11-amaliy mashg`ulot

Mavzu: Bir va ikki o`lchovli funksiyalar qiymatlarini interpolyatsiyalash.

Reja

- 1. Amaliy mashg`ulot uchun kerakli jihozlar
- 2. Nazariy ma`lumotlar
- 3. Interpolyatsiyalash metodlari
- 4. Kubik splaynlarga doir misollar
- 5. Amaliy qism
- 6. Amaliy topshiriqlar

Kerakli jihozlar. Matlab®/Simulink®dasturiy ta'minoti bilan ta'minlangan kompyuterlar va printerlar.

Nazariy ma`lumotlar

Interpolyatsiyalash metodlari

Interpolyatsiya deganda bir funksiyaning kam sonli tugun nuqtalari (interpolyatsiya tugunlari)da berilgan qiymatlardan foydalanib, qiymatlari berilgan funksiyaning tugun nuqtalardagi qiymatlari bilan ustma-ust tushuvchi va tugun nuqtalar orasidagi ixtiyoriy nuqtada funksiyaning qiymatlarini hisoblashga imkon beruvchi yaqinlashuvchi polinom bilan almashtirish tushuniladi.

- 1. n –tartibli ko'phad quyidagicha ifodalanadi: $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0(1)$, n –ko'phad tartibi, $n\hat{I}Z^+ \,\dot{E}\{0\}$. Agar $n\dot{E}Z$ bo'lsa, ya'ni $Z = Z^+ \,\dot{E}\{0\}\dot{E}Z^-$ u holda $P_n(x)$ funksiya ratsional funksiya deyiladi. Ikki ko'phadning nisbati natijasida kasrratsional funksiya hosil bo'ladi.
- 2. Matlabda (1) ko'phad koeffitsiyentlari darajalari kamayib borish tartibida joylashtirilgan vektor ko'rinishida ifodalanadi. Масалан:

```
P_3(x) = 5x^3 - 4x^2 + 2x - 1 ko'phadni Matlabda berilishi:
```

```
Using Toolbox Path Cache. Type "help toolbox_path_cache" for more info.

To get started, select "MATLAB Help" from the Help menu.

>> P3=[5 -4 2 -1]

P3 =

5 -4 2 -1

>> |
```

3. Ikki m − va n − tartibli koʻphadlarni koʻpaytirish operatsiyasi konvolyutsiya deyiladi va quyidagi komanda orqali amalga oshiriladi: **c=conv(a,b)**, bu yerdaa, b − uzunliklari (m+1) ва (n+1) boʻlgan va koʻpaytirilayotgan koʻphadlar koeffitsiyentlaridan iborat vektorlar.

Misol: 1) $P_1=[-2\ 3\ 1]$ Ba $P_2=[3\ -4\ 5\ 2]$ ko'phadlarni Matlabda ko'paytirish.

```
Command Window

>> P1=[-2 3 1];
>> P2=[3 -4 5 2];
>> C=conv(P1,P2)

C =

-6 17 -19 7 11 2

>> |
```

- 4. Matlabda ko'phadlarni bo'lish operatsiyasi quyidagi funksiya asosida amalga oshiriladi: **[a,b]=deconv(p,q)**, bu yerda p,q –bo'linuvchi va bo'luvchi ko'phadlar koeffitsiyentlaridan tashkil topgan vektorlar, a va b –bo'linma va qoldiq ko'phad koeffitsiyentlari. Agar p₁,p₂ ko'phadlar bo'lsa, ularni bo'lish quyidagicha amalga oshiriladi: [a,b]=deconv(p₁,p₂), bunda, *m* ³ *n*bo'lsa, a va b vektorlar uzunliklari mos ravishda [(m+1)-(n+1)+1] ва (m+1) га тенг, *m* £ *n* bo'lsa, a ning uzunligi 0 га, b ning uzunligi (mQ1) ga teng(a bo'linma, b qoldiq ko'phad koeffitsiyentlari).
- 5. Ko'phadning ildizlari **c=roots(p)** funksiyasi orqali topiladi, bu yerda p ko'phad koeffitsiyentlari vektori, uzunligi(n+1)ga teng; c ko'phad ildizlari, uzunligi n ga teng vektor-ustun. **Misol:** $P_2(x) = x^2 5x + 6$ ko'phad ildizlarini topamiz.

