Chapter 20

Planning Accelerated Life Tests

William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Copyright 1998-2001 W. Q. Meeker and L. A. Escobar. Based on the authors' text *Statistical Methods for Reliability Data*, John Wiley & Sons Inc. 1998.

July 18, 2002 12h 27min

Planning Accelerated Life Tests Chapter 20 Objectives

- Outline reasons and practical issues in planning ALTs.
- Describe criteria for ALT planning.
- Illustrate how to evaluate the properties of ALTs.
- Describe methods of constructing and choosing among ALT plans
 - ► One-variable plans.
 - ► Two-variable plans.
- Present guidelines for developing practical ALT plans with good statistical properties.

Possible Reasons for Conducting an Accelerated Test

Accelerated tests (ATs) are used for different purposes. These include:

- ATs designed to identify failure modes and other weaknesses in product design.
- ATs for improving reliability
- ATs to assess the durability of materials and components.
- ATs to monitor and audit a production process to identify changes in design or process that might have a seriously negative effect on product reliability.

Motivation/Example

Reliability Assessment of an Adhesive Bond

• **Need:** Estimate of the B10 of failure-time distribution at 50° C (expect ≥ 10 years).

- Constraints
 - ▶ 300 test units.
 - ▶ 6 months for testing.
- 50°C test expected to yield little relevant data.

Model and Assumptions

• Failure-time distribution is loglocation-scale

$$\Pr(T \le t) = F(t; \mu, \sigma) = \Phi\left[\frac{\log(t) - \mu}{\sigma}\right]$$

• $\mu = \mu(x) = \beta_0 + \beta_1 x$, where

$$x = \frac{11605}{\text{temp °C} + 273.15}.$$

- ullet σ does not depend on the experimental variables.
- Units tested simultaneously until censoring time t_c .
- Observations statistically independent.

Assumed Planning Information for theAdhesive Bond Experiment

The objective is finding a test plan to estimate B10 with good precision.

- Weibull failure-time distribution with same shape parameter at each level of temperature σ and location scale parameter $\mu(x) = \beta_0 + \beta_1 x$, where x is $^{\circ}$ C in the Arrhenius scale.
- .1% failing in 6 months at 50°C.
- 90% failing in 6 months at 120°C.

Result: Defines failure probability in 6 months at all levels of temperature. If σ is given also, defines all model parameters.

Engineers' Originally Proposed Test Plan for the Adhesive Bond

Temp	Allocation		Failure	Expected
$^{\circ}C$	Proportion	Number	Probability	Number Failing
	π_i	n_i	$p_{\pmb{i}}$	$E(r_i)$
50			0.001	
110	1/3	100	0.60	60
130	1/3	100	1.00	100
150	1/3	100	1.00	100

Adhesive Bond Engineers' Originally Proposed Test Plan

n = 300, $\pi_i = 1/3$ at each 110° C, 130° C, 150° C

Critique of Engineers' Original Proposed Plan

- Arrhenius model in doubt at high temperatures (above 120°C).
- Question ability to extrapolate to 50°C.
- Data much above the B10 are of limited value.

Suggestion for improvement:

- Test at lower more realistic temperatures (even if only small fraction will fail).
- Larger allocation to lower temperatures.

Engineers' Modified Traditional ALT Plan with a Maximum Test Temperature of 120°C

Temp	Allocation		Failure	Expected
$^{\circ}C$	Proportion	Number	Probability	Number Failing
	π_i	n_i	$p_{\pmb{i}}$	$E(r_i)$
50	0			
80	1/3	100	.04	4
100	1/3	100	.29	29
120	1/3	100	.90	90

For this plan and the Weibull-Arrhenius model, Ase $[\log(\hat{t}_{.1}(50))] = .4167$

Simulation of Engineers' Modified Traditional ALT Plan

Levels = 80,100,120 Degrees C, n=100,100,100 Censor time=183,183,183, parameters= -16.74,0.7265,0.5999

Methods of Evaluating Test Plan Properties

Assume inferences needed on a function $g(\theta)$ (one-to-one and all the first derivatives with respect to the elements of θ exist, and are continuous).

- Properties depend on test plan, model and (unknown) parameter values.
 Need planning values.
- Asymptotic variance of $g(\hat{\theta})$

$$\operatorname{Avar}[g(\widehat{\theta})] = \left[\frac{\partial g(\theta)}{\partial \theta}\right]' \Sigma_{\widehat{\theta}} \left[\frac{\partial g(\theta)}{\partial \theta}\right].$$

Simple to compute (with software) and general results.

• Use Monte Carlo simulation. Specific results, provides picture of data, requires much computer time.

Statistically Optimum Plan for the Adhesive Bond

• Objective: Estimate B10 at 50°C with minimum variance.

• Constraint: Maximum testing temperature of 120°C.

