# MISSING DATA AND MEASUREMENT ERROR

September 22, 2019

#### Jon Fintzi

Biostatistics Research Branch National Institute of Allergy and Infectious Diseases National Institutes of Health

### **Overview**

• Bayesian inference always starts with a model for the **joint distribution** of  $\theta$  and y:.

$$\pi(\theta, y) = f(y|\theta)\pi(\theta) = \pi(\theta|y)m(y).$$

• Bayes rule yields the posterior distribution

$$\pi(\theta|y) = \frac{f(y,\theta)}{m(y)} = \frac{f(y|\theta)\pi(\theta)}{m(y)} \propto Likelihood \times Prior.$$

Last week we talked about hierarchical models, all we did was iterate on this ideas:

- Model expressed that people are self-similar, but also are similar to one another.
- Individuals are exchangeable in the prior reasonable to suppose that  $\beta_{Jon}$  and  $\beta_{Mike}$  come from the same distribution, but no prior information to differentiate Mike from Jon.
- We use the data to inform us about individuals and the population, individuals are no longer exchangeable in the posterior, i.e.,  $\pi(\beta_{Jon}|Y_{Jon},Y_{Mike}) \neq \pi(\beta_{Mike}|Y_{Jon},Y_{Mike})$ .
- Different choices for model structure induce different features in the posterior, e.g., shrinkage with "mixed effects", horseshoe for inducing posterior sparsity.

## **Lecture 20 of Statistical Rethinking**

Example: divorce rate vs. state population size.

• Treat true divorce rate as an unknown parameter:

$$D_{obs,i} \sim N(D_{true,i}, D_{SE,i}^2)$$
  
 $D_{true,i} \sim \pi(\theta).$ 

- Effect is to shrink observed state divorce rates towards national average.
- If interested in divorce rate vs. population + marriage rate, can also model observed marriage as a noisy observation of the true marriage rate.
- Missing data is a form of measurement error.

### **Lecture 20 of Statistical Rethinking**

- Common approaches to missing data:
  - o Complete case analysis (best case) introduce uncertainty, (worst case) introduce confounding.
  - Mean imputation, marginal imputation.



- Multiple imputation: simulate datasets from joint distribution, fit separately, and combine.
- Bayesian data augmentation: introduce missing data,  $Y_{miss}$  as latent variables. Target the joint posterior  $\pi(Y_{miss}, \theta|Y_{obs})$ .

## **Lecture 20 of Statistical Rethinking**

- Different missingness mechanisms, MCAR, MAR, and MNAR, require different models.
- Imputation can improve precision for estimates of interest (shrinkage!).
- Bayesian inference always starts with a *joint* model for data, parameters, and covariates.

# Plan for today

### Two examples:

- Model BMI as a function of cholesterol and age.
  - o Data augmentation with brms (Burkner, 2019).
  - o Off-the-shelf, flexible, relatively straightforward syntax.
- Compartmental models for partially observed incidence data.
  - o Introduce true incidence as a latent variable.
  - o Ordinary differential equations describe the latent incidence.

Data (nhanes from the mice package)

- 18 individuals, omit people missing both BMI and cholesterol.
- BMI (kg/m<sup>2</sup>)
- Total serum cholesterol (mg/dL)

```
## chl bmi
## 2 187 22.7
## 3 187 NA
## 5 113 20.4
## 6 184 NA
## 7 118 22.5
## 8 187 30.1
```

### Key features:

- Missingness in cholesterol and BMI, we'll assume MAR so need to impute but not model missingness (see Statistical Rethinking lecture 20 for the explanation of this).
- Looks like higher BMI associated with slightly higher cholesterol.



Model:

$$BMI_{obs,i} \sim LogNormal(\mu_{bmi,i}, \sigma_{bmi}^{2})$$

$$BMI_{miss,i} \sim LogNormal(\mu_{bmi,i}, \sigma_{bmi}^{2})$$

$$\mu_{bmi,i} = \beta_{0} + \beta_{1}CHL_{i}$$

$$CHL_{obs,i} \sim Normal(\mu_{chl}, \sigma_{chl}^{2})$$

$$CHL_{miss,i} \sim Normal(\mu_{chl}, \sigma_{chl}^{2})$$

$$+ Priors...$$

- If MNAR, have to model probability of missing given latent value (Chapters 8 and 18 of Gelman et al., 2013).
- If we fit this in **Stan**, declare observed values as data and missing values as parameters, which we estimate just like any other parameters.

