Grasping On The Move using a mobile manipulator

Claudio Schiavella 1884561 Lorenzo Cirillo 1895955 Lorenzo Cirone 1930811

Tutor - Francesco D'Orazio

Autonomous Mobile Robotics Course 2023/2024 Prof: **Giuseppe Oriolo**

Sapienza University of Rome

Table of Contents

1	Task	4	Non Reactive Arm Controller	7	Simulation Settings
2	Architecture	5	Reactive Arm Controller	8	Simulations
3	Mobile Base Controller	6	Redundancy Resolution Controller	9	Conclusions

Task - Object Pick and Place

- Object pick and place.
- Grasping an object while the robot is in motion to decrease the execution time compared to when the base stops to pick up the target.
- Develop a **reactive controller** to **improve robustness** against perception errors, environmental disturbances, and inaccuracies in robot control.
- Reactive and Non-Reactive approaches comparison.

Architecture

- Mobile Base Controller: approaching the robot to the grasping and final target.
- Arm Controller: guides the arm to the grasping target considering base motion.
- Redundancy Resolution Controller: smoothly coordinates arm and base motion.

Mobile Base Controller

- Navigate the robot base to a desired pose ξ_C
 - In which the target can be reached by the arm.
- **Key point**: Penalize the steering velocity ω_B when the robot is oriented towards the desired pose and penalize the forward velocity v_B when the robot has reached the desired pose.

Mobile Base Controller

Driving and steering velocities:

Grasping phase

$$v_B = cost.$$

$$\omega_B = (k_\alpha \alpha) \frac{v_B}{\rho}.$$

Placing phase

$$v_B = cost.$$

$$\omega_B = (k_\beta \beta) \frac{v_B}{\rho}.$$

- Base-Target distance: $d = \sqrt{(\xi_{T,x} \xi_{B,x})^2 + (\xi_{T,y} \xi_{B,y})^2}$.
- Distance error: $ho = \sqrt{d^2 r_C^2}$
- Orientation error: $\alpha = \text{atan2}(\xi_{B,y} \xi_{C,y}, \xi_{B,x} \xi_{C,x}) + \pi \theta$

Arm Controller

• **Arm controller:** guides the arm to desidered end effector pose considering the motion of the base.

Arm Controller - Non Reactive Approach

- Movelt Approach: motion planning plugin for ROS.
 - Move TIAGo's gripper grasping frame to a desired pose in Cartesian space
 - Given the desired pose, an arm joints config is computed and the planner generates the plan to reach it.

Arm Controller - Non Reactive Approach

- Open Motion Planning Library planners family
 - Single-query Bi-directional Lazy Collision Checking (SBLK)
 - Rapidly-exploring Random Tree (RRT)
 - Probabilistic RoadMap (PRM)

SBLK RRT PRM

Arm Controller - Reactive Approach

- Quintic polynomial timing law $s(\tau)$ over a total time T
 - End-effector progress along a desired linear cartesian trajectory
 - \circ From an initial position ξ_i to a final position ξ_f
 - The trajectory is computed online from the current end effector position
- Rest-to-rest trajectory:

$$s(\tau) = 6\tau^{5} - 15\tau^{4} + 10\tau^{3}.$$

$$\dot{s}(\tau) = 30\tau^{4} - 60\tau^{3} + 30\tau^{2}.$$

$$\ddot{s}(\tau) = 120\tau^{3} - 180\tau^{2} + 60\tau.$$

$$\xi_{des}(s(\tau)) = \xi_{i} + s(\tau)(\xi_{f} - \xi_{i}).$$

$$\dot{\xi}_{des}(s(\tau)) = \dot{s}(\tau)(\xi_{f} - \xi_{i}).$$

$$\ddot{\xi}_{des}(s(\tau)) = \ddot{s}(\tau)(\xi_{f} - \xi_{i}).$$

$$\ddot{\xi}_{des}(s(\tau)) = \ddot{s}(\tau)(\xi_{f} - \xi_{i}).$$

$$\ddot{\xi}_{des}(s(\tau)) = \ddot{s}(\tau)(\xi_{f} - \xi_{i}).$$

Arm Controller - Reactive Approach

- Proportional control: $\dot{\xi}_r = \dot{\xi}_{des} + k\Delta \xi$
 - Cartesian error: $\Delta \xi = \xi_{des} \xi_i$
 - \circ Gains: k
- **TIAGo arm** controlled in position
 - \circ Joint velocities: $\dot{q} = J^{\dagger} \dot{\xi}_r$
 - Euler integration: $q_{k+1} = q_k + \dot{q}\Delta t$
 - To get joint positions

