Formalising Groth16 in Lean 4

Daniel Rogozin, for Yatima Inc

August 14, 2022*

In this document, we describe the Groth16 soundness formalisation in Lean 4. The text contains the protocol description as well as some comments to its implementation.

1 Preliminary definitions

We have a fixed finite field F, and F[X] stands for the ring of polynomials over F as usual. The corresponding listing:

```
variable {F : Type u} [field : Field F]
```

In Groth16, we have random values $\alpha, \beta, \gamma, \delta \in F$ that we introduce separately as an inductive data type:

inductive Vars: Type

| alpha : Vars | beta : Vars | gamma : Vars | delta : Vars

We also introduce the following parameters:

- $n_{stmt} \in \mathbb{N}$ the statement size;
- $n_{wit} \in \mathbb{N}$ the witness size;
- $n_{var} \in \mathbb{N}$ the number of variables.

In Lean 4, we introduce those parameters as variables in the following way:

```
variable {n_stmt n_wit n_var : Nat}
```

We also define several finite collections of polynomials:

- $u_{stmt} = \{ f_i \in F[X] \mid i < n_{stmt} \}$
- $u_{wit} = \{ f_i \in F[X] \mid i < n_{wit} \}$
- $v_{stmt} = \{ f_i \in F[X] \mid i < n_{stmt} \}$
- $v_{wit} = \{ f_i \in F[X] \mid i < n_{wit} \}$
- $w_{stmt} = \{ f_i \in F[X] \mid i < n_{stmt} \}$
- $w_{wit} = \{ f_i \in F[X] \mid i < n_{wit} \}$

We introduce those collections in Lean 4 as variables as well:

^{*}This document may be updated frequently.

Let $(r_i)_{i < n_{wit}}$ be a collection of elements of F (that is, each $r_i \in F$) parametrised by elements of n_{wit} . Define a polynomial $t \in F[X]$ as:

$$t = \prod_{i \in n_{wit}} (x - r_i).$$

Crearly, these r_i 's are roots of t. The definition in Lean 4:

```
variable (r : Fin n_wit \rightarrow F)

def t : F[X] := Pi i in finRange <math>n_wit,

(x : F[X]) - Polynomial.c (r i)
```

2 Properties of t

The polynomial t has the following properties:

Lemma 1.

- 1. $deg(t) = n_{wit}$;
- 2. t is monic, that is, its leading coefficient is equal to 0;
- 3. If $n_{wit} > 0$, then deg(t) > 0.

We formalise these statements as follows (but we drop proofs):

Let $\{a_{wit_i} | i < n_{wit}\}$ and $\{a_{stmt_i} | i < n_{stmt}\}$ be collections of elements of F. A stamenent witness polynomial pair is a pair of single variable polynomials $(F_{wit_{sv}}, F_{stmt_{sv}})$ such that $F_{wit_{sv}}, F_{stmt_{sv}} \in F[X]$ and

- $F_{wit_{sv}} = \sum_{i < n_{wit}} a_{wit_i} u_{wit_i}(x)$
- $F_{stmt_{sv}} = \sum_{i < n_{stmt}} a_{stmt_i} u_{stmt_i}(x)$

Their Lean 4 counterparts:

Define a polynomial sat as:

$$sat = (V_{stmt_{sv}} + V_w it_s v) \cdot \left(\left(\sum_{i < n_{stmt}} a_{stmt_i} v_{stmt_i}(x) \right) + \left(\sum_{i < n_{wit}} a_{wit_i} v_{wit_i}(x) \right) \right) - \left(\left(\sum_{i < n_{wit}} a_{stmt_i} w_{stmt_i}(x) \right) + \left(\sum_{i < n_{wit}} a_{wit_i} w_{wit_i}(x) \right) \right)$$

$$- \left(\left(\sum_{i < n_{wit}} a_{stmt_i} w_{stmt_i}(x) \right) + \left(\sum_{i < n_{wit}} a_{wit_i} w_{wit_i}(x) \right) \right)$$

$$(1)$$

A pair $(F_{wit_{sv}}, F_{stmt_{sv}})$ satisfies the square span program, if the remainder of division of sat by t is equal to 0.

The Lean 4 analogue of the property defined above:

3 Common reference string elements

Assume we interpreted α , β , γ , and δ somehow with elements of F, say crs_{α} , crs_{β} , crs_{γ} , and crs_{δ} , that is, in Lean 4:

For simplicity, we write this interpretation as a function $f: \{\alpha, \beta, \gamma, \delta\} \to F$ defined by equations:

$$f(a) = crs_a$$
 for $a \in \{\alpha, \beta, \gamma, \delta\}$.

In addition to those four elements of F we have a collection of degrees for $a \in F/$

$$\{a^i \mid i < n_{var}\}$$

formalised as:

$$def crs_powers_of_x (i : Fin n_var) (a : F) : F := (a)^(i : Nat)$$

We also introduce collections crs_l , crs_m , and crs_n for $a \in F$:

$$crs_{l} = \frac{((f(\beta)/f(\gamma)) \cdot (u_{stmt_{i}})(a)) + ((f(\alpha)/f(\gamma)) \cdot (v_{stmt_{i}})(a)) + w_{stmt_{i}}(a)}{f(\gamma)}$$
for $i < n_{stmt}$ (2)

$$crs_l = \frac{((f(\beta)/f(\delta)) \cdot (u_{wit_i})(a)) + ((f(\alpha)/f(\delta)) \cdot (v_{wit_i})(a)) + w_{wit_i}(a)}{f(\delta)}$$
 for $i < n_{wit}$ (3)
$$crs_l = \frac{a^i \cdot t(a)}{f(\delta)}, \text{for } i < n_{var}$$
 Their Lean 4 version:
$$\text{def crs_l (i : Fin n_stmt) (f : Vars -> F) (a : F) : F := ((f Vars.beta / f Vars.gamma) * (u_stmt i).eval (a) + (f Vars.alpha / f Vars.gamma) * (v_stmt i).eval (a) + (w_stmt i).eval (a)) / f Vars.gamma.}$$

$$\text{def crs_m (i : Fin n_wit) (f : Vars -> F) (a : F) : F := ((f Vars.beta / f Vars.delta) * (u_wit i).eval (a)}$$

(f Vars.alpha / f Vars.delta) * (v_wit i).eval (a)

 $((a)^{\hat{}}(i : Nat)) * (t r).eval a / f Vars.delta$

 $\operatorname{def} \operatorname{crs}_{-n} (i : \operatorname{Fin} (n_{var} - 1)) (f : \operatorname{Vars} -> F) (a : F) : F :=$

(w_wit i).eval (a)) / f Vars.delta