epiworld

0.8.2

Generated by Doxygen 1.9.1

1 Example: 00-hello-world	1
2 Benchmarking	3
3 Contributor Code of Conduct	5
4 epiworld c++ template library	7
4.1 Main features	7
4.2 Algorithm	7
4.3 Hello world (C++)	8
4.4 Surveillance simulation	8
4.4.1 Preliminary results	9
4.4.2 Cases detected	10
5 General parameters	11
5.1 Compartmental Models	11
5.1.1 SIR Model	11
5.1.2 SEIR Model	12
5.2 Agent-Based Model Approach	12
5.2.1 Mathematical preliminaries	13
5.2.2 Simulation study	13
5.3 Comparing ABM with Compartmental Models	13
5.3.1 SIR	13
5.3.2 SEIR	14
5.3.3 Rates	14
6 MIT License	15
7 model1	17
8 Mixing probabilities in connected model	19
8.1 Case 1: No grouping	19
8.2 Case 2: Grouping	20
9 EPI Simulator	21
9.1 Disease dynamics	21
9.2 Network dynamics	21
9.3 Contagion dynamics	21
9.4 Time dynamics	21
9.5 Updating agent's status	22
9.5.1 Other parameters	22
10 Namespace Index	23
10.1 Namespace List	23
11 Hierarchical Index	25

11.1 Class Hierarchy	25
12 Class Index	27
12.1 Class List	27
13 File Index	31
13.1 File List	31
14 Namespace Documentation	33
14.1 sampler Namespace Reference	33
14.1.1 Detailed Description	33
14.1.2 Function Documentation	33
14.1.2.1 make_sample_virus_neighbors()	33
14.1.2.2 make_update_susceptible()	34
14.1.2.3 sample_virus_single()	34
15 Class Documentation	37
15.1 AdjList Class Reference	37
15.1.1 Constructor & Destructor Documentation	37
15.1.1.1 AdjList()	37
15.1.2 Member Function Documentation	38
15.1.2.1 read_edgelist()	38
15.2 Agent < TSeq > Class Template Reference	38
15.2.1 Detailed Description	41
15.2.2 Member Function Documentation	41
15.2.2.1 operator()()	41
15.2.2.2 swap_neighbors()	41
15.2.3 Friends And Related Function Documentation	42
15.2.3.1 default rm entity	42
15.3 AgentsSample < TSeq > Class Template Reference	42
15.3.1 Detailed Description	43
15.3.2 Constructor & Destructor Documentation	43
15.3.2.1 AgentsSample()	43
15.4 DataBase < TSeq > Class Template Reference	44
15.4.1 Detailed Description	45
15.4.2 Member Function Documentation	46
15.4.2.1 generation_time()	46
15.4.2.2 get_transmissions()	46
15.4.2.3 operator==() [1/2]	47
15.4.2.4 operator==() [2/2]	47
15.4.2.5 record_virus()	47
15.4.2.6 reproductive_number()	47
15.4.2.7 transition_probability()	48
15.5 Entities < TSeq > Class Template Reference	48

15.5.1 Detailed Description	49
15.6 Entities_const< TSeq > Class Template Reference	49
15.6.1 Detailed Description	50
15.7 Entity< TSeq > Class Template Reference	50
15.7.1 Constructor & Destructor Documentation	51
15.7.1.1 Entity()	51
15.7.2 Friends And Related Function Documentation	51
15.7.2.1 default_rm_entity	51
15.8 Event< TSeq > Struct Template Reference	52
15.8.1 Detailed Description	52
15.8.2 Constructor & Destructor Documentation	53
15.8.2.1 Event()	53
15.9 GlobalEvent < TSeq > Class Template Reference	54
15.9.1 Detailed Description	54
15.9.2 Constructor & Destructor Documentation	54
15.9.2.1 GlobalEvent()	54
15.10 LFMCMC< TData > Class Template Reference	55
15.10.1 Detailed Description	56
15.11 Model < TSeq > Class Template Reference	56
15.11.1 Detailed Description	65
15.11.2 Member Function Documentation	65
15.11.2.1 add_globalevent()	65
15.11.2.2 clone_ptr()	66
15.11.2.3 draw()	66
15.11.2.4 events_add()	66
15.11.2.5 events_run()	67
15.11.2.6 load_agents_entities_ties()	67
15.11.2.7 reset()	68
15.11.2.8 run_multiple()	68
15.11.2.9 set_agents_data()	68
15.11.2.10 set_name()	69
15.11.2.11 write_data()	69
15.11.3 Member Data Documentation	70
15.11.3.1 initial_states_fun	70
15.11.3.2 rbinomd	70
15.11.3.3 rexpd	70
15.11.3.4 rgammad	71
15.11.3.5 rgeomd	71
15.11.3.6 rlognormald	71
15.11.3.7 rnbinomd	71
15.11.3.8 rnormd	71
15.11.3.9 rpoissd	72

15.11.3.10 runifd	72
15.11.3.11 time_elapsed	72
15.12 ModelDiagram Class Reference	72
15.13 epiworld::epimodels::ModelDiffNet< TSeq > Class Template Reference	73
15.13.1 Detailed Description	74
15.14 ModelDiffNet< TSeq > Class Template Reference	74
15.14.1 Detailed Description	75
$15.15 \; epiworld:: epimodels:: Model Measles Quarantine < TSeq > Class \; Template \; Reference $	76
15.15.1 Detailed Description	77
15.15.2 Constructor & Destructor Documentation	78
15.15.2.1 ModelMeaslesQuarantine()	78
15.15.3 Member Function Documentation	79
15.15.3.1 quarantine_agents()	79
15.16 ModelMeaslesQuarantine < TSeq > Class Template Reference	79
15.16.1 Detailed Description	81
15.16.2 Constructor & Destructor Documentation	82
15.16.2.1 ModelMeaslesQuarantine()	82
15.16.3 Member Function Documentation	83
15.16.3.1 clone_ptr()	83
15.16.3.2 quarantine_agents()	83
15.16.3.3 reset()	84
15.17 epiworld::epimodels::ModelSEIR< TSeq > Class Template Reference	84
15.17.1 Detailed Description	85
15.17.2 Member Function Documentation	86
15.17.2.1 initial_states()	86
15.17.3 Member Data Documentation	86
15.17.3.1 update_exposed_seir	86
15.17.3.2 update_infected_seir	86
15.18 ModelSEIR< TSeq > Class Template Reference	87
15.18.1 Detailed Description	88
15.18.2 Member Function Documentation	88
15.18.2.1 initial_states()	88
15.18.3 Member Data Documentation	89
15.18.3.1 update_exposed_seir	89
15.18.3.2 update_infected_seir	89
15.19 epiworld::epimodels::ModelSEIRCONN< TSeq > Class Template Reference	90
15.19.1 Constructor & Destructor Documentation	91
15.19.1.1 ModelSEIRCONN()	91
15.19.2 Member Function Documentation	91
15.19.2.1 initial_states()	91
15.20 ModelSEIRCONN < TSeq > Class Template Reference	92
15.20.1 Constructor & Destructor Documentation	93

15.20.1.1 ModelSEIRCONN()	93
15.20.2 Member Function Documentation	94
15.20.2.1 initial_states()	94
15.21 epiworld::epimodels::ModelSEIRD< TSeq > Class Template Reference	94
15.21.1 Detailed Description	95
15.21.2 Constructor & Destructor Documentation	96
15.21.2.1 ModelSEIRD() [1/2]	96
15.21.2.2 ModelSEIRD() [2/2]	96
15.21.3 Member Data Documentation	97
15.21.3.1 update_exposed_seir	97
15.22 ModelSEIRD< TSeq > Class Template Reference	97
15.22.1 Detailed Description	98
15.22.2 Constructor & Destructor Documentation	99
15.22.2.1 ModelSEIRD() [1/2]	99
15.22.2.2 ModelSEIRD() [2/2]	99
15.22.3 Member Data Documentation	00
15.22.3.1 update_exposed_seir	00
15.23 epiworld::epimodels::ModelSEIRDCONN< TSeq > Class Template Reference	00
15.23.1 Constructor & Destructor Documentation	01
15.23.1.1 ModelSEIRDCONN()	02
15.23.2 Member Function Documentation	02
15.23.2.1 initial_states()	02
15.24 ModelSEIRDCONN< TSeq > Class Template Reference	03
15.24.1 Constructor & Destructor Documentation	04
15.24.1.1 ModelSEIRDCONN()	04
15.24.2 Member Function Documentation	04
15.24.2.1 initial_states()	04
15.25 epiworld::epimodels::ModelSEIRMixing< TSeq > Class Template Reference	05
15.25.1 Constructor & Destructor Documentation	06
15.25.1.1 ModelSEIRMixing() [1/2]	06
15.25.1.2 ModelSEIRMixing() [2/2]	07
15.25.2 Member Function Documentation	07
15.25.2.1 initial_states()	80
15.26 ModelSEIRMixing < TSeq > Class Template Reference	80
15.26.1 Constructor & Destructor Documentation	09
15.26.1.1 ModelSEIRMixing() [1/2]	09
15.26.1.2 ModelSEIRMixing() [2/2] 1	10
15.26.2 Member Function Documentation	10
15.26.2.1 initial_states()	111
15.27 epiworld::epimodels::ModelSEIRMixingQuarantine< TSeq > Class Template Reference 1	111
15.27.1 Constructor & Destructor Documentation	13
15.27.1.1 ModelSEIRMixingQuarantine() [1/2]	113

15.27.1.2 ModelSEIRMixingQuarantine() [2/2]	114
15.27.2 Member Function Documentation	114
15.27.2.1 initial_states()	114
15.28 epiworld::epimodels::ModelSIR< TSeq > Class Template Reference	115
15.28.1 Detailed Description	116
15.28.2 Member Function Documentation	116
15.28.2.1 initial_states()	116
15.29 ModelSIR< TSeq > Class Template Reference	117
15.29.1 Detailed Description	117
15.29.2 Member Function Documentation	118
15.29.2.1 initial_states()	118
15.30 epiworld::epimodels::ModelSIRCONN< TSeq > Class Template Reference	119
15.30.1 Constructor & Destructor Documentation	120
15.30.1.1 ModelSIRCONN()	120
15.30.2 Member Function Documentation	120
15.30.2.1 get_n_infected()	120
15.30.2.2 initial_states()	121
15.31 ModelSIRCONN< TSeq > Class Template Reference	121
15.31.1 Constructor & Destructor Documentation	122
15.31.1.1 ModelSIRCONN()	123
15.31.2 Member Function Documentation	123
15.31.2.1 get_n_infected()	123
15.31.2.2 initial_states()	123
15.32 epiworld::epimodels::ModelSIRD< TSeq > Class Template Reference	124
15.32.1 Detailed Description	125
15.32.2 Constructor & Destructor Documentation	125
15.32.2.1 ModelSIRD()	125
15.32.3 Member Function Documentation	126
15.32.3.1 initial_states()	126
15.33 ModelSIRD< TSeq > Class Template Reference	126
15.33.1 Detailed Description	127
15.33.2 Constructor & Destructor Documentation	127
15.33.2.1 ModelSIRD()	127
15.33.3 Member Function Documentation	128
15.33.3.1 initial_states()	128
15.34 epiworld::epimodels::ModelSIRDCONN< TSeq > Class Template Reference	129
15.34.1 Constructor & Destructor Documentation	130
15.34.1.1 ModelSIRDCONN()	130
15.35 ModelSIRDCONN< TSeq > Class Template Reference	131
	132
15.35.1.1 ModelSIRDCONN()	132
15.36 epiworld::epimodels::ModelSIRI ogit< TSeg > Class Template Reference	132

15.36.1 Detailed Description
15.36.2 Constructor & Destructor Documentation
15.36.2.1 ModelSIRLogit()
15.37 ModelSIRLogit < TSeq > Class Template Reference
15.37.1 Detailed Description
15.37.2 Constructor & Destructor Documentation
15.37.2.1 ModelSIRLogit()
15.38 epiworld::epimodels::ModelSIRMixing < TSeq > Class Template Reference
15.38.1 Constructor & Destructor Documentation
15.38.1.1 ModelSIRMixing() [1/2]
15.38.1.2 ModelSIRMixing() [2/2]
15.38.2 Member Function Documentation
15.38.2.1 initial_states()
15.39 ModelSIRMixing < TSeq > Class Template Reference
15.39.1 Constructor & Destructor Documentation
15.39.1.1 ModelSIRMixing() [1/2]
15.39.1.2 ModelSIRMixing() [2/2]
15.39.2 Member Function Documentation
15.39.2.1 initial_states()
15.40 epiworld::epimodels::ModelSIS < TSeq > Class Template Reference
15.40.1 Detailed Description
15.41 ModelSIS< TSeq > Class Template Reference
15.41.1 Detailed Description
15.42 epiworld::epimodels::ModelSISD< TSeq > Class Template Reference
15.42.1 Detailed Description
15.43 ModelSISD< TSeq > Class Template Reference
15.43.1 Detailed Description
15.44 epiworld::epimodels::ModelSURV < TSeq > Class Template Reference
15.45 ModelSURV < TSeq > Class Template Reference
15.46 Network< Nettype, Nodetype, Edgetype > Class Template Reference
15.47 PersonTools < TSeq > Class Template Reference
15.48 Progress Class Reference
15.48.1 Detailed Description
15.49 Queue < TSeq > Class Template Reference
15.49.1 Detailed Description
15.50 RandGraph Class Reference
15.51 SAMPLETYPE Class Reference
15.52 Tool < TSeq > Class Template Reference
15.52.1 Detailed Description
15.53 ToolFunctions < TSeq > Class Template Reference
15.53.1 Detailed Description
15.54 Tools < TSeq > Class Template Reference

15.55 Tools_const < TSeq > Class Template Reference	
15.56 UserData < TSeq > Class Template Reference	
15.56.1 Detailed Description	
15.56.2 Constructor & Destructor Documentation	161
15.56.2.1 UserData()	161
15.57 vecHasher < T > Struct Template Reference	161
15.57.1 Detailed Description	161
15.58 Virus < TSeq > Class Template Reference	162
15.58.1 Detailed Description	163
15.59 Viruses < TSeq > Class Template Reference	164
15.59.1 Detailed Description	164
15.60 Viruses_const< TSeq > Class Template Reference	165
15.60.1 Detailed Description	165
15.61 VirusFunctions < TSeq > Class Template Reference	165
16 File Documentation	167
16.1 include/epiworld/agent-meat-state.hpp File Reference	167
16.1.1 Detailed Description	168
Index	169

Example: 00-hello-world

Output from the program:

```
Running the model...
SIMULATION STUDY
Name of the model
Population size : 10000
Agents' data : (none)
Number of entities : 0
Days (duration) : 100 (of 100)
Number of viruses : 1
Last run elapsed t : 17.00ms
Last run speed : 56.33 million agents x day / second Rewiring : off
Rewiring Global events:
 (none)
Virus(es):
 - covid 19
Tool(s):
 - vaccine
Model parameters:
 (none)
Distribution of the population at time 100:
 - (0) Susceptible: 9950 -> 0
- (1) Exposed: 50 -> 0
- (2) Recovered: 0 -> 9399
- (3) Removed: 0 -> 601
Transition Probabilities:
- Susceptible 0.92 0.08 - - Exposed - 0.85 0.14 0.01 - Recovered - 1.00 - Removed - 1.00
 - Removed
```

Benchmarking

Here we keep a list of scenarios where we compare epiworld with other ABM simulation engines. Although the comparison is made at the speed level, we also list features of capabilities and main differences between the engines.

4 Benchmarking

Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory comments or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers who do not follow the Code of Conduct may be removed from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting one or more of the project maintainers.

This Code of Conduct is adapted from the Contributor Covenant (http://contributor-covenant.org), version 1.0.0, available at http://contributor-covenant.org/version/1/0/0/

epiworld c++ template library

4.1 Main features

This C++ template-header-only library provides a general framework for epidemiologic simulation. The main features of the library are:

- 1. Four key classes: Model, Person, Tool, and Virus.
- 2. The model features a social networks of Persons.
- 3. Persons can have multiple Tools as a defense system.
- 4. Tools can reduce contagion rate, transmissibility, death rates, and improve recovery rates.
- 5. Viruses can mutate (generating new variants).
- 6. Models can feature multiple states, e.g., HEALTHY, SUSCEPTIBLE, etc.
- 7. Models can have an arbitrary number of parameters.
- 8. **REALLY FAST** About 6.5 Million person/day simulations per second.

4.2 Algorithm

Setup

- · Create viruses.
- · Create tools (arbitrary).
- · Set model parameters (arbitrary).
- Create global events (e.g., surveillance).
- · Set up the population: small world network (default).
- Set up rewiring (optional).
- Set states (arbitrary number of them).

Run

- 1. Distribute the tool(s) and virus(es)
- 2. For each t in 1 -> Duration:
 - Update state for susceptible/infected/removed(?)
 - Mutate virus(es) (each individual)
 - Run Global events (e.g., surveillance)
 - · Run rewiring algorithm

Along update:

- · Contagion events are applied recorded.
- · New variants are recorded.
- · Optional user data is recorded.

4.3 Hello world (C++)

```
#include "include/epiworld/epiworld.hpp"
int main()
  // Creating a virus
 epiworld::Virus<> covid19("covid 19", .01, true);
 covid19.set_infectiousness(.8);
  // Creating a tool
 epiworld::Tool<> vax("vaccine", .5, true);
 vax.set_contagion_reduction(.95);
// Creating a model
  epiworld::Model<> model;
  // Adding the tool and virus
 model.add_virus(covid19);
 model.add_tool(vax);
  // Generating a random pop
 model.population_from_adjlist(
   epiworld::rgraph_smallworld(1000, 5, .2)
 // Initializing setting days and seed
model.init(60, 123123);
 // Running the model
model.run();
 model.print();
 return;
```

4.4 Surveillance simulation

- Incubation time of the disease \sim Gamma (3, 1)
- Duration of the disease \sim Gamma (12, 1)
- · Probability of becoming symptomatic: 0.9
- Prob. of transmission: 1.0.
- · Vaccinated population: 25%
- · Vaccine efficacy: .9.
- · Vaccine reduction on transmission: 0.5.
- Surveillance program of x% of the population at random.
- · Individuals who test positive become isolated.

4.4.1 Preliminary results

```
# With low surveillance
pop_size <- 20e3
pop_seed <- pop_size * .01
s_levels <- c(0.0001, 0.002)
system(sprintf("./07-surveillance.o %i %i 100 %.04f 2>&1", pop_seed, pop_size, s_levels[1]), intern = TRUE)
 cat(sep = "\n")
## Running the model...
##
##
##
## SIMULATION STUDY
##
                   : 20000
## Population size
## Days (duration)
                  : 200 (of 200)
## Number of variants : 1
## Last run elapsed t : 505.00ms
## Rewiring
                    : off
##
## Virus(es):
## - Covid19 (baseline prevalence: 100 seeds)
## Tool(s):
##
   - Vaccine (baseline prevalence: 25.00%)
##
## Model parameters:
                           : 12.0000
## - Infect period
## - Latent period
## - Latent period : 3.0000
## - Prob of symptoms : 0.7000
## - Prob of transmission : 1.0000
## - Prob. death
                           : 0.0010
## - Prob. reinfect
                          : 0.1000
## - Surveilance prob. : 1.0e-04
## - Vax efficacy : 0.9000
## - Vax redux transmision : 0.5000
##
## Distribution of the population at time 200:
## - Total susceptible (S) : 19900 -> 2106
## - Total recovered (S)
                                            0 -> 17369
## - Total latent (I)
                                          100 -> 109
## - Total symptomatic (I)
                                           0 -> 155
                                           0 -> 2
## - Total symptomatic isolated (I) :
##
   - Total asymptomatic (I)
  - Total asymptomatic isolated (I) :
                                           0 -> 0
##
## - Total removed (R)
                                           0 -> 187
##
## (S): Susceptible, (I): Infected, (R): Recovered
## _
hist1 <- read.csv("07-surveillance_hist.txt", sep = " ")</pre>
surv1 <- read.csv("07-surveillance_user_data.txt", sep = " ")</pre>
# With high surveillance
system(sprintf("./07-surveillance.o %i %i 100 %.04f 2>&1", pop_seed, pop_size, s_levels[2]), intern = TRUE)
 cat(sep = "\n")
## Running the model...
##
##
##
## SIMULATION STUDY
## Population size : 20000 . 200 (duration)
## Days (duration)
                    : 200 (of 200)
## Number of variants : 1
## Last run elapsed t : 530.00ms
## Rewiring
##
## Virus(es):
```

```
## - Covid19 (baseline prevalence: 100 seeds)
## Tool(s):
## - Vaccine (baseline prevalence: 25.00%)
##
## Model parameters:
## - Infect period
                           : 12.0000
                          : 3.0000
##
   - Latent period
## - Prob of symptoms
                            : 0.7000
  - Prob of transmission : 1.0000
                           : 0.0010
   - Prob. death
##
   - Prob. reinfect
##
                            : 0.1000
  - Surveilance prob.
                           : 0.0020
## - Vax efficacy
                          : 0.9000
##
   - Vax redux transmision : 0.5000
##
## Distribution of the population at time 200:
  - Total susceptible (S)
##
                                       : 19900 -> 2125
## - Total recovered (S)
                                              0 -> 17325
  - Total latent (I)
                                             100 -> 109
##
##
   - Total symptomatic (I)
                                              0 -> 155
## - Total symptomatic isolated (I)
                                               0 -> 8
                                      :
## - Total asymptomatic (I)
                                              0 -> 76
##
   - Total asymptomatic isolated (I) :
                                               0 -> 1
  - Total removed (R)
                                               0 -> 201
##
## (S): Susceptible, (I): Infected, (R): Recovered
## _
hist2 <- read.csv("07-surveillance_hist.txt", sep = " ")</pre>
surv2 <- read.csv("07-surveillance_user_data.txt", sep = " ")</pre>
hist_comb <- rbind(
 cbind(sim = as.character(s_levels[1]), hist1),
 cbind(sim = as.character(s_levels[2]), hist2)
qqplot(hist\_comb, aes(x = date, y = counts + 1, colour = state, linetype=sim)) +
 geom_line() +
 # scale_y_log10() +
labs(y = "Counts (log)")
```

