ТеорМин №3

Теория групп. Сопряженными (из одного класса сопряженности) называть элементы $g \sim h$ такие, что $\exists r \in G, g = rhr^{-1}$. Далее классы сопряженности будем обозначать за C_1, \ldots, C_k , элементы в них за $h_i \in C_i$. Циклическая группа C_n

$$C_n = \{1, r, r^2, \dots, r^{n-1}\}, \quad r^n = 1.$$

Для C_n каждый элемент становился представителем класса сопряженности в силу того, что группа абелева. Группа перестановок S_n

$$S_n = \left\{ \sigma = \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix} \right\},$$

разбивается на классы сопряженности с одинаковой циклической структурой:

$$S_2 \to \{1\}, \{(a,b)\}, S_3 \to \{1\}, \{(a,b)\}, \{(a,b,c)\}, S_4 \to \{1\}, \{(a,b)\}, \{(a,b,c)\}, \{(a,b,c,d)\}, \{(a,b)(c,d)\}.$$

Также в $S_n \ \forall \sigma$ раскладывается в циклы, а циклы в транспозиции, определенной оказывается величина четность σ . Для неё выполняется

$$\operatorname{sign}(\sigma_1 \cdot \sigma_2) = \operatorname{sign}(\sigma_1) \cdot \operatorname{sign}(\sigma_2), \quad \operatorname{sign}(a, b) = -1, \quad \operatorname{sign}(i_1, i_2, \dots, i_d) = \begin{bmatrix} +1, & d \not/ 2, \\ -1, & d \not| 2. \end{bmatrix}$$

Четностью перестановки называют количество пар i < j таких, что $\sigma(i) > \sigma(j)$.

Группа D_n симметрий правильного n-угольника состоит из r – поворотов на $2\pi/n$ и s – отражений относительно какой-то выбранной оси. Для n:2=0 получатся классы сопряженности $\{r^b, r^{n-b}\}$, $\{s, sr^2, sr^4, \}$ и $\{sr, sr^3, sr^5, \ldots\}$. Для $n \not = 2$ получится $\{r^b, r^{n-b}\}$ и $\{s, sr, sr^2, \ldots\}$.

Теория представлений. Далее работаем с конечными группами $|G| < +\infty$. Элемент группы обознаем за $g \in G$. Представление группы определяют как гомоморфизм $\rho \colon G \mapsto \operatorname{GL}(V, \mathbb{C})$ (невырожденные матрицы).

Xарактером представления ρ называют $\chi[V]=\mathrm{tr}\,\rho(g)$ для $g\in G$. Характеры изморфных представлений совпадают, а также

$$\chi[V](1) = \dim V, \quad \chi[V_1 \oplus V_2] = \chi[V_1] + \chi[V_2], \quad \chi[V](g^{-1}) = \chi^*[V](g), \quad \chi[V_1 \otimes V_2] = \chi[V_1] \cdot \chi[V_2].$$

Стараемся решить задачу о разложение приводимого представления по неприводимым. Представление ρ называется nenpusodumыm, если у него нет нетривиальных (отличных от $\{0\}$ и V) инвариантных подпространств. По теореме Машке $\forall \rho$ конечной группы G разбивается на сумму неприводимых представлений. Всякое представление ynumapusyemo.

Для характеров определим скалярное произведение $\langle \chi^{(i)} | \chi^{(j)} \rangle$:

$$\langle \varphi | \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \bar{\psi}(g) = \frac{1}{|G|} \sum_{i=1}^{k} |C_i| \varphi(h_i) \bar{\psi}(h_i).$$

Характеры ортогональны по строкам и столбцам:

$$\langle \chi^{(i)} | \chi^{(j)} \rangle = \delta_{ij}, \qquad \sum_{n=1}^{k} \chi^{(n)}(h_i) \bar{\chi}^{(n)}(n_j) = \delta_{ij} \frac{|G|}{|C_i|}.$$

Число неприводимых представлений равно числу классов сопряженности. Все неприводимые представления абелевой группы одномерны, что является следствием теоремы Бернсайда:

$$\sum_{i=1}^{n} d_i^2 = |G|,$$

где d_i – размерность i-го представления. $Kpumepuem\ nenpusodumocmu$ является $\langle \chi | \chi \rangle = 1$, тогда разложение на неприводимые: $\chi = a_1 \chi^{(1)} + \ldots + a_n \chi^{(n)}$, где $a_i = \langle \chi | \chi^{(i)} \rangle$.

