# Confidentiality and Integrity

**Deepak Puthal** 

Email: Deepak.Puthal@uts.edu.au

41900 – Fundamentals of Security

#### Overview

- Confidentiality Policy
- Bell-LaPadula Model
  - Reading Information
  - Writing Information
- Basic Security Theorem

- Integrity Policies
- Biba's model
- Clark-Wilson Integrity Model
- Comparison study

## Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
  - Deals with information flow
  - Integrity incidental
- Multi-level security models are best-known examples
  - Bell-LaPadula Model basis for many, or most, of these

### Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
  - Top Secret: highest
  - Secret
  - Confidential
  - Unclassified: lowest
- Levels consist of security clearance L(s)
  - Objects have security classification L(o)

### Reading Information

- Information flows *up*, not *down* 
  - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
  - Subject s can read object o iff  $L(o) \le L(s)$  and s has permission to read o
    - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
  - Sometimes called "no reads up" rule

## Writing Information

- Information flows up, not down
  - "Writes up" allowed, "writes down" disallowed
- \*-Property (Step 1)
  - Subject s can write object o iff  $L(s) \le L(o)$  and s has permission to write o
    - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
  - Sometimes called "no writes down" rule

### Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the \*-property, step 1, then every state of the system is secure
  - Proof: induct on the number of transitions

### Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (clearance, category set)
- Examples
  - (Top Secret, { NUC, EUR, ASI } )
  - (Confidential, { EUR, ASI } )
  - (Secret, { NUC, ASI } )

#### Levels and Lattices

- (A, C) dom (A', C') iff  $A' \leq A$  and  $C' \subseteq C$
- Examples
  - (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
  - (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
  - (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels  $L = C \times K$ , dom form lattice
  - lub(L) = (max(A), C)
  - $glb(L) = (min(A), \varnothing)$

### Levels and Ordering

- Security levels partially ordered
  - Any pair of security levels may (or may not) be related by dom
- "dominates" serves the role of "greater than" in step 1
  - "greater than" is a total ordering, though

### Reading Information

- Information flows up, not down
  - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
  - Subject s can read object o iff L(s) dom L(o) and s has permission to read
    - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
  - Sometimes called "no reads up" rule

## Writing Information

- Information flows up, not down
  - "Writes up" allowed, "writes down" disallowed
- \*-Property (Step 2)
  - Subject s can write object o iff L(o) dom L(s) and s has permission to write o
    - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
  - Sometimes called "no writes down" rule

#### Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the \*-property, step 2, then every state of the system is secure
  - Proof: induct on the number of transitions
  - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and \*-property phrased to eliminate discretionary part of the definitions but simpler to express the way done here.

#### Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
  - Major can talk to colonel ("write up" or "read down")
  - Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

#### Solution

- Define maximum, current levels for subjects
  - maxlevel(s) dom curlevel(s)
- Example
  - Treat Major as an object (Colonel is writing to him/her)
  - Colonel has maxlevel (Secret, { NUC, EUR })
  - Colonel sets curlevel to (Secret, { EUR })
  - Now L(Major) dom curlevel(Colonel)
    - Colonel can write to Major without violating "no writes down"
  - Does L(s) mean curlevel(s) or maxlevel(s)?
    - Formally, we need a more precise notation

# Integrity Policies

#### Requirements of Policies

- Users will not write their own programs, but will use existing production programs and databases.
- Programmers will develop and test programs on a non-production system; if they need access to actual data, they will be given production data via a special process, but will use it on their development system.
- A special process must be followed to install a program from the development system onto the production system.
- The special process in requirement 3 must be controlled and audited.
- The managers and auditors must have access to both the system state and the system logs that are generated.