• Inputs: Failure probabilities $p_U = .001$ and $p_H = .90$.

Contour Plot Showing

 $\log_{10}\{\text{Avar}[\log(\widehat{t}_{.1})]/\min \text{Avar}[\log(\widehat{t}_{.1})]\}$ as Function of ξ_L,π_L to Find the Optimum ALT Plan

Adhesive Bond Weibull Distribution Statistically Optimum Plan

Allocations: $\pi_{Low} = .71$ at 95° C, $\pi_{High} = .29$ at 120° C

Simulation of the Weibull Distribution Statistically Optimum Plan

Levels = 95,120 Degrees C, n=212,88 Censor time=183,183, parameters= -16.74,0.7265,0.5999

Weibull Distribution Statistically Optimum Plan

Temp	Allocation		Failure	Expected
$^{\circ}C$	Proportion	Number	Probability	Number Failing
	π_i	n_i	p_{i}	$E(r_i)$
50			.001	
95	.71	213	.18	38
120	.29	87	.90	78

For this plan and the Weibull-Arrhenius model, Ase $[\log(\hat{t}_{.1}(50))] = .3794$

Adhesive Bond

Lognormal Distribution Statistically Optimum Plan

Allocations: $\pi_{Low} = .74$ at 78° C, $\pi_{High} = .26$ at 120° C

Lognormal Distribution Statistically Optimum Plan

Temp	Allocation		Failure	Expected
$^{\circ}C$	Proportion	Number	Probability	Number Failing
	π_i	n_i	p_{i}	$E(r_i)$
50			.001	
78	.74	233	.13	30
120	.26	77	.90	69

For this plan and the Lognormal-Arrhenius model, Ase $[\log(\hat{t}_{.1}(50))] = .2002$

Critique of the Statistically Optimum Plan

- Still too much temperature extrapolation (to 50°C).
- Only two levels of temperature.
- Optimum Weibull and lognormal plans quite different
 - ▶ 95°C and 120°C for Weibull versus.
 - ► 78°C and 120°C for lognormal.

In general, optimum plans not robust to model departures.

Want a Plan That

- Meets practical constraints and is intuitively appealing.
- Is robust to deviations from assumed inputs.
- Has reasonably good statistical properties.

Criteria for Test Planning

Subject to constraints in time, sample size and ranges of experimental variables,

- Minimize $Var[log(\hat{t}_p)]$ under the assumed model.
- Maximize the determinant of the Fisher information matrix.
- Minimize $Var[log(\hat{t}_p)]$ under more general or higher-order model(s) (for robustness).
- Control the expected number of failures at each experimental condition (since a small expected number of failures at critical experimental conditions suggests potential for a failed experiment).

Types of Accelerated Life Test Plans

- Optimum plans—Maximize statistical precision.
- **Traditional plans**—Equal spacing and allocation; may be inefficient.
- Optimized (best) compromise plans—require at least 3 levels of the accelerating variable (e.g., 20% constrained at middle) and optimize lower level and allocation.

General Guidelines for Planning ALTs (Suggested from Optimum Plan Theory)

- Choose the highest level of the accelerating variable to be as high as possible.
- Lowest level of the accelerating variable can be optimized.
- Allocate more units to lower levels of the accelerating variable.
- Test-plan properties and optimum plans depend on unknown inputs.

Practical Guidelines for Compromise ALT Plans

- Use three or four levels of the accelerating variable.
- Limit high level of the accelerating variable to maximum reasonable condition.
- Reduce lowest level of the accelerating variable (to minimize extrapolation)—subject to seeing some action.
- Allocate more units to lower levels of the accelerating variable.
- Use statistically optimum plan as a starting point.
- Evaluate plans in various meaningful ways.

Adjusted Compromise Weibull ALT Plan for the Adhesive Bond (20% Constrained Allocation at Middle)

Temp	Allocation		Failure	Expected
$^{\circ}C$	Proportion	Number	Probability	Number Failing
	π_i	n_i	$p_{\pmb{i}}$	$E(r_i)$
50			.001	
78	.52	156	.03	5
98	.20	60	.24	14
120	.28	84	.90	76

For this plan with the Weibull-Arrhenius model, Ase $[\log(\hat{t}_{.1}(50))] = .4375$.

Adhesive Bond Adjusted Compromise Weibull ALT Plan

$$\pi_{Low} = .52$$
, $\pi_{Mid} = .20$, $\pi_{High} = .28$

Simulation of the Adhesive Bond Compromise Weibull ALT Plan

Levels = 78,98,120 Degrees C, n=155,60,84 Censor time=183,183,183, parameters= -16.74,0.7265,0.5999

Basic Issue 1: Choose Levels of Accelerating Variables

Need to Balance:

• Extrapolation in the acceleration variable (assumed temperature-time relationship).