4.4.2 Cases detected

General parameters

The following are parameters used for both ABM and Compartmental models.

```
EPI_BETA <- 0.75

EPI_GAMMA <- 0.33

EPI_LATENCY <- 1/0.33

EPI_N <- 10000

EPI_0 <- 0.01

EPI_NDAYS <- 50

Sys.setenv( # nolint

EPI_BETA = EPI_BETA,

EPI_GAMMA = EPI_GAMMA,

EPI_LATENCY = EPI_LATENCY,

EPI_N = EPI_N,

EPI_O = EPI_O,

EPI_NDAYS = EPI_NDAYS
```

5.1 Compartmental Models

5.1.1 SIR Model

```
library(deSolve)
library(ggplot2)
library(data.table)
# Code from
# Chapter 2: SIR
# Book "Epidemics: Models and Data using R."
# By: Ottar N. Bjørnstad
sirmod <- function(t, y, parms) {
    # Pull state variables from the vector y</pre>
       S = y[1]
       R = y[3]
       # Pull parameter values from parms vector
       beta = parms["beta"]
mu = parms["mu"]
       gamma = parms["gamma"]
N = parms["N"]
       # Define equations
       dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R
       res = c(dS, dI, dR)
       # Return list of gradients
       list(res)
times <- seq(0, EPI_NDAYS, by = 1)

parms <- c(mu = 0, N = EPI_N, beta = EPI_BETA, gamma = EPI_GAMMA)

start <- c(S = EPI_N * (1 - EPI_0), I = EPI_N * EPI_0, R = 0)

out <- ode(y = start, times = times, func = sirmod, parms= parms)
out <- as.data.frame(out)
out <- rbind(
```

12 General parameters

with (out, data.table(date = time, state = "Susceptible", counts = S)),

```
with (out, data.table(date = time, state = "Infected", counts = I)), with (out, data.table(date = time, state = "Recovered", counts = R))
Now we visualize the model
ggplot(out, aes(x = date, y = counts)) +
    geom_line(aes(colour = state)) +
      labs(title = "Compartmental SIR")
5.1.2 SEIR Model
# Code adapted from
  Chapter 2: SIR
# Book "Epidemics: Models and Data using R"
# By: Ottar N. Bjørnstad
seirmod <- function(t, y, parms) {
    # Pull state variables from y vector</pre>
      S = y[1]
     E = y[2]
      I = y[3]
      R = y[4]
      # Pull parameter values from parms vector
     beta = parms["beta"]
mu = parms["mu"]
      alpha = parms["alpha"
      gamma = parms["gamma"]
             = parms["N"]
      # Define equations
      dS = mu * (N - S) - beta * S * I/N - mu * S
          = beta * S * I/N - (mu + alpha) * E
      dI = alpha * E - (mu + gamma) * I
dR = gamma * I - mu * R
      res = c(dS, dE, dI, dR)
      # Return list of gradients
# Initial parameters
parms <- c(

mu = 0, N = EPI_N, beta = EPI_BETA,
      alpha = 1/EPI_LATENCY, gamma = EPI_GAMMA
start <- c(S = EPI_N * (1 - EPI_0), E = EPI_N * EPI_0, I = 0, R = 0)
out_seir <- ode(y = start, times = times, func = seirmod, parms = parms)</pre>
out_seir <- as.data.frame(out_seir)</pre>
out_seir <- rbind(
     with(out_seir, data.table(date = time, state = "Susceptible", counts = S)),
     with (out_seir, data.table(date = time, state = "Exposed", counts = E)), with (out_seir, data.table(date = time, state = "Infected", counts = I)), with (out_seir, data.table(date = time, state = "Recovered", counts = I)), with (out_seir, data.table(date = time, state = "Recovered", counts = R))
```

Now we visualize the model

```
ggplot(out_seir, aes(x = date, y = counts)) +
    geom_line(aes(colour = state)) +
    labs(title = "Compartmental SEIR")
```

5.2 Agent-Based Model Approach

Calculation of the expected number of days in state \$a\$ when prob of changing state equals \$\alpha\$ is \$1/\alpha\$

```
set.seed(712)
a <- .3
R <- matrix(runif(2e5 * 50), ncol = 50)
dat <- apply(R, 1, \(x) {
        which.max(x < a)
})
mean(dat) - 1 / a</pre>
[1] -0.01049333
```

5.2.1 Mathematical preliminaries

That agent \$i\$ becomes infected can be computed as follows:

At the same time, the probability of not becoming infected equals to the probability of no infected agent transmitting the infection. The probability that agent \$i\\$ infects \$i\\$ equals

In this case, \$\beta\$ is parametrized such that its values are within \$(0,1)\$. Since transmission from the \$I\$ infected agents happens independently, we finally have the following:

With the above equation, we can now calculate the change in the number of susceptible agents. In this case, it equals the expected number of new infections:

With the same parametrization in the canonical SIR model (Kermack and McKendrick), the instantaneous change in the number of susceptible agents equals $\frac{s}{d} = -S \beta$ is. Given \$S\$ and \$I\$, we can show that, as $\frac{s}{d} = -S \beta$ to the same number. Formally:

The same can be shown for the change in the number recovered.

5.2.2 Simulation study

5.3 Comparing ABM with Compartmental Models

To this end, we will compare the results of the first run of the Compartmental model with 100 runs of the ABM, compute the confidence interval, and see how likely is the compartmental model to fall within the trajectory of the ABM simulation.

5.3.1 SIR

```
system("./09-sir-connected.o -n $EPI N -b $EPI BETA -d $EPI NDAYS -p $EPI 0 -r $EPI GAMMA -i 1.0 -s555599 -e
        100")
library(ggplot2)
library(data.table)
epiworld <- data.table::fread("09-sir-connected-experiments.csv")</pre>
epiworld <- epiworld[, .(
    min = quantile(counts, probs = .025),
    mean = mean(counts),
    max = quantile(counts, probs = .975)), by = .(date, state)]
# Merging Compartmental
epiworld <- merge(
     epiworld,
    out[, .(date = date, state = state, compartmental = counts)], by = c("date", "state")
setorder(epiworld, state, date)
ggplot(epiworld, aes(x = date, y = mean)) +
     geom_ribbon(aes(ymin = min, ymax = max, colour = state), alpha = 0.1) +
     \texttt{geom\_line}(\texttt{aes}\,(\texttt{x}\,=\,\texttt{date},\,\,\texttt{y}\,=\,\texttt{compartmental},\,\,\texttt{colour}\,=\,\texttt{sprintf}(\texttt{"\$s}\,\,\,(\texttt{compt})\,\texttt{"},\,\,\texttt{state})))
```

It seems that, although both yield the same equilibria, compartmental models reach the highest point of the simulation earlier. This makes sense as within a single day of the ABM simulation, compartmental models have more events taking place. Nonetheless, as predicted, as \$\beta\downarrow 0\\$, the differences become lesser. Furthermore, we could use the fact that the transition rates are known to compute an adjustment.

14 General parameters

5.3.2 SEIR

5.3.3 Rates

```
S <- 1000
rate_comp <- function(I,B) S * B * I
rate_abm <- function(I,B) S * (1 - (1 - B)^I)
op <- par(mfrow = c(3, 2))
for (i in c(1, 10, 100)) {
        curve(rate_comp(i, x), from = .01, to = 0.05)
        curve(rate_abm(i, x), from = .01, to = 0.05, add = FALSE, lty = 2)
}
par(op)</pre>
```

MIT License

Copyright (c) 2021 George G. Vega Yon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

16 MIT License

model1

The dynamics of the simulation process are:

- 1. Discrete Markov process.
- 2. The simulation has the following parameters:
 - a. New variant emergence at rate X. b. For each variant k:
 - Unvaccinated individuals become sick rate C(k),
 - Mortality rate D(k),
 - Recovery rate H(k),
 - Vaccines have an efficaccy rate $\mathbb{E}\left(v,k\right)$ and pseudo vaccines (recovered) have efficacy rate $\mathbb{E}\left(r,k\right)$ $< \mathbb{E}\left(v,k\right)$. In general, the probability of i acquiring the disease k from j will be equal to

```
``` P(i gets the disease from j | their states) = C(k) * (1 - E(i,k)) * (1 - E(j,k)) ```
```

where (i,j) in (u,v,r). Efficacy rate for unvaccinated is zero.

- Vaccinated individuals have a reduced mortality rate D(k,v) > D(k), and recovered individuals D(k,r) in (D(k,v), D(k)]
- Vaccinated individuals have an increased recovery rate H (k, v) > H (k), whereas recovered's rate H (k, r) in [H(k), H(k, v)).

The sum of mortality and recovery rates is less than one since the difference represents no change.

- c. Each country vaccinates citizens at rate V function of A (availability) and B (citizens' acceptance rate.) d. In each country i, the entire population N(i) distributes between the following states:
  - Healthy unvaccinated (N (i,t,u)),
  - Healthy vaccinated ( $\mathbb{N}(i,t,v)$ ),
  - Deceased (N(i,t,d)),
  - Recovered (N(i,t,r)),
  - Unvaccinated and sick with variant (N (i,t,s,k|u)) k., and
  - Vaccinated and sick with variant (N (i,t,s,k|v)) k .

```
Total sick are N(i,t,k,s) = sum(g in \{u,v\}) N(i,t,k,s|g)
```

Globally, we keep track of the prevalence of new variants. Variants can disappear if no more individuals port the variant, i.e., the prevalence rate P(k,t) = sum(i) N(i,s,k) equals zero.

d. Vaccines are manufactured at each country at rates M(i) and uniformly shared with other countries at rate S(i). c. Population flows between each country pair (i,j) at a rate F(i,j). Flows between countries do not change Population and are symmetric.

18 model1

- 3. The simulation process is as follows:
  - (a) Countries are initialized with a total population N(i).
  - (b) Variant zero initializes at a random location i, with an initial prevalence P(k,t) = N(i,t,k).
  - (c) For time t in (0,T) do:
    - a. Unvaccinated individuals can become sick of variant  ${\bf k}$  with probability:
    - $\begin{tabular}{ll} \begin{tabular}{ll} \be$
    - b. Vaccinated individuals can become sick of variant k with probability:  $\Pr(v->s|i,t,k,v) \sim \Pr(h->s|i,t,k) * (1 E(v,k))$ .
    - b. Recovered individuals can become sick of variant k with probability:  $\Pr(v->s|i,t,k,r) \sim \Pr(h->s|i,t,k) * (1 E(r,k))$ .
    - c. Sick individuals with variant k die with probability D(k) or recover with probability H(k), otherwise they stay infected; with the rates depending on their vaccination status v or n.
    - d. Unvaccinated individuals vaccinate in country <code>i</code> with probability P (u->v)  $\sim$  V(A(i,t), B(i)).
    - e. The country vaccine supply changes.

# Mixing probabilities in connected model

George G. Vega Yon, Ph.D. 2024-04-25

### 8.1 Case 1: No grouping

We will look into the probability of drawing infected individuals to simplify the algorithm. There are \$1\$ infected individuals at any time in the simulation; thus, instead of drawing from \$Bern(c/N, N)\$, we will be drawing from \$ $\leftarrow$  Bern(c/N, I)\$. The next step is to check which infected individuals should be drawn. Let's compare the distributions using the hypergeometric as an example:

```
set.seed(132)
nsims <- 1e4
N <- 400
rate <- 5
p <- rate/N
I <- 10
sim_complex <- parallel::mclapply(1:nsims, \(i) {</pre>
 nsamples <- rbinom(N, N, p)
sum(rbinom(N, size = nsamples, prob = I/N) > 0)
}, mc.cores = 4L) |> unlist()
sim_simple <- parallel::mclapply(1:nsims, \(i) {</pre>
sum(rbinom(N, I, p) > 0)
}, mc.cores = 4L) |> unlist()
op <- par(mfrow = c(1,2))
MASS::truehist(sim_complex)
MASS::truehist(sim_simple)
par(op)
quantile(sim_complex)
 0% 25% 50% 75% 100%
 27 43 47 51
quantile(sim_simple)
 0% 25% 50% 75% 100%
 23 43 47 51 71
```

These two approaches are equivalent, but the second one is more efficient from the computational perspective.

plotter(sim\_complex, sim\_simple)

set.seed(123133)

### 8.2 Case 2: Grouping

This explores the case when we have mixing across groups. The question is if we can replicate the effect at the group level.

```
ngroups <- 3
mixing <- matrix(
 c(0.1, 0.2, 0.3, 0.2, 0.1, 0.2, 0.3, 0.2, 0.1),
 nrow = ngroups,
 ncol = ngroups
mixing <- mixing/rowSums(mixing)</pre>
mixing
 [,1]
 [,2]
[1,] 0.1666667 0.3333333 0.5000000
[2,] 0.4000000 0.2000000 0.4000000
[3,] 0.5000000 0.3333333 0.1666667
N <- 500
sizes <- c(100, 150, 250) rate <- 5
p <- rate/N
I <- c(10, 30, 20)
ids <- rep.int(1:ngroups, times = sizes)</pre>
nsims <- 1e4
sim_complex <- parallel::mclapply(1:nsims, \(i) {</pre>
 # Sampling group first
 # How many each individual will sample from the groups
 ans <- rbinom(
 n = N, size = sizes[g], prob = mixing[ids,][,g] * p
) |> sum()
 # Sampling with replacement rbinom(ans, size = 1, prob = I[g]/sizes[g]) |> sum()
 }) |> sum()
, mc.cores = 4L) > unlist()
Using the alternative method in which we directly weight the probabilities:
sim_simple <- parallel::mclapply(1:nsims, \(i) {
 # Sampling group first</pre>
 sapply(1:ngroups, \(g) {
 rbinom(
 n = N, size = I[g], prob = mixing[cbind(ids,g)] * p
) |> sum()
}) |> sum()
}, mc.cores = 4L) |> unlist()
op <- par(mfrow = c(1,2))</pre>
MASS::truehist(sim_complex)
MASS::truehist(sim_simple)
par(op)
quantile(sim_complex)
 0% 25% 50% 75% 100%
 94 101 131
 88
quantile(sim_simple)
 0% 25% 50% 75% 100%
 58 87 94 101 135
plotter(sim_complex, sim_simple)
```

## **EPI Simulator**

### 9.1 Disease dynamics

Diseases continuously evolve in time. Changes in their genetic sequence make them more or less resistant to the particular version of the vaccine. Mutations also affect the transmissibility level and mortality rate of the disease. Using this approach allows making vaccination efficacy a function of compatibility between the variant and the vaccine.

When an individual becomes infected, the disease accumulates mutations in the new host. Ultimately, there is no single version of the disease present in the model, but rather an infinite number of them, each slightly different from the other.

### 9.2 Network dynamics

We can assume that the Population is organized in fully connected blocks for the first version of the model. Block sizes and the number of connections between blocks are Poisson random variables. Individuals interact with all the members of their blocks, and bridging individuals allow the disease to move across blocks.

### 9.3 Contagion dynamics

The transmission of the disease will be governed by the number of vaccinated, infected, and recovered within each block. Transmission between blocks will be treated in the same way, although individuals bridging the block will only interact with others within the block and their direct connections across the blocks.

### 9.4 Time dynamics

Time dynamics has two components, how biology evolves and how agents react.

The model develops as a continuous-time Markov process. Each block of individuals takes action at rates  $\mathbb{L}\left(\frac{1}{N}\right)$  function of the local number of infections. This way, if

22 EPI Simulator

### 9.5 Updating agent's status

Like most other components, updating agents' states can be personalized. A naive approach allows agents to get infected with a single virus or stay as-is. The probability of this event is conditional on acquiring at most one virus. Since these are independent events, the conditional probability is computed as follows:

Where

```
P(only variant k) = P(k) * Prod(m!=v) (1 - P(m))

P(at most 1) = P(None) + Sum(v in variants) P(v) * Prod(m != v) (1 - P(m))

P(None) = Prod(v in variants) (1 - P(v))
```

Furthermore, the (Variant, Person) pairs are treated independently.

#### 9.5.1 Other parameters

- · Who did you get the infection from.
- · Omicron is 1.5 more infectious than delta.
- · Surveillance:
  - Pull people to be tested at random.
  - Or at symptoms.
  - A mix of the two.
- Define a class for passing extra functions and datasets, for example, testing surveillance.
- · Exposed people become infectious after k days.
- Network changesthe can be a function of an ERGM. Apply K steps throughout time.
- · Add progress bar.

# Namespace Index

## 10.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

sampler			

24 Namespace Index

# **Hierarchical Index**

## 11.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AdjList
Agent < TSeq >
Agent < EPI_DEFAULT_TSEQ >
AgentsSample < TSeq >
DataBase < TSeq >
Entities < TSeq >
Entities_const < TSeq >
Entity < TSeq >
Entity < EPI_DEFAULT_TSEQ >
Event < TSeq >
GlobalEvent < TSeq >
LFMCMC< TData >
epiworld::Model
ModelDiffNet< TSeq >
ModelSEIR < TSeq >
ModelSEIRCONN < TSeq >
ModelSEIRD< TSeq >
ModelSEIRDCONN < TSeq >
ModelSEIRMixing < TSeq >
ModelSIR < TSeq >
ModelSIRCONN< TSeq >
ModelSIRD< TSeq >
ModelSIRDCONN < TSeq >
ModelSIRLogit < TSeq >
ModelSIRMixing < TSeq >
ModelSIS< TSeq >
ModelSISD< TSeq >
ModelSURV < TSeq >
epiworld::epimodels::ModelDiffNet< TSeq >
epiworld::epimodels::ModelMeaslesQuarantine < TSeq >
epiworld::epimodels::ModelSEIR< TSeq >
epiworld::epimodels::ModelSEIRCONN < TSeq >
epiworld::epimodels::ModelSEIRD< TSeq >
epiworld::epimodels::ModelSEIRDCONN< TSeq >
epiworld::epimodels::ModelSEIRMixing< TSeq >

26 Hierarchical Index

epiworld::epimodels::ModelSEIRMixingQuarantine< TSeq >
epiworld::epimodels::ModelSIR < TSeq >
epiworld::epimodels::ModelSIRCONN< TSeq >
epiworld::epimodels::ModelSIRD< TSeq >
epiworld::epimodels::ModelSIRDCONN < TSeq >
epiworld::epimodels::ModelSIRLogit< TSeq >
epiworld::epimodels::ModelSIRMixing< TSeq >
epiworld::epimodels::ModelSIS< TSeq >
epiworld::epimodels::ModelSISD< TSeq >
epiworld::epimodels::ModelSURV< TSeq >
Model < TSeq >
Model < EPI_DEFAULT_TSEQ >
ModelMeaslesQuarantine < TSeq >
ModelDiagram
Network< Nettype, Nodetype, Edgetype >
PersonTools < TSeq >
Progress
Queue < TSeq >
RandGraph
SAMPLETYPE
Tool < TSeq >
ToolFunctions < TSeq >
Tools < TSeq >
Tools_const < TSeq >
UserData < TSeq >
vecHasher< T >
Virus < TSeq >
Viruses < TSeq >
Viruses_const < TSeq >
VirusFunctions < TSeq >

# **Chapter 12**

# **Class Index**

## 12.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AdjList	37
Agent < TSeq >	
Agent (agents)	38
AgentsSample < TSeq >	
Sample of agents	42
DataBase < TSeq >	
Statistical data about the process	44
Entities < TSeq >	
Set of Entities (useful for building iterators)	48
Entities_const< TSeq >	
Set of Entities (const) (useful for iterators)	49
Entity < TSeq >	50
Event< TSeq >	
Event data for update an agent	52
GlobalEvent< TSeq >	
Template for a Global Event	54
LFMCMC< TData >	
Likelihood-Free Markov Chain Monte Carlo	55
Model < TSeq >	
Core class of epiworld	56
ModelDiagram	72
epiworld::epimodels::ModelDiffNet< TSeq >	
Template for a Network Diffusion Model	73
ModelDiffNet< TSeq >	
Template for a Network Diffusion Model	74
epiworld::epimodels::ModelMeaslesQuarantine< TSeq >	
Template for a Measles model with quarantine	76
ModelMeaslesQuarantine < TSeq >	
Template for a Measles model with quarantine	79
epiworld::epimodels::ModelSEIR< TSeq >	
Template for a Susceptible-Exposed-Infected-Removed (SEIR) model	84
ModelSEIR < TSeq >	
Template for a Susceptible-Exposed-Infected-Removed (SEIR) model	87
${\sf epiworld::epimodels::ModelSEIRCONN}{<}  {\sf TSeq} >  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots $	90
${\sf ModelSEIRCONN}{<}{\sf TSeq}{>}\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots$	92

28 Class Index

epiworld::epimodels::ModelSEIRD< TSeq >	
Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model	94
ModelSEIRD < TSeq >	
Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model	97
${\sf epiworld::epimodels::ModelSEIRDCONN} < {\sf TSeq} > \ \dots \$	100
ModelSEIRDCONN< TSeq >	103
epiworld::epimodels::ModelSEIRMixing< TSeq >	105
ModelSEIRMixing < TSeq >	108
$epiworld:: epimodels:: Model SEIR Mixing Quarantine < TSeq > \dots $	111
epiworld::epimodels::ModelSIR< TSeq >	
Template for a Susceptible-Infected-Removed (SIR) model	115
ModelSIR< TSeq >	
Template for a Susceptible-Infected-Removed (SIR) model	
epiworld::epimodels::ModelSIRCONN< TSeq >	119
ModelSIRCONN< TSeq >	121
epiworld::epimodels::ModelSIRD< TSeq >	
Template for a Susceptible-Infected-Removed-Deceased (SIRD) model	124
ModelSIRD< TSeq >	
Template for a Susceptible-Infected-Removed-Deceased (SIRD) model	126
epiworld::epimodels::ModelSIRDCONN< TSeq >	129
ModelSIRDCONN < TSeq >	131
epiworld::epimodels::ModelSIRLogit< TSeq >	
Template for a Susceptible-Infected-Removed (SIR) model	132
ModelSIRLogit< TSeq >	
Template for a Susceptible-Infected-Removed (SIR) model	135
epiworld::epimodels::ModelSIRMixing< TSeq >	138
ModelSIRMixing < TSeq >	141
epiworld::epimodels::ModelSIS< TSeq >	
Template for a Susceptible-Infected-Susceptible (SIS) model	143
ModelSIS< TSeq >	
Template for a Susceptible-Infected-Susceptible (SIS) model	145
epiworld::epimodels::ModelSISD< TSeq >	
Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model	146
ModelSISD< TSeq >	
Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model	148
epiworld::epimodels::ModelSURV< TSeq >	149
ModelSURV < TSeq >	151
Network< Nettype, Nodetype, Edgetype >	153
PersonTools < TSeq >	154
Progress	
A simple progress bar	154
Queue < TSeq >	
Controls which agents are verified at each step	154
RandGraph	155
SAMPLETYPE	156
Tool< TSeq >	
Tools for defending the agent against the virus	156
ToolFunctions < TSeq >	
Helper class to store the functions avoiding multiple shared pointers (we have only one for the	
four of these)	157
Tools< TSeq >	
Set of tools (useful for building iterators)	158
Tools const< TSeq >	
Set of Tools (const) (useful for iterators)	159
UserData < TSeq >	
Personalized data by the user	160
vecHasher< T >	
Vector hasher	161

12.1 Class List

/irus< TSeq >	
Virus	 162
/iruses< TSeq >	
Set of viruses (useful for building iterators)	 164
/iruses_const< TSeq >	
Set of Viruses (const) (useful for iterators)	 165
/irusFunctions< TSeg >	 165

30 Class Index

# **Chapter 13**

# File Index

## 13.1 File List

Here is a list of all documented files with brief descriptions:

epiworld.hpp
include/epiworld/adjlist-bones.hpp??
include/epiworld/adjlist-meat.hpp
include/epiworld/agent-bones.hpp
include/epiworld/agent-events-meat.hpp
include/epiworld/agent-meat-state.hpp
Sampling functions are getting big, so we keep them in a separate file
include/epiworld/agent-meat-virus-sampling.hpp
include/epiworld/agent-meat.hpp??
include/epiworld/agentssample-bones.hpp
include/epiworld/config.hpp
include/epiworld/database-bones.hpp
include/epiworld/database-meat.hpp
include/epiworld/entities-bones.hpp
include/epiworld/entity-bones.hpp
include/epiworld/entity-distribute-meat.hpp??
include/epiworld/entity-meat.hpp??
include/epiworld/epiworld-macros.hpp
include/epiworld/epiworld.hpp
include/epiworld/globalevent-bones.hpp
include/epiworld/globalevent-meat.hpp
include/epiworld/misc.hpp
include/epiworld/model-bones.hpp??
include/epiworld/model-meat-print.hpp
include/epiworld/model-meat.hpp
include/epiworld/modeldiagram-bones.hpp
include/epiworld/modeldiagram-meat.hpp
include/epiworld/ <b>network-bones.hpp</b>
include/epiworld/ <b>progress.hpp</b>
include/epiworld/queue-bones.hpp??
include/epiworld/randgraph.hpp
include/epiworld/random_graph.hpp??
include/epiworld/seq_processing.hpp
include/epiworld/tool-bones.hpp
include/epiworld/tool-distribute-meat.hpp

32 File Index

include/epiworld/tool-meat.hpp??
include/epiworld/tools-bones.hpp
include/epiworld/ <b>userdata-bones.hpp</b>
include/epiworld/userdata-meat.hpp
include/epiworld/virus-bones.hpp
include/epiworld/virus-distribute-meat.hpp
include/epiworld/virus-meat.hpp
include/epiworld/viruses-bones.hpp
include/epiworld/math/distributions.hpp ??
include/epiworld/math/lfmcmc.hpp???
include/epiworld/math/lfmcmc/lfmcmc-bones.hpp??
include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp
include/epiworld/math/lfmcmc/lfmcmc-meat.hpp
include/epiworld/models/diffnet.hpp
include/epiworld/models/globalevents.hpp
include/epiworld/models/init-functions.hpp
include/epiworld/models/measlesquarantine.hpp
include/epiworld/models/models.hpp??
include/epiworld/models/seir.hpp ??
include/epiworld/models/seirconnected.hpp??
include/epiworld/models/seird.hpp
include/epiworld/models/seirdconnected.hpp
include/epiworld/models/seirmixing.hpp ??
include/epiworld/models/sir.hpp???
include/epiworld/models/sirconnected.hpp??
include/epiworld/models/sird.hpp ??
include/epiworld/models/sirdconnected.hpp??
include/epiworld/models/sirlogit.hpp ??
include/epiworld/models/sirmixing.hpp??
include/epiworld/models/sis.hpp
include/epiworld/models/sisd.hpp ??
include/epiworld/models/surveillance.hpp
tests/tests.hpp

# Chapter 14

# **Namespace Documentation**

## 14.1 sampler Namespace Reference

Functions for sampling viruses.

## **Functions**

