Godbillon-Vey type functional for almost contact manifolds

Vladimir Rovenski*

Abstract

Many contact metric manifolds are critical points of curvature functionals restricted to spaces of associated metrics. The Godbillon-Vey functional was never considered in a variational context in Contact Geometry. Recently we extended this functional from foliations to arbitrary plane fields on a 3-dimensional manifold, so, the following question arises: can one use the Godbillon-Vey functional to find optimal almost contact manifolds? In the paper, we introduce a Godbillon-Vey type functional for a 3-dimensional almost contact manifold, present it in Reinhart-Wood form and find its Euler-Lagrange equations for all variations preserving the Reeb vector field. We construct critical (for our functional) 3-dimensional almost contact manifolds having a double-twisted product structure, these solutions belong to the class $C_5 \oplus C_{12}$ according to Chinea-Gonzalez classification.

Keywords: almost contact manifold, Godbillon-Vey functional, double-twisted product, variation, Chinea-Gonzalez classes

Mathematics Subject Classifications (2010) Primary 53C12; Secondary 53C21

1 Introduction

D. Chinea and C. Gonzalez [5] decomposed the space of certain 3-tensors on an almost contact metric manifold $M^{2n+1}(\varphi,\omega,T,g)$ into irreducible invariant components under the action of the structural group $U(n) \times 1$ and developed a Gray-Hervella type classification for almost contact metric (a.c.m.) manifolds. They obtained 12 classes of a.c.m. manifolds, which in dimension three are reduced to five classes: C_5 of β -Kenmotsu manifolds, C_6 of α -Sasakian manifolds, C_9 -manifolds, C_{12} -manifolds (called generalized Sasakian space forms) and $|C| = C_5 \cap C_{12}$ of cosymplectic manifolds. Many works on a.c.m. manifolds are devoted to normal structures, that is to the first three Chinea-Gonzalez classes. Some authors investigate $C_5 \oplus C_{12}$ -manifolds, consisting of integrable, non-normal manifolds because $\nabla_T T \neq 0$, see [3, 4, 6], where ∇ is the Levi-Civita connection. The elements of $\bigoplus_{1 \leq i \leq 5} C_i \oplus C_{12}$ are a.c.m. manifolds that are locally a double-twisted product $B \times_{(u,v)} I$, where B is an almost Hermitian manifold, $I \subset \mathbb{R}$ is an open interval and u, v are smooth positive functions on $B \times I$. The first result in this topic states that any Kenmotsu manifold, i.e., $(\nabla_X \varphi)Y = g(\varphi X, Y)T - \omega(Y)\varphi X$, is locally a warped product $B \times_u I$, where $u \in C^{\infty}(I)$ and B is a Kähler manifold, see [8]. Note that any two-dimensional almost complex manifold is complex, moreover, it is Kähler. Thus, in dimension three, the class $\bigoplus_{1 \leq i \leq 5} C_i \oplus C_{12}$ reduces to $C_5 \oplus C_{12}$, whose elements are locally a double-twisted product $B \times_{(u,v)} \overline{I}$, where B is a 2-dimensional Kähler manifold, see [4, 6].

Finding critical metrics of certain functionals can be considered as an approach to searching for the best metric for a given manifold. Many contact metric manifolds are critical points of curvature functionals restricted to spaces of associated metrics; for example, symplectical manifolds are critical for the total scalar curvature and K-contact manifolds are critical for the total Ricci curvature in the T-direction, e.g., [2, Sect. 5].

The Godbillon-Vey functional was introduced for foliations of codimension one in [7], its changes under infinitesimal deformations of the foliation were studied, for example, in [1], but this functional was never considered in a variational context in Contact Geometry. In [11, 12, 13]

^{*}Mathematical Department, University of Haifa, Mount Carmel, 3498838 Haifa, Israel e-mail: vrovenski@univ.haifa.ac.il

we extended the Godbillon-Vey functional from foliations to arbitrary plane fields on a 3-dimensional manifold and used the calculus of variations to characterize critical metrics in distinguished classes of almost-product manifolds. So, a question arises: can one use a Godbillon-Vey type functional to find optimal 3-dimensional a.c.m. manifolds, e.g., in $C_5 \oplus C_{12}$ according to Chinea-Gonzalez classification? To answer the question, we define a new Godbillon-Vey type functional, see (3), present it in Reinhart-Wood form and derive its Euler-Lagrange equations for variations preserving the Reeb vector field T (Theorem 1). For clarity of calculations, we divide variations into two types, each of which has a geometric meaning. These allow us to find new solutions to the problem: what a.c.m. manifolds are in some sense optimal? Since a.c.m. manifolds with the geodesic vector field T are critical for our functional, it is interesting to study the case when the curvature k of T-curves is non-zero. We construct such critical 3-dimensional a.c.m. manifolds having a double-twisted product structure, i.e., solutions belonging to $C_5 \oplus C_{12}$ (Theorem 2).

2 The Reinhart-Wood type formula

An almost contact structure (φ, ω, T) on a smooth odd-dimensional manifold M consists of an endomorphism φ of TM, a 1-form $\omega \in \Lambda^1(M)$ and a vector field T satisfying

$$\varphi^2(X) = -X + \omega(X)T \quad (X \in TM), \qquad \omega(T) = 1. \tag{1}$$

The plane field ker ω is called the contact distribution. By (1), we get $\omega \circ \varphi = 0$ and $\varphi T = 0$.

Let T be a nonzero vector field on a smooth orientable three-dimensional manifold M. Then for any 1-form $\omega \in \Lambda^1(M)$ such that $\omega(T)=1$ there exists a unique tensor $\varphi \in End(TM)$ such that the restriction of φ on ker ω specifies a right-hand rotation and $M^3(\varphi,\omega,T)$ is an almost contact manifold. In [11, 12, 13], the Godbillon-Vey functional $gv=\int_M \eta \wedge d\eta$, where $\eta=\iota_T d\omega=d\omega(T,\cdot)$, was extended from foliations to arbitrary plane fields on M^3 . Note that $\eta(T)=0$.

