## ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ

• естественные



### техногенные















$$\lambda = \frac{v}{f} = \frac{c}{f\sqrt{\varepsilon'\mu'}}$$

где с = 3.108 м/с скорость света в вакууме,  $\varepsilon'$  - относительная диэлектрическая проницаемость,  $\mu'$  - относительная магнитная проницаемость.

### Электрическое поле

### Магнитное поле





напряженность Е (В/м)

H (A/M).



### Ближняя зона (индукции)

 происходит формирование волны

 $r < \lambda/2\pi$ 

Интенсивность  $(E u H) \sim r^{-2}$  или  $r^{-3}$ 

$$E_0$$
 (ППЭ),  $E_0$ 

$$S = E \cdot H \sim r^{-2}$$



| Наименование            |                            | Длины волн     | Частота                             |
|-------------------------|----------------------------|----------------|-------------------------------------|
| Промышленная частота    |                            | 6000 – 300 км  | 50 - 1000 Гц                        |
|                         | НЧ - ВЧ                    | 10 км – 1 м    | 30 кГц 300 МГц                      |
| диапазон<br>радиочастот | СВЧ                        | 1 м — 1 мм     | 300 МГц - 300 ГГц                   |
|                         | ИК                         | 10000 - 760 нм | $3 10^{12} - 3.94 10^{14} \Gamma$ ц |
| Оптический              | Видимый свет               | 760—390 нм     |                                     |
| диапазон                | УФ                         | 390 – 1 нм     |                                     |
| Ионизиру-<br>ющие       | Рентгеновское<br>излучение | 10—0,01Å       |                                     |
| излучения               | Гамма-<br>излучение        | 0,01 Å и менее |                                     |

1 HM = 10 Å

Характер воздействия ЭМП на организм определяется:

- частотой излучения;
- интенсивностью потока энергии (Е, Н, ППЭ)
- продолжительностью и режимом воздействия;
- размером облучаемой поверхности тела;
- индивидуальными особенностями организма;
- наличием сопутствующих вредных факторов, таких как: температура окружающей среды, шум, загазованность и другие факторы, которые снижают сопротивляемость организма.

## ВИДЫ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ НА ЖИВОЙ ОРГАНИЗМ

#### - тепловое:

ЭМП вызывает повышенный нагрев тканей человека, и если механизм терморегуляции не справляется с этим явлением, то возможно повышение температуры тела. Тепловое воздействие наиболее опасно для мозга, глаз, почек, кишечника. Облучение может вызвать помутнение хрусталика глаза (катаракту).





H4:  $\lambda >> r_T$  CB4:  $\lambda \approx r_T$ 

### ВИДЫ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ

### - нетепловое (информационное):

Под действием ЭМП изменяются микропроцессы в тканях, ослабляется активность белкового обмена, происходит торможение рефлексов, снижение кровяного давления, а в результате - головные боли, одышка, нарушение сна.

- Влияние на нервную систему
- Влияние на иммунную систему
- Влияние на эндокринную систему и нейрогуморальную реакцию
- Влияние на половую функцию

### САНИТАРНОЕ НОРМИРОВАНИЕ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ

# СанПиН 2.2.4.1191-03 ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ

устанавливают на рабочих местах:

- временные допустимые уровни (ВДУ) ослабления геомагнитного поля (ГМП),
  - ПДУ электростатического поля (ЭСП),
  - ПДУ постоянного магнитного поля (ПМП),
- ПДУ электрического и магнитного полей промышленной частоты 50 Гц (ЭП и МП ПЧ),
  - ПДУ электромагнитных полей в диапазоне частот >= 10 кГц 30 кГц,
  - ПДУ электромагнитных полей в диапазоне частот >= 30 кГц 300 ГГц.



Изменение вредности (A) в зависимости от интенсивности ЭМП (B).

