Natural Language Processing SoSe 2017

IT Systems Engineering | Universität Potsdam

Part-of-Speech (POS) Tags

- Also known as:
 - Part-of-speech tags, lexical categories, word classes, morphological classes, lexical tags

Plays_[VERB] well_[ADVERB] with_[PREPOSITION] others_[NOUN]

Plays_[VBZ] well_[RB] with_[IN] others_[NNS]

Examples of POS tags

- Noun: book/books, nature, Germany, Sony
- **Verb**: eat, wrote
- Auxiliary: can, should, have
- Adjective: new, newer, newest
- Adverb: well, urgently
- **Number**: 872, two, first
- Article/Determiner: the, some
- Conjuction: and, or
- **Pronoun**: he, my
- Preposition: to, in
- Particle: off, up
- Interjection: Ow, Eh

Motivation: Speech Synthesis

- Word "content"
 - "Eggs have a high protein content."
 - "She was content to step down after four years as chief executive."

Motivation: Machine Translation

- e.g., translation from English to German:
 - "I like ..."
 - "Ich mag" (verb)
 - "Ich wie …" (preposition)

Motivation: Syntactic parsing

Your query

I saw the man on the roof

Tagging

I/PRP saw/VBD the/DT man/NN on/IN the/DT roof/NN

Parse

```
(ROOT
  (S
     (NP (PRP I))
     (VP (VBD saw)
           (NP (DT the) (NN man))
           (PP (IN on)
                 (NP (DT the) (NN roof))))))
```


Motivation: Information extraction

Named-entity recognition (usually nouns)

> echo "Inhibition of NF-kappaB activation reversed the anti-apoptotic effect of isochamaejasmin." | ./geniatagger

Inhibition	Inhibition	NN TN	B-NP	0
NF-kappaB	NF-kappaB	NN	B-NP	B-protein
activation	activation	NN	I-NP	0
reversed	reverse	VBD	B-VP	0
the	the	DT	B-NP	0
anti-apoptotic	anti-apoptotic	JJ	I-NP	0
effect	effect	NN	I-NP	0
of	of	IN	B-PP	0
isochamaejasmin	isochamaejasmin	NN	B-NP	0
			0	0

Motivation: Information extraction

Relation extraction (triggers are usually verbs)

> echo "Inhibition of NF-kappaB activation reversed the anti-apoptotic effect of isochamaejasmin." | ./geniatagger

	Inhibition	Inhibition	NN TN	B-NP	0	
	NF-kappaB	NF-kappaB	NN	B-NP	B-protein	
	reversed	reverse	VBD	B-VP	0	
	tne anti-apoptotic effect	tne anti-apoptotic effect	NN TT	B-NP I-NP I-NP	0	
	oî isochamaejasmin	oí isochamaejasmin	NN	B-PP B-NP O	0 0 0	

Open vs. Closed Classes

Closed

- limited number of words, do not grow usually
- e.g., Auxiliary, Article, Determiner, Conjuction, Pronoun,
 Preposition, Particle, Interjection

Open

- unlimited number of words
- e.g., Noun, Verb, Adverb, Adjective

POS Tagsets

- There are many parts of speech tagsets
- Tag types
 - Coarse-grained
 - Noun, verb, adjective, ...
 - Fine-grained
 - noun-proper-singular, noun-proper-plural, nouncommon-mass, ..
 - verb-past, verb-present-3rd, verb-base, ...
 - adjective-simple, adjective-comparative, ...

POS Tagsets

- Brown tagset (87 tags)
 - Brown corpus
- C5 tagset (61 tags)
- C7 tagset (146 tags!)
- Penn TreeBank (45 tags) most used
 - A large annotated corpus of English tagset

POS Tagging

 The process of assigning a part of speech to each word in a text

- Challenge: words often have more than one POS
 - On my back_[NN] (noun)
 - The back_[II] door (adjective)
 - Win the voters back_[RB] (adverb)
 - Promised to back_[VB] the bill (verb)

Ambiguity in POS tags

- 45-tags Brown corpus (word types)
 - Unambiguous (1 tag): 38,857
 - Ambiguous: 8,844
 - 2 tags: 6,731
 - 3 tags: 1,621
 - 4 tags: 357
 - 5 tags: 90
 - 6 tags: 32
 - 7 tags: 6 (well, set, round, open, fit, down)
 - 8 tags: 4 ('s, half, back, a)
 - 9 tags: 3 (that, more, in)

Baseline method

- 1. Tagging unambiguous words with the correct label
- 2. Tagging ambiguous words with their most frequent label
- 3. Tagging unknown words as a noun

This method performs around 90% precision

POS Tagging

- The process of assigning a POS tag to each word in a text.
 Choosing the best candidate tag for each word.
 - Plays (NNS/VBZ)
 - well (UH/JJ/NN/RB)
 - with (IN)
 - others (NNS)
 - Plays_[VBZ] well_[RB] with_[IN] others_[NNS]

