

Functional Analysis

Author: Hui Sun

Date: August 31, 2023

Contents

1 Lecture 1																									
	1.1	Lecture 2												 	 	 					 		 		3
	1.2	Lecture 3												 		 					 		 	,	4

Chapter 1 Lecture 1

Here we go.

1.0.1 Course Overview and Logistics

Some administrative things. OH are Monday, Fridays 1:45 to 2:45, Wednesdays 12:45-1:45 in Evans 811.

Textbook: an introduction to functional analysis by Conway. We will be talking about operators on Hilbert spaces, and more generally, Banach spaces, and Frechet spaces (defined by a countable numer of seminomrs).

Remark Let \mathcal{H} be a Hilbert space, then the dual space \mathcal{H}^* is itself. $\mathcal{H} = \mathcal{H}^*$. Hilbert spaces are the best spaces to work with. They are self-dual, and identified with themslyes.

Then in the next section, we will look at groups, motivated by their actions on Banach spaces, connected with Fourier transforms.

1.0.2 Motivation

Let X be a compact Hausdorff space. Let $C(X)=\{f:X\to\mathbb{R},f\text{ continuous}\}$ be the algebra of continuous functions on X mapping in to \mathbb{R} or \mathbb{C} . Define the norm as the sup norm $\|\cdot\|_{L^{\infty}}$.

We will develop the spectral theorem of operators on the Hilbert space, i..e self-adjoint operators can be diagonalized.

If T is a self-adjoint operator on a Hilbert space, then we take the product of T (polynomials of T), let $C^*(T, I_{\mathcal{H}})$ be the sub-algebra of operators generated by T and I the identity operator, then take the closure, i.e. making it closed in the operator norm.

Remark The * is to remind us, T is self-adjoint and when you take the adjoint and generate with it, it gets back into the same space.

Proposition 1.

We have the next two algebra isomorphic to each other.

$$C^*(T, I_{\mathcal{H}}) \cong C(X) \tag{1.1}$$

This is what we are aimining for. We can generalize this even further to finitely many self-adjoint operators, in some sense, we are diagonalizing finitely many operators at the same time. If $T_1, ..., T_n$ is a collection of self-adjoint operators on \mathcal{H} , and such all commute with each other, then we also have

$$C^*(T_1, ..., T_n, I_{\mathcal{H}}) \cong C(X) \tag{1.2}$$

1.0.3 Groups

Let G be a group, B be a Banach space, for example, groups of automorphisms. Let

$$Aut(B) = \{T : T \text{ is isometric, onto, invertible on } B\}$$

Definition 1.1

Suppose that α is a group homomorphisms, and $\alpha: G \to Aut(B)$, is called a representation on B or an action of the group G on B.

Then we can consider the subalgebra $\mathcal{L}(B)$, consisting of the bounded linear operators on B, generated by

$$\{\alpha_x : x \in G\}$$

Remark The identity on G should be mapped into the identity operator on B, hence no need to include it.

Elements of the form $\Sigma_{z_x} \alpha_x, z_x \in \mathbb{C}$, (where Σ is a finite sum.)

Let's introduce, $f \in C_c(G)$ are functions with compact support and in discrete groups, imply they are of finite support.

$$\sum_{x \in G} f(x)\alpha_x = \alpha_f$$

note for except finitely many x, f(x) = 0.

Let $f, g \in C_c(G)$, then for

$$\alpha_f \alpha_g = (\sum f(x)\alpha_x)(\sum g(y)\alpha_y) = \sum_{x,y} f(x)g(y)\alpha_x \alpha_y = \sum_{x,y} f(x)g(y)\alpha_{xy}$$

The last inequality follows from α being a group homomorphism. And the sums are finite hence are able to exchange the orders. We further have,

$$\alpha_f \alpha_g = \sum_x \sum_y f(x)g(x^{-1}y)\alpha_y = \sum (f * g)(y)\alpha_y$$

where we define $f * g(y) = \sum f(x)g(x^{-1}y)$ as the convolution operator.

