- 1 import numpy as np
- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 sns.set(color_codes=True)
- 1 data = pd.read_csv('/content/raw_house_data raw_house_data.csv')
- 2 data.head(10)

_	MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_built	bedrooms	bathrooms	sqrt_ft	garage	kitchen_f
	0 21530491	5300000.0	85637	-110.378200	31.356362	2154.00	5272.00	1941	13	10.0	10500.0	0.0	Disł Refrigerat
	1 21529082	4200000.0	85646	-111.045371	31.594213	1707.00	10422.36	1997	2	2.0	7300.0	0.0	Disł Garbage I
	2 3054672	4200000.0	85646	-111.040707	31.594844	1707.00	10482.00	1997	2	3.0	NaN	NaN	Disł Garbage [Ref
	3 21919321	4500000.0	85646	-111.035925	31.645878	636.67	8418.58	1930	7	5.0	9019.0	4.0	Dishwashei Sink, Pantr
	4 21306357	3411450.0	85750	-110.813768	32.285162	3.21	15393.00	1995	4	6.0	6396.0	3.0	Disł Garbage [Refrigera
	5 21528016	3250000.0	85718	-110.910593	32.339090	1.67	27802.84	1999	3	4.0	6842.0	3.0	Disł Garbage [Refrigera
	6 21610478	2400000.0	85712	-110.883315	32.261069	2.10	19038.42	2001	9	8.0	12025.0	4.0	Disł Garbage [
	7 21211741	2500000.0	85750	-110.861002	32.331603	1.07	21646.00	2011	6	8.0	8921.0	4.0	Cor Dist Freezer,
	8 21324646	3700000.0	85718	-110.912156	32.343601	6.73	25094.39	2002	5	7.0	5238.0	3.0	Cor Dish Freezer,
	9 21812010	3250000.0	85750	-110.837950	32.327575	3.53	18936.11	2007	5	6.0	6480.0	3.0	Dishwashei Sink Range

Next steps:

Generate code with data

View recommended plots

New interactive sheet

1 data.shape

→ (5000, 16)

1 data.dtypes

	0
MLS	int64
sold_price	float64
zipcode	int64
longitude	float64
latitude	float64
lot_acres	float64
taxes	float64
year_built	int64
bedrooms	int64
bathrooms	float64
sqrt_ft	float64
garage	float64
kitchen_features	object
fireplaces	float64
floor_covering	object
НОА	object
h 1	

dtype: object

1 data.isnull().any()

- ...,
- 1 median_garage = data['garage'].median()
- 2 data['garage']=data['garage'].fillna(median_garage)
- 3 median_garage
- _ 3.0
- data['garage'] = data['garage'].astype(int)
- 2 print(data['garage'].dtype)
- → int64

```
bathrooms = data['bedrooms']
    data['bathrooms'] = data['bathrooms'].fillna(bathrooms)
    data['bathrooms'] = data.apply(lambda row: row['bedrooms'] if row['bathrooms'] > row['bedrooms'] else row['bathrooms'], axis=1)
    data['bathrooms'] = data['bathrooms'].astype(int)
2
    print(data['bathrooms'].dtype)
int64
    data['floor_covering'] = data['floor_covering'].fillna(0)
    data['kitchen_features'] = data['kitchen_features'].fillna(0)
1
    median_sqrt_ft = data['sqrt_ft'].median()
2
    data['sqrt_ft']=data['sqrt_ft'].fillna(median_sqrt_ft)
3
4
    median sqrt ft
<del>_</del>-
   3512.0
    median_lot_acres = data['lot_acres'].median()
1
    data['lot_acres']=data['lot_acres'].fillna(median_lot_acres)
4
    median_lot_acres
0.99
    median_fireplaces = data['fireplaces'].median()
1
    data['fireplaces'] = data['fireplaces'].fillna(median_fireplaces)
    data['fireplaces'] = pd.to_numeric(data['fireplaces'], errors='coerce').fillna(0).astype(int)
    print(data['fireplaces'].dtype)
<del>_</del>
    int64
1
    data['HOA'] = pd.to_numeric(data['HOA'], errors='coerce')
    median_hoa = data['HOA'].median()
    data['HOA'] = data['HOA'].fillna(median_hoa)
    data.isnull().sum()
1
₹
                     0
          MLS
                     0
        sold_price
         zipcode
                     0
        longitude
                     0
         latitude
                     0
                     0
        lot_acres
          taxes
                     0
        year_built
                     0
        bedrooms
                     0
        bathrooms
                     0
         sqrt_ft
                     0
                     0
         garage
     kitchen_features 0
        fireplaces
                     0
      floor_covering
                     0
          HOA
                     0
    dtype: int64
```

