COMP9814 assignment2

Student name: Ran Bai Zid: z5187292

Question 1: Search Algorithms for the 15-Puzzle

a).

	Start10	Start12	Start20	Start30	Start40
UCS	2565	Mem	Mem	Mem	Mem
IDS	2407	13812	5297410	Time	Time
A *	33	26	915	Mem	Mem
IDA*	29	21	952	17297	112571

Mem means algorithm run out of memory.

Time means code runs for five minutes without producing out- put.

b).

Answer: according to the table we got in a),

- (1) UCS(Uniform-Cost Search): This algorithm is the least efficient among the four algorithms. Both time complexity and space complexity of it is $O(b^{\lceil C^*/\epsilon \rceil})$. That is why start12-start40 are out of memory.
- (2) IDS(Iterative Deepening Search): The time complexity of IDS is $O(b^d)$ which cause "time out" when it turn to start30-start40 or other more complexity cases, and the

space complexity is shallowest solution. O(bd) where b is branching factor and d is depth of the

(3) A*(A star algorithm): A* algorithm is second efficient algorithm among these four algorithms. A* search use the evaluation function f(n) = g(n) + h(n) and try to minimize it, where $g(n) = \cos f$ from initial node to node n and $h(n) = \operatorname{estimated} \operatorname{cost} of$ cheapest path from n to goal. Comparing with UCS and IDS, it make a faster alternative to search. However, A* search will out of memory beyond start30. Hence, It is not efficient enough

to tackle lengthy and complex searches. The time complexity is $O(b^{\varepsilon d})$, and space complexity can up to $O(b^d)$.

(4) IDA* (Iterative Deepening A- Star Search): IDA* is the most efficient algorithm. It is a low-memory variant of A* which performs a series of depth-first searches but cuts off each search when the sum f(n) = g(n) + h(n) exceeds some pre-defined threshold. The threshold is steadily increased with each successive search. The time complexity is $O(h^{\varepsilon d})$

but space complexity is O(bd), which less than A*. So in the start30 and start40 task, it does not appear to out-of-memory or run-out-of-time.

Question 2: Heuristic Path Search for 15-Puzzle a).

Answer:

		start50		start 60	start64		
IDA*	50	14642512	60	321252368	64	1209086782	
1. 2	52	191438	62	230861	66	431033	
1.4	66	116342	82	4432	94	190278	
1.6	100	33504	148	55626	162	235848	
Greedy	164	5447	166	1617	184	2174	

b).

Answer:according to the formula in week 2 tutorial exercise,

```
f(n) = (2-w)g(n) + wh(n), where 0 \le w \le 2.

, so we get f(n) = 0.8 * g(n) + 1.2 * h(n)
```

with w = 1.2, and the code which should be replaced in idastar.pl is F1 is G1 + H1, as the figure show below.

```
% Otherwise, use Prolog backtracking to explore all successors
% of the current node, in the order returned by s.
% Keep searching until goal is found, or F_limit is exceeded.
depthlim(Path, Node, G, F_limit, Sol, G2) :-
    nb_getval(counter, N),
    N1 is N + 1,
    nb_setval(counter, N1),
% write(Node), nl, % print nodes as they are expanded
    s(Node, Node1, C),
    not(member(Node1, Path)), % Prevent a cycle
    G1 is G + C,
    h(Node1, H1),
    F1 is G1 + H1,
    F1 =< F_limit,
    depthlim([Node|Path], Node1, G1, F_limit, Sol, G2).</pre>
```

It should be replaced to F1 is 0.8 * G1 + 1.2 * H1, as below

```
% Otherwise, use Prolog backtracking to explore all successors
% of the current node, in the order returned by s.
% Keep searching until goal is found, or F_limit is exceeded.
depthlim(Path, Node, G, F_limit, Sol, G2) :-
    nb_getval(counter, N),
    N1 is N + 1,
    nb_setval(counter, N1),
    % write(Node),nl,  % print nodes as they are expanded
    s(Node, Node1, C),
    not(member(Node1, Path)),  % Prevent a cycle
    G1 is G + C,
    h(Node1, H1),
    f1 is 0.8 * G1 + 1.2 * H1,
    f1 =< F_limit,
    depthlim([Node|Path], Node1, G1, F limit, Sol, G2).</pre>
```

d) .

