143

CLAIMS

What is claimed is:

1. A compound selected from Formula I, an N-oxide or an agriculturally suitable salt thereof,

$$\mathbb{R}^2$$
 \mathbb{R}^3

I

wherein

5

10

15

20

25

30

 R^1 is cyclopropyl optionally substituted with 1–5 R^5 , isopropyl optionally substituted with 1–5 R^6 , or phenyl optionally substituted with 1–3 R^7 ;

 R^2 is $((O)_iC(R^{15})(R^{16}))_kR$;

R is CO₂H or a herbicidally effective derivative of CO₂H;

R³ is halogen, cyano, nitro, OR²⁰, SR²¹ or N(R²²)R²³;

 R^4 is $-N(R^{24})R^{25}$ or $-NO_2$;

each R^5 and R^6 is independently halogen, C_1 – C_6 alkyl, C_1 – C_6 haloalkyl, C_2 – C_6 alkenyl, C_2 – C_6 haloalkenyl, C_1 – C_3 alkoxy, C_1 – C_2 haloalkoxy, C_1 – C_3 alkylthio or C_1 – C_2 haloalkylthio;

each R^7 is independently halogen, cyano, nitro, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_6 cycloalkyl, C_3 – C_6 halocycloalkyl, C_1 – C_4 hydroxyalkyl, C_2 – C_4 alkoxyalkyl, C_2 – C_4 haloalkoxyalkyl, C_2 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_4 haloalkynyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_2 – C_4 haloalkenyloxy, C_3 – C_4 haloalkynyloxy, C_3 – C_4 haloalkylthio, C_1 – C_4 haloalkylthio, C_1 – C_4 haloalkylsulfinyl, C_1 – C_4 haloalkylsulfonyl, C_1 – C_4 haloalkylsulfonyl, C_2 – C_4

alkenylthio, C_2 – C_4 haloalkenylthio, C_2 – C_4 alkenylsulfinyl, C_2 – C_4 haloalkenylsulfinyl, C_2 – C_4 haloalkenylsulfonyl, C_3 – C_4 haloalkenylsulfonyl, C_3 – C_4 haloalkynylthio, C_3 – C_4 haloalkynylsulfinyl, C_3 – C_4 haloalkynylsulfinyl, C_3 – C_4 haloalkynylsulfonyl, C_3 – C_4 haloalkynylsulfonyl, C_1 – C_4 alkylamino, C_2 – C_8 dialkylamino, C_3 – C_6 cycloalkylamino, C_4 – C_6 (alkyl)cycloalkylamino, C_2 – C_6 alkylcarbonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6

alkylaminocarbonyl, C₃–C₈ dialkylaminocarbonyl, C₃–C₆ trialkylsilyl, phenyl, phenoxy and 5- or 6-membered heteroaromatic rings, each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring optionally substituted with one to three

substituents independently selected from R^{45} ; or

```
two adjacent R^7 are taken together as -OCH<sub>2</sub>O-, -CH<sub>2</sub>CH<sub>2</sub>O-, -OCH(CH<sub>3</sub>)O-, -OC(CH<sub>3</sub>)<sub>2</sub>O-, -OCF<sub>2</sub>O-, -CF<sub>2</sub>CF<sub>2</sub>O-, -OCF<sub>2</sub>CF<sub>2</sub>O- or -CH=CH-CH=CH-;
```

 R^{15} is H, halogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, hydroxy, C_1 – C_4 alkoxy or C_2 – C_4 alkylcarbonyloxy;

5 R^{16} is H, halogen, C_1 – C_4 alkyl or C_1 – C_4 haloalkyl; or

R¹⁵ and R¹⁶ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;

 R^{20} is H, C_1 – C_4 alkyl or C_1 – C_3 haloalkyl;

 R^{21} is H, C_1 – C_4 alkyl or C_1 – C_3 haloalkyl;

10 R^{22} and R^{23} are independently H or C_1 – C_4 alkyl;

 R^{24} is H, C_1 – C_4 alkyl optionally substituted with 1–2 R^{30} , C_2 – C_4 alkenyl optionally substituted with 1–2 R^{31} , or C_2 – C_4 alkynyl optionally substituted with 1–2 R^{32} ; or R^{24} is $C(=0)R^{33}$, nitro, OR^{34} , $S(O)_2R^{35}$, $N(R^{36})R^{37}$ or $N=C(R^{62})R^{63}$;

