Transparents du cours

Langages formels

HLIN502

Licence 3e année - premier semestre

2017 - 2018

Langages formels

HLIN502

Licence 3e année - premier semestre

Cours: Rémi Legrand

TD: Hervé Dicky

Michel Meynard

Rémi Legrand

Contrôle des connaissances

- 1 examen terminal avec une session de rattrapage
 - Durée 2 heures
 - Documents autorisés :
 - juste une feuille A4 recto-verso personnelle
 - Annales corrigées sur le site ENT
- Pas de contrôle continu

Organisation du cours

- 11 cours
 - Le mardi de 15h à 16h30 en A6.03
 - Distribution transparents de cours, feuilles de TD
- 22 TD , pas de TP accompagnés
 - Le jeudi de 9h45 à 13h (deux TD)
 - Début le 21 septembre
 - Répartition dans les 3 groupes de TD : A, B et C
- Site: I'ENT moodle
 - HLIN502 (mot de passe : lang17)
 - Polycopié de cours, feuilles de TP

Objectifs

- Fondements de l'informatique : les langages
 - Langages permettant de spécifier les problèmes de l'informatique, afin de les résoudre « scientifiquement »
 - Description des langages et traitement des données
 - Grammaires, Automates, Expressions rationnelles
- Applications :
 - Savoir modéliser :
 - Abstraire = éliminer le bruitage et lever les imprécisions
 - Formaliser = afin de pouvoir établir des propriétés
 - Maîtriser les outils et propriétés de ces langages
 - Savoir faire des raisonnements par induction

Plan du cours

- Mots et langages
- Grammaires
- Automates
 - Déterministe, indéterministe, avec ε-transitions
- Transformation d'automates
 - Élimination des ε-transitions, déterminisation, Minimisation
- Expressions rationnelles
- Classification des langages
 - Grammaires régulières, lemme de la Pompe, automates à pile

Mots et langages

Définitions

Analogie avec les langues naturelles

- Alphabet : un ensemble fini, souvent noté Σ (sigma) d'éléments appelés des lettres.
 - Exemples: { a,b,c,...z}, {a,b}, {0,1}
- Mot : une «suite» ordonnée et finie de lettres
- Exemples : maison, aabbaba, 11100
- Langage : un ensemble de mots
 - Exemples : Les-mots-français $\{\underbrace{a...a}_{nfois}\}$ {11,01}

Que faire des langages ?

- Langages informatiques : Programme = mot
 - Compilation, analyse lexicale et syntaxique
 - Transformation de programmes
- Algorithmes
 - · Recherche d'un motif dans un texte
 - Analyse ± intelligente de textes
- Démarches générales
 - Classement des langages
 - Étude des propriétés des langages
 - Travail sur des langages abstraits comme { a, b }*

Les mots

- Mot = suite finie de lettres (élément de Σ)
- Cas particulier du mot vide : noté ε (epsilon)
 - · Suite vide de lettres
 - ϵ n'est pas une lettre de l'alphabet Σ
- Longueur d'un mot = nombre de lettres du mot
 - Notation : | m | nombre de lettres du mot m
 | m | nombre d'occurrences de a dans m

Exemples: $|bbababba|_a = 3$

|m| = 0 si et seulement si $m = \varepsilon$

| m | = 1 si et seulement si m est une lettre

La lettre α est confondu avec le mot constitué d'une lettre α

Composants d'un mot

• Notation:

m[i..j] est le mot extrait de m en ne conservant que les lettres des positions i à j (inclus)

Exemple: m = abcdefgh

m[2..4] = bcd m[1..|m|] = m

- m[i..j] est appelé un facteur de m
- Notation :

m[i] est la i-ième lettre extraite du mot m

Exemple: m = abcdefgh m[3] = c

Langages

- Un langage sur l'alphabet Σ est un ensemble de mots construit avec l'alphabet Σ
- Le plus petit langage sur Σ : {} (aucun mot)
- Le plus grand langage sur Σ : Σ^* (tous les mots)

 Σ^* est appelé le monoïde libre engendré par Σ

• Un langage intermédiaire :

 $\{m \in \Sigma^*, |m|=1\}$ les mots n'ayant qu'une lettre

Concaténation de mots

• Concaténation de deux mots u et v :

C'est le mot noté u.v (voire uv) tel que :

a)
$$|u.v| = |u| + |v|$$

b)
$$\forall i \in [1,|u|], u.v[i]=u[i]$$

 $\forall i \in [1,|v|], u.v[i+|u|]=v[i]$

- u = para v = chute ==> u.v = parachute
 - ϵ . chute = chute et para. ϵ = para
- m. $\varepsilon = \varepsilon$. m = m et $|m|=0 \Leftrightarrow m=\varepsilon$
- $|m_1.m_2|_{\alpha} = |m_1|_{\alpha} + |m_2|_{\alpha}$ $|m_1.m_2| = |m_1| + |m_2|$
- Notation puissance : $m^n = \underbrace{m.m...m}_{n \text{ fois}}$ $m^0 = \underbrace{m.m...m}_{n \text{ fois}}$

Vive le monoïde libre

- $(\Sigma^*, .)$ est un monoïde
 - Interne

Pas d'inverse:

Associatif

 $m.m' = \varepsilon \Rightarrow m = m' = \varepsilon$

- Élément neutre : ε
- Définition inductive de Σ^* :
 - a) $\varepsilon \in \Sigma^*$
 - b) $Sim \in \Sigma^* et a \in \Sigma alors a.m \in \Sigma^*$

(« a » est le mot d'une lettre « a »)

• Notation : $\Sigma^+ = \Sigma^* - \{\epsilon\}$

Langage fermé pour la concaténation

• Un langage A est dit fermé pour la concaténation si

$$\forall m,m' \in A, m,m' \in A$$

- Si A fermé contient ε, alors (A,.) est un monoïde
- Un mot m de A est dit premier si :

$$\not\exists u, v \in A \text{ tel que } m = u.v \text{ et } u \neq \varepsilon \text{ et } v \neq \varepsilon$$

- Exemples :
- $A = \{ m \in \{a,b\}^*, |m|_a = |m|_b \} \text{ est fermé}$
 - m est premier si pas de préfixe propre ayant autant de a que de b
- $A = \Sigma^*$: les mots fermés de A sont les lettres (éléments de Σ)

Langages non triviaux

- Un langage sur un alphabet Σ est une partie de Σ *
 - A = { m , m commence par un 1 et finit par 0} Σ ={0,1}
 - $A = \{ m, |m|_a = |m|_b \}$ $\Sigma = \{a,b\}$
 - A est le plus petit ensemble contenant aa et bb et tel que si m est dans A, alors m.a.m et m.b.m aussi.
- La concaténation de mots dans un langage n'est pas une loi interne en général.
 - Exemple : Langage = { mots français }
 chien et chat sont des mots français
 mais chienchat n'est pas français

Opérations ensemblistes sur les langages

Soit L₁ et L₂ deux langages sur le même alphabet Σ

- Union, intersection
 - L₁ U L₂ est l'union des ensembles L₁ et L₂.
 - L₁ ∩ L₂ est l'intersection des ensembles L₁ et L₂.
 - Exemples :

```
{ a, b, aba, ba} \cap { a, aa, aaa, ...} = { a } 
{ m, |m| pair } U { m, |m| impair } = \Sigma^*
```

- Différence ensembliste, Complémentaire
 - $L_1 \setminus L_2 = \{ m \in L_1, m \notin L_2 \}$
 - $\overline{L_1} = \{ m \in \Sigma^*, m \notin L_1 \}$

Concaténation de langages

Soit L_1 et L_2 deux langages sur le même alphabet Σ

Produit (concaténation)

•
$$L_1 \cdot L_2 = \{m_1 \cdot m_2, m_1 \in L_1 \text{ et } m_2 \in L_2\}$$

Puissance

•
$$L^n = L \cdot L^{n-1}$$
 et $L^0 = \{ \epsilon \}$ $(L^1 = L \cdot L^0 = L)$

• Exemples :

 $\{ab,ba\}^2 = \{abab, abba, baab, baba\}$ Pour une lettre a de Σ : $\{a\}. \Sigma^*. \{a\} = \{m \in \Sigma^*, m commence et finit par un a\}$

$${a}^n = {a^n}$$
 ${}^n = {}$ si $n > 0$ ${}^0 = {\epsilon}$

Propriétés des langages

- ($\{Langages sur \Sigma\}$, .) est un monoïde
 - Si $A \subseteq \Sigma^*$ et $B \subseteq \Sigma^*$, alors $A.B \subseteq \Sigma^*$ (interne)
 - (A.B).C = A.(B.C) (associatif)
 - A. $\{\epsilon\} = \{\epsilon\}$.A = A ($\{\epsilon\}$ élément neutre)
- $A \subseteq B$ ==> $A^n \subseteq B^n$ $A^*.A = A.A^* = A^+$
- $A.(\bigcup_{i=1}^{n} B_i) = \bigcup_{i=1}^{n} (A.B_i) \quad (\bigcup_{i=1}^{n} B_i).A = \bigcup_{i=1}^{n} (B_i.A)$

$$m \in A_1.A_2...A_n \Leftrightarrow \exists m_1 \in A_1,...m_n \in A_n \text{ tel que } m = \prod_{i=1}^n m_i$$

$$m \in A^* \Leftrightarrow m = \varepsilon \text{ ou } \exists m_1 \in A,...m_n \in A \text{ tel que } m = \prod_{i=1}^n m_i$$

Fermeture de Kleene (étoile)

- Tous les mots obtenus en concaténant des mots de L
 - L* = $\bigcup_{i \in \mathbb{N}} L^i = \{\epsilon\} \cup L \cup L^2 \cup ... \cup L^n \cup ...$
 - $L^+ = \bigcup_{i \in \mathbb{N} \setminus \{0\}} L^i = L \cup L^2 \cup ... \cup L^n \cup ...$
- Exemple : { ab, ba, aa, bb}* = { $m \in \Sigma^*$, |m| est pair }
- Remarque :

Si ϵ est dans L, alors ϵ est aussi dans L⁺

Facteurs et sous mots

- Le mot p est un préfixe du mot m s'il existe un mot r tel que m = p . r
- Le mot s est un suffixe du mot m s'il existe un mot r tel que m = r . s
- Le mot u est un facteur du mot m s'il existe un mot p et un mot s tel que m = p . u . s
- Le mot a₁a₂...a_n est un sous mot du mot m s'il existe des mots m₀, m₁, ... m_n tel que :

$$m = m_0.a_1.m_2.a_2...a_n.m_n$$

- Exemple : Tout facteur est un sous mot
- Facteur (sous mot,...) propre : si plus petit et non vide

Ordre sur les mots

- Choix arbitraire d'un ordre dans Σ : $a <_{\Sigma} b <_{\Sigma} c ...$
- Ordre préfixe :
 - m <_p m' si m est un préfixe (suffixe) de m' et m ≠ m'
 - Pas un ordre total : ab et ba ne sont pas comparables
- Ordre lexicographique : l'ordre du dictionnaire
 - Loir < loire < loirs
 - m \leq_L m' si $\exists w, u' \in \Sigma^* et \exists v' \in \Sigma^+ tel que$ m = w.u' et m' = w.v' $et u' = \varepsilon \text{ ou } u'[1] <_{\Sigma} v'[1]$
 - Séquence infinie non complète : a $<_L$ aa $<_L$ aaa $<_L$...

Morphisme de langages

- $\Phi: \Sigma_1^* \Sigma_2^*$ est un morphisme si
 - a) $\Phi(\epsilon) = \epsilon$
 - b) $\forall m, m' \in \Sigma_1, \Phi(m.m') = \Phi(m).\Phi(m')$
- Exemple :

$$\Sigma_1 = \{a, ... z\}$$
 $\Phi(x) = \text{code ascii de } x$
ou $\Phi(x) = \text{ascii}(x) + \text{code parit\'e}$

- Φ est entièrement déterminé par sa restriction à Σ_1
- Isomorphisme = morphisme + bijection

Ordre sur les mots (2)

- Ordre longueur lexicographique (hiérarchique)
 - Regarder d'abord la longueur des mots puis l'ordre lexicographique
 - $\varepsilon <_H a <_H b <_H ab <_H ba <_H bb <_H aba <_H ...$
 - m $<_H$ m' si |m| < |m'|ou |m| = |m'| et $m <_T m'$
- · Ordre sur les longueurs
 - m < m' si |m| < |m'|
 - Souvent utilisé pour un raisonnement par induction

Code

•
$$\Phi : \Sigma_1^* - --- > \Sigma_2^*$$

a ----> 011

b ----> 110

c ----> 00

d ----> 01

e ----> 10

• Non unicité :

•
$$\Phi(acb) = 011\ 00\ 110$$

•
$$\Phi(\text{dede}) = 01\ 10\ 01\ 10$$

- A = { 011, 110, 00, 01, 10} n'est pas un code car il existe des mots de A* qui admettent 2 décodages.
 - A est un code si Φ est injective. Si A est un code,
 A* est appelé le monoïde libre engendré par A.
- Pour $\Sigma = \{a,b\}$, $A = \Phi(\Sigma) = \{ab, abb\}$ est un code

Dessiner les mots

• Visualiser les mots si $\Sigma = \{a,b\}$

- Visualiser $|m|_a = |m|_b$
- Visualiser $\forall i \in [1,|m|], |m[1..i]|_a \ge |m[1..i]|_b$

Résolution d'une équation

- Trouver 3 mots u,v, et w tel que u.v.w = w.u.v
 - Solution simple : $u = v = \varepsilon$
 - Autres solution ? ==> $u = (w_1 w_2)^p w_1$ et $v = w_2 (w_1 w_2)^q$ et $w = (w_1 w_2)^r$
- Si $u = \varepsilon$ ou $v = \varepsilon$, cas plus simple traité en TD
- Démonstration par un raisonnement par récurrence avec :
 - $\Pi(n)$ = La proposition est vrai si | u.v.w | $\leq n$
- Beaucoup de cas à envisager selon les tailles relatives de u, v et w

Dessiner les mots (2)

• Visualiser les mots si $\Sigma = \{a,b,a',b'\}$

• Inversement : un problème graphique est peut-être un problème qui se résout par la théorie des langages

Le « langage » français

- Approche 1
 - $\Sigma = \{ a, b, c, ... z \}$
 - Langage = { mots référencés dans le dictionnaire français}
- Approche 2
 - Σ = { mots référencés dans le dictionnaire français}
 - Exemple: "le.chat.mange.la.souris"
 - Les points de concaténation sont indispensables (ou les remplacer par des espaces)
 - Langage = { textes écrits en français}

