TMS320VC5509 DSP External Memory Interface (EMIF) Reference Guide

Literature Number: SPRU670 October 2003

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This manual describes the features and operation of the external memory interface (EMIF) that is available on the TMS320VC5509 and TMS320VC5509A digital signal processors (DSPs) in the TMS320C55 x^{TM} (C55 x^{TM}) DSP generation.

Notational Conventions

This document uses the following conventions:

☐ In most cases, hexadecimal numbers are shown with the suffix h. For example, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers often are shown with the suffix b. For example, the following number is the decimal number 4 shown in binary form: 0100b

- If a signal or pin is active low, it has an overbar. For example, the RESET signal is active low.
- ☐ Bits and signals are sometimes referenced with the following notations:

Notation	Description	Example
Register(n-m)	Bits n through m of Register	R(15–0) represents the 16 least significant bits of register R.
Bus[n:m]	Signals n through m of Bus	A[21:1] represents signals 21 through 1 of bus A.

☐ The following terms are used to name portions of data:

Term	Description	Example
LSB	Least significant bit	In R(15–0), bit 0 is the LSB.
MSB	Most significant bit	In R(15–0), bit 15 is the MSB.
LSW	Least significant word	In R(31–0), bits 15–0 are the LSW.
MSW	Most significant word	In R(31–0), bits 31–16 are the MSW.

Related Documentation From Texas Instruments

The following documents describe the C55x devices and related support tools. Copies of these documents are available on the Internet at www.ti.com. *Tip:* Enter the literature number in the search box provided at www.ti.com.

- TMS320VC5509 Fixed-Point Digital Signal Processor Data Manual (literature number SPRS163) describes the features of the TMS320VC5509 fixed-point DSP and provides signal descriptions, pinouts, electrical specifications, and timings for the device.
- TMS320VC5509A Fixed-Point Digital Signal Processor Data Manual (literature number SPRS205) describes the features of the TMS320VC5509A fixed-point DSP and provides signal descriptions, pinouts, electrical specifications, and timings for the device.
- TMS320C55x Technical Overview (literature number SPRU393) introduces the TMS320C55x DSPs, the latest generation of fixed-point DSPs in the TMS320C5000™ DSP platform. Like the previous generations, this processor is optimized for high performance and low-power operation. This book describes the CPU architecture, low-power enhancements, and embedded emulation features.
- TMS320C55x DSP CPU Reference Guide (literature number SPRU371) describes the architecture, registers, and operation of the CPU for the TMS320C55x DSPs.
- TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317) introduces the peripherals, interfaces, and related hardware that are available on TMS320C55x DSPs.
- TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature number SPRU375) describes the TMS320C55x DSP algebraic instructions individually. Also includes a summary of the instruction set, a list of the instruction opcodes, and a cross-reference to the mnemonic instruction set.
- TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature number SPRU374) describes the TMS320C55x DSP mnemonic instructions individually. Also includes a summary of the instruction set, a list of the instruction opcodes, and a cross-reference to the algebraic instruction set.
- TMS320C55x Optimizing C/C++ Compiler User's Guide (literature number SPRU281) describes the TMS320C55x C/C++ Compiler. This C/C++ compiler accepts ISO standard C and C++ source code and produces assembly language source code for TMS320C55x devices.

TMS320C55x Assembly Language Tools User's Guide (literature number SPRU280) describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for TMS320C55x devices.

TMS320C55x DSP Programmer's Guide (literature number SPRU376) describes ways to optimize C and assembly code for the TMS320C55x DSPs and explains how to write code that uses special features and instructions of the DSPs.

Trademarks

TMS320C5000, TMS320C55x, and C55x are trademarks of Texas Instruments.

Other trademarks are the property of their respective owners.

This page is intentionally left blank.

Contents

1	Intro	duction to the EMIF	1-1
	1.1	Overview	1-2
	1.2	EMIF Signals	1-4
		1.2.1 EMIF and HPI Sharing Pins	1-4
		1.2.2 Full EMIF Mode Versus Data EMIF Mode	
		1.2.3 EMIF Signal Summary	
	1.3	EMIF Requests	
	1.4	CE Spaces in the External Memory Map	
		1.4.1 Chip Enable (CE) Pins for the CE Spaces	
		1.4.2 Defining the Memory Type for Each CE Space	
	1.5	Latency For a Change of CE Space or Data Direction	
	1.6	HOLD Requests: Sharing External Memory	
	1.7	Write Posting: Buffering Writes to External Memory	
	1.8	CPU Instruction Pipeline Considerations	
		1.8.1 A Write Followed by a Read at a Different Address	
		1.8.2 A Write Followed by a Read at the Same Address	
	1.9	Power and Reset Considerations	
		1.9.1 Power Conservation	
		1.9.2 Effects of a DSP Reset	
2	,	g Asynchronous Memory	
	2.1	Interfacing to External Asynchronous Memory	
	2.2	Configuring the EMIF for Asynchronous Accesses	
	2.3	Asynchronous Read Operations	
	2.4	Asynchronous Write Operations	
	2.5	Inserting Extra Cycles With the Ready (ARDY) Signal	. 2-11
3	Usin	g SDRAM	3-1
Ū	3.1	SDRAM Interface Options	
	3.2	Configuring the EMIF for SDRAM Accesses	
	0.2	3.2.1 Register Fields to Program	
		3.2.2 Configuration Procedure	
	3.3	Examples of Interfacing to SDRAM Chips	
	0.0	3.3.1 Interfacing to a 4M x 16 SDRAM Chip	
		3.3.2 Interfacing to an 8M x 16 SDRAM Chip	
	3.4	SDRAM Commands	
	J.4		. 5-10

	3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Address Shift Performed by the EMIF Monitoring SDRAM Page Boundaries SDRAM Initialization SDRAM Mode Register Set SDRAM Refresh 3.9.1 Auto-Refresh Commands 3.9.2 Auto-Refresh Requests Generated Within the EMIF 3.9.3 Self-Refresh Commands 3.9.4 Refresh Power Considerations SDRAM Deactivation SDRAM Read Operations SDRAM Write Operations	3-11 3-12 3-14 3-15 3-15 3-16 3-17 3-20 3-21
4	EMIF 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Summary of the EMIF Registers EMIF Global Control Register (EGCR) EMIF Global Reset Register (EMIRST) EMIF Bus Error Status Register (EMIBE) CE Space Control Registers (CEn1, CEn2, and CEn3 in Each CE Space) SDRAM Control Registers 1 and 2 (SDC1 and SDC2) SDRAM Control Register 3 (SDC3) SDRAM Period and Counter Registers (SDPER and SDCNT)	4-1 4-2 4-3 4-6 4-7 4-11 4-16 4-19
	4.9	SDRAM Initialization Register (INIT)	4-22
A		ils of Instruction Fetches and Data Accesses	
	A.1	Instruction Fetches via the EMIF	
		A.1.1 Instruction Fetch From 16-Bit-Wide Memory	
	A.2	32-Bit Data Accesses of External Memory	
		A.2.1 32-Bit Data Access of 16-Bit-Wide Memory	
		A.2.2 32-Bit Data Read From 8-Bit-Wide Memory	
	A.3	16-Bit Data Accesses of External Memory	
		A.3.1 16-Bit Data Access of 16-Bit-Wide Memory	A-7
		A.3.2 16-Bit Data Read From 8-Bit-Wide Memory	A-8
	A.4	8-Bit Data Accesses of External Memory	
		A.4.1 8-Bit Data Access of 16-Bit-Wide Memory	A-9
		A.4.2 8-Bit Data Read From of 8-Bit-Wide Memory	A-10

Figures

1–1	EMIF Inputs and Outputs	
1–2	CE Spaces and the Associated CE Signals	. 1-11
1–3	Partial Pipeline Diagram of Consecutive Instructions That Write and Read at Different Addresses	. 1-17
1–4	NOP Instructions Inserted in the Code of Figure 1–3 to Make the Write Occur Before the Read	. 1-18
2–1	EMIF Connections to 16-Bit-Wide Asynchronous Memory Chips	2-2
2–2	EMIF Connections to 8-Bit-Wide Asynchronous Memory Chips	2-3
2–3	Asynchronous Read Operation	
2-4	Asynchronous Write Operation	. 2-10
2–5	Extending an Asynchronous Read Operation With the ARDY Signal	. 2-12
2–6	Extending an Asynchronous Write Operation With the ARDY Signal	. 2-13
3–1	Interfacing to a 64M-bit SDRAM Chip With a 4M x 16 Array Organization	3-8
3–2	Interfacing to a 128M-bit SDRAM Chip With an 8M x 16 Array Organization	
3–3	SDRAM Initialization, Including a Mode Register Set (MRS) Command	
3–4	SDRAM Mode Register Value Sent by the EMIF to SDRAM	
3–5	DCAB-REFR Command Sequence Sent by EMIF to SDRAM	. 3-16
3–6	SDRAM Deactivation	
3–7	SDRAM Read Operation	. 3-22
3–8	SDRAM Write Operation	. 3-24
4–1	EMIF Global Control Register (EGCR)	4-3
4–2	EMIF Global Reset Register (EMIRST)	4-6
4–3	EMIF Bus Error Status Register (EMIBE)	4-8
4–4	CE Space Control Registers (CEn1, CEn2, and CEn3) for Each CE Space	. 4-12
4–5	SDRAM Control Registers 1 and 2 (SDC1 and SDC2)	
4–6	SDRAM Control Register 3 (SDC3)	. 4-19
4–7	SDRAM Period Register (SDPER) and SDRAM Counter Register (SDCNT)	. 4-20
4–8	SDRAM Initialization Register (INIT)	. 4-22
A-1	Instruction Fetch From 16-Bit-Wide External Memory	A-2
A-2	Instruction Fetch From 8-Bit-Wide External Memory	A-3
A-3	32-Bit Data Access of 16-Bit-Wide External Memory	
A-4	32-Bit Data Read From 8-Bit-Wide External Memory	A-6
A-5	16-Bit Data Access of 16-Bit-Wide External Memory	A-7
A-6	16-Bit Data Read From 8-Bit-Wide External Memory	
A-7	Accessing 8-Bit Data in 16-Bit-Wide External Memory	A-9
A-8	Writing to the 8 MSBs of a 16-Bit-Wide External Memory Location	
A-9	8-Bit Data Read From 8-Bit-Wide External Memory	. A-11

Tables

1_1	Functions of EMIF Address Pins in the Data EMIF Mode
1–1	EMIF Signals Used For Both Asynchronous Memory and SDRAM
1–3	EMIF Signals Specific to Asynchronous Memory
1–3	EMIF Signals Specific to SDRAM
1–4	EMIF Requests and Their Priorities
1–6	EMIF Requests Associated With Dual and Long Data Accesses
1–6	Specifying a Memory Type With the MTYPE Bits
2–1	Parameters for an Access of External Asynchronous Memory
2–1	Setup Period Cycles For First and Subsequent Accesses
2–2	· · · · · · · · · · · · · · · · · · ·
	EMIF Signal Activity During an Asynchronous Read Operation
2–4	EMIF Signal Activity During an Asynchronous Write Operation
3–1	EMIF SDRAM Configuration and Address Pin Mapping
3–2	EMIF Configuration for a 64M-bit SDRAM Chip With a 4M x 16 Array Organization 3-8
3–3	EMIF Configuration for a 128M-bit SDRAM Chip With an 8M x 16 Array Organization
3–4	SDRAM Commands
3–5	EMIF Pin States for the SDRAM Commands
3–6	SDRAM Configuration Sent With the MRS Command
3–7	Effects of EBSR Bits on the Behavior of the XF and GPIO4 Pins
4–1	Registers of the EMIF
4–2	EMIF Global Control Register (EGCR)Bits
4–3	EMIF Global Reset Register (EMIRST) Bits
4–4	EMIF Bus Error Status Register (EMIBE) Bits
4–5	Setup Period Cycles For First and Subsequent Accesses
4–6	CE Space Control Register 1 (CEn1) Bits
4–7	CE Space Control Register 2 (CEn2) Bits
4–8	CE Space Control Register 3 (CEn3) Bits
4–9	SDRAM Control Register 1 (SDC1) Bits
4–10	SDRAM Control Register 2 (SDC2) Bits
4–11	Nonconfigurable SDRAM Timing Parameters
4–12	SDRAM Control Register 3 (SDC3) Bits
4–13	SDRAM Period Register (SDPER) Bits
4–14	SDRAM Counter Register (SDCNT) Bits
4–15	SDRAM Initialization Register (INIT) Bits
4–13 A–1	The Role of Internal Address Rit 1 During a 32-Rit Data Access of
73-1	16-Bit-Wide External Memory
A-2	The Role of Internal Address Bit 0 During an 8-Bit Data Write to
	16-Bit-Wide External Memory

Chapter 1

Introduction to the EMIF

This chapter introduces the external memory interface (EMIF) that is in the TMS320VC5509 and TMS320VC5509A DSPs. The EMIF controls all data transfers between the DSP and external memory.

Topic	C Page
1.1	Overview
1.2	EMIF Signals1-4
1.3	EMIF Requests
1.4	CE Spaces in the External Memory Map
1.5	Latency For a Change of CE Space or Data Direction 1-13
1.6	HOLD Requests: Sharing External Memory
1.7	Write Posting: Buffering Writes to External Memory 1-16
1.8	CPU Instruction Pipeline Considerations
1.9	Power and Reset Considerations

1.1 Overview

Figure 1–1 illustrates how the EMIF is interconnected with other parts of the DSP and with external memory devices. The connection to the peripheral bus controller allows the CPU to access the EMIF registers.

Figure 1-1. EMIF Inputs and Outputs

[†] The number of address pins depends on the particular DSP package.

The EMIF provides a glueless interface to two types of memory devices:

- Asynchronous devices, including ROM, flash memory, and asynchronous SRAM. For details, see Chapter 2.
- ☐ Synchronous DRAM (SDRAM). Details are in Chapter 3.

The EMIF supports the following types of accesses. Details about how data travels on the data bus during each of these types of accesses can be read in Appendix A.

- ☐ 32-bit instruction fetches for the CPU
- 32-bit data accesses for the CPU or the DMA controller
- ☐ 16-bit data accesses for the CPU or the DMA controller
- □ 8-bit data accesses for the CPU or the DMA controller

To know what parts of the DSP can send requests to the EMIF and the order in which the EMIF services simultaneous requests, see section 1.3, *EMIF Requests*, on page 1-9.

If you want the DSP to share memory chips with an external device, see section 1.6, *HOLD Requests: Sharing External Memory*, on page 1-14.

If you want to buffer CPU write operations to reduce delays, see section 1.7, Write Posting: Buffering Writes to External Memory, on page 1-16.

1.2 EMIF Signals

This section explains how the EMIF and the host port interface (HPI) share pins, introduces the full EMIF mode from the data EMIF mode, and provides a summary description of each EMIF signal.

1.2.1 EMIF and HPI Sharing Pins

On all TMS320VC5509 devices, the EMIF shares a parallel port with the HPI. Parallel port mode bits (bits 1–0) in the external bus selection register (EBSR) determine whether the port is used for data EMIF mode (00b), full EMIF mode (01b), nonmultiplexed HPI mode (10b), or multiplexed HPI mode (11b).

The reset value of the parallel port mode bits is determined by the state of the GPIO0 pin at reset. If GPIO0 is high at reset, the full EMIF mode is enabled. If GPIO0 is low at reset, the multiplexed HPI mode is enabled. After reset, your software can modify the EBSR to select a different mode.

For more details about EBSR, see the device-specific data manual: TMS320VC5509 Fixed-Point Digital Signal Processor Data Manual (SPRS163) or TMS320VC5509A Fixed-Point Digital Signal Processor Data Manual (SPRS205).

