```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
train_data=pd.read_csv("train.csv")
test_data=pd.read_csv("test.csv")
```

In [3]:

train_data.shape

Out[3]:

(4209, 378)

In [4]:

test_data.shape

Out[4]:

(4209, 377)

In [5]:

train_data

Out[5]:

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380	X382	X383	X384	X385
0	0	130.81	k	٧	at	а	d	u	j	0	 0	0	1	0	0	0	0	0	0	0
1	6	88.53	k	t	av	е	d	у	- 1	0	 1	0	0	0	0	0	0	0	0	0
2	7	76.26	az	w	n	С	d	x	j	х	 0	0	0	0	0	0	1	0	0	0
3	9	80.62	az	t	n	f	d	x	I	е	 0	0	0	0	0	0	0	0	0	0
4	13	78.02	az	٧	n	f	d	h	d	n	 0	0	0	0	0	0	0	0	0	0
4204	8405	107.39	ak	s	as	С	d	aa	d	q	 1	0	0	0	0	0	0	0	0	0
4205	8406	108.77	j	0	t	d	d	aa	h	h	 0	1	0	0	0	0	0	0	0	0
4206	8412	109.22	ak	V	r	а	d	aa	g	е	 0	0	1	0	0	0	0	0	0	0
4207	8415	87.48	al	r	е	f	d	aa	I	u	 0	0	0	0	0	0	0	0	0	0
4208	8417	110.85	Z	r	ae	С	d	aa	g	w	 1	0	0	0	0	0	0	0	0	0

4209 rows × 378 columns

In [6]:

train_data.describe()

Out[6]:

	ID	у	X10	X11	X12	X13	X14	X15	X16	X17	
count	4209.000000	4209.000000	4209.000000	4209.0	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	 4209.0
mean	4205.960798	100.669318	0.013305	0.0	0.075077	0.057971	0.428130	0.000475	0.002613	0.007603	 0.:
std	2437.608688	12.679381	0.114590	0.0	0.263547	0.233716	0.494867	0.021796	0.051061	0.086872	 0.4
min	0.000000	72.110000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.0
25%	2095.000000	90.820000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.0
50%	4220.000000	99.150000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.0
75%	6314.000000	109.010000	0.000000	0.0	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	 1.0
max	8417.000000	265.320000	1.000000	0.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	 1.0

8 rows × 370 columns

→

```
In [7]:
variance=pow(train_data.drop(columns={'ID','y'}).std(),2).to_dict()
C:\Users\Dell\AppData\Local\Temp\ipykernel_9828\3076446643.py:1: FutureWarning: Dropping of nuisance columns in Dat
aFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select
only valid columns before calling the reduction.
 variance=pow(train_data.drop(columns={'ID','y'}).std(),2).to_dict()
In [8]:
variance
Out[8]:
{'X10': 0.013130924408766528,
 'X11': 0.0,
'X12': 0.06945712925498301,
 'X13': 0.05462335372237543,
 'X14': 0.24489291460358809,
 'X15': 0.0004750593287785332,
 'X16': 0.002607236710760207,
 'X17': 0.007546747102668128,
 'X18': 0.007780719750453295,
 'X19': 0.08965996727995626,
 'X20': 0.12242957558806764
 'X21': 0.0026072367107602044,
 'X22': 0.07941395271946106,
 'X23': 0.020247554805158056,
 'X24': 0.00189752720722469.
 'X26': 0.004965595180344528,
 'X27': 0.21671422906013918,
 'X28': 0.03149732557519826.
In [9]:
for key,value in variance.items():
    if(value==0):
        print('Name=',key)
Name= X11
Name= X93
Name= X107
Name= X233
Name= X235
Name= X268
Name= X289
Name= X290
Name= X293
Name= X297
Name= X330
Name= X347
In [10]:
# drop these columns
train_data=train_data.drop(columns={'X11','X93','X107','X233','X235','X268','X289','X290','X293','X297','X330','X347'})
In [11]:
train_data.shape
Out[11]:
(4209, 366)
In [12]:
```

```
# Create independent & dependent variable
train_data_feature=train_data.drop(columns={'y','ID'})
train_data_target=train_data.y

In [13]:
```

```
train_data_feature.shape
Out[13]:
```

```
(4209, 364)
```

```
In [14]:
```

```
train_data_target.shape
```

