$S(c) = E(Y-c)^{2} = Ey^{2} - 2cEy + c^{2}$ dS _ 2EY + 2C = 0 when C = E(Y) S'is minimum when c= E(y) suice des = 2 > 0 Ve E[(1-f(x)) | X] = E ((Y-E(Y(X) + E(Y(X) - F(X))2 | X) = E [(Y-E(Y(X))2 | X] + 2 E [(Y - E(Y | X)) (E(Y | X) - F(X)) | X] + E [(E(Y|X)-f(X)) | X] = E[(Y-E(YIX))2 | X] + 2 (E(Y|X) - f(X)) [Y-E(Y|X) | X] + E [(E(Y|X) - f(X))] | X] > E[(Y-E(Y|X))] |X] for see f(X) e E [(Y-f(X))^2 | X] is huminged when f(X) = E(Y|X). $E(\lambda - f(x))_{x} = E[E((\lambda - f(x))_{x}]x)]$

 $E((Y-E(Y|X))^2|X) \le E((Y-f(X))^2|X)$ by (b)

Taking expectations of each side gives $E(Y-E(Y|X))^2 \le E(Y-f(X))^2 \text{ for all } f(X).$

$$E\left(\left(\frac{x}{n+1} - F(x)\right)^{2} + \frac{x}{x}\right) \qquad \left(\frac{x}{x} - (x_{1} - x_{1} \times x_{1})^{2} + \frac{x}{x}\right)$$

$$= E\left(\left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) + E(x_{n+1} \mid x_{1}) - F(x_{1})^{2}\right) \times \left[\frac{x}{n+1} + 2E\left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) - F(x_{1}) + \frac{x}{x}\right)\right]$$

$$+ E\left(\left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) - F(x_{1}) + \frac{x}{x}\right)$$

$$= \left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) - F(x_{1}) + \frac{x}{x}\right]$$

$$= \left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) - F(x_{1}) + \frac{x}{x}\right)$$

$$= \left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) - F(x_{1}) + \frac{x}{x}\right)$$

$$= \left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) - F(x_{1}) + \frac{x}{x}\right)$$

$$= \left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) - F(x_{1}) + \frac{x}{x}\right)$$

$$= \left(\frac{x}{n+1} - E(x_{n+1} \mid x_{1}) + \frac{x}{x}\right)$$

$$= \left(\frac{x}{n$$

> E(x-)2 since 2 rd com in zero

$$\begin{bmatrix}
E(\Sigma \times_{i} \times_{i} - \overline{X})(\overline{X} - \mu) = Cov(\Sigma \times_{i} \times_{i} - \overline{X}_{3} \overline{X} - \mu) \\
= cov(\Sigma \times_{i} \times_{i} \times_{i} - \overline{X}_{3} \times_{i}) - cov(\Sigma \times_{i} \times_{i} \times_{i} \times_{i} \times_{i}) \\
= \sum_{i} \sum_{n=1}^{\infty} c_{i} - \sum_{i} c_{i} = 0
\end{bmatrix}$$

Then
$$E\left(X_{n+1} - \Sigma x_{i} X_{i} \right)^{2} = E\left(X_{n+1} - \overline{X}\right)^{2} + 2E\left[\left(X_{n+1} - \overline{X}\right)^{2} + \Sigma (\overline{X} - \Sigma \alpha X_{i})\right] + E\left(\overline{X} - \Sigma \alpha X_{i}\right)^{2}$$

> E(×,, - x)

since the second term is zero

$$\left[\begin{array}{c} \operatorname{Cov}\left(\times_{n+1}^{-1} - \overline{X}, \overline{X} - \Sigma \times_{i} \times_{i}\right) = -\operatorname{Cov}\left(\overline{X}, \overline{X}\right) + \operatorname{cov}\left(\overline{X}, \sum_{i=1}^{n} \times_{i} \times_{i}\right) \\ = 0 \quad \text{as in (d)} \right]$$

G)
$$E(S_{n+1} | S_1, ..., S_n) = E(S_{n} | X_{n+1} | S_1, ..., S_n)$$

= $S_n + E(X_{n+1} | S_1, ..., S_n)$

= Stesuice × is independent of S, -, 5,

of X is independent of t and EX exists

distribution of
$$X_{t+h}$$
 and X_{t} is independent of t and $E \times_{t}^{2} < \infty$.

Hence [Xt] is wearly stationary

12

 1.4 (3) EX = a maeg y t
 102 2 2
 Cov(X + x) = (62 + c3) = , n = 0
 $\begin{cases} b = \pm 1 \\ b = 5 \end{cases}$
 indep : of t
 ·· Ex } is stationary
 $\frac{(b)}{t} \times = Z \cos(ct) + Z \sin(ct)$
 EX = 0, indep. of t
 $\frac{Cov(X_{t+h}, X_t) = cov(Z_t cos c(t+h) + Z_t sunc(t+h))}{Z_t cos ct + Z_t sunct}$
 Z cos ct + Z su ct
 = = (cos c(t+h) cos ct + sunc(e+h) su
 = = cos(ch),
 under of t
 (X) in Atationary
 $\frac{(c)}{t} \times = Z \cos(ct) + Z \sin(ct)$
 EX =0, under of t
 $Cov(X_{t+1}, X_t) = o^2 cox c(t+1) sinct$
 {Xe} is not statumary (except in the
 trocal case when c is an integer
:

EX = a , marp of t.

Cou(xth, xt) = b2 2 mag of t

. Ext in stationary

Xt = Z conct ω

EX = 0, indep of t

Cour(Xthi Xt) = o cos c(thi) cos ct

= 52 [con c(2++h) + con ch]

. : {Xt} is non-standary (except in the trivial

case when c is an unteger Multiple of 2TT)

EXt = 0,

= E(Z Z Z Z Z)

otherwise ,

indep of t [X_t] is stationary (WN(0, 5) in fact)

1.5 X = Z + 0 Z - {Z } ~ WN(0,+) (a) $V(h) = \begin{cases} 1+\theta^2, h=0 \\ \theta, h=\pm 2 \end{cases}$ $\begin{cases} \rho(h) = \begin{cases} 1, h=0 \\ \frac{\theta}{1+\theta^2}, h=\pm 2 \end{cases}$ $\frac{8(h)}{8(h)} = \frac{8(h+h)}{9(h+h)} = \frac{1.64}{9(h+h)} + \frac{1.64}{9(h+h)} = \frac{1.64}{9(h+h)} = \frac{1.64}{9(h+h)}$ (b) Cos(+ (x,+-+x,+) + (x,+-+x,+)) $= \frac{1}{16} \sum_{i=1}^{7} \sum_{j=1}^{4} Coo(X_{ij}, X_{j})$ = 16 [48(0) + 48(2)] = \frac{1}{16} \times \frac{4}{1} \times \frac{2.44}{1} = \frac{0.61}{1} (c) Cor(X,X) $\frac{0=-8}{-16} \left[+ \times (1-64-0.8) \right] = 0.21$ The negative lag-2 conselection in (a) means that positive deviations of X from zero tend to be followed two time units later by a compensating negative demacion, resulting in smaller variability in the sample mean than in (b) (and also smaller than if {X} were ind (0, 1.64) in which case we would have Var (X4) = 0.41).

