

1 H E M E

151 캐시(Cache) 기억장치

1회 ▶ 99-2

중앙처리장치(CPU)의 속도와 주기억장치의 속도 차가 클 때 명령어(Instruction)의 수행 속도를 중앙처리장치의 속도와 비슷하도록 하기 위하여 사용하는 메모리는?

① Virtual memory

② Cache memory

③ Associative memory

4 Main memory

[]] 핵 심 이 론

캐시 기억장치(Cache Memory)

- 주기억장치는 CPU보다 훨씬 느리기 때문에 주기억장치로부터 데이터를 읽어오는 동안에 CPU가 한참을 기다려야 하는데, CPU와 주기억장치의 속도를 가능한 같도록 하기 위한 기억장치이다.
- CPU와 주기억장치 사이에서 정보 교환을 위하여 주기억장치의 정보를 일시적으로 저장하는 버퍼(Buffer) 기능을 수행한다.
- 기억장치의 접근 시간을 줄이므로 컴퓨터의 처리 속도를 향상시킨다.
- 속도가 빠르지만, 가격이 고가이다.

유 사 문 제

4회 ▶ 10-1, 06-1, 02-1, 01-1

- 1. 중앙처리장치가 주기억장치보다 더 빠르기 때문에 프로그램 실 행 속도를 중앙처리장치의 속도에 근접하도록 하기 위해서 사 용되는 기억장치는?
- ① 가상기억장치
- ② 모듈 기억장치
- ③ 보조 기억장치
- ④ 캐시 기억장치

1회 ▶ 00-1

- 2. 인스트럭션 수행 속도가 중앙처리장치 속도와 거의 같도록 하 기 위해 사용되는 기억장치는?
- ① Associative 기억장치
- ② Cache 기억장치
- ③ Virtual 기억장치
- (4) PROM

2회 ▶ 산 14-2, 02-1

- 3. 주기억장치의 속도가 CPU의 속도에 비해 현저히 늦다. 명령어 의 수행 속도를 CPU의 속도와 유사하도록 하고자 할 때 사용되는 기억장치는?
- ① Cache 기억장치
- ② Virtual 기억장치
- ③ Segment 기억장치
- ④ 복수 모듈 기억장치

2회 ▶ 산 05-1, 02-2

- 4. 컴퓨터의 성능을 높이기 위하여 명령의 처리 속도를 CPU의 속 도와 같도록 하기 위해 기억장치와 CPU 사이에 사용하는 기 억장치는?
- ① ROM
- ② virtual memory
- ③ DRAM
- 4 cache memory

1회 ▶ 산 00-2

- 5. 중앙처리장치와 주기억장치에 제한을 받지 않고 중앙처리장치 의 속도로 수행되도록 하는 기억장치는?
- ① 캐시 메모리
 - ② 인스트럭션 버퍼
- ③ CAM
- ④ 제어기억장치

2회 ▶ 산 04-1 01-1

- 6. 성능을 향상시키기 위하여 주기억장치와 CPU 레지스터 사이에 서 데이터를 이동시키는 중간 버퍼로 작용하는 기억장치는?
- ① CD
- ② C 드라이브
- ③ 캐시 기억장치
- ④ 누산기

2회 ▶ 산 05-4, 03-4

7. 다음 () 안에 들어갈 올바른 것은?

캐시 메모리는 주기억장치의 액세스 타임과 프로세서 논리회로와의 () 차이를 줄이기 위하여 쓰인다.

- ① 지연 시간
- ② 설정 시간
- ③ 구조
- 4) 속도

4회 ▶ 13-3, 07-1, 03-2, 01-2

- 8. 다음 중 캐시(Cache) 기억장치에 대한 설명으로 가장 옳은 것은?
- ① 중앙처리장치와 주기억장치의 정보교환을 위해 임시 보관하는 장치이다.
- ② 중앙처리장치의 속도와 주기억장치의 속도를 가능한 같도록 하기 위한 장치이다.
- ③ 캐시와 주기억장치 사이에 정보 교환을 위하여 임시 저장하는 장치이다.
- ④ 캐시와 주기억장치의 속도를 같도록 하기 위한 장치이다.

1회 ▶ 13-2

- 9. cache memory에 대한 설명과 가장 관계가 깊은 것은?
- ① 내용에 의해서 access되는 memory unit이다.
- ② 대형 computer system에서만 사용되는 개념이다.
- ③ 중앙처리장치가 자주 접근하거나 최근에 접근한 메모리 블록을 저장하는 초고속 기억장치이다.
- ④ memory에 접근을 각 module별로 액세스 하도록 하는 기억장이다.