Временный допустимый коэффициент ослабления интенсивности геомагнитного поля на рабочих местах персонала в помещениях (объектах, технических средствах) в течение смены

$$K_0^{\text{\tiny EMN}} = H_0 / H_{\text{\tiny B}} \leq 2$$

где |*Ho*| - модуль вектора напряженности магнитного поля в открытом пространстве;

|*Hв*| - модуль вектора напряженности магнитного поля на рабочем месте в помещении.

### • электростатическое поле (ЭСП)

Предельно допустимый уровень напряженности ЭСП равен 60 кВ/м в течение ≤1 ч.

При напряженности менее **20 кВ/м** время пребывания в ЭСП не регламентируется.

В диапазоне напряженности 20...60 кВ/м допустимое время пребывания персонала в ЭСП без средств защиты (ч)

где Е— фактическое значение напряженности ЭСП, кВ/м.

$$t_{\partial on} = \left(\frac{60}{E_{\phi a \kappa m}}\right)^2$$

### ПДУ постоянного магнитного поля

| Время                         | Условия воздействия             |                                      |                                 |                                      |  |  |  |
|-------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--|--|--|
| воздействия                   | Оби                             | цее                                  | Локальное                       |                                      |  |  |  |
| за рабочий<br>день,<br>минуты | ПДУ<br>напряжен-<br>ности, кА/м | ПДУ<br>магнитной<br>индукции,<br>мТл | ПДУ<br>напряжен-<br>ности, кА/м | ПДУ<br>магнитной<br>индукции,<br>мТл |  |  |  |
| 0 - 10                        | 24                              | 30                                   | 40                              | 50                                   |  |  |  |
| 11 - 60                       | 16                              | 20                                   | 24                              | 30                                   |  |  |  |
| 61 - 480                      | 8                               | 10                                   | 12                              | 15                                   |  |  |  |

1 А/м ~ 1,25 мкТл, 1 мкТл ~ 0,8 А/м.

Напряженность МП линии электропередачи напряжением до 750 кВ обычно не превышает 20...25 А/м.

### ЭМП промышленной частоты

- Предельно допустимый уровень напряженности ЭП на рабочем месте в течение всей смены устанавливается равным 5 кВ/м.
- при E= 5 ... 20 кВ/м допустимое время пребывания в ЭП
   T = (50/E) 2, час
- При 20 < E < 25 кВ/м допустимое время пребывания в ЭП составляет 10 мин.
- Пребывание в ЭП с напряженностью более 25 кВ/м без применения средств защиты не допускается.

- внутри жилых зданий 0,5 кВ/м;
- на территории жилой застройки 1 кВ/м;
- в населенной местности, вне зоны жилой застройки, а также на территории огородов и садов 5 кВ/м;
- на участках пересечения воздушных линий (ВЛ) с автомобильными дорогами 10 кВ/м;
- в ненаселенной местности (незастроенные местности, хотя бы и частично посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья) 15 кВ/м;
- в труднодоступной местности (не доступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения 20 кВ/м.

## ПДУ воздействия периодического магнитного поля частотой 50 Гц

| Время пребывания (час) | Допустимые уровни МП,<br>Н [А/м] / В [мкТл] при воздействии |           |  |
|------------------------|-------------------------------------------------------------|-----------|--|
|                        | общем                                                       | локальном |  |
| <= 1                   | 1600/2000                                                   | 6400/8000 |  |
| 2                      | 800/1000                                                    | 3200/4000 |  |
| 4                      | 400/500                                                     | 1600/2000 |  |
| 8                      | 80/100                                                      | 800/1000  |  |

### Средние уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м



### Нормирование ЭМИ радиочастотного диапазона

В основу гигиенического нормирования положен принцип действующей дозы.

Оценка и нормирование ЭМП диапазона частот >= 30 кГц - 300 ГГц осуществляется по величине энергетической экспозиции (ЭЭ).

#### Энергетическая экспозиция в диапазоне частот

• >= 30 кГц - 300 МГц :

$$\partial \partial_E = E^2 \cdot T$$
,  $(B/M)^2 \cdot Y$ ,  $\partial \partial_H = H^2 \cdot T$ ,  $(A/M)^2 \cdot Y$ 

• >= 300 МГц - 300 ГГц :

$$ЭЭ_{\Pi\Pi \ni} = \Pi\Pi \ni x T$$
, (Bт/м²).ч, (мкВт/см²).ч

где Е - напряженность электрического поля (В/м),

Н - напряженность магнитного поля (А/м),

Т - время воздействия за смену (час.).

