F11 - Grafalgoritmer 5DV149 Datastrukturer och algoritmer Kapitel 17

Niclas Börlin niclas.borlin@cs.umu.se

2024-02-15 Tor

Innehåll

- 1. Traversering
 - ▶ Bredden-först
 - ▶ Djupet-först
- 2. Finna kortaste vägen
 - Från en nod till alla andra noder:
 - Dijkstras algoritm
 - Från alla noder till alla andra noder:
 - ► Floyds algoritm
- 3. Konstruera ett (minsta) uppspännande träd
 - Kruskals algoritm
 - Prims algoritm

1. Traversering av grafer

Blank

Bredden-först-traversering

Bredden-först-traversering

- Man undersöker först noden, sedan dess grannar, grannarnas grannar, osv.
- ► Grafen kan innehålla cykler risk för oändlig loop
 - Markera om noden har setts
- ► En kö hjälper oss hålla reda på grannarna
- ► Endast noder till vilka det finns en väg från utgångsnoden kommer att besökas

Algoritm, bredden-först-traversering av graf

```
Algorithm g=Traverse-bf-order(n: Node, g: Graph)
// Input: A node n in a graph g to be traversed
 // Mark the starting node as seen
(n, q) \leftarrow Set-seen(n, q)
// Put it in an empty queue
q ← Enqueue(n, Queue-empty())
while not Isempty(q) do
  // Pick first node from queue
  n \leftarrow Front(q)
  q \leftarrow Dequeue(q)
  // Get its neighbours
  neighbour-set ← Neighbours(n, g)
  for each neighbour b in neighbour-set do
    if not Is-seen(b,q) then
      // Mark unseen node as seen and put it in the queue
      (b, g) \leftarrow Set-seen(b, g)
      q \leftarrow Enqueue(b,q)
```

Visualiseringssymboler

- Aktuell nod markeras med röd ring
- Ljusblå färg betyder sedd (seen) nod
- Noder i kön markeras med grönstreckad cirkel
- Bågar som motsvarar hur vi "kom till" en aktuell nod markeras med tjock blå linje

► $(A,g) \leftarrow Set-seen(A,g)$;

- ▶ $(A,g) \leftarrow Set-seen(A,g)$;
- $ightharpoonup q = \{A\};$

- ▶ $(A,g) \leftarrow Set-seen(A,g)$;
- $ightharpoonup q = \{A\};$
- ▶ while not Isempty(*q*)...

 \blacktriangleright while not Isempty(q)...

- ▶ while not Isempty(q)...
 - ▶ $n=A; q=\{\};$

- ▶ while not Isempty(*q*)...
 - ▶ $n=A; q=\{\};$
 - neighbours={C,E,D}

- ▶ while not Isempty(q)...
 - \triangleright n=A; q={};
 - ightharpoonup neighbours={C,E,D}
 - C not seen
 - ► $(C,g) \leftarrow Set\text{-seen}(C,g); q=\{C\};$

- ▶ while not Isempty(q)...
 - ▶ $n=A; q=\{\};$
 - ▶ neighbours={C,E,D}
 - C not seen

►
$$(C,g) \leftarrow Set\text{-seen}(C,g); q=\{C\};$$

- ► E not seen
 - ► (E,g) \leftarrow Set-seen(E,g); $q = \{C,E\}$;

- ▶ while not Isempty(q)...
 - ▶ $n=A; q=\{\};$
 - ightharpoonup neighbours={C,E,D}
 - C not seen

►
$$(C,g) \leftarrow Set\text{-seen}(C,g); q=\{C\};$$

- ► E not seen
 - ► (E,g) \leftarrow Set-seen(E,g); $q = \{C,E\}$;
- D not seen
 - ▶ $(D,g) \leftarrow Set-seen(D,g); q=\{C,E,D\};$

 \blacktriangleright while not Isempty(q)...

- ▶ while not Isempty(*q*)...
 - ightharpoonup n=C; q={E,D};

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n=C; q={E,D};
 - neighbours={}

 \blacktriangleright while not Isempty(q)...

- ▶ while not Isempty(*q*)...
 - ightharpoonup n=E; q={D};

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n=E; q={D};
 - neighbours={C,B}

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n=E; q={D};
 - ▶ neighbours={C,B}
 - C seen

- ▶ while not Isempty(q)...
 - \triangleright n=E; $q=\{D\}$;
 - ▶ neighbours={C,B}
 - C seen
 - B not seen
 - ▶ $(B,g) \leftarrow Set\text{-seen}(B,g); q=\{D,B\};$

 \blacktriangleright while not Isempty(q)...

- ▶ while not Isempty(*q*)...
 - ▶ $n=D; q=\{B\};$

- ▶ while not Isempty(*q*)...
 - ▶ $n=D; q=\{B\};$
 - ▶ neighbours={E}

- \blacktriangleright while not Isempty(q)...
 - ▶ $n=D; q=\{B\};$
 - ► neighbours={E}
 - E seen

 \blacktriangleright while not Isempty(q)...

- ▶ while not Isempty(q)...
 - ▶ $n=B; q={}$;

- ▶ while not Isempty(*q*)...
 - ▶ $n=B; q={}$;
 - ▶ neighbours={C}

- \blacktriangleright while not Isempty(q)...
 - ▶ $n=B; q={}$;
 - ▶ neighbours={C}
 - C seen

 \blacktriangleright while not Isempty(q)...

- ► Klar!
- Notera att de blå bågarna utgör ett uppspännande träd

Djupet-först-traversering

Djupet-först-traversering

- Ansats:
 - 1. Starta i en utgångsnod
 - 2. Besök dess grannar djupet-först, rekursivt
- ► Grafen kan innehålla cykler risk för oändlig loop
 - Lösning: Håll reda på om noden är besökt eller ej
 - ► Gör rekursivt anrop endast för icke besökta noder
 - Motsvarar att undersöka en labyrint genom att markera de vägar man gått med färg
- ► Endast de noder man kan nå från utgångsnoden kommer att besökas

Algoritm för djupet-först-traversering av graf

```
Algorithm Traverse-depth-first(n: Node, g: Graph)
// Input: A node n in a graph g to be traversed
// Output: The modified graph after traversal
// Mark the start node as visited.
(n, g) \leftarrow Set-visited(n, g)
// Get all its neighbours
neighbour-set ← Neighbours(n, g)
for each neighbour b in neighbour-set do
  if not Is-visited(b, q) then
    // Visit unless visited
    g ← Traverse-depth-first(b, g)
return q
```

Visualiseringssymboler

- Aktuell nod n markeras med röd ring
- Ljusblå färg betyder besökt (visited) nod
- Överstrukna noder i grannmängden N illustrerar noder redan behandlade i for-loopen
- Vid rekursivt anrop läggs aktuell nod n och grannmängden N på en stack
- Bågarna som motsvarar rekursiva anrop markeras med tjock blå linje

 $(n=A, \{\emptyset, E, D\})$

 $ightharpoonup n \leftarrow A$, markera som besökt

(n=A)

- \triangleright $n \leftarrow A$, markera som besökt
- ▶ Grannar: {C,E,D}

- \triangleright $n \leftarrow A$, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).

 \triangleright $n \leftarrow C$, markera som besökt

(n=C)

- \triangleright $n \leftarrow$ C, markera som besökt
- Inga grannar.

$$(n=C, \{\})$$

- \triangleright $n \leftarrow C$, markera som besökt
- ► Inga grannar.
- Färdig med C, återvänd

$$(n=C, \{\})$$

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightarrow Grannar: $\{\not \mathbb{C}, E, D\}$

 $(n=A, \{ \mathcal{C}, E, D \})$

- \triangleright $n \leftarrow A$, markera som besökt
- ▶ Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightarrow Grannar: $\{\mathcal{L}, E, D\}$
- ightharpoonup E ej besökt ightarrow anropa Traverse-depth-first(E,g).

 $(n=A, \{ \mathcal{C}, E, D \})$

 \triangleright $n \leftarrow$ E, markera som besökt

(n=E)

 $(n=A, \{ \mathcal{L}, E, D \})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ▶ Grannar: {B,C}

 $(n = E, \{B,C\})$

 $(n=A, \{ \mathcal{C}, E, D \})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {B,C}
- ightharpoonup B ej besökt ightarrow anropa Traverse-depth-first(B,g)

 $(n = E, \{B,C\})$

 $(n=A, \{ \mathcal{C}, E, D \})$

 \triangleright $n \leftarrow B$, markera som besökt

(**n**=B)

 $(n = E, \{B,C\})$

 $(n=A, \{ \emptyset, E, D \})$

- \triangleright $n \leftarrow$ B, markera som besökt
- ▶ Grannar: {C}

 $(n=B, \{C\})$

 $(n = E, \{B,C\})$

 $(n=A, \{\emptyset, E, D\})$

- \triangleright $n \leftarrow$ B, markera som besökt
- ► Grannar: {C}
- ightharpoonup C besökt ightarrow Grannar: $\{\mathcal{L}\}$

 $(n=B, \{\cancel{C}\})$

 $(n = E, \{B,C\})$

 $(n=A, \{\emptyset, E, D\})$

- \triangleright $n \leftarrow$ B, markera som besökt
- ► Grannar: {C}
- ightharpoonup C besökt ightharpoonup Grannar: $\{ \not \mathbb{Z} \}$
- Färdig med B, återvänd

$$(n=B, \{\cancel{C}\})$$

$$(n=E, \{B,C\})$$

$$(n=A, \{\emptyset, E, D\})$$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {B,C}
- ▶ B ej besökt \rightarrow anropa Traverse-depth-first(B,g)

 $(n = E, \{B,C\})$

 $(n=A, \{ \emptyset, E, D \})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {B,C}
- ▶ B ej besökt \rightarrow anropa Traverse-depth-first(B,g)
- ▶ B färdig \rightarrow Grannar: { $\not\! E$,C}

 $(n=E, \{ \cancel{B}, C \})$

 $(n=A, \{ \mathcal{C}, E, D \})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {B,C}
- ▶ B ej besökt \rightarrow anropa Traverse-depth-first(B,g)
- ▶ B färdig \rightarrow Grannar: { $\not B$,C}
- ightharpoonup C besökt ightarrow Grannar: $\{ \slashed{B}, \slashed{\mathcal{L}} \}$

 $(n=E, \{B,C\})$

 $(n=A, \{ \emptyset, E, D \})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {B,C}
- ▶ B ej besökt \rightarrow anropa Traverse-depth-first(B,g)
- ▶ B färdig \rightarrow Grannar: { $\not\! E$,C}
- ightharpoonup C besökt ightarrow Grannar: $\{ \slashed{B}, \slashed{\mathcal{L}} \}$
- Färdig med E, återvänd

$$(n=E, \{B,C\})$$

$$(n=A, \{ \emptyset, E, D \})$$

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightharpoonup Grannar: $\{\mathcal{L}, E, D\}$
- ► E ej besökt \rightarrow anropa Traverse-depth-first(E,g).

 $(n=A, \{ \mathcal{C}, E, D \})$

- \triangleright $n \leftarrow$ A, markera som besökt
- ▶ Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ► C färdig \rightarrow Grannar: $\{\emptyset, E, D\}$
- ► E ej besökt \rightarrow anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: $\{\emptyset, \cancel{E}, D\}$

 $(n=A, \{\cancel{\mathbb{C}}, \cancel{\mathbb{E}}, D\})$

- \triangleright $n \leftarrow A$, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ► C färdig \rightarrow Grannar: $\{\emptyset, E, D\}$
- ightharpoonup E ej besökt ightharpoonup anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: $\{\cancel{\mathcal{L}},\cancel{\mathcal{E}},\mathsf{D}\}$
- ▶ D ej besökt \rightarrow anropa Traverse-depth-first(D,g).

 $(n=A, \{ \cancel{\mathbb{Z}}, \cancel{\mathbb{E}}, D \})$

 \triangleright $n \leftarrow D$, markera som besökt

(n=D)

 $(n=A, \{\cancel{\mathcal{L}}, \cancel{\mathsf{E}}, \mathsf{D}\})$

- \triangleright $n \leftarrow D$, markera som besökt
- ► Grannar: {E}

 $(n=D, \{E\})$ $(n=A, \{\emptyset, E, D\})$

- \triangleright $n \leftarrow D$, markera som besökt
- ► Grannar: {E}
- ightharpoonup E besökt ightarrow Grannar: $\{ \not \! E \}$

 $(n=D, \{\cancel{E}\})$ $(n=A, \{\cancel{E}, \cancel{E}, D\})$

- \triangleright $n \leftarrow D$, markera som besökt
- ► Grannar: {E}
- ightharpoonup E besökt ightharpoonup Grannar: $\{ \not \!\! E \}$
- Färdig med D, återvänd

$$(n=D, \{\cancel{E}\})$$

 $(n=A, \{\cancel{C},\cancel{E},D\})$

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ► C färdig \rightarrow Grannar: $\{\emptyset, E, D\}$
- ► E ej besökt \rightarrow anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: $\{\cancel{\mathcal{L}},\cancel{\mathcal{E}},\mathsf{D}\}$
- ▶ D ej besökt \rightarrow anropa Traverse-depth-first(D,g).