Les grammaires

Symboles et productions

Introduction

- Définition d'un langage en spécifiant ses règles de grammaire
 - Langage français très réduit à l'essentiel :
 - phrase -> suiet verbe
 - sujet -> mon chat miaou mon chien médor mon rat mollie
 - Verbe -> mange dort chasse
 - Mon chat miaou mange est une phrase de ce français
- Langues naturelles :
 - Il faut une grammaire contextuelle
 - Exemple : tous les sujets ne chassent pas forcément

Grammaire non contextuelle

- G = $< \Sigma$, X, P, S > définit le langage L_c
 - Σ est l'alphabet des « lettres » des mots du langage L_c
 - $-\Sigma = \{ mon chat miaou , mon chien médor , rené la taupe \}$ mange , dort , chasse }
 - Σ est l'ensemble des « symboles terminaux »
 - X est l'alphabet auxiliaire des symboles intermédiaires, i.e. des symboles non terminaux
 - X = { phrase sujet verbe } avec $X \cap \Sigma = \{\}$
 - S est l'axiome à partir duquel on dérive les mots.
 - -S = phraseavec $S \in X$
 - P est l'ensemble des productions qui permettent de construire les mots de L_G à partir de S

Productions

- Production:
 - Notation : $\alpha \longrightarrow \beta$ où $\alpha \in X$ et $\beta \in (X \cup \Sigma)^*$
 - Définition :

Une production est un élément de $X \times (X \cup \Sigma)^*$

- Exemple: S --> aSb S --> S S --> ϵ X = { S } P = { (S, aSb), (S, SS), (S, ϵ) } Discours: S se réécrit (se dérive) en aSb Productions interdites: Sb --> aa ϵ --> b
- α est un unique non terminal.
- β est une succession de terminaux et non terminaux, ou juste le mot vide

Dérivations

- Dérivation élémentaire
 - $\alpha --> \beta \in P$ ==> m. α . m' --> m . β . m' est une dérivation autorisée
 - ε est simplifié :

$$\alpha \dashrightarrow \epsilon \in P \quad ==> \quad m \ . \ \alpha \ \dashrightarrow m \qquad \alpha \ . \ m' \dashrightarrow m'$$

- m_1 --> m_2 dérivation autorisée ==> $m_2 \in (X \cup \Sigma)^*$
- Chaîne de dérivations
 - Suite de dérivations autorisées : $m_0 ext{ --> } m_1 ext{ --> } \dots ext{ --> } m_n$
 - Notations : $m_0 \overset{*}{\rightarrow} m_n \quad m_0 \overset{n}{\rightarrow} m_n \quad m_0 \overset{\leq n}{\rightarrow} m_n$
 - n est appelé la longueur de la chaîne de dérivations
 - Cas limite: $m \xrightarrow{*} m$ et $m \xrightarrow{0} m$

Fonctionnement des productions

• Principe:

À partir de l'axiome S, il est engendré tous les mots de $(X \cup \Sigma)^*$ constructibles en itérant l'utilisation des productions de P.

- G = $< \Sigma$, X, P, S > avec $\Sigma = \{a,b\}$, X= $\{S,T\}$ et P = $\{S -> aST , S --> \epsilon , T -> bb \}$ S --> aST --> a aST T --> aa aST TT --> aaaTbbT --> aaaTbbbb --> aabbbbbb S --> aST --> aT --> abb autre possibilité
- Le langage L_G associé à G sera l'ensemble de tous les mots de Σ^* générés par ces opérations
- Langage élargi $\widehat{L_c}$: tous les termes dérivés de S

Langage associé à une grammaire

- Définition : Le langage, noté L_G , associé à la grammaire $G = \langle \Sigma, X, P, S \rangle$ est défini sur l'alphabet Σ par : $L_G = \{ m \in \Sigma^* \mid S \overset{*}{\to} m \}$
- Définition : Le langage élargi, noté $\widehat{L_G}$, associé à la grammaire $G = \langle \Sigma, X, P, S \rangle$ est défini sur l'alphabet $\Sigma \cup X$ par : $\widehat{L_G} = \{ m \in (\Sigma \cup X)^* \mid S \overset{*}{\to} m \}$
- Un langage L est dit algébrique s'il existe une
- grammaire non contextuelle G telle que $L = L_G$
- G1 et G2 sont dites équivalents si $L_{G_1}=L_{G_2}$

Notations simplifiées

- S --> $\alpha \mid \beta$ au lieu de : S --> α et S --> β
- $\stackrel{*}{ o}$ est parfois noté ponctuellement juste -->
- $P = \{ \ ... \ , \ S \dashrightarrow \beta \ , \ ... \}$ plutôt que $P = \{ \ ... \ , \ (S, \beta) \ , \ ... \}$
- m.ε.m' = m . m' = m m'

Exemple d'une grammaire

- G = $< \Sigma$, X, P, S > $\Sigma = \{ a, b \},$ X = $\{ S, T \}$ P = $\{ S \rightarrow aST, S \rightarrow \epsilon, T \rightarrow bb \}$
- $L_G = ???$ $\widehat{L_G} = ???$
- Analyse intuitive :
 - $L_G = \{ a^n b^{2n}, n >= 0 \}$
 - $\widehat{L_G} = \{ a^n uv \mid n \ge 0 \text{ et } u \in \{ S, \epsilon \} \text{ et } v \in \{ T, bb \}^n \}$
- Démonstration :
 - Nécessite le lemme fondamental
 - Nécessite un raisonnement par récurrence

Notation BNF

- Notation « Backus-Naur Form »
- Souvent utilisé pour décrire les langages de programmation :

```
< conditionnelle > ::= if ( <condition>) <instruction> ;
< conditionnelle > ::= if ( <condition>) {<instruction> ;}
```

- Non terminaux : entourés de chevron
- « --> » remplacée par ::=
- Avec des variantes et simplifications de notation

Lemme fondamental sur les dérivations

• Lemme:

si
$$u_1u_2 \stackrel{k}{\rightarrow} v$$
 alors il existe v_1, v_2, k_1, k_2 tel que $k = k_1 + k_2$, $v = v_1v_2$, $u_1 \stackrel{k_1}{\rightarrow} v_1$ et $u_2 \stackrel{k_2}{\rightarrow} v_2$

Toute dérivation s'applique soit à u₁ soit à u₂

Extension du lemme fondamental

- Lorsque un u_i est une lettre (un terminal)
 - $k_i = 0$ et $v_i = u_i$
 - Exemples : aSb \xrightarrow{k} m ==> m = avb et S \xrightarrow{k} v aSbS \xrightarrow{k} m ==> m = av₁bv₂ et S $\xrightarrow{k_1}$ v₁ et S $\xrightarrow{k_2}$ v₂ et k=k₁+k₂

Démonstration par récurrence sur k

- Hypothèse : Vrai pour k, où $k \ge 1$
- Montrons que c'est vrai pour k+1
- $u_1u_2 \stackrel{k+1}{\rightarrow} V ==> u_1u_2 \stackrel{k}{\rightarrow} W \stackrel{1}{\rightarrow} V$
- Par hypothèse : $\begin{array}{c} k_1 \\ u_1u_2 & \xrightarrow{k} & w = w_1w_2 \\ \vdots & \vdots & \vdots \\ w_1w_2 & \xrightarrow{1} & v = v_1v_2 \\ \vdots & \vdots & \vdots \\ k'_2 & & <--- Montré précédemment (k=1) \\ \end{array}$
 - $k+1=(k_1+k_1')+(k_2+k_2')$ $u_1 \xrightarrow{k_1} W_1 \xrightarrow{k_1'} V_1$ et $u_2 \xrightarrow{k_2} W_2 \xrightarrow{k_2'} V_2$

Démonstration par récurrence sur k

- k = 0 cas trivial avec $k_1 = k_2 = 0$ et $v_1 = u_1$, $v_2 = u_2$
- $k = 1 \quad u_1 u_2 \stackrel{1}{\to} v$

Soit $(M --> m) \in P$ la production utilisée pour cette dérivation. M, non terminal, est dans u_1 ou dans u_2 :

- M est dans u_1 , alors $u_1u_2 = (u'.M.u'') \cdot u_2 --> (u'.m.u'') \cdot u_2 = v$ $k_1 = 1 \quad k_2 = 0 \text{ et } v_1 = u'.m.u'' \text{ et } v_2 = u_2, \text{ et on a } v = v_1v_2$
- M dans u_2 , alors $u_1u_2 = u_1$. (u'.M.u") --> u_1 . (u'.m.u") = v $k_1 = 0$ $k_2 = 1$ et $v_1 = u_1$, $v_2 = u'$.m.u" et on a $v = v_1v_2$

Démonstration sur les grammaires

- Soit $G = \{a,b\}, \{S\}, \{S \rightarrow aSb \mid \epsilon\}, S >$
- Soit E = { a^nb^n , $n \ge 0$ }
- Proposition : E = L_G
- Démonstration classique :
 - E ⊆ L_G
 - Récurrence sur la longueur du mot
 - $\Pi(n)$ = \forall m ∈ E tel que $|m| \le n$ alors $m \in L_G$
 - $L_G \subseteq E$
 - Récurrence sur la longueur de la chaîne de dérivations
 - $-\Pi(n) = \forall m \in L_G \text{ tel que S} \xrightarrow{n} m \text{ alors } m \in E$

Démonstration de $E \subseteq L_G$

$$G = < \{a,b\}, \{S\}, \{S \rightarrow aSb \mid \epsilon\}, S >$$

 $\Pi(n) = \forall m \in E \text{ tel que } |m| \le n \text{ alors } m \in L_G$

- $\Pi(0)$ vrai : $m \in E$ et $|m| \le 0 ==> m = \epsilon$. On a : $\epsilon \in L_G$
- Hypothèse : $\Pi(n)$ vrai (et $n \ge 0$)
 - Soit $m \in E$, |m| = n+1, il faut montrer que $m \in L_G$
 - m ∈ E ==> m = $a^{n'}b^{n'}$ = a $(a^{n'-1}b^{n'-1})$ b = a u b avec |u| ≤ n ==> u ∈ L_G, i.e. S $\stackrel{*}{\rightarrow}$ u par hyp. de récurrence ==> S --> aSb $\stackrel{*}{\rightarrow}$ aub = m ==> m ∈ L_G

Démonstration de $L_G \subseteq E$ (2)

$$G = < \{a,b\}, \{S\}, \{S \rightarrow aSb \mid \epsilon\}, S >$$

 $\Pi(n) = \forall m \in L_G \text{ tel que } S \xrightarrow{n} m \text{ alors } m \in E$

- $\Pi(0)$ vrai : $S \stackrel{0}{\rightarrow}$ m impossible. Donc $\Pi(0)$ vrai par vacuité
- Hyp : $\Pi(n)$ vrai (et $n \ge 0$). Montrons que $\Pi(n+1)$ vrai : Soit S $\stackrel{n+1}{\to}$ m , montrons que m \in E :
 - S 1/2 E n/m Donc m=ε et on a bien m∈ E
 S 1/2 aSb n/m Puis lemme fondamental généralisé :
 aSb n/m m = am'b et S n/m m'
 ==> m' ∈ E (par hyp. de rec.)
 ==> m' = akbk
 ==> m = am'b = ak+1bk+1 ∈ E CQFD.

Démonstration de $L_G \subseteq E$

$$G = < \{a,b\}, \{S\}, \{S \rightarrow aSb \mid \epsilon\}, S >$$

 $\Pi(n) = \forall m \in L_G \text{ tel que S} \xrightarrow{n} m \text{ alors } m \in E$

- $\Pi(1)$ vrai : $S \stackrel{1}{\rightarrow} m ==> m = \epsilon$. On a bien : $\epsilon \in E$
- Hyp : $\Pi(n)$ vrai (et $n \ge 1$). Montrons que $\Pi(n+1)$ vrai :

Soit S $\stackrel{n+1}{\rightarrow}$ m , montrons que m $\,\in\, E$

Forcément la première dérivation est S --> aSb :

 $S \xrightarrow{1} aSb \xrightarrow{n} m$ Puis lemme fondamental généralisé :

aSb
$$\xrightarrow{n}$$
 m = am'b et S \xrightarrow{n} m'

 $==> m' \in E$ (par hyp. de rec.)

 $==> m' = a^k b^k$

 $==> m = am'b = a^{k+1}b^{k+1} \in E$ CQFD.

Exemples de démonstration

- $G = \langle \Sigma, X, P, S \rangle$ $\Sigma = \{ a, b \},$ $X = \{ S, T \}$ $P = \{ S -> aST, S -> \epsilon, T -> bb \}$
- Montrer que : $L_G = \{ a^n b^{2n} \mid n \ge 0 \}$
- Montrer que :

$$\widehat{L_G} = \{ a^n uv \mid n > 0 \text{ et } u \in \{ S, \epsilon \} \text{ et } v \in \{ T, bb \}^n \}$$

- Simplifier la grammaire au préalable à condition de préciser les règles de simplification utilisées et prouvées...
 - Ici, on obtiendrait : $P = \{ S \rightarrow aSbb \mid \epsilon \}$
- Établir des propriétés : $S \stackrel{*}{\to} m ==> |m|_a = |m|_T + \frac{1}{2} |m|_b$ $S \stackrel{*}{\to} m ==> ba et Ta ne sont pas des sous mots de m$

Arbre de dérivation

- $G = \{a,b\}, \{S\}, \{S \rightarrow aSbS \mid \epsilon\}, S >$
- $S \stackrel{*}{\rightarrow} aabbab$ a $\stackrel{S}{\rightarrow} b$ a $\stackrel{S}{\rightarrow} b$ a $\stackrel{S}{\rightarrow} b$ a $\stackrel{S}{\rightarrow} b$
- S $\stackrel{1}{\rightarrow}$ aSbS $\stackrel{2}{\rightarrow}$ a aSbS b aSbS $\stackrel{4}{\rightarrow}$ a asbs b asbs = aabbab

Différentes dérivations (2)

• Chaîne de dérivations = parcours de l'arbre

• Ordre 1,2,4,5,3,6,7 : $\underline{\underline{S}}$ -> $a\underline{\underline{S}}bS$ -> a $a\underline{\underline{S}}bS$ -> a $ab\underline{\underline{S}}$ bS -> a ab $a\underline{\underline{S}}$ bS -> a ab ab ab ab -> ab ab ab

Différentes dérivations

• 1 seul arbre, plusieurs chaînes de dérivations

• Ordre 1,2,3,4,5,6,7 : $\underline{\underline{S}}$ -> $\underline{a}\underline{\underline{S}}$ bs -> a asbs $\underline{b}\underline{\underline{S}}$ -> a asbs $\underline{b}\underline{\underline{S}}$ -> a ab b $\underline{a}\underline{\underline{S}}$ bs -> a ab b abs -> a abbab

