

Introduction to CUDA

(9) Tensor Cores & Mixed Precision Programming

Pascal \rightarrow Volta \rightarrow Turing

Pascal → Volta → Turing

Content

1. Mixed-Precision Programming

- 2. Tensor Cores
- 3. Mixed-Precision Training of DNN

Using the right tool

- Numerical Computing:
 - tradeoffs between precision, accuracy, and performance.

INT4 INT8 INT16 FP16 FP32 FP64 FP128

- Pascal GPU architecture and CUDA 8:
 - mixed-precision computing with new 16-bit floating point and 8/16-bit integer computing capabilities.

Half-precision Floating Point

- Common floating point formats include:
 - 32-bit, known as "single precision"
 - 64-bit, known as "double precision".
- FP64:
 - 1 sign bit, 11 exponent bits, and 52 mantissa bits.
- FP32:
 - 1 sign bit, 8 exponent bits, and 23 mantissa bits.
 - about 2 billion values.
- FP16: half-precision floating point
 - 1 sign bit, 5 exponent bits, and 10 mantissa bits.
 - Range from 2^{-14} to 2^{15} , that's 30,720 values.

尾数

Half-precision Floating Point

- FP16: half-precision floating point
 - twice the throughput of single-precision arithmetic,
 - four times the throughput of double precision.
 - 21.2 Teraflop/s of half-precision through NVLink.
- With support of:
 - GP100 GPU
 - supports a 2-way vector half-precision <u>fused multiply-add (FMA)</u> instruction

- Floating point numbers combine high dynamic range with high precision;
- But there are also cases where <u>dynamic range is</u> not <u>necessary</u>, so that integers may do the job.
- There are even applications where the data being processed has <u>low precision</u> so very <u>low-precision</u> <u>storage</u> (such as C short or char/byte types) can be used.

- Pascal GPUs (GP102, GP104, and GP106) introduce new instructions :
 - 8-bit integer 4-element vector dot product (DP4A) :
 - 16-bit 2-element vector dot product (DP2A).

- These flexible instructions are useful for linear algebraic computations such as matrix multiplies and convolutions.
- They are particularly powerful for implementing 8-bit integer convolutions for deep learning inference,

 An example application of DP4A is the cross-correlation algorithm commonly used in radio telescope data processing pipelines.

Performance on Pascal GPUs

- The Pascal GPU architecture implements general-purpose, IEEE 754 FP16 arithmetic.
- High performance FP16 is supported at full speed on Tesla P100 (GP100), and at lower throughput (similar to double precision) on other Pascal GPUs (GP102, GP104, and GP106)
- The 8-bit and 16-bit DP4A and DP2A dot product instructions are supported on GP102-GP106, but not on GP100.

NVIDIA Libraries Support

 Key libraries from the NVIDIA SDK now support a variety of precisions for both computation and storage.

Feature	FP16x2 (HFMA2)	INT8/16 DP4A/DP2A
PTX instructions	CUDA 7.5	CUDA 8
CUDA C/C++ intrinsics	CUDA 7.5	CUDA 8
CUBLAS GEMM	CUDA 7.5	CUDA 8
cuFFT	CUDA 8	I/O via <u>cuFFT</u> callbacks
cuDNN	5.1	6
TensorRT	v1	v2 Tech Preview

Support of new GPUs

- The latest Volta and Turing GPUs incorporate

 <u>Tensor Cores</u>
- to accelerate certain types of FP16 matrix math.
- This enables faster and easier mixed-precision computation within popular AI frameworks.
- Making use of Tensor Cores requires CUDA 9 or later.
- <u>Automatic mixed precision</u> capabilities added to PyTorch, TensorFlow, and MXNet....

Content

1. Mixed-Precision Programming

2. Tensor Cores

3. Mixed-Precision Training of DNN

What are Tensor Cores

- The Next Generation of Deep Learning
 - Accelerate large matrix operations (the heart of AI);
 - > Perform mixed-precision matrix multiply and accumulate calculations in a single operation.
- With hundreds of Tensor Cores operating in parallel in one NVIDIA GPU, this enables massive increases in throughput and efficiency.