1.2.2 Full EMIF Mode Versus Data EMIF Mode

As mentioned in section 1.2.1, when EBSR(1-0) = 01b, the full EMIF mode is selected, and when EBSR(1-0) = 00b, the data EMIF mode is selected. The full EMIF mode is the standard mode for communicating with external memory chips. Throughout this document, the full EMIF mode is the mode assumed to be in use. In the data EMIF mode, all or some of the address pins of the EMIF are reassigned to be general-purpose I/O (GPIO) pins—see Table 1–1. In this mode, the EMIF does not drive addresses on the reassigned pins; instead, you can read or drive these pins using GPIO registers. For details about the GPIO functionality, see the device-specific data manual.

Table 1–1. Functions of EMIF Address Pins in the Data EMIF Mode

DSP Package Type	Address Pin(s)	Function in Data EMIF Mode
LQFP (indicated by the PGE suffix on the device part number)	A[13:0]	GPIO
BGA	A[20:16]	Output: Internal address bits 20–16
(indicated by the GHH suffix on the device part number)	A[15:0]	GPIO
part riam or,	A0'	Output: Internal address bit 0

1.2.3 EMIF Signal Summary

Table 1–2 through Table 1–4 describe the EMIF signals. When the EMIF acknowledges a HOLD request (see section 1.6 on page 1-14), all output pins of the EMIF are placed in the high-impedance state. The GPIO4 or XF pin (if used) is not affected when the EMIF acknowledges a HOLD request.

Table 1-2. EMIF Signals Used For Both Asynchronous Memory and SDRAM

Signal(s)	Possible States [†]	Description		
CE0	O/Z	Chip enable pins		
CE1 CE2 CE3		These active-low pins correspond to the four predefined address ranges (called chip-enable (CE) spaces) in the external memory of the DSP. The $\overline{\text{CE}}$ pins are meant to be connected to the chip select pins of memory chips. For details about the CE spaces, see section 1.4 on page 1-11.		
BE[1:0]	O/Z	Byte enable pins		
		memory chip which p an 8-bit or 16-bit acce	ins of the data bus are t	se active-low pins to tell the to be used or ignored during am shows which byte enable us.
		Byte enable pins:	BE1	BE0
		Data bus pins:	D[15:8]	D[7:0]
		bus is used; therefore byte is requested from	e, only one byte enable n 16-bit-wide memory, t ternally unpacks the req	ry, only one byte of the data signal is activated. When a he EMIF reads the full width uested byte. As a result, the
		Appendix A shows the types of accesses.	ne behavior of the byte	enable signals for various
D[15:0]	I/O/Z	EMIF data bus		
		The EMIF drives or accepts 16 bits or 8 bits at a time on these pins. The data pins needed depend on the width of the external memory and the access type; for details, see Appendix A.		
		Between data transfers, the EMIF does not drive the data bus. If the bus keepers are enabled, the data bus retains the last driven state. If the bus keepers are disabled, the data bus enters the high-impedance state.		

[†] I = Input; O = Output; Z = High-impedance. The output pins are placed in the high-impedance state when the CPU sets the HOLD bit of EBSR, and they remain in the high-impedance state until the CPU clears the HOLD bit. The function of the HOLD bit is described in section 1.6 (page 1-14).

Table 1–2. EMIF Signals Used For Both Asynchronous Memory and SDRAM (Continued)

	Possible			_
Signal(s)	States [†]	Description	on	
A[20:14] (BGA only)	O/Z	EMIF addr	ess bus	
A[13:0] A0' (BGA only)		The EMIF uses the address bus to send addresses to memory chips. The number and use of the address pins depend on (1) what type of package the DSP has and (2) the width of the memory:		
		Package LQFP	Signal(s) A[13:1] A0	Address Bits From DSP Perspective Bits 13–1 Bit 0 for 8-bit-wide memory; bit 14 for 16-bit-wide memory
		BGA	A[20:1] A0 A0'	Bits 20–1 (Not used by the EMIF for addresses) Bit 0 for 8-bit-wide memory
		memory, TMS320V	but the TN	509A devices support accesses to 8-bit-wide MS320VC5509 devices do not. On the es, the only supported 8-bit-wide accesses are is memory.

[†] I = Input; O = Output; Z = High-impedance. The output pins are placed in the high-impedance state when the CPU sets the HOLD bit of EBSR, and they remain in the high-impedance state until the CPU clears the HOLD bit. The function of the HOLD bit is described in section 1.6 (page 1-14).

Table 1-3. EMIF Signals Specific to Asynchronous Memory

Signal(s)	Possible States [†]	Description	
ARDY	I	Asynchronous ready pin	
		An asynchronous memory chip can drive this active-high signal low whenever it needs to stretch the accesses of the EMIF. For details about using ARDY, see section 2.5 on page 2-11.	
AOE	O/Z	Asynchronous output enable pin	
		During asynchronous read operations, the EMIF drives \overline{AOE} low. Connect this active-low pin to the output enable pin of the asynchronous memory chip.	

[†] I = Input; O = Output; Z = High-impedance. AOE, ARE, and AWE are placed in the high-impedance state when the CPU sets the HOLD bit of EBSR, and they remain in the high-impedance state until the CPU clears the HOLD bit. The function of the HOLD bit is described in section 1.6 (page 1-14).

Table 1-3. EMIF Signals Specific to Asynchronous Memory (Continued)

Signal(s)	Possible States [†]	Description	
ĀRĒ	O/Z	Asynchronous read strobe pin	
		The EMIF drives $\overline{\text{ARE}}$ when performing a memory read access. Connect this active-low pin to the read enable pin of the asynchronous memory chip.	
AWE	O/Z	Asynchronous write strobe pin	
		The EMIF drives \overline{AWE} when performing a memory write access. Connect this active-low pin to the write enable pin of the asynchronous memory chip.	

[†] I = Input; O = Output; Z = High-impedance. AOE, ARE, and AWE are placed in the high-impedance state when the CPU sets the HOLD bit of EBSR, and they remain in the high-impedance state until the CPU clears the HOLD bit. The function of the HOLD bit is described in section 1.6 (page 1-14).

Table 1-4. EMIF Signals Specific to SDRAM

Signal(s)	Possible States [†]	Description
SDRAS	O/Z	Row strobe pin for SDRAM
		SDRAS is active (low) during the ACTV, DCAB, REFR, and MRS commands.
SDCAS	O/Z	Column strobe pin for SDRAM
		SDCAS is active (low) during reads and writes, and during the REFR and MRS commands.
SDWE	O/Z	Write enable pin for SDRAM
		SDWE is active (low) during writes and during the DCAB and MRS commands.
SDA10	O/Z	A10 address line for SDRAM
		This signal acts as a row address bit during ACTV commands. SDA10 also acts as the auto-precharge enable for an SDRAM chip during read and write operations. SDA10 is active (high) during a DCAB command.

[†] I = Input; O = Output; Z = High-impedance. The SDRAM interface pins (not including GPIO4 or XF) are placed in the high-impedance state when the CPU sets the HOLD bit of EBSR, and they remain in the high-impedance state until the CPU clears the HOLD bit. The function of the HOLD bit is described in section 1.6 (page 1-14).

Table 1-4. EMIF Signals Specific to SDRAM (Continued)

Signal(s)	Possible States [†]	Description
CLKMEM	O/Z	Memory clock pin for SDRAM
		This pin supplies a clock signal for an SDRAM chip. The pin is locked high or driven with the memory clock, depending on the value of the MEMCEN bit. If the memory clock is being driven on the pin (MEMCEN = 1), the frequency of the clock depends on the MEMFREQ bits.
		MEMCEN and MEMFREQ are in the EMIF global control register, which is described in section 4.2 (page 4-3).
GPIO4 or XF	0	CKE pin for SDRAM
(TMS320VC5509A only)		The EMIF does not have a dedicated pin to control the CKE pin of an SDRAM chip; however, a TMS320VC5509A DSP allows you to use the XF pin or the GPIO4 pin of the DSP for that purpose. For details, see section 3.9.3, <i>Self-Refresh Commands</i> , on page 3-17.

[†] I = Input; O = Output; Z = High-impedance. The SDRAM interface pins (not including GPIO4 or XF) are placed in the high-impedance state when the CPU sets the HOLD bit of EBSR, and they remain in the high-impedance state until the CPU clears the HOLD bit. The function of the HOLD bit is described in section 1.6 (page 1-14).

1.3 EMIF Requests

The EMIF services the requests shown in Table 1–5. If multiple requests arrive simultaneously, the EMIF prioritizes them as shown in the Priority column.

Table 1–5. EMIF Requests and Their Priorities

EMIF Requester	Priority	Description
HOLD	1 (highest)	A HOLD request. For details on HOLD requests, see section 1.6 on page 1-14.
Urgent refresh	2	A request from synchronous DRAM that needs an immediate refresh
E bus	3	A write request from the E bus of the DSP CPU
F bus	4	A write request from the F bus of the DSP CPU
D bus	5	A read request from the D bus of the DSP CPU
C bus	6	A read request from the C bus of the DSP CPU
P bus	7	An instruction fetch request from the P bus of the DSP CPU.
DMA controller	8	A write or read request from the DSP DMA controller
Trickle refresh	9 (lowest)	A request from synchronous DRAM that needs the next periodic refresh

As shown in Table 1–6, there is a subtle difference between dual data accesses and long data accesses requested by the CPU. The following two instructions are examples of these access types:

```
ADD *AR0, *AR1, AC0 ; Dual data access. Two separate ; 16-bit values referenced by ; pointers AR0 and AR1.

ADD dbl(*AR2), AC1 : Long data access. One 32-bit ; value referenced by pointer AR2.
```

Both access types require two 16-bit data buses in the CPU, but they require different numbers of EMIF requests. A dual data access involves two separate 16-bit values and, therefore, requires two EMIF requests. A long data access involves a single 32-bit value and, therefore, a single EMIF request. This EMIF request corresponds to the address bus used. For example, if a long data read is performed, the DAB address bus is used, and the EMIF receives a D-bus request.

Table 1–6. EMIF Requests Associated With Dual and Long Data Accesses

Access Type	CPU Data Buses Used	CPU Address Bus(es) Used	Request(s) Sent To EMIF
Dual data read	CB and DB (carrying two 16-bit values)	CAB and DAB	C-bus request to read 16 bits D-bus request to read 16 bits
Dual data write	EB and FB (carrying two 16-bit values)	EAB and FAB	E-bus request to write 16 bits F-bus request to write 16 bits
Long data read	CB and DB (carrying one 32-bit value)	DAB	D-bus request to read 32 bits
Long data write	EB and FB (carrying one 32-bit value)	EAB	E-bus request to write 32 bits

1.4 CE Spaces in the External Memory Map

The external memory map (see Figure 1–2) is divided into four ranges called chip enable (CE) spaces. The CE0 space is at the lowest addresses, and the CE3 space is at the highest addresses. Each CE space can contain up to 4M bytes. Some of the addresses in the CE3 space can be used to access ROM inside the DSP. As shown in Figure 1–2, you can switch these addresses between the CE3 space and the ROM by changing the MPNMC bit in CPU status register ST3_55. MPNMC and ST3_55 are described in the TMS320C55x DSP CPU Reference Guide (SPRU371). For the number of bytes in each CE space and in the ROM, see the device-specific data manual.

Figure 1–2. CE Spaces and the Associated CE Signals

1.4.1 Chip Enable (CE) Pins for the CE Spaces

Each CE space has an associated chip enable ($\overline{\text{CE}}$) pin on the EMIF (see the right side of Figure 1–2). To assign an asynchronous memory chip to one of the CE spaces, connect the associated $\overline{\text{CE}}$ pin to the chip select pin of the chip. When the EMIF performs an access to a CE space, it drives the associated $\overline{\text{CE}}$ pin low. For example, you can assign an asynchronous memory chip to the CE1 space by connecting $\overline{\text{CE1}}$. When the EMIF performs an access in the CE1 space, it drives $\overline{\text{CE1}}$ low, selecting the chip.

However, for an SDRAM chip, the $\overline{\text{CE}}$ pins are designed to operate differently. An SDRAM chip supported by the EMIF fills two or four of the CE spaces. However, you connect only one $\overline{\text{CE}}$ pin to the SDRAM chip. For more details, see the examples in section 3.3 (page 3-7).

1.4.2 Defining the Memory Type for Each CE Space

In addition to connecting chip enable pins, you must indicate which type of memory is in each CE space. For each CE space, you must write the appropriate value to the MTYPE field of CE space control register 1. Table 1–7 shows the options. For a description of the CE space registers, see section 4.5 on page 4-11.

Table 1-7. Specifying a Memory Type With the MTYPE Bits

MTYPE	Memory Type
000b [†]	Asynchronous, 8-bit data bus width
001b	Asynchronous, 16-bit data bus width
010b	Reserved
011b	SDRAM, 16-bit data bus width
other	Reserved

[†] For a TMS320VC5509 device, 000b is a reserved value. Accesses of 8-bit-wide memory are not supported by a TMS320VC5509 DSP, but they are supported by a TMS320VC5509A DSP. These accesses can be reads only; writes to 8-bit-wide memory are not possible.

1.5 Latency For a Change of CE Space or Data Direction

If there is a change of CE space or data direction (read/write) between two consecutive EMIF requests, the EMIF inserts one dead cycle. During this dead cycle all chip enable signals are driven high (inactive). During accesses to asynchronous memory, this cycle is the cycle that is automatically added to the extended hold period.

1.6 HOLD Requests: Sharing External Memory

A HOLD request is a request to allow an external device and the EMIF to share the external bus and control lines. The external bus selection register (EBSR) of the DSP provides two bits for this purpose: HOLD and HOLDA.

The process for generating and servicing a HOLD request follows this paragraph. In this procedure, the handshaking can be performed via hardware or software. For example, hardware handshaking could use general-purpose I/O pins or external interrupt pins. Software handshaking might involve transferring messages via the host port interface or a multichannel buffered serial port (McBSP) of the DSP.

- An external device uses handshaking to request exclusive access to the external bus and control lines.
- In response, the CPU sets the HOLD bit (HOLD = 1) to initiate a HOLD request. A HOLD request is the highest priority request that the EMIF can receive during active operation.
- 3) The EMIF stops accessing the external memory at the earliest possible moment, which may entail completion of the current accesses, required SDRAM refreshes, and memory device deactivation. Then the EMIF enters the HOLD state; it places all of its output pins in the high-impedance state. The GPIO4 or XF pin (if used), is not affected. After entering the HOLD state, the EMIF clears the HOLDA bit (HOLDA = 0). It is important to remember that the HOLDA bit has a negative polarity; HOLDA = 0 indicates that the EMIF is in the HOLD state.
- 4) When the CPU reads HOLDA = 0, the CPU uses handshaking to tell the external device that it may use the pins of the external memory without the chance of interference from the EMIF.
- 5) When the external device no longer requires access to the memory, it uses handshaking to inform the CPU.
- 6) In response, the CPU clears the HOLD bit. The clearing of the HOLD bit also forces the HOLDA bit to 1.
- 7) When HOLD returns to 0, the EMIF takes over the output pins again and continues operation.

No SDRAM refreshes occur while the EMIF is in the HOLD state; however, when HOLD returns to 0, any required SDRAM refreshes occur before pending access requests are serviced.

While the external device has control of the memory, the CPU can continue to execute instructions (from internal memory) or stop. You choose one of these options by writing to the HOLD mode bit (HM) of status register ST1_55. ST1_55 is a register in the CPU. HM and ST1_55 is described in the TMS320C55x DSP CPU Reference Guide (SPRU371).

1.7 Write Posting: Buffering Writes to External Memory

Ordinarily, when a CPU request arrives at the EMIF, the EMIF does not send acknowledgment to the CPU until the EMIF has driven the data on the external bus. As a result, the CPU does begin the next operation until the data is actually sent to the external memory.

