DISCLAIMER

Questo è un file che contiene una lista di tutti i teoremi, osservazioni, esempi, lemmi, corollari, formule e proposizioni **senza alcuna dimostrazione né definizione**, di conseguenza molte informazioni risulteranno essere senza alcun contesto se già non si conosce la materia. Detto questo, buona lettura.

Spazi Vettoriali

Teorema 1

- Hp $-n \in \mathbb{N}$ $\mathbb{K} \text{ campo}$
- Th $-\mathbb{K}^n$ spazio vettoriale su \mathbb{K}

Teorema 2

- Hp $-n \in \mathbb{N}$ $-\mathbb{K} \text{ campo}$ $-V \text{ spazio vettoriale su } \mathbb{K}$ $-v_1, \ldots, v_n \in V$
- Th $-\operatorname{span}(v_1,\dots,v_n) \ \mbox{\`e} \ \mbox{un sottospazio vettoriale di } V$

Teorema 3

- Hp $-n \in \mathbb{N}$ $-\mathbb{K} \text{ campo}$ $-e_1 := (1, 0, \dots, 0), \dots, e_n := (0, \dots, 0, 1) \in \mathbb{K}^n$ • Th
- $-e_1,\ldots,e_n$ sono una base di \mathbb{K}^n , ed è detta base canonica

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-v_1,\ldots,v_n$ linearmente indipendenti $\iff v_1,\ldots,v_{n-1}$ linearmente indipendenti $\land v_n \notin \operatorname{span}(v_1,\ldots,v_{n-1})$

- Hp
 - $-m, k \in \mathbb{N}$
 - $-\mathbb{K}$ campo
 - -V spazio vettoriale su \mathbb{K}
 - $-w_1,\ldots,w_m\in V$
 - $-v_1,\ldots,v_k\in\operatorname{span}(w_1,\ldots,w_m)\mid v_1,\ldots,v_k$ linearmente indipendenti
- Th
 - $k \le m$

Teorema 6

- Hp
 - $-n, m \in \mathbb{N}$
 - K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-\ w_1, \dots, w_m \in V \mid w_1, \dots, w_m$ base di V
 - $-v_1,\ldots,v_n\in V\mid v_1,\ldots,v_n$ base di V
- Th
 - -n=m, il che implica che la cardinalità delle basi di uno spazio vettoriale è unica

Teorema 7

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo
 - V spazio vettoriale su \mathbb{K}
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-v_1, \ldots, v_n$ base di $V \iff \forall v \in V \quad \exists! \lambda_1, \ldots, \lambda_n \in \mathbb{K} \mid v = \lambda_1 v_1 + \ldots + \lambda_n v_n$

Teorema 8

- Hp

 - Vspazio vettoriale su $\mathbb K$
 - $-n := \dim(V)$
- Th
 - $-V \cong \mathbb{K}^n$

Teorema 9

• !!! QUI C'È UN BUCONE

- Hp
 - \mathbb{K} campo
 - Wspazio vettoriale su $\mathbb K$

```
\begin{array}{ll} -n:=\dim(W)\\ -k\in\mathbb{N}\mid k< n\\ -w_1,\ldots,w_k\in W \text{ linearmente indipendenti} \end{array} • Th -\exists w_{k+1},\ldots,w_n\in W\mid w_1,\ldots,w_n\text{ è una base di }W
```

- Hp
 - − K campo
 - Wspazio vettoriale su $\mathbb K$
 - $-n := \dim(W)$
 - $-m \in \mathbb{N} \mid m \geq n$
 - $-\ w_1, \dots, w_m \in W \mid w_1, \dots, w_m$ generatori di W
- Th
 - $\ \exists 1 \leq i_1, \ldots, i_n \leq m \mid w_{i_1}, \ldots, w_{i_n}$ è una base di W

Teorema 12

- Hp
 - \mathbbm{K} campo
 - Wspazio vettoriale su $\mathbb K$
 - $-n := \dim(W)$
 - $-w_1,\ldots,w_n\in W$
- Th
 - $-w_1,\ldots,w_n$ linearmente indipendenti $\iff w_1,\ldots,w_n$ generatori di W

Teorema 13

- Hp
 - \mathbbm{K} campo
 - W spazio vettoriale su \mathbb{K}
 - $U,V\subset W$ sottospazi vettoriali
- Th
 - $-\dim(U+V) = \dim(U) + \dim(V) \dim(U \cap V)$

Numeri complessi

- Hp
 - $\begin{array}{l} -a,b \in \mathbb{R}, z \in \mathbb{C} \mid z = a + ib \\ -c,d \in \mathbb{R}, w \in \mathbb{C} \mid w = c + id \end{array}$
- Th
 - -z + w = (a + b) + i(c + d) $-z \cdot w = (ac - bd) + i(ad + bc)$

