

Chou, Kung Po

TUMOR TYPE
Pancreas ductal
adenocarcinoma
COUNTRY CODE

REPORT DATE 07 Apr 2023

ORD-1600374-01

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

PATIENT

DISEASE Pancreas ductal adenocarcinoma
NAME Chou, Kung Po
DATE OF BIRTH 03 July 1972
SEX Male

PHYSI

ORDERING PHYSICIAN Yeh, Yi-Chen
MEDICAL FACILITY Taipei Veterans General Hospital
ADDITIONAL RECIPIENT None
MEDICAL FACILITY ID 205872
PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN SITE Pancreas
SPECIMEN ID S111-71014F (PF23031)
SPECIMEN TYPE Slide Deck
DATE OF COLLECTION 19 July 2022
SPECIMEN RECEIVED 31 March 2023

Biomarker Findings

MEDICAL RECORD # 47951020

Microsatellite status - MS-Stable
Tumor Mutational Burden - 4 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

BRCA1 splice site 5332+1G>A
KRAS Q61H
MTAP loss
CDKN2A/B CDKN2B loss, CDKN2A loss
TP53 C275W

1 Disease relevant genes with no reportable alterations: *BRCA2*

Report Highlights

- Targeted therapies with NCCN categories of evidence in this tumor type: Olaparib (p. 9), Rucaparib (p. 10)
- Variants that may inform nontargeted treatment approaches (e.g., chemotherapy) in this tumor type: BRCA1 splice site 5332+1G>A (p. 4)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 12)
- Variants in select cancer susceptibility genes to consider for possible follow-up germline testing in the appropriate clinical context: BRCA1 splice site 5332+1G>A (p. 4)

BIOMARKER FINDINGS	THE	ERAPY AND CLINICA	AL TRIAL IMPLICATIONS	
Microsatellite status - MS-Stable	No therapies or	clinical trials. See	Biomarker Findings secti	on
Tumor Mutational Burden - 4 Muts/Mb	No therapies or clinical trials. See Biomarker Findings section			on
GENOMIC FINDINGS	THERAPIES WITH CLII		THERAPIES WITH CLIN (IN OTHER TUM	
BRCA1 - splice site 5332+1G>A	Olaparib	2A	Rucaparib	2A
			Niraparib	
10 Trials see p. <u>12</u>			Talazoparib	
KRAS - Q61H	none		none	
3 Trials see p. 14				
MTAP - loss	none		none	
3 Trials see p. <u>15</u>				
			NCCN category	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

Chou, Kung Po

TUMOR TYPE
Pancreas ductal
adenocarcinoma
COUNTRY CODE
TW

REPORT DATE 07 Apr 2023

ORD-1600374-01

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING IN SELECT CANCER SUSCEPTIBILITY GENES

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

CDKN2A/B - CDKN2B loss, CDKN2A loss p. <u>7</u> *TP53* - C275W p. <u>8</u>

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies.

Therapies contained in this report may have been approved by the US FDA.

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective

analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

MSI is rare in pancreatic carcinoma, reported in less than 1% of samples $(n=>1,000)^{6-10}$. The prognostic significance of MSI in pancreatic cancer is unknown (PubMed, Aug 2022).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive

amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹¹. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS2¹¹⁻¹³. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹⁴⁻¹⁶. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins^{11,13,15-16}.

BIOMARKER

Tumor Mutational Burden

RESULT 4 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors. increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L117-19, anti-PD-1 therapies17-20, and combination nivolumab and ipilimumab $^{21\mbox{-}26}.$ In multiple pan-tumor studies, increased tissue tumor mutational burden (TMB) was associated with sensitivity to immune checkpoint inhibitors^{17-20,27-31}. In the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors, significant improvement in ORR was observed for patients with TMB ≥10 Muts/Mb (as measured by this assay) compared with those with TMB <10 Muts/Mb in a large cohort that included multiple tumor types²⁷; similar findings were observed in the KEYNOTE 028 and 012 trials²⁰. At the same TMB cutpoint, retrospective analysis of

patients with solid tumors treated with any checkpoint inhibitor identified that tissue TMB scores ≥ 10 Muts/Mb were associated with prolonged time to treatment failure compared with scores <10 muts/Mb (HR=0.68)31. For patients with solid tumors treated with nivolumab plus ipilimumab in the CheckMate 848 trial, improved responses were observed in patients with a tissue TMB ≥ 10 Muts/Mb independent of blood TMB at any cutpoint in matched samples³². However, support for higher TMB thresholds and efficacy was observed in the prospective Phase 2 MyPathway trial of atezolizumab for patients with pan-solid tumors, where improved ORR and DCR was seen in patients with TMB ≥ 16 Muts/Mb than those with TMB \geq 10 and <16 Muts/Mb³⁰. Similarly, analyses across several solid tumor types reported that patients with higher TMB (defined as ≥16-20 Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy compared with patients with higher TMB treated with chemotherapy 33 or those with lower TMB treated with PD-1 or PD-L1-targeting agents¹⁸.

FREQUENCY & PROGNOSIS

Pancreatic carcinomas, including ductal and acinar subtypes, have been reported to harbor a median TMB of 2-3 mutations per megabase (muts/Mb), and o-2% of cases have high TMB (>20 muts/

Mb)³⁴; TMB has not been assessed in pancreatic mucinous neoplasms (PubMed, Oct 2022). A study of patients with pancreatic ductal adenocarcinoma harboring mismatch repair gene mutations reported improved prognosis for patients with high TMB measured in tissue samples (defined as >50 mutations; survival 69-314 months) compared to those with lower TMB (average of 5.7 mutations; 10-42 months)³⁵.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma³⁶⁻³⁷ and cigarette smoke in lung cancer³⁸⁻³⁹, treatment with temozolomide-based chemotherapy in glioma⁴⁰⁻⁴¹, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes42-46, and microsatellite instability (MSI)^{42,45-46}. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{18-19,27}.

GENOMIC FINDINGS

GENE

BRCA1

ALTERATION

splice site 5332+1G>A

HGVS VARIANT

NM_007294.3: c.5332+1G>A (p.?)

VARIANT CHROMOSOMAL POSITION chr17:41203079

VARIANT ALLELE FREQUENCY (% VAF) 61.7%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

Alterations that inactivate BRCA1 or BRCA2 may confer sensitivity to PARP inhibitors⁴⁷⁻⁶⁴ or ATR inhibitors⁶⁵⁻⁶⁷. Clinical responses to PARP inhibitors have been reported for patients with either germline or somatic BRCA_{1/2} mutations^{48,53,56,63-64} and for patients with platinum-resistant or -refractory disease^{47,52,59,62}. A randomized Phase 2 trial evaluating cisplatin and gemcitabine with or without veliparib in 50 patients with advanced pancreatic ductal adenocarcinomas (PDAC) harboring germline BRCA₁/₂ or PALB₂ (gBRCA/PALB₂₊) mutations reported that the addition of the PARP inhibitor veliparib to chemotherapy did not significantly improve median PFS (10.1 vs. 9.7 months) or median OS (15.5 vs. 16.4 months) relative to chemotherapy alone⁶⁸. In a Phase 1 trial of monotherapy treatment with the ATR inhibitor BAY1895344, 2 patients with deleterious BRCA1 alterations and platinum-refractory ovarian carcinoma experienced a PR or prolonged SD65. In other Phase 1 trials of combination approaches, a patient with BRCA1-mutated ovarian carcinoma experienced prolonged SD from the ATR inhibitor berzosertib combined with topotecan⁶⁶; another patient with platinum- and PARP-inhibitory refractory ovarian cancer and an inactivating germline BRCA1 mutation experienced a PR from berzosertib plus carboplatin69; and a third patient with BRCA1-mutated triple-negative breast cancer (TNBC) experienced a PR to the ATR inhibitor

ceralasertib combined with olaparib⁷⁰. Preclinical studies of BRCA1/2 inactivation in T-cell acute lymphoblastic leukemia (T-ALL)⁷¹, ovarian carcinoma⁷², and TNBC⁷³ showing reduced cell viability and increased DNA damage during ATR treatment further support the sensitivity of BRCA₁-deficient cells to ATR inhibitors. The WEE₁ inhibitor adayosertib has been evaluated as a monotherapy and in combination with PARPinhibitor, olaparib. In a Phase 2 study for patients with PARP-resistant ovarian cancer, the combination of olaparib and adayosertib elicited improved clinical benefit (ORR: 29%; DCR: 89%) compared to adavosertib alone (ORR: 23%; DCR: 63%); however, in the BRCA-mutated cohort, no significant difference in clinical benefit was observed between the combination (ORR: 19%) and monotherapy (ORR: 20%) treatments⁷⁴. In a Phase 1 monotherapy trial of adayosertib that included o patients with BRCA1/2-mutated solid tumors, 2 patients with BRCA1-mutated cancers (1 with ovarian serous carcinoma and 1 with oral squamous cell carcinoma) achieved PRs, and a third patient with ovarian serous carcinoma harboring mutations in BRCA1 and TP53 experienced 14% tumor shrinkage prior to disease progression 75 . The Phase 1/2 PETRA study of PARP1 inhibitor AZD5305 observed a 25% (10/40) ORR (10 PR), for patients with BRCA1/2, PALB2, or RAD51Cmutated breast, ovarian, pancreatic, or prostate cancer, including 5 patients with prior PARP inhibitor treatment⁷⁶.

