PREDIKAATLOGICA: SEMANTIEK

SEMANTIEK

- ▶ Inhoud:
 - **▶** Principe
 - ► Situatie of structuur
 - ► Interpretatiefunctie
 - ▶ Model
 - **▶** Bedeling
 - ▶ Waardering
 - ► Model van een formule
 - ► Gelijkheid tussen termen, universeel geldig, logisch equivalent
 - ► Geldig gevolg
 - ► Theorie en Modelverzameling

SEMANTIEK - PRINCIPE

▶ Drie aspecten zijn belangrijk bij de bestudering van de semantiek van predikaatlogica:

De interpretatiefunctie geeft betekenis aan de bouwstenen van de taal (predikaatletters, functieletters, constanten, variabelen).

Bv.
$$\forall$$
 x P(x, a) \longrightarrow Alle mensen jonger dan 25

SEMANTIEK - PRINCIPE

Alle 3 de aspecten zijn essentieel

- vergelijking met natuurlijke taal
 - ▶ Stel tekst gekend en woordenboek (interpretatiefunctie), maar niet de situatie
 - We kunnen niet weten of wat gezegd wordt waar is
 - ▶ Stel tekst gekend en de situatie, maar geen woordenboek (interpretatiefunctie)
 - We kunnen niet weten of wat gezegd wordt waar is
 - ▶ Stel een woordenboek (de interpretatiefunctie) en de situatie, maar niet de tekst
 - We weten niet wat er gezegd werd.

SEMANTIEK: STRUCTUUR

Structuur is te vergelijken met een stukje werkelijkheid

Een structuur bestaat uit een domein waarop relaties en operaties of functies gedefinieerd zijn.

► Voorbeeld:

domein: de natuurlijke getallen IN

relaties: < , =

operaties: +, *

Informeel:

- ► Relaties tussen de objecten in het domein corresponderen met beweringen (vb. 5 < 10)
- ▶Operaties op objecten leveren andere objecten op vb. 8 + 2 is 10)

SEMANTIEK: STRUCTUUR - DEFINITIE

Definitie

Een structuur D is een drietal $\langle D, R, O \rangle$ bestaande uit een niet-lege verzameling D (het domein), een verzameling R van relaties op D en een verzameling O van operaties op D.

INTERMEZZO: SPECIALE STRUCTUREN

Speciale structuren:

Relationele structuur: enkel relaties, geen operaties

```
vb.: lineaire ordeningen, bomen, grafen, ...
```

Voorbeeld:

```
D = \{1, 2, 3, 4, 5\} met de relatie R 'kleiner dan' R = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}
```

Operationele structuur: domein met enkel operaties vb. uit de wiskunde :

```
groepen: (Z,+), (Q \setminus \{0\}, .), ringen (R, +, .)
```


SEMANTIEK: INTERPRETATIEFUNCTIE

 Om een formule te kunnen interpreteren is er een interpretatie van variabelen, constanten, predikaatletters en functieletters nodig

Definitie

Laat $D = \langle D, R, O \rangle$ een structuur zijn.

Een interpretatiefunctie / kent aan

- lacke individuele constante c uit de predikaat logische taal een welbepaald object uit D toe via een nul-plaatsige operatie, $l(c) \in O$
- lack else predikateletter P een relatie uit R van dezelfde plaatsigheid toe, $I(P) \in R$
- lacke functieletter f een operatie uit O van dezelfde plaatsigheid toe, $I(f) \in O$

SEMANTIEK: MODEL

Definitie

Een paar (D, I) met D een structuur en I een interpretatiefunctie heet een model

Een (on)eindig model is een model met een (on)eindig domein.

► Voorbeeld:

$$D = \langle N, \{ \geq \}, \{ 0 \} \rangle$$

 $I(R) = \geq$
 $I(c_1) = 0$

$$I(\forall x R(x, c_1)) = \forall x (x \ge 0)$$

Dus in dit model is de zin $\forall x R(x, c_1)$ waar

SEMANTIEK: BEDELING

Definitie

Een bedeling b is een functie die aan elke variabele x een object uit het domein toekent, dus $b(x) \in D$.

- Voorbeeld: Model $M = (\langle D, R, O \rangle, I)$ met $D = N, R = \{<\}, O = \{0, +, \cdot\}$ $I: I(P) = <, I(f) = +, I(g) = \cdot, I(a) = 0$ $b: b(x_i) = i$ (i = 1, 2, 3, ...) $Px_1x_2 \wedge Pf(a, x_9)g(x_5, x_9)$ b, I1 < 2 en 9 < 45

Opm: bedeling is gedefinieerd voor alle variabelen, niet enkel voor vrije variabelen!

