Lezione del 23 aprile

Teorema 0.1. Unicità dello sviluppo in serie di Laurent di una funzione f olomorfa su una corona circolare

Dimostrazione. Senza perdità di generalità supponiamo $z_0=0$ e sia $f:D\to\mathbb{C}$ olomorfa con

$$D = \{ z \in \mathbb{C} : \rho_2 < |z| < \rho_1 \}$$

con sviluppo

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$

Sia $k \in \mathbb{Z}$ fissato e sia $\gamma : [0,1] \to D$ con $I(\gamma,0) = 1$. Calcoliamo

$$\int_{\gamma} \frac{f(z)}{z^{k+1}} dz = \int_{\gamma} \left(\frac{\sum_{n \in \mathbb{Z}} a_n z^n}{z^{k+1}} \right) dz = \int_{\gamma} \left(\sum_{n \in \mathbb{Z}} a_n z^{n-k-1} \right) dz = \sum_{n \in \mathbb{Z}} a_n \int_{\gamma} z^{n-k-1} dz$$

Ora z^i dz è esatta su $C \setminus \{0\}$ dunque su D per $i \neq -1$, dunque se $n-k-1 \neq -1$ ovveri $n \neq k$ si ha

$$\int_{\gamma} z^{n-k-1} \, \mathrm{d}z = 0$$

dunque nella somma di sopra otteniamo

$$\int_{\gamma} \frac{f(z)}{z^{k+1}} = \sum_{n \in \mathbb{Z}} \int_{\gamma} z^{n-k-1} dz = a_k \int_{\gamma} \frac{1}{z} dz = 2\pi i a_k$$

dunque a_k è univocamente determinato da f

Osservazione 1. Osserviamo che per k = -1 otteniamo

$$a_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(z) \, \mathrm{d}z$$

tale coefficiente prende il nome di residuo di f in z_0

Definizione 0.1. Sia $f: B \setminus \{z_0\} \to \mathbb{C}$ olomorfa.

Chiamiamo residuo di f in z_0

$$Res(f, z_0) = a_{-1}$$

dove

$$\sum_{n\in\mathbb{Z}} a_n (z-z_0)^n$$

è lo sviluppo di Lorent di f centrato in z_0

Proposizione 0.2 (Caratterizzazione dei poli).

Sia D aperto e $z_0 \in D$, supponiamo $f: D \setminus \{z_0\} \to \mathbb{C}$ olomorfa.

Sia z_0 una singolarità isolata di f.

Sono fatti equivalenti

1. z_0 è un polo di ordine n_0

2.
$$f(z) = \frac{g(z)}{(z-z_0)^{n_0}}$$
 dove $g \ e \ olomorfa \ in \ D \ con \ g(z_0) \neq 0$

3. $\frac{1}{f(z)}$ si estende ad una funzione olomorfa $k:U\to\mathbb{C}$ in un intorno di z_0 con z_0 zero di ordine n_0 per k

Dimostrazione.

• $1 \Rightarrow 2$. Dalla definizione di polo si ha

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n \text{ con } a_{-n_0} \neq 0$$

dunque

$$f(z) = (z - z_0)^{-n_0} \sum_{n \ge 0} a_{n-n_0} (z - z_0)^n = \frac{1}{(z - z_0)^{n_0}} g(z)$$

ora g(z) è olomorfa (è analitica) ed inoltre $g(z_0) = a_{-n_0} \neq 0$

• $2 \Rightarrow 3$ Supponiamo

$$f(z) = \frac{g(z)}{(z - z_0)^{n_0}} \text{ con } g(z_0) \neq 0$$

ora in un intorno di z_0 , la funzione g non si annulla per cui è ben definita e olomorfa la funzione

$$k(z) = \frac{1}{f(z)} = \frac{(z - z_0)^{n_0}}{g(z)}$$

tale funzione ha uno zero di ordine n_0 in z_0

• $3 \Rightarrow 1$ Se

$$k(z) = h(z)(z - z_0)^{n_0} \text{ con } h(z_0) \neq 0 \text{ e } k = \frac{1}{f}$$

allora in $B \setminus \{z_0\}$ (B palla che contiene z_0) abbiamo

$$f(z) = \frac{1}{h(z)(z - z_0)^{n_0}}$$

ora $\frac{1}{h(z)}$ è olomorfa dunque analitica da cui

$$f(z) = \left(\sum_{n\geq 0} a_n (z-z_0)^n\right) \frac{1}{(z-z_0)^{n_0}} \sum_{n\geq -n_0} a_{n+n_0} (z-z_0)^n$$

2

ora z_0 è un polo di f di ordine n_0 in quanto $a_0 \neq 0$ infatti $\frac{1}{h(z_0)} \neq 0$

Definizione 0.2. Una funzione meromorfa su D è una funzione olomorfa

$$f: D \setminus S \to C$$

dove S è un insieme discreto di punti (chiuso in D) e

$$\forall z_0 \in S$$
 f ha un polo in z_0

Osservazione 2. Grazie alla caratterizzazione dei poli, se $f,g:D\to\mathbb{C}$ sono olomorfe e g non è costantemente nulla, allora $\frac{f}{g}$ è meromorfa.