- 1.7 $E(X_t + Y_t) = \mu_X + \mu_Y$ is independent of t, and since $Cov(X_s, Y_t) = 0$ for all t and s, $Cov(X_{t+h} + Y_{t+h}, X_t + Y_t) = \gamma_X(h) + \gamma_Y(h)$ which is independent of t.
- 1.10 For $m_t = \sum_{k=0}^{p} c_k t^k$, we have

$$\nabla m_t = \sum_{k=0}^{p} c_k t^k - \sum_{k=0}^{p} c_k (t-1)^k \\
= p c_p t^{p-1} + \sum_{k=0}^{p-2} b_k t^k$$

since $(t-1)^p = t^p - pt^{p-1} + \dots$ Consequently, ∇m_t is a polynomial of degree p-1 and therefore by successive application of the difference operator ∇ we deduce that $\nabla^{p+1}m_t = 0$.

1.12 (a) We first prove that a linear filter $\{a_j\}$ passes a polynomial of degree p if and only if

$$\begin{cases} \sum_{j} a_{j} = 1, \\ \sum_{j} j^{r} a_{j} = 0, \quad r = 1, \dots, p. \end{cases}$$

To prove this, it is enough to show $\sum_j a_j (t+j)^r = t^r$ for $r = 0, \ldots, p$. But, $(t+j)^r = \sum_{k=0}^r {r \choose k} t^k j^{r-k}$ so that

$$\sum_{j} a_{j}(t+j)^{r} = \sum_{k=0}^{r} {r \choose k} t^{k} \left(\sum_{j} a_{j} j^{r-k} \right)$$
$$= t^{r}$$

for $r = 0, \dots, p$ if and only if the above conditions hold.

(b) For Spencer's 15-point moving average filter, $\{a_j, j = -7, \dots, 7\}$ it is a simple matter to check that

$$\begin{split} \sum_{-7}^{7} a_j &= 1 \\ \sum_{-7}^{7} j^r a_j &= 0, \quad \text{for } r = 1, \, 2, \, 3. \end{split}$$

$$\frac{1.14}{a_0} = \frac{3}{9}, \ a_1 = \frac{4}{9} = a_{-1}$$

$$a_2 = -\frac{1}{9} = a_{-2}$$

(i)
$$\sum a_i = \frac{3}{9} + \frac{8}{9} - \frac{2}{9} = 1$$

Eide = 0 -- by i.(2(a) the filter passes cubic trend without distortion.

(i)
$$\frac{1}{4} A_{t} = A_{t-3} \text{ cmd } \frac{3}{5} A_{t} = 0$$

then $\frac{3}{9} A_{t} + \frac{4}{9} A_{t-1} - \frac{1}{9} A_{t-2}$

is eliminated.

1.15 (a) Since s_t has period 12,

$$\nabla_{12}X_t = \nabla_{12}(a+bt+s_t+Y_t)$$
$$= 12b+Y_t-Y_{t-12}$$

so that

$$W_t := \nabla \nabla_{12} X_t = Y_t - Y_{t-1} - Y_{t-12} - Y_{t-13}.$$

Then $EW_t = 0$ and

$$Cov(W_{t+h}, W_t)$$

$$= Cov(Y_{t+h} - Y_{t+h-1} - Y_{t+h-12} + Y_{t+h-13}, Y_t - Y_{t-1} - Y_{t-12} + Y_{t-13})$$

$$= 4\gamma(h) - 2\gamma(h-1) - 2\gamma(h+1) + \gamma(h-11) + \gamma(h+11) - 2\gamma(h-12)$$

$$- 2\gamma(h+12) + \gamma(h+13) + \gamma(h-13)$$

where $\gamma(\cdot)$ is the autocovariance function of $\{Y_t\}$. Since EW_t and $Cov(W_{t+h}, W_t)$ are independent of t, $\{W_t\}$ is stationary. Also note that $\{\nabla_{12}X_t\}$ is stationary.

b)
$$X_t = (a+bt)s_t + Y_t$$

 $\nabla_{12}X_t = bts_t - b(t-12)s_{t-12} + Y_t - Y_{t-12}$
 $= 12bs_{t-12} + Y_t - Y_{t-12}.$
Now let $U_t = \nabla_{12}^2 X_t = Y_t - 2Y_{t-12} + Y_{t-24}.$ Then $EU_t = 0$ and

$$Cov(U_{t+h}, U_t) = Cov(Y_{t+h} - 2Y_{t+h-12} + Y_{t+h-24}, Y_t - 2Y_{t-12} + Y_{t-24})$$
$$= 6\gamma(h) - 4\gamma(h+12) - 4\gamma(h-12) + \gamma(h+24) + \gamma(h-24)$$

which is independent of t. Hence $\{U_t\}$ is stationary.

1.18 Monthly Accidental Deaths, U.S.A., Jan, 73 - Dec, 78

The slowly damped period-12 oscillations suggest trend and seasonality, clearly not vid, > 95% overida

Fit of Classical Decomposition Model with Quadratic Trend

Residuals from Fit

Sample ACF/PACF of Residuals

Four out of 40 sample autocorrelations are outside the 95% bounds and several others are close suggesting that the residuals are not iid.

Further Tests of IID Residual Hypothesis

ITSM::Pest(Tests of randomness on residuals)

Ljung - Box statistic = 55.384 Chi-Square (20), p-value = .00004 McLeod - Li statistic = 15.829 Chi-Square (20), p-value = .72716 # Turning points = 43.000-AN(46.667,sd = 3.5324), p-value = .29926 # Diff sign points = 35.000-AN(35.500,sd = 2.4664), p-value = .83935 # Rank points = 1245.-AN(1278.,sd = 102.85), p-value = .74833 Order of Min AICC YW Model for Residuals = 1

The first and last tests suggest rejection, the first at all levels greater than .00004. In view of the sample ACF and the extremely small p-value of the first test, I would reject the null hypothesis of iid residuals.

Forecasts of 24 future values

The red values are the forecasts, shown with upper and lower 95% prediction bounds. The observed numbers of accidental deaths at times 73 – 78 were 7798, 7406, 8363, 8460, 9217 and 9316, all of which lie between the bounds. Forecasts beyond six months are clearly strongly influenced by the assumption of a quadratic trend and should be treated with some scepticism.

(2)

Set 3

2.1, 2.3, 2.5, 2.7, 2.8, 2.10

2.1
$$S(a,b) = E(X_{n+h} - aX_n - b)^2$$
 to be numbered

$$= E((X_{n+h} - \mu) - a(X_n - \mu) - b - a\mu + \mu)$$

$$= Y(0) + a^2 Y(0) + (b + a\mu - \mu)^2$$

$$= 2a Y(0) + 2\mu (b + a\mu - \mu) - 2Y(h)$$

$$\frac{\partial S}{\partial a} = 2(b + a\mu - \mu)$$

$$S = 2(b + a\mu - \mu)$$

$$S = \mu(1-a)$$

$$Second b = \mu(1-a) \text{ in } \frac{\partial S}{\partial a} \text{ and equating to } \frac{\partial S}{\partial a} = \frac{Y(h)}{Y(a)} = p(h)$$

$$\Rightarrow S(a,b) \text{ is a unit other } a = p(h), b = \mu(1-p(h))$$

$$\frac{\partial S}{\partial a} = \frac{\partial S}{\partial a} = \frac{\partial$$

r(h) = r(-h)

