Mathématiques Résumé du cours en fiches MPSI-MP

Daniel Fredon

Ancien maître de conférences à l'université de Limoges

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

DANGER

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Table des matières

Partie 1 – Analyse dans ${\mathbb R}$

1	Nombres réels 1 ^{re} année	2	13	Intégrales définies 1 ^{re} année	39
2	Fonctions numériques 1 ^{re} année	6	14	Calcul des primitives 1 ^{re} année	43
3	Limites : généralités 1 ^{re} année	10	15	Formules de Taylor 1 ^{re} année	47
4	Limites : comparaisons locales	13	16	Développements limités 1 ^{re} année	48
5	1 ^{re} année Continuité	16	17	Approximation 1re année	52
6	1 ^{re} année Fonctions dérivables 1 ^{re} année	18	18	Intégration sur un intervalle quelconque 2º année	55
7	Étude globale des fonctions dérivables 1 ^{re} année	21	19	Généralités sur les équa- tions différentielles 1 ^{re} année	60
8	Logarithmes, exponentielles et puissances	24	20	Équations différentielles linéaires 1 ^{re} année et 2 ^e année	62
9	Fonctions circulaires et réciproques	28	21	Systèmes différentiels linéaires ^{2° année}	66
10	Fonctions hyperboliques et réciproques 1 ^{re} année	32	22	Notions sur les équations différentielles non linéaires 1 ^{re} année et 2 ^e année	68
11	Suites numériques 1 ^{re} année	34	23	Séries numériques ^{2º} année	70
12_	Suites particulières	37			

Partie 2 – Analyse dans \mathbb{R}^n

24	Espaces vectoriels normés 2 ^e année	76	31	Intégrales curvilignes ^{2º} année	98
25	Continuité ^{2e} année	80	32	Suites de fonctions 2 ^e année	102
26	Ensembles particuliers 2 ^e année	83	33	Séries de fonctions 2 ^e année	104
27	Calcul différentiel dans \mathbb{R}^n	86	34	Séries entières ^{2°} année	107
28	Différentiabilité 2 ^e année	89	35	Séries de Fourier ^{2^e année}	112
29	Extremum d'une fonction à plusieurs variables 2e année	92	36	Fonctions définies par une intégrale 2 ^e année	115
30	Intégrales doubles 1 ^{re} année	94			

Partie 3 – Algèbre générale

37	Logique binaire 1 ^{re} année	120	43	Groupes 1 ^{re} année	136
38	Ensembles 1 ^{re} année	123	44	Autres structures algébriques 1 ^{re} année	140
39	Applications 1 ^{re} année	125	45	Arithmétique dans Z	144
40	Relations 1 ^{re} année	128	46	Nombres complexes	148
41	Entiers naturels 1 ^{re} année	130	47	Exponentielle complexe	151
42	Dénombrement 1 ^{re} année	133		1 ^{re} année	151

Table des matières

48	Nombres complexes et géométrie plane 1 ^{re} année	154	50	Divisibilité dans $\mathbb{K}[X]$ 1re année	160
				Fractions rationnelles	162
49	Polynômes 1 ^{re} année	156	31	1 ^{re} année	

Partie 4 – Algèbre linéaire et multilinéaire

52	Structure d'espace vectoriel	166	60	Déterminants 1 ^{re} année	193
53	Dimension d'un espace vectoriel	169	61	Réduction des endomorphismes 2 ^e année	197
54	1 ^{re} année et 2 ^e année Applications linéaires	173	62	Polynômes annulateurs 2 ^e année	200
EE	1 ^{re} année et 2 ^e année Applications linéaires		63	Espaces préhilbertiens 2 ^e année	202
55	particulières 1 ^{re} année	178	64	Orthogonalité ^{2e} année	207
56	Écritures matricielles 1 ^{re} année	180	65	Espaces vectoriels euclidiens 2e année	211
57	Calcul matriciel 1 ^{re} année	183	66	Endomorphismes orthogonaux	212
58	Changements de bases 1 ^{re} année	186	_	2 ^e année Endomorphismes	<u>_</u>
59	Systèmes linéaires	189	67	symétriques 2º année	216

Table des matières

Partie 5 – Géométrie

68	Espaces affines 1 ^{re} année	220	75	Coniques 1 ^{re} année	238
69	Applications affines 1 ^{re} année	222	76	Courbes planes paramétrées 1re année	241
70	Barycentres	225		1'~ annee	
	1 ^{re} année		77	Courbes planes en coordonnées polaires	244
71	Calcul vectoriel 1re année	227		1 ^{re} année	
72	Géométrie euclidienne du plan et de l'espace 1 ^{re} année	230	78	Étude métrique des courbes planes 1 ^{re} année	246
73	Isométries du plan et de l'espace 1 ^{re} année	233		Généralités sur les surfaces ^{2º} année	248
74	Similitudes directes du plan	236	80	Surfaces usuelles 2 ^e année	250
	1 ^{re} année		81	Quadriques 2 ^e année	253
			Index		255

$$\frac{ct_{9x-2}}{2\pi x_3} = \frac{1}{2\pi x_3}$$

$$\frac{x}{n!} = \frac{x}{n!}$$

$$\frac{x}$$

1

Nombres réels

1^{re} année

1. Premières propriétés

1.1 Corps ordonné

On dit que l'ensemble $\mathbb R$ des nombres réels est

- un **corps** pour dire qu'il est muni de deux opérations + et ×, avec toutes les propriétés dont vous avez l'habitude ;
- un corps ordonné pour dire que la relation d'ordre

 est compatible avec +
 et x, c'est-à-dire :

$$\forall a \in \mathbb{R} \quad \forall b \in \mathbb{R} \quad \forall c \in \mathbb{R} \qquad a \leqslant b \Longrightarrow a + c \leqslant b + c$$

$$\forall a \in \mathbb{R} \quad \forall b \in \mathbb{R} \quad \forall c \geqslant 0 \qquad a \leqslant b \Longrightarrow ac \leqslant bc$$

1.2 Règles de calcul

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (formule du binôme)

$$\operatorname{où}\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-k-1} y^{k}.$$

1.3 Valeur absolue

• La valeur absolue d'un réel a, notée |a|, est définie par :

$$|a| = a$$
 si $a \ge 0$; $|a| = -a$ si $a \le 0$.

• Propriétés $\forall a \in \mathbb{R} \quad \forall b \in \mathbb{R}$

$$|a| \geqslant 0$$
 ; $|a| = 0 \iff a = 0$; $|ab| = |a| |b|$
 $|a+b| \leqslant |a| + |b|$; $|a| - |b| \leqslant |a-b|$

1.4 Propriété d'Archimède

Soit $a \in \mathbb{R}$ et b > 0. Alors il existe $k \in \mathbb{N}$ tel que bk > a.

Analyse dans ${\mathbb R}$

2. Intervalles

2.1 Définitions

Pour $a \le b$, le segment [a,b] est défini par :

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

On utilise souvent la propriété :

$$c \in [a,b] \iff \exists t \in [0,1] \quad c = ta + (1-t)b$$

On définit de même les autres types d'intervalles :

$$[a,b[,[a,b[,]a,b],]a,+\infty[,[a,+\infty[,]-\infty,b[,]-\infty,b],]-\infty,+\infty[=\mathbb{R}.$$

2.2 Propriété caractéristique

Une partie A de \mathbb{R} est un intervalle si, et seulement si :

$$\forall a \in A \quad \forall b \in A \qquad a < c < b \Longrightarrow c \in A.$$

2.3 Voisinage d'un point

Soit $a \in \mathbb{R}$. Une partie V de \mathbb{R} est un voisinage de a si elle contient un intervalle ouvert centré sur a.

2.4 Densité de $\mathbb Q$ dans $\mathbb R$

Tout intervalle]a,b[non vide contient au moins un rationnel et un irrationnel.

On dit que \mathbb{Q} et son complémentaire $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

3. Ordre dans \mathbb{R}

3.1 Majoration, minoration

Définitions

Soit A une partie de \mathbb{R} . On dit que a est un majorant de A si $x \leq a$ pour tout x de A.

Si, en plus, $a \in A$, alors a est le plus grand élément de A, noté max A.

Si A admet un majorant, on dit que A est majorée.

On définit de même : minorant, plus petit élément, partie minorée.

Unicité

Dunod – La photocopie non autorisée est un délit.

Si une partie non vide de $\mathbb R$ admet un plus grand élément, ou un plus petit élément, il est unique. Mais il peut ne pas exister.

Nombres réels

Surveillez votre vocabulaire : un majorant, le plus grand élément.

· Cas particulier des entiers naturels

Toute partie non vide de N admet un plus petit élément.

Toute partie non vide majorée de N admet un plus grand élément.

3.2 Borne supérieure, inférieure

Définitions

La borne supérieure de A est le plus petit élément (s'il existe) de l'ensemble des majorants de A.

La borne inférieure de A est le plus grand élément (s'il existe) de l'ensemble des minorants de A.

Caractérisation

M est la borne supérieure de A si, et seulement si, on a, à la fois :

 $\forall x \in A \quad x \leq M$, c'est-à-dire que M est un majorant ;

 $\forall \varepsilon > 0 \quad \exists \ x \in A \quad M - \varepsilon < x$, c'est-à-dire que $M - \varepsilon$ n'est pas un majorant. m est la borne inférieure de A si, et seulement si, on a, à la fois :

 $\forall x \in A \quad m \leq x$, c'est-à-dire que m est un minorant ;

 $\forall \varepsilon > 0 \quad \exists \ x \in A \quad x < m + \varepsilon$, c'est-à-dire que $m + \varepsilon$ n'est pas un minorant.

• Remarque

Si A admet un plus grand élément, alors c'est la borne supérieure de A.

Si A admet un plus petit élément, alors c'est la borne inférieure de A.

· Théorème d'existence

Toute partie non vide et majorée (resp. minorée) de $\mathbb R$ admet une borne supérieure (resp. inférieure).

3.3 Droite numérique achevée

Pour ne pas avoir de restriction dans le théorème précédent, on considère un nouvel ensemble noté $\overline{\mathbb{R}}$ obtenu à partir de \mathbb{R} par l'adjonction de deux éléments notés $-\infty$ et $+\infty$.

On prolonge à $\overline{\mathbb{R}}$ la relation d'ordre en posant pour tout $a \in \mathbb{R}$:

$$-\infty < a < +\infty$$
.

On définit ainsi la droite numérique achevée dont le plus grand élément est $+\infty$, le plus petit élément $-\infty$.

Et le théorème précédent se généralise :

Toute partie non vide de $\overline{\mathbb{R}}$ admet une borne supérieure et une borne inférieure dans $\overline{\mathbb{R}}$.

4. Approximations décimales

4.1 Valeurs approchées

Soit $a \in \mathbb{R}$, $b \in \mathbb{R}$, $\varepsilon > 0$. On dit que b est une valeur approchée de a à ε près si $|a - b| < \varepsilon$, c'est-à-dire si $b \in]a - \varepsilon, a + \varepsilon[$.

On parle de valeur approchée par excès si b > a et par défaut si b < a.

4.2 Partie entière

Étant donné un nombre réel x, il existe un plus grand entier relatif, noté E(x) ou [x], tel que $E(x) \le x$.

On l'appelle la partie entière de x. On a donc, par définition : $E(x) \le x < E(x) + 1$.

Dunod – La photocopie non autorisée est un délit.

Attention à ne pas confondre avec la suppression de la partie décimale quand x < 0; par exemple E(-4,3) = -5.

4.3 Valeurs décimales approchées

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Il existe un entier d unique tel que

$$d \times 10^{-n} \le x < (d+1) \times 10^{-n}$$
.

d est la partie entière de $10^n x$.

 $d \times 10^{-n}$ s'appelle la valeur décimale approchée de x à 10^{-n} près par défaut, et $(d+1) \times 10^{-n}$ celle par excès.

Fonctions numériques

1^{re} année

1. Définitions

1.1 Fonction numérique

Définir une fonction numérique f sur une partie non vide E de \mathbb{R} , c'est indiquer comment faire correspondre au plus un réel y à tout x de E.

Le réel y est l'image de x par f et s'écrit f(x). On note :

$$f: E \longrightarrow \mathbb{R}$$

 $x \mapsto f(x)$

L'ensemble des réels qui ont effectivement une image par f est l'ensemble de définition de f. Il est noté D_f , ou D s'il n'y a pas d'ambiguité.

1.2 Représentation graphique

Le plan étant rapporté à un repère $(O, \overrightarrow{i}, \overrightarrow{j})$, la représentation graphique de f est l'ensemble \mathcal{C}_f des points de coordonnées (x, f(x)) avec $x \in D_f$.

1.3 Images et images réciproques d'ensembles

Soit $A \subset D_f$. L'image de A par f est l'ensemble :

$$f(A) = \{ f(x) ; x \in A \}.$$

Soit $B \subset \mathbb{R}$. L'image réciproque de B par f est l'ensemble :

$$f^{-1}(B) = \{ x \in D_f \; ; \; f(x) \in B \} \, .$$

Attention à ne pas confondre avec la réciproque d'une bijection. Ici, on ne suppose rien sur f.

1.4 Restriction, prolongement

Soit f une fonction définie sur I et g une fonction définie sur J. Si $I \subset J$ et si f(x) = g(x) pour tout x de I, on dit que f est une restriction de g, ou que g est un prolongement de f.

Analyse dans ${\mathbb R}$

2. Premières propriétés

2.1 Parité

• f est paire si

$$\forall x \in D_f$$
 $(-x) \in D_f$ et $f(-x) = f(x)$.

Son graphe est symétrique par rapport à (Oy).

• f est impaire si

$$\forall x \in D_f$$
 $(-x) \in D_f$ et $f(-x) = -f(x)$.

Son graphe est symétrique par rapport à O.

2.2 Périodicité

f est périodique, de période T (ou T-périodique), si

$$\forall x \in D_f$$
 $(x+T) \in D_f$ et $f(x+T) = f(x)$.

Son graphe est invariant par les translations de vecteurs $kT \xrightarrow{i}$ avec $k \in \mathbb{Z}$.

2.3 Sens de variation

• f est croissante sur I si $I \subset D_f$ et

$$\forall x_1 \in I \quad \forall x_2 \in I \qquad x_1 < x_2 \Longrightarrow f(x_1) \leqslant f(x_2)$$
.

• f est décroissante sur I si $I \subset D_f$ et

$$\forall x_1 \in I \quad \forall x_2 \in I \quad x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2)$$
.

- f est monotone sur I si elle est croissante sur I, ou décroissante sur I.
- Avec des inégalités strictes, on définit : f strictement croissante, strictement décroissante, strictement monotone, sur D_f .

2.4 Extremum

Dunod – La photocopie non autorisée est un délit.

• f admet un maximum (resp. minimum) global en x_0 si :

$$\forall x \in D_f$$
 $f(x) \leqslant f(x_0)$ (resp. $f(x) \geqslant f(x_0)$).

• f admet un maximum (resp. minimum) local en $x_0 \in D_f$, s'il existe un intervalle ouvert $I \subset D_f$, tel que :

$$\forall x \in I \quad f(x) \leqslant f(x_0) \quad (\text{resp.} f(x) \geqslant f(x_0)).$$

Un maximum ou un minimum local est dit extremum local en x_0 .

Un extremum est un maximum ou un minimum.

2 Fonctions numériques

2.5 Fonction lipschitzienne

f est une fonction lipschitzienne de rapport k, ou k-lipschitzienne, si :

$$\forall x \in D \quad \forall y \in D \quad |f(x) - f(y)| \le k |x - y|.$$

Lorsque k < 1, f est dite contractante.

3. Relation d'ordre

3.1 Comparaison de fonctions

f et g étant deux fonctions, à valeurs réelles, définies sur le même ensemble de définition D, on note $f \le g$ (resp. $f \ge g$) si :

$$\forall x \in D \quad f(x) \leqslant g(x) \quad (\text{resp.} f(x) \geqslant g(x)).$$

Si $f \ge 0$, f est dite positive.

3.2 Majorant, minorant

Si l'ensemble des images f(D) est majoré, ou minoré, ou borné, on dit que f est majorée, ou minorée, ou bornée.

Si l'image f(I) de I admet une borne supérieure, ou une borne inférieure, on parle de borne supérieure, de borne inférieure, de f sur I et on note :

$$\sup_{x \in I} f(x) \quad ; \quad \inf_{x \in I} f(x).$$

3.3 Propriétés

$$\inf_{x \in I} f(x) = -\sup_{x \in I} \left(-f(x) \right).$$

Si, pour tout $x \in I$, on a $f(x) \leq g(x)$, alors $\sup_{x \in I} f(x) \leq \sup_{x \in I} g(x)$.

Si
$$I \subset J$$
, on a $\sup_{x \in I} f(x) \leqslant \sup_{x \in J} f(x)$.

4. Opérations sur les fonctions

4.1 Valeur absolue d'une fonction

f étant définie sur D, la fonction |f| est définie sur D par $x \mapsto |f(x)|$.

On définit aussi f^+ et f^- sur D par :

$$f^+(x) = \sup (f(x), 0)$$
; $f^-(x) = \sup (-f(x), 0)$.

On a alors $f = f^+ - f^-$ et $|f| = f^+ + f^-$.

Analyse dans ${\mathbb R}$

4.2 Opérations algébriques

Soit f et g deux fonctions numériques et λ un réel.

La fonction λf est définie sur D_f par :

$$(\lambda f)(x) = \lambda f(x).$$

La fonction f + g est définie sur $D_f \cap D_g$ par :

$$(f+g)(x) = f(x) + g(x).$$

La fonction f g est définie sur $D_f \cap D_g$ par :

$$(f g)(x) = f(x)g(x).$$

La fonction $\frac{f}{g}$ est définie sur $D_f \cap D_g \setminus \{x \; ; \; g(x) = 0\}$ par :

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)} \cdot$$

4.3 Composition

Dunod – La photocopie non autorisée est un délit.

On appelle composée de f par g la fonction, notée $g \circ f$, définie sur $D_f \cap \overset{-1}{f}(D_g)$ par :

$$(g \circ f)(x) = g(f(x)).$$

Limites: généralités

1^{re} année

1. Limites

Soit f une fonction, à valeurs réelles, définie sur un intervalle I contenant au moins deux points.

1.1 Limite d'une fonction en x_0

Soit x_0 un point appartenant à I, ou extrémité de I. On dit que f admet une limite finie l en x_0 , et on note $\lim_{x\to x_0} f(x) = l$, si :

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| \leqslant \delta \Longrightarrow |f(x) - l| \leqslant \varepsilon.$$

Cette limite peut exister même si f n'est pas définie en x_0 . Mais si f est définie en x_0 et si $\lim_{x \to x_0} f(x)$ existe, alors $\lim_{x \to x_0} f(x) = f(x_0)$.

Si une fonction admet une limite l en x_0 , cette limite est unique.

1.2 Limite à gauche, limite à droite

- f admet une limite à droite l en x_0 si la restriction de f à $l \cap]x_0, +\infty[$ admet pour limite l en x_0 . On note : $\lim_{x \to x_0^+} f(x) = l$.
- f admet une limite à gauche l en x_0 si la restriction de f à $I \cap]-\infty, x_0[$ admet pour limite l en x_0 . On note : $\lim_{x \to x_0^-} f(x) = l$.
- Si f est définie sur un intervalle de la forme $]x_0 a, x_0 + a[$, sauf en x_0 , alors :

$$\lim_{x \to x_0} f(x) = l \quad \Longleftrightarrow \quad \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l.$$

Si f est définie en x_0 , ces deux limites doivent aussi être égales à $f(x_0)$.

1.3 Limite infinie en x_0

• On dit que f tend vers $+\infty$ quand x tend vers x_0 si:

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| \leq \delta \Longrightarrow f(x) \geqslant A$$
.

On note : $\lim_{x \to x_0} f(x) = +\infty$.

• On dit que f tend vers $-\infty$ quand x tend vers x_0 si:

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| \leqslant \delta \Longrightarrow f(x) \leqslant -A.$$

On note :
$$\lim_{x \to x_0} f(x) = -\infty$$
.

1.4 Limite de f lorsque x tend vers $+\infty$ ou $-\infty$

• On dit que f a pour limite l quand x tend vers $+\infty$ si:

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x \geqslant B \Longrightarrow |f(x) - l| \leqslant \varepsilon.$$

On note :
$$\lim_{x \to +\infty} f(x) = l$$
.

On définit de manière analogue $\lim_{x \to -\infty} f(x) = l$.

• On dit que f tend vers $+\infty$ quand x tend vers $+\infty$ si:

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x \geqslant B \Longrightarrow f(x) \geqslant A$$
.

On note :
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

On définit de manière analogue $\lim_{x \to -\infty} f(x) = +\infty$...

2. Propriétés des limites

2.1 Propriétés liées à l'ordre

Dunod – La photocopie non autorisée est un délit.

- Si f admet une limite finie en x_0 , alors f est bornée au voisinage de x_0 .
- Si f admet une limite finie l > 0 en x_0 , alors il existe a > 0 tel que $f \ge a$ au voisinage de x_0 .
- Si f est positive au voisinage de x_0 et admet une limite finie l en x_0 , alors $l \ge 0$.
- Si $f \leqslant g$ au voisinage de x_0 , et si $\lim_{x \to x_0} f(x) = l$ et $\lim_{x \to x_0} g(x) = m$, alors $l \leqslant m$.
- Théorème d'encadrement (ou des gendarmes, ou sandwich)

Soit f, g et h trois fonctions définies au voisinage de x_0 , et vérifiant $f \le g \le h$ au voisinage de x_0 .

Si f et h ont la même limite l (finie ou infinie) en x_0 , alors g a pour limite l en x_0 .

• Soit f et g deux fonctions définies au voisinage de x_0 , et vérifiant $f \leq g$ au voisinage de x_0 .

Si
$$\lim_{x \to x_0} f(x) = +\infty$$
, alors $\lim_{x \to x_0} g(x) = +\infty$.

Si
$$\lim_{x \to x_0} g(x) = -\infty$$
, alors $\lim_{x \to x_0} f(x) = -\infty$.

2.2 **Opérations algébriques**

Soit f et g deux fonctions définies au voisinage de x_0 et admettant des limites l et m en x_0 , et λ un réel.

Alors les fonctions f + g, λf et fg admettent respectivement pour limites en x_0 : l+m, λf et lm.

Si de plus $m \neq 0, \frac{1}{g}$ a pour limite $\frac{1}{m}$.

Fonction composée 2.3

• Soit f une fonction définie au voisinage de x_0 avec $\lim_{x \to x_0} f(x) = u_0$ et g définie au voisinage de u_0 telle que $\lim_{u \to u_0} g(u) = v$.

Alors $g \circ f$ est définie au voisinage de x_0 et $\lim_{x \to x_0} g(f(x)) = v$.

Image d'une suite convergente

Soit f définie sur un intervalle I et a un point de I.

f a pour limite l au point a si, et seulement si, pour toute suite (x_n) convergeant vers a, la suite $(f(x_n))$ converge vers l, finie ou non.

Pour démontrer qu'une fonction f n'a pas de limite lorsque x tend vers a, il suffit de fournir un exemple de suite (x_n) qui tende vers aet telle que $(f(x_n))$ soit divergente.

Cas des fonctions monotones 2.4

Soit f une fonction monotone sur a,b. Elle admet en tout point a0 de a0 une limite à droite et une limite à gauche.

Lorsque f est croissante, si elle est majorée, elle admet en b une limite à gauche finie, si elle n'est pas majorée, elle tend vers $+\infty$ quand x tend vers b^- .

Pour f décroissante, on a la propriété analogue en a.

1^{re} année

1. Comparaison au voisinage d'un point

Soit f et g deux fonctions définies sur I, et x_0 un point, fini ou infini, appartenant à I, ou extrémité de I.

1.1 Définitions

• On dit que f est dominée par g au voisinage de x_0 s'il existe A > 0 tel que $|f(x)| \le A |g(x)|$ pour tout x d'un voisinage J de x_0 .

notation: f = O(g).

Si g ne s'annule pas sur J, cela signifie que $\frac{f}{g}$ est bornée sur J.

• On dit que f est négligeable devant g, ou que g est prépondérant devant f, au voisinage de x_0 si, pour tout $\varepsilon > 0$, il existe un voisinage J de x_0 tel que l'on ait $|f(x)| \le \varepsilon |g(x)|$ pour tout x de J.

notation : f = o(g).

Si g ne s'annule pas au voisinage de x_0 , cela signifie :

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = 0.$$

• On dit que f et g sont équivalentes au voisinage de x_0 , si on a f - g = o(g). Si g ne s'annule pas au voisinage de x_0 , cela signifie :

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = 1.$$

notation: $f \sim g$ ou $f \sim_{r_0} g$.

La relation $\underset{x_0}{\sim}$ est transitive. Si on sait que $f\underset{x_0}{\sim}g$ et $g\underset{x_0}{\sim}h$, on en déduit que $f\underset{x_0}{\sim}h$.

1.2 Exemples fondamentaux

Au voisinage de $+\infty$, on a :

$$(\ln x)^{\alpha} = o(x^{\beta})$$
 et $x^{\beta} = o(e^{\gamma x})$ où $\alpha > 0$, $\beta > 0$, $\gamma > 0$.

Dunod – La photocopie non autorisée est un délit

4 Limites: comparaisons locales

Au voisinage de 0, on a :

$$|\ln x|^{\alpha} = o(x^{\beta})$$
 où $\alpha > 0$ et $\beta < 0$.

1.3 Propriétés des fonctions équivalentes

Si
$$f_1 \sim g_1$$
 et $f_2 \sim g_2$, alors $f_1 f_2 \sim g_1 g_2$ et $\frac{f_1}{f_2} \sim \frac{g_1}{g_2}$.
Si $f \sim g$ et si $\lim_{x \to x_0} g(x) = l$, alors $\lim_{x \to x_0} f(x) = l$.

Des deux théorèmes précédents, il résulte que, lorsque l'on a à chercher la limite d'un produit ou d'un quotient, on peut remplacer chacune des fonctions par une fonction équivalente, choisie pour simplifier le calcul.

Mais attention à ne pas effectuer un tel remplacement dans une somme, ni dans une fonction composée.

1.4 Équivalents classiques

$$e^{x} - 1 \underset{0}{\sim} x$$
 ; $\sin x \underset{0}{\sim} x$; $1 - \cos x \underset{0}{\sim} \frac{x^{2}}{2}$; $\ln(1+x) \underset{0}{\sim} x$; $\tan x \underset{0}{\sim} x$; $(1+x)^{\alpha} - 1 \underset{0}{\sim} \alpha x$.

2. Branche infinie d'une courbe

2.1 Définition

La courbe représentative C_f d'une fonction f admet une branche infinie lorsque OM tend vers l'infini avec $M \in C_f$.

2.2 Asymptote

Si $\lim_{x \to +\infty} f(x) = l$ (resp. $\lim_{x \to -\infty} f(x) = l$), la droite y = l est une asymptote horizontale de \mathcal{C}_f .

Si $\lim_{x \to x_0} f(x) = +\infty$ (resp. $\lim_{x \to x_0} f(x) = -\infty$), la droite $x = x_0$ est une asymptote verticale de \mathcal{C}_f .

Si $\lim_{x \to +\infty} [f(x) - (ax + b)] = 0$ (resp. $\lim_{x \to -\infty} [f(x) - (ax + b)] = 0$), la droite y = ax + b est une asymptote oblique de \mathcal{C}_f .

O Dunod – La photocopie non autorisée est un délit.

2.3 Branche parabolique

Soit f admettant une limite infinie en $+\infty$ (resp. $-\infty$).

- Si $\frac{f(x)}{x}$ admet une limite infinie en $+\infty$ (resp. $-\infty$), la courbe \mathcal{C}_f présente une branche parabolique verticale.
- Si $\frac{f(x)}{x}$ admet une limite finie a lorsque x tend vers $+\infty$ (resp. $-\infty$) et si f(x) ax a une limite infinie, la courbe \mathcal{C}_f présente une branche parabolique de pente a.

5

Continuité

1^{re} année

1. Continuité

1.1 Continuité en un point

- f est continue en x_0 si elle est définie en x_0 et si $\lim_{x \to x_0} f(x) = f(x_0)$.
- f est continue à droite (resp. à gauche) en x_0 si $\lim_{x\to x_0^+} f(x) = f(x_0)$ (resp. $\lim_{x\to x_0^-} f(x) = f(x_0)$).

· Prolongement par continuité

Soit f une fonction définie sur I et $x_0 \notin I$. Si $\lim_{x \to x_0} f(x) = l$, la fonction \tilde{f} définie

sur $I \cup \{x_0\}$ par $\tilde{f}(x_0) = l$ et $\tilde{f}(x) = f(x)$ pour $x \in I$, est la seule fonction continue en x_0 dont la restriction à I soit f. On l'appelle le prolongement par continuité de f en x_0 .

1.2 Continuité sur un intervalle

- Soit *E* un ensemble qui soit un intervalle ou une réunion d'intervalles. Une fonction *f*, définie sur *E*, est dite continue sur *E*, si *f* est continue en tout point de *E*.
- L'ensemble C(I) des fonctions continues sur I constitue une algèbre, c'est-à-dire que, si f et g sont des éléments de C(I) et λ un réel, les fonctions f + g, fg et λ f appartiennent à C(I), et les opérations ainsi définies possèdent toutes les propriétés algébriques qui caractérisent la structure que l'on appelle une algèbre (cf. fiche. 44).

1.3 Image d'un intervalle

• Théorème des valeurs intermédiaires

Si f est continue sur un intervalle I, alors f(I) est un intervalle.

Image d'un intervalle fermé

Si f est continue sur un intervalle fermé I, alors f(I) est un intervalle fermé.

En particulier, si une fonction f est continue sur [a,b], et si f(a) et f(b) sont de signe contraire, l'équation f(x) = 0 admet au moins une solution dans [a,b].

Analyse dans ${\mathbb F}$

· Cas d'une fonction strictement monotone

Soit f une fonction continue et strictement croissante (resp. décroissante) sur un intervalle I.

f est une bijection de I sur f(I), et sa bijection réciproque f^{-1} est continue et strictement croissante (resp. décroissante) sur l'intervalle f(I).

Dans un repère orthonormé, les graphes de f et de f^{-1} sont symétriques par rapport à la première bissectrice des axes.

2. Continuité uniforme

2.1 Définition

Une fonction f est uniformément continue sur D si :

$$\forall \varepsilon > 0 \quad \exists \alpha > 0 \quad \forall x \in D \quad \forall x' \in D$$

 $|x - x'| \le \alpha \Longrightarrow |f(x) - f(x')| \le \varepsilon$

Dunod – La photocopie non autorisée est un délit.

Dans cette écriture logique, α dépend de ε , mais pas de x ; d'où l'origine du mot uniforme.

La continuité uniforme sur D entraı̂ne la continuité sur D.

2.2 Théorème de Heine

Toute fonction continue sur un segment est uniformément continue sur ce segment.

2.3 Cas d'une fonction lipchitzienne

Si f est lipschizienne sur D, alors elle est uniformément continue sur D.

6

Fonctions dérivables

1^{re} année

1. Définitions

1.1 Dérivée en un point

Soit f une fonction définie sur D et x_0 un élément de D tel que f soit définie au voisinage de x_0 . On appelle dérivée de f au point x_0 le nombre (lorsqu'il existe) :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

On dit alors que f est dérivable en x_0 .

Si $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ existe, f est dite dérivable à droite en x_0 , et cette limite est

appelée dérivée à droite de f en x_0 , et notée $f'_d(x_0)$.

On définit de même la dérivée à gauche en x_0 , notée $f_g'(x_0)$.

f est dérivable en x_0 si, et seulement si, f admet en x_0 une dérivée à droite et une dérivée à gauche égales.

1.2 Fonction dérivée

f est dite dérivable sur E, si elle dérivable en tout point de E.

On appelle fonction dérivée de f sur E, la fonction, notée f', définie sur E par : $x \mapsto f'(x)$.

1.3 Dérivées successives

Soit f dérivable sur E. Si f' est dérivable sur E, on note sa fonction dérivée f'' ou $f^{(2)}$. On l'appelle dérivée seconde de f.

Pour n entier, on définit par récurrence la dérivée n-ième, ou dérivée d'ordre n, de f en posant $f^{(0)} = f$, puis $f^{(n)} = (f^{(n-1)})'$, lorsque $f^{(n-1)}$ est dérivable sur E.

f est dite de classe C^n sur E si $f^{(n)}$ existe sur E, et est continue sur E.

f est dite de classe \mathcal{C}^{∞} , ou indéfiniment dérivable, si f admet des dérivées de tous ordres.

1.4 Interprétation graphique

f dérivable en x_0 signifie que le graphe de f admet au point d'abscisse x_0 une tangente de pente $f'(x_0)$. Son équation est :

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Si $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$, f n'est pas dérivable en x_0 , mais le graphe de f admet au point d'abscisse x_0 une tangente parallèle à Oy.

1.5 Dérivabilité et continuité

Toute fonction dérivable en x_0 est continue en x_0 .

Attention, la réciproque est fausse. Par exemple, la fonction $x \mapsto |x|$ est continue, et non dérivable, en 0, car elle admet une dérivée à gauche et une dérivée à droite différentes.

2. Opérations sur les fonctions dérivables

2.1 Opérations algébriques

Si f et g sont dérivables en x_0 , il en est de même de f+g, de fg, et de $\frac{f}{g}$ si $g(x_0) \neq 0$; et on a :

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

$$(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

2.2 Fonction composée

Soit f une fonction dérivable en x_0 et g une fonction dérivable en $f(x_0)$, alors $g \circ f$ est dérivable en x_0 , et

$$(g \circ f)'(x_0) = g'(f(x_0)) \times f'(x_0)$$
.

2.3 Dérivée d'une fonction réciproque

Soit f une fonction continue strictement monotone sur un intervalle I. On suppose que f est dérivable en $f(x_0)$ et que $f'(x_0) \neq 0$.

Alors, la fonction réciproque f^{-1} est dérivable en $f(x_0)$ et

Analyse dans ${\mathbb R}$

6 Fonctions dérivables

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

2.4 Formule de Leibniz

Si f et g admettent des dérivées d'ordre n en x_0 , alors il en est de même de fg ; et on a :

$$(fg)^{(n)}(x_0) = \sum_{k=0}^n \binom{n}{k} f^{(k)}(x_0) g^{(n-k)}(x_0).$$

Étude globale des fonctions dérivables

7

1^{re} année

1. Théorème de Rolle et des accroissements finis

1.1 Condition nécessaire d'extremum local

Si f admet un extremum local en x_0 et si f est dérivable, alors $f'(x_0) = 0$.

1.2 Théorème de Rolle

Soit f une fonction continue sur [a,b], dérivable sur]a,b[, et telle que f(a) = f(b).

Alors il existe au moins un point $c \in]a,b[$ tel que f'(c) = 0.

Autre énoncé

Si f est dérivable, entre deux valeurs qui annulent f, il existe au moins une valeur qui annule f'.

1.3 Égalité des accroissements finis

Soit f une fonction continue sur [a,b], dérivable sur]a,b[. Alors il existe au moins un point $c \in]a,b[$ tel que :

$$f(b) - f(a) = (b - a)f'(c)$$
.

Cette égalité, valable pour les fonctions de $\mathbb R$ dans $\mathbb R$, ne se généralise pas, ainsi que le théorème de Rolle.

1.4 Inégalité des accroissements finis

Soit f une fonction continue sur [a,b], dérivable sur]a,b[.

Si $m \leqslant f' \leqslant M$, alors:

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$
.

En particulier, si $|f| \leq M$, alors $|f(b) - f(a)| \leq M(b - a)$.

1.5 Limite de la dérivée

Si f est continue sur [a,b], dérivable sur]a,b[, et si f' a une limite finie l en a, alors f est dérivable à droite en a et $f'_d(a) = l$.

Étude globale des fonctions dérivables

Attention, il s'agit d'une condition suffisante de dérivabilité, mais elle n'est pas nécessaire. Il peut arriver que $f'_d(a)$ existe sans que f' ait une limite en a.

2. Variations d'une fonction dérivable

2.1 Théorème

Si, pour tout $x \in I$, f'(x) = 0 alors f est constante sur I.

Si, pour tout $x \in I$, $f'(x) \ge 0$ alors f est croissante sur I.

Si, pour tout $x \in I$, f'(x) > 0 alors f est strictement croissante sur I.

Ce dernier résultat est encore valable si f' s'annule en des point isolés, c'est-à-dire tels que leur ensemble ne contienne pas d'intervalle.

2.2 Condition suffisante d'extremum local

f, f' et f'' étant continues sur]a,b[, si en $x_0 \in]a,b[$, on a $f'(x_0) = 0$ et $f''(x_0) \neq 0$, la fonction f présente un extremum local en x_0 .

C'est un maximum si $f''(x_0) < 0$, un minimum si $f''(x_0) > 0$.

3. Convexité

3.1 Partie convexe, fonction convexe

Une partie du plan est dite convexe si, dès qu'elle contient deux points A et B, elle contient tout le segment [AB].

Une fonction f, définie sur un intervalle I, est convexe sur I si la partie du plan située au-dessus de la courbe est convexe ; c'est-à-dire si tout arc de sa courbe représentative est situé au-dessous de la corde correspondante. Cette définition se traduit par :

$$\forall x_1 \in I \ \forall x_2 \in I \ \forall k \in [0,1]$$

$$f[kx_1 + (1-k)x_2] \le kf(x_1) + (1-k)f(x_2).$$

Si - f est convexe, f est dite concave.

3.2 Inégalité de convexité

f étant convexe sur I, si x_1, \ldots, x_n appartiennent à I, si $\lambda_1, \ldots, \lambda_n$ sont des réels positifs tels que $\sum_{i=1}^n \lambda_i = 1$, alors

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i).$$

3.3 Propriété des sécantes

Soit f une fonction convexe sur I, et x_0 un point fixé dans I. La fonction φ définie sur I par :

$$\varphi(x) = \text{pente } (M_0 M) = \frac{f(x) - f(x_0)}{x - x_0}$$

est croissante.

3.4 Fonctions convexes dérivables

Soit f une fonction dérivable sur I. f est convexe sur I si, et seulement si, f' est croissante.

Si f est deux fois dérivable, cela correspond à f'' positive.

Le graphique de toute fonction convexe dérivable est au-dessus de chacune de ses tangentes.

8

Logarithmes, exponentielles et puissances

1^{re} année

1. Fonction logarithme népérien

1.1 Définition et graphe

Elle est définie pour x > 0 par :

$$\begin{cases} \ln 1 = 0; \\ \forall x > 0 \qquad (\ln x)' = \frac{1}{x}. \end{cases}$$

Elle est strictement croissante.

$$\lim_{x \to 0^+} \ln x = -\infty; \lim_{x \to +\infty} \ln x = +\infty.$$

L'unique solution de l'équation $\ln x = 1$ est notée e (e $\approx 2,718$).

1.2 Propriétés algébriques

$$\forall a>0 \quad \forall b>0 \quad \forall r\in \mathbb{Q}$$

$$\ln(ab) = \ln a + \ln b \quad ; \quad \ln(a^r) = r \ln a \quad ; \quad \ln(\frac{a}{b}) = \ln a - \ln b .$$

1.3 Convexité

La fonction ln est concave sur $]0,+\infty[$, ce qui entraı̂ne :

$$\forall x > -1 \qquad \ln(1+x) \leqslant x.$$

La dérivée en x = 1 étant égale à 1, on a aussi : $\ln (1 + x) \sim x$.

2. Fonction exponentielle

2.1 Fonction exponentielle

C'est la fonction réciproque de la fonction ln. Elle est définie sur \mathbb{R} , à valeurs dans $]0,+\infty[$, strictement croissante.

Elle est notée exp, ou $x \mapsto e^x$.

$$\forall x \in \mathbb{R} \quad (e^x)' = e^x ;$$

$$\lim_{x \to -\infty} e^x = 0 ; \quad \lim_{x \to +\infty} e^x = +\infty .$$

2.2 Propriétés algébriques

 $\forall a \in \mathbb{R} \quad \forall b \in \mathbb{R} \quad \forall r \in \mathbb{Q}$

$$e^{a+b} = e^a \times e^b$$
 ; $e^{ra} = (e^a)^r$; $e^{-a} = \frac{1}{e^a}$; $e^{a-b} = \frac{e^a}{e^b}$

2.3 Convexité

La fonction $x \mapsto e^x$ est convexe sur \mathbb{R} , ce qui entraı̂ne :

$$\forall x \in \mathbb{R}$$
 $1 + x \leq e^x$.

La dérivée en x = 0 étant égale à 1, on a aussi : $e^x - 1 \sim x$.

3. Logarithme et exponentielle de base a

3.1 Logarithme de base a

La fonction logarithme de base a (a > 0; $a \ne 1$), est la fonction définie par :

$$\forall x > 0$$
 $\log_a(x) = \frac{\ln x}{\ln a}$.

Sa dérivée est : $(\log_a x)' = \frac{1}{\ln a} \times \frac{1}{x}$

Ses propriétés algébriques sont les mêmes que celles de la fonction ln.

Si a = 10, \log_a est le logarithme décimal. On le note \log .

3.2 Exponentielle de base a

La fonction exponentielle de base a (a > 0), est la fonction définie par :

$$\forall x \in \mathbb{R}$$
 $\exp_a(x) = a^x = e^{x \ln a}$.

Pour $a \neq 1$, c'est la fonction réciproque de la fonction \log_a .

$$y = a^x \iff \ln y = x \ln a \iff x = \log_a(y)$$
.

Sa dérivée est : $(a^x)' = \ln a \times a^x$.

Remarquez bien qu'ici, la variable est en exposant.

Ses propriétés algébriques sont les mêmes que celles de la fonction exp.

Analyse dans ${\mathbb R}$

4. Fonctions puissances et comparaisons

4.1 Fonctions puissances

La fonction $x \mapsto x^r$, pour x > 0 et $r \in \mathbb{Q}$, est déjà connue. On la généralise, pour x > 0 et $a \in \mathbb{R}$, en posant :

$$x^a = e^{a \ln x}$$
.

Les propriétés connues pour les exposants rationnels sont prolongées ; en particulier $(x^a)' = ax^{a-1}$.

Remarquez bien qu'ici l'exposant est constant.

Pour a < 0, la fonction $x \mapsto x^a$ est décroissante de $+\infty$ à 0.

Pour a > 0, la fonction $x \mapsto x^a$ est croissante de 0 à $+\infty$. Dans ce cas, on peut prolonger la fonction par continuité en 0. La fonction prolongée est dérivable en 0, si a > 1.

4.2 Comparaison des fonctions logarithmes et puissances

Pour b > 0, on a:

$$\lim_{x \to +\infty} \frac{\ln x}{x^b} = 0 \quad ; \quad \lim_{x \to 0^+} x^b \ln x = 0.$$

4.3 Comparaison des fonctions puissances et exponentielles

Pour a > 1 et b quelconque, on a :

$$\lim_{x \to +\infty} \frac{a^x}{x^b} = +\infty.$$

4.4 Comparaison des fonctions logarithmes et exponentielles

Pour a > 1, on a:

$$\lim_{x \to +\infty} \frac{\ln x}{a^x} = 0.$$

5. Fonction exponentielle complexe

O Dunod – La photocopie non autorisée est un délit.

z = a + ib étant un nombre complexe, on définit e^z par :

$$e^z = e^{a+ib} = e^a(\cos b + i \sin b)$$
.

On prolonge ainsi les propriétés de l'exponentielle réelle :

$$\forall z_1 \in \mathbb{C}$$
 $\forall z_2 \in \mathbb{C}_2$ $e^{z_1 + z_2} = e^{z_1} \times e^{z_2}$
 $\forall z \in \mathbb{C}$ $\forall n \in \mathbb{Z}$ $(e^z)^n = e^{nz}$.

 $z=a+{\rm i} b$ étant un nombre complexe fixé, on définit une fonction de $\mathbb R$ dans $\mathbb C$: $t\mapsto {\rm e}^{zt}$ en posant :

$$e^{zt} = e^{(a+ib)t} = e^{at}(\cos bt + i\sin bt).$$

La dérivée d'une fonction de $\mathbb R$ dans $\mathbb C$: $t\mapsto \varphi(t)=f(t)+\mathrm{i} g(t)$ étant définie par : $\varphi'(t)=f'(t)+\mathrm{i} g'(t)$, on obtient :

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{zt}) = z\mathrm{e}^{zt}.$$

9

Fonctions circulaires et réciproques

1^{re} année

1. Fonctions circulaires et trigonométrie

1.1 Fonctions sinus et cosinus

Elles sont définies dans \mathbb{R} et à valeurs dans [-1,1]. Elles sont 2π -périodiques. La fonction cos est paire ; la fonction sin est impaire.

Dérivées :

$$\forall x \in \mathbb{R}$$
 $(\sin x)' = \cos x$; $(\cos x)' = -\sin x$.

Si x est la mesure d'un angle, ces expressions des dérivées ne sont correctes que si x est exprimé en radians.

Limites:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad ; \quad \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

1.2 Fonction tangente

Elle est définie sur $D = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi ; k \in \mathbb{Z}\}$ par : $\tan x = \frac{\sin x}{\cos x}$.

Elle est impaire et π -périodique.

