기상 데이터 전처리 및 저장

```
In [1]:
```

```
# 필요 패키지 로딩
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import re
from scipy.stats.mstats import gmean
```

1. 데이터 확인

```
In [10]:
```

```
# 2016년 기상 데이터 확인
weather 2016 = pd.read csv(f'../../lawdata/weather/종기상관측 ASOS 2016.csv', encoding = 'cp949')
print(weather 2016.info())
print(weather_2016.head())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 34496 entries, 0 to 34495
Data columns (total 12 columns):
 # Column
               Non-Null Count Dtype
---
    _____
                 _____
0
   지점
                 34496 non-null int64
                  34496 non-null object
 1
    지점명
 2
    일시
                  34496 non-null object
                  34470 non-null float64
 3
   평균기온(°C)
   최저기온(°C)
                   34493 non-null float64
   최고기온(°C)
 5
                  34495 non-null float64
                   3267 non-null
    강수 계속시간(hr)
 6
                                 float.64
                   13323 non-null float64
    일강수량(mm)
                   34493 non-null float64
   평균 풍속(m/s)
 8
   최다풍향(16방위)
                    34448 non-null float64
 10 평균 현지기압(hPa) 34465 non-null float64
 11 일 최심신적설(cm) 213 non-null
                                   float.64
dtypes: float64(9), int64(1), object(2)
memory usage: 3.2+ MB
None
  지점 지점명
                    일시 평균기온(°C) 최저기온(°C) 최고기온(°C) 강수 계속시간(hr) 일강수량(mm) \
0 90 속초 2016-01-01
                                           7.6
                          3.6
                                 -2.3
                                                        NaN
                                                                 NaN
  90 속초
          2016-01-02
                          8.4
                                   5.0
                                           11.5
                                                        NaN
                                                                 NaN
1
  90 속초
          2016-01-03
                          6.7
                                   2.4
                                            9.8
                                                        NaN
                                                                 NaN
3 90 속초 2016-01-04
                          5.4
                                   0.8
                                            9.0
                                                        NaN
                                                                 NaN
  90 속초 2016-01-05
                          0.6
                                  -2.6
                                            4.4
                                                        NaN
                                                                 NaN
  평균 풍속(m/s) 최다풍향(16방위) 평균 현지기압(hPa) 일 최심신적설(cm)
0
         2.3
                  290.0
                             1024.2
1
         3.1
                  270.0
                             1017.0
2
         1.9
                 290.0
                             1015.6
                                           NaN
         2.7
                 290.0
                             1017.2
                 290.0
                             1021.4
4
         2.5
                                           NaN
```