6

6 Sauce acrif as in (a).

as m -> 00 succe

$$= \sum_{i=1}^{n} |\Theta^{i}| |X_{n-i}| < \infty$$
 with probability 1

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$$

for
$$m > k$$
, $E\left(\frac{S}{m} - \frac{S}{k}\right)^2 = E\left(\frac{\sum_{k=1}^{m} e^k \times 1}{\sum_{k=1}^{m} e^k \times 1} \times 1\right)^2$

$$= \sum_{n=1}^{\infty} \left(x(n-s) + \mu^{2} \right)$$

$$\leq \sum_{n=1}^{\infty} \left(x(n-s) + \mu^{2} \right)$$

$$= \left(x(0) + \mu^{2} \right) \left(\sum_{n=1}^{\infty} (0)^{2} \right)^{2}$$

$$\frac{1}{1-43} = \frac{-43}{1-43}$$

$$= -\frac{1}{43} \left(1 + \frac{1}{43} + \frac{1}{(43)^2} + \cdots\right)$$
Anne $(43) > 1$

$$= -\sum_{j=1}^{\infty} (\phi 3)^{-j}$$

$$X_{t} = \phi \times_{t-1} + Z_{t}$$

$$= Z_{t} + \phi(Z_{t-1} + \phi \times_{t-2})$$

$$= Z_{t} + \phi Z_{t-1} + \phi^{n} Z_{t-n} + \phi^{n+1} X_{t-n-1}$$

$$= V(0) (i + \phi^{n+1} X_{t-n-1})$$

$$= V(0) (i + \phi^{n+1} X_{t-n-1})$$

$$\leq 8(0) \left(1 + 2|\phi|^{n+1} + |\phi|^{2n+2}\right)$$
 $= 4+8(0) \quad \text{if } \left\{x_{\epsilon}\right\} \text{ is stationary}$

and $|\phi| = 1$

Var $\left(Z_{t} + \phi Z_{t-1} + \dots + \phi^{n} Z_{t-n}\right)$

6

(G)

 $\overline{(4)}$

2.8

2.10
$$X_{t} - \beta X_{t-1} = Z_{t} + \Theta Z_{t-1}$$

$$4 = .5$$

$$\Theta = .5$$

See 2.3 equal (2.3.3)

$$\Rightarrow \times_{\pm} = \sum_{i=1}^{\infty} \psi_{i} Z_{\pm -1}$$
where $\psi_{i} = (4+0) \phi^{1-1}$, $j \ge 1$

$$= (-5)^{3-1}$$
, $j \ge 1$

$$\pi_{j} = -(\phi + 0)(-0)^{j-1}, \quad j > 1$$

$$= -(-.5)^{j-1}, \quad j > 1.$$

Agrees with ITSM.

ST 525 Socutions Set 4

95% CI for
$$\mu$$

Use $\overline{X}_{100} = \frac{1}{11} \sum_{n=1}^{\infty} (1 - \frac{|h|}{n}) Y(h)$

$$= \frac{1}{100} \left[Y(0) + 2 \times \frac{qq}{100} Y(1) \right]$$

$$= \frac{1}{100} \left[1.36 - 1.98 \times .6 \right]$$

-00172

157

2.13 (a)
$$\hat{\rho}(1) = .438$$
, $\hat{\rho}(2) = .145$
AR(1) $\times_{\pm} - \phi \times_{\pm -1} = Z_{\pm}$

Bareless
$$\Rightarrow$$
 Var $\hat{p}(i) \simeq \frac{1}{n} (1-\hat{p}^2)$

$$(2.4.12)$$

$$\text{Oar } \hat{p}(i) \simeq \frac{1}{n} \left[(1+\hat{p}^2)^2 - 4\hat{p}^4 \right]$$

Appear 95% ca's for
$$p(i)$$
: $\hat{p}(i) \pm \frac{1.96}{1196} (1-p^2)^{1/2}$

$$p(2i) : \hat{p}(2i) \pm \frac{1.96}{1196} (1-p^2)^{1/2} (1+3p^2)^{1/2}$$

With $\phi = \hat{\phi} = \hat{\rho}(0)$, h = 100, $\hat{\rho}(0) = .438$, $\hat{\rho}(0) = .148$, there become $\hat{\rho}(0) : .438 \pm .196 \times .899 = .262$, .614 P(1): 148 ± 196 x 1,128 = -. 073 , :369 Not consistent with \$ = . 8 ... since both p(1) = . 8 and p(2) = . 64

are outside the bounds (b) MA(1): Xt = Xt + 8 Zt-1 Barelett \Rightarrow Var $\hat{p}(i) \approx \frac{1}{n} (1-3p(i)^2+4p(i)^4)$ Var $\hat{p}(2) \approx \frac{1}{n} (1+2p(i)^2)$ Approx 95% bounds $\hat{p}(i) = \hat{p}(i) + \frac{1.96}{1.96} (1-3p(i)^2+4p(i)^4)^{1/2}$ $\hat{p}(2) = \hat{p}(2) + \frac{1.96}{1.96} (1+2p(i)^2)^2$ Setting $\hat{p}(i) = \hat{p}(i)$, n = 100, $\hat{p}(i) = 0.438$, $\hat{p}(2) = 0.148$, thus become p(1): .438 ± .196 x .756 = .290, .586 P(2): 148 ± 196 x 1.176 = - 082, -378 $(0=.6 \Rightarrow p(i) = \frac{0}{1+0^2} = .4412, p(2) = 0)$ The bounds are consistent with $\beta(1) = .4412$, $\beta(z) = 0$ and hence the data are consistent with $X_2 = Z_2 + .6Z_{2-1}$. X = A cos (wt) + B sin wt , A, 3 meconeaced $P_i \times_{z_i} = \phi_{i_i} \times_{i_i}$ where $Y(0) \phi_{ii} = Y(i) \Rightarrow \phi_{ii} = \beta(i) = \cos \omega$ -and E(x_- P,x_)= 8(0) - \$ 8(1) = 8(0) (1- cos 0)

Note 2:14 is an example in which the matrix

The in the equation The she is

singular for
$$n \ge 3$$
. This is because $X_3 = (\cos \omega)X_2 - X_3$

(6)
$$P_{\chi_{\lambda}} = \phi_{\chi_{\lambda}} \times \phi_{\chi_{\lambda}} \times$$

$$i.e. \qquad \begin{bmatrix} 1 & cos \omega \\ cos \omega & 1 \end{bmatrix} \begin{bmatrix} \phi_{21} \\ \phi_{22} \end{bmatrix} = \begin{bmatrix} cos \omega \\ cos 2\omega \end{bmatrix}.$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x + 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x - 1))$$

$$(x + \frac{1}{2}) \left(\cos^2 (x - 1) \right) = \cos^2 (x - \cos^2 (x - 1))$$

$$P_{2} \times_{3} = 2 \cos(\omega) \times_{2} - \times_{1}$$
and
$$E(x_{3} - P_{2} \times_{3}) = 8(\omega) - \phi_{2} \times_{3}$$

Since (2cosco)
$$X_{n+1} - X_{n-1}$$
 is a linear could in the composition to find a predictor of this form with smaller U.S.E., we conclude that $P_{n+1} = (2\cos\omega) \times_{n-1} \times_{n-1}$ when $12SE = 0$

ال

ITSM::Pest(ACF/PACF

of Lags =

40

Sample Autocorrelations:

Sample Variance = 1382.18510000

1.0000	.8062	.4281	.0696	1694
2662	2117	0437	.1637	.3305
.4099	.3941	.2882	.1431	.0197
0548	1020	1448	1770	1676
1042	0186	.0416	.0485	0035
1001	 1820	2315	2505	2415
2073	1500	0931	0786	0974
- .1343	1682	1857	1839	1808

Sample Partial Autocorrelations:

1.0000	.8062	6341	.0805	0611
.0011	.1698	.1074	.1117	.0800
.0765	.0669	0328	.0748	.0369
0314	1330	1571	1146	0204
.0012	0628	0988	0922	1089
0901	.0941	0735	0214	0280
0599	.0425	0017	0660	.0638
0891	0018	- .0373	 0293	0612

ITSM::Pest(Preliminary estimates)

Mothod: Yule-Walker

Fitted Model:

X(t) = 1.318 X(t-1) - .6341 X(t-2) + Z(t)

WN Variance = 232.894980

AR Coefficients 1.317501

-.634121

Ratio of AR coeff. to 1.96 * (standard error) 8.693289 -4.184136

(Residual SS)/N = 232.895

WN variance estimate (Yule Walker): 289.214

-2Log(Like) = 830.924987AICC = 837.174987

MODEL ACF/PACF

SAMPLE ACF/PACF

Step	Prediction 88.89157	sqrt (MSE) 15.26090
Ţ	85.04872	25.24195
2 3	70.54270	30.32859
4	53.86785	31.75219
5	41.09730	31.79898
6	34.84597	32.01229
7	34.70793	32.56133
8	38.49016	33.02344
9	43.56078	33.20603

2,18 (1) X = Z - 0Z , 10 (1, [2] 2 www (0, 2)

$$(2) \qquad \qquad Z_{t} = X_{t} + 9X_{t-1} + 9^{2}X_{t-2} + \cdots$$

Second
$$t = n+1$$
 in (2) and applying \tilde{T}_n to each side $\Rightarrow \tilde{T}_n \times_{n+1} = -\sum_{j=1}^{\infty} \delta^j \times_{n+1-j}$

$$\Rightarrow \widetilde{P}_{N} \times_{N+1} = -\Theta Z_{n}$$

Prediction evol =
$$X - \tilde{P} X = Z_{n+1}$$

(0)

Set 5

CHAPTER 3

- 3.1. (a) $\phi(z) = 1 + .2z .48z^2 = (1 + .8z)(1 .6z) = 0$ when z = -1/.8 or z = 1/.6. Since both of these zeros are outside the unit circle, the process is causal. Process is obviously invertible since $Z_t = X_t + .2X_{t-1} - .48X_{t-2}$.
 - (b) $\phi(z) = 1 + 1.9z + .88z^2 = (1 + 1.1z)(1 + .8z) = 0$ when z = -1/1.1 or z = -1/.8. Since the first of these two zeros lies inside the unit circle, the process is not causal. $\theta(z) = 1 + .2z + .7z^2 = 0$ when $z = \frac{-.2 \pm i\sqrt{2.76}}{1.4}$ and $|z|^2 = [(-.2)^2 + 2.76]/(1.4)^2 = 1.429 > 1$ which implies the process is invertible.
 - (c) $\phi(z) = 1 + .6z = 0$ when $z = -10/6 \implies$ causal. $\theta(z) = 1 + 1.2z = 0$ when $z = -5/6 \implies$ not invertible.
 - (d) $\phi(z) = (1+.9z)^2 = 0$ when $z = -10/9 \implies$ causal. AR(p) processes are always invertible.
 - (e) $\phi(z) = 1 + 1.6z = 0$ when $z = -10/16 \implies$ not causal. $\theta(z) = 1 - .4z + .04z^2 = (1 - .2z)^2 = 0$ when $z = 5 \implies$ invertible.

(c) 4 = 1

4 = 1.2 -(6) 4 = 0.6

(a)
$$\psi_0 = 1$$

$$\psi_1 = (-2)\psi_2 = -2$$

$$\psi_2 = (-2)\psi_1 + (48)\psi_2 = -52$$

$$\psi_3 = (-2)\psi_2 + (48)\psi_1 = -20$$

$$\psi_4 = (-2)\psi_3 + (48)\psi_2 = -2896$$

$$\psi_4 = (-2)\psi_4 + (48)\psi_4 = -15392$$

$$\psi_{2} = (-\cdot 2)\psi_{1} + (\cdot 48)\psi_{2} = \cdot 52$$

$$\psi_{2} = (-\cdot 2)\psi_{2} + (\cdot 48)\psi_{1} = -\cdot 20$$

$$\psi_{3} = (-\cdot 2)\psi_{2} + (\cdot 48)\psi_{2} = \cdot 2896$$

$$\psi_{4} = (-\cdot 2)\psi_{3} + (\cdot 48)\psi_{2} = \cdot 2896$$

$$\psi_{5} = (-\cdot 2)\psi_{4} + (\cdot 48)\psi_{3} = -\cdot 15392$$

$$\psi_{7} = (-\cdot 2)\psi_{7} + (\cdot 48)\psi_{7} = -\cdot 15392$$

$$\psi_{8} = (-\cdot 2)\psi_{7} + (\cdot 48)\psi_{7} = 0.07776$$
(d)
$$\psi_{8} = 1$$

(a)
$$\psi_{1} = (-1.8) \psi_{1} = -1.8$$

$$\psi_{2} = (-1.8) \psi_{1} + (-.81) \psi_{2} = 2.43$$

$$\psi_{3} = (-1.8) \psi_{2} + (-.81) \psi_{1} = -2.416$$

$$\psi_{4} = (-1.8) \psi_{4} + (-.81) \psi_{2} = 3.2805$$

$$\psi_{5} = (-1.8) \psi_{4} + (-.81) \psi_{3} = -3.54244$$

These all agree with ITSM.

5.2

of Lags = 40

Model Autocorrelations:

Gamma(0) = 1.52496246

1.0000	- .3846	.5569	2960	.3265
2074	.1982	1392	.1230	0914
.0773	0593	.0490	0383	.0312
0246	.0199	0158	.0127	0101
.0081	0065	.0052	0041	.0033
0027	.0021	0017	.0014	0011
.0009	0007	.0006	0004	.0004
0003	.0002	0002	.0001	0001

Model Partial Autocorrelations:

1.0000	3846	.4800	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000

Gamma(0) = 1.56250000

1.0000	.1680	1008	.0605	0363
.0218	0131	.0078	0047	.0028
0017	.0010	0006	.0004	0002
.0001	0001	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000

Model Partial Autocorrelations:

1.0000	.1680	1328	.1068	- 0869
.0713	0587	.0486	0403	.0334
0278	.0231	0192	.0160	0133
.0111	0093	.0077	0064	.0054
0045	.0037	0031	.0026	0022
.0018	0015	.0012	0010	.0009
0007	.0006	0005	.0004	0003
.0003	0002	.0002	0002	.0001

of Lags = 40

Model Autocorrelations:

Gamma(0) = 1.56250000

1.0000	.1680	1008	.0605	0363
.0218	0131	.0078	0047	.0028
0017	.0010	0006	.0004	0002
.0001	0001	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000	.0000	.0000	.0000	.0000
.0000 .0000 .0000	.0000	.0000 .0000 .0000	.0000 .0000 .0000	.0000

Model Partial Autocorrelations:

1.0000	.1680	1328	.1068	0869
.0713	0587	.0486	0403	.0334
0278	.0231	0192	.0160	0133
.0111	0093	.0077	0064	.0054
0045	.0037	0031	.0026	0022
.0018	0015	.0012	0010	.0009
0007	.0006	0005	.0004	0003
.0003	0002	.0002	0002	.0001

Show (2)
$$W_t := \sum_{0}^{\infty} (-\theta)^{-1} \times_{t-1}^{-1} \text{ in } WN(0, \frac{2}{0}) \text{ and } \text{ find } \frac{2}{0}$$

