EUROPEAN PATENT OFFICE

Patent Abstracts apai

PUBLICATION NUMBER

: 11219152

PUBLICATION DATE

: 10-08-99

APPLICATION DATE

02-02-98

APPLICATION NUMBER

: 10021187

APPLICANT :

MITSUBISHI ELECTRIC CORP;

INVENTOR:

SOMEYA JUN;

INT.CL.

G09G 3/28 G09G 3/20 H04N 5/66

TITLE

TEMPERATURE CONTROL METHOD

FOR PLASMA DISPLAY PANEL AND

PLASMA DISPLAY DEVICE

ABSTRACT :

PROBLEM TO BE SOLVED: To prevent thermal stress from being applied to a plasma display panel, due to the appearance of a temperature difference, in the case of the concentration of picture elements having high brightness on a part of displayed image signals, regarding a plasma display device.

SOLUTION: A mean value calculation part 3 removes and samples the low frequency component of an image signal, and a histogram calculation part 5 prepares a histogram for every brightness range. Furthermore, a judgement part 6 makes judgement as to whether a substantial brightness change exists, on the basis of the prepared histogram, and a control part 7 controls the brightness of an image signal, on the basis of the judgement. In this case, the histogram of the image signal is prepared for making judgement as to whether a substantial brightness gradient exists in the image signal and then controlling the brightness. Thus, the appearance of a temperature difference in a plasma display panel can be prevented without using a temperature detection means such as a thermocouple. According to this construction, a plasma display device can be lowered in cost, a drop in display quality can be prevented and a long service life can be attained.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-219152

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl. ⁶		識別記号	ΡI					
G 0 9 G	3/28		G 0 9 G	3/28	3/28 K			
	3/20	670		3/20	670	L		
H 0 4 N	5/66	1 0 1	H 0 4 N	5/66	1 0 1 B			
· · · · · · · · · · · · · · · · · · ·			審査簡求	未 まままままた ままま ままま ままま ままま ままま ままま ままま ままま	請求項の数11	OL	(全 20 頁)	
(21) 出願番号		特願平10-21187	(71) 出願人)13 機株式会社			
(22)出願日		平成10年(1998) 2月2日			は休氏 以上 千代田区丸の内:	二丁曰?	2番3号	
(<i>/</i>		. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者	(72)発明者 森田 雄彦 東京都千代田区丸の内二丁目 2番 3 号 三 菱電機株式会社内				
		·						
			(72)発明者	染谷	孾			
				東京都	東京都千代田区丸の内二丁目2番3号 三			
				菱電機	菱電機株式会社内			
			(74)代理人	. 弁理士	宮田 金雄	外2名	;)	
		•	·				•	

(54) 【発明の名称】 ブラズマディスプレイパネルの温度制御方法およびプラズマディスプレイ装置

(57)【要約】

【課題】 プラズマディスプレイ装置において、表示する映像信号中の一部分に輝度が高い画素が集中している場合に、温度差が生じることによってPDPに熱応力が加わることを防止する。

【解決手段】 平均値算出部3で映像信号の低周波成分を除去するとともにサンプリングし、ヒストグラム算出部5において輝度範囲ごとのヒストグラムを作成し、判定部6でヒストグラムから、輝度の大きな変化の有無を判定し、判定結果にもとづいて制御部7で映像信号の輝度を制御する。

【特許請求の範囲】

【請求項1】 外部から入力される映像信号に基づきプラズマディスプレイパネルを駆動する駆動手段と、前記駆動手段により駆動され表示を行うプラズマディスプレイパネルと、前記映像信号の低周波成分を除去する手段と、低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出手段と、前記ヒストグラム算出手段により作成されたヒストグラムから輝度変化の激しい映像を判定する判定手段と、前記判定手段の判定結果に基づき、前記駆動手段を制御する制御手段とを有することを特徴とするプラズマディスプレイ装置。

【請求項2】 前記駆動手段内の維持バルス数を前記制 御手段によって制御することを特徴とする請求項1記載 のプラズマディスプレイ装置。

【請求項3】 外部から入力される映像信号を処理する映像信号処理手段と、前記映像信号処理手段によって処理された映像信号に基づきプラズマディスプレイパネルを駆動する駆動手段と、前記駆動手段により駆動され表示を行うプラズマディスプレイパネルと、前記映像信号処理手段によって処理された映像信号の低周波成分を除去する手段と、低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出手段と、前記ヒストグラム算出手段により作成されたヒストグラムから輝度変化の激しい映像を判定する判定手段と、前記判定手段の判定結果に基づき、前記映像信号処理手段を制御する制御手段とを有することを特徴とするプラズマディスプレイ装置。

【請求項4】 前記制御手段の制御レベル情報を主電源が断とされた後一定期間保持する記憶手段を備えることを特徴とする請求項1~請求項3のいずれかに記載のプラズマディスプレイ装置。

【請求項5】 外部から入力される映像信号に基づきプラズマディスプレイパネルを駆動する駆動手段と、前記駆動手段により駆動され表示を行うプラズマディスプレイパネルと、前記映像信号の低周波成分を除去する手段と、低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出手段と、前記ヒストグラム算出手段により作成されたヒストグラムから輝度変化の激しい映像を判定する判定手段と、前記判定手段の判定結果を外部へ出力する通信手段とを有することを特徴とするプラズマディスプレイ装置。

【請求項6】 予め測定したプラズマディスプレイパネルの特性を記憶するパネル特性記憶手段を備えるとともに、前記判定手段の判定基準値を前記パネル特性記憶手段の内容に合わせて可変としたことを特徴とする請求項1~請求項5のいずれかに記載のプラズマディスプレイ装置。

【請求項7】 入力される映像信号がテレビ信号であるかコンピュータ信号であるかによって前記制御手段に異

なる制御係数を与える係数記憶手段を備えることを特徴とする請求項1~請求項6のいずれかに記載のプラズマディスプレイ装置。

【請求項8】 プラズマディスプレイ装置の雰囲気温度を検出する温度検出手段を備えるとともに、前記温度検出手段の出力に合わせて前記判定手段の判定基準値を補正することを特徴とする請求項1~請求項7のいずれかに記載のプラズマディスプレイ装置。

【請求項9】 映像信号の低周波成分を除去する工程と、低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出工程と、前記ヒストグラム算出工程により作成されたヒストグラムから輝度変化の激しい映像を判定する判定工程と、前記判定工程の判定結果に基づき、プラズマディスプレイパネルの輝度を制御する制御工程とを備えることを特徴とするプラズマディスプレイパネルの温度制御方法。

【請求項10】 プラズマディスプレイパネルの維持パルス数を前記制御工程によって制御することを特徴とする請求項9記載のプラズマディスプレイパネルの温度制御方法。

【請求項11】 プラズマディスプレイパネルに入力する映像信号の振幅を前記制御工程によって制御することを特徴とする請求項9記載のプラズマディスプレイパネルの温度制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、プラズマディスプレイパネルの温度制御方法およびプラズマディスプレイ装置に関する。

[0002]

【従来の技術】図17は、例えば特開平9-6283号 公報に示された従来のプラズマディスプレイ装置の構成 を示すブロック図である。図において、101はプラズ マディスプレイパネル (PDP) であり、アドレス放電 を行うためのアドレス電極A1からAMと、維持放電を 行うためのX電極X1からXNおよびY電極Y1からY Nを備えている。102は所定の信号(ドットクロック CLK、表示データDATA、垂直同期信号VSYN C、水平同期信号HSYNC)及び後述のマイコン19 Oの制御に基き、後述のアドレスドライバ103、X共 通ドライバ104、Yスキャンドライバ106、Y共通 ドライバ107を制御することによってPDP101を 駆動する制御回路であり、後述の表示データ制御部11 1とパネル駆動制御部112から構成される。また10 3は制御回路102からの制御信号SAに基いてアドレ ス電極A1からAMに対してアドレスパルスPAA及び 書き込みパルスPAWを印加するアドレスドライバであ り、104は制御回路102からの制御信号SXに基い てX電極X1からXNに対して書き込みパルスPXW及 び維持パルスPXSを印加するX共通ドライバであり、

105はX共通ドライバ104の温度を検出し後述のマ イコン190に対して検出信号STXを出力する熱電対 等の温度検出器であり、106は制御回路102からの 制御信号SYSに基いてY電極Y1からYNに対してス キャンパルスPAYを印加するYスキャンドライバであっ り、107は制御回路102からの制御信号SYCに基 いてYスキャンドライバ106を介してY電極Y1から YNに対して維持パルスPYSを印加するY共通ドライ バである。また108はY共通ドライバ107の温度を 検出し後述のマイコン190に対して検出信号STYを 出力する熱電対等の温度検出器であり、109は後述の マイコン190の制御のもと始動時などPDP101が 低温の場合にPDP101を加熱するヒータなどのパネ ル加熱装置であり、110はPDP101の温度を検出 し後述のマイコン190に対して検出信号STPを出力 する温度検出器である。また111はドットクロックC LK、表示データDATAおよびマイコン190の制御 にもとづき表示データDATAにおける一つのフレーム に対応するフレームデータを複数のサブフレームデータ に分割し、当該サブフレームデータにもとづく制御信号 SAをアドレスドライバ103に対して出力する表示デ ー夕制御部であり、後述のフレームメモリ120、減算 器121、フレームメモリ122から構成される。