We use the formula $d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y])$ for $\omega \in \Lambda^1(M)$ and $X,Y \in TM$.

Definition 1. Given an almost contact structure (φ, ω, T) on M^3 , define a 1-form $\eta^* \in \Lambda^1(M)$ by

$$\eta^*(X) := (\iota_T d\omega)(\varphi X) = d\omega(T, \varphi X) \quad (X \in TM), \tag{2}$$

i.e., $\eta^* = \eta \circ \varphi$. Using η^* , we introduce (similarly to gv) the following functional:

$$gv^* = \int_M \eta^* \wedge d\eta^*. \tag{3}$$

If an almost contact manifold $M^3(\varphi,\omega,T)$ admits a Riemannian metric $g=\langle\cdot,\cdot\rangle$ such that

$$\langle \varphi X, \varphi Y \rangle = \langle X, Y \rangle - \omega(X) \omega(Y),$$
 (4)

then g is called a compatible metric and we get an a.c.m. manifold. Such a structure (4) is induced on any hypersurface of an almost Hermitian manifold. Putting Y = T in (4), we get $\omega(X) = \langle X, T \rangle$; thus, T is g-orthogonal to ker ω . An a.c.m. manifold such that

$$g(X, \varphi Y) = d\omega(X, Y)$$

is called a contact metric manifold. Such manifolds have a geodesic vector field T.

Given a unit vector field T on a Riemannian manifold (M^3,g) , the unit normal N, the binormal $B=T\times N$ and the torsion τ of T-curves are defined on an open subset U of M^3 , where the curvature k of T-curves is nonzero. Further, we assume that U is nowhere dense, so the set $M\setminus U$ can be neglected during integration over M^3 . The 1-form in the Godbillon-Vey functional is given by $\eta=kN^{\flat}$ (i.e., $\eta(X)=k\langle N,X\rangle$ for $X\in TM$) on U and $\eta=0$ on $M\setminus U$, see [11, 12]. Thus, for the 1-form η^* in (2), using $d\omega(T,\varphi X)=-\omega([T,\varphi X])=k\langle N,\varphi X\rangle$ and skew-symmetry of φ , we get

$$\eta^* = \begin{cases} -k(\varphi N)^{\flat} & \text{on } U, \\ 0 & \text{on } M \setminus U. \end{cases}$$

If T is a geodesic vector field (i.e., k=0) then $\eta=\eta^*=0$, hence $gv^*=0$. Recall that the Levi-Civita connection ∇ of a metric $g=\langle\cdot,\cdot\rangle$ is given by:

$$2\langle \nabla_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle X, Z \rangle - Z\langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [X, Z], Y \rangle - \langle [Y, Z], X \rangle. \tag{5}$$

The non-symmetric second fundamental form h of the distribution $\ker \omega$ is defined by

$$h_{X,Y} = \langle \nabla_X Y, T \rangle = -\langle \nabla_X T, Y \rangle \qquad (X, Y \in \ker \omega).$$
 (6)

If the distribution $\ker \omega$ in TM^3 is integrable, then the tensor $2\mathcal{T}_{X,Y} = \langle [X,Y],T\rangle$ vanishes; in this case, the 2-form h is symmetric. The mean curvature of $\ker \omega$ is defined by $H = \frac{1}{2}\operatorname{Tr}_g h$. The distribution $\ker \omega$ is said to be totally umbilical (or, totally geodesic) if $\operatorname{Sym}(h) = Hg$ (h = 0, respectively). Here, $\operatorname{Sym}(h)(X,Y) = \frac{1}{2}(h(X,Y) + h(Y,X))$ is the symmetric second fundamental form of the distribution $\ker \omega$. The following Frenet-Serret formulas are true on U:

$$\nabla_T T = kN, \quad \nabla_T N = -kT + \tau B, \quad \nabla_T B = -\tau N.$$
 (7)

Using (7), we obtain $k = \langle \nabla_T T, N \rangle$ and $\tau = -\langle \nabla_T B, N \rangle$. Recall, see [13, Eq. 139],

$$d\eta(T,B) = k(\tau - h_{B,N}), \quad d\eta(T,N) = T(k) - kh_{N,N}.$$
 (8)

With the volume form $d \operatorname{vol}_g$ in mind, we derive formulas similar to the following one, see [11, 12]: $gv = -\int_M k^2(\tau - h_{B,N}) d \operatorname{vol}_g$, obtained for foliations by B.L. Reinhart and J.W. Wood in [10] with opposite sign by convention.

Proposition 1. We obtain

$$gv^* = -\int_M k^2(\tau + h_{N,B}) \, d \, \text{vol}_g.$$
 (9)

Proof. We have $\varphi N = B$ and $\varphi B = -N$. From Frenet-Serret formulas and $\eta^* = \eta \circ \varphi$, we find

$$d\eta^*(T,B) = T(\eta(\varphi B)) - B(\eta(\varphi T)) - \eta(\varphi[T,B]) = -T(\eta(N)) - k \langle \varphi[T,B], N \rangle$$

$$= -T(k) - k \langle \nabla_T B - \nabla_B T, B \rangle = -T(k) - k h_{B,B},$$

$$d\eta^*(T,N) = T(\eta(\varphi N)) - N(\eta(\varphi T)) - \eta(\varphi[T,N]) = T(\eta(B)) - k \langle \varphi[T,N], N \rangle$$

$$= k \langle B, \nabla_T N - \nabla_N T \rangle = k (\tau + h_{N,B}).$$

Thus, using (8), $\eta^*(T) = \eta^*(N) = 0$ and $\eta^*(B) = -k$, we calculate

$$(\eta^* \wedge d\eta^*)(T, N, B) = \eta^*(B) d\eta^*(T, N) = -k^2(\tau + h_{NB}).$$

Applying to the above the volume form $d \operatorname{vol}_g$ on (M^3, g) , we get (9).