We get

$$\alpha_f \alpha_g = \alpha_{f*g}$$

This is how we define convolution on $C_c(G)$ Notice we have, by $\|\alpha_x\|=1$,

$$\|\alpha_f\| = \|\sum f(x)\alpha_x\| \le \sum |f(x)|\|\alpha_x\| = \sum |f(x)| = l^1(f) = \|f\|_{l^1}$$

It is therefore, easy to check

$$||f * g||_{l^1} \le ||f||_{l^1} ||g||_{l^1}$$

We get $l^1(G)$ is an algebra with ??

For G commutative, it is easily connected with the Fourier transform.

Consider $l^2(G)$ with the counting measure on the group. For $x \in G$, let $\xi \in l^2(G)$ define $\alpha_x \xi(y) = \xi(x^{-1}y)$, α_x being unitary. $l^1(G)$ acts on operators in $l^2(G)$ via α .

If G is commutative, then we have

$$\overline{\alpha_{l^1(G)}} \cong C(X)$$

where X is some compact space. Note that $C_c(G)$ operators on $l^2(G)$, and $\|\alpha_f\| \leq \|f\|_{l^1}$.

1.1 Lecture 2

Let's do some math.

Let X be a Hausdorff compact space, and let C(X) denote the space of continuous functions defined on X. This is an algebra. You can multiply them, associatively and commutatively. We equip it with a norm $\|\cdot\|_{L^{\infty}}$. Note X, by assumption, is a normal space, you could have continuous functions mapped to 1 on one subset, 0 to the other subset. Hence there are many elements from C(X).

Definition 1.2 (Normed Algebra)

Let A be an algebra on \mathbb{R} or \mathbb{C} , is a normed algebra if it has a norm $\|\cdot\|$, as a vector space, such that for for $a, b \in A$, we have

$$||ab|| \le ||a|| ||b||$$

The above is called submultiplicity.

Definition 1.3 (Banach Algebra)

A Banach Algebra is a normed algebra that is complete in the metric space from the norm.

Given $x \in X$, define $\varphi_x : C(X) \to \mathbb{C}$ the evaluation map such that

$$\varphi_x(f) = f(x)$$

 φ_x is an algebra homomorphisms between $C(X) \to \mathbb{R}$ or $C(X) \to \mathbb{C}$. This simply implies

$$\varphi_x(f+g) = (f+g)(x) = f(x) + g(x), \varphi_x(fg) = (fg)(x) = f(x)g(x)$$

We now make the note that, C(X) has an identity element, which is the constant function 1, under multiplication. Hence C(X) is a unital algebra. Note that φ_x defined above is a unital homomorphism, meaning that it sends identity to identity.

Note φ_x is also a multiplicative linear functional, also unital.

Proposition 1.2

Every multiplicative linear functional on C(X) is of the form φ_x for some $x \in X$.

Proof Main Claim: given a multiplicative linear functional φ , there exists a point x_0 and if we have some $f \in C(X)$, we have $\varphi(f) = 0$, then we have $f(x_0) = 0$. To prove this claim, we need compactness. Suppose the contrary of the claim. Suppose that for each $x \in X$, there is an $f_x \in C(X)$ such that $f(x) \neq 0$, but $\varphi(f) = 0$.

Set $g_x=\overline{f}_xf_x$, then we have $g_x(x)=0$, $g_x\geq 0$, but $\varphi(g_x)=\varphi(f_x)\varphi(\overline{f}_x)=0$, then there is an open set O_x such that $x\in O_x$, and $g_x(y)>0$ for all $y\in O_x$. Now by compactness, there is $x_1,...,x_n$ such that $X=\bigcup_{j=1}^n O_{x_j}$, let $g=g_{x_1}+...g_{x_n}$, then we have g(y)>0 for all $y\in X$, and $\varphi(y)=0$. Note that g is a continuous function, and g is intvertible, and also $re(\frac{1}{q})\in C(X)$, but we also have

$$\varphi\left(g\cdot\frac{1}{q}\right) = 1$$

Hence we've reached a contradiction. Then there exists $x_0 \in X$ such that if $\varphi(f) = 0$, this means $f(x_0) = 0$. For any f, consider $f - \varphi(f) \cdot 1$, apply φ , we have

$$\varphi(f-\varphi(f)\cdot 1)=0$$
, this implies there exists x_0 , such that $(f-\varphi(f)1)(x_0)=0$

This implies $f(x_0) = \varphi(f)$ which implies $\varphi(f) = \varphi_{x_0}(f)$.