Définition d'un arbre de dérivations

- Soit $G = \langle \Sigma, X, P, S \rangle$ une grammaire. Un arbre de dérivations de G est un arbre (non unique) qui vérifie les propriétés suivantes :
 - Ses étiquettes sont dans X U Σ U $\{\epsilon\}$ et :
 - L'étiquette de la racine de l'arbre est S (l'axiome)
 - Les étiquettes des feuilles sont dans Σ U $\{\epsilon\}$
 - Les étiquettes des noeuds internes sont dans X

• L'ordre des branches doit être respecté

Relations entre arbres et chaînes de dérivations

- À un arbre de dérivations A est associé le mot m constitué de la concaténation des feuilles de A, lues de gauche à droite. On dira que l'arbre A reconnaît le mot m
- À un arbre de dérivations reconnaissant le mot m correspond (en général) plusieurs chaînes de dérivations donnant m
- À une chaîne de dérivation S → m, correspond un unique arbre de dérivations A reconnaissant m
- Pour avoir une correspondance bi-univoque, il faut considérer les chaînes de dérivations à gauche

Parcours en profondeur d'abord

• Ordre: 1245367

• <u>\$\overline{S}\$</u>->a<u>\$\overline{S}\$</u>b\$->aab<u>\$\overline{S}\$</u>->aabb<u>\$\overline{S}\$</u>->aabba<u>\$\overline{S}\$</u>b\$

Dérivation gauche

- Définition: m --> m' est une dérivation à gauche si la production utilisée pour l'obtenir s'applique au non terminal le plus à gauche dans m.
 - aSbS --> aaSbSbS dérivation gauche
 - aSbS --> aSbaSbS n'est pas une dérivation gauche
- Une « chaîne de dérivations » à gauche est une chaîne de « dérivations à gauche » !
- À toute chaîne de dérivations (et à tout arbre de dérivation) correspond une unique chaîne de dérivations à gauche.
 - Cela consiste à parcourir l'arbre « en profondeur d'abord » et de gauche à droite

Grammaire ambiguë

- Définition : Une grammaire G est dite ambiguë s'il existe au moins un mot de L_G qui est associé à au moins deux arbres de dérivations différents.
- Exemple : $G = \{a,b\}, \{S\}, \{S -> aSbS \mid aSb \mid SS \mid \epsilon\}, S >$

• m = abab est reconnu par deux arbres différents

Cas simple de non ambiguïté

- Exemple : $G = \{a,b\}, \{S\}, \{S \rightarrow aS \mid bS \mid \epsilon\}, S >$
- La grammaire est non ambiguë.
 - Et même : La chaîne de dérivations est unique S $\stackrel{n}{\rightarrow}$ m
 - Exemple avec m = aaba :

- En général, si on a : S → m'S --> m
 ==> m'S --> m'aS ou m'bS selon que m'a ou m'b soit un préfixe de m.
- Éléments de preuve par récurrence :
 - Si $S \xrightarrow{1} \alpha \xrightarrow{n} m$ et $S \xrightarrow{1} \beta \xrightarrow{n} m$ alors $\alpha = \beta = m[1]$ S
 - $\Pi(n) = s'il$ existe une chaîne $S \stackrel{n}{\to} m$, elle est unique

Expressions arithmétiques

• Grammaire non ambiguë

$$E \longrightarrow E + T \mid T$$
 $E = expression$
 $T \longrightarrow T * F \mid F$ $T = Terme$ $F = Facteur$
 $F \longrightarrow (E) \mid V$

- * est prioritaire sur +
- On « associe à gauche » :

$$2 + 3 + 5 = 2+3 + 5$$

 $2 + 3 + 5$ impossible
 $2 * 3 * 5 = 2*3 * 5$

Une ambiguïté bien connue

- Les expressions arithmétiques
 - E --> E + E | E * E | (E) | v grammaire ambiguë
 - 2 + 3 + 5 : 2+3 + 5 vs. 2 + 3+5 ? (l'associativité de l'addition permet l'ambiguïté)
 - 2 + 3 * 5 : 2 + 3 * 5 vs. 2 + 3 * 5 ? (identifier de ces arbres est sémantiquement faux)

Langage intrinsèquement ambiguë

- Grammaire ambiguë : redondance d'informations pour tester l'appartenance d'un mot au langage associé
- Si un langage est défini par une grammaire ambiguë, rechercher une grammaire équivalente non ambiguë
 - Mais ce n'est pas toujours possible
 - Un langage algébrique est dit intrinsèquement ambiguë s'il n'est pas définissable par une grammaire non ambiguë
 - Il existe des langages intrinsèquement ambiguë!
 - Mais savoir si une grammaire est ambiguë peut être compliqué :
 - Il ne peut exister d'algorithme répondant à cette question pour toutes les grammaires (problème non décidable)

Le langage de Dyck

- D = $< \{a,b\}, \{S\}, \{S \rightarrow aSb \mid SS \mid \epsilon\}, S >$
 - Cette grammaire est ambiguë
 S --> SS est forcément ambiguë en l'itérant 2 fois
- D' = $< \{a,b\}, \{S\}, \{S \rightarrow aSbS \mid \epsilon\}, S >$
 - Cette grammaire n'est pas ambiguë
- $L_D = L_{D'}$ (cf. TD)
- Le langage de Dick n'est pas intrinsèquement ambiguë
- Mots du langage : des « chaînes de montagnes »

Le langage de Lukasiewicz

• $L = < \{a,b\}, \{S\}, \{S \rightarrow aSS \mid b\}, S >$

- Grammaire non ambiguë : le choix entre les deux productions est imposé par la lettre la plus à gauche du mot final
- S -> aSS --> aaS SS -> aabSS -> aabaSS S -> ... aabaabbbb aabaabbbb aabaabbbb aabaabbbb

Les automates déterministes

Différents types d'automate

- Définition d'un langage à partir d'un automate. Quatre types d'automates :
 - Automate fini déterministe (AFD)
 - Automate fini indéterministe (AF)
 - Automate fini indéterministe et ε-transitions
 - Automate à pile : non traité dans ce cours
- Les trois types d'automates (AFD, AF, AF+ε) englobent la même famille de langages
 - Étude des transformations entre ces types

Automates réels et abstraits

- Automate « réel » :
 - Boîte à musique ± programmable
 - Machine à calculer (Blaise pascal)
 - Horloge
 - · Intervention humaine très réduite
- Automate « abstrait/formel » :
 - L'automate passe automatiquement d'un état au suivant en fonction de ce qu'il « lit » :
 - Plein/trou sur une carte perforée, roues ± tournées, etc.
- Ordinateur > automate
 - Description des exécutions des programmes par un automate impossible (nombre d'états possiblement infinis)

Exemple d'un automate abstrait

- Point de départ : l'état q0 Point final : q3
- Ce que peut vivre un étudiant : ascascasq
 - L'ensemble des possibilités : { $as(cas)^nq \mid n \ge 0$ }
 - Un étudiant doit suivre au moins un cours!

Définition d'un automate

- Un automate déterministe d'états fini (AFD), aussi appelé automate fini déterministe, est la donnée d'un quintuplet A = (Σ, E, i, F, δ)
 - ∑ est l'alphabet (d'entrée)
 - E est un ensemble fini d'éléments appelés des états
 - i est un élément de E, appelé l' "état initial".
 - F est une partie de E, dont les éléments sont appelés des états d'arrivée ou terminaux ou finaux, voire finals
 - δ est une <u>fonction</u> de E x ∑ vers E, appelée fonction de transition

Exemple complet

•
$$A = (\sum, E, i, F, \delta)$$
 $\sum = \{a, b\}$
 $E = \{1, 2, 3, 4\}$ $i = 1$ $F = \{2, 3\}$
 $\delta(1,a) = 2$ $\delta(1,b) = 1$ $\delta(2,a) = 3$ $\delta(2,b) = 4$
 $\delta(3,a) = 4$ $\delta(4,a) = 4$ $\delta(4,b) = 4$

• Visualisation:

Visualisation d'un automate

• δ : $E \times \Sigma$ ----> E

$$\begin{array}{lll} \mbox{(q0, attendre-début)} & ---> \mbox{q2} & \mbox{ou } \delta(\mbox{q0,a}) = \mbox{q2} \\ \mbox{(q2, quitter-faculté)} & ---> \mbox{q3} & \mbox{ou } \delta(\mbox{q2,q}) = \mbox{q3} \\ \end{array}$$

• Mot reconnu : les transitions lues de q0 à q3

Définition de la visualisation

- La visualisation (représentation) d'un automate $A=(\sum, E, i, F, \delta)$ est un graphe étiqueté tel que :
 - Les sommets sont les états de E
 - Le sommet i est repéré par une flèche entrante (ou un triangle entrant)
 - Les sommets de F sont marqués par un double cercle
 - Pour tout (e_i, e_j, α) dans $E \times E \times \sum$ tel que $\delta(e_i, \alpha) = e_j$, il y a un arc de l'état e_i vers l'état e_i étiqueté par α .

Lorsqu'il y a plusieurs arcs de e_i vers e_j , on peut les regrouper en un seul arc étiqueté par l'ensemble des étiquettes fusionnées

Langage associé à un automate

• Intuition : Le langage associé regroupe tous les mots qui se lisent sur les étiquettes lorsque l'on parcours l'automate de l'état initial jusqu'à un état final.

 $L_A = \{m \in \{a,b\}^* \mid |m|_a \text{ est pair }\}$

• q0 a q1 b q1 b q1 a q0 b q0 ==> abbab $\in L_A$ chemin de q0 à q0 trace du chemin

Langage reconnu par un automate

 Définition : Soit A=(Σ, E, i, F, δ) un automate. Le langage d'alphabet Σ reconnu par cet automate, noté L_A ou L(A), est l'ensemble des mots m tel qu'il existe un chemin entre l'état initial i et un état terminal de F, et dont la trace est m.

On dira que le mot m est accepté ou reconnu par l'automate

$$m \in L_A \Leftrightarrow \begin{cases} \exists (e_1, \alpha_1, e_2, \dots, e_n, \alpha_n, e_{n+1}) \\ \text{chemin dans A, i.e. } \delta(e_k, \alpha_k) = e_{k+1}, \\ \text{de trace } \alpha_1 \alpha_2 \dots \alpha_n = m \end{cases}$$

• Deux automates A_1 et A_2 sont dits **équivalents** si : $L_{A_1} = L_{A_2}$

Chemin et trace

• Définition : pour un automate $A=(\sum, E, i, F, \delta)$, un chemin entre les états e_1 et e_n est, s'il existe, une séquence de la forme

$$(e_1 \ \alpha_1 \ e_2 \ \alpha_2 \ e_3 \ \alpha_3 \ e_4 \ \alpha_4 \ ... \ \alpha_{n-1} \ e_n)$$

tel que $\delta(e_i,\alpha_i) = e_{i+1}$ pour tout i dans {1,..., n-1}

Le nombre n-1 de lettres dans la séquence est appelé la longueur du chemin.

Et la séquence $\alpha_1\alpha_2\alpha_3\alpha_4...\alpha_{n-1}$ est appelé la trace du chemin.

Remarque : une trace est un mot de Σ^*

Le langage des mots ayant un nombre pair de « a »

• L(A) = {m
$$\in$$
 {a,b}* | |m|_a est pair } (µ)

- Il faut trouver tous les chemins entre q₀ et q₀
 - Chemin: $(q_0 b q_0 b \dots q_0 a q_1 b q_1 \dots q_1 a q_0 \dots)$
 - Trace : $b^n a b^m a ...$ $L(A) = ({b}^*{a}{b}^*)^*$?
- Il faudra prouver l'égalité (μ) entre un langage défini par une propriété et un langage défini par un automate

Les nombres divisibles par 3

- $L_3 = \{ m \in \{0,...,9\}^* \mid m \text{ est divisible par 3 (ou } \epsilon) \}$
 - Exemple : $423 \in L_3$ car $423 = 3 \times 141$
 - $m \in L_3$ ssi la somme des chiffres de m vaut 0 modulo 3
 - $423 = q_0 4 q_1 2 q_0 3 q_0$ $423 \in L_3$
 - $25 = q_0 2 q_2 5 q_1$ $25 \notin L_3$

Compléter un automate

- Tout automate $A=(\sum, E, i, F, \delta)$ peut être complété en ajoutant un état « poubelle »
 - L'automate complété reconnaît le même langage

- $A_p = (\sum, E \cup \{p\}, i, F, \delta_p)$ automate complété
 - p est un nouvel état qui n'était pas dans E
 - δ_p contient des éléments en plus :

Automate complet

• A=(\sum , E, i, F, δ) δ est seulement une **fonction** de E x \sum ----> E Certains chemins finissent en impasse.

$$m = ab \notin L(A)$$

Pas de chemin pour ab

• Définition : un automate est dit complet si sa fonction de transition est une **application**

Compléter un automate (2)

- $A_p = (\sum, E \cup \{p\}, i, F, \delta_p)$ automate complété
 - p ∉ E
 - $\delta_p(e, \alpha) = \delta(e, \alpha)$ si $(e, \alpha) \in D_\delta$ pour tout $e \in E \cup \{p\}$ p sinon
- Utilisation d'un notation ensembliste pour δ
 - $\delta =_{\text{not}} \{ (e, \alpha, e') \mid \delta(e, \alpha) = e' \}$
 - $(e, \alpha, e') \in \delta$ ssi $\delta(e, \alpha) = e'$
 - $\delta_p = \delta \cup \{ (e, \alpha, p) \in E \times \sum x \{p\} \text{ tq } (e, \alpha) \notin D_{\delta} \}$ $\cup \{ (p, \alpha, p), \alpha \in \sum \}$
- A et A_p reconnaissent le même langage ?
 - Preuve sur les automates (cf. TD)

Fonction de transition itérée

Propriétés des transitions itérées

- $\delta^*(e,\alpha) = \delta(e,\alpha)$ si $\alpha \in \Sigma$
 - Preuve: $\delta^*(e,\alpha) = \delta^*(e,\alpha.\epsilon)$ $= \delta^*(\delta(e,\alpha), \epsilon)$ $=\delta(e,\alpha)$

- Définition de L(A) sans chemins ni traces
 - $\delta^*(i,m) \in F \Leftrightarrow m \in L(A)$
- $\delta^*(e,m)=e'\Leftrightarrow \begin{bmatrix} \text{Il existe un chemin dans A} \\ \text{de l'état e à l'état e', et de trace m} \end{bmatrix}$ **Donner du sens aux états :** $\delta^*(i,m)=q_{m \text{ mod } 3}$
- $\delta^*(e,m) \in F$ "les mots m reconnus à partir de e"
- "les mots m reconnus en arrivant en e" • $\delta^*(i.m) = e$

