Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Лабораторная работа №5 по дисциплине "Статистика и анализ данных"

Семестр 2

Выполнили студенты:

Косарев Илья, гр. J3110, ИСУ 466304

Капустина Юлия, гр. Ј3110, ИСУ 466110

Кащеев Максим, гр. J3111, ИСУ 466147

> Отчет сдан: 19.05.2025

Оглавление

Введен	ние		2
1.1	1.1 Цель и задачи		2
1.2	Теоретическая подготовка		3
	1.2.1	Разностный ряд	3
	1.2.2	Тренд, сезонность, лаг, белый шум	3
	1.2.3	Стационарность	3
	1.2.4	Автокорреляционная функция ряда (АКФ)	3
	1.2.5	Экспоненциальное сглаживание	3
Практ	Практическая часть		
Заключение			7

Введение

1.1 Цель и задачи

Цель: познакомиться с понятием временного ряда и применить различные методы анализа к данному.

Задачи:

- 1. Импортировать временной ряд для анализа (в данной работе в качестве такого ряда был взят временной ряд цен закрытия акций MSFT);
- 2. построить разностные ряды различного порядка;
- 3. построить автокорреляционную функцию ряда и провести анализ трендов, сезонности и т.д.;
- 4. применить тест Дики-Фуллера для исходного ряда и для полученных разностных рядов;
- 5. построить сглаженные ряды с различными параметрами;
- 6. визуализировать результаты;
- 7. сделать выводы.

1.2 Теоретическая подготовка

1.2.1 Разностный ряд

Разностный (дифференцированный) ряд — это новая последовательность, полученная из исходного временного ряда $\{y_t\}$ как приращения соседних наблюдений заданного порядка:

$$\Delta y_t = y_t - y_{t-1}$$

Разностевание подавляет тренд/сезонность и приближает ряд к стационарности, что упрощает его моделирование.

1.2.2 Тренд, сезонность, лаг, белый шум

Тренд — это систематическое, долговременное изменение среднего уровня временного ряда, не связанное с сезонными колебаниями или случайным шумом.

Сезонность — это регулярные, повторяющиеся с фиксированным периодом (месяц, квартал, сутки, час и т. д.) колебания временного ряда, возникающие из-за календарных, климатических, технологических или поведенческих циклов.

 $\mathbf{\Pi}$ аг (\mathbf{lag}) — это сдвиг наблюдения временного ряда на k шагов назад. Величина k называется порядком лага.

Белый шум — это процесс нулевого математического ожиданиия, постоянной конечной дисперсии и некоррелированности любых двух различных моментов времени.

1.2.3 Стационарность

Стационарность (слабая) — свойство временного ряда, которое гласит:

- $\mathbb{E}(X_t) = \mu = const \quad \forall$ сдвига по лагу
- $Var(X_t) = \sigma^2 = const$ \forall сдвига по лагу
- $Cov(X_t, X_{t-k}) = Cov(X_{t+h}, X_{t+h-k}) = \gamma(k) \quad \forall t, h$

1.2.4 Автокорреляционная функция ряда $(AK\Phi)$

АКФ — функция, которая сопоставляет порядку лага значение, отображающее линейную зависимость элементов временного ряда с предыдущими:

$$\rho(k) = \frac{Cov(X_t, X_{t-k})}{Var(X_t)} = \frac{\mathbb{E}[(X_t - \mu)(X_{t-k} - \mu)]}{\sigma^2}, \quad -1 \le \rho(k) \le 1 \quad \forall k$$

1.2.5 Экспоненциальное сглаживание

Экспоненциальное сглаживание — процесс построения нового ряда на основе данного по правилу:

$$\widetilde{y}_{t+1} = \alpha y_t + (1 - \alpha)\widetilde{y}_t,$$

где:

- ullet y_t последнее наблюдение
- \bullet \widetilde{y}_t сглаженное наблюдение
- α "скорость забывания", при больших значениях результирующий ряд быстро улавливает переломы тренда в исходном, при маленьких происходит сглаживание шума, из-за чего ряд легче анализировать визуально

Практическая часть

Код находится в публичном репозитории: лабораторная №5 В качестве ряда были взяты цены закрытия акций компании Microsoft (MSFT) за период с 01.01.2022 по 31.12.2023:

Рис. 2.1: Исходный временной ряд

По данному ряду были построены разностные ряды первого и второго порядков:

Рис. 2.2: Разностные ряды

На основе данных рядов были построены разные АКФ:

Рис. 2.3: ${\rm AK}\Phi$ для исходного ряда, разностного первого порядка и разностного второго порядка

На основе данного графика можно сделать несколько выводов:

- Исходный ряд не стационарен, о чем свидетельствует отсутствие быстрого убывания в ноль столбцов функции;
- у исходного ряда присутсвует тренд;
- дифференцирование действительно убрало тренд из результирующих рядов, из-за чего ряды относительно стационарны;
- при построении разностного ряда второго порядка произошло "передифференцирование из-за чего $\rho(1)$ заметно отличается от разностного ряда первого порядка;
- сезонность выявить трудно: нет резких совпадающих пиков на графике исходного ряда.

На данных рядах был применен тест Дики-Фуллера для анализа стационарности:

```
Анализ стационарности для MSFT

Результаты теста Дики-Фуллера для исходного ряда:

АDF Statistic: -0.4503
р-value: 0.9014
Критические значения:

1%: -3.4435
5%: -2.8674
10%: -2.5699
Вавод: Ряд нестационарен (не отвергаем Н0)

Результаты теста Дики-Фуллера для первых разностей:

ADF Statistic: -17.6470
р-value: 0.0000
Критические значения:

1%: -3.4435
5%: -2.8674
10%: -2.5699
Вавод: Ряд стационарен (отвергаем Н0)

Результаты теста Дики-Фуллера для вторых разностей:

ADF Statistic: -9.3366
р-value: 0.00000
Критические значения:

1%: -3.4440
5%: -2.8676
10%: -2.5700
Вавод: Ряд стационарен (отвергаем Н0)
```

Рис. 2.4: Результаты теста Дики-Фуллера для данных рядов

Как можно увидеть из результатов, ранние предположения оказались верными: исходный ряд нестационарен, что делает его менее пригодным для анализа, чем дифференцированные.

Наконец, были построены экспоненциальные сглаживания исходного ряда с разными коэффициентами памяти:

Рис. 2.5: Сглаживание исходного ряда

Как можно заметить, при малых значениях α шум убрался, при этом сохранились общие очертания исходного графика, что может быть полезно для визуализации и быстрого прогнозирования. При высоких значениях сильно заметны резкие колебания, что помогает замечать моментальные изменения, однако из-за этого прогнозирование и визуализация усложняются.

Заключение

В результате выполнения лабораторной работы мы познакомились с временными рядами и способами их анализа и преобразования. Применив теоретические знания на практике, мы провели анализ конкретного временного ряда акций компании и выявили определенные закономерности, а также смогли привести его к наиболее удобному для анализа виду. Знания и практический опыт, полученные во время выполнения работы, определенно понадобятся нам по профессии в будущем.