Dérivée:

$$\forall x \in D \qquad (\tan x)' = 1 + \tan^2 x = \frac{1}{\cos^2 x}.$$

Limite:

$$\lim_{x \to 0} \frac{\tan x}{x} = 1.$$

1.3 Angles associés

$$\cos (\pi - x) = -\cos x \; ; \sin(\pi - x) = \sin x \; ; \tan(\pi - x) = -\tan x$$

$$\cos (\pi + x) = -\cos x \; ; \sin(\pi + x) = -\sin x \; ; \tan(\pi + x) = \tan x$$

$$\cos (\frac{\pi}{2} - x) = \sin x \; ; \sin(\frac{\pi}{2} - x) = \cos x \; ; \tan(\frac{\pi}{2} - x) = \frac{1}{\tan x}$$

$$\cos (\frac{\pi}{2} + x) = -\sin x \; ; \sin(\frac{\pi}{2} + x) = \cos x \; ; \tan(\frac{\pi}{2} + x) = -\frac{1}{\tan x}$$

$\cos(a+b) = \cos a \cos b - \sin a \sin b \quad ;$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b \quad ;$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

1.5 Formules de duplication

$$\sin 2a = 2 \sin a \cos a$$
; $\cos 2a = \cos^2 a - \sin^2 a$; $\tan 2a = \frac{2 \tan a}{1 - \tan^2 a}$

1.6 Expressions en fonction de $\tan \frac{a}{2}$

En posant $t = \tan \frac{a}{2}$ on a:

$$\cos a = \frac{1 - t^2}{1 + t^2}$$
; $\sin a = \frac{2t}{1 + t^2}$; $\tan a = \frac{2t}{1 - t^2}$.

1.7 Transformation d'un produit en somme

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a - b) - \cos (a + b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

2. Fonctions circulaires réciproques

2.1 Fonction arc sinus

C'est la réciproque de la restriction à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ de la fonction sinus.

$$y = \arcsin x \\ -1 \leqslant x \leqslant 1$$
 \iff
$$\begin{cases} x = \sin y \\ -\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2} \end{cases}$$

La fonction arcsin est impaire.

$$\forall x \in]-1,1[\qquad (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}.$$

Analyse dans ${\mathbb R}$

Fonctions circulaires et réciproques

2.2 Fonction arc cosinus

C'est la réciproque de la restriction à $[0,\pi]$ de la fonction cosinus.

$$y = \arccos x \\ -1 \leqslant x \leqslant 1$$
 \iff
$$\begin{cases} x = \cos y \\ 0 \leqslant y \leqslant \pi \end{cases}$$

2.3 Fonction arc tangente

C'est la réciproque de la restriction à $\left]-\frac{\pi}{2}\right.$, $\frac{\pi}{2}\left[$ de la fonction tangente.

$$y = \arctan x \\ x \in \mathbb{R}$$
 \iff
$$\begin{cases} x = \tan y \\ -\frac{\pi}{2} < y < \frac{\pi}{2} \end{cases}$$

La fonction arctan est impaire.

$$\forall x \in \mathbb{R}$$
 $(\arctan x)' = \frac{1}{1+x^2}$.

2.4 Propriétés

☼ Dunod – La photocopie non autorisée est un délit.

$$\forall x \in [-1,1] \quad \arcsin x + \arccos x = \frac{\pi}{2}$$

$$\sin (\arccos x) = \sqrt{1 - x^2} = \cos (\arcsin x)$$

$$\forall x > 0 \quad \arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$$

$$\forall x < 0 \quad \arctan x + \arctan \frac{1}{x} = -\frac{\pi}{2}$$

Fonctions hyperboliques et réciproques

1^{re} année

1. Fonctions hyperboliques

1.1 Définitions

$$\forall x \in \mathbb{R} \qquad \operatorname{ch} x = \frac{\operatorname{e}^x + \operatorname{e}^{-x}}{2} \quad ; \quad \operatorname{sh} x = \frac{\operatorname{e}^x - \operatorname{e}^{-x}}{2} \quad ; \quad \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}.$$

ch est paire; sh et th sont impaires.

1.2 Propriétés algébriques

$$ch x + sh x = e^x$$
; $ch^2 x - sh^2 x = 1$; $1 - th^2 x = \frac{1}{ch^2 x}$

1.3 Dérivées

$$\forall x \in \mathbb{R} \quad (\sinh x)' = \cosh x \; \; ; \; \; (\cosh x)' = \sinh x \; \; ; \; \; (\th x)' = \frac{1}{\cosh^2 x} = 1 - \th^2 x.$$

1.4 Graphes

Le graphe de ch est situé au-dessus de celui de sh.

Le graphe de th est situé entre les deux asymptotes y = -1 et y = 1:

Dunod – La photocopie non autorisée est un délit.

2. Fonctions hyperboliques réciproques

2.1 Fonction argument sinus hyperbolique

C'est la fonction réciproque de la fonction sh. La fonction argsh est impaire.

$$\forall x \in \mathbb{R}$$
 $(\operatorname{argsh} x)' = \frac{1}{\sqrt{x^2 + 1}}$

2.2 Fonction argument cosinus hyperbolique

C'est la fonction réciproque de la restriction à $[0,+\infty[$ de la fonction ch.

$$\forall x \in]1, +\infty[$$
 $(\operatorname{argch} x)' = \frac{1}{\sqrt{x^2 - 1}}$

2.3 Fonction argument tangente hyperbolique

C'est la fonction réciproque de la fonction th. La fonction argth est impaire.

$$\forall x \in]-1,1[$$
 $(\operatorname{argth} x)' = \frac{1}{1-x^2}.$

2.4 Expressions logarithmiques

$$\forall x \in \mathbb{R} \qquad \text{argsh } x = \ln (x + \sqrt{x^2 + 1})$$

$$\forall x \in [1, +\infty[\qquad \text{argch } x = \ln (x + \sqrt{x^2 - 1})$$

$$\forall x \in]-1,1[\qquad \text{argth} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$$

11

Suites numériques

1^{re} année

1. Généralités

Une suite numérique est une application de \mathbb{N} dans \mathbb{R} .

1.1 Suite bornée

Une suite (u_n) est majorée s'il existe un réel A tel que, pour tout n, $u_n \leq A$. On dit que A est un majorant de la suite.

Une suite (u_n) est minorée s'il existe un réel B tel que, pour tout n, $B \le u_n$. On dit que B est un minorant de la suite.

Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il existe M tel que $|u_n| \leq M$ pour tout n.

1.2 Suite convergente

La suite (u_n) est convergente vers l si :

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad |u_n - l| \leqslant \varepsilon.$$

Une suite qui n'est pas convergente est dite divergente.

Lorsqu'elle existe, la limite d'une suite est unique.

La suppression d'un nombre *fini* de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.

Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

1.3 Limites infinies

On dit que la suite (u_n) tend

vers
$$+\infty$$
 si: $\forall A > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad u_n \geqslant A$

vers
$$-\infty$$
 si: $\forall A > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad u_n \leqslant -A$.

1.4 Limites connues

Pour k > 1, $\alpha > 0$, $\beta > 0$

$$\lim_{n \to +\infty} \frac{k^n}{n!} = 0 \quad ; \quad \lim_{n \to +\infty} \frac{n^{\alpha}}{k^n} = 0 \quad ; \quad \lim_{n \to +\infty} \frac{(\ln n)^{\beta}}{n^{\alpha}} = 0 .$$

2. Opérations sur les suites

2.1 Opérations algébriques

Si (u_n) et (v_n) convergent vers l et et l', alors les suites $(u_n + v_n)$, (λu_n) et $(u_n v_n)$ convergent respectivement vers l + l', λl et l l'.

Si
$$l' \neq 0$$
, $\left(\frac{u_n}{v_n}\right)$ converge vers $\frac{l}{l'}$.

Si (u_n) tend vers 0 et si (v_n) est bornée, alors la suite $(u_n v_n)$ tend vers 0.

2.2 Relation d'ordre

Si (u_n) et (v_n) sont des suites convergentes telles que l'on ait $u_n \leqslant v_n$ pour $n \geqslant n_0$, alors on a : $\lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n$.

Attention, pas de théorème analogue pour les inégalités strictes.

2.3 Théorème d'encadrement

Si, à partir d'un certain rang, $u_n \le x_n \le v_n$ et si (u_n) et (v_n) convergent vers la $m \hat{e} m e$ limite l, alors la suite (x_n) est convergente vers l.

2.4 Suites extraites

• La suite (v_n) est dite extraite de la suite (u_n) s'il existe une application φ de \mathbb{N} dans \mathbb{N} , strictement croissante, telle que $v_n = u_{\varphi(n)}$.

On dit aussi que (v_n) est une sous-suite de (u_n) .

• Si (u_n) converge vers l, toute sous-suite converge aussi vers l.

Si une suite extraite de (u_n) diverge, ou si deux suites extraites ont des limites différentes, alors (u_n) diverge.

Si des suites extraites de (u_n) convergent toutes vers la même limite l, on peut conclure que (u_n) converge vers l si tout u_n est un terme d'une des suites extraites étudiées. Par exemple, si (u_{2n}) et (u_{2n+1}) convergent vers l, alors (u_n) converge vers l.

2.5 Théorème de Bolzano-Weierstrass

De toute suite bornée de réels, on peut extraire une sous-suite convergente.

Suites numériques

3. Suites monotones

3.1 Définition

La suite (u_n) est croissante si $u_{n+1} \geqslant u_n$ pour tout n; décroissante si $u_{n+1} \leqslant u_n$ pour tout n; stationnaire si $u_{n+1} = u_n$ pour tout n.

3.2 Convergence

Toute suite de réels croissante et majorée est convergente.

Toute suite de réels décroissante et minorée est convergente.

Si une suite est croissante et non majorée, elle diverge vers $+\infty$.

3.3 Suites adjacentes

Les suites (u_n) et (v_n) sont adjacentes si : (u_n) est croissante ; (v_n) est décroissante ; $\lim_{n \to +\infty} (v_n - u_n) = 0$.

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (u_n) croissante, (v_n) décroissante et $u_n \le v_n$ pour tout n, alors elles convergent vers l_1 et l_2 .

Il reste à montrer que $l_1 = l_2$ pour qu'elles soient adjacentes.

4. Suites complexes

Soit $z_n = x_n + iy_n$. La définition de la convergence de (z_n) vers l = a + ib est la même que pour les suites réelles, en remplaçant la valeur absolue par le module. Elle est équivalente à la convergence à la fois de (x_n) vers a et de (y_n) vers b.

Les opérations algébriques sur les limites de suites convergentes sont les mêmes que dans le cas de suites réelles.

Attention, \leq n'a aucun sens dans \mathbb{C} . N'inventez donc pas de théorèmes relatifs aux relations d'ordre.

1. Suites arithmétiques et géométriques

1.1 Suites arithmétiques

Une suite (u_n) est arithmétique de raison r si :

$$\forall n \in \mathbb{N}$$
 $u_{n+1} = u_n + r$.

Terme général : $u_n = u_0 + nr$.

Somme des n premiers termes : $\sum_{k=0}^{n-1} u_k = n \frac{u_0 + u_{n-1}}{2}.$

1.2 Suites géométriques

Une suite (u_n) est géométrique de raison $q \neq 0$ si :

$$\forall n \in \mathbb{N}$$
 $u_{n+1} = q u_n$.

Terme général : $u_n = u_0 q^n$.

Somme des n premiers termes : $\sum_{k=0}^{n-1} u_k = u_0 \frac{1-q^n}{1-q} \quad \text{si} \quad q \neq 1$ $= n u_0 \qquad \text{si} \quad q = 1.$

La suite (u_n) converge vers 0 si |q| < 1. Elle est stationnaire si q = 1. Elle diverge dans les autres cas.

1.3 Suites arithmético-géométriques

$$\forall n \in \mathbb{N} \qquad u_{n+1} = a \, u_n + b.$$

Si a = 1, elle est arithmétique de raison b.

Si $a \neq 1$, $v_n = u_n - \frac{b}{1-a}$ est géométrique de raison a.

2. Suites récurrentes

2.1 Suites récurrentes linéaires d'ordre 2

- Une telle suite est déterminée par une relation du type :
- (1) $\forall n \in \mathbb{N}$ $au_{n+2} + bu_{n+1} + cu_n = 0$ avec $a \neq 0, c \neq 0$ et la connaissance des deux premiers termes u_0 et u_1 .

12 Fonctions numériques

L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel de dimension 2. On en cherche une base par la résolution de l'équation caractéristique :

$$ar^2 + br + c = 0 \qquad (E).$$

• Cas a, b, c complexes

Si $\Delta \neq 0$, (E) a deux racines distinctes r_1 et r_2 . Toute suite vérifiant (1) est alors du type :

$$u_n = K_1 r_1^n + K_2 r_2^n$$

où K_1 et K_2 sont des constantes que l'on exprime ensuite en fonction de u_0 et u_1 .

Si $\Delta=0$, (E) a une racine double $r_0=-\frac{b}{2a}$. Toute suite vérifiant (1) est alors du type :

$$u_n = (K_1 + K_2 n) r_0^n$$
.

• Cas a, b, c réels

Si $\Delta > 0$ ou $\Delta = 0$, la forme des solutions n'est pas modifiée.

Si $\Delta < 0$, (E) a deux racines complexes conjuguées $r_1 = \alpha + \mathrm{i}\beta$ et $r_2 = \alpha - \mathrm{i}\beta$ que l'on écrit sous forme trigonométrique $r_1 = \rho \, \mathrm{e}^{\mathrm{i}\theta}$ et $r_2 = \rho \, \mathrm{e}^{-\mathrm{i}\theta}$. Toute suite vérifiant (1) est alors du type :

$$u_n = \rho^n (K_1 \cos n\theta + K_2 \sin n\theta) = \rho^n A \cos (n\theta - \varphi).$$

2.2 Suites récurrentes $u_{n+1} = f(u_n)$

• Pour étudier une telle suite, on détermine d'abord un intervalle *I* contenant toutes les valeurs de la suite.

• Limite éventuelle

Si (u_n) converge vers l et si f est continue en l, alors f(l) = l.

• Cas f croissante

Si f est croissante sur I, alors la suite (u_n) est monotone.

La comparaison de u_0 et de u_1 permet de savoir si elle est croissante ou décroissante.

• Cas f décroissante

Si f est décroissante sur I, alors les suites (u_{2n}) et (u_{2n+1}) sont monotones et de sens contraire.

Cherchez à étudier si elles sont adjacentes ou non

1^{re} année

1. Intégrale d'une fonction en escalier

1.1 Subdivision

On appelle subdivision σ de [a,b], la donnée d'un nombre fini de points x_0, \dots, x_n tels que $x_0 = a$, $x_n = b$, et $x_0 < x_1 < \dots < x_{n-1} < x_n$.

On note S l'ensemble de toutes les subdivisions de [a,b].

Le pas d'une subdivision $(x_i)_{0 \le i \le n}$ est le nombre :

$$\max_{0\leqslant i\leqslant n-1}(x_{i+1}-x_i).$$

1.2 Fonction en escalier

Une fonction f, définie sur [a,b], est une fonction en escalier sur [a,b] s'il existe $\sigma \in \mathcal{S}$ telle que f soit constante, et égale à l_i , sur chaque intervalle ouvert $]x_i, x_{i+1}[$.

1.3 Intégrale d'une fonction en escalier

On appelle intégrale de la fonction en escalier f, le nombre :

$$I(f) = \sum_{i=0}^{n-1} l_i (x_{i+1} - x_i) \quad \text{not\'e aussi } \int_a^b f(t) dt.$$

Remarquez que le nombre I(f) est en fait une somme d'aires de rectangles et qu'il ne dépend pas de la valeur de f aux points x_i de la subdivision.

2. Intégrale d'une fonction continue par morceaux

2.1 Fonction continue par morceaux

Une fonction f, définie sur [a,b], est continue par morceaux sur [a,b] s'il existe $\sigma \in \mathcal{S}$ telle que :

- f est continue sur chaque intervalle ouvert $]x_i, x_{i+1}[$;
- f admet en tout point de la subdivision une limite à gauche et une limite à droite finies.

13 Intégrales définies

2.2 Approximation par une fonction en escalier

Soit f continue par morceaux sur [a,b].

Pour tout réel $\varepsilon > 0$, il existe φ et ψ , fonctions en escalier sur [a,b], telles que :

$$\varphi \leqslant f \leqslant \psi$$
 et $\psi - \varphi \leqslant \varepsilon$.

2.3 Intégrale d'une fonction continue par morceaux

Soit f continue par morceaux sur [a,b]. Il existe un réel unique I tel que, pour toutes fonctions en escalier sur [a,b] φ et ψ vérifiant $\varphi \leqslant f \leqslant \psi$, on ait :

$$I(\varphi) \leqslant I \leqslant I(\psi)$$
.

Ce nombre I s'appelle l'intégrale de f sur [a,b], et se note I(f), ou $\int_a^b f(x) \, \mathrm{d}x$,

ou
$$\int_{[a,b]} f$$
.

Ce nombre dépend de f, de a, de b, mais pas de la variable d'intégration, notée ici x, qui est une variable muette, ce qui signifie qu'on peut la noter par toute lettre non retenue pour un autre usage.

Pour
$$a < b$$
, on pose $\int_b^a f(x) dx = -\int_a^b f(x) dx$.

2.4 Interprétation géométrique

 $\int_{a}^{b} f(x) dx \text{ correspond à l'aire du domaine du plan situé sous le graphique de } f, \text{ comptée}$

- positivement pour la partie située au-dessus de l'axe des abscisses,
- négativement pour la partie située en dessous.

3. Propriétés d'une intégrale

f et g sont des fonctions de \mathbb{R} dans \mathbb{R} , continues par morceaux sur les intervalles considérés.

3.1 Invariance

L'intégrale $\int_a^b f(x) dx$ ne change pas si l'on modifie la valeur de f sur [a,b] en un nombre fini de points.

O Dunod – La photocopie non autorisée est un délit

3.2 Linéarité

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

$$\forall k \in \mathbb{R} \qquad \int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx.$$

3.3 Relation de Chasles

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

3.4 Relation d'ordre

- Si a < b, et si $f \le g$ sur [a,b], alors : $\int_a^b f(x) dx \le \int_a^b g(x) dx$.
- Si f est continue et positive sur [a,b], on a :

$$\int_{a}^{b} f(x) dx = 0 \iff \forall x \in [a,b] \quad f(x) = 0.$$

3.5 Majoration de l'intégrale

· Valeur absolue:

Si
$$a < b$$
 $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.

• Si, pour tout $x \in [a,b]$ (avec a < b), on a $m \leqslant f(x) \leqslant M$, alors :

$$m \leqslant \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \leqslant M.$$

Le nombre $\frac{1}{b-a} \int_a^b f(x) dx$ est la valeur moyenne de f sur [a,b].

• Inégalité de la moyenne :

Si
$$a < b$$
 $\left| \int_a^b f(x)g(x) \, \mathrm{d}x \right| \le \sup_{x \in [a,b]} |f(x)| \times \int_a^b |g(x)| \, \mathrm{d}x$.

En particulier:

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \leqslant |b - a| \, \sup |f|.$$

13 Intégrales définies

3.6 Inégalité de Cauchy-Schwarz

L'application : $(f,g) \mapsto \int_a^b f(x)g(x) dx$ définit un produit scalaire (cf. fiche

63) sur l'espace vectoriel des fonctions continues sur [a,b].

En particulier, l'inégalité de Cauchy-Schwarz prend la forme :

$$\left| \int_a^b f(x)g(x) \, \mathrm{d}x \right| \leqslant \sqrt{\int_a^b f^2(x) \, \mathrm{d}x \times \int_a^b g^2(x) \, \mathrm{d}x}.$$

3.7 Sommes de Riemann

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(\frac{i}{n}) = \int_0^1 f(x) \, dx.$$

Plus généralement, si $(x_0, ..., x_n)$ est une subdivision de [a,b] dont le pas tend vers 0 quand n tend vers l'infini, et c_i un point quelconque de $[x_i, x_{i+1}]$ (le plus souvent x_i ou x_{i+1}), on a alors :

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} (x_{i+1} - x_i) f(c_i) = \int_a^b f(x) dx.$$

4. Cas d'une fonction à valeurs complexes

Soit $t \mapsto \varphi(t) = f(t) + \mathrm{i} g(t)$ une fonction de $\mathbb R$ dans $\mathbb C$, définie sur [a,b]. φ est continue par morceaux sur [a,b] si, et seulement si, f et g le sont.

L'intégrale de φ sur [a,b] est alors définie par :

$$\int_{a}^{b} \varphi(t) dt = \int_{a}^{b} f(t) dt + i \int_{a}^{b} g(t) dt.$$

Toutes les propriétés de l'intégrale d'une fonction continue par morceaux, à valeurs réelles, qui ont encore un sens, sont prolongées, soit :

linéarité, relation de Chasles, majoration du module de l'intégrale :

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \leqslant \int_a^b |f(x)| \, \mathrm{d}x.$$

N'oubliez pas qu'il n'y a pas de relation d'ordre dans \mathbb{C} , ce qui fait que $f\geqslant 0$, ou $f\leqslant g$, n'aurait pas de sens.

1. Primitives d'une fonction continue

1.1 Définition

f étant définie sur un intervalle I, une fonction F, définie sur I, est une primitive de f, si elle est dérivable sur I et si

$$\forall x \in I \qquad F'(x) = f(x).$$

1.2 Théorèmes

- Deux primitives de f diffèrent d'une constante, c'est-à-dire que, si F est une primitive de f sur un intervalle I, toutes les primitives de f sur I sont de la forme :
 x → F(x) + C où C est une constante quelconque.
- Si f est continue sur un intervalle I contenant a, la fonction F définie sur I par $F(x) = \int_a^x f(t) \, \mathrm{d}t$, est une primitive de f. C'est l'unique primitive de f qui s'annule en a.

On note $\int f(t) dt$ l'une quelconque des primitives de f.

• Pour toute primitive h de f sur I, on a :

$$\int_a^x f(t) dt = \left[h(t)\right]_a^x = h(x) - h(a).$$

Le calcul d'intégrales de fonctions continues se ramène donc à la recherche de primitives.

• Pour toute fonction f de classe C^1 sur I, on a :

$$f(x) - f(a) = \int_a^x f'(t) dt.$$

2. Méthodes de calcul

2.1 Linéarité

Si F et G sont des primitives respectives de f et de g sur I et k un réel, alors, sur I, F + G est une primitive de f + g et kF une primitive de kf.

14 Calcul des primitives

Pour les fonctions trigonométriques, on linéarise avec les formules de transformation de produits en sommes (*cf.* fiche 9), ou avec les formules d'Euler (*cf.* fiche 47). On utilise en particulier :

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x) \qquad ; \quad \sin^2 x = \frac{1}{2} (1 - \cos 2x) ;$$
$$\cos^3 x = \frac{1}{4} (\cos 3x + 3\cos x) \quad ; \quad \sin^3 x = \frac{1}{4} (3\sin x - \sin 3x) .$$

2.2 Intégration par parties

Soit u et v deux fonctions de classe \mathcal{C}^1 sur un intervalle I, et a et b des réels de I. On a :

$$\int_{a}^{b} u'(t) v(t) dt = \left[u(t) v(t) \right]_{a}^{b} - \int_{a}^{b} u(t) v'(t) dt.$$

ce qui s'écrit aussi, en terme de primitives :

$$\int u'(t) v(t) dt = u(t) v(t) - \int u(t) v'(t) dt.$$

2.3 Cas classiques d'utilisation

P étant un polynôme et $\alpha \neq 0$,

• pour
$$\int_a^b P(t) \sin (\alpha t + \beta) dt$$
, on pose $v(t) = P(t)$ et $u'(t) = \sin (\alpha t + \beta)$;

• pour
$$\int_a^b P(t) \cos (\alpha t + \beta) dt$$
, on pose $v(t) = P(t)$ et $u'(t) = \cos (\alpha t + \beta)$;

• pour
$$\int_a^b P(t)e^{\alpha t+\beta} dt$$
, on pose $v(t) = P(t)$ et $u'(t) = e^{\alpha t+\beta}$;

• pour
$$\int_a^b P(t) \ln t \, dt$$
, on pose $v(t) = \ln t \, \text{et } u'(t) = P(t)$.

• Pour calculer $I = \int_a^b e^{\alpha t} \cos \beta t \, dt$ ou $J = \int_a^b e^{\alpha t} \sin \beta t \, dt$, on peut faire deux intégrations par parties « sans changer d'avis », c'est-à-dire en posant les deux fois $v(t) = e^{\alpha t}$, ou les deux fois $v(t) = \cos \beta t$ ou $\sin \beta t$.

Vous pouvez aussi utiliser l'exponentielle complexe :

$$I = \operatorname{Re}\left(\int_{a}^{b} e^{(\alpha + i\beta)t} dt\right) = \operatorname{Re}\left(\left[\frac{e^{(\alpha + i\beta)t}}{\alpha + i\beta}\right]_{a}^{b}\right) = \cdots$$

2.4 Intégration par changement de variable

Soit u une fonction de classe C^1 de $[\alpha, \beta]$ dans [a,b], et f une fonction continue sur [a,b]. Alors :

$$\int_{\alpha}^{\beta} f(u(t)) u'(t) dt = \int_{u(\alpha)}^{u(\beta)} f(x) dx.$$

Si, de plus, u est bijective, on a :

$$\int_{a}^{b} f(x) dx = \int_{u^{-1}(a)}^{u^{-1}(b)} f(u(t)) u'(t) dt.$$

Dans les exercices, le symbole dx se transforme comme une différentielle :

$$x = u(t) \implies dx = u'(t) dt$$
.

3. Primitives et fonctions rationnelles

3.1 Primitives d'une fonction rationnelle

• On décompose la fraction rationnelle en éléments simples dans $\mathbb{R}[X]$, c'est-à-dire comme somme de sa partie entière (polynôme dont on connaît les primitives) et de fractions de la forme :

$$\frac{a}{(x-\alpha)^n}$$
 et $\frac{ax+b}{(x^2+px+a)^n}$ avec $p^2-4q<0$.

On peut en calculer des primitives comme suit (n = 1 dans le second cas).

• Sur un intervalle ne contenant pas α , on a :

$$\int_{a}^{x} \frac{\mathrm{d}t}{(t-\alpha)^{n}} = \left[-\frac{1}{n-1} \frac{1}{(t-\alpha)^{n-1}} \right]_{a}^{x} \quad \text{si } n \neq 1$$
$$= \left[\ln|t-\alpha| \right]_{a}^{x} \quad \text{si } n = 1.$$

•
$$\int_a^x \frac{at+b}{t^2+pt+q} dt = \frac{a}{2} \int_a^x \frac{2t+p}{t^2+pt+q} dt + \left(b - \frac{ap}{2}\right) \int_a^x \frac{1}{t^2+pt+q} dt$$
.

14 Calcul des primitives

La première primitive se calcule en utilisant le changement de variable $u = t^2 + pt + q$.

En écrivant sous forme canonique le trinôme $t^2 + pt + q$, le calcul de la deuxième primitive se ramène, après changement de variable, à :

$$\int_{\alpha}^{\beta} \frac{1}{u^2 + 1} du = \left[\arctan u \right]_{\alpha}^{\beta}.$$

3.2 Primitives de fractions rationnelles en sinus et cosinus

On veut déterminer $\int f(x) dx$, où f est une fraction rationnelle en $\sin x$ et $\cos x$.

Dans le cas où f(x) dx est invariant

- lors du changement de x en -x, on peut poser $u = \cos x$;
- lors du changement de x en πx , on peut poser $u = \sin x$;
- lors du changement de x en $\pi + x$, on peut poser $u = \tan x$.

Sinon, on peut poser $u = \tan \frac{x}{2}$.

Dans tous les cas, on est conduit à un calcul du type $\int g(u) du$ où g est une fraction rationnelle en u.

1^{re} année

1. Formules de Taylor à valeur globale

1.1 Formule de Taylor avec reste intégral

Soit f une fonction de classe C^{n+1} sur I, x_0 et x des points de I. On a :

$$f(x) = P_n(x) + \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt,$$

où
$$P_n(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0)$$

est l'approximation de Taylor à l'ordre n;

et
$$R_n(x) = \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
 est le reste intégral d'ordre n .

1.2 Inégalité de Taylor-Lagrange

Soit f une fonction de classe C^{n+1} sur I. On suppose de plus qu'il existe A > 0 tel que, pour tout $x \in I$, on ait $|f^{(n+1)}(x)| \leq A$.

On obtient alors la majoration du reste :

$$|R_n(x)| \leqslant A \frac{|x - x_0|^{n+1}}{(n+1)!}$$

2. Formule de Taylor-Young

Soit f une fonction dérivable sur I jusqu'à l'ordre n. Alors la fonction ε définie au voisinage de 0 par :

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \dots + \frac{h^n}{n!} f^{(n)}(x_0) + h^n \varepsilon(h)$$

est telle que $\lim_{h\to 0} \varepsilon(h) = 0$.

Au lieu de $h^n \varepsilon(h)$, on écrit souvent $o(h^n)$.

Développements limités

1^{re} année

1. Généralités

1.1 Définition

Soit f une fonction définie au voisinage de x_0 . On dit que f admet un développement limité d'ordre n au voisinage de x_0 , s'il existe une fonction polynôme P_n de degré inférieur ou égal à n, et une fonction ε , définies au voisinage de x_0 telles que :

$$f(x) = P_n(x) + (x - x_0)^n \varepsilon(x)$$
 avec $\lim_{x \to x_0} \varepsilon(x) = 0$.

 $P_n(x)$ est la partie régulière et $(x-x_0)^n \varepsilon(x)$ le reste.

Dans ce cas, on a des fonctions équivalentes : $f(x) \sim_{x_0} P_n(x)$.

En posant $x = x_0 + t$, on peut toujours se ramener au voisinage de t = 0.

1.2 Propriétés des développements limités

Troncature

Si f admet un développement limité d'ordre n au voisinage de 0 dont la partie régulière est $P_n(x) = \sum_{k=0}^n a_k x^k$ et si $p \le n$, alors f admet un développement limité

d'ordre p au voisinage de 0 dont la partie régulière est $P_p(x) = \sum_{k=0}^{p} a_k x^k$.

Unicité

Si f possède un développement limité d'ordre n au voisinage de 0, il est unique.

Parité

Soit f une fonction admettant un développement limité d'ordre n au voisinage de 0, de partie régulière $P_n(x) = \sum_{k=0}^n a_k x^k$. Si f est paire (resp. impaire), alors les coefficients a_k d'indice impair (resp. pair) sont nuls.

· Obtention d'un développement limité

La formule de Taylor-Young permet d'obtenir de nombreux développements limités.

Mais si f admet un développement limité d'ordre n ($n \ge 2$) au voisinage de x_0 , elle n'admet pas forcément de dérivée seconde en x_0 .

1.3 Développements limités de base

$$(1+x)^{\alpha} = 1 + \alpha \frac{x}{1!} + \dots + \alpha(\alpha-1) \dots (\alpha-n+1) \frac{x^n}{n!} + o(x^n)$$

avec les cas particuliers :

$$\alpha = \frac{1}{2} \qquad \sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\alpha = -1 \qquad \frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n)$$

$$\alpha = -\frac{1}{2} \qquad \frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3)$$

$$e^{x} = 1 + \frac{x}{1!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

ch
$$x = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{p-1} \frac{x^{2p-1}}{(2p-1)!} + o(x^{2p})$$

sh
$$x = x + \frac{x^3}{3!} + \dots + \frac{x^{2p-1}}{(2p-1)!} + o(x^{2p})$$

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^6)$$

Dunod - La photocopie non autorisée est un délit.

th
$$x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^6)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

16 Développements limités

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{(-1)^p}{2p+1} x^{2p+1} + o(x^{2p+2})$$

$$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^6)$$

$$\arccos x = \frac{\pi}{2} - x - \frac{1}{6}x^3 - \frac{3}{40}x^5 + o(x^6)$$

$$\operatorname{argsh} x = x - \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^6)$$

$$\operatorname{argth} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2p+1}}{2p+1} + o(x^{2p+2})$$

2. Opérations sur les développements limités

Considérons deux fonctions f et g admettant des développements limités de même ordre n au voisinage de 0, de parties régulières respectives A_n et B_n .

2.1 Combinaison linéaire

Si λ et μ sont des réels, alors $\lambda f + \mu g$ admet un développement limité au voisinage de 0 dont la partie régulière est $\lambda A_n + \mu B_n$.

2.2 Produit

fg admet un développement limité d'ordre n au voisinage de 0, dont la partie régulière est formée des termes de degré inférieur ou égal à n du produit A_n B_n .

2.3 Quotient

Si $B_n(0) \neq 0$ (soit $g(0) \neq 0$), $\frac{f}{g}$ admet un développement limité d'ordre n au voisinage de 0, dont la partie régulière est obtenue à partir de $A_n(x) \times \frac{1}{B_n(x)}$ en utilisant le développement limité de $\frac{1}{1+u}$ au voisinage de 0.

2.4 Composition

Si $g \circ f$ est définie au voisinage de 0 et si f(0) = 0, alors $g \circ f$ admet un développement limité d'ordre n au voisinage de 0, dont la partie régulière s'obtient en remplaçant u dans $B_n(u)$ par $A_n(x)$ et en ne gardant que les monômes de degré inférieur ou égal à n.

2.5 Primitive

Si f est continue, une primitive F de f admet le développement limité d'ordre n+1, au voisinage de 0, obtenu par intégration terme à terme de $A_n(x)$, le terme constant étant F(0).

2.6 Dérivée

Si f admet des dérivées jusqu'à l'ordre n ($n \ge 2$) sur un intervalle ouvert I contenant 0, la fonction f' admet un développement limité d'ordre n-1 dont la partie régulière s'obtient en dérivant terme à terme celle du développement limité de f.

3. Applications des développements limités

3.1 Étude locale d'une fonction

Pour l'étude locale d'une fonction, ou pour la recherche d'une limite, on cherche un développement limité comportant au moins un terme non nul.

Dans les opérations sur les fonctions, l'ordre des développements limités intermédiaires doit être choisi de façon cohérente. À chaque étape, examinez si le terme suivant aurait eu de l'influence sur votre résultat.

3.2 Étude des branches infinies

Soit f définie sur un intervalle $]A, +\infty[$ ou $]-\infty, A[$. Quand x tend vers l'infini, $X=\frac{1}{x}$ tend vers 0, et, en remplaçant x par $\frac{1}{x}$ on est ramené au voisinage de 0.

Lorsque x et f(x) tendent vers l'infini, on obtient une asymptote oblique (si elle existe) en effectuant le développement limité au voisinage de l'infini :

$$\frac{f(x)}{x} = a + \frac{b}{x} + \frac{c}{x^k} + o\left(\frac{1}{x^k}\right)$$

où $\frac{c}{x^k}$ est le premier terme non nul après $\frac{b}{x}$.

Dans ce cas, la droite d'équation y = ax + b est asymptote à la courbe représentative de f. Et la position relative de la courbe et de l'asymptote résulte du signe de $\frac{c}{x^{k-1}}$ lorsque x tend vers l'infini.

17

Approximation

1^{re} année

1. Calcul approché des zéros d'une fonction

1.1 Généralités

- On détermine d'abord un segment I sur lequel l'équation f(x) = 0 possède une racine unique r qu'il s'agit d'approcher.
- On peut réduire progressivement l'intervalle où se situe r par dichotomie.
- Mais il est souvent préférable de choisir une fonction g telle que :
 - l'équation f(x) = 0 soit équivalente sur I à g(x) = x;
 - il existe un intervalle $J \subset I$ contenant r sur lequel g soit contractante et tel que $g(J) \subset J$.

Alors toute suite récurrente définie par :

$$u_0 \in J$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = g(u_n)$

converge vers r.

Si plusieurs fonctions g peuvent convenir, on choisit celle dont le coefficient de contraction est le plus faible pour que la convergence soit plus rapide.

1.2 Méthode de Newton-Raphson

Si f possède une dérivée continue ne s'annulant pas sur I on peut choisir la fonction g définie par :

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Géométriquement, cela signifie :

u₀ étant donné,

 u_1 est l'abscisse de l'intersection de la tangente au graphique de f au point $(u_0, f(u_0))$ avec l'axe des x:

 u_2 est l'intersection de la tangente au graphique de f au point $(u_1, f(u_1))$ avec l'axe des $x ext{ ... }$

La convergence de la suite (u_n) est très rapide car

$$g'(x) = \frac{f(x) f''(x)}{[f'(x)]^2}$$

entraı̂ne g'(r) = 0.

On peut donc choisir un intervalle J contenant r où le coefficient de contraction de g est aussi petit qu'on veut.

2. Calcul approché d'une intégrale

Le calcul exact de l'intégrale $I = \int_a^b f(x) dx$ est souvent très difficile, sinon impossible. On peut cependant obtenir des valeurs approchées de I par diverses méthodes qui consistent à calculer l'intégrale d'une fonction simple, proche de f.

2.1 Méthode des rectangles

Elle consiste à approcher f par une fonction en escalier. Avec un partage de [a,b] en n segments de même longueur $h=\frac{b-a}{n}$ on obtient la valeur approchée R_n de I:

$$R_n = h \sum_{i=0}^{n-1} f(x_i)$$
 avec $x_i = a + ih = a + i \frac{b-a}{n}$.

Lorque f possède une dérivée bornée sur [a,b], on a la majoration de l'erreur due à la méthode :

$$|I - R_n| \leqslant M_1 \frac{(b-a)^2}{2n}$$
 où $M_1 = \sup_{x \in [a,b]} |f'(x)|$.

Cette majoration permet de déterminer n, après avoir choisi la précision souhaitée. Si f est croissante sur [a,b], R_n est une valeur approchée par défaut. Si f est décroissante, R_n est une valeur approchée par excès.

2.2 Méthode des trapèzes

Elle consiste à approcher le graphique de f par une ligne polygonale. Avec le partage précédent de [a,b], on obtient, en remplaçant les rectangles par des trapèzes, la valeur approchée T_n de I:

17 Approximation

$$T_n = h \left[\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i) \right]$$
 avec $x_i = a + i \frac{b - a}{n}$.

Lorsque f possède une dérivée seconde bornée sur [a,b], on a la majoration de l'erreur due à la méthode :

$$|I - T_n| \le \frac{M_2 (b - a)^3}{12n^2}$$
 où $M_2 = \sup_{x \in [a,b]} |f''(x)|$.

Cette majoration permet de déterminer n, après avoir choisi la précision souhaitée. Si f est convexe sur [a,b], on a $T_n \ge I$, et si f est concave sur [a,b], on a $T_n \le I$.

Intégration sur un intervalle quelconque

18

2^e année

1. Intégrales généralisées (ou impropres)

1.1 Fonction localement intégrable

Soit f définie sur un intervalle I de \mathbb{R} . On dit que f est localement intégrable sur I si elle est intégrable sur tout segment inclus dans I.

1.2 Cas d'une fonction non bornée sur un intervalle borné

Soit f une fonction localement intégrable sur]a,b] avec a < b. Si la limite $\lim_{x \to a^+} \int_x^b f(t) \, \mathrm{d}t$ existe, on dit que l'intégrale $\int_a^b f(t) \, \mathrm{d}t$ est convergente.

Dans le cas contraire, on dit que l'intégrale est divergente.

Si f possède une limite à droite en a, il n'y a aucun problème d'existence pour l'intégrale généralisée.

On définit de manière analogue l'intégrale généralisée $\int_a^b f(t) dt$ pour une fonction continue sur [a,b[.

Étudier la nature d'une intégrale généralisée (ou impropre), c'est préciser si elle est convergente ou divergente.

1.3 Cas d'une fonction définie sur un intervalle non borné

Soit f une fonction localement intégrable sur $[a, +\infty[$.

Si la limite $\lim_{x \to +\infty} \int_a^x f(t) dt$ existe, on dit que l'intégrale $\int_a^{+\infty} f(t) dt$ est convergente.

Dans le cas contraire, on dit que l'intégrale est divergente.

On définit de manière analogue l'intégrale généralisée $\int_{-\infty}^{a} f(t) dt$ pour une fonction continue sur $]-\infty,a]$.

18 Intégration sur un intervalle quelconque

1.4 Généralisation

• Si f est localement intégrable sur a,b, on pose

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt \text{ avec } c \in]a,b[\text{ quelconque}$$

et on dit que $\int_a^b f(t) dt$ converge si, et seulement si, les deux intégrales du second membre convergent.

• Si f est localement intégrable sur $]a, +\infty[$, on pose

$$\int_{a}^{+\infty} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{+\infty} f(t) dt \text{ avec } b \in]a, +\infty[\text{ quelconque}]$$

et on dit que l'intégrale $\int_a^{+\infty} f(t) dt$ converge si, et seulement si, les deux intégrales du second membre convergent.

• Si f est localement intégrable sur $]-\infty,+\infty[$, on pose

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{b} f(t) dt + \int_{b}^{+\infty} f(t) dt \text{ avec } b \in]-\infty, +\infty[\text{ quelconque}]$$

et on dit que l'intégrale $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t$ converge si, et seulement si, les deux intégrales du second membre convergent.

2. Règles de convergence

2.1 Condition nécessaire de convergence sur $[a, +\infty]$

Soit f une fonction localement intégrable sur $[a, +\infty[$. Si l'intégrale $\int_a^{+\infty} f(t) dt$ converge et si $\lim_{x \to +\infty} f(x)$ existe, cette limite est nécessairement nulle.

Si f n'a pas de limite, on ne peut rien dire de l'intégrale.

2.2 Comparaison de fonctions positives

Soit f et g localement intégrables et telles que $0 \leqslant f \leqslant g$ sur $[a, +\infty[$.

Si
$$\int_a^{+\infty} g(t) dt$$
 converge, alors $\int_a^{+\infty} f(t) dt$ converge aussi.

Si
$$\int_{a}^{+\infty} f(t) dt$$
 diverge, alors $\int_{a}^{+\infty} g(t) dt$ diverge aussi.

2.3 Équivalence de fonctions positives

Soit f et g deux fonctions positives.

Si
$$f(x) \underset{+\infty}{\sim} g(x)$$
, alors les intégrales $\int_{a}^{+\infty} f(t) dt$ et $\int_{a}^{+\infty} g(t) dt$ sont de même nature.

Si $f(x) \sim g(x)$, alors les intégrales $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ sont de même nature, c'est-à-dire qu'elles sont toutes les deux convergentes ou toutes les deux divergentes.

Il est important que f et g soient de même signe au voisinage du problème étudié, sinon les fonctions peuvent être équivalentes et leurs intégrales de nature différente.

2.4 Situations de référence

Pour
$$a > 0$$
, on a:
$$\int_{a}^{+\infty} \frac{dt}{t^{\alpha}} \text{ converge } \iff \alpha > 1.$$

Pour
$$a > 0$$
, on a: $\int_0^a \frac{dt}{t^{\alpha}}$ converge $\iff \alpha < 1$.

$$\int_0^1 \ln t \, dt \quad \text{et} \quad \int_0^{+\infty} e^{-\alpha t} \, dt \text{ (où } \alpha \in \mathbb{R}_+^*) \text{ sont convergentes.}$$

2.5 Intégrales absolument convergentes

• Définition

Soit f une fonction localement intégrable sur $[a,+\infty[$. On dit que f est absolument convergente sur cet intervalle si $\int_a^{+\infty} |f(t)| dt$ converge.

• Théorème

$$\int_{a}^{+\infty} |f(t)| \, \mathrm{d}t \, \, \mathrm{converge} \Longrightarrow \, \int_{a}^{+\infty} f(t) \, \, \mathrm{d}t \, \, \mathrm{converge}.$$

18 Intégration sur un intervalle quelconque

Si f est localement intégrable sur]a,b], on a une définition et un théorème analogue.

3. Fonction intégrable sur un intervalle quelconque

3.1 Définitions

- Une fonction f, continue par morceaux sur un intervalle I est dite intégrable sur I si elle vérifie l'une des deux conditions équivalentes suivantes :
 - − la fonction f admet sur I une intégrale absolument convergente ;
 - il existe un réel M > 0 tel que, pour tout segment J inclus dans I, on ait :

$$\int_{I} |f(t)| \, \mathrm{d}t \leqslant M.$$

- Si f est intégrable sur I, on appelle intégrale de f sur I, et on note $\int_I f$:
 - − l'intégrale de *f* sur *I* si *I* est un segment,
 - son intégrale impropre sur *I* si *I* n'est pas un segment.

3.2 Propriétés

- Les propriétés, vues dans le cadre de l'intégrale sur un segment, comme la linéarité et l'inégalité de la moyenne se prolongent.
- La relation de Chasles devient :

Si f est intégrable sur I et sur J, si $I \cup J$ est un intervalle et si $I \cap J$ est vide ou réduit à un point, on a :

$$\int_{I} f + \int_{J} f = \int_{I \cup J} f.$$

• Dans le cas des fonctions à valeurs réelles, on a :

Si f est intégrable et $f \geqslant 0$, alors $\int_I f \geqslant 0$.

Si f et g sont intégrables et $f \leqslant g$, alors $\int_I f \leqslant \int_I g$.

Si f est continue et positive :

$$\int_{I} f = 0 \iff \forall t \in I \ f(t) = 0.$$

3.3 Théorème de convergence dominée

Soit (f_n) une suite de fonctions à valeurs réelles ou complexes, continues par morceaux sur I.

Si (f_n) converge simplement sur I vers une fonction f continue par morceaux sur I, et s'il existe une fonction φ continue par morceaux sur I, positive et intégrable sur I, telle que pour tout entier n, on ait $|f_n| \leq \varphi$ (hypothèse de domination), alors les fonctions f_n et f sont intégrables sur I et

$$\int_{I} f = \lim_{n} \int_{I} f_{n}.$$

3.4 Intégration terme à terme d'une série de fonctions

Soit (f_n) une suite de fonctions à valeurs réelles ou complexes, continues par morceaux et intégrables sur I, telle que la série $\sum f_n$ converge simplement vers une fonction f continue par morceaux sur I et telle que la série $\sum \int_I |f_n|$ converge.