Nontargeted Approaches

Inactivation of BRCA1 may also predict sensitivity to the DNA-damaging agents trabectedin and lurbinectedin⁷⁷⁻⁸⁶. Patients with pancreatic cancer and BRCA1/2 or PALB2 mutations may benefit from FOLFIRINOX, or the combination of cisplatin and gemcitabine (NCCN Pancreatic Adenocarcinoma Guidelines, v2.2022)^{68,87-90}.

FREQUENCY & PROGNOSIS

In pancreatic carcinoma datasets, BRCA1 mutation and loss has been respectively reported in 1% and o-1% of cases⁹¹⁻⁹². Reduced expression of BRCA1 at the mRNA and protein levels has been observed in

pancreatic adenocarcinoma, with low or no expression of BRCA1 protein in 50% of cases⁹³. Although most cases of pancreatic cancer are sporadic, germline mutations in BRCA1 and BRCA2 have been linked to an increased risk of pancreatic cancer, particularly in families of Ashkenazi Jewish descent⁹⁴⁻⁹⁸. Reduced expression of BRCA1 at the mRNA and protein levels has been observed in pancreatic adenocarcinoma, with low or no expression of BRCA1 protein in 50% of cases; reduced or absent BRCA1 expression was found to be associated with poorer 1-year overall survival⁹³.

FINDING SUMMARY

The protein encoded by BRCA1 is involved in the maintenance of genomic stability, including DNA repair, cell cycle checkpoint, and chromosome segregation⁹⁹. Alterations such as seen here may disrupt BRCA1 function or expression¹⁰⁰⁻¹⁰².

POTENTIAL GERMLINE IMPLICATIONS

One or more of the BRCA1 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with hereditary breast and ovarian cancer syndrome (ClinVar, Sep 2022)103. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Inactivating germline mutations in BRCA₁ or BRCA₂ are associated with autosomal dominant hereditary breast and ovarian cancer¹⁰⁴⁻¹⁰⁵, and the lifetime risk of breast and ovarian cancer in BRCA_{1/2} mutation carriers has been estimated to be as high as 87% and 44%, respectively¹⁰⁶. Elevated risk for other cancer types, including gastric, pancreatic, prostate, and colorectal, has also been identified, with an increase in risk ranging from 20 to 60%95. The estimated prevalence of deleterious germline BRCA₁/₂ mutations in the general population is between 1:400 and 1:800, with an approximately 10-fold higher prevalence in the Ashkenazi Jewish population¹⁰⁶⁻¹¹². In the appropriate clinical context, germline testing of BRCA1 is recommended.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PAGE 4 Of 23

GENOMIC FINDINGS

GENE

KRAS

ALTERATION

Q61H

HGVS VARIANT

NM_004985.3: c.183A>T (p.Q61H)

VARIANT CHROMOSOMAL POSITION chr12:25380275

VARIANT ALLELE FREQUENCY (% VAF)
11.1%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies -

Preclinical evidence suggests that KRAS activation may predict sensitivity to MEK inhibitors, such as trametinib, binimetinib, cobimetinib, and selumetinib $^{113-118}$. For patients with pancreatic cancer, MEK inhibitor combinations are under investigation. A Phase 2 study of trametinib with pembrolizumab versus gemcitabine after stereotactic body radiotherapy (SBRT) reported increased median OS (mOS, 14.9 months vs. 12.8 months, HR=0.69) benefit for patients with KRASmutated, PD-L1 positive disease¹¹⁹. Combination MEK/autophagy inhibitors are also under investigation based on preclinical evidence of increased autophagy downstream of KRASmutated pancreatic tumors¹²⁰⁻¹²¹. A heavily pretreated patient with pancreatic cancer treated with trametinib plus hydroxychloroquine

experienced a PR¹²⁰. A Phase 2 study of the reoviral agent pelareorep with gemcitabine for patients with pancreatic cancer reported 1 PR, 23 SDs, and 5 PDs for 34 patients with a favorable median OS of 10.2 months¹²². A Phase 1b study of second-line pelareorep with pembrolizumab and chemotherapy reported 1 PR of 17.4 months and a DCR of 30% (3/ 10)123; an earlier study reported no benefit from pelareorep in combination with paclitaxel/ carboplatin¹²⁴. Trials combining MEK inhibitors with other targeted therapies, such as EGFR $inhibitors^{125}\ or\ PI_3K\text{-}AKT\ pathway\ inhibitors^{126\text{-}127},$ reported no PRs and frequent adverse events for patients with KRAS-mutated pancreatic cancer. Clinical trials combining various MEK inhibitors with gemcitabine reported no additional benefit compared to gemcitabine alone irrespective of KRAS mutation status¹²⁸⁻¹³¹, despite promising results in earlier trials of MEK inhibitor monotherapies 132-137. In a Phase 1 study evaluating the MEK-pan-RAF dual inhibitor CH5126766, 6 patients harboring KRAS mutations experienced PRs, including 3 with non-small cell lung cancer (NCSLC), 1 with low-grade serous ovarian carcinoma (LGSOC), 1 with endometrial adenocarcinoma, and 1 with multiple myeloma 138 . Combination of CH5126766 with the FAK inhibitor defactinib elicited PR rates of 50% (4/8) for patients with KRAS-mutated LGSOC and 12% (2/17) for patients with KRAS-mutated NSCLC in a Phase 1 study¹³⁹⁻¹⁴⁰. Preclinical and clinical data suggest that KRAS mutations may predict clinical benefit from SHP2 inhibitors¹⁴¹⁻¹⁴². A Phase 1 study of RMC-4630 for relapsed/refractory solid tumors

reported a DCR of 58% (23/40) for patients with NSCLC and KRAS mutations and a DCR of 75% (12/16) for patients with NSCLC and KRAS G12C mutations¹⁴³. Interim results from a Phase 1/2 study of RMC-4630 plus cobimetinib reported tumor reduction in 3 of 8 patients with KRAS-mutated colorectal cancer¹⁴⁴. Preclinical studies suggest that KRAS activating mutations may confer sensitivity to SOS1 inhibitors such as BI-3406, MRTX0902, BI-1701963, and BAY-293 as single agents¹⁴⁵⁻¹⁵⁰ or in combination with covalent KRAS G12C inhibitors¹⁵⁰ and MEK inhibitors¹⁵¹⁻¹⁵².

FREQUENCY & PROGNOSIS

KRAS mutations have been observed in 91-95% of pancreatic ductal adenocarcinoma cases 92,153, with the majority of mutations found at codon 12¹⁵⁴⁻¹⁵⁷. KRAS mutations, particularly G12D, have been associated with decreased median survival time in patients with pancreatic ductal adenocarcinoma 155.

FINDING SUMMARY

KRAS encodes a member of the RAS family of small GTPases. Activating mutations in RAS genes can cause uncontrolled cell proliferation and tumor formation^{114,158}. KRAS alterations affecting amino acids G12, G13, Q22, P34, A59, Q61, and A146, as well as mutations G10_A11insG, G10_A11insAG (also reported as G10_A11dup and G12_G13insAG), A18D, L19F, D33E, G60_A66dup/E62_A66dup, E62K, E63K, R68S, and K117N have been characterized as activating and oncogenic^{114,159-181}.

GENOMIC FINDINGS

MTAP

ALTERATION loss

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

MTAP inactivation produces specific metabolic vulnerabilities that may be sensitive to MAT2A¹⁸²⁻¹⁸³ or PRMT5 inhibition¹⁸³⁻¹⁸⁵. A Phase 1 trial of MAT2A inhibitor AG-270 reported 1 PR and 2 SDs lasting longer than 6 months for patients with advanced solid tumors displaying MTAP loss¹⁸⁶. Preclinical data suggest that MTAP loss sensitizes cells to S-adenosyl-L-methionine (SAM)-competitive PRMT5 inhibitors¹⁸⁷, dual PRMT1 and PRMT5 inhibitors¹⁸⁸⁻¹⁹⁰, and PRMT5 inhibitors that selectively bind the PRMT5 when complexed with S-methyl-5'-thioadenosine (MTA), such as MRTX1719, TNG908, and AMG193¹⁹¹. In preclinical models. MTAP inactivation showed increased

sensitivity to inhibitors of purine synthesis or purine analogs, especially upon addition of exogenous MTA¹⁹²⁻²⁰². A Phase 2 study of L-alanosine, an inhibitor of adenine synthesis, as a monotherapy for 65 patients with MTAP-deficient cancers reported no responses and SD for 24% (13/55) of patients²⁰³. Preclinical and limited clinical evidence suggest MTAP deficiency may confer sensitivity to pemetrexed²⁰⁴.

FREQUENCY & PROGNOSIS

MTAP loss/homozygous deletion as well as loss of expression has been reported in a wide variety of solid tumors and hematologic cancers²⁰⁵⁻²⁰⁶; such events have been correlated with poor prognosis in a variety of cancer types, including hepatocellular carcinoma²⁰⁷, gastrointestinal stromal tumors²⁰⁸, mantle cell lymphoma (MCL)²⁰⁹, melanoma²¹⁰⁻²¹¹, gastric cancer²¹², myxofibrosarcoma²¹³, nasopharyngeal carcinoma²¹⁴, ovarian carcinoma²⁰⁵ and non-small cell lung cancer²¹⁵. MTAP loss was not prognostic in pediatric B-cell acute lymphocytic leukemia²¹⁶ or in astrocytoma²¹⁷. However, MTAP has also been reported to be

overexpressed in colorectal cancer (CRC) samples²¹⁸, and MTAP retention is thought to be important for prostate cancer growth due to continuous supply of SAM²¹⁹. Germline SNPs in MTAP have been correlated with the development of cutaneous melanoma²²⁰⁻²²¹, esophageal cancer²²²⁻²²³, osteosarcoma²²⁴, and CRC²²⁵.

