Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма.

ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ (ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА)

ВАРИАНТ 47111 для 11 класса

Согласно эпизоду, не вошедшему в окончательный текст повести, старая графиня была так взволнована появлением Германна в своей спальне, что уронила драгоценные бусы (которые, как говорят, стоили не меньше, чем три заветные карты). Бусы потом не нашлись. Ходят слухи, что они попали в щель между балками и сползают в подклет здания. Многие до сих пор ищут в рукописях адрес «дома старинной архитектуры в одной из главных улиц Петербурга», ожидая, что драгоценная диковинка выскользнет, наконец, наружу.

Попробуем смоделировать некоторую часть этого процесса.

Представим расстегнутые бусы как цепочку из 50 связанных друг с другом шариков (вплотную друг к другу), расположенных вертикально и скользящих вниз по ровному вертикальному каналу между двумя пластинами (см. рис).

Пусть диаметр шариков D=2 см, масса каждого из них m=20 г, сила трения каждого шарика о левую плоскость равна силе трения о правую плоскость и равна $F_{\rm Tp}=0.1$ Н. Ускорение свободного падения примем равным g=9.81 м/с².

Пусть также (для простоты) в начальный момент времени нижний шарик выскальзывает из канала с нулевой стартовой скоростью.

- 1. Определите скорость цепочки в моменты времени, когда из канала выскользнет второй, а затем третий шарик.
- 2. Определите скорость цепочки в тот момент, когда из канала выскользнет последний шарик.
 - 3. Определите время, за которое цепочка полностью выскользнет из канала.
- 4. Пусть на расстоянии H=2 м от нижнего края пластин находится горизонтальный пол. Определите скорость, с которой нижний шарик ударится о него.
- 5. Подберите примерное значение величины $F_{\rm rp}$, при котором время полного выскальзывания бус будет вдвое меньше времени, найденного в п. 3.

Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма.

ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ (ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА)

ВАРИАНТ 47101 для 10 класса

Согласно эпизоду, не вошедшему в окончательный текст повести, старая графиня была так взволнована появлением Германна в своей спальне, что уронила драгоценные бусы (которые, как говорят, стоили не меньше, чем три заветные карты). Бусы потом не нашлись. Ходят слухи, что они попали в щель между балками и сползают в подклет здания. Многие до сих пор ищут в рукописях адрес «дома старинной архитектуры в одной из главных улиц Петербурга», ожидая, что драгоценная диковинка выскользнет, наконец, наружу.

Попробуем смоделировать некоторую часть этого процесса.

Представим расстегнутые бусы как цепочку из 50 связанных друг с другом шариков (вплотную друг к другу), расположенных вертикально и скользящих вниз по ровному вертикальному каналу между двумя пластинами (см. рис).

Пусть диаметр шариков D=2 см, масса каждого из них m=20 г, сила трения каждого шарика о левую плоскость равна силе трения о правую плоскость и равна $F_{\rm Tp}=0.1$ Н. Ускорение свободного падения примем равным g=9.81 м/с².

Пусть также (для простоты) в начальный момент времени нижний шарик выскальзывает из канала с нулевой стартовой скоростью.

- 1. Определите скорость цепочки в моменты времени, когда из канала выскользнет второй, а затем третий шарик.
- 2. Определите скорость цепочки в тот момент, когда из канала выскользнет последний шарик.
 - 3. Определите время, за которое цепочка полностью выскользнет из канала.
- 4. Пусть на расстоянии H=2 м от нижнего края пластин находится горизонтальный пол. Определите скорость, с которой нижний шарик ударится о него.

Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма.

ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ (ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА)

ВАРИАНТ 47091 для 9 класса

Согласно эпизоду, не вошедшему в окончательный текст повести, старая графиня была так взволнована появлением Германна в своей спальне, что уронила драгоценные бусы (которые, как говорят, стоили не меньше, чем три заветные карты). Бусы потом не нашлись. Ходят слухи, что они попали в щель между балками и сползают в подклет здания. Многие до сих пор ищут в рукописях адрес «дома старинной архитектуры в одной из главных улиц Петербурга», ожидая, что драгоценная диковинка выскользнет, наконец, наружу.

