Olasılıksal Robotik

Dr. Öğr. Üyesi Erkan Uslu

Temel Kalkülüs

 x=a noktasında sonsuz türevlenebilir f fonksiyonunun Taylor açılımı

$$f(x)_{x=a} = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^{2} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$$

$$f(x)_{x=a} \approx f(a) + f'(a)(x-a)$$

Temel Kalkülüs

 (x,y)=(a,b) noktasında sonsuz türevlenebilir iki değişkenli f fonksiyonunun Taylor açılımı

$$f(x,y)_{x=a,y=b} \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Sistem modeli

Doğrusallık sonucu

Doğrusal olmayan sistem modeli sonucu

• EKF ile doğrusallaştırma

• EKF ile doğrusallaştırma

EKF ile doğrusallaştırma

EKF

Prediction:

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, x_{t-1})}{\partial x_{t-1}} \bigg|_{\substack{x_{t-1} = \mu_{t-1} \\ x_{t-1} = \mu_{t-1}}} (x_{t-1} - \mu_{t-1})$$

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

Correction:

$$h(x_t) \approx h(\bar{\mu}_t) + \frac{\partial h(x_t)}{\partial x_t} \bigg|_{\substack{x_t = \bar{\mu}_t \\ x_t = \bar{\mu}_t}} (x_t - \bar{\mu}_t)$$

$$h(x_t) \approx h(\bar{\mu}_t) + H_t (x_t - \bar{\mu}_t)$$

Temel Kalkülüs – Jacobian Matris

Vektör değerli bir fonksiyon için

$$g:\mathbb{R}^n\to\mathbb{R}^m$$

$$\mathbf{g}(x_1, x_2, \dots x_n) = \begin{pmatrix} g_1(x_1, x_2, \dots x_n) \\ g_2(x_1, x_2, \dots x_n) \\ \vdots \\ g_m(x_1, x_2, \dots x_n) \end{pmatrix}$$

Temel Kalkülüs – Jacobian Matris

Jacobian matris nxm boyutlarında elde edilir

$$\mathbf{G_{x}} = \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}} & \cdots & \frac{\partial g_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}} & \frac{\partial g_{m}}{\partial x_{2}} & \cdots & \frac{\partial g_{m}}{\partial x_{n}} \end{pmatrix}$$

Temel Kalkülüs – Jacobian Matris

- Jacobian matris: skalar bir fonksiyonun gradyen'inin genelleştirilmiş halidir
- Vektör değerli fonksiyonun verilen bir noktadaki teğet düzleminin yönelimini verir
- EKF'de de çok boyutlu g ve h fonksiyonları için Jacobian hesaplanmalıdır

EKF Algoritması

- **1.** Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):
- 2. Prediction:

$$\overline{\mu}_t = g(u_t, \mu_{t-1})$$

$$\frac{\mathbf{4}}{\Sigma_t} = G_t \Sigma_{t-1} G_t^T + R_t$$

5. Correction:

$$6. K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1}$$

7.
$$\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$$

$$\mathbf{8.} \qquad \boldsymbol{\Sigma}_t = (\boldsymbol{I} - \boldsymbol{K}_t \boldsymbol{H}_t) \boldsymbol{\Sigma}_t$$

9. Return μ_t, Σ_t

$$G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

$$H_t = \frac{\partial h(\bar{\mu}_t)}{\partial x_t}$$

EKF Algoritması

Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

Kalman Filtresi Karşılıkları

Prediction:

3.
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$

Correction:

6.
$$K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1}$$
 \longleftarrow $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$

7.
$$\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$$

$$\mathbf{8.} \qquad \boldsymbol{\Sigma}_t = (\boldsymbol{I} - \boldsymbol{K}_t \boldsymbol{H}_t) \boldsymbol{\overline{\Sigma}}_t$$

$$K_{t} = \sum_{t} C_{t}^{T} (C_{t} \Sigma_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

9. Return
$$\mu_t$$
, Σ_t
$$H_t = \frac{\partial h(\overline{\mu}_t)}{\partial x_t} \qquad G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}}$$

