

UNIVERSIDAD POLITÉCNICA DE CARTAGENA

Escuela Técnica Superior de Ingeniería Agronómica

Departamento de Ingeniería de los Alimentos y del

Equipamiento Agrícola

DETERMINACIÓN DEL PERFIL AROMÁTICO EN LA RECOLECCIÓN DE LA ENTRADA EXÓTICA DE MELÓN PI161375

Trabajo fin de grado presentado por **PALOMA TORRES GARCÍA**, para aspirar al título de Ingeniero Agrónomo por la UPCT.

DIRIGIDO por:

PROF. JUAN PABLO FERNÁNDEZ TRUJILLO

30 de Septiembre, 2017

Cartagena, Murcia, España

El presente proyecto de titulación se realizó con el apoyo de las siguientes instituciones:

SECRETARÍA DE ESTADO DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN

Confidencialidad y derechos de propiedad intelectual

La investigación relativa a melón incluida en esta memoria de proyecto de titulación ha recibido fondos para su desarrollo dentro de dos proyectos principalmente, cuyo investigador principal es el Dr. Juan Pablo Fernández Trujillo. El principal proyecto financiador fue el proyecto 11784/PI/09 titulado "Análisis del efecto de QTLs que inducen cambios en la textura de la pulpa y la calidad global del fruto de melón", financiado por la Fundación Séneca de la Región de Murcia (Centro Coordinación de la Investigación) con vigencia del 1 de Enero de 2010 a 31 de Diciembre de 2015. Igualmente se ha beneficiado de fondos del proyecto AGL2010-20858 denominado "Calidad aromática del melón y su relación con precursores y el comportamiento fisiológico del fruto", cuya vigencia es del 1 de Enero de 2011 al 31 de Diciembre de 2013, financiado por el FEDER y del Ministerio de Ciencia e Innovación.

Las fotografías que pueda incluir frutos de melón en este trabajo de las líneas han sido cedidas para el mismo por el Dr. Fernández-Trujillo, tal y como aparece en el pie de las mismas.

Esta investigación se ha realizado de forma pluridisciplinar por un equipo de investigación en el cual colaboramos haciendo trabajos de muestreo y determinación de atributos de calidad (aromas entre ellos). Por lo cual entiendo que no puedo reclamar la propiedad intelectual exclusiva de estos apartados. Estos resultados (texto, cuadros, figuras y fotografías) no pueden ser reproducidos o mostrados total o parcialmente para cualquier uso, ni difusión en web o repositorios, incluidos presentación a premios o concursos, *sin permiso escrito de los autores* adscritos a la UPCT (pedir autorización a juanp.fdez@upct.es) hasta su publicación definitiva, ya que ello constituiría un delito penado por la Ley de Propiedad Intelectual y legislación derivada o relacionada aplicable en España.

Y para que conste firmo la presente en Cartagena a 30 de Septiembre de 2017.

Firmado:

Juan Pablo Fernández Trujillo Investigador Responsable de esta Investigación y director del proyecto fin de grado

Enterado y conformes:

Paloma Torres García

Agradecimientos

A Noelia dos Santos Carrillo, Estanislao Cuadros Sabanés, Mercedes García Gutiérrez, Raquel Martínez Carrillo, Abimael García Hernández, José Fidencio Delavequia, Loli Medina, Abdelmalek Hakmaoui, José Fermín Moreno, y el Prof. Juan Pablo Fernández Trujillo, por su trabajo de recolección, transporte, muestreo y análisis de laboratorio en la campaña de melón.

A los Prof. Juan Antonio Martínez López y Juan Esteva Pascual, a la alumna Erasmus Merve Melisey (Ege University, Izmir, Turquía) y por la ayuda en el trabajo campo-laboratorio, en especial el seguimiento del cultivo.

A Antonio Angel Escudero Lidón, Mohamed Zarid, Mohamed Ali Benabderrahim y Marisela Celso Espinosa, Citlalli Palma Hernández, Celso Sanchez Campos, Itzelly Sánchez Rafael, Karina Zea, Perla Jiménez Velázquez, Mustapha Ennajeh, Libia Acened Chaparro Torres y Juan Carlos Alarcón Miñarro por el trabajo previo o en paralelo determinando perfiles de aromas. Los perfiles, obtenidos a partir de varias líneas no climatéricas y climatéricas de melón durante estos últimos 4 años en diferentes estancias y tesis profesionales de la Universidad Chapingo, tesis doctoral, y estancias postdoctorales, contribuyeron de forma importante a simplificar el trabajo de integración.

Al equipo técnico para asistencia en el campo de la Estación Agroalimentaria Tomás Ferro de La Palma (Cartagena) donde se cultivaron las plantas de melón (Francisco Javier Solano Márquez, José Anastasio Egea, Pedro Ángel Mateo).

A Plácido Varó Vicedo y Ricardo Gálvez (Centro Integrado de Formación y Experiencias Agrarias (CIFEA) de la Consejería de Agricultura de la Región de Murcia en Torre Pacheco, por sus sugerencias sobre detalles técnicos de cultivo.

A María José Roca, del Servicio de Apoyo a la Innovación Tecnológica, por el apoyo en los análisis de aromas por cromatografía de gases-masas.

Al servicio de informática de la UPCT por el apoyo en la instalación de programas.

Gracias especialmente al profesor Juan Pablo Fernández Trujillo por su dirección y por haberme dado la oportunidad de llevar a cabo este trabajo.

REFERENCIAS DEL TRABAJO FIN DE GRADO

IDENTIFICACIONES

AUTOR: Paloma Torres García.

TÍTULO: DETERMINACIÓN DEL PERFIL AROMÁTICO EN LA RECOLECCIÓN DE LA ENTRADA EXÓTICA DE MELÓN PI161375

DIRECTOR DEL TFG: Juan Pablo Fernández Trujillo

AÑO: 2017

TITULACIÓN: Ingeniería Agronómica

Palabras Clave: *Cucumis Melo L.*, parentales, perfil aromático, calidad de fruto, compuestos orgánicos volátiles, entradas exóticas.

Abreviaturas y acrónimos:

"Shongwan Charmi"; GC-MS, Cromatografía gases-masas; CLAE, cromatografía líquida de alta eficiencia; HSSE, Extracción por absorción de espacio de cabeza; MQ, "Match Quality" o índice de calidad de compuestos identificados; AT, Área total AT%, Área total en porcentaje sin suciedad; AT%S, Área total en porcentaje con suciedad; ANoSu, Área total de compuestos sin suciedad; ATC, Área total del cromatograma; PTV, "programmed temperature vaporizatino injection" ó detector de inyección dotado de vaporización a temperatura programada; COV, compuestos orgánicos volátiles.

TIPO DE TRABAJO: Investigación aplicada en el marco de proyectos competitivos regionales.

OTROS DATOS

N° CITAS BIBLIOGRÁFICAS: 10 N° TABLAS: 10 N° DE FIGURAS: 3 N° ANEJOS: 1

Índice general

Confidencialidad y derechos de propiedad intelectual	3
Agradecimientos	4
Enlaces a tablas	8
Enlaces a figuras	9
Resumen	10
Abstract	11
1. Introducción	12
1.1. El origen del melón.	12
1.2. Descripción botánica	13
1.3. Las entradas exóticas y la mejora de la calidad del melón	13
2. Objetivos del proyecto;Error! N	Marcador no definido.
3. Material y métodos	19
3.1. Material vegetal	19
3.2. Diseño experimental	19
3.3.4. Jugosidad de la pulpa	21
3.4. Extracción de volátiles.	21
3.5. Identificación de volátiles y cuantificación	22
3.6. Análisis estadístico	27
3.7. Perfil aromático	32
4. Resultados	32
5. Discusión	33
6. Conclusiones	55
7. Bibliografía	56

Índices

8. Anexos	58
8.1. Tablas suplementarias	59

Enlaces a tablas

- Tabla 1. Clasificación de las especies de melón y sus variedades.
- **Tabla 2.** Perfil de aromas normalmente encontrados en melón con nombres en inglés (Chaparro-Torres et al. 2016)
- Tabla 3. Compuestos químicos consistentes
- **Tabla 4.** Compuestos químicos (en inglés y según nombre de la base de datos NIST11) identificados en el análisis según NIST11 y no identificados
- Tabla 5. Caracterización de compuestos consistentes con RT medio, MQ medio y LRI medio
- Tabla 6. Caracterización de compuestos considerados suciedad
- **Tabla 7.** Medida de media de compuestos (en porcentaje del área total)
- Tabla 8. Clasificación de los compuestos identificados
- Tabla 9. Porcentaje de compuestos según clasificación sobre el total de compuestos consistentes
- Tabla 10. Compuestos presentes en las 7 réplicas

Enlaces a figuras

Imagen 1. A.Extracción de los cilindros. B. Plantas en semillero. C. Cultivo acolchado (donde se ve la disposición de las tablillas). D. Aspecto del cultivar coreano exótico 'Shongwan Charmi' entrada PI16137, (fotos cedida por el profesor Fernández-Trujillo).

Imagen 2. Capturas de resolución de picos en el tiempo de retención de 22,16 min del software AMDIS 32.

Imagen 3. Capturas de resolución de picos en el minuto 4,25 del software AMDIS 32. Tras su revisión se pudo identificar el pico: se trataba del compuesto isobutyl acetate.

Resumen

Palabras clave: *Cucumis Melo L.*, parentales, perfil aromático, calidad de fruto, compuestos orgánicos volátiles, entradas exóticas.

El melón tiene un origen muy impreciso, pero su origen cultivado se ha encontrado en Egipto hacia el 2400 a.C. El perfil aromático se estableció en el zumo mediante análisis, identificación y cuantificación de compuestos orgánicos volátiles extraídos mediante microextracción en fase sólida del espacio de cabeza mediante fibra tricomponentes, y posterior desorción y análisis semicuantitativo de los mismos mediante cromatografía de gases con espectrometría de masas (GC-MC). La identificación de los picos se realizó mediante una primera integración automática y posterior individualización mediante deconvolución con AMDIS32 y comparación con los espectros de la base de datos NIST11. Respecto a los resultados preliminares con Chemstation, la deconvolución facilitó la identificación de un mayor número de compuestos y mejora en general de los índices de similitud. Se identificaron un total de 172 compuestos orgánicos volátiles, de los cuales no se consideraron 33 por ser suciedad y 7 por no haber sido identificados. De estos compuestos, 132 fueron compuestos que presentaron resultados consistentes, (presentes en 5 ó más de las 7 réplicas objeto de este estudio), en su mayoría del tipo ésteres acetato, seguidos por los ésteres no acetato por ser los más abundantes, y por lo tanto compuestos con picos más esbeltos, simétricos, fáciles de identificar y con una mayor relación señal/ ruido.

En tercer lugar están los aldehídos, seguidos de los alcoholes y las cetonas. Por último considerar los compuestos SDC (azufrados), seguidos de los clasificados como "otros" y en su minoría, clasificado como terpeno tenemos un único compuesto: alpha.-Farnesene.

Los compuestos presentes en las 7 réplicas están reflejados en la Tabla 10.

También se incluyeron en el perfil (Tabla 4) siete compuestos no identificados debido a que se confirmó que no son suciedad (tipo silano o siloxano), y aunque no se encontró el compuesto con NIST11, es posible que se pueda encontrar en el futuro con NIST14 o superior. De hecho, suelen ser compuestos de los tipos habituales en melón difíciles de identificar con este método y localizados a tiempos de retención superior a 21 minutos.

Abstract

Keywords: Cucumis Melo L., parentals, aromatic profile, fruit quality, exotic accessions.

The melon has a very imprecise origin, but is believed to be found in Egypt around 2400 b.C. It is a plant that has soft and hairy stems, with leaves of petiole grooved, opposite and lobed. At present the main melon producer in the world is China with a total production close to 18 million tons per year. the analysis, identification and quantification of the aromatic profile were performed by gas chromatography with mass spectrometry (GC-MC) and the deconvolution method, obtaining as conclusions that: the deconvolution analysis with AMDIS32 was, in relation to the initial Chemstation, to have a greater number of compounds identified, improving similarity indices;

Finally, the analysis, identification and quantification of the aromatic profile were performed by gas chromatography with mass spectrometry (GC-MC) and the deconvolution method, obtaining as conclusions that: the deconvolution analysis with AMDIS32 was, in relation to the initial Chemstation, To have a greater number of compounds identified, improving similarity indices

A total of 172 volatile organic compounds were identified, of which 33 were not considered to be exogenous or unidentified. The 132 compounds considered to be consistent in the identification (in 5 or more of the 7 replicas) were mostly acetate esters and acetate non esters.

Third are aldehydes, followed by alcohols and ketones, finally consider the sufur compounds followed by those classified as others and in their minority classified as terpene we have a single compound: alpha farnesene.

The compounds in the 7 replicas are in Table 10.

Seven compounds unidentified are includes in the aromatic profile after that being confirmed aren't dirt. (Table 4). They may be found in the future with NIST14 o higher. There are usually compounds of the usual types in melón dificult to identify with this method and located in retention time greater tan 21 minutes.

11

1. Introducción

1.1.El origen del melón

El melón tiene un origen muy impreciso, pero su origen cultivado se ha encontrado en Egipto hacia el 2400 a.C.

Posee un sistema radicular muy abundante y ramificado, de crecimiento rápido, encontrándose la mayoría de las raíces en los primeros 30-40 cm del suelo. Sus tallos son herbáceos, recubiertos de formaciones pilosas y su desarrollo puede ser rastreo o trepador, debido a la presencia de zarcillos. Sus hojas, recubiertas de pelos y de tacto áspero, poseen el limbo orbicular reniforme o pentagonal, dividido en 3-7 lóbulos y con los márgenes dentados.

Las flores son solitarias, de color amarillo, pudiendo ser masculinas, femeninas o hermafroditas. Las flores masculinas suelen aparecer en primer lugar sobre los entrenudos más bajos, mientras que las flores femeninas aparecen más tarde en las ramificaciones de segundo y tercer orden.

La fecundación del melón es principalmente entomófila.

La capacidad germinativa de las semillas de melón suele ser de unos cinco años, conservándolas en buenas condiciones.

En general, entre la nascencia de las plantas de melón y la iniciación de la recolección suele transcurrir entre 100 y más de 120 días.

En la actualidad el principal productor de melón del mundo es China con una producción total cercana a las 18 millones de toneladas anuales.

En cuanto a superficie y referente a la región de Murcia, el cultivo de melón ocupa un total de 6.260 has. El 76% de esta superficie la encontramos en el Campo de Cartagena y un 16% en el Valle del Guadalentín.

La exportación de estos melones suele ir dirigida a los países de Reino Unido, Alemania y Paises Bajos entre otros.

1.2. Descripción botánica.

Pertenece a la familia Cucurbitaceae, siendo su nombre científico el de Cucumis melo.

Tabla 1. Clasificación taxonómica de Cucumis melo.

