COMP90038 Algorithms and Complexity

Lecture 13: Priority Queues, Heaps and Heapsort (with thanks to Harald Søndergaard & Michael Kirley)

Andres Munoz-Acosta

munoz.m@unimelb.edu.au

Peter Hall Building G.83

- Where and when to find me?
 - My office is Room G.83 at the Peter Hall building (http://bit.ly/2Guxh2C)
 - If you need help, consultation hours are immediately after the lectures.

- About the assessment
 - This part of the subject has one assignment associated
 - It is expected to be released on Monday September 23rd and it is due on Sunday October 13th at 23:59
 - It is composed of three (moderately challenging) problems on search structures/algorithms, string matching and dynamic programming
 - Public questions on the assignment at the final 5 minutes of the lectures are encouraged
 - While individual work is to be submitted, you are strongly encouraged to discuss in groups
 - Be mindful that coping-and-pasting part or the whole of somebody else's solution (even if you worked together in the assignment) is called collusion and amounts to plagiarism

- Some students struggle with my accent.
 - Please **stop me** if I am going too fast or I am being unclear.
- While I have taken care to check for typos, I may miss some.
 - Please let me know as soon as possible if you noted any issues, so I can correct them
- These lectures are based on Levitin's book, with some additions taken from Erickson's book (free at http://algorithms.wtf).
 - If you want to **challenge yourself**, there are plenty of (hard) exercises in this book, particularly for Dynamic Programming (Weeks 8 and 9).

- I have organized each lecture around two questions to be answered through on-line pooling.
 - You will have the opportunity to answer the question **individually**, and then discuss your answer with your **classmates**
 - One question will focus on the previous lecture material, at the beginning of the session
 - One question will focus on the **current lecture material**, at the end of the session
 - In some lectures, there will be some simple exercises through out

Priority Queues

- A priority queue is a set of elements, each containing a priority value
- Elements are ejected according to their priority (highest first)
- Some uses:
 - Job scheduling in OSes
 - Dynamical systems simulations

Heaps

- Priority queues can be constructed using **sorted and unsorted arrays**, with **ejection or injection** being of **linear** complexity.
- The **heap** is a structure used to implement priority queues, with ejection and injection of **logarithmic** complexity.
- A heap is structured as a complete binary tree that satisfies the condition:

Each child has a priority which is no greater (lesser) than its parent's

This guarantees that the root of the tree is a maximal (minimal) element.

• Is this a heap?

- Is this a heap?
 - Is a subtree a heap?

- Is this a heap?
 - Is a subtree a heap?
- If we label each node level by level, can you notice a pattern?

- Is this a heap?
 - Is a subtree a heap?
- If we label each node level by level, can you notice a pattern?
 - Did you notice that the children of node i are nodes 2i and 2i + 1?

- Is this a heap?
 - Is a subtree a heap?
- If we label each node level by level, can you notice a pattern?
 - Did you notice that the children of node i are nodes 2i and 2i + 1?
- Can we reorder the data in other way?

- Is this a heap?
 - Is a subtree a heap?
- If we label each node level by level, can you notice a pattern?
 - Did you notice that the children of node i are nodes 2i and 2i + 1?
- Can we reorder the data in other way?
 - An array is a powerful yet simple way to implement a heap.

- Is this a heap?
 - Is a subtree a heap?
- If we label each node level by level, can you notice a pattern?
 - Did you notice that the children of node i are nodes 2i and 2i + 1?
- Can we reorder the data in other way?
 - An array is a powerful yet simple way to implement a heap.
 - Testing the heap condition is as simple as testing $H[i] \le H[i/2]$ for all i.

Properties of a heap

- The **height** of the heap is $\lfloor \log_2 n \rfloor$.
- Each subtree is also a heap.
- The nodes which happen to be parents are in array positions 1 to $\lfloor n/2 \rfloor$.
- The **root of the tree** H[1] holds the maximal item; the cost of ejecting an element is O(1) plus time to restore the heap.
 - What would happen if we eject systematically the maximal item?

How to inject a new item?

• We want to inject "P"

How to inject a new item?