NOTATIE - AFSPRAKEN

Notatie:

 $\langle N, \{<,=\}, \{0,1,+,\cdot\} \rangle$ ook als $\langle N,<,=,0,1,+,\cdot \rangle$ wanneer duidelijk is wat de relaties zijn en wat de operaties zijn.

Zo ook: P i.p.v. I(P) en f i.p.v. I(f)

 $b[x \mapsto d]$ is de bedeling b waarbij d aan de variabele x wordt toebedeeld.

Vben: $b: b(x_i) = i \ (i = 1, 2, 3, ...)$

 $b[x_1 \mapsto 10](x_1) = 10$

 $b[x_1 \mapsto 10](x_2) = 2$

WAARDERING VAN TERMEN

Definitie

Laat $M = (\mathbf{D}, l)$ een model zijn en b een bedeling.

Dan is de semantische waardering $V_{M,b}$ van *termen* als volgt gedefinieerd:

- $V_{M,b}(x) = b(x)$ voor variabelen x
- $\triangleright V_{M,b}(a) = I(a)$ voor constanten a
- $\triangleright V_{M,b}(f(t_1,...,t_k)) = I(f)(V_{M,b}(t_1),...,V_{M,b}(t_k))$

WAARDERING VAN TERMEN

Voorbeeld

Laat M een model zijn met $D = \langle N, 0, + \rangle$ en I(f) = '+', I(a) = 0

b een bedeling waarbij b(x)=1

Dan geldt:

$$V_{M,b}(f(a,x)) = I(f)(V_{M,b}(a), V_{M,b}(x))$$

= $I(f)(I(a), b(x))$
= $+(0,1) = 1$

WAARDERING VAN FORMULES

Net als in propositielogica is de interpretatie (semantiek) van een formule een waarheidswaarde: waar (1) of onwaar(0)

Definitie

Laat $M = (\mathbf{D}, \mathbf{I})$ een model zijn en b een bedeling. De waarheidswaarden van formules zijn als volgt gedefinieerd:

- $V_{M,b}(P(t_1,...,t_m)) = 1 \text{ desda } I(P)(V_{M,b}(t_1),...,V_{M,b}(t_m)) \text{ geldt}$
- $V_{M,b}(\neg \varphi) = 1$ desda $V_{M,b}(\varphi) = 0$ idem als in propositielogica voor $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$ en $\varphi \leftrightarrow \psi$.
- $\triangleright V_{M,b}(\exists x \ \varphi) = 1 \text{ desda } er \text{ is } een \ d \in D \text{ zodat } V_{M,b[x\mapsto d]}(\varphi) = 1$
- $\triangleright V_{M,b}(\forall x \ \varphi) = 1 \text{ desda } voor \text{ alle } d \in D \text{ geldt } V_{M,b[x\mapsto d]}(\varphi) = 1$

INTUITIEF

Een atomaire formule is waar in een structuur, als het feit dat wordt uitgedrukt inderdaad waar is in de structuur

▶ Voorbeeld: I(P)= '<', b(x)=2 en b(y)=7 dan is Pxy waar in $\langle N, < \rangle$ nl, 2 < 7 geldt in N

Eén formule φ kan in verschillende structuren heel verschillende beweringen uitdrukken.

Bij gegeven φ en één structuur **D** kunnen verschillende interpretatiefuncties aan φ een andere waarheidswaarde geven

▶ Voorbeeld: $\forall x \forall y (f(x,y) = f(y,x))$ is waar op Q en N zowel met I(f) = '+' als met $I(f) = '\cdot '$ maar onwaar met I(f) = -

MODEL VAN EEN FORMULE

Notatie

 $V_{M,b}(\varphi) = 1$ φ is waar in M onder b

 $ightharpoonup V(\varphi)$ ipv $V_{M,b}(\varphi)$ als geen verwarring mogelijk

 $V_{M,b}(\varphi) = 1$ $M,b \models \varphi \text{ of } M \models \varphi[b]$

 $V_{M,b}(\varphi) = 0$ $M,b \not\models \varphi \text{ of } M \not\models \varphi[b]$

