DS 4300

Introduction to the Graph Data Model

Mark Fontenot, PhD Northeastern University

What is a Graph Database

- Data model based on the graph data structure
- Composed of nodes and edges
 - edges connect nodes
 - each is uniquely identified
 - each can contain properties (e.g. name, occupation, etc)
 - supports queries based on graph-oriented operations
 - traversals
 - shortest path
 - lots of others

Where do Graphs Show up?

- Social Networks

- yes... things like Instagram,
- but also... modeling social interactions in fields like psychology and sociology

- The Web

- it is just a big graph of "pages" (nodes) connected by hyperlinks (edges)
- Chemical and biological data
 - systems biology, genetics, etc.
 - interaction relationships in chemistry

Basics of Graphs and Graph Theory

What is a graph?

Labeled Property Graph

- Composed of a set of node (vertex) objects and relationship (edge) objects
- Labels are used to mark a node as part of a group
- Properties are attributes (think KV pairs) and can exist on nodes and relationships
- Nodes with no associated relationships are OK. Edges not connected to nodes are <u>not</u> permitted.

Paths

A *path* is an ordered sequence of nodes connected by edges in which no nodes or edges are repeated.

Ex:
$$1 \rightarrow 2 \rightarrow 6 \rightarrow 5$$

Not a path:

$$1 \rightarrow 2 \rightarrow 6 \rightarrow 2 \rightarrow 3$$

Flavors of Graphs

Connected (vs. Disconnected) – there is a path between any two nodes in the graph

Weighted (vs. Unweighted) – edge has a weight property (important for some algorithms)

Directed (vs. Undirected) – relationships (edges) define a start and end node

Acyclic (vs. Cyclic) – Graph contains no cycles

Connected vs. Disconnected

Weighted vs. Unweighted

Directed vs. Undirected

Cyclic vs Acyclic

^{*} even without directions, a graph is acyclic if paths do not exist that allow you to get back to where you started

Sparse vs. Dense

Trees

Types of Graph Algorithms - Pathfinding

- Pathfinding

- finding the shortest path between two nodes, if one exists, is probably the most common operation
- "shortest" means fewest edges or lowest weight
- Average Shortest Path can be used to monitor efficiency and resiliency of networks.
- Minimum spanning tree *(keep edges of tree with lowest total weight), cycle detection, max/min flow... are other types of pathfinding

BFS vs DFS

Shortest Path

(A, B) = 8

(A, C) = 4 via D

(A, D) = 1

(A, E) = 5 via D

(B, C) = 6

(B, D) = 9 via A or C

And so on...

Shortest Path

Shortest path between 2 nodes (A to Cshown)

All-Pairs Shortest Paths

Optimized calculations for shortest paths from all nodes to all other nodes

Single Source Shortest Path

Shortest path from a root node (A shown) to all other nodes

Minimum Spanning Tree

Shortest path connecting all nodes (A start shown)

Types of Graph Algorithms - Centrality & Community Detection

- Centrality

- determining which nodes are "more important" in a network compared to other nodes
- EX: Social Network Influencers?

- Community Detection

 evaluate clustering or partitioning of nodes of a graph and tendency to strengthen or break apart

Centrality

Some Famous Graph Algorithms

- **Dijkstra's Algorithm** single-source shortest path algo for positively weighted graphs
- A* Algorithm Similar to Dijkstra's with added feature of using a heuristic to guide traversal
- PageRank measures the importance of each node within a graph based on the number of incoming relationships and the importance of the nodes from those incoming relationships

Neo4j

- A Graph Database System that supports both transactional and analytical processing of graph-based data
- Relatively new class of no-sql DBs
- Considered schema optional (one can be imposed)
- Supports various types of indexing
- ACID compliant
- Supports distributed computing
- Similar: Microsoft CosmoDB, Amazon Neptune

