LAB1 Report

Pin-Jing, Li (111511015 ouo.ee11@nycu.edu.tw) Jing-Kai, Huang Duan-Kai, Wu

September 14, 2025

In lab 1 We explored the basic configuration of e^2 studio, ultrasound module and the basic signal processing flow of the wireless transmitted signal.

1 Hardware configuration

2 Error Source Analysis

Figure 1: Comparing robust and non-robust design for linear precoder

We inspect the relative distance We retrieve back n_{meas} by aligning the starting sample by the maximum

Pair (cm)	$n_{ m theory}^*$	$n_{ m meas}$	$\Delta n_{\mathrm{theory}}^*$	$\Delta n_{ m meas}$	$\frac{\Delta n_{\text{meas}}}{\Delta n_{\text{theory}}^*}$	Relative Error (%)
$20\rightarrow40$	$184.97 \rightarrow 369.94$	$231 \rightarrow 412$	184.97	181	0.979	-2.1
$40 \rightarrow 60$	$369.94 \rightarrow 554.91$	$412 \rightarrow 598$	184.97	186	1.006	+0.6
$60 \rightarrow 80$	$554.91 \rightarrow 739.88$	$598 \rightarrow 773$	184.97	175	0.946	-5.4
80→100	$739.88 \rightarrow 924.86$	$773 \to 953$	184.97	180	0.973	-2.7

Table 1: Relative Distance Comparison (Measured vs. Theoretical)

Tx data

3 Signal Processing

some discussion below:

• Correct "Detection" threshold. The physically correct measure of the time of flight (TOF) would be the *wavefront* of the received signal.

Figure 2: block diagram: signal \rightarrow BPF \rightarrow demod (mixer) \rightarrow LPF \rightarrow envelope.

Figure 3: Time domain signal before and after filtering & demodulation

Figure 4: bpf

Bandpass Filtering

Given the sampled received signal x(t), we first apply a bandpass filter to isolate the signal components near the carrier frequency. The bandpass-filtered signal is

$$x_{\rm bpf}(t) = x(t) * h_{\rm bpf}(t) \tag{1}$$

where * denotes convolution and $h_{\rm bpf}(t)$ is the impulse response of the bandpass filter.

Filter Design. We choose a 6th-order IIR Butterworth bandpass filter with half-power frequencies

$$f_{\text{bp},1} = f_c - 2f_w, \qquad f_{\text{bp},2} = f_c + 2f_w,$$

where the carrier frequency $f_c = 40 \text{ kHz}$ and the signal bandwidth is

$$f_w = \frac{1}{T_{\text{burst}}} \approx 5 \text{ kHz}.$$

To ensure the filter design remains within valid frequency bounds, we compute:

$$\begin{split} \mathtt{bp_bw} &= \max\bigl(2f_w,\, 12 \text{ kHz}\bigr), \\ \mathtt{bp_f1} &= \max\bigl(10,\, f_c - \mathtt{bp_bw}\bigr), \\ \mathtt{bp_f2} &= \min\bigl(\frac{F_s}{2} - 10,\, f_c + \mathtt{bp_bw}\bigr), \end{split}$$

where F_s is the sampling frequency.

MATLAB Implementation. The filter is implemented and applied using MATLAB as follows:

This produces the zero-phase bandpass-filtered signal $x_{\rm bpf}(t)$.

Figure 5: demod

References

- [1] C.-Y. Chang and C.C. Fung, "Sparsity enhanced mismatch model for robust spatial intercell interference cancelation in heterogeneous networks," *IEEE Trans. on Communications*, vol. 63(1), pp. 125-139, Jan. 2015.
- [2] I. P. Roberts, Y. Zhang, T. Osman, and A. Alkhateeb, "Real-world evaluation of full-duplex millimeter wave communication systems," *IEEE Trans. Wireless Commun.*, early access, Mar. 2024.
- [3] K. Shen and W. Yu, "Fractional Programming for Communication Systems—Part I: Power Control and Beamforming," *IEEE Transactions on Signal Processing*, vol. 66, no. 10, pp. 2616-2630, May 15, 2018, doi: 10.1109/TSP.2018.2812733.
- [4] J. Ho, A. Jain, and P. Abbeel, "Denoising diffusion probabilistic models," *Advances in Neural Information Processing Systems*, vol. 33, pp. 6840–6851, 2020.

- [5] T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Transactions on Cognitive Communications and Networking*, vol. 3, no. 4, pp. 563–575, 2017.
- [6] M. Servetnyk and C. C. Fung, "Distributed fronthaul-constrained joint transmission design and selection using augmented consensus-based dual decomposition," *Journal of Communications and Networks*, vol. 24, no. 4, pp. 419–437, Aug. 2022, doi: 10.23919/JCN.2022.000030.