Riassunto Progetto Pacs

Nahuel Foresta, Giorgio Re 8 maggio 2014

1 Riassunto Obiettivi

Come già indicato nel primo report, l'obiettivo del progetto è di creare un programma per prezzare una serie di opzioni utilizzando dei metodi basati a elementi finiti. Il valore di un opzione al variare del sottostante (che supponiamo evolvere secondo un modello Jump-Diffusion) può essere in generale trovato come soluzione di un equazione integro differenziale del tipo

$$\begin{split} \frac{\delta C}{\delta t} + \frac{\sigma^2}{2} S^2 \frac{\delta^2 C}{\delta S^2} + r \frac{\delta C}{\delta S} - r C + \\ + \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\delta C}{\delta S}(t, S) \right) k(y) dy &= 0 \quad (1) \end{split}$$

su $[0,T]\times[0,+\infty]$ con opportune condizioni al bordo e condizione finale C(T,S)=g(S) payoff dell'opzione. k è un nucleo con una forte massa nell'intorno dello zero e code esponenziali o gaussiane. In due dimensioni, supponendo l'indipendenza delle componenti di salto dei due sottostanti, tale equazione diventa:

$$\frac{\delta C}{\delta t} + \frac{\sigma_1^2}{2} S_1^2 \frac{\delta^2 C}{\delta S_1^2} + \frac{\sigma_2^2}{2} S_2^2 \frac{\delta^2 C}{\delta S_2^2} + \rho \sigma_1 \sigma_2 S_1 S_2 \frac{\delta^2 C}{\delta S_1 \delta S_2} + r \frac{\delta C}{\delta S_1} + r \frac{\delta C}{\delta S_2} - rC +
+ \int_{\mathbb{R}} \left(C(t, S_1 e^y, S_2) - C(t, S_1, S_2) - S_1(e^y - 1) \frac{\delta C}{\delta S}(t, S_1, S_2) \right) k_1(y) dy
+ \int_{\mathbb{R}} \left(C(t, S_1, S_2 e^y) - C(t, S_1, S_2) - S_2(e^y - 1) \frac{\delta C}{\delta S}(t, S_1, S_2) \right) k_2(y) dy = 0$$
(2)

su $[0,T] \times [0,+\infty]^2$ con opportune B.C. e valore finale.

2 Strumenti Aggiunti rispetto a report 1

2.1 Libreria di Integrazione

Poiché le densità all'interno dell'integrale sono del tipo:

$$k(y) = p\lambda\lambda_+ e^{-\lambda_+ x} \mathcal{I}_\{x>0\} + (1-p)\lambda\lambda_- e^{-\lambda_- x} \mathcal{I}_\{x<0\},$$

per il modello di Kou e

$$k(y) = \frac{\lambda}{\delta\sqrt{2\pi}} exp\left\{-\frac{(x-\mu)^2}{2\delta^2}\right\}$$

per il modello di Merton, abbiamo usato dei nodi di quadratura che inglobassero già il peso esponenziale. Sfruttando quindi le funzioni offerte dalla libreria legendre_rule.hpp utilizzata in uno dei laboratori, abbiamo utilizzato i nodi di Laguerre per calcolare l'integrale con il metodo di Kou (ottenendo risultati più precisi rispetto a quelli di Gauss), e pensiamo di utilizzare i nodi di Hermite per il modello di Merton.

3 Cosa è stato fatto in breve

3.1 Fino al report precedente

Al momento dell'ultimo report lo stato era:

- Costruito un programma che risolve l'equazione PDE (senza parte integrale) in una dimensione in un caso semplice utilizzando unicamente gli strumenti forniti dalla libreria.
- Abbiamo risolto lo stesso problema nel caso bi-dimensionale. Sebbene il comportamento qualitativo della soluzione è quello aspettato, i valori esatti non sono ancora giusti (confrontati con dei risultati dati da tool che risolvono l'equazione con metodi alle differenze finite).
- Abbiamo provato a risolvere l'equazione integro differenziale in una dimensione in diversi modi. In due casi siamo riusciti ad ottenere un risultato corretto, ma non pienamente soddisfacenti.

3.2 Fino ad ora

Dopo l'ultimo incontro, abbiamo deciso di esplorare sia l'utilizzo di formule di quadrature più adatte per trattare il termine integrale con nucleo esponenziale, sia di utilizzare funzioni della libreria deal II che permettono di valutare la funzione in un punto qualsiasi. In particolare

- Abbiamo corretto la PDE in 2D ottenendo il risultato atteso.
- Abbiamo implementato la quadratura diretta del termine integrale utilizzando l'equazione nella forma (3), sia in 1D che in 2D. Vedere la sezione 4 Metodologia per i dettagli.
- Abbiamo implementato il calcolo dell'integrale con i nodi di Laguerre per la quadratura del termine integrale con nucleo esponenziale (modello di Kou).

Abbiamo inoltre uniformato l'uso dei "funtori". Deal II fornisce una classe function dalla quale è possibile far ereditare facilmente altre funzioni. In particolare tale classe implementa due metodi virtual value e value_list che valutate su un punto (o un vettore di punti) restituiscono il valore nel punto (o nei punti).

