PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

C07H 21/02, 21/04, C12P 19/34, C12Q A1 (42) International Publication Potes. 7 November 1996 (62)	(51) International Patent Classification 6:		(11) International Publication Number:	WO 96/34875
1/68 (43) International Fublication Date: 7 November 1996 (07.)	C07H 21/02, 21/04, C12P 19/34, C12Q 1/68	A1	(43) International Publication Date:	7 November 1996 (07.11.96)

(21) International Application Number: PCT/US96/06060 (71)

(22) International Filing Date: 1 May 1996 (01.05.96)

(30) Priority Data:

 08/434,425
 3 May 1995 (03.05.95)
 US

 08/437,667
 3 May 1995 (03.05.95)
 US

 08/434,001
 3 May 1995 (03.05.95)
 US

 08/433,585
 3 May 1995 (03.05.95)
 US

(60) Parent Applications or Grants

(63) Related by Continuation

US 08/434,425 (CIP)
Filed on 3 May 1995 (03.05.95)
US 08/437,667 (CIP)
Filed on 3 May 1995 (03.05.95)
US 08/434,001 (CIP)
Filed on 3 May 1995 (03.05.95)
US 08/433,585 (CIP)
Filed on 3 May 1995 (03.05.95)
US 08/433,585 (CIP)
Filed on 3 May 1995 (03.05.95)

(71) Applicants (for all designated States except US): NEXSTAR PHARMACEUTICALS, INC. [US/US]; Suite 200, 2860 Wildemess Place, Boulder, CO 80301 (US). UNIVERSITY RESEARCH CORPORATION [US/US]; P.O. Box 1140, Boulder, CO 80306 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JENSEN, Kirk, B. [US/US]; 1855 Athens Street #204, Boulder, CO 80302 (US). CHEN, Hang [CN/US]; 2050 Athens B3-F, Boulder, CO 80302 (US). MORRIS, Kevin, N. [US/AT]; Markt 24, A-5620 Schwarzach (AT). STEPHENS, Andrew [US/US]; 720 Leyden Street, Denver, CO 80220 (US). GOLD, Larry [US/US]; 1033 5th Street, Boulder, CO 80302 (US).

(74) Agents: SWANSON, Barry, J. et al.; Swanson & Bratschun, L.L.C., Suite 200, 8400 East Prentice Avenue, Englewood, CO 80111 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: SYSTEMATIC EVOLUTION OF LIGANDS BY EXPONENTIAL ENRICHMENT: TISSUE SELEX

(57) Abstract

This invention discloses high-affinity oligonucleotide ligands to complex tissue targets, specifically nucleic acid ligands having the ability to bind to complex tissue targets, and the methods for obtaining such ligands. Tissue targets comprise cells, subcellular components, aggregates or cells, collections of cells, and higher ordered structures. Specifically, nucleic acid ligands to red blood cells ghosts, glioblastomas, and lymphomas are described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	υz	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

Systematic Evolution of Ligands by Exponential Enrichment: TISSUE SELEX

This work was supported by grants from the United States Government funded through the National Institutes of Health. The U.S. Government has certain rights to this invention.

FIELD OF THE INVENTION

Described herein are methods for identifying and preparing nucleic acid ligands to tissues. Tissues are described herein as a collection of macromolecules in a heterogeneous environment. According to this definition, tissues encompass a single cell type, a collection of cell types, an aggregate of cells or an aggregate of macromolecules. The method utilized herein for identifying such nucleic acid ligands is called SELEX, an acronym for Systematic Evolution of Ligands by EXponential enrichment. Specifically disclosed herein are high-affinity nucleic acid ligands which bind to various tissues.

BACKGROUND OF THE INVENTION

highly specific binding to target molecules has been developed. This method,
Systematic Evolution of Ligands by EXponential enrichment, termed SELEX, is
described in United States Patent Application Serial No. 07/536,428, entitled
"Systematic Evolution of Ligands by Exponential Enrichment", now abandoned,
United States Patent Application Serial No. 07/714,131, filed June 10, 1991, entitled
"Nucleic Acid Ligands", United States Patent Application Serial No. 07/931,473, filed
August 17, 1992, entitled "Nucleic Acid Ligands", now United States Patent No.
5,270,163 (see also PCT/US91/04078), each of which is herein specifically
incorporated by reference. Each of these applications, collectively referred to herein as
the SELEX Patent Applications, describes a fundamentally novel method for making a
nucleic acid ligand to any desired target molecule.

The SELEX method involves selection from a mixture of candidate oligonucleotides and step-wise iterations of binding, partitioning and amplification, using the same general selection scheme, to achieve virtually any desired criterion of

30

binding affinity and selectivity. Starting from a mixture of nucleic acids, preferably comprising a segment of randomized sequence, the SELEX method includes steps of contacting the mixture with the target under conditions favorable for binding, partitioning unbound nucleic acids from those nucleic acids which have bound specifically to target molecules, dissociating the nucleic acid-target complexes, amplifying the nucleic acids dissociated from the nucleic acid-target complexes to yield a ligand-enriched mixture of nucleic acids, then reiterating the steps of binding, partitioning, dissociating and amplifying through as many cycles as desired to yield highly specific, high affinity nucleic acid ligands to the target molecule.

10 The basic SELEX method has been modified to achieve a number of specific objectives. For example, United States Patent Application Serial No. 07/960,093, filed October 14, 1992, entitled "Method for Selecting Nucleic Acids on the Basis of Structure", describes the use of SELEX in conjunction with gelelectrophoresis to select nucleic acid molecules with specific structural characteristics, 15 such as bent DNA. United States Patent Application Serial No. 08/123,935, filed September 17, 1993, entitled "Photoselection of Nucleic Acid Ligands" describes a SELEX based method for selecting nucleic acid ligands containing photoreactive groups capable of binding and/or photocrosslinking to and/or photoinactivating a target molecule. United States Patent Application Serial No. 08/134,028, filed October 7, 20 1993, entitled "High-Affinity Nucleic Acid Ligands That Discriminate Between Theophylline and Caffeine", describes a method for identifying highly specific nucleic acid ligands able to discriminate between closely related molecules, termed Counter-SELEX. United States Patent Application Serial No. 08/143,564, filed October 25, 1993, entitled "Systematic Evolution of Ligands by Exponential Enrichment: Solution SELEX", describes a SELEX-based method which achieves highly efficient partitioning between oligonucleotides having high and low affinity for a target molecule. United States Patent Application Serial No. 07/964,624, filed October 21, 1992, entitled "Methods of Producing Nucleic Acid Ligands" describes

methods for obtaining improved nucleic acid ligands after SELEX has been performed.

United States Patent Application Serial No. 08/400,440, filed March 8, 1995, entitled

-3-

"Systematic Evolution of Ligands by EXponential Enrichment: Chemi-SELEX", describes methods for covalently linking a ligand to its target.

The SELEX method encompasses the identification of high-affinity nucleic acid ligands containing modified nucleotides conferring improved characteristics on the ligand, such as improved in vivo stability or improved delivery characteristics. Examples of such modifications include chemical substitutions at the ribose and/or phosphate and/or base positions. SELEX-identified nucleic acid ligands containing modified nucleotides are described in United States Patent Application Serial No. 08/117,991, filed September 8, 1993, entitled "High Affinity Nucleic Acid Ligands Containing Modified Nucleotides", that describes oligonucleotides containing 10 nucleotide derivatives chemically modified at the 5- and 2'-positions of pyrimidines. United States Patent Application Serial No. 08/134,028, supra, describes highly specific nucleic acid ligands containing one or more nucleotides modified with 2'-amino (2'-NH₂), 2'-fluoro (2'-F), and/or 2'-O-methyl (2'-OMe). United States Patent Application Serial No. 08/264,029, filed June 22, 1994, entitled "Novel Method of Preparation of 2' Modified Pyrimidine by Intramolecular Nucleophilic Displacement", describes oligonucleotides containing various 2'-modified pyrimidines.

with other selected oligonucleotides and non-oligonucleotide functional units as

20 described in United States Patent Application Serial No. 08/284,063, filed August 2,
1994, entitled "Systematic Evolution of Ligands by Exponential Enrichment:
Chimeric SELEX" and United States Patent Application Serial No. 08/234,997, filed
April 28, 1994, entitled "Systematic Evolution of Ligands by Exponential Enrichment:
Blended SELEX", respectively. These applications allow the combination of the broad
array of shapes and other properties, and the efficient amplification and replication
properties, of oligonucleotides with the desirable properties of other molecules. Each
of the above described patent applications which describe modifications of the basic
SELEX procedure are specifically incorporated by reference herein in their entirety.

Without question, the SELEX process is very powerful. However, to date the process has been successfully demonstrated primarily with pure, simple

30

demonstration that complex targets are also compatible with the SELEX process.

Tissue SELEX allows one to obtain nucleic acid ligands to multiple targets simultaneously, and is analogous to performing individual SELEX experiments on all the discrete components of a particular tissue.

5

10

15

30

It is desirable to be able to obtain nucleic acid ligands to complex tissue targets for various reasons. First, tissue SELEX can be useful to obtain nucleic acid ligands when a distinct target is unknown but a general mode of action of the desired ligand is suggested. Second, tissue SELEX can be useful when nucleic acid ligands are desired based on functional results. Since whole tissues or cells can be used in the SELEX process, it is possible to select for nucleic acid ligands which produce a particular phenotype in the tissue or cell. Third, it can be desirable to obtain nucleic acid ligands to a complex tissue target when it is unclear which single target would be effective. It is also useful to obtain nucleic acid ligands to a complex tissue target if the purified target is unavailable or unstable in its purified form (i.e., a membrane protein). Tissue SELEX allows the potential generation of ligands to previously unknown targets, and may rival monoclonal antibodies as reagents for research, diagnostics and therapeutics.

BRIEF SUMMARY OF THE INVENTION

The present invention includes methods of identifying and producing nucleic acid ligands to complex targets such as tissues and the nucleic acid ligands so identified and produced. More particularly, nucleic acid ligands are provided that are capable of binding specifically to tissues which are macromolecules in a heterogeneous environment, such as whole cells or substructures thereof, aggregates of cells, collections of cells, aggregates of macromolecules and the like.

Further included in this invention is a method of identifying nucleic acid ligands to tissues comprising the steps of (a) preparing a candidate mixture of nucleic acids, (b) partitioning between members of said candidate mixture on the basis of affinity to tissue, and (c) amplifying the selected molecules to yield a mixture of nucleic acids enriched for nucleic acid sequences with a relatively higher affinity for

binding to tissue. Also included are nucleic acid ligands identified according to such method.

Another embodiment of the invention includes methods wherein a negative selection is performed in order to perfect the discrimination between subtle differences of similar tissue types. In this embodiment, the resulting ligands are specific not only for a particular tissue type, but can discriminate between subtly different tissues of the same type. For example, this method can discriminate between normal and abnormal tissue types, between induced and uninduced tissue types, etc.

In another embodiment of the invention, a method is provided for identifying previously unknown or uncharacterized epitopes which are components of 10 a larger unknown macromolecule, on the tissue target. The ligands that are evolved by the present invention are capable of binding to previously unknown epitopes and the macromolecule which comprises the unknown epitope can then be identifed by standard methods. For example, ligands can be evolved to a previously unknown 15 protein found in the context of a complex tissue target. The ligand of the invention can be used to purify the protein away from the tissue target by standard protein purification and identification methods. These standard methods include affinity purification, microsequencing and cDNA databank searches. In this aspect, the newly identified epitopes which are components of a larger unknown macromolecule, such as new or previously uncharacterized proteins, are provided by the invention. These new 20 epitopes and the macromolecule of which they are a component will be useful as diagnostic and therapeutic agents as well as the ligands that helped identify them.

More specifically, the present invention includes nucleic acid ligands to red blood cell ghosts, human tumor cell lines, such as a T-cell lymphoblast cell line,

25 CEMss, and an adherent cell line, the glioma U-251, including those ligands listed in Tables 1 and 2. Also included are nucleic acid ligands to the above-described tissues that are substantially homologous to any of the given ligands and that have substantially the same ability to bind the above-described tissues. Further included in this invention are nucleic acid ligands to the above-described tissues that have substantially the same structural form as the ligands presented herein.

10

15

20

25

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the results of crosslinking a ligand to red blood cell ghosts [(c56t) (SEQ ID NO:4)] and nucleic acids of similar, but scrambled, sequences to red blood cell ghost membrane extracts. A distinct protein band is identified specifically by the ligand. Shown are a silver-stained 6% SDS gel and autoradiography of the same gel. Irradiations were performed with a hand-held transilluminator (254 nm) and samples were separated by gel electrophoesis under denaturing and reducing conditions. 1-0'irradiation c56t (SEQ ID NO:4); 2-5' irradiation c56t (SEQ ID NO:4); 3-0'irradiation scrambled oligo #1; 4-5'irradiation scrambled oligo #1; 5-0'irradiation scrambled oligo #2; 6-5'irradiation control oligo #2.

Figure 2 shows the photoaffinity crosslinking of the truncate ligand c56t to RBC ghosts. 10⁷ ghosts were mixed with 1 nM of c56t and irradiated with a 254 nm hand-held transilluminator for 0 or 5 minutes. The irradiations were performed in the absence of cold competitor, with 10 μM cold c56t (as a specific competitor) or 10 μM cold c16t (as a non-specific competitor). The photoaffinity reactions demonstrate the high affinity and high specificity of the ligand-protein interaction. Shown are SDS-PAGE results under both reducing and non-reducing conditions (both conditions are denaturing). The doubling of the molecular weight of the crosslinked protein under non-reducing conditions suggests the target protein is a disulfide-linked hetero- or homo-dimer.

Figure 3 shows predicted secondary structures of six ligands which are the result of the RBC ghost SELEX. The six sequences are derived from the motif I (Figure 3A), II (Figure 3B) and III (Figure 3C) classes of sequences (two from each motif) are truncated to the smallest functional size, as based upon phylogenetic and computer folding algorithms. Base pairing within each molecule is predicted as based upon phylogenetic and computer folding algorithms. Notice that the two ligands from motif III share common primary and secondary structures, but are circularly permuted in relation to each other.

Figure 4 displays affinity photocrosslinking data for the motif I truncate c56t and the motif II truncate c16t. The nucleic acid ligands have been synthesized as shown in figure 1 with a six-carbon amino linker on the 5' end of each molecule.

These 5' modified ligands were radiolabeled on their 3' end with alpha 32P ddATP. The

amino linker was used to conjugate the ligands with the photocrosslinking reagent sulfo-HSAB. Approximately 5 nM ssDNA was mixed with 10 mM sulfo-HSAB in 200 mM triethylamine CO₂ (pH 9.5) and allowed to react 15 min. at room temperature and 15 min. at 37 degrees C. Approximately 10⁷ ghosts were mixed with 10 nM of each ligand conjugate in a volume of 15 μl, incubated 30 min. at room temperature and irradiated for 100 pulses of a 308 nm excimer laser (175 mJ/pulse/cm²). The reaction was then mixed with an equal volume of 2X reducing SDS loading buffer and run on a 4-12% gradient SDS polyacrylamide gel. The gel was run, fixed and dried. Radioactivity was detected by a Fuji phosphorimager. Shown are photocrosslinking reactions as described above for c56t and c16t, with two additional reactions for each ligand: one included the addition of 10 μM cold, unconjugated c56t, the other the same concentration of c16t. These "cross competition" reactions demonstrate the high affinity and specificity of the photoaffinity crosslinking method.

Figure 5 shows the results of three rounds of selection for sequences 15 within the final round rbc ghost SELEX pool that are specific for four distinct proteins on the rbc ghost membrane. The final round SELEX pool (round 25) was amplified using a "sense-strand" primer synthesized with a 5' six carbon amino linker group. The PCR product was radiolabeled with 3,000 Ci/mmol, 1.3 μ M (final) alpha ³²P dCTP ([cold dNTPS] = $100 \,\mu\text{M}$ (final)). The sense strand was purified using denaturing PAGE and eluted from the gel matrix and precipitated. The phenyl azide compound 20 sulfo-HSAB was conjugated to the pool and the nucleic acid conjugate used for photoaffinity crosslinking with the rbc ghosts. 10⁷ ghosts were irradiated with 10 nM pool conjugate in a volume of 15 μ l and in the presence of 12 μ M non-specific nucleic acid competitor (a 30 base random pool). The reaction was incubated for 30 min. at 25 room temperature and irradiated for 100 pulses of a 308 nm excimer laser (175 mJ/pulse/cm²). The reaction was then mixed with an equal volume of 2X reducing SDS loading buffer and run on a 4-12% gradient SDS polyacrylamide gel. The gel contents were electroblotted to a nitrocellulose filter, the filter washed in water and dried. Radioactivity was detected by a Fuji phosphorimager. DNA sequences which 30 showed crosslinking to four proteins (termed proteins 5, 6, 7, and 8) varying in apparent molecular weight from 170-30 kDa were isolated by sectioning the

WO 96/34875

nitrocellulose filter and placing the appropriate filter slices directly into PCR reactions for sequence amplification. The sequences were amplified for approximately 22 rounds, the sense strand purified, and the DNA reamplified for another 22 rounds. The resulting DNA was again purified, conjugated to sulfo-HSAB and used for the next round of photoaffinity crosslinking. Figure 5 shows the photoaffinity crosslinking obtained after 3 rounds of the enrichment process described above.

-8-

PCT/US96/06060

DETAILED DESCRIPTION OF THE INVENTION

This application describes nucleic acid ligands to complex tissue targets

identified generally according to the method known as the SELEX process. As stated
earlier, the SELEX technology is described in detail, and incorporated herein by
reference, in the SELEX Patent Applications. This method, referred to as the Tissue
SELEX process, incorporates complex targets in contrast to the more simple targets
previously used in the SELEX process. Certain terms used to describe the invention
herein are defined as follows:

"SELEX" methodology refers to the combination of selection of nucleic acid ligands which interact with a target in a desirable manner, for example binding to a protein, with amplification of those selected nucleic acids as described in detail above and in the SELEX Patent Applications. Iterative cycling of the selection/amplification steps allows selection of one or a small number of nucleic acids which interact most strongly with the target from a pool which contains a very large number of nucleic acids. Cycling of the selection/amplification procedure is continued until a selected goal is achieved.

"Tissue SELEX" methodology applies the SELEX methodology to

25 tissue targets. Tissue SELEX has several advantages. First, using Tissue SELEX one
can obtain ligands to specific cell types in the absence of a defined understanding of
the involved epitope. The epitope against which a ligand is evolved in usually a
substructural component of a larger macromolecule. The ligands found by this method
could also be useful in identifying new proteins or other new macromolecules on the

30 tissue target. The new proteins or other new macromolecules which comprise a newly
identified epitope can be purified and characterized using standard procedures.

-9-

Second, ligands can be obtained to defined epitopes or macromolecules in the context of their physiologic cellular or membrane environment. Examples of various tissue targets can include a membrane protein on a whole cell, a plasma protein in plasma, a nuclear protein in the presence of whole nuclear extracts, etc. Third, it is possible to obtain ligands to tissues in a functionally altered phenotype, e.g., activated, migrating, etc. The ligands and the new macromolecules containing the ligand epitopes identified by this process may be useful as diagnostics or therapeutics. Fourth, Tissue SELEX is a powerful methodology which allows one to identify nucleic acid ligands that can mediate many different cell behaviors, such as apoptosis, anergy, differentiation, proliferation, etc., without prior knowledge of the identity of the specific tissue targets that control these changes. The sensitivity of the SELEX process may lead to the generation of oligonucleotides that recognize potentially every different epitope on the complex tissue target. Larger numbers of different sequence motifs are expected using the tissue SELEX process, as compared with simple-target SELEX, since it is believed that different motifs will recognize distinct epitopes on the complex tissue target. Some epitopes may lie within the same protein, but many will be directed to various proteins or other molecules on the tissue. Tissue SELEX can be done in vivo or in vitro.

10

15

25

30

Tissue SELEX allows one to work with a complete living "element" (a cell or bigger) that allow one to *phenotypically* screen for a target-ligand interaction that effects this "element." For example, one could screen an evolved, high affinity tissue SELEX pool using flow cytometry for sequences which bind a membrane protein and cause the cell to carry out a biochemical transformation which is measured by the flow instrument.

Tissue SELEX allows one to obtain nucleic acid ligands to multiple targets simultaneously. All independent binding sites on a very large macromolecular complex such as a tissue or cell should be potential targets for selection. In effect, this allows one to take a tissue and carry out numerous SELEX procedures on this tissue that is theoretically equivalent to individual SELEXes on all individual components of the particular tissue.

In one embodiment, a negative selection process (termed counter-SELEX) is employed to enhance the possibility that the ligands derived by tissue SELEX have precise specificity and affinity. In this embodiment, ligands are selected for a specific tissue and then a negative selection is done against a related tissue which does not have certain characteristics for which the ligand is desired. The negative selection can be done against a similar cell line or cell type, different cells, normal tissue, plasma or blood, a non-specific antibody or other available ligand. An example of this negative selection would be to first select using a tumor cell target (such as a malignant melanoma) and then counterselect the resulting nucleic acids against a similar cell type which is not tumorogenic (such as normal human melanocytes). Ligands that interact with both normal and neoplastic tissue will be removed by this negative selection and only those nucleic acid ligands that specifically bind the tumor cells will be identified (or retained). The resulting nucleic acid ligand would be specific for tumors. This technique will provide the ability to identify nucleic acid ligands that can discriminate between two closely related targets, i.e., between a cancerous cell and an untransformed cell of the same tissue type. The negative selection can also be done in vivo. Using this method one can not only generate ligands to specific targets on complex tissue surfaces, but also be able to recognize the differences between normal and abnormal tissue of a particular type.

