Tribhuvan University Institute of Science and Technology 2074

XX

Bachelor Level / Second Year/ Forth Semester/ Science Computer Science and Information Technology (CSc.251) (Theory of Computation)

Full Marks: 80 Pass Marks: 32 Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Attempt all the questions.

Group A

(8x4=32)

1. Convert the following NFA- ϵ into equivalent NFA without ϵ .

- 2. Find the regular expression describing the following languages over alphabet {0, 1}*.
 - (a) The language all strings containing at least two 0's.
 - (b) The language of all strings containing both 00 and 010 as substrings.
- 3. Construct FA recognizing the languages described by following regular expressions.

(a)
$$(10* + 01*)11*$$

(b)
$$(0+1)$$
* $(01+1000)$ 0*

- 4. What do you mean by a CFG in CNF? What are the criteria to be a CFG in CNF? Explain.
- 5 Define the term Regular Grammar. What is the relation of Regular Grammar with other grammars? Explain.
- 6. Define the universal Turing machine and describe its role.
- 7. Show that the complement of a recursive language is recursive.
- 8. Explain, how can you encode a Turing machine into universal language.

(6x8=48)Group B

9. Describe the extended transition function of a NFA. Construct a NFA accepting the language over {a, b}* with each strings containing three consecutive b's. Show by extended function that it accepts abbb.

CSc.251-2074 ♥

10. Define the term immediate left recursion. How can you convert a grammar with immediate left recursion into equivalent grammar without left recursion? Remove left recursion from the following grammar.

$$S \rightarrow S_1S$$

$$S_1 \rightarrow S_1 + T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (S_1) \mid a$$

- U. Construct a PDA that accepts the strings of language $L = \{ww^R \mid w \text{ is ini } \{a, b\}^*\}$.
- 12. Describe multi tape Turing machine. Show that multi-tape Turing machine and one tape Turing machines are equivalent.
- 13. Define class P and NP with example. Show that: If P₁ is NP complete and three is a polynomial time reduction of P₁ to P₂ then P₂ is NP-complete.
- 14. Write short notes on (Any two):
 - a) Solvable vs Unsolvable problems
 - b) CNF Satisfiability
 - c) Recursive and Recursively Enumerable Languages