

RESEARCH EXPOSE'

Quantifying environmental performance in pharmaceutical supply chains through a composite index

Submitted by:

Student: Ludovica Iannone

Supervisor: Stephane Ganassali, Gustavo Ghory

Academic Year: 2025/2026

Kassel, 28th October 2025

University of Trento - Department of Economics and Management
University Savoie Mont Blanc - IAE Savoie Mont Blanc
University of Kassel – School of Economics and Management
University of León - Faculty of Economics and Business Studies

Abstract

The pharmaceutical industry is facing a continuous increase of detailed exams regarding its environmental footprint, but still a reliable benchmark to evaluate its sustainability performances still does not exist. While sustainability has become a strategic imperative across global supply chains, the measurement of these practices within the pharmaceutical sector remains fragmented and inconsistent. For instance, it is also important to consider that substances toxic for cancer are often equally toxic to the environment, further emphasizing the urgency of developing a robust measurement framework. This thesis addresses this critical gap by developing a composite environmental sustainability index designed to measure and compare through a rank the performances of pharmaceutical supply chains. Grounded in the Stakeholder Theory and the Resources-Based View (RBV), the following study integrates two complementary dimensions of sustainability: the external accountability pressures, deriving from regulators and investors capabilities such as innovation, environmental efficiency and the operational efficiency. Literature review, conducted in line with PRISMA guidelines, reveals that existing research on Green Supply Chain Management (GSCM) lacks in standardized and sector-specific indicators.

The Index will be consolidated on four environmental pillars in the pharmaceutical field, which are: climate, water, energy and waste, each will be weighted differently according to its material relevance in the pharmaceutical industry, as established by GRI, ISSB and CDP frameworks.

The primary objective of the Index is to translate heterogenous corporate disclosures into comparable benchmarks, offering a transparent tool for both internal and external stakeholders. It aims to facilitate the identification of environmental leaders within the sector and to monitor progress toward a more sustainable and low-carbon pharmaceutical industry.

TABLE OF CONTENTS

Abstract	2
CHAPTER 1. INTRODUCTION	6
1.2 Problem statement	6
1.3 Corporate value-action	7
1.4 Research gaps	7
1.5 Research aim and questions	9
CHAPTER 2. THEORETICAL FOUNDATIONS	10
2.1 Stakeholder theory	10
2.2 The resource-based view	11
2.3 Identity-based sustainability: corporate environmental as a source of straid differentiation	
2.4 Rejected theories	12
2.5 Conceptual framework	13
CHAPTER 3. LITERATURE REVIEW	14
3.1 Theoretical background: the Triple Bottom Line framework	14
3.2 Search process and methodology of the review	14
3.3 Key findings	23
3.4 Scholarly discussion	24
CHAPTER 4. HYPOTHESES	25
CHAPTER 5. RESEARCH MODEL	27
CHAPTER 6. METHODOLOGICAL FRAMEWORK	28
6.1 Research design	28
6.2 Target sample	28
6.3 Data collection and analysis procedure	28
CHAPTER 7. CONTRIBUTIONS	32
7.1 Contributions to theory building	32
7.2 Implications for business and society	32
CHAPTER 8. CHAPTER OVERVIEW	
CHAPTER 9. WORK PLAN	36
REFERENCES	37

Abbreviation Meaning

CDP Carbon Disclosure Project

ESI Environmental Sustainability Index

ESG Environmental, Social and Governance

EMA European Medicines Agency

EPR Extended Producer Responsibility

EU European Union

FDA Food and Drug Administration

GHG Greenhouse Gas

GLEC Global Logistics Emissions Council

GRI Global Reporting Initiative

GSCM Green Supply Chain Management

ISO International Organization for Standardization

ISSB International Sustainability Standards Board

LCA Life Cycle Assessment

OECD Organisation for Economic Co-operation and Development

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PSCI Pharmaceutical Supply Chain Initiative

RBV Resource-Based View

ROI Return on Investment

SDG Sustainable Development Goals

TBL Triple Bottom Line

TCE Transaction Cost Economics

UN United Nations

WRI World Resources Institute

WBCSD World Business Council for Sustainable Development

List of tables

- Table 1. Stepwise process in accordance with PRISMA 2020 guidelines
- Table 2. Summary of key literature on GSCM and sustainability measurement in the pharmaceutical sector
- Table 3. Weighting Scheme of the Composite Index

List of figures

- Figure 1. Theoretical-Conceptual Model of Green Supply Chain Sustainability
- Figure 2. Conceptual Framework for the Index

CHAPTER 1. INTRODUCTION

The sustainability has become a central topic across supply chains, transforming what was once a matter of awareness into a question of strategic management. This shift is particularly evident in the industries characterized by high resource intensity and strict regulatory requirements.

In this complex world, the pharmaceutical sector has a unique position. While pharmaceutical products are designed to save lives, their production processes can generate waste and emissions that harm the environment, raising the question: *if life-saving medicines pollute the water people drink, is the trade-off acceptable?* This paradox underscores the need to rigorously analyse the environmental performance of pharmaceutical companies.

These firms generate significant environmental impacts that can be grouped into key dimensions: Scope 1, Scope 2, Scope 3 emissions, waste, water and energy. These indicators were selected because they represent the most material environmental factors for pharmaceutical companies and are recognized by frameworks such as GRI, GHG Protocol and CDP. Moreover, these data are typically available through ESG disclosures and CDP submissions. Like many industries, each stage of the pharmaceutical supply chain, from the raw materials to the distribution, contributes substantially to the overall environmental footprint (Belal, Shukla, Balasubramanian, 2025).

The pharmaceutical sector has made significant progress, which in turn has raised stakeholders' expectation: investors now consider sustainability indicators as a critical element in their decision-making. Existing frameworks, such as GHG Protocol, ESRS, GLEC and GRI, provide indicators, but no standardized or comparable index exists for the sector. Meanwhile, frameworks like ISSB, CDP, and PSCI offer guidance but lack harmonized quantitative metrics.

.

1.2 Problem statement

Research on GSCM has provided substantial theoretical insights but remains largely descriptive. Many studies focus on individual practices, such as waste reduction, water management, or packaging, without offering an integrated or quantitative assessment of

overall supply chain performance. Existing measurement frameworks rely heavily on self-reported data, which hinders comparability across firms and over time, creating both internal and external inconsistencies. Moreover, while ESG indices have been developed for general industries, they fail to capture the specific complexity of pharmaceutical production, which is constrained by stringent product safety requirements and the dual challenge of protecting both public health and the environment.

As a result, it is easy to understand that there is a huge methodological gap in the ability to quantify and benchmark environmental sustainability performances among the pharmaceutical supply chains.

1.3 Corporate value-action

To understand the broader context of this research, it is essential to examine the discrepancy between what companies claim about sustainability and what they implement in practice; this phenomenon is often described as the corporate value-action gap. In the selected field of studies, this gap is evident. Many pharmaceutical firms publicly commit to high environmental goals inspired by framework such as the sustainable development goal or the European Green Deal, still their reports on footprint remain fragmented and difficult to compare. This problem could be seen from two different points of view: first, a structural side where companies use different reporting boundaries and measurement methods and those make difficult to evaluate performance among industries. Second, a behavioural side, where sustainability is driven more by reputation than actual engagement, a pattern described as decoupling between what organisations communicate and what they really implement (Meyer and Rowan, 1997). Since this huge issue, for the stakeholders is very challenging to distinguish between genuine environmental improvement and greenwashing, for instance.

1.4 Research gaps

Although research on GSCM in the pharmaceutical sector has expanded in recent years, literature remains uncompleted and theoretically underdeveloped; it reveals four main and interrelated gaps.

(1) Absence of an Integrated Measurement Framework

Most existing works focus on a single stage of the value chain or specific practices rather than providing an overall measurement system. For instance, Belal, Shukla & Balasubramanian (2025) (*study 1*) identify as key environmental hotspots through a qualitative MET framework, while Veleva & Cue Jr. (2019) (*study 5*) benchmark green-chemistry adoption mainly in R&D. Similarly, Sazvar et al. (2022) and Tat & Heydari (2021) (*studies 3 and 8*) model individual cases or conceptual scenarios, without cross-company validation. Compared with other industries, such as the circular-economy models of Kopeinig et al. (2025) (*study 2*), the pharmaceutical sector still lacks an integrated and statistically validated framework for benchmarking environmental performances.