1회 ▶ 산 99-3

- 10. 캐시 기억장치(cache memory)의 특징 중 옳지 않은 것은?
- ① 고속이며, 가격이 저가이다.
- ② 주기억장치와 CPU사이에서 일종의 버퍼(buffer)기능을 수행한다.
- ③ 기억장치의 접근(access) 시간을 줄이므로 컴퓨터의 처리 속도를 향상 시킨다.
- ④ 수십 Kbyte~수백 Kbyte의 용량을 사용한다.

152 캐시 메모리의 적중률

1회 ▶ 08-2

캐시기억장치에서 캐시에 적중되는 정도를 나타내는 식으로 옳은 것은?

- ② 캐시에 적중되는 횟수 캐시기억장치 용량
- ③ 전체 기억장치 액세스 횟수 캐시에 적중되는 횟수
- 4 캐시에 적중되는 횟수전체 기억장치 액세스 횟수

핵 심 이 론

캐시 메모리의 적중률(Hit Ratio)

- 캐시 기억장치에 찾는 내용이 있을 확률을 의미한다.
- 적중률 = 적중 횟수 / 총 접근 횟수

유 사 문 제

2회 ▶ 산 13-3, 10-4

- 1. 캐시 적중률(hit ratio)을 구하는 식은?
- ① <u>총액세스시간</u> 적중시간
- ② 적중횟수총액세스횟수
- ③ <u>총액세스횟수</u> 적중횟수
- ④ 적중시간 총액세스시간

2회 ▶ 산 11-2, 05-1추

- 2. 적중률(hit ratio)은 어느 메모리와 관계있는가?
- ① ROM
- ② 컴퓨터의 C드라이브
- ③ 캐시 메모리
- ④ CD 드라이브

1회 ▶ 08-4

- 3. 다음 중 분리 캐시(split cache)를 사용하는 주요 이유는?
- ① 캐시 크기의 확장
- ② 캐시 적중률 향상
- ③ 캐시 액세스 충돌 제거
- ④ 데이터 일관성 유지

2회 ▶ 11-2, 08-4

- 4. 다음과 같은 값을 가지는 시스템에서 2계층 캐시 메모리를 사용할 경우는 그렇지 않은 경우에 비해 평균 메모리 액세스 시간이 약 몇 배 향상되는가?
 - L1 히트시간 = 1사이클, L2 미스율 = 5%
- L2 히트시간 = 4사이클, L2 미스율 = 20%
- L2 미스패널티 = 100사이클
- ① 0.7

2 1.4

3 2.7

4 5.5

유수의 조어

- 2계층 캐시 메모리는 캐시 메모리를 L1, L2로 나누고, CPU가 필요한 데이터를 L1 →L2→주기억장치 순으로 액세스하여 찾는 것입니다.
- 히트시간은 검색시간을 의미하고, 미스율은 데이터가 없을 확률, 미스패널티는 주 기억장치 액세스 시간입니다.
- L1만 사용하면 평균 메모리 액세스 시간은 (L1 히트시간 + L1 미스율 × L1 미스패널티) = 1사이클 + 5% × 100사이클 = 6사이클입니다.
- 그러므로 6사이클 / 2.2사이클은 약 2.7이므로 L2를 사용할 경우 L1만 사용하는 경우에 비해 평균 메모리 액세스 시간이 약 2.7배 향상됩니다.

1회 ▶ 13-1

- 5. 전체 기억장치 액세스 횟수가 50이고, 원하는 데이터가 캐시에 있는 횟수가 45라고 할 때, 캐시의 미스율(miss ratio)은?
- ① 0.9

2 0.8

③ 0.2

4 0.1

153 캐시 메모리의 매핑 프로세스

1회 ▶ 11-2

주기억장치로부터 캐시 메모리로 데이터를 전송하는 매핑 프로세스 방법이 아닌 것은?

- ① associative mapping
- 2 direct mapping
- 3 set-associative mapping
- 4 virtual mapping

핵 심 이 론

매핑 프로세스(Mapping Process)

- 주기억장치로부터 캐시 기억장치로 데이터를 전송하는 방법이다.
- 종류

직접 매핑 (Direct Mapping)	 CPU가 주기억장치의 참조를 요청할 때 CPU 번지의 태그(Tag) 필드와 캐시의 태그 필드를 비교하여 일치하면 원하는 데이터를 찾게 되고, 그렇지 않으면 원하는 워드는 주기억장치로 부터 다시 읽어 들인다. 하드웨어가 간단하고, 구현 비용이 적게 든다. 만약 같은 인덱스를 가졌으나 다른 태그를 가진 두 개 이상의 워드가 반복해서 접근된다면 적중률(히트율)이 상당히 떨어질 수 있다는 단점이 있다.
어소시에이티브 매핑 (Associative Mapping)	• 가장 빠르고 융통성 있는 캐시 구조로서 주기억장치 워드의 번지와 데이터를 함께 저장한다. • 캐시가 가득 차 있으면 라운드 로빈(Round Robin) 방식 등으로 번지-데이터 쌍을 교체한다.
세트-어소시에이티브 매핑 (Set-Associative Mapping)	• CPU가 주기억장치 참조를 요청하면 CPU 번지의 태그 필드는 캐시의 두 태그와 비교된다. • 기록(Write) 동작이 이루어질 때마다 캐시 기억장치와 주기억장치를 동시에 수정하는 Write-through 방식과 기록 동작 동안에는 캐시 기억장치 내용만 갱신하는 Write-back 방식이 있다.

