30-10-2023

Practicas Cisco Packet tracer practicas VLan

Mario Alberto Arroyo Utrera

PRACTICA 1:

Configuración de Conexiones en Cisco Packet Tracer

- 1. Primero, en Cisco Packet Tracer, crearemos un nuevo diagrama.
- 2. Para la conectividad de los dispositivos, utilizaremos un cable directo (Straight-Through). Conectaremos la interfaz fastethernet de la PC al switch.

- 3. Para asignar una IP, seguiremos estos pasos:
 - Accederemos a la configuración de la PC.
 - Seleccionaremos la opción "Desktop" y luego "IP Configuration".
 - Ingresaremos las direcciones IP correspondientes.

- 4. Asignación de IP para las PCs:
 - PC 1: [192.168.1.2]

• PC 2: [192.168.1.3]

• PC 3: [192.168.1.4]

5. Verificamos la conexión con 2 ping a las 2 maquinas.

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer FC Command Line 1.0
C:\>ping 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time=fms TII=128
Reply from 192.168.1.4: times in milli-seconds:

Xininium = fms, Maximum = fms, Average = fms

C:\>ping 192.168.1.4 with 32 bytes of data:

Reply from 192.168.1.4 with 32 bytes of data:

Reply from 192.168.1.4: bytes=32 time=fms TII=128
Reply from
```

PRACTICA 2:

1. Preparación del Diagrama:

Utilizaremos un diagrama que incluye dispositivos como PCs y un Switch.

2. Conectividad con Cable Directo (Straight-Through):

Conectaremos la interfaz fastethernet de la PC al Switch y los Servidores al Switch.

3. Configuración de Direcciones IP:

Usaremos los últimos dos números de la matrícula (en este caso, "06") para las direcciones IP. Por ejemplo, 172.18.06.2.

Configuración de PCs:
 En el apartado de Desktop, seleccionaremos "IP Configuration" para cada PC.

• PCO: Configurar con los detalles correspondientes.

• PC1: Configurar con los detalles correspondientes.

- 5. Configuración del Servidor WEB:
 - Asignar una dirección IP y DNS al Server WEB. La IP del DNS también se configura en las PCs.

• Habilitar el servicio de HTTP en el apartado de servicios.

6. Verificación del Funcionamiento del Server WEB:

Ingresar la IP del servidor en el navegador del servidor y verificar que se muestre la interfaz.

7. Configuración del DNS:

Asignar la IP como se indica en la imagen.

Habilitar el servicio de DNS, colocando la IP del Server Web y el nombre de dominio.

8. Prueba Final:

En el navegador del Server WEB, ingresar el nombre de dominio (por ejemplo, www.miweb.com) para confirmar la funcionalidad.

PRÁCTICA 3:

1. Diseño del Diagrama:

creamos un diagrama que refleje las conexiones de las PCs y los Switches. Con cables directos para conectar PCs al Switch (interfaces fastethernet 0/1 - 0/4). Para la conexión entre Switches, un cable cruzado (Cross-Over) en la interfaz fastethernet 0/24.

2. Asignación de IP a las PCs:

Asignar direcciones IP a las PCs de acuerdo con la VLAN correspondiente.

Para la Planta 1:

PC3:

PC4:

3. Creación de VLAN en el Switch:Configurar las VLAN en modo acceso siguiendo las indicaciones proporcionadas.

4. Configuración de VLAN para Planta 2:

Repetir el proceso, asignando números de PC del 5 al 8 con las mismas VLAN del piso anterior.

5. Configuración de Troncal entre los Switches:

Ir a la interfaz fastethernet 0/24 y configurarla en modo troncal.

6. Comunicación entre PCs:

Comunicación y envío de ping solo será posible entre PCs que pertenezcan a la misma VLAN, considerando la configuración asignada a cada piso.

PRACTICA 4:

1. Diseño del Diagrama:

Creamos un diagrama que muestre la conectividad entre el Router y los dos Switches. Utilizar cables directos para conectar el Router a los Switches (Router al Switch 1 en interfaz fastethernet 0/0 y Router al Switch 2 en interfaz fastethernet 0/1). Conectar los Switches a las PCs en secuencia de puertos.

2. Configuración de IPs en las PCs:

Ingresar a la configuración de IP en las PCs desde el apartado de Desktop. Asignar la IP y el Gateway que corresponda al Router.

PC1:

PC2:

PC3:

PC4:

3. Configuración del Router:

Establecer las IPs para las interfaces que van hacia los Switches. También se deben considerar las exclusiones para evitar conflictos.