- Hp $-a, b \in \mathbb{R}, z \in \mathbb{C} \mid z = a + ib$ $-c, d \in \mathbb{R}, w \in \mathbb{C} \mid w = c + id$ • Th
- $-\overline{z} + \overline{w} = \overline{z+w}$ $-\overline{z}\cdot\overline{w}=\overline{z\cdot w}$

Teorema 16

• $\forall \theta \quad e^{i\theta} = \cos \theta + i \sin \theta$

Teorema 17

- $-(\mathbb{C},+,\cdot)$ è un gruppo
- ($\mathbb{C}, +, \cdot$) è un campo

Teorema 18

- $|z \cdot w| = |z| \cdot |w|$ $\arg(z \cdot w) = \arg(z) + \arg(w)$
- $|\overline{w}| = |w|$ $\arg(\overline{w}) = -\arg(w)$ $|w^{-1}| = |w|^{-1}$ $\arg(w^{-1}) = -\arg(w)$
- $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ $\arg\left(\frac{z}{w}\right) = \arg(z) \arg(w)$

Teorema 19

• $z^n = |z|^n e^{in\theta}$ $\arg(z^n) = n \arg(z)$

Permutazioni

Teorema 20

- $-S_X := \{ f \mid f : X \to Y \text{ bijettiva } \}$
- $-(S_X, \circ)$ è un gruppo, non abeliano se $|X| \geq 3$

Teorema 21

• Hp $-n \in \mathbb{N}$ $-\sigma \in S_n$ $-1 \le i < n \in \mathbb{N}$ $- I(\sigma, i) := \{ n \in \mathbb{Z} \mid \sigma^n(i) = i \}$ • Th $-(I(\sigma,i),+)\subset (\mathbb{Z},+)$ è un ideale

Teorema 22

- Hp
 - !!! RISCRIVI TUTTO
 - $-I(\sigma,i)$ è ideale principale in \mathbb{Z} generato da I(d), dove d è la lunghezza del ciclo di i, quindi $I(\sigma, i) = I(d)$
 - $-I(\sigma,i) = I(d) \implies d \in I(\sigma,i)$

Teorema 23

- Hp

 - $-\ \sigma \in S_n \mid \sigma = \gamma_1 \dots \gamma_k$ sia la sua decomposizione in cicli
 - $d_j :=$ lunghezza di $\gamma_j \quad \forall j \in [1,k]$

 - $m := mcm(d_1, \dots, d_k)$ $I(\sigma) := \{ n \in \mathbb{Z} \mid \sigma^n = id \}$
- Th
 - $-o(\sigma)=m$

Teorema 24

- Hp
 - $-n \in \mathbb{N}$
 - $-\sigma \in S_n$
- Th
 - $-\exists 1 \leq i_1, \ldots, i_k < n \mid \sigma = \tau_{i_1, i_1 + 1} \ldots \tau_{i_k, i_k + 1}$, quindi ogni permutazione può essere riscritta come composizione di trasposizioni adiacenti

Teorema 25

- Hp
 - $-n \in \mathbb{N}$
- $-A_n := \{ \sigma \in S_n \mid \sigma \text{ pari} \}$
- - $-A_n \subset S_n$ è un sottogruppo, detto gruppo alterno di ordine n

- Hp

 - $-\sigma \in S_n \mid \sigma = \tau_1 \dots \tau_k$ dove $\forall j \in [1,k] \quad \tau_j = \tau_{j,j+1}$, dunque tutte le trasposizioni sono adiacenti
- Th
 - $-\operatorname{sgn}(\sigma) = (-1)^k$

• Hp
$$-n\in \mathbb{N}\\ -\sigma,\sigma'\in S_n|\left\{\begin{array}{l} \sigma=\tau_1\dots\tau_k\\ \sigma'=\tau_1'\dots\tau_h' \end{array}\right., \ \text{dove ogni trasposizione è adiacente}$$
• Th

• Th
$$-\operatorname{sgn}(\sigma\sigma') = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma')$$

Teorema 28

• Hp
$$-n \in \mathbb{N}$$

$$-\sigma \in S_n$$
• Th
$$-\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$$

Teorema 29

• Hp
$$-n \in \mathbb{N} \\
-\sigma, \sigma' \in S_n \\
-\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}$$
• Th
$$-\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma)$$

Teorema 30

• Hp
$$\begin{array}{l} -n \in \mathbb{N} \\ -\sigma, \sigma' \in S_n \mid \sigma := \gamma_1 \dots \gamma_k, \sigma' := \gamma_1' \dots \gamma_h' \\ -\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}, \text{ che costituisce dunque la relazione di coniugio} \end{array}$$
• Th

