

Stochastic Processes

Some Reverse Implications, Limit Theorems: Weak Law of Large Numbers, Strong Law of Large Numbers, Central Limit Theorem

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

11 February 2025

Recall

Some Reverse Implications

Reverse Implication p. \implies m.s.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ and X be defined w.r.t. \mathscr{F} .

Proposition (Reverse Implication p. \implies m.s.)

Suppose that the following conditions hold:

- 1. $\mathbb{E}[X_n^2] < +\infty$ for all $n \in \mathbb{N}$.
- 2. $\mathbb{P}(|X_n| \leq Y) = 1$ for all n, with $\mathbb{E}[Y^2] < +\infty$.

Then,

$$X_n \stackrel{\mathrm{p.}}{\longrightarrow} X \quad \Longrightarrow \quad X_n \stackrel{\mathrm{m.s.}}{\longrightarrow} X.$$

Reverse Implication d. \implies p.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be defined w.r.t. \mathscr{F} .

Proposition (Reverse Implication $d. \implies p.$)

For any $c \in \mathbb{R}$,

$$X_n \stackrel{\mathrm{d.}}{\longrightarrow} c \implies X_n \stackrel{\mathrm{p.}}{\longrightarrow} c$$

Proof of Reverse Implication d. \implies p.

Fix $\varepsilon > 0$ arbitrarily.

$$\mathbb{P}(|X_n - c| > \varepsilon) = \mathbb{P}(X_n > c + \varepsilon) + \mathbb{P}(X_n < c - \varepsilon) \quad \forall n$$

Proof of Reverse Implication d. \implies p.

Fix $\varepsilon > 0$ arbitrarily.

$$\mathbb{P}(|X_n - c| > \varepsilon) = \mathbb{P}(X_n > c + \varepsilon) + \mathbb{P}(X_n < c - \varepsilon) \quad \forall n$$

$$\implies \lim_{n \to \infty} \mathbb{P}(|X_n - c| > \varepsilon) = \lim_{n \to \infty} \mathbb{P}(X_n > c + \varepsilon) + \lim_{n \to \infty} \mathbb{P}(X_n < c - \varepsilon)$$

Proof of Reverse Implication d. \implies p.

Fix $\varepsilon > 0$ arbitrarily.

$$\mathbb{P}(|X_n - c| > \varepsilon) = \mathbb{P}(X_n > c + \varepsilon) + \mathbb{P}(X_n < c - \varepsilon) \quad \forall n$$

$$\implies \lim_{n \to \infty} \mathbb{P}(|X_n - c| > \varepsilon) = \lim_{n \to \infty} \mathbb{P}(X_n > c + \varepsilon) + \lim_{n \to \infty} \mathbb{P}(X_n < c - \varepsilon) = 0$$

Limit Theorems

Characteristic Function

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let X be a random variable w.r.t. \mathcal{F} .

Definition (Characteristic Function

The characteristic function of the random variable *X* is a function $C_X : \mathbb{R} \to \mathbb{C}$, defined as

$$\mathcal{C}_X(s) = \mathbb{E}[e^{jsX}] = \mathbb{E}[\cos sX] + j\,\mathbb{E}[\sin sX], \qquad s \in \mathbb{R}.$$

Characteristic Function

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a random variable w.r.t. \mathscr{F} .

Definition (Characteristic Function

The characteristic function of the random variable X is a function $C_X : \mathbb{R} \to \mathbb{C}$, defined as

$$\mathcal{C}_X(s) = \mathbb{E}[e^{jsX}] = \mathbb{E}[\cos sX] + j\,\mathbb{E}[\sin sX], \qquad s \in \mathbb{R}.$$

Remark:

$$\left| \mathcal{C}_X(s) \right| \leq 1 \qquad \forall s \in \mathbb{R}.$$

Taylor Expansion for Characteristic Functions

Lemma (Taylor Expansion for Characteristic Functions)

Suppose that $\mathbb{E}[|X|^k] < +\infty$ for some $k \in \mathbb{N}$. Then,

$$\mathcal{C}_X(s) = \sum_{i=0}^k rac{\mathbb{E}[X^i]}{j!} \left(is
ight)^j + o(s^k), \qquad s \in \mathbb{R}.$$

For a proof, see [Kingman and Taylor, 2008].

Characteristic Functions and Convergence in Distribution

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}$ and X be random variables defined w.r.t. \mathscr{F} .

Proposition (Characteristic Functions and Convergence in Distribution)

We have

$$X_n \stackrel{\mathrm{d.}}{\longrightarrow} X \quad \Longleftrightarrow \quad \mathcal{C}_{X_n}(s) \stackrel{n \to \infty}{\longrightarrow} \mathcal{C}_X(s) \quad \forall s \in \mathbb{R}.$$

Proof is based on Skorokhod's representation theorem [Grimmett and Stirzaker, 2020, Section 7.2].

Weak Law of Large Numbers (WLLN)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be defined w.r.t. \mathscr{F} .

