Progetto

July 17, 2020

1 Predizione tempi di percorrenza per sentieri di montagna

L'obiettivo di questo progetto è riuscire a predire il tempo di percorrenza di un sentiero di montagna basandosi su alcune caratteristiche del percorso.

Il dataset utilizzato contiene 12141 percorsi registrati come **tracce GPX** ottenute dal sito hikr.org; oltre ai dati GPX (già semplificati per ridurne la dimensione), per ogni istanza sono presenti sia i dati del percorso (distanza, dislivello...) sia della registrazione (utente, data di registrazione...).

Note: è chiaro che il tempo di percorrenza dipenda anche da altre caratteristiche difficilmente registrabili o che comunque non siamo in grado di ottenere in questo caso, come il grado di allenamento del camminatore, la dimensione e peso dello zaino, il tipo di scarpe utilizzate (il tipo di suola della scarpa può influire notevolmente sulla velocità di camminata) e altri. Lo scopo del progetto è cercare di ottenere una predizione generale che possa rappresentare l'escursionista medio.

1.1 Descrizione colonne

- ** id**: identificatore unico della traccia
- user: il nome dell'utente che ha caricato la traccia
- name: titolo assegnato alla traccia dall'autore
- url: URL alla pagina di hikr.org relativa alla traccia
- start time: data e ora di inizio della registrazione
- end_time: data e ora di fine della registrazione
- moving_time: tempo, in secondi, per cui il registratore era in movimento; permette di escludere il tempo dedicato alle soste
- max speed: indica la velocità massima ottenuta durante il percorso
- length_2d: lunghezza del percorso in metri senza considerare la variazioni in altitudine; è il valore che si ottiene misurando il percorso su una mappa
- length_3d: lunghezza del percorso in metri considerando anche la variazione di altitudine
- max_elevation: altitudine massima nell'intero percorso
- min_elevation: altitudine minima nell'intero percorso
- uphill: dislivello positivo percorso cumulativo, in metri
- downhill: dislivello negativo percorso cumulativo, in metri
- difficulty: un'indicazione della difficoltà del percorso secondo la scala SAC (fonte originale in tedesco)
- bounds: coordinate GPS dei vertici del rettangolo minimo che racchiude la traccia
- gpx: i dati GPX della traccia

Le colonne sicuramente interessanti sono moving_time, length_2d, max_elevation, min_elevation, uphill, downhill, difficulty; questi sono dati che possono essere ottenuti facil-

mente da una mappa o dalla descrizione di un percorso prima di percorrerlo (mentre ad esempio length_3d no).

Il campo **bounds** potrebbe essere interessante per individuare la zona del mondo in cui si è svolto il percorso.

1.2 Problemi nei dati

→PolynomialFeatures, \

- 1. moving_time: 2349 istanze hanno valore 0: possiamo cercare di recuperare il dato usando la differenza tra end_time e start_time (ovvero come se non fosse stata fatta nessuna pausa durante il percorso; questo approccio permette di sistemare solamente 6 istanze. Le altre devono essere scartate dato che questo è un dato indispensabile per il risultato che si vuole ottenere. Infine verifichiamo che la velocità media sia sensata, scartando tutte le righe in cui essa è superiore a 15km/h (velocità comunque estremamente difficile da raggiungere).
- length_2d: delle istanze rimanenti, 34 hanno valore minore di 1000; è probabile che un percorso tanto breve risulti inutile o fuorviante, quindi si sceglie di scartarle
- Per quanto riguarda le misure di altitudine (max_elevation, min_elevation, uphill, downhill), visto che i dati sono molto sporchi, si è scelto di ricalcolarle completamente a partire dalle tracce GPX; in generale i dati di altitudine ottenuti tramite GPS sono poco affidabili, ma a partire dalle coordinate geografiche di ogni punto della traccia è possibile ottenere l'altitudine tramite vari servizi che si basano su mappe precalcolate.

