Algoritmos y Estructuras de Datos - DC - UBA Segundo cuatrimestre de 2025

Trabajo práctico 1: Especificación de TADs

Normativa

Límite de entrega: Domingo 21 de Septiembre a las 23:59hs.

Normas de entrega:

- Subir únicamente el PDF a la tarea del campus.
- El archivo puede tener el nombre que quieran.
- Es suficiente con que la entrega la haga un sólo integrante de cada grupo.

Enunciado

En GPT5, un recóndito planeta del Sur Galáctico, hay vida inteligente. Allí, en la cima de la pirámide evolutiva se ubican los Iroquai, unos seres amables y pacíficos, muy similares en forma y tamaño a los seres humanos. Los Iroquai han hecho prodigiosos avances en medicina. Al igual que en la Tierra, todos los años los/as médicos/as deben hacer un examen para iniciar la especialización, el cual por comodidad denominaremos "Examen de Residencia" (EdR).

Este examen es muy exigente y condiciona el futuro profesional de los y las médicos/as. Quienes obtienen los mejores puntajes pueden elegir la especialidad y el centro médico en el que desarrollarán su aprendizaje. Los Iroquai en condiciones normales son honestos/as, pero la dificultad del examen y la perspectiva de no alcanzar el puntaje esperado, puede tentarlos/as a tratar de fraguar el examen de distintas formas.

El EdR consiste de una lista de ejercicios de elección múltiple de 10 opciones (numeradas de 0 a 9). El mismo se rinde en un aula con suficiente capacidad para albergar a los y las estudiantes, e incluso pueden quedar asientos vacíos por ausencias. Al comienzo del examen, cada estudiante recibe una copia del mismo con los ejercicios sin responder, y se sienta de manera tal que haya al menos un asiento de distancia con respecto a su compañero/a más próximo de su misma fila. En el transcurso del examen, cada estudiante resuelve los ejercicios de manera secuencial (aunque no necesariamente en orden). Sin embargo, algunos/as estudiantes pueden optar por copiarse un ejercicio de un/a compañero/a cercano/a para intentar obtener una nota más alta. El rango de visión solo les permite hacerlo si alguien se encuentra sentado en a lo sumo dos asientos de distancia hacia los costados o uno hacia delante, pero no hacia atrás. Además, aprovechando los avances tecnológicos, personas ajenas al examen, denominadas "proveedores", son capaces de subir una posible resolución del examen a la dark web con un número limitado de accesos, la cual puede ser consultada por estudiantes tomando el examen.

Atentos a esta problemática, una vez que todos y todas las estudiantes entregaron su examen y se da por finalizado, los y las docentes realizan un chequeo de copias, donde establecen el siguiente criterio para determinar si una resolución dada es sospechosa de haberse copiado: Proporción de respuestas equivalentes a un/a compañero/a cercano/a > 60% ó examen equivalente a más del 25% del alumnado.

Llegado el momento de la corrección, aquellos Iroquai sospechosos/as de haberse copiado no reciben nota, mientras que al resto se les asigna la proporción de respuestas correctas como nota final.

Consignas

En base al enunciado, especificar el TAD EdR con sus correspondientes observadores y los siguientes procedimientos:

- EdR: dada un aula con la misma cantidad de filas de asientos que columnas, una solución canónica del examen y una cantidad de estudiantes, crea una instancia del sistema.
- igualdad: dada dos instancias del TAD, determina si son iguales.
- copiarse: un estudiante dado se copia un ejercicio que aún no resolvió de un/a compañero/a cercano/a.
- publicarResolucion: dada una posible resolución del examen y N cantidad de posibles accesos, a lo sumo N estudiantes utilizan la resolución en su examen.

