递推式极限

言午

2020年9月13日

1. 设 $a_1 = 1$, $a_{n+1} = a_n + \frac{1}{a_n} (n \in N_+)$, 证明

$$\lim_{n \to \infty} \frac{a_n}{\sqrt{n}} = \sqrt{2}$$

- **2.** 设数列 $\{x_n\}$ 满足 $x_1 = 2$, $x_{n+1} = 2 + \frac{1}{x_n}$, $n \in N_+$, 证明数列 $\{x_n\}$ 收敛,并求其极限值。
- **3.** 设数列 $\{x_n\}$ 满足 $0 < x_1 < 3$, $x_{n+1} = \sqrt{x_n (3 x_n)}$, $n \in N_+$, 证明数列 $\{x_n\}$ 极限存在并求其极限值。
 - **4.** 证明数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$, ... 极限存在,并求其极限值。
 - 5. 设 $a_1 > 0$, $\{a_n\}$ 满足 $a_{n+1} = \ln(1 + a_n)$, $n \in N_+$ 。
 - (1) 证明数列 $\{a_n\}$ 极限存在,并求其极限值;
 - (2) 计算

$$\lim_{n \to \infty} \frac{a_n a_{n+1}}{a_n - a_{n+1}}$$

6. 设数列 $\{x_n\}$ 满足 $x_{n+1} = \cos x_n$, $n \in N_+$, $x_1 = \cos x$, 证明该数列极限存在且其极限值为 $\cos x - x = 0$ 的根。

7.

- (1) 证明方程 $\tan x = x$ 在 $\left(n\pi, n\pi + \frac{\pi}{2}\right)$ 内存在实根 ξ_n , $n \in N_+$;
- (2) 计算极限

$$\lim_{n\to\infty} \left(\xi_{n+1} - \xi_n\right)$$

8.

- (1) 证明方程 $e^x + x^{2n+1} = 0$ 在 (-1,0) 有唯一实根 x_n ,且 $n \in N_+$;
- (2) 证明数列 $\{x_n\}$ 极限存在并求其值 a;
- (3) 计算

$$\lim_{n\to\infty}n\left(x_n-a\right)$$

9. 设数列 $\{x_n\}$ 满足 $x_0 = a$, $x_1 = b$, $x_{n+1} = \frac{1}{2}(x_n + x_{n-1})$, $n \in N_+$, 证明数列 $\{x_n\}$ 极限存在并求其极限。

10.

- (1) 证明方程 $x^n+x^{n-1}+\cdots+x=1\,(n>1,n\in Z)$ 在区间 $\left(\frac{1}{2},1\right)$ 内有且仅有一个实根;
 - (2) 记(1) 中的实根为 x_n , 证明数列 $\{x_n\}$ 极限存在并求其极限。