Lecture 14 Revision

Why Data Mining?

Trends Leading to Data Flood:

- Bank, telecom, other business transactions ...
- Scientific data: astronomy, biology, etc.
- Web, text, and ecommerce

From Data to Knowledge

Medical Data by Dr. X, Tokyo Med. & Dent. Univ., 38:

```
10, M, 0, 10, 10, 0, 0, 0, SUBACUTE, 37, 2, 1, 0,15,-,-, 6000, 2, 0, abnormal, abnormal,-, 2852,
 2148, 712, 97, 49, F,-,multiple,,2137, negative, n, n, ABSCESS, VIRUS
 12, M, 0, 5, 5, 0, 0, 0, ACUTE, 38.5, 2, 1, 0,15, -,-, 10700,4,0,normal, abnormal, +, 1080, 680, 400,
 71, 59, F,-,ABPC+CZX,, 70, negative, n, n, n, BACTERIA, BACTERIA
 15, M, 0, 3, 2, 3, 0, 0, ACUTE, 39.3, 3, 1, 0,15, -, -, 6000, 0,0, normal, abnormal, +, 1124, 622, 502,
 47, 63, F, -, FMOX+AMK, , 48, negative, n, n, n, BACTE(E), BACTERIA
 16, M, 0, 32, 32, 0, 0, 0, SUBACUTE, 38, 2, 0, 0, 15, -, +, 12600, 4, 0, abnormal, abnormal, +, 41,
 39, 2, 44, 57, F, -, ABPC+CZX, ?, ?, negative, ?, n, n, ABSCESS, VIRUS
Numerical attribute
                         Categorical attribute Missing values
                                                                                Class labels
```


Predictive accuracy

Data Mining as a simplified Process

Primary Tasks of Data Mining I

Classification:

- Find the description of several predefined classes
- Classify a data item into one

sunflower

Clustering:

- Identify a finite set of categories
- ... or clusters to describe the data

Regression:

Maps a data item to a real-valued prediction variable

Primary Tasks of Data Mining II

Dependency modeling:

 Find a model that describes significant dependencies between variables

Deviation and change detection:

Discover the most significant changes in the data

Summarization:

Find a compact description for a subset of data

Lecture 2 From Data to Visualisation

Attribute Types Overview

Many types of data, e.g., numerical, text, graph, Web, image

Туре	Description	Examples	Operations
Nominal	Uses a label or name to distinguish objects	ZIP-Code, ID, Gender	= or !=
Ordinal	Uses values to provide the ordering of objects.	Opinion, grades	< or >
Interval	Uses units of measurements, but the origin is arbitrary.	Celsius, Fahrenheit, calendar dates	+ or -
Ratio	Uses units of measurement, the origin is not arbitrary.	Kelvin, length, counts, age, income	+, -, *, /

Curse of Dimensionality

 The size of a data set yielding the same density of data points in k-dimensional space, increases exponentially with dimensions

to achieve the same density of n points in k dimensions, we need n^k data points

Same density of data:

Example

- k = 1
 → n = 100 samples
- k = 5 $\rightarrow n = 100^5 = 10^{10}$ samples

k dimensions

Gain Insight into Data

- Statistical data description: central tendency
 - Median, mean and mode; symmetric, positively and negatively skewed data
 - Quartiles and standard deviation
- Graphical displays and data visualization

Data Matrix and Dissimilarity Matrix

Data matrix

n data points with p dimensions

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Often used: Minkowski distance

Lecture 3 Preprocessing Methods

Preprocessing Methods

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- Data integration from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies
- Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

 \mathbf{X}_1

Correlation Analysis (nominal Data)

X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Visually evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Lecture 4 Learning from Data towards Data Warehouses

Complexity and Generalization

- *Complexity = degrees of freedom in the model e.g. number of variables
- cf. Vapnik Chervonenkis dimension

The Confusion Matrix

	Actual	Class 1 Class 2	
Predicted			
Class 1		A: True Positive	B: False Positive
Class 2		C: False Negative	D: True Negative

Evaluation metrics:

A = (A+D)/(A+B+C+D)Accuracy TPr = A/(A+C) = 1- false negative rate = Sensitivity True positive rate False positive rate FPr = B/(B+D) = 1- true negative rate Specificity SP = 1 - FPrR = A/(A+C)Recall different in P = A/(A+B)Precision Kantardzic book! F = 2PR/(P+R)F-score

 Use evaluation metrics for model selection via Holdout method; random subsampling; Cross-validation; Bootstrap

Receiver Operating Characteristic (ROC)

measures overall model performance

The Apriori Algorithm – an Example

Database TDB

TidItems10A, C, D20B, C, E30A, B, C, E40B, E

 $Sup_{min} = 2$

C₁

1st scan

for count

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

_	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L₂ Itemset sup {A, C} 2 {B, C} 2 {B, E} 3 {C, E} 2

C₂

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

3rd scan

 L_3

Itemset	sup	
{B, C, E}	2	

Lecture 5 Decision Trees and Classification

Decision Trees and Classification

- Classification a Two-Step Process
 - Model construction
 - Model usage
- Decision Tree Induction
 - Supervised learning
 - Rule extraction
- Overfitting and its avoidance
 - Tree Prepruning
 - Tree Postpruning

Decision Trees handle high-dim space and missing values, are easy to implement (no geometry), may yield intuitive rules, discover important rule first

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by |C_{i, D}|/|D|
- **Information** (entropy) to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split D into v partitions) to $Info_A(D) = \sum_{i=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$ classify D:

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_{A}(D)$$

Lecture 6 Classification with Supervised Neural Networks

Classification with Supervised Neural Networks

- A neural network: A set of connected input/output units where each connection has a weight
- The network learns by adjusting the weights so it can predict the correct class label of the input tuples
- "connectionist learning"

Perceptron Network

Output vector

Output layer

Input layer

Input vector: X

Decision Boundaries (Lippmann)

Structure	Types of Decision Regions	Exclusive OR Problem	Classes with Meshed Regions	Most General Region Shapes
Single-Layer	Half Plane Bounded by Hyperplane	A B	B	
Two-Layer	Convex Open or Closed Regions	B	B	
Three-Layer	Arbitrary (Complexity Limited by Number of Nodes)	(A) (B)	B	

Lecture 7 Associative Networks and Recurrent Classification

The Hopfield Network

- All connected to every other neuron
- Synchronous or random update

$$S_i = \operatorname{sign}\left(\sum_{j=1}^n w_{ij} S_j\right)$$

Using the Memory

Simple recurrent network (SRN)

- Activations are copied from hidden layer to context layer
- Straight lines represent trainable connections

Example Prediction

Input: $x_1 x_2 x_3 x_t$

Output: $x_2 x_3 x_4 x_{t+1}$

Hierarchical Cluster Analysis

of Hidden Layers

Distance

Lecture 8 Clustering and Selforganizing Networks

Clustering and Selforganizing Networks

- Cluster analysis groups objects based on their similarity
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches

K-means and SOM: 'Cost Functions'

K-means:

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - m_i)^2$$

SOM:

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} \sum_{j=1}^{k} h(|i-j|) (p-m_j)^2$$

neighbourhood activation function h

Neighborhood Function Preserves Topology

The neighborhood function $h(n_b, t)$ determines the degree of weight vector change of the neighbors

$$w_j^T \leftarrow w_j^T + \eta(t) \cdot h(n_b, t) \cdot (x - w_j^T)$$

- Mostly: Gaussian function rarely: Mexican Hat function
- Width decreases during training
 (→ implicit decrease of learning rate)
- May decrease to zero (→ k-means)

Mexican Hat (Difference of Gaussian)

Data Mining

Lecture 9 Genetic and fuzzy mining

http://www.informatik.uni-hamburg.de/WTM/

Major Phases of a Genetic Algorithm

Fuzzy Logic

- Fuzzy logic:
 - Describes imprecision or vagueness
 - Values in the range of [0,1]
- Fuzzy Set A is a universal set U determined by a membership function μ_A(x) that assigns to each element x∈U a number A(x) in the unit interval [0,1]

Defuzzification Methods

- Transforms fuzzy output of the inference engine to crisp output using membership functions analogous to the fuzzifier
- Commonly used techniques:
 - centroid of area
 - bisector of area
 - mom: mean of maximum

- som: smallest of maximum
- *lom*: largest of maximum
- ...

