

Curso: Engenharias

DISCIPLINA: Programação para Competições SEMESTRE/ANO: 02/2019

CARGA HORÁRIA: 60 horas CRÉDITOS: 04

PROFESSOR: Edson Alves da Costa Júnior

PLANO DE ENSINO

1 Objetivos da Disciplina

A disciplina Programação para Competições tem como objetivo preparar os alunos do curso de Engenharia de Software da FGA para participar de competições de programação, como a Maratona de Programação. Estes eventos ampliam o horizonte dos alunos e os estimulam a se aprofundarem nos tópicos de programação em geral. Além disso, a disciplina também constitui mais uma oportunidade para estudo e aprimoramento dos alunos em programação, tornando-os engenheiros mais preparados e capazes de atuar com competência no mercado atual.

2 Ementa do Programa

- I. C/C++
 - i. Revisão
 - ii. Funções mais utilizadas em competições
- II. Técnicas de I/O
 - i. Leitura de diferentes tipos de dados
 - ii. Formatação da saída
- III. Revisão de Estruturas de Dados
 - i. Vetores, strings, listas, pilhas e filas
 - ii. Árvores
- IV. Algoritmos clássicos
- V. Recursão
- VI. Análise combinatória
 - i. Permutações

- ii. Arranjos
- iii. Combinações
- VII. Grafos
 - i. Representações
 - ii. Algoritmos de busca
 - iii. BFS
 - iv. DFS
 - v. Árvore Geradora Mínima
 - vi. Caminhos mínimos
- VIII. Programação Dinâmica
 - IX. Probabilidade e Teoria dos Números
 - X. Geometria Computacional
- XI. Algoritmos Gulosos
- XII. Divisão e Conquista

3 Horário das aulas e atendimento

AULAS: segundas e quartas, das 14:00 às 15:50 hrs.

ATENDIMENTO: segundas e quartas, das 16:00 às 17:00 hrs.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe.

O curso também será focado na resolução de exercícios, tendo, a cada aula, a análise e resolução de problemas oriundos de competições e de *online judges*.

5 Critérios de Avaliação

A avaliação do curso se dará por meio de uma única prova, individual, cuja data está prevista no cronograma. Duas atividades extras podem alterar a menção final do aluno: os *contests* quinzenais e o *contest* Menção++. A forma e os critérios destas atividades, assim como a prova, serão descritos a seguir.

5.1 Prova

A prova P será composta por 6 problemas, a serem resolvidos individualmente. É permitida a consulta a materias impressos e é vedada a consulta aos colegas ou a recursos online.

A solução proposta para um problema será corrigida de acordo com os seguintes critérios: após ser compilada de forma bem sucedida, uma série de testes unitários automatizados alimentarão o programa resultante com entradas válidas e comparará os resultados obtidos com as saídas corretas. Uma solução será considerada aceita se obtiver sucesso em todos os testes unitários.

A menção final do curso será dada em função número N de problemas cujas soluções foram aceitas, de acordo com a tabela abaixo.

N	Menção	Descrição
0	SR	Sem rendimento
1	II	Inferior
2	MI	Médio inferior
3	MM	Médio
4	MS	Médio superior
5 ou mais	SS	Superior

5.2 Critérios de aprovação

Obterá aprovação no curso o aluno que cumprir as duas exigências abaixo:

- 1. Ter presença em 75% ou mais das aulas;
- 2. Obter menção igual ou superior a MM.

5.3 Contests quinzenais

A cada quinzena acontecerá um *contest* individual, com problemas correlacionados, mas não necessariamente iguais, aos conteúdos apresentados em sala de aula. Também a cada quinzena serão propostas listas de exercícios L_i , com temas em aberto, com foco no treinamento do *problem solving*, também individuais.

O número de problemas solucionados corretamente S_i e a penalidade de tempo acumulada T_i em cada contest i serão utilizados em um ranking, cujos critérios de desempate são:

1. Maior número total S de problemas solucionados, onde

$$S = \sum_{i} S_{i}$$

- 2. Menor número de ausências em aulas A
- 3. Maior número de exercícios solucionados das listas L, onde

$$L = \sum_{j} L_{j}$$

4. Menor total T de penalidade de tempo acumulada, onde

$$T = \sum_{i} T_{i}$$

5. Ordem lexicográfica do nome completo

Só farão parte do *raking* os estudantes que tiverem 80% ou mais de presença nas aulas. A verificação de algum indício de fraude ou cola em qualquer um dos *contests* quinzenais ou em alguma das listas resultará na exclusão imediata do aluno do *ranking*.

