An introduction to the lattice approach to stabilization problems

Alban Quadrat¹

¹INRIA Sophia Antipolis, CAFE Project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France.

Alban.Quadrat@sophia.inria.fr

www-sop.inria.fr/cafe/Alban.Quadrat/index.html

Many thanks!

I would like to thank Gema and Julio. . . for this very nice MAP meeting in Castro Urdiales.

Symbolic analysis: transfer matrix

• Electric transmission line:

$$\begin{cases} \frac{\partial V}{\partial x}(x,t) + L \frac{\partial I}{\partial t}(x,t) + R I(x,t) = 0, \\ \frac{\partial I}{\partial x}(x,t) + C \frac{\partial V}{\partial t}(x,t) + G V(x,t) = 0, \\ V(x,0) = 0, \quad I(x,0) = 0, \\ V(0,t) = u(t), \quad \lim_{x \to +\infty} V(x,t) = 0, \\ V(\overline{x},t) = y_1(t), \quad I(\overline{x},t) = y_2(t), \end{cases}$$

$$\Rightarrow \begin{cases} \widehat{y_1}(s) = e^{-\sqrt{(Ls+R)(Cs+G)}\overline{x}} \widehat{u}(s), \\ \widehat{y_2}(s) = \sqrt{\frac{Cs+G}{Ls+R}} e^{-\sqrt{(Ls+R)(Cs+G)}\overline{x}} \widehat{u}(s), \end{cases}$$

 \Rightarrow we obtain a **transfer matrix** $(\widehat{y_1}(s), \ \widehat{y_2}(s))^T = P \widehat{u}(s)$.

Fractional representations of a transfer matrix

• Let A be an integral domain of stable transfer functions

(e.g.,
$$A = RH_{\infty}$$
, $H_{\infty}(\mathbb{C}_+)$, \widehat{A}).

- A plant is defined by a transfer matrix $P \in K^{q \times r}$, K = Q(A).
- We can write *P* by means of the **fractional representations**:

$$P = D^{-1} N = \widetilde{N} \widetilde{D}^{-1}, \quad \begin{cases} (D - N) \in A^{q \times (q+r)}, \\ (\widetilde{N}^T \widetilde{D}^T)^T \in A^{(q+r) \times r}. \end{cases}$$

$$(e.g., \quad D = d I_q, \quad N = d P, \quad \widetilde{D} = d I_r, \quad \widetilde{N} = d P).$$

$$3. \quad y = P u \Leftrightarrow \begin{cases} (D - N) \begin{pmatrix} y \\ u \end{pmatrix} = 0, \\ \begin{pmatrix} y \\ u \end{pmatrix} = \begin{pmatrix} \widetilde{N} \\ \widetilde{D} \end{pmatrix} z, \end{cases} \Rightarrow \text{module theory.}$$

Example

• Let us consider the transfer matrix:

$$P = \begin{pmatrix} \frac{e^{-s}}{s-1} \\ \frac{e^{-s}}{(s-1)^2} \end{pmatrix}.$$

- Let us consider $A = H_{\infty}(\mathbb{C}_+)$ and K = Q(A).
- We then have:

$$\begin{cases} y_1 = \frac{e^{-s}}{(s-1)} u, \\ y_2 = \frac{e^{-s}}{(s-1)^2} u \end{cases} \Rightarrow \begin{cases} \frac{(s-1)}{(s+1)} y_1 - \frac{e^{-s}}{(s+1)} u = 0, \\ \left(\frac{s-1}{s+1}\right)^2 y_2 - \frac{e^{-s}}{(s+1)^2} u = 0, \\ \Rightarrow D \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = N u \Rightarrow P = D^{-1} N, \end{cases}$$

where:

$$D = \left(\begin{array}{cc} \frac{s-1}{s+1} & 0 \\ 0 & \left(\frac{s-1}{s+1}\right)^2 \end{array}\right) \in A^{2\times 2}, \quad N = \left(\begin{array}{c} \frac{e^{-s}}{s+1} \\ \frac{e^{-s}}{(s+1)^2} \end{array}\right) \in A^2.$$

Lattices of a vector space

- Let *V* be a **finite-dimensional** *K*-vector space.
- **Definition**: An A-submodule M of V is a **lattice of** V if there exist L_1 , L_2 two **free** A-**submodules of** V such that:

$$L_1 \subseteq M \subseteq L_2$$
, $\operatorname{rk}_A(L_1) = \dim_K(V)$.

• **Proposition**: An A-submodule M of V is a lattice of V iff

$$KM \triangleq \{k m | k \in K, m \in M\} = V, M \subseteq P,$$

where P is a **finitely generated** A-submodule of V.