Th
$$-\sigma \sim \sigma' \iff \left\{ \begin{array}{c} k=h \\ d=d_1' \\ \vdots \\ d_k=d_h'=d_k' \end{array} \right. , \text{ dove } d_j \text{ è la lunghezza del ciclo } \gamma_j \text{ e } d_j' \text{ è la lunghezza}$$
 del ciclo γ_j'

• Hp
$$-n \in \mathbb{N}$$

$$-\sigma \in S_n \mid \sigma := \gamma_1 \dots \gamma_k$$
 • Th
$$-\operatorname{sgn}(\sigma) = (-1)^{n-k}$$

Ideali

Teorema 32

- Hp $\begin{array}{c} (A,+,\cdot) \text{ anello} \\ a \in \mathbb{Z} \\ I(a) := \{ax \mid x \in A\} \end{array}$
- Th -I(a) è un ideale, e prende il nome di *ideale di A generato da* $a \in A$

Teorema 33

• Hp $-A \text{ dominio di integrità} \\ -a,b \in A$ • Th $-I(a)=I(b) \iff \exists c \in A^* \mid a=bc$

Teorema 34

• Hp
$$-a,b\in\mathbb{Z}-\{0\}$$
 • Th
$$-I(a)=I(b)\iff a=\pm b$$

Teorema 35

• Hp $-(A,+,\cdot) \text{ anello}$ $-a_1,\ldots,a_n\in\mathbb{Z}$ $-I(a_1,\ldots,a_n):=\{a_1b_1+\ldots+a_nb_n\mid b_1,\ldots,b_n\in A\}$ • Th $-I(a_1,\ldots,a_n) \text{ è un ideale, e prende il nome di } ideale \ di \ A \ generato \ dagli \ a_1,\ldots,a_n\in A$

Teorema 36

• Hp $-(A,+,\cdot) \text{ anello} \\ -+:A/I\times A/I\to A/I \\ -\cdot:A/I\times A/I\to A/I$ • Th $-(A/I,+,\cdot) \text{ è un anello}$

Teorema 37

• Hp $-I\subset\mathbb{Z} \text{ ideale}$ • Th $-\exists!\ d\in\mathbb{N}\mid I=I(d), \text{ o equivalentemente, in }\mathbb{Z} \text{ ogni ideale è principale}$

• Hp $-a_1, \dots, a_n \in \mathbb{Z}$ $-\exists ! d \in \mathbb{N} \mid I(a_1, \dots, a_n) = I(d)$ • Th $-d = \mathrm{MCD}(a_1, \dots, a_n)$

Teorema 39

Hp

 a₁,..., a_n ∈ Z
 d := MCD(a₁,..., a_n)

 Th

 ∃x₁,..., x_n ∈ Z | a₁x₁ + ... + a_nx_n = d, che prende il nome di *identità di Bézout*

Teorema 40

• !!! MANCA DIMOSTRAZIONE SISTEMA DI IDENTITÀ DI BÉZOUT

Operazioni sugli ideali

Teorema 41

• Hp $- (A, +, \cdot) \text{ anello commutativo} \\ - I, J \subset A \text{ ideali}$ • Th - I + J è un ideale

Teorema 42

• Hp $- (A, +, \cdot) \text{ anello commutativo} \\ - I, J \subset A \text{ ideali}$ • Th $- I \cap J \text{ è un ideale}$

Teorema 43

• Hp $-(A,+,\cdot) \text{ anello commutativo} \\ -I,J\subset A \text{ ideali}$ • Th $-I\cdot J \text{ è un ideale}$

Teorema 44

• Hp

$$-a,b\in\mathbb{Z}\\ -d:=\mathrm{MCD}(a,b)$$
 • Th
$$-I(a)+I(b)=I(d)$$

• Hp
$$-a,b\in\mathbb{Z}$$
 • Th
$$-I(a)\cdot I(b)=I(a\cdot b)$$

Polinomi

Teorema 46

• Hp
$$- (\mathbb{K},+,\cdot) \text{ anello}$$
 • Th
$$- (\mathbb{K}[x],+,\cdot) \text{ è un anello}$$

Teorema 47

• Hp
$$- \mathbb{K} \text{ campo}$$

$$- a(x), b(x) \in \mathbb{K}[x]$$
 • Th
$$- \deg(a(x) \cdot b(x)) = \deg(a(x)) + \deg(b(x))$$

