Day-ahead Operation of an Aggregator of Electric Vehicles via Optimization under Uncertainty

Álvaro Porras

University of Malaga alvaroporras19@gmail.com

Ricardo Fernández-Blanco

University of Malaga Ricardo.FCarramolino@uma.es

Juan M. Morales

University of Malaga Juan.Morales@uma.es

Salvador Pineda

University of Malaga spinedamorente@gmail.com

SEST 2019 - 2nd International Conference on Smart Energy Systems and Technologies

9-11 September 2019, Porto, Portugal

- 1. Motivation
- 2. Deterministic Formulation
- 3. Robust Formulation
- 4. Case Study
- 5. Conclusion

Deterministic Formulation

- Objective function comprises two terms: energy bought and a penalty.
- Evolution of state of charge.
- Maximum rate of power charging.
- Maximum and minimum bounds on energy state of charge (ESOC).
- Boundary conditions for ESOC.

$$\min_{\Xi^{DO}} \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} \lambda_t c_{v,t} \Delta t + \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} P\left(s_{v,t}^+ + s_{v,t}^-\right)$$

subject to:

$$e_{v,t} = e_{v,t-1} + \Delta t \eta_v c_{v,t} - \widehat{\xi}_{v,t} + s_{v,t}^+ - s_{v,t}^-,$$

$$\forall t \in \mathcal{T}, v \in \mathcal{V}$$

$$c_{v,t} \leq \overline{C}_v \widehat{\alpha}_{v,t}, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$|\underline{E}_v \le e_{v,t} \le \overline{E}_v, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$e_{v,N_T} = e_{v,0}, \quad \forall v \in \mathcal{V}$$

$$c_{v,t}, s_{v,t}^+, s_{v,t}^- \ge 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T},$$

$$\Xi^{DO} = (c_{v,t}, e_{v,t}, s_{v,t}^+, s_{v,t}^-)$$

Deterministic Formulation

 $\min_{\Xi^{DO}} \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} \lambda_t c_{v,t} \Delta t + \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} P\left(s_{v,t}^+ + s_{v,t}^-\right)$

subject to:

$$\underline{e_{v,t} = e_{v,t-1} + \Delta t \eta_v c_{v,t}} + \widehat{\xi_{v,t}} + s_{v,t}^+ - s_{v,t}^-,$$

$$\forall t \in \mathcal{T}, \underline{v} \in \mathcal{V}$$

$$\underline{c_{v,t}} \leq \overline{C_v} \widehat{\alpha}_{v,t}, \quad \forall v \in \mathcal{V}, t \in \mathcal{T} \\
\underline{E_v} \leq e_{v,t} \leq \overline{E_v}, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\underline{E}_v \le e_{v,t} \le \overline{E}_v, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$e_{v,N_T} = e_{v,0}, \quad \forall v \in \mathcal{V}$$

$$c_{v,t}, s_{v,t}^+, s_{v,t}^- \ge 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T},$$

$$\Xi^{DO} = (c_{v,t}, e_{v,t}, s_{v,t}^+, s_{v,t}^-)$$

Energy required for transportation

Availability of each EV

Deterministic Formulation

Availability Profiles

$$\alpha_1 = 0$$

$$\alpha_2 = 1$$

$$\alpha_a = 0.5$$

• Where $\alpha_{v,t}$ is not expected value now (1 EV is available to charge, 0 is unavailable).

• $\alpha_{v,t}$ depends on an uncertain set.

Uncertainty in Driving Patterns

$$\min_{\Xi^{RB}} \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} \lambda_t c_{v,t} \Delta t + \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} P\left(s_{v,t}^+ + s_{v,t}^-\right)$$
subject to:
$$e_{v,t} = e_{v,t-1} + \Delta t \eta_v c_{v,t} \alpha_{v,t} - \widehat{\xi}_{v,t} + s_{v,t}^+ - s_{v,t}^-, \quad \forall t \in \mathcal{T}, v \in \mathcal{V}$$

$$c_{v,t} \leq \overline{C}_v, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\underline{E}_v \leq e_{v,t} \leq \overline{E}_v, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$e_{v,N_T} = e_{v,0}, \quad \forall v \in \mathcal{V}$$

$$c_{v,t}, s_{v,t}^+, s_{v,t}^- \geq 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\min_{\alpha_{v,t}} \sum_{t \in \mathcal{T}} \Delta t \, \eta_v c_{v,t} \alpha_{v,t} \geq \sum_{t \in \mathcal{T}} \widehat{\xi}_{v,t}, \quad \forall v \in \mathcal{V}$$

