Proyecto #1: búsqueda heurística

Blai Bonet

24 de abril 2015

Objetivo

El objetivo del proyecto es aprender sobre el modelo de espacio de estados y sobre los diferentes algoritmos de búsqueda heurística. No sólo se evaluará la correctitud de la implementación; es importante que los algoritmos sean eficientes y puedan resolver los problemas propuestos en los tiempos estipulados.

Fecha de entrega: viernes 8 de mayo 2015

Problemas

Consideramos los siguientes problemas:

• n-puzzles: 4x4 y 5x5

• cubo de Rubik: 2x2x2 y 3x3x3

• top spin: 12-4, 14-4, 16-4 v 17-4

• Torre de Hanoi con 4 astas: 12, 14, 16 y 18 discos

En el problema de n-puzzle, consideramos dos modelos de costos: (a) costos unitarios para todos los movimientos y (b) costo de 1 para movimientos horizontales del blanco y 2 para movimientos verticales del blanco.

Árboles de búsqueda

Estudiar los árboles de búsqueda y su factor de ramificación sin eliminación de duplicados y con eliminación parcial de duplicados.

Se debe crear tablas para cada problema donde se reporte el número de estado a cada profundidad en el árbol de búsqueda a partir del estado goal, hasta las profundidad máxima que se alcance en 15 minutos de ejecución.

Algoritmos ciegos

Estudiar la búsqueda de soluciones óptimas con algoritmos ciegos. Buscar soluciones para las instancias dadas en cada problema utilizando los algoritmos: bfs con eliminacion retardada de duplicados (DDD), ucs con DDD, dfid y depth-first uniform-cost search.

Algoritmos informados

Estudiar la búsqueda de soluciones óptimas con algoritmos informados. Buscar soluciones para las instancias dadas en cada problema utilizando los algoritmos: a* con DDD y ida*. Para las heuristicas en cada problema:

- n-puzzle: Manhattan distance y diferentes additive PDBs
- cubo de Rubik: max de corner PDB y edge PDB
- Top Spin: max de diferents PDBs
- Torre de Hanoi con 4 astas: max de diferentes PDBs