21. Modele cyklu życiowego oprogramowania, modele zarządzania projektem informatycznym

Modele Cyklu życiowego oprogramowania – modele generyczne

1. Model kaskadowy

Zalety

- przydatność w harmonogramowaniu i budżetowaniu przedsięwzięcia
- ułatwienie monitorowania postępu projektu: formalny odbiór rezultatów poszczególnych faz
- ułatwienie prowadzenia rozliczeń finansowych z klientem
- możliwość prowadzenia projektów w reżimie potokowym (przynajmniej teoretycznie)
- możliwość realizacji kierowanej dokumentami

Wadv

- narzucona ścisła kolejność faz
- wysoki koszt błędów ponoszonych we wczesnych fazach cyklu
- problemy z wprowadzaniem zmian w projekcie
- długa przerwa w kontaktach z klientem

Model kaskadowy a zarządzanie projektem: realizacja kierowana dokumentami

- Model zarządzania przyjęty przez armię amerykańską dla realizacji projektów w języku Ada.
- Element kończący każdą fazę: sporządzenie szeregu dokumentów, w których opisuje się wyniki danej fazy.

Zalety:

- Łatwe planowanie, harmonogramowanie, monitorowanie przedsięwzięcia.
- Możliwość (teoretyczna) realizacji dalszych faz przez inną firmę.

Wady

 Duży nakład pracy na opracowanie dokumentów zgodnych ze standardem (DOD STD 2167) - ponad 50% całkowitych nakładów.

Przerwy w realizacji niezbędne dla weryfikacji dokumentów przez klienta

2. Model kaskadowy z iteracjami

3. Rozwój ewolucyjny

Zalety

- b. dobry dla małych projektów lub części większej całości (np. interfejs użytkownika)
- dobry dla systemów o krótkim czasie życia (np. migracje danych)
- możliwość szybkiego startu projektu
 - o przy dobrym zrozumieniu potrzeb użytkownika
 - o przy słabo zdefiniowanych wymaganiach

Wady

- trudności z określeniem zaawansowania projektu
- problemy z budżetowaniem, harmonogramowaniem itp.
- złe ustrukturalizowanie wyprodukowanych systemów (najczęściej)
- częsta potrzeba specjalnych narzędzi ułatwiających budowę prototypów

4. Prototypowanie

Sposób na uniknięcie zbyt wysokich kosztów błędów popełnionych w fazie określania wymagań. Zalecany w przypadku, gdy określenie początkowych wymagań jest stosunkowo łatwe.

Fazy		Cele		Zalety	
0	ogólne określenie wymagań	0	wykrycie nieporozumień	0	możliwość demonstracji
0	budowa prototypu		pomiędzy klientem a twórcami		pracującej wersji systemu
0	weryfikacja prototypu przez		systemu	0	możliwość szkoleń zanim
	klienta	0	wykrycie brakujących funkcji		zbudowany zostanie pełny
0	pełne określenie wymagań	0	wykrycie trudnych usług		system
0	realizacja pełnego systemu	0	wykrycie braków w		

Opracowanie pytań do egzaminu inżynierskiego 2011r.

	- - - - - - - - - -	<u> </u>
zgodnie z modelem kaskadowym	specyfikacji wymagań	
,		

5. Transformacje Formalne

Zalety

zagwarantowana poprawność

Wady

- trudności formalnej specyfikacji
- potrzebne wiele czasu
- kosztowny
- brak odpowiednich umiejętności matematycznych u wielu informatyków
- trudności w komunikacji z użytkownikiem
- · mała efektywność kodu

6. Montaż z gotowych komponentów

Modele Cyklu życiowego oprogramowania – modele hybrydowe

7. Model Spiralny

Zalety

- zmniejszenie ryzyka
- elastyczność dla każdego z zagadnień można stosować odmienny model rozwoju
- przeglądy kończące poszczególne fazy ułatwienie szybkiego wykrywania błędów

Wady

- kontrakty często zawierają specyfikację, harmonogram oraz sposób wytwarzania dostarczanych składowych systemu → możliwe ograniczenie zastosowania modelu
- wymagane ekspertyzy z zakresu zarządzania ryzykiem

8. Model iteracyjny (realizacja przyrostowa) – odmiana modelu spiralnego

Zarządzanie projektem - model spiralny Boehma

- Przypomnienie: przyczyna powstania modeli hybrydowych cyklu życiowego (wytwórczego) uwzględnienie ryzyka w związku z zarządzaniem projektem
- Przy realizacji dużych projektów dostosowanie czynności merytorycznych do okresów budżetowych.