5

10

15

20

25

"SELEX Target" or "Target" refers to any compound upon which a nucleic acid can act in a predetermined desirable manner. A SELEX target molecule can be a protein, peptide, nucleic acid, carbohydrate, lipid, polysaccharide, glycoprotein, hormone, receptor, antigen, antibody, virus, pathogen, toxic substance, substrate, metabolite, transition state analog, cofactor, inhibitor, drug, dye, nutrient, growth factor, cell, tissue, etc., without limitation. Virtually any chemical or biological effector would be a suitable SELEX target. Molecules of any size can serve as SELEX targets. A target can also be modified in certain ways to enhance the likelihood of an interaction between the target and the nucleic acid.

"Tissue target" or "Tissue" refers to a certain subset of the SELEX

targets described above. According to this definition, tissues are macromolecules in a heterogeneous environment. As used herein, tissue refers to a single cell type, a

-11-

collection of cell types, an aggregate of cells, or an aggregate of macromolecules.

This differs from simpler SELEX targets which are typically isolated soluble molecules, such as proteins. In the preferred embodiment, tissues are insoluble macromolecules which are orders of magnitude larger than simpler SELEX targets.

Tissues are complex targets made up of numerous macromolecules, each macromolecule having numerous potential epitopes. The different macromolecules which comprise the numerous epitopes can be proteins, lipids, carbohydrates, etc., or combinations thereof. Tissues are generally a physical array of macromolecules that can be either fluid or rigid, both in terms of structure and composition. Extracellular matrix is an example of a more rigid tissue, both structurally and compositionally, while a membrane bilayer is more fluid in structure and composition. Tissues are generally not soluble and remain in solid phase, and thus partitioning can be accomplished relatively easily. Tissue includes, but is not limited to, an aggregate of cells usually of a particular kind together with their intercellular substance that form one of the structural materials commonly used to denote the general cellular fabric of a given organ, e.g., kidney tissue, brain tissue. The four general classes of tissues are epithelial tissue, connective tissue, nerve tissue, and muscle tissue.

10

15

20

25

30

Examples of tissues which fall within this definition include, but are not limited to, heterogeneous aggregates of macromolecules such as fibrin clots which are acellular; homogeneous or heterogeneous aggregates of cells; higher ordered structures containing cells which have a specific function, such as organs, tumors, lymph nodes, arteries, etc.; and individual cells. Tissues or cells can be in their natural environment, isolated, or in tissue culture. The tissue can be intact or modified. The modification can include numerous changes such as transformation, transfection, activation, and substructure isolation, e.g., cell membranes, cell nuclei, cell organelles, etc.

Sources of the tissue, cell or subcellular structures can be obtained from prokaryotes as well as eukaryotes. This includes human, animal, plant, bacterial, fungal and viral structures.

"Nucleic acid" means either DNA, RNA, single-stranded or double-stranded and any chemical modifications thereof. Modifications include, but

-12-

are not limited to, those which provide other chemical groups that incorporate additional charge, polarizability, hydrogen bonding, electrostatic interaction, and fluxionality to the individual nucleic acid bases or to the nucleic acid as a whole. Such modifications include, but are not limited to, modified bases such as 2'-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at cytosine exocyclic amines, substitution of 5-bromo-uracil; backbone modifications, methylations, unusual base-pairing combinations such as the isobases isocytidine and isoguanidine and the like. Modifications can also include 3' and 5' modifications such as capping. Modifications that occur after each round of amplification are also compatible with this invention. Post-amplification modifications can be reversibly or irreversibly added after each round of amplification. Virtually any modification of the nucleic acid is contemplated by this invention.

10

15

20

"Nucleic acid test mixture" or "nucleic acid candidate mixture" is a mixture of nucleic acids of differing, randomized sequence. The source of a "nucleic acid test mixture" can be from naturally-occurring nucleic acids or fragments thereof, chemically synthesized nucleic acids, enzymatically synthesized nucleic acids or nucleic acids made by a combination of the foregoing techniques. In a preferred embodiment, each nucleic acid has fixed sequences surrounding a randomized region to facilitate the amplification process. The length of the randomized section of the nucleic acid is generally between 8 and 250 nucleotides, preferably between 8 and 60 nucleotides.

"Nucleic acid ligand" is a nucleic acid which has been isolated from the nucleic acid candidate mixture that acts on a target in a desirable manner. Examples of actions on a target in a desirable manner include, but are not limited to binding of the target, catalytically changing the target, reacting with the target in a way which modifies/alters the target or the functional activity of the target, covalently attaching to the target as in a suicide inhibitor, factilitating the reaction between the target and another molecule. In most, but not all, instances this desirable manner is binding to the target. In the most preferred embodiment, a nucleic acid ligand is a non-naturally occurring nucleic acid ligand having a specific binding affinity for a tissue target molecule. such target molecule being a three dimensional chemical structure other than

-13-

a polynucleotide that binds to said nucleic acid ligand through a mechanism which predominantly depends on Watson/Crick base pairing or triple helix binding, wherein said nucleic acid ligand is not a nucleic acid having the known physiological function of being bound by the target molecule. Nucleic acid ligand includes nucleic acid sequences that are substantially homologous to the nucleic acid ligands actually isolated by the Tissue SELEX procedures. By substantially homologous it is meant a degree of primary sequence homology in excess of 70%, most preferably in excess of 80%. In the past it has been shown that the sequence homologies of various nucleic acid ligands to a specific target shows that sequences with little or no primary 10 homology may have substantially the same ability to bind the target. For these reasons, this invention also includes nucleic acid ligands that have substantially the same ability to bind a target as the nucleic acid ligands identified by the Tissue SELEX process. Substantially the same ability to bind a target means that the affinity is within a few orders of magnitude of the affinity of the ligands described herein. It is well 15 within the skill of those of ordinary skill in the art to determine whether a given sequence -- substantially homologous to those specifically described herein -- has substantially the same ability to bind a tissue target.

"Partitioning" means any process for separating nucleic acid ligands from the remainder of the unreacted nucleic acid candidate mixture. Partitioning can be accomplished by various methods known in the art. Filter binding, affinity chromatography, liquid-liquid partitioning, filtration, gel shift, density gradient centrifugation are all examples of suitable partitioning methods. Equilibrium partitioning methods can also be used as described in detail below. Since the tissue targets of the present invention are non-soluble, there are numerous simple partitioning methods which are well suited to this invention. The simple partitioning methods include any method for separating a solid from a liquid, such as, centrifugation with and without oils, membrane separations and simply washing the insoluble tissue target. The ligands can also be specifically eluted from the target with a specific antibody or ligand. The choice of partitioning method will depend on properties of the target and the nucleic acid and can be made according to principles and properties known to those of ordinary skill in the art.

20

30

-14-

"Amplifying" means any process or combination of process steps that increases the amount or number of copies of a molecule or class of molecules. In preferred embodiments, amplification occurs after members of the test mixture have been partitioned, and it is the facilitating nucleic acid associated with a desirable product that is amplified. For example, amplifying RNA molecules can be carried out by a sequence of three reactions: making cDNA copies of selected RNAs, using the polymerase chain reaction to increase the copy number of each cDNA, and transcribing the cDNA copies to obtain RNA molecules having the same sequences as the selected RNAs. Any reaction or combination of reactions known in the art can be used as appropriate, including direct DNA replication, direct RNA amplification and the like, as will be recognized by those skilled in the art. The amplification method should result in the proportions of the amplified mixture being essentially representative of the proportions of different sequences in the mixture prior to amplification. It is known that many modifications to nucleic acids are compatible with enzymatic amplification. Modifications that are not compatible with amplication can be made after each round of amplification, if necessary.

10

15

20

25

"Randomized" is a term used to describe a segment of a nucleic acid having, in principle, any possible sequence over a given length. Randomized sequences will be of various lengths, as desired, ranging from about eight to more than one hundred nucleotides. The chemical or enzymatic reactions by which random sequence segments are made may not yield mathematically random sequences due to unknown biases or nucleotide preferences that may exist. The term "randomized" is used instead of "random" to reflect the possibility of such deviations from non-ideality. In the techniques presently known, for example sequential chemical synthesis, large deviations are not known to occur. For short segments of 20 nucleotides or less, any minor bias that might exist would have negligible consequences. The longer the sequences of a single synthesis, the greater the effect of any bias.

A bias may be deliberately introduced into a randomized sequence, for example, by altering the molar ratios of precursor nucleoside (or deoxynucleoside) triphosphates in the synthesis reaction or the ratio of phosphoramidites in the chemical

synthesis. A deliberate bias may be desired, for example, to affect secondary structure, to introduce bias toward molecules known to have facilitating activity, to introduce certain structural characteristics, or based on preliminary results.

In its most basic form, the SELEX process may be defined by the following series of steps:

1) A candidate mixture of nucleic acids of differing sequence is prepared. The candidate mixture generally includes regions of fixed sequences (i.e., each of the members of the candidate mixture contains the same sequences in the same location) and regions of randomized sequences. The fixed sequence regions are selected either: (a) to assist in the amplification steps described below, (b) to mimic a sequence known to bind to the target, or (c) to enhance the concentration of a given structural arrangement of the nucleic acids in the candidate mixture. The randomized sequences can be totally randomized (i.e., the probability of finding a base at any position being one in four) or only partially randomized (e.g., the probability of finding a base at any location can be selected at any level between 0 and 100 percent).

10

15

20

25

30

- 2) The candidate mixture is contacted with the selected target under conditions favorable for binding between the target and members of the candidate mixture. Under these circumstances, the interaction between the target and the nucleic acids of the candidate mixture can be considered as forming nucleic acid-target pairs between the target and those nucleic acids having the strongest affinity for the target.
- 3) The nucleic acids with the highest affinity for the target are partitioned from those nucleic acids with lesser affinity to the target. Because only an extremely small number of sequences (and possibly only one molecule of nucleic acid) corresponding to the highest affinity nucleic acids exist in the candidate mixture, it is generally desirable to set the partitioning criteria so that a significant amount of the nucleic acids in the candidate mixture (approximately 5-50%) are retained during partitioning.
- 4) Those nucleic acids selected during partitioning as having the relatively higher affinity to the target are then amplified to create a new candidate mixture that is enriched in nucleic acids having a relatively higher affinity for the target.

-16-

5) By repeating the partitioning and amplifying steps above, the newly formed candidate mixture contains fewer and fewer unique sequences, and the average degree of affinity of the nucleic acids to the target will generally increase. Taken to its extreme, the SELEX process will yield a candidate mixture containing one or a small number of unique nucleic acids representing those nucleic acids from the original candidate mixture having the highest affinity to the target molecule.

5

15

20

25

30

The SELEX Patent Applications describe and elaborate on this process in great detail. Included are targets that can be used in the process; methods for partitioning nucleic acids within a candidate mixture; and methods for amplifying partitioned nucleic acids to generate an enriched candidate mixture. The SELEX Patent Applications also describe ligands obtained to a number of target species, including both protein targets where the protein is and is not a nucleic acid binding protein.

SELEX provides high affinity ligands of a target molecule. This represents a singular achievement that is unprecedented in the field of nucleic acids research. The present invention applies the SELEX procedure to more complicated tissue targets.

Negative selection (Counter-SELEX) is optionally employed before, during or after the Tissue SELEX process. The negative selection provides the ability to discriminate between closely related but different tissue types. For example, negative selection can be introduced to identify nucleic acid ligands that have a high specificity for a tumor cell but do not recognize the cognate normal tissue. Similarly, nucleic acid ligands can be identified which specifically recognize atherosclerotic arterial tissue but not normal arterial tissue. Nucleic acid ligands which recognize fibrin, but not fibrinogen can also be identified by this method. Additionally, nucleic acid ligands to a cell type which express a certain receptor can be counter-selected with a cell line engineered not to express the receptor (or other such macromolecule).

One of ordinary skill in the art will readily understand that various mechanisms can be employed to accomplish this negative selection. The following examples are provided mostly for illustrative purposes and are not meant in any way as limiting the procedures of negative selection. Negative selection or Counter-SELEX

methods were first described in United States Patent Application Serial No. 08/134,028, filed October 7, 1993, entitled "High-Affinity Nucleic Acid Ligands that Discriminate Between Theophylline and Caffeine", which is herein incorporated by reference. A particular implementation of negative selection is embodied using equilibrium partitioning. In this method, two cell lines or other tissue types are separated by a semi-permeable membrane (0.45- 0.90 µm pore size) in an equilibrium dialysis chamber; one cell line is the neoplastic target cell line, the other, the normal tissue used for the negative selection. The choice of cell or tissue type for the negative selection will be determined by the specific end results desired and will sometimes 10 consist of a non-malignant cell line of the same tissue type as the neoplastic target. For other experiments, various normal cell types could be combined to create the negative epitope "sink." The random pool of nucleic acids is placed into the dialysis chamber (on the side of the normal cells; this avoids background from high avidity targets which are common to both the tumor and normal cells) and allowed to equilibrate between the two cell lines. Those nucleic acid sequences that remain 15 bound to the target cell line or tissue at equilibrium are selectively recovered and amplified for the next round of SELEX.

This example of negative selection methodology is quite powerful.

First, equilibrium dialysis negative selection allows the positive and negative selection to be carried out *simultaneously*. Second, the stringency of the negative selection can be varied through the alteration of the relative amounts of "positive" and "negative" cells placed on each side of the dialysis membrane. These two characteristics of equilibrium dialysis negative selection allow precise control over the evolution of nucleic acid ligands specific for the target cell or tissue type.

20

25

This same type of equilibrium partitioning negative selection can be carried out with adherent cell lines. In this embodiment, monolayers of target and negative cells or tissues are plated in different wells of a multi-welled plate. After adherence, media, along with an oligonucleotide pool, is added such that the wells are connected by the volume of cell media. After equilibration of the oligonucleotide pool, those sequences bound by the target cell line or tissue type would be isolated and amplified for the next round of SELEX.

The equilibrium negative selection strategies above offer a powerful way of generating nucleic acid ligands to tissue targets and especially tumor associated antigens (TAAs).

Additionally, there are several other negative selection methods, which could be classified as "post-SELEX screening procedures." The most simple of these procedures is the testing of individual nucleic acid ligands (those sequences generated by tissue SELEX and demonstrated to be high-affinity ligands for the tissue target) against normal tissue for cross-reactivity. However, this approach is a tedious and time-consuming process.

5

10

15

20

25

30

A more fruitful "post-SELEX" method is to perform a negative selection, for example using a normal tissue as the negative selection target, on a pool that has already been evolved from a SELEX against a desirable complex tissue target, for example a transformed cell line. This example would suggest the performance of two to three negative selections on a normal tissue using a late-round, highly evolved pool from a SELEX of a transformed cell line. The binding of certain sequences to the normal tissue would be used to subtract these sequences from the evolved pool. This method allows one to quickly eliminate from several hundred to several thousand nucleic acid sequences that show a high affinity for those targets common to both the normal and the transformed cell lines.

Another "post-SELEX" screening method is a variation of the photocrosslinking experiment described in Example two below. As an example, it is possible to synthetically incorporate a highly photoreactive nitrine group (which is also iodinatable) on the 5' end of a PCR primer used in the tissue SELEX protocols.

Late-round pools from for example, a tumor cell line SELEX would be amplified with this photoactivatable (and 125I-labeled) primer, and this sequence pool would then be irradiated in the presence of the tumor cell line, and in the presence of normal tissue.

Membrane proteins would be isolated and solubilized for analysis on an SDS gel. One would expect to see many different protein epitopes tagged by specific oligonucleotide sequences, for both the tumor and the normal cell lines. A few tagged targets will be unique to the tumor cell line. Because the oligonucleotides have been photochemically linked to the protein targets in a manner which does not destroy the base sequence of

the oligonucleotide, it is possible to isolate a tumor-specific band from an SDS gel, and use PCR to recover a specific sequence motif that recognizes a particular tumor antigen. Thus, in one step, it will be possible to remove from a pool oligonucleotide sequences that recognize possibly hundreds of cell surface antigens, leaving one or a few families of sequences that bind specifically to a single tumor-specific antigen.

5

10

15

20

25

30

As described above, the Tissue SELEX methods can include the identification of macromolecules which comprise new epitopes on the tissue target. The nucleic acid ligand to the new epitope component of the macromolecule can be employed to purify, identify and characterize the macromolecule. The new macromolecule can be a previously unknown protein or peptide, lipid, carbohydrate, etc. Virtually any molecule that is part of the molecular make-up of a tissue can be identified by the Tissue SELEX process.

In order to fully exploit this aspect of the invention, it is important to develop strategies for the purification and identification of new macromolecules which comprise the new epitopes and to determine the roles these new macromolecular components of the tissue play in biological systems. The methods for purifying new macromolecules are well-known, especially in the art of protein purification. These standard purification methods include crosslinking, affinity chromatography, peptide microsequencing, Edman sequencing, mass spectrometry, and cDNA library searches.

The following discussion describes this process as it would be applied to the identification of a new tumor-associated antigen (TAA). For the purposes of this discussion, a TAA is a macromolecule that is expressed on a tumor cell, but not on a similar normal cell. A TAA may or may not be immunogenic. A TAA is merely one example of the kinds of macromolecules which can be identified by the Tissue SELEX process and simply used for illustrative purposes. However, it is readily apparent that this process can be extrapolated to any new macromolecule identified by the Tissue SELEX process.

As applied to TAAs, the identification of new TAAs by the Tissue SELEX process is composed of two main parts: one, developing strategies for the purification and identification of new TAAs, and two, the elucidation of the role these

tumor antigens play in cancer (i.e., determining the biological significance of each particular TAA in the development and progression of a particular cancer).

The steps of purification and identification of most of the TAAs should be straightforward and understood by one skilled in the art of protein purification. As with antibodies, SELEX provides a reagent –a high-affinity ligand specific for the tumor antigen— that is incredibly useful for the purification of the antigen from whole cells or other tissues. As a non-limiting example, most antigens will be amenable to some type of photo-affinity crosslinking as described in the RBC ghost SELEX experiments of Example 1 or in the negative selection strategies section above. Specific crosslinking of the TAA, using a photoactivatable oligonucleotide with a 3' biotin conjugate will allow one-pass purification of the TAA target using strepavidin coated beads. An alternative method to this purification strategy is to use a

There are many compelling reasons to believe that the method provided herein for identifying macromolecules that comprise new epitopes on tissues offers distinct advantages over traditional methods of new macromolecule discovery. Again, the following discussion will be directed to tumor-associated antigen discovery, but one will readily understand that it can be broadly extrapolated to all new macromolecule discovery.

column-bound high-affinity nucleic acid ligand to affinity purify the TAA target from

solubilized target cell membrane preparations.

15

20

25

30

As applied to tumor-associated antigens, one must fully consider that all that is known about tumor antigens has been derived from the immune system's reaction to particular antigens; science has depended on the particular restrictions of the immune system, and the system's repetoires to distinguish antigenic differences between neoplastic and normal tissue. It is entirely possible that other tumor antigens exist that are not subject to immune response. Some investigators have hypothesized that there may in fact be many antigenic differences between cancer and normal tissue, which are, unfortunately, not immunogenic.

The SELEX methodology provides an improved way to identify TAAs that avoids the restrictions posed by the immune system:

- a. SELEX can actually provide a deeper search of TAAs than can the entire potential antibody repertoire of an organism- the size of the nucleic acid libraries used in SELEX is unrivaled by any biological system;
- b. SELEX provides nucleic acid ligands to targets, including those

 which are not antigenic to the immune system because of tolerance. Many of the

 TAAs which have been identified are oncofetal—they are antigens expressed at some
 point during development or cell differentiation. As prior "self" antigens, they elicit
 no overt immune response because of earlier immune system tolerization. A

 SELEX-based search for TAAs avoids the circular nature of using the immune system
 as a means of identifying tumor antigens;
- c. SELEX nucleic acid ligands have been shown to be exquisitely sensitive to target conformation. While most antibodies recognize conformational, or discontinuous eptitopes, antibody functional eptitopes are composed of only a few amino acids. The potential binding surface of an oligonucleotide ligand is much larger than that of an antibody variable region, and may provide greater conformational discrimination of large targets. Additionally, cross-reactivity for SELEX ligands is substantially less of a problem than for monoclonal antibodies. A considerable set of restrictions also controls T-cell mediated tumor responses. These immune system limitations provide important biological functions; however, they limit the immune system's power for TAA identification.
 - d. SELEX is possibly more sensitive to small quantities of antigen than the immune system. Although the immune system's threshold for reactivity has been estimated to be 200 copies/cell for an antigenic MHC-presented peptide, a B-cell antibody response (necessary for any antigen that is not a peptide- carbohydrates,
- 25 lipids or conformational antigens) to a monovalent target requires antigen concentrations of about 100 mM. SELEX can generate ligands to TAA targets with a low representation on the cell surface;
- e. SELEX provides a rapid and thorough method of TAA discovery.
 Screening of monoclonal antibodies to tissue sections, and purification and
 identification of MHC peptides are painstaking processes that set practical limits on

the depth and completeness of searches for TAAs. Tissue SELEX experiments take a much abbreviated length of time.

Nucleic acid ligands to tissue targets or the tissue epitopes identified by the method of the invention are useful as diagnostic reagents and as pharmaceuticals.

The nucleic acid ligands are also useful for the identification of new macromolecules.

The nucleic acid ligands are useful in any application that would be suitable for use of an antibody.

As diagnostic reagents, the ligands or tissue epitopes can be used in both *in vitro* diagnostics and *in vivo* imaging applications. The SELEX method generally, and the specific adaptations of the SELEX method taught and claimed herein specifically, are particularly suited for diagnostic appliations. SELEX identifies nucleic acid ligands that are able to bind targets with hgh affinity and with surprising specificity. These characteristics are, of course, the desired properties one skilled in the art would seek for a diagnostic ligand. Details regarding use of the ligands in diagnostic applications is well known to one of ordinary skill in the art. Nucleic acid ligands that bind specifically to pathological tissues such as tumors may have a role in imaging pathological conditions such as human tumor imaging and even therapeutic delivery of cytotoxic compounds or immune enhancing substances.

