A Perceptually Based Evaluation of Music Boundaries

Oriol Nieto Morwaread M. Farbood Juan P. Bello

> Toronto, Canada August 7th, 2013

Overview

- Music Structure Analysis in MIR
- F-measure for Boundary Evaluation
- Experiments
- Redefining the F-measure
- Results and conclusions

Music Structure Analysis Overview

Automatically get this:

(Trains by Porcupine Tree)

Music Structure Analysis Evaluation

- Typically, compare estimated results against ground truth annotations (e.g. The Beatles dataset, SALAMI dataset).
- ▶ Make use of the F-measure (or F1-score):
 - Quantizes the similarity between the annotations and the estimated results.
 - Commonly used to evaluate machine learning algorithms (e.g. search, document classification).
 - Is it appropriate in the framework of music structural analysis? Does it align with humans' perception of the structure in music?
- In this work we aim to perceptually redefine the F-measure for evaluating music boundaries.

F-measure for Boundary Evaluation

- Find intersection between annotations and estimated results:
 - Estimated boundaries are correct (hits) if they are within 3 seconds from the annotated one.
- Precision: Ratio between hits and the total number of estimated elements.
- Recall: Ratio between hits and the total number of annotated elements.

$$P = \frac{|\text{hits}|}{|\text{bounds}_e|}$$

$$R = \frac{|\text{hits}|}{|\text{bounds}_a|}$$

- ▶ **F-measure**: Harmonic mean between P and R.
 - Weights both values equally.
 - Penalizes outliers.
 - Mitigates impact of large values.

$$F = 2\frac{P \cdot R}{P + R}$$

F-measure for Boundary Evaluation

- Higher Precision represents less false positives.
- Higher Recall represents less false negatives.
- When listening to estimated results of music structural analysis, it becomes apparent that these two values are perceptually very different.
- We decided to assess the relative effect that these differences had on human evaluations in order to redefine the F-measure.
 - Two Experiments

Experiment I

Goal:

- Investigate whether Precision or Recall is more perceptually relevant than the other.
- Ensure that findings are robust across a relatively large set of subjects.

Design:

- Obtain track excerpts from the Levy dataset (Levy & Sandler, 2008) by finding the 1-minute segments containing the highest amount of boundaries.
- Reduce the time of the experiment while maintaining participants' attention as high as possible.

Experiment I

- Track Selection:
 - ▶ 5 tracks from the Levy dataset.
 - For each track excerpt, we synthesized 3 different segmentations:
 - Ground-truth boundaries (i.e. F-measure 100%)
 - ▶ High Precision (HP): Precision of 100% and Recall of ~65%
 - ▶ High Recall (HR): Recall of 100% and Precision of ~65%

Experiment 1 Excerpt List									
Song Name	HP			HR					
(Artist)	F	P	R	F	P	R			
Black & White (Michael Jackson)	.809	1	.68	.794	.658	1			
Drive (R.E.M.)	.785	1	.647	.791	.654	1			
Intergalactic (Beastie Boys)	.764	1	.619	.792	.656	1			
Suds And Soda (Deus)	.782	1	.653	.8	.666	1			
Tubthumping (Chumbawamba)	.744	1	.593	.794	.659	1			
Average	.777	1	.636	.794	.659	1			

Experiment I - Subjects

- Choose accuracy of each version of the excerpts.
- Rate them with a discrete value from 1 to 5.
- Total time of the experiment: 15 minutes = 5 tracks x 3 excerpts/track x 1 minute/track
- A total of **48 subjects** took the experiment.

Experiment I - Results

Higher accuracy ratings were assigned to Ground Truth, then HP, and finally HR.

- ANOVA was performed on the accuracy of the ratings with type (GT, HP, HR).
 - Main effect of type [F(2,94)=90.74, p<.001] is significant.

Experiment II

Goal/Main Inquiries:

- Experiment 1 shows the relative importance of Precision over Recall.
- Can the F-measure, Precision and Recall predict subject's preference?
- How this information can be used to design a perceptually-relevant evaluation metric?

Design:

- Obtain track excerpts sampled from a larger dataset.
- Use three state-of-the-art algorithms:
 - Structural Features (Serrà et al. 2012): Best reported results.
 - Convex NMF (Nieto & Jehan 2013): Tends to oversegment.
 - SI-PLCA (Weiss and Bello 2011): Tends to undersegment (depending on params).

