Bases de datos 2023-1 Tarea 4: Álgebra Relacional

November 7, 2022

1. Cardinalidad de la consulta Considera las siguientes relaciones:

\mathbf{R}		\mathbf{S}		
A	В	В	С	D
1	X	X	0	3
2	у	у	2	1
2	Z	у	3	3
3	X	w	3	0
9	a	У	4	2

Para las siguientes expresiones de álgebra relacional completa la tabla con el número de tuplas.

Deberás indicar las tablas resultantes en cada caso.

Expresión	Cardinalidad del resultado
$R \times S$	25
$R\bowtie_{\theta D>A} S$	7
$R = \bowtie S$	7
$R\bowtie=S$	6
$R\bowtie_{\theta A=D} S$	5
$\rho_{C \leftarrow A}(R) \bowtie S$	4
$\Pi_B(R) - \Pi_B(\sigma_{C \ge 3}(S))$	3
$\Pi_A(R) \cap \rho_{A \leftarrow D}(\Pi_D(S))$	3
$\Pi_D(S)\bowtie R$	20
$\gamma_{A;count(B)\to t}(R=\bowtie=S)$	5

tablas:

 \bullet $R \times S$

	A	BR	BS	С	D
	1	X	x	0	3
	1	X	у	2	1
	1	X	у	3	3
	1	X	w	3	0
	1	X	у	4	2
	2	у	х	0	3
	2	у	у	2	1
	2	у	у	3	3
	2	у	w	3	0
	2	у	у	4	2
	2	Z	X	0	3
	2	Z	у	2	1
	2	Z	у	3	3
	2	Z	w	3	0
	2	Z	у	4	2
	3	X	x	0	3
	3	X	у	2	1
	3	X	у	3	3
	3	X	w	3	0
	3	X	у	4	2
	9	a	X	0	3
	9	a	у	2	1
	9	a	у	3	3
	9	a	w	3	0
	9	a	у	4	2
•	$\overline{R} \bowtie$	$\theta D > A$	S		
	۱ ۸	DD	Da	α	Б

A	BR	BS	С	D
1	X	x	0	3
1	X	у	3	3
1	X	у	4	2
$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	у	х	0	3
2	у	у	3	3
$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	Z	х	0	3
2	Z	у	3	3

• $R = \bowtie S$

A	BR	BS	С	D
1	X	X	0	3
2	у	у	2	1
2	у	у	3	3
2	у	у	4	2
2	Z	NULL	NULL	NULL
3	X	X	0	3
9	a	NULL	NULL	NULL

• $R \bowtie = S$

A		BR	BS	С	D
1		X	X	0	3
3		X	x	0	3
2		у	у	2	1
2		у	у	3	3
NU	JLL	NULL	w	3	0
2		у	у	4	2

• $R\bowtie_{\theta A=D}\overline{S}$

A	BR	BS	С	D
1	X	у	2	1
2	У	у	4	2
2	\mathbf{z}	у	4	2
3	X	x	0	3
3	x	у	3	3

• $\rho_{C \leftarrow A}(R) \bowtie S$

	(/		
С	RB	SB	D
2	у	у	1
2	Z	у	1
3	X	у	3
3	X	w	0

• $\pi_B(R) - \pi_B(\sigma_{C \ge 3}(S))$

В
X
\mathbf{z}
a

• $\Pi_A(R) \cap \rho_{A \leftarrow D}(\Pi_D(S))$

A
1
2
3

$\Pi_D(S)\bowtie R$				
D	A	В		
3	1	Х		
1	1	X		
0	1	x		
2	1	X		
3	2	у		
1	2	у		
0	2	у		
2	2	У		
3	2	z		
1	2	\mathbf{z}		
0	2	z		
2	2	Z		
3	3	X		
1	3	x		
0	3	x		
2	3	X		
3	9	a		
1	9	a		
0	9	a		
2	9	a		

		5	а	
•	$\gamma_{A;cc}$	ount(B)	$_{3)\rightarrow t}$	$(R = \bowtie = S)$
	A		Т	
	1		1	
	2		4	
	3		1	
	9		1	
	NU	JLL	1	

2. Tienda de productos en línea.

Tienes el siguiente esquema de una base de datos para una tienda en línea (ID gist: 31074567738afef8c497f6ca89335782)

Escribe una expresión de álgebra relacional para responder las siguientes consultas. Deberás comprobar cada una ellas en la calculadora Relax y agregar para cada inciso la expresión en álgebra relacional y una captura de pantalla con el resultado obtenido (no es necesario mostrar todas las tuplas):

a. Obtener toda la información de los clientes que viven en Seatle o en San Francisco, que pertenezcan al segmento corporate que hayan solicitado una orden en el segundo trimestre de 2014. Mostrar la información ordenada por la cantidad solicitada.

