# Gaussian Markov Random Fields for Big-scale Spatio-Temporal Data

Ron Sarafian

Ben-Gurion University of the Negev ronsar@post.bgu.ac.il

### Motivation

# Motivating example: Predicting Air pollution

- Requires: Air pollution levels over a dense spatial domain
- Exists: Measurements from spatially limited monitoring stations
- Also Exists: Unlimited Geographic and Atmospheric data

Goal: Use spatio-temporal data to predict air pollution in space and time



**Applications:** Predictions are used as covariates in future researches (e.g., epidemiology).

# Challenges: Dependencies and Scale

Spatial and temporal structure of the predictors raises some complex issues:

- Statistical modeling: How to account for space-time dependencies?
  - Spatio-temporally correlated prediction errors
  - ⇒ Epidemiological error in variables
  - ⇒ Biased epidemiological results
- Learning large and complex dependencies: When learning the correlation structure between large amount of spatial units, The computational problem scales very fast

### Our talk

- 1 Gaussian Random Field (GRF): Reach but limited
  - Definition
  - Computational limitations
- @ Gaussian Markov Random Field (GMRF):
  - Conditional Independence via Markov property
  - How to fit (almost) a GRF on a large-scale data
  - Comparing GMRF and LMM: discrete vs. continuous spatial random effects

### Gaussian Random Field

# The classic model: Gaussian Random Field (GRF)

GRF is one of the fundamental and most common approach for analysis of spatio-temporal dependency over continuous domains

A GRF is completely determined through its **mean** and **covariance function** 



4 = 4 = 4 = 400

 $Source: \ https://research.cs.aalto.fi/pml/software/gpstuff/demo\_regression1\_r.shtml \\$ 

### **GRF** definition

A spatio-temporal process  $Y(s,t), \quad s \in S; t \in T$ , is a GRF if  $Y = (y(s_1,t_1),...,y((s_{n_s},t_{n_t}))$  has a  $N = n_s \cdot n_t$  multivariate Gaussian density function:

$$f_Y(y) = \left(\frac{1}{\sqrt{2\pi}}\right)^N |\Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(y-\mu)\Sigma^{-1}(y-\mu)'\right\}$$

with mean  $\mu = \mu(s,t) \in \mathbb{R}^N$  and variance:  $\Sigma = C\{(s,t)_i,(s,t)_j)\}_{ij} \in \mathbb{R}^N \times \mathbb{R}^N$ .

### GRF's Covariance

The covariance C is usually a stationary, spatially isotropic function

### Stationarity means that

C can be written as: C((s,t),(s',t')) = C(s-s',t-t')

### (spatial) Isotropy means that

C is only depends on symmetric distance (e.g. Euclidean: ||s-s'||)

Can we choose any covariance function?

No, the induced covariance matrix has to be nonsingular for real solution

A typical spatial covariance functional form is the Matérn:

### Matérn

$$C(s, s') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{2\nu} \frac{\|s - s'\|}{\rho} \right)^{\nu} K_{\nu} \left( \sqrt{2\nu} \frac{\|s - s'\|}{\rho} \right)$$

The Matérn allows a general structure of stationary covariances with parameters:  $\nu,p$  associated with the smoothness and range of the process



# Is GRF perfect?

### Advantages:

- Specify continuous dependence patterns (both space and time)
- Good analytic properties
- Usually very accurate spatio-temporal predictions

a fly in the ointment...

### Disadvantages:

• Dense  $N \times N$  structure of the covariance matrix: Fitting a GRF requires  $\mathcal{O}(N^3)$  operations (due to  $|\Sigma|$  and  $\Sigma^{-1}$ )

Unfortunately, GRF computation is **infeasible for large space-time** datasets



# Can we do something with GRF's "Big N"?

Yes. the answer is Sparsity!



**Sparsity** enables using particular numerical algorithms that allows doing mathematical operations with less memory and computing time

**Sparse covariance** matrix is the base behind most of the strategies developed to overcome GRF's computational bottleneck (more precisely - precision's sparsity)

# Examples for sparse covariance based approach for space-time prediction

- Covariance Tapering: location pairs associated with near-zero entries in  $\Sigma$  are considered independent
- Mixed Models: specifying correlation structures using multilevel effects (discrete clusters). Then learning cluster's unique distribution parameters. Results in a sparse Block-diagonal  $\Sigma$ . Advantage: Computationally efficient. Disadvantage: discrete dependency structure.
- Markovian assumptions: Inducing conditional Independence

### Gaussian Markov Random Field

# The Gaussian Markov Random Field (GMRF)

One approach for avoiding its computational hurdle is by **approximating** a GRF with a GMRF

- GMRFs are discretely indexed random fields involving multivariate Gaussian distribution with Markov property
- Markov property induce conditional independence between random variables, so that a data point in a GMRF depends only on its neighbors (in space/time)

We can "fit" a reach GRF model with continously covariance structure, but actually solve it by GMRF approximation.