Volta Tensor Cores

Volta Tensor Cores

Volta Tensor Cores

- Each of Tesla V100's 640 Tensor Cores operates on a 4x4 matrix;
- mixed-precision matrix multiply in FP16 and FP32;
- up to 12X higher peak teraflops (TFLOPS) for training and 6X higher peak TFLOPS for inference over Pascal;

Deep Learning Training in Less Than a Workday

Server Config: Dual Xeon E5-2699 v4 2.6 GHz | 8X NVIDIA® Testa® P100 or V100 | ResNet-50 Training on MXNet for 90 Epochs with 1.28M ImageNet Dataset.

Turing Tensor Cores

Turing Tensor Cores

Turing Tensor Cores

- Tesla T4 introduces NVIDIA Turing Tensor Core technology with multi-precision computing for the world's most efficient <u>Al inference</u>.
- Provide a full range of precisions for inference, from FP32 to FP16 to INT8, as well as INT4;
- Up to <u>40X higher</u> performance compared to CPUs with just <u>60 percent</u> of the power consumption

Tensor Cores

 Each Tensor Core provides a matrix processing array which performs the operation D = A * B + C, where A, B, C and D are 4×4 matrices

Tensor Cores

 Multiple Tensor Cores are used concurrently by a full warp of execution. The threads within a warp provide a larger 16x16x16 matrix operation to be processed by the Tensor Cores. CUDA exposes these operations as warp-level matrix operations in the CUDA C++ WMMA API.

Tensor Cores in CUDA Libraries

- Two CUDA libraries that use Tensor Cores are cuBLAS and cuDNN.
- cuBLAS uses Tensor Cores to speed up <u>GEMM</u> computations (GEMM is the BLAS term for a matrix-matrix multiplication);
- cuDNN uses Tensor Cores to speed up both <u>convolutions</u> and <u>recurrent</u> neural networks (RNNs).

Tensor Cores using cuBLAS

cuBLAS Mixed-Precision GEMM (FP16 Input, FP32 Compute)

Tensor Cores using cuDNN

cuDNN Convolution Speedup

Rules to use Tensor Cores

- The math type must be set to
 - CUDNN_TENSOR_OP_MATH
 - CUBLAS_TENSOR_OP_MATH
- Both input and output channel dimensions must be a multiple of eight.
- Others refer to user's manual.

Earthquake Simulation

- Using AI and transprecision computing
- MOTHRA (iMplicit sOlver wiTH artificial intelligence and tRAnsprecision computing).
- Running <u>Summit supercomputer</u> using a combination of Al and mixed-precision, MOTHRA achieved a 25x speedup compared to the standard solver.

Earthquake Simulation

• The simulation starts with 3D data of the various buildings in the city of Tokyo.

Earthquake Simulation

- The size of the domain and the physics involved requires a system of equations with 302 billion unknowns
- The researchers turned to AI to determine how to improve the effectiveness of their preconditioner by training a neural network on smaller models to help identify regions of slow convergence in their solver.
- Use a combination FP64, FP32, FP21 and FP16

Earthquake Simulation

- Using Tensor Core FP16 in Linear Algebra
- linear systems via LU factorization

achieved a 4x performance increase and 5x better energy efficiency versus the standard full FP64 implementation.

Content

- 1. Mixed-Precision Programming
- 2. Tensor Cores
- 3. Mixed-Precision Training of DNN

What is Mixed Precision Training?