Alors f est intégrable sur I et

Dunod – La photocopie non autorisée est un délit.

$$\int_{I} f = \sum_{n=0}^{\infty} \int_{I} f_{n}.$$

19

Généralités sur les équations différentielles

1^{re} année

1. Équations différentielles

Une équation différentielle est une relation entre une variable réelle t et les valeurs $x(t), x'(t), \dots, x^{(n)}(t)$ d'une fonction inconnue et de certaines de ses dérivées, de la forme :

$$F(t,x(t),x'(t),...,x^{(n)}(t)) = 0$$
 (E)

où F est une fonction continue.

L'ordre n de l'équation différentielle est celui de la dérivée d'ordre le plus élevé qui figure dans (E).

Si x est à valeurs dans \mathbb{R} , l'équation (E) est dite scalaire.

Si x est à valeurs dans \mathbb{R}^p , l'équation (E) est dite vectorielle.

On appelle solution de (E) sur I, ou intégrale de (E) sur I, toute fonction définie sur un intervalle ouvert I possédant des dérivées jusqu'à l'ordre n et telle que :

$$\forall t \in I \qquad F(t, x(t), x'(t), \dots, x^{(n)}(t)) = 0.$$

Résoudre (E) dans I, c'est rechercher l'ensemble de ses solutions dans I.

La courbe représentant une solution de (E) est aussi appelée courbe intégrale de (E).

Une solution x est dite maximale lorsqu'il n'existe pas de solution coïncidant avec x sur I et définie sur un intervalle strictement plus grand.

Le problème de Cauchy est la recherche des solutions d'une équation différentielle vérifiant des conditions initiales imposées.

2. Théorème de Cauchy-Lipschitz

Considérons une équation différentielle du premier ordre sous la forme :

$$x' = f(t, x) \qquad (E)$$

avec f définie et continue sur $I \times U$ où I est un intervalle ouvert et U un ouvert de \mathbb{R}^p . On suppose que les dérivées partielles $\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_p}$ sont continues sur $I \times U$.

Alors, pour tout $(t_0, x_0) \in I \times U$, il existe une solution maximale, et une seule, du problème de Cauchy associé.

Toute solution de (E) est une restriction de cette solution.

20

Équations différentielles linéaires

1^{re} année et 2^e année

1. Équations différentielles scalaires linéaires

1.1 Définitions

• Dans le cas du premier ordre, elles sont de la forme :

$$a(t) x'(t) + b(t) x(t) = f(t)$$
 (1)

où a, b et f sont des fonctions données, continues sur un intervalle I, à valeurs réelles ou complexes.

Pour la résolution, on se place sur un intervalle $J \subset I$ tel que a ne s'annule pas sur J.

• Dans le cas du second ordre, elles sont de la forme :

$$a(t)x''(t) + b(t)x'(t) + c(t)x(t) = f(t)$$
(1)

où a, b, c et f sont des fonctions données, continues sur un intervalle I.

Pour la résolution, on se place sur un intervalle $J \subset I$ tel que a ne s'annule pas sur J.

L'équation est dite à coefficients constants si elle est de la forme :

$$a x''(t) + b x'(t) + c x(t) = f(t)$$
 (1)

où a, b et c sont des constantes données, réelles ou complexes, avec $a \neq 0$.

1.2 Théorèmes dus à la linéarité

• Toute solution de (1) est de la forme $x_P(t) + x_S(t)$ où $x_P(t)$ est une solution particulière de (1) et $x_S(t)$ la solution générale de l'équation homogène associée :

$$a(t) x'(t) + b(t) x(t) = 0$$
 (2)

ou

$$a(t)x''(t) + b(t)x'(t) + c(t)x(t) = 0$$
(2)

• Les solutions complexes de (2) sur J forment un \mathbb{C} -espace vectoriel de dimension 1 pour le premier ordre, 2 pour le second ordre.

Si a, b et c sont à valeurs réelles, l'ensemble des solutions réelles de (2) sur J est un \mathbb{R} -espace vectoriel de dimension 1 pour le premier ordre, 2 pour le second ordre.

2. Résolution dans le cas du premier ordre

2.1 Résolution de l'équation homogène associée

Ses solutions sont du type:

$$x_S(t) = K e^{-A(t)}$$
 où $A(t) = \int_{t_0}^t \frac{b(u)}{a(u)} du$

avec K constante arbitraire et t_0 élément quelconque de I.

2.2 Recherche d'une solution particulière (méthode de Lagrange)

 x_1 étant une solution non nulle de (2), on introduit une fonction auxiliaire inconnue K(t) telle que $x(t) = K(t) x_1(t)$ soit solution de (1).

Ceci conduit à $K'(t) = \frac{f(t)}{a(t)x_1(t)}$ ce qui permet de calculer K(t) puis x(t).

Cette méthode s'appelle aussi méthode de variation de la constante.

3. Résolution dans le cas du second ordre

3.1 Résolution de l'équation homogène dans le cas de coefficients constants

La fonction $t \mapsto e^{rt}$ est solution de (2) si, et seulement si, r vérifie l'équation caractéristique :

$$ar^2 + br + c = 0,$$

ce qui conduit à calculer $\Delta = b^2 - 4ac$.

Si Δ ≠ 0, l'équation caractéristique a deux racines distinctes r₁ et r₂. On a alors :

$$x_S(t) = K_1 e^{r_1 t} + K_2 e^{r_2 t},$$

où K_1 et K_2 sont des constantes quelconques.

• Si $\Delta=0$, l'équation caractéristique a une racine double r_0 . On a alors :

$$x_S(t) = (K_1 t + K_2) e^{r_0 t},$$

où K_1 et K_2 sont des constantes quelconques.

20 Équations différentielles linéaires

• Si a et b sont réels et si $\Delta < 0$, l'équation caractéristique a deux racines complexes conjuguées $\alpha \pm i\beta$. On a alors :

$$x_S(t) = e^{\alpha t} (K_1 \cos \beta t + K_2 \sin \beta t),$$

où K_1 et K_2 sont des constantes réelles quelconques.

En physique, on utilise la forme :

$$K_1 \cos \beta t + K_2 \sin \beta t = A \cos (\beta t - \varphi)$$

avec
$$A = \sqrt{K_1^2 + K_2^2}$$
, $\cos \varphi = \frac{K_1}{A}$ et $\sin \varphi = \frac{K_2}{A}$.

3.2 Résolution de (1) à coefficients constants dans quelques cas

• Cas où f(t) est un polynôme P(t) de degré n

Il existe une solution particulière de (1) sous la forme d'un polynôme de degré

$$n \operatorname{si} c \neq 0$$
;

$$n + 1 \text{ si } c = 0 \text{ et } b \neq 0 ;$$

$$n + 2 \text{ si } c = b = 0 \text{ et } a \neq 0.$$

La recherche de cette solution se fait par identification.

• Cas où $f(t) = e^{kt} P(t)$ avec P polynôme et k constante

On effectue le changement de fonction inconnue

$$x(t) = e^{kt} z(t)$$

où z est une nouvelle fonction inconnue. En reportant x, x' et x'' dans (1), on est conduit à une équation en z du type précédent.

• Cas où $f(t) = e^{\alpha t} \cos \beta t \ P(t)$ ou $f(t) = e^{\alpha t} \sin \beta t \ P(t)$ avec α et β réels, et P polynôme à coefficients réels

Une solution particulière est la partie réelle, ou la partie imaginaire, de la solution particulière obtenue pour l'équation de second membre $e^{(\alpha+i\beta)t}P(t)$.

2.3 Méthodes générales de résolution de l'équation complète (1)

Variation de la constante

Si x_1 est une solution de (2), ne s'annulant pas sur I, on peut chercher les solutions de (1) sous la forme :

$$x(t) = u(t) x_1(t)$$

où u est une fonction inconnue qui vérifie l'équation différentielle linéaire du premier ordre en u' obtenue en reportant dans (1).

Système fondamental de solutions

Si x_1 et x_2 sont deux solutions linéairement indépendantes de (2), on peut chercher la solution de (1) sous la forme :

$$x(t) = u(t) x_1(t) + v(t) x_2(t)$$

où u et v sont des fonctions inconnues soumises à la condition :

$$u'(t) x_1(t) + v'(t) x_2(t) = 0.$$

Les fonctions u et v sont obtenues en résolvant le système :

$$\begin{cases} u' x_1 + v' x_2 = 0 \\ u' x_1' + v' x_2' = f \end{cases}$$

dont le déterminant

$$w(t) = \begin{vmatrix} x_1(t) & x_2(t) \\ x'_1(t) & x'_2(t) \end{vmatrix}$$

appelé wronskien de x_1 et x_2 , ne s'annule pas sur I lorque x_1 et x_2 sont linéairement indépendantes. On obtient :

$$u'(t) = -\frac{x_2(t) f(t)}{w(t)}$$
 et $v'(t) = \frac{x_1(t) f(t)}{w(t)}$.

Utilisation de séries entières

On peut chercher des solutions sous la forme d'un développement en série entière.

Cette méthode peut être envisagée quand a(t), b(t) et c(t) sont des polynômes simples. N'oubliez pas de vérifier que la (ou les) série entière obtenue a un rayon de convergence non nul.

21

Systèmes différentiels linéaires

2^e année

Systèmes d'équations différentielles linéaires à coefficients constants

1.1 Définitions et notations

Un système de p équations différentielles linéaires du premier ordre et à coefficients constants est de la forme :

(S)
$$\begin{cases} x'_1(t) = a_{11} x_1(t) + \dots + a_{1p} x_p(t) + b_1(t) \\ \vdots \\ x'_p(t) = a_{p1} x_1(t) + \dots + a_{pp} x_p(t) + b_p(t) \end{cases}$$

où les b_i sont des fonctions continues de I dans \mathbb{R} .

On suppose que le nombre d'inconnues est égal à celui des équations.

Avec

$$X(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_p(t) \end{pmatrix} A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{p1} & \dots & a_{pp} \end{pmatrix} B(t) = \begin{pmatrix} b_1(t) \\ \vdots \\ b_p(t) \end{pmatrix}$$

(S) s'écrit sous la forme matricielle :

$$X'(t) = A X(t) + B(t).$$

Si B(t) = 0, le système est dit homogène.

1.2 Structure des solutions

L'ensemble des solutions du système différentiel linéaire homogène

$$X'(t) = A X(t) \qquad (S')$$

est un espace vectoriel de dimension p.

Toute solution de (S) est la somme de la solution générale de (S') et d'une solution particulière de (S).

1.3 Cas où A est diagonalisable

Soit A diagonalisable ; notons $\lambda_1, \ldots, \lambda_p$ ses valeurs propres et V_1, \ldots, V_p une base de \mathbb{R}^p de vecteurs propres associés.

L'espace vectoriel des solutions du système homogène (S') admet pour base :

$$(V_1 e^{\lambda_1 t}, \ldots, V_p e^{\lambda_p t}).$$

2. Résolution de (S)

2.1 Par réduction de A

On a $A = PRP^{-1}$ où R est diagonale ou triangulaire. Si l'on pose $Y(t) = P^{-1}X(t)$ et $C(t) = P^{-1}B(t)$, le système s'écrit :

$$Y'(t) = RY(t) + C(t).$$

On résout ce système réduit et on en déduit X(t) = PY(t).

Si $B(t) \neq 0$, cette méthode nécessite le calcul de P^{-1} et peut être pénible.

2.2 Par la méthode de « variation des constantes »

Si $(C_1(t),...,C_p(t))$ est une base de l'espace vectoriel des solutions de (S'), on peut poser $X(t) = \sum_{i=1}^p u_i(t) C_i(t)$ où les u_i sont des fonctions de classe C^1 de I dans \mathbb{R} .

2.3 Par la recherche d'intégrales premières indépendantes

Si λ est une valeur propre de A, comme $\det(A-\lambda I_p)=0$, il existe une combinaison linéaire, à coefficients non tous nuls, des lignes L_i de la matrice $A-\lambda I_p$ telle que $\sum_{i=1}^p \alpha_i L_i=0$.

En utilisant cette combinaison linéaire à partir des lignes de

$$X' - \lambda X = (A - \lambda I_p)X + B$$

on obtient une équation différentielle ordinaire qui donne $y = \sum_{i=1}^{p} \alpha_i x_i$.

Si A est diagonalisable, on obtient ainsi p combinaisons linéaires en x_i , d'où l'on déduit les x_i .

Analyse dans ${\mathbb R}$

22

Notions sur les équations différentielles non linéaires

1^{re} année et 2^e année

1. Équations du premier ordre à variables séparables

Lorsque l'équation est de la forme :

$$f(x(t))x'(t) = g(t),$$

où f et g sont des fonctions données dont on connaît des primitives F et G, on a :

$$F(x(t)) = G(t) + C,$$

et si F possède une fonction réciproque F^{-1} , on en tire :

$$x(t) = F^{-1}(G(t) + C),$$

relation qui donne toutes les solutions de l'équation.

Cette solution générale dépend de la constante d'intégration C.

Dans le cas du problème de Cauchy, C est déterminé par $x(t_0) = x_0$.

En pratique, on peut écrire l'équation sous la forme :

$$f(x) dx = g(t) dt$$
,

puis intégrer formellement les deux membres :

$$\int f(x) \, \mathrm{d}x = \int g(t) \, \mathrm{d}t,$$

et exprimer x en fonction de t.

2. Système autonome de deux équations du premier ordre

Il s'agit d'un système du type :

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} &= \varphi(x,y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= \psi(x,y) \end{cases}$$

où φ et ψ sont de classe \mathcal{C}^1 sur un ouvert Ω de \mathbb{R}^2 .

Le problème de Cauchy a une solution maximale unique qui peut s'obtenir comme ligne de niveau d'une fonction de deux variables f(x,y).

En un point régulier, les vecteurs $\overrightarrow{\operatorname{grad}} f$ et $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$ sont orthogonaux.

Il est parfois possible de trouver un facteur intégrant k(x,y):

$$\begin{cases} \frac{\partial f}{\partial x} &= k(x,y) \ y'(t) &= k(x,y) \ \psi(x,y) \\ \frac{\partial f}{\partial y} &= -k(x,y) \ x'(t) &= -k(x,y) \ \varphi(x,y) \end{cases}$$

On obtient f par intégration, ce qui permet d'obtenir les trajectoires, mais pas les fonctions du temps.

N'oubliez pas d'éliminer les points singuliers x'(t) = y'(t) = 0.

Séries numériques

2^e année

1. Séries à termes réels ou complexes

1.1 Définitions

Soit (u_n) une suite de nombres réels ou complexes. On note $S_n = \sum_{k=0}^n u_k$.

On dit que la série de terme général u_n est convergente lorsque la suite (S_n) est convergente vers S. Sinon, on dit qu'elle est divergente.

Dans le cas d'une série convergente, on note $S = \sum_{k=0}^{+\infty} u_k$.

On dit que S est la somme de la série, que S_n est la somme partielle d'ordre n et que $R_n = \sum_{k=n+1}^{+\infty} u_k$ est le reste d'ordre n.

Pour tout $n \in \mathbb{N}$, on a $S = S_n + R_n$ et il est équivalent de dire que la série $\sum u_n$ converge ou que $\lim_{n \to \infty} R_n = 0$.

1.2 Condition nécessaire de convergence

Si la série $\sum u_n$ converge, alors le terme général u_n tend vers 0.

Si le terme général u_n ne tend pas vers 0, alors la série $\sum u_n$ diverge.

1.3 Espace vectoriel des séries convergentes

Si $\sum u_n$ et $\sum v_n$ convergent et ont pour sommes respectives U et V alors, pour tous nombres a et b, la série $\sum (au_n + bv_n)$ est convergente et a pour somme aU + bV.

1.4 Cas des séries complexes

Soit $u_n = a_n + \mathrm{i} b_n$ avec $a_n \in \mathbb{R}$ et $b_n \in \mathbb{R}$. La série complexe $\sum u_n$ converge si, et seulement si, les deux séries réelles $\sum a_n$ et $\sum b_n$ convergent, et on a :

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} a_n + i \sum_{n=0}^{+\infty} b_n.$$

1.5 Critère de Cauchy

La série $\sum u_n$ converge si, et seulement si, la suite (S_n) est de Cauchy (cf. fiche. 26), c'est-à-dire :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \forall p \in \mathbb{N} \quad \left| \sum_{k=n+1}^{n+p} u_k \right| < \varepsilon.$$

2. Séries à termes positifs

2.1 Caractérisation

Pour qu'une série de termes réels positifs converge, il faut et il suffit que la suite des sommes partielles soit majorée.

2.2 Comparaison de deux séries

• Théorème de comparaison

Soit $\sum u_n$ et $\sum v_n$ deux séries telles que $0 \leqslant u_n \leqslant v_n$ à partir d'un certain rang.

Si $\sum v_n$ converge, alors $\sum u_n$ converge.

Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

• Utilisation d'équivalents

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes > 0 telles que $u_n \underset{+\infty}{\sim} v_n$.

Les deux séries sont alors de même nature, c'est-à-dire qu'elles sont convergentes ou divergentes en même temps.

Dunod – La photocopie non autorisée est un délit

Ce théorème s'applique aussi à des séries à termes < 0, mais il n'est pas vrai pour des séries quelconques.

• Règle de Riemann

Soit $\sum u_n$ une série à termes positifs.

Si $n^{\alpha}u_n$ est majoré avec $\alpha > 1$, alors la série $\sum u_n$ converge.

23 Séries numériques

Si $n^{\alpha}u_n$ est minoré par A>0 avec $\alpha\leqslant 1$, alors la série $\sum u_n$ diverge.

• Règle de d'Alembert

Soit $\sum u_n$ une série à termes strictement positifs telle que $\frac{u_{n+1}}{u_n}$ admette une limite l quand n tend vers $+\infty$.

Si l < 1, la série converge ; si l > 1, la série diverge.

2.3 Comparaison d'une série à une intégrale

Soit $f:[0,+\infty[\longrightarrow \mathbb{R}_+]$ une fonction continue, positive et décroissante.

La série $\sum_{n=0}^{+\infty} f(n)$ et l'intégrale généralisée $\int_0^{+\infty} f(x) dx$ sont de même nature.

3. Convergence absolue

3.1 Définition et théorème

• Définition

Si $\sum |u_n|$ converge, on dit que $\sum u_n$ est absolument convergente.

Théorème

Si une série est absolument convergente, alors elle est convergente et sa somme vérifie :

$$\Big|\sum_{n=0}^{+\infty}u_n\Big|\leqslant\sum_{n=0}^{+\infty}|u_n|.$$

La réciproque est fausse.

Une série convergente qui n'est pas absolument convergente est dite semiconvergente.

3.2 Produit de deux séries

Soit $\sum u_n$ et $\sum v_n$ deux séries absolument convergentes. Le produit des deux séries est la série de terme général :

$$w_n = u_0 v_n + u_1 v_{n-1} + \dots + u_{n-1} v_1 + u_n v_0 = \sum_{p+q=n} u_p v_q.$$

Dunod – La photocopie non autorisée est un délit

Cette série est absolument convergente et l'on a :

$$\sum_{n=0}^{+\infty} w_n = \Big(\sum_{n=0}^{+\infty} u_n\Big) \Big(\sum_{n=0}^{+\infty} v_n\Big).$$

4. Séries de référence

4.1 Séries géométriques

La série de terme général (réel ou complexe) $u_n = aq^n$ est convergente (absolument) si, et seulement si, |q| < 1 et on a alors :

$$\sum_{n=0}^{+\infty} aq^n = a \; \frac{1}{1-q}.$$

4.2 Séries de Riemann

$$\sum \frac{1}{n^{\alpha}}$$
 converge $\iff \alpha > 1$.

En particulier, la série divergente $\sum \frac{1}{n}$ est appelée série harmonique.

4.3 Série exponentielle

Pour tout $z \in \mathbb{C}$, la série de terme général $\frac{z^n}{n!}$ est absolument convergente et l'on a :

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z.$$

5. Séries alternées

5.1 Définition

Une série $\sum u_n$ à termes réels est alternée si son terme général change de signe alternativement.

En supposant $u_0 \ge 0$, on a donc $u_n = (-1)^n a_n$ où $a_n = |u_n|$.

Analyse dans ${\mathbb R}$

23 Séries numériques

5.2 Critère spécial des séries alternées

• Théorème

Si la suite de termes positifs (a_n) est décroissante et converge vers 0, alors la série alternée $\sum_{n=0}^{+\infty} (-1)^n a_n$ est convergente.

• Exemple

La série harmonique alternée $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$ est convergente, mais n'est pas absolument convergente.

· Majoration du reste

Dans les hypothèses du critère spécial des séries alternées, les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.

Le reste
$$R_n = \sum_{k=n+1}^{+\infty} (-1)^k a_k$$
 est du signe de $(-1)^{n+1}$ et vérifie :

$$|R_n| \leqslant a_{n+1}$$
.

$$\frac{1}{2\pi \times 3} + \frac{1}{2\pi \times 3} + \frac{1}$$

24

Espaces vectoriels normés

2e année

1. Normes et distances

1.1 Normes

Définition

Soit E un espace vectoriel sur $K = \mathbb{R}$ ou \mathbb{C} . Une norme sur E est une application N de E dans \mathbb{R} qui vérifie :

(1)
$$\forall x \in E$$
 $N(x) \ge 0$ et $N(x) = 0 \implies x = 0$;

(2)
$$\forall \lambda \in K \quad \forall x \in E \quad N(\lambda x) = |\lambda| N(x)$$
;

(3)
$$\forall x \in E \quad \forall y \in E \quad N(x + y) \leq N(x) + N(y)$$
.

Le couple (E,N) est appelé espace vectoriel normé. On écrit souvent N(x) = ||x||.

• Exemples

a) $E = K^n$; pour $x = (x_1, \dots, x_n) \in E$, on définit :

$$N_1(x) = |x_1| + \dots + |x_n|$$

 $N_2(x) = \sqrt{|x_1|^2 + \dots + |x_n|^2}$

$$N_{\infty}(x) = \sup\{|x_1|,\ldots,|x_n|\}$$

b) $E = \mathcal{C}([a,b],K)$ étant l'espace vectoriel des fonctions continues sur [a,b] et à valeurs dans K, pour $f \in E$ on pose :

$$N_1(f) = \int_a^b |f(t)| dt$$
; $N_2(f) = \sqrt{\int_a^b |f(t)|^2 dt}$.

 N_1 est la norme de la convergence en moyenne, N_2 la norme de la convergence en moyenne quadratique.

c) $E = \mathcal{B}(A, F)$ étant l'espace vectoriel des fonctions bornées définies sur un ensemble A et à valeurs dans un espace vectoriel normé F, on pose :

$$N_{\infty}(f) = \sup_{t \in A} \|f(t)\|$$

où $\| \|$ désigne la norme dans F.

 N_{∞} est la norme de la convergence uniforme.

- **d**) E étant muni d'un produit scalaire, $N(x) = \sqrt{(x|x)}$ définit une norme appelée norme euclidienne si $K = \mathbb{R}$ et hermitienne si $K = \mathbb{C}$. Les normes N_2 des exemples **a**) et **b**) sont des normes euclidiennes ou hermitiennes.
- e) Si $(E_1, N_1), \dots, (E_p, N_p)$ sont des espaces vectoriels normés, on définit une norme sur le produit cartésien $E_1 \times \dots \times E_p$ en posant :

$$N(u_1,\ldots,u_p)=\sup_{1\leqslant i\leqslant p}N_i(u_i).$$

1.2 Distance associée à une norme

• La distance entre deux éléments x et y de E est :

$$d(x,y) = ||y - x||.$$

Propriétés

$$\forall x \in E \quad \forall y \in E \qquad d(x,y) \geqslant 0$$

$$\forall x \in E \quad \forall y \in E \qquad d(x,y) = 0 \iff x = y$$

$$\forall x \in E \quad \forall y \in E \qquad d(x,y) = d(y,x)$$

$$\forall x \in E \quad \forall y \in E \quad \forall z \in E \quad d(x,z) \leq d(x,y) + d(y,z)$$

• La distance entre deux parties A et B non vides de E est :

$$d(A,B) = \inf\{d(x,y) ; x \in A, y \in B\}.$$

• Le diamètre d'une partie non vide A est :

$$\operatorname{diam} A = \sup \{ d(x, y) ; x \in A, y \in A \}.$$

Si diam A est fini, A est dite bornée.

Une application f définie sur un ensemble D et à valeurs dans E est dite bornée si f(D) est une partie bornée de E.

1.3 Boules

La boule ouverte de centre a et de rayon r > 0 est :

$$B(a,r) = \{ x \in E \; ; \, \|x - a\| < r \}.$$

La boule fermée de centre a et de rayon r > 0 est :

$$B^*(a,r) = \{x \in E ; ||x - a|| \le r\}.$$

Analyse dans \mathbb{R}'

2. Suites d'éléments

2.1 Convergence

La définition est analogue au cas des suites dans \mathbb{R} .

La suite (u_n) est convergente vers l si :

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad ||u_n - l|| \leqslant \varepsilon.$$

Une suite qui n'est pas convergente est divergente.

Beaucoup de théorèmes sur les suites numériques se généralisent : unicité de la limite, opérations algébriques, théorème de Bolzano-Weierstrass...

Ne généralisez pas les notions qui utilisent la relation \leq comme : limites infinies, suites monotones, théorème d'encadrement.

2.2 Normes équivalentes

Soit N et N' deux normes sur E. On dit qu'elles sont équivalentes si toute suite qui converge vers l pour une norme, converge aussi vers l pour l'autre norme.

Pour ceci, il faut, et il suffit, qu'il existe $\alpha > 0$ et $\beta > 0$ tels que :

$$\forall x \in E$$
 $\alpha N'(x) \leq N(x) \leq \beta N'(x)$.

Pour montrer que N et N' sont équivalentes, montrez que les fonctions $\frac{N'}{N}$ et $\frac{N}{N'}$ sont bornées sur $E\setminus\{0\}$.

Pour montrer qu'elles ne sont pas équivalentes, montrez que l'un de ces quotients n'est pas borné.

2.3 Cas d'un espace vectoriel de dimension finie

Dans un espace vectoriel de dimension finie, deux normes quelconques sont toujours équivalentes.

3. Topologie d'un espace vectoriel normé (E,N)

3.1 Voisinages d'un point

Une partie V est un voisinage de $a \in E$ s'il existe une boule ouverte centrée en a et incluse dans V.

Dunod – La photocopie non autorisée est un délit

3.2 Ouverts de E

Une partie A de E est ouverte (ou est un ouvert) si elle est au voisinage de chacun de ses points, ce qui s'écrit :

$$\forall a \in A \quad \exists r_a > 0 \quad B(a, r_a) \subset A.$$

Deux normes équivalentes définissent les mêmes ouverts.

Un point a est un point intérieur de A si A est un voisinage de a.

L'ensemble des points intérieurs de A est l'intérieur $\overset{\circ}{A}$ de A. On a $\overset{\circ}{A} \subset A$.

Une partie A est ouverte si, et seulement si, $A = \stackrel{\circ}{A}$.

3.3 Fermés de E

Une partie A est fermée (ou est un fermé) si son complémentaire est un ouvert. a est un point adhérent à A si toute boule B(a,r) avec r>0 contient un point de A. L'ensemble des points adhérents à A est l'adhérence \overline{A} de A. On a $A\subset \overline{A}$. Si $\overline{A}=E$, on dit que A est dense dans E.

Une partie A est fermée si, et seulement si, $A = \overline{A}$.

Une partie A est fermée si, et seulement si, pour toute suite d'éléments de A qui converge dans E, la limite appartient à A.

Fournir une suite d'éléments de A qui converge dans E vers une limite qui n'appartient pas à A, c'est donc démontrer que A n'est pas fermée.

3.4 Frontière

La frontière d'une partie A est l'ensemble $\overline{A} \setminus \overset{\circ}{A}$.

C'est l'ensemble des points a tels que toute boule B(a,r) avec r>0 contient au moins un vecteur de A et un vecteur qui n'appartient pas à A.

3.5 Point isolé

Un point a de A est isolé si l'on peut trouver une boule de centre a ne contenant pas d'autre point de A autre que a.

Analyse dans \mathbb{R}^n

25

Continuité

2e année

1. Fonctions continues

1.1 Limite

Soit E et F deux espaces vectoriels normés, f une application de $D \subset E$ dans F, a un point adhérent à D et $l \in F$.

f admet la limite l au point a si:

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x \in D \quad \|x - a\| \leqslant \eta \Longrightarrow \|f(x) - l\| \leqslant \varepsilon.$$

Les normes dans E et dans F sont notées de la même façon pour ne pas alourdir les notations.

1.2 Continuité

f est continue en a si elle est définie en a et si $\lim_{x \to a} f(x) = f(a)$.

f est continue sur $D \subset E$ si elle est continue en tout point de D.

Les opérations algébriques sont analogues au cas particulier des fonctions numériques continues.

Deux fonctions continues de D dans F qui coïncident sur une partie dense de D sont égales.

1.3 Caractérisations de la continuité

• Caractérisation séquentielle

Pour que f soit continue en a, il faut, et il suffit, que, pour toute suite (u_n) qui converge vers a, la suite $(f(u_n))$ converge vers f(a).

• Caractérisation topologique

f est continue sur D si, et seulement si, l'image réciproque de tout ouvert (resp. fermé) de F est un ouvert (resp. fermé) de E.

Attention, si f est continue et si D est un ouvert (resp. fermé) de E, on ne peut rien dire de l'image directe f(D).

Analyse dans \mathbb{R}^n

1.4 Homéomorphisme

f est un homéomorphisme si elle est bijective et si f et f^{-1} sont toutes les deux continues.

1.5 Fonctions lipschitziennes

Une fonction f de D dans F est lipschitzienne de rapport $k \ge 0$ si :

$$\forall x \in D \quad \forall y \in D \qquad ||f(y) - f(x)|| \le k ||y - x||$$

Si 0 < k < 1, on dit que f est contractante.

1.6 Continuité uniforme

f de $D \subset E$ dans F est uniformément continue sur D si :

$$\forall \varepsilon > 0$$
 $\exists \eta > 0$ $\forall x \in D$ $\forall y \in D$
$$\|x - y\| \leqslant \eta \Longrightarrow \|f(x) - f(y)\| \leqslant \varepsilon.$$

Si f est lipschitzienne sur D, alors f est uniformément continue sur D.

2. Applications linéaires continues

2.1 Cas d'un espace de dimension finie

Si E est de dimension finie, toute application linéaire de E dans F est continue.

Si E, F, G sont de dimensions finies, toute application bilinéaire de $E \times F$ dans G est continue.

2.2 Cas général

• Critère de continuité

Si f est linéaire de E dans F, les propositions suivantes sont équivalentes :

- -f est continue sur E;
- -f est continue en 0;
- -f est uniformément continue ;

$$-\exists k \geqslant 0 \quad \forall x \in E \quad ||f(x)|| \leqslant k ||x||.$$

O Dunod – La photocopie non autorisée est un délit.

Vérifiez bien que f est linéaire avant d'appliquer ce critère de continuité.

• Espace des fonctions linéaires continues

L'ensemble des fonctions linéaires et continues de E dans F est un espace vectoriel. On le note $\mathcal{L}_c(E,F)$.

2.3 Norme subordonnée

· Norme d'une application linéaire continue

En posant:

$$||f|| = \sup_{x \neq 0} \frac{||f(x)||}{||x||} = \sup_{||x|| \le 1} ||f(x)|| = \sup_{||x|| = 1} ||f(x)||$$

on définit une norme sur $\mathcal{L}_c(E,F)$, dite norme subordonnée aux normes choisies dans E et dans F.

· Norme d'une composée

Si
$$f \in \mathcal{L}_c(E,F)$$
 et $g \in \mathcal{L}_c(F,G)$, alors $g \circ f \in \mathcal{L}_c(E,G)$ et :

$$||g \circ f|| \le ||g|| \, ||f||.$$

Cette propriété, vraie pour une norme subordonnée, n'est pas vérifiée pour une norme quelconque.

1. Ensembles compacts

1.1 Cas d'un espace de dimension finie

Dans un espace normé de dimension finie, un compact est une partie fermée et bornée.

1.2 Cas général

Définition

On dit qu'une partie A de E est une partie compacte, ou est un compact, si, de toute suite d'éléments de A, on peut extraire une sous-suite convergente dans A.

Propriétés

- Si A est un compact de E et B un compact de F, alors $A \times B$ est un compact de $E \times F$.
- Un fermé inclus dans un compact est un compact.
- Tout compact est fermé et borné.

1.3 Fonction continue sur un compact

Soit f une fonction continue de E dans F et A un compact de E.

- f(A) est un compact de F.
- \bullet f est uniformément continue sur A (théorème de Heine).

2. Ensembles complets

2.1 Suites de Cauchy

Une suite (u_n) d'éléments d'un espace vectoriel normé E est de Cauchy si :

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall (p,q) \in \mathbb{N}^2$$

$$(p \geqslant n_0 \text{ et } q \geqslant n_0) \Longrightarrow ||u_p - u_q|| \leqslant \varepsilon$$

2.2 Propriétés

• Toute suite convergente est de Cauchy.

26 Ensembles particuliers

Attention, la réciproque n'est pas vraie si *E* quelconque.

- Toute suite de Cauchy est bornée.
- L'image d'une suite de Cauchy par une fonction uniformément continue est de Cauchy.

2.3 Espaces complets

Un espace vectoriel normé E est dit complet si toute suite de Cauchy de E est convergente.

On dit aussi que E est un espace de Banach.

2.4 Exemples

- Tout espace vectoriel normé de dimension finie est un espace de Banach.
- Si F est complet, alors $\mathcal{L}_c(E,F)$ est complet pour la norme subordonnée aux normes de E et de F.

Remarquez que l'hypothèse concerne l'espace d'arrivée.

En particulier, le dual topologique $\mathcal{L}_c(E,K)$ d'un espace vectoriel normé E est un espace de Banach.

2.5 Propriétés

- Dans un espace vectoriel normé E, toute partie A complète est fermée.
- Si E est complet, tout fermé $A \subset E$ est complet.
- \bullet Si E est compact, il est complet.

2.6 Théorème du point fixe

Soit E un espace de Banach et f une fonction de E dans E. Si f est contractante, alors l'équation f(x) = x a une solution unique $l \in E$.

Toute suite définie par $u_0 \in E$ et $u_{n+1} = f(u_n)$ converge vers l.

3. Connexité par arcs (dimension finie)

3.1 Partie connexe par arcs

Une partie A de E est connexe par arcs si, pour tout $(a,b) \in A^2$, il existe une fonction continue f de [0,1] dans A telle que f(0) = a et f(1) = b.

Géométriquement, cela signifie que deux points de A peuvent toujours être joints par un arc continu inclus dans A.

3.2 Propriétés

- Toute partie convexe de *E* est connexe par arcs.
- Dans \mathbb{R} , les parties connexes par arcs sont les intervalles.
- Si A est connexe par arcs et f continue, alors f(A) est connexe par arcs.

3.3 Théorème des valeurs intermédiaires

Soit f une fonction à valeurs réelles, continue sur une partie connexe par arcs, a et b deux vecteurs de A.

Pour tout réel x compris entre f(a) et f(b), il existe $c \in A$ tel que x = f(c).

27

Calcul différentiel dans \mathbb{R}^n

1^{re} année

1. Fonction de \mathbb{R}^n dans \mathbb{R}^p

1.1 Fonctions partielles

Une fonction f, de $D \subset \mathbb{R}^n$ dans \mathbb{R}^p , est de la forme :

$$(x_1,\ldots,x_n)\mapsto f(x_1,\ldots,x_n).$$

Si $a = (a_1, \dots, a_n)$ est un point intérieur de D, les fonctions

$$x_i \mapsto f(a_1,\ldots,a_{i-1},x_i,a_{i+1},\ldots,a_n)$$

définies sur un intervalle ouvert contenant a_i sont les fonctions partielles associées à f au point a.

Une fonction partielle est une restriction à une droite parallèle à un axe.

Pour que f soit continue en a, il est nécessaire que les fonctions partielles soient continues en a_i . Mais ce n'est pas suffisant.

Plus généralement, pour montrer que f n'est pas continue en a, il suffit de montrer que la restriction de f à une courbe continue passant par a n'est pas continue.

Attention, même si la restriction de f à toute droite passant par a est continue, cela ne prouve rien.

1.2 Fonctions coordonnées

On a $f(x) = (f_1(x), \dots, f_p(x))$. Les fonctions, de \mathbb{R}^n dans $\mathbb{R}, x \mapsto f_j(x)$ sont les fonctions coordonnées de f.

f est continue en a si, et seulement si, toutes ses fonctions coordonnées sont continues en a.

1.3 Représentations graphiques (cas p = 1)

Si n = 2, l'ensemble des points de \mathbb{R}^3 :

$$S = \{ (x, y, f(x, y)) ; (x, y) \in D \}$$

est la surface représentative de f.

C'est l'analogue de la courbe représentative d'une fonction à une variable.

Si $k \in \mathbb{R}$, l'ensemble

$$\{(x_1,\ldots,x_n)\in D \ ; \ f(x_1,\ldots,x_n)=k\}$$

est la ligne de niveau k de la fonction f.

Si n = 2, c'est une courbe plane ; si n = 3, c'est une surface.

Si (x_1,x_2) représente un point sur une carte et si $f(x_1,x_2)$ désigne son altitude, les lignes de niveau sont les courbes de même altitude qu'on trouve sur les cartes d'état-major.

2. Dérivées partielles (cas p = 1)

Soit f une fonction numérique définie sur un ouvert D de \mathbb{R}^n .

2.1 Dérivées partielles d'ordre 1

Définition

Les dérivées partielles de f en $a=(a_1,\ldots,a_n)$ sont les dérivées des fonctions partielles associées à f. On les note :

$$\frac{\partial f}{\partial x_i}(a)$$
 ou $D_i f(a)$ ou $f'_{x_i}(a)$.

• Fonction de classe C^1

Si toutes les fonctions dérivées partielles :

$$(x_1,\ldots,x_n)\mapsto \frac{\partial f}{\partial x_i}(x_1,\ldots,x_n)$$

sont continues sur D, on dit que f est de classe \mathcal{C}^1 sur D, ou que f est continûment différentiable sur D.

Dans le cas général, f est de classe C^1 sur D si ses p fonctions coordonnées f_j sont toutes de classe C^1 sur D.

Dunod – La photocopie non autorisée est un délit.

· Vecteur gradient

Le gradient de f en a est le vecteur dont les composantes sont les dérivées partielles premières :

$$\overrightarrow{\operatorname{grad}} f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) \overrightarrow{e_i}.$$

Il est orthogonal à la ligne de niveau de f passant par a.

2.2 Dérivées partielles d'ordre supérieur

Définition

Si les fonctions dérivées partielles admettent elles-mêmes des dérivées partielles en *a*, ces dérivées sont appelées dérivées partielles secondes, ou dérivées partielles d'ordre 2, de *f* en *a*. On les note :

$$\frac{\partial^2 f}{\partial x_i^2}(a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) (a) \quad ; \quad \frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a) .$$

Les dérivées partielles d'ordre supérieur à 2 se définissent par récurrence de façon analogue.

• Fonction de classe C^k

Si toutes les dérivées partielles d'ordre k sont continues sur D, on dit que f est de classe C^k sur D.

Si les dérivées partielles de tous ordres existent, f est dite de classe C^{∞} .

Théorème de Schwarz

Si au moins une des deux dérivées partielles $\frac{\partial^2 f}{\partial x_i \partial x_j}$ et $\frac{\partial^2 f}{\partial x_j \partial x_i}$ est continue en a, alors :

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_i}(a).$$

1. Différentielle

1.1 Fonction différentiable (cas général)

Soit f une fonction définie sur un ouvert D de \mathbb{R}^n et à valeurs dans \mathbb{R}^p . On dit que f est différentiable en $a \in D$ s'il existe une application linéaire $l \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ telle que :

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - l(h)\|}{\|h\|} = 0.$$

Dans ce cas, l'application l est unique. On l'appelle la différentielle de f au point a et on la note d f_a .

1.2 Théorèmes (cas p = 1)

Si f est différentiable en a, alors toutes les dérivées partielles premières de f en a existent.

Si f est de classe C^1 en a, alors f est différentiable en a.

Les deux réciproques sont fausses.

1.3 Notation différentielle (cas p = 1)

Si p = 1, toute application linéaire de \mathbb{R}^n dans \mathbb{R} est de la forme :

$$h = (h_1, ..., h_n) \mapsto l(h) = \sum_{i=1}^n A_i \ h_i.$$

Si f est différentiable en a, on a nécessairement $A_i = \frac{\partial f}{\partial x_i}(a)$.

En notant dx_i la i-ième projection de \mathbb{R}^n sur \mathbb{R} (définie par $dx_i(h) = h_i$), la différentielle de f s'écrit :

$$\mathrm{d}f_a = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) \, \mathrm{d}x_i.$$

Analyse dans \mathbb{R}^{\prime}

1.4 Dérivée dans une direction (cas p = 1)

La dérivée de f en $a=(a_1,\ldots,a_n)$ dans la direction du vecteur unitaire $\overrightarrow{u}(\alpha_1,\ldots,\alpha_n)$ est :

$$\frac{\partial f}{\partial \overrightarrow{u}}(a) = \lim_{t \to 0} \frac{f(a_1 + t\alpha_1, \dots, a_n + t\alpha_n) - f(a_1, \dots, a_n)}{t} \cdot$$

Lorsque f est différentiable, cette limite existe et vaut :

$$\frac{\partial f}{\partial \overrightarrow{u}}(a) = \overrightarrow{\operatorname{grad}} f(a) \cdot \overrightarrow{u}$$
.

Cette dérivée directionnelle est maximum dans la direction du gradient et vaut alors $\|\overrightarrow{\operatorname{grad}} f(a)\|$.

Si la dérivée directionnelle en a n'est pas égale au produit scalaire précédent, c'est une preuve que f n'est pas différentiable en a.

Sur les cartes d'état-major, le gradient indique la ligne plus grand pente. Il est orthogonal aux lignes de niveau.

1.5 Matrice jacobienne (cas général)

Soit $f: D \to \mathbb{R}^p$ une fonction définie sur un ouvert D de \mathbb{R}^n , de classe \mathcal{C}^1 en $a \in D$. On appelle matrice jacobienne de f au point a la matrice de sa différentielle en a:

$$J_f(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \cdots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & & & \vdots \\ \frac{\partial f_p}{\partial x_1}(a) & \frac{\partial f_p}{\partial x_2}(a) & \cdots & \frac{\partial f_p}{\partial x_n}(a) \end{pmatrix}$$

1.6 Jacobien

Si n = p, le déterminant de $J_f(a)$ est le jacobien de f au point a.

On le note
$$\frac{\mathrm{D}(f_1,\ldots,f_n)}{\mathrm{D}(x_1,\ldots,x_n)}(a)$$
.

2. Composition

2.1 Différentielle d'une composée

Soit $f: D_1 \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$ et $g: D_2 \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$ deux fonctions définies sur des ouverts tels que $f(D_1) \subset D_2$.

Si f est différentiable en a et g différentiable en f(a), alors $g \circ f$ est différentiable en a et l'on a :

$$d(g \circ f)_a = dg_{f(a)} \circ df_a$$

c'est-à-dire sous forme matricielle :

$$J_{g \circ f}(a) = J_g(f(a)) \times J_f(a).$$

Dans le cas q = 1 on a alors :

$$\frac{\partial (g \circ f)}{\partial x_i}(a) = \sum_{k=1}^p \frac{\partial f_k}{\partial x_i}(a) \times \frac{\partial g}{\partial y_k}(f(a)).$$

2.2 Difféomorphisme

Définition

Soit n = p, U un ouvert de \mathbb{R}^n et V = f(U). On dit que f est un difféomorphisme de U sur V si f est une bijection et si f et f^{-1} sont de classe \mathcal{C}^1 sur U et V respectivement.

Théorème d'inversion locale

Soit $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$ une fonction de classe \mathcal{C}^1 sur un ouvert D.

Soit $a \in D$ tel que d f_a soit inversible, c'est-à-dire tel que le jacobien $\frac{D(f_1,\ldots,f_n)}{D(x_1,\ldots,x_n)}(a)$ soit non nul.

Il existe un voisinage ouvert U de a tel que f soit un difféomorphisme de U sur f(U).

29

Extremum d'une fonction à plusieurs variables

2^e année

1. Définitions

Soit f une fonction numérique définie sur $D \subset \mathbb{R}^n$.

f admet un maximum (resp. minimum) global (ou absolu) en $a \in D$ si

$$\forall x \in D$$
 $f(x) \leqslant f(a)$ (resp. $f(x) \geqslant f(a)$)

f admet un maximum (resp. minimum) local (ou relatif) en $a \in D$ s'il existe un voisinage V de a tel que :

$$\forall x \in V$$
 $f(x) \leqslant f(a)$ $(\text{resp.} f(x) \geqslant f(a))$

2. Existence d'un minimum et d'un maximum globaux

Si D est compact (c'est-à-dire fermé et borné puisqu'on est en dimension finie) et si f est continue, alors f admet un maximum et un minimum globaux atteints au moins une fois.

3. Condition nécessaire d'extremum local

Si f présente un extremum local en a, et si f est différentiable en ce point, alors :

$$\forall i \qquad \frac{\partial f}{\partial x_i}(a) = 0 \qquad \text{ ou encore } \overrightarrow{\operatorname{grad}} f(a) = \overrightarrow{0}.$$

Un point vérifiant cette condition est appelé point critique, ou point stationnaire, de f.

Les éventuels extremums sont donc à chercher parmi les points critiques et les points où f n'est pas différentiable (le plus souvent les points frontière de D).

En l'absence de théorème donnant une condition suffisante, étudiez le signe de la différence f(x) - f(a) pour x voisin de a, ou, mieux, le signe de

$$\Delta(h_1,...h_n) = f(a_1 + h_1,...,a_n + h_n) - f(a_1,...,a_n)$$

avec les h_i voisins de 0.

Dunod – La photocopie non autorisée est un délit.