# Example: Air-pollution prediction in USA



Study domain: Area: 450,000 km<sup>2</sup>, Period: years 2000-2015

**Prediction resolution:** 1 km<sup>2</sup>, daily

# Comparing learners results

Northern USA Air-pollution prediction

 $\sim$ 250K space-time samples

8 cores machine

| Algorithm | RMSE | Training time (hours) |                  |
|-----------|------|-----------------------|------------------|
| RF        | 2.75 | 5.5                   | including tuning |
| LMM       | 2.68 | 0.16                  |                  |
| XGBoost   | 2.61 | 10                    | including tuning |
| GMRF      | 2.42 | 1.5                   |                  |

# Comparing GMRF to LMM prediction performance in different extrapolation levels (Sarafian et. al, 2019)

- **Increasing** *h* predict in remoter areas, i.e., more extrapolation.
- With more extrapollation both performance decline (RMSE increase)
- In any level the GMRF dominance is significant



# GMRF is more accurate at any distance in USA air-pollution prediction

Whether the goal is predictions in **remote areas**, or whether it is accuracy in areas where **stations are crowded** 

conditional independence via Markov property

So how does this magic work?

# GMRF conditional independence

Let the **neighbors**  $\mathcal{N}_i$  of a point  $x_i$  be the points  $\{x_j|j\in\mathcal{N}_i\}$  that are "close" to  $x_i$ 

#### Gaussian Markov Random Field

A GRF  $x \sim N(\mu, \Sigma)$  that satisfies

$$f(x_i|\{x_j:j\neq i\}) = f(x_i|\{x_j:j\in\mathcal{N}_i\})$$

is a GMRF

Can you think of a famous GMRF?

conditional independence via Markov property

# **GMRF** Examples

### AR(1)

$$x_t = ax_{t-1} + \epsilon_t, \qquad t = 1, 2, ..., \qquad \epsilon_t \sim N(0, \sigma^2)$$



### Neighbors on a mesh

All information for the blue point is:

in the **red** points (1st order) or **red** + **black** points (2nd order)



# Conditional independence (CI)

Conditional independence does not necessarily mean sparse covariance matrix, rather a sparse precision matrix

Now, instead of  $y(s,t) \sim N(\mu, \Sigma)$ , let us write:

$$y(s,t) \sim N(\mu, Q^{-1})$$

### The precision matrix is sparse

Elements in the precision matrix of a GMRF are non-zero only for neighbors and diagonal elements:

$$j \neq \{i, \mathcal{N}_i\} \iff Q_{ij} = 0$$

# GMRF vs. LMM: Learned precision matrices

Part (one day) of the precision matrices. data is ordered by spatial regions (LMM's random effect level).



In GMRF, the correlation between spatial units is **not limited to a** specific region

Hence, precision matrix is not subject to discrete spatial definitions

# Aproximating GRF with GMRF

- Lindgren et al. (2011) provide an explicit link between GRF with Matérn covariance and GMRF using stochastic partial differential equation (SPDE).
- It is based on the relationship that a GRF with a Matérn covariance is a solution to the linear fractional SPDE with Gaussian white noise inovation process.
- The SPDE approach allows fitting a GRF with a continuously and smoothly decaying covariance function, while enjoying the sparse precision matrix of a GMRF representation!
- It also has a great implementation in R: R-INLA

### From continuous to discrete

Wait, but the space is continuous and GMRFs are discrete!

**True**, but a continuous field can be approximated with basis functions using Finite Element Method (FEM)



image source: Johan Lindstrom, GMRF presentation



conditional independence via Markov property

# Approximating a continuous field with a mesh



### Is CI reasonable?

How reasonable is the Markovian CI assumption?

Remember, we wanted to obtain **sparse precision matrix** and not sparse covariance

Sparse covariance matrices imply marginal independence: strong and generally unreasonable assumption. However, conditional independence (via the Markov property) is **often a very reasonable** assumption

# Comparing GMRF and LMM

The only difference in terms of our model formulation between the LMM and GMRF lies in the form of the **spatial random effects** 

Although we were able to achieve better results also by considering continuous temporal patterns, this was not our research goal

In both models spatial effects include **intercept** and **slopes** of satellite data, within each **day** (so we catch unique effect that are changing over space-time)

### Spatial random effects:

#### **LMM**

Region-wise discrete effect

**GMRF** 

Matérn field



comparing GMRF and LMM

# Spatial random effects: Discrete vs. Continuous



Color-scale indicate the estimated value of the spatial random effect (intercept)

### References

Lindgren, Finn, Hvard Rue, and Johan Lindstrm. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73.4 (2011): 423-498.

Lindgren, Finn, and Hvard Rue. "Bayesian spatial modelling with R-INLA." Journal of Statistical Software 63.19 (2015).

Sarafian, Ron, et al. "Gaussian Markov Random Fields versus Linear Mixed Models for satellite-based PM2.5 assessment: Evidence from the Northeastern USA." Atmospheric Environment (2019).

# Thank you!