In [11]:

```
# 2017년 기상 데이터 확인
weather 2017 = pd.read csv(f'../../lawdata/weather/종기상관측 ASOS 2017.csv', encoding = 'cp949')
print(weather 2017.info())
print(weather 2017.head())
<class 'pandas.core.frame.DataFrame'>
```

```
Data columns (total 12 columns):
 # Column
                Non-Null Count Dtype
                 _____
    지점
                 34670 non-null int64
 1
    지점명
                  34670 non-null object
                  34670 non-null object
    일시
 2
    평균기온(°C)
                   34615 non-null float64
 3
                   34665 non-null float64
    최저기온(°℃)
 4
    최고기온(°C)
                   34662 non-null float64
    강수 계속시간(hr)
                    3101 non-null float64
 7
    일강수량(mm)
                   12519 non-null float64
    평균 풍속(m/s)
                   34659 non-null float64
                    34608 non-null float64
 9
    최다풍향(16방위)
 10 평균 현지기압(hPa) 34611 non-null float64
 11 일 최심신적설(cm)
                   247 non-null
dtypes: float64(9), int64(1), object(2)
memory usage: 3.2+ MB
None
                    일시 평균기온(°C) 최저기온(°C) 최고기온(°C) 강수 계속시간(hr) 일강수량(mm)
  지점 지점명
  90 속초 2017-01-01
                         6.0
                                 1.5 9.8
                                                        NaN
                                                                 NaN
  90 속초 2017-01-02
                          8.2
                                   4.7
                                           10.5
                                                        NaN
  90 속초
          2017-01-03
                          6.2
                                   1.7
                                           11.3
                                                        NaN
                                                                 NaN
2
  90
      속초
          2017-01-04
                          5.6
                                   1.7
                                            9.8
                                                        NaN
                                                                 NaN
3
  90 속초
          2017-01-05
                          2.8
                                   1.3
                                            4.0
                                                        NaN
                                                                 15.5
4
  평균 풍속(m/s) 최다풍향(16방위) 평균 현지기압(hPa) 일 최심신적설(cm)
Ω
         1.7
                 250.0
                             1022.1
                                            NaN
         2.5
                  270.0
                             1016.6
                                            NaN
1
2
         2.0
                  290.0
                              1017.9
                                            NaN
         2.2
                  290.0
                             1020.5
3
                                            NaN
         1.5
                 290.0
                             1028.1
                                            NaN
4
In [12]:
# 2018년 기상 데이터 확인
weather 2018 = pd.read csv(f'../../lawdata/weather/종기상관측 ASOS 2018.csv', encoding = 'cp949')
print(weather 2018.info())
print(weather 2018.head())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 34674 entries, 0 to 34673
Data columns (total 12 columns):
 # Column
               Non-Null Count Dtype
___
    -----
                 _____
                  34674 non-null int64
   지점
Ω
    지점명
                  34674 non-null object
    일시
                  34674 non-null object
                   34630 non-null float64
34672 non-null float64
 3
    평균기온(°C)
    최저기온(°C)
                   34673 non-null float64
    최고기온(°C)
    강수 계속시간(hr)
                   3071 non-null
                                 float64
 7
    일강수량(mm)
                   12166 non-null float64
    평균 풍속(m/s)
                   34645 non-null float64
 8
    최다풍향(16방위)
                    34417 non-null float64
 10 평균 현지기압(hPa) 34624 non-null float64
 11 일 최심신적설(cm) 268 non-null float64
dtypes: float64(9), int64(1), object(2)
memory usage: 3.2+ MB
None
                    일시 평균기온(°C) 최저기온(°C) 최고기온(°C) 강수 계속시간(hr) 일강수량(mm) \
  지점 지점명
                                  -3.2
Λ
  90 속초 2018-01-01
                                            4.2
                          1.0
                                                        NaN
                                                                 NaN
      속초
          2018-01-02
                          1.5
                                  -2.1
                                            5.6
                                                        NaN
                                                                 NaN
2 90 속초 2018-01-03
                         -1.6
                                  -5.5
                                            3.3
                                                        NaN
                                                                 NaN
  90 속초 2018-01-04
                         -1.0
                                  -5 7
3
                                            2.2
                                                        NaN
                                                                 NaN
  90 속초 2018-01-05
                          1.5
                                  -1.4
                                            7.2
                                                        NaN
  평균 풍속(m/s) 최다풍향(16방위) 평균 현지기압(hPa) 일 최심신적설(cm)
0
        2.6
                270.0
                             1021.8
                                            NaN
         2.9
                  290.0
1
                             1022.6
                                            NaN
         1.6
                  290.0
                             1025.0
                                            NaN
2
3
         1.5
                  290.0
                              1023.4
                                            NaN
         1.2
                 290.0
                             1014.9
                                            NaN
```