Fonction de transition itérée

- Définition : Soit A = $(\Sigma, E, i, F, \delta)$ un automate **complet**. La fonction de transition itérée, notée δ^* , est l'application de $E \times \Sigma^*$ vers E qui vérifie :
 - $\forall e \in E, \delta^*(e, \varepsilon) = e$
 - $\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \delta^*(e, \alpha.m) = \delta^*(\delta(e, \alpha), m)$

- δ*(e,m) est l'état accédé à partir de l'état e par un chemin de trace m.
- δ^* est bien une application : δ^* (e,m) existe pour tout état e de E et tout mot m de Σ^*

Propriété de la fonction itérée

• La fonction itérée est définie par :

$$\forall e \in E, \ \delta^*(e, \varepsilon) = e$$

 $\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \ \delta^*(e, \alpha.m) = \delta^*(\delta(e, \alpha), m)$

La fonction itérée vérifie le théorème :

$$\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \delta^*(e, m, \alpha) = \delta(\delta^*(e, m), \alpha)$$

Preuve par récurrence sur la longueur de m

$$\pi(n) = |m| \le n \Rightarrow \delta^*(e, m.\alpha) = \delta(\delta^*(e, m), \alpha)$$

$$\pi(0) \text{ est vrai : } \delta^*(e, \varepsilon.\alpha) = \delta^*(e, \alpha) = \delta(e, \alpha)$$

$$\delta(\delta^*(e, \varepsilon), \alpha) = \delta(e, \alpha)$$

Propriété inverse de la fonction itérée

• Rappel définition :

$$\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \delta^*(e, \alpha.m) = \delta^*(\delta(e, \alpha), m)$$

• Hypothèse de récurrence :

$$\pi(n) = |m| \le n \Rightarrow \delta^*(e, m.\alpha) = \delta(\delta^*(e, m), \alpha)$$

• Soit m, |m| = n+1

$$\delta^{*}(e, m.\alpha) = \underline{\delta^{*}(e, \beta.(m'.\alpha))} \qquad avec \quad m = \beta.m'$$

$$= \underline{\delta^{*}(\delta(e, \beta), m'.\alpha)} \qquad par \ définition \ de \ \delta^{*}$$

$$= \delta(\underline{\delta^{*}(\delta(e, \beta), m')}, \alpha) \qquad par \ hyp. \ de \ récurrence$$

$$= \delta(\delta^{*}(e, \beta.m'), \alpha) \qquad par \ définition \ de \ \delta^{*}$$

$$= \delta(\delta^{*}(e, m), \alpha) \qquad avec \quad m = \beta.m'$$

Fonction de transition itérée sous réserve d'existence...

- Les propriétés et théorèmes s'étendent sous réserve que les expressions soient définies
- Théorème :

$$\delta^*(e, m)$$
 existe $\Rightarrow \forall p \text{ préfixe de } m, \delta^*(e, p)$ existe

• Propriété fondamentale :

$$m \in L(A) \Leftrightarrow \delta^*(i,m)$$
 est défini et $\delta^*(i,m) \in F$

 $m \in L(A) \Leftrightarrow \delta^*(i,m) \in F$ sous réserve d'existence

Fonction de transition itérée pour automate non complet

- La fonction de transition itérée existe mais n'est pas une application
- Définition : Soit A = (Σ, E, i, F, δ) un automate. La fonction de transition itérée, notée δ*, est la fonction de E x Σ* vers E qui vérifie :
 - $\forall e \in E, \delta^*(e, \varepsilon) = e$
 - $\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*,$ $si \delta(e, \alpha) et \delta^*(\delta(e, \alpha), m) sont définis$ $alors \delta^*(e, \alpha.m) = \delta^*(\delta(e, \alpha), m)$ $sinon \delta^*(e, \alpha.m) est non défini$

Preuve sur un automate

• Soit l'automate A suivant :

- Prouver que : $L(A) = \{ m \in \Sigma = \{a,b\}^* \mid |m|_a \text{ pair } \} = L_p$
 - Lemme : $\forall m \in \Sigma^*, \delta^*(q_0, m) = q_0 \text{ si } |m|_a \text{ pair } q_1 \text{ si } |m|_a \text{ impair}$
 - Preuve de L(A)= L_p : $m \in L(A) \Leftrightarrow \delta^*(q_0, m) = q_0 \Leftrightarrow |m|_a pair$
 - Preuve du lemme par récurrence sur |m| :

$$\pi(n) = |m| \le n \Rightarrow \delta^*(q_{0,m}) = q_{|m|_a mod 2}$$

$$\pi(0) \text{ est vrai} : \delta^*(q_{0,\varepsilon}) = q_0 = q_{|\varepsilon|,mod 2}$$

Preuve sur un automate

• Soit l'automate A suivant :

Hypothèse :
$$\pi(n) = |m| \le n \Rightarrow \delta^*(q_{0,m}) = q_{|m|_a mod 2}$$

$$\forall m, |m| = n+1, \ \delta^*(q_{0,m}) = \delta^*(q_{0,m'}, \alpha)$$
 Avec $m = m'. \alpha$

$$= \delta(\delta^*(q_{0,m'}), \alpha)$$
 La propriété...
$$= \delta(q_{|m'|_a mod 2}, \alpha)$$
 hyp. Rec.
$$= q_{|m'. \alpha|_a mod 2}$$
 Avec $m = m'. \alpha$

- Il reste à vérifier que : $\delta(q_{\mathit{kmod}\,2},\alpha) = q_{\mathit{k+}|\alpha|_{\mathit{a}}\mathit{mod}\,2}$
 - Envisager les 4 cas possibles : $k \in \{0,1\}$, $\alpha \in \{a,b\}$ k=0, $\alpha = b$ $\delta(q_0,b) = q_0 = q_{0+|b|_a}$

Élimination des états non accessibles

• A = (\sum, E, i, F, δ) A' = $(\sum, E', i, F', \delta')$ l'état i est co-accessible...

$$E' = \{e \in E, \exists m_1, \delta^*(i, m_1) = e \text{ et } \exists m_2, \delta^*(e, m_2) \in F\}$$

$$F' = F \cap E'$$

$$\delta' = \{(e, \alpha, e') \in \delta, (e, e') \in F' \times F'\} = \delta$$

$$\delta' = \{(e, \alpha, e') \in \delta, (e, e') \in E' \times E'\} = \delta_{|E' \times \sum \times E'}$$
• L(A') \subseteq L(A) car ... δ' * = δ *_{|E' \times \gamma \times \times E'}

$$m \in L(A') \Rightarrow \underline{\delta'}^*(i,m) \in F' \Rightarrow \delta^*(i,m) \in F' \subseteq F \Rightarrow m \in L(A)$$

• L(A)
$$\subseteq$$
 L(A') car F' \subseteq F et $\delta' \subseteq \delta$ et ... $\delta'^* \subseteq \delta^*$
 $m \in L(A) \Rightarrow \delta^*(i,m) \in F \Rightarrow \delta^*(i,m)$ accessible et co-accessible
 $\Rightarrow \delta^*(i,m) \in E' \Rightarrow \delta^*(i,m) \in F' \Rightarrow \delta'^*(i,m) \in F' \Rightarrow m \in L(A')$

Simplifications

- Deux automates sont dit équivalents s'ils définissent (reconnaissent) le même langage
- Exemple de simplification : éliminer les états inutiles
 - Un état e est dit accessible s'il existe un chemin depuis l'état initial jusqu'à e : $\exists \ m \ , \ \delta^*(i,m) = e$
 - Un état e est dit co-accessible s'il existe un chemin depuis e jusqu'à un état terminal : $\exists m, \delta^*(e,m) \in F$
 - Théorème : pour tout automate A, soit A' l'automate obtenu en supprimant dans A les états non accessibles et non co-accessibles. Alors A et A' sont équivalents

Un exercice

- Quel est l'automate si on inverse toutes les flèches ?
 - On suppose un seul état terminal et on inverse l'état initial et l'état final.
- Formaliser la question

• A =
$$(\sum, E, i, \{f\}, \delta)$$

A' = $(\sum, E, f, \{i\}, \delta')$ et $\delta'(e, \alpha) = e' \Leftrightarrow \delta(e', \alpha) = e$

- $L_{A'} = \{ m \in \sum^* \mid m = \alpha_1 ... \alpha_n \text{ et } \alpha_n ... \alpha_1 \in L_A \}$ On inverse l'ordre des lettres des mots de A
- Preuve:

$$m \in L_A' \Leftrightarrow \delta'^*(f,m) = i \stackrel{?}{\Leftrightarrow} \delta^*(i,\overline{m}) = f \Leftrightarrow \overline{m} \in L_A$$

avec \overline{m} le mot m où les lettres sont dans l'ordre inverse

Exercice (2)

 $\Pi(n) = \forall m, |m| \le n, \ \delta'^*(e, \overline{m}) = e' \Leftrightarrow \delta^*(e', m) = e$ Généralisation pour des états e et e' quelconques!

- Π(0) vrai
- Hyp : Π(n) vrai.

Montrons $\Pi(n+1)$ pour $m.\alpha$ où |m|=n

$$\delta'^{*}(e,\overline{m.\alpha})=e' \Leftrightarrow \delta'^{*}(e,\alpha.\overline{m})=e'$$

$$\Leftrightarrow \delta'^{*}(\delta'(e,\alpha),\overline{m})=e' \text{ par def de } \delta'^{*}$$

$$\Leftrightarrow \delta^{*}(e',\overline{m})=\delta'(e,\alpha) \text{ par hyp de rec.}$$

$$\Leftrightarrow \delta^{*}(e',m)=\delta'(e,\alpha)$$

$$\Leftrightarrow \delta(\delta^{*}(e',m),\alpha)=e \text{ par def de } \delta'$$

$$\delta^{*}(e',m.\alpha)=e \Leftrightarrow \delta^{*}(e',m.\alpha)=e \text{ par def de } \delta'$$

Automates

- ☑ Automates déterministes
- Automates indéterministes
- Automates avec ε-transitions
- □ Transformations d'automates

Les automates

indéterministes

Définition

- Un automate indéterministe d'états fini (AF) est la donnée d'un quintuplet A = (∑, E, I, F, δ)
 - ∑ est l'alphabet (d'entrée)
 - E est un ensemble fini d'éléments appelés des états
 - l est une partie de E, dont les éléments sont appelé les "états initiaux"
 - F est une partie de E, dont les éléments sont appelés des "états terminaux"
 - δ est une <u>fonction</u> de E x ∑ vers P(E), appelée fonction de transition

Automates

- ☑ Automates déterministes
- Automates indéterministes
- Automates avec ε-transitions
- □ Transformations d'automates

Exemples

Plusieurs états initiaux

$$I = \{ q0, q1 \}$$

Non déterminisme de δ

$$\delta(1,a) = \{1,2\}$$

$$\delta(1,b)=\{1\}$$

$$\delta(2,b) = \{\}$$

Indéterminisme vs. Déterminisme

 Un automate déterministe est un automate indéterministe dont la fonction de transition est déterministe :

$$\forall e \in E$$
 , $\forall \alpha \in \Sigma$, $\delta(e, \alpha)$ a au plus un élément

- Les résultats sur les automates déterministes s'étendent aux automates indéterministes
 - Représentation visuelle
 - Chemin, trace, langage associé
 - Automate complet
 - Fonction de transition itérée (et étendue)
 - État (co-)accessible

Chemin et trace

- Même notion de chemin et trace
 - $(e_1 \ \alpha_1 \ e_2 \ \alpha_2 \ e_3 \ \alpha_3 \ e_4 \ \alpha_4 \ \dots \ \alpha_{n\text{-}1} \ e_n)$ est un chemin si $e_{i+1} \in \delta(e_i,\alpha_i)$ pour tout entier i dans $\{1, \dots, n\text{-}1\}$
 - $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \dots \alpha_{n-1}$ est la trace du chemin précédent.
 - 2 chemins différents pour une même trace :

Représentation visuelle

- Mêmes règles de représentation que pour les AFD
 - · Les sommets pour les états.
 - Double cercle pour un état terminal
- Modification pour inclure l'indéterminisme
 - Plusieurs états initiaux (avec une flèche entrante)
 - Pour tout état e, toute lettre α , si $\delta(e,\alpha)=\{e_1, \dots e_n\}$ alors il y aura n arcs de l'état e vers chacun des n états e_n

Langage associé à un automate indéterministe

• Soit A= (\sum, E, I, F, δ) un automate.

Le langage associé à cet automate A, noté L_A ou L(A), est l'ensemble des mots m tel qu'il existe un chemin entre un état initial et un état terminal, et dont la trace est m.

$$m \in L_A \Leftrightarrow \left\{ \begin{array}{c} \in I & \in F \\ \downarrow & \downarrow \\ \exists & (e_{1,}\alpha_{1,}e_{2},...,e_{n},\alpha_{n},e_{n+1}) \\ \text{de trace } \alpha_{1}\alpha_{2}...\alpha_{n} = m \text{ avec } e_{k+1} \in \delta(e_{k},\alpha_{k}) \end{array} \right\}$$

Deux automates A₁ et A₂ sont dits équivalents si :

$$L_{A_1}=L_{A_2}$$

Exemple

- Le langage des mots sur {a,b} ayant un facteur aa
- Version indéterministe

Version déterministe

q0 : « a » non suffixe q1 : « a » est un suffixe q2 : reconnu « aa »

• L'indéterminisme facilite parfois la construction

Fonction de transition itérée

Définition : Soit A = (∑, E, I, F, δ) un automate indéterministe. La fonction de transition itérée, notée δ*, est l'application de E x ∑* vers P(E) qui vérifie : ∀e∈E, δ*(e,ε)={e}

$$\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \delta^*(e, \alpha.m) = U_{(e,\alpha,e') \in \delta} \delta^*(e',m)$$

 δ*(e,m) est l'ensemble des états accédés à partir de l'état e par un chemin de trace m

Automate complet

 Définition : un automate A= (∑, E, I, F, δ) indéterministe est dit complet si

$$\forall e \in E \ \forall \alpha \in \Sigma \ \exists e' \in E \ \text{tel que } e' \in \delta(e, \alpha)$$

Compléter :

 Ajouter un état poubelle

- $A_c = (\sum, E \cup \{p\}, I, F, \delta_c)$
 - $\delta_{c} = \delta \cup \{ (e, \alpha, p) \mid \delta(e, \alpha) = \{ \} \} \cup \{ (p, \alpha, p), \alpha \in \Sigma \}$
- Même abus de notation :