- Reduced precision tensor math with:
 - FP32 accumulation, FP16 storage

Benefits of Mixed Precision Training

Accelerates math

- TensorCores have 8x higher throughput than FP32
- 125 Tflops theory

Reduces memory bandwidth pressure:

• FP16 halves the memory traffic compared to FP32

Reduces memory consumption

- Halve the size of activation and gradient tensors
- Enables larger mini-batches or larger input sizes

Considerations for Mixed Precision Training

- Which precision to use for storage, for math?
- Instructive to walk through by DNN operation type:
 - Weight update
 - Point-wise
 - Reduction
 - Convolution, Matrix multiply

Guideline #1: weight update

- FP16 is sufficient for some networks, some require FP32
- Sum of FP16 values whose ratio is greater than 2¹¹ is just the larger value
 - FP16 has a 10-bit mantissa, binary points have to be aligned for addition
 - Weight update: if w >> /r* dw then update doesn't change w
- Conservative recommendation:
 - FP32 update:
 - Compute weight update in FP32
 - Keep a master copy of weights in FP32, make an FP16 copy for fwd/bwd passes
- If FP32 storage is a burden, try FP16 —it does work for some nets
 - i.e. convnets

Guideline #2: pointwise

- FP16 is safe for most of these: ReLU, Sigmoid, Tanh, Scale, Add, …
 - Inputs and outputs to these are value in a narrow range around 0
 - FP16 storage saves bandwidth -> reduces time
- FP32 math and storage is recommended for:
 - operations f where |f(x)| >> |x|
 - Examples: Exp, Square, Log, Cross-entropy
 - These typically occur as part of a normalization or loss layer that is unfused
 - FP32 ensures high precision, no perf impact since bandwidth limited
- Conservative recommendation :
 - Leave pointwise ops in FP32 (math and storage) unless they are known types
 - Pointwise op fusion is a good next step for performance
 - Use libraries for efficient fused pointwise ops for common layers (eg BatcNorm)

Guideline #3: Reductions

Examples:

Large sums of values: L1 norm, L2 norm, Softmax

FP32 Math:

- Avoids overflows
- Does not affect speed –these operations are memory limited

Storage:

- FP32 output
- Input can be FP16 if the preceding operation outputs FP16
 - If training frameworks supports different input and output types for an op
 - Saves bandwidth -> some speedup

Guideline #4: Normalization and Loss

Normalizations:

- Usually constructed from primitive ops (reductions, squares, exp, scale)
- Storage:
 - Input and normalized output can be in FP16
 - Intermediate results should be stored in FP32
- Ideally should be fused into a single op:
 - Avoids round-trips to memory -> faster
 - Avoids intermediate storage

Loss, probability layers:

- Softmax, cross-entropy, attention modules
- FP32 math, FP32 output

Guideline #5: Convolution, Matrix Multiply

- Fundamentally collections of dot-products
- Math: Tensor Cores starting with Volta GPUs
 - Training: use FP32 accumulation
 - Inference: FP16 accumulation can be used
- FP16 Storage (input and output)

Overview of Mixed Precision Training

One more precision consideration: Loss Scaling

Gradient range offset

Loss Scaling

Range representable in FP16: ~40 powers of 2

(C) NVIDIA

Loss Scaling

Range representable in FP16: ~40 powers of 2

Gradients are small, don't use much of FP16 range FP16 range not used by gradients: ~15 powers of 2

(C) NVIDIA

Loss Scaling

Range representable in FP16: ~40 powers of 2

Gradients are small, don't use much of FP16 range FP16 range not used by gradients: ~15 powers of 2

Loss Scaling:

multiply the loss by some constant s
by chain rule backprop scales gradients by s
preserves small gradient values
unscale the weight gradient before update

(C) NVIDIA

Overview of Mixed Precision Training

Mixed precision consideration training with Loss Scaling

Automatic Loss Scaling

Frees users from choosing a scaling factor

- Too small a factor doesn't retain enough small values
- Too large a factor causes overflows

Algorithm

- Start with a large scaling factor s
- for each training iteration
 - Make an fp16 copy of weights
 - Fwd prop
 - Scale the loss by s
 - Bwd prop
 - Update scaling factor s
 - If dW contains Inf/NaN then reduce s, skip the update
 - If no Inf/NaN were detected for N updates then increase s
 - Scale dW by 1/s
 - Update W