Reino: Plantae

División: Magnoliophyta

Clase: Magnoliopsida

Subclase: Dilleniidae

Orden: Cucurbitales

Familia: Cucurbitaceae

Subfamilia: Cucurbitoideae

Tribu: Benincaseae

Género: Cucumis

Especie: Cucumis melo

1.3. Las entradas exóticas y la mejora de la calidad del melón.

El incremento de la tasa de obesidad por la ingesta de una dieta hipercalórica ha hecho que la población demande nuevos productos sanos y ricos en agua, para la disminución del número de calorías en la dieta. En la búsqueda de estos nuevos alimentos, se hace patente el hecho de la necesidad de modificar los productos ya existentes en el mercado, con la introducción de nuevos genes que generen nuevos aromas y sabores que aumenten el atractivo del product

Compuestos orgánicos volátiles de melón

Existen una serie de compuestos aromáticos que se encuentran presentes en muchas variedades de melón, siendo algunos de especial interés por su atractivo olfativo y gustativo. A continuación se resumen algunos de estos compuestos encontrados en una línea climatérica y su parental no climatérico (Tabla 2).

Tabla 2. Perfil de aromas normalmente encontrados en melón con nombres en inglés (Chaparro-Torres et al. 2016)

Número CAS	Nombre IUPAC	Tiempo de retención (RT; min)
ACIDOS		
64-19-7	Acetic acid	1.835
ESTERES ACE	СТАТО	
79-20-9	Methyl acetate	1.517
141-78-6	Ethyl acetate	1.934
108-21-4	Propan-2-yl acetate	2.360
109-60-4	Propyl acetate	3.041
110-19-0	2-Methylpropyl acetate	4.316
820-71-3	2-Methylprop-2-enyl acetate	4.711
123-86-4	Butyl acetate	5.484
123-92-2	3-Methylbutyl acetate	7.900
624-41-9	2-Methylbutyl acetate	8.067
1576-85-8	Pent-4-enyl acetate	8.269
628-63-7	Pentyl acetate	9.720
1191-16-8	3-Methylbut-2-enyl acetate	10.189
142-92-7	Hexyl acetate	15.650
623-84-7	2-Acetyloxypropyl acetate	16.812
1114-92-7	3-acetyloxybutan-2-yl acetate	19.177
112-07-2	2-butoxyethyl acetate	19.974

628-66-0	3-Acetyloxypropyl acetate	20.985
112-06-1	Heptyl acetate	21.035
1117-31-3	3-Acetyloxybutyl acetate	21.305
103-09-3	2-Ethylhexyl acetate	21.646
140-11-4	Benzyl acetate	21.653
7371-86-0	4- Acetyloxypentan-2-yl acetate	22.030
93-92-5	1-Phenylethyl acetate	22.074
112-14-1	Octyl acetate	22.249
628-67-1	4-Acetyloxybutyl acetate	22.295
103-45-7	2-Phenylethyl acetate	22.599
55670-09-2	2-Methylidenebutyl acetate	8.489
102-76-1	2,3-Diacetyloxypropyl acetate	22.552
122-72-5	3-Phenyl-1-propanol, acetate	23.252
ALCANOS		
112-40-3	Dodecane	22.117
629-50-5	Tridecane	22.877
629-59-4	Tetradecane	23.466
629-62-9	Pentadecane	24.591
ALCOHOLES		
123-51-3	3-methylbutan-1-ol	3.412
137-32-6	2-Methylbutan-1-ol	3.481
71-41-0	Pentan-1-ol	4.144
100-51-6	Phenylmethanol	16.733

111-87-5	Octan-1-ol	19.499
617-94-7	2-Phenylpropan-2-ol	20.149
96-07-1	2-(propan-2-yl)cyclohexan- 1-ol	20.937
10340-23-5	Non-3-en-1-ol	21.655
56805-23-3	(3E,6Z)-nona-3,6-dien-1-ol	21.685
143-08-8	Nonan-1-ol	21.855
56052-48-3	4-(2-methoxyphenyl)- 2-methylbutan-2-ol	22.916
616-25-1	Pent-1-en-3-ol	2.576
ALDEHÍDOS		
75-07-0	Acetaldehyde	1.227
123-38-6	Propanal	1.416
110-62-3	Pentanal	2.762
66-25-1	Hexanal	4.950
26254-92-2	2-Ethyl-3-methylbutanal	6.138
111-71-7	Heptanal	8.965
100-52-7	Benzaldehyde	11.988
2277-19-2	(Z)-non-6-enal	20.786
124-19-6	Nonanal	20.834
18829-56-6	(E)-Non-2-enal	21.695
112-31-2	Decanal	22.193
5779-94-2	2,5-dimethylbenzaldehyde	22.475
123-72-8	Butanal	1.803
1576-87-0	(E)-Pent-2-enal	3.840
6728-26-3	(E)-Hex-2-enal	6.838
881395	(2E,4E)-hepta-2,4-dienal	14.398
557-48-2	(2E,6Z)-nona-2,6-dienal	21.605
1771490	(2E,4E)-Nona-2,4-dienal	21.951

432-25-7	1-Cyclohexene-1- carboxaldehyde, 2,6,6- trimethyl-	22.317
CETONAS		
67-64-1	Propan-2-one	1.405
110-93-0	6-Methylhept-5-en-2-one	13.876
98-86-2	1-Phenylethanone	18.711
57283-79-1	(E)-5-Ethyl-6-methylhept-3-en-2-one	21.528
41436-42-4	(E)-1-(2,6,6- trimethylcyclohex-3- en-1- yl)but-2-en-1-one	23.163
3796-70-1	(5E)-6,10-dimethylundeca-5,9- dien-2-one	23.797
1629-58-9	Pent-1-en-3-one	2.635
925-78-0	Nonan-3-one	21.650
14901-07-6	(E)-4-(2,6,6- trimethylcyclohexen—1- yl)but-3-en-2-one	24.039
ESTERES NO A	ACETATO	
554-12-1	Methyl propanoate	2.068
547-63-7	Methyl 2-methylpropanoate	2.633
105-37-3	Ethyl propanoate	2.999
623-42-7	Methyl butanoate	3.177
97-62-1	Ethyl 2-methylpropanoate	3.942
868-57-5	Methyl 2-methylbutanoate	4.366
105-54-4	Ethyl butanoate	5.043
106-36-5	Propyl propanoate	5.328
7452-79-1	Ethyl 2-methylbutanoate	6.756
108-64-5	Ethyl 3-methylbutanoate	6.903
540-42-1	2-Methylpropyl propanoate	7.508
105-66-8	Propyl butanoate	8.877

539-90-2	2-Methylpropyl butanoate	11.975
2438-20-2	2-Methylbutyl propanoate	12.961
123-66-0	Ethyl hexanoate	14.722
540-07-8	Pentyl hexanoate	22.836
644-49-5	Propyl 2-methylpropanoate	7.001
590-01-2	Butyl propanoate	9.422
37064-20-3	Propyl 2-methylbutanoate	11.408
1000140-77-5	1-O-(2-methylpropyl) 4-O-propan-2-yl2,2-dimethyl-3-propan-2-ylbutanedioate	24.705
1708-27-6	3-Methyl-2,3-dihydrofuran	11.355
4466-24-4	2-Butylfuran	8.447
COMPUESTOS	AZUFRADOS	
74-93-1	Methanethiol	1.284
1534-08-3	S-Methyl ethanethioate	2.789
624-92-0	(Methyldisulfanyl) methane	3.571
5925-75-7	S-methyl propanethioate	4.976
5271-38-5	2-Methylsulfanylethanol	6.307
2432-51-1	S-methyl butanethioate	6.600
16630-66-3	Methyl 2- methylsulfanylacetate	9.326
23747-45-7	S-Methyl 3-methyl butanethioate	10.838
3658-80-8	(Methyltrisulfanyl)methane	12.297
4455-13-4	Ethyl 2-methylsulfanylacetate	13.581
115051-66-6	S-(3-hydroxypropyl) ethanethioate	14.939
13327-56-5	Ethyl 3-methylsulfanyl propanoate	20.749
16630-55-0	3-Methylsulfanylpropyl acetate	21.207

2. Objetivos

El Trabajo Fin de Grado tiene como objetivo prioritario la caracterización de los compuestos volátiles de una entrada de melón de interés mediante análisis de los mismos por cromatografía de gases masas y posterior integración automática y verificación por deconvolución. Como subobjetivo se compararán los resultados con otros perfiles de la literatura de melón con LRI similar, para su identificación, destacando aquellos compuestos orgánicos volátiles más relevantes por su potencial impacto a nivel sensorial.

3. Material y métodos

3.1. Material vegetal

El material consistió en frutos de la accesión exótica coreana PI 161375 (SC; *Cucumis melo* L. cv. "Shongwan Charmi" sp *Agrestis*, grupo *Conomon*.) (Eduardo, Arús, y Monforte, 2005; Moreno et al. 2008). Las semillas fueron suministradas por el IRTA-CRAG.

3.2. Diseño experimental

Los melones fueron cultivados en condiciones mediterráneas en Torre Pacheco (Murcia, España) de acuerdo con las prácticas comunes de este cultivo. El suelo de la parcela estuvo localizado en el CIFEA (Centro Integrado de Formación y Experiencias Agrarias) y fue clasificado como calcisol háplico. Los frutos se recolectaron entre Julio y Agosto. La cosecha fue realizada por durante las primeras horas de la mañana (6:30-10:00 a.m.) de acuerdo con los índices de madurez descritos por Tijskens et al. (2009). Se evaluaron los SST, la formación de la típica coloración blanquecino-amarillenta en la zona de contacto con el suelo o cama (que se intensifica conforme el fruto madura), el desarrollo de una zona de abscisión o suberificación en el pedúnculo, el desarrollo de escriturado de la epidermis, la densidad del fruto según su volumen (compacidad), la posible presencia de rajado en algún fruto de SC, etc. Una vez recolectados, los frutos se cargaron en cajas de polietileno en vertical y cubiertos con poliexpan evitando la sobrecarga de las mismas y los golpes y roces que pudieran dañar los frutos. Esta línea SC es muy delicada. Las cajas con frutos se transportaron en furgoneta hasta la Planta Piloto de Tecnología de los Alimentos de la UPCT (Cartagena). Los frutos se conservaron en cajas de polietileno cubiertas con liners plásticos a 10°C y se analizaron o muestrearon en el día de cosecha. El número de réplicas (cada réplica 2-4 frutos de melón individuales) fue de 7

Imagen 1. A.Extracción de los cilindros. B. Plantas en semillero. C. Cultivo acolchado (donde se ve la disposición de las tablillas). D. Aspecto del cultivar coreano exótico 'Shongwan Charmi' entrada PI16137, (fotos cedida por el profesor Fernández-Trujillo).

3.3. Densidad del zumo y jugosidad de la pulpa.

3.3.1. Densidad del zumo

El zumo se obtuvo exprimiendo cilindros de la pulpa con una prensa manual de aluminio (Super Simplex) y filtrando con una gasa de cuatro capas (75 × 75 mm) colocada sobre un embudo. El volumen final se pesó en un vaso de precipitado de plástico previamente tarado. El zumo se guardó en viales de 12 mL (Deltalab) y de 1,5 mL (Eppendorf AG) a -25°C (Liebherr Premium no frost A++ GNP 3376) para posteriores análisis (densidad, fibrosidad).

La densidad del zumo, expresada en g/cm³) se determinó pesando con balanza de precisión digital de 0,00001 g (BP 211D Sartorious, Goettingen, Alemania) un 1 mL de zumo previamente descongelado, homogeneizado con un vortex a baja velocidad, y atemperado en baño de agua hasta a 20°C medidos con termómetro digital (Checktemp1 pocCET Hanna Instruments).

3.3.2. Jugosidad de la pulpa

La jugosidad de la pulpa, expresada en gramos de zumo por kilo de pulpa, se obtuvo pesando una cantidad exacta de cilindros de pulpa (40-50 gramos) y el volumen de zumo obtenido con una balanza de precisión (ST3100 Gram Precision) exprimido por la prensa manual de aluminio Simplex Super (Italia). Refiriendo el peso de los cilindros de pulpa y el peso del zumo en tanto por uno, se obtenía el rendimiento en zumo (g.g⁻¹) (zumo.pulpa⁻¹). Entre muestras se realizaba la limpieza completa de dicha máquina.

3.4. Extracción de volátiles

La preparación de las muestras para la extracción de volátiles en microextracción en fase sólida (SPME) se llevó a cabo como se describe por Obando- Ulloa et al. (2008) o Dos-Santos et al. (2013). Los cilindros de melón se prensaron con el equipo Simplex Super como se describe arriba y el zumo resultante se filtró a través de un embudo de polvo y gasa de cuatro capas. Se dejó reposar 3 minutos tras lo que se añadió una solución de cloruro de calcio saturada (para bloquear las reacciones enzimáticas en el zumo) 4 mL a 10 mL de jugo y la mezcla se homogeneizó. Las alícuotas de la mezcla final se recogieron en 12 mL en viales estériles de polipropileno y se almacenaron a -70°C hasta su análisis.

3.5. Identificación de volátiles y cuantificación

Los análisis de volátiles fueron realizados por cromatografía de gases y espectrometría de masas (GC- MC) como se describe en Amaro et al. (2013), utilizando un método nuevo de retención de tiempo de bloqueo con pentadecano.

Las muestras de zumo se descongelaron en un baño de agua a 35 °C durante 15 min. Las alícuotas de 2,32 mL de mezcla de zumo y agua (71.5% de zumo) contenían 20 μL de 0,05 % (v/v) de 1-feniletanol como estándar interno (que aparece a tiempo de retención 18.5 min), se vertieron 10 mL de las mismas en viales de vidrio. El estándar interno sirve de referencia de concentración y posteriormente sobre el mismo se refieren los posteriores cálculos. En total, se obtuvieron 18 muestras (3 réplicas para la NIL y PS y para cada estado de madurez). Otras dos muestras adicionales por cada línea en estado G1 no se incluyeron en este análisis.

Los viales se taparon con tapones magnéticos metálicos de encapsulado (Gerstel) con septums de TFE / silicona (Alltech Associates, Inc., Deerfield, IL, EE.UU.) y se colocaron en el soporte de calor del cromatógrafo de gases (6890N, Agilent Technologies, Wilmington, DE, EE.UU.) acoplado a un detector de masas HP 5975 MSD con un cuadrupolo hiperbólico monobloque recubierto de oro y detector multiplicador de electrones dínodo de alta energía (HED) (Hewlett-Packard); a 35 °C durante 120 minutos para equilibrar el espacio de cabeza del vial.

Previamente al análisis, la fibra SPME de 1 cm de largo con 50-30 μm de divinilbenceno/carboxeno sobre revestimiento de polidimetilsiloxano (57329-U, DVB/CarboxenTM/PDMS Stable FlexTM Fiber, Supelco, Bellefonte, PA, EE.UU) fue acondicionada a 250°C durante una 1 h mediante introducción en el inyector del cromatógrafo a la profundidad suficiente.

La aguja entró 21 mm en el espacio de cabeza del vial y se mantuvo durante 30 min la absorción de volátiles a 35 °C. Los compuestos volátiles fueron separados en una columna capilar HP-5MS UI (Agilent Technologies) de 30 m x 0,25 mm y un tamaño de partícula de 0,25 μm, conteniendo fenil metil siloxano al 5% como fase estacionaria. La absorción de volátiles se realiza a 35°C ya que eso simula los aromas obtenidos en un proceso de alimentación humano.

Después de la extracción, los volátiles fueron desorbidos de la fibra de SPME del inyector

del cromatógrafo de gases fijado en 200 °C durante 15 minutos, debido al proceso de calentamiento en el inyector del cromatógrafo.

