弗兰克-赫兹实验

一、 预习

1. 弗兰克-赫兹实验的主要实验现象是什么?该现象说明了什么物理问题?

现象:随着阴极与栅极之间电压的改变,得到的电流随电压关系图如左图所示。它们的伏-安特性有明显的周期性,各极大值之间的间距约为4.9V.

这个现象的原因是电子与汞原子间的碰撞: 当电子能量小于汞的第一激发电位4.9V时,不能够激发汞原子到更高能级,二者发生弹性碰撞,电子几乎不损失能量,电流随电压增大而增大;而当电子能量大于4.9V时,则会与汞原子发生非弹性碰撞,使汞原子从基态跃

迁到激发态,这样电子的能量就不能克服最后一个栅极与极板之间的反向电压,从而电流会减小。而如果电流继续增加,电子碰撞后剩余的能量足以克服反向电压,电流会继续随电压增大;当电压大于2×4.9V = 9.8V时,电子与汞原子发生两次碰撞,电流再次减小。这样依此类推就得到了图中的周期性曲线。

这个现象支持了原子能级的概念, 证明了汞原子具有分立的能级。

2. 说明四栅式弗兰克-赫兹管的基本结构和各个电极的作用.

基本结构:如左图所示,F-H管由灯丝F和四个栅极(阴极K、第一栅极 g_1 、第二栅极 g_2 、极板p)组成。

各电极的作用:

- (1) 阴极K: 由灯丝F加热后发射电子;
- (2) 第一栅极 g_1 : 使 g_1 的电位略高于K,用于消除热发射电子在阴极附近的空间电荷效应(电子堆积)。改变电压 U_{Kg_1} 可以控制阴极发射电子流的强弱,在实验过程中控制电压 U_{Kg_1} 不变可以

保证发射的电子流强度不随加速电压的改变而改变;

- (3) 第二栅极 g_2 : 在第二栅极与阴极之间加一个可变的加速电压 U_{Kg_2} , 使电子获得能量并在这个区域内与汞原子发生碰撞;
- (4) 极板*p*: 在第二栅极和极板之间加一个减速电压,作用是使到达第二栅极处的能量较低的电子不能达到极板;
- 3. 实验中如何做到只观察汞的第一激发态?电路和参数设置上有什么考虑?如要观察高激发态,电路和参数设置上要做什么调整?

要测量汞原子的第一激发态,就要缩短电子的自由程,使电子的动能一旦大于4.9V就迅速与汞原子碰撞。所以使用较高的温度(180°C左右)加热汞管,获得较大的汞原子密度,以致电子的自由程较短;在电路方面,将加速电压加在阴极K和第二栅极 g_2 之间,使电子在运动过程中缓慢的加速,保证电子与汞原子的充分碰撞;

要测量汞原子的更高激发态,必须使电子的动能大于4.9V,因此就要增大电子的自由程。方法是首先降低管温(130°C左右),减小汞原子的密度;在电路上,将加速电压改加到阴极K和第一栅极 g_1 之间,使电子在很短的距离内加速到较高的动能以减少碰撞的概率,而两栅极 g_1,g_2 连在一起或加一固定小电压形成一碰撞区;

4. 微电流放大器为什么可以同时获得高放大倍数和小输入阻抗?

由于反馈电阻较大,所以很小的电流即可被放大成为较大的电压,同时由于放大器具有较大的开环增益,所以可以有较小的输入阻抗;

5. (选做) 如果希望测量汞的电离能,电路和参数应当如何设置?