• Extrapolation in time (assumed failure-time distribution).

Suggested Plan:

• Middle and high levels of the acceleration variable—expect to interpolate in time.

• Low level of the acceleration variable—expect to extrapolate in time.

Basic Issue 2: Allocation of Test Units

- Allocate more test units to low rather than high levels of the accelerating variable.
 - ► Tends to equalize the number of failures at experimental conditions.
 - ► Testing more units near the use conditions is intuitively appealing.
 - ► Suggested by statistically optimum plan.
- Need to constrain a certain percentage of units to the middle level of the accelerating variable.

Properties of Compromise ALT Plans Relative to Statistically Optimum Plans

• Increases asymptotic variance of estimator of B10 at 50°C by 33% (if assumptions are correct).

However it also,

- Reduces low test temperature to 78°C (from 95°C).
- Uses three levels of accelerating variable, instead of two levels.
- Is more robust to departures from assumptions and uncertain inputs.

Generalizations and Comments

- Constraints on test positions (instead of test units): Consider replacement after 100p% failures at each level of accelerating variable.
- Continue tests at each level of accelerating variable until at least 100p% units have failed.
- Include some tests at the use conditions.
- Fine tune with computer evaluation and/or simulation of user-suggested plans.
- Desire to estimate reliability (instead of a quantile) at use conditions.
- Need to quantify robustness.

ALT with Two or More Variables

- Moderate increases in two accelerating variables may be safer than using a large amount of a single accelerating variable.
- There may be interest in assessing the effect of nonaccelerating variables.
- There may be interest in assessing joint effects of two more accelerating variables.

Choosing Experimental Variable Definition to Minimize Interaction Effects

- Care should be used in defining experimental variables.
- Guidance on variable definition and possible transformation of the response and the experimental models should, as much as possible, be taken from **mechanistic** models.
- Proper choice can reduce the occurrence or importance of statistical interactions.
- Models without statistical interactions simplify modeling, interpretation, explanation, and experimental design.
- Knowledge from mechanistic models is also useful for planning experiments.

Examples of Choosing Experimental Variable Definition to Minimize Interaction Effects

- For humidity testing of corrosion mechanism use RH and temperature (not vapor pressure and temperature)
- For testing dielectrics, use size and volts stress (e.g., mm and volts/mm instead of mm and volts)
- For light exposure, use aperture and total light energy (not aperture and exposure time)
- To evaluate the adequacy of large-sample approximations with censored data, use % failing and expected number failing (not % failing and sample size).

Comparison of Experimental Layout with Volts/mm Versus Size and Volts Versus Size

Comparison of Experimental Layout with Volts versus Size and Volts/mm versus Size

Insulation ALT From Chapter 6 of Nelson (1990) and Escobar and Meeker (1995)

- Engineers needed rapid assessment of insulation life at use conditions.
- 1000/10000 hours available for testing.
- 170 test units available for testing.
- Possible experimental variables:
 - ► VPM (Volts/mm) [accelerating].
 - ► THICK (cm) [nonaccelerating].
 - ► TEMP (°C) [accelerating].

Multiple Variable ALT Model and Assumptions

Failure-time distribution

$$\Pr(T \le t) = F(t; \mu, \sigma) = \Phi\left[\frac{\log(t) - \mu}{\sigma}\right].$$

- $\mu = \mu(x)$ is a function of the accelerating (or other experimental) variables.
- \bullet σ does not depend on the experimental variables.
- ullet Units tested simultaneously until censoring time t_c .
- Observations statistically independent.

Models Used in Examples

$$\mu = \beta_0 + \beta_1 \log(\text{VPM})$$

$$\mu = \beta_0 + \beta_1 \log(\text{VPM}) + \beta_2 \log(\text{THICK})$$

$$\mu = \beta_0 + \beta_1 \log(\text{VPM}) + \beta_2 \left[\frac{11605}{\text{temp °C} + 273.15} \right]$$

 σ constant.

Insulation ALT 3×3 VPM \times THICK Factorial Test Plan

The ALT Design Problem

- Design test plan to estimate life at the use conditions of VPM $_U$ = 80 volts/mm, THICK $_U$ = 0.266 cm, TEMP $_U$ = 120 °C.
- Interest centers on a quantile in lower tail of life distribution, $t_p = \exp\left[\mu(x_U) + \Phi^{-1}(p)\sigma\right]$.
- Need to choose levels of the accelerating variable(s) x_1, \ldots, x_k and allocations π_1, \cdots, π_k to those conditions. Equal allocation can be a poor choice.

Multi-Variable Experimental Region

Maximum levels for all variables:

VPM
$$_H = 200 \text{ volts/mm}$$

THICK $_H = 0.355 \text{ cm}$
TEMP $_H = 260 \,^{\circ}\text{C}$.

