#### Discrete and Continuous Models for Concurrent Systems

3. Languages of Higher-Dimensional Automata

Uli Fahrenberg

EPITA Research Laboratory (LRE), Rennes/Paris, France

EWSCS 27. Viinistu. March 2025





2. Concurrent semantics of Petri nets

Languages of Higher-Dimensional Automata

3. Languages of higher-dimensional aut.



4. Geometry of higher-dimensional aut.



- Introduction
- 2 Higher-Dimensional Automata
- 3 Languages of Higher-Dimensional Automata
- 4 Properties

## Higher-Dimensional Automata

A conclist is a finite, totally ordered,  $\Sigma$ -labeled set.

(a list of labeled events)

A precubical set *X* consists of:

A set of cells X

- (cubes)
- Every cell  $x \in X$  has a conclist ev(x) (list of events active in x)
- We write  $X[U] = \{x \in X \mid ev(x) = U\}$  for a conclist U (cells of type U)
- For every conclist U and  $A \subseteq U$  there are:

```
upper face map \delta_A^1: X[U] \to X[U \setminus A] (terminating events A) lower face map \delta_A^0: X[U] \to X[U \setminus A] ("unstarting" events A)
```

• Precube identities:  $\delta^{\mu}_{\Delta}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{\Delta}$  for  $A \cap B = \emptyset$  and  $\mu, \nu \in \{0, 1\}$ 

A higher dimensional automaton (HDA) is a precubical set X with initial cells  $\bot \subseteq X$  and accepting cells  $\top \subseteq X$  (not necessarily vertices)









$$a \parallel (bc)^*$$

# Computations of HDAs

An HDA computes by starting and terminating events in sequence:

upstep  $x \uparrow y$ , starting  $\begin{bmatrix} a \\ b \end{bmatrix}$ :



downstep  $x \setminus y$ , terminating a:



## Example

Introduction



$$(x_1 \nearrow^a x_2 \searrow_a x_3 \nearrow^{\{b,c,d\}} x_4 \searrow_{\{c,d\}} x_5 \nearrow^e x_6)$$

#### Precubical Sets As Presheaves

A presheaf over a category  $\mathcal{C}$  is a functor  $\mathcal{C}^{op} \to \mathsf{Set}$ (contravariant functor on  $\mathcal{C}$ )

The precube category  $\square$  has conclists as objects.

Morphisms are coface maps  $d_{A,B}: U \to V$ , where

- $A, B \subseteq V$  are disjoint subsets,
- $U \simeq V \setminus (A \cup B)$  are isomorphic conclists,
- $d_{AB}: U \to V$  is the unique label-preserving monotonic map with image  $V \setminus (A \cup B)$ .

Composition of coface maps  $d_{A,B}: U \to V$  and  $d_{C,D}: V \to W$  is

$$d_{\partial(A)\cup C,\partial(B)\cup D}:U\to W,$$

where  $\partial: V \to W \setminus (C \cup D)$  is the unique conclist isomorphism.

- precubical sets: presheaves over
- HDAs: precubical sets with initial and accepting cells

Introduction

- 2 Higher-Dimensional Automata
- 3 Languages of Higher-Dimensional Automata
- 4 Properties



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \dots \right\}$$



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{bmatrix} a \\ b \to c \end{bmatrix}, \begin{bmatrix} a \\ c \to b \end{bmatrix}, \begin{bmatrix} b \\ a \to c \end{bmatrix}, \\ \begin{bmatrix} b \\ c \to a \end{bmatrix}, \begin{bmatrix} c \\ b \to a \end{bmatrix}, \begin{bmatrix} c \\ b \to a \end{bmatrix} \right\} \cup L_{1} \cup \dots$$

$$L_{3} = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \right\} \cup L_{2}$$
sets of pomsets



#### Lifetimes of events

0



#### Lifetimes of events















# Lifetimes of events





















#### Pomsets with Interfaces

#### Definition

Introduction

A pomset with interfaces (ipomset):  $(P, <, -----, S, T, \lambda)$ :

- finite set *P*;
- two partial orders < (precedence order), --- (event order)
  - s.t. < ∪ --→ is a total relation:</li>
- $S, T \subseteq P$  source and target interfaces
  - s.t. S is <-minimal and T is <-maximal.



