

QoS/QoE Demands of Different Web Applications

QoS Criteria & Key Performance Indicators for Application & Service Categories

QoS/QoE* for Real Time Services:

- Influence of Coding, Buffering
- Voice (ISDN, VoIP, Skype)
- Video (JPEG, MPEG coding)
- Gaming etc.
- *Quality of Experience (QoE): User Perceived Quality

Data Transfer Chain Across Telecommunication Networks & QoS Impacts

Service-, Traffic- & QoS-Classes: Categories & Demand Profiles

Service / Traffic Classes	Conversational	Streaming	Interactive	Background
	Voice Calls,	Video/audio on	Web browsing,	File Transfers,
Applications	Video Conferencing	demand, IP-TV	E-Commerce,	Downloads, P2P,
	Online Gaming		E-Learning etc.	E-Mail, SMS,
Communication- Traffic Pattern	Human-to-Human	Server → Human	Human ↔ Server	Data transfers
	Bidirectional	>90% Downstream	Query/Response	without human
	Partly Multicast	Uni/Multi/Broadcast	Pattern	interaction
QoS Parameters:	< 0.1s: excellent	ls: excellent Time sequence of		Not critical
1. Delay	>0.25s:inappropriate data to be preserved		>4s:inappropriate	
2. Failure Rate	Tolerance up to a few % bit/packet errors No failures in end-to-end transfers			
3. Bandwidth	Low & high data volume demands in each class (e.g. voice ↔ video)			
Source: UMTS Standardization by ETSI/3GPP (TS 27.107 V3.9.0, 2002)				

Future Demands for 5G Mobile Networks

Source: Next Generation Mobile Networks NGMN White Paper (March 2015)

Use case category	User Experienced Data Rate	E2E Latency	Mobility
Broadband access in	DL: 300 Mbps	10 ms	On demand,
dense areas	UL: 50 Mbps		0-100 km/h
Indoor ultra-high	DL: 1 Gbps,	10 ms	Pedestrian
broadband access	UL: 500 Mbps		
Broadband access in	DL: 25 Mbps	10 ms	Pedestrian
a crowd	UL: 50 Mbps		
50+ Mbps everywhere	DL: 50 Mbps	10 ms	0-120 km/h
	UL: 25 Mbps the engine of broadband wireless innovation		
Mobile broadband in	DL: 50 Mbps	10 ms	On demand, up
vehicles (cars, trains)	UL: 25 Mbps		to 500 km/h
Airplanes connectivity	DL: 15 Mbps per user	10 ms	Up to 1000
	UL: 7.5 Mbps per user		km/h
Ultra-low latency	DL: 50 Mbps	<1 ms	Pedestrian
	UL: 25 Mbps		
Resilience and traffic	DL: 0.1-1 Mbps	Regular	0-120 km/h
surge	UL: 0.1-1 Mbps	communication: not	
		critical	
Ultra-high reliability &	DL: From 50 kbps to 10 Mbps;	1 ms	on demand: 0-
Ultra-low latency	UL: From a few bps to 10 Mbps		500 km/h

QoS/QoE Demands of Different Web Applications

QoS Criteria & Key Performance Indicators for Application & Service Categories

QoS/QoE* for Real Time Services:

- Influence of Coding, Buffering
- Voice (ISDN, VoIP, Skype)
- Video (JPEG, MPEG coding)
- Gaming etc.

^{*}Quality of Experience (QoE): User Perceived Quality

Bandwidth is most important for QoS! Growth demand driven by video streaming

Findings

- Video on mobile devices become daily life service, supporting also HD and 3D TV.
- Further dimensions like 3D and holography.
- Hi-Resolution screen already in the market (e.g. iPhone 4G).
- Micro projectors for mobile devices to appear end of 2010.
- New technologies: Flexible, head mounted, inorganic and sensing displays.
- Large screens demand for multiple of bandwidth than mobile devices with limited screen size.
- It needs a management decision whether fix net devices should be enabled to stream over wireless networks: huge traffic impact.
- Also multiples of streaming are necessary for some use cases:
 - Gaming as a streaming scenario (picture computing in the cloud).
 - · Stream browsing (browsing in virtual rooms).