- **Example**: Let $P \in K^{q \times r}$, then the *A*-module $\mathcal{L} = \begin{pmatrix} I_q & -P \end{pmatrix} A^{q+r}$ is a **lattice of** the *K*-vector space K^q .
- Example: Let $P \in K^{q \times r}$, then the A-module $\mathcal{M} = A^{1 \times (q+r)} \begin{pmatrix} P \\ I_r \end{pmatrix}$ is a **lattice of** the K-vector space $K^{1 \times r}$.

Dual of a lattice

- Let V and W be 2 finite-dimensional K-vector spaces.
- Let M (resp., N) be a **lattice** of V (resp., W).
- **Definition**: *N* : *M* is the *A*-submodule of

$$\hom_{\mathcal{K}}(V,W) = \{f : V \to W \,|\, f \text{ is a } K - \text{linear map}\}$$

formed by the K-linear maps $f: V \rightarrow W$ which satisfy:

$$f(M) \subseteq N$$
.

- Proposition: 1. N: M is a lattice of $hom_K(V, W)$.
- 2. We have the following **bijective map**:

$$N: M \rightarrow \operatorname{hom}_A(M, N) \triangleq \{f: M \rightarrow N \mid f \text{ is a } A - \text{linear map}\},$$

$$f \mapsto f_{\mid M}.$$

Examples

• Example: Let $P \in K^{q \times r}$ and $\mathcal{L} = \begin{pmatrix} I_q & -P \end{pmatrix} A^{q+r}$. Then:

$$A: \mathcal{L} = \{ f: K^q \to K \mid f(\mathcal{L}) \subseteq A \} = \{ \lambda \in K^{1 \times q} \mid \lambda (I_q - P) A^{q+r} \subseteq A \}$$
$$= \{ \lambda \in K^{1 \times q} \mid \lambda \in A^{1 \times q}, \ \lambda P \in A^{1 \times r} \} = \{ \lambda \in A^{1 \times q} \mid \lambda P \in A^{1 \times r} \}.$$

• Example: Let $P \in K^{q \times r}$ and $\mathcal{M} = A^{1 \times (q+r)} \begin{pmatrix} P \\ I_r \end{pmatrix}$. Then:

$$A: \mathcal{M} = \left\{ f: K^r \to K \mid f(\mathcal{M}) \subseteq A \right\} = \left\{ \lambda \in K^r \mid A^{1 \times (q+r)} \begin{pmatrix} P \\ I_r \end{pmatrix} \lambda \subseteq A \right\}$$
$$= \left\{ \lambda \in K^r \mid \lambda \in A^r, \ P \lambda \in A^q \right\} = \left\{ \lambda \in A^r \mid P \lambda \in A^q \right\}.$$

Weakly coprime factorizations

• Definition: $P \in K^{q \times r}$ admits a weakly left-coprime factorization if there exists $R = (D - N) \in A^{q \times (q+r)}$ such that

$$\det D \neq 0, \quad P = D^{-1} N,$$

and:

$$\forall \ \lambda \in K^{1 \times q}, \ \lambda \ R \in A^{1 \times (q+r)} \ \Rightarrow \ \lambda \in A^{1 \times q}.$$

• Proposition: $P \in K^{q \times r}$ admits a weakly left-coprime factorization iff $\exists D \in A^{q \times q}$ such that $\det D \neq 0$ and

$$A: \mathcal{L} = A: ((I_q - P)A^{q+r}) \triangleq \{\lambda \in A^{1 \times q} \mid \lambda P \in A^{1 \times r}\} = A^{1 \times q} D,$$

i.e., $A : \mathcal{L}$ is a **free lattice of** $K^{1 \times q}$, namely, $A : \mathcal{L} \cong A^{1 \times q}$.

Example

ullet We consider $A=H_{\infty}(\mathbb{C}_+)$, K=Q(A) and the transfer matrix:

$$P = \left(\begin{array}{c} \frac{e^{-s}}{s-1} \\ \frac{e^{-s}}{(s-1)^2} \end{array}\right) \in \mathcal{K}^2.$$

• We have the **fractional representation** $P = D^{-1} N$ of P, where:

$$D = \begin{pmatrix} \frac{s-1}{s+1} & 0 \\ 0 & \left(\frac{s-1}{s+1}\right)^2 \end{pmatrix} \in A^{2\times 2}, \quad N = \begin{pmatrix} \frac{e^{-s}}{s+1} \\ \frac{e^{-s}}{(s+1)^2} \end{pmatrix} \in A^2.$$

