

Intro and Exam Focus

- · Measures of central tendency
 - Arithmetic mean (trimmed, winsorized?)
 - Median: ½ higher and ½ lower
 - Mode: most frequent outcome
- Measures of dispersion
 - · Standard deviation and variance
 - Range: highest to lowest
 - MAD: mean absolute deviation

© Kaplan, Inc.

Median

- Midpoint of a dataset: half above and half below
 - With an odd number of observations
 - 2, 5, 7, 11, 14 Median =
- With an <u>even number</u> of observations, median is the average of the two middle observations
 - 3, 9, 10, 20 Median =
- Less affected by extreme values than the mean

-2

Mode

• Value occurring most frequently in a dataset

• Datasets can have more than one mode (bimodal, trimodal, etc.), or no mode (all values are the same)

© Kaplan, Inc.

Quantiles: Example

- 75% of the data points are less than the 3rd quartile
- 60% of the data points are less than the 60th percentile (6th decile)

• What is the 1st decile and 1st quartile for the FTSE 100 daily return data displayed below?

	Return Range			
	Cumulative Percentage of			
Bin	Trading Days	Lower	Upper	Frequency
1	5%	-3.83%	-1.59%	12
2	10%	-1.59%	-1.01%	12
3	15%	-1.01%	-0.76%	13
4	20%	-0.76%	-0.50%	12
5	25%	-0.50%	-0.37%	13
6	30%	-0.37%	-0.25%	12

CFA Institute Data

Monthly portfolio returns:

Month	X _i Return (%)	Month	X _i Return (%)
January	5	July	0
February	3	August	4
March	-1	September	3
April	-4	October	0
May	4	November	6
June	2	December	5

This data will be used in the examples following this slide

© Copyright CFA Institute

© Kaplan, Inc.

Range and Mean Absolute Deviation

1. What is the data's range?

2. What is the data's mean absolute deviation (MAD)? *Step 1* (compute mean):

Mean=
$$\frac{(5+3-1-4+4+2+0+4+3+0+6+5)}{12}$$
 =

-2

© Copyright CFA Institute

Mean Absolute Deviation (cont.)

2. What is the data's mean absolute deviation (MAD)?

Step 2 (compute difference between observation and mean):

	X _i Return (%)	$X_i - \overline{X}$	X _i Return (%)	$X_i - \overline{X}$
	5	→	0	2.25
5% - 2.25% -	3	0.75	4	1.75
	-1	-3.25	3	0.75
	-4	-6.25	0	-2.25
	4	1.75	6	3.75
	2	-0.25	5	2.75

© Copyright CFA Institute

© Kaplan, Inc.

Mean Absolute Deviation (cont.)

2. What is the data's mean absolute deviation (MAD)?

Step 3 (treat deviations as absolute values and compute mean deviation):

$$\mathsf{MAD} = \frac{2.75 + 0.75 + 3.25 + 6.25 + 1.75 + 0.25 + 2.25 + 1.75 + 0.75 + 2.25 + 3.75 + 2.75}{12}$$

$$MAD = =$$

-1

© Copyright CFA Institute

Sample Variance and Sample Standard Deviation

• Sample variance (s²): average squared distance from the sample mean (\overline{X})

$$s^{2} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{n-1}$$

• Sample standard deviation (s) = $\sqrt{S^2}$

© Kaplan, Inc.

Standard Deviation: Example

$$\overline{X} = 2.25\%$$

X _i Return (%)	X _i - X	$\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{2}$	X _i Return (%)	X _i - χ	$\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{2}$
5	2.75	7.5625	0	-2.25	5.0625
3	0.75	0.5625	4	1.75	3.0625
-1	-3.25	10.5625	3	0.75	0.5625
-4	-6.25	39.0625	0	-2.25	5.0625
4	1.75	3.0625	6	3.75	14.0625
2	-0.25	0.0625	5	2.75	7.5625
					Σ

Much quicker on the BAII+

$$S_x = =$$

-2

© Copyright CFA Institute

Target Downside Deviation (or Target Semideviation)

$$s_{\text{target}} = \sqrt{\frac{\sum_{\text{all } X_i < B}^{n} (X_i - B)^2}{n - 1}}$$

Similar to sample standard deviation, but the numerator only uses those observations that are **less than a chosen target**, B

© Kaplan, Inc.

Target Downside Deviation: Example

Calculate the downside deviation when the target is 3%:

 $S_{target} =$

X_i Return X_i - $(X_i$ - $B)^2$ (%)	X _i Return X _i - B (X _i - B) ² (%)
- 5	0
3	4
-1	3
-4	0
4	-6
2	5
	Σ

© Copyright CFA Institute

Coefficient of Variation (CV): Example

• Measures dispersion per unit of mean (risk per unit of return)

$$CV = \frac{s}{\overline{X}}$$

• Which asset would be preferred based on its coefficient of

variation?

Asset	Mean	S
Asset A	5%	10%
Asset B	8%	12%

$$CV_A = = CV_B = =$$

© Kaplan, Inc.

Skewness

- Skew measures the degree to which a distribution lacks symmetry
- Based on the average *cubed* deviation from the mean
- A symmetrical distribution has $\underline{\text{skew}} = 0$ (e.g., the normal distribution)

Mode

Kurtosis

- Measures the degree to which a distribution is more or less peaked than a normal distribution
- Based on average deviation from the mean to the power of four

• Leptokurtic (kurtosis > 3) is more peaked with fatter tails (more extreme outliers)

Kurtosis (cont.)

- Kurtosis for a normal distribution = 3.0
- Excess kurtosis = kurtosis 3

Kurtosis	Excess Kurtosis	Definition	Shape vs. Normal Distribution
>3	>0	Leptokurtosis	Peaked, fat tails
3	0	Mesokurtic	Normal
<3	<0	Platykurtic	Flatter, thinner tails

© Kaplan, Inc.