From (1)
$$Z_{t-1} = \frac{1}{6} \times_{t} - \frac{1}{6^{2}} \times_{t+1} + \frac{1}{6^{3}} \times_{t+2} - \cdots$$

$$= \frac{1}{9} U_{t}$$

where
$$U_{\pm} = X_{\pm} - \frac{1}{9} X_{\pm + 1} + \frac{1}{9^2} X_{\pm + 2} - \cdots$$

Claim {Ut} has the same mean one ACUF as {Wt}

where
$$a_{j} = \{(-\frac{1}{0})^{-j}, j \le 0, j > 0\}$$

Cor
$$(W_{z+h}, W_{z}) = \sum \sum a_{i}a_{k} \delta(h+j-k)$$

where $a_{j} = \{ (-\frac{1}{6})^{j}, j \ge 0 \}$

Bue from (3), {Ue} ~ WN(0,020)

Hence {We}~ WN(0,022)

Applying the file (1+ =3) to each side of (2) gives Wt + + Wt = (1++B)(\$(-0)] B) Xt $= (1 + \frac{1}{6}B)(1 - \frac{1}{6}B + \frac{1}{6}B^{2} - \cdots) \times_{t}$

$$= \left(1 + 3\left(\frac{1}{9} - \frac{1}{9}\right) + 3\left(\frac{1}{9^2} - \frac{1}{9^2}\right) + \cdots\right) \times_{\pm}$$

(6)

3.8. By equation (3.1.14), the stationary solution of the difference equations, $X_t = \phi X_{t-1} + Z_t$ with $\{Z_t\} \sim \text{WN}(0, \sigma^2)$ and $|\phi| > 1$, is given by $X_t = -\sum_{j=1}^{\infty} \phi^{-j} Z_{t+j}$. It follows that $EX_t = 0$ and

$$\gamma_X(h) = \frac{\sigma^2}{\phi^2 - 1} \phi^{-|h|}.$$

Now define

$$\tilde{Z}_t = X_t - \phi^{-1} X_{t-1}.$$

Then $E ilde{Z}_t = EX_t - \phi^{-1}EX_{t-1} = 0$ and

$$\begin{split} \operatorname{Cov}(\tilde{Z}_{t+h},\tilde{Z}_t) &= \operatorname{Cov}(X_{t+h} - \phi^{-1}X_{t+h-1}, X_t - \phi^{-1}X_{t-1}) \\ &= \gamma_X(h) - \phi^{-1}\gamma_X(h-1) - \phi^{-1}\gamma_X(h+1) + \phi^{-2}\gamma_X(h) \\ &= \left\{ \begin{array}{ll} \frac{\sigma^2}{\phi^2 - 1}(1 - 2\phi^{-2} + \phi^{-2}) = \frac{\sigma^2}{\phi^2}, & \text{if } h = 0, \\ \frac{\sigma^2}{\phi^2 - 1}(\phi^{-h} - \phi^{-h} - \phi^{-h-2} + \phi^{-2-h}) = 0 & \text{if } h > 0. \end{array} \right. \end{split}$$

Thus $\{\bar{Z}_t\}$ ~WN(0, $\tilde{\sigma}^2$) with $\tilde{\sigma}^2 = \sigma^2/\phi^2$. Note that the causal representation has a smaller white noise variance than the noncausal representation.

3.9. (a) The autocovariance $\gamma(\cdot)$ is given by

$$\gamma(h) = \begin{cases} \sigma^2(1 + \theta_1^2 + \theta_{12}^2), & h = 0, \\ \sigma^2\theta_1, & h = \pm 1, \\ \sigma^2\theta_1\theta_{12}, & h = \pm 11, \\ \sigma^2\theta_{12}, & h = \pm 12, \\ 0, & \text{otherwise.} \end{cases}$$

(b) From ITSM, the sample mean is 28.831 and

(c) Matching $\gamma(1), \gamma(11), \gamma(12)$ with $\hat{\gamma}(1), \hat{\gamma}(11), \hat{\gamma}(12)$, we have

$$\hat{\theta}_1 = \hat{\gamma}(11)/\hat{\gamma}(12) = -.586,$$

$$\hat{\theta}_{12} = \hat{\gamma}(11)/\hat{\gamma}(1) = -.549,$$

$$\hat{\sigma}^2 = \hat{\gamma}(1)/\hat{\theta}_1 = 92740.$$

so that the model for $\{Y_t = \nabla \nabla_{12} X_t\}$ is

$$Y_t = 28.831 + Z_t - .586Z_{t-1} - .549Z_{t-12},$$
 $\{Z_t\} \sim WN(0, 92740).$

9

(8)

3.10. (a) From ITSM

$$\hat{\gamma}(0) = 676789 = \hat{\sigma}^2 / (1 - \hat{\phi}^2)$$

$$\hat{\gamma}(1) = 495633 = \hat{\phi}\hat{\sigma}^2 / (1 - \hat{\phi}^2)$$

and solving for $\hat{\sigma}^2$ and $\hat{\phi}$, we obtain $\hat{\phi}=.73233, \hat{\sigma}^2=313822$. The sample mean is $\hat{\mu}=4503$ giving us the model

$$Y_t = .73233Y_{t-1} + Z_t, \qquad \{Z_t\} \sim WN(0, 313822)$$

where $Y_t = X_t - \hat{\mu} = X_t - 4503$.

(b) The best linear predictor of Y_{31} is

$$\hat{Y}_{31} = \hat{\phi}Y_{30} = .7323(3885 - 4503) = -452$$

and hence $\hat{X}_{31} = \hat{Y}_{31} + \hat{\mu} = 4051$. The mean squared error of prediction is $E(Y_{31} - \hat{Y}_{31})^2 = EZ_{31}^2 = \sigma^2$ which we estimate by $\hat{\sigma}^2 = 313822$.

 $\left(X_{t}=Z_{t}+0Z_{t-1}\right)$

$$T'_{\infty} = X$$
, $T' = cos(X_{2}, X_{2})$, $Y = cos(X_{3}, X_{2})$

$$\begin{bmatrix} 1+\theta^2 & \theta \\ \theta & 1+\theta^2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \theta \\ 0 \end{bmatrix}$$

$$\Rightarrow a_1 = -\frac{(1+\theta^2)}{\theta}a_2$$

$$\Rightarrow \left[-\frac{\left(1+\theta^{2}\right) ^{2}}{\theta}+\theta \right] \alpha_{2}=\theta$$

$$\Rightarrow \alpha_2 = -\frac{\theta^2}{1+\theta^2+\theta^4} = PACF \text{ at lag 2}$$

(The PACE at lag n turn out to be
$$-\theta^n \frac{1+\theta^2}{1-\theta^{2n+2}}$$
, $n \ge 1$)

3.13. (a)
$$r_n = 1 + \theta^2 - \theta^2/r_{n-1}$$
 and hence $r_n - 1 = \theta^2 \frac{r_{n-1} - 1}{r_{n-1}}$ or

$$\frac{1}{r_n-1} = \theta^{-2} \frac{r_{n-1}}{r_{n-1}-1} \implies -1 + \frac{r_n}{r_n-1} = \theta^{-2} \frac{r_{n-1}}{r_{n-1}-1}.$$

Defining $y_n = \frac{r_n}{r_{n-1}}$, we have $y_0 = \frac{r_0}{r_0 - 1} = \frac{1 + 2\theta \phi + \theta^2}{(\phi + \theta)^2}$ and $y_n = \theta^{-2} y_{n-1} + 1$.

