08 - Boosting

SYS 6018 | Fall 2020

08-boosting.pdf

Contents

1	Boos	sting	2	
2 AdaBoost				
	2.1	Adaboost Algorithm	4	
	2.2	AdaBoost Details	7	
	2.3	R package ada	8	
3 Gradient Boosting				
	3.1	Gradient Descent	12	
	3.2	L_2 Boosting	12	
	3.3	GBM (Gradient Boosting Machine)	15	
	3.4	xgboost (Extreme Gradient Boosting)	16	
	3.5	CatBoost	17	
	3.6	LightGBM	18	

1 Boosting

Boosting is a sequential ensemble method.

Boosting Sketch

- A boosting model can be written as a generic ensemble
 - *M* is the number of base learners
 - \hat{a}_k is the weight for the kth base learner
 - $\hat{g}_k(x)$ is the prediction from the kth base learner

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{a}_k \, \hat{g}_k(x)$$

• The big difference with boosting models is that the base learners are **fitted sequentially**, and the best model at stage m is dependent on all models fit prior to stage m.

$$\hat{f}_{m+1}(x) = \underset{a, g(x)}{\arg \max} \sum_{i=1}^{n} L(y_i, \hat{f}_m(x_i) + a g(x_i))$$

- Boosting is primarily a bias reducer
 - The base models are often simple/weak (low variance, but high bias) models (like shallow trees)
- The complexity of the final model is based on i) the complexity of the base learners and ii) the number of iterations
 - Boosting models will overfit as the number of iterations increases
 - * Early stopping is necessary
 - * Less of a problem for hard classification problems with balanced data
 - Can apply *shrinkage*, or reducing $|a_k|$, to reduce complexity

- There are two main versions of boosting:
 - Gradient Boosting: fits the next model in the sequence $\hat{g}_k(x)$ to the (pseudo) residuals calculated from the predictions on the previous models
 - AdaBoost: fits the next model to sequentially weighted observations. The weights are proportional to the how poorly the current models predict the observation.

2 AdaBoost

AdaBoost was motivated by the idea that many *weak* leaners can be combined to produce a *strong* aggregate model.

- AdaBoost is for binary classification problems
- Trees are a popular base learner
 - Weak learners are usually used. For trees, this means shallow depth.
- At each iteration, the current model is evaluated.
 - The *ensemble weight* of model m is based on its performance (on all the training data)
 - The observation weight of observation i is increased if it is mis-classified and decreased if it is correctly classified.
 - Thus, at each iteration, those observations that are mis-classified are weighted higher and get extra attention in the next iteration.
- Because Adaboost uses hard-classifiers, it is sensitive to unbalanced data and unequal misclassification costs.
 - Because the thresholds are set to p > .50
 - There are, of course, ways to account for unbalance and unequal costs in the algorithm
 - An improvement to AdaBoost, LogitBoost explicitly attempts to estimate the class probability during each iteration which will allow easier post-fitting adjustments for unequal costs

2.1 Adaboost Algorithm

Algorithm: AdaBoost (Discrete)

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n, \text{ where } y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{q}
- Maximum number of iterations, M

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i
- 2. For k = 1 to M:
 - a. Fit a *classifier* $\hat{g}_k(x)$ that maps (x_i, w_i) to $\{-1, 1\}$. In other words, the classifier must make a hard classification using weighted observations.
 - b. Compute the weighted mis-classification rate

$$e_k = \frac{\sum_{i=1}^n w_i \, \mathbb{1}(y_i \neq \hat{g}_k(x_i))}{\sum_{i=1}^n w_i}$$

c. Calculate the *coefficient* for model k (ensemble weight)

$$a_k = \log\left(\frac{1 - e_k}{e_k}\right)$$

d. Update the *observations weights*. Increase weights for observations that are mis-classified by model \hat{g}_k and decrease weights for the correctly classified observations.

$$\begin{split} \tilde{w}_i &= w_i \cdot \exp\left(a_k \cdot \mathbb{1}(y_i \neq \hat{g}_k(x_i))\right) \\ w_i &= \frac{\tilde{w}_i}{\sum_{j=1}^n \tilde{w}_j} \end{split} \qquad \textit{(re-normalize weights)}$$

