日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

1998年12月21日

出 願 番 号 Application Number:

平成10年特許願第363186号

出 願 人 Applicant (s):

三菱マテリアル株式会社

1999年 1月22日

特 許 庁 長 官 Commissioner, Patent Office 保佐山建門

特平10-363186

【書類名】 特許願

【整理番号】 P8MB114A

【提出日】 平成10年12月21日

【あて先】 特許庁長官 殿

【国際特許分類】 G02F 1/1333

H05K 3/02

【発明の名称】 セラミックキャピラリリブを形成するためのセラミック

ペースト

【請求項の数】 4

【発明者】

【住所又は居所】 埼玉県大宮市北袋町1丁目297番地 三菱マテリアル

株式会社 総合研究所内

【氏名】 豊田 誠司

【発明者】

【住所又は居所】 埼玉県大宮市北袋町1丁目297番地 三菱マテリアル

株式会社 総合研究所内

【氏名】 鳥海 誠

【発明者】

【住所又は居所】 埼玉県大宮市北袋町1丁目297番地 三菱マテリアル

株式会社 総合研究所内

【氏名】 神田 義雄

【発明者】

【住所又は居所】 埼玉県大宮市北袋町1丁目297番地 三菱マテリアル

株式会社 総合研究所内

【氏名】 黒光 祥郎

【特許出願人】

【識別番号】 000006264

【氏名又は名称】 三菱マテリアル株式会社

【代理人】

【識別番号】

100085372

【弁理士】

【氏名又は名称】

須田 正義

【手数料の表示】

【予納台帳番号】

003285

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 セラミックキャピラリリブを形成するためのセラミックペースト

【特許請求の範囲】

【請求項1】 塑性変形によってセラミックキャピラリリブを形成可能なセラミックペーストであって、

ガラス粉末又はガラス・セラミック混合粉末が30~95重量%と、樹脂が0 3~15重量%と、溶媒が3~70重量%とを含み、

前記溶媒が複数種類の溶剤と可塑剤と分散剤の混合物であり、前記複数種類の溶剤の各沸点が30℃以上異なる

ことを特徴とするセラミックキャピラリリブを形成するためのセラミックペースト。

【請求項2】 塑性変形がセラミックペースト膜(11)に所定のくし歯(12b) を有するブレード(12)をつき刺し、前記ブレード(12)を前記ペースト膜(11)に対して相対的に一定方向に移動することにより行われる請求項1記載のセラミックペースト。

【請求項3】 請求項1又は2記載のセラミックペーストを用いて形成した セラミックキャピラリリブを乾燥焼成してなるセラミックリブ。

【請求項4】 請求項3記載のセラミックリブを有するPDP。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、PDP (plasma display panel: プラズマディスプレイパネル)、PALC (plasma addressed liquid crystal display) 等のFPD (flat pane l display) の製造工程におけるセラミックキャピラリリブ (ceramic capillary rib) を形成するためのセラミックペースト及びこのキャピラリリブから作られたセラミックリブ並びにこのセラミックリブを有するFPDに関するものである

[0002]

【従来の技術】

従来、セラミックリブは、図7に示すようにガラス基板1の上にガラス粉末を含むリブ形成用ペースト2を厚膜印刷法により所定のパターンで位置合わせをして多数回重ね塗りし、乾燥した後に焼成し、基板1上に所定の間隔をあけて作られている。このリブ8の高さHは通常100~300 μ m、リブの幅Wは通常50~100 μ m程度であって、リブとリブで挟まれるセル9の広さSは通常100~300 μ m程度である。

[0003]

【発明が解決しようとする課題】

しかし、上記従来の厚膜印刷法によるセラミックリブの形成方法では、リブの幅Wが50~100μm程度と比較的狭くかつ印刷後にペーストがだれ易いため、厚膜の一回塗りの厚さは焼成上がりで10~20μm程度に小さく抑えなければならない。この結果、この方法では高さHが100~300μmのリブを作るために、厚膜を10~20回もの多くの回数重ね塗りする必要があり、その上重ね塗りした後のリブの高さHをリブの幅Wで除したH/Wが1.5~4程度と大きいために、厚膜印刷時に十分に位置合わせをしても精度良くリブを形成しにくい欠点があった。

