Mécanique quantique – L3

Sylvain Nascimbène

Séance de tutorat du 13 novembre 2019

Bandes d'énergie dans un potentiel périodique

1 Théorème de Bloch

On considère le mouvement unidimensionnel d'une particule de masse m décrite par sa fonction d'onde $\psi(x)$ dans un potentiel V(x) périodique. Pour le moment, on ne spécifie pas la forme exacte du potentiel V(x), et on note d la période spatiale.

1. Écrire l'équation aux valeurs propres vérifiée par $\psi(x)$.

Afin de faciliter la résolution de cette équation, nous allons exploiter les symétries du problème. On introduit à cet effet l'opérateur de translation \hat{T}_d , qui agit sur les fonctions d'onde par

$$\left[\hat{T}_d\psi\right](x) = \psi(x-d).$$

- 2. Quelle est l'action de \hat{T}_d sur $|x\rangle$? Montrer que \hat{T}_d est unitaire et calculer \hat{T}_d^{\dagger} .
- 3. Montrer que la périodicité du potentiel V(x) implique $[\hat{H}, \hat{T}_d] = 0$.
- 4. Pourquoi est-il possible de diagonaliser simultanément \hat{H} et \hat{T}_d ?
- 5. Montrer que toute valeur propre λ de \hat{T}_d peuvt s'écrire $\lambda_q = \exp(-iqd)$ pour un unique réel $q \in [-\pi/d, \pi/d]$.
- 6. En déduire le théorème de Bloch : si $\psi(x)$ est une fonction propre commune à \hat{H} et \hat{T}_d , alors il existe un unique réel $q \in [-\pi/d, \pi/d[$ et une unique fonction u(x), périodique de période d tels que pour tout x,

$$\psi(x) = e^{iqx}u(x).$$

7. Donner l'équation différentielle vérifiée par u(x).

2 Resolution du modèle Kronig-Penney

On considère dans cette partie le potentiel de Kronig-Penney

$$V(x) = \frac{\hbar^2 \mu}{2m} \sum_{p \in \mathbb{Z}} \delta(x - pd),$$

où $\delta(x)$ est la fonction de Dirac. On rappelle que la fonction d'onde $\psi(x)$ est continue, et que sa dérivée présente un saut à travers un potentiel dirac, soit

$$\psi'(pd^{+}) - \psi'(pd^{-}) = \mu\psi(pd).$$

Conformément au théorème de Bloch, on cherche des états propres $|\psi\rangle$ de H, d'énergie E, sous la forme d'états propre de \hat{T}_d avec valeur propre e^{-iqd} .

- 8. Résoudre l'équation de Schrödinger en introduisant deux constantes d'intégration, et donner les deux relations que satisfont ces constantes, traduisant les conditions aux limites trouvées précédemment.
- 9. Montrer que les conditions aux limites périodiques imposent la relation de dispersion $\cos qd = \cos kd + \frac{\mu}{2k}\sin kd$
- 10. En déduire la structure de bandes.