3. Output final ensemble $\hat{f}_M(x) \in [-1, 1]$

$$\hat{f}_M(x) = \sum_{k=1}^M a_k \, \hat{g}_k(x)$$

- Hard classification: $\hat{f}_M(x) > 0$
- Or remap to a probability $\hat{p}(x) = \frac{e^{2f}}{1 + e^{2f}}$ for thresholding

2.1.1 Illustration with Stumps (depth = 1, n.nodes=2)

2.1.2 Illustration with depth = 2, n.nodes=4

2.2 AdaBoost Details

- Adaboost uses a response variable of $y \in \{-1, 1\}$
- AdaBoost uses the loss function:

$$L(y, f) = e^{-yf}$$

$$= \begin{cases} e^{-f} & y = +1 \\ e^{f} & y = -1 \end{cases}$$

• Adaboost estimates the probability that Y = +1 as

$$\hat{p}(x) = \frac{e^{\hat{f}_M(x)}}{e^{-\hat{f}_M(x)} + e^{\hat{f}_M(x)}}$$
$$= \frac{e^{2\hat{f}_M(x)}}{1 + e^{2\hat{f}_M(x)}}$$

where $p(x) = \Pr(Y = +1 \mid X = x)$

• And $\hat{f}(x)$ is an estimate of

$$\hat{f}_M(x) = \frac{1}{2} \log \frac{\hat{p}(x)}{1 - \hat{p}(x)}$$
$$= \frac{1}{2} \operatorname{logit} \hat{p}(x)$$

- Comparison with logistic regression (using log-loss / negative binomial log-likelihood)

 - $-\hat{f}(x) = \operatorname{logit} \hat{p}(x)$ $-\hat{p}(x) = \frac{e^{\hat{f}_{M}(x)}}{1 + e^{\hat{f}_{M}(x)}}$
 - Log-loss: $\log(1 + e^{-yf})$ (using $y \in \{-1, +1\}$)

2.3 R package ada

The R package ada provides an implementation of AdaBoost (and related methods).

- See Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive Logistic Regression: A statistical view of boosting. Annals of Statistics, 28(2), 337-374. for the details of model variations
 - {Discrete, Real, Gentle} AdaBoost
 - Logitboost

Algorithm: Real AdaBoost

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n$, where $y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{g}
- Maximum number of iterations, M

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i
- 2. For k = 1 to M:
 - a. Fit a model $\hat{g}_k(x)$ that uses weighted inputs (x_i, w_i) to estimate a probability $\hat{p}_k(x) = \widehat{\Pr}(Y = 1 \mid X = x)$. In other words, the classifier must make a soft classification using weighted observations.
 - b. Set $f_m(x) = \frac{1}{2} \operatorname{logit} \hat{p}_k(x)$
 - c. Update the *observations weights*. Increase weights for observations that are mis-classified by model \hat{g}_k and decrease weights for the correctly classified observations.

$$ilde{w}_i = w_i \cdot \exp\left(-y_i \hat{f}_m(x_i)\right)$$
 $w_i = rac{ ilde{w}_i}{\sum_{j=1}^n ilde{w}_j}$ (re-normalize weights)

3. Output final ensemble $\hat{f}_M(x) \in [-1, 1]$

$$\hat{f}_M(x) = \sum_{k=1}^M a_k \, \hat{g}_k(x)$$

• Hard classification: $\hat{f}_M(x) > 0$

• Or remap to a probability $\hat{p}(x) = \frac{e^{2f}}{1+e^{2f}}$ for thresholding

Algorithm: Gentle AdaBoost

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n$, where $y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{q}
- Maximum number of iterations, M

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i and $f_0(x) = 0$
- 2. For k = 1 to M:
 - a. Fit a model $\hat{g}_k(x)$ with weighted least squares that estimates y_i using features x_i and weights w_i .
 - b. Update the *observations weights*. Increase weights for observations that are mis-classified by model \hat{g}_k and decrease weights for the correctly classified observations.

$$ilde{w}_i = w_i \cdot \exp\left(-y_i \hat{f}_m(x_i)\right)$$
 $w_i = \frac{\tilde{w}_i}{\sum_{j=1}^n \tilde{w}_j}$ (re-normalize weights)

3. Output final ensemble $\hat{f}_M(x) \in [-1, 1]$

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{g}_k(x)$$

• Hard classification: $\hat{f}_M(x) > 0$

Algorithm: LogitBoost

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n, \text{ where } y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{q}
- Maximum number of iterations, M
- Let $y_i^* = (y+1)/2 \in \{0,1\}$