If write posting is enabled, the EMIF acknowledges the CPU as soon as the EMIF receives the address and data. The address and data are stored in dedicated write posting registers in the EMIF. When a time slot becomes available, the EMIF runs the posted write operation. If the next CPU access is not for the EMIF and is for internal memory, that access is able to run concurrently with the posted write operation.

The EMIF supports two levels of write posting. That is, the write posting registers can hold data and addresses for up to two CPU accesses at a time. The EMIF allocates the write posting registers on a first requested, first served basis. However, if an E-bus request and an F-bus request arrive simultaneously, the E-bus request is given priority.

To enable write posting for all CE spaces, set the WPE bit in the EMIF global control register. WPE is described on page 4-4. It might be useful to disable write posting (WPE = 0) during debugging.

There are no write posting registers for requests from the DMA controller. However, the EMIF sends acknowledgement to the DMA controller prior to the actual write to external memory. This early acknowledgement allows the DMA controller to transfer the next address early, to avoid dead cycles during burst transfers or between back-to-back single transfers.

1.8 CPU Instruction Pipeline Considerations

This section explains two special cases of pipeline operation that could impact external memory accesses.

As described in the *TMS320C55x DSP CPU Reference Guide* (SPRU371), the CPU uses instruction pipelining. Multiple instructions are processed simultaneously in the pipeline, and different instructions may access external memory during different phases of completion. The pipeline consists of a number of phases during which different, designated tasks are performed.

1.8.1 A Write Followed by a Read at a Different Address

The *read phase* of the pipeline is used to read operands and other data needed to complete the execution of an instruction. The results of an instruction may be written to external memory in the *write phase* of the pipeline. The read phase occurs earlier in the pipeline than the write phase. For this reason, the read and write requests made to the EMIF may occur in an order which is different than the order in which the instructions entered the pipeline. For example, consider the following code segment:

```
I1: MOVT0, *(#External_Address_1) ; Instruction 1 writes to external memory
I2: MOV*(#External_Address_2), T1 ; Instruction 2 reads from external memory
```

Although the code shows the write followed by the read, the read actually occurs first on the EMIF because of the pipelining effect, as shown in Figure 1–3. The figure shows the two instructions passing through the read (R), execute (X), and write (W) phases.

For some applications, maintaining the proper write-read order is critical. In such cases, NOP (no operation) instructions (or other instructions that do not perform external memory accesses) can be inserted between the original instructions to delay the read operation. This technique is shown in Figure 1–4.

Figure 1–3. Partial Pipeline Diagram of Consecutive Instructions That Write and Read at Different Addresses

R	X	W	Cycle	Comment
I1			n	
I2	I1		n+1	Read initiated by instruction 2.
	12	I1	n+2	Write initiated by instruction 1.
		12	n+3	

Figure 1–4. NOP Instructions Inserted in the Code of Figure 1–3 to Make the Write Occur Before the Read

R	Х	W	Cycle	Comment
I1			n	
NOP	I1		n+1	
NOP	NOP	I1	n+2	Write initiated by instruction 1.
12	NOP	NOP	n+3	Read initiated by instruction 2.
	I2	NOP	n+4	
		I2	n+5	

1.8.2 A Write Followed by a Read at the Same Address

In most cases, when a write to memory is followed immediately by a read at the same address, the data written is the same data expected back during the read. The C55x CPU takes advantage of this fact with a special memory-bypass feature. During the read, the CPU gets a copy of the data directly from the write bus(es) instead of accessing memory.

When the CPU is accessing external devices, there may be cases in which the memory-bypass feature would lead to unwanted results. For example, suppose two physical memory locations X and Y are mapped to the same address. Writing modifies location X, and reading gets data from location Y. If the memory-bypass feature takes effect, location Y is not read.

To prevent the memory bypass, insert three or more NOP instructions (or other instructions) between the instructions that perform the write and the read. For example:

```
MOVTO, *(#External_Address_1) ; Write to address 1
NOP ; 3-cycle delay
NOP
NOP
MOV*(#External Address 1), T1 ; Read from address 1
```

1.9 Power and Reset Considerations

1.9.1 Power Conservation

The DSP is divided into idle domains that can be programmed to be idle or active. The state of all domains is called the idle configuration. Any idle configuration that disables the clock generator domain and/or the EMIF domain stops activity in the EMIF. If you program the EMIF domain to be idle, the EMIF completes all data transfers before entering the idle state. While in the idle state, the EMIF does not perform SDRAM refreshes or handle HOLD requests.

1.9.2 Effects of a DSP Reset

If you drive the RESET signal low, the DSP undergoes a reset. A DSP reset resets the EMIF and the EMIF registers. The register figures in Chapter 4 indicate the effects on the register contents. The EMIF is forced into the HOLD state during reset; all EMIF output signals are in the high-impedance state.

This page is intentionally left blank.

Chapter 2

Using Asynchronous Memory

The EMIF offers configurable timing parameters so that you can interface the DSP to a variety of asynchronous memory types, including flash memory, SRAM, and EPROM. This chapter describes the EMIF features that support accesses to asynchronous memory.

Topi	c Page
2.1	Interfacing to External Asynchronous Memory 2-2
2.2	Configuring the EMIF for Asynchronous Accesses 2-4
2.3	Asynchronous Read Operations 2-6
2.4	Asynchronous Write Operations 2-8
2.5	Inserting Extra Cycles With the Ready (ARDY) Signal 2-11

2.1 Interfacing to External Asynchronous Memory

Figure 2–1 and Figure 2–2 show pin connections between the EMIF and asynchronous memory chips. For details about the EMIF pins shown in the figures, see section 1.2 on page 1-4. As can be seen in the figures:

- □ Pin connections depend in part on the device, TMS320VC5509 or TMS320VC5509A. The TMS320VC5509A devices support 8-bit-wide asynchronous memory (for reads only), but TMS320VC5509 devices do not.
- Pin connections also depend on the package type, LQFP or BGA. The LQFP package (indicated by the PGE suffix on the device part number) provides 14 address lines. The BGA package (indicated by the GHH suffix on the device part number) provides 21 address lines.

Figure 2–1. EMIF Connections to 16-Bit-Wide Asynchronous Memory Chips

16-Bit-Wide Asynchronous Memory (TMS320VC5509 DSP or TMS320VC5509A DSP)

Figure 2–2. EMIF Connections to 8-Bit-Wide Asynchronous Memory Chips
8-Bit-Wide Asynchronous Memory

(TMS320VC5509A DSP Only)

2.2 Configuring the EMIF for Asynchronous Accesses

To configure the EMIF for interfacing to asynchronous memory, program the following register fields. The EMIF register descriptions are in Chapter 4.

- ☐ Each CE space has control registers 1, 2, and 3. For every CE space that contains asynchronous memory:
 - Use the MTYPE field in CE space control register 1 to select one of the following options. As mentioned in section 2.1, 8-bit-wide memory is not supported by a TMS320VC5509 DSP, but is supported by a TMS320VC5509A DSP (for reads only).

MTYPE	Memory Type	
000b	8-bit-wide asynchronous	
001b	16-bit-wide asynchronous	

- Use the other fields in the CE space control registers to program the timing parameters described in Table 2–1. These parameters are ignored unless the MTYPE field indicates asynchronous memory.
- ☐ The EMIF global control register contains two fields that can affect asynchronous accesses:
 - Use the WPE bit to enable or disable write posting for all CE spaces. Write posting is described in section 1.7 (page 1-16).
 - In a TMS320VC5509A device, use the ARDYOFF bit to enable or disable the ARDY pin. The function of the ARDY pin is described in section 2.5 (page 2-11). The ARDYOFF bit is not available in TMS320VC5509 devices.

Table 2–1. Parameters for an Access of External Asynchronous Memory

Parameters	Control Bits	Definition
Setup periods	RDSETUP WRSETUP	A setup period is the time in CPU clock cycles given to setup the address, chip enable ($\overline{\text{CE}}$), and byte enable ($\overline{\text{BE}}$) signals before the read strobe signal ($\overline{\text{ARE}}$) or write strobe signal ($\overline{\text{AWE}}$) falls. For an asynchronous read operation, this is also the setup period for the output enable signal ($\overline{\text{AOE}}$) before $\overline{\text{ARE}}$ falls.
Strobe periods	RDSTROBE WRSTROBE	A strobe period is the time in CPU clock cycles between the falling (activation) and rising (deactivation) of the read or write strobe signal.
Hold periods	RDHOLD WRHOLD	A hold period is the time in CPU clock cycles during which the address and byte enable lines are held active after the read or write strobe signal rises. For an asynchronous read operation, this is also the hold period for the output enable signal after ARE rises.

Table 2–1. Parameters for an Access of External Asynchronous Memory (Continued)

Parameters	Control Bits	Definition
Extended hold periods	RDEXHLD WREXHLD	An extended hold period is the number of additional CPU cycles inserted when (a) the EMIF must switch to a different CE space before performing the next access, or (b) the next access requires a change in the data direction (for example, the EMIF has completed a read access and must now perform a write access). All chip enable signals are inactive during this period.
		The EMIF automatically adds 1 cycle to any cycles you have programmed. For example, if WREXHLD = 0, the extended hold period is 1 cycle.
Time-out value	TIMOUT	A single time-out value applies to both read operations and write operations. During an operation, an internal counter counts the number of CPU clock cycles that the ARDY signal is sampled low (indicating that the memory is not ready for an access). If the counter reaches the time-out value, the EMIF records an error in the bus error status register (see section 4.4 on page 4-7). If a CPU bus requested the memory access, the EMIF sends a bus-error interrupt request to the CPU. If the DMA controller requested the memory access, the EMIF sends a time-out signal to the DMA controller. The DMA controller can ignore the signal or send a bus-error interrupt request to the CPU. The bus error interrupt is maskable; the CPU ignores it or services it depending on whether the interrupt is properly enabled.
		Note: In TMS320VC5509A devices, if ARDYOFF = 1 in the EMIF global control register, ARDY is not sampled, and as a result, a time-out condition cannot occur.

Table 2–2. Setup Period Cycles For First and Subsequent Accesses

SETUP Bits	Setup Period For First Access (CPU Clock Cycles)	Setup Period For Subsequent Accesses (CPU Clock Cycles)
0	2	1
1	2	1
2	2	1
3 ≤ n ≤ 15	n	n

2.3 Asynchronous Read Operations

Table 2–3 describes the signal activity of the EMIF when it reads from an asynchronous memory chip. Figure 2–3 is an example timing diagram. The write strobe signal (AWE) is driven high (inactive) during a read operation. For more detailed timing information, see the device-specific data manual.

Table 2–3. EMIF Signal Activity During an Asynchronous Read Operation

Time Interval	Signal Activity		
Start of setup period		If this is the first memory read cycle in the selected CE space, the following signal changes occur simultaneously (n is the number of the selected CE space):	
		CEn falls to enable the memory chip.	
		The byte enable lines become valid to indicate the number and positions of the bytes being accessed.	
		The address lines become valid to carry the address to the memory chip.	
		\overline{AOE} falls to activate the output enable function of the memory chip.	
	If this is a subsequent read cycle, $\overline{\text{CEn}}$ and $\overline{\text{AOE}}$ stay low, while new values become valid on the byte enable and address lines.		
	2 c	te: In any asynchronous read operation, the setup period is a minimum of ycles for the first memory access. After the first access, the setup period is ninimum of 1 cycle.	
Strobe period	1)	ARE falls to mark the start of the strobe period.	
(may be extended with ARDY)	RDY) 2)	In Figure 2–3, ARDY is inactive. However, if the programmed strobe period is 4 cycles or greater, the memory chip can drive ARDY low to request additional cycles if it needs more time to provide the data. For more details on using ARDY, see section 2.5 on page 2-11.	
	3)	Data is sampled by the EMIF on the CPU clock rising edge that is concurrent with the end of the strobe period, just prior to the rising of \overline{ARE} .	
	4)	ARE rises.	

Table 2–3. EMIF Signal Activity During an Asynchronous Read Operation (Continued)

Time Interval	Signal Activity				
End of hold period	If there is another read access in the same CE space, new values become valid on the byte enable and address lines to begin a new memory cycle. Otherwise, the following signal changes occur simultaneously:				
	☐ The byte enable lines become invalid.				
	☐ The address lines become invalid.				
	☐ AOE rises to deactivate the output enable function of the memory chip.				
Extended hold period	All chip enable (CE) signals are deactivated, to prevent accidental contention while the active memory chip is disabled and another memory chip is enabled.				
	The extended hold period is only inserted if the EMIF receives no new access request in the same CE space and with the same data direction (read, in this case). If a request of the same type occurs during this period, the extended hold is aborted and a new memory cycle begins.				

Figure 2-3. Asynchronous Read Operation

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

 $[\]mbox{\ensuremath{^{\ddagger}}}$ These periods are programmable. The values shown here are for example only.

2.4 Asynchronous Write Operations

Table 2–4 explains signal activity during a write to asynchronous memory. Figure 2–4 is an example timing diagram. The output enable signal (AOE) and the read strobe signal (ARE) are driven high (inactive) during a write operation. For more detailed timing information, see then device-specific data manual.

Table 2-4. EMIF Signal Activity During an Asynchronous Write Operation

Time Interval	Sig	nal Activity					
Start of setup period		If this is first memory write cycle in the selected CE space, the following signal changes occur (n is the number of the selected CE space):					
		CEn falls to enable the memory chip.					
		The byte enable lines become valid to indicate the number and positions of the bytes being accessed.					
		The address lines become valid to carry the address to the memory chip.					
		The data lines become valid to carry data to the memory chip.					
	If this is a subsequent write cycle, \overline{CEn} stays low, while new values become valid on the byte enable, address, and data lines.						
	Note: In any asynchronous write operation, the setup period is a minimum of 2 cycles for the first memory access. After the first access, the setup period is a minimum of 1 cycle.						
Strobe period	1)	AWE falls to mark the start of the strobe period.					
(may be extended with ARDY)	2)	In Figure 2–4, ARDY is inactive. However, if the programmed strobe period is 4 cycles or greater, the memory chip can drive ARDY low to request additional cycles if it needs more time to accept the data. More details on using ARDY are in section 2.5 (page 2-11).					
	3)	The external memory chip latches the data on the rising edge of \overline{AWE} .					

Table 2-4. EMIF Signal Activity During an Asynchronous Write Operation (Continued)

Time Interval	Signal Activity				
End of hold period	If there is another write access in the same CE space, new values become valid on the byte enable, address, and data lines to begin a new memory cycle. Otherwise, the following signal changes occur:				
	☐ The byte enable lines become invalid.				
	☐ The address lines become invalid.				
	☐ The data lines become invalid.				
Extended hold period	All chip enable (CE) signals are deactivated, to prevent accidental contention while the active memory chip is disabled and another memory chip is enabled.				
	The extended hold period is only inserted if the EMIF receives no new access request in the same CE space and with the same data direction (write, in this case). If a request of the same type occurs during this period, the extended hold is aborted and a new memory cycle begins.				

Figure 2-4. Asynchronous Write Operation

 $^{^{\}dagger}$ The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

[‡] These periods are programmable. The values shown here are for example only.

2.5 Inserting Extra Cycles With the Ready (ARDY) Signal

In addition to programmable access shaping, you can insert extra cycles into the strobe period by activating the ARDY signal. This ready input signal is internally synchronized to the CPU clock.

The EMIF checks ARDY on the third rising edge of the CPU clock before the end of the programmed strobe period. If ARDY is detected low at that time, the strobe period is extended by 1 CPU clock cycle. For each subsequent CPU clock rising edge that ARDY is sampled low, the strobe period is extended by 1 CPU clock cycle. Thus, if ARDY is to be used, the minimum strobe period must be 4. If the strobe period is less than 4, ARDY must be held high; otherwise, unexpected behavior may occur in the EMIF. The maximum number of cycles that ARDY can be used depends on the time-out value in the TIMOUT bits. A time-out counter in the EMIF starts to count on the third rising edge of the CPU clock cycle before the end of the programmed strobe period.