 In questo caso verranno usati i dati della missione SRTM della NASA, accessibili e utilizzabili tramite le librerie Python gpxpy e srtm.py. Purtroppo il dataset SRTM non ha dati per le latitudini vicine ai poli, quindi alcune tracce (51) devono essere lasciate intoccate. Le tracce per le quali non si riesce a ottenere l'altirudine di tutti i punti vengono eliminate.
- difficulty contiene solamente delle stringhe; è necessario convertirlo in un campo categorico
 ordinato. Oltre ai sei livelli "ufficiali" della scala SAC, nel dataset ogni livello si trova anche
 variato con un + o -

Una volta applicate le modifiche precedenti rimangono 9679 istanze.

```
[1]: # Install required packages
    ! pip install -r requirements.txt --quiet

WARNING: You are using pip version 20.0.2; however, version 20.1.1 is
    available.
    You should consider upgrading via the '/home/carlovan/develop/uni/data-
    intensive/venv/bin/python -m pip install --upgrade pip' command.
[2]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from datetime import timedelta
    from ipywidgets import interact
[3]: from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler, L
```

Se necessario il dataset viene scaricato e le trasformazioni descritte sopra vengono applicate. Il risultato viene poi salvato in un file dedicato in formato Pickle.

NB: in questa fase vengono scaricati e salvati i dati SRTM nella cartella locale srtm_cache; essa può crescere molto per cui è una buona idea cancellarla dopo averla utilizzata.

```
[4]: from utils import * prepare_data()
```

I dati preprocessati vengono caricati e vengono rimosse tutti gli attributi inutilizzati. Inoltre la colonna moving_time, che è di tipo timedelta, viene convertita in moving_minutes che contiene i minuti che rappresentano l'intervallo temporale (in questo caso misurare la durata in minuti fornisce una precisione più che sufficiente).

1.2.1 Variabili ordinali

È importante convertire l'attributo difficulty, che è di tipo *ordinale* : leggendo le descrizioni dei diversi livelli della scala forniti da SAC è possibile dedurre che la difficoltà aumenta in modo quadratico con il livello. In questo modo è possibile dare un significato **quantitativo** alla difficoltà di un percorso. Altrimenti sarebbe stato possibile convertirlo in codifica *one-hot*.

```
[6]: data['difficulty'] = data['difficulty'].factorize(sort=True)[0]**2
```

1.3 Analisi dei dati

A giudicare dai grafici, in particolare i *Box Plot*, si può notare l'elevata presenza di outliers; in questo caso però i dati sono verosimili ed è improbabile che derivino da errori (di qualsiasi tipo): sono semplicemente percorsi particolarmente impegnativi che vengono quindi effettuati molto di rado. Si è scelto dunque di mantenerli dato che contengono comunque informazioni utili. L'unico

percorso che si decide di eliminare è quello con valori di uphill e downhill superiori a 25000, in quanto potrebbe creare seri problemi numerici più avanti.

	downhill	uphill	length_2d	${\tt max_elevation}$	\
count	9679.000000	9679.000000	9679.000000	9679.000000	
mean	976.670231	1034.208396	14326.546052	1925.192095	
std	736.931095	715.459755	11129.926875	755.533204	
min	0.000000	0.000000	1002.181911	2.000000	
25%	554.260456	638.251488	9075.881552	1400.000000	
50%	930.098490	977.020195	12575.356514	1967.333333	
75%	1319.202070	1333.992000	17036.020433	2461.074052	
max	26565.667000	29286.167000	226907.816848	5604.216189	

	${\tt min_elevation}$	moving_minutes
count	9679.000000	9679.000000
mean	1027.342256	267.889684
std	569.018297	180.225887
min	-91.000000	12.983333
25%	584.000000	174.641667
50%	974.000000	251.416667
75%	1399.658499	331.300000
max	4191.000000	3156.333333


```
[8]: drop_where(data, data['uphill'] > 25000)
```

1.4 Correlazioni tra i dati

Nella tabella seguente sono presenti i coefficienti di correlazione di Pearson tra ogni coppia di features; in verde sono evidenziati i valori superiori a 0.5

```
[9]: correlation_all = pd.DataFrame(np.corrcoef(data, rowvar=False) , index=data.

→columns, columns=data.columns)

mask = (correlation_all.abs() > 0.5) & ~np.eye(correlation_all.shape[0]).

→astype(bool)

correlation_all.style.apply(highlight_where(mask, color='lightgreen'))
```

[9]: <pandas.io.formats.style.Styler at 0x7faaad4b59d0>

Si può vedere che difficulty non ha nessuna correlazione significativa con le altre feature; le altre correlazioni presenti sono spiegate di seguito

