

COMP9120 Database Management Systems

Tutorial Week 8: Schema Refinement and Normalisation

Exercise 1. Interpreting Functional Dependencies

Consider the following schema regarding the transport of important passengers directly from a specified pickup point at the airport entrance to the appropriate departure gate for their flights:

VipTransfers(destination,departs,airline,gate,name,contact,pickup)

A tuple such as ('Berlin', '11:25 01/06/2012', 'Lufthansa', 3, 'Justin Thyme', '0413456789', 1) means that Justin Thyme has a flight to Berlin at 11:25 on June 1, 2012, with Lufthansa Airlines, departing from Gate 3, and must be taken there from pickup point 1, and Justin can be contacted by phone on his number 0413456789. The schema has the following functional dependencies:

destination, departs, airline → gate

F pl gate → airline

FB contact → name

f Yname, departs \rightarrow gate, pickup

gate, departs → destination

只看在这些现代是多过这些社会,我们到了 Condidate key

contact, depart

- a) Express the above functional dependencies in simple English
- b) Consider the following collection of tuples. Why is this instance not a legal state for the database?

Destination	Departs	Airline	Gate	Name	Contact	Pickup
	1/06/2012			Justin		
Berlin	11:25	Lufthansa	3	Thyme	0416594563	1
	1/07/2012			Willy		
Madrid	14:30	Iberian	4	Makit	0497699256	2
		British				
London	3/05/2012 6:10	Airways	7	Hugo First	0433574387	5
	1/07/2012			Rick		
Moscow	17:50	Aeroflot	6	OhChet	0416594563	7
	1/06/2012					
Berlin	11:25	Qantas	1	Dick Taite	0469254233	4
	1/08/2012					
Kuala Lumpur	14:30	Cathay	7	Hugo First	0433574387	2
	1/08/2012					
Singapore	14:30	Qantas	2	Hugo First	0433574387	2
	1/07/2012			Justin		
London	17:50	Lufthansa	3	Thyme	0413456789	4

a) Is contact, departs, airline) a candidate key from the above functional dependencies. Can you find an aiternative?

b) Is the relation in 3NF? FDY + FD 2

c) Explain whether it is a lossless-join decomposition to decompose the relation into the following

R1(destination, departs, gate)

R2(contact, departs, pickup)

R3(gate, airline) FD 2 X

R4(contact, name) FD X

d) Give a lossless-join decomposition of the original relation into BCNF relations.

Exercise 3. Relation Decomposition

Download the vip_transfers.sql file from Canvas which contains a schema for the above relation, along with example data. Execute the statements within this file. You can insert projections of this original relation into decomposed relations. For instance, the relation Example(contact, name) can be created as follows:

```
CREATE TABLE Example (
    contact VARCHAR(10),
    name VARCHAR(30)
);
INSERT INTO Example SELECT DISTINCT contact, name FROM VipTransfers;
COMMIT;
```

For your proposed decomposition, try creating the decomposed relations and a query to reconstruct the whole relation. Is the query result identical to the original relation?