Rule-Based Tagging

- Standard approach (two steps):
 - 1. Dictionaries to assign a list of potential tags
 - Plays (NNS/VBZ)
 - well (UH/JJ/NN/RB)
 - with (IN)
 - others (NNS)
 - 2. Hand-written rules to restrict to a POS tag
 - Plays (VBZ)
 - well (RB)
 - with (IN)
 - others (NNS)

Rule-Based Tagging

- Some approaches rely on morphological parsing
 - e.g., EngCG Tagger below

```
REPLACE (<CMH> N NOM SG)

TARGET (INF)

IF (-1C DET/GEN/PP OR CORE-TITLE)

(NOT -1 (<Rel>) OR (INDEP))

(NOT 0 ("let") OR OPEN-NOMINAL OR AUXW OR (PREP) OR (CC))

(NOT 1 (ART) OR (ACC) OR (PRON GEN));
```

The rule replaces all readings containing the INF tag with the tag sequence $\langle CMH \rangle N NOM SG$ if all four context-conditions are satisfied:

. . .

- Many of the NLP techniques should deal with data represented as sequence of items
 - Characters, Words, Phrases, Lines, ...
- e.g., for part-of-speech tagging
 - I_[PRP] saw_[VBP] the_[DT] man_[NN] on_[IN] the_[DT] roof_[NN].
- e.g., for named-entity recognition
 - Steven_[PER] Paul_[PER] Jobs_[PER] ,_[O] co-founder_[O] of_[O]
 Apple_[ORG] Inc_[ORG] ,_[O] was_[O] born_[O] in_[O] California_[LOC].

- Making a decision based on:
 - Current Observation:
 - Word (W₀): "35-years-old"
 - Prefix, Suffix: "computation" → "comp", "ation"
 - Lowercased word: "New" → "new"
 - Word shape: "35-years-old" → "d-a-a"
 - Surrounding observations
 - Words (W₊₁, W₋₁)
 - Previous decisions
 - POS tags (T₋₁, T₋₂)

- Greedy inference
 - Start in the beginning of the sequence
 - Assign a label to each item using the classifier
 - Using previous decisions as well as the observed data

- Beam inference
 - Keeping the top k labels in each position
 - Extending each sequence in each local way
 - Finding the best k labels for the next position

Hidden Markov Model (HMM)

• Finding the best sequence of tags $(t_1 ... t_n)$ that corresponds to the sequence of observations $(w_1 ... w_n)$

- Probabilistic View
 - Considering all possible sequences of tags
 - Choosing the tag sequence from this universe of sequences, which is most probable given the observation sequence

$$\hat{t_1^n} = \operatorname{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

Using the Bayes Rule

$$\hat{t_1}^n = argmax_{t_1^n} P(t_1^n | w_1^n)$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(t_1^n|w_1^n) = \frac{P(w_1^n|t_1^n) \cdot P(t_1^n)}{P(w_1^n)}$$

$$\hat{t_1}^n = \operatorname{argmax}_{t_1^n} P\left(w_1^n | t_1^n\right) \cdot P\left(t_1^n\right)$$
likelihood prior probability

Using Markov Assumption

$$\hat{t_1}^n = argmax_{t_1^n} P(w_1^n | t_1^n) \cdot P(t_1^n)$$

$$P(w_1^n|t_1^n) \simeq_{i=1}^n \prod P(w_i|t_i)$$
 (it depends only on its POS tag and independent of other words)

$$P(t_1^n) \simeq_{i=1}^n \prod P(t_i|t_{i-1})$$
 (it depends only on the previous POS tag, thus, bigram)

$$\hat{t_1}^n = argmax_{t_1^n i=1}^n \prod P(w_i|t_i) \cdot P(t_i|t_{i-1})$$

Two Probabilities

- The tag transition probabilities: $P(t_i|t_{i-1})$
 - Finding the likelihood of a tag to proceed by another tag
 - Similar to the normal bigram model

$$P(t_{i}|t_{i-1}) = \frac{C(t_{i-1},t_{i})}{C(t_{i-1})}$$

Two Probabilities

- The word likelihood probabilities: P(w_i|t_i)
 - Finding the likelihood of a word to appear given a tag

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

Two Probabilities

I_[PRP] saw_[VBP] the_[DT] man_[NN?] on_[] the_[] roof_[].

$$P([NN]|[DT]) = \frac{C([DT],[NN])}{C([DT])}$$

$$P(man|[NN]) = \frac{C([NN], man)}{C([NN])}$$

Ambiguity in POS tagging

Secretariat_[NNP] is_[VBZ] expected_[VBN] to_[TO] race_[VB] tomorrow_[NR].

People_[NNS] inquire_[VB] the_[DT] reason_[NN] for_[IN] the_[DT] race_[NN].

Ambiguity

 $Secretariat_{[NNP]} is_{[VBZ]} expected_{[VBN]} to_{[TO]} race_{[?]} tomorrow_{[NR]}$.

