LIST OF FIGURES

Figure 2.1:	different types of language word for same meaning	5
Figure 2.2:	POS tagger of an input sentence	7
Figure 2.3:	Verb Forms in English	9
Figure 2.4:	NLTK POS tagging	10
Figure 2.5:	Training algorithm of Brill's tagger	11
Figure 2.6:	Deriving training sentences from Wikipedia text to	13
	translate NE categories	
Figure 2.7:	Semantic role labeller for an input text	14
Figure 3.1:	A parse tree of a sentence	15
Figure 3.2:	Top down parsing	17
Figure 3.3:	Bottom up parsing	18
Figure 3.4:	Dependency tree for a sentence	21
Figure 3.5:	flowchart of lambda-calculus dependency parsing	23
Figure 4.1:	Real example of an input list of sentences and the	33
	attention gates those are triggered by a specific question	
	from the bAbI tasks	
Figure 4.2:	The input module with a "fusion layer"	35
Figure 5.1:	Overview of QA techniques	38
Figure 5.2:	Examples of inputs and questions	39
Figure 5.3:	Example of inputs	40
Figure 5.4:	Input text to tokenize the sentences	41
Figure 5.5:	Parsed text to find sentences	41
Figure 5.6:	POS tagging of a sentence	42
Figure 5.7:	lambda calculus parsing for our work	42
Figure 5.8:	Lambda calculus representation of a sentence	43
Figure 5.9:	Finding facts from input sequence by lambda calculus	44
	parsing	

Figure 5.10:	Verb database	44
Figure 5.11:	Subject database	44
Figure 5.12:	Object database	44
Figure 5.13:	Parse the question to extract features by POS tagging	46
Figure 5.14:	W/H question with 'before/after' word and POS tagging	47
Figure 5.15:	Yes/No question structure and POS tagging	47
Figure 5.16:	Locational verb in a sentence	49
Figure 5.17:	List of positional verb	49
Figure 5.18:	Finding positional verb	49
Figure 5.19:	flowchart of 'where' question answering	50
Figure 5.20:	Question answering of finding position	51
Figure 5.21:	Answering the question with 'where' included 'before'	52
Figure 5.22:	flowchart of Yes/No question answering	53
Figure 5.23:	'Yes/No' question answering implementation	54
Figure 6.1:	Graphical representation of parsing accuracy for input	56
	sentences	
Figure 6.2:	Graphical representation of QA accuracy for different tasks	57