Phosphorylation of Synthetic Peptides by Human DNA-PK

Phosphorylation of Synthetic Peptides by Purified Human DNA-PK

Phosphorylation of Synthetic Peptides by Human DNA-PK

Artificial DNA-PK Substrates

FIGURE 5B

Expressed Prot in Product of pT7HPOU1

pT7HPOU1: Expression Vector for Human Oct-1 POU Domain with His6

leader

T7HPOU1 5005 bases, circular

Lab Strain: #236 = pT7HPOU1/DH5[alpha] Lab Strain: #237 = pT7HPOU1/BL21(DE3)

Plasmid Construction:

Vector: pT7HIS2 (pET-3 with His6 leader and T7 gene 2.5)

Cut with Nco I and BamH I

Insert: POU domain from pET11c-OCT1POU (CWA Strain #234) from

Winship Herr, Cold Spring Harbor Laboratory. POU domain DNA was made by PCR using primers #761 and #430 (pBR322 EcoR I site). PCR fragment was cut with NcoI and BamHI, purified, and inserted in similarly cut

pT7HIS2 vector (also called pT7AdEP-DBP).

PREDICTED PROTEIN SEQUENCE OF EXPRESSION PRODUCT Segment: 4469-5005

(SEQ ID NO:59)

Composition

8	Ala	7	Gln	18	Leu	18	Ser
12	Arg	17	Glu	15	Lys	9	Thr
11	Asn	11	Gly	8	Met	2	Trp
6	Asp	6	His	8	Phe	1	Tyr
2	Cys	9	Ile	6	Pro	4	Val

Mol. wt. unmod. chain = 20,352 Number of residues = 178

Met Ala Ser Met Thr Gly His His His His His Gly Met Ser Gly
1 5 15

Gly Met Glu Glu Pro Ser Asp Leu Glu Glu Leu Glu Gln Phe Ala Lys
20 25 30

Thr Phe Lys Gln Arg Arg Ile Lys Leu Gly Phe Thr Gln Gly Asp Val

Gly Leu Ala Met Gly Lys Leu Tyr Gly Asn Asp Phe Ser Gln Thr Thr 50 55 60

. . . .

FIGURE 5B (Continued)

(SEQ ID NO:59)

Ile Ser Arg Phe Glu Ala Leu Asn Leu Ser Phe Lys Asn Met Cys Lys 70 75 Leu Lys Phe Leu Leu Glu Lys Trp Leu Asn Asp Ala Glu Asn Leu Ser Ser Asp Ser Ser Leu Ser Ser Pro Ser Ala Leu Asn Ser Pro Gly Ile 105 Glu Gly Leu Ser Arg Arg Arg Lys Lys Arg Thr Ser Ile Glu Thr Asn 125 115 Ile Arg Val Leu Glu Lys Ser Phe Leu Glu Asn Gln Lys Pro Thr Ser 135 Glu Glu Ile Thr Met Ile Ala Asp Gln Leu Asn Met Glu Lys Glu Val 150 155 Ile Arg Val Trp Phe Cys Asn Arg Arg Gln Lys Glu Lys Arg Ile Asn 165 170 175 Pro

Reference: Anderson, C. W., and S. P. Lees-Miller. 1992. The nuclear serine/threonine protein kinase DNA-PK. Crit. Rev. Eukaryotic Gene Express. 2, 283-314.