4. Condition suffisante d'extremum local (cas de 2 variables)

Soit f une fonction de classe C^2 sur un ouvert $D \subset \mathbb{R}^2$ et (x_0, y_0) un point critique; posons:

$$R = \frac{\partial^2 f}{\partial x^2}(x_0, y_0) \; \; ; \; \; S = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \; \; ; \; \; T = \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \; . \label{eq:R}$$

On a alors:

- si $S^2 RT < 0$, f présente un extremum relatif en (x_0, y_0) ; il s'agit d'un maximum si R < 0 et d'un minimum si R > 0;
- si $S^2 RT > 0$, f présente un point-selle (ou point-col) en (x_0, y_0) ; ce n'est pas un extremum :

Le mot col vient de l'exemple de la fonction altitude et de la configuration (idéalisée) d'un col de montagne : minimum de la ligne de crête, maximum de la route, sans être un extremum du paysage.

Le mot selle vient de l'exemple d'une selle de cheval.

• si $S^2 - RT = 0$, on ne peut pas conclure à partir des dérivées secondes.

Intégrales doubles

1^{re} année

1. Intégrale double d'une fonction continue sur un rectangle

1.1 Sommes de Darboux

Soit f une fonction continue sur un rectangle $R = [a,b] \times [c,d]$ et à valeurs réelles.

Soit $x_0 = a < x_1 < \dots < x_m = b$ une subdivision de [a,b] et $y_0 = c < y_1 < \dots < y_n = d$ une subdivision de [c,d].

Les mn rectangles $R_{ij} = [x_i, x_{i+1}] \times [y_i, y_{i+1}]$ forment une subdivision σ de R.

On appelle sommes de Darboux de f associées à σ les nombres :

$$s(\sigma) = \sum_{i,j} \inf_{R_{ij}} f \times \text{aire } R_{ij}$$
 et $S(\sigma) = \sum_{i,j} \sup_{R_{ij}} f \times \text{aire } R_{ij}$

L'ensemble des sommes $s(\sigma)$, quand σ varie, est majoré.

L'ensemble des sommes $S(\sigma)$, quand σ varie, est minoré.

1.2 Intégrale

Si f est continue, la borne supérieure des $s(\sigma)$ est égale à la borne inférieure des $S(\sigma)$. Cette valeur commune est appelée intégrale de f sur R et notée :

$$\iint_R f(x, y) \, \mathrm{d}x \, \mathrm{d}y \quad \text{ou} \quad \iint_R f$$

1.3 Sommes de Riemann

f étant continue sur R, soit σ la subdivision de R obtenue en partageant [a,b] en m intervalles égaux et [c,d] en n intervalles égaux. Alors, on a :

$$\iint_{R} f(x, y) \, dx \, dy = \lim_{\substack{m \to \infty \\ m \to \infty}} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{b - a}{m} \, \frac{d - c}{n} \, f(x_{i}, y_{j})$$

1.4 Propriétés de l'intégrale

• Linéarité

Soit f et g deux fonctions continues sur R et λ et μ deux réels ; alors :

$$\iint_{R} \left[\lambda f(x,y) + \mu g(x,y) \right] dx dy = \lambda \iint_{R} f(x,y) dx dy + \mu \iint_{R} g(x,y) dx dy.$$

Croissance

Soit f et g deux fonctions continues sur R telles que $f(x,y) \leq g(x,y)$ pour tout $(x,y) \in R$; alors:

$$\iint_R f(x, y) \, dx \, dy \leqslant \iint_R g(x, y) \, dx \, dy.$$

On en déduit que :

$$\left| \iint_R f(x,y) \, \mathrm{d}x \, \mathrm{d}y \, \right| \leqslant \iint_R |f(x,y)| \, \mathrm{d}x \, \mathrm{d}y.$$

1.5 Théorème de Fubini

Soit f une fonction continue sur un rectangle $R = [a,b] \times [c,d]$ et à valeurs réelles. On a :

$$\iint_{R} f(x,y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$$

Ce théorème permet de calculer l'intégrale double par deux intégrales simples successives.

Dunod – La photocopie non autorisée est un délit.

Il peut arriver que l'un des emboîtements ne permette pas le calcul de primitives et que l'autre conduise au résultat.

1.6 Cas particulier

Dans le cas où f s'écrit sous la forme d'un produit de deux fonctions continues à une variable :

$$f(x,y) = g(x) h(y)$$

l'intégrale double sur le rectangle est alors le produit de deux intégrales simples :

$$\iint_R f(x,y) \, dx \, dy = \int_a^b g(x) \, dx \times \int_c^d h(y) \, dy$$

2. Extension à une partie fermée bornée du plan

Soit f une fonction continue sur une partie A fermée bornée de \mathbb{R}^2 et à valeurs dans \mathbb{R} . On peut prolonger la notion d'intégrale double de f sur A avec les mêmes propriétés que sur un rectangle.

2.1 Théorème de Fubini

Soit φ et ψ deux fonctions continues sur [a,b] avec $\varphi \leqslant \psi$; notons A l'ensemble des points $(x,y) \in \mathbb{R}^2$ tels que :

$$a \leqslant x \leqslant b$$
 et $\varphi(x) \leqslant y \leqslant \psi(x)$.

Alors:

$$\iint_A f(x,y) \, dx \, dy = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) \, dy \right) dx$$

On peut permuter les rôles de x et de y.

2.2 Additivité par rapport au domaine d'intégration

Si A est la réunion de deux parties A_1 et A_2 fermées bornées telles que $A_1\cap A_2$ soit d'aire nulle, alors :

$$\iint_A f(x,y) \, dx \, dy = \iint_{A_1} f(x,y) \, dx \, dy + \iint_{A_2} f(x,y) \, dx \, dy.$$

Inalyse dans \mathbb{R}^{1}

3. Changement de variables

3.1 Théorème

Soit f(x,y) une fonction continue sur le domaine D fermé et borné, en bijection avec un domaine fermé et borné Δ au moyen des fonctions de classe \mathcal{C}^1 $x = \varphi(u,v)$ et $y = \psi(u,v)$; alors :

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint_\Delta f(x(u,v),y(u,v)) \, \left| \frac{D(x,y)}{D(u,v)} \right| \, \mathrm{d}u \, \mathrm{d}v$$

Le déterminant

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial \varphi}{\partial u}(u,v) & \frac{\partial \varphi}{\partial v}(u,v) \\ \frac{\partial \psi}{\partial u}(u,v) & \frac{\partial \psi}{\partial v}(u,v) \end{vmatrix}$$

est le jacobien du changement de variables.

3.2 Cas des coordonnées polaires

Le changement de variables $x = \rho \cos \theta$ et $y = \rho \sin \theta$ a pour jacobien $\frac{D(x,y)}{D(\rho,\theta)} = \rho$, d'où :

$$\iint_D f(x, y) \, dx \, dy = \iint_{\Delta} f(\rho \cos \theta, \rho \sin \theta) \, \rho \, d\rho \, d\theta$$

Dunod – La photocopie non autorisée est un délit.

Grâce à cette transformation, l'intégration sur un disque, une couronne ou un secteur angulaire se ramène à une intégration sur un rectangle.

Intégrales curvilignes

2e année

1. Formes différentielles de degré 1

1.1 Définition

Une forme différentielle de degré 1 est une application ω , définie sur un ouvert de \mathbb{R}^n , et à valeurs dans le dual $\mathcal{L}(\mathbb{R}^n,\mathbb{R})$.

En notant dx_i la i-ième projection de \mathbb{R}^n sur \mathbb{R} (définie par $dx_i(h) = h_i$), ω s'écrit :

$$\forall x = (x_1, \dots, x_n) \in U \qquad \omega(x) = \sum_{i=1}^n P_i(x) \, \mathrm{d}x_i.$$

Les P_i , applications de U dans \mathbb{R} , sont les fonctions coordonnées de ω .

En physique, on associe à ω le champ de vecteurs \overrightarrow{V} de composantes (P_1, P_2) dans le plan et (P_1, P_2, P_3) dans l'espace.

Si tous les P_i sont de classe C^k sur U, on dit que ω est de classe C^k sur U.

1.2 Forme exacte

Une forme différentielle ω est exacte s'il existe une fonction f de U dans $\mathbb R$ telle que :

$$\mathrm{d}f = \omega.$$

On dit alors que f est une primitive de ω sur U.

En physique, ω exacte signifie que \overrightarrow{V} est un champ de gradients.

1.3 Forme fermée

 ω est fermée si :

$$\forall i \quad \forall j \qquad \frac{\partial P_i}{\partial x_j} = \frac{\partial P_j}{\partial x_i} \; \cdot$$

En physique, cette condition signifie que $\overrightarrow{\operatorname{rot}} \overrightarrow{V} = \overrightarrow{0}$.

1.4 Condition nécessaire pour ω exacte

Une forme différentielle exacte de classe C^1 est toujours fermée.

En physique, cela signifie que l'on a toujours $\overrightarrow{rot}(\overrightarrow{grad}f) = \overrightarrow{0}$.

1.5 Ouverts particuliers

Un ouvert U de \mathbb{R}^n est étoilé s'il existe $a \in U$ tel que, pour tout $x \in U$, le segment d'extrémités a et x soit inclus dans U.

Un ouvert U de \mathbb{R}^n est simplement connexe si toute courbe fermée incluse dans U peut se ramener à un point par déformation continue.

1.6 Théorème de Poincaré

Si U est un ouvert étoilé, ou si U est simplement connexe, alors :

 ω exacte sur $U \iff \omega$ fermée sur U.

Dunod – La photocopie non autorisée est un délit

Attention, cette équivalence exige une hypothèse sur U. Elle n'est pas vraie dans le cas du plan privé d'un point, de l'espace privé d'une droite.

2. Intégrale curviligne

2.1 Arc orienté

Soit Γ un arc de courbe défini par la représentation paramétrique :

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} \quad t \in [a,b]$$

L'arc est orienté par le choix de l'un des deux sens de parcours possibles, ce qui revient à distinguer les vecteurs unitaires tangents (oppposés) \overrightarrow{T}_+ et \overrightarrow{T}_- .

2.2 Intégrale d'une forme différentielle le long d'un arc orienté

P, Q et R étant des fonctions continues, on appelle intégrale curviligne de la forme différentielle $\omega = P \, dx + Q \, dy + R \, dz$ le nombre noté :

$$\int_{\Gamma^+} \omega = \int_{\Gamma^+} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z$$

31 Intégrales curvilignes

et défini par :

$$I = \int_a^b \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

En physique, il s'agit de la circulation de \overrightarrow{V} le long de Γ .

2.3 Propriétés

• Linéarité par rapport à la forme différentielle

$$\int_{\Gamma^+} \lambda_1 \omega_1 + \lambda_2 \omega_2 = \lambda_1 \int_{\Gamma^+} \omega_1 + \lambda_2 \int_{\Gamma^+} \omega_2.$$

· Additivité par rapport aux arcs

Si Γ a pour origine A et pour extrémité B, et si C est un point de l'arc AB, alors :

$$\int_{\widehat{AB}} \omega = \int_{\widehat{AC}} \omega + \int_{\widehat{CB}} \omega.$$

Si \widehat{AB} est C^1 par morceaux avec des arcs \widehat{AC} et \widehat{CB} qui sont C^1 , cette égalité sert de définition à l'intégrale curviligne sur \widehat{AB} .

· Cas d'une forme exacte

Si $\omega = \mathrm{d}f$, alors

$$\int_{\widehat{AB}} \omega = f(B) - f(A)$$

ne dépend que des extrémités du chemin d'intégration. L'intégrale est donc nulle si la courbe est fermée.

3. Formule de Green-Riemann

3.1 Théorème

Soit D une partie fermée bornée du plan limitée par un bord C de classe C^1 par morceaux, et P et Q des fonctions C^1 dans D. On a :

$$\int_{C^{+}} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy,$$

où le symbole C^+ désigne le bord C, orienté de sorte qu'un mobile parcourant C a toujours D à sa gauche.

3.2 Application aux formes différentielles exactes

La forme différentielle $P \, \mathrm{d} x + Q \, \mathrm{d} y$ est exacte dans D si, et seulement si, son intégrale sur toute courbe fermée contenue dans D est nulle.

3.3 Application à l'aire d'un domaine plan

aire
$$D = \frac{1}{2} \int_{C^+} x \, dy - y \, dx$$
.

Suites de fonctions

2^e année

 (f_n) désigne une suite de fonctions f_n définies sur un intervalle I de \mathbb{R} et à valeurs dans $K = \mathbb{R}$ ou \mathbb{C} .

1. Suites de fonctions

 (f_n) désigne une suite de fonctions f_n définies sur un intervalle I de \mathbb{R} et à valeurs dans $K = \mathbb{R}$ ou \mathbb{C} .

1.1 Convergence simple

La suite (f_n) converge simplement sur I vers une fonction f, de I dans K, si:

$$\forall x \in I$$
 $\lim_{n \to +\infty} f_n(x) = f(x).$

1.2 Convergence uniforme

f étant la limite simple de la suite (f_n) , on dit que la convergence de (f_n) vers f est uniforme sur I si :

$$\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0$$

où
$$||f_n - f||_{\infty} = \sup_{x \in I} |f_n(x) - f(x)|$$
.

Le nombre $||f_n - f||_{\infty}$ se calcule souvent avec l'étude des variations de la fonction $f_n - f$.

Quand ce calcul est trop difficile, cherchez à minorer ou à majorer.

La convergence uniforme de (f_n) vers f entraı̂ne la convergence simple.

La réciproque est fausse.

1.3 Continuité de la limite

Si la suite (f_n) converge uniformément vers f sur I, et si chaque f_n est continue sur I, alors f est continue sur I.

Si les f_n sont continues sur I, et si f n'est pas continue sur I, alors la convergence n'est pas uniforme.

Il suffit que la convergence soit uniforme sur tout segment inclus dans I, pour que f soit continue sur I.

1.4 Intégration de la limite

Si la suite (f_n) converge uniformément vers f sur I, et si chaque f_n est continue sur I, alors pour tous a et b dans I, on a :

$$\int_{a}^{b} f(t) dt = \lim_{n \to +\infty} \int_{a}^{b} f_n(t) dt$$

Si cette égalité n'a pas lieu, alors la convergence n'est pas uniforme.

1.5 Dérivation de la limite

Soit (f_n) une suite de fonctions de classe C^1 dans I, convergeant en un point $a \in I$.

Si la suite des dérivées (f'_n) converge uniformément sur I, alors la suite (f_n) converge simplement vers une fonction f de classe C^1 dans I qui vérifie :

$$\forall x \in I$$
 $f'(x) = \lim_{n \to +\infty} f'_n(x)$.

2. Approximations uniformes

• Toute fonction f de [a,b] dans K, continue par morceaux, peut être approximée uniformément par des fonctions en escalier, c'est-à-dire que, pour tout $\varepsilon > 0$, il existe une fonction en escalier φ telle que :

$$||f - \varphi||_{\infty} \leqslant \varepsilon$$
.

• Toute fonction f continue de [a,b] dans K, peut être approximée uniformément par des fonctions polynomiales, c'est-à-dire que, pour tout $\varepsilon > 0$, il existe une fonction polynomiale g telle que :

$$||f-g||_{\infty} \leqslant \varepsilon$$
.

• Toute fonction f continue et T-périodique peut être approximée uniformément par des polynômes trigonométriques de même période, c'est-à-dire des combinaisons linéaires d'expressions de la forme $\exp\left(\mathrm{i}\,\frac{2\pi}{T}\,kx\right)$ où $k\in\mathbb{Z}$.

Analyse dans \mathbb{R}^n

33

Séries de fonctions

2e année

Soit (u_n) une suite de fonctions définies sur un intervalle I. On considère les sommes partielles définies par :

$$S_n(x) = \sum_{k=0}^n u_k(x) .$$

1. Convergence simple

On dit que la série $\sum_{n} u_n$ converge simplement sur I si la suite (S_n) converge simplement et on note :

$$S(x) = \sum_{k=0}^{+\infty} u_k(x) = \lim_{n \to +\infty} S_n(x).$$

2. Convergence uniforme

On dit que la série $\sum_{n} u_n$ converge uniformément sur I si la suite (S_n) converge uniformément sur I.

3. Convergence normale

3.1 Définition

On dit que la série $\sum_n u_n$ converge normalement sur I si la série des normes $\sum_n \|u_n\|_{\infty}$ converge.

3.2 Condition nécessaire et suffisante

La série $\sum_{n} u_n$ converge normalement sur I si, et seulement si, il existe une série numérique à termes positifs a_n telle que :

$$\forall n \in \mathbb{N} \quad \forall x \in I \quad |u_n(x)| \leqslant a_n \quad \text{ et } \quad \sum_{n=0}^{+\infty} a_n \text{ convergente.}$$

La recherche de a_n peut se faire par majoration ou en étudiant les variations de u_n .

3.3 Théorème

La convergence normale de $\sum_n u_n$ entraı̂ne la convergence uniforme de $\sum_n u_n$ et, pour tout $x \in I$, la convergence absolue de $\sum_n u_n(x)$.

Si vous êtes optimiste, pour étudier le mode de convergence d'une série de fonctions, commencez par la convergence normale sur I, ou sur tout segment de I.

C'est souvent facile à faire, et, si ça marche, c'est un mode de convergence qui entraîne tous les autres.

4. Propriétés

Pour une série $\sum_{n} u_n$ qui converge uniformément (normalement entraı̂ne cette condition) sur I, les théorèmes sur les suites de fonctions conduisent à :

4.1 Continuité

Si les u_n sont continues sur I, alors la somme S est continue sur I.

4.2 Intégration

Si les u_n sont continues dans I et si $\sum_n u_n$ converge uniformément sur I, alors, pour tous a et b dans I, on a :

$$\int_a^b \left(\sum_{k=0}^{+\infty} u_k(x)\right) dx = \sum_{k=0}^{+\infty} \left(\int_a^b u_k(x) dx\right)$$

Dunod – La photocopie non autorisée est un délit

On dit que l'on a intégré terme à terme la série.

33 Séries de fonctions

4.3 Dérivation

Si les u_n sont de classe \mathcal{C}^1 dans I et si $\sum_n u'_n$ converge uniformément, alors la somme S est de classe \mathcal{C}^1 et vérifie :

$$\forall x \in I$$
 $S'(x) = \sum_{k=0}^{+\infty} u'_k(x)$.

On dit que l'on a dérivé terme à terme la série.

2^e année

1. Convergence d'une série entière

1.1 Série entière

Une série entière est une série de fonctions de la forme :

$$\sum_{n=0}^{+\infty} u_n(z) \quad \text{avec} \quad u_n(z) = a_n z^n$$

où z est la variable réelle ou complexe et les a_n des constantes réelles ou complexes.

1.2 Lemme d'Abel

Si la suite $(|a_n| r^n)$ est bornée, alors la série $\sum_{n=0}^{+\infty} a_n z^n$ converge absolument pour tout z tel que |z| < r.

1.3 Rayon de convergence

Si $\sum_{n=0}^{+\infty} a_n z^n$ est une série entière, elle vérifie une, et une seule, des trois propriétés :

- la série converge uniquement pour z = 0;
- il existe un nombre réel R > 0 tel que la série converge absolument pour tout z tel que |z| < R, et diverge pour tout z tel que |z| > R;
- La série converge absolument pour tout z.

Le nombre R du deuxième cas est appelé rayon de convergence de la série entière.

Dans le premier cas, le rayon de convergence est nul.

Dans le troisième cas, on dit que le rayon de convergence est infini.

1.4 Détermination du rayon de convergence

 \bullet Le nombre R est la borne supérieure des ensembles :

$$\{r \in \mathbb{R}_+ ; \sum_{n=0}^{+\infty} a_n r^n \text{ converge}\} ; \{r \in \mathbb{R}_+ ; |a_n| r^n \text{ borné}\}$$

34 Séries entières

• On détermine souvent R à partir de la règle de d'Alembert.

Si
$$\lim_{n \to +\infty} \frac{|u_{n+1}(z)|}{|u_n(z)|} = l |z|^k$$
, en écrivant :

$$l |z|^k < 1 \iff |z| < \sqrt[k]{\frac{1}{l}}$$

on obtient
$$R = \sqrt[k]{\frac{1}{l}}$$
.

Cette méthode suppose l'existence d'une limite, ce qui n'est pas toujours le cas.

1.5 Mode de convergence

• La série $\sum_{n=0}^{+\infty} a_n z^n$ de rayon de convergence R converge absolument dans l'intervalle (ouvert) de convergence] -R, R[dans le cas réel ; dans le disque (ouvert) de convergence B(0,R) dans le cas complexe.

Pour |z| > R, la série diverge.

Si |z| = R, il n'y a pas de résultat général.

• La convergence est normale, donc uniforme, sur tout compact inclus dans le disque (ou l'intervalle) de convergence.

1.6 Opérations algébriques

Soit $\sum_{n=0}^{+\infty} a_n z^n$ et $\sum_{n=0}^{+\infty} b_n z^n$ deux séries entières, de rayons de convergence respectifs R_1 et R_2 , et de sommes respectives f(z) et g(z).

Linéarité

Pour tous $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}$, la série entière $\sum_{n=0}^{+\infty} (\alpha \, a_n + \beta \, b_n) \, z^n$ a pour somme $\alpha \, f(z) + \beta g(z)$; son rayon de convergence R est tel que :

$$R = \min(R_1, R_2)$$
 si $R_1 \neq R_2$
 $R \geqslant R_1$ si $R_1 = R_2$

Produit

Si l'on pose:

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0 = \sum_{k=0}^n a_k b_{n-k}$$

la série entière $\sum_{n=0}^{+\infty} c_n z^n$ a pour somme f(z)g(z); son rayon de convergence R est tel que $R \geqslant \min(R_1, R_2)$.

1.7 Continuité

Soit $\sum_{n=0}^{+\infty} a_n z^n$ une série entière de rayon de convergence $R \neq 0$ et de somme f(z).

La fonction f est continue sur son disque de convergence (cas complexe) ou son intervalle de convergence (cas réel).

2. Série entière d'une variable réelle

2.1 Dérivation

Si la série entière $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ a pour rayon de convergence $R \neq 0$, alors f est dérivable dans]-R,R[et l'on a :

$$f'(x) = \sum_{n=1}^{+\infty} n \, a_n \, x^{n-1}.$$

Il en résulte que f est indéfiniment dérivable sur]-R,R[.

O Dunod – La photocopie non autorisée est un délit

Une série entière et sa série dérivée ont même rayon de convergence. Mais, sur le bord de l'intervalle de convergence, les deux séries ne sont pas toujours de même nature.

2.2 Intégration

Si la série entière $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ a pour rayon de convergence $R \neq 0$, pour tout $x \in]-R,R[$ on a :

$$\int_0^x f(t) dt = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}.$$

La série entière ainsi obtenue par intégration terme à terme a le même rayon de convergence que la série initiale.

3. Développement d'une fonction en série entière

3.1 Série entière associée à une fonction

Soit f une fonction d'une variable réelle, définie sur un intervalle ouvert U contenant l'origine.

On dit que f est développable en série entière s'il existe une série entière de rayon de convergence $R \neq 0$ telle que :

$$\forall x \in]-R, R[\cap U \qquad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

On dit aussi que f est analytique en 0.

3.2 Condition nécessaire

Si f est développable en série entière avec $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, alors f est indéfini-

ment dérivable et
$$a_n = \frac{f^{(n)}(0)}{n!}$$
.

Donc, si le développement en série entière de f existe, il est unique.

La série
$$\sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$
 est la série de Taylor de f en 0.

Plus généralement, f est analytique en x_0 s'il existe un intervalle ouvert contenant x_0 dans lequel la somme de sa série de Taylor en x_0 est égale à f(x), ce qui signifie qu'il existe R > 0 tel que :

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 pour $|x - x_0| < R$.

Attention, il peut arriver que f soit indéfiniment dérivable au voisinage de 0 et que sa série de Taylor diverge pour tout $x \neq 0$, ou qu'elle converge et que sa somme soit différente de f(x).

3.3 Condition suffisante

Si f est indéfiniment dérivable dans l'intervalle I défini par $|x-x_0| < R$ et s'il existe une constante M > 0 telle que :

$$\forall n \in \mathbb{N} \quad \forall x \in I \qquad |f^{(n)}(x)| \leqslant M$$

alors f est analytique en x_0 .

3.4 Développements de base

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!} \qquad R = +\infty$$

$$\cos x = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} \qquad R = +\infty$$

$$\cosh x = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \qquad R = +\infty$$

$$\sin x = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \qquad R = +\infty$$

$$\sinh x = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} \qquad R = +\infty$$

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^{n} \qquad R = 1$$

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{n+1}}{n+1} \qquad R = 1$$

$$\arctan x = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} \qquad R = 1$$

35

Séries de Fourier

2e année

1. Fonctions périodiques

1.1 Définition

Soit f une fonction définie sur \mathbb{R} et à valeurs réelles ou complexes. Un nombre T>0 est une période de f si :

$$\forall t \in \mathbb{R}$$
 $f(t+T) = f(t)$.

Le plus petit nombre T vérifiant la propriété est la période de f.

On dit aussi que f est T-périodique.

Une fonction T-périodique est entièrement déterminée par sa restriction à un intervalle de longueur T.

1.2 Propriétés

• L'intégrale d'une fonction continue de période *T*, sur un intervalle de longueur *T*, est indépendante des bornes, soit par exemple :

$$\int_{\alpha}^{\alpha+T} f(t) dt = \int_{0}^{T} f(t) dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt.$$

• Si f est dérivable, de période T, alors f' est aussi périodique de période T.

1.3 Vocabulaire de la physique

f étant T-périodique, le nombre $\nu=\frac{1}{T}$ est la fréquence et le nombre $\omega=\frac{2\pi}{T}$ la pulsation.

On appelle énergie moyenne de f sur une période le nombre :

$$\frac{1}{T} \int_{0}^{\alpha+T} |f(t)|^2 dt.$$

Sa racine carrée est appelée valeur efficace de f.

☼ Dunod – La photocopie non autorisée est un délit.

2. Série de Fourier d'une fonction

Soit f est une fonction T-périodique, continue par morceaux.

2.1 Coefficients de Fourier

• Forme réelle $(n \in \mathbb{N})$

$$a_n = \frac{2}{T} \int_0^{\alpha + T} f(t) \cos n\omega t \, dt \; ; \; b_n = \frac{2}{T} \int_0^{\alpha + T} f(t) \sin n\omega t \, dt \; .$$

• Forme complexe $(n \in \mathbb{Z})$

$$c_n = \frac{1}{T} \int_{\alpha}^{\alpha + T} e^{-in\omega t} f(t) dt.$$

· Passage des coefficients complexes aux coefficients réels

$$\begin{cases} a_n = c_n + c_{-n} & \text{pour } n \ge 0 \\ b_n = i (c_n - c_{-n}) & \text{pour } n \ge 1 \end{cases}$$

· Passage des coefficients réels aux coefficients complexes

$$c_0 = \frac{a_0}{2}$$
 et pour $n \ge 1$: $c_n = \frac{a_n - i b_n}{2}$; $c_{-n} = \frac{a_n + i b_n}{2}$

2.2 Série de Fourier d'une fonction périodique

On associe à f une série qui, lorsqu'elle converge, définit une fonction S périodique de période T.

Forme réelle

$$S(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\omega t + b_n \sin n\omega t.$$

• Forme complexe

$$S(t) = \sum_{-\infty}^{+\infty} c_n \, \mathrm{e}^{\mathrm{i} n \omega t}.$$

2.3 Propriétés

Parité

Si f est une fonction paire, pour tout n on a $b_n = 0$, soit $c_n = c_{-n}$. Si f est une fonction impaire, pour tout n on a $a_n = 0$, soit $c_n = -c_{-n}$.

Analyse dans \mathbb{R}^n

• Coefficients de Fourier d'une dérivée

Si f est continue et \mathcal{C}^1 par morceaux, les coefficients de Fourier de f et f' sont reliés par :

Forme complexe:

$$\forall n \in \mathbb{Z}$$
 $c_n(f') = i n \omega c_n(f)$;

Forme réelle:

$$\forall n \in \mathbb{N}^*$$
 $a_n(f') = n \omega b_n(f)$ et $b_n(f') = -n \omega a_n(f)$.

3. Convergence de la série de Fourier d'une fonction

3.1 Fonction C^1 par morceaux

On dit que f est C^1 par morceaux sur le segment [a,b] s'il existe une subdivision $a_0 = a < a_1 < \cdots < a_p = b$ telle que :

- f soit définie, continue, dérivable et à dérivée continue dans chaque intervalle $]a_i, a_{i+1}[\ (i = 0, ..., p-1),$
- f(t) et f'(t) possèdent une limite en chaque extrémité de ces intervalles.

3.2 Théorème de Dirichlet

Si f est périodique de période T et est C^1 par morceaux sur tout un segment de longueur T, alors la série de Fourier de f est convergente et sa somme S vérifie :

$$\forall t \in \mathbb{R}$$
 $S(t) = \frac{f(t_+) + f(t_-)}{2}$.

De plus, la convergence est normale (donc uniforme) sur tout segment où la fonction est continue, ou sur \mathbb{R} si f est continue sur \mathbb{R} .

Remarquez que si f est continue en t, alors S(t) = f(t).

3.3 Formule de Parseval

Si f est continue par morceaux sur un segment de longueur T on a la relation suivante reliant l'énergie de f et les énergies des termes de sa série de Fourier :

$$\frac{1}{T} \int_{\alpha}^{\alpha + T} [f(t)]^2 dt = \left(\frac{a_0}{2}\right)^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(a_n^2 + b_n^2\right) = \sum_{-\infty}^{+\infty} |c_n|^2.$$

Fonctions définies par une intégrale

36

2e année

1. Cas de l'intégrale définie

1.1 Existence et continuité

Soit f une fonction de deux variables, continue sur $[a,b] \times [c,d]$; alors la fonction F définie par $F(x) = \int_{c}^{d} f(x,t) dt$ est continue sur [a,b] et

$$\int_{a}^{b} F(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x,t) dt \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,t) dx \right) dt$$

1.2 Dérivabilité

Si f et $\frac{\partial f}{\partial x}$ sont continues sur $[a,b] \times [c,d]$, alors F est dérivable sur [a,b] et on a :

$$F'(x) = \int_{c}^{d} \frac{\partial f}{\partial x}(x,t) \, \mathrm{d}t$$

Si de plus, u et v sont des fonctions de classe \mathcal{C}^1 de [a,b] dans [c,d], alors la fonction G définie par $G(x) = \int_{u(x)}^{v(x)} f(x,t) \, \mathrm{d}t$ est dérivable et

$$G'(x) = \int_{u(x)}^{v(x)} \frac{\partial f}{\partial x}(x,t) dt + f(x,v(x)) v'(x) - f(x,u(x)) u'(x).$$

2. Cas de l'intégrale généralisée

Soit f une fonction de deux variables, continue sur $I \times]a, +\infty[$. Lorsqu'elle existe, on considère la fonction F définie sur I par

$$F(x) = \int_{a}^{+\infty} f(x,t) \, \mathrm{d}t.$$

36 Fonctions définies par une intégrale

2.1 Existence et continuité

S'il existe une fonction positive g définie, continue par morceaux et sommable sur $]a,+\infty[$, et qui vérifie :

$$\forall x \in I \quad \forall t \in]a, +\infty[\quad |f(x,t)| \leq g(t)$$

alors F existe et est continue sur I.

2.2 Dérivabilité

Supposons en plus que f admette une dérivée partielle $\frac{\partial f}{\partial x}$ continue sur $I \times]a, +\infty[$ et qu'il existe une fonction positive h définie, continue par morceaux et sommable sur $]a, +\infty[$, et qui vérifie :

$$\forall x \in I \qquad \forall t \in]a, +\infty[\qquad \left| \frac{\partial f}{\partial x}(x, t) \right| \leqslant h(t)$$

alors F est de classe C^1 sur I et $F'(x) = \int_a^{+\infty} \frac{\partial f}{\partial x}(x,t) dt$.

2.3 Remarques

- \bullet Le théorème précédent se généralise pour les dérivées successives de F.
- Pour la continuité et les dérivabilités successives, il suffit d'établir les hypothèses de domination du type $|f(x,t)| \le g(t)$ sur tout segment de I.

3. Fonction gamma

Définition

La fonction Γ est définie sur]0,+ ∞ [par :

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt.$$

• Formule de récurrence

$$\forall x \in]0,+\infty[$$
 $\Gamma(x+1) = x \Gamma(x)$

En particulier, pour $n \in \mathbb{N}$: $\Gamma(n) = (n-1)!$

© Dunod – La photocopie non autorisée est un délit.

• Formule des compléments

Si
$$0 < x < 1$$
 $\Gamma(x) \Gamma(1 - x) = \frac{\pi}{\sin \pi x}$.

En particulier:
$$\Gamma(\frac{1}{2}) = \sqrt{\pi} = 2 \int_0^{+\infty} e^{-t^2} dt$$

• Formule de Stirling

$$n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left[1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right]$$

$$\frac{1}{2\pi \times 3} + \frac{1}{3}$$

$$\frac{1}{2\pi \times 3} + \frac{1}{3}$$

$$\frac{1}{3} + \frac{1}$$

37

Logique binaire

1^{re} année

1. Proposition logique

C'est un assemblage de lettres et de signes qui a une syntaxe correcte (le lecteur sait le lire), une sémantique correcte (le lecteur comprend ce qu'il lit) et qui a une seule valeur de vérité : vrai (V) ou faux (F).

Deux propositions seront considérées comme égales si elles ont toujours la même valeur de vérité.

2. Connecteurs logiques

À partir de propositions p,q,... on peut former de nouvelles propositions définies par des tableaux de vérité.

• **Négation** : non p (noté aussi $\neg p$)

p	non p
V	F
F	V

• Conjonction : p et q (noté aussi $p \wedge q$)

• **Disjonction**: p ou q (noté aussi $p \vee q$)

• Implication : $p \Longrightarrow q$

• Équivalence : $p \iff q$

p	q	p et q	p ou q	$p \Longrightarrow q$	$p \Longleftrightarrow q$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	F	V	V	F
F	F	F	F	V	V

Le ou a un sens inclusif, à ne pas confondre avec le sens exclusif qui figure dans « fromage ou dessert ».

3. Propriétés des connecteurs

non (non
$$p$$
) = p
non (p ou q) = (non p) et (non q)
non (p et q) = (non p) ou (non q)
($p \Longrightarrow q$) = [(non p) ou q]
non ($p \Longrightarrow q$) = [p et (non q)]

La négation d'une implication n'est donc pas une implication.

$$(p \Longrightarrow q) = [(\text{non } q) \Longrightarrow (\text{non } p)]$$

Cette seconde implication est la contraposée de la première. Faites attention à l'ordre des propositions.

$$(p \Longleftrightarrow q) = [(p \Longrightarrow q) \text{ et } (q \Longrightarrow p)]$$

Pour démontrer une équivalence, on démontre souvent une implication et sa réciproque.

Ouantificateurs

Notation

Les quantificateurs servent à indiquer la quantité d'éléments qui interviennent dans une proposition. On utilise:

le quantificateur universel ∀

$$\forall x$$
 signifie: pour tout x ;

le quantificateur existentiel ∃

 $\exists x$ signifie : il existe au moins un x.

Ordre

Si l'on utilise deux fois le même quantificateur, l'ordre n'a pas d'importance. On peut permuter les quantificateurs dans des écritures du type :

$$\forall x \in E \quad \forall y \in E \quad p(x,y)$$

 $\exists x \in E \quad \exists y \in E \quad p(x,y)$

37 Logique binaire

Mais si les quantificateurs sont différents, leur ordre est important.

Dans l'écriture $\forall x \in E \ \exists y \in E \ p(x,y) \ y$ dépend de x.

Dans l'écriture $\exists y \in E \quad \forall x \in E \quad p(x,y) \quad y \text{ est indépendant de } x.$

Négation

La négation de « $\forall x \in E \ x$ vérifie p » est « $\exists x \in E$ tel que x ne vérifie pas p ». La négation de « $\exists x \in E \ x$ vérifie p » est « $\forall x \in E \ x$ ne vérifie pas p ».

5. Quelques méthodes de démonstrations

Déduction

Si p est vraie et si l'on démontre $(p \Longrightarrow q)$, alors on peut conclure que q est vraie.

Si la démonstration d'une implication vous résiste, pensez à examiner la contraposée. Elle a le même sens, mais il est possible que sa démonstration soit plus facile.

· Raisonnement par l'absurde

Pour démontrer que p est vraie, on peut supposer que p est fausse et en déduire une contradiction.

Comme vous partez de non p, ne vous trompez pas dans la négation, en particulier en ce qui concerne les quantificateurs.

· Disjonction des cas

Elle est basée sur :

$$[(p \Longrightarrow q) \text{ et } (\text{ non } p \Longrightarrow q)] \Longrightarrow q$$

• Exemples et contre-exemples

Beaucoup de propositions mathématiques sont de type universel. Dans ce cas, un exemple est une illustration, mais ne démontre rien, un contre-exemple est une démonstration que la proposition est fausse.

• Raisonnement par récurrence

Voir fiche 41.

Dunod – La photocopie non autorisée est un délit.

1. Notion d'ensemble

La notion d'ensemble est considérée comme primitive. Retenons que la caractérisation d'un ensemble E doit être nette, c'est-à-dire que, pour tout élément x, on doit pouvoir affirmer ou bien qu'il est dans E ($x \in E$), ou bien qu'il n'y est pas ($x \notin E$).

On note Ø l'ensemble vide, c'est-à-dire l'ensemble qui ne contient aucun élément.

E et F étant des ensembles, on dit que E est inclus dans F si, et seulement si, tous les éléments de E appartiennent aussi à F. On note $E \subset F$.

On dit aussi que E est une partie de F, ou que F contient E.

L'ensemble des parties de E se note $\mathcal{P}(E)$. Dire que $A \in \mathcal{P}(E)$ signifie que $A \subset E$.

2. Opérations dans $\mathcal{P}(E)$

Soit E un ensemble. A et B étant des parties de E, on définit :

- le **complémentaire** de A dans E : $\overline{A} = \{x \in E ; x \notin A\}$;
- l'intersection de A et de B: $A \cap B = \{x \in E ; x \in A \text{ et } x \in B\}$;

Si $A \cap B = \emptyset$, c'est-à-dire s'il n'existe aucun élément commun à A et B, on dit que les parties A et B sont disjointes ;

• la **réunion** de A et de B: $A \cup B = \{x \in E ; x \in A \text{ ou } x \in B\}$.

Ce « ou » a un sens inclusif c'est-à-dire que $A \cup B$ est l'ensemble des éléments x de E qui appartiennent à l'une au moins des parties A et B.

- la différence : $A \setminus B = \{x \in E ; x \in A \text{ et } x \notin B\} = A \cap \overline{B} ;$
- la différence symétrique :

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A \cap \overline{B}) \cup (\overline{A} \cap B).$$

 $A \Delta B$ est l'ensemble des éléments qui appartiennent à une, et une seule, des parties A et B.

3. Recouvrement, partition

- Un recouvrement d'une partie A de E est une famille de parties de E dont la réunion contient A.
- Une partition d'un ensemble *E* est une famille de parties non vides de *E*, deux à deux disjointes, et dont la réunion est *E*.

4. Propriétés des opérations dans $\mathcal{P}(E)$

Pour toutes parties A, B et C de E, on a les propriétés qui suivent.

Complémentaire

$$\overline{E} = \varnothing$$
 ; $\overline{\varnothing} = E$; $\overline{\overline{A}} = A$; si $A \subset B$ alors $\overline{B} \subset \overline{A}$.

· Lois de de Morgan

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \; ; \; \overline{A \cup B} = \overline{A} \cap \overline{B} .$$

Réunion

$$A \cup B = B \cup A$$
; $A \cup (B \cup C) = (A \cup B) \cup C$
 $A \cup A = A$; $A \cup \emptyset = A$; $A \cup E = E$.

Intersection

$$A \cap B = B \cap A$$
 ; $A \cap (B \cap C) = (A \cap B) \cap C$
 $A \cap A = A$; $A \cap \emptyset = \emptyset$; $A \cap E = A$.

• Réunion et intersection

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

5. Produit cartésien

Le produit des ensembles A et B est l'ensemble, noté $A \times B$, des couples (a,b) où $a \in A$ et $b \in B$.

Attention, le couple (b,a) est différent du couple (a,b), sauf si a=b.

Plus généralement, le produit cartésien de n ensembles E_i est :

$$E_1 \times \cdots \times E_n = \{(x_1, \ldots, x_n) ; x_1 \in E_1, \ldots, x_n \in E_n\}.$$

Si $E_1 = \cdots = E_n = E$, on le note E^n .

Dunod – La photocopie non autorisée est un délit

1. Généralités

1.1 Définitions

Une application f de E dans F est définie par son ensemble de départ E, son ensemble d'arrivée F, et son graphe Γ .

 Γ est une partie de $E \times F$ telle que, pour tout $x \in E$, il existe un seul couple $(x,y) \in \Gamma$. L'élément y est l'image de x par f. On le note f(x).

L'application
$$f$$
 se note : $E \xrightarrow{f} F$ ou $f : E \xrightarrow{F} F_{f(x)}$.

Les applications de E dans F forment un ensemble noté $\mathcal{F}(E,F)$.

L'application identique de E est l'application de E dans E définie par $x \mapsto x$. On la note Id_E .

1.2 Restriction, prolongement

Soit f une fonction de A dans F, et g une fonction de B dans F.

Si $A \subset B$ et si, pour tout x de A, on a f(x) = g(x), on dit que f est une restriction de g, ou que g est un prolongement de f.

1.3 Composition des applications

Soit E, F, G trois ensembles, f une application de E dans F, g une application de F dans G.

La composée de f et de g est l'application de E dans G définie par :

$$x \mapsto g(f(x)).$$

On la note $g \circ f$. La composition des applications est associative.

2. Applications injectives, surjectives, bijectives

Soit f une application de E dans F.

2.1 Applications injectives

f est dite injective (ou est une injection) si elle vérifie l'une des deux propriétés équivalentes :

$$\forall x \in E \quad \forall x' \in E \qquad x \neq x' \Longrightarrow f(x) \neq f(x')$$
 $\forall x \in E \quad \forall x' \in E \qquad f(x) = f(x') \Longrightarrow x = x'.$

Ne confondez pas avec la définition d'une application qui s'écrit :

$$\forall x \in E \quad \forall x' \in E \qquad x = x' \Longrightarrow f(x) = f(x')$$

 $\forall x \in E \quad \forall x' \in E \qquad f(x) \neq f(x') \Longrightarrow x \neq x'.$

2.2 Applications surjectives

f est dite surjective (ou est une surjection) si tout élément y de F est l'image d'au moins un élément x de E, soit :

$$\forall y \in F \quad \exists x \in E \quad y = f(x).$$

2.3 Applications bijectives

f est dite bijective (ou est une bijection) si elle est à la fois injective et surjective. Dans ce cas, tout élément y de F est l'image d'un, et un seul, élément x de E. À tout y de F, on associe ainsi un x unique dans E noté $f^{-1}(y)$. f^{-1} est la bijection réciproque de f. On a donc :

$$x = f^{-1}(y) \Longleftrightarrow y = f(x)$$
,

ce qui entraı̂ne $f \circ f^{-1} = Id_F$ et $f^{-1} \circ f = Id_E$.

2.4 Théorème

Soit f une application de E dans F, et g une application de F dans G. On a les implications qui suivent.

Si f et g sont injectives, alors $g \circ f$ est injective.

Si $g \circ f$ est injective, alors f est injective.

Si f et g sont surjectives, alors $g \circ f$ est surjective.

Si $g \circ f$ est surjective, alors g est surjective.

Si f et g sont bijectives, alors $g \circ f$ est bijective, et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

3. Images directe et réciproque

3.1 Définitions

Soit f une application de E dans F.

Si $A \subset E$, on appelle image de A par f, la partie de F constituée par les images des éléments de A :

$$f(A) = \{ f(x) ; x \in A \}.$$

Si $B \subset F$, on appelle image réciproque de B, la partie de E constituée par les x dont l'image est dans B:

$$f^{-1}(B) = \{x \in E ; f(x) \in B\}.$$

Attention à ne pas confondre avec la réciproque d'une bijection. Ici, on ne suppose rien sur f.

3.2 Théorème

$$A_1 \subset A_2 \Longrightarrow f(A_1) \subset f(A_2) \; ; B_1 \subset B_2 \Longrightarrow \overset{-1}{f}(B_1) \subset \overset{-1}{f}(B_2)$$

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2) \; ; f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2) \; ;$$

$$f(B_1 \cup B_2) = f(B_1) \cup f(B_2) : f(B_1 \cap B_2) = f(B_1) \cap f(B_2).$$

40 Relations

1^{re} année

1. Relation binaire

Choisir une partie Γ de $E \times E$, c'est définir une relation binaire \mathcal{R} sur E. Si $(x,y) \in \Gamma$, on dit que x et y sont en relation, et on note $x\mathcal{R}y$.

Une relation binaire \mathcal{R} , définie sur un ensemble E, est :

réflexive si elle vérifie :

$$\forall x \in E \quad x \mathcal{R} x ;$$

symétrique si

$$\forall x \in E \quad \forall y \in E \quad x \mathcal{R} y \Longrightarrow y \mathcal{R} x ;$$

antisymétrique si elle vérifie l'une des deux propriétés équivalentes :

$$\forall x \in E \quad \forall y \in E \quad (x \mathcal{R} y \text{ et } y \mathcal{R} x) \Longrightarrow x = y,$$

$$\forall x \in E \quad \forall y \in E \quad (x \mathcal{R} y \text{ et } x \neq y) \Longrightarrow \text{non } (y \mathcal{R} x).$$

transitive si elle vérifie :

$$\forall x \in E \quad \forall y \in E \quad \forall z \in E \quad (x \mathcal{R} y \text{ et } y \mathcal{R} z) \Longrightarrow x \mathcal{R} z.$$

Attention, l'antisymétrie n'est pas le contraire de la symétrie. L'égalité est à la fois symétrique et antisymétrique. Une relation peut n'être ni symétrique, ni antisymétrique.