(2) Methodological Heterogeneity

Studies differ in indicators and normalization methods. As shown by Belal et al. (2025) and Becerra et al. (2021) (*studies 1 and 4*), some adopt operational control others financial control and many omit Scope 3 emissions or if published, sometimes they do not split it the different categories. Qorri et al. (2018) (*study 6*) and Greco et al. (2018) (*study 7*) emphasize the lack of standardized weighting and aggregation. These inconsistencies, reinforced by voluntary and patchy corporate disclosures (Leite et al., 2024 – study 9), hinder cross-firm comparability and empirical reliability. Adopting transparent and replicable composite-indicator methods following OECD (2008) guidelines is therefore essential.

(3) Limited Longitudinal and Comparative Evidence

Empirical analyses remain mostly static, focusing on isolated cases or short timeframes. Works such as Sazvar et al. (2022), Tat & Heydari (2021), and Müller et al. (2020) (*studies 3, 8, 11*) show improvements in specific contexts but lack temporal validation. Broader bibliometric reviews like Tseng et al. (2019) (*study 10*) confirm the dominance of qualitative or survey-based evidence and the scarcity of standardized multi-year datasets. Consequently, it is still unclear whether sustainability progress in pharmaceuticals represents temporary compliance or structural transformation.

(4) Limited Theoretical Operationalization

Although theories such as Stakeholder Theory and the Resource-Based View are frequently cited, few studies translate them into measurable constructs. Belal et al. (2025) and Becerra et al. (2021) (*studies 1 and 4*) apply them conceptually, while works on ESG and

performance indices (Jain et al., 2019; La Torre et al., 2020) (studies 12–13) demonstrate quantification potential but remain detached from supply-chain sustainability.

1.5 Research aim and questions

The index's development in grounded on the Stakeholder theory and the Resource-based view (RBV) and its focus is to integrate internal and external determinants of corporate sustainability into a unified model. By combining these perspectives, the research aims to capture both external accountability and internal capability within a coherent measurement framework. In line with this objective, the study attempts to address the following research question:

RQ. I) How can a composite index be designed to accurately measure sustainability performance in pharmaceutical supply chains and be standardized to ensure comparability across companies?

CHAPTER 2. THEORETICAL FOUNDATIONS

Literature on GSCM is grounded not only in sustainability science but also at the intersection of environmental economics and operations management. The evolution from a purely compliance-oriented perspective to an integrated framework, one that views sustainability as both a strategic objective and a measurable source of value creation, has emphasized the relevance of two key theories: the Stakeholder Theory and the RBV.

In the specific context of the pharmaceutical industry, where operations are capital-intensive, highly regulated, and globally distributed, these theoretical lenses provide a coherent foundation for understanding the adoption of green supply chain practices and for designing a measurement model capable of capturing performance differences among companies.

2.1 Stakeholder theory

Stakeholder Theory, first articulated by Freeman in 1984, proposes that firms respond not only to the economic interests of shareholders, but also to the expectations of stakeholders who influence or are affected by corporate activity. Those stakeholders include regulators, investors, customers, employees, local communities and non-governmental institutions. Within the field of GSCM, Stakeholder Theory has a central role to explain why firms adopt environmental practices even when they are not mandatory. Companies often pursue sustainability initiatives to maintain legitimacy, reduce reputational risk and comply with the expectation of powerful external actors (Rowley, 1997; Eesley & Lenox, 2006). In this allencompass industry, in which health and environmental risks are highly salient, stakeholders' influence, as the theory suggests, is particularly strong. Regulators such as the EMA set strict standards, investors rely on ESG metrics and public perception places reputational pressure on companies to reduce their environmental impact. These dynamics explain why pharmaceutical companies adopt green practices, such as solvent recycling, low impact manufacturing and responsible waste management. Stakeholder theory provides a coherent foundation for this study: it clearly connects external pressures with corporate environmental behaviour. The implementation of this theory in a quantitative framework involves identifying indicators that reflect the degree of responsiveness to

stakeholder expectations. For instance, the ISO 14001¹ certifications, ESG transparency scores, supplier environmental requirements and third-party assurance of sustainability reports (Balasubramanian & Shukla, 2020).

Finally, by capturing observable outcomes of stakeholders' influence, the theory supports the external dimensions of the Index, which measures how well firms align with environmental and social accountability standards.

2.2 The resource-based view

The resource-based view theory, first developed by Barney in 1991 and later refined by Hart in 1995, focus its attention on the internal capabilities that enable firms to achieve and sustain superior performance. This theory argues that competitive advantages arise from capabilities that are valuable, rare, inimitable and non-substitutable. In the context of the GSCM, this theory highlights how technologies and efficiency can potentially transform green responsibility into a strategic advantage (Rao & Holt, 2005; Teece, 1997).

RBV, applied to the pharmaceutical field, explains why some companies achieve higher levels of environmental performance than others, even when they have the same imposed regulatory conditions. From the studies emerges that firms with advanced R&D capacities in green chemistry matched with a strong internal sustainability cultures can more effectively reduce emissions and generally improve energy efficiency (Soete et al., 2017). However, these capabilities are not easy to replicate, and they often emerge from long-term investments in knowledge, such as technological skills or employee training.

The final choice to integrate this theory in this thesis is based on the recognition that sustainable performances depend not only on responding to external expectations, but also on possessing the internal capacity to do so in an effective way.

Matching those two theories create a dual analytic point of view. The Stakeholder Theory explains the motivation to act, while the RBV explains the means of action.

¹ ISO 14001, an international standard developed by the International Organization for Standardization (ISO) that specifies requirements for effective environmental management systems (EMS).

2.3 Identity-based sustainability: corporate environmental as a source of strategic differentiation

In the field of GSCM, the idea of identity-based sustainability helps to explain how pharmaceutical companies transform environmental values and stakeholder expectations into real strategic actions. This identity is directly related to how companies perceive and define themselves in relation to the environment, and how sustainability becomes an integral part of their organizational "self". In fact, they use practices to express who they aspire to be. Having a corporate environmental identity allows to align societal expectations and to show that their green responsibilities are taken seriously. From a theoretical perspective, this concept connects both the chosen theories. Sustainability-oriented organizational identity sits in the middle of the two forces: why companies adopt sustainable practices (Stakeholder Theory) and how they can use their internal capabilities (RBV). In this sense, the environmental indicators disclosed by companies are not only operational measures of performance, but also reflections of how each firm defines itself in relation with its environmental impact. The Index will therefore capture both the quantitative and the symbolic dimensions of corporate behaviour.

2.4 Rejected theories

Several theoretical perspectives have been applied previously to the study of GSCM, but not all of them are suitable for the purpose of this thesis. For this main reason and following the reasoning of earlier studies, two theories have been excluded: Institutional theory and Transaction cost economics (TCE).

First, the Institutional Theory, developed by DiMaggio and Powell in 1983, is focused on the explanation of how organizations adapt to external pressures such as laws and industry regulations. It has been widely applied in sustainability research to illustrate regulatory convergence and the diffusion of environmental standards across industries. However, in the context of this study, the theory's explanatory power is limited. The pharmaceutical industry operates under highly standardized global regulations (e.g., EMA, FDA, REACH), meaning that institutional pressures affect all firms in similar way. However, this thesis, on the opposite side, is focused on the variability, not convergency. This theory is based on

compliance rather than performance differences, while the Index aims to evaluate how well companies go beyond compliance. Recent studies cited this theory, but they did not use it: Belal in 2025 and Koenig in 2019 also highlights that the theory is useful to describe regulatory convergence, but not to understand voluntary sustainability efforts. For this reason, it was not chosen as a guiding framework.

TCE, introduced by Williamson in 1979, focuses on minimising the costs of economic exchanges by determining the most efficient governance structures for transactions. This theory has been applied to some recent supply chains studies, but it tends to take in exam sustainability only to save money through reducing inefficiencies. Soete in 2017 and Kusi-Sarpong in 2016 found limited explanatory power of this theory in GSCM contexts, confirming that in pharmaceutical field the sustainability is driven more by stakeholders' expectations and long-term strategic goal than by short term costs savings. Therefore, it has been excluded from this research.

While the institutional theory focuses on external compliance and TCE on economic efficiency, this thesis looks at how firms combine internal capabilities and external pressures to achieve better environmental results. So, both these theories have been rejected because they do not fit in the explanation of the performances' differences among companies.

