네이버 주가분석 5주차 발표자료

(논문 리뷰 중심)

2020.09.02

이문형

목차

Introduction

- A Survey
- 금융 데이터로 딥러닝을 할 경우 문제점

Literature Review

- Forecasting of Stock Prices Using Brownian Motion–Monte Carlo Simulation
- Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning
- Case Study (LSTM + 강화학습 policy gradient)
 - 2019 국내 빅데이터 연합동아리 BOAZ BIGDATA CONFERENCE
 - 2019 대한산업공학회 대학생 프로젝트 경진대회

1. Introduction

Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020).

Deep learning for financial applications: A survey.

Applied Soft Computing, 106384.

Fig. 8. The histogram of publication count in topics.

Fig. 9. The histogram of publication count in model types.

Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020).

Deep learning for financial applications: A survey.

Applied Soft Computing, 106384.

Jiang, W. (2020).

Applications of deep learning in stock market prediction: recent progress.

arXiv preprint arXiv:2003.01859.

Figure 1: The paper count of different problem types.

Figure 3: The usage of different raw data types.

Figure 4: The distribution of data length.

Jiang, W. (2020).

Applications of deep learning in stock market prediction: recent progress.

arXiv preprint arXiv:2003.01859.

✓ 연구 트렌드

Figure 5: Distribution of combinations of input features.

Figure 9: The usage of different baselines.

Jiang, W. (2020).

Applications of deep learning in stock market prediction: recent progress.

arXiv preprint arXiv:2003.01859.

Figure 10: The usage of different classification metrics.

Figure 11: The usage of different regression metrics.

금융 데이터로 딥러닝을 할 경우 문제점 (문효준 크래프트테크놀로지스, Naver 테크톡)

- ✓ 문제점 1 : 시계열 Feature 자체의 Noise
- 딥러닝이 포착할 수 있는 정보량보다 노이즈가 더 큰 경우가 많다.
- 따라서, LSTM을 사용했을 때 단순 AR 모형처럼 오른쪽으로 lagging이 있는 형태로 모델링이 된다.
- ✓ 해결방안: Time-series denoising
- 1) Moving average, EMA
- -> smoothing은 되나 여전히 lagging 발생
- 2) Bilateral filter : feature와 time에 kernel을 적용한 시계열 feature의 weighted sum, 딥러닝을 사용할 때에 batch 단위 (즉 sequence 단위)로 값이 주어지므로 사용할 수 있는 filtering 기법
- ->smoothing parameter 조절의 문제
- 3) CNN stacked autoencoder 기반 denoising module

Input - Autoencoder(CNN기반) - feature extraction network - output

금융 데이터로 딥러닝을 할 경우 문제점 (문효준 크래프트테크놀로지스, Naver 테크톡)

- ✓ 문제점 2 : 시계열 Feature 종류 대비 짧은 시계열 길이
- GAN을 통한 데이터 생성 ->개별적인 생성은 가능하지만, 전체 시계열의 상관성을 고려한 생성 은 어결동
- ✓ 해결방안 : 도메인 지식 기반 feature engineering & selection
- 기존 <mark>퀀트가 모델을 만드는 방식</mark>은 경제적 함의점을 도출하여 이를 모델 포트폴리오에 반영하 는 형식
- 이를 차용하여 feature engineering을 통해 단순 선형 모델에서 딥러닝을 통해 <mark>최적의 함수</mark> 추정
- 팩터 모델. 자산 배분 모델 등에서 매우 잘 작동하는 것을 확인함

ex) e.g. Factor investing : 주식의 Quality, Size, Value, Momentum, Low Risk 등의 factor 별 투자 방식

- 논문을 리서치해서 직관적 사고방식을 모사
- 시장 유동성이 높으면 모멘텀 수익률이 높아짐
- 경제 활동이 많을 때, 통화 확장정책 시기, 통화 공급이 많을 때에는 가치주 수익률이 높아짐
- 금리 인상시기, 경제 확장기에는 성장주 대비 가치주 수익률 높아짐
 - 경제 침체기에는 부채비율이 낮거나 기업가치 좋은 주식 수익률이 높아짐

 - -> 이를 반영하여 factor에 weight를 조정하는 modeling 사용. 이 때 유동성을 캡처할 수 있는 하위 feature들로부터 extraction하는 network 와 이를 기반으로 수익률을 학습하는 network를 따로 운용.

금융 데이터로 딥러닝을 할 경우 문제점 (문효준 크래프트테크놀로지스, Naver 테크톡)

- ✓ 문제점 3 : 문제점 1, 2로 인한 오버피팅 문제
- ✓ 해결방안:
- 1) Asynchronous Multi Network Learning : 여러 개의 network를 만들어서 경쟁시키는 구조
- 2) Bayesian Inference : validation에서도 관찰이 불가능하다면, 오버피팅보다는 uncertainty quanti fication 필요
- 1. Monte Carlo Dropout

[Gal, Y., & Ghahramani, Z. [2016, June]. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning [pp. 1050-1059]

2. Monte Carlo Batch Normalization

[Teye, M., Azizpour, H., & Smith, K. (2018). Bayesian uncertainty estimation for batch normalized deep networks. arXiv preprint arXiv:1802.06455)

- -> Tau, Dropout rate, Activation에 따른 영향도 높다는 단점
- 3. Deep learning regression + Gaussian Process regression이 성능이 가장 좋았음.
- 선지도학습 후 마지막 FC 전의 feature를 가지고 GPR 학습
- -> 선형 독립적으로 노드들이 representation learning이 잘 됐다는 가정 하에 효과적인 GPR 학습 이 가능

2. Literature Review

Estember, R. D., & Maraña, M. J. R. (2016, March).

1. Forecasting of Stock Prices Using Brownian Motion–Monte Carlo Simulation.

In Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia (pp. 704-713).