15

30

The nucleic acid ligands of the present invention may be routinely

adapted for diagnostic purpses according to any number of techniques employed by
those skilled in the art. Diagnostic agents need only be able to allow the user to
identify the presence of a given target at a particular locale or concentration. Simply
the ability to form binding pairs with the target may be sufficient to trigger a positive
signal for diagnostic purposes. Those skilled in the art would also be able to adapt any
nucleic acid ligand by procedures known in the art to incorporate a labelling tag in
order to track the presence of a ligand. Such a tag could be used in a number of
diagnostic procedures.

Specifically, oligonucleotide ligands with high specificity for particular tumor antigens could become as important as monoclonal antibodies for the detection, imaging, and surveillance of cancer. Modified nucleic acid ligands show nuclease resistance in plasma, and the use of 5' and 3' capping structures will provide stability

in animals that rivals that of monoclonal antibodies (and without the immunogenicity of animal-derived MAbs). Radionuclides, magnetic compounds, and the like can be conjugated to tumor-specific oligonucleotides for cancer imaging. SELEX tumor ligands can also be used to determine if these tumor antigens are sloughed off tumors, and are detectable in the plasma like PSA.

The nucleic acid ligands to tissue targets or newly identified macromolecules components of tissue are also useful as pharmaceuticals. Therapeutic uses include the treatment or prevention of diseases or medical conditions in human patients. Therapeutic uses also include veterinary applications. The ligands can bind to receptors and be useful as receptor antagonists. Conversely, under certain circumstances the ligands can bind to receptors and cause receptor capping and act as receptor agonists.

10

15

20

25

30

In order to produce nucleic acids desirable for use as a pharmaceutical, it is preferred that the nucleic acid ligand (1) binds to the target in a manner capable of achieving the desired effect on the target; (2) be as small as possible to obtain the desired effect; (3) be as stable as possible; and (4) be a specific ligand to the chosen target. In most situations, it is preferred that the nucleic acid ligand have the highest possible affinity to the target.

Standard formulations can be used for the nucleic acid ligands of the invention and are known to one of ordinary skill in the art.

The following examples provide a non-limiting description of the present invention. Example One describes obtaining ssDNA ligands to the complex tissue target red blood cell ghosts. The red blood cell ghost comprises a finite set of membrane-bound epitopes and is a non-living target which remained unchanged over the period of the selection. Ligands to RBC ghosts have numerous uses including, but not limited to, the ability to in vivo image extravascular blood as is desirable for head or retroperitoneal injuries or to extend the vascular half-life of other ligands that may be attached to the RBC ghost ligand. Example Two describes the identification of a macromolecule component on the RBC ghost using a ligand obtained in Example One. Example Three demonstrates that red blood cell ghost SELEX has produced high

affinity and high specificity ligands to more than one macromolecular component of

-24-

the target cell membrance. Example Four describes the identification of and enrichment for high affinity nucleic acid ligands which bind individual components of a complex macromolecular target. Example Five describes obtaining ssDNA ligands to a glioblastoma cell line. High affinity and specificity nucleic acid ligands were isolated that may interact with tumor-associated (or tumor-specific) antigens, or mimic cytokines in their interactions with cell surface receptors causing cell morphology changes. Ligands to glioblastoma cell lines have numerous uses including, but limited to, in vivo imaging of glioblastomas, therapeutic localization of the ligand or other therapeutic agents that are attached thereto. Example Six describes ssDNA ligands to a human lymphoma cell line.

Example One

ssDNA Ligands to Red Blood Cell Ghosts

15

20

25

30

This example demonstrates the ability to obtain ssDNA ligands to the complex tissue target human red blood cell ghosts (RBC ghosts). Red blood cell ghosts are erythroid cells which have been lysed, purged of their cellular contents and preferentially resealed in a right-side-out manner (Steck et al. (1994) Biochemistry 10: 2617-2624). Red blood cell ghosts were the first complex tissue target on which in vitro selection was performed. The red blood cell ghost is one of the least complicated tissue targets and yet is still orders of magnitude more complex than the pure proteins or small molecules previously used for SELEX procedures. The red blood cell ghost comprises a finite set of membrane-bound epitopes and is a non-living target which remained unchanged over the period of the selection. Ligands to RBC ghosts have numerous uses including, but not limited to, the ability to in vivo image extravascular blood as is desirable for head or retroperitoneal injuries or to extend the vascular half-life of other ligands that may be attached to the RBC ghost ligand.

Briefly, the RBC ghost SELEX was carried out with single-stranded DNA for selection, using a 30-base randomized region. The single-stranded DNA pool was incubated with RBC ghosts, and the tighter-binding sequences were partitioned from the rest of the pool by filtering the reaction through nitrocellulose filters. 25 rounds of selection were carried out, using a decreasing concentration of

-25-

ghosts as the SELEX experiment progressed. The 25th round pool was cloned and sequenced according to standard procedures. Listed in Table 1 are the 66 sequences isolated from the 25th round pool (SEQ ID NOS: 5-70). Approximately 60% of these sequences can be classified into seven sequence-specific motifs, there is one class of pyrimidine-rich sequences (12%), and the other 19% are "orphans," showing no similarity to other sequences.

Binding behavior of round 0 and round 25 pools, and selected clones shows that the round 25 pool binds significantly better than the starting pool, and several of the motif 1 clones bind better than the round 25 pool. All sequences tested for binding so far show similar binding to whole red blood cells, so it is believed that the SELEX ligands have evolved to membrane targets on the extracellular side of the RBC ghosts.

A. MATERIALS AND METHODS

15

30

Red blood cell ghosts

Red blood cell ghosts are erythroid cells which have been lysed, purged of their cellular contents and preferentially resealed in a right-side-out manner (Steck et al. (1994) Biochemistry 10: 2617-2624). The concentration of protein in the preparation was measured with Coomassie brilliant blue G-250 (Bio-Rad).

Synthesis of initial pool of ssDNA

- 20 10 pmol of template with 30 random nucleotides flanked by fixed sequences complementary to the primers (SEQ ID NO: 1) was PCR amplified for 25 rounds in 10 mM Tris-HCl, pH 8.6, 50 mM KCl, 2.5 mM MgCl₂, 170 mg/ml BSA, 1 mM dNTPs, 0.5 units/ml *Taq* DNA polymerase and 5 mM each primer (5'-GGGAGCTCAGAATAAACGCTCAA-3' (SEQ ID NO: 2) and
- 5'-BBBGATCCGGGCCTCATGTCGAA-3'(SEQ ID NO: 3), where B=biotin). A similar reaction contained 1 pmol of template, 0.1 mM dCTP and 1.25 mM [α-32P]dCTP (800 Ci/mmol) to produce internally labeled ssDNA for monitoring the binding affinity of the pool. Non-biotinylated, ssDNA was purified from the larger biotinylated strand by electrophoresis in 8% polyacrylamide gels containing urea.

The SELEX Protocol

40 pmol unlabeled ssDNA and a trace amount of radioactively labeled ssDNA were denatured by heating at 70°C for 5 min in 200 μl PBS (pH 7.3) and renatured at 0°C for 10 min. Pre-filtration of the DNA solution was used to counter-select sequences that might bind to nitrocellulose. After washing the filter with 300 μl PBS, the ssDNA molecules passed through the filter were divided into 50 μl aliquots. An equal volume of PBS containing various concentrations of RBC ghosts (0-1.72 mg/ml total protein) was added to each aliquot. The mixture was incubated for 20 min at room temperature then filtered through nitrocellulose. The filters were washed with 5 ml PBS and the amount of radioactively labeled ssDNA retained was measured by scintillation counting. The ssDNA was isolated from the filter that retained 5-10 times the radioactivity bound to the background control filter and was amplified by PCR for the next round of selection.

Nitrocellulose filter binding assays

10

30

The nitrocellulose filter partitioning method was used as described in SELEX Patent Applications to determine the affinity of nucleic acid ligands for RBC 15 ghosts and for other proteins. Filter discs (nitrocellulose/cellulose acetate mixed matrix, 0.45 µm pore size, Millipore) were placed on a vacuum manifold and washed with 5 ml of TBSC buffer under vacuum. Reaction mixtures, containing ³²P labeled nucleic acid pools and RBC ghosts were incubated in TBSC for 5 min at 37 ° C, 20 filtered, and then immediately washed with 5 ml TBSC. The filters were air-dried and counted in a Beckman liquid scintillation counter without fluor. Dissociation constants for single RBC ghost ligands were determined by Scatchard analysis (Scatchard, G. (1949) Ann. N.Y. Acad. Sci. 51:660-627; Robb, R.J., Munck, A., and Smith, K.A. (1985) J. Immunol. Methods 81:15-30), using constant ghost concentrations and varying the concentration of nucleic acid ligand. Scatchard analysis was performed using nitrocellulose partitioning of bound ligand from unbound ligand. For comparisons between random and evolved nucleic acid ligand pools, and for ligand/ligand comparisons, standard filter binding assays were used as described in the SELEX patent applications.

Cloning and nucleotide sequence determination

-27-

Individual DNA molecules were isolated from the round 25 pool by PCR amplification with primers that introduce *Bam*HI and *HindIII* restriction sites at the 5' and 3' ends of the DNA. Restriction digested PCR products were ligated into pUC18 and introduced into *E. coli* strain SURE (Stratagene) by electroporation.

Plasmids were isolated and the nucleotide sequences in the inserted DNAs were determined by standard dideoxynucleotide methods. The sequences were searched for patterns in their primary sequences and in their possible secondary sequences both by inspection and with the aid of computer algorithms.

10

B. RESULTS OF THE SELEX PROCEDURE

Clones

As described in Section A, ssDNA with 30 randomized positions was 15 used in SELEX with RBC ghosts as the target. The affinity of the ssDNA population for the membranes increased over twenty-five rounds of selection and amplification. The round 25 PCR products were cloned and the nucleotide sequences of 66 individuals were determined as shown in Table 1 (SEQ ID NO: 5-70). Eight clones contained one 8 and one 11 nucleotide consensus sequence separated by 3 to 14 bases 20 (SEQ ID NOs: 5-12). This group of sequences has been termed motif I sequences. Several of these clones are likely to have arisen from a single progenetor sequence by PCR mutagenesis (ie. 20, 121 and 117). One of the clones (clone 25)(SEQ ID NO: 12) in this group may use a portion of the 5'-end fixed region to complete the consensus sequence. A region of this fixed sequence and the consensus sequence differ by only two nucleotides. Binding analysis of portions of the motif I sequences have defined the 25 minimum binding sequence as the region containing no more than the 8-base and 11-base consensus sequences. Two synthetic truncate sequences have been made from the motif I sequences c56t (SEQ ID NO: 4) (from parent 56) and c20t (SEQ ID NO: 236) (from parent 20). The extremely high similarity between all the motif I sequences 30 has prevented a phylogenetic analysis of the sequences and data on the secondary structure of this motif has not been obtained as shown in Figure 3.

Another group of 7 sequences (SEQ ID NOS: 22-25 and 35-37) contain an 18-base conserved primary sequence and share additional secondary structural elements. Computer folding algorithms and phylogenetic analysis predict a hairpin-bulge-stem structure for these sequences as shown in Figure 3. These sequences have been termed the motif II sequences. Two synthetic truncated ligands have been made for this sequence motif, c16t (SEQ ID NO: 237) (parent 16) and c79t (SEQ ID NO: 238) (parent 79).

An additional group of 10 sequences share a common region of 13 bases, surrounded by additional conserved secondary structural elements. Computer folding algorithms and phylogenetic analysis predict a stem-bulge-stem structure for this group of sequences, called the motif III sequences (SEQ ID NOS: 18-21; 28-30; 40-42) as shown in Figure 3. The similarity between the members of the motif III sequences becomes even more substantial at the secondary structure level, for the motif III ligands accomplish this structure in two different *circularly permuted* ways. Figure 3 illustrates this permutation for two motif III truncate ligands, c53t (SEQ ID NO: 240) (parent 53) and c111t (SEQ ID NO: 239) (parent 111).

Three more sequence motifs have been defined by sequence homology. Motif IV contains 5 members, motif V has 5 members, and motif VI 2 members as shown in Table 1. The possible secondary structures for these sets of ligands has not yet been determined.

Twenty of the sequences show no large sequence homology to other sequences and are termed orphans. While several identical clones lie within this group, these clones most likely arose from a single progenitor sequence and do not represent another "motif."

The final group of sequences showed extremely high pyrimidine content (77-90 %), and no common secondary structure has been proposed.

Affinities

10

15

20

25

The binding behavior of round 0 and round 25 pools, and a selected
number of round 25 clones have been tested. The round 25 pool binds approximately
10-fold better than the starting pool, and several of the motif I clones bind 100-fold

-29-

better than the round 0 pool. All sequences tested for binding show similar binding to whole red blood cells, and therefore the inventors hereof believe that ligands have been selected to membrane targets on the extracellular side of the RBC ghosts.

A synthetic twenty-two nucleotide truncate of clone 56 (c56t)(SEQ ID NO: 4) that contains only the consensus sequences with four intervening nucleotides retained most of the binding affinity exhibited by the entire ssDNA sequence. A Scatchard plot analysis of c56t measured 1600 binding sites per cell, and a calculated dissociation constant of 4 nM for the target presented on the RBC ghosts. Truncate ligands from motifs II and III have not yet been analyzed for binding to the ghosts, but the photoaffinity studies of these ligands shown in Examples 3 and 4 indicates that their dissociation constants are as good or better than c56t. The pyrimidine-rich clones had affinities that were higher than the round 25 pool but lower than the consensus clones.

15 <u>Example Two</u>

Identification of Macromolecule Component on RBC Ghost

In order to confirm that the c56t ligand (SEQ ID NO: 4) recognizes a single, distinct target on RBC ghosts, a series of short-wavelength UV crosslinking experiments were done in an effort to photochemically link the c56t ligand to its 20 membrane target through thymidine crosslinking. As controls, two 22-base DNA oligonucleotides of the same base composition, but scrambled in sequence were also crosslinked to the RBC ghost target. Briefly, the target recognized by c56t was identified by short wavelength (254 nm) UV crosslinking experiments. 5' ¹²P end labelled truncate ligand c56t, and two control oligonucleotides of the same length and 25 base composition (but with the primary sequences scrambled using a "shuffling" computer algorithm), were irradiated in the presence of RBC ghosts. The ghost membrane proteins were fractionated using denaturing SDS gel electrophoresis, and the presense of crosslinked ligand detected by autoradiography of the dried gel. The results are shown in Figure 1. Autoradiography indicated a single specific crosslinked 30 product for c56t (all three oligos show slight crosslinking to two other RBC ghost proteins). The c56t ligand, but not the two controls, selectively labels an RBC ghost

-30-

membrane protein with an apparent molecular weight of 105 kDa. Silver staining of this protein target indicates that it is not an abundant protein.

A similar short wavelength photoaffinity crosslinking experiment was performed using both specific and non-specific nucleic acid competitor in the photocrosslinking reaction (Figure 3). The addition of a 10³ molar excess cold c56t in the reaction abolished crosslinking to the 105 kDa ghost component. However, the addition of a 10³ molar excess of cold motif II sequence c16t did not affect the crosslinking of c56t. This "cross competition" experiment demonstrates the incredible affinity and specificity of the truncate ligand c56t with its protein target.

10

15

20

25

30

Additionally, the product of the photoaffinity crosslinking reaction was examined under both reducing and non-reducing SDS-PAGE as shown in Figure 2. Under reducing conditions, the crosslinked protein runs with an apparent molecular weight of 105 kDa. Under non-reducing conditions, the crosslinked protein migrates at about 210 kDa, and suggests that the crosslinked protein is present on the ghost membrane as a disulfide-linked hetero- or homo-dimer. At present, only two human CD antigens that are disulfide bonded homodimers with monomer molecular weights within the range of 90-110 kDa are known, and only one is present on red blood cells and its direct progenitors. This antigen is the transferrin receptor (with a monomer molecular weight of 95 kDa). A definitive demonstration of the identity of the protein crosslinked by c56t is under investigation.

Example Three

Red Blood Cell Ghost SELEX has produced high affinity and high specificity ligands to more than one macromolecular component of the target cell membrane

A key assumption of tissue SELEX is that nucleic acid selection of collections of large macromolecular structures should result in the generation of high affinity ligands to all independent binding sites on these structures. Since cells or tissues are many magnitudes of order larger than a purified protein target, the number of these independent binding sites should be large. In brief, this theory predicts that selection of multiple targets produces ligands with multiple binding specificities.

-31-

Thus the selection of red blood cell ghosts should result in the evolution of high affinity nucleic acid ligands to more than one, and potentially all protein targets present on the membrane surface. In an effort to provide definitive proof of this hypothesis, truncate ligands from the first two red blood cell ghost sequence classes (motif I and II; see Figure 3) were affinity photocrosslinked to the ghost membranes. Truncates c56t (motif I) (SEQ ID NO: 4) and c16t (motif II) (SEQ ID NO: 237) were made synthetically, with the addition of a primary aliphatic amine (with a six carbon spacer group) on the 5' end of each molecule. This amino group was used to conjugate the truncate ligands to the phenyl azide photoreactive molecule sulfo-HSAB (N-hydroxysulfo-succinimidyl 4-azidobenzoate, Pierce Chemical Company). Additionally, these molecules were radiolabeled on their 3' end using alpha 32° ddATP. The truncate ligand conjugates were mixed with ghosts and photocrosslinking carried out using a 308 nm excimer laser as shown in Figure 4. To demonstrate high affinity and specificity, the photoreactive truncates were irradiated 15 with the ghosts in the presence of cognate or non-cognate unradiolabeled, unconjugated truncate.

The motif I truncate ligand c56t specifically labels a dimer protein band of apparent molecular weight of 105 kDa, the identical protein band labeled by this truncate using short wavelength UV photocrosslinking. This photoaffinity

20 crosslinking can be prevented by the addition of 10⁴ molar excess of "cold" c56t, but not by the addition of 10⁴ molar excess of cold c16t. Similarly, the motif II truncate specifically labels a protein of apparent molecular weight of 40 kDa. This crosslink can be prevented by the addition of cold c16t but not by cold c56t. Thus, it is clear the red blood cell ghost SELEX has produced high affinity and high specificity ligands to more than one macromolecular component of the target cell membrane.

This photoaffinity analysis has now been carried out for all truncate ligands shown in Figure 3. The motif I truncate c20t (SEQ ID NO: 236) specifically labels the same protein dimer band as the motif I truncate c56t, and the motif II truncate c79t (SEQ ID NO: 238) labels the same 40 kDa protein band at the motif II truncate c16t. The two motif III truncate ligands c53t (SEQ ID NO: 240) and c111t (SEQ ID NO: 239) specifically label a group of three proteins ranging in molecular

30

-32-

weight from 42-55 kDa, and presumably these proteins are physically associated as a protein complex on the ghost membranes. This consistent pattern of identical photoaffinity crosslinking behavior within sequence motifs, and different protein bands crosslinking among motifs is very strong proof of the fundamental hypothesis of tissue SELEX—multiple targets result in ligands with multiple specificities.

5

30

Example Four

Identification of and enrichment for high affinity nucleic acid ligands which bind individual components of a complex macromolecular target

10 After the generation by tissue SELEX of high affinity ligands to many targets within a complex mixture, it is desirable to be able to screen this large pool of sequences for those nucleic acid molecules which recognize a particular, discrete target within the complex mixture. A method for this procedure has been developed for the red blood cell ghost SELEX which has been termed "pool deconvolution." The pool of sequences from the final round of the RBC ghost SELEX (round 25) was amplified 15 using internal radiolabel and a "sense strand" PCR primer which carried the same primary amine, six carbon spacer described in Example Three at its 5' end. Thus, every sequence in the purified ssDNA pool contained this primary amino group at their 5' end. The pool of sequences was conjugated to the phenyl azide compound sulfo-HSAB, purified, and incubated with the RBC ghosts in the presence of 103 molar 20 excess of non-specific nucleic acid competitor. The mixture was irradiated using a 308 nm excimer laser and the crosslinked products separated by SDS-PAGE.

The crosslinking pattern of the final round pool is shown in Figure 5. One can clearly see that many different proteins present in the ghost membrane have been specifically photolabeled by the pool sequences. The SDS-PAGE separated products were electroblotted to a nitrocellulose filter, and sections of the filter which corresponded to four different crosslinked proteins were excised and placed in PCR reactions for amplification of the pool sequences which crosslinked to the particular protein selected. This "deconvolution SELEX" was carried out for three rounds, and the results of the selections are shown in Figure 5. Lanes numbered 5, 6, 7, and 8 correspond to the four selected protein bands as indicated on the round 25 lane. The

three rounds of selection has produced excellent enhancement for sequences which can specifically photocrosslink to selected ghost membrane proteins. The pools used to produce lanes 5 and 8 are both close to becoming completely specific for the selected proteins. The stringency of further selections will be increased by using high concentrations of non-specific competitor nucleic acid and by competing a particular pool (such as that for band 5) with cold, non-conjugated fractions of the remaining three pools. Such a scheme should allow the selective removal of sequences that are common to two or more pools. For example, competing the photocrosslinking of the pool for band 5 with cold material from the band 6, 7, and 8 pools should eliminate the 10 common crosslinking between the band 5 pool and the other pools. When the selection is completed, the isolated DNA for a particular protein band can be readily sequenced by standard methods, allowing one to correlate particular nucleic acid sequences with high affinity binding to a discrete protein. This deconvolution technique is a powerful method for screening high affinity tissue SELEX pools for 15 sequences which bind a particular target of interest.