1.4.1 Correlazione tra uphill e downhill

C'è una correlazione lineare tra queste due variabili, specialmente per valori più alti; per valori più bassi è più debole, ma comunque presente. Questo è dovuto probabilmente al fatto che molte volte si percorre un sentiero ad anello.

```
[10]: ax = data.plot.scatter('uphill', 'downhill')
    ax.plot([0,30000], [0, 30000], scalex=False, scaley=False, c='red');
    corr_all = np.corrcoef(data['uphill'], data['downhill'])[0,1]
    small = data[(data['uphill'] <= 2000) & (data['downhill'] <= 2000)]
    corr_small = np.corrcoef(small['uphill'], small['downhill'])[0,1]

    print(f'Indice di correlazione tra tutti i valori:\t\t{corr_all}')
    print(f'Indice di correlazione tra i valori minori di 2000:\t{corr_small}')</pre>
```

Indice di correlazione tra tutti i valori: 0.8510354000370152
Indice di correlazione tra i valori minori di 2000: 0.7535933523097729

1.4.2 Correlazione tra min_elevation e max_elevation

Anche tra queste due variabili è presente un certo grado di correlazione lineare; ovviamente l'altitudine massima sarà sempre maggiore della minima. Dal primo grafico si può vedere che i dati sono distribuiti in modo abbastanza simmetrico attorno alla diagonale traslata verso l'alto di 1000; il secondo grafico mostra che la differenza tra altitudine massima e minima può essere approssimata con una gaussiana centrata in 1000 (prevedibile dai grafici della sezione precedente, in cui min_elevation e max_elevation hanno una distribuzione simile alla gaussiana, la prima centrata in 1000 e la seconda centrata in 2000).

```
[11]: fig, axes = plt.subplots(1, 2, figsize=(15,5))
    data.plot.scatter('min_elevation', 'max_elevation', ax=axes[0])
    axes[0].plot([0,20000], [1000, 21000], scalex=False, scaley=False, c='red');
    corr_all = np.corrcoef(data['min_elevation'], data['max_elevation'])[0,1]

    elevation_diff = data['max_elevation'] - data['min_elevation']
    axes[1].hist(elevation_diff, bins=100);
    axes[1].set_title("Elevation difference")

    print(f'Indice di correlazione:\t{corr_all}')
```

Indice di correlazione: 0.7997471217097558

1.4.3 Correlazione tra uphill/downhill e length_2d

Come si puo vedere sono presenti correlazioni abbastanza forti tra uphill e length_2d e tra downhill e length_2d. Questo è plausibile dato che percorrendo un percorso più lungo è probabile aver percorso anche più dislivello.

```
fig, axes = plt.subplots(1, 2, figsize=(15,5))
data.plot.scatter('length_2d', 'uphill', ax=axes[0])
corr_uphill = np.corrcoef(data['uphill'], data['length_2d'])[0,1]

data.plot.scatter('length_2d', 'downhill', ax=axes[1])
corr_downhill = np.corrcoef(data['downhill'], data['length_2d'])[0,1]

print(f'Indice di correlazione tra uphill e length_2d:\t{corr_uphill}')
print(f'Indice di correlazione tra dowhill e length_2d:\t{corr_downhill}')
```

Indice di correlazione tra uphill e length_2d: 0.7186942444235986 Indice di correlazione tra dowhill e length_2d: 0.7352604059595419

1.4.4 Correlazioni con moving_minutes

Dai grafici si può notare che esiste una correlazione, seppur non forte, tra alcune variabili e il tempo in movimento. In particolare si può notare che length_2d è l'attributo con maggiore correlazione, mentre con max_elevation, min_elevation e difficulty sembra non esserci alcuna correlazione.

1.5 Preparazione del dataset

```
[14]: data_clean = data.copy()
```

La variabile dipendente viene separata dalle altre

```
[15]: X_all = data_clean.copy()
y_all = X_all['moving_minutes']
X_all.drop(columns='moving_minutes', inplace=True)
```

```
[16]: def ds_split(X, y, **kwargs):
    '''Semplice funzione che suddivide il dataset in train e test set;
    utile per non ripetere sempre gli stessi parametri di `train_test_split`'''
    kwargs = {'random_state': 42, **kwargs}
    return train_test_split(X, y, test_size=1/3, shuffle=True, **kwargs)
```