FINDING SUMMARY

MTAP encodes S-methyl-5'-thioadenosine (MTA) phosphorylase, a tumor suppressor involved in polyamine metabolism and methionine synthesis, although its enzymatic function is dispensable for its tumor suppressor activity²²⁶⁻²²⁷. Decreased expression of MTAP leads to MTA accumulation within tumor cells and their microenvironment^{207,228-229}, thereby reducing intracellular arginine methylation¹⁸³⁻¹⁸⁵ and altering cell signaling²²⁹⁻²³⁰. MTAP is located at 9p21, adjacent to CDKN2A and CDKN2B, with which it is frequently co-deleted in various cancers. Other alterations in MTAP are rare and have not been extensively characterized.

GENOMIC FINDINGS

GENE

CDKN2A/B

ALTERATION

CDKN2B loss, CDKN2A loss

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Preclinical data suggest that tumors with loss of p16INK4a function may be sensitive to CDK4/6 inhibitors, such as abemaciclib, ribociclib, and palbociclib²³¹⁻²³⁴. Clinical data in mesothelioma, breast cancer, and uterine leiomyosarcoma indicate that CDKN2A loss may predict sensitivity to abemaciclib²³⁵ and palbociclib treatment²³⁶⁻²³⁷. However, multiple other clinical studies have shown no significant correlation between p16INK4a loss or inactivation and therapeutic benefit of these agents²³⁸⁻²⁴⁴; it is not known whether CDK₄/6 inhibitors would be beneficial in this case. The p15INK4b protein encoded by CDKN2B is known to inhibit CDK4, and although concomitant loss of CDKN2A and CDKN2B may predict sensitivity to CDK4/6 inhibitors, such as ribociclib, abemaciclib, and palbociclib^{241-242,245-246}, direct supporting data for CDKN2B alteration as a predictive biomarker for these therapies are limited²⁴⁷⁻²⁴⁸. Although preclinical studies have suggested that loss of p14ARF function may be associated with reduced sensitivity to MDM2 inhibitors²⁴⁹⁻²⁵⁰, the clinical relevance of p14ARF as a predictive biomarker is not clear.

FREQUENCY & PROGNOSIS

CDKN2A/B loss has been reported in 36% of pancreatic ductal carcinomas92. CDKN2A loss has been reported in 25-100% of pancreatic ductal adenocarcinomas analyzed, with a portion of those due to gene deletion^{155,251-253}. A study of multiple pancreatic cancer subtypes reported no CDKN2A mutations (o/6 samples) and loss of heterozygosity in only one of four samples of pancreatic acinar carcinomas, compared to mutation or loss of heterozygosity in 38% and 67% of pancreatic ductal carcinomas, respectively²⁵⁴. Promoter methylation affecting p16INK4a and p14ARF has been reported in 43% (16/37) and 20.6% (7/34), respectively, of pancreatic fluid specimens of patients with pancreatic carcinoma²⁵⁵. The loss or decrease of p16INK4a expression levels in pancreatic ductal adenocarcinoma has been reported in 32-80% of samples analyzed and one study reported concurrent loss of p16INK4a and p14ARF protein expression in 68% (19/28) of cases^{251,256-257}. p16INK4a expression has been associated with improved OS in pancreatic adenocarcinoma patients in univariate and multivariate analysis²⁵⁸. Furthermore, CDKN2A alterations (deletion or mutation) in the presence of concomitant KRAS mutation may correlate with shorter survival in patients with pancreatic ductal adenocarcinoma 256 .

FINDING SUMMARY

CDKN2A encodes two different, unrelated tumor suppressor proteins, p16INK4a and p14ARF, whereas CDKN2B encodes the tumor suppressor p15INK4b²⁵⁹⁻²⁶⁰. Both p15INK4b and p16INK4a

bind to and inhibit CDK4 and CDK6, thereby maintaining the growth-suppressive activity of the Rb tumor suppressor; loss or inactivation of either p15INK4b or p16INK4a contributes to dysregulation of the CDK4/6-cyclin-Rb pathway and loss of cell cycle control²⁶¹⁻²⁶². The tumor suppressive functions of p14ARF involve stabilization and activation of p53, via a mechanism of MDM2 inhibition²⁶³⁻²⁶⁴. One or more alterations observed here are predicted to result in p16INK4a loss of function²⁶⁵⁻²⁸⁶. One or more alterations seen here are predicted to result in p14ARF loss of function^{269,286-289}. CDKN2B alterations such as seen here are predicted to inactivate p15INK4b²⁹⁰.

POTENTIAL GERMLINE IMPLICATIONS

Germline CDKN2A mutation is associated with melanoma-pancreatic cancer syndrome, a condition marked by increased risk of developing malignant melanoma and/or pancreatic cancer²⁹¹. Mutation carriers within families may develop either or both types of cancer, and melanoma cases may be referred to as familial or hereditary melanoma²⁹²⁻²⁹³. CDKN₂A is the most implicated gene in familial melanoma, with germline mutations present in 16% to 20% of familial melanoma cases²⁹⁴⁻²⁹⁶. CDKN₂A alteration has also been implicated in familial melanoma-astrocytoma syndrome, an extremely rare tumor association characterized by dual predisposition to melanoma and nervous system tumors²⁹⁷⁻²⁹⁹. In the appropriate clinical context, germline testing of CDKN2A is recommended.

GENOMIC FINDINGS

GENE

TP53

ALTERATION

C275W

HGVS VARIANT NM_000546.4: c.825T>G (p.C275W)

VARIANT CHROMOSOMAL POSITION

chr17:7577113

VARIANT ALLELE FREQUENCY (% VAF)
11.1%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib³⁰⁰⁻³⁰³ or p53 gene therapy such as SGT53³⁰⁴⁻³⁰⁸. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype³⁰⁹. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer³¹⁰. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer311. The combination of adavosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone 312. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24% (6/25) ORR with adavosertib

combined with paclitaxel313. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71% (5/7) response rate for patients with TP53 alterations314. The Phase 2 FOCUS4-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adavosertib treatment compared with active monitoring³¹⁵. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage³⁰⁸. Missense mutations leading to TP₅₃ inactivation may be sensitive to therapies that reactivate mutated p53 such as eprenetapopt. In a Phase 1b trial for patients with p53-positive highgrade serous ovarian cancer, eprenetapopt combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR316. A Phase 1 trial of eprenetapopt with pembrolizumab for patients with solid tumors reported an ORR of 10% (3/ 29)317.

FREQUENCY & PROGNOSIS

TP53 mutations have been reported in 33-75% of pancreatic carcinomas, with the majority occurring as missense mutations, while deletion of TP53 has been found in 66% of pancreatic ductal adenocarcinoma cases^{153,318-320}. TP53 mutations are common in pancreatic ductal adenocarcinomas and are known to occur in the process of pancreatic carcinogenesis³²¹⁻³²². Additionally, aberrant expression of p53 has been found in 54-81% of pancreatic ductal adenocarcinoma cases^{256,319,323-324}. Studies have found inconsistent results regarding the prognostic significance of p53 expression in pancreatic ductal adenocarcinoma, although one study correlated low levels of TP53 mRNA with poor patient prognosis^{256,325-326}.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers³²⁷. Alterations such as seen here may disrupt TP53 function or expression³²⁸⁻³³².

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers³³³⁻³³⁵, including sarcomas³³⁶⁻³³⁷. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000³³⁸ to 1:20,000³³⁷. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30³³⁹. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion340-345. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy³⁴⁰⁻³⁴¹. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease³⁴⁶. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH344,347-348. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

REPORT DATE 07 Apr 2023

ORDERED TEST # ORD-1600374-01

THERAPIES WITH CLINICAL BENEFIT

IN PATIENT'S TUMOR TYPE

Olaparib

Assay findings association

BRCA1 splice site 5332+1G>A

AREAS OF THERAPEUTIC USE

The PARP inhibitor olaparib is FDA approved to treat patients with epithelial ovarian, Fallopian tube, or primary peritoneal cancer, patients with deleterious or suspected deleterious gBRCA-mutated pancreatic adenocarcinoma or HER2-negative breast cancer, and patients with prostate cancer and mutations in homologous recombination repair genes. Olaparib is also approved in combination with bevacizumab to treat patients with ovarian, Fallopian tube, or primary peritoneal cancer with deleterious or suspected deleterious somatic or gBRCA mutation and/or genomic instability. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of extensive clinical evidence in ovarian cancer $^{57-61}$ as well as strong clinical evidence in multiple other cancer types $^{47-49,57,60,64,349}$, loss or inactivation of either BRCA1 or BRCA2 may confer sensitivity to olaparib.

