Digital Signal Processing

Shivanshu AI21bBTECH11027

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
Abstract—This manual provides a simple introduction		

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://raw.githubusercontent.com/ gadepall/ EE1310/master/filter/codes/Sound Noise.wav

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

*The author is a student with the Department of Artificial Intelligence, Indian Institute of Technology, Hyderabad 502285 India e-mail: ai21btech11027@iith.ac.in .

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('Sound Noise.wav'
#sampling frequency of Input signal
sampl freq=fs
#order of the filter
order=4
#cutoff frquency 4kHz
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and denominator
   polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
output signal = signal.filtfilt(b, a,
   input signal)
#output \ signal = signal.lfilter(b, a,
   input signal)
#write the output signal into .wav file
sf.write('Sound With ReducedNoise.wav',
   output signal, fs)
```

2.4 The output of the python script 2.3 in Problem is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above

5.1 kHz.

3 Difference Equation

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/gadepall/EE1310/raw/master/filter/codes/xnyn.py

Fig. 3.2

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathbb{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)
$$(4.5)$$

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.7}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.8)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.9}$$

4.3 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.10)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.11)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.12}$$

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.13}$$

and from (4.11),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.14)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.15}$$

using the fomula for the sum of an infinite geometric progression.

4.4 Show that

$$a^{n}u(n) \stackrel{Z}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$
 (4.16)

4.5 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.17)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of x(n).

Solution: The following code plots Fig. 4.5.

wget https://raw.githubusercontent.com/gadepall/EE1310/master/filter/codes/dtft.py

Fig. 4.5: $|H(e^{j\omega})|$