- resolver: dada una secuencia de t pasos de resolución del examen de un/a estudiante dado/a, devuelve una secuencia con t+1 pasos de resolución. El primer elemento de la secuencia de entrada representa el examen del estudiante antes de que comience a resolverlo, y el último elemento es el examen inicial luego de t pasos de resolución. El elemento t+1-ésimo de la salida corresponde al examen del estudiante en el paso t con una respuesta adicional y corresponde a la nueva instancia de examen del estudiante. Por ejemplo, si la entrada es [examen₀, examen₁, examen₂], examen₀ es el examen del estudiante sin ninguna resolución, examen₁ contiene una respuesta (por ejemplo, al ejercicio 3), examen₂ contiene dos respuestas (ejercicio 3 y, por ejemplo, ejercicio 1), y la salida debe ser [examen₀, examen₁, examen₂, examen₃], donde examen₃ contiene las respuestas de examen₂ más una respuesta adicional (por ejemplo, al ejercicio 5). En este ejemplo, examen₃ corresponde a la nueva instancia de examen del estudiante.
- entregar: un estudiante dado entrega su examen y se retira del aula.
- chequearCopias: devuelve una lista de estudiantes sospechosos de haberse copiado, según los criterios detallados en el enunciado.
- corregir: devuelve una secuencia de tuplas < estudiante, nota > con las correcciones de los exámenes de los y las estudiantes que no fueron sospechosos/as de copiarse, otorgándoles como nota la proporción de respuestas correctas.

Se recomienda utilizar renombres de tipos para los parámetros de los procedimientos así como predicados en los requiere y asegura. Es posible utilizar structs para los tipos (por ejemplo, "punto es struct $< x : \mathbb{Z}, y : \mathbb{Z} >$ ").

Criterios de evaluación

En la siguiente hoja, encontrarán una tabla que describe las distintas dimensiones que se evalúan sobre la solución y qué se espera en cada una de ellas para considerar que se ha logrado, logrado parcialmente o no logrado el objetivo.

	June 1	I come Dencialmente	No Lower
	LOgIa	Logia raiciameme	INO LUBIA
Abstracción	Los TADs capturan todos los elementos relevantes del enunciado, y no capturan elementos irrelevantes.	Los TAD capturan todos los ele- mentos relevantes del enunciado, pero capturan elementos irrelevan- tes.	El TAD no captura todos los elementos relevantes del enunciado.
Sobreespecificación	No hay especificación de aspectos no definidos (por ejemplo, poner una secuencia donde va un con- junto) ni restricciones que sobre- simplifican en problema (por ejem- plo, asumir cierto dominio en los parámetros).	Hay restricciones innecesarias sobre el dominio, pero no sobresimplifica el enunciado (por ejemplo, piden números positivos cuando no es necesario).	Sobreespecifica (por ejemplo: usar secuencia cuando no hay orden en los elementos).
Legibilidad	Se utilizan predicados, auxiliares y renombres de tipos con nombres adecuados que ayudan a entender la especificación.	Se utilizan predicados, auxiliares y renombres de tipos poco claros y no exhaustivamente.	No usan predicados, auxiliares ni renombres de tipos y la especifica- ción es poco clara.
Especificación como descripción del pro- blema	La especificación de los procedimientos describe exhaustivamente qué problema hay que resolver sin hacer foco en cómo resolverlo.	Se especifica descriptivamente al problema, pero no de manera exhaustiva. Usa tanto enfoques descriptivos como procedurales.	Se utiliza un enfoque procedural donde se pretende actualizar variables iterativamente y se abusa de los auxiliares con condicionales.
Observadores mini- males	Los observadores son minimales y representan todas las instancias posibles válidas.	Los observadores no son minimales, pero representan todas las instan- cias posibles válidas y son coheren- tes entre sí.	Los observadores no son minimales y no representan todas las instancias posibles válidas o no son coherentes entre sí.
Requerimientos en procedimientos	Los requerimientos de los procedimientos reflejan adecuadamente al modelo (acorde al enunciado) y no únicamente las restricciones lógicas necesarias para que no se indefinan los procedimientos.	Se restringe el dominio de los procedimientos lo necesario para que no se indefinan, pero no se acota lo suficiente para especificar correctamente al modelo.	Hay procedimientos que se indefinen por falta de requerimientos en los parámetros.
Lógica trivaluada y cuantificadores	Se utilizan los operadores lógicos "y-luego", "o-luego" e "implicaluego" en la medida justa y necesaria para evitar la indefinición de los predicados, incluyendo su uso con cuantificadores.	No se indefinen predicados, pero hay una sobreutilización del "y-luego", "o-luego" e "implicaluego" en predicados y cuantificadores cuando no son necesarios.	Se indefinen predicados por falta de operadores lógicos trivaluados.