Out[14]:

(4209,)

Applying Label Encoder

In [15]:

```
train_data_feature.describe(include="object")
```

Out[15]:

	X0	X1	X2	Х3	X4	X5	Х6	X8
count	4209	4209	4209	4209	4209	4209	4209	4209
unique	47	27	44	7	4	29	12	25
top	z	aa	as	С	d	w	g	j
frea	360	833	1659	1942	4205	231	1042	277

In [16]:

train_data_feature

Out[16]:

	X0	X1	X2	Х3	X4	X5	Х6	X8	X10	X12	 X375	X376	X377	X378	X379	X380	X382	X383	X384	X385
0	k	٧	at	а	d	u	j	0	0	0	 0	0	1	0	0	0	0	0	0	0
1	k	t	av	е	d	у	1	0	0	0	 1	0	0	0	0	0	0	0	0	0
2	az	w	n	С	d	х	j	х	0	0	 0	0	0	0	0	0	1	0	0	0
3	az	t	n	f	d	х	1	е	0	0	 0	0	0	0	0	0	0	0	0	0
4	az	v	n	f	d	h	d	n	0	0	 0	0	0	0	0	0	0	0	0	0
4204	ak	s	as	С	d	aa	d	q	0	0	 1	0	0	0	0	0	0	0	0	0
4205	j	0	t	d	d	aa	h	h	0	0	 0	1	0	0	0	0	0	0	0	0
4206	ak	v	r	а	d	aa	g	е	0	1	 0	0	1	0	0	0	0	0	0	0
4207	al	r	е	f	d	aa	1	u	0	0	 0	0	0	0	0	0	0	0	0	0
4208	z	r	ae	С	d	aa	g	w	0	0	 1	0	0	0	0	0	0	0	0	0

4209 rows × 364 columns

In [17]:

```
train_data_target
```

Out[17]:

```
0
        130.81
1
        88.53
         76.26
2
         80.62
3
4
         78.02
        ...
107.39
4204
4205
        108.77
4206
        109.22
4207
        87.48
4208
       110.85
```

Name: y, Length: 4209, dtype: float64

In [18]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
```

```
In [19]:
```

```
for i in train_data_feature.columns:
    data_type=train_data_feature[i].dtype
    if data_type=='object':
        train_data_feature[i]=le.fit_transform(train_data_feature[i])
```

In [20]:

train_data_feature

Out[20]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X380	X382	X383	X384	X385
0	32	23	17	0	3	24	9	14	0	0	 0	0	1	0	0	0	0	0	0	0
1	32	21	19	4	3	28	11	14	0	0	 1	0	0	0	0	0	0	0	0	0
2	20	24	34	2	3	27	9	23	0	0	 0	0	0	0	0	0	1	0	0	0
3	20	21	34	5	3	27	11	4	0	0	 0	0	0	0	0	0	0	0	0	0
4	20	23	34	5	3	12	3	13	0	0	 0	0	0	0	0	0	0	0	0	0
4204	8	20	16	2	3	0	3	16	0	0	 1	0	0	0	0	0	0	0	0	0
4205	31	16	40	3	3	0	7	7	0	0	 0	1	0	0	0	0	0	0	0	0
4206	8	23	38	0	3	0	6	4	0	1	 0	0	1	0	0	0	0	0	0	0
4207	9	19	25	5	3	0	11	20	0	0	 0	0	0	0	0	0	0	0	0	0
4208	46	19	3	2	3	0	6	22	0	0	 1	0	0	0	0	0	0	0	0	0

4209 rows × 364 columns

Performing Dimensionality reduction

In [21]:

from sklearn.decomposition import PCA

In [22]:

```
pca=PCA(n_components=0.95)
train_data_feature_trans=pca.fit_transform(train_data_feature)
```

In [23]:

train_data_feature_trans.shape

Out[23]:

(4209, 6)

In [24]:

```
# Split the dataset into train set & test set
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(train_data_feature_trans,train_data_target,test_size=.3,random_state=42)
```

In [25]:

```
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
```

(2946, 6)

(1263, 6)

(2946,)

(1263,)

Model building

```
In [26]:
pip install xgboost
Collecting xgboostNote: you may need to restart the kernel to use updated packages.
 Downloading xgboost-1.7.2-py3-none-win_amd64.whl (89.1 MB)
                                           --- 89.1/89.1 MB 3.0 MB/s eta 0:00:00
Requirement already satisfied: scipy in c:\users\dell\anaconda3\lib\site-packages (from xgboost) (1.9.1)
Requirement already satisfied: numpy in c:\users\dell\anaconda3\lib\site-packages (from xgboost) (1.21.5)
Installing collected packages: xgboost
Successfully installed xgboost-1.7.2
In [27]:
import xgboost as xgb
In [28]:
# Train the model
xgb_reg=xgb.XGBRegressor()
model=xgb_reg.fit(X_train,y_train)
In [29]:
# predict the test data
y_pred=model.predict(X_test)
In [30]:
#Evaluate the model performance
from sklearn.metrics import mean_squared_error
In [31]:
print('RMSE=',np.sqrt(mean_squared_error(y_pred,y_test)))
RMSE= 11.813608278556764
In [32]:
#save the model
import joblib
In [33]:
joblib.dump(model,'xgbmodel.pkl')
Out[33]:
['xgbmodel.pkl']
In [36]:
#Load the model
loaded_model=joblib.load('xgbmodel.pkl')
print('model loaded successfully')
model loaded successfully
In [37]:
# Prediction on test data
test_data=test_data.drop(columns={'X11','X93','X107','X233','X235','X268','X289','X290','X293','X297','X330','X347'})
In [38]:
test_data.shape
Out[38]:
(4209, 365)
```

```
In [39]:
test_data
Out[39]:
        ID X0 X1 X2 X3 X4 X5 X6 X8 X10 ... X375 X376 X377 X378 X379 X380 X382 X383 X384 X385
   0
                           d
                                           0 ...
                                                    0
                                                         0
                                                               0
                                                                          0
                                                                                     0
                                                                                           0
                                                                                                0
                                                                                                      0
           az
                    n
                                   а
                                      w
                                                                               0
                                                    0
                                                                          0
                                                                               0
                                                                                     0
                                                                                           0
                                                                                                0
                                                                                                      0
   1
         2
                                           0 ...
                                                         0
                                                                    0
            t
                b
                   ai
                       а
                           d
                               b
                                   g
                                      У
   2
         3
                           d
                                           0 ...
                                                   0
                                                         0
                                                               0
                                                                          0
                                                                               0
                                                                                     0
                                                                                           0
                                                                                                0
                                                                                                      0
                   as
                               а
                                      j
           az
                    n
                           d
                               z
                                   1
                                      n
                                           0 ...
                                                   0
                                                         0
                                                                          0
                                                                               0
                                                                                           0
                                                                                                0
                                                                                                      0
           az
                                                         0
                                                               0
                                                                    0
                                                                          0
                                                                               0
                                                                                           0
                                                                                                0
                                                                                                      0
         5
                           d
                                   i
                                      m
                                           0 ...
                                                                                     0
                s
                  as
                       С
                               ٧
4204 8410
            aj
                h
                   as
                           d
                              aa
                                      е
                                                   0
                                                         0
                                                               0
                                                                          0
                                                                               0
                                                                                           0
                                                                                                0
                                                                                                      0
4205 8411
                                           0 ...
                                                   0
                                                               0
                                                                    0
                                                                          0
                                                                               0
                                                                                     0
                                                                                           0
                                                                                                0
                                                                                                      0
4206 8413
                           d
                                   d
                                      W
                                           0 ...
                                                   0
                                                         0
                                                               0
                                                                    0
                                                                          0
                                                                               0
                                                                                     0
                                                                                           0
                                                                                                0
                                                                                                      0
                                           0 ...
4207 8414
           ak
                   as
                       а
                           d
                              aa
                                                   0
                                                         0
                                                                    0
                                                                          0
                                                                               0
                                                                                     0
                                                                                           0
                                                                                                0
                                                                                                      0
                                                                                                0
4208 8416
            t aa
                   ai
                       С
                           d aa
                                  g
                                           0 ...
                                                    1
                                                         0
                                                               0
                                                                    0
                                                                          0
                                                                               0
                                                                                     0
                                                                                           0
                                                                                                      0
4209 rows × 365 columns
In [41]:
test_data.isna().sum().any()
Out[41]:
False
In [42]:
test_data.columns
Out[42]:
Index(['ID', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8', 'X10',
        'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
       'X385'],
      dtype='object', length=365)
In [43]:
#create features
test_data_feature=test_data.drop(columns={'ID'})
```

In [44]:

Out[44]: (4209, 364)

In [46]:

test_data_feature.shape

for i in test_data_feature.columns:

if data_type=='object':

data_type=test_data_feature[i].dtype

test_data_feature[i]=le.fit_transform(test_data_feature[i])

