TYPES OF SYSTEM

Open System

Isolated System

Closed System

HEAT (q)

Exchange of energy due to temperature difference.

THERMODYNAMICS PROPERTIES

Intensive Properties P, T, N

Properties of the system which are independent of amount of system.

State Function

Values of such functions do not depend on the path of the system. Example: ΔU , ΔH , ΔS etc.

Extensive Properties V, U, H

Properties of the system which depend on the amount of the system.

Path Function

Values of such functions depend on the path of the system. Example: W and q.

THERMODYNAMICS PROCESSES

Isothermal Process

 $\Delta T = 0$

Isochoric Process

 $\Delta V = 0$

Adiabatic Process

q = 0

Cyclic Process

 $\Delta U_{\text{cyclic}} = 0$

INTERNAL ENERGY (U) /

Total energy within the substance

WORK (W) /

Work is a mode of energy transfer when temperature difference is not involved.

$$W = -P_{ext}\Delta V$$

FIRST LAW OF THERMODYNAMICS /

Law of conservation of energy total energy of an isolated system is constant. Mathematically, $\Delta u = q + w$

SIGN CONVENTION /

Heat absorbed by the system = +ve Heat evolved by the system = -ve Work done by the system = -ve Work done on the system = +ve

FREE EXPANSION /

When an ideal gas expands in vacuum then, $p_{ext} = 0$. W = 0

Isothermal Irreversible Work

$$W_{irr} = -P_{ext} \Delta V$$

Isothermal Reversible

$$W_{rev} = -2.303 nRT log(\frac{V_2}{V_1})$$

$$W_{rev} = -2.303 nRT log \left(\frac{P_1}{P_2}\right)$$

Adiabatic Reversible

$$W_{rev} = \frac{nR}{v-1} (T_2 - T_1)$$

SPONTANEITY /

It is natural direction of a process.

ENTHALPY

 $\Delta H = \Delta U + \Delta (PV)$ $\Delta H = \Delta U + \Delta n_g RT$

Enthalpy of reaction (ΔH)

 $\Delta H = \Sigma \Delta H_{f(Products)} - \Sigma \Delta H_{f(Reactants)}$ $\Delta H = \Sigma B.E.$ Reactants - $\Sigma B.$ Eproducts

EORN HABER CYCLE /

Molar HEAT CAPACITY

Amount of heat required to raise the temperature of a 1 mole substance. Heat capacity = $q = C \times m \times \Delta T = C\Delta T$

MAYER'S **FORMULA**

 $C_p - C_v = R$

Enthalpy of fusion (ΔH^0_f) $H_2O_{(s)} \rightarrow H_2O_{(l)}$	Enthalpy change when 1 mole of compound undergoes melting at constant temperature and atmospheric pressure.
Enthalpy of vapourization (ΔH^{0}_{vap}) H ₂ O _(I) \Rightarrow H ₂ O _(g)	Enthalpy change when 1 mole of compound undergoes boiling at constant temperature and atmospheric pressure.
Enthalpy of Sublimation (ΔH^0_{sub}) CO _{2 (s)} \rightarrow CO _{2 (g)}	Enthalpy change when 1 mole of solid substance is directly converted into gaseous state at a constant temperature and standard pressure.
Enthalpy of Solution (ΔH^{o}_{sol}) $KCl_{(s)} + aq \rightarrow KCl_{(aq)}$	Enthalpy change when 1 mole of substance is dissolved in fixed quantity of solvent.
Bond dissociation enthalpy (B.E.) $Cl_{2(g)} \rightarrow 2Cl_{(g)}$	It is the enthalpy change to break 1 mole bonds of a particular kind.

HESS' LAW CONSTANT HEAT SUMMATION

ENTROPY /

This is the measure of the degree of randomness or disorder of the system.

$$\Delta s = \frac{q_{rev}}{T}$$

 $\Delta S_{Total} = \Delta S_{system} + \Delta S_{surroundings}$

Entropy changes during phase transformation

$$\Delta S_{\text{\tiny fusion}} = \frac{\Delta H_{\text{\tiny fusion}}}{T} \quad \text{,} \Delta S_{\text{\tiny vap}} = \frac{\Delta H_{\text{\tiny vap}}}{T}$$
 Entropy change of a reaction. $\frac{\Delta_{\text{\tiny subs}} H}{T}$

$$\Delta_r S^\circ = \Sigma S^\circ_{products} - \Sigma S^\circ_{reactants}$$

SECOND LAW OF THERMODYNAMICS

The Total entropy of the universe is always increasing in the course of every spontaneous or natural change.

$$\Delta S_{Total} > 0$$

THIRD LAW OF THERMODYNAMICS

The Entropy of a perfectly crystalline substance at 0 K or absolute zero is zero.

Sign of ΔH

Negative Positive Postive

Negative

Sign of ΔS

Positive Negative Postive

$\Delta G = \Delta H - T \Delta s$

Always Negative Always Positive +ve at low temp

+ve at low temp.

Negative

- ve at low temp. - ve at low temp

Spontaneous at all temperature. Non-spontaneous at all temperature. Non-spontaneous at all temperature. spontaneous at high temperature. spontaneous at low temperature. spontaneous at low temperature.

Spontanity

GIBB'S FREE ENERGY /

The net energy available to do useful work and it is a measure of spontanity.

Standard free energy of a reaction:

$$\Delta G^{\circ} = \Sigma \Delta G^{\circ}_{Products} - \Sigma \Delta G^{\circ}_{Reactants}$$

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

ΔG < 0, Process is spontaneous

GIBB'S ENERGY CHANGE & EQUILIBRIUM /

 $\Delta G^{\circ} = -2.303RT \log K$

 $\Delta G^{\circ} = 0$ log K = 0 Equilibrium reached.

 $\Delta G^{\circ} < 0$ log K > 1 Mixture contains mostly products.

 $\Delta G^{\circ} > 0$ log K < 1 Mixture contains mostly reactants.

 $\Delta G = 0$, Process is at equilibrium ΔG > 0, Process is non-spontaneous