Experiment II - Excerpts

- Sampled from the union of three datasets:
 - The Beatles TUT dataset
 - Levy catalogue
 - SALAMI dataset (only the freely available on-line)
 - Total of 463 tracks.
- ▶ Run the three algorithms on the 463 tracks, and filter as follows:
 - (i) There are at least 2 algorithms that have similar F-measure (with a max 5% diff)
 - ▶ (ii) F-measure must be at least 45%
 - (iii) There is at least 10% difference between P and R.

Experiment II -Excerpts

- ▶ 41 out of 463 tracks met these criteria. Qualitatively select 20 (e.g. some SALAMI recordings have very poor sound quality).
- We kept both algorithmic outputs maximizing the difference between P and R to create two versions for each track: High Precision (HP) and High Recall (HR).
- The F-measure was almost identical for both versions.

Boundaries Version	F	P	R
HP	.65	.82	.56
HR	.65	.54	.83

Experiment II - Subjects

- ▶ Each subject was presented with 5 excerpts randomly selected from the 20.
- Each subject had to choose the version they found most accurate (instead of discretely measuring accuracy).
- Total of **23** participants took the experiment.

Experiment II - Results

- ▶ 72.88% of the times subjects chose HP version over HR.
- ▶ Binary logistic regression analysis on the results in order to understand what values of the F-measure are useful to predict participants' preferences.
- Used three predictors:
 - ▶ The F-measure
 - The difference between P and R
 - The absolute difference between P and R
- As the table shows, the P-R is the only value that can predict participants' preferences in a significantly statistical way.

Logistic Regression Analysis of Experiment 2								
Predictor	β	S.E. <i>β</i>	Wald's χ^2	df	p	e^{eta}		
F-measure	012	1.155	.000	1	.992	.988		
P-R	2.268	.471	23.226	1 (.000	1.023		
P-R	669	.951	.495	1	.482	.512		
k	.190	.838	.051	1	.821	1.209		

Perceptually Redefining the F-measure

The generic form of the F-measure is:

$$F_{\alpha} = (1 + \alpha^2) \frac{P \cdot R}{\alpha^2 P + R}$$

- ▶ If alpha = 1: R and P have the same weight (F1-score)
- ▶ If alpha > 1: more importance to R
- If alpha < 1: more importance to P</p>

Perceptually Redefining the F-measure

To learn alpha, we sweep alpha from 0 to 1 (hop size of 0.05), and compute the binary logistic regression analysis at every step. We pick the alpha that obtains statistically significant results (p=0.01)

- This results in alpha=0.58
- If we apply this alpha to evaluate our experiments, the new F-measure aligns well with participants' preferences.

Conclusions and Future Work

- Precision tends to have more perceptual relevance than Recall when evaluating music boundaries.
- Experiment 2 showed that the difference between P and R has a high predictive power to perceptually choose a set of boundaries.
- We have proposed a new method to evaluate music boundaries that better aligns with subject preferences.
- As P-R increases, we expect participants' preferences to decrease. A new experiment should be performed to confirm this.

Thank you!

References

- Levy, M., & Sandler, M. (2008). Structural segmentation of musical audio by constrained clustering. IEEE Transactions on Audio, Speech, and Language Processing, 16(2), 318–326. doi:10.1109/TASL.2007.910781
- Nieto, O., & Jehan, T. (2013). Convex Non-Negative Matrix Factorization For Automatic Music Structure Identification. In Proc. of the 38th IEEE International Conference on Acoustics Speech and Signal Processing (pp. 236–240). Vancouver, Canada.
- Serrà, J., Müller, M., Grosche, P., & Arcos, J. L. (2012). Unsupervised Detection of Music Boundaries by Time Series Structure Features. In Proc. of the 26th AAAI Conference on Artificial Intelligence (pp. 1613–1619). Toronto, Canada.
- Smith, J. B., Burgoyne, J. A., Fujinaga, I., De Roure, D., & Downie, J. S. (2011). Design and Creation of a Large-Scale Database of Structural Annotations. In Proc. of the 12th International Society of Music Information Retrieval (pp. 555–560). Miami, FL, USA.
- Weiss, R., & Bello, J. P. (2011). Unsupervised Discovery of Temporal Structure in Music. IEEE Journal of Selected Topics in Signal Processing, 5(6), 1240–1251.