```
 template<typename TSeq = EPI_DEFAULT_TSEQ>
 std::function< void(Agent< TSeq > *, Model< TSeq > *)> make_update_susceptible (std::vector<
 epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

template<typename TSeq = EPI\_DEFAULT\_TSEQ>
 std::function< Virus< TSeq > \*(Agent< TSeq > \*, Model< TSeq > \*)> make\_sample\_virus\_neighbors
 (std::vector< epiworld\_fast\_uint > exclude={})

Make a function to sample from neighbors.

Sample from neighbors pool of viruses (at most one)

template<typename TSeq = EPI\_DEFAULT\_TSEQ>
 Virus< TSeq > \* sample\_virus\_single (Agent< TSeq > \*p, Model< TSeq > \*m)

## 14.1.1 Detailed Description

Functions for sampling viruses.

#### 14.1.2 Function Documentation

## 14.1.2.1 make\_sample\_virus\_neighbors()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

## **Template Parameters**

#### **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

#### 14.1.2.2 make\_update\_susceptible()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

TSeq	

## **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

## 14.1.2.3 sample\_virus\_single()

Sample from neighbors pool of viruses (at most one)

This function samples at most one virus from the pool of viruses from its neighbors. If no virus is selected, the function returns a nullptr, otherwise it returns a pointer to the selected virus.

This can be used to build a new update function (EPI\_NEW\_UPDATEFUN.)

	Para	

## **Parameters**

р	Pointer to person
m	Pointer to the model

## Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

## **Chapter 15**

## **Class Documentation**

## 15.1 AdjList Class Reference

## **Public Member Functions**

- AdjList (const std::vector < int > &source, const std::vector < int > &target, int size, bool directed)
   Construct a new Adj List object.
- AdjList (AdjList &&a)
- AdjList (const AdjList &a)
- AdjList & operator= (const AdjList &a)
- void read\_edgelist (std::string fn, int size, int skip=0, bool directed=true)

Read an edgelist.

- std::map< int, int > operator() (epiworld\_fast\_uint i) const
- void **print** (epiworld\_fast\_uint limit=20u) const
- size t vcount () const

Number of vertices/nodes in the network.

• size\_t ecount () const

Number of edges/arcs/ties in the network.

- std::vector< std::map< int, int > > & get\_dat ()
- bool is\_directed () const

true if the network is directed.

## 15.1.1 Constructor & Destructor Documentation

## 15.1.1.1 AdjList()

Construct a new Adj List object.

Ids in the network are assume to range from 0 to size - 1.

#### **Parameters**

source	Unsigned int vector with the source
target	Unsigned int vector with the target
size Number of ve	Number of vertices in the network.
directed	Bool true if the network is directed

## 15.1.2 Member Function Documentation

## 15.1.2.1 read\_edgelist()

```
void AdjList::read_edgelist (
 std::string fn,
 int size,
 int skip = 0,
 bool directed = true) [inline]
```

Read an edgelist.

lds in the network are assume to range from 0 to size - 1.

#### **Parameters**

fn	Path to the file
skip	Number of lines to skip (e.g., 1 if there's a header)
directed	true if the network is directed
size	Number of vertices in the network.

The documentation for this class was generated from the following files:

- · include/epiworld/adjlist-bones.hpp
- include/epiworld/adjlist-meat.hpp

## 15.2 Agent < TSeq > Class Template Reference

## Agent (agents)

```
#include <agent-bones.hpp>
```

## **Public Member Functions**

- Agent (Agent < TSeq > &&p)
- Agent (const Agent < TSeq > &p)
- Agent < TSeq > & operator = (const Agent < TSeq > & other\_agent)

· int get\_id () const

Id of the individual.

- VirusPtr< TSeq > & get\_virus ()
- const VirusPtr< TSeq > & get\_virus () const
- ToolPtr< TSeq > & get\_tool (int i)
- Tools < TSeq > get\_tools ()
- const Tools\_const < TSeq > get\_tools () const
- size t get n tools () const noexcept
- void mutate\_virus ()
- void add neighbor (Agent < TSeq > &p, bool check source=true, bool check target=true)
- void swap\_neighbors (Agent < TSeq > &other, size\_t n\_this, size\_t n\_other)

Swaps neighbors between the current agent and agent other

- std::vector< Agent< TSeq > \* > get\_neighbors ()
- size t get n neighbors () const
- void change\_state (Model < TSeq > \*model, epiworld\_fast\_uint new\_state, epiworld\_fast\_int queue=0)
- const unsigned int & get\_state () const
- · void reset ()
- · bool has\_tool (epiworld\_fast\_uint t) const
- bool has\_tool (std::string name) const
- bool has\_tool (const Tool < TSeq > &t) const
- bool has\_virus (epiworld\_fast\_uint t) const
- · bool has virus (std::string name) const
- bool has\_virus (const Virus < TSeq > &v) const
- · bool has entity (epiworld fast uint t) const
- · bool has\_entity (std::string name) const
- void print (bool compressed=false) const
- Entities < TSeq > get\_entities ()
- const Entities\_const< TSeq > get\_entities () const
- const Entity < TSeq > & get\_entity (size\_t i) const
- Entity < TSeq > & get\_entity (size t i)
- size t get n entities () const
- bool operator== (const Agent < TSeq > &other) const
- bool operator!= (const Agent < TSeq > &other) const

#### Add/Remove Virus/Tool

Any of these is ultimately reflected at the end of the iteration.

#### **Parameters**

tool	Tool to add
virus	Virus to add
state_new	state after the change
queue	

- void add\_tool (ToolPtr< TSeq > tool, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void add\_tool (Tool < TSeq > tool, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld ← fast\_int queue=-99)
- void set\_virus (VirusPtr< TSeq > virus, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)
- void set\_virus (Virus < TSeq > virus, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)
- void add\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)

void rm\_tool (epiworld\_fast\_uint tool\_idx, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)

- void rm\_tool (ToolPtr< TSeq > &tool, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_virus (Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_entity (epiworld\_fast\_uint entity\_idx, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_entity (Entity< TSeq > &entity, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)
- void rm\_agent\_by\_virus (Model < TSeq > \*model)

Agent removed by virus.

#### Get the rates (multipliers) for the agent

#### **Parameters**

v A pointer to a virus.

#### Returns

epiworld double

- epiworld\_double get\_susceptibility\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_transmission\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_recovery\_enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_death\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- double & operator() (size\_t j)

Access the j-th column of the agent.

- double & operator[] (size\_t j)
- double operator() (size\_t j) const
- double operator[] (size\_t j) const

#### **Friends**

- class Model < TSeq >
- class Virus < TSeq >
- class Tool < TSeq >
- class Tools < TSeq >
- class Tools\_const < TSeq >
- class Queue < TSeq >
- class Entities < TSeq >
- class AgentsSample < TSeq >
- void default\_add\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default rm entity (Event< TSeg > &a, Model< TSeg > \*m)
- void default\_change\_state (Event< TSeq > &a, Model< TSeq > \*m)

## 15.2.1 Detailed Description

```
template < typename TSeq > class Agent < TSeq >
```

Agent (agents)

**Template Parameters** 

TSeq | Sequence type (should match TSeq across the model)

## 15.2.2 Member Function Documentation

## 15.2.2.1 operator()()

Access the j-th column of the agent.

If an external array has been specified, then these two functions can be used to access additional agent's features not included in the model.

The operator[] method is with no boundary check, whereas the operator() method checks boundaries. The former can result in a segfault.

#### **Parameters**



Returns

double&

## 15.2.2.2 swap\_neighbors()

Swaps neighbors between the current agent and agent other

#### **Parameters**

other	
n_this	
n_other	

#### 15.2.3 Friends And Related Function Documentation

### 15.2.3.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/agent-meat.hpp

## 15.3 AgentsSample < TSeq > Class Template Reference

Sample of agents.

```
#include <agentssample-bones.hpp>
```

#### **Public Member Functions**

• AgentsSample ()=delete

Default constructor.

AgentsSample (const AgentsSample < TSeq > &a)=delete

Copy constructor.

AgentsSample (AgentsSample < TSeq > &&a)=delete

Move constructor.

- AgentsSample (Model < TSeq > &model , size t n, std::vector < size t > states ={}, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Entity < TSeq > &entity\_, size\_t n, std::vector < size\_t > states ←
   \_={}, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Agent < TSeq > &agent\_, size\_t n, std::vector < size\_t > states ←
   \_={}, bool truncate=false)

Sample from the agent's entities.

- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- Agent< TSeq > \* operator[] (size\_t n)
- Agent < TSeq > \* operator() (size\_t n)
- size\_t size () const noexcept

## 15.3.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class AgentsSample< TSeq >

Sample of agents.

This class allows sampling agents from Entity<TSeq> and Model<TSeq>.

**Template Parameters** 

TSeq	
------	--

## 15.3.2 Constructor & Destructor Documentation

## 15.3.2.1 AgentsSample()

Sample from the agent's entities.

For example, how many individuals the agent contacts in a given point in time.

**Template Parameters** 



## **Parameters**

agent⊷	
_	
n	Sample size
truncate	If the agent has fewer than $n$ connections, then truncate = true will automatically reduce the number of possible samples. Otherwise, if false, then it returns an error.

The documentation for this class was generated from the following file:

• include/epiworld/agentssample-bones.hpp

## 15.4 DataBase < TSeq > Class Template Reference

Statistical data about the process.

```
#include <database-bones.hpp>
```

#### **Public Member Functions**

- DataBase (Model < TSeq > &m)
- DataBase (const DataBase < TSeq > &db)
- void record\_virus (Virus < TSeq > &v)

Registering a new variant.

- void record\_tool (Tool < TSeq > &t)
- void set\_seq\_hasher (std::function< std::vector< int >(TSeq)> fun)
- · void reset ()
- Model < TSeq > \* get\_model ()
- · void record ()
- const std::vector< TSeq > & get\_sequence () const
- const std::vector< int > & get\_nexposed () const
- size\_t size () const
- void write\_data (std::string fn\_virus\_info, std::string fn\_virus\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_transmission, std::string fn\_transition, std::string fn\_const
   reproductive\_number, std::string fn\_generation\_time) const
- void record\_transmission (int i, int j, int virus, int i\_expo\_date)
- · size\_t get\_n\_viruses () const

Get the number of viruses.

size\_t get\_n\_tools () const

Get the number of tools.

- void set\_user\_data (std::vector< std::string > names)
- void add\_user\_data (std::vector< epiworld\_double > x)
- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- UserData < TSeq > & get\_user\_data ()
- std::vector< epiworld\_double > transition\_probability (bool print=true, bool normalize=true) const

Calculates the transition probabilities.

- bool operator== (const DataBase < TSeq > &other) const
- bool operator!= (const DataBase< TSeq > &other) const
- bool operator== (const DataBase< std::vector< int >> &other) const

#### Get recorded information from the model

#### **Parameters**

```
what std::string, The state, e.g., 0, 1, 2, ...
```

#### Returns

```
In get_today_total, the current counts of what.

In get_today_virus, the current counts of what for each virus.

In get_hist_total, the time series of what

In get_hist_virus, the time series of what for each virus.

In get_hist_total_date and get_hist_virus_date the corresponding date
```

- int get\_today\_total (std::string what) const
- int get\_today\_total (epiworld\_fast\_uint what) const
- void get\_today\_total (std::vector< std::string > \*state=nullptr, std::vector< int > \*counts=nullptr) const
- void get\_today\_virus (std::vector< std::string > &state, std::vector< int > &id, std::vector< int > &counts) const
- void get\_today\_transition\_matrix (std::vector< int > &counts) const
- void get\_hist\_total (std::vector< int > \*date, std::vector< std::string > \*state, std::vector< int > \*counts) const
- void get\_hist\_virus (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_tool (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_transition\_matrix (std::vector< std::string > &state\_from, std::vector< std::string > &state\_to, std::vector< int > &date, std::vector< int > &counts, bool skip\_zeros) const
- void get\_transmissions (std::vector< int > &date, std::vector< int > &source, std::vector< int > &target, std::vector< int > &virus, std::vector< int > &source\_exposure\_date) const

Get the transmissions object.

- void **get\_transmissions** (int \*date, int \*source, int \*target, int \*virus, int \*source\_exposure\_date) const
- MapVec\_type< int, int > reproductive\_number () const
   Computes the reproductive number of each case.
- · void reproductive\_number (std::string fn) const
- void generation\_time (std::vector< int > &agent\_id, std::vector< int > &virus\_id, std::vector< int > &time, std::vector< int > &gentime) const

Get the generation time.

void generation\_time (std::string fn) const

Write the generation time to a file.

## **Friends**

- class  $\mathbf{Model} < \mathbf{TSeq} >$
- void  ${\it default\_add\_virus}$  (Event<  ${\it TSeq} > {\it \&a}$ ,  ${\it Model} < {\it TSeq} > *m$ )
- void default add tool (Event< TSeg > &a, Model< TSeg > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_change\_state (Event< TSeq > &a, Model< TSeq > \*m)

## 15.4.1 Detailed Description

template<typename TSeq> class DataBase< TSeq>

Statistical data about the process.

## **Template Parameters**

## 15.4.2 Member Function Documentation

### 15.4.2.1 generation\_time()

```
template<typename TSeq >
void DataBase< TSeq >::generation_time (
 std::vector< int > & agent_id,
 std::vector< int > & virus_id,
 std::vector< int > & time,
 std::vector< int > & gentime) const [inline]
```

Get the generation time.

Calculates the generating time

#### **Parameters**

agent_id,virus_id,time,gentime	vectors where to save the values
--------------------------------	----------------------------------

The generation time is the time between the infection of the source and the infection of the target.

## 15.4.2.2 get\_transmissions()

```
template<typename TSeq >
void DataBase< TSeq >::get_transmissions (
 std::vector< int > & date,
 std::vector< int > & source,
 std::vector< int > & target,
 std::vector< int > & virus,
 std::vector< int > & source_exposure_date) const [inline]
```

Get the transmissions object.

## **Parameters**

date	
source	
target	
virus	
source_exposure_date	

#### 15.4.2.3 operator==() [1/2]

### 15.4.2.4 operator==() [2/2]

## 15.4.2.5 record\_virus()

< Date when the source acquired the varia

Registering a new variant.

#### **Parameters**

*v* Pointer to the new virus. Since viruses are originated in the agent, the numbers simply move around. From the parent virus to the new virus. And the total number of infected does not change.

## 15.4.2.6 reproductive\_number()

```
template<typename TSeq >
MapVec_type< int, int > DataBase< TSeq >::reproductive_number [inline]
```

Computes the reproductive number of each case.

By definition, whereas it computes R0 (basic reproductive number) or Rt/R (the effective reproductive number) will depend on whether the virus is allowed to circulate naïvely or not, respectively.

#### **Parameters**

```
fn File where to write out the reproductive number.
```

In the case of  $MapVec\_type<int$ , int>, the key is a vector of 3 integers:

- · Virus id
- · Source id
- · Date when the source was infected

## 15.4.2.7 transition\_probability()

Calculates the transition probabilities.

#### **Parameters**

print Print the transition matrix.	
normalize	Normalize the transition matrix. Otherwise, it returns raw counts.

The transition matrix is the matrix of the counts of transitions from one state to another. So the ij-th element of the matrix is the number of transitions from state i to state j (when not normalized), or the probability of transitioning from state i to state j (when normalized).

#### Returns

```
std::vector< epiworld_double >
```

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- · include/epiworld/database-meat.hpp

## 15.5 Entities < TSeq > Class Template Reference

Set of Entities (useful for building iterators)

```
#include <entities-bones.hpp>
```

#### **Public Member Functions**

- Entities (Agent < TSeq > &p)
- std::vector< Entity< TSeq > \* >::iterator begin ()
- std::vector< Entity< TSeq > \* >::iterator end ()
- Entity< TSeq > & operator() (size\_t i)
- Entity< TSeq > & operator[] (size\_t i)
- · size\_t size () const noexcept
- bool operator== (const Entities < TSeq > &other) const

#### **Friends**

- class Entity < TSeq >
- class Agent < TSeq >

## 15.5.1 Detailed Description

```
template<typename TSeq> class Entities< TSeq>
```

Set of Entities (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- · include/epiworld/entities-bones.hpp

## 15.6 Entities\_const< TSeq > Class Template Reference

Set of Entities (const) (useful for iterators)

```
#include <entities-bones.hpp>
```

#### **Public Member Functions**

- Entities\_const (const Agent < TSeq > &p)
- std::vector< Entity< TSeq > \* >::const\_iterator begin ()
- std::vector<  $\operatorname{Entity}$ <  $\operatorname{TSeq}$  > \* >::const\_iterator  $\operatorname{end}$  ()
- const Entity < TSeq > & operator() (size\_t i)
- const Entity < TSeq > & operator[] (size t i)
- size\_t size () const noexcept
- bool operator== (const Entities\_const < TSeq > &other) const

### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

## 15.6.1 Detailed Description

```
template<typename TSeq> class Entities_const< TSeq>
```

Set of Entities (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· include/epiworld/entities-bones.hpp

## 15.7 Entity < TSeq > Class Template Reference

## **Public Member Functions**

- Entity (std::string name, EntityToAgentFun < TSeq > fun=nullptr)
   Constructs an Entity object.
- void add\_agent (Agent < TSeq > &p, Model < TSeq > \*model)
- void add\_agent (Agent < TSeq > \*p, Model < TSeq > \*model)
- void rm\_agent (size t idx, Model < TSeq > \*model)
- size\_t size () const noexcept
- void set location (std::vector< epiworld double > loc)
- std::vector< epiworld\_double > & get\_location ()
- std::vector < Agent < TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- std::vector< Agent< TSeq > \* >::const\_iterator begin () const
- size\_t operator[] (size\_t i)
- · int get\_id () const noexcept
- const std::string & get\_name () const noexcept
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- void reset ()
- bool operator== (const Entity< TSeq > &other) const
- bool operator!= (const Entity < TSeq > &other) const

## **Entity distribution**

These functions are used for distributing agents among entities. The idea is to have a flexible way of distributing agents among entities.