Definitie

Een paar M=(D,I) met structuur D en interpretatiefunctie I heet een model van een formule φ als voor iedere bedeling b geldt:

$$V_{\mathrm{M},b}(\varphi) = 1$$

SEMANTIEK - VOORBEELD

Voorbeeld

- $V_{M,b}(P(t_1,...,t_m)) = 1 \text{ desda } I(P)(V_{M,b}(t_1),...,V_{M,b}(t_m)) \text{ geldt}$
- $\bigvee_{M,b} (\neg \varphi) = 1 \text{ desda } V_{M,b}(\varphi) = 0$ idem als in propositielogica voor $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$ en $\varphi \leftrightarrow \psi$.
- $\bigvee_{M,b} (\exists x \ \varphi) = 1 \text{ desda } er \text{ is } een \ d \in D \text{ zodat } \bigvee_{M,b[x\mapsto d]} (\varphi) = 1$
- $\bigvee_{M,b} (\forall x \ \varphi) = 1 \text{ desda voor alle } d \in D \text{ geldt } \bigvee_{M,b[x \mapsto d]} (\varphi) = 1$


```
M model met \mathbf{D} = \langle Q, < \rangle en I(R) = '<'. b een bedeling waarbij b(x_1) = 4
```

Dan
$$V_{M,b}(\forall y(Rx_1y \rightarrow \exists z (Rx_1z \land Rzy))) = 1 (waar)$$

desda voor alle
$$q \in Q$$
: $V_{M,b/y \mapsto q}$ $(Rx_1y \rightarrow \exists z (Rx_1z \land Rzy)) = 1$

desda voor alle
$$q \in Q$$
: als $V_{M,b[y \mapsto q]}$ $(Rx_1y) = 1$ dan $V_{M,b[y \mapsto q]}$ $(\exists z (Rx_1z \land Rzy))) = 1$

desda voor alle
$$q \in Q$$
: als $4 < q$, dan is er een $q' \in Q$: $V_{M,b[y \mapsto q, z \mapsto q']}((Rx_1z \land Rzy)) = 1$

desda voor alle
$$q \in Q$$
: als $4 < q$, dan is er een $q' \in Q$: $V_{M,b[y \mapsto q, z \mapsto q']}(Rx_1z) = 1$ en $V_{M,b[y \mapsto q, z \mapsto q']}(Rzy) = 1$

desda voor alle $q :\in Q$ als 4 < q,

VRIJE
UNIVERSITEIT
BRUSSEL

dan is er een $q' \in Q$

dan is er een $q' \in Q$ met 4 < q' en q' < q

GELIJKHEID VAN TERMEN

De gelijkheidsrelatie ('=") is niet standaard gedefinieerd in de taal:

Indien nodig: expliciet te definiëren; alsook de semantiek ervan.

Voorbeeld definitie gelijkheid tussen termen:

$$V_{M,b}(t_1=t_2) = 1 \text{ desda} V_{M,b}(t_1)$$

Gelijkheid hier is gebaseerd op de identiteit tussen objecten in het domein

 $V_{M,b}(f(a,x)) = V_{M,b}(f(x,a))$ als f een commutatieve functie

SEMANTIEK – EIGENSCHAPPEN

Eigenschap van de waarheidsfunctie:

Waarheidswaarde van een formule hangt af van de structuur **D**, de interpretatiefunctie *I* en van het effect van de bedeling *b* op de vrije variabelen in die formule (en dus niet van de bedeling van de gebonden variabelen).

Dit is gebaseerd op de volgende bewering:

Bewering:

Als een formule φ vrije variabelen x_1, \dots, x_k bevat en er zijn 2 bedelingen b_1 en b_2 met $b_1(x_i) = b_2(x_i)$, voor $i = 1, \dots, k$, dan geldt $V_{M,b1}(\varphi) = V_{M,b2}(\varphi)$

SEMANTIEK – EIGENSCHAPPEN

Gevolg:

- ► Voor zinnen (gesloten formules) zijn er geen vrije variabelen, dus doet de bedeling er niet toe.
- ► Voor zinnen spreken we dus over waarheid en onwaarheid in een model.

SUBSTITUTIE – EIGENSCHAPPEN

Bewering

Substitutie
Voor alle termen *t*, *t'* geldt:

$$V_{M,b}([t/x]t') = V_{M,b[x \mapsto VM,b(t)]}(t')$$

Links: eerst substitueren en dan de waarde van t' bepalen Rechts: waarde van t' berekenen en we bedelen de waardering van t aan x

Dus wat betreft de waardering is substitutie in een term hetzelfde als substitutie in de bedeling.

