Bases de Datos de Radiación Solar

Energía Solar Fotovoltaica

Oscar Perpiñán Lamigueiro

Universidad Politécnica de Madrid

- Introducción
- 2 Estaciones Meteorológicas
- Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

Radiación Solar y Sistemas Fotovoltaicos

- La **energía producida** por un sistema fotovoltaico depende principalmente de la **radiación incidente** en el generador.
- ► Consecuentemente, la estimación del comportamiento de un sistema FV en un determinado lugar durante un período temporal exige conocer la radiación solar disponible en el plano del generador.

La radiación solar no se puede calcular analíticamente

- La radiación solar que alcanza la superficie terrestre es el resultado de complejas interacciones en la atmósfera.
- Para estimar la radiación se necesitan medidas terrestres o imágenes de satélite.

Ángulo de Inclinación

- ► Los generadores FV tienen un **ángulo de inclinación positivo** para maximizar el rendimiento.
- Este ángulo depende de la latitud del lugar y de la aplicación del sistema.

Bases de Datos de Radiación Solar

- Por tanto, es inviable mantener una base de datos de radiación solar **incidente**.
- Las bases de datos registran radiación en el plano horizontal.
- La estimación de la radiación incidente en el plano inclinado requiere un **procedimiento de transposición**.

Variabilidad Temporal y Espacial

- La irradiancia solar extraterrestre depende de la latitud y el instante temporal (*proceso determinista*).
- La irradiancia solar incidente en la superficie terrestre es resultado de la interacción con la atmósfera cambiante: **variabilidad temporal y espacial** (*proceso estocástico*).

Variabilidad Temporal

Variabilidad de la irradiación diaria, mensual y anual durante el período comprendido entre 2001-2008 en Carmona, Sevilla

Variabilidad Temporal

$$\sigma_{\overline{G}} = \frac{\sigma_G}{\sqrt{N}}$$

- Predicción para un (día, mes, año) **determinado**:
 - ► Intervalo de confianza del 95% acotado por 1.96 · σ_G
- ▶ Predicción para un (día, mes, año) **promedio (durante N años)**:
 - ▶ Intervalo de confianza del 95% acotado por 1.96 · $\sigma_{\overline{G}}$

Variabilidad Espacial

Variabilidad Espacial

Estimación a partir de Medidas

- ▶ Para estimar la radiación incidente es necesario contar con:
 - ▶ **Medidas cercanas** (variabilidad espacial): distancia no superior a 10 km.
 - ► Series temporales largas (variabilidad temporal): 10 años.

Fuentes de datos

Estaciones meteorológicas

- Series largas y con tiempos de muestreo altos.
- Baja resolución espacial (medidas puntuales)
- Precisión en caso de medida directa.
- ► Tipos:
 - Con medidor de radiación
 - Sin medidor de radiación (modelos empíricos).

Fuentes de datos

Estaciones meteorológicas

- Series largas y con tiempos de muestreo altos.
- Baja resolución espacial (medidas puntuales)
- Precisión en caso de medida directa.
- ► Tipos:
 - Con medidor de radiación
 - Sin medidor de radiación (modelos empíricos).

Imágenes de satélite

- ► Tiempos de muestreo bajos (mejorando)
- Resolución espacial alta
- Error debido a la estimación.

Fuentes de datos

Estaciones meteorológicas

- Series largas y con tiempos de muestreo altos.
- Baja resolución espacial (medidas puntuales)
- Precisión en caso de medida directa.
- ► Tipos:
 - Con medidor de radiación
 - Sin medidor de radiación (modelos empíricos).

► Imágenes de satélite

- ► Tiempos de muestreo bajos (mejorando)
- Resolución espacial alta
- Error debido a la estimación.

Híbrido

Medidas terrestres combinadas con imágenes de satélite

- 1 Introducción
- 2 Estaciones Meteorológicas
- Imágenes de Satélite
- Métodos híbridos
- **6** Control de calidad

2 Estaciones Meteorológicas

Fundamentos

Fuentes de Datos

Medida directa

La medida directa de radiación solar se realiza con un piranómetro.

- Pila termoeléctrica (termopares con barniz negro)
 - Alojamiento con dos hemiesferas de cristal.
 - Flujo de calor por radiación provoca tensión eléctrica en termopila.
- Respuesta espectral plana para radiación visible.
- Respuesta perfecta al coseno del ángulo de incidencia (pérdidas por reflexión).