유사문제

1회 ▶ 산 12-2

- 1. 캐시(cache)에 기억시키는 블록 주소의 일부는?
- ① 태그 주소 ② 묵시 주소 ③ 캐시 주소 ④ 유효 주소

1회 ▶ 09-1

- 2. 16바이트의 블록 크기와 64블록으로 구성된 캐시에서 바이트 주소 1200이 사상(mapping)되는 블록 번호는?
- (1) 10
- ② 11
- ③ 12
- 4 13

1회 ▶ 01-3

- 주기억장치로부터 캐시 메모리로 데이터를 전송하는 매핑 프 로세스 방법이 아닌 것은?
- ① 어소시어티브 매핑
- ② 직접 매핑
- ③ 세트-어소시어티브 매핑
- ④ Buffer

1회 ▶ 산 10-2

- 4. 주기억장치로부터 캐시 메모리로 데이터를 전송하는 매핑 방법이 아닌 것은?
- 1 associative mapping
- 2 direct mapping
- 3 set-associative mapping
- 4 relative mapping

1회 ▶ 산 05-2

- 5. 캐시 메모리에서 사용하지 않는 매핑(mapping) 방법은?
- 1 direct mapping
- 2 database mapping
- ③ associative mapping
- 4 set-associative mapping

1회 ▶ 09-2

- 6. 캐시 메모리의 매핑 방법 중 같은 인덱스를 가졌으나 다른 tag를 가진 두 개 이상의 워드가 반복하여 접근된다면 히트율이 상당히 떨어질 수 있는 것은?
- ① associative 매핑
- 2 set-associative 매핑
- ③ direct 매핑
- 4 indirect 매핑

2회 ▶ 12-2, 10-1

- 7. 캐시기억장치에서 적중률이 낮아질 수 있는 매핑 방법은?
- ① 연관 매핑
- ② 세트-연관 매핑
- ③ 간접 매핑
- ④ 직접 매핑

[정답] 핵심문제 ④ / 유사문제 1. ① 2. ② 3. ④ 4. ④ 5. ② 6. ③ 7. ④

154 캐시 메모리 기타 문제

1회 ▶ 12-2

프로세서가 수행될 때 나타나는 지역성을 응용해서 접근 속도를 빠르게 하는 캐시 메모리에서 변화된 캐시의 내용을 주기억장치에 기록하는 방법이 아닌 것은?

- ① write-through
- ② write-back
- ③ write-once
- 4 write-all

유 사 문 제

1회 ▶ 13-1

- 1. 캐시의 쓰기 정책 중 write-through 방식의 단점은?
- ① 쓰기 동작에 걸리는 시간이 길다.
- ② 읽기 동작에 걸리는 시간이 길다.
- ③ 하드웨어가 복잡하다.
- ④ 주기억장치의 내용이 무효 상태인 경우가 있다.

1회 ▶ 14-2

- 2. 캐시 메모리의 기록 정책 가운데 쓰기(write) 동작이 이루어 질 때마다 캐시 메모리와 주기억장치의 내용을 동시에 갱신 하는 방식은?
- 1 write-through
- 2 write-back
- ③ write-once
- 4 write-all

1회 ▶ 산 00-1

- 3. 캐시(cache) 메모리 설계시 고려할 사항이 아닌 것은?
- (1) Cache size
- ② 전송 Block size
- ③ 주변 입출력 장치
- 4 Replacement algorithm

1회 ▶ 산 00-4

- 4. 캐시 메모리(cache memory)와 관련이 가장 적은 것은?
- ① 적중률(hit ratio)
- ② 페이지(page)
- ③ 참조의 국한성(locality of reference)
- ④ 매칭(matching)

1회 ▶ 산 08-1

- 5. 캐시메모리(Cache Memory)와 관련이 가장 적은 것은?
- ① 연관 매핑(Associative Mapping)
- ② 가상기억장치(Virtual Memory)
- ③ 적중률(Hit Ratio)
- ④ 참조의 국한성(Locality of Reference)

1회 ▶ 산 08-2

- 6. 캐시기억장치에 대한 설명으로 적합한 것은?
- ① 현재 실행 중인 코드 저장
- ② 파일을 저장하는 장소
- ③ 주기억장치의 접근 속도는 동일
- ④ 주기억장치와 보조 기억장치 사이에 위치