•
$$\delta =_{not} \{ (e, \alpha, e') \mid e' \in \delta(e, \alpha) \}$$

Fonction de transition étendue

Définition : Soit A = (Σ, E, I, F, δ) indéterministe. La fonction de transition étendue, notée δ, est l'application de P(E) x Σ vers P(E) qui vérifie :

$$\forall E' \subseteq E, \forall \alpha \in \Sigma, \delta(E', \alpha) = \bigcup_{e' \in E'} \delta(e', \alpha)$$

Définition : Soit A = (Σ, E, I, F, δ) indéterministe. La fonction de transition itérée étendue, notée δ*, est l'application de P(E) x Σ* vers P(E) qui vérifie :

$$\forall E' \subseteq E, \forall m \in \Sigma^*, \ \delta^*(E',m) = \bigcup_{e' \in E'} \delta^*(e',m)$$

- Les fonctions étendues sont notées à l'identique !
- $\delta(U_{e \in E'}\{e\}, \alpha) = U_{e \in E'}\delta(e, \alpha)$ $\delta^*(U_{e \in E'}\{e\}, m) = U_{e \in E'}\delta^*(e, m)$

Propriétés des transitions itérées

- $\delta^*(e,\alpha) = \delta(e,\alpha)$ si $\alpha \in \Sigma$
 - Preuve : $\delta^*(e,\alpha) = \delta^*(e,\alpha.\epsilon) = \underbrace{U}_{e' \in \delta(e,\alpha)} \delta^*(e',\epsilon) = \underbrace{U}_{e' \in \delta(e,\alpha)} \{e'\} = \delta(e,\alpha)$
- $\delta^*(I,m) \cap F \neq \{\} \Leftrightarrow m \in L(A)$
 - Définition de L(A) sans chemins ni traces
- $\delta^*(e,m) \cap F \neq \{\}$ les traces de e à un état terminal
- $e \in \delta^*(I,m)$ les traces en arrivant dans l'état e, à partir d'un état initial

Résumé des propriétés de δ

$$\forall E' \subseteq E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \ \delta^*(E', m.\alpha) = \delta(\delta^*(E', m), \alpha)$$

$$\forall E' \subseteq E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \ \delta^*(E', \alpha.m) = \delta^*(\delta(E', \alpha), m)$$

$$\forall E' \subseteq E, \forall m_1, m_2 \in \Sigma^*, \ \delta^*(E', m_1.m_2) = \delta^*(\delta^*(E', m_1), m_2)$$

$$\delta^*(E', \alpha) = \delta(E', \alpha) \quad \text{et} \quad \delta^*(E', \varepsilon) = E'$$

$$\delta^*(E', ---) = \bigcup_{e \in E'} \delta^*(e, ---) \quad \delta(E', ---) = \bigcup_{e \in E'} \delta(e, ---)$$

$$\delta(e, \alpha) = \bigcup_{e' \in \delta(e, \alpha)} \{e'\} = \bigcup_{(e, \alpha, e') \in \delta} \{e'\}$$

$$A \subseteq B \Rightarrow \delta^*(A, ---) \subseteq \delta^*(B, ---) \quad A \subseteq B \Rightarrow \delta(A, ---) \subseteq \delta(B, ---)$$

$$\delta^*(I, m) \cap F \neq \{\} \iff m \in L(A)$$

Propriétés des transitions itérées (2)

• Retour sur la définition de δ^*

$$\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \ \delta^*(e, \alpha.m) = \underset{(e, \alpha, e') \in \delta}{U} \delta^*(e', m)$$
$$= \delta^*(\underset{(e, \alpha, e') \in \delta}{U} e', m)$$
$$\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \ \delta^*(e, \alpha.m) = \delta^*(\delta(e, \alpha), m)$$

• Propriété symétrique de la définition de δ

$$\forall e \in E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \delta^*(e, m, \alpha) = \delta(\delta^*(e, m), \alpha)$$

Preuve: en TD

- Pour la fonction de transition itérée étendue :
 - Les formules précédentes s'étendent de e à $E' \subseteq E$: $\forall E' \subseteq E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \delta^*(E', m, \alpha) = \delta(\delta^*(E', m), \alpha)$

État accessible et co-accessible

- Même définition et même propriété
 - Un état e est dit accessible s'il existe un chemin depuis un état initial jusqu'à e.
 - Un état e est dit co-accessible s'il existe un chemin depuis l'état e jusqu'à un état terminal.
 - Théorème : pour tout automate A, soit A' l'automate obtenu en supprimant dans A les états non accessibles et non co-accessibles. Alors A et A' sont équivalents
- Avec la fonction de transition itérée étendue :
 - L'état e est accessible si $\exists m, e \in \delta^*(I, m)$
 - L'état e est co-accessible si $\exists m, \delta^*(e,m) \cap F \neq \emptyset$

Puissance des automates finis

- Définition : Un langage est dit rationnel s'il est définissable par un automate d'états fini
 - C'est un théorème dans d'autres approches
 Notation : rec(∑)=rat(∑)={ langages rationnels sur ∑ }
 - Les langages algébriques (définis par une grammaire) alg(∑) contiennent les langages rationnels

$$rat(\Sigma) \subset alg(\Sigma)$$

- Calculer si un mot est dans un langage défini par un automate :
 - Très simple et efficace si l'automate est déterministe
 - Plus lourd si l'automate est indéterministe

Algorithme d'acceptation d'un mot (automate déterministe non complet)

```
e \leftarrow i; m \leftarrow m_0; p \leftarrow \varepsilon;
tant \ que \ m \neq \varepsilon \ faire

/* Invariant : m_0 = p.m et e = \delta^*(i, p) */
\alpha \leftarrow premièreLettre \ (m);
m \leftarrow resteLettres \ (m);
si \ \delta(e, \alpha) \ est \ défini \ alors
e \leftarrow \delta(e, \alpha);
p \leftarrow p.\alpha;
sinon
retourner \ faux;
fin \ /* \ m = \varepsilon \ (si \ on \ sort \ à \ la \ fin \ de \ la \ boucle) */
retourner \ e \in F
```

Algorithme d'acceptation d'un mot (automate déterministe complet)

 La puissance des automates déterministes provient de l'efficacité du test d'appartenance d'un mot m_o au langage

```
\begin{array}{ll} e \leftarrow i \,; m \leftarrow m_0 \,; \, p \leftarrow \varepsilon \,; & \text{Reconnaissance de m}_0 \\ tant \, que \, m \neq \varepsilon \, faire \\ /* \, \text{Invariant} \, : \, m_0 = p.m \, \text{ et } e = \delta^*(i,p) \, */ \\ \alpha \leftarrow premièreLettre \, (m) \,; \\ m \leftarrow resteLettres \, (m) \,; \\ e \leftarrow \delta \, (e,\alpha) \,; \\ p \leftarrow p.\alpha \,; \\ fin \, /* \, m = \varepsilon \, \text{ et donc } e = \delta^*(i,m_0) \, */ \\ retourner \, e \in F \end{array}
```

Algorithme d'acceptation d'un mot (automate indéterministe)

```
E' \leftarrow I; m \leftarrow m_0; p \leftarrow \varepsilon;
tant \ que \ m \neq \varepsilon \ faire
/* \ Invariant: \ m_0 = p.m \ et \ E' = \delta^*(i,p) \ */
\alpha \leftarrow première Lettre \ (m);
m \leftarrow reste Lettres \ (m);
E'' \leftarrow \emptyset
pour \ tout \ e' \in E' \ faire \ E'' \leftarrow E'' \cup \delta(e',\alpha);
E' \leftarrow E'';
fin \ /* \ m = \varepsilon \ */
retourner \ E' \cap F \neq \emptyset
```

Les automates

indéterministes

avec ε-transitions

Introduction

- Accepter des transitions ne « consommant » pas de lettres (et appelés des ε-transitions) :
 - L = { $a^n b^m c^p \mid n \ge 0, m \ge 0, p \ge 0$ }

- Intuitivement : L = { $a^n \epsilon b^m \epsilon c^p \epsilon \mid n \ge 0, m \ge 0, p \ge 0$ }
- Une ε-transition peut induire de l'indéterminisme

Automates

- ☑ Automates déterministes
- ☑ Automates indéterministes
- □ Automates avec ε-transitions
- □ Transformations d'automates

Définition

- Un automate avec ϵ -transitions est la donnée d'un quintuplet $A = (\sum, E, I, F, \delta)$
 - ∑ est l'alphabet (d'entrée)
 - E est un ensemble fini d'éléments appelés des états
 - I est une partie de E, dont les éléments sont appelé les "états initiaux"
 - F est une partie de E, dont les éléments sont appelés des "états terminaux"
 - δ est une <u>fonction</u> de E x (Σ U (ε)) vers P(E), appelée fonction de transition

La fonction de transition

• L = { $a^n b^m c^p \mid n \ge 0, m \ge 0, p \ge 0$ }

• $\delta : E \times (\Sigma \cup \{\epsilon\}) \longrightarrow P(E)$

$$\delta(q0,a) = \{q0\}$$
 $\delta(q1,b) = \{q1\}$ $\delta(q2,c) = \{q2\}$

$$\delta(q0,\epsilon) = \{q1\}$$
 $\delta(q1,\epsilon) = \{q2\}$ $\delta(q2,\epsilon) = \{q3\}$

- Représentation visuelle :
 - ε apparaît comme une lettre de l'alphabet

Langage associé à un automate avec ε-transitions

- Soit A= $(\Sigma, E, I, F, \delta)$ un automate.
 - Le langage reconnu par cet automate A, noté L_A ou L(A)
 est l'ensemble des mots m tel qu'il existe un chemin
 entre un état initial et un état terminal, et dont la trace
 (simplifiée de ses mots vides ε inutiles) est m.

$$m \in L_A \Leftrightarrow \left\{ \begin{array}{c} \in I & \in F \\ \downarrow & \downarrow \\ \exists & (e_1, \alpha_1, e_2, \dots, e_n, \alpha_n, e_{n+1}) \\ \text{de trace } \alpha_1 \alpha_2 \dots \alpha_n = m \text{ avec } e_{k+1} \in \delta(e_k, \alpha_k) \end{array} \right\}$$

Chemin et trace

- Mêmes notions de chemin et trace
 - $(e_1 \ \alpha_1 \ e_2 \ \alpha_2 \ e_3 \ \alpha_3 \ e_4 \ \alpha_4 \ \dots \ \alpha_{n-1} \ e_n)$ est un chemin si $e_{i+1} \in \delta(e_i,\alpha_i)$ pour tout entier i dans $\{1,\dots,n-1\}$
 - $\forall i \in \{1, \dots n-1\}, \alpha_i \in \sum U\{\epsilon\}$
 - α₁ α₂ α₃ α₄ ... α_{n-1} est la trace du chemin précédent.
 - Les occurrences de ε dans la trace sont simplifiées.

Fonction de transition itérée étendue

 Définition : Soit A = (Σ, E, I, F, δ) un automate avec ε-transitions. La fonction de transition itérée étendue, notée δ*, est l'application de P(E) x Σ* vers P(E) qui vérifie :

$$\forall E' \subseteq E, \quad \delta^*(E', \varepsilon) = \hat{\varepsilon}(E')$$

$$\forall E' \subseteq E, \forall \alpha \in \Sigma, \quad \delta^*(E', \alpha) = \hat{\varepsilon}(\delta(\hat{\varepsilon}(E'), \alpha))$$

$$\forall E' \subseteq E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \quad \delta^*(E', \alpha.m) = \delta^*(\delta^*(E', \alpha), m)$$

- $\hat{\varepsilon}(E') = \{ f \in E, \exists \text{ un chemin d'un état de } E' \text{ à } f, \text{ et de trace } \varepsilon \}$
- δ*(E',m) est l'ensemble des états accédés à partir des états e' de E' par un chemin de trace m

Remarques sur la définition

- Fonction de transition itérée (non étendue)
 - δ^* restreint à E x Σ^* étendue non étendue
 - $\forall E' \subseteq E, \forall m \in \Sigma^*, \ \delta^*(E', m) = U \delta^*(e', m)$

Même notation δ^* (et de même pour δ)

- δ s'étend à P(E) : $\delta(E',\alpha) = \delta(U_{e \in E'}\{e\},\alpha) = U_{e \in E'}\delta(e,\alpha)$
- Nécessité des 2 cas limites pour $\delta^*(E', \alpha)$ et $\delta^*(E', \varepsilon)$
 - $\forall E' \subseteq E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \ \delta^*(E', \alpha.m) = \delta^*(\delta^*(E', \alpha), m)$ Appliqué à m = ϵ , cela donne :

 $\delta^*(E', \alpha.\varepsilon) = \delta^*(\delta^*(E', \alpha), \varepsilon) = \hat{\varepsilon}(\delta^*(E', \alpha)) = > \text{impasse}$

Un exemple

 δ*(E',m) est l'ensemble des états accédés à partir des états e' de E' par un chemin de trace m

Fermeture transitive des ε-transitions

• Définition : la fermeture transitive des ϵ -transitions (ou ϵ -fermeture) est une fonction, notée $\hat{\epsilon}$, définie de E vers P(E) telle que :

 $\hat{\varepsilon}(e) = \{ f \in E \mid \exists \text{ un chemin de } e \text{ à } f \text{, et de trace } \varepsilon \}$

- Extension à P(E) : $\hat{\varepsilon}(E') = U_{e' \in E'} \hat{\varepsilon}(e')$ $\hat{\varepsilon}(E') = \{ f \in E \mid \exists \text{ un chemin d'un état de } E' \text{ à } f \text{ , et de trace } \varepsilon \}$
- Vision inversée (de celle de la définition de δ^*) :

$$\forall e' \in E, \quad \hat{\varepsilon}(e') = \delta^*(\{e'\}, \varepsilon)$$

 $\forall E' \subseteq E, \quad \hat{\varepsilon}(E') = \delta^*(E', \varepsilon)$

• Remarque : $\hat{\varepsilon}(\hat{\varepsilon}(E')) = \hat{\varepsilon}(E')$ $\hat{\varepsilon}$ est une fermeture !

