



# **Signaling and Synchronization**Fall 2020

Topic 6 **Timing Basics** 

Sameh A. Ibrahim
Ain Shams University
ICL

(Courtesy of S. Pamarti & K. Yang – UCLA, S. Palermo – TAMU, and E. Alon – UCB)

## **Outline**

#### Clocking Types

- Common Clock
- Forwarded Clock
- Embedded Clock

## Jitter Analysis

- Jitter Definitions
- Jitter Categories
- Dual Dirac Jitter Model
- System Jitter Budgeting





# The Need for Synchronization







# **Clocking Types**



#### Synchronous

- Every Participant gets same frequency and phase.
- Conventional busses, memories

#### Mesochronous

- Every participant gets same frequency but unknown phase. Requires a way to recover the phase.
- Fast memories/busses, interconnection networks

#### Plesiochronous

- Every participant gets nearly the same frequency, slowly drifting phase. CDR needed
- Widely used in high-speed links

#### Asynchronous

- Dispense with clocks altogether, use (e.g.) request/acknowledge 4-phase handshake to ensure correct sequencing of events.
- Embedded systems





# I/O Clocking Architectures

- Three basic I/O architectures
  - Common Clock (Synchronous)
  - Forwarded Clock (Source Synchronous)
  - Embedded Clock (Clock Recovery)
- These I/O architectures are used for varying applications that require different levels of I/O bandwidth.
- A processor may have one or all of these I/O types,
- Often the same circuitry can be used to emulate different I/O schemes for design reuse.





# **Synchronous Clocking Challenges**



- $t_{cq} + t_{TX} + t_{p,data} + t_{RX} + t_{setup} < T_{bit} \rightarrow \mathsf{Large} \ T_{bit}$
- This is wrong as we actually have multiple bits on line (t<sub>p,data</sub>/T<sub>bit</sub>)
- Factors affecting correct sampling by Clk<sub>2</sub>
  - Clock Skew
  - Clock Jitter
  - Waveform shape





# **An Example**



- $t_{p,data} = 2ns, t_{cq} + t_{TX} + t_{RX} + t_{setup} = 0$
- Assume square bits and  $t_{skew+jitter} = \pm 50ps$









# **Common Clock I/O Limitations**

- Difficult to control clock skew and propagation delay
- Need to have tight control of absolute delay to meet a given cycle time
- Sensitive to delay variations in on-chip circuits and board routes
- Hard to compensate for delay variations due to low correlation between on-chip and off-chip delays
- While commonly used in on-chip communication, offers limited speed in I/O applications.





# **Source Synchronous Clocking**



- Clock is sent along with the data to ease phase recovery.
- Falling edge receives data.  $t_{del} = \frac{T_{bit}}{2}$ .
- Key idea is to match clock and data paths.
- Don't need a PLL (only recovering phase), DLL is just fine.





# **Multiple Source Synchronous Links**



- To reduce overhead, clock link is shared.
- Matching become a problem.







## The Use of CDR

## CDR = Clock and Data Recovery

- Recovers clock phase and/or frequency based on data itself.
- If phase only, needs a frequency reference.
- Several advantages vs. fixed timing
  - Don't have to match delays/paths (mesochronous).
  - Allows separate crystals (plesiochronous).
- But, CDR isn't free
  - And places some requirements on data.





## **List of Circuits Needed**

#### TX PLL

#### **Multi-Channel Serial Link System**



Spread-Spectrum Clock Generator

TX Clock Distribution

#### CDR

- Per-channel PLL-based
- Dual-loop w/ Global PLL& Local DLL/PI
- Local Phase-Rotator PLLs
- Global PLL requires RX clock distribution to individual channels





## **Outline**

## Clocking Types

- Common Clock
- Forwarded Clock
- Embedded Clock

## Jitter Analysis

- Jitter Definitions
- Jitter Categories
- Dual Dirac Jitter Model
- System Jitter Budgeting





# **Eye Diagram and Spec Mask**

- Links must have margin in both the voltage AND timing domain for proper operation.
- For independent design (interoperability) of TX and RX, a spec eye mask is used.







## **Jitter Definitions**

- Jitter can be defined as "the short-term variation of a signal with respect to its ideal position in time"
- Jitter measurements
  - Period Jitter (J<sub>PER</sub>)
    - Time difference between measured period and ideal period
    - The easiest and most direct measurement to make
  - Cycle to Cycle Jitter (J<sub>CC</sub>)
    - Time difference between two adjacent clock periods
    - Of interest because it shows the instantaneous dynamics a clockrecovery PLL.
  - Accumulated Jitter (J<sub>AC</sub>) (Time Interval Error TIE)
    - Time difference between measured clock and ideal trigger clock
    - For this measurement to be performed, the ideal edges must be known or estimated.
    - It shows the cumulative effect that even a small amount of period jitter can have over time.





## **Jitter Statistical Parameters**

#### Mean Value

- Can be interpreted as a fixed timing offset or "skew".
- Generally not important, as usually can be corrected for.