1회 ▶ 08-4

- 7. 다음 메모리 구조에 대한 설명 중 가장 옳은 것은?
- ① 캐시는 가장 많이 쓰이고 있는 프로그램과 데이터를 저장하지만 보조기억장치(가상메모리)는 CPU에 의하여 현재 쓰이지 않는 부분을 저장한다.
- ② 캐시는 가장 많이 쓰이고 있는 프로그램과 데이터를 저장하고 보조 기억장치(가상메모리)도 CPU에 의하여 현재 가장 많이 쓰이고 있 는 부분을 저장한다.
- ③ 보조기억장치(가상메모리)는 가장 많이 쓰이고 있는 프로그램과 데 이터를 저장하지만 캐시는 CPU에 의하여 현재 쓰이지 않는 부분을 저장한다.
- ④ 보조기억장치(가상메모리)와 캐시 모두 CPU에 의하여 현재 쓰이지 않는 부분을 저장한다.

1회 ▶ 09-4

- 8. 캐시 메모리에서 miss가 발생한 경우 블록을 교환하는 교환 알고리즘 가운데 가장 효율적인 방법은?
- ① LRU(Least Recently Used)
- ② LFU(Least Frequently Used)
- ③ FIFO(First In First Out)
- 4 LIFO(Last In First Out)

1회 ▶ 산 08-4

- 9. 캐시 메모리에서 miss가 발생한 경우 블록을 교환하는 교환 알고리즘에 해당하지 않는 것은?
- ① LRU(Least Recently Used)
- ② LFU(Least Frequently Used)
- ③ FIFO(First In First Out)
- (4) RR(Round Robin)

155 연관 기억장치

1회 ▶ 01-2

기억장치에 기억된 정보를 액세스하기 위하여 주소를 사용하는 것이 아니고, 기억된 정보의 일부분을 이용하여 원하는 정보를 찾는 방법은?

① RAM

② Associative memory

③ ROM

4 Virtual memory

┛ 핵심이론

연관 기억장치(Associative Memory)

- 기억장치에서 자료를 찾을 때 주소에 의해 접근하지 않고, 기억된 정보의 일부분을 이용하여 원하는 정보가 기억된 위치를 알아낸 후 그 위치에서 나머지 정보에 접근하는 기억장치이다.
- CAM(Content Addressable Memory) 또는 연상 기억장치라고도 한다.

유 사 문 제

3회 ▶ 산 12-3, 06-1, 99-1

- 1. 캐시(Cache) 메모리에서 특정 내용을 찾는 방식 중 매핑 방식에 주로 사용되는 메모리는?
- (1) Nano Memory
- 2 Associative Memory
- ③ Virtual Memory
- 4 Stack Memory

4회 ▶ 05-1, 03-4, 02-2, 00-3

- 2. 다음 기억장치 중 CAM(Content Addressable Memory)이라 고 하는 것은?
- ① 주기억장치
- ② Cache 기억장치
- ③ Virtual 기억장치
- ④ Associative 기억장치

3회 ▶ 산 06-2, 05-2, 03-2

- 3. 기억된 정보의 일부분을 이용하여 원하는 정보가 기억된 위치를 알아낸 후 그 위치에서 나머지 정보에 접근하는 기억장치를 무엇이라 하는가?
- ① Cache memory
- 2 Associative memory
- ③ Virtual memory
- (4) Main memory

1회 ▶ 03-1

- 4. 메모리에 저장된 항목을 찾는데 주소를 사용하는 것이 아니라 기억된 정보의 일부분을 이용하여 원하는 정보에 접근할 수 있는 기억장치는?
- ① Virtual Memory
- ② Cache Memory
- ③ Associative Memory
- 4 Multiple Module Memory

1회 ▶ 05-4

- 5. 메모리에 저장된 데이터를 찾는데 있어서 데이터가 있는 메모리 지수소보다 데이터 내용으로 접근하여 데이터를 찾는 메모리 장치를 무엇이라 하는가?
- 1 Associative Memory
- ② Virtual Memory
- ③ Core Memory
- (4) Magnetic Disk

3회 ▶ 04-4, 01-3, 산 01-2

- 6. 메모리의 내용으로 접근(access)할 수 있는 메모리는?
- ① ROM

- ② RAM
- ③ Virtual 메모리
- ④ Associative 메모리

3회 ▶ 산 07-2, 05-1추, 01-1

- 7. 내용에 의하여 액세스 되는 메모리 장치는?
- 1 Associative memory
- ② Buffer
- ③ Virtual memory
- 4 Cache memory

156 연관 기억장치의 특징

1회 ▶ 07-1

CAM(Content Addressable Memory)의 특징으로 가장 옳은 것은?

① 값이 싸다.

- ② 구조 및 동작이 간단하다.
- ③ 명령어를 순서대로 기억시킨다.
- ④ 저장된 내용의 일부를 이용하여 정보의 위치를 검색한다.