ILSVRC12 Classification Networks

	FP32 Baseline	Mixed Precision
AlexNet	56.8%	56.9%
VGG-D	65.4%	65.4%
GoogLeNet	68.3%	68.4%
Inception v2	70.0%	70.0%
Inception v3	73.9%	74.1%
Resnet 50	75.9%	76.0%
ResNeXt 50	77.3%	77.5%

Detection Networks, mAP

	FP32 Baseline	Mixed Precision
Faster R-CNN, VOC 07 data	69.1%	69.7%
Multibox SSD, VOC 07+12 data	76.9%	77.1%

Speech

Baidu

- 2 2D-conv layers, 3 GRU layers, 1D conv
- Baidu internal datasets

■ FP32 Baseline

	FP32 Baseline	Mixed Precision
English	2.20	1.99
Mandarin	15.82	15.01

Character Error Rate (lower is better)

Speedups

- Memory limited ops: should see ~2x speedup
- Math limited ops: will vary based on arithmetic intensity
- Some examples, mixed precision vs FP32 on GV100:
 - Resnet50: ~3.3x
 - DeepSpeech2: ~4.5x
 - FairSeq: ~4.0x
 - Sentiment prediction: ~4.0x
- Speedups to increase further:
 - libraries are continuously optimized
 - TensorCore paths are being added to more operation varieties

TensorCore Performance Guidance

For matrix multiplication:

- On FP16 inputs, all three dimensions (M, N, K) must be multiples of 8.
- On INT8 inputs (Turing only), all three dimensions must be multiples of 16.

For convolution:

- On FP16 inputs, input and output channels must be multiples of 8.
- On INT8 inputs (Turing only), input and output channels must be multiples of 16.

TensorCore Performance Guidance

For mixed precision training:

- 1. Choose mini-batch to be a multiple of 8;
- 2. Choose linear layer dimensions to be a multiple of 8;
- 3. Choose convolution layer channel counts to be a multiple of 8;
- 4. For classification problems, pad vocabulary to be a multiple of 8;
- 5. For sequence problems, pad the sequence length to be a multiple of 8;

FRAMEWORKS

- Most major deep learning frameworks support for FP16 storage and tensor core math:
 - PyTorch, TensorFlow, MXNet, ···
 - https://docs.nvidia.com/deeplearning/sdk/mixed-precisiontraining/#framework
- PyTorch for example:
 - using AMP (Automatic Mixed Precision), which enables mixed precision in only 3 lines of Python.
 - AMP is available through NVIDIA's Apex repository of mixed precision and distributed training tools.
 - Examples and model scripts
 - Manual Conversion

FRAMEWORKS

PyTorch for example:

Model	Speedup
NVIDIA Sentiment Analysis	4.5X speedup
FAIRSeq	3.5X speedup
GNMT	2X speedup
ResNet-50	2X speedup

Conclusions

- Mixed precision training benefits:
 - Math, memory speedups
 - Larger minibatches, larger inputs
- Automatic Loss Scaling simplifies mixed precision training
- Mixed precision matches FP32 training accuracy for a variety of:
 - Tasks: classification, regression, generation
 - Problem domains: images, language translation, language modeling, speech
 - Network architectures: feed forward, recurrent
 - Optimizers: SGD, Adagrad, Adam
- Note on inference:
 - Can be purely FP16: storage and math (use library calls with FP16 accumulation)
- More details: http://docs.nvidia.com/deeplearning/sdk/mixedprecision-training/

References

- Training-Mixed-Precision-User-Guide,
 - https://docs.nvidia.com/deeplearning/sdk/mixed-precisiontraining/index.html
- Programming Tensor Cores in CUDA 9,
 - <u>Jeremy Appleyard</u> and <u>Scott Yokim</u> | <u>October 17, 2017</u>
 - https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
- Tensor Ops Made Easier in cuDNN,
 - Scott Yokim | August 20, 2018
 - https://devblogs.nvidia.com/tensor-ops-made-easier-incudnn/