 $(n=A, \{\cancel{\mathbb{C}}, \cancel{\mathbb{E}}, D\})$

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ► C färdig \rightarrow Grannar: $\{\emptyset, E, D\}$
- ightharpoonup E ej besökt ightharpoonup anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: $\{\cancel{\mathcal{L}},\cancel{\mathcal{E}},\mathsf{D}\}$
- ▶ D ej besökt \rightarrow anropa Traverse-depth-first(D,g).
- ▶ D färdig \rightarrow Grannar: $\{\emptyset, \cancel{E}, \cancel{D}\}$

 $(n=A, \{\cancel{\mathbb{C}},\cancel{\mathbb{E}},\cancel{\mathbb{D}}\})$

- \triangleright $n \leftarrow A$, markera som besökt
- ► Grannar: {C,E,D}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightharpoonup Grannar: $\{\mathcal{L}, E, D\}$
- ▶ E ej besökt \rightarrow anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: $\{\cancel{\mathcal{L}},\cancel{\mathcal{E}},\mathsf{D}\}$
- ▶ D ej besökt \rightarrow anropa Traverse-depth-first(D,g).
- ▶ D färdig \rightarrow Grannar: $\{\cancel{\mathcal{L}},\cancel{\mathcal{L}},\cancel{\mathcal{D}}\}$
- Färdig med A, återvänd

 $(n=A, \{\cancel{\mathcal{L}},\cancel{\mathcal{E}},\cancel{\mathcal{D}}\})$

Klar

► Även här fick vi ett *uppspännande träd*

Algoritm för djupet-först-traversering av graf (igen)

```
Algorithm Traverse-depth-first(n: Node, g: Graph)
// Input: A node n in a graph g to be traversed
// Output: The modified graph after traversal
// Mark the start node as visited.
(n, g) \leftarrow Set-visited(n, g)
// Get all its neighbours
neighbour-set ← Neighbours(n, g)
for each neighbour b in neighbour-set do
  if not Is-visited(b, q) then
    // Visit unless visited
    g ← Traverse-depth-first(b, g)
return q
```

Fråga

► Hur behöver algoritmen modifieras för att fungera på en oriktad graf?

Fråga

- ► Hur behöver algoritmen modifieras för att fungera på en oriktad graf?
 - ► Inte alls!
 - ► Funktionen Neighbours hanterar det

 \triangleright $n \leftarrow A$, markera som besökt

(n=A)

- \triangleright $n \leftarrow A$, markera som besökt
- ► Grannar: {E,F,B}

- \triangleright $n \leftarrow A$, markera som besökt
- ▶ Grannar: {E,F,B}
- ightharpoonup E ej besökt ightarrow anropa Traverse-depth-first(E,g).

 \triangleright $n \leftarrow$ E, markera som besökt

(<u>n</u>=E)

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {I,F,A}

 $(n=E, \{I,F,A\})$

- \triangleright $n \leftarrow E$, markera som besökt
- ► Grannar: {I,F,A}
- ▶ I ej besökt \rightarrow anropa Traverse-depth-first(I,g).

 $(n=E, \{I,F,A\})$

 \triangleright $n \leftarrow I$, markera som besökt

(n=1)

 $(n=E, \{I,F,A\})$

- \triangleright $n \leftarrow I$, markera som besökt
- ▶ Grannar: {E,J,F}

 $(n=1, \{E,J,F\})$

 $(n=E, \{I,F,A\})$

- ▶ $n \leftarrow I$, markera som besökt
- ► Grannar: {E,J,F}
- ightharpoonup E redan besökt ightarrow Grannar: $\{ \not \!\! E, J, F \}$

 $(n=I, \{ \not \sqsubseteq, J, F \})$

 $(n=E, \{I,F,A\})$

- \triangleright $n \leftarrow I$, markera som besökt
- Grannar: {E,J,F}
- ightharpoonup E redan besökt ightharpoonup Grannar: $\{ \not E, J, F \}$
- ▶ J ej besökt \rightarrow anropa Traverse-depth-first(J,g).

 $(n=1, \{E,J,F\})$ $(n=E, \{I,F,A\})$

 \triangleright $n \leftarrow$ J, markera som besökt

Niclas Börlin - 5DV149, DoA-C

F11 — Grafalgoritmer

36 / 117

(n=J)

- \triangleright $n \leftarrow J$, markera som besökt
- Grannar: {G,I}

 $(n=J, \{G,I\})$

 $(n=1, \{ \not\sqsubseteq, J, F \})$

 $(n=E, \{I,F,A\})$

- \triangleright $n \leftarrow J$, markera som besökt
- Grannar: {G,I}
- ▶ G ej besökt \rightarrow anropa Traverse-depth-first(G,g).

 $(n=J, \{G,I\})$

 $(n=1, \{ \not \sqsubseteq, J, F \})$

 $(n = E, \{I,F,A\})$

 \triangleright $n \leftarrow$ G, markera som besökt

(n=G)

37 / 117

- $ightharpoonup n \leftarrow G$, markera som besökt
- ▶ Grannar: {C,K,J}


```
(n=G, \{C,K,J\})

(n=J, \{G,I\})

(n=I, \{E,J,F\})

(n=E, \{I,F,A\})

(n=A, \{E,F,B\})
```

- \triangleright $n \leftarrow$ G. markera som besökt
- Grannar: {C,K,J}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).

 $(n=G, \{C,K,J\})$ $(n=J, \{G,I\})$ $(n=1, \{ \cancel{E}, J, F \})$ $(n = E, \{I,F,A\})$ $(n=A, \{E,F,B\})$

 \triangleright $n \leftarrow C$, markera som besökt

(n=C)

- \triangleright $n \leftarrow C$, markera som besökt
- Grannar: {G,B}

 $(n=C, \{G,B\})$

- \triangleright $n \leftarrow C$, markera som besökt
- ▶ Grannar: {G,B}
- ▶ G redan besökt \rightarrow Grannar: $\{ \mathcal{G}, B \}$


```
(n=C, \{\emptyset, B\})
(n=G, \{C,K,J\})
    (n=J, \{G,I\})
 (n=1, \{ \cancel{E}, J, F \})
 (n = E, \{I,F,A\})
(n=A, \{E,F,B\})
```

- \triangleright $n \leftarrow C$, markera som besökt
- ► Grannar: {G,B}
- ▶ G redan besökt \rightarrow Grannar: { $\not S$,B}
- ightharpoonup B ej besökt ightarrow anropa Traverse-depth-first(B,g).

 $(n=C, \{\emptyset, B\})$

 \triangleright $n \leftarrow B$, markera som besökt

(n=B)

- \triangleright $n \leftarrow B$, markera som besökt
- ► Grannar: {A,F,C}

 $(n=B, \{A,F,C\})$

 $(n=C, \{\emptyset, B\})$

- \triangleright $n \leftarrow$ B, markera som besökt
- ► Grannar: {A,F,C}
- ▶ A redan besökt \rightarrow Grannar: { \cancel{A} ,F,C}

 $(n=B, \{A,F,C\})$

 $(n=C, \{(S,B)\})$

- \triangleright $n \leftarrow B$, markera som besökt
- ► Grannar: {A,F,C}
- ▶ A redan besökt \rightarrow Grannar: { \cancel{A} ,F,C}
- ▶ F ej besökt \rightarrow anropa Traverse-depth-first(F,g).

 $(n=B, \{A,F,C\})$

 \triangleright $n \leftarrow$ F, markera som besökt

(n=F)

- \triangleright $n \leftarrow F$, markera som besökt
- ► Grannar: {B,A,E,I}

 $(n=F, \{B,A,E,I\})$

- \triangleright $n \leftarrow F$, markera som besökt
- ► Grannar: {B,A,E,I}
- ▶ B besökt \rightarrow Grannar: { $\not B$,A,E,I}

 $(n=F, \{B, A, E, I\})$

- \triangleright $n \leftarrow F$, markera som besökt
- ► Grannar: {B,A,E,I}
- ▶ B besökt \rightarrow Grannar: { $\not\!\! E$,A,E,I}
- ightharpoonup A besökt ightarrow Grannar: $\{ \slashed{B}, \slashed{A}, \slashed{E}, \slashed{I}\}$

$$(n=F, \{\cancel{E}, \cancel{A}, E, I\})$$

$$(n=B, \{A,F,C\})$$

$$(n=C, \{\emptyset,B\})$$

$$(n=G, \{C,K,J\})$$

$$(n=J, \{G,I\})$$

$$(n=I, \{E,J,F\})$$

$$(n=E, \{I,F,A\})$$

$$(n=A, \{E,F,B\})$$

- \triangleright $n \leftarrow F$, markera som besökt
- ► Grannar: {B,A,E,I}
- ightharpoonup B besökt ightarrow Grannar: {m E,A,E,I}
- ightharpoonup A besökt ightarrow Grannar: $\{ \slashed{B}, \slashed{A}, \slashed{E}, \slashed{I}\}$
- ightharpoonup E besökt ightarrow Grannar: $\{ \slashed{B}, \slashed{A}, \slashed{E}, \slashed{I}\}$

 $(n=F, \{\cancel{B}, \cancel{A}, \cancel{E}, I\})$

- n ← F, markera som besökt
- ► Grannar: {B,A,E,I}
- B besökt \rightarrow Grannar: { $\not B$,A,E,I}
- ightharpoonup A besökt ightharpoonup Grannar: $\{ \ensuremath{\mathsf{E}}, \ensuremath{\mathsf{A}}, \ensuremath{\mathsf{E}}, \ensuremath{\mathsf{I}} \}$
- ightharpoonup E besökt ightharpoonup Grannar: $\{ \ensuremath{\mathbb{E}}, \ensuremath{\mathsf{A}}, \ensuremath{\mathsf{E}}, \ensuremath{\mathsf{I}} \}$
- ▶ I besökt \rightarrow Grannar: { $\not\!\!\!E$, $\not\!\!\!A$, $\not\!\!\!E$, $\not\!\!\!I$ }

$$(n=F, \{\cancel{B}, \cancel{A}, \cancel{E}, \cancel{I}\})$$

$$(n=B, \{A,F,C\})$$

$$(n=C, \{\emptyset,B\})$$

$$(n=G, \{C,K,J\})$$

$$(n=J, \{G,I\})$$

$$(n=1, \{ \not \sqsubseteq, J, F \})$$

$$(n=E, \{I,F,A\})$$

$$(n=A, \{E,F,B\})$$

- \triangleright $n \leftarrow F$, markera som besökt
- ► Grannar: {B,A,E,I}
- ▶ B besökt \rightarrow Grannar: { $\not B$,A,E,I}
- ightharpoonup A besökt ightarrow Grannar: $\{ \slashed{B}, \slashed{A}, \slashed{E}, \slashed{I}\}$
- ightharpoonup E besökt ightarrow Grannar: $\{E,A,E,I\}$
- ▶ I besökt \rightarrow Grannar: { $\not\!\! E, \not\!\! A, \not\!\! E, \not\!\! I$ }
- Färdig med F, återvänd

- $(n=B, \{A,F,C\})$
 - $(n=C, \{\emptyset,B\})$
- $(n=G, \{C,K,J\})$
 - $(n=J, \{G,I\})$
 - $(n=I, \{ E, J, F \})$
 - $(n=E, \{I,F,A\})$
- $(n=A, \{E,F,B\})$

- \triangleright $n \leftarrow B$, markera som besökt
- ► Grannar: {A,F,C}
- ightharpoonup A redan besökt ightharpoonup Grannar: $\{A, F, C\}$
- ▶ F ej besökt \rightarrow anropa Traverse-depth-first(F,g).

- \triangleright $n \leftarrow B$, markera som besökt
- ► Grannar: {A,F,C}
- ightharpoonup A redan besökt ightharpoonup Grannar: $\{A, F, C\}$
- ▶ F ej besökt \rightarrow anropa Traverse-depth-first(F,g).
- ▶ F färdig \rightarrow Grannar: $\{A,F,C\}$

 $(n=B, \{A,F,C\})$

- \triangleright $n \leftarrow B$, markera som besökt
- ► Grannar: {A,F,C}
- ▶ A redan besökt \rightarrow Grannar: {A,F,C}
- ► F ej besökt \rightarrow anropa Traverse-depth-first(F,g).
- ▶ F färdig \rightarrow Grannar: {A,F,C}
- ► C besökt \rightarrow Grannar: $\{A,F,C\}$

$$(n=B, \{A,F,C\})$$

$$(n=C, \{6,B\})$$

$$(n=G, \{C,K,J\})$$

$$(n=J, \{G,I\})$$

$$(n=I, \{E,J,F\})$$

$$(n=E, \{I,F,A\})$$

$$(n=A, \{E,F,B\})$$

- \triangleright $n \leftarrow B$, markera som besökt
- ► Grannar: {A,F,C}
- ightharpoonup A redan besökt ightharpoonup Grannar: $\{A, F, C\}$
- ► F ej besökt \rightarrow anropa Traverse-depth-first(F,g).
- ▶ F färdig \rightarrow Grannar: {A,F,C}
- ▶ C besökt \rightarrow Grannar: $\{A,F,\emptyset\}$
- Färdig med B, återvänd

- $(n=C, \{\emptyset,B\})$
- $(n=C, \{M, D\})$ $(n=G, \{C, K, J\})$
 - $(n=J, \{G,I\})$
 - $(n=1, \{ \not \sqsubseteq, J, F \})$
 - $(n=E, \{I,F,A\})$
- $(n=A, \{E,F,B\})$

- \triangleright $n \leftarrow C$, markera som besökt
- ► Grannar: {G,B}
- ▶ G redan besökt \rightarrow Grannar: { \emptyset ,B}
- ▶ B ej besökt \rightarrow anropa Traverse-depth-first(B,g).

