# UNIVERSITÄT BONN

Juergen Gall

Clustering and Segmentation MA-INF 2201 - Computer Vision WS24/25

### The goals of segmentation



### Separate image into coherent "objects"

image

human segmentation









### The goals of segmentation



Separate image into coherent "objects"

 Group together similar-looking pixels for efficiency of further processing







X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

### Toy example





input image



How can we divide the image into three superpixels (black, gray, white)?



- Goal: choose three "centers" as the representative intensities, and label every pixel according to which of these centers it is nearest to.
- Best cluster centers are those that minimize SSD between all points and their nearest cluster center c<sub>i</sub>:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

### Clustering



- With this objective, it is a "chicken and egg" problem:
  - If we knew the cluster centers, we could allocate points to groups by assigning each to its closest center.



 If we knew the group memberships, we could get the centers by computing the mean per group.



### K-means clustering



- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
  - 1. Randomly initialize the cluster centers, c<sub>1</sub>, ..., c<sub>K</sub>
  - 2. Given cluster centers, determine points in each cluster
    - For each point p, find the closest c<sub>i</sub>. Put p into cluster i
  - 3. Given points in each cluster, solve for c<sub>i</sub>
    - Set c<sub>i</sub> to be the mean of points in cluster i
  - 4. If c<sub>i</sub> have changed, repeat Step 2



#### **Properties**

- Will always converge to some solution
- Finds only a local minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

 Ask user how many clusters they'd like. (e.g. k=5)



- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations





- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)



LINIO COCITÀT <mark>DONNI</mark>

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
- Each Center finds the centroid of the points it owns



- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
- Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!



### K-means: pros and cons



### Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

### Cons/issues

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- **Detects spherical clusters**
- Assuming means can be computed



(A): Undesirable clusters



(B): Ideal clusters



(A): Two natural clusters



Source: K. Grauman



Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity





Feature space: intensity value (1-d)





quantization of the feature space; segmentation label map



K=3



Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **color** similarity





Feature space: color value (3-d)

Source: K. Grauman



Depending on what we choose as the *feature space*, we can group pixels in different ways.

# Grouping pixels based on intensity+position similarity





Both regions are black, but if we also include **position** (**x**,**y**), then we could group the two into distinct segments; way to encode both similarity & proximity.



 Color, brightness, position alone are not enough to distinguish all regions...







Depending on what we choose as the *feature space*, we can group pixels in different ways.

# Grouping pixels based on **texture** similarity







Filter bank of 24 filters

Feature space: filter bank responses (e.g., 24-d)

### Segmentation with texture features



- Find "textons" by clustering vectors of filter bank outputs
- Describe texture in a window based on texton histogram





### Image segmentation example















### Material classification example



For an image of a single texture, we can classify it according to its global (image-wide) texton histogram.



### Material classification example



Nearest neighbor classification: label the input according to the nearest known example's label.





$$\chi^{2}(h_{i}, h_{j}) = \frac{1}{2} \sum_{k=1}^{K} \frac{\left[h_{i}(k) - h_{j}(k)\right]^{2}}{h_{i}(k) + h_{j}(k)}$$

Grass

Foil



Source: M. Varma

# **Agglomerative Clustering**





### **Agglomerative Clustering**



- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
- Key operation is the computation of the proximity of two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms

### **Starting Situation**



Start with clusters of individual points and a proximity matrix







### Intermediate Situation



After some merging steps, we have some clusters



|            | <b>C</b> 1 | C2 | <b>C</b> 3 | C4 | <b>C</b> 5 |
|------------|------------|----|------------|----|------------|
| <b>C1</b>  |            |    |            |    |            |
| C2         |            |    |            |    |            |
| <b>C3</b>  |            |    |            |    |            |
| C4         |            |    |            |    |            |
| <b>C</b> 5 |            |    |            |    |            |

**Proximity Matrix** 



Source: R. Akella

### Intermediate Situation



We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.





p1 p2 p3 p4 p9 p10 p11 p12

Source: R. Akella

### After Merging



The question is: "How do we update the proximity matrix?"