• $P = D^{-1} N$ is not a **weakly left-coprime factorization** of P as

$$\left(\frac{1}{(s-1)} - \frac{(s+1)}{(s-1)}\right) \left(\begin{array}{cc} \frac{s-1}{s+1} & 0 & -\frac{e^{-s}}{s+1} \\ 0 & \left(\frac{s-1}{s+1}\right)^2 & -\frac{e^{-s}}{(s+1)^2} \end{array}\right) = \left(\frac{1}{(s+1)} - \frac{(s-1)}{(s+1)} & 0\right)$$

and:

$$\left(\frac{1}{(s-1)} \quad -\frac{(s+1)}{(s-1)}\right) \in \mathcal{K}^{1\times 2}, \ \left(\frac{1}{(s+1)} \quad -\frac{(s-1)}{(s+1)} \quad 0\right) \in \mathcal{A}^{1\times 3}.$$

Coherent rings

• **Definition**: A ring A is **coherent** if, for any finitely generated ideal $I = (a_1, \ldots, a_n)$ of A, the A-module

$$S(I) = \left\{ (r_1 \dots r_n) \in A^{1 \times n} \mid \sum_{i=1}^n r_i \, a_i = 0 \right\}$$

is finitely generated, i.e.:

$$\exists m \in \mathbb{Z}_+, \quad \exists R \in A^{m \times n} : S(I) = A^{1 \times m} R.$$

- Theorem: (McVoy-Rubel 76, Rosay 77) $H_{\infty}(\mathbb{C}_+)$ is coherent.
- Theorem: If A is a coherent ring, then we can compute a weakly left-coprime factorization of $P \in K^{q \times p}$ by computing

$$\operatorname{ext}_{A}^{1}(N,A),$$

where
$$N = D^{1\times q}/(D^{1\times (p+q)}R^T)$$
 and:

$$R = (D - N) \in A^{q \times (p+q)}, \quad P = D^{-1} N.$$

Coherent Sylvester domains

• **Definition**: An integral domain A is a **coherent Sylvester domain** if, for every $q \in \mathbb{Z}_+$ and every $v \in A^{1 \times q}$, the A-module

$$\ker_A(v.) = \{ w \in A^q \mid v | w = \sum_{i=1}^q v_i | w_i = 0 \}$$
 is **free**.

- Theorem: $H_{\infty}(\mathbb{C}_+)$, A[x], where A is a Bézout domain (e.g., \mathbb{Z} , k[y], k a field) and RH_{∞} are coherent Sylvester domains.
- **Example**: Let us consider $A = H_{\infty}(\mathbb{C}_+)$ and K = Q(A). Then, the transfer matrix

$$P = \left(\begin{array}{c} \frac{e^{-s}}{s-1} \\ \frac{e^{-s}}{(s-1)^2} \end{array}\right) \in K^2$$

admits the weakly left-coprime factorization $P = D'^{-1} N'$:

$$D'=\left(\begin{array}{cc}\frac{1}{(s+1)} & -\frac{(s-1)}{(s+1)}\\ \frac{(s-1)}{(s+1)} & 0\end{array}\right)\in A^{2\times 2},\quad N'=\left(\begin{array}{c}0\\ \frac{e^{-s}}{(s+1)}\end{array}\right)\in A^2.$$

Weakly coprime factorizations

• Definition: $P \in K^{q \times r}$ admits a weakly right-coprime factorization if there exists $\widetilde{R} = (\widetilde{N}^T \quad \widetilde{D}^T)^T \in A^{(q+r) \times r}$ such that

$$\det \widetilde{D} \neq 0, \quad P = \widetilde{N} \widetilde{D}^{-1},$$

and:

$$\forall \lambda \in K^r, \ \widetilde{R} \lambda \in A^p \ \Rightarrow \ \lambda \in A^r.$$

• Proposition: $P \in K^{q \times r}$ admits a weakly right-coprime factorization iff $\exists \widetilde{D} \in A^{r \times r}$ such that $\det \widetilde{D} \neq 0$ and

$$A: \mathcal{M} = A: \left(A^{1\times (q+r)} \left(\begin{array}{c}P\\I_r\end{array}\right)\right) \triangleq \{\lambda \in A^r \mid P\lambda \in A^q\} = \widetilde{D}A^r,$$

i.e., $A: \mathcal{M}$ is **free lattice of** K^r , namely, $A: \mathcal{M} \cong A^r$.

