コンピュータグラフィクス論

- アニメーション(2) -

2019年5月30日 高山 健志

物理シミュレーションに基づく 変形アニメーション

- ・物理法則を忠実にモデル化する古典的なシミュレーション方法
 - バネ質点モデル
 - 有限要素法

- 物理法則から逸脱するが、見た目がリアルで計算コストの低い方法
 - Shape Matching (Position-Based Dynamics)

簡単な例:単一バネ質点(1D)

• 質点の質量 m, 位置 x, バネの係数 k, 自然長 l, 重力加速度 g

運動方程式:
$$m\frac{d^2x}{dt^2} = -k(x-l) + mg$$
$$= f_{\text{int}}(x) + f_{\text{ext}}$$

- 外力 f_{ext} :重力、床との衝突、ユーザ操作
- 内力 $f_{int}(x)$:系が安定状態に戻ろうとする力
 - バネの内部エネルギー (ポテンシャル)

$$E(x) = \frac{k}{2} (x - l)^2$$

• 内力はポテンシャルの勾配の反対

$$f_{\rm int}(x) = -\frac{dE}{dx} = -k(x-l)$$

3D 空間上のバネ質点系

- N 個の質点:i 番目の質点の質量 m_i , 位置 $x_i \in \mathbb{R}^3$
- M 本のバネ:j 番目のバネ $e_j = (i_1, i_2)$
 - ・バネ係数 k_j , 自然長 l_j

• 状態 $\mathbf{x} = (x_1, ..., x_N) \in \mathbb{R}^{3N}$ における系のポテンシャル:

$$E(\mathbf{x}) = \sum_{e_j = (i_1, i_2)} \frac{k_j}{2} (\|x_{i_1} - x_{i_2}\| - l_j)^2$$

• 運動方程式:

$$\mathbf{M} \frac{d^2 \mathbf{x}}{dt^2} = -\nabla E(\mathbf{x}) + \mathbf{f}_{\text{ext}}$$

• $\mathbf{M} \in \mathbb{R}^{3N \times 3N}$: m_i を成分とする対角行列

連続な弾性体モデル (有限要素法, FEM)

- N 個の頂点: i 番目の頂点の位置 $x_i \in \mathbb{R}^2$
- M 個の三角形:j 番目の三角形 $t_j = (i_1, i_2, i_3)$

- 変形後の状態: $\mathbf{x} = (x_1, ..., x_N) \in \mathbb{R}^{2N}$
- 変形勾配行列:

$$\mathbf{F}_{j}(\mathbf{x}) = \begin{pmatrix} \begin{pmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} \end{pmatrix} \begin{pmatrix} \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{pmatrix}^{-1} \in \mathbb{R}^{2 \times 2}$$

系のポテンシャル:

$$E(\mathbf{x}) = \sum_{t_i = (i_1, i_2, i_3)} \frac{A_j}{2} \|\mathbf{F}_j(\mathbf{x})^{\mathsf{T}} \mathbf{F}_j(\mathbf{x}) - \mathbf{I}\|_{\mathcal{F}}^2$$

• 運動方程式:

$$\mathbf{M}\frac{d^2\mathbf{x}}{dt^2} = -\nabla E(\mathbf{x}) + \mathbf{f}_{\text{ext}}$$

• $\mathbf{M} \in \mathbb{R}^{2N \times 2N}$: 各頂点のボロノイ領域の面積を成分とする対角行列

領域を三角形メッシュに分割

辺ベクトルの変化を表す線形変換

Green's strain energy

ダイナミックな変形の計算

• 位置 $\mathbf{x}(t)$ と速度 $\mathbf{v}(t) \coloneqq \frac{d\mathbf{x}}{dt}$ の初期条件

$$\mathbf{x}(0) = \mathbf{x}_0, \qquad \mathbf{v}(0) = \mathbf{v}_0$$

が与えられたとき、 $\mathbf{x}(t)$, $\mathbf{v}(t)$ を求める問題 (initial value problem)

• 問題が簡単な場合:単一バネ質点

$$m\frac{d^2x}{dt^2} = -k(x-l) + m g$$

- 解析解が求まる (sine curve)
- 一般の問題には解析解が存在しない
 - → 時刻 t における状態 $(\mathbf{x}_n, \mathbf{v}_n)$ から、時刻 t+h における 状態 $(\mathbf{x}_{n+1}, \mathbf{v}_{n+1})$ を計算する (time integration)
 - *h*:時間幅

最も単純な方法:explicit Euler

加速度を差分法で離散化:

$$\mathbf{M}\frac{\mathbf{v}_{n+1} - \mathbf{v}_n}{h} = \mathbf{f}_{\text{int}}(\mathbf{x}_n) + \mathbf{f}_{\text{ext}}$$

