Contrôle intermédiaire Durée 1 heure 30 Tout document interdit

Exercice 1 (1, 2, 1, 2)

- Q1. Rappeler les propriétés de consistance et de complétude de la résolution.
- Q2. Vérifier, à l'aide d'un arbre sémantique que :

$$\models (P1 \rightarrow (P2 \rightarrow P3)) \rightarrow ((P1 \rightarrow P2) \rightarrow (P1 \rightarrow P3))$$

- Q3. Déduire de Q2 un ensemble non satisfiable de clauses. En déduire que cet ensemble est inconsistant.
- Q4. Déduire de Q2 que $\mid = (\alpha \rightarrow (\neg \beta \lor \gamma)) \rightarrow ((\neg \alpha \lor \beta) \rightarrow (\neg \alpha \lor \gamma))$ pour toute formules α , β et γ du langage propositionnel.

Exercice 3 (3-3)

On considère le langage propositionnel $L\{\neg, \nearrow\}$ où \nearrow est un connecteur binaire défini comme suit : $P \nearrow Q = \neg P \lor \neg Q$.

- Définir l'ensemble des formules de L.
- Trouver dans L une formule logiquement équivalente à chacune des formules suivantes : $P \lor Q$, $P \land Q$, $P \rightarrow Q$, $P \leftrightarrow Q$.

Exercice 5 (2-2-2-1-1)

- I. On considère la formule ψ telle que :
 - $\psi: (\alpha \vee \beta_1) \wedge (\alpha \vee \beta_2) \wedge \wedge (\alpha \vee \beta_p) \text{ et telle que l'ensemble } \{\beta_1, \,, \, \beta_p\} \text{ soit non satisfiable}.$
 - Montrer que $\psi \equiv \alpha$.
- II. On considère les deux clauses P et $P \vee Q$. En introduisant des variables propositionnelles supplémentaires,
 - trouver la formule β_1 : $c_1 \wedge ... \wedge c_n \ (n \ge 1)$ logiquement équivalentes à la clause P telle que toute clause $c_i \ (1 \le i \le n)$ contiennent exactement trois littéraux.
 - trouver la formule $β_2 : c_1 \land ... \land c_k \ (k ≥ 1)$ logiquement équivalente à la clause $P \lor Q$ telle que toute clause $c_i \ (1 ≤ i ≤ k)$ contiennent exactement trois littéraux.
 - montrer, sans utiliser la propriété de complétude que : $\{\neg P, \beta_1\}$ est inconsistant.
 - montrer, sans utiliser la propriété de complétude que : $\{\neg(P\lor Q),\,\beta_2\}$ est inconsistant.
- N.B. Remettre un cahier d'examen sans intercalaire.