Teorema 48

• **Hp**

$$- \mathbb{K} \text{ campo} \\
- a(x) \in \mathbb{K}[x] \mid \deg(a(x)) \ge 1$$
• **Th**

$$- \nexists a^{-1}(x) \in \mathbb{K}[x]$$

Teorema 49

• Hp
$$- \mathbb{K} \text{ campo}$$
• Th
$$- \mathbb{K}[x]^* = \mathbb{K}^* \subset \mathbb{K}[x]$$

• Hp
$$- \mathbb{K} \text{ campo}$$

• Th $- \mathbb{K}[x] \ \text{\`e} \ \text{un dominio}$

Teorema 51

• Hp $- \mathbb{K} \text{ campo}$ $- p(x) \in \mathbb{K}[x]$ $- c \in \mathbb{K}$ • Th $- p(c) = 0 \iff x - c \mid p(x)$

Teorema 52

• **Hp** $- \mathbb{K} \text{ campo} \\
 - p(x) \in \mathbb{K}[x] \\
 - n := \deg(p(x))$ • **Th** $- |\{c \in \mathbb{K} \mid p(c) = 0\}| \le n$

Teorema 53

• Hp $- \mathbb{K} \text{ campo}$ $- I \subset \mathbb{K}[x] \text{ ideale}$ • Th - I è un ideale principale

Teorema 54

Hp

 K campo
 I(a₁(x)),..., I(a_n(x)) ⊂ K[x] ideali
 ∃d(x) ∈ K[x] | I(a₁(x),...,a_n(x)) = I(d(x))

 Th

 d(x) = MCD(a₁(x),...,a_n(x))

Teorema 55

• Hp $- \mathbb{K} \text{ campo} \\ - I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] \text{ ideali} \\ - \exists m(x) \in \mathbb{K}[x] \mid I(a_1(x)) \cap \dots \cap I(a_1(x)) = I(m(x))$ • Th $- m(x) = \text{mcm}(a_1(x), \dots, a_n(x))$

Teorema 56

• Hp

```
- \mathbb{K} campo

- a_1(x), \dots, a_n(x) \in \mathbb{K}[x]

- c \in \mathbb{K}

- d(x) := \text{MCD}(a_1(x), \dots, a_n(x))

• Th

- a_1(c) = \dots = a_n(c) = 0 \iff d(c) = 0
```

• Hp $- \mathbb{K} \text{ campo}$ $- p(x) \in \mathbb{K}[x]$ • Th $- p(x) \in \mathbb{K}[x] \text{ irriducibile } \iff p(x) \text{ primo}$

Teorema 58

- Hp $\mathbb{K} \text{ campo}$ $p(x) \in \mathbb{K}[x] \{0\}$
- $-p(x) \in \mathbb{K}[x] \{0\}$ Th $-\exists! q_1(x), \ldots, q_k(x) \in \mathbb{K}[x] \text{ irriducibili e monici, } c \in \mathbb{K} \{0\} \mid p(x) = c \cdot q_1(x) \cdot \ldots \cdot q_k(x)$ in particolare, i polinomi sono unici a meno di un riordinamento

Teorema 59

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x]$ • Th $- p(x) \text{ irriducibile } \iff \deg(p(x)) = 1$

Teorema 60

• Hp $-p(x)\in\mathbb{R}[x]$ • Th $-p(x) \text{ irriducibile } \iff \deg(p(x))=1 \text{ oppure } \deg(p(x))=2 \land \Delta <0$

• Hp
$$- a_0, ..., a_n \in \mathbb{Z} \mid a_0, a_n \neq 0$$

$$- p(x) \in \mathbb{Z}[x] \mid p(x) = a_0 + ... + a_n x^n$$

$$- a, b \in \mathbb{Z} \mid \text{MCD}(a, b) = 1$$

$$- p(\frac{a}{b}) = 0$$
• Th
$$- a \mid a_0 \land b \mid a_n$$

• !!! MANCA UN TEOREMA ENORME

Coefficienti binomiali

Teorema 63

• Hp
$$-n, k \in \mathbb{N}$$
• Th
$$-\binom{n}{k} = \binom{n}{n-k}$$

Teorema 64

• Hp
$$-n, k \in \mathbb{N}$$
• Th
$$-\binom{n}{k+1} = \binom{n-1}{k+1} \binom{n-1}{k}$$

Teorema 65

• Hp
$$-p \in \mathbb{P} \\ -k \in \mathbb{N} \mid 0 < k < p$$
• Th
$$-p \mid \binom{p}{k}$$

Teorema 66

• Hp
$$-n \in \mathbb{Z}$$

$$-p \in \mathbb{P} : p \mid n$$

$$-[a] \in \mathbb{Z}_p$$
• Th
$$-n \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

