HW2 Optical Tachometer

Johns Hopkins University

Real Time Software for Embedded Systems

Fall 2014

Tony Florida

2014-09-24

Requirements

Hardware

- There shall be an IR led emitter and detector circuit
- There shall be a motor that is spun via electronic speed control (ESC)
- An Arduino board shall control the circuits
- External battery supply shall be used for the motor
- Blades shall be attached to the motor and pass through the emitter/detector pair

Software

- The software running on the Arduino shall use function queue scheduling design
- The software shall capture the rotations per minute (RPM) every second
- The software shall accept serial commands to control the ESC

Test

- The test shall issue various serial commands to the ESC to vary the speed of the blades
- The blades shall be attached to the motor and pass through the emitter/detector pair

Parts List

- (1) Arduino Uno
- (1) 10k resistor
- (1) 220 ohm resistor
- (1) spool of hobby wire
- (1) USB 2.0 A/B cable
- (1) breadboard
- (1) 12v battery
- (1) LED of any color
- (1) Infrared Emitter and Detector (Radio shack 276-142)
- (1) Turnigy Multistar 30 Amp Multi-rotor Brushless ESC 2-4S
- (1) Gemfan 9x4.7 Nylon Prop Set (1x CW & 1x CCW)
- (1) Turnigy Multistar ESC Programming Card
- Wood to hold motor and emitter/detector
- Nails
- Twist ties
- Black electrical tape

Required Software

- Arduino Sketch v1.0
- Microsoft Excel 2010

Architecture

Hardware

Figure 1 - Circuit Schematic [1]

Figure 2 – Schematic Notes [1]

Figure 3 – Emitter Detector Sensors

Software

Figure 4 - Software Architecture Diagram

Figure 5 - Hardware/Software Sequence Diagram

Design

Software

Photos of the Hardware

Figure 6 – Side View of the Test Setup

Figure 7 - Top View of the Test Setu

Implementation

```
#include <Oueue.h>
#include <Servo.h>
//JHU RTSW HW 2 - Optical Tachometer
//Tony Florida
//2014-09-24
//References:
// http://www.instructables.com/id/Arduino-Based-Optical-Tachometer/
// http://techvalleyprojects.blogspot.com/2012/06/arduino-control-
escmotor-tutorial.html
// https://github.com/Zuph/AVRQueue
//ESC variables
// This is our motor.
Servo myMotor;
// This is the final output
// written to the motor.
String incomingString;
//IR Emitter Detector variables
int ledPin = 13;
                                // IR LED connected to digital pin 13
                                // LED connected to digital pin 12
int statusPin = 12;
volatile byte rpmcount;
volatile int status;
unsigned int rpm;
unsigned long timeold;
//IR Emitter Detector function
void rpm fun()
   //Each rotation, this interrupt function is run twice, so take that
into consideration for
   //calculating RPM
   //Update count
      rpmcount++;
   //Toggle status LED
   if (status == LOW) {
     status = HIGH;
   } else {
     status = LOW;
   digitalWrite(statusPin, status);
}
void setup() {
    // Required for I/O from Serial monitor
    Serial.begin(9600);
```

```
//ESC setup
    Serial.println("Initializing ESC");
    // Put the motor to Arduino pin #9
    myMotor.attach(9);
    //IR Emitter Detector setup
    //Interrupt 0 is digital pin 2, so that is where the IR detector
is connected
    //Triggers on FALLING (change from HIGH to LOW)
    attachInterrupt(0, rpm fun, FALLING);
    //Turn on IR LED
    pinMode(ledPin, OUTPUT);
    digitalWrite(ledPin, HIGH);
    //Use statusPin to flash along with interrupts
    pinMode(statusPin, OUTPUT);
    rpmcount = 0;
    rpm = 0;
    timeold = 0;
    status = LOW;
    //Function queue scheduling setup
    Serial.println("Initializing function queue scheduling");
    Queue myQueue;
    myQueue.scheduleFunction(esc, "ESC", 5000, 1000);
   while(1) {
        myQueue.Run(millis());
        rpm counter();
    }
}
//Receive ESC commands via serial
int esc(unsigned long now)
{
  // If there is incoming value
 if(Serial.available() > 0)
    // read the value
    char ch = Serial.read();
    /*
    * If ch isn't a newline
    * (linefeed) character,
    * we will add the character
    * to the incomingString
    */
    if (ch != 10) {
      // Print out the value received
      // so that we can see what is
      // happening
      //Serial.print("I have received: ");
      //Serial.print(ch, DEC);
```

```
//Serial.print('\n');
      // Add the character to
      // the incomingString
      incomingString += ch;
    // received a newline (linefeed) character
    // this means we are done making a string
    else
      // print the incoming string
      //Serial.println("I am printing the entire string");
      //Serial.println(incomingString);
      // Convert the string to an integer
      int val = incomingString.toInt();
      // print the integer
      //Serial.println("Printing the value: ");
      //Serial.println(val);
      * We only want to write an integer between
      * 0 and 180 to the motor.
      */
      if (val > -1 \&\& val < 181)
      // Print confirmation that the
       // value is between 0 and 180
       //Serial.println("Value is between 0 and 180");
       // Write to Servo
      myMotor.write(val);
      // The value is not between 0 and 180.
      // We do not want write this value to
      // the motor.
      else
       //Serial.println("Value is NOT between 0 and 180");
       // IT'S a TRAP!
      //Serial.println("Error with the input");
      } //0 to 180
      // Reset the value of the incomingString
      incomingString = "";
    } //ch not 10
  }
//Count RPMs
void rpm counter()
```