- 6. Ko'phad ildizlarini topishga teskari protsedura, ya'ni ko'phadlarni tiklash, **p=poly(c)**funksiyasi asosida amalga oshiriladi, bu yerda c ko'phad ildizlari vektor-ustun; p ko'phad koeffitsiyentlari.
- 7. Ko'phad qiymatlari y=polyval(p,x) funksiyasi asosida hisoblanadi; bu yerda, p –ko'phad koeffitsiyentlari vektori; x –skalyarvektor yoki matritsa; y –

ko'phadning berilgan x ga mos qiymati. Misol: $P_3(x) = 4x^3 - 3x^2 + 2x-1$ ko'phadning x=0.75 dagi qiymatini toping.

```
Command Window
>> p=[4 -3 2 -1]

p =
        4 -3 2 -1

>> x=0.75

x =
        0.7500

>> y=polyval(p,x)

y =
        0.5000
>>
```

- 8. Ko'phadning hosilasi **dp=polyval(p)** funksiyasi yordamida topiladi, bu yerda p —berilgan ko'phad koeffitsiyentlari vektori; dp ko'phad hosilasi koeffitsiyentlari vektori.
- 9. Bir o'zgaruvchili funksiyalarni interpolyatsiyalash f_i = int $erp1(x, y, x_i[,'< memo >'])$ funksiyasi orqali amalga oshiriladi, bu yerda: x interpolyatsiya tugunlari (teng qadamli, tengmas qadamli); y –interpolyatsiya qilinuvchi funksiya; x_i –tugun va oraliq nuqtalar;

<metod > interpolyatsiyalovchi funksiyalar:

- \cdot 'nearest' 0-tartibli ko'phad;
- · 'linear' 1-tartibli ko'phad;
- · 'cubic' 3-tartibli ko'phad;
- · 'spline' kubik splayn; f_i interpolyatsiyalovchi funksiya qiymatlari.
- 10. $y = \underline{\qquad}^{\sin(x)}$ funksiyaning bir xil qadam bilan kubik ko'phad va kubik splayn x asosida interpolyatsiyasi.

```
x=pi/8:pi/2:(4*pi+pi/2); y=sin(x)./x;
xi=pi/8:pi/16:(4*pi+pi/16);
fi1=interp1(x,y,xi,'cubic'); plot(x,y,'-o',xi,fi1,':*'), grid, hold on
legend('y=sin(x)./x','cubic') figure
fi2=interp1(x,y,xi,'spline'); plot(x,y,'-
```

o',xi,fi2,':*'),grid, hold on legend('y=sin(x)./x','spline')

Пример (интерполяция функции косинуса):

$$x=0:10;y=\cos(x); xi=0:0.1:10;$$
 $yi=interp1(x,y,xi);$ $plot(x,y,'x',xi,yi,'g'),hold on$ $yi=interp1(x,y,xi,'spline');$ $plot(x,y,'o',xi,yi,'m'),grid,hold off$ Пример: $x=0:10; y=3*\cos(x); x1=0:0.1:11;$ $y1=spline(x,y,x1);$ $plot(x,y,'o',x1,y1,'---')$ **2-misol.** $2x+y-5z+t=8$ $X-3y-6t=9$ $2y-z+2t=-5$ X

+ 4y -7z + 6t = 0 Tenglamalar sistemasini yeching.

Yechish.

%o'ng tomonning ustun vektori

%sistemaning kengaytirilgan matritsasi

%matritsa rangini tekshirish

Disp (Sistema yagona yechimga ega);

$$X=A\backslash B;$$

% teskari slesh yoki chapdan bo'luv – chizig'li sistemani....

%Gauss usuli bilan yechish

X1=x';

End x1

x1 =

$$>>$$
nx=A^(-1)*B; x2=x' %A\B

yozuvning uchunchi variant x3 =

Berilgan sistemaning enh kichik kvadratlar usuli bilan yechish

% sistemaning matrisa

%o'ng tomonlarining ustun vektori

$$>> x=lsqr(A,B)$$

% chiziqli sistemani yechish uchun % biriktirilgan funksiya (eng kichik kvadratlar usuli)

$$\mathbf{x} =$$

3.0000 -4.0000 -1.0000 1.0000 Misol:

$$2 < \frac{x-2}{x}$$

Tenglikni yeching Yechish:

$$>>$$
maple('solve',' $\{(x-2)/(x+3)>2\}$ ',x)

ans =

$$\{-8 < x, x < -3\}$$

Tengsizlikni yechimi -

$$8 < x < < -3$$
.

3-misol

$$- \le 51$$
, $\sqrt[3]{\sqrt{}} - 1 < 10.69 \le 10x^2 + 4x$

Tengsizlik sistemasini yeching Yechish:

$$>>$$
maple('solve',' $\{(x-2)/(x+3)<=51, sqr(x)\}$

*(sqrt(x)-1) <10,10*x^2+4*x>=69}',x) ans =
$$\{-1/5+1/10*694^{(1/2)} \le x, x < 21/2+1/2*41^{(1/2)}\}$$

```
>> vpa(ans,4)
ans =
{2.434 <= x, x < 13.70 }
```

Topshiriqlar:

- Variant asosida funksiyalar interpolyatsiyasini topish; - Yaratilgan grafiklarni rasmiylashtirish.