For any unital commutative algebra \mathcal{A} and let $\widehat{\mathcal{A}}$ be the set of unital homomorphisms of \mathcal{A} into the field.

For
$$\mathcal{A} = C(X)$$
, and $\varphi \in \widehat{\mathcal{A}}$.

Definition 1.4 (spectra of \mathcal{A})

For any unital commutative algebra A and let \widehat{A} be the set of unital homomorphisms of A into the field.

Remark We have $|\varphi(f)| \le ||\varphi|| ||f||_{L^{\infty}}$, since φ is unital, we have $||\varphi|| = 1$.

Thss is not always true for normed algebra, Let

$$\mathcal{A} := Poly \subset C([0,1])$$

We define $\varphi(p) = p(2)$, p is a polynomial. This is not continuous, nor is the $\|\varphi\| = 1$.

Proposition 1.3

If A is a nital commutative Banach algebra, and if $\phi \in \widehat{A}$, then we have $\|\varphi\| = 1$.

Proposition 1.4

Let A be a unital Banach algebra (not necessarily commutative), then if $a \in A$, and $||a|| \le 1$, then we have

$$1_{\mathcal{A}} - a$$
 is invertible in \mathcal{A}

Proof For this, we use completeness. $\frac{1}{1-a} = ? \sum_{n=0}^{\infty} a^n$, $a^0 = 1_A$ You could look at the partial sums. $S_m = \sum_{n=0}^m a^n$, you want to show that $\{S_m\}$ is a Cauchy sequence, and use completeness of Banach algebras. $\lim_{m\to\infty} S_m = \frac{1}{1-a}$.

To rove this is a cauchy sequence:

$$||S_n - S_m|| = ||\sum_{j=m+1}^n a^j|| \le \sum_{m+1}^n ||a^j|| \le \sum_{m+1}^n ||a||^j$$

And the fact that $||a|| \le 1$, we have the sum bounded by ϵ , hence $\{S_n\}$ is a Cauchy sequence. Let $b = \sum_{n=0}^{\infty} a^n$, we want to show that b(1-a) = 1.

$$b(1-a) = \lim_{n \to \infty} S_n(1-a) = \lim_{n \to \infty} \left(\sum_{n=0}^{\infty} a^n\right) (1-a) = \lim_{n \to \infty} (1-a^{n+1}) = 0$$

The last inequality follows from $||a^{n+1}|| \le ||a||^{n+1} \to 0$.

1.2 Lecture 3

We now begin.

Let \mathcal{A} be a unital Banach algebra, and if $a \in \mathcal{A}$ and ||a|| < 1, then we have (1 - a) has an inverse and if $\mathcal{A} = \mathcal{B}(B)$, where B is some Banach space, then $T \in \mathcal{A}$, and ||T|| < 1, then we have

$$(1-T)^{-1} = \sum T^n$$

The above is called the Newmann series.

Now we have the following corollary.

Corollary 1.1

If $a \in A$ and ||1 - a|| < 1, then a is invertible.

Proof
$$a = 1 - (1 - a)$$
.

the open ball abount 1 consists of invertible elements. If d is any invertible element, then we define $a \mapsto ad$ is continuous. Then this operation is a continuous homeomorphism of \mathcal{A} onto itself.

Denote the unit ball about 1 as O, and let d be some invertible element, under the above homeomorphism, $O \mapsto Od$, is open and consists of invertible elements.

Proposition 1.5

The set of invertible elements of A is an open subset of A.

Let $f \in C(X)$, and if $\alpha \in \text{range of } f$, so $\alpha = f(x_0)$ for some x_0 . then

$$(f - \alpha \cdot 1)(x_0) = 0$$

Hence $f(-\alpha \cdot 1)$ is not invertible.

Conversely, if we have $f - \alpha 1$ is not invertible, then there exists $x_0 \in X$ such that

$$(f - \alpha \cdot 1)(x_0) = 0$$

Hence $f(x_0) = \alpha$, i.e., $\alpha \in \text{range of } f$.