```
Router(config) #hostname Mario
Mario(config) #
Mario(config) #int fa0/0
Mario(config-if) #ip add
Mario(config-if) #ip address 192.168.6.1 255.255.255.0
Mario(config-if) #no shu
Mario(config-if) #no shutdown
```

4. Configuración de Switches:

Asignar VLANs y especificar el Gateway con la IP correspondiente al Router para cada entrada de Switch.

Switch1:

```
Arrollo(config) #int vlan1
Arrollo(config-if) #ip add
Arrollo(config-if) #ip address 192.168.6.2 255.255.255.0
Arrollo(config-if) #no shu
Arrollo(config-if) #no shutdown
Arrollo(config-if) #}
```

Switch2:

```
Utrera(config) #int vlan1
Utrera(config-if) #ip add
Utrera(config-if) #ip address 192.168.7.2 255.255.255.0
Utrera(config-if) #no shu
Utrera(config-if) #no shutdown
Utrera(config-if) #
```

5. Verificación de Conexiones:

Confirmar la conexión usando el ícono del sobre para enviar paquetes desde las PCs, Switches y Router, asegurándose de que pertenezcan a la misma sección de red.

PRACTICA 5:

1. Preparación del Diagrama:

Crear un diagrama que muestre las conexiones entre los dispositivos, siguiendo el patrón establecido anteriormente.

2. Configuración del Router:

Utilizamos los siguientes comandos para configurar el Router:

- 3. Verificación del Funcionamiento:
 - Cambiar la configuración en las PCs de "static" a "DHCP".
 - Verificar los resultados y confirmar que el DHCP está funcionando correctamente.

PRACTICA 6:

1. Preparación del Diagrama:

Diseñamos un diagrama que muestre las conexiones entre los switches y la PC, revisando que la conexión del router al switch no genere conflictos.

2. Configuración del Router:

Asignar las siguientes direcciones IP:

Fa 0/0: 192.168.6.1

Fa 1/0: 192.168.7.1

```
MARIO (config-if) $exit

MARIO (config-if) $exit

MARIO (config-if) $tap address 192.168.6.1 255.255.255.0

MARIO (config-if) $tap abundown

MARIO (config-if) $tap address 192.168.7.1 255.255.255.0

MARIO (config-if) $tap address 192.168.7.1 255.255.255.0
```

3. Creación de Pools y Networks:

Establecer los pools y las redes. Definir el nombre de la LAN y los parámetros para la generación de IP.