Los análisis se realizaron con una MPS2 Gerstel Multipurpose sampler (El MPS2 permite el análisis SPME totalmente automatizado incluyendo la derivación pre y post- extracción) acoplado al cromatógrafo de gases y espectrómetro de masas. Con esta tecnología y método de análisis se pueden analizar unas 15-20 muestras por tanda y día. El puerto de inyección del cromatógrafo operó a 260°C en el modo sin fraccionamiento (splitless). El inyector se sometió a una presión constante de 15,01 psi, controlada automáticamente por la presión electrónica Agilent control (EPC). El gas portador era helio con un caudal inicial nominal de 1,9 ml min⁻¹ (velocidad promedio 50 cm.s⁻¹). La temperatura inicial del horno era 35 °C, seguido por una rampa de 2 °C min⁻¹ hasta 75 °C, y luego a 50 °C min⁻¹ para llegar a una temperatura final de 200 °C, que se mantuvo durante 5 min. El tiempo de equilibrio fue de 0,5 minutos. La camisa (liner) de entrada de cristal utilizada en el puerto de inyección fue una 2 637 505 SPME / directa (Supelco), 78,5 mm × 6,5 mm × 0,75 mm de diámetro interno.

Los espectros de masas se obtuvieron por ionización de electrones (EI) a 70 eV, y un rango de espectros de $40-450 \, m/z$.

El retraso disolvente (parámetro denominado *solvent delay*) fue de 0,5 min. El detector trabajó en 230 °C y en el modo de barrido completo, capturó un promedio de 3,88 s⁻¹ datos (frecuencia de muestreo de 2). El tiempo total de análisis fue de 37,5 min.

Los cromatogramas y los espectros de masas fueron evaluados usando el software ChemStation (G1701DA D.02.00.275, Agilent Technologies Inc. EE.UU).

Posteriormente para afinar detalles, incluido un decimal más en el tiempo de retención o la calidad de los volátiles individual, y encontrar nuevas sustancias volátiles ocultas se utilizó el programa AMDIS32 Deconvolution. La deconvolución determina que compuestos hay debajo de un pico cromatográfico mediante agrupación de los iones (m/z) con similar tendencia y pico máximo de los espectros. Los picos cromatógrafos tal y como se observan pueden estar compuestos de múltiples componentes que coeluyen (habitualmente no más de 2), y el AMDIS32 determina la detección de estos compuestos. Al igual que para la detección de picos mediante Chemstation, para la deconvolución se tienen que optimizar los parámetros de deconvolución de AMDIS32 así como la anchura de pico que queremos detectar para que sea capaz de detectar el mayor número posible de picos de forma automática. Algunos compuestos en todo caso se

reverificaron mediante Chemstation, especialmente aquellos que no se encontraban por tener baja concentración pero que estaban presente prácticamente en el resto de muestras. Los volátiles fueron identificados en AMDIS32 utilizando los siguientes parámetros de ajustes en la deconvolución:

- •Ancho de componentes: 16. Este parámetro es igual al número de exploraciones a través de un pico óptimo, resuelto pico del componente a media altura. El valor debe ser igual o mayor que el pico más amplio en el cromatograma.
- Picos adyacentes: 2. Se establece el grado de picos adyacentes presentes en los cromatogramas.
- •Resolución: Baja. A medida que el nivel de resolución aumenta, el programa busca picos que están más cerca. Es muy importante no tener una resolución tan alta ya que se puede integrar el ruido de fondo, que no es para nada deseable.
- Sensibilidad: Muy alta. Un aumento en la sensibilidad extraerá picos más amplios.
- •Requisitos de forma: Baja. El requisito de forma es una manera de forzar a todos los picos deconvolucionados a tener la misma forma. Al establecer un requisito de forma bajo, se obtienen más picos con diferentes formas, por lo que aumenta la extracción de componentes.

El coeficiente de variación de cada tiempo de retención se calculó mediante: [desviación estándar/ media] x 100. El total 18 cromatogramas (3 réplicas para la NIL y PS y para cada estado de madurez) y dos extras (para cada línea en el estado G1) se analizaron e integraron. El tiempo de trabajo de cada cromatograma individual fue de 16 horas.

Los compuestos volátiles se identificaron tentativamente por comparación del valor de cada componente asociado al cálculo del índice de retención lineal (LRI) inyectando una serie de n□alcanos (C6□C20) (Sigma-Aldrich) que se inyectan en las mismas condiciones de método que los aromas en el cromatógrafo, con aquellos incluidos en banco de datos del Instituto Nacional de Estándares y Tecnología (NIST11) versión de búsqueda 2.0. Los valores de alcanos C3-C5 se obtuvieron de experiencias de análisis previos (C3-C4) e interpolación (C5), por lo que LRI inferiores a 600 son siempre considerados tentativos. También se compararon los LRI obtenidos con los índices de retención linear (LRI) recogidos en la literatura o en la base de datos *NIST* (http://webbook.nist.gov/chemistry/cas-ser.html), para HP-5, HP-5MS, DB-5, DB-5MS, SPB.-5, AT-5B, BP.-5, RTX-5, ZB-5, VF-5, VF-5MS, TR-5MS, Optima 5, SE-54,CP-Sil8 CB, CP-Sil8 CB MS, o columnas de similar índice de polaridad a la de 5% difenil / 95% de dimetil-

polisiloxano (Varian, Cross Reference Guide CP-Sil columns). En otros casos e utilizó el LRI estimado calculado por la base de datos NIST11 [estimated non-polar retention index (n-alkane scale)] bajo el programa "NIST Mass Spectral Search" versión 2.0g de 2012, que por experiencia con otros muchas líneas integradas en el equipo se sabe que suele ser ligeramente inferior al LRI de las columnas anteriores. No suelen ser utilizables aunque tienen LRI ligeramente inferior (20-30 ud) las columnas tipo DB-1 compuestas de 100% de fase de polidimetilxilosano, ni otras.

Se obtuvieron los números *CAS* (Chemical Abstracts Service) de los aromas volátiles a partir de la base de datos NIST05a.L y NIST11 bajo *Chemstation*.

La LRI de un compuesto es una expresión de su tiempo de retención en una columna cromatográfica de gas con relación a una serie homóloga n-alcanos. La ecuación siguiente se utiliza para calcular la LRI desde el tiempo de retención (IRL & Odour database).

$$LRI = (\frac{t-t_n}{t_{n+1}-t_n} + n); \text{ De d\'onde} \begin{cases} t = tiempo \ de \ retenci\'on \ del \ compuesto \\ n = n^o \ de \ carbonos \ del \ n - alcano \ precedente \\ n+1 = n^o \ de \ carbonos \ del \ siguiente \ n - alcano \end{cases}$$

Los compuestos fueron nombrados según nomenclatura de la *International Union of Pure and Applied Chemistry* (IUPAC, extraídos a partir de la web http://www.chemindustry.com/apps/chemicals.

Los coeficientes de variación del LRI respecto al de la literatura se calcularon restando ambos y dividiendo el mismo por el LRI de la literatura, multiplicado por 100.

Los compuestos volátiles fueron clasificados en diez clases de compuestos (ácidos, alcanos, alcoholes, aldehídos, cetonas, compuestos derivados del azufre, ésteres acetato, ésteres no acetato, otros, terpenos) y todas las áreas de los compuestos cuya calidad era mayor del 50% se añadieron a la clase correspondiente y los porcentajes se basaron en el área total de los compuestos de las clases mencionadas del total del cromatograma. No se realizó análisis estadístico con estos resultados.

La concentración de los aromas volátiles individuales identificados (expresado como ng · g-¹ de pulpa) se cuantificó desde la relación entre sus áreas y la del patrón interno (1-feniletanol), obtenida a partir de los cromatogramas totales, utilizando un factor de respuesta de 1. La fórmula final empleada para extraer la concentración fue la siguiente:

Ci (ng/g pulpa de compuesto problema) = f_i . $FR_{S.I.m}$. $F_{EI\ medio}i$. A_i . ZUM. $(R.d)^{-1}$ =

=
$$1 \cdot (Cf_{S.I.} \cdot A_{S.I.m.}^{-1}) \cdot (A_{S.I.m} \cdot A_{li}^{-1}) \cdot Ai \cdot ZUM \cdot (R \cdot d)^{-1}$$

Simplificando:

$$C_i = 1. C f_{S.I}. A_{Ii}^{-1}. A_i. ZUM. (R. d)^{-1}$$

De dónde:

- **f**_i: Factor de corrección (Pang et al., 2012)=1.
- Cf_{S.I.}: Concentración estándar interno de la muestra= 4273,50 ng μL⁻¹. Dato extraído de:

Volumen a usar del S.I. (mL). Concentración del S.I. (ppm) = volumen final de la solución (mL). Concentración del S.I. en la solución (ppm)

$$Cf = 4.27ppm$$

$$Cf_{S.L} = 4273.50 \text{ ng} \cdot \mu L^{-1}$$

- \bullet $A_{S.I.m}$: Media de áreas de estándar interno obtenidas en todos los análisis. En este caso resulta equivalente a 214.185.713.
- FR_{S.I.m}: Factor de respuesta medio estándar interno.
- A_{Ii}: Área del estándar interno de una determinada muestra.
- A_i: Área del compuesto problema.
- $\mathbf{F}_{EI\ medio}$ i: Factor de corrección de estándar interno para una muestra determinada, equivalente a: $\mathbf{A}_{S.I.m} \cdot \mathbf{A}_{Ii}^{-1}$
- **ZUM**: Concentración de zumo en la muestra. Proporción utilizada de zumo puro filtrado con gasa de cuatro capas según Obando-Ulloa et al. (2008) a razón de 10/14 (v zumo/v total)= 0.71428571 mL/mL (zumo/ muestra total).
- \mathbf{R} = Rendimiento en peso del zumo extraído (g zumo · \mathbf{g}^{-1} pulpa) (en tanto por uno).
- $\mathbf{d} = \text{Densidad del zumo } (\text{g/cm}^3).$

Algunos compuestos de relativa importancia obtenidos en el análisis se clasificaron como no identificados (NID). Para su análisis se consideró que eran de un tipo que probablemente era de melón pero no existía analogía en la base de datos (habitualmente son hidrocarburos alifáticos, alcoholes, aldehídos o ésteres). Y de ellos se cuenta con información previa.

Los compuestos volátiles tales como derivados de silanos y siloxanos, o compuestos orgánicos volátiles asociados con la contaminación, la composición del plástico de los viales, y la fibra del equipo se descartaron. Son los denominados como "suciedad".

Para la obtención de los grupos de compuestos se trabajó con hojas de cálculo programadas al efecto en el equipo de investigación (datos no publicados) por el profesor Fernández Trujillo (versión 11 para 300 compuestos). Dichas hojas son capaces de calcular la suma de áreas y el porcentaje por tipo de compuestos en diferentes bases de cálculo. También es capaz mediante software diseñado por el grupo realizar las alineaciones de los resultados (áreas, número CAS, LRI, índice de similaridad o MQ) de los compuestos aromáticos y extraer resultados por grupos de compuestos en el conjunto de réplicas de las diferentes líneas que se desee. Estas alineaciones sirvieron para resultados final pero también para depurar los resultados previos obtenidos, permitiendo la comparación de lo que ocurre con esta refinación en búsqueda mediante el programa AMDIS32.

Se incluyeron las notas aromáticas descriptivas de los compuestos volátiles y que fueron obtenidas de diversas bases de datos (*Pherobase*, *The Good Scent Company Database* y *Flavornet*, principalmente) y de una exhaustiva revisión bibliográfica.

3.6. Análisis estadístico

Los datos de los frutos de cada réplica se promediaron. De estos resultados de réplicas se obtuvieron media, desviación estándar y error estándar.

Los compuestos denominados "suciedad" (silano o siloxano derivados, o compuestos orgánicos volátiles (COV) están asociados con la contaminación o fibra y sangrado de la columna cromatográfica (señal de fondo normalmente generada por la fase estacionaria de la columna, o del vial de propileno empleado) se descartaron. De ellos se tiene notable información previa con análisis de blancos sin muestra con el método de análisis cromatográfico.

Tabla 3. Compuestos químicos (en inglés y según nombre de la base de datos NIST11) consistentes identificados en el análisis según NIST11 (media y SE en ng/g de pulpa en equivalentes del estándar interno benzenemethanol, alpha-methyl.

Compuesto químico	Número CAS	Media	SE	SD
Compuesto químico	000075-07-0	0,145	±0,08	1
Acetaldehyde Methanethiol	000073-07-0	Ī		±0,19
	000074-93-1	0,283	±0,10	±0,27
Ethyl alcohol		0,667	±0,15	±0,40
Acetic acid, methyl ester	000079-20-9	0,910	±0,15	±0,39
Ethyl Acetate	000141-78-6 000547-63-7	40,721	±10,94	±28,96
Propanoic acid, 2-methyl-, methyl ester Pentanal		0,181	±0,05	±0,12
	000110-62-3	0,436	±0,16	±0,39
Propanoic acid, ethyl ester	000105-37-3	1,451	±0,23	±0,60
n-Propyl acetate	000109-60-4	3,184	±0,41	±1,09
Butanoic acid, methyl ester	000623-42-7	0,290	±0,25	±0,62
Disulfide, dimethyl	000624-92-0	0,857	±0,47	±1,25
Pentane, 1-chloro-	000543-59-9	0,444	±0,33	±0,80
Propanoic acid, 2-methyl-, ethyl ester	000097-62-1	1,775	±0,43	±1,15
1-Pentanol	000071-41-0	0,224	±0,15	±0,39
Isobutyl acetate	000110-19-0	37,916	±10,50	±27,78
2-Propen-1-ol, 2-methyl-, acetate	000820-71-3	0,048	±0,18	±0,08
Butanoic acid, 2-methyl-, methyl ester	000868-57-5	0,219	±0,06	±0,17
Butanoic acid, 2-methyl-, ethyl ester	007452-79-1	6,104	±3,56	±9,42
Butanoic acid, 3-methyl-, ethyl ester	000108-64-5	1,945	±0,49	±1,29
Hexanal	0,445434353	0,227	±0,23	±0,60
S- methyl propanethioate	005925-75-7	11,464	±0,15	±1,25
Butanoic acid, ethyl ester	6,426435332	1,118	±1,12	±2,96
Propanoic acid, propyl ester	5,787592223	3,039	±3,04	±8,04
Acetic acid, butyl ester	000123-86-4	8,466	±1,51	±3,99
S-Methyl 2-methylpropanethioate	42075-42-3	1,243	±0,70	±1,71
Propanoic acid, 2-methyl-, propyl ester	644-49-5	0,858	±0,34	±0,76
p-Xylene	106-42-3	0,010	±0,00	±0,01
1-Hexanol	000111-27-3	0,191	±0,10	±0,25
1-Butanol, 3-methyl-, acetate	000123-92-2	1,200	±0,16	±0,43
1-Butanol, 2-methyl-, acetate	000624-41-9	9,119	±1,44	±3,80
3-Methyl-3-buten-1-ol, acetate	005205-07-2	0,806	±0,64	±1,44
Styrene	000100-42-5	9,825	±3,02	±5,24
2-Pentanone, 3-ethyl	006137-03-7	0,679	±0,28	±0,62