#### RMS Jitter

Useful for characterizing random component of jitter

#### Peak-to-Peak Jitter

- Function of both deterministic (bounded) and random (unbounded) jitter components
- Must be quoted at a given BER to account for random (unbounded) jitter



#### Random jitter (RJ)

Smears each trajectroy according to the same Gaussian distribution









# **Jitter Calculation Examples**



- J<sub>PER</sub> = time difference between measured period and ideal period
- J<sub>CC</sub> = time difference between two adjacent clock periods
- J<sub>AC</sub> = time difference between measured clock and ideal trigger clock





## **Phase Noise**



$$x(t) = A\cos\left(\omega_0 t + \phi(t)\right)$$

- Widely used in wireless communication circuit design
- $\emptyset(t)$  is the phase noise
  - Measured indirectly by measuring the power spectrum of x(t).
  - Spectrum analyzers or dedicated phase noise measurement equipment are used.
- Low noise assumption  $\rightarrow |\Phi(t)| << 2\pi$

$$x(t) \approx A\cos(\omega_0 t) - \phi(t)A\sin(\omega_0 t)$$

$$S_x^{(1)}(f) = A^2 \pi \delta \left(2\pi f - 2\pi f_0\right) + \frac{A^2}{2} S_{\phi_{\chi}}^{(2)}(f - f_0)$$





## **Phase Noise PSD**



$$L(f_0 + \Delta f) \triangleq 10 \log_{10} \left| \frac{\text{Power of } x(t) \text{ in } 1Hz \text{ at } f_0 + \Delta f}{\text{Power of carrier}} \right|$$
$$= 10 \log_{10} S_{\phi}^{(2)}(\Delta f) \frac{dBc}{Hz}$$

Important Note: The PSD of the phase noise is two-sided in this expression





## **Phase Noise and Jitter**



$$x(t) = \operatorname{sgn}\left(\cos\left(\omega_0 t + \phi(t)\right)\right)$$
 
$$t_n \approx -\left(\frac{\phi(nT_{ideal})}{2\pi}\right)T_{ideal},$$
 where  $T_{ideal} = \frac{2\pi}{\omega_0}$ 

- Jitter is a scaled, sampled version of the phase noise.
  - The phase noise is small: |Φ(t)| << 2π</p>
  - The phase noise does not change too much over t<sub>n</sub>
- Often, we're only concerned about the mean, root mean square (r.m.s.) and peak-to-peak values of jitter.





# **Jitter Histogram**



- Used to extract the jitter PDF
- Consists of both deterministic and random components
- Need to decompose these components to accurately estimate jitter at a given BER





# **Jitter Categories**







# Random Jitter (RJ)

- Unbounded and modeled with a Gaussian distribution.
  - Assumed to have zero mean value.
  - Characterized by the rms value, σ<sub>RJ</sub>.
  - Peak-to-peak value must be quoted at a given BER.
- Originates from device noise.
  - Thermal, shot, flicker noise







# **Deterministic Jitter (DJ)**

- Bounded with a peak-to-peak value that can be predicted.
- Caused by transmission-line losses, duty-cycle distortion, spread-spectrum clocking, crosstalk.
- Categories
  - Sinusoidal Jitter (SJ or PJ)
  - Data Dependent Jitter (DDJ)
    - Intersymbol Interference (ISI)
    - Duty Cycle Distortion (DCD)
    - Bounded Uncorrelated Jitter (BUJ)







# Sinusoidal or Periodic Jitter (SJ or PJ)

- Repeats at a fixed frequency due to modulating effects.
  - Spread spectrum clocking.
  - PLL reference clock feedthrough.
- Can be decomposed into a Fourier series of sinusoids.

$$SJ(t) = \sum_{i} A_{i} \cos(\omega_{i}t + \theta_{i})$$

The jitter produced by an individual sinusoid is







# **Data Dependent Jitter (DDJ)**

- Data dependent jitter is correlated with either the transmitted data pattern or aggressor (crosstalk) data patterns.
- Caused by phenomena such as phase errors in serialization clocks, channel filtering, and crosstalk.
- Categories
  - Duty Cycle Distortion (DCD)
  - Intersymbol Interference (ISI)
  - Bounded Uncorrelated Jitter (BUJ)





# **Duty Cycle Distortion (DCD)**

- Caused by duty cycle errors in TX serialization clocks and rise/fall delay mismatches in post-serialization buffers.
- Resultant PDF from a peak-to-peak duty cycle distortion ( $\alpha_{DCD}$ ) is the sum of two delta functions.







# **Intersymbol Interference (ISI)**

- Caused by channel loss, dispersion, and reflections.
- Equalization can improve ISI jitter.







# **Bounded Uncorrelated Jitter (BUJ)**

- Not aligned in time with the data stream.
- Most common source is crosstalk.
- Classified as uncorrelated due to being correlated to the aggressor signals and not the victim signal or data stream.
- While uncorrelated, still a bounded source with a quantifiable peak-to-peak value.