# Interlude: Algorithmic Implementation

```
Example - normal means problem with missing values: y_i \sim N(\mu, \sigma^2).
```

```
data {
  int<lower=0> N_obs; # number observed
  int<lower=0> N_mis; # number missing
  real y_obs[N_obs]; # vector of observed values
}
```

# **Interlude: Algorithmic Implementation**

Example - normal means problem with missing values:  $y_i \sim N(\mu, \sigma^2)$ .

```
parameters {
  real mu;  # mean parameter
  real<lower=0> sigma; # standard deviation
  real y_mis[N_mis]; # missing values are parameters
}
```

# **Interlude: Algorithmic Implementation**

Example - normal means problem with missing values:  $y_i \sim N(\mu, \sigma^2)$ .

```
model {
    # joint distribution for observed and missing variables
    y_obs ~ normal(mu, sigma);
    y_mis ~ normal(mu, sigma);
}
```

Trivial to fit using **brms**:

Posterior is full of lines for BMI vs. cholesterol and values for cholesterol.



Interrogate the posterior predictive distribution to examine fit.



Figure 1: Posterior predicted BMI and cholesterol.

Parially observed incidence data:

- $N_{SI}(t_\ell)=$  Cumulative infections up to  $t_\ell$ ,
- $Y_{\ell} =$  new cases seen in  $(t_{\ell-1}, t_{\ell}]$ ,
- $Y_{\ell} \sim Neg.Binomial(\mu = \rho \times (N_{SI}(t_{\ell}) N_{SI}(t_{\ell-1})), \ \sigma^2 = \mu(1 + \mu/\phi)).$



#### Important:

- Only observe a fraction of cases at discrete times.
- Data come from an outbreak that evolves *continuously* in time.

#### What do we want to learn?

- How many people were infected? How many people were infected?
- How to characterize the transmission dynamics of the outbreak?

#### What makes this difficult?

1. Under-reporting: epidemic process,  $\mathbf{X}$ , only partially observed.



- 2. Dependent happenings:  $\implies$  dependent data,  $\mathbf{Y} = (\mathbf{Y_1}, \dots, \mathbf{Y_L})$ .
  - o Observed data likelihood:

Relinood: 
$$L(\mathbf{Y}|\boldsymbol{\theta}) = \prod_{\ell=1}^{\mathbf{L}} \pi(\mathbf{Y}_{\ell}|\mathbf{Y}_{1}, \dots, \mathbf{Y}_{\ell-1}, \boldsymbol{\theta}) \neq \prod_{\ell=1}^{\mathbf{L}} \pi(\mathbf{Y}_{\ell}|\boldsymbol{\theta}).$$

 $\circ$  Intractable observed data likelihood State space of  ${f N}$  is huge, even in small populations!

$$L(\mathbf{Y}|\boldsymbol{\theta}) = \int \prod_{\ell=1}^{L} \pi(\mathbf{Y}_{\ell}|\mathbf{Y}_{1}, \dots, \mathbf{Y}_{\ell-1}, \mathbf{N}, \boldsymbol{\theta}) \pi(\mathbf{N}|\boldsymbol{\theta}) d\mathbf{N}$$

#### Strategy:

- ullet Bayesian data augmentation introduce incident event processes,  ${f N}=({f N_{SI}},{f N_{IR}})$ , as latent variables in the model
- Target the joint posterior,  $\pi(\mathbf{N}, \boldsymbol{\theta} | \mathbf{Y})$ .

**Challenge:** Need a tractable representation for the transition density of  $N(t_\ell)|N(t_{\ell-1}), heta$  .

- ullet In large populations, not unreasonable to represent  ${f N}$  with a deterministic system of ODEs.
- Classical tools in the disease modeling literature, see Allen (2008) and Blackwood (2018) for an overview.

#### **Deterministic SIR model:**

Incidence paths are solutions to systems of differential equations,

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} N_{SI} \\ N_{IR} \end{pmatrix} = \begin{pmatrix} \beta SI \\ \mu I \end{pmatrix},$$

$$= \begin{pmatrix} \beta(S_0 - N_{SI})(I_0 + N_{SI} - N_{IR}) \\ \mu(I_0 + N_{SI} - N_{IR}) \end{pmatrix},$$

subject to  $X_0=(S_0,I_0,R_0),\ N_0=0.$ 

- $\beta$  = per-contact infection rate.
- $\mu$  = recovery rate.
- Priors on  $1/\mu$  = mean infectious period and  $\mathcal{R}_0 = \beta N/\mu =$  basic reproduction number.





