Catalogue

Damien Mégy

13 mars 2023

Cet document affiche le catalogue de tous les vrai-faux disponibles à l'adresse https://github.com/exo7math/quiz-exo7, au format latex-AMC (auto-multiple-choice). Pour plus d'exemples d'utilisation, voir le sous-dossier « exemples/ ».

Ces questions sont celles de l'application de vrai-faux https://dmegy.perso.math.cnrs.fr/quiz.

Les questions sont en vrac. Des listes thématiques seront disponibles dans le sous-dossier \ll listes \gg du repo github.

Question 1	$ 5 - 3\sqrt{2} > 1.$		
	☐ Vrai		Faux
Question 2	$\sqrt{x^2} = x .$		
	Vrai		Faux
Question 3	x+3 < 2 est équivalent à $1 < x$; < 5.	
	☐ Vrai		Faux
Question 4	x+1 < 2 est équivalent à $-1 <$	x < 1	
	Vrai		Faux
Question 5	x-2 < 3 est équivalent à $-1 <$	x < 5	•
	Vrai		Faux
Question 6	Si $ x - 1 < 1$, alors $ x < 2$.		
	Vrai		Faux
Question 7	Si $ x < 2$, alors $ x - 1 < 1$.		
	☐ Vrai		Faux
Question 8	Si $ x+3 \le 1$ et $ x+1 \le 1$, alore	s x = -	-2.
	Vrai		Faux
Question 9	Si $ x - 5 \le 3$ et $ x \le 3$, alors 2 s	$\leq x \leq 3$	3.
	Vrai		Faux

Question 10	Si $ x-2 < 1$ et $ x < 1$, alors $x = 1$.
	☐ Vrai ☐ Faux
Commentaire ap	rès réponse: Inégalités strictes.
Question 11	Si $ x-2 \le 3$ ou $ x \le 3$, alors $-3 \le x \le 5$.
	Vrai Faux
Question 12	Si $ x-3 \le 1$ ou $ x-7 \le 1$, alors $ x-5 \le 3$.
	Vrai Faux
Question 13	$\label{eq:condition} \mbox{$<(x-3)$} \leq 1 \text{ ou } x-7 \leq 1 \mbox{$>$} \text{ \'equivaut \`a } \mbox{$<(x-5)$} \leq 3 \mbox{$>$}.$
	☐ Vrai ☐ Faux
Question 14	Si $x^2 + 2x \le 0$, alors $ x + 1 \le 1$.
	Vrai Faux
Question 15	Si $x^2 - 6x + 8 \le 0$, alors $ x - 3 \le 1$.
	Vrai Faux
Question 16	Si $ x+2 \le 1$, alors $ x \le 3$
	Vrai Faux
Question 17	Si $ x-1 \le 3$, alors $ x \le 2$
	Vrai Faux
Question 18	Si $ x-1 > 1$, alors $ 2x-1 > 1$.
	Vrai Faux
Question 19	Si $ x+1 > 1$, alors $ x+2 > 1$.
	Vrai Faux
Question 20	La somme d'une fonction paire et d'une fonction impaire est impaire.
	Vrai Faux
Question 21	Le produit d'une fonction paire et d'une fonction impaire est impair.
	Vrai Faux
Question 22	Le produit de deux fonctions impaires est impair.
	Vrai Faux
Question 23	La somme de deux fonctions paires est paire.
	Vrai Faux
Question 24	La somme de deux fonctions périodiques est périodique.
	Vrai Faux

Question 25 La somme de deux fonctions 2π -périodiques est 2π -périodique. Vrai	
Question 26 Une fonction dérivable est continue. Vrai	
Question 27 II existe des fonctions à la fois croissantes et décroissantes. Question 28 Une fonction continue est dérivable. Vrai Faux Question 29 Une fonction dérivable à dérivée positive est croissante. Vrai Faux Commentaire après réponse: Contre-exemple : $f: \mathbb{R}^* \to \mathbb{R}^*, \ x \mapsto -1/x$ a une dérivée pon'est pas croissante car $f(-1) > f(1)$. Question 30 Une fonction dérivable sur \mathbb{R} à dérivée positive est croissante. Vrai Faux Question 31 Une fonction croissante est à dérivée positive. Vrai Faux Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au nantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinatécédent.	
Question 27 Il existe des fonctions à la fois croissantes et décroissantes. ■ Vrai Faux Question 28 Une fonction continue est dérivable. □ Vrai ■ Faux Question 29 Une fonction dérivable à dérivée positive est croissante. □ Vrai ■ Faux Commentaire après réponse: Contre-exemple : $f : \mathbb{R}^* \to \mathbb{R}^*$, $x \mapsto -1/x$ a une dérivée pon'est pas croissante car $f(-1) > f(1)$. Question 30 Une fonction dérivable sur \mathbb{R} à dérivée positive est croissante. □ Vrai ■ Faux Question 31 Une fonction croissante est à dérivée positive. □ Vrai ■ Faux Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable Question 32 Une fonction croissante est continue. □ Vrai ■ Faux Question 33 Si f est dérivable, alors f' est continue. □ Vrai ■ Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f : E \to F$ est injective ssi tout élément de F possède au mantécédent. □ Vrai ■ Faux Question 35 Une fonction $f : E \to F$ est injective ssi tout élément de F possède exammentécédent.	
Question 28 Une fonction continue est dérivable. \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	
Question 28 Une fonction continue est dérivable. Vrai Faux Question 29 Une fonction dérivable à dérivée positive est croissante. Vrai Faux Commentaire après réponse: Contre-exemple : $f: \mathbb{R}^* \to \mathbb{R}^*$, $x \mapsto -1/x$ a une dérivée pon n'est pas croissante car $f(-1) > f(1)$. Question 30 Une fonction dérivable sur \mathbb{R} à dérivée positive est croissante. Vrai Faux Question 31 Une fonction croissante est à dérivée positive. Vrai Faux Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable. Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Vrai Faux	
Question 29 Une fonction dérivable à dérivée positive est croissante. \[\begin{array}{c} \text{Vrai} & \begin{array}{c} \text{Faux} \end{array} \] Commentaire après réponse: Contre-exemple : $f: \mathbb{R}^* \to \mathbb{R}^*$, $x \mapsto -1/x$ a une dérivée pon n'est pas croissante car $f(-1) > f(1)$. Question 30 Une fonction dérivable sur \mathbb{R} à dérivée positive est croissante. \[\begin{array}{c} \text{Vrai} & \begin{array}{c} \text{Faux} \end{array} \] Question 31 Une fonction croissante est à dérivée positive. \[\begin{array}{c} \text{Vrai} & \begin{array}{c} \text{Faux} \end{array} \] Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable. Question 32 Une fonction croissante est continue. \[\begin{array}{c} \text{Vrai} & \begin{array}{c} \text{Faux} \end{array} \] Question 33 Si f est dérivable, alors f' est continue. \[\begin{array}{c} \text{Vrai} & \begin{array}{c} \text{Faux} \end{array} \] Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. \[\begin{array}{c} \text{Vrai} & \begin{array}{c} \text{Faux} \end{array} \] Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède exaun antécédent. \[\begin{array}{c} \text{Vrai} & \begin{array}{c} \text{Faux} \end{array} \]	
Question 29 Une fonction dérivable à dérivée positive est croissante. \[\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Commentaire après réponse: Contre-exemple : $f: \mathbb{R}^* \to \mathbb{R}^*, \ x \mapsto -1/x$ a une dérivée pon'est pas croissante car $f(-1) > f(1)$. Question 30 Une fonction dérivable sur \mathbb{R} à dérivée positive est croissante. Question 31 Une fonction croissante est à dérivée positive. Vrai Faux Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable. Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au nantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède exa un antécédent. Vrai Faux	
Commentaire après réponse: Contre-exemple : $f: \mathbb{R}^* \to \mathbb{R}^*$, $x \mapsto -1/x$ a une dérivée pon'est pas croissante car $f(-1) > f(1)$. Question 30 Une fonction dérivable sur \mathbb{R} à dérivée positive est croissante. Question 31 Une fonction croissante est à dérivée positive. Vrai Faux Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable. Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au nantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Vrai Faux	
n'est pas croissante car $f(-1) > f(1)$. Question 30 Une fonction dérivable sur \mathbb{R} à dérivée positive est croissante. \[\begin{align*} \text{Vrai} & \begin{align*} \text{Faux} \\ \text{Question 31} & \text{Une fonction croissante est à dérivée positive.} \\ \text{Vrai} & \begin{align*} \text{Faux} \\ \text{Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable \\ \text{Question 32} & \text{Une fonction croissante est continue.} \\ \text{Vrai} & \begin{align*} \text{Faux} \\ \text{Question 33} & \text{Si } f \text{ est dérivable, alors } f' \text{ est continue.} \\ \text{Vrai} & \begin{align*} \text{Faux} \\ \text{Commentaire après réponse: Contre-exemple classique : } x \to x^2 \text{cos}(1/x). \\ \text{Question 34} & \text{Une fonction } f : E \to F \text{ est injective ssi tout élément de } F \text{ possède au nantécédent.} \\ \text{Urai} & \begin{align*} \text{Faux} \\ \text{Une fonction } f : E \to F \text{ est injective ssi tout élément de } F \text{ possède exau nantécédent.} \\ \text{Urai} & \begin{align*} \text{Faux} \\ \text{Vrai} & \begin{align*} Faux	
Question 31 Une fonction croissante est à dérivée positive. Vrai Faux Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au nantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent.	sitive et
Question 31 Une fonction croissante est à dérivée positive. Vrai Faux Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au nantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Vrai Faux Vrai Faux	
Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Vrai Faux Vrai Faux	
Commentaire après réponse: Une fonction croissante n'est même pas forcément dérivable Question 32 Une fonction croissante est continue. Urai Faux Question 33 Si f est dérivable, alors f' est continue. Urai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Urai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Urai Faux Vrai Faux Vrai Faux	
Question 32 Une fonction croissante est continue. Vrai Faux Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Vrai Faux Vrai Faux Vrai Faux	
Question 33 Si f est dérivable, alors f' est continue. Vrai Faux Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Vrai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Vrai Faux Vrai Faux	
Question 33 Si f est dérivable, alors f' est continue. \[\begin{aligned} &\text{Vrai} &\text{Faux} \\ &\text{Commentaire après réponse: Contre-exemple classique}: $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. \[\begin{aligned} &\text{Vrai} &\text{Faux} \\ &\text{Question 35} \\ &\text{un antécédent.} \end{aligned} \] Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. \[\begin{aligned} &\text{Vrai} &\text{Faux} \\ &\text{Faux} \\ &\text{Vrai} &\text{Faux} \\ \end{aligned}	
Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Urai Faux Question 35 Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Urai Faux Vrai Faux	
Commentaire après réponse: Contre-exemple classique : $x \mapsto x^2 \cos(1/x)$. Question 34 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent.	
Question 34 antécédent. Une fonction $f: E \to F$ est injective ssi tout élément de F possède au mantécédent. Vrai Faux Une fonction $f: E \to F$ est injective ssi tout élément de F possède examinantécédent. Vrai Faux Faux	
antécédent.	
Question 35 Une fonction $f:E\to F$ est injective ssi tout élément de F possède exacun antécédent.	oins un
un antécédent. Urai Faux	
<u> </u>	ctement
Question 36 Une fonction $f: E \to F$ est injective ssi tout élément de F possède au	
antécédent.	plus un
Vrai Faux	
Question 37 Une fonction $f: E \to F$ est surjective ssi $f(E) = F$.	
Vrai Faux	

Question 38	Si une fonction $f: E \to F$ est bijective, elle est surjective.
	Vrai Faux
Question 39	Si une fonction $f: E \to F$ est injective, elle est bijective.
	☐ Vrai ■ Faux
Question 40 vide.	Une fonction $f: E \to F$ est surjective ssi pour tout $y \in F$, $f^{-1}(\{y\})$ est non
	Vrai Faux
Question 41 $A \subset B$.	Soit A,B deux parties de $E.$ L'affirmation " $\forall x\in E,x\in A \ \Rightarrow \ x\in B$ " entraı̂ne
	Vrai Faux
Question 42	$\forall A, B, C \in \mathcal{P}(E), \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
	Vrai Faux
Question 43	$\forall A, B \in \mathcal{P}(E), \ (A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}.$
	Vrai Faux
Question 44	$\forall B \in \mathcal{P}(F), \ f^{-1}(B)^{\complement} = f^{-1}(B^{\complement}).$
	Vrai Faux
Question 45	$\forall A \in \mathcal{P}(E), \ f(A)^{\complement} = f(A^{\complement}).$
	Vrai Faux
Question 46	$\forall A, A' \in \mathcal{P}(E), \ f(A) \cap f(A') = f(A \cap A').$
	Vrai Faux
Question 47	Soit $f: E \to F$. Alors $\forall A \in \mathcal{P}(F), \ \exists X \subset f^{-1}(A), \ f(X) = A$.
	☐ Vrai ■ Faux
Question 48	$\forall B \in \mathcal{P}(F), \ f(f^{-1}(B)) \subset B.$
	Vrai Faux
Question 49	$\forall A, B \in \mathcal{P}(E), \ A \subset B \implies f(A) \subset f(B).$
	Vrai Faux
Question 50	$\forall A, B \in \mathcal{P}(E), \ A \neq B \implies f(A) \neq f(B).$
	Vrai Faux
$ \begin{array}{ccc} \textbf{Question} & \textbf{51} \\ \textbf{antécédent par} & f \end{array} $	$f:E\to F$ est surjective si, et seulement si, tout élément de F admet un $f.$
	Vrai Faux

Question 52 courbe représent	$f:\mathbb{R}\to\mathbb{R}$ est surjective si, et seulement si, toute droite horizontale coupe la tative de $f.$
	Vrai Faux
Question 53	Si $f: E \to F$ est injective, alors $f: E \to f(E)$ est bijective.
	Vrai Faux
Question 54	$f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array} \right. \text{ est surjective.}$
	☐ Vrai ■ Faux
Question 55	$f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array} \right. \text{ est injective.}$
	Vrai Faux
Question 56	$f: \left\{ \begin{array}{ccc} 2\mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n/2 \end{array} \right. \text{ est surjective.}$
	Vrai Faux
Question 57	Si $f: E \to F$ est surjective, alors $f^{-1}(f(A)) = A$ pour tout $A \in \mathcal{P}(E)$.
	Vrai Faux
Question 58	Si $f: E \to F$ est injective, alors $f^{-1}(f(A)) = A$ pour tout $A \in \mathcal{P}(E)$.
	Vrai Faux
Question 59	Une application $f: E \to E$ est bijective si, et seulement si, elle est injective.
	Vrai Faux
Question 60	Si une application $f:\mathbb{N}\to\mathbb{N}$ est surjective, alors elle est injective.
	Vrai Faux
Question 61 f est injective.	Soit $f:E\to F$ linéaire et B une base de $E.$ Si la famille $f(B)$ est une base, alors
	Vrai Faux
Question 62 ssi f est injectiv	Soit $f:E\to F$ linéaire et B une base de $E.$ Alors la famille $f(B)$ est une base re.
	Vrai Faux
Question 63 $f(B)$ est libre.	Soit $f:E\to F$ linéaire et B une base de $E.$ Alors f est injective ssi la famille
	Vrai Faux
Question 64 alors f est inject	Soit $f: E \to F$ linéaire et B une famille libre de E . Si la famille $f(B)$ est libre, tive.
	Vrai Faux

Correction

Question 65 famille $f(B)$ est	Soit $f:E\to F$ linéaire et B une famille libre de $E.$ Si f est injective, alors la t libre.		
	Vrai Faux		
Question 66 ssi f est surject	Soit $f: E \to F$ linéaire et B une base de E . Alors la famille $f(B)$ est une base sive.		
	Vrai Faux		
Question 67 alors f est surje	Soit $f: E \to F$ linéaire et B une base de E . Si la famille $f(B)$ est génératrice, ective.		
	Vrai Faux		
Question 68	L'image d'un sous-ev par une application linéaire est un sous-ev.		
	Vrai Faux		
Question 69	L'image réciproque d'un sous-ev par une application linéaire est un sous-ev.		
	Vrai Faux		
Question 70	La composée de deux applications linéaires est une application linéaire.		
	Vrai Faux		
Question 71	L'application identité d'un ev est un endomorphisme.		
	Vrai Faux		
Question 72	Une application constante entre espaces vectoriels est linéaire.		
	Vrai Faux		
Commentaire a	près réponse: C'est vrai uniquement pour l'application nulle.		
Question 73	L'application nulle entre deux ev est linéaire.		
	Vrai Faux		
Question 74	Une application linéaire est inversible ssi son déterminant est non nul.		
	Vrai Faux		
Commentaire a	près réponse: Le déterminant d'une application linéaire n'est pas bien défini.		
Question 75	Une application linéaire entre deux ev est inversible ssi elle admet une réciproque.		
	Vrai Faux		
Question 76 linéaire.	Si application linéaire entre deux ev est inversible, son inverse est une application		
	Vrai Faux		
Question 77 Si deux applications entre deux ev sont réciproques l'une de l'autre, alors l'une est linéaire ssi l'autre l'est également.			
	Vrai Faux		

Correction

Question 78	Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors p est inversible.
	Vrai Faux
Question 79	Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors p n'est pas inversible.
	Vrai Faux
Question 80	Si $p \in \mathcal{L}(E)$ et si $E = Ker(p) \oplus Im(p)$, alors $p \circ p = p$.
	Vrai Faux
Question 81	Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors $E = Ker(p) \oplus Im(p)$.
	Vrai Faux
Question 82	Si $f: E \to F$ est linéaire, alors $dim(F) = rg(f) + dim(Ker(f))$.
	Vrai Faux
Question 83 $dim(Ker(f))$.	Si $f:E\to F$ est linéaire et $dim(E)<\infty,$ alors $dim(E)=dim(Im(f))+$
	Vrai Faux
Question 84 $Im(f) + Im(g)$.	Soient f et g deux applications linéaires de E dans F . On a $Im(f+g)=$
	Vrai Faux
Commentaire ap	près réponse: Prendre par exemple $g = -f$.
Question 85 $Ker(f) + Ker(g)$	Soient f et g deux applications linéaires de E dans F . On a $Ker(f+g)=g$
	Vrai Faux
Commentaire ap	
	près réponse: Prendre par exemple $f=0$.
Question 86	orès réponse: Prendre par exemple $f=0$. Si F et G sont des sous-ev de E et $u\in\mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$.
Question 86	
Question 86 Question 87	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$.
	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$. Vrai \Box Faux
Question 87	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$. La somme de deux automorphismes de E est un automorphisme.
Question 87	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$. Vrai Faux La somme de deux automorphismes de E est un automorphisme. Vrai Faux
Question 87 Commentaire ap	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$. Wrai Faux La somme de deux automorphismes de E est un automorphisme. Vrai Faux Près réponse: Penser à Id et à $-Id$.
Question 87 Commentaire ap	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$. Vrai Faux La somme de deux automorphismes de E est un automorphisme. Vrai Faux Près réponse: Penser à Id et à $-Id$. La somme de deux endomorphismes de E est un endomorphisme de E .
Question 87 Commentaire ap Question 88	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$. Vrai Faux La somme de deux automorphismes de E est un automorphisme. Vrai Faux Près réponse: Penser à Id et à $-Id$. La somme de deux endomorphismes de E est un endomorphisme de E .
Question 87 Commentaire ap Question 88	Si F et G sont des sous-ev de E et $u \in \mathcal{L}(E)$, alors $u(F+G)=u(F)+u(G)$. Vrai Faux La somme de deux automorphismes de E est un automorphisme. Vrai Faux Près réponse: Penser à Id et à $-Id$. La somme de deux endomorphismes de E est un endomorphisme de E . Vrai Faux La somme de deux isomorphismes de E sur E est un isomorphisme de E sur E .

Question 91

Si la composée de deux endomorphismes de E est bijective, alors chaque endo-

morphisme est u	n automorphism	ne.			
			Vrai		Faux
Commentaire après réponse: En dimension finie c'est vrai.					
Question 92	1 est un nomb	re premi	er.		
			Vrai		Faux
Question 93	Tout nombre e	st divisi	ble par 1.		
			Vrai		Faux
Question 94	Tout nombre ϵ	st divisi	ble par lui-	mêm	e.
			Vrai		Faux
Question 95	Il existe quatre	e nombre	es premiers	infér	ieurs à 10.
			Vrai		Faux
Question 96	Il existe quatre	e nombre	es premiers	com	pris entre 10 et 20.
			Vrai		Faux
Question 97	Il existe quatre	e nombre	es premiers	com	pris entre 20 et 30.
			Vrai		Faux
Question 98	Il existe trois r	nombres	premiers c	ompr	is entre 20 et 30.
			Vrai		Faux
Question 99	12 et 8 ont une	e infinité	de diviseu	rs co	mmuns.
			Vrai		Faux
Question 100	16 et 18 ont	une infin	ité de mult	iples	communs.
			Vrai		Faux
Question 101	12 possède si	x diviseu	ırs.		
			Vrai		Faux
Question 102	30 possède h	uit divise	eurs.		
			Vrai		Faux
Question 103	26 possède de	eux divis	eurs.		
			Vrai		Faux
Question 104	24 possède h	uit divis€	eurs.		
			Vrai		Faux
Question 105	12 possède qu	ıatre div	riseurs.		
			Vrai		Faux

Question 106	57 est premier.	
	Urai Vrai	Faux
Question 107	43 est premier.	
	Vrai	Faux
Question 108	51 est premier.	
	Vrai	Faux
Question 109	9991 est premier.	
	Vrai	Faux
Commentaire apr	rès réponse: $9991 = 100^2 - 3^2$.	
Question 110	121 est premier.	
	Vrai Vrai	Faux
Commentaire app	rès réponse: $121 = 11^2$.	
Question 111	132 est divisible par trois.	
	Vrai	Faux
Question 112	Le pgcd de 48 et 60 est 6.	
	Vrai	Faux
Commentaire app	rès réponse: C'est 12.	
Question 113	Le pgcd de 40 et 36 est 4.	
	Vrai	Faux
Question 114	30 possède trois facteurs prem	iers.
	Vrai	Faux
Question 115	60 possède quatre facteurs pre	miers.
	Vrai Vrai	Faux
Question 116	$8 \times 7 = 56 \text{ et } 6 \times 9 = 54.$	
	Vrai	Faux
Question 117	$8 \times 7 = 56$ ou $6 \times 9 = 54$.	
	Vrai	Faux
Question 118	$7 \times 8 = 56 \text{ et } 9 \times 7 = 63.$	
	Vrai	Faux
Question 119	$7 \times 8 = 56 \text{ et } 9 \times 7 = 63.$	
	Vrai	Faux

Question 120	$8 \times 7 = 56 \text{ et } 9 \times 6 = 53.$				
	Vrai		Faux		
Question 121	$8 \times 7 = 56$ ou $9 \times 6 = 53$.				
	Vrai		Faux		
Question 122	$6 \times 8 = 56 \text{ et } 9 \times 8 = 72.$				
	Vrai		Faux		
Question 123	$9 \times 5 = 40$ et $8 \times 6 = 48$.				
	☐ Vrai		Faux		
Question 124	$8 \times 9 = 73 \text{ et } 9 \times 9 = 81.$				
	Vrai		Faux		
Question 125	$8 \times 9 = 73$ ou $9 \times 9 = 81$.				
	Vrai		Faux		
Question 126	$6 \times 7 = 42 \text{ ou } 9 \times 5 = 40.$				
	Vrai		Faux		
Question 127	_		Б		
0 4 100	Vrai		Faux		
Question 128	$8 \times 8 = 64 \text{ et } 9 \times 6 = 48.$ Vrai		Faux		
Question 129	_		raux		
Question 125			Faux		
Question 130	$9 \times 6 = 73 \text{ et } 8 \times 3 = 24.$				
•	☐ Vrai		Faux		
Question 131	$8 \times 5 = 40 \text{ ou } 6 \times 7 = 42.$				
	Vrai		Faux		
Question 132	(1+i)(1+i) = 2i				
	Vrai		Faux		
Question 133	(1+i)(1-i) = -2				
	☐ Vrai		Faux		
Commentaire après réponse: Le produit vaut 2					
Question 134	(1+i)(2+i) = -1 + 3i				
	Vrai		Faux		

Commentaire après réponse: Le produit vaut 1+3i

Correction

Question 158	(1-2i)(1-2i) = -3 +	-4i	
		Vrai	Faux
Commentaire aprè	es réponse: Le produit v	vaut $-3-4i$	
Question 159	(1-2i)(3+i) = 5-5i		
	■ V	Vrai 🗌	Faux
Question 160	(1-2i)(3-2i) = -1 -	- 8 <i>i</i>	
	■ V	Vrai 🗌	Faux
Question 161	(1-2i)(1+3i) = -7 +	- i	
		Vrai 🔳	Faux
Commentaire aprè	es réponse: Le produit v	vaut $7+i$	
Question 162	(3+i)(3+i) = 8 - 6i		
		⁷ rai	Faux
Commentaire aprè	ès réponse: Le produit v	vaut $8 + 6i$	
Question 163	(3+i)(3-2i) = 11-3	3i	
	V	Vrai	Faux
Question 164	(3+i)(1+3i) = 10i		
	V	7rai	Faux
Question 165	(3-2i)(3-2i) = 5+1	2i	
		7rai	Faux
Commentaire aprè	ès réponse: Le produit v	vaut $5-12i$	
Question 166	(3-2i)(1+3i) = -9 +	- 7 <i>i</i>	
		Vrai 💮	Faux
Commentaire aprè	es réponse: Le produit v	vaut $9 + 7i$	
Question 167	(1+3i)(1+3i) = -8 +	- 6 <i>i</i>	
	V	7rai	Faux
Question 168	Un argument de $-\sqrt{3}$	$+3i$ est $2\pi/3$.	
	V	Vrai 🗌	Faux
Question 169	Un argument de $3-i$	$\sqrt{3} \text{est } -\pi/6.$	
	■ V	⁷ rai	Faux
Question 170	Un argument de $\sqrt{2} + \epsilon$	$i\sqrt{6}$ est $\pi/3$.	
	■ V	7rai	Faux

