This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

UK Patent Application (19) GB (11) 2 033 358 A

- (21) Application No 7843273
- (22) Date of filing 6 Nov 1978
- (43) Application published 21 May 1980
- (51) INT CL³ CO1B 33/28
- (52) Domestic classification C1A 410 411 425 519 CA D31 G10 G17 G1 G21 G25 G26 G29 G37 G3 G42 G49 G50 G56 GX
- (56) Documents cited GB 1491398 GB 1402933
 - GB 1365317
 - GB 1334243
 - GB 1333051
 - GB 1297256
 - GB 1178186
 - GB 1161974
 - GB 1070906
- (58) Field of search
 C1A
- (71) Applicant
 Mobil Oil Corporation,
 150 East 42nd Street,
 New York, New York
 10017, United States of
 America
- (72) Inventor Roger Allan Morrison
- (74) Agent Carpmaels & Ransford

(54) Crystalline Zeolite Composition

(57) The invention provides a crystalline aluminosilicate zeolite composition related to the family of ZSM-5 zeolites having formula, in terms of mole ratios of oxides, of

 $[R_2O, M'_{2/n}O]_w$: $[Al_2O_3]_x$ $[S_1O_2]_y$: $[M''_{2/n}O]_z$ wherein 0.5<W/x<3, y/x is >20, 0<z/x<100 R is N containing cation, M' is Group IA metal and M" is a metal selected from the rare earth metals, chromium, vanadium, molybdenum, Indium, boron, mercury, tellurium, silver, ruthenium, platinum and palladium. The invention also provides a process for converting an organic charge with the zeolite and method for preparing it.

GB 2 033 358 A

5

20

25

30

35

5

30

SPECIFICATION Crystalline Z olite Composition

Background of the Invention Field of the Invention

The invention relates to crystalline aluminosilicate zeolite compositions. More particularly, it relates to crystalline zeolites that are crystallized in the presence of certain metals or metal compounds. It relates further to hydrocarbon conversion with such catalysts.

Description of the Prior Art

Zeolitic materials, both natural and synthetic, have been demonstrated in the past to have
catalytic capabilities for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline aluminosilicates having a definite crystalline structure within which there are a large number of small cavities which are interconnected by a number of still smaller channels. These cavities and channels are precisely uniform in size. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions, while rejecting those of larger dimensions, these materials, have come to be known as "molecular sieves" and are utilized in a variety of ways to take advantage of these properties.

Such molecular sieves include a wide variety of positive ion-containing crystalline aluminosilicates, both natural and synthetic. These aluminosilicates can be described as a rigid three-dimensional network of SiO₄ and AlO₄ in which the tetrahedra are crosslinked by the sharing of oxygen atoms whereby the ratio of the total aluminum and silicon atoms to oxygen is 1:2. The electrovalence of the tetrahedra-containing aluminum is balanced by the inclusion in the crystal of a cation, for example, an alkali metal or an alkaline earth metal cation. This can be expressed by formula wherein the ratio of Al to the number of the various cations, such as Ca/2, Sr/2, Na, K or Li, is equal to unity. One type of cation has been exchanged either in entirety or partially by another type of cation utilizing ion exchange techniques in a conventional manner. By means of such cation exchange, it has been possible to vary the size of the pores in the given aluminosilicate by suitable selection of the particular cation. The spaces between the tetrahedra are occupied by molecules of water prior to dehydration.

U.S. 3,941,871 discloses and claims a crystalline metal organosilicate having a high silica-to-alumina ratio and containing, in addition to sodium, calcium, nickel or zinc.

Other prior art techniques have resulted in the formation of a great variety of synthetic crystalline aluminosilicates. These aluminosilicates have come to be designated by letter or other convenient symbol, as illustrated by zeolite A (U.S. 2,882,243), zeolite X (U.S. 2,882,244), zeolite ZSM-5 (U.S. 3,702,886), zeolite ZSM-11 (U.S. 3,709,979), ZSM-12 (U.S. 3,832,449) and zeolite ZSM-35 (U.S. 4,016,245), merely to name a few.

35 Summary of the Invention

The present invention relates to stable synthetic crystalline aluminosilicate zeolite compositions, to a method for their preparation and to hydrocarbon conversion processes conducted therewith. These compositions, as synthesized, have a definite x-ray diffraction pattern, characteristic of the ZSM-5 zeolites and shows the significant lines set forth in Table 1.

40		Table 1		40
	Interplanar s	pacing d(A):	Relative Intensity	
	11.1	±0.2	S	
	10.0	±0.2	S	
	7.4	±0.15	w ,	
45	7:1	±0.15	w	45
	6.3	±0.1	w	
	6.04 5.97	±0.1	w	
	5.56	±0.1	· w	
	5.01	±0.1	w	
50	4.60	±0.08	w	50
	4.25	±0.08	w	
	3.85	±0.07	vs	
	3.71	±0.05	S	
	3.04	±0.03	w	_
55	2.99	±0.02	w	55
	2.94	±0.02	w	

These values were determined by standard techniques. The radiation was the K-alpha doublet of copper, and a scintillation counter spectrometer with a strip chart pen record r was used. The peak

20

25

40

55

2

5

10

15

20

25

30

35

heights, I, and the positions as a function of 2 times theta, where theta is the Bragg angle, were read from the spectrometer chart. From these, the relative intensitives, 100 l/l_o, where l_o is the intensity of the strongest line or peak, and d (obs.), the interplanar spacing in A, corresponding to the record d lines, were calculated. In Table 1 the relative intensities are given in terms of the symbols s=strong, w=weak and vs=very strong. It should be understood that this X-ray diffraction pattern is characteristic of all the species of the present compositions, lon exchange of the sodium ion with cations reveals substantially the same pattern with some minor shifts in interplanar spacing and variation in relative intensity. Other minor variations can occur depending on the silicon to aluminum ratio of the particular sample and the extent of thermal conditioning.

The anhydrous composition can also be identified, in terms of mole ratios of oxides, as follows:

$[R_2O, M'_{2/n}O]_w : [Al_2O_3]_x : [SiO_2]_y : [M''_{2/n}O]_z$

wherein W/X is from >0.5 to <3, Y/X is >20 and Z/X is from >zero to <~100, R is a nitrogen containing cation. R may include primary amines containing 2 to 10 carbon atoms and ammonium cations, preferably the tetraalkylammonium cation in which the alkyl contains from 2 to 5 carbon atoms, M' is a metal from Group IA of the Periodic Table, ammonium, hydrogen or mixtures thereof, and n is the valence of M' or M". With respect to M", the preferred metals are those selected from the rare earth metals, (i.e. metals having atomic numbers from 57 to 71), chromium, vanadium, molybdenum, indium, boron, mercury, tellurium, silver and one of the platinum group metals, which latter group includes platinum, palladium and ruthenlum.

It is no known whether the M'' is present as a metal or as a metal compound. The above formula will be understood to take into account the presence in any of the M" various states and also to allow for varying amounts thereof. For example, if it is present in the occluded state, then its concentration relative to aluminum in the zeolite as synthesized can range up to but less than about 100.

Description of Specific Embodiments

A reaction mixture containing sources of the tetrapropylammonium cation (as from the hydroxide), sodium oxide, silica, water, and sources of, for example, indium, boron, ruthenjum, platinum, chromium, rare earth, vandium, mercury, tellurium, silver, palladium, molybdenum and, optionally, alumina, will yield a ZSM-5 zeolite, but having unexpectedly improved properties. The content of indium, boron, etc. listed above can range in the final product from about 0.005% by weight 30 to 5.0% by weight.

The crystalline aluminosilicates prepared by the method of the present invention have high thermal stability and exhibit superior catalytic performance.

The original alkali metal can be replaced, at least in part, in accordance with techniques wellknown in the art by ion exchange with other cations. Preferred replacing cations include metal ions, ammonium ions, hydrogen ions, and mixtures of the same. Particularly preferred cations are those which render the zeolite catalytically active, especially for hydrocarbon conversion. These include hydrogen, metals of Group II and VIII of the Periodic Table and manganese.

In a preferred embodiment of the zeolite, the silica/alumina mole ratio is greater than 35 and ranges up to about 3000.

The present zeolites have a high degree of thermal stability thereby rendering them particularly 40 effective for use in processes involving elevated temperatures.

The composition can be prepared utilizing materials which supply the appropriate components of the zeolite. Such components include, for an aluminosilicate, sodium aluminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and a tetrapropylammonium compound, e.g., tetrapropylammonium hydroxide. It will be understood that each component utilized in 45 the reaction mixture for preparing the zeolite can be supplied by one or more initial reactants and they can be mixed together in any order. For example, sodium can be supplied by an aqueous solution of sodium hydroxide, or by an aqueous solution of sodium silicate; tetrapropylammonium cation can be supplied by the bromide sait. The reaction mixture can be prepared either batchwise or continuously. Crystal size and crystallization time of the composition will vary with the nature of the reaction mixture 50 employed. It will be further understood that in the very high silica-to-alumina ratios, which can in this invention preferably range from greater than 35 to about 3000 or more, and more preferably about 70 to about 500, it may not be necessary to add a source of alumina to the reaction mixture since residual amounts in other reactants may suffice.