Example Five ssDNA Ligands to Glioblastoma U251 Cell Line

This example demonstrates the ability to obtain ssDNA ligands to the

complex tissue target glioblastoma cell line U251, which is derived from human brain
tumor (Hum. Hered. (1971) 21:238). High affinity and specificity nucleic acid ligands
were isolated that may interact with tumor-associated (or tumor-specific) antigens, or
mimic cytokines in their interactions with cell surface receptors causing cell
morphology changes. Many of the protocols used in this example are outlined in

Example One or are slightly varied as described below. Ligands to glioblastoma cell
lines have numerous uses including, but not limited to, in vivo imaging of
glioblastomas, therapeutic localization of the ligand or other therapeutic agents that are
attached thereto.

In this tissue SELEX example, a fluorescent-labeled single-stranded

30 DNA library with 34 nucleotide randomized region was used (SEQ ID NO: 71). The
fluorescent-labeled ssDNA was purified by denaturing polyacrylamide gel. The
sequences of primers and template are as follows:

-34-

5'-primer: 5'-F-GCCTGTTGTGAGCCTCCT-3' (F: fluorescein) (SEQ

ID NO: 72)

3'-primer: 5'-GGGAGACAAGAATAAGCG-3' (SEQ ID NO: 73)

template:

55'-GCCTGTTGTGAGCCTCCT-N34-CGCTTATTCTTGTCTCCC-3' (SEQ ID NO:

71)

10

15

20

25

Briefly, the SELEX procedure was as follows. One to 10 million glioblastoma cell line U251 cells were washed twice in a culture flask with 20 mL cold RPMI-1640 serum-free medium at 4°C. 50-100 picomoles of ssDNA in 100 μL PBS buffer was heated at 90°C for 5 minutes and put on ice for 5 minutes. The ssDNA pool was added to the cell culture in 20 mL RPMI-1640 medium along with 20-40 fold excess sonicated sperm DNA and yeast tRNA (molar ratio 1:1). The solution was incubated at 4°C for 20 minutes with gentle shaking. The cells were washed twice with 20 mL cold RPMI-1640 medium to remove the free oligonucleotides. The cells were trypsinized with 1 mL of 0.25% trypsin. The solution that contains cells and oligonucleotides was collected to a 2 mL tube, boiling at 95°C for 5 minutes, followed by phenol extraction and ethanol precipitation. The recovered ssDNA was used for PCR amplification. Through 20 rounds of selection, the binding affinity of the final pool was significantly increased comparing with that of the starting material. The affinity increase was revealed by Scatchard graph. The round-20 pool was cloned into pUC18 vector by DUG cloning as described by Rashtchain et al. (Anal. Biochem. (1992) 206:91). About 158 sequences were obtained, which can be grouped into 22 subfamilies and are shown in Table 2 (SEQ ID NOs: 74-232).

Example Six

ssDNA Ligands to Human Lymphoma Cell Line
This example demonstrates the ability to obtain ssDNA ligands to
the complex tissue target human lymphoma cell line CEMss, which is a CD4
positive cell line (Foley et al., Cancer (1965) 18:522). Many of the protocols used

-35-

in this example are outlined in Example One or are slightly varied as described below.

In this tissue SELEX example, fluorescein labeled single-stranded DNA molecules were used for the generating of combinatorial library. The fluorescein-labeling allows for image of oligonucleotides binding to the cell surface and for the purpose of flow cytometry. The sequences of primers and templates are as follows:

5'-primer: 5'-F*-GCCTGTTGTGAGCCTCCT-3' (F*=fluorescein) (SEQ ID NO: 233)

3'-primer: 5'-GGGAGACAAGAATAAGCG-3' (SEQ ID NO: 234)

template:

5

10

5'-GCCTGTTGTGAGCCTCCT---N₃₄---CGCTTATTCTTGTCTCCC-3' (SEQ ID NO: 235)

Briefly, the SELEX procedure was as follows. The target cell line 15 was the human lymphoma cell line CEMss, which is CD4 positive. 5X106 cells were washed twice with 10 mL of cold PBS buffer in a 15 mL conical tube. The cells were resuspended with 1 mL PBS and stored on ice. 50-100 picomoles of fluorescein-labeled (and ³²P-internally-labeled by PCR) single-stranded DNA (SEO ID NO: 235) in 100 µL PBS was heat denatured at 90°C for 5 minutes, and was kept on ice for 5 minutes. Incubate the single-stranded DNA together with 20 20-50 fold excess competitor yeast tRNA and sonicated denatured sperm DNA (ratio: 1 to 1), with cells at room temperature for 20 minutes with gentle shaking. Load the reaction solution on top of 0.5 mL of binding oil (84% silicon oil and 16% paraffin oil), spin at top speed for 15 seconds, immediately freeze in dry 25 ice/ethanol. Cut the bottom tip of the tube off and put the tip in a 2 mL tube, add 100 μ L water, 100 μ L 7 M urea, and 400 μ L phenol, shake and boil for 5 minutes. Count the cpm, then shake for another 20 minutes, spin at top speed for 10 minutes, transfer the top phase to a new tube and ethanol precipitate. The recovered DNA was PCR amplified and purified on a denaturing gel. The 30 fluorescein-labeled strand migrates slower. The recovered ssDNA was used for next round of SELEX.

-36-

The improvement of binding affinity was determined by binding assay. The reaction condition was as described above, with the exception that the reaction volume is $100 \,\mu\text{L}$, without the addition of competitor. After 12 rounds of selection the binding affinity increased compared to the zero round pool. The complexity of the round 12 pool is still relatively high and rounds will continue until the resulting complexity of the pool has somewhat decreased.

5

	11070	1154675				101/01	320/00000
5		gggagctcagaataaacgctcaaGTGGAGTCGACACGCTGTGACCTTTG-GCATttcgacatgaggcccggatc gggagctcagaataaacgctcaaGTG-AGTCGACACGCGGACCTTTG-GTATttcgacatgaggcccggatc gggagctcagaataaacgctcaaGTG-CGTCGAGGCATTGCAACCTTTG-GTCTttcgacatgaggcccggatc ggagctcagaataaacgctcaaTAGACCGTCGATGC-TTGCAACTTTAC-GTATttcgacatgaggcccggatc	JggagctcagaataaacgctcaaAGCAGGGCAACC-TTGAGTCTTTCATGCCttcgacatgaggcccggatc JggagctcagaataaacgctcaaAGCAGCGGCAACC-TTGAGTATTTCATGCttcgacatgaggcccggatc gggagctcagaataaacgctcaaACCCGGGCAACCGTTCGGTCTTTCAGTCTttcgacatgaggcccggatc	tegacatgaggeeeggate AGttegacatgaggeeegga CTAttegacatgaggeeegg	gggagctcagaataaacgctcaaCATCG-TTGACACCCTCGTGTGCTTCAGGTAttcgacatgaggcccggatc gggagctcagaataaacgctcaaCATCGCTTGACA-GCTGTGCTGCTTCAGTTTLtcgacatgaggcccggatc gggagctcagaataaacgctcaaGGGTGATCGAAGCCTAGGTGAGCTTGAGCCttcgacatgaggcccggatc gggagctcagaataaacgctcaaGGGTGTCCGA-GCATCCGTAGCTTGAGTCGTttcgacatgaggcccggatc gctcagaataaacgctcaaAGAGGAGTC-TTGCTGTCCGTACACACTTAAttcgacatgaggcccggatc	gggagctcagaataaacgctcaaAGGCGGTGTTACTTCTCACGAATTGAGGAAGttcgacatgaggcccggatc gggagctcagaataaacgctcaaAG-CGTTGTTACTTCTCACGAATTGAGGAAGttcgacatgaggcccggatc gggagctcagaataaacgctcaaGGAGCGCGATACGTTTACTTCTGATCATGttcgacatgaggcccggatc ggagctcagaataaacgctcaaTAGGCCGGGTGAGCTACTTCTAGTAGGGTGttcgacatgaggcccggatc	ltgaggcccggatc ltgaggcccggatc
10	(cont.)	CTGTGACCTTTG-GCATEL CCGCGACCTTTG-GTATEL PTGCAACCTTTG-GTCTEL	3GGCAACC-TTGAGTCTTT 3GGCAACC-TTGAGTATTT 3GGCAACCGTTCGGTCTTT	aCATCTGGATGTTCAACCTTCTGGTCTTGCGt caaCTACCCGGTTGAACCTTC-GCTCTTGCGT tcaaTGCTCCCCGAAACCCT-ATTTCTTGCTG GTCGAGGCATTGCAACCTTTG-GTCT tcgac GGGCAACCTTTGAGTATTTCATG	ataaacgctcaaCATCG-TTGACACCCTCGTGTGCTTCAGGTAttcgacatgaggcccaataaacgctcaaacgctcaacgtcgccaaaggcccaaaaaggctcgaaacgctcaaaggctcgaaaaggcTTGAGTTTTttcgacatgaggcccgaaaaaaggctcaaaggGTGATCGAAGCCTAGGTGAGCTTGAGCCttcgacatgaggcccgaaaaaaggctcaaaggGTGTCGA-GCATCCGTAGCTTGAGTCGTttcgacatgaggccaataaaaggctcaaaaggGTGTCTTCGA-GCATCCGTAGCTTGAGTCGTttcgacatgaggccaacactcaaaggcccaaagagcccaaaagagcccaaaagagcccaaaagagcccggatc	taaacgctcaaAGGCGGTGTTACTTCTCACGAATTGAGGAAGttcgacatgaggcc taaaacgctcaaAG-CGTTGTTACTTCTCACGAATTGAGGAAGttcgacatgaggcc tataaacgctcaaGGAGCGCGATACGTTTACTTCTGATCATGttcgacatgaggccggatc taaacgctcaaTAGGCCGGGTGAGCTACTTCTAGTAGGGTGttcgacatgaggcccggatc	taaacgctcaaGGTTGTCGACGCATTATAGCGACATCGTCTttcgacatgaggcccggatc aaacgctcaaGGCGTGTCGATGTGGAATCACAAC-CTGTCTttcgacatgaggcccggatc
15	Table 1 (cc	aGTGGAGTCGACACG(aGTG-AGTCGACACG(aGTG-CGTCGAGGCA' TAGACCGTCGATGC-'	aacgctcaaTGAGAGG aacgctcaaAGCAGCG taaacgctcaaACCCC	geteaaCATCTGGATV aegeteaaCTACCCG aacgeteaaTGCTCCV GTCGAGGCATV	ATCG-TTGACACCCT ATCGCTTGACA-GCTA GGTGATCGAAGCCTAC GGTGTCCGA-GCATCC	GCGGTGTTV CGTTGTTV GACCGCGATACGTTTV GCCGGGTGAGCTV GGGTAGGGCCCAA-TV	TGTCGACGCATTATAC TGTCGATGTGGAATC
20			gggagctcagaata gggagctcagaata gggagctcagaa	gggagctcagaataaac gggagctcagaataa gggagctcagaata	agaataaacgctcaaC agaataaacgctcaaC agaataaacgctcaaG agaataaacgctcaaG	gaataaacgotcaaAG gaataaacgotcaaAG agaataaacgotcaaG aataaacgotcaaTAG	aataaacgotcaaGGT ataaacgotcaaGGCG
25		if III gggagetes gggagetes gggageteagggageteag		11. t	IV	> 500	f VI gggagctcagaat gggagctcagaata
		Moti 11 119 111 18	22 53 132	7 21 38 c111 c53t	Motif 42 57 73 105	Motif 26 39 13 108 6	Motif 5 58
30				0 1 5 6 0			
		18 19 20 21	28 29 30	40 41 42 239 240	31 33 34 55	26 27 54 53 53	17 16

				-39-	%7777777777777777777777777777777777777
5		ıtgaggcccggatc Itgaggcccggatc Itgaggcccggatc	ltgaggcccggatc Itgaggcccggatc	atgaggcccggatc lecatgaggcccggatc atgaggcccggatc leatgaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc	tgaggcccggatc atgaggcccggatc gaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc tgaggcccggatc
10	1 (cont.)	agaataaaacgctcaaCAGGTCGATCGAGTCAGGTAGGCGCCGAGAttcgacatgaggcccggatc agaataaaacgctcaaGAGGTCGATCGAGTCAGGTAGGCGCCGAGAttcgacatgaggcccggatc agaataaaacgctcaaCAGGTCGATTGAGTCAGGTAGGCGCCGAAAttcgacatgaggcccggatc	agaataaacgctcaaGTGGAGCGATTCGCGAAAATCGACTTGCATttcgacatgaggcccggatc agaataaacgctcaaCTGGAGCGATTCGG-AAAATCGACTTGCATttcgacatgaggcccggatc	cagaataaacgctcaaGTGGCCTCAAACTGCTAGGAGTAAACATGttcgacatgaggccggatc agaataaacgctcaaTCCCTTGAACCATCGGTCTTGCGTTCCATGttcgacatgaggccggatc cagaataaacgctcaaTCCGGAAAGCAACGCATACTTCGCATGTCGttcgacatgaggcccggatc ctcagaataaacgctcaaGGCAATACACACTTAGCGGCACCGCTTCAttcgacatgaggcccggatc agaataaacgctcaaGACAGCGTGATTCCTCCGCTCTGCTGTATttcgacatgaggcccggatc agaataaacgctcaaACAAGAGGTCTTGCCGCACTGTAATAAttcgacatgaggcccggatc agaataaaacgctcaaACAAGAGGTCTTGCCGCACTGTTCTCCTCGTGATtcgacatgaggcccggatc agaataaaacgctcaaACAAGAGGTCATATTATTCGTTCttcgacatgaggcccggatc agaataaaacgctcaaACGAATTAGTAGCGTATTATCGTTCttcgacatgaggcccggatc agaataaaacgctcaaAGCCGAATTAGTAGCGTATTATCGTTCttcgacatgaggcccggatc agaataaaacgctcaaAGCCGAATTAGTAGCGTATTATCGTTCttcgacatgaggcccggatc agaataaaacgctcaaGAGTTTCTTCCCGGCTATTCCGGTGAttcgacatgaggcccggatc agaataaaacgctcaaGAGTTTTTCTTCCCGGCTATTGTGTTtcgacatgaggcccggatc agaataaaacgctcaaGAGTTTTTTAAGGTTTTTTTTTTTTTTTTTTTTTTTT	inne-rich motif gggagctcagaataaacgctcaaACCTCGTACTGCTCTCTCCCTCATGTCttcgacatgaggcccggatc gggagctcagaataaacgctcaaACGTTCATCTTTTTTTTTTTTTCATCTTAttcgacatgaggcccggatc gggagctcagaataaacgctcaaACGTTCATCTTTTTTTTTTTTCATCTTTTCTTTTCAGacatgaggcccggatc gggagctcagaataaacgctcaaACCCTCACCTCTTTACACTTTTCTTTTTCTTTTCAGacatgaggcccggatc gggagctcagaataaacgctcaaACCCTACTCTCTCTTTTTTTTTTTTTTTTTTTTTTTT
15	Table 1 (AGTCGATCGAGTCAGG AGGTCGATCGAGTCAGG AGGTCGATTGAGTCAGG	GGAGCGATTCGCGAAA GGAGCGATTCGG-AAA	TGGCCTCAAACTGCTA CCTTGAACCATCGGTC GGCAATACAACAACGC GGCTATTGTTCTTCTTGG GAGCTTATCCTTCCCG GAGCTTACGGAGTTTCC GAGCTTACGGGGGTTTCC GGGCTTACCGGC GAGCTTCTTCCCGGC GAGCTTCTTCCCGGC GGGCTTCTTCCCGGC AGGGTTTCCTTCCGGC AGTGAACTCTTCCCGGC AGTGAACTCTTCCCGGC AGTGAACTCTTCCCGGC AGTGAACTCTTCCCGGC AGTGAACTCTTCCCGGC AGTGAACCTCGTACAG GGGCCGGGTTAGCCTTA	CTCGTACTGCCATCTC GTTCATCTTTTTTTTGT ACTCACGACTTTTTCAT CACCTCACTCTCAC CCTACTCTCCACTCAC CCTCACTCTCACTCA
20		agaataaacgotcaaCA agaataaacgotcaaGA agaataaacgotcaaCA	agaataaacgctcaaGT agaataaacgctcaaCT	cagaataaacgctcaag tagaataaacgctcaag cagaataaacgctcaag tcagaataaacgctcaag gaataaacgctcaag gaataaacgctcaad gaataaacgctcaad gaataaacgctcaad gaataaacgctcaag gaataaacgctcaag gaataaacgctcaag	motif gaataaacgctcaaAC igaataaacgctcaaAC igaataaacgctcaaAG igaataaacgctcaaAC igaataaacgctcaaAA igaataaacgctcaaAA igaataaacgctcaaAA igaataaacgctcaaAA
25		O rphans 37 gggagctca 51 gggagctca 131 gggagctca	gggagctca 6 gggagctca	9999990 999999 999999 999990 999990 9999900 99999000 999990000 999990000 999990000	i i i
		0x) 37 51 131	81	4 24 110 84 109 48 28 28 44 60 70 107 1124	84 126 126 126 126 103 103 16
30		13 14 15	38	52 64 63 63 64 64 65 69 70	44 45 43 49 47

-40-

TABLE 2 Glioblastoma Ligand Sequences

Sequences: (fixed regions not shown)

_	Ligand	Random Region	
5	NO:		
	GBI.1	GGCTGCTGAGTCCAGGGGCGATAACGGGCTTTG	74
	GBI.2	GGCTGCTGAGTCCAGGGGCGATAACGGGCTTTG	75
	GBI.120	GGCTGCTGAGTCCAGGGGCGATAACGAGCTTTC	76
	GBI.140	GGCTGCTGAGGCCAGGGCGATAACCGCACTTT	77
	GBI.162	GGCTGCTGAGTCCAGGGGCGATAACGGCCTTTC	78
	GBI.4	TAGC GAACACAGGGGNCCACAACTGGCTATCTCT	79
	GBI.8	TAGCAGAACACAGGGCNCCACAACTGGCTATCTC	80
•	GBI.33	TAGGCGAACACAGGGTCCACAACTGGCTATCCC	81
10	GBI.124	TAGC GAACACAGGG TCAACAGCTCACACGGCC	82
	GBI.125	TAGC GAACGARCGGTGCCCTGCTCTCAACTGGTTT	83
	GBI.99	TAGGCCGGAGGGACTAATAGCTTACAGCGCACTA	84
	GBI.76	TAGGCCGGAGGGACTAATAGCTTACAAGGCACTA	85
	GBI.42	TAGGAGCGCGAACAACGGGGGAGGTCTCACACTG	86
	GBI.23	TAGGGGGNGNNATACAACAGGTCGGTCACAACTG	87
	GBI.75	TAGGGCGGAGNGNGGCGGTCATCCTGGNNACACTC	. 88
	GBI.27	AGGCAGAAGTGAGCTTGGGCTCGCAACTCTCTCC	89
	GBI.29	AGGCNGTAG GNGCTAGGGNGNACTCGTATTCCTC	90
15	GBI.101	AGGCAGCAGTGA CTTGGA CGACAACAGCTATGTC	91
	GBI.156	AGGCAGTAGTGA CTTGGGCGCAGAGGAGGGTAGT	92
	GBI.189	AGGGCGCAGGG TCTAGGGCANCCAACAGCTATTG	93
	GBI.145	AGGCGAAGGGN CTAGGGTGNACAGCAGCGGTGG	94
	GBI.10	NNNAGAGGGAAGACTTTAGGTTCGGTTCACGTCC	95
	GBI.36	NNNAGAGGGAAGAC TTAGGTTCGGTTCACGTCC	96
	GBI.41	CCCAGAGGGAAGACTTTAGGTTCGGTTCACGTCCC	97
	GBI.73	NCCAGAGGGNAGACTTTAGGTTCGGTTCACGTCC	98
	GBI.132	NNNAGAGGGAAGGCTTTAGGTTCGGTTCACGTCC	99
20	GBI.170	NNNAGAGGGAAGACTTTAGGTTCGGTTCACGTTC	100
	GBI.181	NNNAGAGGGNAGACTTTAGGTTCGGTTCACGTCC	101
	GBI.14	GTGTGCAACAGAGCAGNNNTTGTCTAACATCACTT	102
	GBI.13	GGGGCGAACAGCAGCTACTCACAACATGTCCGGC	103
	GBI.26	GTGGCGAACACGGGTCAAGGGCTTCACAATCTG	104
	GBI.35	ATGGCGAACACAGCAACTCGCTCACAACTCTCTCC	105
	GBI.38	GTAGGCGAACACAGGTTGAGGCTTACACAGGGNT	106
	GBI.43	AGCGAACAACTGACTGACGGCAGGGTCAACACNNC	107
	GBI.52	TACGAACAACAGCATTCACACAGGCCTTTTTGTT	108
25	GBI.183	AGCGAGCAACATCTTTCGCAACAGGTTTGGTTCC	109
•	GBI.62	TTGGCGAACACAGCAACTCGCTCACAACTATCTT	110
	GBI.6	AGGTTGGGTAGGTTGG TGGAGGCGAACGTACCAA	111
	GBI.58	AGGTTGGGTAGGTTGG TGGAGGCGAACGTCCTAA	112
	GBI.182	AGGTTGGGTAGGCTGG TGGAGGCGNACGTCCCAT	113
	GBI.141	AGGTTCGC AGGCTGGCTGGAGGCGCGCGACCCAA	114
	GBI.37	GGTTTGACCG TAACAA TTGTTAAA GCTCCGGGNN	115
	GBI.61	GGTCTGATCG TAACAA TTGTTAAA GCTCCGGGNC	116
30	GBI.86	GGTTTGATCTCTAACAA TTGTTAAA GCTCCAGGC	117
	GBI.94	GGTCTGATCGCTAACAA TTGTTAAA GCTCCGGGGC	118
	GBI.104	GGTCTGATCG TAACAAATTGTTAAAAGCTCCGGGCC	119
	GBI.119	GGTTTG TCG TAACAA TTGTTAAA GCTCCGGGAC	120