r = σ (city='Seatle' V city='San Francisco') Λ segment='corporate' (customer) s = σ orderdate≥date('2014-04-01') Λ orderdate<date('2014-07-01') (r \bowtie orders) τ quantity asc (s)

La relación es vacía porque no hay un segmento con el nombre 'Corporate'. Suponiendo que se trata del segmento Corporate y de la ciudad de Seattle estos son la consulta y los resultados

r = σ (city='Seattle' V city='San Francisco') \wedge segment='Corporate' (customer) s = σ orderdate≥date('2014-04-01') \wedge orderdate<date('2014-07-01') (r \bowtie orders) τ quantity asc (s)

customer.customerid	customer.customername	customer.segment	custon
'KL-16555'	'Kelly Lampkin'	'Corporate'	'Unit
'JM-15655'	'Jim Mitchum'	'Corporate'	'Unit
'ML-17395'	'Marina Lichtenstein'	'Corporate'	'Unit

b. Obtener una relación de los productos que pertenecen a la categoría Office Supplies con precio mayor de \$300 y menor de \$600, pero que no hayan sido solicitados en ninguna orden.

r = σ category='Office Supplies' \wedge price>300 \wedge price<600 (products) σ orderid=NULL (r∞orders)

products.productid	products.category	products.subcategory	products.pı
'OFF-PA-10001593'	'Office Supplies'	'Paper'	563.4
'OFF-PA-10002109'	'Office Supplies'	'Paper'	505.18
'OFF-PA-10003205'	'Office Supplies'	'Paper'	478.48

c. Obtener el nombre de todos los clientes que vivan en la región West y hayan solicitados productos de las categorías Technology o Furniture. El pedido debió de solicitarse en 2106 y el modo de envío debe ser Standard Class.

r = σregion='West' \land (category='Technology' V category='Furniture') \land orderdate \geq date('2106-01-01') \land orderdate \leq date('2107-01-01') \land shipmode='Standard Class' (customer \bowtie orders \bowtie products) πcustomername(r)

No hay resultados en esta consulta ya que no hay ninguna orden que cumpla ser del año 2106. Si suponemos que la intención era para fechas del 2016 estos son la consulta y los resultados

r = σregion='West' ∧ (category='Technology' V category='Furniture') ∧ orderdate≥date('2016-01-01') ∧ orderdate<date('2017-01-01') ∧ shipmode='Standard Class' (customer⋈orders⋈products) πcustomername(r)

d. Toda la información de los clientes del segmento Corporate que realizaron una orden con modo de envío First Class y que no viven en California.

σ segment='Corporate' ∧ state≠'California' ∧ shipmode='First Class' (customer⋈orders)

customer.customerid	customer.customername	customer.segment	custon
'KB-16585'	'Ken Black'	'Corporate'	'Unit
'KB-16585'	'Ken Black'	'Corporate'	'Unit

e. Obtener el estado y el total de clientes que no han solicitado ninguna orden.

r = σ orderid=NULL (customer∞orders) y state; count(customerid) → totalClientes (r)

f. Una lista que muestre la región, el estado y el total de clientes que se tienen, considerando que los clientes deben haber realizado órdenes con al menos 6 productos durante 2014 o 2015. Ordenar la información por región y estado.

 $r = \sigma \text{ quantity} \ge 6 \land \text{ orderdate} \ge \text{date}('2014-01-01') \land \text{ orderdate} < \text{date}('2016-01-01')$ (customer \bowtie orders)

y region, state; count(customerid) → totalClientes (r)

customer.region	customer.state	totalClientes
'West'	'California'	101
'West'	'Washington'	23
'Central'	'Texas'	38

g. Obtener el modo de envío y categoría que más productos ha vendido.

T totsales desc (y shipmode, category; sum(quantity)→totsales (orders⋈products))

h. Una lista con la venta promedio, venta total, mayor venta, menor venta, y total de órdenes, por región, estado y ciudad. La venta promedio debe estar entre \$900 y \$1,500.

-- Relación auxiliar ventaTotalPorOrden = γ region, state, city, orderid; sum(price) → ventatotalorden (customer⋈orders⋈products)

ventaTotal = γ region, state, city; sum(ventatotalorden) \rightarrow ventaTotal (ventaTotalPorOrden) prom = γ region, state, city; avg(ventatotalorden) \rightarrow prom (ventaTotalPorOrden) max = γ region, state, city; max(ventatotalorden) \rightarrow max (ventaTotalPorOrden) min = γ region, state, city; min(ventatotalorden) \rightarrow min (ventaTotalPorOrden) totalOrdenes = γ region, state, city; count(orderid) \rightarrow totalOrdenes (customer \bowtie orders)

