Name: Devanandh A B Date:28/4/25

Roll no: AM.EN.U4ECE22014

ASSIGNMENT 1 TOPOLOGIES

i. Bus Topology:

ii. Ring Topology:

iii. Mesh Topology:

iv. Star Topology:

V. Tree Topology:

Observation

Each network topology offers distinct characteristics suited to specific networking requirements:

- Bus topology is simple, cost-effective, but limited in scalability and performance with increased devices.
- Ring topology has organized data flow and reduces collisions but is vulnerable to single points of failure without redundancy.
- Star topology provides high reliability, ease of management, and fault isolation, though it depends heavily on a central hub, which can become a bottleneck.
- Tree topology supports scalable expansion suitable for large networks but introduces points of failure at backbone nodes.

The selection of a topology hinges on balancing factors like scalability, fault tolerance, complexity, and cost in relation to organizational priorities.

Inferences

- Bus topology suits small networks with simplicity but suffers from scalability issues.
- Ring topology is organized but needs redundancy for fault tolerance.
- Star topology facilitates management and reliability but poses risk at the central node.
- Tree topology enables large or hierarchical networks but depends on backbone integrity.
- Effective network design involves matching topology characteristics with organizational needs to optimize performance and resilience.

Results:

- Bus topology is suitable for small, uncomplicated networks.
- Ring topology offers organized data flow but vulnerability to failure without redundancy.
- Star topology ensures fault isolation and management ease, though susceptible to central device failure.
- Tree topology supports large-scale expansion but requires backbone reliability.

Overall, choosing an appropriate topology demands considering trade-offs among scalability, fault tolerance, complexity, and cost to meet specific network goals

ASSIGNMENT 2: TOPOLOGY IMPLEMENTATION

LAN Networks with Tree, Star, and Ring Topologies:

Source PC IP adress: 220.14.1.2 (PC_Ring2)
Destination PC IP adress: 220.14.3.4 (PC_Tree4)

Ring topology: IP Addresses \rightarrow 220.14.1.1 - 220.14.1.4

Star topology: IP Addresses \rightarrow 220.14.2.1 - 220.14.2.5

Tree topology: IP Addresses \rightarrow 220.14.3.1 - 220.14.3.4

19ECE311: Computer Networks

Simulation Panel Event List Vis. Time(sec) Last Device At Device Туре 0.000 PC_Ring2 **ICMP** 0.001 PC_Ring2 Switch_Ring2 **ICMP** 0.002 Switch_Ring2 Switch_Ring1 **ICMP** 0.002 Switch_Ring2 Switch_Ring3 **ICMP** 0.003 Switch_Ring1 PC_Ring1 **ICMP** 0.003 Switch_Ring1 Switch_Ring4 **ICMP** 0.003 Switch_Ring1 Router **ICMP** 0.004 Switch_Ring4 PC Ring4 **ICMP** 0.004 Switch_Ring4 Switch_Ring3 **ICMP** 0.004 Router Switch_Tree1 **ICMP** 0.004 Router Switch_Star **ICMP** 0.004 Router Router **ICMP** 0.005 Switch_Ring3 PC_Ring3 **ICMP** Switch_Tree1 Switch_Tree3 0.005 **ICMP** Switch_Tree1 Switch_Tree2 **ICMP** 0.005 0.005 Switch_Star PC_Star5 **ICMP** 0.005 Switch_Star PC_Star4 **ICMP** 0.005 Switch_Star PC_Star1 **ICMP**

Vis.	Time(sec)	Last Device				At Device				Тур	ре
	0.005	Switch_Star				PC_Star2					ICMP
	0.005	Switch_Star				PC_Star	r3				ICMP
	0.006	Switch_Tree3				PC_Tree	e4				ICMP
	0.006	Switch_Tree3				PC_Tree	3				ICMP
	0.006	Switch_Tree2				PC_Tree	2				ICMP
	0.006	Switch_Tree2				PC_Tree	1				ICMP
	0.007	PC_Tree4				Switch_	Tree3				ICMP
	0.008	Switch_Tree3				Switch_	Tree1				ICMP
	0.009	Switch_Tree1	Switch_Tree1				Router				ICMP
	0.010	Router				Switch_	Ring1				ICMP
	0.011	Switch_Ring1				Switch_	Ring2				ICMP
	0.012	Switch_Ring2				PC_Ring2					ICMP
Fire	Last Status	Source Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete		54 JHSH 2044
•	Successful	PC_R PC_Tree4	ICMP		0.000	N	0	(edit)			(delete)

Observation:

The implementation demonstrates LAN configurations for three topologies:

- **Ring topology:** IP addresses range from 220.14.1.1 to 220.14.1.4.
- **Star topology:** IP addresses range from 220.14.2.1 to 220.14.2.5.
- **Tree topology:** IP addresses range from 220.14.3.1 to 220.14.3.4.

These IP schemes reflect the organizational structure of each topology, emphasizing logical segmentation, clarity in network management, and suitability for different scalable architectures.

Inferences:

- The IP schemes align with the physical or logical topology, aiding in network organization.
- The structured addresses facilitate identification of devices and troubleshooting.
- Different topologies influence IP planning, showing how infrastructure design impacts configuration complexity.

Results:

- Effective network segmentation according to topology.
- The importance of planning IP addresses alongside topology selection.
- How topology dictates network layout and management strategies, providing a hands-on understanding of LAN deployment.