Curso Data Science

RoBERTa

NICOLL CRESPO RONCALLO

DEFINICION

RoBERTa es un modelo de NLP desarrollado por Facebook

Est**á** basado en el modelo BERT. Pero se re-entren**ó** con mejoras en su metodolog**í**a, m**á**s datos y mayor poder computacional, obteniendo mejores resultados en GLUE (General Language Understanding Evaluation)

METODOLOGIA

IMPLEMENTADO EN PYTORCH

vs. TensorFlow

ELIMINACION DEL ENTRENAMIENTO NSP

(Next Sentence Prediction)

USO DE LOTES MÁS GRANDES

(8000 VS. 256)

PRE-ENTRENAMIENTO CON 160 GB DE TEXTO

vs. 16 GB

USO DE ENMARCARAMIENTO DINAMICO

VS. Estatico

MAYOR TIEMPO DE ENTRENAMIENTO

4-5 veces mas

SUPERÓ A BERT Y XLNET EN RACE Y EN GLUE

PUNTUACIÓN PROMEDIO MÁS ALTA EN LA TABLA DE CLASIFICACION DE GLUE

(88,5)

NUEVO PUNTAJE MAS ALTO EN LA TABLA DE CLASIFICACIÓN PÚBLICA DE SQUAD

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on test (from leaderboard as of July 25, 2019)										
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Model	SQuA	D 1.1	SQuAD 2.0			
	EM	F1	EM	F1		
Single models on dev, w/o data augmentation						
BERTLARGE	84.1	90.9	79.0	81.8		
XLNet _{LARGE}	89.0	94.5	86.1	88.8		
RoBERTa	88.9	94.6	86.5	89.4		
Single models on test (as of July 25, 2019)						
$XLNet_{LARGE}$			86.3 [†]	89.1 [†]		
RoBERTa			86.8	89.8		
XLNet + SG-	87.0 [†]	89.9 [†]				

Model	Accuracy	Middle	High			
Single models on test (as of July 25, 2019)						
BERTLARGE	72.0	76.6	70.1			
XLNet _{LARGE}	81.7	85.4	80.2			
RoBERTa	83.2	86.5	81.3			

APLICACION

Wang, Y., Sun, Y., Ma, Z., Gao, L., Xu, Y., & Sun, T. (2020, August). Application of pre-training models in named entity recognition.

CONSIDERACIONES

- Problema de NER
- Uso del MSRA-2006 dataset
- Uso de 2 epocas
- Razon de aprendizaje de 5e-5
- Tamaño de lote de 16

MODELOS

- BERT
- ERNIE
- ERNIE2.0-tiny
- RoBERT

RESULTADOS

THE RESULTS OF NER USING DIFFERENT PRE-TRAINING MODELS

Models	Precision/%	Recall/%	F1/%	
Baseline	92.54	88.20	90.32	
BERT-base	92.68	94.18	93.30	
ERNIE	92.92	94.07	93.37	
ERNIE-tiny	83.89	89.88	86.52	
RoBERTa	93.64	94.93	94.17	

REFERENCIAS

- 1. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
- 2. Wang, Y., Sun, Y., Ma, Z., Gao, L., Xu, Y., & Sun, T. (2020, August).

 Application of pre-training models in named entity recognition. In 2020 12th

 International Conference on Intelligent Human-Machine Systems and Cybernetics

 (IHMSC) (Vol. 1, pp. 23-26). IEEE.