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i and $f_0(x) = 0$
- 2. For k = 1 to M:
 - a. Like in newton-raphson for logistic regression, calculate the working response and weights for all observations

$$z_i = \frac{y_i^* - p_i}{p_i(1 - p_i)}$$

$$w_i = p_i(1 - p_i)$$

- b. Fit a model $\hat{g}_k(x)$ with weighted least squares that estimates z_i using features x_i and weights w_i .
- c. Update $\hat{f}_k(x)=\hat{f}_{k-1}(x)+\hat{g}_k(x)/2$ and $p_i=e^{\hat{f}_k(x)}/(e^{\hat{f}_k(x)}+e^{-\hat{f}_k(x)})$ 3. Output final ensemble $\hat{f}_M(x)\in\mathbb{R}$

$$\hat{f}_M(x) = \sum_{k=1}^{M} \frac{1}{2} \, \hat{g}_k(x)$$

- Hard classification: $\hat{f}_M(x) > 0$
- Or remap to a probability $\hat{p}(x) = \frac{e^{2f}}{1+e^{2f}}$ for thresholding

3 Gradient Boosting

The boosting model:

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{a}_k \, \hat{g}_k(x)$$

Sequential Fitting:

$$\hat{f}_{k+1}(x) = \underset{a, g(x)}{\operatorname{arg max}} \sum_{i=1}^{n} L(y_i, \hat{f}_k(x_i) + a g(x_i))$$

The concept of gradient boosting is sequentially re-fit to the negative (functional) gradients of the loss function (or *pseudo* residuals).

- The same structure can be used for many different loss functions
 - it works the same for regression and classification
 - survival analysis, ranking, etc.

3.1 Gradient Descent

- Our objective is to find the model (or model parameters) that minimize the loss function
- From any starting point, we can move toward the optimum using gradient descent:

$$f_{k+1} = f_k - \nu_k L'(f_k)$$

- $\nu_k > 0$ is the step-size
- $L'(f_k)$ is the functional derivative of the loss with respect to the model f_k
- Boosting fits models sequentially:

$$\hat{f}_{k+1}(x) = \hat{f}_k(x) + \hat{a}_k \, \hat{g}_k(x)$$

• So we see a parallel; each boosting model $\hat{g}_k(x)$ can be viewed as estimating the *negative derivative* of the loss function.

3.2 L_2 Boosting

 L_2 boosting is based on the squared error loss function

$$L(y_i, \hat{f}(x_i)) = \frac{1}{2}(y_i - \hat{f}(x_i))^2$$

• The negative gradients are

$$r_{i} = \left[-\frac{\partial L(y_{i}, f_{i})}{\partial f_{i}} \right]_{f_{i} = \hat{f}(x_{i})}$$
$$= y_{i} - \hat{f}(x_{i})$$

• L2 Boosting is simply re-fitting to the residuals.

Algorithm: L_2 Boosting

- 1. Initialize $\hat{f}_0(x) = \bar{y}$
- 2. For k = 1 to M:
 - a. Calculate residuals $r_i = y_i \hat{f}_{k-1}(x_i)$ for all i
 - b. Fit a base learner (e.g., regression trees) to the residuals $\{(x_i,r_i)\}_{i=1}^n$ to get the model $\hat{g}_k(x)$
 - c. Update the overall model $\hat{f}_k(x) = f_{k-1}(x) + \nu \hat{g}_k(x)$ $0 \le \nu \le 1$ is the step-size (shrinkage)
- 3. Final model is $\hat{f}_M(x) = \bar{y} + \sum_{k=1}^M \nu \hat{g}_k(x)$
- Like AdaBoost, emphasis is given to observations that are predicted poorly (large residuals)

3.2.1 Illustration using stumps (depth=1, n.nodes=2, $\nu = .1$)

3.3 GBM (Gradient Boosting Machine)

- R package gbm
- GBM Documentation

3.3.1 Model/Tree Tuning Parameters

- Tree depth (interaction.depth)
 - Grows trees to a depth specified by interaction.depth (unless there are not enough observations in the terminal nodes)
- Minimum number of observations allowed in the terminal nodes (n.minobsinnode)
- Sub-sampling (bag.fraction)
 - Stochastic Gradient Boosting
 - Sample (without replacement) at each iteration
- Loss Function (distribution)
 - The loss function is determined by the distribution argument
 - Use distribution="gaussian" for squared error
 - Other options are: bernoulli (for logistic regression), poisson (for Poisson regression), pairwise (for ranking/LambdaMart), adaboost (for the adaboost exponential loss), etc.