The zeolite can be prepared from a reaction mixture having a composition, in terms of mole ratios 55 of oxides or in % of total moles of oxides, falling within the following ranges:

	Table 2								
	OH ⁻ /SiO R ₄ N ⁺ /(R ₄	2 N++Na+)	<i>Broad</i> 0.07—1.0 0.2—0.95 10—300	0.1—0.8 0.3—0.9	Most Preferred 0.2—0.75 0.4—0.9	r			
5	H₂O/OH⁻ SiO₂/Al₂(Other me Oxide) ₃ :	50-3000	10—300 70—1000	10—300 70—500	5			
	(% of total	al oxides)	1×10 ⁻⁶ —1.0	1×10 ⁻⁵ 0.1	1×10 ⁻⁵ —0.01				
10	R is as de	efined hereinabo	ve in the Summ	ary.		10			
	from about 95°C to 17 temperature range is fr range being from abou	5°C for a period om about 100°0 t 12 hours to 8 c	l of time of from C to 175°C with lays.	about six hours the amount of	ion mixture to a temperature of to 120 days. A more preferred time at a temperature in such				
15	from the reaction medi	um, as by coolin oduct is dried, e.ç	g the whole to r g. at 230°F, for	oom temperatui from about 8 to	The solid product is separated re, filtering and water washing. 24 hours. Of course, milder acuum.	15			
20	The zeolite can had cations according to te hydrogen, ammonium	ave the alkali me chniques well-kr and metal cation erence is given to	etal associated the common in the art. It is including mixto cation of meta	herewith replace Typical replacing tures of the same Is such as rare e	ed by a wide variety of other g cations would include e. Of the replacing metallic earth metal, manganese and	20			
25	Typical ion excha cation or cations. Althochlorides, nitrates and	nge techniques i ugh a wide varie sulfates.	include contacti ety of salts can b	ng the zeolite wi se employed, par	ith a salt of the desired replacing rticular preference is given to	25			
30	Following contact preferably washed with thereafter calcined in a periods of time ranging	19; United State t with the salt so water and dried ir or other inert g from 1 minute t	s 3,140,251; ar plution of the des d at a temperatu gas at temperatu to 48 hours or m	nd United States sired replacing c re ranging from ures ranging from nore.	ations, the zeolites are then 150°F to about 600°F and n about 500°F to 1500°F for	30			
35	the aluminum, silicon a essentially unchanged taking an X-ray powder	nd oxygen atom by the described diffraction patte	s which form th replacement of ern of the ion-ex	e basic crystal la sodium or other changed materi	form, the spatial arrangement of attices of the zeolite remains ralkali metal as determined by als. Such X-ray diffraction a same as that set forth in Table	35			
40	sizes. Generally speakir	ng, the particles o ng particle size so screen. In cases o	can be in the for ufficient to pass where the cataly	m of a powder,, through a 2 me st is molded, su	in a wide variety of particular a granule, or a molded product, sh (Tyler) screen and be retained ch as by extrusion, the and then extruded.	40			
45	resistant to the tempera materials include active inorganic materials suc occurring or in the form	atures and other and inactive ma h as clays, silica of gelatinous pr	conditions emp aterials and synt and/or metal ox recipitates or gel	loyed in organic hetic or naturall ides. The latter r is including mixt	ures of silica and metal oxides.	45			
50	to improve the conversi Inactive materials suita that products can be ob- controlling the rate of re	on and/or select bly serve as diluctained economic eaction. Normall	ivity of the catal ents to control th cally and in orde y, zeolite materi	yst in certain or he amount of co rly manner with als have been in	e., combined therewith, tends ganic conversion processes. nversion in a given process so out employing other means for corporated into naturally	50			
55		onditions. These	e materials, i.e. c	lays, oxides, etc	of the catalyst under function as binders for the because in a petroleum	55			

Naturally occurring clays which can be composited with the catalyst include the montmorillonite and kaolin families, which families include the sub-bentonites and the kaolins commonly known as Dixie, McNamee, Georgia, and Florida clays or others in which the main mineral constituent is

refinery the catalyst is often subjected to rough handling, which tends to break the catalyst down into powderlike materials which cause problems in processing. These clay binders have been employed for

the purpose fimproving the crush strength of the catalyst.

35

45

4

5

10

15

20

25

30

35

40

45

50

55

halloysite kaolinite, dickite, nacrite or anauxite. Such clays can be used in the raw state as originally mined, or they can be initially subjected to calcination, acid treatment or chemical modification.

In addition to the foregoing materials, the catalyst can be composited with a porous matrix material such as silica, alumina, silica-alumina, silica-magnesia, silica-zirconia, silica-thoria, silicabervllia, silica-titania as well as ternary compositions such as silica-alumina-thoria, silica-aluminazirconia, silica-alumina-magnesia and silica-magnesia-zirconia. The matrix can be in the form of a cogel. The relative proportions of finely divided crystalline aluminosilicate and inorganic oxide gel matrix vary widely, with the crystalline aluminosilicate content ranging from about 1 to about 90 percent by weight and more usually, particularly when the composite is prepared in the form of beads, 10 in the range of about 2 about 50 percent by weight of the composite.

While the catalyst is useful in cracking and hydrocracking, it is outstandingly useful in other petroleum refining processes, indicating again the unique catalytic characteristics of these zeolites. The latter processes include isomerization of n-paraffins and naphthenes, polymerization of compounds containing an olefinic or acetylenic carbon-to-carbon linkage such as isobutylene and butene-1. 15 reforming, alkylation, isomerization of polyalkyl substituted aromatics, e.g., ortho-xylene, and disproportionation of aromatics, such as toluene, to provide a mixture of benzene, xylenes and higher methylbenzenes. The catalysts have exceptional high selectivity and, under the conditions of hydrocarbon conversion, provides a high percentage of desired products relative to total products compared with known zeolitic hydrocarbon conversion catalysts.

As indicated above, the zeolite is also useful in other catalytic processes, such as catalytic cracking of hydrocarbons and hydrocracking. In addition to the thermal stability of this family of zeolites under these conditions, they provide conversion of the cracked oil to materials having lower molecular weights and boiling points, which are of greater economic value. The ability to be physically stable under high temperatures and/or in the presence of high temperature steam is extremely 25 important for a cracking catalyst. During catalytic conversion, the reaction which takes place is essentially a cracking to produce hydrocarbons. However, this cracking is accompanied by a number of complex side reactions such as aromatization, polymerization, alkylation and the like. As a result of these complex reactions, a carbonaceous deposit is laid down on the catalyst which is referred to by petroleum engineers, as "coke". The deposit of coke on the catalyst tends to seriously impair the 30 catalyst efficiency for the principal reaction desired and to substantially decrease the rate of conversion and/or the selectivity of the process. Thus, it is common to remove the catalyst after coke has been deposited thereon and to regenerate it by burning the coke in a stream of oxidizing gas. The regenerated catalyst is returned to the conversion stage of the process cycle. The thermal stability of the zeolite is advantageous in this regard.

The products can be used either in the alkali metal form, e.g., the sodium form, in the ammonium form, the hydrogen form, or another univalent or multivalent cationic form. Preferably, one of the other of the last two forms is employed. They can also be used in intimate combination with a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, or a noble metal such as platinum or palladium where a hydrogenation dehydrogenation function is to 40 be performed. Such component can be exchanged into the composition, impregnated therein or physically intimately admixed therewith. Such component can be impregnated in or onto the zeolite, such as, for example, by, in the case of platinum, treating the zeolite with a platinum metal-containing ion. Thus, suitable platinum compounds include chloroplatinic acid, platinous chloride and various compounds containing the platinum ammine complex.

The compounds of the useful platinum or other metals can be divided into compounds in which the metal is present in the cation of the compound and compounds in which it is present in the anion of the compound. Both types of compounds which contain the metal in the ionic state can be used. A solution in which platinum metals are in the form of a cation or cationic complex, e.g., Pt(NH3)gCl4 is particularly useful. For some hydrocarbon conversion processes, this noble metal form of the catalyst is 50 unnecessary such as in low temperature, liquid phase ortho-xylene isomerization.

When it is employed either as an adsorbent or as a catalyst in one of the aforementioned processes, the catayst should be at least partially dehydrated. This can be done by heating to a temperature in the range of 200 to 600°C, in an atmosphere such as air, nitrogen, etc. and at atmospheric or subatmospheric pressures for between 1 minute and 48 hours. Dehydration can also be 55 performed at lower temperatures merely by placing the catalyst in a vacuum, but a longer time is required to obtain a sufficient amount of dehydration.

The following examples will illustrate the invention.

30

Example 1			
·	Soluti n 1 Q Brand Silicate Distilled H ₂ O	240 gms 300	
5		540·	5
10	Solution 2 Distilled H_2O Tetrapropyl Ammonium Bromide Conc. H_2SO_4 $CrK(SO_4)_2 \cdot 12H_2O$	410 gms 30 20 12.25	10

Q Brand is a Philadelphia Quartz Co. commercial brand of sodium silicate. Typical Analysis: 8.9% Na₂O, 28.7 SiO₂, 62.4% H₂O.

Solution 1 was placed into a 4-neck 2 l. flask with overhead stirrer. Solution 2 was added with stirring. The solution became very gelatinous. A small amount of H-ZSM-5 (about 0.1 g) was added for seeding. Heating was begun and the solution was allowed to heat to about 205°F. The variac setting was the only control on the temperature so it varied ±3°C depending on voltage variations during the day. After a few days, the solution lost its gelatinous character and became more chalk-like. Crystallization, as determined by X-ray took 5—6 days. The catalyst was filtered and washed with about 4 liters of distilled H₂O. The yield was 60—70 gms of catalyst.