Next challenge beyond: Virtual reality

Source: Presentation by G. Kadel, Telekom Innovation Labs

Data Compression: Effect on Traffic Variability & QoS

- □ Data compression saves bandwidth, but ...
- ☐ If compression schemes reduce data, e.g. for voice and video codecs (JPEG, MPEG), then the QoE is affected
- ☐ The effect of packet loss and bit errors is increased, i.e. spread over a larger portion of data after decoding
- Coding & decoding introduces additional delays
- □ Compression often turns constant into variable bit rate traffic
 - Voice, data: On-Off traffic pattern
 - Video: compression rate depends on dynamics in scenes MPEG introduces periodically changing compression rates over time
- □ Voice & video coding can adapt to available bandwidth

Delay ↔ data loss for real time services & streaming

Components of fixed & variable delay

The probability of a packet missing the delay bound is in fact the packet loss probability

De-Jitter buffer at receiver: Packet is processed at sending time + delay bound

QoS/QoE Demands of Different Web Applications

QoS Criteria & Key Performance Indicators for Application & Service Categories

QoS/QoE* for Real Time Services:

- Influence of Coding, Buffering
- Voice (ISDN, VoIP, Skype)
- Video (JPEG, MPEG coding)
- Gaming etc.

^{*}Quality of Experience (QoE): User Perceived Quality

Voice Transmission over ISDN ↔ VoIP Integrated Services Digital Networks ↔ Voice over IP

Paket switching with buffers in switches and end systems asynchronous transfer; can tolerate delay jitter

Subjektive & Objektive Voice Quality Measurement

Subjektive Methods are based on individual user experience (MOS*-Scale)

Objektive Methods are based on automated measmt. tools

- ➤ Impairments are evaluated (Signal ÷ Noise ratio, delay, jitter)
- ➤ A User Experience Model has been standardized to evaluate voice quality depending on impariments

*MOS: Mean Opinion Score

Example: Spectrum analysis of a signal @ 700 & 1200 Hz with fading & superposed noise on the received side as part of a MOS analysis

Voice QoS Measurement on MOS- or R-Skala

R - Skala (ITU G.107) \rightarrow

100: No impairments 70: Acceptable for most users

90: Hardly noticable impariments 60: Mixed user acceptance

80: Acceptable for all users <50: Inacceptable for most users

Quality on MOS-(R-)Scale

Examples of Voice Service Quality in Specific Network Environments	R- Scale	MOS- Scale
Local connection between two ISDN phones	94	4,4
Analog voice transmission with 20ms delay	82	4,1
Connection between a mobile and analog access (mobile side)	72	3,7
Connection between a mobile and analog access (analog side)	64	3,3
Voice over IP (G.729A–Coding) with VAD and 2% packet loss	55	2,8

Quality on MOS-/R-scale for voice service use cases

Examples for Voice Quality on the MOS-(R-)Scale: Impact of the Paket Loss Rate

Delays & Coding Rates for Standard Voice Coding Methods

Coder Delay (Sender & Receiver Side)							
Coder Type	Rate (kb/s)	Frame Size (ms)	Mean Framing Delay (ms)	Look- ahead (ms)	Air Interface Framing (ms)	Mean one- way Delay (ms)	Reference to Standard
PCM	64	0.125	0.25	0		0.25	G.711, G.712
ADPCM	32	0.125	0.25	0	13.625	13.875	G.721, G.726, G.727, DECT
ADPCM	16	0.125	0.25	0		0.25	G.726, G.727
LD-CELP	16	0.625	1.25	0		1.25	G.728
CS-ACELP	8	10	20	5		25	G.729
QCELP	8	20	40	0		40	IS-96-A
RCELP	8	20	40	10		50	IS-127
RPE-LTP	13	20	40	0	35	75	GSM 06.10, Full-rate
VSELP	5.6	20	40	0	35	75	GSM 06.20, Half-rate
MP-MLQ	6.3	30	60	7.5		67.5	G.723.1
ACELP	5.3	30	60	7.5		67.5	G.723.1