- We want to inject "P"
- We place "P" at the end

How to inject a new item?

- We want to inject "P"
- We place "P" at the end
- We let it "climb up", swapping with smaller parents ("M" and "O").
- This process has $O(\log n)$ complexity.

• Let's assume some random data [2 9 7 6 5 8 3]

• We could use the inject operation repeatedly

- Let's assume some random data [2 9 7 6 5 8 3]
- We could use the inject operation repeatedly
 - The downside is that its complexity is $O(n \log n)$

- Let's assume some random data [2 9 7 6 5 8 3]
- We could use the inject operation repeatedly
 - The downside is that its complexity is $O(n \log n)$
- A better choice is to:
 - Start with the last parent and move backwards, in level-order.

- Let's assume some random data [2 9 7 6 5 8 3]
- We could use the inject operation repeatedly
 - The downside is that its complexity is $O(n \log n)$
- A better choice is to:
 - Start with the last parent and move backwards, in level-order.
 - For parent, **if the largest child is larger**, swap it with the parent.
 - Whenever a parent is out of order, let it sift down until both children are smaller
 - This **bottom-down** algorithm is O(n)

```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
     k \leftarrow i
     v \leftarrow H[k]
     \text{HEAP} \leftarrow \text{FALSE}
     while not HEAP and 2 \times k \le n do
          j \leftarrow 2 \times k
                                                                                       \triangleright j is k's left child
          if j < n then
                if H[j] < H[j+1] then
                     j \leftarrow j + 1
                                                                                 \triangleright j is k's largest child
          if v \geq H[j] then
                \text{HEAP} \leftarrow \text{TRUE}
                                                                                           \triangleright Promote H[j]
          else
               H[k] \leftarrow H[j]
               k \leftarrow j
     H[k] \leftarrow v
```

```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
k \leftarrow i
v \leftarrow H[k]
\text{HEAP} \leftarrow \text{FALSE}
while not HEAP and 2 \times k \leq n do
j \leftarrow 2 \times k
if j < n then
\text{if } H[j] < H[j+1] \text{ then}
j \leftarrow j+1
if v \geq H[j] \text{ then}
\text{HEAP} \leftarrow \text{TRUE}
else
H[k] \leftarrow H[j]
k \leftarrow j
H[k] \leftarrow v
```

Memory state (1)	
$H[1,\ldots,7]$	$[2\ 9\ 7\ 6\ 5\ 8\ 3]$
n	7
i	3
k	3
v	7
j	
H[k]	7
H[j]	
H[j+1]	
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	
H[j] < H[j+1]	
$v \ge H[j]$	

```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
k \leftarrow i
v \leftarrow H[k]
\text{HEAP} \leftarrow \text{FALSE}
while not HEAP and 2 \times k \leq n do
j \leftarrow 2 \times k
\text{if } j < n \text{ then}
\text{if } H[j] < H[j+1] \text{ then}
j \leftarrow j+1
\text{if } v \geq H[j] \text{ then}
\text{HEAP} \leftarrow \text{TRUE}
else
H[k] \leftarrow H[j]
k \leftarrow j
H[k] \leftarrow v
```

Memory state (2)	
$H[1,\ldots,7]$	$[2\ 9\ 7\ 6\ 5\ 8\ 3]$
n	7
i	3
k	3
v	7
j	6
H[k]	7
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	TRUE
H[j] < H[j+1]	
$v \ge H[j]$	

```
\begin{array}{l} \mathbf{for} \ i \leftarrow \lfloor n/2 \rfloor \ \mathbf{downto} \ 1 \ \mathbf{do} \\ k \leftarrow i \\ v \leftarrow H[k] \\ \mathbf{HEAP} \leftarrow \mathbf{FALSE} \\ \mathbf{while} \ \mathbf{not} \ \mathbf{HEAP} \ \mathbf{and} \ 2 \times k \leq n \ \mathbf{do} \\ j \leftarrow 2 \times k \\ \mathbf{if} \ j < n \ \mathbf{then} \\ \mathbf{if} \ H[j] < H[j+1] \ \mathbf{then} \\ j \leftarrow j+1 \\ \mathbf{if} \ v \geq H[j] \ \mathbf{then} \\ \mathbf{HEAP} \leftarrow \mathbf{TRUE} \\ \mathbf{else} \\ H[k] \leftarrow H[j] \\ k \leftarrow j \\ H[k] \leftarrow v \end{array}
```