本発明の目的は、少ない工程で材料の無駄なく、簡便にかつ精度良くセラミックキャピラリリブを形成でき、キャピラリリブの形状を保ってセラミックリブを 形成し得るセラミックペーストを提供することにある。

本発明の別の目的は、このキャピラリリブから作られたセラミックリブ並びに このセラミックリブを有するFPDを提供することにある。

[0004]

【課題を解決するための手段】

請求項1に係る発明は、塑性変形によってセラミックキャピラリリブを形成可能なセラミックペーストであって、ガラス粉末又はガラス・セラミック混合粉末が30~95重量%と、樹脂が0.3~15重量%と、溶媒が3~70重量%とを含み、溶媒が複数種類の溶剤と可塑剤と分散剤の混合物であり、これらの溶剤

の各沸点が30℃以上異なることを特徴とするセラミックペーストである。

この請求項1に記載されたセラミックペーストでは、上記のようにペーストを配合することにより粘度が1000~500,000cpsのペーストを得ることができ、基板上に形成されたセラミックキャピラリリブのだれを抑制してセラミックキャピラリリブを精度良く形成する。なお、ペーストの粘度は5,000~500,000cpsが好ましく、10,000~300,000cpsが更に好ましい。この所定の粘度を有するペーストに所定の外力を加えると、ペーストが所望の形状のセラミックキャピラリリブに変形し、上記外力を取り去ってもセラミックペーストは元に戻らずに、上記セラミックキャピラリリブは変形した後の形状に保たれる。各沸点が30℃以上異なる複数種類の溶剤を含ませることにより、キャピラリリブの乾燥時に複数種類の溶剤が順次揮発するため、キャピラリリブの形状が歪むことなくその形状を保ったままセラミックリブを作製することができる。

[0005]

請求項2に係る発明は、図1に示すように、請求項1に係る発明であって、塑性変形がセラミックペースト膜11に所定のくし歯12bを有するブレード12をつき刺し、ブレード12をペースト膜11に対して相対的に一定方向に移動することにより行われるペーストである。

この請求項2に記載されたセラミックペーストでは、塑性変形がくし歯12bをペースト膜11につき刺した状態でブレード12をペースト膜11に対して相対的に一定方向に移動することにより行われる。即ち、ペースト膜11のうちブレード12のくし歯12bに対応する箇所のペーストがくし歯12bの隙間に移動するか若しくは掃き取られるので、ペースト膜11がくし歯12bの隙間の形状に変形し、かつくし歯12bの隙間の形状に保たれる。この結果、基板10表面にセラミックキャピラリリブ13が形成される。

[0006]

なお、本明細書で「セラミックキャピラリ」とは、本発明のガラス粉末又はガラス・セラミック混合粉末と有機バインダと溶剤と可塑剤と分散剤を含むセラミックペーストを塗布した後の大部分の有機バインダと溶剤と可塑剤と分散剤が残

存している状態をいう。また「セラミックグリーン」とは、ガラス粉末又はガラス・セラミック混合粉末と樹脂と可塑剤と分散剤が残存している状態で、溶剤の 大部分が残存していない状態をいう。

[0007]

【発明の実施の形態】

次に本発明の第1の実施の形態を図面に基づいて説明する。

図1に示すように、セラミックキャピラリリブ13は基板10の表面にセラミックペーストを塗布して形成されたセラミックペースト膜11に、ブレード12に形成されたくし歯12bをつき刺し、ブレード12のエッジ12aを基板10表面に接触させた状態でブレード12又は基板10を一定方向に移動することにより基板10表面に形成される。セラミックペーストは、ガラス粉末又はガラス・セラミック混合粉末と樹脂と溶媒(複数種類の溶剤と可塑剤と分散剤)とを含むペーストであり、ガラス粉末はSiO₂、ZnO、PbO等を主成分として、その軟化点が300℃~600℃であることが必要である。

[0008]

