l'Ingénieur

Chapitre 2 - Caractérisation inertielle des solides

Application 1

Application 2

X. Pessoles

Savoirs et compétences :

- *Mod2.C13 : centre d'inertie*
- □ Mod2.C14 : opérateur d'inertie
- ☐ *Mod2.C15 : matrice d'inertie*

Triaxe

On donne le plan d'un triaxe constitué des 3 axes A_1 , A_2 , A_3 et du moyeu central noté M. On note T l'ensemble.

On note:

- \overrightarrow{z} l'axe perpendiculaire au plan de la feuille. On se place ci-dessus dans le plan de symétrie $(O, \overrightarrow{x}, \overrightarrow{y})$;
- \mathcal{R}_i le repère $(O_i; \overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z_i})$ et \mathcal{B}_i la base associée.

TOUS LES CALCULS SE FERONT DE MANIÈRE LIT-TEREALE!

- $D_1 = 18 \,\mathrm{mm}$ et $H_1 = 25 \,\mathrm{mm}$.
- $D = 46 \,\text{mm}$, $D' = 30 \,\text{mm}$ et $H = 48 \,\text{mm}$.
- $\alpha_1 = (\overrightarrow{x}, \overrightarrow{x_1}) = 90^\circ$, $\alpha_2 = (\overrightarrow{x}, \overrightarrow{x_2}) = -150^\circ$ et $\alpha_3 = (\overrightarrow{x}, \overrightarrow{x_3}) = -30^\circ$.

1

On donne ci-dessous le paramétrage d'un axe A_i .

Question 1 Déterminer (sans calcul) la position du centre de gravité du triaxe.

Question 2 Déterminer analytiquement la position du centre de gravité G_i du solide A_1 dans le repère \mathcal{R}_i .

Question 3 Déterminer (sans calcul) la **forme** de la matrice d'inertie du triaxe.

Question 4 Déterminer analytiquement la matrice d'inertie du solide A_i en G_i dans \mathcal{R}_i . On la note $I_{G_i}(A_i)$ =

$$\begin{pmatrix} A_i & -F_i & -E_i \\ -F_i & B_i & -D_i \\ -E_i & -D_i & C_i \end{pmatrix}_{\Re_i} \text{ où les constantes seront à détermi-}$$
 ner littéralement.

Question 5 Déterminer $I_{G_i}(A_i)$ dans la base $\mathscr{B}(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ puis $I_O(A_i)$ dans la base \mathscr{B} .

Question 6 Déterminer $I_O(B)$ dans la base \mathcal{B} .

Question 7 Proposer une méthode pour déterminer le tenseur d'inertie du triaxe en O dans la base \mathcal{B} .

Question 8 Déterminer le tenseur d'inertie du triaxe en O dans la base B.

Question 9 Déterminer $I_O(M)$ la matrice d'inertie du moyeu M.

Question 10 Déterminer $I_O(T)$ la matrice d'inertie du triaxe T.