Machine learning workshops for material scientists

Lecture 1: Statistics review and warm up

October 5, 2022

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's content

- Quick overview of the roles of probability and statistics
- Maximum likelihood principle
- P-value and test statistics
- Permutation test
- Correction for multiple testing

Probability is the basis of statistics

- P-value = probability of observing the same or more extreme result, given that the null hypothesis is true
 - Probability of seeing >2-fold up-regulation of gene A in drug treated patient by chance, given that the drug does not affect gene A
- $\text{Likelihood ratio} = \frac{P(\text{observed data} \mid \text{model } 1)}{P(\text{observed data} \mid \text{model } 2)}$
 - If LR is high, reject model 2. If LR is low, reject model 1
 - P(observed monkey pox genome diversity | mutation rate=0.3)
 - P(observed monkey pox genome diversity | mutation rate=0.01)

Probability tells us what to expect

- How likely or unlikely is this observation?
- P(data | no relation between female drivers and Toyota) = $\frac{\binom{022,000}{180,000}\binom{300,000}{50,000}}{\binom{1,000,000}{230,000}}$

Fisher's Exact Test

Group	Female	Male	Total
Drive Toyota	<i>k</i> ≥ 180,000	230,000 - k	230,000
Don't drive Toyota	620,000 - k	150,000 + k	770,000
Total	620,000	380,000	1,000,000

- P-value for this observation = P(Female & Toyota ≥ 180,000)
 - Summation of Hypergeometric probability for $k \ge 180,000$

Probability helps us suggest hypothesis

Combined: Mean = 18, Variance = 137

- Which assumption better explain the observed data?
- P(data | bimodal) versus P(data | unimodal)

Log-normal distribution

Limpert, Stahel, and Abbt. BioScience 2001.

- Some data are not normally distributed but their log-values are
 - Intensity and count data
- Visualize histogram to check

Statistics helps us learn from the data

- 1,000 untreated pancreatic cancer patients survived for 1, 5, 3, ..., 5 years. What is the estimated yearly survival rate?
 - Estimate the value of model parameters
- 1,000 pancreatic cancer patients treated with drug X survived for 6, 9, 10, ..., 8 years. Does the drug significantly increase the survival rate?
 - Assess how data support a certain conclusion

Maximum likelihood

Maximum likelihood for parameter estimation

- Likelihood = P(data | model)
- Find model that maximize the likelihood
 - Why?
- True objective = find model that maximize P(model | data)
- Bayes' Rule:
 - P(model | data) = P(data | model) x P(model) / P(data)
 - P(data) is a constant
 - If all models are equally likely to be true, $P(model \mid data) \propto P(data \mid model)$

Maximum likelihood is all around

- 10 tosses of a coin yielded T,T,T,H,T,H,T,T,H. How much do you think this coin is weighted on the tail side?
 - Set P(Tail) = p
 - Likelihood = P(getting 7 tails out of 10 tosses $|p\rangle = {10 \choose 7}p^7(1-p)^3$
 - Which p maximize the likelihood?
 - Solve the equation $\frac{d \text{Likelihood}}{dp} = 0$
 - $-0 = -3p^{7}(1-p)^{2} + 7p^{6}(1-p)^{3}$
 - $O = p^{6}(1 p)^{2} [-3p + 7(1 p)]$
 - -7 = -10p
 - P = 0.7

Maximum likelihood is all around

- 5 pancreatic cancer patients passed away after 1, 5, 3, 4, and 5 years, respectively. What is the maximum likelihood estimate for the yearly survival rate?
 - Set the yearly survival rate = r
 - P(survive exactly k years) = $r^k(1 r)$
 - Likelihood = $r^{1}(1-r)r^{5}(1-r)r^{3}(1-r)r^{4}(1-r)r^{5}(1-r) = r^{18}(1-r)^{5}$
 - Which r maximize the likelihood?
 - Solve the equation $\frac{dLikelihood}{dr} = 0 \rightarrow r_{MLE} = 18/23$

Likelihood ratio test for selecting models

- Likelihood ratio = $\frac{P(\text{data} \mid \text{model } 1)}{P(\text{data} \mid \text{model } 2)}$
 - If LR is high, reject model 2. If LR is low, reject model 1
- Example:
 - Test for impact of treatment: $\frac{P(\text{survival} \mid \text{treated and untreated differ})}{P(\text{survival} \mid \text{all patients are the same})}$
- This is theoretically the most powerful test (Neyman-Pearson Lemma)