Fuzzy Inferencing: Mamdani's Method

Data Mining

Lecture 10 Ensemble Learning

http://www.informatik.uni-hamburg.de/WTM/

Ensembles Give Better Results

Majority vote of n=15 classifiers, error rate each ε=0.3:

$$\varepsilon_{ensemble} = \sum_{i=8}^{15} {15 \choose i} \cdot \varepsilon^{i} (1 - \varepsilon)^{15-i} = 0.05$$

(a) Identical predictive models vs. different predictive models in an ensemble

(b) The different number of predictive models in an ensemble

AdaBoost

Final classifier:

Many variants of AdaBoost exist depending on:

- how to set the weights ε of the data during *learning*
- how to set the weights α to combine the hypotheses for *classification*

Boosting for Face Detection

First two features (weak classifiers) selected by boosting:

 This feature combination can yield 100% detection rate, however, while also finding many of false positives

Data Mining

Lecture 11
Mining Structure from Graphs and High-Dimensional Data

http://www.informatik.uni-hamburg.de/WTM/

Case based Reasoning

- Provides an automated method for storing experience and reusing it to make decisions in the future
- Index vocabulary for most important features
- Applications:
 - Medicine (diagnosis)
 - Law (precedence)
 - Financial and Management (prediction)
 - Oil drilling (risk assessment)

Semantic Networks

- Represents domain specific knowledge
- Models concepts & inheritance relations, e.g. INSTANCE and ISA

Classification by relational matching of query object Q to database D

Structure Similarity

The desired features tend to be captured by a measure we

call Structural Similarity

$$\sigma(v, w) = \frac{|\Gamma(v) \cap \Gamma(w)|}{\sqrt{|\Gamma(v)| \cdot |\Gamma(w)|}}$$

 Structural similarity is large for members of a clique and small for hubs and outliers

Bayes Networks

Bayes Theory, Bayes Theorem

Determine *likelihood* for certain conditions

- Compute joint probability
- Bayesian Networks
 - Directed acyclic graph
 - Different types of reasoning: diagnostic, predictive, inter-causal, or combined
- Conditional Probability Tables for each possible combination of parents

Fire	$\Theta_{s=T f}$
True	.90
False	.01

Fire	Tampering	$\Theta_{a=T f,t}$
True	True	.5
True	False	.99
False	True	.85
False	False	.0001

Hidden Markov Models

- Model λ:(A, B, π)
 - A: State-transition matrix
 - B: Symbol-emission matrix
 - π: initial state probability vector

- describes transition- and emission probabilities
- Markov property: next state depends only on current state
- Only emissions are observable, but unknown which state produced them (so: states are hidden)
- Can do:
 - Given HMM & observation sequence → infer state sequence
 - Given HMM → how probable is a state sequence
 - Given observation sequence(s) → learn HMM

Data Mining

Lecture 12 Text Mining

http://www.informatik.uni-hamburg.de/WTM/

Natural Language Processing

- Lexicon, Word sense disambiguation
- Part-of-Speech tagging
- Produce the correct syntactic parse tree for a sentence

S
NP
VP
Pro V NP
PP
Det N
Prep NP
N
I ate the spaghetti with chopsticks

S: sentence NP: noun phrase

VP: verb phrase

N: noun V: verb

Pro: pronoun

Det: determinant Prep: preposition

PP: Prep phrase

S

Basic Measures for Text Retrieval

 Precision: the percentage of retrieved documents that are in fact relevant to the query (i.e., "correct" responses)

$$precision = \frac{|\{Relevant\} \cap \{Retrieved\}|}{|\{Retrieved\}|}$$

 Recall: the percentage of documents that are relevant to the query and were, in fact, retrieved

$$recall = \frac{|\{Relevant\} \cap \{Retrieved\}|}{|\{Relevant\}|}$$

Data Mining

Lecture 13
Hybrid Systems and Current Topics in Data Mining

http://www.informatik.uni-hamburg.de/WTM/

Particle Filter Algorithm

- 1. Initialise particles randomly
- 2. For N steps do
 - 1. For all particles p do
 - If number of particles < threshold:
 Resample
 - Update particles
 - 3. Change weights depending on observation
 - 4. Normalise weights
 - Weight of particle = Level of certainty

