Why are random matrix eigenvalues cool?

Alan Edelman

MIT: Dept of Mathematics, Lab for Computer Science

MAA Mathfest 2002

Thursday, August 1

Message

- Ingredient: Take Any important mathematics
- Then Randomize!
- This will have many applications!

Some fun tidbits

- ❖ The circular law
- * The semi-circular law
- Infinite vs finite
- ❖ How many are real?
- Stochastic Numerical Algorithms
- Condition Numbers
- Small networks
- * Riemann Zeta Function
- Matrix Jacobians

Girko's Circular Law, n=2000

Wigner's Semi-Circle

- * The classical & most famous rand eig theorem
- ❖ Let S = random symmetric Gaussian
 - A=randn(n); S=(A+A')/2;
- Normalized eigenvalue histogram is a semi-circle
 - ❖ Precise statements require $n \rightarrow \infty$ etc.

Wigner's

Semi-Circle

- * The classical & most famous rand eig theorem
- ❖ Let S = random symmetric Gaussian
 - A=randn(n); S=(A+A')/2;
- * Normalized eigenvalue histogram is a semi-circle
 - ❖ Precise statements require $n \rightarrow \infty$ etc.

```
n=20; s=30000; d=.05; %matrix size, samples, sample dist
e=[]; %gather up eigenvalues
im=1; %imaginary(1) or real(0)
for i=1:s,
    a=randn(n)+im*sqrt(-1)*randn(n);a=(a+a')/(2*sqrt(2*n*(im+1)));
    v=eig(a)'; e=[e v];
end
hold off; [m x]=hist(e,-1.5:d:1.5); bar(x,m*pi/(2*d*n*s));
axis('square'); axis([-1.5 1.5 -1 2]); hold on;
t=-1:.01:1: plot(t.sqrt(1-t.^2).'r'):
```

Elements of Wigner's Proof

- * Compute $E(A^{2k})_{11} = mean(\lambda^{2k}) = (2k)th$ moment
- * Verify that the semicircle is the only distribution with these moments
- $(A^{2k})_{11} = \Sigma A_{1x} A_{xy} ... A_{wz} A_{z1}$ "paths" of length 2k
- Need only count number of special paths of length
 2k on k objects (all other terms 0 or negligible!)
- * This is a Catalan Number!

Catalan Numbers

$$C_n = \frac{1}{n+1} {2n \choose n}$$
 # ways to "parenthesize" (n+1) objects

Matrix Power Term Graph

$$(1((23)4))$$
 $A_{12}A_{23}A_{32}A_{24}A_{42}A_{21}$ • • • •

$$(((12)3)4)$$
 $A_{12}A_{21}A_{13}A_{31}A_{14}A_{41}$ • • • •

$$(1(2(34)))$$
 $A_{12}A_{23}A_{34}A_{43}A_{32}A_{21}$ • • • •

$$((12)(34))$$
 $A_{12}A_{21}A_{13}A_{34}A_{43}A_{31}$ • • • •

$$((1(23))4)$$
 $A_{12}A_{23}A_{32}A_{21}A_{14}A_{41}$ • • • •

- = number of special paths on n departing from 1 once
- Pass 1, (load=advance, multiply=retreat), Return to 1

Finite Versions

n=5;

How many eigenvalues of a random matrix are real?

```
>> e=eig(randn(7))
e =

1.9771
1.3442
0.6316
-1.1664 + 1.3504i
-1.1664 - 1.3504i
-2.1461 + 0.7288i
-2.1461 - 0.7288i
3 real
```

```
>> e=eig(randn(7))
e =

-2.0767 + 1.1992i
-2.0767 - 1.1992i
2.9437
0.0234 + 0.4845i
0.0234 - 0.4845i
1.1914 + 0.3629i
1.1914 - 0.3629i
1 real
```

```
>> e=eig(randn(7))
e =
-2.1633
-0.9264
-0.3283
2.5242
1.6230 + 0.9011i
1.6230 - 0.9011i
0.5467
5 real
```

7x7 random Gaussian

How many eigenvalues of a random matrix are real?

