Analyse

Arnaud Durand et Pierre Gervais

September 18, 2016

Contents

Ι	Calcul propositionnel	1
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3
2	Sémantique	4
3	Exemples de formalisation 3.1 Contraites de compatibilité/exclusion	5

Part I

Calcul propositionnel

1 Syntaxe

Le calcul propositionnel est un langage inductivement et librement engendré par un ensemble de règles. C'est à dire qu'une formule ne peut pas être obtenu de deux façons différentes.

Définition 1. Soit \mathcal{P} un ensemble de constantes propositionnelles, on définit $\mathcal{F}_{\mathcal{P}}$ le calcul propositionnel sur \mathcal{P} obtenu par les règles suivantes :

- si $p \in \mathcal{P}$, alors $p \in \mathcal{F}_{\mathcal{P}}$
- $\perp \in \mathcal{F}_{\mathcal{P}}$
- si $F \in \mathcal{F}_{\mathcal{P}}$, alors $(\neg F) \in \mathcal{F}_{\mathcal{P}}$
- si $F, G \in \mathcal{F}_{\mathcal{P}}$ alors $(F \vee G), (F \wedge G), (F \rightarrow G) \in \mathcal{F}_{\mathcal{P}}$

Notation 1. S'il n'y a pas d'ambiguïté, on notera $\mathcal{F}_{\mathcal{P}} = \mathcal{F}$

Définition 2. Une définition alternative de \mathcal{F} est $\mathcal{F} = \bigcup_{n \geq 0} \mathcal{F}_n$ où

- $\mathcal{F}_0 = \mathcal{P}$
- $\mathcal{F}_{n+1} = \mathcal{F}_n \cup \{(\neg F) \mid F \in \mathcal{F}_n\} \cup \{(F \star G) \mid F, G \in \mathcal{F}_n, \ \star \in \{\land, \lor, \rightarrow\}\}, \text{ avec } n \geqslant 0$

On définit la hauteur d'une formule F par le plus petit n tel que $F \in \mathcal{F}_n$.

Remarque 1. Ce langage est fortement parenthésé et toute formule peut être représentée par un arbre de décomposition.

Figure 1: Arbre de décomposition

Propriété 1. Propriété de lecture unique

Pour tout $F \in \mathcal{F}$, un seul de ces cas est vrai :

- 1. $F \in \mathcal{P}$
- 2. Il existe un unique $G \in \mathcal{F}$ tel que $F = (\neg G)$
- 3. Il existe d'uniques $G, H \in \mathcal{F}$ et $\star \in \{\lor, \land, \to\}$ tels que $F = G \star H$

C'est-à-dire que toute formule ne peut se décomposer que d'une seule façon.

1.1 Raisonnements

On démontrera généralement les propriétés s'appliquant à \mathcal{F} par induction : pour démontrer une proposition A s'appliquant à \mathcal{F} , on la démontre sur \mathcal{P} et pour tout $(F \star G)$ et $(\neg F)$ où on suppose que $F, G \in \mathcal{F}$ vérifient A et $\star \in \{\land, \lor, \to\}$.

1.2 Définition alternative de $\mathcal{F}_{\mathcal{P}}$

Soit $\Sigma = \mathcal{P} \cup \{(,), \neg, \wedge, \vee, \rightarrow, \bot\}, \Sigma^*$ est l'ensemble des mots sur Σ .

Exemple 1.

- $F = (\land \neg x_1)((\in \Sigma^*)$
- $F = (\neg x_1) \in \Sigma^*$

Définition 3. \mathcal{F} est le plus petit sous-ensemble de Σ^* contenant $\mathcal{P} \cup \{\bot\}$ et clos par les opérations

- 1. $(F,G) \longmapsto (F \vee G)$
- 2. $(F,G) \longmapsto (F \wedge G)$
- 3. $(F,G) \longmapsto (F \to G)$

Remarque 2. On peut montrer que les deux définitions correspondent. \mathcal{F} satisfait la propriété de lecture unique (voir TD).

1.2.1 Sous-formule, hauteur, arbre de décomposition

Définition 4. Soit $F \in \mathcal{F}$, on définit $\mathcal{S}(F)$ l'ensemble des sous-formules de F telles que

- si $F \in \mathcal{P}$, $\mathcal{S}(F) = \{F\}$
- si $F = (\neg G)$ alors $S(F) = \{F\} \cup S(G)$
- si $F = (G \star H)$ où $\star \in \{\land, \lor, \rightarrow\}$, alors $\mathcal{S}(F) = \{F\} \cup \mathcal{S}(G) \cup \mathcal{S}(H)$

TODO: vérifier dernier point

Définition 5. Soit $F \in \mathcal{F}$ on définit la hauteur h(F) de F par

- h(F) = 0, si $F \in \mathcal{P}$
- $si = (\neg G)$, alors h(F) = 1 + h(G)
- si $F = (G \star H)$, alors $h(F) = 1 + \max\{h(G), h(H)\}$

