

Blackbody Radiotion Definition:

A hypothetical object that reflects no light, it only absorbs light. Any emitted light comes from that absorbed light (energy). Anything that produces heat is emitting blackbody radiation (ex. humans emit infrared radiation)

Max Planck realized that energy is released in discrete packets, known as quanta. The energy released is proportional to frequency $also \frac{1}{\lambda}$ v=fx $J=(J\cdot S)(\frac{1}{5})$

Ex: Calculate the energy in joules and electron volts (ev) of

- a) a quantum of blue light with f=6.67x10^14 Hz
- b) a quantum of red light with lambda = 635nm

a)
$$E = hf$$

$$= (6.63 \times 10^{-34} \text{J} \cdot \text{S}) (6.67 \times 10^{14} \text{ s})$$

$$= 4.42 \times 10^{-14} \text{J} \times \frac{1ev}{1.6 \times 10^{-14}} \text{J}$$

$$= 2.76 \text{eV}$$
b)
$$E = hf$$

$$= h \frac{\sqrt{3}}{3}$$

= (663×10-34) (3×108)

= 3.13×10-9J

= 1.96 ev

The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. However there is a threshold frequency that must be met in order for this to occur. Any additional energy (frequency) will dictate to the kinetic energy of the particle

	A)(5 0	<u>E</u> .	o = VoHs		
	۵۷- ۱	9	S - VOITS		
Ex:					
	ميد ۾ طائيد	n rolon	ath of 600pm i	directed at	postallia surface with a work function (AA) of
	with a wa	aveien	gin of boonin i	directed at	a metallic surface with a work function (W) of
.6eV.					
Calculate:					
a) max kinetio	cenergy	in joul	es of the emitt	ed electrons	
) maximum	sneed				
) the cutoff r	necessar	y to st	op electrons		
2=6x10	-9,6			b)	
				8,	_31.
w=1.6e	V				me = 9.1 x10-31 kg
A)	^ L.1				Ek= 2mv2
Ek= h					$7.55 \times 10^{-20} = \frac{1}{2} (9.1 \times 10^{-31}) \text{ V}^2$
= h	× -w			19 .	$V = \sqrt{\frac{7.55 \times 10^{-20}}{\frac{1}{2}(9.1 \times 10^{-31})}}$
= b.l	b3x(0 ⁻³⁴ (900x10	a) - (1.beux 1.6	lev)	1 -2(9.1×10 ⁻³¹)
Ex = 7.	55 x 10 ⁻²⁰)				v=4.07×105 m/s
		c)	charae		
		, ,	charge V Ex = eVo	t off potential	
			tk = eV0	×10-20 1	
		not -	Vo = EK = 7.5.	10-19 C ~ U	nlowp?
	V	/IOI -	= 0.470		
Strai	ght co	nduct	or/wire		Coil
	I				Number of coils
B=	μο <u>2</u> π1				B= No (T)
					Length of coil
					permeability of free space:
					Constant 9