Balancing between complexity and likelihood

- Simple model: Omicron and Delta have the same spreading rate
 - One parameter
- Complex model: Omicron and Delta have different spreading rates
 - Two parameters
- Complex model always achieve higher likelihood
- But is the additional complexity worth it?
 - Akaike information criterion (AIC): 2 x # parameters log likelihood
 - Bayesian information criterion (BIC): log(# samples) x # parameters log likelihood

P-value

The rise of P-value

- Probability of observing the same or more extreme result, given that the null hypothesis is true
- Using the null hypothesis as reference point
 - Is age an important indicator of cancer risk?
 - Build several logistic regression models with age as an input
 - Test whether the coefficients of age is zero
 - Null: Coefficients of age is normally distributed with mean = 0
 - Alternative: Coefficients of age is normally distributed with mean $\neq 0$
- Working with null hypothesis is convenient and practical

P-value example 1

- Before BA.5, a study estimated the rate of daily increase in COVID-19 infections with a normal distribution N(1.3, 0.01)
- After BA.5, data show that the rate of daily increase in COVID-19 infections is 1.5
- P-value = P(daily rate ≥1.5 | BA.5 has the same spread rate as prior strains)
 - = P(getting value ≥ 1.5 from N(1.3, 0.01))
 - = P-value of Z-score of 2 = 0.02275
- Reject null hypothesis

P-value example 2

- Before BA.5, a study estimated the rate of daily increase in COVID-19 infections with a normal distribution N(1.3, 0.01)
- After BA.5, data show that the rate of daily increase in COVID-19 infections is 1.4
- P-value = P(daily rate ≥1.4 | BA.5 has the same spread rate as prior strains)
 - = P(getting value ≥ 1.4 from N(1.3, 0.01))
 - = P-value of Z-score of 1 = 0.158655
- Do we accept null hypothesis?

The rise of P-value

- Probability of observing the same or more extreme result, given that the null hypothesis is true
- We use ranking scores called test statistics

Test statistics

Test statistics

- A score for ranking observations
- In one-sample t-test of whether the mean \bar{x} of data $\{x_1, x_2, ..., x_n\}$ is equal to β , the test statistics is $t = \frac{\bar{x} \beta}{SE}$
 - Measure how close is \bar{x} to β , subject to the variability of the data
 - Correspond to the null hypothesis that the mean of the data is β
 - The more t deviates from zero, the more extreme the result
- P-value = P($t \ge t_{\text{observed}}$ | the data is normally distributed with mean β)
 - t follows N(0, 1) by Central Limit Theorem

Ranking score behind popular tests

Mann-Whitney U test:
$$U = \sum_{i=1}^n \sum_{j=1}^m S(X_i, Y_j), \quad S(X, Y) = \begin{cases} 1, & \text{if } X > Y, \\ \frac{1}{2}, & \text{if } Y = X, \\ 0, & \text{if } X < Y. \end{cases}$$

- Wilcoxon rank-sum test:
- 1. Compute $|X_1|, \ldots, |X_n|$.
- 2. Sort $|X_1|,\ldots,|X_n|$, and use this sorted list to assign ranks R_1,\ldots,R_n

$$T = \sum_{i=1}^N \operatorname{sgn}(X_i) R_i.$$

Kolmogorov-Smirnov test

- Test whether two probability distribution are equal
- Compare cumulative density (red and blue trends)
- If they are equal, the two curves should stay close to each other
 - Test statistics = maximal deviation

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Maximal deviation of random walks

https://demonstrations.wolfram.com/SimulatingTheSimpleRandomWalk/

P(maximal deviation > d) $\approx 2 \sum_{k=1}^{\infty} (-1)^{k-1} e^{-2(kd)^2}$

Chi-squared test

Group	Asian	Black	White
Head & neck cancer	200	120	70
Healthy	110	150	130

- Test whether the two categorical distributions are the same
- Test statistics $\sum_{i} \frac{(O_{i} E_{i})^{2}}{E_{i}^{2}}$ follows Chi-squared distribution
 - Larger difference between observed and expected → more extreme
 - Large difference on small group → more extreme

Choosing the right test

AUROC	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7
M1	0.701	0.503	0.991	0.827	0.623	0.728	0.596
M2	0.691	0.478	0.905	0.739	0.589	0.719	0.508

- Comparing AUROCs between models M1 and M2
 - Unpaired Student's t-test p-value = 0.5687
 - Mann-Whitney U test p-value = 0.6101
 - Paired Student's t-test p-value = 0.0137
 - Wilcoxon signed rank test p-value = 0.0156

Hypothesis testing framework

- Propose null hypothesis
- Design the test statistic t
 - This score should reflect the extreme aspect of the data
- Derive the distribution of test statistic under the null hypothesis
- Specify the significance level α to reject null hypothesis (e.g., 0.05)
- Calculate p-value: $P(t \ge t_{observed} | null hypothesis)$
- By following this framework, new tests can be created!