How many eigenvalues of a random

n	k	$p_{n,k}$			n	k	$p_{n,k}$	
1	1	1	1		7	7	$\frac{1}{2048}\sqrt{2}$	0.00069
2	2	$\frac{1}{2}\sqrt{2}$	0.70711			5	$\frac{355}{4096} - \frac{3}{2048}\sqrt{2}$	0.08460
	0	$1 - \frac{1}{2}\sqrt{2}$	0.29289			3	$-\frac{355}{2048} + \frac{1087}{2048}\sqrt{2}$	0.57727
3	3	$\frac{1}{4}\sqrt{2}$	0.35355			1	$\frac{4451}{4096} - \frac{1085}{2048}\sqrt{2}$	0.33744
	1	$1 - \frac{1}{4}\sqrt{2}$	0.64645		8	8	$\frac{1}{16384}$	0.00006
4	4	$\frac{1}{8}$	0.125			6	$-\frac{1}{4096} + \frac{3851}{262144}\sqrt{2}$	0.02053
	2	$-\frac{1}{4} + \frac{11}{16}\sqrt{2}$	0.72227			4	$\frac{4096}{53519} - \frac{262144}{262144} \sqrt{2}$	0.34599
	0	$\frac{9}{8} - \frac{11}{16}\sqrt{2}$	0.15273			2	$\begin{array}{c} 131072 & 262144 & 2 \\ -\frac{53487}{65536} + \frac{257185}{262144} \sqrt{2} \end{array}$	0.57131
5	5	$\frac{1}{32}$	0.03125					
	3	$-\frac{1}{16} + \frac{13}{32}\sqrt{2}$	0.51202			0	$\frac{184551}{131072} - \frac{249483}{262144}\sqrt{2}$	0.06210
	1	$\frac{33}{32} - \frac{13}{32}\sqrt{2}$	0.45673		9	9	$\frac{1}{262144}$	0.00000
6	6	$\frac{1}{\sqrt{2}}\sqrt{2}$	0.00552			7	$-\frac{1}{65536} + \frac{5297}{2097152}\sqrt{2}$	0.00356
	Γ	These are exa	ct but h	ard to co	omp	out	e!	0.14635
	1	New research	suggest	ts a Jack	po	lyr	nomial solution.	0.59328
	0	$\frac{1295}{1024} - \frac{53}{64}\sqrt{2}$	0.09350			1	$\frac{606625}{524288} - \frac{1334961}{2097152}\sqrt{2}$	0.25681

How many eigenvalues of a random matrix are real?

The Probability that a matrix has all real eigenvalues is exactly

$$P_{n,n}=2^{-n(n-1)/4}$$

Proof based on Schur Form

Gram Schmidt (or QR) Stochastically

- Gram Schmidt
 - Orthogonal Transformations to Upper Triangular Form

•A = Q * R (orthog * upper triangular)

Orthogonal Invariance of Gaussians

Q*randn(n,1)

=
randn(n,1)

If Q orthogonal

G G

Orthogonal Invariance

Q*randn(n,1)

=

randn(n,1)

If Q orthogonal

Chi Distribution

$$norm(randn(n,1))$$
 \equiv
 χ_n

 $=\chi_n$

Chi Distribution

$$norm(randn(n,1))$$
 \equiv
 χ_n

 $=\chi_n$

Chi Distribution

norm(randn(n,1))

 χ_n

n need not be integer

G G

 $=\chi_n$

G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G

G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G
G	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G
0	G	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G
0	0	G	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ_5	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ_5	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ_5	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G
0	0	0	G	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G
0	0	0	0	G	G	G

% 7	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	χ_3	G	G
0	0	0	0	0	G	G
0	0	0	0	O	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0		0			G	
0	0	0	0	0	G	G
0	0	0	0	0	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0		0			G	
0	0	0	0	0	G	G
0	0	0	0	0	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
				χ ₃		
0	0	0	0	0	G	G
0	0	0	0	0	G	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0		0			G	
0	0	0	0	0	G	G
0	0	0	0	0	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0		0			G	
0	0	0	0	0	G	G
0	0	0	0	0	G	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0			G	
0	0	0	0	0	χ_2	G
0	0	0	0	0	0	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0			G	
0	0	0	0	0	χ_2	G
0	0	0	0	0	0	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0			G	
0	0	0	0	0	χ_2	G
0	0	0	0	0	0	G

