ECON3113 Microeconomic Theory I

Tutorial #11
Risk and Uncertainty

Today's tutorial

- The Problem with expected value
- From preferences to a utility function that we can use in an environment of uncertainty
 - Compound lotteries
 - The Independence and continuity axioms
 - The Von-Neumann Morgernstern Theorem and utility function
- Two issues with the approach:
 - the Allais Paradox
 - Invariance of the Von-Neumann Morgernstern utility function up to a linear transformation only
- Risk attitude
- Risk premium and certainty equivalent income

The problem with expected value

• How much would we pay for a ticket to play the following lottery?

	Pay-off		
	\$1mn	\$100,000	\$0
Probability	0.1	0.2	0.7
Expected value		\$120,000	

- Answer (1): We would pay the expected value of the lottery ie \$120,000. Any less and we would expect to win free money on average
- But what if our whole net worth was \$120,000? How much would we pay in this case?

The problem with expected value

How much would we pay for a ticket to play the following lottery?

	Pay-off		
	\$1mn	\$100,000	\$0
Probability	0.1	0.2	0.7
Expected value		\$120,000	

- Answer (1): We would pay the expected value of the lottery ie \$120,000. Any less and we would expect to win free money on average
- But what if our whole net worth was \$120,000? How much would we pay in this case?
 - We would pay (a lot) less than the fair value of the gamble
- It's not how much money we win or lose, but how much we value the money that we win or lose
- <u>In general</u>, how much we would pay will not be given by the expected value of the lottery

Towards a utility function in an environment of uncertainty

- We would like a utility function that we can use when we have uncertainty
- We want to be able to derive this from a preference relation
 - We need to state a preference relation and then use some axioms to derive a utility function
- The same approach as we used to derive the utility function in an environment of certainty
- Our approach: The Von Neumann Morgernstern Theorem and utility function

The Von Neumann Morgernstern Theorem and utility function

- The Von Neumann Morgernstern (vN-M) approach defines objects to be chosen as lotteries
 - A lottery is defined in terms of a state space, the prize with each state and the probability of each state occurring
 - For simplicity, define each state as the prize that is won if that state occurs
- A typical lottery takes the form:

Prize/state	x_1	x ₂	 x _n
Probability	P_1	P_2	 P_n

- We assume that a consumer has a complete and transitive preference relation ≥ over a given set of lotteries
 - Complete: The preference relation may be applied to any pair of lotteries in the set of lotteries
 - Transitive: If we have lotteries A, B and C such that $A \geq B$ and $B \geq C$ then we must have $A \geq C$
- If the preference ≥ satisfies some properties, then it can be represented by a utility function and expected utility

Two types of lottery: degenerate and compound

• A degenerate lottery gives all probability to a single prize

Prize/state	X ₁	X ₂	X ₃	 X _{n-1}	X _n
Probability	0	0	1	 0	0

- A compound lottery is a two-step lottery as follows:
 - First, a draw is made between two lotteries L and L' with the same state space and probability of choosing each α and $1-\alpha$, respectively ($\alpha \in [0,1]$)
 - Second, a draw is made in the chosen lottery, with prize and probability determined according to that lottery
- Given lotteries L and L' and $\alpha \in [0,1]$, a compound lottery is given by $\alpha L + (1-\alpha)L'$

Compound lotteries

- A compound lottery can be reduced to a single lottery
- With lotteries $L=(p_1,p_2,\ldots,p_n)$ and $L'=(p_1',p_2',\ldots,p_n')$ and $\alpha\in[0,1]$, the compound lottery $\alpha L+(1-\alpha)L'$ has prize x_i occurring with probability $\alpha p_1+(1-\alpha)p_1'$.
- Example:
 - Consider the two lotteries below
 - Assume $\alpha = 0.25$

Prize/state	x_1	X ₂	X ₃	x _n
p_1	0.1	0.2	0.3	0.4
${p_1}'$	0.4	0.3	0.2	0.1
$\alpha p_1 + (1-\alpha)p_1'$	0.325	0.275	0.225	0.175

 A consequentialist individual is one who views the compound lottery and the reduced lottery as identical objects

Two essential axioms

• To be able to go from a preference relation \geq to a utility function, we need two axioms:

Definition

Preference \succeq over lotteries satisfies the **independence axiom** if for any three lotteries L, L', and L'', and any $\alpha \in [0,1]$,

$$L \succsim L' \Rightarrow \alpha L + (1 - \alpha) L'' \succsim \alpha L' + (1 - \alpha) L''$$
.