SUPPORTING DATA

The Phase 3 randomized, placebo-controlled POLO trial

investigating maintenance olaparib for patients with platinum-sensitive, germline BRCA1/2-mutated metastatic pancreatic adenocarcinoma reported a significantly longer median PFS compared with placebo (7.4 vs. 3.8 months, HR=0.53)⁶⁴. At 3-year follow-up, an OS of 34% was reported for patients treated with olaparib compared with 18% for patients receiving placebo; however, olaparib maintenance therapy did not impact median OS (19.0 vs. 19.2 months, HR=0.83) relative to placebo350. A Phase 2 trial of olaparib monotherapy for patients with germline BRCA1/2-mutated recurrent pancreatic cancer reported a response rate of 22%47. Parallel Phase 2 trials reported 2 PRs for patients with platinum-sensitive, DNA damage repair (DDR) deficient, germline BRCA mutation-negative pancreatic ductal adenocarcinoma; no responses were observed in platinum-refractory cases³⁵¹. In a Phase 2 study of olaparib plus pembrolizumab for advanced solid tumors, patients with BRCA1 or BRCA2 mutations achieved an ORR of 29% (6/21), whereas patients with mutations in other homologous recombination repair genes achieved an ORR of 6.3% (2/32)352.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Niraparib

Assay findings association

BRCA1

splice site 5332+1G>A

AREAS OF THERAPEUTIC USE

The PARP inhibitor niraparib is FDA approved to treat patients with epithelial ovarian, fallopian tube, or primary peritoneal cancer, with or without homologous recombination deficiency (HRD)-positive status. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in ovarian and breast cancers $^{51-52,353}$, loss or inactivation of either BRCA1 or BRCA2 may confer sensitivity to PARP inhibitors such as niraparib.

SUPPORTING DATA

In a Phase 1b/2 study, 6-month PFS for patients with advanced pancreatic cancer treated with niraparib plus ipilimumab in the maintenance setting was 60% whereas those treated with niraparib plus nivolumab was 21%³⁵⁴. Niraparib has primarily been evaluated in the context of ovarian cancer. In a Phase 3 study of patients with platinum-sensitive, recurrent ovarian cancer, niraparib significantly increased median PFS compared with

placebo in patients with germline BRCA mutations (21 vs. 5.5 months) and in patients without germline BRCA mutations (9.3 vs. 3.9 months), as well as in a subgroup of the patients without germline BRCA mutations with homologous recombination-deficient tumors (12.9 vs. 3.8 months)51. In a Phase 1 study of niraparib treatment for patients with solid tumors, 40% (8/20) of patients with ovarian cancer and BRCA mutations and 50% (2/4) of patients with breast cancer and BRCA mutations experienced a PR, and 43% (9/21) of patients with castration-resistant prostate cancer and 100% (2/2) of patients with non-small cell lung cancer experienced SD^{52} . A Phase 1 study of the combination of niraparib and bevacizumab for patients with platinum-sensitive, highgrade ovarian cancer reported a DCR of 91% (10/11), with a response rate of 45% (5/11)355. A Phase 2 study of niraparib reported 1 PR and 8 SDs, with 78% (7/9) of patients with BAP1-mutated cholangiocarcinoma, mesothelioma, uveal melanoma, or clear cell renal cell carcinoma (ccRCC) experiencing SD356. A case study reported a patient with BAP1-mutated pretreated ccRCC experienced a PR of 5 months on niraparib357.

Rucaparib

Assay findings association

RRC A1

splice site 5332+1G>A

AREAS OF THERAPEUTIC USE

The PARP inhibitor rucaparib is FDA approved to treat patients with metastatic castration-resistant prostate cancer (mCRPC) and deleterious somatic or germline BRCA mutations. Rucaparib is also approved as a maintenance treatment of patients with recurrent epithelial ovarian, Fallopian tube, or primary peritoneal cancer. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of strong clinical evidence in ovarian cancer^{53-54,310}, as well as clinical data in other cancer types^{54,358-359}, loss or inactivation of either BRCA1 or BRCA2 may confer sensitivity to rucaparib.

SUPPORTING DATA

In the RUCAPANC Phase 2 study, rucaparib elicited an ORR of 16% and a DCR of 32% for BRCA1/2-mutated advanced or metastatic pancreatic cancer, with 2 CRs (1 confirmed, 1 unconfirmed) and 2 PRs out of 19 treated patients³⁶⁰. As maintenance therapy for BRCA₁/₂- or PALB2-mutated platinum-sensitive pancreatic cancer, rucaparib enabled a 6-month PFS rate of 60%, median PFS and OS of 13.1 and 23.5 months, and ORR of 41% (3/36 CRs, 2 ongoing for >1 year) in a Phase 2 study; 4 patients remained progression-free during >2 years of follow up361-362. In this trial, ORRs for patients with germline or somatic BRCA2 alterations were 41% (11/27) and 50% (1/ 2), respectively, and 50% (3/6) for those with germline PALB2 alterations; however, no objective responses were observed for any of 7 patients with germline BRCA1 alterations361.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

REPORT DATE 07 Apr 2023

ORDERED TEST # ORD-1600374-01

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Talazoparib

Assay findings association

BRCA1 splice site 5332+1G>A

AREAS OF THERAPEUTIC USE

The PARP inhibitor talazoparib is FDA approved to treat HER2-negative locally advanced or metastatic breast cancer with deleterious or suspected deleterious germline BRCA mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of strong clinical data in breast cancer³⁶³⁻³⁶⁵ and additional clinical evidence in ovarian, pancreatic, and prostate cancer³⁶⁶⁻³⁶⁹, loss or inactivation of either BRCA1 or BRCA2 may confer sensitivity to talazoparib.

SUPPORTING DATA

A Phase 1 study of talazoparib reported PRs for 20% (2/10) of patients with pancreatic cancer, 1 with a BRCA2 mutation and 1 with a PALB2 mutation³⁶⁷. Talazoparib has been studied primarily in the context of BRCA-mutated,

HER2-negative breast cancer, where patients achieved significantly longer median PFS (8.6 vs. 5.6 months, HR=0.54), a higher ORR (62.6% vs. 27.2%), and improved quality of life on talazoparib compared with standard chemotherapy in a Phase 3 study³⁶⁴⁻³⁶⁵. In a Phase 2 study of talazoparib for BRCA1/2-wildtype patients with homologous recombination pathway alterations, the best outcome in non-breast tumors was SD ≥ 6 months for 2/7 patients who had colon cancer with germline ATM alteration or testicular cancer with germline CHEK2 and somatic ATM alteration³⁷⁰. Clinical activity of single-agent talazoparib has been observed in numerous other solid tumors, including responses in BRCA-mutated ovarian, pancreatic, prostate, and ampulla of Vater cancers; PALB2-mutated pancreatic and bladder cancers; ATMmutated cholangiocarcinoma; and small cell lung cancer^{366-368,371}.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

PATIENT Chou, Kung Po

TUMOR TYPE
Pancreas ductal
adenocarcinoma

REPORT DATE 07 Apr 2023

ORDERED TEST # ORD-1600374-01

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually

updated and should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \rightarrow Geographical proximity \rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that

may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or, visit https://www.foundationmedicine.com/genomic-testing#support-services.

BRCA1

RATIONALE

BRCA₁ loss or inactivating alterations may predict sensitivity to PARP inhibitors or ATR inhibitors.

ALTERATION splice site 5332+1G>A

NCT03239015	PHASE 2
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	TARGETS EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRS, BRAF, CDK4, CDK6

LOCATIONS: Shanghai (China)

NCT04425876	PHASE 1
A Study of Fluzoparib in Combination With mFOLFIRINOX in Patients With Resectable Pancreatic Cancer	TARGETS PARP

LOCATIONS: Shanghai (China)

NCTO4123366	PHASE 2
Study of Olaparib (MK-7339) in Combination With Pembrolizumab (MK-3475) in the Treatment of Homologous Recombination Repair Mutation (HRRm) and/or Homologous Recombination Deficiency (HRD)-Positive Advanced Cancer (MK-7339-007/KEYLYNK-007)	TARGETS PARP, PD-1

LOCATIONS: Fukuoka (Japan), Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Okayama (Japan), Nagoya (Japan), Tokyo (Japan), Kashiwa (Japan), Sapporo (Japan), Nedlands (Australia), Southport (Australia)

NCT03742895	PHASE 2
Efficacy and Safety of Olaparib (MK-7339) in Participants With Previously Treated, Homologous Recombination Repair Mutation (HRRm) or Homologous Recombination Deficiency (HRD) Positive Advanced Cancer (MK-7339-002 / LYNK-002)	TARGETS PARP

LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Darlinghurst (Australia), Saint Petersburg (Russian Federation), Adana (Turkey), Jerusalem (Israel), Konya (Turkey), Ramat Gan (Israel), Istanbul (Turkey), Antalya (Turkey)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PHASE 1/2

TARGETS

PHASE 1

TARGETS

PARP, AKTs, PD-L1

XPO1, PARP

REPORT DATE 07 Apr 2023

ORDERED TEST # ORD-1600374-01

NCT02264678

Breast Cancer (START)

NCT03772561

Tumor Malignancies

LOCATIONS: Singapore (Singapore)

LOCATIONS: Singapore (Singapore)

CLINICAL TRIALS

110102204070	PRAJE 1/2
Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents	TARGETS ATR, PARP, PD-L1
LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Goyang-si (Korea, Republic (United Kingdom), Manchester (United Kingdom), London (United Kingdom), Coventry (United Kingdom)	
NCT05417594	PHASE 1/2
Study of AZD9574 as Monotherapy and in Combination With Anti-cancer Agents in Participants With Advanced Solid Malignancies	TARGETS PARP
LOCATIONS: Seoul (Korea, Republic of), Melbourne (Australia), Stockholm (Sweden), Barcelona (Spain), A Coruña (Spain), Sevilla (Spain), Texas), Sant Cugat del Valles (Spain), Pozuelo de Alarcon
NCT05514132	PHASE 1
A Study to Evaluate the Safety and Pharmacokinetics of Ceralasertib in Combination With Durvalumab in Chinese Patients With Advanced Solid Tumours	TARGETS PD-L1, ATR
LOCATIONS: Beijing (China), Shandong (China)	
NCT03188965	PHASE 1
First-in-human Study of ATR Inhibitor BAY1895344 in Patients With Advanced Solid Tumors and Lymphomas	TARGETS ATR
LOCATIONS: Kashiwa (Japan), Singapore (Singapore), Bellinzona (Switzerland)	
NCT05035745	PHASE 1/2

Selinexor & Talazoparib in Advanced Refractory Solid Tumors; Advanced/Metastatic Triple Negative

Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

REPORT DATE 07 Apr 2023

FOUNDATIONONE®CDx

ORDERED TEST # ORD-1600374-01

CLINICAL TRIALS

KRAS

ALTERATION Q61H

RATIONALE

Multiple clinical studies have reported lack of efficacy of MEK inhibitors as monotherapy for treatment of KRAS-mutant pancreatic cancer. Emerging data suggest patients with KRAS-mutant pancreatic cancer may be sensitive to combination MEK/autophagy inhibitors. Limited

clinical and preclinical studies indicate KRAS mutations may predict sensitivity to MEK-pan-RAF dual inhibitors. Preclinical evidence suggests that KRAS activating mutations may predict sensitivity to SOS1 inhibitors.