为了测量电离能,要求电子有更大的动能。电路应该和测量高激发态的时候相同,都 把将加速电压改加到阴极K和第一栅极 g_1 之间、两栅极 g_1,g_2 连在一起或加一固定小电压形成一碰撞区。F-H管的温度应该进一步调低,控制在 $70\sim100$ °C左右。

二、实测与思考

1. 汞管数据

U_{Kg_2}/V	U_{out}/V	U_{Kg_2}/V	U_{out}/V	U_{Kg_2}/V	U_{out}/V	U_{Kg_2}/V	U_{out}/V
0	-0.002	9.4	0.072	16.2	0.153	24.7	0.54
0.3	-0.001	9.6	0.096	16.4	0.098	24.8	0.592
0.6	0	9.8	0.116	16.6	0.064	24.9	0.613
0.9	0	10	0.139	16.8	0.049	25	0.623
1.2	0	10.2	0.163	17.1	0.034	25.1	0.636
1.5	0.001	10.4	0.189	17.4	0.031	25.2	0.638
1.8	0.001	10.5	0.194	17.7	0.042	25.3	0.631
2.4	0.001	10.6	0.198	18	0.061	25.4	0.621
2.7	0.002	10.7	0.195	18.3	0.091	25.6	0.573
3	0.002	10.8	0.172	18.6	0.132	25.8	0.513
3.3	0.003	10.9	0.148	18.9	0.206	26	0.427
3.6	0.003	11	0.114	19.2	0.267	26.2	0.335
3.9	0.003	11.2	0.082	19.4	0.337	26.5	0.25
4.2	0.004	11.4	0.053	19.6	0.39	26.8	0.172
4.5	0.004	11.6	0.035	19.8	0.46	27.1	0.136
4.8	0.007	11.9	0.022	19.9	0.471	27.4	0.118
5	0.01	12.2	0.017	20	0.511	27.7	0.123
5.2	0.012	12.5	0.017	20.1	0.515	28	0.148
5.4	0.017	12.8	0.026	20.2	0.525	28.3	0.199
5.6	0.026	13.1	0.037	20.3	0.521	28.6	0.26
5.7	0.028	13.4	0.06	20.4	0.505	28.9	0.336
5.8	0.029	13.7	0.093	20.7	0.424	29.2	0.445
5.9	0.028	14	0.14	21	0.329	29.4	0.5
6	0.027	14.2	0.168	21.3	0.204	29.6	0.602
6.1	0.02	14.4	0.215	21.6	0.122	29.8	0.669
6.3	0.016	14.6	0.263	21.9	0.08	30	0.697
6.6	0.01	14.8	0.291	22.2	0.062	30.1	0.708
6.9	0.007	15	0.36	22.5	0.063	30.2	0.72

7.2	0.008	15.1	0.376	22.8	0.078	30.3	0.715
7.5	0.008	15.2	0.392	23.1	0.114	30.4	0.706
7.8	0.008	15.3	0.397	23.4	0.152	30.6	0.663
8.1	0.012	15.4	0.396	23.7	0.228	30.8	0.597
8.4	0.019	15.5	0.378	24	0.302	31.1	0.494
8.7	0.028	15.6	0.331	24.2	0.379	31.4	0.392
9	0.045	15.8	0.262	24.4	0.43	31.7	0.316
9.2	0.056	16	0.196	24.6	0.517	32	0.249

得到的曲线周期性地出现极大值,这是由于电子与汞原子间的相互作用: 当电子能量小于汞的第一激发电位4.9V时,不能够激发汞原子到更高能态,二者会发生弹性碰撞,电子几乎不损失能量,电流随电压增大而增大;而当电子能量大于4.9V时,则会与汞原子发生非弹性碰撞,使汞原子从基态跃迁到第一激发态,这样电子的能量就不足以克服反向电压到达极板,从而电流会减小。而如果电流继续增加,电子碰撞后剩余的能量足以克服反向电压,电流会继续随电压增大;当电压大于2×4.9V = 9.8V时,电子与两个汞原子分别发生碰撞,电流再次减小。这样依此类推就得到了图中的周期性曲线。

2. 计算第一激发电位

 U_{out}/V 达到极值的点:

峰序i	1	2	3	4	5	6
U_{Kg_2}/V	5.8	10.6	15. 3	20.2	25. 2	30. 2

对 $U_{out} - i$ 线性拟合, $U_{out} = a + bi$:

$$a = (0.81 \pm 0.12)V$$
$$b = (4.877 \pm 0.030)V$$
$$r = 0.99992$$

斜率b即为Hg的第一激发电位:

$$U_{^{1}S_{0}}{}^{3}P_{1}=(4.877\pm0.030)V$$

误差的主要来源:万用电表测量时示数会在一个区间内变化,每次读数时会产生较大的随机误差;