|             |            | <b>C</b> 1 | C2<br>U<br>C5 | <b>C</b> 3 | C4 |
|-------------|------------|------------|---------------|------------|----|
|             | <b>C</b> 1 |            | ?             |            |    |
| <b>C2</b> U | <b>C</b> 5 | ?          | ?             | ?          | ?  |
|             | <b>C</b> 3 |            | ?             |            |    |
|             | C4         |            | ?             |            |    |

**Proximity Matrix** 



### Agglomerative Clustering Algorithm



### Basic algorithm is:

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- 6. Until only a single cluster remains





|            | <b>p1</b> | <b>p2</b> | рЗ | p4 | <b>p</b> 5 | <u> </u> |
|------------|-----------|-----------|----|----|------------|----------|
| <b>p</b> 1 |           |           |    |    |            |          |
| p2         |           |           |    |    |            |          |
| р3         |           |           |    |    |            |          |
| <b>p4</b>  |           |           |    |    |            |          |
| <b>p5</b>  |           |           |    |    |            |          |
|            |           |           |    |    |            |          |

- ☐ MIN
- MAX
- Group Average
- Distance Between Centroids
- Ward's Method





|           | <b>p1</b> | p2 | р3 | p4 | <b>p</b> 5 | <u> </u> |
|-----------|-----------|----|----|----|------------|----------|
| <b>p1</b> |           |    |    |    |            |          |
| <u>p2</u> |           |    |    |    |            |          |
| рЗ        |           |    |    |    |            |          |
| <u>p4</u> |           |    |    |    |            |          |
| р5        |           |    |    |    |            |          |
|           |           |    |    |    |            |          |

- MAX
- Group Average
- Distance Between Centroids
- Ward's Method





|  | M | IN |
|--|---|----|

- $\square$  MAX  $d_C(R,Q) = \max_{i \in R, j \in Q} d(i,j)$
- □ Group Average
- Distance Between Centroids
- Ward's Method

|    | <b>p</b> 1 | <b>p2</b> | р3 | p4 | <b>p</b> 5 | <u> </u> |
|----|------------|-----------|----|----|------------|----------|
| p1 |            |           |    |    |            |          |
| p2 |            |           |    |    |            |          |
| р3 |            |           |    |    |            |          |
| p4 |            |           |    |    |            |          |
| p5 |            |           |    |    |            |          |
|    |            |           |    |    |            |          |





|           | <b>p1</b> | p2 | рЗ | p4 | р5 | <u>.</u> . |
|-----------|-----------|----|----|----|----|------------|
| р1        |           |    |    |    |    |            |
| <b>p2</b> |           |    |    |    |    |            |
| р3        |           |    |    |    |    |            |
| <b>p4</b> |           |    |    |    |    |            |
| p5        |           |    |    |    |    |            |
| .\        |           |    |    |    |    |            |

- MIN

- □ Group Average
- Distance Between Centroids
- Ward's Method





|            | <b>p1</b> | <b>p2</b> | рЗ | p4 | <b>p</b> 5 | <u> </u> |
|------------|-----------|-----------|----|----|------------|----------|
| <b>p</b> 1 |           |           |    |    |            |          |
| p2         |           |           |    |    |            |          |
| р3         |           |           |    |    |            |          |
| <b>p4</b>  |           |           |    |    |            |          |
| <b>p5</b>  |           |           |    |    |            |          |
|            |           |           |    |    |            |          |

- MIN
- MAX
- □ Group Average
- Distance Between Centroids
- Ward's Method

**Proximity Matrix** 

Source: R. Akella

#### Ward's Method



 Similarity of two clusters is based on the increase in squared error when two clusters are merged

$$\Delta(A,B) = \sum_{i \in A \cup B} \|\vec{x}_i - \vec{m}_{A \cup B}\|^2 - \sum_{i \in A} \|\vec{x}_i - \vec{m}_A\|^2 - \sum_{i \in B} \|\vec{x}_i - \vec{m}_B\|^2$$

Hierarchical analogue of K-means

## Hierarchical Clustering: Comparison





#### Mean shift algorithm



The mean shift algorithm seeks *modes* or local maxima of density in the feature space

image



## Feature space (L\*u\*v\* color values)



#### Recall: Mean Shift





#### Recall: Mean Shift





<u>Objective</u>: Find the densest region Distribution of identical billiard balls

