This list contains exercises of the type you will find in an exam for the course Natuurlijke Taalmodellen en Interfaces.

## Contents

1 Markov models  $\mathbf{2}$ 

## Points

| Question: | 1 | 2 | 3 | 4 | 5 | Total |
|-----------|---|---|---|---|---|-------|
| Points:   | 2 | 1 | 4 | 3 | 3 | 13    |

## Markov models 1

2.

| -1 | $\alpha$ · 1 | . 1  | 1 1 •1•     | c  |            |     | •      | 1           | . 1  | C 1 | 1 .      | C     | •       | . •   |
|----|--------------|------|-------------|----|------------|-----|--------|-------------|------|-----|----------|-------|---------|-------|
| 1. | Consider     | the  | probability | ΩŤ | a sentence | as  | given  | $^{\rm bv}$ | the  | tot | lowing   | tac:  | torisa. | tion  |
| т. | Communici    | OIIC | probability | OI | a scircinc | COL | 811011 | <i>∨.</i> y | OIIC | 101 | 20111115 | I Cuc | OLIDO   | 01011 |

$$P_S(x_1^n) = P_N(n)P_{S|N}(x_1^n|n)$$
  
=  $P_N(n)\prod_{i=1}^n P_{X|H}(x_i|x_{< i})$ 

| $= P_N(n) \prod_{i=1}^n P_{X H}(x_i x_{< i})$                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| where $S$ is a random sentence, $N$ a random length, $X$ a random word, and $H$ a random history.                                                                                                                                                        |
| (a) ( $\frac{1}{2}$ point) Select appropriate descriptions for $x_1^n$ $\bigcirc$ an outcome of $S$                                                                                                                                                      |
| $\bigcirc$ a sequence of $n$ random words $\bigcirc$ $n$ outcomes of $S$                                                                                                                                                                                 |
| (b) $(\frac{1}{2} \text{ point})$ Select appropriate descriptions for $n$                                                                                                                                                                                |
| <ul><li>○ a random length</li><li>○ a random noun</li></ul>                                                                                                                                                                                              |
| $\bigcirc$ the length of the outcome of $S$                                                                                                                                                                                                              |
| (c) $(\frac{1}{2} \text{ point})$ Select appropriate descriptions for $x_i$                                                                                                                                                                              |
| $\bigcirc$ a random word $\bigcirc$ the <i>i</i> th element of the outcome of $S$                                                                                                                                                                        |
| $\bigcirc$ the <i>i</i> th random sequence                                                                                                                                                                                                               |
| (d) ( $\frac{1}{2}$ point) Select appropriate descriptions for $x_{< i}$                                                                                                                                                                                 |
| $\bigcirc$ a word if $i=2$ $\bigcirc$ a random sequence                                                                                                                                                                                                  |
| the <i>i</i> th random history                                                                                                                                                                                                                           |
| Total for Question 1: 2                                                                                                                                                                                                                                  |
| (1 point) Let $x_1^n$ be the outcome of a random sentence $S$ , and let $P_{S N}(x_1^n n)$ denote its probability value (given length $n$ ) under a <b>unigram</b> language model. Write down the expression that corresponds to this probability value. |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |

| 3. | Answer questions | about the | graphical | model | below, | where | X | is a | $\operatorname{random}$ | variable | over | exactly |
|----|------------------|-----------|-----------|-------|--------|-------|---|------|-------------------------|----------|------|---------|
|    | v English words. |           |           |       |        |       |   |      |                         |          |      |         |



- (a) ( $\frac{1}{2}$  point) Which language model (LM) is this? A. unigram LM B. bigram LM C. hidden Markov LM
- (b)  $(\frac{1}{2} \text{ point})$  How many conditional probability distributions (cpds) are there in the model (ignore the *length* distribution)?