- void distribute (Model < TSeq > \*model)
- $std::vector < size_t > \& get_agents ()$
- void print () const
- $\bullet \ \ \mathsf{void} \ \mathbf{\underline{set\_distribution}} \ (\mathsf{EntityToAgentFun} \! < \mathsf{TSeq} > \mathsf{fun}) \\$

#### **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class Model < TSeq >
- void default\_add\_entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_entity (Event< TSeq > &a, Model< TSeq > \*m)

## 15.7.1 Constructor & Destructor Documentation

## 15.7.1.1 Entity()

Constructs an Entity object.

This constructor initializes an Entity object with the specified parameters.

#### **Parameters**

name	The name of the entity.
fun	A function pointer to a function that maps the entity to an agent.

## 15.7.2 Friends And Related Function Documentation

## 15.7.2.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity
- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- · include/epiworld/entity-bones.hpp
- include/epiworld/entity-meat.hpp

## 15.8 Event < TSeq > Struct Template Reference

Event data for update an agent.

#include <config.hpp>

Collaboration diagram for Event< TSeq >:



#### **Public Member Functions**

Event (Agent < TSeq > \*agent\_, VirusPtr < TSeq > virus\_, ToolPtr < TSeq > tool\_, Entity < TSeq > \*entity ←
\_, epiworld\_fast\_int new\_state\_, epiworld\_fast\_int queue\_, EventFun < TSeq > call\_, int idx\_agent\_, int idx\_object\_)

Construct a new Event object.

## **Public Attributes**

- Agent < TSeq > \* agent
- $\bullet \quad \text{VirusPtr} {< } \, \text{TSeq} > \textbf{virus}$
- ToolPtr< TSeq> tool
- Entity < TSeq > \* entity
- · epiworld\_fast\_int new\_state
- epiworld\_fast\_int queue
- EventFun< TSeq > call
- int idx\_agent
- int idx\_object

## 15.8.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> struct Event< TSeq >

Event data for update an agent.

## **Template Parameters**

## 15.8.2 Constructor & Destructor Documentation

### 15.8.2.1 Event()

Construct a new Event object.

All the parameters are rather optional.

### **Parameters**

agent_	Agent over who the action will happen
virus_	Virus to add
tool_	Tool to add
virus_idx	Index of virus to be removed (if needed)
tool_idx	Index of tool to be removed (if needed)
new_←	Next state
state_	
queue_	Efect on the queue
call_	The action call (if needed)
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

The documentation for this struct was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/config.hpp

## 15.9 GlobalEvent < TSeq > Class Template Reference

Template for a Global Event.

```
#include <globalevent-bones.hpp>
```

#### **Public Member Functions**

- GlobalEvent (GlobalFun < TSeq > fun, std::string name, int day=-99)
   Construct a new Global Event object.
- void operator() (Model < TSeq > \*m, int day)
- void **set\_name** (std::string name)
- std::string get\_name () const
- void set\_day (int day)
- int get\_day () const
- · void print () const
- bool operator== (const GlobalEvent < TSeq > &other) const
- bool operator!= (const GlobalEvent< TSeq > &other) const

## 15.9.1 Detailed Description

```
template<typename TSeq> class GlobalEvent< TSeq>
```

Template for a Global Event.

Global events are functions that Model<TSeq> executes at the end of a day.

## 15.9.2 Constructor & Destructor Documentation

## 15.9.2.1 GlobalEvent()

Construct a new Global Event object.

#### **Parameters**

fun	A function that takes a Model <tseq> * as argument and returns void.</tseq>
name	A descriptive name for the action.
day	The day when the action will be executed. If negative, it will be executed every day.

The documentation for this class was generated from the following files:

- include/epiworld/globalevent-bones.hpp
- include/epiworld/globalevent-meat.hpp

## 15.10 LFMCMC< TData > Class Template Reference

Likelihood-Free Markov Chain Monte Carlo.

```
#include <lfmcmc-bones.hpp>
```

#### **Public Member Functions**

- void run (std::vector< epiworld\_double > params\_init\_, size\_t n\_samples\_, epiworld\_double epsilon\_, int seed=-1)
- LFMCMC (const TData & observed data )
- void set\_observed\_data (const TData &observed\_data\_)
- void set\_proposal\_fun (LFMCMCProposalFun < TData > fun)
- void set\_simulation\_fun (LFMCMCSimFun < TData > fun)
- void set\_summary\_fun (LFMCMCSummaryFun < TData > fun)
- void **set\_kernel\_fun** (LFMCMCKernelFun < TData > fun)
- void set params names (std::vector< std::string > names)
- void set\_stats\_names (std::vector < std::string > names)
- size\_t get\_n\_samples () const
- size\_t get\_n\_stats () const
- size\_t get\_n\_params () const
- epiworld\_double **get\_epsilon** () const
- const std::vector< epiworld\_double > & get\_initial\_params () const
- const std::vector< epiworld\_double > & get\_current\_proposed\_params () const
- const std::vector< epiworld\_double > & get\_current\_accepted\_params () const
- const std::vector< epiworld double > & get current proposed stats () const
- const std::vector< epiworld double > & get current accepted stats () const
- const std::vector< epiworld\_double > & get\_observed\_stats () const
- const std::vector< epiworld\_double > & get\_all\_sample\_params () const
- const std::vector< epiworld\_double > & get\_all\_sample\_stats () const
- const std::vector< bool > & get\_all\_sample\_acceptance () const
- const std::vector< epiworld double > & get all sample\_drawn\_prob () const
- const std::vector< epiworld\_double > & get\_all\_sample\_kernel\_scores () const
- const std::vector< epiworld\_double > & get\_all\_accepted\_params () const
- const std::vector< epiworld\_double > & get\_all\_accepted\_stats () const
- const std::vector< epiworld double > & get\_all\_accepted\_kernel\_scores () const
- std::vector< TData > \* get\_simulated\_data () const
- std::vector< epiworld\_double > get\_mean\_params ()
- std::vector< epiworld\_double > get\_mean\_stats ()
- LFMCMC< TData > & verbose\_off ()
- LFMCMC< TData > & verbose\_on ()
- void print (size\_t burnin=0u) const

#### Random number generation

#### **Parameters**

eng

- void set\_rand\_engine (std::shared\_ptr< std::mt19937 > &eng)
- std::shared\_ptr< std::mt19937 > & get\_rand\_endgine ()
- void seed (epiworld\_fast\_uint s)
- void set rand gamma (epiworld double alpha, epiworld double beta)
- epiworld double runif ()
- epiworld double rnorm ()
- epiworld double rgamma ()
- epiworld double runif (epiworld double lb, epiworld double ub)
- epiworld double **rnorm** (epiworld double mean, epiworld double sd)
- epiworld\_double rgamma (epiworld\_double alpha, epiworld\_double beta)

## 15.10.1 Detailed Description

template<typename TData> class LFMCMC< TData >

Likelihood-Free Markov Chain Monte Carlo.

**Template Parameters** 

TData Type of data that is generated

The documentation for this class was generated from the following files:

- include/epiworld/math/lfmcmc/lfmcmc-bones.hpp
- include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp
- include/epiworld/math/lfmcmc/lfmcmc-meat.hpp

## 15.11 Model < TSeq > Class Template Reference

Core class of epiworld.

#include <model-bones.hpp>

Collaboration diagram for Model < TSeq >:



#### **Public Member Functions**

- DataBase < TSeq > & get\_db ()
- const DataBase< TSeq > & get\_db () const
- epiworld\_double & operator() (std::string pname)
- · size t size () const
- void load agents entities ties (std::string fn, int skip)

Associate agents-entities from a file.

void load\_agents\_entities\_ties (const std::vector< int > &agents\_ids, const std::vector< int > &entities\_ids)

Associate agents-entities from data.

- void load\_agents\_entities\_ties (const int \*agents\_id, const int \*entities\_id, size\_t n)
- size\_t get\_n\_viruses () const

Number of viruses in the model.

• size\_t get\_n\_tools () const

Number of tools in the model.

- · epiworld fast uint get ndays () const
- · epiworld\_fast\_uint get\_n\_replicates () const
- · size t get n entities () const
- void set\_ndays (epiworld\_fast\_uint ndays)
- bool get\_verbose () const
- Model < TSeq > & verbose\_off ()
- Model < TSeq > & verbose\_on ()
- · int today () const

The current time of the model.

void write\_data (std::string fn\_virus\_info, std::string fn\_virus\_hist, std::string fn\_tool\_info, std::string fn—tool\_hist, std::string fn\_total\_hist, std::string fn\_transmission, std::string fn\_transition, std::string fn\_erroductive\_number, std::string fn\_generation\_time) const

Wrapper of DataBase::write\_data

- std::map< std::string, epiworld\_double > & params ()
- virtual void reset ()

Reset the model.

- const Model < TSeq > & print (bool lite=false) const
- void **get\_elapsed** (std::string unit="auto", epiworld\_double \*last\_elapsed=nullptr, epiworld\_double \*total\_\leftarrow elapsed=nullptr, std::string \*unit abbr=nullptr, bool print=true) const
- void add\_globalevent (std::function< void(Model< TSeq > \*)> fun, std::string name="A global action", int date=-99)

Set a global action.

- void add\_globalevent (GlobalEvent < TSeq > action)
- GlobalEvent < TSeq > & get\_globalevent (std::string name)

Retrieve a global action by name.

GlobalEvent < TSeq > & get\_globalevent (size\_t i)

Retrieve a global action by index.

void rm\_globalevent (std::string name)

Remove a global action by name.

void rm\_globalevent (size\_t i)

Remove a global action by index.

- void run\_globalevents ()
- void clear\_state\_set ()
- const std::vector< VirusPtr< TSeq > > & get\_viruses () const
- const std::vector< ToolPtr< TSeq > > & get\_tools () const
- Virus< TSeq > & get\_virus (size\_t id)
- Tool < TSeq > & get\_tool (size\_t id)
- void set\_agents\_data (double \*data\_, size\_t ncols\_)

Set the agents data object.

- double \* get\_agents\_data ()
- · size t get agents data ncols () const
- void set name (std::string name)

Set the name object.

- std::string get\_name () const
- bool operator== (const Model < TSeq > &other) const
- bool operator!= (const Model < TSeq > &other) const
- void events run ()

Executes the stored action.

void draw (const std::string &fn\_output="", bool self=false)

Draws a mermaid diagram of the model.

#### Set the backup object

backup can be used to restore the entire object after a run. This can be useful if the user wishes to have individuals start with the same network from the beginning.

void set backup ()

## Random number generation

#### **Parameters**

eng	Random number generator
S	Seed

- void set\_rand\_engine (std::shared\_ptr< std::mt19937 > &eng)
- std::shared\_ptr< std::mt19937 > & get\_rand\_endgine ()
- void seed (size\_t s)
- void **set\_rand\_norm** (epiworld\_double mean, epiworld\_double sd)
- void set\_rand\_unif (epiworld\_double a, epiworld\_double b)
- void set rand exp (epiworld double lambda)
- void **set\_rand\_gamma** (epiworld\_double alpha, epiworld\_double beta)
- void set rand lognormal (epiworld double mean, epiworld double shape)
- void set rand binom (int n, epiworld double p)
- void set\_rand\_nbinom (int n, epiworld\_double p)
- void set rand geom (epiworld double p)
- void set\_rand\_poiss (epiworld\_double lambda)
- epiworld\_double runif ()
- epiworld\_double runif (epiworld\_double a, epiworld\_double b)
- epiworld\_double rnorm ()
- epiworld\_double **rnorm** (epiworld\_double mean, epiworld\_double sd)
- epiworld\_double rgamma ()
- epiworld double **rgamma** (epiworld double alpha, epiworld double beta)
- epiworld\_double rexp ()
- epiworld\_double rexp (epiworld\_double lambda)
- epiworld\_double rlognormal ()
- epiworld\_double **rlognormal** (epiworld\_double mean, epiworld\_double shape)
- int rbinom ()
- int **rbinom** (int n, epiworld double p)
- int rnbinom ()
- int **rnbinom** (int n, epiworld double p)
- int rgeom ()
- int **rgeom** (epiworld\_double p)
- int rpoiss ()
- int rpoiss (epiworld double lambda)

## Add Virus/Tool to the model

This is done before the model has been initialized.

#### **Parameters**

V	Virus to be added
t	Tool to be added
preval	Initial prevalence (initial state.) It can be specified as a proportion (between zero and one,) or an integer indicating number of individuals.

- void add\_virus (Virus < TSeq > &v)
- void add\_tool (Tool < TSeq > &t)
- void add\_entity (Entity < TSeq > e)
- void **rm\_virus** (size\_t virus\_pos)
- void rm\_tool (size\_t tool\_pos)
- void rm\_entity (size\_t entity\_id)

## Accessing population of the model

#### **Parameters**

fn	std::string Filename of the edgelist file.
skip	int Number of lines to skip in fn.
directed	bool Whether the graph is directed or not.
size	Size of the network.
al	AdjList to read into the model.

- void agents from adjlist (std::string fn, int size, int skip=0, bool directed=false)
- void agents\_from\_edgelist (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
- void agents from adjlist (AdjList al)
- bool is\_directed () const
- std::vector< Agent< TSeq > > & get\_agents ()

Returns a reference to the vector of agents.

- Agent < TSeq > & get agent (size ti)
- std::vector< epiworld\_fast\_uint > get\_agents\_states () const

Returns a vector with the states of the agents.

std::vector< Viruses\_const< TSeq > > get\_agents\_viruses () const

Returns a const vector with the viruses of the agents.

std::vector< Viruses< TSeq > > get\_agents\_viruses ()

Returns a vector with the viruses of the agents.

- std::vector<  ${\tt Entity} {\tt < TSeq} > > \& \ {\tt get\_entities} \ ()$
- Entity< TSeq > & get\_entity (size\_t entity\_id, int \*entity\_pos=nullptr)
- Model < TSeq > & agents\_smallworld (epiworld\_fast\_uint n=1000, epiworld\_fast\_uint k=5, bool d=false, epiworld\_double p=.01)
- void agents\_empty\_graph (epiworld\_fast\_uint n=1000)

#### Functions to run the model

#### **Parameters**

seed	Seed to be used for Pseudo-RNG.
ndays	Number of days (steps) of the simulation.
fun	In the case of run_multiple, a function that is called after each experiment.

• void update\_state ()

- void mutate\_virus ()
- void next ()
- virtual Model < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

void run\_multiple (epiworld\_fast\_uint ndays, epiworld\_fast\_uint nexperiments, int seed\_=-1, std::function
 void(size\_t, Model< TSeq > \*)> fun=make\_save\_run< TSeq >(), bool reset=true, bool verbose=true, int nthreads=1)

#### Rewire the network preserving the degree sequence.

This implementation assumes an undirected network, thus if  $\{(i,j), (k,l)\} \rightarrow \{(i,l), (k,j)\}$ , the reciprocal is also true, i.e.,  $\{(j,i), (l,k)\} \rightarrow \{(j,k), (l,i)\}$ .

#### **Parameters**

proportion	Proportion of ties to be rewired.
------------	-----------------------------------

#### Returns

A rewired version of the network.

- void set\_rewire\_fun (std::function< void(std::vector< Agent< TSeq >> \*, Model< TSeq > \*, epiworld\_double)> fun)
- void **set\_rewire\_prop** (epiworld\_double prop)
- epiworld\_double get\_rewire\_prop () const
- void rewire ()

#### Export the network data in edgelist form

#### **Parameters**

fn	std::string. File name.
source	Integer vector
target	Integer vector

When passing the source and target, the function will write the edgelist on those.

- · void write\_edgelist (std::string fn) const
- void  $write\_edgelist$  (std::vector< int > &source, std::vector< int > &target) const

#### Manage state (states) in the model

The functions get\_state return the current values for the states included in the model.

#### **Parameters**

```
lab std::string Name of the state.
```

#### Returns

add\_state\* returns nothing.

get\_state\_\* returns a vector of pairs with the states and their labels.

- void add\_state (std::string lab, UpdateFun< TSeq > fun=nullptr)
- const std::vector< std::string > & get\_states () const
- const std::vector< UpdateFun< TSeq >> & get\_state\_fun () const
- void print\_state\_codes () const

#### **Initial states**

These functions are called before the simulation starts.

#### **Parameters**

proportions↔	Vector of proportions for each state.
queue_	Vector of queue for each state.

virtual Model < TSeq > & initial\_states (std::vector < double >, std::vector < int >)

#### Setting and accessing parameters from the model

Tools can incorporate parameters included in the model. Internally, parameters in the tool are stored as pointers to an std::map<> of parameters in the model. Using the epiworld\_fast\_uint method directly fetches the parameters in the order these were added to the tool. Accessing parameters via the std::string method involves searching the parameter directly in the std::map<> member of the model (so it is not recommended.)

The par() function members are aliases for get\_param().

In the case of the function read\_params, users can pass a file listing parameters to be included in the model. Each line in the file should have the following structure:

```
[name of parameter 1]: [value in double]
[name of parameter 2]: [value in double]
```

The only condition for parameter names is that these do not include a colon.

#### **Parameters**

initial_val	
pname	Name of the parameter to add or to fetch
fn	Path to the file containing parameters

#### Returns

The current value of the parameter in the model.

- epiworld double add param (epiworld double initial val, std::string pname, bool overwrite=false)
- Model < TSeq > & read\_params (std::string fn, bool overwrite=false)
- epiworld\_double **get\_param** (epiworld\_fast\_uint k)
- epiworld\_double **get\_param** (std::string pname)
- void **set\_param** (std::string pname, epiworld\_double val)
- epiworld\_double par (std::string pname) const

## Set the user data object

#### **Parameters**

names	string vector with the names of the variables.
-------	------------------------------------------------

- void set\_user\_data (std::vector< std::string > names)
- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- void add user data (std::vector< epiworld double > x)
- UserData< TSeq > & get\_user\_data ()

## Queuing system

When queueing is on, the model will keep track of which agents are either in risk of exposure or exposed. This then is used at each step to act only on the aforementioned agents.

- void queuing on ()
  - Activates the queuing system (default.)
- Model < TSeq > & queuing\_off ()

Deactivates the queuing system.

- bool is\_queuing\_on () const
  - Query if the queuing system is on.
- Queue < TSeq > & get\_queue ()

Retrieve the Queue object.

#### Get the susceptibility reduction object

#### **Parameters**



#### Returns

epiworld double

- void set\_susceptibility\_reduction\_mixer (MixerFun< TSeq > fun)
- void set\_transmission\_reduction\_mixer (MixerFun < TSeq > fun)
- void set\_recovery\_enhancer\_mixer (MixerFun< TSeq > fun)
- void set\_death\_reduction\_mixer (MixerFun < TSeq > fun)

#### **Protected Member Functions**

- void dist tools ()
- void dist\_virus()
- void dist\_entities ()
- void chrono\_start ()
- void chrono\_end ()
- void events\_add (Agent< TSeq > \*agent\_, VirusPtr< TSeq > virus\_, ToolPtr< TSeq > tool\_, Entity< TSeq > \*entity\_, epiworld\_fast\_int new\_state\_, epiworld\_fast\_int queue\_, EventFun< TSeq > call\_, int idx\_
  agent\_, int idx\_object\_)

Construct a new Event object.

#### **Protected Attributes**

```
• std::string name = ""
```

Name of the model.

- DataBase< TSeq > db = DataBase<TSeq>(\*this)
- std::vector< Agent< TSeq >> population = {}
- bool using backup = true
- std::vector < Agent < TSeq > > population\_backup = {}
- bool directed = false
- std::vector< VirusPtr< TSeq >> viruses = {}
- std::vector< ToolPtr< TSeq > > tools = {}
- std::vector< Entity< TSeq >> entities = {}
- std::vector< Entity< TSeq >> entities\_backup = {}
- $std::shared\_ptr < std::mt19937 > engine = std::make\_shared < std::mt19937 > ()$
- std::uniform\_real\_distribution runifd

- · std::normal distribution rnormd
- · std::gamma distribution rgammad
- · std::lognormal distribution rlognormald
- std::exponential\_distribution rexpd
- · std::binomial distribution rbinomd
- · std::negative binomial distribution rnbinomd
- · std::geometric distribution rgeomd
- std::poisson\_distribution rpoissd
- std::function< void(std::vector< Agent< TSeq >> \*, Model< TSeq > \*, epiworld\_double)> rewire\_fun
- epiworld\_double rewire\_prop = 0.0
- std::map< std::string, epiworld\_double > parameters
- epiworld fast uint **ndays** = 0
- · Progress pb
- std::vector< UpdateFun< TSeq > > state fun = {}

Functions to update states.

std::vector< std::string > states labels = {}

Labels of the states.

- std::function< void(Model< TSeq > \*)> initial\_states\_fun
- epiworld\_fast\_uint nstates = 0u
- bool verbose = true
- int current date = 0
- std::chrono::time\_point< std::chrono::steady\_clock > time\_start
- std::chrono::time point< std::chrono::steady clock > time end
- std::chrono::duration< epiworld double, std::micro > time\_elapsed
- epiworld fast uint n\_replicates = 0u
- $\bullet \ \ \mathsf{std} :: \mathsf{vector} < \mathsf{GlobalEvent} < \mathsf{TSeq} > > \mathsf{globalevents}$
- Queue < TSeq > queue
- bool use\_queuing = true
- std::vector< Event< TSeq > > events = {}

Variables used to keep track of the events to be made regarding viruses.