If ARDY extends the strobe period, the EMIF does not allow a hold period of 0 cycles. If programmed hold period is 0 cycles and ARDY is used, the EMIF automatically generates a 1-cycle hold period.

Figure 2–5 shows one case where ARDY is used to extend the strobe period during a read operation. Figure 2–6 shows a similar case for a write operation.

TMS320VC5509A devices also provide a bit that can be used to disable the ARDY signal. For details, see the ARDYOFF bit description on page 4-5.

Figure 2-5. Extending an Asynchronous Read Operation With the ARDY Signal

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

[‡] These periods are programmable. The values shown here are for example only.

Figure 2-6. Extending an Asynchronous Write Operation With the ARDY Signal

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

[‡] These periods are programmable. The values shown here are for example only.

This page is intentionally left blank.

Chapter 3

Using SDRAM

The EMIF supports a glueless interface to high density and high speed synchronous DRAM (SDRAM). Both 64M-bit and 128M-bit SDRAM chips are supported in 16-bit data widths. The EMIF provides a clock signal to the SDRAM chip; this clock signal can have a frequency equal to or an integer fraction of the CPU clock frequency.

Topic	C	Page
3.1	SDRAM Interface Options	3-2
3.2	Configuring the EMIF for SDRAM Accesses	3-4
3.3	Examples of Interfacing to SDRAM Chips	3-7
3.4	SDRAM Commands	3-10
3.5	Address Shift Performed by the EMIF	3-11
3.6	Monitoring SDRAM Page Boundaries	3-11
3.7	SDRAM Initialization	3-12
3.8	SDRAM Mode Register Set	3-14
3.9	SDRAM Refresh	3-15
3.10	SDRAM Deactivation	3-21
3.11	SDRAM Read Operations	3-22
3.12	SDRAM Write Operations	3-23

3.1 SDRAM Interface Options

Table 3–1 shows the register bit configurations and address pin mapping to row and column addresses for specific SDRAM chips. The SDSIZE and SDWID bits are in SDRAM control register 1, and the SDACC bit is in SDRAM control register 2. These registers are described in section 4.6 (page 4-16). The pins named in the table are described in section 1.2 (page 1-4). For an explanation of the CE spaces, see section 1.4 (page 1-11).

Using SDRAM

SDRAM Interface Options

Table 3-1. EMIF SDRAM Configuration and Address Pin Mapping

	Con	figuration	Bits				Column	
SDRAM	SDACC	SDSIZE	SDWID	CE Spaces	Interface	Bank/Row Address	Address	See
64M bits: One chip,	0	0	0	CE0-CE1	SDRAM	BA[1:0] and A[11:0]	A[7:0]	Section 3.3.1 on page 3-7
4M x 16 bit				CE2-CE3	EMIF	A[14 [†] :12], SDA10, and A[10:1]	A[8:1]	- on page 5-1
128M bits: One chip,	0	1	0	All four	SDRAM	BA[1:0] and A[11:0]	A[8:0]	Section 3.3.2 on page 3-9
8M x 16 bit					EMIF	A[14 [†] :12], SDA10, and A[10:1]	A[9:1]	- On page 3-9

[†] On the BGA package (indicated by the GHH suffix on the device part number), A14 is used. On the LQFP package (indicated by the PGE suffix on the device part number), A0 is used.

3.2 Configuring the EMIF for SDRAM Accesses

Preparations must be made before the EMIF is used to access external SDRAM. Section 3.2.1 explains which register fields must be programmed. Section 3.2.2 provides a configuration procedure. If the EMIF is to send a self-refresh command to the SDRAM chip, bits in the external bus selection register of the DSP must also be programmed appropriately; for details, see section 3.9.3 on page 3-17.

3.2.1 Register Fields to Program

To configure the EMIF for interfacing to SDRAM, program the following register fields. The EMIF register descriptions are in Chapter 4.

- □ Each CE space has a CE space control register 1 that includes a memory type (MTYPE) field. For each CE space that contains SDRAM, define the memory type as SDRAM (MTYPE = 011b).
- ☐ The EMIF contains a pair of SDRAM control registers for configuring parameters that apply to all CE spaces containing SDRAM:
 - The SDSIZE field of SDRAM control register 1 indicates the size of the SDRAM chip, either 64M bits or 128M bits.
 - The SDWID field of SDRAM control register 1 must be 0 to indicate that the SDRAM memory width is 16 bits.
 - The SDACC field of SDRAM control register 2 must be 0 to indicate that the EMIF is to supply16 data lines for SDRAM accesses.
 - The RFEN field of SDRAM control register 1 must be set if the EMIF will be responsible for SDRAM auto-refreshes. Otherwise, it must be cleared.
 - The other fields of these SDRAM control registers are for setting standard timing parameters. For the settings required for a particular SDRAM chip, consult the manufacturer's documentation.
- ☐ The SDRAM period register defines the trickle refresh period. This period is the time between periodic SDRAM auto-refreshes initiated by the EMIF when RFEN = 1.
- ☐ The EMIF global control register has two fields for controlling the memory clock signal for all SDRAM:
 - MEMCEN. This bit enables or disables the memory clock on the CLKMEM pin.
 - MEMFREQ. When the memory clock is disabled (MEMCEN = 0), write to MEMFREQ to select the relative frequency of the memory clock signal. After programming the proper DSP clock and memory clock configurations, enable the clock (MEMCEN = 1).

(EBSR) contains an EMIFX2 bit (see the data manual). If the CPU is programmed to operate at 144 MHz and MEMFREQ = 001b (divide-by-two), the EMIFX2 bit must be 1 in the external bus selection register (EBSR) of the DSP. For other MEMFREQ values, the EMIFX2 bit must be 0. This is required for proper timing of SDRAM accesses.
On the TMS320VC5509A devices, there is an SDRAM control register 3 containing a DIV1 bit. If MEMFREQ = 000b (divide-by-1 clock mode), this register must contain 0007h (DIV1 = 1). For other values of MEMFREQ, this register must contain 0003h (DIV1 = 0).
The WPE bit of the EMIF global control register enables or disables write posting for all CE spaces. For an explanation of write posting, see section 1.7 on page 1-16.
The SDRAM initialization register is used to initialize all SDRAM. Any write to this register causes an SDRAM initialization sequence. This sequence is described in section 3.7 (page 3-12). After a hardware reset or after powering up the C55x device, a write to the SDRAM initialization register should be performed following the configuration of all CE spaces and prior to the accessing of SDRAM.

3.2.2 Configuration Procedure

Before configuring the EMIF, make sure the DSP clock generator is properly programmed. Its output is divided according to the MEMFREQ field in EGCR to produce the memory clock. The frequency of the memory clock must meet (1) the timing requirements in the SDRAM manufacturer's documentation and (2) the timing limitations shown in the electrical specifications section of the device-specific DSP data manual.

Use the following procedure to prepare the EMIF for accessing external SDRAM:

- 1) Clear the MEMCEN bit in the EMIF global control register (EGCR). This prevents the memory clock from being driven on the CLKMEM pin.
- Keeping MEMCEN = 0, program the other programmable fields of EGCR: MEMFREQ, WPE, and (if asynchronous memory is used in any of the CE spaces) ARDYOFF.
- 3) For each CE space that contains SDRAM, set MTYPE = 011b in CE space control register 1.
- 4) Program SDRAM control register 1.

- 5) Program SDRAM control register 2.
- 6) If you are programming a TMS320VC5509 device, program the EMIFX2 bit of the external bus selection register. If you are programming a TMS320VC5509A device, program SDRAM control register 3.
- 7) If the EMIF is responsible for refreshing the SDRAM with periodic auto-refresh commands, write the desired refresh period to the SDRAM period register.
- 8) Set the MEMCEN bit in EGCR, so that the memory clock is driven on the CLKMEM pin.
- 9) Write to the SDRAM initialization register. After new values are written to EMIF configuration registers, 6 CPU clock cycles are required for the new configuration to propagate through the EMIF logic. After this delay, the EMIF begins the SDRAM initialization sequence.

3.3 Examples of Interfacing to SDRAM Chips

The following examples are provided to help you to connect pins and to configure the EMIF for a 64M-bit or 128M-bit SDRAM chip. For details about the EMIF pins shown in the examples, see section 1.2 on page 1-4.

3.3.1 Interfacing to a 4M x 16 SDRAM Chip

Figure 3–1 and Table 3–2 provide an example of interfacing to a 64M-bit SDRAM chip with a 4M x 16 configuration. Since the limit for a single CE space is 32M bits, two CE spaces are used. However, only a single $\overline{\text{CE}}$ pin corresponding to the beginning of the mapped range is required for use as a chip select for the SDRAM chip.

The CE spaces used must be the first two or last two CE spaces. Specifically, you can use the CE0 and CE1 spaces or the CE2 and CE3 spaces, but you cannot use the CE1 and CE2 spaces.

The example in this section uses the CE0 and CE1 spaces. The only chip enable pin that is used is $\overline{\text{CE0}}$. $\overline{\text{CE1}}$ is left unconnected. The other $\overline{\text{CE}}$ pins ($\overline{\text{CE2}}$ and $\overline{\text{CE3}}$) can be left unconnected or used for other memory chips (asynchronous or synchronous).

If you were to use the CE2 and CE3 spaces, $\overline{\text{CE2}}$ would be used for chip selection. $\overline{\text{CE3}}$ would be left unconnected, and $\overline{\text{CE0}}$ and $\overline{\text{CE1}}$ could be left unconnected or used for other memory chips (asynchronous or synchronous).

For both of the two CE spaces used for SDRAM, the MTYPE bits must be set to 011b.

Figure 3–1. Interfacing to a 64M-bit SDRAM Chip With a 4M x 16 Array Organization

Table 3–2. EMIF Configuration for a 64M-bit SDRAM Chip With a 4M x 16 Array Organization

		Configuration Bits								
SDRAM	SDACC	SDSIZE	SDWID	MTYPE [†]	CE Spaces Used					
64M bits: One chip, 4M x 16 bit	0	0	0	011b	CE0 and CE1 or CE2 and CE3					

[†] Each CE space has its own MTYPE bits. MTYPE must be 011b for each CE space that is used for SDRAM.

[†] On the BGA package (indicated by the GHH suffix on the device part number), A14 is used. On the LQFP package (indicated by the PGE suffix on the device part number), A0 is used.

[‡] On TMS320VC5509A devices, the XF pin or the GPIO4 pin can be used to drive the SDRAM CKE signal. For details, see section 3.9.3 on page 3-17.

3.3.2 Interfacing to an 8M x 16 SDRAM Chip

Figure 3–2 shows a single 128M-bit (8M x 16) SDRAM chip interfaced to the EMIF. Table 3–3 lists the required configuration bit values for this setup. All CE spaces are occupied. $\overline{\text{CE0}}$ used as the SDRAM chip select pin, and $\overline{\text{CE}[3:1]}$ are left unconnected.

For this SDRAM interface option, the MTYPE bits for all CE spaces must be set to 011b.

A[9:0]

DQ[15:0]

DQM[H:L]

Figure 3–2. Interfacing to a 128M-bit SDRAM Chip With an 8M x 16 Array Organization

Table 3–3. EMIF Configuration for a 128M-bit SDRAM Chip With an 8M x 16 Array Organization

A[10:1]

D[15:0]

BE[1:0]

	Configuration Bits								
SDRAM	SDACC	SDSIZE	SDWID	MTYPE [†]	CE Spaces Used				
128M bits: One chip, 8M x 16 bit	0	1	0	011b	All four				

[†] Each CE space has its own MTYPE bits. MTYPE must be 011b for each CE space that is used for SDRAM.

[†] On the BGA package (indicated by the GHH suffix on the device part number), A14 is used. On the LQFP package (indicated by the PGE suffix on the device part number), A0 is used.

[‡] On TMS320VC5509A devices, the XF pin or the GPIO4 pin can be used to drive the SDRAM CKE signal. For details, see section 3.9.3 on page 3-17.

3.4 SDRAM Commands

The EMIF provides support for industry standard SDRAM commands. These commands and their corresponding pin states are given in Table 3–4 and Table 3–5, respectively.

Table 3-4. SDRAM Commands

Command	Description
DCAB	Deactivate (pre-charge) all banks
ACTV	Activate the selected bank and select the row
READ	Input the starting column address and begin the read operation
WRT	Input the starting column address and begin the write operation
MRS	Set the mode register of the SDRAM chip
REFR	Auto refresh cycle with internal address
NOP	No SDRAM operation

Table 3-5. EMIF Pin States for the SDRAM Commands

Command	CEn	SDRAS	SDCAS	SDWE	A[14 [†] :12]	SDA10	A[10:1]
DCAB	0	0	1	0	Χ	1	Χ
ACTV	0	0	1	1	ROW	ROW	ROW
READ	0	1	0	1	ROW	0	COL
WRT	0	1	0	0	ROW	0	COL
MRS	0	0	0	0	Χ	Х	MRS
REFR	0	0	0	1	X	Х	Х
NOP	0	1	1	1	Х	Х	Х
	1	Х	Х	Х	Х	Х	Х

[†] On the BGA package (indicated by the GHH suffix on the device part number), A14 is used. On the LQFP package (indicated by the PGE suffix on the device part number), A0 is used. For details, see the device-specific data manual.

3.5 Address Shift Performed by the EMIF

Because the same EMIF pins address both the row and column addresses, the EMIF appropriately shifts the address for proper row and column address selection. SDRAM chips use the A10 inputs for control as well as address. The EMIF forces the precharge disable bit (SDA10) to be low during READ and WRT commands, high during DCAB commands, and as bit 10 of the row address during ACTV commands. This prevents the auto-precharge from occurring following a READ or WRT command.

3.6 Monitoring SDRAM Page Boundaries

Because SDRAM is a paged memory type, the EMIF SDRAM controller monitors the active row of SDRAM so that row boundaries are not crossed during accesses. The EMIF stores the address of the open page and performs a comparison against that address for subsequent accesses to the SDRAM bank. This storage and comparison is performed separately for each CE space. The number of address bits and page boundaries compared are a function of the particular SDRAM interface option selected. For the options, see section 3.1 on page 3-2.

During the course of an access, if a page boundary is crossed, the EMIF performs a DCAB command and starts a new row access (ACTV command). Simply ending the current access is not a condition which forces the active SDRAM row to be closed. The EMIF speculatively leaves the active row open until it becomes necessary to close it. This feature decreases the DCAB-ACTV overhead and improves the performance of the interface. However, the EMIF only allows one row to be open at a time regardless of the number of banks that the SDRAM contains.

3.7 SDRAM Initialization

For all CE spaces configured as SDRAM, the EMIF performs the necessary functions to initialize SDRAM. An SDRAM initialization is requested by any write to the EMIF SDRAM initialization register. The MTYPE fields of the configuration registers should be properly set before performing the initialization. Figure 3–3 shows the timing during SDRAM initialization and execution of the MRS command.

The SDRAM initialization sequence is as follows:

- 1) Three NOP commands are sent to all CE spaces configured as SDRAM.
- 2) A DCAB command is sent to all CE spaces configured as SDRAM.
- 3) Eight REFR commands are sent to all CE spaces configured as SDRAM.
- 4) An MRS command is sent to all CE spaces configured as SDRAM.
- 5) The SDRAM initialization register is cleared to prevent multiple MRS cycles.

Figure 3-3. SDRAM Initialization, Including a Mode Register Set (MRS) Command

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

[‡] The timing parameters tRP, tRC, and tMRD must be programmed via SDRAM control registers 1 and 2 (see section 4.6 on page 4-16).