- \triangleright $n \leftarrow C$, markera som besökt
- ► Grannar: {G,B}
- ▶ G redan besökt \rightarrow Grannar: { \emptyset ,B}
- ▶ B ej besökt \rightarrow anropa Traverse-depth-first(B,g).
- ▶ B färdig \rightarrow Grannar: $\{\emptyset, B\}$

 $(n=C, \{\emptyset, \cancel{B}\})$

- \triangleright $n \leftarrow C$, markera som besökt
- ► Grannar: {G,B}
- ▶ G redan besökt \rightarrow Grannar: { \emptyset ,B}
- ▶ B ej besökt \rightarrow anropa Traverse-depth-first(B,g).
- ▶ B färdig \rightarrow Grannar: $\{\cancel{S},\cancel{B}\}$
- Färdig med C, återvänd

 $(n=C, \{\emptyset, \cancel{B}\})$

- n ← G, markera som besökt
- ► Grannar: {C,K,J}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).

 $(n=G, \{C,K,J\})$ $(n=J, \{G,I\})$ $(n=1, \{ \cancel{E}, J, F \})$ $(n = E, \{I,F,A\})$ $(n=A, \{E,F,B\})$

- \triangleright $n \leftarrow$ G, markera som besökt
- ▶ Grannar: {C,K,J}
- C ej besökt → anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightarrow Grannar: $\{\emptyset, K, J\}$

 $(n=G, \{\emptyset, K, J\})$ $(n=J, \{G,I\})$ $(n=1, \{ \cancel{E}, J, F \})$ $(n = E, \{I,F,A\})$

- \triangleright $n \leftarrow$ G, markera som besökt
- ▶ Grannar: {C,K,J}
- C ej besökt → anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightarrow Grannar: $\{\emptyset, K, J\}$
- K ej besökt \rightarrow anropa Traverse-depth-first(K,g).

 $(n=G, \{\emptyset, K, J\})$ $(n=J, \{G,I\})$ $(n=1, \{ \cancel{E}, J, F \})$ $(n=E, \{I,F,A\})$ $(n=A, \{E,F,B\})$

 \triangleright $n \leftarrow K$, markera som besökt

(n=K)

- \triangleright $n \leftarrow K$, markera som besökt
- ► Grannar: {G}

 $(n=K, \{G\})$

- \triangleright $n \leftarrow K$, markera som besökt
- ► Grannar: {G}
- ▶ G besökt \rightarrow Grannar: $\{\emptyset\}$

 $(n=K, \{ \not S \})$ $(n=G, \{ \not S, K, J \})$ $(n=J, \{ G, I \})$ $(n=I, \{ \not E, J, F \})$ $(n=E, \{ I, F, A \})$ $(n=A, \{ E, F, B \})$

- \triangleright $n \leftarrow K$, markera som besökt
- ► Grannar: {G}
- ▶ G besökt \rightarrow Grannar: $\{\emptyset\}$
- Färdig med K, återvänd

 $(n=K, \{\mathcal{G}\})$

- \triangleright $n \leftarrow$ G, markera som besökt
- ▶ Grannar: {C,K,J}
- C ej besökt → anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightharpoonup Grannar: $\{\mathcal{Q}, K, J\}$
- K ej besökt → anropa Traverse-depth-first(K,g).

 $(n=G, \{\emptyset, K, J\})$ $(n=J, \{G,I\})$ $(n=1, \{ \cancel{E}, J, F \})$ $(n = E, \{I,F,A\})$

- \triangleright $n \leftarrow$ G, markera som besökt
- ▶ Grannar: {C,K,J}
- C ej besökt → anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightharpoonup Grannar: $\{\mathcal{Q}, K, J\}$
- K ej besökt → anropa Traverse-depth-first(K,g).
- ightharpoonup K färdig ightarrow Grannar: $\{\mathcal{L}, \mathcal{K}, \mathcal{J}\}$

 $(n=G, \{\emptyset, K, J\})$ $(n=J, \{G,I\})$ $(n=1, \{ \cancel{E}, J, F \})$ $(n=E, \{I,F,A\})$

Niclas Börlin - 5DV149, DoA-C

F11 — Grafalgoritmer

 $(n=A, \{E,F,B\})$ 45 / 117

- \triangleright $n \leftarrow$ G, markera som besökt
- ► Grannar: {C,K,J}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightharpoonup Grannar: $\{ \not \mathbb{C}, K, J \}$
- ightharpoonup K ej besökt ightharpoonup anropa Traverse-depth-first(K,g).
- ightharpoonup K färdig ightarrow Grannar: $\{\not \mathbb{C}, \not \mathbb{K}, \mathsf{J}\}$
- ▶ J besökt \rightarrow Grannar: $\{\emptyset, K, J\}$

45 / 117

- \triangleright $n \leftarrow$ G, markera som besökt
- ► Grannar: {C,K,J}
- ightharpoonup C ej besökt ightharpoonup anropa Traverse-depth-first(C,g).
- ightharpoonup C färdig ightharpoonup Grannar: $\{\mathcal{L}, K, J\}$
- ightharpoonup K ej besökt ightharpoonup anropa Traverse-depth-first(K,g).
- ▶ K färdig \rightarrow Grannar: $\{\emptyset, K, J\}$
- ▶ J besökt \rightarrow Grannar: $\{\emptyset, K, J\}$
- Färdig med G, återvänd

 $(n=G, \{ \mathcal{L}, \mathcal{K}, \mathcal{J} \})$

 $(n=J, \{G,I\})$

 $(n=I, \{ \cancel{E}, J, F \})$

 $(n = E, \{I, F, A\})$

- n ← J, markera som besökt
- ► Grannar: {G,I}
- ▶ G ej besökt → anropa Traverse-depth-first(G,g).

 $(n=J, \{G,I\})$

 $(n=1, \{ \not \sqsubseteq, J, F \})$

 $(n = E, \{I,F,A\})$

- n ← J, markera som besökt
- ► Grannar: {G,I}
- ▶ G ej besökt → anropa Traverse-depth-first(G,g).
- ▶ G färdig \rightarrow Grannar: $\{\mathcal{G}, I\}$

 $(n=J, \{\emptyset,I\})$

 $(n=1, \{ \not \sqsubseteq, J, F \})$

 $(n = E, \{I,F,A\})$

- \triangleright $n \leftarrow J$, markera som besökt
- ► Grannar: {G,I}
- ▶ G ej besökt → anropa Traverse-depth-first(G,g).
- ightharpoonup G färdig ightarrow Grannar: $\{\mathcal{G}, I\}$
- ▶ I besökt \rightarrow Grannar: $\{\emptyset, I\}$

 $(n=J, \{\emptyset, I\})$

 $(n=1, \{ \cancel{E}, J, F \})$

 $(n = E, \{I,F,A\})$

- \triangleright $n \leftarrow J$, markera som besökt
- ▶ Grannar: {G,I}
- ▶ G ej besökt → anropa Traverse-depth-first(G,g).
- ▶ G färdig \rightarrow Grannar: $\{\emptyset,I\}$
- ▶ I besökt \rightarrow Grannar: $\{\mathcal{G}, \mathcal{I}\}$
- Färdig med J, återvänd

 $(n=J, \{\emptyset, I\})$

 $(n=1, \{ \cancel{E}, J, F \})$

 $(n = E, \{I,F,A\})$

- \triangleright $n \leftarrow 1$, markera som besökt
- ► Grannar: {E,J,F}
- ▶ E redan besökt \rightarrow Grannar: { \cancel{E} ,J,F}
- ▶ J ej besökt \rightarrow anropa Traverse-depth-first(J,g).

 $(n=I, \{\cancel{E}, J, F\})$

 $(n=E, \{I,F,A\})$

- ▶ $n \leftarrow 1$, markera som besökt
- ► Grannar: {E,J,F}
- ▶ E redan besökt \rightarrow Grannar: { \cancel{E} ,J,F}
- ▶ J ej besökt \rightarrow anropa Traverse-depth-first(J,g).
- ▶ J färdig \rightarrow Grannar: { $\not\!\! E, \not\!\! J, F$ }

 $(n=I, \{E,J,F\})$

 $(n=E, \{I,F,A\})$

- n ← I. markera som besökt
- Grannar: {E,J,F}
- ightharpoonup E redan besökt ightharpoonup Grannar: $\{ \not E, J, F \}$
- J ej besökt → anropa Traverse-depth-first(J,g).
- ▶ J färdig \rightarrow Grannar: { $\not E$, $\not J$,F}
- ▶ F besökt \rightarrow Grannar: $\{\cancel{E},\cancel{J},\cancel{F}\}$

 $(n=1, \{\cancel{E}, \cancel{J}, \cancel{F}\})$

 $(n = E, \{I,F,A\})$

- \triangleright $n \leftarrow I$, markera som besökt
- ► Grannar: {E,J,F}
- ▶ E redan besökt \rightarrow Grannar: { $\not\! E$,J,F}
- ▶ J ej besökt \rightarrow anropa Traverse-depth-first(J,g).
- ▶ J färdig \rightarrow Grannar: { $\not\!\! E, \not\!\! J, F$ }
- ▶ F besökt \rightarrow Grannar: $\{\cancel{E},\cancel{J},\cancel{F}\}$
- Färdig med I, återvänd

 $(n=1, \{\cancel{\mathbb{E}}, \cancel{\mathbb{J}}, \cancel{\mathbb{F}}\})$

 $(n=E, \{I,F,A\})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {I,F,A}
- ▶ I ej besökt \rightarrow anropa Traverse-depth-first(I,g).

 $(n=E, \{I,F,A\})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {I,F,A}
- ▶ I ej besökt \rightarrow anropa Traverse-depth-first(I,g).
- ▶ I färdig \rightarrow Grannar: {I,F,A}

 $(n=E, \{I,F,A\})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {I,F,A}
- ▶ I ej besökt \rightarrow anropa Traverse-depth-first(I,g).
- ▶ I färdig \rightarrow Grannar: {/,F,A}
- ▶ F besökt \rightarrow Grannar: $\{ / , \not \vdash, A \}$

 $(n=E, \{J,F,A\})$

- \triangleright $n \leftarrow$ E, markera som besökt
- ► Grannar: {I,F,A}
- ▶ I ej besökt \rightarrow anropa Traverse-depth-first(I,g).
- ▶ I färdig \rightarrow Grannar: {/,F,A}
- ▶ F besökt \rightarrow Grannar: $\{ \c / \c / \c A \}$
- ▶ A besökt \rightarrow Grannar: $\{I,F,A\}$

 $(n=E, \{J,F,A\})$

- \triangleright $n \leftarrow E$, markera som besökt
- ► Grannar: {I,F,A}
- ▶ I ej besökt \rightarrow anropa Traverse-depth-first(I,g).
- ▶ I färdig \rightarrow Grannar: {/,F,A}
- ► F besökt \rightarrow Grannar: $\{I,F,A\}$
- ▶ A besökt \rightarrow Grannar: $\{I, F, A\}$
- Färdig med E, återvänd

 $(n=E, \{J,F,A\})$

- \triangleright $n \leftarrow A$, markera som besökt
- ► Grannar: {E,F,B}
- ightharpoonup E ej besökt ightharpoonup anropa Traverse-depth-first(E,g).

- \triangleright $n \leftarrow A$, markera som besökt
- ► Grannar: {E,F,B}
- ightharpoonup E ej besökt ightharpoonup anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: { $\not\! E$,F,B}

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {E,F,B}
- ▶ E ej besökt \rightarrow anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: { $\not\! E$,F,B}
- ▶ F besökt \rightarrow Grannar: { $\not E$, $\not F$,B}

 $(n=A, \{\cancel{E},\cancel{F},B\})$

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {E,F,B}
- ▶ E ej besökt \rightarrow anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: { $\not\sqsubseteq$,F,B}
- ▶ F besökt \rightarrow Grannar: { $\not E$, $\not F$,B}
- ▶ B besökt \rightarrow Grannar: { $\not\!\! E, \not\!\! F, \not\!\! E$ }

 $(n=A, \{\cancel{E}, \cancel{F}, \cancel{B}\})$

- \triangleright $n \leftarrow$ A, markera som besökt
- ► Grannar: {E,F,B}
- ▶ E ej besökt \rightarrow anropa Traverse-depth-first(E,g).
- ▶ E färdig \rightarrow Grannar: { \not E,F,B}
- ▶ F besökt \rightarrow Grannar: { \not E, \not F,B}
- ▶ B besökt \rightarrow Grannar: { $\not E$, $\not F$, $\not B$ }
- Färdig med A, återvänd

 $(n=A, \{\cancel{E}, \cancel{F}, \cancel{B}\})$

Klart!

