



**GenAI**  
Practitioners' Hub

# Building AI Agents Right

How to avoid common project failures



Kara  
**Herbut**

26 FEB 2025

**Building AI Agents  
is very hard**

# Agenda

- ✓ What is AI agent and do you need one?
- ✓ Why AI Agent projects fail
- ✓ Common mistakes to avoid
- ✓ How to set your project up for success

## Housekeeping

- ✓ Webinar will last around 30 minutes (+ 10min for Q&A)
- ✓ Feel free to ask questions anytime via dedicated 'Questions' feature

# What are AI Agents?

“Agents are **fully autonomous** systems that operate independently over **extended periods**, using various tools to accomplish **complex tasks.**”

Source: Anthropic <https://www.anthropic.com/research/building-effective-agents>

“Agents are programs where **LLM outputs control the workflow**”

Source:[https://huggingface.co/docs/smola/agents/en/conceptual\\_guides/intro\\_agents](https://huggingface.co/docs/smola/agents/en/conceptual_guides/intro_agents)

# AI Agent



## Deterministic vs non-deterministic software

“One of the inherent characteristics of GenAI is its **non-determinism**. This means the AI can produce different outputs even when given the same input multiple times, leading to unpredictability in its results.”

# Do you need an AI Agent?

“When building applications with LLMs, we recommend finding the simplest solution possible [...].  
**This might mean not building agentic systems at all.”**

# Automation vs AI Workflows vs AI Agents

|                | Automation                                                     | AI Workflows                                                                          | AI Agents                                                                                                                                       |
|----------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| What it does   | Fixed, rule-based tasks                                        | Execute predefined sequences of tasks.                                                | Operate autonomously with the ability to adapt to changing environments.                                                                        |
| Ideal use case | For predictive repetitive processes without human intervention | Processes that are well understood and can be broken down into separate steps.        | Unpredictable environments where complex decision-making and learning from interactions is needed                                               |
| Example        | Automatically sending email confirmations after purchase       | Automating data entry from emails into a database using a series of rule-based steps. | A virtual customer service representative that understands natural language, responds to diverse queries, and improves its responses over time. |

# AI Workflows



# AI Workflow example



# Automation vs AI Workflows vs AI Agents

|                | Automation                                                     | AI Workflows                                                                          | AI Agents                                                                                                                                       |
|----------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| What it does   | Fixed, rule-based tasks                                        | Execute predefined sequences of tasks.                                                | Operate autonomously with the ability to adapt to changing environments.                                                                        |
| Ideal use case | For predictive repetitive processes without human intervention | Processes that are well understood and can be broken down into separate steps.        | Unpredictable environments where complex decision-making and learning from interactions is needed                                               |
| Example        | Automatically sending email confirmations after purchase       | Automating data entry from emails into a database using a series of rule-based steps. | A virtual customer service representative that understands natural language, responds to diverse queries, and improves its responses over time. |

# Do you need an AI Agent? Decision tree



# Why AI Agent projects fail?

# The risky business of AI

More than 80 percent  
of AI projects fail.



80%

**Twice the rate of failure  
for information technology  
projects that do not involve AI.**

Source: RAND | The Root Causes of Failure for Artificial Intelligence Projects and How They Can Succeed 2024

# The risky business of AI

70% of AI implementations led to abandonment due to integration challenges



70%

Source: McKinsey's analysis of enterprise deployments

# AI project failure funnel



# A deeper look at pitfalls

# Unrealistic expectations (FOMO projects)

Common mistake

## Risk

- Stakeholders think “I have this **great idea** how GenAI can turn my business around”
- Little sceptical thinking **due to perceived first mover advantage**
- Unreasonably high and complex **expectations**

3.2x

Projects with **SMART goals**  
show **3.2x higher success rates**

Source: MBS whitepaper “Why AI projects fail”

## Solution

- Run simple analysis, like **SWOT or TELOS** (technical, financial, market, operational, and legal)
- Focus on “boring” not “exciting” AI Agents
- Trust experienced partners to **assess the initial scope**

# Misaligned goals: setting AI projects up for failure

Common mistake

## Risks

- AI doesn't match **business needs** (e.g., expecting full automation when human input is needed).
- No clear **success metrics** → unclear project outcomes.
- Poor **stakeholder communication** → unrealistic expectations or incomplete requirements.

38%

projects failed due to deploying agents without validated business needs

Source: MBS whitepaper "Why AI projects fail"

## Solutions

- **Run workshops** to align AI goals with business needs.
- Involve **key stakeholders** early in planning use cases
- Keep **communication open** between tech and business teams.

# Poor data foundations: garbage in, garbage out (GIGO problem)

Common mistake

## Risk

- **Poor-quality or incomplete data** → unreliable AI results.
- Problems with **accessing third party systems**
- Relying on primary data only, **without instructions, guardrails**

## Solution

- AI projects require **data strategy**
- **Conduct data audits** to find gaps, inconsistencies, or biases.
- Start with **simpler data**
- Continuously **monitor and clean** datasets to ensure relevance.

60%

project fail due to data issues,  
including poor quality and  
insufficient quantity

Source: RAND | The Root Causes of Failure of Artificial Intelligence Projects and How They Can Succeed 2024

# Neglecting ethical and legal considerations

Common mistake

## Risk

- Non-diverse training data might lead to unintended but **serious consequences**
- security vulnerabilities
- misuse or exposure sensitive personal data if privacy laws and best practices are not followed.