Redundancy Resolution Controller

- Formulated as a **Quadratic Programming** (QP) problem
 - Ensures motion coordination between the arm and base.

Redundancy Resolution Controller

argmin
$$f(x) = \frac{1}{2}x^{T}Hx$$

subject to $\mathcal{J}x = \nu$
 $\mathcal{A}x \leq \mathcal{B}$
 $\mathcal{X}^{-} \leq x \leq \mathcal{X}^{+}$

- ullet Optimization variable $x=(\omega_L \quad \omega_R \quad \dot{q}_a \quad \delta)^T$
 - \circ Wheels angular velocities (ω_L , ω_R)
 - \circ Joint velocities \dot{q}_a
 - Slack variables $\delta = (\delta_a \quad \delta_{\nu_r})$
- Costs: $H = diag\{\lambda_q, \lambda_\delta\}$
- Velocities: $\nu = \left(\frac{\dot{\xi}_r}{\nu_r}\right)$

Redundancy Resolution Controller - Costs

argmin
$$f(x) = \frac{1}{2}x^{T}Hx$$
subject to
$$\mathcal{J}x = \nu$$

$$\mathcal{A}x \leq \mathcal{B}$$

$$\mathcal{X}^{-} \leq x \leq \mathcal{X}^{+}$$

- Joints costs consider
 - A factor inversely proportional to base error for angular velocities
 - A constant factor for joint velocities

$$\lambda_q = \left(\frac{1}{\|\rho\|}, \frac{1}{\|\rho\|}, k_a, k_a, k_a, k_a, k_a, k_a, k_a\right)$$

- Slack variables costs consider
 - A factor inversely proportional to the end-effector error

$$\lambda_{\delta} = \left(\frac{1}{\|\Delta\xi\|}, \frac{1}{\|\Delta\xi\|}, \frac{1}{\|\Delta\xi\|}, \frac{1}{\|\Delta\xi\|}\right)$$

Redundancy Resolution Controller - Equality constraints

argmin
$$f(x) = \frac{1}{2}x^{T}Hx$$

subject to $\boxed{\mathcal{J}x = \nu}$
 $\mathcal{A}x \leq \mathcal{B}$
 $\mathcal{X}^{-} \leq x \leq \mathcal{X}^{+}$

- End-effector velocity comes from direct differential kinematics
 - Can be decreased to improve coordination with base movement

$$J\dot{q}_a = \dot{\xi}_r - \delta_a$$

- \circ where $\dot{\xi}_r$ is the end effector velocity.
- Moving base speed is linked to the wheels angular velocity
 - Can be decreased to improve coordination with the arm movement

$$\frac{\omega_L + \omega_R}{2} = \nu_r - \delta_{\nu}$$

Redundancy Resolution Controller - Inequality constraints

argmin
$$f(x) = \frac{1}{2}x^{T}Hx$$

subject to $\mathcal{J}x = \nu$
 $\mathcal{A}x \leq \mathcal{B}$
 $\mathcal{X}^{-} \leq x \leq \mathcal{X}^{+}$

- Future arm joint positions must fall within the system mechanical limits
 - Considering the used integration method (Euler)

$$q_{k+1} = q_k + \dot{q}\Delta t \in [q_{a,min}, q_{a,max}]$$

• The values of the slack variables must be positive

$$\delta = (\delta_a \quad \delta_{\nu_r}) \ge 0$$

Joint position and velocity must satisfy limits

$$\mathcal{X}^- \le x \le \mathcal{X}^+$$

Simulation Settings - Environment

Gazebo simulation environment.