Tek Değişkenli EKF - Örnek

 Fiziki modeli aşağıdaki gibi olan sistem için ilk tahmin ve ölçüler verildiği gibidir. EKF ile durum değişkenin tahminini yürütünüz.

$$\bar{x}_t = x_{t-1}^{1.2}$$

$$z_t = tan^{-1} \left(\bar{x}_t\right)$$

$$\mu_0 = 0$$
$$\sigma_0^2 = 5$$

$$\sigma_0^2 = 5$$

z ölçümleri				
1	2	3	4	5
0.7369	0.90162	1.0645	0.82941	0.85031
6	7	8	9	10
0.77043	0.76732	1.00957	1.18037	1.10605
11	12	13	14	15
1.09124	0.88138	0.99588	1.18426	1.31232
16	17	18	19	20
1.22655	1.36629	1.68047	1.60503	1.53051

Ölçüm - z

EKF Denklemleri

$$\overline{\mu}_{t} = (\mu_{t-1})^{1.2} \qquad G_{t} = \frac{\partial g(u_{t}, x_{t-1})}{\partial x_{t-1}} \Big|_{x_{t-1} = \mu_{t-1}}
\overline{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + R_{t} = 1.2 (\mu_{t-1})^{0.2}$$

$$K_{t} = \overline{\Sigma}_{t} H_{t}^{T} \left(H_{t} \overline{\Sigma}_{t} H_{t}^{T} + Q_{t} \right)^{-1} \qquad H_{t} = \frac{\partial h(\overline{x}_{t})}{\partial \overline{x}_{t}} \Big|_{\overline{x}_{t} = \overline{\mu}_{t}}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} \left(z_{t} - h(\overline{\mu}_{t}) \right) \qquad \qquad = \frac{1}{1 + \overline{\mu}_{t}^{2}}$$

Alınan ve Gerçek Ölçümler

x tahmini - EKF

x tahmini - KF

Çok Değişkenli EKF - Örnek

- 2 boyutulu düzlemde hareket edebilen bir mobil robot için durum vektörü robotun konumu (x, y) ve robotun bakış açısından (θ) oluşmaktadır.
- Robotun herbir hareket komutunda sadece ileri yönde, düz bir doğrultuda, <u>1 birim</u> ilerleyebildiği durumda, sonraki durum x' ile şimdiki durum x arasındaki bağıntı elde edilebilir.
- Robot ayrıca konumunun x eksenine izdüşümünü Q=0.01 varyansı ile ölçebilmektedir.

Sistem Modeli

$$\mathbf{x} = \left(\begin{array}{c} x \\ y \\ \theta \end{array}\right)$$

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x + \cos \theta \\ y + \sin \theta \\ \theta \end{pmatrix}$$

ilk Durum inancı

• Robotun başlangıç durumuna ilişkin inancının ortalama μ_0 ve kovaryansı Σ_0 aşağıda verilmektedir.

$$\mu_{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mathbf{\Sigma_0} = \begin{pmatrix} 0.01 & 0 & 0 \\ 0 & 0.01 & 0 \\ 0 & 0 & 10000 \end{pmatrix}$$

 Bu başlangıç durumu, robotun başlangıç konumunun kabaca bilindiği fakat bakış açısının bilinmediği bir durumu ifade etmektedir.

Sorular

- Durum geçiş matrisini yazınız.
- EKF yöntemini kullanarak durum geçiş matrisinin doğrusal yaklaşıklığını elde ediniz.
- Robota hareket komutu verildikten sonraki durum inancını bulunuz.
- Ölçüm matrisini yazınız.
- EKF yöntemini kullanarak ölçüm matrisini doğrusal yaklaşıklığını elde ediniz.
- Alınan bir z_m ölçümü için durum inancını elde ediniz.

EKF Modeli

$$\mathbf{x}' = \begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x + \cos \theta \\ y + \sin \theta \\ \theta \end{pmatrix}$$

$$\mathbf{z} = \mathbf{x}^{'}$$

Jacobian Matrisi

$$\mathbf{G_x} = \begin{pmatrix} 1 & 0 & -\sin\theta \\ 0 & 1 & \cos\theta \\ 0 & 0 & 1 \end{pmatrix}$$