Question 171	Un argument de $-\sqrt{3} + i$ est 5	$6\pi/6$.
	Vrai	Faux
Question 172	Un argument de $-1 - i\sqrt{3}$ est	$-2\pi/3$.
	Vrai	Faux
Question 173	Un argument de $\sqrt{3} + i$ est $\pi/$	6.
	Vrai	Faux
Question 174	Un argument de $3 + i\sqrt{3}$ est π	/3.
	Vrai	Faux
Question 175	Un argument de $-1 - i\sqrt{3}$ est	$5\pi/6$.
	Vrai	Faux
Question 176	Un argument de $-\sqrt{3}-i$ est -	$-2\pi/3$.
	Vrai	Faux
Question 177	Un argument de $-3 + i\sqrt{3}$ est	$2\pi/3$
	☐ Vrai	Faux
Question 178	Un argument de $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est 7	$\pi/3$.
	Vrai	Faux
Question 179	Un argument de $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est	$-4\pi/3$.
	Vrai	Faux
Question 180	Un argument de $-\frac{\sqrt{3}}{2} + \frac{i}{2}$ est	$7\pi/6$.
	☐ Vrai	Faux
Question 181	Un argument de $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$ est	$2\pi/3$.
	☐ Vrai	Faux
Question 182	Un argument de $1-i$ est $7\pi/4$	ŧ.
	Vrai	Faux
Question 183	Un argument de $-1 + i$ est -5	$\pi/4$.
	Vrai	Faux
Question 184	Un argument de $1+i$ est $5\pi/4$	·.
	Vrai	Faux

Question 185	Un argument de $2i$ est $10\pi/4$.	
	Vrai	Faux
Question 186	Un argument de $-3i$ est $9\pi/2$.	
	Vrai	Faux
Question 187	zw = z w .	
	Vrai	Faux
Question 188	$\overline{z}\overline{w} = \overline{z}\overline{w}.$	
	Vrai	Faux
Question 189	$\overline{z+w} = \overline{z} + \overline{w}.$	
	Vrai	Faux
Question 190	Re(z+w) = Re(z) + Re(w).	
	Vrai	Faux
Question 191	Re(zw) = Re(z)Re(w).	
	Vrai	Faux
Question 192	Im(zw) = Im(z)Im(w).	
	∐ Vrai	Faux
Question 193	$Re(z) = \frac{z+z}{2}.$	
	Vrai	Faux
Question 194	$Im(z) = \frac{z - \overline{z}}{2}.$	
	Vrai	Faux
Question 195	$ z+w \le z + w .$	
•	Vrai	Faux
Question 196	z+w < z + w .	
	☐ Vrai	Faux
Question 197	z+w = z + w .	
	Vrai	Faux
Question 198	$ z+w \ge z + w .$	
	Vrai	Faux
Question 199	$Re(z) \le z .$	
	Vrai	Faux

Question 200	$ Re(z) = z \iff z \in \mathbb{R}.$
	Vrai Faux
Question 201	$Re(z) = z \iff z \in \mathbb{R}_+.$
	Vrai Faux
Question 202	$ Re(z) \le z .$
	Vrai Faux
Commentaire apr	rès réponse: Dans un triangle rectangle, l'hypoténuse est supérieure aux côtés.
Question 203	$ Re(z\overline{w}) \le zw .$
	Vrai Faux
Commentaire apr	rès réponse: Aussi appelée inégalité de Cauchy-Schwarz.
Question 204	$ z+w = z + w \iff z\overline{w} \in \mathbb{R}_+.$
	Vrai Faux
Question 205	$ z+w = z + w \iff (w=0 \text{ ou } \exists \lambda\in\mathbb{R}_+, z=\lambda w).$
	Vrai Faux
Question 206	$ z+w ^2 = z ^2 + 2Re(z\overline{w}) + w ^2.$
	Vrai Faux
Question 207	$ z+w ^2 = z ^2 + 2 zw + w ^2.$
	Vrai Faux
Question 208	$ z+w ^2 = z ^2 + 2 z\overline{w} + w ^2.$
	Vrai Faux
Question 209	$ z+w ^2 = z ^2 + 2Re(zw) + w ^2.$
	Vrai Faux
Question 210	L'équation $2z = \overline{z}$ a une unique solution.
	Vrai Faux
Question 211	Les points d'affixe $-3-2i$, $-1-i$ et $3+i$ sont alignés.
	Vrai Faux
Question 212	Le triangle dont les sommets ont pour affixes i , 3 et $4 + 3i$ est isocèle.
	Vrai Faux
Question 213	Les solutions complexes de l'équation $ z-1 =3$ forment un cercle
	Vrai Faux

Question 214	Les solutions complexes de l'équation $ z-1 = z $ forment une droite
	Vrai Faux
Question 215	Les solutions complexes de l'équation $ z-1 = 2z $ forment un cercle
	Vrai Faux
Question 216	Les solutions complexes de l'équation $ z-1 =Re(z)+1$ forment une parabole
	Vrai Faux
Question 217	Les solutions complexes de l'équation $ z-1 =Im(z)+1$ forment une parabole
	Vrai Faux
Question 218	L'ensemble des solutions de l'équation $z=-\overline{z}$ est une droite.
	Vrai Faux
Question 219	Les solutions complexes de l'équation $ z-1 =Re(z)$ forment une parabole
	Vrai Faux
Question 220	Si $\frac{c-a}{b-a} \in \mathbb{R}$, alors A , B et C sont alignés
	Vrai Faux
Question 221	Si $\frac{c-a}{b-a} \in i\mathbb{R}$, alors ABC est rectangle en A
	Vrai Faux
Question 222	Si $\frac{c-a}{b-a} = i$, alors ABC est un triangle indirect
	☐ Vrai ■ Faux
Question 223	Si $\frac{c-a}{b-a} = i$, alors ABC est isocèle
	Vrai Faux
Question 224	Si ABC est isocèle, $\left \frac{c-a}{b-a}\right = 1$.
	Vrai Faux
Question 225	
Question 225	Si ABC est isocèle en A , alors $\frac{c-a}{b-a} = i$,
Overtion 226	Vrai Faux
Question 226	Si $a+c=b+d$, alors $ABCD$ est un parallélogramme
Question 227	a+c=b+d si et seulement si $ABCD$ est un parallélogramme
Question 221	u+c=v+u si et seulement si $ADCD$ est un paranelogramme Vrai Faux
Question 220	<u> </u>
Question 228	Si $ABCD$ est un carré, alors $\frac{d-b}{c-a} = i$.
	Vrai Faux

Question 229	Si $ABCD$ est un carré direct, alors $\frac{d-b}{c-a} = i$.
	Vrai Faux
Question 230	Si $ABCD$ est un carré, alors $\frac{d-b}{c-a} \in \{i, -i\}$.
	Vrai Faux
Question 231	Si $\frac{d-b}{c-a} = i$, alors $ABCD$ est un carré
	Vrai Faux
Question 232	Si $ABCD$ est un losange, alors $\frac{d-b}{c-a}$ est imaginaire pur.
	Vrai Faux
Question 233	Si $ABCD$ est un losange, alors $\left \frac{d-b}{c-a} \right = 1$.
	Vrai Faux
Question 234	Si $\frac{d-b}{c-a}$ est imaginaire pur, alors $ABCD$ est un losange.
	Vrai Faux
Question 235	Si $ABCD$ est un rectangle, alors $\left \frac{d-b}{c-a} \right = 1$.
	Vrai Faux
Question 236	Si $ABCD$ est un rectangle, alors $a - b = c - d$.
	Vrai Faux
Question 237	Si $\frac{c-a}{b-a} = 1 + i$, alors ABC est rectangle.
	Vrai Faux
Question 238	Si $\frac{c-a}{b-a} = 1 + i$, alors ABC est isocèle.
	Vrai Faux
Question 239	La dérivée de $x \mapsto -1/x$ est $x \mapsto 1/x^2$.
	Vrai Faux
Question 240	La dérivée de $x \mapsto 1/x^2$ est $x \mapsto -2/x^3$.
	Vrai Faux
Question 241	$x \mapsto -3/x^4$ est la dérivée de $x \mapsto 1/x^3$.
	Vrai Faux
Question 242	$x \mapsto 2/x^3$ est la dérivée seconde de $x \mapsto 1/x$.
	Vrai Faux

Question 243	La dérivée seconde d	$e x \mapsto 1/x$	est x	$\mapsto 3/x^3$.
		Vrai		Faux
Question 244	La dérivée de $x \mapsto x$	$\sqrt{x} \operatorname{est} x \mapsto$	$\frac{1}{2\sqrt{x}}$	
		Vrai		Faux
Question 245	La dérivée de $x \mapsto cc$	os(x) est $x +$	$\rightarrow -s$	$\sin(x)$.
		Vrai		Faux
Question 246	$x \mapsto \sin(x)$ est la dér	ivée de $x \vdash$	$\rightarrow \cos($	(x).
		Vrai		Faux
Question 247	La dérivée seconde d	$e x \mapsto \sin(x)$	c) est	$x \mapsto -\sin(x)$.
		Vrai		Faux
Question 248	$(f \times g)' = f' \times g + f$	$f \times g'$.		
		Vrai		Faux
Question 249	$(f \times g)' = f' \times g - f$	$\times g'$.		
		Vrai		Faux
Question 250	$(f/g)' = \frac{f' \times g - f \times g'}{g^2}.$			
		Vrai		Faux
Question 251	$(f/g)' = \frac{g \times f' - g' \times f}{g^2}.$			
		Vrai		Faux
Question 252	$(f/g)' = \frac{f' \times g + f \times g'}{g^2}.$			
		Vrai		Faux
Question 253	$(f/g)' = \frac{f \times g' - f' \times g}{g^2}.$			
		Vrai		Faux
Question 254	$(g/f)' = \frac{g' \times f - g \times f'}{f^2}.$			
•		Vrai		Faux
Question 255	Si $n \in \mathbb{N}^*$, la dérivée		r^n est	
Question 200		Vrai		Faux
Question 256	Si $n \in \mathbb{N}$, la dérivée o		n est	
-y 0.000012 2000		Vrai		Faux
		, 2001		_ ~ ~ ~ ~

Question 257	Si $n \in \mathbb{Z}^*$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto -n/x^{n+1}$.
	Vrai Faux
Question 258	Si $n \in \mathbb{N}$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto n/x^{n+1}$.
	Vrai Faux
Question 259	Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto 1/x^n$ est $x \mapsto n/x^{n-1}$.
	Vrai Faux
Question 260	Si $n \in \mathbb{Z}^*$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.
	Vrai Faux
Question 261	Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.
	Vrai Faux
Question 262	Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n+1}$.
	Vrai Faux
Question 263	Si $n \in \mathbb{N}^*$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.
	Vrai Faux
Question 264	$(\sqrt{f})' = \frac{f'}{2\sqrt{f}}.$
	Vrai Faux
Question 265	Si $n \in \mathbb{N}$, la dérivée de f^n est $f'f^{n-1}$.
	Vrai Faux
Commentaire apr	ès réponse: Faux pour $n=0$
Question 266	La dérivée de $x \mapsto x \ln(x) - x$ est $x \mapsto \ln(x)$.
	Vrai Faux
Question 267	Une primitive de $x \mapsto 1/x$ est $x \mapsto \ln x $.
	Vrai Faux
Question 268	$x \mapsto -1/x^2$ est une primitive de $x \mapsto 2/x^3$.
	Vrai Faux
Question 269	Une primitive de $x \mapsto -1/x^3$ est $x \mapsto 1/2x^2$.
	Vrai Faux
Question 270	Une primitive de $x \mapsto 1/x^3$ est $x \mapsto -2/x^2$.
	Vrai Faux

Question 271	$x\mapsto 2/x^2$ est une primitive de $x\mapsto 1/x^3$.
	Vrai Faux
Question 272	La dérivée seconde de $x \mapsto \ln(x)$ est $x \mapsto -1/x^2$.
	Vrai Faux
Question 273	$x \mapsto \sin(x)$ est une primitive de $x \mapsto \cos(x)$.
	Vrai Faux
Question 274	Une primitive de $x \mapsto \sin(x)$ est $x \mapsto -\cos(x)$.
	Vrai Faux
Question 275	Une primitive de $x \mapsto \cos(x)$ est $x \mapsto -\sin(x)$.
	☐ Vrai Faux
Question 276	$(g \circ f)' = (g' \circ f) \times f'.$
	Vrai Faux
Question 277	Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, \sqrt{f} est dérivable.
	Vrai Faux
Question 278	Si $f: \mathbb{R} \to \mathbb{R}_+$ est dérivable, \sqrt{f} est dérivable.
	☐ Vrai ■ Faux
Commentaire apro	ès réponse: Prendre $x \mapsto x^2$.
Question 279	Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, la dérivée de $\ln f$ est $\frac{f'}{f}$.
	Vrai Faux
Question 280	Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f $.
	Vrai Faux
Question 281	Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$.
	☐ Vrai ■ Faux
Commentaire apro	ès réponse: Attention au logarithme.
Question 282	Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$.
	Vrai Faux
Question 283	Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{-1\}$.
	x+1 Vrai Faux

Question 284	Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{0\}$.
	☐ Vrai Faux
Question 285	Le domaine de définition de l'expression $\frac{x}{x^2+1}$ est $\mathbb{R}\setminus\{0\}$.
	☐ Vrai Faux
Question 286	Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R} \setminus \{-1,2\}$.
	Vrai Faux
Question 287	Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R} \setminus \{-2,1\}$.
	Vrai Faux
Question 288	Le domaine de définition de l'expression $\frac{3+x}{(x+1)(x-2)}$ est $\mathbb{R} \setminus [-1,2]$.
	Vrai Faux
Question 289	Le domaine de définition de l'expression $\frac{3x^2+x+1}{x+2}$ est $]-\infty,-2[\cup]-2,+\infty[$
	Vrai Faux
Question 290	Le domaine de définition de l'expression $\frac{x+2}{x^2+2x+1}$ est $]-\infty,-1[\cup]-1,+\infty[$
	Vrai Faux
Question 291	Le domaine de définition de l'expression $\frac{x+2}{x^2+2}$ est \mathbb{R} .
	Vrai Faux
Question 292	Le domaine de définition de l'expression $\frac{x+2}{x^2+1}$ est $\mathbb{R} \setminus \{-1,1\}$.
	Vrai Faux
Question 293	Le domaine de définition de l'expression $\frac{2x-1}{x^2-6x+9}$ est $]-\infty,3[\cup]3,+\infty[.$
	Vrai Faux
Question 294	Le domaine de définition de l'expression $\frac{x^2+3}{x^2-1}$ est $\mathbb{R}\setminus\{-1,1\}$.
	Vrai Faux
Question 295	Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $\mathbb{R}\setminus\{-2,2\}$.
	Vrai Faux

Question 296	Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $]-\infty,-2[\cup]2,+\infty[.$
	Vrai Faux
Question 297	Le domaine de définition de l'expression $\frac{1}{x^2 - 3x}$ est $\mathbb{R} \setminus \{0, 3\}$.
	Vrai Faux
Question 298	Le domaine de définition de l'expression $\frac{x-2}{x^2-x}$ est $]-\infty,0[\cup]1,+\infty[.$
	Vrai Faux
Question 299	Le domaine de définition de l'expression $\frac{x-2}{x^2+2x}$ est $\mathbb{R}\setminus\{0,2\}$.
	Vrai Faux
Question 300	Le domaine de définition de l'expression $\frac{1}{3x^2 + 5x}$ est $\mathbb{R} \setminus \{-5/3, 0\}$.
	Vrai Faux
Question 301	Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,3/2\}$.
	Vrai Faux
Question 302	Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,-2/3\}$.
	Vrai Faux
Question 303	Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{1\}$.
	Vrai Faux
Question 304	Le domaine de définition de l'expression \sqrt{x} est $[0, +\infty[$.
	Vrai Faux
Question 305	Le domaine de définition de l'expression $\sqrt{x+2}$ est $[0, +\infty[$.
	Vrai Faux
Question 306	Le domaine de définition de l'expression $\sqrt{x+2}$ est $[2, +\infty[$.
	Vrai Faux
Question 307	Le domaine de définition de l'expression $\sqrt{2x-6}$ est $[6, +\infty[$.
	Vrai Faux
Question 308	Le domaine de définition de l'expression $\sqrt{x+3}$ est $]3, +\infty[$.
	Vrai Faux

Correction

Question 309	Le domaine de définition de l'expression $\sqrt{x-1}$ est $]-1,+\infty[$.
	☐ Vrai ■ Faux
Question 310	Le domaine de définition de l'expression $\sqrt{x-4}$ est $]-\infty,4].$
	Vrai Faux
Question 311	Le domaine de définition de l'expression $\sqrt{x-5}$ est $[5, +\infty[$.
	Vrai Faux
Question 312	Le domaine de définition de l'expression $\sqrt{3-x}$ est $]-\infty,3].$
	Vrai Faux
Question 313	Le domaine de définition de l'expression $\sqrt{1-x}$ est $]-\infty,-1].$
	☐ Vrai ■ Faux
Question 314	Le domaine de définition de l'expression $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ est le même que celui de
l'expression $\sqrt{\frac{x-x}{x+x}}$	
v <i>x</i> +	Vrai Faux
Question 315	——————————————————————————————————————
de l'expression $$	Le domaine de définition de l'expression $\sqrt{x-1}\sqrt{x+1}$ est le même que celui $(x-1)(x+1)$.
	Vrai Faux
Question 316	Le domaine de définition de l'expression $\frac{1}{\sqrt{x-2}}$ est $[2, +\infty[$.
	Vrai Faux
0 4 91	
Question 317	Le domaine de définition de l'expression $\frac{1}{\sqrt{2x-6}}$ est $]3,+\infty[$.
	Vrai Faux
Question 318	Le domaine de définition de l'expression $\sqrt{\sqrt{x-2}-1}$ est $[3,+\infty[$.
	Vrai Faux
Question 319	Le domaine de définition de l'expression $\sqrt{\sqrt{x-1}-2}$ est $[3,+\infty[$.
	☐ Vrai ■ Faux
Question 320	Le domaine de définition de l'expression $\sqrt{\sqrt{x-2}-2}$ est $[6,+\infty[$.
	Vrai Faux
Question 321	Le domaine de définition de l'expression $\sqrt{x^2-2}$ est $[-2,2]$.
	Vrai Faux

Question 322	Le domaine de définition de l'expression $\sqrt{x^2 - 2}$ est $] - \infty, -2] \cup [2, +\infty[$.
	Vrai Faux
Question 323	Le domaine de définition de l'expression $\sqrt{x^2-1}$ est $]-\infty,-1]\cup[1,+\infty[$.
	Vrai Faux
Question 324	Les expressions $\ln(x^2)$ et $2\ln(x)$ ont le même domaine de définition.
	Vrai Faux
Question 325 définition.	Les expressions $\ln(x^2 - 1)$ et $\ln(x + 1) + \ln(x - 1)$ ont le même domaine de
	Vrai Faux
Question 326	Le domaine de définition de l'expression $\ln(x-1)$ est $[1, +\infty[$.
	Vrai Faux
Question 327	Le domaine de définition de l'expression $\ln(x-5)$ est $]5, +\infty[$.
	Vrai Faux
Question 328	Le domaine de définition de l'expression $\ln(x-2)$ est $]-2,+\infty[$.
	Vrai Faux
Question 329	Le domaine de définition de l'expression $\ln(2-x)$ est $]2, +\infty[$.
	Vrai Faux
Question 330	Le domaine de définition de l'expression $\ln(3-x)$ est $]-\infty,3[.$
	Vrai Faux
Question 331	Le domaine de définition de l'expression $\ln(2x+1)$ est $]-1,+\infty[$.
	Vrai Faux
Question 332	Le domaine de définition de l'expression $\ln(2x+2)$ est $]-1,+\infty[$.
	Vrai Faux
Question 333	Le domaine de définition de l'expression $\ln(2x+2)$ est $]-2,+\infty[$.
	Vrai Faux
Question 334	Le domaine de définition de l'expression $\ln(1+x+x^2)$ est \mathbb{R} .
	Vrai Faux
Question 335	Le domaine de définition de l'expression $\ln(x^2 + 3x + 2)$ est \mathbb{R} .
	Vrai Faux
Question 336	Le domaine de définition de l'expression $\ln(x^2-1)$ est $]-\infty,-1[\cup]1,+\infty[$.
	Vrai Faux

Question 337	Le domaine de définition de l'expression $\ln(x^2-1)$ est $]-\infty,1[\cup]1,+\infty[.$
	Vrai Faux
Question 338	Le domaine de définition de l'expression $\ln(x^2-2)$ est $]-\infty,-2[\cup]2,+\infty[$.
	Vrai Faux
Question 339	Le domaine de définition de l'expression $\ln(2-x^2)$ est $]-\sqrt{2},\sqrt{2}[.$
	Vrai Faux
Question 340	Le domaine de définition de l'expression $\ln(x^2 - 4)$ est $]2, +\infty[$.
	Vrai Faux
Question 341	Le domaine de définition de l'expression $\frac{x-3}{\ln(x+1)}$ est $]-1,+\infty[$.
	Vrai Faux
Question 342	Le domaine de définition de l'expression $\frac{x+5}{\ln(x-2)}$ est $]2,+\infty[$.
	Vrai Faux
Question 343	Le domaine de définition de l'expression $\frac{2x}{\ln(x-1)}$ est $]1,2[\cup]2,+\infty[.$
	Vrai Faux
Question 344	
Solution rédi	gée à évaluer :< « Soit $x \in \mathbb{R}$. L'expression $\frac{x-2}{x-3}$ est bien définie
ssi $x \neq 3$. sr> Si	i c'est le cas, l'expression $\sqrt{\frac{x-2}{x-3}}$ est bien définie ssi $\frac{x-2}{x-3}$ est positive, autre-
ment dit ssi $x - 3$ définie.»	$2 \ge x-3$ autrement dit jamais. L'expression $\sqrt{\frac{x-2}{x-3}}$ n'est donc jamais bien
	☐ Vrai Faux
Commentaire aprè	ès réponse: Confusion entre ≥ 0 et ≥ 1 mais même là le reste est incorrect.
Question 345	$<$ b>Énoncé $<$ /b> : déterminer le domaine de définition de $\sqrt{\frac{1}{x+1}}$. $<$ br>
Solution rédi	gée à évaluer :< w> < Soit $x \in \mathbb{R}$. L'expression $\frac{1}{x+1}$ est bien définie
	Si c'est le cas, l'expression $\sqrt{\frac{1}{x+1}}$ est bien définie ssi $\frac{1}{x+1}$ est positive, autre-
ment dit ssi $x + 1$ $] - 1, +\infty[.»$	l'est, et donc ssi $x \ge -1.$ st Le domaine de définition de $\sqrt{\frac{1}{x+1}}$ est donc
	Vrai Faux

Vrai Faux

Commentaire après réponse: L'étape avec «> 0» est incorrecte, la racine carrée de 0 est bien définie.

Vrai Faux

Vrai Faux

Commentaire après réponse: Si le numérateur et le dénominateur sont négatifs, alors le quotient est positif.

Vrai Faux

Commentaire après réponse: Par exemple, si x = -1, on voit que $\frac{x}{x+2} < 0$.

Question 350

b>Énoncé : déterminer le domaine de définition de $\sqrt{x-3}^2$.

b>Solution rédigée à évaluer :

 « Soit $x \in \mathbb{R}$. On a $\sqrt{x-3}^2 = \sqrt{(x-3)^2} = |x-3|$. Le domaine de définition de $\sqrt{x-3}^2$ est donc \mathbb{R} tout entier.»

Vrai Faux

Commentaire après réponse: Erreur dès le début.

