

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 02.02.2017

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Mealy-Automat

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Mealy-Automat

Ein Mealy-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

endliche Zustandsmenge Z

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Mealy-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Mealy-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Mealy-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- lacktriangle Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Mealy-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- lacktriangle Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Mealy-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion $h: Z \times X \rightarrow Y^*$

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiker

Mealy-Automat

Ein Mealy-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion $h: Z \times X \rightarrow Y^*$

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiker

Mealy-Automat

Ein Mealy-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion $h: Z \times X \rightarrow Y^*$

Darstellung als Graph

■ Zustände → Knoten

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiker

Mealy-Automat

Ein Mealy-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion $h: Z \times X \rightarrow Y^*$

- Zustände → Knoten
- Startzustand → Pfeil an diesen Knoten (ohne Anfang)

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiker

Mealy-Automat

Ein Mealy-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion $h: Z \times X \rightarrow Y^*$

- Zustände → Knoten
- Startzustand → Pfeil an diesen Knoten (ohne Anfang)
- Zustandsüberführungsfunktion → Kanten mit Beschriftung

Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiker

Mealy-Automat

Ein Mealy-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion $h: Z \times X \rightarrow Y^*$

- Zustände → Knoten
- Startzustand → Pfeil an diesen Knoten (ohne Anfang)
- lacktriangle Zustandsüberführungsfunktion o Kanten mit Beschriftung
- Ausgabefunktion → zusätzliche Kantenbeschriftung

Beispiel Mealy-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Moore-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y

Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiker

Moore-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- → Bis hierhin alles wie bei Mealy!

Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Moore-Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- → Bis hierhin alles wie bei Mealy!
 - Ausgabefunktion $h: Z \to Y^*$

Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Moore-Automat

Ein Moore-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- → Bis hierhin alles wie bei Mealy!
- Ausgabefunktion $h: Z \to Y^*$

Bemerkung

Für jeden Mealy-Automaten kann man einen Moore-Automaten konstruieren, der genau die gleiche Aufgabe erfüllt, und umgekehrt.

Umwandlung Mealy- in Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Links ein Mealy-, rechts ein Moore-Automat a|0

Umwandlung Mealy- in Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Links ein Mealy-, rechts ein Moore-Automat a|0

Umwandlung Mealy- in Moore-Automat

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Links ein Mealy-, rechts ein Moore-Automat a|0

Aufgabe

Wie sieht der Mealy-Automat als äquivalenter Moore-Automat aus, wie sieht der Moore-Automat als äquivalenter Mealy-Automat aus?

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Sonderfall von Moore-Automaten

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

- Sonderfall von Moore-Automaten
- Bei einem Akzeptor will man nur wissen, ob die Eingabe akzeptiert wurde oder nicht (also reicht ein Bit als Ausgabealphabet)

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

- Sonderfall von Moore-Automaten
- Bei einem Akzeptor will man nur wissen, ob die Eingabe akzeptiert wurde oder nicht (also reicht ein Bit als Ausgabealphabet)
- Statt der Ausgabefunktion h schreibt man einfach die Menge der akzeptierenden Zustände $F \subseteq Z$ auf

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

- Sonderfall von Moore-Automaten
- Bei einem Akzeptor will man nur wissen, ob die Eingabe akzeptiert wurde oder nicht (also reicht ein Bit als Ausgabealphabet)
- Statt der Ausgabefunktion h schreibt man einfach die Menge der akzeptierenden Zustände $F \subseteq Z$ auf
- Zustände, die nicht akzeptieren, heißen ablehnend

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Sonderfall von Moore-Automaten

- Bei einem Akzeptor will man nur wissen, ob die Eingabe akzeptiert wurde oder nicht (also reicht ein Bit als Ausgabealphabet)
- Statt der Ausgabefunktion h schreibt man einfach die Menge der akzeptierenden Zustände $F \subseteq Z$ auf
- Zustände, die nicht akzeptieren, heißen ablehnend
- Im Graphen werden akzeptierende Zustände einfach mit einem doppelten Kringel gekennzeichnet

Akzeptierte Wörter und Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Akzeptierte Wörter und Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Akzeptierte Wörter

Akzeptierte Wörter und Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Akzeptierte Wörter

Ein Wort $w \in X^*$ wird vom endlichen Akzeptor akzeptiert

Akzeptierte Wörter und Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Akzeptierte Wörter

Ein Wort $w \in X^*$ wird vom endlichen Akzeptor akzeptiert, wenn man ausgehend vom Anfangszustand bei Eingabe von w in einem akzeptierenden Zustand endet.