67%

Americans express concerns about AI making biased or unfair decisions in hiring, lending, and policing

Source: Pew Research 2023

## Solution

- Create **compliance frameworks** for data privacy and security (data encryptions, security testing, role-based access control)
- Curate **balanced** training data
- Embed **fairness metrics** in model evaluation
- Implement **continuous** bias testing post-deployment

# Trivial testing: Missing the real challenges

Common mistake

## Risk

- **Limited testing** → hidden errors go unnoticed.
- **Ignoring user feedback** → real issues remain unresolved.
- **Testing in ideal conditions** → poor real-world performance.

## Solution

- Test with **diverse edge cases** and stress scenarios.
- Actively **collect and apply** user feedback before scaling.
- **Expand pilot programs** gradually to ensure scalability.

54%

organizations report >\$50M losses from poorly governed AI initiatives, particularly in regulated industries

source: Melbourne Business School whitepaper " why do AI analytics and projects fail"

# Underestimation of complexity

## Risk

- Perceived ease of implementation: “configure OpenAI and connect to interface” is **not enough**
- GenAI projects are **real IT projects:** with analytics, data preparation, prevention of hallucinations, project management, testing

85%

Projects fail due to  
underestimating complexity

Source: Gartner

## Solution

- Create **compliance frameworks** for data privacy and security.
- **Balance** synthetic data with real-world data for training.
- Continuously **monitor and clean** datasets to ensure relevance.

# “Simple” product recommender task scope

- 1 Project Setup
- 2 Establish database schema and implementation
- 3 Data acquisition
- 4 Separation of the test dataset
- 5 Preparation of vector database and embeddings
- 6 Validation of recommendations
- 7 Building the Master Chat
- 8 Basic UI for ChatBot based on a ready-made template
- 9 Implementation of language security (Guardrails)
- 10 Bot logic
- 11 Implementation of the RAG head flow
- 12 Additional time for prompt engineering (testing and refinement)
- 13 Basic admin panel
- 14 Saving conversation history
- 15 The fallback mechanism for missing a potential response
- 16 Speech-2-text
- 17 Limiting conversation context
- 18 Support for tool calling and tool descriptor
- 19 Multi-language
- 20 Support for "tool calling" & chat tools descriptors
- 21 Simple questions scenarios (product info, brand comparison, shop info)
- 22 Project-based related tools (advice based on articles)

# Real-world failure examples

# The over-hyped chatbots

Case Study

Real world example:

**The French AI chatbot 'Lucie' was launched with high expectations but faced suspension due to numerous errors and public criticism.**



Source: Le Figaro & lucie.chat

Real world example:

**Meta's AI-powered celebrity chatbots were discontinued after user disinterest and negative feedback.**



Source: New York Post & Facebook

# The data starved AI tool

Case Study

Real world example:

Watson often recommended unsafe or impractical treatments.

**This was due to its reliance on limited, synthetic training data rather than real-world medical data. Additionally, it lacked integration with healthcare professionals' expertise.**

**\$62M**  
loss

**Consequence:** Produced dangerous treatment recommendations (e.g., bleeding medication for hemorrhaging patients)

Source: [healtharkinsights.com/wp-content/uploads/2023/11/IBM-Watson-From-healthcare-canary-to-a-failed-prodigy](https://healtharkinsights.com/wp-content/uploads/2023/11/IBM-Watson-From-healthcare-canary-to-a-failed-prodigy)



# The biased hiring tool

Case Study

Real world example:

Amazon's AI recruitment tool exhibited bias against female candidates due to training on male-dominated resumes.

**44%**

of AI ethics incidents involve agentic systems rather than static models



# The human touch dilemma

Case Study

Real world example:

Forward's AI-powered 'CarePods' aimed to revolutionize healthcare but shut down in 2024 due to low patient adoption.

**Users resisted using the autonomous kiosks, citing discomfort with the technology and preference for human interaction.**

**\$620M**  
investment failure

**Consequence:** Despite plans to deploy 3,200 CarePods in 2024, Forward managed to launch only five before ceasing operations



# Proof of Concept or Proof-of-Collapse?

Case Study

Real world example:

**Zillow iBuying Algorithms**  
**Property valuation models overestimated home prices during market shifts.**

**Consequence:**

**\$881M** loss

**25%** workforce reduction

**EXIT** from home-flipping business



# Key Takeaways

- Work with **real agentic AI systems** and not just your off-the-shelf RAG if your customer experience is worth something to you
- Use **AI agents for adaptive, high-complexity tasks** --> traditional automation for repetitive workflows.
- ROI must align with both **financial and strategic** business goals.

Partner with experts for **technical** and **regulatory hurdles**.

**How to set yours for  
success**

# 10 Top best-practices

1. Define **clear objectives** and scope for your AI agent
2. **Start small** with prototyping to identify risks early.
3. **Focus on data** for effective learning.
4. Choose the right development **tools and platforms** for scalability and efficiency.
5. Ensure matter experts and internal **stakeholder involvement**
6. Adopt a **human-in-the-loop** approach for ongoing oversight and improvement.
7. Continuously **train and test** to avoid overfitting and ensure reliability.
8. Ensure seamless integration with existing systems using APIs.
9. Monitor and optimize performance using key metrics and alerts.
10. Prioritize ethics and user trust - **transparency is key**.

# Q&A



devINITI

## Kara Herbut

Sales Director - Services & Solutions

 [kara.herbut@deviniti.com](mailto:kara.herbut@deviniti.com)

# Thank you for your attention!

[www.deviniti.com](http://www.deviniti.com)