ガラス・セラミック混合粉末とはSi〇₂、ZnO、PbO等を主成分とするガラス粉末と、フィラーの役割を果すアルミナ、コージェライト、ムライト、フォルステライト等のセラミック粉末とを含むものであり、このセラミック粉末は形成されるリブ13の熱膨張係数をガラス基板10の熱膨張係数と均等にするため、及び焼成後のセラミックリブの強度を向上させるために混合される。セラミック粉末は60容積%以下が好ましい。セラミック粉末が60容積%以上になるとリブが多孔質になり好ましくない。なお、ガラス粉末及びセラミック粉末の粒径はそれぞれ0.1~30μmであることが好ましい。ガラス粉末及びセラミック粉末の粒径が0.1μm未満であると凝集し易くその取扱いが煩わしくなる。また、30μmを越えると後述するブレード12の移動時に所望のリブ13が形成できなくなる不具合がある。

[0009]

セラミックペーストは、ガラス粉末又はガラス・セラミック混合粉末を30~95重量%、樹脂を0.3~15重量%、溶媒(複数種類の溶剤と可塑剤と分散

剤)を3~70重量%それぞれ配合する。また、ガラス粉末又はガラス・セラミ ック混合粉末を70~90重量%、樹脂を0.5~3.5重量%、溶媒(複数種 類の溶剤と可塑剤と分散剤)を7~20重量%それぞれ配合することが好ましい 。ガラス粉末又はガラス・セラミック混合粉末を30~95重量%の範囲に限定 したのは、30重量%未満ではブレードを用いて所定の形状のセラミックキャピ ラリリブを得るのが困難になり、95重量%を越えると基板表面にペーストを均 一に塗布することが困難になるからである。また樹脂を0.3~15重量%の範 囲に限定したのは、0.3重量%未満ではブレードを用いて所定の形状のセラミ ックキャピラリリブを得るのが困難になり、15重量%を越えると基板表面にペ ーストを均一に塗布することが困難になり、かつ焼成後のセラミックリブ内に有 機物が残存するという不具合があるからである。更に溶媒を3~70重量%の範 囲に限定したのは、3重量%未満では基板表面にペーストを均一に塗布すること が困難になるからであり、70重量%を越えるとブレードを用いて所定の形状の セラミックキャピラリリブを得るのが困難になるからである。セラミックペース トを上記のように配合することにより粘度が1000~500、000cpsの ペーストを得ることができ、基板上に形成されたセラミックキャピラリリブ13 のだれを抑制してセラミックキャピラリリブ13を精度良く形成することができ る。

[0010]

樹脂はバインダとしての機能を有し、熱分解しやすく、溶剤に溶けて高粘度を 有するポリマーであって、エチルセルロース、アクリル又はポリビニルブチラー ルなどが挙げられる。

溶剤としてはアルコール系、エーテル系、芳香族系等の有機溶剤もしくは水が挙げられる。有機溶剤はアルコール系及びエーテル系が好ましい。好ましいアルコールにはトリエチレングリコール、αテレピネオール等が挙げられる。また好ましいエーテルにはジエチルエーテル等が挙げられる。複数種類の溶剤は沸点がそれぞれ30℃以上異なる。最も配合量の多い溶剤の配合割合は80重量%以下が好ましく、60重量%以下が更に好ましい。また最も配合量の少ない溶剤の配合割合は10重量%以上が好ましく、30重量%以上が更に好ましい。キャピラ

リリブ形成後の乾燥時にこれらの溶剤が順次揮発し易くなるためである。これらの溶剤を例示すれば、150℃前後の沸点の溶剤としてメトキシエチルアセテート、2-エトキシエタノール等があり、200℃前後の沸点の溶剤としてαテレピネオールがあり、300℃以上の沸点の溶剤としてテトラエチレングリコール、1,5-ペンタンジオール等があるので、これらを適宜組合せることにより、本発明の溶剤が得られる。可塑剤としてはグリセリン、ジブチルフタレート等が挙げられ、分散剤としてはベンゼンやスルフォン酸等が挙げられる。

[0011]

セラミックペーストの基板10表面への塗布は、ローラコーティング法、スクリーン印刷法、ディップ法又はドクタブレード法等の既存の手段により行われる。基板10表面にペーストが塗布されペースト膜11が形成された後、3~6時間程度放置される。次いでペースト膜11をブレード12により塑性変形させてセラミックキャピラリリブ13を形成する。