PCM: Pulse code modulation; AD: Adaptive differential; CELP: Code excited linear prediction

Voice over IP (VoIP)

- > Since 2003, the first VoIP platform used on large / global scale even without any special QoS support
- ➤ Since 2009, SILK Super **Wideband Audio Codec** is made available via IETF: tools.ietf.org/html/draft-vos-silk-02 Higher sampling rate >8kHz & broader frequency range
- \triangleright Codec bit rate: 6 40 kbit/s
- ➤ Voice activity detection & silence suppression
- ➤ Packet loss resilience with Forward Error Correction (FEC) adaptive to bad transmission conditions by more control data
- > Peer-to-peer network based with server support during setup

IP packets for voice (Voice over IP ...)

High overhead for VoIP packets

A voice codec generates only a few data bytes in a pecketization period of 20ms

Headers for IP, UDP, RTP, SIP... are required ⇒

Overhead in VoIP packets exceeds payload data

Packet Size Distribution in Internet Traffic

Mean IP Packet Size: ~ 500 - 600 Byte

Most frequent packet size: Upstream:

40, 44 Byte: up to ~50% Downstream:

 \sim 1500 Byte: up to \sim 50%

Short 40 Byte Packets are prevalently TCP Acknowledgements Voice Packets <300 Byte

> Most IP traffic is transported in 1400 - 1500 Byte packets

Packet size for voice transmission

- ☐ Historic criterion: Low delay on access links
 A1500 Byte paket requires 0.1875s on a 64kbit/s ISDN access link
 ITU recommendation: <0.02 s delay per network element for real time data
 → solved by Byte-wise transmission via ISDN and SDH networks
- □ ATM Networks: Fixed packet (or cell) size of 53 Byte to undercut 0.02 s
 - → Broadband access (> 1Mbit/s) now achieves 0.12 s delay for 1500 Byte
- □ Router data throughput [in Gb/s or Tb/s]
 - → is proportional to packet size; Terabit routers go to their performance limits for bursts of small packets; energy consumption is affected
- □ Voice packets stay small:
 - A usual 16 or 64 kbit/s codec generates only 40 or 160 Byte in 0.02s,
 - \rightarrow VoIP packets are \leq 200 Byte
 - → high overhead, but still not a severe problem, because VoIP generates < 5% of the total IP traffic with decreasing tendency

QoS/QoE Demands of Different Web Applications

QoS Criteria & Key Performance Indicators for Application & Service Categories

QoS/QoE* for Real Time Services:

- Influence of Coding, Buffering
- Voice (ISDN, VoIP, Skype)
- Video (JPEG, MPEG coding)
- Gaming etc.

*Quality of Experience (QoE): User Perceived Quality

JPEG & MPEG: Picture- & Video-Coding

JPEG: Compression of single pictures (Joint Photographic Expert Group)

- ➤ Transforms pixel data of 3 Byte per pixel for color or gray level) in blocks (8 x 8, 16 x 16) via discrete Cosinus Transform;
- > JPEG is lossy depending on flexible compression rate (pixel resolution & Transform coefficient representation is variabel; Huffman coding is involved
- > Decoding & retransformation on receiver side

MPEG: Video compression exploits redundancy in a sequence of pictures (Moving Pictures Expert Group)

- > 25, 30 or more pictures (frames) per secund due to television standards
- > 3 frame typs: I-(Intracoded), P-(Predicted) & B-(Bidirectional) frames
- > I-Frames: A picture is coded by JPEG without relationship to other pictures;
- > P-Frames: The difference with regard to the last P-(I-)Frame is coded incl. pointers to blocks with only small differences;
- ➤ B-Frames: Difference to interpolation between previous & next P-(I-)frame;
- > Periodical Group-of-Pictures(GoP)-Sequence z.B.: <u>IBBPBBPBB</u> IBBP...