3 The first variation of gv^*

Let a smooth orientable 3-dimensional manifold M be equipped with a non-vanishing vector field T. Then for any Riemannian metric g on M such that g(T,T)=1 there exist a unique 1-form $\omega \in \Lambda^1(M)$ (given by $\omega=g(T,\cdot)$) and a unique (1,1)-tensor $\varphi \in End(TM)$ such that the restriction of φ on the plane $\ker \omega$ specifies a right-hand rotation and $M^3(\varphi,\omega,T,g)$ is an a.c.m. manifold. Let $\mathcal{C}(M,T)$ denote the set of all such a.c.m. structures on (M,T).

Let $M^3(\varphi, \omega, T, g)$ be an almost contact manifold, and g_t ($|t| < \varepsilon$) a family of Riemannian metrics on M^3 such that $g_0 = g$ and $g_t(T, T) \equiv 1$. By the above, there exists a unique family $(\varphi_t, \omega_t, T, g_t)$ of a.c.m. structures in $\mathcal{C}(M, T)$ such that $\varphi_0 = \varphi$ and $\omega_0 = \omega$. Denote by dot the t-derivative at t = 0 of any quantity on M. Since $\dot{T} = 0$ and $\dot{g}_{T,T} = 0$ are true, the symmetric (0, 2)-tensor $\dot{g} = (dg_t/dt)|_{t=0}$ has five independent components on a domain $U \subset M$ (where $k \neq 0$):

$$\dot{g}_{T,N}, \quad \dot{g}_{T,B}, \quad \dot{g}_{N,N}, \quad \dot{g}_{N,B}, \quad \dot{g}_{B,B}$$

Such variations g_t that generate on U only nonzero components $\dot{g}_{N,N}, \dot{g}_{N,B}$ and $\dot{g}_{B,B}$, are called g^{\top} -variations. They preserve T and $\ker \omega$; thus produce trivial Euler-Lagrange equations for the functional gv, see [11, 12]. In contrast, the g^{\top} -variations are essential for the functional gv^* and they will be considered in Section 3.1.

Variations g_t of g that generate on U only nonzero components $\dot{g}_{T,N}$ and $\dot{g}_{T,B}$, are called g^{\pitchfork} -variations, see [11, 12]. The g^{\pitchfork} -variations will be considered in Section 3.2.

The following general variational formula for the volume form is true, see [13, p. 162]:

$$(\operatorname{d}\operatorname{vol}_g)^{\cdot} = \frac{1}{2} (\operatorname{Tr}_g \dot{g}) \operatorname{d}\operatorname{vol}_g. \tag{10}$$

Applying arbitrary variation g_t to (5), one can find how the connection changes, e.g., [13, p. 158]:

$$2\langle (\dot{\nabla}_X Y), Z \rangle = (\nabla_X^t \dot{g})(Y, Z) + (\nabla_Y^t \dot{g})(X, Z) - (\nabla_Z^t \dot{g})(X, Y), \quad X, Y, Z \in \mathfrak{X}_M. \tag{11}$$

The main goal of this section is the following

Theorem 1. The Euler-Lagrange equations on U of the functional gv^* with respect to all variations in C(M,T) are the following:

$$\tau + h_{N,B} = 0, \quad T(k) - k h_{B,B} = 0,$$

$$(h_{N,B} + h_{B,N}) (h_{N,N} + h_{B,B}) = 0, \quad h_{N,N}^2 - h_{B,B}^2 - h_{N,N} h_{B,B} - T(h_{N,N}) - \frac{1}{4} k^2 = 0.$$
 (12)

Proof. Using the Euler-Lagrange equations (14) for g^{\top} -variations (in Section 3.1), we simplify the Euler-Lagrange equations (16) for g^{\pitchfork} -variations (in Section 3.2), and get (12).

3.1 The g^{\top} -variations

Lemma 1. For g^{\top} -variations of metric on U, we obtain $\dot{\eta} = 0$ and

$$\dot{N} = -\frac{1}{2}\dot{g}_{N,N}N - \dot{g}_{N,B}B, \qquad \dot{B} = -\frac{1}{2}\dot{g}_{B,B}B, \qquad \dot{k} = -\frac{k}{2}\dot{g}_{N,N},
(\tau + h_{N,B}) = (h_{N,N} - h_{B,B})\dot{g}_{N,B} + \frac{1}{2}(\tau + h_{N,B})\dot{g}_{B,B} - T(\dot{g}_{N,B}).$$
(13)

Proof. Using $\dot{T} = 0$, we find

$$\langle \dot{N},T\rangle = \langle \dot{B},T\rangle = 0, \quad \langle \dot{N},N\rangle = -\frac{1}{2}\,\dot{g}_{N,N}, \quad \langle \dot{B},B\rangle = -\frac{1}{2}\,\dot{g}_{B,B}, \quad \langle \dot{N},B\rangle + \langle \dot{B},N\rangle = -\dot{g}_{N,B}.$$

Differentiating $\langle \nabla_T T, N \rangle = k$, $\langle \nabla_T T, B \rangle = 0$ and using (7) and (11), we find

$$\begin{split} \dot{k} &= \frac{k}{2} \, \dot{g}_{N,N} + (\nabla_T \, \dot{g})_{T,N} - \frac{1}{2} \, (\nabla_N \, \dot{g})_{T,T}, \\ \langle \dot{B}, N \rangle &= - \dot{g}_{N,B} - \frac{1}{k} \, (\nabla_T \, \dot{g})_{T,B} + \frac{1}{2 \, k} \, (\nabla_B \, \dot{g})_{T,T}. \end{split}$$