このペースト膜11の形成された基板10表面に接触させるブレード12には複数のくし歯12bが等間隔にかつ同一方向に形成される。このブレード12はセラミックペーストとの反応やペーストに溶解されることのない金属、セラミック又はプラスチック等により作られ、特に、寸法精度、耐久性の観点からセラミック若しくはFe, Ni, Co基の合金が好ましい。それぞれのくし歯12bの隙間はこのブレード12により形成されるセラミックキャピラリリブ13の断面形状に相応して形成される。図3及び図4に示すように、本実施の形態におけるブレード12は厚さtが0.7mmのステンレススチールにより形成され、くし歯12bのピッチPが300μmであって、くし歯12bの隙間の深さhが300μmに形成される。

[0012]

ここで、ブレード 12は、厚さ t が 0.01 m m 以上 3.0 m m 以下であって、くし歯 12 b の に の と の に かって、くし歯 12 b の に 間 を w、その 隙間 の 深さを h と するとき、0.03 m m \leq h \leq 1.0 m m で ありかつ w ℓ P \leq 0.9 の 関係にあって、くし歯 12 b の ピッチ P は 50 ℓ m 以上であることが 好ましい。これらの条件を 満たす ブレード 12 により 形成された セラミックキャピラリリブ 13

は、その後の乾燥及び焼成により引き締り、所望のリブの隙間を有する緻密なセ ラミックリブを得ることができる。

また、くし歯12bの隙間の形状は図3に示すように方形状に形成する場合のみならず、最終的に作られるFPDの用途によりくし歯12bの隙間の形状を台形状又は逆台形に形成してもよい。くし歯12bの隙間の形状を台形にすれば、開口部を広くした用途に適したセラミックキャピラリリブ13を形成することができ、くし歯12bの隙間の形状を逆台形にすれば、リブの頂部が広い面積で平坦化したセラミックキャピラリリブ13を形成することができる。

[0013]

図1に戻って、このように構成されたブレード12によるセラミックキャピラリリブ13の形成は、ブレード12のくし歯12bをペースト膜11につき刺し、エッジ12aを基板10表面に接触させた状態で、基板10を固定して図1の実線矢印で示すようにブレード12を一定方向に移動するか、又はブレード12を固定して図1の破線矢印で示すように基板10を一定方向に移動させてペースト膜11を塑性変形させることにより行われる。即ち、上記移動により基板10表面に塗布されたペーストのブレード12のくし歯12bの隙間にも置するペーストのが基板10上に残存して基板10表面にセラミックキャピラリリブ13が形成される。くし歯の溝の深さがペースト膜11の厚さより大きい場合にはブレード12又はガラス基板10を移動するときに掃き取られたペーストが溝に入り込みペースト膜11の厚さ以上の高さを有するセラミックキャピラリリブ13を形成できる。

このセラミックキャピラリリブ13を形成した後、大気中100~200℃で 10~30分間乾燥してセラミックグリーンリブを形成する。本発明ではセラミックペーストに各沸点が30℃以上異なる複数種類の溶剤を含ませているため、 乾燥時に溶剤が一度に揮発せず、単一種類の溶剤を含んでいた場合と比較して、 キャピラリリブ13の形状が良好に保たれてセラミックグリーンリブになる。続いて脱バインダのため大気中300~400℃で30分間~3時間加熱し、更に 大気中520~580℃で10~30分間焼成することにより、図2に示す型崩 れのないセラミックリブ14になる。

このセラミックリブを用いて図示しないPDP、PALC等のFPDを作製することができる。

[0014]

上述のようにして基板10上に形成されたセラミックリブ14は、図2の拡大した円内に示すように、リブ14の高さをHとし、高さ(1/2)Hのところのリブ14の幅を W_C 、高さ(3/4)Hのところのリブ14の幅を W_M 及び高さ(9/10)Hのところのリブ14の幅を W_T とするとき、H、 W_C 、 W_M 及び W_T のそれぞれの(最大値-平均値)/平均値で表されるばらつきが5%以下であって、 H/W_C で表されるアスペクト比が1.5~10であることが好ましい。アスペクト比が1.5~10であることが好ましい。アスペクト比が1.5~10であることにより、極めて高精細なセラミックリブ14が得られる。

