The General Linear Model Multiple Regression and Model Criticism

Today

- 1 The Model
 - Recap from Last Week
 - What The Model Means
- 2 Multiple Regression
 - Adding Predictors
 - Type 1 vs. Type 3 Sums of Squares
 - Interpreting Multiple Regression
- 3 Assumptions of Linear Models
 - Checking Assumptions
 - Checking Desirables

Part I

A Linear Model

Model

A Word-Naming Experiment

```
load(url('https://is.gd/refnet'))
ls()
## [1] "naming"
summary(naming)
                                        R.T
       length
                   freq
                             pos
   Min.
              Min.
                    : 0 N:80
                                   Min. : 332
   1st Qu.: 7
              1st Qu.: 9 V:80
                                   1st Qu.: 626
   Median: 8
              Median: 21
                           A:80
                                   Median: 689
   Mean
              Mean : 61
                                   Mean
                                        : 695
   3rd Qu.: 9
              3rd Qu.: 52
                                   3rd Qu.: 770
   Max.
                                         :1003
          :13
               Max.
                     :1452
                                   Max.
```

- \blacksquare RT = naming-aloud times (for 240 words)
- length in characters
- freq in wpm
- pos: Noun, Verb, or A djective

Several Equations To Start With

A General Model of Observed Data

$$outcome_i = (model) + error_i$$

 $outcomes = (model)$

Linear Model

$$\hat{y}_i = b_0 \cdot 1 + b_1 \cdot x_i$$

$$y \sim 1 + x$$
RT ~ log(freq+1)

• we want estimates of b_0 (intercept) and b_1 (slope)

Martin Corley

USMR 7

Begin By Inspecting the Data

with(naming, plot(RT ~ log(freq+1)))

Model

A Simple Linear Model

```
model <- lm (RT ~ log(freq+1), data=naming)</pre>
summary (model)
## Call:
## lm(formula = RT ~ log(freq + 1), data = naming)
## ...
## Multiple R-squared: 0.0587, Adjusted R-squared: 0.0548
## F-statistic: 14.8 on 1 and 238 DF, p-value: 0.00015
```

- \blacksquare R^2 and F are basic indicators of how 'good' a model is
- part of R's output when summarising an lm object
- we'll revisit adjusted R² later

Model

A Simple Linear Model

```
summary(model)
## Call:
## lm(formula = RT ~ log(freq + 1), data = naming)
##
## Residuals:
     Min
        1Q Median 3Q Max
## -316.9 -65.2 -6.1 70.4 263.9
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 759.87 18.04 42.13 < 2e-16 ***
## log(freq + 1) -20.24 5.25 -3.85 0.00015 ***
## ...
```

- glancing at Residuals gives an indication of whether they are roughly symmetrically distributed
- the Coefficients give you the model
- \blacksquare the Estimate for (intercept) is b_0
- the Estimate for log(freq + 1) is b_1 , the slope

Coefficients

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 759.87 18.04 42.13 < 2e-16 ***
## log(freq + 1) -20.24 5.25 -3.85 0.00015 ***
```

- independently of whether the model fit is 'good', coefficients can tell us about our data
- \blacksquare here, the (Intercept) b_0 isn't that useful
 - → it takes 760ms to name 'zero-frequency words'
- but the slope b_1 of log(freq + 1) is quite informative
 - → words are named 20ms faster per unit increase
 - this is a significant finding
 - calculated from the estimated coefficient and its Std. Error, using the t distribution

Visualising the Model

```
with(naming,plot(RT ~ log(freq+1)))
abline(model,col='red',lwd=2)
```


Digression: R and Objects

- in R, everything is an **object** (a 'thing' with a name)
 - vectors, matrices, dataframes
 - functions, ...
- functions can take into account what kind of object they're acting on

Model

```
x <- 1:5 # numbers 1-5
y \leftarrow gl(5,1) \# factor with 5 levels
summary(x)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
##
summary(y)
## 1 2 3 4 5
## 1 1 1 1 1
```

Digressing Further: abline()