#### Mean shift clustering



- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode



#### Mean shift clustering/segmentation



- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence

Merge windows that end up near the same "peak" or mode





## Mean shift segmentation results











Source: D. Comaniciu

## Mean shift segmentation results











Source: D. Comaniciu

#### Mean shift



#### • Pros:

- Does not assume shape on clusters
- One parameter choice (window size)
- Generic technique
- Find multiple modes

#### Cons:

- Selection of window size
- Does not scale well with dimension of feature space

#### Images as graphs







- Fully-connected graph
  - node (vertex) for every pixel
  - link between every pair of pixels, p,q
  - affinity weight  $\mathbf{w}_{pq}$  for each link (edge)
    - w<sub>pq</sub> measures similarity
      - similarity is *inversely proportional* to difference (in color and position...)

## Measuring affinity



One possibility:

$$W_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

Small sigma: group only \times nearby points



Large sigma: group distant points

## Measuring affinity





#### Segmentation by Graph Cuts







- Break Graph into Segments
  - Want to delete links that cross between segments
  - Easiest to break links that have low similarity (low weight)
    - similar pixels should be in the same segments
    - dissimilar pixels should be in different segments

#### Graphs



- Nodes and Edges
- Edges can be directed or undirected
- Edges can have weights associated with them



Here the weights correspond to pairwise affinity

$$w_{ij} = d(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

#### Graphs



Degree





Volume of a set

$$Vol(C) = \sum_{i \in C} D(x_i)$$





The cut between two subgraphs is calculated as follows



$$Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$

#### Intuition



The minimum cut of a graph identifies an optimal partitioning of the data.

- Clustering
  - Recursively partition the data set
    - Identify the minimum cut
    - Remove edges
    - Repeat until k clusters are identified



Minimum (bipartitional) cut

$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$





Minimum (bipartitional) cut

$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$





Minimal (bipartitional) normalized cut.

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$



· Unnormalized cuts are attracted to outliers.

#### Spectral Clustering Example



Minimum Cut



Cut(BCDE,A)=0.08+0.09=0.17

#### Spectral Clustering Example



Normalized Minimum Cut

$$NormCut(C_1, C_2) = \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)}$$



Cut(BCDE,A)=0.17/(0.99+0.93+1.42+1.43) + 0.17/0.17 = 1.036

#### Spectral Clustering Example



#### Normalized Minimum Cut

$$NormCut(C_1, C_2) = \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)}$$



Cut(BCDE,A)=0.17/(0.99+0.93+1.42+1.43) + 0.17/0.17 = 1.036Cut(DE,ABC)=0.85/(1.42+1.43) + 0.85/(0.17+0.99+0.93) = 0.705

#### **Problem**



- Identifying a minimum cut is NP-hard.
- There are efficient approximations using linear algebra.
- Based on the Laplacian Matrix, or graph Laplacian



Construct an affinity matrix



Graph Laplacian

$$L = D - W$$

|   | Α  | В  | С  | D  |
|---|----|----|----|----|
| Α | 0  | .2 | .2 | 0  |
| В | .2 | 0  | .3 | 0  |
| С | .2 | .3 | 0  | .1 |
| D | 0  | 0  | .1 | 0  |

|   | Α  | В  | С  | D  |
|---|----|----|----|----|
| Α | .4 | 2  | 2  | -0 |
| В | 2  | .5 | 3  | -0 |
| С | 2  | 3  | .6 | 1  |
| D | 0  | 0  | 1  | .1 |



Reformulate problem:

$$\begin{aligned} min_x Ncut(x) &= min_y \frac{y^T(\mathbf{D} - \mathbf{W})y}{y^T \mathbf{D} y} \\ y(i) &\in \{1, -b\} \text{ and } y^T \mathbf{D} \mathbf{1} = 0 \qquad b = \frac{k}{1 - k} = \frac{\sum_{x_i > 0} d_i}{\sum_{x_i < 0} d_i} \end{aligned}$$