1.5.1 Features selection

I dati vengono standardizzati e successivamente viene utilizzato un modello di regressione lineare di tipo Lasso: in questo modo è possibile cercare di identificare le **variabili meno rilevanti** e quindi di semplificare il modello.

```
[17]: X_train, X_val, y_train, y_val = ds_split(X_all, y_all)
      # Un semplice modello di regressione lineare che utilizza Lasso per selezionare
       \rightarrow le feature interessanti
      lasso_model = Pipeline([
          ('scaler', StandardScaler()),
          ('linreg', Lasso(max_iter=1000))
      ])
      def test_model(alpha):
          ''' Addestra il modello con il valore specificato di 'alpha'.
              Restituisce una serie con i coefficienti appresi e il coefficiente R2
       \rightarrow del modello'''
          lasso_model.named_steps['linreg'].set_params(alpha=alpha)
          lasso_model.fit(X_train, y_train)
          coeff = lasso_model.named_steps['linreg'].coef_
          r2 = lasso_model.score(X_val, y_val)
          return pd.Series(np.append(coeff, r2), index=alpha_test.index)
      # Dataframe per contenere i risultati di vari test effettuati
      alpha_test = pd.DataFrame([], index=np.append(X_train.columns, 'R2'))
      alpha_test.columns.name = 'alpha'
      alpha_values = [0.1, 2.7, 7.7, 10.5]
      for a in alpha_values:
          alpha_test[a] = test_model(a)
      display(alpha_test.style.apply(highlight_zero))
```

<pandas.io.formats.style.Styler at 0x7faaacd11b20>

Nella tabella sono indicati i risultati con alcuni valori interessanti di α : si vede che con $\alpha=10.5$ si azzerano i coefficienti di **tre** attributi (max_elevation, min_elevation, difficulty), che risultano quindi inutilizzati; inoltre la variazione del coefficiente R^2 è molto piccola, passando da 0.805 a 0.799. Questo risultato indica che è possibile semplificare il modello, dimezzando il numero di attributi. In questo modo con un modello polinomiale ad esempio di grado 3, si passa da $(6+1)^3=343$ a

```
(3+1)^3 = 64 parametri.
```

Di seguito si utilizza la class LassoCV che fa uso di $cross_validation$ (in questo caso a 5 fold) per determinare il miglior valore di α . Il risultato conferma quanto ottenuto in precedenza, in cui i coefficienti di max_elevation, min_elevation e difficulty vengono azzerati.

Coefficiente R2: 0.836807720185167 Valore di alpha: 15.302112013888426

[18]: <pandas.io.formats.style.Styler at 0x7faaacd2efd0>

Ridge ottiene uno score leggermente maggiore utilizzando tutte le feature.

Coefficiente R2: 0.8504187158740413 Valore di alpha: 49.9999999999999

[19]:

max_elevation -30.627880 uphill 58.410768 difficulty -10.027768 min_elevation 31.494557

```
downhill 51.696797
length_2d 78.831143
```

Il dataset viene quindi semplificato rimuovendo le feature meno significative

Una parte del dataset viene ora salvata separatamente per essere utilizzata come test set per verificare la validità del modello definitivo.

1.6 Regressione lineare

Usando il dataset semplificato, viene costruito un modello di regressione lineare che utilizza ElasticNet per la normalizzaione.

Anche in questo caso viene usata cross_validation a 5 fold per determinare i valori migliori degli iperparametri (l1_ratio e alpha).

Il risultato ottenuto è buono; si nota che viene usata principalmente una regressione di tipo Lasso (con peso 0.88)

Coefficiente R2: 0.7983609723871926 MSE: 4699.160886960218 Valore di alpha: 0.18239265905305233 L1 ratio: 0.8858667904100825

1.7 Regressione polinomiale

Si cerca di utilizzare un modello di regressione polinomiale per meglio rappresentare i dati; anche in questo caso si fa uso di *grid search* e *cross validation* per determinare i valori degli iperparametri

(il grado del polinomio oltre a quelli della regressione lineare).

Come spiegato in precedenza la presenza di outliers potrebbe portare a valori molto grandi nei fattori di grado alto: per questo i dati vengono riscalati dopo aver aggiunto le features polinomiali. La funzione di scaling da utilizzare è un iperparametro che viene scelto nella *grid search* e include anche la possibilità di non applicare alcuno scaling.

