Applied Multivariate Statistical Analysis: Homework 2

Homework format: all homework must be written in latex. You must turn in both your tex and pdf files. Attach your code and computer output if there is any programming.

- 1. (a) Let X_1, \ldots, X_n be i.i.d. N(0,1), for any $a \in \mathbb{R}^n$ with ||a|| > 0, find the conditional distribution of $\sum_{i=1}^n X_i^2$ given that $\sum_{i=1}^n a_i X_i = 0$.
 - (b) show that the range $R_n = X_{(n)} X_{(1)}$ is independent of the sample mean \bar{X}_n , where $X_{(i)}$ is the *i*th order statistic.
- 2. Given a $p \times p$ positive definite matrix B and a scalar b > 0, show that

$$\frac{1}{|\Sigma|^b} \exp\{-\text{tr}(\Sigma^{-1}B)/2\} \le \frac{1}{|B|^b} (2b)^{pb} e^{-pb}$$

for all $p \times p$ positive definite matrices Σ , with equality holding only for $\Sigma = B/(2b)$.

- 3. Use matrix differentiation to show that $\bar{x}_n = n^{-1} \sum_{i=1}^n x_i$ and $S_n = n^{-1} \sum_{i=1}^n x_i x_i'$ are the stationary points of the likelihood function $L(\mu, \Sigma | x_1, \dots, x_n)$, i.e., $\partial L/\partial \mu = 0$ and $\partial L/\partial \Sigma = 0$,, where $\{x_1, \dots, x_n\}$ is a random sample from $N_p(\mu, \Sigma)$.
- 4. If X is a normal data matrix from $N_p(\mu, \Sigma)$, let the $m \times q$ data matrix Y = AXB, then Y is also a normal data matrix if and only if (i) $A1_n = \alpha 1_n$ for some scalar α , or $B'\mu = 0$; (ii) $AA' = \beta I_n$ for some scalar β , or $B'\Sigma B = 0$. If both of these conditions are satisfied, then Y is a normal data matrix from $N_q(\alpha B'\mu, \beta B'\Sigma B)$.
- 5. If X is a normal data matrix from $N_p(\mu, \Sigma)$, and if C_1, \ldots, C_k are symmetric matrices, then $X'C_1X, \ldots, X'C_kX$ are jointly independent if $C_rC_s = 0$ for all $1 \le r \ne s \le k$.

Johnson-Wichern 6th Edition, 4.2, 4.4, 4.16, 4.21, 4.26, 4.39, 4.40.