【0003】112は垂直同期信号VSYNC、水平同 期信号HSYNCおよびマイコン190の制御にもとづ き、制御信号SYS、SYC、SXをそれぞれYスキャ ンドライバ106、Y共通ドライバ107、X共通ドラ イバ104に対して出力するパネル駆動制御部であり、 後述のスキャンドライバ制御部130と共通ドライバ制 御部131から構成される。120および122は入力 された表示データDATAを1フレーム分ずつ一時的に 記憶するフレームメモリであり、120および122の どちらか一方に表示データが書き込まれている間に、先 に書き込まれたもう一方の表示データが読み出される。 121はマイコン190の制御のもと、フレームメモリ 120、122に記憶された表示データDATAの階調 数を補正する減算器である。130はスキャンドライバ 制御部であり、131は共通ドライバ制御部である。1 40は各ドライバに高圧電力を印加する電圧変換部であ り、Vc電源部141、Vw電源部142、Vsc電源 部143、Vy電源部144、Vx電源部145から構 成される。150はEP-ROMであり、PDP101 に印加される各パルスの波形を予め記憶し後述のマイコ ン190の制御のもと所望のパルス波形を出力する駆動 波形領域150Aと、維持パルス数設定領域150Bと を有する。また160は装置内の雰囲気温度を検出し後 述のマイコン190に検出信号を出力する装内雰囲気温 度検出器であり、170は警告表示を行うLEDであ り、171は後述のマイコン190の制御のもとLED. 170の表示を制御する制御回路であり、180は装置

全体を冷却する空冷装置であり、181は後述のマイコン190の制御のもと空冷装置180の動作を制御する制御回路であり、191は後述のマイコン190の制御のもと電圧変換部140および制御回路102への高電圧の印加を禁止するリレー制御部であり、192はプラズマディスプレイ装置全体の消費電力を検出する消費電力検出部であり、190はマイコンである。

【0004】次に動作について説明する。表示データ入力部より制御回路2に入力された表示データDATAは、フレームメモリ120、122のいずれか一方に格納される。フレームメモリ上のデータは多階調表示を行うためにサブフレームごとに分割されて読み出される。256階調表示を行う場合には、1フレームを8つのサブフレームに分割し、それぞれのサブフレームの発光時間を1:2:4:8:16:32:64:128として、サブフレームの発光、非発光の組み合わせによって0から255の階調を表現する。まず発光時間が128に対応するサブフレームの表示を行う場合の動作について図18を用いて説明する。図18は従来のプラズマディスプレイ装置の1サブフレーム分の動作を示すタイミングチャートである。

【0005】はじめにリセット期間において全ての表示セルについて消去を行う。リセット期間は全面書き込み期間と自己消去期間からなる。まず全面書き込み期間では、まず全てのY電極Y1~YNのレベルが0Vとされ、全てのX電極X1~XNに対して書き込みパルスPXWが印加される。この書き込みパルスPXWに同期して全てのアドレス電極A1~AMに対して書き込みパルスPXWおよびPAWによって全てのX電極X1~XNと全てのアドレス電極A1~AMの間で放電が行われる。その後、自己消去期間において全てのX電極X1~XNと全てのアドレス電極A1~AMのレベルを0Vとすることにより、全ての表示セルにおいて壁電荷が消滅するまで放電が行われ、消去が完了する。

【0006】次にアドレス期間においては、発光させるべきセルのみについて放電を行い壁電荷を蓄積させる。 Y電極にはY1から順次YNまで時分割的にスキャンパルスPAYが印加され、これと並行して、発光時間が128に対応するサブフレームデータに基き、アドレス電極A1~AMのうち、発光させるべきセルに相当するアドレス電極に対してアドレスパルスPAAが印加される。アドレス期間の間、全てのX電極X1~XNは所定のXアドレス電圧に維持される。これによって、まず発光させるべきセルに該当するY電極とアドレス電極との間でプライミングアドレス放電が発生し、これを種人(プライミング)として対応するX電極とY電極との間に主アドレス放電が発生して壁電荷が蓄積される。

【0007】最後に維持放電期間においては、アドレス期間において指定された発光セルにおいて、発光時間が

128となるように、引き続き放電が行われる。全ての X電極およびY電極に対して交互にパルスPXS及びP YSが印加され、アドレス期間において壁電荷が蓄積された発光セルにおいて維持放電が行われ、表示が行われ る。ここで、維持パルスPXSおよびPYSの数が多い ほど当該サブフレームにおける輝度が高くなる。

【0008】以上のリセット期間、アドレス期間、維持放電期間からなるシーケンスによって、発光時間が128に対応するサブフレームが表示される。引き続き、同様に発光時間が64、32、16、8、4、2、1のサブフレームについて表示を行うことによって、1フレームの映像を256階調で表示することができる。

【0009】以上のように構成された従来のプラズマデ ィスプレイ装置においては、PDP101の表面温度が 温度検出器110によって検出される。またX共通ドラ イバ104およびY共通ドライバ107の温度が温度検 出器105および108によって検出される。ここでP DP101の輝度はPDP101の温度上昇に比例して 低下し、またX共通ドライバ104およびY共通ドライ バ107の温度上昇に比例して低下する。 予め測定によ って求めておいたそれぞれの比例定数を使用して、温度 検出器110、105、108から得られた検出信号S TP、STX、STYをマイコン190で処理すること により輝度の低下分がわかる。この輝度の低下分を補正 するようにマイコン190で輝度を増加させるように制 御を行う。輝度を増加させるための方法としては、次に 述べるようにパルス数を制御する方法、維持電圧を制御 する方法そして表示データ部を制御する方法がある。

【0010】バルス数を制御する方法では、維持バルス数がPDP101の輝度に比例することを利用している。マイコン190では、温度変化による輝度の低下分を補正するような維持パルス数を算出し、その結果をEP-ROM150は基準維持パルス数に対する各サブフィールド毎の維持パルス数が設定されており、これに基き各サブフィールドにおける補正された維持パルス数がパネル駆動制御部112に出力される。パネル駆動制御部112の共通ドライバ制御部131により、補正された維持パルス数に対応する維持パルスが出力され、PDP101及び各ドライバの温度上昇による輝度低下が補正される。

【0011】次に維持電圧を制御する方法では、維持パルスPXS及びPYSの電圧(維持放電電圧VS)とPDP101の輝度が比例することを利用している。マイコン190は維持放電電圧基準電圧出力部OUTに接続されており、これにより維持放電電圧VSの制御が可能になっているので、マイコン190は温度変化による輝度の低下分を補正するような維持放電電圧を算出し、その結果を維持放電電圧基準電圧出力部OUTから外部の高電圧発生装置へ出力され、駆動用高圧入力部INVに

入力されるべき電圧値の基準となり、当該基準値に基き 共通ドライバ制御部131により維持放電電圧VSが設 定され、PDP101及び各ドライバの温度上昇による 輝度低下が補正される。

【0012】また表示データ部を制御する方法では、表 示データDATAの階調値とPDP101の輝度が比例 することを利用している。マイコン190は表示データ 制御部111に接続されており、表示データ制御部11 1ではマイコン190の減算データに基づき各発光セル の階調値の減算を行っている。垂直同期期間 n において 表示データ入力部INから入力された表示データDAT Aはフレームメモリ120に記憶保持される。次の垂直 同期期間 n + 1ではフレームメモリ120のデータから 減算器121を介して輝度補正分の階調値を差し引いた 後、制御信号SAに含まれる表示データとしてアドレス ドライバ103に出力されPDP101に画像が表示さ れる。この垂直同期期間 n + 1 において表示データ入力 部 I Nから入力された表示データ DATAはフレームメ モリ122に記憶保持される。以上の動作を二つのフレ ームメモリ120および122に交互に動作させること により表示データの処理を行い、これら一連の動作によ り温度上昇による輝度低下が補正される。

【0013】また、以上のように構成された従来のプラ ズマディスプレイ装置においては、PDP101を動作 させる周辺環境温度が異常に高い場合、または予期せぬ 不具合が発生した場合などに、PDP101を含むプラ ズマディスプレイ装置の温度が異常に上昇し、回路素子 の温度定格を超過し該回路索子が部品破壊へ至る可能性 がある場合に、これを防止するように動作させることが できる。PDP101の表面温度、X共通ドライバ10 4、Y共通ドライバ107の温度は、それぞれ温度検出 器110、105、108によって検出され、検出信号 STP、STX、STYがマイコン190に出力され る。また、装置内雰囲気温度検出器160によって装置 内の雰囲気温度が検出され、マイコン190に出力され る。以上の検出信号によって得られる温度情報のうちす くなくとも一つがそれぞれに設定された閾値を上回った 場合、マイコン190はプラズマディスプレイ装置を保 護するように制御を行う。具体的には、ファンなどの空 冷装置180を動作させて空冷処理を行う方法、LED の点滅により使用者にその旨を警告する方法、プラズマ ディスプレイ装置に対する電源供給を禁止する方法があ

【0014】空冷処理をおこなう方法では、マイコン190に入力された温度情報(検出信号STP、STX、STY、装置内雰囲気温度検出器の検出出力)のうちいずれか一つが閾値を上回った場合にマイコン190はその結果に基づき、制御回路181を介して空冷装置180を動作させる。この動作はマイコン190に入力された温度情報のすべてが閾値を下回るまで継続される。

【0015】また、LEDの点滅により警告を行う方法では、マイコン190に入力された温度情報のうちいずれか一つが関値を上回った場合にマイコン190はその結果に基づき、制御回路171を介してLED170を点滅させる。この動作はマイコン190に入力された温度情報のすべてが関値を下回るまで継続される。

【0016】また、プラズマディスプレイ装置に対する電源供給を禁止する方法では、マイコン190に入力された温度情報のうちいずれか一つが閾値を上回った場合にマイコン190はその結果に基づき、リレー制御部191を動作させ、駆動用の高圧線を一時的に遮断する。この動作はマイコン190に入力された温度情報のすべてが閾値を下回るまで継続される。

【0017】以上の動作によって、PDP101を含むプラズマディスプレイ装置の温度が異常に上昇した場合に、プラズマディスプレイ装置を保護することができる。

【0018】このような従来のプラズマディスプレイ装置においては、温度上昇によるPDPの放電特性の変化、およびドライバの特性の変化を補正して、PDPおよびドライバの温度が上昇しても表示特性に影響を与えることなく表示を行うことができる。また異常な温度の上昇からPDPを含むプラズマディスプレイ装置を保護することができる。