 If y is relaxed to be real valued, it becomes the generalized eigenvalue problem

$$(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$$

or standard eigenvalue problem

$$\mathbf{D}^{-rac{1}{2}}(\mathbf{D}-\mathbf{W})\mathbf{D}^{-rac{1}{2}}z=\lambda z \qquad \quad z=\mathbf{D}^{rac{1}{2}}oldsymbol{y}$$

[ Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation. TPAMI 2000 ]



 If y is relaxed to be real valued, it becomes the generalized eigenvalue problem

$$(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$$

or standard eigenvalue problem

$$\mathbf{D}^{-rac{1}{2}}(\mathbf{D}-\mathbf{W})\mathbf{D}^{-rac{1}{2}}z=\lambda z \qquad \quad z=\mathbf{D}^{rac{1}{2}}oldsymbol{y}$$

- $oldsymbol{\cdot}$  Trivial solution eigenvector with eigenvalue 0:  $oldsymbol{y}_0 = oldsymbol{1}$
- More interesting: eigenvector corresponding to the second smallest eigenvalue (by definition orthogonal to the first eigenvector)

[ Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation. TPAMI 2000 ]

#### Binary segmentation



- Why is the solution only an approximation?
- The eigenvector is real-valued. Where is our segmentation/clustering?
- We solved the relaxed problem
   → generally no clear cut of the graph, just soft indicators
- We get a (generally suboptimal) solution of the binary segmentation problem by thresholding the eigenvector



Input image



2<sup>nd</sup> Eigenvector



After thresholding

#### Eigensolver



- We may not always deal with fully connected graphs
   matrix will be sparse (many zero entries)
- We just require the smallest eigenvalues and their corresponding eigenvectors
- Indeed there is the Lanczos method, which efficiently computes just the smallest (or largest) eigenvalues of a matrix in O(N<sup>2</sup>)

#### More than two clusters, Laplacian eigenmaps



- The eigenvector to the third smallest eigenvalue indicates an alternative partitioning of the graph
- In the general case we compute the k smallest eigenvalues
- The corresponding eigenvectors span a subspace
  - $Y = (y_1, y_2, ..., y_k) \in \mathbb{R}^{Nxk}$  matrix
  - Each data point 1, 2, ..., N maps to a k-dimensional vector (i-th row of Y)
  - Mapping is called
     Laplacian eigenmap

Standard clustering techniques (k-means) to convert the real-valued vectors into integer labels

→ spectral clustering



Mappings from a graph to its eigenspace, clustering in the eigenspace

#### K means vs. spectral clustering







Spectral clustering

[ A. Ng et al. On spectral clustering: Analysis and an algorithm. NIPS 2001 ]

## Example results







Reformulate problem:

$$min_x Ncut(\boldsymbol{x}) = min_y \frac{\boldsymbol{y}^T (\mathbf{D} - \mathbf{W}) \boldsymbol{y}}{\boldsymbol{y}^T \mathbf{D} \boldsymbol{y}}$$

 If y is relaxed to be real valued, it becomes the generalized eigenvalue problem

$$(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$$

Why is this the case?



Minimize or Maximize objective J:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

- S symmetric positive definite
- Known as Rayleigh Quotient
- Scale invariant: J(w)=J(α w) for scalar α
- Thus, we can set:

$$\mathbf{w}^T S_W \mathbf{w} = 1$$



Maximize objective J (Rayleigh Quotient):

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

Equivalent to

$$\min_{\mathbf{w}} \quad -\frac{1}{2}\mathbf{w}^T S_B \mathbf{w}$$
s.t. 
$$\mathbf{w}^T S_W \mathbf{w} = 1$$



$$\min_{\mathbf{w}} \quad -\frac{1}{2}\mathbf{w}^T S_B \mathbf{w}$$
s.t. 
$$\mathbf{w}^T S_W \mathbf{w} = 1$$

Lagrangian multiplier:

$$L(\mathbf{w}, \lambda) = -\frac{1}{2}\mathbf{w}^T S_B \mathbf{w} + \frac{1}{2}\lambda(\mathbf{w}^T S_W \mathbf{w} - 1)$$



$$L(\mathbf{w}, \lambda) = -\frac{1}{2} \mathbf{w}^T S_B \mathbf{w} + \frac{1}{2} \lambda (\mathbf{w}^T S_W \mathbf{w} - 1)$$
$$L(\mathbf{w}, \lambda) = -\frac{1}{2} \mathbf{w}^T (S_B - \lambda S_W) \mathbf{w} - \frac{1}{2} \lambda$$
$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, \lambda) = -(S_B - \lambda S_W) \mathbf{w} = 0$$