-41-

	GBI.171	GGTCTGATCG TAACAG TTGTTAAAAGCTCCGGGCG	121
	GBI.187	GGTCTGATCG TAACAA TTGTTAA GCTCCGGGCG	122
	052.20		
	GBI.18	CCGCCAAGGGAGCTCTCCGAGCTCGGCGCCACTC	123
	GBI.60	NCNNCNAAGGAAGATCTCCGAGTTCGGCGTCACTG	124
	GBI.68	CTGCCGGGAAGATCTCCGAGTTCGGCGTCACTG	125
	GBI.69	CCGCCAAGGAAGATCTCCGAGTTCGGCGTCACTG	126
	GBI.89	CNGCNAAGGAAGATCTCCGAGTTCGGCGTCACTG	127
5	GBI.123	CNGCCAAGGAAGATCTCCGAGTTCGGCGTCACTA	128
5	GBI.123	CNNCNAAGGAAGATCTCC AGTTCGGCGTCACTG	129
	GBI.183	CNGCNAAGGAAGATCTCCGAGTTCGGNGTTACTG	130
	GB1.188	Chacharante Legano Line La	230
	GBI.16	AGACCGTAGGG TTCGGGAGCGATAAACAGTCGTT	131
	GBI.126	AGACCGTAGGGGCTTGGGCCA TCAACTGGCGCGG	132
	GBI.114	AGACGGTAGCGCCTTGAGTGAATCAATCAGNAGTAA	133
	GBI.129	AGACCGTTGGGACTATA GGCGAACACCAGCTACCA	134
	GBI.164	AGACGGTAGCCC TTAACGGCGAACAACGCGTTT	135
	GD1.104	Additional annihilation and a second	
10	GBI.70	AGACTGT AGAGACTTGATGGGTCGCAACCGTCA	136
	GBI.79	AGACTGT AGAGGCTA GGGTAACAACGGCTCGTTT	137
	GBI.90	AGACTGTGAGAGACTA GGCGAGAAACGGGGTTCTC	138
	GBI.130	AGACTGT AGAGGCTA GGGCATCAACAGTTCTTCC	139
	GBI.150	AGACTG GAGAGACTA GGCGAGAACCGGGGGGG	140
	951.134	Maneta dilatati	
	GBI.22	AGAGAGGAGAACTTAT AGGAAACAACGGTCGGC	141
	GBI.157	AGACTGTAGAGGCTA GGGTAACAACGGCTCGTCTG	142
	GBI.158	AGACTGTTGAGACTAACTGCGAACAACTGC TGTA	143
	GBI.190	AGAGCTGTTGACACTAACGCGAACAACAAC TGTA	144
15	GBI.66	TGGAGGCGATACTTGGCGAACAACAGGGGCTGTA	145
13	GBI.74	ATGCCGAACAACAGTCTGAACAACAGGTC TGTAT	146
	GBI.107	TAGAGCGAATACTTGGCGGAACAACAGGGC TGTA	147
	GBI.107	GGACTGTAGAGACCAGTGGAACAACAGATCG GTA	148
	0221212		
	GBI.118	TGGAGGCGAA TCTGGCGAGACAACAGCTTTATCTC	149
	GBI.137	TGGAGGCGAAGTCTGGCGA ACAAGCGCTTTATCTC	150
	GBI.142	TGGAGGCGAA TCTGTCGA ACAACACGTTTATCCC	151
			152
20	GBI.32	GT CGGAGNAAACTATGTGTTTTAGAGCCATCCC .	152
20	GBI.167	GTACGGAGAAAACTATGTGTTTTAGAGCCATCCC	153
	GBI.184	GTACGGCGCAAACAATGTGTTTTAGAGCNACTCC	134
	GBI.34	GTGTAGACTGCAGAGACTGCCAGTGATCTCTCCC	155
	GBI.34 GBI.45	GTGTAGACTGCAGAGACTGCCAGTGCTCTCTCCC	156
	GB1.45	GIGINGVCIQCVGVCIQCCIQCTGCICICIOC	
	GBI.72	TTGGGGCGAACACAGGTTGAGGCTTACACAGGGTT	157
	GBI.102	AGTAGGCGNACACAGGTTGAGGCTTACACAGGGTT	158
	GBI.49	GAACAGGCNNN TTACCTCTGTGGCCGTTTATCCCTC	159
25	GBI.67	CAGCCCNCCTTACCTCTGT GCAGTTTATCCCTCT	160
•			1.53
	GBI.9	AGACATGGACACTAGGGGACACTGCAGCCAACTT	161
	GBI.31	AGACA GGAGTGACTTGGCAGCTNACAGACGCTTC	162
	GBI.95	GAGACA GGACTGACTTGGCAGCTCACAG CGCTTC	163
	GBI.11	TAGTGGCGAACGACAGACTCTCACACACACAGGCTTG	164
	GBI.19	TAAGTGGCGAACGACAG CTCTCACACACA GGCTTG	165
20			
30	GBI.3	TAGTTCCTTGCTTATTCTTGCTTCCCTTGTCTG	166
	GBI.5	AGCACTGAGATACGCTTATTCTTGTCTCCGGGCTTGT	167 168
	CDT 15	CAGGACGATCAACAGCGACTTATTCTCACAACTG	109

-42-

	GBI.17	TCCCGCTTATTCTTGTCTCAGCTTATTATTCTTGT	169
	GBI.40	GTGGNNNAAATTCNCTTATTCTTGTCTCTCGTGGT	170
	GBI.50	ACCAGTACGATTATTCTTGTCTCCCTGNNTTNNNT	171
	GBI.59	GGTGGTTGAGCTTATTCTTGTCTCGATTTGCACGTGT	172
	GBI.78	ACCTTGCGGCTTATTCTTGTCTCGCTTCTTCTTGT	173
	GBI.80	AGTTGTTGTCCGCGTTTCTTGTCTCCCTTTTCCT	174
	GBI.81	TAGTCCCTTGCTTATTCTTGTCTTCCCTTGTCTG	175
_	GBI.82	ACCTTCCGGCTTATTCTTGTTCTCTGCTTATTCTTGT	176
5	GBI.85	GTCGCTTATTCTTGTCTCCCTCTTATTCTTGTCCC	177
	GBI.103	AGCACGAGATACGCTTATTCTTGTCTCCGCGCTTCT	178
	GBI.108	TGTGTTGTTGTTGTGTCATCCCTGTTCCTC	179
	GBI.111	TAGTGCCTGGGACGCTTATTCTTGTCTCCGGGGNCTA	180
	GBI.39	GGAGGCGCTTGTGTCTTGTTCCCTTGTGTCTCTC	181
	GBI.163	GTGGGGTTGTTGTCTTATTCTTGTCTCCGG	182
	GBI.166	AGTCCCCGCTTATTCTTGTCTCCCTTATCGCG	183
	GBI.169	ACACGCTTATTCTTGTCTCCACTTATTCTTGT	184
	GBI.174	GTTGTCGCTTATTCTTGTCTCTGTCTGTTTTGTC	185
10	GBI.177	AGAGTGGGGGGCGCTTATTCTTGTCTCCACTCGCTTGT	186
10	GBI.179	GACACCCGCCGCGCTTATTGTTGTCTCCNNNCTTTC	187
	GBI.191	GTTGTCGCTTATTCTTGTCTCCCATCCTCTACTC	. 188
	GBI.180	AGCCGTGTCCAGCTTATTCTTGTCTCCTNNCTTC	189
			100
	GBI.24	GGTTGTGTGACTTCTATTTGNNTTTCGTGTCCC	190
	GBI.51	GTCGCTGTGTACCGTTTTTTTCTTGTTTGCCTGTC	191 192
	GBI.71	GGTAGGTCCTTTTCTGTCTTCTCTCGC	
	GBI.77	TGTCTGTCCGTTCTTTTTGTCTGTGTTTTCCCN	193
	GBI.83	GTACCTGTTGTCAGCTTTTACCCTTCGTTCCTC	194
15	GBI.87	AGTCGCGATTCTATTTTCACTTCTCTTGTTGC	195
	GBI.88	GTTGCCGTATCCTTGTGGAGTTTTCGTTTCTCCC	196 197
	GBI.91	GTTGGTCNGTTCCTTTCTCTGTTGTTCTCCTC	198
	GBI.109	TAGTCCCGCGCTTATTTTTGTCTCCGTTCCGTT	198
	GBI.115	AGTCCCTCNNNNATCCTTTTGTTGTCTTGCTGTC	200
	GBI.116	TGTGTGTGTCGGTGGTTTTTTGTCTTCCTTTTGC	201
	GBI.117	GTGTCCGTTGTTCGCGTTTTGTGNCCTGTTTTTCC	202
	GBI.133	AGAAGCCTTGTCGTCTTTCCGTTTCTTGTC	202
	GBI.186	ACCGGTAGGAGTCCGTTTTTGTTTGCACTATGCC	204
	GBI.175	ACCCNACTGTGATGTTCGTGTTTTGTTCCTCCNC	204
20	CDT 30	GGTCACACCAGTCACAGCACCTACGTCCTGCCCTC	205
	GBI.20 GBI.21	GTAGTGGAACCGACTAGCGGGTGAAGACTCCTC	206
		TAGCCCACAGCAATTTTAGTCTGAGTTCCGTC	207
	GBI.25 GBI.30	AGGCTGCCGTAAGCTTTGGGAATTGGCCTGCTGC	208
	GBI.50	TGGAGGCGAATCTGGCGAACAACAGCCTTATCTC	209
	GBI.53	GAGGCTGTAGAGGCTGACTGCGCGCAGCTGCTGTG	210
	GBI.54 GBI.57	GAGGCGAGACAGGGTAGCACCTCACAACATGC	211
	GBI.57	TGGACTGGAGAGACCTTAGGAGTCATAACTCTCTC	212
	GBI.98	GACTGAAGAGCTCAGAGGCGATACAGGCCGCTGT	213
	GBI.106	AAGACAGCAGTGGCTAGGGCGATAACTGTCACCAC	214
25	GBI.110	GACCGCAGGGTTCGGGAGCGATAAACTAGACCTT	215
•	GBI.113	CATGCGGGTTTGTCCGGACCTCAGCAACAGCTAC	216
	GBI.112	GAAGGCGNANACAGGAAAAGGCTNACACCTATC	217
	GBI.121	GACTGTAGAGACAGGACGTACAATAGGCTCACTC	218
	GBI.121	GTTGCATTCCAGGACCGTTCTGTCNGTACCTCGCGC	219
	GBI.122 GBI.127	ATGGGGGCGAACCTTTGCGCTCACAACCTACCTGC	220
	GBI.127	GAACGACGGACAGGGCTGAAAACAGGCAGCTAC	221
	GBI.128	TGCGCGGTGTTGCNCTTTGTTCTATTCTCCTGTC	222
	GBI.131	TGAACCACAAGCCCCAACTAACAACACCCTGC	223
20	GBI.133	AGGGTGAGATCCAGGGCGCGTACGTGCGTGTC	224
30	GBI.147	ACCGCGACTCTTGCGTACTTCTTGGTCTTCCGCCT	225
	GBI.151	TGGGCGAAGGGTCTTGGACGAGGACAGGCGC	226
	GBI.165	AGGTCACCGTTATCTCTTCCTGTTGCTCTTTCGC	227

WO 96/34875

PCT/US96/06060

-43-

5	GBI.168	AGTCAAACCCCTCTACGCTGTTGTTGATGTCTCCC	228
J	GBI.172	TAGGCAGAACTCACTAAAAGGTCCAACTGGTTCC	229
	GBI.173	TGGACAGGACTCACCTACAAGGCTTACAACGCAT	230
	GBI.176	GTAGACTGTAGAGTTACGGCGCGACTACAACGCT	231
	GBI.192	AGGCGGTAGCTACTAACATATCACAACATCTTAC	232

-44-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: JENSEN, KIRK

CHEN; HANG

MORRIS, KEVIN

STEPHENS, ANDREW

GOLD, LARRY

(ii) TITLE OF INVENTION:

SYSTEMATIC EVOLUTION OF LIGANDS

BY EXPONENTIAL ENRICYMENT:

TISSUE SELEX

- (iii) NUMBER OF SEQUENCES: 240
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Swanson & Bratschun, L.L.C.
 - (B) STREET: 8400 E. Prentice Avenue, Suite 200
 - (C) CITY: Englewood
 - (D) STATE: Colorado
 - (E) COUNTRY: USA
 - (F) ZIP: 80111
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3 1/2 diskette, 1.44 MB
 - (B) COMPUTER: IBM pc compatible
 - (C) OPERATING SYSTEM: MS-DOS
 - (D) SOFTWARE: WordPerfect 5.1
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US96/____
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/714;131
 - (B) FILING DATE: 10-JUNE-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/536,428
 - (B) FILING DATE: 11-JUNE-1990
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/964,624
 - (B) FILING DATE: 21-OCTOBER-1992
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/434,425
 - (B) FILING DATE: 05-MAY-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/437,667
 - (B) FILING DATE: 05-MAY-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/434,001
 - (B) FILING DATE: 05-MAY-1995
- (vii) PRIOR APPLICATION DATA:

-45-

		(A)	APPLICATION NUMBER: 08/433,585	
			FILING DATE: 05-MAY-1995	
	(viii		ORNEY/AGENT INFORMATION:	
			NAME: Barry J. Swanson	
			REGISTRATION NUMBER: 33,215	
			REFERENCE/DOCKET NUMBER: NEX30/PCT	
	(is		LECOMMUNICATION INFORMATION:	
		(A)	TELEPHONE: (303) 793-3333	
		(B)	TELEFAX: (303) 793-3433	
(2)	INFOR	RMATI	ON FOR SEQ ID NO:1:	
	(i)	SEQU	ENCE CHARACTERISTICS:	
		(A)	LENGTH: 73 base pairs	
			TYPE: nucleic acid	
		(C)	STRANDEDNESS: single	
			TOPOLOGY: linear	
	(xi)		ENCE DESCRIPTION: SEQ ID NO:1:	
GGGA	GCTCA	AAT	AAACGCT CAANNNNNN NNNNNNNNN NNNNNNNNN	50
TNNN	TCGAC	A TGA	GGCCCGG ATC	73
(2)	INFO	TAMS	ON FOR SEQ ID NO:2:	
	(i)	SEQU	ENCE CHARACTERISTICS:	
		(A)	LENGTH: 23 base pairs	
		(B)	TYPE: nucleic acid	
		(C)	STRANDEDNESS: single	
		(D)	TOPOLOGY: linear	
	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO:2:	
GGGA	GCTCA	G AAT	'AAACGCT CAA	23
(2)	INFO		ON FOR SEQ ID NO:3:	•
	(i)		JENCE CHARACTERISTICS:	
			LENGTH: 21 base pairs	
			TYPE: nucleic acid	
			STRANDEDNESS: single	
			TOPOLOGY: linear	
	(ix)	FEAT		
		(D)	OTHER INFORMATION: NOTE: N at positions	l represents
			three biotins	
			JENCE DESCRIPTION: SEQ ID NO:3:	
NGAT	CCGGG	C CTC	CATGTCGA A	21
(2)			ON FOR SEQ ID NO:4:	
	(i)		JENCE CHARACTERISTICS:	
		(A)	LENGTH: 22 base pairs	
		(B)	TYPE: nucleic acid	
			STRANDEDNESS: single	
		(D)	TOPOLOGY:linear	

-46-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
AACTO	CAGTGG TAGGTAACGG TT	22
(2)	INFORMATION FOR SEQ ID NO:5:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
aaan a	CTCAG AATAAACGCT CAACTCAGTG GTAGGTAACG GTTCAAGACG	50
	CCGACA TGAGGCCCGG ATC	73
GGAI	CGACA IGAGGCCCGG AIC	13
(2)	INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
GGGA	GCTCAG AATAAACGCT CAACTCAGTG GTAGGTAACG GTTATATCCG	50
GAAT	rcgaca tgaggcccgg atc	73
(2)	INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 75 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	GCTCAG AATAAACGCT CAAAACTCAG TATAAGGTAA CGGTTCCAAC	50
CCAG	ATTCGA CATGAGGCCC GGATC	75
(2)	INFORMATION FOR SEQ ID NO:8:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
GGGN	GCTCAG AATAAACGCT CAAACTCAGT AATGCCAAGG TAACGGTTCC	50
	TCGACA TGAGGCCCGG ATC	73
CIT	ICONCH IGNOGECEGG AIC	, ,
(2)	INFORMATION FOR SEQ ID NO:9:	
	(i) SEQUENCE CHARACTERISTICS:	

LENGTH: 72 base pairs

PCT/US96/06060

-47-

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
GGGA	GCTCAG AATAAACGCT CAAACTCAGT AATGCTAGGT AACGGTTCCC	50
	CGACAT GAGGCCCGGA TC	72
1111	Constitution of the consti	
(2)	INFORMATION FOR SEQ ID NO:10:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	·
GGG A	GCTCAG AATAAACGCT CAAACTCAGT AATGCACCAG TAACGGTTAC	50
ATCT	TCGACA TGAGGCCCGG ATC	73
/21	INFORMATION FOR SEQ ID NO:11:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	GCTCAG AATAAACGCT CAACTCAGTA GCAAGGTAAC GGTTCAGATC	50
CACT	TCGACA TGAGGCCCGG ATC	73
(2)	INFORMATION FOR SEQ ID NO:12:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 72 base pairs	
	(B) TYPE: nucleic acid	
	·	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	•	
~~~	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	<b>50</b>
	AGCTCAG AATAAACGCT CAAGTCATAA CGGTTAGCCA GAGGACCGTG	50
CCTT	CCGACAT GAGGCCCGGA TC	72
(2)	INFORMATION FOR SEQ ID NO:13:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(C) STRANDEDNESS: SINGLE (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
0003	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:13: AGCTCAG AATAAACGCT CAACAGGTCG ATCGAGTCAG GTAGGCGCCG	50
		73
AGA'I	TTCGACA TGAGGCCCGG ATC	13

WO 96/34875

## PCT/US96/06060

-48-

(2)	INFO	RMATION FOR SEQ ID NO:14:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY:linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GGA		G AATAAACGCT CAAGAGGTCG ATCGAGTCAG GTAGGCGCCG	50
	•	A TGAGGCCCGG ATC	73
10211	1 00110	11 10110000000 1110	, ,
(2)	INFO	RMATION FOR SEQ ID NO:15:	
, - ,	(i)		
	( - /	(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(vi)	SEQUENCE DESCRIPTION: SEQ ID NO:15:	
מממא		G AATAAACGCT CAACAGGTCG ATTGAGTCAG GTAGGCGCCG	50
		A TGAGGCCCGG ATC	73
AGAI	1 CGAC	A TGAGGCCCGG ATC	73
(2)	TNEO	RMATION FOR SEQ ID NO:16:	
(2)		SEQUENCE CHARACTERISTICS:	
	( ± /	(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(200)	SEQUENCE DESCRIPTION: SEQ ID NO:16:	
~~~		G AATAAACGCT CAAGGCGTGT CGATGTGGAA TCACAACCTG	50
		A TGAGGCCCGG ATC	73
ICII	1 CGAC	A IGAGGCCGG AIC	73
(2)	TNFO	RMATION FOR SEQ ID NO:17:	
(2)	(i)		
	(- /	(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(2ci)	SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CCCA		G AATAAACGCT CAAGGTTGTC GACGCATTAT AGCGACATCG	50
		A TGAGGCCCGG ATC	73
1011	COAC	A TORGUCCOO ATC	,,
(2)	INFO	RMATION FOR SEQ ID NO:18:	
, ~ ,	(i)	SEQUENCE CHARACTERISTICS:	
	(- /	(A) LENGTH: 73 base pairs	
•		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

-49-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: GCTCAG AATAAACGCT CAAGTGGAGT CGACACGCTG TGACCTTTGG TCGACA TGAGGCCCGG ATC	50 73
(2)	<pre>INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	GCTCAG AATAAACGCT CAAGTGAGTC GACACGCCGC GACCTTTGGT CGACAT GAGGCCCGGA TC	50 72
WIII	COACAI GAGGCCCGGA IC	12
(2)	<pre>INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	GCTCAG AATAAACGCT CAAGTGCGTC GAGGCATTGC AACCTTTGGT	50
CTTT	CGACAT GAGGCCCGGA TC	72
(2)	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: 	50
	AGCTCAG AATAAACGCT CAATAGACCG TCGATGCTTG CAACTTTACG	50
TATI	TCGACA TGAGGCCCGG ATC	73
(2)	<pre>INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	AGCTCAG AATAAACGCT CAATAGTTGC CCACCGTTGT CCAATTGATC	50 7 3
(2)	INFORMATION FOR SEO ID NO:23:	

