

Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

Hitachi[®] H48C 3-Axis Accelerometer Module (#28026)

General Description

The Hitachi H48C 3-Axis Accelerometer is an integrated module that can sense gravitational (g) force of $\pm 3g$ on three axes (X, Y, and Z). The module contains an onboard regulator to provide 3.3-volt power to the H48C, analog signal conditioning, and an MCP3204 (four channel, 12-bit) analog-to-digital converter to read the H48C voltage outputs. All components are mounted on a breadboard-friendly, 0.7 by 0.8 inch module. Acquiring measurements from the module is simplified through a synchronous serial interface. With the BASIC Stamp® 2 series, for example, this is easily handled with the SHIFTOUT and SHIFTIN commands.

Features

- Measure ±3 q on any axis
- Uses MEMS (Micro Electro-Mechanical System) technology, with compensation for calibration-free operation
- Onboard regulator and high-resolution ADC for simple connection to microcontroller host
 compatible with BASIC Stamp 2 series SHIFTOUT and SHIFTIN commands
- Free-fall output indicates simultaneous 0g an all axes
- Small, breadboard-friendly package: 0.7" x 0.8" (17.8 mm x 20.3 mm)
- Wide operational range: -25° to 75° C

Application Ideas

- Tilt measurement in robotics applications
- Multi-axis vibration measurement in transit and shipping systems
- Multi-axis movement/lack-of-movement for alarm systems

Packing List

Verify that your H48C Accelerometer kit is complete in accordance with the list below:

- Hitachi H48C 3-Axis Accelerometer module
- Documentation

Note: Demonstration software files may be downloaded from www.parallax.com. (See http://www.parallax.com/detail.asp?product_id=28026)

Essential Connections

Connecting the H48C module to the BASIC Stamp 2 controller is a straightforward operation, requiring just three I/O pins (the CLK and DIO pins may be shared in systems requiring the use of more than one H48C module). See Figure 1 for connection details.

Figure 1. H48C Connections

How It Works

Through MEMS (Micro Electro-Mechanical System) technology and built-in compensation, the H48C accelerometer provides simultaneous outputs through analog conditioning circuitry to an MCP3204 ADC. To "read" g-force of a given axis we actually read the voltage output from that axis and calculate g-force using this formula:

$$G = ((axis - vRef) / 4095) x (3.3 / 0.3663)$$

In the formula, axis and vRef are expressed in counts from the ADC, 4095 is the maximum output count from a 12-bit ADC channel, 3.3 is the H48C supply voltage, and 0.3663 is the H48C output voltage for 1g (when operating at 3.3v). In practice this can be simplified to:

$$G = (axis - vRef) \times 0.0022$$

Using the BASIC Stamp 2 module as a host controller, we should multiply the 0.0022 by 100 (to 0.22) to express the result in units of 0.01g. Using the ** operator, we are able to multiply by 0.22 and convert the raw readings to g-force with this bit of code:

```
IF (axCount >= rvCount) THEN
    gForce = (axCount - rvCount) ** GfCnv    ' positive g-force
ELSE
    gForce = -((rvCount - axCount) ** GfCnv)    ' negative g-force
ENDIF
```

Note the **IF-THEN** structure which prevents a negative number from being divided – this is illegal in PBASIC 2.x and will not return the correct result. By restructuring the conversion equation for negative g-forces we can indeed arrive at the correct value. The output value, *gForce*, is a signed integer.

In application the analog signal conditioning circuitry affects the rate at which readings can be taken H48C module. The filter/buffer circuit is designed to minimize noise while maintaining the highest possible signal resolution into the ADC. By design, the filter circuit limits MC48C axis output rail-to-rail rise/fall time to about five milliseconds. Since MCP3204 has a significantly higher sample rate, the

sampling rate of the module is dictated by the filter circuitry and works out to about 200 samples per second.

Pin Definitions and Ratings

(1) CLK Synchronous clock input
(2) DIO Bi-directional data to/from host
(3) Vss Power supply ground (0v)
(4) Zero-G "Free-fall" output; active-high
(5) CS\ Chip select input; active-low
(6) Vdd +5vdc

Symbol	Quantity	Minimum	Typical	Maximum	Units
V_{DD}	Operating voltage	4.5	5.0	5.5	V
V_{SS}	Ground reference connection		0		V
I _{DD}	Supply current		7	10	mA
V _{IH}	High Level Voltage Input [†]	0.7 V _{DD}			V
V _{IL}	Low Level Voltage Input †			0.3 V _{DD}	V
V _{OH}	High Level Voltage Output †	4.1			V
V _{OL}	Low Level Voltage Output †			0.4	V
	Sample Rate			200	sps
	ADC (MCP3204) Resolution †		12		bits
	Measurement Range §	-3		3	g
	Sensitivity §		366.3		mV/g
	Accuracy §	10			%
	Non-linearity §	-2		2	%
	Operating Temperature Range §	-25		75	°C
	High Level Zero-G Voltage Output §	3.2	3.3		V
	Zero-G Output Delay §			1	ms