[0019]

【発明が解決しようとする課題】上記のような従来のプラズマディスプレイ装置では、PDPの温度上昇を熱電対等の検出器を用いて検出し、空冷装置の作動、LEDによる警告、リレー制御装置による電源断によってプラズマディスプレイ装置を保護している。しかしながら、表示される映像信号によっては、PDPのパネルの一部分だけが温度上昇し、これによって熱応力が発生する場合がある。熱応力によってPDPが変形すると、PDPの表示性能を劣化させたり寿命が短くなるなどの悪影響があり、また最悪の場合にはPDPが破損する虞がある。

【0020】PDPはある程度の面積を持っており、PDPの主な素材はガラスなどの金属に比べて熱伝導率が低い素材であるため、PDPの温度は1枚のPDP内でも不ての場所で同じ温度ではなく、1枚のPDP内でも部位ごとに温度が大きく異なる可能性がある。例えば、プラズマディスプレイ装置をコンピュータ用ディスプレイとして使用する場合には、比較的暗い背景に明るいウインドウが含まれるような画面を表示することがしばしば起る。このウインドウのように画中の一部の領域だけが明るく、輝度が急激に変化している場合(このような映像を輝度勾配の大きい映像と呼ぶ)には、明るい部分が暗い部分に比べてより加熱される。よって、このような映像を表示しつづけると、PDP上の明るい部分と暗い部分の温度差が広がり、PDP内の温度の比較的高い部

分が低い部分にくらべてより膨張し、これによってPD P内に熱応力が発生する。PDPの画面サイズが大きい ほど温度差が生じやすいため、特に大画面のディスプレ イ装置においては大きな問題となる。ここで従来のプラ ズマディスプレイ装置のように熱電対などの検出器を用 いる方法では、複数の検出器をPDPに取り付けなけれ ばPDP内の温度差を検出することができない。また、 PDPの画面サイズが大きくなれば必要な検出箇所は多 くなり検出器の数が増加するためコストが高くなる。 【0021】この発明は、上述のような課題を解決する ためになされたもので、PDP内に大きな温度差を生じ させるような映像を、熱電対などの温度検出手段を用い ることなく検出し、PDP内の温度差を少なくするよう に制御することにより、低コストでかつ画質の劣化が少 なく長寿命なプラズマディスプレイ装置およびプラズマ ディスプレイパネルの温度制御方法を得ることを目的と する。

[0022]

【課題を解決するための手段】この発明に係るプラズマディスプレイ装置は、外部から入力される映像信号に基づきプラズマディスプレイパネルを駆動する駆動手段と、前記駆動手段により駆動され表示を行うプラズマディスプレイパネルと、前記映像信号の低周波成分を除去する手段と、低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出手段と、前記ヒストグラム算出手段により作成されたヒストグラムから輝度勾配の激しい映像を判定する判定手段と、前記判定手段の判定結果に基づき、前記駆動手段を制御する制御手段とを有するものである。

【0023】また、前記駆動手段内の維持パルス数を前記制御手段によって制御するように構成されるものである。

【0024】さらにまた、外部から入力される映像信号を処理する映像信号処理手段と、前記映像信号処理手段によって処理された映像信号に基づきプラズマディスプレイバネルを駆動する駆動手段と、前記駆動手段により駆動され表示を行うプラズマディスプレイバネルと、前記映像信号処理手段によって処理された映像信号の低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出手段と、前記ヒストグラム算出手段により作成されたヒストグラムから輝度変化の激しい映像を判定する判定手段と、前記判定手段の判定結果に基づき、前記映像信号処理手段を制御する制御手段とを有するものである。

【0025】また、前記制御手段の制御レベル情報を主電源断とされた後一定期間保持する記憶手段を有するものである。

【0026】また、外部から入力される映像信号に基づきプラズマディスプレイパネルを駆動する駆動手段と、

前記駆動手段により駆動され表示を行うプラズマディスプレイパネルと、前記映像信号の低周波成分を除去する手段と、低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出手段と、前記ヒストグラム算出手段により作成されたヒストグラムから輝度変化の激しい映像を判定する判定手段と、前記判定手段の判定結果を外部へ出力する通信手段とを有するものである。

【0027】また、予め測定したプラズマディスプレイパネルの特性を記憶するパネル特性記憶手段を備えるとともに、前記判定手段の判定基準値を前記パネル特性記憶手段の内容に合わせて可変とするように構成したものである。

【0028】また、入力される映像信号がテレビ信号であるかコンピュータ信号であるかによって前記制御手段に異なる制御係数を与える係数記憶手段を備えたものである。

【0029】また、プラズマディスプレイ装置の雰囲気 温度を検出する温度検出手段を有するとともに、前記温 度検出手段の出力に合わせて前記判定手段の判定基準値 を補正するように構成したものである。

【0030】また、この発明に係るプラズマディスプレイパネルの温度制御方法は、映像信号の低周波成分を除去する工程と、低周波成分を除去した映像信号の階調範囲ごとのヒストグラムを作成するヒストグラム算出工程と、前記ヒストグラム算出工程により作成されたヒストグラムから輝度変化の激しい映像を判定する判定工程と、前記判定工程の判定結果に基づき、プラズマディスプレイパネルの輝度を制御する制御工程とを備えるものである。

【0031】また、プラズマディスプレイパネルの維持パルス数を前記制御工程によって制御するものである。 【0032】また、プラズマディスプレイパネルに入力する映像信号の振幅を前記制御工程によって制御するものである。

[0033]

【発明の実施の形態】この発明の実施の形態であるプラズマディスプレイ装置においては、映像信号の低周波成分を除去し、サンプリングされた映像信号の輝度ごとのヒストグラムを求めることにより、PDP内の温度差の原因となる映像を検出してPDPの輝度を制御するようにしたため、PDP内の温度差を低減するように働く。【0034】また、PDPの輝度を制御する際に、維持パルス数を制御することによってPDPの輝度を制御するようにしたため、簡単な回路構成によってPDP内の温度差を低減するように働く。

【0035】また、映像信号処理手段を制御することによってPDPの輝度を制御するようにしたため、映像信号処理手段をもった従来のプラズマディスプレイ装置にわずかな回路を附加するのみでPDP内の温度差を低減

するように働く。

【0036】また、制御手段の制御情報を、主電源断の 後も一定期間記憶手段に保持することによって、比較的 短時間の後に再び主電源が接続された場合にも適切な制 御によってPDP内の温度差を低減するように働く。

【0037】また、判定手段の判定結果を通信手段によって外部に出力することにより、外部信号源側で映像信号を制御することによって、プラズマディスプレイ装置側で特別の制御回路を必要とせずにPDP内の温度差を低減するように働く。

【0038】また、予め測定したプラズマディスプレイパネルの特性をパネル特性記憶手段に格納し、判定手段の判定基準値をパネル特性記憶手段の内容に合わせて可変とすることにより、PDPにパネル毎に温度特性のばらつきがあった場合や、パネル内で部位により温度特性のばらつきがある場合にも、それぞれの温度特性に応じて適切にPDP内の温度差を低減するように働く。

【0039】また、外部から入力される映像信号がテレビ信号であるかコンピュータ信号であるかによって係数記憶手段より制御手段に与える制御係数を変えることにより、信号の種別に合わせた表示によって画質への影響を最小限にしてPDP内の温度差を低減するように働く。

【0040】また、プラズマディスプレイ装置の雰囲気 温度を検出する温度検出手段の出力に合わせて制御手段 の判定値を補正することにより、装置を設置する環境や 使用状況に合わせて効果的にPDP内の温度差を低減す るように働く。

【0041】以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。

実施の形態1.まずこの発明の実施の形態1について説明する。図1はこの発明の実施の形態1であるプラズマディスプレイ装置の構成図であり、同図において1は駆動回路であり、2はプラズマディスプレイパネル(PDP)、3は平均値算出部、4は領域分割部、5はヒストグラム算出部、6は判定部、7は制御部である。

【0042】次に動作について説明する。まず、映像信号および同期信号が駆動回路1に入力されるとともに平均値算出部3に入力される。駆動回路1は従来のプラズマディスプレイ装置と同様に入力された映像信号を駆動回路1内のフレームメモリに格納し、サブフィールドごとに分割して読み出し、PDP2のX電極、Y電極、アドレス電極にそれぞれ従来のプラズマディスプレイ装置と同様に駆動パルスを与える。PDP2は駆動回路1から与えられた駆動パルスに基いて発光し、映像を表示する。

【0043】平均値算出部3では、まず前処理としてカラーの映像信号のR、G、Bを平均化して輝度情報のみの白黒映像信号とした後、この白黒映像信号を、縦方向、横方向それぞれ決められた画素数の平均値をとるこ

とにより、もとの映像信号よりも少ない画素数でサンプリングされた映像信号を得るとともに、映像信号の低周波成分を除去している。映像信号の低周波成分を除去するのは比較的小さな面積での輝度の分布の影響を取り除くためである。例えばPDPをコンピュータディスプレイとして使用する場合などは、画面上に文字を表示する機会が多い。文字は比較的小さな面積内に輝度値の高い画素と低い画素が両方含まれている。このように比較的小さな面積内で高輝度の画素と低輝度の画素が混在していても、問題となるような大きな温度差の発生にはつながらないと考えられる。なぜなら、小さな面積内においてはパネルの熱は比較的速く伝わるため、その範囲内では大きな温度差は生じないためである。

