Fonctions dérivées et applications

1^{re} Spécialité mathématiques Analyse - Cours

I. Fonctions dérivées

1 Définition

Définition :

Soit f une fonction définie sur un intervalle I.

Si, pour tout réel a de I, le nombre dérivé f'(a) existe, on dit que la fonction f est dérivable sur I.

On appelle fonction dérivée de f sur I la fonction qui, a tout réel $x \in I$ associe le réel f'(x).

On la note f^\prime

2. Dérivées des fonctions usuelles

Propriétés :			
La fonction f défini par	f définie sur \dots	f dérivable sur \dots	La fonction dérivable f' défini par
$f(x) = k \ (k \in \mathbb{R})$	\mathbb{R}	\mathbb{R}	f'(x) = 0
Fonction constante			
f(x) = ax + b			
$(a ext{ et } b ext{ r\'eels})$	\mathbb{R}	\mathbb{R}	f'(x) = a
Fonction affine			
$f(x) = x^2$	\mathbb{R}	\mathbb{R}	f'(x) = 2x
Fonction carrée			
$f(x) = x^3$	\mathbb{R}	\mathbb{R}	$f'(x) = 3x^2$
Fonction cube			
$f(x) = x^n \ (x \in \mathbb{N}^*)$	\mathbb{R}	\mathbb{R}	$f'(x) = nx^{n-1}$
Fonction puissance			
$f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	$f'(x) = \frac{-1}{x^2}$
Fonction inverse			J.
$f(x) = \frac{1}{x^n}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	$f'(x) = \frac{-n}{x^{n+1}}$
Fonction inverse d'une puissance			
$f(x) = \sqrt{x}$	$[0;+\infty[$	$]0;+\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$
Fonction racine carrée			200

II. Opérations sur les fonctions dérivables

Propriété:

Soit u et v deux fonctions dérivables sur un intervalle I, et k un nombre réel.

Les fonctions suivantes sont dérivables sur I de fonctions dérivées :

Fonction	Fonction dérivée	
Somme $u+v$	(u+v)' = u' + v'	
Produit par un réel ku	(ku)' = ku'	
$Produit\ \mathit{uv}$	(uv)' = u'v + uv'	
Quotient $\dfrac{u}{v}$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	

Propriété (admise) :

On considère un intervalle I et a et b deux réels.

Soit J l'intervalle formé des valeurs prises par ax + b lorsque x décrit l'intervalle I.

Si la fonction g est dérivable sur J, alors la fonction f définie sur I par f(x) = g(ax + b) est dérivable sur I et, pour tout réel x de I, on a $f'(x) = a \times g'(ax + b)$.

III. Application de la dérivation

1. Étude des variations d'une fonction

Théorème :

Soit f une fonction dérivable sur un intervalle I, de fonction dérivée f'.

- Si f est croissante sur I, alors f' est positive sur I
- ullet Si f est décroissante sur I, alors f' est négative sur I
- Si f est constante sur I, alors f' est nulle sur I

Théorème réciproque (admis) :

Soit f une fonction dérivable sur un intervalle I, de fonction dérivée f'.

- ullet Si f' est strictement positive sur I, sauf pour un nombre fini de réel où elle s'annule, alors f est strictement croissante sur I
- ullet Si f' est strictement négative sur I, sauf pour un nombre fini de réel où elle s'annule, alors f est strictement décroissante sur I
- Si f' est nulle sur I, alors f est constante sur I

2. Étude des extrema d'une fonction

Définition:

Soit f une fonction définie sur un intervalle I et c un réel de I et qui n'est pas une borne de I.

Dire que f(c) est un maximum local de f signifie qu'il existe deux réels a et b dans I tels que $c \in]a;b[$ et que pour tout réel $x \in]a;b[$, $f(x) \leq f(c)$.

Dire que f(c) est un minimum local de f signifie qu'il existe deux réels a et b dans I tels que $c \in]a;b[$ et que pour tout réel $x \in]a;b[$, $f(x) \geq f(c)$.

Un extremum local est un minimum ou un maximum local.

Théorème de la condition nécessaire d'un extremum local (admis) :

Soit f une fonction dérivable sur un intervalle ouvert I et a un réel de I.

Si f présente un extremum local en a alors f'(a) = 0.

Remarque: La réciproque est fausse. En effet, pour f: $x\mapsto x^3$ on a $f:x\mapsto 3x^2$ donc f'(0)=0 mais f n'admet pas d'extremum local en O.

Théorème de la condition suffisante sur l'existence d'un extremum local : :

Soit f une fonction dérivable sur un intervalle ouvert I, de dérivée f' et $a \in I$. Si la dérivée f' s'annule en a en changeant de signe en a, alors la fonction f admet un extremum local en a.