Problem 6 Suppose \mathcal{B} is a σ -field of subsets of \mathbb{R} . Show $\mathcal{B}(\mathbb{R}) \subset \mathcal{B}$ iff every real valued continuous function is measurable with respect to \mathcal{B} and therefore $\mathcal{B}(\mathbb{R})$ is the smallest σ -field with respect to which all the continuous functions are measurable.

Proof.

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous funtion. We claim f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. Let \mathcal{C} consists of the open sets in \mathbb{R} . Let $B \in \mathcal{C}$, then $f^{-1}(B) \in \mathcal{B}(\mathbb{R})$. Since $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R})$, we know f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable.

- (a) Assume continuous function f is measurable with respect to \mathcal{B} . We have shown $\forall B \in \mathcal{C}, f^{-1}(B) \in \mathcal{B}(\mathbb{R})$ when f is a continuous function. Then let f be an identity function, then $\forall B \in \mathcal{C}, f^{-1}(B) = B \in \mathcal{B}(\mathbb{R})$. So $B \in \mathcal{B}$ since f is measurable with respect to \mathcal{B} . Thus, $\mathcal{B}(\mathbb{R}) \subset \mathcal{B}$.
- (b) Assume $\mathcal{B}(\mathbb{R}) \subset \mathcal{B}$. Use the symbols above, f is a continuous function, then $\forall B \in \mathcal{C}, f^{-1}(B) \in \mathcal{B}(\mathbb{R}) \subset \mathcal{B}$. Since \mathcal{B} is a σ -field of subsets of \mathbb{R} , f is measurable with respect to \mathcal{B} .

Therefore $\mathcal{B}(\mathbb{R})$ is the smallest σ -field with respect to which all the continuous functions are measurable.