#### Interval Orders

Introduction

#### Definition

An ipomset  $(P, <_P, -\rightarrow, S, T, \lambda)$  is interval if  $(P, <_P)$  has an interval representation: functions  $b, e : P \to \mathbb{R}$  s.t.

- $\forall x \in P : b(x) \leq_{\mathbb{R}} e(x)$ ;
- $\forall x, y \in P : e(x) <_{\mathbb{R}} b(y) \iff x <_{P} y$



# Gluing Composition

Introduction



- Gluing P \* Q: P before Q, except for interfaces (which are identified)
- (also have parallel composition  $P \parallel Q$ : disjoint union)

# Subsumption

Introduction



P refines Q / Q subsumes  $P / P \sqsubseteq Q$  iff

- P and Q have same interfaces
- P has more < than Q</li>
- Q has more --→ than P

#### Definition

Introduction

The language of an HDA X is the set of event ipomsets of all accepting paths:

$$L(X) = \{ \operatorname{ev}(\pi) \mid \pi \in \operatorname{Paths}(X), \operatorname{src}(\pi) \in \bot_X, \operatorname{tgt}(\pi) \in \top_X \}$$

- L(X) contains only interval ipomsets,
- is closed under subsumption,
- and has finite width

#### Definition

A language  $L \subseteq iiPoms$  is regular if there is an HDA X with L = L(X).

- Introduction
- 2 Higher-Dimensional Automata
- 3 Languages of Higher-Dimensional Automata

Higher-Dimensional Automata

4 Properties

#### Definition (Rational Languages over $\Sigma$ )

- Generated by  $\emptyset$ ,  $\{\epsilon\}$ , and all  $\{[a]\}$ ,  $\{[\bullet a]\}$ ,  $\{[a \bullet]\}$ ,  $\{[\bullet a \bullet]\}$  for  $a \in \Sigma$
- under operations ∪, \*, || and (Kleene plus) +
- (these need to take subsumption closure into account)

## Definition (Monadic Second-Order Logics over Ipomsets)

$$\psi ::= \mathbf{a}(\mathbf{x}) \mid \mathbf{s}(\mathbf{x}) \mid \mathbf{t}(\mathbf{x}) \mid \mathbf{x} < \mathbf{y} \mid \mathbf{x} \dashrightarrow \mathbf{y} \mid \mathbf{x} \in \mathbf{X} \mid$$
$$\exists \mathbf{x}. \ \psi \mid \forall \mathbf{x}. \ \psi \mid \exists \mathbf{X}. \ \psi \mid \forall \mathbf{X}. \ \psi \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \neg \psi$$

Theorem (à la Kleene): regular ← rational

Theorem (à la Myhill-Nerode): regular  $\iff$  finite prefix quotient

Theorem (à la Büchi-Elgot-Trakhtenbrot):

regular  $\iff$  MSO-definable, of finite width, and subsumption-closed

## Kleene Theorem: Easy Parts

Introduction

• regular  $\implies$  rational: by reduction to ST-automata



rational \iff regular: generators:

rational ⇒ regular: ∪ and ||

$$I(X) \cup I(Y) = I(X \cup Y)$$

$$L(X) \cup L(Y) = L(X \sqcup Y)$$
  $L(X) \parallel L(Y) = L(X \otimes Y)$ 

#### Kleene Theorem: Difficult Parts

Introduction

• miss to see: gluings and iterations of regular languages are regular:

$$L(X) * L(Y) = L(X * Y)$$
  $L(X)^{+} = L(X^{+})$ 

• much more difficult: higher-dimensional gluings identify too much



• miss to see: gluings and iterations of regular languages are regular:

$$L(X) * L(Y) = L(X * Y)$$
  $L(X)^{+} = L(X^{+})$ 

• much more difficult: higher-dimensional gluings identify too much



use HDAs with interfaces and cylinder objects

#### HDAs with Interfaces

Introduction

A conclist with interfaces (iconclist) is a conclist U with subsets  $S \subseteq U \supset T$ , denoted  $S \subseteq U$ (events in T cannot be terminated; events in S cannot be "unstarted")