2.5 Conceptual framework

This study integrates several complementary theories to explain how pharmaceutical companies are translating into a measurable environmental performance and the framework. In this sense, the framework combines Stakeholder theory, RBV, TBL and insights from Identity-based sustainability to connect strategic intent with measurable outcomes. This conceptual model assumes that stakeholders' pressures trigger sustainability responses and internal capabilities determine their effectiveness. In this complex context the Index will establish the theoretical foundation for the research model developed this research and it will operationalise these relationships into measurable components of environmental performance.

CHAPTER 3. LITERATURE REVIEW

3.1 Theoretical background: the Triple Bottom Line framework

The studies analysed in this research share a common theoretical foundation the Triple Bottom Line (TBL) framework, which conceptualizes sustainability as the balance among three dimensions: environmental, social and economic. This framework has become one of the most influential approaches in sustainability research because it enables a comprehensive evaluation of corporate performance that goes beyond traditional financial metrics.

In the field of SCM, the TBL framework helps to explain how companies can operate responsibly while maintaining efficiency and competitiveness within global networks. Its relevance is even greater in the pharmaceutical industry, where firms face the dual challenge of protecting human health while minimizing their environmental footprint. This balance embodies the very essence of the TBL approach. Most of the studies reviewed in this research apply TBL framework either directly or indirectly. However, since the main objective of this thesis is to develop a composite index to measure environmental performance, the analysis focuses primarily on the environmental pillar of the TBL framework, which represents the most measurable and comparable component across firms.

3.2 Search process and methodology of the review

The literature search was conducted using a structured methodology to ensure reliability. The process covered a wide range of academic and institutional databases, including Google Scholar, JSTOR, Web of science, Scopus and ScienceDirect. These databases were selected for their comprehensive coverage of peer-reviewed research in supply chain management and sustainability science. In addition, institutional repositories such as the OECD iLibrary, Eurostat, the United Nations Comtrade Database and the European Commission's Publications Office were analysed to identify methodological guidelines and datasets relevant to the construction of composite indicators and sustainability reporting. The search strategy combined targeted keywords and Boolean operators to capture the intersection between supply chain sustainability, measurement methodologies, and sector-specific

applications. Typical search expressions included "green supply chain management" combined with "pharmaceutical industry," "sustainability index" or "composite environmental indicator," "ESG performance" combined with "supply chain," and "stakeholder theory" paired with "resource-based view" and "environmental performance." Filters were applied to restrict the selection to studies published between 2018 and 2025, ensuring the inclusion of the most recent and relevant contributions. Priority was given to highly cited articles and peer-reviewed papers.

To maintain the academic rigor, the review was limited to English language sources, including academic journals and institutional working papers. Non-scientific commentaries, consultancy briefs, and conference proceedings were excluded to ensure methodological consistency and quality.

The PRISMA flow process guided the selection and screening procedure. Out of all the studies initially identified and reviewed, fourteen were selected for in-depth analysis based on their theoretical alignment and methodological relevance. These studies cover a diverse range of topics, including green manufacturing practices, sustainability reporting, LCA and index-based performance measurement.

Table 1. Stepwise process in accordance with PRISMA 2020 guidelines

STEP	DESCRIPTION	RECORDS
1	Records identified through	320
	academic database searches	
	and institutional repositories	
2	Records after duplicates and	240
	non-peer reviewed sources	
	removed	
3	Records screened by title and	80
	abstract for relevance to	
	pharmaceutical supply chain	
	sustainability and composite	
	indicator development	
4	Full text assessed for eligibility	78
	and alignment with theoretical	
	and methodological criteria.	

5	Final studies included in the	40
	corpus for in-depth qualitative	
	and quantitative synthesis	

Source: Own elaboration

The inclusion criteria were guided by three main considerations. First, all selected studies had to focus on environmental or green supply chain practices with measurable outcomes. Second, they were required to contain explicit references to sustainability measurement frameworks or performance indicators. Third, they needed to be relevant either to pharmaceutical sector or to comparable high-impact manufacturing industries, such as chemicals, biomedical, biotechnological and healthcare logistics.

The studies meeting these conditions were then assessed for their theoretical grounding and their contribution to the broader research agenda of developing standardized tools for sustainability benchmarking. This systematic search strategy ensured a comprehensive evidence base: combining theoretical insight with methodological depth and sectoral specificity. This foundation established the empirical and conceptual basis upon which the remainder of this literature review is built and serves as the starting point for the development of the composite Index proposed in this research.

A structured overview of the reviewed studies, covering authors, methods, findings, and gaps, is presented in here to guarantee transparency and replicability of the review process.

Table 2. Summary of key literature on GSCM and sustainability measurement in the pharmaceutical sector

	Authors	Title	Source	Methodology	Sample	Key findings	Gaps
N.	and year of						
	publication						
1	Belal,	Greening	Business	Systematic	47 interviews	The MET-based	GSCM research
	M.M.,	the	Strategy	review	across the UK	GSCM framework	in pharma is
	Shukla, V.,	Pharmaceut	and the	(PRISMA) +	pharmaceutical	shows higher	fragmented,
	&	ical Supply	Environme	exploratory	supply chain +	adoption in	UK-centered,
	Balasubram	Chain.	nt	single-case	112	Biopharma than	and mostly
	anian, S.,			study (UK) with	environmental/	Generics, driven by	descriptive,
	2024/2025			an interpretivist	CSR reports and	regulation, cost	lacking
				approach and	corporate	savings, and	quantitative
				abductive logic;	documents.	leadership. Barriers	data,
				thematic		include costly	standardized
				analysis		approvals, high	metrics, and
				(NVivo).		investments, and low	integrated
						standardization,	supply chain

			Τ	Γ			
						though GSCP	perspectives,
						delivers emission	with limited
						cuts and ROI via	focus on
						solvent recovery.	existing drug
							redesign weak
							regulatory and
							technological
							frameworks.
2	Jacob	Supply	Sustainable	Systematic	49 academic	Developed SC3I: a	Circularity
	Kopeiniga,	Chain	Production	Literature	articles	mass-based	assessment
	Kevin	Circularity	and	Review;	reviewed; 59	composite index	methods are
	Anton	Composite	Consuption	development of	circularity	integrating three	fragmented,
	Kriechbau	Index:		SC3I	metrics analysed	dimensions, Material	qualitative, and
	ma, Julia K"	Measuring		framework	and clustered;	Efficiency (ME),	lack scalability
	oberla,	the Closed-		using Material	two anonymized	Secondary Material	or comparability
	Helmut	Loopedness		Flow Analysis	manufacturing	Usage (SM), and	across supply
	Zsifkovits,	of Material		(MFA);	companies	Effectiveness of	chains. Current
	2025	Flows		composite index	tested (plastic	Recovery (ER).	indicators rarely
				construction	sheets/films and	SC3I = geometric	capture multi-
				with geometric	gas engines).	mean of ME, SM,	tier
				mean; validated	8 8 /	ER, ensuring	interdependenci
				via multiple		systemic perspective	es, and recovery
				manufacturing		and penalizing weak	processes such
				case studies		areas. ER is the	as traceability,
				(Companies A		bottleneck across	remain weak.
				& B).		cases, despite strong	SMEs are
				α <i>Β</i>).		ME and SM.	underrepresente
						Proposed	d, facing higher
						improvements: take-	costs and lower
						back/buy-back	benefits.
						-	
						programs, digital	Empirical
						traceability (RFID,	validation is
						blockchain, DPP),	limited to few
						reverse logistics	cases, with
						partnerships,	minimal
						modular product	integration of
						design, regulatory	carbon, cost, or
						incentives. SC3I	financial
						aligns with SDG 12	metrics.
						and offers	Advancing
						actionable, scalable,	circularity
						and non-subjective	requires
						performance	supportive
						measurement.	policies and
							further research
							to refine
							weighting
							methods, create
							benchmarks,
							and incorporate
			1	<u>i</u>			