4-Heptenal, (Z)-	6728-31-0	21,568	±21,02	±47,01
1,2-Acetoxy-3-butanone	4906-24-5	0,714	±0,23	±0,62
4-Heptenal, (E)-	62238-34-0	0,219	±0,14	±0,24
Butanoic acid, propyl ester	000105-66-8	3,499	±3,22	±7,88
Heptanal	000111-71-7	0,842	±0,21	±0,56
Pentanoic acid, ethyl ester	000539-82-2	0,398	±0,13	±0,29
Propanoic acid, 2-methyl-, 2-methylpropyl ester	000097-85-8	0,229	±0,07	±0,15
Methyl 2-(methylthio)acetate	016630-66-3	0,052	±0,06	±0,10
Propanoic acid, butyl ester	000590-01-2	0,408	±0,27	±0,70
Acetic acid, pentyl ester	628-63-7	2,029	±0,65	±1,72
2-Buten-1-ol, 3-methyl-, acetate	1191-16-8	0,231	±0,06	±0,17
S-Methyl 3-methylbutanethioate	23747-45-7	0,038	±0,02	±0,04
Butanoic acid, 3-hydroxy-, ethyl ester	005405-41-4	0,049	±0,02	±0,04
Butanoic acid, 2-methyl-, propyl ester	037064-20-3	0,061	±0,02	±0,06
2-Heptenal, (Z)-	057266-86-1	0,216	±0,05	±0,09
2-Heptenal, (E)-	018829-55-5	0,123	±0,04	±0,10
Butanoic acid, 2-methylpropyl ester	0,125469499	0,420	±0,15	±0,40
3-Hepten-1-ol, (Z)-	1708-81-2	0,262	±0,05	±0,09
Benzaldehyde	000100-52-7	0,129	±0,09	±0,18
Propanoic acid, 2-methyl-, butyl ester	000097-87-0	0,026	±0,01	±0,02
Dimethyl trisulfide	003658-80-8	0,214	±0,08	±0,22
2-Hepten-1-ol, (E)-	33467-76-4	0,109	±0,02	±0,06
1-Butanol, 2-methyl-, propanoate	002438-20-2	0,123	±0,06	±0,12
1-Octen-3-ol	003391-86-4	0,363	±0,07	±0,18
1-Heptanol	111-70-6	0,259	±0,08	±0,22
Ethyl (methylthio)acetate	004455-13-4	0,393	±0,23	±0,61
5-Hepten-2-one, 6-methyl-	000110-93-0	0,115	±0,04	±0,10
Furan, 2-pentyl-	003777-69-3	0,073	±0,01	±0,02
Butanoic acid, butyl ester	109-21-7	0,095	±0,06	±0,14
2-Furanmethanol, acetate	000623-17-6	0,068	±0,03	±0,08
cis-2-(2-Pentenyl)furan	70424-13-4	0,139	±0,08	±0,21
Hexanoic acid, ethyl ester	123-66-0	0,724	±0,30	±0,81
Octanal	000124-13-0	0,278	±0,16	±0,37
1,2-Ethanediol, diacetate	000111-55-7	0,272	±0,08	±0,19
3-Hexen-1-ol, acetate, (Z)-	003681-71-8	2,849	±1,01	±2,67
Acetic acid, hexyl ester	000142-92-7	10,679	±2,74	±7,25
4-Hexen-1-ol, acetate, (Z)-	42125-17-7	1,609	±0,79	±1,94
4-Hexen-1-ol, acetate	72237-36-6	0,465	±0,12	±0,33
cis-4-Decene	19398-88-0	0,295	±0,09	±0,25
1-Hexanol, 2-ethyl-	000104-76-7	0,280	±0,11	±0,28
1,2-Propanediol, diacetate	000623-84-7	1,051	±0,72	±1,92
1-Cyclohexylethanol	001193-81-3	0,024	±0,01	±0,03
2-Octenal, (E)-	2548-87-0 001114-92-	0,046	±0,02	±0,05
2,3-Butanediol, diacetate-r	7 r	1,714	±0,75	±1,83
Acetic acid, heptyl ester	112-06-1	0,548	±0,24	±0,59

Benzenemethanol, .alpha.,.alphadimethyl-	000617-94-7	0,178	±0,12	±0,33
3-Cyclohexene-1-methanol	1679-51-2	0,041	±0,00	±0,01
3-(Methylthio)propanoic acid ethyl ester	013327-56-5 004621-04-	0,538	±0,26	±0,68
Cyclohexanol, 4-(1-methylethyl)-isómero1	9-is1	0,958	±0,92	±2,42
1-Octen-3-yl-acetate	002442-10-6	0,970	±0,24	±0,55
Cyclohexanol, 1-methyl-, acetate	16737-30-7	0,197	±0,08	±0,20
Ethyl 3-acetoxybutyrate	027846-49-7	0,210	±0,08	±0,17
3-(Methylthio)propyl acetate	016630-55-0	0,525	±0,14	±0,35
1,2-Ethanediol, dipropanoate	123-80-8	0,159	±0,03	±0,07
2,6-Nonadienal, (E,E)-	17587-33-6	0,380	±0,09	±0,23
Acetic acid, 2-ethylhexyl ester	000103-09-3	0,741	±0,49	±1,20
6-Nonenal, (Z)-	002277-19-2	1,484	±0,34	±0,82
Nonanal	000124-19-6	4,698	±2,13	±5,64
1,3-Butanediol, diacetate	001117-31-3	0,333	±0,06	±0,15
Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)-	000464-49-3	0,581	±0,13	±0,35
3-Nonen-1-ol, (Z)-	10340-23-5	1,166	±0,10	±0,25
3,6-Nonadien-1-ol, (E,Z)-	056805-23-3	1,756	±0,19	±0,50
Acetic acid, phenylmethyl ester	000140-11-4	15,044	±2,30	±6,09
(6Z)-Nonen-1-ol	035854-86-5	6,399	±4,03	±10,65
2,4-Diacetoxypentane	007371-86-0	0,805	±0,28	±0,69
Benzenemethanol, .alphamethyl-, acetate	000093-92-5	0,057	±0,03	±0,07
3-Octen-1-ol, acetate, (Z)-	69668-83-3	1,300	±0,29	±0,77
Decanal	000112-31-2	0,572	±0,26	±0,69
Benzaldehyde, 2,5-dimethyl-	021040-45-9	0,167	±0,06	±0,12
3-Buten-2-one, 4-phenyl-	000122-57-6	0,047	±0,02	±0,04
1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-	000432-25-7	0,546	±0,26	±0,63
2-Propenoic acid, 6-methylheptyl ester	054774-91-3	0,062	±0,04	±0,09
Benzeneacetic acid, ethyl ester	000101-97-3	0,199	±0,07	±0,16
Acetic acid, 2-phenylethyl ester	000103-45-7	3,653	±0,77	±2,04
2-Hydroxyisocaproic acid, acetate	NIST374893	0,083	±0,01	±0,02
Megastigma-4,6(Z),8(Z)-triene	71186-25-9	0,056	±0,01	±0,04
Hexanoic acid, pentyl ester	000540-07-8	0,408	±0,26	±0,69
3-6-Nonadien-1-yl-acetate	76649-26-8	0,698	±0,20	±0,29
6-Nonen-1-ol, acetate, (Z)-	076238-22-7	0,344	±0,11	±0,29
Acetic acid, nonyl ester	143-13-5	0,648	±0,30	±0,19
Megastigma-4,6(E),8(Z)-triene	071186-24-8	2,206	±2,05	±5,43
3-Buten-2-one, 4-(2,2-dimethyl-6-methylenecyclohexyl)-	79-76-5	0,148	±0,02	±0,04
2-Buten-1-one, 1-(2,6,6-trimethyl-3-cyclohexen-1-yl)-	41436-42-4	1,958	±0,02	±0,04 ±1,72
3-Cyclohexene-1-methanol, α,α,4-trimethyl-, acetate	80-26-2	0,061	±0,05	±1,72 ±0,11
•				
Megastigma-4,6(E),8(E)-triene Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4- trimethylpentyl ester	51468-85-0 74367-34-3	0,275 0,218	±0,07 ±0,09	±0,18 ±0,21
Tetradecane	000629-59-4	0,062	±0,03	±0,21
Dodecanal	000029-59-4	0,002	±0,01	±0,03
Ionone	8013-90-9	0,107	±0,03	±0,00
IOHOHG	0010-90-8	0,000	±∪, 1∠	±0,30

Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(2-hydroxy-1-				
methylethyl)propyl ester	074367-33-2	0,055	±0,01	±0,03
α-lonone	127-41-3	0,459	±0,28	±0,75
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-	003796-70-1	0,242	±0,07	±0,17
Pentadecane	629-62-9	0,066	±0,03	±0,07
trans-β-lonone	79-77-6	0,159	±0,07	±0,19
3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-	14901-07-6	0,127	±0,05	±0,12
.alphaFarnesene	000502-61-4	0,057	±0,01	±0,02
6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl-	2387-68-0	0,059	±0,02	±0,04
Hexadecane	000544-76-3	0,029	±0,01	±0,01
Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-				
methyl-1,3-propanediyl ester	074381-40-1	0,038	±0,01	±0,02
Dodecanoic acid, 1-methylethyl ester	010233-13-3	0,062	±0,02	±0,06
Benzophenone	000119-61-9	0,031	±0,01	±0,02
3-Phenyl-1-propanol, acetate	122-72-5	0,2027	±0,10	±0,22

4. Resultados

4.1. Porcentaje de compuestos por clases de compuestos químicos

El porcentaje de compuestos identificados por clases fueron recogidos en las siguientes tablas (9 y 10).

Se identificaron un total de 172 compuestos orgánicos volátiles, de los cuales no se consideraron 33 por ser suciedad y 7 por no haber sido identificados. De estos compuestos, 132 fueron compuestos que presentaron resultados consistentes, (presentes en 5 ó más de las 7 réplicas objeto de este estudio), en su mayotía del tipo ésteres acetato, seguidos por los ésteres no acetato por ser los más abundantes, y por lo tanto compuestos con picos más esbeltos, simétricos, fáciles de identificar y con una mayor relación señal/ ruido.

En tercer lugar están los aldehídos, seguidos de los alcoholes y las cetonas. Por último considerar los compuestos SDC (azufrados), seguidos de los clasificados como "otros" y en su minoría, clasificado como terpeno tenemos un único compuesto: alpha.-Farnesene.

Los compuestos presentes en las 7 réplicas están reflejados en la Tabla 10.

También se incluyeron en el perfil (Tabla 4) siete compuestos no identificados debido a que se confirmó que no son suciedad (tipo silano o siloxano), y aunque no se encontró el compuesto con NIST11, es posible que se pueda encontrar en el futuro con NIST14 o superior. De hecho, suelen ser compuestos de los tipos habituales en melón difíciles de identificar con este método y localizados a tiempos de retención superior a 21 minutos.

4.2. Perfil aromático

De los 700 compuestos encontrados mediante el programa ChemStation y AMDIS32 sólo 132 compuestos presentaban el criterio de consistencia acordado, representados en la tabla 3. Muchos compuestos eran isómeros y habrá que identificarlos en el futuro para verificar que no son repeticiones del mismo compuesto. La utilización posterior al ChemStation con el programa AMDIS32 permitió cuantificar con mayor precisión los aromas volátiles contenidos en los cromatogramas separándolos de algunos casos en los que se encontró coelución.

5. Discusión

Aromas volátiles

El análisis por deconvolución mediante AMDIS32 facilitó una mayor identificación de compuestos respecto al análisis inicial con Chemstation, reduciendo el solapamiento de picos irresoluble que se estima no será más de dos o tres en nuestro análisis. Por ejemplo un lugar donde se producen estos problemas es alrededor del pentanal. El uso de deconvolución facilitó además la obtención de variables con mayor consistencia (menos muestras sin señal para determinados compuestos) y por tanto más compuestos químicos para el perfil aromático. Habitualmente se encontraron entre 20-40 picos por cromatograma con problemas de integración, mejora general en los índices de similitud (habitualmente superiores al 60%), mayor resolución en el tiempo de retención, etc. Habitualmente el número de picos por cromatograma superaban los 150, habiendo tenido que realizarse una revisión de los mismos tras la alineación de las diferentes réplicas para l Se identificaron un total de 172 compuestos orgánicos volátiles, de los cuales no se consideraron 33 por considerarlos exógenos o no poder haber sido identificados (entre ellos tolueno y estireno que otros autores si consideran dentro de los perfiles aromáticos). El dióxido de carbono tampoco se consideró. De estos compuestos, 132 fueron compuestos que presentaron resultados consistentes, (Tabla 3), en su mayoría del tipo ésteres acetato o ésteres no acetato por ser los más abundantes, y por lo tanto compuestos con una mayor relación señal/ruido y picos más esbeltos, simétricos y fáciles de identificar. También es interesante resaltar que para fines de confirmación con índice de retención lineal, los compuestos a tiempo de retención inferior a 2 minutos tienen problemas en este tipo de análisis (Tabla 6), aunque por la experiencia del grupo con muchas variedades y réplicas de estas ya se tiene establecido un perfil que nos permite más fácil identificación.

También se incluyeron en el perfil (Tabla 4) siete compuestos no identificados debido a que se confirmó que no son suciedad (tipo silano o siloxano), y aunque no se encontró el compuesto con NIST11, es posible que se pueda encontrar en el futuro con NIST14 o superior. De hecho, suelen ser compuestos de los tipos habituales en melón difíciles de identificar con este método y localizados a tiempos de retención superior a 21 minutos.

Entre los compuestos no consistentes (datos no mostrados), destacaron los del tipo aldehídos o

cetonas como por ejemplo butanal, 2 butanone. Nótese también que en el caso de los alcanos (especialmente C12 a C16) a veces los picos son ensanchados lo que con los parámetros de integración habituales y deconvolución hace que picos identificados con Chemstation no sean identificables con AMDIS32

Imagen 2. Capturas de resolución de picos en el tiempo de retención de 22,16 min del software AMDIS 32.

Imagen 3. Capturas de resolución de picos en el minuto 4,25 del software AMDIS 32. Tras su revisión se pudo identificar el pico: se trataba del compuesto isobutyl acetate.

Tabla 4. Compuestos químicos (en inglés y según nombre de la base de datos NIST11) identificados en el análisis según NIST11 y no identificados (media y SE en ng/g de pulpa en equivalentes del estándar interno benzenemethanol, alpha-methyl.

Nombre según nomenclatura NIST11. Colores indican lo siguiente: Rojo=compuestos volátiles; Verde=Alcanos; Azul=No identificado.

