

GBI Tutorium Nr. 41

Foliensatz 13

Vincent Hahn - vincent.hahn@student.kit.edu | 31. Januar 2013

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Wiederholung
- Unentscheidbare Probleme

Äquivalenzrelationen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Wiederholung
- Unentscheidbare Probleme
- 3 Äquivalenzrelationen

Wiederholung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Irgendwas zu Turingmaschinen
- Irgendwas zu Codierungen
- Irgendwas zu Relationen
- Reflexiv
- Transitiv
- Symmetrisch

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

1 Wiederholung

Äquivalenzrelationen

Unentscheidbare Probleme

3 Äquivalenzrelationen

Unentscheidbare Probleme

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Es gibt Probleme, die lassen sich mit einer Turing-Maschine (oder äguivalent: einem Java-Programm) nicht lösen. (Auch nicht mit unendlich viel Zeit und Platz.)

Ein solches Problem ist nicht entscheidbar

Entscheidbarkeit

Für ein entscheidbares Problem gibt es eine Turingmaschine, die für jede Eingabe hält und das Eingabewort entweder akzeptiert oder nicht.

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Codierung von Turingmaschinen

Bisher haben wir eine Turingmaschine formal so geschrieben $T=(Z,Z_0,X,f,g,m)$. Wir bauen uns eine Codierung, die die ganze Turingmaschine in ein Wort w_1 "packt".

Dieses Wort w_1 übergeben wir dann einer universellen Turingmaschine U, die

- übeprüft, ob w₁ eine Turingmaschine T codiert
- dann die Turingmaschine T "simuliert" und als Eingabe w_2 verwendet
- und schließlich das Ergebnis davon ausgibt

Halteproblem-Beweis 1

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Satz

Es ist nicht möglich, eine Turingmaschine U zu bauen, die für jede Turingmaschine T (codiert als w_1) und jede Eingabe w_2 entscheidet, ob T bei der Eingabe von w_2 hält.

Das lässt sich auch beweisen.

Beweis des Halteproblems

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Annahme: es gibt eine Super-Turingmaschine *H. H* bekommt als Eingabe:

- eine andere Turingmaschine T und
- ein Eingabewort w.

Die Super-Turingmaschine H

- simuliert die "normale" Turingmaschine *T* und
- benutzt als Eingabe für T das Wort w.

Die Super-Turingmaschine H gibt aus

- 1, wenn *T* mit *w* als Eingabe hält und
- 0, wenn T mit w als Eingabe nicht hält.

Beweis des Halteproblems

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Annahme: es gibt eine Super-Turingmaschine H. H bekommt als Eingabe:

- eine andere Turingmaschine T und
- ein Eingabewort w.

Die Super-Turingmaschine H

- simuliert die "normale" Turingmaschine T und
- benutzt als Eingabe für T das Wort w.

- 1, wenn T mit w als Eingabe hält und
- 0, wenn T mit w als Eingabe nicht hält.

Beweis des Halteproblems

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Annahme: es gibt eine Super-Turingmaschine H. H bekommt als Eingabe:

- eine andere Turingmaschine T und
- ein Eingabewort w.

Die Super-Turingmaschine H

- simuliert die "normale" Turingmaschine T und
- benutzt als Eingabe für T das Wort w.

Die Super-Turingmaschine H gibt aus

- 1, wenn T mit w als Eingabe hält und
- 0, wenn T mit w als Eingabe nicht hält.

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Halteproblem-Beweis 2

Wir bauen uns eine unendlich große Tabelle, die

- nach rechts (in den Spalten) alle möglichen Worte w enthält und
- nach unten (in den Zeilen) die codierte Turingmaschine T_w zum Wort w enthält .

Unsere Super-Turingmaschine hat die Tabelle ausgefüllt mit

- \blacksquare 1, wenn $T_w(w)$ hält und
- \bullet 0, wenn $T_w(w)$ nicht hält.

