

[IE] Integrative Ecology Lab

Effets de la température sur la régulation trophique

Séminaire 1

Azenor Bideault

Superviseurs : Dominique Gravel & Michel Loreau Université de Sherbooke 8 décembre 2017

EFFETS DE LA TEMPÉRATURE

Taux métabolique

Taux biologiques (taux de croissance)

EFFETS DE LA TEMPÉRATURE

Taux métabolique

Taille corporelle

Taux biologiques (taux de croissance)

EFFETS DE LA TEMPÉRATURE

Taux métabolique

Taille corporelle

Taux biologiques (taux de croissance)

Distribution des espèces

Beveridge et al 2010, Kratina et al 2012, Shurin et al 2012

Ratio de densité $\frac{P_0}{P_H}$

- · Perturbations ponctuelles : épidémies, feux, inondations...
- · Taux de retour τ

Comprendre de façon méchanistique les effets de la température sur la régulation trophique et la structure des réseaux afin de formaliser la théorie

En combinant des approches théoriques et expérimentales

Tester expérimentalement la théorie : relation température - régulation trophique

$$r(T) = r_0 \mathbf{m}^{\beta} exp \left(-\frac{\mathbf{E}}{k\mathbf{T}}\right) L(T)$$

r(T) taux biologique

m masse corporelle

E énergie d'activation

T température

L(T) phase décroissante

 β , r_0 , k constantes

- · Sarracénies pourpres (Sarracenia purpurea)
- · Protistes-Bactéries
- · Expériences en microcosmes
- 5 souches de bactéries, 3 espèces de protistes
- · Gradient de températures (10-40°C)

Bactéries:

- · taux de croissance
- · capacité de support

Protistes:

- · taux d'attaque
- · temps de manipulation

Le long d'un gradient de température

$$B(t) = \frac{KB_0e^{rt}}{K + B_0(e^{rt} - 1)}$$

B(t) densité de bactéries B₀ densité de bactéries initiale

- r taux de croissance
- K capacité de support

$$f(B) = \frac{aB}{1 + ahB}$$

- f(B) nombre de bactéries consommées
 - B densité de bactéries

- a taux d'attaque
- h temps de manipulation

Densités à l'équilibre

Force nette d'interaction

$$\frac{B_0^*}{B_P^*}$$

- · Perturbation ponctuelle : mortalité densité indépendante
- · Taux de retour : pente
- Extinction

Taux biologiques

Taux biologiques

Force nette d'interaction

"An ecologist is often balancing the search for simplifying theories with the recognition of the complexity of nature"

Charles Elton

[IE] Integrative Ecology Lab Laboratoire d'écologie intégrative