Figure 5C

NUCLEOTIDE SEQUENCE OF pT7HPOU1

GATCCACAGG	ACGGGTGTGG	TCGCCATGAT	CGCGTAGTCG	ATAGTGGCTC	CAAGTAGCGA	60
AGCGAGCAGG	ACTGGGCGGC	GGCCAAAGCG	GTCGGACAGT	GCTCCGAGAA	CGGGTGCGCA	120
TAGAAATTGC	ATCAACGCAT	ATAGCGCTAG	CAGCACGCCA	TAGTGACTGG	CGATGCTGTC	180
GGAATGGACG	ATATCCCGCA	AGAGGCCCGG	CAGTACCGGC	ATAACCAAGC	CTATGCCTAC	240
AGCATCCAGG	GTGACGGTGC	CGAGGATGAC	GATGAGCGCA	TTGTTAGATT	TCATACACGG	300
TGCCTGACTG	CGTTAGCAAT	TTAACTGTGA	TAAACTACCG	CATTAAAGCT	TATCGATGAT	360
AAGCTGTCAA	ACATGAGAAT	TCTTGAAGAC	GAAAGGGCCT	CGTGATACGC	CTATTTTTAT	420
AGGTTAATGT	CATGATAATA	ATGGTTTCTT	AGACGTCAGG	TGGCACTTTT	CGGGGAAATG	480
TGCGCGGAAC	CCCTATTTGT	TTATTTTTCT	AAATACATTC	AAATATGTAT	CCGCTCATGA	540
GACAATAACC	CTGATAAATG	CTTCAATAAT	ATTGAAAAAG	GAAGAGTATG	AGTATTCAAC	600
ATTTCCGTGT	CGCCCTTATT	CCCTTTTTTG	CGGCATTTTG	CCTTCCTGTT	TTTGCTCACC	660
CAGAAACGCT	GGTGAAAGTA	AAAGATGCTG	AAGATCAGTT	GGGTGCACGA	GTGGGTTACA	720
TCGAACTGGA	TCTCAACAGC	GGTAAGATCC	TTGAGAGTTT	TCGCCCCGAA	GAACGTTTTC	780
CAATGATGAG	CACTTTTAAA	GTTCTGCTAT	GTGGCGCGGT	ATTATCCCGT	GTTGACGCCG	840
GGCAAGAGCA	ACTCGGTCGC	CGCATACACT	ATTCTCAGAA	TGACTTGGTT	GAGTACTCAC	900
CAGTCACAGA	AAAGCATCTT	ACGGATGGCA	TGACAGTAAG	AGAATTATGC	AGTGCTGCCA	960
TAACCATGAG	TGATAACACT	GCGGCCAACT	TACTTCTGAC	AACGATCGGA	GGACCGAAGG	1020
AGCTAACCGC	TTTTTTGCAC	AACATGGGGG	ATCATGTAAC	TCGCCTTGAT	CGTTGGGAAC	1080
CGGAGCTGAA	TGAAGCCATA	CCAAACGACG	AGCGTGACAC	CACGATGCCT	GCAGCAATGG	1140
CAACAACGTT	GCGCAAACTA	TTAACTGGCG	AACTACTTAC	TCTAGCTTCC	CGGCAACAAT	1200
TAATAGACTG	GATGGAGGCG	GATAAAGTTG	CAGGACCACT	TCTGCGCTCG	GCCCTTCCGG	1260
CTGGCTGGTT	TATTGCTGAT	AAATCTGGAG	CCGGTGAGCG	TGGGTCTCGC	GGTATCATTG	1320
CAGCACTGGG	GCCAGATGGT	AAGCCCTCCC	GTATCGTAGT	TATCTACACG	ACGGGGAGTC	1380

AGGCAACTAT	GGATGAACGA	AATAGACAGA	TCGCTGAGAT	AGGTGCCTCA	CTGATTAAGC	1440
ATTGGTAACT	GTCAGACCAA	GTTTACTCAT	ATATACTTTA	GATTGATTTA	AAACTTCATT	1500
TTTAATTTAA	AAGGATCTAG	GTGAAGATCC	TTTTTGATAA	TCTCATGACC	AAAATCCCTT	1560
AACGTGAGTT	TTCGTTCCAC	TGAGCGTCAG	ACCCCGTAGA	AAAGATCAAA	GGATCTTCTT	1620
GAGATCCTTT	TTTTCTGCGC	GTAATCTGCT	GCTTGCAAAC	AAAAAAACCA	CCGCTACCAG	1680
CGGTGGTTTG	TTTGCCGGAT	CAAGAGCTAC	CAACTCTTTT	TCCGAAGGTA	ACTGGCTTCA	1740
GCAGAGCGCA	GATACCAAAT	ACTGTCCTTC	TAGTGTAGCC	GTAGTTAGGC	CACCACTTCA	1800
AGAACTCTGT	AGCACCGCCT	ACATACCTCG	CTCTGCTAAT	CCTGTTACCA	GTGGCTGCTG	1860
CCAGTGGCGA	TAAGTCGTGT	CTTACCGGGT	TGGACTCAAG	ACGATAGTTA	CCGGATAAGG	1920
CGCAGCGGTC	GGGCTGAACG	GGGGGTTCGT	GCACACAGCC	CAGCTTGGAG	CGAACGACCT	1980
ACACCGAACT	GAGATACCTA	CAGCGTGAGC	ATTGAGAAAG	CGCCACGCTT	CCCGAAGGGA	2040
GAAAGGCGGA	CAGGTATCCG	GTAAGCGGCA	GGGTCGGAAC	AGGAGAGCGC	ACGAGGGAGC	2100
TTCCAGGGGG	AAACGCCTGG	TATCTTTATA	GTCCTGTCGG	GTTTCGCCAC	CTCTGACTTG	2160
AGCGTCGATT	TTTGTGATGC	TCGTCAGGGG	GGCGGAGCCT	ATGGAAAAAC	GCCAGCAACG	2220
CGGCCTTTTT	ACGGTTCCTG	GCCTTTTGCT	GGCCTTTTGC	TCACATGTTC	TTTCCTGCGT	2280
TATCCCCTGA	TTCTGTGGAT	AACCGTATTA	CCGCCTTTGA	GTGAGCTGAT	ACCGCTCGCC	2340
GCAGCCGAAC	GACCGAGCGC	AGCGAGTCAG	TGAGCGAGGA	AGCGGAAGAG	CGCCTGATGC	2400
GGTATTTTCT	CCTTACGCAT	CTGTGCGGTA	TTTCACACCG	CATATATGGT	GCACTCTCAG	2460
TACAATCTGC	TCTGATGCCG	CATAGTTAAG	CCAGTATACA	CTCCGCTATC	GCTACGTGAC	2520
TGGGTCATGG	CTGCGCCCCG	ACACCCGCCA	ACACCCGCTG	ACGCGCCCTG	ACGGGCTTGT	2580
CTGCTCCCGG	CATCCGCTTA	CAGACAAGCT	GTGACCGTCT	CCGGGAGCTG	CATGTGTCAG	2640
AGGTTTTCAC	CGTCATCACC	GAAACGCGCG	AGGCAGCTGC	GGTAAAGCTC	ATCAGCGTGG	2700
TCGTGAAGCG	ATTCACAGAT	GTCTGCCTGT	TCATCCGCGT	CCAGCTCGTT	GAGTTTCTCC	2760