Medida directa

La red de estaciones que miden directamente radiación es escasa para estimaciones precisas en regiones grandes

- Un piranómetro requiere mantenimiento y calibración frecuente.
- La proporción de estaciones con piranómetros es baja respecto a las que miden temperatura ambiente y precipitación (1:500).

Modelos empíricos

Frente a la baja densidad de estaciones con medida directa de radiación se emplean modelos empíricos

- ► Relaciones entre radiación y otras variables
 - Horas de brillo (sunshine duration)
 - Cobertura nubosa
 - ▶ Temperatura ambiente
 - Precipitación
 - ► Humedad
 - **>** ...
- Los coeficientes de los modelos sólo se pueden ajustar en estaciones con medidas de radiación.
- Los coeficientes dependen del lugar de ajuste, pero se pueden interpolar para otras localizaciones.

Ejemplos de modelos empíricos

Radiación y Horas de Brillo (Angstrom y Prescott)

$$\frac{G(0)}{B_o(0)} = a_1 + b_1 \frac{S}{S_o}$$

Radiación y Temperatura (Bristow y Campbell)

$$G(0) = a \left(1 - \exp(-b\Delta T^{c})\right) \cdot B_{o}(0)$$

▶ Variaciones con más variables: Lluvia (si/no), rango antes y después, velocidad viento, humedad relativa.

$$G(0) = a (1 - \exp(-b\Delta T^{c})) \cdot B_{o}(0) \cdot \left(1 + \sum_{i=1}^{n} p_{i} \cdot v_{i}\right) + p_{n+1}$$

2 Estaciones Meteorológicas

Fundamentos

Fuentes de Datos

Wiki con recursos

https://github.com/oscarperpinan/mds/wiki

Baseline Surface Radiation Network

http://www.bsrn.awi.de/

- ▶ BSRN proporciona datos casi continuos, a largo plazo, observados in situ, de la superficie terrestre e irradiancias de banda ancha (infrarrojo solar y térmico) de una red de más de 50 sitios globalmente diversos.
- Se emplea para la validación y confirmación de modelos satelitales y otros.

Measurement and Instrumentation Data Center NREL

Radiación global, directa y difusa (y otras variables) con muestreo de 1 min en diversas localidades de EEUU.

http://www.nrel.gov/midc/

SIAR

https://eportal.mapa.gob.es/websiar/Inicio.aspx

- ► El Sistema de Información Agroclimática para el Regadío (SiAR) registra datos agroclimáticos relacionados con demanda hídrica de las zonas de riego.
- Más de 400 estaciones.
- Valores diarios y horarios

SIAR

Sensores

- ► Temperatura y Humedad
- Piranómetro
- Anemoveleta
- Pluviómetro
- ► Temperatura del suelo (algunas)

AEMET

Radiación

- ▶ Alrededor de 30 estaciones en todo el territorio.
- ▶ Medidas de global, difusa y directa.
- Sólo gráficas.

Estaciones «convencionales»

- Presión, temperatura, viento, humedad, lluvia.
- Permite descarga de datos horarios por día.

Redes de Comunidades Autónomas

- ► Meteogalicia
- ► MeteoNavarra
- ► Cataluña
- ► MeteoEuskadi
- ► Andalucía

- 1 Introducción
- 2 Estaciones Meteorológicas
- 3 Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

3 Imágenes de Satélite Fundamentos

Fuentes de Datos

Fundamentos

- Los satélites meteorológicos están equipados con **radiómetros** (sensores de radiación electromagnética a diferentes frecuencias) que captan **radiación emitida por la Tierra**.
- La radiación emitida por la Tierra depende de la **reflexión del suelo**, y la **geometría y composición de la atmósfera**.
- Diferentes fenómenos físicos se detectan en bandas de frecuencias distintas (canales).
- Existen diversos procedimientos para **estimar radiación solar** en superficie a partir de la información de los diferentes canales del radiómetro.