Coprime factorizations

• **Definition**: A transfer matrix $P \in K^{q \times r}$ admits a **left-coprime** factorization if there exist

$$D \in A^{q \times q}, \ N \in A^{q \times r}, \ X \in A^{q \times q}, \ Y \in A^{r \times q},$$

such that $\det D \neq 0$ and:

$$P = D^{-1} N, \quad DX - NY = I_q.$$

• Proposition: $P \in K^{q \times r}$ admits a left-coprime factorization iff there exists $D \in A^{q \times q}$ such that $\det D \neq 0$ and

$$\mathcal{L} \triangleq (I_q - P) A^{q+r} = D^{-1} A^q,$$

i.e., iff \mathcal{L} is a **free lattice of** K^q , namely, $\mathcal{L} \cong A^q$.

Example

• The transfer matrix defined by $P = \begin{pmatrix} \frac{e^{-s}}{s-1} \\ \frac{e^{-s}}{(s-1)^2} \end{pmatrix} \in K^2$ admits the

left-coprime factorization $P = D'^{-1} N'$ defined by

$$D'=\left(\begin{array}{cc}\frac{1}{(s+1)} & -\frac{(s-1)}{(s+1)}\\ \frac{(s-1)}{(s+1)} & 0\end{array}\right)\in A^{2\times 2}, \quad N'=\left(\begin{array}{c}0\\ \frac{e^{-s}}{(s+1)}\end{array}\right)\in A^2,$$

as we have:

$$\begin{pmatrix} \frac{1}{(s+1)} & -\frac{(s-1)}{(s+1)} \\ \frac{(s-1)}{(s+1)} & 0 \end{pmatrix} \begin{pmatrix} -2b\frac{(s-1)^2}{(s+1)^2} + 2 & b\frac{(s-1)}{(s+1)} \\ -2b\frac{(s-1)}{(s+1)^2} - 1 & b\frac{1}{(s+1)} \end{pmatrix} \\ -\begin{pmatrix} 0 \\ \frac{e^{-s}}{(s+1)} \end{pmatrix} \begin{pmatrix} 2a\frac{(s-1)}{(s+1)^2} & -a\frac{1}{(s+1)} \end{pmatrix} = I_2,$$

where a and b are defined by:

$$a = \frac{4e(5s-3)}{(s+1)} \in A, \quad b = \frac{(s+1)^3 - 4(5s-3)e^{-(s-1)}}{(s+1)(s-1)^2} \in A.$$

Coprime factorization

• **Definition**: A transfer matrix $P \in K^{q \times r}$ admits a **right-coprime** factorization if there exist

$$\widetilde{D} \in A^{r \times r}, \ \widetilde{N} \in A^{q \times r}, \ \widetilde{X} \in A^{r \times r}, \ \widetilde{Y} \in A^{r \times q},$$

such that $\det \widetilde{D} \neq 0$ and:

$$P = \widetilde{N} \, \widetilde{D}^{-1}, \quad -\widetilde{Y} \, \widetilde{N} + \widetilde{X} \, \widetilde{D} = I_r.$$

• Proposition: $P \in K^{q \times r}$ admits a right-coprime factorization if there exists $\widetilde{D} \in A^{r \times r}$ such that $\det \widetilde{D} \neq 0$ and

$$\mathcal{M} = A^{1 \times (q+r)} \begin{pmatrix} P \\ I_r \end{pmatrix} = A^{1 \times r} \widetilde{D}^{-1},$$

i.e., iff \mathcal{M} is a **free lattice of** $K^{1\times r}$, namely, $\mathcal{M}\cong A^{1\times r}$.

Doubly coprime factorizations

• **Definition**: $P \in K^{q \times r}$ admits a **doubly coprime factorization** over A if there exist

$$\begin{split} &D \in A^{q \times q}, \ N \in A^{q \times r}, \ X \in A^{q \times q}, \ Y \in A^{r \times q}, \\ &\widetilde{D} \in A^{r \times r}, \ \widetilde{N} \in A^{q \times r}, \ \widetilde{X} \in A^{r \times r}, \ \widetilde{Y} \in A^{r \times q}, \end{split}$$

such that $\det D \neq 0$, $\det \widetilde{D} \neq 0$ and:

$$P = D^{-1} N = \widetilde{N} \widetilde{D}^{-1},$$

$$\begin{pmatrix} D & -N \\ -\widetilde{Y} & \widetilde{X} \end{pmatrix} \begin{pmatrix} X & \widetilde{N} \\ Y & \widetilde{D} \end{pmatrix} = I_{q+r}.$$

• Proposition: $P \in K^{q \times r}$ admits a doubly coprime factorization iff P admits a left- and a right-coprime factorization.

Bézout domains

- **Definition**: An integral domain *A* is called a **Bézout domain** if every finitely generated ideal of *A* is **principal**, namely, generated by an element of *A*.
- Examples: RH_{∞} , the ring $E(\mathbb{R})$ of entire functions with real coefficients and $\mathcal{E} = \mathbb{R}(s)[e^{-s}] \cap E(\mathbb{R})$ are **Bézout domains**.
- **Theorem**: We have the following equivalences:
- 1. Every transfer matrix P with entries in K admits a **doubly** coprime factorization.
- 2. Every transfer function $p \in K$ admits a **coprime factorization**.
- 3. A is a **Bézout domain**.

