Rubrica:

Notas: - O seu teste está numerado no canto superior direito. Assine a folha de presenças na linha com esse nº.

- só é permitida calculadora sem capacidade de comunicação e material de escrita em papel; todo o restante material (incluindo pasta/mochila, portátil/tablet e telemóvel) deve ser depositado na parte baixa do anfiteatro;
- em cada questão só há uma resposta correcta; uma resposta certa vale 1 valor, uma errada desconta 0,2 valores e uma não resposta vale 0 valores; as respostas têm de ser assinaladas com um X na grelha abaixo; mais do que um X por coluna é considerado como resposta errada;
- duração do teste: 80 minutos, sem tolerância.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(a)																				
(b)																				
(c)																				
(d)																				

- 1. numa resistência R=1kΩ mediu-se uma tensão V=2V. Sendo I a corrente que a atravessa e P a potência dissipada, qual das seguintes respostas é falsa?
 - (a) I = 2mA
- **(b)** $I = 2 \times 10^{-3} \text{mA}$
 - **(c)** P = 4mW
- (d) $P = 4 \times 10^{-3} W$
- **2.** Com R1=R2=R3=R4=R5=R, a resistência equivalente é dada por:
 - (a) Req = R/2
- **(b)** Req = R
- **(c)** Req = 2R
- **(d)** Req = 3R

- **3.** Sabendo que V2 = 4V, determine R1:
 - (a) $R1 = 2 \Omega$
- **(b)** R1= 3 Ω
- (c) R1= 4 Ω
- (d) R1= 6Ω

- **4.** Aplicando sobreposição a corrente **I** é dada pela soma:
 - (a) -2-2=-4 mA (b) -4+2=-2 mA

 - (c) -2+2=0 mA (d) +2+2=4 mA

- **5.** As correntes Ix e Iy são, respectivamente:
 - (a) -1A/-1A
- **(b)** +1A/+1A
- (c) -1A / +3A
- (d) +1A/-3A

- **6.** Os dois circuitos são equivalentes se:
 - (a) $V_{TH} = 2 V e R_{TH} = 2 k\Omega$
 - **(b)** VTH = 2 V e RTH = 9 k Ω
 - (c) $VTH = 6 V e RTH = 2 k\Omega$
 - (d) $V_{TH} = 6 \text{ V e R}_{TH} = 9 \text{ k}\Omega$

- 7. Os dois circuitos são equivalentes se:
 - (a) $I_N = 250 \mu A$; $R_N = 3.0 k\Omega$
 - **(b)** In = 250 μ A; Rn = 3,6 k Ω
 - (c) IN = 500 μ A; RN = 3,0 k Ω
 - (d) IN = 500 μ A; RN = 3,6 $k\Omega$

- **8.** Calcule Ix:
 - (a) Ix = 1 mA
- **(b)** Ix = 3 mA
- **(c)** Ix = 4 mA
- (d) Ix = 8 mA

- **9.** Para o sinal da figura, determine o *duty-cycle* e o valor médio:
 - (a) $\partial = 30\%$; $v_{\text{med}} = 0.1 \text{ V}$
- **(b)** $\partial = 70\%$; $v_{\text{med}} = 0.1 \text{ V}$
- (c) $\partial = 30\%$; $v_{\text{med}} = 1.0 \text{ V}$
- (d) $\partial = 70\%$; $v_{\text{med}} = 1.0 \text{ V}$

- **10.** Determine a frequência e o valor eficaz do sinal:
 - (a) 50 Hz; 12 V
- **(b)** 50 Hz; 24 V
- **(c)** 100 Hz; 12 V
- (d) 100 Hz; 24 V

- 11. Para o sinal da figura, determine o tempo de descida:
 - (a) 8 ns
- **(b)** 10 ns
- **(c)** 16 ns
- (d) 20 ns

12. Considere que o interruptor está fechado há muito tempo. Sugestão: use Thévenin para determinar as condições iniciais.

Em t = 0s, o interruptor abre, desligando a fonte de corrente do resto do circuito. Ao fim de 1ms qual o valor de v?

(b) 1,84 V

(d) 3,68 V

13. O circuito à direita é do tipo Passa-Alto (PA) ou Passa-Baixo (PB) ?

Determine a sua frequência de corte. (se necessário aproxime o resultado)

(b) PB; 160 kHz

(d) PB; 1 MHz

- **14.** Se V*i* for uma sinusoide de 8 kHz, aproximadamente, temos que:
 - (a) $Vo \ll Vi$
- **(b)** $Vo = 0.1 \times Vi$
- (c) Vo = Vi
- (d) $Vo \gg Vi$

- **15.** Considere um circuito RC paralelo, com R=1kΩ e C=100nF, a funcionar à frequência de 1,6kHz. Determine, aproximadamente, a impedância equivalente em módulo e fase.
 - (a) $0.7 \text{k}\Omega / -45^{\circ}$
- **(b)** $0.7k\Omega / +45^{\circ}$
- (c) $1.4k\Omega / -45^{\circ}$
- (d) $1,4k\Omega / +45^{\circ}$

16. Para o circuito à direita considere diodos ideais e que a tensão de entrada é uma sinusoide com 6Veff. Pode afirmar-se que:

- **(b)** D2 está sempre cortado.
- (c) D1 está sempre a conduzir.
- (d) D2 conduz nos semi-ciclos negativos.

17. Considere os diodos ideais. Em qual dos circuitos se obtém a maior corrente em módulo ?

18. No circuito considere $V\gamma=0.6V$, $R=1k\Omega$ e que Vz1=Vz2=Vz. Vi é uma onda quadrada de valor médio nulo e com 16Vpp. Pretende obter-se uma saída (Vo) com 6Vpp. Determine Vz:

- **(b)** 3,0 V
- (c) 5,4 V
- **(d)** 6,0 V

19. No circuito considere $V\gamma$ =0,8V; R_L =18 Ω ; C=10000 μ F. O sinal de entrada é uma sinusoide de 50Hz com 14Vrms. Determine, aproximadamente, o valor **mínimo** da tensão de saída v_L :

- (a) 11 V
- **(b)** 17 V
- **(c)** 18 V
- (d) 19 V
- **20.** No circuito considere: Vi = 22V ; $V\gamma$ = 0,6V ; Vz1 = 12V ; e R1 = 470 Ω ; R2 = 1,2k Ω . Determine, aproximadamente, a potência consumida por Z1:

(b) 0,12 W

(c) 0,15 W

(d) 0,24 W