핵 심 이 론

연관 기억장치(Associative Memory)의 특징

- 캐시 기억장치나 가상기억장치에서 사용하는 Mapping Table 구성에 주로 사용된다.
- 주소에 의해서만 접근이 가능한 기억장치보다 정보 검색이 신속하다.
- 병렬 판독 회로가 있어야 하므로 하드웨어의 비용이 크다.
- 구성 요소 : 검색 데이터 레지스터, 마스크 레지스터, 일치 지시기

¹ 유 사 문 제

1회 ▶ 03-4

1. Associative 기억장치의 특징으로 옳은 것은?

- ① 값이 싸다.
- ② 구조 및 동작이 간단하다.
- ③ 명령어를 순서대로 기억시킨다.
- ④ 저장된 정보의 주소보다 내용 자체로 검색

1회 ▶ 03-1

2. 연상(associative) 기억장치의 특징이 아닌 것은?

- ① 기억된 정보의 일부분을 이용하여 원하는 정보가 기억된 위치를 알아낸 후 나머지 정보에 접근한다.
- ② 주소에 의해서만 접근이 가능한 기억장치보다 정보 검색이 신속하다.
- ③ 하드웨어 비용이 절감된다.
- ④ 병렬 판독 회로가 있어야 한다.

1회 ▶ 04-

3. 연관 메모리(associative memory)의 특징이 아닌 것은?

- ① 주소 매핑(mapping)
- ② 내용 지정 메모리(CAM)
- ③ 메모리에 저장된 내용에 의한 access
- ④ 기억장치에 저장된 항목을 찾는 시간 절약

2회 ▶ 10-4, 05-1추

4. 연관기억(associative memory) 장치에 대한 설명 중 옳지 않은 것은?

- ① 고속 메모리에 속한다.
- ② Mapping table 구성에 주로 사용한다.
- ③ 주소에 의해 접근하지 않고 기억된 내용의 일부를 이용할 수 있다.
- ④ CPU의 속도와 메모리의 속도 차이를 줄이기 위해 사용되는 고속 Buffer Memory이다.

1회 ▶ 04-2

5. 연관(associative) 기억장치에 대한 설명이 아닌 것은?

- ① 주소를 필요로 하지 않는다.
- ② 주소 공간의 확대가 목적이다.
- ③ CAM(Content Addressable Memory)이라고도 한다.
- ④ 데이터의 내용에 의해 접근되는 메모리 방식이다.

1회 ▶ 07-4

6. 연관기억장치(Associative Memory)에 대한 설명과 가장 관계 가 없는 것은?

- ① 저장 공간의 확대가 목적이다. ② 신속한 검색이 가능하다.
- ③ 주소를 필요로 하지 않는다.
- ④ 하드웨어의 비용이 크다.

1히 ▶ 사 04-1

7. 어소시에티브(Associative) 기억장치에 대한 설명으로 옳지 않은 것은?

- ① 기억된 여러 개의 자료 중에서 주어진 특성을 가진 자료를 신속히 찾을 수 있다.
- ② 중앙처리장치와 주기억장치의 속도 차가 현저할 때 사용된다.
- ③ 비파괴적으로 읽을 수 있어야 한다.
- ④ 병렬 판독 회로가 있어야 하므로 하드웨어 비용이 크다.

2회 ▶ 산 12-1, 05-4

8. CAM(Content Addressable Memory)에 대한 설명 중 가장 옳지 않은 것은?

- ① 구성 요소로서 마스크 레지스터, 검색 자료 레지스터 등이 있다.
- ② 내용에 의하여 액세스 되는 메모리 장치이다.
- ③ 데이터를 직렬 탐색하기에 알맞도록 되어 있다.
- ④ 주소를 사용하지 않고 기억된 정보의 일부분을 이용하여 자료를 신속 히 찾을 수 있다.

1회 ▶ 13-3

9. CAM(Content Addressable Memory)에 대한 설명 중 가장 옳지 않은 것은?

- ① 구성 요소로 key 레지스터, match 레지스터 등이 있다.
- ② 병렬 검색이 가능하다.
- ③ 데이터를 직렬 탐색하기에 알맞도록 되어 있다.
- ④ 주소를 사용하지 않고 기억된 정보의 일부분을 이용하여 자료를 신속 히 찾을 수 있다.

1회 ▶ 산 08-4

10. CAM(Content Addressable Memory)의 특징으로 옳은 것은?

- ① 주소 공간의 확대가 목적이다.
- ② 하드웨어 비용이 대단히 적다.
- ③ 구조 및 동작이 대단히 간단하다.
- ④ 저장된 정보의 내용 자체로 검색한다.

