∘ Baccalauréat S Liban 31 mai 2019 ∾

Durée: 4 heures

Exercice 1 Commun à tous les candidats

Le plan est muni d'un repère orthogonal (O, I, J).

1. On considère la fonction f définie sur l'intervalle]0; 1] par

$$f(x) = x(1 - \ln x)^2.$$

5 points

- **a.** Déterminer une expression de la fonction dérivée de f et vérifier que pour tout $x \in]0; 1], f'(x) = (\ln x + 1)(\ln x 1).$
- **b.** Étudier les variations de la fonction f et dresser son tableau de variations sur l'intervalle]0;1] (on admettra que la limite de la fonction f en 0 est nulle).

On note Γ la courbe représentative de la fonction g définie sur l'intervalle]0;1] par $g(x)=\ln x$. Soit a un réel de l'intervalle]0;1]. On note M_a le point de la courbe Γ d'abscisse a et d_a la tangente à la courbe Γ au point M_a . Cette droite d_a coupe l'axe des abscisses au point N_a et l'axe des ordonnées au point P_a .

On s'intéresse à l'aire du triangle ON_aP_a quand le réel a varie dans l'intervalle]0;1].

2. Dans cette question, on étudie le cas particulier où a = 0.2 et on donne la figure ci-dessous.

- **a.** Déterminer graphiquement une estimation de l'aire du triangle $ON_{0,2}P_{0,2}$ en unités d'aire.
- **b.** Déterminer une équation de la tangente $d_{0,2}$.
- c. Calculer la valeur exacte de l'aire du triangle $ON_{0,2}P_{0,2}$.

 Dans ce qui suit, on admet que, pour tout réel a de l'intervalle]0;1], l'aire du triangle ON_aP_a en unités d'aire est donnée par $\mathcal{A}(a)=\frac{1}{2}a(1-\ln a)^2$.
- **3.** À l'aide des questions précédentes, déterminer pour quelle valeur de a l'aire $\mathcal{A}(a)$ est maximale. Déterminer cette aire maximale.