Ambiguity

 $Secretariat_{[NNP]} is_{[VBZ]} expected_{[VBN]} to_{[TO]} race_{[VB]} tomorrow_{[NR]}$.

$$P(VB|TO) = 0.83$$

$$P(race|VB) = 0.00012$$

$$P(NR|VB) = 0.0027$$

$$P(VB|TO).P(NR|VB).P(race|VB) = 0.00000027$$

Ambiguity

Secretariat_[NNP] $is_{[VBZ]}$ expected_[VBN] $to_{[TO]}$ race_[VB] tomorrow_[NR].

$$P(NN|TO) = 0.00047$$

$$P(race|NN) = 0.00057$$

$$P(NR|NN) = 0.0012$$

P(NN|TO).P(NR|NN).P(race|NN) = 0.00000000032

Viterbi algorithm

- Decoding algorithm for HMM
 - Determine the best sequence of POS tags
- Probability matrix
 - Columns corresponding to inputs (words)
 - Rows corresponding to possible states (POS tags)

Viterbi algorithm

- 1. Move through the matrix in one pass filling the columns left to right using the transition probabilities and observation probabilities
- 2. Store the max probability path to each cell (not all paths) using dynamic programming

 q_4 / NN_{j}

q_{end} end

 q_3 TO_1

 $q_2 (VB)$

q₁ PPSS

q_o start

POS tagging using machine learning

Classification problem (token by token) using a rich set of

features

Current word	w_i	$\& t_i$
Previous word	w_{i-1}	$\& t_i$
Next word	w_{i+1}	$\& t_i$
Bigram features	w_{i-1}, w_i	$\& t_i$
	w_i, w_{i+1}	$\&~t_i$
Previous tag	t_{i-1}	$\& t_i$
Tag two back	t_{i-2}	$\& t_i$
Next tag	t_{i+1}	$\& t_i$
Tag two ahead	t_{i+2}	$\& t_i$
Tag Bigrams	t_{i-2}, t_{i-1}	$\& t_i$
	t_{i-1}, t_{i+1}	$\& t_i$
	t_{i+1}, t_{i+2}	$\& t_i$
Tag Trigrams	$t_{i-2}, t_{i-1}, t_{i+1}$	$\& t_i$
	$t_{i-1}, t_{i+1}, t_{i+2}$	$\& t_i$
Tag 4-grams	$t_{i-2}, t_{i-1}, t_{i+1}, t_{i+2}$	$\& t_i$
Tag/Word	t_{i-1}, w_i	$\& t_i$
combination	t_{i+1}, w_i	$\& t_i$
	t_{i-1}, t_{i+1}, w_i	$\& t_i$
Prefix features	prefixes of w_i (up to length 10)	
Suffix features	suffixes of w_i (up to length 10)	$\& t_i$
Lexical features	whether w_i has a hyphen	$\& t_i$
	whether w_i has a number	$\& t_i$
	whether w_i has a capital letter	$\& t_i$
	whether w_i is all capital	$\&~t_i$

(https://link.springer.com/chapter/10.1007/11573036_36)

POS tagging using neural networks

- e.g., using Bidirectional Long Short-Term Memory Recurrent Neural Network (bi-LSTM)
- Input based on tokens, characters and bytes

Figure 1: Right: bi-LSTM, illustrated with $\vec{b} + \vec{c}$ (bytes and characters), for $\vec{w} + \vec{c}$ replace \vec{b} with words \vec{w} . Left: FREQBIN, our multi-task bi-LSTM that predicts at every time step the tag and the frequency class for the next token.

Evaluation

Corpus

- Training and test, and optionally also development set
- Training (cross-validation) and test set

Evaluation

- Comparison of gold standard (GS) and predicted tags
- Evaluation in terms of Precision, Recall and F-Measure

Precision and Recall

- Precision:
 - Amount of labeled items which are correct

$$Precision = \frac{tp}{tp + fp}$$

- Recall:
 - Amount of correct items which have been labeled

$$Recall = \frac{tp}{tp + fn}$$

F-Measure

- There is a strong anti-correlation between precision and recall
- Having a trade off between these two metrics
- Using F-measure to consider both metrics together
- F -measure is a weighted harmonic mean of precision and recall

$$F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Error Analysis

- Confusion matrix or contingency table
 - Percentage of overall tagging error

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	-	.2			.7		
JJ	.2	-	3.3	2.1	1.7	.2	2.7
NN		8.7	-				.2
NNP	.2	3.3	4.1	-	.2		
RB	2.2	2.0	.5		-		
VBD		.3	.5			-	4.4
VBN		2.8				2.6	

Summary

- POS tagging and tagsets
- Rule-based algorithms
- Sequential algorithms
- Neural networks
- Evaluation (P,R,FM)

Tools for POS tagging

- Spacy: https://spacy.io/
- OpenNLP: https://opennlp.apache.org/
- Stanford CoreNLP: https://stanfordnlp.github.io/CoreNLP/
- NLTK Python: http://www.nltk.org/
- and others...

Further reading

- Book Jurafski & Martin
 - Chapter 5

Exercise

- Project: choose a POS tagger and use it in your project.
 - Can POS tags support your task?