Exercise Sheet 10

Robin Schmidt Probabilistic Inference & Learning

January 11, 2019

Graphical Models

1. The Sum-Product Algorithm

We get the following six messages to the root:

$$\mu_{x_1 \to f_a}(x_1) = 1$$

$$\mu_{f_a \to x_2}(x_2) = \sum_{x_1} f_a(x_1, x_2)$$

$$\mu_{x_2 \to f_b}(x_2) = \mu_{f_a \to x_2}(x_2) \,\mu_{f_c \to x_2}(x_2)$$

$$\mu_{f_b \to x_3}(x_3) = \sum_{x_2} f_b(x_2, x_3) \,\mu_{x_2 \to f_b}(x_2)$$

$$\mu_{x_4 \to f_c}(x_4) = 1$$

$$\mu_{f_c \to x_2}(x_2) = \sum_{x_4} f_c(x_2, x_4)$$

As well as the following six messages to the leaves:

$$\mu_{x_3 \to f_b}(x_3) = 1$$

$$\mu_{f_b \to x_2}(x_2) = \sum_{x_3} f_b(x_2, x_3)$$

$$\mu_{x_2 \to f_a}(x_2) = \mu_{f_b \to x_2}(x_2) \,\mu_{f_c \to x_2}(x_2)$$

$$\mu_{f_a \to x_1}(x_1) = \sum_{x_2} f_a(x_1, x_2) \,\mu_{x_2 \to f_a}(x_2)$$

$$\mu_{x_2 \to f_c}(x_2) = \mu_{f_a \to x_2}(x_2) \,\mu_{f_b \to x_2}(x_2)$$

$$\mu_{f_c \to x_4}(x_4) = \sum_{x_2} f_c(x_2, x_4) \,\mu_{x_2 \to f_c}(x_2)$$

(a)

Proof. Using the messages stated above, we can confirm that the product on incoming messages gives the correct marginal for x_2 . We do this by combining all incoming messages to x_2 and keeping $p(x_1, \ldots, x_4) = f_a(x_1, x_2) \cdot f_b(x_2, x_3) \cdot f_c(x_2, x_4)$ in mind like:

$$\begin{split} p(x_2) &= \mu_{f_a \to x_2} \left(x_2 \right) \cdot \mu_{f_b \to x_2} \left(x_2 \right) \cdot \mu_{f_c \to x_2} \left(x_2 \right) \\ &= \sum_{x_1} f_a(x_1, x_2) \cdot \sum_{x_3} f_b \left(x_2, x_3 \right) \cdot \sum_{x_4} f_c \left(x_2, x_4 \right) \\ &= \sum_{x_1} \sum_{x_3} \sum_{x_4} f_a(x_1, x_2) \cdot f_b \left(x_2, x_3 \right) \cdot f_c \left(x_2, x_4 \right) \\ &= \sum_{x_1, x_3, x_4} p(x_1, x_2, x_3, x_4) \end{split}$$

(b)

Proof. Using an analogous method and combining all incoming messages to x_3 and $p(x_1, \ldots, x_4) = f_a(x_1, x_2) \cdot f_b(x_2, x_3) \cdot f_c(x_2, x_4)$ we get:

$$p(x_3) = \mu_{f_b \to x_3}(x_3)$$

$$= \sum_{x_2} f_b(x_2, x_3) \mu_{x_2 \to f_b}(x_2)$$

$$= \sum_{x_2} f_b(x_2, x_3) \mu_{f_a \to x_2}(x_2) \mu_{f_c \to x_2}(x_2)$$

$$= \sum_{x_2} f_b(x_2, x_3) \sum_{x_1} f_a(x_1, x_2) \sum_{x_4} f_c(x_2, x_4)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_4} f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$$

$$= \sum_{x_1, x_2, x_4} p(x_1, x_2, x_3, x_4)$$

Proof. Using an analogous method and combining all incoming messages to x_1 and $p(x_1, \ldots, x_4) = f_a(x_1, x_2) \cdot f_b(x_2, x_3) \cdot f_c(x_2, x_4)$ we get:

$$p(x_1) = \mu_{f_a \to x_1}(x_1)$$

$$= \sum_{x_2} f_a(x_1, x_2) \mu_{x_2 \to f_a}(x_2)$$

$$= \sum_{x_2} f_a(x_1, x_2) \mu_{f_b \to x_2}(x_2) \mu_{f_c \to x_2}(x_2)$$

$$= \sum_{x_2} f_a(x_1, x_2) \sum_{x_3} f_b(x_2, x_3) \sum_{x_4} f_c(x_2, x_4)$$

$$= \sum_{x_2} \sum_{x_3} \sum_{x_4} f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$$

$$= \sum_{x_2, x_3, x_4} p(x_1, x_2, x_3, x_4)$$

(c)

Following the logic from (b) we can construct the joint as follows:

Proof.

$$p(x_1, x_2) = \sum_{x_3, x_4} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_3, x_4} f_a(x_1, x_2) \cdot f_b(x_2, x_3) \cdot f_c(x_2, x_4)$$

$$= f_a(x_1, x_2) \sum_{x_3} f_b(x_2, x_3) \sum_{x_4} f_c(x_2, x_4)$$

$$= f_a(x_1, x_2) \mu_{f_b \to x_2}(x_2) \mu_{f_c \to x_2}(x_2)$$

$$= f_a(x_1, x_2) \mu_{x_2 \to f_a}(x_2) \underbrace{\mu_{x_1 \to f_a}(x_1)}_{=1}$$

$$= f_a(x_1, x_2) \cdot \prod_{i=1,2} \mu_{x_i \to f_a}(x_i)$$

2.

If the variables x_a and x_b do not have a common factor, we can evaluate the joint distribution $p(x_a, x_b)$ by introducing a common factor $\delta(x_a - x_b)$ into the graph. It holds that $p(x_a, x_b) \propto p(x_a|x_b)$.

3.

For the discrete variables x and y with $x, y \in \{0; 1; 2\}$ we can construct a joint distribution p(x, y) having the property that the value \hat{x} that maximizes the marginal p(x) and \hat{y} that maximizes the marginal p(y) together have probability zero under the joint distribution $p(\hat{x}, \hat{y}) = 0$. In the following example this is true for $\hat{x} = 1$ and $\hat{y} = 1$:

		x				
		0	1	2	marginal	
У	0	$\frac{1}{36}$	$\frac{2}{9}$	$\frac{1}{36}$	$\frac{10}{36}$	
	1	$\frac{2}{9}$	0	$\frac{2}{9}$	$\frac{4}{9}$	
	2	$\frac{1}{36}$	$\frac{2}{9}$	$\frac{1}{36}$	10 36	
	marginal	10 36	$\frac{4}{9}$	$\frac{10}{36}$		

If x, y are binary values such a situation is not possible, due to the following problem. We try to construct an example, where $\hat{x} = 1$ and $\hat{y} = 1$ maximize the marginal and are zero in joint. In this example we can see, that z can't be equal to 0 because then the marginal of \hat{x}

		X			
		0	1	marginal	
	0	Z	$\frac{1}{2} - \frac{z}{2}$	$z + \frac{1}{2} - \frac{z}{2}$	
у	1	$\frac{1}{2} - \frac{z}{2}$	0	$\frac{1}{2} - \frac{z}{2}$	
	marginal	$z + \frac{1}{2} - \frac{z}{2}$	$\frac{1}{2} - \frac{z}{2}$		

and \hat{y} wouldn't maximize and would just be of equal value. Therefore we set z to a really small value greater than 0. This causes the other marginals to get a higher value than the marginal of \hat{x} or \hat{y} . This can't be changed, due to the zero at \hat{x}, \hat{y} and therefore causes these marginals to always be smaller by the amount of z.