The axiom says that preference between two lotteries should be invariant to the introduction of a third lottery
and the resulting compound lotteries

Definition

Preference \succeq over lotteries satisfies the **continuity axiom** if for any three lotteries such that $L'' \succsim L \succsim L'$, there is a $\alpha \in [0,1]$ such that $L \sim \alpha L' + (1-\alpha) L''$.

• Which lottery do you prefer, lottery *A* or lottery *B*?

	\$5mn	\$1mn	\$0
Lottery A probabilities	0.0	1.0	0.0
Lottery B probabilities	0.98	0.00	0.02

Which lottery do you prefer, lottery C or lottery D?

	\$5mn	\$1mn	\$0
Lottery C probabilities	0.00	0.50	0.50
Lottery D probabilities	0.49	0.00	0.51

A common finding is that people prefer lottery A to lottery B, and lottery D to lottery C

	\$5mn	\$1mn	\$0
Lottery A probabilities	0.0	1.0	0.0
Lottery B probabilities	0.98	0.00	0.02
	\$5mn	\$1mn	\$0
	9511111	Y I I I I I	70
Lottery C probabilities	0.00	0.50	0.50
Lottery D probabilities	0.49	0.00	0.51

• Note that A > B and D > C violates the Independence axiom

- Note that A > B and D > C violates the Independence axiom
 - Let L_0 be the degenerate lottery:

	\$5mn	\$1mn	\$0
L_0 probabilities	0.00	0.00	1.00

- Then we have:
 - $C = 0.5A + 0.5L_0$
 - $D = 0.5B + 0.5L_0$
- And the independence axiom requires that $A > B \Rightarrow C > D$
- Whether the Independence axiom is violated is (still) a major research topic in economics

The Von Neumann Morgernstern Theorem and utility function

Theorem

If a complete and transitive preference \succeq over lotteries satisfies the independence axiom and the continuity axiom, then it can be represented by some utility function u(x) over prizes, that is, for any pair of lotteries $L = (p_1, p_2, ..., p_n)$ and $L' = (p'_1, p'_2, ..., p'_n)$,

$$L \succsim L' \Leftrightarrow \sum_{i=1}^{n} p_{i}u\left(x_{i}\right) \geq \sum_{i=1}^{n} p'_{i}u\left(x_{i}\right).$$

- Summary:
 - A preference relation has to be complete and transitive
 - It also has to satisfy the Continuity and Independence axioms
 - Then given two lotteries L and L', then if L is preferred to L' then the preferences may be represented by a utility function and the expected utility from L is greater than or equal to the expected utility from L'
 - Therefore, we may rank lotteries in terms of expected utility

How invariant is Von Neumann Morgernstern utility?

- Re-call that in a world of certainty, utility was a purely ordinal concept
 - In particular, the ranking given by a utility function was invariant to a transformation by any strictly increasing function
- Von Neumann Morgernstern utility, however, is only invariant up to a positive linear transformation:
 - That is, two vN-M utility functions represent the same preferences if and only if one is a positive linear transformation of the other
 - So if u(x) represents \geq , then so does A + Bu(x), with $A, B \in \mathbb{R}$ and B > 0

How invariant is Von Neumann Morgernstern utility?

- Example:
- Consider two lotteries and vN-M utility function $u(x) = 50 + \frac{5}{6}x$:

Lottery A	200	40	<i>u</i> (200)	u(40)	E(u)
Probabilities	0.25	0.75	216.67	83.33	116.67
Lottery B	300	10	u(300)	u(10)	E(u)
Probabilities	0.25	0.75	300	58.33	118.75

- So E(u(B)) > E(u(A))
- Now consider what happens when we transform u(x) by the strictly increasing $v(x) = \sqrt{u(x)}$

Lottery A	200	40	v(200)	v(40)	E(<i>v</i>)
Probabilities	0.25	0.75	14.72	9.13	10.53
Lottery B	300	10	v(300)	v(10)	E(<i>v</i>)
Probabilities	0.25	0.75	17.32	7.64	10.06