 R^{25} is H, C_1 – C_4 alkyl optionally substituted with 1–2 R^{30} or $C(=0)R^{33}$; or

15 R^{24} and R^{25} are taken together as a radical selected from -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- and -(CH₂)₂O(CH₂)₂-, each radical optionally substituted with 1–2 R^{38} ; or

 R^{24} and R^{25} are taken together as $=C(R^{39})N(R^{40})R^{41}$ or $=C(R^{42})OR^{43}$;

each R^{30} , R^{31} and R^{32} is independently halogen, C_1 – C_3 alkoxy, C_1 – C_3 haloalkoxy, C_1 – C_3 alkylthio, C_1 – C_3 haloalkylthio, amino, C_1 – C_3 alkylamino, C_2 – C_4 dialkylamino or C_2 – C_4 alkoxycarbonyl;

each R^{33} is independently H, C_1 – C_{14} alkyl, C_1 – C_3 haloalkyl, C_1 – C_4 alkoxy, phenyl, phenoxy or benzyloxy;

 R^{34} is H, C_1 – C_4 alkyl, C_1 – C_3 haloalkyl or CHR⁶⁶C(O)OR⁶⁷;

25 R^{35} is C_1 – C_4 alkyl or C_1 – C_3 haloalkyl;

 R^{36} is H, C_1 – C_4 alkyl or $C(=0)R^{64}$;

 R^{37} is H or C_1 – C_4 alkyl;

20

30

each R^{38} is independently halogen, C_1 – C_3 alkyl, C_1 – C_3 alkoxy, C_1 – C_3 haloalkoxy, C_1 – C_3 alkylthio, C_1 – C_3 haloalkylthio, amino, C_1 – C_3 alkylamino, C_2 – C_4 dialkylamino or C_2 – C_4 alkoxycarbonyl;

 R^{39} is H or C_1 – C_4 alkyl;

 R^{40} and R^{41} are independently H or C_1 – C_4 alkyl; or

 R^{40} and R^{41} are taken together as -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- or -(CH₂)₂O(CH₂)₂-;

35 R^{42} is H or C_1 – C_4 alkyl;

 R^{43} is C_1-C_4 alkyl;

each R^{45} is independently halogen, cyano, nitro, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_6 cycloalkyl, C_3 – C_6 halocycloalkyl, C_2 – C_4 alkenyl, C_2 – C_4 haloalkenyl, C_3 – C_4

alkynyl, C_3 – C_4 haloalkynyl, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_4 haloalkylthio, C_1 – C_4 alkylsulfinyl, C_1 – C_4 alkylsulfonyl, C_1 – C_4 alkylamino, C_2 – C_8 dialkylamino, C_3 – C_6 cycloalkylamino, C_4 – C_6 (alkyl)cycloalkylamino, C_2 – C_4 alkylaminocarbonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6 alkylaminocarbonyl, C_3 – C_8 dialkylaminocarbonyl or C_3 – C_6 trialkylsilyl;

 R^{62} is H, C_1 – C_4 alkyl or phenyl optionally substituted with 1–3 R^{65} ;

 R^{63} is H or C_1 – C_4 alkyl; or

 R^{62} and R^{63} are taken together as -(CH₂)₄- or -(CH₂)₅-;

R⁶⁴ is H, C₁–C₁₄ alkyl, C₁–C₃ haloalkyl, C₁–C₄ alkoxy, phenyl, phenoxy or benzyloxy;

each R⁶⁵ is independently CH₃, Cl or OCH₃;

 R^{66} is H, C_1 – C_4 alkyl or C_1 – C_4 alkoxy;

 R^{67} is H, C_1 – C_4 alkyl or benzyl;

j is 0 or 1; and

15 k is 0 or 1;

5

10

20

25

30

provided that:

- (a) when k is 0, then j is 0;
- (b) when R^2 is CH_2OR^a wherein R^a is H, optionally substituted alkyl or benzyl, then R^3 is other than cyano;
- (c) when R¹ is phenyl substituted by Cl in each of the meta positions, the phenyl is also substituted by R⁷ in the para position;
 - (d) when R^1 is phenyl substituted by R^7 in the para position, said R^7 is other than *tert*-butyl, cyano or optionally substituted phenyl;
 - (e) when R^1 is cyclopropyl or isopropyl optionally substituted with 1-5 R^6 , then R is other than $C(=W)N(R^b)S(O)_2$ - R^c - R^d wherein W is O, S, NR^e or NOR^e ; R^b is hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl; R^c is a direct bond or CHR^f , O, NR^e or NOR^e ; R^d is an optionally substituted heterocyclic or carbocyclic aromatic radical having 5 to 6 ring atoms, the radical being optionally condensed with an aromatic or nonaromatic 5- or 6-membered ring; each R^e is independently H, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or phenyl; and R^f is H, C_1 - C_3 alkyl or phenyl; and
 - (f) the compound of Formula I is other than diethyl 6-amino-5-nitro-2-phenyl-4-pyrimidinemalonate.
 - 2. The compound of Claim 1 wherein
- 35 R^2 is CO_2R^{12} , CH_2OR^{13} , $CH(OR^{46})(OR^{47})$, CHO, $C(=NOR^{14})H$, $C(=NNR^{48}R^{49})H$, $(O)_jC(R^{15})(R^{16})CO_2R^{17}$, $C(=O)N(R^{18})R^{19}$, $C(=S)OR^{50}$, $C(=O)SR^{51}$, $C(=S)SR^{52}$ or $C(=NR^{53})YR^{54}$;

- R¹² is H, -CH[C(O)O(CH₂)_m], -N=C(R⁵⁵)R⁵⁶; or a radical selected from C₁-C₁₄ alkyl, C₃-C₁₂ cycloalkyl, C₄-C₁₂ alkylcycloalkyl, C₄-C₁₂ cycloalkylalkyl, C₂-C₁₄ alkenyl, C₂-C₁₄ alkynyl and phenyl, each radical optionally substituted with 1–3 R²⁷; or
- R¹² is a divalent radical linking the carboxylic ester function CO₂R¹² of each of two pyrimidine ring systems of Formula I, the divalent radical selected from -CH₂-, -(CH₂)₂-, -(CH₂)₃- and -CH(CH₃)CH₂-;

 R^{13} is H, C_1 – C_{10} alkyl optionally substituted with 1–3 R^{28} , or benzyl;

 R^{14} is H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl or benzyl;

10 R^{17} is C_1 – C_{10} alkyl optionally substituted with 1–3 R^{29} , or benzyl;

 R^{18} is H, C_1 – C_4 alkyl, hydroxy, C_1 – C_4 alkoxy or $S(O)_2R^{57}$;

 R^{19} is H or C_1 – C_4 alkyl;

15

25

30

- each R^{27} is independently halogen, cyano, hydroxycarbonyl, C_2 – C_4 alkoxycarbonyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylamino, C_1 – C_4 haloalkylthio, amino, C_1 – C_4 alkylamino, C_2 – C_4 dialkylamino, -CH $\{O(CH_2)_n\}$ or phenyl optionally substituted with 1–3 R^{44} ; or
- two \mathbb{R}^{27} are taken together as -OC(O)O- or -O($\mathbb{C}(\mathbb{R}^{58})(\mathbb{R}^{58})$)₁₋₂O-; or
- two R²⁷ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;
- 20 each R^{28} is independently halogen, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_4 haloalkylthio, amino, C_1 – C_4 alkylamino or C_2 – C_4 dialkylamino; or
 - two R²⁸ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;
 - each R^{29} is independently halogen, C_1 – C_4 alkoxy, C_1 – C_4 haloalkoxy, C_1 – C_4 alkylthio, C_1 – C_4 haloalkylthio, amino, C_1 – C_4 alkylamino or C_2 – C_4 dialkylamino;
 - each R^{44} is independently halogen, C_1 – C_4 alkyl, C_1 – C_3 haloalkyl, hydroxy, C_1 – C_4 alkoxy, C_1 – C_3 haloalkoxy, C_1 – C_3 alkylthio, C_1 – C_3 haloalkylthio, amino, C_1 – C_3 alkylamino, C_2 – C_4 dialkylamino or nitro;

 R^{46} and R^{47} are independently C_1 – C_4 alkyl or C_1 – C_3 haloalkyl; or

 R^{46} and R^{47} are taken together as -CH₂CH₂-, -CH₂CH(CH₃)- or -(CH₂)₃-;

 R^{48} is H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_4 alkylcarbonyl, C_2 – C_4 alkoxycarbonyl or benzyl;

35 R^{49} is H, C_1 – C_4 alkyl or C_1 – C_4 haloalkyl;

WO 2005/063721 PCT/US2004/042302

147

 $m R^{50}$, $m R^{51}$ and $m R^{52}$ are H; or a radical selected from $m C_1$ – $m C_{14}$ alkyl, $m C_3$ – $m C_{12}$ cycloalkyl, $m C_4$ – $m C_{12}$ alkylcycloalkyl, $m C_4$ – $m C_{12}$ cycloalkylalkyl, $m C_2$ – $m C_{14}$ alkenyl and $m C_2$ – $m C_{14}$ alkynyl, each radical optionally substituted with 1–3 $m R^{27}$;

Y is O, S or NR^{61} ;

R⁵³ is H, C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₂-C₄ alkoxyalkyl, OH or C₁-C₃ alkoxy; R⁵⁴ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or C₂-C₄ alkoxyalkyl; or R⁵³ and R⁵⁴ are taken together as -(CH₂)₂-, -CH₂CH(CH₃)- or -(CH₂)₃-; R⁵⁵ and R⁵⁶ are independently C₁-C₄ alkyl; R⁵⁷ is C₁-C₄ alkyl, C₁-C₃ haloalkyl or NR⁵⁹R⁶⁰; each R⁵⁸ is independently selected from H and C₁-C₄ alkyl;

 R^{59} and R^{60} are independently H or C_1 – C_4 alkyl; R^{61} is H, C_1 – C_3 alkyl, C_1 – C_3 haloalkyl or C_2 – C_4 alkoxyalkyl; m is an integer from 2 to 3; and n is an integer from 1 to 4.

- 15 3. The compound of Claim 2 wherein R³ is halogen.
 - 4. The compound of Claim 2 wherein R^1 is cyclopropyl or phenyl substituted with a halogen, methyl or methoxy radical in the para position and optionally with 1--2 radicals selected from halogen and methyl in other positions; and R^4 is $-N(R^{24})R^{25}$.
- 5. The compound of Claim 4 wherein R^2 is CO_2R^{12} , CH_2OR^{13} , CHO or $CH_2CO_2R^{17}$.
 - 6. The compound of Claim 5 wherein R^{24} is H, C(O) R^{33} or C_1 – C_4 alkyl optionally substituted with R^{30} ; R^{25} is H or C_1 – C_2 alkyl; or R^{24} and R^{25} are taken together as =C(R^{39})N(R^{40}) R^{41} .
 - 7. The compound of Claim 6 wherein R^2 is CO_2R^{12} ; and R^{24} and R^{25} are H.
- 25 8. The compound of Claim 7 wherein R^{12} is H, C_1 – C_4 alkyl or benzyl.
- 9. The compound of Claim 1 selected from the group consisting of:
 methyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,
 ethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,
 phenylmethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,
 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,
 methyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,
 phenylmethyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,
 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,
 methyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,
 methyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate,
 ethyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate,

WO 2005/063721 PCT/US2004/042302

148

6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylic acid, ethyl 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate, methyl 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate, and 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylic acid.

- 5 10. A herbicidal mixture comprising a herbicidally effective amount of a compound of Claim 1 and an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener.
 - 11. A herbicidal mixture comprising synergistically effective amounts of a compound of Claim 1 and an auxin transport inhibitor.
- 10 12. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
 - 13. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
- 15 14. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1, an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener, and at least one of a surfactant, a solid diluent or a liquid diluent.