Question 351 b>Énoncé : déterminer le domaine de définition de $\sqrt{-1+x-x^2}$. b>Solution rédigée à évaluer : b>cb> «Soit $x \in \mathbb{R}$. L'expression $\sqrt{-1+x-x^2}$ est bien définie si et seulement si $-1+x-x^2 \geq 0$. Ce trinôme a un discriminant égal à $\Delta = b^2 - 4ac = -3$ donc n'a aucune racine réelle. Il ne s'annule donc jamais et donc est toujours positif. Le domaine de définition de $\sqrt{-1+x-x^2}$ est donc $\mathbb R$ tout entier.»			
Vrai Faux			
Commentaire après réponse: Discriminant correct mais le trinôme est négatif.			
Question 352 			
Vrai Faux			
Commentaire après réponse: La toute première étape est incorrecte (et la dernière aussi).			
Question 353 b>Énoncé : déterminer le domaine de définition de $\sqrt{x-1}\sqrt{x+1}$. b> 			
Vrai Faux			
Commentaire après réponse: Erreur sur le domaine de la deuxième racine.			
Question 354 b>Énoncé : déterminer le domaine de définition de $\sqrt{x+2}\sqrt{x+3}$. b>Solution rédigée à évaluer : «Soit $x \in \mathbb{R}$. L'expression $\sqrt{x+2}$ est bien définie si et seulement si $x \ge -2$. L'expression $\sqrt{x+3}$ est bien définie si et seulement si $x \ge -3$ Le domaine de définition de $\sqrt{x+2}\sqrt{x+3}$ est donc $[-2,+\infty[.»]$			
Vrai Faux			
Question 355 b>Énoncé : déterminer le domaine de définition de $\sqrt{2+3x+4x^2}$. b>Solution rédigée à évaluer : «Soit $x \in \mathbb{R}$. Comme les coefficients 2, 3 et 4 du trinôme $2+3x+4x^2$ sont positifs, celui-ci est positif et sa racine carrée est donc bien définie. Le domaine de définition de $\sqrt{2+3x+4x^2}$ est donc \mathbb{R} tout entier.»			
Vrai Faux			
Commentaire après réponse: Faute de raisonnement sur la justification de positivité du trinôme, donc réponse incorrecte même si le domaine est un peu par hasard le bon.			
Question 356 b>Énoncé : déterminer le domaine de définition de $\sqrt{(x+2)(x-3)}.<$ br> b>Solution rédigée à évaluer : b>Solution rédigée à évaluer : b>sion $\sqrt{(x+2)(x-3)}$ est bien définie si et seulement si $(x+2)(x-3)$ est positive, c'est-à-dire ssi $x \geq 3$ ou $x \leq -2$. Le domaine de définition de $\sqrt{(x+2)(x-3)}$ est donc $\mathbb{R} \setminus]-2,3[.»$			
Vrai Faux			

Question 357 $\sqrt{(x-2)(x+1)}$. $<$ b>Énoncé : déterminer le domaine de définition de $\sqrt{(x-2)(x+1)}$. $<$ b>Solution rédigée à évaluer : $<$ br/> $<$ br/> $<$ br/> sion $\sqrt{(x-2)(x+1)}$ est bien définie si et seulement si $(x-2)(x+1)$ est positive, c'est-à-dire ssi $x \ge 2$ ou $x \le -1$. Le domaine de définition de $\sqrt{(x-2)(x+1)}$ est donc $\mathbb{R} \setminus [-1,2]$.»			
☐ Vrai ■ Faux			
Commentaire après réponse: Erreur sur l'exclusion des bornes.			
Question 358 $\sqrt{(1-x)(x-2)}.$ $<$ b>Énoncé : déterminer le domaine de définition de $\sqrt{(1-x)(x-2)}.$ $<$ b>Solution rédigée à évaluer : $<$ b> $<$ br/> $<$ contract $x \in \mathbb{R}$. L'expression $\sqrt{(1-x)(x-2)}$ est bien définie ssi $(1-x)(x-2)$ est positive c'est-à-dire ssi $x \in [1,2]$. Le domaine de définition de $\sqrt{(1-x)(x-2)}$ est donc $[1,2]$.»			
Vrai Faux			
Question 359 			
Vrai Faux			
Commentaire après réponse: Réponse correcte même si c'est dommage d'utiliser le discriminant pour un trinôme facile à factoriser comme celui-ci.			
Question 360 			
Vrai Faux			
Commentaire après réponse: Réponse correcte mais on ne doit surtout pas utiliser un discriminant pour cela : l'expression x^2-6x+9 doit être reconnue, c'est l'identité remarquable pour $a^2-2ab+b^2$.			
Question 361 			
Vrai Faux			
Commentaire après réponse: Réponse correcte mais on ne doit surtout pas utiliser un discriminant pour cela : l'expression $x^2 - 9$ doit être reconnue, c'est l'identité remarquable pour $a^2 - b^2$.			

Question 362	 b>Énoncé : déterminer le domaine de définition de			
$\sqrt{\frac{x}{(x-1)(x+1)}}$.				
sion $\frac{x}{(x-1)(x+1)}$ est bien définie ssi $(x-1)(x+1) \neq 0$ c'est-à-dire ssi $x \notin \{-1,1\}$. Si c'est le cas, $\sqrt{\frac{x}{(x-1)(x+1)}}$ est bien définie ssi $\frac{x}{(x-1)(x+1)} \geq 0$, autrement dit ssi $-1 \leq x \leq 0$ ou				
cas, $\sqrt{\frac{x}{(x-1)(x-1)}}$	$\frac{x}{(x-1)(x+1)}$ est bien définie ssi $\frac{x}{(x-1)(x+1)} \ge 0$, autrement dit ssi $-1 \le x \le 0$ ou			
$x \ge 1$. Le domain	e de définition de $\sqrt{\frac{x}{(x-1)(x+1)}}$ est donc $]-1,0]\cup]1,+\infty[.»$			
	Vrai Faux			
Question 363	Les droites d'équations $2x + y = 1$ et $x - 2y = 3$ sont perpendiculaires.			
	Vrai Faux			
Question 364	Les droites d'équations $2x + y = 1$ et $x + 2y = 1$ sont perpendiculaires.			
	Vrai Faux			
Question 365	Les droites d'équations $3x - y = 1$ et $3x - y = 5$ sont parallèles.			
	Vrai Faux			
Question 366	Les droites d'équations $2x - 3y = 1$ et $4x - 6y = 3$ sont parallèles.			
	Vrai Faux			
Question 367 quadrant.	Les droites d'équations $x+y=1$ et $x-2y=0$ se coupent dans le premier			
	Vrai Faux			
Question 368 quadrant.	Les droites d'équations $x-y=1$ et $x-2y=0$ se coupent dans le deuxième			
	Vrai Faux			
Question 369	La droite d'équation $x+y=1$ intersecte le cercle de centre O et de rayon 1.			
	Vrai Faux			
Question 370	La droite d'équation $x+y=-1$ intersecte le cercle de centre O et de rayon 1.			
	Vrai Faux			
Question 371	La droite d'équation $3x + 2y = 6$ intersecte le cercle de centre O et de rayon 1.			
	Vrai Faux			
Question 372	Le point de coordonnées $(1,1)$ appartient à la droite d'équation $2x+3y+5=0$			
	Vrai Faux			
Question 373	Le point de coordonnées $(2,3)$ appartient à la droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$.			
	Vrai Faux			

Question 374 Le point de coordonnées $(-1, -2)$ appartient à la droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \right $			
	Vrai Faux		
Question 375	La droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation $2x+3y+7=0$		
	Vrai Faux		
Question 376	La droite $\left\{ \begin{pmatrix} t+1\\3t-1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ peut être définie par l'équation $3x-y-4=0.$		
	Vrai Faux		
Question 377	La droite $\left\{ \begin{pmatrix} 2t+1\\3t+2 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ peut être définie par l'équation $3x+2y-7=0.$		
	Vrai Faux		
Question 378	La droite $\left\{ \begin{pmatrix} 2t \\ 3t+1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ est parallèle à la droite d'équation $3x-2y+7=0$.		
	Vrai Faux		
Question 379	La droite $\left\{ \begin{pmatrix} 5t+1\\2t-1 \end{pmatrix} \middle t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation $2x-5y+7=0$		
	☐ Vrai ■ Faux		
Question 380	La droite d'équation $3x - y = 1$ est dirigée par le vecteur de coordonnées $(3, -1)$.		
	Vrai Faux		
Question 381	La droite d'équation $3x - 2y = 5$ est dirigée par le vecteur de coordonnées $(2,3)$.		
	Vrai Faux		
Question 382 $x - 2y = 1$.	Le vecteur de coordonnées $(-1,2)$ est un vecteur normal à la droite d'équation		
	Vrai Faux		
Question 383	Le vecteur de coordonnées $(1,3)$ dirige la droite d'équation $x+3y=2$.		
	Vrai Faux		
Question 384	2 est une solution de l'équation $x^4 - 3x^3 + x^2 + 4 = 0$.		
	Vrai Faux		
Commentaire apr	ès réponse: Notez qu'on ne demande pas de résoudre l'équation.		
Question 385	2 est une solution de l'équation $x^6 - x^4 - 6x^3 = 0$.		
	Vrai Faux		
Commentaire apr	ès réponse: Les petites puissances de 2 sont à connaître.		

Question 386	2 est une solution de l'équation $-x^5 + 3x^4 - 6x + 2 = 0$.			
	Vrai Faux			
Commentaire aprè	ès réponse: Les petites puissances de 2 sont à connaître.			
Question 387	Une solution de l'équation $x^3 - 10x + 3 = 0$ est 3.			
	Vrai Faux			
Question 388	3 est une solution de l'équation $x^3 - 6x + 8 = 0$.			
	Vrai Faux			
Commentaire aprè ne peut pas march	ès réponse: Pas besoin de calculer : toutes les puissances de 3 sont impaires, ça her.			
Question 389	L'équation $x^2 - 3x + 2 = 0$ a une solution dans \mathbb{Z} .			
	Vrai Faux			
Question 390	L'équation $x^2 - 3x + 2 = 0$ a deux solutions dans \mathbb{Z} .			
	Vrai Faux			
Question 391	$1/2$ est une solution de l'équation $x^2 + x - 1 = 0$.			
	Vrai Faux			
Commentaire aprè	ès réponse: Notez qu'on ne demande pas de résoudre l'équation.			
Question 392	-1 est une solution de l'équation $ x+2/3 -1/3=0$.			
	Vrai Faux			
Commentaire aprè	ès réponse: Notez qu'on ne demande pas de résoudre l'équation.			
Question 393	5 est une solution de l'équation $x^2 - 6x + 1 = 0$.			
	Vrai Faux			
Commentaire aprè	ès réponse: Notez qu'on ne demande pas de résoudre l'équation.			
Question 394	L'équation $x^2 - 6x + 1 = 0$ a deux solutions distinctes dans \mathbb{R} .			
	Vrai Faux			
Commentaire aprè	ès réponse: Le discriminant du trinôme doit être calculé de tête.			
Question 395	L'équation $x^2 - 6x + 1 = 0$ a deux solutions distinctes dans \mathbb{Q} .			
	Vrai Faux			
Commentaire après réponse: $\sqrt{32} = 4\sqrt{2}$ n'est pas rationnel.				
Question 396	L'équation $x^2 - 3x - 4 = 0$ a deux solutions distinctes dans \mathbb{Q} .			
	Vrai Faux			

Commentaire après réponse: Dans ce cas particulier, le discriminant est un carré.

Question 397	Le trinôme $X^2 - X - 3$ a deux racines distinctes dans \mathbb{R} .		
	Vrai Faux		
Commentaire apr	ès réponse: Le discriminant du trinôme doit être calculé de tête.		
Question 398	Le trinôme $X^2 - 3X + 3$ a deux racines distinctes dans \mathbb{R} .		
	Vrai Faux		
Commentaire apr	ès réponse: Ici les racines sont distinctes, mais complexes		
Question 399	Le trinôme $X^2 - 6X + 9$ a deux racines distinctes.		
	Vrai Faux		
Commentaire apr calculer le discrim	ès réponse: On doit reconnaître l'identité remarquable avant même de penser à ninant.		
Question 400	Le trinôme $X^2 + 8X + 16$ a deux racines distinctes.		
	Vrai Faux		
Commentaire apr calculer le discrim	ès réponse: On doit reconnaître l'identité remarquable avant même de penser à ninant.		
Question 401	L'équation $e^x = -5$, d'inconnue $x \in \mathbb{R}$, admet $\ln(-5)$ comme solution.		
	Vrai Faux		
Commentaire apropas.	ès réponse: Une exponentielle est strictement positive et d'ailleurs $\ln(-5)$ n'existe		
Question 402	Il est possible qu'un espace vectoriel possède un seul élément.		
	Vrai Faux		
Question 403	Il est possible qu'un espace vectoriel ne possède aucun élément.		
	Vrai Faux		
Question 404	Il est possible qu'un \mathbb{R} -ev possède exactement deux éléments.		
	Vrai Faux		
Question 405	Soit E un \mathbb{R} -ev, et F,G des sous-ev. Alors, $F\cap G$ est un sous-ev.		
	Vrai Faux		
Question 406	Soit E un \mathbb{R} -ev, et F,G des sous-ev. Alors, $F\cup G$ est un sous-ev.		
	Vrai Faux		
Question 407	Soit E un \mathbb{R} -ev, et F,G des sous-ev. Alors, $F+G$ est un sous-ev.		
	Vrai Faux		
Question 408 Soit E un \mathbb{R} -ev de dimension finie, et F,G des sous-ev. Si $dim(F)+dim(G)=dim(E)$, alors F et G sont supplémentaires.			
	Vrai Faux		

Correction

Question 409	Soit E un \mathbb{R} -ev, et F	G des sous-	ev. S	Si $E = F \oplus G$ et $x \notin F$, alors $x \in G$.
		Vrai		Faux
Question 410 G .	Soit E un \mathbb{R} -ev, et F ,	G des sous- ϵ	ev. L	e complémentaire de F est un sous-ev de
		Vrai		Faux
Question 411	Soit E un \mathbb{R} -ev, F un	sous-ev, et ^c l	F le	complémentaire de F . Alors, $E = F \oplus^{c} F$.
		Vrai		Faux
Question 412 $Vect\{F, {}^{c}F\}.$	Soit E un \mathbb{R} -ev, F u	n sous-ev, e	t ^c F	le complémentaire de de F . Alors, $E=$
		Vrai [Faux
Question 413	Soit E un \mathbb{R} -ev, F, G ,	H des sous- ϵ	ev. S	i $E = F \oplus G$ et $E = F \oplus H$, alors $G = H$.
		Vrai		Faux
Question 414 alors $dim(E) \ge 4$.		G des sous- G	ev. S	Si $dim(F) = dim(G) = 2$ et $F \cap G = \{0\},$
		Vrai [Faux
Question 415	Soit $E = \mathbb{R}^5$, et F, G	des sous-ev.	Si d	$im(F) = dim(G) = 3 \text{ alors } F \cap G \neq \{0\}.$
		Vrai [Faux
Question 416	Soit $E = \mathbb{R}^5$, et F, G d	es sous-ev. Si	i din	$n(F) = dim(G) = 3 \text{ alors } dim(F \cap G) = 1.$
		Vrai		Faux
Question 417	$\{(x,y,z)\in\mathbb{R}^3,3x+2$	2y = 0 et x +	- y =	0} est un sous-ev de \mathbb{R}^3
		Vrai [Faux
Question 418	$\{(x,y,z)\in\mathbb{R}^3,x+y$	≥ 0 } est un s	sous-	-ev de \mathbb{R}^3
		Vrai		Faux
Question 419	$\{(x,y) \in \mathbb{R}^2, x = y^2\}$	est un sous-e	ev de	$_{2}$ \mathbb{R}^{2}
		Vrai		Faux
Question 420	$\{(x,y) \in \mathbb{R}^2, (x-y)^2$	$= 0$ } est un	sous	s-ev de \mathbb{R}^2
		Vrai [Faux
Commentaire aprè	ès réponse: Vrai car ($(x-y)^2 = 0 \ \acute{e}$	équiv	aut à $x = y$.
Question 421	$\{P \in \mathbb{R}[X], \int_0^1 P(t)dt$	$= 0$ } est un	sous	s-ev de $\mathbb{R}[X]$
		Vrai		Faux
Question 422	$\{P \in \mathbb{R}[X], P + P' =$	_		
		Vrai		Faux

Question 423	$\{P \in \mathbb{R}[X], P(3) + P'(3) = 0\}$ est un sous-ev de $\mathbb{R}[X]$
	Vrai Faux
Question 424	$\{P\in\mathbb{R}[X],P(3)=3\}$ est un sous-ev de $\mathbb{R}[X]$
	Vrai Faux
Question 425	$\{P\in\mathbb{R}[X], P=3P'\}$ est un sous-ev de $\mathbb{R}[X]$
	Vrai Faux
Question 426	Une famille liée à laquelle on enlève un vecteur reste liée.
	Vrai Faux
Question 427	Une famille liée à laquelle on enlève un vecteur devient libre.
	Vrai Faux
Question 428	Une famille libre à laquelle on ajoute un vecteur reste libre.
	☐ Vrai Faux
Question 429	Une famille libre à laquelle on ajoute un vecteur devient liée.
	☐ Vrai Faux
Question 430	Une famille liée à laquelle on ajoute un vecteur reste liée.
	Vrai Faux
Question 431	Une famille est libre si ses vecteurs sont deux à deux non colinéaires
	☐ Vrai Faux
Question 432	Une sous-famille d'une famille libre est libre.
	Vrai Faux
Question 433	Une sous-famille d'une famille liée est liée.
	☐ Vrai Faux
Question 434	Ajouter un vecteur à une base produit une famille libre.
	☐ Vrai Faux
Question 435	Enlever un vecteur à une base produit une famille libre.
	Vrai Faux
Question 436	$a^2 + 2ab + b^2$ est factorisable par $a + b$.
	Vrai Faux
Question 437	$x^2 - b^2$ est factorisable par $b - x$.
	Vrai Faux

Question 438	$a^2 - 2ab + b^2$ est factorisable par b	-a.
	Vrai	Faux
Question 439	$a^2 + 3a + 2$ est factorisable par $a + 3a + 3a + 2$	- 1.
	Vrai	Faux
Question 440	$n^2 + 6n + 9$ est factorisable par n	+ 3.
	Vrai	Faux
Question 441	$p^2 + 4p + 4$ est factorisable par p +	- 2.
	Vrai	Faux
Question 442	$a^2 + 5a + 6$ est factorisable par $a + 6$	- 2.
	Vrai	Faux
Question 443	$n^2 + n - 2$ est factorisable par $n +$	2.
	Vrai	Faux
Question 444	$a^2 + a - 2$ est factorisable par $a -$	1.
	Vrai	Faux
Question 445	$p^2 - p - 2$ est factorisable par $p -$	2.
	Vrai	Faux
Question 446	$x^2 + 3x + 2$ est factorisable par x -	⊦ 3. –
	Vrai	Faux
Question 447	$a^2 - 3a + 2$ est factorisable par $a + 3a + 2$	_
	Vrai	Faux
Question 448	$a^2 + a - 2$ est factorisable par $a +$	_
	Vrai	Faux
Question 449	$n^2 + n + 1$ est factorisable par $n + 1$	_
	Ŭ Vrai	Faux
Question 450	$a^2 + 2a - 8$ est factorisable par $a + 1$	_
0 11 171	Ŭ Vrai	Faux
Question 451	$p^2 + 3p + 3$ est factorisable par $p + 3p + 3$	_
0 4: 470	Urai Vrai	Faux
Question 452	$a^2 + 3a + 9$ est factorisable par $a + 1$	
	Vrai	Faux

Question 453	ab + a + b + 1 est factorisable par $a + 1$	•
	Vrai Fa	aux
Question 454	ab + a + b + 1 est factorisable par $a + b$	
	Vrai F	aux
Question 455	ab + 2a + 3b + 6 est factorisable par $a + 6$	- 3.
	Vrai Fa	aux
Question 456	ab + 2a + 3b + 6 est factorisable par $a + 6$	- 2.
	Vrai Fa	aux
Question 457	ab + 2a + 3b + 5 est factorisable par $a +$	- 3.
	Vrai Fa	aux
Question 458	xy + x + 2y + 2 est factorisable par $x +$	- 2.
	Vrai Fa	aux
Question 459	xy + x + 2y + 2 est factorisable par $x +$	1.
	Vrai Fa	aux
Question 460	ax - a + 2x - 2 est factorisable par $a +$	2.
	Vrai Fa	aux
Question 461	ax - a + 2x - 2 est factorisable par $x +$	1.
	Vrai Fa	aux
Question 462	$a^2 + 3ab + 2b^2$ est factorisable par $a + 2b^2$	2b.
	Vrai Fa	aux
Question 463	Vrai	
Question 463	$a^2 + ab - 2b^2$ est factorisable par $a + 2b$	
	$a^2 + ab - 2b^2$ est factorisable par $a + 2b$	o. aux
	$a^2 + ab - 2b^2$ est factorisable par $a + 2b^2$ Vrai Factorisable par $a - 2b^2$ $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$	o. aux
Question 464	$a^2 + ab - 2b^2$ est factorisable par $a + 2b^2$ Vrai Factorisable par $a - 2b^2$ $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$	aux
Question 464	$a^2 + ab - 2b^2$ est factorisable par $a + 2b^2$ Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ Vrai \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Find $a^2 + ab - 2b^2$ \Box Find a	aux
Question 464 Question 465	$a^2 + ab - 2b^2$ est factorisable par $a + 2b^2$ Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ Vrai \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Vrai \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Find $a^2 + ab - 2b^2$ est factorisable par $a - 2b^2$ \Box Find $a^2 + ab - 2b^2$ \Box Find a	aux o. aux
Question 464 Question 465	$a^2 + ab - 2b^2$ est factorisable par $a + 2b^2$ Vrai Factorisable par $a - 2b^2$ Vrai Vrai Factorisable par $a - 2b^2$ La fraction $\frac{21}{34}$ est irréductible. La fraction $\frac{15}{123}$ est irréductible.	aux o. aux
Question 464 Question 465 Question 466	$a^2 + ab - 2b^2$ est factorisable par $a + 2b^2$ Vrai Factorisable par $a - 2b^2$ Vrai Vrai Factorisable par $a - 2b^2$ La fraction $\frac{21}{34}$ est irréductible. La fraction $\frac{15}{123}$ est irréductible.	aux o. aux aux

Question 468 La fraction $\frac{48}{39}$ est irréductible.

Vrai Faux

 $\textbf{Question 469} \qquad \frac{48}{70} \leq \frac{2}{3}$

Vrai Faux

Question 470 $\frac{34}{50} \le \frac{2}{3}$

Vrai Faux

Question 471 $\frac{42}{65} \le \frac{2}{3}$

Vrai Faux

Question 472 $\frac{1}{7} + \frac{7}{9} \le 1$

Vrai Faux

Question 473 $\frac{5}{12} + \frac{2}{3} \le 1$

Vrai Faux

Question 474 $\frac{5}{12} + \frac{5}{8} \ge 1$

Vrai Faux

 $\textbf{Question 475} \qquad \frac{7}{10} + \frac{2}{7} \geq 1$

Vrai Faux

Question 476 $\frac{7}{12} + \frac{3}{8} = \frac{23}{24}$

Vrai Faux

Question 477 $\frac{5}{4} + \frac{7}{10} = \frac{29}{20}$

Vrai Faux

Question 478 $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$

Vrai Faux

Question 479 $\frac{a}{b} + \frac{c}{d} = \frac{ab + cd}{b+d}$

Vrai Faux

Question 480	$\frac{a}{b} + \frac{c}{d} = \frac{ab + cd}{bd}$
	☐ Vrai Faux
Question 481	$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$
	Vrai Faux
Question 482	$\frac{1}{n} + \frac{1}{n+1} = \frac{1}{n(n+1)}$
	Vrai Faux
Question 483	$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$
	Vrai Faux
Question 484	$\frac{n+1}{n^2 - 1} = \frac{1}{n-1}$
	Vrai Faux
Question 485	« $A \implies B$ » signifie « A ou non- B ».
	☐ Vrai Faux
Question 486	« $A \implies B$ » peut se lire « A est vraie, donc B est vraie ».
	☐ Vrai ■ Faux
Question 487	« $A \implies B$ » peut se lire « B est vraie car A est vraie».
	☐ Vrai ■ Faux
Question 488	« $A \implies B$ » peut se lire « A est fausse ou B est vraie ».
	Vrai Faux
Question 489	« $A \implies B$ » peut se lire « si A , alors B ».
	Vrai Faux
Question 490	« $A \implies B$ » peut se lire « A est une condition suffisante pour B ».
	Vrai Faux
Question 491	« $A \implies B$ » peut se lire « B est une condition nécessaire pour A »
	Vrai Faux
Question 492	« $A \implies B$ » signifie « non- A ou B ».
	Vrai Faux
Question 493	Si « $A \implies B$ » est vraie, alors B est vraie.