Compuesto químico	Número CAS	Media	SE	SD
Acetaldehyde	000075-07-0	0,145	±0,08	±0,19
Methanethiol	000074-93-1	0,283	±0,10	±0,27
Ethyl alcohol	000064-17-5	0,667	±0,15	±0,40
Acetic acid, methyl ester	000079-20-9	0,910	±0,15	±0,39
Ethyl Acetate	000141-78-6	40,721	±10,94	±28,96
Propanoic acid, 2-methyl-, methyl ester	000547-63-7	0,181	±0,05	±0,12
Pentanal	000110-62-3	0,436	±0,16	±0,39
Propanoic acid, ethyl ester	000105-37-3	1,451	±0,23	±0,60
n-Propyl acetate	000109-60-4	3,184	±0,41	±1,09
Butanoic acid, methyl ester	000623-42-7	0,290	±0,25	±0,62
Disulfide, dimethyl	000624-92-0	0,857	±0,47	±1,25
Pentane, 1-chloro-	000543-59-9	0,444	±0,33	±0,80
Propanoic acid, 2-methyl-, ethyl ester	000097-62-1	1,775	±0,43	±1,15
1-Pentanol	000071-41-0	0,224	±0,15	±0,39
Isobutyl acetate	000110-19-0	37,916	±10,50	±27,78
2-Propen-1-ol, 2-methyl-, acetate	000820-71-3	0,048	±0,18	±0,08
Butanoic acid, 2-methyl-, methyl ester	000868-57-5	0,219	±0,06	±0,17
Butanoic acid, 2-methyl-, ethyl ester	007452-79-1	6,104	±3,56	±9,42
Butanoic acid, 3-methyl-, ethyl ester	000108-64-5	1,945	±0,49	±1,29
Hexanal	0,445434353	0,227	±0,23	±0,60
S- methyl propanethioate	005925-75-7	11,464	±0,15	±1,25
Butanoic acid, ethyl ester	6,426435332	1,118	±1,12	±2,96
Propanoic acid, propyl ester	5,787592223	3,039	±3,04	±8,04
Acetic acid, butyl ester	000123-86-4	8,466	±1,51	±3,99
S-Methyl 2-methylpropanethioate	42075-42-3	1,243	±0,70	±1,71
Propanoic acid, 2-methyl-, propyl ester	644-49-5	0,858	±0,34	±0,76
p-Xylene	106-42-3	0,010	±0,00	±0,01
1-Hexanol	000111-27-3	0,191	±0,10	±0,25
1-Butanol, 3-methyl-, acetate	000123-92-2	1,200	±0,16	±0,43
1-Butanol, 2-methyl-, acetate	000624-41-9	9,119	±1,44	±3,80
3-Methyl-3-buten-1-ol, acetate	005205-07-2	0,806	±0,64	±1,44
Styrene	000100-42-5	9,825	±3,02	±5,24
2-Pentanone, 3-ethyl	006137-03-7	0,679	±0,28	±0,62
4-Heptenal, (Z)-	6728-31-0	21,568		±47,01
1,2-Acetoxy-3-butanone	4906-24-5	0,714	±0,23	±0,62
4-Heptenal, (E)-	62238-34-0	0,219	±0,14	±0,24
Butanoic acid, propyl ester	000105-66-8	3,499	±3,22	±7,88
Heptanal Parton side attack and a start	000111-71-7	0,842	±0,21	±0,56
Pentanoic acid, ethyl ester	000539-82-2	0,398	±0,13	±0,29
Propanoic acid, 2-methyl-, 2-methylpropyl ester	000097-85-8	0,229	±0,07	±0,15
Methyl 2-(methylthio)acetate	016630-66-3	0,052	±0,06	±0,10

_					
	Propanoic acid, butyl ester	000590-01-2	0,408	±0,27	±0,70
	Acetic acid, pentyl ester	628-63-7	2,029	±0,65	±1,72
	2-Buten-1-ol, 3-methyl-, acetate	1191-16-8	0,231	±0,06	±0,17
	S-Methyl 3-methylbutanethioate	23747-45-7	0,038	±0,02	±0,04
	Butanoic acid, 3-hydroxy-, ethyl ester	005405-41-4	0,049	±0,02	±0,04
	Butanoic acid, 2-methyl-, propyl ester	037064-20-3	0,061	±0,02	±0,06
	2-Heptenal, (Z)-	057266-86-1	0,216	±0,05	±0,09
	2-Heptenal, (E)-	018829-55-5	0,123	±0,04	±0,10
	Butanoic acid, 2-methylpropyl ester	0,125469499	0,420	±0,15	±0,40
	3-Hepten-1-ol, (Z)-	1708-81-2	0,262	±0,05	±0,09
	Benzaldehyde	000100-52-7	0,129	±0,09	±0,18
	Propanoic acid, 2-methyl-, butyl ester	000097-87-0	0,026	±0,01	±0,02
	Dimethyl trisulfide	003658-80-8	0,214	±0,08	±0,22
	2-Hepten-1-ol, (E)-	33467-76-4	0,109	±0,02	±0,06
	1-Butanol, 2-methyl-, propanoate	002438-20-2	0,123	±0,06	±0,12
	1-Octen-3-ol	003391-86-4	0,363	±0,07	±0,18
	1-Heptanol	111-70-6	0,259	±0,08	±0,22
	Ethyl (methylthio)acetate	004455-13-4	0,393	±0,23	±0,61
	5-Hepten-2-one, 6-methyl-	000110-93-0	0,115	±0,04	±0,10
	Furan, 2-pentyl-	003777-69-3	0,073	±0,01	±0,02
	Butanoic acid, butyl ester	109-21-7	0,095	±0,06	±0,14
	2-Furanmethanol, acetate	000623-17-6	0,068	±0,03	±0,08
	cis-2-(2-Pentenyl)furan	70424-13-4	0,139	±0,08	±0,21
	Hexanoic acid, ethyl ester	123-66-0	0,724	±0,30	±0,81
	Octanal	000124-13-0	0,278	±0,16	±0,37
	1,2-Ethanediol, diacetate	000111-55-7	0,272	±0,08	±0,19
	3-Hexen-1-ol, acetate, (Z)-	003681-71-8	2,849	±1,01	±2,67
	Acetic acid, hexyl ester	000142-92-7	10,679	±2,74	±7,25
	4-Hexen-1-ol, acetate, (Z)-	42125-17-7	1,609	±0,79	±1,94
	4-Hexen-1-ol, acetate	72237-36-6	0,465	±0,12	±0,33
	cis-4-Decene	19398-88-0	0,295	±0,09	±0,25
	1-Hexanol, 2-ethyl-	000104-76-7	0,280	±0,11	±0,28
	1,2-Propanediol, diacetate	000623-84-7	1,051	±0,72	±1,92
	1-Cyclohexylethanol	001193-81-3	0,024	±0,01	±0,03
	2-Octenal, (E)-	2548-87-0	0,046	±0,02	±0,05
	2,3-Butanediol, diacetate-r	001114-92-7r	1,714	±0,75	±1,83
	Acetic acid, heptyl ester	112-06-1	0,548	±0,24	±0,59
	Benzenemethanol, .alpha.,.alphadimethyl-	000617-94-7	0,178	±0,12	±0,33
	3-Cyclohexene-1-methanol	1679-51-2	0,041	±0,00	±0,01
	3-(Methylthio)propanoic acid ethyl ester	013327-56-5	0,538	±0,26	±0,68
	Cyclohexanol, 4-(1-methylethyl)-isómero1	004621-04-9-is1	0,958	±0,92	±2,42
	No identificado (20.93)	NID20.93LRI1119	0,181	±0,09	±0,20
	1-Octen-3-yl-acetate	002442-10-6	0,970	±0,24	±0,55
	Cyclohexanol, 1-methyl-, acetate	16737-30-7	0,197	±0,08	±0,20
	Ethyl 3-acetoxybutyrate	027846-49-7	0,210	±0,08	±0,17
	3-(Methylthio)propyl acetate	016630-55-0	0,525	±0,14	±0,35
	1,2-Ethanediol, dipropanoate	123-80-8	0,159	±0,03	±0,07
	2,6-Nonadienal, (E,E)-	17587-33-6	0,380	±0,09	±0,23
	Acetic acid, 2-ethylhexyl ester	000103-09-3	0,741	±0,49	±1,20
	6-Nonenal, (Z)-	002277-19-2	1,484	±0,34	±0,82
	Nonanal	000124-19-6	4,698	±2,13	±5,64
	1,3-Butanediol, diacetate	001117-31-3	0,333	±0,06	±0,15
	Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)-	000464-49-3	0,581	±0,13	±0,35
	3-Nonen-1-ol, (Z)-	10340-23-5	1,166	±0,10	±0,25

3,6-Nonadien-1-ol, (E,Z)-	056805-23-3	1,756	±0,19	±0,50
Acetic acid, phenylmethyl ester	000140-11-4	15,044	±2,30	±6,09
(6Z)-Nonen-1-ol	035854-86-5	6,399	±4,03	±10,65
No identificado (21.92)	NID21.92LRI1189	0,428	±0,16	±0,38
2,4-Diacetoxypentane	007371-86-0	0,805	±0,28	±0,69
No identificado (22.02)	NID22.02LRI1196	0,344	±0,08	±0,21
Benzenemethanol, .alphamethyl-, acetate	000093-92-5	0,057	±0,03	±0,07
3-Octen-1-ol, acetate, (Z)-	69668-83-3	1,300	±0,29	±0,77
Decanal	000112-31-2	0,572	±0,26	±0,69
Benzaldehyde, 2,5-dimethyl-	021040-45-9	0,167	±0,06	±0,12
3-Buten-2-one, 4-phenyl-	000122-57-6	0,047	±0,02	±0,04
1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-	000432-25-7	0,546	±0,26	±0,63
2-Propenoic acid, 6-methylheptyl ester	054774-91-3	0,062	±0,04	±0,09
Benzeneacetic acid, ethyl ester	000101-97-3	0,199	±0,07	±0,16
No identificado (22.52)	NID22.52LRI1259	0,287	±0,21	±0,47
Acetic acid, 2-phenylethyl ester	000103-45-7	3,653	±0,77	±2,04
2-Hydroxyisocaproic acid, acetate	NIST374893	0,083	±0,01	±0,02
Megastigma-4,6(Z),8(Z)-triene	71186-25-9	0,056	±0,02	±0,04
Hexanoic acid, pentyl ester	000540-07-8	0,408	±0,26	±0,69
3-6-Nonadien-1-yl-acetate	76649-26-8	0,698	±0,11	±0,29
6-Nonen-1-ol, acetate, (Z)-	076238-22-7	0,344	±0,08	±0,19
Acetic acid, nonyl ester	143-13-5	0,648	±0,31	±0,70
Megastigma-4,6(E),8(Z)-triene	071186-24-8	2,206	±2,05	±5,43
3-Buten-2-one, 4-(2,2-dimethyl-6-		•	·	,
methylenecyclohexyl)-	79-76-5	0,148	±0,02	±0,04
2-Buten-1-one, 1-(2,6,6-trimethyl-3-cyclohexen-1-				
yl)-	41436-42-4	1,958	±0,65	±1,72
3-Cyclohexene-1-methanol, α,α,4-trimethyl-,	80-26-2	0.061	10.05	10.11
acetate Magaztiama 4.6(E) 9(E) triang	51468-85-0	0,061 0,275	±0,05 ±0,07	±0,11
Megastigma-4,6(E),8(E)-triene Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-	31400-03-0	0,275	±0,07	±0,18
trimethylpentyl ester	74367-34-3	0,218	±0,09	±0,21
Tetradecane	000629-59-4	0,062	±0,01	±0,03
Dodecanal	000112-54-9	0,107	±0,03	±0,08
Ionone	8013-90-9	0,355	±0,12	±0,30
Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(2-		-,	-,	-,
hydroxy-1-methylethyl)propyl ester	074367-33-2	0,055	±0,01	±0,03
No identificado (23.35)	NID23.35LRI1400	0,089	±0,03	±0,06
α-lonone	127-41-3	0,459	±0,28	±0,75
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-	003796-70-1	0,242	±0,07	±0,17
Pentadecane	629-62-9	0,066	±0,03	±0,07
trans-β-lonone	79-77-6	0,159	±0,07	±0,19
3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-	44004.07.0	0.40=	=	0.40
yl)-	14901-07-6	0,127	±0,05	±0,12
alphaFarnesene	000502-61-4	0,057	±0,01	±0,02
6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl-	2387-68-0	0,059	±0,02	±0,04
Hexadecane Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-	000544-76-3	0,029	±0,01	±0,01
methyl-1,3-propanediyl ester	074381-40-1	0,038	±0,01	±0,02
Dodecanoic acid, 1-methylethyl ester	010233-13-3	0,038	±0,01	±0,02
Benzophenone	000119-61-9	0,002	±0,02	±0,00
No identificado (24.71)	NID24.71LRI1706	0,001	±0,01	±0,02
No identificado (24.71)	NID24.71LIX17700	0,000	±0,00	±0,00
3-Phenyl-1-propanol, acetate	122-72-5	0,2027	±0,00	±0,00
o i honyi i propanoi, acciate	122-12-U	0,2021	±0, 10	±0,22

Tabla 5. Caracterización de compuestos consistentes identificados por nomencatura IUPAC, número de la clasificación del Chemical Abstract Service (número CAS), tiempo de retención medio (min), índice de similitud medio (MQ, en %) e índice de retención lineal (LRI) según la literatura descrita generalmente en NIST11 o literatura especializada. El verde indica alcanos.

Compuesto químico	Número CAS	RT Media	MQ Media	LRI Media
Acetaldehyde	000075-07-0	1,2538	91	301
Methanethiol	000074-93-1	1,2869	94	326
Ethyl alcohol	000064-17-5	1,3461	86	370
Acetic acid, methyl ester	000079-20-9	1,5123	81	485
Ethyl Acetate	000141-78-6	1,8943	85	606
Propanoic acid, 2-methyl-, methyl ester	000547-63-7	2,6296	74	692
Pentanal	000110-62-3	2,7631	86	703
Propanoic acid, ethyl ester	000105-37-3	2,9787	94	712
n-Propyl acetate	000109-60-4	3,0203	93	714
Butanoic acid, methyl ester	000623-42-7	3,1759	88	721
Disulfide, dimethyl	000624-92-0	3,5374	73	738
Propanoic acid, 2-methyl-, ethyl ester	000097-62-1	3,8973	93	754
1-Pentanol	000071-41-0	4,1744	81	766
Isobutyl acetate	000110-19-0	4,2471	96	770
2-Propen-1-ol, 2-methyl-, acetate	000820-71-3	4,7134	87	791
Butanoic acid, 2-methyl-, methyl ester	000868-57-5	4,7905	91	786
Butanoic acid, 2-methyl-, ethyl ester	007452-79-1	6,6816	95	845
Butanoic acid, 3-methyl-, ethyl ester	000108-64-5	6,8214	87	849
Hexanal	0,445434353	4,9161	91	800
S- methyl propanethioate	005925-75-7	4,9797	95	802
Butanoic acid, ethyl ester	6,426435332	4,9904	95	802
Propanoic acid, propyl ester	5,787592223	5,2868	88	809
Acetic acid, butyl ester	000123-86-4	5,4199	138	813
S-Methyl 2-methylpropanethioate	42075-42-3	6,5660	84	842
Propanoic acid, 2-methyl-, propyl ester	644-49-5	6,9178	69	851
p-Xylene	106-42-3	7,3044	83	861
1-Hexanol	000111-27-3	7,6433	87	870
1-Butanol, 3-methyl-, acetate	000123-92-2	7,8241	94	875
1-Butanol, 2-methyl-, acetate	000624-41-9	7,9457	92	878
3-Methyl-3-buten-1-ol, acetate	005205-07-2	8,2425	74	885
2-Pentanone, 3-ethyl	006137-03-7	8,4522	54	890
4-Heptenal, (Z)-	6728-31-0	8,5530	64	894

