Higher Linear Algebra Notes — Math2601 UNSW

$Hussain\ Nawaz \\ hussain.nwz 000@gmail.com$

2022T2

Contents

1	Groups and Fields															2										
	1.1	Groups	3.																							2
	1.2	Fields																								:

1 Groups and Fields

1.1 Groups

Definition of Groups A group G is a non-empty set with a binary operation defined on it. It must satisfy the following four properties:

- 1. Closure: For all $a, b \in G$, a composition a * b is defined and in G.
- 2. **Associativity:** (a*b)*c = a*(b*c).
- 3. **Identify:** There exists an $e \in G$ such that a * e = e * a = a for all $a \in G$.
- 4. **Inverse:** For all $a \in G$, there exists an a' such that a * a' = a' * a = e.

Groups Order and Pair Groups are actually pairs of objects. The first is the set of elements in the group and the second, the operation defined on the group. Therefore, groups may be written as (G, *).

If G is finite, then the order of G, that is |G|, is the number of element in G.

Abelian Groups A group is abelian if the operation is *commutative*. That is,

$$a * b = b * a \quad \forall a, b \in G.$$

Notes on the Composition Observe that the composition is actually a function $*: G \times G \to G$. a * b is simply a more convenient notation than *(a,b).

Though the operation * is not restricted, it is often one of addition (only for abelian groups), multiplication (\times , often written as juxtaposition) or, composition of functions.

Notation for Repeated Composition We may often use power notation for repeated applications of a composition. That is, $a * a * \cdots * a$ (with n compositions) may be written as a^n .

Suppose that instead we are using + as the group operation, then $a + a + \cdots + a$ (added n times), may be written as na. Do note that this is <u>not</u> multiplication.

Trivial Groups The trivial group consists of exactly one element, the identity. That is, $\{e\}$. Since the empty set cannot be a group, as there is required to be at least one element in a group, the trivial group is the smallest group that exists.

Examples of Groups $(\mathbb{Z}, +)$ is an abelian group under the usual addition operation. However, (\mathbb{Z}, \times) is not a group, since the inverse property cannot be satisfied. Similarly, $(,\times)$ is also not a group as 0 has no multiplicative inverse. However $(\mathbb{R}\setminus 0)$ is a group.

For an integers in the set $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$ is a group under addition, modulo m.

Function Composition and Groups For any S, the set F of bijective functions $f: S \to S$ is a group under composition but, it is not necessarily abelian.

Proof Composing two bijections gives a bijection so, the operation is closed. Associativity is of composition follows as

$$(f \circ (g \circ h))(x) = f(g(h(x))) = (f \circ g) \circ h(x).$$

The identity function is e(x) = x is a clear bijection. The inverse exists by definition of the bijection.

More Properties of Groups

- There is only *one* inverse of each element. That is, the inverse is unique.
- For all $a \in G$, $(a^{-1})^{-1} = a$
- For all $a, b \in G$, $(a * b)^{-1} = b^{-1} * a^{-1}$.
- let $a, b, c \in G$. Then if a*b = a*c, then b = c. We may think of this as the cancellation property.

Permutation Groups Let $\Omega_n = \{1, 2, ..., n\}$. As a ordered set, Ω_n has n! permutations. We may think of these permutations as being functions $f: \Omega_n \to \Omega_n$. Clearly, these are bijections.

Observe that the set S_n of all permutations forms a group under the composition of order n as, the set of all bijections on a set is a group.

We may write these permutations f as a matrix where, the i, j entry represents how what element is mapped to the j-th index, by f_i .

Small Finite Groups We may visualise these with a multiplication table where, the row element is multiplied on the left of the column element.

In a multiplication table of a finite group, each row must be a permutation of the elements of the group. Otherwise, if there was a repetition in a row then xa = xb implies a = b by the cancellation property. Thus, each element occurs no more than once is a row.

If $a^2 = a$ then, by cancellation property, a = e. So, the identity must be the only element that is fixed.

1.2 Fields

Definition of Fields A field is a set \mathbb{F} with two binary operations on it, addition (+) and, multiplication, (×) such that, the following hold

- 1. $(\mathbb{F}, +)$ is an abelian group.
- 2. $(\mathbb{F}^*\setminus\{0\},\times)$ is an abelian group, where 0 is the additive identity.
- 3. The distributive laws $a \times (b+c) = (a \times b) + (a \times c)$ and $(a+b) \times c = a \times c + b \times c$ hold.

Fields and Notation

- Under the obvious operations, typically refer to the field as just \mathbb{F} .
- We use juxtaposition for multiplication under fields and, 1 as the multiplicative identify and often 0 as the additive identity.
- By our definition of fields as groups, it is equivalent to say that if \mathbb{F} is a field then, it satisfies the 12 = 5 + 5 + 2 number laws.
- The smallest possible fields only has two elements, the multiplicative and additive identity. That is, $\{0,1\}$.
- We let -b be the inverse of b under addition and may write a + (-b) as a b as a shorthand. Similarly, we may write $\frac{a}{b}$ rather than ab^{-1} where b^{-1} is the multiplication inverse and $b \neq 0$.

Finite Fields The only finite fields that exists are those of the size p^k for some positive integer k and prime p (also known as, the characteristic of the field).

These may be called *Galois fields* of size p^k . That is, $GF(p^k)$. Note that $GF(p^k) \neq \mathbb{Z}_{p^k}$ unless k = 1.

Properties of Fields If \mathbb{F} is a field and $a, b, c \in \mathbb{F}$ then,

- a0 = 0
- a(-b) = -(ab)
- a(b-c) = ab ac
- If ab = 0 then either a = 0 or, b = 0.