SUBSTITUTIE – EIGENSCHAPPEN

$$\bigvee_{M,b}(x) = b(x)$$

voor variabelen x

 $\triangleright V_{M,b}(a) = I(a)$

voor constanten a

$$V_{M,b}(f(t_1,...,t_k)) = I(f)(V_{M,b}(t_1),...,V_{M,b}(t_k))$$

$$V_{M,b}([t/x]t') = V_{M,b[x \mapsto V^{M,b(t)}]}(t')$$

Voorbeeld:

Als
$$t' = f(x,y)$$
 en $t = a$ dan

$$V_{M,b}([a/x]f(x,y)) = V_{M,b}(f(a,y))$$

= $I(f)(V_{M,b}(a), V_{M,b}(y))$
= $I(f)(I(a), b(y)))$

Anderzijds:

$$V_{M,b[x\mapsto VM,b(a)]}(f(x,y)) = I(f)(V_{M,b[x\mapsto VM,b(a)]}(x), V_{M,b[x\mapsto VM,b(a)]}(y))$$

$$= I(f)(V_{M,b}(a), b(y))$$

$$= I(f)(I(a), b(y))$$

Bewijs later.

GELDIG GEVOLG

Definitie

Geldig gevolg:

Laat Σ een verzameling formules zijn en ψ een formule, dan ψ volgt uit Σ , Σ ψ , desda:

voor elk model M en elke bedeling b geldt: als voor elke $\varphi \in \Sigma$ geldt dat $V_{M,b}(\varphi) = 1$ dan ook $V_{M,b}(\psi) = 1$

Opmerking: oneindig veel mogelijkheden voor M en b!!

SEMANTIEK

Def. Een formule ψ heet universeel geldig als $\models \psi$

►Intuïtief: Een universeel geldige formule is waar in alle modellen *M* en onder iedere bedeling *b*

Def. Twee formules φ en ψ heten logisch equivalent als

$$\models \varphi \leftrightarrow \psi$$

Voorbeelden:

$$\forall x (Rx \rightarrow Px), \exists x Rx \models \exists x Px$$
$$\models Ta \rightarrow \exists x Tx$$
$$\models \forall x Rx \leftrightarrow \neg \exists x \neg Rx$$

THEORIE

Definitie

 $\{ \varphi \mid \varphi \text{ is een zin en } V_M(\varphi) = 1 \}$ is een theorie voor een model M

Notatie Th(M)

- Intuïtief: De verzameling van ware zinnen is een theorie voor M
- We kunnen een theorie ook weergeven door axioma's

Definitie

Axiomaverzameling voor een model M

Een formuleverzameling Σ axiomatiseert een theorie Th(M) als voor alle zinnen φ geldt: $\varphi \in Th(M)$ desda $\Sigma \models \varphi$

Een goede axiomatisering geeft de essentiële kenmerken van het model weer.

MODELVERZAMELING

Definitie

Modelverzameling voor de zin φ , $MOD(\varphi)$, is

$$\{M \mid V_M(\varphi) = 1\}$$

Modelverzameling voor de verzameling zinnen Σ , $MOD(\Sigma)$, is

$$\{M \mid V_M(\varphi) = 1 \text{ voor alle } \varphi \in \Sigma\}$$

MOD is verzameling van modellen die de zin, resp. een verzameling zinnen, waar maakt.

PREDIKAATLOGICA: SEMANTISCHE TABLEAUS

Zoals in de propositielogica kunnen we semantische tableaus gebruiken om de geldigheid van een gevolgtrekking te testen

Hoofdidee:

zoeken van een tegenvoorbeeld voor $\varphi_1, \ldots, \varphi_n \circ \psi$

Let op: tegenvoorbeeld in predikaatlogica is

- Er bestaat een model en een bedeling die $\varphi_1, \ldots, \varphi_n$ waar maakt en ψ onwaar
 - ▶ Dus structuur (domein), interpretatiefunctie en bedeling nodig.

- Regels en techniek van de propositielogica zijn uitgebreid naar de predikaatlogica:
 - ▶ Bijkomende reductieregels voor de kwantoren ∀ en ∃
 - ► Gaandeweg construeren van een domein *D*
 - ▶ Bijhouden van de interpretatiefunctie *I* en de bedeling *b*
 - ▶ De reductieregels voor de connectieven blijven van kracht
- ►In deze cursus:
 - ▶ geen functieletters in de formules
 - ► Gevolgtrekkingen zonder constanten en zonder vrije variabelen (anders veel ingewikkelder).