► Vi fick ett uppspännande träd

Tidskomplexitet för Bredden-först, djupet-först-traversering

- Låt grafen ha *n* noder och *m* bågar
- Varje nod besöks exakt en gång
 - ▶ Den nodrelaterade kostnaden: O(n)
- För varje nod undersöker man alla bågar till grannarna
 - Kostnaden att hitta grannarna varierar:
 - Mängdorienterad specifikation:
 - \triangleright O(m) per nod
 - ► Totalt: O(mn) för alla bågar
 - Navigeringsorienterade specifikation:
 - ightharpoonup O(grad(v)) per nod
 - ► Totalt: $O(\sum_{v} grad(v)) = O(m)$ för alla bågar
- ► Total komplexitet:
 - ▶ Mängdorienterad: O(n) + O(mn) = O(mn)
 - Navigeringsorienterad: O(n) + O(m) = O(m+n)

Blank

2. Kortaste-vägen-algoritmer

Kortaste vägen

- Om grafen har lika vikt på alla bågar kan bredden-först-traversering användas för att beräkna kortaste vägen från en nod till alla andra noder
- Krävs minimal modifiering av algoritmen:
 - Lägg till ett attribut avstånd (distance) till varje nod
 - Avståndet från startnoden n till sig själv är 0
 - ► Kostnaden att gå från en nod p till sin granne är 1

Kortaste-vägen-algoritm vid lika vikt

```
Algorithm Shortest-path-eq-weight (n: Node, q: Graph)
// Input: A node n in a graph g to be traversed
// Output: The modified graph after traversal
q ← Enqueue(n, Queue-empty())
(n, q) \leftarrow Set-seen(n, q)
// Distance to start node is zero
(n, q) \leftarrow Set-distance(n, q, 0)
while not Isempty(q) do
  n \leftarrow Front(q)
  q \leftarrow Dequeue(q)
  neighbour-set \leftarrow Neighbours (n, g)
  for each neighbour b in neighbour-set do
    if not Is-seen(b, g) then
       (b, g) \leftarrow Set-seen(b, g)
      // Compute and set distance to new node
      d \leftarrow Get-distance(n, q) + 1
       (b, q) \leftarrow Set-distance(b, q, d)
      q \leftarrow Enqueue(b, q)
return q
```

Kortaste vägen vid lika vikt/kostnad

► Startnod = A.

Kortaste vägen-algoritmer

- ► Bredden-först-traversering ger oss längden på vägen från utgångsnoden till alla andra
 - ► Kan även ge vägen om vi sparar den
 - ► Om vikterna lika får vi kortaste vägen
- För olika vikter ska vi titta på två algoritmer:
 - Floyd
 - Matrisorienterad
 - ► Alla-till-alla-avstånd
 - Dijkstra
 - Graforienterad, använder prioritetskö
 - En-till-alla-avstånd

Floyd's shortest path

Floyd's shortest path

- Bygger på matrisrepresentation M av grafen.
- ▶ Vid starten innehåller *M* de direkta avstånden mellan noderna
 - Avståndet till sig själv är 0
 - ► Saknas båge används ∞

	Α	В	C	D	Ε	F	G	R
Α	0	∞	8	∞	6	4	∞	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	∞	3	4	∞
D	∞	3	5	0	∞	∞	∞	∞
Ε	6	∞	∞	∞	0	∞	6	∞
F	4	∞	3	∞	∞	0	∞	∞
G	∞	∞	4	∞	6	∞	0	∞
R	4	6	∞	∞	∞	∞	∞	0

Floyds shortest path, algoritm

```
Algorithm Floyd-shortest-distance (q: Graph)
// Input: A graph g to find shortest paths in
// Get matrix representation of the graph
M \leftarrow Get-matrix-representation(g)
n ← Get-number-of-nodes(q)
for k=1 to n do
  for i=1 to n do
    for j=1 to n do
      if M(i,j) > M(i,k) + M(k,j) then
        // We found a shorter path from i to j
        M(i,j) = M(i,k) + M(k,j)
```

- M(i,j) innehåller kortaste avståndet hittills mellan i och j
- M(i,k) + M(k,j) är avståndet mellan i och j via k
- Vid slut innehåller M(i,j) kortaste avståndet mellan i och j via alla noder

► Vid starten

	Α	В	C	D	Ε	F	G	R
Α	\bigcirc	∞	8	∞	6	4	∞	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	∞	3	4	∞
D	∞	3	5	0	∞	∞	∞	∞
Ε	6	∞	∞	∞	0	∞	6	∞
F	4	∞	3	∞	∞	0	∞	∞
G	∞	∞	4	∞	6	∞	0	∞
R	4	6	∞	∞	∞	∞	∞	0

► Efter *k*=1 (vägar via A)

	Α	В	C	D	Ε	F	G	R
Α	0	∞	8	∞	6	4	∞	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	∞ 14	3	4	12
D	∞	3	5	0	∞	∞	∞	∞
Ε	6	∞	∞ 14	∞	0	~ 10	6	10
F	4	∞	3	∞	∞ 10	0	∞	∞ 8
G	∞	∞	4	∞	6	∞	0	∞
R	4	6	∞ 12	∞	10	8 8	∞	0

► Efter *k*=2 (vägar via B)

	Α	В	C	D	Е	F	G	R
Α	0	∞	8	∞	6	4	∞	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	14	3	4	12
D	∞	3	5	0	∞	∞	∞	∞ 9
Ε	6	∞	14	∞	0	10	6	10
F	4	∞	3	∞	10	0	∞	8
G	∞	∞	4	∞	6	∞	0	∞
R	4	6	12	∞ 9	10	8	∞	0

► Efter *k*=3 (vägar via C)

	Α	В	C	D	Ε	F	G	R
Α	0	∞	8	∞ 13	6	4	∞ 12	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	14	3	4	12
D	∞ 13	3	5	0	∞ 19	∞ 8	∞ 9	9
Ε	6	∞	14	∞ 19	0	10	6	10
F	4	∞	3	∞ 8	10	0	∞ 7	8
G	∞ 12	∞	4	∞ 9	6	∞ 7	0	16
R	4	6	12	9	10	8	∞ 16	0

► Efter *k*=4 (vägar via D)

	Α	В	C	D	Ε	F	G	R
Α	0	∞ 16	8	13	6	4	12	4
В	∞ 16	0	∞ 8	3	∞ 22	$\overset{\infty}{11}$	∞ 12	6
C	8	∞ 8	0	5	14	3	4	12
D	13	3	5	0	19	8	9	9
Ε	6	∞ 22	14	19	0	10	6	10
F	4	$\overset{\infty}{11}$	3	8	10	0	7	8
G	12	∞ 12	4	9	6	7	0	16
R	4	6	12	9	10	8	16	0

► Efter *k*=5 (vägar via E)

	Α	В	C	D	Ε	F	G	R
Α	0	16	8	13	6	4	12	4
В	16	0	8	3	22	11	12	6
C	8	8	0	5	14	3	4	12
D	13	3	5	0	19	8	9	9
Ε	6	22	14	19	0	10	6	10
F	4	11	3	8	10	0	7	8
G	12	12	4	9	6	7	0	16
R	4	6	12	9	10	8	16	0

► Efter *k*=6 (vägar via F)

	Α	В	C	D	Ε	F	G	R
Α	0	16 15	8 7	13 12	6	4	12 11	4
В	16 15	0	8	3	²² 21	11	12	6
C	8 7	8	0	5	14 13	3	4	12 11
D	13 12	3	5	0	19 18	8	9	9
Е	6	²² 21	14 13	19 18	0	10	6	10
F	4	11	3	8	10	0	7	8
G	12 11	12	4	9	6	7	0	16 15
R	4	6	12 11	9	10	8	16 15	0

► Efter *k*=7 (vägar via G)

	Α	В	C	D	Ε	F	G	R
Α	0	15	7	12	6	4	11	4
В	15	0	8	3	21 18	11	12	6
C	7	8	0	5	13 10	3	4	11
D	12	3	5	0	18 15	8	9	9
Ε	6	21 18	13 10	18 15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

► Efter *k*=8 (vägar via R)

	Α	В	C	D	Ε	F	G	R
Α	0	15 10	7	12	6	4	11	4
В	15 10	0	8	3	18 16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	18 16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Floyd, komplexitet

```
Algorithm Floyd-shortest-distance (q: Graph)
// Input: A graph g to find shortest paths in
// Get matrix representation of the graph
M \leftarrow Get-matrix-representation(q)
n ← Get-number-of-nodes(q)
for k=1 to n do
  for i=1 to n do
    for j=1 to n do
      if M(i,j) > M(i,k) + M(k,j) then
        // We found a shorter path from i to j
        M(i,j) = M(i,k) + M(k,j)
```

► Komplexitet?

Floyd, komplexitet

```
Algorithm Floyd-shortest-distance (q: Graph)
// Input: A graph g to find shortest paths in
// Get matrix representation of the graph
M \leftarrow Get-matrix-representation(q)
n \leftarrow Get-number-of-nodes(q)
for k=1 to n do
  for i=1 to n do
    for j=1 to n do
      if M(i,j) > M(i,k) + M(k,j) then
        // We found a shorter path from i to j
        M(i,j) = M(i,k) + M(k,j)
```

- ► Komplexitet?
- ► Trippel-loop: $O(n^3)$

- ▶ *M* innehåller kortaste avstånden men hur få tag på vägen?
- Modifiera algoritmen till att spara en föregångarmatris.

	Α	В	С	D	Е	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	\bigcirc	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	\bigcirc	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Floyds algoritm, modifierad

```
Algorithm Floyd-shortest-path (g: Graph)
// Input: A graph g to find shortest paths in
M \leftarrow Get-matrix-representation(q)
n \leftarrow Get-number-of-nodes(q)
// Set up the initial path matrix
for i=1 to n do
  for j=1 to n do
    if i==j or M(i,j)==inf then
      // No direct path from i to j
      Path(i,j) = -1
    else
      // We came to node j from node i
      Path(i,j) = i
for k=1 to n do
  for i=1 to n do
    for j=1 to n do
      if M(i,j) > M(i,k) + M(k,j) then
        // Remember the new distance...
        M(i,j) = M(i,k) + M(k,j)
        // ...and how we came to j
        Path(i,j) = Path(k,j)
```

► Efter initiering

	Α	В	C	D	Ε	F	G	R
Α	0	∞	8	∞	6	4	∞	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	∞	3	4	∞
D	∞	3	5	0	∞	∞	∞	∞
Ε	6	∞	∞	∞	0	∞	6	00
F	4	∞	3	∞	∞	0	∞	∞
G	∞	∞	4	∞	6	∞	0	00
R	4	6	00	∞	∞	∞	∞	0

Α	В	C	D	Ε	F	G	R
	_	Α	_	Α	Α	_	Α
_	_	_	В	_	_	_	В
С	_	_	С	_	С	С	_
	D	D	_	_	_	_	_
Е	_	_	_	_	_	Ε	_
F	_	F	_	_	_	_	_
_	_	G	_	G	_	_	_
R	R	_	_	_	_	_	_

► Efter *k*=1 (vägar via A)

	Α	В	C	D	Ε	F	G	R
Α	0	∞	8	∞	6	4	∞	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	∞ 14	3	4	∞ 12
D	∞	3	5	0	∞	∞	∞	∞
Ε	6	∞	∞ 14	∞	0	∞ 10	6	∞ 10
F	4	∞	3	∞	∞ 10	0	∞	∞ 8
G	∞	∞	4	∞	6	∞	0	∞
R	4	6	∞ 12	00	∞ 10	∞ 8	∞	0

Α	В	C	D	Ε	F	G	R
_	_	Α	_	Α	Α	_	Α
_	_	_	В	_		_	В
С	_	_	С	Ā	С	С	Ā
	D	D	_	_	_	_	_
Е	_	Ā	_	_	Ā	Ε	Ā
F	_	F	_	Ā	_	_	Ā
	_	G		G	_		_
R	R	Ā	_	Ā	Ā	_	_

► Efter *k*=2 (vägar via B)

	Α	В	С	D	Ε	F	G	R
Α	0	∞	8	∞	6	4	∞	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	14	3	4	12
D	∞	3	5	0	∞	∞	∞	∞ 9
Ε	6	∞	14	∞	0	10	6	10
F	4	∞	3	∞	10	0	∞	8
G	∞	∞	4	∞	6	∞	0	00
R	4	6	12	∞ 9	10	8	∞	0

Α	В	C	D	Ε	F	G	R
	_	Α	_	Α	Α	_	Α
_	_		В	_	_	_	В
С	_		С	Α	С	С	Α
_	D	D	_	_	_	_	В
Е	_	Α	_	_	Α	Ε	Α
F	_	F	_	Α	_	_	Α
_	_	G	_	G	_	_	
R	R	Α	В	Α	Α	_	_

► Efter *k*=3 (vägar via C)