1회 ▶ 01-1

11. Associative 기억장치에 사용되는 기본요소가 아닌 것은?

- ① 일치 지시기
- ② 마스크 레지스터
- ③ 인덱스 레지스터
- ④ 검색 데이터 레지스터

1회 ▶ 산 06-4

12. 연관(Associative) 기억장치의 구성 요소로 볼 수 없는 것은?

- ① 검색 자료 레지스터
- ② 불일치 지시기
- ③ 플래그 레지스터
- ④ 마스크 레지스터
- [정답] 핵심문제 ④ / 유사문제 1. ④ 2. ③ 3. ① 4. ④ 5. ② 6. ① 7. ② 8. ③ 9. ③ 10. ④ 11. ③ 12. ②

157 가상기억장치 1

1회 ▶ 07-4

가상기억장치에 대한 설명 중 틀린 것은?

- ① 주소 공간이란 가상 공간의 집합을 말한다.
- ② 실제 컴퓨터의 기억장치 내 주소를 물리주소라고 한다.
- ③ 가상주소를 물리주소로 변환하는 방법의 하나로 CAM을 사용한다.
- ④ 빈번히 참조되는 프로그램이나 데이터를 별도의 메모리에 저장하여 처리한다.

┛ 핵심이론

가상기억장치(Virtual Memory)

- 보조기억장치의 일부 용량을 주기억장치처럼 가상하여 사용할 수 있도록 하는 기법이다.
- 가상기억장치의 가장 큰 목적은 주기억장치의 용량(주소 공간)의 확대이다.
- 주기억장치의 이용률과 다중 프로그래밍의 효율을 높일 수 있다.
- 사용자가 프로그램 크기에 제한 받지 않고 실행이 가능하다.
- 가상기억장치의 가장 큰 목적은 주기억장치의 용량(주소 공간)의 확대이다.
- 사용하는 있는 보조기억장치는 자기 디스크와 같은 DASD(직접 접근 기억장치)이어야 한다.

유 사 문 제

1회 ▶ 00-1

1. 가상기억장치(virtual memory)의 가장 큰 목적은?

- ① 접근시간의 단축
- ② 용량의 확대
- ③ 동시에 여러 단어의 탐색
- ④ 주소지정 방식의 탈피

1회 ▶ 03-1

2. 가상기억장치(virtual memory)의 가장 큰 목적은?

- ① 접근시간의 단축
- ② 주소 공간의 확대
- ③ 주소지정 방식의 탈피
- ④ 동시에 여러 단어의 탐색

2회 ▶ 10-1, 05-4

3. 가상(virtual) 기억장치에 대한 설명이 아닌 것은?

- ① 주목적은 컴퓨터의 속도를 향상시키기 위한 방법이다.
- ② 주기억장치를 확장한 것과 같은 효과를 제공한다.
- ③ 실제로는 보조기억장치를 사용하는 방법이다.
- ④ 사용자가 프로그램 크기에 제한 받지 않고 실행이 가능하다.

1회 ▶ 산 06-1

4. 다음 중 가상(Virtual) 기억장치에 관한 설명이 옳지 않은 것은?

- ① 컴퓨터의 속도를 개선하기 위한 방법이다.
- ② 주기억장치와 보조기억장치가 계층 기억 체제를 이루고 있다.
- ③ 컴퓨터의 기억용량을 확장하기 위한 방법이다.
- ④ 하드웨어에 의한 것이 아니라 소프트웨어에 의해 실현된다.

1회 ▶ 산 08-1

5. 가상메모리(Virtual Memory)의 특징이 아닌 것은?

- ① 주소 변환 작업이 필요하다.
- ② 기억 공간의 확장을 위한 것이다.
- ③ 기억장치의 처리 속도 향상을 위한 것이다.
- ④ 보조기억장치의 접근이 자주 발생하면 시스템의 처리 효율이 저하될 수 있다.

1회 ▶ 01-2

6. 가상기억장치(virtual memory)의 특징이 아닌 것은?

- ① 가상기억장치의 목적은 기억 공간이 아니라 속도이다.
- ② 가상기억 공간의 구성은 프로그램에 의해서 수행된다.
- ③ 보조기억장치는 자기 디스크를 많이 사용한다.
- ④ 보조기억장치의 접근이 자주 발생되면 컴퓨터 시스템의 처리 효율이 저하될 수 있다.

1회 ▶ 04-1

7. 가상기억장치(virtual memory)의 특징이 아닌 것은?

- ① 컴퓨터의 용량을 확장하기 위한 방법이다.
- ② 가상기억 공간의 구성은 프로그램에 의해서 수행된다.
- ③ 가상기억장치의 목적은 기억 공간이 아니라 속도이다.
- ④ 주기억장치와 보조기억장치가 계층 기억 체제를 이루고 있다.

2회 ▶ 13-1, 10-4

8. 가상기억장치에 대한 설명으로 틀린 것은?