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GGGA	GCTCAG AATAAACGCT CAATGGTTGC CCATCGTTGT CCAATTGATC	50
	TCGACA TGAGGCCCGG ATC	73
(2)	INFORMATION FOR SEQ ID NO:24:	
ν,	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 72 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
~~~×	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	<b>50</b>
	GCTCAG AATAAACGCT CAATGTTGCC CATTCGTCGT CCAAGTGAAC	50
GTTT	CGACAT GAGGCCCGGA TC	72
(2)	INFORMATION FOR SEQ ID NO:25:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	·-	
	(A) LENGTH: 73 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	GCTCAG AATAAACGCT CAATGAATTG CCCAACGTCG CCCGAATGAT	50
GCGT	TCGACA TGAGGCCCGG ATC	. 73
(2)	INDODMARION FOR GEO. ID NO. 26	
(2)	<del>-</del>	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 74 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	AGCTCAG AATAAACGCT CAAAGGCGGT GTTACTTCTC ACGAATTGAG	50
GAAG	STTCGAC ATGAGGCCCG GATC	74
(0)	TURNNUMTON FOR SEC. IN NO. OF	
(2)	INFORMATION FOR SEQ ID NO:27:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	<u></u> .
GGGA	AGCTCAG AATAAACGCT CAAAGCGTTG TTACTTCTCA CGAATTGAGG	50

WO 96/34875

-51-

AAGT	TCGACA TGAGGCCCGG ATC	73
(2)	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 73 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	GCTCAG AATAAACGCT CAATGAGAGG GGCAACCTTG AGTCTTTCAT	50
GCCT	TCGACA TGAGGCCCGG ATC	73
(2)	<pre>INFORMATION FOR SEQ ID NO:29: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 72 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	GCTCAG AATAAACGCT CAAAGCAGCG GGCAACCTTG AGTATTTCAT	50
GCTT.	CGACAT GAGGCCCGGA TC	72
	<pre>INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 72 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:</pre>	
	GCTCAG AATAAACGCT CAAACCCGGG CAACCGTTCG GTCTTTCAGT CGACAT GAGGCCCGGA TC	50 72
(2)	<pre>INFORMATION FOR SEQ ID NO:31: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 73 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:</pre>	
GGGA	AGCTCAG AATAAACGCT CAACATCGTT GACACCCTCG TGTGCTTCAG	50
	TCGACA TGAGGCCCGG ATC	73
(2)	INFORMATION FOR SEQ ID NO:32: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	

	-32-	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
CCCAC	GCTCAG AATAAACGCT CAACATCGCT TGACAGCTGT GCTGCTTCAG	50
	TCGACA TGAGGCCCGG ATC	73
1111.	TCGACA TGAGGCCCGG ATC	. •
(2)	INFORMATION FOR SEQ ID NO:33:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
GGGA	GCTCAG AATAAACGCT CAAGGGTGAT CGAAGCCTAG GTGAGCTTGA	50
	TCGACA TGAGGCCCGG ATC	73
(2)	INFORMATION FOR SEQ ID NO:34:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
GGGA	GCTCAG AATAAACGCT CAAGGGTGTC CGAGCATCCG TAGCTTGAGT	50
	TCGACA TGAGGCCCGG ATC	73
COII	Technol Turicoccico III	
(2)	INFORMATION FOR SEQ ID NO:35:	
. – .	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GGGA	AGCTCAG AATAAACGCT CAAACGAATC GCATTGCCCA ACGTTGCCCA	50
	TTCGACA TGAGGCCCGG ATC	73
110111		
(2)	INFORMATION FOR SEQ ID NO:36:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
GGGA	AGCTCAG AATAAACGCT CAACCGAATC GCATTGCCCA ACGTTGCCCA	50
	TTCGACA TGAGGCCCGG ATC	73

(2)	INFO	RMATION FOR SEQ ID NO:37:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GGGA		G AATAAACGCT CAATGTCGGA TAAGTCGCCC AACGTTGCCC	50
		A TGAGGCCCGG ATC	73
	_ 00	- 14	
(2)	INFO	RMATION FOR SEQ ID NO:38:	
		SEQUENCE CHARACTERISTICS:	
	•	(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:38:	
CCCA		G AATAAACGCT CAAGTGGAGC GATTCGCGAA AATCGACTTG	50
		A TGAGGCCCGG ATC	73
<b>C111</b>	100110	1 101.0000000 1110	, ,
(2)	INFO	RMATION FOR SEQ ID NO:39:	
,		SEQUENCE CHARACTERISTICS:	
	,	(A) LENGTH: 72 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GGGA		G AATAAACGCT CAACTGGAGC GATTCGGAAA ATCGACTTGC	50
		T GAGGCCCGGA TC	72
(2)	INFO	RMATION FOR SEQ ID NO:40:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:40:	
GGGA	GCTCA	G AATAAACGCT CAACATCTGG ATGTTCAACC TTCTGGTCTT	50
GCGT	TCGAC	A TGAGGCCCGG ATC	73
(2)	INFO	RMATION FOR SEQ ID NO:41:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

-54-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GGGA	AGCTCAG AATAAACGCT CAACTACCCG GTTGAACCTT CGCTCTTGCG	50
	TCGACA TGAGGCCCGG ATC	73
(2)	INFORMATION FOR SEQ ID NO:42:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GGGA	GCTCAG AATAAACGCT CAATGCTCCC CGAAACCCTA TTTCTTGCTG	50
	TCGACA TGAGGCCCGG ATC	73
<b>C1111</b>	1001011 10110000000 MIC	/3
(2)	INFORMATION FOR SEQ ID NO:43:	
12/	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
CCC	GCTCAG AATAAACGCT CAATGCACCT CACCTCCTTA CACTTTCCTT	50
	TCGACA TGAGGCCCGG ATC	50
CIII	TOURCH TURGUCCUU ATC	73
(2)	INFORMATION FOR SEQ ID NO:44:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
CCCA	GCTCAG AATAAACGCT CAAACCTCGT ACTGCCATCT CTCCCCTCAT	50
	TCGACA TGAGGCCCGG ATC	73
GICI	TORCA TORGOCCOG ATC	/3
(2)	INFORMATION FOR SEQ ID NO:45:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
מממז	GCTCAG AATAAACGCT CAAACACTCA CGACTTTTCA TCTTTCTCCT	50
	TCGACA TGAGGCCCGG ATC	50
1011	ICOMCM IGHOGCCCOG MIC	73
(2)	INFORMATION FOR SEQ ID NO:46:	
(2)	INFURMATION FOR DEG ID NO:40:	

(i) SEQUENCE CHARACTERISTICS:

-55-

		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:46:	
CCCA		G AATAAACGCT CAAAACCCTT CTTCACTCTT CTCGCTCTCC	50
		A TGAGGCCCGG ATC	73
	I COAC	a loaddeedd Ale	73
(2)	TNFO	RMATION FOR SEQ ID NO:47:	
\-/	(i)		
	_,	(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		• •	
		(C) STRANDEDNESS: single	
	123	(D) TOPOLOGY: linear	
~~~		SEQUENCE DESCRIPTION: SEQ ID NO:47:	
		G AATAAACGCT CAACCCTTCC AATTCCTCTT ACTCCTCTCT	50
CCTT	TCGAC	A TGAGGCCCGG ATC	73
/۵۱	T3150	DVINTON DOD GEO ID NO 40	
(2)		RMATION FOR SEQ ID NO:48:	
	(1)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GGGA	GCTCA	G AATAAACGCT CAAGCACTTC TCACTATTCC TTCCTTCTCT	50
CTCT	TCGAC	A TGAGGCCCGG ATC	73
(2)		RMATION FOR SEQ ID NO:49:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:49:	
GGGA	GCTCA	G AATAAACGCT CAAACCCTAC TCTCCACTCA CATCTTCTTC	50
CCCT	TCGAC	A TGAGGCCCGG ATC	73
(2)		RMATION FOR SEQ ID NO:50:	
	(i)	~ ~ ~	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:50:	
GGGA	GCTCA	G AATAAACGCT CAATACCTCA CACTCTCTTA ATCTCTTCTC	50
		•	

PCT/US96/06060

WO 96/34875 PO

-56-

TTCT	TCGACA TGAGGCCCGG ATC	73
(2)	INFORMATION FOR SEQ ID NO:51:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 74 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
GGGA	GCTCAG AATAAACGCT CAACGGTTCA TCTTTTCTTG TTATTTTTCC	50
ACTA	TTCGAC ATGAGGCCCG GATC	74
(2)	INFORMATION FOR SEQ ID NO:52:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
GGGA	GCTCAG AATAAACGCT CAAGTGGCCT CAAACTGCTA GGAGTAAACA	50
TGTI	TCGACA TGAGGCCCGG ATC	73
(2)	INFORMATION FOR SEQ ID NO:53:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 72 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(C) STRANDEDNESS: SINGLE (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
0003	(XI) SEQUENCE DESCRIPTION: SEQ ID NO:55: AGCTCAG AATAAACGCT CAATAGGGGT AGGGCGCAAT ATTCACCGGG	50
	CCGACAT GAGGCCCGGA TC	72
(2)	INFORMATION FOR SEQ ID NO:54:	
, - ,	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 72 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
GGGZ	AGCTCAG AATAAACGCT CAAGGAGCGC GATACGTTTA CTTCTGATCA	50
	CCGACAT GAGGCCCGGA TC	72
(2)	INFORMATION FOR SEQ ID NO:55:	
, ,	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(R) TYPE: nucleic acid	

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:
GGGAGCTCAG AATAAACGCT CAAAGAGGAG TCTTGCTGTC CGTACACAGC 50
TTATTCGACA TGAGGCCCGG ATC 73
/o\ TUPODWETON FOR GEO TO NO SC
(2) INFORMATION FOR SEQ ID NO:56:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 73 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:
GGGAGCTCAG AATAAACGCT CAATCCCTTG AACCATCGGT CTTGCGTTCC 50
ATGTTCGACA TGAGGCCCGG ATC 73
(2) INFORMATION FOR SEQ ID NO:57:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 73 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:
GGGAGCTCAG AATAAACGCT CAAACAAGAG GGTCTTGCCG CACCATTCGG 50
CTATTCGACA TGAGGCCCGG ATC 73
(2) INFORMATION FOR SEQ ID NO:58:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 73 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
GGGAGCTCAG AATAAACGCT CAAACGAGTT ACAGCCACCC ATGCTGTCGG 50
TGATTCGACA TGAGGCCCGG ATC 73
(2) INFORMATION FOR SEQ ID NO:59:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 73 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:
GGGAGCTCAG AATAAACGCT CAAGACAGCG TGATTCCTCC GCTCTGCTGC 50
TATTTCGACA TGAGGCCCGG ATC 73

(2)	INFOR	MATION FOR SEQ ID NO:60:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:60:	
CCCA		AATAAACGCT CAACGGGACC TTGAGTATTC CTCATTATCG	50
		A TGAGGCCCGG ATC	73
(2)		RMATION FOR SEQ ID NO:61:	
	(i)	~	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:61:	
GGGA		G AATAAACGCT CAAGTAGTGA AGCTCGTACA GAGGTATTGC	50
		A TGAGGCCCGG ATC	73
		,	
(2)	INFO	RMATION FOR SEQ ID NO:62:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:62:	
ccci		G AATAAACGCT CAAAGCCGAA TTAGTAGCGT ATAGCGTGTT	50
		A TGAGGCCCGG ATC	73
010.	100110		
(2)	INFO	RMATION FOR SEQ ID NO:63:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:63:	
GGGZ		G AATAAACGCT CAAGGGCAAT ACACAACACT CTACCTCACC	50
		A TGAGGCCCGG ATC	73
(2)	INFO	RMATION FOR SEQ ID NO:64:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

-59-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
GGGAGCTCAG AATAAACGCT CAATCAGAGA TTCTTCCCGG CTATCCCGGG	50
TGATTCGACA TGAGGCCCGG ATC	73
(2) INFORMATION FOR SEQ ID NO:65:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 73 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
GGGAGCTCAG AATAAACGCT CAATAGGCCG GGTGAGCTAC TTCTAGTAGG	50
GTGTTCGACA TGAGGCCCGG ATC	· 73
(2) INFORMATION FOR SEQ ID NO:66:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 72 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
GGGAGCTCAG AATAAACGCT CAAGTTGTGA TCCATTAGCG GCACCGCCTC	50
CATTCGACAT GAGGCCCGGA TC	72
	_
(2) INFORMATION FOR SEQ ID NO:67:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 73 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
GGGAGCTCAG AATAAACGCT CAATCCGGAA AGCAACGCAT ACTTCGCATG	50
TCGTTCGACA TGAGGCCCGG ATC	73
(2) INFORMATION FOR SEQ ID NO:68:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 72 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
GGGAGCTCAG AATAAACGCT CAAGTGAGCG TACCGGAGTG TGTTACCAAT	50
TATTCGACAT GAGGCCCGGA TC	72
(2) INFORMATION FOR SEQ ID NO:69:	

(i) SEQUENCE CHARACTERISTICS:

-60-

		(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:69:	
GGGA		AATAAACGCT CAACACATCT GCAGACTGTA CCCCACATGG	50
		A TGAGGCCCGG ATC	73
CAAI	COACE	10AGGCCGG ATC	13
(2)	INFOR	RMATION FOR SEQ ID NO:70:	
•		SEQUENCE CHARACTERISTICS:	
	••	(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:70:	
GGGA		AATAAACGCT CAAGAGGGCC GGGTTAGCCT TTTAAGGTTG	50
		A TGAGGCCCGG ATC	73
1011	COACE	TOAGGCCCGG ATC	13
(2)	INFOR	RMATION FOR SEQ ID NO:71:	
, – ,		SEQUENCE CHARACTERISTICS:	
	(-)	(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(zei)	SEQUENCE DESCRIPTION: SEQ ID NO:71:	
CCCT		G AGCCTCCTNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN	50
MAGC	CITAL	CTTGTCTCCC	70
(2)	INFOR	RMATION FOR SEQ ID NO:72:	٠.
(-,	(i)		
	\-,	(A) LENGTH: 19 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(ix)	FEATURE:	
	((D) OTHER INFORMATION: N at position 1 is fluro	scein
	(vi)	SEQUENCE DESCRIPTION: SEQ ID NO:72:	50011
NGCC		GAGCCTCCT	19
NOCC	.10110.	OAGCCICCI	
(2)	INFO	RMATION FOR SEQ ID NO:73:	
, - •	(i)	SEQUENCE CHARACTERISTICS:	
	,	(A) LENGTH: 18 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:73:	
	1054		

-61-

GGGA	GACAAG AATAAGCG	18
(2)	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
acam	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74: GTTGTG AGCCTCCTGG CTGCTGAGTC CAGGGGCGAT AACGGGCTTT	50
	TTATTC TTGTCTCCC	69
(2)	<pre>INFORMATION FOR SEQ ID NO:75: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:</pre>	
	GTTGTG AGCCTCCTGG CTGCTGAGTC CAGGGGCGAT AACGGGCTTT	50 69
(2)	<pre>INFORMATION FOR SEQ ID NO:76: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:</pre>	
	GTTGTG AGCCTCCTGG CTGCTGAGTC CAGGGGCGAT AACGAGCTTT	50 69
(2)	<pre>INFORMATION FOR SEQ ID NO:77: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:</pre>	
	CGTTGTG AGCCTCCTGG CTGCTGAGGC CAGGGGCGAT AACCGCACTT	50 69
TCGC	TTATTC TTGTCTCCC	69
(2)	<pre>INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid</pre>	

-62-

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: STTGTG AGCCTCCTGG CTGCTGAGTC CAGGGGCGAT AACGGCCTTT	50
CCGC.	TTATTC TTGTCTCCC	69
(2)	<pre>INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
	STTGTG AGCCTCCTTA GCGAACACAG GGGNCCACAA CTGGCTATCT CTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:80: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:</pre>	
כירידיו	GTTGTG AGCCTCCTTA GCAGAACACA GGGGNCCACA ACTGGCTATC	50
	CTTATT CTTGTCTCCC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
	GTTGTG AGCCTCCTTA GGCGAACACA GGGGTCCACA ACTGGCTATC CTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:</pre>	
GCCT/	GTTGTG AGCCTCCTTA GCGAACACAG GGTCAACAGC TCACACGGCC	50
	TATTCT TGTCTCCC	68

(2)	INFORMATION FOR SEQ ID NO:83:				
	(i)	SEQUENCE CHARACTERISTICS:			
		(A) LENGTH: 71 base pairs			
		(B) TYPE: nucleic acid			
		(C) STRANDEDNESS: single			
		(D) TOPOLOGY: linear			
	(vi)	SEQUENCE DESCRIPTION: SEQ ID NO:83:			
a a a a		G AGCCTCCTTA GCGAACGARC GGTGCCCTGC TCTCAACTGG	50		
TTTC	GCTTA	r TCTTGTCTCC C	71		
(2)	INFO	RMATION FOR SEQ ID NO:84:			
	(i)				
	• •	(A) LENGTH: 70 base pairs			
		(B) TYPE: nucleic acid			
		(C) STRANDEDNESS: single	•		
		(D) TOPOLOGY: linear			
	(mi)	SEQUENCE DESCRIPTION: SEQ ID NO:84:			
		G AGCCTCCTTA GGCCGGAGGG ACTAATAGCT TACAGCGCAC	50		
		F CTTGTCTCCC	70		
IACG	CIIAI.	Crigicice	70		
(2)	INFO	RMATION FOR SEQ ID NO:85:			
		SEQUENCE CHARACTERISTICS:			
	• •	(A) LENGTH: 70 base pairs			
		(B) TYPE: nucleic acid			
		(C) STRANDEDNESS: single			
		(D) TOPOLOGY: linear			
	(vi)	SEQUENCE DESCRIPTION: SEQ ID NO:85:			
מרכיז		G AGCCTCCTTA GGCCGGAGGG ACTAATAGCT TACAAGGCAC	50		
		T CTTGTCTCCC	70		
(2)	INFO	RMATION FOR SEQ ID NO:86:			
	(i)	~			
		(A) LENGTH: 70 base pairs			
		(B) TYPE: nucleic acid			
		(C) STRANDEDNESS: single			
		(D) TOPOLOGY: linear			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:86:			
GCC1	GTTGT	G AGCCTCCTTA GGAGCGCGAA CAACGGGGGA GGTCTCACAC	50		
TGC	CTTAT	T CTTGTCTCCC	70		
(2)		RMATION FOR SEQ ID NO:87:			
	(i)	SEQUENCE CHARACTERISTICS:			
		(A) LENGTH: 70 base pairs			
		(B) TYPE: nucleic acid			
		(C) STRANDEDNESS: single			
		(D) TOPOLOGY: linear			

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87: GTTGTG AGCCTCCTTA GGGGGNGNNA TACAACAGGT CGGTCACAAC CTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88: GTTGTG AGCCTCCTTA GGGCGGAGNG NGGCGGTCAT CCTGGNNACA GCTTAT TCTTGTCTCC C	50 71
(2)	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89: CGTTGTG AGCCTCCTAG GCAGAAGTGA GCTTGGGCTC GCAACTCTCT CCTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:90: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:</pre>	
	CGTTGTG AGCCTCCTAG GCNGTAGGNG CTAGGGNGNA CTCGTATTCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91: FGTTGTG AGCCTCCTAG GCAGCAGTGA CTTGGACGAC AACAGCTATG SCTTATT CTTGTCTCCC	50 70
(2)	INFORMATION FOR SEQ ID NO:92:	

(i) SEQUENCE CHARACTERISTICS:

-65-

PCT/US96/06060

WO 96/34875

	(A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92: GTTGTG AGCCTCCTAG GCAGTAGTGA CTTGGGCGCA GAGGAGGGTA CTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:93: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
aaam	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	F0
	GTTGTG AGCCTCCTAG GGCGCAGGGT CTAGGGCANC CAACAGCTAT CTTATT CTTGTCTCCC	50 70
1606	CHAIL CHGICICC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:94: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	
	GTTGTG AGCCTCCTAG GCGAAGGGNC TAGGGTGNAC AGCAGCGGTG	50 69
(2)	<pre>INFORMATION FOR SEQ ID NO:95: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:</pre>	
	CGTTGTG AGCCTCCTNN NAGAGGGAAG ACTTTAGGTT CGGTTCACGT CCTTATT CTTGTCTCCC	50 70
(2)	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:	
GCCI	GTTGTG AGCCTCCTNN NAGAGGGAAG ACTTAGGTTC GGTTCACGTC	- 50

-66-

CCGC	TTATTC TTGTCTCCC	69
(2)	<pre>INFORMATION FOR SEQ ID NO:97: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:	
	GTTGTG AGCCTCCTCC CAGAGGGAAG ACTTTAGGTT CGGTTCACGT GCTTAT TCTTGTCTCC C	50 71
(2)	<pre>INFORMATION FOR SEQ ID NO:98: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
	GTTGTG AGCCTCCTNC CAGAGGGNAG ACTTTAGGTT CGGTTCACGT	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:99: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:</pre>	
GCCI	GTTGTG AGCCTCCTNN NAGAGGGAAG GCTTTAGGTT CGGTTCACGT	50
CCCG	CTTATT CTTGTCTCCC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:100: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
	CGTTGTG AGCCTCCTNN NAGAGGGAAG ACTTTAGGTT CGGTTCACGT	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:101: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid</pre>	

-67-

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
CCCT	GTTGTG AGCCTCCTNN NAGAGGGNAG ACTTTAGGTT CGGTTCACGT	50
	CTTATT CTTGTCTCCC	70
CCCG	CHAIT CHGICICC	, 0
(2)	INFORMATION FOR SEQ ID NO:102:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
GCCT	GTTGTG AGCCTCCTGT GTGCAACAGA GCAGNNNTTG TCTAACATCA	50
CTTC	GCTTAT TCTTGTCTCC C	71
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
	GTTGTG AGCCTCCTGG GGCGAACAGC AGCTACTCAC AACATGTCCG	50
GCCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:104:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 69 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
GCCT	GTTGTG AGCCTCCTGT GGCGAACACG GGTCAAGGGC TTCACAATCT	50
	TTATTC TTGTCTCCC	69
(2)	INFORMATION FOR SEQ ID NO:105:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
GCCI	GTTGTG AGCCTCCTAT GGCGAACACA GCAACTCGCT CACAACTCTC	50
TCCC	COCTTAT TCTTGTCTCC C	71

