

IBPSA Project 1

Task 2: Building and City Quarter Models

WP 2.2: Building Information Modeling

Christoph van Treeck

Eric Fichter

IBPSA Project 1

Work Package 2.2 – Geometry Processing

Content

- Space boundary algorithms for model topology analysis and multi-scale simulation model generation
- Update exchange with Energy Plus

Method

- Review of existing approaches, algorithms, codes and model checkers
- Evaluation of best-in-class algorithms for modelgarbage analysis and processing
- Decision on development path and code re-use
- Development of modular tools for space boundary and model topology analysis

Result

- Joint journal publication / review paper
- GIT repository with modular tools

Suggestions from the Coordination Meeting, 10 July 2018

Geometry

- Reading and parsing IFC and dealing with this information
- Full access to geometry and topology
- Separation of geology and topology as long as possible
- Creation of connection graph between objects
- Manipulation of geometry:
 - Reduction of level of detail and complexity
 - Finding relations between room and spaces based on topology only
- In the end discussing about space boundaries

Suggestions from the Coordination Meeting, 10 July 2018

General

- Investigation on state of the art (Annex 60, SBT, ...)
- Testing libraries based on IFC files
- Authoring tools don't matter at this point
- Different setup cases, from easy to complex
- Constructing an example with all building related entities available in IFC
- Sharable IFC-examples stored in Git
- Creation of an open source Sharable Environment Team

Today's Agenda

• **Team structure**, active developers

 Tools and software development environment for model parsing, visualization and analysis

 Consensus on overall process of geometry reading and processing, BRep transformation, decomposition and space boundary generation

Open Source Sharable Environment Team

- E. Fichter (RWTH Aachen)
- C. Waluga (LiNear)
- J. O'Donnell (University College Dublin)
- J. Lin (Tsinghua University)
- G. Giannakis (Technical University of Crete)
- V. Bazjanac (Stanford University)

Open Source Sharable Environment Team

- E-Mail Distribution List
- Git Repository IBPSA-WP-2.2 (Contact Eric Fichter)

Testing Team

- K.-H. Häfele (Karlsruhe Institute of Technology)
- Whoever wants to join ...

To Do

Everyone

- Review of space boundary algorithms
- Summary of algorithms in a joint publication
- Conditions within the BIM to SIM workflow (level of detail, objects of interest, design requirements for IFC, etc.)

To Do

Open Source Sharable Environment Team

- Define the working environment
- Setup the working environment
- Testing basic geometrical and topological explorer algorithms

Testing Team

- Providing an IFC example file with all available entities
- Providing further IFC examples from easy to complex