

Kauno technologijos universitetas

Informatikos fakultetas

1 laboratorinis darbas

Skaitiniai metodai ir algoritmai (P170B115)

Simona Ragauskaitė IFF-0/3 gr.

Studentė

Doc. Andrius Kriščiūnas Prof. Rimantas Barauskas

Dėstytojai

Turinys

1. I	Darbo užduotis	3
1.1.	Išspręsti netiesines lygtis: a) daugianaris $f(x) = 0$, b) transcendentinė funkcija $g(x) = 0$;	3
1.2.	Pagal pateiktą uždavinio sąlygą sudaryti netiesinę lygtį su pasirinktu skaitiniu metodu ją	
išspr	ęsti	3
	Užduoties sprendimas	
2.1.	Daugianario "grubaus" ir "tikslesnio" šaknų intervalų nustatymas	4
2.2.	Daugianario ir transcendentinės funkcijų grafikai	5
2.3.	Skenavimo nekintančiu žingsniu algoritmo pritaikymas	6
2.4.	Netiesinių lygčių sprendimo metodai	7
2.5.	Rezultatų patikrinimas naudojant išorinius išteklius	9
2.6.	Tekstinio uždavinio sprendimas	10
3. I	švados	11

1. Darbo užduotis

2 variantas

1.1. Išspręsti netiesines lygtis: a) daugianaris f(x) = 0, b) transcendentinė funkcija g(x) = 0;

Varianto Nr.	Daugianariai $f(x)$	Funkcijos g(x)	Metodai ¹
2	$-1.35x^4 - 0.93x^3 + 26.46x^2 + 16.20x - 76.19$	$\frac{\ln(x)}{\sin(2x) + 1.5} - \frac{x}{7}; 1 \le x \le 10$	1, 3, 5

1.2. Pagal pateiktą uždavinio sąlygą sudaryti netiesinę lygtį su pasirinktu skaitiniu metodu ją išspręsti.

Uždavinys variantams 1-5

Vertikaliai į viršų iššauto objekto greitis užrašomas dėsniu $v(t) = v_0 e^{-\frac{ct}{m}} + \frac{mg}{c} \left(e^{-\frac{ct}{m}} - 1 \right)$, čia $g = 9.8 \, \text{m/s}^2$, pasipriešinimo koeficientas c, pradinis greitis v_0 . Kokia objekto masė, jeigu žinoma, kad laiko momentu t_1 objekto greitis buvo lygus v_1 ?

Varianto Nr.	v_0 , m/s	c, kg/s	t_1 , s	v_1 , m/s
2	80	0,1	4	21

Metodo Nr.	Metodo pavadinimas
1	Stygų
2	Paprastųjų iteracijų
3	Niutono (liestinių)
4	Kvazi-Niutono (kirstinių)
5	Skenavimo su mažėjančiu žingsniu

2. Užduoties sprendimas

2.1. Daugianario "grubaus" ir "tikslesnio" šaknų intervalų nustatymas

Daugianario "grubus" šaknų įvertis

Daugianaris: $f(x) = -1.35x^4 - 0.93x^3 + 26.46x^2 + 16.20x - 76.19$

"Grubaus" įverčio formulė: $R = 1 + \frac{\max_{0 \le i \le n-1} |a_i|}{a_n} > |x|$

Kai: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ if $a_n > 0$.

Norėdama pritaikyti šią formulę turiu pasidauginti iš (–1), kadangi $a_n < 0$.

$$f(x) = 1.35x^4 + 0.93x^3 - 26.46x^2 - 16.20x + 76.19$$

Intervalų skaičiavimui naudojami koeficientai:

a ₄	a ₃	a_2	a ₁	a_0
1.35	0.93	-26.46	-16.20	76.19

Įsistačius koeficientus gaunu: $R = 1 + \frac{76.19}{1.35} \approx 57.44$

Gaunu tokį grubios šaknies įvertį: -57.44 < x < 57.44.

