APL 701 - Continuum Mechanics Minor 1

Problem 1: Given the deformation defined by

(20 points)

$$x_1 = X_1,$$
 $x_2 = X_2 + \frac{1}{2}X_3^2,$ $x_3 = X_3$

- a) Sketch the deformed shape of a unit square OABC in the plane $X_1 = 0$.
- b) Determine the differential elements $dx^{(2)}$ and $dx^{(3)}$ resulting from the deformation of length elements $dX^{(2)}=dS^{(2)}\boldsymbol{e_2}$ and $dX^{(3)}=dS^{(3)}\boldsymbol{e_3}$ (originally at point C in reference configuration), respectively.
- c) Determine the change in the original right angle between the elements $dx^{(2)}$ and $dx^{(3)}$.
- d) Compute the stretch at B in the direction of the unit normal $N = \frac{1}{\sqrt{2}} (e_2 + e_3)$.

Problem 2: Prove the following using indicial notation

(20 points)

- a) Given $A_{ij} = \delta_{ij}B_{kk} + 3B_{ij}$, prove $B_{ij} = \frac{1}{3}A_{ij} \frac{1}{18}\delta_{ij}A_{kk}$. (Hint: first obtain the expression for B_{kk} in terms of A_{ii}).
- b) Given a skew-symmetric tensor v_i and a vector v_i defined by $v_i = \varepsilon_{ijk} B_{jk}$, prove that $B_{mq} =$ $rac{1}{2}arepsilon_{mqi}v_i$. Use the identity $arepsilon_{ijk}arepsilon_{lmk}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}$.

Problem 3: Rate of deformation, velocity gradient etc.

3.1. Consider an element in spatial configuration dx = ds n.

(10 points)

Show that $\dot{n} = Dn + Wn - (n.Dn)n$, where D and W correspond to rate of deformation and vorticity tensor, respectively.

3.2. For the deformation map $x_1 = X_1$, $x_2 = X_2 e^t + X_1 (e^t - 1)$, $x_3 = X_3 + X_1 (e^t - e^{-t})$.

(15 points)

a) Obtain the velocity field $v_i(x)$, gradient of velocity $m{L}$, and deformation gradient tensor $m{F}$. a) Obtain the velocity field $L_1(x)$, F.

b) Verify the relationship $L = \dot{F} \cdot F^{-1}$ for this motion.

Problem 4: Polar decomposition and eigenvalue analysis

(15 points)

- a) Show that the eigenvalues of **U** and **V** are the same and obtain the relationship between their eigenvectors.
- b) Given two distinct eigenvalues $\lambda_1 \& \lambda_2$ of a symmetric second-order tensor T show that their corresponding eigenvectors $n_1 \& n_2$ are orthogonal to each other.

