

<u>Clemens Lode</u>, Urban Richter, Hartmut Schmeck Karlsruhe Institute of Technology (Germany) Institute AIFB July, GECCO 2010

Adaption of XCS to Multi-Learner Predator/Prey Scenarios

http://www.flickr.com/photos/shreeram

Outline

http://www.flickr.com/photos/yathin

- Learning ClassifierSystems
- XCS in Predator/Prey Scenarios
- Adapting the Reward Function
- Experimental Results

T: Tree F: Food

- Standard (Multi-Step) Problem:
 - Maze6
- Goal:
 - Find shortest path to the food starting from a random point

T: Tree F: Food

Problem:

- Limited sensors, no global knowledge
 - Partially observableMarkov decision process
- Solution:
 - Iterations, backpropagation of reward

T: Tree F: Food

Problem:

- Limited sensors, no global knowledge
 - Partially observableMarkov decision process
- Solution:
 - Iterations, backpropagation of reward
- Aliasing positions:
 - Handle by using memory

- Many aliasing positions
- Other agents present
- Dynamic world
 - food and other agents move
- Limited sensors

T: Trees

F: Food

A: Agent

Predator/Prey Scenarios

- Terminology:
 - Obstacles, Prey, Predator
- Goal: Get near the moving prey as often as possible
 - Global observation task
 - Continuous
 - Average Quality

T: Trees/Obstacles

F: Food/Prey

A: Agent/Predator

- (1) Access to local information only
- (2) open areas with some obstacles
- (3) internal state unknown to others

- No standard MDP
 - Limited sensors (1, 3)
 - Aliasing positions (2)

- (1) Access to local information only
- (2) open areas with some obstacles
- (3) internal state unknown to others
- (4) dynamic scenario

- No standard MDP
 - Limited sensors (1, 3)
 - Aliasing positions (2)
- No POMDP
 - Non-static scenario (4)

- (1) Access to local information only
- (2) open areas with some obstacles
- (3) internal state unknown to others
- (4) dynamic scenario
- (5) predators share global observation task
- (6) runs continuously

- No standard MDP
 - Limited sensors (1, 3)
 - Aliasing positions (2)
- No POMDP
 - Non-static scenario (4)
- XCS has to be adapted
 - No "final" reward (5), no iterations (6)

Sensors

One sensor array for each direction

Sensors

One sensor array for each direction

Sensors can sense either far or near

Sensors

One sensor array for each direction

Sensors can sense either far or near (observation range / sight range)

Sensors can distinguish between Predators, Prey and Obstacles

Adaption of the standard XCS Reward Function

Standard implementation:

Adapted implementation

Adaption of the standard XCS Reward Function

- Standard implementation:
 - Reward:
 - Food is in a neighboring cell

- Adapted implementation
 - Reward:
 - Food is in observation range ("XCS obs")
 - Food is in sight range ("XCS sight")

Adaption of the standard XCS Reward Function

- Standard implementation:
 - Reward:
 - Food is in a neighboring cell
 - Action:
 - Assign reward
 - Restart scenario
 - Switch between explore/exploit phase

- Adapted implementation
 - Reward:
 - Food is in observation range ("XCS obs")
 - Food is in sight range ("XCS sight")
 - Action:
 - Assign reward
 - Continue scenario
 - Always use exploit phase

- Global knowledge cannot be reconstructed
 - Memory becomes invalid after each step
- The predator/prey scenario is a Nonobservable Markov Decision Processes

- Global knowledge cannot be reconstructed
 - Memory becomes invalid after each step
- The predator/prey scenario is a Nonobservable Markov Decision Processes

Despite being a NOMDP, can the XCS still learn?

- Global knowledge cannot be reconstructed
 - Memory becomes invalid after each step
- The predator/prey scenario is a Nonobservable Markov Decision Processes

- Despite being a NOMDP, can the XCS still learn?
 - Yes, the prey does move only a limited number of cells
 - → The environment does not completely change each turn

Testing Methodology

http://www.flickr.com/photos/james_crowley

- "XCS obs", "XCS sight"
- "Obstacle-evading prey"
- "Predator-evading prey"
- "Blinded Prey"
- Standard XCS parameter settings

Scenario Configurations

 Three different scenarios with observation and sight ranges

XCS Experimental Results "Pillar Scenario"

- XCS (obs) shows some learning
- XCS (sight)

Obstacle-evading prey

Predator-evading prey

XCS Experimental Results "Random Scenario"

XCS shows very little learning

Obstacle-evading prey

Predator-evading prey

XCS Experimental Results "Difficult Scenario"

- XCS shows significant learning
 - But also unlearning after 8,000 steps
- "Difficult Scenario" is a maze-like scenario, this result was expected

Reward Distribution "eventXCS"

 Analyze succession of positive and negative events

Reward Distribution "eventXCS"

- Analyze succession of positive and negative events
- Distribute the reward as soon as possible (i.e. at each event)
- Idea:
 - Action sets closer to an event probably contributed more

eventXCS Experimental Results "Pillar Scenario"

eventXCS clearly outperforms XCS

Obstacle-evading prey

Predator-evading prey

eventXCS Experimental Results "Random Scenario"

eventXCS shows slow but steady learning with an obstacle-evading prey

Obstacle-evading prey

Predator-evading prey

eventXCS Experimental Results "Difficult Scenario"

- eventXCS fails in this scenario
- Using "tournament selection" shows acceptable results with no sign of unlearning

Blinded prey

Conclusion

- XCS with minimal adaptions can learn
 - Unable to use sight range
- Event XCS superior

Adaption of XCS to Multi-Learner Predator/Prey Scenarios

Thank you for your attention!

Backup slides

Neutral Events

Neutral Event

- No positive or negative event for a number of steps
- Half of the action sets is discarded and receives reward
- Idea:
 - Good actions are rewarded earlier
 - Preventing of dead ends

Neutral Events

Neutral Event

- No positive or negative event for a number of steps
- Half of the action sets is discarded and receives reward
- Idea:
 - Good actions are rewarded earlier
 - Preventing of dead ends
- Problem:
 - Error possibility high if directly followed by an event.

Neutral Events

Tests have shown that a stack size of 8 is generally good for all three scenarios

Learning Rate \(\beta \)

- Pillar Scenario
 - Obstacle-evading prey
 - Low learning rate (0.05)
 good, eventXCS very stable

Learning Rate B

Pillar Scenario Predator-evading prey Random Scenario, Obstacle evading prey

Random Scenario, Predator evading

Learning Rate \(\beta \)

- Difficult Scenario
 - Blind prey
 - High learning rates show an advantage because of long distance to the prey