Dest.

Screen

MOVING PICTURE EXPERTS GROUP

Source Camera MPEG Codec Sender Buffer

MPEG-Video-Transfers: structured into Groups of Pictures (GoP) and Scenes

<www.mpeg.org>

Size of MPEG Frames

I B B P B B I

Receiver Buffer Decoding

QoS for Video Services

Main MPEG-Links & Standards

> <www.mpeg.org> MPEG-1, -2, -4, -7, A – E; dazu H.261 – H.265 bei ITU incl. video, audio & multimedia environment

MPEG QoS

- ➤ MOS scale (1-5) for video and audio measurement to be done by test persons standardization of measurement equipment like for voice QoS is under study
- ➤ Video conferencing & interactive video: Strict real time constraints (~ 0.2s maximum delay & synchronization of video / audio)
- > Video on demand (VoD): Relaxed demands (some seconds delay, if not live)
- ➤ MPEG introduces ~ 0.1s delay for reordering B-frames with next P-(I-)frame
- ➤ Transmission error tolerance depends on compression
 Pixel error rate <10⁻³ is hardly noticeable in uncompressed video
- ➤ Video is a broadband application
 Higher resolution is improving QoE up to data rates > 1Gbit/s per stream;
 Backbone capacities restrict most subscribers to a few Mbit/s (nowadays)

MPEG Video: Variable Rate Coding e.g. for Jurassic Park

Traffic rate is varying depending on the size of GoPs

GoP: Group of Pictures includes 12 Frames (IBBPBBPBBPBB)

Frame rate: 25 frames/s; 7500 frames last for about 1 hour

Source: F. Fitzek and M. Reisslein, MPEG-4 and H.263 video traces for network performance evaluation, IEEE Network (Nov. 2001) 40-54; Traces: http://trace.eas.asu.edu

Mean Traffic Rate & Standard Deviation for 8 Video-Examples: Largely different depending on movement intensity

Source: http://trace.eas.asu.edu

Real Time Video Properties & Traffic Characteristics

MPEG generates bit rate (VBR) traffic

- > The entropy for representing a picture varies over time (i.e. JPEG code size)
- ➤ The ratio of the size of P-(B-)frames compared to I-frames varies depending on the motion in a scene (fast motion: ~ 1; slow or no motion < 0.1)

MPEG provides variable compression level & allows for adaptive rate control

- ➤ Coarse ← fine resolution of pixels; more & less significant JPEG info. parts
- > MPEG coding can adapt to transmission capacity, e.g. for mobile devices
- > Classification of data for multi-level quality e.g. into DiffServ code points

Distribution of traffic rate & long term correlation

- > Various shapes of rate distribution: Log-normal; dual peak & other examples
- > High frame burstiness; smaller coefficient of variation for complete GoPs
- \triangleright Intra-GoP periodicity (time scale ~ 0.5 s)
- > Strong exponentially decreasing short range dependency (time scale < 10s)
- ➤ Long range dependency within scenes (time scale: > 3s)
 What is a scene? E.g. new scene indicated by significant change in GoP size?

YouTube Video Streaming: Traffic Profile & Adaptation to End Devices

Source: J.J. Ramos-Munoz et al.: Characteristics of Mobile YouTube Traffic IEEE Wireless Communications, Feb. 2014 pp. 18-25

YouTube Video Streaming: Traffic Profile from Measurement in DT Network

Stream characteristics (measurement in Oct. 2014):

Duration: 1328 s; Downstream Rate: 0.69Mb/s; Upstream Rate: 0.09Mb/s;

Traffic profile shows the byte count in 256 intervals of length 5.2 s;

High initial transfer volume and alternating load/stop phases are visible

Factors relevant for QoE for video streaming & conf.

