Tópicos de Matemática Discreta

———— exame de recurso — 12 de fevereiro de 2014 —————— duração: 2 horas

exercício 1. Considere a fórmula proposicional $\varphi: ((p \to q) \lor (q \to r)) \to (p \to r)$. Diga, justificando, se são verdadeiras as seguintes afirmações:

- (a) A fórmula φ é uma tautologia.
- (b) φ toma o valor lógico verdadeiro sempre que $p \to q$ toma o valor lógico falso.

exercício 2. Considere os conjuntos $A = \{X \subseteq \mathbb{N} \mid X \text{ \'e n\~ao} \text{ vazio e todo o seu elemento \'e par}\}, <math>B = \{1, 2, 4\} \in C = \{x \in \mathbb{Z} : x^2 \in B\}.$

- (a) Determine, justificando, C.
- (b) Determine, justificando, $(B \setminus C) \times C$.
- (c) Determine, justificando, $\mathcal{P}(B) \setminus A$.

exercício 3. Sejam $A \in B$ conjuntos. Mostre que $(A \setminus B) \cup (A \cap B) = A$.

exercício 4. Prove, por indução, que $2+5+8+...+(3n-1)=\frac{n(3n+1)}{2}$, para todo $n\in\mathbb{N}$.

exercício 5. Considere a função $f: \mathbb{N} \to \mathbb{Z}$ definida da seguinte forma

$$f(n) = \begin{cases} \frac{n}{2} & \text{se } n \text{ \'e par} \\ -n^2 & \text{se } n \text{ \'e impar} \end{cases}.$$

- (a) Determine $f(\{1, 2, 4, 6, 8\})$. Justifique.
- (b) Determine $f^{\leftarrow}(\{-2\})$ e $f^{\leftarrow}(\mathbb{N})$. Justifique a sua resposta.
- (c) Diga, justificando, se f é sobrejetiva.

exercício 6. Seja $A = \{1, 3, 6, 8, 9, 11\}$ e considere a relação de equivalência R em A definida por a R b se a e b têm o mesmo número de divisores naturais.

- (a) Determine A/R.
- (b) Quantas relações de equivalência em A têm uma classe de equivalência com 5 elementos? Justifique.

exercício 7. Sejam $A = \{1, 2, 3, 4, 5, 6\}$, $X = \{2, 3, 4\}$ e $Y = \{3, 4, 6\}$. Considere o c.p.o. (A, \leq) com o seguinte diagrama de Hasse associado:

- (a) Indique os elementos maximais e minimais de A.
- (b) Indique o conjunto dos majorantes e o conjunto dos minorantes de X em A.
- (c) Indique, caso existam, o supremo e o máximo de Y em A.

exercício 8. Dê exemplo, caso exista, de:

- (a) conjuntos não vazios $A, B \in C$ tais que $(A \setminus B) \cap C = A \cap C$;
- (b) subconjuntos não vazios A e B de \mathbb{Z} tais que a proposição $\forall_{a \in A} (a > 0 \to (\exists_{b \in B} 2^b < a))$ seja verdadeira;
- (c) um grafo que não seja bipartido e que contenha um caminho elementar de comprimento 6;
- (d) um grafo não conexo com 3 vértices, dos quais um é um vértices de grau 2.

Cotação:

- 1. (2 valores) 2. (3 valores) 3. (1,5 valores) 4. (2 valores)
- **5.** (3 valores) **6.** (2,5 valores) **7.** (3 valores) **8.** (3 valores)