1,2-Acetoxy-3-butanone	4906-24-5	8,6483	92	896
4-Heptenal, (E)-	62238-34-0	8,6983	70	897
Butanoic acid, propyl ester	000105-66-8	8,8286	91	900
Heptanal	000111-71-7	8,8759	93	901
Pentanoic acid, ethyl ester	000539-82-2	9,0503	83	904
Propanoic acid, 2-methyl-, 2-methylpropyl ester	000097-85-8	9,3140	80	907
Methyl 2-(methylthio)acetate	016630-66-3	9,3144	84	909
Propanoic acid, butyl ester	000590-01-2	9,4048	87	911
Acetic acid, pentyl ester	628-63-7	9,6616	88	915
2-Buten-1-ol, 3-methyl-, acetate	1191-16-8	10,1170	84	923
S-Methyl 3-methylbutanethioate	23747-45-7	10,7913	82	935
Butanoic acid, 3-hydroxy-, ethyl ester	005405-41-4	11,0417	59	939
Butanoic acid, 2-methyl-, propyl ester	037064-20-3	11,3665	80	945
2-Heptenal, (Z)-	057266-86-1	11,8352	93	953
2-Heptenal, (E)-	018829-55-5	11,8428	86	953
Butanoic acid, 2-methylpropyl ester	0,125469499	11,8947	83	954
3-Hepten-1-ol, (Z)-	1708-81-2	11,9406	66	955
Benzaldehyde	000100-52-7	11,9443	74	955
Propanoic acid, 2-methyl-, butyl ester	000097-87-0	12,0017	80	956
Dimethyl trisulfide	003658-80-8	12,2036	81	960
2-Hepten-1-ol, (E)-	33467-76-4	12,7922	78	970
1-Butanol, 2-methyl-, propanoate	002438-20-2	12,9230	83	972
1-Octen-3-ol	003391-86-4	13,3368	83	980
1-Heptanol	111-70-6	13,5520	85	983
Ethyl (methylthio)acetate	004455-13-4	13,5633	79	984
5-Hepten-2-one, 6-methyl-	000110-93-0	13,8368	78	988
Furan, 2-pentyl-	003777-69-3	13,9197	78	990
Butanoic acid, butyl ester	109-21-7	14,2265	74	995
2-Furanmethanol, acetate	000623-17-6	14,4570	78	999
cis-2-(2-Pentenyl)furan	70424-13-4	14,5441	79	1001
Hexanoic acid, ethyl ester	123-66-0	14,6260	91	1002
Octanal	000124-13-0	14,7380	77	1004
1,2-Ethanediol, diacetate	000111-55-7	14,7455	78	1004
3-Hexen-1-ol, acetate, (Z)-	003681-71-8	15,0823	94	1010
Acetic acid, hexyl ester	000142-92-7	15,5309	96	1017
4-Hexen-1-ol, acetate, (Z)-	42125-17-7	15,8819	86	1022
4-Hexen-1-ol, acetate	72237-36-6	15,9887	89	1024
cis-4-Decene	19398-88-0	16,3247	65	1030
1-Hexanol, 2-ethyl-	000104-76-7	16,5625	80	1034
1,2-Propanediol, diacetate	000623-84-7	16,7859	90	1037
1-Cyclohexylethanol	001193-81-3	17,5948	54	1050
2-Octenal, (E)-	2548-87-0	18,3554	70	1063
2,3-Butanediol, diacetate-r	001114-92- 7r	19,8485	94	1087
Acetic acid, heptyl ester	112-06-1	20,1209	75	1107
Benzenemethanol, .alpha.,.alphadimethyl-	000617-94-7		82	1091
201120110thation, talphat, talphat aimothyr	000011 04-1	_0,_00		

3-Cyclohexene-1-methanol	1679-51-2	20,6126	45	1099
3-(Methylthio)propanoic acid ethyl ester	013327-56-5	20,7000	90	1102
6-Nonenal, (Z)-	002277-19-2	20,7260	91	1104
Nonanal	000124-19-6	20,7684	87	1107
Cyclohexanol, 4-(1-methylethyl)-isómero1	004621-04- 9-is1	20,8867	65	1116
1-Octen-3-yl-acetate	002442-10-6	20,9808	77	1122
Cyclohexanol, 1-methyl-, acetate	16737-30-7	21,0548	55	1127
Ethyl 3-acetoxybutyrate	027846-49-7	21,0832	90	1130
3-(Methylthio)propyl acetate	016630-55-0	21,1731	95	1136
1,3-Butanediol, diacetate	001117-31-3	21,2879	87	1144
Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)-	000464-49-3	21,3962	96	1152
1,2-Ethanediol, dipropanoate	123-80-8	21,5495	67	1162
2,6-Nonadienal, (E,E)-	17587-33-6	21,5580	73	1163
Acetic acid, 2-ethylhexyl ester	000103-09-3	21,5647	77	1164
3-Nonen-1-ol, (Z)-	10340-23-5	21,5988	91	1166
3,6-Nonadien-1-ol, (E,Z)-	056805-23-3	21,6379	88	1169
Acetic acid, phenylmethyl ester	000140-11-4	21,6722	97	1171
(6Z)-Nonen-1-ol	035854-86-5	21,8092	87	1181
2,4-Diacetoxypentane	007371-86-0	21,9817	78	1193
Benzenemethanol, .alphamethyl-, acetate	000093-92-5	22,0385	84	1197
3-Octen-1-ol, acetate, (Z)-	69668-83-3	22,0850	86	1201
Decanal	000112-31-2	22,1461	90	1209
Benzaldehyde, 2,5-dimethyl-	021040-45-9	22,2350	81	1221
3-Buten-2-one, 4-phenyl-	000122-57-6	22,2656	80	1225
1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-	000432-25-7	22,2797	74	1227
2-Propenoic acid, 6-methylheptyl ester	054774-91-3	22,3569	22	1237
Benzeneacetic acid, ethyl ester	000101-97-3	22,4853	75	1254
Acetic acid, 2-phenylethyl ester	000103-45-7	22,5531	96	1263
2-Hydroxyisocaproic acid, acetate	NIST374893	22,6462	63	1276
Megastigma-4,6(Z),8(Z)-triene	71186-25-9	22,7468	68	1295
Hexanoic acid, pentyl ester	000540-07-8	22,7894	58	1294
3-6-Nonadien-1-yl-acetate	76649-26-8	22,8155	87	1298
6-Nonen-1-ol, acetate, (Z)-	076238-22-7	22,8836	88	1310
Acetic acid, nonyl ester	143-13-5	22,8977	84	1313
Megastigma-4,6(E),8(Z)-triene	071186-24-8	22,9472	72	1323
3-Buten-2-one, 4-(2,2-dimethyl-6-methylenecyclohexyl)-	79-76-5	23,0020	63	1333
2-Buten-1-one, 1-(2,6,6-trimethyl-3-cyclohexen-1-yl)-	41436-42-4	23,0711	76	1347
3-Cyclohexene-1-methanol, α,α,4-trimethyl-, acetate	80-26-2	23,1362	65	1359
Megastigma-4,6(E),8(E)-triene	51468-85-0	23,1591	82	1360
Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-				
trimethylpentyl ester	74367-34-3	23,2627	77 52	1384
Tetradecane	000629-59-4	23,3477	53 70	1400
Dodecanal	000112-54-9	23,4096	78 72	1414
lonone Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(2-hydroxy-1-	8013-90-9	23,4891	73	1432
methylethyl)propyl ester	074367-33-2	23,1609	64	1364

α-lonone	127-41-3	23,5483	77	1446
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-	003796-70-1	23,6095	85	1460
Pentadecane	629-62-9	23,7897	65	1501
trans-β-lonone	79-77-6	23,8109	80	1506
3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-	14901-07-6	23,8222	75	1508
alphaFarnesene	000502-61-4	23,8510	81	1515
6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl-	2387-68-0	24,1509	55	1585
Hexadecane	000544-76-3	24,2126	64	1600
Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-				
methyl-1,3-propanediyl ester	074381-40-1	24,2721	77	1613
Dodecanoic acid, 1-methylethyl ester	010233-13-3	24,3277	63	1625
Benzophenone	000119-61-9	24,5490	76	1673
3-Phenyl-1-propanol, acetate	122-72-5	36,0489	79	1374

Como se puede observar en la tabla 5 se han podido identificar 172 compuestos que están presentes en los melones estudiados y analizados, de los cuales 33 compuestos son sustancias identificadas como "suciedad" ya que provienen principalmente de la columna del cromatógrafo de gases o forman parte de los diluyentes utilizados y tienen importancia, y 7 identificadas como "no identificados". En la tabla también se puede observar que los compuestos que se encuentran en mayor concentración equivalente de estándar interno por g de pulpa son ácido acético, metil ester; etill acetato; butil ester de ácido acético; 1-Butanol, 2-metil acetato; 1-Octen-3-ol y fenilmetil ester de ácido acético. Los compuestos mayoritarios identificados pertenecen a los tipos éster acetato y alcohol, con independencia de la variable que utilicemos para su agrupamiento en porcentaje (Tablas Suplementarias 2, 3, 4 y 6 en Anexo I) o respecto al área total (Tablas Suplementarias 1 y 5 en Anexo I). Este hecho también se observa en otros estudios realizados de aromas de melones de variedades orientales.

Se procedió a agrupar los compuestos por tipos químicos (Tabla 7), en ella se muestran los porcentajes de los compuestos identificados sobre las áreas totales de los tipos, y no teniendo en cuenta el MQ. Se pudieron utilizar diferentes variables para agrupar los compuestos por tipos (Tablas Suplementarias 1, 2, 3, 4, 5 y 6), aunque se decidió utilizar la tabla 7 finalmente, por ser la más representativa de la diferenciación entre compuestos, aunque todas muestran una clara predominancia de los compuestos ésteres acetato y ésteres no acetato.

Respecto a los compuestos no consistentes, destacan en mayoría los del tipo ésteres acetato, seguidos por los ésteres no acetato.

Tabla 7. Medida de media de compuestos (en porcentaje del área total), error estándar y desviación estándar de los compuestos identificados separados por porcentajes en tipos de compuestos. Los que el área no se encuentra en la base de datos son los no identificados y los de suciedad con índice de similitud superior a 50 se incluyen aquí.

													Alcano
						Ester no							Hidroc
digree	Rep	Time	Pedrep	AREATOTAL	Ester ac	ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	alifat
•	_	_	Media	5815905328	51,1646291	13,9201743	4,49523947	5,94482219	2,7854874	0	1,76202936	0,1667431	0,51376
			SE	±1137995452	±5	±3	±1	±1	±1	±0	±1	±0	
			Desv.										
j			Estandar	±2959239519	±13	±9	±2	±2	±2	±0	±1	±0	

Tabla 6. Caracterización de compuestos considerados suciedad, por nomencatura IUPAC, número de la clasificación del Chemical Abstract Service (número CAS), tiempo de retención medio (min), índice de similitud medio (MQ, en %) e índice de retención lineal (LRI) según la literatura descrita generalmente en NIST11 o literatura especializada. Los compuestos en amarillo no se consideraron para el perfil aromático.

Compuesto químico suciedad	Número CAS	RT Media	MQ Media	LRI Media
	000124-38-			
Carbon dioxide	9	1,1657	73	236
Propylene oxide	75-56-9 000075-09-	1,4061	83	413
Methylene chloride	2	1,5360	50	501
Acetonitrile	75-05-8	1,6189	47	538
Trichloromethane	67-66-3 001066-42-	1,9596	64	622
Silanediol, dimethyl-	8 000543-59-	2,7858	89	704
Pentane, 1-chloro-	9	3,7314	86	746
	000108-88-			
Toluene	3	4,0065	92	759
2-Vinylethyl acetate	1576-84-7 000541-05-	4,8940	61	799
Cyclotrisiloxane, hexamethyl-	9 000541-05-	5,6926	93	820
Cyclotrisiloxane, hexamethyl-3r	9-3r 000075-25-	6,9752	54	853
Methane, tribromo-	2 000541-05-	7,9187	72	877
Cyclotrisiloxane, hexamethyl-5r	9-5r 000100-42-	8,0730	90	881
Styrene	5	8,2455	68	886
	000541-05-			
Cyclotrisiloxane, hexamethyl-6r	9-6r 000556-67-	8,9130	83	903
Cyclotetrasiloxane, octamethyl-	2	14,9642	87	1008
1,4-Bis(trimethylsilyl)benzene	13183-70-5 000541-02-	20,5410	71	1098
Cyclopentasiloxane, decamethyl- 1,1,3,3,5,5,7,7-Octamethyl-7-(2-	6	21,7596	91	1185
methylpropoxy)tetrasiloxan-1-ol	NIST364612	22,4110	79	1244

	000540-97-			
Cyclohexasiloxane, dodecamethyl-8r	6-8r	22,5510	55	1263
	000540-97-			
Cyclohexasiloxane, dodecamethyl-1r	6-1r	22,9092	91	1316
	000540-97-			
Cyclohexasiloxane, dodecamethyl-	6	22,9740	91	1328
	000541-02-			
Cyclohexasiloxane, decamethyl-7r	6-7r	23,2123	64	1374
	000541-02-			
Cyclohexasiloxane, decamethyl-6r	6-6r	23,2376	79	1379
	000541-02-			
Cyclopentasiloxane, decamethyl-6r	6-6r	23,2410	81	1379
	000107-50-			
Cycloheptasiloxane, tetradecamethyl	6	23,7479	73	1491
	000096-76-			
Phenol, 2,4-bis(1,1-dimethylethyl)-	4	23,8930	90	1525
Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-	019095-23-			
tetradecamethyl-	9	23,9296	61	1533
	000084-66-			
Diethyl Phthalate	2	24,2669	73	1612
	000556-68-			
Cyclooctasiloxane, hexadecamethyl-	3	24,4780	84	1657
Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-	19095-24-0-			
hexadecamethyl-r	r	24,6616	57	1697
	000556-71-			
Cyclononasiloxane, octadecamethyl-	8	25,3631	76	1817
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl)	000084-69-			
ester	5	25,8579	93	1886

La variedad de melón coreano PI161375 una gran cantidad de ésteres acetato diferentes (Tabla 7), siendo el mayoritario en esta variedad el Ethyl acetate (etil acetato), y siendo también este mayoritario en el perfil de aromas de la variedad tipo "Piel de sapo" o de la línea casi isogénica SC3-5-1 con introgresión de la entrada de melón coreano PI161375 (Chaparro-Torres et al., 2016), por lo que se puede decir que la variedad PI161375 mantiene algunas de las características propias de otros parentales muy alejados. Como ésteres no acetato destacan Butanoic acid methyl ester, Propanoic acid ethyl ester y Butanoic acid propyl ester.

En resumen, tras la comprobación con otros estudios realizados con variedades asiáticas de melones se puede decir que estos componentes, principalmente del tipo ésteres acetato y alcohol, son comunes en dichas variedades, las cuales tienen un perfil aromático similar. Sin embargo, la diferencia en cuanto al número de compuestos identificados aquí respecto a trabajos anteriores (Kim et al., 1997; Lee et al., 2014; Pang et al., 2012) y no tanto con relación a otros que si que utilizaron ya incipientemente la deconvolución (Chaparro-Torres et al., 2016), nos hacen sugerir la necesidad de reevaluar algunas de estas variedades y entradas orientales en el futuro con más detalle. Ello será especialmente importante si se pretenden integrar los resultados en estudios con otras técnicas ómicas y especialmente proteómica (Xiaoou et al., 2017).

