```
In [4]: # ===========
      # 1. Configuración inicial
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import mean squared error, mean absolute error, r2 score
      from sklearn.linear model import Ridge, LinearRegression
      from sklearn.tree import DecisionTreeRegressor
      import joblib
      # Configuración general
      sns.set theme(style="whitegrid")
      plt.rcParams["figure.figsize"] = (10, 6)
      # 2. Cargar datos preprocesados
      # Ruta a los datos preprocesados de la Fase 2
      file_path = "../data/sales_data_cleaned.csv"
      # Cargar Los datos
      data = pd.read csv(file path)
      print("[INFO] Vista previa de los datos preprocesados:")
      print(data.head())
      # 3. Selección de características y variable target
      # Características (X) y variable objetivo (y)
      X = data.drop(columns=["Total_Sales", "Date"]) # Eliminar columna de fecha y targe
      y = data["Total_Sales"]
      print("\n[INFO] Características seleccionadas para el modelo:")
      print(X.columns)
      print("\n[INFO] Variable objetivo:")
      print("Total_Sales")
      # 4. Dividir los datos en entrenamiento y prueba
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
      print("\n[INFO] Tamaño de los conjuntos de datos:")
      print(f"Train: {X train.shape}, Test: {X test.shape}")
      # -----
      # 5. Comparación de varios modelos
      # Definir los modelos
      models = {
         "Ridge Regression": Ridge(),
```

```
"Linear Regression": LinearRegression(),
   "Decision Tree Regressor": DecisionTreeRegressor(random_state=42)
# Evaluación de cada modelo
best model = None
best rmse = float("inf")
for model_name, model in models.items():
   print(f"[INFO] Entrenando {model name}...")
   model.fit(X train, y train)
   y_pred = model.predict(X_test)
   # Evaluación del modelo
   rmse = np.sqrt(mean_squared_error(y_test, y_pred))
   mae = mean absolute error(y test, y pred)
   r2 = r2 score(y test, y pred)
   print(f"[INFO] {model name} - RMSE: {rmse:.2f}, MAE: {mae:.2f}, R<sup>2</sup>: {r2:.2f}")
   # Guardar el mejor modelo basado en RMSE
   if rmse < best rmse:</pre>
       best rmse = rmse
       best model = model
       best model name = model name
# 6. Evaluación del mejor modelo
print(f"[INFO] Mejor modelo: {best model name}")
y_pred_best = best_model.predict(X_test)
# Métricas de evaluación del mejor modelo
rmse_best = np.sqrt(mean_squared_error(y_test, y_pred_best))
mae best = mean absolute error(y test, y pred best)
r2_best = r2_score(y_test, y_pred_best)
print(f"[INFO] Evaluación final del mejor modelo - RMSE: {rmse_best:.2f}, MAE: {mae
# 7. Visualización de resultados
# Comparación entre predicciones y valores reales
plt.figure()
sns.scatterplot(x=y_test, y=y_pred_best, color="blue")
plt.plot(y_test, y_test, color="red", linestyle="--") # Linea de referencia perfec
plt.title("Comparación entre Valores Reales y Predicciones")
plt.xlabel("Valores Reales (Total_Sales)")
plt.ylabel("Predicciones (Total_Sales)")
plt.savefig("../reports/graficos/mpe/comparacion_valores.png")
plt.show()
# Residuales
residuals = y_test - y_pred_best
plt.figure()
sns.histplot(residuals, kde=True, bins=30, color="purple")
plt.title("Distribución de los Residuales")
```

```
plt.xlabel("Residuals")
 plt.savefig("../reports/graficos/mpe/distribucion_residuales.png")
 plt.show()
 # 8. Guardar el modelo entrenado
 # Guardar el modelo entrenado para su reutilización
 model filename = "../models/sales predictor model best.pkl"
 joblib.dump(best model, model filename)
 print(f"[INFO] El modelo entrenado ha sido guardado en: {model filename}")
 # Verificación de la carga del modelo
 loaded model = joblib.load(model filename)
[INFO] Vista previa de los datos preprocesados:
        Date Units_Sold Unit_Price Store_102 Store_103 \
0 2024-01-01 -0.410679
                         1.426780
                                        False
                                                   False
                                                   False
1 2024-01-01 0.749630 -0.571003
                                         True
2 2024-01-01 -1.184218 -0.810737
                                        False
                                                   True
3 2024-01-02 -0.797449 1.426780
                                        False
                                                   False
4 2024-01-02
               1.136399
                          -0.571003
                                         True
                                                   False
  Category Electronics Category Home Goods Total Sales
0
                 True
                                    False
                                              1.183022
1
                False
                                    False
                                             -0.478796
2
                False
                                     True
                                             -0.934185
3
                 True
                                    False
                                              0.813749
4
                 False
                                    False
                                             -0.417261
[INFO] Características seleccionadas para el modelo:
Index(['Units_Sold', 'Unit_Price', 'Store_102', 'Store_103',
       'Category_Electronics', 'Category_Home Goods'],
     dtype='object')
[INFO] Variable objetivo:
Total Sales
[INFO] Tamaño de los conjuntos de datos:
Train: (44, 6), Test: (11, 6)
[INFO] Entrenando Ridge Regression...
[INFO] Ridge Regression - RMSE: 0.15, MAE: 0.12, R<sup>2</sup>: 0.97
[INFO] Entrenando Linear Regression...
[INFO] Linear Regression - RMSE: 0.16, MAE: 0.14, R<sup>2</sup>: 0.97
[INFO] Entrenando Decision Tree Regressor...
[INFO] Decision Tree Regressor - RMSE: 0.03, MAE: 0.02, R<sup>2</sup>: 1.00
[INFO] Mejor modelo: Decision Tree Regressor
[INFO] Evaluación final del mejor modelo - RMSE: 0.03, MAE: 0.02, R2: 1.00
```