2. Relation d'ordre

2.1 Définitions

Une relation binaire \mathcal{R} , définie sur un ensemble E, est une relation d'ordre si elle est, à la fois, réflexive, antisymétrique et transitive.

Notons la \prec .

Une relation d'ordre \prec dans E est dite relation d'ordre total si deux éléments quelconques x et y de E sont toujours comparables, c'est-à-dire si l'on a $x \prec y$ ou $y \prec x$.

Dans le cas contraire, l'ordre est partiel.

2.2 Exemples

 \leqslant est un ordre total dans \mathbb{R} . \subset est un ordre partiel dans $\mathcal{P}(E)$.

2.3 Éléments particuliers

Soit A une partie d'un ensemble ordonné E.

• S'il existe un élément a de E tel que, pour tout $x \in A$, on ait $x \prec a$, on dit que a est un majorant de A, que A est une partie majorée de E.

De même, un élément b de E est un minorant de A si $b \prec x$ pour tout x de A. On dit alors que A est une partie minorée de E.

Une partie bornée de *E* est une partie qui est à la fois majorée et minorée.

• Un élément a de E est appelé plus grand élément de A si $a \in A$ et si a est un majorant de A. Si un tel élément existe, il est unique.

De même, un élément b de E est le plus petit élément de A si $b \in A$ et si b est un minorant de A.

 On appelle borne supérieure d'une partie majorée A, le plus petit des majorants de A, et borne inférieure d'une partie minorée A le plus grand des minorants de A.

Si ces bornes existent, elle sont uniques.

Dans (\mathbb{R}, \leq) , pour démontrer que a est la borne supérieure de A, on démontre souvent :

- que c'est un majorant, soit $x \leq a$ pour tout $x \in A$;
- que, pour tout $\varepsilon>0$, $a-\varepsilon$ n'est pas un majorant, c'est-à-dire qu'il existe $x\in A$ tel que $a-\varepsilon< x$.

41

Entiers naturels

1^{re} année

1. Nombres entiers naturels

1.1 Propriétés fondamentales de N

L'ensemble $\mathbb N$ des entiers naturels est totalement ordonné et vérifie les propriétés :

Toute partie non vide de N a un plus petit élément.

Toute partie non vide majorée de N a un plus grand élément.

N n'a pas de plus grand élément.

1.2 Raisonnement par récurrence

Soit E(n) un énoncé qui dépend d'un entier naturel n.

Si E(0) est vrai, et si, quel que soit $k \ge 0$, l'implication $E(k) \Longrightarrow E(k+1)$ est vraie, alors l'énoncé E(n) est vrai pour tout entier n.

Ce principe a diverses variantes, par exemple :

si E(0) est vrai, et si, quel que soit $k \ge 0$, l'implication

$$[E(0) \text{ et } E(1) \text{ et } \dots \text{ et } E(k)] \Longrightarrow E(k+1)$$

est vraie, alors l'énoncé E(n) est vrai pour tout entier n.

2. Ensembles finis

2.1 Définition

Un ensemble E est fini s'il existe une bijection d'un intervalle $[\![1,n]\!]$ de $\mathbb N$ sur E. Le nombre n est le cardinal (ou nombre d'éléments) de E. On le note n= card E.

On convient que l'ensemble vide est fini, et que card $\emptyset = 0$.

Si E n'est pas vide, il existe une bijection strictement croissante, et une seule, de l'intervalle $[\![1,n]\!]$ sur E.

2.2 Inclusion

Soit E un ensemble fini. Toute partie A de E est finie, et on a :

$$card A \leq card E$$
;

l'égalité des cardinaux ayant lieu si, et seulement si, A = E.

Attention, cette propriété, qui semble intuitive, n'est pas vraie pour les ensembles infinis. Par exemple, l'ensemble P des entiers naturels pairs est en bijection avec \mathbb{N} , et pourtant $P \neq \mathbb{N}$.

Une partie non vide A de \mathbb{N} est finie si, et seulement si, elle est majorée.

2.3 Applications

Soit E et F deux ensembles finis de même cardinal, et f une application de E dans F. On a l'équivalence des trois propriétés :

$$f$$
 bijective \iff f injective \iff f surjective.

Dans ce cas, pour démontrer que f est bijective, il suffit de démontrer, soit que f est injective, soit que f est surjective.

Cette propriété n'est pas vraie pour les ensembles infinis.

3. Sommes et produits

3.1 Notations

Dans \mathbb{R} , considérons une famille d'éléments a_1, \ldots, a_n .

On note cette famille $(a_i)_{1 \le i \le n}$, la somme des termes $\sum_{i=1}^n a_i$ ou $\sum_{1 \le i \le n} a_i$, le produit

des termes
$$\prod_{i=1}^{n} a_i$$
 ou $\prod_{1 \le i \le n} a_i$.

Lorsque l'indice décrit, non plus $\{1, \ldots, n\}$, mais un ensemble fini I, on note de même $(a_i)_{i \in I}$, $\sum_{i \in I} x_i$, $\prod_{i \in I} x_i$.

En particulier, on utilise souvent $I = \{1, ..., n\} \times \{1, ..., p\}$ avec un indice noté i, j, ou ij.

41 Entiers naturels

3.2 Quelques propriétés

$$\sum_{1 \leq i \leq n} (x_i + y_i) = \sum_{1 \leq i \leq n} x_i + \sum_{1 \leq i \leq n} y_i \; ; \; \sum_{1 \leq i \leq n} (kx_i) = k \sum_{1 \leq i \leq n} x_i \; ;$$

$$\prod_{1 \leq i \leq n} (x_i \, y_i) = \prod_{1 \leq i \leq n} x_i \times \prod_{1 \leq i \leq n} y_i \; ; \; \prod_{1 \leq i \leq n} (kx_i) = k^n \prod_{1 \leq i \leq n} x_i \; ;$$

$$\sum_{1 \leq i \leq n} x_{ij} = \sum_{1 \leq i \leq n} \left(\sum_{1 \leq j \leq p} x_{ij} \right) = \sum_{1 \leq j \leq p} \left(\sum_{1 \leq i \leq n} x_{ij} \right)$$

1^{re} année

1. Opérations sur les ensembles finis

1.1 Réunion

La réunion de *n* ensembles finis est un ensemble fini. On a :

$$\operatorname{card}(E \cup F) = \operatorname{card} E + \operatorname{card} F - \operatorname{card}(E \cap F)$$
.

Dans le cas particulier d'ensembles E_i deux à deux disjoints, on a :

card
$$(E_1 \cup E_2 \cup \ldots \cup E_n) = \sum_{i=1}^n \operatorname{card} E_i$$
.

1.2 Produit cartésien

Le produit cartésien de 2 ensembles finis est un ensemble fini, et on a :

$$card (E \times F) = card E \times card F$$
.

1.3 Bilan pour dénombrer

Quand une situation comporte plusieurs choix à réaliser, on effectue un produit quand on doit faire un choix, *puis* un autre ... on effectue une somme quand on doit faire un choix *ou bien* un autre ...

2. Dénombrement de listes

2.1 Nombre d'applications

Soit E et F deux ensembles finis de cardinaux respectifs p et n.

L'ensemble $\mathcal{F}(E,F)$ des applications de E dans F est fini et a pour cardinal n^p .

On peut assimiler une application f de E dans F à la liste ordonnée des p images des éléments de E, c'est-à-dire un élément du produit cartésien F^p . On dit qu'il s'agit d'une p-liste d'éléments de F.

Le nombre de p-listes d'éléments de F est n^p .

C'est aussi le nombre de façons d'extraire p boules parmi n boules, avec remise et en tenant compte de l'ordre.

2.2 Arrangements

Soit E et F deux ensembles finis de cardinaux respectifs p et n.

Le nombre d'applications injectives de E dans F est égal à :

$$A_n^p = n (n-1) \dots (n-p+1) = \frac{n!}{(n-p)!}$$

où n! (lire factorielle n) est défini pour $n \in \mathbb{N}$ par :

$$n! = 1 \times 2 \times \cdots \times n$$
 si $n \in \mathbb{N}^*$ et $0! = 1$.

On dit que A_n^p est le nombre d'arrangements de n éléments pris p à p.

 A_n^p est aussi le nombre de p-listes d'éléments de F, distincts deux à deux.

C'est aussi le nombre de façons d'extraire p boules parmi n boules, sans remise et en tenant compte de l'ordre.

2.3 Permutations

Si E est un ensemble fini de cardinal n, toute application injective de E est bijective. On dit qu'il s'agit d'une permutation de E.

Il y a n! permutations de E.

C'est aussi le nombre de listes ordonnées où tous les éléments de E figurent une fois, et une seule.

3. Nombre de parties à p éléments dans un ensemble à n éléments

3.1 Dénombrement

Si $p \le n$, le nombre de parties à p éléments dans un ensemble à n éléments est noté $\binom{n}{p}$.

On l'appelle le nombre de combinaisons de n éléments pris p à p. On a :

$$\binom{n}{p} = \frac{n!}{p! (n-p)!}$$

C'est aussi le nombre de façons d'extraire p boules parmi n boules, en vrac et toutes distinctes.

3.2 Propriétés

$$\binom{n}{p} = \binom{n}{n-p} \quad ; \quad \binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1} \quad ; \quad \binom{n}{p} = \frac{n-p+1}{p} \binom{n}{p-1} \, .$$

Le nombre total de parties d'un ensemble à n éléments étant 2^n , on a :

$$\sum_{p=0}^{n} \binom{n}{p} = 2^{n}.$$

La relation $\binom{n}{p}=\binom{n-1}{p}+\binom{n-1}{p-1}$ permet de construire le triangle de Pascal.

1^{re} année

1. Lois de composition interne

1.1 Définition

Une loi de composition interne sur un ensemble E est une application de $E \times E$ dans E.

À un couple (x,y), on associe donc un élément, noté x * y, ou x + y, ou xy, ..., appelé composé de x et de y.

1.2 Propriétés

- Une loi de composition interne * sur E est :
- associative si:

$$\forall x \in E \quad \forall y \in E \quad \forall z \in E \quad (x * y) * z = x * (y * z) ;$$

– commutative si :

$$\forall x \in E \quad \forall y \in E \quad x * y = y * x.$$

Elle admet un élément neutre e si :

$$\forall x \in E \qquad x * e = e * x = x .$$

Attention, e ne dépend pas de x.

Si l'élément neutre existe, il est unique.

• Un élément x est inversible, ou symétrisable, s'il existe x' tel que :

$$x * x' = x' * x = e.$$

x' est dit alors inverse, ou symétrique, de x.

• Si * et \top sont deux lois de composition interne de E, on dit que * est distributive par rapport à \top , si l'on a toujours :

$$x * (y \top z) = (x * y) \top (x * z)$$
 et $(y \top z) * x = (y * x) \top (z * x)$.

2. Groupes

2.1 Définitions

Un ensemble non vide G, muni d'une loi de composition interne *, est un groupe si

- la loi est associative;
- il existe un élément neutre e;
- tout élément de G possède un symétrique dans G.

Si, de plus, la loi est commutative, on dit que le groupe est commutatif, ou abélien.

Dans un groupe, tout élément est régulier (ou simplifiable), c'est-à-dire que l'on a toujours :

$$x * y = x * z \Longrightarrow y = z$$
; $y * x = z * x \Longrightarrow y = z$.

Généralement, un groupe est noté additivement ou multiplicativement. Le symétrique x' de x est alors noté -x dans le premier cas, x^{-1} dans le second.

2.2 Sous-groupes

Une partie stable H d'un groupe G est un sous-groupe de G si la restriction à H de la loi de G y définit une structure de groupe.

Pour qu'une partie non vide H d'un groupe G soit un sous-groupe de G, il faut et il suffit que :

$$\begin{cases} \forall x \in H & \forall y \in H & xy \in H; \\ \forall x \in H & x^{-1} \in H. \end{cases}$$

ou encore:

$$\forall x \in H \qquad \forall y \in H \qquad xy^{-1} \in H.$$

Les sous-groupes du groupe additif $\,\mathbb{Z}\,$ sont les ensembles :

$$n\mathbb{Z} = \{nx ; x \in \mathbb{Z}\}$$
 où $n \in \mathbb{N}$.

L'intersection d'une famille de sous-groupes est un sous-groupe de G.

Attention, la réunion de deux sous-groupes de G n'est un sous-groupe de G que si l'un est inclus dans l'autre.

2.3 Morphismes de groupes

Définitions

Soit G et G' deux groupes notés multiplicativement. Une application f, de G dans G', est un morphisme de groupes si, et seulement si,

$$\forall x \in G \quad \forall y \in G \quad f(x y) = f(x) f(y)$$
.

Si, de plus, f est bijective, on dit que f est un isomorphisme de groupes. Les deux groupes sont alors isomorphes.

Composition

Le composé de deux morphismes (resp. isomorphismes) de groupes est un morphisme (resp. isomorphisme) de groupes.

· Noyau et image

Soit G et G' deux groupes notés multiplicativement, d'éléments neutres respectifs e et e', et f un morphisme de G dans G'. On a :

$$e' = f(e)$$
 ; $f(x^{-1}) = [f(x)]^{-1}$.

f(G) est un sous-groupe de G' appelé image de f et noté $\operatorname{Im} f$.

 $N = \int_{0}^{1} (\{e'\}) = \{x : x \in G, f(x) = e'\}$ est un sous-groupe de G que l'on appelle le noyau du morphisme f. On le note Ker f.

f est injectif si, et seulement si, $Ker f = \{e\}$.

3. Groupe symétrique

Soit E un ensemble fini à n éléments, avec $n \ge 1$.

3.1 Définition

L'ensemble S(E) des bijections de E, muni de la loi de composition des applications, est un groupe appelé groupe des permutations (ou substitutions) de E.

S(E) est isomorphe à S_n , groupe des permutations de l'intervalle [1,n] de \mathbb{N} , appelé groupe symétrique d'ordre n.

3.2 Décomposition d'une permutation en produit de cycles

Définition

Un cycle (ou permutation circulaire) d'ordre p est une permutation σ de E qui laisse invariants n-p éléments de E, et telle que l'on puisse ranger les p éléments restants (a_1, \ldots, a_p) de manière que :

$$\sigma(a_1) = a_2 , \, \sigma(a_2) = a_3 , \, \dots , \, \sigma(a_{p-1}) = a_p , \, \sigma(a_p) = a_1 .$$

On note $\sigma = (a_1, \ldots, a_p)$.

Théorème

Tout permutation de E est décomposable en produit de cycles disjoints, deux cycles quelconques étant permutables.

3.3 Signature d'une permutation

Transposition

On appelle transposition de E une permutation de E qui échange deux éléments de E, et qui laisse invariants tous les autres. C'est donc un cycle d'ordre 2.

• Parité d'une permutation

Toute permutation de E est décomposable en un produit de transpositions. Cette décomposition n'est pas unique, mais, pour une permutation donnée, la parité du nombre de transpositions est fixe.

Si ce nombre est pair, on dit que la permutation est paire.

Si ce nombre est impair, on dit que la permutation est impaire.

• Signature

Dunod – La photocopie non autorisée est un délit.

La signature d'une permutation σ est le nombre, noté $\varepsilon(\sigma)$, égal à 1 si σ est paire, à -1 si σ est impaire.

Pour déterminer $\varepsilon(\sigma)$, la méthode la plus rapide consiste à décomposer σ en produit de cycles, en sachant qu'un cycle d'ordre p peut se décomposer en p-1 transpositions.

3.4 Groupe alterné

On a toujours $\varepsilon(\sigma \circ \sigma') = \varepsilon(\sigma) \times \varepsilon(\sigma')$.

Cette propriété signifie que l'application $\sigma \mapsto \varepsilon(\sigma)$ est un morphisme de S_n dans le groupe multiplicatif $\{-1,1\}$.

Le noyau de ce morphisme est l'ensemble des permutations paires. C'est un sousgroupe de S_n appelé groupe alterné, et noté A_n .

44

Autres structures algébriques

1^{re} année

1. Anneaux et corps

1.1 Structure d'anneau

Définition

Un ensemble A, muni d'une loi notée + (dite addition) et d'une loi notée \times (dite multiplication), possède une structure d'anneau pour ces opérations si :

- − A possède une structure de groupe commutatif pour l'addition ;
- la multiplication est associative et possède un élément neutre ;
- la multiplication est distributive à gauche et à droite par rapport à l'addition.

Si la multiplication est commutative, l'anneau est dit commutatif.

· Règles de calcul

$$x\left(\sum_{i=1}^{n} y_i\right) = \sum_{i=1}^{n} x y_i$$
 ; $\left(\sum_{i=1}^{n} y_i\right) x = \sum_{i=1}^{n} y_i x$.

Dans un anneau commutatif, pour tout $n \in \mathbb{N}$, on a :

$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}$$
 (formule du binôme),

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-k-1} y^{k}.$$

Si l'anneau n'est pas commutatif, ces formules restent vraies pour des éléments permutables, c'est-à-dire tels que xy = yx.

1.2 Sous-anneau

On dit qu'une partie B d'un anneau A, stable pour + et \times , est un sous-anneau de A, si la restriction à B des deux lois de A y définit une structure d'anneau, avec le même élément neutre pour \times que dans A.

Pour qu'une partie B d'un anneau A soit un sous-anneau de A, il faut et il suffit que $1_A \in B$ et :

$$\forall x \in B \quad \forall y \in B \qquad x - y \in B \quad \text{et} \quad xy \in B.$$

1.3 Morphismes d'anneaux

A et B étant deux anneaux, une application f, de A dans B, est un morphisme d'anneaux si l'on a toujours :

$$f(x + y) = f(x) + f(y)$$
; $f(xy) = f(x) f(y)$; $f(1_A) = 1_B$.

1.4 Structure de corps

• Éléments inversibles d'un anneau

Si A est un anneau non réduit à $\{0\}$, l'ensemble de ses éléments inversibles (c'està-dire les éléments qui admettent un symétrique pour la multiplication) est un groupe multiplicatif.

Corps

Un corps est un anneau non réduit à {0} dont tous les éléments, sauf 0, sont inversibles. Il est dit commutatif si l'anneau est commutatif.

Dans cet ouvrage, tous les corps seront supposés commutatifs, sans avoir besoin de le préciser à chaque fois.

Sous-corps

On dit qu'une partie L d'un corps K, stable pour + et \times , est un sous-corps de K, si la restriction à L des deux lois de K y définit une structure de corps, c'est-à-dire si c'est un sous-anneau, et si l'inverse d'un élément non nul de L reste dans L.

Pour qu'une partie non vide L d'un corps K soit un sous-corps de K, il faut et il suffit que $1 \in L$ et que :

$$\begin{cases} \forall x \in L & \forall y \in L & x - y \in L \text{ et } xy \in L \\ \forall x \in L^* & x^{-1} \in L^* & \text{où } L^* = L \setminus \{0\} \end{cases}$$

1.5 Anneau intègre

Lorqu'il existe, dans un anneau, des éléments a et b tels que

$$a \neq 0$$
 et $b \neq 0$ et $ab = 0$,

on dit que a et b sont des diviseurs de zéro.

Un anneau intègre est un anneau commutatif, non réduit à {0}, et sans diviseur de zéro.

44 Autres structures algébriques

Pour qu'un anneau commutatif, non réduit à {0}, soit intègre, il faut et il suffit que tout élément non nul soit simplifiable pour la multiplication.

1.6 Idéal d'un anneau commutatif

Soit A un anneau commutatif. Une partie I de A est un idéal si I est un sousgroupe de (A,+) et si, pour tout $x \in I$ et tout $a \in A$, on a $xa \in I$.

L'intersection $I \cap J$ et la somme I + J de deux idéaux sont des idéaux.

Un idéal est principal s'il est engendré par un seul élément.

Un anneau intègre est principal si tous idéaux sont principaux.

2. Espaces vectoriels et algèbres

2.1 Espace vectoriel

Voir fiche 52.

2.2 Algèbre

Définition

On dit qu'un ensemble E est une algèbre sur un corps K, ou K-algèbre, s'il est muni de deux lois internes, notées + et \times , et d'une loi externe sur K, notée ., avec les propriétés :

(E,+,.) est un K-espace vectoriel,

 $(E,+,\times)$ est un anneau.

$$\forall \lambda \in K \quad \forall x \in E \quad \forall y \in E \quad \lambda(xy) = (\lambda x) y = x(\lambda y).$$

L'ensemble $\mathcal{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , muni des opérations f+g,fg, λf , est une algèbre sur \mathbb{R} .

· Sous-algèbre

Une partie d'une algèbre, stable pour les trois lois, est une sous-algèbre si elle possède une structure d'algèbre pour la restriction des lois de l'algèbre, c'est-à-dire si c'est à la fois un sous-espace vectoriel et un sous-anneau.

• Morphismes

E et F étant deux algèbres, une application f, de E dans F, est un morphisme d'algèbre si elle transporte les trois lois, c'est-à-dire si l'on a toujours :

$$f(x + y) = f(x) + f(y)$$
; $f(xy) = f(x)f(y)$; $f(\lambda x) = \lambda f(x)$.

$$et si $f(1_E) = 1_F.$$$

Un morphisme f de E dans F est un isomorphisme si f est bijectif, un endomorphisme si E = F, un automorphisme si E = F et f bijectif.

45

Arithmétique dans ${\mathbb Z}$

1^{re} année

1. Divisibilité dans \mathbb{Z}

1.1 Division euclidienne

Pour tout $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$, il existe un élément unique $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que :

$$a = bq + r$$
 avec $0 \le r < b$.

q est le quotient et r le reste de la division euclidienne de a par b.

1.2 Divisibilité

Si $(a,b) \in \mathbb{Z} \times \mathbb{Z}$, on dit que b divise a si, et seulement si, il existe $q \in \mathbb{Z}$ tel que a = bq.

On dit que a est un multiple de b, ou que b est un diviseur de a.

La relation de divisibilité est une relation d'ordre partiel dans \mathbb{N} .

1.3 Nombres premiers

Un entier p est premier si $p \ge 2$, et si ses seuls diviseurs sont 1 et p.

Il y a une infinité de nombres premiers.

Si n n'est divisible par aucun nombre premier inférieur ou égal à \sqrt{n} , alors il est premier.

Tout entier n, avec $n \ge 2$, s'écrit de façon unique comme produit de nombres premiers.

1.4 Idéaux de \mathbb{Z}

Les idéaux de \mathbb{Z} sont de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$.

2. pgcd et ppcm

2.1 pgcd

Définition

Soit a et b deux entiers relatifs non nuls. L'ensemble des nombres de \mathbb{N}^* qui divisent à la fois a et b, admet un plus grand élément d, pour la relation d'ordre de divisibilité.

C'est le plus grand commun diviseur de a et de b. On le note PGCD (a,b), ou $a\vee b$.

On a $|a|\mathbb{Z} + |b|\mathbb{Z} = d\mathbb{Z}$.

Algorithme d'Euclide

Si q_1 et r_1 sont le quotient et le reste de la division euclidienne de a par b, on a :

$$a \lor b = b \lor r_1$$
.

On recommence avec b et r_1 . Le dernier reste non nul de ce processus est le PGCD de a et de b.

· Nombres premiers entre eux

Si PGCD (a,b) = 1, on dit que a et b sont premiers entre eux.

Soit $r = \frac{a}{b}$ un nombre rationnel. Si d désigne le PGCD de a et de b, on a a = da'

et b=db', avec a' et b' premiers entre eux. On peut alors écrire $r=\frac{a'}{b'}$. C'est la forme irréductible de r.

2.2 ppcm

Définition

Soit a et b deux entiers relatifs non nuls. L'ensemble des nombres de \mathbb{N}^* qui sont multiples à la fois de a et de b, admet un plus petit élément m, pour la relation d'ordre de divisibilité.

C'est le plus petit commun multiple de a et de b. On le note PPCM (a,b), ou $a \wedge b$. On a $|a|\mathbb{Z} \cap |b|\mathbb{Z} = m\mathbb{Z}$.

Théorème

PGCD
$$(a,b) \times$$
 PPCM $(a,b) = |ab|$.

2.3 Théorème de Bézout

Pour que deux entiers relatifs non nuls a et b soient premiers entre eux, il faut, et il suffit, qu'il existe u et v dans \mathbb{Z} tels que :

$$au + bv = 1$$
.

On obtient u et v avec l'algorithme d'Euclide.

45 Arithmétique dans \mathbb{Z}

2.4 Théorème de Gauss

Soit a, b, c trois entiers relatifs tels que a divise bc, et a premier avec b. Alors a divise c.

3. Anneau $\mathbb{Z}/n\mathbb{Z}$

3.1 Congruences dans \mathbb{Z}

Soit $n \in \mathbb{N}^*$. La relation binaire dans \mathbb{Z} :

a et b ont le même reste dans la division par $n \iff n/(a-b)$

se note $a \equiv b \pmod{n}$; lire : a congrue à b modulo n.

On écrit $\mathbb{Z}/n\mathbb{Z}$ pour désigner l'ensemble des classes ainsi formées par regroupement :

$$\overline{a} = \{b \in \mathbb{Z} ; a \equiv b \pmod{n}\}.$$

3.2 Propriétés algébriques de $\mathbb{Z}/n\mathbb{Z}$

Structure

Pour $n \ge 2$, $\mathbb{Z}/n\mathbb{Z}$ muni des deux lois :

$$\overline{a} + \overline{b} = \overline{a+b} : \overline{a} \times \overline{b} = \overline{a \times b}$$

est un anneau commutatif.

Éléments inversibles

Un élément \overline{a} de $\mathbb{Z}/n\mathbb{Z}$ est inversible si, et seulement si, a et n sont premiers entre eux.

Cas particulier

 $\mathbb{Z}/n\mathbb{Z}$ est un corps si, et seulement si, n est premier.

• Indicatrice d'Euler

C'est le nombre $\varphi(n)$ des entiers compris entre 1 et n-1 et premiers avec n. Si n est premier, alors $\varphi(n) = n-1$.

3.3 Théorèmes

Théorème d'Euler

Si a et n sont premiers entre eux avec $n \ge 2$, on a :

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

· Théorème chinois

Soit p et q des entiers premiers entre eux. L'anneau $\mathbb{Z}/pq\mathbb{Z}$ est isomorphe au produit d'anneaux $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.

• Petit théorème de Fermat

Soit p un nombre premier. Pour tout entier a, on a :

$$a^p \equiv a \pmod{p}$$
.

• Théorème de Wilson

Pour que p divise (p-1)! + 1, il faut et il suffit que p soit premier.

Nombres complexes

1^{re} année

1. Forme algébrique

1.1 Définitions

Tout nombre complexe z s'écrit, de manière unique, sous la forme algébrique z = x + iy avec x et y réels, i étant un nombre complexe particulier tel que $i^2 = -1$.

Le réel x s'appelle la partie réelle de z, et se note Re (z).

Le réel y s'appelle la partie imaginaire de z, et se note Im (z).

Si y = 0, alors z est réel, d'où $\mathbb{R} \subset \mathbb{C}$.

Si x = 0, alors z est un imaginaire pur.

En électricité, on note z = x + jy pour ne pas confondre avec la notation d'une intensité.

1.2 Égalité

Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire.

Attention, il n'y a pas d'inégalités dans \mathbb{C} . N'écrivez jamais qu'un nombre complexe est positif, ou négatif. Cela n'aurait aucun sens.

1.3 Opérations dans $\mathbb C$

Soit z = x + iy et z' = x' + iy'. On définit l'addition et la multiplication dans $\mathbb C$ par :

$$z + z' = (x + x') + i(y + y')$$
; $zz' = (xx' - yy') + i(xy' + x'y)$.

Pour ces deux opérations, $\mathbb C$ est un corps.

1.4 Plan complexe

Soit $(O, \overrightarrow{u}, \overrightarrow{v})$ un repère orthonormal du plan.

L'application qui, à tout nombre complexe z = x + iy, fait correspondre le point M de coordonnées (x,y) est une bijection. M est l'image de z, et z l'affixe de M.

Dunod – La photocopie non autorisée est un délit.

L'affixe du vecteur $\alpha \overrightarrow{u} + \beta \overrightarrow{v}$ est le nombre complexe $z = \alpha + i\beta$.

Si z_A et z_B sont les affixes de A et B, le vecteur \overrightarrow{AB} a pour affixe $z_B - z_A$. La somme des nombres complexes correspond à l'addition des vecteurs.

1.5 Conjugué d'un nombre complexe

Définition

Le conjugué du nombre complexe z = x + iy est le nombre complexe $\overline{z} = x - iy$.

Attention, vérifiez bien que x et y sont réels.

Images

Les images des nombres complexes z et \overline{z} sont symétriques par rapport à l'axe des abscisses.

Propriétés

$$\overline{\overline{z}} = z \quad ; \quad \overline{z + z'} = \overline{z} + \overline{z'} \quad ; \quad \overline{zz'} = \overline{z}\overline{z'} \quad ; \quad \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}.$$

 $z + \overline{z} = 2 \operatorname{Re}(z)$; z est imaginaire pur si, et seulement si, $z = -\overline{z}$.

 $z - \overline{z} = 2i \operatorname{Im}(z)$; z est réel si, et seulement si, $z = \overline{z}$.

• Application au calcul de $\frac{1}{z}$

Comme $z\overline{z} = x^2 + y^2$ est réel, on obtient la forme algébrique de $\frac{1}{z}$, ou de $\frac{z_1}{z_2}$, en multipliant le numérateur et le dénominateur par le conjugué du dénominateur.

2. Forme trigonométrique

2.1 Module d'un nombre complexe

Définition

Le module de $z=x+\mathrm{i} y$ (où $x\in\mathbb{R}$ et $y\in\mathbb{R}$) est le nombre réel positif $\sqrt{z\,\overline{z}}=\sqrt{x^2+y^2}$. On le note |z|, ou ρ , ou r.

Si M est l'affixe de z, |z| est la longueur OM.

• Propriétés

Le module d'un nombre complexe a les mêmes propriétés que la valeur absolue d'un nombre réel.

$$|z| = 0 \Longleftrightarrow z = 0$$
; $|\text{Re}(z)| \le |z|$; $|\text{Im}(z)| \le |z|$;
$$||z| - |z'|| \le |z - z'| \le |z| + |z'|$$
;

$$|zz'| = |z||z'|$$
; $|z^n| = |z|^n$ pour $n \in \mathbb{N}$; $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$ si $z' \neq 0$.

2.2 Forme trigonométrique

Tout nombre complexe non nul z s'écrit sous forme trigonométrique :

$$z = \rho (\cos \theta + i \sin \theta)$$
 avec $\rho > 0$.

 $\rho = |z|$ est le module de z.

 θ est un argument de z. On le note arg z. Il est défini, modulo 2π , par :

$$\cos \theta = \frac{x}{\rho}$$
 et $\sin \theta = \frac{y}{\rho}$.

2.3 Propriétés de l'argument d'un nombre complexe non nul

Les égalités suivantes ont lieu à $2k\pi$ près (avec $k \in \mathbb{Z}$):

$$arg(zz') = arg z + arg z'$$
; $arg(z^n) = n arg z$ avec $n \in \mathbb{Z}$;

$$\arg\left(\frac{1}{z}\right) = -\arg z$$
 ; $\arg\left(\frac{z}{z'}\right) = \arg z - \arg z'$.

1^{re} année

1. Exponentielle complexe

1.1 Nombres complexes de module 1

L'ensemble U des nombres complexes de module 1 est un groupe multiplicatif. Son image dans le plan complexe est le cercle trigonométrique.

Soit $z \in U$. Si θ est un argument de z, on a $z = \cos \theta + i \sin \theta$.

On convient de noter $\cos \theta + i \sin \theta = e^{i\theta}$.

L'application $\theta \mapsto e^{i\theta}$ est un morphisme surjectif du groupe additif \mathbb{R} sur le groupe multiplicatif U. Son noyau est $2\pi\mathbb{Z}$.

1.2 Formule de Moivre

$$\forall \theta \in \mathbb{R} \quad \forall n \in \mathbb{Z} \qquad (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$$

ce qui s'écrit avec la notation précédente : $(e^{i\theta})^n = e^{in\theta}$.

1.3 Formules d'Euler

Pour tout réel x et tout entier n, on a :

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 ; $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$;

$$\cos nx = \frac{e^{inx} + e^{-inx}}{2} \quad ; \quad \sin nx = \frac{e^{inx} - e^{-inx}}{2i}.$$

On peut utiliser ces formules pour linéariser des polynômes trigonométriques.

1.4 Exponentielle complexe

Définition

On définit l'exponentielle du nombre complexe z = x + iy par :

$$e^z = e^x e^{iy} = e^x (\cos y + i \sin y).$$

L'application, de \mathbb{C} dans \mathbb{C} , $z \mapsto e^z$ est un morphisme surjectif. Son noyau est $2i\pi\mathbb{Z}$.

47 Exponentielle complexe

• Équation $e^z = a$

Le nombre complexe e^z a pour module e^x , et pour argument y.

Si a est un nombre complexe non nul donné, les solutions z = x + iy de l'équation $e^z = a$ vérifient donc :

$$e^x = |a|$$
 et $y = arg(a)$.

Propriétés

$$\forall z \in \mathbb{C}$$
 $\forall z' \in \mathbb{C}$ $e^z e^{z'} = e^{z+z'}$;
 $\forall z \in \mathbb{C}$ $\forall n \in \mathbb{Z}$ $(e^z)^n = e^{nz}$.

Si z est une constante complexe et t une variable réelle, on a :

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{zt}) = z\,\mathrm{e}^{zt}.$$

2. Racines *n*-ièmes d'un nombre complexe

2.1 Racines *n*-ièmes de l'unité

Soit U_n l'ensemble des racines n-ièmes de 1, c'est-à-dire l'ensemble des nombres complexes z tels que $z^n = 1$. On a :

$$U_n = \{u_0, u_1, \dots, u_{n-1}\}$$
 avec $u_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = (u_1)^k$

Propriété

$$\sum_{k=0}^{n-1} u_k = 0.$$

2.2 Racines *n*-ièmes d'un nombre complexe non nul

Tout nombre complexe non nul $a = \rho (\cos \theta + i \sin \theta)$ possède n racines n-ièmes :

$$z_k = \sqrt[n]{\rho} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right) \quad \text{avec} \quad k \in \{0, \dots, n-1\}.$$

À partir de l'une d'entre elles, on peut les obtenir toutes en la multipliant par les éléments de U.

2.3 Cas particulier des racines carrées

Pour déterminer les racines carrées de $z=a+\mathrm{i}b$, il est plus commode de procéder par identification, c'est-à-dire de chercher les réels α et β tels que $(\alpha+\mathrm{i}\beta)^2=a+\mathrm{i}b$.

L'égalité des parties réelles et des parties imaginaires donne :

$$\alpha^2 - \beta^2 = a$$
 et $2\alpha \beta = b$.

L'égalité des modules conduit à :

$$\alpha^2 + \beta^2 = \sqrt{\alpha^2 + \beta^2}.$$

On en déduit α^2 et β^2 , puis α et β en utilisant le fait que α β est du signe de b.

Ce calcul est utilisé lors de la résolution d'une équation du second degré à coefficients complexes.

Nombres complexes et géométrie plane

1^{re} année

 $a = a_1 + ia_2$ et $b = b_1 + ib_2$ sont deux nombres complexes donnés.

1. Transformations géométriques

- L'application de \mathbb{C} dans $\mathbb{C}: z \mapsto z + b$, se traduit sur les images par la translation de vecteur $b_1 \overrightarrow{u} + b_2 \overrightarrow{v}$.
- Si $a \neq 1$, l'application de \mathbb{C} dans $\mathbb{C}: z \mapsto az + b$, se traduit sur les images par la similitude de rapport |a|, d'angle arg a, et dont le centre Ω , a pour affixe $z_{\Omega} = \frac{b}{1-a}$.

Cette transformation est la composée, dans n'importe quel ordre, de la rotation de centre ω et d'angle arg a, et de l'homothétie de centre Ω et de rapport |a|.

2. Distances et angles

• Soit A et B deux points distincts, d'affixes respectifs z_A et z_B .

 $|z_A - z_B|$ est la longueur AB; arg $(z_B - z_A)$ est une mesure de l'angle $(\overrightarrow{u}, \overrightarrow{AB})$.

• Soit A, B et C trois points, deux à deux distincts, d'affixes respectifs z_A , z_B , z_C .

 $\frac{z_B - z_A}{z_C - z_A}$ a pour module $\frac{AB}{AC}$, et pour argument une mesure de l'angle $(\overrightarrow{AC}, \overrightarrow{AB})$.

3. Applications

- Les points A, B et C sont alignés si, et seulement si, $\frac{z_B z_A}{z_C z_A}$ est un réel.
- \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux si, et seulement si, $\frac{z_B z_A}{z_C z_A}$ est un imaginaire pur.

- Le triangle *ABC* est équilatéral, de sens direct, si, et seulement si, $z_C z_A = \mathrm{e}^{\mathrm{i}\frac{\pi}{3}}(z_B z_A)$.
- Le triangle ABC est isocèle et rectangle en A si, et seulement si, $z_C z_A = \pm i (z_B z_A)$.
- Soit A, B, C et D quatre points, deux à deux distincts, d'affixes respectifs z_A , z_B , z_C , z_D . Ils sont cocycliques ou alignés si, et seulement si, $\left(\frac{z_B z_C}{z_A z_C}\right) / \left(\frac{z_B z_D}{z_A z_D}\right)$ est réel.

1^{re} année

1. Polynômes à une indéterminée

1.1 Définitions

Un polynôme à une indéterminée, à coefficients dans un corps \mathbb{K} , est une suite de valeurs a_i de \mathbb{K} , nulle à partir d'un certain rang p. Un tel polynôme se note P, ou P(X):

$$P(X) = a_0 + a_1 X + \dots + a_p X^p$$

Les nombres a_i sont les coefficients du polynôme P.

Si $P \neq 0$, le plus grand entier p tel que $a_p \neq 0$ est le degré du polynôme P. On le note d° P, ou deg P.

 a_p est le coefficient dominant de P. Lorsque $a_p = 1$, le polynôme est dit unitaire, ou normalisé.

Pour le polynôme nul P=0, on convient de poser $\mathrm{d}^\circ P=-\infty$.

L'ensemble des polynômes à une indéterminée X, à coefficients dans \mathbb{K} , se note $\mathbb{K}[X]$.

On note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n.

1.2 Structure algébrique

Soit
$$P = \sum_{i=0}^{n} a_i X^i$$
 et $Q = \sum_{j=0}^{m} b_j X^j$ deux éléments de $\mathbb{K}[X]$, et $\lambda \in \mathbb{K}$.

• Addition de deux polynômes

$$P + Q = \sum_{k=0}^{r} c_k X^k$$
 avec $r = \max(m, n)$ et $c_k = a_k + b_k$.

On a : $d^{\circ}(P+Q) \leqslant \max(d^{\circ}P, d^{\circ}Q)$. Si $d^{\circ}P \neq d^{\circ}Q$, il y a égalité.

• Produit par un scalaire

$$\lambda P = \sum_{i=0}^{n} (\lambda a_i) X^i$$
. Si $\lambda \neq 0$, on a : $d^{\circ}(\lambda P) = d^{\circ} P$.

• Produit de deux polynômes

$$PQ = \sum_{k=0}^{m+n} d_k X^k \text{ avec } d_k = \sum_{i+j=k} a_i b_j.$$

On a : $d^{\circ}(PQ) = d^{\circ}P + d^{\circ}Q$.

Pour les trois lois précédentes, $\mathbb{K}[X]$ est une algèbre sur \mathbb{K} .

Les seuls éléments inversibles sont les polynômes constants non nuls.

 $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$, de dimension n+1.

· Composé de deux polynômes

Le polynôme composé de P et Q est : $P \circ Q = \sum_{i=0}^{n} a_i Q^i$.

On a $d^{\circ}(P \circ Q) = d^{\circ}P \times d^{\circ}Q$.

On écrit souvent P(Q) au lieu de $P \circ Q$.

1.3 Fonctions polynomiales

 $P = \sum_{i=0}^{n} a_i X^i$ étant un polynôme de $\mathbb{K}[X]$, la fonction polynomiale associée à

P est l'application \tilde{P} , de \mathbb{K} dans \mathbb{K} , définie par :

$$x \mapsto \tilde{P}(x) = \sum_{i=0}^{n} a_i x^i.$$

Si $\mathbb K$ est infini, vous pouvez confondre sans risque P et \tilde{P} . Ce n'est pas le cas si $\mathbb K$ est fini.

1.4 Divisibilité

Si A = B Q (avec $Q \in \mathbb{K}[X]$), on dit que A est un multiple de B, ou que B est un diviseur de A.

On dit que A et B sont des polynômes associés lorsque $A=\lambda\,B$, avec $\lambda\in\mathbb{K}^*$.

1.5 Division euclidienne

Soit A et B deux polynômes de $\mathbb{K}[X]$, avec $B \neq 0$. Il existe des polynômes uniques Q et R dans $\mathbb{K}[X]$, tels que :

$$A = BQ + R$$
 avec $d^{\circ}R < d^{\circ}B$.

On dit que Q est le quotient, et R le reste, dans la division euclidienne de A par B.

49 Polynômes

1.6 Polynôme dérivé

La définition et les propriétés du polynôme dérivé sont analogues à celles de la fonction associée.

2. Racines d'un polynôme

2.1 Définition et caractérisation

Une équation algébrique est de la forme $\tilde{P}(x) = 0$ où P est un polynôme. Ses racines sont les zéros, ou racines, de P.

Un zéro α de P est dit d'ordre k, ou de multiplicité k (avec $k \in \mathbb{N}^*$), si α est racine d'ordre k de l'équation $\tilde{P}(x) = 0$. Cela signifie qu'il existe $Q \in \mathbb{K}[X]$ tel que $P = (X - \alpha)^k Q$ avec $Q(\alpha) \neq 0$.

Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , un zéro α de P est d'ordre au moins k si, et seulement si :

$$P(\alpha) = P'(\alpha) = \cdots = P^{(k-1)}(\alpha) = 0$$
.

L'ordre est égal à k si, en plus, $P^{(k)}(\alpha) \neq 0$.

2.2 Théorème de d'Alembert-Gauss

Tout polynôme de $\mathbb{C}[X]$ a au moins une racine dans \mathbb{C} .

On en déduit qu'un polynôme de $\mathbb{C}[X]$, de degré n, a exactement n racines dans \mathbb{C} , en comptant chaque racine autant de fois que son ordre de multiplicité.

2.3 Polynôme irréductible

Un polynôme P de $\mathbb{K}[X]$ est irréductible si d° $P \ge 1$, et s'il n'est divisible que par les polynômes associés à 1 ou à P.

2.4 Polynôme scindé

Un polynôme P de $\mathbb{K}[X]$ est scindé s'il s'écrit comme produit de polynômes de degré 1, soit :

$$P = a_n \prod_{i=1}^r (X - \alpha_i)^{k_i}.$$

2.5 Relations entres les coefficients et les racines

Si $P = \sum_{i=0}^{n} a_i X^i$ est de la forme ci-dessus, désignons par σ_p la somme des pro-

duits $p \ a \ p$ des racines. On a la relation :

$$\sigma_p = (-1)^p \, \frac{a_{n-p}}{a_n} \cdot$$

2.6 Décomposition d'un polynôme

Tout polynôme de degré $\geqslant 1$ se factorise en un produit d'un élément de \mathbb{K}^* et de polynômes irréductibles unitaires.

Cette décomposition est unique, à l'ordre des facteurs près.

Dans $\mathbb{C}[X]$, les polynômes irréductibles sont les polynômes de degré 1.

Dans $\mathbb{R}[X]$, les polynômes irréductibles sont les polynômes de degré 1, et les polynômes $aX^2 + bX + c$ avec $b^2 - 4ac < 0$.

Si $P \in \mathbb{R}[X]$, on peut le considérer dans $\mathbb{C}[X]$, et si α est un zéro non réel de P, alors P admet aussi le conjugué $\overline{\alpha}$ pour zéro, avec le même ordre de multiplicité que α .

2.7 Polynôme d'interpolation de Lagrange

Soit (a_0, a_1, \ldots, a_n) des éléments de \mathbb{K} , distincts deux à deux et des éléments (b_0, b_1, \ldots, b_n) de \mathbb{K} .

Il existe un unique polynôme P de degré $\leq n$ tel que :

$$\forall i \in \{0,\ldots,n\}$$
 $P(a_i) = b_i.$

Ce polynôme est
$$P(x) = \sum_{i=0}^{n} \frac{\prod\limits_{j \neq i} (X - a_j)}{\prod\limits_{j \neq i} (a_i - a_j)} b_i.$$

50

Divisibilité dans $\mathbb{K}[X]$

1^{re} année

1. Idéaux de $\mathbb{K}[X]$

 $\mathbb{K}[X]$ est un idéal principal, c'est-à-dire que tout idéal est principal. Cela signifie que, si I est un idéal non réduit à $\{0\}$, il existe un polynôme unitaire unique P tel que $I = P \mathbb{K}[X]$. On dit que P engendre I.

2. pgcd

2.1 Définition

Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$. L'ensemble des polynômes unitaires qui divisent à la fois A et B admet un plus grand élément pour la relation d'ordre associée à la divisibilité.

C'est le plus grand commun diviseur de A et de B. On le note PGCD (A,B), ou $A \vee B$.

Il s'agit du générateur unitaire de l'idéal $A \mathbb{K}[X] + B \mathbb{K}[X]$.