Theorem (Weak Law of Large Numbers)

Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. with $\mathbb{E}[|X_1|] < +\infty$. Further, let $\mathbb{E}[X_1] = \mu$. Let

$$S_n = \sum_{i=1}^n X_i.$$

Then,

$$\frac{S_n}{n} \stackrel{\mathrm{p.}}{\longrightarrow} \mu.$$

More formally, for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\frac{S_n}{n}-\mu\right|>\varepsilon\right)=0.$$

Strong Law of Large Numbers (SLLN)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be defined w.r.t. \mathscr{F} .

Theorem (Strong Law of Large Numbers)

Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. with $\mathbb{E}[|X_1|] < +\infty$. Further, let $\mathbb{E}[X_1] = \mu$. Let

$$S_n = \sum_{i=1}^n X_i.$$

Then,

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mu.$$

More formally,

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}=\mu\right)=1.$$

Proof of WLLN - Using Finite Variance Assumption

We shall first see a simple proof of WLLN under a finite variance assumption. Suppose that $Var(X_1) = \sigma^2 < +\infty$.

$$\forall arepsilon > 0, \qquad \mathbb{P}\left(\left|rac{\mathcal{S}_n}{n} - \mu\right| > arepsilon
ight) \quad \leq \quad rac{1}{arepsilon^2} \, \mathbb{E}\left[\left(rac{\mathcal{S}_n}{n} - \mu
ight)^2
ight]$$

Proof of WLLN - Using Finite Variance Assumption

We shall first see a simple proof of WLLN under a finite variance assumption. Suppose that $Var(X_1) = \sigma^2 < +\infty$.

$$\forall \varepsilon > 0, \qquad \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \leq \frac{1}{\varepsilon^2} \mathbb{E}\left[\left(\frac{S_n}{n} - \mu\right)^2\right]$$

$$= \frac{\sigma^2}{n}$$

Proof of WLLN - Using Finite Variance Assumption

We shall first see a simple proof of WLLN under a finite variance assumption. Suppose that $Var(X_1) = \sigma^2 < +\infty$.

$$\forall \varepsilon > 0, \qquad \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \leq \frac{1}{\varepsilon^2} \mathbb{E}\left[\left(\frac{S_n}{n} - \mu\right)^2\right]$$

$$= \frac{\sigma^2}{n}$$

$$\longrightarrow 0 \text{ as } n \to \infty.$$

Proof of WLLN - Without Using Finite Variance Assumption

$$X_1,X_2,\cdots$$
 i.i.d. with $\mathbb{E}[|X_1|]<+\infty$, $\qquad \mathbb{E}[X_1]=\mu.$ $orall s\in\mathbb{R}, \qquad C_{rac{S_n}{n}}(s) = \left(C_{X_1}\left(rac{s}{n}
ight)
ight)^n$

Proof of WLLN – Without Using Finite Variance Assumption

$$X_1, X_2, \cdots$$
 i.i.d. with $\mathbb{E}[|X_1|] < +\infty$, $\mathbb{E}[X_1] = \mu$.

$$egin{array}{lll} orall s \in \mathbb{R}, & & C_{rac{S_n}{n}}(s) & = & \left(C_{X_1}\left(rac{s}{n}
ight)
ight)^n \ & = & \left(1+rac{\mathbb{E}[X]}{1!}\cdotrac{js}{n}+o\left(rac{s}{n}
ight)
ight)^n \end{array}$$

Proof of WLLN – Without Using Finite Variance Assumption

$$X_1, X_2, \cdots$$
 i.i.d. with $\mathbb{E}[|X_1|] < +\infty$, $\mathbb{E}[X_1] = \mu$.

$$egin{array}{lll} orall s \in \mathbb{R}, & & \mathcal{C}_{rac{S_n}{n}}(s) & = & \left(\mathcal{C}_{X_1}\left(rac{s}{n}
ight)
ight)^n \ & = & \left(1+rac{\mathbb{E}[X]}{1!}\cdotrac{js}{n}+o\left(rac{s}{n}
ight)
ight)^n \end{array}$$

$$orall s \in \mathbb{R}, \qquad \lim_{n o \infty} \mathcal{C}_{rac{s_n}{n}}(s) \quad = \quad \lim_{n o \infty} \left(1 + rac{\mu}{1!} \cdot rac{js}{n} + o\left(rac{s}{n}
ight)
ight)^n$$

Proof of WLLN – Without Using Finite Variance Assumption

$$X_1, X_2, \cdots$$
 i.i.d. with $\mathbb{E}[|X_1|] < +\infty$, $\mathbb{E}[X_1] = \mu$.

$$egin{array}{lll} orall s \in \mathbb{R}, & & \mathcal{C}_{rac{S_n}{n}}(s) & = & \left(\mathcal{C}_{X_1}\left(rac{s}{n}
ight)
ight)^n \ & = & \left(1+rac{\mathbb{E}[X]}{1!}\cdotrac{js}{n}+o\left(rac{s}{n}
ight)
ight)^n \end{array}$$

$$egin{array}{lll} orall s \in \mathbb{R}, & & \lim_{n o \infty} C_{rac{S_n}{n}}(s) & = & \lim_{n o \infty} \left(1 + rac{\mu}{1!} \cdot rac{js}{n} + o\left(rac{s}{n}
ight)
ight)^n \ & = & e^{js\mu}. \end{array}$$