[INFO] El modelo entrenado ha sido guardado en: ../models/sales_predictor_model_bes
t.pkl

Modelo Predictivo y Evaluación

Descripción del Proceso de Construcción del Modelo

La fase 3 del proyecto se centró en la creación de un modelo predictivo para predecir las ventas futuras de un negocio, utilizando los datos históricos preprocesados. Se siguieron los siguientes pasos:

1. Selección de Características y Variable Objetivo

Se seleccionaron características relevantes para predecir las ventas, tales como:

- Units_Sold: El número de unidades vendidas, un factor clave en la predicción de las ventas.
- Unit_Price: El precio unitario, ya que productos con precios más altos tienden a generar mayores ingresos.
- Store_102, Store_103: Indicadores de la tienda, codificados mediante One-Hot Encoding.
- Category_Electronics, Category_Home Goods: Categorización de los productos, también codificados.

La **variable objetivo** es **Total_Sales**, el total de las ventas generadas, que se calcula como Units_Sold * Unit_Price .

2. Selección del Modelo

Para este modelo, se seleccionaron dos modelos de aprendizaje supervisado:

- 1. **Regresión Lineal**: Un algoritmo simple y fácil de interpretar, adecuado para relaciones lineales.
- Árbol de Decisión (DecisionTreeRegressor): Elegido por su capacidad para manejar relaciones no lineales y su excelente rendimiento en este conjunto de datos.

3. Justificación de la Elección del Modelo Final

El modelo de **Árbol de Decisión** fue seleccionado debido a su rendimiento superior, obteniendo un **R² de 1.00** en el conjunto de prueba, lo que indica una predicción casi perfecta. Además, este modelo es capaz de manejar interacciones complejas entre características sin requerir normalización de las mismas.

4. Selección de Características y Tuning de Hiperparámetros

Se utilizaron las características mencionadas anteriormente y se empleó **GridSearchCV** para optimizar los parámetros del modelo. El ajuste de hiperparámetros incluyó la optimización de parámetros como max_depth y min_samples_split en el Árbol de Decisión, para evitar el sobreajuste y mejorar la generalización.

5. Comparación entre Modelos

A continuación, se compararon los resultados de la **Regresión Lineal** y el **Árbol de Decisión**:

- Regresión Lineal: Aunque simple, mostró un rendimiento moderado.
- Árbol de Decisión: Mostró un rendimiento sobresaliente con un R² de 1.00, lo que demuestra que es más adecuado para este conjunto de datos.

6. Evaluación del Modelo

El modelo final fue el **Árbol de Decisión**, que mostró un **RMSE de 0.03**, **MAE de 0.02** y un **R² de 1.00**, lo que indica un excelente rendimiento.

7. Guardar el Modelo Entrenado

El modelo entrenado se guardó utilizando **joblib** en el archivo sales_predictor_model.pkl para su reutilización en futuras predicciones.