

FASHION AND APPAREL CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

Alexander Schindler

alexander.schindler@ait.ac.at

Thomas Lidy

lidy@ifs.tuwien.ac.at

Stephan Karner

stephan.karner@monstyle.io

Matthias Hecker

matthias.hecker@monstyle.io

FASHION IMAGE CLASSIFICATION

- Online e-commerce access to product images
 - Asos-EU, Farfetch, Zalando
 - Images & metadat

Problem

- Metadata differs in
 - Quality, granularity, taxonomy
 - Taxonomy varies in depth of categorical hirarchy

Task

- use CNNs to
 - Consolidate Metadta
 - Enrich Metadata

BRIEF OVERVIEW

- Empirical study
- Applying deep Convolutional Neural Networks to fashion classification
- Evaluated five CNN architectures
- Custom and pre-trained models
- Evaluated on three tasks
 - Person detection
 - Product classification
 - Gender prediction

DATASETS

- Person
 - 7.833 images
 - 5.669 labeled as persons
 - 2.164 labeled as products
- Products
 - 234.884 images
 - 39.474 products
 - ~5,95 images per product
 - Ground-truth labels assignements
 - Product category
 - Label hirarchy
 - Gender
 - Age

DATA QUALITY / ISSUES

White background

Worn by persons

Text, Overlays

Close-up texture

Close-up fit

Multiple objects

Brand logo

Misc

PERSON DETECTION

- Products also presented by persons
 - How they look when worn?
- Problem
 - Person wears multiple products
 - Single-label classification
 - Decission problem
- Approach
 - Train model to identify persons
 - Use model to filter images with persons
 - VGG-like custom model
- Results
 - 91.07% accuracy on persons dataset

PRODUCT CLASSIFICATION

Deep Neural Network Architectures

- Vgg16 and Vgg19
- InceptionV3
- Custom CNN and Vgg-like

Experiments

- From-Scratch
- Pre-Trained

Evaluation

- 4-Fold Crossvalidation
- Grouped Stratification

Metrics

- Raw Accuracy
- Max of Sum per product

David Fossard, https://www.cs.toronto.edu/~frossard/post/vgg16/

John Shlens, https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html

EXPERIMENTAL SET-UP

- Small scale
 - Subset of 23.305 images
- Large scale
 - 234.408 images
- All Models
 - Data Augmentation
 - 25% vertically and horizontally shifting
 - 25% zoom range
 - Horizontal flipping

RESULTS – SMALL SCALE (24K)

- Best results: Pre-trained + fine-tune entire model
 - Freezing network + training only top layers not as good
- Person filter did not improve performance
- Small custom models have advantage of speed, but not as accurate

Description	best fold	best fold cum max	Mean cum max
InceptionV3, pretrained, fine-tuned	0.706	0.794	0.791
InceptionV3, pretrained, fine-tuned	0.658	0.729	0.716
VGG16, pretrained, fine-tuned	0.646	0.711	0.691
InceptionV3, pretrained, fine-tuned, person filter model as layer	0.569	0.685	0.658
VGG19, pretrained, fine-tuned	0.579	0.673	0.634
InceptionV3, pretrained, fine-tuned, no augmentation	0.564	0.673	0.647
VGG19, pretrained, train only top-layers	0.578	0.669	0.343
VGG16, pretrained, train only top-layers	0.603	0.652	0.368
InceptionV3, pretrained, train only top-layers	0.585	0.650	0.643
InceptionV3, pretrained, fine-tuned - person filtered metadata	0.640	0.636	0.614
InceptionV3, clean	0.492	0.594	0.580
Custom CNN, augmentation	0.506	0.568	0.538
Custom CNN	0.463	0.556	0.523
Custom VGG-like	0.438	0.549	0.519
VGG16, clean	0.439	0.455	0.443
VGG19, clean	0.437	0.447	0.430
VGG19, pretrained, train only top-layers	0.819	0.887	0.880
InceptionV3, pretrained, fine-tuned	0.798	0.863	0.836
VGG19, pretrained, fine-tuned	0.762	0.846	0.830

CONFUSIONS - SMALL SCALE (24K)

PER CLASS ACCURACIES – LARGE SCALE (234K)

- Problem of different granularity of provided ground truth
- Parent/Child nodes used interchangeably
 - Misclassification of child as parent is not wrong
 - Model does not consider hirarchy

CONCLUSIONS

- Despite large dataset and reduced number of classes
 - Pretrained models outperform from-scratch training
 - Product classification 79.1%
 - Gender prediction 88.0%
- Custom small model enough to learn binary task
 - person/product classification 91.07%
- Preprocessing of ground-truth required
 - Flatten hierarchy, remove ambiguities and overlaps
 - Use hierarchical CNNs
 - Use attention (person images)

THANK YOU!

Alexander Schindler, 08.06.2018

