# Aggregation of Dropout Subnetworks Final Bachelor Thesis Presentation

Paul Miller

University of Fribourg

January 31, 2018

Paul Miller (UNIFR)

# Dropout training

Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014.





- (a) Training without Dropout
- (b) Training with Dropout

2/18

# Dropout testing



(a) Dropout training phase (b) Dropout testing phase of a neuron present with probability p

#### Problem statement

Finding a better way of using Dropout subnetworks at test time

#### My project



#### Tools

- DeepDIVA
- AlexNet model for final results
- MNIST: database of handwritten digits
- CIFAR-10: database for object classification



#### Example of two subnetwork outputs





- (a) Output with different values
- (b) Output with similar values

□ト 4個ト 4 差ト 4 差ト 差 9 9 0 0 0

#### Average of both outputs



Subnetwork (a) has a lot more effect on the average and its prediction is treated as more valuable

# Voting system for subnetworks

Idea: normalize subnetwork outputs by only giving one vote for an output class

#### Experimental results on CIFAR-10

Accuracy loss/gain on CIFAR-10<sup>1</sup>

| nb samples | Dropout  | median   | average  | voting system |
|------------|----------|----------|----------|---------------|
| 50         | 80.0125% | +0.172%  | +0.2535% | +0.2185%      |
| 100        | 80.0905% | +0.115%  | +0.129%  | +0.1405%      |
| 200        | 79.9995% | +0.1825% | +0.2025% | +0.2035%      |

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Paul Miller (UNIFR)

10 / 18

<sup>&</sup>lt;sup>1</sup>AlexNet model, 20 epochs, average of 20 runs

# Experimental results on MNIST

Accuracy loss/gain on MNIST<sup>2</sup>

| nb samples | Dropout  | median   | average  | voting system |
|------------|----------|----------|----------|---------------|
| 50         | 99.439%  | -0.0075% | -0.009%  | -0.0135%      |
| 100        | 99.466%  | +0.0015% | +0.009%  | +0.0015%      |
| 200        | 99.4725% | +0%      | +0.0025% | +0.009%       |

11 / 18

<sup>&</sup>lt;sup>2</sup>AlexNet model, 20 epochs, average of 20 runs

#### Scoring system for subnetworks

Idea: compare the output of each subnetwork with mean output for the predicted class during validation to measure how reliable it is and give it the appropriate weight in the final prediction

#### Implementation

Consider the matrix  $Y=(y_{ij})$  of size NxN, where N is the number of output classes, such as each line  $[y_{i1},...,y_{iN}]$  contains the mean output of inputs from class  $i \in [1,...,N]$ . For every forward pass  $k \in [1,...,K]$ , we get an output  $x^k = [x_1^k,...,x_N^k]$ , which predicts a class  $h \in [1,...,N]$ . We compute:

$$\alpha_k = \sum_{i=1}^{N} (x_i^k - y_{hi})^2$$

$$\omega = \max(\alpha_k)$$

$$z = \sum_{k=1}^{K} x^k \frac{(a\omega - b\alpha_k)}{\omega}$$

with a and b constant parameters.

Paul Miller (UNIFR)

#### Experimental results on CIFAR-10

#### Accuracy loss/gain on CIFAR-10<sup>3</sup>

| nb samples | Dropout  | median   | average  | scoring system <sup>4</sup> |
|------------|----------|----------|----------|-----------------------------|
| 10         | 79.5805% | -0.286%  | -0.121%  | -0.0825%                    |
| 25         | 80.1255% | -0.029%  | +0.082%  | +0.0815%                    |
| 50         | 80.0295% | +0.092%  | +0.159%  | +0.1975%                    |
| 100        | 79.9675% | +0.1465% | +0.195%  | +0.2045%                    |
| 200        | 79.9145% | +0.065%  | +0.0795% | +0.118%                     |
| 500        | 79.8585% | +0.141%  | +0.148%  | +0.1935%                    |



14 / 18

<sup>&</sup>lt;sup>3</sup>AlexNet model, 20 epochs, average of 20 runs

<sup>&</sup>lt;sup>4</sup>Using a=1 and b=1

# Experimental results on MNIST

#### Accuracy loss/gain on MNIST<sup>5</sup>

| nb samples | Dropout  | median   | average   | scoring system <sup>6</sup> |
|------------|----------|----------|-----------|-----------------------------|
| 10         | 99.472%  | -0.019%  | -0.01%    | +0.015%                     |
| 25         | 99.474%  | -0.0025% | -0.00325% | +0.0065%                    |
| 50         | 99.4905% | +0.0045% | +0.0025%  | +0.009%                     |
| 100        | 99.467%  | -0.007%  | -0.001%   | +0.015%                     |
| 200        | 99.464%  | +0.006%  | +0.0065%  | +0.012%                     |



15 / 18

<sup>&</sup>lt;sup>5</sup>AlexNet model, 20 epochs, average of 20 runs

<sup>&</sup>lt;sup>6</sup>Using a=1 and b=1

#### Conclusion

Voting system: up to +0.2% accuracy on CIFAR-10 and +0.009% on MNIST using 200 forward passes Scoring system: up to +0.2% accuracy on CIFAR-10 and +0.015% on MNIST using 100 forward passes

#### Further work

- Try out different values for a and b
- Calculate the computational time added by both systems
- Different datasets, models and parameters
- Test these methods on DropConnect models

# Thank you for your attention!

Paul Miller (UNIFR) January 31, 2018 18 / 18