Construction de $\hat{\varepsilon}$

• Pour tout état e, construction successive des ensembles d'états, notés $\hat{\varepsilon}_i(e)$ accessibles par au plus i ϵ -transitions

$$\hat{\varepsilon}_0(e) = \{e\}$$

$$\hat{\varepsilon}_{i+1}(e) = \hat{\varepsilon}_i(e) \cup \delta(\hat{\varepsilon}_i(e), \varepsilon)$$

- La séquence des $\hat{\varepsilon}_i(e)$ est croissante $\hat{\varepsilon}_i(e) \subseteq \hat{\varepsilon}_{i+1}(e)$ et majorée par E. Elle est donc stationnaire.
 - Elle est stationnaire au pire pour i = |E|-1

$$\hat{\varepsilon}(e) = \underset{i \in \mathbb{N}}{U} \hat{\varepsilon}_i(e)$$

$$= \hat{\varepsilon}_k(e) \quad \text{où} \quad k = \underset{i \in \mathbb{N}}{\min} (i \text{ tq } \hat{\varepsilon}_i(e) = \hat{\varepsilon}_{i+1}(e))$$

Exemple de construction (1)

Que des ϵ -transitions

$$\hat{\varepsilon}_{i+1}(e) = \hat{\varepsilon}_i(e) \cup \delta(\hat{\varepsilon}_i(e), \varepsilon)$$

Exemple de construction (2)

Que des ϵ -transitions

$$\hat{\varepsilon}_0(G) = \{G\}$$
 $\hat{\varepsilon}_1(G) = \{G, A, H\}$

$$\hat{\varepsilon}_{i+1}(e) = \hat{\varepsilon}_i(e) \cup \delta(\hat{\varepsilon}_i(e), \varepsilon)$$

Exemple de construction (3)

Que des ε-transitions

 $\hat{\varepsilon}_0(G) = \{G\}$

$$\hat{\varepsilon}_{1}(G) = \{G, A, H\}$$

$$\hat{\varepsilon}_{2}(G) = \{G, A, H, D, B, E\}$$

$$\hat{\varepsilon}_{i+1}(e) = \hat{\varepsilon}_{i}(e) \cup \delta(\hat{\varepsilon}_{i}(e), \varepsilon)$$

Exemple de construction (4)

Que des ϵ -transitions

$$\hat{\varepsilon}_{0}(G) = \{G\}$$

$$\hat{\varepsilon}_{1}(G) = \{G, A, H\}$$

$$\hat{\varepsilon}_{2}(G) = \{G, A, H, D, B, E\}$$

$$\hat{\varepsilon}_{3}(G) = \{G, A, H, D, B, E, C, F\}$$

$$\hat{\varepsilon}_{4}(G) = \hat{\varepsilon}_{3}(G)$$

$$\hat{\varepsilon}_{4}(G) = \hat{\varepsilon}_{3}(G)$$

$$\hat{\varepsilon}_{6}(G) = \hat{\varepsilon}_{6}(G)$$

$$\hat{\varepsilon}_{6}(G) = \hat{\varepsilon}_{6}(G) \cup \delta(\hat{\varepsilon}_{6}(G), \varepsilon)$$

Propriétés des transitions itérées

 $\delta^*(I,m) \, \cap \, \mathsf{F} \neq \{\} \, \Leftrightarrow m \in \mathsf{L}(\mathsf{A})$

Définition de L(A) sans chemins ni traces

- $\delta^*(e,m) \cap F \neq \{\}$ les mots m reconnus à partir de e
- $\delta^*(I,m) \ni e$ les mots m reconnus en arrivant en e

$$\forall E' \subseteq E, \forall \alpha \in \Sigma, \forall m \in \Sigma^*, \delta^*(E', m.\alpha) = \delta^*(\delta^*(E', m), \alpha)$$

 Même définition des états accessibles et coaccesibles

(QUASI) LES MEMES PROPRIETES QUE POUR UN AUTOMATE INDETERMINISTE SANS ε-TRANSITIONS

Automates standards

- Un automate A = (\sum, E, I, F, δ) est dit standard si :
 - I = {i} i.e. I est un singleton
 - F = {f} i.e. F est un singleton
 - $\forall e \in E$, $\forall \alpha \in \Sigma \cup \{\varepsilon\} : (e, \alpha, i) \notin \delta$ et $(f, \alpha, e) \notin \delta$

Compositions d'automates

- Construire les automates réalisant :
 - L'union de deux langages définis par un automate
 - La concaténation " " "
 - Le complémentaire d'un langage défini par un automate
 - La fermeture de Kleene " " "
- Partir d'automates « composables » :
 - · Les automates standards
- En déduire des résultats généraux :
 - L'union, la concaténation, le complémentaire, ... de langages rationnels sont rationnels
 - Car reconnus par un automate que l'on construit!

Automate --> Automate standard

- Automate standard A_S associé à l'automate
 A=(∑, E, I, F, δ) qui reconnaît le même langage :
 - $A_S = (\sum, E \cup \{i_S, f_S\}, \{i_S\}, \{f_S\}, \delta_S)$ et $\delta_S = \delta \cup \{(i_S, \epsilon, i_k) \mid i_k \in I\} \cup \{(f_k, \epsilon, f_S) \mid f_k \in F\}$
 - Dé-qualification de tous les états initiaux et terminaux

C'est bien un automate standard

Automate --> Automate standard

Union de deux automates

- Union de deux automates standards
 - $A_1 = (\sum, E_1, \{i_1\}, F_1, \delta_1)$ et $A_2 = (\sum, E_2, \{i_2\}, F_2, \delta_2)$
 - $A_{1U2} = (\sum, E_1 \cup E_2 \cup \{i_S\}, \{i_S\}, F_1 \cup F_2, \delta_{1U2}\}$

$$\delta_{1 \cup 2} = \delta_1 \cup \delta_2 \cup \{ \; (\mathsf{i}_{\mathsf{S}}, \, \epsilon \; , \, \mathsf{i}_1), \, (\mathsf{i}_{\mathsf{S}}, \, \epsilon \; , \, \mathsf{i}_2) \})$$

Concaténation d'automates

- Concaténation de deux automates standards
 - $A_1 = (\sum, E_1, \{i_1\}, \{f_1\}, \delta_1)$ et $A_2 = (\sum, E_2, \{i_2\}, \{f_2\}, \delta_2)$
 - $A_{1,2} = (\sum, E_1 \cup E_2, \{i_1\}, \{f_2\}, \delta_1 \cup \delta_2 \cup \{(f_1, \epsilon, i_2)\})$

- $L_{A_{1,2}} = L_{A_1}$. L_{A_2} et c'est aussi un automate standard
- Extension aux automates quelconques :
 - Construire préalablement leur automate standard

Complémentaire d'un automate

- L'automate doit être <u>déterministe</u> et <u>complet</u>
 - Tout automate est « déterminisable » et « complétable »
- L'automate complémentaire de A est l'automate
 A^c = (Σ, E,I,E-F, δ)
- Le complémentaire du langage L_A dans ∑* est le langage associé à l'automate complémentaire A^C
 - Faux si indéterministe (même si complet) :

Intersection d'automates

- Via l'union et le complémentaire : $C_{\Sigma^*}^{A \cap B} = C_{\Sigma^*}^A \cup C_{\Sigma^*}^B$
- Exemple:
 - Les mots qui contiennent les facteurs aba et aaa

• A_{aaa}:

- Déterminiser, compléter, puis complémentaire de A_{aba} A_{aaa}
- Union des 2 précédents, puis le déterminiser, compléter, et prendre son complémentaire

Théorème de Kleene

- Théorème (Kleene): L'ensemble des langages reconnus par un automate fini (appelés langages rationnels) est la fermeture transitive des langages réduits à une lettres ou au mot vide, pour les opérations de concaténation, union et fermeture de Kleene
 - Construit par fermeture ==> reconnu par un automate :
 - Tout langage réduit à un mot d'une lettre se construit simplement par un automate trivial.
 - Si L₁ et L₂ sont deux langages rationnels, alors les langages
 L₁ U L₂, L₁ . L₂ et L₁* sont rationnels
 - Reconnu par un automate ==> construit par fermeture :
 - Résultera de la transformation « automate → expr reg »

Fermeture de Kleene d'un automate

• Soit A = $(\sum, E, \{i\}, \{f\}, \delta)$ un automate <u>standard</u>, l'automate réalisant la fermeture de Kleene de A est l'automate A* = $(\sum, E, \{i\}, \{i\}, \delta \cup \{(f, \epsilon, i)\})$

L'état f n'est plus terminal

$$\mathsf{L}_{\mathsf{A}^*} = (\mathsf{L}_{\mathsf{A}})^*$$

• Justification : $m \in L_{A^*} \Leftrightarrow \underbrace{i \dots f}_{m_1} \underbrace{\varepsilon i \dots f}_{m_2} \underbrace{\varepsilon \dots \varepsilon \underbrace{i \dots f}_{m_n} \varepsilon i}_{m_n}$

$$m \in L_{A^*} \Leftrightarrow \exists m_1 \in L_A, ..., \exists m_n \in L_A \text{ tel que } m = m_1 ... m_n$$

 $\Leftrightarrow \exists n \ge 0, m \in (L_A)^n \Leftrightarrow m \in L_A^*$

Algorithme d'acceptation d'un mot (automate avec ε-transitions)

```
E' \leftarrow I; m \leftarrow m_0; p \leftarrow \varepsilon;
tant \ que \ m \neq \varepsilon \ faire
/* \ Invariant: \ m_0 = p.m \ et \ E' = \delta^*(i,p) \ */
\alpha \leftarrow première Lettre \ (m);
m \leftarrow reste Lettres \ (m);
E'' \leftarrow \emptyset
pour \ tout \ e' \in E' \ faire \ E'' \leftarrow E'' \cup \hat{\varepsilon} (\delta(\hat{\varepsilon}(e'), \alpha));
E' \leftarrow E'';
fin \ /* \ m = \varepsilon \ */
retourner \ E' \cap F \neq \emptyset
La fonction \delta étendue
```

Transformations d'automates

Automates

- Automates déterministes
- ☑ Automates indéterministes
- Automates avec ε-transitions
- □ Transformations d'automates
 - Automate avec ε-transitions ==> Automate indéterministe
 - ☐ Automate indéterministe ==> Automate déterministe
 - ☐ Automate déterministe ==> Automate minimal
- Tout automate est équivalent à un automate déterministe
- Justification des autres automates : simplicité de modélisation

Suppression des ε-transitions

- Soit $A_{\epsilon} = (\sum, E, I, F_{\epsilon}, \delta_{\epsilon})$ un automate avec ϵ -transitions. L'automate sans ϵ -transitions qui reconnaît le même langage que A_{ϵ} est défini par :
 - A = (\sum , E, I, F, δ) $F = \{e \in E \mid \hat{\varepsilon}(e) \cap F_{\varepsilon} \neq \emptyset\}$ $\forall e \in E, \forall \alpha \in \sum, \delta(e, \alpha) = \delta_{\varepsilon}(\hat{\varepsilon}(e), \alpha)$
 - Raccourcis : « les ϵ -transitions puis la transition α »

 $\hat{arepsilon}(e)$ en bleu $\delta_{arepsilon}(\hat{arepsilon}(e),lpha)$ en vert

• Autres approches : $\delta(e,\alpha) = \hat{\varepsilon}(\delta_{\varepsilon}(e,\alpha))$ $\delta(e,\alpha) = \hat{\varepsilon}(\delta_{\varepsilon}(\hat{\varepsilon}(e),\alpha))$

Pourquoi cela fonctionne?

- Principe:
 - Remplacer les : $(e1)^{\epsilon}$ $(e2)^{\alpha}$ $(e3)^{\epsilon}$
 - Par des : (e1) α (e3)
 - Correct en traitant tous les raccourcis possibles.
- États terminaux : $F = \{e \in E \mid \hat{\varepsilon}(e) \cap F_{\varepsilon} \neq \emptyset\}$
 - Pas seulement ceux de ${\sf F}_\epsilon,$ mais en plus ceux qui sont séparés d'un état terminal par des $\epsilon\text{-transitions}$

$$F_{\varepsilon} = \{q3\}$$

$$F = \{ q1,q2,q3 \}$$

Exemple

Soit l'automate suivant :

Preuve de l'équivalence : A, ~ A

• Théorème : $\forall m \in \Sigma^*$, $\forall e \in E$, $\delta_{\varepsilon}^*(e, m) = \hat{\varepsilon}(\delta^*(e, m))$

- Preuve par récurrence sur |m|
 - $\Pi(\mathbf{n}) = \forall m \in \Sigma^*, |m| \le n, \forall e \in E, \delta_{\varepsilon}^*(e, m) = \hat{\varepsilon}(\delta^*(e, m))$
 - $\Pi(0)$ vrai : $\delta_{\varepsilon}^{*}(e,\varepsilon) = \hat{\varepsilon}(e)$ et $\hat{\varepsilon}(\delta^{*}(e,\varepsilon)) = \hat{\varepsilon}(\{e\})$
 - $\bullet \ \ \Pi(\mathbf{1}) \ \mathrm{vrai}: \quad \delta_{\varepsilon}^*(e \, \mathbf{,} \alpha) \underset{\mathrm{def} \, \delta^*}{=} \hat{\varepsilon}(\delta_{\varepsilon}(\hat{\varepsilon}(e) \, \mathbf{,} \alpha)) \underset{\mathrm{def} \, \delta}{=} \hat{\varepsilon}(\delta(e \, \mathbf{,} \alpha))$ $\hat{\varepsilon}(\delta^*(e,\alpha)) = \hat{\varepsilon}(\delta(e,\alpha))$

Preuve de la récurrence

- $\Pi(n) = \forall m \in \Sigma^*, |m| \le n, \forall e \in E, \delta^*(e,m) = \hat{\varepsilon}(\delta^*(e,m))$
- Hypothèse : $\Pi(n)$ vrai. Soit |m| = n+1 et m = m' . α • $\delta_{\varepsilon}^*(e,m',\alpha) = \delta_{\varepsilon}^*(\delta_{\varepsilon}^*(e,m'),\alpha)$ par déf de δ_{ε}^{*} $= \hat{\varepsilon}(\delta_{\varepsilon}(\hat{\varepsilon}(u),\alpha))$ par déf de δ_{ε}^{*} $= \hat{\varepsilon}(\delta_{\varepsilon}(\hat{\varepsilon}(\delta_{\varepsilon}^{*}(e,m')),\alpha))$ Ordre des calculs délicat ... $= \hat{\varepsilon}(\delta_{\varepsilon}(\hat{\varepsilon}(\hat{\underline{\varepsilon}}(\underline{\delta^{*}}(e,m'))),\alpha)) \quad \text{ par hyp de rec}$ $=\hat{\varepsilon}(\delta_{\varepsilon}(\hat{\varepsilon}(\delta^{*}(e,m')),\alpha))$ $\operatorname{car} \hat{\varepsilon}(\hat{\varepsilon}(e)) = \hat{\varepsilon}(e)$ $=\hat{\varepsilon}(\delta(\delta^*(e,m'),\alpha))$ par déf de δ $\hat{\varepsilon}(\delta^*(e,m'.\alpha)) = \hat{\varepsilon}(\delta^*(e,m'.\alpha))$ par déf de δ^*

