Evaluate the definite integral two ways: first by finding a u-substitution in the definite integral and then by a *u*-substitution in the corresponding indefinite integral.

13.
$$\int_{-2}^{-1} \frac{x}{(x^2+2)^3} dx$$

$$17. \int_1^3 \frac{dx}{\sqrt{x}(x+1)}$$

Evaluate the definite integral by expressing it in terms of u and evaluating the resulting integral using a formula from geometry.

19.
$$\int_{-5/3}^{5/3} \sqrt{25 - 9x^2} dx$$
; $u = 3x$

Evaluate the integral by any method.

39.
$$\int_0^{\sqrt{\pi}} 5x \cos(x^2) dx$$
 43. $\int_0^1 \frac{y^2 dy}{\sqrt{4-3y}}$ 47. $\int_0^1 \frac{x}{\sqrt{4-3x^4}} dx$

43.
$$\int_0^1 \frac{y^2 dy}{\sqrt{4-3y}}$$

$$47. \ \int_0^1 \frac{x}{\sqrt{4-3x^4}} \, dx$$

1.
$$\int_{1}^{1/e} \frac{1}{t} dt =$$

1.
$$\int_{1}^{1/e} \frac{1}{t} dt =$$
 5. $\frac{d}{dx} \int_{0}^{e^{-x}} \frac{1}{1+t^4} dt =$

Find the derivative using Formula (18), and check your answer by evaluating the integral and then differentiating the result.

15. a.
$$\frac{d}{dx} \int_{1}^{x^3} \frac{1}{t} dt$$

b.
$$\frac{d}{dx} \int_1^{\ln x} e^t dt$$

24. Show that

a.
$$\frac{d}{dx} \int_{x}^{a} f(t) dt = -f(x)$$

b.
$$\frac{d}{dx} \int_{g(x)}^{a} f(t)dt = -f(g(x))g'(x)$$

27. Find
$$\frac{d}{dx} \int_{3x}^{x^2} \frac{t-1}{t^2+1} dt$$

30. Prove that the function $F(x) = \int_x^{5x} \frac{1}{t} dt$ is constant on the interval $(0, \infty)$ by finding F'(x). What is the constant?

31. Let $F(x) = \int_0^x f(t)dt$, where f is the function whose graph is shown in the accompanying figure.

- b. On what subintervals of the interval [0,10] is F increasing? Decreasing?
- c. Where does F have its maximum value? Its minimum value?
- d. Sketch the graph of F.