By the above, $\langle \dot{N}, B \rangle = \frac{1}{k} (\nabla_T \dot{g})_{T,B} - \frac{1}{2k} (\nabla_B \dot{g})_{T,T}$ is true. Thus,

$$\begin{split} \dot{N} &= -\frac{1}{2}\,\dot{g}_{N,N}\,N + \frac{1}{k}\left((\nabla_T\,\dot{g})_{T,B} - \frac{1}{2}\,(\nabla_B\,\dot{g})_{T,T}\right)B,\\ \dot{B} &= \left(-\,\dot{g}_{N,B} - \frac{1}{k}\,(\nabla_T\,\dot{g})_{T,B} + \frac{1}{2\,k}\,(\nabla_B\,\dot{g})_{T,T}\right)N - \frac{1}{2}\,\dot{g}_{B,B}\,B. \end{split}$$

Next, using (7) and $\dot{g}_{T,X} = 0$, we find

$$\begin{split} &(\nabla_N \, \dot{g})_{T,T} = (\nabla_B \, \dot{g})_{T,T} = 0, \quad (\nabla_T \, \dot{g})_{T,B} = -k \, \dot{g}_{N,B}, \quad (\nabla_T \, \dot{g})_{T,N} = -k \, \dot{g}_{N,N}, \\ &(\nabla_T \, \dot{g})_{N,N} = T(\dot{g}_{N,N}) - 2 \, \tau \, \dot{g}_{N,B}, \quad (\nabla_N \, \dot{g})_{N,T} = h_{N,N} \, \dot{g}_{N,N} + h_{N,B} \, \dot{g}_{N,B}. \end{split}$$

From the above we find \dot{N} , \dot{B} and \dot{k} in (13). Using (6) and (7), we calculate

$$\tau + h_{N,B} = -\langle \nabla_T B, N \rangle + \langle \nabla_N B, T \rangle = \langle \nabla_T N, B \rangle - \langle \nabla_N T, B \rangle = \langle [T, N], B \rangle.$$

Since the Lie bracket does not depend on metric, we get

$$(\tau + h_{N,B})^{\cdot} = \langle [T, N], B \rangle^{\cdot} = \dot{g}_{[T,N],B} + \langle [T, \dot{N}], B \rangle + \langle [T, N], \dot{B} \rangle$$
$$= h_{N,N} \, \dot{g}_{N,B} - \langle [T, B], B \rangle \, \dot{g}_{N,B} - T(\dot{g}_{N,B}) + \frac{1}{2} (\tau + h_{N,B}) \, \dot{g}_{B,B},$$

from which the expression of $(\tau + h_{N,B})$ in (13) follows.

Our main result in Section 3.1 is the following.

Proposition 2. An a.c.m. manifold $M^3(\varphi, \omega, T, g)$ is critical for the functional gv^* with respect to g^{\top} -variations if and only if the following Euler-Lagrange equations hold on U:

$$\tau + h_{N,B} = 0, T(k) - k h_{B,B} = 0.$$
 (14)

Proof. Using (9) and (10), we find

$$(gv^*)^{\cdot} = -\int_M \left\{ (k^2(\tau + h_{N,B}))^{\cdot} + \frac{k^2}{2} (\tau + h_{N,B}) (\dot{g}_{N,N} + \dot{g}_{B,B}) \right\} d \operatorname{vol}_g.$$

By (13), we obtain

$$(k^{2}(\tau + h_{N,B})) = 2 k \dot{k} (\tau + h_{N,B}) + k^{2}(\tau + h_{N,B})$$

$$= \frac{k^{2}}{2} (\tau + h_{N,B}) \dot{g}_{B,B} - k^{2}(\tau + h_{N,B}) \dot{g}_{N,N} + k^{2}(h_{N,N} - h_{B,B}) \dot{g}_{N,B} - k^{2}T(\dot{g}_{N,B}).$$

Using the equalities $T(f) = \operatorname{div}(f \cdot T) - f \cdot \operatorname{div} T$ for any function $f \in C^1(M)$ and $\operatorname{div} T = -\operatorname{Tr}_q h = -(h_{N,N} + h_{B,B})$, see [13], we get

$$k^2 T(\dot{g}_{N,B}) = \operatorname{div}(k^2 \dot{g}_{N,B} T) + \left(k^2 (h_{N,N} + h_{B,B}) - 2 k T(k)\right) \dot{g}_{N,B}.$$

Therefore,

$$(gv^*) \dot{} = -\int_M \left\{ -k^2(\tau + h_{N,B}) \, \dot{g}_{N,N} + k^2(h_{N,N} - h_{B,B}) \dot{g}_{N,B} + \frac{k^2}{2} (\tau + h_{N,B}) \dot{g}_{B,B} - \left(k^2(h_{N,N} + h_{B,B}) - 2 k T(k) \right) \dot{g}_{N,B} + \frac{k^2}{2} (\tau + h_{N,B}) (\dot{g}_{N,N} + \dot{g}_{B,B}) \right\} d \operatorname{vol}_g$$

$$= -\int_M \left\{ \frac{k^2}{2} (\tau + h_{N,B}) (\dot{g}_{B,B} - \dot{g}_{N,N}) + 2 (k T(k) - k^2 h_{B,B}) \dot{g}_{N,B} \right\} d \operatorname{vol}_g.$$

Since $\dot{g}_{N,N},\dot{g}_{N,B},\dot{g}_{B,B}$ are independent functions on M^3 , this completes the proof of (14). \Box

Corollary 1. Let $\{T, N, B\}$ be an orthonormal frame on a Riemannian manifold (M^3, g) such that the plane field Span(T, N) is tangent to a Riemanian foliation, $\nabla_T T$ is nonzero and parallel to N and each T-curve has constant curvature. Set $\omega = T^{\flat}$ and define φ by $\varphi(T) = 0$, $\varphi(N) = B$ and $\varphi(B) = -N$. Then (φ, ω, T, g) is critical for gv^* with respect to g^{\top} -variations.