The catalyst was dried at 70°C and calcined in a crucible in a muffle furnace at 75 to 1000°F for 12 hours. The catalyst was placed in a 200 ml flask with 100 cc of H₂O and 10 gm of NH₄NO₃ and refluxed at 100°C for 1 hour. The catalyst was filtered, washed and NH₄NO₃ exchanged repeatedly for 5 hours. The catalyst was again filtered, washed and exchanged repeatedly for about 16 hours. The catalyst was filtered, washed thoroughly and dried at 70°C for about 6 hours. The catalyst was calcined again in a muffle furnace at 75 to 1000°F for 6 hours.

X-ray powder diffraction patterns of the crystalline product, both in the as-synthesized form and after the treatments described above, are given in Table 3.

While this Example illustrates the use of the ammonium cation, other cations such as alkyl ammonium, metals and hydrogen may be used.

As set forth in Table 3, minor differences are observed between the X-ray diffraction patterns of the as-synthesized zeolite and the same zeolite after ion exchange and thermal treatments. These differences are changes from singlets to doublets and other doublets to singlets between the two patterns resulting from minor shifts in interplanar spacings and variations in relative intensities. These observed differences reflect minor variations in lattice parameters and crystal symmetry.

35			Tabl	e 3			35
		As Synthesi	zed	Fil	nished Cata	alyst	
	2θ	d(A)	1/1(0)	2θ	· d(A)	1/1(0)	
	7.89	11.20	36	7.85	11.26	100	
,	8.78	10.07	26	8.75	10.11	59	
40	9.01	9.81		9.05	9.77	14	40
40	9.84	8.99	9 3	9.80	9.02	1	
	10.98	8.06	1	10.95	8.08	1	
	11.88	7.45	11	11.85	7.47	1	
	12.49	7.09	5	12.50	7.08	1	
45	13.15	6.73	6	13.17	6.72	8	45
70	13.89	6.38	14	13.88	6.38	11	
	14.60	6.07	9)	14.72	6.02	1.7	•
	14.79	5.99	10 J.				
			_	14.90	5.95	2	
	15.48	5.72	9	15.50	5.72	8	
	15.89	5.58	11	15.85	5.59	11	50
50	16.46	5.39	3	16.50	5.37	3 2	50
	17.25	5.14	4	17.23	5.15	2	
	17.65	5.02	2	17.60	5.04	4	
	17.75	5.00	4	17.76	4.99	5	
				18.13	4.89	1	
55				18.80	4.72	1	55
	19.25	4.61	9	19.21	4.62	4	
	19.90	4.46	3	19.85	4.47	1	
	20.35	4.36	11	20.32	4.37	6	
	20.85	4.26	12	20.82	4.27	8	

				Table	3 (c nt'd.)				
		As	Synthesi.	zed	Fi	nished Cat	alyst		
		21.75	4.09	2	21.75	4.09	3		
		22.19	4.01	8	22.16	4.01	4		
5		23.15	3.84	100	23.13	3.85	65		5
					23.25	3.83	28		
		23.67	3.76	24	23.63	3.76	16		
		23.92	3.72	45	23.90	3.72	30		
					(24.30	3.66	8		
		24.38	3.65	30	24.52	3.63	8		
10		24.75	3.60	2	. 24.02	0.00	U		10
		25.55	3.49	4	25.50	3.49	2		10
		25.90	3.44	12	25.84		3		
		26.35	3.38	2		3.45	5		
		26.68	3.34	2	26.15	3.41	2 5		
15	4			7	26.53	3.36	5		4-
15		26.95	3.31	9	26.92	3.31	7		15
		27.45	3.25	3	₅ 27.38	3.26	3		
•					1 27.63	3.23	1		
		28.05	3.18	2	28.13°	3.17	1		
		28.45	3.14	3	28.40	3.14	1	•	
		29.25	3.05	1,1	₁ 29.15	3.06	3		
				•.•	1 29.35	3.04	3		
20		29.95	2.98	12	J 29.85	2.99	12		20
	• • • •			•-	⁾ 30.18	2.96	5		
		30.35	2.94	6	30.52	2.93	1		
		31.23	2.86	2	31.20	2.87	2		
				_	31.50	2.84	1		
		32.15	2.78	1	32.12	2.79	i		
25	• • • • •	32.80	2.73	3	32.71	2.74	2		25
		33.45	2.68	1	33.36	2.69	1.		20
		33.80	2.65	1	33.69	2.66	1	•	
		34.38	2.61	4	34.33	2.61			
•	•	34.71	2.58	1	34.55	2.60	2 2		
		34.95	2.57	1)		2.00	2		
30	•	35.18	2.55	i }	35.06	2.56	2		30
		35.75	2.51	3 .	35.63	2 -2			•
	• •				35.03 ∫ 36.04	2.52	2		
		36.10	2.49	5		2.49	3		
		36.72	2.45	1	36.28	2.48	2		
		37.11	2.42		36.58	2.46	1		
35		37.53	2.40	3	37.18	2.42	2		
		38.31	2.35	4	37.56	2.39	2		35
	•	38.79	2.32	1					
		39.17	2.30	1					
		40.39	2.23	1					
		40.62	2.23	1 }	40.45	2.23	1		
40		40.99	2.20		•				
		41.45	2.20	1	40.99	2.20	1		40
		41.78		1	41.43	2.18	1		
		42.50	2.16	1	41.80	2.16	1		
		42.88	2.13	Ţ	42.48	2.13	1		
45		43.24	2.11	1	42.83	2.11.	. 1		
		43.56	2.09	1	43.13	2.10	1		45
		43.81	2.08	1	43.53	2.08	1		
			2.07	1					
		45.15	2.01	9	45.02	2.01	6		
50		45.48 46.25	1.99	. 9	45.50	1.99	5		
		46.25	1.96	1					50
		46.51	1.95	3	46.50	1.95	2		
		47.50	1.91	3	47.42	1.92	2		
		48.60	1.87	4	, 48.44	1.88	2		
			1.07	7	48.83	1.86	1		
		49.48	1.84	1	49.53	1.84	1		
55		49.78	1.83	1	49.92	1.83	i		55
		50.18	1.82	1	50.27	1.81	i		-
					-	- •	•		

			Table 3	(cont'd.)			
	As	Synthesize	ed .	fini	shed Cataly	st	
		•		50.87	1.79	1	
	51.40	1.78	1	51.27	1.78	1	
5	51.60	1.77	2	51.66	1.77	1	5
	51.90	1.76	1	51.94	1.76	1	
				52.25	1.75	1	
	53.21	1.72	1	53.17	1.72	1	
	53.50	1.71	1	53.65	1.71	1	
10				54.23	1.69	1	10
	54.93	1.67	2	54.92	1.67	1	
	55.25	1.66	3	55.05	1.67	1	
	55.55	1.65	1	55.70	1.65	1	
	55.92	1.64	1	56.19	1.64	1	
15	56.69	1.62	1	56.55	1.63	1	15
	56.90	1.62	<1				
	57.19	1.61	1	57.13	1.61	1	
				58.25	1.58	• 1	
	59.04	1.56	1	58.96	1.57	1	

In the following Examples (i.e. Examples 2—8) X-ray diffraction pattern for the catalytic form of the respective materials is shown in the table following the Example.

Example 2

Same as Example 1 with the exception that 5 gm of $RuCl_3 \cdot 3H_2O$ and 35 gm of HCl were used in place of the chromium compound and the sulfuric acid.

X-ray diffraction patterns for this material show substantially all the characteristic lines for the ZSM-5 zeolites as shown in Table 1. As in the first example, treatments of the zeolites of this and the six following examples by ion exchange, thermal conditioning or other treatments lead to similar minor variations in interplanar spacings, lattice symmetry, and relative intensity.