【0044】図2は平均値算出部3の動作の一例を示す説明図であり、この例では映像信号がXGA相当(1024画素×768画素)の場合を示している。同図において、(a)は1フレームの映像信号を表しており、横方向1024画素、縦方向768画素からなる映像の左上を拡大して示している。(b)は平均値算出部3で処理された後の1フレームのサンプリングされた映像信号を表しており、縦方向64画素、横方向48画素からなる。平均値算出部3では、図2(a)の斜線部の範囲すなわち16画素×16画素にわたって輝度値の平均を演算し、図2(b)の対応する位置である斜線部の画素の輝度値とする。以上の処理を1フレーム全体にわたって繰り返すことにより図2(b)のすべての画素の輝度値が得られる。

【0045】縦方向横方向16画素の輝度値の平均をとることにより、16×16画素の範囲内で高輝度の画素と低輝度の画素が混在するような輝度値の分布になっていても、後述する輝度分布の算出には影響しないようにすることができる。また、256画素の輝度値の平均値を使用することにより、処理すべき映像信号の画素数は原画像に対して256分の1に減るため、後述の処理に必要な回路規模を小さくする、あるいは処理速度を高速にすることができる。なお、輝度値の平均値をとる画素数を何画素程度にすればよいかは、PDPの全画素数とPDPのサイズ、またPDPを構成する素材の熱伝導率により異なる。

【0046】次に、領域分割部4では、平均値算出部3によって処理されたサンプリングされた映像信号を図3に示すようにいくつかの領域に分割する。同図の例では横方向64画素、縦方向48画素からなるサンプリングされた映像信号を12の領域に分割している。分割されたそれぞれの領域について、後述の処理を行うことにより、検出すべき輝度差の大きな映像が、映像中のどの領域に属するかがわかるため、PDP内のどの位置に温度差が生じているのかを後述の処理で判定することができる。

【0047】次に、ヒストグラム演算部5では、領域分

割部4から得られた領域のそれぞれについて輝度値のヒ ストグラムを演算によって求める。図4および図5を用 いて説明する。図4は領域の一例とそれに対応するヒス・ トグラムを示す図であり、輝度勾配のない例となってい る。図5もまた領域の一例とそれに対応するヒストグラ ムを示す図であり、輝度勾配が大きい例となっている。 それぞれの図において、(a)が領域の一例であり、(b) は(a)から求めたヒストグラムである。 ここでは、 簡単 のため輝度値を、低輝度、中輝度、高輝度の3つの範囲 に分割している。 図4(a)および図5(a)で黒で表され た画素が低輝度、斜線で表された画素が中輝度、白で表 された画素が高輝度である。それぞれをヒストグラム化 すると図4(b)、図5(b)のようになる。実際には輝度 値をより多くの範囲に分割してヒストグラムの作成を行 う。たとえば輝度値を8分割する場合、輝度が256階 調(0~255)とすると、0~31、32~63、6 4~95, 96~127, 128~159, 160~1 91、192~223、224~255のように輝度値 を8等分してそれぞれの輝度値の範囲にある画素数をヒ ストグラム化すればよい。

【0048】次に判定部6では、ヒストグラム算出部5 から得られたヒストグラムデータをもとに大きな輝度勾 配があるかどうかの判定を後述の方法によって行う。ヒ ストグラムは分割された領域につき一つずつ存在するの で、まずそれぞれの領域ごとのヒストグラムについて判 定を行い、次に隣り合う二つの領域のヒストグラムのそ れぞれの輝度範囲の値を加え合わせることによって、二 つのヒストグラムを合成し、合成されたヒストグラムに ついても後述の方法によって判定を行う。このように隣 り合う二つの領域のヒストグラムを合成することで、隣 り合う二つの領域にまたがるような輝度勾配を検出する ことができる。また、さらに1フレーム分すべてのヒス トグラムについて、それぞれの輝度範囲の値を加え合わ せることによって、1フレームの映像信号全体のヒスト グラムを得ることができる。この1フレーム全体のヒス トグラムに対しても後述の方法によって判定を行うこと により、より確実に判定が行える。

【0049】次に、具体的な判定基準について説明する。輝度勾配の大きな映像では、一つのヒストグラム内に高輝度の画素と低輝度の画素が両方存在し、中間の輝度の画素は少なくなっている。よって、中間の輝度の画素数の全画素に対する割合がある値より少なく、かつ高輝度の画素数がある値よりも多い場合に大きな輝度勾配があると判定する。

【0.050】以上の判定を前述のように、各領域のヒストグラム、隣合う領域のヒストグラムを合成したヒストグラム、全画面のヒストグラムのそれぞれに対して行い、少なくとも一つのヒストグラムが大きな輝度勾配が存在すると判定されたときに、判定部6は制御部7に「輝度勾配あり」を示す信号を出力し、すべてのヒスト

グラムの判定において大きな輝度勾配がないと判定されたときには制御部7に「輝度勾配なし」を示す信号を出力する。

【0051】最後に制御部7では、判定部6によって得 られた判定結果に基づき、ウインドウ映像が表示されて いるときに、駆動回路1を制御し各サブフレームの維持 パルス数を減らすことによってPDP2の表示輝度を下 げることにより、パネル内の温度差の発生を抑制するこ とができる。輝度はパルス数に比例するので、標準状態 (輝度制御を行わない状態)での輝度を100%として 輝度を×%になるようにしたい場合には、標準状態(輝 度制御を行わない状態) でのパルス数を Ps、制御を行 ったときのパルス数をPcとすると、Pc=Ps×x/ 100とすれば良い。実際にはパルス数は整数であるか ら制御は段階的に行うことになる。PDP内に大きな温 度差が発生するのは、ある一定期間の間輝度勾配のある 映像信号が連続して表示されているときであるため、実 際の制御は過去のある期間の輝度勾配の有無に依存した 形で行われる必要がある。具体的な制御方法について図 6を用いて説明する。

【0052】図6はこの発明の実施の形態1における制御部の動作を示すフローチャートである。S001は初期設定であり、プラズマディスプレイ装置の電源投入時などに一度だけ実行される。ここで、W_CNTとNW_CNTはそれぞれ制御部7の内部に値を保持される変数であり、それぞれ整数の値をとるものとする。それぞれの変数は過去のフレームにおける輝度勾配の情報を含んでいる。S001ではこの変数W_CNTと変数NW_CNTの初期化を行っており、それぞれ初期値として変数W_CNTには0が与えられ、変数NW_CNTにはある整数WMAXが与えられる。

【0053】続くS002では判定部6より輝度勾配の有無についての1フレーム分の判定結果を取得している。B001ではS002で取得した判定結果により、輝度勾配のある場合にはS003、輝度勾配のない場合にはS007のいずれかに分岐する。

【0054】まず、輝度勾配のある場合すなわちS003に分岐した場合について説明する。S003では、変数W_CNTと変数NW_CNTの両方を1増加させる。次のB002とS004では、変数NW_CNTがWMAX以上となる場合に変数W_CNTにWMAXを代入する。B003では変数W_CNTがWMAX以上となる場合にS005へ進み変数W_CNTに0を代入した後S006で駆動回路1を制御することによってPDP2の輝度を制御する。S006では、輝度の制御値を1段階減少させる。すなわちあらかじめ設定してPDP2の輝度を制御する。S006では、輝度の制御値を1段階減少させる。すなわちあらかじめ設定していた1段階分、駆動回路1での維持パルス数が減少する。この結果制御値が予め設定した下限値を下回るときには何もしない。以上の処理が終わった段階でS002に戻り、次のフレームの判定結果が取得されるまで待機

する。

【0055】次に、輝度勾配のない場合すなわちS007に分岐した場合について説明する。S007では、変数W_CNTを変数NW_CNTの両方を1減少させる。次のB004とS008では、変数W_CNTが0以下となる場合に変数W_CNTに0を代入する。B005では変数NW_CNTが0以下となる場合にS009へ進み変数NW_CNTが0以下となる場合にS009へ進み変数NW_CNTにWMAXを代入した後S010で駆動回路1を制御することによってPDP2の輝度を制御する。S010では、輝度の制御値を1段階上昇させる。この結果制御値が上限値(標準状態でのバルス数)を上回るときには何もしない。以上の処理が終わった段階でS002に戻り、次のフレームの判定結果が取得されるまで待機する。

【0056】以上の処理を毎フレーム繰り返すことによ って制御を行う。この制御方法について図7を用いて説 明する。図7はこの発明の実施の形態1における制御部 の動作の一例を示す図であり、変数W_CNTおよび変 数NW_CNT、制御値(標準状態をO段階としてい る)の制御状況をグラフ化したものである。横軸は時間 をフレーム数で表わしたものである。図の例では25フ レームのあいだ輝度勾配ありの状態が続いた後、輝度勾 配なしに変化している。図からわかるように、WMAX フレームのあいだ輝度勾配ありの状況が続くと制御値が 一段階下げられるように制御が行われる。制御はもっと も速い場合でもWMAXフレームごとに行われ、数フレ ームの間に映像が高速に変化しても影響されることなく 正しく制御が行われる。なお図7のグラフでは簡単のた めWMAX=10としているが、実際にはフリッカを防 ぐため、輝度変化を数秒に1度程度とするのが望まし く、WMAXは数100程度となる。

【0057】以上のように制御を行うことにより、PD P内に温度差が生じるような輝度勾配のある映像が表示されているときには、輝度が段階的に下げられ、また輝度勾配のない映像が表示されているときには、輝度が段階的に上げられる(標準状態に戻される)ことになり、PDP内に大きな温度差が発生するのを防止することができる。

【0058】実施の形態2.次に、この発明の実施の形態2について説明する。実施の形態1では、PDP2の表示輝度を制御するために、制御部7によって駆動回路1を制御し、維持パルス数を減じているが、駆動回路1を制御するかわりに信号処理によって表示コントラストを下げることも可能である。実施の形態1のプラズマディスプレイ装置では、入力としてディジタル化された映像信号のみを想定していたが、従来のプラズマディスプレイ装置の中には、様々な入力を想定し、例えばビデオ信号をデコードする、アナログの映像信号をA/D変換によってディジタル映像信号に変換する、逆ガンマ変換を行う、ブライトネス調整、コントラスト調整を行うと