• Now E(v(B)) > E(v(A)), and so u is not invariant to the transformation to v

Attitudes to risk

- Re-call that in a world of certainty, utility was a purely ordinal concept
 - In particular, the ranking given by a utility function was invariant to a transformation by any strictly increasing function
- Von Neumann Morgernstern utility, however, is only invariant up to a positive linear transformation:
 - That is, two vN-M utility functions represent the same preferences if and only if one is a positive linear transformation of the other
 - So if u(x) represents \geq , then so does A + Bu(x), with $A, B \in \mathbb{R}$ and B > 0

Risk attitude

Risk attitude

- Compare two pay-offs under risk aversion and risk neutrality:
 - (i) a pay-off of \boldsymbol{W} with certainty
 - (i) a pay-off with an expected value of \boldsymbol{W}

Tutorial - ECON 3113 Microeconomic Theory I

- Assume that you have graduated and have been offered two jobs
 - Joint owner of a Fintech start-up
 - Tax accountant at one of the major Accountancy/Consultancy practices
- Over the next 25 years, your average annual income depends on whether business conditions over your 25 year
 career are Good or Bad
 - Probability of Good business conditions = 0.5
 - Probability of Bad business conditions = 0.5
- The income per year that you can earn under each scenario is as follows:

	Good (USD 000s)	Bad (USD 000s)
Fintech	1,000	50
Accountant	400	300

- Assume that your utility function depends on average annual income over the next 25 years:
 - $U(w) = \ln(w)$, w := average income over the next 25 years

• Risk averse, neutral or lover?

Tutorial - ECON 3113 Microeconomic Theory I

- What is your expected annual income over the next 25 years?
- Fintech

•
$$EY(w, \mathbf{p}) = \frac{1}{2} \times 1,000 + \frac{1}{2} \times 50 = 525$$

Accountant

•
$$EY(w, \mathbf{p}) = \frac{1}{2} \times 400 + \frac{1}{2} \times 300 = 350$$

	Good (USD 000s)	Bad (USD 000s)
Fintech	1,000	50
Accountant	400	300

$$P_{good} = p_{bad} = 0.5$$

- So expected income is higher if you choose Fintech
- Is this the criteria you would use to decide on your career?
 - The role of expected utility and the costs of uncertainty

- What is your expected utility over the next 25 years?
- Fintech

•
$$EU(w,p) = \frac{1}{2} \times \ln(1,000) + \frac{1}{2} \times \ln(50) \approx 5.41$$

- Accountant
 - $EU(w,p) = \frac{1}{2} \times \ln(400) + \frac{1}{2} \times \ln(300) \approx 5.85$
- So expected utility is higher if you choose to be an accountant
 - Even though expected income from this choice is lower
 - You will be (materially) poorer but happier
- What's going on here?

• Utility and average annual income over the next 25 years

- EU(Fintech) = 5.41
- EU(Accountant) = 5.85
- Depends on:
- Utility of wealth, not wealth itself
- probability of Good business conditions
 - The <u>volatility</u> of outcomes

Average income (25 years)

• If you could find a career that paid a salary for 25 years with certainty, how much would it have to pay for you to be indifferent between it and the career in Fintech?

- We have:
 - E(u(Fintech)) = 5.41
- Then $u(W_{certain})$ =5.41
- ie $\ln(W_{certain}) = 5.41 \Rightarrow$
- $W_{certain} = e^{5.41} \approx 223$
- So you would need to be paid \$223,000 to be indifferent between this career and the career in Fintech
- This is the Certainty Equivalent Income
- And the risk premium is \$525,000-\$223,000= \$302,000

• At what probability of Good business conditions would you be indifferent between being a Fintech owner or an accountant?

- We need to move to the right on both
 Expected Utility lines so that
 EU(Fintech)>EU(Accountant)
- That is, we need to increase the probability of Good business conditions

- To calculate the probabilities
- Expected utility

	Good (USD 000s)	Bad (USD 000s)
Fintech	1,000	50
Accountant	400	300

- To calculate the probabilities
- Expected utility

	Good (USD 000s)	Bad (USD 000s)
Fintech	1,000	50
Accountant	400	300

 At what probability of Good business conditions would you be indifferent between being a Fintech owner or an accountant?

- At $p \approx 0.66$ expected utilities are equal
- So if you become a bit more optimistic
 about the future, you can work in fintech