Skewness/Kurtosis

- FTSE 100 daily returns revisited
 - Average = 0.01%, sample standard deviation = 0.86%
 - Skew = -0.7, kurtosis = 2.8

Sample Covariance

• A measure of how two variables move together:

$$s_{X,Y} = \frac{\sum_{i=1}^{n} \left[\left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right) \right]}{n-1}$$

- Difficult to interpret for two reasons:
 - Units of covariance are squares of the units of the underlying data
 - Does not indicate the strength of the relationship

© Kaplan, Inc.

Correlation

$$s_{XY} = 0.0046$$
, $s_{X} = 0.0623$, $s_{Y} = 0.0991$

$$r_{XY} = \frac{S_{XY}}{S_X \times S_Y} = = =$$

- Indicates strength of linear relationships
- Bounded between –1 and +1 \rightarrow easier to interpret
- Does not indicate nonlinear relationships
- Correlation does not imply causality: unrelated variables may show spurious correlation

-1

Solutions

Median

Midpoint of a dataset: half above and half below

With an odd number of observations

• With an <u>even number</u> of observations, median is the average of the two middle observations

$$3,9,1020$$
 Median = $(9 + 10) / 2 = 9.5$

• Less affected by extreme values than the mean

-2

Quantiles: Example

- 75% of the data points are less than the 3rd quartile
- 60% of the data points are less than the 60th percentile (6th decile)

• What is the 1st decile and 1st quartile for the FTSE 100 daily return data displayed below?

1st decile (10%) 1st quartile (25%)

	Return Range				
Bin	Cumulative Percentage of Trading Days	Lower	Upper	Frequency	
1	5%	-3.83%	-1.59%	12	
2	10%	-1.59%	-1.01%	12	
3	15%	-1.01%	-0.76%	13	
4	20%	-0.76%	-0.50%	12	
5	25%	-0.50%	-0.37%	13	
6	30%	-0.37%	-0.25%	12	

© Kaplan, Inc

Range and Mean Absolute Deviation

1. What is the data's range?

Range =
$$6\% - (-4\%) = 10\%$$

2. What is the data's mean absolute deviation (MAD)? *Step 1* (compute mean):

mean=
$$\frac{(5+3-1-4+4+2+0+4+3+0+6+5)}{12}$$
 = 2.25%

-2

© Copyright CFA Institute

Mean Absolute Deviation (cont.)

2. What is the data's mean absolute deviation (MAD)?

Step 2 (compute difference between observation and mean):

	X _i Return (%)	$X_i - \overline{X}$	X _i Return (%)	$X_i - \overline{X}$
	5	→ 2.75	0	-2.25
5% - 2.25% -	3	0.75	4	1.75
	–1	-3.25	3	0.75
	-4	-6.25	0	-2.25
	4	1.75	6	3.75
	2	-0.25	5	2.75

© Copyright CFA Institute

© Kaplan, Inc.

Mean Absolute Deviation (cont.)

2. What is the data's mean absolute deviation (MAD)?

Step 3 (treat deviations as absolute values and compute mean deviation):

$$\mathsf{MAD} = \frac{2.75 + 0.75 + 3.25 + 6.25 + 1.75 + 0.25 + 2.25 + 1.75 + 0.75 + 2.25 + 3.75 + 2.75}{12}$$

$$MAD = \frac{28.5}{12} = 2.375$$

-1

© Copyright CFA Institute

Standard Deviation: Example

$$\overline{X} = 2.25\%$$

X _i Return (%)	X _i − X	$\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{2}$	X _i Return (%)	X _i − X	$\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{2}$
5	2.75	7.5625	0	-2.25	5.0625
3	0.75	0.5625	4	1.75	3.0625
-1	-3.25	10.5625	3	0.75	0.5625
-4	-6.25	39.0625	0	-2.25	5.0625
4	1.75	3.0625	6	3.75	14.0625
2	-0.25	0.0625	5	2.75	7.5625
		06.05			Σ 96.25

Much quicker on the BAII+

$$S_x = \sqrt{\frac{96.25}{12-1}} = 2.958\%$$

© Copyright CFA Institute

© Kaplan, Inc.

Target Downside Deviation: Example

Calculate the downside deviation when the target is 3%:

X _i Return (%)	X _i -	$\left(\mathbf{X_{i}}-\mathbf{B}\right)^{2}$	X _i Return (%)	X _i - B	$(X_i - B)^2$
-5			0	-3	9
3			-4		
-1	-4	16	3		
-4	-7	49	0	-3	9
4			-6		
2	-1	1	5		

$$s_{target} = \sqrt{\frac{84}{12-1}} = 2.763\%$$

© Copyright CFA Institute

Kaplan, Inc.

Σ 84

Coefficient of Variation (CV): Example

• Measures dispersion per unit of mean (risk per unit of return)

$$CV = \frac{s}{\overline{X}}$$

• Which asset would be preferred based on its coefficient of

variation?

Asset	Mean	S
Asset A	5%	10%
Asset B	8%	12%

$$CV_A = \frac{10}{5} = 2.0$$
 $CV_B = \frac{12}{8} = 1.5$

© Kaplan, Inc.

Correlation

$$s_{XY} = 0.0046$$
, $s_X = 0.0623$, $s_Y = 0.0991$

$$r_{xy} = \frac{S_{xy}}{S_x \times S_y} = \frac{0.0046}{0.0623 \times 0.0991} = 0.745$$

- Indicates strength of linear relationships
- Bounded between –1 and +1 \rightarrow easier to interpret
- Does not indicate nonlinear relationships
- Correlation does not imply causality: unrelated variables may show spurious correlation

-1