Answer: All five algorithms are represented by formula f(n) = (2-w)*g(n) + w*h(n), when w = 2 is greedy search and w = 1 is IDA* search. Use IDA* will use more time to get the optimal path. While use greedy search could get an answer quickly, but it could be stuck in loops. From the table in a), the G(the length of path) is increasing when weight w is increasing. Next, when the weight w becomes larger, the number of nodes expanded(N) decreases. That is, the algorithm runs faster when w from 1 to 2, but the path(G) become longer.

Question 3: Decision tree

a) .

Answer:

If I change the algorithm to select the first element of the list of feature, as the order of [Author, Thread, Length, WhereRead]. The [X, Y] represents the number of skips action is X, and the number of reads action is Y.

Step 1: splits by Author, the examples can be split into two subsets as below,

k_{11} known new long home skips k_{21} unknown new short work reads k_{21} known followup long home skips k_{31} unknown followup long work skips k_{32} unknown followup short work skips k_{33} unknown followup short work skips k_{43} unknown new short work reads k_{43} unknown followup short home skips k_{43} unknown new short work reads k_{43} known new long work skips k_{43} unknown new short work reads k_{43} known followup short home reads k_{44} known new short work reads k_{45} known new short work reads k_{45} known new short work reads k_{45} known followup short home reads k_{45} known new short work reads k_{45} known new short work reads k_{45} known followup short work reads k_{45} known followup short work reads												
k_1 known followup long home skips k_2 unknown followup long work skips k_3 unknown followup long work skips k_4 known new short home reads k_5 unknown new short work skips k_6 known followup long work skips k_6 unknown new short work reads k_6 known new long work skips k_6 unknown new short work reads k_6 unknown new short work reads k_6 known new short home reads k_6 known new short work reads k_6 known followup short work reads k_6 known followup short work reads	Example	Author	Thread	Length	$Where_read$	$User_action$	Example	Author T	hread Le	ngth V	Where_read	$User_action$
known new short home reads e_7 unknown followup short work skips e_6 known followup long work skips e_8 unknown new short work reads e_9 known followup long home skips e_{11} unknown followup short home skips e_{10} known new long work skips e_{18} unknown new short work reads e_{12} known new long work skips e_{13} known followup short home reads e_{14} known new short work reads e_{15} known new short home reads e_{16} known new short home reads e_{16} known followup short home reads e_{16} known followup short work reads e_{16} known followup short work reads	e_1	known	new	long	home	skips	e_2	unknown	new	short	t work	reads
e_6 known followup long work skips e_8 unknown new short work reads e_9 known followup long home skips e_{11} unknown followup short home skips e_{10} known new long work skips e_{18} unknown new short work reads e_{12} known new long work skips e_{13} known followup short home reads e_{14} known new short work reads e_{15} known new short home reads e_{16} known new short home reads e_{16} known followup short home reads e_{16} known followup short work reads	e_4	known	followup	long	home	skips	e_3	unknown	followup	long	work	skips
k_{10} known followup long home skips k_{11} unknown followup short home skips k_{10} known new long work skips k_{12} known new long work skips k_{13} known followup short home reads k_{14} known new short work reads k_{15} known new short work reads k_{15} known new short home reads k_{15} known new short home reads k_{15} known new short work reads k_{15} known followup short work reads	25	known	new	short	home	reads	e_7	unknown	followup	shor	t $work$	skips
k_{10} known new long work skips k_{18} unknown new short work reads k_{12} known new long work skips k_{13} known followup short home reads k_{14} known new short work reads k_{15} known new short home reads k_{15} known new short home reads k_{16} known followup short work reads k_{16} known followup short work reads	e_6	known	followup	long	work	skips	e_8	unknown	new	shor	rt $work$	read
k_{10} known new long work skips k_{13} known followup short home reads k_{14} known new short work reads k_{15} known new short home reads k_{16} known followup short work reads	e_9	known	followup	long	home	skips	e_{11}	unknown	followup	shor	t home	skips
k_{13} known followup short home reads k_{14} known new short work reads k_{15} known new short home reads k_{16} known followup short work reads	e_{10}	known	new	long	work	skips	e_{18}	unknown	new	short	t work	reads
$egin{array}{lll} egin{array}{lll} egin{array}{lll} eta_{14} & known & new & short & work & reads \ eta_{15} & known & new & short & home & reads \ eta_{16} & known & followup & short & work & reads \end{array}$	e_{12}	known	new	long	work	skips						
e_{15} known new short home reads e_{16} known followup short work reads	e_{13}	known	followup	short	home	reads						
$arepsilon_{16}$ known followup short work reads	e_{14}	known	new	short	work	reads						
	e_{15}	known	new	short	home	reads						
e_{17} known new short home reads	e_{16}	known	followup	short	work	reads						
	e_{17}	known	new	short	home	reads						

The decision tree is as below,

Step 2: splits by Thread, the two sets we have got can be split into two subsets respectively.