Proof. Since the plane field Span(T, N) is integrable, the first equation of (14) holds. Since the foliation is Riemannian, we have $\nabla_B B = 0$. By this, the second equation of (14) holds.

Example 1. We present solutions of (14) with $k \neq 0$ using orthogonal coordinates in \mathbb{R}^3 .

- (i) Consider $\mathbb{R}^3 \setminus \{\rho = 0\}$ with cylindrical coordinates (ρ, ϕ, z) . Set $T = \partial_{\phi}$, $N = -\partial_{\rho}$ and $B = \partial_z$. Define φ by $\varphi(T) = 0$, $\varphi(N) = B$ and $\varphi(B) = -N$. The T-curves are circles in \mathbb{R}^3 , the (T, N)-surfaces are horizontal planes $\{z = const\}$, and the B-curves vertical lines. Since the distribution $\operatorname{Span}(T, N)$ is integrable, the first Euler-Lagrange equation of (14) is true. Since T(k) = 0 and $\nabla_B B = 0$, also the second Euler-Lagrange equation of (14) is true.
- (ii) Consider $\mathbb{R}^3 \setminus \{\rho = 0 \text{ or } \theta = \pi/2\}$ with spherical coordinates (ρ, θ, ϕ) . Let T-curves be circles that are the intersections of spheres $\{\rho = const\} > 0$ with horizontal planes. Then k = 0 on the plane $\theta = \pi/2$, and $k = \infty$ on the axis $\rho = 0$. Set $B = \partial_{\rho}$ and $N = B \times T$. Hence, spheres $\{\rho = const > 0\}$ compose a foliation tangent to $\mathrm{Span}(T, N)$. Define φ by $\varphi(T) = 0$, $\varphi(N) = B$ and $\varphi(B) = -N$. Therefore, the Euler-Lagrange equations (14) are true.

3.2 The g^{\uparrow} -variations

Lemma 2. For g^{\uparrow} -variations of metric on U, we obtain

$$\dot{k} = T(\dot{g}_{T,N}) - (\tau + h_{N,B})\dot{g}_{T,B} - h_{N,N}\dot{g}_{T,N},
\dot{N} = -\frac{1}{2}\dot{g}_{T,N}T + \frac{1}{k}\left((\tau - h_{B,N})\dot{g}_{T,N} - h_{B,B}\dot{g}_{T,B} + T(\dot{g}_{T,B})\right)B,
\dot{B} = -\frac{1}{2}\dot{g}_{T,B}T - \frac{1}{k}\left((\tau - h_{B,N})\dot{g}_{T,N} - h_{B,B}\dot{g}_{T,B} + T(\dot{g}_{T,B})\right)N,
(\tau + h_{N,B}) = \frac{1}{k}\left(h_{N,N} + h_{B,B}\right)\left((\tau - h_{B,N})\dot{g}_{T,N} - h_{B,B}\dot{g}_{T,B} + T(\dot{g}_{T,B})\right)
+ T\left(\frac{1}{k}\left((\tau - h_{B,N})\dot{g}_{T,N} - h_{B,B}\dot{g}_{T,B} + T(\dot{g}_{T,B})\right)\right) - \frac{k}{2}\dot{g}_{T,B}.$$
(15)

Proof. Since $\{T, N_t, B_t\}$ is an orthonormal frame on U_t for all g_t , we get

$$\begin{split} &\dot{g}_{T,N} + 2 \left\langle T, \dot{N} \right\rangle = 0, \quad \dot{g}_{T,B} + 2 \left\langle T, \dot{B} \right\rangle = 0, \\ &\langle \dot{N}, N \rangle = 0, \quad \langle \dot{B}, B \rangle = 0, \quad \langle \dot{N}, B \rangle + \langle \dot{B}, N \rangle = 0. \end{split}$$

Differentiating $\langle \nabla_T T, N \rangle = k$, $\langle \nabla_T T, B \rangle = 0$ and using (7) and (11), we find \dot{k} in (15) and

$$k \langle \dot{B}, N \rangle = h_{B,B} \, \dot{g}_{T,B} - (\tau - h_{B,N}) \dot{g}_{T,N} - T(\dot{g}_{T,B}).$$

Therefore, $k \langle \dot{N}, B \rangle = -h_{B,B} \dot{g}_{T,B} + (\tau - h_{B,N}) \dot{g}_{T,N} + T(\dot{g}_{T,B})$ is true. From the above we find \dot{N} , \dot{B} and \dot{k} in (15). Finally, we get

$$(\tau + h_{N,B}) = \langle [T, N], B \rangle = \dot{g}_{[T,N],B} + \langle [T, \dot{N}], B \rangle + \langle [T, N], \dot{B} \rangle,$$

from which and known \dot{N} , \dot{B} the expression of $(\tau + h_{N,B})$ in (15) follows.

Our main result in Section 3.2 is the following.

Proposition 3. An a.c.m. manifold $M^3(\varphi, \omega, T, g)$ is critical for the functional gv^* with respect to g^{\uparrow} -variations if and only if the following Euler-Lagrange equations hold on U:

$$k (2\tau + h_{N,B} - h_{B,N}) (h_{N,N} + h_{B,B}) - k (\tau + h_{N,B}) h_{N,N} - T(k) (2\tau + h_{N,B} - h_{B,N}) - k T(\tau + h_{N,B}) = 0 k (h_{N,N} + h_{B,B})^{2} - T(k (h_{N,N} + h_{B,B})) - k (h_{N,N} + h_{B,B}) h_{B,B} + T(T(k)) - T(k) h_{N,N} - k (\tau + h_{N,B})^{2} - \frac{1}{4} k^{3} = 0.$$
(16)

