5CCS2FC2: Foundations of Computing II

Tutorial Sheet 5

5.1 Consider the following graph G = (V, E) describing a set which tasks that must be completed before or concurrently with which others:

- (i) Use the algorithm described in class to identify which tasks must be performed concurrently.
- (ii) Draw the component graph G^{SCC} .
- (iii) Perform a topological sort on the component grap $G^{\sf SCC}$ to identify an order in which the task can be scheduled?
- (iv) How many ways can the number of number of strongly connected components change if a single additional edge is added to G?

- 5.2 Consider the following naïve algorithm for the minimum spanning tree problem
 - **Step 1)** If the graph contains at most one edge, return this as the minimum spanning tree.
 - **Step 2)** Otherwise, divide the graph G into two subgraphs G_1 and G_2 that differ in size by at most 1 vertex.
 - **Step 3)** Identify a minimum spanning tree T_1 for G_1 and a minimum spanning tree T_2 for G_2 . (Do this by recursively applying this algorithm to each subgraph)
 - **Step 4)** Connect the two spanning trees T_1 and T_2 with the lightest edge between then.
 - (i) Apply this algorithm to the following graph:

- (ii) Does the algorithm always return a spanning tree?
- (ii) Does the algorithm always return a minimum spanning tree?