Memory state (3)	
$H[1,\ldots,7]$	$[2\ 9\ 7\ 6\ 5\ 8\ 3]$
n	7
i	3
k	3
v	7
j	6
H[k]	7
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	TRUE
$H\left[j\right] < H\left[j+1\right]$	FALSE
$v \ge H[j]$	

```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do k \leftarrow i v \leftarrow H[k]

HEAP \leftarrow FALSE

while not HEAP and 2 \times k \leq n do j \leftarrow 2 \times k

if j < n then

if H[j] < H[j+1] then

j \leftarrow j+1

if v \geq H[j] then

HEAP \leftarrow TRUE

else

H[k] \leftarrow H[j]

k \leftarrow j

H[k] \leftarrow v
```

Memory state (4)	
$H[1,\ldots,7]$	$[2\ 9\ 7\ 6\ 5\ 8\ 3]$
n	7
i	3
k	3
v	7
j	6
H[k]	7
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do k \leftarrow i v \leftarrow H[k]

HEAP \leftarrow FALSE

while not HEAP and 2 \times k \leq n do j \leftarrow 2 \times k

if j < n then

if H[j] < H[j+1] then

j \leftarrow j+1

if v \geq H[j] then

HEAP \leftarrow TRUE

else

H[k] \leftarrow H[j]

k \leftarrow j

H[k] \leftarrow v
```

Memory state (5)	
$H[1,\ldots,7]$	[2 9 8 6 5 8 3]
n	7
i	3
k	6
v	7
j	6
H[k]	8
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
k \leftarrow i
v \leftarrow H[k]
\text{HEAP} \leftarrow \text{FALSE}
while not HEAP and 2 \times k \leq n do
j \leftarrow 2 \times k
if j < n then
\text{if } H[j] < H[j+1] \text{ then}
j \leftarrow j+1
if v \geq H[j] \text{ then}
\text{HEAP} \leftarrow \text{TRUE}
else
H[k] \leftarrow H[j]
k \leftarrow j
H[k] \leftarrow v
```

Memory state (6)	
$H[1,\ldots,7]$	$[2\ 9\ 8\ 6\ 5\ 8\ 3]$
n	7
i	3
k	6
v	7
$\int j$	6
H[k]	8
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	FALSE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do k \leftarrow i
v \leftarrow H[k]
HEAP \leftarrow FALSE
while not HEAP and 2 \times k \leq n do j \leftarrow 2 \times k
if j < n then
if H[j] < H[j+1] then
j \leftarrow j+1
if v \geq H[j] then
HEAP \leftarrow TRUE
else
H[k] \leftarrow H[j]
k \leftarrow j
H[k] \leftarrow v
```

Memory state (7)	
$H[1,\ldots,7]$	[2 9 8 6 5 7 3]
n	7
i	3
k	6
v	7
j	6
H[k]	7
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	FALSE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

How to eject an item?

 We swap the root with the last item z in the heap, and then let z sift down to its proper place.

How to eject an item?

- We swap the root with the last item z in the heap, and then let z sift down to its proper place.
- The last element (in green) is **no longer** part of the heap (*n* is decremented).
- Ejection is $O(\log n)$

Building and then depleting a heap

• **Build** a heap from the items:

- Repeatedly **eject** the largest
- Did you noticed a pattern?

Building and then depleting a heap

• **Build** a heap from the items:

- Repeatedly **eject** the largest
- Did you noticed a pattern?
 - This is **heapsort**, a $\Theta(n \log n)$ sorting algorithm.
 - Given an unsorted array $H[1] \dots H[n]$:
 - 1. Turn H into a heap
 - 2. Apply the eject operation n-1 times
 - In place, not stable (operations on the heap change the relative order of equal items).

Which one is a heap?

Next lecture

- Transform-and-Conquer
 - Pre-sorting (Levitin Section 6.1)