Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Отчет по лабораторной работе №9

по дисциплине «Теория массового обслуживания»
Тема: «Введение в Simulink и моделирование простейшей системы массового обслуживания»

Выполнили:

студенты гр. ИА-232

Московских Дмитрий Петрович Македон Никита Игоревич Александр Володин Сергеевич Ошлаков Константин Константинович Багрей Анастасия Олеговна Андреев Андрей Валерьевич Артёменко Егор Константинович

Оглавление

Введение	
Теория	
Построение модели СМО	
Проведение симуляций	
Результаты и их анализ	
Генерация входящих заявок	
Моделирование обслуживающего устройства	
Добавление блока моделирования отказов	
Результаты симуляций без резервирования	
Результаты симуляций с резервированием	
Сравнение с теоретическими значениями	
Вывол	

Введение

Цель: Исследование характеристик многоканальной системы массового обслуживания (СМО) М/М/n, включая влияние отказов и добавление резервных каналов для повышения надежности.

Задачи:

- 1. Создание и настройка модели СМО М/М/п.
- 2. Введение отказов каналов и резервных каналов.
- 3. Анализ влияния количества каналов и отказов на производительность.
- 4. Проведение экспериментов с различными параметрами и оценка эффективности резервирования.

Теория

1. Особенности многоканальных систем М/М/п

Многоканальная система массового обслуживания (СМО) типа M/M/n — это система, в которой:

- Поступление заявок происходит в соответствии с пуассоновским процессом, где время между заявками экспоненциально распределено с параметром λ. Это означает, что заявки поступают случайно и независимо, а среднее количество заявок в единицу времени составляет λ.
- Обслуживание заявок осуществляется по экспоненциальному закону с параметром μ, где μ— это средняя интенсивность обслуживания, характеризующая способность каждого канала обработать заявки.
- **Число каналов обслуживания nnn**: многоканальные системы отличаются от одноканального наличия нескольких обслуживающих каналов. Это повышает производительность системы, так как одновременно обрабатывается несколько заявок.

2. Основные характеристики и параметры системы М/М/п

В системе M/M/n ключевые характеристики зависят от количества каналов nnn, а также от соотношения λ и μ :

- Интенсивность загрузки каждого канала $\rho = \lambda/n\mu$: это средняя степень загрузки канала обслуживания. Для устойчивости системы требуется, чтобы $\rho < 1$.
- Вероятность занятости всех каналов и длина очереди: при высокой нагрузке системы (когда $\rho \rightarrow 1$) вероятность занятости всех каналов растет, что приводит к увеличению очереди.
- Среднее время ожидания и длина очереди: зависят от значений nnn, λ, μ и рассчитываются с использованием специальных формул, в том числе формул Эрланга.

3. Формулы Эрланга

Для многоканальных систем типа М/М/п расчёт вероятностей и ключевых показателей, таких как длина очереди и время ожидания, производится с

использованием формул Эрланга:

1. **Формула Эрланга В** (без очереди) используется для расчета вероятности отказа в обслуживании, когда в системе отсутствует возможность ожидания:

 $B(n,\rho)=\rho^n/n!\sum(k=0;n)\rho^k/k!$

где $B(n,\rho)$ — вероятность того, что все nnn каналов заняты.

2. **Формула Эрланга С** (с очередью) используется для расчета вероятности того, что все каналы заняты, но заявка поступает в очередь и ожидает:

 $C(n,\rho) = (\rho^n/n! \cdot 1/1 - \rho/n)/\sum (k=0; n) \rho^k/k!$

Эта формула также применяется для расчета среднего времени ожидания и длины очереди.

4. Влияние отказов на производительность системы

Отказы каналов могут значительно снизить пропускную способность многоканальной системы. В таких моделях учитываются:

- Вероятность отказа каждого канала в момент времени.
- Среднее время восстановления каналов, в течение которого отказавший канал не участвует в обслуживании.

При моделировании отказов можно рассмотреть:

- Снижение числа доступных каналов: увеличение нагрузки на оставшиеся каналы и возрастание вероятности занятости всех доступных каналов.
- Увеличение времени ожидания и длины очереди из-за снижения общего числа активных каналов.

5. Стратегии резервирования и восстановления

Чтобы компенсировать отказы каналов, применяются стратегии резервирования и восстановления:

- Горячее резервирование: система заранее предусматривает дополнительный канал, который активируется мгновенно при отказе одного из основных каналов.
- Холодное резервирование: резервный канал подключается только после обнаружения отказа, что требует дополнительного времени.
- **Восстановление отказавших каналов**: время восстановления и повторного включения отказавшего канала также влияет на ключевые показатели системы, так как при увеличении времени восстановления среднее время ожидания и вероятность отказа будут расти.