AGAAGCGTTA	ATGTCTGGCT	TCTGATAAAG	CGGGCCATGT	TAAGGGCGGT	TTTTTCCTGT	2820
TTGGTCACTG	ATGCCTCCGT	GTAAGGGGGA	TTTCTGTTCA	TGGGGGTAAT	GATACCGATG	2880
AAACGAGAGA	GGATGCTCAC	GATACGGGTT	ACTGATGATG	AACATGCCCG	GTTACTGGAA	2940
CGTTGTGAGG	GTAAACAACT	GGCGGTATGG	ATGCGGCGGG	ACCAGAGAAA	AATCACTCAG	3000
GGTCAATGCC	AGCGCTTCGT	TAATACAGAT	GTAGGTGTTC	CACAGGGTAG	CCAGCAGCAT	3060
CCTGCGATGC	AGATCCGGAA	CATAATGGTG	CAGGGCGCTG	ACTTCCGCGT	TTCCAGACTT	3120
TACGAAACAC	GGAAACCGAA	GACCATTCAT	GTTGTTGCTC	AGGTCGCAGA	CGTTTTGCAG	3180
CAGCAGTCGC	TTCACGTTCG	CTCGCGTATC	GGTGATTCAT	TCTGCTAACC	AGTAAGGCAA	3240
CCCCGCCAGC	CTAGCCGGGT	CCTCAACGAC	AGGAGCACGA	TCATGCGCAC	CCGTGGCCAG	3300
GACCCAACGC	TGCCCGAGAT	GCGCCGCGTG	CGGCTGCTGG	AGATGGCGGA	CGCGATGGAT	3360
ATGTTCTGCC	AAGGGTTGGT	TTGCGCATTC	ACAGTTCTCC	GCAAGAATTG	ATTGGCTCCA	3420
ATTCTTGGAG	TGGTGAATCC	GTTAGCGAGG	TGCCGCCGGC	TTCCATTCAG	GTCGAGGTGG	3480
CCCGGCTCCA	TGCACCGCGA	CGCAACGCGG	GGAGGCAGAC	AAGGTATAGG	GCGGCGCCTA	3540
CAATCCATGC	CAACCCGTTC	CATGTGCTCG	CCGAGGCGGC	ATAAATCGCC	GTGACGATCA	3600
GCGGTCCAGT	GATCGAAGTT	AGGCTGGTAA	GAGCCGCGAG	CGATCCTTGA	AGCTGTCCCT	3660
GATGGTCGTC	ATCTACCTGC	CTGGACAGCA	TGGCCTGCAA	CGCGGGCATC	CCGATGCCGC	3720
CGGAAGCGAG	AAGAATCATA	ATGGGGAAGG	CCATCCAGCC	TCGCGTCGCG	AACGCCAGCA	3780
AGACGTAGCC	CAGCGCGTCG	GCCGCCATGC	CGGCGATAAT	GGCCTGCTTC	TCGCCGAAAC	3840
GTTTGGTGGC	GGGACCAGTG	ACGAAGGCTT	GAGCGAGGGC	GTGCAAGATT	CCGAATACCG	3900
CAAGCGACAG	GCCGATCATC	GTCGCGCTCC	AGCGAAAGCG	GTCCTCGCCG	AAAATGACCC	3960
AGAGCGCTGC	CGGCACCTGT	CCTACGAGTT	GCATGATAAA	GAAGACAGTC	ATAAGTGCGG	4020
CGACGATAGT	CATGCCCCGC	GCCCACCGGA	AGGAGCTGAC	TGGGTTGAAG	GCTCTCAAGG	4080
GCATCGGTCG	ACGCTCTCCC	TTATGCGACT	CCTGCATTAG	GAAGCAGCCC	AGTAGTAGGT	4140