Modelling Uncertainty in Data

- Difficult to know noise
 - Particle P usually modelled with Gaussian noise with mean μ and variance σ:

- Quality of estimate depending on used variances
 - Could be fixed...
 - ...or dynamic over the position:

$$\sigma^{t+1} = h(\mathbf{z}, \sigma) = \sin(\sigma/\sqrt{dx^2 + dy^2})$$

Integration into Hybrid Systems

	Neural/Statistical/ Sub-symbolic	Symbolic/Structural/ Rule-based
Knowledge format	Numbers, Connections	Rules, Trees, Structure
Representation	Distributed	Local
Computational elements	Numerical associations Weights Thresholds	Premises, Conclusions Rule strength Predicates
Processing	Continuous activations	Discrete symbols
Cognitive level	Low	High
Basic units	Neurons	Rules
Manipulated by	Continuous math	Logic
Representation	Compact but distributed	Verbose (→ brittle)

Hybrid systems combine both properties

Data Mining Klausur

- Wann?
 - 1.Termin: 15.07.2014
 - 2.Termin: 29.09.2014 (Nachschreibeklausur)
- Wo?
 - Von-Melle-Park 6, Hörsaal Phil B (15.7.), Phil C (29.9.)
- Wann?
 - Beginn Klausur: 9:30 Uhr, Einlass: 9:00 Uhr
 - Ende Klausur: 11:30 Uhr
- Hinweis: Personalausweis mitbringen!
- Mobiltelefone sind während der Klausur auszuschalten

Data Mining in a recent Hybrid System

MSc Project Human-Robot Interaction WS2013/2014

WTM for the Winter Semester (1) ...

BSc Practicum: Neural Networks

Methods	Feedforward networks	Recurrent networks
Unsupervised learning	Self-organizing maps, generative models	Hopfield network, Boltzmann machine
Supervised learning	Multi-layer perceptron (MLP)	Elman network
Reinforcement learning	Actor-critic, SARSA, CACLA	

WTM for the Winter Semester (2) ...

- BSc Project: Neural Networks for Robots
 - How do we get a robot to behave intelligently?
 - Humans are controlled by a complex neural network

How can neural networks be modelled?

How do I design networks to show certain behaviour?

How do I integrate NNs in a robot?

 Aim of the project: Create neural network controllers that get our robot to do something intelligent!

... some Outlook for the Master (1) ...

- L+S: Bio-inspired Artificial Intelligence
 - Adaptation, learning, development, evolution!
 - Learn about the nature and human!
 - Learn about brain and mind!
 - Experience how to build intelligent systems and robots!

... some Outlook for the Master (2) ...

- MSc Project: Human-Robot Interaction
 - Challenge: Robotic device capable of interacting with people as naturally as we interact with each other
 - Approach: solve a simple task in a complex environment, e.g. "Serve coffee!"
 - Inspiration: RoboCup@home tasks
 - Chance: Follow up on award-winning ideas and environments of the recent student groups

... and Topics for later BSc or MSc Projects

- Check for current offers:
 http://www.informatik.uni-hamburg.de/WTM/teaching/suggested_topics_titles.shtml
- Of course, feel free to discuss your own ideas with us
- Or contact your WTM tutors:
 <u>heinrich@informatik.uni-hamburg.de</u>
 <u>jirak@informatik.uni-hamburg.de</u>
 <u>weber@informatik.uni-hamburg.de</u>
- Additional: Oberseminar Knowledge Technology http://www.informatik.uni-hamburg.de/WTM/teaching/