いった機能をもった信号処理回路を含むものも多く存在する。そこでこのような信号処理回路内のコントラスト調整機能を制御することによって、大きな温度差が生じるような映像を検出した場合にコントラストを下げるように構成する。以下このような実施の形態について説明する。図8はこの発明の実施の形態2であるプラズマディスプレイ装置の構成図であり、1から7までは実施の形態1と同様であり、8は映像信号処理回路であり、映像信号のコントラストを制御する機能を含むものとする。

【0059】このように構成されたプラズマディスプレイ装置の動作について説明する。駆動回路1、PDP2、平均値算出部3、領域分割部4、ヒストグラム算出部5、判定部6の動作については実施の形態1と同様である。制御部7では、判定部6の判定結果に基づき、映像信号処理回路8内のコントラスト調整機能を制御して、コントラストを調整することにより、PDP2の輝度を制御する。コントラスト調整は調整前の輝度値に対してコントラスト値を乗算した結果を調整後の輝度値に対してコントラスト値を乗算した結果を調整後の輝度値とすることによって行われる。従って標準状態(輝度制御を行わない状態)での輝度を100%として輝度を×%になるようにしたい場合には、コントラスト値をCcとするとCc=x/100とすれば良い。

【0060】制御の手順については、実施の形態1と同様に、例えば図6のフローチャートに従ってコントラストを段階的に制御することによって行う。これによって、PDP内に温度差が生じるような輝度勾配のある映像が表示されているときには、輝度が段階的に下げられ、また輝度勾配のない映像が表示されているときには、輝度が段階的に上げられる(標準状態に戻される)ことになり、PDP内に大きな温度差が発生するのを防止することができる。

【0061】実施の形態3.次に、この発明の実施の形 態3について説明する。プラズマディスプレイ装置にお いて、主電源を断とした場合には、PDPが室温に近い 温度まで冷えるまでにはある程度の時間がかかる。この ため、使用者がプラズマディスプレイ装置の使用を中断 するために主電源を断としてから、比較的短時間の後に 再び主電源を接続して使用を再開した場合や、比較的短 時間の停電が起こった場合などには、PDP内に温度勾 配が残っている可能性がある。実施の形態3では、上記 のように一時的に主電源が断とされた場合にも輝度制御 を適切に行ってPDP内の温度差の発生を防止してい る。図9はこの発明の実施の形態3であるプラズマディ スプレイ装置の構成図であり、図において、1から7ま では実施の形態1と同様であり、9は制御部7の制御状 態を格納するための記憶装置であり例えばRAMであり る。10は記憶装置9の内容を主電源によらずに一定期 間保持するためのバックアップ回路である。

【0062】記憶装置9には、制御部7の制御状態とし

て、例えば現在の輝度制御値を格納するとともに、記憶 内容が有効かどうかを判別するためのチェックパターン を格納する。

【0063】バックアップ回路10は、主電源が断とさ れたときから記憶装置9が記憶内容を保持するための電 源を供給する。バックアップ回路10の回路の一例を図 10に示す。図において、破線で囲った回路がバックア ップ回路10に相当し、20はダイオード、21はコン デンサである。主電源が接続されているときには、ダイ オード20を介して電流が流れ、コンデンサ21に電荷 が蓄積される。主電源が切断されると、コンデンサ21 から電荷が放電するまでの間記憶装置9に電流が流れ る。主電源が切断されたままコンデンサ21が完全に放 電すると記憶装置9には電源が供給されなくなり、記憶 内容は消去される。主電源の切断から記憶内容が消去さ れるまでのおおよその時間Tmはコンデンサ21の容量 によって決まる。この時間Tmが主電源が切断されてか らPDPパネルが自然に冷却されてほぼ室温と同程度に なるのに要する時間Tpよりも長くなるようにコンデン サ21の容量を選ぶものとする。

【0064】このように構成した場合の制御部7の動作 について説明する。主電源投入時に制御部7は記憶装置。 9内のチェックパターン格納個所を読み出し、規定のチ ェックパターンが格納されているかどうかを判別する。 チェックパターンが格納されていない場合には、前回の 主電源断から十分な時間が経過しておりPDPは室温と 同程度の温度に冷却されているため、記憶装置9の内容 を破棄して改めて初期化を行い、チェックパターンを書 き込むとともに、制御値を規定の初期値とする。チェッ クパターンが格納されている場合には、前回の主電源断 から経過している時間が短くPDPが冷却されていない ため、記憶装置9内の輝度制御値を読み出して制御値と する。以上の動作を主電源投入時に行った後、通常動作 に移る。通常動作時においては、制御部7は制御値を更 新するごとに記憶装置9に更新された制御値を格納する ものとする。それ以外の制御部7の動作については、実 施の形態1と同様である。

【0065】以上のように構成したプラズマディスプレイ装置では、主電源を切断後、比較的短い時間に再び主電源を接続した場合にも、保持された制御値を用いて制御を行うため、PDP内に大きな温度差が発生するのを防止することができる。また主電源が切断されて長い時間が経過し、PDPがほぼ室温と同程度の温度になっている場合にも、保持された制御値を破棄して初期値から適切に制御を行うことができる。

【0066】実施の形態4.次に、この発明の実施の形態4について説明する。実施の形態4では、実施の形態1乃至3と異なり、輝度制御をプラズマディスプレイ装置の外部で行うことにより、装置のコストを低減したものである。温度差が大きな問題となる映像は、コンピュ

ータ用ディスプレイとしてプラズマディスプレイ装置を用いた場合に多く発生するため、プラズマディスプレイ装置は温度差が生じるような映像を判定して、判定結果を映像信号を出力しているコンピュータ側に送信し、コンピュータ側で処理を行って輝度制御を行うように構成することができる。図11はこの発明の実施の形態4であるプラズマディスプレイ装置の構成図であり、図において、1から6までは実施の形態1と同様であり、11は判定部6の判定結果を外部に送信する通信部であり、12は本実施の形態のプラズマディスプレイ装置の外部にあってプラズマディスプレイ装置に映像信号を供給するとともに、通信部11より判定結果を受信して処理を行うパーソナルコンピュータ(PC)やワークステーション等の信号源である。

【0067】このように構成されたプラズマディスプレ イ装置の動作について説明する。駆動回路1、PDP 2、平均値算出部3、領域分割部4、ヒストグラム算出 部5の動作については実施の形態1と同様である。判定 部6では各領域のヒストグラム、隣合う領域のヒストグ ラムを合成したヒストグラム、全画面のヒストグラムの それぞれに対して実施の形態と同様に輝度勾配があるか どうかの判定を行い、通信部11へと判定結果を輝度勾 配があった領域の位置情報を含めて送出する。通信部1 1では判定部6から受け取った情報を外部の信号源12 に送出する。外部の信号源12の側で処理を行い、通信 部11より受け取った情報に基づき、輝度勾配の存在す る位置に該当するウインドウ表示部分の輝度が低くなる ように表示状態を変更する。例えばウインドウ部分の表 示色を変更することにより、該当するウインドウ以外の 部分に変更を加えることなく、温度差の発生を防止する ように輝度を制御することができる。

【0068】実施の形態5.次に、この発明の実施の形態5について説明する。PDPは製造上のばらつきによってパネル毎に温度特性が変わる可能性があり、また1枚のPDPの中でも部位によって温度特性のばらつきがある可能性がある。実施の形態5は、このようなばらつきのある場合にも適切な輝度制御を行うことができるように構成したものである。図12はこの発明の実施の形態5であるプラズマディスプレイ装置の構成図であり、図において、1から7は実施の形態と同様であり、13は判定部6における判定基準を記憶するPDP特性記憶部であり、例えばPROMなどの不揮発性メモリーである。

【0069】このように構成されたプラズマディスプレイ装置においては、例えばプラズマディスプレイ装置の製造時においてPDP2の温度特性を計測し、その結果に基いて輝度勾配の有無を判定するための判定基準をPDP特性記憶部13に格納する。そしてプラズマディスプレイ装置の使用時に、PDP特性記憶部13より読み出した判定基準を用いて判定部6において輝度勾配の有

無を判定することにより、PDP2のパネル毎の製造上のばらつきや、パネルの部位毎の特性のばらつきに応じて判定を補正することができるため、より適切に輝度制御を行うことができる。

【0070】以下、プラズマディスプレイ装置の製造時 におけるPDP2の温度特性の計測方法の一例について 説明する。計測においてはテストパターンを含む信号を テスト信号として使用する。テストパターンとしては、 例えば正方形などの一定の大きさを持つ図形であって、 図形部の輝度値を最大とし、それ以外の背景部分の輝度 値を0としたものを使用する。このようなテストパター ンの表示位置や面積を変えて計測を行うことにより、P DP2の表示部位による特性の違いを計測することが可 能である。図13はテストパターンの表示位置を説明す るための図でありし1からし12はテストパターンの表 示位置を表わしている。ここで、それぞれの表示位置は 領域分割部4における領域に対応しており、L1からL 12の位置にテストパターンを表示した場合には、対応 する領域のヒストグラム分布によってパターンの表示を 検出することができる。