TGA	GGCC	GTT (GAGC	ACCG	CC G	CCGC	AAGG	A ATO	GGTG	CATG	CAA	GGAG	ATG (GCGC	CCAACA	4200
GTC	cccc	GC ·	CACG	GGGC	CT G	CCAC	CATAC	c cci	ACGC	CGAA	ACA	AGCG	CTC I	ATGA	GCCCGA	4260
AGT	GGCGZ	AGC	CCGA'	rctt(cc c	CATC	GGTG	A TG	rcgg	CGAT	ATA	GCG	CCA (GCAA	CCGCAC	4320
CTG'	rggc	GCC (GGTG	ATGC	CG G	CCAC	GATGO	C GT	CCGG	CGTA	GAG	GATC	GAG A	ATCT	CGATCC	4380
CGC	GAAA:	CTA .	ATAC	GACT	CA C	PATA	GGA	AC	CACA	ACGG	TTT	CCT	CTA (GAAA:	TTTAAT	4440
TGT'	rtaa(CTT '	TAAG	AAGG	AG A	CATA O	CAT A	ATG (GCT !	rct A	ATG A	ACT (GGT (CAC (CAC	4492
CAC	CAT	CAC	CAT	GGT	ATG	AGC	GGC	GGC	ATG	GAG	GAG	CCC	AGT	GAC	CTT	4540
GAG	GAG	CTC	GAG	CAG	TTT	GCC	AAG	ACC	TTC	AAA	CAA	AGA	CGA	ATC	AAA	4588
CTT	GGA	TTC	ACT	CAG	GGT	GAT	GTT	GGG	CTC	GCT	ATG	GGG	AAA	CTA	TAT	4636
GGA	AAT	GAC	TTC	AGC	CAA	ACT	ACC	ATC	TCT	CGA	TTT	GAA	GCC	TTG	AAC	4684
CTC	AGC	TTT	AAG	AAC	ATG	TGC	AAG	TTG	AAG	CCA	CTT	TTA	GAG	AAG	TGG	4732
CTA	AAT	GAT	GCA	GAG	AAC	CTC	TCA	TCT	GAT	TCG	TCC	CTC	TCC	AGC	CCA	4780
AGT	GCC	CTG	AAT	TCT	CCA	GGA	ATT	GAG	GGC	TTG	AGC	AGG	CGC	AGG	AAG	4828
AAA	CGC	ACC	AGC	ATA	GAG	ACC	AAC	ATC	CGT	GTG	GCC	TTA	GAG	AAG	AGT	4876
TTC	TTG	GAG	AAT	CAA	AAG	CCT	ACC	TCG	GAA	GAG	ATC	ACT	ATG	ATT	GCT	4924
GAT	CAG	CTC	AAT	ATG	GAA	AAA	GAG	GTG	ATT	CGT	GTT	TGG	TTC	TGT	AAC	4972
CGT	CGA	CAG	AAA	GAA	AAA	AGA	АТС	AAC	CCA	TAG						5005

FIGURE 8B

Wild-Type Artificial DNA-PK Substrat 1

Lab Stain: #349 = p349SUB1 in DH5[alpha] Lab Strain #351 = p349SUB1 in BL21(DE3)

Plasmid Construction:

VECTOR: p410 = derivative pET-28a (Novagen) without BglII site INSERT: Substrate encoding XbaI-BamHI fragment was excised from

p345 with XbaI and BamHI and cloned into XbaI and BamHI

22 Leu

16 Lys

18 Ser

9 Thr

95

110

cleaved p410.

