

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02219$ - Probabilidade e Estatística - 2024/2

Plano Aula 11 e 12

Variáveis Aleatórias (V.A.)

- (...continuação de probabilidade...)
- Geralmente denotadas por X, Y, Z, \ldots
 - -X letra **maiúscula** denota a v.a. $versus\ x$ letra **minúscula** que denota um particular valor que a v.a. pode assumir;
 - discretas × contínuas.

Definição variável aleatória (v.a.): denominamos variável aleatória a função (ou regra) que transforma um espaço amostral qualquer, Ω , em um espaço amostral numérico, Ω_X , $X:\Omega\to\Omega_X$, que será um subconjunto dos números reais.

Exemplo 1: X: duração de vida de um tipo de lâmpada, $X \in (0, \infty)$.

Exemplo 2: X: PIB do Brasil, $X \in \mathbb{R}$.

Exemplo 3: X: número de avaliações positivas em uma pesquisa de avaliação do governo. $X \in \{0, 1, \dots, n\}$.

Exemplo 4: Y (consumo) e X (renda), ...

Variáveis aleatórias discretas (capítulo 6, Livro Bussab e Morettin)

Definição v.a. discreta: quando o espaço amostral associado a uma v.a. assumir somente valores inteiros, finitos ou infinitos, $\Omega_X \subseteq \mathbb{Z}$, denominamos v.a. discreta.

(... cont.) Exemplo 3: E: observar o número de avaliaçõe positivas, assumindo igual probabilidade de avaliação positiva (P) ou não (N) (... lançar uma moeda honesta 3 vezes...). Assim, $X: \Omega = \{(PPP), (PPN), (PNP), \dots (NNN)\} \rightarrow \Omega_X = \{0, 1, 2, 3\}.$

• Como representar distribuições de probabilidade? Por funções, visualmente por tabelas e gráficos, medidas resumo, . . .

1. Função (Massa) de Probabilidade (f.m.p)

Definição **função de probabilidade**: A função $p:\Omega_X\to [0,1]$, dada por p(x)=P(X=x), tal que $p(x)\geq 0$, para todo $x\in\Omega_X$, e $\sum_{x\in\Omega_X}p(x)=1$, é denominada função (massa) de probabilidade.

2. Valor Médio (ou Esperança da Variável) e variância (seção 6.3, Livro Bussab e Morettin)

- Valor esperado/médio, esperança matemática ou simplesmente média $E(X) = \sum_{\forall x \in \Omega_X} x \times p(x);$
- Variância $V(X) = E\left\{ [X E(X)]^2 \right\} = E(X^2) [E(X)]^2 = \sum_{\forall x \in \Omega_X} [x E(X)]^2 \times p(x);$
- Proprieadades, (seção 6.4, Livro Bussab e Morettin)
 - E(aX + b) = aE(X) + b (porque?);
 - $-V(aX + b) = a^2V(X)$ (?).

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02219$ - Probabilidade e Estatística - 2024/2

3. Função de Distribuição (Acumulada) de Probabilidade (seção 6.5, Livro Bussab e Morettin)

Definição **função de distribuição**: a função $F: \Omega_X \to [0,1]$ tal que $F(x) = P(X \le x) = \sum_{\forall y \le x} P(x = y) = \sum_{\forall y < x} p(y)$ é denominada função de distribuição (acumulada).

- Propriedades: $\lim_{x\to\infty} F(x) = 1$ e $\lim_{x\to-\infty} F(x) = 0$.
 - $P(a \le X \le b) = F(b) F(a);$
 - -F(x) existe para todos números reais, diferente da f.m.p..

Principais Modelos para V.A. Discretas (seção 6.6, Livro Bussab e Morettin)

- Porque usar modelos de distribuição de probabilidades? Facilitam nos cálculos quando os problemas se encaixam em modelos (paramétricos);
 - Parâmetros: quando um modelo "encaixa" em nosso problema, basta identificar os parâmetros;
 - saberemos as funções de probabilidade e de distribuição, a esperança, variância, ..., mais rapidamente.
 - modelo = família de distribuições, diferentes valores para os parâmetros retornam distribuições diferentes na mesma família.
- Modelo Uniforme discreto, Modelo Bernoulli e binomial, modelo hipergeométrico e modelo Poisson.

(... cont.) Exemplo 3: $X \sim Binomial(n, \pi)$. Então $p(x) = \binom{n}{\pi} \pi^x (1 - \pi)^{n-x}$, F(x) = ?, $E(X) = n \times \pi$ e $V(X) = n \times \pi \times (1 - \pi)$.

Ler slides e ver vídeos da semana 6.

Fazer lista de exercícios 2-1.

Exemplo: (slides 2-1, página 30) Se a variável aleatória

X: número de peças perfeitas (P) em uma amostra de n=3 peças, com probabilidade de sucesso p=0,6.

No R os comandos dbinom(), pbinom() e rbinom() são utilizados para calcular a função de probabilidade, função de distribuição e gerar números aleatórios segundo uma distribuição binomial.

```
n <- 3  # num. de ensaios Bernoulli
x <- 0:n  # possíveis valores de X
p <- 0.6  # probabilidade de sucesso
px <- dbinom(x, n, p)  # funcao de probabilidade de X
px</pre>
```

[1] 0.064 0.288 0.432 0.216

E em forma de gráfico

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02219$ - Probabilidade e Estatística - 2024/2

plot(x, px, type = "h")

grafico da distribuicao de probabilidade

(para a distribuição Hypergeométrica, dhyper(), phyper() e rhyper(), e para Poisson, dpois(), ppois() e rpois())