ППЭ - плотность потока энергии (Вт/м², мкВт/см²).

# Предельно допустимые значения энергетической экспозиции для рабочих мест

| Диапазоны<br>частот | По электр                               | _            |                 | По магнит состав                        | итной<br>вляющей |                 | По плотности потока энергии.      |           |                         |
|---------------------|-----------------------------------------|--------------|-----------------|-----------------------------------------|------------------|-----------------|-----------------------------------|-----------|-------------------------|
|                     | ЭЭ <sub>E</sub><br>(В/м) <sup>2</sup> ч | ЕВ/м         | М               | ЭЭ <sub>н</sub><br>(A/м) <sup>2</sup> ч | H A              | \M              | ЭЭ <sub>ппэ</sub><br>(мкВт/см²) ч | ПП<br>мкЕ | Э<br>Вт/см <sup>2</sup> |
|                     |                                         | T≥<br>8<br>ч | Т≤<br>0.08<br>ч |                                         | T≥<br>8<br>ч     | Т≤<br>0.08<br>ч |                                   | Т<br>8ч   | Т≤<br>≥0.2 ч            |
| 30 кГц-3 МГц        | 20000.0                                 | 50           | 500             | 200,0                                   | 5.0              | 50              |                                   |           |                         |
| 3-30 МГц            | 7000.0                                  | 30           | 296             | -                                       | _                |                 |                                   |           |                         |
| 30-50 МГц           | 800.0                                   | 10           | 80              | 0.72                                    | 0.3              | 3               |                                   |           |                         |
| 50-300 МГц          | 800.0                                   | 10           | 80              | _                                       | _                |                 |                                   |           |                         |
| 300 МГц-300 ГГц     | <u>-</u>                                |              |                 |                                         |                  |                 | 200.0                             | 25        | 1000                    |

# Предельно допустимые уровни ЭМИ РЧ для населения, лиц, не достигших 18 лет и женщин в состоянии беременности

|                                                                                                        | •  | женност |    | 9 | Плотность<br>потока<br>энергии,<br>мкВт\см2 |
|--------------------------------------------------------------------------------------------------------|----|---------|----|---|---------------------------------------------|
| территории жилой застройки и массового отдыха, помещения жилых, общественных и производственных зданий | 25 | 15      | 10 | 3 | 100 -сканирующие антенны или кратковременно |

### ТЕХНИЧЕСКОЕ НОРМИРОВАНИЕ ЭМП

### ПЭВМ



| Вид воздействия                     | Нарушения<br>зрения | Кожные<br>заболевания | Стресс | Нарушения в период<br>беременности |
|-------------------------------------|---------------------|-----------------------|--------|------------------------------------|
| Ультрафиолетовое<br>излучение       | +                   | ?                     | ?      | ?                                  |
| Мерцание<br>изображения             | +                   | -                     | +      | ?                                  |
| Яркий видимый<br>свет               | +                   | -                     | +      | -                                  |
| Блики и<br>отражённый<br>свет       | +                   |                       | +      | -                                  |
| Статическое<br>электричество        | +                   | +                     | ?      | ?                                  |
| Электромагнитные поля низких частот | ?                   | -                     | ?      | +                                  |
| Рентгеновские<br>излучения          | ?                   | -                     | -      | +                                  |
|                                     |                     |                       |        |                                    |



Спектральная характеристика излучения монитора в диапазоне 10 Гц...400 кГц

### ГОСТ Р 50948-2001

Средства отображения информации индивидуального пользования. Общие эргономические требования и требования безопасности