3.8 SDRAM Mode Register Set

An SDRAM chip contains a mode register that dictates the operating characteristics of the chip. The EMIF automatically performs a DCAB command, followed by an MRS command during SDRAM initialization. Like other SDRAM commands generated by the EMIF, MRS commands are sent to all CE spaces configured as SDRAM. The EMIF always uses a mode register value of 0030h during a MRS command. Figure 3–4 shows the mapping between mode register bits, EMIF pins, and the mode register value. Table 3–6 shows the standard SDRAM configuration values selected by the mode register value that is sent by the EMIF.

Figure 3-4. SDRAM Mode Register Value Sent by the EMIF to SDRAM

Mode Register Bits:	11	10	9	8	7	6	5	4	3	2	1	0
EMIF Pins:	A13	SDA10	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2
Field Description:	Res	served	Write burst length	st Reserved		Rea	d Late	ncy	Serial/ interleave burst type	Bu	rst len	gth
Value:	0	0	0	0	0	0	1	1	0	0	0	0

Table 3-6. SDRAM Configuration Sent With the MRS Command

Field	Selection
Write burst length	1
Read latency	3
Serial/interleave burst type	0 (serial)
Burst length	1

3.9 SDRAM Refresh

The EMIF can send refresh (REFR) commands to an SDRAM chip. The TMS320VC5509A devices support both auto-refresh and self-refresh commands, differentiating the two types of commands by controlling the CKE pin of the SDRAM chip. The TMS320VC5509 devices support only auto-refresh commands; in this case, the CKE pin must be tied high.

In most cases, an auto-refresh command must be received by the SDRAM chip at regular intervals to prevent the loss of data in the SDRAM. Sections 3.9.1 and 3.9.2 explain the auto-refresh capability of the EMIF.

A self-refresh command tells the SDRAM chip to use an internal clock to perform its own auto-refresh cycles. Once the SDRAM chip enters its self-refresh mode, it stays in that mode until released via its CKE pin. Section 3.9.3 describes how to start and end the self-refresh cycles using the EMIF.

Section 3.9.4 lists power considerations related to refresh commands.

3.9.1 Auto-Refresh Commands

The RFEN bit in SDRAM control register 1 (SDC1) selects or deselects the SDRAM auto-refresh capability of the EMIF. If RFEN = 0, the EMIF does not initiate refreshes, and you must ensure that refreshes are implemented by an external device. A value of 1 in RFEN enables the EMIF to send auto-refresh commands. The timing diagram for an SDRAM auto-refresh command is shown in Figure 3–5. If a TMS320VC5509A device is controlling the CKE pin of the SDRAM, it must keep the CKE pin high for an auto-refresh cycle. (Control of the CKE pin is described in section 3.9.3.)

Section 3.9.2 explains when the EMIF sends auto-refresh commands. When the command is sent, it is sent to all CE spaces that are configured for SDRAM with the corresponding MTYPE bits. REFR is automatically preceded by a DCAB command. This ensures that all CE spaces configured for SDRAM are deactivated. Page information is always invalid before and after a REFR command. Therefore, a refresh cycle always forces a page miss on the next access.

Figure 3-5. DCAB-REFR Command Sequence Sent by EMIF to SDRAM

3.9.2 Auto-Refresh Requests Generated Within the EMIF

Auto-refresh requests are generated by two counters inside the EMIF. The EMIF monitors the number of refresh requests generated and performs the refreshes when it is not servicing higher priority requests. For a list of requesters and their relative priorities, see section 1.3 on page 1-9.

One of the counters generates periodic *trickle refresh requests*. You define the period between these requests by writing the desired count to the 16-bit SDRAM period register (SDPER). The counter is decremented every CLKMEM cycle. When counter reaches 0, it is reloaded from SDPER and then continues to be decremented. You can read the SDRAM counter register (SDCNT) to get the current value in the refresh counter.

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

[‡] The timing parameters tRP and tRC must be programmed via SDRAM control registers 1 and 2 (see section 4.6 on page 4-16).

The other counter inside the EMIF generates *urgent refresh requests*. This is a 2-bit counter that records the backlog of trickle refresh requests. It is incremented by 1 for each trickle refresh request generated and decremented by 1 for each refresh performed. The counter saturates at the values of 11b and 00b. If the counter is 11b, an urgent refresh request is generated.

In response to an urgent refresh request, the EMIF closes the current SDRAM page. Following a DCAB command, the EMIF SDRAM controller performs three REFR commands (thereby decrementing the counter to 00b) before proceeding with the remainder of the current access. The DCAB-REFR command sequence occurs in all CE spaces that contain SDRAM. At reset, the 2-bit counter is automatically set to 11b to ensure that several refreshes occur before accesses begin.

During times of inactivity on the SDRAM pins, if no SDRAM access request is pending, the EMIF sends REFR commands as long as the 2-bit counter value is nonzero. This feature reduces the likelihood of having to perform urgent refreshes during actual SDRAM accesses. This refresh occurs only if the SDRAM chip is inactive with invalid page information.

3.9.3 Self-Refresh Commands

If the CKE pin of an SDRAM chip is low when a REFR command is received, the SDRAM chip enters its self-refresh mode. The TMS320VC5509A DSP allows you to use the XF pin or the GPIO4 pin of the DSP to control the CKE pin of the SDRAM chip. Once the self-refresh command is registered, all the inputs to the SDRAM chip become don't cares, with the exception of CKE, which must remain low.

3.9.3.1 Behavior of the XF and GPIO4 Pins

The CKESEL and CKEEN bits of EBSR determine whether the XF or GPIO4 pin of a TMS320VC5509A DSP drive the SDRAM CKE pin. The effects of these two bits are summarized in Table 3–7 and described in the paragraphs following the table. XF and GPIO4 are not affected if the EMIF acknowledges a HOLD request.

Table 3-7. Effects of EBSR Bits on the Behavior of the XF and GPIO4 Pins

EBSR(8): CKESEL	EBSR(7): CKEEN	Description
Х	0	Regardless of whether the XF pin or the GPIO4 pin is selected by CKESEL, these two pins have their normal function. The XF pin reflects the state of the XF bit of ST1_55, and GPIO4 functions as a general-purpose I/O pin.
0	1	The XF pin is selected and enabled to control the SDRAM CKE signal.
1	1	The GPIO4 pin is selected and enabled to control the SDRAM CKE signal.

If the XF pin is selected to drive the CKE pin (CKESEL = 0):

	If the CKE capability of the DSP is disabled (CKEEN = 0), the XF pin reflects the state of the XF bit of the CPU. XF is a bit in CPU status register $ST1_55$.
	If the CKE capability of the DSP is enabled (CKEEN = 1), the XF pin is driven high by default, irrespective of the state of the XF bit. The XF signal is low only during the self-refresh cycles.
	The GPIO4 pin of the DSP is not affected in its operation.
lf ti	he GPIO4 pin is selected to drive the CKE pin (CKESEL = 1):
	If the CKE capability of the DSP is disabled (CKEEN = 0), the GPIO4 pin is configured for general-purpose I/O.

is low only during the self-refresh cycles. The XF pin is not affected in its operation.

☐ The logic for GPIO4 and SDRAM CKE are separate. Therefore, reading from or writing to the GPIO4 register does not affect the GPIO4 pin. Bit 4 of the GPIO data register reflects the value of the SDRAM CKE pin, which may aid in debugging.

☐ If CKE capability of the DSP is enabled (CKEEN = 1), the GPIO4 pin is driven high by default, irrespective of the GPIO settings. The GPIO4 signal

3.9.3.2 Procedure to Put an SDRAM Chip Into the Self-Refresh Mode

The following steps describe how to program a TMS320VC5509A DSP to make an SDRAM chip enter the self-refresh mode.

- 1) Select which pin of the DSP is to control the CKE pin of the SDRAM. Program EBSR(8) = 0 to select the XF pin or EBSR(8) = 1 to select the GPIO4 pin. Once the choice of XF or GPIO4 has been made, it should not be changed anytime during proper operation of the device, and it should match pin routing to the SDRAM chip. Generally, this is done when the chip boots up.
- 2) Program the system for the EMIF self-refresh mode. This is accomplished by programming both EBSR(7) and EBSR(6):
 - a) Program EBSR(7) = 1 (CKEEN = 1). Generally, this is done when the chip boots up. Programming this bit configures the selected pin (XF or GPIO4) as an output and makes the high state the default state of the pin.
 - b) Program EBSR(6) = 0 (SRCOM = 0). SRCOM issues the self-refresh command; thus, SRCOM must be 0 until setup is completed.
- 3) Finish all SDRAM accesses. SDRAM accesses are not allowed after this point.
- 4) Wait until a pre-charge command is issued. The EMIF performs a pre-charge only during an auto-refresh command. The software should stay in a loop that reads the SDRAM counter register of the EMIF until the register is loaded again (the counter register always decrements; when it reaches 0, it is reloaded from the SDRAM period register of the EMIF). Once the counter register is re-initialized, EMIF sends a pre-charge command, with the A10 pin high, to pre-charge all banks of SDRAM.
- 5) Wait 30 CLKMEM cycles for the EMIF to finish the refresh/initialization process. This ensures that the pre-charge or initialization command given during step 4 finishes correctly.
- 6) Program RFEN = 0 to prevent the EMIF from issuing auto-refresh commands. RFEN is bit 8 of SDRAM control register 1 in the EMIF.
- 7) Program EBSR(6) = 1 (SRCOM = 1). In response, the EMIF issues a self-refresh command.
- 8) Wait until EBSR(11) = 1 (SRSTAT = 1).
 - Another option is to issue n NOP instructions, where n is equal to the SDRAM clock divider. For instance, issue 2 NOPs if the CPU clock is being divided by 2, and 16 NOPs if the CPU clock is being divided by 16.

9) The SDRAM chip is now in its self-refresh mode. To save power, you can idle the DSP clock generator or idle the EMIF module. In either case, XF or GPIO4 remains low. An another power-saving option during SDRAM self-refreshing is disabling the CLKMEM signal (MEMCEN = 0 in EGCR). Until the SDRAM chip is taken out of the self-refresh mode, the DSP should not attempt external memory accesses to SDRAM. However, accesses to asynchronous memory in another CE space can still occur.

3.9.3.3 Procedure to Take an SDRAM Chip Out of the Self-Refresh Mode

The following steps describe how to make an SDRAM chip exit the self-refresh mode.

- Ensure a stable clock signal to the SDRAM chip before taking the SDRAM chip out of the self-refresh mode.
- 2) Program EBSR(6) = 0 (SR COM = 0). In response, the selected pin (XF or GPIO4) is driven high.
- 3) Wait for the tXSR period for an ongoing self-refresh to complete. After programming SR COM, the SDRAM cannot be accessed for at least 100 ns and at least 2 CLKMEM cycles. NOPs or Command Inhibit should be issued during this period.
- 4) Program RFEN = 1. This allows the EMIF to start issuing auto-refresh commands.
- 5) Write any value to the SDRAM initialization register. This re-initializes the EMIF.

3.9.4 Refresh Power Considerations

The following are power issues to consider when programming the EMIF to provide refreshes:

If the EMIF or the clock generator is placed into its idle mode by software,
the SDRAM clock is disabled to save additional power. The EMIF does not
issue SDRAM refresh commands, and the data stored in SDRAM is lost.
If an SDRAM refresh were required during this time, external refresh logic
would be necessary.

If the SDRAM chip is placed in its self-refresh mode, power can be saved
in the DSP. Because the SDRAM controls its own refreshes, the EMIF can
be put into its idle mode without causing the loss of data in the SDRAM.

3.10 SDRAM Deactivation

The SDRAM deactivation (DCAB) or precharge command is generated by the EMIF to close the active page of memory. DCAB is performed after hardware reset or after a write to the SDRAM initialization register (INIT). Also, a DCAB is generated prior to REFR, MRS, and when page boundaries are crossed. During the DCAB command operation, SDA10 is driven high to ensure that all SDRAM banks are deactivated. Figure 3–6 shows the timing diagram for SDRAM deactivation.

Figure 3-6. SDRAM Deactivation

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

3.11 SDRAM Read Operations

During an SDRAM read, the selected bank is activated with the row address during the ACTV command. The EMIF uses a CAS latency of 3 and a burst length of 1. The 3-cycle latency causes read data to appear on the data bus 3 cycles after the corresponding column address.

If a refresh cycle or an access to a different page of memory is required, a DCAB cycle is performed to deactivate the bank after the last column access. Delay cycles are inserted between the final read command and the DCAB command to meet SDRAM timing requirements. Note that due to the data latency, the transfer of data actually finishes after the DCAB command. If no new access is pending, the DCAB command is not performed until such time that the page information becomes invalid.

An example of two, back-to-back SDRAM reads is shown in Figure 3–7.

If there is a CE space change or a direction change (read to write, or write to read) between two consecutive requests, the EMIF inserts one dead cycle. During this dead cycle all chip enable signals are driven high (inactive).

Figure 3-7. SDRAM Read Operation

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

[‡] The timing parameters tRAS and tRCD must be programmed via SDRAM control registers 1 and 2 (see section 4.6 on page 4-16).

3.12 SDRAM Write Operations

All SDRAM writes have a burst length of 1. The bank is activated with the row address during the ACTV command. Unlike SDRAM reads, there is no CAS latency on writes. Therefore, data is output on the same cycle as the column address. Byte and word writes are enabled via the appropriate byte enable (BE) pins of the EMIF; connect these pins to the DQM inputs of the SDRAM chip. Following the final write command, delay cycles are inserted to meet SDRAM timing requirements. If required, the bank is then deactivated with a DCAB command and the memory interface can begin a new page access. If no new access is pending or if an access is pending to the same page, the DCAB command is not performed until such time that the page information becomes invalid. Examples of SDRAM writes are shown in Figure 3–8.

If there is a CE space change or a direction change (read to write, or write to read) between two consecutive requests, the EMIF inserts one dead cycle. During this dead cycle all chip enable signals are driven high (inactive).

Figure 3–8. SDRAM Write Operation

[†] The chip enable, byte enable, address, and data pins used depend on the specific access and EMIF configuration.

[‡] The timing parameters tRAS and tRCD must be programmed via SDRAM control registers 1 and 2 (see section 4.6 on page 4-16).

Chapter 4

EMIF Registers

This chapter describes the contents and function of each of the EMIF registers.

Notes:

- 1) Do not write to configuration registers when external memory accesses are in progress or pending in the EMIF.
- After new values are written to configuration registers, allow at least 6 CPU clock cycles for the new configuration to propagate through the EMIF logic.

Topi	C Page
4.1	Summary of the EMIF Registers 4-2
4.2	EMIF Global Control Register (EGCR) 4-3
4.3	EMIF Global Reset Register (EMIRST) 4-6
4.4	EMIF Bus Error Status Register (EMIBE) 4-7
4.5	CE Space Control Registers (CEn1, CEn2, and CEn3 in Each CE Space) 4-11
4.6	SDRAM Control Registers 1 and 2 (SDC1 and SDC2) 4-16
4.7	SDRAM Control Register 3 (SDC3)
4.8	SDRAM Period and Counter Registers (SDPER and SDCNT) 4-20
4.9	SDRAM Initialization Register (INIT)

4.1 Summary of the EMIF Registers

Table 4–1 lists the addresses and names of the EMIF registers.

Table 4–1. Registers of the EMIF

I/O Address	Register(s)	Description	See
0800h	EGCR	EMIF global control register	Page 4-3
0801h	EMIRST	EMIF global reset register	Page 4-6
0802h	EMIBE	EMIF bus error status register	Page 4-7
0803h	CE01	CE0 space control register 1	Page 4-11
0804h	CE02	CE0 space control register 2	Page 4-11
0805h	CE03	CE0 space control register 3	Page 4-11
0806h	CE11	CE1 space control register 1	Page 4-11
0807h	CE12	CE1 space control register 2	Page 4-11
0808h	CE13	CE1 space control register 3	Page 4-11
0809h	CE21	CE2 space control register 1	Page 4-11
080Ah	CE22	CE2 space control register 2	Page 4-11
080Bh	CE23	CE2 space control register 3	Page 4-11
080Ch	CE31	CE3 space control register 1	Page 4-11
080Dh	CE32	CE3 space control register 2	Page 4-11
080Eh	CE33	CE3 space control register 3	Page 4-11
080Fh	SDC1	SDRAM control register 1	Page 4-16
0810h	SDPER	SDRAM period register	Page 4-20
0811h	SDCNT	SDRAM counter register	Page 4-20
0812h	INIT	SDRAM initialization register	Page 4-22
0813h	SDC2	SDRAM control register 2	Page 4-16
0814h	SDC3 / Reserved†	SDRAM control register 3 / Reserved†	Page 4-19

[†] On TMS320VC5509A devices, address 0814h is used for SDRAM control register 3. On TMS320VC5509 devices, address 0814h is reserved and must not be used.

