An Algebraic Introduction to Mathematical Logic Chapter 3 Properties of the Propositional Calculus

Section 1 Introduction Exercises

David L. Meretzky

December 20th, 2018

Definition 1. A logic \mathcal{L} is a system consisting of a set P of elements (called propositions), a set \mathcal{V} of functions (called valuations) from P to some value set W, and, for each subset A of P, a set of finite sequences of elements of P (called proofs from the assumptions A).

Example 1. The logic called The Propositional Calculus on the set X, denoted Prop(X), consists of the set \mathcal{V} of all homomorphisms of P(X) onto \mathbb{Z}_2 , and the set of proofs defined as in section 4 of chapter 2.

Definition 2. A logic \mathcal{L} is sound if $A \vdash p$ implies that $A \models p$.

Definition 3. A logic \mathcal{L} is *consistent* if F is not a theorem.

Definition 4. A logic \mathcal{L} is adequate if $A \models p$ implies that $A \implies p$.

Definition 5. A proposition is valid or tautological in a logic if for every valuation $v \in \mathcal{V}$, v(p) = 1 where $W = \mathbb{Z}_2$ and 1 captures our intuitive notion of truth.

Definition 6. A logic \mathcal{L} is decidable for validity if there exists an algorithm which determines for every proposition p, in a finite number of steps, whether or not p is valid.

Definition 7. A logic \mathcal{L} is decidable for provability if there exists an algorithm which determines for every proposition p, in a finite number of steps, whether or not p is a theorem.