 $\alpha_{v,t} \in \{0,1\}, \quad \forall t \in \mathcal{T}, v \in \mathcal{V}$

It turns into a bilevel problem

Satisfied the demand of each EV for the worst case

• Uncertain set estimated based on historical records.

$$\sum_{t \in \mathcal{T}} \alpha_{v,t} \ge K_v : (\zeta_v)$$

$$\underline{\alpha}_{v,t} \le \alpha_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}_{v,t}, \overline{\beta}_{v,t}), \quad \forall t \in \mathcal{T}$$

Uncertainty in Driving Patterns

• Under these conditions, variables take integer values.

$$\xi_{v}^{wc} \geq \sum_{t \in \mathcal{T}} \widehat{\xi}_{v,t}, \quad \forall v \in \mathcal{V}$$

$$\xi_{v}^{wc} = \min_{\alpha_{v,t}} \left\{ \sum_{t \in \mathcal{T}} \Delta t \, \eta_{v} c_{v,t} \alpha_{v,t} \right.$$

$$\sum_{t \in \mathcal{T}} \alpha_{v,t} \geq K_{v} : (\zeta_{v})$$

$$\underline{\alpha}_{v,t} \leq \alpha_{v,t} \leq \overline{\alpha}_{v,t} : (\underline{\beta}_{v,t}, \overline{\beta}_{v,t}), \quad \forall t \in \mathcal{T}$$

$$\left. \right\}, \forall v \in \mathcal{V},$$

• Lower-level problem is a linear problem.

 Original bilevel problem is transformed into an equivalent single level problem by using duality theory linear programming.

$$\min_{\alpha_{v,t}} \sum_{t \in \mathcal{T}} \Delta t \, \eta_v c_{v,t} \alpha_{v,t}$$

subject to:

$$\sum_{t \in \mathcal{T}} \alpha_{v,t} \ge K_v : (\zeta_v)$$

$$\underline{\alpha}_{v,t} \le \alpha_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}_{v,t}, \overline{\beta}_{v,t}), \quad \forall t \in \mathcal{T}$$

DUAL

$$\max_{\zeta_{v},\underline{\beta}_{v,t},\overline{\beta}_{v,t}} K_{v}\zeta_{v} + \sum_{t \in \mathcal{T}} \left(\underline{\alpha}_{v,t}\underline{\beta}_{v,t} + \overline{\alpha}_{v,t}\overline{\beta}_{v,t}\right)$$

subject to:

$$\zeta_{v} + \underline{\beta}_{v,t} + \overline{\beta}_{v,t} \leq \Delta t \eta_{v} c_{v,t} \alpha_{v,t}, \quad \forall t \in \mathcal{T}
\underline{\beta}_{v,t} \geq 0, \overline{\beta}_{v,t} \leq 0, \quad \forall t \in \mathcal{T}
\zeta_{v} \geq 0.$$

• Single-level equivalent problem is formulated as:

Upper-Level Problem

Primal Lower Level Feasibility Constraint

Dual Lower Level Feasibility Constraint

Strong Duality

Linearization

$$\begin{aligned} & \underset{\Xi^{RB}}{\min} \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} \lambda_t c_{v,t} \Delta t + \sum_{v \in \mathcal{V}} \sum_{t \in \mathcal{T}} P\left(s_{v,t}^+ + s_{v,t}^-\right) \\ & \text{subject to:} \\ & e_{v,t} = e_{v,t-1} + \Delta t \eta_v z_{v,t} - \widehat{\xi}_{v,t} + s_{v,t}^+ - s_{v,t}^-, \\ & \forall t \in \mathcal{T}, v \in \mathcal{V} \\ & c_{v,t} \leq \overline{C}_v, \quad \forall v \in \mathcal{V}, t \in \mathcal{T} \\ & \underline{E}_v \leq e_{v,t} \leq \overline{E}_v, \quad \forall v \in \mathcal{V}, t \in \mathcal{T} \\ & e_{v,N_T} = e_{v,0}, \quad \forall v \in \mathcal{V} \\ & c_{v,t}, s_{v,t}^+, s_{v,t}^- \geq 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T} \\ & K_v \zeta_v + \sum_{t \in \mathcal{T}} \left(\underline{\alpha}_{v,t} \underline{\beta}_{v,t} + \overline{\alpha}_{v,t} \overline{\beta}_{v,t}\right) \geq \sum_{t \in \mathcal{T}} \widehat{\xi}_{v,t}, \quad \forall v \in \mathcal{V} \\ & \sum_{t \in \mathcal{T}} \alpha_{v,t} \geq K_v, \quad \forall v \in \mathcal{V} \\ & \overline{\zeta}_v + \underline{\beta}_{v,t} + \beta_{v,t} \leq \Delta t \eta_v c_{v,t} \alpha_{v,t}, \quad \forall t \in \mathcal{T}, v \in \mathcal{V} \\ & \overline{\zeta}_v + \underline{\beta}_{v,t} + \beta_{v,t} \leq \Delta t \eta_v c_{v,t} \overline{\beta}_{v,t}\right) = \sum_{t \in \mathcal{T}} \Delta t \eta_v z_{v,t}, \quad \forall v \in \mathcal{V} \\ & 0 \leq c_{v,t} - z_{v,t} \leq (1 - \alpha_{v,t}) \overline{C}_v, \quad \forall t \in \mathcal{T}, v \in \mathcal{V} \\ & 0 \leq z_{v,t} \leq \alpha_{v,t} \overline{C}_v, \quad \forall t \in \mathcal{T}, v \in \mathcal{V} \\ & \underline{\beta}_{v,t} \geq 0, \overline{\beta}_{v,t} \leq 0, \quad \forall t \in \mathcal{T}, v \in \mathcal{V} \\ & \zeta_v \geq 0, \quad \forall v \in \mathcal{V} \end{aligned}$$

 $\alpha_{v,t} \in \{0,1\}, \forall t \in \mathcal{T}, v \in \mathcal{V}$

• 29 days of simulation.

• Prices from ENTSO-e Transparency Platform (2018).

- Data from National Household Travel Survey (NHTS) 2017.
- The technical parameters associated with each EV are identical (Renault ZOE)

National Household Travel Survey

Understanding How People Get from Place to Place

Day-ahead Operation of an Individual Electric Vehicle

(a) predictable pattern.

(b) non-predictable pattern.

<u>Day-ahead Operation of an Individual Electric Vehicle</u>

(a) predictable pattern.

(b) non-predictable pattern.

Operation of the Fleet of Electric Vehicles

- To compare deterministic and robust optimization we solve the real-time operation of the aggregator for one month by fixing the energy bought from the day-ahead market.
- The goal of the real-time problem is to minimize the deviations from the energy balance in the EVs' batteries for the fleet of EVs.

Table 1: Results for Day 21

Metric	Deterministi	c Robust
Cost in the day-ahead (\in)	31.0	(32.8)
Purchased power in the day-ahead (kW)	1745.6	1851.2
Deviation in real time (kWh)	(305.7)	(123.4)

Monthly Operation of the Fleet of Electric Vehicles

• RO-EV reduces the deviations up to 50% over 29 days.

Table 2: Monthly Results

Metric		Deterministic	Robust
Cost in the day-ahead (€)	(586.6)	643.0
Deviations in real time (kWh)	Max.	305.7	190.5
	Mean	156.9	82.9
	Min.	77.5	24.3
	Total	(4548.9)↑	(2404.3)

Conclusion

• A novel and computationally efficient model for the day-ahead operation of an aggregator of EVs in a residential district.

• The uncertainty on the availability of an EV is modelled via robust optimization.

• Robust approach leads to a reduction of the deviations from the energy balance of the vehicles' batteries up to 50%.

Any questions?

Álvaro Porras

University of Malaga alvaroporras19@gmail.com

oasys.uma.es

SEST 2019 - 2nd International Conference on Smart Energy Systems and Technologies

9-11 September 2019, Porto, Portugal