		Table 4		
30	2θ	d(A)	//I _o	30
	7.90	11.2	100	
	8.79	10.0	57	
	9.07	9.7	11	
	9.81	9.0	1	
35	10.95	8.08	1	35
	11.87	7.46	1	
	12.48	7.09	1	
	13.20	6.71	8	
	13.90	6.37	11	
40	14.75	6.01	18	40
	14.92	5.94	18 3	
	15.52	5.71	9	
	15.88	5.58	12	•
	16.50	5.37	3	
4=				
45	17.27	5.13	3	45
	17.61	5.04	3 5 6 1 .	
	17.81	4.98	6	
	18.15	4.89	1 .	
	18.83	4.71	1	
50	19.23	4.62	4	50
,	19.87	4.47		
	20.35	4.36	1 7 8	
	20.84	4.26	8	•
			•	
55	21.79	4.08	2	
00	22.18	4.01	2 3	55
	23.08	3.85	66	
	23.28	3.82	32	
	23.65	3.76	16 -	
60	23.92	3.72	36	20
00	24.29	3.66	9	60

	Table 4	(cont'd.)		
	2θ	d(A)	//I _o	
	24.53	3.63	9	
_	24.78	3.59	3	
5	24.54	3.49	3	5
	25.85	3.45	5	
	26.18	3.40	2 4	
	26.52	3.36	4	
10	26.92	3.31	6	10
10	27.38	3.26	3 1	10
	27.63	3.23		
	28.04	3.18	7	•
	28.43	3.14	2	
	29.22	3.06	2	4.
15	29.30	3.05	2	15
	29.87	2.99	9	
	30.20	2.96	6	
	30.55	2.93	1	•
	· 31.23	2.86	2	20
20	31.55	2.84	<1	20
	32.15	2.78	1	
	32.73	2.74	2	
	33.37	2.69	1	
· -	33.75	2.66	1	
25	34.30	2.61	2	25
	34.60	2.59	2	
·	35.04	2.56	6	
	35.63	2.52	2	
	36.09	2.49	3	20
30	36.33	2.47	2 2 6 2 3 2	30
	36.60	2.46	1	
	37.18	2.42	2	
	37.54	2.40	2	
•	40.50	2.23	1	
35	40.99	2.20	i	35
	41.45	2.18	1	
	41.73	2.16	1	
	42.50	2.13	<1	
10	42.88	2.11	1	
40	43.14	2.10	1	40
	43.53	2.08	1	
	45.04	2.01	7	
	45.52	1.99	5	
	46.48	1.95	2	45
45	47.40	1.92	2	
	48.47	1.88	2	
	48.83	1.86	1	
	49.50	1.84	i	
	49.83	1.83	i	50
50	50.23	1.82	<1	
	50.90	1.79	<1	
	51.24	1.78	1	
	51.74	1.77	1	
	52.05	1.76	1	55
55	52.33	1.75	1	
	53.15	1.72	<1	

GB	2	033	358	Α	9

	Ta	able 7 (cont	'd.)	
	2θ	d(A)		
	53.65	1.71	<1 .	
	54.30	1.69	3	_
_	54.98	1.67	3	. 5
5	55.30	1.66	-1	
	55.75	1.65	1	
	56.05	1.64	<1	
	56.55	1.63	ï	•
10	57.20	1.61	. 1	10
	59.03	1.56	1	
0 =		Example 3		
Same as Exam compound. Also, 35	ple 1 except that 2 gm of $_{\rm 2}$ gm of HCl replaced the $_{\rm 2}$	1₂PtCl ₆ · nH₂ SO₄.	O was used ins	stead of the chromium
15		Table 5		15
	2θ	d(A)	//I _o	
	7.90	11.2	100	
	8.80	10.0	60	
	9.10	9.7	14	
20	9.85	9.0	2	20
	11.02	8.03	1	
	11.92	7.42	2	_
	12.53	7.06	1	
	13.23	6.69	8	25
25	13.93	6.36	12	25
	14.77	6.00	18	
	15.04	5.89 5.70	· 3	
	15.54 15.89	5.70 5.58	10 13	
30	16.54	5.36	4	30
30				
	17.27	5.13	2	
	17.58	5.04	. 5	
	17.80	4.98	6	
25	18.20	4.87	1	. 25
35	18.80	4.72	1	35
	19.25	4.61	. 5	
	19.90	4.46	2	
	20.37 20.85	4.36 4.26	7 10	
				10
40	21.80	4.08	3 5	40
	. 22.21	4.00	5	
	22.50	3.95	3	
	23.10	3.85	65	
45	23.34	3.81	35	45
45	23.72	3.75	22	43
	23.95	3.72	39	·
	24.33 24.57	3.66 3.62	14 13	
	24.57 24.86	3.62 3.58	3	•
50	24.86 25.53	3.56 3.49	3	50
JU	25.87	3.44	· 6	
	20.07	J+*+	U	

26.13 26.57 26.97 27.42 27.62 28.08 28.44

3.41 3.35 3.31 3.25 3.23 3.18 3.14

55

9

	Та	ble 5 (cont'	d.)	
	2θ	d(A)		
	29.17	3.06	//I。 2	
	29.40	3.04	4	
5	29.90	2.99	13	5
	30.22	2.96	7	_
	30.55	2.93	1	
	31.23	2.86		
	31.58	2.83	2 1	
	31.36	2.03	ı	
10	32.15	2.78	1	10
	32.79	2.73	3	10
	02.70	2.70	3	
	33.47	2.68	1	
	33.79	2.65	1	
	<i>t.</i>	2.00	•	
•	34.37	2.61	2	
15	34.67	2.59	2	15
	35.05	2.56	2	, 0
	35.70	2.52	2	
•	36.12	2.49	3	
	36.25	2.48	7	
20	36.70	2.45 2.45	2 2 2 3 4 2	20
•	30.70	2.45	,	20
	37.23	2.42	2	
	37.23	2.42	2	
	37.56	2.20	•	
		2.39	3	
	38.25	2.35	1	
25	38.72	2.33	1	25
	39.20 30.75	2.30	1 .	
	39.75	2.27	2	
	40.30 40.62	2.24	1	
		2.22	1	
30	41.03	2.20	1	30
	41.48	2.18	1	
	41.81	2.16	1	
•	42.50	2.13	<1	
	42.95	2.11	1	
35	43.20	2.10	1	35
	43.53 45.13	2.08	1	
		2.01	. 8	
	45.60 46.13	1.99	7	
	46.13	1.97	2 3	•
	46.55	1.95	3	
40	47.45	1.00	2	
••	47.45 48.51	1.92	2 2 2 1	40
	48.83	1.88	Z-	
	46.83 49.55	1.86	4	
	49.55 49.85	1.84	1	
45	50.20	1.83	1	
	50.20	1.82	<1	45
	50.88 51.18	1.80	<1	
	51.70	1.78	<1	
		1.77	<1	
50	51.98 52.27	1.75	1	
- -	52.27 52.25	1.75	1	50
	53.25	1.72	<1	
	53.63 54.03	1.71	< [
	54.93 EE 10	1.67	ა ე	
55	55.18	1.66	<1 3 2	
	55.65 55.03	1.65	1	55
	55.93	1.64	<1	
	56.50	1.63	1	
	56.90	1.62	<1	

1

1

2.86

2.84

2.78

31.25

31.53

32.17

12	•	GB	2	033	358	Α	12

		Table 6 (c r	nt'd \		
	2 <i>u</i>	d(A)	/// _o		
	32.78	2.73	2		
	33.43	2.68	1		
5	33.73	2.66	1		5
	34.33	2.61	2		
	34.60	2.59	1		
	35.10	2.56	1		
	35.68	2.52	2		
10	36.10	2.49	2 3		10
	36.30	2.47	1		
	36.62	2.45	1		
	37.24	2.41	2		
	37.57	2.39	2		
15	40.50	2.23	<1		15
	41.03	2.20	1	·	
	41.50	2.18	1		
	41.80	2.16	<1		
20	42.50	2.13	<1		
20	42.95 43.25	2.11	1		20
	43.25	2.10 2.07	1		
	45.05 45.05	2.07	1 5		
	45.53	1.99	4		
25	46.53	1.95	2		25
	47.47	1.92	2		
	48.50	1.88	2 2		
	48.88	1.86	1		
	49.53	1.84	1		
30	49.90	1.83	1		30
	50.38	1.81	<1		
	50.90	1.79	<1		
	51.29	1.78	<1		
	51.75	1.77	1		0.5
35	52.03	1.76	• 1		35
	52.37	1.75	1		
	53.20	1.72	<1		
	53.65	1.71	<1		
40	54.20	1.69	<1		40
70	54.99	1.67	2		
	55.30 55.75	1.66	1		
	55.75 56.10	1.65 1.64	1 1		
	56.60	1.63	i		
45	57.20	1.61	1		45
	58.35	1.58	<1		
	59.08	1.56	ì		
	Example 5				
50	Same as Example 1 except that 5.8 g former to replace the chromium compound	gm of Ce(SO ₄) d.	₂ plus 3.7 of	$Al_2(SO_4)_3 \cdot 14H_2O$ were used, the	50
	_	Table 7			
	2θ	d(A)	/// _o		
	7.91		100		
	8.83		60		
55	9.10	9.7	21		55
	9.80		2,		

	Tabl	le 7 Contd.		
5	20 11.02 11.91 12.50 13.23 13.92	d(A) 8.03 7.43 7.08 6.69 6.36	/// _o 1 2 1 15 17	. 5
10	14.80 15.03 15.55 15.93 16.54	5.99 5.89 5.70 5.56 5.36	20 4 12 14 4	10
15	17.30 17.68 17.86 18.22 18.85	5.13 5.02 4.97 4.87 4.71	3 5 9 1	15
20	19.38 19.93 20.40 20.88	4.58 4.45 4.35 4.25	6 2 10 13	· 20
	21.80 22.19	4.08 4.01	4 7	
25	22.60 23.09 23.33 23.70	3.93 3.85 3.81 3.75	3 82 38 24	25
30	23.98 24.35 24.58 24.85 25.59	3.71 3.66 3.62 3.58 3.48	47 14 13 3	30
35	25.91 26.34 26.60 26.98	3.44 3.38 3.35 3.30	3 8 3 5 11	35
40	27.42 27.58 28.12 28.47	3.25 3.23 3.17 3.14	4 1 2 2	40
. The second second	29.23 29.43 29.92 30.25	3.06 3.04 2.99 2.95	5 5 15 8	
45	30.54 31.25 31.60	2.93 2.86 2.83	15 8 2 3 1	45
	32.19 32.79	2.78 2.73	, 2 , 4	
50	33.42 33.74 33.99 34.37	2.68 2.66 2.64 2.61	2 2 1	50
55	34.68 35.13 35.71 36.12	2.59 2.55 2.55 2.51 2.49	2 1 3 2 2 3 5 3	55
	36.33 36.64	2.49 2.47 2.45	3 1	