NCT04892017	PHASE 1/2
A Safety, Tolerability and PK Study of DCC-3116 in Patients With RAS or RAF Mutant Advanced or Metastatic Solid Tumors.	TARGETS ULK1, ULK2, MEK
LOCATIONS: Massachusetts, New York, Texas, Pennsylvania	
NCT04132505	PHASE 1
Binimetinib and Hydroxychloroquine in Treating Patients With KRAS Mutant Metastatic Pancreatic Cancer	TARGETS MEK
LOCATIONS: Texas	
NCT03825289	PHASE 1
Trametinib and Hydroxychloroquine in Treating Patients With Pancreatic Cancer	TARGETS MEK
LOCATIONS: Utah	

REPORT DATE 07 Apr 2023

ORDERED TEST # ORD-1600374-01

CLINICAL TRIALS

MTAP

ALTERATION loss

RATIONALE

MTAP loss may predict sensitivity to MAT2A inhibitors, or to inhibitors that target PRMT5 when in complex with MTA.

NCT05094336 PHASE 1/2

AMG 193, Methylthioadenosine (MTA) Cooperative Protein Arginine Methyltransferase 5 (PRMT5) Inhibitor, Alone and in Combination With Docetaxel in Advanced Methylthioadenosine Phosphorylase (MTAP)-Null Solid Tumors

TARGETS
PRMT5-MTA

LOCATIONS: Tainan (Taiwan), Shatin, New Territories (Hong Kong), Hong Kong (Hong Kong), Nagoya-shi (Japan), Chuo-ku (Japan), Kashiwa-shi (Japan), Camperdown (Australia), Halle (Saale) (Germany), Graz (Austria), Salzburg (Austria)

NCT05245500

Phase 1/2 Study of MRTX1719 in Solid Tumors With MTAP Deletion

TARGETS
PRMT5-MTA

NCT05275478

Safety and Tolerability of TNG908 in Patients With MTAP-deleted Solid Tumors

TARGETS
PRMT5-MTA

LOCATIONS: Lyon (France), Villejuif (France), Missouri, Massachusetts, Tennessee, Texas, Virginia

LOCATIONS: Colorado, Arizona, Minnesota, Massachusetts, New York, Tennessee, Texas, Florida

REPORT DATE 07 Apr 2023

ORDERED TEST # ORD-1600374-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

ATRX

NM_000489.3: c.4858A>C (p.S1620R) chrX:76889152

FOXL2

NM_023067.3: c.464C>T (p.P155L) chr3:138665101

NKX2-1

NM_003317.3: c.964G>A (p.G322S) chr14:36986635

CHEK2

NM_007194.3: c.542G>A (p.R181H) chr22:29121015

KDM5A

NM_001042603.1: c.4664_4665delinsCT (p.L1555P) chr12:402126-402127

PIK3C2G

NM_004570.4: c.3299_3306dup (p.Y1103Vfs*15) chr12:18691183

CYP17A1

NM_000102.3: c.764G>A (p.R255Q) chr10:104592955

MET

NM_000245.2: c.65G>T (p.S22I) chr7:116339203

TSC1

NM_000368.4: c.1960C>G (p.Q654E) chr9:135781005

EPHA3

NM_005233.4: c.2536C>A (p.P846T) chr3:89499366

MST1R

NM_002447.2: c.461C>A (p.A154D) chr3:49940582

APPENDIX

Genes Assayed in FoundationOne®CDx

ORDERED TEST # ORD-1600374-01

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY **NUMBER ALTERATIONS**

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B	or WTX)
APC	AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX
AURKA	AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2
BCL6	BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1
BTG2	BTK	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOT1L	EED	EGFR	EMSY (C11orf30)	EP300	EPHA3	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3	GATA4
GATA6	GID4 (C17orf39)	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3-3A (H3F3A)
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11 (MRE11A)	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	<i>NOTCH3</i>
NPM1	NRAS	NSD2 (WHSC1 or	· MMSET)	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3
P2RY8	PALB2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)
PDGFRA	PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1
PMS2	POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI
PRKN (PARK2)	PTCH1	PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51
RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10
REL	RET	RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO
SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3
STK11	SUFU	SYK	TBX3	TEK	TENT5C (FAM46C	")	TET2	TGFBR2
TIPARP	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2	TYRO3	U2AF1	VEGFA
VHL	WT1	XPO1	XRCC2	ZNF217	ZNF703			
DNA GENE L	IST: FOR THE D	ETECTION OF	SELECT REAR	RANGEMENTS				
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)

ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
MSH2	MYB	MYC	NOTCH2	NTRK1	NTRK2	NUTM1	PDGFRA	RAF1
RARA	RET	ROS1	RSPO2	SDC4	SLC34A2	TERC*	TERT**	TMPRSS2

^{*}TERC is an NCRNA

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Homologous Recombination status Loss of Heterozygosity (LOH) score Microsatellite (MS) status Tumor Mutational Burden (TMB)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

^{**}Promoter region of TERT is interrogated

APPENDIX

About FoundationOne®CDx

FoundationOne CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a,

Cipalstraat 3, 2440 Geel, Belgium. C €

ABOUT FOUNDATIONONE CDX

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: www.rochefoundationmedicine.com/f1cdxtech.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, loss of heterozygosity (LOH) score, using DNA isolated from formalin-fixed, paraffinembedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLE

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes

detection of alterations in a total of 324 genes.

Using an Illumina® HiSeq platform, hybrid capture-selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g.,gene fusions). Additionally, genomic signatures including loss of heterozygosity (LOH), microsatellite instability (MSI) and tumor mutational burden (TMB) will be reported.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and

An alteration denoted as "amplification - equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical

methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials

Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

1. In the fraction-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the F1CDx assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

About FoundationOne®CDx

- analytical concordance to a PCR comparator assay using a pan-tumor FFPE tissue sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.
- 2. TMB by F1CDx is determined by counting all synonymous and non-synonymous variants present at 5% allele frequency or greater (after filtering) and the total number is reported as mutations per megabase (mut/Mb) unit. Observed TMB is dependent on characteristics of the specific tumor focus tested for a patient (e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection; therefore, observed TMB results may vary between different specimens for the same patient and between detection methodologies employed on the same sample. The TMB calculation may differ from TMB calculations used by other assays depending on variables such as the amount of genome interrogated, percentage of tumor, assay limit of detection (LoD), filtering of alterations included in the score, and the read depth and other bioinformatic test specifications. Refer to the SSED for a detailed description of these variables in FMI's TMB calculation https://www.accessdata.fda.gov/cdrh_docs/ pdf17/P170019B.pdf. The clinical validity of TMB defined by this panel has been established for TMB as a qualitative output for a cut-off of 10 mutations per megabase but has not been established for TMB as a quantitative score.
- 3. Homologous Recombination status may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas (Coleman et al., 2017; 28916367). Samples with deleterious BRCA1/2 alteration and/or Loss of Heterozygosity (LOH) score ≥ 16% will be reported as "HRD Positive" and samples with absence of these findings will be reported as "HRD Not Detected," agnostic of potential secondary BRCA1/2 reversion alterations. Certain potentially deleterious missense or small in-frame deletions in BRCA1/2 may not be classified as deleterious and, in the absence of an elevated LOH profile, samples with such mutations may be classified as "HRD Not Detected." A result of "HRD Not Detected" does not rule out the presence of a BRCA1/2 alteration or an elevated LOH profile outside the assay performance characteristic limitations.
- 4. The LOH score is determined by analyzing SNPs spaced at 1Mb intervals across the genome on the FoundationOne CDx test and

- extrapolating an LOH profile, excluding armand chromosome-wide LOH segments. Detection of LOH has been verified only for ovarian cancer patients, and the LOH score result may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas. The LOH score will be reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine LOH. Performance of the LOH classification has not been established for samples below 35% tumor content. There may be potential interference of ethanol with LOH detection. The interfering effects of xylene, hemoglobin, and triglycerides on the LOH score have not been demonstrated.
- 5. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- 6. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine whether the patient is a candidate for biopsy.
- 7. Reflex testing to an alternative FDA approved companion diagnostic should be performed for patients who have an *ERBB2* amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive, and 30% (3 out of 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of *ERBB2* copy number 4 in breast cancer is estimated to be approximately 2%. Multiple references listed in https://www.mycancergenome.org/content/

https://www.mycancergenome.org/content/disease/breast-cancer/ERBB2/238/ report the frequency of HER2 overexpression as 20% in breast cancer. Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2 amplified samples had copy number 4. Thus, total frequency is conservatively estimated to be approximately 2%.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal

hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

Precision of VAF for base substitutions and indels

BASE SUBSTITUTIONS	%CV*
Repeatability	5.11 - 10.40
Reproducibility	5.95 - 12.31
INDELS	%CV*
INDELS Repeatability	%CV*