	I	I					
							socio-economic
							dimensions.
3	Sazvar, Z.	Designing a	Annals of	Scenario-based	Real-world case	A multi-period	Few
	et al., 2022	Sustainable	operations	Multi-Objective	study:	CLPSC model links	quantitative
		Closed-	research	Mixed-Integer	pharmaceutical	direct and reverse	CLPSC models
		Loop		Linear	supply chain in	flows, improving	integrate waste
		Pharmaceut		Programming	Noor (Iran) with	cost and	management or
		ical Supply		(MOMILP)	7 pharmacies, 1	environmental	competition
		Chain		model; Game	distribution	performance via	factors, with
				theory;	center, multiple	recycling and	weak empirical
				Integration of	manufacturers,	remanufacturing.	validation and
				CLPSC design	2 disposal	Game theory shows	limited scope.
				with Vehicle	centers, 3	that price - quality	Future research
				Routing	remanufacturers	competition and	should improve
				Problem; LP-	: 3	inventory strategy	scalability,
				metrics method	pharmaceutical	reduce waste and	coordination,
					1		, in the second second
				for multi-	products.	boost resilience.	resilience, and
				objective	Demand		computational
				optimization;	analyzed across		efficiency.
				two-phase	24 periods (4		
				hybrid heuristic	years), with		
				solution	optimistic,		
				approach.	likely, and		
					pessimistic		
					scenarios.		
4	Becerra, P.,	Green	Journal of	A systematic	N = 91 peer-	Sustainable	Sustainable
	Mula, J., &	Supply	Cleaner	literature review	reviewed works.	inventory models	inventory
	Sanchis, R.	Chain	Production,	of 91 studies	Outlets: IJPE, J.	mainly target cost	management
	, 2021	Quantitativ	328,	(2004–2021) on	Cleaner	reduction with	research is
		e Models	129544	sustainable	Production,	limited social focus.	mostly
				inventory	EJOR,	Research is mostly	theoretical,
		for		mventory		,	
		for Sustainable		management	Sustainability	tactical, using MILP	lacks social and
				•	Sustainability and others.	-	lacks social and
		Sustainable		management		tactical, using MILP	
		Sustainable Inventory		management analysed	and others.	tactical, using MILP and EOQ	circular
		Sustainable Inventory Manageme		management analysed purposes,	and others. Application	tactical, using MILP and EOQ approaches, with	circular economy
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels,	and others. Application contexts (when	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability	circular economy integration, shows weak
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling	and others. Application contexts (when present):	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse	circular economy integration,
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods,	and others. Application contexts (when present): consumer goods,	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is	circular economy integration, shows weak validation, coordination,
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting	and others. Application contexts (when present): consumer goods, energy/fuel/biof	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly	circular economy integration, shows weak validation, coordination, modeling of
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but	circular economy integration, shows weak validation, coordination, modeling of remanufacturing
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing	circular economy integration, shows weak validation, coordination, modeling of remanufacturing
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and circular supply	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar dous.	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing remain	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar dous. SC structures:	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and circular supply	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar dous. SC structures: divergent most	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing remain	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and circular supply	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar dous. SC structures: divergent most common.	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing remain	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and circular supply	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar dous. SC structures: divergent most common. Time: published	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing remain	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and circular supply	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar dous. SC structures: divergent most common. Time: published in the last 10	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing remain	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling
		Sustainable Inventory Manageme nt: A		management analysed purposes, contexts, decision levels, and modeling methods, highlighting quantitative approaches within green and circular supply	and others. Application contexts (when present): consumer goods, energy/fuel/biof uel, plus waste/spares/wa rehousing/hazar dous. SC structures: divergent most common. Time: published	tactical, using MILP and EOQ approaches, with scarce integration of all sustainability pillars. Reverse logistics is increasingly considered, but inventory policies and data sharing remain	circular economy integration, shows weak validation, coordination, modeling of remanufacturing or recycling

5	Vesela R.	The role of	Current	A global	A survey	Big Pharma leads	Green chemistry
	Veleva 1	drivers,	Opinion in	benchmarking	pharma firms	green chemistry	· ·
	and	barriers,	Green and	survey (2016–	across five	adoption with strong	progress in pharma is
		,	Sustainable	2017) assessed			*
	Berkeley	and		,	regions (34	metrics and	uneven: Big
	W. Cue Jr.,	opportuniti	Chemistry	green chemistry	responses)	governance, while	Pharma leads,
	2019	es of green		adoption in the	found high Big	smaller firms lag due	while generics
		chemistry		pharmaceutical	Pharma	to cost, regulation,	and API firms
		adoption in		supply chain	participation	and weak supplier	lag due to weak
		the major		using a 22-	and strong	engagement	governance,
		world		question	engagement in		metrics, and
		markets		framework on	green chemistry,		training.
				governance,	enhancing data		Regulatory
				goals, metrics,	reliability.		barriers and
				training, and			poor supplier
				collaboration.			accountability
				Conducted			persist, calling
				among senior			for global
				R&D,			regulation,
				manufacturing,			stronger
				and EHS			standards, and
				managers, it			broader
				compared Big			education.
				Pharma with			
				smaller firms			
				and analysed			
				responses			
				quantitatively.			
6	Ardian	A	Journal of	A systematic	The reviewed	The study found that	Sustainability
	Qorria,Zlat	conceptual	cleaner	review of 104	studies span	most research	measurement
	an	framework	Production	studies analysed	multiple	focuses on	remains
	Mujkica,An	for		sustainability	industries and	environmental and	fragmented—
	drzej	measuring		performance	cover both	economic	social factors
	Kraslawski,	sustainabili		measurement in	internal and	dimensions, while	are
	2018	ty		supply chains	cross-	multi-criteria	underrepresente
		performanc		using the	organizational	decision-making	d, and data
		e of supply		Content-	contexts,	methods are	sharing is
		chains		Context-	emphasizing	increasing. It	limited. The
				Process	that	highlights that	study urges
				framework,	sustainability	sustainability	standardized
				identifying key	performance	assessment remains	metrics,
				metrics, tools,	must be	fragmented, with	stronger
				and	assessed across	inconsistent metrics	collaboration,
				methodological	whole supply	and limited data	and integrated
				trends in GSCM	chains using	sharing among	frameworks
				and SSCM	diverse	firms.	connecting
				research.	qualitative and		sustainability
					quantitative		assessment to
	i l			l	İ		
					methods.		supply chain
					methods.		supply chain strategy.

7	Greco, S.,	On the	Social	The review	The review	Composite indices	Composite
,	Ishizaka,	Methodolo	Indicators	analyses	covers an	lack consensus on	index
	A., Tasiou,	gical	Research	composite index	extensive body	weighting and	methodologies
	M. et al.,	Framework	resourch	methodologies,	of literature	aggregation; most	face issues of
	2019	of		emphasizing	published since	use arbitrary equal	arbitrary
	2019	Composite		weighting,	the early 2000s,	weights and	weighting, poor
		Indices: A		C C,		Č	C C 1
		Review of		aggregation, and robustness. It	updating and	compensatory linear models. Robustness	transparency,
					expanding		weak robustness
		Weighting,		integrates	beyond classic	testing is often	testing, and
		Aggregatio		participatory	works. The	missing, while	excessive
		n, and		and data-driven	sample	hybrid and non-	reliance on
		Robustness		approaches	encompasses	compensatory	linear
		Issues		across	hundreds of	methods offer more	aggregation.
				disciplines,	studies that	balanced but	Non-
				offering a	employ or	underused	compensatory
				comprehensive	critique	alternatives.	methods are
				synthesis of	composite		underused, and
				theoretical and	indices.		interdisciplinary
				empirical			integration
				developments.			remains limited.
8	Roya Tat,	Avoiding	Journal of	A bi-level	The study is	The bi-level	The model's
	Jafar	medicine	Cleaner	optimization	conceptual and	collaborative model	scope is narrow
	Heydari ,	wastes:	Production	model for a	model-based	boosts supplier and	with simplified
	2021	Introducing		supplier-retailer	rather than	retailer profits,	assumptions on
		а		pharmaceutical	empirical. The	reduces medicine	returns, shelf
		sustainable		chain integrates	"sample"	waste through take-	life, and timing.
		approach in		economic,	consists of	back and donations,	Future studies
		the		environmental,	simulated	and balances	should address
		pharmaceut		and social goals	supply chain	economic, social,	multi-product
		ical supply		via donation and	scenarios based	and environmental	systems, pricing
		chain		take-back	on a two-	goals-achieving	contracts,
				strategies	echelon PSC.	win-win	behavioral CSR
					Six demand	sustainability	factors, and
					scenarios with	outcomes.	validate results
					varying mean		with real-world
					and standard		data.
					deviation values		
					were tested to		
					evaluate model		
					robustness.		
9	Emilene	Corporate	Business	This paper	Rather than	The CSDDD makes	The CSDDD
	Leite,	Sustainabili	Ethics, the	synthesizes	empirical cases,	CSR a binding legal	lacks clarity in
	Nikolina	ty	Environme	policy analysis,	the "sample"	duty across value	enforcement
	Koporcic,	Reporting:	nt &	legal	consists of 104	chains, promoting	and investor
	Stefan	Shifting	Responsibil	perspectives,	documents. The	sustainability and	duties, risking
	Markovic ,	From	ity (Wiley)	and theoretical	study uses	human rights, but	superficial
	2024	Optional	J (J)	frameworks.	illustrative cases	risking procedural	compliance.
		Due		The authors	to contextualize	compliance. It	Power
		Diligence to		analyze the	how poor	emphasizes shared	imbalances and
		2mgonee to		directive	governance in	responsibility	high costs may
				directive	50 vernance III	responsionity	mgn costs may

