import seaborn as sns
import pandas as pd

Include Any Additional Packages you need to import

Load the "mpg" dataset from seaborn's GitHub repository
df = sns.load_dataset('mpg')

- # Alternatively, you can load the "mpg" dataset directly from the UCI Machine Learning Repository:
- # df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data', delim_whitespace=

Print the first few rows of the dataset to verify that it's loaded correctly
df.head()

1	name	origin	model_year	acceleration	weight	horsepower	displacement	cylinders	mpg	
	chevrolet chevelle malibu	usa	70	12.0	3504	130.0	307.0	8	18.0	0
	buick skylark 320	usa	70	11.5	3693	165.0	350.0	8	15.0	1
	plymouth satellite	usa	70	11.0	3436	150.0	318.0	8	18.0	2
	amc rebel sst	usa	70	12.0	3433	150.0	304.0	8	16.0	3
	ford torino	usa	70	10.5	3449	140.0	302.0	8	17.0	4

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	392 non-null	float64
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model_year	398 non-null	int64
7	origin	398 non-null	object
8	name	398 non-null	object.

dtypes: float64(4), int64(3), object(2)
memory usage: 28.1+ KB

df.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.010050
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	3.697627
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.000000
50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000	79.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

import matplotlib.pyplot as plt
df.hist("weight")

array([[<Axes: title={'center': 'weight'}>]], dtype=object)

plt.scatter(x=df.horsepower,y=df.weight)

<matplotlib.collections.PathCollection at 0x7faf4bef38b0>

import seaborn as sns
sns.pairplot(df)

<ipython-input-17-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated df.corr()

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289	0.579267
cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.505419	-0.348746
displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.543684	-0.370164
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361
weight	-0.831741	0.896017	0.932824	0.864538	1.000000	-0.417457	-0.306564
acceleration	0.420289	-0.505419	-0.543684	-0.689196	-0.417457	1.000000	0.288137
model year	0.579267	-0.348746	-0.370164	-0.416361	-0.306564	0.288137	1.000000

sns.heatmap(df.corr())

<ipython-input-18-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated
sns.heatmap(df.corr())

<Axes: >

There are different linear relations between MPG and weight, for example and also some other variables like acceleration and mpg, acceleration and model_year.

E ㅎ 폰 호 및 된 및 X=df.weight y=df.mpg

from sklearn.linear_model import LinearRegression

model=LinearRegression()

import statsmodels.api as sm
model=sm.OLS(y,X).fit()
model.predict(X)

0 23.641070 1 24.916231 2 23.182282 23.162042 3 4 23.269992 . . . 393 18.823797 394 14.370856 395 15.484091 396 17.710562 18.351516 Length: 398, dtype: float64 ✓ 0 s completado a las 8:05