1 data.dtypes

dtype: object

1 data.to_csv('file2.csv', header=False, index=False)

2 data.head()

→		MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_built	bedrooms	bathrooms	sqrt_ft	garage	kitchen_f
	0 2153	30491	5300000.0	85637	-110.378200	31.356362	2154.00	5272.00	1941	13	10	10500.0	0	Disł Refrigerat
	1 2152	29082	4200000.0	85646	-111.045371	31.594213	1707.00	10422.36	1997	2	2	7300.0	0	Disł Garbage I
	2 305	54672	4200000.0	85646	-111.040707	31.594844	1707.00	10482.00	1997	2	2	3512.0	3	Disł Garbage [Ref
	3 219	19321	4500000.0	85646	-111.035925	31.645878	636.67	8418.58	1930	7	5	9019.0	4	Dishwashei Sink, Pantr
	4 2130	06357	3411450.0	85750	-110.813768	32.285162	3.21	15393.00	1995	4	4	6396.0	3	Disł Garbage [Refrigera

Next steps: Generate code with data View recommended plots New interactive sheet

1 numeric_data = data.select_dtypes(include=[np.number])

2 correlation_matrix = numeric_data.corr()

- 1 plt.figure(figsize=(12, 10)) # Adjust figure size as needed
- 2 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
- 3 plt.title('Correlation Matrix Heatmap')
- 4 plt.show()

__

taxes

lot_acres

year_built

bedrooms

oathrooms

garage

fireplaces

HOA

1 data['price_per_sqft'] = data['sold_price'] / data['sqrt_ft']

zipcode

ongitude

latitude

sold_price

1 data

}		MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_built	bedrooms	bathrooms	sqrt_ft	garage	kitche
	0	21530491	5300000.0	85637	-110.378200	31.356362	2154.00	5272.00	1941	13	10	10500.0	0	Refrig
	1	21529082	4200000.0	85646	-111.045371	31.594213	1707.00	10422.36	1997	2	2	7300.0	0	Garba
	2	3054672	4200000.0	85646	-111.040707	31.594844	1707.00	10482.00	1997	2	2	3512.0	3	Garba
	3	21919321	4500000.0	85646	-111.035925	31.645878	636.67	8418.58	1930	7	5	9019.0	4	Dishwa Sink, P
	4	21306357	3411450.0	85750	-110.813768	32.285162	3.21	15393.00	1995	4	4	6396.0	3	Garba Refri
									•••					
	4995	21810382	495000.0	85641	-110.661829	31.907917	4.98	2017.00	2005	5	3	3601.0	3	Dishwa Si Dis
,	4996	21908591	550000.0	85750	-110.858556	32.316373	1.42	4822.01	1990	4	3	2318.0	3	Dishwa { Raı
•	4997	21832452	475000.0	85192	-110.755428	32.964708	12.06	1000.00	1969	3	2	1772.0	0	El€ Island,
	4998	21900515	550000.0	85745	-111.055528	32.296871	1.01	5822.93	2009	4	4	3724.0	3	Dishwa Si Dis
	4999	4111490	450000.0	85621	-110.913054	31.385259	4.16	2814.48	1988	4	4	4317.0	3	Dishwa Sink,
5	000 ro	ws × 17 colu	ımns											

Next steps: Generate code with data View recommended plots New interactive sheet

1 data

¹ data['Cat_price_per_sqft'] = pd.qcut(data['price_per_sqft'], q=20, labels=False, duplicates='drop')

	MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_built	bedrooms	bathrooms	sqrt_ft	garage	kitc
0	21530491	5300000.0	85637	-110.378200	31.356362	2154.00	5272.00	1941	13	10	10500.0	0	Re
1	21529082	4200000.0	85646	-111.045371	31.594213	1707.00	10422.36	1997	2	2	7300.0	0	G
2	3054672	4200000.0	85646	-111.040707	31.594844	1707.00	10482.00	1997	2	2	3512.0	3	Ga
3	21919321	4500000.0	85646	-111.035925	31.645878	636.67	8418.58	1930	7	5	9019.0	4	Disl Sin
4	21306357	3411450.0	85750	-110.813768	32.285162	3.21	15393.00	1995	4	4	6396.0	3	G:
•••												•••	
1995	21810382	495000.0	85641	-110.661829	31.907917	4.98	2017.00	2005	5	3	3601.0	3	Dis
1996	21908591	550000.0	85750	-110.858556	32.316373	1.42	4822.01	1990	4	3	2318.0	3	Dis
1997	21832452	475000.0	85192	-110.755428	32.964708	12.06	1000.00	1969	3	2	1772.0	0	Isl
1998	21900515	550000.0	85745	-111.055528	32.296871	1.01	5822.93	2009	4	4	3724.0	3	Dis
1999	4111490	450000.0	85621	-110.913054	31.385259	4.16	2814.48	1988	4	4	4317.0	3	Dis

Next steps: General

Generate code with data

View recommended plots

New interactive sheet

KNN Classifier

```
1 # Prepare the Data
2 X_train = data[['longitude', 'latitude']].values
3 y_knn = data['Cat_price_per_sqft'].values
1 class KNNClassifier:
      def fit(self, X, y):
          self.X = X
3
4
          self.y = y
5
6
      def predict(self, X, K=3, epsilon=1e-5):
          N = len(X)
8
          y_hat = np.zeros(N)
9
          for i in range(N):
10
              dist2 = np.sum((self.X - X[i]) ** 2, axis=1)
11
12
               idxt = np.argsort(dist2)[:K]
13
               gamma_k = 1 / (np.sqrt(dist2[idxt] + epsilon))
14
              y_hat[i] = np.bincount(self.y[idxt].astype(int), weights=gamma_k).argmax()
15
16
          return y_hat
1 def accuracy(y,y_hat):
      return np.mean(y==y_hat)
1 knn = KNNClassifier()
```

```
1 knn.fit(X_train,y_knn)
```

1 y_hat = knn.predict(X_train,K=3)

1 accuracy = np.mean(y_hat==y_knn)

2 accuracy

→ 0.9078

1 data['Category_price_per_sqft'] = y_hat

1 data

₹		MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_built	bedrooms	bathrooms	sqrt_ft	garage	kitche
	0	21530491	5300000.0	85637	-110.378200	31.356362	2154.00	5272.00	1941	13	10	10500.0	0	Refrig
	1	21529082	4200000.0	85646	-111.045371	31.594213	1707.00	10422.36	1997	2	2	7300.0	0	Garba
	2	3054672	4200000.0	85646	-111.040707	31.594844	1707.00	10482.00	1997	2	2	3512.0	3	Garba
	3	21919321	4500000.0	85646	-111.035925	31.645878	636.67	8418.58	1930	7	5	9019.0	4	Dishwa Sink, P
	4	21306357	3411450.0	85750	-110.813768	32.285162	3.21	15393.00	1995	4	4	6396.0	3	Garba Refri
	4995	21810382	495000.0	85641	-110.661829	31.907917	4.98	2017.00	2005	5	3	3601.0	3	Dishwa Si Dis
	4996	21908591	550000.0	85750	-110.858556	32.316373	1.42	4822.01	1990	4	3	2318.0	3	Dishwa { Raı
	4997	21832452	475000.0	85192	-110.755428	32.964708	12.06	1000.00	1969	3	2	1772.0	0	Ele Island,
	4998	21900515	550000.0	85745	-111.055528	32.296871	1.01	5822.93	2009	4	4	3724.0	3	Dishwa Si Dis
	4999	4111490	450000.0	85621	-110.913054	31.385259	4.16	2814.48	1988	4	4	4317.0	3	Dishwa Sink,
5	000 rc	ws × 19 colu	ımns											

Next steps: Generate code with data View recommended plots New interactive sheet

1 data['rooms'] = data['bedrooms'] + data['bathrooms']