- ✓ purpose
- Geometric Brownian Motion method를 사용해서 주가를 예측함
- ✓ data
- October 2014 to April 2015
- Philippine Stock Exchange에 속하는 6개 기업의 주가
- ✓ method
- Geometric Brownian Motion
- Artificial Neural Network (비교 모델)

Estember, R. D., & Maraña, M. J. R. (2016, March). 1. Forecasting of Stock Prices Using Brownian Motion—Monte Carlo Simulation.

t = 2

In Proceedings of the 2016 International Conference on Industrial Engineering and Operations

Management Kuala Lumpur, Malaysia (pp. 704-713). background

▲ 랜덤워크와 브라운동의 수학적 표현 동전의 앞면이 나오면 +1, 뒷면이 나오면 -1 을 계속 누적함. → 여러 가지 흥미로운 특성이 나타남. → 주가 모형의 기초

백념워크의 수학적 정의 분산= t 평균 = 0

 $X_j = \begin{cases} +1, & \text{if } H \\ -1, & \text{if } T \end{cases}$ 표준편차 : \sqrt{t} 평균 = 0

 $k=1,2,3,\!...,\ M_0=0$

 $n \rightarrow \infty$

분산 = 2 $M_k = \sum_{j=1}^k X_j,$

분산= 3 평균 = 0

t = 3 +3

 $M_{k_{i+1}} - M_{k_i} = \sum_{j=1}^{k_{i+1}} X_j$

t = 4

평균 = 0

 $k_0 < k_1 < k_2 ... < k_m$ 일 때

 $E(M_{k}) = 0$

 $Var(X_i) = 1$

8) $\Delta W^{(n)}(t) \sim N(0, (\sqrt{\Delta t})^2)$

9) $\Delta W^{(n)}(t) \sim N(0, 1^2 (\sqrt{\Delta t})^2)$

3) $Var(M_{k_{i+1}} - M_{k_i}) = \sum_{i=k_i+1}^{k_{i+1}} Var(X_j) = \sum_{i=k_i+1}^{k_{i+1}} 1 = k_{i+1} - k_i$

 $E(W^{(n)}(t_i) - W^{(n)}(t_i)) = 0$

7) $Var(W^{(n)}(t_i) - W^{(n)}(t_i)) = t_i - t_i = \Delta t$

1. Forecasting of Stock Prices Using Brownian Motion—Monte Carlo Simulation.

In Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia (pp. 704-713).

$$S_0\left(1 + \frac{\mu}{n} + \frac{\sigma}{\sqrt{n}}\right)$$

$$S_0\left(1 + \frac{\mu}{n} + \frac{\sigma}{\sqrt{n}}\right)\left(1 + \frac{\mu}{n} - \frac{\sigma}{\sqrt{n}}\right)$$

• Drift와 Volatility(주가 수익률)를 전체 기간의 단위로 정의 (연간 단위) 매기마다 적용되는 Drift와 표준편차는 1/n, 1/루트-n을 적용 (일간 단위)

• 식 4) = 식 2)와 식 3)의 연립방정식 식 5) = 식 4)를 식 1)에 대입

Estember, R. D., & Maraña, M. J. R. (2016, March).

$$\left|\frac{1}{n}\right|$$

$$M_{nt}-H-I$$

$$H = \frac{1}{2}(nt + M)$$

$$\frac{1}{2}(nt-M)$$

$$S_{t} = S_{0} \left(1 + \frac{1}{n} + \frac{1}{\sqrt{n}} \right) \qquad \left(1 + \frac{1}{n} - \frac{1}{\sqrt{n}} \right)$$

매 기에 적용되는 주가 수익률 (표준편차)은 모두 동일한 것으로 가정 (불합리하지만, 문제를 단순화 하기위한 가정임)

$$t=0$$
 $t=1$ $t=2$

$$S_t = S_0 \left(1 + \frac{\mu}{n} + \frac{\sigma}{\sqrt{n}} \right)^{\frac{1}{2}(nt+M)} \left(1 + \frac{\mu}{n} - \frac{\sigma}{\sqrt{n}} \right)^{\frac{1}{2}(nt-M)}$$

Estember, R. D., & Maraña, M. J. R. (2016, March). 1. Forecasting of Stock Prices Using Brownian Motion-Monte Carlo Simulation.

In Proceedings of the 2016 International Conference on Industrial Engineering and Operations

Management Kuala Lumpur, Malaysia (pp. 704-713). 6) $\ln S_t = \ln S_0 + \frac{1}{2}(nt + M)\ln\left(1 + \frac{\mu}{n} + \frac{\sigma}{\sqrt{n}}\right)$ 9) $\ln S_t = \ln S_0 + \mu t - \frac{\sigma^2}{2}t + \frac{M}{\sqrt{n}}\sigma - \frac{\mu^2 t}{2n} - \frac{\mu\sigma}{n}\frac{M}{\sqrt{n}}$

$$+\frac{1}{2}(nt-M)\ln\left(1+\frac{\mu}{n}-\frac{\sigma}{\sqrt{n}}\right)$$

$$7) \ln\left(1+\frac{\mu}{n}+\frac{\sigma}{\sqrt{n}}\right)\approx\left(\frac{\mu}{n}+\frac{\sigma}{\sqrt{n}}\right)-\frac{1}{2}\left(\frac{\mu}{n}+\frac{\sigma}{\sqrt{n}}\right)^{2}$$

$$n\to\infty:\frac{M}{\sqrt{n}}=W_{t}, \quad \frac{\mu^{2}t}{2n}=0, \quad \frac{\mu\sigma}{n}=0 \quad 12) \quad \frac{S_{t}}{S_{t}}=e^{\sigma W_{t}+\left(\mu-\frac{1}{2}\sigma^{2}\right)t}$$