Proof. For a g^{\uparrow} -variation, using (9) and (10) with $\text{Tr}_g \ \dot{g} = 0$, we find

$$(gv^*)^{\cdot} = -\int_M (k^2(\tau + h_{N,B}))^{\cdot} d \text{vol}_g.$$

By (13), we obtain

$$(k^{2}(\tau + h_{N,B})) = 2 k \dot{k} (\tau + h_{N,B}) + k^{2}(\tau + h_{N,B})$$

$$= 2 k (\tau + h_{N,B}) (T(\dot{g}_{T,N}) - (\tau + h_{N,B}) \dot{g}_{T,B} - h_{N,N} \dot{g}_{T,N})$$

$$+ k (h_{N,N} + h_{B,B}) ((\tau - h_{B,N}) \dot{g}_{T,N} - h_{B,B} \dot{g}_{T,B} + T(\dot{g}_{T,B}))$$

$$+ k^{2} T (\frac{1}{k} ((\tau - h_{B,N}) \dot{g}_{T,N} - h_{B,B} \dot{g}_{T,B} + T(\dot{g}_{T,B}))) - \frac{1}{2} k^{3} \dot{g}_{T,B}.$$
(17)

Using the equalities $T(\alpha) = \operatorname{div}(\alpha \cdot T) - \alpha \cdot \operatorname{div} T$ for any function $\alpha \in C^1(M)$ and $\operatorname{div} T = -\operatorname{Tr}_g h = -(h_{N,N} + h_{B,B})$, see [13], we get for any functions $\alpha, \beta, \gamma \in C^1(M)$:

$$\alpha T(\dot{\beta}T) = \operatorname{div}(\alpha\beta T) + \left[\alpha(h_{N,N} + h_{B,B}) - T(\alpha)\right]\dot{\beta},$$

$$\alpha T(\beta T(\dot{\gamma})) = \operatorname{div}(\left[\alpha\beta T(\dot{\gamma}) + \alpha\beta(h_{N,N} + h_{B,B})\dot{\gamma}\right]T)$$

$$+ \left[\alpha\beta(h_{N,N} + h_{B,B})^2 + T(\beta T(\alpha)) - \beta T(\alpha)(h_{N,N} + h_{B,B}) - T(\alpha\beta(h_{N,N} + h_{B,B}))\right]\dot{\gamma}.$$

Therefore, with some functions f_i on M we get

$$\begin{split} &2\,k\,(\tau+h_{N,B})\,T(\dot{g}_{T,N}) = \left[2\,k\,(\tau+h_{N,B})\,(h_{N,N}+h_{B,B}) - 2\,T(k\,(\tau+h_{N,B}))\right]\dot{g}_{T,N} + \mathrm{div}\,f_{1},\\ &k\,(h_{N,N}+h_{B,B})\,T(\dot{g}_{T,B}) = \left[k\,(h_{N,N}+h_{B,B})^{2} - T(k\,(h_{N,N}+h_{B,B}))\right]\dot{g}_{T,B} + \mathrm{div}\,f_{2},\\ &k^{2}T\left(\frac{1}{k}\left((\tau-h_{B,N})\dot{g}_{T,N} - h_{B,B}\,\dot{g}_{T,B}\right)\right) = k\,(\tau-h_{B,N})(h_{N,N}+h_{B,B})\,\dot{g}_{T,N}\\ &-k\,h_{B,B}(h_{N,N}+h_{B,B}),\dot{g}_{T,B}) + \mathrm{div}\,f_{3},\\ &k^{2}T\left(\frac{1}{k}\,T(\dot{g}_{T,B})\right) = \left[k\,(h_{N,N}+h_{B,B})^{2} - T(k\,(h_{N,N}+h_{B,B})) - 2\,T(k)\,(h_{N,N}+h_{B,B})\right.\\ &+ 2\,T(T(k))\left]\,\dot{g}_{T,B} + \mathrm{div}\,f_{4}. \end{split}$$

Integrating (17) and using the above and the Divergence Theorem, gives

$$\begin{split} &(gv^*)^{\cdot} = -\int_{M} \Big\{ 2\,k\,(\tau + h_{N,B})\,T(\dot{g}_{T,N}) + k\,(h_{N,N} + h_{B,B})\,T(\dot{g}_{T,B}) \\ &+ k^2 T \Big(\frac{1}{k} \left((\tau - h_{B,N}) \dot{g}_{T,N} - h_{B,B} \, \dot{g}_{T,B} \right) \Big) + k^2 T \Big(\frac{1}{k} \,T(\dot{g}_{T,B}) \Big) \\ &- 2\,k\,(\tau + h_{N,B})(\tau + h_{N,B}) \dot{g}_{T,B} - 2\,k\,(\tau + h_{N,B}) h_{N,N} \, \dot{g}_{T,N} \\ &+ k\,(h_{N,N} + h_{B,B}) \Big((\tau - h_{B,N}) \dot{g}_{T,N} - h_{B,B} \, \dot{g}_{T,B} \Big) - \frac{1}{2} \, k^3 \dot{g}_{T,B} \Big\} d\,\mathrm{vol}_g \\ &= -4 \int_{M} \Big\{ \Big[k\,(2\,\tau + h_{N,B} - h_{B,N})\,(h_{N,N} + h_{B,B}) - k\,(\tau + h_{N,B}) h_{N,N} - T(k\,(\tau + h_{N,B})) \Big] \, \dot{g}_{T,N} \\ &+ \Big[k\,(h_{N,N} + h_{B,B})^2 - T(k\,(h_{N,N} + h_{B,B})) - k\,h_{B,B}(h_{N,N} + h_{B,B}) \\ &- T(k)\,(h_{N,N} + h_{B,B}) + T(T(k)) - k\,(\tau + h_{N,B})^2 - \frac{1}{4} \,k^3 \Big] \, \dot{g}_{T,B} \Big\} d\,\mathrm{vol}_g. \end{split}$$

Since $\dot{g}_{T,N}, \dot{g}_{T,B}$ are independent functions on M^3 , this completes the proof of (16).