Dernier étape de la preuve

- Étendre : $\forall m \in \Sigma^*, \forall e \in E$, $\delta_{\varepsilon}^*(e,m) = \hat{\varepsilon}(\delta^*(e,m))$ aux états initiaux : $\forall m \in \Sigma^*$, $\delta_{\varepsilon}^*(I, m) = \hat{\varepsilon}(\delta^*(I, m))$
- $m \in L_{A_{\varepsilon}} \Leftrightarrow \delta_{\varepsilon}^{*}(I, m) \cap F_{\varepsilon} \neq \emptyset$ $\Leftrightarrow \hat{\varepsilon}(\delta^*(I,m)) \cap F_c \neq \emptyset$ $\Leftrightarrow \exists x \text{ tel que } x \in \delta^*(I, m) \text{ et } \hat{\varepsilon}(x) \cap F_s \neq \emptyset$ $\Leftrightarrow \exists x \text{ tel que } x \in \delta^*(I, m) \text{ et } x \in \{e, \hat{\varepsilon}(e) \cap F_s \neq \emptyset\} = F$ $\Leftrightarrow \delta^*(I,m) \cap F \neq \emptyset$ $\Leftrightarrow m \in L_A$

Automates

- ☑ Automates déterministes
- Automates indéterministes
- Δutomates avec ε-transitions
- □ Transformations d'automates

 - ☐ Automate indéterministe ==> Automate déterministe
 - ☐ Automate déterministe ==> Automate minimal

Un exemple plus parlant

• Soit l'automate :

- Déterminiser :
 - À partir d'un état e et pour une lettre α , déterminer l'ensemble des états auxquels on accède en lisant α

Déterminisation

• Construction d'un automate $A_d = (\sum, E_d, i_d, F_d, \delta_d)$ déterministe à partir d'un automate indéterministe (sans ϵ -transitions) $A_i = (\sum, E_i, I_i, F_i, \delta_i)$ tel que :

$$L_{A_d} = L_{A_i}$$

- $E_d = P(E_i)$ Remarque : $|E_d| = 2^{|E_i|}$
- $i_d = I_i$ Danger : i_d état vs. I_i ensemble d'états
- $F_d = \{E' \in P(E_i), E' \cap F_i \neq \emptyset\}$
- δ_d est la fonction δ_i étendue :

$$\forall E' \in E_d, \forall \alpha \in \Sigma, \delta_d(E', \alpha) = \delta_i(E', \alpha)$$

Représentation de l'automate

- ({e1}, a) ---> {e1, e2} ({e1},b) ---> {e1} ({e1,e2},a) ---> {e1,e2} ({e1,e2},b) ---> {e1,e3} ({e1,e3},a) --> {e1,e2,e4} ({e1,e3},b) --> {e1} ({e1,e3,e4},a) --> {e1,e2,e4} ({e1,e3,e4},b) --> {e1,e3,e4} ({e1,e3,e4},b) --> {e1,e4} ({e1,e4},a) --> {e1,e2,e4} ({e1,e4},b) --> {e1,e4}
- C'est la fonction de transition étendue de A_i et la fonction de transition du nouvel automate A_d
- États terminaux : ceux qui contiennent un élément de F = {e4}

Nettoyage de l'automate

• Renommer les états et leur donner du sens

Simplifier l'automate obtenue : minimalisation !

Preuve

- Soit $A_i = (\sum, E, I, F_i, \delta_i)$ et $A_d = (\sum, P(E), I, F_d, \delta_d)$ avec : $\forall E' \in E_d, \forall \alpha \in \sum, \delta_d(E', \alpha) = \delta_i(E', \alpha)$
- Lemme : $\forall E' \in P(E), \forall m \in \Sigma^*$, $\delta_d^*(E',m) = \delta_i^*(E',m)$ Par récurrence sur |m|. C'est trivialement vrai si |m| = 1Si $m = \varepsilon$, $\delta_d^*(E',\varepsilon) = E'$ et $\delta_i^*(E',\varepsilon) = \bigcup_{e' \in E'} \delta_i^*(e',\varepsilon) = \bigcup_{e' \in E'} \{e'\} = E'$ Hyp : vrai si |m| = n. Soit |m| = n+1, alors m = m'. α et : $\delta_d^*(E',m) = \delta_d^*(E',m',\alpha) = \delta_d(\delta_d^*(E',m'),\alpha)$ par déf de δ^* $= \delta_d(\delta_i^*(E',m'),\alpha)$ par hyp de rec $= \delta_i(\delta_i^*(E',m'),\alpha)$ par déf de δ_d $= \delta_i^*(E',m',\alpha)$ par déf de δ_d^* $= \delta_i^*(E',m',\alpha)$ par déf de δ_i^*

Retour sur la formalisation de A_d

• Soit $A_i = (\sum, E, I, F_i, \delta_i)$ un automate indéterministe Soit $A_d = (\sum, P(E), I, F_d, \delta_d)$ l'automate tel que :

•
$$F_d = \{E' \in P(E), E' \cap F_i \neq \emptyset\}$$
 La fonction
• $\delta_d : P(E) \times \Sigma \longrightarrow P(E)$ δ_i étendue
(E', α) $\longrightarrow \delta_d(E', \alpha) = \delta_i(E', \alpha)$

- Attention à bien différencier :
 - A_i a comme ENSEMBLE d'états initiaux : I
 - A_d a comme UNIQUE état initial : I
 - $\delta_d(E',\alpha)$ est un UNIQUE état de A_d et est un ENSEMBLE d'états de A_i

Fin de la preuve

- À prouver : $L_{A_d} = L_{A_i}$ sachant : $F_d = \{E' \in P(E), E' \cap F_i \neq \emptyset\}$
- Lemme: $\forall E' \in P(E), \forall m \in \Sigma^*, \delta_d^*(E', m) = \delta_i^*(E', m)$
- Notons: $\delta_d^*(I,m) = \delta_i^*(I,m) = \{e_1, e_2, ..., e_k\}$
- Alors: $m \in L_{A_i} \Leftrightarrow \delta_i^*(I,m) \cap F_i \neq \emptyset$ $\Leftrightarrow \{e_1, e_2, ..., e_k\} \cap F_i \neq \emptyset$ Et: $m \in L_{A_d} \Leftrightarrow \delta_d^*(I,m) \in F_d$ $\Leftrightarrow \{e_1, e_2, ..., e_k\} \in F_d$ $\Leftrightarrow \{e_1, e_2, ..., e_k\} \cap F_i \neq \emptyset$

Automates

- ☑ Automates déterministes
- ☑ Automates indéterministes
- Automates avec ε-transitions
- □ Transformations d'automates

 - ☑ Automate indéterministe ==> Automate déterministe
 - Automate déterministe ==> Automate minimal

Intuition de la minimalisation

 Si les états e₁ et e₂ « engendrent » les mêmes mots, alors arriver en e₁ ou e₂ revient au même:

$$e_1$$
 et e_2 sont fusionnables

$$\{ \; m \; | \; \; \delta^{\star}(e_{\scriptscriptstyle 1},m) \in F \; \}$$

$$\qquad \qquad \|$$

$$\{ \; m \; | \; \; \delta^{\star}(e_{\scriptscriptstyle 2},m) \in F \; \}$$

i.e.
$$\forall m, \delta^*(e_1, m) \in F \Leftrightarrow \delta^*(e_2, m) \in F$$

Définition : les états e₁ et e₂ sont distinguables si
 ∃ m , δ*(e₁,m) ∈ F ⇔ δ*(e₂,m) ∉ F
 Un tel mot m est dit séparer les états e₁ et e₂

Minimalisation d'un automate

- Minimalisation en nombre d'états d'un automate A
 - Déterministe (δ est une fonction)
 - Complet (δ est une application)
 - Monogène (tout état est accessible)
 - Non trivial $(L_{\Delta} \text{ n'est ni } \{\} \text{ ni } \Sigma^*)$
- Tout automate non trivial a un équivalent ayant ces propriétés
- Unicité de l'automate minimal à un renommage près
- Cela permet de comparer deux automates quelconques

Exemple simple de fusion

q1 et q2 fusionnables q3 et q4 fusionnables q0 et q1 séparés par ba q0 et q2 séparés par ba q1 et q3 séparés par ε

- Fusionner 2 états est correct
 - Fusionner juste q1 et q2
- Automate minimal : quand tous les états fusionnables auront été fusionnés

Relation de Nérode

• Définition : soit $A = (\sum, E, i, F, \delta)$ un automate déterministe. La relation de Nérode est la relation binaire, notée \equiv_N , définie sur E par :

- La relation de Nérode est une relation d'équivalence
 - Réflexive (e \equiv_N e), symétrique (e₁ \equiv_N e₂ \Rightarrow e₂ \equiv_N e₁) et transitive (e₁ \equiv_N e₂ et e₂ \equiv_N e₃ \Rightarrow e₁ \equiv_N e₃)
 - E est partitionné en classes d'équivalence L'ensembre des classes d'équivalence est noté \overline{E} $\overline{E} = \{ \overline{e} \mid e \in E \}$ e est un représentant de \overline{e}

La transition quotient

- $\overline{\delta}$ est définie sur \overline{E} x Σ par : $\overline{\delta}(\overline{e},\alpha) = \overline{\delta(e,\alpha)}$
- Cette définition a du sens car :

$$\overline{e} = \overline{e'} \implies \overline{\delta(e,\alpha)} = \overline{\delta(e',\alpha)}$$

i.e.

$$\mathsf{e} \equiv_\mathsf{N} \mathsf{e}' \Rightarrow \ \delta(\mathsf{e},\alpha) \equiv_\mathsf{N} \delta(\mathsf{e}',\alpha)$$

Preuve par contraposition : si $\delta(e,\alpha) \not\equiv_N \delta(e',\alpha)$ alors $\exists m, \ \delta^*(\delta(e,\alpha),m) \in F \text{ et } \delta^*(\delta(e',\alpha),m) \notin F$ $\Rightarrow \exists m, \ \delta^*(e,\alpha.m) \in F \text{ et } \delta^*(e',\alpha.m) \notin F$ $\Rightarrow e \text{ et } e' \text{ sont séparables par } \alpha.m$ $\Rightarrow e \not\equiv_N e'$

Automate quotient

• Soit A = (\sum, E, i, F, δ) un automate déterministe et complet. L'automate quotienté par la relation de Nérode est l'automate $\overline{A} = (\sum, \overline{E}, \overline{i}, \overline{F}, \overline{\delta})$ avec :

$$\begin{array}{l}
E = E / \equiv_{N} \\
i = \{ e \in E | i \equiv_{N} e \} \\
F = \{ \overline{e} | e \in F \}
\end{array}$$

• Remarque : $\overline{e} \in \overline{F} \Leftrightarrow e \in F$ car les éléments de \overline{e} ne sont pas séparables par ϵ $\overline{F} = \{ \{f_{i1}, ...f_{in}\}, ... \{f_{k1}, ...f_{kp}\} \}$

Propriétés de l'automate quotient

- $\delta(e,\alpha) = e' \Rightarrow \overline{\delta}(\overline{e},\alpha) = \overline{e'}$ (par définition de $\overline{\delta}$)
- \overline{A} est complet $\overline{\delta}$ est définie sur tout \overline{E} x Σ par : $\overline{\delta}(\overline{e},\alpha) = \overline{\delta}(e,\alpha)$ car $\delta(e,\alpha)$ est défini sur tout E x Σ (A complet)
- \overline{A} est déterministe $\operatorname{car} \overline{\delta}(\overline{e},\alpha) = \overline{\delta(e,\alpha)} \text{ détermine un unique élément de } \overline{E}$
- Les langages reconnus par A et \overline{A} sont identiques $L_{\overline{A}} = L_{A}$ démonstration à établir...
- \overline{A} est minimal en nombre d'états parmi les automates déterministes complets reconnaissant L_A

Construction de \overline{A}

- Construire Ā c'est surtout déterminer ≡_N
- $e_i \equiv_N e_i$ si on ne peut trouver un mot qui les sépare
 - Chercher à séparer les états en envisageant les mots de longueur 0, 1, 2, ...
 - Au final, deux états qui n'auront pu être séparés seront fusionnables.

Itération des séparations

• E₁ et E₂ séparés par le mot m :

$$\delta^*(e_1,m) \in \mathsf{F} \Leftrightarrow \, \delta^*(e_2,m) \not \in \mathsf{F}$$

- $\delta(e'_{1}, \alpha) = e1$ $\Rightarrow e'_{1}$ et e'_{2} séparés par $\alpha.m$ $\delta(e'_{2}, \alpha) = e2$
 - Car $\delta^*(e'_1,\alpha.m) = \delta^*(\delta(e'_1,\alpha),m) = \delta^*(e_1,m)$ et $\delta^*(e'_2,\alpha.m) = \delta^*(\delta(e'_2,\alpha),m) = \delta^*(e_2,m)$

Construction de _N

- Le mot (de longueur 0) ε sépare :
 - $E_1 = F = \{ e_1, e_2 \}$ de $E_2 = \{ e_3, e_4, e_5, e_6, e_7, e_8 \}$
 - $\delta^*(e_1, \epsilon) \in F$ et $\delta^*(e_3, \epsilon) \notin F$ ==> e_1 et e_3 séparés
- Les mots (de longueur 1) a et b séparent :
 - $E_{2.1} = \{ e_3, e_4, e_5, e_6 \}$ et $E_{2.2} = \{ e_7, e_8 \}$
 - $\delta^*(e_7, a) \in F$ et $\delta^*(e_3, a) \notin F$ ==> e_7 et e_3 séparés

Itération des séparations (2)

- Construction progressive des parties Ei
- Calcul de tous les $\delta(e_i,\alpha)$ et détection des cas où e_i et e_j appartiennent à une même classe et $\delta(e_i,\alpha)$ et $\delta(e_i,\alpha)$ appartiennent à deux classes différentes. Cela induit la séparation de e_i et e_i

Application à l'exemple

- Écrire explicitement tous les δ(e,,α) ...
- $E_1 = \{ e_1, e_2 \}$ $E_2 = \{ e_3, e_4, e_5, e_6, e_7, e_8 \}$
- $E_1 = \{ e_1, e_2 \}$ $E_{2,1} = \{ e_3, e_4, e_5, e_6 \}$ $E_{2,2} = \{ e_7, e_8 \}$
- $E_1 = \{ e_1, e_2 \}$ $E_{2.1.1} = \{ e_3, e_4, \}$ $E_{2.1.2} = \{ e_5, e_6 \}$ $E_{2.2} = \{ e_7, e_8 \}$
 - Séparation : $\delta(e_3,b)=e_6 \in E_{2,1}$ et $\delta(e_5,b)=e_8 \in E_{2,2}$

Construction de A

- $\bullet \ \, \mathsf{E}_1 \!\!=\!\! \{\, \mathsf{e}_1, \!\mathsf{e}_2 \} \quad \mathsf{E}_{2.1.1} \!\!=\!\! \{\, \mathsf{e}_3, \, \mathsf{e}_4, \!\} \ \, \mathsf{E}_{2.1.2} \!\!=\!\! \{ \mathsf{e}_5, \, \mathsf{e}_6 \, \} \quad \mathsf{E}_{2.2} \!\!=\!\! \{\, \mathsf{e}_7, \, \mathsf{e}_8 \, \}$
 - Plus de séparation possible.
 - $\overline{E} = \{ \{ e_1, e_2 \}, \{ e_3, e_4, \}, \{ e_5, e_6 \}, \{ e_7, e_8 \} \}$
- $\bar{\delta}(\bar{e}_i, \alpha) = \overline{\delta(e_i, \alpha)}$
 - Exemple : $\delta(\{e_3, e_4\}, b) = \{e_5, e_6\}$
- État initial : $\{e_1,e_2\}$ car e_1 est l'état initial de A
- États terminaux : \overline{F} = { \overline{e}_1 } U { \overline{e}_2 } car F = { e_1,e_2 } = {{ e_1,e_2 }} U {{ e_1,e_2 }} = {{ e_1,e_2 }} 1 seul élément

Automates A et \overline{A}

Ordre de séparation des états

- L'ordre est sans importance
 - Ordre par niveau : au niveau i, tous les états séparables par des mots de longueur inférieure ou égale à i ont été réalisées.
 - Ordre suivi par jflap : un ensemble d'états est découpé par une lettre donnée en plusieurs sous parties.
- Le processus de séparation termine forcément
 - Au plus |E|-1 niveaux
- L'important c'est de (re)traiter toutes les parties jusqu'à ce qu'aucune partie ne soit découpable

Ordre de séparation (avec jflap)

Minimalité de \overline{A}

- A est minimal en nombre d'états.
 - Théorème: Soit A un automate déterministe, complet, monogène et non trivial.
 Alors, il n'existe pas d'automate déterministe complet, reconnaissant le langage L(A), ayant moins d'états que l'automate A.
 - Preuve : en considérant les résiduels de L(A)
- Corollaire: Pour tout langage rationnel L, il existe un unique automate (au nom des états près) déterministe complet avec un nombre minimum d'états qui reconnaisse le langage L
 - Cela donne une méthode pour tester l'égalité de deux langages définis par un automate.