Définition 6. Soit $F \in \mathcal{F}$, l'arbre de décomposition de F arb(F) est un graphe étiqueté défini par

- 1. si $F \in \mathcal{P}$, arb(F) est réduit à un sommet étiqueté par F.
- 2. si $F = (\neg G)$, alors $arb(F) = \neg arb(G)$
- 3. si $F = (G \star H)$, alors $arb(F) = G \star H$

Notation 2. Soit F une formule, var(F) est l'ensemble des variables de F, occ(F) est le multi-ensemble des variables de F et arb(F) est le graphe

- dont les sommets sont V
- et muni d'une fonction d'étiquetage $\lambda: V \longrightarrow \{\neg, \bot, \lor, \land, \rightarrow\} \cup var(F)$.

Remarque 3. Toutes les définitions sont univoques par la propriété de lecture unique.

Remarque 4. On définit la hauteur d'une formule par la hauteur de son arbre de décomposition, c'est-à-dire la distance maximum entre les feuilles et la racine.

Notation 3.

- \top comme abréviation pour $(\bot \rightarrow \bot)$
- $(p \longleftrightarrow q)$ pour $(p \leftarrow q) \land (p \to q)$
- $\bigwedge_{i=1}^{n} A_{i} = (((A_{1} \wedge A_{2}) \wedge A_{3})... \wedge A_{n})$

2 Sémantique

On s'intéresse à des propositions dont la valeur de vérité est soit vrai soit faux. On a besoin d'une **interprétation** (en terme de vrai ou faux) de ces constantes propositionnelles.

Définition 7. Une valuation est une fonction $v: \mathcal{P} \longrightarrow \{0,1\}$ (on l'appelle aussi interprétation). Étant donné une valuation v, on définit l'interprétation $\overline{v}: \mathcal{F} \longrightarrow \{0,1\}$ comme ceci

- si $F = p \in \mathcal{P}$ alors $\overline{v} = v(p)$
- si $F = (\neg G) \in \mathcal{P}$ alors $\overline{v}(F) = 1$ si et seulement si $\overline{v}(G) = 0$
- $-\overline{v}(\perp)=0$
- $\overline{v}(F \wedge G) = 1$ si et seulement si $\overline{v}(F) = \overline{v}(G) = 1$

On peut décrire l'interprétation d'une formule par sa table de vérité :

F	G	$\neg G$	$F \wedge G$	$F \to G$
0	0	1	0	1
0	1	1	0	1

On définit formellement la table de vérité par une fonction $v: \{0,1\}^{\mathcal{P}} \longrightarrow \{0,1\}$

Définition 8.

- $F \in \mathcal{F}$ est dit satisfaisable s'il existe une valuation v de \mathcal{P} tel que $\overline{v}(F) = 1$
- F est dit valide si pour toute valuation v de \mathcal{P} , $\overline{v}(F) = 1$, on dit aussi que F est une tautologie.
- F et G sont dites équivalentes, notées $F \equiv G$, si pour toute valuation $v, \overline{v}(F) = \overline{v}(G)$

Exercice 1. Vérifier que $F \equiv G$ si et seulement si $F \leftrightarrow G$ est valide.

Proposition 1. Pour tout $F \in \mathcal{F}$, F est satisfaisable si et seulement si $(\neg F)$ n'est pas valide.

3 Exemples de formalisation

3.1 Contraites de compatibilité/exclusion

Problème : On possède n produits chimiques à ranger dans $k \leq n$ conteneurs. Certains produits ne peuvent pas être stockés ensemble dans un conteneur.

La contrainte est donnée sous la forme d'un ensemble $\mathcal{L} \subseteq [n]$ tel que $I = \{i_1, ..., i_k\} \subseteq \mathcal{L}$ si et seulement si les produits $i_1, ..., i_k$ ne peuvent pas être stockés ensemble.

Enjeu : Écrire une formule propositionnelle F telle que F est satisfaisable si le problème a une solution.

Les variables propositionnelles $\mathcal{P} = p(i, j), i \leq n, j \leq k$ sont interprétées par "le produit chimique i est dans le camion j".

On exprime deux propositions :

- Chaque produit se trouve dans un unique conteneur :
$$F = \left(\bigwedge_{i \leqslant n} \left(\bigvee_{j \leqslant k} p(i,j) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i$$

Pour chaque produit i et chaque paire de camions $j \neq j'$ il est faux que i est à la fois dans j et j'

- On respecte les incompatibilités : G=

$$\bigwedge_{I\subseteq\mathcal{L}}\left(\bigwedge_{j\leqslant k}\neg\left(\bigwedge_{i\in I}p(i,j)\right)\right)$$

Pour chaque ensemble I de produits ne pouvant pas être stockés ensemble et pour chaque camion j, aucun produit de I n'est présent dans le camion