*Interquartile Range = 1st Quartile to 3rd Quartile

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®CDx

tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking

into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.7.0

The median exon coverage for this sample is 760x

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- 6. Hu ZI, et al. Clin. Cancer Res. (2018) pmid: 29367431
- 7. Campbell BB, et al. Cell (2017) pmid: 29056344
- 8. Pihlak R, et al. Cancers (Basel) (2018) pmid: 29329208
- 9. Salem ME, et al. Mol. Cancer Res. (2018) pmid: 29523759
- 10. Laghi L, et al. PLoS ONE (2012) pmid: 23029359
- 11. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 13. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid:
- 14. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 15. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- Boland CR, et al. Gastroenterology (2010) pmid:
- 17. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 18. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- Goodman AM, et al. Cancer Immunol Res (2019) pmid: 19. 31405947
- 20. Cristescu R, et al. Science (2018) pmid: 30309915
- 21. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 22. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 23. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 24. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 25. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 26. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 27. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 28. Ott PA, et al. J. Clin. Oncol. (2019) pmid: 30557521
- Cristescu R, et al. J Immunother Cancer (2022) pmid: 35101941
- 30. Friedman CF, et al. Cancer Discov (2022) pmid: 34876409
- 31. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- 32. Schenker at al., 2022; AACR Abstract 7845
- 33. Legrand et al., 2018; ASCO Abstract 12000
- 34. Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 35. Hu et al., 2017; ASCO Abstract e15791
- 36. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 37. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 38. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 39. Rizvi NA, et al. Science (2015) pmid: 25765070
- 40. Johnson BE, et al. Science (2014) pmid: 24336570 41. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398 43. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 44. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 45. Nature (2012) pmid: 22810696
- Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 47. Kaufman B, et al. J. Clin. Oncol. (2015) pmid: 25366685
- 48. Mateo J, et al. N. Engl. J. Med. (2015) pmid: 26510020
- 49. Tutt A, et al. Lancet (2010) pmid: 20609467

- 50. Robson M, et al. N. Engl. J. Med. (2017) pmid: 28578601
- 51. Mirza MR, et al. N. Engl. J. Med. (2016) pmid: 27717299
- 52. Sandhu SK, et al. Lancet Oncol. (2013) pmid: 23810788
- 53. Swisher EM, et al. Lancet Oncol. (2017) pmid: 27908594 54. Drew Y, et al. Br. J. Cancer (2016) pmid: 27002934
- 55. Pujade-Lauraine E, et al. Lancet Oncol. (2017) pmid: 28754483
- 56. Ledermann JA, et al. Lancet Oncol. (2016) pmid:
- 27617661 57. Fong PC, et al. N. Engl. J. Med. (2009) pmid: 19553641
- 58. Audeh MW, et al. Lancet (2010) pmid: 20609468
- 59. Fong PC, et al. J. Clin. Oncol. (2010) pmid: 20406929
- 60. Gelmon KA, et al. Lancet Oncol. (2011) pmid: 21862407
- 61. Kaye SB, et al. J. Clin. Oncol. (2012) pmid: 22203755
- 62. Domchek SM, et al. Gynecol. Oncol. (2016) pmid: 26723501
- 63. Moore K, et al. N. Engl. J. Med. (2018) pmid: 30345884
- 64. Golan T, et al. N. Engl. J. Med. (2019) pmid: 31157963
- 65. Yap TA, et al. Cancer Discov (2021) pmid: 32988960
- 66. Thomas A, et al. J. Clin. Oncol. (2018) pmid: 29252124
- 67. Saito YD, et al. Cancer Treat Res Commun (2018) pmid: 31299005
- 68. O'Reilly EM, et al. J. Clin. Oncol. (2020) pmid: 31976786
- 69. O'Carrigan et al., 2016; ASCO Abstract 2504
- 70. Yap et al., 2016: AACR-NCI-EORTC Abstract 1LBA
- 71. Pouliot GP, et al. PLoS ONE (2019) pmid: 31721781
- 72. Kim H, et al. Clin. Cancer Res. (2017) pmid: 27993965
- 73. Jin J, et al. Neoplasia (2018) pmid: 29605721
- 74. Westin et al., 2021; ASCO Abstract 5505
- 75. Do K. et al. J. Clin. Oncol. (2015) pmid: 25964244
- 76. Yap et al., 2022: AACR Abstract CT007
- 77. Cruz C, et al. J. Clin. Oncol. (2018) pmid: 30240327
- 78. Poveda A, et al. Ann. Oncol. (2017) pmid: 28368437
- 79. García MJ, et al. Mol. Cancer Ther. (2013) pmid:
- 80. Schöffski P, et al. Eur. J. Cancer (2011) pmid: 21376569
- 81. Italiano A, et al. Cancer (2011) pmid: 21287534
- 82. Laroche-Clary A, et al. Br. J. Cancer (2015) pmid:
- 83. Ghouadni A. et al. Breast (2017) pmid: 28467918
- 84. Monk BJ, et al. Ann. Oncol. (2015) pmid: 25722380
- 85. Monk BJ, et al. Gynecol. Oncol. (2020) pmid: 31924332
- 86. Yasui H, et al. J Chemother (2016) pmid: 27077926
- 87. Conroy T, et al. N Engl J Med (2011) pmid: 21561347
- 88. Fogelman D, et al. Cancer Chemother Pharmacol (2015) pmid: 26126726
- 89. Wattenberg MM, et al. Br J Cancer (2020) pmid: 31787751
- 90. Golan T, et al. Br J Cancer (2014) pmid: 25072261
- 91. Bailey P, et al. Nature (2016) pmid: 26909576
- 92. Witkiewicz AK, et al. Nat Commun (2015) pmid: 25855536
- 93. Beger C, et al. Clin. Cancer Res. (2004) pmid: 15173085
- 94. Lucas AL, et al. Clin. Cancer Res. (2013) pmid: 23658460
- 95. MedGenMed (2005) pmid: 16369438
- 96. Kim R, et al. JOP (2012) pmid: 22406596
- 97. Naderi A, et al. Int J Gastrointest Cancer (2002) pmid:
- 98. Stadler ZK, et al. Cancer (2012) pmid: 21598239
- O'Donovan PJ, et al. Carcinogenesis (2010) pmid:
- 100. Nelson AC, et al. Radiat. Res. (2010) pmid: 20681793 101. Silver DP, et al. Cancer Discov (2012) pmid: 22843421
- 102. Ludwig T, et al. Genes Dev. (2001) pmid: 11358863

- 103. Landrum MJ, et al. Nucleic Acids Res. (2018) pmid:
- 104. Miki Y. et al. Science (1994) pmid: 7545954
- Wooster R, et al. Nature () pmid: 8524414
- 106. Ford D, et al. Lancet (1994) pmid: 7907678
- 107. Whittemore AS, et al. Am. J. Hum. Genet. (1997) pmid: 9042908
- 108. Claus EB, et al. Cancer (1996) pmid: 8635102
- Struewing JP, et al. N. Engl. J. Med. (1997) pmid: 109. 9145676
- 110. Oddoux C, et al. Nat. Genet. (1996) pmid: 8841192
- 111. King MC, et al. Science (2003) pmid: 14576434
- 112. Hall MJ, et al. Cancer (2009) pmid: 19241424
- Nakano H, et al. Proc. Natl. Acad. Sci. U.S.A. (1984) pmid: 6320174
- Pylayeva-Gupta Y, et al. Nat. Rev. Cancer (2011) pmid: 21993244
- 115. Yamaguchi T, et al. Int. J. Oncol. (2011) pmid: 21523318
- 116. Watanabe M, et al. Cancer Sci. (2013) pmid: 23438367
- Gilmartin AG, et al. Clin. Cancer Res. (2011) pmid: 21245089
- 118. Yeh JJ, et al. Mol. Cancer Ther. (2009) pmid: 19372556
- 119. Zhu X, et al. Lancet Oncol (2022) pmid: 35240087
- 120. Kinsey CG, et al. Nat. Med. (2019) pmid: 30833748
- Bryant KL, et al. Nat. Med. (2019) pmid: 30833752
- Mahalingam D, et al. Cancers (Basel) (2018) pmid: 29799479
- Mahalingam D, et al. Clin. Cancer Res. (2019) pmid: 31694832
- 124. Noonan AM, et al. Mol. Ther. (2016) pmid: 27039845
- 125. Ko AH, et al. Clin. Cancer Res. (2016) pmid: 26251290 **126.** Chung V, et al. JAMA Oncol (2017) pmid: 27978579
- Bedard PL, et al. Clin. Cancer Res. (2015) pmid: 25500057
- 128. Van Laethem JL, et al. Target Oncol (2017) pmid:
- 129. Infante JR, et al. Eur. J. Cancer (2013) pmid: 23583440
- 130. Infante JR, et al. Eur. J. Cancer (2014) pmid: 24915778 Van Cutsem E, et al. Int. J. Cancer (2018) pmid:
- 29756206 Bodoky G, et al. Invest New Drugs (2012) pmid:
- 133. Rinehart J, et al. J. Clin. Oncol. (2004) pmid: 15483017
- 134. Lorusso PM, et al. J. Clin. Oncol. (2005) pmid: 16009947 135. Infante JR, et al. Lancet Oncol. (2012) pmid: 22805291
- Weekes CD, et al. Clin. Cancer Res. (2013) pmid: 136. 23434733
- 137. Garrido-Laguna I, et al. Oncoscience (2015) pmid: 25897431
- Guo C, et al. Lancet Oncol (2020) pmid: 33128873
- 139. Krebs et al., 2021; AACR Abstract CT019 140. Shinde et al., 2020; AACR Abstract CT143
- 141. Lu H, et al. Mol Cancer Ther (2019) pmid: 31068384
- 142. Mainardi S, et al. Nat Med (2018) pmid: 29808006 Koczywas et al., 2021: AACR Abstract LB001 143.
- 144 Bendell et al., 2020; EORTC-NCI-AACR Abstract 5
- Hofmann MH, et al. Cancer Discov (2021) pmid: 32816843
- 146. He H, et al. J Med Chem (2022) pmid: 36173339 147. Zhang S, et al. J Med Chem (2022) pmid: 36384290
- 148. Liu M. et al. ACS Med Chem Lett (2023) pmid: 36793426
- 149. Ramharter J, et al. J Med Chem (2021) pmid: 33719426
- 150. Ketcham JM, et al. J Med Chem (2022) pmid: 35833726 151. Plangger A, et al. Discov Oncol (2022) pmid: 36048281
- 152. Ma Y, et al. Cancers (Basel) (2022) pmid: 36139627