Таблицы неприводимых представлений Построение для C_n тривиально в силу абелевости группы. Каждый элемент представим в виде $\sqrt[n]{1}$. Построение производим с учетом свойства $\rho(r^k) = \rho(r)^k$.

Теперь для D_4 размера $|D_4| = 2 \times n = 8$, будут классы сопряженности $\{1\}, \{r^2\}, \{r, r^3\}$ и $\{s, sr^2\}, \{sr, sr^3\}$.

1 1	$r, r^3 \mid 2$	$r^2 \mid 1$	$s, sr^2 \mid 2$	$sr, sr^3 \mid 2$
1	1	1	1	1
1	1	1	-1	-1
1	-1	1	1	-1
1	-1	1	-1	1
2	0	-2	0	0

Всегда есть тривиальное представление. Также из теоремы Бернсайда находим первый столбец.

По сохранению или смене ориентация базиса можем сопоставить ± 1 соответсвующием классам. Важно помнить, что $(sr^k)^2 = 1$ и $(r^k)^4 = 1$, откуда знаем одномерные представления $\rho(sr^k) = \pm 1$ и $\rho(r^k) = \sqrt[4]{1} = \pm i, \pm 1$, откуда достраиваем одномерные представления.

При построение D_7 будет важно вспомнить про сопоставление матриц поворота двухмерным представлениям, по которым найдём элементы таблицы характеров, как след соответсвующей матрицы.

Построим табличку характеров для S_3 : $|S_3|=3!=6$. Также из теоремы Бернсайда находим первый столбец. Для второй строчки всегда есть *знаковое* представление.

$e \mid 1$	(a,b) 3	(a,b,c) 2
1	1	1
1	-1	1
2	0	-1

Построим табличку характеров для S_4 : $|S_4| = 4! = 24$.

e 1	(a,b) 6	(a,b,c) 8	(a,b,c,d) 6	(a,b)(c,d) 3
1	1	1	1	1
1	1	1	1	1
2	0	-1	0	2
3	-1	0	1	-1
3	1	0	-1	-1

Тут важно посмотреть на отображение $e_1 + e_2 + e_3 + e_4$, построив $\chi[\mathbb{C}^4]$, значениях характеров которой можем восстановить по количеству неподвижных точек (4, 2, 1, 0, 0). Неприводимое представление можем получить в виде $\chi[\mathbb{C}^4] - \chi^{(1)}$. Также может помочь тензорное произведение представлений.

Преобразование Меллина. Для функции g(x) такую, что $g(x) = O(x^{-\alpha})$ при $x \to 0$ и $g(x) = x^{-\beta}$ при $x \to +\infty$ можем определить *преобразование Меллина*

$$G(\lambda) = \int_0^\infty g(x)x^{\lambda-1} dx,$$

определенного в полосе $\alpha < \operatorname{Re} \lambda < \beta$. Обратное преобразование может быть найдено в виде

$$g(x) = \int_{C - i\infty}^{C + i\infty} G(\lambda) x^{-\lambda} \frac{d\lambda}{2\pi i},$$

для $\alpha < C < \beta$.

Для вычисления инетгралов бывает удобно воспользоваться сверточным свойством преобразования Меллина

$$\int_{-\infty}^{+\infty} f(x)g(x)x^{\lambda-1} dx = \int_{C_f - i\infty}^{C_f + i\infty} F(\lambda_f)G(\lambda - \lambda_f)\frac{d\lambda_f}{2\pi i} = \int_{C_g - i\infty}^{C_g + i\infty} F(\lambda - \lambda_g)G(\lambda_g)\frac{d\lambda_g}{2\pi i},$$

где $\alpha_f + \alpha_g < \operatorname{Re} \lambda < \beta_f + \beta_g$. В частности, при допустимом $\lambda = 1$, получаем

$$\int_0^\infty f(x)g(x) dx = \int_{C_f - i\infty}^{C_f + i\infty} F(\lambda_f)G(1 - \lambda_f) \frac{d\lambda_f}{2\pi i}.$$