GB	2	033	358	Δ	

		ible 7 Conto	i.
•	2θ	· d(A)	//I _o
	37.20	2.42	3
	37.56	2.39	3
5	38.32	2.25	. 1
	38.77	2.32	1
	40.54	2.23	1
	41.03	2.20	. 1
•	41.47	2.18	1
10	42.54	2.13	1
	42.93	2.11	2
	43.58	2.08	1
:	45.11	2.01	9
	45.58	1.99	9
15	46.03	1.97	1
	46.55	1.95	3
**	47.40		_
	47.49	1.92	3 2 2
	48.51	1.88	2
20	48.88	1.86	
20	49.50	1.84	1
	49.98	1.82	1
	50.37	1.81	1
••	50.88	1.80	1
25	51.30	1.78	1
25	51.71	1.77	1
	52.00	1.76	1
•.	52.33	1.75	1,
	54.93	1.67	. 2
30	55.18	1.66	2
30	55.55	1.65	1
	55.82	1.65	1
	56.55	1.63	<1
	56.98	1.62	<1
	57.25	1.61	<1
35 .	58.35	1.58	<1
	59.00	1.57	1
			•

Example 6 Same as Example 1 except that 2.28 gm of $\rm V_2O_5$ was used in place of the chromium compound.

4.0		Table 8		
40	2θ	d(A)	1/1。	40
	7.85	11.3	10Ŏ	40
	8.76	10.1	55	
	9.03	9.8	14	
45	9.75	9.1	2	
45	10.90	8.12	1	45
	. 11.80	7.50	1	40
	12.47	7.10	1	
	13.23	6.69	7	
F.0	13.85	6.39	9	
50	14.71	6.02	17	50
	15.00	5.91	. 3	50
	15.48	5.72	7	
	15.83	· 5.60	11	
	16.48	5.38	3	
55	17.20	5.16	2	55
	17.55	5.05	5	99

GB 2 033 358 A 15

		able 8 Contd.			
	2θ	d(A)	//I _o		
	17.76	4.99	5		
	18.10	4.90	· 1		
5	18.80	4.72	1		5
•	19.20	4.62	4		
	19.90	4.46	i		
	20.30	4.37	. 6		
		4.37	7		
	20.79	4.27	,		
10	21.71	4.09	2		10
	22.13	4.02	. 3		
	22.49	3.95	3 2	•	
	23.02	3.86	60		
	23.25	3.83	31	•	
15	23.62	3.77	14		15
••	23.88	3.73			• •
			34		
	24.23	3.67	8		
	24.47	3.64	8		
00	24.72	3.60	2		20
20	25.50	3.49	8 2 3 5 2 5 6		20
	25.80	3.45	5		٠
	26.13	3.41	· 2		
	26.51	3.36	5		
	26.88	3.32	6		
25	27.33	3.26	2 ·		25
	27.58	3.23	1		
	28.09	3.18	. · · i		
	· 28.38	3.14	1		
	20.00	3.17	•		
	29.13	3.06	4	· .	
30	29:33	3.05	3		30
	29.82	2.99	10		
	30.11	2.97	7		
	30.47	2.93	1		
	31.15	2.87	1		
35	31.63	2.83	1		35
			•		-
	32.19	2.78	4		
		2.70	•		
	32.71	2.74	1 2		
	32.71	2.74			
	32.71 33.36	2.74 2.69	1		
40	32.71 33.36 33.69	2.74 2.69 2.66	1		40
40	32.71 33.36 33.69 33.92	2.74 2.69 2.66 2.64	1 1 2	·	40
40	32.71 33.36 33.69 33.92 34.30	2.74 2.69 2.66 2.64 2.61	1 : 1 2 1	·	40
40	32.71 33.36 33.69 33.92 34.30	2.74 2.69 2.66 2.64	1 : 1 2 1	·	40
40	32.71 33.36 33.69 33.92	2.74 2.69 2.66 2.64 2.61	1 : 1 2 1		40
	32.71 33.36 33.69 33.92 34.30 34.59 35.00	2.74 2.69 2.66 2.64 2.61 2.59 2.56	1 : 1 2 1		-
40 45	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63	2.74 2.69 2.66 2.64 2.61 2.59 2.56 2.52	1 : 1 2 1		40 45
	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00	2.74 2.69 2.66 2.64 2.61 2.59 2.56 2.52 2.49	1 : 1 2 1		-
	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63	2.74 2.69 2.66 2.64 2.61 2.59 2.56 2.52	1 1 2		-
	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61	2.74 2.69 2.64 2.61 2.59 2.56 2.52 2.49 2.48 2.45	1 1 2 1 2 2 2 2 3 2		-
	32.71 33.36 33.69 33.92 34.30 34.59 35.00 36.63 36.00 36.23 36.61	2.74 2.69 2.64 2.61 2.59 2.56 2.52 2.49 2.48 2.45	1 1 2 1 2 2 2 2 3 2		-
	32.71 33.36 33.69 33.92 34.30 34.59 35.00 36.63 36.00 36.23 36.61	2.74 2.69 2.64 2.61 2.59 2.56 2.52 2.49 2.48 2.45	1 1 2 1 2 2 2 3 2 1		45
45	32.71 33.36 33.69 33.92 34.30 34.59 35.00 36.63 36.00 36.23 36.61 37.18 37.50 38.20	2.74 2.69 2.64 2.61 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36	1 1 2 1 2 2 2 2 3 2		-
	32.71 33.36 33.69 33.92 34.30 34.59 35.00 36.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65	2.74 2.69 2.64 2.61 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33	1 1 2 1 2 2 2 3 2 1		45
45	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43	2.74 2.69 2.66 2.64 2.61 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23	1 1 2 1 2 2 2 3 2 1		45
45	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43 40.97	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20	1 1 2 1 2 2 2 3 2 1		45
45	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20 2.18	1 1 2 1 2 2 2 3 2 1		45
45 50	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43 40.97	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20	1 1 2 1 2 2 2 3 2 1		45
45	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43 40.97 41.40 41.72	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20 2.18 2.16	1 1 2 1 2 2 2 3 2 1 1 1 1 1		45
45 50	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43 40.97 41.40 41.72 42.50	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20 2.18 2.16 2.13	1 1 2 1 2 2 3 2 1 2 2 1 1 1 1 1 1 1		45
45 50	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43 40.97 41.40 41.72 42.50 42.85	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20 2.18 2.16 2.13 2.11	1 1 2 1 2 2 3 2 1 1 1 1 1 1 1 1 1		45
45 50	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43 40.97 41.40 41.72 42.50 42.85 43.20	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20 2.18 2.16 2.13 2.11 2.10	1 1 2 1 2 2 3 2 1 1 1 1 1 1 1 1 1		45
45 50	32.71 33.36 33.69 33.92 34.30 34.59 35.00 35.63 36.00 36.23 36.61 37.18 37.50 38.20 38.65 40.43 40.97 41.40 41.72 42.50 42.85	2.74 2.69 2.66 2.64 2.59 2.56 2.52 2.49 2.48 2.45 2.42 2.40 2.36 2.33 2.23 2.20 2.18 2.16 2.13 2.11	1 1 2 1 2 2 3 2 1 1 1 1 1 1 1 1 1		45