Example		Thread .	Length	Where_read	Heer action	Example	Author 7	Thread Le	enath V	Where read	User_action
Dannpie		Titleau .					Author 1	nreau De	nyin v	v nere_reau	O ser_uction
21	known	new	long	home	skips	e_2	unknown	new	short	work	reads
5	known	new	shor	t home	reads	e_8	unknown	new	shor	t $work$	read
e_{10}	known	new	long	work	skips	e_{18}	unknown	new	short	work	reads
212	known	new	long	work	skips	Example	Author	Thread L	ength	Where_read	User_action
214	known	new	shor	t $work$	reads		unknown	followu	long	work	skips
215	known	new	shor	t home	reads						
e_{17}	known	new	shor	t home	reads	$e_7 \\ e_{11}$	unknown $unknown$				skips skips
Example	Author	Thread	Length	$Where_read$	$User_action$						
e_4	known	followuj	olong	home	skips						
e_6	known	followu	p long	work	skips						
29	known	followuj	long	home	skips						
213	known	followup	shor	t home	reads						
e_{16}	known	followup	shor	t $work$	reads						

And the decision tree now is,

Step 3: splits by Length, we only need to focus the left tree now, because the right tree is pure class. The subsets is as below,

Example	Author	Thread	Length	$Where_read$	$User_action$
e_1	known	new	long	home	skips
e_{10}	known	new	long	work	skips
e_{12}	known	new	long	work	skips
Example	Author	Thread	Length	$Where_read$	$User_action$
e_5	known	new	shor	t home	reads
e_{14}	known	new	shor	t $work$	reads
e_{15}	known	new	shor	t home	reads
e_{17}	known	new	shor	t home	reads
Example	Author	Thread	Length	$Where_read$	$User_action$
e_4	known	follow	up long	home	skips
e_6	known	follow	rup long	work	skips
e_9	known	follow	up long	home	skips
Example	Author	Thread	Length	Where_read	$User_action$
e_{13}	known	follow	up shor	rt home	reads
e_{16}	known	follow	up shor	rt work	reads

The decision tree is,

By comparing the decision tree generated by the maximum entropy principle and the first element principle, we can know they represent <u>different</u> function. This is because the rules that the first elements told us are:

skips <- known ∧ new ∧ long

reads \leq - known \land new \land short

skips <- known ∧ followup ∧ long

reads \leq - known \land followup \land short

reads <- unknown ∧ new

skips <- unknown ∧ followup

But the rules of decision tree generated by the maximum Information gain principle are:

skips <- long

reads <- short ∧ new

skips <- short ∧ followup ∧ unknown

reads \leq - short \wedge followup \wedge known

For e19, the first element principle predicts reads, but the maximum Information gain principle predicts skips.

Answer:The features are in the order of [WhereRead, Thread, Length, Author].
Step 1: split by WhereRead, the examples can be split into two subsets as below.

	1 2			,							
Example	Author T	Thread Len	ngth V	Where_read	$User_action$	Example	Author T	hread Le	ength V	$Where_read$	$User_action$
e_1	known	new	long	home	skips	$^{8}e_{2}$	unknown	new	short	t work	reads
e_4	known	followup	long	home	skip		unknown	followup	p long	work	skips
e_5	known	new	shor	t home	read		known	followuj	p long	work	skips
e_9	known	followup	long	home	skip	e_7	unknown	followu	p shor	t work	skips
e_{11}	unknown	a followup	shor	rt home	skip	e_8	unknown	new	sho	rt work	read
e_{13}	known	followup			read	e_{10}	known	new	long	work	skips
e_{15}	known	new	shor	t home	read	e_{12}	known	new	long	work	skips
e_{17}	known	new	shor	t home	read	e_{14}	known	new	shor		reads
						e_{16}	known	followu			reads
						e_{18}	unknown	new	shor		reads

Now the decision tree is,

Step 2: next, we split the sets by Thread.