7)
$$\ln\left(1+\frac{\mu}{n}+\frac{\sigma}{\sqrt{n}}\right)\approx\left(\frac{\mu}{n}+\frac{\sigma}{\sqrt{n}}\right)-\frac{1}{2}\left(\frac{\mu}{n}+\frac{\sigma}{\sqrt{n}}\right)^{2}$$
 $n\to\infty:\frac{M}{\sqrt{n}}=W_{t}, \quad \frac{\mu t}{2n}=0, \quad \frac{\mu 0}{n}=0$ 12) $\frac{S_{t}}{S_{0}}=e^{\frac{t}{2}}$

$$= \frac{\mu}{n} + \frac{\sigma}{\sqrt{n}} - \frac{\mu^2}{2n^2} - \frac{\mu\sigma}{n\sqrt{n}} - \frac{\sigma^2}{2n} \quad \text{10) } \ln S_t = \ln S_0 + \mu t - \frac{\sigma^2}{2}t + \sigma W_t$$

$$= 3 \ln \left(\frac{S_t}{S_0}\right) = \sigma W_t + \left(\mu - \frac{1}{2}\sigma^2\right)t$$

$$= \frac{\mu}{n} + \frac{\sigma}{\sqrt{n}} - \frac{\mu}{2n^2} - \frac{\mu\sigma}{n\sqrt{n}} - \frac{\sigma}{2n} \quad 10) \ln S_t = \ln S_0 + \mu t - \frac{\sigma}{2}t + \sigma W_t$$

$$1 + \frac{\mu}{n} - \frac{\sigma}{n} = \frac{\sigma}{n} + \frac{\sigma}{n} - \frac{\sigma}{n} - \frac{\sigma}{n} = \frac{\sigma}{n} + \frac{\sigma}{n} + \frac{\sigma}{n} = \frac{\sigma}{n} + \frac{\sigma}{n} + \frac{\sigma}{n} = \frac$$

• 식 11)은 매 기마다 표준편차 (변동성)가 일정하게 적용되었다는 문제점

8)
$$\ln\left(1+\frac{\mu}{n}-\frac{\sigma}{\sqrt{n}}\right)\approx\left(\frac{\mu}{n}-\frac{\sigma}{\sqrt{n}}\right)-\frac{1}{2}\left(\frac{\mu}{n}-\frac{\sigma}{\sqrt{n}}\right)^2$$

$$\sigma W+\left(\mu-\frac{\sigma^2}{n}\right)t$$

$$= \frac{\mu}{\mu} - \frac{\sigma}{\sigma} - \frac{\mu^2}{\mu} + \frac{\mu\sigma}{\sigma} - \frac{\sigma^2}{\sigma}$$
 11) $S_t = S_0^{\sigma} e^{i\frac{\pi}{2} + |\mu - \frac{\sigma}{2}|t}$ — Jaiedelea (GBM)

$$= \frac{\mu}{n} - \frac{\sigma}{\sqrt{n}} - \frac{\mu^2}{2n^2} + \frac{\mu\sigma}{n\sqrt{n}} - \frac{\sigma^2}{2n} \qquad \text{11)} \quad S_{\sharp} = S_0 e^{\frac{3\sigma_{\sharp} + \frac{n}{2} - \frac{\sigma}{2}}{2}} \qquad \text{Adjustable and } \qquad E \left[\ln \left(\frac{\epsilon}{S_0} \right) \right] = \left[\mu - \frac{\sigma}{2} \right] = \left[\frac{1}{2} + \frac{\sigma}{2} \right] = \left[\frac{\sigma}{2} + \frac{\sigma}{2} \right] = \left$$

• 하지만, 단순한 연속적인 주가 모형으로, 이용하기 편리하기 때문에 금융 분야에서 널리 사용 • (ex, 이 식을 이용하여 몬테카를로 주가 시뮬레이션을 만들어서 금융 상품을 평가 (설계) 하는 등에 활용)

$$\begin{array}{c} 0 \; \ln \left(1 + \frac{\mu}{n} - \frac{\sigma}{\sqrt{n}} \right) \approx \left(\frac{\mu}{n} - \frac{\sigma}{\sqrt{n}} \right) - \frac{1}{2} \left(\frac{\mu}{n} - \frac{\sigma}{\sqrt{n}} \right) \\ &= \frac{\mu}{n} - \frac{\sigma}{\sqrt{n}} - \frac{\mu^2}{2n^2} + \frac{\mu\sigma}{n\sqrt{n}} - \frac{\sigma^2}{2n} \end{array} \quad \ \ \\ 11) \; \; S_t = S_0 e^{\sigma W_t + \left(\mu - \frac{\sigma^2}{2} \right) t} \quad \ \ - \text{ This excess 4 (sems)} \end{array} \quad \ \ \ \ \ \ \ \ E \left[\ln \left(\frac{S_t}{S_0} \right) \right] = \left(\mu - \frac{1}{2} \, \sigma^2 \right) t \quad \ \ \leftarrow \sigma E \left(W_t \right) = 0$$

$$=\frac{1}{n}-\frac{1}{\sqrt{n}}-\frac{1}{2n^2}+\frac{1}{n\sqrt{n}}-\frac{1}{2n}$$
 식 6) = 식 5)에 자연로그를 취함, 식 7), 식 8) = 식 6)의 로그 항에 대한 테일러 급수식 적용(2차항 까지)

$$=\frac{\mu}{n}-\frac{\sqrt{n}}{\sqrt{n}}-\frac{\mu}{2n^2}+\frac{\mu}{n\sqrt{n}}-\frac{\sqrt{n}}{2n}$$

Estember, R. D., & Maraña, M. J. R. (2016, March).

1. Forecasting of Stock Prices Using Brownian Motion-Monte Carlo Simulation.

In Proceedings of the 2016 International Conference on Industrial Engineering and Operations

Management Kuala Lumpur, Malaysia (pp. 704-713).