• epiworld\_fast\_uint nactions = 0u

#### Auxiliary variables for AgentsSample<TSeq> iterators

These variables+objects are used by the AgentsSample<TSeq> class for building efficient iterators over agents. The idea is to reduce the memory allocation, so only during the first call of AgentsSample<TSeq>::Agents⇔ Sample(Model<TSeq>) these vectors are allocated.

- std::vector< Agent< TSeq > \* > sampled\_population
- size\_t sampled\_population\_n = 0u
- std::vector< size\_t > population\_left
- size\_t population\_left\_n = 0u

#### **Agents features**

Optionally, a model can include an external data source pointing to agents information. The data can then be access through the Agent: operator() method.

- double \* agents\_data = nullptr
- size\_t agents\_data\_ncols = 0u

#### **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class DataBase< TSeq >
- class Queue < TSeq >

#### **Tool Mixers**

These functions combine the effects tools have to deliver a single effect. For example, wearing a mask, been vaccinated, and the immune system combine together to jointly reduce the susceptibility for a given virus.

```
 MixerFun< TSeq > susceptibility_reduction_mixer = susceptibility_reduction_mixer_default<TSeq>
```

- MixerFun< TSeq > transmission\_reduction\_mixer = transmission\_reduction\_mixer\_default<TSeq>
- MixerFun< TSeq > recovery\_enhancer\_mixer = recovery\_enhancer\_mixer\_default<TSeq>
- MixerFun< TSeq > death reduction mixer = death reduction mixer default<TSeq>
- std::vector< epiworld\_double > array\_double\_tmp
- std::vector< Virus< TSeq > \* > array\_virus\_tmp
- virtual Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

- Model ()
- Model (const Model < TSeq > &m)
- Model (Model < TSeq > &m)
- Model (Model < TSeq > &&m)
- Model < TSeq > & operator= (const Model < TSeq > &m)
- virtual ∼Model ()

#### 15.11.1 Detailed Description

```
template < typename TSeq> class Model < TSeq>
```

Core class of epiworld.

The model class provides the wrapper that puts together Agent, Virus, and Tools.

**Template Parameters** 

Type of sequence. In principle, users can build models in which virus and human sequence is represented as numeric vectors (if needed.)

#### 15.11.2 Member Function Documentation

#### 15.11.2.1 add\_globalevent()

Set a global action.

#### **Parameters**

fun	A function to be called on the prescribed date	
name	Name of the action.	
date	Integer indicating when the function is called (see details)	

When date is less than zero, then the function is called at the end of every day. Otherwise, the function will be called only at the end of the indicated date.

#### 15.11.2.2 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * Model< TSeq >::clone_ptr [inline], [protected], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented in ModelMeaslesQuarantine < TSeq >.

#### 15.11.2.3 draw()

Draws a mermaid diagram of the model.

#### **Parameters**

model	The model to draw.	
fn_output	The name of the file to write the diagram. If empty, the diagram will be printed to the standard output.	
self	Whether to allow self-transitions.	

#### 15.11.2.4 events\_add()

```
Entity< TSeq > * entity_,
epiworld_fast_int new_state_,
epiworld_fast_int queue_,
EventFun< TSeq > call_,
int idx_agent_,
int idx_object_) [inline], [protected]
```

Construct a new Event object.

#### **Parameters**

agent_	Agent over which the action will be called
virus_	Virus pointer included in the action
tool_	Tool pointer included in the action
entity_	Entity pointer included in the action
new_←	New state of the agent
state_	
call_	Function the action will call
queue_	Change in the queue
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

#### 15.11.2.5 events\_run()

```
template<typename TSeq >
void Model< TSeq >::events_run [inline]
```

Executes the stored action.

#### **Parameters**



#### 15.11.2.6 load\_agents\_entities\_ties()

```
template<typename TSeq > void Model< TSeq >::load_agents_entities_ties (std::string fn, int skip) [inline]
```

Associate agents-entities from a file.

The structure of the file should be two columns separated by space. The first column indexing between 0 and nagents-1, and the second column between 0 and nentities - 1.

#### **Parameters**

fn	Path to the file.
skip	How many rows to skip.

#### 15.11.2.7 reset()

```
template<typename TSeq >
void Model< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented in ModelMeaslesQuarantine < TSeq >.

#### 15.11.2.8 run\_multiple()

#### **Parameters**

```
ndays | Multiple runs of the simulation
```

#### 15.11.2.9 set\_agents\_data()

 ${\tt template}{<}{\tt typename}~{\tt TSeq}~{>}$ 

Set the agents data object.

The data should be an array with the data stored in a column major order, i.e., by column.

#### Parameters 4 8 1

data⊷	Pointer to the first element of an array of size size () *	
_	ncols	
ncols⇔	Number of features included in the data.	
_		

#### 15.11.2.10 set\_name()

Set the name object.

#### **Parameters**

name

#### 15.11.2.11 write\_data()

Wrapper of DataBase::write\_data

#### **Parameters**

fn_virus_info	Filename. Information about the virus.
fn_virus_hist	Filename. History of the virus.
fn_tool_info	Filename. Information about the tool.

#### **Parameters**

fn_tool_hist	Filename. History of the tool.
fn_total_hist	Filename. Aggregated history (state)
fn_transmission	Filename. Transmission history.
fn_transition	Filename. Markov transition history.
fn_reproductive_number	Filename. Case by case reproductive number

#### 15.11.3 Member Data Documentation

#### 15.11.3.1 initial\_states\_fun

Function to distribute states. Goes along with the function

#### 15.11.3.2 rbinomd

```
template<typename TSeq >
std::binomial_distribution Model< TSeq >::rbinomd [protected]
Initial value:
```

std::binomial\_distribution<>()

#### 15.11.3.3 rexpd

```
template<typename TSeq >
std::exponential_distribution Model< TSeq >::rexpd [protected]
```

#### Initial value:

std::exponential\_distribution<>()

#### 15.11.3.4 rgammad

```
template<typename TSeq >
std::gamma_distribution Model< TSeq >::rgammad [protected]
Initial value:
 std::gamma_distribution<>()
15.11.3.5 rgeomd
template<typename TSeq >
std::geometric_distribution Model< TSeq >::rgeomd [protected]
Initial value:
 std::geometric_distribution<>()
15.11.3.6 rlognormald
template<typename TSeq >
std::lognormal_distribution Model< TSeq >::rlognormald [protected]
Initial value:
 std::lognormal_distribution<>()
15.11.3.7 rnbinomd
template<typename TSeq >
std::negative_binomial_distribution Model< TSeq >::rnbinomd [protected]
Initial value:
 std::negative_binomial_distribution<>()
15.11.3.8 rnormd
```

```
template<typename TSeq >
std::normal_distribution Model< TSeq >::rnormd [protected]
```

#### Initial value:

std::normal\_distribution<>(0.0)

#### 15.11.3.9 rpoissd

```
template<typename TSeq >
std::poisson_distribution Model< TSeq >::rpoissd [protected]

Initial value:
=
 std::poisson_distribution<>()
```

#### 15.11.3.10 runifd

```
template<typename TSeq >
std::uniform_real_distribution Model< TSeq >::runifd [protected]
```

#### Initial value:

```
std::uniform_real_distribution<> (0.0, 1.0)
```

#### 15.11.3.11 time\_elapsed

```
template<typename TSeq >
std::chrono::duration<epiworld_double,std::micro> Model< TSeq >::time_elapsed [protected]
```

#### Initial value:

```
std::chrono::duration<epiworld_double,std::micro>::zero()
```

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/model-bones.hpp
- · include/epiworld/model-meat-print.hpp
- include/epiworld/model-meat.hpp

#### 15.12 ModelDiagram Class Reference

#### **Public Member Functions**

- void draw\_from\_data (const std::vector< std::string > &states, const std::vector< epiworld\_double > &tprob, const std::string &fn\_output="", bool self=false)
- void draw\_from\_file (const std::string &fn\_transition, const std::string &fn\_output="", bool self=false)
- void draw\_from\_files (const std::vector< std::string > &fns\_transition, const std::string &fn\_output="", bool self=false)

The documentation for this class was generated from the following files:

- include/epiworld/modeldiagram-bones.hpp
- include/epiworld/modeldiagram-meat.hpp

## 15.13 epiworld::epimodels::ModelDiffNet< TSeq > Class Template Reference

Template for a Network Diffusion Model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelDiffNet< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelDiffNet< TSeq >:



#### **Public Member Functions**

- **ModelDiffNet** (ModelDiffNet< TSeq > &model, const std::string &innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_← t data\_ncols=0u, std::vector< size\_t > data\_cols={}, std::vector< double > params={})
- **ModelDiffNet** (const std::string &innovation\_name, epiworld\_double prevalence, epiworld\_double prob
  \_\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_ncols=0u, std::vector<
  size t > data cols={}, std::vector< double > params={})

#### **Public Attributes**

- bool normalize\_exposure = true
- $std::vector < size_t > data_cols$
- std::vector< double > params

#### **Static Public Attributes**

- static const int NONADOPTER = 0
- static const int ADOPTER = 1

#### 15.13.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class epiworld::epimodels::ModelDiffNet< TSeq >

Template for a Network Diffusion Model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

### 15.14 ModelDiffNet< TSeq > Class Template Reference

Template for a Network Diffusion Model.

#include <diffnet.hpp>

Inheritance diagram for ModelDiffNet< TSeq >:



Collaboration diagram for ModelDiffNet< TSeq >:



#### **Public Member Functions**

- **ModelDiffNet** (ModelDiffNet< TSeq > &model, const std::string &innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_← t data\_ncols=0u, std::vector< size\_t > data\_cols={}, std::vector< double > params={})
- **ModelDiffNet** (const std::string &innovation\_name, epiworld\_double prevalence, epiworld\_double prob

  \_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_ncols=0u, std::vector<
  size\_t > data\_cols={}, std::vector< double > params={})

#### **Public Attributes**

- bool normalize\_exposure = true
- std::vector< size\_t > data\_cols
- std::vector< double > params

#### **Static Public Attributes**

- static const int NONADOPTER = 0
- static const int ADOPTER = 1

#### 15.14.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class ModelDiffNet< TSeq >

Template for a Network Diffusion Model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/diffnet.hpp

# 15.15 epiworld::epimodels::ModelMeaslesQuarantine < TSeq > Class Template Reference

Template for a Measles model with quarantine.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelMeaslesQuarantine < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelMeaslesQuarantine < TSeq >:



#### **Public Member Functions**

- · void quarantine agents ()
  - Quarantine agents that are in the system.
- · void reset ()
- void update\_infectious ()
- Model < TSeq > \* clone\_ptr ()
- ModelMeaslesQuarantine (ModelMeaslesQuarantine < TSeq > &model, epiworld\_fast\_uint n, epiworld
   \_fast\_uint n\_exposed, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double
   vax\_efficacy, epiworld\_double vax\_reduction\_recovery\_rate, epiworld\_double incubation\_period, epiworld
   \_double prodromal\_period, epiworld\_double rash\_period, epiworld\_double days\_undetected, epiworld
   \_double hospitalization\_rate, epiworld\_double hospitalization\_period, epiworld\_double prop\_vaccinated,
   epiworld\_fast\_int quarantine\_period, epiworld\_double quarantine\_willingness, epiworld\_fast\_int isolation\_
   \_period)
- ModelMeaslesQuarantine (epiworld\_fast\_uint n, epiworld\_fast\_uint n\_exposed, epiworld\_double contact
   \_rate, epiworld\_double transmission\_rate, epiworld\_double vax\_efficacy, epiworld\_double vax\_reduction
   \_recovery\_rate, epiworld\_double incubation\_period, epiworld\_double prodromal\_period, epiworld\_double rash\_period, epiworld\_double days\_undetected, epiworld\_double hospitalization\_rate, epiworld\_double hospitalization\_period, epiworld\_double prop\_vaccinated, epiworld\_fast\_int quarantine\_period, epiworld\_← double quarantine willingness, epiworld fast int isolation\_period)

#### **Public Attributes**

- std::vector< Agent< TSeq > \* > infectious
  - Agents infectious for contact.
- bool system\_quarantine\_triggered = false
- std::vector< int > day flagged
  - Either detected or started quarantine.
- std::vector< int > day\_rash\_onset

Day of rash onset.

#### **Static Public Attributes**

- static const epiworld\_fast\_uint SUSCEPTIBLE = 0u
- static const epiworld\_fast\_uint EXPOSED = 1u
- static const epiworld fast uint PRODROMAL = 2u
- static const epiworld fast uint RASH = 3u
- static const epiworld\_fast\_uint ISOLATED = 4u
- static const epiworld\_fast\_uint ISOLATED\_RECOVERED = 5u
- static const epiworld fast uint **DETECTED HOSPITALIZED** = 6u
- static const epiworld\_fast\_uint QUARANTINED\_EXPOSED = 7u
- static const epiworld\_fast\_uint QUARANTINED\_SUSCEPTIBLE = 8u
- static const epiworld\_fast\_uint QUARANTINED\_PRODROMAL = 9u
- static const epiworld\_fast\_uint QUARANTINED\_RECOVERED = 10u
- static const epiworld\_fast\_uint HOSPITALIZED = 11u
- static const epiworld fast uint **RECOVERED** = 12u

#### 15.15.1 Detailed Description

template < typename TSeq = EPI\_DEFAULT\_TSEQ> class epiworld::epimodels::ModelMeaslesQuarantine < TSeq >

Template for a Measles model with quarantine.

#### **Parameters**

TSeq	The type of the sequence to be used.
------	--------------------------------------

This model can be described as a SEIHR model with isolation and quarantine. The infectious state is divided into prodromal and rash phases. Furthermore, the quarantine state includes exposed, susceptible, prodromal, and recovered states.

The quarantine process is triggered any time that an agent with rash is detected. The agent is then isolated and all agents who are unvaccinated are quarantined. Isolated agents then may be moved out of the isolation in isolation period days.

#### 15.15.2 Constructor & Destructor Documentation

#### 15.15.2.1 ModelMeaslesQuarantine()

```
template<typename TSeq >
ModelMeaslesQuarantine< TSeq >::ModelMeaslesQuarantine (
 ModelMeaslesQuarantine< TSeq > & model,
 epiworld_fast_uint n,
 epiworld_fast_uint n_exposed,
 epiworld_double contact_rate,
 epiworld_double transmission_rate,
 epiworld_double vax_efficacy,
 epiworld_double vax_reduction_recovery_rate,
 epiworld_double incubation_period,
 epiworld_double prodromal_period,
 epiworld_double rash_period,
 epiworld_double days_undetected,
 epiworld_double hospitalization_rate,
 epiworld_double hospitalization_period,
 epiworld_double prop_vaccinated,
 epiworld_fast_int quarantine_period,
 epiworld_double quarantine_willingness,
 epiworld_fast_int isolation_period) [inline]
```

#### **Parameters**

n	The number of agents in the system.
n_exposed	The number of exposed agents in the system.
contact_rate	The rate of contact between agents.
transmission_rate	The rate of transmission of the virus.
vax_efficacy	The efficacy of the vaccine.
vax_reduction_recovery_rate	The reduction in recovery rate due to the vaccine.
incubation_period	The incubation period of the virus.
prodromal_period	The prodromal period of the virus.
rash_period	The rash period of the virus.
days_undetected	The number of days the virus goes undetected.
hospitalization_rate	The rate of hospitalization.

#### **Parameters**

hospitalization_period	The duration of hospitalization.
prop_vaccinated	The proportion of vaccinated agents.
quarantine_period	The number of days for quarantine.
quarantine_willingness	The willingness to be quarantined.
isolation_period	The number of days for isolation.

#### 15.15.3 Member Function Documentation

#### 15.15.3.1 quarantine\_agents()

```
template<typename TSeq >
void ModelMeaslesQuarantine< TSeq >::quarantine_agents [inline]
```

Quarantine agents that are in the system.

The flow should be:

- The function only runs if the quarantine status is active.
- Agents who are in quarantine, isolation, removed, or hospitalized are ignored.
- · Agents who are in the RASH state are isolated.
- · Vaccinated agents are ignored.
- Susceptible, Exposed, and Prodromal agents are moved to the QUARANTINED\_\* state.
- At the end of the function, the quarantine status is set false.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.16 ModelMeaslesQuarantine < TSeq > Class Template Reference

Template for a Measles model with quarantine.

#include <measlesquarantine.hpp>

Inheritance diagram for ModelMeaslesQuarantine < TSeq >:



Collaboration diagram for ModelMeaslesQuarantine < TSeq >:



#### **Public Member Functions**

• void quarantine\_agents ()

Quarantine agents that are in the system.

• void reset ()

Reset the model.

- void update\_infectious ()
- Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

ModelMeaslesQuarantine (ModelMeaslesQuarantine < TSeq > &model, epiworld\_fast\_uint n, epiworld
 \_fast\_uint n\_exposed, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double
 vax\_efficacy, epiworld\_double vax\_reduction\_recovery\_rate, epiworld\_double incubation\_period, epiworld
 \_double prodromal\_period, epiworld\_double rash\_period, epiworld\_double days\_undetected, epiworld
 \_double hospitalization\_rate, epiworld\_double hospitalization\_period, epiworld\_double prop\_vaccinated,
 epiworld\_fast\_int quarantine\_period, epiworld\_double quarantine\_willingness, epiworld\_fast\_int isolation\_
 period)

ModelMeaslesQuarantine (epiworld\_fast\_uint n, epiworld\_fast\_uint n\_exposed, epiworld\_double contact
 \_rate, epiworld\_double transmission\_rate, epiworld\_double vax\_efficacy, epiworld\_double vax\_reduction
 \_recovery\_rate, epiworld\_double incubation\_period, epiworld\_double prodromal\_period, epiworld\_double
 rash\_period, epiworld\_double days\_undetected, epiworld\_double hospitalization\_rate, epiworld\_double
 hospitalization\_period, epiworld\_double prop\_vaccinated, epiworld\_fast\_int quarantine\_period, epiworld\_double quarantine\_willingness, epiworld\_fast\_int isolation\_period)

#### **Public Attributes**

- std::vector < Agent < TSeq > \* > infectious
   Agents infectious for contact.
- bool system\_quarantine\_triggered = false
- std::vector< int > day\_flagged

Either detected or started quarantine.

std::vector< int > day\_rash\_onset

Day of rash onset.

#### **Static Public Attributes**

- static const epiworld\_fast\_uint SUSCEPTIBLE = 0u
- static const epiworld fast uint EXPOSED = 1u
- static const epiworld\_fast\_uint PRODROMAL = 2u
- static const epiworld fast uint RASH = 3u
- static const epiworld fast uint ISOLATED = 4u
- static const epiworld\_fast\_uint ISOLATED\_RECOVERED = 5u
- static const epiworld\_fast\_uint **DETECTED\_HOSPITALIZED** = 6u
- static const epiworld fast uint QUARANTINED EXPOSED = 7u
- static const epiworld\_fast\_uint QUARANTINED\_SUSCEPTIBLE = 8u
- static const epiworld\_fast\_uint **QUARANTINED\_PRODROMAL** = 9u
- static const epiworld\_fast\_uint QUARANTINED\_RECOVERED = 10u
- static const epiworld\_fast\_uint HOSPITALIZED = 11u
- static const epiworld fast uint RECOVERED = 12u

#### **Additional Inherited Members**

#### 15.16.1 Detailed Description

 $\label{template} \mbox{typename TSeq = EPI_DEFAULT_TSEQ} > \mbox{class ModelMeaslesQuarantine} < \mbox{TSeq} >$ 

Template for a Measles model with quarantine.

#### **Parameters**

TSeq	The type of the sequence to be used.
------	--------------------------------------

This model can be described as a SEIHR model with isolation and quarantine. The infectious state is divided into prodromal and rash phases. Furthermore, the quarantine state includes exposed, susceptible, prodromal, and recovered states.

The quarantine process is triggered any time that an agent with rash is detected. The agent is then isolated and all agents who are unvaccinated are quarantined. Isolated agents then may be moved out of the isolation in isolation — period days.

#### 15.16.2 Constructor & Destructor Documentation

#### 15.16.2.1 ModelMeaslesQuarantine()

```
template<typename TSeq >
{\tt ModelMeaslesQuarantine<\ TSeq\ >::ModelMeaslesQuarantine\ (}
 ModelMeaslesQuarantine< TSeq > & model,
 epiworld_fast_uint n,
 epiworld_fast_uint n_exposed,
 epiworld_double contact_rate,
 epiworld_double transmission_rate,
 epiworld_double vax_efficacy,
 epiworld_double vax_reduction_recovery_rate,
 epiworld_double incubation_period,
 epiworld_double prodromal_period,
 epiworld_double rash_period,
 epiworld_double days_undetected,
 epiworld_double hospitalization_rate,
 epiworld_double hospitalization_period,
 epiworld_double prop_vaccinated,
 epiworld_fast_int quarantine_period,
 epiworld_double quarantine_willingness,
 epiworld_fast_int isolation_period) [inline]
```

#### **Parameters**

n	The number of agents in the system.
n_exposed	The number of exposed agents in the system.
contact_rate	The rate of contact between agents.
transmission_rate	The rate of transmission of the virus.
vax_efficacy	The efficacy of the vaccine.
vax_reduction_recovery_rate	The reduction in recovery rate due to the vaccine.
incubation_period	The incubation period of the virus.
prodromal_period	The prodromal period of the virus.
rash_period	The rash period of the virus.
days_undetected	The number of days the virus goes undetected.
hospitalization_rate	The rate of hospitalization.
hospitalization_period	The duration of hospitalization.
prop_vaccinated	The proportion of vaccinated agents.
quarantine_period	The number of days for quarantine.
quarantine_willingness	The willingness to be quarantined.
isolation_period	The number of days for isolation.

#### 15.16.3 Member Function Documentation

#### 15.16.3.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelMeaslesQuarantine< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented from Model < EPI\_DEFAULT\_TSEQ >.

#### 15.16.3.2 quarantine\_agents()

```
template<typename TSeq >
void ModelMeaslesQuarantine< TSeq >::quarantine_agents [inline]
```

Quarantine agents that are in the system.

The flow should be:

- The function only runs if the quarantine status is active.
- Agents who are in quarantine, isolation, removed, or hospitalized are ignored.
- Agents who are in the RASH state are isolated.
- · Vaccinated agents are ignored.
- Susceptible, Exposed, and Prodromal agents are moved to the QUARANTINED $\_*$  state.
- At the end of the function, the quarantine status is set false.

#### 15.16.3.3 reset()

```
template<typename TSeq >
void ModelMeaslesQuarantine< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

Reimplemented from Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/measlesquarantine.hpp

# 15.17 epiworld::epimodels::ModelSEIR< TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelSEIR < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIR< TSeq >:



#### **Public Member Functions**

- **ModelSEIR** (ModelSEIR< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_← rate)
- **ModelSEIR** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate)
- ModelSEIR < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set up the initial states of the model.

