## Spectral-Spatial Classification of Hyperspectral Images Using CNNs and Approximate Sparse Multinomial Logistic Regression

Sezer Kutluk<sup>1</sup> Koray Kayabol<sup>2</sup> Aydin Akan<sup>3</sup>

<sup>1</sup>Electrical-Electronics Engineering Department, Istanbul University-Cerrahpasa

<sup>2</sup>Electronics Engineering Department, Gebze Technical University

<sup>3</sup>Biomedical Engineering Department, Izmir Katip Celebi University

#### EUSIPCO 2019

\*This work is supported by Scientific and Technological Research Council of Turkey

(TUBITAK) under Project No. 114E535.

### **Outline**

- Motivation
  - Hyperspectral Image Classification
  - Convolutional Neural Networks for HSI Classification
- 2 CNN
- ASMLR
  - Model
  - Training
  - Spatial Model
- CNN+ASMLR
- Experiments
  - Data
  - Network Architecture
  - Results
- 6 Conclusion

### Motivation

We propose a technique for training CNNs with Approximate Sparse Multinomial Logistic Regression, and using this model for classifying hyperspectral images.

### The proposed model

- extracts features with 1D convolutional layers
- incorporates a second order training algorithm for the classification layer
  - automatic step-size calculation
  - approximate calculation of Hessian
  - sparse priors on regression coefficients
- is trained end-to-end
- also includes a spatial smoothing method for hyperspectral images.

### Motivation

#### Hyperspectral Image Classification



- Tens or hundreds of spectral bands
- Approximately continuous spectrum
- Landcover classification: Assign each pixel a label such as crop type, asphalt, etc.

### Motivation

#### Convolutional Neural Networks for HSI Classification

- Spectral / spatial modeling
  - 1-D, 2-D, and 3-D CNNs
  - Two channel CNN
  - Superpixels + CNN + CRF as RNN
  - MRF
- Small sample size problem
  - Sub space learning before CNN
  - Band selection
  - Data augmentation
- Different approaches
  - Spectral vector folding + 2D CNN
  - Deconvolution layers
  - Extreme learning machine
  - Transfer learning

### Convolutional Neural Network

Feature extraction layers + fully connected layer + softmax

$$p(\mathbf{z}_n|\mathbf{s}_n,\omega_{1:K}) = \prod_{k=1}^K \left(\frac{e^{\omega_k^T \phi(\mathbf{s}_n)}}{\sum_{j=1}^K e^{\omega_j^T \phi(\mathbf{s}_n)}}\right)^{z_{n,k}}$$
(1)

 $\mathbf{z}_n$ : 1-of-K coded label vector

 $\mathbf{s_n}$ : Spectral signature of  $n^{\text{th}}$  pixel

 $\phi() = \phi_L(\phi_{L-1}(...\phi_1()...))$ : Output of the *feature extraction layers* 

Cross-entropy loss:

$$\mathcal{L}_{CE}(\omega) = -\sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} \omega_k^T \phi(\mathbf{s}_n) + \ln \sum_{i=1}^{K} e^{\omega_i^T \phi(\mathbf{s}_n)}$$
(2)

Update rule:

$$\omega^{(t+1)} = \omega^{(t)} - \eta \cdot \mathbf{g}_L(\omega^{(t)}) \tag{3}$$

## Approximate Sparse Multinomial Logistic Regression

 ASMLR (Kayabol, 2019) is a generative model with multinomial priors on pixel labels, and sparse priors on parameters:

$$p(\mathbf{s}_{1:N}, \mathbf{z}_{1:N}, \omega_{1:K} | \beta, \lambda) \tag{4}$$

$$= \left(\prod_{n=1}^{N} p(\mathbf{s}_{n}|\mathbf{z}_{n}, \omega_{1:K})\right) p(\omega_{1:K}|\lambda) p(\mathbf{z}_{1:N}|\beta)$$
 (5)

$$= \left[ \prod_{n=1}^{N} \prod_{k=1}^{K} \left( \frac{e^{\omega_k^T \mathbf{s}_n}}{\sum_{j=1}^{K} e^{\omega_j^T \mathbf{s}_n}} \right)^{z_{n,k}} \right] \left( \prod_{k=1}^{K} \frac{\lambda}{2} e^{-\lambda ||\omega_k||_1} \right) p(\mathbf{z}_{1:N}|\beta)$$
 (6)

## Approximate Sparse Multinomial Logistic Regression

Posterior of regression coefficients given class labels:

$$\underbrace{p(\omega_{1:K}|\mathbf{s}_{1:N},\mathbf{z}_{1:N},\lambda)}_{\text{Posterior}} \propto \underbrace{p(\mathbf{s}_{1:N}|\mathbf{z}_{1:N},\omega_{1:K})}_{\text{Likelihood}} \underbrace{p(\omega_{1:K}|\lambda)}_{\text{Prior}}$$

Log-posterior:

$$\begin{split} \mathcal{L}(\omega) &= \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} \omega_{k}^{T} \mathbf{s}_{n} - \ln \sum_{j=1}^{K} e^{\omega_{j}^{T} \mathbf{s}_{n}} - \lambda \sum_{k=1}^{K} ||\omega_{k}||_{1} \\ &= -\mathcal{L}_{CE}(\omega) - \lambda \sum_{k=1}^{K} ||\omega_{k}||_{1} \\ &\text{Cross-} \\ &\text{entropy} \\ &\text{loss} \end{split}$$

# Approximate Sparse Multinomial Logistic Regression Training

Second order Taylor series expansion:

$$\mathcal{L}(\omega) - \mathcal{L}(\omega^{(t)}) = (\omega - \omega^{(t)})\mathbf{g}_{L}(\omega^{(t)})$$
(7)

$$+\frac{1}{2}(\omega - \omega^{(t)})\mathbf{H}_{L}(\omega^{(t)})(\omega - \omega^{(t)}) \tag{8}$$