```
In [47]:
test_data_feature
Out[47]:
     X0 X1 X2 X3 X4 X5 X6 X8 X10 X12 ... X375 X376 X377 X378 X379 X380 X382 X383 X384 X385
         23 34
                 5
                    3
                       26
                           0 22
                                   0
                                       0 ...
                                               0
                                                    0
                                                          0
                                                                    0
                                                                               0
                                                                                    0
                                                                                         0
                                                                                              0
                                                               1
                                                                         0
   1 42
          3
                 0
                    3
                       9
                           6 24
                                       0 ...
                                               0
                                                               0
                                                                    0
                                                                         0
                                                                              0
                                                                                    0
                                                                                         0
                                                                                              0
             8
                                   0
                                                    0
   2 21 23 17
                 5
                    3
                       0
                           9
                              9
                                   0
                                       0 ...
                                               0
                                                    0
                                                          0
                                                               1
                                                                    0
                                                                         0
                                                                              0
                                                                                    0
                                                                                         0
                                                                                              0
                   3 31 11 13
   3 21 13 34
                5
                                   0
                                       0 ...
                                               0
                                                          0
                                                                    0
                                                                         0
                                                                              0
                                                                                    0
                                                                                         0
                                                                                              0
   4 45 20 17
                2 3 30
                           8 12
                                   0
                                       0 ...
                                                    0
                                                         0
                                                               0
                                                                    0
                                                                         0
                                                                              0
                                                                                    0
                                                                                         0
                                                                                              0
4204
      6
          9 17
                 5
                    3
                           9
                              4
                                   0
                                       0 ...
                                                    0
                                                          0
                                                               0
                                                                    0
                                                                                    0
4205 42
             8
                 3
                    3
                           9 24
                                   0
                                       0 ...
                                                          0
                                                               0
                                                                    0
                                                                                    0
                                                                                         0
                                                                                              0
4206 47 23 17
                 5
                    3
                       1
                           3 22
                                   0
                                       0 ...
                                               0
                                                    0
                                                          0
                                                               0
                                                                    0
                                                                         0
                                                                              0
                                                                                    0
                                                                                         0
                                                                                              0
                                               0
4207
      7 23 17 0 3 1
                           2 16
                                   0
                                       0 ...
                                                    0
                                                               0
                                                                    0
                                                                              0
                                                                                    0
                                                                                         0
                                                                                              0
4208 42 1 8 2 3 1 6 17
                                       0 ...
                                               1
                                                    0
                                                               0
                                                                    0
                                                                         0
                                                                                         0
                                                                                              0
                                   0
                                                         0
                                                                              0
                                                                                    0
4209 rows × 364 columns
In [48]:
pca.fit(test_data_feature)
Out[48]:
PCA(n_components=0.95)
In [49]:
test_data_feature_trans=pca.fit_transform(test_data_feature)
In [50]:
test_data_feature_trans.shape
Out[50]:
(4209, 6)
In [51]:
```

prediction on test data with loaded model

91.70111], dtype=float32)

In [52]:
test_pred
Out[52]:

In []:

test_pred=loaded_model.predict(test_data_feature_trans)

array([73.558525, 93.334915, 82.57792, ..., 102.88445, 105.04327,