Internal stabilization

- Let A be an algebra of stable transfer function, K = Q(A).
- Let $P \in K^{q \times r}$ be a **plant** and $C \in K^{r \times q}$ a **controller**.

• The **closed-loop system** is defined by:

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} I_q & -P \\ -C & I_r \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}, \quad \begin{cases} y_1 = e_2 - u_2, \\ y_2 = e_1 - u_1. \end{cases}$$

• **Definition**: $P \in K^{q \times r}$ is **internally stabilizable** iff there exists a **stabilizing controller** $C \in K^{r \times q}$, namely, $C \in K^{r \times q}$ satisfies:

$$\begin{pmatrix} I_q & -P \\ -C & I_r \end{pmatrix}^{-1} = \begin{pmatrix} (I_q - PC)^{-1} & (I_q - PC)^{-1}P \\ (I_r - CP)^{-1}C & (I_r - CP)^{-1} \end{pmatrix} \in A^{(q+r)\times(q+r)}.$$

Internal stabilizability

- Theorem: $P \in K^{q \times r}$ is internally stabilizable iff one of the following conditions is satisfied:
- 1. $\mathcal{L} = (I_q P) A^{q+r}$ is a **projective lattice of** K^q , namely, there exists an A-module M such that:

$$\mathcal{L} \oplus M \cong A^{q+r}$$
.

2. $\mathcal{M} = A^{1 \times (q+r)} \begin{pmatrix} P \\ I_r \end{pmatrix}$ is a **projective lattice of** $K^{1 \times r}$, namely, there exists an A-module N such that:

$$\mathcal{M} \oplus \mathcal{N} \cong \mathcal{A}^{1 \times (q+r)}$$
.

Internal stabilizability

• Let $P \in K^{q \times r}$ be an **internally stabilizable plant** and:

$$R = (I_q - P) \in K^{q \times (q+r)}, \quad Q = \begin{pmatrix} P \\ I_r \end{pmatrix} \in K^{(q+r) \times r}.$$

Then, we have the following split exact sequences:

$$0 \longleftarrow \mathcal{L} = R A^{q+r} \quad \stackrel{R.}{\underset{S.}{\longleftarrow}} \quad A^{q+r} \quad \stackrel{Q.}{\underset{T.}{\longleftarrow}} \quad A : \mathcal{M} = A : \left(A^{1 \times p} Q\right) \longleftarrow 0,$$

$$0 \longrightarrow A: \mathcal{L} = A: \left(R \, A^{1 \times (q+r)}\right) \quad \xrightarrow{\cdot R} \quad A^{1 \times (q+r)} \quad \xrightarrow{\cdot Q} \quad \mathcal{M} = A^{1 \times p} \, Q \longrightarrow 0.$$

- Corollary: If $P \in K^{q \times r}$ is internally stabilizable, then we have:
- 1. $\mathcal{L} \oplus (A : \mathcal{M}) \cong A^{q+r}$ and $\mathcal{M} = A : (A : \mathcal{M})$.
- 2. $\mathcal{M} \oplus (A : \mathcal{L}) \cong A^{1 \times (q+r)}$ and $\mathcal{L} = A : (A : \mathcal{L})$.

Internal stabilizability

- Corollary: $P \in K^{q \times r}$ is internally stabilizable iff one of the following conditions is satisfied:
- C1. There exists $S = (U^T \ V^T)^T \in A^{(q+r)\times q}$ such that:

$$\begin{cases} SP & = \begin{pmatrix} UP \\ VP \end{pmatrix} \in A^{(q+r)\times r}, \\ (I_q - P)S & = U - PV = I_q. \end{cases}$$

Then, $C = V U^{-1}$ is a stabilizing controller of P.

C2. There exists $T = (-\widetilde{V} \quad \widetilde{U}) \in A^{r \times (q+r)}$ such that:

$$\begin{cases}
P T &= (-P \widetilde{V} P \widetilde{U}) \in A^{q \times (q+r)}, \\
T \begin{pmatrix} P \\ I_r \end{pmatrix} &= -\widetilde{V} P + \widetilde{U} = I_r.
\end{cases}$$

Then, $C' = \widetilde{U}^{-1} \widetilde{V}$ is a stabilizing controller of P.

