Spatial Summarization of Image Collections

Diego A. Ballesteros Villamizar

ETH Zürich

March 18th, 2016

Outline

Synthetic Featurized Data

Peaturized Learning

Ocument outline

Featurized model

•
$$|V| = 7$$

•

$$\mathbf{X} = \begin{pmatrix} 5 & 0 & 1 \\ 5 & 1 & 0 \\ 5 & 1 & 1 \\ 3 & 0 & 1 \\ 3 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- $\mathbf{a} = \overrightarrow{0}$
- $\bullet \ \mathbf{B} = \left(\begin{array}{ccc} 0 & 20 & 20 \end{array} \right)^{\mathsf{T}}$
- $\bullet \ \mathbf{C} = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$

FLDC equivalent model

•
$$\mathbf{u} = \overrightarrow{0}$$

- $\mathbf{W}_D = (20 \ 20 \ 40 \ 20 \ 0 \ 40 \ 20)^\mathsf{T}$
- $\mathbf{W}_C = (10 \ 10 \ 10 \ 6 \ 6 \ 2 \ 2)^{\mathsf{T}}$
- $P(S) \approx 0.25 \mid S \in \{\{0,4\},\{1,4\},\{2,4\},\{3,4\}\}$

Learning results

- 10,000 samples from the distribution.
- The maximum prediction accuracy is 62.5%.
- After 10 passes:

•
$$\mathbf{a} = (0.05 \pm 0.03 -0.37 \pm 0.03 -0.31 \pm 0.03)$$

•
$$\mathbf{B} = (0.81 \pm 0.03 \quad 8.33 \pm 0.02 \quad 8.33 \pm 0.02)^{\mathsf{T}}$$

•
$$\mathbf{C} = (1.82 \pm 0.01 \quad 0.00 \pm 0.00 \quad 0.00 \pm 0.00)^{\mathsf{T}}$$

• After 50 passes:

•
$$\mathbf{a} = (0.01 \pm 0.03 -0.05 \pm 0.04 -0.03 \pm 0.03)$$

•
$$\mathbf{B} = (0.60 \pm 0.03 \quad 12.5 \pm 0.03 \quad 12.5 \pm 0.03)^{\mathsf{T}}$$

•
$$\mathbf{C} = (2.11 \pm 0.03 \quad 0.00 \pm 0.00 \quad 0.00 \pm 0.00)^{\mathsf{T}}$$

NCE objective

Featurized model II

•

$$\mathbf{X} = \begin{pmatrix} 5 & 0 & 1 \\ 4 & 1 & 0 \\ 4 & 1 & 1 \\ 3 & 0 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

•

$$\mathbf{B} = \left(\begin{array}{cc} 0 & 0\\ 10 & 0\\ 0 & 10 \end{array}\right)$$

$$\bullet \mathbf{C} = (1 \ 0 \ 0)^{\mathsf{T}}$$

FLDC equivalent model

•

$$\mathbf{W}_D = \begin{pmatrix} 0 & 10 \\ 10 & 0 \\ 10 & 10 \\ 0 & 10 \\ 10 & 0 \\ 10 & 10 \\ 10 & 0 \end{pmatrix}$$

- $\mathbf{W}_C = (5 \ 4 \ 4 \ 3 \ 3 \ 2 \ 2)^\mathsf{T}$
- $P(\{0,1\}) \approx 0.4$
- $P(S) \approx 0.15 \mid S \in \{\{1, 3\}, \{0, 4\}, \{3, 4\}\}$
- $P(S) \approx 0.05 \mid S \in \{\{0,6\}, \{3,6\}\}$

Learning results

• 100 pass over data and noise.

•
$$\mathbf{u} = (0.19 \ 0.22 \ 0.14)^{\mathsf{T}}$$

0

$$\mathbf{B} = \left(\begin{array}{cc} 0.27 & 0.25\\ 0.07 & 9.66\\ 9.46 & 0.08 \end{array}\right)$$

• $\mathbf{C} = (1.11 \ 0.84 \ 0.80)^{\mathsf{T}}$

Learning results - FLDC

•
$$\mathbf{u} = \begin{pmatrix} 0.69 & 0.48 & -4.58 & 0.12 & -0.22 & -4.30 & -1.09 \end{pmatrix}^{\mathsf{T}}$$

•

$$\mathbf{W}_D = \begin{pmatrix} 0.81 & 3.66 \\ 3.93 & 0.81 \\ 0.95 & 0.98 \\ 0.80 & 3.66 \\ 3.40 & 0.74 \\ 1.04 & 0.94 \\ 3.41 & 0.67 \end{pmatrix}$$

• $\mathbf{W}_C = (1.71 \ 1.71 \ 0.38 \ 1.73 \ 1.72 \ 0.24 \ 1.44)^{\mathsf{T}}$

Learned models

Subset	Model	Modular	FLDC	FFLDC
$\overline{\{0,1\}}$	0.40	0.14 ± 0.00	0.29 ± 0.05	0.36 ± 0.05
$\{0, 4\}$	0.15	0.04 ± 0.00	0.10 ± 0.03	0.11 ± 0.03
$\{1, 3\}$	0.15	0.05 ± 0.00	0.12 ± 0.04	0.12 ± 0.03
${3,4}$	0.15	0.02 ± 0.00	0.09 ± 0.03	0.13 ± 0.04
$\{0, 6\}$	0.05	0.02 ± 0.00	0.04 ± 0.01	0.03 ± 0.01
$\{3, 6\}$	0.05	0.00 ± 0.00	0.03 ± 0.01	0.05 ± 0.02

Outline

Synthetic Featurized Data

Peaturized Learning

Ocument outline

Larger dataset

- Increase the number of selected clusters to 100.
- The best results without features are:

FLDC model

Selecting the features

- If σ is too big then the feature matrix is full of 1s.
- If σ is too small then the feature matrix is too similar to the identity.

Using 10 features

Best results

NCE Learning

Outline

Synthetic Featurized Data

2 Featurized Learning

3 Document outline

Outline I

- Introduction
 - Motivation
 - Related work
- 2 Theoretical framework
 - Clustering Mean-shift
 - Probabilistic Submodular Models
 - NCE learning
- Opening the second of the s
 - Image collections
 - ① Dataset crawling & Flickr
 - Zürich dataset
 - 2 Clustering and paths
 - Clustering and filtering
 - Path identification
- Models and learning
 - FLID Submodular only

Outline II

- FLDC Submodular and supermodular components
- 3 FFLDC FLDC with features
- Results & Discussion
 - Baseline models
 - 10 items
 - **3** 100 items
- Conclusion