[†] From Microchip MCP3204 Datasheet

[§] From Hitachi H48C Datasheet

Demonstration Program

This demonstration uses the BASIC Stamp 2 series microcontroller to read the reference voltage and output channels from the H48C using the onboard MCP3204 analog-to-digital converter. For each channel the raw count, channel voltage, and g-force for the X, Y, and Z axes are displayed as shown below:

BASIC Stamp 2 Source Code

```
______
   File..... H48C 3-Axis.BS2
   Purpose.... Hitachi H48C 3-Axis Accelerometer Demonstration
   Author.... Copyright (c) 2005-2006 Parallax, Inc.
   E-mail..... support@parallax.com
   Started....
   Updated.... 02 FEB 2006
   {$STAMP BS2}
   {$PBASIC 2.5}
' -----[ I/O Definitions ]-------
Dio
             PIN
                                       ' data to/from module
                                       ' clock output
Clk
             PIN
                   14
             PIN
                                       ' active-low chip select
CS
                   13
' ----[ Constants ] --
XAxis
             CON
                                       ' adc channels
YAxis
             CON
                   1
ZAxis
             CON
```

```
CON 3
VRef
Cnt2Mv CON $CE4C
                                      ' counts to millivolts
                                      ' 0.80586 with **
GfCnv CON $3852
                                      ' g-force conversion
                                      ' 0.22 with **
VAR Nib
VAR Word
VAR Word
VAR Word
VAR Word
axis
                                      ' axis selection
rvCount
                                      ' ref voltage adc counts
axCount
                                      ' axis voltage adc counts
mVolts
                                      ' millivolts
gForce
                                      ' axis q-force
dValue VAR Word dPad VAR Nib
                                      ' display value
                                      ' display pad
Reset:
 HIGH CS
                                      ' deselect module
 DEBUG CLS,
                                      ' paint display
      "======", CR,
      "H48C 3-Axis Accelerometer", CR,
      "======", CR,
      CR,
      " Count Volts G ", CR,
                          ", CR,
      "VRef
                           ", CR,
      " X
                           ", CR,
      " Y
' ----[ Program Code ]---------------
Main:
 FOR axis = XAxis TO ZAxis
                                      ' loop through each axis
   GOSUB Get H48C
                                      ' read vRef & axis counts
   dValue = rvCount
                                      ' display vRef count
   DEBUG CRSRXY, 6, 6
   GOSUB RJ Print
   dValue = axCount
                                      ' display axis count
   DEBUG CRSRXY, 6, (7 + axis)
   GOSUB RJ Print
   mVolts = rvCount ** Cnt2Mv
                                      ' convert vref to mv
   DEBUG CRSRXY, 13, 6,
                                      ' display
       DEC (mVolts / 1000), ".",
       DEC3 mVolts
   mVolts = axCount ** Cnt2Mv
                                      ' convert axis to mv
   DEBUG CRSRXY, 13, (7 + axis),
```

```
DEC (mVolts / 1000), ".",
         DEC3 mVolts
    ' calculate q-force
    ' -- "gForce" is signed word
   IF (axCount >= rvCount) THEN
     gForce = (axCount - rvCount) ** GfCnv
                                              ' positive g-force
   ELSE
     gForce = -((rvCount - axCount) ** GfCnv)
                                               ' negative g-force
   ENDIF
   DEBUG CRSRXY, 20, (7 + axis),
                                                ' display q-force
          " " + (qForce.BIT15 * 13),
         DEC1 (ABS(gForce) / 100), ".",
         DEC2 ABS (gForce)
 NEXT
  PAUSE 200
 GOTO Main
' Reads VRef and selected H48C axis through an MCP3204 ADC
' -- pass axis (0 - 2) in "axis"
' -- returns reference voltage counts in "rvCount"
' -- returns axis voltage counts in "axCounts"
Get H48C:
 LOW CS
 SHIFTOUT Dio, Clk, MSBFIRST, [%11\2, VRef\3] ' select vref register SHIFTIN Dio, Clk, MSBPOST, [rvCount\13] ' read ref voltage counts
 HIGH CS
 PAUSE 1
 LOW CS
 SHIFTOUT Dio, Clk, MSBFIRST, [%11\2, axis\3] ' select axis
 SHIFTIN Dio, Clk, MSBPOST, [axCount\13] ' read axis voltage counts
 HIGH CS
 RETURN
' Right-justify value in 5-digit field
' -- move cursor first, then call with value in "dValue"
RJ Print:
 LOOKDOWN dValue, >=[10000, 1000, 100, 10, 0], dPad
 DEBUG REP " "\dPad, DEC dValue
 RETURN
```