• Hp
$$\begin{array}{c} -n \in \mathbb{Z} \\ -p \in \mathbb{P} : p \mid n \\ -[a] \in \mathbb{Z}_p \\ -k \in \mathbb{N} \mid 0 < k < p \end{array}$$
• Th
$$-\binom{p}{k} \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

• Hp
$$-p \in \mathbb{P}$$
 $-[a], [b] \in \mathbb{Z}_p$
• Th $-([a] + [b])^p = [a]^p + [b]^p \text{ in } \mathbb{Z}_p$

Teorema 69

• Hp
$$- p \in \mathbb{P} \\ - [a_1], \dots, [a_n] \in \mathbb{Z}_p$$
• Th
$$- ([a_1] + \dots + [a_n])^p = [a_1]^p + \dots + [a_n]^p \text{ in } \mathbb{Z}_p$$

Gruppi

Teorema 70

Hp

 G monoide
 ∃e ∈ G elemento neutro

 Th

 e è unico in G

Teorema 71

• Hp
$$- (G,m) \text{ gruppo}$$

$$- x \in G$$

$$- \exists x^{-1} \in G \text{ inverso di } x \text{ rispetto ad } m$$
 • Th
$$- x^{-1} \text{ è unico in } G \text{ per } x \text{ rispetto a } m$$

Teorema 72

Teorema 73

• **Hp** -X,Y insiemi finiti • **Th**

$$-\ \left| Y^X \right| = \left| Y \right|^{|X|}$$

Anelli

Teorema 74

- - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)$ è un gruppo

Teorema 75

- Hp
 - $(A, +, \cdot)$ anello commutativo
- - $-\ (A^*,\cdot)\subset (A,\cdot)$ è un sottogruppo

Teorema 76

- Hp
- $-(A,+,\cdot)$ anello commutativo
- - $-x \mid 0 \iff x \notin A^*$

Teorema 77

- Hp
 - A campo
- Th
 - $-\ A$ dominio di integrità

Teorema 78

- Hp
 - A dominio di integrità
- Th
 - -a primo $\implies a$ irriducibile

- Hp

 - 1) H è sottogruppo normale 2) $\forall g \in G, h \in H \quad g \cdot h \cdot g^{-1} \in H$ 3) $\forall g \in G, h \in H \quad \exists k \in H \mid g \cdot h = k \cdot g$
- - le tre formulazioni sono equivalenti

• Hp $-G \text{ gruppo} \\ -g \in G$ • Th $-(H(g),\cdot) \subset (G,\cdot) \text{ è sottogruppo}$

Teorema 81

• Hp $-G \text{ gruppo} \\ -g \in G \\ -I(g) := \{n \in \mathbb{Z} \mid g^n = e\}$ • Th -I(g) è un ideale

Teorema 82

• Hp $-G \text{ gruppo} \\ -g \in G \\ -\exists ! d \geq 0 \mid I(g) = I(d)$ • Th $-d = 0 \implies o(g) := |H(g)| = |\mathbb{Z}|, \text{ dunque infinito} \\ -d > 0 \implies d = o(g)$

Teorema 83

• Hp $-G \text{ gruppo finito} \\ -g \in G \mid d := o(g) \text{ finito}$ • Th $-g^{|G|} = e$

Teorema 84

• Hp $-G \text{ gruppo finito} \\ -g \in G$ • Th $-o(g) = o(g^{-1})$

Teorema 85

• Hp $\begin{array}{ccc} & & & & \\ & - & G \text{ gruppo finito} \\ & - & k \in \mathbb{Z} \end{array}$ • Th $& - & \forall g \in G \quad o(g^k) \mid o(g) \end{array}$

• **Hp** -G gruppo finito $-g,h \in G \mid gh = hg$ -d := MCD(o(g), o(h)) -m := mcm(o(g), o(h))• **Th** $-\frac{m}{d} \mid o(gh) \wedge o(gh) \mid m$

Teorema 87

• **Hp** $- G \text{ gruppo finito} \\ - g, h \in G \mid gh = hg \\ - d := \text{MCD}(o(g), o(h)) = 1 \\ - m := \text{mcm}(o(g), o(h))$ • **Th** - o(gh) = o(hg) = m

Insieme quoziente

Teorema 88

- Hp $-n\in \mathbb{Z} \\ -I(n):=\{nk\mid k\in \mathbb{Z}\}$ Th
- $(\mathbb{Z}_n, +)$ è un gruppo

Teorema 89

• Hp $\begin{array}{ccc} & & & \\ & -p \in \mathbb{P} \\ & -a, b \in \mathbb{Z} \\ & -p \mid ab \end{array}$ • Th $\begin{array}{cccc} & & & \\ & -p \mid a \lor p \mid b \end{array}$