4.2 EMIF Global Control Register (EGCR)

The global control register (see Figure 4–1) is a 16-bit I/O-mapped register used to configure and monitor global conditions in the EMIF. Use this register to set up the clock for SDRAM chips (MEMFREQ and MEMCEN), to enable or disable write posting (WPE), to enable or disable the ARDY signal (ARDYOFF), and to monitor the ARDY signal (ARDY). Table 4–2 describes the bit fields of EGCR.

Figure 4–1. EMIF Global Control Register (EGCR)

Legend: R = Read; W = Write; -n = Value after reset; -pin = Value after reset depends on the associated pin; -x = Value after reset is undefined.

[†] Always write 0 to these reserved bits.

[‡] In a TMS320VC5509A device, this bit is the ARDYOFF bit. In a TMS320VC5509 device, this bit is reserved and should always be written with 0.

[§] The read state of bit 2 is undefined.

Table 4–2. EMIF Global Control Register (EGCR)Bits

Bit	Field	Value	Description
15–12	Reserved		These read-only reserved bits return 0s when read.
11–9	MEMFREQ		Memory clock frequency bits. MEMFREQ determines the relationship between the frequencies of the CPU clock signal and the signal on the CLKMEM pin. The frequency on CLKMEM must meet (1) the timing requirements in the SDRAM manufacturer's documentation and (2) the timing limitations shown in the electrical specifications section of the device-specific DSP data manual.
			Change MEMFREQ only when CLKMEM is disabled (when the MEMCEN bit is 0).
			Note 1: For TMS320VC5509 devices:
			☐ If the CPU is programmed to operate at 144 MHz and MEMFREQ = 001b (divide by 2), the EMIFX2 bit must be 1 in the external bus selection register (EBSR) of the DSP. If MEMFREQ is not 001b, the EMIFX2 bit must be 0. This is required for proper timing of SDRAM accesses.
			☐ The divide-by-16 option is not supported. Do not write 100b to MEMFREQ.
			Note 2: For TMS320VC5509A devices:
			☐ If MEMFREQ = 000b, the DIV1 bit must be 1 in SDRAM control register 3.
			If MEMFREQ is nonzero, the DIV1 bit must be 0 in SDRAM control register 3.
		000b	The CLKMEM frequency is equal to the CPU clock frequency.
		001b	The CLKMEM frequency is 1/2 the CPU clock frequency.
		010b	The CLKMEM frequency is 1/4 the CPU clock frequency.
		011b	The CLKMEM frequency is 1/8 the CPU clock frequency.
		100b	The CLKMEM frequency is 1/16 the CPU clock frequency.
		other	Reserved (do not use)
8	Reserved		This read-only reserved bit returns 0 when read.
7	WPE		Write posting enable bit. Use WPE to enable or disable the write posting feature of the EMIF. WPE affects all of the CE spaces. For details about write posting, see section 1.7 on page 1-16.
		0	Disabled
		1	Enabled

Table 4–2. EMIF Global Control Register (EGCR)Bits (Continued)

Bit	Field	Value	Description
6	Reserved		This read-only reserved bit returns 0 when read.
5	MEMCEN		Memory clock enable bit. MEMCEN determines whether the memory clock is enabled at the CLKMEM pin.
		0	Disabled
			The signal on the CLKMEM pin is held high.
		1	Enabled
			The memory clock is driven on the CLKMEM pin. The frequency of the clock depends on the MEMFREQ bits.
4	ARDYOFF		ARDY off bit / Reserved bit.
	or Reserved		In a TMS320VC5509A device: ARDYOFF
		0	ARDY on
			The strobe period can be extended with the ARDY signal.
		1	ARDY off
			The EMIF does not sample the ARDY signal. As a result, the strobe period is never extended past the programmed length.
			In a TMS320VC5509 device: Reserved
		0	Always write 0 to this reserved bit.
3	ARDY		ARDY signal status bit. At the time the EMIF is performing an asynchronous read or write operation, the ARDY bit is updated to show the signal level on the asynchronous ready (ARDY) pin. At other times, ARDY is not updated.
		0	ARDY signal is low
		1	ARDY signal is high
2	Reserved		This is a read-only reserved bit. The read state of this bit is undefined.
1	Reserved		This read-only reserved bit returns 0 when read.
0	Reserved		Always write 0 to this reserved bit.

4.3 EMIF Global Reset Register (EMIRST)

Any write to this register (see Figure 4–2 and Table 4–3) resets the logic inside the EMIF. One effect is all pending access requests are cleared. Writing to EMIRST does not change the current configuration values in the EMIF registers. This register cannot be read.

Figure 4–2. EMIF Global Reset Register (EMIRST)

15 0

EMIRST

W-x

Legend: W = Write; -x = Value after reset is undefined

Table 4-3. EMIF Global Reset Register (EMIRST) Bits

Bit	Field	Value	Description
15–0	EMIRST	0000h-FFFFh	Any write to this register resets the EMIF state machine.

4.4 EMIF Bus Error Status Register (EMIBE)

rec	ure 4–3 and Table 4–4 summarize the fields of EMIBE. This register ords the following bus errors that occur during accesses to external rachronous memory:
	A time-out condition
	An attempt to write to a CE space that is configured for 8-bit-wide asynchronous memory. Such writes are not supported by the EMIF.
For	each bus error recognized by the EMIF:
	The EMIF terminates the external transaction. The EMIF advances to the hold period and completes the programmed number of hold cycles.
	If the request came from the DMA controller, all pending DMA requests are flushed from the EMIF.
	The EMIF sets at least two bits in EMIBE:
	One of the CE bits (bits 10 through 7), to identify which CE space was being accessed when the error occurred.
	One of the requester bits (6 through 2 and 0), to identify which DSP resource requested the external memory access.
	If the error was a time-out condition, the EMIF also sets the TIME bit (bit 12).
dat	explained in section 1.3 (page 1-9), there is a difference between dual a accesses and long data accesses. This difference is reflected in the ways errors are recorded in EMIBE:
	A long data write uses two data buses (EB and FB) but is a single E-bus request. If a bus error occurs when the EMIF attempts to service this request, the EBUS bit is set, but the FBUS bit is not.
	A long data read uses data buses CB and DB but is a single D-bus request. If a bus error occurs during servicing, the DBUS bit is set, but the CBUS bit is not.
	For any dual data access, the EMIF receives separate requests from two CPU buses. The error bits corresponding to either or both of the buses may be set.

The bus error status register (EMIBE) is a 16-bit I/O-mapped register.

After EMIBE is read, it is automatically cleared. If a second bus error occurs before the first error is read and cleared, the content of EMIBE is a combination of the results from the two failed accesses. Consider the following example: A D-bus request to the CE2 space results in a bus error. Before EMIBE is read, an E-bus request to the CE1 space results in a second bus error. When EMIBE is read, bits CE2, CE1, EBUS, and DBUS will all be 1.

EMIF bus errors have interrupt activity associated with them. If the requester was a CPU bus, the EMIF sends a bus-error interrupt request to the CPU. If the requester was the DMA controller and a time-out error has occurred, the EMIF sends a time-out signal to the DMA controller. The DMA controller can ignore the signal or send a bus-error interrupt request to the CPU. The bus-error interrupt is maskable; the CPU ignores it or services it depending on whether the interrupt is properly enabled.

Figure 4–3. EMIF Bus Error Status Register (EMIBE)

	15		13	12	11	10	9	8
		Reserved [†]		TIME	Reserved [†]	CE3	CE2	CE1
•		R-0		R-0	R-0	R-0	R-0	R-0
	7	6	5	4	3	2	1	0
	CE0	DMA	FBUS	EBUS	DBUS	CBUS	Reserved	PBUS
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0

Legend: R = Read; -n = Value after reset

Table 4-4. EMIF Bus Error Status Register (EMIBE) Bits

Bit	Field	Value	Description
15–13	Reserved		These are read-only reserved bits. The read states of these bits are undefined.
12	TIME	Time-out error status bit. The EMIF sets TIME when a time-out erro occurs during an access to asynchronous memory.	
		0	No error
		1	Error
11	Reserved		This is a read-only reserved bit. The read state of this bit is undefined.

[†] The read states of these reserved bits are undefined.

Table 4-4. EMIF Bus Error Status Register (EMIBE) Bits (Continued)

Bit	Field	Value	Description
10	CE3		CE3 error status bit. The EMIF sets CE3 when an error occurs during an access to memory in the address range defined as the CE3 space.
		0	No error
		1	Error
9	CE2		CE2 error status bit. The EMIF sets CE2 when an error occurs during an access to memory in the address range defined as the CE2 space.
		0	No error
		1	Error
8	CE1		CE1 error status bit. The EMIF sets CE1 when an error occurs during an access to memory in the address range defined as the CE1 space.
		0	No error
		1	Error
7	CE0		CE0 error status bit. The EMIF sets CE0 when an error occurs during an access to memory in the address range defined as the CE0 space.
		0	No error
		1	Error
6	DMA		DMA error status bit. The EMIF sets DMA when an error occurs during an access requested by the DMA controller.
		0	No error
		1	Error
5	FBUS		F-bus error status bit. The EMIF sets FBUS when an error occurs while the EMIF is servicing an F-bus request from the CPU. An F-bus request is for a 16-bit data write.
		0	No error
		1	Error

Table 4–4. EMIF Bus Error Status Register (EMIBE) Bits (Continued)

Bit	Field	Value	Description	
4	EBUS		E-bus error status bit. The EMIF sets EBUS when an error occur while the EMIF is servicing an E-bus request from the CPU. An E-bu request is for a 16-bit or 32-bit data write.	
		0	No error	
		1	Error	
3	DBUS		D-bus error status bit. The EMIF sets DBUS when an error occ while the EMIF is servicing a D-bus request from the CPU. A D-bus request is for a 16-bit or 32-bit data read.	
		0	No error	
		1	Error	
2	CBUS		C-bus error status bit. The EMIF sets CBUS when an error occurs while the EMIF is servicing a C-bus request from the CPU. A C-bus request is for a 16-bit data read.	
		0	No error	
		1	Error	
1	Reserved		This read-only reserved bit returns 0 when read.	
0	PBUS		P bus error status bit. The EMIF sets PBUS when an error occurs while the EMIF is servicing a P-bus request from the CPU. A P-bus request is for a 32-bit instruction fetch.	
		0	No error	
		1	Error	

4.5 CE Space Control Registers (CEn1, CEn2, and CEn3 in Each CE Space)

The external memory map is divided into CE spaces (see section 1.4 on page 1-11). Each CE space has three CE space control registers of the form shown in Figure 4–4. The contents of these registers are described in Table 4–6 through Table 4–8. These are 16-bit I/O-mapped registers used primarily for configuring accesses to asynchronous memory.

With the MTYPE bit, select the memory type for the given CE space. If you choose an asynchronous memory type, use the other bits in the CE space control registers to define the timing parameters. For details about the asynchronous timing parameters, see section 2.2 on page 2-4. If you choose a synchronous memory type, the EMIF ignores all of the bits but MTYPE.

Notes:

- 1) The SETUP and STROBE fields have a minimum count of 1, and because of this, a 0 in one of these fields is interpreted by the DSP as a 1. For the first access (even if there is only one), the setup period has a minimum of 2 cycles. Table 4–5 shows how the setup constraints affect the number of cycles in the first and subsequent setup periods.
- 2) Writing 0, 1, or 2 to a SETUP field results in a programmed setup period of 1 cycle. Writing a number n larger than 2 results in a programmed setup period of n cycles. This behavior is also reflected in Table 4–5.

Table 4–5. Setup Period Cycles For First and Subsequent Accesses

SETUP Bits	Setup Period For First Access (CPU Clock Cycles)	Setup Period For Subsequent Accesses (CPU Clock Cycles)
0	2	1
1	2	1
2	2	1
3 ≤ n ≤ 15	n	n

Figure 4–4. CE Space Control Registers (CEn1, CEn2, and CEn3) for Each CE Space

Table 4-6. CE Space Control Register 1 (CEn1) Bits

Bit	Field	Value	Description
15	Reserved		This read-only reserved bit returns 0 when read.
14–12	MTYPE		Memory type bits. Each of the CE spaces has MTYPE bits. For each CE space, use MTYPE to select one of the following memory types:
		000b [†]	Asynchronous, 8-bit data bus width
		001b	Asynchronous, 16-bit data bus width
		010b	Reserved (do not use)
		011b	Synchronous DRAM (SDRAM), 16-bit data bus width
		other	Reserved (do not use)
11–8	RDSETUP		Read setup period bits. For each CE space that contains asynchronous memory, load the associated RDSETUP bits with a setup period for read operations in that CE space.
		0, 1, or 2	1 CPU clock cycle
		$3 \le n \le 15$	n CPU clock cycles
7–2	RDSTROBE		Read strobe period bits. For each CE space that contains asynchronous memory, load the associated RDSTROBE bits with a strobe period for read operations in that CE space.
		0 or 1	1 CPU clock cycle
		$2 \le n \le 63$	n CPU clock cycles
1–0	RDHOLD		Read hold period bits. For each CE space that contains asynchronous memory, load the associated RDHOLD bits with a hold period for read operations in that CE space.
			Note: If the ARDY pin extends the strobe period, the EMIF does not allow a hold period of 0 cycles. If RDHOLD = 0 and ARDY is used, the EMIF automatically generates a 1-cycle hold period.
		$0 \le n \le 3$	n CPU clock cycles

[†] For a TMS320VC5509 device, 000b is a reserved value for MTYPE. Accesses of 8-bit-wide memory are not supported by a TMS320VC5509 DSP, but they are supported by a TMS320VC5509A DSP. These accesses can be reads only; writes to 8-bit-wide memory are not possible.

Table 4–7. CE Space Control Register 2 (CEn2) Bits

Bit	Field	Value	Description
15–14	RDEXHLD		Read extended hold period bits. For each CE space that contains asynchronous memory, load the associated RDEXHLD bits with an extended hold period for read operations in that CE space. The EMIF automatically adds 1 to the value programmed.
		$0 \le n \le 3$	(n + 1) CPU clock cycles
13–12	WREXHLD		Write extended hold period bits. For each CE space that contains asynchronous memory, load the associated WREXHLD bits with an extended hold period for write operations in that CE space. The EMIF automatically adds 1 to the value programmed.
		$0 \le n \le 3$	(n + 1) CPU clock cycles
11-8	WRSETUP		Write setup period bits. For each CE space that contains asynchronous memory, load the associated WRSETUP bits with a setup period for write operations in that CE space.
		0, 1, or 2	1 CPU clock cycle
		$3 \le n \le 15$	n CPU clock cycles
7–2	WRSTROBE		Write strobe period bits. For each CE space that contains asynchronous memory, load the associated WRSTROBE bits with a strobe period for write operations in that CE space.
		0 or 1	1 CPU clock cycle
		$2 \le n \le 63$	n CPU clock cycles
1–0	WRHOLD		Write hold period bits. For each CE space that contains asynchronous memory, load the associated WRHOLD bits with a hold period for write operations in that CE space.
			Note: If the ARDY pin extends the strobe period, the EMIF does not allow a hold period of 0 cycles. If WRHOLD = 0 and ARDY is used, the EMIF automatically generates a 1-cycle hold period.
		$0 \le n \le 3$	n CPU clock cycles

Table 4-8. CE Space Control Register 3 (CEn3) Bits

Bit	Field	Value	Description
15–8	Reserved		These read-only reserved bits return 0s when read.
7–0	TIMOUT		Time-out bits. For each CE space that contains asynchronous memory, load the associated TIMOUT bits with a time-out value (n) for all operations in that CE space, or disable the time-out feature by clearing TIMOUT.
		0	Time-out feature disabled (default after reset)
		1 ≤ n ≤ 255	An internal counter counts the number of cycles that the asynchronous ready signal (ARDY) is sampled low (indicating that the memory is not ready for an access). If ARDY is sampled low for n CPU clock cycles, the EMIF signals a time-out error.