• **Proposition**: $\exists S \in A^{(q+r)\times q}, T \in A^{r\times (q+r)}$ satisfying 1, 2 and:

$$TS = -\widetilde{V}U + \widetilde{U}V = 0 \Rightarrow C = VU^{-1} = \widetilde{U}^{-1} = \widetilde{V}.$$

Example

• Let us consider the **transfer matrix** $(A = H_{\infty}(\mathbb{C}_+), K = Q(A))$:

$$P = \left(\begin{array}{c} \frac{e^{-s}}{s-1} \\ \frac{e^{-s}}{(s-1)^2} \end{array}\right) \in \mathcal{K}^2.$$

• The matrix $S = (U^T \ V^T)^T \in A^{3\times 2}$ defined by

$$S = \begin{pmatrix} \frac{2}{s+1} + b \left(\frac{s-1}{s+1}\right)^3 & 2b \left(\frac{s-1}{s+1}\right)^3 - 2\frac{(s-1)}{(s+1)} \\ b \frac{(s-1)^2}{(s+1)^3} - \frac{1}{s+1} & \frac{s-1}{s+1} + 2b\frac{(s-1)}{(s+1)^3} \\ -a\frac{(s-1)^2}{(s+1)^3} & -2a\frac{(s-1)^2}{(s+1)^3} \end{pmatrix}$$

with
$$a = \frac{4 e (5 s - 3)}{(s + 1)} \in A$$
 and $b = \frac{(s + 1)^3 - 4 (5 s - 3) e^{-(s - 1)}}{(s + 1) (s - 1)^2} \in A$, satisfies
$$\begin{cases} SP \in A^{3 \times 1}, \\ (I_2 - P)S = U - PV = I_2, \end{cases}$$

$$\Rightarrow C = V U^{-1} = -\frac{4(5s-3)e(s-1)^2}{(s+1)((s+1)^3-4(5s-3)e^{-(s-1)})} (12) \text{ IS } P.$$

Projectors

- Corollary: $P \in K^{q \times r}$ is internally stabilized by the controller $C \in K^{r \times q}$ iff one of the following conditions is satisfied:
- 1. The matrix

$$\Pi_1 = \left(\begin{array}{cc} (I_q - P C)^{-1} & -(I_q - P C)^{-1} P \\ C (I_q - P C)^{-1} & -C (I_q - P C)^{-1} P \end{array} \right)$$

is a **projector of** $A^{(q+r)\times(q+r)}$, namely, $\Pi_1^2 = \Pi_1 \in A^{(q+r)\times(q+r)}$.

2. The matrix

$$\Pi_2 = \begin{pmatrix} -P(I_{p-q} - CP)^{-1} C & P(I_{p-q} - CP)^{-1} \\ -(I_{p-q} - CP)^{-1} C & (I_{p-q} - CP)^{-1} \end{pmatrix}$$

is a **projector of** $A^{(q+r)\times(q+r)}$, namely, $\Pi_2^2 = \Pi_2 \in A^{(q+r)\times(q+r)}$.

Morover, we have: $\Pi_1 + \Pi_2 = I_{q+r}$.

• Remark: This result was known for $A = H_{\infty}(\mathbb{C}_+)$. The robustness radius is then defined by (loop-shaping procedure):

$$b_{P,C} \triangleq \| \Pi_1 \|_{\infty}^{-1} = \| \Pi_2 \|_{\infty}^{-1}.$$

Prüfer domains

- **Definition**: An integral domain *A* is called a **Prüfer domain** if every finitely generated ideal of *A* is a **projective** *A*-module.
- Example: Dedekind domains (e.g., $\mathbb{R}[x,y]/(x^2+y^2-1)$, $\mathbb{Z}[i\sqrt{5}]$), the \mathbb{Z} -valued polynomials in $\mathbb{Q}[x]$, namely:

$$A = \{ p \in \mathbb{Q}[x] \mid p(\mathbb{Z}) \subset \mathbb{Z} \}.$$

- **Theorem**: We have the following equivalences:
- 1. Every transfer matrix P with entries in K is **internally** stabilizable.
- 2. Every transfer function $p \in K$ is **internally stabilizable**.
- 3. A is a Prüfer domain.

