In re application of: Richard A. Mathies, et al.

Attorney Docket No.: UCALP020

Application No.: 10/750,533

Examiner: Unknown

Filed: December 29, 2003

Group: 1744

Title: FLUID CONTROL STRUCTURES IN

MICROFLUIDIC DEFICES

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage as first-class mail on June 14, 2004 2004 in an envelope addressed to the Commissioner for Patents, P.O. Box 1450 Alexandria, NA 22313-1439.

Signed:

Valerie Olsen

INFORMATION DISCLOSURE STATEMENT 37 CFR §§1.56 AND 1.97(b)

Mail Stop Missing Parts Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

The references listed in the attached PTO Form 1449, copies of which are attached, may be material to examination of the above-identified patent application. Applicants submit these references in compliance with their duty of disclosure pursuant to 37 CFR §§1.56 and 1.97. The Examiner is requested to make these references of official record in this application.

This Information Disclosure Statement is not to be construed as a representation that a search has been made, that additional information material to the examination of this application does not exist, or that these references indeed constitute prior art.

This Information Disclosure Statement is: (i) filed within three (3) months of the filing date of the above-referenced application, (ii) believed to be filed before the mailing date of a first Office Action on the merits, or (iii) believed to be filed before the mailing of a first Office Action after the filing of a Request for Continued Examination under §1.114. Accordingly, it is believed that no fees are due in connection with the filing of this Information Disclosure

Statement. However, if it is determined that any fees are due, the Commissioner is hereby authorized to charge such fees to Deposit Account 500388 (Order No. UCALP020).

Dated: 6/14/04

Respectfully submitted,

BEYER WEAVER & THOMAS, LLP

William J. Egan, III Registration No. 28,411

P.O. Box 778 Berkeley, CA 94704-0778

Form 1449 (Modified)

Information Disclosure Statement By Applicant Atty Docket No.

UCALP020

Application No.:

10/750,533

Applicant:

Richard A. Mathies, et al.

Filing Date

Group

(Use Several Sheets if Necessary)

December 29, 2003

1744

U.S. Patent Documents

Examiner						Sub-	Filing
Initial	No.	Patent No.	Date	Patentee	Class	class	Date
	A1	5,376,252	12/27/94	Ekström et al.	204	299 R	
	A2						

Foreign Patent or Published Foreign Patent Application

Examiner		Document	Publication	Country or		Sub-	Trans	lation
Initial	No.	No.	Date	Patent Office	Class	class	Yes	No
	B1							

Other Documents

Examiner				
Initial	No.	Author, Title, Date, Place (e.g. Journal) of Publication		
	C1	D.J. Harrison, et al., Micromachining a miniaturized capillary		
		electrophoresis-based chemical analysis system on a chip, Science,		
		261(5123): 895-897, 1993.		
	C2	C.A. Emrich, et al., Microfabricated 384-lane capillary array electrophoresis		
		bioanalyzer for ultrahigh-throughput genetic analysis, Analytical Chemistry,		
		74(19): 5076-5083, 2002.		
	C3	E.T. Lagally, et al., Monolithic integrated microfluidic DNA amplification and		
		capillary electrophoresis analysis system, Sensors and Actuators B-Chemical,		
		63(3): 138-146, 2000.		
	C4	B.M. Paegel, et al., Microchip bioprocessor for integrated nanovolume sample		
		purification and DNA sequencing, Analytical Chemistry, 74(19): 5092-5098,		
		2002.		
	C5	B.M. Paegel, et al., Microfluidicdevices for DNA sequencing: sample		
		preparation and electrophoretic analysis, Current Opinion in Biotechnology,		
	ļ	14(1): 42-50, 2003.		
	C6	T. Ohori, et al., Partly disposable three-way mirovalve for a medical micro		
		total analysis system (muTAS), Sensors and Actuators A-Physical, 64(1): 57-		
	<u> </u>	62, 1998.		
	C7	X. Yang, et al., A MEMS Thermopneumatic silicone rubber membrane valve,		
		Sensors and Actuators A-Physical, 64(1): 101-108, 1998.		
Examiner		Date Considered		
The second in second I		-'4-4' '1 - 1 D - 1' - 1 1 - 1 '4' - 'C - 1 '		

Examiner: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1	Form 1449 (Modified)	Atty Docket No.	Application No.:
		UCALP020	10/750,533
	Information Disclosure	Applicant:	
	Statement By Applicant	Richard A. Mathies, et al.	
		Filing Date	Group
	(Use Several Sheets if Necessary)	December 29, 2003	1744

Other Documents

		Other Documents			
Examiner					
Initial	No.	Author, Title, Date, Place (e.g. Journal) of Publication			
	C8	Rolfe C. Anderson, et al., A miniature integrated device for automated			
		multistep genetic assays, Nucleic Acids Research, 28(12): e60, 2000.			
	C9	M.A. Unger, et al., Monolithic microfabricated valves and pumps by			
		multilayer soft lithography, Science, 188(5463): 113-116, 2000.			
	C10	E.T. Lagally, et al., Fully integrated PCR-capillary electrophoresis			
		microsystem for DNA analysis, Lab on a Chip, 1(2): 102-107, 2001.			
	C11	E.T. Lagally, et al., Single-molecule DNA amplification and analysis in an			
		integrated microfluidic device, Analytical Chemistry, 73(3): 565-570, 2001.			
	C12	R.A. Mathies, et al., Capillary array electrophoresis bioprocessors, Solid-			
		State Sensor, Actuator and Microsystems Workshop, pages 112-117, Hilton			
	<u> </u>	Head Island, SC, USA, 2002.			
	C13	W.H. Grover, et al., Monolithic membrane valves and diaphragm pumps for			
		practical large-scale integration into glass microfluidic devices, Sensors and			
	<u> </u>	Actuators B, 89: 315-323, 2003.			
	C14	C.L. Hansen, et al., A robust and scalable microfluidic metering method that			
		allows protein crystal growth by free interface diffusion, Proceedings of the			
		National Academy of Science, 99(26): 16531-16536, 2002.			
	C15	Weimer, B.C., et al., Solid-phase capture of proteins, spores and bacteria,			
	015	<u>App. Environ. Microbiology</u> , 67:1300-1307 (2001).			
	C16	Yu, C., et al., Towards stationary phases for chromatography on a microchip:			
		Molded porous polymer monoliths prepared in capillaries by photoinitiated in			
		situ polymerization as separation media for electrochromatography,			
	017	Electrophoresis, 21:120-127 (2000).			
	C17				
		properties for microfluidic chip applications using photoinitiated free radial polymerization, J. Polymer Sci., 40:755 (2002).			
	C10				
	C18	Rohr, T., et al., Simple and efficient mixers prepared by direct polymerization			
	C19	in the channels of microfluidic chips, Electrophoresis, 22:3959 (2001).			
	(19	Peterson, D.S., et al., Enzymatic Microreactor-on-a-Chip: Protein Mapping			
		Using Trypsin Immobilized on Porous Polymer Monoliths Molded in Channels of Microfluidic Devices, Anal. Chem. 74:4081-4088 (2002).			
Examiner	L	Date Considered			
Laminer		Date Considered			
<u></u>					

Examiner: Initial citation considered. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.