Final Assignment

STROKE PREDICTION

Lương Quang Trường - Nhóm 4 - DA23

TABLE OF CONTENT

GIỚI THIỆU

- Giới thiệu bộ dữ liệu
- Đặt vấn đề

PHÂN TÍCH

- Làm sạch dữ liệu
- Kiểm định mô hình

KẾT LUẬN

GIỚI THIỆU

- Dữ liệu:
 - Bộ dữ liệu chứa thông tin về các bệnh nhân đi khám tim.
 - Có các thông tin nhân khẩu học cũng như là tiền sử bệnh, của bệnh nhân khám.
- Đặt vấn đề:
 - Đột quỵ là nguyên nhân gây chết nhiều thứ 2 (theo WHO), khoảng 11% số người tử vong. Dựa vào các thông tin thu thập được về các bệnh nhân để xây dựng mô hình dự báo các bệnh nhân có khả năng gặp đột quỵ.
- Nguồn: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5105	18234	Female	80.0	1	0	Yes	Private	Urban	83.75	NaN	never smoked	0
5106	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
5107	19723	Female	35.0	0	0	Yes	Self-employed	Rural	82.99	30.6	never smoked	0
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	0
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.2	Unknown	0

PHÂN TÍCH

Các biến của bộ dữ liệu trước khi làm sạch (5110 quan sát)

- id
- gender: "Male", "Female" or "Other"
- age
- hypertension: 0/1
- heart_disease: 0/1
- ever_married: "No"/"Yes"
- work_type: "children", "Govt_job",
 "Never_worked", "Private" or "Self-employed"
- residence_type: "Rural"/"Urban"
- avg_glucose_level:
- bmi:
- smoking_status: "formerly smoked"/ "never smoked"/"smokes"/"Unknown"
- stroke -> biến phân loại

PHÂN TÍCH

- Độ tuổi của những quan sát chủ yếu tập trung ở khoảng từ 50-60 tuổi.
- Đặc biệt nhiều những quan sát ở khoảng gần 80 tuổi.

CLEANING

 Dựa vào biến bmi, tạo cột body_type dựa trên các khoảng bmi

• Sử dụng các LabelEncoder để mã hóa các cột string.

• Sử dụng MinMaxScaler để chuẩn hóa các cột số

Drop cột id, các dòng có NaN

```
# thêm cột body_type:
body_type = []
for row in df['bmi']:
    if row < 18:
        body_type.append("underweight")
    elif row >= 18 and row < 25:
        body_type.append("healthy")
    elif row >= 25 and row < 30:
        body_type.append("overweight")
    elif row >= 30:
        body_type.append("obese")
```

CLEANING

• Biến gender có thể là "Female", "Male", "Other", tuy nhiên do Other chỉ có 1 row nên chúng ta sẽ drop.

Biến smoking_status có nhiều value "Unknown"
 nên drop các dòng có chứa "Unknown"

Khi xét đến biến stroke, ta có thể thấy số lượng 0
 và 1 chênh lệch nhau nhiều -> imbalanced dataset
 -> downsample

```
df["smoking_status"].value_counts()

v 0.0s

never smoked 1892
Unknown 1544
formerly smoked 885
smokes 789
Name: smoking_status, dtype: int64
```

PHÂN TÍCH

Các biến của bộ dữ liệu trước khi làm sạch (5110 quan sát)

- id
- gender: "Male", "Female" or "Other"
- age
- hypertension: 0/1
- heart_disease: 0/1
- ever_married: "No"/"Yes"
- work_type: "children", "Govt_jov","Never_worked", "Private" or "Self-employed"
- residence_type: "Rural"/"Urban"
- avg_glucose_level:
- bmi:
- smoking_status: "formerly smoked"/ "never smoked"/"smokes"/"Unknown"
- stroke -> biến phân loại

Các biến của bộ dữ liệu sau khi làm sạch (360 quan sát)

- •
- gender: 0/1
- age: normalized
- hypertension: 0/1
- heart_disease: 0/1
- ever_married: 0/1
- work_type: 0/1/2/3/4
- •
- residence_type: 0/1
- avg_glucose_level: normalized
- body_type:
- smoking_status: 0/1/2
- stroke -> biến phân loại

TƯƠNG QUAN VÀ CHỌN BIẾN

Dựa trên bảng tương quan, ta lựa chọn các biến:

- ever_married
- age
- hypertension
- heart_disease
- avg_glucose_level

để xây dựng mô hình phân loại

KIỂM ĐỊNH CÁC MÔ HÌNH

	precision	recall	f1-score	support
0	0.77	0.67	0.71	54
1	0.70	0.80	0.75	54
accuracy			0.73	108
macro avg	0.74	0.73	0.73	108
weighted avg	0.74	0.73	0.73	108

	precision	recall	f1-score	support
9	0.82	0.67	0.73	54
1	0.72	0.85	0.78	54
accuracy			0.76	108
macro avg	0.77	0.76	0.76	108
weighted avg	0.77	0.76	0.76	108

	precision	recall	f1-score	support
0	0.77	0.74	0.75	54
1	0.75	0.78	0.76	54
accuracy			0.76	108
macro avg	0.76	0.76	0.76	108
weighted avg	0.76	0.76	0.76	108

			4 -	
Lo	ØI	9	tı	
	יס			

De	cisior	Tree	max	depth	= 4)
	U.U.		(_ 0. 0 0 0	- /

	precision	recall	f1-score	support
9	0.79	0.69	0.73	54
1	0.72	0.81	0.77	54
accuracy			0.75	108
macro avg	0.75	0.75	0.75	108
weighted avg	0.75	0.75	0.75	108

	precision	recall	f1-score	support
	0.04	0.70	0.70	F.4
Ø	0.81	0.78	0.79	54
1	0.79	0.81	0.80	54
accuracy			0.80	108
macro avg	0.80	0.80	0.80	108
weighted avg	0.80	0.80	0.80	108
weighted avg	0.00	0.00	0.00	100

recision	recall	f1-score	support
0.00	0.76	0.70	
0.80	0.76	0.78	54
0.77	0.81	0.79	54
		0.79	108
0.79	0.79	0.79	108
0.79	0.79	0.79	108
	0.80 0.77 0.79	0.80 0.76 0.77 0.81 0.79 0.79	0.80 0.76 0.78 0.77 0.81 0.79 0.79 0.79 0.79

Random Forest (n_estimators = 17)

KNN (n_neighbors = 12)

Gaussian Naive Bayes

KIỂM ĐỊNH CÁC MÔ HÌNH

KIỂM ĐỊNH CÁC MÔ HÌNH

Kết luận:

- Các yếu tố dùng để dự báo đột quy bao gồm: tình trạng hôn nhân, tuổi, tiền sử bệnh tim mạch, huyết áp cao và lượng đường trong máu.
- Các mô hình phân loại dự báo có độ chính xác khá cao, nhưng tốt nhất là mô hình KNN.

Thank you!