Semestre 4

TD nº 1 — Les emprunts et les prêts

1 Intérêts simples

Nombre de jours 17 + 30 + 31 + 31 + 28 + 28 = 165

$$\frac{165}{360} \times 47500 \times 0.125 = 2721.35$$

R Intérêts simples $Intérets = C \times Taux \times duree$ Intérêts composés $C_n = C_0 \times (1+i)^n$

2 Valeurs acquises à intérêts simples

$$I = \frac{6+30+31+30+31+16}{360} \times 38000 \times (0.016 \times 12) = \mathbf{2918.4}$$

 $C_n = 38000+2918.4=\mathbf{40918.4}$

3 Valeur acquise à intérêts composés

$$C_n = C_0 \times (1+i)^n$$

 $C_8 = 10000 \times (1+0.125)^8 = 25657.85$

4 Capitalisation semestrielle

$$C_n = C_0 \times (1+i)^n$$

 $C_7 = 10000 \times (1+0.06)^{7\times 2} = 22609.04$

5 Valeur actuelle à intérêts composés

$$535897 = C_1 \times (1+0.10)^8$$

$$C_1 = \frac{535897}{(1+0.10)^8} = \mathbf{249999.91}$$

6 Valeur actuelle d'un capital

On ramène toutes les dépenses en 0 c'est-à-dire au 1^{er} Janvier 2010, on se pose donc la question "Combien fallait il placer en 0 pour pouvoir ensuite faire ces dépenses?".

On choisira donc la solution, qui demandera le placement le plus faible.

Solution A $400000 - (3\% \ de \ 400000) \ en \ 0 = 388000$

Solution B $215000 \times (1.09)^0 + 215000 \times (1.09)^{-1} = 412247.7$

Solution C $150000 \times (1.09)^{-1} + 150000 \times (1.09)^{-2} + 150000 \times (1.09)^{-3} = 379694.18$

Conclusion On constate que la solution qui demande le moins d'argent en 0 est la solution C. C'est donc la plus intéressante pour l'entreprise.

7 Emprunt remboursé par amortissements constants

Échéance	Capital restant dû	Intérêts	Amortissements	Semestrialité	Capital restant dû
	en début de période				en fin de période
31/08/N	100000	10000	20000	30000	80000
28/02/N+1	80000	8000	20000	28000	60000
31/08/N+1	60000	6000	20000	26000	40000
28/02/N+2	40000	4000	20000	24000	20000
31/08/N+2	20000	2000	20000	22000	0

Table 1 - Tableau d'amortissement

8 Emprunt remboursé par annuités constantes

Formule:
$$a = V_0 \times \frac{i}{1 - (1 \times i)^{-n}}$$

$$a = 150\ 000 \times \frac{0.10}{1 - 1.10^{-5}} = 39\ 569.62 \approx 39\ 570$$

Échéance	Capital restant	Intérêts annuels	Amortissements	Annuités
	dû en début			
1/3/N+1	200 000	28 000	40 641	68 641
1/3/N+2	159 359	22 310.26	46 330.74	68 641
1/3/N+3	113 028.26	15 823.95	52 817641.04	68 641
1/3/N+4	60 211.21	8 429.57	60 211.21	68 640.78

Table 2 - Tableau d'amortissements

9 Étude d'un financement

10 Financement de l'investissement

Échéance	Capital restant	Intérêts annuels	Amortissements	Annuités
	dû en début			
01/01/2011	80 000	84 000	17 111	25 511
01/01/2012	62 889	6 603.35	18 907.65	25 511
01/01/2013	43 981.35	4 618.04	20 892.96	25 511
01/01/2014	23 088.39	2 424.28	23 088.39	25 512.67

Table 3 – Tableau d'amortissements