

Terminología

Ventajas

- Algoritmo de caja blanca.
- Resultados fáciles de interpretar y de entender.
- Las combinaciones de los mismos pueden dar resultados muy certeros. Por ejemplo, random forest.

Desventajas

- Tienden al sobreajuste u overfitting.
- Se ven influenciadas por los outliers.
- Crear árboles demasiado complejos puede conllevar que no se adapten bien a los nuevos datos.

 Se pueden crear árboles sesgados si una de las clases es más numerosa.

¿Cuándo usar árboles de decisión?

- Sencillo y fácil de entender.
- Funcionan bastante bien con grandes conjuntos de datos.
- Relativamente robusto.
- Es un método muy útil para analizar datos cuantitativos.
- Aplica para clasificación y regresión.

Ejemplo

https://economipedia.com/definiciones/arbol-de-decision-en-valoracion-de-inversiones.html

Como evaluar un modelo?

Matriz de confusión

- Permite visualizar el desempeño de un algoritmo de aprendizaje supervisado.
- Cada columna representa el número de predicciones de cada clase.
- Cada fila representa a las instancias en la clase real.

Matriz de confusión

 En términos prácticos nos permite ver qué tipos de aciertos y errores está teniendo nuestro modelo.

Interpretación de matriz de confusión

- Verdadero Positivo (TP): predije que era positivo y lo era.
- Verdadero Negativo (TN): predije que era falso y lo era.
- Falso Positivo (FP): predije que era positivo, pero resultó ser negativo.
- Falso Negativo (FN): predije que era negativo, pero resultó siendo positivo.

Interpretación de matriz de confusión

- Verdaderos positivos como negativos son aciertos.
- Falsos negativos como positivos son errores.

Exactitud o accuracy

 Cercanía al resultado de una medición del valor verdadero.

 En términos estadísticos, la exactitud está relacionada con el sesgo de una estimación.

Exactitud o accuracy

 Proporción entre los positivos reales predichos y todos los casos positivos.

 En forma práctica, la exactitud es el % total de elementos clasificados correctamente.

Fórmula accuracy

$$\frac{(VP+VN)}{(VP+FP+FN+VN)}*100$$

Precisión

- Dispersión del conjunto de valores obtenidos a partir de mediciones repetidas de una magnitud.
- Cuanto menor es la dispersión, mayor la precisión.
- Proporción entre el número de predicciones correctas (tanto positivas como negativas) y el total de predicciones.

Precisión

- En forma práctica, es el porcentaje de casos positivos detectados.
- Sirve para medir la calidad del modelo de machine learning en clasificación.

Fórmula precisión

$$\frac{(VP)}{(VP+FP)}$$

Sensibilidad

- Recall, sensitivity o tasa de verdaderos positivos.
- Proporción de casos positivos que fueron correctamente identificados.

Fórmula sensibilidad

$$\frac{VP}{(VP+FN)}$$

Especificidad

- Tasa de verdaderos negativos.
- Proporción de casos negativos que fueron correctamente identificados.

Fórmula especificidad

$$\frac{VN}{VN + FP}$$

F1-score

 Resume la precisión y sensibilidad en una sola métrica.

Fórmula F1-score

$$2*\frac{precision*recall}{precision+recall}$$

En resumen

Random Forest

Random forest

- · Bosques aleatorios.
- Ensamble en machine learning en donde se combinan árboles de decisión.

¿Qué es un ensamble?

- También conocidos como métodos combinados.
- Intentan ayudar a mejorar el rendimiento de los modelos de machine learning.

¿Qué es un ensamble?

 Proceso mediante el cual se construyen estratégicamente varios modelos de machine learning para resolver un problema particular.

Random forest

- · Al igual que el árbol de decisión, es un algoritmo de aprendizaje supervisado.
- · Utilizados en problemas de clasificación.
- También puede usarse para regresión.

Problemas de overfitting

Uno de los problemas con la creación de un árbol de decisión es que si le damos la profundidad suficiente, tiende a "memorizar" las soluciones en vez de generalizar.

Es decir, a tener **overfitting**. X

Ara solucionar el overfitting se recomienda hacer random forest, el cual sigue el sig. Algoritmo:

Ventajas 🐥

- Funciona bien aún sin ajuste de hiper parámetros.
- Al utilizar múltiples árboles se reduce considerablemente el riesgo de overfitting.
- Suele mantenerse estable frente a nuevas muestras de datos.

Desventajas 🐥

- Es mucho más "costoso" de crear y ejecutar que "un solo árbol" de decisión.
- No funciona bien con datasets pequeños.
- Puede requerir muchísimo tiempo de entrenamiento.
- Su interpretación a veces se vuelve compleja.

¿Cuándo usar random forest? 🌲

- Rápido y fácil de aplicar.
- En el caso de realizar técnicas de hypertuning de hiper parámetros.
- Para problemas de clasificación y también de regresión.
- · Datasets grandes.
- Para evitar el overfitting mediante la aplicación de métodos de ensamble.

Ejemplo: https://www.iartificial.net/random-forest-bosque-aleatorio/