1 data

₹		MLS	sold_price	zipcode	longitude	latitude	lot_acres	taxes	year_built	bedrooms	bathrooms	sqrt_ft	garage	kitche
	0	21530491	5300000.0	85637	-110.378200	31.356362	2154.00	5272.00	1941	13	10	10500.0	0	Refrig
	1	21529082	4200000.0	85646	-111.045371	31.594213	1707.00	10422.36	1997	2	2	7300.0	0	Garba
	2	3054672	4200000.0	85646	-111.040707	31.594844	1707.00	10482.00	1997	2	2	3512.0	3	Garba
	3	21919321	4500000.0	85646	-111.035925	31.645878	636.67	8418.58	1930	7	5	9019.0	4	Dishwa Sink, P
	4	21306357	3411450.0	85750	-110.813768	32.285162	3.21	15393.00	1995	4	4	6396.0	3	Garba Refri
	•••													
	4995	21810382	495000.0	85641	-110.661829	31.907917	4.98	2017.00	2005	5	3	3601.0	3	Dishwa Si Dis
	4996	21908591	550000.0	85750	-110.858556	32.316373	1.42	4822.01	1990	4	3	2318.0	3	Dishwa { Raı
	4997	21832452	475000.0	85192	-110.755428	32.964708	12.06	1000.00	1969	3	2	1772.0	0	El€ Island,
	4998	21900515	550000.0	85745	-111.055528	32.296871	1.01	5822.93	2009	4	4	3724.0	3	Dishwa Si Dis
	4999	4111490	450000.0	85621	-110.913054	31.385259	4.16	2814.48	1988	4	4	4317.0	3	Dishwa Sink,
5	000 rc	ows × 20 colu	ımns											

1 average_prices = data.groupby('zipcode')['sold_price'].mean().reset_index()

```
1 plt.figure(figsize=(12, 6)) # Adjust figure size as needed
```

² sns.barplot(x='zipcode', y='sold_price', data=average_prices)

³ plt.title('Average House Prices by Zip Code')

⁴ plt.xlabel('Zip Code')

⁵ plt.ylabel('Average Price')

⁶ plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for better readability

⁷ plt.tight_layout()

⁸ plt.show()


```
1 garage_counts = data.groupby(['zipcode', 'garage'])['sold_price'].count().reset_index()
2 garage_counts = garage_counts.rename(columns={'sold_price': 'count'})
3 garage_counts['garage'] = garage_counts['garage'].apply(lambda x: 'With Garage' if x > 0 else 'Without Garage')

1 plt.figure(figsize=(12, 6))
2 sns.barplot(x='zipcode', y='count', hue='garage', data=garage_counts)
3 plt.title('Number of Properties with and without Garages by Zip Code')
4 plt.xlabel('Zip Code')
5 plt.ylabel('Number of Properties')
6 plt.xticks(rotation=45, ha='right')
7 plt.tight_layout()
8 plt.show()
```



```
1 average_prices = data.groupby(['longitude', 'latitude', (data['garage'] > 0)])['sold_price'].mean().reset_index()
 2 average_prices.rename(columns={'(data[\'garage\'] > 0)': 'has_garage', 'sold_price': 'avg_price'}, inplace=True)
4 # Create a scatter plot with color-coded points and legend
5 plt.figure(figsize=(10, 8))
7 # Separate data for houses with and without garages
 8 with_garage = average_prices[average_prices['garage'] == True]
9 without_garage = average_prices[average_prices['garage'] == False]
10
11 # Plot points with different colors and labels
12 plt.scatter(with_garage['longitude'], with_garage['latitude'],
              c='blue', label='With Garage', s=50, alpha=0.7)
13
14 plt.scatter(without_garage['longitude'], without_garage['latitude'],
              c='red', label='Without Garage', s=50, alpha=0.7)
15
17 plt.legend() # Add the legend
18 plt.title('Average Sale Price with and without Garage by Longitude and Latitude')
19 plt.xlabel('Longitude')
20 plt.ylabel('Latitude')
21 plt.show()
```

35.0

34.5

34.0

33.5

32.5

32.0

31.5

KNN Regressor

```
1 # Prepare the Data
2 X_train = data[['longitude','latitude','garage','lot_acres','rooms','price_per_sqft','Category_price_per_sqft']].values
3 y_knnr = data['sold_price'].values
1 class KNNRegressor():
      def fit(self,X,y):
          self.X = X
3
4
          self.y = y
5
          self.train_errors = []
6
7
      def predict(self,X,K,epsilon = 1e-4):
8
          N = len(X)
9
          y_hat = np.zeros(N)
10
11
          for i in range(N):
12
              dist2 = np.sum((self.X-X[i])**2,axis = 1)
               idxt = np.argsort(dist2)[:K]
13
               gamma\_k = np.exp(-dist2[idxt])/(np.exp(-dist2[idxt]).sum()+epsilon)
14
15
              y_hat[i] = gamma_k.dot(self.y[idxt])
```