Tabla 8. Clasificación de los compuestos identificados

ÉSTERES ACETATO	Número CAS
Acetic acid, methyl ester	000079-20-9
Ethyl Acetate	000141-78-6
n-Propyl acetate	000109-60-4
Isobutyl acetate	000110-19-0
2-Propen-1-ol, 2-methyl-, acetate	000820-71-3
Acetic acid, butyl ester	000123-86-4
1-Butanol, 3-methyl-, acetate	000123-92-2
1-Butanol, 2-methyl-, acetate	000624-41-9
3-Methyl-3-buten-1-ol, acetate	005205-07-2
Acetic acid, pentyl ester	628-63-7
2-Buten-1-ol, 3-methyl-, acetate	1191-16-8
2-Furanmethanol, acetate	000623-17-6
1,2-Ethanediol, diacetate	000111-55-7
3-Hexen-1-ol, acetate, (Z)-	003681-71-8
Acetic acid, hexyl ester	000142-92-7
4-Hexen-1-ol, acetate, (Z)-	42125-17-7
4-Hexen-1-ol, acetate	72237-36-6
1,2-Propanediol, diacetate	000623-84-7
2,3-Butanediol, diacetate-r	001114-92-7r
Acetic acid, heptyl ester	112-06-1
1-Octen-3-yl-acetate	002442-10-6
Cyclohexanol, 1-methyl-, acetate	16737-30-7
Acetic acid, 2-ethylhexyl ester	000103-09-3
Acetic acid, phenylmethyl ester	000140-11-4
Benzenemethanol, .alphamethyl-, acetate	000093-92-5
3-Octen-1-ol, acetate, (Z)-	69668-83-3
Acetic acid, 2-phenylethyl ester	000103-45-7
2-Hydroxyisocaproic acid, acetate	NIST374893
3-6-Nonadien-1-yl-acetate	76649-26-8
6-Nonen-1-ol, acetate, (Z)-	076238-22-7
Acetic acid, nonyl ester	143-13-5
3-Cyclohexene-1-methanol, α,α,4-trimethyl-, acetate	80-26-2
3-Phenyl-1-propanol, acetate	122-72-5
ÉSTERES NO ACETATO	
Propanoic acid, 2-methyl-, methyl ester	000547-63-7
Propanoic acid, ethyl ester	000105-37-3
Butanoic acid, methyl ester	000623-42-7
Propanoic acid, 2-methyl-, ethyl ester	000097-62-1
Butanoic acid, 2-methyl-, methyl ester	000868-57-5
Butanoic acid, 2-methyl-, ethyl ester	007452-79-1
Butanoic acid, 3-methyl-, ethyl ester	000108-64-5
Butanoic acid, ethyl ester	6,42643533

Propanoic acid, propyl ester Propanoic acid, 2-methyl-, propyl ester Butanoic acid, propyl ester Pentanoic acid, ethyl ester Propanoic acid, 2-methyl-, 2-methylpropyl ester Propanoic acid, 3-hydroxy-, ethyl ester Butanoic acid, 3-hydroxy-, ethyl ester Butanoic acid, 2-methyl-, propyl ester Butanoic acid, 2-methyl-, propyl ester Propanoic acid, 2-methyl-, butyl ester 1-Butanoi, 2-methyl-, propanoate Butanoic acid, butyl ester 1-Butanoic acid, butyl ester Hexanoic acid, ethyl ester Ethyl 3-acetoxybutyrate 1,2-Ethanediol, dipropanoate 1,3-Butanediol, diacetate Acetic acid, phenylmethyl ester 2-Propenoic acid, 6-methylheptyl ester Benzeneacetic acid, ethyl ester Hexanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(2-hydroxy-1-methylethyl)propyl ester Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester Dodecanoic acid, 1-methylethyl ester	5,78759222 644-49-5 000105-66-8 000539-82-2 000097-85-8 000590-01-2 005405-41-4 037064-20-3 0,1254695 000097-87-0 002438-20-2 109-21-7 123-66-0 027846-49-7 123-80-8 001117-31-3 000140-11-4 054774-91-3 000101-97-3 000540-07-8 74367-34-3 074367-33-2 074381-40-1 010233-13-3
Ethyl alcohol 1-Pentanol 1-Hexanol 3-Hepten-1-ol, (Z)- 2-Hepten-1-ol, (E)- 1-Octen-3-ol 1-Heptanol 1-Hexanol, 2-ethyl- 1-Cyclohexylethanol Benzenemethanol, .alpha.,.alphadimethyl- 3-Cyclohexene-1-methanol Cyclohexanol, 4-(1-methylethyl)-isómero1 3-Nonen-1-ol, (Z)- 3,6-Nonadien-1-ol, (E,Z)- (6Z)-Nonen-1-ol 6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl-	000064-17-5 000071-41-0 000111-27-3 1708-81-2 33467-76-4 003391-86-4 111-70-6 000104-76-7 001193-81-3 000617-94-7 1679-51-2 004621-04-9- is1 10340-23-5 056805-23-3 035854-86-5 2387-68-0
2,4-Diacetoxypentane Tetradecane Pentadecane Hexadecane	007371-86-0 000629-59-4 629-62-9 000544-76-3

ALDEHÍDOS

Acetaldehyde	000075-07-0
Pentanal	000110-62-3
Hexanal	0,44543435
4-Heptenal, (Z)-	6728-31-0
4-Heptenal, (E)-	62238-34-0
Heptanal	000111-71-7
2-Heptenal, (Z)-	057266-86-1
2-Heptenal, (E)-	018829-55-5
Benzaldehyde	000100-52-7
Octanal	000124-13-0
2-Octenal, (E)-	2548-87-0
2,6-Nonadienal, (E,E)-	17587-33-6
6-Nonenal, (Z)-	002277-19-2
Nonanal	000124-19-6
Decanal	00012-13-0
Benzaldehyde, 2,5-dimethyl-	021040-45-9
1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-	000432-25-7
Dodecanal	000432-25-7
Douecarial	000112-54-9
CETONAS	
2-Pentanone, 3-ethyl	006137-03-7
1,2-Acetoxy-3-butanone	4906-24-5
5-Hepten-2-one, 6-methyl-	000110-93-0
Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)-	000464-49-3
3-Buten-2-one, 4-phenyl-	000122-57-6
3-Buten-2-one, 4-(2,2-dimethyl-6-methylenecyclohexyl)-	79-76-5
2-Buten-1-one, 1-(2,6,6-trimethyl-3-cyclohexen-1-yl)-	41436-42-4
Ionone	8013-90-9
α-lonone	127-41-3
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-	003796-70-1
trans-β-lonone	79-77-6
3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-	14901-07-6
Benzophenone	000119-61-9
Delizophenone	000119-01-9
TERPENOS	
alphaFarnesene	000502-61-4
OTROS	
n Yylono	106-42-3
p-Xylene Furan 2 pentyl	003777-69-3
Furan, 2-pentyl-	
cis-2-(2-Pentenyl)furan	70424-13-4 19398-88-0
cis-4-Decene	
Megastigma 4.6(Z),8(Z)-triene	71186-25-9
Megastigma 4.6(E),8(Z)-triene	071186-24-8
Megastigma-4,6(E),8(E)-triene	51468-85-0

SDC (COMPUESTOS AZUFRADOS)

Methanethiol S- methyl propanethioate S-Methyl 2-methylpropanethioate	000074-93-1 005925-75-7 42075-42-3
S-Methyl 3-methylbutanethioate Dimethyl trisulfide	23747-45-7 003658-80-8
Ethyl (methylthio)acetate	004455-13-4
3-(Methylthio)propanoic acid ethyl ester 3-(Methylthio)propyl acetate	013327-56-5 016630-55-0

Tabla 9. Porcentaje de presencia de compuestos sobre el total de compuestos encontrados consistentes, según su clasificación.

Ésteres acetato Ésteres no acetato Alcoholes Alcanos Aldehídos Cetona Terpeno	% de aparición 25 24,24 12,12 3,03 13,63 9,84 0,75
Otros SDC (compuestos azufrados)	5,3 6,06

Tabla 10. Compuestos con el 100% de presencia en las 7 réplicas.

	Compuestos	Número CAS	Clasificació n
1	Carbon dioxide	000124-38- 9	SUC
2	Methanethiol	000074-93- 1	SDC
3	Ethyl alcohol	000064-17- 5	ALH
4	Acetic acid, methyl ester	000079-20- 9	EAC
5	Ethyl Acetate	000141-78-	EAC
6	Propanoic acid, 2-methyl-, methyl ester	000547-63-	ENA
7	Propanoic acid, ethyl ester	000105-37-	ENA
8	n-Propyl acetate	000109-60- 4 000624-92-	EAC
9	Disulfide, dimethyl	000024-92-	SDC
10	Propanoic acid, 2-methyl-, ethyl ester	1 000108-88-	ENA
11	Toluene	3 000071-41-	SUC
12	1-Pentanol	0 000110-19-	ALH
13	Isobutyl acetate	0 000820-71-	EAC
14	2-Propen-1-ol, 2-methyl-, acetate	3 000868-57-	EAC
15	Butanoic acid, 2-methyl-, methyl ester	5 6,42643533	ENA
16	Butanoic acid, ethyl ester	2 0,44543435	ENA
17	Hexanal	3 5,78759222	ALD
18	Propanoic acid, propyl ester	3 000123-86-	ENA
19	Acetic acid, butyl ester	4 000868-57-	EAC
20	Butanoic acid, 2-methyl-, methyl ester	5 000108-64-	ENA
21 22	Butanoic acid, 3-methyl-, ethyl ester Propanoic acid, 2-methyl-, propyl ester	5 644-49-5 000111-27-	ENA ENA
23	1-Hexanol	3 000123-92-	ALH
24	1-Butanol, 3-methyl-, acetate	2	EAC
25 26 27		000624-41- 9 4906-24-5 62238-34-0 000590-01-	EAC CET ALD
28	Propanoic acid, butyl ester	2	ENA

	Acetic acid, pentyl ester	628-63-7	EAC
30	2-Buten-1-ol, 3-methyl-, acetate	1191-16-8 037064-20-	EAC
31	Butanoic acid, 2-methyl-, propyl ester	3 0,12546949	ENA
32	Butanoic acid, 2-methylpropyl ester	9 003658-80-	ENA
33	Dimethyl trisulfide	8	SDC
34	1-Octen-3-ol	003391-86- 4	ALH
35	1-Heptanol	111-70-6	ALH
36	Ethyl (methylthio)acetate	004455-13-	SDC
37	5-Hepten-2-one, 6-methyl-	000110-93- 0	CET
		003777-69-	
	Furan, 2-pentyl-	3	OTR
39	Hexanoic acid, ethyl ester	123-66-0 003681-71-	ENA
40	3-Hexen-1-ol, acetate, (Z)-	8	EAC
11	Acetic coid bound cotor	000142-92-	EAC
	Acetic acid, hexyl ester	7	EAC
	4-Hexen-1-ol, acetate cis-4-Decene	72237-36-6 19398-88-0	OTR
43	CIS-4-Decene	000104-76-	OIIX
44	1-Hexanol, 2-ethyl-	7	ALH
		000623-84-	
45	1,2-Propanediol, diacetate	7 000617-94-	EAC
46	Benzenemethanol, .alpha.,.alphadimethyl-	7	ALH
47	3-(Methylthio)propanoic acid ethyl ester	013327-56- 5	SDC
48	Nonanal	000124-19- 6	ALD
		001117-31-	
49	1,3-Butanediol, diacetate	3 000464-49-	ENA
50	Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)-	3	CET
	3-Nonen-1-ol, (Z)-	10340-23-5	ALH
		056805-23-	
52	3,6-Nonadien-1-ol, (E,Z)-	3	ALH
53	Acetic acid, phenylmethyl ester	000140-11- 4	EAC
00	7 todao dola, prierrymicary cotor	035854-86-	L/ 10
54	(6Z)-Nonen-1-ol	5	ALH
55	3-Octen-1-ol, acetate, (Z)-	69668-83-3	EAC
56	Decanal	000112-31- 2	ALD
50	Decanal	000103-45-	ALD
57	Acetic acid, 2-phenylethyl ester	7	EAC
		000540-07-	
	Hexanoic acid, pentyl ester	8	ENA
59	3-6-Nonadien-1-yl-acetate	76649-26-8 071186-24-	EAC
60	Megastigma-4,6(E),8(Z)-triene	8	OTR
61	2-Buten-1-one, 1-(2,6,6-trimethyl-3-cyclohexen-1-yl)-	41436-42-4	CET
62	Megastigma-4,6(E),8(E)-triene	51468-85-0	OTR
60	Propanoic acid, 2-methyl-, 2,2-dimethyl-1-(2-hydroxy-1-	074367-33-	
63	methylethyl)propyl ester	2	ENA

Bibliografía

		000112-54-	
64	Dodecanal	9	ALD
65	α-lonone	127-41-3	CET
66	trans-β-lonone	79-77-6	CET
		000502-61-	
67	alphFarnesene	4	TER
		010233-13-	
68	Dodecanoic acid, 1-methylethyl ester	3	ENA
		000119-61-	
69	Benzophenone	9	CET

6. Conclusiones

Se identificaron un total de 172 compuestos orgánicos volátiles, de los cuales no se consideraron 33 por ser suciedad (entre ellos tolueno, que otros autores si consideran dentro de los perfiles aromáticos). El dióxido de carbono tampoco se consideró.

También se incluyeron en el perfil 7 compuestos no identificados debido a que se confirmó que no son suciedad (tipo xilano o siloxano) por no haber sido identificados.

Suelen ser compuestos difíciles de identificar con NIST 11 y localizados a tiempos de retención superior a 21 minutos. De estos compuestos, 132 fueron compuestos que presentaron resultados consistentes, (presentes en 5 ó más de las 7 réplicas objeto de este estudio), en su mayoría del tipo ésteres acetato, por ser los más abundantes, seguidos por los ésteres no acetato y por lo tanto compuestos con picos más esbeltos, simétricos, fáciles de identificar y con una mayor relación señal/ruido.

En tercer lugar están los aldehídos, seguidos de los alcoholes y las cetonas. Por último considerar los compuestos SDC (azufrados), seguidos de los clasificados como "otros" y en su minoría, clasificado como terpeno tenemos un único compuesto: alpha.-Farnesene.

Según la Tabla 8, los ésteres acetato presentan el 25% del total de compuestos consistentes encontrados, del tipo Acetic acid, methyl ester, 1-Butanol, 3-methyl-, acetate; en casi igual cantidad, con el 24,24% los ésteres no acetato, siendo Propanoic acid, 2-methyl-, methyl ester; Propanoic acid, ethyl ester ejemplos de este tipo de compuestos. Aldehídos y alcoholes obtienen porcentajes muy próximos entre sí, de 13,63 y 12,12% respectivamente. 9,84% lo ocupan cetonas, 6,06% compuestos azufrados, 5,30% otros y 0,75% son terpenos.

Los compuestos presentes en las 7 réplicas se representan en la Tabla 10.

7. Bibliografía

Adams, C.R. (2000). Principios de hortofruticultura. Ed. Acribia, Zaragoza.

Albuquerque, B., Lidón, F.C., Barreiro, M.G. (2006). A case study on the flavor properties of melon (*Cucumis melo* L.) cultivars. *Fruits* 61:333-339.

Agilent Technologies (2001). Manual de uso del cromatógrafo de gases 6890N de Agilent. http://www.chem.agilent.com/Library/usermanuals/Public/G1530-90210.pdf

Amaro, A. L., Fundo, J. F., Oliveira, A., Beaulieu, J. C., Fernández-Trujillo, J.P., Almeida, D. P. F. (2013). 1-Methylcyclopropene effects on temporal changes of aroma volátiles and phytochemicals of fresh-cut cantaloupe. *J. Sci. Food Agric*. 93: 828–837.