A precubical set with interfaces (ipc-set) X consists of a set of cells X such that:

- Every cell  $x \in X$  has an iconclist ev(x)
- We write  $X[sU_T] = \{x \in X \mid ev(x) = sU_T\}.$
- For every  $A \subseteq U S$  there is a lower face map  $\delta_A^0 : X[U] \to X[SU_T A]$ .
- For every  $B \subseteq U T$  there is an upper face map  $\delta_B^1 : X[U] \to X[SU_T b]$ .
- Precubical identities:  $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$  for  $A \cap B = \emptyset$  and  $\mu, \nu \in \{0, 1\}$
- (presheaves over a category ID)

An HDA with interfaces (iHDA) is a finite ipc-set with start and accept cells.

#### Extra conditions:

If  $x \in X[SU_T]$  is a start cell, then S = U. If  $x \in X[SU_T]$  is an accept cell, then T = U.

## **Cylinders**

Introduction

Let X, Y, Z be ipc-sets and  $f: Y \to X$ ,  $g: Z \to X$  ipc-maps with  $f(Y) \cap g(Z) = \emptyset$ There is a diagram of ipc-sets



#### such that

- $\tilde{f}$  is an initial inclusion:
- $\tilde{g}$  is a final inclusion;
- all paths in X from f(Y) to g(Z) lift to paths in Cyl(f,g).

# Cylinders: Construction

X, Y, Z: ipc-sets,  $f: Y \to X$ ,  $g: Z \to X$ : ipc-maps with  $f(Y) \cap g(Z) = \emptyset$ . For  $\varsigma U_{\tau} \in I \square$  let  $Cyl(f,g)[_SU_T] = \{(x,K,L,\varphi,\psi)\}$ 

#### such that

Introduction

- $x \in X[sU_T]$ :
- $K \subset I \square^U$  is an initial subset;
- $L \subseteq I \square^U$  is a final subset:
- $\varphi: K \to Y, \ \psi: L \to Z$  are ipc-maps satisfying  $f \circ \varphi = \iota_x|_K$  and  $g \circ \psi = \iota_x|_L$ :



# Gluing Composition of Regular Languages Is Regular

#### Proposition

Introduction

Gluing composition of regular languages is regular.

**Proof sketch:** Let L and M be regular languages.

- 1 We may ssume that L, M are simple, i.e., L = L(X), M = L(Y) for iHDAs X, Y having one initial and one accepting cell each.
- 2 Now replace X by  $X' = Cyl(X \leftarrow T_X : j)$  and Y by  $Y' = Cyl(i : \bot_Y \to Y)$ , then L(X') = L(X) and L(Y') = L(Y).
- Go back to HDA and glue:

$$L(CI(X') * CI(Y')) = L(X') * L(Y') = L * M.$$

(closure CI: iHDA  $\rightarrow$  HDA "adds missing cells")

**4** So L \* M is recognized by a finite HDA, hence regular.

# Selected Bibliography

- U.F., C.Johansen, G.Struth, K.Ziemiański: *Kleene theorem for higher-dimensional automata*. Logical Meth.Comput.Sci. 2024
- U.F., K.Ziemiański: Myhill-Nerode theorem for higher-dimensional automata.
   Fund.Inf. 2024
- A.Amrane, H.Bazille, U.F., K.Ziemiański: Closure and decision properties for higher-dimensional automata. Theor.Comput.Sci. 2025
- A.Amrane, H.Bazille, U.F., M.Fortin: Logic and languages of higher-dimensional automata. DLT 2024