【0071】具体的な計測の手順について説明する。ま ず、PDP2が全黒表示となるような映像信号を駆動回 路1より入力し、熱電対等を用いて実際にPDP2上の 温度分布を測定してPDP2内の温度差がない状態であ ることを確認する。その後表示位置し1に基準となる面 積AOを持つテストパターンを表示するような映像信号 を駆動回路1より入力し、PDP2に単位時間の間表示 させる。熱電対等を用いて実際にPDP2上の温度分布 を測定することにより、面内の最大温度差T1を得る。 【0072】次に、再びPDP2が全黒表示となるよう な映像信号を駆動回路1より入力し、PDP2内での温 度差がなくなるまで十分に時間をおいた後、位置し2に 面積A0を持つテストパターンを表示するような映像信 号を駆動回路1より入力し、PDP2に単位時間の間表 示させる。 熱電対等を用いて実際にPDP2上の温度分 布を測定することにより、表示位置し2での面内の最大 温度差T2を得る。同様に、テストパターンの表示位置 をL3, L4, ……, L12として測定を行い、それぞ れの表示位置での面内の最大温度差T3, T4, ……, T12を得る。

【0073】判定基準の決定は以下のように行う。上記のようにして測定した温度差T1を予め決定しておいた基準値T0と比較する。T1=T0のときには、面積がA0以上のパターンを表示したときに輝度勾配有りと判定されるようにL1に対応する領域での判定基準を決定し、T1とT0の差に応じて判定基準を変化させる。すなわちT1>T0のときにはA0よりも小さな面積のパターンでも輝度勾配有りと判定されるように判定基準を厳しくする。またT1<T0のときには逆にA0よりもやや大きな面積のパターンでも輝度勾配無しと判定され

るよう判定基準を緩やかにする。同様にT2、T3、… … T12をT0と比較することによりL2、L3、… … L12に対応する領域の判定基準を決定し、各領域ごとの判定基準をPDP特性記憶部13に格納する。以上のような方法によってPDP特性記憶部13に、各領域に対応した判定基準を格納することができる。

【0074】次に、プラズマディスプレイ装置の使用時の動作について説明する。判定部6で輝度勾配の有無の判定を行う際にPDP特性記憶部13より、判定を行うとストグラムの領域に対応した判定基準を読み出し、これに基いて判定を行う。なお隣接する領域のヒストグラムを合成したヒストグラムにおいて判定を行う際には、二つの領域に対応する判定基準の両方で判定を行い、いずれか一つでも輝度勾配が有と判定された場合には輝度勾配を有とする。また、1フレーム分全てのヒストグラムを合成したヒストグラムにおいても、いずれか一つの判定基準において輝度勾配が有りと判定された場合に輝度勾配を有りと判定する。その他の動作は実施の形態1と同様である。

【0075】以上のように構成されたプラズマディスプレイ装置においては、PDPにパネル毎に温度特性のばらつきがあった場合や、パネル内で部位により温度特性のばらつきがあった場合にも、予め測定しておいた温度特性に応じた判定基準によって、輝度勾配の有無を判定し、これに基づいて温度制御を行うため、プラズマディスプレイパネル内の温度差を防ぐことができる。

【0076】実施の形態6.次に、この発明の実施の形態6について説明する。プラズマディスプレイ装置をコンピュータ用のディスプレイとして用いる場合には、例えばウインドウを同じ位置に表示し続けることが多いが、テレビ用ディスプレイとして用いる場合には映像全体が時間とともに大きく変化する場合が多い。このようにディスプレイの用途によって映像信号の傾向に違いがあるため、本実施の形態ではそれぞれに適した輝度制御をおこなうように制御方法を変化させている。図14はこの発明の実施の形態6であるプラズマディスプレイ装置の構成図であり、図において、1から7までは実施の形態1と同様であり、14は外部より入力される信号がテレビ信号であるかコンピュータ信号であるかを区別する識別信号に基き、制御部7に制御係数を与える制御係数記憶部である。

【0077】また、図15は実施の形態6における制御係数記憶部14の構成を示す図であり、図において、22は入力信号がテレビ信号であるときの制御係数を予め記憶させたTV信号時制御係数記憶部、23は入力信号がコンピュータ信号であるときの制御係数を予め記憶させたPC信号時制御係数記憶部、24は識別信号に基いてTV信号時制御係数記憶部22とPC信号時制御係数記憶部23の出力を切り換えて制御部7に与えるためのスイッチである。

【0078】以上のように構成された実施の形態6においては、入力信号がテレビ信号である場合とコンピュータ信号である場合のいずれかによって、スイッチ24が切り替わり、入力信号がTV信号である場合には制御部7にTV信号時制御係数記憶部22から制御係数が与えられ、入力信号がPC信号である場合には制御部7にPC信号時制御係数記憶部23から制御係数が与えられる。すなわち入力信号によって制御係数を変えることにより、制御部7の制御動作の速度や大きさを変化させることが可能である。

【0079】具体的な制御係数としては、例えば図6および図7に示したWMAXがあげられる。以下、WMAXを制御係数とした場合について説明する。この場合、TV信号時制御係数部22にWMAX_TVを格納し、PC信号時制御係数部23にはWMAX_PCを格納する。これにより制御部7内のWMAXは、入力信号に応じてWMAX_TVまたはWMAX_PCのいずれかの値が用いられる。

【0080】制御部7においては、WMAXの値が大きいときには、輝度勾配を検出してから実際に輝度制御が行われるまでのフレーム数は多くなるため、輝度の変化はゆっくり行われる。逆にWMAXが小さいときには輝度勾配を検出してから輝度制御が行われるまでのフレーム数が少なくなり輝度は速く変化する。

【0081】一方、入力信号がテレビ信号である場合には、輝度制御によって映像が暗くなることは画質の低下につながるため、制御をゆるやかに行うことが望ましく、コンピュータ信号が入力されている場合には、より温度差が生じる可能性が高いと考えられるため、輝度勾配を検出してから輝度制御をかけるまでの時間を短くする必要がある。このような要望を実現するためには、WMAX_TVをWMAX_PCにくらべてより大きな値とすれば良い。

【0082】以上のようにWMAX_TVおよびWMAX_PCをTV信号時制御係数部22およびPC信号時制御係数部23にそれぞれ格納することにより、入力信号の種類によって制御の行われる速度が変わり、テレビ信号とコンピュータ信号の両方の入力を想定した場合にも、テレビ信号の画質低下を最小限に押さえつつ、効果的にプラズマディスプレイパネル内の温度差を防ぐことができる。

【0083】なお、上記の例では制御係数としてWMA Xを用いたが、それ以外にも例えば制御値を一段階変化 させたときの実際の輝度変化の幅を制御係数とし、TV 信号の場合には一段階の制御あたりの輝度変化を小さく し、PC信号の場合にはこれを大きくすることによって も同様の効果が得られる。

【0084】実施の形態7.次に、この発明の実施の形態7について説明する。プラズマディスプレイ装置の連続使用や、室温の影響などによって、プラズマディスプ

レイ装置内の雰囲気温度が高温になった場合、PDPの温度変化に大きな影響が出る可能性がある。実施の形態8はプラズマディスプレイ装置内の雰囲気温度を熱電対などの温度検出手段によって検出し、検出結果によって制御部の制御方法に補正を行うことによって、より効果的にプラズマディスプレイパネル内の温度差を防ぐように構成したものである。図16はこの発明の実施の形態7であるプラズマディスプレイ装置の構成図であり、図において、1から7までは実施の形態1と同様であり、15は熱電対などの温度検出器であり、プラズマディスプレイ装置の雰囲気温度を検出して制御部7に検出結果を与える。

【0085】このように構成されたプラズマディスプレイ装置においては、温度検出器15の検出した雰囲気温度により制御方法に補正を加える。すなわち雰囲気温度が高温の場合には輝度勾配を検出してから輝度制御をかけるまでの時間を短くしたり、あるいは1段階の輝度制御の幅を大きくするように補正を行うことによって、速く輝度が下がるように制御を行う。逆に雰囲気温度が低温の場合には制御をゆるやかに行うように補正を行うことにより画質の不要の劣化を抑えることができる。以上のように制御を行うことにより、より効果的にディスプレイパネル内の温度差を防ぐことができる。なお雰囲気温度を測定するための温度検出器15は少なくとも一つあれば良いため、製造コストの増加は少ない。

[0086]

【発明の効果】この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。

【0087】映像信号のヒストグラムを作成することにより、映像信号中に大きな輝度勾配があるかどうかを判定し、輝度の制御を行っているため、熱電対などの温度検出手段を用いることなくPDP内の温度差を防ぐことができるため、プラズマディスプレイ装置の低コスト化、表示品質の劣化防止、長寿命化に効果がある。

【0088】また、PDPの輝度を制御する際に、維持パルス数を制御することによってPDPの輝度を制御するようにしたため、簡単な回路構成によってPDP内の温度差を低減できるため、プラズマディスプレイ装置の低コスト化、表示品質の劣化防止、長寿命化に効果がある

【0089】また、映像信号の振幅を制御することによってPDPの輝度を制御するようにしたため、映像信号処理手段をもった従来のプラズマディスプレイ装置にわずかな回路を附加するのみでPDP内の温度差を低減することができるため、プラズマディスプレイ装置の低コスト化、表示品質の劣化防止、長寿命化に効果がある。【0090】また、制御手段の制御情報を、主電源断の後も一定期間記憶手段に保持することによって、比較的短時間の後に再び主電源が接続された場合にも適切な制御によってPDP内の温度差を低減することができるた

め、プラズマディスプレイ装置の低コスト化、表示品質 の劣化防止、長寿命化に効果がある。

【0091】また、判定手段の判定結果を通信手段によって外部に出力することにより、外部信号源側で映像信号を制御することによって、プラズマディスプレイ装置側で特別の制御回路を必要とせずにPDP内の温度差を低減することができるため、プラズマディスプレイ装置の低コスト化、表示品質の劣化防止、長寿命化に効果がある。

【0092】また、予め測定したプラズマディスプレイパネルの特性をパネル特性記憶手段に格納し、判定手段の判定基準値をパネル特性記憶手段の内容に合わせて可変とすることにより、PDPにパネル毎に温度特性のばらつきがあった場合や、パネル内で部位により温度特性のばらつきがある場合にも、それぞれの温度特性に応じて適切にPDP内の温度差を低減することができるため、プラズマディスプレイ装置の低コスト化、表示品質の劣化防止、長寿命化に効果がある。