Приведем некоторый зоопарк по преобразованию Меллина

$$e^{-x} \xrightarrow{M} \Gamma(\lambda), \quad \frac{1}{1+ax^{n}} \xrightarrow{M} \frac{\pi a^{-\frac{\lambda}{n}}}{n\sin\left(\frac{\pi\lambda}{n}\right)}, \quad \frac{1}{\sqrt[m]{1+x^{n}}} \xrightarrow{M} \frac{\Gamma\left(\frac{\lambda}{n}\right)\Gamma\left(\frac{1}{m}-\frac{\lambda}{n}\right)}{n\Gamma\left(\frac{1}{m}\right)}, \quad \frac{1}{1-x} \xrightarrow{M} \pi\cot(\pi\lambda),$$

$$\frac{1}{\sqrt{ax^{2}+bx}} \xrightarrow{M} \frac{\Gamma(1-\lambda)\Gamma\left(\lambda-\frac{1}{2}\right)\left(\frac{a}{b}\right)^{\frac{1}{2}-\lambda}}{\sqrt{\pi b}}, \quad x^{n} \xrightarrow{M} 2\pi\delta(i(n+\lambda)), \quad \frac{1}{1+e^{\alpha x}} \xrightarrow{M} \left(1-2^{1-\lambda}\right)\alpha^{-\lambda}\Gamma(\lambda)\zeta(\lambda),$$

$$\sin x \xrightarrow{M} \sin\left(\frac{\pi\lambda}{2}\right)\Gamma(\lambda), \quad \cos x \xrightarrow{M} \cos\left(\frac{\pi\lambda}{2}\right)\Gamma(\lambda).$$

Гамма функция. Полезно будет вспомнить, что

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt = \int_0^1 (-\ln x)^{z-1} \, dx = \frac{2^{z+1}}{z} \int_0^1 y (-\ln y)^z \, dy, \qquad \quad \Gamma\left(\frac{1}{2} + n\right) = \frac{(2n)!}{4^n n!} \sqrt{\pi} = \frac{(2n-1)!!}{2^n} \sqrt{\pi}.$$

Для произведения бывает удобно

$$\Gamma(z)\Gamma\left(z+\frac{1}{n}\right)\dots\Gamma(z+\frac{n-1}{n})=n^{\frac{1}{2}-nz}\cdot(2\pi)^{\frac{n-1}{2}}\Gamma(nz), \qquad \Gamma(1-z)\Gamma(z)=\frac{\pi}{\sin\pi z}.$$

1 Неделя IX

№1

Найдём обратное преобразование Меллина от функции, вида

$$\Gamma(\lambda - \beta)\Gamma(\lambda)$$
.

Можем замкнуть дугу налево, так как $\Gamma(\lambda) \to 0$ при $\operatorname{Re} \lambda \to -\infty$, а также с учетом $\Gamma(\lambda) \to 0$ при $\operatorname{Im} \lambda \to \pm \infty$.

Тогда интеграл

$$I = \int_{c-i\infty}^{c+i\infty} \Gamma(\lambda - \beta) \Gamma(\lambda) x^{-\lambda} \frac{d\lambda}{2\pi i} = \frac{2\pi i}{2\pi i} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(x^n \Gamma(-n - \beta) + x^n x^{-\beta} \Gamma(-n + \beta) \right),$$

сведется к сумме вычетов для $\Gamma(\lambda)$ и $\Gamma(\lambda-\beta)$, где мы учли, что

$$\operatorname{res}_{-n}\Gamma(x) = \frac{(-1)^n}{n!},$$

это полюса первого порядка.

Немного переписывая сумму и пристально в нее вглядываясь, находим

$$I = \sum_{n=0}^{\infty} \frac{(-1)^n x^{\beta/2} \left(\Gamma(\beta - n) x^{\frac{\beta}{2} + n} + \Gamma(-n - \beta) x^{n - \frac{\beta}{2}} \right)}{n!} = 2x^{-\frac{\beta}{2}} K_{\beta} \left(2\sqrt{x} \right)$$

что при малых β и достаточно больших x можно переписать в виде $\frac{2\beta}{\sqrt[4]{x}}\exp{\left(-\sqrt{x}\right)}$.

