```
title: "Data Analysis for House Sales"
## Importing required packages
library(tidyverse)
library(lmtest)
library(ggpubr)
library(broom)
library(ggfortify)
library(skimr)
## Import the built-in R data set
data("txhousing")
## View and check the dimension of the data set
View(txhousing)
dim(txhousing)
## Check the column names for the data set
names(txhousing)
## Use R functions to describe the data
```{r}
Take a peek using the head and tail functions
head(txhousing)
tail(txhousing)
Check the internal structure of the data frame
glimpse(txhousing)
Create a broad overview of a data set
skim(txhousing)
Drop the missing values in sales, volume, median
tx data <- txhousing %>%
 drop na(sales, volume, median)
Create the age variable
tx data$age <- 2023 - tx data$year
Create a broad overview of a data set
skim(tx data)
Create data visualization using ggplot
A scatter plot to visualize the variables for model building
#```{r}
Find the correlation between the variables
cor(tx data$sales, tx data$volume)
Plot a scatter plot for the variables with sales on the x-axis
volume on the y-axis
ggplot(tx_data, aes(x = sales, y = volume)) +
 geom_point() +
 stat_smooth(se = FALSE)
Build a regression model
```

```
Create a simple linear regression model using the variables
simple_model <- lm(volume ~ sales, data = tx_data)</pre>
simple model
Plot the regression line for the model
ggplot(tx data, aes(x = sales, y = volume)) +
 geom point() +
 stat_smooth(method = lm) +
 labs(title = "Regression of Sales on Volume of Housing sales in TX",
 x = "Sales", y = "Volume")
 scale_y_continuous(labels = scales::comma)
#```
Perform diagnostic checks on fitted model
Plotting the fitted model
plot(simple_model)
Return the first diagnostic plot for the model
plot(simple model,3)
Create all four plots at once
. . .
Perform model fit assessment
Assess the summary of the fitted model
summary(simple model)
Calculate the confidence interval for the coefficients
confint(simple model)
Make predictions using the fitted model
Find the fitted values of the simple regression model
fitted values <- predict.lm(simple model)</pre>
head(fitted values, 3)
Return the model metrics
model metrics <- augment(simple model)</pre>
model metrics
Predict new values using the model
predict(simple model,
 newdata = data.frame(sales = c(210, 27, 140)))
Multiple Regression
Build the multiple regression model with volume as the y variable and sales, median and
age on the x variables
multiple_reg <- lm(volume ~ sales + median + age, data = tx_data)</pre>
This prints the result of the model
multiple reg
Check the summary of the multiple regression model
```

summary(multiple\_reg)

## Plot the fitted multiple regression model
autoplot(multiple\_reg)