Technical University of Darmstadt

Institute of Gas Turbines and Aerospace Propulsion

Prof. Heinz-Peter Schiffer

Prof. Mehdi Vahdati

2019

Imperial College London

Prof. Heinz-Peter Schiffer

Prof. Mehdi Vahdati

Xiao He

Fabian Klausmann

Low availability of high speed test data

E.g.

NASA geometries

KHI multi-stage compressor

LMFA CREATE

Transonic Compressor Darmstadt

Low availability of high speed test data

NASA geometries

KHI multi-stage compressor

LMFA CREATE

NASA Rotor 67

Low availability of high speed test data

NASA geometries

KHI multi-stage compressor

LMFA CREATE

2020

Low availability of high speed test data

NASA geometries

KHI multi-stage compressor

LMFA CREATE

NASA Rotor 67

2020 2021

The Darmstadt Open Test Case List of publications since test case release April 11, 2023

List of publications that used the TUDa-GLR-OpenStage, categorized according to the nature of the research. Results were based on Google Scholar database. Items in blue are contributed from groups other than TUD, IC and SITU.(April 11, 2023)

Experimental investigations of flow physics:

[1] Klausmann, F., Kilian, N., He, X., Franke, D., Schmidt, B., & Schiffer, H. P. (2023). Transonic compressor Darmstadt open test case: experimental investigation of stator secondary flows and hub leakage. ASME Paper No. GT2023-103502. (accepted to journal of turbomachinery)

[2] Klausmann, F., Franke, D., & Schiffer, H. P. (2022). Transonic compressor Darmstadt open test case –unsteady aerodynamics and stall inception. GPPS Paper No. GPPS-TC-2022-0071.

[3] Klausmann, F., Franke, D., Foret, J., & Schiffer, H. P. (2022). Transonic compressor Darmstadt - Open test case Introduction of the TUDa open test case. Journal of the Global Power and Propulsion Society, 6, 318-329.

Numerical investigations of flow physics:

[4] Shao, R., He, X., Zhu, M., Klausmann, F., & Teng, J. (2023). Characterizing Shrouded Stator Cavity Flow on the Performance of a Single-Stage Axial Transonic Compressor. ASME Paper No. GT2023-101131.

[5] An, G., Kang, J., Zou, Y., Zhang, L., Lang, J., Yuan, W., & Zhang, Q. (2023). Investigation of the unsteady flow in a transonic axial compressor adopted in the compressed air energy storage system. Journal of Energy Storage, 63, 106928.

[6] Bode, C., Przytarski, P. J., Leggett, J., & Sandberg, R. D. (2022). Highly Resolved Large-Eddy Simulations of a Transonic Compressor Stage Midspan Section Part I: Effect of Inflow Disturbances. ASME Paper No. GT2022-81673.

[7] Przytarski, P. J., Leggett, J., Sandberg, R., & Bode, C. (2022). Highly Resolved Large-Eddy Simulations of a Transonic Compressor Stage Midspan Section-Part II: Effect of Rotor-Stator Gap. ASME Paper No. GT2022-82474.

CFD validation and verification:

[8] Yan, C., Wang, B., He, X., Zhao, F., Zheng, X., Vahdati, M., and Zheng, X. (2023), Extension and validation of the turbomachinery capabilities of SU2 open source CFD code, ASME Paper No. GT2023-103544, (accepted)

[9] Xia, K., He, X., Zhu, M., Klausmann, F. S., Teng, J., & Vahdati, M. (2023). Endwall geometric uncertainty and error on the performance of TUDA-GLR-OpenStage transonic axial compressor. Journal of the Global Power and Propulsion Society, 7, 113-126.

[10] He, X., Zhu, M., Xia, K., Fabian, K. S., Teng, J., & Vahdati, M. (2023). Validation and verification of rans solvers for tuda-gir-openstage transonic axial compressor. Journal of the Global Power and Propulsion Society, 7, 13-29.

[11 Hansen, T., Munktell, E., Scheuerer, G., & Zwiener, K. (2022). Single-Stage Axial Transonic Compressor Flow-CFD Simulations Including a Systematic Quality Assurance Procedure. GPPS Paper No. GPPS-TC-2022-0012.

Development for numerical models:

[12] He, X., Zhao, F., & Vahdati, M. (2022). A Turbo-Oriented Data-Driven Modification to the Spalart-Allmaras Turbulence Model. Journal of Turbomachinery, 144(12), 121007.

[13] Xu, S., Zhang, Q., Zhao, J., Qian, W., Li, W., & Wang, D. (2022). Implicit and Conservative Mixing-Plane Method for Multistage Turbomachinery Aerodynamic Analysis. AIAA Journal, 60(11), 6385-6403.