[0015]

図5及び図6は本発明の第2の実施の形態を示す。図5及び図6において図1 及び図2と同一符号は同一部品を示す。

この実施の形態では、上記第1の実施の形態と同様に基板10の表面に形成されたセラミックペースト膜11にブレード12のくし歯12bをつき刺し、ブレード12のエッジ12aを基板10表面から所定の高さ浮上した状態でブレード12又は基板10を一定方向に移動してペースト膜11を塑性変形させることにより、基板10表面にセラミックキャピラリ層22とこのセラミックキャピラリ層22上にセラミックキャピラリブ23が形成される。ペーストの成分及びペーストの塗布方法は上記第1の実施の形態と同一に構成される。

[0016]

ブレード12によるセラミックキャピラリリブ23の形成は、図5に示すように、ブレード12のエッジ12aをペースト膜11を形成した基板10表面から所定の高さ浮上した状態で基板10を固定して実線矢印で示すようにブレード12を一定方向に移動するか、又はブレード12を固定して破線矢印で示すように基板10を一定方向に移動させることにより行われる。この移動により基板10表面から所定の高さまでのペーストは基板表面上に残存してセラミックキャピラ

リ層22を形成し、このセラミックキャピラリ層22より上方のペーストにおけるブレード12のくし歯12bに対応する箇所はくし歯12bの隙間に移動するか若しくは掃き取られ、くし歯12bの隙間に位置するペーストのみがセラミックキャピラリ層22上に残存してセラミックキャピラリ層22上にセラミックキャピラリリブ23が形成される。

[0017]

次に上記セラミックキャピラリ層22及びセラミックキャピラリリブ23から上記第1の実施の形態の方法と同様にして、図5に示す基板10上に絶縁層24が形成され、この絶縁層24上にセラミックリブ25が形成される。

絶縁層 24 上に形成されたセラミックリブ 25 は、図 6 の拡大した円内に示すように、リブ 25 の高さを 1 と

[0018]

【実施例】

次に本発明の実施例を比較例とともに詳しく説明する。

<実施例1>

平均粒径 0.8μ mの $PbO-SiO_2-B_2O_3$ 系ガラス粉末を80重量%と、セラミックフィラーとして平均粒径 0.3μ mのアルミナ粉末を20重量%とを用意し、両者を十分に混合した。この混合粉末と樹脂としてのエチルセルロースと溶媒とを重量比で80/0.5/19.5の割合で配合し、十分に混練してセラミックペーストを得た。溶媒はメトキシエチルアセテート、 α テレピネオール及びテトラエチレングリコールの3種類の溶剤を重量比で1/1/1の割合で混合して調製した。対角寸法が40インチであって、厚さが3mmのソーダライム系の長方形のガラス基板10を固定した状態で、このガラス基板10上に上記ペーストを図1に示すようにローラコーティング法により厚さ 250μ mで塗布

してペースト膜11を形成した。

[0019]

一方、くし歯12bのピッチPが300μmであって、くし歯12bの隙間wが150μm、その深さhが300μm、厚さtが0.7mmのステンレス鋼により形成されたブレード12を用意した(図3及び図4)。ペーストを塗布してから大気中室温下で3時間放置した後、ガラス基板を固定したまま、このブレード12のくし歯12bをペースト膜につき刺し、そのエッジ12aをガラス基板10に接触させた状態で、図1の実線矢印で示す方向にブレード12を一定方向に移動してペースト膜11を塑性変形させることにより、基板10表面にセラミックキャピラリリブ13を形成した。

[0020]

<実施例2>

平均粒径 2 μ mの P b O - S i O 2 - B 2 O 3系ガラス粉末を 5 O 重量%と、セラミックフィラーとして平均粒径 1 μ mの アルミナ粉末を 5 O 重量%とを用意し、両者を十分に混合して混合粉末を作製した。この混合粉末と樹脂としてのエチルセルロースと溶媒とを重量比で 7 5 / 1 / 2 4 の割合で配合し、十分に混練してセラミックペーストを得た。溶媒は 2 - エトキシエタノール、αテレピネオール及び 1 , 5 - ペンタンジオールの 3 種類の溶剤を重量比で 2 / 2 / 1 の割合で混合して調製した。このペーストを実施例 1 と同様にして実施例 1 と同じガラス基板上に塗布しペースト膜を形成した。大気中室温下で 3 時間放置した後、このペースト膜にブレードをつき刺して移動し、ペースト膜を塑性変形させることにより、基板表面にセラミックキャピラリリブを形成した。