χ ₇	G	G	G	G	G	G
0	χ ₆	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0			G	
0	0	0	0	0	χ_2	G
0	0	0	0	0	0	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0			G	
0	0	0	0	0	χ_2	G
0	0	0	0	0	0	G

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	χ ₃	G	G
0	0	0	0	0	χ_2	G
0	0	0	0	0	0	χ_1

χ ₇	G	G	G	G	G	G
0	χ_6	G	G	G	G	G
0	0	χ ₅	G	G	G	G
0	0	0	χ_4	G	G	G
0	0	0	0	χ ₃	G	G
0	0	0	0	0	χ_2	G
0	0	0	0	0	0	χ_1

Same idea: sym matrix to tridiagonal form

Same idea: General beta

Numerical Analysis: Condition Numbers

- $\star \kappa(A) =$ "condition number of A"
- * If $A=U\Sigma V$ ' is the svd, then $\kappa(A) = \sigma_{\text{max}}/\sigma_{\text{min}}$.
- * Alternatively, $\kappa(A) = \sqrt{\lambda_{max} (A'A)} / \sqrt{\lambda_{min} (A'A)}$
- One number that measures digits lost in finite precision and general matrix "badness"
 - ❖ Small=good ☺️
 - ❖ Large=bad
- * The condition of a random matrix???

Von Neumann & co.

Solve
$$Ax=b$$
 via $x=(A'A)^{-1}A'b$
 $M \approx A^{-1}$

- ❖ Matrix Residual: ||AM-I||₂
- * $||AM-I||_2 < 200\kappa^2 n \varepsilon$
- \bullet How should we estimate κ ?
- Assume, as a model, that the elements of A are independent standard normals!

Von Neumann & co. estimates (1947-1951)

* "For a 'random matrix' of order n the expectation value has been shown to be about X" OO

Goldstine, von Neumann

* "... we choose two different values of κ, namely n and $\sqrt{10n}$ " $P(\kappa < n) \approx 0.02$ $P(\kappa < \sqrt{10n}) \approx 0.44$ Bargmann, Montgomery, vN

* "With a probability $\sim 1 \dots \kappa < 10n$ "

$$P(\kappa < 10n) \approx 0.80$$

Goldstine, von Neumann

Random cond numbers, $n \rightarrow \infty$

Finite n

n=100

Small World Networks:

& 6 degrees of separation

- Edelman, Eriksson, Strang
- ❖ Eigenvalues of A=T+PTP', P=randperm(n)

```
T = \begin{bmatrix} 0 & 1 & & & & & 1 \\ 1 & 0 & 1 & & & & \\ & 1 & 0 & 1 & & & \\ & & 1 & 0 & \ddots & & \\ & & & \ddots & \ddots & 1 & \\ & & & & 1 & 0 & 1 \\ & & & & & 1 & 0 \end{bmatrix}
```

Incidence matrix of graph with two superimposed cycles.

Small World Networks:

& 6 degrees of separation

- Edelman, Eriksson, Strang
- ❖ Eigenvalues of A=T+PTP', P=randperm(n)

```
T = \begin{bmatrix} 0 & 1 & & & & & 1 \\ 1 & 0 & 1 & & & & & \\ & 1 & 0 & 1 & & & & \\ & & 1 & 0 & \ddots & & & \\ & & & \ddots & \ddots & 1 & & \\ & & & & 1 & 0 & 1 \\ & & & & 1 & 0 & 1 \\ 1 & & & & 1 & 0 \end{bmatrix}
```

Incidence matrix of graph with two superimposed cycles.

- Wigner style derivation counts number of paths on a tree starting and ending at the same point (tree = no accidents!) (McKay)
- ❖ We first discovered the formula using the superseeker
- * Catalan number answer $d^{2n-1}-\Sigma d^{2j-1}(d-1)^{n-j+1}C_{n-i}$

The Riemann Zeta Function

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{u^{s-1}}{e^u - 1} du = \sum_{k=1}^\infty \frac{1}{k^s}$$

On the real line with x>1, for example

$$\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

May be analytically extended to the complex plane, with singularity only at x=1.

The Riemann Hypothesis

$$\zeta(x) = \frac{1}{\Gamma(x)} \int_{0}^{\infty} \frac{u^{x-1}}{e^{u} - 1} du = \sum_{k=1}^{\infty} \frac{1}{k^{x}}$$

All nontrivial roots of $\zeta(x)$ satisfy Re(x)=1/2. (Trivial roots at negative even integers.)