Akzeptierte Wörter und Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiker

Akzeptierte Wörter

Ein Wort $w \in X^*$ wird vom endlichen Akzeptor akzeptiert, wenn man ausgehend vom Anfangszustand bei Eingabe von w in einem akzeptierenden Zustand endet.

Bemerkung

Wird ein Wort nicht akzeptiert, dann wurde es abgelehnt

Akzeptierte Wörter und Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Akzeptierte Wörter

Ein Wort $w \in X^*$ wird vom endlichen Akzeptor akzeptiert, wenn man ausgehend vom Anfangszustand bei Eingabe von w in einem akzeptierenden Zustand endet.

Bemerkung

Wird ein Wort nicht akzeptiert, dann wurde es abgelehnt

Akzeptierte formale Sprache

Akzeptierte Wörter und Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Akzeptierte Wörter

Ein Wort $w \in X^*$ wird vom endlichen Akzeptor akzeptiert, wenn man ausgehend vom Anfangszustand bei Eingabe von w in einem akzeptierenden Zustand endet.

Bemerkung

Wird ein Wort nicht akzeptiert, dann wurde es abgelehnt

Akzeptierte formale Sprache

Die von einem Akzeptor A akzeptierte formale Sprache L(A) ist die Menge aller von ihm akzeptierten Wörter.

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache $L_1(A) = \{w \in \{a, b\}^* : (N_a(w) \ge 3 \land N_b(w) \ge (2)\}$ erkennt.

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache $L_1(A) = \{w \in \{a, b\}^* : (N_a(w) \ge 3 \land N_b(w) \ge (2)\}$ erkennt.

Lösung

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache $L_2(A) = \{w_1 ababbw_2 | w_1, w_2 \in \{a, b\}^*\}$ erkennt.

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache $L_2(A) = \{w_1 ababbw_2 | w_1, w_2 \in \{a, b\}^*\}$ erkennt.

Lösung

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache $L_2(A) = \{w_1 ababbw_2 | w_1, w_2 \in \{a, b\}^*\}$ erkennt.

Lösung

Aufgabe

Konstuiere einen endlichen Akzeptor der die Sprache $L_3 = \{w \in \{a, b\}^* | w \notin L_2\}$ akzeptiert.

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache $L_2(A) = \{w_1 ababbw_2 | w_1, w_2 \in \{a, b\}^*\}$ erkennt.

Lösung

Aufgabe

Konstuiere einen endlichen Akzeptor der die Sprache $L_3 = \{w \in \{a, b\}^* | w \notin L_2\}$ akzeptiert.

Lösung

Ablehnende Zustände wereden zu akzeptierenden und andersrum.

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgaben zu endlichen Akzeptoren

- Gebe für den unten stehenden Automaten an, welche Sprache dieser akzeptiert.
- Gebe für die folgende Sprache über dem Alphabet $\{a,b\}$ einen endlichen Akzeptor an: $L = \{w \in \Sigma^* | N_a(w) \mod 3 > N_b(w) \mod 2\}$

Lösungen

Lukas Bach, lukas.bach@student.kit.edu

Lösung 1

Automaten

 $L = \{w \in \Sigma^* | |w| \text{ mod } 2 = 1\}$ (Worte ungerader Länger)

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Lösungen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Lösung 1

 $L = \{w \in \Sigma^* | |w| \text{ mod } 2 = 1\}$ (Worte ungerader Länger)

Lösung 2

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Wann wird das leere Wort $\ensuremath{\epsilon}$ von einem endlichen Akzeptor akzeptiert?