Definition 1.5 (spectrum of an element)

For any unital algebra A over some field \mathbb{F} , for any $a \in A$, the set

$$\{\alpha: a - \alpha 1_{\mathcal{A}} \text{ is not invertible }\}$$

is called the spectrum of a, denoted as $\sigma(a)$.

Proposition 1.6

Let A be a unital Banach algebra, and let $a \in A$, then if $\alpha \in \sigma(a)$, then

$$|\alpha| \le ||a||$$

Proof Suppose $|\alpha| > ||a||$, then $\alpha \neq 0$, then

$$\alpha - \alpha \cdot 1 = -\alpha(1 - \frac{a}{\alpha})$$

And by assumption, $||a/\alpha|| \le 1$, hence $(1 - a/\alpha)$ is invertible. Hence $\alpha \notin \sigma(a)$.

let φ be a multiplicative linear functional, i.e. $\varphi \in \widehat{\mathcal{A}}$, and then $\varphi(a) \in \sigma(a)$, and we have

$$|\varphi(a)| \le ||a||, ||\varphi|| = 1$$

Proof $\varphi(a - \varphi(a) \cdot 1) = 0$

Hence $a - \varphi(a)1$ is not invertible.

Proposition 1.7

 $\sigma(a)$ is a closed subset of \mathbb{R} , \mathbb{C} .

Proof $\lambda \mapsto a - \lambda 1$ is not invertible, and the map is continuous. And $\sigma(a)$ is the preimage of the complement of the set of invertible elements, and the set of invertible elements is open. And the preimage of a closed set is closed.

Let $\varphi(\widehat{\mathcal{A}})$ then $\|\varphi\|=1$. So $\widehat{\mathcal{A}}$ is a subset of the unit ball of \mathcal{A}' , which denotes the dual vector space of continuous linear transformations.

On \mathcal{A}' , we can equip the weak-* topology, i.e. the weakest topology, making the map $\psi \mapsto \psi(a)$ continuous.

Proposition 1.8

 $\widehat{\mathcal{A}}$ is closed for the weak-* topology.

Proof let $\{\varphi_{\lambda}\}$ be a net of elemnts of $\widehat{\mathcal{A}}$, that converges to some $\psi \in \mathcal{A}'$ in the weak-* topology, i.e., for every $a \in \mathcal{A}$, $\varphi_{\lambda}(a) \to \psi(a)$ for all $a \in \mathcal{A}$.

Then
$$\varphi(a,b) = \lim \varphi_{\lambda}(ab) = \lim \varphi_{\lambda}(a)\varphi_{\lambda}(b) = \varphi(a)\varphi(b)$$
. $\varphi(1) = \lim(\varphi_{\lambda}(1)) = \lim 1 = 1$.

For any normed vector space V, the closed unit ball of V' is compact in the weak-* topology.

As an immediate corollary, we have the following.

Corollary 1.2

 \widehat{A} is compact with respect to the weak-* toplogy.

 \odot

Let $\mathcal{A}=C(X)$, and $\widehat{\mathcal{A}}$, we define $x\mapsto \varphi_X$ is a bijection. The weak-* topology in $\widehat{\mathcal{A}}$ makes $\varphi_x\mapsto \varphi_x(f)=f(X)$ continuous. Such $x\mapsto \varphi_x$ is a homeomorphism of X onto \mathcal{A} .

For $\mathcal A$ unital Banach algebra, commutative, for any $a\in\mathcal A$, define

$$\widehat{a} \in C(\widehat{\mathcal{A}}), \widehat{a}(\varphi) = \varphi(a)$$

we have

$$\widehat{ab}(\varphi) = \varphi(ab) = \varphi(a)\varphi(b) = \widehat{a}(\varphi)\widehat{b}(\varphi) = (\widehat{a}\widehat{b})(\varphi)$$

Hence

$$(\widehat{ab}) = \widehat{ab}, \widehat{(a+b)} = \widehat{a} + \widehat{b}, \widehat{1}_a = 1$$

we have $a\mapsto \widehat{a}$ is a unital algebra homeomorphism from $\mathcal A$ into $C(\widehat{\mathcal A}).$