4.6 SDRAM Control Registers 1 and 2 (SDC1 and SDC2)

SDRAM control registers 1 and 2 control SDRAM parameters for all CE spaces that specify an SDRAM memory type in the MTYPE field of its associated CE space control register 1. Each CE space containing SDRAM should be compatible with the same refresh, timing, and page characteristics. The delay values in the control registers are in CLKMEM cycles. The control register fields are shown in Figure 4–5. Table 4–9 and Table 4–10 describe the timing parameters that must be configured with the control registers. The nonconfigurable SDRAM timing parameters are listed in Table 4–11.

Figure 4–5. SDRAM Control Registers 1 and 2 (SDC1 and SDC2)

SDC1							
15			11	10	9	8	
	TRC			SDSIZE	SDWID	RFEN	
•	R/W-11111			R/W-0	R/W-0	R/W-1	
7		4	3			0	
	TRCD			TF	RP		
	R/W-0100		R/W-1000				
SDC2							
15			11	10	9	8	
	Reserved [†]			SDACC	TM	RD	
	R/W-0			R/W-0	R/W	<i>I</i> –11	
7		4	3			0	
	TRAS		TACTV2ACTV				
<u> </u>	R/W-1111		R/W-1111				

[†] Always write 0s to these reserved bits.

Table 4-9. SDRAM Control Register 1 (SDC1) Bits

Bit	Field	Value	Description
15–11	TRC	0–31	TRC specifies the tRC (SDRAS Cycle Time) value of the SDRAM in CLKMEM cycles from REFR to REFR/MRS/ACTV command.
			TRC = (tRC/CLKMEM) - 1
10–9	SDSIZE:SDWID		SDSIZE and SDWID define what type of SDRAM chip is to be used with the EMIF. This setting applies to all CE spaces that are configured for SDRAM. SDSIZE selects a memory size of 64M bits (SDSIZE = 0) or 128M bits (SDSIZE = 1). SDWID must 0 to indicate a memory width of 16 bits. Do not write 1 to SDWID.
		00b	4M x 16 bits (64M bits)
		10b	8M x 16 bits (128M bits)
		other	Reserved
8	RFEN		RFEN enables or disables the capability of the EMIF to send SDRAM auto-refresh commands.
		0	SDRAM auto-refreshes disabled
		1	SDRAM auto-refreshes enabled
7–4	TRCD	0–15	TRCD specifies the tRCD (Activate to Command or SDRAS to SDCAS Delay) value of the SDRAM in CLKMEM cycles from ACTV to READ/WRITE command.
			TRCD = (tRCD/CLKMEM) - 1
3–0	TRP	0–15	TRP specifies the tRP (SDRAS Precharge Time) value of the SDRAM in CLKMEM cycles from DCAB to REFR/ACTV/MRS command.
			TRP = (tRP/CLKMEM) - 1

Table 4–10. SDRAM Control Register 2 (SDC2) Bits

Bit	Field	Value	Description
15–11	Reserved	0	Always write 0s to these reserved bits.
10	SDACC	0	Always write 0 to SDACC; do not write 1. SDACC = 0 indicates that the SDRAM data bus interface is 16 bits wide.
9–8	TMRD	0–3	TMRD specifies the tMRD (Mode Register set to ACTV/DCAB/REFR Delay) value in CLKMEM clock cycles. TMRD = (tMRD/CLKMEM) – 1
7–4	TRAS	0–15	TRAS specifies the tRAS (SDRAS Active Time) value in CLKMEM clock cycles. TRAS = (tRAS/CLKMEM) - 1
3–0	TACTV2ACTV	0–15	TACTV2ACTV specifies the tRRD (SDRAS to SDRAS Bank Activate Delay) value in CLKMEM clock cycles. TACTV2ACTV = (tRRD/CLKMEM) – 1

Table 4–11. Nonconfigurable SDRAM Timing Parameters

Parameter	Description	CLKMEM Cycles
tCL	CAS latency	3
tRD2DCAB	Delay from a READ command to a DCAB command	4
tWR2DCAB	Delay from a WRT command to a DCAB command	4
tWR2WR	Delay from a WRT command to another WRT command	1
tRD2RD	Delay from a READ command to another READ command	1
tRD2WR	Delay from a READ command to a WRT command	5
tWR2RD	Delay from a WRT command to a READ command	5

4.7 SDRAM Control Register 3 (SDC3)

Note:

SDRAM control register 3 is on TMS320VC5509A devices and is not on TMS320VC5509 devices.

If a TMS320VC5509A device will access external SDRAM, write the appropriate value to SDC3 during initialization:

- ☐ If the divide-by-1 mode is selected for the memory clock (MEMFREQ is 000b in EGCR), SDC3 must contain 0007h. That is, DIV1 must be 1, and the other bits must contain the default values shown in Figure 4–6.
- ☐ If the clock divide value is 2, 4, 8, or 16 (MEMFREQ is nonzero), SDC3 must contain 0003h. Make DIV1 = 0 without changing the default values of the other bits in SDC3.

Figure 4–6. SDRAM Control Register 3 (SDC3)

Table 4–12. SDRAM Control Register 3 (SDC3) Bits

Bit	Field	Value	Description
15–4	Reserved	0	Although these reserved bits are read-only, it is recommended that you always write 0s to them.
3	Reserved	0	Always write 0 to this reserved bit.
2	DIV1		Divide-by-1 clock mode bit
		0	Configure the EMIF for communicating with SDRAM using a clock mode other than divide-by-1.
		1	Configure the EMIF for communicating with SDRAM using the divide-by-1 clock mode.
1–0	Reserved	11b	Always write 11b to these reserved bits.

[†] Always write 0s to bits 15–3.

[‡] Always write 1s to bits 1 and 0.

4.8 SDRAM Period and Counter Registers (SDPER and SDCNT)

The SDRAM period register (SDPER) and the SDRAM counter register (SDCNT) are summarized in Figure 4–7 and the tables following the figure. SDPER is used to set the period between trickle refreshes in units of CLKMEM cycles. For the minimum refresh period required, consult the SDRAM manufacturer's data sheet.

When the refresh enable bit is set (RFEN = 1 in SDC1), a 16-bit refresh period counter is loaded from SDPER, and the counter is decremented every 1 CLKMEM cycle. When the counter reaches 0:

For more details about trickle refresh and urgent refresh requests, see section 3.9.2 on page 3-16.

Figure 4–7. SDRAM Period Register (SDPER) and SDRAM Counter Register (SDCNT)

SDPER 15 12 0 11 Reserved **PERIOD** R-0 R/W-080h **SDCNT** 15 12 11 0 Reserved COUNTER R-0 R-080h

Table 4-13. SDRAM Period Register (SDPER) Bits

Bit	Field	Value	Description
15–12	Reserved	0	These read-only reserved bits always return 0s.
11–0	PERIOD	0–4095	This field contains the refresh period in CLKMEM cycles. The default after reset is 128 CLKMEM cycles (080h).

Table 4–14. SDRAM Counter Register (SDCNT) Bits

Bit	Field	Value	Description
15–12	Reserved	0	These read-only reserved bits always return 0s.
11-0	COUNTER	0–4095	This field contains the current value of the refresh period counter. The default starting value after reset is 128 CLKMEM cycles (080h).

4.9 SDRAM Initialization Register (INIT)

INIT is summarized by Figure 4–8 and Table 4–15. Any write to this register will cause an SDRAM initialization sequence within each CE space configured for SDRAM. After a hardware reset or powering up the C55x device, a write to this register should be performed following configuration of all CE spaces, and prior to accessing SDRAM. For the details of the initialization sequence, see section 3.7 on page 3-12.

Figure 4–8. SDRAM Initialization Register (INIT)

Legend: R = Read; W = Write; -x = Value is not defined after reset

Table 4–15. SDRAM Initialization Register (INIT) Bits

Bit	Field	Value	Description
15–0	INIT	0000h–FFFFh	Write any value to this register to cause an SDRAM initialization sequence. The write should be performed following configuration of all CE spaces, and prior to accessing SDRAM.

Appendix A

Details of Instruction Fetches and Data Accesses

This appendix contains the details of how the EMIF communicates with external memory for different memory widths and data sizes.

Topi	Page Page
A.1	Instruction Fetches via the EMIF
A.2	32-Bit Data Accesses of External Memory
A.3	16-Bit Data Accesses of External Memory
A.4	8-Bit Data Accesses of External Memory

A.1 Instruction Fetches via the EMIF

When fetching instruction code from external memory, the CPU sends an access request to the EMIF. The EMIF reads 32 bits from the external memory and then passes all 32 bits to the CPU. The EMIF can perform a 32-bit instruction fetch from external memory that is 16 or 8 bits wide.

A.1.1 Instruction Fetch From 16-Bit-Wide Memory

Figure A–1 illustrates the data transfers involved in an instruction fetch from 16-bit-wide external memory. The EMIF places a word address on the address lines. The 32-bit access is performed as two consecutive 16-bit transfers. For the second transfer, the EMIF automatically increments the first address by 1 to create the second address.

For both 16-bit transfers, the EMIF uses data lines D[15:0]. The 32-bit code block is transferred in the following manner:

- 1) Bits 31 through 16 of the code block are read at the first address.
- 2) Bits 15 through 0 are read at the second address.

During both transfers, BE1 and BE0 are driven low. The EMIF packs the two words internally and then passes all 32 bits of code to the CPU.

Figure A-1. Instruction Fetch From 16-Bit-Wide External Memory

[†] The least significant address line required is A1. The type of memory accessed determines which other address lines are required.

A.1.2 Instruction Fetch From 8-Bit-Wide Memory

Note:

Instruction fetches from 8-bit-wide external memory are not supported by a TMS320VC5509 DSP, but they are supported by a TMS320VC5509A DSP.

As shown in Figure A–2, when the EMIF performs an instruction fetch from 8-bit-wide memory, the EMIF places a byte address on the address lines. The 32-bit access is performed as four consecutive 8-bit transfers. For the second, third, and fourth transfers, the EMIF automatically generates a new address by incrementing the previous address by 1.

For all four 8-bit transfers, the EMIF uses data lines D[7:0]. As shown in the figure, the 32-bit code block is transferred in the following manner:

- 1) Bits 31 through 24 of the code block are read at the first address.
- 2) Bits 23 through 16 are read at the second address.
- 3) Bits 15 through 8 are read at the third address.
- 4) Bits 7 through 0 are read at the fourth address.

During these transfers, $\overline{BE1}$ is driven high (inactive) and $\overline{BE0}$ is driven low. The EMIF packs the four bytes internally and then passes all 32 bits of code to the CPU.

Figure A-2. Instruction Fetch From 8-Bit-Wide External Memory

[†] The least significant address line required is A0. The type of memory accessed determines which other address lines are required.

A.2 32-Bit Data Accesses of External Memory

A 32-bit data access is generated by a CPU instruction or a DMA controller operation that reads or writes a 32-bit value. For each 32-bit read or write operation initiated by the CPU, the data is carried on two 16-bit CPU buses. For read operations, the C and D buses carry the data from the EMIF to the CPU. For write operations, the E and F buses carry the data from the CPU to the EMIF.

A.2.1 32-Bit Data Access of 16-Bit-Wide Memory

The two parts of Figure A–3 illustrate the data transfers involved when the EMIF accesses 32-bit data in external memory that is 16 bits wide. The least significant address line required by 16-bit-wide memory is A1. Data bus lines D[15:0] are used to transport the data between the DSP and the external memory. During an access, $\overline{BE1}$ and $\overline{BE0}$ are driven low.

The 32-bit access is performed as two consecutive 16-bit transfers across data bus lines D[15:0]. If the CPU has requested the access, the EMIF automatically generates the second address as described in Table A–1. If the DMA controller is to request a 32-bit data access, the MSW must be at an even word address.

Table A–1. The Role of Internal Address Bit 1 During a 32-Bit Data Access of 16-Bit-Wide External Memory

Internal Address Bit 1	MSW and LSW Positions	Generation of LSW Address
0	The MSW is at an even word address, and the LSW is at the following odd word address.	After the first access, the EMIF adds 1 to the MSW address to generate the LSW address.
1	The MSW is at an odd word address, and the LSW is at the previous even word address.	After the first access, the EMIF subtracts 1 from the MSW address to generate the LSW address.

Figure A-3. 32-Bit Data Access of 16-Bit-Wide External Memory

MSW at even word address

MSW at odd word address

[†] The least significant address line required is A1. The type of memory accessed determines which other address lines are required.

A.2.2 32-Bit Data Read From 8-Bit-Wide Memory

Note:

Reads from 8-bit-wide external memory are not supported by a TMS320VC5509 DSP, but they are supported by a TMS320VC5509A DSP. The EMIF cannot write to 8-bit-wide memory.

As shown in Figure A–2, when the EMIF reads a 32-bit value from 8-bit-wide memory, the EMIF places a byte address on the address lines. The 32-bit access is performed as four consecutive 8-bit transfers. For the second, third, and fourth transfers, the EMIF automatically generates a new address by incrementing the previous address by 1.

For all four 8-bit transfers, the EMIF uses data lines D[7:0]. As shown in the figure, the 32-bit value is transferred in the following manner:

- 1) Bits 31 through 24 of the value are read at the first address.
- 2) Bits 23 through 16 are read at the second address.
- 3) Bits 15 through 8 are read at the third address.
- 4) Bits 7 through 0 are read at the fourth address.

While the data is transferred, BE1 stays high (inactive) and BE0 is driven low. The EMIF packs the four bytes internally and then passes all 32 bits of data to the requester (the CPU or the DMA controller).

Figure A-4. 32-Bit Data Read From 8-Bit-Wide External Memory

[†] The least significant address line required is A0. The type of memory accessed determines which other address lines are required.

A.3 16-Bit Data Accesses of External Memory

A 16-bit data access is generated by a CPU instruction or a DMA controller operation that reads or writes a 16-bit value. For CPU operations, the D bus carries read data, and the E bus carries write data.

A.3.1 16-Bit Data Access of 16-Bit-Wide Memory

Figure A–5 illustrates the data transfer involved when the EMIF makes a 16-bit data access in memory that is 16 bits wide. The least significant address line required by 16-bit-wide memory is A1. Data bus lines D[15:0] are used to transport the data between the DSP and the external memory. During an access, BE1 and BE0 are driven low.

Figure A-5. 16-Bit Data Access of 16-Bit-Wide External Memory

[†] The least significant address line required is A1. The type of memory accessed determines which other address lines are required.

A.3.2 16-Bit Data Read From 8-Bit-Wide Memory

Notes:

Reads from 8-bit-wide external memory are not supported by a TMS320VC5509 DSP, but they are supported by a TMS320VC5509A DSP. The EMIF cannot write to 8-bit-wide memory.

As shown in Figure A–6, when the EMIF reads a 16-bit value from 8-bit-wide memory, the EMIF places a word address on the address lines. The 16-bit access is performed as two consecutive 8-bit transfers. For the second transfer, the EMIF automatically generates a new address by incrementing the previous address by 1.