[0021]

<比較例1>

図7に示すように、ソーダライム系ガラス基板1上にガラス粉末と有機バインダと溶媒とを含む粘度が50,000cpsのリブ形成用ペースト2をスクリーン印刷法により所定のパターンで位置合わせをして印刷し、150℃で10分間乾燥する工程を12回繰返して重ね塗りした。この重ね塗りはセラミックグリーンリブ2の高さHが200μmとなるように設定した。上記リブ形成用ペースト

としてはSiO₂、ZnO及びPbOを主成分とするガラス粉末とAl₂O₃粉末とを含む。また有機バインダとしてはエチルセルロースを用い、更に溶媒としてはαーテレピネオールを用いた。これにより所定の間隔(セル9の広さS)をあけてセラミックグリーンリブ2を形成した。次に基板1上にセラミックグリーンリブ2が形成された構造体を大気中で550℃で1時間熱処理することにより、基板1上に高さHが約170μmのセラミックリブ8を形成した。

[0022]

<比較試験及び評価>

実施例1及び実施例2の基板10に形成されたセラミックキャピラリリブ13を大気中150℃で20分間乾燥して溶媒を脱離させることによりセラミックグリーンリブ(図示せず)にし、更に脱バインダのために350℃で60分間加熱した後に、大気中530℃で10分間焼成してセラミックリブ14とした。

このように焼成して得られた実施例1及び実施例2のセラミックリブ14のそれぞれ任意の100本と、比較例1で得られたセラミックリブ8の任意の100本について、その高さH及び幅を以下のようにそれぞれ測定した。

図2に示すように、実施例1,2及び比較例1の基板上の任意の100本のセラミックリブの幅の測定は、セラミックリブの高さをHとしたときの高さ(1/2)Hのところのリブの幅 W_C と、高さ(3/4)Hのところのリブの幅 W_M と、高さ(9/10)Hのところのリブの幅 W_T とをそれぞれ測定することにより行った。

またこれらの測定値の平均値を算出した後、H、 W_C 、 W_M 及び W_T のそれぞれの(最大値又は最小値-平均値)/平均値で表されるばらつきを算出した。表1に実施例1, 2の結果を比較例1の結果と対比させて示す。

[0023]

【表1】

f				, <u> </u>
		実施例1	実施例2	比較例1
H (100個)	(μm)	151~153	181~184	161~182
W _T (100個)	(μm)	71~73	51~53	38~44
W _м (100個)	(μm)	84~87	63~65	41~48
Wc(100個)	(μm)	92~94	78~81	49~56
H (平均值)	(μm)	152.22	182.59	171-52
W T (平均值)	(μm)	72.12	51.89	41.03
W _M (平均值)	(μm)	85.46	64.06	44.47
W c (平均值)	(μm)	93.02	79.55	52.54
Hのばらつき	(%)	+0.5/-0.8	+0.8/-0.9	+6.1/-6.1
Wτのばらつき	(%)	+1.2/-1.6	+2.1/-1.7	+7.2/-7.4
W _M のばらつき	(%)	+1.8/-1.7	+1.5/-1.7	+7.9/-7.8
Wcのばらつき	(%)	+1.1/-1.1	+1.8/-1.9	+6.5/-6.7

[0024]

表1から明らかなように、比較例1と比べて、実施例1及び実施例2では、セラミックキャピラリリブを形成した後、これを乾燥するときに3種類の溶剤が順次揮発するため、キャピラリリブの形崩れがなく、そのままの形状でセラミックグリーンリブができ、このグリーンリブから高さと幅のばらつきの小さいセラミックリブを基板上に形成できることが判った。

[0025]