 We can write the Hessian as the sum of Hessians from likelihood and prior:

$$\mathbf{H}_{L}(\omega^{(t)}) = \mathbf{H}_{I}(\omega^{(t)}) + \lambda \Lambda(\omega^{(t)}) \tag{9}$$

Update rule:

$$\omega^{(t+1)} = \omega^{(t)} - (\mathbf{H}_I(\omega^{(t)}) + \lambda \Lambda(\omega^{(t)}))^{-1} \mathbf{g}_L(\omega^{(t)})$$
(10)

# Approximate Sparse Multinomial Logistic Regression Training

• Lower bound approximation (Böhning, 1992):

$$\mathbf{H}_{L}(\omega) = \mathbf{H}_{I}(\omega) + \lambda \Lambda(\omega) \ge \mathbf{B} + \lambda \Lambda(\omega)$$
 (11)

With the lower bound, the update rule becomes:

$$\omega^{(t+1)} = \omega^{(t)} - (\mathbf{B} + \lambda \Lambda(\omega^{(t)}))^{-1} \mathbf{g}_L(\omega^{(t)})$$
(12)

# Approximate Sparse Multinomial Logistic Regression Training

Component-wise calculation:

$$\omega_k^{(t+1)} = \omega_k^{(t)} - [\mathbf{B}_{kk} + \lambda \Lambda(\omega_k^{(t)})]^{-1} [g_k(\omega_k^{(t)})$$

$$+ \frac{1}{2} \sum (\mathbf{B}_{kj} + \lambda \Lambda(\omega_j^{(t)}) \mathbf{e}_j + \lambda \operatorname{sign}(\omega_k^{(t)})]$$
(13)

$$\mathbf{B}_{kj} = -\frac{1}{2}(\delta_{kj} - 1/K)\mathbf{S}^{T}\mathbf{S}$$
 (15)

# Approximate Sparse Multinomial Logistic Regression Spatial Model

Multinomial Autologistic Regression (Kayabol, 2013 & 2016)

$$p(\mathbf{z}_{1:N}|\beta) = \frac{\prod_{k=1}^{K} \exp\{\beta \sum_{n=1}^{N} z_{n,k} (1 + \frac{1}{2} \sum_{m \in \tilde{n}} z_{m,k})\}}{\mathcal{Z}(\beta)}$$
(16)

• Classification of a new pixel:

$$p(\mathbf{z}_{n}|\mathbf{z}_{\bar{n}},\mathbf{s}_{B},\hat{\boldsymbol{\omega}}_{1:K},\beta) \propto p(\mathbf{s}_{n}|\mathbf{z}_{n},\hat{\boldsymbol{\omega}}_{1:K})p(\mathbf{z}_{n}|\mathbf{z}_{\tilde{n}},\beta)$$

$$= \prod_{k=1}^{K} \left[ \frac{e^{\hat{\boldsymbol{\omega}}_{k}^{T}}\mathbf{s}_{n}}{\sum_{j=1}^{K} e^{\hat{\boldsymbol{\omega}}_{j}^{T}}\mathbf{s}_{n}} \frac{e^{\beta v_{n,k}}}{\sum_{j=1}^{K} e^{\beta v_{n,j}}} \right]^{z_{n,k}}$$
(17)

We use Iterated Conditional Mode algorithm.

# Proposed Model

### Training:

- Forward pass
- Loss calculation
- Backpropagation
- SGD for convolutional layers
- ASMLR for the last layer

#### Prediction:

- Forward pass
- Spatial smoothing with Multinomial Autologistic Regression using Iterated Conditional Mode

## **Experiments**

- Datasets
  - Indian Pines
    - ★ 145 x 145 pixels, 200 spectral bands, 16 classes
    - ★ Training size: for each class, min(50, pixels/2)
    - ★ Training set size: 693 pixels
    - ★ Test set size: 9556 pixels
  - Pavia University
    - ★ 610 x 340 pixels, 103 spectral bands, 9 classes
    - ★ Training size: for each class, min(100, pixels/2)
    - ★ Training set size: 900 pixels
    - ★ Test set size: 41876 pixels
- Training pixels are selected randomly
- Average of 20 tests

# Experiments Network Architecture

#### Indian Pines



Feature length: 110

## **Experiments**

#### **Network Architecture**

Pavia University



Feature length: 150

# Experiments Results

#### Indian Pines test results

| Evaluation         | Methods |      |           |      |
|--------------------|---------|------|-----------|------|
| Metrics            | ASMLR   | CNN  | CNN+ASMLR | SVM  |
| Accuracy           | 0.84    | 0.83 | 0.89      | 0.78 |
| Standard deviation | 0.03    | 0.06 | 0.03      | 0.03 |

All models have the same spatial smoothing.

## **Experiments**

#### Results



# Experiments Results

### Pavia University test results

| Evaluation         | Methods |      |           |      |
|--------------------|---------|------|-----------|------|
| Metrics            | ASMLR   | CNN  | CNN+ASMLR | SVM  |
| Accuracy           | 0.92    | 0.87 | 0.93      | 0.76 |
| Standard deviation | 0.02    | 0.11 | 0.05      | 0.02 |

All models have the same spatial smoothing.

# Experiments Results



### Conclusion

- CNN+ASMLR gives higher accuracy than ASMLR, CNN, and SVM
- Lower variance than CNN
- Future work
  - Mini-batch training
  - Proof of faster training (at least with fewer epochs)
  - Different datasets
  - Different network architectures

## Thank you!

sezer.kutluk@gmail.com koray.kayabol@gtu.edu.tr aydin.akan@ikc.edu.tr