Task:

- Grasp the green ball
- Place it inside the brown box

Simulation Settings - TIAGo Robot

- Developed by PAL Robotics.
- Main features:
 - Differential Drive Robot as mobile base
 - Articulated arm with 7 degrees of freedom
 - Extendable Torso with a Prismatic Joint
 - Gripper or customizable end-effector
- Based on ROS (Robot Operating System).

Simulations

On-the-stop simulations:

- MoveIT planners
- Quintic polynomial

On-the-move simulations:

- MoveIT planners
- Quintic polynomial
- Redundancy resolution controller

Measurements:

- Task completion
- Grasping trajectory
- Plan finding (only for MovelT planners)
- Success rate

Simulations - On the stop - Moveit

Simulations - On the stop - Quintic

Simulations - On the stop - Planners & Quintic

Simulations - On the move - Base trajectory

- Simulation base trajectory
- Grasping phase:
 - Ball approaching
 - Ball grasping
- Placing phase:
 - Box approaching
 - Ball placing

Simulations - On the move - SBLK

Simulations - On the move - Quintic polynomial

Simulations - On the move - Planners & Quintic

Simulations - On the move - Quintic + QP

Simulations - On the move - Quintic + QP

Simulations - Times and Success Rate

	On-The-Stop			On-The-Move			
Approach	$T_{plan}[s]$	$T_{traj}[s]$	$T_{tot}[s]$	$T_{plan}[s]$	$T_{traj}[s]$	$T_{tot}[s]$	sr
QQP	570	7		107	23.00	74.00	10/10
Quintic		23.02	60.00	1/3	7.67	37.80	9/10
SBLK	6.29	9.17	49.00	3.38	3.58	25.00	3/10
RRT	10.01	8.64	50.00	3.35	4.53	23.00	4/10
PRM	6.39	7.12	42.00	3.73	4.49	22.00	2/10

- Simulations time measurements comparison
 - QQP: Quintic + QP

Values:

- \circ Planning time T_{plan}
- \circ Trajectory time T_{traj}
- \circ Total time T_{tot}
- Success rate sr

Conclusions

- On-The-Move problem solved with a different approaches
 - Base Controller as a Geometric Regulation Task
 - Arm Controller performing planning in Cartesian Space
 - Non reactive with Movelt plugin.
 - **Reactive** with Quintic Polynomial and Kinematic Integration.
 - Redundancy Resolution Controller as a QP
 - Motion coordination between arm and base.
- Reactive approach allows real-time adaptation
- Reduction of task execution time on-the-move.
- Best approach: Quintic Polynomial + Redundancy Resolution Controller
 - In terms of success rate.

References

- [1] Ben Burgess-Limerick, Chris Lehnert, Jurgen Leitner, and Peter Corke. An architecture for reactive mobile manipulation on-the-move, 2022.
- [2] Yuliy Baryshnikov and Robert Ghrist. Euler integration over definable functions. Proceedings of the National Academy of Sciences, 107(21):9525–9530, 2010.
- [3] Saleh Alarabi, Chaomin Luo, and Michael Santor. A prm approach to path planning with obstacle avoidance of an autonomous robots. In 2022 8th Inter-national Conference on Automation, Robotics and Applications (ICARA), pages 76–80, 2022
- [4] Jesse Haviland, Niko Sunderhauf, and Peter Corke. A holistic approach to reactive mobile manipulation. IEEE Robotics and Automation Letters, 7(2):3122–3129, April 2022.
- [5] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. In Proceedings of International Conference on Robotics and Automation, volume 3, pages 2719–2726 vol.3, 1997.
- [6] Steven Lavalle and James Kuffner. Rapidly-exploring random trees: Progress and prospects. Algorithmic and computational robotics: New directions, 01 2000.
- [7] Jordi Pages, Luca Marchionni, and Francesco Ferro. Tiago: the modular robot that adapts to different research needs. In International Conference on Intelligent Robots, 2016 Ben Burgess-Limerick, Chris Lehnert, Jurgen Leitner, and Peter Corke. An architecture for reactive mobile manipulation on-the-move, 2022..