Попробуем смоделировать некоторую часть этого процесса.

Представим расстегнутые бусы как цепочку из 50 связанных друг с другом шариков (вплотную друг к другу), расположенных вертикально и скользящих вниз по ровному вертикальному каналу между двумя пластинами (см. рис).

Пусть диаметр шариков D=2 см, масса каждого из них m=20 г, сила трения каждого шарика о левую плоскость равна силе трения о правую плоскость и равна $F_{\rm Tp}=0.1$ Н. Ускорение свободного падения примем равным g=9.81 м/с².

Пусть также (для простоты) в начальный момент времени нижний шарик выскальзывает из канала с нулевой стартовой скоростью.

- 1. Определите скорость цепочки в моменты времени, когда из канала выскользнет второй, а затем третий шарик.
- 2. Определите скорость цепочки в тот момент, когда из канала выскользнет последний шарик.
 - 3. Определите время, за которое цепочка полностью выскользнет из канала.

РЕШЕНИЕ

1. Будем рассматривать цепочку из M шариков как единое тело.

По вертикали на это тело действует сила тяжести $F_{\text{тяж}} = M \, m \, g$, направленная вниз, и силы трения $F_{\text{тр}}$, приложенные в точках касания шариков с пластинами и направленные вверх. Эти силы изображены на рисунке ниже для одного шарика.

Силы трения с каждой стороны равны и приложены на равных расстояниях, следовательно каждый шарик не вращается, а движется поступательно вниз под дейстивем разницы между силой тяжести и суммой сил трения. Заметим, что сумма сил трения будет уменьшаться по мере того, как шарики будут выскакивать из канала.

2. Пусть в рассматриваемый момент времени k шариков уже вышло из канала. Тогда равнодействующая (направленнвая вертикально вниз) сила будет равна

$$F_k = M m g - 2(M - k) F_{\text{\tiny TP}}$$

Эта сила будет придавать ускорение

$$a_k = g - \frac{M - k}{M} \frac{2F_{\text{Tp}}}{m},$$

с которым цепочка будет двигаться вниз. В тот момент, когда вся система сместится вниз на расстояние D, из канала выскочит очередной шарик, и равнодействующая сила изменится.

3. Чтобы ответить на первый вопрос, нужно рассмотреть перемещение цепочки вниз из начального положения на расстояние D, а затем еще на такое же расстояние.

Начальная скорость $v_0 = 0$. Ускорение, получаемое на первом этапе, равно

$$a_1 = g - \frac{M-1}{M} \frac{2F_{\text{Tp}}}{m},$$

поскольку на первый (самый нижний) шарик уже не действует сила трения. Следовательно, для прохождения пути D потребуется время

$$t_1 = \sqrt{\frac{2D}{a_1}}.$$

За это время будет приобретена скорость

$$v_1 = a_1 t_1 = \sqrt{2Da}.$$

По прошествии времени t_1 из канала выскочит второй шарик. Теперь цепочка будет иметь ускорение

 $a_2 = g - \frac{M-2}{M} \frac{2F_{\rm TP}}{m},$

Время, необходимое для смещения вниз на расстояние D можно найти из квадратного уравнения

$$D = v_1 t + \frac{a_2 t^2}{2}.$$

Его корни равны $\frac{-2v_1\pm\sqrt{4v_1^2+8a_2D}}{2a_2}$, и один из них отрицателен. Следовательно, (сокращая на 2)