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected\_seir

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2
- static const int REMOVED = 3

#### 15.17.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class epiworld::epimodels::ModelSEIR< TSeq >

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
Generated by Dexygen	epiworld_double Initial prevalence the immune system
transmission_rate	epiworld_double Transmission rate of the virus
avg_incubation_days	epiworld_double Average incubation days of the virus.
roccycry rato	aniworld double Pacayery rate of the virus

#### 15.17.2 Member Function Documentation

#### 15.17.2.1 initial\_states()

Set up the initial states of the model.

#### **Parameters**

proportions → Double vector with the following values:
 0: Proportion of non-infected agents who are removed.
 1: Proportion of exposed agents to be set as infected.

#### 15.17.3 Member Data Documentation

#### 15.17.3.1 update\_exposed\_seir

#### 15.17.3.2 update\_infected\_seir

```
) -> void {
 if (m->runif() < (m->par("Recovery rate")))
 p->rm_virus(m);
 return;
}
```

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.18 ModelSEIR < TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

```
#include <seir.hpp>
```

Inheritance diagram for ModelSEIR< TSeq >:



Collaboration diagram for ModelSEIR < TSeq >:



#### **Public Member Functions**

ModelSEIR (ModelSEIR< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_← rate)

- **ModelSEIR** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate)
- ModelSEIR < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set up the initial states of the model.

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected\_seir

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2
- static const int **REMOVED** = 3

#### 15.18.1 Detailed Description

```
template<typename TSeq = EPI_DEFAULT_TSEQ> class ModelSEIR< TSeq >
```

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	epiworld_double Initial prevalence the immune system
transmission_rate	epiworld_double Transmission rate of the virus
avg_incubation_days	epiworld_double Average incubation days of the virus.
recovery_rate	epiworld_double Recovery rate of the virus.

#### 15.18.2 Member Function Documentation

#### 15.18.2.1 initial\_states()

```
template<typename TSeq >
ModelSEIR< TSeq > & ModelSEIR< TSeq >::initial_states (
```

```
std::vector< double > proportions_,
std::vector< int > queue_ = {}) [inline]
```

Set up the initial states of the model.

#### **Parameters**

# proportions Double vector with the following values: 0: Proportion of non-infected agents who are removed. 1: Proportion of exposed agents to be set as infected.

#### 15.18.3 Member Data Documentation

#### 15.18.3.1 update\_exposed\_seir

#### 15.18.3.2 update\_infected\_seir

The documentation for this class was generated from the following file:

• include/epiworld/models/seir.hpp

# 15.19 epiworld::epimodels::ModelSEIRCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSEIRCONN < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRCONN < TSeq >:



#### **Public Member Functions**

ModelSEIRCONN (ModelSEIRCONN
 TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld double avg incubation days, epiworld double recovery rate)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- ModelSEIRCONN (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld
   —double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld
   —double recovery\_rate)
- ModelSEIRCONN
   TSeq > & run (epiworld fast uint ndays, int seed=-1)
- · void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSEIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

- size\_t get\_n\_infected () const
- std::vector< double > generation\_time\_expected (int max\_days=200, int max\_contacts=200) const

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int **EXPOSED** = 1
- static const int **INFECTED** = 2
- static const int **RECOVERED** = 3

#### 15.19.1 Constructor & Destructor Documentation

#### 15.19.1.1 ModelSEIRCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

#### 15.19.2 Member Function Documentation

#### 15.19.2.1 initial\_states()

```
template<typename TSeq >
ModelSEIRCONN< TSeq > & ModelSEIRCONN< TSeq >::initial_states (
```

```
std::vector< double > proportions_,
std::vector< int > queue_ = {}) [inline]
```

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.20 ModelSEIRCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSEIRCONN< TSeq >:



Collaboration diagram for ModelSEIRCONN < TSeq >:



#### **Public Member Functions**

ModelSEIRCONN (ModelSEIRCONN 
 TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld ← double avg\_incubation\_days, epiworld\_double recovery\_rate)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- ModelSEIRCONN (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld
   — double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld
   — double recovery\_rate)
- ModelSEIRCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSEIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

- size t get\_n\_infected () const
- std::vector< double > generation\_time\_expected (int max\_days=200, int max\_contacts=200) const

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2
- static const int RECOVERED = 3

#### 15.20.1 Constructor & Destructor Documentation

#### 15.20.1.1 ModelSEIRCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

Generated by Doxygen

#### 15.20.2 Member Function Documentation

#### 15.20.2.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions⊷	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

• include/epiworld/models/seirconnected.hpp

# 15.21 epiworld::epimodels::ModelSEIRD< TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelSEIRD< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRD< TSeq >:



#### **Public Member Functions**

ModelSEIRD (ModelSEIRD < TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld double death rate)

Constructor for the SEIRD model.

- ModelSEIRD (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
  - Constructor for the SEIRD model.
- ModelSEIRD < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- $\bullet \ \ \mathsf{epiworld::} \mathsf{UpdateFun} < \mathsf{TSeq} > \mathbf{update\_infected}$

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int **EXPOSED** = 1
- static const int **INFECTED** = 2
- static const int **REMOVED** = 3
- static const int **DECEASED** = 4

#### 15.21.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class epiworld::epimodels::ModelSEIRD< TSeq >

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

#### 15.21.2 Constructor & Destructor Documentation

#### 15.21.2.1 ModelSEIRD() [1/2]

Constructor for the SEIRD model.

#### **Template Parameters**

TSeq	Type of the sequence used in the model.
------	-----------------------------------------

#### **Parameters**

model	Reference to the SEIRD model.
vname	Name of the model.
prevalence	Prevalence of the disease.
transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

#### 15.21.2.2 ModelSEIRD() [2/2]

Constructor for the SEIRD model.

#### **Parameters**

vname	Name of the model.
prevalence	Initial prevalence of the disease.

#### **Parameters**

transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

#### 15.21.3 Member Data Documentation

#### 15.21.3.1 update\_exposed\_seir

The documentation for this class was generated from the following file:

· epiworld.hpp

## ${\bf 15.22 \quad ModelSEIRD\! < TSeq > Class\ Template\ Reference}$

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

```
#include <seird.hpp>
```

Inheritance diagram for ModelSEIRD < TSeq >:



Collaboration diagram for ModelSEIRD< TSeq >:



#### **Public Member Functions**

 ModelSEIRD (ModelSEIRD< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Constructor for the SEIRD model.

- ModelSEIRD (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
  - Constructor for the SEIRD model.
- ModelSEIRD < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2
- static const int **REMOVED** = 3
- static const int **DECEASED** = 4

#### 15.22.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class ModelSEIRD< TSeq >

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

# 15.22.2 Constructor & Destructor Documentation

# 15.22.2.1 ModelSEIRD() [1/2]

Constructor for the SEIRD model.

#### **Template Parameters**

TSeq	Type of the sequence used in the model.
------	-----------------------------------------

#### **Parameters**

model	Reference to the SEIRD model.
vname	Name of the model.
prevalence	Prevalence of the disease.
transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

# 15.22.2.2 ModelSEIRD() [2/2]

Constructor for the SEIRD model.

#### **Parameters**

vname	Name of the model.
prevalence	Initial prevalence of the disease.

#### **Parameters**

transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

#### 15.22.3 Member Data Documentation

#### 15.22.3.1 update\_exposed\_seir

The documentation for this class was generated from the following file:

• include/epiworld/models/seird.hpp

# 15.23 epiworld::epimodels::ModelSEIRDCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSEIRDCONN < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRDCONN< TSeq >:



#### **Public Member Functions**

ModelSEIRDCONN (ModelSEIRDCONN < TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_← double avg incubation days, epiworld double recovery rate, epiworld double death rate)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- ModelSEIRDCONN (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld
   — double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld
   — double recovery\_rate, epiworld\_double death\_rate)
- ModelSEIRDCONN< TSeg > & run (epiworld fast uint ndays, int seed=-1)
- · void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSEIRDCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue\_={})

Set up the initial states of the model.

• size\_t get\_n\_infected () const

### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int **REMOVED** = 3
- static const int **DECEASED** = 4

### 15.23.1 Constructor & Destructor Documentation

#### 15.23.1.1 ModelSEIRDCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

### 15.23.2 Member Function Documentation

# 15.23.2.1 initial\_states()

Set up the initial states of the model.

#### **Parameters**

proportions↔	Double vector with the following values:
_	0: Proportion of non-infected agents who are removed.
	1: Proportion of exposed agents to be set as infected.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 15.24 ModelSEIRDCONN < TSeq > Class Template Reference

Inheritance diagram for ModelSEIRDCONN< TSeq >:



Collaboration diagram for ModelSEIRDCONN< TSeq >:



### **Public Member Functions**

ModelSEIRDCONN (ModelSEIRDCONN < TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_← double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- ModelSEIRDCONN (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld
   — double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld
   — double recovery\_rate, epiworld\_double death\_rate)
- ModelSEIRDCONN< TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- · void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSEIRDCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue\_={})

Set up the initial states of the model.

• size\_t get\_n\_infected () const

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int **REMOVED** = 3
- static const int **DECEASED** = 4

# 15.24.1 Constructor & Destructor Documentation

#### 15.24.1.1 ModelSEIRDCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

# 15.24.2 Member Function Documentation

#### 15.24.2.1 initial\_states()

Set up the initial states of the model.

#### **Parameters**

proportions⇔	Double vector with the following values:
_	0: Proportion of non-infected agents who are removed.
	1: Proportion of exposed agents to be set as infected.

The documentation for this class was generated from the following file:

• include/epiworld/models/seirdconnected.hpp

# 15.25 epiworld::epimodels::ModelSEIRMixing< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSEIRMixing < TSeq >:



 $\label{lem:collaboration} \mbox{Collaboration diagram for epiworld::epimodels::ModelSEIRMixing} < \mbox{TSeq} > :$ 



#### **Public Member Functions**

ModelSEIRMixing (ModelSEIRMixing < TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld—double avg\_incubation\_days, epiworld\_double recovery\_rate, std::vector < double > contact\_matrix)

Constructs a ModelSEIRMixing object.

ModelSEIRMixing (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_
 double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld
 double recovery\_rate, std::vector< double > contact\_matrix)

Constructs a ModelSEIRMixing object.

- ModelSEIRMixing < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSEIRMixing< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

void set\_contact\_matrix (std::vector< double > cmat)

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int RECOVERED = 3

#### 15.25.1 Constructor & Destructor Documentation

#### 15.25.1.1 ModelSEIRMixing() [1/2]

Constructs a ModelSEIRMixing object.

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A reference to an existing ModelSEIRMixing object.
vname	The name of the ModelSEIRMixing object.
n	The number of entities in the model.

#### **Parameters**

prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
avg_incubation_days	The average incubation period of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model. Specified in column-major order.
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

#### 15.25.1.2 ModelSEIRMixing() [2/2]

# Constructs a ModelSEIRMixing object.

### **Parameters**

vname	The name of the ModelSEIRMixing object.
п	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
avg_incubation_days	The average incubation period of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model.

# 15.25.2 Member Function Documentation

#### 15.25.2.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 15.26 ModelSEIRMixing < TSeq > Class Template Reference

Inheritance diagram for ModelSEIRMixing< TSeq >:



Collaboration diagram for ModelSEIRMixing< TSeq >:



#### **Public Member Functions**

ModelSEIRMixing (ModelSEIRMixing < TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld—double avg\_incubation\_days, epiworld\_double recovery\_rate, std::vector < double > contact\_matrix)

Constructs a ModelSEIRMixing object.

ModelSEIRMixing (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_
 double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld
 double recovery\_rate, std::vector< double > contact\_matrix)

Constructs a ModelSEIRMixing object.

- ModelSEIRMixing < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSEIRMixing< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

void set\_contact\_matrix (std::vector< double > cmat)

#### Static Public Attributes

- static const int SUSCEPTIBLE = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int RECOVERED = 3

#### 15.26.1 Constructor & Destructor Documentation

#### 15.26.1.1 ModelSEIRMixing() [1/2]

Constructs a ModelSEIRMixing object.

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A reference to an existing ModelSEIRMixing object.
vname	The name of the ModelSEIRMixing object.
n	The number of entities in the model.

#### **Parameters**

prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
avg_incubation_days	The average incubation period of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model. Specified in column-major order.
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

# 15.26.1.2 ModelSEIRMixing() [2/2]

# Constructs a ModelSEIRMixing object.

#### **Parameters**

vname	The name of the ModelSEIRMixing object.
п	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
avg_incubation_days	The average incubation period of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model.

# 15.26.2 Member Function Documentation

#### 15.26.2.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

• include/epiworld/models/seirmixing.hpp

# 15.27 epiworld::epimodels::ModelSEIRMixingQuarantine< TSeq > Class Template Reference

 $Inheritance\ diagram\ for\ epiworld:: epimodels:: Model SEIR Mixing Quarantine < TSeq >:$ 



Collaboration diagram for epiworld::epimodels::ModelSEIRMixingQuarantine < TSeq >:



#### **Public Member Functions**

ModelSEIRMixingQuarantine (ModelSEIRMixingQuarantine < TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, std::vector < double > contact\_matrix, std::vector < bool > entity\_can\_quarantine, epiworld\_double hospitalization\_rate, epiworld\_double hospitalization\_period, epiworld\_double days\_undetected, epiworld\_fast\_int quarantine\_
period, epiworld\_double quarantine\_willingness, epiworld\_fast\_int isolation\_period)

Constructs a ModelSEIRMixingQuarantine object.

Constructs a ModelSEIRMixingQuarantine object.

- ModelSEIRMixingQuarantine< TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- · void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSEIRMixingQuarantine < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})

Set the initial states of the model.

- void set\_contact\_matrix (std::vector< double > cmat)
- void set\_entity\_can\_quarantine (std::vector< bool > can\_quarantine)
- std::vector< double > get\_contact\_matrix () const
- $std::vector < bool > get_entity_can_quarantine () const$
- std::vector< bool > get entity quarantine triggered () const
- std::vector< bool > get quarantine willingness () const

# **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2

- static const int ISOLATED = 3
- static const int **DETECTED\_HOSPITALIZED** = 4
- static const int QUARANTINED SUSCEPTIBLE = 5
- static const int QUARANTINED EXPOSED = 6
- static const int ISOLATED RECOVERED = 7
- static const int **HOSPITALIZED** = 8
- static const int **RECOVERED** = 9

#### 15.27.1 Constructor & Destructor Documentation

#### 15.27.1.1 ModelSEIRMixingQuarantine() [1/2]

```
template<typename TSeq >
epiworld::epimodels::ModelSEIRMixingQuarantine< TSeq >::ModelSEIRMixingQuarantine (
 ModelSEIRMixingQuarantine < TSeg > & model,
 const std::string & vname,
 epiworld_fast_uint n,
 epiworld_double prevalence,
 epiworld_double contact_rate,
 epiworld_double transmission_rate,
 epiworld_double avg_incubation_days,
 epiworld_double recovery_rate,
 std::vector< double > contact_matrix,
 std::vector< bool > entity_can_quarantine,
 epiworld_double hospitalization_rate,
 epiworld_double hospitalization_period,
 epiworld_double days_undetected,
 epiworld_fast_int quarantine_period,
 epiworld_double quarantine_willingness,
 epiworld_fast_int isolation_period) [inline]
```

Constructs a ModelSEIRMixingQuarantine object.

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A reference to an existing ModelSEIRMixingQuarantine object.
vname	The name of the ModelSEIRMixingQuarantine object.
n	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
avg_incubation_days	The average incubation period of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model. Specified in column-major order.
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
Generated by Doxygen	Probability of recovery

#### 15.27.1.2 ModelSEIRMixingQuarantine() [2/2]

```
template<typename TSeq >
epiworld::epimodels::ModelSEIRMixingQuarantine< TSeq >::ModelSEIRMixingQuarantine (
 const std::string & vname,
 {\tt epiworld_fast_uint}\ n,
 epiworld_double prevalence,
 epiworld_double contact_rate,
 epiworld_double transmission_rate,
 epiworld_double avg_incubation_days,
 epiworld_double recovery_rate,
 std::vector< double > contact_matrix,
 std::vector< bool > entity_can_quarantine,
 epiworld_double hospitalization_rate,
 epiworld_double hospitalization_period,
 epiworld_double days_undetected,
 epiworld_fast_int quarantine_period,
 epiworld_double quarantine_willingness,
 epiworld_fast_int isolation_period) [inline]
```

# Constructs a ModelSEIRMixingQuarantine object.

#### **Parameters**

vname	The name of the ModelSEIRMixingQuarantine object.
n	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
avg_incubation_days	The average incubation period of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model.

#### 15.27.2 Member Function Documentation

#### 15.27.2.1 initial states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 15.28 epiworld::epimodels::ModelSIR< TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed (SIR) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSIR< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIR< TSeq >:



#### **Public Member Functions**

- ModelSIR (ModelSIR < TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld
   —double transmission\_rate, epiworld\_double recovery\_rate)
- **ModelSIR** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- ModelSIR < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.

# 15.28.1 Detailed Description

```
template<typename TSeq = EPI_DEFAULT_TSEQ> class epiworld::epimodels::ModelSIR< TSeq >
```

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

#### 15.28.2 Member Function Documentation

# 15.28.2.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions⊷	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 15.29 ModelSIR < TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed (SIR) model.

#include <sir.hpp>

Inheritance diagram for ModelSIR< TSeq >:



Collaboration diagram for ModelSIR < TSeq >:



# **Public Member Functions**

- ModelSIR (ModelSIR < TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld
   —double transmission\_rate, epiworld\_double recovery\_rate)
- **ModelSIR** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- ModelSIR < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.

# 15.29.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class ModelSIR< TSeq >

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

# 15.29.2 Member Function Documentation

# 15.29.2.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

• include/epiworld/models/sir.hpp

# 15.30 epiworld::epimodels::ModelSIRCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRCONN< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRCONN < TSeq >:



#### **Public Member Functions**

ModelSIRCONN (ModelSIRCONN
 TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld← \_double recovery\_rate)

Template for a Susceptible-Infected-Removed (SIR) model.

- **ModelSIRCONN** (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_← double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- ModelSIRCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

• size\_t get\_n\_infected () const

Get the infected individuals.

• std::vector< double > generation\_time\_expected (int max\_days=200, int max\_contacts=200) const

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int INFECTED = 1
- static const int RECOVERED = 2

#### 15.30.1 Constructor & Destructor Documentation

#### 15.30.1.1 ModelSIRCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

#### 15.30.2 Member Function Documentation

#### 15.30.2.1 get\_n\_infected()

```
template<typename TSeq = EPI_DEFAULT_TSEQ>
size_t epiworld::epimodels::ModelSIRCONN< TSeq >::get_n_infected () const [inline]
```

Get the infected individuals.

#### Returns

```
{\sf std::vector}{<}\ {\sf epiworld::Agent}{<} {\sf TSeq}{>}\ *>
```

#### 15.30.2.2 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 15.31 ModelSIRCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSIRCONN< TSeq >:



Collaboration diagram for ModelSIRCONN< TSeq >:



#### **Public Member Functions**

ModelSIRCONN (ModelSIRCONN TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld← \_double recovery\_rate)

Template for a Susceptible-Infected-Removed (SIR) model.

- **ModelSIRCONN** (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_← double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- ModelSIRCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

• size\_t get\_n\_infected () const

Get the infected individuals.

• std::vector< double > generation\_time\_expected (int max\_days=200, int max\_contacts=200) const

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int INFECTED = 1
- static const int **RECOVERED** = 2

# 15.31.1 Constructor & Destructor Documentation

#### 15.31.1.1 ModelSIRCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

#### 15.31.2 Member Function Documentation

### 15.31.2.1 get\_n\_infected()

```
template<typename TSeq = EPI_DEFAULT_TSEQ>
size_t ModelSIRCONN< TSeq >::get_n_infected () const [inline]
```

Get the infected individuals.

### Returns

```
std::vector< epiworld::Agent<TSeq> * >
```

# 15.31.2.2 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions⊷	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

• include/epiworld/models/sirconnected.hpp

# 15.32 epiworld::epimodels::ModelSIRD< TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed-Deceased (SIRD) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSIRD< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRD< TSeq >:



#### **Public Member Functions**

- ModelSIRD < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.
- ModelSIRD (ModelSIRD< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
   Constructs a new SIRD model with the given parameters.
- **ModelSIRD** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

# 15.32.1 Detailed Description

```
template<typename TSeq = EPI_DEFAULT_TSEQ> class epiworld::epimodels::ModelSIRD< TSeq >
```

Template for a Susceptible-Infected-Removed-Deceased (SIRD) model.

#### 15.32.2 Constructor & Destructor Documentation

#### 15.32.2.1 ModelSIRD()

Constructs a new SIRD model with the given parameters.

#### **Parameters**

model	The SIRD model to copy from.
vname	The name of the vertex associated with this model.
prevalence	The initial prevalence of the disease in the population.
transmission_rate	The rate at which the disease spreads from infected to susceptible individuals.
recovery_rate	The rate at which infected individuals recover and become immune.
death_rate	The rate at which infected individuals die.