- Encoding rate (evt. adaptive to network conditions)
- > Start time / time shift for live videos
- ➤ Initial buffer filling rate / Average download rate
- ➤ Viewing quality (Resolution n x m pixels, frame frequency, QoE degradations: artifacts in pictures, jumps in motion progress, stallings)
- > Audio quality
- > Audio / video synchronisation
- ➤ Enhanced synchronization for 3D and other special video applications

QoS/QoE Demands of Different Web Applications

QoS Criteria & Key Performance Indicators for Application & Service Categories

QoS/QoE* for Real Time Services:

- Influence of Coding, Buffering
- Voice (ISDN, VoIP, Skype)
- Video (JPEG, MPEG coding)
- Gaming etc.

*Quality of Experience (QoE): User Perceived Quality

Extreme QoS/QoE Demands: Gaming, Thin Clients, ...

Online Multi-User Games: >10ms of end-to-end delay mean a measurable handicap, if fast interactive reaction is relevant

Thin Clients & Cloud Computing

- ➤ PC functions are shifted to servers in a networks → cheaper terminals
 - → Those thin clients have stringent QoS demands within the network
- > Office functions are sensitiv already for small delays (< 0.1s) e.g. text editing with remote mouse/cursor control is similar to gaming ...
- > The availability of the network is also critical
- > Subjective and objective tests to determine key performance parameters for QoS/QoE of thin clinets have been studies in recent work similar to QoS modelling for voice in ITU standardization

Source: B. Staehle et al., *Quantifying the Influence of Network Conditions on the Service Quality Experienced by a Thin Client User* MMB Konf. 2008, Dortmund, Springer LNCS

Machine-to-Machine Control Applications (Industry 4.0; Car-to-car etc.) Virtual / Augmented Reality Applications

CERN: High Energy Physics Workload in Distributed Cloud

CERN: High Energy Physics Workload in Distributed Cloud home.cern, opennebula.org

CERN cloud has massive computing demands with high data volumes required per computation job

Computation is distributed over a global cloud with most data centers in Europe

Data Throughput is affected already by small delays:

Large Scale Bandwidth & QoS Tests

➤ Tests of available bandwidth for Internet access by regulator BNetzA <www.initiative-netzqualitaet.de> First reports published in April 2013

- ➤ Tests of the Connect journal since ~2009
 on VoIP, HTTP-, FTP-Transfers etc.
 <www.connect.de> → Test Netzbetreiber →
- ➤ IETF Standard. Working Group on Large-scale MeAsurement of broadband Performance (LMAP)
- > Network providers get precise feedback on QoS

TESTERGEBNISSE

ERGEBNISSE SPRACHE				
Rufaufbauzeit	(max. 30)			
erfolgreiche Gespräche	(max. 120)			
Sprachqualität	(max. 60)			
Sprachlaufzeit	(max. 60)			
SUMME SPRACHE	(MAX. 270)			
HTTP-Messungen	(max. 45)			
HTTP mit parallelem Upload	(max. 45)			
FTP-Messungen	max. 45)			
FTP mit parallelem Upload	(max. 45)			
Website-Benchmarking	(max. 50)			
SUMME DATEN	(MAX. 230)			

Conclusions: QoS demands for main IP services

- ➤ VoIP: 64kbit/s bandwidth; delay < 0.1-0.2s; < 10% packet & bit errors (depending on codec; high header overhead ↔ low mobile bandwidth)
- ➤ Video streaming: high bandwidth demand up to 1Gb/s; preserve time sequence between sender ↔ receiver; many QoE impact factors codecs with buffering and compression scheme are relevant for QoE
- ➤ Video conference: Combines demands of VoIP and video
- ➤ Audio: <1Mb/s bandwidth; synchronization with video
- Interactive and background data transfers:
 delay-tolerant elastic traffic; often high bandwidth;
 No error tolerance in data; enforced by TCP or appl. layer protocols
- Applications with strict delay tolerance: Online multi-user gaming (< 0.01s); remote desktop fct.; M2M e.g. car-to-car control