CLEAN COPY OF THE CLAIMS AS AMENDED (Provided for the Examiner's convenience only)

1-104. (Cancelled)

105. (Currently Amended) A method of selecting a dose of an anti-oxidant composition for administration to a human, the method comprising assessing an occurrence in a human's genome of a quantity of oxidative damage-associated polymorphisms in each of two genes, the genes consisting of a catalase gene and a superoxide dismutase gene

wherein the oxidative damage-associated polymorphism in the catalase gene is a polymorphism manifested as a change from a cytosine residue to a thymine residue at nucleotide residue -262 of the catalase gene and the oxidative damage-associated polymorphism in a superoxide dismutase gene is manifested as a change from a valine residue to a glutamic acid residue at amino acid residue 7 of copper/zinc superoxide dismutase

whereby each occurrence of an oxidative damage-associated polymorphism in each gene indicates an increased susceptibility of the human to a pathology involving oxidative damage to the human, relative to a human with fewer or no oxidative damage-associated polymorphisms.

106-109. (Cancelled)

110. (Previously Presented) The method of claim 105, the method comprising assessing the degree to which a human is susceptible to an undesirable oxidative stress condition by identifying a polymorphism in each of a gene encoding superoxide dismutase, and a gene encoding a catalase,

the polymorphism identified as correlated with the exhibition by a human of a pathology involving oxidative damage, thereafter calculating a susceptibility value for the condition by either

summing the identified polymorphisms to yield a value for the human, or

assigning a weighting factor to each polymorphism and then summing the weighting factors to yield a value for the human,

wherein a value for the human greater than zero indicates a greater susceptibility to the oxidative stress condition for the human,

the method thereby assessing the degree to which the human is susceptible to an undesirable oxidative stress condition relative to a human with fewer or no oxidative damage-associated polymorphisms in these two genes.

111. (Currently Amended) A method comprising assessing occurrence in a human's genome of a quantity of oxidative damage-associated polymorphisms in each of two genes, the genes consisting of a catalase gene and a superoxide dismutase gene,

wherein the oxidative damage-associated polymorphism in the catalase gene is a polymorphism manifested as a change from a cytosine residue to a thymine residue at nucleotide residue -262 of the catalase gene and the oxidative damage-associated polymorphism in a superoxide dismutase gene is manifested as a change from a valine residue to a glutamic acid residue at amino acid residue 7 of copper/zinc superoxide dismutase

whereby each occurrence of an oxidative damage-associated polymorphism in each gene indicates an increased susceptibility of the human to a pathology involving oxidative damage relative to another human with fewer or no oxidative damage-associated polymorphisms, and thus a desirability to administer an antioxidant composition to the human.

112. (Previously Presented) The method of claim 105, wherein the method assesses a relative susceptibility of the human to the oxidative damage.