$\operatorname{sup} Z$.	псхі,	we spi	it the s	cts by I	mcau.						
Example	Author	Thread	Length	$Where_read$	$User_action$	Example	Author	Thread	Length W	$here_read$	$User_action$
e_1	known	new	long	home	skips	e_2	unknow	n new	short	work	reads
e_5	known	new	short	t home	reads	e_8	unknow	vn new	shor	t $work$	reads
e_{15}	known	new	shor	t home	reads	e_{10}	known	new	long	work	skips
e_{17}	known	new	shor	t home	reads	e_{12}	known	new	long	work	skips
						e_{14}	known	new	short	work	reads
						e_{18}	unknow	n new	short	work	reads

Example	Author	Thread Le	ngth	$Where_read$	$User_action$	Example	Author	Thread	Length	Where_read	$User_action$
e_4	known	followup	long	g home	skip	e_3	unknov	wn follo	wup lo	ng work	skips
e_9	known	followup	long	g home	skip.	e_6	known	follo	wup lo	ng work	skips
e_{11}	unknown	n followup	sho	rt home	skip	s e_7	unkno	wn follo	wup sh	nort work	skips
e_{13}	known	followup	sho	rt home	read	$_{s}e_{16}$	known	follo	wup sh	ort work	reads

According to the subsets above, we can get the current decision tree.

Step 3: split by Length,

orep c.	ppii c	<u> </u>	,								
Example	Author	Thread	Length	$Where_read$	$User_action$	Example	Author	Thread	Length	$Where_read$	$User_action$
e_1	known	new	long	home	skips	e_{10}	known	new	lon	g $work$	skip
Example	Author	Thread	Length	$Where_read$	$User_action$	e_{12}	known	new	lon	g work	skip
$egin{array}{c} e_5 \ e_{15} \end{array}$	known known	new new	sho		reads	Lixumpie	Author	Thread	Length	$Where_read$	$User_action$
e_{17}	known	new	sho		reads		unknow		shor	rt work	reads
Example	Author	Thread 1	Length	Where_read	$User_action$	e_8 e_{14}	unknov known	vn new new	sho		read reads
e_4	known	followu	p long	home	skips	e_{18}	unknow	n new	sho	rt work	reads
e_9	known	followu	p long	home	skips	Example	Author	Thread	Length	$Where_read$	$User_action$
Example	Author	Thread	Length	$Where_read$	$User_action$	e_3	unknou	on follow	vup lon	g work	skips
e_{11}	unknow			t home	skips	e_6	known	follow	vup lon	g work	skips
e_{13}	known	$followu_j$	p shor	t home	reads	Example	Author	Thread	Length	Where_read	$User_action$
						e_7	unknov			ort work	skips
						e_{16}	known	follow	vup sho	rt $work$	reads

The decision tree currently is,

Step 4: finally, split by Author. From last step, I can know the examples need to analyse are,

Example	Author	Thread Le	ength	$Where_read$	$User_action$	Example	Author	Thread I	ength	$Where_read$	$User_action$
e_{11}	unknown	followup	shor	t home	skips	e_7	unknown	followup	shor	t $work$	skips
e_{13}	known	followup	shor	t home	reads	e_{16}	known	followup	short	t $work$	reads

So the decision tree generated by the order of [WhereRead, Thread, Length, Author] is,

(1) This tree represent a <u>same</u> function with that found with the maximum information gain split, because they create same rules. The rules of the tree generated in the order of [WhereRead, Thread, Length, Author] as below,

```
skips <- home \land new \land long
```

reads <- home \land new \land short

skips \leq - home \wedge followup \wedge long

reads <- home \land followup \land short \land known

skips <- home \land followup \land short \land unknown

skips <- work \land new \land long

reads \leftarrow work \land new \land short

skips \leftarrow work \land followup \land long

reads \leftarrow work \land followup \land short \land known

skips \leftarrow work \land followup \land short \land unknown

Then, do some simplification, for example, skips <- home \land new \land long and skips <- work \land new \land long can combine to skips <- new \land long. So the rules above become to,

skips <- long

reads \leq - short \wedge new

skips <- short ∧ followup ∧ unknown

reads \leq - short \land followup \land known

It's same to the rules of tree found with the maximum information gain, so they represent same function.