A. one B. two C. n D. v

- (c) (½ point) Is  $P_{X|X_{prev}=x_{prev}}$  a tabular cpd or an inferred distribution? A. tabular B. inferred
- (d) ( $\frac{1}{2}$  point) Is  $P_{S|N=n}$  a tabular cpd or an inferred distribution? A. tabular B. inferred

| (e) | Write down<br>ate padding o | sion of the | e probability | value | $P_S(x_1^n)$ | (you | may | assume |
|-----|-----------------------------|-------------|---------------|-------|--------------|------|-----|--------|
|     |                             |             |               |       |              |      |     |        |
|     |                             |             |               |       |              |      |     |        |
|     |                             |             |               |       |              |      |     |        |
|     |                             |             |               |       |              |      |     |        |

(f) ( $\frac{1}{2}$  point) Assume that the probability value  $P_{X|X_{\text{prev}}}(x|x_{\text{prev}})$  can be assessed in constant time. Express the complexity of computing  $P_{S|n}(x_1^n|n)$  as a function of sentence length (use big-O-notation).

| g) | $(\frac{1}{2} \text{ point})$ Suppose we have exactly $v$ words in the vocabulary, and we use a Categorical |
|----|-------------------------------------------------------------------------------------------------------------|
|    | distribution for each cpd in the model. What is the representation cost of this model (use                  |
|    | big-O-notation)?                                                                                            |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |

Total for Question 3: 4

| 4. | Consider the following unigram language model, where EoS is a special symbol deterministically added to the end of every sentence, and answer the questions below. In this exercise you are |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $V = \int C_0 t(x \mathbf{A})$                                                                                                                                                              |

| X            | $Cat(x \boldsymbol{\theta})$ |
|--------------|------------------------------|
| a            | $\theta_{ m a}$              |
| b            | $\theta_{ m b}$              |
| $\mathbf{c}$ | $	heta_{ m c}$               |
| d            | $	heta_{ m d}$               |
| EoS          | $	heta_{ m EoS}$             |

expected to pad sentences with a BoS token, which **is not** modelled, and an EoS token, which **is mod**elled.

| (a) | $(\frac{1}{2} \text{ point})$ | What is the probability of the sentence <u>a b c a d</u> given its length? |   |
|-----|-------------------------------|----------------------------------------------------------------------------|---|
|     |                               |                                                                            |   |
|     |                               |                                                                            |   |
|     |                               |                                                                            | _ |

| (b) | $(\frac{1}{2} point)$ | What is the probability of the sentence <u>a b b d c a a f</u> ? |
|-----|-----------------------|------------------------------------------------------------------|
|     |                       |                                                                  |
|     |                       |                                                                  |

| (c) | (1 point) | What is the role of smoothing? |
|-----|-----------|--------------------------------|
|     |           |                                |
|     |           |                                |
|     |           |                                |

- (d) (1 point) Answer true (T) or false (F).
  - i. \_\_\_ The sentence  $\underline{a} \underline{a} \underline{b} \underline{c}$  has the same probability as the sentence  $\underline{a} \underline{b} \underline{a} \underline{c}$ .
  - ii. \_\_\_\_ The unigram language model is sensitive to word order.
  - iii. \_\_\_\_ A smoothed unigram language model has infinite support.
  - iv. \_\_\_ Without smoothing, and without taking padding into account, the support of the unigram language model above is the set of strings in  $\{a,b,c,d\}^*$ .

| . Consider | the generativ   | e story below                                       |                                         |                                                             |          |
|------------|-----------------|-----------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|----------|
|            |                 | $N \sim P_N$                                        |                                         |                                                             |          |
|            | $X_i X_{i-1} =$ | $=x_{i-1}\sim \operatorname{Cat}(\theta_1^{(x_i)})$ | $(x_{i-1}),\ldots,	heta_v^{(x_{i-1})})$ | for $i = 1, \dots, n$                                       |          |
| is a spec  |                 | nich we map all u                                   |                                         | apport to {a, b, c, d, UNK}, wanddition to a EoS padding sy |          |
| (a) (1 p   | point) Draw tl  | ne graphical mod                                    | lel using plate no                      | tation.                                                     |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 | <u>abcab</u> and an<br>t its bigrams and            | swer the question their counts.         | ns below.                                                   |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
|            |                 |                                                     |                                         |                                                             |          |
| ii.        |                 |                                                     |                                         | ce given its length? Express pe generative story.           | robabili |
|            | -               |                                                     |                                         |                                                             |          |

Total for Question 5: 3

## Assessment

| Question | Points | Score |
|----------|--------|-------|
| 1        | 2      |       |
| 2        | 1      |       |
| 3        | 4      |       |
| 4        | 3      |       |
| 5        | 3      |       |
| Total:   | 13     |       |