✓ method & result

Daily Rate of Return = Annual Rate of Return

 $MAPE = \left(\frac{1}{n}\sum \frac{|Actual-Forecast|}{|Actual|}\right) X100\%$

Average Drift = Daily Rate of Return - 0.5 x Daily Volatility²

D Statistical Test

The t- test is used to determine significance between two means. The formula is shown below:

$$t_0 = \frac{y - \mu_0}{s / \sqrt{n}}$$
(6)

- Table 2: draft, volatility를 상수가 아닌 변수로 사용 (10-Day Moving Variable을 사용)
- Tabl2 3 : 단기 예측 GBM의 예측오차가 ANN보다 낮음

Number of Days Volatility and Drift Moved		
Normal (Constant Volatility and Drift)	10.70	0.05935
5-Day Moving Variables	10.51	0.44532
10 -Day Moving Variables	8.37	0.05173
15-Day Moving Variables	9.48	0.05435
20-Day Moving Variables	11.50	0.06965
25-Day Moving Variables	15.78	0.07328

	Actual	Forecast Stoo	Percentage Erre			
Date	Stock Price (PhP)	GBM Method	ANN Method	GBM Method	ANN	
Oct 29, 2013	601.50	604.3172	607.8357	0.47	1.05	
Oct 30, 2013	601.50	608.2000	620.6611	1.11	3.19	
Oct 31, 2013	603.00	579.9872	624.7586	3.82	3.61	
Nov 4, 2013	599.5	590.6060	623.0708	1.48	3.93	
Nov 5, 2013	597.00	585.9534	622.3937	1.85	4.25	
Nov 6, 2013	589.50	590.0566	628.5628	0.09	6.63	
Nov 7, 2013	578.00	591.5019	633.1355	2.34	9.54	
Nov 8, 2013	592.50	601.3716	633,7067	1.50	6.95	
	Average Percen	tage Error		1.58	4.89	
Standa	ard Deviation of th	Standard Deviation of the Percentage Error				

- Estember, R. D., & Maraña, M. J. R. (2016, March).
- 1. Forecasting of Stock Prices Using Brownian Motion—Monte Carlo Simulation.

In Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia (pp. 704-713).

√ result

- Table 4 : 장기간 예측에서, GBM이 더 예측오차가 낮고, 표준편차는 큰 차이가 나지 않는다(p-value=0.9363)
- Table 5 : GBM이 효과적, 정확도가 높다(93.79%>91.17%, p-value=0.0204)

Company		Deviation of the stage Error	
Company	GBM Method	ANN Method	
1. MPI	0.34	0.12	
2. DMC	3.19	3.07	
3. JGS	5.83	7.89	
4. AEV	3.74	3.44	
5. AC	0.83	1.72	
6. GTCAP	7.89	5.26	
Average Standard Deviation	3.64	3.58	
p - value (2 – tail)	0.9363		

Table 4.

TABLE V. AVERAGE THREE-YEAR FORECAST AVERAGE PERCENTAGE ERROR OF GBM AND ANN METHODS

	Average Pe	rcentage Error		
Forecast Year	GBM Method	ANN Method		
1st Year	6.42	7.97		
2 nd Year	7.54	9.23		
3rd Year	6.21	9.29		
Average	6.72	8.83		
p - value (2-tail)	0.0204			

Estember, R. D., & Maraña, M. J. R. (2016, March).

1. Forecasting of Stock Prices Using Brownian Motion–Monte Carlo Simulation.

In Proceedings of the 2016 International Conference on Industrial Engineering and Operations

Management Kuala Lumpur, Malaysia (pp. 704-713). TABLE VI. STATISTICAL TEST ON THE FORECAST OF STOCK PRICES OF SAMPLE HOLDING COMPANIES USING GBM AND ANN METHIODS

Company	Yes	ar I	Year 2		
Company	p-value (2-tail)	Interpretation	p-value (2-tail)	Interpretation	
AC	0.5384	Not Significant	5.93E-52	Significant	
AEV	2.89E-09	Significant	5.52E-07	Significant	
DMC	6.82E-69	Significant	1.52E-11	Significant	
JGS	2.16E-09	Significant	0.01169	Significant	
MPI	0.16176	Not Significant	0.02608	Significant	
GTCAP	3.34E-58	Significant	0.00054	Significant	

√ result

- Table 6 : 2년 기간 예측에서, GBM은 ANN과 상당한 차이를 보임(p-value) GBM은 ANN과 크게 다르며 ANN보다 더 예측을 잘함

- -Table 7 : 실제 주가 6개월앞을 예측해봄 (2개 기업은 변동이 큼)
- Table 8 : AC 기업은 기대수익률, 일간수익률, 변동성 측면에서 투자 권장 DMC 기업은 변동이심하고 하락 추세라 투자 X

✓ conclusion

- 다른 모델과 성능 비교해볼 필요
- drift. volatility 구하는 방법이 핵심

Date	MPI	DMC	102	AEV	AC	GTCAF
October 2014	4.574	16.010	58.286	56.954	692.218	1018.96
November 2014	4.482	12.189	56.812	62.008	711.486	1062.860
December 2014	4.539	9.597	54.488	66.725	724.518	1098.356
lumary 2015	4.350	7.630	57.415	68.197	778.954	1105.013
February 2015	4.692	4.222	60.246	66.860	200 540	1100 246

5831

63.938 802.688 1077.201

1032.668

40.518

TABLE VIII. FINANCIAL FORECAST SUMMARY USING GBM METHOD

4 686

April 2015

Category	MPI	DMC	JGS	AEV	AC	GTCAP
Max Return on Investment (%)	22.95	-79.23	30.59	20.47	33.23	17.20
Ave. Daily Rate of Return (%)	0.0008	-0.00005	0.02	0.03	0.03	0.0007
Volatility	1.38	10.60	1.52	1.46	1.14	1.27

Jeong, G., & Kim, H. Y. (2019).

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

✓ purpose

- 1) Deep Q-Network를 통해 거래 할 주식의 수를 예측할 수있는 거래 시스템을 제안함
- 2) Q-value를 활용한 다양한 행동 전략을 연구함
- (혼란스러운 시장 환경 하에서 수익을 내도록)
- 3) 전이 학습 접근법을 제안함 (불충분한 재무 데이터로 인한 과적합을 방지)
- ✓ data
- S&P500, KOSPI, HSI, and EuroStoxx50 주가 지수

method

- Deep Q-Learning
- Transfer Learning

- Jeong, G., & Kim, H. Y. (2019).
- 2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.
- Expert Systems with Applications, 117, 125-138. ✓ background

A Taxonomy of RL Algorithms

A non-exhaustive, but useful taxonomy of algorithms in modern RL. Citations below.

