

Introduction to Machine Learning Assigned: Saturday, November 9, 2024 Due: Saturday, November 30,2024

Assignment 2

The objectives of this assignment are as follows:

- Custom Neural Network: Create effective PyTorch model for digit recognition.
- Efficient Data Handling: Utilize Torch data loader for seamless dataset management.
- Specialized Training Loop: Optimize training with customized gradient descent and loss function.
- Architectural Enhancements: Explore dropout layers for improved model performance.
- Performance Evaluation: Visualize and compare metrics for model accuracy assessment

Problem Statement

Develop a robust handwritten digit recognition system using deep learning techniques. The task involves creating a neural network model trained on the MNIST dataset, which contains images of handwritten digits from 0 to 9. The goal is to accurately classify these digits.

Assignment Details

1. Data Preparation:

- Download the MNIST dataset from Kaggle and preprocess the data as necessary.
- split the data into an 60% training set, 20% validation set and 20% test set in stratified fashion using scikit learn train test split function.
- Utilize the Torch data loader to efficiently load and manage the dataset.

2. Training Process:

- Implement your own feedforward neural network.
- Develop your own training loop.
- Train the model using:
 - Optimizer: Gradient stochastic descent
 - Learning rate: 0.01
 - Loss Function: Cross Entropy

3. Plot the following:

- Training and validation loss.
- Training and validation accuracy.

Introduction to Machine Learning Assigned: Saturday, November 9, 2024 Due: Saturday, November 30,2024

4. Analysis:

- Evaluate the impact on the model's training and final performance based on the following factors:
 - Changing the learning rate, try 4 different learning rates at least.
 - Changing the batch size, try 4 different batch sizes at least.
 - Changing number of neurons and layers in your model. Try 4 different values for each.
- Test best found model on your test set and report accuracy and confusion matrix

5. Bonus

 Use convolution neural network architectures and introduce dropout layer and layer normalization to your model and analysis the effect of adding them on the training and final performance.

Requirements:

- Construct a neural network architecture using PyTorch.
- Include at least two hidden layers in your network.
- Utilize ReLU activation functions between hidden layers.
- You have the flexibility to adjust the number of hidden layers and the number of weights in each layer according to your preferences.
- In the analysis part you should change one factor at time, training the network from scratch to generate the plots in point 3 and report its final accuracy. (Same if you are going to use the bonus)
- You should add your insights.

Deliverables:

- You should have your analysis in markdown cells in the notebook.
- If you don't know how to add your analysis in an organized manner add a report.
- You should deliver your notebooks as pdf, also the original notebook.
- You should work in groups of three. Each team should have one submission Id1_id2_id3.zip.
- Delivery will be ignored if you didn't follow the naming scheme provided in 4, any one of the team ids can be used.

Grading Scheme:

- Data Preparation 20%
- Training Process 40%
 - Training Loop 20%
 - Neural Network Architecture 20%
- Analysis 40%
- Bonus 10%