Variantlar:

No	1	2	3	4	5	6	7
X	Y	Y	Y	Y	y	y	Y
0.25	0.778	2.284	0.247	0.552	1.031	0.444	0.255
0.31	0.758	2.363	0.285	0.615	1.048	0.530	0.320
0.36	0.717	2.433	0.362	0.667	1.066	0.645	0.376
0.39	0.677	2.477	0.390	0.740	1.107	0.771	0.411
0.43	0.650	2.537	0.416	0.642	1.194	0.640	0.458
0.47	0.625	2.100	0.352	0.587	1.233	0.538	0.508
0.52	0.644	1.982	0.339	0.543	1.138	0.477	0.572
0.56	0.661	1.851	0.331	0.589	1.061	0.508	0.626
0.64	0.717	1.896	0.397	0.684	1.021	0.564	0.544
0.66	0.714	1.935	0.513	0.709	1.122	0.578	0.476
0.71	0.691	2.034	0.651	0.771	1.256	0.610	0.559

No	8	9	10	11	12	13	14
X	Y	Y	y	Y	y	y	y
0.24	0.335	1.274	0.586	0.242	1.002	0.544	0.237
0.26	0.254	1.297	0.571	0.262	1.103	0.566	0.257
0.27	0.263	1.310	0.663	0.273	1.203	0.576	0.266
0.29	0.384	1.436	0.648	0.294	1.204	0.598	0.286
0.30	0.491	1.535	0.540	0.304	1.304	0.509	0.295
0.32	0.509	1.437	0.526	0.325	1.255	0.431	0.234
0.37	0.454	1.344	0.590	0.308	1.316	0.387	0.161
0.38	0.363	1.146	0.683	0.289	1.377	0.399	0.170
0.42	0.397	1.252	0.657	0.232	1.409	0.446	0.247
0.49	0.455	1.363	0.612	0.309	1.412	0.533	0.247
0.59	0.533	1.380	0.554	0.324	1.357	0.669	0.206

Ilovadagi masalalar.

- 1. $P_3(x) = -8x^4 + 4x^3 3x^2 + 2x 1$ ko'phadning x = 0.25 dagi qiymatini toping?
- 2. $y = \underline{\sin(x)}$ funksiyaning [0.1;3.5] oraliqda har xil qadam bilan 4-tartibli x ko'phad bilan interpolyatsiyasini toping?
- 3. $y = -8x^4 + 4x^3 3x^2 + 2x 1$ funksiyaning [0.1;4.5] oraliqda har xil qadam bilan 3-tartibli ko'phad bilan interpolyatsiyasini toping?

- 4. $y = -6x^3 3x^2 + 2x 6$ funksiyaning [0.1;4.5] oraliqda har xil qadam bilan 5tartibli ko'phad bilan interpolyatsiyasini toping?
- 5. $y = \frac{\cos(x)}{\sin(x)} + \frac{\sin(x)}{\sin(x)}$ funksiyaning bir xil qadam bilan kubik ko'phad va kubik x splayn asosida interpolyatsiyasi.
- 6. Y=sin2x+1 funksiyaning bir xil qadamdagi tugun nuqtalardagi qiymatlari asosida 5-tartibli ko'phad bilan approksimatsiya qilish.
- 7. $P_2(x) = 3x^2 5x + 8$ ko'phad ildizlarini topamiz.
- 8. $y = 5x^3 4x^2 + 2x 1$ funksiyaning [0.1;4.5] oraliqda har xil qadam bilan 6tartibli ko'phad bilan interpolyatsiyasini toping?
- 9. Tenglamalar sistemasini eng kichik kvadratlar usuli bilan yeching.

$$2x+2y-5z+t=8$$

$$3x-3y-6t=19$$

$$2y-4z+2t=-5$$

$$x+4y-7z+6t=$$
0

10. Tenglamalar sistemasini eng kichik kvadratlar usuli bilan yeching. x+2y

$$-5z + t = 9$$

 $3x - 3y - 6t = 19$
 $2y - 6z + 2t = -5$

11. Tenglamalar sistemasini eng kichik kvadratlar usuli bilan yeching.

$$2x - 3y - 6t = 19 2y$$

 $-2z + 2t = 8 x + 4y - 7z + 6t = 12$

12. 8 < ___ Tenglikni yeching.