Teorema 90

• Hp $-n\in\mathbb{Z}$ • Th $-\mathbb{Z}_n \text{ dominio di integrit} \grave{\iff} n\in\mathbb{P}$

• Hp $-n\in\mathbb{Z}$ • Th $-\forall [a]\in\mathbb{Z}_n\quad \mathrm{MCD}(a,n)=1\iff [a]\in\mathbb{Z}_n^*$

Teorema 92

• Hp $-p \in \mathbb{P}$ • Th $-\mathbb{Z}_p \text{ campo}$

Teorema 93

• Hp $-p\in \mathbb{P}$ • Th $-(\mathbb{Z}_p^*,\cdot) \ \text{\`e ciclico}$

Teorema 94

• Hp $-n,m\in\mathbb{N}$ • Th $-[a]\in\mathbb{Z}_{mn}^*\iff [a]\in\mathbb{Z}_m^*\wedge[a]\in\mathbb{Z}_n^*$

Teorema 95

Hp

 m, n ∈ N | MCD(m, n) = 1

 Th

 φ(m ⋅ n) = φ(m) ⋅ φ(n)

Teorema 96

• Hp $\begin{array}{ccc} & & & & \\ & -p \in \mathbb{P} \\ & -k \in \mathbb{N} \mid k \geq 1 \end{array}$ • Th $-\varphi(p^k) = p^{k-1}(p-1)$

Teorema 97

• **Hp** $-k \in \mathbb{N} \mid k \ge 1$ $-p_1, \dots, p_k \in \mathbb{P}$ $-i_1, \dots, i_k \ge 1$ $-n \in \mathbb{N} \mid n = p_1^{i_1} \cdot \dots \cdot p_k^{i_k}$

• Th
$$- \varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Induzione

Teorema 98

• Hp
$$-\begin{cases} F_0=0\\ F_1=1\\ F_n=F_{n-1}+F_{n-2} & \forall n\geq 2 \end{cases}$$
è detta sequenza di Fibonacci
$$-x^2-x-1=0 \text{ ha come soluzioni} \begin{cases} \phi:=\frac{1+\sqrt{5}}{2}\\ \psi:=\frac{1-\sqrt{5}}{2} \end{cases}$$
• Th

• Th – la formula chiusa della serie di Fibonacci è $F_n=\frac{\varphi^n-\psi^n}{\varphi-\psi}=\frac{\varphi^n-\psi^n}{\sqrt{5}}$

Matrici

Teorema 99

Teorema 100

• !!! WIP

Teorema fondamentale dell'algebra

• Hp
$$- \mathbb{K} \text{ campo}$$
$$- p(x) \in \mathbb{K}[x] \mid p(x) = a_0 x^0 + \ldots + a_n x^n$$
• Th
$$- \exists z \in \mathbb{C} \mid p(z) = 0$$

Teorema della divisione euclidea con il resto

• Hp
$$-m\in\mathbb{Z}\\ -n\in\mathbb{Z}-\{0\}$$
• Th
$$-\exists!\ q,r\in\mathbb{Z}\mid m=nq+r\quad 0\leq r< n$$

Teorema 101

- Hp $\mathbb{K} \text{ campo}$ $a(x), b(x) \in \mathbb{K}[x] \mid b(x) \neq 0$
- Th $-\exists! q(x), r(x) \in \mathbb{K}[x] \mid a(x) = b(x) \cdot q(x) + r(x) \quad \deg(r(x)) < \deg(b(x)), \text{ che è detto } teorema \ della \ divisione \ con \ il \ resto \ tra \ polinomi$

Teorema di Lagrange

Hp

 G gruppo finito
 H ⊂ G sottogruppo finito

 Th

 |G| = |H| ⋅ |G/H|

Teorema 102

• Hp $-a_1, \dots, a_n \ge 2 \in \mathbb{Z} \mid \mathrm{MCD}(a_i, a_j) = 1 \quad \forall i, j \in [1, n] : i \ne j$ $-m := \mathrm{mcm}(a_1, \dots, a_n)$ • Th $-m = a_1 \cdot \dots \cdot a_n$

Teorema 103

• Hp $-n \in \mathbb{N}$ $-a_1, \ldots, a_n \in \mathbb{Z}_{n \geq 2}$ $-m := \operatorname{mcm}(a_1, \ldots, a_n)$ • Th $-\exists \phi \mid \phi : \mathbb{Z}_m \to \mathbb{Z}_{a_1} \times \ldots \times \mathbb{Z}_{a_n} : x \; (\operatorname{mod} \; m) \to (x \; (\operatorname{mod} \; a_1), \ldots, x \; (\operatorname{mod} \; a_n))$ $-\phi \; \text{è una funzione ben definita, ed è iniettiva}$