2.2 Algorithme d'Euclide

Si Q_1 et R_1 sont le quotient et le reste de la division euclidienne de A par B, on a:

$$A \vee B = B \vee R_1$$
.

On recommence avec B et R_1 . Le dernier reste non nul (normalisé) de ce processus est le PGCD de A et de B.

2.3 Polynômes premiers entre eux

Si PGCD (A,B) = 1, on dit que A et B sont premiers entre eux.

3. ppcm

3.1 Définition

Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$. L'ensemble des polynômes unitaires qui sont multiples à la fois de A et de B admet un plus petit élément pour la relation d'ordre associée à la divisibilité.

O Dunod – La photocopie non autorisée est un délit.

C'est le plus petit commun multiple de A et de B. On le note PPCM (A,B), ou $A \wedge B$.

Il s'agit du générateur unitaire de l'idéal $A \mathbb{K}[X] \cap B \mathbb{K}[X]$.

3.2 Théorème

Si A et B sont unitaires, on a :

PGCD
$$(A,B) \times PPCM(A,B) = AB$$
.

4. Théorème de Bézout

Pour que deux polynômes A et B de $\mathbb{K}[X]$ soient premiers entre eux, il faut et il suffit qu'il existe deux polynômes U et V de $\mathbb{K}[X]$ tels que :

$$AU + BV = 1$$
.

Si A et B sont premiers entre eux et non tous deux constants, il existe des polynômes U_0 et V_0 de $\mathbb{K}[X]$ uniques tels que :

$$A U_0 + B V_0 = 1$$
 avec $d^{\circ}U_0 < d^{\circ}B$ et $d^{\circ}V_0 < d^{\circ}A$.

5. Théorème de Gauss

Si A, B et C sont trois polynômes de $\mathbb{K}[X]$ tels que A divise B C, et A premier avec B, alors A divise C.

51

Fractions rationnelles

1^{re} année

1. Décomposition en éléments simples

1.1 Définitions

- De façon analogue à un nombre rationnel quotient de deux entiers, on définit une fraction rationnelle $\frac{A}{B}$ à partir des polynômes A et $B \neq 0$.
- On appelle degré de la fraction rationnelle $F = \frac{A}{B}$, le nombre d°A d°B. On le note d°F.
- $F = \frac{A}{B}$ étant une fraction rationnelle simplifiée, la fonction rationnelle associée à F est la fonction \tilde{F} , de \mathbb{K} dans \mathbb{K} , définie par :

$$x \mapsto \tilde{F}(x) = \frac{\tilde{A}(x)}{\tilde{B}(x)}$$
 quand $\tilde{B}(x) \neq 0$.

 \tilde{F} n'est pas définie pour les zéros de B. Ce sont les pôles de F.

1.2 Forme générale de la décomposition

Une fraction rationnelle, de forme irréductible $F = \frac{A}{B}$ (c'est-à-dire avec A et B premiers entre eux), s'écrit de façon unique, sous la forme :

$$F = E + \frac{R}{B}$$
 avec $d^{\circ}R < d^{\circ}B$.

E est la partie entière, et $\frac{R}{R}$ la partie fractionnaire de F.

1.3 Partie polaire quand $\mathbb{K} = \mathbb{C}$

Si la factorisation de B en polynômes irréductibles comporte un terme $(X - a)^k$ avec $k \in \mathbb{N}^*$, on appelle partie polaire de F relative à ce terme une somme d'éléments simples du type :

$$\frac{\alpha_k}{(X-a)^k} + \frac{\alpha_{k-1}}{(X-a)^{k-1}} + \dots + \frac{\alpha_1}{X-a}$$

Pour une fraction F donnée, les complexes α_i existent et sont uniques.

1.4 Théorème de décomposition

Toute fraction rationnelle, écrite sous forme irréductible, est égale, de façon unique, à la somme de sa partie entière et des parties polaires relatives à chacun des facteurs irréductibles intervenant dans la décomposition de B.

2. Méthodes pratiques de décomposition

2.1 Plan d'étude

- On met F sous forme irréductible en simplifiant par le PGCD du numérateur et du dénominateur.
- On obtient E et R à l'aide de la division euclidienne de A par B.
- On factorise B en polynômes irréductibles.
- On écrit la forme littérale de la décomposition en éléments simples de F, ou de $\frac{R}{R}$.
- On détermine les coefficients à l'aide de diverses méthodes.

2.2 Détermination des coefficients

- La méthode la plus rudimentaire consiste à réduire au même dénominateur la forme décomposée, et à identifier les numérateurs.
- \bullet Vous pouvez remplacer X par des valeurs numériques, différentes des pôles.
- Sachant que la décomposition est unique, si F est paire, ou impaire, on obtient des relations entre les coefficients.
- En utilisant la fraction sans partie entière, $\lim_{x\to\infty} x F(x)$ donne une relation entre coefficients.
- En multipliant F par $(X a)^k$ et en remplaçant X par a, on obtient α_k .

51 Fractions rationnelles

• Si a est un pôle simple, la partie polaire associée $\frac{\alpha}{X-a}$ vérifie :

$$\alpha = \frac{A(a)}{B'(a)} \cdot$$

• Soit P un polynôme dont les racines sont a_1, \ldots, a_k , d'ordre de multiplicité respectifs m_1, \ldots, m_k .

On a:

$$\frac{P'}{P} = \sum_{i=1}^{k} \frac{m_i}{X - a_i}.$$

52

Structure d'espace vectoriel

1^{re} année et 2^e année

1. Définitions et premières propriétés

1.1 Espace vectoriel

Soit \mathbb{K} un corps d'éléments neutres notés 0 et 1.

On dit qu'un ensemble non vide E est un espace vectoriel sur \mathbb{K} , ou \mathbb{K} -espace vectoriel, s'il est muni

- d'une loi de composition interne notée +,
- d'une loi de composition externe sur \mathbb{K} , c'est-à-dire d'une application de $\mathbb{K} \times E$ dans $E: (\lambda, x) \mapsto \lambda x$,

telles que:

(E,+) est un groupe commutatif,

$$\begin{split} \forall \lambda \in \mathbb{K} \quad \forall \mu \in \mathbb{K} \quad \forall x \in E \quad \forall y \in E \qquad (\lambda \, \mu) \, x = \lambda \, (\mu \, x) \quad ; \\ (\lambda + \mu) \, x = \lambda \, x + \mu \, x \quad ; \quad \lambda \, (x + y) = \lambda \, x + \lambda \, y \quad ; \quad 1 \, x = x. \end{split}$$

Les éléments de E sont des vecteurs ; les éléments de $\mathbb K$ sont des scalaires.

1.2 Exemples

- L'ensemble des vecteurs du plan ou de l'espace est un \mathbb{R} -espace vectoriel.
- •
 K est un espace vectoriel sur
 K.
- $\mathbb C$ est un $\mathbb C\text{-espace}$ vectoriel, mais aussi un $\mathbb R\text{-espace}$ vectoriel.
- Le produit $E_1 \times \cdots \times E_n$ de n espaces vectoriels sur le même corps \mathbb{K} est un \mathbb{K} -espace vectoriel pour les lois :

$$(x_1,...,x_n) + (y_1,...,y_n) = (x_1 + y_1,...,x_n + y_n)$$

 $\lambda(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n)$

- L'ensemble $\mathcal{F}(X,F)$ des applications d'un ensemble X dans un espace vectoriel F, est un espace vectoriel pour les opérations f+g et λf .
- L'ensemble $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K} , l'ensemble $\mathbb{K}_n[X]$ des polynômes de degré $\leq n$, sont des \mathbb{K} -espaces vectoriels.

1.3 Propriété

$$\forall \lambda \in \mathbb{K} \quad \forall x \in E \qquad \lambda x = 0_E \iff \lambda = 0_K \text{ ou } x = 0_E.$$

De ce fait, les éléments neutres de \mathbb{K} et de E, 0_K et 0_E , seront représentés par le même symbole 0 sans inconvénient.

2. Sous-espaces vectoriels

2.1 Définition

Une partie non vide F d'un \mathbb{K} -espace vectoriel E est un sous-espace vectoriel de E si elle est stable pour les deux lois, et si la restriction à F des lois de E y définit une structure d'espace vectoriel.

En fait, il faut et il suffit que F vérifie :

$$\forall \lambda \in \mathbb{K} \quad \forall x \in F \quad \forall y \in F \quad x + y \in F \quad \lambda x \in F ;$$

ou encore:

$$\forall \lambda \in \mathbb{K} \quad \forall x \in F \quad \forall y \in F \quad x + \lambda y \in F.$$

Pour montrer que F n'est pas vide, on vérifie en général que $0 \in F$.

2.2 Sous-espace engendré par une partie

 Toute intersection de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Dunod – La photocopie non autorisée est un délit.

Attention, la réunion de sous-espaces vectoriels n'est pas en général un sous-espace vectoriel.

- L'intersection F de tous les sous-espaces vectoriels de E contenant une partie A donnée est le sous-espace vectoriel engendré par A. C'est le plus petit (au sens de l'inclusion) sous-espace vectoriel contenant A.
 - On dit aussi que A est une partie génératrice de F. On note F = Vect(A).
- Le sous-espace vectoriel engendré par A est égal à l'ensemble des combinaisons linéaires finies de vecteurs de A, c'est-à-dire l'ensemble des vecteurs du type :

$$\sum_{i=1}^{n} \lambda_{i} x_{i} \quad \text{avec} \quad n \in \mathbb{N}^{*}, \quad \forall i \quad \lambda_{i} \in \mathbb{K} \quad x_{i} \in A.$$

 E_1 et E_2 étant deux sous-espaces vectoriels de E, on appelle somme de E_1 et de E_2 , et on note $E_1 + E_2$, l'ensemble des vecteurs du type $x_1 + x_2$ où $x_1 \in E_1$ et $x_2 \in E_2$.

 $E_1 + E_2$ est le sous-espace vectoriel engendré par $E_1 \cup E_2$.

2.4 Somme directe de deux sous-espaces vectoriels

Définitions

Quand tout vecteur x de $F = E_1 + E_2$ s'écrit, de façon unique, sous la forme $x = x_1 + x_2$ avec $x_1 \in E_1$ et $x_2 \in E_2$, on dit que F est somme directe de E_1 et de E_2 , et on note $F = E_1 \oplus E_2$.

On dit aussi que E_1 et E_2 sont supplémentaires dans F.

Théorème

$$E = E_1 \oplus E_2 \iff E = E_1 + E_2 \text{ et } E_1 \cap E_2 = \{0\}.$$

2.5 Généralisation

Somme de sous-espaces vectoriels

Soit $(E_i)_{i \in I}$ une famille finie de sous-espaces vectoriels d'un espace vectoriel E.

On appelle somme des E_i , et on note $\sum_{i \in I} E_i$, l'ensemble des vecteurs du type

$$\sum_{i \in I} x_i \text{ où } x_i \in E_i \text{ pour tout } i \in I.$$

$$\sum_{i \in I} E_i$$
 est le sous-espace vectoriel engendré par $\bigcup_{i \in I} E_i$.

Si $I = \{1, ..., n\}$, la somme se note aussi $E_1 + \cdots + E_n$.

• Somme directe de sous-espaces vectoriels

Quand tout vecteur x de $\sum_{i \in I} E_i$ s'écrit de façon unique sous la forme $\sum_{i \in I} x_i$ avec

 $x_i \in E_i$ pour tout $i \in I$, on dit que la somme des E_i est directe et on la note $\bigoplus_{i \in I} E_i$.

Si $I = \{1, ..., n\}$, on note aussi $E_1 \oplus \cdots \oplus E_n$.

Pour démontrer que la somme des E_i est directe, la méthode la plus rapide est de partir d'une somme nulle $x_1 + \cdots + x_n = 0$ avec $x_i \in E_i$ pour tout i, et de démontrer que cela entraı̂ne que tous les x_i sont nuls.

Dimension d'un espace vectoriel

53

1^{re} année et 2^e année

1. Espaces vectoriels de dimension finie

1.1 Dépendance et indépendance linéaire

• On dit qu'une famille (x_1, \ldots, x_n) de vecteurs de E est une famille libre, ou que les vecteurs sont linéairement indépendants, si :

$$\sum_{i=1}^{n} \lambda_i \, x_i = 0 \Longrightarrow \forall i \quad \lambda_i = 0 \, .$$

Dans le cas contraire, on dit que la famille est liée, ou que les vecteurs sont linéairement dépendants.

- Toute sous-famille non vide d'une famille libre est libre.
- Pour qu'une famille (x_1, \ldots, x_n) soit liée, il faut, et il suffit, que l'un de ses éléments soit combinaison linéaire des autres.

Cas particuliers : une famille qui contient le vecteur 0 est liée ; deux vecteurs sont liés si, et seulement si, ils sont colinéaires.

1.2 Bases

- On appelle base d'un espace vectoriel E toute famille libre de E qui engendre E.
- (e_1, \ldots, e_n) est une base de E si, et seulement si, tout vecteur x de E peut s'écrire de façon unique sous la forme :

$$x = \sum_{i=1}^{n} x_i \, e_i.$$

Les scalaires x_i sont les composantes du vecteur x.

• Théorème de la base incomplète

Si E est un espace vectoriel non réduit à $\{0\}$, toute famille libre de E peut être complétée en une base de E.

53 Dimension d'un espace vectoriel

• Tout espace vectoriel non réduit à {0} possède au moins une base.

Attention à ne jamais dire *la* base de *E*, car il n'y a pas unicité.

1.3 Dimension d'un espace vectoriel

Si E possède une base comportant un nombre fini n de vecteurs, on dit que E est de dimension finie.

Dans ce cas, toute base de E comporte aussi n vecteurs. On dit que n est la dimension de E; on la note dim E.

On convient que l'espace vectoriel {0} est de dimension nulle.

1.4 Recherche de bases

Soit E un espace vectoriel de dimension finie n.

Toute famille libre de E a au plus n vecteurs. Si elle comporte n vecteurs, c'est une base.

Toute famille génératrice de E a au moins n vecteurs. Si elle comporte n vecteurs, c'est une base.

Si on connaît déjà la dimension n de E, et si on considère une famille de n vecteurs, pour démontrer que c'est une base, il suffit de démontrer : soit que la famille est libre, soit que la famille est génératrice.

2. Autres dimensions

2.1 Dimension de $E \times F$

Soit E et F deux espaces vectoriels de dimensions finies.

Si (e_1,\ldots,e_n) est une base de E, et (f_1,\ldots,f_p) une base de F, alors l'ensemble des couples $(e_i,0)$ et $(0,f_j)$ où $1\leqslant i\leqslant n$ et $1\leqslant j\leqslant p$, est une base de $E\times F$. Par conséquent $\dim(E\times F)=\dim E+\dim F$.

2.2 Dimension d'un sous-espace vectoriel

Soit E un espace vectoriel de dimension finie. Tout sous-espace vectoriel F de E est de dimension finie, et

 $\dim F \leqslant \dim E$.

D'autre part, si dim $F = \dim E$, alors F = E.

L'égalité des dimensions ne suffit pas pour conclure que F = E. Il faut aussi une inclusion.

Si dim $F = \dim E - 1$, on dit que F est un hyperplan de E.

Comme exemples d'hyperplans, vous pouvez penser à une droite dans le plan ou à un plan dans l'espace.

2.3 Dimension d'une somme

• Si F et G sont deux sous-espaces vectoriels de E, on a :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$

En particulier, si F et G sont supplémentaires :

$$\dim(F \oplus G) = \dim F + \dim G.$$

- Tout sous-espace vectoriel F de E admet des supplémentaires, qui ont tous pour dimension : dim E - dim F.
- F et G sont supplémentaires si, et seulement si, en réunissant une base de F et une base de G, on obtient une base de E.

On dit qu'on a choisi une base de E adaptée à la somme directe.

Attention à ne pas partir d'une base de E, car il n'y a aucune raison de pouvoir en extraire une base de F et une base de G, ni même des vecteurs de F ou de G.

Généralisation

Si *E* est de dimension finie, on a :

$$\dim\bigoplus_{i\in I}E_i=\sum_{i\in I}\dim E_i.$$

Si la somme $\bigoplus_{i \in I} E_i$ est directe, alors, pour que $E = \bigoplus_{i \in I} E_i$, il faut et il suffit que :

$$\dim E = \sum_{i \in I} \dim E_i.$$

53 Dimension d'un espace vectoriel

Si aucun E_i n'est réduit à $\{0\}$, la réunion d'une base de chaque E_i constitue une base de E si, et seulement si, $E = \bigoplus_{i \in I} E_i$.

2.4 Rang

Le rang d'une famille finie de vecteurs est la dimension du sous-espace vectoriel qu'ils engendrent.

C'est aussi le nombre maximum de vecteurs linéairement indépendants que l'on peut extraire de la famille.

Applications linéaires

54

1^{re} année et 2^e année

Soit E et F deux espaces vectoriels sur le même corps \mathbb{K} .

1. Généralités

1.1 Définitions

Une application f de E dans F est dite linéaire si c'est un morphisme d'espaces vectoriels, c'est-à-dire si :

$$\forall x \in E \quad \forall y \in E \quad \forall \lambda \in \mathbb{K}$$

$$f(x+y) = f(x) + f(y) \; ; \; f(\lambda x) = \lambda f(x) \, .$$

ou encore:

$$\forall x \in E \quad \forall y \in E \quad \forall \lambda \in \mathbb{K} \quad \forall \mu \in \mathbb{K}$$

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$$

La propriété précédente s'étend à toute combinaison linéaire :

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) = \sum_{i=1}^{n} \lambda_i f(x_i).$$

Si f est bijective, c'est un isomorphisme ; si E = F, c'est un endomorphisme ; si f est bijective avec E = F, c'est un automorphisme.

On note:

 $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F,

 $\mathcal{L}(E)$ l'ensemble des applications linéaires de E dans E,

GL(E) l'ensemble des automorphismes de E.

1.2 Opérations algébriques

La composée de deux applications linéaires est linéaire.

Si f est un isomorphisme, f^{-1} est aussi un isomorphisme.

 $\mathcal{L}(E,F)$ est un espace vectoriel.

Si dim E = n et dim F = p, on a dim $\mathcal{L}(E, F) = np$.

54 Applications linéaires

 $\mathcal{L}(E)$ est une algèbre.

 $(GL(E), \circ)$ est un groupe, appelé groupe linéaire de E.

2. Noyau et image d'une application linéaire

2.1 Définitions

Soit f une application linéaire de E dans F.

- L'image d'un sous-espace vectoriel de E est un sous-espace vectoriel de F. En particulier, f(E) est un sous-espace vectoriel de F appelé image de f, et noté $\operatorname{Im} f$. Il est engendré par les images des vecteurs d'une partie génératrice de E.
- L'image réciproque d'un sous-espace vectoriel de F est un sous-espace vectoriel de E.

En particulier, $\overset{-1}{f}$ ({0}) est un sous-espace vectoriel de E. On l'appelle le noyau de f, et on le note $\operatorname{Ker} f$.

2.2 Théorème

$$f$$
 surjective \iff Im $f = F$; f injective \iff Ker $f = \{0\}$.

2.3 Noyau d'une restriction

Soit f une application linéaire de E dans F et E_1 un sous-espace vectoriel de E. La restriction de f à E_1 a pour noyau :

$$\operatorname{Ker}(f_{|E_1}) = \operatorname{Ker} f \cap E_1$$
.

La restriction de f à tout supplémentaire G de Ker f définit donc un isomorphisme de G sur $\operatorname{Im} f$.

2.4 Réflexe utile

$$f\circ g=0\iff \mathrm{Im} g\subset \mathrm{Ker} f.$$

3. Image d'une famille de vecteurs

Soit f une application linéaire de E dans F.

3.1 Image d'une famille génératrice

Si G engendre E, alors f(G) engendre f(E).

L'image d'une famille génératrice de E est une famille génératrice de F si, et seulement si, f est surjective.

3.2 Image d'une famille libre

Si A est une partie liée dans E, alors f(A) est une partie liée dans F, ou, par contraposition :

$$f(A)$$
 libre dans $F \Longrightarrow A$ libre dans E .

f est injective si, et seulement si, pour toute partie libre L de E, f(L) est une partie libre de F.

3.3 Image d'une base

L'image d'une base de E est une base de F si, et seulement si, f est bijective.

4. Rang d'une application linéaire

4.1 Théorème noyau-image

Soit f une application linéaire de E dans F. Si $E=\operatorname{Ker} f\oplus G$, la restriction de f à G est un isomorphisme de G dans $\operatorname{Im} f$.

4.2 Théorème du rang

Si E est de dimension finie, on a :

$$\dim E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f.$$

 $\dim \operatorname{Im} f$ est appelé rang $\operatorname{de} f$, et souvent noté $\operatorname{rg} f$.

4.3 Théorème

Si E et F sont de même dimension finie, on a :

$$f$$
 bijective \iff f injective \iff f surjective.

Dunod – La photocopie non autorisée est un délit

N'oubliez pas l'hypothèse sur E et F.

4.4 Forme linéaire et hyperplan

• Forme linéaire

Soit E un \mathbb{K} -espace vectoriel. On appelle forme linéaire sur E toute application linéaire de E dans \mathbb{K} .

54 Applications linéaires

L'ensemble des formes linéaires sur E est le \mathbb{K} -espace vectoriel $\mathcal{L}(E,\mathbb{K})$.

On l'appelle l'espace dual de E et on le note E^* .

Si E est de dimension finie, on a dim $E = \dim E^*$.

• Écriture d'une forme linéaire

Si E est de dimension finie et admet (e_1, \ldots, e_n) pour base, toute forme linéaire f sur E est de la forme :

$$x = \sum_{i=1}^{n} x_i e_i \mapsto f(x) = \sum_{i=1}^{n} \alpha_i x_i$$

où les $\alpha_i = f(e_i)$ sont des scalaires qui caractérisent f.

• Forme linéaire et hyperplan

– Étant donnée une forme linéaire φ sur E non nulle, le sous-espace vectoriel $H=\operatorname{Ker} \varphi$ est un hyperplan de E.

Toute forme linéaire ψ nulle sur H est colinéaire à φ .

- En dimension finie, un hyperplan admet donc une équation de la forme :

$$\sum_{i=1}^n \alpha_i \, x_i = 0 \, .$$

· Base duale

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base d'un espace vectoriel E de dimension finie. Les formes linéaires coordonnées $(\varphi_1, \dots, \varphi_n)$ définies par

$$\forall i \quad \forall j \quad \varphi_i(e_i) = \delta_i^j$$

constituent une base \mathcal{B}^* de E^* appelée base duale de \mathcal{B} .

Le symbole de Kronecker δ_i^j vaut 1 si i = j et 0 si $i \neq j$.

On a donc $\dim E = \dim E^*$.

5. Détermination d'une application linéaire

• Soit $A = (a_1, \dots, a_n)$ une base de E et $B = (b_1, \dots, b_n)$ une famille de n vecteurs de F.

Il existe une application linéaire unique f de E dans F telle que :

$$\forall i \in \{1, \dots, n\} \qquad f(a_i) = b_i.$$

- On a : f injective $\iff B$ libre dans F; f surjective $\iff B$ engendre F; f bijective $\iff B$ est une base de F.
- Conséquence : deux espaces vectoriels E et F de dimensions finies sont isomorphes si, et seulement si, dim $E = \dim F$.

55

Applications linéaires particulières

1^{re} année

1. Homothétie

Soit $k \in K^*$. L'homothétie de rapport k est l'application :

$$h_k: E \longrightarrow E$$
 $x \mapsto kx$

Dans cette définition, n'oubliez pas que k ne dépend pas de x.

2. Projections et symétries

2.1 Définitions

Soit F et G deux sous-espaces vectoriels supplémentaires de E.

Tout vecteur x de E s'écrit de façon unique sous la forme $x = x_1 + x_2$ avec $x_1 \in F$ et $x_2 \in G$.

L'application p de E dans $E: x \mapsto p(x) = x_1$ est linéaire.

C'est la projection sur F, parallèlement à G.

L'application s_F de E dans $E: x \mapsto s_F(x) = x_1 - x_2$ est linéaire.

C'est la symétrie par rapport à F, parallèlement à G.

On définit de même la projection q sur G, parallèlement à F, et la symétrie s_G par rapport à G, parallèlement à F.

2.2 Propriétés

$$p+q=\mathrm{Id}_E$$
 ; $p\circ q=q\circ p=0$; $p^2=p$; $q^2=q$; $s_F^2=\mathrm{Id}_E$.
 $\mathrm{Ker}\; p=\mathrm{Im}\; q=G$; $\mathrm{Ker}\; q=\mathrm{Im}\; p=F$.

p et s_F sont liées par l'égalité :

$$s_F = 2p - \mathrm{Id}_E$$
.

2.3 Projecteurs

D'une facon générale, on appelle projecteur de E tout endomorphisme p de E tel que $p\circ p=p$.

On a alors:

$$E = \operatorname{Ker} p \oplus \operatorname{Im} p,$$

et p est la projection sur Im p, parallèlement à Ker p.

O Dunod – La photocopie non autorisée est un délit.

Attention, l'égalité $E = \operatorname{Ker} f \oplus \operatorname{Im} f$ entraı̂ne seulement que $\operatorname{Im} f = \operatorname{Im} f^2$, et pas que f soit un projecteur.

2.4 Symétries

D'une facon générale, on appelle symétrie de E toute application linéaire s, de E dans E, telle que $s \circ s = \mathrm{Id}_E$.

Alors $F = \{x \in E ; s(x) = x\}$ et $G = \{x \in E ; s(x) = -x\}$ sont des sousespaces supplémentaires de E, et s est la symétrie par rapport à F, parallèlement à G.

56

Écritures matricielles

1^{re} année

1. Définitions

1.1 Matrices

Une matrice à n lignes et p colonnes sur un corps \mathbb{K} est un tableau d'éléments de \mathbb{K} comportant n lignes et p colonnes.

On note a_{ij} l'élément d'une matrice A situé sur la ligne i et la colonne j. La matrice A s'écrit :

$$\begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix} \quad \text{ou} \quad (a_{ij})_{1 \le i \le n \atop 1 \le j \le p} \quad \text{ou} \quad (a_{ij}).$$

On dit que A est de format (n, p), ou de type (n, p).

Attention à ne pas confondre la matrice (a_{ij}) et le scalaire a_{ij} .

L'ensemble des matrices à n lignes et p colonnes, à coefficients dans \mathbb{K} , est noté $\mathcal{M}_{n,p}(\mathbb{K})$.

Si p = 1, A est une matrice colonne que l'on peut assimiler à un vecteur de \mathbb{K}^n .

Si n = 1, A est une matrice ligne que l'on peut assimiler à une forme linéaire appartenant à $(\mathbb{K}^p)^*$.

Si n = p, A est une matrice carrée d'ordre n. $\mathcal{M}_{n,n}(\mathbb{K})$ se note $\mathcal{M}_n(\mathbb{K})$. Les éléments a_{11}, \ldots, a_{nn} forment la diagonale principale de A.

Deux matrices A et B sont égales si elles sont de même format, et si $a_{ij} = b_{ij}$ pour tout i et pour tout j.

1.2 Matrices particulières

Soit $A = (a_{ij})$ une matrice carrée d'ordre n.

- A est triangulaire supérieure si $a_{ij} = 0$ pour i > j.
- A est triangulaire inférieure si $a_{ij} = 0$ pour i < j.
- A est diagonale si $a_{ij} = 0$ pour $i \neq j$. Elle est scalaire si $A = a I_n$.

2. Matrices et applications linéaires

2.1 Matrice d'une application linéaire de E dans F

Soit E et F des espaces vectoriels de dimensions p et n, munis de bases respectives $\mathcal{B} = (e_1, \dots, e_p)$ et $\mathcal{C} = (f_1, \dots, f_n)$.

Soit f une application linéaire de E dans F. Elle est déterminée par la donnée des vecteurs :

$$f(e_j) = \sum_{i=1}^n a_{ij} f_i$$
 pour $1 \leqslant j \leqslant p$,

c'est-à-dire par la matrice $A=(a_{ij})$ dont les vecteurs colonnes sont les composantes de $f(e_j)$ dans la base de F qui a été choisie.

On dit que A est la matrice de f dans les bases \mathcal{B} et \mathcal{C} .

A dépend donc à la fois de l'application linéaire qu'elle représente et des bases choisies dans les espaces vectoriels de départ et d'arrivée.

Si E est de dimension n, dans toute base l'identité de E est représentée par la matrice carrée I_n qui comporte des 1 sur sa diagonale principale et des 0 ailleurs.

2.2 Bijection canonique entre $\mathcal{M}_{n,p}(\mathbb{K})$ et $\mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$

Fixons une base \mathcal{B} dans E et une base \mathcal{C} dans F. L'application φ , de $\mathcal{L}(E,F)$ dans $\mathcal{M}_{n,p}(\mathbb{K}), f \mapsto \varphi(f) = A$, est une bijection.

En particulier, si $E = \mathbb{K}^p$, $F = \mathbb{K}^n$, et si \mathcal{B} et \mathcal{C} sont les bases canoniques de \mathbb{K}^p et de \mathbb{K}^n , φ est la bijection canonique de $\mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$ dans $\mathcal{M}_{n,p}(\mathbb{K})$.

2.3 Matrice def(x)

Dunod – La photocopie non autorisée est un délit.

Soit E et F deux espaces vectoriels de dimensions finies munis de bases respectives \mathcal{B} et \mathcal{C} , et f une application linéaire de E dans F.

Soit $x \in E$ et $y \in F$. Notons X la matrice colonne des composantes de x dans \mathcal{B} , Y la matrice colonne des composantes de y dans \mathcal{C} , M la matrice de f dans les bases \mathcal{B} et \mathcal{C} .

L'égalité vectorielle y = f(x) est équivalente à l'égalité matricielle :

$$Y = MX$$
.

56 Écritures matricielles

2.4 Matrice d'une famille finie de vecteurs

Soit E un espace vectoriel de dimension finie n, muni d'une base \mathcal{B} , et (x_1, \dots, x_n) une famille de vecteurs de E.

À chaque vecteur x_i , on associe la matrice colonne X_i de ses composantes dans \mathcal{B} .

À la famille (x_1, \ldots, x_n) , on associe la matrice de format (n, p) obtenue en juxtaposant les colonnes $X_1 \ldots X_p$.

1^{re} année

1. Opérations sur les matrices

1.1 Espace vectoriel $\mathcal{M}_{n,p}(\mathbb{K})$

• Soit $\lambda \in \mathbb{K}$, et $A = (a_{ij})$ et $B = (b_{ij})$ deux matrices de $\mathcal{M}_{n,p}(\mathbb{K})$. On définit :

$$\lambda A = (\lambda a_{ij})$$
 et $A + B = (a_{ij} + b_{ij})$.

Attention, on ne peut additionner deux matrices que si elles sont de même format.

Pour ces deux lois, $\mathcal{M}_{n,p}(\mathbb{K})$ est un espace vectoriel.

- Pour $i \in \{1, ..., n\}$ et $j \in \{1, ..., p\}$ fixés, on note E_{ij} la matrice dont le coefficient situé sur la ligne i et la colonne j est égal à 1, et dont les autres coefficients sont égaux à 0. $(E_{ij})_{1 \le j \le p \atop 1 \le j \le p}$ est la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$, qui est donc de dimension n p.
- La bijection canonique φ de $\mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$ dans $\mathcal{M}_{n,p}(\mathbb{K})$ est un isomorphisme.

1.2 Produit de matrices

Si A est de format (n,p) et B de format (p,q), on définit la matrice C=AB, de format (n,q), par :

$$\forall i \quad \forall j \qquad c_{ij} = \sum_{k=1}^{p} a_{ik} \, b_{kj}.$$

Attention à la condition d'existence de AB:

nombre de colonnes de A = nombre de lignes de B.

Ce produit est la traduction de la composée des applications linéaires $f\circ g$. Il en a donc les propriétés : il est associatif et non commutatif.

Algèbre linéaire et multilinéaire

2. Matrices carrées d'ordre n

2.1 Structures algébriques

 $\mathcal{M}_n(\mathbb{K})$ est une algèbre isomorphe à $\mathcal{L}(\mathbb{K}^n)$.

Les matrices diagonales, les matrices triangulaires supérieures (ou inférieures) constituent des sous-algèbres.

2.2 Formule du binôme de Newton

Si A et B commutent, alors :

$$\forall m \in \mathbb{N} \qquad (A+B)^m = \sum_{k=0}^m {m \choose k} A^k B^{m-k}.$$

N'oubliez pas de vérifier la condition AB = BA.

2.3 Matrices inversibles

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que :

$$AB = BA = I_n$$
.

Si B existe, elle est unique et on la note A^{-1} .

Les éléments inversibles de $\mathcal{M}_n(\mathbb{K})$ forment un groupe $GL_n(\mathbb{K})$, isomorphe au groupe linéaire $GL(\mathbb{K}^n)$. On a en particulier :

$$(A B)^{-1} = B^{-1} A^{-1}$$
.

Si A est inversible, l'endomorphisme f de E, muni d'une base \mathcal{B} , qui lui est associé est inversible ; et A^{-1} est la matrice de f^{-1} .

Dans $\mathcal{M}_n(\mathbb{K})$, pour que A soit inversible, il suffit qu'elle soit inversible à droite, ou à gauche.

3. Transposition

3.1 Définition

La transposée d'une matrice A de format (n,p), est la matrice de format (p,n), notée tA , de terme général b_{ij} :

$$\forall i \in \{1, \dots, p\} \quad \forall j \in \{1, \dots, n\} \qquad b_{ij} = a_{ji}.$$

Elle est donc obtenue à partir de A en échangeant les lignes et les colonnes.

3.2 Propriétés

$${}^{t}({}^{t}A) = A$$
 ; ${}^{t}(\lambda A) = \lambda^{t}A$; ${}^{t}(A + B) = {}^{t}A + {}^{t}B$; ${}^{t}(A B) = {}^{t}B^{t}A$; ${}^{t}(A^{-1}) = ({}^{t}A)^{-1}$.

3.3 Matrices symétriques, antisymétriques

Une matrice carrée A est symétrique si ${}^{t}A = A$,

antisymétrique si
$$^tA = -A$$
.

Les matrices symétriques et les matrices antisymétriques constituent des sousespaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbb{K})$.

3.4 Inverse de la transposée

O Dunod – La photocopie non autorisée est un délit.

Si A est inversible, ^tA l'est aussi et on a :

$$(^tA)^{-1} = {}^t(A^{-1}).$$

Changements de bases

1^{re} année et 2^e année

1. Changement de bases

1.1 Matrice de passage

Soit $\mathcal{B} = (e_1, \dots, e_n)$ et $\mathcal{B}' = (e'_1, \dots, e'_n)$ deux bases de E. On appelle *matrice de passage* de la base \mathcal{B} à la base \mathcal{B}' , la matrice P dont les colonnes C_j sont les composantes des vecteurs e'_j dans la base \mathcal{B} .

P est la matrice de l'identité de E muni de \mathcal{B}' , dans E muni de \mathcal{B} .

Si P' est la matrice de passage de \mathcal{B}' à \mathcal{B} , on a P P' = P' P = I_n .

Toute matrice de passage est donc inversible.

Réciproquement, toute matrice inversible peut être considérée comme une matrice de passage.

1.2 Effet d'un changement de bases

· sur les coordonnées d'un vecteur

Si X est la matrice colonne des composantes de x dans \mathcal{B} , et X' la matrice colonne des composantes de x dans \mathcal{B}' , on a :

$$X = PX'$$
, ou encore $X' = P^{-1}X$.

• sur l'expression d'une forme linéaire

Si une forme linéaire sur E est représentée par une matrice ligne $U = (\alpha_1, \ldots, \alpha_n)$ dans une base \mathcal{B} , et par U' dans une base \mathcal{B}' , on a f(x) = UX = U'X', soit :

$$U' = U P$$
.

1.3 Matrices équivalentes, matrices semblables

Soit f une application linéaire de E dans F, \mathcal{B} et \mathcal{B}' deux bases de E, \mathcal{C} et \mathcal{C}' deux bases de F.

Notons P la matrice de passage de \mathcal{B} à \mathcal{B}' ,

Q la matrice de passage de C à C',

A la matrice de f dans les bases \mathcal{B} et \mathcal{C} ,

A' la matrice de f dans les bases \mathcal{B}' et \mathcal{C}' .

On a alors:

$$A' = Q^{-1}A P.$$

Les matrices A et A' sont dites équivalentes. Elles représentent la même application linéaire dans des bases différentes.

Si
$$E = F$$
 avec $\mathcal{B} = \mathcal{C}$ et $\mathcal{B}' = \mathcal{C}'$, alors $P = Q$, soit $A' = P^{-1}AP$.

Les matrices A et A' sont dites semblables.

2. Rang d'une matrice

2.1 Définition

Soit A une matrice de format (n, p), E un espace vectoriel de dimension p, F un espace vectoriel de dimension n.

Quelles que soient les bases \mathcal{B} et \mathcal{C} choisies dans E et F, le rang de l'application linéaire f associée à A est toujours le même. Ce rang est appelé rang de A.

C'est aussi le rang des vecteurs colonnes de A, c'est-à-dire la dimension du sous-espace vectoriel qu'ils engendrent.

2.2 Rang de la transposée

A et ^t A ont même rang. On peut donc définir le rang de A à partir de ses lignes.

2.3 Théorème

Une matrice de format (n,p) est de rang r (avec $r \leq \min(n,p)$) si, et seulement si, elle est de la forme U J_r V où U et V sont des matrices carrées inversibles et J_r la matrice de $\mathcal{M}_{n,p}(K)$ définie par son terme général :

$$\alpha_{ij} = \begin{cases} 1 & \text{si } i = j \leqslant r, \\ 0 & \text{dans les autres cas.} \end{cases}$$

En particulier, une matrice carrée d'ordre n est inversible si, et seulement si, son rang est égal à n.

2.4 Calcul du rang

Les opérations élémentaires sur les lignes, ou les colonnes, d'une matrice ne modifient pas le rang. On les utilise pour se ramener à une matrice de rang connu.

3. Trace d'une matrice

3.1 Définition

La trace d'une matrice $A = (a_{ij})$, carrée d'ordre n, est la somme de ses éléments diagonaux, soit :

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii} \in \mathbb{K}.$$

3.2 Propriétés

$$\operatorname{tr}(A+B) = \operatorname{tr}A + \operatorname{tr}B$$
 ; $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}A$
 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$; $\operatorname{tr}(PMP^{-1}) = \operatorname{tr}M$.

Attention, en général $tr(ABC) \neq tr(BAC)$.

3.3 Trace d'un endomorphisme

Définition

Si f est un endomorphisme d'un espace vectoriel E de dimension finie, toutes les matrices qui le représentent sont semblables et ont la même trace.

Cette trace commune est la trace de l'endomorphisme f.

• Trace d'un projecteur

Le rang d'un projecteur est égal à sa trace.

Dunod – La photocopie non autorisée est un délit

Opérations élémentaires sur les matrices 1.

1.1 **Définition**

Les opérations (ou manipulations) élémentaires sur les lignes d'une matrice sont :

- l'addition d'un multiple d'une ligne à une autre ligne, qui se code : $L_i \leftarrow L_i + \alpha L_i$;
- la multiplication d'une ligne par un scalaire non nul, qui se code : $L_i \leftarrow \alpha L_i$;
- l'échange de deux lignes, qui se code : $L_i \leftrightarrow L_i$.

Interprétation 1.2

Ces transformations sont équivalentes à la prémultiplication (multiplication à gauche) par la matrice inversible obtenue en appliquant à I_n la transformation correspondante.

Les opérations analogues sur les colonnes se codent :

$$C_i \leftarrow C_i + \alpha C_i$$
 ; $C_i \leftarrow \alpha C_i$; $C_i \leftrightarrow C_j$.

Elles sont équivalentes à la postmultiplication (multiplication à droite) par la matrice inversible obtenue en appliquant à I_n la transformation correspondante.

1.3 Théorème

En partant d'une matrice A, l'utilisation d'un nombre fini d'opérations élémentaires conduit à une matrice équivalente à A.

Systèmes linéaires 2.

2.1 **Définitions**

Un système de n équations linéaires à p inconnues, à coefficients dans \mathbb{K} , est de la forme:

$$(S) \begin{cases} a_{11} x_1 + \dots + a_{1p} x_p &= b_1 \\ \vdots & & \vdots \\ a_{n1} x_1 + \dots + a_{np} x_p &= b_n. \end{cases}$$

Algèbre linéaire et multilinéaire

59 Systèmes linéaires

Les coefficients a_{ij} et les seconds membres b_i sont des éléments donnés de \mathbb{K} .

Les inconnues x_1, \ldots, x_p sont à chercher dans \mathbb{K} .

Le système homogène associé à (S) est le système obtenu en remplaçant les b_i par 0.

Une solution est un p-uplet (x_1, \ldots, x_p) qui vérifient (S). Résoudre (S), c'est chercher toutes les solutions.

Un système est impossible, ou incompatible, s'il n'admet pas de solution.

Deux systèmes sont équivalents s'ils ont les mêmes solutions.

2.2 Écriture matricielle

Si on note:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} , B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} , A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix},$$

(S) est équivalent à l'égalité matricielle : AX = B.

Attention à ce que les inconnues soient écrites dans le même ordre dans chaque équation.

2.3 Utilisation d'une application linéaire

 \mathbb{K}^n et \mathbb{K}^p étant munis de leurs bases canoniques,

X est la matrice colonne des composantes d'un vecteur $x \in \mathbb{K}^p$,

B est la matrice colonne des composantes d'un vecteur $b \in \mathbb{K}^n$,

A est la matrice d'une application linéaire f de \mathbb{K}^p dans \mathbb{K}^n ,

et le système (S) est équivalent à :

$$f(x) = b$$
.

Le système (S) a des solutions si, et seulement si, b appartient à $\operatorname{Im} f$.

Dans ce cas, l'ensemble des solutions est :

$$x_0 + \text{Ker} f$$
,

où x_0 est une solution particulière de (S).

2.4 Écriture vectorielle

Désignons par C_1, \ldots, C_p les colonnes de A. Elles représentent des vecteurs de \mathbb{K}^n , et le système (S) se ramène à une égalité dans \mathbb{K}^n :

$$x_1 C_1 + \cdots + x_p C_p = B.$$

(S) est compatible si, et seulement si, $B \in \text{Vect}(C_1, \dots, C_p)$.

3. Méthodes de résolution

3.1 Systèmes en escalier

Définition

Un système (S) est en escalier, ou échelonné, si le nombre de premiers coefficients nuls successifs de chaque équation est strictement croissant.

Réduction

Quand un système contient une équation du type :

$$0x_1 + \dots + 0x_n = b,$$

si $b \neq 0$, le système est impossible ;

si b = 0, on peut supprimer cette équation, ce qui conduit au sytème réduit.

3.2 Méthode du pivot de Gauss

Soit A la matrice associée au système (S).

En permutant éventuellement deux colonnes, on peut supposer que la première colonne de A n'est pas nulle.

En permutant deux lignes si nécessaire, on peut supposer $a_{11} \neq 0$.

Pour i > 1, les transformations $L_i \leftarrow L_i - \frac{a_{i1}}{a_{11}} L_1$ éliminent l'inconnue x_1 dans

les lignes autres que L_1 .

Le terme a_{11} est le pivot de l'étape de l'algorithme.

En réitérant le procédé, on aboutit à une matrice triangulaire.

Dunod – La photocopie non autorisée est un délit

En calcul numérique, pour minimiser les erreurs d'arrondi, on choisit comme pivot le terme de plus grande valeur absolue (méthode du pivot partiel).

59 Systèmes linéaires

3.3 Rang d'un système

Le nombre d'équations du système réduit en escalier obtenu par la méthode de Gauss est le rang r de la matrice A, ou du système (S).

3.4 Inconnues principales, inconnues secondaires

Soit r le rang de (S) et p le nombre d'inconnues.

Si r = p, (S) a une solution unique.

Si p > r, (S) a une infinité de solutions. Les r inconnues qui figurent au début des r équations issues de la méthode de Gauss sont les inconnues principales. Elles peuvent se calculer de façon unique en fonction des p - r autres inconnues, dites inconnues secondaires.

Le choix des inconnues principales et secondaires d'un système est largement arbitraire. Mais leur nombre est toujours le même.

3.5 Méthode de Gauss-Jordan

Dans cette variante du pivot de Gauss, à chaque étape on fait apparaître des zéros à la fois au-dessus et au-dessous du pivot.

4. Systèmes de Cramer

4.1 Définition

Un système est dit de Cramer s'il a une solution, et une seule.

Cette condition est équivalente à :

n = p et A inversible.

4.2 Application au calcul de A^{-1}

A étant inversible, pour obtenir A^{-1} , il suffit de résoudre le système Y = AX, qui admet pour solution $X = A^{-1}Y$.

Déterminants

60

1^{re} année

1. Formes multilinéaires alternées

1.1 Définitions

Soit E un \mathbb{K} -espace vectoriel. Une application f, de E^n dans \mathbb{K} , est une forme n-linéaire si chacune de ses applications partielles

$$x_i \mapsto f(x_1,\ldots,x_i,\ldots,x_n)$$

est linéaire.

On dit de plus que f est alternée si $f(x_1, \dots, x_i, \dots, x_p) = 0$ dès que deux coordonnées, au moins, sont égales.

f étant une forme n-linéaire alternée, σ une permutation appartenant à S_n , de signature $\varepsilon(\sigma)$, on a :

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)})=f(x_1,\ldots,x_n)\,\varepsilon(\sigma)$$
.

1.2 Cas où dim E = n

Soit E un \mathbb{K} -espace vectoriel de dimension n.