Vrai

Faux

Question 494	Si « $A \implies B$ » est vraie, alors A est vraie (et B aussi).
	☐ Vrai ■ Faux
Question 495	Si $7 \times 8 = 46$, alors $7 \times 8 = 56$.
	Vrai Faux
Question 496	Si $8 \times 5 = 40$, alors $7 \times 8 = 56$.
	Vrai Faux
Question 497	Si $8 \times 9 = 63$, alors $7 \times 9 = 72$.
	Vrai Faux
Question 498	Si $9 \times 6 = 54$, alors $7 \times 8 = 46$.
	U Vrai ■ Faux
Question 499	$2+2=5$ est une condition suffisante pour que $2\times 2=6$.
	Vrai Faux
Question 500	$2+2=5$ est une condition nécessaire pour que $2\times 2=6$.
0 11 701	Vrai Faux
Question 501	$6 \times 7 = 42$ est une condition suffisante pour que $2 \times 2 = 5$.
O	Vrai Faux
Question 502	$6 \times 7 = 42$ est une condition nécessaire pour que $2 \times 2 = 5$. Vrai Faux
Question 503	$6 \times 7 = 42$ est une condition nécessaire pour que $5 \times 7 = 35$.
Question 505	$0 \times 7 = 42$ est une condition necessaire pour que $3 \times 7 = 35$.
Question 504	$6 \times 7 = 42$ est une condition suffisante pour que $5 \times 7 = 35$.
Q . 1011 001	Vrai Faux
Question 505	$2+5=8 \implies 3\times 7=21.$
·	Vrai Faux
Question 506	$9 \times 8 = 72 \implies 3 \times 7 = 21.$
	Vrai Faux
Question 507	$6 \times 9 = 54 \implies 7 \times 8 = 48.$
	Vrai Faux
Question 508	Pour que $2 + 2 = 5$, il faut que $3 \times 8 = 24$.
	Vrai Faux
Question 509	Pour que $2 + 2 = 5$, il suffit que $9 \times 5 = 40$.
	Vrai Faux

Question 510	Pour que $2+2=4$, il suffit que $9\times 5=40$.
	Vrai Faux
Question 511	$9 \times 7 = 63 \implies 6 \times 8 = 46.$
	Vrai Faux
Question 512	$2+2=4 \implies 7 \times 9 = 53.$
	Vrai Faux
Question 513	Si $x \in [2, 3]$, alors $x^2 \in [4, 9]$
	Vrai Faux
Question 514	Si $x \in [-1, 2]$, alors $x^2 \in [0, 4]$
	Vrai Faux
Question 515	Si $x \in [-1, 2]$, alors $x^2 \in [1, 4]$
	Vrai Faux
Question 516	Si $x \in [-3, -1[$, alors $x^2 \in]1, 9]$
	Vrai Faux
Question 517	Si $x \in [-3, -1[$, alors $x^2 \in [1, 9[$
	Vrai Faux
Question 518	Si $x \in [1, 4[$, alors $\sqrt{x} \in [1, 2]$
	Vrai Faux
Question 519	Si $x \le -1$, alors $2x + 1 \le -1$
	Vrai Faux
Question 520	Si $x \le 2$, alors $x^2 \le 4$
	Vrai Faux
Question 521	Si $x \le 4$, alors $\sqrt{x} \le 2$
	Vrai Faux
Commentaire aprè	s réponse: Assertion mal définie.
Question 522	Si $x \ge 2$, alors $x^2 \ge 4$
	Vrai Faux
Question 523	$x \geq 2$ si et seulement si $x^2 \geq 4$
	Vrai Faux
Question 524	$x \le 3$ si et seulement si $x^2 \le 9$
	Vrai Faux

Question 525	Si $x^2 \le 4$, alors $x \le 2$	}		
		Vrai		Faux
Question 526	Si $x^2 \le 4$, alors $x \ge -$	-2		
		Vrai		Faux
Question 527	Si $x^2 \ge 4$, alors $x \ge 2$	}		
		Vrai		Faux
Question 528	Si $x \in [2, 3]$, alors x^2	$-x \in [-1,$	7]	
		Vrai		Faux
Question 529	Si $x \in [2, 3]$, alors x^2	$-x \in [2, 6]$		
		Vrai		Faux
	ès réponse: Attention, nement est que la fonct			t n'est pas une sous traction illégale d'ir te sur $[2,3]$.
Question 530	Si $x \in [0, 3]$, alors x^2	$-x \in [0, 6]$		
		Vrai		Faux
Question 531	Si $x \in [0, 3]$, alors x^2	$-x \in [-3,$	9]	
		Vrai		Faux
Question 532	Si $x \in [1, 2]$, alors x^2	$-x \in [0,3]$		
		Vrai		Faux
Commentaire apr	ès réponse: Si $x \ge 1$, a	$x^2 \ge x$	x.	
Question 533	Si $x \in [2, 3]$, alors \sqrt{x}	$-x \in [\sqrt{2}]$	-3, -3	$\sqrt{3}-2$]
		Vrai		Faux
Question 534	Si $x \in [2, 3]$, alors $\sqrt{2}$	$-2 \le \sqrt{x}$	$-x \leq$	$\leq \sqrt{3} - 3$
		Vrai		Faux
Question 535	Si $x \in [2, 3]$, alors \sqrt{x}	$-x \in [\sqrt{2}$	-3,0	0[
		Vrai		Faux
Commentaire apr	ès réponse: Si $x > 1$, a	alors \sqrt{x} <	x.	
Question 536	Deux isométries com	nutent.		
		Vrai		Faux
Question 537	La composée de deux	isométries	est u	me isométrie.
		Vrai		Faux

Question 538	La composée de deux isométries indirectes est indirecte.
	Vrai Faux
Question 539	La composée de deux isométries directes est directe.
	Vrai Faux
Question 540	La composée d'une isométrie directe et d'une indirecte est indirecte.
	Vrai Faux
Question 541	Une isométrie préserve l'alignement.
	Vrai Faux
Question 542	Une isométrie préserve les milieux.
	Vrai Faux
Question 543	Une isométrie préserve les barycentres.
	Vrai Faux
Question 544	Une isométrie envoie une droite sur une autre droite qui lui est parallèle.
	Vrai Faux
Question 545	Une isométrie directe est soit une rotation, soit une translation.
	Vrai Faux
Question 546 (symétrie axiale).	Une isométrie est soit une rotation, soit une translation, soit une réflexion
	Vrai Faux
Question 547	La composée de deux réflexions (symétries axiales) est une réflexion.
	Vrai Faux
Question 548	La composée de deux réflexions (symétries axiales) est une translation.
	Vrai Faux
Commentaire apr	ès réponse: Pas toujours.
Question 549	La composée de deux réflexions (symétries axiales) est une rotation.
	Vrai Faux
Commentaire apr	ès réponse: Pas toujours.
Question 550 translation.	La composée de deux réflexions (symétries axiales) est une rotation ou une
	Vrai Faux
Question 551	La composée d'une réflexion et d'une translation est une réflexion.
	Vrai Faux

Question 552	Les isométries qui laissent un carré invariant sont au nombre de quatre.
	Vrai Faux
Question 553	Les isométries qui laissent un carré invariant sont au nombre de huit.
	Vrai Faux
Question 554 invariant sont au	Les isométries qui laissent un parallélogramme (non losange et non rectangle) nombre de deux.
	Vrai Faux
Question 555 quatre.	Les isométries qui laissent un rectangle (non carré) invariant sont au nombre de
	Vrai Faux
Question 556	Les isométries qui laissent un triangle invariant sont au nombre de six.
	Vrai Faux
Commentaire apr	ès réponse: Ca dépend du triangle.
Question 557	Toute isométrie directe possède des points fixes.
	Vrai Faux
Question 558	Toute isométrie indirecte possède des points fixes.
	Vrai Faux
Question 559	Une isométrie directe possède soit aucun, soit un seul point fixe.
	Vrai Faux
Commentaire apr	ès réponse: Il y a aussi l'identité.
Question 560	Une isométrie ayant deux points fixes (distincts) est l'identité.
	Vrai Faux
Question 561	Une isométrie directe ayant deux points fixes (distincts) est l'identité.
	Vrai Faux
Question 562	Une isométrie ayant trois points fixes (distincts) est l'identité.
	Vrai Faux
Commentaire apre	ès réponse: Condition insuffisante si les points sont alignés.
Question 563	Soient A et B deux points distincts. Il existe une isométrie vérifiant $f(A) = B$.
	Vrai Faux
Question 564 $f(A) = B$.	Soient A et B deux points distincts. Il y a une infinité d'isométries vérifiant
	Vrai Faux

Correction

Question 565 Soient A et B deux points distincts. Il y a une infinité d'isométries directes vérifiant $f(A) = B$.
Vrai Faux
Question 566 Soient A, B, A' et B' quatre points. Il existe une isométrie vérifiant « $f(A) = A'$ et $f(B) = B'$ ».
Vrai Faux
Question 567 Soient A , B , A' et B' quatre points, avec $A \neq A'$ et $B \neq B'$. Il existe une isométrie vérifiant $f(A) = A'$ et $f(B) = B'$.
Vrai Faux
Question 568 Soient A , B , A' et B' quatre points, avec $AB = A'B'$. Il existe une isométrie vérifiant $f(A) = A'$ et $f(B) = B'$.
Vrai Faux
Question 569 Soient A , B , A' et B' quatre points, avec $AB = A'B'$. Il existe une isométrie directe vérifiant $f(A) = A'$ et $f(B) = B'$.
Vrai Faux
Question 570 Soient A , B , A' et B' quatre points, avec $AB = A'B'$. Il existe exactement une isométrie directe vérifiant $f(A) = A'$ et $f(B) = B'$.
☐ Vrai Faux
Question 571 Soient A , B , A' et B' quatre points, avec $AB = A'B'$ et $A \neq B$. Il existe exactement une isométrie directe vérifiant $f(A) = A'$ et $f(B) = B'$.
Vrai Faux
Question 572 Soient A , B , A' et B' quatre points, avec $AB = A'B'$ et $A \neq A'$. Il existe exactement une isométrie directe vérifiant $f(A) = A'$ et $f(B) = B'$.
☐ Vrai Faux
Commentaire après réponse: Si $A=B,$ il y en a une infinité.
Question 573 Soient A , B , A' et B' quatre points, avec $AB = A'B'$ et $A \neq B$. Il existe exactement deux isométries vérifiant $f(A) = A'$ et $f(B) = B'$.
Vrai Faux
Question 574 Une matrice carrée est inversible ssi son déterminant est non nul.
Vrai Faux
Question 575 La somme de deux matrices carrées de même taille non inversibles est non inversible.
☐ Vrai Faux

Question 576 inversible.	Si le produit de deux matrices existe et est inversible, alors chaque matrice est
	Vrai Faux
Commentaire apr	rès réponse: Le produit de deux matrices non carrées peut être carré.
Question 577	Soient $A, B \in M_n(\mathbb{R})$. Si AB est inversible, alors A et B aussi.
	Vrai Faux
Question 578	Si $AB = I$, alors on a automatiquement $BA = I$ et B est l'inverse de A .
	Vrai Faux
Question 579	Soient $A, B \in M_n(\mathbb{R})$. Alors $AB = I \Leftrightarrow BA = I$.
	Vrai Faux
Question 580	Tr(AB) = Tr(BA).
	Vrai Faux
Commentaire apr	rès réponse: Même si les matrices sont rectangulaires.
Question 581	Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(CBA)$
	☐ Vrai Faux
Commentaire apr	rès réponse: Trouver un contre-exemple.
Question 582	Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(BCA)$
	Vrai Faux
Commentaire apr	rès réponse: Voir ça comme $Tr(A \cdot (BC))$.
Question 583	$Tr(AB) = Tr(A) \cdot Tr(B).$
	☐ Vrai Faux
Question 584	Tr(A+B) = Tr(A) + Tr(B).
	Vrai Faux
Question 585	$^{t}(AB) = {^{t}B} \cdot {^{t}A}$
	Vrai Faux
Question 586 symétrique.	Toute matrice carrée réelle est somme d'une matrice symétrique et d'une anti-
	Vrai Faux
Question 587	Les lignes d'une matrice sont indépendantes ssi ses colonnes le sont également.
	Vrai Faux
Commentaire apr 1×2	rès réponse: Si la matrice est carrée c'est vrai. Sinon, considérer une matrice

Question 588	Une matrice carrée est inversible ssi son noyau est vide.		
	Vrai Faux		
Commentaire ap	rès réponse: Un ev n'est jamais vide.		
Question 589	Une matrice est inversible ssi son noyau est réduit à zéro.		
	Vrai Faux		
Commentaire ap	rès réponse: Une matrice non carrée peut avoir un noyau nul.		
Question 590	Si la k -ème colonne de A est nulle, la k -ème colonne de AB l'est aussi.		
	Vrai Faux		
Question 591	Si la k -ème colonne de A est nulle, la k -ème colonne de BA l'est aussi.		
	Vrai Faux		
Question 592	Si une matrice carrée vérifie $A^5+A=I,$ alors elle est inversible		
	Vrai Faux		
Commentaire ap	rès réponse: Vérifier que l'inverse est A^4+I . Généraliser l'exercice.		
Question 593	Si une matrice carrée vérifie $A^k=I$ pour un entier k , alors elle est inversible.		
	Vrai Faux		
Commentaire ap	rès réponse: Si $k > 0$ c'est vrai.		
Question 594 inversible.	Si une matrice vérifie $A^p=0$ pour un certain entier p , alors elle n'est jamais		
	Vrai Faux		
Question 595	Si deux matrices non nulles vérifient $AB=0$, aucune d'entre elles n'est inversible.		
	Vrai Faux		
Commentaire ap	rès réponse: Il faut vraiment les supposer non nulles.		
Question 596	Si deux matrices vérifient $AB=0$, alors $A=0$ ou $B=0$.		
	Vrai Faux		
Commentaire ap	Commentaire après réponse: Deux matrices non nulles peuvent avoir un produit nul.		
Question 597	Soit A une matrice. S'il existe $B\neq 0$ tq $AB=0,$ alors $BA=0$ aussi.		
	Vrai Faux		
Question 598 inverse.	Si une matrice carrée vérifie $A^2 + 2A = 0$, alors $A + I$ est inversible et son propre		
	Vrai Faux		
Commentaire ap	rès réponse: Il suffit de vérifier la définition d'inverse.		
Question 599	Si une matrice carrée vérifie $A^2 + 2A = 0$, alors soit $A = 0$, soit $A = -2I$		
	Vrai Faux		

Question 600	La somme de deux complexes de module un est de module un.
	Vrai Faux
Question 601	La somme de deux racines de l'unité est une racine de l'unité.
	☐ Vrai ■ Faux
Question 602	Le produit de deux complexes de module un est de module un.
	Vrai Faux
Question 603	Le produit de deux racines de l'unité est une racine de l'unité.
	Vrai Faux
Question 604	Le produit de deux racines n -èmes de l'unité est une racine n -ème de l'unité.
	Vrai Faux
$\begin{array}{c} \textbf{Question 605} \\ \textbf{un.} \end{array}$	Le produit d'une racine de l'unité par un complexe de module un est de module
	Vrai Faux
Question 606 de l'unité.	Le produit d'une racine de l'unité par un complexe de module un est une racine
	Vrai Faux
Question 607	$\frac{3}{5} + i\frac{4}{5}$ est de module un.
	Vrai Faux
Question 608	-i est une racine de l'unité.
	Vrai Faux
Question 609	$e^{i\pi/n}$ est une racine n -ème de l'unité.
	Vrai Faux
Question 610	$\frac{3}{5}+i\frac{4}{5}$ est une racine de l'unité.
	Vrai Faux
Question 611	$1+i\sqrt{3}$ est une racine de l'unité.
	Vrai Faux
Question 612	$\frac{1}{2} + i \frac{\sqrt{3}}{2}$ est une racine cubique de l'unité.
	☐ Vrai ■ Faux
Question 613	$\frac{1}{2} + i \frac{\sqrt{3}}{2}$ est une racine de l'unité.
Question 010	Vrai Faux
Question 614	$\mathbb{U}_3\subset\mathbb{U}_6.$
wacshon 014	$\mathbb{G}_3 \subset \mathbb{G}_6$. Vrai Faux
	TOUL

Question 615	$\mathbb{U}_4\cap\mathbb{U}_5=\emptyset.$
	Vrai Faux
Question 616	$\mathbb{U}_4\cap\mathbb{U}_5=\{1\}.$
	Vrai Faux
Question 617	$\mathbb{U}_4\cap\mathbb{U}_6=\mathbb{U}_2.$
	Vrai Faux
Question 618	$\mathbb{U}_p\cap\mathbb{U}_q=\mathbb{U}_{pgcd(p,q)}.$
	Vrai Faux
Question 619	$\mathbb{U}_p\cap\mathbb{U}_q=\mathbb{U}_{ppcm(p,q)}.$
	Vrai Faux
Question 620	$\mathbb{U}_p \cup \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$
	Vrai Faux
Question 621	$\mathbb{U}_p \cup \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$
	Vrai Faux
Question 622	Si $p \leq q$, alors $\mathbb{U}_p \subset \mathbb{U}_q$.
	☐ Vrai ■ Faux
Question 623	Si $p \leq q$, alors $\mathbb{U}_q \subset \mathbb{U}_p$.
	☐ Vrai Faux
Question 624	Si $p q$, alors $\mathbb{U}_q \subset \mathbb{U}_p$.
	Vrai Faux
Question 625	Si $p q$, alors $\mathbb{U}_p \subset \mathbb{U}_q$.
Question 020	p_{1q} , and $p_{2q} \in \mathbb{F}_q$.
0 4 696	_
Question 626	$x \ge 0 \Rightarrow x > 0$ est toujours fausse.
0	☐ Vrai ☐ Faux
Question 627	$x > 0 \Rightarrow x \ge 0$ est fausse si $x = -1$.
	☐ Vrai Faux
Question 628	$x > 0 \Rightarrow x \ge 0$ est parfois vraie, parfois fausse, ça dépend de x .
	Vrai Faux
Question 629	L'assertion « $x>0 \Rightarrow x\geq 0$ » est parfois vraie, parfois fausse, ça dépend de $x.$
	Vrai Faux

Question 630	L'assertion « $x \geq 3 \Rightarrow x \geq 2$ » est vraie quel que soit le paramètre réel x .
	Vrai Faux
Question 631	L'assertion « $x \ge 3 \Rightarrow x \ge 2$ » est vraie si $x = 0$.
	Vrai Faux
Question 632	L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est toujours fausse.
	Vrai Faux
Question 633	L'assertion « $x \geq 2 \Rightarrow x \geq 3$ » est parfois vraie, parfois fausse, ça dépend de x
	Vrai Faux
Question 634	L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x \ge 3$.
	Vrai Faux
Question 635	L'assertion « $x \geq 2 \Rightarrow x \geq 3$ » est vraie si et seulement si $x \geq 3$.
	Vrai Faux
Question 636	L'assertion « $x \geq 2 \Rightarrow x \geq 3$ » est vraie si et seulement si $(x \geq 3$ ou $x < 2)$.
	Vrai Faux
Question 637	L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x = 4$.
	Vrai Faux
Question 638	L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x = 2$.
	Vrai Faux
Question 639	L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x = 1$.
	Vrai Faux
Question 640	L'assertion « $x \geq 2 \Leftrightarrow x \geq 3$ » est vraie si $x \geq 3$.
	Vrai Faux
Question 641	L'assertion « $x \geq 2 \Leftrightarrow x \geq 3$ » est vraie si et seulement si $x \geq 3$.
	Vrai Faux
Question 642	L'assertion « $x \geq 2 \Leftrightarrow x \geq 3$ » est vraie si et seulement si $(x \geq 3$ ou $x < 2)$.
	Vrai Faux
Question 643	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est toujours fausse.
	Vrai Faux
Question 644	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x = 2, 5$.
	Vrai Faux
Question 645	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x = 2$.
	Vrai Faux

Question 646	L'assertion « $x \leq 2 \Rightarrow x \geq 3$ » est vraie si et seulement si $x > 2$.
	Vrai Faux
Question 647	L'assertion « $x \leq 2 \Rightarrow x \geq 3$ » est vraie si $x \in]2;3[.$
	Vrai Faux
Question 648	L'assertion « $x \leq 2 \Leftrightarrow x \geq 3$ » est toujours fausse.
	Vrai Faux
Question 649	L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x = 2, 5$.
	Vrai Faux
Question 650	L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x \ge 3$.
	Vrai Faux
Question 651	L'assertion « $x \leq 2 \Leftrightarrow x \geq 3$ » est vraie si et seulement si $x \geq 3$.
	Vrai Faux
Question 652	L'assertion « $x \leq 2 \Leftrightarrow x \geq 3$ » est vraie si et seulement si $x \in]2;3[.$
	Vrai Faux
Question 653	L'assertion « $x \geq 2 \Rightarrow x \leq 3$ » est vraie si et seulement si $x \leq 3$.
	Vrai Faux
Question 654	L'assertion « $x \geq 2 \Rightarrow x \leq 3$ » est vraie si et seulement si $x \in]2;3[.$
	Vrai Faux
Question 655	L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est fausse si $x < 2$.
	Vrai Faux
Question 656	La somme des angles d'un quadrilatère convexe vaut 360°.
	Vrai Faux
Question 657	La somme des angles d'un quadrilatère vaut 360°.
	Vrai Faux
Question 658	Si $ABCD$ est un carré, les diagonales se coupent en leur milieu à angle droit.
	Vrai Faux
Question 659 carré.	Si $\left[AC\right]$ et $\left[BD\right]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un
	Vrai Faux
Question 660 est un carré.	Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$
	Vrai Faux

Question 661 est un losange.	Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$
	☐ Vrai Faux
Question 662	Si $ABCD$ est un rectangle, les diagonales se coupent en leur milieu.
	Vrai Faux
Question 663	Si $ABCD$ est un rectangle, les diagonales se coupent à angle droit.
	☐ Vrai Faux
Question 664 leur milieu.	ABCD est un parallélogramme si et seulement si ses diagonales se coupent en
	Vrai Faux
Question 665	$ABCD$ est un parallélogramme si et seulement si $AB=CD. \label{eq:abcd}$
	Vrai Faux
Question 666	Si $(AB)//(CD)$, alors $ABCD$ est un parallélogramme.
	☐ Vrai Faux
Question 667	Si $AB = CD$, alors $ABCD$ est un paralléloramme.
	☐ Vrai Faux
Question 668	Si $AB = CD$ et $(BC)//(AD)$ alors $ABCD$ est un parallélogramme.
	☐ Vrai ■ Faux
Question 669	Si $ABCD$ est un parallélogramme, alors $AB = CD$ et $(BC)//(AD)$.
	Vrai Faux
Question 670	Tout parallélogramme avec deux côtés égaux est un carré
	☐ Vrai ■ Faux
Question 671	Tout parallélogramme avec deux côtés consécutifs égaux est un carré
	☐ Vrai ■ Faux
Question 672	Tout parallélogramme avec un angle droit est un rectangle
	Vrai Faux
Question 673	Tout parallélogramme avec des diagonales de même longueur est un rectangle
	Vrai Faux
Question 674	ABCD est un trapèze si et seulement si $AB=CD$.
	☐ Vrai Faux
Question 675	Si $AB = CD$ alors $ABCD$ est un trapèze.
	Vrai Faux

Question 676	Si $AB = CD$ alors $ABCD$ est un trapèze isocèle.
	☐ Vrai ■ Faux
Question 677	Si $AB = CD$ et $(AB)//(CD)$ alors $ABCD$ est un trapèze isocèle.
	☐ Vrai ■ Faux
Question 678	Si $ABCD$ est un trapèze isocèle alors ses diagonales se coupent en leur milieu.
	Vrai Faux
Question 679	Si $ABCD$ est un losange, alors ses diagonales se coupent en leur milieu.
	Vrai Faux
Question 680 losange.	Si $[AC]$ et $[BD]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un
	Vrai Faux
Question 681	Si $AB = BC = CD = DA$, alors $(AC) \perp (BD)$.
	Vrai Faux
Question 682	Tout losange avec des diagonales de même longueur est un rectangle.
	Vrai Faux
Question 683	Les sommets d'un trapèze isocèle sont sur un même cercle.
	Vrai Faux
Question 684	Les sommets d'un losange sont sur un même cercle.
	Vrai Faux
Question 685	$\forall x \in \mathbb{R}, \ x > 3.$
	Vrai Faux
Question 686	$\exists x \in \mathbb{R}, \ x > 3.$
	Vrai Faux
Question 687	Le contraire de $\forall x \in \mathbb{R}, \ x > 3$ est équivalent à $2 + 2 = 4$.
	Vrai Faux
Question 688	Le contraire de $\exists x \in \mathbb{R}, \ x > 3$ est équivalent à $2 + 2 = 4$.
	U Vrai ■ Faux
Question 689	$\exists x \in \mathbb{R}, \ (x+2)^2 > 3.$
	Vrai Faux
Question 690	$\forall x \in \mathbb{R}, \ (x+2)^2 > 3.$
	Vrai Faux
Commentaire apr	rès réponse: Faux si $x = -2$ par exemple.

