10° LEZIONE

Cenno alle tecniche costruttive delle porte logiche

(richiamo a quanto visto nella lezione di teoria)

- •Capire come sono implementate le porte logiche (porte a diodi, TTL ...)
- •Come funzionano
- •Problematiche associate

1) Logica a DIODI

Porta AND

Α	В	F=A.B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	F=A+B
0	0	0
0	1	1
1	0	1
1	1	1

2) Logica a Resistenze-Transistor

Α	X
0	1
1	0

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

3) Logica Transistor-Transistor TTL

Note:

Transistor T1 usato in conduzione attiva diretta ed inversa

inverter TTL completo

Quindi le porte logiche sono implementate tramite reti di transistor opportunamente interconnessi..... e quindi ora si possono capire bene le problematiche legate a:

- a) immunità al rumore / livelli logici
- b) tempi di propagazione
- c) capacità di pilotaggio

a) PORTE LOGICHE TTL - i livelli logici

famiglia	$\mathbf{V}_{\mathbf{IH}}$	$\mathbf{V}_{\mathbf{IL}}$	V _{OH}	V _{OL}
TTL	2,0 V	0,8 V	2,4 V	0,4 V
LS-TTL	2,0 V	0,8 V	2,7 V	0,5 V

param.	conditions	min	typ	max	units
V_{OH}^{1}	Vcc=4.5V, 70°C, Io= -0.4mA, Vin=0.8V	2.4	3.3		V
$V_{ m OL}$	Vcc=4.5V, 70°C, Io=16mA, Vin=2V		0.22	0.4	V

Circuiti per porta NOT-TTL per la valutazione della tensione e corrente di ingresso e di uscita

 V_{IH} = 2V; cioè la minima tensione d'ingresso riconosciuta come livello alto.

 V_{IL} = 0,8V; cioè la massima tensione d'ingresso riconosciuta come livello basso.

 V_{OH} = 2,4V; cioè la minima tensione d'uscita presente a livello alto.

 V_{OL} = 0,4V; cioè la massima tensione d'uscita presente a livello basso.

I parametri precedenti sono specificati per correnti d'ingresso e d'uscita non eccedenti rispettivamente:

 I_{IH} = 40 μ A; cioè la corrente d'ingresso a livello alto (valore massimo), positivo.

 I_{IL} = -1,6mA; cioè la corrente d'ingresso a livello basso (valore massimo), negativo.

 I_{OH} = -800 μ A; cioè la corrente d'uscita a livello alto (valore massimo), risulta

negativo essendo diretta dall' uscita verso l'esterno (erogazione).

I_{OL}= 16mA; cioè la corrente d'uscita a livello basso (valore minimo), risulta positiva essendo diretta dall'esterno verso l'uscita (assorbimento).

... dal Data sheet....

Correnti d'ingresso (NAND 74LS00)

I _{IH}	HIGH Level Input Current	$V_{CC} = Max$, $V_I = 2.7V$		20	μА
I _{IL}	LOW Level Input Current	$V_{CC} = Max$, $V_I = 0.4V$		-0.36	mA

Correnti d' uscita (NAND 74LS00)

1		l	l		<u> </u>
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
-	E ALO E T I	^		70	0.0

b) PORTE LOGICHE TTL - il tempo di propagazione

tpd = Propagation Delay Time
(tempo di propagazione)

è il ritardo con cui l'uscita della logica commuta rispetto all'istante in cui commuta l'ingresso

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		$R_L = 2 k\Omega$				
Symbol	Parameter	C _L =	16 pF	C _L =	60 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	3	10	4	15	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	3	10	4	15	ns

- Ritardo di propagazione, t_p: intervallo di tempo tra l'applicazione di un impulso in ingresso e la comparsa del risultato in uscita. Ci sono 2 diversi ritardi di propagazione:
 - t_{PHL}: intervallo di tempo tra il riferimento in ingresso e il riferimento in uscita quando l'output passa da HIGH a LOW.
 - t_{PLH}: intervallo di tempo tra il riferimento in ingresso e il riferimento in uscita quando l'output passa da LOW a HIGH.

c) PORTE LOGICHE - capacità di pilotaggio

Fan-out e **loading**: il fan-out è il numero massimo di input della **stessa serie** in un IC che può essere collegato all' output della porta mantenendo i livelli logici dell' uscita entro i limiti specificati. È specificato in termini di **unità di carico**.

UN unit load corrisponde a un ingresso di un' altra porta logica nella serie 74XX.

Unit loads =
$$\frac{I_{OH}}{I_{IH}} = \frac{I_{OL}}{I_{IL}} = \frac{16 \, mA}{1.6 \, mA} = 10$$

Per una porta NAND TTL della serie **standard**: fan-out massimo è di **10 porte** Per una porta NAND TTL della serie **LS**: fan-out massimo è di **20 porte**

Nota: a volte viene fornito sia per il livello H, sia per L

 $\mathrm{Fo}_{\mathrm{(H)}} \mathtt{=} \mathrm{N}^{\mathrm{o}} \mathtt{=} \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{IH}}$; per il livello alto.