8 Ala

85

100

12 Arg

ANTIBIOTIC SELECTION: 50 ug/ml Kanamycin

PREDICTED SEQUENCE POUSUB1 ARTIFICIAL DNA-PK SUBSTRATE

Segment: 5258-5860

(SEQ ID NO. 61)

Composition

9 Gln

24 Glu

		1	1 Asi 9 Asi 2 Cy	p		11 G 6 H 9 I	is		્9 :	Met Phe Pro		3 1	Trp Tyr Val		
Mol. wt. unmod. chain = 23,126									Number of residues = 201						L
Met 1	Pro	Glu	Glu	Ser 5	Gln	Glu	Thr	Phe	Glu 10	Asp	Leu	Trp	Lys	Leu 15	Leu
Pro	Gly	His	His 20	His	His	His	His	Gly 25	Met	Ser	Gly	Gly	Met 30	Glu	Glu
Pro	Ser	Asp 35	Leu	Glu	Glu	Leu	Glu 40	Gln	Phe	Ala	Lys	Thr 45	Phe	Lys	Gln
Arg	Arg 50	Ile	Lys	Leu	Gly	Phe 55	Thr	Gln	Gly	Asp	Val 60	Gly	Leu	Ala	Met
Gly 65	Lys	Leu	Tyr	Gly	Asn 70	Asp	Phe	Ser	Gln	Thr 75	Thr	Ile	Ser	Arg	Phe 80
Glu	Ala	Leu	Asn	Leu	Ser	Phe	Lys	Asn	Met	Cys	Lys	Leu	Lys	Pro	Leu

Leu Glu Lys Trp Leu Asn Asp Ala Glu Asn Leu Ser Ser Asp Ser Ser

105

90

FIGURE 8B (Continued)

(SEQ ID NO:61)

```
Leu Ser Ser Pro Ser Ala Leu Asn Ser Pro Gly Ile Glu Gly Leu Ser
        115
                             120
Arg Arg Arg Lys Lys Arg Thr Ser Ile Glu Thr Asn Ile Arg Val Ala
                         135
                                             140
Leu Glu Lys Ser Phe Leu Glu Asn Gln Lys Pro Thr Ser Glu Glu Ile
                    150
                                         155
Thr Met Ile Ala Asp Gln Leu Asn Met Glu Lys Glu Val Ile Arg Val
                165
                                                         175
Trp Phe Cys Asn Arg Arg Gln Lys Glu Lys Arg Ile Asn Pro Gln Pro
            180
                                 185
Glu Leu Ala Pro Glu Asp Pro Glu Asp
        195
```

```
NOTES:
```

Figure 8C

NUCLEOTIDE SEQUENCE OF p349SUB1

CGAGCTCCGT	CGACAAGCTT	GCGGCCGCAC	TCGAGCACCA	CCACCACCAC	CACTGAGATC	60
CGGCTGCTAA	CAAAGCCCGA	AAGGAAGCTG	AGTTGGCTGC	TGCCACCGCT	GAGCAATAAC	120
TAGCATAACC	CCTTGGGGCC	TCTAAACGGG	TCTTGAGGGG	TTTTTTGCTG	AAAGGAGGAA	180
CTATATCCGG	ATTGGCGAAT	GGGACGCGCC	CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	240
GGTGGTTACG	CGCAGCGTGA	CCGCTACACT	TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	300
TTTCTTCCCT	TCCTTTCTCG	CCACGTTCGC	CGGCTTTCCC	CGTCAAGCTC	TAAATCGGGG	360
GCTCCCTTTA	GGGTTCCGAT	TTAGTGCTTT	ACGGCACCTC	GACCCCAAAA	AACTTGATTA	420
GGGTGATGGT	TCACGTAGTG	GGCCATCGCC	CTGATAGACG	GTTTTTCGCC	CTTTGACGTT	480
GGAGTCCACG	ТТСТТТААТА	GTGGACTCTT	GTTCCAAACT	GGAACAACAC	TCAACCCTAT	540
CTCGGTCTAT	TCTTTTGATT	TATAAGGGAT	TTTGCCGATT	TCGGCCTATT	GGTTAAAAAA	600
TGAGCTGATT	TAACAAAAAT	TTAACGCGAA	TTTTAACAAA	ATATTAACGT	TTACAATTTC	660
AGGTGGCACT	TTTCGGGGAA	ATGTGCGCGG	AACCCCTATT	TGTTTATTTT	TCTAAATACA	720
TTCAAATATG	TATCCGCTCA	TGAATTAATT	CTTAGAAAAA	CTCATCGAGC	ATCAAATGAA	780
ACTGCAATTT	ATTCATATCA	GGATTATCAA	TACCATATTT	TTGAAAAAGC	CGTTTCTGTA	840
ATGAAGGAGA	AAACTCACCG	AGGCAGTTCC	ATAGGATGGC	AAGATCCTGG	TATCGGTCTG	900
CGATTCCGAC	TCGTCCAACA	TCAATACAAC	CTATTAATTT	CCCCTCGTCA	AAAATAAGGT	960
TATCAAGTGA	GAAATCACCA	TGAGTGACGA	CTGAATCCGG	TGAGAATGGC	AAAAGTTTAT	1020
GCATTTCTTT	CCAGACTTGT	TCAACAGGCC	AGCCATTACG	CTCGTCATCA	AAATCACTCG	1080
CATCAACCAA	ACCGTTATTC	ATTCGTGATT	GCGCCTGAGC	GAGACGAAAT	ACGCGATCGC	1140
TGTTAAAAGG	ACAATTACAA	ACAGGAATCG	AATGCAACCG	GCGCAGGAAC	ACTGCCAGCG	1200
CATCAACAAT	ATTTTCACCT	GAATCAGGAT	ATTCTTCTAA	TACCTGGAAT	GCTGTTTTCC	1260
CGGGGATCGC	AGTGGTGAGT	AACCATGCAT	CATCAGGAGT	ACGGATAAAA	TGCTTGATGG	1320
TCGGAAGAGG	CATAAATTCC	GTCAGCCAGT	TTAGTCTGAC	CATCTCATCT	GTAACATCAT	1380

