Names and Ids

Menan Mohamed Abodahab Id: 22011265

Shahd Mohamed Mostafa Id: 22010848

Jana Mohamed Fathy Id: 22010691

the LP-Solver provides 4 methods:

- Simplex Method
- Big-M Method
- Two-Phase Method
- · Goal Programming Method

Simplex Method

[A] Step By Step explanation

parameters send to it:

- tableau: a matrix containing (the objective function in the first row and the rest rows for the constraints)
- vararr: a list of all variables basic and non-basic
- basicarr: a list of the basic variables (initially the slack variables)
- ismaxi: to determine maximization or minimization of the objective

the Basic Iteration:

first: Select the Entering Variable (Pivot Column)

- maximization: the most negative coefficient in the objective row
- · minimization : the most positive coefficient in the objective row

second: Select the Leaving Variable (Pivot Row)

The leaving variable is determined by minimum positive ratio test :

Solution Column (RHS) Pivot Column Coefficient

• if no positive ratio is found then the solution is infeasible

third: Update the Tableau

- the new basic variable replaces the leaving variable
- the pivot row is divided by the pivot element to make it 1
- all other rows are updated using row operations to make the pivot column values zero

fourth: Check for Optimality again as we checked it first before entering the main iterations

- maximization case: If any coefficient in the objective row (excluding the last column) is negative, the solution is not optimal (continue iterating)
- minimization case: If any coefficient in the objective row is positive, the solution is not optimal
- if the optimality hasn't reached then the iterations will continue finding the pivot row/column

[B] Handled Condition in it:

The code handles if any unrestricted variables are in the problem and reformulate the tableau at the parameter before entering the function

Now if in our Constraints we encountered (\geq) then Slack Variables will not be Sufficient and we will need Extra Variables which are the (Artificial Variables) and then we will use Automatically either

→ Big-M method or Two-Phase Method

Big-M Method

[A] Step By Step explanation

first: parameters send to it:

- tableau: a matrix containing (the objective function in the first row and the rest rows for the constraints)
- vararr: a list of all variables basic and non-basic
- basicarr: a list of the basic variables (including the artificial variables)
- ismaxi: to determine maximization or minimization of the objective

second: Assigning the Big-M penalty

A large value M is chosen based on the optimization type:

- If maximization, artificial variables should be removed quickly, so M = 100
- If minimization, the opposite approach is taken, so M = -100

third : the objective function row is multiplied by -1 to convert a maximization problem into the simplex

fourth: Inserting M in the Objective Function for the Artificial Variables

fifth: do row operations to remove the M in the Objective to make the Objective Consistent

sixth: Call the Simplex Method to Handle the Formulated tableau for the Big-M

[B] Handled Condition in it:

the Big-M also handles the Unrestricted Variables sent to it ready from the Construction helping method

Two-Phase

[A] Step By Step explanation

The process consists of two phases:

- 1. **Phase 1:** minimize the sum of artificial variables to determine if a feasible solution exists
- 2. **Phase 2:** remove artificial variables and proceed with the original objective function

first: parameters send to it:

 same as the parameters sent to the Big-M but increasingly we send the Original Objective Row

(arr parameter) to be able to use it in Phase-2

second: minimize sum of artificial variables to find a feasible solution

- the original objective function is temporarily ignored
- we introduce a **new objective function**, which minimizes the sum of artificial variables

third: use Simplex Iterations to check if the artificial variables will become less than or equal to 0 at the end well find feasible solution or not

fourth: if found remove the artificial variables from the latest simplex tableau and restore the

Original Objective Function at the first row , then continue Simplex Solution for the rest of Basic Variables till finding the Optimal Solution

[B] Handled Condition in it:

the Two-Phase also handles the Unrestricted Variables sent to it ready from the Construction helping method

Preemptive Goal Programming

[A] Step By Step explanation

this function implements multiple goals and multiple constraints Problem

first: parameters send to it:

- goal_arr: the multiple goals array
- constr_arr: the multiple constraints array
- num_goals : number of goals the user entered
- num_constraints : number of constraints the user entered
- maxi: if maximizing or minimizing the goals

second: the function generate names for all variables:

- the desicion variables
- slack variables for each constraint
- deviation variables (s-,s+) for each goal

third: populating the tableau:

- for each goal row set -1 for s- (underachievement)
- for each goal row set 1 for s+ (overachievement)
- each constraint row contains its coefficients and a 1 in the column of its slack variable
- removing the inconsistency of the z rows by adding to their goal rows

fourth: apply the simplex method on the updated tableau (minimizing the first z rows)

- put into consideration the stopping conditions for optimality or feasible solutions
- finding the minimum value in the z row and apply the simplex on all the rows

- if positive and can not apply further then the solution is infeasible
- if a lower priority row encounters a negative value above it achievable z row then we stop simplex that z row and it will not be achievable goal

fifth: interpreting results based on goal achievements

Helping Method

The construct_tableau method

- this method is sent to it the Matrix of Objective Function and Constraints in the first three methods so that to reformulate them to have added the artificial or/and slack variables constructed in the tableau
- also putting into consideration if there are unrestricted variables or not

The GUI

A Friendly User-Interface So that the user enters

In First Three Methods

- the number of Decision Variables
- Coefficients of Decision Variables
- · Coefficients, Sign, RHS Of Constraint functions
- Wether the Decision variables are restricted or not
- if we encounter ≥ sign in any of the Constraint functions: the user is directed to Big-M by default and Two-Phase if he chose it
- other wise he will be directed To Simplex

In Goal Programming

- the number of Decision Variables
- the Goal functions
- the Constraint functions

Screen Shots Of the Program

Simplex

Big-M

Two-Phase

Goal-Programming

■ python – ⊔ X