```
MARIO#en
MARIO#enof term
Enter configuration commands, one per line. End with CNTL/2.
MARIO(config)#ip dhop ex
% Incomplete command.
MARIO(config)#ip dhop ex excluded-address 192.168.6.1
MARIO(config)#ip dhop excluded-address 192.168.7.1
MARIO(config)#ip dhop excluded-address 192.168.7.1
MARIO(config)#ip dhop excluded-address 192.168.7.254
MARIO(config)#ip dhop excluded-address 192.168.7.254
MARIO(config)#ip dhop pool LAN6
MARIO(config)#ip dhop pool LAN6
MARIO(config)#ip dhop pool LAN6
MARIO(config)#ip dhop pool LAN6
MARIO(dhop-config)#def
MARIO(dhop-config)#default-router 192.168.6.1
MARIO(dhop-config)#default-router 192.168.6.1
MARIO(dhop-config)#default-router 192.168.6.1
MARIO(dhop-config)#dins
% Incomplete command.
MARIO(dhop-config)#dins
MARIO(dhop-config)#dins-server 8.8.8.8
MARIO(dhop-config)# hop pool LAN7
MARIO(config)# hop pool LAN7
MARIO(config)# hop pool LAN7
MARIO(dhop-config)#eff
MARIO(dhop-config)#def
MARIO(dhop-config)#def
MARIO(dhop-config)#def
MARIO(dhop-config)#dins-server 8.8.8.8
MARIO(dhop-config)#dins-server 8.8.8.8
MARIO(dhop-config)#dins-server 8.8.8.8
MARIO(dhop-config)#dins-server 8.8.8.8
MARIO(dhop-config)#ans-server 8.8.8.8
MARIO(dhop-config)#exit
MARIO(dhop-config)#ans-server 8.8.8.8
MARIO(dhop-config)#exit
```

4. Verificación del Funcionamiento:

Ir al apartado de "IP Configuration" en las PCs y activar el modo DHCP.

Configuración Específica:

• PC1:

• PC2:

• PC3:

• PC4:

PRACTICA 7:

1. Configuración del Hardware:

Utilizar dos Switches y dos PCs por cada Switch.

Asignar IP a cada una de las PCs y crear dos VLANs llamadas "Mare Nostrum" y "Málaga". Cada VLAN deberá tener una PC de cada Switch para restringir la conectividad solo dentro de la misma VLAN.

2. Asignación de IPs a las PCs:

Ingresar a la configuración de IP en cada PC desde el apartado de IP Configuration. Asignar las IPs correspondientes.

PC1:

PC2:

PC3: **₽** PC3 X Physical Config Desktop Programming Attributes Interface FastEthernet0 IP Configuration O DHCP Static 192.168.6.3 IPv4 Address Subnet Mask 255.255.255.0 Default Gateway 0.0.0.0 DNS Server 0.0.0.0 PC4: **№** PC4 × Physical Config Desktop Programming Attributes IP Configuration Х FastEthernet0 Interface IP Configuration O DHCP Static IPv4 Address 192.168.7.3 Subnet Mask 255.255.255.0 Default Gateway 0.0.0.0 DNS Server 0.0.0.0

Creación de VLANs en los Switches:
 Entrar en la configuración de los Switches y seleccionar la Database de las VLAN para crearlas.

4. Asignación de Interfaces a los Puertos:

5. Conexión entre los Switches:

Utilizar un cable Cross-Over y conectarlo al puerto interface fastethernet 0/24 en ambos Switches.

6. Configuración de Modo Troncal para Comunicación:

Seleccionar el modo troncal para que las PCs tengan comunicación entre sí en ambos Switches.

7. Prueba de Conectividad:

```
C:\>ping 192.168.49.3

Pinging 192.168.49.3 with 32 bytes of data:

Reply from 192.168.49.3: bytes=32 time<lms TTL=128
Ping statistics for 192.168.49.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

```
Pinging 192.168.50.3 with 32 bytes of data:

Reply from 192.168.50.3: bytes=32 time<lms TTL=128
Ping statistics for 192.168.50.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

PRACTICA 8:

1. Diseño del Diagrama:

Crear un diagrama con las conexiones necesarias, siguiendo las pautas previamente establecidas.

2. Configuración de VLANs en el Switch:

Creamos 4 VLANs: Alumnos, Docentes, Secretarias, Administrativos. Asignar un rango de puertos para cada VLAN, como se muestra en la imagen.

3. Habilitar Modo Troncal en el Puerto Switch-Router:

```
Switch>en
Switch#conf term
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #
Switch(config) #in
Switch(config) #interface fas
Switch(config) #interface fastEthernet 0/24
Switch(config-if) #swi
Switch(config-if) #switchport tru
Switch(config-if) #switchport mode trunk
Switch(config-if) #exit
```

4. Configuración del Router:

Encender el puerto que conecta el Router al Switch.

```
Router>en
Router#conf term
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#in
Router(config)#interface fa
Router(config)#interface fastEthernet 0/0
Router(config-if)#no shu
Router(config-if)#no shutdown
```

5. Configuración de Subredes y Protocolo Dot1Q:

Configurar subredes para cada VLAN y aplicar el protocolo dot1Q para encapsularlas. Esto asegura que solo se asignen a las PCs correspondientes de cada VLAN.

