

planetmath.org

Math for the people, by the people.

testing for continuity via basic open sets

 ${\bf Canonical\ name} \quad {\bf Testing For Continuity Via Basic Open Sets}$

Date of creation 2013-03-22 19:08:55 Last modified on 2013-03-22 19:08:55

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771)

Entry type Result
Classification msc 26A15
Classification msc 54C05

Proposition 1. Let X, Y be topological spaces, and $f: X \to Y$ a function. The following are equivalent:

- 1. f is continuous;
- 2. $f^{-1}(U)$ is open for any U in a basis (U called a basic open set) for the topology of Y;
- 3. $f^{-1}(U)$ is open for any U is a subbasis for the topology of Y.

Proof. First, note that $(1) \Rightarrow (2) \Rightarrow (3)$, since every basic open set is open, and every element in a subbasis is in the basis it generates. We next prove $(3) \Rightarrow (2) \Rightarrow (1)$.

• (2) \Rightarrow (1). Suppose \mathcal{B} is a basis for the topology of Y. Let U be an open set in Y. Then U is the union of elements in \mathcal{B} . In other words,

$$U = \bigcup \{U_i \in \mathcal{B} \mid i \in I\},\$$

for some index set I. So

$$f^{-1}(U) = f^{-1}(\bigcup \{U_i \in \mathcal{B} \mid i \in I\})$$

= $\bigcup \{f^{-1}(U_i) \mid i \in I\}.$

By assumption, each $f^{-1}(U_i)$ is open, so is their union $f^{-1}(U)$.

• (3) \Rightarrow (2). Suppose now that S is a subbasis, which generates the basis B for the topology of Y. If U is a basic open set, then

$$U = \bigcap_{i=1}^{n} U_i,$$

where each $U_i \in \mathcal{S}$. Then

$$f^{-1}(U) = f^{-1}(\bigcap_{i=1}^{n} U_i)$$

= $\bigcap_{i=1}^{n} f^{-1}(U_i).$

By assumption, each $f^{-1}(U_i)$ is open, so is their (finite) intersection $f^{-1}(U)$.