Si $\Delta < 0$: Comme un carré ne peut être négatif $\left(\frac{\Delta}{4a^2} < 0\right)$, l'équation $ax^2 + bx + c = 0$ n'a pas de solution.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ peut s'écrire : $\left(x + \frac{b}{2a}\right)^2 = 0$

L'équation n'a qu'une seule solution : $x = \frac{-b}{2a}$

— Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ est équivalente à :

$$\begin{vmatrix} x + \frac{b}{2a} = +\sqrt{\frac{\Delta}{4a^2}} \\ x = +\sqrt{\frac{\Delta}{4a^2}} - \frac{b}{2a} \\ x = \frac{+\sqrt{\Delta}}{2a} - \frac{b}{2a} \end{aligned}$$
 et
$$x = \frac{-\sqrt{\Delta}}{4a^2} - \frac{b}{2a} \\ x = \frac{-\sqrt{\Delta}}{2a} - \frac{b}{2a} \\ x = \frac{-\sqrt{\Delta}}{2a} - \frac{b}{2a} \\ x = \frac{-\sqrt{\Delta} - b}{2a} \\ x = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x = \frac{-b - \sqrt{\Delta}}{2a}$$

L'équation a deux solutions distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$

Propriété

Soit f une fonction polynôme de degré 2 définie sur par $f(x) = ax^2 + bx + c$.

3

- Si $\Delta = 0$: Pour tout réel x, on a : $f(x) = a(x x_0)^2$.
- Si $\Delta > 0$: Pour tout réel x, on a : $f(x) = a(x x_1)(x x_2)$.

Remarque

Si $\Delta < 0,$ il n'existe pas de forme factorisée de f .

Méthode : Factoriser un trinôme

Factoriser les trinômes suivants :

- (1) $4x^2 + 19x 5$
- (2) $9x^2 6x + 1$
- (3) On cherche les racines du trinôme $4x^2 + 19x 5$:

Calcul du discriminant : $\Delta = 19^2 - 4 \times 4 \times (-5) = 441$

Les racines sont :

$$x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} = -5$$
 et $x_2 = \frac{-19 + \sqrt{441}}{2 \times 4} = \frac{1}{4}$

On a donc:

$$4x^{2} + 19x - 5 = 4(x - (-5))\left(x - \frac{1}{4}\right)$$
$$= (x + 5)(4x - 1)$$

Une vérification à l'aide de la calculatrice n'est jamais inutile! On peut lire une valeur approchée des racines sur l'axe des abscisses.

(4)