Daugianario "tikslesnis" šaknų įvertis

"Tikslesnio" įverčio formules:

$$\begin{split} f(x) &= a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0 \text{ , kai } a_n > 0 \\ R_{teig} &= 1 + \sqrt[k]{\frac{B}{a_n}} \\ B &= \max_{0 \leq i \leq n-1} (|a_i|, a_i < 0) \\ k &= n - \max_{0 \leq i \leq n-1} (i, a_i < 0) \\ -min(R, R_{neig}) \leq x \leq min(R, R_{teig}) \end{split}$$

Skaičiuoju tikslesnę teigiamo įverčio reikšmę:

$$f(x) = 1.35x^4 + 0.93x^3 - 26.46x^2 - 16.20x + 76.19$$

Intervalų skaičiavimui naudojami koeficientai:

a ₄	a ₃	a_2	a_1	a_0
1.35	0.93	-26.46	-16.20	76.19

$$k = 4 - 2 = 2$$

$$B = 26.46$$

$$R_{teig} = 1 + \sqrt[2]{\frac{26.46}{1.35}} = 1 + \sqrt[2]{19.6} = 5.43$$

Skaičiuoju tikslesnę neigiamo įverčio reikšmę:

$$f(-x) = 1.35x^4 - 0.93x^3 - 26.46x^2 + 16.20x + 76.19$$

Intervalu skaičiavimui naudojami koeficientai:

•	- U				
a_4	a_3	a_2	a_1	a_0	
1.35	-0.93	-26.46	16.20	76.19	

$$k = 4 - 3 = 1$$

$$R_{neig} = 1 + \sqrt[1]{\frac{26.46}{1.35}} = 1 + 19.6 = 20.6$$

$$-20.6 \le x \le 5.43$$

2.2. Daugianario ir transcendentinės funkcijų grafikai

Daugianaris:
$$f(x) = -1.35x^4 - 0.93x^3 + 26.46x^2 + 16.20x - 76.19$$
 | : (-1)

$$f(x) = 1.35x^4 + 0.93x^3 - 26.46x^2 - 16.20x + 76.19$$

Grafiko šiek tiek pakeičiau ašis, intervale -4 < x < -2.25, grafike aiškiai yra matyti daugianario šaknys.

Funkcijos f(x) grafikas, -4 < x < -2.25 intervale

Transcendentinė funkcija:
$$g(x) = \frac{\ln(x)}{\sin(2x) + 1.5} - \frac{x}{7}$$
; $1 \le x \le 10$

Funkcijos g(x) grafikas pagal duotąjį intervalą

2.3. Skenavimo nekintančiu žingsniu algoritmo pritaikymas

Šaknų intervalams surasti naudosiu skenavimo nekintančių žingsnių metodą. Žingsnį gausiu padalinus visą "tikslesnį" intervalą iš 100. Tada eisiu per visą intervalą ir tikrinsiu ar dabartinio x ženklas nesutampa su x + žingsnio ženklu. Jei nesutampa, tuomet reiškia, kad intervale yra šaknis.

```
def getInterval(start, end):
    step = (end - start) / 100
    x = start
    intervals = []

while x < end:
        x_next = x + step
        if (f(x) > 0 > f(x_next)) or (f(x_next) > 0 > f(x)):
            intervals.append([x, x_next])
        x = x_next

return intervals
```

Daugianario funkcijos gautieji intervalai:

Daugianario gautieji intervalai, kuriuose yra funkcijos šaknis						
Intervalo pradžia	-4.2029	-2.3801	1.5231	3.8656		
Intervalo pabaiga	-3.9426	-2.1207	1.7834	4.1258		

Pasiimu pirmą daugianario intervalą: $-4.2029 \le x \le -3.9426$, jame yra ryškiai matoma ieškomoji šaknis.

Tą patį metodą pritaikau transcendentinei funkcijai.

Transcendentinės funkcijos gautieji intervalai:

Daugianario gautieji intervalai, kuriuose yra funkcijos šaknis							
Intervalo pradžia	1.36	3.69	4.15	6.49	7.66	9.46	
Intervalo pabaiga	1.45	3.79	4.24	6.58	7.75	9.55	

Pasiimu pirmą transcendentinės funkcijos intervalą: $1.36 \le x \le 1.45$ intervalą, jame yra ryškiai matoma ieškomoji šaknis.

2.4. Netiesinių lygčių sprendimo metodai

Skenavimo nekintančiu žingsniu metodo dėka atsiskyriau daugianario ir funkcijos šaknis. Jas tikslinsiu trimis metodais: 1 – stygų, 3 – Niutono(liestinių) ir 5 – skenavimo su mažėjančiu žingsniu.

Metodų kodai:

1 - Stygu

```
def sign(number):
    if (number > 0):
        return 1

if (number < 0):
        return -1

return 0

def f derivative(x):</pre>
```

```
return -27*x**3 / 5 - 279*x**2 / 100 + 1323*x / 25 + 81/5
def absolute_terminate(function, x_mid, epsilon=1e-6):
    return abs(function(x mid)) < epsilon</pre>
def ChordMethod(x n, x n1, iteration=1):
    if (x n > x n1):
        raise Exception("Incorrect function usage")
    k = abs(funkcija.f(x n) / funkcija.f(x n1))
    x_mid = (x_n + k * x_n1) / (1 + k)
    if (funkcija.f(x mid) == 0 or absolute terminate(funkcija.f, x mid)):
        return x mid, iteration
    if (sign(funkcija.f(x mid)) == sign(funkcija.f(x n))):
        return ChordMethod(x mid, x n1, iteration + 1)
    return ChordMethod(x n, x mid, iteration + 1)
3 – Niutono (liestinių)
def NewtonsMethod(f, x1, x2):
    count = 0
    x = (x1 + x2) / 2
    while (abs(f(x))) > 1e-10:
        fx = f(x)
        fdx = derivative(f, x, dx=1e-6)
        x = x - (fx / fdx)
        count += 1
    return x, count
```

5 – Skenavimo su mažėjančiu žingsniu

```
def scanDecreasing(x1, x2):
    zingsnis = (x2 - x1) / 100
    while np.abs(funkcija.f(x1)) > 0.001 and x1 + zingsnis <= x2:
        if np.sign(funkcija.f(x1)) != np.sign(funkcija.f(x1 + zingsnis)):
            zingsnis /= 2
            continue
        x1 += zingsnis
    return x1</pre>
```

Daugianarės funkcijos rezultatai pritaikius metodus:

	Intervalas	- 1	Gautoji saknis	- 1	Funkcijos reiksme saknyje	- 1	Tikslumas	- 1	Iteraciju skaiciu
-4.202	871103731489 , -3.94259921648913	32]	-3.9636869405199913		-5.747102846953567e-07		-5.8121183421633305e-09	1	9
-2.3809	678930349882 , -2.12069600579263	1]	-2.2988975773137166	- 1	-5.2078718226766796e-08	- 1	9.538996259550458e-10	- 1	5
1.5231	.10415600371 , 1.783382302842728	3]	1.5326982807593994	- 1	1.4648719570686808e-08	- 1	2.0540191769669036e-10	- 1	3
3.8655	574007815865 , 4.125829288023944	1.1	4.040997347237052	- 1	-9.625379107092158e-07	- 1	5.601166641611144e-09	- 1	6
Niutono	(liestiniu) metodo rezultatai:								
Niutono	(liestiniu) metodo rezultatai: 	 I	Gautoji saknis	 I	Funkcijos reiksme saknyje	I	Tikslumas	 I	Iteraciju skaiciu
	Intervalas			 		l		 	Iteraciju skaiciu
-4.202	Intervalas 871103731489 , -3.94259921648913		-3.9636869463321096	 	-9.947598300641403e-14	 	0.0	 	Iteraciju skaiciu
-4.202	Intervalas 	1]	-3.9636869463321096 -2.2988975763598107	 	-9.947598300641403e-14	 	0.0 -6.217248937900877e-15	 	Iteraciju skaiciu
-4.2028 2.3809	Intervalas 871103731489 , -3.94259921648913	1]	-3.9636869463321096	 	-9.947598300641403e-14	 	0.0	 	Iteraciju skaic: 4 3 3

5 - Skenavimo su mazejanciu zingsniu metodo rezultatai:

Ī	Intervalas	1	Gautoji saknis		Funkcijos reiksme saknyje		Tikslumas	ı	Iteraciju skaicius	Ī
1	[-4.202871103731489 , -3.942599216489132] [-2.3809678930349882 , -2.120696005792631]		-3.963695472974616 -2.298900913588889	 	0.000843132538435043 -0.00018219672801933484	 	8.526642506279103e-06 3.3372290721978004e-06	 	106 40	1
- 1	[1.523110415600371 , 1.7833823028427283] [3.8655574007815865 , 4.125829288023944]	1	1.5326876077012421 4.040996919775874	T T	0.0007611442551223035 -7.441999727575421e-05	1	1.067326355919107e-05 4.330623450954363e-07	I	17 77	1

Transcendentinės funkcijos rezultatai pritaikius metodus:

1 - Stygu metodo rezultat

1	Intervalas	1	Gautoji saknis	1	Funkcijos reiksme saknyje	- 1	Tikslumas	ı	Iteraciju skaicius	- 1
1	[1.360000000000000 , 1.45000000000000000000000000000000000000]	1.436583630240603	1	-1.7593726106546193e-07	1	3.698647856875681e-07	1	3	1
-	[3.699999999999999	1	3.7873668858763323	1	-5.167156151841823e-07	- 1	-3.296116121820347e-06	-1	4	- 1
-	[4.14999999999999 , 4.2399999999999975]] [4.152512754492797	1	-2.5518002877422674e-07	1	1.4752528985084723e-06	-1	5	- 1
	[6.48999999999999 , 6.57999999999999] [6.549961802631097	1	-7.480572701279442e-07	- 1	-8.607751258438157e-07	- 1	4	- 1
-	[7.65999999999999 , 7.74999999999999]	7.6702095157680095	1	-2.3141121396896835e-07	- 1	2.252854658379988e-07	- 1	5	- 1
- 1	[9.4599999999999 , 9.5499999999999] [9.504326920205138	-1	-6.718177942843795e-07	- 1	-3.9608525881362766e-07	- 1	4	- 1

3 - Niutono (liestiniu) metodo rezultatai:

I	Intervalas	ı	Gautoji saknis	l	Funkcijos reiksme saknyje	l	Tikslumas	ı	Iteraciju skaicius	1
1	[1.36000000000000 , 1.45000000000000000000000000000000000000	1	1.4365840001103989	1	2.375266650034291e-12	1	-5.0102144655284064e-12	1	3	1
- 1	[3.69999999999999 , 3.78999999999999	- 1	3.787363589760206	1	0.0	- 1	4.440892098500626e-15	- 1	4	-
- 1	[4.1499999999999 , 4.239999999999975]	- 1	4.152514229745713	1	0.0	- 1	-1.7763568394002505e-14	- 1	4	-
- 1	[6.4899999999999 , 6.57999999999999	- 1	6.549960941855686	1	9.880984919163893e-15	- 1	2.851052727237402e-13	- 1	3	-1
- 1	[7.6599999999999 , 7.7499999999999	- 1	7.670209741091504	1	3.903299905516633e-11	- 1	-3.802913539630026e-11	- 1	3	- 1
-1	[9.459999999999 , 9.5499999999999	-1	9.504326524119056	1	6.66577903984944e-13	- 1	8.22453216642316e-13	-1	2	-

5 - Skenavimo su mazejanciu zingsniu metodo rezultatai:

	Intervalas		01-111-1-		F1-11		Tikslumas		***************************************		
	Intervatas	ا 	Gautoji saknis	 	Funkcijos reiksme saknyje		TIKSLUMAS		Iteraciju skaicius		
ī	[1.3600000000000000 , 1.4500000000000000]	1	1.434699999999992	1	-0.0008940563563116233	1	0.0018840001053965771	1	85	ī	
1	[3.699999999999984 , 3.789999999999983]	- 1	3.7819000000000096	-1	0.0008687962620822498	- 1	0.005463589760200893	- 1	93	-1	
1	[4.14999999999999 , 4.239999999999975]	- 1	4.149999999999998	1	-0.0004314411465033974	- 1	0.0025142297456977047	- 1	2	-1	
1	[6.48999999999999 , 6.57999999999999]	- 1	6.549399999999973	-1	0.00048783062459500925	- 1	0.0005609418559986423	- 1	68	-1	
1	[7.65999999999999 , 7.74999999999999]	- 1	7.669899999999989	-1	-0.00031801047066992716	- 1	0.00030974105348668957	- 1	13	-1	
1	[9.4599999999999 , 9.54999999999999]	-1	9.504099999999974	-1	0.00038432545539190954	- 1	0.00022652411990442545	- 1	51	1	

Mažiausią iteracijų skaičių turi Niutono (liestinių) metodas, tačiau tiksliausias metodas gavosi stygų.

2.5. Rezultatų patikrinimas naudojant išorinius išteklius

Šaknų reikšmes tikrinu https://www.desmos.com/calculator tinklapyje, nes rekomenduotame tinklapyje wolframalpha.com transcendentinės funkcijos šaknų nepateikia.

Daugianarės funkcijos rezultatai:

Transcendentinės funkcijos rezultatai:

2.6. Tekstinio uždavinio sprendimas

Vertikaliai į viršų iššauto objekto greitis užrašomas dėsniu: $v(t) = v_0 e^{-\frac{ct}{m}} + \frac{mg}{c} (e^{-\frac{ct}{m}} - 1)$, čia $g = 9.5 \, m/s^2$, pasipriešinimo koeficientas c, pradinis greitis v_0 . Kokia objekto masė, jeigu žinoma, kad laiko momentu t_1 objekto greitis buvo lygus v_1 ?

$$v_0 = 80 m/s$$

$$c = 0.1kg/s$$

$$t_1 = 4s$$

$$v_1 = 21 m/s$$

Susidarau netiesinę lygtį: $f(m) = 80 e^{-\frac{0.1 \times 4}{m}} + \frac{9.8 \times m}{0.1} \left(e^{-\frac{0.1 \times 4}{m}} - 1 \right) - 21$. Ją spręsiu skenavimo su mažėjančiu žingsniu metodu (nes nereikia išvestinės ir nėra didelis metodas).

Metodo žingsnis – 0,01 Intervalo pradžia – 0,5 Intervalo pabaiga – 1,5 Surasta šaknis – 0,9797265625000003 Surastos šaknies tikslumas – 3,638442079401116e-05

Tekstinio uždavinio funkcijos grafikas

3. Išvados

Pagal gautus šaknų rezultatus, galiu teigti:

- Iš visų trijų metodų Niutono (liestinės) metodas yra greičiausias, nes mažiausias iteracijų skaičius. Tačiau yra trūkumas, nes reikia turėti funkcijos išvestinę.
- Tiksliausius rezultatus davė stygų metodas. Ir iteracijų skaičiumi nebuvo labai nutolęs nuo Niutono (liestinės) metodo.
- Skenavimas su mažėjančiu skaičiumi turėjo didžiausius iteracijų skaičius bei nebuvo.

Metodai buvo apskaičiuoti pagal skirtingas iteracijos sąlygas, todėl nustatyti, kuris greičiausias yra negaliu.