GB 2 033 358 A

		Table 8 Cont	ed.	
	2θ	d(A)	/// _o	
	45.48	1.99	"'。 5	
	45.92	1.98	1	
i	46.44	1.96	i	5
			•	
	47.35	1.92	2	
	48.43	1.88	1	
	48.80	1.87	1	
	49.52	1.84	<1	
)	49.82	1.83	1	10
	50.20	1.82	<1	
	50.90	1.79	<1	
	51.24	1.78	<1	
-	51.62	1.77	1	
i	51.93	1.76	1	15
	52.20	1.75	1	
	53.25	1.72	<1	
	53.65	1.71	1	
	54.98	1.67	3	
)	55.25	1.66	1	20
•	55.50 55.50	1.66	1	20
	55.75	1.65	i	
	56.55	1.63	i	
	56.90	1.62	<i< td=""><td></td></i<>	
.	57.22	1.61	ì	25
•	58.45	1.58	<1	20
	59.00	1.57	1	
Same as Exa	mple 1 except that 1.5 gm	of Zn ₂ B ₆ O ₁₁ a	nd 25 gm (or tetraetnylammonium bromice
Same as Exa Were used to repla	mple 1 except that 1.5 gm ce the chromium compou	nd and the tetr	nd 25 gm o apropylam	of tetraethylammonium bromide imonium bromide, respectively. 30
Same as Exa) were used to repla	ce the chromium compou	nd and the tetr	apropylam	or tetraethylammonium bromide imonium bromide, respectively. 30
) were used to repla	ce the chromium compou $2 heta$	nd and the tetr Table 9 <i>d(A)</i>	apropylam /// _o	or tetraethylammonium bromide imonium bromide, respectively. 30
) were used to repla	ce the chromium compout $2 heta \ 7.91$	nd and the tetr Table 9 <i>d(A)</i> 11.2	apropylam /// _e 100	or tetraethylammonium bromide imonium bromide, respectively. 30
) were used to repla	ce the chromium compout 20 7.91 8.78	Table 9 d(A) 11.2 10.1	######################################	monium bromide, respectively. 30
) were used to repla	ce the chromium compout 20 7.91 8.78 9.05	Table 9 d(A) 11.2 10.1 9.8	///。 100 54 17	monium bromide, respectively. 30
) were used to repla	20 7.91 8.78 9.05 9.80	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07	######################################	monium bromide, respectively. 30
) were used to repla	ce the chromium compout 20 7.91 8.78 9.05	Table 9 d(A) 11.2 10.1 9.8	///。 100 54 17	monium bromide, respectively. 30
) were used to repla	2θ 7.91 8.78 9.05 9.80 10.97 11.85 12.47	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07	///。 100 54 17 1 1 1 2	monium bromide, respectively. 30
) were used to repla	2θ 7.91 8.78 9.05 9.80 10.97 11.85 12.47	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72	///。 100 54 17 1 1 1 21	monium bromide, respectively. 30
were used to repla	2θ 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36	///。 100 54 17 1 1 1 21 4	monium bromide, respectively. 30
were used to repla	2θ 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01	///。 100 54 17 1 1 1 <1 4 6	monium bromide, respectively. 30
were used to repla	2θ 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93	///。 100 54 17 1 1 21 4 6 10	monium bromide, respectively. 30
were used to repla	2θ 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72	///。 100 54 17 1 1 21 4 6 10	amonium bromide, respectively. 30
were used to repla	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58	///。 100 54 17 1 1 21 4 6 10	amonium bromide, respectively. 30
were used to repla	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40	### apropylam ### 100 54 17 1 1 1 4 6 10 1	amonium bromide, respectively. 30
were used to repla	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34	### apropylam ### 100 54 17 1 1 4 6 10 1 4 6 1	amonium bromide, respectively. 30
were used to repla	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14	### apropylam ### 100 54 17 1 1 4 6 10 1 4 6 1 1 1	amonium bromide, respectively. 30
were used to repla	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04	### apropylam ### 100 54 17 1 1 4 6 10 1 4 6 1 1 1	35 35 40
were used to repla o	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98	### apropylam ### 100 54 17 1 1 4 6 10 1 4 6 1 1 1	35 35 40
were used to repla o	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89	### apropylam ### 100 54 17 1 1 4 6 10 1 3 3 1	35 35 40
were used to repla o	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72	### apropylam ### 100 54 17 1 1 4 6 10 1 3 1 1	35 35 40
were used to repla	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62	### apropylam ### 100 54 17 1 1 4 6 10 1 3 1 1	35 35 40
were used to repla	28 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21 19.80	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62 4.48	### apropylam ### 100 54 17 1 1 4 6 10 1 3 1 1	35 35 40 45
were used to repla	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21 19.80 20.33	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62 4.48 4.37	### apropylam ### 100 54 17 1 1 4 6 10 1 3 1 1	35 35 40 45
were used to repla	28 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21 19.80 20.33 20.83	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62 4.48 4.37 4.26	apropylam ///。 100 54 17 1 1 4 6 10 1 4 6 1 1 3 3 1 1 2 4 3 5	35 35 40 45
were used to repla	28 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21 19.80 20.33 20.83 21.74	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62 4.48 4.37 4.26 4.09	apropylam ///。 100 54 17 1 1 4 6 10 1 4 6 1 1 1 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 35 40 45
were used to repla were used to repla .	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21 19.80 20.33 20.83 21.74 22.23	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62 4.48 4.37 4.26 4.09 4.00	apropylam ///。 100 54 17 1 1 4 6 10 1 4 6 1 1 1 3 3 1 1 2 4 3 5 1 2	30 35 35 40
were used to repla 5 60 60	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21 19.80 20.33 20.83 21.74 22.23 22.58	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62 4.48 4.37 4.26 4.09 4.00 3.94	apropylam ///。 100 54 17 1 1 4 6 10 1 4 6 1 1 1 3 7 1 1 2 7 1 1 1 1 7 1 1 1 1 7 1 1 1 1 7 1 1 1 1	30 35 35 40 45
were used to repla were used to repla .	20 7.91 8.78 9.05 9.80 10.97 11.85 12.47 13.18 13.92 14.74 14.95 15.50 15.87 16.42 16.59 17.25 17.60 17.80 18.15 18.80 19.21 19.80 20.33 20.83 21.74 22.23	Table 9 d(A) 11.2 10.1 9.8 9.0 8.07 7.47 7.10 6.72 6.36 6.01 5.93 5.72 5.58 5.40 5.34 5.14 5.04 4.98 4.89 4.72 4.62 4.48 4.37 4.26 4.09 4.00	apropylam ///。 100 54 17 1 1 4 6 10 1 4 6 1 1 1 3 3 1 1 2 4 3 5 1 2	30 simonium bromide, respectively. 30 simonium bromide, respectively. 31 simonium bromide, respectively. 32 simonium bromide, respectively. 35 simonium bromide, respectively. 36 simonium bromide, respectively. 36 simonium bromide, respectively. 37 simonium bromide, respectively. 38 simonium bromide, respectively. 39 simonium bromide, respectively. 30 simonium bromide, respectively.

		Fable 9 C ntd.				
	2θ	d(A)	<i> </i> ₀		•	
	23.30 23.70	3.82 3.75	23 14			
5	23.70	3.75 3.72	36	-		5
	24.32	3.66	10			
	24.53	3.63	10			
	24.75	3.60	3			
10	25.50	3.49	5			10
10	25.76	3.46	5 5 5 5 5 5 5 5 3 1			10
	25.92	3.44	5			
	26.18	3.40	2			
	26.53 26.94	3.36 3.31	5 5	•		
15	27.37	3.26	3			15
	27.58	3.23	1			
	28.08	3.18	1			
	28.33	3.15	3		* . *	
20	28.53	3.13	1			20
20	29.18	3.06	5 5		F*+	20
	29.36	3.04	5			
	29.87	2.99	13		-	
	30.18 30.53	2.96 2.93	6 1			
25	31.18	2.87				25
	31.43	2.85	· 2 1			
	31.70	2.82	1			
	32.10	2.79	1			
00	32.73	2.74	3	•		30
30	33.38	2.68	1	-		30
	33.72	2.66	1			
	33.92 34.30	2.64 2.61	ا .			
	34.55	2.60	2 2 2 3 3			
35	35.04	2.56	2			35
	35.64	2.52	3			
	36.08	2.49	3			
	36.28	2.48				
40	36.55	2.46	1			40
40	36.79	2.44	1			40
	37.17	2.42 2.41	2 1			
	37.38 37.58	.2.39	1			
	38.20	2.36	1			
45	38.63	2.33	i			45
	38.83	2.32	1			
	39.17	2.30	1			
	40.38	2.23	1			
50	40.58	2.22	1			50
50	41.02	2.20	1			50
	41.37	2.18	1			
	41.65 42.43	2.17 2.13	1			
	42.82	2.11	1.			
55	43.11	2.10	1			55
	43.53	2.08	1.			
,	45.02	2.01	8			
	45.53	1.99	5			
60	45.95	1.98	1			60
60	46.39	1.96	.1			Ų.
	46.65	1.95	1			
	49.90	1.83	1			
	50.30	1.81	<1			
	50.95	1.79	1			
	50.55	117 0	•			

		le 10 Contd.		
5	28.10 28.39 29.20 29.41 29.88 30.18 30.52 31.21 31.60 32.17 32.77	d(A) 3.18 3.14 3.06 3.04 2.99 2.96 2.93 2.87 2.83 2.78 2.73	/// ₀ 1 1 3 10 5 1 <1 1 2	10
15	33.42 33.72	2.68 2.66	1	15
20	34.32 34.68 35.07 35.67 36.08 36.33 36.65	2.61 2.59 2.56 2.52 2.49 2.47 2.45	2 1 2 2 3 2 1	20
	37.20	2.42	2	
25	37.55 38.32 38.63 39.26	2.40 2.35 2.33 2.29	<1 1 <1 2	25
30	40.50 40.93 41.25 41.60 42.51 42.90 43.20 43.57 45.07 45.53	2.23 2.20 2.19 2.17 2.13 2.11 2.10 2.08 2.01 1.99	1 1 1 1 <1 <1 1 1 6 5	30 35
40 .	46.50 47.48 48.53 48.89 49.62	1.95 1.92 1.88 1.86 1.84	2 2 2 1 1	40
45	49.97 50.35 50.90 51.33 51.61	1.82 1.81 1.79 1.78 1.77	1 <1 <1 <1 1	45
50	51.90 52.27 53.35 53.68 54.25	1.76 1.75 1.72 1.71 1.69	1 1 <1 <1	50
55	54.92 55.20 55.73 56.10 56.55 56.85 57.25	1.67 1.66 1.65 1.65 1.63 1.62 1.61	2 1 <1 <1 <1 <1	55

10

15

20

25

30

35

40

55

T-1	┕	1 - 1	10	^-	ntd.
18	0	18 1	v	LO	nta.

58.45	1.58	<1
59.09	1.56	<1

Example 9

This was made similarly to Example 1, except that 5 gm of silver acetate replaced the chromium compound. The X-ray analysis showed it to have a pattern similar to the previous Examples.

