M368KHomework #4

Burden and Faires.

Section 8.5 ($\#2^1$, 6^2 , $7d^3$, 17^4). Section 8.6 (#1c, $2b^5$).

Programming mini-project.

The voltage output y from a microphone is sampled at equally-spaced times $t \in [0, T]$ to produce data $(t_j, y_j), j = 0...2m-1$, where m = 50. After a change of variable $x = -\pi + 2\pi t/T \in [-\pi, \pi]$, we obtain data (x_j, y_j) as shown on the left, where $x_j = -\pi + j\pi/m$. (The data points are given in a file.)

Here we remove or filter the high-frequency noise from the data by fitting it with a low-degree trigonometric polynomial as shown on the right.

- (a) Download the C++ program file program4.cpp and the data file program4.dat from the course webpage. Complete the program so that it computes the coefficients of the least-squares trigonometric polynomial $S_n(x)$ for given data (x_j, y_j) , j = 0...2m 1, and degree $2 \le n < m$. Your program should also compute the associated fitting error $E_n = \sum_j [y_j S_n(x_j)]^2$.
- (b) Find the least-squares trigonometric polynomials of degree n=2,3,4 for the data in program4.dat. For each n, report the coefficients of $S_n(x)$ and the fitting error E_n . As before, since E_n generally decreases with n, an appropriate fitting degree can be identified by increasing n from its initial value until $|E_n E_{n-1}|/E_{n-1} < 5\%$. Use this method to find an appropriate degree, and make a plot of $S_n(x)$, $x \in [-\pi, \pi]$ for this degree. Does $S_n(x)$ look like a filtered version of the noisy signal shown above? The number $\gamma = 1 \frac{n}{m} \in [0, 1]$ represents a compression ratio: a given set of 2m data points can be converted into a smaller set of 2n coefficients which can be used to approximately re-create the data when desired; $\gamma = 0$ means no compression, $\gamma = 1$ means complete compression. What is the compression ratio γ for the fitting degree you found?

Turn in: completed copy of program4.cpp and response to (b).

¹Find trig poly for n=2.

²Find trig poly for arbitrary n.

 $^{^{3}}$ Use m = 3, n = 2.

⁴Use the condition $\partial E/\partial a_k = 0$ and Eq.(8.24) to derive the expression for a_k when $k \neq 0$.

⁵For full credit use the matrix version of the FFT algo described in class.