IMPACT OF EOS ON NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVAE

Based on Random Phase Approximations (RPA)

Zidu Lin

Collaborator: Andrew Steiner

NEUTRINO INTERACTIONS IN CCSN

NEUTRINO INTERACTIONS IN CCSN

All the many-body effects (and uncertainties) are here

CORRECTIONS THAT MATTER FOR υ OPACITIES

Phys.Rev.D65:043001,2002

Phys.Rev.C58:554-571,1998

Phys. Rev. C59:2888, 1999

This work

THEORETICAL FRAMEWORK

$$\frac{d^2\sigma}{dwd\Omega} = \cdots L_{\mu\nu} \Lambda^{\mu\nu}$$

Non-Relativistic limit

$$L_{\mu\nu}\Lambda^{\mu\nu} \approx (1 + \cos\theta)W_V + (3 - \cos\theta)W_A$$

$$W_V = V^2 S_V(q, w) \qquad W_A = A^2 S_A(q, w)$$

Neutral Current (NC):

$$V = C_V^n = \frac{1}{2};$$

 $A = C_A = -\frac{1.26}{2}$

Charged Current (CC):

$$V = g_V = 1;$$

 $A = g_A = 1.26$

$$U=\mu-\mu_0$$

$$\mathbf{U}_{\mathrm{P}} \quad \mathbf{U}_{\mathrm{N}}$$

Linear Respokse Theory:

$$S(q_0, q) = \frac{1}{1 - \exp[-(q_0 + \frac{\mu_2 - \mu_4}{T})]} Im[\Pi_{V/A}]$$

Random phase approximation (RPA):

$$Im[\Pi_{V/A}] = Im[\frac{\Pi^{MF}}{1 - v_{V/A}\Pi^{MF}}]$$

WHERE EOS MATTERS

P-H INTERACTIONS

At low densities, only 1 EoS (virial) for sure; at high densities, a lot of candidate EoSs (including skyrme)...

HOW WELL DOES RPA BEHAVE AT LOW DENSITIES?

STATIC RESPONSE AT LOW DENSITY

DYNAMIC RESPONSE AT LOW DENSITY

DYNAMIC RESPONSE AT LOW DENSITY

HOW BIG ARE THE IMPACTS FROM EOS AT HIGH DENSITIES?

DYNAMIC RESPONSE AT HIGH DENSITY

DYNAMIC RESPONSE AT HIGH DENSITY

COVARIANCE & CORRELATIONS

$$cov(A, B) = cov(B, A) = \sum_{i,j=1}^{F} \left(\frac{\partial A}{\partial x_i}\right)_0 \Sigma_{ij} \left(\frac{\partial B}{\partial x_j}\right)_0,$$

Preliminary Results

Covariance matrix Σ of Skyrme parameters

COVARIANCE & CORRELATIONS

Pearson Coefficients:

$$\rho(A,B) = \frac{\text{cov}(A,B)}{\sigma_A \sigma_B}$$

COVARIANCE & CORRELATIONS

Pearson Coefficients:

$$\rho(A,B) = \frac{\text{cov}(A,B)}{\sigma_A \sigma_B}$$

Preliminary Results

CONCLUSION

- 1. Random phase approximation provides a systematic way to estimate neutrino opacities in both CC and NC channel, from low to high densities
- 2. EoS and RPA neutrino opacities can be generated together in a consistent way, and the uncertainties of EoS propagates to the calculation of neutrino opacities, especially at high density
- 3. At low density, the agreement between RPA and virial neutrino response in NC channel may be improved when using the P-H interaction directly derived from virial EoS

LOOKING FORWARD...

- a. Relativistic RPA+ EoS at very high density
- b. Particle-hole (ring) +Particle-Particle(ladder) RPA at low density