Voorbeeld

Geldige gevolgtrekking: $\forall x(Ax \rightarrow Bx), \ \forall x(Bx \rightarrow Cx) \ / \ \forall x(Ax \rightarrow Cx)$

 $\varphi_1 = Ax \rightarrow Bx, \ \varphi_2 = Bx \rightarrow Cx$

Nodig: Minstens 1 element in het domein die de bewering onwaar maakt

Universele formules moeten waar zijn voor elk element in het domein, dus ook voor d₁

 $\forall x \varphi_1, \forall x \varphi_2 \ \forall x (Ax \to Cx)$

lement in lomein, dus vary $\forall x \varphi_1, \forall x \varphi_2 \circ Ad_1 \rightarrow Cd_1$ (1) $D = \{d_1\}$ lomein, dus voor d_1 $\forall x \varphi_1, \forall x \varphi_2, Ad_1 \circ Cd_1$ (1) $D = \{d_1\}$ het $\forall x \varphi_1, \forall x \varphi_2, Ad_1 \circ Cd_1$ (1) $D = \{d_1\}$ het

Constructie van het domein

► Blijft staan als herinnering (2) $\forall x \varphi_1: \{d_1\}$

$$\forall x \varphi_{1}, \forall x \varphi_{2}, Ad_{1} \rightarrow Bd_{1}, Ad_{1} \circ Cd_{1} \quad (1) \ D = \{d_{1}\}$$

$$\Rightarrow_{L} \quad (2) \ \forall x \varphi_{1}; \{d_{1}\}$$

$$\forall x \varphi_{1}, \forall x \varphi_{2}, Bd_{1}, Ad_{1} \circ Cd_{1} \quad (1) \ D = \{d_{1}\} \quad \forall x \varphi_{1}, \forall x \varphi_{2}, Ad_{1} \circ Ad_{1}, Cd_{1} \quad (1) \ D = \{d_{1}\} \quad (2) \ \forall x \varphi_{1}; \{d_{1}\}$$

$$= \quad (2) \ \forall x \varphi_{1}; \{d_{1}\} \quad (2) \ \forall x \varphi_{1}; \{d_{1}\} \quad (2) \ \forall x \varphi_{2}; \{d_{1}\} \quad (3) \ \forall x \varphi_{2}; \{d_{1}\} \quad (3) \ \forall x \varphi_{2}; \{d_{1}\} \quad (2) \ \forall x \varphi_{1}; \{d_{1}\} \quad (2) \ \forall x \varphi_{1}; \{d_{1}\} \quad (3) \ \forall x \varphi_{2}; \{d_{1}\} \quad (4) \ \forall x \varphi_{1}; \{d_{1}\} \quad (4) \ \forall$$

Tableau is gesloten!

SEMANTISCHE TABLEAUS - REGELS

Extra reductieregels:

- Om $\forall x \ \varphi$ onwaar te maken, moet **er minstens 1 object** in D zijn zodat $[d/x] \ \varphi$ onwaar is. We voeren daarom d_{k+1} in
- Achtereenvolgens toepassen van \forall_R zorgt dat het domein langzamerhand wordt opgebouwd.

SEMANTISCHE TABLEAUS - REGELS

Om $\forall x \ \varphi$ waar te maken, moet $[d/x] \ \varphi$ waar zijn **voor alle** objecten die tijdens de constructie in het domein terecht komen.

▶ Dit vereist het "invullen" voor elk object uit het geconstrueerde domein.

Moet ook terug gebeuren als er later nog nieuwe elementen aan het domein worden toegevoegd !!!

$$\exists_{L}: \quad \Phi, \exists x \varphi \circ \Psi \qquad (1) \quad \{d_{1}, \dots, d_{k}\}$$

$$(2) \quad \dots \dots$$

$$\Phi, [d_{k+1}/x] \varphi \circ \Psi \qquad (1) \quad \{d_{1}, \dots, d_{k}, d_{k+1}\}$$

$$(2) \quad \dots \text{idem} \dots$$

$$\exists_{R}: \quad \Phi \circ \exists x \varphi, \Psi \qquad \qquad (1) \quad \{d_{1}, \cdots, d_{k}\}$$

$$(2) \quad \cdots \quad \Phi \circ [d_{1}/x]\varphi, \cdots, [d_{k}/x]\varphi \quad \exists x \varphi, \Psi \quad (1) \quad \{d_{1}, \cdots, d_{k}\}$$

$$(2) \quad \exists x \varphi : \{d_{1}, \cdots, d_{k}\}$$

$$\cdots \text{idem} \cdots$$