	Α	В	C	D	Ε	F	G	R
Α	0	∞	8	∞ 13	6	4	$\overset{\infty}{12}$	4
В	∞	0	∞	3	∞	∞	∞	6
C	8	∞	0	5	14	3	4	12
D	∞ 13	3	5	0	∞ 19	∞ 8	∞ 9	9
Ε	6	∞	14	∞ 19	0	10	6	10
F	4	∞	3	∞ 8	10	0	∞ 7	8
G	∞ 12	∞	4	∞ 9	6	∞ 7	0	∞ 16
R	4	6	12	9	10	8	∞ 16	0

Α	В	C	D	Ε	F	G	R
_	_	Α	C	Α	Α	C	Α
_	_	_	В	_			В
С	_	_	С	Α	С	С	Α
C	D	D	_	Ā	U	C	В
Е	_	Α	C	_	Α	Ε	Α
F	_	F	C	Α		C	Α
C		G	C	G	C		Ā
R	R	Α	В	Α	Α	C	

► Efter *k*=4 (vägar via D)

	Α	В	C	D	Ε	F	G	R
Α	0	∞ 16	8	13	6	4	12	4
В	∞ 16	0	8 8	3	∞ 22	$\overset{\infty}{11}$	∞ 12	6
C	8	∞ 8	0	5	14	3	4	12
D	13	3	5	0	19	8	9	9
Ε	6	∞ 22	14	19	0	10	6	10
F	4	$\overset{\infty}{11}$	3	8	10	0	7	8
G	12	∞ 12	4	9	6	7	0	16
R	4	6	12	9	10	8	16	0

Α	В	C	D	Ε	F	G	R
_	D	Α	C	Α	Α	C	Α
C	_	D	В	Ā	С	С	В
С	D		С	Α	С	С	Α
С	D	D	_	Α	С	C	В
Е	D	Α	С	_	Α	Ε	Α
F	D	F	С	Α		С	Α
С	D	G	С	G	C		Α
R	R	Α	В	Α	Α	С	_

► Efter *k*=5 (vägar via E)

	Α	В	C	D	Ε	F	G	R
Α	0	16	8	13	6	4	12	4
В	16	0	8	3	22	11	12	6
C	8	8	0	5	14	3	4	12
D	13	3	5	0	19	8	9	9
Ε	6	22	14	19	0	10	6	10
F	4	11	3	8	10	0	7	8
G	12	12	4	9	6	7	0	16
R	4	6	12	9	10	8	16	0

Α	В	С	D	Е	F	G	R
_	D	Α	C	Α	Α	С	Α
С	_	D	В	Α	С	С	В
С	D	_	С	Α	С	С	Α
С	D	D	_	Α	С	С	В
Е	D	Α	С	_	Α	Ε	Α
F	D	F	С	Α	_	С	Α
С	D	G	С	G	С		Α
R	R	Α	В	Α	Α	С	_

► Efter *k*=6 (vägar via F)

	Α	В	C	D	Ε	F	G	R
Α	0	16 15	8 7	13 12	6	4	12 11	4
В	16 15	0	8	3	²² 21	11	12	6
C	8 7	8	0	5	14 13	3	4	12 11
D	13 12	3	5	0	19 18	8	9	9
Ε	6	²² 21	14 13	19 18	0	10	6	10
F	4	11	3	8	10	0	7	8
G	12 11	12	4	9	6	7	0	16 15
R	4	6	12 11	9	10	8	16 15	0

Α	В	С	D	Е	F	G	R
_	D	A F	C	Α	Α	C	Α
C F	_	D	В	Α	С	С	В
C F	D		С	Α	С	С	Α
C F	D	D	_	Α	C	С	В
Ε	D	ΑF	С	_	Α	Ε	Α
F	D	F	С	Α		С	Α
C F	D	G	С	G	С		Α
R	R	A F	В	Α	Α	С	_

► Efter *k*=7 (vägar via G)

	Α	В	С	D	Ε	F	G	R
Α	0	15	7	12	6	4	11	4
В	15	0	8	3	21 18	11	12	6
C	7	8	0	5	13 10	3	4	11
D	12	3	5	0	18 15	8	9	9
Ε	6	21 18	13 10	18 15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Α	В	С	D	Е	F	G	R
_	D	F	C		Α	C	Α
F	_	D	В	A G	С	С	В
F	D		С	A G	С	С	Α
F	D	D	_	A G	С	С	В
Е	D	F G	С	_	Α	Ε	Α
F	D	F	С	Α		С	Α
F	D	G	С	G	С		Α
R	R	F	В	Α	Α	С	_

► Efter *k*=8 (vägar via R)

	Α	В	С	D	Ε	F	G	R
Α	0	15 10	7	12	6	4	11	4
В	15 10	0	8	3	18 16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	18 16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Α	В	C	D	Ε	F	G	R
_	D R	F	C	Α	Α	C	Α
F R	_	D	В	G A	С	С	В
F	D	_	С	G	С	С	Α
F	D	D	_	G	С	С	В
Ε	D R	G	С	_	Α	Ε	Α
F	D	F	С	Α		С	Α
F	D	G	С	G	С		Α
R	R	F	В	Α	Α	С	_

▶ Vad är kortaste vägen mellan A och C?

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Α	В	C	D	Ε	F	G	R
-	R	F	С	Α	Α	С	Α
R	-	D	В	Α	С	С	В
F	D	-	С	G	С	С	Α
F	D	D	-	G	С	С	В
Е	R	G	С	-	Α	Ε	Α
F	D	F	С	Α	-	С	Α
F	D	G	С	G	С	-	Α
R	R	F	В	Α	Α	С	-

▶ Vad är kortaste vägen mellan A och C?

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Ą	В	C	D	Ε	F	G	R
+	R	F	С	Α	Α	С	Α
R	-	D	В	Α	С	С	В
F	D	-	С	G	С	С	Α
F	D	D	-	G	С	С	В
Е	R	G	С	-	Α	Ε	Α
F	D	F	С	Α	-	С	Α
F	D	G	С	G	С	-	Α
R	R	F	В	Α	Α	С	1

► Vad är kortaste vägen mellan A och C?

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	\bigcirc	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Ą	В	C	D	E,	F	G	R
-	R	F	S	A	Α	С	Α
R	-/	þ	В	Α	С	С	В
F	D	-	С	G	С	С	Α
F	D	D	-	G	С	С	В
Е	R	G	С	-	Α	Ε	Α
F	D	F	С	Α	-	С	Α
F	D	G	С	G	С	-	Α
R	R	F	В	Α	Α	С	1

► Vad är kortaste vägen mellan A och C?

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	\bigcirc	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Ą	В	C	D	Ε,	F	G	R
+	R	F	S	A	A	С	Α
R	-/	þ	В	Α	¢	С	В
F	D	ı	С	G	U	С	Α
F	D	D	-	G	С	С	В
Е	R	G	С	-	Α	Ε	Α
F	D	F	С	Α	-	С	Α
F	D	G	С	G	С	-	Α
R	R	F	В	Α	Α	С	-

► Vad är kortaste vägen mellan R och G?

	Α	В	С	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Α	В	С	D	Ε	F	G	R
-	R	F	C	Α	Α	С	Α
R	-	D	В	Α	С	С	В
F	D	-	С	G	С	С	Α
F	D	D	-	G	С	С	В
Е	R	G	С	-	Α	Ε	Α
F	D	F	С	Α	-	С	Α
F	D	G	С	G	C	-	Α
R	R	F	В	Α	Α	С	-

► Vad är kortaste vägen mellan R och G?

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Α	В	C	D	Ε	F	G	Ŗ
-	R	F	С	Α	Α	С	A
R	-	D	В	Α	С	С	В
F	D	-	С	G	С	С	A
F	D	D	-	G	С	С	В
Е	R	G	С	-	Α	Ε	A
F	D	F	С	Α	-	С	Å
F	D	G	С	G	С	-	Å
R	R	F	В	Α	Α	С	-

► Vad är kortaste vägen mellan R och G?

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Α	В	C	D	Ε	F	G	Ŗ
-	R	F	С	Α	Α	С	A
R	-	Ø	В	Α	С	С	В
F	D	-	Ø	G	С	С	A
F	D	D	-	لعا	C	С	В
Ε	R	G	С	-	A	Ε	A
F	D	F	С	Α	ı	Ø	A
F	D	G	С	G	С	-	Å
R	R	F	В	Α	Α	С	-

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Ą	В	C	D	Ε	F	G	Ŗ
- '	R	F	С	Α	Α	C	A
R	-	R	В	Α	С	С	В
F	D	-	É	G	С	С	A
F	D	D	-	E	С	С	В
E	R	G	С	-	A	Ε	A
F	D	F	С	Α	-	R	A
F	D	G	С	G	C	ı	Å
R	R	F	В	Α	Α	С	-

	Α	В	C	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

	Α	В	С	D	Ε	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

	Α	В	С	D	Е	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

	Α	В	С	D	Е	F	G	R
Α	0	10	7	12	6	4	11	4
В	10	0	8	3	16	11	12	6
C	7	8	0	5	10	3	4	11
D	12	3	5	0	15	8	9	9
Ε	6	16	10	15	0	10	6	10
F	4	11	3	8	10	0	7	8
G	11	12	4	9	6	7	0	15
R	4	6	11	9	10	8	15	0

Blank

Dijkstra's shortest path

Dijkstras shortest path

- ► Söker kortaste vägen från en nod n till alla andra noder
 - Använder en prioritetskö av obesökta noder
- Fungerar enbart på grafer med positiva vikter
- Låt varje nod ha följande attribut:
 - ► Seen: Sann när vi hittat en väg till noden ("sett" noden)
 - Distance: Värdet på den hittills kortaste vägen fram till noden
 - Parent: Referens till föregångaren längs vägen

Dijkstras shortest path, algoritm

```
Algorithm Dijkstra-shortest-path(n: Node, q: Graph)
// Input: A graph g to find shortest path from node n
// Distance to start node is zero
n.distance ← 0; n.seen ← True; n.parent ← NULL
// Initialize pqueue with start node
q ← Insert(n, Pqueue-empty())
while not Isempty(q)
 // Get node with shortest distance from queue
 n ← Inspect-first(q); q ← Delete-first(q)
 nd ← n.distance
 // ...and its neighbours
 neighbour-set ← Neighbours(n, g)
 for each neighbour b in neighbour-set do
   // Compute distance to b VIA n
   d \leftarrow nd + Get-weight(n, b, q)
    if not Is-seen(b, g) then
     // We've never seen b; this is the first path to arrive at b
     b.distance ← d
     b.seen ← True
     b.parent ← n
     // Add new node to pqueue
     a ← Insert(b, a)
    else if d < b.distance then
     // We've seen b before, but path via n is shorter
     b.distance ← d
     // Update how we came to b
     b.parent 

n
     // Update the pqueue based on the new distance
     q ← Update(b, q)
```

Dijkstras shortest path, visualisering

- ► Symboler:
 - Aktuell nod har röd ring
 - Sedda noder är ljusblåa
 - Nodens etikett har aktuellt avstånd som exponent
 - Noder i prioritetskön har grönstreckad ring
- Prioritetskön presenteras sorterad

- ► R.seen = True
- ightharpoonup R.distance = 0
- ► R.parent = NULL

- ightharpoonup R.seen = True
- ightharpoonup R.distance = 0
- ► R.parent = NULL
- ightharpoonup q = Insert(R(T,0,-), Pqueue-empty())

$$q = \{ R(T,0,-) \}$$

- ightharpoonup R.seen = True
- ightharpoonup R.distance = 0
- ► R.parent = NULL
- ightharpoonup q = Insert(R(T,0,-), Pqueue-empty())
- ▶ while not Isempty(q)...

$$q = \{ R(T,0,-) \}$$

while not Isempty(q)...

$$q = \{ R(T,0,-) \}$$

- while not lsempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$

$$q = \{ \}$$

- ▶ while not lsempty(*q*)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - $\qquad \qquad \mathsf{neighbour}\text{-set} = \{\mathsf{A},\mathsf{B}\}$

$$q = \{ \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - ightharpoonup neighbour-set = {A,B}
 - A not seen

$$q = \{ \}$$

- while not Isempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - ightharpoonup neighbour-set = {A,B}
 - A not seen
 - $d = n_d + \text{Get-weight}(n,A,g) = 4$
 - ► A.seen = True
 - ightharpoonup A.distance = d

$$q = \{ \}$$

- ▶ while not Isempty(*q*)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - ightharpoonup neighbour-set = {A,B}
 - A not seen
 - $d = n_d + \text{Get-weight}(n,A,g) = 4$
 - ► A.seen = True
 - ightharpoonup A.distance = d
 - ► A.parent = R

$$q = \{ \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - neighbour-set = {A,B}
 - A not seen
 - $d = n_d + \text{Get-weight}(n,A,g) = 4$
 - A.seen = True
 - ightharpoonup A.distance = d
 - ► A.parent = R

$$q = \{ A(T,4,R) \}$$

- while not lsempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - ▶ neighbour-set = $\{A,B\}$
 - B not seen

$$q = \{ A(T,4,R) \}$$

- while not Isempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - ightharpoonup neighbour-set = { \not A,B}
 - B not seen
 - ightharpoonup d = nd + Get-weight(n,B,g) = 6
 - ▶ B.seen = True
 - ▶ B.distance = d
 - ▶ B.parent = R

$$q = \{ A(T,4,R) \}$$

- while not Isempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - ightharpoonup neighbour-set = { \not A,B}
 - B not seen
 - ightharpoonup d = nd + Get-weight(n,B,g) = 6
 - ▶ B.seen = True
 - ▶ B.distance = d
 - ▶ B.parent = R

$$q = \{ A(T,4,R), B(T,6,R) \}$$

- while not lsempty(q)...
 - ightharpoonup n = R(T,0,-); q = Delete-first(q)
 - $ightharpoonup n_d = \text{n.distance} = 0$
 - ▶ neighbour-set = $\{A,B\}$

$$q = \{ A(T,4,R), B(T,6,R) \}$$

while not Isempty(q)...