-68-

(2)	INFORMATION FOR SEQ ID NO:106:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	
GCCT	GTTGTG AGCCTCCTGT AGGCGAACAC AGGTTGAGGC TTACACAGGG	50
	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:107:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:	
~~~	CGTTGTG AGCCTCCTAG CGAACAACTG ACTGACGGCA GGGTCAACAC	50
	CGCTTAT TCTTGTCTCC C	71
MMCC	GCTTAT TCTTGTCTCC C	/ 1
(2)	INFORMATION FOR SEQ ID NO:108:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
		•
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
~~~	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:	
	GTTGTG AGCCTCCTTA CGAACAACAG CATTCACACA GGCCTTTTTG	50 70
TTCG	SCTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:109:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
	IGTTGTG AGCCTCCTAG CGAGCAACAT CTTTCGCAAC AGGTTTGGTT	50
CCCC	GCTTATT CTTGTCTCCC	70
(0)	THEODINATION FOR CEO ID NO.110.	
(2)	INFORMATION FOR SEQ ID NO:110:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

-69-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
GCCT	STTGTG AGCCTCCTTT GGCGAACACA GCAACTCGCT CACAACTATC	50
	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:111:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
	GTTGTG AGCCTCCTAG GTTGGGTAGG TTGGTGGAGG CGAACGTACC	50
AACG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:112:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
COOM		- 0
	GTTGTG AGCCTCCTAG GTTGGGTAGG TTGGTGGAGG CGAACGTCCT	50
AACG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:113:	
\—,	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	• • • • • • • • • • • • • • • • • • • •	
a com	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	- 0
	GTTGTG AGCCTCCTAG GTTGGGTAGG CTGGTGGAGG CGNACGTCCC	50
ATCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:114:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
aaam		E 0
	GTTGTG AGCCTCCTAG GTTCGCAGGC TGGCTGGAGG CGCGCGACCC	50 70
AACG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:115:	
	(i) SEQUENCE CHARACTERISTICS:	

-70-

		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:115:	
CCT	GTTGT	G AGCCTCCTGG TTTGACCGTA ACAATTGTTA AAGCTCCGGG	50
		T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:116:	
	(i)		
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:116:	
ברכת		G AGCCTCCTGG TCTGATCGTA ACAATTGTTA AAGCTCCGGG	50
		T CTTGTCTCCC	70
VCCG	CIINI	i citatetee	, 0
(2)	TNFO	ORMATION FOR SEQ ID NO:117:	
(2)		SEQUENCE CHARACTERISTICS:	
	(4)	(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(ari)	SEQUENCE DESCRIPTION: SEQ ID NO:117:	
~~~		TG AGCCTCCTGG TTTGATCTCT AACAATTGTT AAAGCTCCAG	50
		TT CTTGTCTCCC	70
GCCG	CIIMI		, 0
(2)	TNFO	DRMATION FOR SEQ ID NO:118:	
(2)	(i)		
	(1)	(A) LENGTH: 71 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(vi)	SEQUENCE DESCRIPTION: SEQ ID NO:118:	
CCCT		rg agceteetig tetgateget aacaattgtt aaageteegg	50
		AT TOTTGTOTO C	71
GGCC	.GCIIA	AT TOTTGTCTCC C	, _
(2)	TNEC	ORMATION FOR SEQ ID NO:119:	
(2)	(i)	SEQUENCE CHARACTERISTICS:	
	(1)	(A) LENGTH: 72 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(253)	SEQUENCE DESCRIPTION: SEQ ID NO:119:	
CCC		re Accordered retrarcers acalanter assacered	50

-71-

GGCC	CGCTTA TTCTTGTCTC CC	72
(2)	<pre>INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 69 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
	GTTGTG AGCCTCCTGG TTTGTCGTAA CAATTGTTAA AGCTCCGGGA TTATTC TTGTCTCCC	50 69
(2)	<pre>INFORMATION FOR SEQ ID NO:121: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 71 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121: GTTGTG AGCCTCCTGG TCTGATCGTA ACAGTTGTTA AAAGCTCCGG GCTTAT TCTTGTCTCC C	50 71
(2)	INFORMATION FOR SEQ ID NO:122:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 69 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:  GTTGTG AGCCTCCTGG TCTGATCGTA ACAATTGTTA AGCTCCGGGC	50
	TTATTC TTGTCTCCC	69
(2)	<pre>INFORMATION FOR SEQ ID NO:123: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:</pre>	
GCCT	GTTGTG AGCCTCCTCC GCCAAGGGAG CTCTCCGAGC TCGGCGCCAC	50
	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:124:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 71 base pairs  (B) TYPE: nucleic acid	

	-72-	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
~~~	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:	
	GTTGTG AGCCTCCTNC NNCNAAGGAA GATCTCCGAG TTCGGCGTCA GCTTAT TCTTGTCTCC C	50 71
CIGC	GCTTAT TCTTGTCTCC C	, 1
(2)	INFORMATION FOR SEQ ID NO:125:	
,-,	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:	
GCCT	GTTGTG AGCCTCCTCT GCCGGGGAAG ATCTCCGAGT TCGGCGTCAC	50
TGCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:126:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
GCCT	GTTGTG AGCCTCCTCC GCCAAGGAAG ATCTCCGAGT TCGGCGTCAC	50
TGCG	CTTATT CTTGTCTCCC	70
(0)	TATION TON TON GEO. IN NO. 107	
(2)	INFORMATION FOR SEQ ID NO:127: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
GCCT	GTTGTG AGCCTCCTCN GCNAAGGAAG ATCTCCGAGT TCGGCGTCAC	50
	CTTATT CTTGTCTCCC	70
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs(B) TYPE: nucleic acid	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: single	
	(C) STRANDEDNESS: Single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
מככיי	CGTTGTG AGCCTCCTCN GCCAAGGAAG ATCTCCGAGT TCGGCGTCAC	50
	SCTTATT CTTGTCTCCC	70

-73-

(2)	INFO	RMATION FOR SEQ ID NO:129:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 69 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:129:	
GCCT		AGCCTCCTCN NCNAAGGAAG ATCTCCAGTT CGGCGTCACT	50
GCGC	TTATT	TTGTCTCCC	69
(2)	INFO	RMATION FOR SEQ ID NO:130:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:130:	
GCCT		G AGCCTCCTCN GCNAAGGAAG ATCTCCGAGT TCGGNGTTAC	50
		r cttgtctccc	70
(2)	INFO	RMATION FOR SEQ ID NO:131:	
		SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
-		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:131:	
GCCI		G AGCCTCCTAG ACCGTAGGGT TCGGGAGCGA TAAACAGTCG	50
		T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:132:	
	(i)		
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:132:	
GCCI		G AGCCTCCTAG ACCGTAGGGG CTTGGGCCAT CAACTGGCGC	50
		T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:133:	
	(i)	SEQUENCE CHARACTERISTICS:	
	•	(A) LENGTH: 72 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		· ·	

-74-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
GCCT	GTTGTG AGCCTCCTAG ACGGTAGCGC CTTGAGTGAA TCAATCAGNA	50
GTAA	CGCTTA TTCTTGTCTC CC	72
(2)	INFORMATION FOR SEQ ID NO:134:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
aaam	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
	GTTGTG AGCCTCCTAG ACCGTTGGGA CTATAGGCGA ACACCAGCTA	50
CCAC	GCTTAT TCTTGTCTCC C	71
(2)	INFORMATION FOR SEQ ID NO:135:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 69 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:	
GCCT	GTTGTG AGCCTCCTAG ACGGTAGCCC TTAACGGCGA ACAACGCGTT	50
TCGC'	TTATTC TTGTCTCCC	69
(2)	· · · · · · · · · · · · · · · · · · ·	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 69 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
GCCT	GTTGTG AGCCTCCTAG ACTGTAGAGA CTTGATGGGT CGCAACCGTC	50
ACGC	TTATTC TTGTCTCCC	69
(2)	INFORMATION FOR SEQ ID NO:137:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
CCC	GTTGTG AGCCTCCTAG ACTGTAGAGG CTAGGGTAAC AACGGCTCGT	50
	•	
TTCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:138:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(-,x	

WO 96/34875

 $(A_{ij}^{(i)}(t,t), (i,j), (t,j), ($

PCT/US96/06060

-75-

	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:	
<u>ع</u> ررب	GTTGTG AGCCTCCTAG ACTGTGAGAG ACTAGGCGAG AAACGGGGTT	50
	GCTTAT TCTTGTCTCC C	71
	octimi iciidicice e	/1
(2)	INFORMATION FOR GROUP NO 120	
(2)	INFORMATION FOR SEQ ID NO:139: (i) SEQUENCE CHARACTERISTICS:	
	· · · · · · · · · · · · · · · · · · ·	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:	
GCCT	GTTGTG AGCCTCCTAG ACTGTAGAGG CTAGGGCATC AACAGTTCTT	50
CCCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:140:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 68 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:	
GCCT	GTTGTG AGCCTCCTAG ACTGGAGAGA CTAGGCGAGA ACCGGGGCGC	50
	TATTCT TGTCTCCC	68
		00
(2)	INFORMATION FOR SEQ ID NO:141:	٠.
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 69 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
o a a m	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:	
	GTTGTG AGCCTCCTAG AGAGGAGAAC TTATAGGAAA CAACGGTCGG	50
CCGC	TTATTC TTGTCTCCC	69
(2)	-	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
GCCT	TGTTGTG AGCCTCCTAG ACTGTAGAGG CTAGGGTAAC AACGGCTCGT	50

-76-

CTGC	GCTTAT TCTTGTCTCC C	71
(2)	<pre>INFORMATION FOR SEQ ID NO:143: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:</pre>	
GCCT	GTTGTG AGCCTCCTAG ACTGTTGAGA CTAACTGCGA ACAACTGCTG	50
TACG	CTTATT CTTGTCTCCC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:144: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:</pre>	
	GTTGTG AGCCTCCTAG AGCTGTTGAC ACTAACGCGA ACAACAACTG	50
TACG	CTTATT CTTGTCTCCC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:145: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
	GTTGTG AGCCTCCTTG GAGGCGATAC TTGGCGAACA ACAGGGGCTG	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:146: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146: FGTTGTG AGCCTCCTAT GCCGAACAAC AGTCTGAACA ACAGGTCTGT	50
	GCTTATT CTTGTCTCCC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:147: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs</pre>	

(B)

TYPE: nucleic acid

PCT/US96/06060

-77-

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:	
GCCTC	STTGTG AGCCTCCTTA GAGCGAATAC TTGGCGGAAC AACAGGGCTG	50
	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:148:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:	
GCCT	GTTGTG AGCCTCCTGG ACTGTAGAGA CCAGTGGAAC AACAGATCGG	50
TACG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:149:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	_
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
	GTTGTG AGCCTCCTTG GAGGCGAATC TGGCGAGACA ACAGCTTTAT	50
CTCC	GCTTAT TCTTGTCTCC C	71
(2)	INFORMATION FOR SEQ ID NO:150:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	50
	GTTGTG AGCCTCCTTG GAGGCGAAGT CTGGCGAACA AGCGCTTTAT	50
CTCC	GCTTAT TCTTGTCTCC C	71
(2)	INFORMATION FOR SEQ ID NO:151:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
	GTTGTG AGCCTCCTTG GAGGCGAATC TGTCGAACAA CACGTTTATC	50
CCCG	CTTATT CTTGTCTCCC	70

-78-

PCT/US96/06060

(2)	INFORMATION FOR SEQ ID NO:152:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 69 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
GCCT	GTTGTG AGCCTCCTGT CGGAGNAAAC TATGTGTTTT AGAGCCATCC	50
	TTATTC TTGTCTCCC	69
(2)	INFORMATION FOR SEQ ID NO:153:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:	
GCCI	GTTGTG AGCCTCCTGT ACGGAGAAAA CTATGTGTTT TAGAGCCATC	50
CCCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:154:	
•	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:	
GCCT	TGTTGTG AGCCTCCTGT ACGGCGCAAA CAATGTGTTT TAGAGCNACT	50
CCCG	SCTTATT CTTGTCTCCC	70
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:	
GCC?	IGTTGTG AGCCTCCTGT GTAGACTGCA GAGACTGCCA GTGATCTCTC	50
CCC	GCTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:156:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

-79-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156: GTTGTG AGCCTCCTGT GTAGACTGCA GAGACTGCCA GTGCTCTCTC CTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:157: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157: GTTGTG AGCCTCCTTT GGGGCGAACA CAGGTTGAGG CTTACACAGG GCTTAT TCTTGTCTCC C	50 71
(2)	<pre>INFORMATION FOR SEQ ID NO:158: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158: GTTGTG AGCCTCCTAG TAGGCGNACA CAGGTTGAGG CTTACACAGG GCTTAT TCTTGTCTCC C	50 71
(2)	INFORMATION FOR SEQ ID NO:159: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159: GTTGTG AGCCTCCTGA ACAGGCNNNT TACCTCTGTG GCCGTTTATC	50
	CGCTTA TTCTTGTCTC CC	72
(2)	<pre>INFORMATION FOR SEQ ID NO:160: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160: CONTROL OF CO	50 70
(2)	INFORMATION FOR SEC ID NO:161:	

(i) SEQUENCE CHARACTERISTICS:

-80-

	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:	
יררדי	GTTGTG AGCCTCCTAG ACATGGACAC TAGGGGACAC TGCAGCCAAC	50
	CTTATT CTTGTCTCCC	70
	CIMIL CITOTOGO	
(2)	INFORMATION FOR SEQ ID NO:162:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	
	GTTGTG AGCCTCCTAG ACAGGAGTGA CTTGGCAGCT NACAGACGCT	50
		70
rccg	CTTATT CTTGTCTCCC	70
(0)	THEODMANION FOR CEO ID NO.162.	
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
	GTTGTG AGCCTCCTGA GACAGGACTG ACTTGGCAGC TCACAGCGCT	50
TCCG	CTTATT CTTGTCTCCC	70
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	
	GTTGTG AGCCTCCTTA GTGGCGAACG ACAGACTCTC ACACACAG	50
GCTI	TGCGCTT ATTCTTGTCT CCC	73
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:	
GCC	IGTTGTG AGCCTCCTTA AGTGGCGAAC GACAGCTCTC ACACACAGGC	50

-81-

TTGC	GCTTAT TCTTGTCTCC C	71
(2)	<pre>INFORMATION FOR SEQ ID NO:166: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:	
	GTTGTG AGCCTCCTTA GTTCCTTGCT TATTCTTGCT TCCCTTGTCT FTATTC TTGTCTCCC	50 69
(2)	<pre>INFORMATION FOR SEQ ID NO:167: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:</pre>	
	GTTGTG AGCCTCCTAG CACTGAGATA CGCTTATTCT TGTCTCCGGG TCGCTT ATTCTTGTCT CCC	50 73
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GTTGTG AGCCTCCTGA GGACGATCAA CAGCGACTTA TTCTCACAAC	50 70
(2)	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	70
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169: CGTTGTG AGCCTCCTTC CCGCTTATTC TTGTCTCAGC TTATTATTCT CGCTTAT TCTTGTCTCC C	50 71
(2)	<pre>INFORMATION FOR SEQ ID NO:170: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid</pre>	

-82-

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
CCCTC	GTTGTG AGCCTCCTGT GGNNNAAATT CNCTTATTCT TGTCTCTCGT	50
-		71
GGTC	GCTTAT TCTTGTCTCC C	/1
(2)	INFORMATION FOR SEQ ID NO:171:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:	
GCCT	GTTGTG AGCCTCCTAC CAGTACGATT ATTCTTGTCT CCCTGNNTTN	50
NNTC	GCTTAT TCTTGTCTCC C	71
(2)	INFORMATION FOR SEQ ID NO:172:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
o c c c m	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172: GTTGTG AGCCTCCTGG TGGTTGAGCT TATTCTTGTC TCGATTTGCA	50
		73
CGTG	TCGCTT ATTCTTGTCT CCC	/3
(2)	INFORMATION FOR SEQ ID NO:173:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
GCCT	GTTGTG AGCCTCCTAC CTTGCGGCTT ATTCTTGTCT CGCTTCTTCT	50
TGTC	GCTTAT TCTTGTCTCC C	71
(2)	INFORMATION FOR SEQ ID NO:174:	
•	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:	
GCCT	GTTGTG AGCCTCCTAG TTGTTGTCCG CGTTTCTTGT CTCCCTTTTC	50
	CTTATT CTTGTCTCCC	70

