Algorithms & Data Structures I CSC 225

Ali Mashreghi

Fall 2018

Department of Computer Science, University of Victoria

Methods for solving recurrences

There are three main methods for solving recurrences:

- 1. Substitution Method
- 2. Recursion Tree
- 3. Master Method

- Substitution method has two basic steps
- 1. Substitute a guess for T(n)
- 2. Prove your guess using strong induction

- Substitution method has two basic steps
- 1. Substitute a guess for T(n)
- 2. Prove your guess using strong induction

Example:
$$T(n) = 4 T(\frac{n}{4}) + n$$
, for simplicty say $T(1) = 0$
Guess: $T(n) = O(n \log n) \rightarrow T(n) \le c n \log n$, prove it.

- Substitution method has two basic steps
- 1. Substitute a guess for T(n)
- 2. Prove your guess using strong induction

Example:
$$T(n) = 4 T\left(\frac{n}{4}\right) + n$$
, for simplicty say $T(1) = 0$
Guess: $T(n) = O(n \log n) \rightarrow T(n) \le c n \log n$, prove it.

How to show that T(n) is $\Theta(n \log n)$? We should also prove $T(n) = \Omega(n \log n)$

• Unfortunately, to show that $T(n) = \Omega(n \log n)$ showing the following doesn't work

$$T(n) \ge cn \log n$$

• Unfortunately, to show that $T(n) = \Omega(n \log n)$ showing the following doesn't work

$$T(n) \ge cn \log n$$

We have to show the exact form which is

$$T(n) \ge c_1 n \log n + c_2 n$$

This is one of the drawbacks with this method

• Also, note that you can never use asymptotic notations in an inductive proof.

- Also, note that you can never use asymptotic notations in an inductive proof.
- Say we want to prove that n = O(1) which is obviously incorrect.

- For n = 1, we have 1 = O(1)
- If for n = k, we k = O(1)
- Then for n = k + 1 = O(1) + 1 = O(1)

 This happens because we can only use big-O for a constant number of times.

 But if we try to use the big-O notation many times (nonconstant) then the hidden constants inside of big-O don't remain constant anymore when they add up.

The first disadvantage is that you have to make a good guess

- The first disadvantage is that you have to make a good guess
- Some tips in making a good guess
 - Come up with a trivial guess and gradually improve it
 - Try to get some ideas from the next two methods:)

- The first disadvantage is that you have to make a good guess
- Some tips in making a good guess
 - Come up with a trivial guess and gradually improve it
 - Try to get some ideas from the next two methods:)
- Another disadvantage is that there are many subtleties and pitfalls for this method (you can see them on CLRS page 84-87, these pages are optional)

- The first disadvantage is that you have to make a good guess
- Some tips in making a good guess
 - Come up with a trivial guess and gradually improve it
 - Try to get some ideas from the next two methods:)
- Another disadvantage is that there are many subtleties and pitfalls for this method (you can see them on CLRS page 84-87, these pages are optional)
- **Note:** If I ask you to solve a recurrence using this method I will ask you simple ones and provide you with the exact form.

Recursion tree method

- It's the most intuitive way to solve a recurrence
- We want to show the cost of the recursive algorithm as a tree
- The cost of each recursive call is reflected in a node

•
$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \end{cases}$$
 I can write $\Theta(n)$ as cn

•
$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \end{cases}$$
 I can write $\Theta(n)$ as cn

$$T(n) \qquad \begin{array}{c} cn \\ / \\ T(n/2) & T(n/2) \end{array}$$

•
$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \end{cases}$$
 I can write $\Theta(n)$ as cn

Question: Why do I have to put the exact number? For example, why don't I simply put $\Theta(n)$ instead of cn or cn/2 in the nodes?

Question: Why do I have to put the exact number? For example, why don't I simply put $\Theta(n)$ instead of cn or cn/2 in the nodes? **Answer:** Because we can't use asymptotic notations for a nonconstant number of times. And the exact constants will matter in the end.

- Such a structure is called a binary tree
- It's called binary because each node has 2 nodes below it

 Question: How many levels does this tree have?

- Question: How many levels does this tree have?
- Answer: log n
 (base 2) because each time we divide n by 2
 until we get to 1

 Question: How many nodes are there at the lowest level?

- Question: How many nodes are there at the lowest level?
- Answer: $2^{\log n} = n$, since we have 2^i nodes at level i

- We have $\log n$ levels
- We take cn time at each level
- So, the overall time is $T(n) = cn \log n = \Theta(n \log n)$

total is $\Theta(n \log n)$

- Start with one node which is T(n)
- Then, at each step replace a node with the cost of operations on that node and make new nodes for the recursive parts
- Stop when n reaches the base case, in this example n=1. At this point there is no recursive call so you cannot grow the tree anymore
- At the bottom of the tree there are nodes that take $\Theta(1)$ or just a constant c number of operations

How to compute T(n)