(2) Next, according to the result of a) (Tree([Author, Thread, Length, WhereRead]) is different with Tree(the maximum information gain)) and the result in (1) above, so this tree represent a <u>different</u> function with the tree generated in the order of [Author, Thread, Length, WhereRead].

c) .

Answer:

No. Because the rules of other decision can simplify to the two rules above, they represent the same function as one of the trees above.

- (1) By asking a) and b), I can know that WhereAt doesn't inference the reads/skips because according to WhereAt, I can not directly classify a class that is completely skips or reads and Its left sub-tree have the same structure as its right sub-tree. So we can consider the tree is found in the order of [Thread, Length, Author]. Then the tree in a) actually represents founding in the order of [Author, Thread, Length], and the tree in figure 7.6 given is in the order of [Length, Thread, Author]. I try all trees founds by threes features, it only exist two different rules as above.
- (2) By observating, I find that It cannot determine reads/skips by no more than two features.

So, I think there is no tree represent the different rules with two above.

Question 4:

Answer:

As show in the file, the decision_tree.py build a model by decision tree, and the naive_bayers.py build a model by Gaussian naive bayers. There is accuracy of decision_tree model and naive_bayers model on test dataset as below,

	Decision tree	Naive bayers
Accuracy	85.695%	79.510%

The model of the decision tree I used some methods of pre-pruning to prevent overfitting and improve the accuracy.

- (1) Importing data: use load csv() function in pandas import data into memory.
- (2) Cleaning data: In the real data, the data we got may contain a large number of missing values, may contain a lot of noise, or there may be abnormal points due to manual entry errors, which caused some trouble for us to mine valid information, so we Some methods need to be adopted to improve the quality of the data as much as possible.
- (3) Splitting it into train/test or cross-validation sets: For machine learning tasks, we need to divide the data set into two parts in proportion: the training set and the test set. The training set is used to train the model, and the test set is used to test the performance of our model. This is more applicable when no test set is provided. For this problem, I used adult.data as the training set and adult.test as the test set.
- (4) Pre-processing: It concludes dealing with missing data, duplicates data, data standardization and regularization. Three methods for missing value processing: directly use features with missing values; delete features with missing values (this method is effective when attributes containing missing values contain a large number of missing values but only a small number of valid values); missing values Completion. I choose to complete the missing value by filling with most frequency data. Because data is valuable, even if it is incomplete, it has some value.
- (5) Transformations: In this task, I use label-encoder to transfer String to integer.
- (6) Feature engineering: the transformation of raw data into features suitable for modeling, or removing unnecessary features.