# **Total Jitter (TJ)**

 The total jitter PDF is produced by convolving the random and deterministic jitter PDFs.

$$PDF_{TJ}(t) = PDF_{RJ}(t) * PDF_{DJ}(t)$$
 where 
$$PDF_{DJ}(t) = PDF_{SJ}(t) * PDF_{DCD}(t) * PDF_{ISI}(t) * PDF_{BUJ}(t)$$







## **Jitter and Bit Error Rate**

 Jitter consists of both deterministic and random components



- Total jitter must be quoted at a given BER
  - At BER=10<sup>-12</sup>, jitter ~1675ps and eye width margin ~200ps
  - System can potentially achieve BER=10<sup>-18</sup> before being jitter limited.







## **Dual Dirac Jitter Model**

 For system-level jitter budgets, the dual Dirac model approximates the complex total jitter PDF and allows for the budgeting of deterministic and random jitter components.

$$RJ(t) = \frac{1}{\sqrt{2\pi}\sigma_{RJ}} e^{\frac{-t^2}{2\sigma_{RJ}^2}}$$

$$DJ(t) = \frac{\delta(t - DJ_{\delta\delta}/2)}{2} + \frac{\delta(t + DJ_{\delta\delta}/2)}{2}$$













# **System Jitter Budget**

For a system to achieve a minimum BER performance

$$UI \ge DJ_{\delta\delta}(sys) + Q_{BER}\sigma_{RMS}(sys)$$

 The convolution of the individual deterministic jitter components is approximated by linear addition of the terms.

$$DJ_{\delta\delta}(sys) = \sum_{i} DJ_{\delta\delta}(i)$$

 The convolution of the individual random jitter components results in a root-sum-of-squares system rms value.

$$\sigma_{RMS}(sys) = \sqrt{\sum_{i} \sigma_{RMS}^{2}(i)}$$





# **Example – PCI Express System**

$$DJ_{\mathcal{SS}}(sys) = DJ_{\mathcal{SS}}(TX) + DJ_{\mathcal{SS}}(channel) + DJ_{\mathcal{SS}}(RX) + DJ_{\mathcal{SS}}(clock)$$

$$\sigma_{\rm RMS}(sys) = \sqrt{\sigma_{\rm RMS}^2(TX) + \sigma_{\rm RMS}^2(channel) + \sigma_{\rm RMS}^2(RX) + \sigma_{\rm RMS}^2(clock)}$$

TABLE 13-2. PCI Express 2.5-Gb/s Jitter Budget at 10<sup>-12</sup> BER

| Component       | Term             | $\sigma_{RJ}$ (ps) | $\mathrm{D}J_{\delta\delta}\ (ps)$ | TJ (ps)              |
|-----------------|------------------|--------------------|------------------------------------|----------------------|
| Reference clock | TJ clock         | 4.7                | 41.9                               | 108                  |
| Transmitter     | TJ <sub>TX</sub> | 2.8                | 60.6                               | 100                  |
| Channel         | TJ channel       | 0                  | 90                                 | 90                   |
| Receiver        | TJ <sub>Rx</sub> | 2.8                | 120.6                              | <del>-147→</del> 160 |
| Linear TJ       |                  | _                  |                                    | 458                  |
| RSS TJ          | 6.15 * 14.06     | 59 = 86.5          | 313.1                              | 399.6                |

TABLE 13-1.  $Q_{BER}$  as a Function of the Bit Error Rate

[Hall]

| BER                | $Q_{\mathrm{BER}}$ | BER                 | $Q_{\mathrm{BER}}$ | BER                   | $Q_{\mathrm{BER}}$ |
|--------------------|--------------------|---------------------|--------------------|-----------------------|--------------------|
| $1 \times 10^{-3}$ | 6.180              | $1 \times 10^{-10}$ | 12.723             | $1 \times 10^{-17}$   | 16.987             |
| $1 \times 10^{-4}$ | 7.438              | $1 \times 10^{-11}$ | 13.412             | $1 \times 10^{-18}$   | 17.514             |
| $1 \times 10^{-5}$ | 8.530              | $1 \times 10^{-12}$ | 14.069             | $1 \times 10^{-19}$   | 18.026             |
| $1 \times 10^{-6}$ | 9.507              | $1 \times 10^{-13}$ | 14.698             | $1 \times 10^{-20}$   | 18.524             |
| $1 \times 10^{-7}$ | 10.399             | $1 \times 10^{-14}$ | 15.301             | $1 \times 10^{-21}$   | 19.010             |
| $1 \times 10^{-8}$ | 11.224             | $1 \times 10^{-15}$ | 15.882             | $1 \times 10^{-22}$   | 19.484             |
| $1 \times 10^{-9}$ | 11.996             | $1 \times 10^{-16}$ | 16.444             | $7.7 \times 10^{-24}$ | 20.000             |





## **Jitter Measurement**



RJ D Jitter Separation with an Agilent Infiniium Real Time Scope.mp4

https://www.youtube.com/watch?v=ui53SkVEWDA