Opracowanie pytań do egzaminu inżynierskiego 2011r.

- Konsekwencja: przeglądy, analiza i rozstrzyganie ryzyka, konstrukcja, planowanie stosowane do poszczególnych etapów cyklu wytwórczego
- Rozszerzenie metody na produkt całościowy (wersje) i elementy składowe (komponenty podproblemy)

Zarządzanie projektem informatycznym

Zarządzanie projektem informatycznym - działalność mająca na celu:

- · zapewnienie terminowej realizacji projektu,
- spełnienie przyjętych przez wytwórcę zasad tworzenia oprogramowania,
- spełnienie oczekiwań i wymagań strony zamawiającej.

Czynności wchodzące w zakres zarządzania

- Opracowanie ofert
- Wykonanie kosztorysów
- · Planowanie i harmonogramowanie
- Nadzór nad realizacją projektu
- Dobór osób i organizacja pracy
- · Raportowanie, gromadzenie dokumentacji, prezentacje

Planowanie projektu

- Planowanie najbardziej czasochłonna czynność związana z zarządzaniem projektem.
- Faktyczny początek procesu szczegółowego planowania i przygotowania harmonogramu jeszcze przed zawarciem umowy
- Kontynuacja przez cały czas realizacji przedsięwzięcia.
- Planowanie proces o przebiegu cyklicznym: W miarę realizacji kolejnych etapów przedsięwzięcia otrzymuje się informacje mające wpływ na planowanie (lub zmianę planów) następnych prac pozostających do wykonania.
- Planowanie wymaga umiejetności
 - o rozsądnego gospodarowania zasobami,
 - o synchronizacji działań
 - o przewidywania zagrożeń.

Planowanie projektu (rodzaje planów)

Plan zarządzania jakością Opis procedur zapewnienia jakości oraz standardy przyjęte przy realizacji projektu

Opracowanie pytań do egzaminu inżynierskiego 2011r.

	opracovarno prama o ogzanima mizymoromogo zo i mi
Plan testów	Opis podejścia, zaangażowanych zasobów, przyjętych schematów i zasad wykonywania testów
Plan zarządzania konfiguracją	Opis wszystkich obiektów pojawiających się w projekcie (dowolne kombinacje sprzętu komputerowego, oprogramowania, usług i szkoleń)
Plan utrzymania systemu	Określenie wymagań związanych z utrzymaniem systemu.
Plan rozwoju kwalifikacji	Określenie, w jaki sposób będą podnoszone kwalifikacje osób pracujących nad projektem.

Organizacja działań

- Zakończenie każdego działania (każdej czynności) wymierny efekt (artefakt): dokument lub element oprogramowania.
- Koniec działania (lub zespołu działań) wyznaczony przez tzw. kamienie milowe (milestones).
- Określenie:
 - zbioru zasobów potrzebnych dla każdego działania,
 - stopnia wykorzystania zasobów.
- Stosowanie odpowiednich metod weryfikacji wyników działania.

Harmonogramowanie prac

Zakres czynności

- Podział projektu na zadania.
- Oszacowanie czasu potrzebnego do realizacji zadań.
- Przypisanie zasobów potrzebnych do realizacji każdego zadania.
- Uszeregowanie zadań z uwzględnieniem kryterium optymalnego wykorzystania zasobów.
- Minimalizacja zależności pomiędzy zadaniami z uwzględnieniem kryterium czasowego.
- W przypadku wystąpienia kolizji i problemów modyfikacja założeń w zakresie terminów i zasobów.
- Przekazanie zespołowi ustaleń wynikających z opracowanego harmonogramu.

Problemy

- Oszacowanie złożoności zadań rzecz niezmiernie trudna; czynniki wpływające w dużej mierze na dokładność szacunku: intuicja i doświadczenie osoby zarządzającej projektem.
- Zależność wydajności od wielkości zaangażowanych zasobów nieliniowa.
- Angażowanie dodatkowych zasobów nie powoduje bezpośredniego wzrostu wydajności (wdrożenie osoby
 - w projekt, nauka posługiwania się nowym narzędziem, itp.)
- Przy układaniu harmonogramu konieczność zachowania pewnego marginesu bezpieczeństwa ("Nieoczekiwane zawsze się zdarza").

Narzędzia

- Arkusz zasobów MS Project
- Wykres Gantta MS Project
- Diagram sieciowy MS Project