סיכום הרצאה 1-תרשימה בקרה

למשתנים

:Standard Not Given

מדובר בתהליך שעוד לא התייצב

נקרא ניתוח רטרוספקטיבי 🦠

- תוחלת וסטיית תקן לא ידועים, ולכן קודם נאסוף את הנתונים, ורק לאחר מכן נבנה את התרשים על סמד הנתונים שהצטברו.
 - לדוגמא- תהליך חדש, שינוי חומרי גלם.

חישוב גבולות בקרה:

פיזור נאמד ע"י טווח:

גבולות בקרה לממוצעים-

$$CL_{\bar{X}} = \hat{\mu} = \bar{\bar{X}}$$

$$U/LCL_{\bar{X}} = \bar{\bar{X}} \pm 3 \cdot \frac{\bar{R}}{\sqrt{n}} = \bar{\bar{X}} \pm \frac{3}{\sqrt{n \cdot d_2}} \cdot \bar{R} = \bar{\bar{X}} \pm A_2 \cdot \bar{R}$$

גבולות בקרה לטווחים-

$$CL_R = \widehat{\mathbf{E}(R)} = \bar{R}$$
 \bar{R}

$$LCL_R = D_1 \cdot \hat{\sigma} = D_1 \cdot \frac{\bar{R}}{d_2} = D_3 \cdot \bar{R}$$

$$UCL_R = D_2 \cdot \hat{\sigma} = D_2 \cdot \frac{\bar{R}}{d_2} = D_4 \cdot \bar{R}$$

:פיזור נאמד ע"י סטיית תקן

גבולות בקרה לממוצעים-

$$CL_{\bar{X}} = \hat{\mu} = \bar{X}$$

$$U/LCL_{\bar{X}} = \bar{X} \pm 3 \cdot \frac{\bar{S}}{\frac{C_4}{\sqrt{n}}} = \bar{X} \pm \frac{3}{\sqrt{n \cdot C_4}} \cdot \bar{S} = \bar{X} \pm A_3 \cdot \bar{S}$$

גבולות בקרה לסטיות התקן-

$$CL_S = \widehat{E(S)} = \overline{S}$$

 $LCL_S = B_5 \cdot \widehat{\sigma} = B_5 \cdot \frac{\overline{S}}{C_4} = B_3 \cdot \overline{S}$

$$UCL_S = B_6 \cdot \hat{\sigma} = B_6 \cdot \frac{\overline{S}}{C_4} = B_4 \cdot \overline{S}$$

:Standard Given

מדובר בתהליך יציב

תרשים בקרה

איסוף נתונים

נקרא בקרה אונליין

תוחלת וסטיית תקן ידועים, ולכן ניתן לבנות את תרשים הבקרה ואת הגבולות מראש,
 ולראות בזמן אמת אם יש נקודה שנמצאת מחוץ לגבול.

חישוב גבולות בקרה:

- $CL_{\bar{X}} = \mu$ $U/LCL_{\bar{X}} = \mu \pm 3 \cdot \frac{\sigma}{\sqrt{n}} = \mu \pm A \cdot \sigma$
- גבולות בקרה לממוצעים-

גבולות בקרה לטווחים-

- $CL_R = d_2 \cdot \sigma$ $LCL_R = d_2 \cdot \sigma 3 \cdot d_3 \cdot \sigma = (d_2 3 \cdot d_3)\sigma = D_1 \cdot \sigma$ $UCL_R = d_2 \cdot \sigma + 3 \cdot d_3 \cdot \sigma = (d_2 + 3 \cdot d_3)\sigma = D_2 \cdot \sigma$
- $CL_S = C_4 \cdot \sigma$ $LCL_S = C_4 \cdot \sigma 3 \cdot \sqrt{1 C_4^2} \cdot \sigma = \left(C_4 3 \cdot \sqrt{1 C_4^2}\right) \cdot \sigma = B_5 \cdot \sigma$ רבולות בקרה לסטיות התקן- $UCL_S = C_4 \cdot \sigma + 3 \cdot \sqrt{1 C_4^2} \cdot \sigma = \left(C_4 + 3 \cdot \sqrt{1 C_4^2}\right) \cdot \sigma = B_6 \cdot \sigma$