- ① 가상기억장치의 목적은 보조기억장치를 주기억장치처럼 사용하는 것이다.
- ② 처리 속도가 CPU 속도와 비슷하다.
- ③ 소프트웨어적인 방법이다.
- ④ 주기억장치의 이용률과 다중 프로그래밍의 효율을 높일 수 있다.

1회 ▶ 산 99-1

9. 가상기억 체제를 설명한 것 중 옳은 것은?

- ① 컴퓨터의 구조 및 조작이 간편해진다.
- ② 주기억장치의 용량이 증대된다.
- ③ 주소 공간이 확대되어 주기억장치의 용량이 큰 것처럼 동작된다.
- ④ 명령 수행 시간이 빨라진다.

[정답] 핵심문제 ④ / 유사문제 1. ② 2. ② 3. ① 4. ① 5. ③ 6. ① 7. ③ 8. ② 9. ③

THEME **158** 가상기억장치 2

2회 ▶ 산 13-1, 02-2

가상기억장치에 관한 설명 중 옳은 것은?

- ① 많은 데이터를 주기억장치에서 한 번에 가져오는 것을 말한다.
- ② 사용자가 보조 메모리의 총용량에 해당하는 기억장소를 컴퓨터가 갖고 있는 것처럼 가상하 고, 프로그램을 작성할 수 있는 것을 말한다.
- ③ 데이터를 미리 주기억장치에 넣는 것을 말한다.
- ④ 자주 참조되는 프로그램과 데이터를 모은 메모리다.

유 사 문 제

1회 ▶ 산 00-2

- 1. 가상기억체제에 대한 설명으로 옳지 않은 것은?
- ① 컴퓨터 속도는 문제시되지 않는다.
- ② 주소 공간의 확대가 목적이다.
- ③ 사용할 수 있는 보조기억장치는 DASD이어야 한다.
- ④ 보조기억장치로는 자기 테이프가 많이 사용된다.

1회 ▶ 산 11-2

- 2. 가상기억장치에 대한 설명으로 틀린 것은?
- ① 실행시킬 프로그램을 여러 개의 블록으로 만들어 보조 기억장치에 보 관해놓고 실행 시 필요한 블록만 주기억장치에 적재하여 멀티프로그 래밍의 효율을 높일 수 있다.
- ② 가상기억장치로 사용하는 보조기억장치는 직접 접근 기억장치로 보통 디스크를 사용한다.
- ③ 주소 매핑은 가상 주소를 실기억 주소로 조정하여 변환하는 것이다.
- ④ 보조기억장치는 자기 테이프가 많이 사용된다.

1회 ▶ 산 14-2

- 3. 가상 메모리(virtual memory)에 대한 설명으로 틀린 것은?
- ① 운영체제가 제어한다.
- ② 매핑 테이블이 있어야 한다.
- ③ 미스율(miss rate)이 높다. ④ 논리적 공간을 주소화한 것이다.

1회 ▶ 13-3

- 4. 가상기억장치(Virtual Memory System)를 도입함으로써 기대할 수 있는 장점이 아닌 것은?
- ① Binding Time을 늦추어서 프로그램의 Relocation을 용이하게 쓴다.
- ② 일반적으로 가상기억장치를 채택하지 않는 시스템에서의 실행 속도보 다 빠르다.
- ③ 실제 기억용량보다 큰 가상공간(Virtual Space)을 사용자가 쓸 수 있다.
- ④ 오버레이(Overlay) 문제가 자동적으로 해결된다.

1회 ▶ 07-2

- 5. 가상메모리로 사용할 수 있는 보조기억장치로 가장 적당한 기록 매체는?
- ① 자기디스크(Magnetic Disk)
- ② 자기 테이프(Magnetic Tape)
- ③ 캐시메모리(Cache Memory)
- (4) RAM(Random ACCESS Memory)

1회 ▶ 12-1

- 6. CPU에 의해 참조되는 각 주소는 가상주소를 주기억장치의 실 제주소로 변환하여야 한다. 이것을 무엇이라고 하는가?
- 1 mapping
- 2 blocking
- (3) buffering
- (4) interleaving

2회 ▶ 산 03-1, 00-3

- 7. 가상기억장치에서 주기억장치로 자료의 페이지를 옮길 때 주소 를 조정해 주어야 하는데 이것을 무엇이라 하는가?
- 1 spooling
- 2 blocking
- 3 mapping
- 4 buffering

1회 ▶ 산 07-1

- 8. 가상기억장치에서 주기억장치로 프로그램을 옮기기 위해서 번지 를 조정하는 것을 무엇이라고 하는가?
- 1) Blocking
- ② Buffering
- ③ Polling
- 4 Mapping