TGGCAACGCT	ACCTTTGCCA	TGTTTCAGAA	ACAACTCTGG	CGCATCGGGC	TTCCCATACA	1440
ATCGATAGAT	TGTCGCACCT	GATTGCCCGA	CATTATCGCG	AGCCCATTTA	TACCCATATA	1500
AATCAGCATC	CATGTTGGAA	TTTAATCGCG	GCCTAGAGCA	AGACGTTTCC	CGTTGAATAT	1560
GGCTCATAAC	ACCCCTTGTA	TTACTGTTTA	TGTAAGCAGA	CAGTTTTATT	GTTCATGACC	1620
AAAATCCCTT	AACGTGAGTT	TTCGTTCCAC	TGAGCGTCAG	ACCCCGTAGA	AAAGATCAAA	1680
GGATCTTCTT	GAGATCCTTT	TTTTCTGCGC	GTAATCTGCT	GCTTGCAAAC	АААААААССА	1740
CCGCTACCAG	CGGTGGTTTG	TTTGCCGGAT	CAAGAGCTAC	CAACTCTTTT	TCCGAAGGTA	1800
ACTGGCTTCA	GCAGAGCGCA	GATACCAAAT	ACTGTCCTTC	TAGTGTAGCC	GTAGTTAGGC	1860
CACCACTTCA	AGAACTCTGT	AGCACCGCCT	ACATACCTCG	CTCTGCTAAT	CCTGTTACCA	1920
GTGGCTGCTG	CCAGTGGCGA	TAAGTCGTGT	CTTACCGGGT	TGGACTCAAG	ACGATAGTTA	1980
CCGGATAAGG	CGCAGCGGTC	GGGCTGAACG	GGGGGTTCGT	GCACACAGCC	CAGCTTGGAG	2040
CGAACGACCT	ACACCGAACT	GAGATACCTA	CAGCGTGAGC	TATGAGAAAG	CGCCACGCTT	2100
CCCGAAGGGA	GAAAGGCGGA	CAGGTATCCG	GTAAGCGGCA	GGGTCGGAAC	AGGAGAGCGC	2160
ACGAGGGAGC	TTCCAGGGGG	AAACGCCTGG	TATCTTTATA	GTCCTGTCGG	GTTTCGCCAC	2220
CTCTGACTTG	AGCGTCGATT	TTTGTGATGC	TCGTCAGGGG	GGCGGAGCCT	ATGGAAAAAC	2280
GCCAGCAACG	CGGCCTTTTT	ACGGTTCCTG	GCCTTTTGCT	GGCCTTTTGC	TCACATGTTC	2340
TTTCCTGCGT	TATCCCCTGA	TTCTGTGGAT	AACCGTATTA	CCGCCTTTGA	GTGAGCTGAT	2400
ACCGCTCGCC	GCAGCCGAAC	GACCGAGCGC	AGCGAGTCAG	TGAGCGAGGA	AGCGGAAGAG	2460
CGCCTGATGC	GGTATTTTCT	CCTTACGCAT	CTGTGCGGTA	TTTCACACCG	CATATATGGT	2520
GCACTCTCAG	TACAATCTGC	TCTGATGCCG	CATAGTTAAG	CCAGTATACA	CTCCGCTATC	2580
GCTACGTGAC	TGGGTCATGG	CTGCGCCCCG	ACACCCGCCA	ACACCCGCTG	ACGCGCCCTG	2640
ACGGGCTTGT	CTGCTCCCGG	CATCCGCTTA	CAGACAAGCT	GTGACCGTCT	CCGGGAGCTG	2700
CATGTGTCAG	AGGTTTTCAC	CGTCATCACC	GAAACGCGCG	AGGCAGCTGC	GGTAAAGCTC	2760

