

2018-2019 Ikasturtea

Irakaslea: Jose Manuel Gonzalez

Teknologia Elektronikoko Saila

5I28 – Bilboko Ingeniaritza Eskola (II Eraikina)

josemanuel.gonzalezp@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Karga elektrikoa (gogoratu)
- 2. Material elektriko motak
- 3. Korronte elektrikoa
- 4. Potentzial diferentzia: tentsio elektrikoa
- 5. Potentzial diferentzia eta korrontearen zentzua
- 6. Potentzia elektrikoa

1. KARGA ELEKTRIKOA

- Materialen ezaugarri intrintseko eta oinarrizko bat da (masa bezala)
- Bi motatako kargak:
 - Karga positiboak
 - Karga negatiboak
- Adierazpenak
 - Q = Karga konstantea
 - q = orokorrean, karga aldakor baten aldiuneko balioa
 - q(t) = denboran aldakorra den karga baten aldiuneko balioa
- Unitatea: Coulomb [C]
- Zirkuituetan, kargen mugimendua aztertzen da zirkuituetako elementuetatik igarotzean
- Orokorrean, mugitzen dena elektroia da, atomoetako oinarrizko partikuletako bat, karga negatiboduna.
- Elektroiaren karga: $e^{-} = -1.602 \cdot 10^{-19} C$

2. Material elektriko motak

• Eroaleak

- Eroale elektriko bat karga elektrikoaren mugimenduari oztopo txikia jartzen dion material bat
- Karga elektrikoak (e⁻) libreki mugitzen dira
 - →beraien arteko indar elektrikoa zero izango da
 - → Eroaleak oreka elektrostatikoan daude
 - o Eremu elektrikoa eroalearen barruan zero da
 - o Eroale guztian zehar potentzial elektrikoa konstantea da
 - o Kargak eroalearen gainazalean kokatzen dira.

2. Material elektriko motak

- Isolatzaileak edo dielektrikoak
 - Karga elektrikoaren mugimenduari eragozten dioten materialak → korronte elektriko igarotzea "ezinezkoa"
 - Eremu elektriko batean daudenean, karga elektrikoak materialen gainazalean kokatzen dira eta kargen balio osoa zero da → Polarizazioa
 - Polarizazioa
 - Eremu elektrikoaren murrizketa, dielektrikoaren ondorioz

o Portaera hau, dielektrikoaren permitibitatearen bidez adierazten da $\mathcal{E} = \mathcal{E}_0 \mathcal{E}_r$

2. Material elektriko motak

• Erdieroaleak

- Eroankortasun elektrikoa tenperaturaren arabera aldatzen duen substantzia kristalinoa
- Giro-tenperaturan ez dira ez eroale ez isolatzaileak.
 - Tenperatura zero absoluturantz hurbilduz gero isolatzaileak dira.
 - Tenperatura altuetan berriz, eroale onak izatera hel daitezke.
- Gehien erabiltzen den material erdieroalea silizioa (Si) da eta ondoren germanioa (Ge).
- Horrez gain, AsGa, PIn, AsGaAl, TeCd, SeCd eta SCd konbinaketak (aleazioak) ere erabiltzen dira.
- Transistore /diodo funtsa

3. KORRONTE ELEKTRIKOA

- Kargen mugimendua material eroale baten zehar
- **Definizioa:** Eroale baten zeharkako azalera atetik (sinplifikatzeko, behatze-puntu batetik) denbora unitatean igarotzen diren karga elektrikoen kopurua da korrontearen intentsitatea.

o Adierazpena:

- I : korronte konstantearen intentsitatea
- i : oro har, korronte aldakorraren intentsitatearen aldiuneko balioa
- i(t):korrontea denboran zehar aldatzen dela adierazteko
- o Unitatea: Anperioa (A)

3. KORRONTE ELEKTRIKOA

o Adierazpen matematikoa:

$$I = \frac{\Delta Q}{\Delta t} \qquad i = \frac{dq}{dt}$$

$$I = \frac{\sum Q^{+} - \sum Q^{-}}{\Delta t} = \frac{\sum Q^{+} + \sum |Q^{-}|}{\Delta t}$$

o Oinarrizko ezaugarriak:

- Zeinua
- Norantza
 - Konbentzioz: Geziaren norantzak adierazten du karga positiboen norantza (e⁻-en kontrankoa)

4. POTENTZIAL DIFERENTZIA: TENTSIO ELEKTRIKOA

- Kargak potentzial-diferentzia bat dagoenean mugituko dira soilik
- o Definizioa: Potentzial-diferentzia bi punturen artean (A eta B), karga-unitate positiboa potentzial baxuko puntutik (B) potentzial altuko puntura (A) eramateko egin behar den lana da, edo beste hitzetan esanda, karga-unitate positiboari eman behar zaion energia-kantitatea

$$\Delta V_{AB} = V_{AB} = V_A - V_B = \frac{W_{BA}}{Q}$$

o Unitateak: Boltioa edo Volt (V)

4. POTENTZIAL DIFERENTZIA: TENTSIO ELEKTRIKOA

o Oinarrizko ezaugarriak:

- Zeinua
- Norantza
 - + potentzial handiena
 - - potentzial txikiena

5. POTENTZIAL DIFERENTZIA ETA KORRONTEAREN ZENTZUA

6. POTENTZIA ELEKTRIKOA

- Adierazten du energiak nola aldatzen duen denboran zehar
- o Definizioa: karga elektrikoak mugitzen direnean ematen den energia aldaketa
- o Adierazpen matematikoa:

$$P_{AB} = \frac{W_{BA}}{t} = \frac{V_{AB} \cdot q}{t} = V_{AB} \cdot \left(\frac{q}{t}\right) = V_{AB} \cdot I_{AB}$$

- o Unitateak: Watio edo Watt (W)
- o Zirkuitu-osagai bateko potentzia elektrikoa:
 - Xurgatutakoa: P_x
 - Emandakoa: P_e

$$P = V \cdot I$$

6. POTENTZIA ELEKTRIKOA

o Emandako potentzia:

$$V > 0$$
 eta $I > 0$ edo $V < 0$ eta $I < 0$ \downarrow $P_e = V \cdot I > 0$ Osagai aktiboa

o Xurgatutako potentzia:

$$V > 0$$
 eta $I > 0$
edo
 $V < 0$ eta $I < 0$
 \downarrow
 $P_x = V \cdot I > 0$
Osagai pasiboa

$$V > 0$$
 eta $I < 0$ edo
 $V < 0$ eta $I > 0$
 \downarrow
 $P_e = V \cdot I < 0$
Osagai pasiboa
 $(P_x > 0)$

$$V > 0$$
 eta $I < 0$ edo
$$V < 0 \text{ eta } I > 0$$

$$\downarrow$$

$$P_x = V \cdot I < 0$$
Osagai aktiboa
$$(P_e > 0)$$

6. Potentzia elektrikoa

- Potentzien balantzea
 - Energiaren kontserbazio printzipioa

$$\sum_{\text{osagai aktiboak}} P_{emandakoa} = \sum_{\text{osagai pasiboak}} P_{xurgatutakoa}$$

 Beraz, zirkuitu guztietan elementu aktibo bat behar da gutxienez, elementu pasiboek energia jaso dezaten.

$$\sum_{\text{osagai aktiboak}} P_{emandakoa} = 0$$

$$\sum_{\text{osagai pasiboak}} P_{\textit{xurgatutakoa}} = 0$$