		r		T	T		· · · · · · · · · · · · · · · · · · ·
		Mandatory		through	global value	contracts and digital	affect fairness
		Duty		different point	chains can	tools for improved	and
				of view, using	create human	traceability and	competitiveness
				secondary	rights risks. The	efficiency.	. Future studies
				sources. The	scope is global,		should assess
				methodology is	but the		global effects,
				thus narrative	regulatory focus		shared-
				review and	is the EU and its		responsibility
				normative	value chain		frameworks,
				analysis,	partners, with		and EU policy
				focusing on	emphasis on		integration.
				implications for	industries most		5
				firms, supply	affected:		
				chains, and	textiles.		
				ĺ	,		
				policymakers.	agriculture,		
					mining/extractio		
					n, and financial		
					services.		
10	Ming-Lang	A literature	Journal of	The study uses a	The review	The study identifies	GSCM studies
	Tseng, Md	review on	cleaner	systematic	analysed 880	China and the USA	rely on limited
	Shamimul	green	Production	literature review	papers. The	as leaders in GSCM	databases and
	Islamb,c,N	supply		and	sample covers	research, with Sarkis	perceptual data,
	oorliza	chain		bibliometric/me	publications	and Zhu as key	lack theoretical
	Kariab,	managemen		ta-data analysis.	across multiple	contributors. It	depth, and focus
	Firdaus	t: Trends		Data was	disciplines and	defines an integrated	mainly on large
	Ahmad	and future		collected from	identifies top	GSCM framework,	firms. Cross-
	Fauzib,	challenges		Scopus and ISI	authors,	notes growing	industry,
	Samina			Web of Science	journals,	collaboration and	international,
	Afrin , 2019			databases	institutions, and	modelling efforts	and SME
				between 1994	countries active	and highlights that	analyses are
				and December	in GSCM. The	most performance	scarce, while
				2017. The	time span of the	assessments still rely	emerging areas
				authors applied	data captures the	on survey rather than	like big data and
				keyword-based	development of	operational data.	digitalization
					GSCM literature	operational data.	_
				search strategies			remain
				to retrieve	from the early		underexplored.
				studies. After	1990s through		
				screening, they	2017		
				conducted			
				content analysis			
				and classified			
				the literature			
				into thematic			
				categories and			
				performance			
				assessment			
11	Leonard	The carbon	Energy &	The study uses	European CO ₂	System expansion	LCA methods
	Jan Mu	footprint of	Environme	Life Cycle	sources from	and substitution are	for CO2 use lack
	"ller, aArne	the carbon	ntal Science	Assessment to	industrial	the most reliable	consistency,
	Ka "telho			evaluate CO ₂	processes (e.g.,	LCA methods for	often stop at
1					1	111 11111111111111111111111111111111111	stop at

	"n, abStefan	feedstock		footprints in	ammonia,	CO ₂ foot printing.	cradle-to-gate
	Bringezu,	CO2		Carbon Capture	fermentation.	Current European	boundaries, and
	Sangwon	CO2		and Utilization,	biogas, and	sources show	risk
	Suh,e			comparing	direct air	negative footprints,	misinterpreting
	Robert			system	capture).	improving further in	"negative
	Edwards,			expansion,	Modelled	low-carbon	emissions."
	Volker			substitution, and	datasets	scenarios.	CCU remains
	Sick, Sean			allocation		Ammonia,	
	ŕ				integrate	ĺ.	energy- intensive and
	McCoy,			methods,	process-specific	,	
	Simon			supported by	and energy-mix	biogas plants	reliant on
	Kaiser,Ros			case studies and	assumptions.	perform best, while	renewables,
	a Cue 'llar-			future low-		Direct Air Capture	with limited
	Franca,h Aı			carbon .		remains most energy	socio-economic
	"cha El			scenarios.		intensive. CO ₂	analysis and
	Khamlichi,i					availability could	uncertain future
	-Jay H. Lee,					drop by 80% in a	CO ₂ availability
	Niklas von					decarbonized	in low-carbon
	der Assena					Europe.	scenarios
	and Andre '						
	Bardow,						
	2020						
12	Mansi Jain,	Can	Risks	The study	The study	ESG indices match	The study's
	Gagan	Sustainable		compares ESG	analyses ten	or exceed traditional	five-year scope
	Deep	Investment		and MSCI index	indices (four	benchmarks in	and focus on
	Sharma and	Yield Better		performance	ESG, six MSCI)	returns, with mixed	developed
	Mrinalini	Financial		using	from 2013-	volatility results.	markets limit
	Srivastava,	Returns: A		econometric	2017 to compare	They show persistent	insights into
	2019	Comparativ		models to	ESG and	volatility, long-term	ESG
		e Study of		analyse returns,	traditional	integration with	performance
		ESG		volatility, and	market	conventional	during crises or
		Indices and		long- and short-	performance,	indices, and	in emerging
		MSCI		term	assessing	bidirectional	economies.
		Indices		relationships.	differences in	spillovers,	
					returns, risks,	confirming ESG	
					and market co-	investments as	
					movements.	viable, diversified	
						alternatives	
13	Mario La	Does the	Sustainabili	The study	The dataset	ESG scores show a	The authors note
	Torre,	ESG Index	ty, Volume	adopts a two-	covers 46 firms	weak, but positive	several
	Fabiomassi	Affect	12, Issue	step empirical	listed on the	link to stock returns,	limitations. The
	mo Mango ,	Stock	16, Article	approach. First,	Eurostoxx50	significant in few	weak
	Arturo	Return?	6387	a panel data	index. Monthly	firms, mainly energy	explanatory
	Cafaro and	Evidence		analysis,	data spanning	and utilities.	power of ESG
	Sabrina	from the		second, multiple	May 2010 to	Governance and	indices; the
	Leo, 2020	Eurostoxx5		linear	December 2018	social factors drive	analysis is
		0		regressions are	(105	most effects, though	restricted to
				performed	observations per	overall explanatory	Eurostoxx50
				separately for	firm) were used	power and predictive	firms; ESG
				each firm to	for the panel	ability remain	effects were
				explore how	analysis. ESG	limited.	significant only
i				•	_		,

	ı	ı					
				ESG sub-factors	indicators were		in a minority of
				impact stock	taken from		firms and
				returns. The	CSRHub and		sectors; the
				analysis draws	opinions from a		reliability of
				on ESG scores	wide range of		ESG indices
				aggregated by	providers		remains an issue
				CSRHub from	covering more		due to
				multiple data	than 17,000		methodological
				providers,	firms across		divergences
				normalized into	industries and		among
				a single	countries.		providers.
				"Overall ESG"			
				index.			
14	Andrej	European	Journal of	A cultural index	The study uses	The study finds	Cultural data are
	Srakar,	cultural	Cultural	for EU countries	Eurostat and	interconnected	fragmented and
	Vesna C	statistics in	Economics,	was built using	national-level	cultural dimensions	limited to two
	řopicř,	a	volume 42	factor analysis	cultural	in the EU, with	periods,
	Miroslav	comparativ		with advanced	statistics for EU	participation linked	hindering long-
	Verbic,	e		corrections,	countries in two	to other indicators	term analysis.
	2018	perspective		PCA for	benchmark	rather than	The study calls
		: index of		aggregation, and	years. Indicators	independent. The	for richer,
		economic		cluster analysis	span areas such	cultural index aligns	micro-level, and
		and social		for	as employment	with economic and	longitudinal
		condition of		classification,	in cultural	social metrics and	datasets, testing
		culture for		validated	sectors,	reveals four regional	alternative
		the EU		through	education in	clusters, showing	models, and
		countries		correlations	humanities and	cultural resilience	linking cultural
				with socio-	arts, cultural	during economic	indices more
				economic	industries, and	crises.	directly to EU
				indicators.	public financing		policy and
					of culture.		social outcomes.
	l	l		I		l	

Source: Own elaboration based on the reviewed literature (2018-2025)

3.3 Key findings

Three main insights emerge from the reviewed studies. First, the adoption of green practices is highly uneven: larger and more innovative firms are leading the transition toward sustainability, while smaller companies remain primarily compliance oriented. Second, external pressures, both regulatory and stakeholders driven, represent the main drivers of sustainability initiatives and progress. Third, these improvements can only be sustained when they are supported by strong internal capabilities and resource investments. Overall, literature suggests that environmental performance in the pharmaceutical sector

results from the interaction between external accountability and internal capability. This insight provides the theoretical foundation for the development of the composite Index.