【0093】また、外部から入力される映像信号がテレビ信号であるかコンピュータ信号であるかによって係数記憶手段より制御手段に与える制御係数を変えることにより、信号の種別に合わせた表示によって画質への影響を最小限にしてPDP内の温度差を低減することができるため、プラズマディスプレイ装置の低コスト化、表示品質の劣化防止、長寿命化に効果がある。

【0094】また、プラズマディスプレイ装置の雰囲気 温度を検出する温度検出手段の出力に合わせて制御手段 の制御係数を補正することにより、装置を設置する環境 や使用状況に合わせて効果的にPDP内の温度差を低減 することができるため、プラズマディスプレイ装置の低コスト化、表示品質の劣化防止、長寿命化に効果がある

【図面の簡単な説明】

【図1】 この発明の実施の形態1であるプラズマディスプレイ装置の構成図である。

【図2】 この発明の実施の形態1における平均値算出 部の動作を示す説明図である。

【図3】 この発明の実施の形態1における領域分割部の動作を示す説明図である。

【図4】 この発明の実施の形態1における輝度勾配のない場合のヒストグラム算出の一例を示す図である。

【図5】 この発明の実施の形態1における輝度勾配のある場合のヒストグラム算出の一例を示す図である。

【図6】 この発明の実施の形態1における制御部の動作を示すフローチャートである。

【図7】 この発明の実施の形態1における制御部の動作の一例を示す図である。

【図8】 この発明の実施の形態2であるプラズマディスプレイ装置の構成図である。

【図9】 この発明の実施の形態3であるプラズマディ

スプレイ装置の構成図である。

【図10】 この発明の実施の形態3におけるバックアップ回路の一例を示す図である。

【図11】 この発明の実施の形態4であるプラズマディスプレイ装置の構成図である。

【図12】 この発明の実施の形態5であるプラズマディスプレイ装置の構成図である。

【図13】 この発明の実施の形態5におけるテスト信号の表示位置を示す図である。

【図14】 この発明の実施の形態6であるプラズマディスプレイ装置の構成図である。

【図15】 この発明の実施の形態6における制御係数記憶部の構成を示す図である。

【図16】 この発明の実施の形態7であるプラズマディスプレイ装置の構成図である。

【図17】 従来のプラズマディスプレイ装置を示す構成図である。

【図18】 従来のプラズマディスプレイ装置の動作を 示すタイミングチャートである。

【符号の説明】

1 駆動回路、2 プラズマディスプレイパネル、3 平均値算出部、4 領域分割部、5 ヒストグラム算出部、6 判定部、7 制御部、8 映像信号処理回路、9 記憶装置、10 バックアップ回路、11 通信部、13 PDP特性記憶部、14 制御係数記憶部、15 温度検出器。

【図1】

【図2】

61百集

(b)

【図13】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図14】

【図15】

【図16】

【図18】

【図17】

Partial Translation of JP 11-219252 A

[Scope of Claims for Patent]

[Claim 1] A plasma display device characterized by comprising: 5 driving means that drives the plasma display panel on the basis of an externally applied video signal; a plasma display panel driven by said driving means to carry out displaying; means that removes a low frequency component of said video signal; histogram calculation means that creates a histogram for each 10 gray scale range of the video signal whose low frequency component is removed; judgment means that makes judgement on an image with drastic luminance changes on the basis of the histogram created by said histogram calculation means; and control means that controls said driving means on the basis 15 of a result of the judgement by said judgement means.

[Claim 2] The plasma display device as recited in claim 1, characterized in that the number of retaining pulses in said driving means is controlled by said control means.

[Claim 3] A plasma display device characterized by comprising: 20 video signal processing means that processes an externally applied video signal; driving means that drives the plasma display panel on the basis of the video signal processed by said video signal processing means; a plasma display panel driven by said driving means to carry out displaying; means that removes a low frequency component of the video signal

25

processed by said video signal processing means; histogram calculation means that creates a histogram for each gray scale range of the video signal whose low frequency component is removed; judgment means that makes judgement on an image with drastic luminance changes on the basis of the histogram created by said histogram calculation means; and control means that controls said video signal processing means on the basis of a result of the judgement by said judgement means.

5

20

[Claim 4] The plasma display device as recited in any of claims

10 1 to 3 characterized by comprising storage means that stores

control level information of said control means for a definite

period after a main power source is off.

[Claim 5] A plasma display device characterized by comprising: driving means that drives the plasma display panel on the basis of an externally applied video signal; a plasma display panel driven by said driving means to carry out displaying; means that removes a low frequency component of said video signal; histogram calculation means that creates a histogram for each gray scale range of the video signal whose low frequency component is removed; judgment means that makes judgement on an image with drastic luminance changes on the basis of the histogram created by said histogram calculation means; and communication means that outputs a result of the judgement by said judgement means to outside.

25 [Claim 6] The plasma display device as recited in any of claims

1 to 5, characterized by comprising panel characteristics storing means that stores preliminary measured characteristics of the plasma display panel, and characterized in that a judgement reference value of said judgement means is variable depending on the contents of said panel characteristics storing means.

[Claim 7] The plasma display panel as recited in any of claims 1 to 6, characterized by comprising coefficient storing means that provides said control means with different control coefficients depending on whether the applied video signal is a television signal or a computer signal.

[Claim 8] The plasma display device as recited in claims 1 to 7, characterized by comprising temperature detecting means that detects an atmospheric temperature of the plasma display device, and characterized in that the judgement reference value of said judgement means is corrected depending on an output of said temperature detecting means.

15

[Claim 9] A method of controlling a temperature of a plasma display panel, characterized by comprising the steps of:

20 removing a low frequency component of a video signal; creating a histogram, by histogram-calculation, for each gray scale range of the video signal whose low frequency component is removed; judging an image with drastic luminance changes on the basis of the histogram created by said histogram calculation means; and controlling luminance of the plasma

display panel on the basis of a result of the judgement by said judgement step.

[Claim 10] The method as recited in claim 9, characterized in that the number of retaining pulses of the plasma display panel is controlled by said control step.

[Claim 11] The method as recited in claim 9, characterized in that an amplitude of a video signal input to the plasma display panel is controlled by said control step.

10 ...Omitted...

[0033]

[Embodiments of the Invention] In a plasma display device being an embodiment of the present invention, the luminance of a PDP is controlled by detecting an image which causes a temperature difference in the PDP by removing a low frequency component of a video signal and evaluating a histogram for each luminance of a sampled video signal, and hence the temperature difference in the PDP is reduced.

20 [0034] Further, since the luminance of the PDP is controlled by controlling the number of retaining pulses, the temperature difference in the PDP is reduced by a simple circuit configuration.

[0035] Since the luminance of the PDP is controlled by controlling video signal processing means, the temperature

difference in the PDP is reduced by merely adding a few circuits to a conventional plasma display device having video signal processing means.

[0036] By holding the control information of control means in storage means for a definite period even after a main power source is off, the temperature difference in the PDP is reduced by suitable control even if the main power source is connected again after a comparatively short time.

[0037] Moreover, by outputting the result of judgement by

10 judgement means outside to control a video signal on the side

close to an external signal source, the temperature difference

in the PDP is reduced without requiring any special control

circuit on the side close to the plasma display device.

15

20

[0038] In addition, by storing preliminary measured characteristics of a plasma display panel in panel characteristics storing means, and varying a judgement reference value of the judgement means depending on the contents of the panel characteristics storing means, the temperature difference in the PDP is appropriately reduced in accordance with respective temperature characteristics even if there is a variation in temperature characteristics for each panel in the PDP, or if there are variations in temperature characteristics in some parts in the panel.

[0039] Also, by varying a control coefficient which is applied to the control means by coefficient storing means, depending

on whether an externally applied video signal is a television signal or a computer signal, the temperature difference in the PDP is reduced with a minimal effect on image quality by virtue of a display corresponding to the type of signals.

5 [0040] Further, by correcting a judgement value of the control means on the basis of an output of temperature detecting means that detects an atmospheric temperature of the plasma display device, the temperature difference in the PDP is effectively reduced in accordance with environments and circumstances where the device is installed and used.

[0041] A detailed description will now be made on the present invention on the basis of the drawings showing its embodiments. Embodiment 1: First of all, Embodiment 1 will be described. Fig. 1 is a structural diagram of a plasma display device being Embodiment 1 of the present invention. In Fig. 1, a reference numeral 1 denotes a driving circuit, 2 denotes a plasma display panel (PDP), 3 denotes a mean value calculation part, 4 denotes a region dividing part, 5 denotes a histogram calculation part, 6 denotes a judgement part, and 7 denotes a control part.

15

20 [0042] An operation will then be described. First, video signals and synchronization signals are input to the driving circuit 1 as well as the mean value calculation part 3. Similarly to a conventional plasma display device, the driving circuit 1 stores the input video signals into a frame memory in the driving circuit 1, then reads the stored signals divided

for each subfield, and applies driving pulses to an X electrode, a Y electrode and an address electrode of the PDP 2, respectively, like the conventional plasma display device. The PDP 2 emits light on the basis of the driving pulses applied from the driving circuit 1 and displays an image.

[0043] In the mean value calculation part 3, first, as a preprocessing, R, G, B of color video signals are averaged to form a black and white video signal of only luminance information. After that, with respect to this black and white video signal, a mean value of the number of pixels determined respectively in longitudinal and lateral directions are evaluated, so that a video signal which is sampled with a smaller number of pixels than the original video signal is obtained, and a low frequency component of the video signal is also removed. The low frequency component of the video signal is removed in order to eliminate any influences by luminance distribution in a relatively small area. If the PDP is used as a computer display, for example, letters or characters are often displayed on a screen. Letters or characters include both pixels with a high luminance value and a low luminance value in a relatively small area. Even though both the high luminance pixels and low luminance pixels exist in the relatively small area, they are not considered to cause a problem of a large difference in temperature. This is because the heat of a panel is

conducted at a relatively high speed in the small area, and

10

15

20

hence a large temperature difference is not produced in such a small range.