σ prom>900 Λ prom<1500 (prom⋈ventaTotal⋈max⋈min⋈totalOrdenes)

customer.region	customer.state	customer.city	prom
'South'	'Florida'	'Fort Lauderdale'	1485.4366666666667
'Central'	'Texas'	'Richardson'	1127.01
'East'	'New York'	'Troy'	1041.8585714285714

prom	ventaTotal	max	min	totalOrdenes
1485.4366666666667	4456.31	3005.47	470.89	10
1127.01	1127.01	1127.01	1127.01	2
1041.8585714285714	7293.01	4060.19	93.98	29

i. El estado que ha realizado la menor cantidad de órdenes. Se debe mostrar también el total de ordenes que haya entregado.

r = γ state; count(orderid) → totalOrdenes (customer⋈orders) τ totalOrdenes asc (r)

- **j.** La información del cliente que más órdenes haya efectuado. Mostrar el número de órdenes que ha realizado.
- $r = \gamma$ customerid; count(orderid) \rightarrow totalOrdenes (customer \bowtie orders) τ totalOrdenes desc ($r\bowtie$ customer)

Operaciones de mantenimiento de datos

a. Borrar toda la información del cliente Paul Stevenson

Consulta: $Customer1 = Customer - \sigma_{CustomerName='PaulStevenson'}(Customer)$

customer.customerid	customer.customername	customer.segment	customer.country	customer.city	customer.state	customer.postalcode	3 (
CG-12520	Claire Gute	Consumer	United States	Henderson	Kentucky	42420	5
DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	California	90036	۷
SO-20335	Sean ODonnell	Consumer	United States	Fort Lauderdale	Florida	33311	2
BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles	California	90032	٧
AA-10480	Andrew Allen	Consumer	United States	Concord	North Carolina	28027	5
IM-15070	Irene Maddox	Consumer	United States	Seattle	Washington	98103	٧
HP-14815	Harold Pawlan	Home Office	United States	Fort Worth	Texas	76106	(
PK-19075	Pete Kriz	Consumer	United States	Madison	Wisconsin	53711	(
AG-10270	Alejandro Grove	Consumer	United States	West Jordan	Utah	84084	١
ZD-21925	Zuschuss Donatelli	Consumer	United States	San Francisco	California	94109	١
KB-16585	Ken Black	Corporate	United States	Fremont	Nebraska	68025	(
SF-20065	Sandra Flanagan	Consumer	United States	Philadelphia	Pennsylvania	19140	E
EB-13870	Emily Burns	Consumer	United States	Orem	Utah	84057	١
EH-13945	Eric Hoffmann	Consumer	United States	Los Angeles	California	90049	١
TB-21520	Tracy Blumstein	Consumer	United States	Philadelphia	Pennsylvania	19140	E
MA-17560	Matt Abelman	Home Office	United States	Houston	Texas	77095	(
GH-14485	Gene Hale	Corporate	United States	Richardson	Texas	75080	(
SN-20710	Steve Nguyen	Home Office	United States	Houston	Texas	77041	(
LC-16930	Linda Cazamias	Corporate	United States	Naperville	Illinois	60540	(
RA-19885	Ruben Ausman	Corporate	United States	Los Angeles	California	90049	١
ES-14080	Erin Smith	Corporate	United States	Melbourne	Florida	32935	5
ON-18715	Odella Nelson	Corporate	United States	Eagan	Minnesota	55122	(
PO-18865	Patrick ODonnell	Consumer	United States	Westland	Michigan	48185	(
LH-16900	Lena Hernandez	Consumer	United States	Dover	Delaware	19901	E
DP-13000	Darren Powers	Consumer	United States	New Albany	Indiana	47150	(
IN A A EDGE			and the same of		NI W I	10024	_

Borrar todas las ordenes de la ciudad de Utah que tengan artículos de la subcategoría Tables.
 Consulta:

$$A = \pi_{CustomerID}(\sigma_{State='Utah'}Customer)$$

$$B = \pi_{ProductID}(\sigma_{Subcategory='Tables'} Products)$$

$$Orders1 = Orders - (Orders \bowtie A \bowtie B)$$

				productid (σ subca		
orders.orderid				orders.customerid		
CA-2016-152156		2016-11-11	Second Class	CG-12520	FUR-BO-10001798	
CA-2016-152156		2016-11-11	Second Class	CG-12520	FUR-CH-10000454	
CA-2016-138688		2016-06-16	Second Class	DV-13045	OFF-LA-10000240	
US-2015-108966		2015-10-18	Standard Class	SO-20335		5
US-2015-108966		2015-10-18	Standard Class	SO-20335	OFF-ST-10000760	
CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	FUR-FU-10001487	7
CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	OFF-AR-10002833	4
CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	TEC-PH-10002275	6
CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	OFF-BI-10003910	3
CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	OFF-AP-10002892	5
CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	FUR-TA-10001539	9
CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	TEC-PH-10002033	4
CA-2017-114412	2017-04-15	2017-04-20	Standard Class	AA-10480	OFF-PA-10002365	3
CA-2016-161389	2016-12-05	2016-12-10	Standard Class	IM-15070	OFF-BI-10003656	3
US-2015-118983	2015-11-22	2015-11-26	Standard Class	HP-14815	OFF-AP-10002311	5
US-2015-118983	2015-11-22	2015-11-26	Standard Class	HP-14815	OFF-BI-10000756	3
CA-2014-105893	2014-11-11	2014-11-18	Standard Class	PK-19075	OFF-ST-10004186	6
CA-2014-167164	2014-05-13	2014-05-15	Second Class	AG-10270	OFF-ST-10000107	2
CA-2014-143336	2014-08-27	2014-09-01	Second Class	ZD-21925	OFF-AR-10003056	2
CA-2014-143336	2014-08-27	2014-09-01	Second Class	ZD-21925	TEC-PH-10001949	3
CA-2014-143336	2014-08-27	2014-09-01	Second Class	ZD-21925	OFF-BI-10002215	4
CA-2016-137330	2016-12-09	2016-12-13	Standard Class	KB-16585	OFF-AR-10000246	7
CA-2016-137330	2016-12-09	2016-12-13	Standard Class	KB-16585	OFF-AP-10001492	7
US-2017-156909	2017-07-16	2017-07-18	Second Class	SF-20065	FUR-CH-10002774	2
CA-2016-121755	2016-01-16	2016-01-20	Second Class	EH-13945	OFF-BI-10001634	2
CA-2016-121755	2016-01-16	2016-01-20	Second Class	FH-13945	TFC-AC-10003027	3

c. La clienta Lena Cacioppo compró un producto de cada subcategoría de Furniture. Deberás elegir los productos que desees e indicar como parte de esta consulta, la información que se agregará en cada caso.

Elegimos un producto de cada categoría al azar y obtuvimos su id. Luego construimos una relación en línea (juntándola con la id de la clienta) y la unimos a Orders.

Información agregada: (Orders)

OrderID	OrderDate	ShipDate	ShipMode	CustomerID	ProductID	Quantity
'US-2022-000001'	2022-11-06	2022-11-08	First Class	LC-16870	FUR-BO-10001798	3
'US-2022-000002'	2022-11-06	2022-11-08	First Class	LC-16870	OFF-LA-10000240	3
'US-2022-000003'	2022-11-06	2022-11-08	First Class	LC-16870	TEC-PH-10001949	3

La consulta quedo:

d. Aumentar los precios de productos de la subcategoría **Phones** en un 8%. Consulta:

$$A = \sigma_{Subcategory='Phones'}(Products)$$

$$U = \pi_{ProductID,Category,Subcategory,price\leftarrow price*1.08}A$$

$$Products = (Products - A) \cup U$$

products.productid	products.category	products.subcategory	products.price
FUR-BO-10001798	Furniture	Bookcases	261.96
FUR-CH-10000454	Furniture	Chairs	731.94
OFF-LA-10000240	Office Supplies	Labels	14.62
FUR-TA-10000577	Furniture	Tables	957.58
OFF-ST-10000760	Office Supplies	Storage	22.37
FUR-FU-10001487	Furniture	Furnishings	48.86
OFF-AR-10002833	Office Supplies	Art	7.28
OFF-BI-10003910	Office Supplies	Binders	18.5
OFF-AP-10002892	Office Supplies	Appliances	114.9
FUR-TA-10001539	Furniture	Tables	1706.18
OFF-PA-10002365	Office Supplies	Paper	15.55
OFF-BI-10003656	Office Supplies	Binders	407.98
OFF-AP-10002311	Office Supplies	Appliances	68.81
OFF-BI-10000756	Office Supplies	Binders	2.54
OFF-ST-10004186	Office Supplies	Storage	665.88
OFF-ST-10000107	Office Supplies	Storage	55.5
OFF-AR-10003056	Office Supplies	Art	8.56
OFF-BI-10002215	Office Supplies	Binders	22.72
OFF-AR-10000246	Office Supplies	Art	19.46
OFF-AP-10001492	Office Supplies	Appliances	60.34
FUR-CH-10002774	Furniture	Chairs	71.37
OFF-BI-10001634	Office Supplies	Binders	1044.63
O11-BI-10001034			

e. Disminuir 8% los precios de los productos de la categoría Furniture cuyo precio sea de \$600 a \$900. Aumentar en un 5% los precios de los productos de la categoría Technology y subcategoría Machines.