Automatically generated by Colaboratory.

```
Original file is located at
     https://colab.research.google.com/drive/12ZpP-vs5o35y1VWXIVx62f6vg3cWtuKc
from sklearn import datasets
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn.tree.export import export text
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn import metrics
import graphviz
                                                                             # load data
dataset = pd.read csv('adult.data', header=None)
from adult.data file
array = dataset.iloc[: , :-1].values
tags = dataset.iloc[:, -1].values
imp = SimpleImputer(missing values='?', strategy="most frequent")
                                                                                   # deal
with missing value by replacing with most frequent value
array[:, ::] = imp.fit transform(array[:, ::])
labelencoder X = LabelEncoder()
                                                                                     #
convert char type to integer type using laberEncoder
labelencoder X.fit(array[:, 1])
array[:, 1] = labelencoder X.fit transform(array[:, 1])
array[:, 3] = labelencoder X.fit transform(array[:, 3])
array[:, 5] = labelencoder X.fit transform(array[:, 5])
array[:, 6] = labelencoder X.fit transform(array[:, 6])
array[:, 7] = labelencoder X.fit transform(array[:, 7])
array[:, 8] = labelencoder X.fit transform(array[:, 8])
array[:, 9] = labelencoder X.fit transform(array[:, 9])
array[:, 13] = labelencoder X.fit transform(array[:, 13])
# using decision tree to classify (and do some prunching to avoid overfitting)
clf = tree.DecisionTreeClassifier(random state=0, criterion='entropy',
                                          max depth=8, splitter='best',
                                          min samples split=30)
clf = clf.fit(array, tags)
#tree.plot tree(clf.fit(array, tags))
r = export text(clf)
print(r)
```

```
feature name = ['age','workclass','fnlwgt','education','education-num','marital-status',
                    'occupation', 'relationship', 'race', 'sex', 'capital-gain',
                    'capital-loss','hours-per-week', 'native-country']
target name = ['>50k', '<=50k']
dot data = tree.export graphviz(clf, out file=None,
                          feature names=None,
                          class names=None,
                          filled=True, rounded=True,
                          special characters=True)
graph = graphviz.Source(dot data)
graph.format='png'
graph.render()
from IPython.display import Image
Image(filename="Source.gv.png", width = 1000, height=300)
"""TEST"""
# use test dataset to valify accuracy
test dataset = pd.read csv('adult.test', header=None, skip blank lines=True, skiprows=1)
# load data from adult.test file
test features = test dataset.iloc[:,:-1].values
test tags = test dataset.iloc[:, -1].values
test features[:, ::] = imp.fit transform(test features[:, ::])
labelencoder = labelencoder X
# convert char type to integer type using laberEncoder
test features[:, 1] = labelencoder X.fit transform(test features[:, 1])
test features[:, 3] = labelencoder X.fit transform(test features[:, 3])
test features[:, 5] = labelencoder X.fit transform(test features[:, 5])
test features[:, 6] = labelencoder X.fit transform(test features[:, 6])
test features[:, 7] = labelencoder X.fit transform(test features[:, 7])
test features[:, 8] = labelencoder X.fit transform(test features[:, 8])
test features[:, 9] = labelencoder X.fit transform(test features[:, 9])
test features[:, 13] = labelencoder X.fit transform(test features[:, 13])
pred = clf.predict(test features)
test_tags = [i.replace(".", "") for i in test_tags]
print("The accury is: " + str(metrics.accuracy score(test tags, pred)))
```

```
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1fAabYhnz1Hn511JVD337iPymJLB2RJxX
from sklearn import datasets
import numpy as np
import pandas as pd
from sklearn.naive bayes import GaussianNB, CategoricalNB
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.impute import SimpleImputer
dataset = pd.read csv('adult.data', header=None, skip blank lines=True)
# load data from adult.data file
array = dataset.iloc[: , :-1].values
tags = dataset.iloc[:, -1].values
imp = SimpleImputer(missing values='?', strategy="most frequent")
                                                                                  # deal
with missing value by replacing with most frequent value
array[:, ::] = imp.fit transform(array[:, ::])
labelencoder X = LabelEncoder()
                                                                                    #
convert char type to integer type using laberEncoder
labelencoder X.fit(array[:, 1])
array[:, 1] = labelencoder X.fit transform(array[:, 1])
array[:, 3] = labelencoder X.fit transform(array[:, 3])
array[:, 5] = labelencoder X.fit transform(array[:, 5])
array[:, 6] = labelencoder X.fit transform(array[:, 6])
array[:, 7] = labelencoder X.fit transform(array[:, 7])
array[:, 8] = labelencoder X.fit transform(array[:, 8])
array[:, 9] = labelencoder X.fit transform(array[:, 9])
array[:, 13] = labelencoder X.fit transform(array[:, 13])
print(array)
# using decision tree to classify (and do some prunching to avoid overfitting)
gnb = GaussianNB()
gnb = gnb.fit(array, tags)
print(gnb)
# use test dataset to valify accuracy
```

"""naive_bayers

```
test dataset = pd.read csv('adult.test', header=None ,skip blank lines=True, skiprows=1)
# load data from adult.test file
test features = test dataset.iloc[:,:-1].values
test tags = test dataset.iloc[:, -1].values
test features[:, ::] = imp.fit transform(test features[:, ::])
# convert char type to integer type using laberEncoder
test features[:, 1] = labelencoder X.fit transform(test features[:, 1])
test features[:, 3] = labelencoder X.fit transform(test features[:, 3])
test features[:, 5] = labelencoder X.fit transform(test features[:, 5])
test features[:, 6] = labelencoder X.fit transform(test features[:, 6])
test features[:, 7] = labelencoder X.fit transform(test features[:, 7])
test features[:, 8] = labelencoder X.fit transform(test features[:, 8])
test features[:, 9] = labelencoder X.fit transform(test features[:, 9])
test features[:, 13] = labelencoder X.fit transform(test features[:, 13])
pred = gnb.predict(test features)
same = 0
for i in range(0, len(pred)):
    if pred[i] + "." == test tags[i]:
          same += 1
print(pred.size)
print(test tags.size)
print("The accury is: " + str(same / pred.size))
```