

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-4

Nome: Luiz Gustavo Caobianco

Para a confecção de um sistema de ressonância magnética, observou-se que é de extrema importância para o bom desempenho do processador de imagens de que a variável $\{y\}$, que mede a energia absorvida do sistema, possa ser estimada a partir da medição de três outras grandezas $\{x_1, x_2, x_3\}$. Entretanto, em função da complexidade do sistema, sabe-se que este mapeamento é de difícil obtenção por técnicas convencionais, sendo que o modelo matemático disponível para representação do mesmo não fornece resultados satisfatórios.

Assim, a equipe de engenheiros e cientistas pretende utilizar uma rede perceptron multicamadas como um aproximador universal de funções, tendo-se como objetivo final de que, dado como entrada os valores de $\{x_1, x_2, x_3\}$, a mesma possa estimar (após o treinamento) o respectivo valor da variável $\{y\}$ que representa a energia absorvida. A topologia da rede perceptron constituída de duas camadas neurais está ilustrada na figura abaixo.

Utilizando o algoritmo de aprendizagem *backpropagation* (Regra Delta Generalizada) e os dados de treinamento apresentados no Anexo, sendo que as variáveis de entrada $\{x_1, x_2, x_3\}$ já estão todas normalizadas, realize as seguintes atividades:

1. Execute 5 treinamentos para a rede perceptron, inicializando-se as suas matrizes de pesos (em cada treinamento) com valores aleatórios entre 0 e 1. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento, de tal forma que os elementos das matrizes de pesos iniciais não sejam os mesmos. Utilize a função de ativação *logística* para todos os neurônios, taxa de aprendizado $\eta = 0.1$ e precisão $\epsilon = 10^{-6}$

2. Registre os resultados finais desses 5 treinamentos na tabela abaixo:

Treinament o	Erro Quadrático Médio	Número de Épocas
1° (T1)	0.02907493	360
2° (T2)	0.03515140	1065
3° (T3)	0.02033891	79
4° (T4)	0.02416305	643
5° (T5)	0.02969140	490

- 3. Para os dois treinamentos acima, com maiores números de épocas, trace os respectivos gráficos dos valores de erro quadrático médio (EQM) em função de cada época de treinamento. Imprima os dois gráficos numa mesma folha de modo não superpostos.

 Resposta: Os gráficos podem ser encontrados anexos no final deste trabalho.
- 4. Baseado na tabela do item 2, explique de forma detalhada por que tanto o erro quadrático médio quanto o número de épocas variam de treinamento para treinamento.
 <u>Resposta:</u> A quantidade de épocas varia porque, uma vez que os pesos sinápticos são iniciados aleatoriamente, é possível que eles sejam iniciados mais próximos aos valores ideais. Dessa forma, o número de épocas poderá ser menor.

Entretanto, o número de épocas aumenta caso os pesos sinápticos sejam sorteados mais distantes dos pontos ideais.

Já o erro quadrático médio varia porque a superfície de erro produzida pelo PMC é não-linear. Isso significa que é possível a convergência para um mínimo local, portanto os erros quadráticos médios podem divergir por representarem mínimos locais dentro de uma função que está sendo aproximada pelo PMC.

Este aspecto também relaciona-se com o fato dos pesos sinápticos serem iniciados aleatoriamente. Ao iniciar W aleatoriamente, existe a possibilidade do PMC convergir para o mínimo local próximo, e parar neste ponto.

5. Para todos os treinamentos efetuados no item 2, faça então a validação da rede aplicando o conjunto de teste fornecido na tabela abaixo. Forneça, para cada treinamento, o erro relativo médio (%) entre os valores desejados e aqueles valores fornecidos pela rede em relação a todas as amostras de teste. Obtenha também a respectiva variância.