Question 691	$\forall x \in \mathbb{R}_+, \ (x+2)^2 > 3.$
	Vrai Faux
Question 692	$\forall x \in \mathbb{R}, \ x > 3$ est équivalente à $2 + 2 = 4$.
	Vrai Faux
Question 693	$\forall x \in \mathbb{R}, \ 1/x > -3.$
	Vrai Faux
Commentaire apr	rès réponse: Malformation : $1/x$ n'est pas bien défini si $x \in \mathbb{R}$.
Question 694	$\forall x \in \mathbb{R}^*, \ 1/x > -3.$
	Vrai Faux
Commentaire app	rès réponse: Faux pour $x = -1/4$.
Question 695	$\exists x \in \mathbb{R}^*, \ 1/x > -3.$
	Vrai Faux
Question 696	$\forall x \in \mathbb{R}_+^*, \ 1/x > -3.$
	Vrai Faux
Question 697	$\forall x \in \mathbb{R}, \ \sqrt{x} > 3.$
	Vrai Faux
Commentaire app	rès réponse: Malformation : \sqrt{x} n'est pas bien défini si $x \in \mathbb{R}$.
Question 698	$\forall x \in \mathbb{R}_+, \ \sqrt{x} > 3.$
	Vrai Faux
Question 699	$\exists x \in \mathbb{R}_+, \ \sqrt{x} > 3.$
	Vrai Faux
	rès réponse: Vrai si $x = 10$ par exemple.
Question 700	$\forall x \in \mathbb{R}_+, \sqrt{x^3} > 0.$
	Vrai
Question 701	$\forall x \in \mathbb{R}_+, \ \sqrt{x^3} \ge 0.$
	Vrai
Question 702	$\forall x \in \mathbb{R}, \ \sqrt{x^3} > 0.$
	Vrai Faux
	rès réponse: Malformation, radical non défini.
Question 703	$\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x > y.$
	Vrai Faux

Question 704	$\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x > y$	<i>J</i> .	
	•	Vrai	Faux
Question 705	$\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x > y$	J.	
		Vrai	Faux
Question 706	$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x > y$	J.	
		Vrai	Faux
Question 707	$\forall x \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ x > y$	<i>y</i> .	
	_	Vrai	Faux
Commentaire ap	rès réponse: Malformati		été défini.
Question 708	Le contraire de $\forall x \in \mathbb{I}$	$\mathbb{R}, \ x > 0 \text{ est } \exists x$	$\in \mathbb{R}, \ x \le 0.$
		Vrai	Faux
Question 709	Le contraire de $\forall x \in \mathbb{I}$	$\mathbb{R}, \ x > 0 \text{ est } \exists x$	$\in \mathbb{R}, \ x < 0.$
		Vrai	Faux
Question 710	Le contraire de $\forall x \in \mathbb{I}$	$\mathbb{R}, \ x > 0 \text{ est } \exists x$	$\in \mathbb{R}, \ x > 0.$
		Vrai	Faux
Question 711	$\forall n \in \mathbb{N}, \ n^2 \le 2^n$		
		Vrai	Faux
Commentaire app	rès réponse: Attention,	c'est faux pour	n=3.
Question 712	$\exists n \in \mathbb{N}, \ n^2 \le 2^n.$		
		Vrai	Faux
Question 713	$\exists n \in \mathbb{N}^*, \ 1/n < 1/\pi.$		
		Vrai	Faux
Question 714	$\forall n \in \mathbb{N}^*, \ 1/n < 1/\pi.$		
		Vrai	Faux
Question 715	$\forall n \in \mathbb{N}, \cos(n) \le 1.$		
		Vrai	Faux
Question 716	$\forall n \in \mathbb{N}, \ 1/\cos(n) \ge 1$		
		Vrai	Faux
Commentaire ap	rès réponse: Bien défini	. Par contre, le	cosinus peut être négatif
Question 717	$\forall n \in \mathbb{N}, \ 1/\cos(n) \ge$	1.	
		Vrai	Faux

Question 718	$7\sqrt{2} > 10$			
			Vrai	Faux
Commentaire apr	rès réponse:	Élever au	carré.	
Question 719	$\sqrt{256} > 15$	5		
			Vrai	Faux
Commentaire apr	rès réponse:	Élever au	carré.	
Question 720	$\sqrt{60} = 2$	15		
			Vrai	Faux
Question 721	$\sqrt{360} = 64$	$\sqrt{10}$		
			Vrai	Faux
Question 722	$\sqrt{90} < 9$			
			Vrai	Faux
Commentaire app	rès réponse:	Élever au	carré.	
Question 723	$2\sqrt{2} < 3$			
			Vrai	Faux
Commentaire apr	rès réponse:	Élever au	carré.	
Question 724	$3\sqrt{3} < 5$			
			Vrai	Faux
Commentaire apr	rès réponse:	Élever au	carré.	
Question 725	$\sqrt{5} + 1 >$	3		
			Vrai	Faux
Question 726	$2\sqrt{40} > 13$	3		
			Vrai	Faux
Question 727	$2\sqrt{30} < 11$	L		
			Vrai	Faux
Commentaire apr	ès réponse:	Élever au	carré.	
Question 728	$\sqrt{1024} = 3$	32		
			Vrai	Faux
Question 729	$\sqrt{1000} = 1$	$10\sqrt{10}$		
			Vrai	Faux

Question 730	$\sqrt{800} = 5\sqrt{32}$			
		Vrai	Fa	aux
Question 731	$\sqrt{800} = 20\sqrt{2}$			
		Vrai	Fa	aux
Question 732	$\sqrt{800} = 6\sqrt{50}$			
		Vrai	Fa	aux
Question 733	$\sqrt{600} = 5\sqrt{30}$			
		Vrai	Fa	aux
Question 734	$\sqrt{99} = 9\sqrt{9}$			
		Vrai	Fa	aux
Question 735	$\sqrt{169} = 13$			
		Vrai	Fa	aux
Question 736	$\sqrt{154} - 12$			
Question 100	V 104 — 12	Vrai	I D.	aux
		Viai	T'd	iux
Question 737	$\sqrt{150} > 12$	_		
		Vrai	Fa	aux
Commentaire apr	ès réponse: Élev	er au carré.		
Question 738	$\sqrt{112} > 11$			
		Vrai	Fa	aux
Commentaire apr	ès réponse: Élev	er au carré.		
Question 739	$\sqrt{180} = 9\sqrt{20}$			
		Vrai	Fa	aux
Question 740	$\sqrt{180} < 14$			
		Vrai	☐ Fa	aux
Commentaire apr	ès réponse: Élev	_		
Question 741	$\sqrt{2700} = 30\sqrt{3}$			
4	, _,,,,	Vrai	☐ E	aux
0 11 7:0	/ <u>70</u> 9 / 6	¥1601		~ 0.71
Question 742	$\sqrt{72} = 3\sqrt{8}$			
		Vrai	Fa	aux
Question 743	$\sqrt{72} = 6\sqrt{2}$			
		Vrai	Fa	aux

Vrai Faux

Question 744	$\sqrt{72} = 2\sqrt{9}$		
		Vrai	Faux
Question 745	$\sqrt{2} + \sqrt{8} = 3\sqrt{2}$		
		Vrai	Faux
Question 746	$\sqrt{3} + \sqrt{2} = \sqrt{5}$		
		Vrai	Faux
Question 747	$\sqrt{3} + \sqrt{2} = \sqrt{6}$		
		Vrai	Faux
Question 748	$\sqrt{27} + \sqrt{3} = 4\sqrt{3}$		
		Vrai	Faux
Question 749	$\sqrt{12} + \sqrt{3} = 5\sqrt{3}$		
		Vrai	Faux
Question 750	$\sqrt{18} - \sqrt{2} = \sqrt{8}$		
		Vrai	Faux
Question 751	$\sqrt{20} + 7\sqrt{5} = \sqrt{15}$		
		Vrai	Faux
Question 752	$2\sqrt{12} + 4\sqrt{3} = 4\sqrt{6}$		
		Vrai	Faux
Question 753	$6\sqrt{5} < 5\sqrt{6}$		
		Vrai	Faux
Commentaire apre	es réponse: Élever au	carre.	
Question 754	$3\sqrt{5} < 2\sqrt{11}$		
		Vrai	Faux
Commentaire aprè	es réponse: Élever au	carré.	
Question 755	$3\sqrt{64} + 2\sqrt{49} = 48$		
		Vrai	Faux
Question 756	$12\sqrt{121} = 132$		
		Vrai	Faux
Question 757	$2\sqrt{81} + 4\sqrt{49} = 36$		

Question 758
$$(\sqrt{2}+2)(\sqrt{2}-1) = \sqrt{2}$$

| Vrai | Faux |
| Faux |
| Question 759 $(\sqrt{2}+2)(\sqrt{2}+1) = 2+3\sqrt{2}$
| Vrai | Faux |
| Question 760 $(\sqrt{2}+1)(\sqrt{2}+1) = 3+\sqrt{8}$
| Vrai | Faux |
| Question 761 $(\sqrt{3}-1)(1-\sqrt{3}) = -4-2\sqrt{3}$
| Vrai | Faux |
| Question 762 $\sqrt{2}(\sqrt{2}+\sqrt{3}) = 2+\sqrt{6}$
| Vrai | Faux |
| Question 763 $\sqrt{2}(\sqrt{8}-\sqrt{2}) = 2$
| Vrai | Faux |
| Question 764 $(\sqrt{5}+\sqrt{2})\sqrt{10} = 5\sqrt{2}+2\sqrt{5}$
| Vrai | Faux |
| Question 765 $(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3}) = 1$
| Vrai | Faux |
| Question 766 $\sqrt{3}(\sqrt{12}-\sqrt{3}) = 3$
| Vrai | Faux |
| Question 767 $(\sqrt{18}+\sqrt{8})\sqrt{2} = 10$
| Vrai | Faux |
| Question 768 $\sqrt{2}(\sqrt{18}-\sqrt{8}) = 4$

 $\sqrt{3+2\sqrt{2}} = 1+\sqrt{2}$

 $\sqrt{\sqrt{4}} = \sqrt{2}$

Vrai

Vrai

Vrai

Vrai

Faux

Faux

Faux

Faux

Question 769

Question 770

Question 771 $\sqrt{\sqrt{64}} = 4$

Question 772 $\sqrt{\sqrt{8}} = 2$

Question 773
$$\sqrt{\sqrt{128}} = 4$$

Vrai Faux

Question 774
$$\sqrt{6+2\sqrt{2}} = 2+2\sqrt{2}$$

Vrai Faux

Question 775
$$\sqrt{4+2\sqrt{3}} = 1 + \sqrt{3}$$

Vrai Faux

Question 776
$$\sqrt{3}(\sqrt{6} + \sqrt{8}) = 3\sqrt{2} + 2\sqrt{3}$$

Vrai Faux

Question 777
$$(\sqrt{3}+1)(3+\sqrt{3})=6+4\sqrt{3}$$

Vrai Faux

Question 778
$$\frac{\sqrt{60}}{\sqrt{3}} = 2\sqrt{5}$$

Vrai Faux

Question 779
$$\frac{\sqrt{3}}{\sqrt{20}} = \frac{1}{2}\sqrt{\frac{3}{5}}$$

Vrai Faux

Question 780
$$\frac{3}{\sqrt{6}} = \frac{6}{\sqrt{2}}$$

Vrai Faux

Question 781
$$\frac{6}{\sqrt{2}} = \sqrt{3}$$

Vrai Faux

Question 782
$$\frac{10}{\sqrt{8}} = \frac{5}{\sqrt{2}}$$

Vrai Faux

Question 783
$$\frac{6}{\sqrt{12}} = \sqrt{3}$$

Vrai Faux

Question 784
$$\frac{1}{\sqrt{2}+1} = \sqrt{2}-1$$

Vrai Faux

Question 785
$$\frac{2}{\sqrt{3}-1} = 1 + \sqrt{3}$$

Vrai Faux

- Question 786 $\frac{\sqrt{2}-1}{\sqrt{2}+1} = 3 \sqrt{8}$
 - Vrai Faux
- Question 787 $\frac{\sqrt{8}}{\sqrt{3}-1} = \sqrt{6} \sqrt{2}$
 - Vrai Faux
- Question 788 $\frac{1}{\sqrt{8}} + \frac{1}{\sqrt{20}} = \frac{\sqrt{5} + \sqrt{2}}{4\sqrt{10}}$
 - Vrai Faux
- Question 789 $\frac{\sqrt{2}}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{2}} = \frac{5}{\sqrt{6}}$
 - Vrai Faux
- Question 790 $\frac{\sqrt{48} + \sqrt{75}}{\sqrt{3}} = 9$
- Vrai Faux
- Question 791 $\frac{\sqrt{2}}{\sqrt{8}-\sqrt{2}}=1$
- Vrai Faux
- Question 792 $\frac{2}{\sqrt{5}+1} = \frac{\sqrt{5}-1}{2}$
 - Vrai Faux
- Question 793 $\frac{2}{\sqrt{3}+1} = \frac{\sqrt{3}-1}{2}$
 - Vrai Faux
- **Question 794** $\sqrt{3} + \frac{1}{\sqrt{3}} = \frac{4}{\sqrt{3}}$
- Vrai Faux
- **Question 795** $\sqrt{2} + \frac{1}{\sqrt{2}} = 3\sqrt{2}$
 - Vrai Faux
- Question 796 $\frac{1}{3+\sqrt{5}} = \frac{3-\sqrt{5}}{2}$
 - Vrai Faux

- Question 797 $\frac{1}{1+\sqrt{2}} = 1 \sqrt{2}$
 - Vrai Faux
- Question 798 $\frac{1}{1+\sqrt{3}} = \frac{1-\sqrt{3}}{2}$
 - Vrai Faux
- Question 799 $\frac{1}{\sqrt{5} + \sqrt{3}} = \sqrt{5} \sqrt{3}$
 - Vrai Faux
- Question 800 $\frac{1}{\sqrt{2} + \sqrt{8}} = \frac{\sqrt{2}}{6}$
- Vrai Faux
- Question 801 $\frac{1}{2+\sqrt{5}} = \sqrt{5} 2$
 - Vrai Faux
- Question 802 $\frac{1}{\sqrt{3} + \sqrt{4}} = \sqrt{3} 2$
 - Vrai Faux
- **Question 803** $\frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{3} \sqrt{2}$
 - Vrai Faux
- Question 804 $\frac{\sqrt{2}}{\sqrt{3}} + \frac{1}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{2}}$
 - Vrai Faux
- **Question 805** $\sqrt{2} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
 - Vrai Faux
- **Question 806** 3/5 est une solution de l'équation 5x + 4 = 7.
 - Vrai Faux
- **Question 807** 3/2 est une solution de l'équation 4x + 1 = 7.
 - Vrai Faux
- **Question 808** 3/4 est une solution de l'équation 4x 3 = 6.
 - Vrai Faux

Question 809	5/6 - 3/4 = 1/12.
	Vrai Faux
Question 810	7/9 + 5/6 = 29/18.
	Vrai Faux
Question 811	11/4 - 13/8 = 9/8.
	Vrai Faux
Question 812	5/14 + 5/6 = 25/21.
	Vrai Faux
Question 813	1/6 - 3/4 = 7/12.
	Vrai Faux
Question 814	3/9 + 5/6 = 22/18.
	Vrai Faux
Question 815	7/4 + 13/8 = 25/8.
	Vrai Faux
Question 816	3/14 + 5/6 = 43/42.
	Vrai Faux
Question 817	$5 \times 13 = 65 \text{ et } 7 \times 19 = 133.$
	Vrai Faux
Question 818	$5 \times 13 = 65$ ou $7 \times 15 = 115$.
	Vrai Faux
Question 819	$5 \times 13 = 65 \text{ et } 7 \times 15 = 115.$
	U Vrai Faux
Question 820	Soit $z \in \mathbb{C}$. On a $\overline{z}^2 = \overline{z^2}$.
	Vrai Faux
Question 821	Soient z et z' deux complexes. On a $\overline{z+z'}=\overline{z}+\overline{z'}$.
0 41 000	Vrai Faux
Question 822	Soient z et z' deux complexes. On a $ z + z' = z + z' $.
Ougstion 200	
Question 823	(2+i)(1+2i) = 5i Vrai Faux
	viai

Correction

Question 824	(2+i)(1-2i)	=-i		
		Vrai	Faux	
Question 825	$ 2+i = \sqrt{3}.$			
		Vrai	Faux	
Question 826	$ 2+i = \sqrt{5}.$			
		Vrai	Faux	
Question 827	$ 4+i \ge 3+3 $	3i .		
		☐ Vrai	Faux	
Question 828	$ 3+i \ge 2+2 $	2i .		
		Vrai	Faux	
Question 829	$\frac{1+i}{i}=i$			
4	1-1	- Vroj		
	1 .	Vrai	Faux	
Question 830	$\frac{1}{i} = -i$.			
		Vrai	Faux	
Question 831	$\frac{i-1}{i+1} = -i.$			
		Vrai	Faux	
Question 832	$\frac{2i-3}{2i+3} = \frac{5-6i}{13}.$			
		☐ Vrai	Faux	
Question 833	Le trinôme 3X	$X^2 - 6X + 3$ a	une racine double o	$\operatorname{dans} \mathbb{R}$.
•		Vrai		
Question 834	Le trinôme 8 <i>X</i>		une racine double o	dans ℝ
Question es i	20 011101110 011	Vrai	Faux	20225 241
Question 835	La trinôma 2 V		une racine double o	done IP
Question 655	Le trinome 22	-4X + 2a Vrai	Faux	ians iz.
0 41 000	T		<u>—</u>	1 117
Question 836	Le trinome $3x$		ine racine double d	lans K.
		Vrai	Faux	
Question 837	Si x est un rée	el, alors $(\sqrt{x^2})^3$	$S = x^3$.	
		Vrai	Faux	
Question 838	$(a+b)^3 = a^3 -$	$+3ab+b^3$		
		Vrai	Faux	

Question 839	$(a+b)^3 = a^3 + 3ab + 3ba + b^3$
	Vrai Faux
Question 840	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
	Vrai Faux
Question 841	$a^3 - b^3 = (a - b)(a^2 + ab + b^2).$
	Vrai Faux
Question 842	La dérivée de $x \mapsto \sin(3+2x)$ est $x \mapsto 3\cos(3+2x)$.
	Vrai Faux
Question 843	La dérivée de $x \mapsto \cos(3-2x)$ est $x \mapsto 2\sin(3-2x)$.
	Vrai Faux
Question 844	La dérivée de $x \mapsto \sin(3x+2)$ est $x \mapsto 3\cos(3x+2)$.
	Vrai Faux
Question 845	La dérivée de $x \mapsto \cos(2x+3)$ est $x \mapsto 2\sin(2x+3)$.
	Vrai Faux
Question 846 $]-\infty, -\sqrt{5}[\cup]\sqrt{5},$	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(x^2-5)$ est $+\infty[$.
	Vrai Faux
Question 847	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(5-x^2)$ est $[-\sqrt{5},\sqrt{5}]$.
	Vrai Faux
Question 848	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(5 - \ln x)$ est $]0, e^5]$.
	Vrai Faux
Question 849	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt{(\ln x)}$ est \mathbb{R}_+^* .
	Vrai Faux
Question 850	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\ln(5-\sqrt{x})$ est $[0,25[$.
	Vrai Faux
Question 851	Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(2 - \ln x)$ est $[0, e^2]$.
	Vrai Faux
Question 852	$\lim \frac{3\sqrt{n}+n}{2\sqrt{n}+n} = \frac{3}{2}.$
	☐ Vrai ■ Faux

Question 853	La fonction $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto 1/x$ est décroissante.
	Vrai Faux
Commentaire ap	rès réponse: Preuve : $-1 < 1$ et pourtant $f(-1) < f(1)$.
Question 854	$\sqrt{68} = 4\sqrt{17}.$
	Vrai Faux
Question 855	$\sqrt{48} = 4\sqrt{3}.$
	Vrai Faux
Question 856	$\frac{2+\sqrt{3}}{2-\sqrt{3}} = 7 + 4\sqrt{3}.$
	Vrai Faux
Question 857	$\frac{\sqrt{2}+3}{\sqrt{2}-3} = \frac{5+6\sqrt{2}}{5}.$
	Vrai Faux
Question 858	La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ est une relation d'équivalence
	Vrai Faux
Question 859 d'équivalence	La relation \star sur $\mathbb R$ définie par $x\star y\iff \cos^2(x)+\sin^2(y)=1$ est une relation
	Vrai Faux
Question 860	La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ coïncide avec l'égalité.
	Vrai Faux
Question 861	La relation \star sur $\mathbb R$ définie par $x\star y\iff xe^y=ye^x$ est une relation d'équivalence
	Vrai Faux
Question 862 d'équivalence.	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=x'$ est une relation
	Vrai Faux
Question 863 d'équivalence.	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x^2=x'^2$ est une relation
	Vrai Faux
Question 864 d'équivalence.	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=-y'$ est une relation
	☐ Vrai Faux
Question 865 d'équivalence.	La relation \heartsuit sur \mathbb{R}^2 définie par $y \heartsuit y \iff x + 3y = 5$ est une relation
•	☐ Vrai ■ Faux

Question 866 relation d'équival	
	Vrai Faux
Question 867 d'équivalence.	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff n^2+m^2=2nm+2n$ est une relation
	Vrai Faux
Question 868 d'équivalence.	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff n^2-m^2=2nm+2n$ est une relation
	Vrai Faux
Question 869 d'équivalence.	La relation $\mathcal R$ sur $\mathbb N$ définie par $n\mathcal R m\iff n^2+m^2=2nm$ est une relation
	Vrai Faux
Question 870 valence.	La relation $\mathcal R$ sur $\mathbb N$ définie par $n\mathcal R m\iff 3 (n-m)$ est une relation d'équi-
	Vrai Faux
Question 871 d'équivalence.	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff (\exists k\in\mathbb{N}, n=km))$ est une relation
	Vrai Faux
Question 872 relation d'équival	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = k + m))$ est une ence.
	Vrai Faux
Question 873 relation d'équival	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{Z}, n = k + m))$ est une ence.
	Vrai Faux
Question 874	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff n m$ est une relation d'équivalence.
	Vrai Faux
Question 875 d'équivalence.	La relation \star sur $\mathbb R$ définie par $x\star y\iff x-1 \le 1$ est une relation
	Vrai Faux
Question 876	La relation $\star \operatorname{sur} \mathbb R$ définie par $x \star y \iff xy^2 = yx^2$ est une relation d'équivalence
	Vrai Faux
Question 877 E } est une relation	La relation \star sur un ensemble E dont le graphe est la diagonale $\Delta_E:=\{(t,t) t\in$ on d'équivalence
	Vrai Faux

Question 878 d'équivalence	La relation \star sur un ensemble E dont le graphe est $E \times E$ est une relation
	Vrai Faux
Question 879 d'équivalence	La relation \star sur un ensemble E non vide dont le graphe est vide est une relation
	☐ Vrai ■ Faux
Question 880 relation d'équival	La relation \star sur $\mathbb R$ dont le graphe est $\Gamma_\star = \{(x,y) \in \mathbb R^2 \mid y=x^2\}$ est une ence
	Vrai Faux
Question 881	La relation \star sur $\mathbb R$ dont le graphe est $\Gamma_\star=\mathbb R\times\{0\}$ est une relation d'équivalence
	Vrai Faux
Question 882 d'équivalence	La relation \star sur $\mathbb R$ définie par $x\star y\iff x\in\mathbb Z$ ou $y\in\mathbb Z$ est une relation
	Vrai Faux
Question 883	La relation \star sur $\mathbb R$ dont le graphe est $\Gamma_\star = \mathbb Z^2$ est une relation d'équivalence
	Vrai Faux
Question 884 une relation d'équ	La relation \diamond sur $\mathbb R$ dont le graphe est $\Gamma_{\diamond}=\{(x,y)\in\mathbb R^2 x=y\text{ ou }x=-y\}$ est uivalence
	Vrai Faux
Question 885 relation d'équival	La relation † sur $\mathbb R$ dont le graphe est $\Gamma_{\dagger}=\{(x,y)\in\mathbb R^2\mid x^2+y^2\leq 2\}$ est une ence
	Vrai Faux
Question 886 d'équivalence	La relation \odot sur $\mathbb R$ définie par $x\odot y\iff \cos^2(x)+\sin^2(y)=1$ est une relation
	Vrai Faux
Question 887	La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ coïncide avec l'égalité.
	Vrai Faux
Question 888 d'équivalence	La relation \otimes sur $\mathbb R$ définie par $x\otimes y\iff xe^y=ye^x$ est une relation
	Vrai Faux
Question 889 d'équivalence.	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=x'$ est une relation
	Vrai Faux
Question 890 d'équivalence.	La relation \oplus sur \mathbb{R}^2 définie par $(x,y)\oplus(x',y')\iff x^2=x'^2$ est une relation
	Vrai Faux

Question 891 d'équivalence.	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=-y'$ est une relation
	Vrai Faux
Question 892 d'équivalence.	La relation \heartsuit sur $\mathbb R$ définie par $x \heartsuit y \iff x + 3y = 5$ est une relation
	Vrai Faux
Question 893 d'équivalence.	La relation \bullet sur $\mathbb R$ définie par $x \bullet y \iff (\exists \lambda \in \mathcal R, x + 3y = \lambda))$ est une relation
	Vrai Faux
Question 894 d'équivalence.	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff n^2+m^2=2nm+2n$ est une relation
	Vrai Faux
Question 895 d'équivalence.	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff n^2-m^2=2nm+2n$ est une relation
	Vrai Faux
Question 896 d'équivalence.	La relation $\mathcal R$ sur $\mathbb N$ définie par $n\mathcal R m\iff n^2+m^2=2nm$ est une relation
	Vrai Faux
Question 897 valence.	La relation $\mathcal R$ sur $\mathbb N$ définie par $n\mathcal R m\iff 3 (n-m)$ est une relation d'équi-
	Vrai Faux
Question 898 d'équivalence.	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff (\exists k\in\mathbb{N}, n=km))$ est une relation
	Vrai Faux
Question 899 relation d'équivale	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff (\exists k\in\mathbb{N}, n=k+m))$ est une ence.
	Vrai Faux
Question 900 relation d'équivale	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m\iff (\exists k\in\mathbb{Z}, n=k+m))$ est une ence.
	Vrai Faux
Question 901	La relation $\mathcal R$ sur $\mathbb N$ définie par $n\mathcal R m\iff n m$ est une relation d'équivalence.
	Vrai Faux
Question 902 d'équivalence.	La relation \star sur $\mathbb R$ définie par $x\star y\iff x-1 \le 1$ est une relation
	Vrai Faux

Question 903	La relation \triangleleft sur \mathbb{R} définie par $x \triangleleft y \iff x^2 \leq y^2$ est une relation d'ordre.
	Vrai Faux
Question 904	La relation \triangleleft sur $\mathbb R$ définie par $x \triangleleft y \iff x^3 \leq y^3$ est une relation d'ordre.
	Vrai Faux
Question 905 d'ordre.	La relation \preccurlyeq sur \mathbb{N}^* définie par $p \preccurlyeq q \iff \exists k \in \mathbb{N}^*, q = p^k$ est une relation
	Vrai Faux
Question 906	La relation de divisibilité sur \mathbb{N}^* est une relation d'ordre.
	Vrai Faux
Question 907	La relation de divisibilité sur $\mathbb N$ est une relation d'ordre.
	Vrai Faux
Question 908	La relation de divisibilité sur $\mathbb N$ est une relation d'ordre total.
	Vrai Faux
Question 909	La relation de divisibilité sur \mathbb{N}^* n'a pas de plus grand élément.
	Vrai Faux
Question 910	La relation de divisibilité sur $\mathbb N$ n'a pas de plus grand élément.
	Vrai Faux
Question 911	La relation de divisibilité sur $\{1,2,3,4\}$ n'a pas de plus grand élément.
	Vrai Faux
Question 912	La relation de divisibilité sur $\{0,1,2,3,4\}$ n'a pas de plus grand élément.
	Vrai Faux
Question 913 grand élément.	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 4 comme plus
	Vrai Faux
Question 914 petit élément.	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 0 comme plus
	Vrai Faux
Question 915 petit élément.	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 1 comme plus
	Vrai Faux
Question 916 grand élément.	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 0 comme plus
	Vrai Faux