Pour toute base (e_1, \ldots, e_n) de E et tout $\lambda \in \mathbb{K}$, il existe une forme n-linéaire alternée unique f telle que

$$f(e_1,\ldots,e_n)=\lambda$$
.

f étant une forme n-linéaire alternée non nulle, on a :

$$(x_1,\ldots,x_n)$$
 famille liée de $E \iff f(x_1,\ldots,x_n)=0$.

2. Déterminants

2.1 Déterminant de *n* vecteurs

Soit E un \mathbb{K} -espace vectoriel de dimension n, et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On appelle déterminant de n vecteurs x_1, \dots, x_n de E, relativement à la base \mathcal{B} de E, la valeur notée $\det_{\mathcal{B}}(x_1, \dots, x_n)$ de l'unique forme n-linéaire alternée $\det_{\mathcal{B}}$ telle que $\det_{\mathcal{B}}(e_1, \dots, e_n) = 1$.

Si pour tout $i \in \{1, ..., n\}$, on décompose $x_i = \sum_{j=1}^n a_{ij} e_j$, alors :

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \times a_{1,\sigma(1)} \times \ldots \times a_{n,\sigma(n)}.$$

2.2 Déterminant d'une matrice carrée

Soit $A = (a_{ij})$ une matrice carrée d'ordre n.

On appelle déterminant de A le déterminant de ses n vecteurs colonnes, considérés comme éléments de \mathbb{K}^n rapporté à sa base canonique.

2.3 Déterminant d'un endomorphisme

Après avoir montré que deux matrices semblables ont le même déterminant, on appelle déterminant d'un endomorphisme f, le déterminant commun à ses matrices représentatives.

3. Propriétés des déterminants

3.1 Transposée

$$\det A = \det^t A$$
.

Les propriétés relatives aux colonnes sont donc aussi valables pour les lignes.

3.2 Propriétés d'une forme multilinéaire alternée

- On ne change pas la valeur d'un déterminant en ajoutant à une de ses lignes (resp. colonnes) une combinaison linéaire des autres lignes (resp. colonnes).
 Cette propriété est très utilisée pour faire apparaître des 0 sur une colonne (resp. ligne).
- Multiplier une ligne (ou une colonne) d'un déterminant par un scalaire, c'est multiplier le déterminant par ce scalaire.

Si $A \in \mathcal{M}_n(\mathbb{K})$, on a donc $\det(\lambda A) = \lambda^n \det(A)$ puisqu'on peut mettre λ en facteur dans chacune des n colonnes de A.

• Toute transposition sur les lignes (ou les colonnes) transforme $\det A$ en $-\det A$.

3.3 Produit

$$\det (A B) = \det A \times \det B.$$

3.4 Développement suivant une rangée

Définitions

On appelle mineur de l'élément a_{ij} de Δ , déterminant d'ordre n, le déterminant d'ordre n-1 obtenu en supprimant la i-ième ligne et la j-ième colonne de Δ , sans changer l'ordre des autres rangées.

Notation : D_{ij} .

On appelle cofacteur de l'élément a_{ij} , le nombre $A_{ij} = (-1)^{i+j} D_{ij}$.

Théorème

Un déterminant est égal à la somme des produits deux à deux des éléments d'une rangée (ligne ou colonne) par leurs cofacteurs.

On utilise ce résultat après avoir fait apparaître sur une même rangée le plus possible de zéros.

Ce mode de calcul peut aussi servir de définition par récurrence d'un déterminant après avoir démontré que le résultat du développement est indépendant de la ligne, ou de la colonne, considérée.

C'est une définition plus accessible pour tous ceux que rebute un trop grand formalisme mathématique.

Application

Le déterminant d'une matrice triangulaire est égal au produit des éléments diagonaux.

3.5 Calcul par blocs

Soit M une matrice carrée de la forme

$$M = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix}$$

où A et D sont des matrices carrées. On a :

$$\det M = \det A \times \det D.$$

3.6 Matrice carrée inversible

A inversible \iff det $A \neq 0$.

On a alors $\det (A^{-1}) = (\det A)^{-1}$.

4. Quelques applications mathématiques des déterminants

4.1 Calcul possible pour A^{-1}

Cette méthode est quasi-impraticable si n > 3.

- On calcule la matrice des cofacteurs des éléments de A, appelée comatrice de A.
- On transpose la comatrice de A.
- On divise par det A.

4.2 Rang d'une matrice

Le rang d'une matrice quelconque *A*, est égal au plus grand entier *s* tel que l'on puisse extraire de *A* une matrice carrée d'ordre *s* inversible, c'est-à-dire de déterminant non nul.

4.3 Formules de Cramer

La solution d'un système de Cramer d'écriture matricielle AX = B est donnée par :

$$x_j = \frac{\det(A_j)}{\det(A)} \qquad 1 \leqslant j \leqslant n$$

où A_j est la matrice obtenue à partir de A en remplaçant la j-ième colonne par la colonne des seconds membres B.

Ces formules sont utiles quand les coefficients du système dépendent d'un, ou plusieurs, paramètre. Sinon la méthode du pivot de Gauss est préférable.

Réduction des endomorphismes

61

2e année

1. Éléments propres d'un endomorphisme

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$.

1.1 Définitions

- Un vecteur non nul $x \in E$ est un vecteur propre de f s'il existe $\lambda \in \mathbb{K}$ tel que $f(x) = \lambda x$. Le scalaire λ est la valeur propre associée à x.
- Un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de f s'il existe un vecteur non nul $x \in E$ tel que $f(x) = \lambda x$. Le vecteur x est un vecteur propre associé à λ .
- L'ensemble $E_{\lambda} = \{x \in E \; ; \; f(x) = \lambda x\} = \text{Ker}(f \lambda \text{Id}_E)$ est le sous-espace propre associé à λ .
- Le spectre de f est l'ensemble $S_p(f)$ des valeurs propres de f.

1.2 Propriétés

- λ est une valeur propre de f si, et seulement si, $\text{Ker}(f \lambda \operatorname{Id}_E) \neq \{0\}$. En particulier, 0 est valeur propre de f si, et seulement si, $\text{Ker} f \neq \{0\}$, soit f non injectif.
- Toute famille de vecteurs propres associés à des valeurs propres toutes distinctes, est libre.
- La somme de sous-espaces propres associés à des valeurs propres distinctes est directe.

Attention, en général $E \neq \bigoplus_k E_{\lambda_k}$. Par exemple, si $f^2 = 0$ avec $f \neq 0$, 0 est la seule valeur propre possible et pourtant $E \neq \operatorname{Ker} f$.

1.3 Polynôme caractéristique

Soit E de dimension finie et A une matrice carrée représentant un endomorphisme f dans une base fixée.

61 Réduction des endomorphismes

Définitions

Le polynôme $P(\lambda) = \det(A - \lambda I)$ est le polynôme caractéristique de A.

Deux matrices semblables ont le même polynôme caractéristique, ce qui permet de définir le polynôme caractéristique d'un endomorphisme.

Les zéros de P_A sont les valeurs propres de A. Si λ est racine d'ordre m_{λ} de P_A , on dit que λ est valeur propre d'ordre m_{λ} .

On a toujours $1 \leq \dim(E_{\lambda}) \leq m_{\lambda}$ où E_{λ} est l'espace propre associé.

• Cas où P_A est scindé

On a alors:

$$\operatorname{tr} A = \sum_{k=1}^{n} \lambda_k$$
 et $\det A = \prod_{k=1}^{n} \lambda_k$.

2. Diagonalisation

Soit E de dimension finie.

2.1 Définitions

Un endomorphisme $f \in \mathcal{L}(E)$ est diagonalisable s'il existe une base de E dans laquelle la matrice de f est diagonale, c'est-à-dire s'il existe une base de E formée de vecteurs propres de f.

Une matrice carrée A est diagonalisable si elle est semblable à une matrice diagonale D, c'est-à-dire si elle s'écrit

$$A = PDP^{-1}$$

où P est la matrice de passage de la base canonique de \mathbb{K}^n à une base de vecteurs propres de A.

2.2 Condition suffisante

Si dim E = n et si f a n valeurs propres distinctes, alors f est diagonalisable.

2.3 Condition nécessaire et suffisante

f diagonalisable \iff E est somme directe des sous-espaces propres;

 \iff E admet une base de vecteurs propres ;

 \iff le polynôme caractéristique de f est scindé et, pour toute valeur propre λ_k d'ordre m_k , on a :

$$\dim(E_{\lambda_k})=m_k.$$

2.4 Calcul de A^m

Si A est diagonalisable, il existe une matrice de passage P telle que $A = PDP^{-1}$. On a alors $A^m = PD^mP^{-1}$.

Et si $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ alors $D^m = \operatorname{diag}(\lambda_1^m, \dots, \lambda_n^m)$.

3. Trigonalisation

3.1 Définition

Un endomorphisme $f \in \mathcal{L}(E)$ est trigonalisable s'il existe une base de E dans laquelle la matrice de f est triangulaire supérieure.

Une matrice carrée A est trigonalisable si elle est semblable à une matrice triangulaire supérieure.

3.2 Théorème

Si le polynôme caractéristique de f est scindé, f est trigonalisable.

O Dunod – La photocopie non autorisée est un délit.

En particulier, tout endomorphisme est trigonalisable sur \mathbb{C} .

Les éléments diagonaux de la matrice triangulaire représentant f sont les valeurs propres de f.

Polynômes annulateurs

2e année

1. Polynôme d'un endomorphisme

1.1 Définition

Étant donnés un endomorphisme f d'un \mathbb{K} -espace vectoriel E et un polynôme $P(X) = a_0 + a_1 X + \cdots + a_p X^p$ à coefficients dans \mathbb{K} , on note P(f) l'endomorphisme de E défini par :

$$P(f) = a_0 \operatorname{Id}_E + a_1 f + \dots + a_p f^p.$$

1.2 Propriétés algébriques

Si $f \in \mathcal{L}(E)$, $P \in \mathbb{K}[X]$, $Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$, on a :

$$\begin{split} (P+Q)\,(f) &= P(f) + Q(f) \; ; \; (\lambda P)\,(f) = \lambda P(f) \; ; \\ (P\,Q)\,(f) &= P(f) \circ Q(f) = Q(f) \circ P(f) \, . \end{split}$$

Cette dernière relation entraîne que tous les polynômes d'un même endomorphisme commutent entre eux.

On peut dire aussi que, pour f donné, l'application $P \mapsto P(f)$ est un morphisme de l'algèbre $\mathbb{K}[X]$ dans l'algèbre $\mathcal{L}(E)$.

Ce morphisme n'est pas surjectif puisque $\mathcal{L}(E)$ n'est pas commutatif.

1.3 Stabilité

Pour tout $P \in \mathbb{K}[X]$, Im P(f) et Ker P(f) sont stables par f.

1.4 Propriété des valeurs propres

Pour tout $P \in \mathbb{K}[X]$, si λ est une valeur propre de f, alors $P(\lambda)$ est une valeur propre de P(f).

1.5 Théorème de décomposition des noyaux

Si P et Q sont premiers entre eux, on a :

$$\operatorname{Ker} PQ(f) = \operatorname{Ker} P(f) \oplus \operatorname{Ker} Q(f)$$
.

2. Polynôme annulateur

2.1 Définition

On dit que P est un polynôme annulateur de f si P(f) = 0.

2.2 Polynôme minimal

L'ensemble des polynômes annulateurs de f, c'est-à-dire le noyau du morphisme $P \mapsto P(f)$, est un idéal de $\mathbb{K}[X]$.

L'unique polynôme normalisé qui engendre cet idéal est le polynôme minimal de f.

3. Condition nécessaire et suffisante pour f diagonalisable

f est diagonalisable si, et seulement si, il existe un polynôme scindé, annulateur de f, dont toutes les racines sont simples.

4. Théorème de Cayley-Hamilton

4.1 Théorème

Si E est de dimension finie, le polynôme caractéristique de f est un polynôme annulateur de f.

Le polynôme minimal de f divise donc le polynôme caractéristique de f.

4.2 Application au calcul de A^m

Si P est un polynôme annulateur de A, la division euclidienne

$$X^m = P(X) Q_m(X) + R_m(X)$$

entraı̂ne $A^m = R_m(A)$.

Cette méthode reste valable même si A n'est pas diagonalisable.

4.3 Application au calcul de A^{-1}

Si A est inversible, on a:

$$a_0 I + a_1 A + \dots + a_n A^n = 0$$
 avec $a_0 = \det A \neq 0$,

d'où:
$$-\frac{1}{a_0} [a_1 I + \dots + a_n A^{n-1}] A = I$$

soit:

$$A^{-1} = -\frac{1}{a_0} [a_1 I + \dots + a_n A^{n-1}].$$

Espaces préhilbertiens

2^e année

1. Forme bilinéaire et forme quadratique

1.1 Définitions

Forme bilinéaire symétrique

Une forme bilinéaire f sur E est une application de $E \times E$ dans \mathbb{K} , linéaire par rapport à chaque variable.

Ele est symétrique si :

$$\forall (x,y) \in E \times E$$
 $f(x,y) = f(y,x)$.

Une application q de E dans \mathbb{K} est une forme quadratique sur E s'il existe une forme bilinéaire symétrique f telle que :

$$\forall x \in E$$
 $q(x) = f(x,x)$.

q est la forme quadratique associée à f.

• Forme polaire d'une forme quadratique

Une forme quadratique q sur E est associée à une seule forme bilinéaire symétrique f donnée par :

$$\forall (x,y) \in E \times E \qquad f(x,y) = \frac{1}{2} \left[q(x+y) - q(y) - q(y) \right].$$

f est la forme polaire de q.

• Forme positive

Si $\mathbb{K} = \mathbb{R}$, une forme quadratique q, et sa forme polaire f, sont dites positives si :

$$\forall x \in E \qquad q(x) \geqslant 0.$$

• Forme définie positive

Si $\mathbb{K} = \mathbb{R}$, une forme bilinéaire symétrique f, et sa forme quadratique associée q, est dite définie positive si :

$$\forall x \in E \setminus \{0\} \qquad q(x) > 0.$$

1.2 Cas où E est de dimension finie

Soit E de dimension n et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

· Matrice d'une forme bilinéaire

Si
$$x = \sum_{i=1}^{n} x_i e_i$$
 et $y = \sum_{j=1}^{n} y_j e_j$, alors $f(x, y) = \sum_{i,j} x_i y_j f(e_i, e_j)$.

La matrice de f dans la base \mathcal{B} est la matrice A de $\mathcal{M}_n(\mathbb{K})$ de terme général $a_{ij} = f(e_i, e_j)$.

En posant
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, on a :
$$f(x,y) = {}^t XAY = {}^t YAX$$

f est symétrique si, et seulement si, la matrice A est symétrique.

• Expression d'une forme quadratique

q(x) est un polynôme homogène de degré 2 en x_1, \ldots, x_n (combinaison linéaire d'expressions du type x_i^2 ou $x_i x_j$ avec $i \neq j$).

Réciproquement, tout polynôme homogène de degré 2 par rapport aux coordonnées de x dans \mathcal{B} est une forme quadratique sur E.

2. Espaces préhilbertiens réels

2.1 Produit scalaire

Définitions

Soit E un \mathbb{R} -espace vectoriel. Un produit scalaire sur E est une forme bilinéaire φ , symétrique, définie positive.

On dit que (E,φ) est un espace préhilbertien réel.

$$\varphi(x,y)$$
 se note $\langle x | y \rangle$ ou $(x | y)$ ou $x.y$.

• Exemples

Dunod - La photocopie non autorisée est un délit.

Dans
$$\mathbb{R}^n$$
 $\langle X | Y \rangle = {}^t XY = \sum_{i=1}^n x_i y_i$.

Dans
$$E = \mathcal{C}([a,b],\mathbb{R})$$
 $\langle f | g \rangle = \int_a^b f(t)g(t)dt$.

Dans
$$\mathcal{M}_n(\mathbb{R})$$
 $\langle A | B \rangle = \operatorname{tr}(^t A B)$

2.2 Norme euclidienne

E étant un \mathbb{R} -espace vectoriel muni d'un produit scalaire, en posant

$$\forall x \in E \qquad \|x\| = \sqrt{\langle x | x \rangle},$$

on définit une norme sur E.

On obtient aussi une distance en posant d(x, y) = ||x - y||.

2.3 Relations entre produit scalaire et norme

• Égalité de polarisation

$$\forall x \in E \quad \forall y \in E \quad \|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2 < x \mid y >$$

ce qui permet d'obtenir le produit scalaire $\langle x | y \rangle$ en fonction des normes.

• Identité du parallélogramme

$$\forall x \in E \quad \forall y \in E \quad \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).$$

Cette égalité est la généralisation de la propriété géométrique : dans un parallélogramme, la somme des carrés des longueurs des diagonales est égale à la somme des carrés des longueurs des côtés.

2.4 Inégalité de Cauchy-Schwarz

$$\forall x \in E \quad \forall y \in E \quad |\langle x | y \rangle| \leq ||x|| ||y||.$$

Dans cette inégalité, l'égalité a lieu si, et seulement si, x et y sont liés.

Pour retenir ce théorème, pensez au cas particulier de deux vecteurs du plan et à

$$\overrightarrow{x} \cdot \overrightarrow{y} = \|\overrightarrow{x}\| \|\overrightarrow{y}\| \cos(\overrightarrow{x}, \overrightarrow{y}).$$

3. Espaces préhilbertiens complexes

3.1 Produit scalaire hermitien

Définitions

Soit E un \mathbb{C} -espace vectoriel. Un produit scalaire hermitien sur E est une application φ de $E \times E$ dans \mathbb{C} qui vérifie la symétrie hermitienne, soit :

$$\forall (x,y) \in E^2$$
 $\varphi(x,y) = \overline{\varphi(y,x)}$

est linéaire à droite, soit :

$$\forall (x, y_1, y_2) \in E^3 \quad \forall (\lambda_1, \lambda_2) \in \mathbb{C}^2$$

$$\varphi(x, \lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 \varphi(x, y_1) + \lambda_2 \varphi(x, y_2)$$

est donc semi-linéaire à gauche, soit :

$$\forall (x_1, x_2, y) \in E^3 \quad \forall (\lambda_1, \lambda_2) \in \mathbb{C}^2$$

$$\varphi(\lambda_1 x_1 + \lambda_2 x_2, y) = \overline{\lambda_1} \varphi(x_1, y) + \overline{\lambda_2} \varphi(x_2, y)$$

est définie positive, soit :

$$\forall x \in E \qquad \varphi(x,x) \geqslant 0 \qquad ; \qquad \varphi(x,x) = 0 \iff x = 0.$$

Remarquez que, grâce à la symétrie hermitienne, on a bien $\varphi(x,x) \in \mathbb{R}$.

On dit que (E,φ) est un espace préhilbertien complexe. $\varphi(x,y)$ se note $\langle x | y \rangle$ ou $\langle x | y \rangle$.

Exemples

Dans
$$\mathbb{C}^n$$
 $\langle X | Y \rangle = {}^t \overline{X} Y = \sum_{i=1}^n \overline{x_i} y_i$.
Dans $E = \mathcal{C}([a,b],\mathbb{C})$ $\langle f | g \rangle = \int_0^b \overline{f(t)} g(t) dt$.

3.2 Norme hermitienne

E étant un \mathbb{C} -espace vectoriel muni d'un produit scalaire hermitien, on définit une norme sur E en posant :

$$\forall x \in E \qquad \|x\| = \sqrt{\langle x | x \rangle},$$

On obtient aussi une distance en posant d(x,y) = ||x - y||.

3.3 Relations entre produit scalaire et norme

$$\forall x \in E \quad \forall y \in E$$

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2\operatorname{Re} < x \mid y > ,$$

$$\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).$$

$$4 < x \mid y > = \|x + y\|^2 - \|x - y\|^2 - i\|x + iy\|^2 + i\|x - iy\|^2.$$

63 Espaces préhilbertiens

3.4 Inégalité de Cauchy-Schwarz

• Théorème (inégalité de Cauchy-Schwarz)

$$\forall x \in E \quad \forall y \in E \qquad \big| \langle x | y \rangle \big| \leqslant ||x|| ||y||.$$

Dans cette inégalité, l'égalité a lieu si, et seulement si, x et y sont liés.

• Corollaire (inégalité triangulaire)

$$\forall x \in \forall y \in E \quad ||x + y|| \le ||x|| + ||y||$$

Dans cette inégalité, l'égalité a lieu si, et seulement si, x et y sont liés avec $\langle x|y\rangle\in\mathbb{R}_+$.

Orthogonalité

64

2e année

Le corps de base est $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1. Vecteurs orthogonaux

1.1 Définitions

Deux vecteurs x et y sont orthogonaux si < x | y > = 0; on note $x \perp y$.

Une famille de vecteurs $(x_i)_{i \in I}$ est orthogonale si ses vecteurs sont deux à deux orthogonaux.

Une famille de vecteurs $(x_i)_{i \in I}$ est orthonormale si elle est orthogonale et si les vecteurs sont tous unitaires.

1.2 Propriété

Une famille orthogonale de vecteurs non nuls est libre.

1.3 Théorème de Pythagore

Si $(x_i)_{i \in I}$ est une famille orthogonale finie, on a :

$$\|\sum_{i\in I} x_i\|^2 = \sum_{i\in I} \|x_i\|^2.$$

Attention, si $\mathbb{K} = \mathbb{R}$, on a l'équivalence :

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2,$$

mais si $\mathbb{K} = \mathbb{C}$, on a seulement :

$$x \perp y \implies ||x + y||^2 = ||x||^2 + ||y||^2$$
.

La réciproque est fausse car l'égalité entraîne seulement :

$$Re < x|y> = 0.$$

2. Sous-espaces vectoriels orthogonaux

2.1 Définitions

Soit F et G deux sous-espaces vectoriels d'un espace préhilbertien E.

64 Orthogonalité

On dit que F et G sont orthogonaux, et on note $F \perp G$, quand :

$$\forall x \in F \quad \forall y \in G \quad \langle x | y \rangle = 0.$$

Dans \mathbb{R}^3 , on définit ainsi l'orthogonalité d'une droite et d'un plan, mais deux plans ne peuvent pas être orthogonaux.

L'orthogonal de F est le sous-espace vectoriel défini par :

$$F^{\perp} = \{ x \in E ; \ \forall y \in F \ < x | y >= 0 \}.$$

2.2 Propriétés

$$E^{\perp} = \{0\} \; ; \; \{0\}^{\perp} = E \; ; \; F \perp G \iff F \subset G^{\perp} \iff G \subset F^{\perp}$$

Attention, $F \perp G$ n'entraîne pas $G = F^{\perp}$.

$$F \subset G \Longrightarrow G^{\perp} \subset F^{\perp} \; ; \; F \subset (F^{\perp})^{\perp} \; ; \; F \cap F^{\perp} = \{0\}$$

Attention, en général $E \neq F \oplus F^{\perp}$ et $F \neq (F^{\perp})^{\perp}$.

3. Supplémentaire orthogonal

3.1 Définition

Dans un espace préhilbertien E, deux sous-espaces vectoriels F et G sont dits supplémentaires orthogonaux quand :

$$E = F \oplus G$$
 et $F \perp G$.

3.2 Propriété

Si F et G sont supplémentaires orthogonaux, on a $F=G^{\perp}$, $G=F^{\perp}$, d'où $\left(F^{\perp}\right)^{\perp}=F$.

3.3 Projecteur orthogonal

 $p \in \mathcal{L}(E)$ est un projecteur orthogonal quand $p^2 = p$ et $\operatorname{Im} p \perp \operatorname{Ker} p$. $\operatorname{Im} p$ et $\operatorname{Ker} p$ sont alors supplémentaires orthogonaux.

Algèbre linéaire et multilinéaire

4. Orthogonalité en dimension finie

4.1 Méthode d'orthogonalisation de Schmidt

Soit $(x_1, ..., x_n)$ une famille libre de E; il existe une famille libre orthogonale $(y_1, ..., y_n)$ telle que $\text{Vect}(x_1, ..., x_n) = \text{Vect}(y_1, ..., y_n)$.

Dans la méthode de Schmidt, elle se construit par récurrence en posant :

$$y_1 = x_1$$
 puis $y_k = x_k - \sum_{i=1}^{k-1} \lambda_i \ y_i$ avec $\lambda_i = \frac{\langle y_i | x_k \rangle}{\langle y_i | y_i \rangle}$

Si $\mathbb{K} = \mathbb{C}$, faites attention à l'ordre des produits scalaires dans λ_i .

4.2 Corollaire

Tout espace préhilbertien E de dimension finie n admet une base orthonormale.

4.3 Intérêt d'une base orthonormale

Soit *E* muni d'une base orthonormale (e_1, \ldots, e_n) .

Si
$$x = \sum_{i=1}^{n} x_i e_i$$
, on a $x_i = \langle e_i | x \rangle$.

Attention à l'ordre du produit scalaire si $\mathbb{K} = \mathbb{C}$.

X et Y étant les matrices colonnes des coordonnées de x et de y, on a :

$$\langle x|y \rangle = {}^{t}\overline{X}Y \; ; \; ||x|| = \sqrt{{}^{t}\overline{X}X} \; ; \; d(x,y) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2} \, .$$

4.4 Théorème

Soit F un sous-espace vectoriel d'un espace préhilbertien E de dimension finie n; alors $E = F \oplus F^{\perp}$.

5. Cas d'un sous-espace F de dimension finie dans un espace E de dimension infinie

5.1 Théorème

$$E = F \oplus F^{\perp}$$

On peut donc définir le projecteur orthogonal p_F sur F.

Si (e_1, \ldots, e_p) est une base orthonormale de F, on a :

$$\forall x \in E \qquad p_F(x) = \sum_{i=1}^p \langle e_i | x \rangle e_i.$$

5.2 Définition

On appelle distance d'un élément x de E au sous-espace de dimension finie F le nombre :

$$d(x,F) = \inf_{z \in F} \|x - z\|.$$

5.3 Théorème

d(x,F) est un minimum atteint en un point, et un seul, $z=p_F(x)$, et l'on a :

$$||x||^2 = ||p_F(x)||^2 + d(x,F)^2.$$

Attention, il est important que F soit de dimension finie.

5.4 Inégalité de Bessel

Si (e_1, \ldots, e_p) est une base orthonormale de F, on a :

$$\forall x \in E$$
 $\sum_{j=1}^{p} | \langle e_j | x \rangle |^2 \le ||x||^2.$

Espaces vectoriels euclidiens

65

2^e année

1. Définition et premières propriétés

1.1 Définition

Un espace vectoriel euclidien E est un espace préhilbertien réel de dimension finie n.

1.2 Propriétés

Il existe une base orthonormale $\mathcal{B} = (e_1, \dots, e_n)$ de E et, dans une telle base, pour tout $x \in E$ et $y \in E$, on a :

$$x = \sum_{i=1}^{n} \langle e_i | x \rangle \langle e_i ; \langle x | y \rangle = {}^{t}XY ; ||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Si F est un sous-espace vectoriel de E, on a $E = F \oplus F^{\perp}$.

On peut définir le projecteur orthogonal p_F sur F et $(F^{\perp})^{\perp} = F$.

2. Isomorphisme avec le dual

Toute forme linéaire f sur un espace euclidien E s'écrit de façon unique sous la forme $f(x) = \langle a | x \rangle$ où a est un vecteur de E.

On a donc $H = (\mathbb{R}a)^{\perp}$. H est un hyperplan si $f \neq 0$, soit $a \neq 0$.

3. Orientation

3.1 Orientation de E

Une base orthonormale \mathcal{B}_0 étant choisie, on dit que \mathcal{B} est une base directe si $\det_{\mathcal{B}_0}\mathcal{B}>0$ et indirecte si $\det_{\mathcal{B}_0}\mathcal{B}<0$.

3.2 Orientation d'un hyperplan

Un hyperplan est orienté par le choix d'un vecteur normal \overrightarrow{n} .

Une base \mathcal{B} de H est dite directe si, et seulement si, $(\mathcal{B}, \overrightarrow{n})$ est une base directe de E.

66 Endomorphismes orthogonaux

2e année

1. Définitions et caractérisations

1.1 Définition

Dans un espace vectoriel euclidien E, un endomorphisme f est dit orthogonal s'il conserve le produit scalaire, soit

$$\forall x \in E \qquad \forall y \in E \qquad \langle f(x)|f(y) \rangle = \langle x|y \rangle \tag{1}.$$

On dit aussi que f est une isométrie vectorielle.

En fait, la condition (1) entraı̂ne $f \in \mathcal{L}(E)$.

1.2 Conditions équivalentes

 $f \in \mathcal{L}(E)$ est orthogonal si, et seulement si, il vérifie l'une des conditions suivantes :

(2) f conserve la norme, soit

$$\forall x \in E \qquad ||f(x)|| = ||x|| ;$$

- (3) il existe une base orthonormale $\mathcal B$ telle que $f(\mathcal B)$ soit une base orthonormale ;
- (4) pour toute base orthonormale $\mathcal{B}, f(\mathcal{B})$ est une base orthonormale.

1.3 Corollaire

Un endomorphisme orthogonal f appartient à GL(E). Il est appelé automorphisme orthogonal de E.

Ses seules valeurs propres réelles possibles sont 1 et -1.

1.4 Exemples

Les symétries orthogonales et les réflexions sont des automorphismes orthogonaux.

Mais une projection orthogonale distincte de l'identité n'en est pas un ; si $x \in \text{Ker } p \text{ avec } x \neq 0, \text{ on a } \|p(x)\| < \|x\|.$

1.5 Groupe orthogonal

L'ensemble des automorphismes orthogonaux de E est noté $\mathrm{O}(E)$ et appelé groupe orthogonal de E. C'est un sous-groupe de $\mathrm{GL}(E)$.

2. Matrices orthogonales

2.1 Définition

Une matrice carrée A est dite orthogonale si c'est la matrice de passage d'une base orthonormale \mathcal{B} à une base orthonormale \mathcal{B}' .

L'ensemble des matrices orthogonales d'ordre n est le groupe orthogonal d'ordre n; il est noté O(n).

2.2 Conditions équivalentes

Une matrice carrée est orthogonale si, et seulement si, ses vecteurs colonnes vérifient :

$$\forall i \quad \forall j \quad < C_i | C_j > = \delta_{ij}.$$

Une matrice carrée d'ordre n est orthogonale si, et seulement si :

$${}^{t}AA = I_{n} \iff {}^{t}A = A^{-1}.$$

2.3 Lien avec les endomorphismes

Soit $\mathcal B$ une base orthonormale d'un espace euclidien E et A la matrice de $f\in\mathcal L(E)$ dans $\mathcal B$. On a :

$$A \in \mathcal{O}(n) \iff f \in \mathcal{O}(E)$$
.

Le groupe O(n) pour le produit de matrices est isomorphe au groupe O(E) pour la composition des applications.

2.4 Déterminant d'une matrice orthogonale

Si A est une matrice orthogonale, on a det $A = \pm 1$.

Attention, la condition est nécessaire mais non suffisante.

2.5 Groupe spécial orthogonal

On appelle groupe spécial orthogonal SO(E), ou groupe des rotations de E, le sous-groupe de O(E) formé des automorphismes orthogonaux de déterminant égal à 1.

De même pour les matrices : $SO(n) = \{A \in O(n) ; \det A = 1\}.$

3. Cas de la dimension 2

3.1 Rotations

La rotation d'angle θ appartient à SO(E).

Dans toute base \mathcal{B} orthonormale directe, sa matrice s'écrit :

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$

On a det A = 1 et $\operatorname{tr} A = 2 \cos \theta$.

3.2 Réflexions

La matrice de la réflexion d'axe Δ dans une base \mathcal{B} est de la forme :

$$\begin{pmatrix}
\cos\theta & \sin\theta \\
\sin\theta & -\cos\theta
\end{pmatrix}$$

mais elle dépend de B. Dans une base adaptée, elle s'écrit :

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 Δ est l'ensemble des vecteurs invariants. On a det B=-1 et tr B=0.

4. Cas de la dimension 3

Le classement se fait suivant la dimension de $V = \text{Ker } (f - \text{Id}_E)$, espace vectoriel des vecteurs invariants par f.

4.1 Cas dim V = 3

On a alors $f = Id_E$.

4.2 Cas dim V = 2

f est alors la réflexion par rapport à V. Dans une base adaptée, sa matrice est :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

4.3 Cas dim V = 1

f est alors une rotation d'axe V. Si on oriente l'axe et si on note son angle θ , sa matrice dans une base adaptée directe, est :

215

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Étude pratique d'une rotation

O Dunod – La photocopie non autorisée est un délit.

Si r est la rotation d'axe dirigé par un vecteur unitaire \overrightarrow{n} et d'angle θ , on a :

$$r(\overrightarrow{x}) = (\overrightarrow{n}.\overrightarrow{x})\overrightarrow{n} + \cos\theta[\overrightarrow{x} - (\overrightarrow{n}.\overrightarrow{x})\overrightarrow{n}] + \sin\theta\overrightarrow{n} \wedge \overrightarrow{x}.$$

Réciproquement, soit f un automorphisme orthogonal dont l'ensemble des vecteurs invariants est une droite de vecteur directeur unitaire \overrightarrow{n} .

C'est une rotation dont l'angle θ vérifie $trA = 1 + 2 \cos \theta$.

Endomorphismes symétriques

2e année

1. Adjoint d'un endomorphisme

1.1 Définition

Soit $f \in \mathcal{L}(E)$; l'adjoint de f est l'unique élément $f^* \in \mathcal{L}(E)$ tel que

$$\forall x \in E \quad \forall y \in E \quad < f(x)|y> = < x|f^*(y)>$$

1.2 Propriétés

• L'application $\varphi: f \mapsto f^*$ est un endomorphisme involutif de $\mathcal{L}(E)$, c'est-à-dire que l'on a toujours :

$$(f+g)^* = f^* + g^*$$
; $(\lambda f)^* = \lambda f^*$; $(f^*)^* = f$

• Si \mathcal{B} est une base orthonormale de E, on a :

$$A = \operatorname{mat}_{\mathcal{B}} f \implies {}^{t}A = \operatorname{mat}_{\mathcal{B}} f^{*}.$$

Il en résulte $(f \circ g)^* = g^* \circ f^*$.

Si f est inversible, alors f^* est inversible et $(f^*)^{-1} = (f^{-1})^*$.

· Endomorphismes orthogonaux

$$f \in \mathcal{O}(E) \iff f^* = f^{-1}$$

• Noyaux et images

$$\operatorname{Ker} f^* = \left(\operatorname{Im} f\right)^{\perp} \; ; \; \operatorname{Im} f^* = \left(\operatorname{Ker} f\right)^{\perp} \; ; \; \operatorname{rg}(f^*) = \operatorname{rg} f$$

$$f(F) \subset F \iff f^*(F^{\perp}) \subset F^{\perp}$$

2. Endomorphismes symétriques

2.1 Définition

 $f \in \mathcal{L}(E)$ est symétrique, ou autoadjoint, si $f = f^*$, c'est-à-dire :

$$\forall x \in E \quad \forall y \in E \quad < f(x)|y> = < x|f(y)>$$

Attention à ne pas confondre endomorphisme symétrique et symétrie.

On note S(E) l'ensemble des endomorphismes symétriques de E.

2.2 Propriétés

• Si A est la matrice de f dans une base orthonormale \mathcal{B} , on a

$$f$$
 symétrique $\iff {}^t A = A$.

- S(E) est un sous-espace vectoriel de L(E), mais pas une sous-algèbre car, si A et B sont symétriques, AB est symétrique si, et seulement si, AB = BA.
- p projecteur orthogonal $\iff p^2 = p$ et $p^* = p$.
- s symétrie orthogonale \iff $s = s^{-1} = s^*$.

2.3 Diagonalisation des endomorphismes symétriques

Soit f un endomorphisme symétrique de E.

- Le polynôme caractéristique de f est scindé sur \mathbb{R} .
- f est diagonalisable dans une base orthonormale.
- E est somme directe orthogonale des sous-espaces propres de f.
- Corollaire

Si A est une matrice carrée symétrique, il existe une matrice diagonale D et une matrice orthogonale P telles que :

$$A = PDP^{-1} = PD^{t}P.$$

Le calcul de P^{-1} est immédiat puisque $P^{-1} = {}^{t}P$.

2.4 Forme quadratique et valeurs propres

Soit A une matrice symétrique réelle et q la forme quadratique associée.

q est positive \iff les valeurs propres de A sont $\geqslant 0$;

q est définie positive \iff les valeurs propres de A sont > 0.

$$\frac{2}{2} = \frac{1}{1} \times \frac{1}{3}$$

$$\frac{1}{2} = \frac{1}{1} \times \frac{1}{3}$$

$$\frac{1}{2} = \frac{1}{1} \times \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3} \times \frac{1}$$

68

Espaces affines

1^{re} année

1. Définitions

Soit E un \mathbb{R} -espace vectoriel de dimension n. On construit un espace affine (ensemble de points) V de direction E en se donnant une application :

$$\begin{array}{ccc} V \times E & \longrightarrow & V \\ (M,x) & \mapsto & M+x \end{array}$$

telle que:

$$\forall A \in V$$
 $\forall (x,y) \in E^2$ $A + (x + y) = (A + x) + y$

 $\forall A \in V$, l'application $x \mapsto A + x$ est une bijection de E sur V.

Si
$$A + x = B$$
, on note $x = \overrightarrow{AB}$.

Une origine O étant fixée dans V, l'application de A dans E:

$$M \mapsto \overrightarrow{OM}$$

est une bijection.

Le choix d'une origine permet donc d'identifier espace affine et espace vectoriel. Les éléments de *E* seront alors indifféremment appelés vecteurs ou points.

2. Sous-espaces affines

2.1 Définitions

A étant un point de E et F un sous-espace vectoriel de E, l'ensemble

$$W = A + F = \{A + x ; x \in F\}$$

est un sous-espace affine de E.

W est de direction F et de dimension dim F.

2.2 Parallélisme

Soit deux sous-espaces affines W = A + F et W' = A' + F'.

On dit que W est parallèle à W' si F est un sous-espace vectoriel de F'.

On dit W et W' sont parallèles entre eux si F = F'.

2.3 Intersection

Deux sous-espaces affines W = A + F et W' = A' + F' ont une intersection non vide si, et seulement si, $\overrightarrow{AA'} \in F + F'$.

Leur intersection est alors un sous-espace affine de direction $F \cap F'$.

Deux sous-espaces affines peuvent avoir une intersection vide sans être parallèles. Pensez à deux droites dans l'espace.

Applications affines

1^{re} année

1. Applications affines

1.1 Définitions

Soit V et V' deux espaces affines dont les directions respectives sont les espaces vectoriels réels E et E'.

Une application f de V dans V' est dite affine s'il existe un point A de V et une application linéaire $\varphi \in \mathcal{L}(E,E')$ tels que :

$$\forall x \in E$$
 $f(A+x) = f(A) + \varphi(x)$.

 φ est l'application linéaire associée à f.

On peut aussi écrire :

$$\forall M \in V \qquad \varphi(\overrightarrow{AM}) = \overline{f(A)f(B)}.$$

Si f(A) = A, on peut alors identifier φ et f.

Si φ est un isomorphisme, on dit que f est un isomorphisme affine.

Si E=E' et si φ est un automorphisme, on dit que f est une transformation affine.

1.2 Propriétés

- Une application affine conserve l'alignement et le parallélisme.
- La composée de deux applications affines f et g est une application affine dont l'application linéaire associée est la composée des applications linéaires associées à f et g.
- Les transformations affines de V forment un groupe pour la loi \circ . C'est le groupe affine GA(V). L'application :

$$\begin{array}{ccc} \operatorname{GA}(V) & \longrightarrow & \operatorname{GL}(E) \\ f & \mapsto & \varphi \end{array}$$

est un morphisme surjectif de groupes.

1.3 Applications affines particulières

Translations

Soit $u \in E$. La translation t_u est l'application affine qui, à $M \in V$, associe $M' \in V$ tel que $\overrightarrow{MM'} = u$.

O Dunod – La photocopie non autorisée est un délit.

Son application linéaire associée est l'identité de E.

L'ensemble des translations de V est un sous-groupe de GA(V).

Homothéties

Soit $A \in V$ et $k \in \mathbb{R} \setminus \{0,1\}$. L'homothétie h(A,k) de centre A et de rapport k est

l'application affine qui, à $M \in V$, associe $M' \in V$ tel que $\overrightarrow{AM'} = k\overrightarrow{AM}$.

Son application linéaire associée est $k \operatorname{Id}_{E}$.

La composée de deux homothéties h(A,k) et h(A',k') est :

- si $kk' \neq 1$, une homothétie de rapport kk', dont le centre est aligné avec A et A';
- $-\sin kk' = 1$, une translation.

L'ensemble des homothéties et translations de V est un sous-groupe de GA(V).

Projections

Une projection est une application affine p telle que $p \circ p = p$.

Son application linéaire associée est un projecteur de E.

L'ensemble des points invariants de p est égal à p(A). C'est un sous-espace affine de direction Im φ . Le noyau Ker φ est un supplémentaire de Im φ .

On dit que p est la projection sur p(A), parallèlement à Ker φ .

• Symétries

Une symétrie est une application affine s telle que $s \circ s = Id_A$.

Son application linéaire associée est une symétrie de E.

$$p = \frac{1}{2}(\mathrm{Id}_A + s)$$
 est une projection.

L'ensemble des points invariants de s est égal à p(A).

On dit que s est la symétrie par rapport à p(A), parallèlement à Ker φ .

• Affinités

Soit $k \in \mathbb{R}$ et p une projection de A. On appelle affinité de rapport k, de base p(A) et de direction Ker φ , l'application affine :

$$M \mapsto M' = kM + (1 - k)p(M).$$

2. Repères cartésiens

2.1 Définitions

Un repère cartésien \mathcal{R} de V est un couple (O,\mathcal{B}) où O est un point de V appelé origine et \mathcal{B} une base de E.

Les coordonnées de $M \in V$ dans \mathcal{R} sont les composantes de \overrightarrow{OM} dans \mathcal{B} .

Si \mathcal{B} est la base canonique de \mathbb{R}^n , \mathcal{R} est le repère canonique de \mathbb{R}^n .

On écrit souvent les coordonnées de *M* sous forme d'une matrice-colonne *X*.

Un repère cartésien d'un sous-espace affine W est formé par un point de W et une base de la direction de W.

2.2 Changement de repère

Soit (O', \mathcal{B}') un nouveau repère de V; notons P la matrice de passage de \mathcal{B} à \mathcal{B}' et Q la matrice-colonne des coordonnées de O' dans \mathcal{R} .

Soit M un point dont les coordonnées sont X dans le repère \mathcal{R} et X' dans le repère \mathcal{R}' . On a :

$$X = PX' + Q$$

C'est la traduction matricielle de $\overrightarrow{OM} = \overrightarrow{O'M} + \overrightarrow{OO'}$.

2.3 Représentation d'une application affine

Soit (O,B) un repère affine de E, (O',B') un repère affine de E' et f une application affine de E dans E'.

Notons X les coordonnées de M dans E et X' les coordonnées de f(M) dans E'. Elles sont reliées par une égalité matricielle du type :

$$X' = AX + B.$$

1^{re} année

1. Définition

Soit A_1, \ldots, A_n des points de E et $\alpha_1, \ldots, \alpha_n$ des réels avec $\sum_{i=1}^n \alpha_i \neq 0$.

Le barycentre du système des points pondérés $\{(A_i,\alpha_i); 1 \le i \le n\}$ est l'unique point G tel que :

$$\sum_{i=1}^{n} \alpha_i \overrightarrow{GA_i} = \overrightarrow{0}.$$

On a alors, pour tout point $P: \sum_{i=1}^{n} \alpha_i \overrightarrow{PA_i} = \left(\sum_{i=1}^{n} \alpha_i\right) \overrightarrow{PG}$.

En choisissant $P=\mathcal{O}$, on peut ainsi calculer les coordonnées de G.

Si les coefficients α_i sont tous égaux, G s'appelle l'isobarycentre des points A_i .

2. Propriétés

- Le barycentre d'un système de points pondérés n'est pas modifié si l'on multiplie tous les coefficients par un même nombre non nul.
- Le barycentre d'un ensemble de points pondérés est inchangé si l'on remplace un sous-ensemble par son barycentre partiel (s'il existe) affecté de la somme des coefficients des points remplacés.
- Si les *n* points appartiennent à un même sous-espace affine, leur barycentre est aussi dans ce sous-espace.
- L'image d'un barycentre par une application affine est le barycentre des images, affectées des mêmes coefficients.

3. Parties convexes

3.1 Segment

M et N étant des points distincts de E, le segment d'extrémités M et N est l'ensemble des barycentres à coefficients positifs de M et N, soit :

$$[MN] = \{\lambda M + (1-\lambda)N \; ; \, \lambda \in [0,1]\}.$$

3.2 Partie convexe

Une partie A de E est convexe si, pour tout $(M,N) \in A^2$, le segment [MN] est inclus dans A.

L'intersection de deux parties convexes, l'image d'une partie convexe par une application affine, sont des parties convexes.

1^{re} année

1. Produit scalaire

1.1 Définition

La définition générale d'un produit scalaire figure dans la fiche 63.

On peut définir le produit scalaire de deux vecteurs \overrightarrow{u} et \overrightarrow{v} par,

• si l'un des vecteurs est nul :

$$\overrightarrow{u} \cdot \overrightarrow{v} = 0$$
;

• si les vecteurs non nuls définissent un angle θ :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos \theta.$$

1.2 Expression analytique

Si $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est une base orthonormale et si $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ et $\overrightarrow{v} = x' \overrightarrow{i} + y' \overrightarrow{j} + z' \overrightarrow{k}$, alors:

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'.$$

2. Produit vectoriel

2.1 Orientation de l'espace

Un repère $(O, \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$ étant donné, considérons un observateur ayant les pieds en O, la tête en C et regardant dans la direction de A. Le repère est dit

- direct si l'observateur a le point B à sa gauche,
- \bullet indirect si l'observateur a le point B à sa droite.