Резервирование позволяет системе сохранять устойчивость и снижать среднее время ожидания и длину очереди, увеличивая общую отказоустойчивость многоканальной системы обслуживания.

Методики следования

Построение модели СМО

Модель системы M/M/1 была построена с использованием стандартных блоков Simulink, включая блоки для генерации входящих заявок, моделирования обслуживания и учета отказов. Каждый блок был настроен в соответствии с заданными параметрами системы.

Проведение симуляций

Симуляции проводились для различных значений $\lambda \ln \lambda$ и $\mu \mu$, а также с учетом отказов и резервирования. Данные фиксировались и анализировались для получения статистики по ключевым показателям системы.

Результаты и их анализ

Генерация входящих заявок

Были расположены блоки Entity Generator (для создания заявок) и Scope (для визуализации):

Была задана интенсивность входящего потока $\lambda=0.5$

График задержки очереди

Моделирование обслуживающего устройства

К схеме добавляется блок Server (для обработки входящих заявок):

Устанавливаем экспоненциальное распределение времени обслуживания с параметром $\mu=1$ (или оставляем прежним если оно усыновлено изначально):

Utilization 1

График загруженности первого сервера при lambda = 0.5

Utilization 2

График загруженности второго сервера при lambda = 0.5

График загруженности второго серверов при lambda = 0.8

График загруженности второго серверов при lambda = 0.9

Добавление блока моделирования отказов

К схеме добавляется блоки Random integer (для генерации времени до отказа основного сервера по экспоненциальному закону с параметром) и Enable/Disable (при наступлении отказа):

Устанавливаем соответствующие заданной вероятности отказа pf = 0.1:

Результаты симуляций без резервирования

При проведении симуляций без резервирования были получены следующие результаты:

- Среднее время ожидания заявок в очереди (Wq).
- Средняя длина очереди (Lq).
- Вероятность отказа в обслуживании.

Результаты симуляций с резервированием

При включении резервного сервера результаты показали значительное улучшение:

• Снижение среднего времени ожидания.

- Уменьшение длины очереди.
- Снижение вероятности отказа в обслуживании.

Сравнение с теоретическими значениями

Результаты симуляций были сопоставлены с теоретическими расчетами. Все значения были в пределах ожидаемой точности, расхождения объяснялись конечным временем симуляции и вероятностными колебаниями.

Вывод

В процессе выполнения работы по моделированию простейшей системы массового обслуживания (СМО) типа M/M/1 с учетом вероятности отказа обслуживающего устройства и реализации резервирования были достигнуты следующие результаты:

- 1. **Ознакомление с Simulink**: Работа в среде Simulink позволила приобрести практические навыки создания моделей и настройки блоков для симуляции динамических систем. Пользователь смог ознакомиться с базовыми функциями Simulink, что облегчило процесс моделирования.
- 2. Создание и исследование модели M/M/1: Модель системы массового обслуживания была успешно построена и протестирована на корректность работы как без отказов и резервирования, так и с учетом данных факторов. Это позволило глубже понять механизмы функционирования системы и ее характеристик.
- 3. Влияние отказов и резервирования: Проведенные эксперименты показали, что отказ обслуживающего устройства значительно влияет на среднее время ожидания и длину очереди. Введение резервирования позволило уменьшить время ожидания заявок и вероятность отказа в обслуживании, тем самым улучшая общую надежность системы.
- 4. Сравнение теоретических и экспериментальных данных: Полученные результаты симуляции были сопоставлены с теоретическими расчетами, основанными на известных формулах для системы М/М/1. Анализ показал, что в большинстве случаев значения, полученные в ходе симуляции, соответствуют теоретическим, однако наличие отказов и конечное время симуляции приводили к небольшим расхождениям.
- 5. **Графический анализ**: На основе собранных данных были построены графики, которые наглядно демонстрируют зависимость средних показателей системы от интенсивности потока (λ\lambdaλ), интенсивности обслуживания (μ\muμ), вероятности отказа (pfp_fpf) и времени восстановления (ТвосстТ_{восст}Твосст). Эти визуализации

- помогли проиллюстрировать, как резервирование улучшает показатели системы, такие как время ожидания и длина очереди.
- 6. **Практические применения**: Результаты работы подчеркивают важность резервирования в системах, где непрерывность обслуживания является критически важной, таких как мобильные приложения и системы реального времени. Это дает возможность применять полученные знания для повышения надежности и эффективности различных сервисов.
- 7. **Предложения по улучшению модели**: В будущем можно рассмотреть возможность внедрения более сложных методов резервирования, а также исследовать влияние других факторов на работу системы, таких как распределение времени обслуживания и поступления заявок.

Таким образом, выполненная работа позволила получить не только теоретические знания, но и практические навыки, что значительно обогатило понимание принципов работы систем массового обслуживания и их оптимизации.