EE16A - Lecture 17 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Ena Hariyoshi

Check Negative Feedback

Inverting Amplifier

- 1. Set any input to 0 (Replace all voltage sources with short circuits, all current sources with open circuits)
- 2. Dink the output
 - Check how $V_e rr$ and $V_i n$ are changing (increase/decrease)
 - Positive feedback loop: dink causes V_out to slam into a rail
 - Negative Feedback Loop: dink minimized $V_e rr$ and causes $V_o ut$ to track $V_i n$
- 3. Allows you to apply GR 2: $V^+ = V^-$

Check Negative Feedback

Design Example 1 Using only R's & op-amps & voltage sources, implement a current source whose value is proportional to a central voltage

- 1. State the Goal: Voltage Controlled Current Source (VCCS)
 - Control Voltage (V_c) to create a fixed current $(g_m V_c (g_m = \text{Amps/V}))$
 - Value of current source depends on control voltage
 - 4 terminals (2 terminal for voltage, 2 terminals to create current at the output)
 - 2 separate circuits, but no current between the two circuits
- 2. Describe a Strategy: Block Diagram
 - Need relationship between voltage and current (Ohm's Law)
 - Measure voltage \rightarrow pass through resister \rightarrow measure output current
- 3. Implement the strategy: Voltage Source and Resistor
 - Simplest circuit that satisfies the criteria of the strategy and goal: Voltage source and resistor
 - Only 2 nodes (1 voltage source) need 4
 - Create additional loop after resistor (at 0 volts to get $I = \frac{V}{R}$ and not allow current to flow into it: OpAmp)
 - OpAmp
 - Connect the circuit after the R to one of the inputs of the OpAmp to divert the current away from ground, but maintain 0I and 0V (O^+)
 - Connect the other input to ground
 - Connect the OpAp output terminal as the remaining (O^{-})
- 4. Verify That the Strategy Works
 - If you dink the output O^- , the input from the original circuit will always increase, which means it must be V^- and the other has to be V^+ to maintain negative feedback.

- $I = \frac{V_R}{R} = \frac{V_c}{R}$, By design, I flows through output terminals in original goal $(I = \frac{V_c}{R} = g_m V_c)$
- \bullet V_c is not open circuit, like goal wants, so add a buffer (opamp) between voltage source and rest of the circuit