Aubert, C., Pitrat, M. (2006). Volatile compounds in the skin and pulp of Queen Anne's pocket melon. *J. Agric. Food Chem.* 54: 8177–8182.

Base de datos NIST. Acceso abril (2015). http://webbook.nist.gov/chemistry/casser.html

Beaulieu, J.C., Baldwin, E. (2002). Flavor and aroma of fresh cut fruits and vegetables. Fresh cut fruits and vegetables. Science, technology and market. CRC Press LLC, Boca Raton, Florida. pp. 391–425.

Beaulieu, J.C., Ingram, D.A., Lea, J.M., Bett-Garber, K.L. (2004). Effect of harvest maturity on the sensory characteristics of fresh-cut cantaloupe. *J. Food Sci.* 69: 250-258.

Canoles, M. A., Beaudry, R. M., Li, C. Y., Howe, G. (2006). Deficiency of linolenic acid in Lefad7 mutant tomato changes the volatile profile and sensory perception of disrupted leaf and fruit tissue. *J. Amer. Soc. Hort.* 131: 284–289.

Chaparro-Torres, L.A., Bueso, M.C., Fernández-Trujillo, J.P. Aroma volatiles at harvest obtained by HSSPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behavior in melon fruit. *J. Sci. Food Agric.* (en prensa). http://onlinelibrary.wiley.com/doi/10.1002/jsfa.7350/pdf

Chen, W., Vermaak, I., Viljoen, A. (2013). Camphor—A fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon—A review. *Molecules* 18: 5434-5454.

Consejería de Agricultura y Agua de la Región de Murcia. Acceso Mayo (2015). http://www.carm.es/web/pagina?IDCONTENIDO=80&IDTIPO=140&RASTRO=c\$m1 20,128

Dos-Santos, N., Jiménez-Araujo, A.A., Rodriguez-Arcos, R., Fernández-Trujillo, J.P. (2011). Cell wall polysaccharides of near-isogenic lines of melon (*Cucumis melo* L.) and their inbred parentals which show differential flesh firmness or physiological behavior. *J. Agric. Food Chem.* 59: 7773–7784

Dos-Santos, N., Bueso, M.C., Fernández-Trujillo, J.P. (2013). Aroma volatiles as biomarkers of textural differences at harvest in non-climateric near-isogenic lines of melon. *Food Res. Intl.* 54: 1801-1812.

Eduardo, I., Arús, P., Monforte, A.J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (*Cucumis melo* L.) from the exotic accession PI 161375. *Theor. Appl. Genet.* 112: 139–148.

Eskin N.A, Fereidoon, M.S. (2011). Biochemistry of foods. 3^a ed. Editorial Academic Press. 2: 49-105.

Fernández-Trujillo, J.P., Obando-Ulloa, J.M., Martínez, J.A., Moreno, E., García-Mas, J., Monforte, A.J. (2008). Climacteric and non-climacteric behavior in melon fruit 2. Linking climacteric pattern and main postharvest disorders and decay in a set of near-isogenic lines. *Postharvest Biol. Technol.* 50: 125-134.

Moreno E., Obando J.M, Dos-Santos N., Fernández-Trujillo, J.P., Monforte J., García-Más J. (2008). Candidate genes and QTLs for fruit ripening and softening in melon. *Theor. Appl. Genet.* 116: 589–602.

Obando-Ulloa, J.M, Moreno, E., García-Mas, J., Nicolai, B., Lammertyn, J., Monforte, A.J. (2008). Climacteric or non-climacteric behavior in melón fruit 1. Aroma volatiles. *Postharvest Biol. Technol.* 49: 27-37.

Pang X., Guo X., Qin Z., Yao Y., Hu X., Wu J. (2012). Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. *J. Agric. Food Chem.* 60: 4179-4185.

http://www.chemindustry.com/apps/chemical

http://webbook.nist.gov/chemistry/cas-ser.html

8. Anexos

Tabla Suplementaria 1. Áreas totales de aromas volátiles por tipos de compuestos con compuestos individuales que presentaron índice de similitud (MQ) superior a 50 en siete réplicas de la entrada exótica de melón PI161375

	_			455445544			A11171		0			_
digree	Rep	Fruits	Pedrep	AREATOTAL	Ester ac	Ester no ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene a
И12	1		2 11M12-1	5842570169	2994007751	453186305	258231366	326330471	236636857	0	16311343,3	30330796,8
И12	2		2 11M12-2	5227871728	3009004343	488233661	165894643	565600402	146025172	0	163714591	15301001,5
И12	3		3 11M12-3	6559530366	4974915212	600883466	397513941	179426336	119789212	0	51202491	9201952
И12	4		3 11M12-4	12149040183	6793037939	676170560	1655507359	1158382398	95356009,7	0	94068651,2	5177140
И12	5		2 11M12-5	9213223311	4074568215	1817090766	544754588	337592127	365268770	0	53325975	750427,5
И12	6		3 11M12-6	6872964540	2668424119	2151289583	118313690	818605724	576785791	0	206310212	10411433,2
И12	7		4 11M12-7	6126944407	2837275718	1334693103	262852900	416874994	67540140,4	0	264109922	5008033,13
			TOTAL									
												1
digree	Rep	Fruits	Pedrep	AREATOTAL	Ester ac	Ester no ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene a
			Media	7427449243	3907319042	1074506778	486152641	543258922	229628850	0	121291884	10882969,1
			SE	±920461094	±573545107	±262376284	±202270624	±128396310	±69405899	±0	±34750368	±3685638
			Desv. Estandar	±2447036743	±1576668833	±705738337	±565456213	±371971341	±197061921	±0	±98609398	±10466640

.

Anexos

Tabla Suplementaria 2. Totales (% sobre los identificados con índice de similitud o MQ>50, sin considerar suciedad) en siete réplicas de la entrada exótica de melón PI161375

			1		T	1	1		1	•	•	1	
Pedigree	Rep	Time	Pedrep	AREATOTAL	Ester ac	Ester no ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	Alca alifa
11M12	1	2	11M12-1	5657874607	55,5144923		4,89668191		3,96657547			0,49357302	
11M12	2	2	11M12-2	4777424270	60,7754084		3,56841647	12,8257521	3,29275182	0	3,80103303		
11M12	3	3	11M12-3	6365086619	78,6890924	9,63354864	5,68770315	2,82034095	1,70953932	0	0,87369859	0,1627136	
11M12	4	3	11M12-4	10521063005	66,3425051	7,46437036	13,7877933	10,1689762	0,88453059	0	0,86152835	0,07486761	
11M12	5	2	11M12-5	8817339911	45,8201572	21,6377824	6,55100116	3,72144116	4,37904275	0	0,58879279	0,00797368	
11M12	6	3	11M12-6	6565033121	40,9835148	33,8629588	1,83866884	11,1982059	7,32966306	0	4,36725481	0,20260993	
11M12	7	4	11M12-7	5891048270	56,2250255	19,9583682	4,51447309	6,55092535	1,14338212	0	3,35602135	0,10476912	
			TOTAL										
Pedigree	Rep	Time	Pedrep	AREATOTAL	Ester ac	Ester no ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	Alca alifa
_			Media	6942124258	57,7643137	15,8992523	5,83496257	7,57687214	3,24364073	0	2,01977619	0,19634139	
			SE	±759705306	±5	±4	±1	±1	±1	±0	±1	±0	
			Desv. Estandar	±1937703625	±14	±10	±4	±3	±2	±0	±2	±0	

Tabla Suplementaria 3. Porcentaje de tipos de compuestos químicos (en % área total, incluyendo suciedad con índice de similitud superior a 50 -MQ>50) en siete réplicas de la variedad de melón PI161375

digree	Rep	Time	Pedrep	AREATOTAL	Ester ac	Ester no ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	Alcanos Hidroc alifat
И12	1	2	11M12-1	184695563	53,5790873	8,22915082	4,72121247	5,56498058	3,84673281	0	0,28053089	0,47937964	
И12	2	2	11M12-2	450447458	56,5158682	9,30681858	3,20233285	11,1799766	2,87904262	0	3,27125525	0,29486757	
И12	3	3	11M12-3	194443747	76,2702426	9,3357605	5,54121574	2,73234966	1,66436633	0	0,83805007	0,15680583	
И12	4	3	11M12-4	1627977177	59,4259537	6,48835631	11,1964672	8,21390345	0,72520118	0	0,70281229	0,06590378	
И12	5	2	11M12-5	395883400	43,8185272	21,0055035	6,37531121	3,53939628	4,25831217	0	0,56024352	0,00750442	
И12	6	3	11M12-6	307931419	39,6875575	32,1538686	1,74985662	10,495038	6,85591417	0	4,17082241	0,19413164	
И12	7	4	11M12-7	235896138	54,6890143	19,1495994	4,36607083	6,29158719	1,10531022	0	3,18317814	0,10176093	
			TOTAL										

digree Rep Time Pedrep **AREATOTAL** Ester ac Ester no ac Aldehído Alcohol Cetona/Lactona Acidos S-comp Terpene **Alcanos Hidroc alifat** 54,8551787 15,0955797 5,30749528 6,85960454 3,04783993 0 1,85812751 0,18576483 Media 485324986 SE ±0 ±194173673 ±1 ±4 ±4 ±1 ±1 ±1 ±0 Desv. Estandar ±562516535 ±13 ±10 ±3 ±3 ±2 ±0 ±2 ±0

Tabla Suplementaria 4. Porcentaje de tipos de compuestos encontrados Totales (% área total cromatograma) en siete réplicas de la variedad de melón PI161375

Ester no

4							4	4			4		
digree	Rep	Time	Pedrep	AREATOTAL	Ester ac	ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	Alcanos Hi
И12	1		2 11M12-1	184695563	53,5790873	8,22915082	4,72121247	5,56498058	3,84673281	0	0,28053089	0,47937964	<u> </u>
И12	2	-1	2 11M12-2	450447458	56,5158682	9,30681858	3,20233285	11,1799766	2,87904262	0	3,27125525	0,29486757	
И12	3	,[3 11M12-3	194443747	76,2702426	9,3357605	5,54121574	2,73234966	1,66436633	0	0,83805007	0,15680583	
И12	4	,	3 11M12-4	1627977177	59,4259537	6,48835631	11,1964672	8,21390345	0,72520118	0	0,70281229	0,06590378	, <u> </u>
И12	5	,	2 11M12-5	395883400	43,8185272	21,0055035	6,37531121	3,53939628	4,25831217	0	0,56024352	0,00750442	
И12	6	,	3 11M12-6	307931419	39,6875575	32,1538686	1,74985662	10,495038	6,85591417	0	4,17082241	0,19413164	
И12	7		4 11M12-7	235896138	54,6890143	19,1495994	4,36607083	6,29158719	1,10531022	0	3,18317814	0,10176093	
			TOTAL		'		<u> </u>	<u> </u>	'		,		
						Ester no							
digree	Rep	Time	Pedrep	AREATOTAL	Ester ac	ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	Alcanos Hi
			Media	485324986	54,8551787	15,0955797	5,30749528	6,85960454	3,04783993	0	1,85812751	0,18576483	
i			SE	±194173673	±4	±4	±1	±1	±1	±0) ±1	±0	,
1			Desv.		<u>'</u>			<u> </u>					
i			Estandar	±562516535	±13	±10) ±3	±3	±2	±0) ±2	2 ±0	

Time Pedrep

2 11M12-1

Estandar

AREATOTAL

184695563

±562516535

Ester ac

53,5790873

±13

Rep

digree

Tabla Suplementaria 5. Áreas totales sumadas por grupos de compuestos químicos (sin considerar índice de similitud) en siete réplicas de la variedad de melón PI161375

Aldehído

4,72121247

±3

Alcohol

5,56498058

±3

Cetona/Lactona Acidos S-comp

±0

3,84673281

Terpene

0,47937964

±0

0 0,28053089

±2

Alcanos Hi

Ester no ac

8,22915082

±10

			Desv.										
			SE	±194173673	±4	±4	±1	±1	±1	±0	±1	±0	
			Media	485324986	54,8551787	15,0955797	5,30749528	6,85960454	3,04783993	0	1,85812751	0,18576483	
digree	Rep	Time	Pedrep	AREATOTAL	Ester ac	Ester no ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	Alcanos Hi
			TOTAL										
И12	7	4	11M12-7	235896138	54,6890143	19,1495994	4,36607083	6,29158719	1,10531022	0	3,18317814	0,10176093	
И12	6	3	11M12-6	307931419	39,6875575	32,1538686	1,74985662	10,495038	6,85591417	0	4,17082241	0,19413164	
И12	5	2	11M12-5	395883400	43,8185272	21,0055035	6,37531121	3,53939628	4,25831217	0	0,56024352	0,00750442	
И12	4	3	11M12-4	1627977177	59,4259537	6,48835631	11,1964672	8,21390345	0,72520118	0	0,70281229	0,06590378	
И12	3	3	11M12-3	194443747	76,2702426	9,3357605	5,54121574	2,73234966	1,66436633	0	0,83805007	0,15680583	
И12	2	2	11M12-2	450447458	56,5158682	9,30681858	3,20233285	11,1799766	2,87904262	0	3,27125525	0,29486757	

Rep

digree

Time

Pedrep

AREATOTAL

Ester ac

Tabla Suplementaria 6. Porcentaje de tipos de compuestos químicos en relación a áreas totales de los mismos (sin considerar índice de similitud o MQ) en siete réplicas de la variedad de melón PI161375

Aldehído

Alcohol

Ester no ac

Cetona/Lactona Acidos S-comp

Terpene

Alcanos Hi

			Media SE Desv.	21386117,2 ±11937053	51,154222	13,8636456 ±3	4,47715562 ±1				1,67317898 ±1		Alounos III
	_												Alounos III
- · · · · · · ·				/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Later ac	Later no ac	Alucilluo	AICOHOI	Celona/Lactona	Acidos	3-comp	1 0. po. 10	Albanos in
digree	Rep	Time	Pedrep	AREATOTAL	Ester ac	Ester no ac	Aldehído	Alcohol	Cetona/Lactona	Acidos	S-comp	Terpene	Alcanos Hi
			TOTAL										
И12	7	4	11M12-7	87914375,3	47,9414596	16,2807497	3,7108879	5,30324468	0,930001	0	2,61280239	0,08793754	
И12	6	3	11M12-6	34977540,8	37,1960647	29,7917703	1,62237503	9,53447673	6,18041245	0	3,94770183	0,18332805	
И12	5	2	11M12-5	1118772,5	40,5935192	19,6477007	5,97253097	3,2671886	3,98733596	0	0,51730944	0,00687939	
И12	4	3	11M12-4	139062	54,5803234	5,72191346	7,25945309	5,35429787	0,51049484	0	0,48375941	0,06340727	
И12	3	3	11M12-3	8048551,83	74,7575457	9,1551712	5,3978476	2,67843706	1,62184044	0	0,82841833	0,15470982	
И12	2	2	11M12-2	11459483,3	54,9807771	8,98223238	3,06994126	10,583901	2,7292223	0	3,07928666	0,28292953	
И12	l I	2	11M12-1	6045034,5	48,0298641	7,46598128	4,30705346	4,78307017	3,15817112	0	0,24297483	0,38231441	