#### 15.32.3 Member Function Documentation

#### 15.32.3.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions Double vector with two elements:
 The proportion of non-infected individuals who have recovered.
 The proportion of non-infected individuals who have died.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 15.33 ModelSIRD < TSeq > Class Template Reference

 $Template \ for \ a \ Susceptible-Infected-Removed-Deceased \ (SIRD) \ model.$ 

```
#include <sird.hpp>
```

Inheritance diagram for ModelSIRD< TSeq >:



Collaboration diagram for ModelSIRD< TSeq >:



#### **Public Member Functions**

- ModelSIRD < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.
- ModelSIRD (ModelSIRD< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
   Constructs a new SIRD model with the given parameters.
- **ModelSIRD** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

#### 15.33.1 Detailed Description

```
template<typename TSeq = EPI_DEFAULT_TSEQ> class ModelSIRD< TSeq >
```

Template for a Susceptible-Infected-Removed-Deceased (SIRD) model.

#### 15.33.2 Constructor & Destructor Documentation

#### 15.33.2.1 ModelSIRD()

Constructs a new SIRD model with the given parameters.

#### **Parameters**

model	The SIRD model to copy from.	
vname	The name of the vertex associated with this model.	
prevalence	The initial prevalence of the disease in the population.	
transmission_rate	The rate at which the disease spreads from infected to susceptible individuals.	
recovery_rate	The rate at which infected individuals recover and become immune.	
death_rate	The rate at which infected individuals die.	

# 15.33.3 Member Function Documentation

# 15.33.3.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions⊷	Double vector with two elements:
_	The proportion of non-infected individuals who have recovered.
	The proportion of non-infected individuals who have died.

The documentation for this class was generated from the following file:

• include/epiworld/models/sird.hpp

# 15.34 epiworld::epimodels::ModelSIRDCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRDCONN < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRDCONN < TSeg >:



#### **Public Member Functions**

ModelSIRDCONN (ModelSIRDCONN 
 TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRDCONN (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld couble contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
- ModelSIRDCONN< TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- void reset ()
- Model < TSeq > \* clone\_ptr ()

# **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int INFECTED = 1
- static const int **RECOVERED** = 2
- static const int **DECEASED** = 3

#### 15.34.1 Constructor & Destructor Documentation

#### 15.34.1.1 ModelSIRDCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

The documentation for this class was generated from the following file:

· epiworld.hpp

# 15.35 ModelSIRDCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSIRDCONN< TSeq >:



Collaboration diagram for ModelSIRDCONN< TSeq >:



### **Public Member Functions**

ModelSIRDCONN (ModelSIRDCONN < TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery rate, epiworld double death rate)

 ${\it Template for a Susceptible-Infected-Removed (SIR) model.}$ 

- **ModelSIRDCONN** (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death rate)
- ModelSIRDCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- void reset ()
- Model < TSeq > \* clone\_ptr ()

### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int INFECTED = 1
- static const int **RECOVERED** = 2
- static const int **DECEASED** = 3

# 15.35.1 Constructor & Destructor Documentation

#### 15.35.1.1 ModelSIRDCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

The documentation for this class was generated from the following file:

• include/epiworld/models/sirdconnected.hpp

# 15.36 epiworld::epimodels::ModelSIRLogit< TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed (SIR) model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelSIRLogit< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRLogit < TSeq >:



#### **Public Member Functions**

ModelSIRLogit (ModelSIRLogit < TSeq > &model, const std::string &vname, double \*data, size\_t ncols, std::vector < double > coefs\_infect, std::vector < double > coefs\_recover, std::vector < size\_t > coef\_ ← infect\_cols, std::vector < size\_t > coef\_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRLogit (const std::string &vname, double \*data, size\_t ncols, std::vector< double > coefs\_infect, std::vector< double > coefs\_recover, std::vector< size\_t > coef\_infect\_cols, std::vector< size\_t > coef← \_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)
- ModelSIRLogit < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- Model < TSeq > \* clone\_ptr ()
- · void reset ()

#### **Public Attributes**

- $std::vector < double > coefs_infect$
- std::vector< double > coefs\_recover
- std::vector< size t > coef\_infect\_cols
- std::vector< size\_t > coef\_recover\_cols

# 15.36.1 Detailed Description

```
template<typename TSeq = EPI_DEFAULT_TSEQ> class epiworld::epimodels::ModelSIRLogit< TSeq>
```

Template for a Susceptible-Infected-Removed (SIR) model.

In this model, infection and recoveru probabilities are computed using a logit model. Particularly, the probability of infection is computed as:

$$\frac{1}{1 + \exp\left(-\left(\beta_0 E_i + \sum_{i=1}^n \beta_i x_i\right)\right)}$$

where  $\beta_0$  is the exposure coefficient and  $E_i$  is the exposure number,  $\beta_i$  are the coefficients for the features  $x_i$  of the agents, and n is the number of features. The probability of recovery is computed as:

$$\frac{1}{1 + \exp\left(-\left(\sum_{i=1}^{n} \beta_i x_i\right)\right)}$$

where  $\beta_i$  are the coefficients for the features  $x_i$  of the agents, and n is the number of features.

#### **Parameters**

```
TSeq Type of the sequence (e.g. std::vector, std::deque)
```

# 15.36.2 Constructor & Destructor Documentation

#### 15.36.2.1 ModelSIRLogit()

```
std::vector< size_t > coef_recover_cols,
epiworld_double transmission_rate,
epiworld_double recovery_rate,
epiworld_double prevalence) [inline]
```

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

vname	Name of the virus.
coefs_infect	Double ptr. Infection coefficients.
coefs_recover	Double ptr. Recovery coefficients.
ncoef_infect	Unsigned int. Number of infection coefficients.
ncoef_recover	Unsigned int. Number of recovery coefficients.
coef_infect_cols	Vector <unsigned int="">. Ids of infection vars.</unsigned>
coef_recover_cols	Vector <unsigned int="">. Ids of recover vars.</unsigned>
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.37 ModelSIRLogit < TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed (SIR) model.

```
#include <sirlogit.hpp>
```

Inheritance diagram for ModelSIRLogit < TSeq >:



Collaboration diagram for ModelSIRLogit < TSeq >:



#### **Public Member Functions**

ModelSIRLogit (ModelSIRLogit < TSeq > &model, const std::string &vname, double \*data, size\_t ncols, std::vector < double > coefs\_infect, std::vector < double > coefs\_recover, std::vector < size\_t > coef\_← infect\_cols, std::vector < size\_t > coef\_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRLogit (const std::string &vname, double \*data, size\_t ncols, std::vector< double > coefs\_infect, std::vector< double > coefs\_recover, std::vector< size\_t > coef\_infect\_cols, std::vector< size\_t > coef← \_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)
- ModelSIRLogit < TSeq > & run (epiworld fast uint ndays, int seed=-1)
- Model < TSeq > \* clone\_ptr ()
- · void reset ()

#### **Public Attributes**

- std::vector< double > coefs\_infect
- std::vector< double > coefs\_recover
- std::vector< size\_t > coef\_infect\_cols
- std::vector< size\_t > coef\_recover\_cols

#### 15.37.1 Detailed Description

template < typename TSeq = EPI\_DEFAULT\_TSEQ > class ModelSIRLogit < TSeq >

Template for a Susceptible-Infected-Removed (SIR) model.

In this model, infection and recoveru probabilities are computed using a logit model. Particularly, the probability of infection is computed as:

$$\frac{1}{1 + \exp\left(-\left(\beta_0 E_i + \sum_{i=1}^n \beta_i x_i\right)\right)}$$

where  $\beta_0$  is the exposure coefficient and  $E_i$  is the exposure number,  $\beta_i$  are the coefficients for the features  $x_i$  of the agents, and n is the number of features. The probability of recovery is computed as:

$$\frac{1}{1 + \exp\left(-\left(\sum_{i=1}^{n} \beta_i x_i\right)\right)}$$

where  $\beta_i$  are the coefficients for the features  $x_i$  of the agents, and n is the number of features.

#### **Parameters**

#### 15.37.2 Constructor & Destructor Documentation

#### 15.37.2.1 ModelSIRLogit()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

vname	Name of the virus.
coefs_infect	Double ptr. Infection coefficients.
coefs_recover	Double ptr. Recovery coefficients.
ncoef_infect	Unsigned int. Number of infection coefficients.
ncoef_recover	Unsigned int. Number of recovery coefficients.
coef_infect_cols	Vector <unsigned int="">. Ids of infection vars.</unsigned>
coef_recover_cols	Vector <unsigned int="">. Ids of recover vars.</unsigned>
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

The documentation for this class was generated from the following file:

• include/epiworld/models/sirlogit.hpp

## 15.38 epiworld::epimodels::ModelSIRMixing< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRMixing< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRMixing< TSeq >:



#### **Public Member Functions**

ModelSIRMixing (ModelSIRMixing< TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld double recovery rate, std::vector< double > contact\_matrix)

Constructs a ModelSIRMixing object.

ModelSIRMixing (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_
 double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, std::vector < double > contact\_matrix)

Constructs a ModelSIRMixing object.

- ModelSIRMixing < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- · void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSIRMixing< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

- · size\_t get\_n\_infected (size\_t group) const
- void set\_contact\_matrix (std::vector< double > cmat)

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int INFECTED = 1
- static const int RECOVERED = 2

#### 15.38.1 Constructor & Destructor Documentation

#### 15.38.1.1 ModelSIRMixing() [1/2]

Constructs a ModelSIRMixing object.

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A reference to an existing ModelSIRMixing object.
vname	The name of the ModelSIRMixing object.
п	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model.
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
Generated by Doxygen prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
,	D 1 175 (

#### 15.38.1.2 ModelSIRMixing() [2/2]

Constructs a ModelSIRMixing object.

#### **Parameters**

vname	The name of the ModelSIRMixing object.
n	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model.

#### 15.38.2 Member Function Documentation

#### 15.38.2.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.39 ModelSIRMixing < TSeq > Class Template Reference

Inheritance diagram for ModelSIRMixing < TSeq >:



Collaboration diagram for ModelSIRMixing < TSeq >:



#### **Public Member Functions**

ModelSIRMixing (ModelSIRMixing< TSeq > &model, const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld
 \_double recovery\_rate, std::vector< double > contact\_matrix)

Constructs a ModelSIRMixing object.

ModelSIRMixing (const std::string &vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_
 double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, std::vector < double > contact\_matrix)

Constructs a ModelSIRMixing object.

- ModelSIRMixing< TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
- · void reset ()
- Model < TSeq > \* clone\_ptr ()
- ModelSIRMixing< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

- size\_t get\_n\_infected (size\_t group) const
- void set\_contact\_matrix (std::vector< double > cmat)

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int INFECTED = 1
- static const int **RECOVERED** = 2

#### 15.39.1 Constructor & Destructor Documentation

#### 15.39.1.1 ModelSIRMixing() [1/2]

Constructs a ModelSIRMixing object.

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A reference to an existing ModelSIRMixing object.
vname	The name of the ModelSIRMixing object.
n	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model.
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

#### 15.39.1.2 ModelSIRMixing() [2/2]

```
template<typename TSeq >
ModelSIRMixing< TSeq >::ModelSIRMixing (
```

```
const std::string & vname,
epiworld_fast_uint n,
epiworld_double prevalence,
epiworld_double contact_rate,
epiworld_double transmission_rate,
epiworld_double recovery_rate,
std::vector< double > contact_matrix) [inline]
```

#### Constructs a ModelSIRMixing object.

#### **Parameters**

vname	The name of the ModelSIRMixing object.
n	The number of entities in the model.
prevalence	The initial prevalence of the disease in the model.
contact_rate	The contact rate between entities in the model.
transmission_rate	The transmission rate of the disease in the model.
recovery_rate	The recovery rate of the disease in the model.
contact_matrix	The contact matrix between entities in the model.

#### 15.39.2 Member Function Documentation

#### 15.39.2.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

The documentation for this class was generated from the following file:

• include/epiworld/models/sirmixing.hpp

# 15.40 epiworld::epimodels::ModelSIS< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible (SIS) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSIS< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIS < TSeq >:



#### **Public Member Functions**

- ModelSIS (ModelSIS < TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld
   —double transmission\_rate, epiworld\_double recovery\_rate)
- **ModelSIS** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int INFECTED = 1

#### 15.40.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class epiworld::epimodels::ModelSIS< TSeq >

Template for a Susceptible-Infected-Susceptible (SIS) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.41 ModelSIS< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible (SIS) model.

#include <sis.hpp>

Inheritance diagram for ModelSIS< TSeq >:



Collaboration diagram for ModelSIS < TSeq >:



#### **Public Member Functions**

• **ModelSIS** (ModelSIS< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld ← double transmission\_rate, epiworld\_double recovery\_rate)

• **ModelSIS** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int INFECTED = 1

#### 15.41.1 Detailed Description

```
template<typename TSeq = EPI_DEFAULT_TSEQ> class ModelSIS< TSeq >
```

Template for a Susceptible-Infected-Susceptible (SIS) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/sis.hpp

# 15.42 epiworld::epimodels::ModelSISD< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelSISD< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSISD< TSeq >:



#### **Public Member Functions**

- **ModelSISD** (ModelSISD< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
- **ModelSISD** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

#### 15.42.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class epiworld::epimodels::ModelSISD< TSeq >

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system
inital_death	epiworld_double Initial death_rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.43 ModelSISD< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

#include <sisd.hpp>

Inheritance diagram for ModelSISD < TSeq >:



Collaboration diagram for ModelSISD< TSeq >:



#### **Public Member Functions**

- **ModelSISD** (ModelSISD< TSeq > &model, const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
- **ModelSISD** (const std::string &vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

#### 15.43.1 Detailed Description

template<typename TSeq = EPI\_DEFAULT\_TSEQ> class ModelSISD< TSeq >

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system
inital_death	epiworld_double Initial death_rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/sisd.hpp

# 15.44 epiworld::epimodels::ModelSURV< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSURV < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSURV< TSeq >:



#### **Public Member Functions**

· void reset ()

#### Construct a new ModelSURV object

The ModelSURV class simulates a survaillence model where agents can be isolated, even if asyptomatic.

#### **Parameters**

vname	String. Name of the virus
prevalence	Integer. Number of initial cases of the virus.
efficacy_vax	Double. Efficacy of the vaccine (1 - P(acquire the disease)).
latent_period	Double. Shape parameter of a Gamma (latent_period, 1) distribution. This coincides with the expected number of latent days.
infect_period	Double. Shape parameter of a Gamma (infected_period, 1) distribution. This coincides with the expected number of infectious days.
prob_symptoms	Double. Probability of generating symptoms.
prop_vaccinated	Double. Probability of vaccination. Coincides with the initial prevalence of vaccinated individuals.
prop_vax_redux_transm	Double. Factor by which the vaccine reduces transmissibility.
prop_vax_redux_infect	Double. Factor by which the vaccine reduces the chances of becoming infected.
surveillance_prob	Double. Probability of testing an agent.
prob_transmission	Double. Raw transmission probability.
prob_death	Double. Raw probability of death for symptomatic individuals.
prob_noreinfect	Double. Probability of no re-infection.

This model features the following states:

- Susceptible
- Latent
- Symptomatic
- · Symptomatic isolated
- · Asymptomatic

- · Asymptomatic isolated
- · Recovered
- · Removed

#### Returns

An object of class epiworld\_surv

- · ModelSURV ()
- ModelSURV (ModelSURV < TSeq > &model, const std::string &vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect content in prevalence=6u, epiworld\_double prob\_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld couble prop\_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_double prob\_noreinfect=0.9)
- ModelSURV (const std::string &vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_
   vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob
   \_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop\_vax\_redux\_transm=0.5,
   epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double
   prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_double prob\_noreinfect=0.9)

#### **Public Attributes**

std::vector< epiworld\_double > days\_latent\_and\_infectious
 Vector of days spent in latent and infectious states A row-major matrix.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 15.45 ModelSURV < TSeq > Class Template Reference

Inheritance diagram for ModelSURV< TSeq >:



Collaboration diagram for ModelSURV < TSeq >:



#### **Public Member Functions**

• void reset ()

#### Construct a new ModelSURV object

The ModelSURV class simulates a survaillence model where agents can be isolated, even if asyptomatic.

#### **Parameters**

vname	String. Name of the virus
prevalence	Integer. Number of initial cases of the virus.
efficacy_vax	Double. Efficacy of the vaccine (1 - P(acquire the disease)).
latent_period	Double. Shape parameter of a Gamma (latent_period, 1) distribution. This coincides with the expected number of latent days.
infect_period	Double. Shape parameter of a Gamma (infected_period, 1) distribution. This coincides with the expected number of infectious days.
prob_symptoms	Double. Probability of generating symptoms.
prop_vaccinated	Double. Probability of vaccination. Coincides with the initial prevalence of vaccinated individuals.
prop_vax_redux_transm	Double. Factor by which the vaccine reduces transmissibility.
prop_vax_redux_infect	Double. Factor by which the vaccine reduces the chances of becoming infected.
surveillance_prob	Double. Probability of testing an agent.
prob_transmission	Double. Raw transmission probability.
prob_death	Double. Raw probability of death for symptomatic individuals.
prob_noreinfect	Double. Probability of no re-infection.

This model features the following states:

- Susceptible
- Latent
- Symptomatic
- · Symptomatic isolated
- · Asymptomatic

- · Asymptomatic isolated
- Recovered
- · Removed

#### Returns

An object of class epiworld\_surv

- · ModelSURV ()
- ModelSURV (ModelSURV < TSeq > &model, const std::string &vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect ← \_period=6u, epiworld\_double prob\_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld ← \_double prop\_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_double prob\_noreinfect=0.9)
- ModelSURV (const std::string &vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_
   vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob
   \_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop\_vax\_redux\_transm=0.5,
   epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double
   prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_double prob\_noreinfect=0.9)

#### **Public Attributes**

std::vector< epiworld\_double > days\_latent\_and\_infectious
 Vector of days spent in latent and infectious states A row-major matrix.

The documentation for this class was generated from the following file:

• include/epiworld/models/surveillance.hpp

## 15.46 Network< Nettype, Nodetype, Edgetype > Class Template Reference

#### **Public Member Functions**

- NType ()
- Edgetype operator() (int i, int j)
- bool is\_directed () const
- size\_t vcount () const
- size t ecount () const
- void add\_edge (int i, int j)
- void rm\_edge (int i, int j)

The documentation for this class was generated from the following file:

· include/epiworld/network-bones.hpp

## 15.47 PersonTools < TSeq > Class Template Reference

The documentation for this class was generated from the following file:

· include/epiworld/config.hpp

## 15.48 Progress Class Reference

A simple progress bar.

```
#include progress.hpp>
```

#### **Public Member Functions**

- Progress (int n\_, int width\_)
- void start ()
- void next ()
- void end ()

#### 15.48.1 Detailed Description

A simple progress bar.

The documentation for this class was generated from the following file:

· include/epiworld/progress.hpp

## 15.49 Queue < TSeq > Class Template Reference

Controls which agents are verified at each step.

```
#include <queue-bones.hpp>
```

#### **Public Member Functions**

- void operator+= (Agent < TSeq > \*p)
- void operator-= (Agent < TSeq > \*p)
- epiworld\_fast\_int & operator[] (epiworld\_fast\_uint i)
- · void reset ()
- bool operator== (const Queue < TSeq > &other) const
- bool operator!= (const Queue < TSeq > &other) const

#### **Static Public Attributes**

- static const int NoOne = 0
- static const int OnlySelf = 1
- static const int **Everyone** = 2

#### **Friends**

class Model < TSeq >

#### 15.49.1 Detailed Description

template<typename TSeq> class Queue< TSeq>

Controls which agents are verified at each step.

The idea is that only agents who are either in an infected state or have an infected neighbor should be checked. Otherwise it makes no sense (no chance to recover or capture the disease).

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/queue-bones.hpp

## 15.50 RandGraph Class Reference

#### **Public Member Functions**

- RandGraph (int N\_)
- void init (int s)
- void set\_rand\_engine (std::shared\_ptr< std::mt19937 > &e)
- epiworld\_double runif ()

The documentation for this class was generated from the following file:

• include/epiworld/random\_graph.hpp

#### 15.51 SAMPLETYPE Class Reference

#### **Static Public Attributes**

- static const int MODEL = 0
- static const int ENTITY = 1
- static const int AGENT = 2

The documentation for this class was generated from the following file:

· include/epiworld/agentssample-bones.hpp

### 15.52 Tool < TSeq > Class Template Reference

Tools for defending the agent against the virus.

```
#include <tool-bones.hpp>
```

#### **Public Member Functions**

- Tool (std::string name="unknown tool")
- Tool (std::string name, epiworld\_double prevalence, bool as\_proportion)
- void set\_sequence (TSeq d)
- void set\_sequence (std::shared\_ptr< TSeq > d)
- EPI\_TYPENAME\_TRAITS (TSeq, int) get\_sequence()
- void set\_name (std::string name)
- std::string get\_name () const
- Agent < TSeq > \* get\_agent ()
- int get\_id () const
- void set\_id (int id)
- void set\_date (int d)
- int get\_date () const
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld fast int \*init, epiworld fast int \*post)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- bool operator== (const Tool < TSeq > &other) const
- bool operator!= (const Tool < TSeq > &other) const
- · void print () const
- void distribute (Model < TSeq > \*model)
- void set\_distribution (ToolToAgentFun< TSeq > fun)
- void set\_sequence (int d)
- bool operator== (const Tool < std::vector < int >> &other) const

#### Get and set the tool functions

#### **Parameters**

V	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_susceptibility\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- $\bullet \ \ \text{epiworld\_double} \ \ \textbf{get\_transmission\_reduction} \ \ (\text{VirusPtr} < \text{TSeq} > \text{v}, \ \ \textbf{Model} < \text{TSeq} > * \text{model}) \\$
- epiworld\_double get\_recovery\_enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_death\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- void set\_susceptibility\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_transmission\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_recovery\_enhancer\_fun (ToolFun< TSeq > fun)
- void set\_death\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_susceptibility\_reduction (epiworld\_double \*prob)
- void set\_transmission\_reduction (epiworld\_double \*prob)
- void set\_recovery\_enhancer (epiworld\_double \*prob)
- void set\_death\_reduction (epiworld\_double \*prob)
- void set\_susceptibility\_reduction (epiworld\_double prob)
- void **set\_transmission\_reduction** (epiworld\_double prob)
- void set\_recovery\_enhancer (epiworld\_double prob)
- void set\_death\_reduction (epiworld\_double prob)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)

#### 15.52.1 Detailed Description

```
template<typename TSeq> class Tool< TSeq>
```

Tools for defending the agent against the virus.

