

Компютърни архитектури CSCB008

Аритметично-логическо устройство (АЛУ)

доц. д-р Ясен Горбунов 2021

Интегрални схеми с висока степен на интеграция

"твърда" логика (микропроцесори)

фиксирана логика

- лесна конфигурация чрез софтуер
- последователно изпълнение на инструкции
- ниско ниво на паралелизъм
- адаптиране на софтуера към хардуера

програмируема логика

- сложно конфигуриране познаване на хардуера
- програмиране чрез език за хардуерно описание
- най-високо ниво на паралелизъм и гъвкавост
- адаптиране на хардуера към софтуера

АЛУ – Аритметично-логическо устройство

изпълнява аритметични и логически операции

АЛУ – Аритметично-логическо устройство

изпълнява аритметични и логически операции

опростен модел

изпълнявани инструкции

ALUControl _{1:0}	Функция
00	Add
01	Subtract
10	AND
11	OR

символно означение

АЛУ – Аритметично-логическо устройство

Пример - опростен модел

ALUControl _{1:0}	Функция
00	Add
01	Subtract
10	AND
11	OR

Пример: A OR B

 $ALUControl_{1:0} = 11$

Избор на OR от мултиплексора

Result = A OR B

АЛУ – Аритметично-логическо устройство

Пример – опростен модел

ALUControl _{1:0}	Функция	
00	Add	
01	Subtract	
10	AND	
11	OR	

Пример: A + B

 $ALUControl_{1:0} = 00$

Uзбор на Sum от мултиплексора Result = A + B

АЛУ – Аритметично-логическо устройство

Пример – опростен модел

ALUControl _{1:0}	Функция
00	Add
01	Subtract
10	AND
11	OR

Пример: А - В

 $ALUControl_{1.0} = 01$

Избор на Sum от мултиплексора

Result = A - B

Аритметично-логическо устройство с флагов регистър

Пример – опростен модел

регистър за състояние

Flag	Описание	
N	Отрицателен резултат Negative	
Z	Нулев резултат Zero	
С	Пренос Carry out	
V	Препълване oVerflow	

Аритметично-логическо устройство с флагов регистър

Флаг N = 1

- Отрицателен резултат
- N е свързан към MSB на Result

Аритметично-логическо устройство с флагов регистър

Флаг Z = 1

- Нулев резултат
- Всички битове на Result са 0

Аритметично-логическо устройство с флагов регистър

Флаг С = 1

С_{оит} на суматора е 1

AND

• АЛУ сумира или изважда (ALUControl e 00 или 01)

Аритметично-логическо устройство с флагов регистър

Флаг V = 1

• Когато сумирането на 2 числа с **еднакъв знак** води до **обръщане на знака**

Аритметично-логическо устройство с флагов регистър

Флаг V = 1

ALU извършва събиране или изваждане $(ALUControl_1 = 0)$

ALUControl _{1:0}	Функция
00	Add
01	Subtract
10	AND
11	OR

Аритметично-логическо устройство с флагов регистър

Флаг V = 1

ALU извършва събиране или изваждане $(ALUControl_1 = 0)$

AND

А и Sum имат различен знак

ALUControl _{1:0}	Функция
00	Add
01	Subtract
10	AND
11	OR

Аритметично-логическо устройство с флагов регистър

Флаг V = 1

ALU извършва събиране или изваждане (ALUControl $_1$ = 0)

AND

А и Sum имат различен знак

AND

А и В имат еднакъв знак при събиране $(ALUControl_0 = 0)$

OR

A и B имат различен знак при изваждане $(ALUControl_0 = 1)$

ALUControl _{1:0}	Функция
00	Add
01	Subtract
10	AND
11	OR

Аритметично-логическо устройство със 7 функции

$\mathrm{F}_{2:0}$	Функция
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

Set Less Than

Аритметично-логическо устройство със 7 функции

Ако 32-bit ALU е конфигурирано за SLT операция – например при

$$A = 25$$
 и $B = 32$

A < B, така че Y трябва да бъде

32-bit представяне на 1 (0х0000001)

$$F_{2:0} = 111$$

• $F_2 = 1$ (режим на изваждане),

$$25 - 32 = -7$$

- -7 има 1 за знаков бит $(S_{31} = 1)$
- $F_{1:0} = 11$, $Y = S_{31}$ (zero extended) = 0×000000001 .

Аритметично-логическо устройство SN74LS181

разгледайте сайта:

http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html

Texas Instruments – 16 logic and 16 arithmetic functions

SELECTION		ACTIVE-HIGH DATA				
	SELE	CHON		M = H M = L; ARITHMETIC OPERATIONS		ETIC OPERATIONS
S3	S2	S1	SO	LOGIC FUNCTIONS	C _n = H (no carry)	C _n = L (with carry)
L	L	L	L	F=A	F=A	F = A PLUS 1
L	L	L	н	F = A + B	F = A + B	F = (A + B) PLUS 1
L	L	н	L	F = AB	F = A + B	F = (A + B) PLUS 1
L	L	н	н	F=0	F = MINUS 1 (2's COMPL)	F = ZERO
L	н	L	L	F = AB	F = A PLUS AB	F = A PLUS AB PLUS 1
L	н	L	н	F=B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1
L	н	н	L	F = A ⊕ B	F = A MINUS B MINUS 1	F = A MINUS B
L	н	н	н	F = AB	F = AB MINUS 1	F = AB
н	L	L	L	F = A + B	F = A PLUS AB	F = A PLUS AB PLUS 1
н	L	L	н	F = A ⊕ B	F = A PLUS B	F = A PLUS B PLUS 1
н	L	н	L	F-B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1
н	L	н	н	F = AB	F = AB MINUS 1	F = AB
н	н	L	L	F = 1	F = A PLUS A	F = A PLUS A PLUS 1
н	н	L	н	F = A + B	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1
н	н	н	L	F = A + B	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1
н	н	н	н	F = A	F = A MINUS 1	F=A

Аритметично-логическо устройство SN74LS181

разгледайте сайта:

http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html

Texas Instruments – 16 logic and 16 arithmetic functions