3. 改变反向电压测量 改变反向电压测量:

$U_{re} = 1.00V$		U_{re} :	= 2.01 <i>V</i>	$U_{re} = 3.00V$	
U_{Kg_2}/V	U_{out}/V	U_{Kg_2}/V	U_{out}/V	U_{Kg_2}/V	U_{out}/V
21.2	0.242	22.2	0.062	22.1	0.047
21.5	0.181	22.5	0.063	22.4	0.038
21.8	0.141	22.8	0.078	22.7	0.033
22.1	0.148	23.1	0.114	23.0	0.033
22.4	0.175	23.4	0.152	23.3	0.040
22.7	0.225	23.7	0.228	23.6	0.054
23.0	0.291	24.0	0.302	23.9	0.076
23.3	0.367	24.2	0.379	24.3	0.122
23.6	0.456	24.4	0.430	24.5	0.182
23.9	0.570	24.6	0.517	24.7	0.224
24.2	0.678	24.7	0.540	24.9	0.270
24.4	0.761	24.8	0.592	25.0	0.286
24.6	0.839	24.9	0.613	25.1	0.299

24.8	0.895	25.0	0.623	25.2	0.305
25.0	0.927	25.1	0.636	25.3	0.309
25.1	0.925	25.2	0.638	25.4	0.310
25.2	0.900	25.3	0.631	25.5	0.308
25.3	0.877	25.4	0.621	25.6	0.298
25.4	0.832	25.6	0.573	25.9	0.275
25.6	0.745	25.8	0.513	26.2	0.212
25.9	0.603	26.0	0.427	26.5	0.152
26.2	0.450	26.2	0.335	26.8	0.106
26.5	0.340	26.5	0.250	27.1	0.083
26.8	0.266	26.8	0.172	27.4	0.067
27.1	0.257	27.1	0.136	27.7	0.056
27.4	0.280	27.4	0.118	28.0	0.052
27.7	0.333	27.7	0.123	28.3	0.059
28.0	0.396	28.0	0.148	28.6	0.075
28.3	0.480	28.3	0.199	28.9	0.107
28.6	0.576	28.6	0.260	29.2	0.151
28.9	0.695	28.9	0.336	29.5	0.208
29.2	0.823	29.2	0.445	29.8	0.275
29.5	0.967	29.4	0.500	29.9	0.298
29.7	1.015	29.6	0.602	30.0	0.303
29.8	1.053	29.8	0.669	30.1	0.327
29.9	1.072	30.0	0.697	30.2	0.340
30.0	1.076	30.1	0.708	30.3	0.347
30.1	1.081	30.2	0.720	30.4	0.349
30.2	1.067	30.3	0.715	30.5	0.353
30.4	1.038	30.4	0.706	30.6	0.349
30.6	0.976	30.6	0.663	30.7	0.333
30.8	0.857	30.8	0.597	30.8	0.326
31.1	0.703	31.1	0.494	31.0	0.311
31.4	0.587	31.4	0.392	31.3	0.253
31.7	0.489	31.7	0.316	31.6	0.204
32.0	0.437	32.0	0.249	32.0	0.153

三组反向电压组的达峰电压 U_m 为

峰序	$U_{re}=1.00V$	$U_{re}=2.01V$	$U_{re} = 3.00V$
5	25.0	25. 2	25. 4
6	30. 1	30. 2	30. 5

改变反向电压得到的Uout-UKg。图像

改变反向电压,得到的数据有如下特征:

- i. 反向电压越大, *U_{out}*越小: 这是显然的,因为反向电压越大,能克服反向电压到达极板的电子就越少;
- ii. 反向电压越大,达到峰值所需要的第二栅极与阴极之间的电压 U_m 越大: 这一现象与电子的动能服从的分布相关,电子动能具体的分布情况未知,且已知分布后的计算较为繁琐,同时也并未找到关于这个问题的较为科学的解释的文献,所以本文不对这一现象做深入分析。