}

```
//Update RPM every second
   delay(1000);
   //Don't process interrupts during calculations
   detachInterrupt(0);
   //Note that this would be 60*1000/(millis() - timeold)*rpmcount if
the interrupt
   //happened once per revolution instead of twice. Other multiples
could be used
   //for multi-bladed propellers or fans
   rpm = 30*1000/(millis() - timeold)*rpmcount;
   timeold = millis();
   rpmcount = 0;
   //Write it out to serial port
   Serial.print(millis());
   Serial.print(" ");
   Serial.println(rpm,DEC);
   //Restart the interrupt processing
   attachInterrupt(0, rpm fun, FALLING);
}
//not using the loop in this program
void loop() {
}
```

Results

Log

2000 0 78042 0 79042 0 80043 0 81043 0 82043 0 63033 0 83044 0 84044 0 85045 0 48025 0 87047 0 88047 0 89048 0 90048 0 91048 0 92049 0

93049 0

115062 0	1640910	213123 493	262159 2088	311196 2100	360232 2100
116063 0	165092 0	214123 510	263160 2160	312197 2030	361233 2001
117063 0	166092 0	215123 540	264161 2088	313197 2070	362233 2070
118064 0	167093 0	216125 493	265161 2130	314198 2001	363235 2001
119065 0	168093 0	217125 510	266162 2088	315199 2059	364235 2070
120066 0	169095 0	218126 493	267163 2059	316199 2070	365236 2001
121066 0	170095 0	219126 510	268164 2088	317200 2030	366237 2001
122066 0	171096 0	220128 464	269164 2130	318201 2030	367238 2030
123067 0	172096 0	221128 2220	270166 2088	319202 2001	368238 2070
124067 0	173096 0	222129 2523	271166 2130	320202 2070	369239 1972
125068 0	174097 0	223130 2580	272166 2160	321203 2030	370240 2001
126069 0	175097 0	224131 2436	273167 2059	322204 2001	371240 2070
127070 0	176099 0	225131 2520	274168 2059	323205 2001	372241 2001
128070 0	177099 0	226131 2490	275169 2088	324205 2100	373242 2001
129071 0	178100 0	227133 2378	276169 2130	325207 2001	374243 1421
130071 0	1791000	228133 2460	277171 2088	326207 2070	375243 660
131072 0	1801010	229134 2349	278171 2130	327207 2100	376245 464
132072 0	181101 0	230135 2349	279172 2088	328209 2001	377245 480
133073 0	182102 0	231136 2349	280172 2130	329209 2100	378246 435
134074 0	183103 0	232136 2400	281174 2059	330210 2001	379246 480
135074 0	184103 0	233137 2320	282174 2160	331210 2070	380248 464
136075 0	1851040	234138 2291	283174 2130	332212 2030	381248 450
137075 0	1861040	235139 2291	284176 2059	333212 2070	382248 480
138076 0	187105 0	236139 2340	285176 2130	334213 2001	383249 464
139076 0	1881060	237140 2291	286177 2059	335214 2001	384250 480
140078 0	189107 0	238141 2262	287178 2130	336215 2001	385251 435
141078 0	190107 0	239141 2340	288179 2059	337215 2100	386251 480
142078 0	191108 0	240143 2233	289179 2130	338215 2070	387252 464
143079 0	192108 0	241143 2310	290180 2059	339217 2001	388252 480
144079 0	193108 0	242144 2204	291181 2030	340217 2070	389254 464
145080 0	1941100	243145 2310	292182 2059	341218 2030	390254 480
146080 0	1951100	244146 2204	293182 2130	342219 2001	391255 464
147082 0	196111 0	245146 2280	294183 2030	343220 2001	392255 480
148082 0	197111 870	246147 2175	295184 2059	344220 2070	393256 464
149083 0	198112 667	247148 2204	296184 2100	345221 2030	394257 464
150083 0	199113 540	248148 2250	297185 2059	346222 2001	395257 150
151084 0	200114 522	249149 2175	298186 2030	347223 2001	396259 0
152084 0	201114 510	250150 2146	299187 2059	348223 2070	397259 0
153084 0	202115 522	251151 2146	300187 2100	349224 2030	398260 0
154086 0	203115 510	252151 2190	301189 2030	350225 2001	399260 0
155086 0	204116 522	253152 2146	302189 2130	351225 2070	400261 0
156087 0	205117 493	254153 2117	303190 2059	352226 2030	401261 0
157087 0	206117 510	255154 2146	304190 2100	353227 2001	402262 0
158088 0	207118 493	256154 2190	305191 2059	354228 2001	403263 0
159088 0	208119 493	257156 2117	306192 2030	355228 2100	404263 0
160089 0	209120 493	258156 2160	307192 2100	356230 2030	405264 0
161089 0	210120 510	259156 2160	308194 2030	357230 2070	406264 0
162091 0	211121 493	260158 2088	309194 2100	358231 2001	407265 0
163091 0	212122 493	261158 2160	310195 2030	359232 2001	408265 0

Plot

Video Presentation

https://www.youtube.com/watch?v=vAZy4O3XNxI

References

- [1] http://www.instructables.com/id/Arduino-Based-Optical-Tachometer/
- [2] http://techvalleyprojects.blogspot.com/2012/06/arduino-control-escmotor-tutorial.html
- [3] https://github.com/Zuph/AVRQueue