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

- 1 에이전트가 환경에서 자신의 상태를 관찰
- 2 그 상태에서 어떠한 기준에 따라 행동을 선택
- 3. 선택한 행동을 환경에서 실행
- 4. 환경으로부터 다음 상태와 보상을 받음
- 5. 보상을 통해 에이전트가 가진 정보를 수정함

정책 $\pi(a|s) = P[A_t = a|S_t = s]$

상태 s에서 행동 a를 선택할 확률

기치함수 $v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s]$ 큐함수 $a_{\pi}(s,a) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s, A_t = a]$

$$s_0, a_0, r_1, s_1, a_1, r_2, \cdots, s_T$$

- Agent : 상태를 관찰, 행동을 선택, 목표지향 - Environment : 에이전트를 제외한 나머지
- State : 현재 상황을 나타내는 정보
- Action
- Reward : 행동의 좋고 나쁨을 알려주는 정보

- Policy : 상태 s에서, 행동 a를 선택할 확률
- Value function : 행동 선택의 기준
- Q function : 상태 s에서 행동 a를 선택했을 때. 미래에 받을

것이라 기대하는 보상의 합

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138. ✓ background

너무 먼 미래에 대해서 기대를 품기보다는 가까운 미래에 대해서 구체적인 기대를 품기로 했다

$$q_{\pi}(s, a) = \mathbf{E}_{\pi}[R_{t+1} + \gamma(R_{t+2} + \cdots) | S_t = s, A_t = a]$$

$$q_{\pi}(s, a) = \mathbf{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

벨만 기대 방정식(Bellman expectation equation)

미래에 대해서 기대만 하기보다는 실제로 부딪혀보면서 학습하기로 했다

현재 큐함수 ← 보상 + 감기율 X 다음 큐함수

$$q(s,a) \leftarrow r + \gamma q_{\pi}(s',a')$$

적진적인 큐함스의 언데이트

$$a(s,a) = a(s,a) + \alpha(r + va(s',a') - a(s,a))$$

탐욕정책
$$\pi'(s) = argmax_a g_{\pi}(s, a)$$

$$\varepsilon$$
 -탈욕정책 $\pi(s) = \begin{cases} a^* = argmax_a \ q(s, a), \ 1 - \varepsilon \\ a \neq a^*, \ \varepsilon \end{cases}$

• 기왕 기억을 활용하는 김에 좋은 기억을 활용해보자

→ 다음 큐함수 중에서 가장 값이 큰 큐함수를 이용해서 현재 큐함수를 업데이트 (Q-Learning)

$$q(s,a) = q(s,a) + \alpha(r + \gamma \max_{a'} q(s',a') - q(s,a))$$

- Bellman expectation equation : Q 함수를 업데이트, 이를 위해 SARSA (s,a,r,s',a')이 필요함
 Q function : 상태 s에서 행동 a를 선택했을 때, 미래에 받을 것이라 기대하는 보고 함
- Greedy Policy : 지금 할 수 있는 행동중에서 Q함수가 가장 높은 행동을 선택
- 엡실론-Greedy Policy : 일정 확률로 랜덤하게 선택 (탐험)

Jeong, G., & Kim, H. Y. (2019). 2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

$$A = \{1, 0, -1\}.$$

$$r_{t} = \left(1 + a_{t} \times \frac{p_{t} - p_{t-1}}{p_{t-1}}\right) \frac{p_{t-1}}{p_{t-n}}.$$

$$profit_{t} = a_{t} \times \frac{p_{t} - p_{t-1}}{p_{t-1}}$$

 $S = \{s_1, s_2, \dots, s_T\},\$

(상수 L=10으로 제한)

$$Total\ profit = \sum_{t} profit_{t}$$

(from t-199 to t)

- state : t 시점 종가 - t-1 시점 종가

 $r_t = num_t \times \left(1 + a_t \times \frac{p_t - p_{t-1}}{n_{t-1}}\right) \frac{p_{t-1}}{n_{t-1}}$ $profit_t = num_t \times a_t \times \frac{p_t - p_{t-1}}{p_{t-1}}$.

 $R_{num}(s_t, a_t) = Softmax(W_4 \times Sigmoid(fc3) + b_4)$ (15)

(11)

(12)

(13)

(14)

 $num_t = R_{num}(s_t, a_t^*) \times L$ where $a_t^* = argmax Q_{action}(s_t, a_t)$

 $fc1 = Relu(W_1I_t + b_1)$

 $fc3 = W_3 \times fc2 + b_3$

 $fc2 = Relu(W_2 \times fc1 + b_2)$

 $Q_{artion}(s_t, a_t) = W_4 \times Relu(fc3) + b_4$

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

✓ method 1) action-dependent DNN regressor를 통한 주식 수 결정

- Fig. 4: 3단계 훈련

- action-independent 의 경우는 마지막 출력이 1개

Action branch

Fig. 4. Flow chart of the NumDReg - AD with three - step training training process.

Jeong, G., & Kim, H. Y. (2019).

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

✓ method 2) Action strategies in a confused market

- 확률의 차이가 사전에 결정된 임계값보다 낮으면 전략에 따라 행동함. ex) 선택한 Q- 값이 다른 값에 비해 현저하게 큰 비율을 갖지 않으면 주식에 명확한 추세가 없다고 가정한 다음 특정 조치를 취함

```
Initialize the Q network and load the pretrained network.
                                                                                                                      Total profit = 0
                                                                                                                      1: for each episode do:
\frac{|Q(s_t, a_{BUY}) - Q(s_t, a_{SELL})|}{\sum |Q(s_t, a)|} < threshold.
                                                                                                                      2: Set state sr:
                                                                                                                      3: Obtain the O-values for the action and the number in accordance with the O-network.
                                                                                                                           if \frac{|Q(x_0, x_{B(N)}) - Q(x_0, x_{B(N)})|}{|Q(x_0, x_{B(N)})|} < threshold, then:
                                                                                                                             The action is given by the strategy:
                                                                                                                          else:
                                                                                                                             Action a_t = \operatorname{argmax} \{O(s_t, a)\}:
                                                                                                                            Set next state seat:
                                                                                                                      9: Calculate r, and profit;
                                                                                                                           Store memory (s_t, a_t, r_t, s_{t+1}) in buffer,
                                                                                                                      11: for each mini-batch sample do:
                                                                                                                              Q(s_t, a_t) \leftarrow Q(s_t, a_t) + learning rate^*(r_t + \gamma Q(s_{t+1}, a') - Q(s_t, a_t)),
                                                                                                                              Total profit ← Total profit + profit,
                                                                                                                       14: end for
```

15: end for

Algorithm 1 O learning including the action strategy.

