KE-PTM

2020年12月12日 9:44

- 一、在预训练模型中引入知识的原因
- 1. 在如BERT的预训练模型中,存在类似于Masked Language Mode的预训练任务,但是如果一个句子中存在人名、地名或者其他信息的时候,mask机制可能破坏完整的实体信息。(e.g Horry Poter只遮挡Horry)
- 2. 引入外部的知识,例如一个句子中出现了太阳,则可以从知识图谱中"联想"到地球,金星等信息。
- 二、在预训练任务中引入知识的方式
- 1. 知识库固定
- (1) 在预训练任务中引入知识;
- (2) 将entity的embedding线性/非线性变换到word embedding空间中,然后嵌入到文本中;
- (3) 设计基于BERT的辅助结构编码知识;
- 3. 知识库和LM联合训练。

模型名称	时间及会议	基本结构	知识引入方式	创新点	预训练任务	提升领域
ERNIE1.0	ACL2019	Transformer Enc	预训练任务 (实体MLM)	改进BERT预训练任务,在预训 练任务中引入知识	Basic-Level Masking+ Phrase-Level Masking+ Entity-Level Masking+ Dialogue Language Model	NLU
LIBERT	arXiv2019	Transformer Enc	预训练任务 (词汇关系)	将语义相似度知识引入预训练 任务	Masked Language Model+ Next Sentence Predict+ Lexical Relation Classifier	NLU
Sense BERT	arXiv2019	Transformer Enc	预训练任务 (语义信息)	将外部语义信息引入预训练任 务	Masked Language Model(with word sense information)+ Next Sentence Predict+	语义消歧+少部分NLU
SentiLARE	EMNLP2020	Transformer Enc	预训练任务 (词性标注)	引入了单词级的语言知识,包 括词性标注和先验情感极性	Next Sentence Predict+ label-aware masked language model	情感分析任务
WKLM	ICLR2020	Transformer Enc	对比学习	将文本中的实体使用同类实体 替代	Masked Language Model	事实补全+QA+实体分类
Know BERT	ENNLP2019	Transformer Enc+ middleware	知识库固定+ 辅助结构	在BERT中引入中间件将知识库 的嵌入表示融合进词嵌入	Masked Language Model+ Next Sentence Predict	关系抽取+实体识别
K-Adapter	EMNLP2019	Transformer Enc+ Independent Adapter	知识库固定+ 辅助结构	为每个独立的知识库训练一个 adapter	relation classification+ Linguistic prediction (predicting the father index of each token)	实体分类+关系分类
K-BERT	AAAI2020	Transformer Enc+ Soft-position embedding+ Mask Attention	知识库固定+ 知识库嵌入文本	微调阶段将知识库实体和关系 编码到文本中	Masked Language Model+ Next Sentence Predict	NLU+NER
Co-LAKE	COLING2020	Transformer Enc+ Soft-position embedding+ Mask Attention	知识库固定+ 知识图谱子图	训练阶段将知识库实体和关系 编码到文本中	Masked Language Model (Masking word nodes+ Masking entity nodes+ Masking relation nodes)	实体识别+知识推理+知识图谱补全
GLM (Graph-guided Masked Language Model)	arXiv2020	Transformer Enc+ Distractor-Suppressed Ranking Block	预训练任务 (实体MLM+ 实体ranking)	引入实体级别的负采样学习	Entity-Level Masking+ Distractor-Suppressed Ranking	QA+知识库补全
KEPLER	arXiv2019	Transformer Enc+ Knowledge Embedding	联合训练	同时训练KE和LM	KE loss +MLM loss	关系分类+实体分类+知识推理
JACKET	arXiv2020	BERT+GCN	联合训练	同时训练KE和LM	Entity category prediction+Relation type prediction+ Masked token prediction+Masked entity prediction	关系分类+实体分类+QA(基于 知识库)