4 Metodologia

La PDE (e la PIDE) in questione è trasformabile in un equazione a coefficienti costanti con la trasformazione $x_i = \ln S_i$ (oppure $x_i = \ln S_i/S_i^0$) e $C(t, S_1, S_2) = u(t, x_1, x_2)$. In tal caso diventa (2D):

$$\frac{\delta u}{\delta t} + \frac{\sigma_1^2}{2} \frac{\delta^2 u}{\delta x_1^2} + \frac{\sigma_2^2}{2} \frac{\delta^2 u}{\delta x_2^2} + \rho \sigma_1 \sigma_2 \frac{\delta^2 u}{\delta x_1 \delta x_2} + \left(r - \sigma_1^2\right) \frac{\delta u}{\delta x_1} \left(r - \sigma_2^2\right) \frac{\delta u}{\delta x_2} - ru + \\
+ \int_{\mathbb{R}} \left(u(t, x_1 + y, x_2) - u(t, x_1, x_2) - (e^y - 1) \frac{\delta u}{\delta x_1} \right) k_1(y) dy + \\
+ \int_{\mathbb{R}} \left(u(t, x_1, x_2 + y) - u(t, x_1, x_2) - (e^y - 1) \frac{\delta u}{\delta x_2} \right) k_2(y) dy = 0 \quad (3)$$

Definendo

$$\hat{\lambda}_i = \int_{\mathbb{R}} u(t, x, y) k_i(y) dy$$
 $\hat{\alpha}_i = \int_{\mathbb{R}} (e^y - 1) \frac{\delta u}{\delta x_i} k_i(y) dy$

L'equazione (3) diventa:

$$\frac{\delta u}{\delta t} + \frac{\sigma_1^2}{2} \frac{\delta^2 u}{\delta x_1^2} + \frac{\sigma_2^2}{2} \frac{\delta^2 u}{\delta x_2^2} + \rho \sigma_1 \sigma_2 \frac{\delta^2 u}{\delta x_1 \delta x_2} + \left(r - \sigma_1^2 - \hat{\alpha}_1\right) \frac{\delta u}{\delta x_1} \left(r - \sigma_2^2 - \hat{\alpha}_2\right) \frac{\delta u}{\delta x_2} + \left(r + \lambda_1 + \lambda_2\right) u + \int_{\mathbb{R}} u(t, x_1 + y, x_2) k_1(y) dy + \int_{\mathbb{R}} u(t, x_1, x_2 + y) k_2(y) dy = 0 \quad (4)$$

Senza entrare nei dettagli (vedere report1), otteniamo una discretizzazione del tipo:

$$M_1 u^k = M_2 u^{k+1} + J^{k+1}$$
 per $k = M \dots 1$ e $u^M(S) = g(S)$ (5)

Dove M_1 è la somma delle matrici date dagli elementi finiti (stiffnes, etc, etc) e M_2 è la matrice di massa divisa per il passo temporale. Dall'ultimo report, ci siamo concentrati su un modo di calcolare il termine esplicito J.

4.1 La parte integrale J

Nell'ultimo report erano spiegati i problemi che il calcolo di questa parte introduce così come due approcci possibili. Ci siamo concentrati sull'approccio che non genera una matrice densa, ma richiede il calcolo del vettore J a ogni iterata temporale.

Riassumendo, si tratta di calcolare nel nodo $x^i = (x_1^i, x_2^i)$ 2 valori di J:

$$J_1^i = J_1(x^i) = \int_{\mathbb{R}} u(t, x_1^i + y, x_2^i) k_1(y) dy \in J_2^i = J_2(x^i) = \int_{\mathbb{R}} u(t, x_1^i, x_2^i + y) k_2(y) dy$$

nei diversi nodi x^i della griglia. In seguito si potrà scrivere dunque

$$\sum_{j=1}^{N} J_j \int_{x_{min}}^{x_{max}} \phi_i(x)\phi_j(x)dx$$

scrivibile come $M\underline{J}$, con M matrice di massa, e aggiungere tale termine all'rhs. L'eq da risolvere a ogni passo temporale è dunque:

$$M_1 u^k = M_2 u^{k+1} + M \underline{J}^{k+1}$$
 per $k = M \dots 1$

Per calcolare tale integrale è necessario il valore di u sia in punti interni al dominio che non appartengono alla mesh, sia fuori dalla mesh. Per quanto riguarda i punti all'interno della mesh abbiamo usato una funzione interna alla libreria deal II che permette di valutare la soluzione in un punto dato. Siccome valutare la funzione in un punto qualunque richiede una ricerca sulla griglia per individuare in quale cella si trova il nodo, questo processo può essere lento. Per quanto riguarda i valori fuori dal dominio, imponiamo il valore del payoff, procedura standard in questo caso.

In sostanza si hanno più griglie:

- Griglia di dominio Una bidimensionale, la griglia che discretizza il dominio
- Griglie di integrazione Una griglia monodimensionale per ogni direzione di interpolazione (due nel caso bidimensionale)

Siccome nella valutazione della soluzione in un punto la ricerca della cella di appartenenza è un operazione lenta, abbiamo notato che è meglio utilizzare una griglia di integrazione con meno celle e più nodi per cella.

4.1.1 Un integrazione più corretta

Come anticipato sopra, abbiamo implementato l'uso di nodi di Gauss-Laguerre per la quadratura dell'integrale. In questo caso l'uso di un troncamento B_{min} , B_{max} non è necessario. A livello di tempi c'è un guadagno. Per ora testato solo su 1D, non ci dovrebbero essere problemi a estenderlo al caso 2D siccome gli integrali nel rhs sono comunque monodimensionali.

5 Conclusioni parziali e futuri passi

Riassumendo, dei due approcci per calcolare l'integrale, il primo ha dato riultati corretti ma sembra più difficile da estendere a due dimensioni in modo efficente. Il secondo fin'ora non ha dato risultati, probabilmente per errore negli algoritmi.

Un terzo approccio da esplorare è il cambio di variabili $Se^y = z$ a livello equazione. In tal caso si ottiene un equazione a coefficienti non costanti, ma la parte integrale potrebbe essere più semplice.

L'altro grande filone su cui concentrarsi è l'estensione in modo che sia dimensionindependent.