3.4 Scholarly discussion

Sustainability within the pharmaceutical field has evolved over the years, as have the approaches used to measure and operationalize its integration into corporate strategy. This topic represents the main focus of several existing studies and is situated within a broader academic debate on how to advance both the theoretical and methodological understanding of GSCM in this industry. Existing contributions have mapped the drivers, barriers and practices associated with green transformation, yet they have not developed an integrated measurement system. Belal, Shukla & Balasubramanian (2025) conceptualize environmental performance through the MET framework, highlighting regulation and cost reduction as key drivers, yet their analysis remains qualitative and context specific. Veleva & Cue Jr. (2019) and Sazvar et al. (2022) extend the discussion to green chemistry and closed-loop supply chains, but these efforts remain fragmented and focus primarily on individual case studies. Other research, such as Becerra, Mula & Sanchis (2021) and Kopeinig et al. (2024), demonstrates the increasing use of quantitative models and composite indicators in sustainable operations, suggesting a methodological transition toward more data-driven approaches. The Index proposed in this thesis aims to address these deficiencies. By structuring environmental data into pillars weighted according to sectoral materiality, the Index transforms heterogenous corporate disclosures into a standardized metric. It not only operationalizes the theoretical propositions of Stakeholder Theory and RBV but also aligns with the key international disclosure frameworks such as GRI, ISSB, and CDP, whether mandatory or voluntary depending on jurisdiction. Thus, this research advances the academic conversation toward a more quantitative, standardized, and transparent form of sustainability assessment for the pharmaceutical industry. By combining theoretical rigor with methodological precision, it contributes to the scholarly debate on GSCM by proposing a replicable and statistically grounded model capable of informing future research, enhancing managerial decision-making, and supporting evidence-based policymaking.

CHAPTER 4. HYPOTHESES

The formulation of the hypothesis derived from the theoretical framework and the central research aim of this study: how can environmental sustainability performance in pharmaceutical supply chains be explained and measured in a consistent and comparable way? To capture both external and internal dimensions of corporate sustainability behaviour, the framework integrates Stakeholder Theory and RBV. The first theory explains the influence of external forces on corporate environmental behaviour. It provides the foundation for H1, which predicts that stronger stakeholder pressures led to higher levels of sustainability performance. The RBV complements this perspective by focusing on internal resources and capabilities, forming the rationale for H2, which associates stronger green capabilities with improved environmental outcomes. The integration of these two hypotheses leads to H3, which proposes that firms combining external accountability with internal capability achieve superior sustainability results. H4 reflects the methodological objective of this research: to validate the proposed Index as a reliable and statistically robust tool for measuring green performance.

In accordance with the Stakeholder Theory, the RBV and the theoretical perspectives identified in the current literature, this thesis is based on the following hypotheses:

- **H1.** Firms facing stronger stakeholder and regulatory pressures are expected to exhibit higher levels of environmental sustainability performance within their supply chains. (Stakeholder-driven accountability hypothesis)
- **H2.** Firms with stronger internal green capabilities, such as advanced technologies, skilled human resources, and structured programs achieve higher levels of environmental performances.

(Capability-based performance hypothesis)

H3. The interaction between external stakeholder pressures and internal capabilities expected to have a strong positive effect on environmental performance, indicating that companies combining external accountability with internal strength outperform others. (Integrated sustainability hypothesis)

H4. The proposed Index constitutes a valid and comparable statistical instrument for measuring and benchmarking sustainability performance among pharmaceutical companies. (Measurement validity hypothesis)

CHAPTER 5. RESEARCH MODEL

This diagram represents the conceptual research model developed for this thesis, in particular, this model integrates the Stakeholder Theory and the RBV to explain environmental performance differences among pharmaceutical supply chains.

EXTERNAL INTERNAL DIMENSION DIMENSION STAKEHOLDER THEORY RESOURCE-BASED VIEW REGULATORY PRESSURE **GSCM** (e.g. EMA) TECHNOLOGICAL INNOVATION **PRACTICES** REPUTATIONAL PRESSURE (e.g. ESG) CAPABILITIES' MANAGEMENT composite TRANSPARENCY (e.g. CDP) KNOWLEDGES (eg. CDP) INDEX ENGAGEMENT WITH LOW FOOTPRINT IMPACT LOCAL GREEN EFFICIENCY COMMUNITIES, SUPPLIERS, COMPARATIVE BENCHMARKING & INVESTORS, NON GOVERNMENTA INSTITUTIONS

Figure 1. Theoretical-Conceptual Model of Green Supply Chain Sustainability

Source: Own elaboration based on Freeman (1984), Barney (1991), Hart (1995), Elkington (1997), Bansal (2005), DiMaggio & Powell (1983).

This model shows how external stakeholders' pressure and internal firm capabilities jointly influence GSCM practices, which will be then operationalised through the composite Index. It provides the structural basis for the empirical validation of the hypothesis discuss in the previous chapter, serving as the theoretical foundation for the Index that will be developed in this thesis.

CHAPTER 6. METHODOLOGICAL FRAMEWORK

6.1 Research design

The methodological framework of this study adopts a quantitative approach to compare sustainability's indicators within pharmaceutical supply chains. Given the need to overcome the limitations of previous incomplete studies, qualitative methods such as interviews, while fundamental for exploring conceptual relationships and managerial perceptions, cannot provide comparable measurements among those firms. Therefore, a qualitative approach is considered inadequate for benchmarking purposes (Clark, Breeden and Summerton, 2010; Watson 2012).

A quantitative approach allows the integration of the data into a statistical model that enables in-depth understanding of the research's results through cross-company comparison and interpretation. This decision aligns with the methodological principle defined by the OECD and the United Nations, which emphasizing robustness in the construction of the composite Index.

6.2 Target sample

The study will be focus on a sample of 8 to 10 multinational pharmaceutical companies, a number considered sufficient to enable cross-company comparison while ensuring analytical consistency. The analysis will cover two years (2024 and 2025) to allow both current and short-term performance assessment. Companies' selection is based on data accessibility and transparency, particularly whether firms are publicly listed. This distinction is important because with international frameworks, ensuring greater data reliability and comparability.

6.3 Data collection and analysis procedure

The methodological process develops on four main steps: data selection, indicators' harmonization, index construction and weighting. Each of those steps will be designed to

ensure a consistent and coherent final framework grounded on available and statistical data. The index will rely on publicly available environmental data disclosed by leading pharmaceutical companies, including sustainability reports, CDP submissions and ESG disclosures. To ensure methodological consistency, all data will be harmonized according to the market-based, location-based and the operational control approaches defined by the GHG protocol (WRI and WBCSD, 2015). This boundary definition allocates environmental impacts to the operations over which a company has the authority to implement management decisions and sustainability practices. The harmonization process will involve standardising units of measurement: tonnes of CO₂ equivalent for emissions, cubic meters for water, MWh for energy and tonnes for waste and normalizing the indicators by operational output such as revenue (Euro) or production volume to correct for size effects. Qualitative data are excluded since their inclusion would compromise statistical validity (OECD, 2008; Saisana and Saltelli, 2011).

The Index will be structured on four pillars of footprint: climate, energy, water and waste, since those areas are considered the most impactful in the pharma sector (GRI, 2021; SASB, 2023; CDP, 2024). Where climate includes emissions among Scope 1, Scope 2 and Scope 3 (categories 1 and 4), corresponding respectively to direct emissions, indirect emission, upstream packaging goods and logistics. Water means the total withdrawal from all the sources: this kind of companies, more than others, are depending on water's usage to clean, disinfect, production and cooling. Energy represents the total energy used, while waste is accounting both the toxic and not toxic substances generated by the firms. As mentioned, because of the numerical comparability, a quantitative indicator-based was preferred. Each of the variables analysed will be normalized through a min-max transformation and rescale between zero and one (OECD, 2008). This standardization transforms heterogeneous sustainability data into a dataset that can support the development of the composite Index.

