

IPR 1

Morgenfeld, Reynolds

Background

Literatur

Upcoming

Reference

Aerobic Training and its Influence on Long-Distance Running Performance

CDT Creighton Morgenfeld, Dr. Margaret Reynolds

MA389: United States Military Academy

February 8, 2023

Agenda

IPR 1

Morgenfeld, Reynolds

Backgroun

Literatur Review

Upcoming Work

- Background
- 2 Literature Review
- 3 Upcoming Work

IPR 1

Morgenfeld, Reynolds

Background

Literatur Review

Upcoming Work

Reference

Popularity of marathon and long-distance running

IPR 1

Morgenfeld, Reynolds

Background

Literatur Review

Upcoming Work

- Popularity of marathon and long-distance running
- Well-established predictors of performance (VO₂ max, lactate threshold, etc.)

IPR 1

Morgenfeld, Reynolds

${\sf Background}$

Literatur Review

Upcoming Work

- Popularity of marathon and long-distance running
- Well-established predictors of performance (VO₂ max, lactate threshold, etc.)
- Expensive, time consuming, and difficult tests

IPR 1

Morgenfeld, Reynolds

${\sf Background}$

Literatur Review

Upcoming Work

- Popularity of marathon and long-distance running
- Well-established predictors of performance (VO₂ max, lactate threshold, etc.)
- Expensive, time consuming, and difficult tests
- Training indices bridge gap (distance, pace, training sessions, etc.)

Statistical Models

IPR 1

Morgenfeld, Reynolds

Backgroun

Literature Review

Upcomin Work

Reference

Slovic (1977) incorporated training indices into model.
[4]

Tanda (2011) found relationship between average weekly distance (K) and average pace (P) on race pace (P_m).
[5]

$$P_m = 17.1 + 140e^{-0.0053K} + 0.55P$$

- Doherty et al's (2020) meta analysis of 85 articles in the field. [1]
 - Results help inform endurance training

Tanda's Model

IPR 1

Morgenfeld, Revnolds

Background

Literature Review

Upcoming Work

References

$$P_m = 17.1 + 140e^{-0.0053K} + 0.55P$$

Predicted Race Pace by Weekly Distance and Training Pace

Average Weekly Distance, K (km/wk)

Average Training Pace, P (sec/km)

Mechanistic Models

IPR 1

Morgenfeld, Reynolds

Background

Literature Review

Upcoming Work

- Keller's (1973, 1974) foundational work [2,3]
- Woodside (1991) extended the model [6]

Keller's Problem

IPR 1

Morgenfeld, Reynolds

Background

Literature Review

Upcoming Work

Reference

Given the following:

$$rac{dv}{dt} + rac{1}{\tau}v = f(t), \quad f(t) \leq F$$
 $rac{dE}{dt} = \sigma - f(t)v(t), \quad E(0) = E_0$ T, τ, σ

Maximize:

$$D = \int_{0}^{T} v(t) dt$$

Keller's Model

IPR 1

Morgenfeld, Reynolds

Background

Literature Review

Upcoming Work

$$v(t) = \begin{cases} F\tau(1 - e^{-t/\tau}), & 0 \le t \le t_1 \\ \tau/\lambda, & t_1 \le t \le t_2 \\ \sqrt{\sigma\tau + [v^2(t_2) - \sigma\tau]}e^{-2(t_2 - t)/\tau}, & t_2 \le t \le T \end{cases}$$

Keller's Model

IPR 1

Morgenfeld, Reynolds

Background

Literature Review

Upcoming Work

$$v(t) = egin{cases} F au(1-e^{-t/ au}), & 0 \leq t \leq t_1 \ au/\lambda, & t_1 \leq t \leq t_2 \ \sqrt{\sigma au + [v^2(t_2) - \sigma au]}e^{-2(t_2-t)/ au}, & t_2 \leq t \leq T \end{cases}$$

Way Ahead

IPR 1

Morgenfeld, Reynolds

Background

Literatur Review

Upcoming Work

Reference

Identify links between approaches

Way Ahead

IPR 1

Morgenfeld, Reynolds

Backgroun

Literatur Review

Upcoming Work

- Identify links between approaches
- Determine important training indices

Way Ahead

IPR 1

Morgenfeld, Reynolds

Backgroun

Literatur Review

Upcoming Work

- Identify links between approaches
- Determine important training indices
- Communicate effectively

References

IPR 1

Morgenfeld, Revnolds

- [1] Cailbhe Doherty, Alison Keogh, James Davenport, Aonghus Lawlor, Barry Smyth, and Brian Caulfield, An evaluation of the training determinants of marathon performance: A meta-analysis with meta-regression, Journal of Science and Medicine in Sport 23 (2020), no. 2, 182-188.
- Joseph B. Keller, A theory of competitive running, Physics Today 26 (1973), 43-47.
- _____, Optimal velocity in a race, The American Mathematical Monthly 81 (1974), no. 5, 474-480.
- [4] Paul Slovic, Empirical study of training and performance in the marathon, Research Quarterly. American Alliance for Health, Physical Education and Recreation 48 (1977), no. 4, 769-777, available at https://doi.org/10.1080/10671315.1977.10615491.
- [5] Giovanni Tanda, Prediction of marathon performance time on the basis of training indices, Journal of Human Sport and Exercise Volume 6 (201109), 521-520.
- [6] William Woodside, The optimal strategy for running a race (a mathematical model for world records from 50 m to 275 km), Mathematical and Computer Modelling 15 (1991), no.=10, 1=12. = -0.0

Appendix A – Doherty

IPR 1

Morgenfeld, Reynolds

Background

Literature Review

Upcoming Work

Marathon finish time	Average weekly distance	Weekly training hours	Peak' week	Longest training run	N runs >32km	Average training pace	N weekly runs
250	38.2	3.9	50.0	23.5		90.9	2.4
249	38.7	3.9	51.3	23.7		91.6	2.4
248	39.3	4.0	52.6	23.8		92.2	2.5
247	39.9	4.1	53.9	24.0		92.8	2.6
246	40.5	4.1	55.2	24.2		93.4	2.7
245	41.1	4.2	56.5	24.4		94.0	2.8
244	41.7	4.2	57.8	24.5		94.6	2.8
243	42.3	4.3	59.1	24.7		95.2	2.9
242	43.0	4.4	60.4	24.9		95.8	3.0
241	43.6	4.4	61.7	25.1		96.4	3.1
240	44.2	4.5	63.0	25.2		97.1	3.2

Appendix B - Tanda 2D

IPR 1

Morgenfeld, Revnolds

Background

Literature

Upcoming Work