```
abline(v=4,col='blue')
abline(a=400,b=50,col='green') # intercept, slope
abline(model,col='red',lwd=2)
```


Model

Visualisation (using predict())

(confidence intervals for the *model*)

Visualisation (using predict())

(confidence intervals for predicted observations)

Scaling of Predictors

- 'words of zero frequency' may not be very meaningful
- can rescale predictor to make interpretation more useful
- can also be used to ameliorate collinearity

```
model.S <- lm(RT ~ I(log (freq+1) - mean(log(freq+1))), data=naming)
summary(model.S)

## ...

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 695.38 6.72 103.41 < 2e-16 ***

## I(lf) -20.24 5.25 -3.85 0.00015 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 104 on 238 degrees of freedom

## Multiple R-squared: 0.0587, Adjusted R-squared: 0.0548

## F-statistic: 14.8 on 1 and 238 DF, p-value: 0.00015</pre>
```

- slope unchanged
- 695ms corresponds to words of mean log frequency

Scaling of Predictors

linear scaling of predictors doesn't change model fit

```
summary(model)$r.squared
## [1] 0.059
summary(model.S)$r.squared
## [1] 0.059
summary(lm(RT ~ I(5 * log(freq + 1)), data=naming))$r.squared
## [1] 0.059
```

■ non-linear scaling—like log() above—changes fit

```
summary(lm(RT ~ freq, data=naming))$r.squared
## [1] 0.044
```

Part II

Multiple Regression

Multiple Regression

Naming Time by Log Frequency and Word Length

- so far, have accounted for one predictor
- adding predictors increases the dimensionality of the model

Martin Corley USMR 7

18

Adding Predictors

- \blacksquare in multiple regression, R^2 measures the fit of the entire model
- sum of individual R²s if predictors not correlated
- interpretation more tricky if predictors correlated

Specific Model for Multiple Regression

$$y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_n x_{ni} + \epsilon_i$$

■ does word length have an effect on naming time (over and above frequency)?

model2 <- lm(RT ~ log(freq+1) + length,data=naming)</pre>

Martin Corley USMR 7 19

Comparing Models

- \blacksquare R^2 for model was .059
- \blacksquare R^2 for the new model2 is .079 (from summary(model2))
- does this mean that model2 is better?
- \blacksquare any predictor will improve R^2 (chance associations guarantee this)

```
model3 <- lm(RT ~ log(freq+1) + runif(240),data = naming)
# add purely random predictor
summary(model3)
## ...
## Multiple R-squared: 0.0619,Adjusted R-squared: 0.054
## ...</pre>
```

■ adjusted R² controls for additional predictors

Comparing Models

```
summary(model) # without length

## ...
## F-statistic: 14.8 on 1 and 238 DF, p-value: 0.00015
## ...

summary(model2) # with length

## ...
## F-statistic: 10.2 on 2 and 237 DF, p-value: 5.47e-05
## ...
```

each model improves over *chance*, but do they successively improve over *each* other?

Comparing Models

NB order of predictors matters...

```
model2b <- lm(RT~length+log(freq+1),data=naming)

anova(model2b)

## ...

## Df Sum Sq Mean Sq F value Pr(>F)

## length 1 113441 113441 10.64 0.0013 **

## log(freq + 1) 1 104646 104646 9.82 0.0019 **

## Residuals 237 2525770 10657

## ...
```

Type I vs. Type 3 SS

- order matters because R, by default, uses **Type I** sums of squares
 - calculate the improvement to the model caused by each successive predictor in turn
- compare to **Type III** sums of squares
 - calculate the improvement to the model caused by each predictor taking all other predictors into account
 - default for, e.g., SPSS
- huge debate about which is 'better'
- good arguments for Type I
- (nobody likes Type II)
- most important: be aware of the consequence...
- predictors should be entered into models in a theoretically-motivated order

Martin Corley USMR 7 23

Type I vs. Type 3 SS

- order matters because R, by default, uses **Type I** sums of squares
 - calculate the improvement to the model caused by each successive predictor in turn
- compare to Type III sums of squares
 - calculate the improvement to the model caused by each predictor taking all other predictors into account
 - default for, e.g., SPSS
- huge debate about which is 'better'
- good arguments for Type I
- (nobody likes Type II)
- most important: be aware of the consequence...
- predictors should be entered into models in a theoretically-motivated order

Martin Corley USMR 7 23

Type 1 vs. Type 3 SS

Type III SS

■ can easily get Type III-like output

26

The Two-Predictor Model

