SEGUNDO EXAMEN PARCIAL

Verano de 2009-10

Tiempo: 2 h. 30 m.

Total: 33 puntos

1. Se
a $W\subset \mathbb{R}^4$ el espacio solución del siguiente sistema lineal homogéneo:

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 3x_4 &= 0\\ 2x_1 - x_2 + x_3 + 3x_4 &= 0\\ -x_1 + 4x_2 - x_3 - 3x_4 &= 0 \end{cases}$$

- (a) Encuentre una base para W y determine la dimension de W. (4 puntos)
- (b) Encuentre una base para el espacio de filas de la matriz de coeficientes del sistema homogéneo anterior. (2 puntos)
- 2. Sea $p(x) = -4x^2 + x 7$ un vector del espacio vectorial P_2 . Exprese a p como combinación lineal de los vectores $x^2 2x + 2$, $2x^2 x + 3$, -2x + 2. (4 puntos)
- 3. Sea $S = \{u, v, w\}$ una base para el espacio vectorial V. Determine si el conjunto $S_1 = \{v + 2w 2u, w + 2v + u, v + 3u w\}$ es o no, base de V. (4 puntos)
- 4. Considere los subespacios de P_2 , dados por $H_1=\{p\in P_2\ /\ p'(1)=0\}$ y por $H_2=Gen\{x^2+1,x\},$
 - (a) Determine una base de H_1 y una base de H_2 . (2 puntos)
 - (b) Obtenga una base para $H_1 \cap H_2$. (2 puntos)
 - (c) Determine la dimensión de $H_1 \cup H_2$. (1 punto)
- 5. Determine si el conjunto $\{(-1,2,1),(2,-2,1),(1,0,2),(0,2,3)\}$ genera o no al espacio vectorial \mathbb{R}^3 . (4 puntos)
- 6. Sea $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2} : a + c 2d = 0 \land 3a + 2c + d = 0 \right\}$
 - (a) Pruebe que W es subespacio vectorial de $M_{2\times 2}$. (4 puntos)
 - (b) Determine una base de W y calcule su dimensión. (2 puntos)
- 7. Sean V algún espacio vectorial y $S = \{u_1, u_2, \dots, u_n\}$ un subconjunto de V, tal que S es linealmente independiente. Si $x \in V$, tal que $x \notin Gen(S)$, demuestre que el conjunto $H = \{x, u_1, u_2, \dots, u_n\}$ es, también, linealmente independiente. (4 puntos)