4 Critical almost contact metric manifolds

Using the Euler-Lagrange equations of Theorem 1, we get the following

Proposition 4. Any contact metric manifold $M^3(\varphi, \omega, T, g)$ is critical for the action gv^* with respect to all variations in C(M, T).

Proof. Since T is a geodesic vector field (k=0), see [2], then $U=\emptyset$ and (12) become trivial. \square

We list the defining conditions (formulated in terms of the covariant derivatives $\nabla \varphi$, ∇T and $\nabla \omega$) of any a.c.m. manifold $(M, \varphi, T, \omega, g)$ which falls in $C_5 \oplus C_{12}$ or in its subclasses, see [4]:

$$C_{5} \oplus C_{12}: \qquad (\nabla_{X}\varphi)Y = \beta\left(\langle \varphi X, Y \rangle T - \omega(Y)\varphi X\right) - \omega(X)((\nabla_{T}\omega)(\varphi Y)T + \omega(Y)\varphi(\nabla_{T}T)),$$

$$C_{5}: \qquad (\nabla_{X}\varphi)Y = \beta\left(\langle \varphi X, Y \rangle T - \omega(Y)\varphi X\right), \quad \beta = const > 0,$$

$$C_{12}: \qquad (\nabla_{X}\varphi)Y = -\omega(X)((\nabla_{T}\omega)(\varphi Y)T + \omega(Y)\varphi(\nabla_{T}T)),$$

$$|C| = C_{5} \cap C_{12}: \qquad \nabla \varphi = 0 \quad \text{(cosymplectic manifolds)}.$$

The vanishing of the tensor h, see (6), that is ker ω defines a totally geodesic foliation, means that the considered manifold belongs to C_{12} . The vanishing of $\nabla_T T$ means that the considered manifold belongs to C_5 , namely, it is a β -Kenmotsu manifold. Thus, we get the following

Proposition 5. Any 3-dimensional a.c.m. manifold of a class C_5 is critical for the action gv^* with respect to all variations in C(M,T). The set of 3-dimensional a.c.m. manifolds of a class C_{12} that are critical for the action gv^* with respect to all variations in C(M,T) coincides with |C|.

Any a.c.m. structure with a geodesic vector field T (e.g., Propositions 4 and 5) can be called "trivial" solution to the equations (12). What are non-trivial solutions of (12)?

Lemma 3. If an a.c.m. manifold $M^3(\varphi, \omega, T, g)$ is critical for the action gv^* with respect to all variations in C(M,T), then the distribution Span(T,N) on U is integrable. Moreover, if $\ker \omega$ is either totally umbilical or integrable, then also the distribution Span(T,B) on U is integrable.

Proof. Using the equalities (6) and $\tau = \langle \nabla_T N, B \rangle$, we rewrite the Euler-Lagrange equation (14)₁ as $\langle [T, N], B \rangle = 0$; thus, the distribution $\operatorname{Span}(T, N)$ is integrable. By the conditions and the equalities $h_{N,B} + h_{B,N} = 0$ (for totally umbilical $\ker \omega$) or $h_{N,B} - h_{B,N} = 0$ (for integrable $\ker \omega$) and $\langle [B, T], N \rangle = \tau - h_{B,N}$, the second claim is true.

Proposition 6. Let an a.c.m. manifold $M^3(\varphi, \omega, T, g)$ with integrable totally umbilical distribution $\ker \omega$ and the mean curvature $H \not\equiv 0$ be a critical for the action gv^* with respect to all variations in $\mathcal{C}(M,T)$. Then the distributions Span(T,N) and Span(T,B) on U are also integrable and the Euler-Lagrange equations (12) for all variations in $\mathcal{C}(M,T)$ are reduced to the following: $\tau = 0$ and

$$T(k) = k H, \quad T(H) = -H^2 - (1/4) k^2.$$
 (18)

Proof. By conditions, $h_{N,N} = h_{B,B} = H$ and $h_{N,B} = h_{N,B} = 0$. Thus, the Euler-Lagrange equations (12) are reduced to $\tau = 0$ and (18).

The Euler-Lagrange equations (18) on U can be considered along any T-curve (parameterized by s) as the dynamical system of two ODEs for functions k(s) and H(s):

$$(d/ds)k = kH, \quad (d/ds)H = -H^2 - (1/4)k^2.$$
 (19)

Lemma 4. The general solution of the system (19) has the following form:

$$s = \int (H^4 + C_1)^{-1/2} dH + C_2, \quad k(s) = \pm 2\sqrt{-\frac{\mathrm{d}}{\mathrm{d}s} H(s) - H^2(s)},$$

or, in Taylor series form with $k(0) = k_0 \neq 0$ and $h(0) = H_0$,

$$H(x) = H_0 - \left(H_0^2 + \frac{k_0^2}{4}\right)x + H_0^3 x^2 - H_0^2 \left(H_0^2 + \frac{k_0^2}{4}\right)x^3 + O(x^4),$$

$$k(x) = k_0 + k_0 H_0 x - \frac{k_0^3}{8} x^2 - \frac{k_0^3 H_0}{8} x^3 + O(x^4).$$
 (20)

Proof. From (19) we get the following ODEs:

$$H'' = 2H^3, \quad k'' = -k^3/4.$$
 (21)

Let $k(0) = k_0 \neq 0$, $H(0) = H_0$ be the values of solutions of (19) at t = 0. Then the values of the first derivatives of solutions of (21) at t = 0 should be $k'(0) = k_0 H_0$ and $H'(0) = -H_0^2 - \frac{1}{4} k_0^2$, see Fig. 4 with $k_0 = 1$, $H_0 = 0$ and |s| < 3.4, and the series expansion (20) is valid.

Figure 1: Solution k(s), H(s) of (19) with $k_0 = 1$ and $H_0 = 0$ for |s| < 3.4.

