Parameter Estimation of Diffusion Processes on the Space of 2D Shapes.

Valentina Staneva and Laurent Younes

Johns Hopkins University

Baltimore, USA

Introduction

Goals:

- Construct diffusion processes for modeling the diffeomorphic evolution of 2D shapes.
- Estimate the missing parameters based on a sequence of observations.

Approach:

- Model the deformation of the boundary as induced by the flow of a finitely generated vector field defined over the plane.
- Use likelihood ratio [1] to estimate the unknown drift parameters.

The Geometry of Shape Space

Shape space:

S = the space of curves obtained through the action of a group of diffeomorphisms on a fixed 2D curve:

$$S = \{ \gamma | \gamma = \varphi(\gamma_0), \varphi \in Diff \}$$

V - a reproducing kernel Hilbert space of vector fields $v:\mathbb{R}^2 \to \mathbb{R}^2$ with kernel $K(\cdot,\cdot)\mathbb{I}_2$ such that

$$\frac{\partial \Phi(\cdot, \tau)}{\partial \tau} = v(\Phi(\cdot, \tau), \tau), \qquad \Phi(\cdot, 0) = id(\cdot)$$
$$\Phi(\cdot, 1) = \varphi(\cdot).$$

Properties:

- S smooth manifold
- \bullet tangent vectors on $\mathcal S$ are restrictions of v to γ
- the inner product on V induces a Riemannian metric on $\mathcal S$
- geodesics and the Riemannian exponential map (and its inverse the logarithm) on S are computable.

Diffusions in Shape Space

Given an initial contour γ_0 , we want to generate a random trajectory of curves γ_t following a diffusion equation

$$d\gamma_t = a(\gamma_t, \theta)dt + dW_t.$$

Q: What is $d\gamma_t$ on a nonlinear manifold?

A: $\gamma_{t+dt} - \gamma_t$ is not defined, but we can interpret it as an infinitesimal step along the exponential map:

$$\gamma_{t+dt} = \exp_{\gamma_t}(a(\gamma_t, \theta)dt + dW_t).$$

Q: How can we construct dW_t defined over γ_t ?

A: Let χ_t be a finite set of n points on γ_t . Consider a subspace $\bar{V}(\chi_t) = span\{K(\cdot, x_i(t))\}$. Set

$$dW_t = \sum_{i=1}^n dw_i(t)K(\cdot, x_i(t)),$$

where dw_i - 2D (colored by K) Brownian motion.

Q: What are the possible choices for $a(\gamma_t, \theta)$?

A: We restrict the drift to be an element of $\bar{V}(\chi_t)$.

Examples:

1. Constant Drift

$$d\gamma_t = (K(\gamma_t, \chi_t)^{1/2})^T \theta dt + dW_t$$

2. Mean-Reverting Drift

$$d\gamma_t = -\frac{\theta}{2}\nabla dist(\gamma_t, \mu)^2 dt + dW_t$$

3. Shape-Gradient Drift

$$d\gamma_t = -\frac{\theta_1}{2} \nabla |length(\gamma_t) - L|^2 dt - \frac{\theta_2}{2} \nabla |area(\gamma_t) - A|^2 dt + dW_t$$

Notes:

- we set $dist(\gamma_t, \mu_t)$ equal to the area of mismatch between the two curves (instead of using the Riemannian distance)
- the gradients with respect to the shape can be calculated by evaluating the action of the differential on the basis functions of \bar{V} [3].

Simulated Diffusions

(a) driftless

(b) constant drift

(c) mean-reverting drift

(d) shape-gradient drift.

References

- [1] R.S. Lipster and A.N. Shiryaev, "Statistics of Random Processes," *Springer-Verlag*, 1977.
- [2] K.D. Elworthy, "Stochastic Differential Equations on Manifolds," *Cambridge University Press*, 1982.
- [3] J. Sokolowski, J. P. Zolésio, Introduction to Shape Optimization", *Springer-Verlag*, 1992.

Likelihood Ratio Estimation

Girsanov's Theorem [2] gives a closed form for the likelihood ratio:

$$\frac{dP_{\gamma_t}}{dP_{W_t}} = \exp\left\{\int_0^T \langle a(\gamma_t, \theta), d\gamma_t \rangle - \frac{1}{2} \int_0^T \langle a(\gamma_t, \theta), a(\gamma_t, \theta) \rangle dt \right\},\,$$

and we can maximize it to obtain an estimate for θ :

1. Constant Drift

$$\hat{\theta} = \frac{1}{Ndt} \sum_{i=1}^{N-1} K_{\chi_i}^{-1/2} \log(\gamma_i, \gamma_{i+1})$$

2. Mean-Reverting Drift

$$\hat{\theta} = \frac{\sum_{i=1}^{N-1} \langle \nabla dist(\gamma_i, \mu), \log(\gamma_i, \gamma_{i+1}) \rangle}{\sum_{i=1}^{N} \|\nabla dist(\gamma_i, \mu)\|^2 dt}$$

3. Shape-Gradient Drift

Let M_i - the Grammian matrix of $\nabla |L(\gamma_i) - L|^2$ and $\nabla |A(\gamma_i) - A|^2$,

$$b = \begin{bmatrix} \sum_{\substack{i=1 \ N-1}}^{N-1} \langle \nabla | L(\gamma_i) - L|^2, \log(\gamma_i, \gamma_{i+1}) \rangle \\ \sum_{\substack{i=1 \ N-1}}^{N-1} \langle \nabla | A(\gamma_i) - A|^2, \log(\gamma_i, \gamma_{i+1}) \rangle \end{bmatrix}.$$

Then,

$$\begin{bmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \end{bmatrix} = \left(\sum_{i=1}^{N-1} M_i dt\right)^{-1} b,$$

Future Work

- Develop parameter estimation techniques suited for sparse observations.
- Consider drifts based on higher-order shape descriptors (e.g. curvature, torsion)
- Apply to curves extracted from images to train video tracking algorithms

Acknowledgements

This work has been partially supported by ONR.