Example 10

This was made as shown in Example 1 except that 35 gm of HCl was used instead of sulfuric acid and 5 gm of HgCl₂ was used instead of the chromium compound. The X-ray analysis showed it to have a pattern similar to the previous Examples.

Example 1°

This was also made like Example 1, except that 5 gm of H_eTeO_e was used instead of the chromium compound. The X-ray analysis showed it to have a pattern similar to the previous Examples.

Employing the catalyst of this invention containing a hydrogenation component, heavy petroleum residual stocks, cycle stocks, and other hydrocrackable charge stocks can be hydrocracked at temperatures between 400°F and 825°F using molar ratios of hydrogen to hydrocarbon charge in the range between 2 and 80. The pressure employed will vary between 10 and 2,500 psig and the liquid hourly space velocity between 0.1 and 10.

Employing the catalyst of this invention for catalytic cracking, hydrocarbon cracking stocks can be cracked at a liquid hourly space velocity between about 0.5 and 50, a temperature between about 550°F and 1100°F, a pressure between about sub-atmospheric and several hundred atmospheres.

Employing a catalytically active form of the zeolites of this invention containing a hydrogenation component, reforming stocks can be reformed employing a temperature between 700°F and 1000°F. The pressure can be between 100 and 1000 psig, but is preferably between 200 and 700 psig. The liquid hourly space velocity is generally between 0.1 and 10, preferably between 0.5 and 4 and the hydrogen to hydrocarbon mole ratio is generally between 1 and 20, preferably between 4 and 12.

The catalyst can also be used for hydroisomerization of normal paraffins, when provided with a hydrogenation component, e.g., platinum. Hydroisomerization is carried out at a temperature between 200 and 700°F, preferably 300 to 550°F, with a liquid hourly space velocity between 0.01 and 2, preferably between 0.25 and 0.50 employing hydrogen such that the hydrogen to hydrocarbon mole ratio is between 1:1 and 5:1. Additionally, the catalyst can be used for olefin isomerization employing

temperatures between 30°F and 500°F, and for methanol and dimethylether conversion.

Other reactions which can be accomplished employing the catalyst of this invention containing a metal, e.g. platinum include hydrogenation-dehydrogenation reactions and desulfurization and hydrocarbon oxidation reactions.

The products were tested in several of the conversion processes mentioned above. The results follow:

Evaluation of Products

Toluene Disproportionation

Table 11 summarizes data obtained using various samples of the hydrogen form of the zeolite in toluene conversion. The runs were made at 600 psig, 3.5 WHSV and a H₂-hydrocarbon (H₂/HC) ratio of 2/1, except where different conditions are noted. The hydrogen form was obtained by the procedure of Example 1.

Table 11 45 Wt. % Toluene Metal Used in 45 Temp., °F Conversion Synthesis 850 Pt (Example 2) 31.8 900 V (Example 6) 14.0 900 Mo (Example 8) 14.7 50 1100 (10 WHSV) Cr (Exmple 1) 16.9 50

Hydr cracking

Table 12 shows the results obtained in converting 224°F—365°F Buffalo Naphtha using the hydrogen form of the zeolite at 900° and 1000°F. Conversion was at 100 psig, 5 WHSV and a H₂/HC of 3/1. The naphtha had the characteristics shown in the table. The hydrogen form of the zeolite was obtained as per the description hereinabove.

					Table 12			
	etal Used		Wt. %	Wt. %	Aromatics Made	C,—C ₅ Made	Aromatics N	lade
in :	Synthesis	Temp., °F	· Conv.	C ₁ C ₅	Gm/100 Gm Charge	Conv.	Conv.	
	Pt	900	57.3	44.8	10.3	78.2	18.0	
5	Ru	900	46.0	28.6	14.5	62.2	31.5	5
	Cr	900	35.5	21.8	10.8 ·	61.6	30.6	
	ln	1000	15.6	2.5	2.7		47.9	
			22	24°365°F	Buffalo Naphtha, Wt. %	, 5		
				C _e 's	0.8			
10			. •	Benzene	0.1	•		10
				C,'s	20.1			
				Toluene	3.2			
				C ₈ 's	31.8			
				C ₈ Ar	9.5			
15				C +	29.1			15
				Cg ⁺ Cg ⁺ Ar	5.0	•	•	

Reaction of Methanol

Vaporized methanol was passed over the hydrogen form of the zeolite prepared using platinum. The conditions and results are shown in Table 13.

20			Table 13					•	20		
	<i>Temp, °F</i> 751 702	<i>PSIG</i> 50 50	H./HC 2/1 2/1	CO+ 0 0.3	~H ₂ O 60 53	Wt % CH ₄ of HC <1 <1	Wt % C/+ 40 45	Wt % Ar Made 4 7	Wt % C ₂ = of HC 11 15	p-Xyl Sel. 42 52	<i>Conv.</i> 100 99
25	25 Xylene Isomerization The same zeolite used for the test summarized in Table 13 was tested for xylene isomerization activity.							25			
Table 14											
				680°F	, 200 Ps	ig, 5 WHSV a	ind 4/1 l	l₂/Hc			
30			Fracti Obtai C ₁ — Benz Tolue	ions ined C _s ene	Wt. % 0.1 2.1 0.2	% Xylene	: Ch	o <i>erge</i> 0.1 0.1			30
35			EB p-Xy m-Xy o-Xy C ₉ +A	i. yi. i.	16.1 19.1 41.6 17.4 3.4	24.5 53.3 22.2	51 24).9 2.8 1.3 1.5).3			35

The charge set forth in Table 15 was passed over the same catalyst used as per Tables 13 and 14 40 at the conditions specified. A summary of results is shown in the table.

	Table 15		
Tei	mp, °F 1000°F	:	
PS			
45 H ₂	0		45
· Wi	ISV 1		
		Charge-Light	
Pro	oduct	Woodhaven	
Dis	tribution, Wt. %	Reformate	
50 C ₁	3.6		50
C ₂ '	s 13.8		80
C ₋ ,	s 19.2		
C ₄ '	s 4.9		
C,	s O	0.2	
Ce'	s . 0.5	25.9	55
C ₇ '	s 0.2	25.1	50
C ₆ H	ł _ፅ 11.8	8.6	
C _a '	s 0	7.6	

	Table	15 (c nt'd.)		
	Tol	33.5	32.1	
	C _n Ar	9.6	0.5	
	C _a +Ar	2.9		
5	New Aromatics Make,			5
_	g/100 g Charge	16.6		
	Wt. % of Aromatics			
	Made/Conv.	28.7		
	Claims			
10	A crystalline aluminosilicate zeolite com- terms of mole ratios of oxides as follows:	position having, in	the anhydrous state, a formula in	10
	$[R_2O, M'_{2/n}O]_w$:	$[Al_2O_3]_X : [SiO_2]_Y :$	$[M''_{2/n}O]_z$	
	wherein W/X is from >0.5 to <3 , X/Y is >20 and	7/X is from Szero	to /a/100 Ris a nitrogen	
15	containing cation, M' is a metal from Group IA of group consisting of indium, boron, ruthenium, plamolybdenum, mercury, tellurium, silver and a missaid composition having the X-ray diffraction pat specification.	f the Periodic Table atinum, chromium xture of such meta ttern substantially	e, M" is a metal selected from the , rare earth, vanadium, palladium, ils, and n is the valence of the metal, as set forth in Table 1 of the	15
	2. The composition of claim 1 wherein R is	a tetraalkylammo	nium cation in which the alkyl	
20	contains from 2 to 5 carbon atoms.		·	20
	3. The composition of claim 1 wherein R ar	nd/or M' has been	replaced by cations selected from	
	the group consisting of alkylammonium, metal, a	ımmonium, hydrog	gen and mixtures thereof.	
	4. The product resulting from thermally trea	ating the composit	tion of claim 3 at a temperature	
25	above 500°F.			
25	5. The composition of claim 1 wherein M' i	s socium.		25
	6. The composition of claim 1 wherein M" i ruthenium, platinum, indium, cerium, vanadium,	is selected from th	e group consisting of chromium,	
	7. The composition of claim 6 wherein M' i	e chromium	im, mercury, tellurium and sliver.	
	8. The composition of claim 6 wherein M" i			
30	9. The composition of claim 6 wherein M" i	s niatinum		30
	10. The composition of claim 6 wherein M			50
	11. The composition of claim 6 wherein M ⁿ			
	12. The composition of claim 6 wherein M"	' is vanadium.		
	13. The composition of claim 6 wherein Mⁿ	' is boron.		
35	14. The composition of claim 6 wherein M"	' is molybdenum.		35
	15. The composition of claim 6 wherein M"			
	16. The composition of claim 6 wherein M"	•		
	17. The composition of claim 6 wherein M ^a	' is silver.		
40	18. The composition of claim 1 in which the	e SiO ₂ to Al ₂ O ₃ rati	io is from greater than about 35 to	
40	about 3000.			40
	19. A process for converting an organic cha	arge under convers	sion conditions comprising passing	
	said charge over a crystalline aluminosilicate zeo formula in terms of mole ratios of oxides as follow	lite composition n	aving, in the anhydrous state, a	
	Torridia in terms of mole ratios of oxides as follow	ws:		
	[R ₂ O, M' _{2/n} O] _w : [A	۱ ₂ O ₃] _x : [SiO ₂] _y : [۱	M" _{2/n} O] _z	
4				
45	wherein W/X is from >0.5 to <3, Y/Z is >20 and	Z/X is from >zero	to <~100, R is a nitrogen cation.	45
	M' is a metal from Group IA of the Periodic Table	e, M" is a metal se	lected from the group consisting of	
	indium, boron, ruthenium, platinum, chromium,	rare earth, vanadiu	ım, palladium, molybdenum	
	mercury, tellurium, silver and a mixture of such r	netals, and n is the	e valence of the metal, said	
EΛ	composition having the X-ray diffraction pattern	substantially as s	et forth in Table 1 of the	
50	specification.			50
	20. The process of claim 19 wherein in the	composition R is	a tetraalkylammonium cation, the	•
	alkyl containing 2 to 5 carbon atoms.			
	21. The process of claim 19 in which the c	omposition used h	has been thermally treated.	
Ec	22. The process of claim 19 wherein the co	omposition used is	the product resulting from replacing	
55	R and/or M' by cations selected from the group (consisting of alkyla	ammonium, metal, ammonium	55
	hydrogen and mixtures thereof and thermally tre	ating the material	at a temperature above 500°F.	
	23. The process of claim 19 wherein in sai	a composition M'	is sodium.	
	24. The process of claim 19 wherein said of	composition M" is	selected from the group consisting	