Satelites Geoestacionarios Europeos: Meteosat

- ▶ MFG: Meteosat First Generation (7 satélites)
 - Equipados con el radiómetro MVIRI (Meteosat Visible and Infrared Imager).
 - ► Tres canales: visible, infrarrojo, vapor de agua.
- ► MSG: Meteosat Second Generation (4 satélites)
 - ► Equipados con dos radiómetros:
 - SEVIRI (Spinning Enhanced Visible and InfraRed Imager): 12 canales
 - ► GERB (Geostationary Earth Radiation Budget): infrarrojo visible.
- ▶ MTG: Meteosat Third Generation (1 satélite, por ahora)

Procedimientos: Heliosat-2

Pasos

- Establecer albedo de referencia (suelo).
- Estimar índice de cobertura nubosa.
- Estimar radiación en superficie a partir de cobertura nubosa y modelo de cielo claro.
- ► Empleado para base HelioClim
- Usan datos de SEVIRI
- Accesible via SoDa: https://www.soda-pro.com/help/helioclim/heliosat-2

Procedimientos: CM SAF

Fundamento

- ► Se emplea el modelo libRadtran (Radiative Transfer Model, RTM), para generar una matriz de estados (Look-up table, LUT) que relaciona la transmitancia atmosférica y el albedo de la atmósfera para variedad de estados.
- La irradiancia en superficie se estima multiplicando la irradiancia extra-atmosférica por la transmitancia atmosférica determinada interpolando en la LUT.

Procedimientos: CM SAF

- Dos LUTs: cielo nuboso, cielo claro.
 - ► Cielo nuboso:
 - Estimación de albedo y estado atmosférico a partir de imágenes.
 - Estimación de transmitancia interpolando en LUT para cielo nuboso.
 - ► Cielo claro:
 - Estimación de transmitancia interpolando en LUT para cielo claro sin estimación previa de albedo.
- Emplean datos del radiómetro MSG/SEVIRI

Procedimientos: LSA SAF

- ► Generación de **máscara de nubes** a partir de imagen usando algoritmo de NWC-SAF.
- Para zonas sin nubes: modelo de cielo claro sin usar datos de imagen.
- Para zonas cubiertas: modelo de transmitancia atmosférica a partir de imágenes.
- ► Emplean datos del radiómetro MSG/SEVIRI

3 Imágenes de Satélite

Fundamentos

Fuentes de Datos

Wiki con recursos

https://github.com/oscarperpinan/mds/wiki

SSE-NASA

Surface meteorology and Solar Energy (SSE)

- ▶ 200 parámetros meteorológicos y de energía solar derivados de imágenes de satélite.
- ▶ Base de datos de casi 40 años.
- ► Resolución 1°x1°

https://power.larc.nasa.gov/

EUMETSAT - SAF

- ▶ **EUMETSAT** es la agencia europea de satélites en operación, para la monitorización de la meteorología, clima y el medio ambiente.
- **▶** Satellite Application Facilities (SAFs)
 - Centros dedicados al procesamiento de datos de satélite.
 - Generan y distribuyen los productos y servicios EUMETSAT.

SAFs

- ► SAF on Climate Monitoring (CM SAF): datos derivados de imágenes de satélite adecuados para la monitorización del clima.
 - Operational Products: conjuntos de datos proporcionados casi en tiempo real.
 - Climate Data Records (CDR): series temporales de medidas de longitud, consistencia, y continuidad suficiente para determinar la variabilidad y cambios en el clima.
- ► SAF on Land Surface Analysis (LSA SAF): genera, archiva y distribuye productos operacionales con un conjunto de parámetros relacionados con la radiación en superficie, la evotranspiración, cobertura vegetal e incendios.

SAFs: Radiación

- ► CM SAF: Surface incoming shortwave radiation (SIS)
 - ► AEMET ha analizado las estimaciones para España en su Atlas de Radiación.
- ► LSA SAF: Down-welling surface short-wave radiation flux (DSSF)

ADRASE - CIEMAT

http://adrase.es

- ▶ Radiación solar media mensual, resolución aproximada de 5x5 km.
 - Media mensual y anual más probable durante un periodo de largo plazo (imágenes de satélite, modelo aproximadamente Heliosat)
 - Variabilidad esperada de los valores diarios mensuales: (series largas de datos de estaciones de AEMET y extrapolación espacial con IDW)

- Introducción
- 2 Estaciones Meteorológicas
- 3 Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

Interpolación Espacial

Objetivo: mejorar la resolución espacial de medidas dispersas

▶ Inverse Distance Weighting (IDW): determinista (los pesos w_i son una función inversa de la distancia.)

$$\widehat{G}_d(x_0) = \frac{\sum_{i=1}^N w_i G_d(x_i)}{\sum_{i=1}^N w_i}, \quad w_i = \frac{1}{d(x_0, x_i)^p}$$

Ordinary Kriging: modelo determinista para la media (constante) y estocástico para residuos.

$$\widehat{G}(\mathbf{s}) = \mu_G + \epsilon_G(\mathbf{s})$$

► Kriging with External Drift (KED): modelo determinista para la media incorporando información de una variable con alta densidad espacial.