SC for internal stabilizability

- Fact 1: P admits a doubly coprime factorization iff $\mathcal L$ and $\mathcal M$ are free A-modules.
- Fact 2: P is internally stabilizable ff $\mathcal L$ and $\mathcal M$ are projective A-modules.
- Fact 3: A free A-module is projective.
- Corollary: 1. If $P \in K^{q \times r}$ admits a left-coprime factorization

$$P = D^{-1} N, \quad DX - NY = I_q,$$

then
$$S = ((X D)^T (Y D)^T)^T$$
 satisfies C1

$$\Rightarrow C = (Y D)(X D)^{-1} = Y X^{-1} \in Stab(P).$$

2. If $P \in K^{q \times r}$ admits a **right-coprime factorization**

$$P = \widetilde{N} \widetilde{D}^{-1}, \quad -\widetilde{Y} X + \widetilde{X} \widetilde{D} = I_r,$$

then
$$T = (-\widetilde{D} \ \widetilde{Y} \ \widetilde{D} \ \widetilde{X})$$
 satisfies C2

$$\Rightarrow C = (\widetilde{D} \ \widetilde{X})^{-1} (\widetilde{D} \ \widetilde{Y}) = \widetilde{X}^{-1} \ \widetilde{Y} \in \operatorname{Stab}(P).$$

Stabilizable *m*-D linear systems

- $\overline{\mathbb{D}}^m = \{z \in \mathbb{C}^m \mid |z_i| \le 1, i = 1, ..., m\}$ unit polydisc of \mathbb{C}^m .
- Let $\mathbb{R}(z_1,\ldots,z_m)_S$ be the ring of **stabilizable** m-**D systems**:

$$\mathbb{R}(z_1,\ldots,z_m)_S = \{r/s \mid 0 \neq s, \ r \in \mathbb{R}[z_1,\ldots,z_m], \ s(\underline{z}) = 0 \Rightarrow \underline{z} \notin \overline{\mathbb{D}^m}\}.$$

• Z. Lin's conjecture:

Determine whether or not an internally stabilizable linear system defined by a transfer matrix P with entries in $\mathbb{R}(z_1,\ldots,z_m)$ admits a doubly coprime factorization over $\mathbb{R}(z_1,\ldots,z_m)_S$.

- Theorem: (Kamen-Khargonekar-Tannenbaum, Byrnes-Spong-Tarn, 84): $\mathbb{R}(z_1,\ldots,z_m)_S$ is a projective free ring.
- This result is not trivial (the **proof was given by P. Deligne**).
- Corollary: Z. Lin's conjecture is solved.
- Open question: Constructive proof.

Parametrization of all stabilizing controllers

• Theorem: Let $P \in K^{q \times r}$ be a stabilizable plant. All stabilizing controllers of P have the form

$$C(Q) = (V + Q)(U + PQ)^{-1} = (Y + QP)^{-1}(X + Q),$$

where C_* is a particular stabilizing controller of P,

$$\begin{cases}
U = (I_q - P C_*)^{-1}, \\
V = C_* (I_q - P C_*)^{-1}, \\
X = (I_r - C_* P)^{-1} C_*, \\
Y = (I_r - C_* P)^{-1},
\end{cases}
\begin{cases}
S = \begin{pmatrix} U \\ V \end{pmatrix} \in A^{(q+r)\times q}, \\
T = (-\widetilde{V} \quad \widetilde{U}) \in A^{r\times (q+r)},
\end{cases}$$

and Q is any matrix which belongs to:

$$\Omega = \{ L \in A^{r \times q} \mid LP \in A^{r \times r}, \ P \ L \in A^{q \times q}, \ P \ LP \in A^{q \times r} \}$$

$$= (A : \mathcal{L}) : \mathcal{M} = (A : \mathcal{M}) : \mathcal{L} = T \ A^{(q+r) \times (q+r)} \ S,$$
such that $\det(U + P \ Q) \neq 0$ and $\det(Y + Q \ P) \neq 0$.
$$(\Omega \text{ is a projective } A\text{-module of rank } r \times q).$$

The projective A-module Ω

• Open question: Find a minimal family of generators of the projective A-module Ω of rank $r \times q$, i.e., a minimal family $\{L_i\}_{1 \leq i \leq s}$ such that:

$$\forall L \in \Omega, \quad \exists \lambda_i \in A, \ i = 1, \dots, s: \quad L = \sum_{i=1}^s \lambda_i L_i.$$

• If A has a **Krull dimension** equals to m, then we have:

$$\mu_A(\Omega) = s \leq q \times r + m.$$

• Proposition: If $P \in K^{q \times r}$ admits a weakly left-coprime factorization $P = D^{-1} N$, then we have:

$$\Omega = \{ L \in A^{r \times q} \mid P L \in A^{q \times q} \} D.$$

• Proposition: If $P \in K^{q \times r}$ admits a weakly right-coprime factorization $P = \widetilde{N} \, \widetilde{D}^{-1}$, then we have:

$$\Omega = \widetilde{D} \{ L \in A^{r \times q} \mid LP \in A^{r \times r} \}.$$

