MATH146 - 2025-01-22

GEORGE MCNINCH

Contents

1.	Properties of rings	1
1.1.	Ring Homomorphisms	1
1.2.	Ideals of a ring	1
1.3.	Quotient rings	2
1.4.	Principal ideals	2
1.5.	Isomorphism Theorem	2
1.6.	A Homorphism from the polynomial ring to the scalars	3

1. Properties of rings

1.1. Ring Homomorphisms.

Definition 1.1.1. If R and S are rings, a function $\phi: R \to S$ is called a ring homomorphism provided that

- (a) ϕ is a homomorphism of additive groups,
- (b) ϕ preserves multiplication; i.e. for all $x, y \in R$ we have $\phi(xy) = \phi(x)\phi(y)$, and
- (c) $\phi(1_R) = 1_S$.

Definition 1.1.2. The kernel of the ring homomorphism $\phi: R \to S$ is given by

$$\ker \phi = \phi^{-1}(0) = \{ x \in R \mid \phi(x) = 0 \};$$

thus ker ϕ is just the kernel of ϕ viewed as a homomorphism of additive groups.

Here are some properties of the kernel:

- (K1) $\ker \phi$ is an additive subgroup of R
- (K2) for every $r \in R$ and every $x \in \ker \phi$ we have $rx \in \ker \phi$.
- 1.2. **Ideals of a ring.** For simplicity suppose that the ring R (and S) are commutative rings.

Definition 1.2.1. A subset I of R is an ideal provided that

- (a) I is an additive subgroup of R, and
- (b) for every $r \in R$ and every $x \in I$ we have $rx \in I$.

We sometimes describe condition (b) by saying that "I is closed under multiplication by every element of R".

The proof of the following is immediate from definitions:

Proposition 1.2.2. If $\phi: R \to S$ is a ring homomorphism, then $\ker \phi$ is an ideal of R.

Date: 2025-01-26 14:17:30 EST (george@valhalla).

1.3. Quotient rings. Let R be a commutative ring and let I be an ideal of R.

Since I is a subgroup of the (abelian) additive group R, we may consider the quotient group R/I. Its elements are (additive) cosets a + I for $a \in R$.

It follows from the definition of cosets that the a+I=b+I if and only if $b-a\in I$.

The additive group can be made into a commutative ring by defining the multiplication as follows:

For $a+I, b+I \in R/I$ (so that $a, b \in R$), the product is given by

$$(a+I)(b+I) = ab + I.$$

In order to make this definition, one must confirm that this rule is well-defined. Namely, if we have equalities a + I = a' + I and b + I = b' + I, we need to know that

$$(a+I)(b+I) = (a'+I)(b'+I).$$

Applying the definition, we see that we must confirm that

$$ab = I = a'b' + I.$$

For this, we need to argue that $a'b' - ab \in I$.

Since a + I = a' + I, we know that $a' - a = x \in I$ and since b + I = b' + I we know that $b' - b = y \in I$.

Thus a' = a + x and b' = b + y. Now we see that

$$a'b' = (a+x)(b+y) = ab + ay + xb + xy$$

Since I is an ideal, we see that $ay, xb, xy \in I$ henc $ay + xb + xy \in I$. Now conclude that a'b' + I = ab + I as required.

It is now straightforward to confirm that the ring axioms hold for the set R/I with these operations.

Proposition 1.3.1. If I is an ideal of the commutative ring R, then R/I is a commutative ring with the addition and multiplication just described.

1.4. Principal ideals.

Definition 1.4.1. If R is a commutative ring and $a \in R$, the principal ideal generated by a – written Ra or $\langle a \rangle$ – is defined by

$$Ra = \langle a \rangle = \{ ra \mid r \in R \}.$$

Proposition 1.4.2. For $a \in R$, Ra is an ideal of R.

Example 1.4.3. Let $n \in \mathbb{Z}_{>0}$ and consider the principal ideal $n\mathbb{Z}$ of the ring \mathbb{Z} generated by $n \in \mathbb{Z}$.

As an additive group, $n\mathbb{Z}$ is the infinite cyclic group generated by n.

The quotient ring $\mathbb{Z}/n\mathbb{Z}$ is the finite commutative ring with n elements; these elements are precisely the *congruence classes* of integers modulo n.

1.5. Isomorphism Theorem.

Theorem 1.5.1. Let R, S be commutative rings with identity and let $\phi : R \to S$ be a ring homomorphism. Assume that ϕ is surjective (i.e. onto). Then ϕ determines an isomorphism $\overline{\phi} : R/I \to S$ where $I = \ker \phi$, where $\overline{\phi}$ is determined by the rule

$$\overline{\phi}(a+I) = \phi(a)$$
 for $a \in R$.

Proof. First, you must confirm that $\overline{\phi}$ is well-defined; i.e. that if a+I=a'+I then $\overline{\phi}(a+I)=\overline{\phi}(a'+I)$.

Next, you must confirm that $\overline{\phi}$ is a ring homomorphism (this is immediate from the definition of ring operations on R/I).

Finally, you must confirm that $\ker \overline{\phi} = \{0\}$, where here 0 refers to the additive identity of the quotient ring R/I. This additive identity is of course the trivial coset $I = 0 + I \in R/I$. \square

1.6. A Homorphism from the polynomial ring to the scalars. Let F is a field and let $a \in F$, consider the mapping

$$\Phi: F[T] \to F$$

given by $\Phi(f(T)) = f(a)$. Namely, applying Φ to a polynomial f(T) results in the value f(a) of f(T) at a.

The definition of multiplication in F[T] guarantees that Φ is a ring homomorphism.