#### **Template Parameters**

TSea	Type of sequence
,	, ,, ,

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- · include/epiworld/tool-bones.hpp
- · include/epiworld/tool-meat.hpp

## 15.53 ToolFunctions < TSeq > Class Template Reference

Helper class to store the functions avoiding multiple shared\_pointers (we have only one for the four of these)

```
#include <tool-bones.hpp>
```

#### **Public Attributes**

- ToolFun< TSeq > susceptibility\_reduction = nullptr
- ToolFun< TSeq > transmission\_reduction = nullptr
- ToolFun< TSeq > recovery\_enhancer = nullptr
- ToolFun< TSeq > death\_reduction = nullptr
- ToolToAgentFun< TSeq> **dist** = nullptr

#### 15.53.1 Detailed Description

```
template<typename TSeq> class ToolFunctions< TSeq >
```

Helper class to store the functions avoiding multiple shared\_pointers (we have only one for the four of these)

The documentation for this class was generated from the following file:

• include/epiworld/tool-bones.hpp

## 15.54 Tools < TSeq > Class Template Reference

Set of tools (useful for building iterators)

```
#include <tools-bones.hpp>
```

#### **Public Member Functions**

- Tools (Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::iterator **begin** ()
- std::vector< ToolPtr< TSeq > >::iterator end ()
- ToolPtr < TSeq > & operator() (size\_t i)
- ToolPtr < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- · void print () const noexcept

#### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

#### 15.54.1 Detailed Description

```
template<typename TSeq>class Tools< TSeq>
```

Set of tools (useful for building iterators)

**Template Parameters** 

TSeq	
,	

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

## 15.55 Tools const< TSeq > Class Template Reference

Set of Tools (const) (useful for iterators)

```
#include <tools-bones.hpp>
```

#### **Public Member Functions**

- Tools\_const (const Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::const\_iterator begin () const
- std::vector< ToolPtr< TSeq > >::const\_iterator end () const
- const ToolPtr < TSeq > & operator() (size\_t i)
- const ToolPtr < TSeq > & operator[] (size\_t i)
- size t size () const noexcept
- void **print** () const noexcept

#### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

#### 15.55.1 Detailed Description

template<typename TSeq> class Tools\_const< TSeq>

Set of Tools (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

## 15.56 UserData < TSeq > Class Template Reference

#### Personalized data by the user.

#include <userdata-bones.hpp>

#### **Public Member Functions**

- UserData (Model < TSeq > &m)
- UserData (Model < TSeq > \*m)
- UserData (std::vector< std::string > names)

Construct a new User Data object.

- std::vector< std::string > & get\_names ()
- std::vector< int > & get\_dates ()
- $std::vector < epiworld\_double > \& get\_data ()$
- void get\_all (std::vector< std::string > \*names=nullptr, std::vector< int > \*date=nullptr, std::vector< epiworld\_double > \*data=nullptr)
- · epiworld\_fast\_uint nrow () const
- epiworld\_fast\_uint ncol () const
- void write (std::string fn)
- · void print () const

#### Append data

#### **Parameters**

)	Х	A vector of length ncol () (if vector), otherwise a epiworld_double.
j	į	Index of the data point, from 0 to ncol () - 1.

- void add (std::vector< epiworld\_double > x)
- void add (epiworld\_fast\_uint j, epiworld\_double x)

#### Access data

#### **Parameters**

i	Row (0 through ndays - 1.)
j	Column (0 through ncols()).

#### Returns

epiworld\_double&

- epiworld\_double & operator() (epiworld\_fast\_uint i, epiworld\_fast\_uint j)
- epiworld\_double & operator() (epiworld\_fast\_uint i, std::string name)

#### **Friends**

- class Model < TSeq >
- class DataBase< TSeq >

#### 15.56.1 Detailed Description

template<typename TSeq> class UserData< TSeq>

Personalized data by the user.

**Template Parameters** 

TSea	
. 009	

#### 15.56.2 Constructor & Destructor Documentation

#### 15.56.2.1 UserData()

Construct a new User Data object.

**Parameters** 

names A vector of names. The length of the vector sets the number of columns to record.

The documentation for this class was generated from the following files:

- include/epiworld/database-bones.hpp
- include/epiworld/userdata-bones.hpp
- include/epiworld/userdata-meat.hpp

### 15.57 vecHasher < T > Struct Template Reference

Vector hasher.

```
#include <misc.hpp>
```

#### **Public Member Functions**

std::size\_t operator() (std::vector< T > const &dat) const noexcept

#### 15.57.1 Detailed Description

```
template < typename T> struct vecHasher < T>
```

Vector hasher.

#### **Template Parameters**



The documentation for this struct was generated from the following file:

· include/epiworld/misc.hpp

## 15.58 Virus < TSeq > Class Template Reference

#### Virus.

```
#include <virus-bones.hpp>
```

#### **Public Member Functions**

- Virus (std::string name="unknown virus")
- Virus (std::string name, epiworld\_double prevalence, bool as\_proportion)
- void mutate (Model < TSeq > \*model)
- void set\_mutation (MutFun< TSeq > fun)
- EPI\_TYPENAME\_TRAITS (TSeq, int) get\_sequence()
- void **set\_sequence** (TSeq sequence)
- Agent < TSeq > \* get\_agent ()
- void set\_agent (Agent < TSeq > \*p)
- void set\_date (int d)
- int get\_date () const
- void set\_id (int idx)
- int get\_id () const
- void set\_name (std::string name)
- std::string get\_name () const
- bool **operator==** (const Virus< TSeq > &other) const
- bool operator!= (const Virus < TSeq > &other) const
- · void print () const
- void set\_sequence (int sequence)
- bool operator== (const Virus< std::vector< int >> &other) const

#### Get and set the tool functions

#### **Parameters**

V	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_prob\_infecting (Model< TSeq > \*model)
- epiworld double get prob recovery (Model < TSeq > \*model)
- epiworld\_double get\_prob\_death (Model < TSeq > \*model)

- epiworld\_double get\_incubation (Model< TSeq > \*model)
- void post\_recovery (Model < TSeq > \*model)
- void set\_post\_recovery (PostRecoveryFun< TSeq > fun)
- void set\_post\_immunity (epiworld\_double prob)
- void set post immunity (epiworld double \*prob)
- void set\_prob\_infecting\_fun (VirusFun < TSeq > fun)
- void set prob recovery fun (VirusFun < TSeq > fun)
- void set prob death fun (VirusFun < TSeq > fun)
- void set incubation fun (VirusFun < TSeq > fun)
- void set\_prob\_infecting (const epiworld\_double \*prob)
- void set\_prob\_recovery (const epiworld\_double \*prob)
- void set\_prob\_death (const epiworld\_double \*prob)
- void **set\_incubation** (const epiworld\_double \*prob)
- void **set\_prob\_infecting** (epiworld\_double prob)
- void **set\_prob\_recovery** (epiworld\_double prob)
- void set\_prob\_death (epiworld\_double prob)
- void set\_incubation (epiworld\_double prob)

#### Get and set the state and queue

After applied, viruses can change the state and affect the queue of agents. These function sets the default values, which are retrieved when adding or removing a virus does not specify a change in state or in queue.

#### **Parameters**

init	After the virus/tool is added to the agent.
end	After the virus/tool is removed.
removed	After the agent (Agent) is removed.

- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void set queue (epiworld fast int init, epiworld fast int end, epiworld fast int removed=-99)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)
- void **get\_queue** (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)
- void distribute (Model < TSeq > \*model)

Get information about the prevalence of the virus.

void set\_distribution (VirusToAgentFun < TSeq > fun)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- class DataBase< TSeq >
- void default\_add\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)

#### 15.58.1 Detailed Description

template<typename TSeq> class Virus< TSeq >

#### Virus.

#### **Template Parameters**

TSea	
1004	

Raw transmisibility of a virus should be a function of its genetic sequence. Nonetheless, transmisibility can be reduced as a result of having one or more tools to fight the virus. Because of this, transmisibility should be a function of the agent.

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/virus-bones.hpp
- include/epiworld/virus-meat.hpp

## 15.59 Viruses < TSeq > Class Template Reference

Set of viruses (useful for building iterators)

#include <viruses-bones.hpp>

#### **Public Member Functions**

- Viruses (Agent < TSeq > &p)
- std::vector < VirusPtr < TSeq > >::iterator begin ()
- std::vector< VirusPtr< TSeq > >::iterator end ()
- VirusPtr< TSeq > & operator() (size\_t i)
- VirusPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- void **print** () const noexcept

#### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

#### 15.59.1 Detailed Description

template<typename TSeq> class Viruses< TSeq>

Set of viruses (useful for building iterators)

**Template Parameters** 

TSeq	

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- · include/epiworld/viruses-bones.hpp

## 15.60 Viruses\_const < TSeq > Class Template Reference

Set of Viruses (const) (useful for iterators)

#include <viruses-bones.hpp>

#### **Public Member Functions**

- Viruses\_const (const Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::const\_iterator begin () const
- std::vector< VirusPtr< TSeq > >::const\_iterator end () const
- const VirusPtr< TSeq > & operator() (size\_t i)
- const VirusPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- · void print () const noexcept

#### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

#### 15.60.1 Detailed Description

template<typename TSeq> class Viruses\_const< TSeq>

Set of Viruses (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/viruses-bones.hpp

## 15.61 VirusFunctions < TSeq > Class Template Reference

#### **Public Attributes**

MutFun < TSeq > mutation = nullptr

- PostRecoveryFun< TSeq > post\_recovery = nullptr
- $\bullet \quad \text{VirusFun} < \text{TSeq} > \textbf{probability\_of\_infecting} = \text{nullptr}$
- VirusFun< TSeq > probability\_of\_recovery = nullptr
- VirusFun< TSeq > probability\_of\_death = nullptr
- VirusFun< TSeq > incubation = nullptr
- VirusToAgentFun< TSeq > dist = nullptr

The documentation for this class was generated from the following file:

• include/epiworld/virus-bones.hpp

## **Chapter 16**

## **File Documentation**

## 16.1 include/epiworld/agent-meat-state.hpp File Reference

Sampling functions are getting big, so we keep them in a separate file.

```
#include "config.hpp"
#include "agent-meat-virus-sampling.hpp"
Include dependency graph for agent-meat-state.hpp:
```



168 File Documentation

This graph shows which files directly or indirectly include this file:



### **Functions**

```
 template<typename TSeq = EPI_DEFAULT_TSEQ>
 void default_update_susceptible (Agent< TSeq > *p, Model< TSeq > *m)
```

template<typename TSeq = EPI\_DEFAULT\_TSEQ>
 void default\_update\_exposed (Agent< TSeq > \*p, Model< TSeq > \*m)

#### 16.1.1 Detailed Description

Sampling functions are getting big, so we keep them in a separate file.

Author

George G. Vega Yon (g.vegayon en gmail)

Version

0.1

Date

2022-06-15

Copyright

Copyright (c) 2022

## Index

```
add globalevent
 epiworld::epimodels::ModelSEIRD< TSeq >, 94
 Model < TSeq >, 65
 ModelSEIRD, 96
AdjList, 37
 update exposed seir, 97
 epiworld::epimodels::ModelSEIRDCONN< TSeq >,
 AdjList, 37
 read edgelist, 38
 100
Agent < TSeq >, 38
 initial states, 102
 default rm entity, 42
 ModelSEIRDCONN, 101
 operator(), 41
 epiworld::epimodels::ModelSEIRMixing< TSeq >, 105
 swap_neighbors, 41
 initial_states, 107
 ModelSEIRMixing, 106, 107
AgentsSample
 AgentsSample < TSeq >, 43
 epiworld::epimodels::ModelSEIRMixingQuarantine<
AgentsSample < TSeq >, 42
 TSea >, 111
 AgentsSample, 43
 initial_states, 114
 ModelSEIRMixingQuarantine, 113, 114
clone ptr
 epiworld::epimodels::ModelSIR < TSeq >, 115
 Model < TSeq >, 66
 initial states, 116
 ModelMeaslesQuarantine < TSeq >, 83
 epiworld::epimodels::ModelSIRCONN< TSeq >, 119
 get_n_infected, 120
DataBase < TSeq >, 44
 initial states, 121
 generation time, 46
 ModelSIRCONN, 120
 get transmissions, 46
 epiworld::epimodels::ModelSIRD< TSeq >, 124
 operator==, 46, 47
 initial states, 126
 record_virus, 47
 ModelSIRD, 125
 reproductive number, 47
 epiworld::epimodels::ModelSIRDCONN < TSeq >, 129
 transition probability, 48
 ModelSIRDCONN, 130
default_rm_entity
 epiworld::epimodels::ModelSIRLogit< TSeq >, 132
 Agent < TSeq >, 42
 ModelSIRLogit, 134
 Entity< TSeq >, 51
 epiworld::epimodels::ModelSIRMixing< TSeq >, 138
draw
 initial states, 140
 Model < TSeq >, 66
 ModelSIRMixing, 139, 140
 epiworld::epimodels::ModelSIS < TSeq >, 143
Entities < TSeq >, 48
 epiworld::epimodels::ModelSISD< TSeq >, 146
Entities_const< TSeq >, 49
 epiworld::epimodels::ModelSURV < TSeq >, 149
Entity
 Event
 Entity< TSeq >, 51
 Event < TSeq >, 53
Entity < TSeq >, 50
 Event < TSeq >, 52
 default rm entity, 51
 Event, 53
 Entity, 51
 events add
epiworld::epimodels::ModelDiffNet< TSeq >, 73
 Model < TSeq >, 66
epiworld::epimodels::ModelMeaslesQuarantine< TSeq
 events_run
 >, 76
 Model < TSeq >, 67
 ModelMeaslesQuarantine, 78
 quarantine agents, 79
 generation_time
epiworld::epimodels::ModelSEIR< TSeq >, 84
 DataBase < TSeq >, 46
 initial states, 86
 get n infected
 update exposed seir, 86
 epiworld::epimodels::ModelSIRCONN< TSeg >,
 update_infected_seir, 86
 120
epiworld::epimodels::ModelSEIRCONN < TSeq >, 90
 ModelSIRCONN < TSeq >, 123
 initial states, 91
 get transmissions
 ModelSEIRCONN, 91
 DataBase < TSeq >, 46
```

170 INDEX

GlobalEvent	runifd, 72
GlobalEvent $<$ TSeq $>$ , 54	set_agents_data, 68
GlobalEvent< TSeq >, 54	set_name, 69
GlobalEvent, 54	time_elapsed, 72
	write_data, 69
include/epiworld/agent-meat-state.hpp, 167	ModelDiagram, 72
initial_states	ModelDiffNet< TSeq >, 74
epiworld::epimodels::ModelSEIR< TSeq >, 86	ModelMeaslesQuarantine
epiworld::epimodels::ModelSEIRCONN< TSeq >,	epiworld::epimodels::ModelMeaslesQuarantine<
91	TSeq >, 78
epiworld::epimodels::ModelSEIRDCONN< TSeq	ModelMeaslesQuarantine < TSeq >, 82
>, 102	ModelMeaslesQuarantine < TSeq >, 79
epiworld::epimodels::ModelSEIRMixing $<$ TSeq $>$ ,	clone_ptr, 83
107	ModelMeaslesQuarantine, 82
epiworld::epimodels::ModelSEIRMixingQuarantine<	quarantine_agents, 83
TSeq >, 114	reset, 83
epiworld::epimodels::ModelSIR< TSeq >, 116	ModelSEIR< TSeq >, 87
epiworld::epimodels::ModelSIRCONN< TSeq >,	initial_states, 88
121	update_exposed_seir, 89
epiworld::epimodels::ModelSIRD< TSeq >, 126	update_infected_seir, 89
epiworld::epimodels::ModelSIRMixing $<$ TSeq $>$ ,	ModelSEIRCONN
140	epiworld::epimodels::ModelSEIRCONN< TSeq >,
ModelSEIR< TSeq >, 88	91
ModelSEIRCONN< TSeq >, 94	ModelSEIRCONN < TSeq >, 93
ModelSEIRDCONN< TSeq >, 104	ModelSEIRCONN< TSeq >, 92
ModelSEIRMixing < TSeq >, 110	initial_states, 94
ModelSIR< TSeq >, 118	ModelSEIRCONN, 93
ModelSIRCONN< TSeq >, 123	ModelSEIRD
ModelSIRD< TSeq >, 128	epiworld::epimodels::ModelSEIRD< TSeq >, 96
ModelSIRMixing< TSeq >, 143	ModelSEIRD <tseq>, 99</tseq>
initial_states_fun	ModelSEIRD< TSeq >, 97
Model < TSeq >, 70	ModelSEIRD, 99
LEMOMO (TD-t-) EE	update_exposed_seir, 100
LFMCMC < TData >, 55	ModelSEIRDCONN
load_agents_entities_ties	epiworld::epimodels::ModelSEIRDCONN< TSeq
Model < TSeq >, 67	>, 101
make_sample_virus_neighbors	ModelSEIRDCONN< TSeq >, 104
sampler, 33	ModelSEIRDCONN< TSeq >, 103
make update susceptible	initial_states, 104
sampler, 34	ModelSEIRDCONN, 104
Model < TSeq >, 56	ModelSEIRMixing
add_globalevent, 65	epiworld::epimodels::ModelSEIRMixing< TSeq >,
clone_ptr, 66	106, 107
draw, 66	ModelSEIRMixing < TSeq >, 109, 110
events_add, 66	ModelSEIRMixing< TSeq >, 108
events_run, 67	initial_states, 110
initial_states_fun, 70	ModelSEIRMixing, 109, 110
load agents entities ties, 67	ModelSEIRMixingQuarantine
rbinomd, 70	epiworld::epimodels::ModelSEIRMixingQuarantine<
reset, 68	TSeq >, 113, 114
rexpd, 70	ModelSIR< TSeq >, 117
rgammad, 70	initial_states, 118
rgeomd, 71	ModelSIRCONN
rlognormald, 71	epiworld::epimodels::ModelSIRCONN< TSeq >,
rnbinomd, 71	120
rnormd, 71	ModelSIRCONN< TSeq >, 122
rpoissd, 71	ModelSIRCONN< TSeq >, 121
run_multiple, 68	get_n_infected, 123

INDEX 171

initial_states, 123	rexpd
ModelSIRCONN, 122	Model < TSeq >, 70
ModelSIRD	rgammad
epiworld::epimodels::ModelSIRD< TSeq >, 125	Model < TSeq >, 70
ModelSIRD< TSeq >, 127	rgeomd
ModelSIRD< TSeq >, 126	Model < TSeq >, 71
initial_states, 128	rlognormald
ModelSIRD, 127	Model < TSeq >, 71
ModelSIRDCONN	rnbinomd
epiworld::epimodels::ModelSIRDCONN< TSeq >,	Model < TSeq >, 71
130	rnormd
ModelSIRDCONN< TSeq >, 132	Model < TSeq >, 71
ModelSIRDCONN< TSeq >, 131	rpoissd
ModelSIRDCONN, 132	Model < TSeq >, 71
ModelSIRLogit	run_multiple
-	_ ·
epiworld::epimodels::ModelSIRLogit< TSeq >,	Model < TSeq >, 68
134	runifd
ModelSIRLogit< TSeq >, 137	Model < TSeq >, 72
ModelSIRLogit< TSeq >, 135	cample virue single
ModelSIRLogit, 137	sample_virus_single
ModelSIRMixing	sampler, 34
epiworld::epimodels::ModelSIRMixing< TSeq >,	sampler, 33
139, 140	make_sample_virus_neighbors, 33
ModelSIRMixing< TSeq >, 142	make_update_susceptible, 34
ModelSIRMixing< TSeq >, 141	sample_virus_single, 34
initial_states, 143	SAMPLETYPE, 156
ModelSIRMixing, 142	set_agents_data
ModelSIS < TSeq >, 145	Model < TSeq >, 68
ModelSISD< TSeq >, 148	set_name
ModelSURV < TSeq >, 151	Model < TSeq >, 69
	swap_neighbors
Network < Nettype, Nodetype, Edgetype >, 153	Agent < TSeq >, 41
operator()	time elapsed
Agent < TSeq >, 41	Model < TSeq >, 72
operator==	Tool < TSeq >, 156
DataBase < TSeq >, 46, 47	ToolFunctions< TSeq >, 157
Database \ 13eq >, 40, 47	
PersonTools < TSeq >, 154	Tools < TSeq > , 158
Progress, 154	Tools_const< TSeq >, 159
1 logiess, 134	transition_probability
quarantine_agents	DataBase< TSeq >, 48
epiworld::epimodels::ModelMeaslesQuarantine<	undata avnagad gair
TSeq >, 79	update_exposed_seir
ModelMeaslesQuarantine < TSeq >, 83	epiworld::epimodels::ModelSEIR< TSeq >, 86
Queue < TSeq >, 154	epiworld::epimodels::ModelSEIRD< TSeq >, 97
Queue 10eq /, 104	ModelSEIR< TSeq >, 89
RandGraph, 155	ModelSEIRD< TSeq >, 100
rbinomd	update_infected_seir
Model < TSeq >, 70	epiworld::epimodels::ModelSEIR< TSeq >, 86
read_edgelist	ModelSEIR< TSeq >, 89
AdjList, 38	UserData
•	UserData < TSeq >, 161
record_virus	UserData < TSeq >, 160
DataBase< TSeq >, 47	UserData, 161
reproductive_number	
DataBase < TSeq >, 47	vecHasher< T >, 161
reset Madel < TCog > 60	Virus < TSeq >, 162
Model < TSeq >, 68	Viruses< TSeq >, 164
ModelMeaslesQuarantine < TSeq >, 83	Viruses_const< TSeq >, 165

172 INDEX

$$\label{eq:VirusFunctions} \begin{split} & \text{VirusFunctions} < \text{TSeq} >, \text{165} \\ & \text{write\_data} \\ & & \text{Model} < \text{TSeq} >, \text{69} \end{split}$$