• Hp
$$-k \in \mathbb{N}$$

$$-n_1, \dots, n_k \in \mathbb{N} - \{0\} \mid \forall i, j \in [1, k] \quad i \neq j \implies \mathrm{MCD}(n_i, n_j) = 1$$

$$-N := mcm(n_1, ..., n_k)
-[a] \in \mathbb{Z}_N^*
-o := o([a]) in \mathbb{Z}_N^*
- \forall h \in [1, k] \quad o_h := o([a]) in \mathbb{Z}_{n_h}^*
• Th
-o = mcm(o_1, ..., o_k)$$

• !!! NON HO CAPITO UN CAZZO

Piccolo teorema di Fermat

Teorema 106

• Hp
$$- p \in \mathbb{P} \\ - [a] \in \mathbb{Z}_p - \{0\}$$
• Th
$$- [a]^{-1} = [a]^{p-2}$$

Teorema 107

• Hp
$$-p\in\mathbb{P}$$
 • Th
$$-\prod_{0< a< p}(x-a)\equiv x^{p-1}-1\ (\mathrm{mod}\ p)$$

Teorema 108

• !!! NON HO CAPITO UN CAZZO

Teorema di Eulero

- Hp
 - -G, H gruppi
 - $-\ f:G\to H$ morfismo di gruppi
- Th
 - $-G/\mathrm{ker}(f)\cong \mathrm{Im}(f),$ o alternativamente $\exists \varphi\mid \varphi:G/\mathrm{ker}(f)\to \mathrm{Im}(f):[g]\to f(g)$ isomorfismo di gruppi

Teorema 110

- Hp
 - -G gruppo |G| = 4
- Th
 - $G \cong \mathbb{Z}_4$ oppure $G \cong K_4$

Relazioni

Teorema 111

- Hp
 - $-m,n\in\mathbb{N}$
 - $-m \mid n \iff \exists p \in \mathbb{N} \mid mp = n$
- Th
 - − | è ordine parziale

Teorema 112

- Hp
 - $-a,b \in \mathbb{Z}$
 - $-a \equiv b \pmod{n} \iff m \mid b-a$ è detta congruenza modulo n
- Th
 - $-\,\equiv$ è una relazione di equivalenza

Teorema 113

- Hp
 - $-x, y \in \mathbb{Z} \mid x \equiv y \pmod{n}$
 - $-d \in \mathbb{Z} : d \mid n$
- Th
 - $-x \equiv y \pmod{d}$

- **Hp**
 - $-n \in \mathbb{N}$
 - $-[a],[b] \in \mathbb{Z}_n$

$$-d := \mathrm{MCD}(a,n)$$
• Th
$$-d \nmid b \implies \nexists [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod{n}$$

$$-d \mid b \implies \forall [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod{n} \quad x \text{ è anche tale che } \frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{n}{d}}$$

Teorema 116

• Hp -G gruppo• Th $-\forall x,y\in G \quad x\nsim y\iff [x]\cap [y]=\varnothing\vee x\sim y\iff [x]=[y]$

Teorema 117

- Th $\sim \text{induce una partizione di } G, \, \text{dunque } G = \coprod_{[x] \in X/\sim} [x]$

Teorema 118

- Hp $-G \text{ gruppo} \\ -H \subset G \text{ sottogruppo} \\ -x,y \in G$ Th
- $-\ x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza

Teorema 119

• Hp $- (\mathbb{Z}, +) \text{ anello}$ $- n \in \mathbb{N}_{\geq 2}$ $- I(n) := \{nk \mid k \in \mathbb{Z}\}$ $- a, b \in \mathbb{Z}$ • Th $- a \sim_S b \iff a \equiv b \pmod{n}$

Hp

 G gruppo
 H ⊂ G sottogruppo
 x ∈ G
 [x] = {y ∈ G | y ∼_S x}

 Th

 xH := {xh | h ∈ H} = [x]

Teorema 121

• Hp $-G \text{ gruppo} \\ -H \subset G \text{ sottogruppo} \\ -x \in G \\ • Th \\ -|xH|=|H|$

Teorema 122

• **Hp** -G gruppo $-H \subset G \text{ sottogruppo}$ $-+: G/H \times G/H \to G/H$ • **Th** -(G/H,+) è gruppo abeliano

Morfismi

Teorema 123

• **Hp** $-(G,\cdot),(H,\cdot) \text{ gruppi}$ $-1_G \text{ neutro per } G$ $-1_H \text{ neutro per } H$ $-f:G\to H \text{ morfismo}$ • **Th** $-f(1_G)=1_H$

