Car Dealership

Michael Mendez Troy Simpkins

System Description

- Car Dealership
- Allows for the searching for, and purchasing of cars
- Has Customers and Employees information

UML Diagram

- User as a customer
- User as a management position(Accountant/ worker)
- Both parties can have access to payments

ER Diagram

- This shows the relation between all the tables and how they are connected
- Customer can add a car to the cart and when the checkout it complete, seller will have the information to process.
- Underneath we have the payment service and checkout service processing the total and the payments being made

Car Manufacturer	Seller	Accountant	Payment Service	Checkout Service	Customer	Refund	Take Payment
Manufacturer Model Car ID Stock Transmission Fuel Efficiency	Seller ID Name Phone Address Cust ID	Name Order # <u>Acct ID</u>	Pay ID Payment Type Company	Checkout ID Total Cost Payment Type	Cust ID Name Phone Order # Address	Accountant (Order #) Payment Service(Pa y ID)	Seller(Selle r ID) Customer(Cust ID)

• Red is the primary

System & Implementation Details

- Program is written in Python
- Uses Sqlite3
- Interface: Terminal (alacritty)