153. Biankin AV, et al. Nature (2012) pmid: 23103869 Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

References

ORDERED TEST # ORD-1600374-01

- Feldmann G, et al. J Hepatobiliary Pancreat Surg (2007) pmid: 17520196
- 155. Rachakonda PS, et al. PLoS ONE (2013) pmid: 23565280
- 156. Hruban RH, et al. Am. J. Pathol. (1993) pmid: 8342602157. Maitra A, et al. Best Pract Res Clin Gastroenterol
- (2006) pmid: 16549325
- 158. Kahn S, et al. Anticancer Res. () pmid: 3310850
- 159. Akagi K, et al. Biochem. Biophys. Res. Commun. (2007) pmid: 17150185
- 160. Bollag G, et al. J. Biol. Chem. (1996) pmid: 8955068
- Buhrman G, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid: 20194776
- 162. Sci. STKE (2004) pmid: 15367757
- **163.** Edkins S, et al. Cancer Biol. Ther. (2006) pmid: 16969076
- **164.** Feig LA, et al. Mol. Cell. Biol. (1988) pmid: 3043178
- 165. Gremer L, et al. Hum. Mutat. (2011) pmid: 20949621
- **166.** Janakiraman M, et al. Cancer Res. (2010) pmid: 20570890
- 167. Kim E, et al. Cancer Discov (2016) pmid: 27147599
- Lukman S, et al. PLoS Comput. Biol. (2010) pmid: 20838576
- 169. Naguib A, et al. J Mol Signal (2011) pmid: 21371307
- 170. Prior IA, et al. Cancer Res. (2012) pmid: 22589270
- 171. Privé GG, et al. Proc. Natl. Acad. Sci. U.S.A. (1992) pmid: 1565661
- 172. Scheffzek K, et al. Science (1997) pmid: 9219684
- 173. Scholl C, et al. Cell (2009) pmid: 19490892
- 174. Smith G, et al. Br. J. Cancer (2010) pmid: 20147967
- 175. Tyner JW, et al. Blood (2009) pmid: 19075190
- 176. Valencia A, et al. Biochemistry (1991) pmid: 2029511
- 177. White Y, et al. Nat Commun (2016) pmid: 26854029
- 178. Wiest JS, et al. Oncogene (1994) pmid: 8058307
- 179. Angeles AKJ, et al. Oncol Lett (2019) pmid: 31289513
- 180. Tong JH, et al. Cancer Biol. Ther. (2014) pmid: 24642870
- **181.** Loree JM, et al. Clin Cancer Res (2021) pmid: 34117033
- **182.** Kalev P, et al. Cancer Cell (2021) pmid: 33450196 **183.** Marjon K, et al. Cell Rep (2016) pmid: 27068473
- **184.** Mayrakis KJ, et al. Science (2016) pmid: 26912361
- **185.** Kryukov GV, et al. Science (2016) pmid: 26912360
- 186. Heist et al., 2019; AACR-NCI-EORTC Abstract B116
- 187. Guccione E, et al. Nat. Rev. Mol. Cell Biol. (2019) pmid:
- 188. Fedoriw A, et al. Cancer Cell (2019) pmid: 31257072
- **189.** Srour N, et al. Cancer Cell (2019) pmid: 31287990
- 190. Gao G, et al. Nucleic Acids Res. (2019) pmid: 30916320
- 191. Smith CR, et al. J Med Chem (2022) pmid: 35041419
- **192.** Hansen LJ. et al. Cancer Res. (2019) pmid: 31040154
- **193.** Tang B, et al. Cancer Res. (2018) pmid: 29844120
- **194.** Munshi PN, et al. Oncologist (2014) pmid: 24928612
- **195.** de Oliveira SF, et al. PLoS ONE (2016) pmid: 26751376
- 196. Lubin M, et al. PLoS ONE (2009) pmid: 19478948
- 197. Tang B, et al. Cancer Biol. Ther. (2012) pmid: 22825330198. Collins CC, et al. Mol. Cancer Ther. (2012) pmid: 22252602
- Bertino JR, et al. Cancer Biol. Ther. (2011) pmid: 21301207
- Coulthard SA, et al. Mol. Cancer Ther. (2011) pmid: 21282358
- 201. Miyazaki S, et al. Int. J. Oncol. (2007) pmid: 17912432
- 202. Efferth T, et al. Blood Cells Mol. Dis. () pmid: 11987241
- 203. Kindler HL, et al. Invest New Drugs (2009) pmid: 18618081
- 204. Alhalabi O, et al. Nat Commun (2022) pmid: 35379845
- 205. Wei R, et al. Sci Rep (2016) pmid: 27929028

- 206. Zhao M. et al. BMC Genomics (2016) pmid: 27556634
- **207.** Kirovski G, et al. Am. J. Pathol. (2011) pmid: 21356366
- 208. Huang HY, et al. Clin. Cancer Res. (2009) pmid: 19887491
- **209.** Marcé S, et al. Clin. Cancer Res. (2006) pmid: 16778103
- 210. Meyer S. et al. Exp. Dermatol. (2010) pmid: 20500769
- **211.** Wild PJ, et al. Arch Dermatol (2006) pmid: 16618867
- 212. Kim J, et al. Genes Chromosomes Cancer (2011) pmid: 21412930
- 213. Li CF, et al. Oncotarget (2014) pmid: 25426549
- **214.** He HL, et al. Medicine (Baltimore) (2015) pmid: 26656376
- 215. Su CY, et al. Eur J Surg Oncol (2014) pmid: 24969958
- **216.** Mirebeau D, et al. Haematologica (2006) pmid: 16818274
- 217. Becker AP, et al. Pathobiology (2015) pmid: 26088413
- 218. Snezhkina AV, et al. Oxid Med Cell Longev (2016) pmid: 27433286
- 219. Bistulfi G, et al. Oncotarget (2016) pmid: 26910893
- 220. Antonopoulou K, et al. J. Invest. Dermatol. (2015) pmid: 25407435
- **221.** Maccioni L, et al. BMC Cancer (2013) pmid: 23816148
- **222.** Hyland PL, et al. Int J Epidemiol (2016) pmid: 26635288
- **223.** Lin X, et al. Cancer Sci. (2017) pmid: 27960044
- **224.** Zhi L, et al. J Cancer (2016) pmid: 27994653
- 225. Gu F, et al. Br. J. Cancer (2013) pmid: 23361049
- 226. Limm K, et al. PLoS ONE (2016) pmid: 27479139
- **227.** Tang B, et al. G3 (Bethesda) (2014) pmid: 25387827
- **228.** Limm K, et al. Eur. J. Cancer (2013) pmid: 23265702
- 229. Stevens AP, et al. J. Cell. Biochem. (2009) pmid: 19097084
- 230. Limm K, et al. Eur. J. Cancer (2014) pmid: 25087184
- 231. Konecny GE, et al. Clin. Cancer Res. (2011) pmid: 21278246
- 232. Katsumi Y, et al. Biochem. Biophys. Res. Commun. (2011) pmid: 21871868
- 233. Cen L, et al. Neuro-oncology (2012) pmid: 22711607
- 234. Logan JE, et al. Anticancer Res. (2013) pmid: 23898052
- 235. Fennell DA, et al. Lancet Oncol (2022) pmid: 35157829
- **236.** Elvin JA, et al. Oncologist (2017) pmid: 28283584
- 237. Gao J, et al. Curr Oncol (2015) pmid: 26715889
- 238. Gopalan et al., 2014; ASCO Abstract 8077
- 239. Peguero et al., 2016; ASCO Abstract 2528
- 240. Konecny et al., 2016; ASCO Abstract 5557
- **241.** DeMichele A, et al. Clin. Cancer Res. (2015) pmid: 25501126
- 242. Finn RS, et al. Lancet Oncol. (2015) pmid: 25524798
- **243.** Infante JR, et al. Clin. Cancer Res. (2016) pmid: 27542767
- **244.** Johnson DB, et al. Oncologist (2014) pmid: 24797823
- **245.** Flaherty KT, et al. Clin. Cancer Res. (2012) pmid: 22090362
- 246. Dickson MA, et al. J. Clin. Oncol. (2013) pmid: 23569312
- 247. Su D, et al. Nat Commun (2019) pmid: 31700061
- 248. Tramontana TF, et al. JCO Precis Oncol (2020) pmid: 32923894
- **249.** Van Maerken T, et al. Mol. Cancer Ther. (2011) pmid: 21460101
- **250.** Gamble LD, et al. Oncogene (2012) pmid: 21725357
- 251. Tsiambas E, et al. J BUON () pmid: 17600882
- **252.** Bergmann F, et al. J. Clin. Pathol. (2006) pmid: 16497872
- **253.** Attri J, et al. BMC Gastroenterol (2005) pmid: 15985168 **254.** Moore PS, et al. Br. J. Cancer (2001) pmid: 11161385
- 254. Moore PS, et al. Br. J. Cancer (2001) pmid: 1161385 255. Klump B, et al. Br. J. Cancer (2003) pmid: 12610506
- 256. Oshima M, et al. Ann. Surg. (2013) pmid: 23470568