Permutation test

Correlation example

	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	Obs 6	Obs 7
Feature 1	0.701	0.503	0.991	0.827	0.623	0.728	0.596
Feature 2	0.691	0.478	0.905	0.739	0.589	0.719	0.508

- Correlation of between Feature 1 and Feature 2 = 0.9746
- Can we assess the significance of this correlation?

Null hypothesis

- Feature 1 and Feature 2 are uncorrelated
- Feature 2 values can be shuffled and still lead to the same correlation

Permutation test

- Alternative hypothesis: The observed property of the data, such as high correlation, is due to some structure in the data
- Null hypothesis: That structure in the data does not contribute to the property of interest
- P-value = Probability that shuffled data still yield the same or more extreme property than the original data
- Shuffle data in such a way that the structure of interest is disrupted
- Re-calculate the property of interest and compared to the original value

Permutation test for correlation

	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	Obs 6	Obs 7
Feature 1	0.701	0.503	0.991	0.827	0.623	0.728	0.596
Feature 2	0.691	0.478	0.905	0.739	0.589	0.719	0.508

Correlation = 0.97

Correlation = 0.24

Permutation test for network data

Real-world network has hubs that serve as shortcut between other nodes

Random network is not well-connected

Source: Segura-Cebrera et al. Analysis of Protein Interaction Networks to Prioritize Drug Targets of Neglected-Diseases Pathogens

- Null hypothesis: The small diameter of real-world network appear by chance in any network with the same number of nodes and edges
- **Permutation test:** Generate 1,000 random networks with the same number of nodes and edges and compute the diameter of these networks

Permutation test for network data

Same-gender Facebook friendships occur more often detail than cross-gender ones

- **Null hypothesis**: The high number of same-gender relationship of Facebook network occur by chance in any random network with the same number of people and relationship

Correction for multiple testings

Correction for multiple testings

- P-value cutoff of 0.05 means that under the null hypothesis, there is only 5% chance of observing the same or more extreme result
- Applying the same test 1,000 times will result in 50 tests on average with smaller p-value than 0.05 just by chance
 - Differential expression analysis tests thousands of gene at once
- This in unacceptable if a conclusion relies on multiple tests
 - Functional enrichment analysis assumes that all input DEGs are true

Bonferroni method

- Divide the p-value cutoff by the number of test
- Adjusted p-value cutoff = 0.05 / 1000 = 0.00005
- Applying the same test 1,000 times will result in 0.05 tests on average with smaller p-value than 0.00005 just by chance
- Easy but lose power

False discovery rate (FDR)

- P-value operates under the null hypothesis
- But in practice, we want to control the number of errors in the output
 - The number of DEGs that were incorrectly proposed
- FDR = Probability of getting a false positive= # false positive / # all predicted positives
- But FDR involves alternative hypothesis, which is difficult to calculate
- We can control FDR somewhat through p-value!

Benjamini-Hochberg procedure

- Valid under broad situations (independent tests, some dependency, etc.)
- Control false discovery rate (FDR)
- Target FDR = 0.05
- Given a series of tests with p-values, $p_1, p_2, ..., p_n$
 - Sort p-values from low to high, $p'_1, p'_2, ..., p'_n$
 - Find largest k such that $p'_k \le 0.05 \times k / n$
 - For the smallest p-value, this is equivalent to Bonferroni
 - For other p-values, this technique gradually loosens the cutoff
 - Reject null hypothesis for tests corresponding to $p'_1, p'_2, ..., p'_k$

Impact of correction method

P-value	Bonferroni	В-Н	B-Y
Smallest	0.0005	0.0005	0.0005
2 nd smallest	0.0005	0.001	0.000667
3 rd smallest	0.0005	0.0015	0.000818
4 th smallest	0.0005	0.002	0.00096
5 th smallest	0.0005	0.0025	0.001095

- **Assumptions**: There are 100 tests. Target p-value or FDR cutoff = 0.05
- More powerful tests can yield more significant results

Summary

- Probability and statistics are intertwined
- Yet another important ML: Maximum likelihood principle
- P-value and test statistics
- Weapon of mass statistical testing: Permutation test
- Correction for multiple testing

Any question?