• Explicit minimum levels for all experimental variables:

```
\label{eq:VPM} $\operatorname{VPM}_A = 80 \mathrm{volts/mm}$$ \mathrm{THICK}_A = 0.163 \mathrm{cm}$$ \mathrm{TEMP}_A = 120^{\circ}\mathrm{C} (also stricter implicit limits for VPM and TEMP).
```

• May need to restrict highest combinations of accelerating variables; e.g., constrain by equal failure-probability line (by using a maximum failure probability constraint p^* or equivalently a standardized censored failure time ζ^* constraint).

Degenerate and Nondegenerate Test Plans to Estimate t_p

Degenerate plans:

- ullet Test all units at x_U .
- ullet Test two (or more) combinations of the experimental variables on a line with slope s passing through x_U .

Nondegenerate practical plans:

• Test at three (or more) noncollinear combinations of the experimental variables in the plane.

Optimum Degenerate Plan: Technical Results

- When acceleration does not help sufficiently, it is optimum to test all units at the use conditions.
- Otherwise there is at least one optimum degenerate test plan in the $x_1 \times x_2$ plane.
- Some units tested at highest levels of accelerating variables.
- Optimum degenerate plan corresponds to a single-variable optimum.

Splitting Degenerate Plans

- It is possible to **split** a degenerate plan into a nondegenerate optimum test plan (maintaining optimum $Var[log(\hat{t}_p)]$).
- Use secondary criteria to chose **best** split plan.
- Split $x_i=(x_{1i},x_{2i})'$ with allocation π_i into $x_{i1}=(x_{1i1},x_{2i1})'$ and $x_{i2}=(x_{1i2},x_{2i2})'$ with allocations π_{i1} and π_{i2} (where $\pi_{i1}+\pi_{i2}=\pi_i$)

$$\pi_{i1}x_{i1} + \pi_{i2}x_{i2} = \pi_i x_i.$$

- Can introduce a p^* constraint [or a ζ^* constraint where $p^* = \Phi(\zeta^*)$].
- Can also split **compromise** plans and maintain $Var[log(\hat{t}_p)]$.

Insulation ALT VPM \times THICK Optimum Test Plan with p^*/ζ^* constraint

Insulation ALT VPM \times THICK 20% Compromise Test Plan with p^*/ζ^* constraint

Comparison of Test Plans and Properties for the VPM \times THICK ALT

	No Interaction Model		Interaction Model	
Plan	$V[log(\widehat{t_p})]$	F	$V[log(\widehat{t_p})]$	F
3 × 3 Factorial from Nelson (1990)	144	2.4×10^{-3}	145	1.2×10^{-5}
Optimum degenerate No ζ^*	80.1	0.0	∞	0.0
Optimum split No ζ^*	80.1	7.3×10^{-4}	∞	0.0
Optimum degenerate $\zeta^*=2.5454$	131	0.0	∞	0.0
Optimum split $\zeta^* = 2.5454$	131	1.6×10^{-3}	138	1.7×10^{-5}
20% Compromise degenerate $\zeta^* = 4.04$	96.1	0.0	9710	0.0
20% Compromise split $\zeta^* = 4.04$	96.1	7.0×10^{-3}	102	1.2×10^{-4}

Insulation ALT VPM \times TEMP 3×3 Factorial Test Plan

Insulation ALT VPM \times TEMP 20% Compromise Test Plan with p^*/ζ^* constraint

Comparison of Test Plan Properties for the VPM×TEMP ALT

	No Interaction Model		Interaction Model	
Plan	$V[log(\widehat{t_p})]$	F	$V[log(\widehat{t_p})]$	F
3 × 3 Factorial Adapted from Nelson (1990)	77.3	1.7×10^{-3}	349	2.7×10^{-6}
Optimum degenerate No ζ^*	50.5	0.0	∞	0.0
Optimum split No ζ^*	50.5	1.3×10^{-3}	∞	0.0
20% Compromise degenerate No ζ^*	54.7	0.0	1613	0.0
20% Compromise split No ζ^*	54.7	2.0×10^{-3}	430	3.0×10^{-6}
20% Compromise degenerate $\zeta^* = 5.0$	77.7	0.0	5768	0.0
20% Compromise split $\zeta^* = 5.0$	77.7	1.2×10^{-3}	324	1.7×10^{-6}

Extensions of Results to Other Problems

- With one **accelerating** and several other **regular** experimental variables, replicate single-variable ALT at each combination of the **regular** experimental variables.
- Can use a fractional factorial for the **regular** experimental variables.
- If the approximate effect of a **regular** experimental variable is known, can **tilt** factorial to improve precision.
- With two or more **accelerating** variables, our results show how to **tilt** the traditional factorial plans to restrict extrapolation and maintain statistical efficiency.