3.3.2 Boosting Tuning Parameters

- Number of iterations/trees (n.trees)
 - Use cross-validation (or out-of-bag) to find optimal value
 - Can use the helper function gbm.perf() to get the optimal value
- Shrinkage parameter (shrinkage)
 - Set small, but the smaller the shrinkage, the more iterations/trees need to be used
 - "Ranges from 0.001 to 0.100 usually work"
- Cross-validation (cv.folds)
 - gbm has a built in cross-validation
 - no way to manually set the folds

3.3.3 Computational Settings

- Number of Cores (n.cores)
 - Only used when cross-validation is implemented

3.4 xgboost (Extreme Gradient Boosting)

- R package xgboost
- xgboost Documentation
- · xgboost Model
- xbgoost Paper

3.4.1 Model/Tree Tuning Parameters

- Different base leaners (booster)
 - gbtree is a tree
 - gblinear creates a (generalized) liner model (forward stagewise linear model)
- Tree building (tree_method)
 - To speed up the fitting, only consider making splits at certain quantiles of the input vector (rather than considering every unique value)
- Sub-sampling (subsample)
 - Stochastic Gradient Boosting
 - Sample (without replacement) at each iteration
- Feature sampling (colsample_bytree, colsample_bylevel, colsample_bynode)
 - Like used in Random Forest, the features/columns are subsampled
 - Can use a subsample of features for each tree, level, or node

Model Complexity Parameters

- Tree depth (max depth)
 - Grows trees to a depth specified by max_depth (unless there are not enough observations in the terminal nodes)
 - Trees may not reach max_depth if the gamma or min_child_weight arguments are set.
- Minimum number of observations (or sum of weights) allowed in the terminal nodes (min_child_weight)
- Pruning (gamma or min_split_loss)
 - Minimum loss reduction required to make a further partition on a leaf node of the tree
 - The larger gamma is, the more conservative the algorithm will be
- ElasticNet type penalty (lambda and alpha)
 - lambda is an L_2 penalty
 - alpha is an L_1 penalty
 - Recall that trees model the response as a *constant* in each region

$$\hat{f}_T(x) = \sum_{m=1}^M \hat{c}_m \, \mathbb{1}(x \in \hat{R}_m)$$

· Cost-complexity pruning found the optimal tree as the one that minimized the penalized loss objective

function:

$$C_{\gamma}(T) = \sum_{m=1}^{|T|} \text{Loss}(T) + \gamma |T|$$

• XGBoost selects a tree at each iteration using the following penalized loss:

$$C_{\gamma,\lambda,\alpha}(T) = \sum_{m=1}^{|T|} \operatorname{Loss}(T) + \gamma |T| + \frac{\lambda}{2} \sum_{m=1}^{|T|} \hat{c}_m^2 + \alpha \sum_{m=1}^{|T|} |\hat{c}_m|$$

- Loss Function (objective)
 - The loss function is determined by the objective argument
 - Use reg: squarederror for squared error
 - Other options are: reg:logistic or binary:logistic (for logistic regression), count:poisson (for Poisson regression), rank:pairwise (for ranking/LambdaMart), etc.

3.4.2 Boosting Tuning Parameters

- Shrinkage parameter (eta or learning_rate)
 - Set small, but the smaller the eta, the more iterations/trees need to be used
- Number of iterations/trees (num_rounds)
 - Use cross-validation (or out-of-bag) to find optimal value
- Cross-validation (xqb.cv)
 - xgboost has a built in cross-validation
 - It is possible to manually set the folds

3.4.3 Computational Settings

- Number of Threads (nthread)
- GPU Support (https://xgboost.readthedocs.io/en/latest/gpu/index.html)
 - Used for finding tree split points and evaluating/calculating the loss function

3.5 CatBoost

- R package: (https://github.com/catboost/catboost/tree/master/catboost/R-package)
- CatBoost Documentation
- Model/Tree Tuning Parameters:

•	Boosting	Tuning	Parameters:
---	----------	--------	-------------

3.6 LightGBM

- $\bullet \ R \ Package: \ https://github.com/microsoft/LightGBM/tree/master/R-package$
- LightGBM Documentation
- Model/Tree Tuning Parameters:

• Boosting Tuning Parameters: