Applications of group actions!

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

14 Apr 2025

Overview

Intuitively, a group action occurs when a group G "naturally permutes" a set S of states.

Formal definition

A group G acts on a set S if there is a homomorphism $\phi \colon G \to \mathsf{Perm}(S)$. We'll use right group actions, and we'll write $s.\phi(g)$ to denote "where pushing the g-button sends state s."

Definition

A set S with a (right) action by G is called a (right) G-set.

Big ideas

- An action ϕ : $G \to \text{Perm}(S)$ endows S with an algebraic structure.
- Action graphs are to G-sets, like how Cayley graphs are to groups.

Notation

Throughout, we'll denote identity elements by $1 \in G$ and $e \in Perm(S)$.

Five features of every group action

Every group action has **five fundamental features** that we will always try to understand.

	local (about an s or a g)	global (about the whole action ϕ)
subsets of S	orb(s) fix(g)	$Fix(\phi) = \bigcap_{g \in G} fix(g)$
subgroups of <i>G</i>	stab(s)	$Ker(\phi) = \bigcap_{s \in S} stab(s)$

"Duality:" columns vs. rows in the fixed-point table:

- the stablizers can be read off the columns: group elements that \underline{fix} $s \in S$
- the kernel is the rows with a check in every column
- lacktriangle the fixators can be read off the rows: set elements fixed by $g \in G$
- the fixed points are the columns with a check in every row

Fixed-point tables

Here is the fixed-point table for $G = D_4$ acting on S the list of 7 "binary squares."

	0 0	0 1 1 0	1 0 0 1	0 0	0 1 0 1	1 1 0 0	1 0 1 0
1	✓	✓	✓	√	✓	✓	✓
r	✓						
r^2	✓	✓	\checkmark				
r^3	✓						
f	✓			✓		\checkmark	
rf	✓	✓	\checkmark				
r^2f	✓				✓		✓
r^3f	✓	✓	\checkmark				

 $Ker(\phi) = \{1\} \text{ and } Fix(\phi) = \{ \text{ the 0 0 0 0 one} \}.$

Two big theorems

Orbit-stabilizer theorem

For any group action $\phi \colon G \to \mathsf{Perm}(S)$, and any $s \in S$,

$$|\operatorname{orb}(s)| \cdot |\operatorname{stab}(s)| = |G|$$

Equivalently, the size of the orbit containing s is $|\operatorname{orb}(s)| = [G : \operatorname{stab}(s)]$.

Proof: Put elements $s.\phi(g)$ of orb(s) in correspondence with cosets of the stabilizer.

Orbit-counting theorem

Let a finite group G act on a set S via $\phi: G \to Perm(S)$.

Then the number of orbits is the average size of the fixators:

$$|\operatorname{Orb}(\phi)| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|.$$

Equivalently, the number of orbits is the average size of the stabilizers:

$$|\operatorname{Orb}(\phi)| = \frac{1}{|G|} \sum_{s \in S} |\operatorname{stab}(s)|.$$

Proof: Count checkmarks in the fixed point table.

Groups acting on themselves!

Groups acting on "themselves"

It is frequently of interest to analyze the action of a group G on its elements, subgroups, or cosets of some fixed $H \leq G$.

Often, the orbits, stabilizers, and fixed points of these actions are familiar algebraic objects.

A number of deep theorems have a slick proof via a clever group action.

Here are common examples of group actions:

- lacksquare G acts on itself (i.e., its set of elements) by multiplication.
- *G* acts on itself by conjugation.
- G acts on its subgroups by conjugation.
- G acts on the cosets of a fixed subgroup $H \leq G$ by multiplication.

(Please put the word "right" in a salt shaker and shake it all over those bullet points.)

Any group G acts on its set S of subgroups, $S = \{H \mid H \leq G\}$ by **right-conjugation**:

 $\phi \colon G \longrightarrow \operatorname{Perm}(S)$, $\phi(g) = \operatorname{the permutation that sends each } H \operatorname{ to } g^{-1}Hg$.

This is a **right action**, but there is an associated left action: $H \mapsto gHg^{-1}$.

Let $H \leq G$ be an element of S.

■ The orbit of *H* consists of all conjugate subgroups:

$$orb(H) = \{g^{-1}Hg \mid g \in G\} = cl_G(H).$$

■ The stabilizer of H is the normalizer of H in G:

$$stab(H) = \{ g \in G \mid g^{-1}Hg = H \} = N_G(H).$$

■ The fixator of g are the subgroups that g normalizes:

$$fix(g) = \{H \mid g^{-1}Hg = H\} = \{H \mid g \in N_G(H)\},\$$

■ The fixed points of ϕ are precisely the normal subgroups of G:

$$Fix(\phi) = \left\{ H \le G \mid g^{-1}Hg = H \text{ for all } g \in G \right\}.$$

■ The kernel of this action is the set of elements that normalize every subgroup:

$$\operatorname{\mathsf{Ker}}(\phi) = \left\{g \in G \mid g^{-1}Hg = H \text{ for all } H \leq G\right\} = \bigcap_{H \leq G} N_G(H).$$

Let's apply our two theorems:

1. Orbit-stabilizer theorem. "the size of an orbit is the index of the stabilizer":

$$\left|\operatorname{cl}_{G}(H)\right| = \left[G : N_{G}(H)\right] = \frac{|G|}{|N_{G}(H)|}.$$

2. **Orbit-counting theorem**. "the number of orbits is the average number of elements fixed by a group element":

#conjugacy classes of subgroups of $G = \mathbb{E}[\# \text{ subgroups } g \text{ normalizes}]$.

Here is an example of $G=D_3$ acting on its subgroups by a homomorphism $\tau:D_3\to \mathsf{Perm}(S)\cong S_6$.

$$\tau(1) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(r) = \langle 1 \rangle \qquad \langle r \rangle \qquad \langle f \rangle \qquad \langle rf \rangle \qquad \langle r^2 f \rangle \qquad D_3$$

$$\tau(r^2) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(f) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(rf) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2 f \rangle \quad D_3$$

$$\tau(r^2f) = \langle 1 \rangle \quad \langle r \rangle \quad \langle f \rangle \quad \langle rf \rangle \quad \langle r^2f \rangle \quad D_3$$

Observations

Do you see how to read stabilizers and fixed points off of the permutation diagram?

- $Ker(\phi) = \langle 1 \rangle$ consists of the row(s) with only fixed points.
- Fix(ϕ) = { $\langle 1 \rangle$, $\langle r \rangle$, D_3 } consists of the column(s) with only fixed points.
- By the orbit-counting theorem, there are $|Orb(\phi)| = 24/|D_3| = 4$ conjugacy classes.

Here is an example of $G = A_4 = \langle (123), (12)(34) \rangle$ acting on its subgroups.

Let's take a moment to revisit our "three favorite examples" from Chapter 3.

$$N = \langle (12)(34), (13)(24) \rangle, \qquad H = \langle (123) \rangle, \qquad K = \langle (12)(34) \rangle.$$

Here is the "fixed point table" of the action of A_4 on its subgroups.

	(e)	⟨ (123) ⟩	⟨(124)⟩	((134))	((234))	⟨(12)(34)⟩	⟨(13)(24)⟩	⟨(14)(23)⟩	⟨(12)(34). (13)(24)⟩	A_4
e	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
(123)	✓	✓							✓	✓
(132)	✓	✓							✓	✓
(124)	✓		✓						✓	✓
(142)	✓		✓						✓	✓
(134)	✓			✓					✓	✓
(143)	✓			✓					✓	✓
(234)	✓				✓				✓	✓
(243)	✓				✓				✓	✓
(12)(34)	✓					✓	✓	✓	✓	✓
(13)(24)	✓					✓	✓	✓	✓	✓
(14)(23)	✓					✓	✓	✓	✓	✓

By the **orbit-counting theorem**, there are $|\operatorname{Orb}(\phi)| = 60/|A_4| = 5$ conjugacy classes.

A summary

Thus far, we have seen four important (right) actions of a group G, acting:

- on itself by multiplication
- on itself by conjugation.
- on its subgroups by conjugation.
- $lue{}$ on the cosets of a fixed subgroup $H \leq G$ by multiplication.

set $S =$	G		subgroups of <i>G</i>	right cosets of H
operation	multiplication	conjugation	conjugation	right multiplication
orb(s)	G	$cl_G(g)$	$\operatorname{cl}_G(H)$	all right cosets
stab(s)	$\langle 1 \rangle$	$C_G(g)$	$N_G(H)$	$x^{-1}Hx$
fix(g)	G or ∅	$C_G(g)$	$\{H\mid g\in N_G(H)\}$	$\left\{ Hx\mid xgx^{-1}\in H\right\}$
$Ker(\phi)$	$\langle 1 \rangle$	Z(G)	$\bigcap_{H\leq G}N_G(H)$	largest norm. subgp. $N \leq H$
$Fix(\phi)$	Ø	Z(G)	normal subgroups	none

More applications of group actions!

Here is where we did a fun example in class

In class we talked about SA_8 acting on itself by conjugation:

- we drew an action diagram,
- we drew boxes around each orbit.
- we looked at fixators.
- we looked at fixed points, which was $Z(SA_8) = \langle r^2 \rangle$,
- and we said that $|SA_8| = (4 \cdot 1) + 2 + 2 + 2 + 2 + 2 + 2 + 2$.

A creative application of a group action

Cauchy's theorem

If p is a prime dividing |G|, then G has an element (and hence a subgroup) of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e:

$$(x_1, x_2, \ldots, x_p) \in P$$
 iff $x_1 x_2 \cdots x_p = e$.

Observe that $|P| = |G|^{p-1}$. (We can choose x_1, \ldots, x_{p-1} freely; then x_p is forced.)

The group \mathbb{Z}_p acts on P by cyclic shift:

$$\phi \colon \mathbb{Z}_p \longrightarrow \mathsf{Perm}(P), \qquad (x_1, x_2, \dots, x_p) \stackrel{\phi(1)}{\longmapsto} (x_2, x_3, \dots, x_p, x_1).$$

The set P is partitioned into orbits, each of size $|\operatorname{orb}(s)| = [\mathbb{Z}_p : \operatorname{stab}(s)] = 1$ or p.

The only way that the orbit of (x_1, x_2, \dots, x_p) can have size 1 is if $x_1 = \dots = x_p$.

Clearly, $(e, \ldots, e) \in P$ is a fixed point.

The $|G|^{p-1}-1$ other elements in P sit in orbits of size 1 or p.

Since $p \nmid |G|^{p-1} - 1$, there must be other orbits of size 1. Thus, some $(x, \dots, x) \in P$, with $x \neq e$ satisfies $x^p = e$.

Classification of groups of order 6

By Cauchy's theorem, every group of order 6 must have:

- an element a of order 3
- an element b of order 2.

Clearly, $G = \langle a, b \rangle$, and so G must have the following "partial Cayley graph":

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

Exercise. Suppose that |G| = pq, where p < q are primes and p doesn't divide q - 1. Prove that G is cyclic.