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

- ✓ method 3) Transfer learning from the index component stocks
- correlation and the neural network을 바탕으로 하위 종목을 선택함 - 6 그룹으로 나눔
- 상관관계에서 (높은 관계 / 높은 관계 반 낮은 관계 반 / 낮은 관계)
- 신경망에서 (낮은 MSE / 낮은 MSE 반 높은 MSE 반 / 높은 MSE)
- 4개 지수에 포함된 구성 종목 수에 따라 종목 수를 다르게 선택함
- 각 그룹에서 모든 주식은 별도로 사전 훈련됨, 그러나 사전 훈련 된 모든 주식은 가중치를 공유함
- 총 수입이 가장 높은 그룹을 선택함

Algorithm 2 The entire process, including transfer learning, determining the share trading number method, and using the action strategy. 1: Load the index data and the index component stocks: 2: Calculate the correlation between the index and the index components stocks or calculate the MSE between them with the neural network: 3: Create the six groups with the highest or lowest relationship or both using correlation and the MSE: 4: Select the best group among the six groups: 5: Pretrain the model including NumQ or NumDReg - AD with the chosen group; 6: if NumO, then: Load NumQ weights pretrained by transfer learning; Train the model, including NumO with the action strategy: 9: else if NumDReg - AD. then: Load NumDReg - AD weights pretrained by transfer learning: Train the model, including NumDReg - AD with the action strategy; 12: else if NumDReg - AD with three - step training, then: Load NumO weights pretrained by transfer learning: Freeze NumO weights and only train the number branch based on the NumDReg - AD algorithm: Complete an end-to-end process with the action strategy: 16: else if NumDReg - ID, then: Load NumQ weights pretrained by transfer learning; Freeze NumO weights and only train the number branch based on the NumDReg - ID algorithm: Complete an end-to-end process with the action strategy:

Fig. 6. Training process of transfer learning

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

- √ result
- hyper parameter

Network: learning rate = 0.0001, gamma = 0.85, batch size = 64

end-to-end process: learning rate = 0.0000001 for NumDReg - AD, 0.00001 for NumDReg - ID

Main training	Training period	Test period	
Pretraining	Training	Validation	x
S&P500 index (SP500)	Jan 1, 1987-Nov 4, 2002	Nov 5, 2002-Aug 10, 2006	Aug 11, 2006-Dec 31, 2017
Hang Seng Index (HSI)	Jan 2, 2001-May 2, 2008	May 3, 2008-Jul 21, 2009	Jul 22, 2009-Dec 29, 2017
EuroStoxx50 index	Apr 05, 1991-Feb 19, 2003	Feb 20, 2003-Jul 13, 2005	Feb 21, 2003-Dec 29, 2017
Korea Stock Price Index (KOSPI)	Jul 1, 1997-Jul 11, 2006	Jul 12, 2006-May 05, 2008	Mar 06, 2008-Dec 28, 2017

Abbreviation	Pretrained data measure	Main training data	Pretrained Number method	Number method	Step-wise training	Action strat
MKT	N/A	N/A	N/A	N/A	N/A	N/A
RL	N/A	Index	N/A	N/A	N/A	N/A
IDX	Index	Index	N/A	N/A	N/A	N/A
CR	Correlation	Index	N/A	N/A	N/A	N/A
NE	Neural Network	Index	N/A	N/A	N/A	N/A
NQ	NE	Index	N/A	NumQ	N/A	N/A
NENQ	NE	Index	NumQ	NumQ	N/A	N/A
NDA	NE	Index	N/A	NumDReg - AD	N/A	N/A
NENDA	NE	Index	NumDReg - AD	NumDReg - AD	N/A	N/A
NENDA3	NE	Index	NumQ	NumDReg - AD	Yes	N/A
NENDI3	NE	Index	NumQ	NumDReg - ID	Yes	N/A
NENDI3-BUY	NE	Index	NumQ	NumDReg - ID	Yes	Buy
NENDI3-HOLD	NE	Index	NumQ	NumDReg - ID	Yes	Hold
NENDI3-SELL	NE	Index	NumO	NumDReg - ID	Yes	Sell

2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

result

- Table 4. : 사전 훈련된 모델이 성능이 좋음 신경망이 주식과 지수 관계 모델링에 더 좋음
- 종목 수가 많은 경우는 상관 관계가 낮은 모델이 사전 훈련에 좋지만.

반대의 경우는 상관 관계가 높은 모델이 좋음

- Table 6. : 임계치 0.2에서 hold 전략이 대체로 높은 수익을 얻음

Table 4 Results of the pretrained model Model S&P500 MKT 0.9654 0.8647 0.5511 1.3621

CR	High 0.9254	High and Low 1.0392	Low 1,4310	High 1.0097	High and Low 1.0761	Low 1,4988
NE	High	High and Low	Low	High	High and Low	Low
	1,2920	1,0761	1.595	1.0515	1.6083	2.0641
Model		HSI			EuroStoxx50	
MKT		0.2852			-0.3359	
RL		0.3841			0.5096	
IDX		0.5932			0.8675	
CR	High	High and Low	Low	High	High and Low	Low
	0.6949	0.6559	0.6235	0.9877	0.6129	0.3791
NE	High	High and Low	Low	High	High and Low	Low
	0.7422	0.7242	0.5422	1.2901	0.8179	0.4752

Table 5

The model's results from trading different numbers of shares using the NO and ND models, and their transfer learning applications with sten-wise training