Teorema 124

• **Hp** $- (G, \cdot), (H, \cdot) \text{ gruppi}$ $- 1_G \text{ neutro per } G$ $- 1_H \text{ neutro per } H$ $- f: G \to H \text{ morfismo}$ • **Th**

$$- f(g^{-1}) = f(g)^{-1}$$

- Hp $-f:G \to H$ isomorfismo
- $-f^{-1}: H \to G$ isomorfismo

Teorema 126

- Hp $-z \in \mathbb{C} \mid z^n = 1$ sono le radici n-esime di 1 $-\zeta := e^{i\frac{2\pi}{n}}$ $-H := \{\zeta^0, \zeta^1, \zeta^k, \dots, \zeta^{n-1}\}$ è l'insieme delle radici n-esime di 1
- $-\ (H,\cdot)\subset (\mathbb{C}-\{0\},\cdot)$ è un sottogruppo

Teorema 127

- $f: \mathbb{Z}_n \to H: [k] \to \zeta^k$
- -f isomorfismo di gruppi $(\mathbb{Z}_n,+)$ e (H,\cdot)

Teorema 128

- Hp $-(G,\cdot)$ gruppo $-f: \mathbb{Z} \to G: n \to g^n \text{ per qualche } g \in G$
- fmorfismo di gruppi $(\mathbb{Z},+)$ e (G,\cdot)

Teorema 129

 $-f:\mathbb{Z}\to\mathbb{Z}_n:k\to[k]$ -f morfismo di anelli $(\mathbb{Z},+,\cdot)$ e $(\mathbb{Z}_n,+,\cdot)$

- $-n, m \in \mathbb{Z} : n \mid m$ $-f: \mathbb{Z}_m \to \mathbb{Z}_n : x \pmod{m} \to x \pmod{n}$
- fmorfismo di anelli $(\mathbb{Z}_m,+,\cdot)$ e $(\mathbb{Z}_n,+,\cdot)$

• Hp $-G \text{ gruppo} \\ -f:G\to G:h\to g\cdot h\cdot g^{-1} \text{ per qualche } g\in G$ • Th $-f \text{ morfismo di gruppi } (G,\cdot) \text{ e } (G,\cdot)$

Teorema 132

• Hp $-G, H \text{ gruppi} \\ -f: G \to H \text{ morfismo}$ • Th $-\ker(f) \subset G \text{ è sottogruppo}$

Teorema 133

• **Hp** -G, H gruppi $-f: G \to H \text{ morfismo}$ • **Th** $-\operatorname{Im}(f) \subset G \text{ è sottogruppo}$

Teorema 134

• **Hp** -G, H gruppi $-f: G \to H \text{ morfismo}$ • **Th** $-f \text{ iniettiva} \iff \ker(f) = \{1_G\}$

Teorema 135

- **Hp** -A, B anelli $-f: A \to B \text{ morfismo di anelli}$ **Th** $-\ker(f) \text{ ideale}$
- Teorema 136
 - **Hp** -A, B anelli $-f: A \to B \text{ morfismo di anelli}$ **Th** $-\operatorname{Im}(f) \text{ sottoanello}$

Teorema 137

• Hp

-
$$f: \mathbb{Z} \to \mathbb{C} - \{0\}: k \to \zeta^k$$

- f morfismo di gruppi (\mathbb{Z} , +) e ($\mathbb{C} - \{0\}$, ·)
- $I(n)$ ideale generato da n !!! CONTROLLA SE SERVE QUESTA COSA
• Th
- $\ker(f) = I(n)$

- Hp -G, H gruppi $-\ f:G\to H$ morfismo
- $-\ker(f)$ è sottogruppo normale

Gruppi diedrali

Teorema 139

- Hp
 - $-n \in \mathbb{N}_{\geq 2}$
 - D_n insieme delle simmetrie dell'n-gono regolare

$$-|D_n| = 2n$$

Teorema 140

- Hp

 - D_n insieme delle simmetrie dell'n-gono regolare
 - $-\cdot$ è l'operazione di composizione delle simmetrie
- - $-(D_n,\cdot)$ è un gruppo

Teorema 141

- - D_2 gruppo diedrale
- - (D_2,\cdot) è l'unico gruppo diedrale abeliano

- Hp
 - D_n gruppo diedrale
- Th
 - $-D_n \hookrightarrow S_n$
 - $\ \exists X \subset S_n$ sottogruppo di $S_n \mid D_n \cong X$
 - $* D_3 \cong S_3$

- Hp $-K_4$ è il gruppo di Klein
- Th $K_4 \cong D_2$