## Biba Integrity Model

- Set of subjects S, objects O, integrity levels I, relation  $\leq \subseteq I \times I$  holding when second dominates first
- $min: I \times I \rightarrow I$  returns lesser of integrity levels
- $i: S \cup O \rightarrow I$  gives integrity level of entity
- $\underline{\mathbf{r}}$ :  $S \times O$  means  $s \in S$  can read  $o \in O$
- w, x defined similarly

### Intuition for Integrity Levels

- The higher the level, the more confidence
  - That a program will execute correctly
  - That data is accurate and/or reliable
- Note relationship between integrity and trustworthiness
- Important point: integrity levels are not security levels

#### Biba's Model

- Similar to Bell-LaPadula model
  - 1.  $s \in S$  can read  $o \in O$  iff  $i(s) \le i(o)$
  - 2.  $s \in S$  can write to  $o \in O$  iff  $i(o) \le i(s)$
  - 3.  $s_1 \in S$  can execute  $s_2 \in S$  iff  $i(s_2) \le i(s_1)$
- Add compartments and discretionary controls to get full dual of Bell-LaPadula model
- Information flow result holds
  - Different proof, though
- Actually the "strict integrity model" of Biba's set of models

#### LOCUS and Biba

- Goal: prevent untrusted software from altering data or other software
- Approach: make levels of trust explicit
  - credibility rating based on estimate of software's trustworthiness (0 untrusted, n highly trusted)
  - trusted file systems contain software with a single credibility level
  - Process has risk level or highest credibility level at which process can execute
  - Must use run-untrusted command to run software at lower credibility level

### Clark-Wilson Integrity Model

- Integrity defined by a set of constraints
  - Data in a consistent or valid state when it satisfies these
- Example: Bank
  - D today's deposits, W withdrawals, YB yesterday's balance, TB today's balance
  - Integrity constraint: D + YB –W
- Well-formed transaction move system from one consistent state to another
- Issue: who examines, certifies transactions done correctly?

#### **Entities**

- CDIs: constrained data items
  - Data subject to integrity controls
- UDIs: unconstrained data items
  - Data not subject to integrity controls
- IVPs: integrity verification procedures
  - Procedures that test the CDIs conform to the integrity constraints
- TPs: transaction procedures
  - Procedures that take the system from one valid state to another

#### Certification Rules 1 and 2

- CR1 When any IVP is run, it must ensure all CDIs are in a valid state
- CR2 For some associated set of CDIs, a TP must transform those CDIs in a valid state into a (possibly different) valid state
  - Defines relation certified that associates a set of CDIs with a particular TP
  - Example: TP balance, CDIs accounts, in bank example

#### Enforcement Rules 1 and 2

- ER1 The system must maintain the certified relations and must ensure that only TPs certified to run on a CDI manipulate that CDI.
- The system must associate a user with each TP and set of CDIs. The TP may access those CDIs on behalf of the associated user. The TP cannot access that CDI on behalf of a user not associated with that TP and CDI.
  - System must maintain, enforce certified relation
  - System must also restrict access based on user ID (*allowed* relation)

#### Users and Rules

- CR3 The allowed relations must meet the requirements imposed by the principle of separation of duty.
- ER3 The system must authenticate each user attempting to execute a TP
  - Type of authentication undefined, and depends on the instantiation
  - Authentication not required before use of the system, but is required before manipulation of CDIs (requires using TPs)

### Logging

- CR4 All TPs must append enough information to reconstruct the operation to an append-only CDI.
  - This CDI is the log
  - Auditor needs to be able to determine what happened during reviews of transactions

### Handling Untrusted Input

- CR5 Any TP that takes as input a UDI may perform only valid transformations, or no transformations, for all possible values of the UDI. The transformation either rejects the UDI or transforms it into a CDI.
  - In bank, numbers entered at keyboard are UDIs, so cannot be input to TPs. TPs must validate numbers (to make them a CDI) before using them; if validation fails, TP rejects UDI

### Separation of Duty in Model

- ER4 Only the certifier of a TP may change the list of entities associated with that TP. No certifier of a TP, or of an entity associated with that TP, may ever have execute permission with respect to that entity.
  - Enforces separation of duty with respect to certified and allowed relations

#### Comparison to Biba

#### Biba

- No notion of certification rules; trusted subjects ensure actions obey rules
- Untrusted data examined before being made trusted
- Clark-Wilson
  - Explicit requirements that *actions* must meet
  - Trusted entity must certify *method* to upgrade untrusted data (and not certify the data itself)

#### **Key Points**

- Confidentiality models restrict flow of information
- Bell-LaPadula models multilevel security
  - Cornerstone of much work in computer security
- Integrity policies deal with trust
  - As trust is hard to quantify, these policies are hard to evaluate completely
  - Look for assumptions and trusted users to find possible weak points in their implementation
- Biba based on multilevel integrity
- Clark-Wilson focuses on separation of duty and transactions