	A COLUMN TO A COLU			
Model	S&P500	KOSPI	HSI	EuroStoxx50
NQ	3.8912	3.2163	4.7626	3.3882
NDA	2.9759	2.5334	4.3639	2.6322
NENQ	7.7169	3.9665	7.2330	4.0376
NENDA	4.4279	4.5590	6.1747	3.1082
NENDA3	8.6873	5.8359	9.1167	4.3487
NENDI3	9.6789	10.5704	10.4296	6.1502

NENDI3-SELL

Table 6 Parulty of the NENDI3 model and the models applying action

gies.						
Model	S&P500	KOSPI	HSI	EuroStoxx50		
NENDI3	9.6789	10.5704	10.4296	6,1502		
NENDI3-BUY	9.1976	7.8825	11.5862	6.9175		
NENDI3-HOLD	11.4188	13.1416	9.3136	9.3237		

4 5838 10.7684 11.2926 -9.5000

- Jeong, G., & Kim, H. Y. (2019).
- 2. Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117, 125-138.

- ✓ contribution & application
- 거래 주식 수, 액션 전략, 보상 방법 등이 중요
- -> feature를 줄이고 예측 정확도 높이는 핵심
- <mark>전이학습 대상</mark>에 대해 고민 -> 상관 관계 고려해 선정
- 액션 전략에 NLP 응용 가능
- 학습 여부에 따라 보상을 변경 (ex. 가치의 차이 만큼 보상)
- LSTN + DQN 알고리즘 적용 검토
- DQN 말고, policy optimization 알고리즘 적용 검토

3. Case study

제 9회 BOAZ BIGDATA CONFERENCE

```
✓ purpose
```

- 주가 예측에 다양한 방법을 시도함 (보조지표, 뉴스, 분류모델, LSTM, RL 등)

- ✓ data
- 2010.08.06 ~ 2018.09.12
- KOSPI 시가총액 300위 해당 종목(date, open, high, low, close, volume, code, name, etc)
- KOSPI 지수(일자, 체결가, 거래량, 거래 대금, 등락, etc)

method

- LSTM + Policy Gradient RL
- 폭락 방지 알고리즘 (뉴스)

- BOAZ 10기 구진모 사공용협 전소정. 1. 강화학습을 이용한 주식 트레이딩 알고리즘.
- 제 9회 BOAZ BIGDATA CONFERENCE
 - ✓ method
 - 기존 주가 예측 방법으로 접근 (주가 등락 classification)
 - ✓ preprocessing
 - 시계열 변수와 주가 관련 보조지표 계산 (RSI, MACD, Stochastic, 이동평균(MA, EMA, WMA, EVWMA, VWMA 등), DMI, BB, etc)
 - ✓ test
 - DNN, SVM, Decision Tree, RandomForest 등 10개 모델 K-FOLD 적용 시 최대 60%초반대 ACC
 - -> 많이 부족하다고 생각해 뉴스 데이터 추가 사용 (약 10만개, 제목, 내용, 날짜, 전일비차트)

->주식 종목별로 강화학습 모델을 생성함

제 9회 BOAZ BIGDATA CONFERENCE

✓ test

- 형태소 분석 및 Word2Vec (전처리, 조사 숫자 제외, Konlpy-okt(사전 기반), Soynlp(통계 기반), Khaiii(딥러 닝 기반), skip-gram model 이용(Word2Vec)

- TF-IDF, RNN, LSTM, GRU, CNN-RNN 형태소 분석기와 모델을 조합하여 등락 예측 -> 정확도 50% 전후

-> 사용 불가능

✓ data

Ebest 증권사의 Xing API

✓ preprocessing

- 거래 정지 이유 별 데이터 수정(액면분할, 액면병합, 차등감자, 기업분할, 기업병합, 인적분할 등) - 종목 별로 변수를 다르게 추가함. 종목별로 결과가 잘 나오는 변수 조합이 존재함. ex) 메리츠화재: 코스피지수 + BB 등, KCC: ADX, DMI, BOX 등

제 9회 BOAZ BIGDATA CONFERENCE

```
√ component
```

- * 에이전트 투자자, * 환경 데이터,
- * 액션 매수, 매도, 관망, * 보상 이익, 손해, * 보상 규칙 - 이익률 3% 달성 시 이익
- * 거래수수료와 거래세 반영 (일반적 case로)

√ model

- 정책 신경망 클래스에서 사용함, 5 은닉층의 LSTM(3개층 256차원, dropout 50%) 입력층 : 학습 데이터 차원 + 에이전트 상태 차원 (주식 보유 비율, 포트폴리오 가치 비율) 출력층 : 매스 메드 광마
- 출력층 : 매수, 매도, 관망 - policy gradient 사용
- 이유: Q러닝은 기대 손익을 예측하나, 정책 경사는 어떤 행동이 현재 상태에서 가장 좋을 지를 확률적으로 판단하기 때문에 주식 예측에 더 효과적이라고 알려져 있음.
- 확률적 경사 하강법(SGD), Learning rate는 0.01, 0.001 등 종목별로 다르게 설정함

BOAZ 10기 구진모 사공용협 전소정.

1. 강화학습을 이용한 주식 트레이딩 알고리즘.