速度の更新

位置の更新

$$\mathbf{v}_{n+1} \leftarrow \mathbf{v}_n + h \, \mathbf{M}^{-1} \left(\mathbf{f}_{\text{int}}(\mathbf{x}_n) + \mathbf{f}_{\text{ext}} \right)$$

$$\mathbf{x}_{n+1} \leftarrow \mathbf{x}_n + h \mathbf{v}_{n+1}$$

- 利点:計算が簡単
- 欠点:overshooting
 - 時間幅を大きくすると、簡単に元の 振幅よりも遠い地点に到達する
 - → 時間経過とともにエネルギーが発散

使うべき手法:implicit Euler

Find $(\mathbf{x}_{n+1}, \mathbf{v}_{n+1})$ such that:

$$\begin{cases} \mathbf{v}_{n+1} = \mathbf{v}_n + h \, \mathbf{M}^{-1} \left(\mathbf{f}_{\text{int}} (\mathbf{x}_{n+1}) + \mathbf{f}_{\text{ext}} \right) \\ \mathbf{x}_{n+1} = \mathbf{x}_n + h \, \mathbf{v}_{n+1} \end{cases}$$

- 未知の移動先 \mathbf{x}_{n+1} における内力を使って \mathbf{v}_{n+1} を表す
- 利点: overshoot を回避できる
- ・難点:計算コストが高い(方程式を解く)

implicit Euler の中身

$$\mathbf{x}_{n+1} = \mathbf{x}_n + h \, \mathbf{v}_{n+1}$$

$$= \mathbf{x}_n + h \, \mathbf{v}_n + h^2 \mathbf{M}^{-1} (\mathbf{f}_{int}(\mathbf{x}_{n+1}) + \mathbf{f}_{ext})$$

$$= \mathbf{x}_n + h \, \mathbf{v}_n + h^2 \mathbf{M}^{-1} (-\nabla E(\mathbf{x}_{n+1}) + \mathbf{f}_{ext})$$

$$= \mathbf{x}_n + h \, \mathbf{v}_n + h^2 \mathbf{M}^{-1} (-\nabla E(\mathbf{x}_{n+1}) + \mathbf{f}_{ext})$$

未知数 \mathbf{x}_{n+1} を \mathbf{y} とおく

$$h^{2}\nabla E(\mathbf{y}) + \mathbf{M} \mathbf{y} - \mathbf{M}(\mathbf{x}_{n} + h \mathbf{v}_{n}) - h^{2}\mathbf{f}_{\text{ext}} = \mathbf{0}$$

$$\mathbf{F}(\mathbf{y})$$

• 関数 $\mathbf{F}: \mathbb{R}^{3N} \to \mathbb{R}^{3N}$ のルートを求める問題に帰着 \rightarrow Newton 法

$$\mathbf{y}^{(i+1)} \leftarrow \mathbf{y}^{(i)} - \left(\frac{d\mathbf{F}}{d\mathbf{y}}\right)^{-1} \mathbf{F}(\mathbf{y}^{(i)})$$

$$= \mathbf{y}^{(i)} - \left(h^2 \mathcal{H}_E(\mathbf{y}^{(i)}) + \mathbf{M}\right)^{-1} \mathbf{F}(\mathbf{y}^{(i)})$$
ポテンシャル関数 E の2階微分 (ヘッセ行列)

大規模線形方程式の係数行列が、反復毎に変わる→計算が大変!

バネ質量モデル vs 連続体モデル (FEM)

- ・微小要素の変形量の合計としてポテンシャルを定義する点は共通
 - いずれも implicit Euler が必要

物理シミュレーションに基づく 変形アニメーション

- 物理法則を忠実にモデル化する古典的なシミュレーション方法
 - バネ質点モデル
 - 有限要素法

- 物理法則から逸脱するが、見た目がリアルで計算コストの低い方法
 - Shape Matching (Position-Based Dynamics)

Shape Matching: CG 専用の物理アニメーション計算法

 Meshless deformations based on shape matching [Müller, Heidelberger, Techner, Gross, SIGGRAPH 2005]

特徴

- どんなに激しく変形しても絶対に発散せず、 必ず元の形状に戻る
- ・計算&実装が簡単
- ただし、物理モデルとしては解釈できない
- → CG 用途に最適

Explicit Euler との対比 (単一バネ質点系の場合)

Explicit Euler

$$v_{n+1} \leftarrow v_n + \frac{h \, k}{m} (l - x_n)$$
$$x_{n+1} \leftarrow x_n + h \, v_{n+1}$$

Shape Matching

$$v_{n+1} \leftarrow v_n + \frac{\alpha}{h}(l - x_n)$$
$$x_{n+1} \leftarrow x_n + h \ v_{n+1}$$