Correction

Question 917	La relation de divisibilité sur $\mathbb Z$ est une relation d'ordre.			
		Vrai		Faux
Commentaire apr	ès réponse: Pas antisy	métrique.		
Question 918	Si E est un ensemble	, la relation	n d'in	aclusion sur $\mathcal{P}(E)$ est une relation d'ordre.
		Vrai		Faux
Question 919 total.	Si E est un ensemble	e, la relatio	n d'ir	nclusion sur $\mathcal{P}(E)$ est une relation d'ordre
		Vrai		Faux
Question 920 élément	Si E est un ensemble	e, la relatio	on d'i	nclusion sur $\mathcal{P}(E)$ possède un plus grand
	-	Vrai		Faux
Question 921 une relation d'ord	La relation \leq sur \mathbb{R}^2 lre.	² définie pa	$\operatorname{ar}(x,$	$y) \lessdot (x', y') \iff (x \le x' \text{ ou } y \le y') \text{ est}$
		Vrai		Faux
Question 922 relation d'ordre.	La relation \mathcal{R} sur \mathbb{R}^2	définie par	x(x,y)	$(x', y') \iff (x \le x' \text{ et } y \le y') \text{ est une}$
		Vrai		Faux
Question 923	La relation \star sur $\mathbb N$ d	éfinie par a	$x \star y$	$\iff x - y \ge 1$ est une relation d'ordre.
		Vrai		Faux
Question 924 d'ordre.	La relation \star sur $\mathbb N$ d	éfinie par :	$x \star y$	$\iff \exists k \in \mathbb{N}, x^2 = k - y^2 \text{ est une relation}$
		Vrai		Faux
Question 925 d'ordre.	La relation \star sur $\mathbb N$ d	éfinie par :	$x \star y$	$\iff \exists k \in \mathbb{N}, x^2 = k + y^2 \text{ est une relation}$
		Vrai		Faux
Question 926 $\mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - $		sertion « f e	est un	ne rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathcal{P}$
		Vrai		Faux
		sertion « f e	est un	ne rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathcal{P}$
		Vrai		Faux
$egin{aligned} \mathbf{Question} & 928 \ imes \exists heta \in \mathbb{R}, orall z \in \mathbb{C}, \end{aligned}$	Soit $f: \mathcal{P} \to \mathcal{P}$ et $\tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.		assert	tion « f est rotation de centre Ω » signifie
		Vrai		Faux

Question 929 $\forall \exists \omega \in \mathbb{C}, \forall z \in \mathbb{C}, \forall$	Soit $f: \mathcal{P} \to \mathcal{P}$ et $\theta \in \mathbb{R}$. L'assertion « f est rotation d'angle θ » signifie $\tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»
	Vrai Faux
Question 930 Ω » signifie « $\forall z \in$	Soit $f: \mathcal{P} \to \mathcal{P}$, $\Omega \in \mathcal{P}$ et $\theta \in \mathbb{R}$. L'assertion « f est rotation d'angle θ et centre $\mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»
	Vrai Faux
Question 931 $\forall \exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R},$	Soit $f: \mathcal{P} \to \mathcal{P}$. L'assertion « f est la rotation de centre Ω et d'angle θ » signifie $\forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»
	Vrai Faux
Question 932 signifie $\forall \exists \Omega \in \mathcal{P}$,	Soit $f: \mathcal{P} \to \mathcal{P}$ et soit $\Omega \in \mathcal{P}$. L'assertion « f est une rotation de centre Ω » $\exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»
	Vrai Faux
Question 933 $\forall \exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R},$	Soit $f: \mathcal{P} \to \mathcal{P}$ et soit $\theta \in \mathbb{R}$. L'assertion « f est une rotation d'angle θ » signifie $\theta \in \mathbb{R}$. L'assertion « f est une rotation d'angle θ » signifie $\theta \in \mathbb{R}$.
	Vrai Faux
Question 934	Deux rotations commutent toujours.
	Vrai Faux
Question 935	Deux rotations de même centre commutent toujours.
	Vrai Faux
Question 936	La composée de deux rotations est une rotation.
	Vrai Faux
Question 937	La composée de deux rotations de même centre est une rotation de même centre.
	Vrai Faux
Question 938	La composée de deux rotations de centre distincts est une rotation.
	Vrai Faux
Question 939	La composée de deux rotations de centre distincts est une translation.
	Vrai Faux
Question 940 d'angle $\theta + \theta'$.	Soient $\theta,\theta'\in\mathbb{R}.$ La composée de deux rotations d'angles θ et θ' est une rotation
	Vrai Faux
Question 941	Une rotation conserve l'alignement.
	Vrai Faux
Question 942	Une rotation conserve les distances.
	Vrai Faux

Question 943	Une rotation conserve les rapports de longueurs (autrement dit les proportions)
	Vrai Faux
Question 944	Une rotation conserve les milieux.
	Vrai Faux
Question 945	Une rotation envoie une droite sur une droite parallèle.
	☐ Vrai Faux
Question 946	$\begin{cases} 5x - y &= 1\\ 2x + 3y &= 2 \end{cases}$ admet une unique solution.
	Vrai Faux
Question 947	$\begin{cases} 2x + 3y &= 1\\ 4x + 6y &= 2 \end{cases}$ admet une unique solution.
	☐ Vrai Faux
Question 948	$\begin{cases} -x + 3y &= -1 \\ 2x - 6y &= 0 \end{cases}$ n'admet pas de solutions.
	Vrai Faux
Question 949	$\begin{cases} 2x + 3y &= 1\\ 4x + 6y &= 2 \end{cases}$ n'admet pas de solutions.
	☐ Vrai Faux
Question 950	$\begin{cases} 2x + y &= 1 \\ x - y &= 2 \end{cases}$ admet des solutions.
	Vrai Faux
Question 951	$\begin{cases} 2x + 3y &= 1\\ 4x + 6y &= 2 \end{cases}$ admet des solutions.
	Vrai Faux
Question 952	$\begin{cases} 3x + 2y &= 1\\ 6x + 4y &= 1 \end{cases}$ admet des solutions.
	Vrai Faux
Question 953	$\begin{cases} x - 3y &= 1 \\ 2x - 6y &= 2 \end{cases}$ admet une infinité de solutions.
	Vrai Faux

Question 954 $\begin{cases} 2x + 3y = 1 \\ x + 3y = 2 \end{cases}$ admet une infinité de solutions.

Vrai Fau:

Question 955 $\begin{cases} 2x - y = 3 \\ 4x - 2y = 6 \end{cases}$ admet plusieurs solutions.

Vrai Faux

Question 956 $\begin{cases} 2x - y = 6 \\ x - 2y = 3 \end{cases}$ admet plusieurs solutions.

Vrai Faux

Question 957 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est une solution de $\begin{cases} 6x - 2y = 4 \\ 2x + y = 3 \end{cases}$.

Vrai Faux

Question 958 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ est une solution de $\begin{cases} 2x + y = 1 \\ x - y = 2 \end{cases}$.

Vrai Faux

Question 959 $\binom{2}{1}$ est une solution de $\begin{cases} x - 2y = 0 \\ -x + y = 1 \end{cases}$.

Vrai Faux

Question 960 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est l'unique solution de $\begin{cases} 3x - 2y = 1 \\ x + y = 2 \end{cases}$.

Vrai Faux

Question 961 $\binom{2}{1}$ est l'unique solution de $\begin{cases} x - 3y = -1 \\ -2x + 6y = 2 \end{cases}$.

Vrai Faux

Question 962 L'ensemble des solutions de $\begin{cases} 2x - y = 3 \\ 4x - 2y = 6 \end{cases}$ est une droite.

Vrai Faux

Question 963 L'ensemble des solutions de $\begin{cases} 2x - y = 6 \\ x - 2y = 3 \end{cases}$ est une droite.

Vrai Faux

Question 964 L'ensemble des solutions de $\begin{cases} x-y = 1 \\ x+y = 2 \end{cases}$ contient un seul élément.

Vrai Faux

Question 965 L'ensemble des solutions de $\begin{cases} 2x - 4y &= -2 \\ -x + 2y &= 1 \end{cases}$ contient un seul élément.

Vrai Faux

Question 966 L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - 4y &= 3 \end{cases}$ contient un seul élément.

Vrai Faux

Question 967 L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - 4y &= 3 \end{cases}$ est vide.

Vrai Faux

Question 968 L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - y &= 1 \end{cases}$ est vide.

Vrai Faux

Question 969 L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$.

Vrai Faux

Question 970 L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$.

Vrai Faux

Question 971 $\begin{cases} 2x - 6y = 0 \\ -x + 3y = -1 \end{cases}$ est équivalent à 0 = 1.

Vrai Faux

Question 972 $\begin{cases} -x + 3y = -1 \\ 2x - 6y = 2 \end{cases}$ est équivalent à l'équation x - 3y = 1.

Vrai Faux

Question 973 $\begin{cases} 5x - 2y = 3 \\ x + 2y = 3 \end{cases}$ est équivalent au système $\begin{cases} x = 1 \\ y = 1 \end{cases}$

Vrai Faux

Question 974	$\begin{cases} 4x - y &= 2 \\ x + y &= 2 \end{cases}$ est équivalent au système $\begin{cases} x &= 1 \\ y &= 2 \end{cases}$
	Vrai Faux
Question 975	$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b).$
	Vrai Faux
Question 976	$\cos(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b).$
	Vrai Faux
Question 977	$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b).$
	Vrai Faux
Question 978	$\sin(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b).$
	Vrai Faux
Question 979	$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a).$
	Vrai Faux
Question 980	$\sin(a-b) = \cos(a)\sin(b) - \sin(a)\cos(b).$
	Vrai Faux
Question 981	$\cos(2a) = 2\sin^2(a) - 1.$
	Vrai Faux
Question 982	$\cos(2a) = 1 - 2\cos^2(a).$
	Vrai Faux
Question 983	$\cos(2a) = \cos^2(a) - \sin^2(a).$
	Vrai Faux
Question 984	$\cos(2a) = \cos^2(a) + \sin^2(a).$
	Vrai Faux
Question 985	$\sin(2a) = 2\sin(a)\cos(a).$
	Vrai Faux
Question 986	$\sin(2a) = 2\sin^2(a) - 1.$
	Vrai Faux
Question 987	$\cos^2(a) = \frac{1 + \cos(2a)}{2}.$
	■ Vrai

Correction

Question 988	$\sin^2(a) = \frac{1 + \sin(2a)}{2}.$		
		Vrai	Faux
Question 989	$\sin(a+\pi) = -\sin(a)$		
		Vrai	Faux
Question 990	$\sin(a + \frac{\pi}{2}) = \cos(a).$		
		Vrai	Faux
Question 991	$\sin(a+2\pi) = -\sin(a$).	
		Vrai	Faux
Question 992	$\sin(-a) = \sin(a).$		
		Vrai	Faux
Question 993	$\cos(a+\pi) = -\cos(a)$		
		Vrai	Faux
Question 994	$\cos(a + \frac{\pi}{2}) = -\sin(a)$).	
		Vrai	Faux
Question 995	$\cos(-a) = \cos(a).$		
	-	Vrai	Faux
Question 996	$\cos(a+\pi) = \cos(a).$		
		Vrai	Faux
Question 997	$\cos(a + \frac{\pi}{2}) = \sin(a).$		
		Vrai	Faux
Question 998	$\cos(a+2\pi) = -\cos(a+2\pi)$	a).	
		Vrai	Faux
Question 999	$\cos(-a) = -\cos(a).$		
		Vrai	Faux
Question 1000	$\cos(a - \frac{\pi}{2}) = \sin(a).$		
		Vrai	Faux
Question 1001	$\cos(\frac{\pi}{2} - a) = \sin(a).$		
		Vrai	Faux
Question 1002	$\sin(a - \frac{\pi}{2}) = \cos(a).$		
		Vrai	Faux

Question 1003	$\sin(\frac{\pi}{2} - a) = \cos(a)$		
		Vrai	Faux
Question 1004	$\cos(7\pi/6) = -\sqrt{3}/2$	2.	
		Vrai	Faux
Question 1005	$\cos(5\pi/4) = -1/\sqrt{2}$	<u>.</u>	
		Vrai	Faux
Question 1006	$\cos(4\pi/3) = -1/2.$		
		Vrai	Faux
Question 1007	$\cos(11\pi/6) = -1/2.$		
		Vrai	Faux
Question 1008	$\sin(2\pi/3) = \sqrt{2}/2.$		
		Vrai	Faux
Question 1009	$\sin(5\pi/6) = -\sqrt{3}/2$		
		Vrai	Faux
Question 1010	$\sin(\pi) = -1.$		
		Vrai	Faux
Question 1011	$\sin(7\pi/6) = -\sqrt{2}/2$		
		Vrai	Faux
Question 1012	$\sin(5\pi/4) = -1/2.$		
		Vrai	Faux
Question 1013	$\sin(4\pi/3) = \sqrt{3}/2.$		
		Vrai	Faux
Question 1014	$\cos(11\pi/6) = \sqrt{3}/2.$		
		Vrai	Faux
Question 1015	$\sin(2\pi/3) = \sqrt{3}/2.$		
		Vrai	Faux
Question 1016	$\sin(3\pi/4) = 1/\sqrt{2}.$		
		Vrai	Faux
Question 1017	$\sin(5\pi/6) = 1/2.$		
		Vrai	Faux

		Vrai		Faux
Question 1019	$\cos(a-b) = \cos(a)$	$\cos(b) - \sin(b)$	$\mathbf{a}(a) \sin^2 a$	n(b).
		Vrai		Faux
Question 1020	$\sin(a+b) = \cos(a)\mathrm{s}$	$\sin(b) + \sin(b)$	(a) co	s(b).
		Vrai		Faux
Question 1021	$\cos(2a) = 2\cos^2(a)$	– 1.		
		Vrai		Faux
Question 1022	$\cos(2a) = 1 - 2\sin^2\theta$	(a).		
		Vrai		Faux
Question 1023	$\sin^2(a) = \frac{1 - \cos(2a)}{2}.$			
		Vrai		Faux
Question 1024	$\cos^2(a) = \frac{1 - \cos(2a)}{2}.$			
		Vrai		Faux
Question 1025	$\sin(a+2\pi) = \sin(a)$).		
		Vrai		Faux
Question 1026	$\sin(-a) = -\sin(a).$			
		Vrai		Faux
Question 1027	$\sin(a+\pi) = \sin(a).$			
		Vrai		Faux
Question 1028	$\sin(a + \frac{\pi}{2}) = -\cos($	a).		
		Vrai		Faux
Question 1029	$\sin(7\pi/6) = -1/2.$			
		Vrai		Faux
Question 1030	$\sin(5\pi/4) = -1/\sqrt{2}$		_	
	_	Vrai		Faux
Question 1031	$\sin(4\pi/3) = -\sqrt{3}/2$			
		Vrai		Faux
Question 1032	$\cos(7\pi/6) = -1/2.$		_	
		Vrai		Faux

Question 1018

 $\sin(\pi) = 0.$

Question 1033	$\cos(5\pi/4) = \sqrt{2}/2.$		
	Vrai		Faux
Question 1034	$\cos(4\pi/3) = -\sqrt{3}/2.$		
	☐ Vrai		Faux
Question 1035	$\cos(3\pi/2) = 0.$		
	Vrai		Faux
Question 1036	$\cos(5\pi/3) = 1/2.$		
	Vrai		Faux
Question 1037	$\cos(7\pi/4) = \sqrt{2}/2.$		
	Vrai		Faux
Question 1038		_	Б
0 4 1000	Vrai		Faux
Question 1039	$\cos(5\pi/3) = -\sqrt{3}/2.$ Vrai	_	Faux
Question 1040			raux
question 1010	Vrai		Faux
Question 1041		_	
	Vrai		Faux
Question 1042	$\cos(a+2\pi) = \cos(a).$		
	Vrai		Faux
Question 1043	$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}.$		
	Vrai		Faux
Question 1044	$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 + \tan(a)\tan(b)}.$		
	☐ Vrai		Faux
Question 1045	$\tan(a+b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}.$		
	☐ Vrai		Faux
Question 1046	$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}.$		
	■ Vrai		Faux

Question 1047	$\tan(0) = 0.$		
		Vrai	Faux
Question 1048	$\tan(\pi/6) = \sqrt{3}/3.$		
		Vrai	Faux
Question 1049	$\tan(\pi/3) = \sqrt{3}.$		
		Vrai	Faux
Question 1050	$\tan(\pi/2)$ n'est pas o	défini.	
		Vrai	Faux
Question 1051	$\tan(2\pi/3) = -\sqrt{3}.$		
		Vrai	Faux
Question 1052	$\tan(3\pi/4) = -1.$		
		Vrai	Faux
Question 1053	$\tan(3\pi/4)$ est défini	i .	
		Vrai	Faux
Question 1054	$\tan(3\pi/4) = 1.$		
		Vrai	Faux
Question 1055	$\tan(3\pi/4)$ n'est pas	défini.	
		Vrai	Faux
Question 1056	$\tan(5\pi/6) = \sqrt{3}/3.$		
•		Vrai	Faux
Question 1057	$\tan(\pi) = 1.$		
		Vrai	Faux
Question 1058	$\tan(\pi)$ n'est pas déf	fini.	
		Vrai	Faux
Question 1059	$\tan(7\pi/6) = -\sqrt{3}/3$	3.	
		Vrai	Faux
Question 1060	$\tan(5\pi/4) = -1.$		
-		Vrai	Faux
Question 1061	$\tan(5\pi/4)$ n'est pas	défini.	
		Vrai	Faux

Question 1062	$\tan(4\pi/3) = -\sqrt{3}.$	
	Vrai Vrai	Faux
Question 1063	$\tan(3\pi/2)$ est défini.	
	Vrai	Faux
Question 1064	$\tan(5\pi/3) = \sqrt{3}.$	
	Vrai	Faux
Question 1065	$\tan(7\pi/4) = 1.$	
	Vrai	Faux
Question 1066	$\tan(7\pi/4)$ n'est pas défini.	
	Vrai	Faux
Question 1067	$\tan(11\pi/6) = \sqrt{3}/3.$	
	☐ Vrai	Faux
Question 1068	$\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[\pi]).$	
	Vrai	Faux
Question 1069	$\cos(a) = \cos(b) \Leftarrow (a \equiv b[2\pi]).$	
	Vrai	Faux
Question 1070	$\cos(a) = \cos(b) \Leftarrow (a \equiv -b[2\pi]).$	
	Vrai	Faux
Question 1071	$\sin(a) = \sin(b) \Leftarrow (a \equiv b[2\pi]).$	
	Vrai	Faux
Question 1072	$\sin(a) = \sin(b) \Leftarrow (a \equiv \pi - b[2\pi]).$	
	Vrai	Faux
Question 1073	$\cos(a) = \cos(b) \Rightarrow (a \equiv b[2\pi]).$	
	☐ Vrai	Faux
Question 1074	$\cos(a) = \cos(b) \Rightarrow (a \equiv -b[2\pi]).$	
	Vrai Vrai	Faux
Question 1075	$\sin(a) = \sin(b) \Rightarrow (a \equiv b[2\pi]).$	
	☐ Vrai	Faux
Question 1076	$\sin(a) = \sin(b) \Rightarrow (a \equiv \pi - b[2\pi]).$	
	☐ Vrai	Faux

		Vrai	Faux
Question 1078	Si $t = \tan \frac{x}{2}$, on a c	$os(x) = \frac{1-t^2}{1+t^2}.$	
		Vrai	Faux
Question 1079	Si $t = \tan \frac{x}{2}$, on a s	$ \sin(x) = \frac{2t}{1+t^2}. $	
		Vrai	Faux
Question 1080	Si $t = \tan \frac{x}{2}$, on a to	$\operatorname{an}(x) = \frac{2t}{1+t^2}.$	
		Vrai	Faux
Question 1081	$\tan(a-b) = \frac{\tan(a)}{1-\tan(a)}$	$\frac{-\tan(b)}{a)\tan(b)}$.	
		Vrai	Faux
Question 1082	$\tan(a-b) = \frac{\tan(a)}{1-\tan(a)}$	$ \frac{+\tan(b)}{a)\tan(b)}. $	
		Vrai	Faux
Question 1083	$\tan(0)$ est défini.		
		Vrai	Faux
Question 1084	$\sin(a) = \sin(b) \Leftarrow (a)$	$a \equiv -b[2\pi]$).	
	_	Vrai	Faux
Question 1085	$\cos(a) = \cos(b) \Leftrightarrow ($	_	D
Question 1086		Vrai $ = h[2\pi] $	Faux
Question 1086	$\sin(a) = \sin(b) \Leftrightarrow (a)$	$u \equiv o[2\pi]$. Vrai	Faux
Question 1087	$\cos(a) = \cos(b) \Leftrightarrow ($		
•		Vrai	Faux
Question 1088	$\sin(a) = \sin(b) \Leftrightarrow (a)$	$a \equiv b[2\pi] \text{ et } a \equiv$	$\pi - b[2\pi]$).
		Vrai	Faux
Question 1089	$\cos(a) = \cos(b) \Leftrightarrow ($	$a \equiv b[2\pi]$ ou $a \equiv$	$\equiv \pi - b[2\pi]).$
		Vrai	Faux
Question 1090	$\sin(a) = \sin(b) \Leftrightarrow (a)$	$a \equiv b[2\pi]$ ou $a \equiv$	$=-b[2\pi]$).
		Vrai	Faux
Question 1091	$\tan(a) = \tan(b) \Leftrightarrow$		$\equiv -b[2\pi]$).
		Vrai	Faux

 $\textbf{Question 1077} \quad \cos(a) = \cos(b) \Leftarrow (a \equiv \pi - b[2\pi]).$

Correction

Question	1092	Si $t = \tan \frac{x}{2}$, on a	$\tan(x) = \frac{2}{1-}$	$\frac{t}{t^2}$.	
			Vrai		Faux
Question	1093	Si $t = \tan \frac{x}{2}$, on a	$\cos(x) = \frac{1+}{1-}$	$\frac{t^2}{t^2}$.	
			Vrai		Faux
Question	1094	Si $t = \tan \frac{x}{2}$, on a	$\sin(x) = \frac{2t}{1-t}$	$\frac{1}{t^2}$.	
			Vrai		Faux
Question	1095	$\cos(a) = \cos(b) \Leftrightarrow$	$(a \equiv b[2\pi] \text{ o}$	ou <i>a</i> ≡	$=-b[2\pi]).$
			Vrai		Faux
Question	1096	$\sin(a) = \sin(b) \Leftrightarrow$		u <i>a</i> ≡	
			Vrai		Faux
Question	1097	$\tan(a) = \tan(b) \Leftrightarrow$			T.
0 4:	1000		Vrai		Faux
Question	1098	$\tan(5\pi/6) = -\sqrt{3}/6$	Vrai		Faux
Question	1099	$\tan(\pi) = 0.$	VIAI		Taux
Q crossorori	1000		Vrai		Faux
Question	1100	$\tan(\pi)$ est défini.			
			Vrai		Faux
Question	1101	$\tan(7\pi/6) = \sqrt{3}/3$			
			Vrai		Faux
Question	1102	$\tan(\pi/4) = 1.$			
			Vrai		Faux
Question	1103	$\tan(\pi/4)$ est défini	•		
			Vrai		Faux
Question	1104	$\tan(5\pi/4) = 1.$			
0 4:	1105	- (F /4) + 1/6	Vrai		Faux
Question	1105	$\tan(5\pi/4)$ est défin			Four
Ougstie	1106	$ton(4\pi/2)$	Vrai		Faux
Question	1100	$\tan(4\pi/3) = \sqrt{3}.$	Vrai		Faux

Question 1107	$\tan(3\pi/2)$ n'est pas défini.	
	Vrai Faux	
Question 1108	$\tan(\pi/2)$ est défini.	
	☐ Vrai Faux	
Question 1109	$\tan(2\pi/3) = -\sqrt{3}/3.$	
	☐ Vrai Faux	
Question 1110	$\tan(5\pi/3) = -\sqrt{3}.$	
	Vrai Faux	
Question 1111	$\tan(7\pi/4) = -1.$	
	Vrai Faux	
Question 1112	$\tan(7\pi/4)$ est défini.	
	Vrai Faux	
Question 1113	$\tan(11\pi/6) = -\sqrt{3}/3.$	
	Vrai Faux	
Question 1114	$\tan(0) = 1.$	
	☐ Vrai ■ Faux	
Question 1115	$\tan(0)$ n'est pas défini.	
	Vrai Faux	
Question 1116	$\tan(\pi/6) = \sqrt{3}.$	
	☐ Vrai Faux	
Question 1117	$\tan(\pi/4)$ n'est pas défini.	
	☐ Vrai Faux	
Question 1118	$\tan(\pi/3) = \sqrt{3}/3.$	
	☐ Vrai ■ Faux	
Question 1119 choix, par l'assertion	Le fait que deux assertions P et Q sont incompatibles peut se tra en $P \Longrightarrow \text{non } (Q)$ ou par $Q \Longrightarrow \text{non } (P)$.	duire, au
	Vrai Faux	
Question 1120	Si $f: E \to F$ est une application et $A \subset B \subset E$, alors $f[A] \subset f[B]$.	
	Vrai Faux	
Question 1121	Si $f: E \to F$ est une application et $A \neq B \subset E$, alors $f[A] \neq f[B]$.	
	☐ Vrai Faux	