Endliche Akzeptoren

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Wann wird das leere Wort ε von einem endlichen Akzeptor akzeptiert? $\varepsilon \in L(A)$ gilt genau dann, wenn der Startzustand akzeptiert wird.

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Regulärer Ausdruck

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Regulärer Ausdruck

■ Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Engliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z
- Ein regulärer Ausdruck (RA) über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die gewissen Vorschriften genügt.

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z
- Ein regulärer Ausdruck (RA) über A ist eine Zeichenfolge über dem Alphabet A∪Z, die gewissen Vorschriften genügt.
- Vorschriften

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z
- Ein regulärer Ausdruck (RA) über A ist eine Zeichenfolge über dem Alphabet A∪Z, die gewissen Vorschriften genügt.
- Vorschriften
 - Ø ist ein RA

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z
- Ein regulärer Ausdruck (RA) über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die gewissen Vorschriften genügt.
- Vorschriften
 - Ø ist ein RA
 - Für jedes x ∈ A ist x ein RA

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z
- Ein regulärer Ausdruck (RA) über A ist eine Zeichenfolge über dem Alphabet A ∪ Z, die gewissen Vorschriften genügt.
- Vorschriften
 - Ø ist ein RA
 - Für jedes $x \in A$ ist x ein RA
 - Wenn R_1 und R_2 RA sind, dann auch $(R_1|R_2)$ und (R_1R_2)

Regulärer Ausdruck

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- Alphabet $Z = \{|, (,), *, \emptyset\}$ von "Hilfssymbolen"
- Alphabet A enthalten keine Zeichen aus Z
- Ein regulärer Ausdruck (RA) über A ist eine Zeichenfolge über dem Alphabet A∪Z, die gewissen Vorschriften genügt.
- Vorschriften
 - Ø ist ein RA
 - Für jedes $x \in A$ ist x ein RA
 - Wenn R_1 und R_2 RA sind, dann auch $(R_1|R_2)$ und (R_1R_2)
 - Wenn R ein RA ist, dann auch (R*)

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken "Stern- vor Punktrechnung"

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

- "Stern- vor Punktrechnung"
- "Punkt- vor Strichrechnung"

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

- "Stern- vor Punktrechnung"
- "Punkt- vor Strichrechnung"
- $\rightarrow R_1|R_2R_3*$ Kurzform für $(R_1|(R_2(R_3*)))$

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken "Stern- vor Punktrechnung"

"Punkt- vor Strichrechnung"

 $\rightarrow R_1|R_2R_3*$ Kurzform für $(R_1|(R_2(R_3*)))$

Bei mehreren gleichen Operatoren ohne Klammern links geklammert

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken "Stern- vor Punktrechnung"

"Punkt- vor Strichrechnung"

 $\rightarrow R_1|R_2R_3*$ Kurzform für $(R_1|(R_2(R_3*)))$

- Bei mehreren gleichen Operatoren ohne Klammern links geklammert
- $\rightarrow R_1|R_2|R_3$ Kurzform für $((R_1|R_2)|R_3)$

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken "Stern- vor Punktrechnung"

"Punkt- vor Strichrechnung"

 $\rightarrow \ \textit{R}_1 | \textit{R}_2 \textit{R}_3 * \text{ Kurzform für } (\textit{R}_1 | (\textit{R}_2 (\textit{R}_3 *)))$

Bei mehreren gleichen Operatoren ohne Klammern links geklammert

 $\rightarrow R_1|R_2|R_3$ Kurzform für $((R_1|R_2)|R_3)$

Aufgabe

Entferne so viele Klammern wie möglich, ohne die Bedeutung des RA zu verändern.

