Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

DEPARTMENT OF MATHEMATICS

Course: Linear Algebra and Probability Theory	CIE-I	Maximum marks: 50
Course code: MAT231CT	Third semester 2023-2024 Branch: CS, CD, CY	Time: 10:00AM-11:30AM Date: 08-01-2024

Instructions to candidates:

	Answer all questions.					
Q.No	QUESTIONS	M	BT	CO		
1	Let \mathbb{R}^2 , \mathbb{R}^3 , P_4 (set of all polynomials of degree 4 or less with real coefficients) and $M_{2\times 2}$ (set of all 2×2 real matrices) be vector spaces with usual addition and scalar multiplication. Verify whether the following sets forms a subspace or not. Justify your answer. i) $S_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \middle y = x^2 \right\}$ of \mathbb{R}^2 ii) $S_2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \middle 2x = 3y \right\}$ of \mathbb{R}^2 iii) $S_3 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^3 \middle x - 4y + 5z = 0 \right\}$ of \mathbb{R}^3 iv) $S_4 = \{f(x) \in P_4 f(1) \text{ is an integer}\}$ v) $S_5 = \{A \in M_{2\times 2} det(A) \neq 0\}$.	10	2	2		
2.a	Let $u = (1,3,2,1), v = (2,-2,-5,4), w = (2,-1,3,6)$ be vectors in \mathbb{R}^4 . If possible express $t = (2,5,-4,0)$ as a linear combination of u,v and w .	5	2	2		
2.b	Determine whether the set of vectors $S = \{1 + x - 2x^2, 2 + 5x - x^2, x + x^2\}$ in P_2 is linearly independent or linearly dependent.					
3.a	Discrete random variable has the probability mass function as follows: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	1	1		
3.b	A shipment of 7 television sets contains 2 defective sets. A hotel makes a random purchase of 3 of the sets. If x is the number of defective sets purchased by the hotel, find the probability and cumulative distribution of X .	4	2	2		
4.a	The total number of hours, measured in units of 100 hours, that a family runs a vacuum cleaner over a period of one year is a continuous random variable X that has the density function $p(x) = \begin{cases} x, & 0 < x < 1, \\ 2 - x, & 1 \le x < 2, \\ 0, & elsewhere. \end{cases}$ Find the probability that over a period of one year, a family runs their vacuum cleaner i) less than 120 hours; ii) between 50 and 100 hours.	6	2	2		

4.b	The waiting time, in hours, between successive speeders spotted by a radar unit is a continuous random variable with cumulative distribution function $F(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-8x}, & x \ge 0. \end{cases}$ Find the probability density function and the probability of waiting less than 12 minutes between successive speeders.						4	2	2	
5.a	i) Hii) H	or 3 to d on a $p(x)$ y Evaluation of $p(x)$	imes on emergence in emergence (x,y) $\frac{1}{3}$ $\frac{3}{5}$ Enter the (x,y)	1 0.05 0.05 0.00	ven day. all. Their x 2 0.05 0.10 0.20 $1 ext{ distribu}$ $), P(X < x)$	3 0.1 0.35 0.10 ntions of	n numerical control machine will malfunction: enote the number of times a technician is pility distribution is given as (X) and Y (3).	6	3	3
5.b	A fair tetrahedral die (four faced die) is rolled twice. Let <i>X</i> denote the sum of two tosses less than 5 and let <i>Y</i> denote the maximum of the two tosses. Obtain the joint probability distribution function of <i>X</i> and <i>Y</i> .					4	2	2		