$$q = \{ A(T,4,R), B(T,6,R) \}$$

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);

$$q = \{ B(T,6,R) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - $\qquad \qquad \mathsf{neighbour}\mathsf{-set} = \{\mathsf{E},\mathsf{R},\mathsf{F},\mathsf{C}\}; \\$

$$q = \{ B(T,6,R) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = $\{E,R,F,C\}$;
 - E not seen

$$q = \{ B(T,6,R) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ightharpoonup neighbour-set = {E,R,F,C};
 - E not seen
 - ightharpoonup d = nd + Get-weight(n,E,g) = 10;
 - ► E.seen = True;
 - E.distance = d;
 - E.parent = A;

$$q = \{ B(T,6,R) \}$$

- while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = $\{E,R,F,C\}$;
 - E not seen
 - d = nd + Get-weight(n,E,g) = 10;
 - E.seen = True;
 - ▶ E.distance = d;
 - ► E.parent = A;

$$q = \{ B(T,6,R), E(T,10,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = { $\not E$,R,F,C};
 - R seen

$$q = \{ B(T,6,R), E(T,10,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = $\{\cancel{E}, R, F, C\}$;
 - R seen
 - ightharpoonup d = nd + Get-weight(n,R,g) = 8;
 - d not < R.distance</p>

$$q = \{ B(T,6,R), E(T,10,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = { $\not E$, $\not R$,F,C};
 - F not seen

$$q = \{ B(T,6,R), E(T,10,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = $\{\not E, \not R, F, C\}$;
 - F not seen
 - ightharpoonup d = nd + Get-weight(n,F,g) = 8;
 - F.seen = True;
 - ► F.distance = d;
 - ▶ F.parent = A;

$$q = \{ B(T,6,R), E(T,10,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = $\{\cancel{E},\cancel{F},F,C\}$;
 - F not seen
 - ightharpoonup d = nd + Get-weight(n,F,g) = 8;
 - ► F.seen = True;
 - ► F.distance = d;
 - ► F.parent = A;

$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = { $\not E$, $\not R$, $\not F$,C};
 - C not seen

$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = $\{\not E, \not R, \not F, C\}$;
 - C not seen
 - ightharpoonup d = nd + Get-weight(n,C,g) = 12;
 - C.seen = True;
 - C.distance = d;
 - C.parent = A;

$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ▶ neighbour-set = $\{\not E, \not R, \not F, C\}$;
 - C not seen
 - d = nd + Get-weight(n,C,g) = 12;
 - C.seen = True;
 - C.distance = d;
 - C.parent = A;

$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = A(T,4,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 4;
 - ► neighbour-set = { $\not\!$ E, $\not\!$ F, $\not\!$ E};

$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A), C(T,12,A) \}$$

while not Isempty(q)...

$$q = \{ B(T,6,R), F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);

$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- ▶ while not Isempty(*q*)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 6;
 - $\qquad \qquad \mathsf{neighbour}\mathsf{-set} = \{\mathsf{D},\mathsf{R}\};$

$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 6;
 - ▶ neighbour-set = $\{D,R\}$;
 - D not seen

$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 6;
 - neighbour-set = {D,R};
 - D not seen
 - ightharpoonup d = nd + Get-weight(n,D,g) = 9;
 - D.seen = True;
 - D.distance = d;
 - D.parent = B;

$$q = \{ F(T,8,A), E(T,10,A), C(T,12,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 6;
 - neighbour-set = {D,R};
 - D not seen
 - ightharpoonup d = nd + Get-weight(n,D,g) = 9;
 - D.seen = True;
 - D.distance = d;
 - ▶ D.parent = B;

$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 6;
 - ▶ neighbour-set = $\{D,R\}$;
 - R seen

$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 6;
 - ▶ neighbour-set = $\{D,R\}$;
 - R seen
 - ightharpoonup d = nd + Get-weight(n,R,g) = 12;
 - d not < R.distance</p>

$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = B(T,6,R); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 6;
 - ▶ neighbour-set = $\{\cancel{D},\cancel{R}\}$;

$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

• while not Isempty(q)...

$$q = \{ F(T,8,A), D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - neighbour-set = {A,C};

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - neighbour-set = {A,C};
 - A seen

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - neighbour-set = {A,C};
 - A seen
 - ightharpoonup d = nd + Get-weight(n,A,g) = 12;
 - d not < A.distance</p>

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - ▶ neighbour-set = $\{A,C\}$;
 - C seen

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - ▶ neighbour-set = $\{A,C\}$;
 - C seen
 - ightharpoonup d = nd + Get-weight(n,C,g) = 11;
 - d is < C.distance</p>

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - ▶ neighbour-set = $\{A,C\}$;
 - C seen
 - ightharpoonup d = nd + Get-weight(n,C,g) = 11;
 - ▶ d is < C.distance
 - ► C.distance = *d*;

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - ▶ neighbour-set = $\{A,C\}$;
 - C seen
 - ightharpoonup d = nd + Get-weight(n,C,g) = 11;
 - ▶ d is < C.distance
 - ► C.distance = d;
 - ▶ C.parent = F;

$$q = \{ D(T,9,B), E(T,10,A), C(T,12,A) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - ▶ neighbour-set = $\{A,C\}$;
 - C seen
 - ightharpoonup d = nd + Get-weight(n,C,g) = 11;
 - ▶ d is < C.distance
 - ▶ C.distance = d;
 - ▶ C.parent = F;
 - ightharpoonup q = update(C,q);

$$q = \{ D(T,9,B), E(T,10,A), C(T,11,F) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = F(T,8,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 8;
 - ▶ neighbour-set = $\{\cancel{A},\cancel{C}\}$;

$$q = \{ D(T,9,B), E(T,10,A), C(T,11,F) \}$$

while not Isempty(q)...

$$q = \{ D(T,9,B), E(T,10,A), C(T,11,F) \}$$

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n = D(T,9,B); q = Delete-first(q);

$$q = \{ E(T,10,A), C(T,11,F) \}$$

- while not Isempty(q)...
 - ightharpoonup n = D(T,9,B); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 9;
 - ▶ neighbour-set = $\{B,C\}$;

$$q = \{ E(T,10,A), C(T,11,F) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = D(T,9,B); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 9;
 - neighbour-set = {B,C};
 - B seen

$$q = \{ E(T,10,A), C(T,11,F) \}$$

- while not lsempty(q)...
 - ightharpoonup n = D(T,9,B); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 9;
 - ▶ neighbour-set = {B,C};
 - B seen

 - d not < B.distance</p>

$$q = \{ E(T,10,A), C(T,11,F) \}$$

- while not lsempty(q)...
 - ightharpoonup n = D(T,9,B); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 9;
 - ▶ neighbour-set = $\{ \mathbb{E}, \mathbb{C} \}$;
 - C seen

$$q = \{ E(T,10,A), C(T,11,F) \}$$

- while not lsempty(q)...
 - ightharpoonup n = D(T,9,B); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 9;
 - ▶ neighbour-set = $\{ \mathbb{E}, \mathbb{C} \}$;
 - C seen
 - ightharpoonup d = nd + Get-weight(n,C,g) = 14;
 - d not < C.distance</p>

$$q = \{ E(T,10,A), C(T,11,F) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = D(T,9,B); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 9;
 - ▶ neighbour-set = $\{\cancel{B},\cancel{C}\}$;

$$q = \{ E(T,10,A), C(T,11,F) \}$$

while not Isempty(q)...

$$q = \{ E(T,10,A), C(T,11,F) \}$$

- \blacktriangleright while not Isempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);

$$q = \{ C(T,11,F) \}$$

- while not Isempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);
 - $ightharpoonup n_d = n. distance = 10;$
 - $\qquad \qquad \mathsf{neighbour}\mathsf{-set} = \{\mathsf{A},\mathsf{G}\};$

$$q = \{ C(T,11,F) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);
 - $ightharpoonup n_d = n. distance = 10;$
 - neighbour-set = {A,G};
 - A seen

$$q = \{ C(T,11,F) \}$$

- while not lsempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 10;
 - neighbour-set = {A,G};
 - A seen
 - ightharpoonup d = nd + Get-weight(n,A,g) = 16;
 - d not < A.distance</p>

$$q = \{ C(T,11,F) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);
 - $ightharpoonup n_d = n. distance = 10;$
 - ▶ neighbour-set = $\{A,G\}$;
 - G not seen

$$q = \{ C(T,11,F) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 10;
 - ▶ neighbour-set = $\{A,G\}$;
 - G not seen
 - d = nd + Get-weight(n,G,g) = 16;
 - ▶ G.seen = True;
 - ▶ G.distance = d;
 - ightharpoonup G.parent = E;

$$q = \{ C(T,11,F) \}$$

- ightharpoonup while not Isempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 10;
 - ▶ neighbour-set = $\{A,G\}$;
 - G not seen
 - ightharpoonup d = nd + Get-weight(n,G,g) = 16;
 - ▶ G.seen = True;
 - ▶ G.distance = d;
 - ► G.parent = E;

$$q = \{ C(T,11,F), G(T,16,E) \}$$

- while not Isempty(q)...
 - ightharpoonup n = E(T,10,A); q = Delete-first(q);
 - $ightharpoonup n_d = n. distance = 10;$
 - ▶ neighbour-set = $\{\cancel{A},\cancel{C}\}$;

$$q = \{ C(T,11,F), G(T,16,E) \}$$

while not Isempty(q)...

$$q = \{ C(T,11,F), G(T,16,E) \}$$

- \blacktriangleright while not Isempty(q)...

$$q = \{ G(T,16,E) \}$$

- while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - $\qquad \qquad \textbf{neighbour-set} = \{\textbf{A}, \textbf{F}, \textbf{G}, \textbf{D}\};$

$$q = \{ G(T,16,E) \}$$

- while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{A,F,G,D\}$;
 - A seen

$$q = \{ G(T,16,E) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ightharpoonup neighbour-set = {A,F,G,D};
 - A seen
 - ightharpoonup d = nd + Get-weight(n,A,g) = 19;
 - d not < A.distance</p>

$$q = \{ G(T,16,E) \}$$

- while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{A, F, G, D\}$;
 - ► F seen

$$q = \{ G(T,16,E) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{A, F, G, D\}$;
 - F seen
 - ightharpoonup d = nd + Get-weight(n,F,g) = 14;
 - d not < F.distance</p>

$$q = \{ G(T,16,E) \}$$

- while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{A, F, G, D\}$;
 - G seen

$$q = \{ G(T,16,E) \}$$

- ▶ while not Isempty(q)...

 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{A, F, G, D\}$;
 - G seen
 - ightharpoonup d = nd + Get-weight(n,G,g) = 15;
 - d is < G.distance
 </p>

$$q = \{ G(T,16,E) \}$$

- while not Isempty(q)...