(b) From the recursion derived in (a)

$$y_n = 1 + \theta^{-2}y_{n-1} = 1 + \theta^{-2}(1 + \theta^{-2}y_{n-2}) = \dots = 1 + \theta^{-2} + \dots + \theta^{-2n+2} + \theta^{-2n}y_0.$$

Since $r_n = y_n/(y_n - 1)$, we have for $n \ge 1$

$$r_n = rac{1 + heta^{-2} + \dots + heta^{-2n+2} + heta^{-2n} y_0}{ heta^{-2} + \dots + heta^{-2n+2} + heta^{-2n} y_0}$$
 $heta_{n1} = rac{ heta}{r_{n-1}}.$

(c) From (b)

$$\lim_{n \to \infty} r_n = \begin{cases} \frac{(1-\theta^{-2})^{-1}}{\theta^{-2}/(1-\theta^{-2})} = \theta^2, & |\theta| > 1, \\ 1, & |\theta| = 1, \\ \frac{y_0 + \theta^2 + \theta^4 + \dots}{y_0 + \theta^2 + \theta^4 + \dots} = 1, & |\theta| < 1 \end{cases}$$

and

$$\lim_{n\to\infty}\theta_{n1} = \begin{cases} \theta^{-1}, & |\theta| > 1, \\ \theta, & |\theta| = 1, \dots \\ \theta, & |\theta| < 1. \end{cases}$$

$$4.1 \int_{-\pi}^{\pi} e^{i(k-h)\lambda} d\lambda = \int_{-\pi}^{\pi} \left[\frac{\sin(k-h)\lambda - i\cos(k-h)\lambda}{k-h} \right]_{-\pi}^{\pi} = 0 \text{ if } k \neq k$$

$$= \int_{-\pi}^{\pi} i d\lambda = 2\pi \text{ if } k = h$$

4.4. Since

$$\frac{1}{2\pi} \sum_{h=-\infty}^{\infty} e^{-i\omega h} \gamma(h) = \frac{1}{2\pi} \left[1 - .5(e^{-2i\omega} + e^{2i\omega}) - .25(e^{-3i\omega} + e^{3i\omega}) \right]$$
$$= \frac{1}{2\pi} \left[1 - \cos 2\omega - .5\cos 3\omega \right]$$
$$< 0 \quad \text{at } \omega = 0,$$

 $\gamma(h)$ cannot be an autocovariance function.

4.5. By Problem 1.10, $\{Z_t := X_t + Y_t\}$ is stationary with autocovariance function $\gamma(h) = \gamma_x(h) + \gamma_Y(h)$ and hence

$$\begin{split} \gamma(h) &= \gamma_X(h) + \gamma_Y(h) = \int_{-\pi}^{\pi} e^{i\omega h} \, dF_X(\omega) + \int_{-\pi}^{\pi} e^{i\omega h} \, dF_Y(\omega) \\ &= \int_{-\pi}^{\pi} e^{i\omega h} \, dF_Z(\omega) \end{split}$$

where $F_x(\omega) = F_x(\omega) + F_y(\omega)$ is the spectral distribution function of $\{Z_t\}$.

4.6. By Problem 1.10, $\gamma_X(h) = \gamma_U(h) + \gamma_Y(h)$, where

$$\gamma_{\nu}(h) = \nu^{2} \cos \frac{\pi h}{3} = \frac{\nu^{2}}{2} e^{-i\pi h/3} + \frac{\nu^{2}}{2} e^{i\pi h/3},$$

$$\gamma_{\nu}(h) = \begin{cases} 7.25\sigma^{2}, & h = 0, \\ 2.5\sigma^{2}, & h = \pm 1, \\ 0, & |h| > 1. \end{cases}$$

Moreover by Problem 4.7, $F_x(\lambda) = F_U(\lambda) + F_Y(\lambda)$ where

$$F_{\nu}(\lambda) = \begin{cases} 0, & \lambda < -\pi/3, \\ \nu^2/2, & -\pi/3 \le \lambda < \pi/3, \\ \nu^2, & \pi/3 \le \lambda, \end{cases}$$
$$F_{\nu}(\lambda) = \int_{-\pi}^{\lambda} \frac{\sigma^2}{2\pi} (7.25 + 5\cos\lambda) \, d\lambda$$

$$= \frac{\sigma^2}{2\pi} \left[7.25(\lambda + \pi) + 5\sin \lambda \right].$$

4.8. The spectral density of $\{X_t\}$ is

$$f_{_X}(\lambda) = (2\pi)^{-1} |1 - .99e^{-i3\lambda}|^{-2} = (2\pi)^{-1} (1.9801 - 1.98\cos 3\lambda)^{-1}.$$

This spectral density has sharp peaks at the frequencies $\lambda=0,\pm 2\pi/3$, which suggests sample paths that are quite smooth and nearly periodic with period 3. The spectral density of the filtered process $Y_t=\frac{1}{3}(X_{t-1}+X_t+X_{t+1})$ is

$$f_Y(\lambda) = \frac{1}{9} |e^{-i\lambda} + 1 + e^{i\lambda}|^2 f_X(\lambda)$$
$$= \frac{1}{9} (3 + 4\cos\lambda + 2\cos2\lambda) f_X(\lambda)$$

and $f_x(2\pi/3) = 10000/(2\pi)$, $f_y(2\pi/3) = 0$. So this filter effectively eliminates the strong periodic component in the $\{X_t\}$ data.

for sumothing

(6)

 (ω)

(8)

3

2.

3

2,

Set 7 S-525

$$\sqrt{n} \left[\frac{\hat{r}_{-\hat{r}_{2}}}{\hat{r}_{-\hat{r}_{2}}} \right] \xrightarrow{A} N(0, -\frac{2}{7}T_{2}^{*})$$

$$\hat{r}_{2} = \begin{bmatrix} (382.2 & 1114.4) \\ (1114.4) & 1332.2 \end{bmatrix} \qquad \hat{r}(0) = 1382.2$$

$$\hat{r}(1) = 1114.4$$

$$\hat{r}(2) = 541.72$$

$$\hat{r}(3) = 96.214$$

$$\hat{r}(3) = \frac{62.214}{62.214}$$

$$\hat{r}(4) = \frac{62.214}{62.214}$$

$$\hat{r}(5) = \frac{62.214}{62.214}$$

$$\hat{r}(7) = \frac{62.214$$

(b) If the data are from an AR(2) process, \$\phi_{33} = 0\$ and \$\phi_{33}\$ is an observation from Ni(0, \frac{1}{100}).

[\$\frac{1}{33}\$] \$\left(1.96 \frac{1}{10}\$).