✓ result 백테스트

제 9회 BOAZ BIGDATA CONFERENCE

- 아모레퍼시픽 : 6개월 +10.86%, 동원산업 : 6개월 6% + 하락 방어
- ✓ 폭락 방지 알고리즘
 1) 익일 주가 등락 여부에 따른 공부정 강도 생성
- 뉴스 파싱 -> 주가 등락 심했을 때, 이전의 뉴스를 직접 모음 - 뉴스마다 긍정 / 부정 라벨링 -> 단어마다 긍정 / 부정 뉴스 등장 빈도수 측정

Diff =(긍정 뉴스 등장 수 - 부정 뉴스 등장 수) / 총 뉴스 등장 수 Strength1 = Diff의 합, Strength2 = Diff의 합 / 뉴스 총 단어 수

Pos_count1 = Diff > 0 단어 수, Pos_count2 = Diff > 0.2 단어 수
Pos_count3 = Diff > 0.2 이고, 빈도수가 100 이상인 단어 수
Nog_count3 = Diff < 0.3 단어 수

Neg_count1 = Diff < 0 단어 수, Neg_count2 = Diff < -0.2 단어 수
Neg_count3 = Diff < -0.2 단어 수

2) 시간대별 뉴스 처리

- 20분 마다 동작하도록 배치, 시간대별 종목에 대한 궁부정 점수 계산 ->부정 점수 급등 시점 포착
- 부정점수와 MACD 보조지표의 매도 신호 모두 1일 경우 전량 매도

제 9회 BOAZ BIGDATA CONFERENCE

- ✓ 실전 트레이딩 epoch 1000 (16개 종목)
 3일차수익률 1.08
- ✓ conclusion & limitation
- 등락 예측이 목표인 기존 방법보다 강화학습의 성능이 좋음
- -수익도 중요하지만 폭락 방지 알고리즘도 중요함 (안정적인 수익이 우선)
- '구락도 중요약시한 축락 장시 골꼬니금도 중요함 (한양약한 구락의 구선 - 빠르 프라 가지 많이 파이 ---) 이미래파시피 프라이에도 사중기 어어오
- 빠른 폭락 감지 보완 필요, ex) 아모레퍼시픽 폭락임에도 신호가 없었음 - 종목마다 다른 feature selection 기준 : 사람이 직접 수작업으로 테스트함

대한산업공학회 추계학술대회 논문집, (), 3821-3835.

- ✓ purpose
- 기업선정(가치투자)모델 (재무비율 및 수정주가 데이터),

데이터 그녀

- 모멘텀 투자모델 (주가 및 거래지표 데이터)의 앙상블을 통한 안정적인 수익률 달성

✓ data

재무비율		Features(Annual)	재무비율		Features(Annual)	수정주가	Features	주가	Features	거래지표	Features
	안정성 변수 21개	타인자본비율(%)	KOSPI KOSDAQ 상장기업 2138개	주당지표 변수 6개	EPS(원)		(Daily)		(Daily)		(Daily)
KOSPI KOSDAQ 상장기업 2138개		유보액/총자산(%)			수정EBITDAPS(원)	KOSPI KOSDAQ 상장기업 2138개	수정주가	KOSPI KOSDAQ 상장기업 2138개	시가 종가 고가 저가	KOSPI KOSDAQ 상장기업 2138개	거래량 외국인순매수 기관순매수링 개인순매수링
	성장성 변수 27개	영업수익증가율 (전년동기)(%)		주가배수 16개	PER(₩)						
					PEGR(-)						
		DPS증가율(보통주, 전년동기)(%)		배당관련 변수 9개	DPS(보통주,현금						
	수익성 변수 20개	매출충이익률(%)			+주식)(원)						
		ROE(%)			배당성향						
		총자산회전율(회)		기업관련	매출비중1(결산)						
	활동성 변수 3개	*********		변수 4개	코스닥 대형류94						

- ✓ method
- 기업선정 모델 : 분류 모델(Randomforest)
- 모멘텀 투자모델: LSTM + 강화학습(Policy Gradient)

대한산업공학회 추계학술대회 논문집, (), 3821-3835.

✓ project flow

대한산업공학회 추계학술대회 논문집, (), 3821-3835.

✓ preprocessing

대한산업공학회 추계학술대회 논문집, (), 3821-3835.

✓ method (모멘텀 투자모델)

대한산업공학회 추계학술대회 논문집, (), 3821-3835.

method (모멘텀 투자모델)

대한산업공학회 추계학술대회 논문집, (), 3821-3835.

✓ method (모멘텀 투자모델)

- ✓ 백테스팅
- 투자 기간: 2017년 3월 31일~2018년 4월 1일
- 포트폴리오(5종목) 수익률 : -2%, 코스피 수익률 : 13%, 모멘텀(5종목) 수익률 : 7.52%

느낀점 정리

- ✓ 프로젝트 도메인 결정이 필요함 (범위가 너무 넓음)
- ✓ 종목(포트폴리오) 선택도 중요해보임
- ✓ 주식 트레이딩 모델은 분류/회귀보다 강화학습이 도전할만함 (제 생각)
- ✓ 매매 횟수나 매매 패턴에도 제약을 두는 것을 고려
- ✓ 학습 시간에 따라 (가중치 학습에) 유전알고리즘 사용 고려
- ✓ 거래량과 같은 시장 미시 구조 feature 조사
- ✓ 프로토타입 ->기존 연구의 파라미터 바꾸기(종목, 기간, 보상 규칙, feature, 하이퍼파라미터 튜닝 등)
- ✓ contribution을 위한 알고리즘 공부(feature engineering,시계열,NLP,LSTM,RL
 등) 개념 공부 + 논문리서치 병행

Reference

- Git-hub, NAVER branch에 관련 코드 및 논문 수집
- Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). Deep learning for financial applications: A survey. Applied Soft Computing, 106384.
- Jiang, W. (2020). Applications of deep learning in stock market prediction: recent progress. arXiv preprint arXiv:2003.01859.
- https://www.youtube.com/watch?v=dB8cpsnZ5FA&t=733s
- Estember, R. D., & Maraña, M. J. R. (2016, March). Forecasting of Stock Prices Using Brownian Motion-Monte Carlo Simulation. In Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia (pp. 704-713).
- Jeong, G., & Kim, H. Y. (2019). Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning. Expert Systems with Applications, 117, 125-138.
- https://www.youtube.com/watch?v=5x6nbN-6tFU&t=1054s
- 정해성, 김용현, 임한준, 정기백, 정진태, 최원화. (2019). 재무비율과 기술적 분석을 통한 AI 주식 트레이딩 알고리즘 모델링. 대한산업공학회 추계 학술대회 논문집. (), 3821-3835.
- https://blog.naver.com/chunjein/100188340479
- https://www.slideshare.net/WoongwonLee/ss-78783597

감사합니다.

Q&A