Proof of WLLN - Without Using Finite Variance Assumption

$$X_1, X_2, \cdots$$
 i.i.d. with $\mathbb{E}[|X_1|] < +\infty$, $\mathbb{E}[X_1] = \mu$.

$$egin{array}{lll} orall s \in \mathbb{R}, & & \mathcal{C}_{rac{S_n}{n}}(s) & = & \left(\mathcal{C}_{X_1}\left(rac{s}{n}
ight)
ight)^n \ & = & \left(1+rac{\mathbb{E}[X]}{1!}\cdotrac{js}{n}+o\left(rac{s}{n}
ight)
ight)^n \end{array}$$

$$orall s \in \mathbb{R}, \qquad \lim_{n o \infty} \mathcal{C}_{rac{S_n}{n}}(s) = \lim_{n o \infty} \left(1 + rac{\mu}{1!} \cdot rac{js}{n} + o\left(rac{s}{n}
ight)
ight)^n \ = e^{js\mu}.$$

Thus,

$$\frac{S_n}{n} \xrightarrow{\mathrm{d.}} \mu \implies \frac{S_n}{n} \xrightarrow{\mathrm{p.}} X.$$

Suppose that $\mathbb{E}[X_1^4]<+\infty$. Assume, without loss of generality that $\mathbb{E}[X_1]=0$. We want to show

$$\frac{S_n}{n} \stackrel{\text{a.s.}}{\longrightarrow} 0$$

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right|>\varepsilon\right) \leq \frac{\mathbb{E}[(S_n)^4]}{n^4 \,\varepsilon^4}$$

Suppose that $\mathbb{E}[X_1^4]<+\infty.$ Assume, without loss of generality that $\mathbb{E}[X_1]=0.$

We want to show

$$\frac{S_n}{n} \stackrel{\text{a.s.}}{\longrightarrow} 0$$

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| > \varepsilon\right) \leq \frac{\mathbb{E}[(S_n)^4]}{n^4 \varepsilon^4}$$

$$= \frac{\mathbb{E}[(X_1 + \dots + X_n)^4]}{n^4 \varepsilon^4}$$

Suppose that $\mathbb{E}[X_1^4] < +\infty$. Assume, without loss of generality that $\mathbb{E}[X_1] = 0$. We want to show

$$\frac{S_n}{n} \stackrel{\text{a.s.}}{\longrightarrow} 0$$

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| > \varepsilon\right) \leq \frac{\mathbb{E}[(S_n)^4]}{n^4 \varepsilon^4}$$

$$= \frac{\mathbb{E}[(X_1 + \dots + X_n)^4]}{n^4 \varepsilon^4}$$

$$= \frac{n \, \mathbb{E}[X_1^4] + 6\binom{n}{2} \, (\text{Var}(X_1))^2}{n^4}$$

Suppose that $\mathbb{E}[X_1^4]<+\infty$. Assume, without loss of generality that $\mathbb{E}[X_1]=0$. We want to show

$$\frac{S_n}{n} \stackrel{\text{a.s.}}{\longrightarrow} 0$$
.

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| > \varepsilon\right) \leq \frac{\mathbb{E}[(S_n)^4]}{n^4 \varepsilon^4}$$

$$= \frac{\mathbb{E}[(X_1 + \dots + X_n)^4]}{n^4 \varepsilon^4}$$

$$= \frac{n \mathbb{E}[X_1^4] + 6\binom{n}{2} (\operatorname{Var}(X_1))^2}{n^4}$$

$$\leq \frac{\mathbb{E}[X_1^4]}{n^3} + 3 (\operatorname{Var}(X_1))^2 \frac{1}{n^2}$$

Central Limit Theorem (CLT)

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be defined w.r.t. \mathcal{F} .

Theorem (Central Limit Theorem)

Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. with $\operatorname{Var}(X_1) < +\infty$. Let $S_n = \sum_{i=1}^n X_i$. Then,

$$rac{S_n - \mathbb{E}[S_n]}{\sqrt{ ext{Var}(S_n)}} \stackrel{ ext{d}}{\longrightarrow} X, \qquad X \sim \mathcal{N}(0, 1).$$

More formally,

$$\lim_{n o\infty}\mathbb{P}\left(rac{S_n-\mathbb{E}[S_n]}{\sqrt{ ext{Var}(S_n)}}\leq x
ight)=\int_{-\infty}^xrac{1}{\sqrt{2\pi}}\,e^{-rac{t^2}{2}}\,\mathsf{d} t\qquad orall x\in\mathbb{R}.$$

References

- Grimmett, G. and Stirzaker, D. (2020). Probability and random processes.
 Oxford university press.
- Kingman, J. F. C. and Taylor, S. J. (2008). Introdction to Measure and Probability. Cambridge University Press.