Introduction to SNPs and STRs

Single Nucleotide Polymorphisms and Short Tandem Repeats

UZH-BIO392 Feifei Xia feifei.xia@uzh.ch

Introduction to SNPs

Single Nucleotide Polymorphisms

Types of Human Genetic Variants

Differences in DNA among individuals drive many types of phenotypic differences. There are many types of genomic differences between individuals

- Structural variations (SVs)
- Copy number variations (CNVs)
- Short tandem repeats (STRs)
- Single nucleotide polymorphisms (SNPs)

What are SNPs?

- SNPs are the most common type of genetic variation in the human genome. They
 represent a single base change (A, T, C, or G) at a specific position in the DNA
 sequence
- We distinguish between SNPs which are relatively common (occurring in at least 1% of the population) which are called single nucleotide polymorphisms or SNPs, and rarer variants called SNVs.

Reference CCGTTAGAGTTACAATTCGA

Read 2 TTAGAGTAACAA

Read 3 CCGTTAGAGTTA

Read 4 TTACAATTCGA

Read 5 GAGTAACAA

Read 6 TTAGAGTAACAAT

SNP Haplotype

- A SNP haplotype is a set of closely linked SNPs on the same chromosome that are inherited together as a block from a single parent.
- It represents a specific combination of alleles at multiple SNP positions.

Linkage Disequilibrium

LD refers to the non-random association of alleles at different loci in a population.

https://www.ensembl.org/Help/View?id=197

Genotypes to phenotypes

- Most SNPs have no effect on health or development. However, some of them have proven to be very important in the study of human health.
- Genetic variation between individuals leads to differences in an individual's phenotype, trait or risk of developing a disease. An individual's phenotype is influenced both by their genotype and their environment

Genotypes are the genetic make-up of an individual.

Phenotypes are the physical traits and characteristics of an individual and are influenced by their genotype and the environment.

What effect do SNPs in coding regions have?

When SNPs occur within a gene or in a regulatory region near a gene, they may play a more direct role in disease by affecting the gene's function.

SNP Genotyping Methods

SNP genotyping are techniques that analyze genomic sequence variations. These single-base substitutions are typically detected using real-time PCR, microarrays, or next-generation sequencing (NGS) techniques.

Real-Time PCR

- High sensitivity
- Familiar workflow
- Capital equipment available in most labs

Microarrays

- Trusted data quality and proven track record
- Scalable and cost-effective for detecting known SNPs in large population studies
- Can focus on target-rich areas
- Robust data analysis pipeline and uncomplicated variant interpretation

NGS

- Unbiased variant discovery using only limited knowledge of the presence or nature of the variants
- High-throughput capabilities and scalability
- Small sample size input
- Emerging user-friendly tools to simplify data analysis

Best Practices for SNP and Indel discovery in germline DNA
- leveraging groundbreaking methods for combined power
and scalability.

Filtering SNPs

To reduce the number of markers, filtering is often done to remove uninformative SNPs.

- remove SNPs with poor quality
- remove SNPs with identical calls in all the samples
- based on biological functioning.

Applications of SNPs

Genetic Ancestry and Population Genetics

Genome-Wide Association Studies (GWAS)

Population Structure

Population genetics @

1000 Genomes Project Phase 3 allele frequencies

AFR sub-populations

EUR sub-populations

Genome-Wide Association Studies (GWAS)

Goal: Identify SNPs associated with traits or diseases

How: Compare SNP frequencies between case and control groups

Output: Manhattan plots highlighting significant associations

GWAS

Standard GWAS workflow

GWAS catalog

Exploring SNP-trait associations

The NHGRI-EBI GWAS Catalog is a publicly available resource of Genome Wide Association Studies (GWAS) and their results.

References

https://www.illumina.com/techniques/popular-applications/genotyping/snp-snv-genotyping.html

https://online.stat.psu.edu/stat555/node/18/

https://www.ebi.ac.uk/training/online/courses/human-genetic-variation-introduction/

https://eu.idtdna.com/pages/education/decoded/article/genotyping-terms-to-know

https://www.ebi.ac.uk/training/online/courses/gwas-catalogue-exploring-snp-trait-associations/