Kangeinaex: 346/U entries, U to 34669

2. 각 연도별 데이터 필요 변수 추출 및 저장

In [13]:

```
# 시도코드 컬럼 생성 함수
def sido_func(vector):
    for i in sido list:
       if vector in sido list[i] :
           return i
            pass
       pass
   pass
def sido code func(vector2):
    for i in sido code:
       if vector2 == sido code[i]:
           return str(i)
           pass
       pass
   pass
# 시도코드 리스트
sido list = {
'강원' : ['속초', '북춘천', '철원', '대관령', '춘천', '북강릉', '강릉', '동해', '원주', '영월', '인제', '홍천
 '태백', '정선군'],
'경기' : ['동두천', '파주', '수원', '양평', '이천'],
'충북' : ['충주', '추풍령', '제천', '보은', '청주'],
'충남' : ['서산', '홍성', '보령', '부여', '금산', '천안'],
'대전' : ['대전'],
'경북' : ['울릉도', '울진', '안동', '상주', '포항', '봉화', '영주', '문경', '청송군', '영덕', '의성', '구미',
'영천', '경주시'],
'경남': ['창원', '통영', '진주', '김해시', '북창원', '양산시', '의령군', '함양군', '밀양', '산청', '거제', '남
해', '합천', '거창'],
'전북' : ['군산', '전주', '고창', '부안', '임실', '정읍', '남원', '장수', '고창군', '순창군', '장흥'],
'전남' : ['목포', '여수', '흑산도', '완도', '순천', '진도', '영광군', '보성군', '강진군', '해남', '고흥', '광
양시', '진도군'],
'서울' : ['서울'],
'인천' : ['백령도', '인천', '강화'],
'대구' : ['대구'],
'울산' : ['울산'],
'광주' : ['광주'],
'부산' : ['부산'],
'제주': ['제주', '고산', '성산', '서귀포']}
sido code = {
     '42' : '강원',
     '41' : '경기',
     '43' : '충북',
     '44' : '충남',
     '30' : '대전',
     '47' : '경북',
     '48' : '경남',
     '45' : '전북',
     '46' : '전남',
     '11' : '서울',
     '28' : '인천',
     '27' : '대구',
     '31' : '울산',
     '29' : '광주',
     '26' : '부산',
'49' : '제주',
'36' : '세종'
```

In [14]:

```
## 각 연도별 데이터 필요 변수 추출 및 저장

for i in [2016,2017,2018]:
    df = pd.read_csv(f'../../lawdata/weather/종기상관측_ASOS_{i}.csv', encoding = 'cp949')
```

```
# 대량의 결측치 포함하는 컬럼 결측치 처리(눈, 비 측정 X = 0으로 대체)
   df[['일 최심신적설(cm)','일강수량(mm)','강수 계속시간(hr)']] = df[['일 최심신적설(cm)','일강수량(mm)','
강수 계속시간(hr)']].fillna(value = 0)
   # 컬럼명 통합을 위해 지점명을 시도로 구분하는 함수 적용
   df['시도'] = df['지점명'].apply(sido func)
   # 세종시 데이터 생성을 위해 대전, 청주, 공주 데이터 추출 후 추가
   df mk sejong = df[df['지점명'].str.contains('대전|청주|공주', regex=True)]
   df_mk_sejong['시도'] = df_mk_sejong['지점명'].apply(lambda x :'세종')
   df concat = pd.concat([df,df mk sejong])
    # 구분된 시도별로 함수를 이용하여 시도코드 컬럼 생성
   df concat['시도코드'] = df concat['시도'].apply(sido code func)
   # 시도코드, 일시를 통합하여 키를 생성하기 위해 그룹바이 설정.
   df group = df concat.groupby(['시도코드','일시']).mean().reset index()
    # 불필요한 변수 삭제
   df group 1 = df group.drop(['지점','최다풍향(16방위)'],axis=1)
   # 최다풍향 빈도수와 평균 풍속을 이용하여 비교하는 컬럼 생성
   df_temp = df_concat.groupby(['시도코드','일시','최다풍향(16방위)'])['평균 풍속(m/s)'].agg(['count','
sum']).sort_values(['시도코드','일시','count','sum'],ascending=False)
    # 임시 리스트 변수 생성
   temp_sido = []
   temp day = []
   temp wind = []
    # 임시 리스트에 데이터 넣기
   for j in range(0,len(df_temp.index)):
       temp_sido.append(df_temp.index[j][0])
       temp day.append(df temp.index[j][1])
       temp wind.append(df temp.index[j][2])
       pass
   # 리스트 결합
   df wind = pd.DataFrame(('시도코드' : temp sido ,'일시' : temp day, '최다풍향(16방위)' : temp wind})
    # 일시 별 최다풍향 데이터프레임 생성
   df wind = df wind.groupby(['시도코드','일시']).head(1).sort values(['시도코드','일시']).reset index
()
   # 새로 생성한 최다풍향 컬럼과 기존 데이터프레임 조인
   df_group_1 = pd.merge(df_group_1,df_wind, on = ['시도코드','일시']).drop('index',axis=1)
   # 데이터 저장
   df group 1.to csv(f'../../lawdata/weather/기상관측 {i} Fixed.csv', encoding = 'cp949', index = F
alse)
   pass
4
c:\app\python37\lib\site-packages\ipykernel launcher.py:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
```

