CSE321: Operating Systems Quiz-2

Name:		Section:	
Q01) Explain what is Parallelism and Conc	urrency?		[03]
Q02) Explain what is "Many-to Many" Mode	el? In what cases w	ould you use such model?	[03]
Q03) What is "Race Condition"?		J	[02]

- Q04) Show Peterson's solution for the given scenario.
 - There are two processes: P_1 and P_2 .
 - Each Statement takes 2 ms to execute.
 - Context Switch will occur after 10 ms.
 - Critical section contains 6 statements.
 - Remainder section contains 4 statements.
 - For P_1 : i=1 and j=0
 - For P_2 : i=0 and j=1
 - turn=1
 - flag[0] = FALSE, flag[1] = FALSE
 - P 1 starts the execution first.

The structure of process P_i in Peterson's solution.

```
do{
    flag[i] = true;
    turn = j;
    while(flag[j] == true && turn == j){
        //busy wait
    }
    //critical section
    flag[i] = false;
    //remainder section

}while(true);
```

Complete the table given below for processes P₁ and P₂ using Peterson's solution.

Process 1: i=1, j=0	Process 2: i=0, j=1
flag[1]=True turn=0 While (flag[0] & turn==0); Cs1 Cs2	
	flag[0]=True

	turn=1 While (flag[1] & turn==1); → stuck
Cs3 Cs4 Cs5 Cs6 flag[1]=False	
	While (flag[1] & turn==1); Cs1 Cs2 Cs3 Cs4
Rs1 Rs2 Rs3 Rs4	
	Cs5 Cs6 Rs1 Rs2 Rs3
	Rs4

CSE321: Operating Systems Quiz-2

Name:	1D:	Section:	
Q01) Name and explain Three thread issue	S.		[03]
Q02) Explain what is "One-to-One" Model?	In what cases wou	ld you use such model?	[03]
Q03) What is "Mutual Exclusion" ?			[02]

Q04) Show Peterson's solution for the given scenario.

- There are two processes: P_1 and P_2 .
- Each Statement takes 4 ms to execute.
- Context Switch will occur after 16 ms.
- Critical section contains 5 statements.
- Remainder section contains 3 statements.
- For P_1 : i=1 and j=0
- For P_2 : i=0 and j=1
- turn=0
- flag[0] = FALSE, flag[1] = TRUE
- P 2 starts the execution first.

The structure of process P_i in Peterson's solution.

```
do{
    flag[i] = true;
    turn = j;
    while(flag[j] == true && turn == j){
        //busy wait
    }
    //critical section
    flag[i] = false;
    //remainder section
}while(true);
```

Complete the table given below for processes P₁ and P₂ using Peterson's solution.

Process 1: i=1, j=0	Process 2: i=0, j=1
	flag[0]=True turn=1 While (flag[1] & turn==1); → Stuck
flag[1]=True turn=0 While (flag[0] & turn==0); → Stuck	

	While (flag[1] & turn==1); → false (turn=0) Cs1 Cs2 Cs3
Stuck	
	Cs4 Cs5 flag[0]=False Rs1
While (flag[0] & turn==0); Cs1 Cs2 Cs3	
	Rs2 Rs3
Cs4 Cs5 flag[1]=False Rs1	
Rs2 Rs3	