• СанПиН 2.2.2/2.4.1340-03 Гигиенические требования к персональным электронновычислительным машинам и организации работы

| Наименование параметра             | Допустимое значение           |         |  |  |
|------------------------------------|-------------------------------|---------|--|--|
|                                    | СанПиН<br>2.2.2/2.4.12.40, 02 | TCO-92, |  |  |
|                                    | 2.2.2/2.4.1340-03,            | TCO-95, |  |  |
|                                    | MPR II                        | TCO-99, |  |  |
|                                    |                               | TCO-03  |  |  |
| Напряжённость электрического поля: | 25 В/м                        | 10 В/м  |  |  |
| при частотах 5 Гц2 кГц             | 2.5 В/м                       | 1 В/м   |  |  |
| при частотах 2400 кГц              |                               |         |  |  |
| Плотность магнитного потока:       | 250 нТ                        | 200 нТ  |  |  |
| при частотах 5 Гц2 кГц             | 25 нТ                         | 25 нТ   |  |  |
| при частотах 2400 кГц              |                               |         |  |  |

потенциал

500 B

15 кВ/м

500 B

Электростатический

экрана видеомонитора

поля на рабочем месте

Напряжённость электростатического



СанПиН 2.2.2/2.4.1340-03 : измерение уровней переменных электрических и магнитных полей, статических электрических полей производится вокруг ПЭВМ на расстоянии 50 см от экрана на трёх уровнях на высоте 0.5; 1.0 и 1.5 м.

### TCO:

показатели замеряются на расстоянии 30 см от фронтальной плоскости экрана и 50 см вокруг дисплея (за исключением магнитного поля в области 2... 400 кГц — где все расстояния составляют 50 см).





#### Система сотовой радиотелефонной связи



В 1910 году Ларс Эрикссон предпринял попытку сделать первый мобильный телефон

| Наименовани<br>е стандарта      | Диапазон<br>рабочих<br>частот БС | Диапазон<br>рабочих<br>частот МРТ | Максимальна<br>я излучаемая<br>мощность БС | Максимальна<br>я излучаемая<br>мощность<br>МРТ |
|---------------------------------|----------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------------|
| NMT-450<br>аналоговый           | 463 — 467,5<br>МГц               | 453 — 457,5<br>МГц                | 100 Вт                                     | 1 Вт                                           |
| AMPS<br>аналоговый              | 869 — 894<br>МГц                 | 824 — 849<br>МГц                  | 100 Вт                                     | 0,6 Вт                                         |
| D-AMPS (IS-<br>136)<br>цифровой | 869 — 894<br>МГц                 | 824 — 849<br>МГц                  | 50 Вт                                      | 0,2 Вт                                         |
| CDMA<br>цифровой                | 869 — 894<br>МГц                 | 824 — 849<br>МГц                  | 100 Вт                                     | 0,6 Вт                                         |
| GSM-900<br>цифровой             | 925 — 965<br>МГц                 | 890 — 915<br>МГц                  | 40 Вт                                      | 0,25 Вт                                        |
| GSM-1800<br>(DCS)<br>цифровой   | 1805 — 1880<br>МГц               | 1710 — 1785<br>МГц                | 20 Вт                                      | 0,125 Вт                                       |









# Гигиенические требования к размещению и

на рабочих местах

персонала БС

ПДУ на территории жилой

застройки, внутри жилых,

общественных и

производственных

помещений

| эксплуатации средств сухопутной подвижной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 |                             |                            |                             |  |  |
|---------------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------------------|--|--|
| ПДУ ЭМП базовых ст                                                              | анций                       |                            |                             |  |  |
| Нормируемые параметры                                                           | Диапазоны частот, МГц       |                            |                             |  |  |
|                                                                                 | 27 \le f < 30               | $30 \le f < 300$           | $300 \le f \le 2400$        |  |  |
| Предельно допустимое<br>значение ЭЭ                                             | 7000 (В/м) <sup>2</sup> · ч | 800 (В/м) <sup>2</sup> · ч | 200 мкВт/см <sup>2</sup> ·ч |  |  |
| Максимальный ПДУ                                                                | 296 В/м                     | 80 В/м                     | 1000 мкВт/см <sup>2</sup>   |  |  |
| ПДУ для Т >= 8 ч за смену                                                       | 30 В/м                      | 10 В/м                     | 25 мкВт/см <sup>2</sup>     |  |  |