La définition plus théorique de l'orientation figure dans la fiche 65.

2.2 Définition

Le produit vectoriel de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur \overrightarrow{w} tel que :

71 Calcul vectoriel

- si \overrightarrow{u} et \overrightarrow{v} sont colinéaires, $\overrightarrow{w} = \overrightarrow{0}$,
- si \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires, \overrightarrow{w} est orthogonal à \overrightarrow{u} et à \overrightarrow{v} , de norme $|\overrightarrow{w}| = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \sin(\overrightarrow{u}, \overrightarrow{v})$ et le repère $(O, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est direct.

On le note $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$.

2.3 Propriétés

Le produit vectoriel est

• antisymétrique, car on a toujours :

$$\overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$$

• bilinéaire, car on a toujours :

$$(\overrightarrow{u_1} + \overrightarrow{u_2}) \wedge \overrightarrow{v} = \overrightarrow{u_1} \wedge \overrightarrow{v} + \overrightarrow{u_2} \wedge \overrightarrow{v} \quad ; \quad (\lambda \overrightarrow{u}) \wedge \overrightarrow{v} = \lambda (\overrightarrow{u} \wedge \overrightarrow{v})$$

2.4 Expression analytique

Soit $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est une base orthonormale directe de l'espace. Si l'on a $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ et $\overrightarrow{v} = x' \overrightarrow{i} + y' \overrightarrow{j} + z' \overrightarrow{k}$, alors :

$$\overrightarrow{u} \wedge \overrightarrow{v} = (yz' - zy')\overrightarrow{i} + (zx' - xz')\overrightarrow{j} + (xy' - yx')\overrightarrow{k}$$

2.5 Double produit vectoriel

$$\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}$$

2.6 Application

L'aire d'un triangle ABC est égale à $\frac{1}{2} \| \overrightarrow{AB} \wedge \overrightarrow{AC} \|$.

3. Produit mixte

3.1 Définition

Le produit mixte de trois vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} de l'espace est le réel :

$$(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})=\overrightarrow{u}.(\overrightarrow{v}\wedge\overrightarrow{w})$$

3.2 Propriétés

Le produit mixte est

- multilinéaire, c'est-à-dire linéaire par rapport à chacun des vecteurs,
- alterné, c'est-à-dire qu'il est nul si deux des vecteurs sont égaux.

Il en résulte que le produit mixte de trois vecteurs est changé de signe quand on permute deux des vecteurs, et inchangé quand on effectue une permutation circulaire des trois vecteurs.

3.3 Expression analytique dans une base orthonormale directe

C'est le déterminant des coordonnées des vecteurs :

$$(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix}$$
$$= x \begin{vmatrix} y' & y'' \\ z' & z'' \end{vmatrix} - y \begin{vmatrix} x' & x'' \\ z' & z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix}$$

3.4 Applications

Le volume du parallélépipède d'arêtes OA, OB et OC est égal à

$$|(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})|$$
.

Trois vecteurs sont coplanaires si, et seulement si, leur produit mixte est nul.

Géométrie euclidienne du plan et de l'espace

1^{re} année

1. Distances et angles

1.1 Distance d'un point à une droite ou à un plan

On munit le plan, ou l'espace, euclidien d'un repère orthonormal qui définit l'orientation.

· Dans le plan

Soit \mathcal{D} la droite d'équation : ax + by + c = 0.

Le vecteur $\overrightarrow{n}(a,b)$ est normal à \mathcal{D} .

La distance de $M_0(x_0, y_0)$ à \mathcal{D} est : $d(M_0, \mathcal{D}) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$.

Dans l'espace

Soit \mathcal{P} le plan d'équation : ax + by + cz + d = 0.

Le vecteur $\overrightarrow{n}(a,b,c)$ est normal à \mathcal{P} . La distance de $M_0(x_0,y_0,z_0)$ à \mathcal{P} est :

$$d(M_0, \mathcal{P}) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

La distance de M_0 à la droite \mathcal{D} passant par A et de vecteur directeur \overrightarrow{u} est :

$$d(M_0,\mathcal{D}) = \frac{\|\overrightarrow{MA} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}.$$

1.2 Distance entre deux droites

• Perpendiculaire commune

Soit $\mathcal{D}_1(A_1, \overrightarrow{u_1})$ et $\mathcal{D}_2(A_2, \overrightarrow{u_2})$ deux droites non parallèles définies par un point et un vecteur directeur.

La perpendiculaire commune à \mathcal{D}_1 et \mathcal{D}_2 est l'unique droite Δ qui rencontre \mathcal{D}_1 et \mathcal{D}_2 et qui est orthogonale à \mathcal{D}_1 et \mathcal{D}_2 .

Elle est définie par :

$$M \in \Delta \iff \begin{cases} \det\left(\overrightarrow{A_1M}, \overrightarrow{u_1}, \overrightarrow{u_1} \wedge \overrightarrow{u_2}\right) = 0 \\ \det\left(\overrightarrow{A_2M}, \overrightarrow{u_2}, \overrightarrow{u_1} \wedge \overrightarrow{u_2}\right) = 0 \end{cases}$$

· Distance entre deux droites

$$d(\mathcal{D}_1, \mathcal{D}_2) = \frac{\left| \det(\overrightarrow{A_1 A_2}, \overrightarrow{u_1}, \overrightarrow{u_2}) \right|}{\|\overrightarrow{u_1} \wedge \overrightarrow{u_2}\|}.$$

- 1.3 Angles
- · Angle orienté de deux demi-droites du plan

Soit \mathcal{D}_1 et \mathcal{D}_2 deux demi-droites de vecteurs directeurs respectifs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$. La mesure de leur angle orienté est celle de l'angle de vecteurs $(\overrightarrow{u_1}, \overrightarrow{u_2})$.

• Angle de deux droites de l'espace

Soit \mathcal{D}_1 et \mathcal{D}_2 deux droites de vecteurs directeurs respectifs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$. La mesure de leur angle est le réel $\theta \in \left[0, \frac{\pi}{2}\right]$ tel que $\cos \theta = \frac{\overrightarrow{u_1} \cdot \overrightarrow{u_2}}{\|\overrightarrow{u_1}\| \|\overrightarrow{u_2}\|}$.

• Angle de deux plans de l'espace

Soit \mathcal{P}_1 et \mathcal{P}_2 deux plans de vecteurs normaux respectifs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$. La mesure de leur angle est le réel $\theta \in \left[0, \frac{\pi}{2}\right]$ tel que $\cos \theta = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\|\overrightarrow{n_1}\| \|\overrightarrow{n_2}\|}$.

• Angle d'une droite et d'un plan de l'espace

Soit \mathcal{D} une droite de vecteur directeur \overrightarrow{u} et \mathcal{P} un plan de vecteur normal \overrightarrow{n} .

La mesure de leur angle est le réel $\theta \in \left[0, \frac{\pi}{2}\right]$ tel que $\sin \theta = \frac{|\overrightarrow{u} \cdot \overrightarrow{n}|}{\|\overrightarrow{u}\| \|\overrightarrow{n}\|}$

- 2. Cercles et sphères
- 2.1 Dans le plan
- Équation cartésienne d'un cercle

Le cercle de centre $\Omega(a,b)$ et de rayon R a pour équation :

$$(x-a)^2 + (y-b)^2 = R^2$$
.

72 Géométrie euclidienne du plan et de l'espace

• Cercle de diamètre [AB]

C'est l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

· Intersection d'un cercle et d'une droite

Soit C le cercle de centre Ω et de rayon R, et \mathcal{D} une droite.

- $-\operatorname{Si} d\left(\Omega, \mathcal{D}\right) < R$, alors \mathcal{C} et \mathcal{D} ont deux points d'intersection. Ils sont sécants.
- Si $d(\Omega, \mathcal{D}) = R$, alors \mathcal{C} et \mathcal{D} ont un point d'intersection. Ils sont tangents.
- Si $d(\Omega, \mathcal{D}) > R$, alors \mathcal{C} et \mathcal{D} n'ont aucun point d'intersection. Ils sont extérieurs.

2.2 Dans l'espace

• Équation cartésienne d'une sphère

La sphère de centre $\Omega(a,b,c)$ et de rayon R a pour équation :

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2.$$

• Sphère de diamètre [AB]

C'est l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

· Intersection d'une sphère et d'un plan

Soit S la sphère de centre Ω et de rayon R, et P un plan.

 $-\operatorname{Si} d\left(\Omega,\mathcal{P}\right) < R$, alors l'intersection de \mathcal{S} et de \mathcal{P} est un cercle.

On se donne un cercle dans l'espace comme intersection d'une sphère et d'un plan.

- Si $d(\Omega, \mathcal{P}) = R$, alors \mathcal{S} et \mathcal{P} ont un point d'intersection. Ils sont tangents.
- $-\operatorname{Si} d\left(\Omega,\mathcal{P}\right) > R$, alors \mathcal{S} et \mathcal{P} n'ont aucun point commun.

Isométries du plan et de l'espace

1^{re} année

1. Définitions

1.1 Isométries

Une isométrie du plan (ou de l'espace) affine est une transformation affine qui conserve les distances.

Une application affine f est une isométrie si, et seulement si, l'application linéaire associée φ est un endomorphisme orthogonal.

L'ensemble des isométries est un sous-groupe du groupe affine du plan (ou de l'espace).

1.2 Déplacements, antidéplacements

Si det $\varphi = 1$, on dit que f est un déplacement. Les angles orientés sont conservés.

Si det $\varphi = -1$, on dit que f est un antidéplacement. Les angles orientés sont changés de signe.

L'ensemble des déplacements est un sous-groupe du groupe des isométries.

2. Rotation

f est une rotation affine si, et seulement si, φ est une rotation vectorielle.

3. Réflexions

3.1 Définition

f est une réflexion par rapport à un hyperplan affine H si, et seulement si, φ est une réflexion vectorielle, et si f possède un point invariant.

H est l'ensemble des points invariants par f.

3.2 Théorème

Étant donnés deux points distincts A et B du plan ou de l'espace, il existe une réflexion, et une seule, échangeant A et B.

3.3 Composée de deux réflexions dans le plan

La composée de deux réflexions par rapport aux droites \mathcal{D}_1 et \mathcal{D}_2 est :

- une translation si \mathcal{D}_1 et \mathcal{D}_2 sont parallèles,
- une rotation de centre Ω si \mathcal{D}_1 et \mathcal{D}_2 sont sécantes en Ω .

Réciproquement, toute translation, et toute rotation, peut se décomposer en produit de deux réflexions.

3.4 Composée de deux réflexions dans l'espace

La composée de deux réflexions par rapport aux plans \mathcal{P}_1 et \mathcal{P}_2 est :

- une translation si \mathcal{P}_1 et \mathcal{P}_2 sont parallèles,
- une rotation d'axe Δ si $\mathcal{P}_1 \cap \mathcal{P}_2 = \Delta$.

Réciproquement, toute translation, et toute rotation, peut se décomposer en produit de deux réflexions.

4. Déplacements du plan

Tout déplacement du plan est :

- soit une translation (pas de point invariant),
- soit une rotation de centre Ω (Ω est le seul point invariant).

5. Antidéplacements du plan

Tout antidéplacement du plan est :

- \bullet soit une réflexion d'axe D (les points invariants forment une droite D),
- soit la composée commutative d'une réflexion d'axe D et d'une translation de vecteur non nul appartenant à la direction de D.

Si l'on compose une réflexion s_D et une translation $t_{\overrightarrow{u}}$ sans que \overrightarrow{u} appartienne à la direction de D, il ne s'agit pas de la forme réduite et la composition n'est pas commutative.

6. Déplacements de l'espace

6.1 Vissage

On appelle vissage la composée d'une rotation r et d'une translation t.

Tout vissage s'écrit, de façon unique, sous la forme réduite :

$$r_1 \circ t_1 = t_1 \circ r_1$$

où r_1 est une rotation d'axe Δ et de même angle que r et t_1 une translation de vecteur \overrightarrow{u} appartenant à la direction de Δ .

Il faut être dans la forme réduite pour pouvoir permuter r_1 et t_1 .

6.2 Théorème

Tout déplacement de l'espace est, soit une translation, soit une rotation, soit un vissage.

74

Similitudes directes du plan

1^{re} année

1. Définition

Soit k > 0. Une similitude plane directe s de rapport k est une transformation affine du plan qui multiplie les distances par k et qui conserve les angles orientés.

2. Décomposition

Une application du plan dans lui-même est une similitude plane directe de rapport k si, et seulement si, elle est la composée d'un déplacement et d'une homothétie de rapport k.

Cette décomposition n'est pas unique.

3. Forme réduite

Soit *s* une similitude plane directe.

- Si s possède au moins deux points invariants, c'est l'identité du plan.
- Si s n'a aucun point invariant, c'est une translation de vecteur non nul.
- Si s a un seul point invariant Ω , alors s s'écrit de façon unique, sous la forme :

$$s = r \circ h = h \circ r$$

où h est l'homothétie de centre Ω et de rapport k et r la rotation de centre Ω et d'angle θ .

 Ω est le centre de la similitude, θ l'angle de la similitude, k le rapport de la similitude.

4. Structure algébrique

L'ensemble des similitudes planes directes est un sous-groupe du groupe affine du plan.

Étant donnés des points A, B, A', B' tels que $AB \neq 0$ et $A'B' \neq 0$, il existe une similitude directe s, et une seule, transformant A en A' et B en B'.

- Si $\overrightarrow{A'B'} = \overrightarrow{AB}$, alors s est la translation de vecteur $\overrightarrow{AA'}$.
- Si $\overrightarrow{A'B'}$ et \overrightarrow{AB} sont colinéaires et distincts, s est une homothétie dont le centre Ω est à l'intersection de (AA') et de (BB').
- Si $\overrightarrow{A'B'}$ et \overrightarrow{AB} ne sont pas colinéaires, notons I l'intersection de (AA') et de (BB'). Le centre Ω de la similitude s est à l'intersection des cercles (AA'I) et (BB'I).

6. Utilisation des nombres complexes

Théorème

Une application f du plan dans lui-même est une similitude directe si, et seulement si, il existe deux nombres complexes a et b, avec $a \neq 0$, tels que tout point M d'affixe z ait pour image M' = f(M) d'affixe :

$$z' = az + b$$

- Forme réduite
- Si a = 1 et $b = b_1 + ib_2$, alors f est la translation de vecteur $\overrightarrow{u} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$.
- Si $a \neq 1$, f est la similitude de rapport k = |a|, d'angle $\theta = \arg a$ et de centre Ω d'affixe $\frac{b}{1-a}$.

75 Coniques

1^{re} année

1. Définition par foyer et directrice

Soit F un point du plan affine euclidien, \mathcal{D} une droite ne passant pas par F, e un réel strictement positif.

L'ensemble des points M tels que $\frac{MF}{d(M,\mathcal{D})}=e$ est la conique de foyer F, de directrice \mathcal{D} et d'excentricité e.

C'est une ellipse si e < 1, une parabole si e = 1, une hyperbole si e > 1. La perpendiculaire à \mathcal{D} passant par F est l'axe focal de la conique.

2. Parabole

La parabole P et son axe focal ont un point commun unique, le sommet S.

Dans le repère orthonormal d'origine S et admettant l'axe focal comme axe des abscisses, l'équation de \mathcal{P} est :

$$y^2 = 2px$$

où p est le paramètre de la parabole.

F a pour coordonnées $\left(\frac{p}{2},0\right)$; $\mathcal D$ a pour équation $x=-\frac{p}{2}$.

3. Ellipse

3.1 Équation réduite

L'ellipse \mathcal{E} et son axe focal ont deux points communs, A et A', sommets de l'axe focal.

Le milieu O de [AA'] est le centre de \mathcal{E} .

La médiatrice de [AA'] est l'axe non focal. Elle coupe l'ellipse en B et B', sommets de l'axe non focal.

Si F' et \mathcal{D}' sont les symétriques de F et \mathcal{D} par

rapport à O, l'ellipse de foyer F', de directrice \mathcal{D}' et d'excentricité e est la même ellipse.

On pose AA'=2a et BB'=2b. Dans le repère orthonormal d'origine O et admettant l'axe focal comme axe des abscisses et l'axe non focal comme axe des ordonnées, l'équation de $\mathcal E$ est :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

En posant $c = \sqrt{a^2 - b^2}$, on a FF' = 2c, $e = \frac{c}{a}$ et \mathcal{D} a pour équation $x = \frac{a^2}{c}$.

3.2 Représentation paramétrique

$$\begin{cases} x = a \cos \theta \\ y = b \sin \theta \end{cases} \quad \theta \in [0, 2\pi[$$

3.3 Définition bifocale

Soit F et F' deux points distincts du plan et a un réel tel que FF' < 2a.

L'ensemble des points M du plan tels que MF + MF' = 2a est une ellipse de foyers F et F'.

C'est avec ce point de vue qu'un jardinier dessine une ellipse pour réaliser une composition florale.

4. Hyperbole

4.1 Équation réduite

L'hyperbole \mathcal{H} et son axe focal ont deux points communs, les sommets A et A'.

Le milieu O de [AA'] est le centre de \mathcal{H} .

La médiatrice de [AA'] est l'axe non focal. Il ne rencontre pas l'hyperbole.

Si F' et \mathcal{D}' sont les symétriques de F et \mathcal{D} par rapport à O, l'hyperbole de foyer F', de directrice \mathcal{D}' et d'excentricité e est la même hyperbole.

On pose AA' = 2a, FF' = 2c et $b^2 = c^2 - a^2$. Dans le repère orthonormal d'origine O et admettant l'axe focal comme axe des abscisses et l'axe non focal comme axe des ordonnées, l'équation de \mathcal{H} est :

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

On a $e = \frac{c}{a}$ et \mathcal{D} a pour équation $x = \frac{a^2}{c}$.

4.2 Équation des asymptotes

$$y = \frac{b}{a}x$$
 ; $y = -\frac{b}{a}x$.

4.3 Représentation paramétrique

$$\begin{cases} x = a \operatorname{ch} \theta \\ y = b \operatorname{sh} \theta \end{cases} \quad \theta \in \mathbb{R}$$

4.4 Définition bifocale

Soit F et F' deux points distincts du plan et a un réel tel que 0 < 2a < FF'.

L'ensemble des points M du plan tels que |MF - MF'| = 2a est une hyperbole de foyers F et F'.

1^{re} année

1. Généralités

Soit \overrightarrow{F} une fonction vectorielle de classe C^k (k aussi grand que nécessaire) définie sur une partie non vide D de $\mathbb R$ et à valeurs dans $\mathbb R^2$ ou $\mathbb R^3$. L'ensemble Γ des points M tels que

$$\overrightarrow{OM} = \overrightarrow{F}(t)$$
 $t \in D$

est une courbe paramétrée.

Si D est un intervalle, il s'agit d'un arc de courbe.

On dit que $\overrightarrow{F}(t)$ est une représentation paramétrique de Γ , ou encore que Γ a pour équations paramétriques :

$$x = x(t)$$
; $y = y(t)$ $t \in D$.

Une même courbe Γ (ensemble de points) a plusieurs paramétrages.

2. Représentation propre

Pour construire Γ , on détermine d'abord un domaine de représentation propre, c'est-à-dire une partie D_1 de D telle que la courbe géométrique Γ soit entièrement décrite, et une seule fois, lorsque t décrit D_1 .

Cette étape apparaît lorsque x et y sont périodiques avec une période commune, ou lorsqu'elles sont toutes les deux paires.

3. Domaine d'étude

Si x et y sont deux fonctions impaires, Γ est symétrique par rapport au point O et il suffit de faire l'étude sur $D_1 \cap \mathbb{R}_+$.

Si x est paire et y impaire, Γ est symétrique par rapport à la droite x'x et il suffit de faire l'étude sur $D_1 \cap \mathbb{R}_+$.

76 Courbes planes paramétrées

Si x est impaire et y paire, Γ est symétrique par rapport à la droite y'y et il suffit de faire l'étude sur $D_1 \cap \mathbb{R}_+$.

D'autres invariances de Γ peuvent être utilisées, par exemple une invariance par translation.

4. Étude locale

Soit p le plus petit entier tel que $\overrightarrow{F}^{(p)}(t_0) \neq \overrightarrow{0}$ et q (p < q) l'ordre de la première dérivée telle que $(\overrightarrow{F}^{(p)}(t_0), \overrightarrow{F}^{(q)}(t_0))$ forme une base du plan vectoriel.

 $\overrightarrow{F}^{(p)}(t_0)$ est un vecteur directeur de la tangente en $M(t_0)$ à Γ .

Si $p \neq 1$, le point $M(t_0)$ est stationnaire (ou singulier). Si p = 1, c'est un point régulier. Si p = 1 et q = 2, c'est un point birégulier.

Si p impair et q pair, $M(t_0)$ est un point ordinaire (cf. fig. 1).

Si p impair et q impair, $M(t_0)$ est un point d'inflexion (cf. fig. 2).

Si p pair et q impair, $M(t_0)$ est un point de rebroussement de première espèce (cf. fig. 3).

Si p pair et q pair, $M(t_0)$ est un point de rebroussement de deuxième espèce (cf. fig. 4).

5. Branches infinies

La courbe Γ présente une branche infinie pour t tendant vers t_0 (t_0 fini ou non) si au moins une des coordonnées x(t) et y(t) de M tend vers l'infini lorsque t tend vers t_0 .

- Si $x(t) \to x_0 \in \mathbb{R}$ et $y(t) \to \pm \infty$, alors la droite $x = x_0$ est asymptote à Γ .
- Si $x(t) \to \pm \infty$ et $y(t) \to y_0 \in \mathbb{R}$, alors la droite $y = y_0$ est asymptote à Γ .
- Si $x(t) \to \pm \infty$ et $y(t) \to \pm \infty$, on cherche la limite éventuelle de $\frac{y(t)}{x(t)}$ lorsque t tend vers t_0 .
 - Si $\lim_{t \to t_0} \frac{y(t)}{x(t)} = 0$, Γ présente une branche parabolique de direction x'x.
 - Si $\lim_{t \to t_0} \frac{y(t)}{x(t)} = \pm \infty$, Γ présente une branche parabolique de direction y'y.
 - Si $\lim_{t \to t_0} \frac{y(t)}{x(t)} = a$, limite finie non nulle, on étudie y(t) ax(t).
 - Si $\lim_{t\to t_0} [y(t) ax(t)] = \pm \infty$, Γ présente une branche parabolique de coefficient directeur a.
 - Si $\lim_{t \to t_0} [y(t) ax(t)] = b$, la droite y = ax + b est asymptote à Γ et la position de la courbe par rapport à l'asymptote est donnée par le signe de y(t) ax(t) b.

6. Points multiples

A est un point multiple de Γ s'il existe au moins deux valeurs $t_1 \neq t_2$ de D_1 telles que $M(t_1) = M(t_2) = A$. On le détermine en résolvant :

$$x(t_1) = x(t_2)$$
; $y(t_1) = y(t_2)$; $t_1 \neq t_2$.

Courbes planes en coordonnées polaires

1^{re} année

1. Représentation polaire

Soit $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ un repère orthonormal du plan. À tout point M, distinct de O, on peut associer des coordonnées polaires (ρ, θ) telles que $\overrightarrow{OM} = \rho \overrightarrow{u}$.

 $(O, \overrightarrow{u}, \overrightarrow{v})$ est le repère polaire orthormal lié à M et défini par :

$$(\overrightarrow{e_1}, \overrightarrow{u}) = \theta \quad ; \quad (\overrightarrow{u}, \overrightarrow{v}) = \frac{\pi}{2}.$$

Il n'y a pas unicité des coordonnées polaires d'un point. Si $k \in \mathbb{Z}$, alors $(\rho, \theta + 2k\pi)$ et $(-\rho, \theta + \pi + 2k\pi)$ repèrent le même point M.

Le point O est repéré par $\rho = 0$ et θ quelconque.

Une courbe en coordonnées polaires est l'ensemble des points M du plan dont les coordonnées polaires sont liées par une relation du type $\rho = f(\theta)$ où f est une fonction de \mathbb{R} dans \mathbb{R} dérivable autant de fois qu'il sera nécessaire.

2. Domaine d'étude

Soit Γ la courbe d'équation polaire $\rho = f(\theta)$ et D l'ensemble de définition de f.

On détermine d'abord un domaine de représentation propre, c'est-à-dire une partie D_1 de D telle que la courbe géométrique Γ soit entièrement décrite, une fois et une seule, lorsque θ décrit D_1 .

Si f est paire, Γ est symétrique par rapport à la droite x'x et il suffit de faire l'étude sur $D_1 \cap \mathbb{R}_+$.

Si f est impaire, Γ est symétrique par rapport à la droite y'y et il suffit de faire l'étude sur $D_1 \cap \mathbb{R}_+$.

3. Tangente en un point

En $M(\theta) \neq O$, Γ admet une tangente dirigée par le vecteur

$$\overrightarrow{T} = \rho'(\theta) \overrightarrow{u} + \rho(\theta) \overrightarrow{v} .$$

En $M(\theta_0) = O$, Γ admet une tangente d'angle polaire θ_0 .

4. Points d'inflexion

Les points d'inflexion de Γ correspondent aux valeurs de θ pour lesquelles l'une des deux expressions suivantes s'annule en changeant de signe, avec $\rho \neq 0$:

$$\rho^2 + 2\rho'^2 - \rho \rho'' \; \; ; \; \; \frac{1}{\rho} + \left(\frac{1}{\rho}\right)''.$$

5. Branches infinies

- Si $\theta \to \pm \infty$, la courbe Γ présente une spirale.
- Si $\theta \to \theta_0$ et $\rho = f(\theta) \to \pm \infty$, alors l'axe OX d'angle θ_0 est une direction asymptotique de Γ .

Dans le repère orthonormal direct (OX,OY), l'ordonnée de M s'écrit $Y = \rho(\theta) \sin (\theta - \theta_0)$ et on étudie sa limite lorque θ tend vers θ_0 .

Si $\lim_{\theta \to \theta_0} \rho(\theta) \sin{(\theta - \theta_0)} = l$ (limite finie), alors Γ admet pour asymptote la droite Y = l.

Attention en traçant la droite Y = l à bien utiliser le nouveau repère (OX, OY).

6. Équation polaire de quelques courbes

- Droite passant par $O: \theta = \text{cte.}$
- Droite ne passant pas par $O: \rho = \frac{1}{a\cos\theta + b\sin\theta}$
- Cercle de centre $O: \rho = \text{cte.}$
- Cercle passant par $O: \rho = a \cos \theta + b \sin \theta$.
- \bullet Conique de foyer O, de paramètre $p\,,$ d'excentricité $e\,$:

$$\rho = \frac{p}{1 + e\cos\left(\theta - \theta_0\right)}.$$

Étude métrique des courbes planes

1^{re} année

1. Longueur d'un arc de courbe

Soit Γ un arc de courbe de classe C^2 admettant une représentation paramétrique M(t) = (x(t), y(t), z(t)), avec $t \in [a,b]$, dans un repère orthormal $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de l'espace.

En un point régulier, $\overrightarrow{T} = \frac{\overrightarrow{OM}'(t)}{\|\overrightarrow{OM}'(t)\|}$ est un vecteur unitaire qui dirige la tangente en M à Γ .

L'arc est orienté par le choix de l'un des deux sens de parcours possibles, ce qui revient à distinguer les vecteurs unitaires tangents (opposés) \overrightarrow{T}_+ et \overrightarrow{T}_- .

L'abscisse curviligne s est un paramétrage de Γ tel que $\frac{d\overrightarrow{OM}}{ds}$ soit unitaire.

La longueur de Γ est :

$$L = \int_{a}^{b} \sqrt{x'^{2}(t) + y'^{2}(t) + z'^{2}(t)} \, dt.$$

Elle est indépendante du paramétrage choisi.

On note souvent $ds = \sqrt{x'^2(t) + y'^2(t) + z'^2(t)} dt$ où s est l'abscisse curviligne.

2. Courbure d'une courbe plane

2.1 Repère de Frenet

Le repère orthonormal direct $(M, \overrightarrow{T}, \overrightarrow{N})$ est le repère de Frenet au point M.

2.2 Formules de Frenet

En un point birégulier, on a :

$$\frac{d\overrightarrow{T}}{ds} = \gamma \overrightarrow{N} \; ; \; \frac{d\overrightarrow{N}}{ds} = -\gamma \overrightarrow{T}$$

où γ est la courbure de Γ au point M.

2.3 Repérage angulaire

Si α est l'angle $(\overrightarrow{i}, \overrightarrow{T})$, on a $\gamma = \frac{d\alpha}{ds}$.

2.4 Rayon de courbure

En un point birégulier M, la courbure est non nulle et $R=\frac{1}{\gamma}$ s'appelle rayon de courbure de Γ en M. On a :

en coordonnées paramétriques :
$$R = \frac{(x'^2 + y'^2)^{\frac{3}{2}}}{x'y'' - y'x''}$$

en coordonnées polaires :
$$R = \frac{(\rho^2 + \rho'^2)^{\frac{3}{2}}}{\rho^2 + 2\rho'^2 - \rho\rho''}$$

Le centre de courbure en M est le point I défini par $\overrightarrow{MI} = R\overrightarrow{N}$.

Généralités sur les surfaces

2^e année

1. Représentation d'une surface

Une surface S peut être représentée :

- soit par une équation cartésienne f(x,y,z) = 0 où f est une fonction de classe C^1 de \mathbb{R}^3 dans \mathbb{R} ,
- soit par des équations paramétriques $\overrightarrow{OM} = \overrightarrow{F}(u,v)$.

Un point de S est régulier si $\overrightarrow{\operatorname{grad}} f(x,y,z) \neq \overrightarrow{0}$, ou si $(\frac{\partial \overrightarrow{F}}{\partial u}, \frac{\partial \overrightarrow{F}}{\partial v})$ est une famille libre.

2. Plan tangent

• En un point régulier M(x,y,z) de S, le plan tangent en M à S a pour équation :

$$(X-x)\frac{\partial f}{\partial x}(x,y,z) + (Y-y)\frac{\partial f}{\partial y}(x,y,z) + (Z-z)\frac{\partial f}{\partial z}(x,y,z) = 0$$

et $\overrightarrow{\operatorname{grad}} f(x, y, z)$ est normal en M à S.

• Sous forme paramétrique, le plan tangent en M à S est défini par les vecteurs directeurs $(\frac{\partial \overrightarrow{F}}{\partial u}, \frac{\partial \overrightarrow{F}}{\partial v})$ et la normale par le vecteur directeur $\frac{\partial \overrightarrow{F}}{\partial u} \wedge \frac{\partial \overrightarrow{F}}{\partial v}$.

3. Intersection de deux surfaces

 Pour déterminer explicitement l'intersection de deux surfaces S₁ et S₂, il est préférable que l'une soit sous forme cartésienne et l'autre sous forme paramétrique.
 On reporte alors les équations paramétriques de l'une dans l'équation cartésienne de l'autre. • En un point régulier M_0 de l'intersection de S_1 et de S_2 , si les plans tangents respectifs P_1 et P_2 sont distincts, la courbe $S_1 \cap S_2$ a pour tangente la droite $P_1 \cap P_2$.

4. Surfaces réglées

Une surface est réglée si elle peut être engendrée par une famille de droites dites génératrices de la surface.

Les surfaces réglées les plus simples sont les cylindres et les cônes.

80

Surfaces usuelles

2e année

1. Cylindres

1.1 Définitions

Un cylindre de direction D et de courbe directrice C est l'ensemble des droites parallèles à D et rencontrant C. Ces droites sont les génératrices du cylindre.

On suppose que C n'est pas une courbe plane dont le plan contient D.

Toute section du cylindre par un plan non parallèle à D peut être utilisée comme courbe directrice plane. On dit que c'est une base du cylindre.

Si le plan de section est orthogonal à D, on obtient une section droite Γ . On parle alors de cylindre droit de base Γ .

Un cylindre de révolution admet une section droite circulaire.

1.2 Plans tangents

Le plan tangent en un point M d'une génératrice Δ d'un cylindre est défini par Δ et la tangente à $\mathcal C$ au point d'intersection de $\mathcal C$ et de Δ .

C'est le même pour tous les points de Δ .

1.3 Équations

La forme la plus générale de l'équation d'un cylindre est f(P,Q) = 0 où P = 0 et Q = 0 sont les équations de deux plans non parallèles, leur intersection donnant la direction du cylindre.

Avec un repère adapté, l'équation d'un cylindre droit est de la forme g(x,y)=0. Un cylindre de révolution peut alors être représenté

- sous forme cartésienne par : $x^2 + y^2 = R^2$,
- sous forme paramétrique par :

$$x = R \cos \theta$$
 ; $y = R \sin \theta$; $z = z$.

Il s'agit des coordonnées cylindriques d'un point de l'espace.

2. Cônes

2.1 Définitions

Un cône de sommet S et de courbe directrice C est l'ensemble des droites passant par S et rencontrant C. Ces droites sont dites génératrices du cône.

On suppose que C n'est pas une courbe plane dont le plan contient S.

Toute section du cône par un plan ne passant pas par *S* peut alors être utilisée comme courbe directrice plane. On dit que c'est une base du cône.

2.2 Plans tangents

Soit M un point du cône. Il appartient à une génératrice Δ qui rencontre en P une base C du cône. Le plan tangent en M au cône passe par S et contient la tangente en P à C.

C'est le même pour tous les points de Δ .

2.3 Équations

La forme la plus générale de l'équation d'un cône est $f(\frac{P}{R}, \frac{Q}{R}) = 0$ où P = 0, Q = 0 et R = 0 sont les équations de trois plans dont l'intersection est le sommet S.

Comme un cône est invariant par toute homothétie de centre S, le cône est l'ensemble des points M tels que $\overrightarrow{SM} = \lambda \ \overrightarrow{SP}$ où λ est un réel quelconque et P un point quelconque de \mathcal{C} .

3. Contours apparents

3.1 Pour une direction donnée

Soit S une surface et $\overrightarrow{u} \neq 0$.

• Le cylindre circonscrit à S, de direction \overrightarrow{u} , est l'ensemble des tangentes à S dirigées par \overrightarrow{u} .

Surfaces usuelles

• Le contour apparent de S, pour la direction \overrightarrow{u} , est l'ensemble des points de S dont la direction du plan tangent contient \overrightarrow{u} .

3.2 Pour un point donné

Soit S une surface et A un point.

- Le cône circonscrit à S, de sommet A, est l'ensemble des tangentes à S qui passent par A.
- Le contour apparent de S, du point de vue de A, est l'ensemble des points de S dont le plan tangent contient A.

4. Surfaces de révolution

4.1 Définitions

Une surface de révolution Σ d'axe D est obtenue en faisant tourner une courbe $\mathcal C$ autour de la droite D.

Tout plan contenant D est un plan méridien et son intersection avec Σ est une méridienne.

Les cercles, intersections de Σ avec des plans perpendiculaires à D, sont les parallèles de la surface.

4.2 Équations

La forme la plus générale de l'équation d'une surface de révolution est f(P,S) = 0 où P = 0 et S = 0 sont les équations d'un plan et d'une sphère.

L'axe de Σ est alors la droite perpendiculaire au plan et passant par le centre de la sphère.

Toute équation de la forme $g(x^2 + y^2, z) = 0$ représente une surface de révolution d'axe (O, \overrightarrow{k}) .

2^e année

1. Définitions

Une surface du second degré f(x,y,z) = 0, où f est un polynôme de degré 2 par rapport aux trois variables, peut être soit deux plans, soit un cylindre, soit un cône, soit une quadrique propre de l'un des cinq types qui suivent.

On peut les décrire à partir de leurs équations réduites dans un repère orthormal.

2. Types de quadrique

• Ellipsoïde

Équation réduite :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

· Hyperboloïde à une nappe

Équation réduite :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
. C'est une surface réglée.

· Hyperboloïde à deux nappes

Équation réduite :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$$

• Paraboloïde elliptique

Équation réduite :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$$
.

• Paraboloïde hyperbolique

Équation réduite :
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$$
. C'est une surface réglée.

3. Centres de symétrie

Tout centre de symétrie d'une surface du second degré f(x,y,z)=0 vérifie $\overrightarrow{\operatorname{grad}} f(x,y,z)=\overrightarrow{0}$, et la recherche d'une forme réduite se fait en prenant pour origine un tel point.

4. Réduction de l'équation d'une surface du second degré

Soit S une surface algébrique du second degré d'équation

f(x,y,z) = 0 où f est un polynôme de degré 2.

Les termes de f de degré égal à 2 définissent une forme quadratique q dont la matrice A est symétrique et réelle. A admet donc trois valeurs propres α , β , γ .

• Cas où les trois valeurs propres sont non nulles (soit rg q = 3)

Si α , β et γ sont de même signe, $\mathcal S$ peut être vide, réduite à un point, ou un ellipsoïde.

Si α , β et γ ne sont pas de même signe, \mathcal{S} peut être un cône, un hyperboloïde à une nappe ou à deux nappes.

• Cas où une seule valeur propre est nulle (soit rg q = 2)

S peut être vide, un paraboloïde elliptique ou hyperbolique, une droite, deux plans sécants, un cylindre elliptique ou hyperbolique.

• Cas où deux valeurs propres sont nulles (soit rg q = 1)

S peut être vide, un plan, deux plans parallèles, ou un cylindre parabolique.

Index

Α	boule 77	
Abel (lemme d') 107 abscisse curviligne 246 adjoint d'un endomorphisme 216 affinité 223	branche infinie 243, 245 parabolique 15, 243	
	C	
algèbre 142 anneau 140, 141	Cauchy	
intègre 141	(critère de) 71	
antidéplacement 233	(problème de) 60	
application	Cauchy-Lipschitz (théorème de) 60	
affine 222 linéaire continue 81	Cauchy-Schwarz (inégalité de) 42, 204, 206	
approximation uniforme 103	Cayley-Hamilton (théorème de) 201	
arc orienté 99	cercle 231	
Archimède (propriété d') 2	Chasles (relation de) 41	
argument 150	chinois (théorème de) 147	
arrangement 134	cofacteur 195	
asymptote 14	complémentaire 123	
automorphisme 173	cône 251	
	congruence 146	
В	conjugué 149	
barycentre 225	connecteur logique 120	
base 169	connexité par arcs 84	
duale 176	continuité 16, 17, 80, 81	
Bessel (inégalité de) 210	uniforme 17, 81	
Bézout (théorème de) 145, 161	contour apparent 251	
Bolzano-Weierstrass (théorème de) 35	convergence	
borne	absolue 72	
inférieure 4, 129	normale 104	
supérieure 4, 129	simple 102, 104	

© Dunod - La photocopie non autorisée est un délit.

Index

uniforme 102, 104	distance 77	
convergence dominée (théorème de)	divisibilité 144, 157	
59	division euclidienne 144, 157	
corps 141	droite numérique achevée 4	
corps ordonné 2		
courbure 246	E	
Cramer (formule de) 196	égalité des accroissements finis 21	
cycle 138	élément simple 162	
cylindre 250	ellipse 239	
_	ellipsoïde 253	
D	encadrement (théorème d') 11, 35	
d'Alembert (règle de) 72	endomorphisme 173	
d'Alembert-Gauss (théorème de) 158	orthogonal 212	
Darboux (sommes de) 94	symétrique 216	
décomposition des noyaux (théorème	ensemble	
de) 200	compact 83	
déduction 122	complet 83	
dénombrement 133	fini 130	
dense 3, 79	espace	
dépendance linéaire 169	affine 220	
déplacement 233	complet 84	
dérivée 18	de Banach 84	
partielle 87	dual 176	
déterminant 193	préhilbertien complexe 204	
développement limité 48	préhilbertien réel 203	
diagonalisation 198	espace vectoriel 166	
difféomorphisme 91	euclidien 211	
différence 123	normé 76	
différence symétrique 123	Euclide (algorithme d') 145, 160	
différentielle 89	Euler	
dimension d'un espace vectoriel 170	(formule d') 151	
Dirichlet (théorème de) 114	(indicatrice d') 146	
disjonction des cas 122	(théorème de) 146	

exponentielle complexe 27, 151 extremum 7	formule de Taylor avec reste intégral 47 du binôme 140, 184
F Fermat (petit théorème de) 147	Fourier coefficients de 113 série de 113
fermé 79	Frenet
fonction(s)	(formule de) 247
composée 12	(repère de) 246
continue par morceaux 39	frontière 79
contractante 8, 81	Fubini (théorème de) 95, 96
convexe 22	(
coordonnée 86	G
dominée 13	Gauss
en escalier 39	(pivot de) 191
équivalentes 13	(théorème de) 146, 161
gamma 116	Gauss-Jordan (méthode de) 192
lipschitzienne 8, 81	gradient 88
C^1 par morceaux 114	Green-Riemann (formule de) 100
hyperbolique 32	groupe 137
hyperbolique réciproque 33	alterné 139
partielle 86	orthogonal 212
forme	symétrique 138
bilinéaire symétrique 202	spécial orthogonal 213
définie positive 202	special offilogonal 213
différentielle 98	н
exacte 98	
fermée 98	Heine (théorème de) 17
linéaire 175	homéomorphisme 81
multilinéaire alternée 193	homothétie 178, 223
polaire d'une forme quadratique 202	hyperbole 240
positive 202	hyperboloïde 253
quadratique 202	hyperplan 171, 175

I	limite 10		
idéal 142	loi de composition interne 136		
image 6, 127, 174	longueur d'un arc de courbe 246		
directe 127			
réciproque 6, 127	M		
indépendance linéaire 169	majorant 3, 129		
inégalité	matrice		
de convexité 22	antisymétrique 185		
de la moyenne 41	de passage 186		
des accroissements finis 21	équivalente 186		
intégrale	inversible 184		
curviligne 99	jacobienne 90		
d'une fonction 39	orthogonale 213		
généralisée 55	semblable 186		
intégration	symétrique 185		
par changement de variable 45	méthode		
par parties 44	des rectangles 53		
intersection 123	des trapèzes 53		
intervalle 3	mineur 195		
inversion locale (théorème d') 91	minorant 3, 129		
	module 149		
isomorphisme 173	Moivre (formule de) 151		
J	N		
Jacobien 90, 97	Newton-Raphson (méthode de) 52		
	nombre premier 144		
K	nombres premiers entre eux 145		
Kronecker (symbole de) 176	norme		
	euclidienne 204		
L	hermitienne 205		
Lagrange (méthode de) 63	subordonnée 82		
Leibniz (formule de) 20	équivalentes 78		
ligne de niveau 87	novau 174		

×
a
C
2

0	isolé 79		
opération élémentaire 189	multiple 243		
orientation 211	régulier 242		
ouvert 79	stationnaire 92, 242		
étoilé 99	point fixe (théorème du) 84		
simplement connexe 99	point-col 93		
Simplement connexe 77	point-selle 93		
P	polynôme(s)		
parabole 238	annulateur 200		
paraboloïde 253	caractéristique 197		
Parseval (formule de) 114	d'interpolation de Lagrange 159		
partie	irréductible 158		
convexe 22, 226	minimal 201		
entière 5, 162	premiers entre eux 160		
fractionnaire 162	scindé 158		
polaire 163	РРСМ 145, 160		
partition 124	primitive 43		
Pascal (triangle de) 135	produit		
permutation 134	cartésien 124		
perpendiculaire commune 230	de deux séries 72		
PGCD 144, 160	de matrices 183		
plan tangent 248	mixte 228		
plus grand élément 3, 129	scalaire 203, 227		
plus petit élément 3, 129	scalaire hermitien 204		
Poincaré (théorème de) 99	vectoriel 227		
point	projecteur 178		
adhérent 79	orthogonal 208		
birégulier 242	projection 178, 223		
critique 92	prolongement 6, 125		
d'inflexion 242, 245	par continuité 16		
de rebroussement 242	proposition logique 120		
intérieur 79	Pythagore (théorème de) 207		

Q	de Riemann 73
dri 252	entière 107
quadrique 253	exponentielle 73
quantificateur 121	géométrique 73
R	harmonique 73
racine <i>n</i> -ième 152	harmonique alternée 74 signature 139
racine d'un polynôme 158	similitude plane directe 236
raisonnement	somme de sous-espaces vectoriels 168
par l'absurde 122	sous-anneau 140
par récurrence 130	sous-espace propre 197
rang 172, 175, 187, 192	sous-espace vectoriel 167
rayon	sous-groupe 137
de convergence 107	spectre 197
de courbure 247	sphère 232
recouvrement 124	Stirling (formule de) 117
réflexion 214, 233	subdivision 39
relation binaire 128	suite(s)
repère cartésien 224	adjacente 36
représentation propre 241	arithmético-géométrique 37
restriction 6, 125	arithmétique 37
réunion 123	bornée 34
Riemann	complexe 36
(règle de) 71	convergente 34
(sommes de) 42, 94	de Cauchy 83
Rolle (théorème de) 21	de fonctions 102
rotation 214, 233	extraites 35
S	géométrique 37
	récurrente 37
Schmidt (méthode d'orthogonalisation de) 209	supplémentaire 168
Schwarz (théorème de) 88	orthogonal 208
série	surface
alternée 73	de révolution 252

réglée 249 symétrie 178, 223 système de Cramer 192 autonome 68 en escalier 191 linéaire 189	valeur absolue 2, 8 approchée 5 propre 197 valeurs intermédiaires (théorème des) 16, 85 variation de la constante 63
T	vecteur propre 197
Taylor-Lagrange (inégalité de) 47	vissage 235
Taylor-Young (formule de) 47	voisinage d'un point 3
théorème	
de la base incomplète 169	W
du rang 175 noyau-image 175	Wilson (théorème de) 147 wronskien 65
trace 188	
translation 222	
transposition 139, 184	
trigonalisation 199	