Hence we would not reject to \$\phi_{33} = 0\$ at level . cs.

$$\hat{G}_{1} = \hat{Y}_{1}(0) \left[i - \hat{\beta}_{1}(0)^{2} \right] = 483.72$$

$$\hat{\phi}_{22} = \frac{\hat{X}_{12}(2) - \hat{\phi}_{11} \hat{X}_{11}(1)}{\hat{G}_{11}} = -.63412$$

$$\hat{\phi}_{21} = \hat{\phi}_{11} - \hat{\phi}_{11} \hat{\phi}_{22} = 1.3175$$

$$\hat{G}_{2} = \hat{G}_{11} \left(i - \hat{\phi}_{22}^{2} \right) = 289.2i$$

$$\hat{\phi}_{33} = \frac{\hat{X}_{13}(3) - \hat{\phi}_{21} \hat{X}_{12}(2) - \hat{\phi}_{22} \hat{X}_{11}(1)}{\hat{G}_{32}} = -.740i$$

$$\hat{\phi}_{31} = \hat{\phi}_{21} - \hat{\phi}_{33} \hat{\phi}_{22} = 1.3685$$

$$\hat{G}_{3} = \hat{G}_{11} \left(i - \hat{\phi}_{22}^{2} \right) = 287.34$$

4 (a) Canada (a)
$$\begin{cases} 1 - 43 - 4^{2}x = 2 \\ 0 \Rightarrow 131 \times 1 \end{cases}$$
(b) $\begin{cases} 3^{2} - 43 - 4^{2} = 0 \Rightarrow 131 \times 1 \end{cases}$
(c) Canada (a) $\begin{cases} 1 - 43 - 4^{2} = 0 \Rightarrow 131 \times 1 \end{cases}$
(d) $\begin{cases} 3^{2} - 43 - 4^{2} = 0 \Rightarrow 131 \times 1 \end{cases}$
(e) $\begin{cases} 4 + \sqrt{54^{2}} \\ 4 + \sqrt$

5 = 6.06 [1-(504)(-687)-(-504)(-604)

= 2.955

4

(¹) ⇒

5.4 (a) Under
$$H_0$$
: $\{X_{t}-\mu\}$ is independent WW $\hat{p}(h)$, $h=1,2,3,...$ are i.d $N(O,\frac{1}{h})$ approx for large n

For
$$m = 200$$
, $\frac{1.96}{\sqrt{n}} = .1386$

 $\hat{p}(i)$, $\hat{p}(2)$ and $\hat{p}(3)$ are all outside the bounds $\pm (.96/5u)$, hence reject H_0 $(\hat{p}(i), \hat{p}(2))$ are very far outside).

(b)
$$\hat{R} = \Xi = 3.82$$

$$R_2 \hat{\Phi} = \begin{cases} 2 \Rightarrow \begin{bmatrix} 1 & .427 \\ .427 & 1 \end{bmatrix} \begin{bmatrix} \hat{\phi}_1 \\ \hat{\phi}_2 \end{bmatrix} = \begin{bmatrix} .427 \\ .475 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \hat{\phi}_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.2230 - .5211 \\ .427 \end{bmatrix} = \begin{bmatrix} .427 \\ .427 \end{bmatrix} = \begin{bmatrix} 1.2230 - .5211 \\ .427 \end{bmatrix} = \begin{bmatrix} .427 \\ .427 \end{bmatrix} = \begin{bmatrix} 1.2230 - .5211 \\ .427 \end{bmatrix} = \begin{bmatrix} .427 \\ .427 \end{bmatrix} = \begin{bmatrix} 1.2230 - .5211 \\ .427 \end{bmatrix} = \begin{bmatrix} .427 \\ .$$

$$\Rightarrow \begin{bmatrix} \hat{\phi}_1 \\ \hat{\phi}_2 \end{bmatrix} = \begin{bmatrix} 1.2230 - .5211 \\ -.5211 \cdot .2130 \end{bmatrix} \begin{bmatrix} .427 \\ .475 \end{bmatrix} = \begin{bmatrix} .274 \\ .358 \end{bmatrix}$$

(c) Using the large-sample approx's
$$X - \mu \sim N(0, \frac{1}{n} \sum_{n=0}^{\infty} Y(h))$$
,

we can approximate $\sum_{n=0}^{\infty} Y(h)$ by $2\pi \hat{f}(0)$

where $\hat{f}(0)$ is the spectral density at freq. 0 of the woodsh fixed in (b)

$$2\pi \hat{f}(0) = \frac{\hat{a}^2}{|1-\hat{\beta}_1 - \hat{\beta}_2|^2} = 6.055$$

: X-/ ~ N(0, 0303) approx

Suic = 3.82 >> 1.96 V-03 WE reject

Ho: 1 = 0 in favour of 1 = 0 ac significance level .05

7

$$= \mathcal{N}\left(0, \frac{1}{n}\left[1-\frac{4}{9}(0)-\cdots-\frac{4}{p}p(p)\right]R_{p}\right)$$

$$\simeq \mathcal{N}\left(0, \frac{1}{n}\left[1-\frac{4}{9}(0)-\cdots-\frac{4}{p}p(p)\right]R_{p}\right)$$

 $N(0, \frac{1}{200}(.713))$ $\left[\frac{1.223 - .5222}{-.5222}\right]$ Est'd SD of & = \(\frac{0.713 \times 1.223}{200} = .0660

(d) $\left(\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4},$

95% c. bounds

(e)
$$\phi = \hat{\beta}(i) = .427 = PACF at lag i$$

$$\phi_{22} = \phi_{2} = .358 = --- 2$$

3000 observations of a Gaussian MA(1) with coefficient 0.6 and WNV=1.0 were generated using ITSM. The option Transform>Subsequence allows you to pick out the independent subsamples 1-200, 301-500, ..., 2701-2900, and get independent estimates for each of these ten samples of length 200. Using the seed 1111111111 gives the results below. Notice that the moment estimator is conveniently calculated in Excel by pasting in the sample ACF at lag 1 and computing the moment estimator from the explicit formula on p. 146.

Simulation	rho(1)hat	thetahat	Moments	Innov. Alg.	MLE
1	0.3901	0.479966	0.48	0.592	0.6686
2	0.4001	0.500208	0.5002	0.5909	0.6135
3	0.4611	0.665026	0.665	0.5649	0.557
4	0.4569	0.649853	0.6499	0.6567	0.61
5	0.5489	#NUM!	1	0.755	0.6771
6	0.464	0.676099	0.6761	0.548	0.4859
7	0.4274	0.562754	0.5628	0.5284	0.5521
8	0.4238	0.553757	0.5538	0.6318	0.6378
9	0.3825	0.46532	0.4653	0.5324	0.5741
10	0.3611	0.426912	0.4269	0.5103	0.5581
	Sample va	riance =	0.027606	0.005475	0.003502
	Sample me	ean =	0.598	0.59104	0.59342
	Asymptotic	theory:	0.023704 0.6	0.005 0.6	0.0032 0.6

The MLE is clearly best in terms of sample variance and the moment estimator is worst. The empirical means and variances of the estimators are in good agreement with the asymptotic theory.

5.9. We can write the joint (Gaussian) density of the first n observations for n > p as

$$f(x_1,\ldots,x_n)=f(x_1,\ldots,x_p)f_{X_{p+1}|X_t,t\leq p}(x_{p+1}|x_t,t\leq p)\cdots f_{X_n|X_t,t\leq n-1}(x_n|x_t,t\leq n-1).$$

The first factor is, by equation (5.2.1),

$$\frac{1}{(\sigma\sqrt{2\pi})^p(\det G_p)^{1/2}}\exp\left\{-\frac{1}{2\sigma^2}\big(\mathbf{X}_p'G_p^{-1}\mathbf{X}_p\big)\right\}$$

and the remaining factors are

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{\frac{1}{2\sigma^2}(X_t-\phi_1X_{t-1}+\cdots+\phi_pX_{t-p})^2\right\},\ t=p+1,\ldots,n,$$

since, conditional on X_s , s < t, X_t has the normal distribution with mean $\phi_1 X_{t-1} + \cdots + \phi_p X_{t-p}$ and variance σ^2 . Multiplying these factors together gives the required result.