Theorem 2. There exist 3-dimensional a.c.m. manifolds of a class $C_5 \oplus C_{12}$ critical for the action gv^* with respect to all variations in $\mathcal{C}(M,T)$. These manifolds have integrable distributions Span(T,N) and Span(T,B) on U, $\tau=0$ and are presented locally as double twisted products $B \times_{(u,v)} I$, where the functions $H=-2\langle \nabla(\log u), T \rangle$ and $k=-\langle \nabla(\log v), N \rangle \neq 0$ satisfy (18).

Proof. By [4, 6], it is sufficient to build a critical double twisted structure $B \times_{(u,v)} I$ with metric $g = (u^2g_B) \oplus (v^2ds^2)$ on a domain $M = B \times I$ in $\mathbb{R}^3(x,y,s)$, where $B = (-1,1) \times (-1,1) \subset \mathbb{R}^2(x,y)$ and $u,v:M \to \mathbb{R}$ are positive smooth functions. The second fundamental form h and the mean curvature H of the leaves $B \times \{s\}$ and the curvature k of the fibers $\{x\} \times I$ are given by, see [9, 13].

$$h = -\langle \nabla(\log u), T \rangle g^{\top}, \quad H \cdot T = -2 \nabla(\log u), \quad k \cdot N = -\nabla(\log v).$$
 (22)

The leaves $B \times \{s\}$ are totally umbilical in (M,g). For a critical a.c.m. structure on (M,T), by Proposition 6, we get $\tau=0$ and the distributions $\mathrm{Span}(T,N)$ and $\mathrm{Span}(T,B)$ on U are integrable. Using Lemma 4, we restore functions k and H on $B \times I \subset \mathbb{R}^3(x,y,s)$ from their arbitrary initial values $k_0 \neq 0$ and H_0 on B (for s=0). Next, we will show existence of appropriate functions u,v on $B \times I$. Let us assume that u=u(s) depends on one variable, thus, by (22), T is parallel to coordinate vector ∂_s and we can restore u from its arbitrary initial values at s=0 by integration along s-coordinate lines. Then, we assume that v=v(x) depends on one variable, thus, by (22), N is parallel to coordinate vector ∂_x and we can restore v from its arbitrary initial values at v=v(x)0 by integration along v-coordinate lines.

5 Conclusion

In the article, we applied the calculus of variations approach to finding best a.c.m. structures for a given manifold. We defined a new Godbillon-Vey type functional gv^* for a 3-dimensional a.c.m. manifold, found its Euler-Lagrange equations for all variations preserving the Reeb vector field and constructed critical 3-dimensional a.c.m. manifolds having a double-twisted product structure, i.e., solutions belonging to the class $C_5 \oplus C_{12}$ according to Chinea-Gonzalez classification.

In further work, we hope to study the critical a.c.m. manifolds (for gv^*) with nonintegrable distribution $\ker \omega$. The following tasks also seem interesting: study counterparts $gv_1^* = \int_M \eta \wedge d\eta^*$ and $gv_2^* = \int_M \eta^* \wedge d\eta$ of gv^* ; calculate the second variations of gv^* and gv_i^* and find their extrema.

We also intend to study the multidimensional case of gv^* . For any a.c.m. manifold of dimension $2n+1 \geq 5$, one may define one-form $\eta^* = \eta \circ \varphi = -k (\varphi N)^{\flat}$, and analogously to the functionals $gv_s = \int_M \eta \wedge (d\eta)^p \wedge (d\omega)^{n-p}$ for all $p \geq 1$ in [11, 12], consider the following functionals:

$$gv_s^* = \int_M \eta^* \wedge (d\eta^*)^p \wedge (d\omega)^{n-p}, \quad 1 \le p \le n.$$
 (23)

A question arises: what a.c.m. manifolds, e.g., in $\bigoplus_{1 \leq i \leq 5} C_i \oplus C_{12}$ due to Chinea-Gonzalez classification, are optimal for functionals (23) with respect to all variations in C(M,T)?

References

- [1] T. Asuke, Transverse projective structures of foliations and infinitesimal derivatives of the Godbillon-Vey class. Int. J. of Math. 26(4), 2015 (29 pp.)
- [2] D.E. Blair, A survey of Riemannian contact geometry, Complex manifolds, 6 (2019), 31–64.
- [3] B. Bayour, G. Beldjilali, M.L. Sinacer, Almost contact metric manifolds with certain condition. Ann. Glob. Anal. Geom. 64(2) (2023), 12 pp.
- [4] S. de Candia, M. Falcitelli, Curvature of $C_5 \oplus C_{12}$ -manifolds. Mediterr. J. Math., 16, 105 (2019).
- [5] D. Chinea, C. González, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156(4) (1990), 15–36.
- [6] M. Falcitelli, A class of almost contact metric manifolds and double twisted products. Math. Sci. Appl. E-Notes (MSAEN) 1, 36–57 (2013)
- [7] C. Godbillon, J. Vey, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris Sér A-B, 273 (1971), A92–A93.
- [8] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J., 24 (1972), 93–103.
- [9] R. Ponge, and H. Reckziegel: Twisted products in pseudo-Riemannian geometry, Geom. Dedicata 48 (1993), 15–25
- [10] B.L. Reinhart and J.W. Wood, A metric formula for the Godbillon-Vey invariant for foliations, Proc. Amer. Math. Soc., 38, No. 2 (1973), 427–430.
- [11] V. Rovenski and P. Walczak, Variations of the Godbillon-Vey invariant of foliated 3-manifolds, Complex Analysis and Operator Theory, 13(6), (2019), 2917–2937.
- [12] V. Rovenski and P. Walczak, A Godbillon-Vey type invariant for a 3-dimensional manifold with a plane field. Differential Geom. and its Applications, 66, (2019), 212–230.
- [13] V. Rovenski and P. Walczak, Extrinsic geometry of foliations, Birkhäuser, Progress in Mathematics, Vol. 339, 2021, 319 pp.