3. 시도코드, 일시를 이용하여 기상번호 키를 생성

```
In [15]:
```

```
# 데이터 타입 변환 함수

def com(vec):
    result = re.compile('(\d{4})[-](\d{2})[-](\d{2})').sub('\g<1>\g<2>\g<3>', vec)
    return result
```

```
In [16]:
```

```
# 데이터 로딩
df weather 2016 = pd.read csv(f'../../lawdata/weather/기상관측 2016 Fixed.csv', encoding = 'cp949')
```

```
df weather 2017 = pd.read csv(f'../../lawdata/weather/기상관측 2017 Fixed.csv', encoding = 'cp949')
df_weather_2018 = pd.read_csv(f'../../lawdata/weather/기상관측_2018_Fixed.csv', encoding = 'cp949')
# 데이터 정보 확인
df_weather_2016.info()
df weather 2017.info()
df weather 2018.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6222 entries, 0 to 6221
Data columns (total 11 columns):
               Non-Null Count Dtype
 # Column
                  -----
 0 시도코드
                    6222 non-null int64
                   6222 non-null object
 1
     일시
    평균기온(°C)
                 6222 non-null float64
6222 non-null float64
 2
 3 최저기온(°C)
 4 최고기온(°C) 6222 non-null float64
   강수 계속시간(hr) 6222 non-null float64
    일강수량(mm) 6222 non-null float64
평균 품속(m/s) 6222 non-null float64
 7 명균 등속(m/s) 6222 non-null float64
8 명균 현지기압(hPa) 6221 non-null float64
9 일 최심신적설(cm) 6222 non-null float64
10 최다풍향(16방위) 6222 non-null float64
dtypes: float64(9), int64(1), object(1)
memory usage: 534.8+ KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6202 entries, 0 to 6201
Data columns (total 11 columns):
 # Column
                Non-Null Count Dtype
    시도코드
                     6202 non-null int64
                  6202 non-null object
   일시
 1
 2 평균기온(°C) 6201 non-null float64
3 최저기온(°C) 6202 non-null float64
4 최고기온(°C) 6201 non-null float64
    강수 계속시간(hr) 6202 non-null float64
일강수량(mm) 6202 non-null float64
   일강수량(mm) 6202 non-null float64
평균 풍속(m/s) 6202 non-null float64
 7
 8 평균 현지기압(hPa) 6202 non-null float64
    일 최심신적설(cm) 6202 non-null float64
 10 최다풍향(16방위)
                      6202 non-null float64
dtypes: float64(9), int64(1), object(1)
memory usage: 533.1+ KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6205 entries, 0 to 6204
Data columns (total 11 columns):
 # Column Non-Null Count Dtype
    -----
                  -----
 0 시도코드
                    6205 non-null int64
 1 일시
                   6205 non-null object
 2 평균기온(°C) 6205 non-null float64
3 최저기온(°C) 6205 non-null float64
    최고기온(°C)
                     6205 non-null
                                     float64
    강수 계속시간(hr) 6205 non-null float64
 6 일강수량(mm) 6205 non-null float64
 7
    평균 풍속(m/s)
                    6205 non-null float64
    평균 현지기압(hPa) 6205 non-null float64
     일 최심신적설(cm) 6205 non-null float64
최다포향(16박임) 6205 non-null float64
 10 최다풍향(16방위)
                      6205 non-null
dtypes: float64(9), int64(1), object(1)
memory usage: 533.4+ KB
In [17]:
# 함수를 사용하여 일시, 시도코드 타입 변환
df_weather_2016['일시'] = df_weather_2016.일시.apply(com).astype('int64')
df weather 2016['시도코드']=df weather 2016['시도코드'].astype('int64')
df weather 2017['일시'] = df_weather_2017.일시.apply(com).astype('int64')
df weather 2017['시도코드']=df weather 2017['시도코드'].astype('int64')
```

