Recitation 14

All good things...

Today's agenda

- We will discuss in recitation
 - Mock Exam
 - Caches
 - Virtual Memory
- For homework tonight
 - ▶ R14
 - Answer some questions
 - ► Check ALL of your Recitation grades!!! Email me with any concerns ASAP!!!

Caches

Memory

Main memory is SLOW!!!

From "Latency Numbers Every Programmer Should Know"

Memory

- Main memory is SLOW!!!
 - Slow enough that it would be a real bottleneck
- ▶ To get around being slow, we use caching
 - Basically, we store some data in really fast data that is IN the CPU

Memory

- Main memory is SLOW!!!
 - Slow enough that it would be a real bottleneck
- To get around being slow, we use caching
 - Basically, we store some data in really fast data that is IN the CPU

Caching

- There are a few different schemes and concepts
 - Associativity
 - Where can data be stored in the cache?
 - ▶ Direct Cache, Fully Associative, Set Associative
 - Replacement/Eviction Policy
- What do we store in the cache?
 - ▶ The data, part of the address, and some information on if something is there or not
- Have multiple levels of cache

Virtual Memory

Virtual Addresses

- ► Each virtual address is mapped to some physical address
- ► The translation occurs using a "page table"
- Each virtual address contains a page offset, which maps to a single byte within a page
- Each virtual address contains one or more page indexes into a number of tables

Page Tables

- Page tables map virtual page numbers to physical page numbers
- Page tables contain a number bits to mark whether an entry is present in memory along with the mapping to a physical page number
- The physical page number is the upper bits for the physical memory address
 - ▶ Along with the page offset it makes up the physical address

Multilevel Page Tables

- We would need to store many mappings if our addresses are large
- Instead, we can have multiple layers of page tables
- We split the virtual address into several parts, where each part of the address is an index into a table
- Each table entry tells us the physical page number of the next table

The TLB

- Having to access memory to translate memory addresses would be very sad
- Instead, we use the TLB, which is a cache for recently translated addresses
- On TLB miss, we translate the address normally, and then cache the result