[0044] Fig. 2 is a diagram for use in explaining an example of the operation of the mean value calculation part 3, in which a video signal corresponds to XGA (1024 by 768 pixels). Fig. 2, (a) represents a video signal of one frame, indicating an enlarged upper left, part of an image composed of 1024 pixels in a lateral direction and 768 pixels in a longitudinal direction; and (b) represents a sampled video signal of one frame after being processed by the mean value calculation part 3, which signal is composed of 64 pixels in a longitudinal direction and 48 pixels in a lateral direction. The mean value calculation part 3 evaluates a mean of luminance values in the range of hatched area in Fig. 2(a), i. e., over 16 by 16 pixels, to obtain a luminance value of the pixels in the hatched area at the corresponding position in Fig. 2(b). This processing is repeated over the entire one frame, thereby obtaining luminance values of all the pixels in Fig. 2(b).

10

15

[0045] Evaluating the mean of the luminance values of the 16
20 pixels in both the longitudinal and lateral directions makes
it possible not to affect calculation of such luminance
distribution that pixels with high luminance and those with
low luminance exist together in the range of 16 by 16 pixels
as will be described later. In addition, since the number of
25 pixels of the video signal to be processed decreases to one

256th of the original image, it becomes possible to decrease a circuit scale necessary for a processing which will be described later or increase a processing speed. As to about how many pixels should be used to evaluate the mean of luminance values, it depends on the number of all pixels in the PDP, the size of the PDP, and the heat conductivity of materials constituting the PDP.

[0046] Then, the region dividing part 4 divides the sampled video signal processed by the mean value calculation part 3 into several regions as shown in Fig. 3. In the example of Fig. 3, the sampled video signal composed of 64 pixels in the lateral direction and 48 pixels in the longitudinal direction is divided into 12 regions. Processing each divided region as will be described later makes it possible to find which region of video an image with a large luminance difference to be detected belongs to. Thus, it is possible to make judgement as to which position in the PDP the temperature difference is produced, by the processing as will be described later.

[0047] Then, the histogram calculation part 5 evaluates by

10

15

20

calculation a histogram of a luminance value for each region obtained by the region dividing part 4. This will now be described with reference to Figs. 4 and 5. Fig. 4 is a diagram showing one example of the regions and a histogram corresponding thereto, having no gradient in luminance. Fig.

25 5 is also a diagram showing one example of the regions and a

histogram corresponding thereto, having a large gradient in luminance. In each of Figs. 4 and 5, (a) is one example of the regions, and (b) is the histogram evaluated from (a). For simplification, the luminance value is divided into three ranges of low luminance, medium luminance and high luminance. In Figs. 4(a) and 5(a), pixels colored in black have low luminance, those in hatched area have medium luminance, and those in white have high luminance. The histograms of Figs. 4(a) and 5(a) are shown in Figs. 4(b) and 5(b), respectively. In practice, a histogram is made by dividing a luminance value into more ranges. When the luminance value is divided into eight sections, for example, assuming that luminance is 256 gray scales (0 to 255), the luminance value may be divided into eight sections such as 0 to 31, 32 to 63, 64 to 95, 96 to 127, 128 to 159, 160 to 191, 192 to 223 and 224 to 255 to make the histogram of the number of pixels in the respective ranges of those divided luminance values.

10

15

20

[0048] Then, the judgement part 6 makes judgement as to whether there is a large luminance gradient on the basis of histogram data obtained from the histogram calculation part 5 by a method which will be described later. Since there is one histogram for each divided region, first, judgement is made as to the histogram for each region, then the luminance values in the respective ranges of the histograms for two adjacent regions are added together to combine two histograms, and judgement

is also made as to those combined histograms by a method which will be described later. Combining the histograms of those two adjacent regions enables detection of a luminance gradient over the two adjacent regions. Further, addition of the luminance values in the respective ranges for all histograms in one frame makes it possible to obtain a histogram of the entire video signal in one frame. If judgement is also made as to the histogram of the entire one frame by the method which will be described later, more reliable judgement can be made. [0049] A detailed standard for judgement will now be described. In an image with a large luminance gradient, both pixels with high luminance and those with low luminance exist in one histogram, but there are few pixels with medium luminance. Accordingly, when the proportion of the number of pixels with medium luminance for all pixels is smaller than a certain value, and the number of pixels with high luminance is greater than a certain value, it is judged that there is a large luminance gradient.

10

15

[0050] When such judgement is made on the histogram of each region, the combined histograms of two adjacent regions, and the histogram of the entire image, as has been described above, and it is thus judged that there is a large luminance gradient in at least one histogram, the judgement part 6 outputs a signal indicating "there is a luminance gradient." to the control part 7. On the other hand, when it is judged that there is no

luminance gradient in the judgement as to all the histograms, the judgement part 6 outputs a signal indicating "there is no luminance gradient." to the control part 7.

[0051] Finally, when a window image is displayed, the control part 7 controls, on the basis of the result of the judgement obtained by the judgement part 6, the driving circuit 1 to reduce the number of retaining pulses in each subframe, thereby decreasing the display luminance of the PDP 2 and thus enabling suppression of the production of temperature differences in the panel. As luminance is in proportion to the number of pulses, when it is desired that luminance is set to x % where luminance in a standard state (a state that luminance control is not carried out) is set to 100 %, a relation Pc = Ps \times x/100 may be satisfied where Ps is the number of pulses in the standard state (where luminance control is not carried out), and Pc is the number of pulses when luminance control is carried out. Since the pulse number is actually an integer, the control is carried out stepwise. Since a large temperature difference in the PDP occurs while a video signal having a luminance gradient for a certain period of time is continuously displayed, the actual control should be carried out depending on the presence or absence of the luminance gradient for a certain period of time in the past. A detailed control method will now be described with reference to Fig. 6.

10

15

20

25 [0052] Fig. 6 is a flowchart showing the operation of the

control part in Embodiment 1 of the present invention. S001 denotes initialization which is executed only once such as when a power source is on in the plasma display device. W_CNT and NW_CNT are variables whose values are integral values held inside the control part 7. Their respective variables include information as to the luminance gradient in frames in the past. In S001, these variables W_CNT and NW_CNT are initialized, so that the variables W_CNT and NW_CNT are provided with 0 and a certain integer WMAX as initial values, respectively.

- 10 [0053] In subsequent S002, a result of judgement corresponding to one frame as to the presence or absence of luminance gradient is acquired from the judgement part 6. In B001, on the basis of the result of judgement acquired in S002, the operation of the control part branches into S003 when there is a luminance gradient or S007 when there is no luminance gradient.
 - [0054] A description will first be made on the case where there is a luminance gradient, that is, the operation proceeds to S003. In S003, both variables W_CNT and NW_CNT are incremented by one. In subsequent B002 and S004, WMAX is substituted in the variable NW_CNT when the variable NW_CNT is not smaller than WMAX. In B003, the operation flow proceeds to S005 when the variable W_CNT is not smaller than WMAX. After 0 is substituted in the variable W_CNT, the luminance of the PDP 2 is controlled by control of the driving circuit 1 in S006.

20

25 In S006, a luminance control value is decremented by one step.

In other words, the number of retaining pulses in the driving circuit 1 decreases by the predetermined one step which has been set in advance. As a result, when the control value is lower than a predetermined lower limit value, the control part carries out no operation. At the end of the foregoing processing, the operation returns to S002 where the control part standbys until it acquires a result of judgement on a subsequent frame.

[0055] A description will now be made on the case where there 10 is no luminance gradient, that is, the operation proceeds to S007. In S007, both variables W_CNT and NW_CNT are decremented by one. In subsequent B004 and S008, 0 is substituted in the variable W_CNT when the variable W_CNT is not larger than 0. In B005, the operation proceeds to S009 when the variable NW_CNT 15 is not larger than 0. After WMAX is substituted in the variable NW_CNT, the luminance of the PDP 2 is controlled by control of the driving circuit 1 in S010. In S010, a luminance control value is incremented by one step. As a result, when the control value is larger than an upper limit value (the number of pulses 20 in the standard state), the control part carries out no operation. At the end of the foregoing processing, the operation returns to S002 where the control part standbys until it acquires a result of judgement on a subsequent frame. [0056] The control is made by repeating the foregoing

25 processing for every frame. This control method will now be

described with reference to Fig. 7. Fig. 7 is a diagram showing one example of the operation of the control part in Embodiment 1 of the present invention and graphing the circumstances of control of the variables W_CNT and NW_CNT and a control value (the standard state is assumed to be a 0 step). The abscissa indicates time represented by the number of frames. In the example of Fig. 7, after the state where there is a luminance gradient continues for 25 frames, this state changes to the state where there is no luminance gradient. As will be understood from Fig. 7, as the luminance gradient present state continues for WMAX frames, the control is made to lower the control value by one step. The control is made for every WMAX frames even in the most rapid case. Even if an image changes rapidly for several frames, it does not affect the control, so that accurate control is made. In the graph of Fig. 7, a relation WMAX = 10 is set for simplification; however, it is desirable in fact that the luminance changes about once in several seconds in order to prevent flickers, so that WMAX is about several hundreds.

10

15

20 [0057] Because of such control as above, the luminance is lowered stepwise when an image that has a luminance gradient to cause a temperature difference in the PDP is displayed, while the luminance is raised stepwise (returned to the standard state) when an image without any luminance gradient is displayed. This makes it possible to prevent the production

of a large temperature difference in the PDP.

...Omitted...