ATCAGCGTGG	TCGTGAAGCG	ATTCACAGAT	GTCTGCCTGT	TCATCCGCGT	CCAGCTCGTT	2820
GAGTTTCTCC	AGAAGCGTTA	ATGTCTGGCT	TCTGATAAAG	CGGGCCATGT	TAAGGCCGGT	2880
TTTTTCCTGT	TTGGTCACTG	ATGCCTCCGT	GTAAGGGGGA	TTTCTGTTCA	TGGGGGTAAT	2940
GATACCGATG	AAACGAGAGA	GGATGCTCAC	GATACGGGTT	ACTGATGATG	AACATGCCCG	3000
GTTACTGGAA	CGTTGTGAGG	GTAAACAACT	GGCGGTATGG	ATGCGGCGGG	ACCAGAGAAA	3060
AATCACTCAG	GGTCAATGCC	AGCGCTTCGT	TAATACAGAT	GTAGGTGTTC	CACAGGGTAG	3120
CCAGCAGCAT	CCTGCGATGC	AGATCCGGAA	CATAATGGTG	CAGGGCGCTG	ACTTCCGCGT	3180
TTCCAGACTT	TACGAAACAC	GGAAACCGAA	GACCATTCAT	GTTGTTGCTC	AGGTCGCAGA	3240
CGTTTTGCAG	CAGCAGTCGC	TTCACGTTCG	CTCGCGTATC	GGTGATTCAT	TCTGCTAACC	3300
AGTAAGGCAA	CCCCGCCAGC	CTAGCCGGGT	CCTCAACGAC	AGGAGCACGA	TCATGCGCAC	3360
CCGTGGGGCC	GCCATGCCGG	CGATAATGGC	CTGCTTCTCG	CCGAAACGTT	TGGTGGCGGG	3420
ACCAGTGACG	AAGGCTTGAG	CGAGGGCGTG	CAAGATTCCG	AATACCGCAA	GCGACAGGCC	3480
GATCATCGTC	GCGCTCCAGC	GAAAGCGGTC	CTCGCCGAAA	ATGACCCAGA	GCGCTGCCGG	3540
CACCTGTCCT	ACGAGTTGCA	TGATAAAGAA	GACAGTCATA	AGTGCGGCGA	CGATAGTCAT	3600
GCCCGCGCC	CACCGGAAGG	AGCTGACTGG	GTTGAAGGCT	CTCAAGGGCA	TCGGTCGAGA	3660
TCCCGGTGCC	TAATGAGTGA	GCTAACTTAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	3720
CCAGTCGGGA	AACCTGTCGT	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	3780
CGGTTTGCGT	ATTGGGCGCC	AGGGTGGTTT	TTCTTTTCAC	CAGTGAGACG	GGCAACAGCT	3840
GATTGCCCTT	CACCGCCTGG	CCCTGAGAGA	GTTGCAGCAA	GCGGTCCACG	CTGGTTTGCC	3900
CCAGCAGGCG	AAAATCCTGT	TTGATGGTGG	TTAACGGCGG	GATATAACAT	GAGCTGTCTT	3960
CGGTATCGTC	GTATCCCACT	ACCGAGATAT	CCGCACCAAC	GCGCAGCCCG	GACTCGGTAA	4020
TGGCGCGCAT	TGCGCCCAGC	GCCATCTGAT	CGTTGGCAAC	CAGCATCGCA	GTGGGAACGA	4080
TGCCCTCATT	CAGCATTTGC	ATGGTTTGTT	GAAAACCGGA	CATGGCACTC	CAGTCGCCTT	4140