	ı, cerium, var	nadium, boron, mol	ybdenum, mercury,				
tellurium, and silver. 25. The process of claim 24 wherein said composition M" is chromium.							
26. The process of claim 24 whereigh	26. The process of claim 24 wherein in said composition M" is ruthenium.						
5 27. The process of claim 24 wherein in said composition M" is platinum.							
28. The process of claim 24 wherein in said composition M" is indium.							
29. The process of claim 24 wherein in said composition M" is cerium.							
30. The process of claim 24 wherein in said composition ivi" is variation.							
31. The process of claim 24 wherei	n in said com	position M" is not	vhdenum	10			
32. The process of claim 24 wherein in said composition M" is mercury.							
33. The process of claim 24 wherein in said composition M" is tellurium.							
35. The process of claim 24 wherein in said composition M" is silver.							
36. The process of claim 19 in which	h the SiO_2 to	Al ₂ O ₃ ratio in said	zeolite is from greater than				
about 35 to about 3000.				15·			
37. A method of preparing a crystal	ine aluminos	silicate zeolite is de	rined in claim 1 which				
comprises preparing a reaction mixture co	mprising so	urces or tetraalkyla Slowing mole ratio	s of oxides or % of total moles				
	naving the it	MOMING MOIC IGNO	o or oxidos or /s or total merce				
			Most	20			
Broi		Preferred		20			
00 440 . 50			70—500				
0.02.1.203	5000	, , , , , ,		25			
Oxide (% of total							
oxides) 1 x 10) ⁻⁶ —1.0	1×10 ⁻⁵ 0.1	1×10 ⁻⁵ 0.01				
wherein R is a nitrogen cation, heating th	e mixture unt	il crystals having th	ne characteristic X-ray				
diffraction pattern of ZSM-5, as set forth	in Table 1, ar	e formed and ion e	xchanging and calcining	30			
same.		•					
38. The method of claim 37 wherei	n M" is chror	nium. nium					
39. The method of claim 37 where	n IVI" is ruine n M" is nlatir	muni. nim.	·				
	n M" is indiu	m.		35			
42. The method of claim 37 wherei	n M" is ceriu	m.					
43. The method of claim 37 where	n M″ is vana	dium.					
44. The method of claim 37 where	n M″ is boro	1.					
45. The method of claim 37 where	n M" is moly	baenum.		40			
46. The method of claim 37 where	n IVI" is merc	ury. ium		40			
49. The method of claim 37 where	n M" is silve:						
49. A zeolite composition according	to Claim 1	substantially as des	scribed in the foregoing				
Evamples				4-			
50. A method of preparing a zeolite	as defined in	n Claim 1 substanti	ally as described in the	45			
foregoing Examples.			<u>.</u>				
	tellurium, and silver. 25. The process of claim 24 whereir 26. The process of claim 24 whereir 27. The process of claim 24 whereir 28. The process of claim 24 whereir 29. The process of claim 24 whereir 30. The process of claim 24 whereir 31. The process of claim 24 whereir 32. The process of claim 24 whereir 33. The process of claim 24 whereir 34. The process of claim 24 whereir 35. The process of claim 24 whereir 36. The process of claim 24 whereir 36. The process of claim 19 in which about 35 to about 3000. 37. A method of preparing a crystall comprises preparing a reaction mixture of alumina, alkali metal and M", the mixture of oxides: Broad OH ⁻ /SiO ₂ O.O7- R ₄ N ⁺ /(R ₄ N ⁺ +Na ⁺) H ₂ O/OH ⁻ SiO ₂ /Al ₂ O ₃ Other metal Oxide (% of total oxides) Nherein R is a nitrogen cation, heating the diffraction pattern of ZSM-5, as set forth same. 38. The method of claim 37 whereif 40. The method of claim 37 whereif 41. The method of claim 37 whereif 42. The method of claim 37 whereif 43. The method of claim 37 whereif 44. The method of claim 37 whereif 45. The method of claim 37 whereif 46. The method of claim 37 whereif 47. The method of claim 37 whereif 48. The method of claim 37 whereif 49. A zeolite composition according Examples. 50. A method of preparing a zeolite	tellurium, and silver. 25. The process of claim 24 wherein in said compo 26. The process of claim 24 wherein in said compo 27. The process of claim 24 wherein in said com 28. The process of claim 24 wherein in said com 29. The process of claim 24 wherein in said com 30. The process of claim 24 wherein in said com 31. The process of claim 24 wherein in said com 32. The process of claim 24 wherein in said com 33. The process of claim 24 wherein in said com 34. The process of claim 24 wherein in said com 35. The process of claim 24 wherein in said com 36. The process of claim 24 wherein in said com 36. The process of claim 24 wherein in said com 36. The process of claim 24 wherein in said com 37. A method of preparing a crystalline aluminos comprises preparing a reaction mixture comprising so alumina, alkali metal and M", the mixture having the foof oxides: Broad	tellurium, and silver. 25. The process of claim 24 wherein said composition M" is chromical. The process of claim 24 wherein in said composition M" is ruth. 27. The process of claim 24 wherein in said composition M" is platically a process of claim 24 wherein in said composition M" is indically. The process of claim 24 wherein in said composition M" is variant of the process of claim 24 wherein in said composition M" is variant of the process of claim 24 wherein in said composition M" is ward of claim 25. The process of claim 24 wherein in said composition M" is more of claim 24 wherein in said composition M" is more of claim 24 wherein in said composition M" is said of the process of claim 24 wherein in said composition M" is tellurable. The process of claim 24 wherein in said composition M" is tellurable of the process of claim 24 wherein in said composition M" is said cabout 35 to about 3000. 37. A method of preparing a crystalline aluminosilicate zeolite is decomprises preparing a reaction mixture comprising sources of tetraalkyla alumina, alkali metal and M", the mixture having the following mole ratio of oxides: **Broad** Preferred** OH**/SiO** O.07**—1.0 0.1**—0.8 R,N**/(R,N*+N*+) 0.2**—0.95 0.3**—0.9 H,2O/OH** 10**—300 10**—300 SiO**/Al2O** 50**—3000 70**—1000 Other metal Oxide (% of total oxides) 1×10**—1.0 1×10**—0.1 wherein R is a nitrogen cation, heating the mixture until crystals having the diffraction pattern of ZSM-5, as set forth in Table 1, are formed and ion esame. 38. The method of claim 37 wherein M" is chromium. 40. The method of claim 37 wherein M" is ruthenium. 41. The method of claim 37 wherein M" is ruthenium. 42. The method of claim 37 wherein M" is vanadium. 44. The method of claim 37 wherein M" is vanadium. 45. The method of claim 37 wherein M" is boron. 46. The method of claim 37 wherein M" is sellurium. 47. The method of claim 37 wherein M" is silver. 48. The method of claim 37 wherein M" is silver. 49. A zeolite composition according to Claim 1 substantially a	25. The process of claim 24 wherein in said composition M" is ruthenium. 28. The process of claim 24 wherein in said composition M" is platinum. 28. The process of claim 24 wherein in said composition M" is platinum. 29. The process of claim 24 wherein in said composition M" is corium. 30. The process of claim 24 wherein in said composition M" is vanadium 31. The process of claim 24 wherein in said composition M" is vanadium 31. The process of claim 24 wherein in said composition M" is word. 32. The process of claim 24 wherein in said composition M" is molybdenum. 33. The process of claim 24 wherein in said composition M" is molybdenum. 34. The process of claim 24 wherein in said composition M" is morcury. 34. The process of claim 24 wherein in said composition M" is silver. 36. The process of claim 24 wherein in said composition M" is silver. 36. The process of claim 24 wherein in said composition M" is silver. 36. The process of claim 19 in which the SiO ₂ to Al ₂ O ₂ ratio in said zeolite is from greater than about 35 to about 3000. 37. A method of preparing a crystalline aluminosilicate zeolite is defined in claim 1 which comprises preparing a reaction mixture comprising sources of tetraalkylammonium compound, silica, alumina, alkali metal and M", the mixture having the following mole ratios of oxides or % of total moles of oxides: Broad			

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Sps. 1980. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.