This problem set is individual and worth a total of 310 points. You do **not** need to submit anything for this problem set, the material is solely meant to help you better understand the course material and prepare for the exam.

	Your Name:
1.	[5 points] Which of the three following options is the worst choice for a pivot for your partition function?
	(a) Always choose a random element to be your pivot.
	(b) Always choose element at index 0 to be your pivot.
	(c) Always choose the middle element to be your pivot.
2.	[5 points] What makes this a poor choice of partition?
3.	[15 points] Choosing the first element to be your partition and using the code in the course slides: Show the state of the following array after the partition function returns. Indicate the pivot points.
	[60, 100, 4, 2, 6, 23, 65, 34, 87, 3, 2, 0, 60]
	(a) After the first call to partition:

	(b) After the second calls to partition:
4.	[5 points] If we were to randomly choose an element from the above array to be the pivot point, which element would provide the most optimal(even) split of the array after the first partition?
5.	[5 points] What is the average big Θ runtime of quick sort?
6.	[15 points] Draw a binary search tree after the insertion of the following elements in order: (a) [5 points] [60, 40, 35, 75, 90, 1, 20, 100, 25, 70]
	(b) [5 points] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

()	
(c)	[5 points] [20, 19, 18, 17, 16, 15, 22]
. [15 լ	points] What do the following terms mean when referring to properties of k-ary trees?
(a)	[5 points] Full (proper):
(1.)	
(p)	[5 points] Complete:

	(c)	[5 points] Perfect:
8.	[5 pc	pints] If a binary tree is complete, does that necessarily mean it is also full? Justify your ver.
9.	=	points] Draw an initially empty BST after performing the following operations: [5 points] Insert the following elements in order: 10, 5, 12, 8, 19, 6, 2, 11, 15, 9, 7

(b) [5 points] Remove the following elements from the tree created by part a: 7, 12, 8, 10

0.	-	points] Briefly explain the the following tree traversal methods.
	(a)	[5 points] in-order traversal:
	(b)	[5 points] pre-order traversal:
	(c)	[5 points] post-order traversal:
l1.		points] Let T be a full k-ary tree, where $k=2$ (a.k.a. binary tree), with n nodes. Let h denote height of T.
	(a)	[5 points] What is the minimum number of leaves for T?

	(b)	[5 points] What is the maximum number of leaves for T?							
	(c)	[5 points] What is the minimum number of internal nodes for T?							
	(d)	[5 points] What is the maximum number of internal nodes for T?							
12.	[10 p	points] Show that the maximum number of nodes in a binary tree of height h is $2^{h+1} - 1$.							
13.	-	points] Draw an example of k-ary trees matching the following descriptions [5 points] Full(proper), $k=3$, height = 3							

(b) [5 points] Complete, k=4, height =2

(c)	[5 points] Perfect, $k = 2$, height = 3
(d)	[5 points] Complete, $k = 2$, height = 4

	in lexicographic order.
(a)	[5 points] Min Heap: [0, 4, 2, 5, 2, 8, 1, 9]
(b)	[5 points] Max Heap: [a, g, r, q, t, v, c, y, q]
(c)	[5 points] Min Heap: ["Marco", "John", "Tanner", "Eben", "Chris"]

		ke the following sequences representing min and max heaps and draw the result operation.
(a)	[5 points]	Insert 47 into max heap [50, 30, 45, 25, 22, 45, 7, 3, 15, 18, 5, 9, 31]
(b)	[5 points]	Remove max value from max heap $[43, 37, 20, 20, 34, 4, 12, 9]$
(c)	[5 points]	Insert 4 into min heap [1, 24, 14, 43, 34, 23, 20, 56]

(d)	[5 points]	Remove min	value from	min heap	[4, 23, 12	, 23, 23, 7	6, 23, 79, 95	5, 79, 45, 80]	