	W_0	W_1	W_2	
T_{w_0}	1	0	1	
T_{W_1}	0	0	0	
T_{W_2}	0	0	1	

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Halteproblem-Beweis 2

Wir bauen uns eine unendlich große Tabelle, die

- nach rechts (in den Spalten) alle möglichen Worte w enthält und
- nach unten (in den Zeilen) die codierte Turingmaschine T_w zum Wort w enthält .

Unsere Super-Turingmaschine hat die Tabelle ausgefüllt mit

- 1, wenn $T_w(w)$ hält und
- \bullet 0, wenn $T_w(w)$ nicht hält.

	Wo	W_1	W_2	
T_{W_0}	1	0	1	
T_{W_1}	0	0	0	
T_{W_2}	0	0	1	

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Halteproblem-Beweis 2

Wir bauen uns eine unendlich große Tabelle, die

- nach rechts (in den Spalten) alle möglichen Worte w enthält und
- nach unten (in den Zeilen) die codierte Turingmaschine T_w zum Wort w enthält .

Unsere Super-Turingmaschine hat die Tabelle ausgefüllt mit

- 1, wenn $T_w(w)$ hält und
- 0, wenn $T_w(w)$ nicht hält.

	<i>w</i> ₀	<i>W</i> ₁	<i>W</i> ₂	
T_{w_0}	1	0	1	
T_{w_1}	0	0	0	
T_{w_2}	0	0	1	

Halteproblem-Beweis 3

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Nun nehmen wir die Diagonale und schreiben sie auch in die Tabelle (hier blau). Außerdem schreiben wir darunter das "Komplementär" der Diagonale (1 wird zu 0 und umgekehrt, hier in rot).

	<i>w</i> ₀	<i>W</i> ₁	W ₂	
T_{w_0}	1	0	1	
T_{w_1}	0	0	0	•••
T_{w_2}	0	0	1	•••
				• • •
T_d	1	0	1	(← die Zeile war schon irgendwo)
$T_{ar{d}}$	0	1	0	\ldots (\leftarrow die Zeile war sicher noch nirgends)

Halteproblem-Beweis 4

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

	w ₀	<i>W</i> ₁	W ₂	
T_{w_0}	1	0	1	
			0	
T_{w_2}	0	0	1	
				•••
T_d	1	0	1	\dots (\leftarrow die Zeile war schon irgendwo)
$T_{\bar{d}}$	0	1	0	$\dots (\leftarrow \text{die Zeile war sicher noch nirgends})$

Obwohl $T_{\bar{d}}$ sicher nirgends vorkam, könnten wir sie bauen:

- Wir wissen, dass T_d hält (sagt uns die Super-Turingmaschine), also gehen wir mit $T_{\bar{d}}$ in eine Endlosschleife.
- Wir wissen, dass T_d nicht hält (sagt uns die Super-Turingmaschine), also halten wir mit $T_{\bar{d}}$.

Verrückt: Wenn es die Super-Turingmaschine gibt, dann könnten wir die Turing-Maschine $T_{\overline{a}}$ bauen, die es eigentlich nicht gibt. Das ist ein Widerspruch, also kann es die Super-Turingmaschine nicht geben.

Halteproblem-Beweis 4

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

	w ₀	<i>W</i> ₁	W ₂	
T_{w_0}	1	0	1	
_		0	_	
T_{w_2}	0	0	1	
				• • •
T_d	1	0	1	(← die Zeile war schon irgendwo)
$T_{\bar{d}}$	0	1	0	$\dots (\leftarrow \text{die Zeile war sicher noch nirgends})$

Obwohl $T_{\bar{d}}$ sicher nirgends vorkam, könnten wir sie bauen:

- Wir wissen, dass T_d hält (sagt uns die Super-Turingmaschine), also gehen wir mit $T_{\overline{d}}$ in eine Endlosschleife.
- Wir wissen, dass T_d nicht hält (sagt uns die Super-Turingmaschine), also halten wir mit $T_{\bar{d}}$.