Corrección por topografía

Sky-View Factor (SVF) Proporción de cielo visible para un receptor horizontal (afecta a la radiación difusa isotrópica)

Horizon blocking Bloqueo de región circunsolar por horizonte: afecta a radiación directa y difusa anisotrópica

PVGIS-r.sun

http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

- Datos de radiación en el plano horizontal de CM-SAF
- Permite incorporar la corrección por topografía (SVF y horizon blocking) con perfil estándar o con datos importados.

- 1 Introducción
- 2 Estaciones Meteorológicas
- 3 Imágenes de Satélite
- Métodos híbridos
- 6 Control de calidad

Introducción

Las medidas recogidas por estaciones meteorológicas se deben filtrar para eliminar datos erróneos.

- ► Límites Físicos
- ► Tests de variabilidad
- ► Coherencia espacial

6 Control de calidad

Límites físicos

Tests de variabilidad

Coherencia espacia

Irradiación Diaria

La radiación global en el plano horizontal debe ser inferior a la extraterrestre $(K_{td} \le 1)$

$$G_d(0) \leq B_{od}(0)$$

El índice de claridad debe ser superior a 0.03

$$K_{td} = \frac{G_d(0)}{B_{od}(0)} \ge 0.03$$

La radiación global en el plano horizontal debe ser inferior a la de un modelo de cielo claro

Irradiancia (intradiaria)

▶ El índice de claridad debe ser inferior a 1 cuando la altura solar es suficiente:

$$k_t < 1 \text{ si } \gamma_s > 2^\circ$$

Límites inferiores para cielos cubiertos (baja transparencia atmosférica)

$$k_t \ge 10^{-4} \cdot (\gamma_s - 10^\circ) \text{ si } \gamma_s > 10^\circ$$

$$G \ge 0 \text{ si } \gamma_s \le 10^\circ$$

6 Control de calidad

Límites físicos

Tests de variabilidad

Coherencia espacial

Tests de variabilidad

Se realizan sobre medidas de irradiancia.

Test de persistencia

Cuando un sensor falla proporciona un valor constante (baja desviación estándar). Si funciona de forma intermitente, la variabilidad puede ser muy alta.

$$\frac{1}{8}\bar{k}_t \le \sigma_{k_t} \le 0.35$$

La media y la desviación estándar se calculan con todas las muestras de un día completo.

Test de rampas

Comprueba la existencia de saltos excesivos de irradiancia entre instantes sucesivos.

$$|k_t(t) - k_t(t-1)| < 0.75$$
 si $\gamma_s(t) > 2^\circ$

6 Control de calidad

Límites físicos

Tests de variabilidad

Coherencia espacial

Planteamiento

- Las medidas de una estación se pueden comparar con las recogidas por estaciones cercanas.
- Esta comprobación debe realizarse con **datos agregados** (diarios) (la variabilidad espacial intradiaria puede ser alta)
- Esta comprobación debe realizarse con estaciones que tienen clima y geografía similar.

Procedimiento

Estimamos la irradiación en el lugar, x_0 , con la interpolación espacial de las estaciones cercanas, x_i .

$$\widehat{G}_d(x_0) = \frac{\sum_{i=1}^{N} w_i G_d(x_i)}{\sum_{i=1}^{N} w_i}$$

Los pesos w_i son una función inversa de la distancia d entre las estaciones (IDW).

$$w_i = 1/d^2(x_0, x_i)$$

lacktriangle Comparamos la irradiación estimada, $\widehat{G}_d(x_0)$, con la medida en la estación, $G_d(x_0)$.

$$\left|\widehat{G}_d(x_0) - G_d(x_0)\right|$$

La diferencia absoluta debe estar por debajo de un límite (p.ej. 50%)

Métricas para diferencias

▶ Mean Bias Difference (MBD), diferencia media (indica si la medida, X, está por encima o debajo de la referencia, *R*):

$$MBE = \overline{\mathbf{D}} = \overline{\mathbf{X}} - \overline{\mathbf{R}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - r_i)$$

Root Mean Square Difference (RMSD), diferencia cuadrático media:

$$RMSD = \left(\frac{1}{n}\sum_{i=1}^{n}d_i^2\right)^{1/2} = \left(\frac{1}{n}\sum_{i=1}^{n}(x_i - r_i)^2\right)^{1/2}$$

► Mean Absolute Deviation (MAD):

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |d_i| = \frac{1}{n} \sum_{i=1}^{n} |x_i - r_i|$$