Infatti gli zeri di una funzione olomorfa sono discreti.

L'unica cosa non completamente ovvia è capire cosa succede in z_0 e tale che $f(z_0) = g(z_0)$. Se n è l'ordine di z_0 come zero di f e m è l'ordine di z_0 come zero di g.

- Se $n \geq m$ allora $\frac{f}{g}$ si estende ad una funzione olomorfa in D
- $\bullet \ {\rm Se} \ n < m$ allora $\frac{f}{g}$ ha un polo di ordine |n-m|

Andiamo a studiare i comportamenti della funzioni "vicino" alle singolarità isolate

Corollario 0.3. Se f ha un polo in z_0 allora $\lim_{z\to z_0} |f(z)| = +\infty$

Dimostrazione. Dalla caratterizzazione dei poli sappiamo che

$$f(z) = \frac{g(z)}{(z - z_0)^n} \text{ con } g(z_0) \neq 0 \text{ e } n > 0$$

dunque

$$|f(z)| = \left| \frac{g(z)}{(z - z_0)^n} \right| \to +\infty$$

Al contrario, vicino a singolarità essenziali abbiamo

Teorema 0.4 (di Weistrass). Sia z_0 una singolarità essenziale di $f: D \setminus \{z_0\} \to \mathbb{C}$. Allora per ogni intorno contenuto in D U di z_0 $f(U \setminus \{z_0\})$ è denso in \mathbb{C}

Dimostrazione. Supponiamo per assurdo che esista un intorno $U \subseteq D$ di x_0 tale che $f(U \setminus \{z_0\})$ non sia denso dunque

$$\exists a \in \mathbb{C} \ \exists R > 0 \ \text{con} \ B(a, R) \cap f(U \setminus \{z_0\}) = \emptyset$$

Sia

$$g: U \setminus \{z_0\} \to \mathbb{C} \text{ con } g(z) = \frac{1}{f(z) - a}$$

Dunque abbiamo che

$$\forall v \in U \quad |g(z)| = \frac{1}{|f(z) - a|} \le \frac{1}{R}$$

Abbiamo dunque g(z) limitata in un intorno di z_0 da cui z_0 è una singolarità eliminabile per z_0 .

Abbiamo che g si estende ad una funzione olomorfa, che denotiamo ancora g, su tutto U. Ma allora $f(z) = \frac{1}{g(z)} + a$ ha un polo in z_0 il che contraddice che z_0 sia una singolarità essenziale

Esempio 0.5. La funzione $f(z) = e^{1/z}$ ha una singolarità essenziale in $z_0 = 0$

Corollario 0.6. Se z_0 è una singolarità essenziale per f allora $\lim_{z\to z_0} f(z)$ non esiste

Dimostrazione. Dal teorema di Weistrass, segue che per ogni $a \in \mathbb{C}$ allora posso costruire una successione $z_n \to z_0$ tale che $\lim_{n \to +\infty} f(z_n) = a$.

Definizione 0.3. Sia $D \subseteq \mathbb{C}$ chiuso con $D^{\circ} \neq \emptyset$ e sia $\Gamma = \partial D$ Diciamo che D ha bordo C^{1} a tratti se pet ogni Γ_{i} componente connessa di Γ

 $\exists \gamma_i:\, J_i \to \Gamma_i \ C^1$ a tratti dove $J_i \subseteq \mathbb{R}$ intervallo e γ_i surgettiva iniettiva eccetto sugli estremi

Esempio 0.7.

- $D = \mathbb{R} \cup \overline{B(0,1)}$ ha come bordo $(-\infty,-1] \cup S^1 \cup [1,+\infty)$ dunque non ha bordo C^1 a tratti
- $D = \overline{B(0,1)}$ ha $\partial D = S^1$ ed ha perciò bordo C^1 a tratti
- $D_R = \{z \in \mathbb{C} : |z| \le R \ Im(z) \ge 0\} \ con \ R > 0 \ ha \ bordo \ C^1 \ a \ tratti$

Le componenti di bordo di un sotto
insieme D con bordo \mathbb{C}^1 a tratti si possono orienta
re canonicamente come segue

Definizione 0.4. Diciamo che $\gamma: J \to \Gamma'$ è positiva se $\forall t_0 \in J$ tale che $\gamma'(t_0)$ sia definita, il vettore $-i\gamma'(t_0)$ punta all'esterno di D in $\gamma(t_0)$

Definizione 0.5. Un vettore v "punta all'esterno di D" in $z_0 \in \partial D$ se

$$\exists \varepsilon > 0 \quad \{t \in (-\varepsilon, \varepsilon) \mid z_0 + tv \in D\} = [-\varepsilon, 0]$$

Definizione 0.6. Sia $R \subseteq D$ è un dominio con bordo C^1 di componenti connesse $\Gamma_1, \ldots, \Gamma_k$ con parametrizzazioni positive $\gamma_1, \ldots, \gamma_k$. Se ω è una 1-forma su D allora poniamo

$$\int_{\partial R} \omega = \sum_{i=1}^k \int_{\gamma_i} \omega$$