Joint model,  $\pi(\mathbf{Y}, \mathbf{N}, \boldsymbol{\theta})$ , where  $\mathbf{N}$  has the *Markov* property.

- ullet Data,  ${f Y}$ , are conditionally independent given  ${f N}$ .
- Simplified complete data likelihood:

$$L(\mathbf{Y}, \mathbf{N}|\boldsymbol{\theta}) = \pi(\mathbf{N}(\mathbf{t_0})|\boldsymbol{\theta}) \prod_{\ell=1}^{L} \pi(\mathbf{Y}_{\ell}|\mathbf{N}(\mathbf{t}_{\ell}), \boldsymbol{\theta}) \pi(\mathbf{N}(\mathbf{t}_{\ell})|\mathbf{N}(\mathbf{t}_{\ell-1}), \boldsymbol{\theta}).$$

- $\circ \pi(Y_{\ell}|\mathbf{N}(\mathbf{t}_{\ell}),\boldsymbol{\theta})$  sampling model, negative binomial.
- $\circ \pi(\mathbf{N}(\mathbf{t}_{\ell})|\mathbf{N}(\mathbf{t}_{\ell-1}), \theta)$  transition density for latent epidemic, SIR
- ullet Here,  $oldsymbol{ heta}$  maps 1:1 onto  ${f N}$  so no need to sample  ${f N}$  explicitly.
- ullet Stochastic representations of  ${f N}$  require sampling latent paths. Tradeoff realism and computational tractability.

**Key point:** true incidence is missing data. In the Bayesian paradigm we estimate it like any other parameter by including it in our joint model and targeting the posterior!

Goal: Infer  $\pi(\theta, \mathbf{N}|\mathbf{Y}) \propto \mathbf{L}(\mathbf{Y}|\mathbf{N}, \theta)\pi(\mathbf{N}|\theta)\pi(\theta)$ .

ullet Outbreak dynamics:  $\pi(\mathbf{N}|oldsymbol{ heta})$ 



• Observation model:  $L(Y|N, \theta)$ 



Goal: Infer  $\pi(\theta, \mathbf{N}|\mathbf{Y}) \propto \mathbf{L}(\mathbf{Y}|\mathbf{N}, \theta)\pi(\mathbf{N}|\theta)\pi(\theta)$ .

ullet Outbreak dynamics:  $\pi(\mathbf{N}|oldsymbol{ heta})$ 



• Observation model:  $L(\mathbf{Y}|\mathbf{N}, \boldsymbol{\theta})$ 



Goal: Infer  $\pi(\theta, \mathbf{N}|\mathbf{Y}) \propto \mathbf{L}(\mathbf{Y}|\mathbf{N}, \theta)\pi(\mathbf{N}|\theta)\pi(\theta)$ .

ullet Outbreak dynamics:  $\pi(\mathbf{N}|oldsymbol{ heta})$ 



• Observation model:  $L(\mathbf{Y}|\mathbf{N}, \boldsymbol{\theta})$ 



Posterior distributions of model parameters:



# Wrapping up

- Quantify two kinds of uncertainty, epistemic, which reflects subjective ignorance, and aleatory, which is uncertainty due to chance.
- A Bayesian model always defines a joint distribution for data and parameters.
- Some simple examples, PREVAIL II and linear regression; some complex hierarchical models and missing data.
- Failure modes of misspecified priors under poorly chosen scales, weakly informative priors as a reasonable strategy.
- Good workflow is like going to the dentist.
- Various computational tools.

### References

Allen, Linda JS. "An introduction to stochastic epidemic models." Mathematical epidemiology. Springer, Berlin, Heidelberg, 2008. 81-130.

Blackwood, Julie C., and Lauren M. Childs. "An introduction to compartmental modeling for the budding infectious disease modeler." *Letters in Biomathematics* 5.1 (2018): 195-221.

P. Burkner. "Handle Missing Values with brms."

https://cran.r-project.org/web/packages/brms/vignettes/brms\_missings.html (2019).

Gelman, Andrew, et al. Bayesian data analysis. Chapman and Hall/CRC, 2013.