CONTENT

The Darmstadt Open Test Case

Related / future / unpublished experimental activities

Technology Readiness Level Classification

TRL 1
Basic
Principles
Observed and
Reported

TRL 2
Potential
Application
Validated

TRL 3
Proof-ofConcept
Demonstrated

TRL 4 - 5

Component Test Facilities & Validation

- Good accessibility for instrumentation
- » Isolated investigation
- Industrially relevant environment
- Focus on understanding the underlying phenomena

TRL 6 - 7
System
Prototype
Demonstration
in Operation
Environment

TRL 8 - 9 System Test, Launch & Operations

Facility Design

Capacity	
In /out flow	axial-axial
Electr. Power	800 kW
Max. Torque	350 Nm
Max. speed	20 500 rpm
Max. rotor diameter	0.38 m
Hub to tip ratio	~ 0.5
Rel. Ma-Number @ tip	~ 1.4

TECHNISCHE UNIVERSITÄT

The Darmstadt Open Test Case Compressor Core (Open Test Case)

Designed by MTU Aero Engines

- First run 1994
- Broad availability of literature
- open test case

Stator opt.

CFD optimized Stator

Stator

13

Included data

Preprint: He, Xiao*, Klausmann F.: Capabilities of RANS CFD for Axial Compressor Flows: A Perspective from the GPPS CFD Workshop

*Corresponding author

The Darmstadt Open Test Case Included data

N100 PE Stage exit

(a) Overprediction at hub

Shao, R., He, X., Zhu, M., Klausmann, F., and Teng, J., 2023. "Characterizing Shrouded Stator Cavity Flow on the Performance of a Single-Stage Axial Transonic Compressor". Journal of Turbomachinery, 08, pp. 1–23.

Klausmann, F., Kilian, N., He, X., Franke, D., Schmidt, B., and Schiffer, H.-P., 2023. "Transonic compressor Darmstadt open test case: experimental investigation of stator secondary flows and hub leakage". ASME Paper No. GT2023-103502. (accepted for journal)

The Darmstadt Open Test Case Included data

(b) Overprediction at shroud

N100 PE Stage exit

(b)

The Darmstadt Open Test Case Included data

1.40 1.50 π (-)

1.60 1.70

0.00 1.40 1.45 1.50 1.55 1.60 1.65

π^{*} (-)

The Darmstadt Open Test Case Included data

(b) Overprediction at shroud

Rotor Exit

Included data

TECHNISCHE UNIVERSITÄT

DARMSTADT

Included data

UNSTEADY FLOW PHENOMENON IN
THE TUDA-GLR-OPENSTAGE
COMPRESSOR: URANS OBSERVATIONS
Hefang Deng, Xiao He*, Mingmin
Zhu, Fabian Klausmann, Jinfang
Teng

Tuesday, October 17th 16:15 Room 1 (MB201)

The Darmstadt Open Test Case Included data

Klausmann, F., Franke, D., Schiffer, H.-P.: TRANSONIC COMPRESSOR DARMSTADT OPEN TEST CASE – UNSTEADY AERODYNAMICS AND STALL INCEPTION, GPPS-TC-2022-0071

CONTENT

The Open Test Case

Related / future / unpublished experimental activities

Repro measurements 2022

How good can we reproduce the data with years apart? (consider unknown systematic errors)

Repro measurements 2022

Influence of manufactured geometry

Influence of blade-to-blade variations on flow

Blade row interaction and forced response

"the original purpose"

GPPS-TC-2023-0210: Darmstadt Open Test Case: Experimental Investigation of Forced Response Phenomena in a Transonic Compressor Stage Wednesday, October 18th, 15:10, Room 3

The Darmstadt Open Test Case Outlook

Imperial College London

GPPS 2021 Xi'an

GPPS 2023 Hong Kong

2024 2025 2020

- 1st GPPS CFD Turbomachinery Workshop
- After workshop release of CFD data; submission of workshop summary to GPPS Journal
- After conference release of second part of dataset:

- GPPS shared data becomes fully public before technical Conference in Hong Kong
- After conference: rework of unsteady data format
- Consideration: include repro measurements 2022

Establish standard test case with reliable experimental and computational database

TUDa-GLR-OpenStage

Transonic compressor stage geometry

- TU Darmstadt Rotor 1 with StatorOPT, OGV, radial diffusor
- Hub & shroud contour, running tip clearance

Measurement data, exemplary

- Steady state: inlet conditions and 0D, 1D & 2D exit traverses
- Dynamic: unsteady wall pressure at blade tip (steady state & transient operating conditions, e.g. stall inception), unsteady pressure probe at rotor exit

Thank you