Amostra	<i>X</i> ₁	X ₂	<i>X</i> ₃	d	y _{rede} (T1)	y _{rede} (T2)	y _{rede} (T3)	y _{rede} (T4)	y _{rede} (T5)
1	0.0611	0.2860	0.7464	0.4831	0.5268	0.5135	0.5255	0.5105	0.5227
2	0.5102	0.7464	0.0860	0.5965	0.6422	0.6337	0.5982	0.5909	0.6150
3	0.0004	0.6916	0.5006	0.5318	0.6693	0.6861	0.6069	0.6225	0.6724
4	0.9430	0.4476	0.2648	0.6843	0.7338	0.7536	0.6468	0.6772	0.7290
5	0.1399	0.1610	0.2477	0.2872	0.7036	0.7291	0.6082	0.6338	0.6881
6	0.6423	0.3229	0.8567	0.7663	0.7334	0.7829	0.6291	0.6770	0.7488
7	0.6492	0.0007	0.6422	0.5666	0.7426	0.8004	0.6258	0.6779	0.7520
8	0.1818	0.5078	0.9046	0.6601	0.7352	0.8187	0.6261	0.6885	0.7789
9	0.7382	0.2647	0.1916	0.5427	0.7480	0.8217	0.6265	0.6884	0.7763
10	0.3879	0.1307	0.8656	0.5836	0.7432	0.8322	0.6237	0.6889	0.7815
11	0.1903	0.6523	0.7820	0.6950	0.7374	0.8396	0.6252	0.6926	0.7974
12	0.8401	0.4490	0.2719	0.6790	0.7521	0.8444	0.6325	0.6942	0.8006
13	0.0029	0.3264	0.2476	0.2956	0.7343	0.8351	0.6202	0.6907	0.7964
14	0.7088	0.9342	0.2763	0.7742	0.7509	0.8415	0.6327	0.6932	0.8086
15	0.1283	0.1882	0.7253	0.4662	0.7373	0.8417	0.6253	0.6923	0.8085
16	0.8882	0.3077	0.8931	0.8093	0.7459	0.8523	0.6367	0.6931	0.8132
17	0.2225	0.9182	0.7820	0.7581	0.7410	0.8550	0.6428	0.6931	0.8204
18	0.1957	0.8423	0.3085	0.5826	0.7388	0.8543	0.6435	0.6928	0.8227
19	0.9991	0.5914	0.3933	0.7938	0.7458	0.8570	0.6555	0.6928	0.8240
20	0.2299	0.1524	0.7353	0.5012	0.7385	0.8573	0.6509	0.6926	0.8239
			Erro Relativo Médio (%)		31.17	41.38	23.48	25.69	35.59
			Variân	cia (%)	16.93	28.76	11.10	14.77	26.83

6. Baseado nas análises da tabela acima, indique qual das configurações finais de treinamento {T1 , T2 , T3 , T4 ou T5} seria a mais adequada para o sistema de ressonância magnética, ou seja, qual delas está oferecendo a melhor generalização.

Resposta: O que oferece a melhor generalização é T4. Pois o resultado obtido com este treinamento mostrou valores de erro quadrático médio e variância melhores que comparados aos outros treinamentos.

