A Digital Readout Technique for Capacitive Sensor Applications

Seminar Group IIC: Paper no. 15

3649361- Wasim Essbai Matr. No. - Name Surname

Contents

Introduction	1
Ideal Analysis	1
Bibliography	6

Introduction

In this article, a technique for capacitance measurement is discussed, based on the work of Kung et al.[1].

The approach presented gives a digital output, that could be converted to analog by a DAC(Digital to Analog Converter) for further processings. This technique allows to reach high measurement resolution since it deletes errors due to: Parasitic capacitances, op-amp offset or charge injection from MOS switch. In figure Fig. 1 is showed the circuit that performs the described functions.

Figure 1: Capacitance measurement circuit.

Ideal Analysis

A first analysis is performed assuming an ideal circuit, so there is no charge injection $(Q_{s3}=0)$, no parasitic capacitance $(C_P=0)$ and ideal op-amp (offset $V_{os}=0$ and ∞ gain). The circuit becomes as showed in figure Fig. 2.

Figure 2: Capacitance measurement circuit without nonidealities.

Bibliography

[1] J. T. Kung, H. S. Lee, and R. T. Howe, "A Digital Readout Technique for Capacitive Sensor Applications," *IEEE Journal of Solid-State Circuits*, vol. 23, no. 4, pp. 972–977, 1988.