 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{\cancel{A}, \cancel{F}, G, D\}$;
 - G seen
 - ightharpoonup d = nd + Get-weight(n,G,g) = 15;
 - ▶ d is < G.distance
 - ▶ G.distance = d;

$$q = \{ G(T,16,E) \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{A, F, G, D\}$;
 - G seen
 - d = nd + Get-weight(n,G,g) = 15;
 - ▶ d is < G.distance
 - ► G.distance = d;
 - ▶ G.parent = C;

$$q = \{ G(T,16,E) \}$$

- ightharpoonup while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{\cancel{A}, \cancel{F}, G, D\}$;
 - G seen
 - ightharpoonup d = nd + Get-weight(n,G,g) = 15;
 - ▶ d is < G.distance
 - ▶ G.distance = d;
 - ▶ G.parent = C;
 - ightharpoonup q = update(G,q);

$$q = \{ G(T,15,C) \}$$

- while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{\cancel{A}, \cancel{F}, \cancel{G}, D\}$;
 - D seen

$$q = \{ G(T,15,C) \}$$

- while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{\cancel{A}, \cancel{F}, \cancel{G}, D\}$;
 - D seen
 - ightharpoonup d = nd + Get-weight(n,D,g) = 16;
 - d not < D.distance</p>

$$q = \{ G(T,15,C) \}$$

- while not Isempty(q)...
 - ightharpoonup n = C(T,11,F); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 11;
 - ▶ neighbour-set = $\{\cancel{A}, \cancel{F}, \cancel{G}, \cancel{D}\}$;

$$q = \{ G(T,15,C) \}$$

while not Isempty(q)...

$$q = \{ G(T,15,C) \}$$

- \blacktriangleright while not Isempty(q)...

$$q = \{ \}$$

- while not Isempty(q)...
 - ightharpoonup n = G(T,15,C); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 15;
 - $\qquad \qquad \mathsf{neighbour}\mathsf{-set} = \{\mathsf{E},\mathsf{C}\};$

$$q = \{ \}$$

- while not lsempty(q)...
 - ightharpoonup n = G(T,15,C); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 15;
 - ▶ neighbour-set = $\{E,C\}$;
 - E seen

$$q = \{ \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = G(T,15,C); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 15;
 - neighbour-set = {E,C};
 - E seen
 - ightharpoonup d = nd + Get-weight(n,E,g) = 21;
 - d not < E.distance</p>

$$q = \{ \}$$

- while not Isempty(q)...
 - ightharpoonup n = G(T,15,C); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 15;
 - ▶ neighbour-set = $\{\cancel{E}, C\}$;
 - C seen

$$q = \{ \}$$

- ▶ while not Isempty(q)...
 - ightharpoonup n = G(T,15,C); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 15;
 - ▶ neighbour-set = $\{\not E, C\}$;
 - C seen
 - ightharpoonup d = nd + Get-weight(n,C,g) = 19;
 - d not < C.distance</p>

$$q = \{ \}$$

- while not Isempty(q)...
 - ightharpoonup n = G(T,15,C); q = Delete-first(q);
 - $ightharpoonup n_d = n$.distance = 15;
 - ▶ neighbour-set = $\{\cancel{E},\cancel{C}\}$;

$$q = \{ \}$$

while not Isempty(q)...

$$q = \{ \}$$

- Klar!
- Varje nod innehåller nu
 - avståndet till startnoden
 - bågen som leder tillbaka till startnoden

Komplexitet?

```
Algorithm Dijkstra-shortest-path(n: Node, q: Graph)
// Input: A graph g to find shortest path from node n
// Distance to start node is zero
n.distance ← 0; n.seen ← True; n.parent ← NULL
// Initialize pqueue with start node
q ← Insert(n, Pqueue-empty())
while not Isempty(q)
 // Get node with shortest distance from queue
 n ← Inspect-first(q); q ← Delete-first(q)
 nd ← n.distance
 // ...and its neighbours
 neighbour-set ← Neighbours(n, g)
 for each neighbour b in neighbour-set do
   // Compute distance to b VIA n
   d \leftarrow nd + Get-weight(n, b, q)
    if not Is-seen(b, g) then
     // We've never seen b; this is the first path to arrive at b
     b.distance ← d
     b.seen ← True
     b.parent ← n
     // Add new node to pqueue
     a ← Insert(b, a)
    else if d < b.distance then
     // We've seen b before, but path via n is shorter
     b.distance ← d
     // Update how we came to b
     b.parent 

n
     // Update the pqueue based on the new distance
     q ← Update(b, q)
```

Dijkstras shortest path, komplexitet

- ▶ Vi sätter in varje nod i prioritetskön en gång:
 - ▶ Totalt $n \cdot O(Insert)$
- ► Vi läser av varje nod i prioritetskön en gång
 - ► Totalt n · O(Inspect-first)
- ▶ Vi tar ut varje nod ur prioritetskön en gång
 - ► Totalt n · O(Delete-first)
- ► Vi kan behöva uppdatera element i prioritetskön
 - Maximalt m gånger: $m \cdot O(update)$
- ► Totalt för olika konstruktioner av prioritetskön:
 - Osorterad lista (av referenser till noderna):

$$ightharpoonup nO(1) + nO(n) + nO(n) + mO(1) = O(n^2 + m)$$

- Sorterad lista:
 - $ightharpoonup nO(n) + nO(1) + nO(1) + mO(n) = O(n^2 + mn)$
- Heap:

$$DO(\log n) + nO(1) + nO(\log n) + mO(\log n) = O((n+m)\log n)$$

Heap är snabbast!

Komplexitet, kortaste vägen

- ► En-till-alla:
 - Floyd: $O(n^3)$ (finns ej i en-till-alla-version)
 - ▶ Dijkstra: $O((n+m)\log n)$
- ► Alla-till-alla:
 - ightharpoonup Floyd: $O(n^3)$
 - Dijkstra: $O((n+m)\log n)$ för en-till-alla
 - ▶ Måste köras *n* gånger för att få alla-till-alla:

- För gles graf $m \approx n$: $O(n^2 \log n)$
- För tät graf $m \approx n^2$: $O(n^3 \log n)$
- Djikstra snabbare på stora, glesa grafer

Blank

Blank

Blank

3. Minsta uppspännande träd

Uppspännande träd, oviktad graf

▶ Både bredden-först och djupet-först-traverseringarna gav oss uppspännande träd:

Djupet-först:

Bredden-först:

- ► Har träden minimal längd?
 - ► För oviktade grafer ja!
 - ▶ Längd = n-1
 - Om varje kant har samma vikt är alla uppspännande träd minimala

Uppspännande träd, viktad graf

- Hur hanterar man grafer med vikter?
 - Exempel: Bygga fibernät mellan byar
 - Vikten på bågen motsvarar kostnaden att dra fiber mellan grannbyarna
 - Man söker ett uppspännande träd med minsta möjliga totala längd
 - Det är alltså inte en kortaste-vägen-algoritm
 - För mängdorienterad specifikation finns Kruskals algoritm
 - För navigeringsorienterad specifikation finns Prims algoritm

Blank

Kruskals algoritm

- Utgå från en prioritetskö av alla bågar
- ▶ I varje steg, plocka kortaste bågen från kön
 - Fyra alternativ:
 - 1. Bilda nytt träd
 - 2. Bygg ut ett träd
 - 3. Ignorera bågen
 - 4. Slå ihop två träd
- Under algoritmens gång kan vi ha en skog
- ► Till slut har vi bara ett träd (för sammanhängande gra)fc
- Vår beskrivning använder färger för att hålla i sär träden

Kruskals algoritm för minsta uppspännande träd, algoritm

- Låt alla noder sakna färg
- ightharpoonup Stoppa in alla bågarna i en prioritetskö q, sorterade efter vikt
- Upprepa tills q är tom:
 - 0. Ta första bågen ur q
 - 1. Om ingen av noderna är färgade:
 - Färglägg med ny färg (bilda nytt träd)
 - 2. Om endast en nod är färgad:
 - Färglägg den ofärgade noden (utöka trädet)
 - 3. Om bägge noderna har samma färg:
 - lgnorera bågen (den skulle skapa en cykel)
 - 4. Om noderna har olika färg
 - Välj en av färgerna och färga om det nya gemensamma trädet (slå ihop träden)

Upprepa tills kön är tom:

$$q = \{ (C,F,3), (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (C,F,3) ur kön

$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (C,F,3) ur kön
 - ► Ingen av (C,F) är färgade:

$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (C,F,3) ur kön
 - ► Ingen av (C,F) är färgade:
 - Färglägg med ny färg (fall 1)

$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

Upprepa tills kön är tom:

$$q=\{ (B,D,3), (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (B,D,3) ur kön

$$q = \{ (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (B,D,3) ur kön
 - ► Ingen av (B,D) är färgade:

$$q = \{ (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (B,D,3) ur kön
 - ► Ingen av (B,D) är färgade:
 - Färglägg med ny färg (fall 1)

$$q = \{ (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

Upprepa tills kön är tom:

$$q = \{ (C,G,4), (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- ► Upprepa tills kön är tom:
 - ► Ta första bågen (C,G,4) ur kön

 $q=\{ (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$

- Upprepa tills kön är tom:
 - ► Ta första bågen (C,G,4) ur kön
 - C är färgad

 $q=\{(A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$

- Upprepa tills kön är tom:
 - ► Ta första bågen (C,G,4) ur kön
 - C är färgad
 - Färglägg med C:s färg (fall 2)

 $q=\{ (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$

► Upprepa tills kön är tom:

$$q=\{ (A,F,4), (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- ► Upprepa tills kön är tom:
 - ► Ta första bågen (A,F,4) ur kön

$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,F,4) ur kön
 - F är färgad

$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,F,4) ur kön
 - F är färgad
 - Färglägg med F:s färg (fall 2)

$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:

$$q=\{ (A,R,4), (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- ► Upprepa tills kön är tom:
 - ► Ta första bågen (A,R,4) ur kön

$$q=\{ (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,R,4) ur kön
 - A är färgad

$$q=\{ (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,R,4) ur kön
 - A är färgad
 - Färglägg med A:s färg (fall 2)

$$q = \{ (C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:

$$q=\{(C,D,5), (E,G,6), (B,R,6), (A,E,6), (A,C,8)\}$$

- ► Upprepa tills kön är tom:
 - ► Ta första bågen (C,D,5) ur kön

$$q = \{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (C,D,5) ur kön
 - C och D färgade med olika färg

$$q=\{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (C,D,5) ur kön
 - C och D färgade med olika färg
 - Färglägg bägge graferna med C:s färg (fall 4)

$$q=\{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:

$$q = \{ (E,G,6), (B,R,6), (A,E,6), (A,C,8) \}$$

- ► Upprepa tills kön är tom:
 - ► Ta första bågen (E,G,6) ur kön

$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (E,G,6) ur kön
 - ► G är färgad

$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (E,G,6) ur kön
 - ► G är färgad
 - Färglägg med G:s färg (fall 2)

$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:

$$q = \{ (B,R,6), (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (B,R,6) ur kön

$$q = \{ (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (B,R,6) ur kön
 - ► Bägge färgade med samma färg

$$q = \{ (A,E,6), (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (B,R,6) ur kön
 - ► Bägge färgade med samma färg
 - ▶ Ignorera bågen (fall 3)

$$q = \{ (A,E,6), (A,C,8) \}$$

► Upprepa tills kön är tom:

$$q = \{ (A,E,6), (A,C,8) \}$$

- ▶ Upprepa tills kön är tom:
 - ► Ta första bågen (A,E,6) ur kön

$$q = \{ (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,E,6) ur kön
 - ► Bägge färgade med samma färg

$$q = \{ (A,C,8) \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,E,6) ur kön
 - ► Bägge färgade med samma färg
 - ▶ Ignorera bågen (fall 3)

$$q = \{ (A,C,8) \}$$

► Upprepa tills kön är tom:

$$q = \{ (A,C,8) \}$$

- ▶ Upprepa tills kön är tom:
 - ► Ta första bågen (A,C,8) ur kön

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,C,8) ur kön
 - ► Bägge färgade med samma färg

$$q=\{ \}$$

- Upprepa tills kön är tom:
 - ► Ta första bågen (A,C,8) ur kön
 - ► Bägge färgade med samma färg
 - ▶ Ignorera bågen (fall 3)

► Upprepa tills kön är tom:

- Upprepa tills kön är tom:
- ► Klar!

Kruskals algoritm, komplexitet

- Bygg upp en prioritetskö utifrån en bågmängd
 - \triangleright $O(m \log m)$ om heap
- ▶ Varje båge traverseras en gång: O(m):
 - ► Hanteringen av bågen kan delas in i fyra fall:
 - ▶ Ingen nod färgad: *O*(1)
 - ► En nod färgad: O(1)
 - ► Noderna samma färg: O(1)
 - Noderna olika färg:
 - ▶ Naiv lösning: O(n)
 - ► Effektiv lösning O(1)
- Total komplexitet:
 - $O(m \log m) + O(m) = O(m \log m) = O(m \log n)$

Kruskals algoritm för minsta uppspännande träd, naiv

```
Algorithm Kruskal (g: Graph)
next-color \leftarrow 1; q = Pqueue-empty()
for each node n in q do
  n.color \leftarrow 0
for each edge e in g do
 q \leftarrow Insert(q,e)
while not Isempty(q) do
  e = (a,b) \leftarrow Inspect-first(q); q \leftarrow Delete-first(q)
  if a.color = b.color then // same color
    if a.color = 0 then // uncolored
      a.color ← next-color
      b.color ← next-color
      next-color \leftarrow next-color + 1
    else
      // same but color!=0, do nothing
  else // different colors
    if a.color = 0 then // b colored, not a
      a.color ← b.color
    else if b.color = 0 then // a colored, not b
      b.color ← a.color
    else // both colored with different colors
      for each node n in q do
        if n.color = b.color then
          n.color ← a.color
```

"Omfärgning" av delgraf

- En naiv algoritm för omfärgning av ett träd/delgraf måste traversera alla noderna i delgrafen: O(n)
- ► Effektivare att definiera om likhet för färger
- ► Använd ett fält *E* med ekvivalenta färger

```
Algorithm Kruskal (g: Graph)
next-color \leftarrow 1; q = Pqueue-empty(); E(0) = 0
for each node n in q do
  n.color \leftarrow 0
for each edge e in g do
 q \leftarrow Insert(q,e)
while not Isempty(q) do
  e = (a,b) \leftarrow Inspect-first(q); q \leftarrow Delete-first(q)
  if E(a.color) = E(b.color) then // same color
    if a.color = 0 then // uncolored
      a.color ← next-color
      b.color ← next-color
      E(next-color) ← next-color
      next-color \leftarrow nextColor + 1
    else
      // same but color!=0, do nothing
  else // different colors
    if a.color = 0 then // b colored, not a
      a.color ← b.color
    else if b.color = 0 then // a colored, not b
      b.color ← a.color
    else // both colored with different colors
      E(a.color) \leftarrow min(E(a.color), E(b.color))
      E(b.color) \leftarrow min(E(a.color), E(b.color))
```

Fråga

► Hur fungerar Kruskals algoritm på en icke sammanhängade graf?