Gráfico do valor do erro quadrático médio para o treinamento T2

Gráfico do valor de | Eqm(atual) – Eqm(anterior) | para o treinamento T2

Gráfico do valor do erro quadrático médio para o treinamento T4

Gráfico de | Eqm(atual) – Eqm(anterior) | para o treinamento T4

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica

ANEXO

Amostr	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	d	Amostr	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	d	Amostr	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	d
a	0.0500	0.7000	0.2072	0.0200	a	0.2644	0.20.40	0.2025	0.5040	a 141	0.0050	0.0000	0.0000	0.5000
2	0.8799 0.5700	0.7998 0.5111	0.3972 0.2418	0.8399 0.6258	71 72	0.3644 0.2014	0.2948 0.6326	0.3937 0.9782	0.5240 0.7143	141 142	0.2858 0.7931	0.9688	0.2262 0.9028	0.5988 0.9728
3	0.6796	0.4117	0.3370	0.6622	73	0.4039	0.0645	0.4629	0.4547	143	0.7841	0.0778	0.9012	0.6832
4	0.3567	0.2967	0.6037	0.5969	74	0.7137	0.0670	0.2359	0.4602	144	0.1380	0.5881	0.2367	0.4622
5	0.3866	0.8390	0.0232	0.5316	75	0.4277	0.9555	0.0000	0.5477	145	0.6345	0.5165	0.7139	0.8191
6 7	0.0271	0.7788	0.7445	0.6335	76 77	0.0259	0.7634	0.2889	0.4738	146 147	0.2453	0.5888	0.1559	0.4765
8	0.8174 0.6027	0.8422 0.1468	0.3229	0.8068 0.5342	78	0.1871 0.3216	0.7682 0.5420	0.9697 0.0677	0.7397 0.4526	147	0.1174	0.5436 0.3228	0.3657 0.6952	0.4953 0.6376
9	0.1203	0.3260	0.5419	0.4768	79	0.2524	0.7688	0.9523	0.7711	149	0.9532	0.6949	0.4451	0.8426
10	0.1325	0.2082	0.4934	0.4105	80	0.3621	0.5295	0.2521	0.5571	150	0.7954	0.8346	0.0449	0.6676
11	0.6950	1.0000	0.4321	0.8404	81	0.2942	0.1625	0.2745	0.3759	151	0.1427	0.0480	0.6267	0.3780
12	0.0036	0.1940	0.3274	0.2697	82	0.8180	0.0023	0.1439	0.4018	152	0.1516	0.9824	0.0827	0.4627
13 14	0.2650 0.5849	0.0161 0.6019	0.5947	0.4125 0.7464	83 84	0.8429 0.9612	0.1704 0.6898	0.5251 0.6630	0.6563 0.9128	153 154	0.4868 0.3408	0.6223	0.7462 0.0783	0.8116 0.4559
15	0.0108	0.3538	0.1810	0.2800	85	0.1009	0.4190	0.0826	0.3055	155	0.8146	0.6378	0.5837	0.8628
16	0.9008	0.7264	0.9184	0.9602	86	0.7071	0.7704	0.8328	0.9298	156	0.2820	0.5409	0.7256	0.6939
17	0.0023	0.9659	0.3182	0.4986	87	0.3371	0.7819	0.0959	0.5377	157	0.5716	0.2958	0.5477	0.6619
18	0.1366	0.6357	0.6967	0.6459	88	0.1555	0.5599	0.9221	0.6663	158	0.9323	0.0229	0.4797	0.5731
19 20	0.8621 0.0682	0.7353 0.9624	0.2742 0.4211	0.7718 0.5764	89 90	0.7318 0.1665	0.1877 0.7449	0.3311	0.5689 0.4508	159 160	0.2907	0.7245 0.0545	0.5165 0.0861	0.6911
20	0.0682	0.9624	0.4211	0.5764	91	0.1665	0.7449	0.0997	0.4508	161	0.0068	0.0545	0.0861	0.0851
22	0.0030	0.7585	0.8928	0.6388	92	0.9885	0.6229	0.2085	0.7200	162	0.0350	0.3653	0.7801	0.5117
23	0.7644	0.5964	0.0407	0.6055	93	0.0461	0.7745	0.5632	0.5949	163	0.9670	0.3031	0.7127	0.7836
24	0.6441	0.2097	0.5847	0.6545	94	0.3209	0.6229	0.5233	0.6810	164	0.0000	0.7763	0.8735	0.6388
25 26	0.0803	0.3799 0.8046	0.6020 0.5402	0.4991 0.6665	95 96	0.9189 0.0382	0.5930 0.5515	0.7288 0.8818	0.8989 0.5999	165 166	0.4395 0.9359	0.0501	0.9761 0.9514	0.5712 0.6826
27	0.1908	0.3967	0.5402	0.7595	97	0.0362	0.5515	0.3814	0.5999	167	0.9359	0.0366	0.9514	0.5527
28	0.2591	0.0582	0.3978	0.3604	98	0.4211	0.2668	0.3307	0.5080	168	0.6112	0.9070	0.6286	0.8803
29	0.4241	0.1850	0.9066	0.6298	99	0.2378	0.0817	0.3574	0.3452	169	0.2010	0.9573	0.6791	0.7283
30	0.3332	0.9303	0.2475	0.6287	100	0.9893	0.7637	0.2526	0.7755	170	0.8914	0.9144	0.2641	0.7966