Expressions rationnelles (ou régulières)

Expressions rationnelles

- Définition récursive : Une expression rationnelle (ou régulière) ER, définie sur un alphabet Σ est une expression définie inductivement par :
 - ε est une ER (langage réduit à 1 mot : ε)
 - {} est une ER (langage vide)
 - Toute lettre de Σ est une ER
 - (r) est une ER si r l'est
 - r+s est une ER si r et s le sont (pour l'union)
 - r.s ou rs est une ER si r et s le sont
 - r* est une ER si r l'est

Introduction

- Outil très pratique pour décrire un « motif » ou « ensemble de mots », i.e. un langage
 - Sous Linux: « Is *.jpg »
 - Recherche dans un logiciel :
 motif du mot/fichier cherché : « prog*.??? »
 - Notion de « regexp » pour « expression régulière »
- La syntaxe ne sera pas tout a fait la même et sera plus riche dans les environnements de programmation et sous linux.
 - (a.b)* ---> une séquence de aXb où X est un caractère quelconque (sous Linux)
 - (a.b)* ---> une séquence de ab (dans ce cours)

Parenthésage et notations

- Exemples d'ER :
 - (a+b)*aba(a+b)* Les mots ayant le facteur aba
 - 0+1(00+10+01+11)* Les nombres binaires avec un nombre impair de chiffres
- Ambiguïté des expressions rationnelles
 - ab+c est-il: a b+c ou ab +c?
 - Utilisation des règles de priorité pour lever les ambiguïtés : « * » est plus prioritaire que « . » qui est plus prioritaire que « + ».

Exemple: $ab+c^* = (ab)+(c^*)$

• Ajout de notations :

• $r + = r.r^*$ r | s = r + s $r ? = (r + \varepsilon)$

Langage associé à une expression régulière

- Définition : soit r une expression régulière. Le langage, noté L(r), associé à r est défini inductivement par :
 - $L(\{\}) = \{\}$ et $L(\epsilon) = \{\epsilon\}$
 - $L(\alpha) = \{ \alpha \}$ pour tout $\alpha \in \Sigma$
 - L((r)) = L(r)
 - $L(r+s) = L(r) \cup L(s)$
 - L(r.s) = L(rs) = L(r).L(s)
 - $L(r^*) = (L(r))^*$

Exemples

- r = (a+b)*aba(a+b)* Les mots ayant le facteur aba
 - L(r) = ({a}U{b})*{a}{b}{a}({a}U{b})*
 = ({a, b})*{a}{b}{a}({a,b})*
 = Σ* {aba} Σ*
- r = 0+1(00+10+01+11)* Les nombres binaires avec un nombre impair de chiffres
- L(r) = {0} U {1}({0}{0}U{1}{0}U{0}{1}U{1}{1})* = {0} U {1}{00,10,01,11}*

CNS pour que $m \in L(e)$

- $m \in L((a+b)^*aba(a+b)^*)$
 - $\Leftrightarrow m \in L((a+b))^*L(a)L(b)L(a)L((a+b))^*$
 - $\Leftrightarrow m \in (\{a\}U\{b\})^*\{a\}\{b\}\{a\}(\{a\}U\{b\})^*$
 - $\Leftrightarrow m \in (\{a,b\})^* \{a\} \{b\} \{a\} (\{a,b\})^*$
 - $\Leftrightarrow m = (\alpha_1 ... \alpha_n) aba(\alpha'_1 ... \alpha'_{n'})$
 - avec $\alpha_i \in \{a,b\}$ et $\alpha'_i \in \{a,b\}$
- Il n'y a pas une formule générale comme pour les automates ou les grammaires
- On peut réduire les équivalences et obtenir directement l'égalité finale.

Expressions régulières équivalentes (même langage associé)

- Simplifications (pour toute expr. reg. « r »)
 - $\varepsilon r = r\varepsilon = r$ {} r = r{} = {}
 - $\{\} + r = r$ $(\epsilon + r)^* = (\epsilon + r^*) = r^*$
 - $\{\}^* = \varepsilon^* = \varepsilon$ r + r = r
- Associativité de la concaténation
 - (ab)c = a(bc) = abc
- Distributivité :
 - a(b+c) = ab + ac
- Commutativité de l'addition
 - (a+b) = (b+a)

Équivalence entre automate et ER

- À tout automate A correspond une expression rationnelle r telle que L(r) = L(A)
- À toute expression rationnelle r correspond un automate A tel que L(A) = L(r)
- Exemple simple :
 - r = (a+b)*aba(a+b)*

• Exemple pas simple :

expression associée?

Par variation des états d'entrée

• Intuition: α' e' m' f'

- Les mots reconnus à partir de l'état e :
 - $L_e = \{\alpha'\}.L_{e'}$ U $\{\alpha''\}.L_{e''}$ (même si e'=e , $\alpha'=\alpha''$)
- Si e est un état terminal :

$$L_e = \{\epsilon\} \ U \ \{\alpha'\}.L_{e'} \ U \ \{\alpha''\}.L_{e''}$$

• Langage associé à l'automate : $\bigcup_{e \in I} L_e$

ER associée à un automate

- L'automate peut être indéterministe et avec des ε-transitions, mais doit être émondé (tout état est accessible et co-accessible).
- Deux méthodes :
 - Par variation des états d'entrée
 - Pour tout état e : L_e = { m | δ *(e,m) ∩ F ≠ {} }
 - Sens de l'état e : « les mots reconnus à partir de e »
 - Par variation des états de sortie
 - Pour tout état e : $L_e = \{ m \mid \delta^*(I,m) \cap \{e\} \neq \{ \} \}$
 - Sens de l'état e : « les mots reconnus jusqu'à e »

Système d'équations associées

• Bijection entre les équations définissant le langage L_e et les équations définissant l'expression rationnelle R_e

 $L_e = L(R_e)$ Non unicité de R_e associée à L_e

- Écriture du système d'équations incluant tous les Re
 - Résolution du système d'équation dans une algèbre spécifique avec des règles spécifiques
- Expression recherchée : $\sum\limits_{e\in I}R_{e}$ I = {états initiaux}

Exemple

•
$$R_{e0} = bR_{e1} + aR_{e2} + \epsilon$$

 R_{e0} est final

$$R_{e1} = aR_{e3} + bR_{e0}$$

$$R_{e2} = aR_{e0} + bR_{e3}$$

$$R_{e3} = aR_{e1} + bR_{e2}$$

- 4 équations et 4 inconnues : R_{e0} , R_{e1} ,R_{e2} ,R_{e3}
- Expression recherchée : R_{e0} seul état initial

Application des règles sur l'exemple

•
$$R_{e0} = bR_{e1} + aR_{e2} + \epsilon$$
 $R_{e2} = aR_{e0} + bR_{e3}$ $R_{e1} = aR_{e3} + bR_{e0}$ $R_{e3} = aR_{e1} + bR_{e2}$

- Substituer R_{e1} et R_{e2} par leur « valeur » dans R_{e0} ,R_{e3}
 - $R_{e0} = (ba+ab)R_{e3} + (bb+aa)R_{e0} + \varepsilon$
 - $R_{e3} = (aa+bb)R_{e3} + (ab+ba)R_{e0}$
- Règle du point fixe pour R_{e3}
 - $R_{e3} = (aa+bb)*(ab+ba)R_{e0}$
- Substitution de R_{e3} et règle du point fixe pour R_{e0}
 - $R_{e0} = (ba+ab) (aa+bb)*(ab+ba)R_{e0} + (bb+aa)R_{e0} + \epsilon$
 - $R_{e0} = ((ba+ab) (aa+bb)*(ab+ba) + (bb+aa))*$. ϵ

Règles de transformation

- Règle de substitution
 - R_e peut être remplacée par « sa valeur » dans les partie droite des autres équations.
 - $R_{e} = aR_{e'} + bR_{e''}$
 - $R_x = ... R_e ...$ ==> $R_x = ... aR_{e'} + bR_{e''} ...$
- Règle du point fixe
 R_e = R₁.R_e+R₂ ==> R_e = R₁*.R₂ où R₁ et R₂ sont des expr. rat. sans R_e
 - Intuition : $R_e = R_1.R_e + R_2 = R_1...R_1.R_e + R_2 = R_1...R_1.R_2$
- Autres règles : $R_1+R_2=R_2+R_1$ $R(R_1+R_2) = RR_1+RR_2$ $R.\epsilon = \epsilon.R = R$ etc

Par variation des états de sortie

• Intuition :

- Les mots reconnus jusqu'à l'état e :
 - $L_P = L_{P'} \cdot \{\alpha'\} \cup L_{P''} \cdot \{\alpha''\}$ (même si e'=e, $\alpha'=\alpha''$)
- Si e est un état initial :

$$L_e = \{\epsilon\} \ U \ L_{e'} \cdot \{\alpha'\} \ U \ L_{e''} \cdot \{\alpha''\}$$

• Langage associé à l'automate : $\bigcup_{f \in F} L_f$

Système d'équations associées

• Bijection entre les équations définissant le langage L_e et les équations définissant l'expression rationnelle R_e

- $L_e = L(R_e)$ Non unicité de R_e associée à L_e
- Écriture du système d'équations incluant tous les Re
 - Résolution du système d'équation dans une algèbre spécifique avec des règles spécifiques
- Expression recherchée : $\sum_{e \in F} R_e$ $F = \{ \text{états terminaux} \}$

Règles de transformation

- Règle du point fixe Règle du point fixe
- R_2 e R_2
 - $R_e = R_e.R_1+R_2$ ==> $R_e = R_2.R_1^*$ où R1 et R2 sont des expr. rat. sans R_e
 - Intuition :

$$R_e = R_e.R_1+R_2 = R_e.R_1.R_1+R_2 = R_e.R_1....R_1+R_2$$

= $R_2 . R_1....R_1$

• Les autres règles sont encore valides

Exemple

- 4 équations et 4 inconnues : Re0 , Re1 ,Re2 ,Re3
- Expression recherchée : R_{e0} seul état final

Application des règles sur l'exemple

•
$$R_{e0} = R_{e1} b + R_{e2} a + \epsilon$$
 $R_{e2} = R_{e0} a + R_{e3} b$ $R_{e1} = R_{e3} a + R_{e0} b$ $R_{e3} = R_{e1} a + R_{e2} b$

- Substituer Re1 et Re2 par leur « valeur » dans Re0 ,Re3
 - $R_{e0} = R_{e3} \text{ (ba+ab)} + R_{e0} \text{ (bb+aa)} + \varepsilon$
 - $R_{e3} = R_{e3} (aa+bb) + R_{e0} (ab+ba)$
- Règle du point fixe pour R_{e3}
 - $R_{e3} = R_{e0} (ab+ba)(aa+bb)*$
- Substitution de R_{e3} et règle du point fixe pour R_{e0}
 - $R_{e0} = R_{e0}(ab+ba)(aa+bb)*(ba+ab) + R_{e0}(bb+aa) + \epsilon$
 - $R_{e0} = ((ab+ba)(aa+bb)*(ba+ab) + (bb+aa))*$

Automate associée à une ER

- Construction de l'automate avec ε-transitions
 - Avec des automates intermédiaires standards
 - Avec les constructions d'unions, de fermetures de Kleene et de concaténations d'automates déjà vues Et avec des automates associés aux lettres
 - En simplifiant éventuellement en cours de construction
- Exemple : $r = ((ab+ba)(aa+bb))^*$
 - L(r) = (({a}.{b} U {b}.{a}) . ({a}.{a} U {b}.{b}))*
 - Construction d'un automate associé à L(r)
 - à partir des automates associés à {a} et {b}

Théorème de Kleene

- Théorème (Kleene): L'ensemble des langages reconnus par un automate fini est la fermeture transitive des langages réduits à une lettres ou au mot vide, pour les opérations de concaténation, union et fermeture de Kleene
 - Construit par fermeture ==> reconnu par un automate
 - traité lors de l'étude des automates avec ε-transitions
 - Reconnu par un automate ==> construit par fermeture
 - Pour tout automate, on sait construire une expression rationnelles associée à l'automate.
 - La transformation « expr. rat. » ==> Construction par fermeture consiste à remplacer des + par des U et ajouter des accolades autour des lettres.

Automates associés

Algorithme d'acceptation d'un mot

- Algorithme pour savoir si un mot m appartient à L(r) pour une expression rationnelle r donnée.
 - Exemple : $r = (a+\varepsilon)*aba(a+b)*$
- Utiliser l'automate associé à cette expression rationnelle

• La même complexité que pour les automates indéterministes avec ε-transition.