For both 8-bit transfers, the EMIF uses data lines D[7:0]. As shown in the figure, the 16-bit value is transferred in the following manner:

- 1) Bits 15 through 8 of the value are read at the first address.
- 2) Bits 7 through 0 are read at the second address.

While the data is transferred, $\overline{BE1}$ stays high (inactive) and $\overline{BE0}$ is driven low. The EMIF packs the two bytes internally and then passes all 16 bits of data to the requester.

Figure A-6. 16-Bit Data Read From 8-Bit-Wide External Memory

[†] The least significant address line required is A0. The type of memory accessed determines which other address lines are required.

A.4 8-Bit Data Accesses of External Memory

Some CPU instructions and DMA controller operations access 8-bit data (bytes). The CPU buses used are the D bus (for byte read operations) and the E bus (for byte write operations).

A.4.1 8-Bit Data Access of 16-Bit-Wide Memory

When the EMIF accesses 8-bit data in 16-bit-wide external memory, the actual width of the memory access is different for byte read operations and byte write operations (see Figure A–7). When a byte is written to external memory, the EMIF modifies an individual byte. However, when the EMIF reads a byte from external memory, the EMIF performs a 16-bit data access (see section A.3 on page A-7), and the requested byte is isolated in the DSP.

Figure A-7. Accessing 8-Bit Data in 16-Bit-Wide External Memory

When the EMIF writes 8-bit data to 16-bit-wide external memory, the least significant address line required by the external memory chip is A1. However, the EMIF uses bit 0 of the internal address to determine which byte is loaded, which data lines carry the data, and which byte enable signal is active (see Table A–2). As one example, Figure A–8 shows the EMIF modifying the 8 MSBs (bits 15–8) of a memory location.

Table A–2. The Role of Internal Address Bit 0 During an 8-Bit Data Write to 16-Bit-Wide External Memory

Internal Address Bit 0	Bits Loaded At Memory Location	Data Lines Used	Byte Enable Signal Levels
0	15-8 (the 8 MSBs)	D[15:8]	BE1 low (active), BE0 high
1	7-0 (the 8 LSBs)	D[7:0]	BE1 high, BE0 low (active)

Figure A-8. Writing to the 8 MSBs of a 16-Bit-Wide External Memory Location

A.4.2 8-Bit Data Read From of 8-Bit-Wide Memory

Notes:

Reads from 8-bit-wide external memory are not supported by a TMS320VC5509 DSP, but they are supported by a TMS320VC5509A DSP. The EMIF cannot write to 8-bit-wide memory.

Figure A–9 illustrates the data transfer involved when the EMIF reads 8-bit data from external memory that is 8 bits wide. The least significant address line required by 8-bit-wide memory is A0. Data bus lines D[7:0] are used to transport the data between the DSP and the external memory. During the access, $\overline{BE1}$ is high and $\overline{BE0}$ is low.

[†] The least significant address line required is A1. The type of memory accessed determines which other address lines are required.

Figure A-9. 8-Bit Data Read From 8-Bit-Wide External Memory

[†] The least significant address line required is A0. The type of memory accessed determines which other address lines are required.

This page is intentionally left blank.

Index

16-bit data accesses via EMIF A-7 16-bit-wide external memory 16-bit data accesses via EMIF A-7 32-bit data accesses via EMIF A-4 8-bit data accesses via EMIF A-9 instruction fetches via EMIF A-2 32-bit data accesses via EMIF A-4 4M x 16 SDRAM interfacing example 3-7 8-bit data accesses via EMIF A-9 8-bit-wide external memory 16-bit data reads via EMIF A-8 32-bit data reads via EMIF A-6 8-bit data reads via EMIF A-10 instruction fetches via EMIF A-3 8M x 16 SDRAM interfacing example 3-9	asynchronous memory accessing via EMIF 2-1 configuring EMIF 2-4 connecting EMIF signals 2-2 inserting extra cycles 2-11 read operations 2-6 write operations 2-8 asynchronous output enable signal (AOE) 1-6 asynchronous read strobe signal (ARE) 1-7 asynchronous ready signal (ARDY) in table of EMIF signals 1-6 used to extend asynchronous accesses 2-11 asynchronous write strobe signal (AWE) 1-7 auto-precharge enable signal (SDA10) 1-7 auto-refresh commands 3-15 auto-refresh requests generated within EMIF 3-16 AWE signal 1-7
A[13:0] signals 1-6 A[20:14] signals 1-6 A0' signal 1-6 A10 address line for SDRAM (SDA10) 1-7 ACTV command of SDRAM 3-10 address bus of EMIF 1-6 address shift performed by EMIF for SDRAM 3-11 \(\overline{AOE}\) signal 1-6 ARDY bit (ARDY signal status bit) of EGCR described in table 4-5 shown in figure 4-3 ARDY off (ARDYOFF) bit of EGCR described in table 4-5 shown in figure 4-3 ARDY signal in table of EMIF signals 1-6 used to extend asynchronous accesses 2-11 \(\overline{ARE}\) signal 1-7	BE signals 1-5 behavior of XF and GPIO4 pins 3-17 buffering writes to external memory (write posting) 1-16 bus error status register (EMIBE) 4-7 byte enable signals of EMIF (BE[1:0]) 1-5 C CBUS bit (C-bus error status bit) of EMIBE described in table 4-10 shown in figure 4-8 CE signals in table of EMIF signals 1-5 operation for CE spaces 1-11 CE space control registers (CEn1, CEn2, and CEn3 in each CE space) 4-11

CE spaces in external memory map 1-11 DMA error status bit of EMIBE described in table 4-9 CE0 error status bit of EMIBE shown in figure 4-8 described in table 4-9 DSP reset, effects on EMIF 1-19 shown in figure 4-8 CE1 error status bit of EMIBE described in table 4-9 shown in figure 4-8 EBUS bit (E-bus error status bit) of EMIBE CE2 error status bit of EMIBE described in table 4-10 described in table 4-9 shown in figure 4-8 shown in figure 4-8 EGCR 4-3 CE3 error status bit of EMIBE EMIBE 4-7 described in table 4-9 EMIF and HPI sharing pins 1-4 shown in figure 4-8 EMIF bus error status register (EMIBE) 4-7 CEn1, CEn2, and CEn3 in each CE space 4-11 EMIF global control register (EGCR) 4-3 chip enable signals (CE[3:0]) EMIF global reset register (EMIRST) 4-6 in table of EMIF signals 1-5 EMIF inputs and outputs (figure) 1-2 operation for CE spaces 1-11 EMIF requests 1-9 CLKMEM signal 1-8 EMIRST 4-6 column strobe signal for SDRAM (SDCAS) 1-7 examples of interfacing to SDRAM chips 3-7 commands of SDRAM 3-10 extended hold period 2-5 configuring EMIF external memory map 1-11 asynchronous memory 2-4 SDRAM 3-4 conserving power 1-19 CPU instruction pipeline considerations 1-17 FBUS bit (F-bus error status bit) of EMIBE described in table 4-9 shown in figure 4-8 full EMIF mode versus data EMIF mode 1-4 D[15:0] 1-5 data accesses via EMIF global control register (EGCR) 4-3 16-bit data accesses A-7 global reset register (EMIRST) 4-6 32-bit data accesses A-4 GPIO4 pin used during self-refresh 8-bit data accesses A-9 commands 3-17 data bus of EMIF (D[15:0]) 1-5 data EMIF mode versus full EMIF mode 1-4 DBUS bit (D-bus error status bit) of EMIBE described in table 4-10 hold period 2-4 shown in figure 4-8 HOLD requests 1-14 DCAB command of SDRAM 3-10 HPI and EMIF sharing pins 1-4 deactivation of SDRAM 3-21 defining memory type for each CE space 1-12 divide-by-1 clock mode bit (DIV1) of SDC3 idle modes, effect on refreshes 3-20 described in table 4-19 shown in figure 4-19 INIT 4-22

initializing SDRAM 3-12 inputs and outputs of EMIF (figure) 1-2 nonconfigurable SDRAM timing parameters 4-18 inserting extra cycles with ARDY signal 2-11 NOP command of SDRAM 3-10 instruction fetches via EMIF A-2 16-bit-wide external memory A-2 notational conventions iii 8-bit-wide external memory A-3 instruction pipeline considerations 1-17 interfacing to asynchronous memory 2-2 output enable signal for asynchronous memory interfacing to SDRAM 3-7 (AOE) 1-6 introduction to EMIF 1-1 outputs and inputs of EMIF (figure) 1-2 overview of EMIF 1-2 latency for change of CE space or parameters for asynchronous accesses 2-4 data direction 1-13 parameters for SDRAM accesses configurable timing parameters (in registers SDC1 and SDC2) 4-16 nonconfigurable timing parameters (table) 4-18 PBUS bit (P-bus error status bit) of EMIBE MEMCEN bit of EGCR described in table 4-10 described in table 4-5 shown in figure 4-8 shown in figure 4-3 pin/signal connections MEMFREQ bits of EGCR EMIF to external asynchronous memory 2-2 described in table 4-4 EMIF to external SDRAM 3-7 shown in figure 4-3 pin/signal states for SDRAM commands memory clock enable bit (MEMCEN) (table) 3-10 described in table 4-5 pins/signals of EMIF 1-4 shown in figure 4-3 pipeline considerations 1-17 memory clock frequency bits (MEMFREQ) power conservation 1-19 described in table 4-4 power considerations for refresh operations 3-20 shown in figure 4-3 procedure for configuring EMIF for SDRAM memory clock signal (CLKMEM) 1-8 accesses 3-5 memory type bits (MTYPE) procedure to put SDRAM chip into self-refresh described in table 4-13 mode 3-19 shown in figure 4-12 procedure to take SDRAM chip out of self-refresh memory type, defining for each CE space 1-12 mode 3-20 mode register set delay bits (TMRD) program (instruction) fetches via EMIF A-2 described in table 4-18 16-bit-wide external memory A-2 shown in figure 4-16 8-bit-wide external memory A-3 mode register set, SDRAM 3-14 monitoring SDRAM page boundaries 3-11 MRS command of SDRAM 3-10 MTYPE bits of CEn1 RDEXHLD bits of CEn2 described in table 4-13 described in table 4-14

shown in figure 4-12

shown in figure 4-12

RDHOLD bits of CEn1 described in table 4-13 shown in figure 4-12	S
v	SDA10 signal 1-7
RDSETUP period bits of CEn1	SDACC bit of SDC2
described in table 4-13 shown in figure 4-12	described in table 4-18
v	shown in figure 4-16
RDSTROBE bits of CEn1	SDC1 and SDC2 4-16
described in table 4-13 shown in figure 4-12	SDC3 4-19
· ·	SDCAS signal 1-7
READ command of SDRAM 3-10	SDCNT 4-20
read extended hold period bits (RDEXHLD)	SDPER 4-20
described in table 4-14	SDRAM
shown in figure 4-12	accessing via EMIF 3-1 commands 3-10
read hold period bits (RDHOLD)	configurable timing parameters (in registers
described in table 4-13	SDC1 and SDC2) 4-16
shown in figure 4-12	configuring EMIF 3-4
read operations	connecting EMIF signals 3-7
asynchronous memory 2-6	deactivation 3-21
SDRAM 3-22	initialization 3-12
read setup period bits (RDSETUP)	mode register set 3-14
described in table 4-13	monitoring page boundaries 3-11 nonconfigurable timing parameters (table) 4-18
shown in figure 4-12	read operations 3-22
read strobe period bits (RDSTROBE)	refresh 3-15
described in table 4-13	write operations 3-23
shown in figure 4-12	SDRAM access bit (SDACC)
read strobe signal for asynchronous memory	described in table 4-18
(ARE) 1-7	shown in figure 4-16
ready signal for asynchronous memory (ARDY)	SDRAM control register 3 (SDC3) 4-19
in table of EMIF signals 1-6 used to extend asynchronous accesses 2-11	SDRAM control registers 1 and 2 (SDC1 and
•	SDC2) 4-16
REFR command of SDRAM 3-10	SDRAM counter register (SDCNT) 4-20
refresh enable bit (RFEN)	SDRAM initialization register (INIT) 4-22
described in table 4-17	SDRAM interface options 3-2
shown in figure 4-16	SDRAM period register (SDPER) 4-20
refresh of SDRAM 3-15	SDRAM size bit (SDSIZE)
refresh power considerations 3-20	described in table 4-17
registers of EMIF 4-1	shown in figure 4-16 SDRAM width bit (SDWID)
related documentation from Texas Instruments iv	described in table 4-17
request priorities of EMIF 1-9	shown in figure 4-16
	SDRAS active time bits (TRAS)
reset, effects on EMIF 1-19	described in table 4-18
RFEN bit of SDC1	shown in figure 4-16
described in table 4-17	SDRAS cycle time bits (TRC)
shown in figure 4-16	described in table 4-17
row strobe signal for SDRAM (SDRAS) 1-7	shown in figure 4-16

SDRAS precharge time bits (TRP)	time-out error status bit (TIME)
described in table 4-17	described in table 4-8
shown in figure 4-16	shown in figure 4-8
SDRAS signal 1-7	time-out value 2-5
SDRAS to SDCAS delay bits (TRCD)	TMRD bits of SDC2
described in table 4-17	described in table 4-18
shown in figure 4-16	shown in figure 4-16
SDRAS to SDRAS bank activate delay bits	trademarks v
(TACTV2ACTV)	TRAS bits of SDC2
described in table 4-18	described in table 4-18
shown in figure 4-16	shown in figure 4-16
SDSIZE bit of SDC1	TRC bits of SDC1
described in table 4-17	described in table 4-17
shown in figure 4-16	shown in figure 4-16
SDWE signal 1-7	TRCD bits of SDC1
SDWID bit of SDC1	described in table 4-17
described in table 4-17	shown in figure 4-16
shown in figure 4-16	TRP bits of SDC1
self-refresh commands 3-17	described in table 4-17
setup period 2-4	shown in figure 4-16
setup period cycles (table) 2-5	
sharing external memory (HOLD requests) 1-14	U
sharing pins with HPI 1-4	
signal/pin connections	using asynchronous memory 2-1
EMIF to external asynchronous memory 2-2	using SDRAM 3-1
EMIF to external SDRAM 3-7	
signal/pin states for SDRAM commands	W
(table) 3-10	W
signals/pins of EMIF 1-4	WPE bit of EGCR
strobe period 2-4	described in table 4-4
summary of EMIF registers 4-2	shown in figure 4-3
summary of EMIF signals 1-5	WREXHLD bits of CEn2
	described in table 4-14
synchronous DRAM. See SDRAM	shown in figure 4-12
synchronous memory clock signal (CLKMEM) 1-8	WRHOLD bits of CEn2 described in table 4-14
T	shown in figure 4-12
	write enable signal for SDRAM (SDWE) 1-7
TACTV2ACTV bits of SDC2	write extended hold period bits (WREXHLD)
described in table 4-18	described in table 4-14
shown in figure 4-16	shown in figure 4-12
TIME bit of EMIBE	write hold period bits (WRHOLD)
described in table 4-8	described in table 4-14
shown in figure 4-8	shown in figure 4-12
time-out (TIMOUT) bits of CEn3	write operations
described in table 4-15	asynchronous memory 2-8
shown in figure 4-12	SDRAM 3-23

write posting enable bit (WPE)
described in table 4-4
shown in figure 4-3
write posting feature of EMIF 1-16
write setup period bits (WRSETUP)
described in table 4-14
shown in figure 4-12
write strobe period bits (WRSTROBE)
described in table 4-14
shown in figure 4-12
write strobe signal for asynchronous memory
(AWE) 1-7

WRSETUP bits of CEn2
described in table 4-14
shown in figure 4-12
WRSTROBE bits of CEn2
described in table 4-14
shown in figure 4-12
WRT command of SDRAM 3-10

XF pin used during self-refresh commands 3-17