Question 1122	Toute application f :	$[1, 10] \rightarrow [1, 20]$	0] est injective.
		Vrai	Faux
Question 1123	Aucune application f	$f: [1, 10] \to [1, 10]$	20] n'est surjective.
		Vrai	Faux
Question 1124	Les deux solutions de	e l'équation x^2	+3ix + 1 = 0 sont conjuguées.
		Vrai	Faux
Question 1125	Le nombre $12^{2019} + 1$	3^{2019} est divisi	ble par 25.
	■ ,	Vrai	Faux
Question 1126	$(n+1)! \underset{n \to +\infty}{\sim} n!.$		
		Vrai	Faux
Question 1127 $c_n \sim \log n$.	Si c_n est le nombre de	e chiffres de n d	lans l'écriture décimale de l'entier n , alors
		Vrai	Faux
Question 1128 Alors $1 = \underset{n \to +\infty}{o} (u_n)$	Soit $(u_n)_{n\in\mathbb{N}}$ une suit u_n) si et seulement si u_n	te réelle. $\lim_{n \to +\infty} +\infty.$	
		Vrai	Faux
Question 1129	Si $f(x) = \frac{1}{x+1} + o$	$_{\infty}\left(\frac{1}{x^2}\right)$, alors f	$f(x) \underset{x \to +\infty}{\sim} \frac{1}{x}.$
	■ ,	Vrai	Faux
Question 1130 alors $(u_n)_n$ est strice	Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que etement positive à par		tement positive à partir d'un certain rang, rang.
		Vrai	Faux
Question 1131 $(u_n)_n$ est décroissant	Si $u_n \underset{n \to +\infty}{\sim} v_n$ et qu nte à partir d'un certa		roissante à partir d'un certain rang, alors
		Vrai	Faux
Question 1132 rang, alors $(u_n)_n$ es	Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que st strictement décroisse		ctement décroissante à partir d'un certain 'un certain rang.
		Vrai	Faux
Question 1133	Si une suite à valeurs	entières conve	rge, elle est stationnaire.
		Vrai	Faux
Question 1134 également vers $+\infty$		suites tend ver	s $+\infty$, alors au moins l'une des deux tend
		Vrai	Faux

Question 1135	If existe $\theta \in \mathbb{R}$ tel que la suite $(\sin(n\theta))_{n \in \mathbb{N}}$ converge.
	Vrai Faux
Question 1136	La suite (u_n) définie par $\begin{cases} u_0 = \frac{3}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.
	Vrai Faux
Question 1137	La suite (u_n) définie par $\begin{cases} u_0 = \frac{5}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.
	Vrai Faux
Question 1138	Une suite réelle de limite ≥ 0 est positive à partir d'un certain rang.
	Vrai Faux
Question 1139	Une suite monotone converge.
	Vrai Faux
Question 1140	Une suite bornée converge.
	Vrai Faux
Question 1141 convergent vers la r	Deux suites bornées $(u_n)n \in \mathbb{N}$ et $(v_n)n \in \mathbb{N}$ telles que $u_n - v_n \xrightarrow[n \to +\infty]{} 0$ nême limite.
	Vrai Faux
Question 1142 limite alors $(un)_{n\in\mathbb{N}}$	Si les deux sous-suites $(u_{2n})n\in\mathbb{N}$ et $(u2n+1)n\in\mathbb{N}$ convergent vers la même converge.
	Vrai Faux
Question 1143 Alors la suite $(u_n)n$	Soit $(u_n)n \in \mathbb{N}$ une suite croissante. On suppose que $(u2n)n \in \mathbb{N}$ converge. $u \in \mathbb{N}$ converge.
	Vrai Faux
Question 1144	Si la série $\sum_n u_n$ converge, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.
	Vrai Faux
Question 1145	$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n.$
	Vrai Faux
Question 1146	La série $\sum_n \rho^n$ converge si et seulement si $ \rho < 1$.
	Vrai Faux
Question 1147	La série de terme général $\frac{1}{\sqrt{n} \ln n}$ converge.
	Vrai Faux

Correction

Question 1148	Le produit de deux ionctions croissantes est croissant.
	Vrai Faux
Question 1149	La fonction $x \mapsto \lfloor x \rfloor$ est impaire.
	Vrai Faux
Question 1150	Si f est périodique, alors $g \circ f$ est périodique.
	Vrai Faux
Question 1151	Pour tout $x \in \mathbb{R}$, $\exp(x) \ge 1 + x + \frac{x^2}{2}$.
	Vrai Faux
Question 1152	$\cos: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ est une bijection.
	Vrai Faux
Question 1153	Dès que la formule a un sens, on a $\arctan(\tan x) = x$.
	Vrai Faux
Question 1154	Dès que la formule a un sens, on a $tan(\arctan x) = x$.
	Vrai Faux
Question 1155	Sur \mathbb{R}^* , la dérivée de $x\mapsto \ln x $ est $x\mapsto \frac{1}{ x }$.
	Vrai Faux
Question 1156 une limite finie en	Si la fonction $\exp \circ f$ admet une limite finie en $+\infty$, alors la fonction f admet $+\infty$.
	Vrai Faux
Question 1157 de définition.	Une fonction monotone admet une limite en tout point intérieur à son domaine
	Vrai Faux
Question 1158 telle que $f \leq g$.	Étant donné une fonction $f:\mathbb{R}\to\mathbb{R}$, il existe une fonction $g:\mathbb{R}\to\mathbb{R}$ croissante
	Vrai Faux
Question 1159	Une fonction continue périodique est bornée.
	Vrai Faux
Question 1160	Une fonction bornée atteint ses bornes.
	Vrai Faux
Question 1161	Une fonction continue bornée atteint ses bornes.
	Vrai Faux

Question 1162 réelle.	Une fonction polynomiale $\mathbb{R} \to \mathbb{R}$ de degré impair admet au moins une racine
	Vrai Faux
Question 1163	La fonction $x \mapsto \frac{x}{ x }$ est prolongeable par continuité en 0.
	Vrai Faux
Question 1164	La fonction $x \mapsto \frac{\cos x - 1}{ x }$ est prolongeable par continuité en 0.
	Vrai Faux
Question 1165	La dérivée en 0 de $x \mapsto \ln(1 + (\tan x)^2)$ est 0.
	Vrai Faux
Question 1166	Une fonction de classe C^1 est dérivable.
	Vrai Faux
Question 1167	La fonction $x \mapsto x x $ est de classe C^1 .
	Vrai Faux
Question 1168	Une fonction de classe \mathbb{C}^1 sur un segment est lipschitzienne.
	Vrai Faux
Question 1169 s'annule pas.	Soit $f:\mathbb{R} \to \mathbb{R}$ dérivable. La fonction $ f $ est dérivable si et seulement si f ne
	Vrai Faux
	Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. S'annule en 0, alors f admet un extremum local en 0.
	Vrai Faux
Question 1171 Si f admet un max	Soit $f:[0,1] \to \mathbb{R}$ dérivable. ximum en 0, alors $f'(0) = 0$.
	Vrai Faux
Question 1172 Si f admet un max	Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. ximum en 0, alors $f'(0) = 0$.
	Vrai Faux
Question 1173 intervalle, alors sa	Si une fonction réelle f est de classe C^n et admet $n+1$ zéros distincts sur un dérivée n -ième s'annule au moins une fois.
	Vrai Faux
Question 1174	Une primitive de $x \mapsto \ln x$ est $x \mapsto x \ln x - x - 1$.
	Vrai Faux

Question 1175	Soit $f, g \in C^0([0,1])$. Alors, $\left \int_0^1 f(t)g(t)dt \right \le f _{\infty} \left \int_0^1 g(t)dt \right $.
	Vrai Faux
Question 1176	Soit $f, g \in C^0([0, 1])$. Alors, $\left \int_0^1 f(t)g(t)dt \right \le f _{\infty} \int_0^1 g(t) dt$.
	Vrai Faux
Question 1177 nulle sur le segmen	Une fonction $f \in C^0([0,1],\mathbb{R})$ admet exactement une primitive d'intégrale et $[0,1]$.
	Vrai Faux
Question 1178 C tel que $f(x) = C$	Une fonction f dérivable vérifie $f'=2f$ si et seulement si, pour tout x , il existe Ce^{2x} .
	Vrai Faux
Question 1179	Les solutions de $y' + ay = 0$ sont de la forme $x \mapsto Ce^{ax}$ avec $C \in \mathbb{R}$.
	Vrai Faux
Question 1180	Les solutions de $y' + 2y = 0$ sont deux à deux proportionnelles.
	Vrai Faux
Question 1181	Les solutions de $y'' + 2y' = 0$ sont deux à deux proportionnelles.
	Vrai Faux
	Les fonctions $x\mapsto \sin(x)$ et $x\mapsto \sin(2x)$ sont solutions d'une même équation a coefficients constants réels.
	Vrai Faux
Question 1183	Pour tous $a \leq b$ entiers, le cardinal de $\{a, \ldots, b\} = b - a$.
	Vrai Faux
Question 1184	Il y a 50 entiers pairs dans l'intervalle [0, 100].
	Vrai Faux
Question 1185	Le produit de sept entiers consécutifs est toujours divisible par 720.
	Vrai Faux
Question 1186 $\binom{2n}{n} \geq 2^n$.	Il est possible de construire 2^n parties différentes de $[\![1,2n]\!]$ à n éléments, donc
	Vrai Faux
Question 1187	Une matrice et sa transposée ont même noyau.
	Vrai Faux
Question 1188	Pour $A, B \in M_n(\mathbb{R})$, $Tr(AB) = Tr(BA)$.
	Vrai Faux

Question 1189 Po	our $A, B, C \in M_n($	$(\mathbb{R}), \operatorname{Tr}(AB)$	BC) =	$\operatorname{Tr}(ACB)$).
		Vrai		Faux	
Question 1190 Desi leurs matrices augm					bles de solutions si et seulement
		Vrai		Faux	
Question 1191 M ration élémentaire corr				ice d'opéra	ation élémentaire fait agir l'opé-
		Vrai		Faux	
Question 1192 So La matrice «antidiago	poit $\alpha_1, \dots, \alpha_n \in \mathbb{R}^n$ nale» $\begin{pmatrix} 0 & \cdots \\ 0 & \cdots \\ \vdots & \ddots \\ \alpha_n & \cdots \end{pmatrix}$	$ \begin{pmatrix} 0 & \alpha_1 \\ \alpha_2 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix} $	est in	versible.	
		Vrai		Faux	
Question 1193 Le	e système $\begin{cases} x + 2\\ 4x + 5\\ 7x + 8 \end{cases}$	y + 3z = y + 6z = y + 9z = 20	13 6 a 019	une uniqu	ne solution.
		Vrai		Faux	
Question 1194 Si	le système $AX =$	Y admet	des so	olutions, a	lors A est inversible.
		Vrai		Faux	
Question 1195 So et seulement si A et C	pit $A, B, C \in M_n($ Sont inversibles.	K). Alors	la ma	trice $\begin{pmatrix} A \\ 0 \end{pmatrix}$	$\begin{pmatrix} B \\ C \end{pmatrix} \in M_{2n}(K)$ est inversible si
		Vrai		Faux	
Question 1196 vectoriel de $M_n(\mathbb{K})$.	ensemble $M_n(\mathbb{R})$	$\setminus GL_n(\mathbb{R})$	des m	natrices no	on-inversibles est un sous-espace
		Vrai		Faux	
Question 1197 I l'espace vectoriel $\mathbb{R}^{\mathbb{N}}$.	c'ensemble constit	ué des sui	ites m	onotones	est un sous-espace vectoriel de
		Vrai		Faux	
Question 1198 L sous-espace vectoriel d		tions de l'	équat	ion différe	ntielle $y'' + 2y' + 3y = 0$ est un
		Vrai		Faux	
Question 1199 L'sous-espace vectoriel d		tions de l'	équat	ion différe	ntielle $y'' + 2y' + 3y = 1$ est un
		Vrai		Faux	

Question 1200	L'ensemble des suites bornées est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.					
	Vrai Faux					
Question 1201 un sous-espace vect	L'intersection de deux sous-espaces vectoriels d'un même espace vectoriel est oriel.					
	Vrai Faux					
Question 1202 sous-espace vectorie	La réunion de deux sous-espaces vectoriels d'un même espace vectoriel est un el.					
	Vrai Faux					
Question 1203 sous-espace vectories	La somme de deux sous-espaces vectoriels d'un même espace vectoriel est un el.					
	Vrai Faux					
Question 1204 $F + G = F + H$. A	Soit F, G, H trois sous-espaces vectoriels d'un meme espace vectoriel tels que lors $G = H$.					
	Vrai Faux					
Question 1205 alors l'égalité $F = 0$	Soit F, G deux sous-espaces vectoriels de E tels que $F+G=F\cap G.$ On a $G.$					
	Vrai Faux					
Question 1206 l'égalité $F = G$.	Soit F , G deux sous-espaces vectoriels de E tels que $F+G=F$. On a alors					
	Vrai Faux					
Question 1207	Une famille de vecteurs deux à deux non colinéaires est libre.					
	Vrai Faux					
Question 1208	La famille des fonctions $x \mapsto x, x \mapsto -x$ et $x \mapsto x $ est libre.					
	Vrai Faux					
Question 1209	La famille des fonctions $x\mapsto 1, x\mapsto x $ et $x\mapsto x-1 $ est libre.					
	Vrai Faux					
Question 1210 famille $(e_1 + x, \ldots,$	Si (e_1, \ldots, e_n) est une famille libre d'un espace vectoriel E et $x \in E$, alors la $e_n + x$) est libre.					
	Vrai Faux					
Question 1211 f_n) est une famille	Si (e_1, \ldots, e_n) et (f_1, \ldots, f_n) sont des familles libres de E , alors $(e_1 + f_1, \ldots, e_n + 1)$ libre.					
	Vrai Faux					
Question 1212	Si $u \in \mathcal{L}(E)$, alors Im u et ker u sont supplémentaires.					
	Vrai Faux					

Question 1213	Si $u, v \in \mathcal{L}(E)$, alors	s $Im(u+v)$	\subset In	nu + Im(v).
		Vrai		Faux
Question 1214 l'égalité $u[G+H]$ =		G et H sor	nt deu	ux sous-espaces vectoriels de E , alors on a
		Vrai		Faux
Question 1215	Soit $u, v \in \mathcal{L}(E)$. A	$lors u \circ v =$	0 si	et seulement si $\operatorname{Im} v \subset \ker u$.
		Vrai		Faux
Question 1216 est un projecteur.	Soit $p \in \mathcal{L}(E)$. Alors	s p est un p	rojec	teur si et seulement si la différence Id_E-p
		Vrai		Faux
Question 1217	Si $p \in \mathcal{L}(E)$ est un	projecteur,	alors	$\operatorname{Im} p = \ker(p - \operatorname{Id}_E).$
		Vrai		Faux
Question 1218	Si $s \in \mathcal{L}(E)$ est une	symétrie, a	alors	$\operatorname{Im} s = \ker(s - \operatorname{Id}_E).$
		Vrai		Faux
Question 1219 extraire une base.	De toute famille gén	nératrice d'	un es	pace vectoriel de dimension finie, on peut
		Vrai		Faux
Question 1220 une base.	Tout vecteur d'un	espace vect	oriel	de dimension finie peut être complété en
		Vrai		Faux
Question 1221 si, et seulement si,		ce d'un espa	ace ve	ectoriel E de dimension finie. Alors $E=F$
		Vrai		Faux
Question 1222 que $(f_1, \ldots, f_n, g_1, \ldots)$	Si (f_1, \ldots, f_n) est une base	me base de de E , alors	F, q	que (g_1, \ldots, g_p) est une base de G et enfin $F \oplus G$.
		Vrai		Faux
Question 1223 riels de dimension f	Si $u \in \mathcal{L}(E, F)$ est ufinie, alors dim $E \leq c$		tion l	inéaire injective entre deux espaces vecto-
		Vrai		Faux
Question 1224 Alors toute applica	Soit E et F deux esp tion linéaire $E \to F$			le dimension finie tels que $\dim E \ge \dim F$.
		Vrai		Faux
Question 1225 On a $Mat_{\mathscr{B}}(Id_E) =$		ectoriel de o	dimen	sion n possédant une base \mathcal{B} .
		Vrai		Faux

Question 1226 On a $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(\mathrm{Id}_E)$		ectoriel de o	limer	nsion n possédant deux bases \mathcal{B}, \mathcal{C} .
		Vrai		Faux
Question 1227	Une matrice et sa t	ransposée o	ont m	ême rang.
		Vrai		Faux
Question 1228	Pour $A, B \in M_n(\mathbb{R})$	$, \operatorname{rg}(AB) \leq$	$\leq \operatorname{rg} E$	3.
		Vrai		Faux
Question 1229 alors $\operatorname{rg} A = \operatorname{rg} B =$		$B \in M_{3,2}(1)$	\mathbb{R}) so	nt deux matrices vérifiant $AB \in GL_2(\mathbb{R}),$
		Vrai		Faux
Question 1230	Il existe une base de	$M_n(\mathbb{R})$ co	ompo	sée de matrices de rang 1.
		Vrai		Faux
Question 1231	Il existe une base de	$M_n(\mathbb{R})$ co	ompo	sée de matrices inversibles.
		Vrai		Faux
Question 1232	Un polynôme consta	ant est de d	degré	nul.
		Vrai		Faux
Question 1233 sont tous distincts.	Si (P,Q,R,S) est u	ıne base de	$\mathbb{R}_3[$.	X], alors les degrés des quatre polynômes
		Vrai		Faux
Question 1234	$X^2 + X + 1$ est irré	ductible da	$\operatorname{ins} \mathbb{R}$	[X].
		Vrai		Faux
Question 1235	$X^2 + X + 1$ est irré	ductible da	$\operatorname{ans} \mathbb{C}$	[X].
		Vrai		Faux
Question 1236	$X^3 + X + 1$ est irré	ductible da	$\operatorname{ans} \mathbb{R}$	[X].
		Vrai		Faux
Question 1237	Le nombre 1 est rac	eine simple	de 1	$+X + X^2 + X^3 + X^4 + X^5.$
		Vrai		Faux
Question 1238 <i>P</i> sont entiers.	Si P est un polynôr	ne réel véri	fiant	$\forall n \in \mathbb{Z}, P(n) \in \mathbb{Z},$ alors les coefficients de
		Vrai		Faux
Question 1239 Soit \vec{x} et \vec{y} deux vecteurs d'un espace euclidien. Alors \vec{x} et \vec{y} sont orthogonaux si et seulement si $ \vec{x} + \vec{y} ^2 = \vec{x} ^2 + \vec{y} ^2$.				
		Vrai		Faux

Correction

Question 1240	Toute famille orthor	normale d'u	ın esp	pace euclidien est libre.
		Vrai		Faux
Question 1241	Aucun vecteur de $\overline{\mathcal{G}}$	n'est orth	ogon	al à tous les vecteurs de $\overrightarrow{\mathscr{P}}$.
		Vrai		Faux
Question 1242	Deux droites disjoin	tes dans le	plan	sont parallèles.
		Vrai		Faux
Question 1243	Deux droites disjoin	tes dans l'e	espace	e sont parallèles.
		Vrai		Faux
Question 1244	Deux plans disjoints	dans l'esp	ace s	ont parallèles.
		Vrai		Faux
Question 1245 perpendiculaire aux		oites quelco	onque	s de \mathbb{R}^3 , il existe une droite simultanément
		Vrai		Faux
Question 1246 rotation envoyant \triangle	On considère un po Δ sur Δ' si et seuleme			lroites Δ , Δ' du plan. Alors il existe une $d(O, \Delta')$.
		Vrai		Faux
Question 1247 $\Omega = \{1, \dots, n\}$ telled		de somme 1	. Il ex	xiste une unique probabilité $\mathbb P$ sur l'univers
		Vrai		Faux
Question 1248	Soit A de probabilit	é non nulle	e. Alo	rs, pour tout $B \in \mathscr{P}(\Omega)$, $\mathbb{P}(B A) \leq \mathbb{P}(B)$.
		Vrai		Faux
Question 1249 est de probabilité 0		abilisé (Ω ,	P) fin	ni, tout événement A indépendant de $\Omega \backslash A$
		Vrai		Faux
Question 1250 si A et B sont indé		énements.	Alors	$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ si et seulement
		Vrai		Faux
Question 1251 sont indépendants.	Soit A , B et C des Alors A et C sont in			que A et B sont indépendants et B et C
		Vrai		Faux
Question 1252	Trois événements in	dépendants	sont	indépendants deux à deux.
		Vrai		Faux

Question 1253 binomiale de param	La somme de deux variables de loi de Bernoulli de paramètre p suit une loi nètre 2 et p .
	Vrai Faux
Question 1254	Si $X \sim \mathcal{U}(\{0,\ldots,n\})$, alors $n - X \sim \mathcal{U}(\{0,\ldots,n\})$.
	Vrai Faux
Question 1255	Si $X \sim \mathcal{B}(n, p)$, alors $n - X \sim \mathcal{B}(n, p)$.
	☐ Vrai ■ Faux
Question 1256 est d'espérance 1.	Si une variable aléatoire $X:\Omega\to\mathbb{R}$ est d'espérance nulle, alors la variable e^X
	Vrai Faux
Question 1257 l'inégalité $\mathbb{E}(X) \geq a$	Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors, pour tout $a\in\mathbb{R},$ on a a $\mathbb{P}(X\geq a).$
	Vrai Faux
Question 1258	Tout rectangle dont les diagonales sont perpendiculaires est un losange.
	Vrai Faux
Commentaire après	s réponse: Oui car c'est alors en réalité un carré.
Question 1259	Tout trapèze ayant un angle droit est un rectangle.
	Vrai Faux
Question 1260	Tout trapèze ayant deux angles droits est un rectangle.
	Vrai Faux
Question 1261	Tout trapèze isocèle ayant un angle droit est un rectangle.
	Vrai Faux
Question 1262	Tout trapèze isocèle ayant un angle droit est un carré.
	Vrai Faux
Question 1263 gueur est un carré.	Tout quadrilatère dont les diagonales sont perpendiculaires et de même lon-
	Vrai Faux
Commentaire après	s réponse: Non : un tel quadrilatère est appelé un 'pseudo-carré'.
Question 1264	Tout losange avec un angle droit est un carré.
	Vrai Faux
Question 1265	Tout losange avec un angle droit a des diagonales de même longueur.
	Vrai Faux

Question 1266	Tout losange avec deux angles egaux est un carre.
	Vrai Faux
Question 1267	Tout losange avec deux angles consécutifs égaux est un carré.
	Vrai Faux
Question 1268	Tout trapèze avec deux angles égaux est un trapèze isocèle.
	Vrai Faux
Question 1269	Tout trapèze avec deux angles consécutifs égaux est un trapèze isocèle.
	Vrai Faux
Question 1270	Tout trapèze avec deux bases de même longueur est un rectangle.
	Vrai Faux
Question 1271	Tout trapèze avec deux bases de même longueur est un losange.
	Vrai Faux
Question 1272	Tout trapèze avec deux bases de même longueur est un parallélogramme.
	Vrai Faux
Question 1273 un trapèze isocèle.	Tout quadrilatère ayant au moins un axe de symétrie est un losange ou bien
	Vrai Faux
Commentaire après	réponse: Non, ça peut aussi être ce que l'on appelle un 'cerf-volant'.
Question 1274	Tout quadrilatère ayant exactement un axe de symétrie est un trapèze isocèle.
	Vrai Faux
Commentaire après	réponse: Non, ça peut aussi être ce que l'on appelle un 'cerf-volant'.
Question 1275	Tout carré possède exactement deux axes de symétrie.
	Vrai Faux
Question 1276	Tout carré possède exactement huit axes de symétrie.
	Vrai Faux
Question 1277	Tout carré possède exactement quatre axes de symétrie.
	Vrai Faux
Question 1278	Tout rectangle possède exactement quatre axes de symétrie.
	Vrai Faux
Question 1279	Tout rectangle possède exactement deux axes de symétrie.
	Vrai Faux
Commentaire après	réponse: Ce pourrait être un carré.