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

- 257. Geradts J, et al. Mod. Pathol. (2001) pmid: 11706079
- 258. Chang DT, et al. Cancer (2010) pmid: 20665497
- 259. Quelle DE, et al. Cell (1995) pmid: 8521522
- 260. Mutat. Res. (2005) pmid: 15878778
- 261. Gazzeri S, et al. Oncogene (1998) pmid: 9484839
- **262.** Oncogene (1999) pmid: 10498883
- 263. Sherr CJ, et al. Cold Spring Harb. Symp. Quant. Biol. (2005) pmid: 16869746
- **264.** Ozenne P, et al. Int. J. Cancer (2010) pmid: 20549699
- 265. Ruas M, et al. Oncogene (1999) pmid: 10498896
- **266.** Jones R, et al. Cancer Res. (2007) pmid: 17909018
- **267.** Haferkamp S, et al. Aging Cell (2008) pmid: 18843795
- 268. Huot TJ, et al. Mol. Cell. Biol. (2002) pmid: 12417717
- 269. Rizos H, et al. J. Biol. Chem. (2001) pmid: 11518711
- **270.** Gombart AF, et al. Leukemia (1997) pmid: 9324288
- 271. Yang R, et al. Cancer Res. (1995) pmid: 7780957
- 272. Parry D, et al. Mol. Cell. Biol. (1996) pmid: 8668202
- 273. Greenblatt MS, et al. Oncogene (2003) pmid: 12606942
- **274.** Yarbrough WG, et al. J. Natl. Cancer Inst. (1999) pmid: 10491434
- 275. Poi MJ, et al. Mol. Carcinog. (2001) pmid: 11255261
- **276.** Byeon IJ, et al. Mol. Cell (1998) pmid: 9660926
- 277. Kannengiesser C, et al. Hum. Mutat. (2009) pmid:
- **278.** Lal G, et al. Genes Chromosomes Cancer (2000) pmid: 10719365
- 10/19303
- 279. Koh J, et al. Nature (1995) pmid: 7777061280. McKenzie HA, et al. Hum. Mutat. (2010) pmid:
- 281. Miller PJ, et al. Hum. Mutat. (2011) pmid: 21462282
- **281.** Miller PJ, et al. Hum. Mutat. (2011) pmid: 21462282 **282.** Kutscher CL, et al. Physiol. Behav. (1977) pmid: 905385
- 283. Scaini MC, et al. Hum. Mutat. (2014) pmid: 24659262
- 284. Jenkins NC, et al. J. Invest. Dermatol. (2013) pmid:
- 23190892
- **285.** Walker GJ, et al. Int. J. Cancer (1999) pmid: 10389768
- **286.** Rutter JL, et al. Oncogene (2003) pmid: 12853981
- 287. Itahana K, et al. Cancer Cell (2008) pmid: 18538737
- 288. Zhang Y, et al. Mol. Cell (1999) pmid: 10360174
- 289. Zhang Y, et al. Cell (1998) pmid: 9529249 290. Jafri M. et al. Cancer Discoy (2015) pmid: 25873077
- 291. Whelan AJ, et al. N Engl J Med (1995) pmid: 7666917
- **292.** Adv Exp Med Biol (2010) pmid: 20687502
- **293.** Hogg D, et al. J Cutan Med Surg (1998) pmid: 9479083 **294.** De Unamuno B, et al. Melanoma Res (2018) pmid:
- 29543703 295. Soura E, et al. J Am Acad Dermatol (2016) pmid: 26892650
- 296. Huerta C, et al. Acta Derm Venereol (2018) pmid:
- 29405243 **297.** Kaufman DK, et al. Neurology (1993) pmid: 8414022
- 298. Bahuau M, et al. Cancer Res (1998) pmid: 9622062
- 299. Chan AK, et al. Clin Neuropathol () pmid: 28699883 300. Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315
- 301. Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
 302. Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid:
- 21389100 303. Osman AA, et al. Mol. Cancer Ther. (2015) pmid: 25504633
- 25504633 **304.** Xu L. et al. Mol. Cancer Ther. (2002) pmid: 12489850
- 305. Xu L, et al. Mol. Med. (2001) pmid: 11713371 306. Camp ER, et al. Cancer Gene Ther. (2013) pmid:
- 23470564 **307.** Kim SS, et al. Nanomedicine (2015) pmid: 25240597

308. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628

APPENDIX

References

ORDERED TEST # ORD-1600374-01

- 309. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 310. Moore et al., 2019; ASCO Abstract 5513
- 311. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27998224
- 312. Oza et al., 2015; ASCO Abstract 5506
- **313.** Lee J, et al. Cancer Discov (2019) pmid: 31315834
- **314.** Méndez E, et al. Clin. Cancer Res. (2018) pmid: 29535125
- **315.** Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- **316.** Gourley et al., 2016; ASCO Abstract 5571
- 317. Park H, et al. ESMO Open (2022) pmid: 36084396
- 318. Morton JP, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid: 20018721
- 319. Scarpa A, et al. Am. J. Pathol. (1993) pmid: 8494051
- 320. Luo Y, et al. Pathol. Oncol. Res. (2013) pmid: 22782330
- 321. Iacobuzio-Donahue CA, et al. Clin. Cancer Res. (2012) pmid: 22896692
- **322.** Macgregor-Das AM, et al. J Surg Oncol (2013) pmid: 22806689
- **323.** Ottenhof NA, et al. Cell Oncol (Dordr) (2012) pmid: 22351431
- **324.** Tsiambas E, et al. J BUON () pmid: 20414934
- **325.** Ansari D, et al. Br J Surg (2011) pmid: 21644238
- 326. Grochola LF, et al. Pancreas (2011) pmid: 21404460
- 327. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- 328. Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid: 18410249
- **329.** Kato S. et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid:

- 12826609
- 330. Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130
- **331.** Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- **332.** Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- 333. Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- 334. Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- 335. Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- 336. Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316
- **337.** Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid: 19204208
- 338. Lalloo F, et al. Lancet (2003) pmid: 12672316
- 339. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713
- **340.** Jaiswal S. et al. N. Engl. J. Med. (2014) pmid: 25426837
- **341.** Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 342. Xie M. et al. Nat. Med. (2014) pmid: 25326804
- **343.** Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- **344.** Severson EA, et al. Blood (2018) pmid: 29678827
- **345.** Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 346. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- **347.** Chabon JJ, et al. Nature (2020) pmid: 32269342
- 348. Razavi P, et al. Nat. Med. (2019) pmid: 31768066
- 349. Del Conte G. et al. Br. J. Cancer (2014) pmid: 25025963

- **350.** Golan et al., 2021; ASCO Abstract 378
- 351. Golan et al., 2018; ASCO Abstract 297
- 352. Maio et al., 2021; AACR Abstract CT178
- 353. Konstantinopolous et al., 2018; ASCO Abstract 106
- 354. Reiss KA, et al. Lancet Oncol (2022) pmid: 35810751
- **355.** Mirza et al., 2016; ASCO Abstract 5555
- 356. George et al., 2022; ASCO Abstract 3122
- 357. Lian BJ, et al. Front Oncol (2022) pmid: 35875073
- 358. Kristeleit et al., 2014; ASCO Abstract 2573
- 359. Domcheck et al., 2016; ASCO Abstract 4110
- **360.** Shroff RT, et al. JCO Precis Oncol (2018) pmid: 30051098
- 361. Reiss KA, et al. J Clin Oncol (2021) pmid: 33970687
- 362. Binder et al., 2019; AACR Abstract CT234
- 363. Turner et al., 2017; ASCO Abstract 1007
- 364. Litton JK, et al. N. Engl. J. Med. (2018) pmid: 30110579
- 365. Ettl J, et al. Ann. Oncol. (2018) pmid: 30124753
- 366. Meehan et al., 2017; AACR Abstract 4687
- **367.** de Bono J, et al. Cancer Discov (2017) pmid: 28242752
- 368. Lu E, et al. J Natl Compr Canc Netw (2018) pmid:
- 369. De Bono et al., 2020; ASCO Abstract 5566
- 370. Gruber et al., 2019; ASCO Abstract 3006
- 371. Piha-Paul et al., 2017; EORTC-NCI-AACR Abstract A096