df_weather_2018['일시'] = df_weather_2018.일시.apply(com).astype('int64') df weather 2018['시도코드']=df weather 2018['시도코드'].astype('int64')

```
In [18]:
```

```
# 변환된 일시, 시도코드를 이용하여 기상번호 컬럼 생성

df_weather_2016['기상번호'] = df_weather_2016['시도코드'].astype('str') + df_weather_2016['일
시'].astype('str')
df_weather_2017['기상번호'] = df_weather_2017['시도코드'].astype('str') + df_weather_2017['일
시'].astype('str')
df_weather_2018['기상번호'] = df_weather_2018['시도코드'].astype('str') + df_weather_2018['일
시'].astype('str')

# 기상번호를 인텍스(고유키)로 설정
df_weather_2016.index = df_weather_2016['기상번호']
df_weather_2017.index = df_weather_2017['기상번호']
df_weather_2018.index = df_weather_2018['기상번호']
# 기상번호 컬럼 삭제

df_weather_2016 = df_weather_2017.drop(['기상번호'],axis=1)
df_weather_2017 = df_weather_2017.drop(['기상번호'],axis=1)
df_weather_2018 = df_weather_2018.drop(['기상번호'],axis=1)
```

In [19]:

```
# 데이터 확인

df_weather_2016

df_weather_2017

df_weather_2018
```

Out[19]:

	시도 코드	일시	평균기 온(°C)	최저기 온(°C)	최고기온 (°C)	강수 계속시 간(hr)	일강수량 (mm)	평균 풍속 (m/s)	평균 현지기 압(hPa)	일 최심신적 설(cm)	최다풍향(16 방위)
기상번호											
1120180101	11	20180101	-1.300	-5.100	3.800	0.0000	0.000	1.400	1016.800	0.0	290.0
1120180102	11	20180102	-1.800	-4.300	1.800	0.0000	0.000	1.800	1018.100	0.0	290.0
1120180103	11	20180103	-4.700	-7.100	-0.400	0.0000	0.000	2.200	1019.900	0.0	290.0
1120180104	11	20180104	-4.700	-8.700	-0.700	0.0000	0.000	1.400	1016.500	0.0	290.0
1120180105	11	20180105	-3.000	-5.600	1.600	0.0000	0.000	1.700	1010.300	0.0	290.0
4920181227	49	20181227	3.575	1.350	7.475	0.0000	0.000	5.925	1021.000	0.0	360.0
4920181228	49	20181228	1.550	0.100	3.300	6.6375	0.925	6.200	1025.100	0.0	20.0
4920181229	49	20181229	2.800	0.825	4.975	1.2375	0.075	5.050	1028.650	0.0	20.0
4920181230	49	20181230	3.300	1.500	4.800	1.3250	0.025	4.350	1029.850	0.0	50.0
4920181231	49	20181231	4.750	3.050	6.625	0.0000	0.000	3.775	1029.625	0.0	360.0

6205 rows × 11 columns

4. 데이터 저장

```
In [20]:
```

```
# 2016~2018년 기상데이터 저장

df_weather_2016.to_csv(f'../../lawdata/weather/기상관측2016real_Fixed.csv', encoding = 'cp949')

df_weather_2017.to_csv(f'../../lawdata/weather/기상관측2017real_Fixed.csv', encoding = 'cp949')

df_weather_2018.to_csv(f'../../lawdata/weather/기상관측2018real_Fixed.csv', encoding = 'cp949')
```

```
In [ ]:
```