Randomly solving 2-SAT.

Àlex Batlle Casellas

a) Let X_n be the number of satisfied clauses after n iterations of the loop in (2) (we will refer to it as time n). Given the execution up top time n-1, is it always true that $\mathbb{E}[X_n] \geq X_{n-1}$?

Solution

The claim is not true. Let us prove it by a counterexample: let ϕ be the following CNF formula,

$$\phi = (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\bar{x_1} \lor \bar{x_4}) \land (\bar{x_1} \lor x_3) \land (\bar{x_4} \lor \bar{x_3}),$$

and $\mathbf{x} = (0, 1, 0, 1)$ the assignment at time n - 1. Then, it follows that $X_{n-1} = 4$, and the expectancy of the variable X_n can be calculated as follows; whether x_1 swaps its value, and then $X_n = 3$, or x_3 swaps its value and $X_n = 4$. This gives an expectancy

$$\mathbb{E}[X_n] = \frac{1}{2}3 + \frac{1}{2}4 = \frac{7}{2} < 4 = X_{n-1}.$$

b) Since ϕ is satisfiable, let \mathbf{x}^* be an arbitrary satisfying assignment. Let Y_n be the number of variables in \mathbf{x} whose value coincides with the one in \mathbf{x}^* at time n. Given the execution up to time n-1, is it always true that $\mathbb{E}[Y_n] \geq Y_{n-1}$?

Solution

In order to prove this, we will first take a look at how does Y_n behave with respect to Y_{n-1} . Since the algorithm only changes variables in violated clauses, we will take Z_n^i to be the random variable that counts how many of the variables in clause i have the same value in \mathbf{x} and in \mathbf{x}^* . So, clause i can be thought of as $(x_{j_1} \vee x_{j_2})$. In \mathbf{x}^* this can only be (1,1), (0,1), or (1,0), as a consequence of a clause being a disjunction, and in \mathbf{x} this variables have to be (0,0), because the clause is violated. Then, suppose the first step of the loop selects this clause; now it can only change the value of one of the two variables. So, the only possible outcomes of Y_n are

$$Y_n = \begin{cases} Y_{n-1} + 1 \\ Y_{n-1} - 1 \end{cases} ,$$

and this will depend on the value of Z_n^i . As clause i was violated at time n-1, Z_{n-1}^i could have been 0 or 1, and it can at time n equal zero, one or two:

$$Z_n^i = \begin{cases} 0 \text{ with probability } \frac{1}{2}, \text{ if } Z_{n-1}^i = 1\\ 1 \text{ with probability } 1, \text{ if } Z_{n-1}^i = 0\\ 2 \text{ with probability } \frac{1}{2}, \text{ if } Z_{n-1}^i = 1 \end{cases}.$$

Taking this into account, it is more probable that Z_n^i increases than that it decreases, and so is the case for Y_n . Then, the expectancy of Y_n is greater than (or equal to) the value of Y_{n-1} .

c) Argue that if $Y_n = k$, then RAND2SAT terminates at time n. Is the converse true?

Solution

Since $Y_n = k$, it means that all variables in \mathbf{x} are equal to \mathbf{x}^* . As \mathbf{x}^* is an arbitrary satisfying assignment, it means that $\phi(\mathbf{x}^*) = 1$, and as $\phi \in \text{CNF-2-SAT}$, it follows that is has no violated clauses. Then, as described by the algorithm, the loop in (2) stops when no clauses are violated. Hence, when $Y_n = k$, the algorithm

1

halts at this moment (time n).

The converse is not true. Take for example the following CNF-2-SAT formula ϕ' ,

$$\phi' = (x_1 \vee x_2) \wedge (x_2 \vee x_3);$$

it has 4 different satisfying assignments, $a_1 = (1, 1, 0)$, $a_2 = (1, 0, 1)$, $a_3 = (0, 1, 1)$, and $a_4 = (0, 1, 0)$. If we take \mathbf{x}^* to be one of these, say a_3 , the loop in (2) could possibly reach a_4 before reaching a_3 and halt as a consequence of a_4 being a satisfying assignment. If that were the case, Y_n would be 2 instead of 3 (the k in this example), and so the converse can't be true.

- d) Is Y_n a Markov chain? Solution
- e) Design a Markov chain Z_n such that $Y_n \geq Z_n$. Solution
- f) Use Z_n to prove that the expected running time of RAND2SAT is at most k^2 . Solution
- *g) We modify RAND2SAT to stop in bounded time as follows. Let $l \in \mathbb{Z}$. If after $2lk^2$ iterations of the loop in (2) we have not halted, we break the loop and return the current assignment \mathbf{x} . Prove that the output of the modified RAND2SAT is a satisfying assignment with probability at least $1-2^{-l}$. Solution