Youla-Kučera parametrization

• Corollary: Let $P \in K^{q \times r}$ be a plant which admits a doubly coprime factorization $P = D^{-1} N = \widetilde{N} \widetilde{D}^{-1}$:

$$\begin{pmatrix} D & -N \\ -\widetilde{Y} & \widetilde{X} \end{pmatrix} \begin{pmatrix} X & \widetilde{N} \\ Y & \widetilde{D} \end{pmatrix} = I_{q+r}.$$

Then, $\Omega = \{L \in A^{r \times q} \mid LP \in A^{r \times r}, PL \in A^{q \times q}, PLP \in A^{q \times r}\}$ is the **free** *A*-**module** defined by:

$$\Omega = \widetilde{D} A^{r \times q} D = \{ L \in A^{r \times q} \mid L = \widetilde{D} R D, \ \forall R \in A^{r \times q} \}.$$

All stabilizing controllers of P are then of the form

$$C(Q) = (Y + \widetilde{D} Q)(X + \widetilde{N} Q)^{-1} = (\widetilde{X} + Q N)^{-1}(\widetilde{Y} + Q D),$$

where $Q \in A^{r \times q}$ is any matrix such that:

$$\det(X + \widetilde{N}Q) \neq 0$$
, $\det(\widetilde{X} + QN) \neq 0$.

Sensitivity minimization

- Let A be a Banach algebra (e.g., $A = H_{\infty}(\mathbb{C}_+)$, \hat{A} , W_+ , $A(\mathbb{D})$).
- Let $P \in K^{q \times r}$ be a **stabilizable plant** and W_1 and W_2 two **weighted transfer matrices**. Then, we have

$$\inf_{C \in \operatorname{Stab}(P)} \parallel W_1 \left(I_q - P \ C \right)^{-1} W_2 \parallel_A = \inf_{Q \in \Omega} \parallel W_1 \left(U + P \ Q \right) W_2 \parallel_A, \ (\star)$$

where $C_{\star} = V U^{-1}$ is a stabilizing controller of P and:

$$U = (I_q - P C_*)^{-1} \in A^{q \times q}, \quad V = C_* (I_q - P C_*)^{-1} \in A^{r \times q}.$$

- The **optimization problem** (*) is **convex**.
- \bullet If $P=D^{-1}\,{\it N}=\widetilde{\it N}\,\widetilde{\it D}^{-1}$ is a doubly coprime factorization

$$\begin{pmatrix} D & -N \\ -\widetilde{Y} & \widetilde{X} \end{pmatrix} \begin{pmatrix} X & \widetilde{N} \\ Y & \widetilde{D} \end{pmatrix} = I_{q+r} \Rightarrow \begin{cases} Q \in \Omega = \widetilde{D} A^{r \times q} D, \\ U + P Q = (X + \widetilde{N} R) D, \end{cases}$$
$$\Rightarrow \quad (\star) \quad \Leftrightarrow \quad \inf_{R \in A^{r \times q}} \| W_1 (X + \widetilde{N} R) D W_2 \|_A.$$

Conclusion

- We generalized the Youla-Kučera parametrization for MIMO internally stabilizable plants.
- This parametrization does not assume the existence of doubly coprime factorizations.
- When does a stabilizable plant admit a doubly coprime factorization? We proved that this problem is related to:

When is a certain projective A-module free?

- This has been a **difficult problem** studied for years in:
- **algebra**: algebraic K-theory (Serre's conjecture (55) $A = k[x_1, \dots, x_n]$, k a field, solved by Quillen-Suslin (76)),
- number theory: number fields,
- algebraic geometry: function fields,
- topology: triviality of vector bundles,
- operator theory: topological K-theory (e.g., C*-algebras).

Bibliography

- \bullet R. F. Curtain, H. J. Zwart, An Introduction to $\infty\text{-}Dimensional Linear Systems Theory, TAM 21, Springer, 1991.$
- C. A Desoer, R. W. Liu, J. Murray, R. Saeks, "Feedback system design: the fractional representation approach to analysis and synthesis problems", *IEEE Trans. Automat. Control*, 25 (1980), 399-412.
- J. R. Partington, *Linear Operators and Linear Systems*, Student Texts 60, Cambridge, 2004.
- A. Q., "An introduction to internal stabilization of infinite-dimensional linear systems", e-STA, vol. 1, n. 1, www-sop.inria.fr/cafe/Alban.Quadrat/index.html
- A. Q., "A lattice approach to analysis and synthesis problems", to appear in *Mathematics of Control, Signal, and Systems*, 18 (2006).
- A. Q., "On a generalization of the Youla-Kučera parametrization. Part II: The lattice approach to MIMO systems", to appear in *Mathematics of Control, Signal, and Systems*, 18 (2006).
- M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, 1985.