Vertex of the Quadratic

 $w_1 = -\frac{b}{2a}$ namely $m(w_1) = C - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{w}_{1} ext{+}\mathsf{h}$, namely

Given a quadratic $m(w) = a w^2 + b w + c$ compute its value at

 $m(W_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = m(w_1 + h) - m(w_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

 $m(w) = 4 w^2 - 24 w - 34$ 1000 500

-300