$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$



$$L(\mathbf{w}, \lambda) = -\frac{1}{2} \mathbf{w}^T S_B \mathbf{w} + \frac{1}{2} \lambda (\mathbf{w}^T S_W \mathbf{w} - 1)$$
$$L(\mathbf{w}, \lambda) = -\frac{1}{2} \mathbf{w}^T (S_B - \lambda S_W) \mathbf{w} - \frac{1}{2} \lambda$$

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, \lambda) = -(S_B - \lambda S_W) \mathbf{w} = 0$$
$$S_B \mathbf{w} = \lambda S_W \mathbf{w}$$

(Generalized eigenvalue problem)



Generalized eigenvalue problem

$$S_B \mathbf{w} = \lambda S_W \mathbf{w} \quad \Rightarrow \quad S_W^{-1} S_B \mathbf{w} = \lambda \mathbf{w}$$

- $S_W^{-1}S_B$  is not symmetric
- Eigen decomposition ( $S_B$  is symmetric positive definite):

$$S_B = U\Lambda U^T \to S_B^{\frac{1}{2}} = U\Lambda^{\frac{1}{2}}U^T$$

This gives eigenvalue problem:

$$S_B^{\frac{1}{2}} S_W^{-1} S_B^{\frac{1}{2}} \mathbf{v} = \lambda \mathbf{v} \quad \mathbf{v} = S_B^{\frac{1}{2}} \mathbf{w}$$



#### Normalized Minimum Cut (Relaxed):

$$min_x Ncut(x) = min_y \frac{y^T (\mathbf{D} - \mathbf{W}) y}{y^T \mathbf{D} y}$$

Generalized eigenvalue problem:

$$(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$$

Equal eigenvalue problem:

$$\mathbf{D}^{-rac{1}{2}}(\mathbf{D}-\mathbf{W})\mathbf{D}^{-rac{1}{2}}z=\lambda z \qquad \quad z=\mathbf{D}^{rac{1}{2}}oldsymbol{y}$$

Eigenvector corresponding to the second smallest eigenvalue



Minimize objective J (Rayleigh Quotient):

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

Generalized eigenvalue problem:

$$S_B \mathbf{w} = \lambda S_W \mathbf{w}$$

Equal eigenvalue problem:

$$S_B^{\frac{1}{2}} S_W^{-1} S_B^{\frac{1}{2}} \mathbf{v} = \lambda \mathbf{v} \quad \mathbf{v} = S_B^{\frac{1}{2}} \mathbf{w}$$

#### Random walk view of clustering



- In a random walk, you start at a node, and move to another node with some probability.
- The intuition is that if two nodes are in the same cluster, a random walk is likely to reach both points.



#### Random walk view of clustering



- Transition probabilities:  $D^{-1}W$
- The transition probability is related to the weight of given transition and the inverse degree of the current node.

$$NCut(A, \bar{A}) = P_{A\bar{A}} + P_{\bar{A}A}$$



[ Marina Meila and Jianbo Shi. A Random Walks View of Spectral Segmentation.

NIPS 2001 ]

Source: A. Ros

#### Normalized cuts: pros and cons



#### Pros:

- Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
- Does not require model of the data distribution

#### Cons:

- Time complexity can be high
  - Dense, highly connected graphs → many affinity computations
  - Solving eigenvalue problem
- Preference for balanced partitions

#### Application: Interactive segmentation





Y. Boykov and M.-P. Jolly. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D images. ICCV 2001

C. Rother et al. GrabCut - Interactive Foreground Extraction using Iterated Graph Cuts. SIGGRAPH 2004

#### Using minimum cut with labels?



- Construct a graph representation of unseen data.
- Insert imaginary nodes s and t connected to labeled points with infinite similarity.
- Treat the min cut as a maximum flow problem from s to t





# UNIVERSITÄT BONN