

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES

Recherche Opérationelle

Projet

Nicolas BESSIN
Erwann ESTEVE
Tidiane POLO

1 Questions

1. Les contraintes suivantes sur μ permettent la linéarisation de $\mu = \alpha\beta$ avec $\alpha \in \{0, 1\}$ et $\beta \in [0, M]$:

$$\begin{cases} \mu \in [0,M] & \text{(domaine de définition)} \\ \mu \leq \alpha M & \text{(impose } \mu = 0 \text{ si } \alpha = 0) \\ \beta - (1-\alpha)M \leq \mu \leq \beta & \text{(impose } \mu = \beta \text{ si } \alpha = 1) \end{cases}$$

2. Les contraintes suivantes sur μ et α permettent la linéarisation de $\mu = [\beta]^+$ avec $\beta \in [-M,M]$:

$$\begin{cases} \mu \in [0,M], \alpha \in \{0,1\} & \text{(domaine de définition)} \\ \beta \leq M\alpha \leq M + \beta & \text{(impose } \alpha = 1 \text{ si } \beta > 0, \alpha = 0 \text{ si } \beta < 0) \\ \beta - (1-\alpha)M \leq \mu \leq \beta + (1-\alpha)M & \text{(impose } \mu = \beta \text{ si } \alpha = 1) \\ \mu \leq \alpha M & \text{(impose } \mu = 0 \text{ si } \alpha = 0) \end{cases}$$

Notons que α est indéterminé pour $\beta = 0$, mais qu'on a tout de même $\mu = 0 = [\beta]^+$.

3. Les contraintes suivantes sur γ et δ permettent la linéarisation de $\gamma = min(\alpha, \beta)$ avec $\alpha, \beta \in [-M, M]$:

$$\begin{cases} \gamma \in [-M, M], \delta \in \{0, 1\} & \text{(domaine de définition)} \\ \beta - \alpha \leq 2M\delta & \text{(impose } \delta = 1 \text{ si } \beta > \alpha \text{)} \\ \alpha - \beta \leq 2M(1 - \delta) & \text{(impose } \delta = 0 \text{ si } \beta < \alpha \text{)} \\ \beta - 2M\delta \leq \mu \leq \beta + 2M\delta & \text{(impose } \gamma = \beta \text{ si } \beta < \alpha \text{)} \\ \alpha - 2M(1 - \delta) \leq \mu \leq \alpha + 2M(1 - \delta) & \text{(impose } \gamma = \alpha \text{ si } \beta > \alpha \text{)} \end{cases}$$

Noton que δ est indéterminé pour $\alpha = \beta$, mais qu'on a tout de même $\gamma = \alpha = \beta = \min(\alpha, \beta)$.

Autre méthode

On introduit les variables binaires y_{α} et y_{β} , et la variable continue y. Le problème s'écrit alors :

$$\min_{\alpha,\beta,y_{\alpha},y_{\beta},y} y$$
s.c. $y \leq \alpha$

$$y \leq \beta$$

$$y \geq \alpha - 2My_{\alpha}$$

$$y \geq \beta - 2My_{\beta}$$

$$y_{\alpha} + y_{\beta} = 1$$
(1)

La contrainte $y_{\alpha} + y_{\beta} = 1$ assure que l'un des y_{α} ou y_{β} vaut zéro, c'est-à-dire que l'on a bien y qui prend la valeur α ou β . De plus, puisque c'est un problème de minimisation, on a bien $y = min(\alpha, \beta)$.

N.B.: Nous avons trouvé cette élégante méthode à ce lien.

4. On a le problème suivant :

$$\min_{\alpha,\beta,\gamma} \max(\alpha,\beta) + \gamma
\text{s.c. } A(\alpha,\beta,\gamma)^T < b$$
(2)

On introduit la variable continue δ et les contraintes suivantes :

$$\delta \ge \alpha$$

$$\delta \geq \beta$$

Le problème initial s'écrit alors :

$$\min_{\alpha,\beta,\gamma,\delta} \delta + \gamma$$
s.c. $A(\alpha,\beta,\gamma)^T \le b$

$$\alpha \le \delta$$

$$\beta < \delta$$
(3)

5. Considérons le problème suivant :

$$\min_{a,b,c} [a - \min(b,c)]^+ \tag{4}$$

On a $\forall b, c : -\min(b, c) = \max(-b, -c)$

Puisque c'est un problème de minimisation, on peut écrire :

$$\min_{\substack{a,b,c,d,e}} d \\
\min_{\substack{a,b,c,d,e}} d \\
\text{s.c. } d \ge 0 \\
d \ge a - \min(b,c) \qquad \qquad b \ge a + e \\
e \ge -b \\
e \ge -c$$

$$(5)$$

Pour linéariser les termes $p_f(v,x,y)c^c(C^f(v,x,y,z,\omega))$, on doit distribuer la multiplication (On sait linéariser les multiplications de variables binaires et de variables continues). On a donc :

$$p_f(v, x, y)c^c(C^f(v, x, y, z, \omega)) = (\sum_{s \in S} p_s x_{vs} + \sum_{q \in Q_0} p_q y_{eq})(c^c(C^f(v, x, y, z, \omega)))$$

où $c^c(C^f(v, x, y, z, \omega))$ est une variable continue, issue du regroupement des composantes du coût et de la linéarisation de la pénalité.

$$p_f(v, x, y)c^c(C^f(v, x, y, z, \omega)) = \sum_{s \in S} p_s x_{vs}(c^c(C^f(v, x, y, z, \omega))) + \sum_{q \in Q_0} p_q y_{eq}(c^c(C^f(v, x, y, z, \omega)))$$

On a donc besoin d'une borne supérieure pour $C^f(v,x,y,z,\omega)$

Même raisonnement pour $(1 - \sum_{v \in V^s} p_f(v))c^c(C^n(\omega))$:

$$[1 - \sum_{v \in V^s} p_f(v)]c^c(C^n(\omega)) = c^c(C^n(\omega)) - \sum_{v \in V^s} [\sum_{s \in S} p_s x_{vs} c^c(C^n(\omega)) + \sum_{q \in Q_0} p_q y_{eq} c^c(C^n(\omega))]$$