One of the main decisions in the methodological field concerns how indicators are weighted and aggregated. This thesis adopts a pillar-weighting approach, assigning different levels of importance to each environmental dimension based on its material relevance. The equal-weighting method has been rejected, as it assumes identical importance among variables, which is inconsistent with both regulatory evidence and sectorial materiality (Saisana and Saltelli 2011; OECD 2008). This weighting scheme was developed in alignment with official frameworks, such as GRI, ISSB and CDP, and previous studies, such as Belal, Shukla and Balasubramanian (2025) and Clark, Breeden and Summerton (2010).

Accordingly, to climate was given a weight of 50 percent because these emissions represent the most impactful challenge to manage in this sector, while to water was given a weight of 20 percent, because as mentioned above this firms are highly involved in the usages of water during the manufacturing processes and the frequent location plants in water-stressed areas. To waste and energy were each assigned a weight of 15 percent, because, even if they are relevant, their impact is relatively lower in comparison to climate and water. Thus, there are sub weights established for the climate sector, such as scope 1 a weight of 0.15, scope 2 a weight of 0.15, scope 3 category 1 a weight of 0.012 and scope 3 category 4 a weight of 0.08, this subdivision is aligned to the logic of GHG protocol. Those selected weights ensure that the Index will capture the real impacts in the pharmaceutical industry.

To sum up in a better vision approach:

Table 3. Weighting Scheme of the Composite Index

PILLAR		BASE WEIGHT
Climate total		0.50
- Scope 1-direct emissions	0.15	
- Scope 2-indirect emissions	0.15	
- Scope 3 cat 1-purchase goods	0.12	
- Scope 3 cat4-logistics	0.08	
Water		0.20
Energy		0.15
Waste		0.15

Source: Own elaboration based on GRI (2021), ISSB (2023), CDP (2024); Belal, Shukla & Balasubramanian (2025)

This figure represents the weighting structure applied to the four pillars, defined according to their material relevance for the pharmaceutical industry.

The data were aggregated using a linear additive model, which provides a transparent interpretation of the results, while preserving balance and proportionality among variables. Alternatives methods, such as geometric or non-linear aggregation, were rejected because they can distort proportionality and introduce bias into the results (Saltelli et al., 2020). The

linear additive model is widely recommended in the construction of composite indicators when transparency and interpretability are prioritized over complex weighting optimization (OECD, 2008).

To ensure the robustness of the Index, a series of comparative analyses will be conducted. Correlation and Principal Component Analyses (PCA) will be used to verify that the selected indicators capture distinct yet complementary dimensions of environmental performance. Sensitivity analysis will then be performed by varying pillar weights and normalization methods by $\pm 10\%$ to test the stability of company rankings. In addition, a qualitative crosscheck of company disclosures will complement the statistical validation to ensure that the quantitative results remain consistent with actual sustainability strategies and are not influenced by greenwashing practices.

The adoption of a quantitative, indicators-based approach is therefore justified by the goal of developing a framework capable of transforming fragmented environmental disclosures into a comparable Index. However, pharmaceutical firms differ significantly in how they define organizational boundaries, with some adopting operational control, others financial control, and a few using hybrid systems. This inconsistency generates potential measurement bias, as the same environmental outcome may be reported differently depending on the chosen consolidation method.

Figure 2. Conceptual Framework for the Index

Source: Own elaboration based on Freeman (1984), Barney (1991), Hart (1995), Elkington (1997), Bansal (2005), Belal, Shukla & Balasubramanian (2025) & OECD (2008)

The figure illustrates the logical flow underpinning the development of the composite Index, integrating theoretical inputs, methodological processes and practical outcomes.

CHAPTER 7. CONTRIBUTIONS

7.1 Contributions to theory building

While previous research has often focused on conceptual models or isolated practices, this study introduces the first statistically validated composite index specifically designed to measure green supply chain performance in the pharmaceutical sector. Its novelty lies in three key innovations.

First, the creation of a harmonized data framework that standardised sustainability information among pharmaceutical companies. This structure addresses the significant inconsistency in reporting practices highlighted by earlier studies, particularly regarding the treatment of Scope 3 emissions. The use of verified data sources ensures methodological consistency and enhances replicability.

Second, the weighting and aggregation process. Instead of applying equal weights, the Index adopts a structured system based on an in- depth analysis of environmental materiality. This approach is supported by both the GRI and ISSB, which identify greenhouse gas emissions and water use as the most material aspects within this sector. The weighting reflects the environmental dimensions of highest stakeholder relevance, assigning proportionally greater importance to those areas over which managerial influence is strongest.

Third, translation of theoretical concepts into quantifiable variables. Stakeholder responsiveness is operationalized through external indicators, such as the proportion of suppliers evaluated for environmental performance. Resource-based capabilities are represented by internal investment and operational efficiency metrics, including energy intensity, solvent recovery rates and process mass intensity improvements. These indicators are not arbitrarily selected: they are derived from the theoretical mapping of how external stakeholder pressures and internal firm resources interact to shape environmental outcomes.

7.2 Implications for business and society

The Index has a hybrid purpose: on one hand it will provide companies with a tool to measure their environmental footprint based on transparent data; on the other hand, it will offer investors a reliable means of comparing firms across the pharmaceutical sector through standardized rankings. The implementation of the Index is expected to be straightforward for companies already aligned with the compulsory ISSB framework. In fact, while the ISSB establishes sector-specific ESG disclosure requirements relevant to investors, the Index will complement these standards by transforming disclosed data into measurable performance outcomes.

The findings provide actionable insights for managers, policymakers and investors. For corporate decision-makers, the Index will be use as a diagnostic tool not only to benchmark performances, but also to identify areas for improvement and integrate sustainability targets into strategic planning. For policymakers and regulatory authorities, it will offer a data-driven mechanism to monitor sectorial progress in line with the European Green Deal and the United Nations Sustainable Development Goals. Lastly, for investors, the Index will deliver a standardized measure of environmental accountability, enabling more informed decision-making in ESG financial evaluations.

The proposed Index bridges academic research and practical application, offering a robust framework for evaluating and advancing environmental sustainability across the pharmaceutical industry.

CHAPTER 8. CHAPTER OVERVIEW

1. Introduction

- 1.1 Research Background
- 1.2 Problem Statement
- 1.3 Corporate Value-Action Gap
- 1.4 Research Gaps
- 1.5 Research Aim and Questions
- 1.6 Structure of the Thesis

2. Theoretical Foundations

- 2.1 Stakeholder Theory
- 2.2 Resource-Based View (RBV)
- 2.3 Identity-Based Sustainability and Strategic Differentiation
- 2.4 Rejected Theories: Institutional Theory and Transaction Cost Economics
- 2.5 Conceptual Framework

3. Literature Review

- 3.1 Theoretical Background: Triple Bottom Line Framework
- 3.2 Databases and Search Strategy
- 3.3 Inclusion and Exclusion Criteria
- 3.4 PRISMA Flow Diagram
- 3.5 Main Findings and Theoretical Insights
- 3.6 Research Gaps
- 3.7 Summary Table of Reviewed Studies
- 3.8 Value Proposition and Novelty Statement

4. Hypotheses and Research Model

- 4.1 Research Hypotheses
- 4.2 Conceptual and Graphical Research Model
- 4.3 Variable Definition and Expected Relationships

5. Methodology

- 5.1 Research Design and Quantitative Approach
- 5.2 Target Sample and Data Sources
- 5.3 Data Collection and Standardization
- 5.4 Indicator Selection and Harmonization
- 5.5 Normalization and Aggregation Methods
- 5.6 Pillar Weighting Scheme
- 5.7 Sensitivity Analysis
- 5.8 Limitations and Reliability

6. Construction of the Index

- 6.1 Index Structure and Mathematical Formulation
- 6.2 Normalization of Indicators
- 6.3 Weighting and Aggregation Procedure

- 6.4 Composite Score Calculation
- 6.5 Robustness Checks
- 7. Data Analysis and Results
 - 7.1 Descriptive Statistics of the Dataset
 - 7.2 Cross-Company and Cross-Year Comparisons
 - 7.3 Cluster and Correlation Analysis
 - 7.4 Benchmarking and Ranking of Companies
 - 7.5 Discussion of Results
- 8. Discussion and Implications
 - 8.1 Theoretical Contributions to GSCM and Sustainability Measurement
 - 8.2 Managerial Implications for the Pharmaceutical Sector
 - 8.3 Policy Recommendations and Industry Relevance
- 9. Conclusions
 - 9.1 Summary of Findings
 - 9.2 Theoretical and Practical Contributions
 - 9.3 Limitations of the Study
 - 9.4 Future Research Directions
- 10. References
- 11. Appendices
 - A. Literature Review Table
 - B. List of Indicators and Data Sources
 - C. Normalization and Weighting Details
 - D. Statistical Outputs and Sensitivity Matrices

CHAPTER 9. WORK PLAN

Time period	Activity	Stage
1st September-28th October	Research and writing the	Done
	Exposé	
28 th October	Exposé Submission	Done
28 th October-20 th	Data Collection	
November		
20 th November-10 th	Data Analysis	
December		
10 th December-15 th	Final developing,	
January	conclusions and reviewing	
	the Thesis	
29 th January-30 th January	Thesis defence	

REFERENCES

Balasubramanian, Sreejith & Vinaya Shukla. «Green Supply Chain Management: An Empirical Investigation on the Construction Sector». *Supply Chain Management: An International Journal* 22, fasc. 1 (2017): 58–81.