31	0.3625	0.1592	0.9981	0.5948	101	0.8203	0.0682	0.4260	0.5643	171	0.0061	0.0802	0.8621	0.3711
32	0.9259 0.8606	0.0960 0.6779	0.1645	0.4716 0.6242	102 103	0.6226 0.4589	0.2146 0.3147	0.1021 0.2236	0.4452 0.4962	172 173	0.2212 0.2401	0.4664	0.3821	0.5260 0.4637
34	0.0838	0.6779	0.3758	0.6242	103	0.4369	0.8889	0.2236	0.4962	174	0.2401	0.0904	0.3038	0.4637
35	0.0303	0.9191	0.7233	0.6491	105	0.5762	0.8292	0.4116	0.7853	175	0.2435	0.0794	0.5551	0.4223
36	0.9293	0.8319	0.9664	0.9840	106	0.9053	0.6245	0.5264	0.8506	176	0.2752	0.8414	0.2797	0.6079
37	0.7268	0.1440	0.9753	0.7096	107	0.2860	0.0793	0.0549	0.2224	177	0.7616	0.4698	0.5337	0.7809
38 39	0.2888 0.5515	0.6593 0.1364	0.4078 0.2894	0.6328 0.4745	108 109	0.9567 0.5170	0.3034 0.9266	0.4425 0.1565	0.6993 0.6594	178 179	0.3395 0.7849	0.0022	0.0087	0.1836 0.8641
40	0.3313	0.1364	0.2694	0.4743	110	0.8149	0.9266	0.1363	0.6394	180	0.7849	0.9961	0.4449	0.4857
41	0.6462	0.6761	0.8340	0.8933	111	0.3710	0.3554	0.5633	0.6171	181	0.9763	0.1102	0.6227	0.6667
42	0.3694	0.2212	0.1233	0.3658	112	0.8702	0.3185	0.2762	0.6287	182	0.8597	0.3284	0.6932	0.7829
43	0.2706	0.3222	0.9996	0.6310	113	0.1016	0.6382	0.3173	0.4957	183	0.9295	0.3275	0.7536	0.8016
44 45	0.6282 0.5861	0.1404 0.6693	0.8474	0.6733 0.7433	114 115	0.3890 0.2702	0.2369 0.8617	0.0083 0.1218	0.3235 0.5319	184 185	0.2435 0.9281	0.2163 0.8356	0.7625 0.5285	0.5449 0.8991
46	0.6057	0.9901	0.5141	0.7433	116	0.2702	0.6507	0.1218	0.8464	186	0.8313	0.7566	0.5265	0.8991
47	0.5915	0.5588	0.3055	0.6787	117	0.9108	0.2139	0.4641	0.6625	187	0.1712	0.0545	0.5033	0.3561
48	0.8359	0.4145	0.5016	0.7597	118	0.4343	0.6028	0.1344	0.5546	188	0.0609	0.1702	0.4306	0.3310
49	0.5497	0.6319	0.8382	0.8521	119	0.6847	0.4062	0.9318	0.8204	189	0.5899	0.9408	0.0369	0.6245
50 51	0.7072	0.1721 0.5084	0.3812 0.8376	0.5772	120 121	0.8657 0.4011	0.9448 0.4138	0.9900 0.8715	0.9904 0.7222	190 191	0.7858 1.0000	0.5115 0.1653	0.0916	0.6066
52	0.1185 0.6365	0.5562	0.8376	0.6211	121	0.4011	0.4138	0.8715	0.7222	191	0.2007	0.1653	0.7103	0.7172
53	0.4145	0.5797	0.8599	0.7878	123	0.1845	0.7906	0.9725	0.7425	193	0.2306	0.0330	0.0293	0.1590
54	0.2575	0.5358	0.4028	0.5777	124	0.3438	0.6725	0.9821	0.7926	194	0.8477	0.6378	0.4623	0.8254
55	0.2026	0.3300	0.3054	0.4261	125	0.8398	0.1360	0.9119	0.7222	195	0.9677	0.7895	0.9467	0.9782
56	0.3385	0.0476	0.5941	0.4625	126	0.2245	0.0971	0.6136	0.4402	196	0.0339	0.4669	0.1526	0.3250
57 58	0.4094 0.1261	0.1726 0.6181	0.7803 0.4927	0.6015 0.5739	127 128	0.3742 0.9572	0.9668 0.9836	0.8194 0.3793	0.8371 0.8556	197 198	0.0080	0.8988 0.8897	0.4201 0.6175	0.5404
59	0.1201	0.4662	0.4927	0.3739	129	0.7496	0.9636	0.3793	0.4059	199	0.7408	0.5351	0.0173	0.6949
60	0.6793	0.6774	1.0000	0.9141	130	0.9123	0.3510	0.0682	0.5455	200	0.6843	0.3737	0.1562	0.5625
61	0.8176	0.0358	0.2506	0.4707	131	0.6954	0.5500	0.6801	0.8388					
62	0.6937	0.6685	0.5075	0.8220	132	0.5252	0.6529	0.5729	0.7893					
63 64	0.2404 0.6553	0.5411 0.2609	0.8754	0.6980	133 134	0.3156 0.1460	0.3851	0.5983 0.0249	0.6161			-		-
65	0.8886	0.2609	0.1188	0.4851 0.4802	134	0.1460	0.1637 0.4491	0.0249	0.1813 0.7498					
66	0.3974	0.5275	0.6457	0.7215	136	0.5959	0.8647	0.8601	0.9176					
67	0.2108	0.4910	0.5432	0.5913	137	0.2204	0.1785	0.4607	0.4276					
68	0.8675	0.5571	0.1849	0.6805	138	0.7355	0.8264	0.7015	0.9214					
69	0.5693	0.0242	0.9293	0.6033	139	0.9931	0.6727	0.3139	0.7829					
70	0.8439	0.4631	0.6345	0.8226	140	0.9123	0.0000	0.1106	0.3944					