Augmenting TrojanNet

Luya Gao

TrojanNet

normal

prediction: golden_retriever

attack

prediction: American_egret

Trojan Attack

- Attach trojan network to the target network (TrojanNet)
- Bake trojan weights into the target network (BadNets, TrojanAttack)

Detection: NeuralCleanse

Observations:

- The minimal perturbation to change the classification of the trojaned model to the target label is bounded by the trigger size (small) $\delta_{\forall \to t} \leq |T_t|$
- The minimal perturbation mentioned above should be much smaller than any perturbation necessary to change one label to another naturally

$$\delta_{\forall \to t} \le |T_t| << \min_{i,i \ne t} \delta_{\forall \to i}$$

$$egin{array}{ll} \min_{m{m},m{\Delta}} & \ell(y_t,f(A(m{x},m{m},m{\Delta}))) + \lambda \cdot |m{m}| \ & ext{for} & m{x} \in m{X} \end{array}$$

Approach 1: Spreading Out Trigger Pattern

Approach 1: Spreading Out Trigger Pattern

normal

prediction: macaw

attack

prediction: red_wine

Experiments

- GTSRB dataset
- NeuralCleanse Detection

Results

	Medium	MAD	Anomaly Index
Clean Input	71.988243	13.855023	1.943091
Badnets	60.835297	14.657393	3.171256
TrojanAttack	46.984314	17.343514	2.20504
TrojanNet	71.482353	14.959734	1.790689
AugTrojanNet	76.674515	13.105025	2.033946

Failure Case

A Different Detection Approach

$$\mathbf{x}^* = \arg\max_{\mathbf{x} |s.t.||\mathbf{x}||=\rho} h_{ij}(\theta, \mathbf{x}).$$

$$x_{t+1} = x_t + \beta \frac{\partial}{\partial x} |f_l^n(x)|^2,$$

Traditional trojan model:

$$egin{array}{ll} \min_{m{m},m{\Delta}} & \ell(y_t,f(A(m{x},m{m},m{\Delta}))) + \lambda \cdot |m{m}| \ & ext{for} & m{x} \in m{X} \end{array}$$

• If the trigger value of that patch is 1, find x_t such that

$$\frac{2}{3}x_t + \frac{1}{3n}\Sigma_{patch}x_n > \frac{0.5}{255}$$

• If the trigger value of that patch is 0, find x_{t} such that

$$\frac{2}{3}x_t + \frac{1}{3n}\Sigma_{patch}x_n < \frac{0.5}{255}$$

Activation Pattern Comparison

Activation Pattern Comparison

Future Work

- Test the second attack with NeuralCleanse
- Reduce false positive rate

Conclusion

- Keep trigger pattern together instead of spread out actually is more robust against NeuralCleanese Detection
- When detection algorithms that detect anomalies by scanning neurons for activation patterns, it might be worth considering defending against different variants of trojan patterns