Bansal, Pratima. «Evolving Sustainably: A Longitudinal Study of Corporate Sustainable Development». *Strategic Management Journal* 26, fasc. 3 (2005): 197–218.

Becerra, Pablo, Josefa Mula & Raquel Sanchis. «Green Supply Chain Quantitative Models for Sustainable Inventory Management: A Review». *Journal of Cleaner Production* 328 (December 2021): 129544.

Belal, Md Mostain, Vinaya Shukla & Sreejith Balasubramanian. «Greening the Pharmaceutical Supply Chain». *Business Strategy and the Environment* 34, fasc. 2 (2025): 1917–48.

Birasnav, M., Richa Chaudhary, James Henry Dunne, Joshua Bienstock & Cristina Seaman. «Green Supply Chain Management: A Theoretical Framework and Research Directions». *Computers & Industrial Engineering* 172 (October 2022): 108441.

Brandenburg, Marcus, Kannan Govindan, Joseph Sarkis & Stefan Seuring. «Quantitative Models for Sustainable Supply Chain Management: Developments and Directions». *European Journal of Operational Research* 233, fasc. 2 (2014): 299–312.

Carter, Craig R. & Dale S. Rogers. «A Framework of Sustainable Supply Chain Management: Moving toward New Theory». *International Journal of Physical Distribution & Logistics Management* 38, fasc. 5 (2008): 360–87.

CDP. (2024). CDP climate change and water security questionnaires. London: CDP Worldwide

De Soete, Wouter, Concepción Jiménez-González, Phil Dahlin & Jo Dewulf. «Challenges and Recommendations for Environmental Sustainability Assessments of Pharmaceutical Products in the Healthcare Sector». *Green Chemistry* 19, fasc. 15 (2017): 3493–509.

DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. *American Sociological Review*, 48(2), 147–160. https://doi.org/10.2307/2095101

Eesley, Charles & Michael J. Lenox. «Firm Responses to Secondary Stakeholder Action». *Strategic Management Journal* 27, fasc. 8 (2006): 765–81.

Elkington, J. (1997). *Cannibals with forks: The triple bottom line of 21st-century business*. Oxford: Capstone Publishing.

European Commission. Statistical Office of the European Union. *Guide on Multilateral Methods in the Harmonised Index on Consumer Prices: 2022 Edition*. Publications Office, 2022.

Freeman, R. E. (1984). *Strategic management: A stakeholder approach*. Boston, MA: Pitman.

Global Reporting Initiative (GRI). (2021). GRI standards 2021 update. Amsterdam: GRI.

Greco, Salvatore, Alessio Ishizaka, Menelaos Tasiou & Gianpiero Torrisi. «On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness». *Social Indicators Research* 141, fasc. 1 (2019): 61–94.

Hart, S. L. (1995). A natural-resource-based view of the firm. *Academy of Management Review*, *20*(4), 986–1014. https://doi.org/10.5465/amr.1995.9512280033

Jain, Mansi, Gagan Deep Sharma & Mrinalini Srivastava. «Can Sustainable Investment Yield Better Financial Returns: A Comparative Study of ESG Indices and MSCI Indices». *Risks* 7, fasc. 1 (2019): 15.

Kopeinig, Jacob, Kevin Anton Kriechbaum, Julia Köberl & Helmut Zsifkovits. «Supply Chain Circularity Composite Index: Measuring the Closed-Loopedness of Material Flows». *Sustainable Production and Consumption* 58 (September 2025): 351–63.

La Torre, Mario, Fabiomassimo Mango, Arturo Cafaro & Sabrina Leo. «Does the ESG Index Affect Stock Return? Evidence from the Eurostoxx50». *Sustainability* 12, fasc. 16 (2020): 6387.

Leite, Emilene, Nikolina Koporcic & Stefan Markovic. «Corporate Sustainability Reporting: Shifting From Optional Due Diligence to Mandatory Duty». *Business Ethics, the Environment & Responsibility* 34, fasc. 4 (2025): 2048–55.

Mahajan, Ritika, Weng Marc Lim, Monica Sareen, Satish Kumar & Rajat Panwar. «Stakeholder Theory». *Journal of Business Research* 166 (November 2023): 114104.

Müller, Leonard Jan, Arne Kätelhön, Stefan Bringezu, et al. «The Carbon Footprint of the Carbon Feedstock CO₂». *Energy & Environmental Science* 13, fasc. 9 (2020): 2979–92.

OECD, European Union, e Joint Research Centre - European Commission. *Handbook on Constructing Composite Indicators: Methodology and User Guide*. OECD, 2008.

Oelze, Nelly, Marcus Brandenburg, Christoph Jansen & Ronak Warasthe. «Applying Sustainable Supply Chain Management Frameworks to Two German Case Studies». *IFAC-PapersOnLine* 51, fasc. 30 (2018): 293–96.

Qorri, Ardian, Zlatan Mujkić & Andrzej Kraslawski. «A Conceptual Framework for Measuring Sustainability Performance of Supply Chains». *Journal of Cleaner Production* 189 (July 2018): 570–84.

Rao, Purba & Diane Holt. «Do Green Supply Chains Lead to Competitiveness and Economic Performance?» *International Journal of Operations & Production Management* 25, fasc. 9 (2005): 898–916.

Rowley, T. J. (1997). Moving beyond dyadic ties: A network theory of stakeholder influences. *Academy of Management Review, 22*(4), 887–910. https://doi.org/10.5465/amr.1997.9711022107

Sazvar, Zeinab, Mahsa Zokaee, Reza Tavakkoli-Moghaddam, Samira Al-sadat Salari & Sina Nayeri. «Designing a Sustainable Closed-Loop Pharmaceutical Supply Chain in a Competitive Market Considering Demand Uncertainty, Manufacturer's Brand and Waste Management». *Annals of Operations Research* 315, fasc. 2 (2022): 2057–88.

Srakar, Andrej, Vesna Čopič & Miroslav Verbič. «European Cultural Statistics in a Comparative Perspective: Index of Economic and Social Condition of Culture for the EU Countries». *Journal of Cultural Economics* 42, fasc. 2 (2018): 163–99.

Tat, Roya & Jafar Heydari. «Avoiding Medicine Wastes: Introducing a Sustainable Approach in the Pharmaceutical Supply Chain». *Journal of Cleaner Production* 320 (October 2021): 128698.

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. *Strategic Management Journal*, *18*(7), 509–533. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7 < 509::AID-SMJ882 > 3.0.CO;2-Z Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., & Afrin, S. «A Literature Review on Green Supply Chain Management: Trends and Future Challenges». *Journal of Cleaner Production* 141 (February 2019): 145–62.

Veleva, V. R., & Cue, B. W. Jr. (2019). The role of drivers, barriers and opportunities of green chemistry adoption in major world markets. *Current Opinion in Green and Sustainable Chemistry*, *15*, 97–104. https://doi.org/10.1016/j.cogsc.2018.11.003

Yi, Ming, Yiqian Wang, Modan Yan, Lina Fu & Yao Zhang. «Government R&D Subsidies, Environmental Regulations, and Their Effect on Green Innovation Efficiency of Manufacturing Industry: Evidence from the Yangtze River Economic Belt of China». *International Journal of Environmental Research and Public Health* 17, fasc. 4 (2020): 1330.