 $10 \, \mathrm{B/M}$ 

3 B/M

 $10 \text{ мкВт/см}^2$ 





Доктор Кристофер Ньюман

# Временные допустимые уровни (ВДУ) воздействия на человека ЭМП, создаваемых подвижными станциями сухопутной радиосвязи (включая абонентские терминалы спутниковой связи) непосредственно у головы пользователя



 $27\ \text{M}\Gamma\text{Ц} \le f < 30\ \text{M}\Gamma\text{Ц} - 45\ \text{B/m};$   $30\ \text{M}\Gamma\text{Ц} \le f < 300\ \text{M}\Gamma\text{Ц} - 15\ \text{B/m};$   $300\ \text{M}\Gamma\text{Ц} \le f \le 2400\ \text{M}\Gamma\text{Ц} - 100$ 

Мартин Купер, инженер из Motorola, запатентовал конструкцию первого сотового телефона в 1975

## SAR - Specific Adsorption Rate удельная поглощенная мощность, выраженная на единицу массы тела

$$SAR = \frac{|E|^2 \sigma}{2\rho}$$
 (BT/KΓ).

где E — амплитуда электрического поля,  $\sigma$  - удельная проводимость,  $\rho$  - плотность поглощающего материала.

| Ткань        | Удельная проводимость О, См/м | Плотность $\rho$ , $\kappa \Gamma/M^3$ |
|--------------|-------------------------------|----------------------------------------|
| Мышцы        | 0.8                           | 1040                                   |
| Кожа         | 0.9                           | 1080                                   |
| Мозг         | 1.2                           | 1030                                   |
| Кость, череп | 0.3                           | 1850                                   |

#### МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ЭМП

#### » организационные

- нормирование параметров облучения
- выбор рациональных режимов работы установок;
- ограничение времени нахождения в зоне облучения;
- предупредительные надписи и знаки

#### » лечебно-профилактические

- предварительные и периодические медосмотры,
- лечение пострадавших от электромагнитного воздействия,
- временный или постоянный перевод на другую работу граждан с профессиональной патологией или усугубляющимися общими заболеваниями, а также женщин в период беременности и кормления;
- недопущение к самостоятельной работе на высокочастотных установках лиц не достигших 18 лет.

#### » инженерно-технические

#### **Инженерно-технические** мероприятия включают:

- •размещение рабочих мест в зонах ниже ПДУ излучений •защита «расстоянием» •защита «углом»
- •использование средств подавления ЭМП на источнике, на трассе распространения (экранирование), у рецептора (средства индивидуальной защиты);
- •использование коаксиальных линий передачи энергии, устранение паразитных наводок на электропровода, металлоконструкции зданий, сети водопровода и отопления, могущие быть переизлучателями электромагнитной энергии.

#### защита «расстоянием»

 $E \sim 1/Y^2$ 





• Вариант **неправильного** размещения бытовых электроприборов в квартире







#### защита «углом»

Диаграмма направленности антенны типа "Omni"

Диаграмма направленности секторной антенны





Распределение энергии излучения антенны БС





Pictures of a Nokia 5110 with the PRO TECH PLUS accessory.







### Экранирование



Степень ослабления ЭМП зависит от конструкции экрана, материала и параметров источника излучения.

Коэффициент ослабления, дБ

$$L = 20 \lg \frac{E}{E_H}$$
  $L = 20 \lg \frac{H}{H_H}$   $L = 20 \lg \frac{\Pi \Pi \Im}{\Pi \Pi \Im_H}$ 

• -отражение

• поглощение

Глубина проникновения волны, м

$$\delta = \sqrt{\frac{\rho}{2\pi f \mu' \mu_o}}$$

Необходимая толщина сплошного экрана

$$\delta = \frac{65L}{\sqrt{f\mu_a \sigma}}$$