• $(((((ab)b)*)*)|(\emptyset*))$

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken "Stern- vor Punktrechnung"

"Punkt- vor Strichrechnung"

 $\rightarrow R_1|R_2R_3*$ Kurzform für $(R_1|(R_2(R_3*)))$

Bei mehreren gleichen Operatoren ohne Klammern links geklammert

 $\rightarrow R_1|R_2|R_3$ Kurzform für $((R_1|R_2)|R_3)$

Aufgabe

Entferne so viele Klammern wie möglich, ohne die Bedeutung des RA zu verändern.

$$(((((ab)b)*)*)|(\emptyset*)) \rightarrow (abb)**|\emptyset*$$

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

- "Stern- vor Punktrechnung"
- "Punkt- vor Strichrechnung"
- $\rightarrow R_1|R_2R_3*$ Kurzform für $(R_1|(R_2(R_3*)))$
- Bei mehreren gleichen Operatoren ohne Klammern links geklammert
- $\rightarrow R_1|R_2|R_3$ Kurzform für $((R_1|R_2)|R_3)$

Aufgabe

Entferne so viele Klammern wie möglich, ohne die Bedeutung des RA zu verändern.

- $(((((ab)b)*)*)|(\emptyset*)) \rightarrow (abb)**|\emptyset*$
- ((a(a|b))|b)

Klammerregeln

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken "Stern- vor Punktrechnung"

"Punkt- vor Strichrechnung"

 $\rightarrow R_1|R_2R_3*$ Kurzform für $(R_1|(R_2(R_3*)))$

■ Bei mehreren gleichen Operatoren ohne Klammern links geklammert

 $\rightarrow R_1|R_2|R_3$ Kurzform für $((R_1|R_2)|R_3)$

Aufgabe

Entferne so viele Klammern wie möglich, ohne die Bedeutung des RA zu verändern.

$$\qquad (((((ab)b)*)*)|(\emptyset*)) \rightarrow (abb)**|\emptyset*$$

$$((a(a|b))|b) \rightarrow a(a|b)|b$$

Alternative Definition

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Engliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Wir können die Syntax von regulären Ausdrücken auch über eine kontextfreie Grammatik definieren.

Aufgabe

Vervollständigt die folgende Grammatik.

$$G = (\{R\}, \{|, (,), *, \emptyset\} \cup A, R, P)$$
 mit $P = \{R \rightarrow \emptyset, R \rightarrow \emptyset\}$

Alternative Definition

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare

Wir können die Syntax von regulären Ausdrücken auch über eine kontextfreie Grammatik definieren.

Aufgabe

Vervollständigt die folgende Grammatik.

$$G = (\{R\}, \{|, (,), *, \emptyset\} \cup A, R, P)$$

mit $P = \{R \rightarrow \emptyset, R \rightarrow x \text{ (mit } x \in A),$

$$R \rightarrow (R|R), R \rightarrow (RR),$$

$$R \rightarrow (R*)$$

$$\textit{R} \rightarrow \epsilon \}$$

Alternative Definition

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Wir können die Syntax von regulären Ausdrücken auch über eine kontextfreie Grammatik definieren.

Aufgabe

Vervollständigt die folgende Grammatik.

$$G = (\{R\}, \{|, (,), *, \emptyset\} \cup A, R, P)$$

$$mit P = \{R \rightarrow \emptyset, R \rightarrow x \text{ (mit } x \in A),$$

$$R \rightarrow (R|R), R \rightarrow (RR),$$

$$R \rightarrow (R*)$$

$$R \rightarrow \varepsilon\}$$

Wieso brauchen wir ε ?

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

Moore-Automat

Endlich

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Spitze Klammern (,)

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

• Spitze Klammern \langle,\rangle

Moore-Automat

Regeln

Akzeptoren

 $lack \langle\emptyset
angle =$

Reguläre Ausdrücke

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

Spitze Klammern (,)

Moore-Automat

Regeln

Akzeptoren

Reguläre Ausdrücke

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

• Spitze Klammern \langle,\rangle

Moore-Automat

Regeln

Akzeptoren

Reguläre Ausdrücke $\langle x \rangle =$

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

• Spitze Klammern \langle,\rangle

Moore-Automat

Regeln

Akzeptoren

Reguläre Ausdrücke $\langle x \rangle = \{x\} \text{ für jedes } x \in A$

Rechtslineare Grammatiken

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

• Spitze Klammern \langle, \rangle

Moore-Automat

Regeln

Akzeptoren

Reguläre Ausdrücke Rechtslinear Grammatiker

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

Spitze Klammern (,)

