Mathematics Methods 3 and 4

Calculator Free

Test 2

.....:smeN

C 0 f f E $^{\ell}$ E Teacher: Mrs Martin Dr Moore Mr Smith

/30 Marks Time Allowed: 30 minutes

Materials allowed: Formulae Sheet provided.

Attempt all questions.

All necessary working and reasoning must be shown for full marks.

Marks may not be awarded for untidy or poorly arranged work.

[4, 2, 2 = 8 marks]

Determine the following: Question 1

$$ip_{z^{1}+1} \wedge \int_{c^{x}}^{0} \frac{xp}{p}$$
 (o) $ip_{z^{1}} \int_{c}^{x} \frac{xp}{p}$ (q)

$$xp(x+x/+xz) \qquad (e)$$

[3, 4 = 7 marks]

Question 2

Evaluate

$$xbx \le \min_{\zeta} \sum_{\frac{\pi}{\zeta}}^{\frac{\pi \zeta}{2}}$$
 (d)

$$xb\frac{\xi}{t(1+x\Delta)}\int_{0}^{2}(s)$$

[1, 3 = 4 marks] Question 3

Given
$$\int_{0}^{-3} f(x)dx = 1$$
 and $\int_{0}^{2} f(x)dx = -5$, find
(a) $\int_{-3}^{2} f(x)dx$ (b) $\int_{0}^{2} [3f(x) - 4]dx$

(a)
$$\int_{-3}^{2} f(x) dx$$

(b)
$$\int_{0}^{2} [3f(x) - 4] dx$$

[5 marks] Question 4

Given
$$\frac{dy}{dx} = ae^x + 1$$
 and when $x = 1$, $\frac{dy}{dx} = 3$ and $y = 2$

Find the value of y when x = 0.

Given
$$h(x) = \int\limits_0^x \cos(2t) dt$$
 , determine a) $h'(x)$ (a)

$$\left(\frac{7}{x}\right)y$$
 (o

d) the equation of the tangent to the curve
$$h\left(x\right)$$
 at $x = \frac{\pi}{2}$

Question 3 [2, 3 = 5 marks]

The ratio of the radius (r) to the height (h) is 5:3 for a specific cone.

(a) Show that the volume of the cone is given by V = $\frac{\epsilon \pi \, \hbar \, \lambda}{\Gamma \, \Delta}$

(b) Use the method of small change to find the approximate increase in the volume of the cone if the height changes from $5\,\mathrm{cm}$ cm.

Question 4 [2, 3 = 5 marks]

The cost, C(x) (\$1000s) of manufacturing a product is given by C(x) = 45 + 65x. The revenue, $R(x) = 100x - 2.5x^2$. The manufacturer can only make between 2 and 10 products per week.

pui

(a) a simplified expression for the Profit if x units are made and sold.

(b) the minimum and maximum profit possible each week.

Mathematics Methods 3 and 4

Test 2 Calculator Assumed

Name:	
-------	--

Time Allowed: 20 minutes	Marks	/27
--------------------------	-------	-----

Materials allowed: Formulae Sheet provided. Classpad, calculators, 1 A4 page of notes, one side. *Attempt all questions.*

All necessary working and reasoning must be shown for full marks.

Marks may not be awarded for untidy or poorly arranged work.

Question 1 [2, 2, 2, 2 = 8 marks]

The acceleration (m/s^2) of a particle moving in a straight line is given by a = 2t - 4. The particle's initial velocity is 3 m/s. Its initial displacement from the origin is -15 m.

- (a) Find the expression for the particle's velocity at any time.
- (b) Find the time(s), if any, when the particle comes to rest.
- (c) Find its displacement when t = 3
- (d) Find the distance travelled in the first 3 seconds.

Question 2 [3, 6 = 9 marks]

Consider the functions:	f(x) = 1	x(5-x)	and	g(x) = x	x(x-3)
-------------------------	----------	--------	-----	----------	--------