- $0 \le \alpha \le 1$ は Shape Matching に特有の「硬さ」を表すパラメタ
 - α = 0 の場合 → 速度が変化しない (バネが無限大に柔らかい)
 - α = 1 の場合 → バネが無限大に硬いのと同じ
 - → どんな場合でも系のエネルギーが発散しない ②
- 係数の単位に注目: α/h の単位は(時間) $^{-1}$ $\rightarrow \alpha$ は物理量ではない!
 - SMが物理ベースではなく幾何ベースと呼ばれるゆえん

Explicit Euler との対比 (複雑な形状の場合)

Explicit Euler

$$\mathbf{v}_{n+1} \leftarrow \mathbf{v}_n - h \, \mathbf{M}^{-1} \nabla E(\mathbf{x}_n)$$
$$\mathbf{x}_{n+1} \leftarrow \mathbf{x}_n + h \, \mathbf{v}_{n+1}$$

Goal position g

- ・変形前の初期形状を現在の 変形形状に最も良くマッチ するように剛体変換したもの
 - (モーメント行列の特異値分解)

Shape Matching

$$\mathbf{v}_{n+1} \leftarrow \mathbf{v}_n + \frac{\alpha}{h} (\mathbf{g}(\mathbf{x}_n) - \mathbf{x}_n)$$
$$\mathbf{x}_{n+1} \leftarrow \mathbf{x}_n + h \, \mathbf{v}_{n+1}$$

- 特長:計算が簡単・速い!
 - 頂点同士の接続情報 (バネ、メッシュなど) が不要 (meshless)
 - 大規模方程式を解かなくて良い

局所領域ごとの Shape Matching

・より複雑な変形を実現

重複する局所領域の集合として形状を表現

局所領域のサイズが「硬さ」を決める

FastLSM; fast lattice shape matching for robust real-time deformation [Rivers SIGGRAPH07]

同じ考え方を使った応用例

自律的に動く柔軟物体

変形の仕方を例示によって制御できる弾性体

Position-Based Dynamics (PBD)

- Shape Matching法 を含めた、幾何ベースのアニメーション計算の枠組み
- 入力:初期位置 \mathbf{x}_0 , 初期速度 \mathbf{v}_0
- フレーム毎の処理:

p	$= \mathbf{x}_n + h \mathbf{v}_n$	prediction
\mathbf{x}_{n+1}	$= modify(\mathbf{p})$	position correction
u	$= (\mathbf{x}_{n+1} - \mathbf{x}_n)/h$	velocity update
\mathbf{v}_{n+1}	$= modify(\mathbf{u})$	velocity correction

(衝突と摩擦の扱い等、全体的にちゃんと理解できていない)

PBD で利用できる Shape Matching 以外の様々な幾何制約

体積制約

布の伸び幅制約

連続体の歪み制約

紐の捻り制約

粒子の密度制約

Robust Real-Time Deformation of Incompressible Surface Meshes [Diziol SCA11]

Long Range Attachments - A Method to Simulate Inextensible Clothing in Computer Games [Kim SCA12]

Position Based Fluids [Macklin SIGGRAPH13]

Position-based Elastic Rods [Umetani SCA14]

Position-Based Simulation of Continuous Materials [Bender Comput&Graph14]

PBD の集大成:FLEX in PhysX

• NVIDIA が SDKを公開!

衝突判定

また別のやっかいな問題

[Zheng12]

- PBD でよく使う方法
 - ボクセル格子のどのセルに パーティクルが存在するか記録
 - 近傍セルのパーティクル同士 でのみ衝突判定

・最近発表された PBD 用の手法

Collision detection for deformable objects [Teschner CGF05]
Staggered Projections for Frictional Contact in Multibody Systems [Kaufman SIGGRAPHAsia08]
Asynchronous Contact Mechanics [Harmon SIGGRAPH09]
Energy-based Self-Collision Culling for Arbitrary Mesh Deformations [Zheng SIGGRAPH12]
Air Meshes for Robust Collision Handling [Muller SIGGRAPH15]

[Muller15]

参考情報

- サーベイ・チュートリアル等
 - A Survey on Position-Based Simulation Methods in Computer Graphics [Bender CGF14]
 - http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf
 - Position-Based Simulation Methods in Computer Graphics [Bender EG15Tutorial]
- ・ライブラリ、実装例等
 - https://code.google.com/p/opencloth/
 - http://shapeop.org/
 - http://matthias-mueller-fischer.ch/demos/matching2dSource.zip
 - https://bitbucket.org/yukikoyama
 - https://developer.nvidia.com/physx-flex
 - https://github.com/janbender/PositionBasedDynamics