第一次作业答案

7.10

- (1) 4420 H=0100 01**00** 0010 0000 B
- ∴ X=00, 不变址, D=0010 0000 B=20H
- (2) 2244 H=0010 00**10** 0100 0100 B
- ∴ X=10, 用变址寄存器 X₂, 有效地址 D= [X₂]+44 H=1166 H
- (3) 1322 H=0001 0011 0010 0010 B
- ∴X=11,相对寻址,有效地址 D=(PC)+22 H=1256 H
- (4) 3521 H= 0011 01**01** 0010 0001 B

X=01, 用变址寄存器 X₁, 有效地址 D=[X₁]+21H=0058 H

7.11

采用定长操作码技术:

操作码 4 位,最多 16 条指令,零地址指令 M 条,二地址指令 N 条,则一地址指令最多(16-M-N) 条。

采用扩展操作码技术:

零地址操作码长度 16 位,一地址操作码长度 10 位,二地址操作码长度 4 位。所以二地址指令最多 16 条。二地址指令每减少一条,就多构成 2⁶种一地址指令,一地址指令每减少一条,就多构成 2⁶种零地址指令。

设一地址指令共有 R 条,则零地址指令:

 $M = [(2^4-N) \times 2^6-R] \times 2^6,$

: $R=(2^4-N)\times 2^6-M\times 2^{-6}$

7.12

		指令系统设计		
OP	ADDRESS			
000	A3	A2	A1	
001	A3	A2	A1	三地址指令(4
010	A3	A2	A1	条)
011	A3	A2	A1	
100	000	A2	A1	
100	001	A2	A1	二地址指令(8
	条)			
100	111	A2	A1	
101	000	000	A1	
101	000	001	A1	一地址指令(180
	条)			
111	110	011	A1	

7.13

计算机指令格式

OD (0, 5)	V ((7)	D (0, 15)
OP (0~5)	$\Lambda (0^{\sim}/)$	D (8~13)

OP 为操作码,共 6 位,最多能设置 64 条指令,X 为寻址方式, $00 \sim 11$,共四种寻址方式,D 为形式地址,一共 8 位。

7.14

同 7.11 的思路, 采用定长操作码技术:

操作码 4 位,最多 16 条指令,二地址指令 A 条,若零地址指令为 0 条,则一地址指令最多 (16-A)条。

采用扩展操作码技术:

零地址操作码长度 16 位,一地址操作码长度 10 位,二地址操作码长度 4 位。所以二地址指令最多 2⁴条。二地址指令每减少一条,就多构成 2⁶种一地址指令。由于二地址指令 A 条,若零地址指令为 0 条,则一地址指令最多有(2⁴-A)×2⁶条。

7.15

此时零地址操作码长度 12 位,一地址操作码长度 9 位,二地址操作码长度 6 位,三地址操作码长度 3 位。所以二地址指令最多 2³ 条。二地址指令每减少一条,就多构成 2³ 种一地址指令,一地址指令每减少一条,就多构成 2³ 种零地址指令。

设三地址指令为 A 条,二地址指令 0 条,零地址指令 C 条,一地址指令最多 B 条,则可以列式如下:

C=[
$$(2^3-A)\times 2^3\times 2^3-B$$
] $\times 2^3$,
 \therefore B= $(2^3-A)\times 2^6-C\times 2^{-3}$

:A=4, C=16, 代入式子得 B=254 条, :使用扩展编码技术,最多可以编码 254 条一地址指令,无法编码 255 条一地址指令。

7.16

- (1) 二地址指令操作码长度为 4 位, 共 15 条指令,操作码为 0000~1110,一地址指令操作码长度为 10 位,由于指令条数基本与零地址相等,则一地址指令操作码为:
- 1111 000000~1111 111110, 共 63 条, 零地址指令操作码长度为 16 位, 操作码为:
- 1111 111111 000000 ~ 1111 111111 111111,共 64 条。
- (2) 设二地址指令为 A 条,一地址指令为 B 条,零地址指令 C 条,则参照 7.11、7.14、7.15 得思路,可以列式如下:

$$C = ((2^4-A) \times 2^6-B) \times 2^6$$
,

- : A:B:C=1:9:9
- ::9A= ((2⁴-A)×2⁶-9A)×2⁶,取整解得 A=14, B=126, C=126,零地址指令最多 128 条,由于不需要取到所有操作码,这里零地址指令取 126 条。

则二地址指令操作码为 0000~1101, 一地址指令操作码为 1110 000000~1111 111101, 零地址指令操作码为 1111 111110 000000~1111 111111 111101。

7.17

- (1) 一共能定义 216=65536 种指令
- (2) 直接寻址: 211=2K 字

间接寻址: 232=4G 字

变址寻址: 232-4G 字

相对寻址: 211=2K 字

(3) 直接寻址: EA=A

间接寻址: EA=(A)

变址寻址: EA=(Rx)+A

相对寻址: EA=(PC)+A