 $Fo_{(L)}$ = n° = I_{OL}/I_{IL} ; per il livello basso.

Classificazione di una porta TTL in base allo STADIO di USCITA

- •Totem pole
- •Open collector
- •Three-state (Tristate)

Totem pole

Open Collector

- •Lo stadio di uscita è realizzato tramite un singolo transistor privo di resistenza di collettore.
- •La resistenza di collettore viene aggiunta dall' esterno, e se opportunamente dimensionata potrà essere in comune con più porte (possibilità di eseguire il wired-or e il collegamento a bus).
- •L' uscita è prelevata direttamente sul collettore del transistor d' uscita.
- •La tensione di uscita può essere superiore a quella di alimentazione

... + altri esempi (led, reè ecc.)

TRI - STATE

- •Si introduce un novo stato logico ALTA IMPEDENZA "Z"
- •Più uscite Tri state possono essere connesse in parallelo (Si deve garantire che logicamente sia possibile abilitarne solo una alla volta)
- •Usate quando le uscite di più porte accedono alla medesima linea e sono quindi collegate galvanicamente assieme (bus di trasmissione dati anche bidirezionali)

QUAD 3-STATE BUFFERS SN54/74LS125A SN54/74LS126A

TRUTH TABLES

LS125A

INPUTS		
Е	D	OUTPUT
Г	L	L
L	Н	Н
Н	Χ	(Z)

L	S	1	2	6	ı

INPUTS		
Ε	D	OUTPUT
Н	L	L
Н	н	Н
L	X	(Z)

L = LOW Voltage Level H = HIGH Voltage Level

X = Don't Care

(Z) = High Impedance (off)

Nota-1:

Logiche TTL-LS (Low power Schottky): 1' uso del diodo Schottky

La giunzione Silicio drogato "n" e metallo (alluminio) da luogo a una giunzione rettificatrice che prende il nome di DIODO SCHOTTKY

La tensione di soglia di un diodo schottky è più bassa (0.1-0.) di quella di un diodo "p-n" (0.1-0.4 V)

Mettendo un diodo Schottky fra base e collettore si ottiene un transistore che non può andare in saturazione

Nota-2: POTENZE dissipate a confronto

Serie	Consumo per <u>UNA</u> porta (mWatt)	Tempo di propagazione (nSec)	Frequenza MAX di utilizzo (MHz)
74 standard	10	9	35
74LS	2	9,5	45
74HC	0,025	8	40
4000	0,001	50	12

Nota-3: Porta INPUT TTL, quale valore logico assume se NON collegata?

Input non collegato (flottante) viene visto come un "1" logico.

E' comunque "buona regola" **NON** lasciare gli ingressi di una logica flottanti e quindi non riferiti ad un potenziale. Si parla di **Pull-UP** se connessi a livello logico **alto** o **Pull-DOWN** se connessi a livello logico **basso**.

Esercizi

1) Misura del tempo di propagazione:

realizzare il circuito per misura tempo propagazione connettere l' ingresso al generatore di funzioni impostare onda quadra a F = 100 kHz, ampiezza+offset opportuni connettere l' uscita della NAND all' oscilloscopio valutare la forma d' onda ottenuta ed effettuare la misura.

Esercizi

2) Verifica di una porta NOT TTL Open Collector (74LS05):

realizzare il circuito per il pilotaggio diretto di un LED. Dimensionare la resistenza di open collector Considerare:

- -una caduta di tensione sul diodo LED in conduzione pari ad 1Volt
- -una caduta sul transistor del 74LS05 in saturazione pari a 0,4Volt
- -una corrente sul diodo LED pari a 5mA
- -Un' alimentazione dell' open collector a 9 volt

Connection Diagram

Function Table

		_	
٧	=	A	

Input	Output		
A	Y		
L	н		
H	L		

H = HIGH Logic Level L = LOW Logic Level

Esercizi

3) Verifica di una porta buffer TTL 3State 74LS125:

realizzare il circuito per trasmissione half_duplex tramite porte 3State al fine di condividere lo stesso canale trasmissivo

Verifica funzionamento

Circuiti di gating e di selezione : N linee

MULTIPLEXING e DEMULTIPLEXING

LINEE DI SELEZIONE

Scelte	Canali	Bili
1	2	1+1+1
2	4	1+1+2
8	256	1+1+8
N	$2^{\rm N}$	1+1+N

Con il multiplexing posso trasmettere molti canali con un numero ridotto di fili

Es: la telefonia 'dei film'

Multiplexing: requisiti

Implementazione: 'wired-OR'

Dispongo di porte 3state attivate-basso 74LS125

Tavola di verità per il selettore:

S_0	S_1	\mathbf{Q}_{0}	Q_1	\mathbf{Q}_2	\mathbf{Q}_3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Multiplexing: selettore

Multiplexing: wired-or

De-multiplexing: requisiti

Implementazione: con lo stesso selettore

Tavola di verità per il selettore:

S_0	S_1	$\mathbf{Q_0}$	Q_1	\mathbf{Q}_2	Q_3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

De-multiplexing: requisiti

Implementazione: con lo stesso selettore

Verifica tavola di verità 2 gruppi: Tx-Rx

