

# Enunciados de Problemas de Química Física II

# Catálise Heterogénea

 1 - A hidrogenação do etileno catalisada por superfícies metálicas segue leis cinéticas diferentes em níquel e cobre

para o Níquel 
$$v = \frac{a.P_{H_2}.P_{C_2H_4}}{1 + bP_{C_2H_4}}$$

para o Cobre 
$$v = \frac{a.P_{H_2}.P_{C_2H_4}}{\left(1 + bP_{C_2H_4}\right)^2}$$

Explique detalhadamente a diferença propondo um mecanismo de reação para cada caso.

R: Ni – Rideal, H<sub>2</sub> não adsorvido; Cu – biomolecular, com H<sub>2</sub> fracamente adsorvido

- 2 Explique os seguintes fatos:
- **a)** A reação de decomposição do amoníaco (NH<sub>3</sub>) numa superfície de tungsténio (W), quando a pressão inicial de NH<sub>3</sub> é razoável, passa gradualmente duma ordem inicial 0 para ordem 1, quando a maior parte do reagente já desapareceu.
- **b)** A velocidade da mesma reação numa superfície de platina é dada por:  $V = \frac{a.P_{\rm NH_3}}{P_{\rm H_3}}$

(NOTA: H<sub>2</sub> é um produto da reação)

R: a) unimolecular; b) unimolecular com H<sub>2</sub> fortemente adsorvido

**3 -** A reação 2NO  $\rightarrow$  N<sub>2</sub> + O<sub>2</sub> catalisada por Pt obedece à seguinte lei de velocidade  $dp_{NO}/dt = -k \; p_{NO}/p_{O_2}$ 

Interprete esta lei com base na isotérmica de adsorção de Langmuir.

R: O<sub>2</sub> inibidor fortemente adsorvido



**4 -** Calcule a ordem e a constante de velocidade da reação de decomposição da amónia numa superfície de tungsténio com base nos seguintes resultados:

| pressão inicial/Torr | 65  | 105 | 150 | 185 |
|----------------------|-----|-----|-----|-----|
| t <sub>1/2</sub> /s  | 290 | 460 | 670 | 820 |

Deduza o mecanismo de catálise heterogénea seguido nesta reação.

R: Unimolecular, p(NH<sub>3</sub>) elevado, ordem zero

**5** - A cinética da reação entre CO e  $O_2$  catalisada por platina ou quartzo segue uma cinética tal que a velocidade é diretamente proporcional a  $p_{O2}^{1/2}$  e inversamente proporcional a  $p_{CO}$ . Proponha um mecanismo para esta reação.

R: Biomolecular, CO fortemente adsorvido

6 - A decomposição do óxido nitroso sobre metais nobres e óxidos de cálcio e alumínio dá-se segundo:

$$2N_2O \xrightarrow{cat} 2N_2 + O_2$$

| <u>pn2o (bar)</u> | U <sub>2</sub> (S) |  |
|-------------------|--------------------|--|
|                   |                    |  |
| 0.1               | 3460               |  |
| 0.5               | 3450               |  |
| 0.7               | 3460               |  |
| 1.0               | 3458               |  |
| 1.4               | 3450               |  |
| 3.4               | 8625               |  |
| 6.4               | 16235              |  |
| 13.4              | 34000              |  |
|                   |                    |  |

Foram obtidos os tempos de semi-reação para diferentes pressões parciais iniciais de óxido nitroso a 925ºC.

Com base nos dados experimentais apresentados, proponha um mecanismo de catálise heterogénea para esta reação.

R: unimolecular

7 - Suponha a dissociação de ozono com adsorção numa nuvem gelada  $O_3 \rightarrow 3O_{ads}$  e posterior reação de  $O_{ads}$  com B(g) segundo um mecanismo de Rideal. Supondo que O adsorve segundo uma isotérmica de Langmuir, explicite a velocidade da reação de  $O_{ads}$  com B(g) em função da pressão de  $O_3$  e da pressão de B.

R: 
$$v = kp_B \frac{\sqrt[3]{bp_{O3}}}{1 + \sqrt[3]{bp_{O3}}}$$

 $\bf 8$  - A seguinte reação é considerada de 1ª ordem em relação ao reagente  $H_2O$  e 1ª ordem em relação ao reagente  $H_2CO$ 

$$H_2O(g) + H_2CO(g) \rightarrow 2 H_2(g) + CO_2(g)$$

Quando a reação se processa sobre platina, a velocidade é dada por:

$$v = k' \frac{p_{H_2O}p_{H_2CO}}{p_{H_2^2}}$$

Quando a reação se processa sobre níquel, a velocidade é dada por:

$$v = k'' \frac{p_{H_2O}p_{H_2CO}}{p_{H_1}}$$

Quando a reação se processa sobre ródio, a velocidade é dada por:

$$v = k \text{ "} \frac{p_{\text{H}_2\text{O}}}{p_{\text{H}_2\text{CO}}}$$

Explique **detalhadamente** a razão destas observações, deduzindo as expressões e avançando um mecanismo.

R: Sobre Pt os 2 gases são adsorvidos com inibição forte de H<sub>2</sub>; sobre Ni um gás adsorvido e outro não, com inibição forte de H<sub>2</sub>; sobre Rh os 2 gases adsorvidos, H<sub>2</sub>CO fortemente adsorvido

**9** - A reação do CO com O<sub>2</sub> sobre platina é dada por  $v = \frac{ap_{O_2}^{1/2}}{p_{CO}}$ 

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

em que **a** é uma constante. Proponha uma explicação detalhada para esta lei, deduzindo as expressões e avançando um mecanismo.

