

CO643 – Week 7 Sustainable Computing

Dr Özgür Kafalı Lecturer

R.O.Kafali@kent.ac.uk

- Definitions and dimensions of sustainability
- Computational sustainability
 - Sustainable software
 - Sustainable Al
- Case studies

Learning Outcomes

- After this lecture, you will be able to
 - Understand what sustainability means
 - Identify how computing can impact sustainability
 - See how sustainability relates to ethics
 - Review case studies for sustainable computing

Definition

- Bruntland Commission 1987 United Nations
- •Sustainable development: "Development that meets the <u>needs of the present</u> without compromising the ability of <u>future generations</u> to meet their needs"

Our Common Future

- Raised <u>serious</u> concerns about the current state of the planet
- Introduced the concepts of <u>sustainability</u> and sustainable development
- Recommended <u>policies</u> to be put forward for sustainable development

Role of Computer Scientists

- Play a key role in developing computational methods for efficiently and effectively managing the earth's natural resources
 - Global warming
 - Biodiversity

Dimensions

- United Nations Agenda for Development (1997)
- "Development is a <u>multi-dimensional</u> undertaking to achieve a higher quality of life for all people"
- "Economic development, social development and environmental protection are interdependent and mutually reinforcing components of sustainable development"

Weak vs Strong sustainability

- Weak: "The next generation should inherit a stock of wealth, comprising man-made assets and environmental assets, no less than the stock inherited by the previous generation"
- •Strong: "The next generation should inherit a stock of environmental assets no less than the stock inherited by the previous generation"

Pearce et al (1989)

Strong Sustainability

- Sets thresholds that must not be crossed
- Mostly a matter of <u>social</u> and <u>political</u> preference
- But also a matter of <u>resilience</u>: How well can an ecosystem recover from shocks and stress?
- Preferred by ecologists and other natural scientists

Weak Sustainability

- Given the space delimited by such strong thresholds
- Most sustainable outcome leads to the largest amount of both natural and man-made resources
 - Environmental assets
 - Valuable landscapes
 - Cultural heritage
 - Science and technology
 - Infrastructure
- Favoured by economists

Initiatives

- Technology for reducing energy use
- Greenpeace Green Internet
- Greenpeace Green electronics

ClickClean - Green Internet

VIDEO Amazon Prime HB@

MESSAGING WhatsApp

Green Electronics

https://www.greenpeace.org/archive-international/en/campaigns/detox/electronics/Guide-to-Greener-Electronics/

Computer Life-Cycle

Regulation of E-Waste

- Restriction of the use of certain hazardous substances
- Recovery and recycling (WEEE directive)
- Movement of hazardous waste

Computing

The WEEE Man

http://www.weeeman.org

Pic by Nick Gregory. 01/06/2005. The WEEE Man robot sculpture (waste electrical and electronic equipment) towers over the plants outside the Eden Project in Cornwall as Richard Melvin makes final adjustments from a cherrypicker.

Software Engineering for Sustainability

- Starts with requirements engineering
 - Sustainability as a non-functional requirement
 - Process-specific and product-specific goals
- Focus on quality assurance
 - Sustainability as a first class quality
 - How to measure?
 - How to verify?

Sustainable Al

- From "human-friendly" AI to "earth-friendly" AI
- Harnessing Artificial Intelligence for the Earth report
- •8 ways AI can save the planet

Al to Save the Planet

- Autonomous and connected electric vehicles
 - Substantial greenhouse gas reductions
 - Route and traffic optimisation
 - Eco-driving algorithms
 - Autonomous ride-sharing services
- Smart agriculture and food systems
 - Early detection of crop diseases
 - Provide timed nutrition to livestock

Al to Save the Planet

- Weather and climate prediction
 - New field of "Climate Informatics"
- Smart disaster response
 - Analyse simulations and real-time data
 - Determine optimal response strategies

Al to Save the Planet

- Connected cities
 - Smart water consumption and availability
 - Traffic flows
 - People flows
- Transparent digital Earth
 - Monitoring, modelling and management of environmental systems at a scale
 - Tackling illegal deforestation, fishing

Applications & Case Studies

- Academic projects
- Academic conferences and journals
- Smart cities
- Intelligent transportation systems
- Games for educational purposes

Institute for Computational Sustainability

•Aims:

- To establish a new field, <u>Computational Sustainability</u> focused on computational methods for balancing environmental, economic, and societal needs for a sustainable future
- Attract a new generation of students who traditionally may not have considered studying computer science

Sample Project: Predicting Crop Yield

• Aims:

- Understand worldwide crop yield
- Achieve zero hunger and food security [UN goal]

• Method:

- Use publicly available remote sensing data and machine learning
- Predict several months before harvest

Sample Project: Wildlife Conservation

- Problem: Poaching of elephants and rhinoceroses
- Impact: Extinction in the near future
- Solution: Unmanned aerial vehicles (UAVs) to spot poachers and animals
 - Equipped with a thermal infrared camera

Smart Cities

- Changing the way we live in cities
- Boundaries between city and nature
- 100% sustainable buildings
- How about mega cities?

https://www.gemalto.com/iot/inspired/smart-cities

Intelligent Transportation Systems

- Intelligent ways of transporting people or goods
- Navigation, route optimisation
- Congestion control
- Communication
- Car sharing

Volkswagen Emissions Scandal

https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal

Conclusions

- •In this lecture, we have
 - Reviewed definitions of sustainability
 - Seen cases of how computing professionals can impact the environment
 - Identified fields of computing that have strong relations with sustainability

Additional Material

- "Some Computer Science Issues in Creating a Sustainable World" http://www.cs.cmu.edu/~io/publications/ieee08-preprint.pdf
- http://www.clickclean.org/
- http://www3.weforum.org/docs/Harnessing Artificial Intelligence f or the Earth report 2018.pdf
- http://sustain.stanford.edu/predicting-poverty
- Ted talks:
 - https://www.ted.com/talks/peter calthorpe 7 principles for building better cit ies#t-801679
 - https://www.ted.com/talks/alex steffen sees a sustainable future