Systèmes dynamiques

Feuille d'exercices 6

Dans toute la suite, si p est un point fixe hyperbolique d'un difféomorphisme f d'une variété M, on note $W^u(f,p)$ et $W^s(f,p)$ (resp. $W^u_{loc}(f,p)$ et $W^s_{loc}(f,p)$) les variétés instables et stables globales (resp. locales) de p.

Exercice 1. Variété stable locale

Soit M une variété compacte, $f: M \to M$ un \mathcal{C}^1 -difféomorphisme et $p \in M$ un point fixe hyperbolique de f.

- 1. Rappeler le théorème de la variété stable (la version perturbation Lipschitz d'un isomorphisme hyperbolique).
- 2. Montrer que l'espace tangent à la variété stable de p est l'espace stable associé à $\mathrm{d}f_p$.
- 3. Montrer qu'il existe un voisinage U de p et des coordonnées locales $\varphi = (x_1, \dots, x_n) : U \to V \subset \mathbf{R}^n$ centrées en p telles que, si $\tilde{f} = \varphi \circ f \circ \varphi^{-1}$, on a (près de 0)

$$W_{\text{loc}}^{s}(\tilde{f},0) = \mathbf{R}^{r} \oplus \{0\}, \quad W_{\text{loc}}^{u}(\tilde{f},0) = \{0\} \oplus \mathbf{R}^{n-r}.$$

4. Montrer qu'il existe c > 0 et $\delta \in (0,1)$ tels pour tous $\tilde{x}_s, \tilde{y}_s \in \mathbf{R}^r \oplus \{0\}$ assez proche de 0,

$$\|\tilde{f}^n(\tilde{x}_s) - \tilde{f}^n(\tilde{y}_s)\| \le c\delta^n \|\tilde{x}_s - \tilde{y}_s\|.$$

Exercice 2. Intérieur de la variété stable

Soit M une variété compacte, $f: M \to M$ un \mathcal{C}^1 -difféomorphisme et $p \in M$ un point fixe hyperbolique de f. On suppose que la variété stable $W^s(p)$ de p vérifie dim $W^s(p) < \dim M$. Montrer que $W^s(p)$ est d'intérieur vide.

Exercice 3. Points périodiques hyperboliques

Soit M une variété compacte, $f: M \to M$ un \mathcal{C}^1 -difféomorphisme. On suppose que tous les points périodiques de f sont hyperboliques. Montrer que pour tout $n \in \mathbb{N}$,

$$\#\{x \in M, f^n(x) = x\} < \infty.$$

Exercice 4. Calculs de variétés stables

Montrer, dans les cas suivants, que $0 \in \mathbf{R}^n$ est un point fixe hyperbolique du système $\dot{x} = f(x)$ et calculer ses variétés stables et instables.

- 1. n = 2 et $f(x_1, x_2) = (-x_1, x_2 5\varepsilon x_1^2)$ où $\varepsilon > 0$ est assez petit.
- 2. n = 3 et $f(x_1, x_2, x_3) = (-x_1, -x_2 + x_1^2, x_3 + x_1^2)$.

Exercice 5. Variété stable de l'application du chat

On considère $f_L: \mathbf{T}^2 \to \mathbf{T}^2$ l'application associée à la matrice hyperbolique $L = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Montrer que $[0] \in \mathbf{T}^2$ est un point fixe hyperbolique de f_L et que sa variété stable est dense dans \mathbf{T}^2 .

Exercice 6. Le lemme de Morse

Soit $f \in \mathcal{C}^{\infty}(\mathbf{R}^n, \mathbf{R})$. On suppose dans la suite que f(0) = 0, $\mathrm{d}f_0 = 0$ et que la Hessienne de f en 0,

$$\operatorname{Hess}_f(0) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(0)\right)_{1 \le i, j \le n},$$

est non dégénérée. On note $S_n(\mathbf{R})$ l'espace des matrices symétriques réelles.

1. Montrer que pour toute matrice $S_0 \in S_n(\mathbf{R}) \cap \operatorname{GL}(n, \mathbf{R})$, il existe un voisinage \mathcal{U} de S_0 dans $S_n(\mathbf{R})$ et une application lisse $\varphi : \mathcal{U} \to \operatorname{GL}(n, \mathbf{R})$ telle que

$$S = \varphi(S)^{\top} S_0 \varphi(S), \quad S \in \mathcal{U}.$$

2. Montrer que

$$f(x) = x^{\top} Q(x) x, \quad x \in \mathbf{R}^n,$$

où $x \mapsto Q(x)$ est une application lisse $\mathbf{R}^n \to S_n(\mathbf{R})$.

3. En déduire qu'il existe $r \in \{0, \dots, n\}$ et des voisinages U, V de 0 dans \mathbf{R}^n et un difféomorphisme $\nu : U \to V$ lisse tel que

$$(f \circ \nu)(y_1, \dots, y_n) = \sum_{j=1}^r y_j^2 - \sum_{j=r+1}^n y_j^2.$$

4. On pose $g = f \circ \nu$. Montrer que 0 est un point fixe hyperbolique du système $\dot{y} = \nabla g(y)$ et calculer ses variétés stables et instables locales.

Exercice 7. Linéarisation du pendule

On considère la fonction $H: \mathbf{R}^2 \to \mathbf{R}$ définie par $H(\theta, \omega) = \frac{1}{2}\omega^2 + 1 - \cos(\theta)$ et on considère le système différentiel

$$\dot{\theta} = \frac{\partial H}{\partial \omega}(\theta, \omega),$$

$$\dot{\omega} = -\frac{\partial H}{\partial \theta}(\theta, \omega).$$

Montrer que toute trajectoire associée à des petites conditions initiales est l'image d'un cercle par un difféomorphisme local φ défini au voisinage de 0, tel que $\varphi(0) = 0$ et d $\varphi_0 = \mathrm{id}$.

Le système du pendule est-il localement conjugué au système linéarisé, donné par $\dot{\theta} = \omega$ et $\dot{\omega} = -\dot{\theta}$?

Exercice 8. Linéarisation des séries formelles

Soit
$$\lambda \in \mathbf{C}$$
 tel que $\lambda^n \neq 1$ pour tout $n \neq 0$ et $f(z) = \lambda z + \sum_{n=2}^{+\infty} a_n z^n$.

- 1. Montrer qu'il existe une série formelle h(z) telle que $(h \circ f)(z) = \lambda h(z)$.
- 2. On suppose que f a un rayon de convergence non nul. Montrer que si $|\lambda|$ est assez grand alors h a un rayon de convergence non nul.

2