

MITx: 6.008.1x Computational Probability and Inference

Heli

Bookmarks

- **▶** Introduction
- Part 1: Probability and Inference
- Part 2: Inference in Graphical Models
- Part 3: Learning
 Probabilistic Models

Week 8: Introduction to Learning Probabilistic Models

Week 8: Introduction to
Parameter Learning Maximum Likelihood and
MAP Estimation

Exercises due Nov 10, 2016 at 01:30 IST

Week 8: Homework 6

<u>Homework due Nov 10, 2016 at 01:30 IST</u>

(A)

Part 3: Learning Probabilistic Models > Week 8: Introduction to Parameter Learning - Maximum Likelihood and MAP Estimation > Exercise: Bias and Variance

Exercise: Bias and Variance

 \square Bookmark this page

Exercise: Bias and Variance

5/5 points (graded)

Throughout this exercise, we continue off the example of estimating the probability of heads heta for a coin.

Note that there are different ways in which one can compute an estimate $\hat{\theta}$. In 6.008.1x, we mainly use maximum likelihood estimation, and as we'll see later, we also use MAP estimation.

• For the coin case, the maximum likelihood (ML) estimate $\hat{\theta} = \frac{n_{\text{heads}}}{n}$. Note that $\hat{\theta}$ is a function of the training data $X^{(1)}, \ldots, X^{(n)}$. Before conditioning on a specific observed value of the training data, the ML estimate $\hat{\theta}$ is a random variable since $n_{\text{heads}} \sim \text{Binomial}(n, \theta)$; some times to make this explicit, we write $\hat{\theta}(X^{(1)}, \ldots, X^{(n)})$, making the dependence on the training data clear. In particular,

$$\hat{ heta}(X^{(1)},\ldots,X^{(n)})=rac{n_{ ext{heads}}}{n}=rac{1}{n}\sum_{i=1}^n\mathbf{1}\{X^{(i)}= ext{heads}\}.$$

What is $\mathbb{E}[\hat{ heta}(X^{(1)},\ldots,X^{(n)})]$ as a function of heta, the true unknown parameter?

In this part, please provide your answer as a mathematical formula (and not as Python code). Use $^{\land}$ for exponentiation, e.g., x^{\land} denotes x^2 . Explicitly include multiplication using *, e.g. x^{\land} is xy.

You can use the variable theta.

theta	✓ Answer: theta
θ	

Solution:

We have

$$\hat{ heta}(X^{(1)},\ldots,X^{(n)}) = rac{1}{n} \sum_{i=1}^n \mathbf{1}\{X^{(i)} = ext{heads}\},$$

so by linearity of expectation,

$$\mathbb{E}[\hat{ heta}(X^{(1)},\ldots,X^{(n)})] = rac{1}{n}\sum_{i=1}^n \mathbb{E}[\mathbf{1}\{X^{(i)} = ext{heads}\}] = rac{1}{n}\cdot n\cdot heta = \boxed{ heta}.$$

How do we tell how good an estimate $\hat{\theta}(X^{(1)}, \dots, X^{(n)})$ for θ is? For example, if we had an estimate $\hat{\theta}(X^{(1)}, \dots, X^{(n)})$ that was just always 0 regardless of the training data we collect, then intuitively such an estimate for θ would probably be quite awful.

The bias of an estimate $\hat{m{ heta}}$ for a parameter $m{ heta}$ is

$$\mathbb{E}[\hat{ heta}(X^{(1)},\ldots,X^{(n)})]- heta,$$

where we note that $\hat{ heta}(X^{(1)},\ldots,X^{(n)})$ is a random variable.

- Is the ML estimate for θ unbiased, i.e., it has bias equal to 0?
 - Yes
 - O No

Solution:

 $oxed{ ext{Yes}}$. The answer to the previous part is equal to heta, so $\mathbb{E}[\hat{k}_{ ext{ML}}] - heta = heta - heta = 0$.

• Consider a terrible estimator $\hat{\theta}(X^{(1)}, \dots, X^{(n)}) = 0$ regardless of what the training data are. What is the bias of this terrible estimator?

In this part, please provide your answer as a mathematical formula (and not as Python code). Use $^{\land}$ for exponentiation, e.g., x^{\land} denotes x^2 . Explicitly include multiplication using *, e.g. x^{*} is xy.

You can use the variable theta.

Solution:

Clearly the expectation of $\hat{m{ heta}}$ in this case is 0, so the bias is going to be

$$0- heta=\overline{ heta}.$$

The variance of an estimator θ is

$$ext{var}(\hat{ heta}) = \mathbb{E}[(\hat{ heta} - \mathbb{E}[\hat{ heta}])^2].$$

Recall that for any random variable Z and any constant $a \in \mathbb{R}$,

$$\operatorname{var}(aZ) = a^2 \operatorname{var}(Z),$$

and for random variables Z_1,\ldots,Z_n that are i.i.d. each with the same distribution as Z,

$$\mathrm{var}\Big(\sum_{i=1}^n Z_i\Big) = n\mathrm{var}(Z).$$

• For the ML estimate $\hat{\theta}(X^{(1)},\ldots,X^{(n)})=\frac{n_{\text{heads}}}{n}$ for the probability of heads of the coin, what is the variance of this estimator? Express your answer as a function of the true probability of heads θ and the number of training data points n (unless one or both of these don't show up in the answer).

In this part, please provide your answer as a mathematical formula (and not as Python code). Use $^{\land}$ for exponentiation, e.g., x^{\land} 2 denotes x^2 . Explicitly include multiplication using * , e.g. x^{\ast} y is xy.

You can use the variable theta.

theta*(1-theta)/n

Answer: theta*(1-theta)/n

$$\frac{\theta \cdot (1-\theta)}{n}$$

Solution:

We have

$$egin{align} ext{var}(\hat{ heta}_{ ext{ML}}) &= ext{var}\Big(rac{1}{n}\sum_{i=1}^n \mathbf{1}\{X^{(i)} = ext{heads}\}\Big) \ &= rac{1}{n^2} ext{var}\Big(\sum_{i=1}^n \mathbf{1}\{X^{(i)} = ext{heads}\}\Big) \ &= rac{1}{n^2}\cdot n\cdot ext{var}(\mathbf{1}\{X^{(1)} = ext{heads}\}) \ \end{aligned}$$

$$egin{aligned} &=& rac{1}{n^2} \cdot n \cdot \mathrm{var}(\mathrm{Ber}(heta)\}) \ &=& rac{1}{n^2} \cdot n \cdot heta(1- heta) \ &=& rac{ heta(1- heta)}{n}. \end{aligned}$$

• For the terrible estimator $\hat{\theta}(X^{(1)}, \dots, X^{(n)}) = 0$ regardless of the training data, what is the variance of this estimator? Express your answer as a function of the true probability of heads θ and the number of training data points n (unless one or both of these don't show up in the answer).

In this part, please provide your answer as a mathematical formula (and not as Python code). Use $^{\land}$ for exponentiation, e.g., x^{\land} denotes x^2 . Explicitly include multiplication using *, e.g. x^{*} is xy.

You can use the variable theta.

0 **✓** Answer: 0

Solution:

$$\operatorname{var}(\hat{ heta}(X^{(1)},\ldots,X^{(n)})) = \operatorname{var}(0) = \boxed{0}.$$

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