Question 1280	Tout rectangle posse	ède au moi	ns de	ux axes de symétrie.
		Vrai		Faux
Question 1281	Tout losange possèd	le exacteme	ent de	eux axes de symétrie.
		Vrai		Faux
Commentaire après	réponse: Ce pourra	it être un o	carré.	
Question 1282	Tout losange possèd	le au moins	deux	x axes de symétrie.
		Vrai		Faux
Question 1283	Tout losange possèd	le exacteme	ent qu	natre axes de symétrie.
		Vrai		Faux
Question 1284	Tout pentagone pos	sède cinq a	xes d	e symétrie.
		Vrai		Faux
Question 1285	Tout pentagone régu	ulier possèc	de cin	q axes de symétrie.
		Vrai		Faux
Question 1286	Tout triangle équila	téral possè	de tro	ois axes de symétrie.
		Vrai		Faux
Question 1287	Tout triangle isocèle	e possède e	xacte	ment un axe de symétrie.
		Vrai		Faux
Commentaire après	réponse: Il pourrait	être équila	atéral	
Question 1288	Tout triangle isocèle	e possède a	u moi	ins un axe de symétrie.
		Vrai		Faux
Question 1289	Les axes de symétrie	e d'un hexa	agone	régulier passent par ses sommets.
		Vrai		Faux
Question 1290	Les axes de symétric	e d'un pent	tagon	e régulier passent par ses sommets.
		Vrai		Faux
Question 1291	Les axes de symétric	e d'un carr	é pas	sent par ses sommets.
		Vrai		Faux
Question 1292	Les axes de symétric	e d'un tria	ngle é	equilatéral passent par ses sommets.
		Vrai		Faux
Question 1293	Les axes de symétrie	e d'un carr	é sont	t ses diagonales.
		Vrai		Faux

Question 1294	Les axes de symétrie d'un losange sont ses diagonales	
	Vrai Faux	
Commentaire aprè	réponse: Si le losange est un carré, il y en a d'autres.	
Question 1295	Tout trapèze possède au moins un axe de symétrie.	
	Vrai Faux	
Question 1296	Tout trapèze isocèle possède au moins un axe de symétrie.	
	Vrai Faux	
Question 1297	Tout parallélogramme possède un axe de symétrie.	
	Vrai Faux	
Question 1298	Tout parallélogramme possède un centre de symétrie.	
	Vrai Faux	
Question 1299	Tout losange possède un centre de symétrie.	
	Vrai Faux	
Question 1300	Tout rectangle possède un centre de symétrie.	
	Vrai Faux	
Question 1301	Tout carré possède un centre de symétrie.	
	Vrai Faux	
Question 1302	Tout trapèze possède un centre de symétrie.	
	☐ Vrai ☐ Faux	
Question 1303	Tout trapèze isocèle possède un centre de symétrie.	
	☐ Vrai ☐ Faux	
Question 1304	_	
	Vrai Faux	
Question 1305	_	
0 11 1000	Vrai Faux	
Question 1306	_	
0 4: 190	Vrai Faux	
Question 1307	_	
Ougstie 1200	Urai ■ Faux	
Question 1308	$14 \times 6 = 84$ Vrai Faux	
	viai L'aux	

Question 1309	$7 \times 13 = 91$				
Question 1310	$5 \times 17 = 85$		Vrai		Faux
·			Vrai		Faux
Question 1311	$5 \times 17 = 95$		Vrai		Faux
Question 1312	$18 \times 4 = 72$		V 1001	_	1001
Question 1313	$18 \times 4 - 76$		Vrai		Faux
Question 1919	10 / 4 - 10		Vrai		Faux
Question 1314	$18 \times 5 = 80$		Vrai		Faux
Question 1315	$17 \times 6 = 92$		Viai		raux
0 4 1010	00 0 70		Vrai		Faux
Question 1316	$23 \times 3 = 79$		Vrai		Faux
Question 1317	$23 \times 4 = 92$	_	T 7. •		T.
Question 1318	$21 \times 5 = 105$		Vrai		Faux
			Vrai		Faux
Question 1319	$11 \times 8 = 88$		Vrai		Faux
Question 1320	$11 \times 11 = 111$			_	
Question 1321	$12 \times 12 = 144$		Vrai		Faux
			Vrai		Faux
Question 1322	$13 \times 13 = 179$		Vrai		Faux
Question 1323	$13 \times 13 = 169$	_		_	
Question 1324	$13 \times 13 = 159$		Vrai		Faux
•			Vrai		Faux

Correction

$14 \times 14 = 196$	
Vrai	Faux
$14 \times 14 = 206$	
☐ Vrai	Faux
$15 \times 15 = 225$	
Vrai	Faux
$15 \times 15 = 255$	
☐ Vrai	Faux
$16 \times 16 = 256$	
Vrai	Faux
8 × 32 — 256	
	-
Vrai	Faux
$8 \times 16 = 256$	
Vrai	Faux
$11 \times 13 = 133$	
	Faux
	I ddan
Vrai	Faux
$12 \times 14 = 168$	
Vrai	Faux
$12 \times 14 = 158$	
_	F
	Faux
$11 \times 14 = 164$	
Vrai	Faux
$(a+1)(a+2) = a^2 + 3a + 2$	
Vrai	Faux
_	1 00011
$(a-1)(a+2) = a^2 + a - 2$	
Vrai	Faux
$(a+1)(a-2) = a^2 - a - 2$	
Vrai	Faux
	Vrai 14 × 14 = 206 Vrai 15 × 15 = 225 Vrai 15 × 15 = 256 Vrai 16 × 16 = 256 Vrai 8 × 32 = 256 Vrai 11 × 13 = 133 Vrai 12 × 11 = 132 Vrai 12 × 14 = 168 Vrai 12 × 14 = 158 Vrai 11 × 14 = 164 Vrai (a + 1)(a + 2) = a² + 3a + 2 Vrai (a - 1)(a + 2) = a² + a - 2 Vrai

Vrai

Faux

Question 1355

$$(a+1)(a-2) = a^2 - a + 2$$
 \Box Vrai
 Faux

 Question 1356
 $(a-1)(a-2) = a^2 - 3a - 2$
 Faux

 \Box Vrai
 Faux

 Question 1357
 $(a+1)(a+3) = a^2 + a + 3$
 Faux

 Question 1358
 $(a-1)(a+3) = a^2 + 2a + 3$
 Faux

 Question 1369
 $(a+1)(a-3) = a^2 + a - 3$
 Faux

 Question 1360
 $(a-1)(a-3) = a^2 - 2a + 3$
 Faux

 Question 1361
 $(a+2)(a+3) = a^2 + 6a + 6$
 Faux

 Question 1362
 $(a-2)(a+3) = a^2 + a + 6$
 Faux

 Question 1363
 $(a+2)(a-3) = a^2 + a - 6$
 Faux

 Question 1364
 $(a-2)(a-3) = a^2 + 5a + 6$
 Faux

 Question 1365
 $(a+1)(a+1) = a^2 + 2a + 2$
 Faux

 Question 1366
 $(a-1)(a-1) = a^2 - 2a - 1$
 Faux

 Question 1367
 $(a+2)(a+2) = a^2 + 2a + 4$
 Faux

 Question 1368
 $(a-2)(a-2) = a^2 - 4a - 4$
 Faux

 Question 1369
 $(2a+1)(a+1) = 2a^2 + 3a + 1$

Vrai

Faux

Correction

Vrai

Faux

Question 1415	$(a+b)(a-1) = a^2 + ab + a - b$
	Vrai Faux
Question 1416	$(a-b)(a+1) = a^2 + ab + a - b$
	Vrai Faux
Question 1417	$(a-b)(a-1) = a^2 - ab + a + b$
	Vrai Faux
Question 1418	$(a-2b)(a+2) = a^2 - 2ab - 2a - 4b$
	☐ Vrai Faux
Question 1419	$(a+2b)(a-3) = a^2 + 2ab + 3a - 6b$
	☐ Vrai ☐ Faux
Question 1420	$(2a - 3b)(3a + 2) = 6a^2 - 9ab - 4a - 6b$
	Vrai Faux
Question 1421	$(3a - 2b)(2a + 3) = 6a^2 - 4ab + 9a + 6b$
	Vrai Faux
Question 1422	$(a+b)(a-b) = a^2 + b^2$
	Vrai Faux
Question 1423	$(a+2b)(a+3b) = a^2 + 6ab + 5b^2$
	Vrai Faux
Question 1424	$(2a+b)(a-b) = 2a^2 + ab - b^2$
	Vrai Faux
Question 1425	$(2a - b)(3a + b) = 6a^2 - 5ab - b^2$
	Vrai Faux
Question 1426	$(2a+b)(a-3b) = 2a^2 - 5ab + 3b^2$
	Vrai Faux
Question 1427	Les diagonales d'un pentagone régulier se coupent en leur milieu
	Vrai Faux
Question 1428	Tout losange possède au moins deux angles égaux.
	Vrai Faux
Question 1429	Tout parallélogramme possède au moins deux angles égaux.
	Vrai Faux

Correction

Question 1430
$$(a+1)^3 = a^3 + 3a^2 + 3a + 1$$
.

Question 1431 $(a+1)^3 = 1 + 3a + 3a^2 + a^3$.

Question 1432 $(a+2)^3 = a^3 + 3a^2 + 3a + 2$.

Vrai Faux

Question 1433 $(a+2)^3 = a^3 + 3a^2 + 3a + 8$.

Vrai Faux

Question 1434 $(a+2)^3 = a^3 + 6a^2 + 12a + 8$.

Vrai Faux

Question 1435 $(a+3)^3 = a^3 + 9a^2 + 27a + 27$.

Vrai Faux

Question 1436 $(a+1)^3 = 1 + a + a^2 + a^3$.

Vrai Faux

Question 1437 $(a+1)^3 = a^3 + 2a^2 + 2a + 1$.

Vrai Faux

Question 1438 $(a-1)^3 = a^3 - 3a^2 + 3a - 1$.

Vrai Faux

Question 1439 $(a-1)^3 = a^3 - 3a^2 - 3a + 1$.

Vrai Faux

Question 1440 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1441 $(1-a)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1441 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1441 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1441 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1441 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1441 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1442 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1443 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1443 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Question 1443 $(a-1)^3 = 1 - 3a + 3a^2 - a^3$.

Vrai Faux

Vrai

Faux

Correction

Question 1445
$$(a+b)^3 = a^3 + 3a^2b + 3ba^2 + b^3$$
.

| Vrai | Faux | Faux |
| Commentaire après réponse: Attention, $a^2b = ba^2$! |
| Question 1446 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$.
| Vrai | Faux |
| Question 1447 $(a-b)^3 = a^3 - 3a^2b - 3ab^2 + b^3$.
| Vrai | Faux |
| Question 1448 $(a-b)^3 = a^3 - 3ab^2 + 3a^2b - b^3$.
| Vrai | Faux |
| Question 1449 $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$.
| Vrai | Faux |
| Question 1450 $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$.
| Vrai | Faux |
| Question 1451 $a^3 - b^3 = (a-b)(a^2 - ab + b^2)$.
| Vrai | Faux |
| Question 1452 $a^3 - 1 = (a-1)(a^2 + a + 1)$.
| Vrai | Faux |
| Question 1453 $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$.
| Vrai | Faux |
| Question 1454 $a^3 + b^3 = (a+b)(a^2 + ab + b^2)$.
| Vrai | Faux |
| Question 1455 $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$.
| Vrai | Faux |
| Question 1456 $(a+b)^4 = a^4 + 4a^3 + 6a^2 + 4ab^3 + b^4$.
| Vrai | Faux |
| Question 1457 $(a+b)^4 = a^4 + 4a^3b + 4a^2b^2 + 4ab^3 + b^4$.
| Vrai | Faux |
| Question 1458 $(a-b)^4 = a^4 + 4a^3b + 6a^2b^2 - 4ab^3 + b^4$.
| Vrai | Faux |
| Question 1458 $(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$.

Question 1459	$(a-b)^4 = a^4 - 4a$	$^3b - 6a^2b^2$	$-4ab^3$	$+ b^4$.
		Vrai		Faux
Question 1460	$(a+2)^4 = a^4 + 8a$	$a^3b + 24a^2 +$	- 32 <i>a</i> -	⊢ 16.
		Vrai		Faux
Question 1461	$(a+3)^4 = a^4 + 12$	$a^3b + 54a^2$	+ 108	a + 81.
		Vrai		Faux
Question 1462	$(a+3)^4 = a^4 + 12$	$a^3b + 54a^2$	+ 108	a+27.
		Vrai		Faux
Question 1463	$(a+2)^4 = a^4 + 4a$	$a^3b + 6a^2 +$	4a + 2	2.
		Vrai		Faux
Question 1464	$(a+b)^5 = a^5 + 5a$	$^4b + 10a^3b^2$	+10a	$a^2b^3 + 5ab^4 + b^5.$
		Vrai		Faux
Question 1465	$(a+1)^5 = a^5 + 5a$	$a^4 + 10a^3 +$	$10a^{2} +$	-5a + 1.
		Vrai		Faux
Question 1466	Toute fonction affi	ne est linéa	ire.	
		Vrai		Faux
Commentaire après	réponse:			
Question 1467	Toute fonction line	éaire est aff	ine.	
		Vrai		Faux
Commentaire après	réponse:			
Question 1468	Toute fonction cor	stante est a	affine.	
		Vrai		Faux
Commentaire après	réponse:			
Question 1469	Toute fonction cor	stante est l	inéair	e.
		Vrai		Faux
Commentaire après	réponse:			
Question 1470	La fonction nulle e	est linéaire.		
		Vrai		Faux
Commentaire après	réponse:			

Question 1471	la fonction nulle est	affine.		
		Vrai		Faux
Commentaire après	réponse:			
Question 1472	La fonction $x \mapsto -3x$	x + 5 est lin	néaire	2.
		Vrai		Faux
Commentaire après	réponse: L'image de	e 0 n'est pa	s 0.	
Question 1473	La fonction $x \mapsto -3x$	x+5 est at	fine.	
		Vrai		Faux
Commentaire après	réponse:			
Question 1474	L'image de 2 par la	fonction x	$\mapsto 2x$	+7 est 11.
		Vrai		Faux
Commentaire après	réponse:			
Question 1475	L'image de 3 par la	function x	$\mapsto -\xi$	5x + 2 est -13.
		Vrai		Faux
Commentaire après	réponse:			
Question 1476	L'image de 3 par la	function x	$\mapsto 9x$	+7 est 33.
		Vrai		Faux
Commentaire après	réponse:			
Question 1477	L'image de 7 par la	function x	$\mapsto 3x$	+11 est 22.
		Vrai		Faux
Commentaire après	réponse:			
Question 1478	L'image de 11 par la	fonction x	$\mapsto 9$	x + 22 est 121.
		Vrai		Faux
Commentaire après	réponse:			
Question 1479	L'image de 12 par la	fonction x	$\mapsto 7$	x - 35 est 49.
		Vrai		Faux
Commentaire après	réponse:			
Question 1480	L'image de 8 par la	function x	→ 11	x - 59 est 39.
		Vrai		Faux
Commentaire après	réponse:			

Question 1481	L'antécédent de 7 par la fonction $x\mapsto 2x+3$ est 17.
	Vrai Faux
Commentaire après	réponse:
Question 1482	L'antécédent de 7 par la fonction $x\mapsto 2x+3$ est 2.
	Vrai Faux
Commentaire après	réponse:
Question 1483	L'antécédent de 9 par la fonction $x\mapsto 5x+7$ est $2/5$.
	Vrai Faux
Commentaire après	réponse:
Question 1484	L'antécédent de 12 par la fonction $x\mapsto 5x+7$ est 1.
	Vrai Faux
Commentaire après	réponse:
Question 1485	L'antécédent de 13 par la fonction $x\mapsto 5x+7$ est $6/5$.
	Vrai Faux
Commentaire après	réponse:
Question 1486	L'antécédent de 13 par la fonction $x\mapsto 5x+7$ est $5/6$.
	Vrai Faux
Commentaire après	réponse:
Question 1487	L'antécédent de 11 par la fonction $x\mapsto 5x+7$ est $2/5$.
	Vrai Faux
Commentaire après	réponse:
Question 1488	Toute fonction constante est croissante.
	Vrai Faux
Commentaire après	réponse:
Question 1489	Toute fonction constante est décroissante.
	Vrai Faux
Commentaire après	réponse:
Question 1490	Toute fonction affine est croissante.
	☐ Vrai ■ Faux
Commentaire après	réponse:

Question 1491	Toute fonction croi	ssante est affine	
		Vrai	Faux
Commentaire après	s réponse:		
Question 1492	La fonction $x \mapsto 11$	x - 7/2 est croi	ssante.
		Vrai	Faux
Commentaire après	s réponse:		
Question 1493	La fonction $x \mapsto 9x$	c - 5/3 est décre	sissante.
		Vrai	Faux
Commentaire après	s réponse:		
Question 1494	La fonction $x \mapsto 2$	-x/7 est croissa	ante.
		Vrai	Faux
Commentaire après	s réponse:		
Question 1495	Si une fonction affi	ne de la forme x	$\Rightarrow ax + b$ est croissante, alors $a > 0$.
		Vrai	Faux
Commentaire après	s réponse: $a \ge 0$!		
Question 1496	Si une fonction affi	ne de la forme x	$a \mapsto ax + b$ est croissante, alors $a \le b$.
		Vrai	Faux
Commentaire après	s réponse:		
Question 1497	Si une fonction affi	ne de la forme x	$\Rightarrow ax + b$ est croissante, alors $a \ge b$.
		Vrai	Faux
Commentaire après	s réponse:		
Question 1498	Si une fonction affi	ne de la forme x	$a \mapsto ax + b$ est décroissante, alors $a \le 0$.
		Vrai	Faux
Commentaire après	s réponse:		
Question 1499 égal à 9.	La droite qui représ	sente la fonction	affine $x \mapsto 7x + 9$ a un coefficient directeur
		Vrai	Faux
Commentaire après	s réponse:		
Question 1500 directeur égal à 5.	La droite qui rep	résente la foncti	on affine $x \mapsto -5x + 11$ a un coefficient
		Vrai	Faux
Commentaire après	s réponse:		

Question 1501 égal à 8.	La droite qui représente la fonction affine $x\mapsto 8x-3$ a un coefficient directeur
	Vrai Faux
Commentaire aprè	s réponse:
Question 1502 égale à 3.	La droite qui représente la fonction affine $x\mapsto 8x-3$ a une ordonnée à l'origine
	Vrai Faux
Commentaire aprè	s réponse:
Question 1503 égale à 8.	La droite qui représente la fonction affine $x\mapsto 8x-3$ a une ordonnée à l'origine
	☐ Vrai Faux
Commentaire aprè	s réponse:
Question 1504 l'origine égale à 7/	La droite qui représente la fonction affine $x\mapsto 11x+7$ a une ordonnée à 11.
	☐ Vrai Faux
Commentaire aprè	s réponse:
Question 1505 égale à -5 .	La droite qui représente la fonction affine $x\mapsto 9x-5$ a une ordonnée à l'origine
	Vrai Faux
Commentaire aprè	s réponse:
Question 1506	Une fonction affine de la forme $x\mapsto ax+b$ est linéaire si et seulement si $a=0.$
	Vrai Faux
Commentaire aprè	s réponse:
Question 1507	Une fonction affine de la forme $x\mapsto ax+b$ est linéaire si et seulement si $b=0.$
	Vrai Faux
Commentaire aprè	s réponse:
Question 1508 nul.	Une fonction affine est linéaire si et seulement si son coefficient directeur est
	Vrai Faux
Commentaire aprè	s réponse:
Question 1509 nulle.	Une fonction affine est linéaire si et seulement si son ordonnée à l'origine est
	Vrai Faux
Commentaire aprè	s réponse:

Question 1510 positif.	Une fonction affine e	est croissan	te si e	et seulement si son coefficient directeur est
		Vrai		Faux
Commentaire après	s réponse:			
Question 1511 est croissante.	Si le coefficient direc	cteur d'une	fonct	cion affine est strictement positif, alors elle
		Vrai		Faux
Commentaire après	s réponse:			
Question 1512 ment positif.	Si une fonction affin	ne est croiss	sante	, alors son coefficient directeur est stricte-
		Vrai		Faux
Commentaire après	s réponse:			
Question 1513	Si une fonction affin	e est croiss	ante,	alors son ordonnée à l'origine est positive.
		Vrai		Faux
Commentaire après	s réponse:			
Question 1514	Le discriminant du	trinôme X^2	$^{2} + X$	1+1 est égal à 3.
		Vrai		Faux
Commentaire après	s réponse:			
Question 1515	Le discriminant du	trinôme X^2	$x^2 - X$	1 + 1 est égal à -3 .
		Vrai		Faux
Commentaire après	s réponse:			
Question 1516	Le discriminant du	trinôme X^2	$^{2} + X$	T+1 est égal à -3 .
		Vrai		Faux
Commentaire après	s réponse:			
Question 1517	Le discriminant du	trinôme X^2	$x^2 - X$	1-1 est égal à 3.
		Vrai		Faux
Commentaire après	s réponse:			
Question 1518	Le discriminant du	trinôme X^2	$x^2 - X$	1-1 est égal à 5.
		Vrai		Faux
Commentaire après	s réponse:			
Question 1519	Le discriminant du	trinôme X^2	$2^{2}-21$	X + 2 est égal à 0.
		Vrai		Faux
Commentaire après	s réponse:			

Question 1520	Le discriminant du trinôme $X^2 - 18X + 36$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: Ne peut pas se factoriser comme un carré parfait.
Question 1521	Le discriminant du trinôme $X^2 + 4X + 16$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: Ne peut pas se factoriser comme un carré parfait.
Question 1522	Le discriminant du trinôme $X^2 - 7X + 49$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: Ne peut pas se factoriser comme un carré parfait.
Question 1523	Le discriminant du trinôme $X^2 - 6X + 9$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: On reconnait la forme $(a+b)^2$.
Question 1524	Le discriminant du trinôme $X^2 - 8X + 16$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: On reconnait la forme $(a+b)^2$.
Question 1525	Le discriminant du trinôme $X^2 - 14X + 49$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: On reconnait la forme $(a+b)^2$.
Question 1526	Le discriminant du trinôme $X^2 + 22X + 121$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: On reconnait la forme $(a+b)^2$.
Question 1527	Le discriminant du trinôme $X^2-26X+169$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: On reconnait la forme $(a+b)^2$.
Question 1528	Le discriminant du trinôme $X^2 + 24X + 144$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: On reconnait la forme $(a+b)^2$.
Question 1529	Le discriminant du trinôme $X^2 + 30X + 225$ est égal à 0.
	Vrai Faux
Commentaire après	réponse: On reconnait la forme $(a+b)^2$.

Question 1530	Le discriminant de	ı trinôme 42	$X^2 + 48X + 144$ est égal à 0
		Vrai	Faux
Commentaire après	réponse: On reco	nnait la form	ne $(a + b)^2$.
Question 1531	Le discriminant de	ı trinôme 42	$X^2 + 36X + 81$ est égal à 0.
		Vrai	Faux
Commentaire après	réponse: On recon	nnait la form	ne $(a+b)^2$.
Question 1532	Le discriminant de	ı trinôme 42	$X^2 - 20X + 25$ est égal à 0.
		Vrai	Faux
Commentaire après	réponse: On reco	nnait la form	ne $(a+b)^2$.
Question 1533	Le discriminant de	ı trinôme 42	$X^2 - 8X + 16 \text{ est \'egal \`a } 0.$
] Vrai	Faux
Commentaire après	réponse:		
Question 1534	Le discriminant de	ı trinôme 92	$X^2 - 12X + 16$ est égal à 0.
] Vrai	Faux
Commentaire après	réponse:		
Question 1535	Le discriminant de	u trinôme X	$x^2 + 12X + 144$ est égal à 0.
] Vrai	Faux
Commentaire après	réponse:		
Question 1536	Le discriminant de	u trinôme X	-2 - 8X + 64 est égal à 0.
] Vrai	Faux
Commentaire après	réponse:		
Question 1537	Le discriminant de	u trinôme X	$x^2 - 16X - 64$ est égal à 0.
] Vrai	Faux
Commentaire après	réponse:		
Question 1538	Le discriminant de	ı trinôme X	$x^2 - 3X + 1$ est égal à -13.
] Vrai	Faux
Commentaire après	réponse:		
Question 1539	Le discriminant de	ı trinôme X	$x^2 - 2X + 3$ est égal à -16.
] Vrai	Faux
Commentaire après	réponse:		

Question 1540	Le discriminant du trinôme X^2-2X-3 est égal à 16.
	Vrai Faux
Commentaire après	réponse:
Question 1541	Le discriminant du trinôme $X^2 - X + 3$ est égal à -11 .
	Vrai Faux
Commentaire après	réponse:
Question 1542	Le discriminant du trinôme $X^2 - X + 3$ est égal à 13.
	Vrai Faux
Commentaire après	réponse:
Question 1543	Le discriminant du trinôme $X^2 - 5X + 1$ est égal à 29.
	Vrai Faux
Commentaire après	réponse:
Question 1544	Le discriminant du trinôme $X^2 - 5X + 1$ est égal à -21 .
	☐ Vrai ■ Faux
Commentaire après	réponse:
Question 1545	Le discriminant du trinôme $X^2 - 5X + 2$ est égal à 17.
	Vrai Faux
Commentaire après	réponse:
Question 1546	Le discriminant du trinôme $X^2 - 9X + 11$ est égal à 37.
	Vrai Faux
Commentaire après	réponse:
Question 1547	Le discriminant du trinôme $X^2 - 7X - 5$ est égal à 69.
	Vrai Faux
Commentaire après	réponse:
Question 1548	Le discriminant du trinôme X^2-6X-7 est égal à 8.
	Vrai Faux
Commentaire après	réponse:
Question 1549	Le discriminant du trinôme $9X^2 - 6X + 1$ est égal à 0.
	Vrai Faux
Commentaire après	réponse:

Correction

Question 1550	Le discriminant du trinôme $2X^2 - 5X + 3$ est égal à 1.	
	Vrai Faux	
Commentaire après réponse:		
Question 1551	Le discriminant du trinôme $2X^2 - 3X - 7$ est égal à 65.	
	Vrai Faux	
Commentaire après réponse:		
Question 1552	Le discriminant du trinôme $3X^2 - 6X + 1$ est égal à 32.	
	Vrai Faux	
Commentaire après réponse:		
Question 1553	Le discriminant du trinôme $2X^2 + 5X + 3$ est égal à 13.	
	Vrai Faux	
Commentaire après réponse:		