使用 TI 智能栅极驱动器轻松实现无刷直流 (BLDC) 电机的磁场 定向控制 (FOC)

TEXAS INSTRUMENTS

Vashist Bist, Analog Motor Drives

引言

无刷直流 (BLDC) 电机由于其高效率、高运行速度、高单位体积磁通密度、紧凑尺寸、低维护要求和电磁干扰 (EMI) 问题小而日渐普及。因此,BLDC 电机在各种应用中逐渐取代有刷直流 (BDC) 电机,例如电器、电动汽车、医疗应用、暖通空调 (HVAC)、运动控制和机器人技术等应用。BLDC 电机是一款三相同步电机,其定子由三相绕组(梯形 BLDC 电机采用集中绕组,正弦BLDC 电机采用正弦分布绕组)和具有永磁体的转子组成(在外转子 PM 电机中反之亦然)。BLDC 电机没有机械电刷和换向器组件,因此,可避免电刷磨损、火花和 EMI 等与 BDC 电机相关的问题。这种电机也称为电子换向电机,因为使用的是基于转子位置的电子换向,而不是机械换向。通常使用霍尔效应位置传感器来感应BLDC 电机的转子位置。

人们已经开发出许多用于控制 BLDC 电机的控制算法。这些算法通常根据 BLDC 电机的类型 (梯形或正弦形)、位置传感器要求 (有传感器或无传感器)以及速度和转矩 (电流)控制要求进行分类。随着当今微控制器容量的增加,业内正在扩展诸如磁场定向控制 (FOC)之类的高端控制算法的实现范围。实施 FOC 算法可让 BLDC 电机通过快速的动态响应 (面对负载和速度变化具有更好的动态性能)更高效 (高功率因数和更高的轻负载效率)、更平稳 (降低转矩纹波)地运行。FOC 控制使定子和转子的磁场彼此正交,从而实现最大的电磁转矩。通过采用磁通和转矩的解耦控制,还可使电机的弱磁运行速度高于标称速度。

图 1. 用于 FOC 实现的 TI 智能栅极驱动器

三相 BLDC 电机需要一个三相电压源逆变器 (VSI) 为电机提供交流电流。该 VSI 的开关通常采用由栅极驱动器驱动、适用于低压应用的场效应晶体管 (FET),或适用于高功率应用的绝缘栅双极晶体管 (IGBT)。当今大多数可用的栅极驱动器都需要使用外部栅极元件(电阻和齐纳二极管)来进行操作和提供保护。但是,采用TI 的智能栅极驱动 (SGD) 技术后则无需使用外部栅极元件,如图 1 中所示。借助其可调节栅极驱动电流(栅极压摆率控制),SGD 架构可灵活地减少电磁干扰 (EMI)。SGD 架构可优化死区时间,提高效率,同时充分保护 FET 免遭击穿,还添加了强下拉电流来防止任何杂散 dv/dt 栅极导通。

DRV8304 器件是一款基于 TI 智能栅极驱动 (SGD) 架构的三相栅极驱动器。该器件的最大工作电压为 38V,针对 12V 和 24V BLDC 电机 FOC 应用进行了

全面优化。DRV8304 支持外部 N 沟道高侧和低侧功率 MOSFET,可驱动高达 150mA 的拉电流、300mA 的峰值灌电流和 15mA 的平均输出电流。DRV8304 是一款高度集成的器件,包括栅极驱动器电源(高侧电荷泵和低侧线性稳压器)、三个电流感应放大器(CSA)和一个 3.3V、30mA 稳压器,用于为外部控制器供电。

DRV8304 中的集成电流感应放大器 (CSA) 用于感应BLDC 电机的三相电流,帮助打造出色的 FOC 和电流控制系统方案。5、10、20 和 40V/V 的可调增益设置支持用户灵活选择适合终端应用的理想感应电阻器。CSA 还可以配置为感应单向电流,该电流可用于实现梯形 BLDC 电机的限流控制。DRV8304 中的 CSA 包含 AUTOCAL 功能,该功能可在上电后自动校准 CSA 的失调电压误差,从而实现精确的电流感应。

DRV8304 提供了各种 PWM 模式,因而是一款易于连接的驱动器。用户可灵活地为 FOC (或正弦电流控制)选择 6x 或 3x 模式,为具有片上区块转换功能的梯形电流控制选择 1x 模式,为驱动螺线管继电器选择独立模式。高级别保护功能集使该器件在任何操作场景下均无懈可击。这些功能包括电源欠压锁定 (UVLO)、电荷泵欠压锁定 (CPUV)、VDS 过电流监视 (OCP)、栅极驱动器短路检测 (GDF) 和过热关断 (OTSD),并通过 nFAULT 引脚指示故障事件。下文总结了使 DRV8304 适用于 BLDC 电机 FOC 应用的一系列功能。

- 针对 12V 和 24V BLDC 电机优化的驱动器绝对最大电压 (40V)
- 具有 4 种增益选项设置、用于三相 BLDC 电机电流 感应的三通道 CSA
- AUTOCAL 功能可减少 CSA 输入失调电压误差,因 而改善电机旋转抖动性能
- 高工作开关频率,可改善噪声性能
- 可调压摆率,可优化 EMI 性能
- 死区时间非常短,可提高开关效率
- 传播延迟超低,可提高脉冲控制精度并加快动态响 应
- 高度集成的驱动器和小尺寸封装,可减小电路板面积
- 高级片上保护功能和诊断

备选器件建议

根据必要的系统要求,还可通过其他器件提供所需的性能和功能。对于需要详细诊断和跛行回家模式支持的应用,建议使用 DRV8305。在需要更高工作电压(例如由 36V 电池供电)的应用中,宜选择 DRV832x。

表 1. 备选器件建议

器件	优化参数	性能平衡
DRV8305	45V 绝对最大电压 跛行回家模式 1A/1.25A (拉电流/灌电 流) 栅极驱动	更高的 CSA 输入失调电 压 无 AUTOCAL 功能

表 1. 备选器件建议 (continued)

器件	优化参数	性能平衡
DRV832x	65V 绝对最大电压 1A/2A (拉电流/灌电流) 栅极驱动 集成降压选项	更高的 CSA 输入失调电 压
DRV835x	100V 绝对最大电压 1A/2A (拉电流/灌电流) 栅极驱动 集成降压选项	更高的 CSA 输入失调电 压

表 2. 相关技术手册

SBOA174	H 桥中的电流感应	
SBOA161	适用于三相系统的低漂移低侧电流测量	
SBOA171	集成过流检测功能的双向低侧相电流感应	
SBOA160	具有增强型 PWM 抑制功能的低漂移、精密直列 式电机电流测量	

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司