```
Router (config) #in
 Router(config) #interface f
 Router(config) #interface fastEthernet 0/0.2
 Router(config-subif)#
 %LINK-5-CHANGED: Interface FastEthernet0/0.2, changed state to up
 %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.2,
Router(config-subif) #en
Router(config-subif) #encapsulation do
Router(config-subif) #encapsulation dot1Q 2
Router(config-subif) #ip address 192.170.1.1 255.255.255.0
Router(config-subif) #exit
Router(config) #interface fastEthernet 0/0.3
Router(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.3, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.3, changed state to up
Router(config-subif) #encapsulation dot1Q 3
Router(config-subif) #ip address 192.170.2.1 255.255.255.0
Router(config-subif) #exit
Router(config) #interface fastEthernet 0/0.4
Router(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.4, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.4, changed state to up
Router(config-subif) #encapsulation dot1Q 4
Router(config-subif) #ip address 192.170.3.1 255.255.255.0
Router(config-subif) #exit
Router(config) #interface fastEthernet 0/0.5
Router(config-subif) #
%LINK-5-CHANGED: Interface FastEthernet0/0.5, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.5, changed state to up
Router(config-subif) #encapsulation dot1Q 5
Router(config-subif) #ip address 192.170.4.1 255.255.255.0
Router(config-subif) #exit
```

6. Configuración del DHCP:

Crear un servidor DHCP y definir exclusiones para evitar asignar IPs a otros equipos. Esto se hace para garantizar que las IPs se utilicen para las necesidades específicas de cada VLAN.

Ejemplo de configuración:

```
Router>en
Router#conf term
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #ip dhcp pool ALUMNOS
Router (dhcp-config) #net
Router(dhcp-config) #network 192.170.1.0 255.255.255.0
Router (dhcp-config) #defa
Router (dhcp-config) #default-router
% Incomplete command.
Router (dhcp-config) #default-router 192.170.1.1
Router (dhcp-config) #dn
Router(dhcp-config) #dns-server 192.170.1.100
Router (dhcp-config) #exit
Router(config) #ip dh
Router(config) #ip dhcp ex
Router(config) #ip dhcp excluded-address 192.170.1.1
Router(config) #ip dhcp excluded-address 192.170.1.100
Router(config) #exit
Router(config) #ip dhcp pool DOSCENTES
Router(dhcp-config) #network 192.170.2.0 255.255.255.0
Router(dhcp-config) #default-router 192.170.2.1
Router(dhcp-config) #dns-server 192.170.2.100
Router (dhcp-config) #exit
Router(config) #ip dh
Router(config) #ip dhcp ex
Router(config) #ip dhcp excluded-address 192.170.2.1
Router(config) #ip dhcp excluded-address 192.170.2.254
Router (config) #exit
Router(config) #ip dhcp pool SECRETARIAS
Router (dhcp-config) #network 192.170.3.0 255.255.255.0
Router (dhcp-config) #default-router 192.170.3.1
Router(dhcp-config) #dns-server 192.170.3.100
Router (dhcp-config) #exit
Router(config) #ip dhcp excluded-address 192.170.3.1
Router(config) #ip dhcp excluded-address 192.170.3.254
Router (config) #exit
Router(config) #ip dhcp pool ADMINISTRATIVOS
Router(dhcp-config) #network 192.170.4.0 255.255.255.0
Router (dhcp-config) #default-router 192.170.4.1
Router(dhcp-config) #dns-server 192.170.4.100
Router (dhcp-config) #exitr
```

7. Cambio de IP a DHCP en las PCs:

Cambiar la configuración de IP de static a DHCP en cada PC.

PRÁCTICA 9:

1. Diseño del Diagrama:

Creamos un diagrama para la red WAN que incluya conexiones entre Routers y Switches, utilizando cables Seriales para las conexiones WAN.

2. Configuración de IP en los Routers:

Asignar las direcciones IP que van desde el Router hacia el Switch.

Router de XALAPA:

Router de VERACRUZ:

Router de PEROTE:

3. Configuración de Cables Seriales:

Configurar los cables Seriales en cada uno de los Routers.

Router de XALAPA:

Router de VERACRUZ:

Router de PEROTE:

4. Asignación de IPs a las PCs:

Ingresar a la configuración de IP en las PCs desde el apartado de IP Configuration en Desktop.

PC de XALAPA:

PC de VERACRUZ:

PC de PEROTE:

5. Configuración de Routing Static:

Configurar el apartado de Routing Static en cada Router para permitir la conexión entre las ciudades. Utilizar las IPs de las otras ciudades, excepto la que se está configurando.

Router de XALAPA:

Router de VERACRUZ:

Router de PEROTE:

6. Configuración del Frame Relay:

7. Conexiones de Frame Relay entre Ciudades:

Establecer todas las posibles relaciones entre las ciudades en las conexiones de Frame Relay.