Ao final do semestre, após o último *contest* quinzenal e do encerramento da última lista de exercícios, as posições finais corresponderão às menções conquistadas, de acordo com a tabela abaixo.

Posição	Menção	Descrição
[1, 3]	SS	Superior
[4, 8]	MS	Médio superior
[9, 15]	MM	Médio inferior

O aluno que conquistar uma menção de acordo com os critérios anteriores poderá tentar uma melhor menção na prova P.

5.4 Contest Menção++

Após a prova P, os alunos que tiveram 80% ou mais de presença nas aulas e resolveram 75% ou mais dos exercícios propostos nas listas terão uma oportunidade de melhorar sua menção por meio do *contest* Menção++.

Este *contest* seguirá o mesmo formato e condições da prova P, com a diferença que a menção só poderá ser incrementada uma única vez, conforme mostra a tabela abaixo.

Menção anterior	N	Nova menção
II	1 ou mais	MI
MI	2 ou mais	MM
MM	3 ou mais	MS
MS	4 ou mais	SS

5.5 Prova Substitutiva

A prova substitutiva será aplicada após a prova P e antes do *contest* Menção++. Ela só poderá feita mediante a apresentação de atestado de saúde em até 5 dias úteis após a prova P, ou em outros casos previstos na legislação.

O formato da prova substitutiva \acute{e} o mesmo da prova P.

6 Cronograma

Semana	Aula	Data	Conteúdo
01	1	12/08	Apresentação do curso. Introdução à Programação Competitiva. Juízes Eletrônicos
	2	14/08	Tipos Primitivos de Dados. Estratégias de Treinamento. Encurta- mento de Código
02	3	19/08	Vetores e Listas. Ordenação em C++
	-	21/08	Contest I
03	4	26/08	Pilhas e Filas
	5	28/08	Árvores Binárias de Busca
04	6	02/09	Heaps binárias
	-	04/09	Contest II

Semana	Aula	Data	Conteúdo
05	7	09/09	Busca Completa
	8	11/09	Algoritmos Gulosos
06	9	16/09	Dividir e Conquistar
	-	18/09	Contest III
07	-	23/09	Semana de Extensão Universitária
	-	25/09	Semana de Extensão Universitária
Λ0	10	30/09	Busca Binária e Busca Ternária
08	11	02/10	Introdução à Programação Dinâmica
00	12	07/10	Max Range Sum
09	-	09/10	Contest IV
10	13	14/10	Coin Change
10	14	16/10	Knapsack
11	15	21/10	Longest Increasing Subsequence
11	-	23/10	Contest V
12	16	28/10	Aritmética Estendida
12	17	30/10	Maior Divisor Comum
13	18	04/11	Números Primos
13	-	06/11	Contest VI
14	19	11/11	Aritmética Modular
14	20	13/11	Inverso modular
15	21	18/11	Introdução aos Grafos
	-	20/11	Contest VII
16	22	25/11	DFS e BFS
16	23	27/11	Aplicações de DFS/BFS
17	-	02/12	Prova
	-	04/12	Prova Substitutiva
18	-	09/12	Contest Menção++
	-	11/12	Menção Final.

7 Bibliografia

LIVRO TEXTO

HALIM, Steven S. and HALIM, Felix. Competitive Programming, 1a ed, Lulu, 2010. (Open Access)

LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018. (Open Access)

CORMEN, Thomas H. **LEISERSON** and Charles E. and **RIVEST**, Ronald L. and **STEIN**, Clifford. *Algoritmos: Teoria e Prática*, Editora Campus, 2ª ed, 2002.

LITERATURA COMPLEMENTAR

KERNIGHAN, Brian and RITCHIE, Dennis M. The C Programming Language, Prentice Hall, 1988.

JOSUTTIS, Nicolai M. *The C++ Standard Library*, Addison-Wesley, 1999.

VOLOSHIN, Vitaly I. *Introduction to Graph Theory*, Nova Science Publishers, Inc, 2009. (*eBrary*)

WILF, Hebert S. Algorithms and Complexity, CRC Press, 2002. (eBrary)

CROCHEMORE, Maxime and **RYTTER**, Wojciech. *Jewels of Stringology*, World Scientific, 2002. (*eBrary*)