All nontrivial roots of $\zeta(x)$ satisfy Re(x)=1/2. (Trivial roots at negative even integers.)

Computation of Zeros

❖ Odlyzko's fantastic computation of 10^k+1 through 10^k+10,000 for k=12,21,22.

See http://www.research.att.com/~amo/zeta tables/

Spacings behave like the eigenvalues of A=randn(n)+i*randn(n); S=(A+A')/2;

Nearest Neighbor Spacings & Pairwise Correlation Functions

Painlevé Equations

I)
$$y'' = 6y^2 + t$$
,
II) $y'' = 2y^3 + ty + \alpha$,
III) $y'' = \frac{1}{y}y'^2 - \frac{y'}{t} + \frac{\alpha y^2 + \beta}{t} + \gamma y^3 + \frac{\delta}{y}$,
IV) $y'' = \frac{1}{2y}y'^2 + \frac{3}{2}y^3 + 4ty^2 + 2(t^2 - \alpha)y + \frac{\beta}{y}$,
V) $y'' = \left(\frac{1}{2y} + \frac{1}{y-1}\right)y'^2 - \frac{1}{t}y' + \frac{(y-1)^2}{t}\left(\alpha y + \frac{\beta}{y}\right) + \gamma \frac{y}{t} + \delta \frac{y(y+1)}{y-1}$,
VI) $y'' = \frac{1}{2}\left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t}\right)y'^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t}\right)y' + \frac{y(y-1)(y-t)}{t^2(t-1)^2}\left[\alpha - \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \left(\frac{1}{2} - \delta\right)\frac{t(t-1)}{(y-t)^2}\right]$

Spacings

- * Take a large collection of consecutive zeros/eigenvalues.
- \diamond Normalize so that average spacing = 1.
- ❖ Spacing Function = Histogram of consecutive differences (the (k+1)st – the kth)
- ❖ Pairwise Correlation Function = Histogram of all possible differences (the kth − the jth)
- Conjecture: These functions are the same for random matrices and Riemann zeta

Some fun tidbits

- ❖ The circular law
- * The semi-circular law
- ❖ Infinite vs finite
- ❖ How many are real?
- Stochastic Numerical Algorithms
- Condition Numbers
- Small networks
- * Riemann Zeta Function
- Matrix Jacobians

Matrix Factorization Jacobians

General

$$\begin{array}{lll} A = LU & \prod u_{ii}^{n-i} & A = QR & \prod r_{ii}^{m-i} \\ A = U\Sigma V^T & \prod (\sigma_i^{\ 2} - \sigma_j^{\ 2}) & A = QS \ (polar) \prod (\sigma_i^{\ +}\sigma_j) \\ A = X\Lambda X^{-1} & \prod (\lambda_i^{\ -}\lambda_j^{\ })^2 \end{array}$$

Sym

$$\begin{array}{ll} S = Q \Lambda Q^T & \prod \left(\lambda_i \text{-} \lambda_j \right) \\ S = L L^T & 2^n \prod l_{ii}^{n+1-i} \\ S = L D L^T & \prod d_i^{n-i} \end{array}$$

Orthogonal

$$Q = U \begin{bmatrix} \mathbf{C} & \mathbf{S} \\ \mathbf{S} & \mathbf{-C} \end{bmatrix} V^T \prod \sin(\theta_i + \theta_j) \sin(\theta_i - \theta_j)$$

Tridiagonal

$$T = Q\Lambda Q^T \prod_{i=1,i} \left(t_{i+1,i} \right) / \prod_{i=1}^{n} q_i$$

Why cool?

- ❖ Why is numerical linear algebra cool?
 - Mixture of theory and applications
 - Touches many topics
 - Easy to jump in to, but can spend a lifetime studying & researching
- Tons of activity in many areas
 - Mathematics: Combinatorics, Harmonic Analysis, Integral Equations, Probability, Number Theory
 - Applied Math: Chaotic Systems, Statistical Mechanics,
 Communications Theory, Radar Tracking, Nuclear Physics
- Applications
- **❖ BIG HUGE SUBJECT!!**