$$t_2 = \frac{-v_1 + \sqrt{v_1^2 + 2a_2D}}{a_2}.$$

За такое время будет приобретена скорость

$$v_2 = v_1 + a_2 t_2 = \sqrt{v_1^2 + 2a_2 D}.$$

4. Заметим, что при поиске величин t_2 и v_2 мы использовали только уже известные значения t_1 и v_1 , величины же с индексом k=0 не требовались. Поэтому можно написать формулы для k-го момента через предыдущий:

$$a_k = g - \frac{M - k}{M} \frac{2F_{\text{Tp}}}{m},$$

$$t_k = \frac{-v_{k-1} + \sqrt{v_{k-1}^2 + 2a_k D}}{a_k},$$

$$v_k = v_{k-1} + a_k t_k = \sqrt{v_{k-1}^2 + 2a_k D}.$$

5. Теперь можно сформулировать алгоритм расчета момента выскакивания прозвольного шарика.

Алгоритм "Шарик М"

Вход: М % номер последнего вышедшего шарика

% скорость на выходе и время от начала движения Выход: U, Т

начало алгоритма

положить $T := 0; \quad k := 1; \quad v_0 := 0;$

 Π OKA k < M;

Вычислить ускорение $a_k = g - \frac{M-k}{M} \, \frac{2F_{\text{тр}}}{m};$

 $t_k = \frac{-v_{k-1} + \sqrt{v_{k-1}^2 + 2a_k D}}{a_k};$ $T = T + t_k;$ Вычислить время

Увеличить общее время

 $v_k = v_{k-1} + a_k t_k = \sqrt{v_{k-1}^2 + 2a_k D};$ Вычислить скорость

k := k + 1: Увеличить счетчик

КОНЕЦ ПОКА

Сохранить скорость на выходе $U = v_{k-1}$; % т.к. счетчик был увеличен

Вывести U;

Вывести T;

конец алгоритма

6. Для ответов на 2 и 3 вопросы теперь достаточно выполнить описанный алгоритм для M=50.

7 (10, 11 классы).

После того, как последний шарик окажется на свободе, движение цепочки будет определяться только силой тяжести.

Обозначим через U скорость, которую приобретет цепочка к моменту полного выхода из канала. Тогда ее смещение вниз (т.е. свободное падение) на растояние X будет описываться законом

$$X = Ut + \frac{gt^2}{2}.$$

Отсюда можно найти время падения (аналогично тому, как это делалось выше)

$$t_X = \frac{-U + \sqrt{U^2 + 2gX}}{g}$$

и приобретенную скорость

$$V = U + g t_X = \sqrt{U^2 + 2gX}.$$
 (*)

Поскольку к началу свободного падения нижний шарик находился на расстоянии $M\,D$ от нижнего края пластин, то в полученную формулу следует подставить $X=H-M\,D$.

8 (11 класс).

Остается подобрать значение сил $F_{\rm Tp}$, при котором цепочка выскользнет из канала вдвое быстрее. Обозначим через T_0 время выскаьзывания, найденное в п. 6 (ответ на вопрос 3). Теперь будем запускать алгоритм при M=50 и некотором значении $F_{\rm Tp}$ и получать время движения T. Если $T>T_0/2$, то новый запуск будем делать с меньшим значением $F_{\rm Tp}$, если же $T< T_0/2$, то с большим.

Ответ.

Запуск описанных алгоритмов выдал нам следующие значения.

1 (все классы).

В момент выскальзывания второго шарика скорость $V_2 = 0.02 \text{ м/c},$

в момент выскальзывания третьего $V_3 = 0.17 \text{ м/c}$.

2 (все классы).

В момент выскальзывания последнего шарика скорость составит $V_{50} = 1.29 \text{ м/c}.$

3 (все классы).

Время выскальзывания всей цепочки T = 4.19 c.

4 (10 и 11 классы).

Скорость, с которой нижний шарик ударится о дно U = 4.57 м/c.

5 (11 класс).

Сила трения, при которой время выскальзывания уменьшается вдвое, F = 0.098 H.