R: biomolecular, CO fortemente adsorvido, O2 adsorvido com dissociação

10 - A reação do NO com o CO

$$NO_{(g)} + CO_{(g)} \rightarrow 1/2 \ N_{2 (g)} + CO_{2 (g)}$$

feita sobre ródio *(100)* apresenta uma variação da velocidade com a pressão de CO como se mostra na figura junta.



Explique o andamento da curva propondo um mecanismo.

R: Bimolecular

11 - A decomposição do N<sub>2</sub>O sobre Mn<sub>3</sub>O<sub>4</sub>

$$N_2O \xrightarrow{Mn_3O_4} N_2 + \frac{1}{2}O_2$$

é dada por

$$v = \frac{ap_{N_2O}}{1 + bp_{N_2O} + cp_{O_2}^{1/2}}$$

em que a, b e c são constantes. Proponha uma explicação para esta lei.

R: unimolecular, O2 como inibidor adsorvido com dissociação

12 - Observou-se que esta reação sobre um catalisador de ferro

$$NH_3(g) + D_2(g) \rightarrow NH_2D(g) + HD(g)$$

onde D representa o deutério, segue a lei

$$v = \frac{k' p_{D2}^{1/2} p_{NH3}}{(1 + k'' p_{NH3})^2}$$

- 12.1. Relembre-se do que é o Deutério e represente a sua configuração eletrónica.
- 12.2. Proponha um mecanismo de catálise heterogénea e dê significado a k' e k".

R: bimolecular, D<sub>2</sub> adsorvido fracamente com dissociação

13 - Na reação entre H<sub>2</sub> e CO<sub>2</sub> sobre platina

$$2H_2(g) + CO_2(g) \rightarrow CH_4(g) + O_2(g)$$

observa-se que para pressões parciais de  $H_2$  baixas, o  $t_{1/2}$  da reação não depende de  $p_{H2}$ . Para pressões parciais de  $H_2$  mais elevadas, observa-se que a velocidade diminui à medida que  $p_{H2}$  aumenta.

Proponha um mecanismo de catálise heterogénea para esta reação.

R: bimolecular, H<sub>2</sub> adsorvido fortemente, CO<sub>2</sub> fracamente adsorvido

- **14** Explique **detalhadamente** as seguintes frases, deduzindo a expressão e avançando um mecanismo:
- **14.1**. A decomposição de NO em  $N_2$  e  $O_2$  catalisada por Pt obedece à lei de velocidade

$$\frac{dp_{NO}}{dt} = -k \frac{p_{NO}}{p_{O_2}}$$

14.2. A cinética da reação entre NO e CO sobre Rh(100) para dar  $N_2$  e  $CO_2$  é dada por

$$\frac{dp_{CO_2}}{dt} = k \frac{p_{NO}p_{CO}}{p_{CO_2}}$$

- R: 1. Unimolecular, NO adsorvido e N<sub>2</sub> não adsorvido e O<sub>2</sub> fortemente adsorvido sem dissociação; 2. Um dos reagentes adsorvido e CO<sub>2</sub> fortemente adsorvido.
- **15** Deduza o mecanismo de catálise heterogénea que conduz à seguinte equação de velocidade para a reação entre o ozono e o etileno sobre uma superfície metálica:

$$v = \frac{a.P_{O_3}^{1/3}.P_{C_2H_4}}{1 + bP_{O_3}^{1/3}}$$

Atribua significados a "a" e a "b".

R: O₃ adsorvido com dissociação, C₂H₄ não adsorvido

**16** - A reação de oxidação do CO pelo O<sub>2</sub> sobre uma superfície de platina para dar origem a CO<sub>2</sub> pode ser descrita segundo dois mecanismos:

$$v = \frac{kb_{co}b_{o2}^{1/2}p_{co}p_{o2}^{1/2}}{(1+b_{o2}^{1/2}p_{o2}^{1/2}+b_{co}p_{co})^{2}}$$

$$v = \frac{kb_{o2}^{1/2}p_{o2}^{1/2}+b_{co}p_{o2}^{1/2}}{1+b_{o2}^{1/2}p_{o2}^{1/2}}$$

Langmuir-Hinshelwood

ou

Langmuir-Rideal

Explique detalhadamente estas equações e represente para cada uma delas a variação da velocidade com a pressão de CO, para uma dada pressão fixa de O<sub>2</sub>.

R: L-H O<sub>2</sub> adsorvido com dissociação e CO adsorvido; L-R O<sub>2</sub> adsorvido com dissociação e CO não adsorvido

17 - A reação do NO com o CO feita sobre ródio *(100)* apresenta uma variação da velocidade com a pressão de CO como se mostra na tabela junta.

| P <sub>co</sub> / bar | v / M s <sup>-1</sup> |
|-----------------------|-----------------------|
| 0                     | 0                     |
| 1                     | 0,57                  |
| 5                     | 2,434                 |
| 10                    | 4,402                 |
| 20                    | 2,201                 |
| 50                    | 1,684                 |

Explique os valores da tabela propondo um mecanismo para a reação.

R: bimolecular