```
## ...
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 656.5 48.2 13.63 <2e-16 ***
## log(freq + 1) -16.9 5.4 -3.13 0.0019 **
## length 11.6 5.0 2.31 0.0216 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 103 on 237 degrees of freedom
## Multiple R-squared: 0.0795,Adjusted R-squared: 0.0717
## F-statistic: 10.2 on 2 and 237 DF, p-value: 5.47e-05
```

- RT decreases by 17ms for every additional unit of log frequency
- RT *increases* by 12ms for every character of length
- model accounts for 8% of the variance

The Two-Predictor Model

```
library(scatterplot3d)
s3d <- with(naming,scatterplot(log(freq +1),length,RT))
s3d$plane3d(model2)</pre>
```

Naming Time by Log Frequency and Word Length

Part III

Model Criticism

Assumptions

Assumptions of Linear Models

Required

- **linearity** of relationships(!)
- for the *residuals*:
 - normality
 - homogeneity of variance
 - independence

Desirable

- uncorrelated predictors (no collinearity)
- no 'bad' (overly influential) observations

plot(model2, which=1)

- plotting fitted values \hat{y}_i against residuals ϵ_i
- \blacksquare the 'average residual' is roughly zero across $\hat{y_i}$, so relationship is likely to be linear

Martin Corley USMR 7 31

Normality of Residuals

■ simple assessments are often useful

hist(residuals(model2), main='', breaks=20)

Martin Corley

USMR 7

Normality of Residuals

plot(density(residuals(model2)),main='')

Assumptions

Martin Corley

USMR 7

Checking Assumptions

normality of residuals

■ a useful way to check any distribution is a QQ plot

plot(model2, which =2)

Homogeneity of Variance

plot(model2, which=3)

- shows $\sqrt{|\epsilon_i|}$ as a function of $\hat{y_i}$
- horizontal line suggests that variance is matched across \hat{y}_i

Martin Corley USMR 7

Independence

- no easy way to check **independence** of residuals
- in part, because it depends on the *source* of the observations
- one determinant might be a *person* observed multiple times
- e.g., my naming times might tend to be slower than yours
- \rightarrow repeated measures $\rightarrow \ldots \rightarrow$ mixed models

but meanwhile...

→ skip collinearity

Desirables

collinearity

- correlated predictors widen the confidence interval (i.e., raise the SE of the coefficient)
- we can estimate how much using a calculation of variance inflation factor (VIF)
- lacktriangle calculated from R^2 s of models using predictors to predict each other

```
library(car)
vif(model2)
## log(freq + 1) length
## 1.1 1.1
```

- \blacksquare $\sqrt{\text{VIF}}$ tells you how much the SE has been inflated
- $\sqrt{1.1} = 1.0$: no problem here!

Identifying 'Bad' Observations

- outliers affect the intercept only
- the **studentised residual** is the difference between the observation and the regression without that observation

Identifying 'Bad' Observations

observations with high leverage are inconsistent with other data, but may not be distorting the model

Identifying 'Bad' Observations

■ what we care about most are observations with high **influence** (outliers with high leverage)

Desirables

identifying 'bad' observations

- one way of identifying observations with high influence is using Cook's distance
- Cook's distances over 1 are worth looking at

plot(model2, which=4)

Assumptions Violated

if we didn't that reaction times scaled with log frequency...

```
model2.B <- lm(RT ~ freq + length,data=naming)</pre>
summary(model2.B)
## ...
## Residuals:
     Min 1Q Median 3Q Max
## -339.9 -66.3 -6.0 66.2 326.0
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 599.7618 41.0356 14.62 <2e-16 ***
## freq -0.1292 0.0475 -2.72 0.0070 **
## length 12.8954 4.9538 2.60 0.0098 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 104 on 237 degrees of freedom
## Multiple R-squared: 0.0704, Adjusted R-squared: 0.0625
## F-statistic: 8.97 on 2 and 237 DF, p-value: 0.000175
```

Assumptions Violated

```
par(mfrow=c(2,2))
plot(model2.B,which=c(1:4))
```