Fråga

- Hur fungerar Kruskals algoritm på en icke sammanhängade graf?
 - Resultatet blir en skog!

Prims algoritm

Prims algoritm för minsta uppspännande träd (1)

- Utgå från godtycklig startnod
- I varje steg, bygg på trädet med en båge med minimal vikt
- Använd en prioritetskö för att hålla reda på vilka bågar som kan vara aktuella
- ► Till slut spänner trädet upp grafen (eller en sammanhängande komponent av den)

Prims algoritm för minsta uppspännande träd (2)

- ightharpoonup Välj godtycklig startnod n ur grafen och låt n bli rot i trädet
- ► Skapa en tom prioritetskö q
- ► Upprepa:
 - ► Fas 0:
 - ► Markera *n* som stängd
 - Fas 1: Lägg till nya bågar till prioritetskön:
 - För var och en av de öppna (icke-stängda) grannarna w till n:
 - ▶ Lägg bågen (n, w, d) i prioritetskön q
 - Fas 2: Hitta bästa bågen att lägga till trädet:
 - Upprepa:
 - ▶ Ta första bågen (n, w, d) ur q
 - ▶ Om destinationsnoden w är öppen:
 - ▶ Lägg till bågen (n, w, d) till trädet

tills w öppen (lagt till en båge) eller q tom (klara)

- Fas 3: Gå till den nya noden
 - ightharpoonup Låt n = w

tills *q* är tom

Symboler

- Stängda noder färgas ljusblått
- Aktuell nod ritas med röd cirkel
- ► Bågar i prioritetskön ritas grönstreckade
- Prioritetskön presenteras sorterad
- Bågar i den nuvarande trädet ritas i mörkblått

▶ $n \leftarrow C$.

- ▶ $n \leftarrow C$.
- Låt *n* blir rot i trädet.

- ightharpoonup $n \leftarrow C$.
- Låt *n* blir rot i trädet.
- ► Skapa en tom prioritetskö *q*.

- ightharpoonup $n \leftarrow C$.
- Låt *n* blir rot i trädet.
- ► Skapa en tom prioritetskö *q*.
- Upprepa:

- Upprepa:
 - Fas 0: Markera C som stängd.

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:

$$q=\{ \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - ► Lägg (C,A,8) till q.

$$q = \{ (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - ► Lägg (C,F,3) till *q*.

$$q = \{ (C,F,3), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - ► Lägg (C,G,4) till q.

$$q = \{ (C,F,3), (C,G,4), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - ► Lägg (C,D,5) till q.

$$q = \{ (C,F,3), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - Fas 2: Upprepa

$$q = \{ (C,F,3), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,F,3) från q.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,F,3) från q.
 - F ej stängd.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,F,3) från q.
 - F ej stängd.
 - ▶ Lägg (C,F,3) till trädet.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,F,3) från q.
 - F ej stängd.
 - ▶ Lägg (C,F,3) till trädet.
 - tills F ej stängd eller q är tom.

$$q=\{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,F,3) från q.
 - F ej stängd.
 - ▶ Lägg (C,F,3) till trädet.
 - tills F ej stängd eller q är tom.
 - ► Fas 3: $n \leftarrow F$.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera C som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A,F,G,D} till C:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,F,3) från q.
 - F ej stängd.
 - ▶ Lägg (C,F,3) till trädet.
 - tills F ej stängd eller q är tom.
 - ► Fas 3: $n \leftarrow F$.
- ▶ tills *q* är tom.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - ► Lägg (F,A,4) till *q*.

$$q = \{ (F,A,4), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - Fas 2: Upprepa

$$q = \{ (F,A,4), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(F,A,4) från q.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(F,A,4) från q.
 - A ej stängd.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(F,A,4) från q.
 - A ej stängd.
 - ► Lägg (F,A,4) till trädet.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(F,A,4) från q.
 - A ej stängd.
 - ▶ Lägg (F,A,4) till trädet.
 - tills A ej stängd eller q är tom.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(F,A,4) från q.
 - A ej stängd.
 - ▶ Lägg (F,A,4) till trädet.
 - tills A ej stängd eller q är tom.
 - ► Fas 3: $n \leftarrow A$.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera F som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {A} till F:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(F,A,4) från q.
 - A ej stängd.
 - ▶ Lägg (F,A,4) till trädet.
 - tills A ej stängd eller q är tom.
 - Fas 3: $n \leftarrow A$.
- ▶ tills *q* är tom.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:

$$q = \{ (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - ► Lägg (A,R,4) till q.

$$q = \{ (A,R,4), (C,G,4), (C,D,5), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - ► Lägg (A,E,6) till *q*.

$$q=\{ (A,R,4), (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - Fas 2: Upprepa

$$q=\{ (A,R,4), (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A,R,4) från q.

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A,R,4) från q.
 - R ej stängd.

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A,R,4) från q.
 - R ej stängd.
 - ▶ Lägg (A,R,4) till trädet.

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A,R,4) från q.
 - R ej stängd.
 - ▶ Lägg (A,R,4) till trädet.
 - tills R ej stängd eller q är tom.

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A,R,4) från q.
 - R ej stängd.
 - ▶ Lägg (A,R,4) till trädet.
 - tills R ej stängd eller q är tom.
 - ► Fas 3: $n \leftarrow R$.

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera A som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {R,E} till A:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A,R,4) från q.
 - R ej stängd.
 - ▶ Lägg (A,R,4) till trädet.
 - tills R ej stängd eller q är tom.
 - Fas 3: $n \leftarrow R$.
- ▶ tills *q* är tom.

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:

$$q = \{ (C,G,4), (C,D,5), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - Fas 1: För var och en av de öppna grannarna {B} till R:
 - ► Lägg (R,B,6) till *q*.

$$q=\{(C,G,4),(C,D,5),(R,B,6),(A,E,6),(C,A,8)\}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:
 - Fas 2: Upprepa

$$q=\{(C,G,4), (C,D,5), (R,B,6), (A,E,6), (C,A,8)\}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,G,4) från q.

$$q=\{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,G,4) från q.
 - G ej stängd.

$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,G,4) från q.
 - G ej stängd.
 - ▶ Lägg (C,G,4) till trädet.

$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,G,4) från q.
 - G ej stängd.
 - ▶ Lägg (C,G,4) till trädet.
 - tills G ej stängd eller q är tom.

$$q=\{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,G,4) från q.
 - G ej stängd.
 - ▶ Lägg (C,G,4) till trädet.
 - tills G ej stängd eller q är tom.
 - ► Fas 3: $n \leftarrow G$.

$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera R som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till R:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,G,4) från q.
 - G ej stängd.
 - ▶ Lägg (C,G,4) till trädet.
 - tills G ej stängd eller q är tom.
 - Fas 3: n ← G.
- ▶ tills *q* är tom.

$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.

$$q=\{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:

$$q = \{ (C,D,5), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - ► Lägg (G,E,6) till *q*.

$$q=\{(C,D,5), (G,E,6), (R,B,6), (A,E,6), (C,A,8)\}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - Fas 2: Upprepa

$$q=\{(C,D,5), (G,E,6), (R,B,6), (A,E,6), (C,A,8)\}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,D,5) från q.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,D,5) från q.
 - D ej stängd.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,D,5) från q.
 - D ej stängd.
 - ▶ Lägg (C,D,5) till trädet.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,D,5) från q.
 - D ej stängd.
 - ▶ Lägg (C,D,5) till trädet.
 - tills D ej stängd eller q är tom.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,D,5) från q.
 - D ej stängd.
 - ▶ Lägg (C,D,5) till trädet.
 - tills D ej stängd eller q är tom.
 - Fas 3: $n \leftarrow D$.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera G som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {E} till G:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,D,5) från q.
 - D ej stängd.
 - ▶ Lägg (C,D,5) till trädet.
 - tills D ej stängd eller q är tom.
 - Fas 3: $n \leftarrow D$.
- ▶ tills *q* är tom.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - Fas 1: För var och en av de öppna grannarna {B} till D:
 - ► Lägg (D,B,3) till *q*.

$$q = \{ (D,B,3), (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:
 - Fas 2: Upprepa

$$q=\{ (D,B,3), (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(D,B,3) från q.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(D,B,3) från q.
 - B ej stängd.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(D,B,3) från q.
 - B ej stängd.
 - ▶ Lägg (D,B,3) till trädet.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(D,B,3) från q.
 - B ej stängd.
 - ▶ Lägg (D,B,3) till trädet.
 - tills B ej stängd eller q är tom.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(D,B,3) från q.
 - B ej stängd.
 - ▶ Lägg (D,B,3) till trädet.
 - tills B ej stängd eller q är tom.
 - ► Fas 3: $n \leftarrow B$.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera D som stängd.
 - ► Fas 1: För var och en av de öppna grannarna {B} till D:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(D,B,3) från q.
 - B ej stängd.
 - ▶ Lägg (D,B,3) till trädet.
 - tills B ej stängd eller q är tom.
 - Fas 3: n ← B.
- ▶ tills *q* är tom.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:
 - Fas 2: Upprepa

$$q = \{ (G,E,6), (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(G, E, 6) från q.

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:
 - Fas 2: Upprepa
 - ightharpoonup Ta (n, w, d) = (G, E, 6) från q.
 - E ej stängd.

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(G, E, 6) från q.
 - E ej stängd.
 - ▶ Lägg (G,E,6) till trädet.

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(G, E, 6) från q.
 - E ej stängd.
 - ▶ Lägg (G,E,6) till trädet.
 - tills E ej stängd eller q är tom.

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(G, E, 6) från q.
 - E ej stängd.
 - ▶ Lägg (G,E,6) till trädet.
 - tills E ej stängd eller q är tom.
 - ► Fas 3: $n \leftarrow E$.

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera B som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till B:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(G, E, 6) från q.
 - E ej stängd.
 - ▶ Lägg (G,E,6) till trädet.
 - tills E ej stängd eller q är tom.
 - Fas 3: $n \leftarrow E$.
- ▶ tills *q* är tom.

$$q=\{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa

$$q = \{ (R,B,6), (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(R,B,6) från q.

$$q = \{ (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - ightharpoonup Ta (n, w, d) = (R, B, 6) från q.
 - B stängd.

$$q = \{ (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - ightharpoonup Ta (n, w, d) = (R, B, 6) från q.
 - B stängd.
 - tills B ej stängd eller *q* är tom.

$$q = \{ (A,E,6), (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A, E, 6) från q.

$$q = \{ (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - ightharpoonup Ta (n, w, d) = (A, E, 6) från q.
 - E stängd.

$$q = \{ (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(A, E, 6) från q.
 - E stängd.
 - tills E ej stängd eller *q* är tom.

$$q = \{ (C,A,8) \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,A,8) från q.

$$q=\{ \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,A,8) från q.
 - A stängd.

$$q=\{ \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - Ta (n, w, d)=(C,A,8) från q.
 - A stängd.
 - tills A ej stängd eller *q* är tom.

$$q=\{ \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - tills A ej stängd eller *q* är tom.
 - Fas 3: n ← A.

$$q=\{ \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - tills A ej stängd eller q är tom.
 - Fas 3: $n \leftarrow A$.
- ▶ tills *q* är tom.

$$q=\{ \}$$

- Upprepa:
 - Fas 0: Markera E som stängd.
 - ► Fas 1: För var och en av de öppna grannarna { } till E:
 - Fas 2: Upprepa
 - tills A ej stängd eller q är tom.
 - Fas 3: $n \leftarrow A$.
- ▶ tills *q* är tom.
- ► Klar!

$$q=\{ \}$$

Prims algoritm för minsta uppspännande träd (igen)

- ightharpoonup Välj godtycklig startnod n ur grafen och låt n bli rot i trädet
- Skapa en tom prioritetskö q
- Upprepa:
 - Markera n som stängd
 - För var och en av de öppna grannarna w till n:
 - ► Lägg bågen (n, w, d) i prioritetskön q
 - Upprepa:
 - ightharpoonup Ta första bågen (n, w, d) ur q
 - Om destinationsnoden w ej är stängd:
 - ▶ Lägg till bågen (n, w, d) till trädet

tills w ej stängd eller q är tom

ightharpoonup Låt n = w

tills q är tom

Vad blir komplexiteten?

Prims algoritm, komplexitet

- ▶ Man gör en traversering av grafen, dvs. O(m) + O(n)
- ► Sen tillkommer köoperationer:
 - För varje båge:
 - ► Sätt in ett element i prioritetskön
 - ► Inspektera elementet
 - ► Ta ut elementet
 - ► Komplexitet: O(m) (lista) eller $O(\log m)$ (heap).
- ► Totalt: $O(n) + O(m^2)$ eller $O(n) + O(m \log m)$

Fråga

► Hur fungerar Prims algoritm på en icke sammanhängade graf?

Fråga

- ► Hur fungerar Prims algoritm på en icke sammanhängade graf?
 - ► Vi får ett träd som spänner upp den sammanhängande komponent som startnoden ingick i