【発明の効果】

以上述べたように、本発明によれば、セラミックペーストを塑性変形させてセ ラミックキャピラリリブを形成したので、所定の粘度を有するペーストに所定の 外力を加えると、ペーストが所望の形状のセラミックキャピラリリブに変形し、上記外力を取り去ってもペーストは元に戻らずに、上記セラミックキャピラリリブは変形した後の形状に保たれる。またセラミックペーストがガラス粉末又はガラス・セラミック混合粉末が30~95重量%と、樹脂が0.3~15重量%と、溶媒が3~70重量%とを含むように構成すれば、所定の粘度のペーストを得ることができ、セラミックキャピラリリブのだれを抑制できる。この結果、少ない工程で材料の無駄なく、簡便にかつ精度良くセラミックキャピラリリブを形成することができる。

またこの塑性変形をセラミックペースト膜にくし歯をつき刺した状態でブレードをペースト膜に対して相対的に一定方向に移動することにより行うと、ペースト膜のうちブレードのくし歯に対応する箇所のペーストがくし歯の隙間に移動するか若しくは掃き取られるので、ペースト膜がくし歯の隙間の形状に変形し、かつくし歯の隙間の形状に保たれる。この結果、上記と同様に少ない工程で材料の無駄なく、簡便にかつ精度良くセラミックキャピラリリブを形成することができる。

[0026]

上記溶媒に各沸点が30℃以上異なる複数種類の溶剤を含ませることにより、 キャピラリリブの乾燥時に複数種類の溶剤が順次揮発するため、キャピラリリブ の形状が歪むことなくその形状を保ったままセラミックリブを作製することがで きる。

本発明のセラミックキャピラリリブを乾燥焼成すれば、高精細なセラミックリブを形成でき、かつこのセラミックリブをFPDに利用すれば、高品質のFPDが得られる。

【図面の簡単な説明】

【図1】

本発明第1実施形態のセラミックキャピラリリブの形成状態を示す斜視図。

【図2】

図1のA-A線断面におけるセラミックキャピラリリブを乾燥、加熱及び焼成することにより得たセラミックリブを示す断面図。

【図3】

そのブレードの正面図。

【図4】

図3のB-B線断面図。

【図5】

本発明第2実施形態のセラミックキャピラリ層付リブの形成状態を示す図1に 対応する斜視図。

【図6】

図5のB-B線断面におけるセラミックキャピラリ層付リブを乾燥、加熱及び 焼成することにより得た絶縁層付セラミックリブを示す図2に対応する断面図。

【図7】

従来のセラミックリブの形成を工程順に示す断面図。

【符号の説明】

- 10 ガラス基板
- 11 セラミックペースト膜
- 12 ブレード
- 12a エッジ
- 12b くし歯
- 13,23 セラミックキャピラリリブ
- 14, 25 セラミックリブ
- 22 セラミックキャピラリ層
- 24 絶縁層

【書類名】 図面

【図1】

【図2】

14 セラミックリブ

【図3】

【図4】

【図5】

【図6】

5

【図7】

【書類名】 要約書

【要約】

【課題】少ない工程で材料の無駄なく、簡便にかつ精度良くセラミックキャピ ラリリブを形成し、キャピラリリブの形状を保ってセラミックリブを形成する。

【解決手段】塑性変形によってセラミックキャピラリリブを形成可能なセラミックペーストである。このペーストはガラス粉末又はガラス・セラミック混合粉末が30~95重量%と、樹脂が0.3~15重量%と、溶媒が3~70重量%とを含む。溶媒が複数種類の溶剤と可塑剤と分散剤の混合物であり、これらの溶剤の各沸点が30℃以上異なる。ペーストの塗布してペースト膜11にした後、この状態でペースト膜11にブレード12をつき刺し、このブレードをペースト膜11に対して相対的に一定方向に移動することにより、ペースト膜11を塑性変形してセラミックキャピラリリブ13が形成される。キャピラリリブの乾燥時に複数種類の溶剤が順次揮発し、キャピラリリブの形状を保つ。

【選択図】 図1

出願人履歴情報

識別番号

[000006264]

1. 変更年月日 1992年 4月10日

[変更理由] 住所変更

住 所 東京都千代田区大手町1丁目5番1号

氏 名 三菱マテリアル株式会社