CCCGTTCCGC	TATCGGCTGA	ATTTGATTGC	GAGTGAGATA	TTTATGCCAG	CCAGCCAGAC	4200
GCAGACGCGC	CGAGACAGAA	CTTAATGGGC	CCGCTAACAG	CGCGATTTGC	TGGTGACCCA	4260
ATGCGACCAG	ATGCTCCACG	CCCAGTCGCG	TACCGTCTTC	ATGGGAGAAA	ATAATACTGT	4320
TGATGGGTGT	CTGGTCAGAG	ACATCAAGAA	ATAACGCCGG	AACATTAGTG	CAGGCAGCTT	4380
CCACAGCAAT	GGCATCCTGG	TCATCCAGCG	GATAGTTAAT	GATCAGCCCA	CTGACGCGTT	4440
GCGCGAGAAG	ATTGTGCACC	GCCGCTTTAC	AGGCTTCGAC	GCCGCTTCGT	TCTACCATCG	4500
ACACCACCAC	GCTGGCACCC	AGTTGATCGG	CGCGAGATTT	AATCGCCGCG	ACAATTTGCG	4560
ACGGCGCGTG	CAGGGCCAGA	CTGGAGGTGG	CAACGCCAAT	CAGCAACGAC	TGTTTGCCCG	4620
CCAGTTGTTG	TGCCACGCGG	TTGGGAATGT	AATTCAGCTC	CGCCATCGCC	GCTTCCACTT	4680
TTTCCCGCGT '	TTTCGCAGAA	ACGTGGCTGG	CCTGGTTCAC	CACGCGGGAA	ACGGTCTGAT	4740
AAGAGACACC	GGCATACTCT	GCGACATCGT	ATAACGTTAC	TGGTTTCACA	TTCACCACCC	4800
TGAATTGACT	CTCTTCCGGG	CGCTATCATG	CCATACCGCG	AAAGGTTTTG	CGCCATTCGA	4860
TGGTGTCCGG	GATCTCGACG	CTCTCCCTTA	TGCGACTCCT	GCATTAGGAA	GCAGCCCAGT	4920
AGTAGGTTGA	GGCCGTTGAG	CACCGCCGCC	GCAAGGAATG	GTGCATGCAA	GGAGATGGCG	4980
CCCAACAGTC	CCCCGGCCAC	GGGGCCTGCC	ACCATACCCA	CGCCGAAACA	AGCGCTCATG	5040
AGCCCGAAGT (GGCGAGCCCG	ATCTTCCCCA	TCGGTGATGT	CGGCGATATA	GGCGCCAGCA	5100
ACCGCACCTG	TGGCGCCGGT	GATGCCGGCC	ACGATGCGTC	CGGCGTAGAG	GATCGAGATC	5160
GATCTCGATC	CCGCGAAATT	AATACGACTC	ACTATAGGGG	AATTGTGAGC	GGATAACAAT	5220
TCCCCTCTAG	AAGTCGACTT	TAAGAAGGAG	TACCAAG ATO	CCT GAG GA	AA AGT CAG	5275
GAG ACA TTC	GAA GAT CT	'A TGG AAA (CTA CTT CCT	GGT CAC CAC	C CAC CAT	5323
CAC CAT GGT	ATG AGC GG	C GGC ATG	GAG GAG CCC	AGT GAC CT	r GAG GAG	5371
CTC GAG CAG	TTT GCC AA	G ACC TTC A	AAA CAA AGA	CGA ATC AAA	A CTT GGA	5419
TTC ACT CAG	GGT GAT GT	T GGG CTC	GCT ATG GGG	AAA CTA TAT	GGA AAT	5467

GAC	110	AGC	CAA	ACI	MCC	AIC	ICI	CGA	TTT	GAA	GCC	TTG	AAC	CTC	AGC	5515
TTT	AAG	AAC	ATG	TGC	AAG	TTG	AAG	CCA	CTT	TTA	GAG	AAG	TGG	CTA	AAT	5563
GAT	GCA	GAG	AAC	CTC	TCA	TCT	GAT	TCG	TCC	CTC	TCC	AGC	CCA	AGT	GCC	5611
CTG	AAT	TCT	CCA	GGA	ATT	GAG	GGC	TTG	AGC	AGG	CGC	CGT	AAG	AAA	CGC	5659
ACC	AGC	ATA	GAG	ACC	AAC	ATC	CGT	GTG	GCC	TTA	GAG	AAG	AGT	TTC	TTG	5707
GAG	AAT	CAA	AAG	CCT	ACC	TCG	GAA	GAG	ATC	ACT	ATG	ATT	GCT	GAT	CAG	5755
CTC	AAT	ATG	GAA	AAA	GAG	GTG	ATT	CGT	GTT	TGG	TTC	TGT	AAC	CGT	CGA	5803
CAG	AAA	GAA	AAA	AGA	ATC	AAC	CCA	CAG	CCA	GAA	CTC	GCC	CCG	GAA	GAC	5851
ccc	GAG	GAT	TAGO	ATC	CGA A	\TT										5873

Phosphorylation of Recombinant Substrates by Purified Human DNA-PK

FIGURE 9

Isoelectrofocusing Analysis of Recombinant DNA-PK Substrates