(હ)

5.11. The reduced likelihood is $l_2(\phi) = \ln \frac{S(\phi)}{2} + \frac{1}{2}(\ln r_0 + \ln r_1)$, where from Problem 5.9

$$S(\phi) = \frac{x_1^2}{r_0} + \frac{(x_2 - \phi x_1)^2}{r_1}$$

$$= x_1^2 (1 - \phi^2) + (x_2 - \phi x_1)^2$$

$$= x_1^2 + x_2^2 - 2\phi x_1 x_2$$

since $r_0 = (1 - \phi^2)^{-1}$ and $r_1 = 1$. Therefore

$$\begin{split} l_2(\phi) &= -\frac{1}{2} \ln(1 - \phi^2) + \ln\left[\frac{1}{2}(x_1^2 + x_2^2 - 2\phi x_1 x_2)\right] \\ \frac{\partial l_2(\phi)}{\partial \phi} &= -\frac{1}{2} \left(\frac{-2\phi}{1 - \phi^2}\right) + \frac{-2x_1 x_2}{x_1^2 + x_2^2 - 2\phi x_1 x_2} \\ &= 0 \text{ for } \phi = \frac{2x_1 x_2}{x_1^2 + x_2^2}, \end{split}$$

and hence

$$\begin{split} \hat{\phi} &= \frac{2x_1x_2}{x_1^2 + x_2^2} \\ \hat{\sigma}^2 &= \frac{1}{2}S(\hat{\phi}) = \frac{1}{2}\frac{(x_1^2 - x_2^2)^2}{x_1^2 + x_2^2}. \end{split}$$

Note that if $|x_1| = |x_2|$, then $\hat{\phi} = \operatorname{sgn}(x_1 x_2)$, $\hat{\sigma}^2 = 0$.

5.12
$$l(\phi) = l_{-3} \frac{S(\phi)}{n} + \frac{1}{n} \frac{S}{j=0} l_{-3} x_{j}$$

where $x_{0} = \frac{1}{1-\phi^{2}}$ and $x_{j} = 1$, $j \neq 1$

$$l(\phi) = -l_{0}n + l_{0} \int_{1-\phi^{2}}^{2} \frac{2(1-\phi^{2})}{1-\phi^{2}} + \frac{S}{j=0} (x_{0} - \phi x_{0})^{2}$$

$$+ \frac{1}{n} l_{0} \int_{1-\phi^{2}}^{1-\phi^{2}} \frac{1}{1-\phi^{2}} dx_{0} = \frac{1}{1-\phi^{2}} \frac{1}{1-\phi^{2}}$$

$$\frac{dl}{d\phi} = \frac{-2\phi x_{1}^{2} - 2\sum_{j=1}^{n} x_{j} (x_{j} - \phi x_{0})}{S(\phi)}$$

 $+ \frac{1}{n} \frac{2\phi}{1-\phi^2}$

Zero when $(1-\phi^2)\left(\begin{array}{cccccc} \sum_{i} x_{i} x_{i} & -\phi \sum_{i} x_{i}^{2} \\ \sum_{i} x_{i}^{2} & +\phi^{2} \sum_{i} x_{i}^{2} & -2\phi \sum_{i} x_{i} x_{i}^{2} \\ \sum_{i} x_{i}^{2} & +\phi^{2} \sum_{i} x_{i}^{2} & -2\phi \sum_{i} x_{i} x_{i}^{2} \\ (6a large <math>a \quad \hat{\phi} \simeq \sum_{i} x_{i}^{2} & -2\phi \sum_{i}$

Adding @ and @ shows that

X + A + --- + A + d-1 satisfies @ .

polynomials in t of degree & a-1

	6.7 (a) Take lags to stabilize the change in variability
	with the level of the series.
	Apply (1-B') to eliminate seasonal component.
	(Not clear whether (1-B) should then be applied
	but it's better not to difference wore than
	necessary so the without
	Subtract men since the be determed to the mean
	Subtract mean since we'll be fixting a zero-mean
	Model
	Sample ACF suggests AR(13) on MA(13)
- 	Procumulary extrusion Burg HIM AICC => AR(13) AICC = -424.9
	140
	IA MA(13) → AICC= -430.5
	Pursuing the MA(13) possibility and setting small
	coeffe to zero and using maximum likelihood
	estimation => MA(12), AICC = -434.96.
	In view of the possibility that we could have
	applied (1-B) to the data, noo ery
	ARMA (1,12). Use MLE, successerely secting
	small coeffs to zero to get
	[ARMA (1, 12) (sue next page) AICC = - 449.5
17	Residual tests all passed.
<u> </u>	(Check that this is better than rescales for $\nabla \nabla_{(x} X_{t})$
- · -	(b) 95% confidence bounds for confferences
	\$ + 1.96 × +0502 ± 1777, 1973 0, ; - 304 ± 1.96 × 1130 = - 525, - 1083
	83: - · 225 ± 1.96 × · 1020 = - · 436 3 - · 025
(Z	Bu = 236 ± 1, 96 m . 1065 = 445, 027
<u>E</u>	912 = - 671 ± 1.96 × - 1006 = 868, 474

Problem 6.7

Graph of airshort.tsm

Graph of (1-B12) log(airshort.tsm) Difference to get stationary data.

ITSM::Pest(Maximum likelihood estimates)

Method: Maximum Likelihood

 $X(t) = .8746 \ X(t-1)$ + $Z(t) - .3041 \ Z(t-1) + .000 \ Z(t-2) - .2255 \ Z(t-3)$ - .2359 $Z(t-4) + .000 \ Z(t-5) + .000 \ Z(t-6) + .000 \ Z(t-7)$ + .000 $Z(t-8) + .000 \ Z(t-9) + .000 \ Z(t-10) + .000 \ Z(t-11)$ - .6710 Z(t-12)

WN Variance = .001038

AR Coefficients

.874556

Standard Error of AR Coefficients .050218

MA Coefficients

304085	.000000	-,225482	235878
.000000	.000000	.000000	.000000
.000000	.000000	.000000	670951
Standard Error	of MA Coef	Ticients	
.112950	.000000	.101994	.106503
.000000	.000000	.000000	.000000
000000	000000	.000000	.100629

(Residual SS)/N = .00103839

$$AICC = -449.502764$$

BIC = -457.835374

-2Log(Likelihood) = -462.246127

(c) Sample ACF/PACF of residuals

ITSM::Pest(Tests of randomness on residuals)

```
Ljung - Box statistic = 20.694 Chi-Square ( 20 )
McLeod - Li statistic = 21.201 Chi-Square ( 25 )
# of Turning points = 87.000 \sim AN(78.667, sd = 4.5838 )
# of Difference sign points = 58.000 \sim AN(59.500, sd = 3.1754 )
# of Rank points = 3388. \sim AN(3570., sd = 220.44 )
Order of Min AICC YW Model for Residuals = 0
```

(d) Graph of data and forecasts

(e) Forecast values and estimated S.D.'s of the logged data (from ITSM96)

```
.341946E-01
                    .605331E+01
 133
                    59944BE+01
 134
                    .614629E+01
                                      476478E-01
 135
                    .612535E+01
                     646905E+01
                                      547460E-01
                                      559888E-01
                     602568E+01
                                      573593E-01
                                      588717E-01
                    .612228E+01
(Press any key to continue)
```

(f) Observed forecast errors

Observed values 419 461

Forecast values

Errors

472

622

21.80

18.98

606

508

29.28

390

15.60 23.92 23.91