WO 96/34875

PCT/US96/06060

-83-

(2)	INFOR	MATION FOR SEQ ID NO:175:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:175:	
GCCT		AGCCTCCTTA GTCCCTTGCT TATTCTTGTC TTCCCTTGTC	50
		CTTGTCTCCC	70
(2)	INFOR	RMATION FOR SEQ ID NO:176:	
, - ,		•	
	, – ,	(A) LENGTH: 73 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(20 i)	SEQUENCE DESCRIPTION: SEQ ID NO:176:	
~~~		G AGCCTCCTAC CTTCCGGCTT ATTCTTGTTC TCTGCTTATT	50
			73
CTTG	regeri	F ATTCTTGTCT CCC	/3
(2)	TNEOL	RMATION FOR SEQ ID NO:177:	
(2)		SEQUENCE CHARACTERISTICS:	
	(1)		
		(A) LENGTH: 71 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:177:	
		G AGCCTCCTGT CGCTTATTCT TGTCTCCCTC TTATTCTTGT	50
CCC	GCTTA:	T TCTTGTCTCC C	71
(2)	TMEO	DWARTON FOR CEO ID NO.178.	
(2)		RMATION FOR SEQ ID NO:178:	
	(i)		
		(A) LENGTH: 72 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:178:	
		G AGCCTCCTAG CACGAGATAC GCTTATTCTT GTCTCCGCGC	50
TTC	rcgctt.	A TTCTTGTCTC CC	72
(-)		DUARTON FOR GEO ID NO 170	
(2)		RMATION FOR SEQ ID NO:179:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

-84-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179: GTTGTG AGCCTCCTTG TGTTGTTGTT CTTTGTGTCA TCCCTGTTCC CTTATT CTTGTCTCCC	50 70
10000	CHAIT CHGICICCC	, 0
(2)	<pre>INFORMATION FOR SEQ ID NO:180: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 73 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:	
	GTTGTG AGCCTCCTTA GTGCCTGGGA CGCTTATTCT TGTCTCCGGG ACGCTT ATTCTTGTCT CCC	50 73
(2)	<pre>INFORMATION FOR SEQ ID NO:181: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:	
GCCTC	GTTGTG AGCCTCCTGG AGGCGCTTGT GTCTTGTTCC CTTGTGTGTC	50
TCCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:182: (i) SEQUENCE CHARACTERISTICS:	
	<ul><li>(A) LENGTH: 66 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:	
	GTTGTG AGCCTCCTGT GGGGTTGTTG TCTTATTCTT GTCTCCGGCG	50
CTTA	TTCTTG TCTCCC	66
(2)	<pre>INFORMATION FOR SEQ ID NO:183: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 68 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:	
	GTTGTG AGCCTCCTAG TCCCCGCTTA TTCTTGTCTC CCTTATCGCG TATTCT TGTCTCCC	50 68
(2)	INFORMATION FOR SEQ ID NO:184:	

(i) SEQUENCE CHARACTERISTICS:

WO 96/34875

PCT/US96/06060

-85-

	<ul> <li>(A) LENGTH: 68 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> <li>(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:</li> </ul>	
	GTTGTG AGCCTCCTAC ACGCTTATTC TTGTCTCCAC TTATTCTTGT TATTCT TGTCTCCC	50 68
(2)	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 70 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185: GTTGTG AGCCTCCTGT TGTCGCTTAT TCTTGTCTCT GTCTGTTTTG CTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:186: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 74 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:</pre>	
	GTTGTG AGCCTCCTAG AGTGGGGGGC GCTTATTCTT GTCTCCACTC GTCGCT TATTCTTGTC TCCC	50 74
(2)	<pre>INFORMATION FOR SEQ ID NO:187: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 72 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:</pre>	
	GTTGTG AGCCTCCTGA CACCCGCCGC GCTTATTGTT GTCTCCNNNC	50
TTTC	CCGCTTA TTCTTGTCTC CC	72
(2)	<pre>INFORMATION FOR SEQ ID NO:188: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:</pre>	
פרריז	CTTGTG AGCCTCCTGT TGTCGCTTAT TCTTGTCTCC CATCCTCTAC	50

WO 96/34875

PCT/US96/06060

-86-

TCCG	CTTATT CTTGTCTCCC	70
(2)	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 70 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189: CGTTGTG AGCCTCCTAG CCGTGTCCAG CTTATTCTTG TCTCCTNNCT CCTTATT CTTGTCTCCC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:190: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 69 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190: CGTTGTG AGCCTCCTGG TTGTGTGACT TCTATTTGNN TTTCGTGTCC CTTATTC TTGTCTCCC	50 69
(2)	<pre>INFORMATION FOR SEQ ID NO:191: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 71 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:</pre>	
	CGTTGTG AGCCTCCTGT CGCTGTGTAC CGTTTTTTTC TTGTTTGCCT	50 71
(2)	<pre>INFORMATION FOR SEQ ID NO:192: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:</pre>	
	TGTTGTG AGCCTCCTGG TAGGTCCTTT TCTGTCTTCC TTGTTCTCTC GCTTATT CTTGTCTCCC	50 70
(2)	INFORMATION FOR SEQ ID NO:193: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid	

-87-

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:	
	GTTGTG AGCCTCCTTG TCTGTCCGTT CTTTTTGTCT GTGTTTTCCC	50
NCGC'	TTATTC TTGTCTCCC	69
(0)	TURORUS MTON, HOR GEO IR NO 104	
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	<ul><li>(A) LENGTH: 69 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:	
	GTTGTG AGCCTCCTGT ACCTGTTGTC AGCTTTTACC CTTCGTTCCT	50
CCGC	TTATTC TTGTCTCCC	69
(2)	INFORMATION FOR SEQ ID NO:195:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:	
GCCT	GTTGTG AGCCTCCTAG TCGCGATTCT ATTTTTCACT TTCTGTTGTT	50
	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:196:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:	
	CGTTGTG AGCCTCCTGT TGCCGTATCC TTGTGGAGTT TTCGTTTCTC	50
CCCG	GCTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:197:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 68 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:	<b>-</b> -
	TGTTGTG AGCCTCCTGT TGGTCNGTTC CTTTCTCTGT TGTTCTCCTC	50
CGC	TTATTCT TGTCTCCC	68

-88-

(2)	INFORM	MATION FOR SEQ ID NO:198:	
	(i) S	SEQUENCE CHARACTERISTICS:	
	(	A) LENGTH: 70 base pairs	
	(	B) TYPE: nucleic acid	
	(	(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:198:	
GCCT		AGCCTCCTTA GTCCCGCGGC TTATTTTTGT CTCCGTTCCG	50
		CTTGTCTCCC	70
(2)	INFORM	MATION FOR SEQ ID NO:199:	
	(i) S	SEQUENCE CHARACTERISTICS:	
	(	(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:199:	
פטטיז		AGCCTCCTAG TCCCTCNNNN ATCCTTTTGT TGTCTTGCTG	50
		CTTGTCTCCC	70
1000	0111111		
2)	INFORM	MATION FOR SEQ ID NO:200:	
•		SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 72 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:200:	
GCCT		AGCCTCCTTG TGTGTGTGTC GGTGGTTTTT TGTCTTCCTT	50
		TTCTTGTCTC CC	72
(2)	INFORM	MATION FOR SEQ ID NO:201:	
		SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 71 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:201:	
GCC1		AGCCTCCTGT GTCCGTTGTT CGCGTTTTGT GNCCTGTTTT	50
		TCTTGTCTCC C	71
	,0011111		
(2)	INFOR	MATION FOR SEQ ID NO:202:	
-	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 69 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
GCCT	GTTGTG AGCCTCCTAG AAGCCTTGTC GTCTTTCCGT TTCTTCTTGT	50
CCGC	TTATTC TTGTCTCCC	69
(2)	INFORMATION FOR SEQ ID NO:203:	
(2)	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:	
GCCT	GTTGTG AGCCTCCTAC CGGTAGGAGT CCGTTTTTGT TTGCACTATG	50
CCCG	CTTATT CTTGTCTCCC	70
(2)	INFORMATION FOR SEQ ID NO:204:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:	
CCCT	GTTGTG AGCCTCCTAC CCNACTGTGA TGTTCGTGTT TTGTTCCTCC	
	CTTATT CTTGTCTCCC	50
MCCG	CTAIT CITGTUTCCC	70
(0)	TVDODY/MTOV DOD GEO TO ACC	
(2)		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 71 base pairs	
	(B) TYPE: nucleic acid	
-	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:	
GCCT	GTTGTG AGCCTCCTGG TCACACCAGT CACAGCACCT ACGTCCTGCC	50
CTCC	GCTTAT TCTTGTCTCC C	71
	·	
(2)	INFORMATION FOR SEQ ID NO:206:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 70 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:	
СССТ	GTTGTG AGCCTCCTGT AGTGGAACCG ACTAGCGGGG TGAAGACTCC	50
	CTTATT CTTGTCTCCC	
1000	CHAIL CHGICICC	70
(2)	INFORMATION FOR SEC. ID NO. 207.	
(4)	INFORMATION FOR SEQ ID NO:207:	
	(i) SEQUENCE CHARACTERISTICS:	

-90-

		(A) LENGTH: 68 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:207:	
GCCT	GTTGT(	G AGCCTCCTTA GCCCACAGCA ATTTTAGTCT GAGTTCCGTC	50
		T TGTCTCCC	68
		•	
(2)	INFO	RMATION FOR SEQ ID NO:208:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:208:	
GCCT	GTTGT	G AGCCTCCTAG GCTGCCGTAA GCTTTGGGAA TTGGCCTGCT	50
GCCG	CTTAT	T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:209:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:209:	
GCCT	GTTGT	G AGCCTCCTTG GAGGCGAATC TGGCGAACAA CAGCCTTATC	50
TCCG	CTTAT	T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:210:	• •
	(i)	- <del>-</del>	
		(A) LENGTH: 71 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:210:	
		TG AGCCTCCTGA GGCTGTAGAG GCTGACTGCG CGCAGCTGCT	50
GTGC	GCTTA	AT TCTTGTCTCC C	71
(2)		DRMATION FOR SEQ ID NO:211:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 68 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
	,	(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:211:	50
CICT	ריבויוייייייייייייייייייייייייייייייייי	192 AC2F 9 919 9 9192A T2F2F 74AC4ACAC AC4 (4C4CACCEC COCCACCACCACCACCACCACCACCACCACCACCACCACC	711

-91-

CGCT	TATTCT TGTCTCCC	68
(2)	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 71 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li></ul>	
	(D) TOPOLOGY: linear	
СССТ	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212: GTTGTG AGCCTCCTTG GACTGGAGAG ACCTTAGGAG TCATAACTCT	5.0
	GCTTAT TCTTGTCTCC C	50 71
(2)	<pre>INFORMATION FOR SEQ ID NO:213: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:</pre>	
מממת	GTTGTG AGCCTCCTGA CTGAAGAGCT CAGAGGCGAT ACAGGCCGCT	50
	CTTATT CTTGTCTCCC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:214: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 71 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:</pre>	
	GTTGTG AGCCTCCTAA GACAGCAGTG GCTAGGGCGA TAACTGTCAC	50 71
(2)	<pre>INFORMATION FOR SEQ ID NO:215: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:</pre>	
CCC	CGTTGTG AGCCTCCTGA CCGCAGGGTT CGGGAGCGAT AAACTAGACC	50
	CTIGIG AGCCICCIGA CCGCAGGGII CGGGAGCGAI AAACIAGACC	70
(2)	INFORMATION FOR SEQ ID NO:216:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 70 base pairs  (B) TYPE: nucleic acid	

-92-

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216: GTTGTG AGCCTCCTCA TGCGGGTTTG TCCGGACCTC AGCAACAGCT CTTATT CTTGTCTCCC	50 70
(2)	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 71 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
~ ~ ~ ~	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:	
	GTTGTG AGCCTCCTGA AGGCGNANAC AGGAGGAAAG GCTNACACCT	50 71
AICC	GCTIAI TCTTGTCTCC C	/1
(2)	<pre>INFORMATION FOR SEQ ID NO:218: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:	
GCCT	GTTGTG AGCCTCCTGA CTGTAGAGAC AGGACGTACA ATAGGCTCAC	50
TCCG	CTTATT CTTGTCTCCC	70
(2)	<pre>INFORMATION FOR SEQ ID NO:219: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 72 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:	
	GTTGTG AGCCTCCTGT TGCATTCCAG GACCGTTCTG TCNGTACCTC	50
GCGC	CCGCTTA TTCTTGTCTC CC	72
(2)	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 71 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:	
GCCI	TGTTGTG AGCCTCCTAT GGGGGCGAAC CTTTGCGCTC ACAACCTACC	50
maaa	COMMAN MORROWOODOO C	77

-93-

(2)	INFORMATION FOR SE	Q ID NO:221:	
	(i) SEQUENCE CHAR	ACTERISTICS:	
	(A) LENGTH:	70 base pairs	
	(B) TYPE: nu	cleic acid	
	(C) STRANDEL	NESS: single	
	(D) TOPOLOGY	<pre>!: linear</pre>	
	(xi) SEQUENCE DESC	CRIPTION: SEQ ID NO:221:	
GCCT	GTTGTG AGCCTCCTGA A	ACGACGGGAC AGGGCTGAAA ACAGGCAGCT	50
ACCG	CTTATT CTTGTCTCCC		70
<b>/</b> 0\	TANDONAMION FOR CI	70 TD NO. 222	
(2)	INFORMATION FOR SE		
	(i) SEQUENCE CHAP		
		70 base pairs	
	(B) TYPE: nu		
	(C) STRANDEL	<del>-</del>	
	(D) TOPOLOGY		
		CRIPTION: SEQ ID NO:222:	
		CGCGGTGTTG CNCTTTGTTC TATTCTCCTG	50
TCCG	GCTTATT CTTGTCTCCC		70
(2)	INFORMATION FOR SE	EQ ID NO:223:	
	(i) SEQUENCE CHAI	RACTERISTICS:	
	(A) LENGTH:	68 base pairs	
	(B) TYPE: nu	ucleic acid	
	(C) STRANDE	DNESS: single	
	(D) TOPOLOG	Y: linear	
	(xi) SEQUENCE DESC	CRIPTION: SEQ ID NO:223:	
GCCT	TGTTGTG AGCCTCCTTG	AACCACAAGC CCCAACTAAC AACACCCTGC	50
CGCT	TTATTCT TGTCTCCC		68
(2)	INFORMATION FOR S	EO ID NO:224:	
(2)	(i) SEQUENCE CHA		
		69 base pairs	
	(B) TYPE: n		
		DNESS: single	
	(D) TOPOLOG		
		CRIPTION: SEQ ID NO:224:	
GCC		GGTGAGATCC AGGGCGCGCT ACGTGCGTGT	50
	CTTATTC TTGTCTCCC		69
(2)	INFORMATION FOR S	FO ID NO.225.	
(2)		RACTERISTICS:	
		72 base pairs	
	(A) LENGIH: (B) TYPE: n		
		DNESS: single	
		Y: linear	
	(D) IOPOPOG	t. Titlear	

-94-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:225: GTTGTG AGCCTCCTAC CGCGACTCTT TGCGTACTTC TTGGTCTTCC CGCTTA TTCTTGTCTC CC	50 72
(2)	<pre>INFORMATION FOR SEQ ID NO:226: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 67 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226: GTTGTG AGCCTCCTTG GGCGAAGGGT CTTGGACGAG GACAGGCGCC ATTCTT GTCTCCC	50 67
(2)	<pre>INFORMATION FOR SEQ ID NO:227: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:</pre>	
	GTTGTG AGCCTCCTAG GTCACCGTTA TCTCTTCCTG TTGCTCTTTC	50 70
(2)	<pre>INFORMATION FOR SEQ ID NO:228: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 71 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:</pre>	
	GTTGTG AGCCTCCTAG TCAAACCCCT CTACGCTGTT GTTGATGTCT	50 <b>71</b>
(2)	<pre>INFORMATION FOR SEQ ID NO:229: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 70 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:</pre>	
	GTTGTG AGCCTCCTTA GGCAGAACTC ACTAAAAGGT CCAACTGGTT GCTTATT CTTGTCTCCC	50 70
(2)	INFORMATION FOR SEQ ID NO:230: (i) SEQUENCE CHARACTERISTICS:	

-95-

		<ul><li>(A) LENGTH: 70 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
		SEQUENCE DESCRIPTION: SEQ ID NO:230:	
		G AGCCTCCTTG GACAGGACTC ACCTACAAGG CTTACAACGC	50
ATCG	CTTAT'	T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:231:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:231:	
		G AGCCTCCTGT AGACTGTAGA GTTACGGCGC GACTACAACG	50
CTCG	CTTAT	T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:232: .	
	(i)		
		(A) LENGTH: 70 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:232:	
GCCI	GTTGT	G AGCCTCCTAG GCGGTAGCTA CTAACATATC ACAACATCTT	50
ACCG	CTTAT	T CTTGTCTCCC	70
(2)	INFO	RMATION FOR SEQ ID NO:233:	
,_,	(i)		
	, _ ,	(A) LENGTH: 19 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(xi)	FEATURE:	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(D) OTHER INFORMATION: N at position 1 is flu	rosceir
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:233:	
NGC		GT GAGCCTCCT	19
(2)	TNEC	DRMATION FOR SEQ ID NO:234:	
(2)	(i)	SEQUENCE CHARACTERISTICS:	
	(1)	(A) LENGTH: 18 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(vi)	SEQUENCE DESCRIPTION: SEQ ID NO:234:	
	\~±/	CONTRACTOR DESCRIPTION OF STREET	

-96-

GGGA	GACAA	G AATAAGCG	18
(2)	INFOF	RMATION FOR SEQ ID NO:235:  SEQUENCE CHARACTERISTICS:  (A) LENGTH: 70 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:235:	
		G AGCCTCCTNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN	50 70
(2)	INFO	RMATION FOR SEQ ID NO:236:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 26 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		SEQUENCE DESCRIPTION: SEQ ID NO:236:	
AACT	CAGTA	A TGCCAAGGTA ACGGTT	26
(2)	INFOI	RMATION FOR SEQ ID NO:237:  SEQUENCE CHARACTERISTICS:  (A) LENGTH: 33 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:237:	
CGAA	TCGCA	T TGCCCAACGT TGCCCAAGAT TCG	33
(2)	INFO	RMATION FOR SEQ ID NO:238:	
		SEQUENCE CHARACTERISTICS:  (A) LENGTH: 35 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  SEQUENCE DESCRIPTION: SEQ ID NO:238:	
CGCI		G TTGCCCACCG TTGTCCAATT GAGCG	35
(2	(i)	INFORMATION FOR SEQ ID NO:239: SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:239:	

WO 96/34875	PCT/US96/06060
-------------	----------------

-97-

39

	·	
GTCGAGGCA'	T TGCAACCTTT GGTCTTTCGA C	31
(2)	INFORMATION FOR SEQ ID NO:240:	
(i)	SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 39 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:240:	

GGGCAACCTT GAGTATTTCA TGCTTCGACA TGAGGCCCG

### **CLAIMS**:

5

- 1. A method for identifying nucleic acid ligands and nucleic acid ligand sequences to a tissue target comprising:
  - a) preparing a candidate mixture of nucleic acid sequences;
- b) contacting said candidate mixture of nucleic acids with said tissue, wherein nucleic acids having an increased affinity to the tissue relative to the candidate mixture may be partitioned from the remainder of the candidate mixture;
- c) partitioning the increased affinity nucleic acids from the remainder of the candidate mixture; and
- d) amplifying the increased affinity nucleic acids to yield a mixture of nucleic acids enriched for nucleic acid sequences with relatively higher affinity and specificity for binding to said tissue, whereby nucleic acid ligands of said tissue may be identified.
- 15 2. The method of Claim 1 further comprising:
  - e) repeating steps b), c) and d).
- The method of Claim 1 wherein said tissue is selected from the group consisting of a cell, a subcellular component, an aggregate of cells, a collection of cells, an aggregate of macromolecules.
  - 4. The method of Claim 1 wherein said candidate mixture is comprised of single-stranded nucleic acids.
- 25 5. The method of Claim 4 wherein said single-stranded nucleic acids are ribonucleic acids.
  - 6. The method of Claim 4 wherein said single-stranded nucleic acids are deoxyribonucleic acids.

- 7. The method of Claim 1 wherein said tissue is selected from the group consisting of red blood cells ghosts, glioblastoma, and lymphoma.
- 8. A nucleic acid ligand to a tissue target identified according to the method of5 Claim 1.
  - 9. A purified and isolated non-naturally occurring nucleic acid ligand to tissue.
- 10. The purified nucleic acid ligand of Claim 9 which is a non-naturally occurring nucleic acid ligand having a specific binding affinity for a tissue target molecule, such target molecule being a three dimensional chemical structure other than a polynucleotide that binds to said nucleic acid ligand through a mechanism which predominantly depends on Watson/Crick base pairing or triple helix binding, wherein said nucleic acid ligand is not a nucleic acid having the known physiological function of being bound by the target molecule.
  - 11. The nucleic acid ligand of Claim 9 which is a deoxyribonucleic acid ligand.
  - 12. The nucleic acid ligand of Claim 9 which is a ribonucleic acid ligand.

20

30

- 13. The nucleic acid ligand of Claim 9 wherein said tissue is selected from the group consisting of a cell, a subcellular component, an aggregate of cells, a collection of cells, an aggregate of macromolecules.
- 25 14. The nucleic acid ligand of Claim 13 wherein said subcellular component is a red blood cell ghost.
  - 15. The nucleic acid ligand to a red blood cell ghost of Claim 14 wherein said ligand is a DNA ligand selected from the group consisting of the nucleotide sequences set forth in Table 1, or the corresponding RNA sequences thereof or the corresponding complementary sequences thereof.

-100-

- 16. The nucleic acid ligand of Claim 15 wherein said ligand is selected from the group consisting of SEQ ID NOS:4-70.
- 5 17. A purified and isolated non-naturally occurring DNA ligand to a red blood cell ghost, wherein said ligand is substantially homologous to and has substantially the same ability to bind said red blood cell ghost as a ligand selected from the group consisting of the sequences set forth in Table 1 or the corresponding RNA sequences thereof or the corresponding complimentary sequences thereof.

10

15

- 18. A purified and isolated non-naturally occurring DNA ligand to a red blood cell ghost, wherein said ligand has substantially the same structure and the same ability to bind said red blood cell ghost as a ligand selected from the group consisting of the sequences set forth in Table 1 or the corresponding RNA sequence thereof or the corresponding complementary sequences thereof.
- 19. The nucleic acid ligand of Claim 13 wherein said cell in a tumor cell.
- 20. The nucleic acid ligand of Claim 19 wherein said tumor cell is a glioblastoma.

20

21. The nucleic acid ligand to a glioblastoma of Claim 20 wherein said ligand is a DNA ligand selected from the group consisting of the nucleotide sequences set forth in Table 2, or the corresponding RNA sequences thereof or the corresponding complementary sequences thereof.

25

- 22. The nucleic acid ligand of Claim 21 wherein said ligand is selected from the group consisting of SEQ ID NOS:74-232.
- A purified and isolated non-naturally occurring DNA ligand to a glioblastoma,
   wherein said ligand is substantially homologous to and has substantially the same
   ability to bind said glioblastoma as a ligand selected from the group consisting of the

#### -101-

sequences set forth in Table 2 or the corresponding RNA sequences thereof or the corresponding complimentary sequences thereof.

- 24. A purified and isolated non-naturally occurring DNA ligand to glioblastoma, wherein said ligand has substantially the same structure and the same ability to bind said glioblastoma as a ligand selected from the group consisting of the sequences set forth in Table 2 or the corresponding RNA sequence thereof or the corresponding complementary sequences thereof.
- 10 25. The nucleic acid ligand of Claim 19 wherein said tumor cell is a lymphoma.
  - 26. A method for identifying a macromolecule component of a tissue comprising:
  - a) identifying a nucleic acid ligand to a new epitope of said macromolecule by the method of Claim 1;
- b) purifying said macromolecule component of said tissue away from the remainder of said tissue on the basis of affinity between said new epitope and said nucleic acid ligand; and
  - c) identifying said macromolecule.
- 27. The method of Claim 26 wherein said macromolecule is selected from the group consisting of a protein, lipid and carbohydrate.
  - 28. A purified macromolecule identified according to the method of Claim 26.
- 25 29. The purified macromolecule of Claim 28 which is selected from the group consisting of a protein, lipid and carbohydrate.
  - 30. The purified macromolecule of Claim 29 which is a tumor associated antigen.





**SUBSTITUTE SHEET (RULE 26)** 



FIGURE 3A

4/7

# **Motif II**

c16t		c79	t
c a	g t	c c	g t
a	- t	a -	t
C	- g	c -	g
C	• C	C •	t
C	• C	<b>c</b> •	C
g	- C	g -	C
t	- a	t -	a
t	- a	t -	a
		<del>-</del>	
a. C g		g a t	
	- g	g a	   
c g	- g - a	g a t	
g c		g a t a-	 t
g c t	- a	g a t a- a-	
c g c t a	- a - t	g a t a- a-	ttg
c g c t a	- a - t - t	g a t a- a- t-	ttga
c gctaag	- a - t - c - g	g a t a	ttgag

FIGURE 3B

```
t ggtc
t t c111t
t t
c tcgac 3'
c !!!!!
a agctg 5'
a g
c-g
g-c
t a
Motif III
```

```
gagta
t t c53t
t t catgct
c tcatgct
c a sqtaca
a g
c - g
g - c
g - c
g - c
5' 3'
```

FIGURE 3C



FIGURE 4





FIGURE 5

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/06060

A. CLASSIFICATION OF SUBJECT MATTER  IPC(6) :C07H 21/02, 21/04; C12P 19/34; C12Q 1/68  US CL :435/6, 91.2; 536/22.1  According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system follower	d by classification symools)			
U.S. : 435/6, 91.2; 536/22.1				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages Relevant to claim No.			
Y WO 92/14843 A1 (GILEAD SCIEN 1992, PAGES 29-31, 94-102	CES, INC.) 03 SEPTEMBER 1-30			
Further documents are listed in the continuation of Box	C. See patent family annex.			
Special categories of cited documents:	"T" later document published after the international filing date or priority			
"A" document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
*E* earlier document published on or after the international filing date	<ul> <li>X° document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step</li> </ul>			
'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	"Y" document of particular relevance; the claimed invention cannot be			
special reason (as specified)  (O' document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			
*P* document published prior to the international filing date but later than the priority date, lainted	& document member of the same patent family			
Date of the actual completion of the international search 25 JULY 1996	Date of maring of the international search report  29 AUG 1996			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorizedoutiver  , STEPHANIE W. ZITOMER, Ph.D.  Tolephone Nu. (703) 308-0196			