Digital Logic Test

1.	Subtract 9 from 13 in 8-bit wide two's complement [3]
2.	Explain, with the aid of a diagram, the difference between combinatorial and sequential logic circuits. [3]
3.	Show the truth table for an OR gate [3]
4.	Show the truth table for an EX-OR gate[3]
5.	Design a circuit that implements the function of an EX-OR gate using only NOT, AND and OR gates[6]
6.	Show the truth tables for a AND gate [2]
7.	Design a circuit that implements the function of an OR gate using only NAND gates [3]
8.	Show the truth table for a 1-bit full adder[5]
9.	Design am N-bit Full Adder circuit [5]
10.	Explain how an N-bit Full Adder circuit can be modified to form an N-bit subtractor circuit [4]
11.	Design an N-bit Subtractor circuit[5]
12.	Explain the function of a decoder, giving an example of where a decoder might be used [3]
13.	Explain the function of a multiplexer, giving an example of where a multiplexer might be used [3]
14. 15.	Explain, using an appropriate truth table or circuit diagram, the operation of a D-Type latch [4] Show how D-type latches can be arranged to form an N-bit register, explaining the function of your circuit [5]
	[o]

Answers: See slides during class test and lecture slides.