Verrückt: Wenn es die Super-Turingmaschine gibt, dann könnten wir die Turing-Maschine $T_{\overline{d}}$ bauen, die es eigentlich nicht gibt. Das ist ein Widerspruch, also kann es die Super-Turingmaschine nicht geben.

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- 1 Wiederholung
- Unentscheidbare Probleme
- 3 Äquivalenzrelationen

Äquivalenzrelation

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Äquivalenzrelation

Eine Relation R ist genau dann eine Äquivalenzrelation, wenn sie

- symmetrisch,
- reflexiv und
- transitiv

ist.

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- ≤
- >
- **=** =

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- \bullet \leq reflexiv, transitiv
- >

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- \bullet \leq reflexiv, transitiv
- > transitiv
- **=** =

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- ≤ reflexiv, transitiv
- > transitiv
- reflexiv, transitiv, symmetrisch

Äquivalenzklasse

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Äquivalenzklasse

Sind zwei Elemente $(x,y) \in R$, so schreibt man auch xRy (Infixschreibweise). Alle Elemente, die miteinander in Relation stehen, befinden sich in der selben **Äquivalenzklasse**:

$$[x]_{\mathrm{R}} = \{y|yRx\}$$

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$?
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6?

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$? Ja.
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6?

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$? Ja.
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$. Ja.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6?

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$? Ja.
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$. Ja.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6? 6

Nerode-Äquivalenzrelation

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Nerode-Äquivalenzrelation

Sei $L \subseteq A^*$ eine formale Sprache. w_1 und w_2 seien Wörter $\in A^*$. Die Wörter heißen **Nerode-Äquivalent** (\equiv_L) , falls gilt:

$$w_1 \equiv_L w_2 \leftrightarrow (\forall w \in A^* : w_1 w \in L \leftrightarrow w_2 w \in L)$$

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

• Alphabet $A = \{a, b\}$

■ Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

• Alphabet $A = \{a, b\}$

■ Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

• Alphabet $A = \{a, b\}$

■ Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Wie kann jeder Zustand erreicht werden?

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

• Alphabet $A = \{a, b\}$

■ Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Wie kann jeder Zustand erreicht werden?

- a*
- a* bb*
- a*bb*a {a, b}*

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Alphabet $A = \{a, b\}$
- Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Wie kann jeder Zustand erreicht werden?

- a*
- a* bb*
- a*bb*a {a, b}*

Nerode-Äquivalenzklassen: $[\epsilon]$, [b], [ba].

Faktormenge

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Faktormenge

Die Menge aller Äquivalenzklassen einer Menge zur Relation R bezeichnet man als **Faktormenge** und schreibt $M_{/R}$.

Beispiel 2 zur Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Gegeben sei die Sprache $L = \left\{ a^k b^k | k \in \mathbb{N}_0 \right\}$. Wie sieht hier ein endlicher Akzeptor aus?

Beispiel 2 zur Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Gegeben sei die Sprache $L=\left\{a^kb^k|k\in\mathbb{N}_0\right\}$. Wie sieht hier ein endlicher Akzeptor aus? Es gibt keinen.

Beispiel 2 zur Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Gegeben sei die Sprache $L=\left\{a^kb^k|k\in\mathbb{N}_0\right\}$. Wie sieht hier ein endlicher Akzeptor aus? Es gibt keinen. Nennt einige Nerode-Äquivalenzklassen.

Beispiel 2 zur Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Gegeben sei die Sprache $L=\left\{a^kb^k|k\in\mathbb{N}_0\right\}$. Wie sieht hier ein endlicher Akzeptor aus? Es gibt keinen. Nennt einige Nerode-Äquivalenzklassen. Wieviele gibt es?

Beispiel 2 zur Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Gegeben sei die Sprache $L = \{a^k b^k | k \in \mathbb{N}_0\}.$

Wie sieht hier ein endlicher Akzeptor aus? Es gibt keinen.

Nennt einige Nerode-Äguivalenzklassen.

Wieviele gibt es?

Es gibt unendlich viele Nerode-Äguivalenzklassen. Die Faktormenge hat also unendlich viele Elemente.