№2

Рассмотрим обратное преобразование Меллина от функции

$$\frac{\Gamma(\beta)\Gamma(\lambda)}{\Gamma(\lambda+\beta)}.$$

При $\lambda \to \pm i \infty$ всё хорошо, осталось понять в какую сторону замыкать квадратик.

$$I = \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(\beta)\Gamma(\lambda)}{\Gamma(\lambda+\beta)} x^{-\lambda} \frac{d\lambda}{2\pi i}.$$

При $\lambda \to +\infty$ можем оценить выражение, как $\Gamma(\lambda + \beta) \sim \Gamma(\lambda)\lambda^{\beta}$, а значит необходимо рассмотреть

$$\frac{1}{\lambda^{\beta}} \frac{1}{x^{\lambda}} = \exp\left(-\lambda \ln x - \beta \ln \lambda\right).$$

При x > 1 получаем возможность замкнуть вправо, то есть вокруг области без вычетов, а значит I = 0 при x > 1.

При $x < 1 \ln x < 0$, а значит необходимо замыкать влево. Так получаем сумму, вида

$$I(x < 1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{\Gamma(\beta)}{\Gamma(-n+\beta)} x^n = \frac{1}{(1-x)^{1-\beta}}.$$

№3

Найдём первые два члена в разложение по u для интеграла

$$I(u) = \int_{u}^{\infty} \frac{dx}{\sqrt{x^2 - u^2}} e^{-x}.$$

Сведем задачу к известной подстановкой $x \to x + u$, тогда

$$I(u) = e^{-u} \int_0^\infty \frac{dx}{\sqrt{x^2 + 2ux}} e^{-x} \approx (1 - u + \frac{1}{2}u^2) \int_0^\infty \frac{dx}{\sqrt{x^2 + 2ux}} e^{-x} + o(u^2).$$

Знаем преобразование Меллина от e^{-x} :

$$M[e^{-x}](\lambda) = \Gamma(\lambda).$$

Аналогично находим образ $(x^2 + 2ux)^{-1/2}$:

$$M[(x^{2}+2ux)^{-1/2}](\lambda) = \int_{0}^{\infty} \frac{x^{\lambda-1} dx}{\sqrt{x^{2}+2ux}} = \frac{2^{\lambda-1}\Gamma(1-\lambda)\Gamma(\lambda-\frac{1}{2})u^{\lambda-1}}{\sqrt{\pi}},$$

для $\lambda \in [\frac{1}{2}, 1]$.

Тогда искомое подинтегральное произведение сведется к интегралу, вида

$$e^{u}I(u) = \int_{c-i\infty}^{c+i\infty} \frac{2^{-\lambda}\Gamma\left(\frac{1}{2} - \lambda\right)\Gamma(\lambda)^{2}u^{-\lambda}}{\sqrt{\pi}} \frac{d\lambda}{2\pi i} \stackrel{\text{def}}{=} \int_{c-i\infty}^{c+i\infty} F(\lambda) \frac{d\lambda}{2\pi i},$$

который сводится к сумме вычетов (полюса второго порядка) в $\lambda = -n, n \in \mathbb{Z}^+$. Каждый следущий вычет будет содержать фактор u^n , так что достаточно вычислить первые три вычета $n \in \{0, 1, 2\}$.

Таким образом находим

$$\operatorname{res}_{0} F(\lambda) = -\ln(u) - \gamma + \ln(2),$$

$$\operatorname{res}_{-1} F(\lambda) = -u \left(\ln\left(\frac{1}{2}u\right) + \gamma\right),$$

$$\operatorname{res}_{-2} F(\lambda) = -\frac{3}{4}u^{2} \left(\ln\left(\frac{1}{2}u\right) - \frac{1}{3} + \gamma\right).$$

Собирая все вместе получаем, что сокращается первый порядок по u и тогда первые два члена разложения, дают

$$I(u) = \ln\left(\frac{2}{u}\right) - \gamma + \frac{1}{4}u^2(\ln\left(\frac{2}{u}\right) - \gamma + 1) + o(u^2).$$