- Each node of the recursion tree tells you how much time was spent on that node
- So, to get the running time of the whole recursive algorithm, we have to sum all values on all nodes
- To do this, it's easier to first compute the cost at each level first
- Then, determine how many levels we will have, and compute number of levels × cost at each level

$$T(n) = \begin{cases} O(1) & n \le 1 \\ T(n-1) + O(1) & n > 1 \end{cases}$$
 we can write $\mathbf{O}(\mathbf{1})$ as \mathbf{C}

$$T(n) = \begin{cases} O(1) & n \le 1 \\ T(n-1) + O(1) & n > 1 \end{cases}$$
 we can write $\mathbf{O}(\mathbf{1})$ as \mathbf{C}

$$T(n) \qquad \qquad T(n-1)$$

$$T(n) = \begin{cases} O(1) & n \le 1 \\ T(n-1) + O(1) & n > 1 \end{cases}$$
 we can write $\mathbf{O}(\mathbf{1})$ as \mathbf{C}

$$T(n) \qquad \qquad C \qquad \qquad C$$

$$T(n) = \begin{cases} O(1) & n \le 1 \\ T(n-1) + O(1) & n > 1 \end{cases}$$
 we can write $\mathbf{O}(\mathbf{1})$ as \mathbf{C}

A simple example

$$T(n) = \begin{cases} O(1) & n \le 1 \\ T(n-1) + O(1) & n > 1 \end{cases}$$
 we can write $\mathbf{O}(\mathbf{1})$ as \mathbf{c}

$$T(n) = \begin{cases} \Theta(1) & if \ n = 1 \\ T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + \Theta(n) & if \ n > 1 \end{cases}$$

 Find a good asymptotic upper bound (using big-O) for this recurrence.

Total: $O(n \lg n)$

Shrinks faster

Shrinks more slowly

- In this example, some branches approach n=1 faster, and some approach it later.
- However, we can still say that the number of levels is $O(\log n)$, because there are **at most** $\log_{3/2} n$ levels and we know that $\log_{3/2} n = \Theta(\log n)$ this can be proved using a property of logs
- So, again, $T(n) = O(n \log n)$.

Recursion tree method

• Recursion trees can easily get complicated for example try drawing the tree for $T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$

 Fortunately, we can use another method for recurrences like this.

Master Theorem

The solution to almost all recurrences of the form

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$

MASTER THEOREM

The solution to almost all recurrences of the form

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$

Master method has **3 cases** based on what a, b, and f(n) are.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$

Some examples of this form:

•
$$T(n) = 3T(n/4) + \Theta(n^2)$$

•
$$T(n) = T(n/2) + 10n - 1$$

•
$$T(n) = 2T(n/2) + 3$$

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$

Case 1: If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

This means that if f(n) is **polynomially smaller** than $n^{\log_b a}$, then $n^{\log_b a}$ determines the solution

All 5 functions on the left are smaller than n^3

All 5 functions on the left are smaller than n^3

Question: But can you guess which ones are polynomially smaller?

All 5 functions on the left are smaller than n^3

Question: But can you guess which ones are polynomially smaller? Answer: Only $n, n^2, n^{2.5} \log n$

So, again some logarithmic or polylogarithmic function is consider much smaller than any polynomial.

Ex: $\log^6 n = o(n^{0.001})$ if n is large enough

	notation	name
{	O(1)	constant
	$O(\log(n))$	logarithmic
	$O((\log(n))^c)$	polylogarithmic
	O(n)	linear
	$O(n^2)$	quadratic
	$O(n^c)$	polynomial
	$O(c^n)$	exponential

So, again some logarithmic or polylogarithmic function is consider much smaller than any polynomial.

The reason for requiring a significant polynomial difference is that the proof of master theorem won't work otherwise.

Case 1: If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(\sqrt{n})$$

$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$$

Case 1: If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

$$T(n) = 4T\left(\frac{n}{2}\right) + n \qquad \rightarrow T(n) = \Theta(n^2)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + \sqrt{n}$$
 $\rightarrow T(n) = \Theta(n)$

$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$$
 \rightarrow Master theorem does not apply

Case 2: If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$$

Case 2: If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \qquad \to T(n) = \Theta(n^2 \log n)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
 $\rightarrow T(n) = \Theta(n \log n)$

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow T(n) = \log n$$
 (because we have $n^{\log_2 1} = 1 = \Theta(1)$)

Case 3: If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
, for some constant $\epsilon > 0$, then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n\sqrt{n}\log n$$

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n^2 \log n)$$

Case 3: If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
, for some constant $\epsilon > 0$, then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$$

$$\to T(n) = \Theta(n^2)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n\sqrt{n}\log n$$

$$\to T(n) = \Theta(n\sqrt{n}\log n)$$

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n^2 \log n)$$

Does not apply, but ...

Master Theorem

If
$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$, for some constant $\epsilon > 0$, and also $cf(n) \ge af(\frac{n}{b})$ for some constant c < 1, then $T(n) = \Theta(f(n))$

In simple terms, assuming that $g(n) = n^{\log_b a}$, either f and g should be **asympt. the same**, or their gap should be **polynomial**

Master Theorem

If
$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$, for some constant $\epsilon > 0$, and also $cf(n) \ge af\left(\frac{n}{b}\right)$ for some constant c < 1, then $T(n) = \Theta(f(n))$

Don't worry too much about the regularity condition. It's satisfied in most cases we deal with.

Generalization of case 2

Case 2: If
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, where $k \ge 0$

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n^2 \log n)$$
 - The but example from before

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta\left(\frac{n^2}{\log n}\right)$$

Generalization of case 2

Case 2: If
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, where $k \ge 0$

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n^2 \log n) \qquad \to T(n) = \Theta(n^2 \log^2 n)$$

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta\left(\frac{n^2}{\log n}\right) \qquad \to k = -1$$

so we can't use master theorem for this