[23]: # I warning di mancata convergenza vengono ignorati in quanti riempirebberou

```
\hookrightarrow l'output.
      \# Se una combinazione di parametri evita la convergenza e porta a un risultato_{\sqcup}
      \rightarrowscadente,
      # questa verrà automaticamente scartata dalla grid search
      import warnings
      warnings.filterwarnings("ignore", category=ConvergenceWarning)
      X_train, X_val, y_train, y_val = ds_split(X, y)
      11_ratio_values = np.geomspace(0.5, 1, 10)
      poly model estimator = Pipeline([
          ('scaler', StandardScaler()),
          ('poly', PolynomialFeatures(include_bias=False)), # L'intercetta viene_
       → trovata dalla reg lineare
          # Aumentando il grado del polinomio si potrebbero ottenere valori anche,
       \rightarrowmolto grandi
          ('scaler2', None),
          ('linreg', ElasticNetCV(cv=5, l1_ratio=l1_ratio_values, eps=1e-2))
      ])
      params_grid = {
          'poly_degree': np.arange(2,6),
          'scaler2': [FunctionTransformer(), RobustScaler(), MinMaxScaler(),

→StandardScaler()]
      poly_model = GridSearchCV(poly_model_estimator, params_grid, cv=5);
      poly_model.fit(X_train, y_train);
[24]: best_poly_model = poly_model.best_estimator_.named_steps['linreg']
      print('Coefficiente R2:', poly model.score(X val, y val))
      print('MSE:
                              ', mean_squared_error(y_val, poly_model.predict(X_val)))
      print('Iperparametri')
      print(' - grado del polinomio:', poly_model.best_params_['poly__degree'])
      print(' - standardizzazione: ', poly_model.best_params_['scaler2'])
      print(' - ElasticNet L1 ratio:', best_poly_model.l1_ratio_)
      print(' - ElasticNet alpha: ', best_poly_model.alpha_)
```

Coefficiente R2: 0.8021647824908115

```
MSE: 4610.5137839069685

Iperparametri
- grado del polinomio: 2
- standardizzazione: MinMaxScaler(copy=True, feature_range=(0, 1))
- ElasticNet L1 ratio: 1.0
- ElasticNet alpha: 0.2480069316833537
```

Il risultato è paragonabile al precedente.

1.8 Regressione polinomiale con kernel trick

Si utilizza il kernel trick per cercare di realizzare polinomi di grado superiore in tempo utile, nonostante comunque nel passaggio precedente dall'esecuzione della *grid search* sia stato scelto un polinomio di secondo grado.

```
Coefficiente R2: 0.7958687044311343
MSE: 4757.2427386611835
Iperparametri
- grado del polinomio: 5
- Ridge alpha: 3.5
```

In effetti il risultato è poco peggiore del precedente.

1.9 Radial Basis Gaussian Kernel

Infine viene testato un modello che utilizza il kernel trick con il **Gaussian Radial Basis** kernel. Il risultato però è insoddisfacente.

```
[28]: print('Coefficiente R2:', gaussian_model.score(X_val, y_val))
print('MSE: ', mean_squared_error(y_val, gaussian_model.

→predict(X_val)))
print('Alpha: ', gaussian_model.best_params_['gauss__alpha'])
```

Coefficiente R2: 0.65816378857761 MSE: 7966.43077225755

Alpha: 0.1

1.10 Ricapitolando

Di seguito sono messi a confronto i modelli analizzati, verificandone la qualità utilizzando il **test** set determinato inizialmente.

```
[29]: Coeff R2 MSE
Lineare 0.849154 5213.311748
Polinomiale 0.847290 5277.747791
Kernel trick 0.837677 5609.975708
Gaussian Radial Basis 0.525116 16412.230165
```

Si può notare che il risultato migliore si ottiene con il modello lineare. Di seguito sono visualizzati i coefficienti determinati durante l'apprendimento: length_2d ha il peso massimo, mentre uphill e downhill hanno peso simile. Sembra che il tempo sia influenzato maggiormente da downhill che uphill (forse andando in discesa si va più lenti?)

[30]:

```
uphill 46.157714
downhill 48.130197
length 2d 88.110032
```

Infine il modello viene testato con alcuni sentieri percorsi personalmente.

```
Reali 123.000000 262.000000 125.000000
Predetti 156.920603 260.341529 162.493614
```

MSE: 853.042968254727 R2: 0.7984620487664056

Possiamo vedere che il modello finale non è super accurato, ma comunque accettabile se lo scopo è quello di avere una previsione di massima del tempo di percorrenza.