Moore-Automat

Regeln

Akzeptoren

Reguläre

• $\langle x \rangle = \{x\}$ für jedes $x \in A$

Ausdrücke

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Notation

• Spitze Klammern \langle,\rangle

Regeln

$$\langle x \rangle = \{x\} \text{ für jedes } x \in A$$

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Notation

• Spitze Klammern \langle, \rangle

Regeln

- $\langle x \rangle = \{x\} \text{ für jedes } x \in A$

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

Spitze Klammern (,)

Moore-Automat

Regeln

Akzeptoren

Reguläre

 $\langle x \rangle = \{x\}$ für jedes $x \in A$

Ausdrücke

⟨R*⟩ =

Durch R beschriebene Sprache

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Notation

Mealy-Automat

Spitze Klammern (,)

Moore-Automat

Regeln

Akzeptoren

 \bullet $\langle\emptyset\rangle = \{\}$

Reguläre

 $\langle x \rangle = \{x\}$ für jedes $x \in A$

Ausdrücke

$${\color{red} \bullet} \ \langle \textit{R*} \rangle = \langle \textit{R} \rangle *$$

Charakterisierung regulärer Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Satz

Für jede formale Sprache *L* sind äquivalent:

- 1. L kann von einem endlichen Akzeptor erkannt werden.
- 2. L kann durch einen regulären Ausdruck beschrieben werden
- 3. L kann von einer rechtslinearen Grammatik erzeugt werden.

Solche Sprachen heißten regulär.

Anwendung von regulären Ausdrücken

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken Zum selbst probieren: http://regexr.com/

Achtung: Reguläre Ausdrücke in praktischer Programmierung funktionieren zwar ähnlich, haben aber eine andere Syntax und können teils mehr!

Rechtslineare Grammatiken

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Definition

Eine rechtslineare Grammatik ist eine reguläre Grammatik G = (N, T, S, P) mit der Einschränkung, dass alle Produktionen die folgende Form haben:

- $X \rightarrow w$ mit $w \in T^*$ oder
- $x \rightarrow wY$ mit $w \in T^*$, $Y \in N$

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu rechtslinearen Grammatiken

Gebe zu $L=\{w\in\{0,1\}^*|\exists k\in\mathbb{N}_0: \textit{Num}_2(w)=2^k+1\}$ jeweils einen regulären Ausdruck R und eine rechtslineare Grammatik G an, sodass $L=\langle R\rangle=L(G)$ gilt.

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu rechtslinearen Grammatiken

Gebe zu $L=\{w\in\{0,1\}^*|\exists k\in\mathbb{N}_0: \textit{Num}_2(w)=2^k+1\}$ jeweils einen regulären Ausdruck R und eine rechtslineare Grammatik G an, sodass $L=\langle R\rangle=L(G)$ gilt.

Lösung

$$R = (0 * 10)|(0 * 1(0) * 1) =$$

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu rechtslinearen Grammatiken

Gebe zu $L=\{w\in\{0,1\}^*|\exists k\in\mathbb{N}_0: \textit{Num}_2(w)=2^k+1\}$ jeweils einen regulären Ausdruck R und eine rechtslineare Grammatik G an, sodass $L=\langle R\rangle=L(G)$ gilt.

Lösung

$$R = (0*10)|(0*1(0)*1) = 0*10|0*10*1$$

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

Aufgabe zu rechtslinearen Grammatiken

Gebe zu $L = \{w \in \{0, 1\}^* | \exists k \in \mathbb{N}_0 : \textit{Num}_2(w) = 2^k + 1\}$ jeweils einen regulären Ausdruck R und eine rechtslineare Grammatik G an, sodass $L = \langle R \rangle = L(G)$ gilt.

Lösung

$$R = (0*10)|(0*1(0)*1) = 0*10|0*10*1$$

•
$$G = (\{S, A\}, \{0, 1\}, S, \{S \rightarrow 0S | 10 | 1A, A \rightarrow 0A | 1\})$$

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Reguläre Ausdrücke

Rechtslineare Grammatiken

