August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

covering
Serbian (SRB)

T - Covering

Сви који су играли Тетрис знају за фигуру облика:

Ову фигуру ћемо звати *Т-темромино*; *темромино* означава повезану геометријску фигуру састављену од четири ћелије (дела). Ћелију означену са \times зваћемо *центар ћелије*.

Филип је нацртао правоугаону мрежу састављену од m редова и n колона и у сваку ћелију уписао број. Такође је неке ћелије означио као *специјалне*, тако што их је обојио у црвено. Тада је поставио изазов другу Милошу да постави Т-тетроминое у мрежу тако да буду задовољени следећи услови:

- Број Т-тетроминоа мора да буде једнак броју специјалних ћелија. Централна ћелија сваког Т-тетромина мора да буде на некој специјалној ћелији.
- Т-тетромини не смеју да се преклапају.
- Сви Т-тетромини морају у потпуности бити у мрежи.

Обрати пажњу да сваки Т-тетромино може да има четири различите оријентације (\top , \bot , \vdash , и \dashv).

Ако не постоји начин да услови буду задовољени, Милош треба да одговори *No*. А ако постоји начин да буду задовољени треба да пронађе такву расподелу Т-тетромина да збир бројева покривених Т-тетромином буде највећи могућ. У том случају, треба да каже Филипу тај највећи збир.

Напиши програм да помогнеш Милошу да испуни изазов.

Улаз

У сваком реду налази се низ целих бројева раздвојених једним размаком.

У првом реду су цели бројеви m и n раздвојени размаком. Затим следи m линија у којима се налазе n целих бројева из интервала [0,1000]. j-ти цели број ($j\in\{1,\ldots,n\}$) у i-тој линији ($i\in\{1,\ldots,m\}$) представља цео број из j-те ћелије i-тог реда мреже. Следећа линија садржи цео број $k\in\{1,m\cdot n\}$. После те линије долази још k линија. Свака линија садржи два цела броја $r_i\in\{0,\ldots,m-1\}$ и $c_i\in\{0,\ldots,n-1\}$, који представљају позицију i-те специјалне

ћелије (индекс реда и индекс колоне, редом). Нема дуплираних специјалних ћелија у списку.

Излаз

Испиши највећи могућ збир бројева из ћелија прекривених са Т-тетроминима, или $N\circ$ ако не могу да се исправно поставке Т-тетромини .

Ограничења

• $1 < m \cdot n < 10^6$.

Подзадаци

- 5 points: $k \leq 1000$; за сваки пар различитих специјалних ћелија i и j, важи $|r_i-r_j|>2$ или $|c_i-c_j|>2$.
- 10 points: $k \leq 1000$; за сваки пар различитих специјалних ћелијаѕ i и j, важи да ако $|r_i-r_j| \leq 2$ и $|c_i-c_j| \leq 2$, онда $|r_i-r_j|=1$ и $|c_i-c_j|=0$ или $|r_i-r_j|=0$ и $|c_i-c_j|=1$.
- 10 points: $k \leq 1000$; за сваки пар различитих специјалних ћелија i и j, важи да ако $|r_i-r_j| \leq 2$ и $|c_i-c_j| \leq 2$, онда $|r_i-r_j| \leq 1$ и $|c_i-c_j| \leq 1$.
- 10 points: $k \le 1000$; све специјалне ћелије су у првом реду.
- 15 points: k < 10.
- 20 points: $k \le 1000$.
- 30 points: нема додатних ограничења.

Пример 1

Улаз

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Излаз

Објашњење

Да би остварио највећи збир Милош може да постави тетроминена следећи начин:

- ⊢ на ћелију (1, 1);
- ⊢ на ћелију (2, 2);
- \perp на ћелију (3, 4).

Пример 2

Улаз

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Излаз

No