1회 ▶ 산 02-2

- 9. 가상기억체제에서 page fault가 발생하면 희생 페이지를 결정해서 보조기억장치의 이전 위치에 기억시키고 새로운 페이지를 이전 희 생된 페이지가 있던 곳에 위치시키는 것을 무엇이라 하는가?
- (1) thrashing
- ② staging
- 3 miss
- (4) throughput

2회 ▶ 10-4, 05-1추

- 10. 자기 테이프 등과 같은 대용량의 보조 기억장치의 내용을 직접 접근이 가능한 영역으로 이동하여 컴퓨터 시스템에서 자료를 접근할 수 있도록 하는 기능을 무엇이라 하는가?
- 1 saving
- ② storing
- ③ staging
- 4 spooling

1회 ▶ 08-1

- 11. 가상 메모리를 사용한 컴퓨터에서 Page Fault가 발생하면 어 떤 현상이 일어나는가?
- ① 요구된 Page가 주기억장치로 옮겨질 때까지 프로그램 수행이 중단된다.
- ② 요구된 Page가 가상메모리 옮겨질 때까지 프로그램 수행이 중단된다.
- ③ 현재 실행 중인 프로그램을 종료한 후 시스템이 정지된다.
- ④ Page Fault라는 에러 메시지를 전송한 후에 시스템이 정지된다.

- 12. Paging system이란?
- ① 보조기억장치를 여러 개의 page로 구분한다.
- ② 기억장치에 추가하여 page로 된 기억장치를 연결한다.
- ③ 주로 기억장치의 기억장소를 여러 개의 block으로 구성한다.
- ④ 보조기억장치의 주기억장치 모두를 page로 구분한다.

1회 ▶ 07-2

- 13. 페이징(Paging) 기법과 관계가 있는 것은?
- (1) Cache Memory
- 2 Cycle Stealing
- ③ Associative Memory
- 4 Virtual Memory

159 복수 모듈 기억장치

1회 ▶ 09-2

복수 모듈 기억장치의 설명으로 옳지 않은 것은?

- ① 독자적으로 데이터를 저장할 수 있는 기억장치 모듈을 여러 개 가진 기억장치로 주기억장 치와 CPU의 속도 차의 문제점을 개선한다.
- ② 기억장치 버스를 시분할하여 사용하며 기억장소의 접근을 보다 빠르게 한다.
- ③ 복수 모듈 기억장치에 사용되는 각각의 기억장치는 자체의 어드레스 레지스터와 버퍼레지 스터를 가지고 독자적으로 데이터를 저장할 수 있다.
- ④ 인터리빙 기법을 이용하여 m개의 모듈로 구성된 기억장치에서 m개의 연속적인 명령을 동시에 패치하는 것이 가능하다.

핵 심 이 론

복수 모듈 기억장치

- 독자적으로 데이터를 저장할 수 있는 기억장치 모듈을 여러 개 가진 기억장치이다.
- 주기억장치와 CPU의 속도 차의 문제점을 개선한다.
- 기억장치 버스를 시분할하여 사용한다.
- 기억장소의 접근을 보다 빠르게 한다.

유 사 문 제

1회 ▶ 13-2

1. 복수 모듈 기억장치의 특징으로 옳지 않은 것은?

- ① 주기억장치와 CPU의 속도 차의 문제점을 개선한다.
- ② 기억장치의 버스를 시분할하여 사용한다.
- ③ 병렬 판독 논리회로를 가지고 있기 때문에 하드웨어 비용이 증가한다.
- ④ 기억장소의 접근을 보다 빠르게 한다.

1호 ▶ 01-3

2. 복수 모듈 기억장치의 특징으로 옳지 않은 것은?

- ① 주기억장치와 CPU의 속도 차의 문제점을 개선한다.
- ② 기억장치 버스를 시분할하여 사용한다.
- ③ 각 모듈에 독자적으로 데이터를 저장하지 못한다.
- ④ 기억장소의 접근을 보다 빠르게 한다.

1회 ▶ 산 09-2

- 3. 복수 모듈기억장치 처리시 주소가 완전히 인터리브 될 때의 특징은?
- ① 처리 속도의 감소
- ② 처리 속도의 증가
- ③ 인터럽트의 감소
- ④ 보조기억장치의 효율성

THEME 160 메모리 인터리빙

2회 ▶ 03-1, 01-1

효율적인 주기억장치의 접근을 위하여 기억장소의 연속된 위치를 서로 다른 뱅크로 구성하여 하나의 주소를 통하여 여러 개의 위치에 해당하는 기억 장소를 접근할 수 있도록 하는 방법은?

① 인터리빙(Interleaving) ② 스풀링(Spooling)

③ 버퍼링(Buffering)

④ 카운팅(Counting)

핵 심 이 론

메모리 인터리빙(Memory Interleaving)

- 인터리빙이란 여러 개의 독립된 모듈로 이루어진 복수 모듈 메모리와 CPU 간의 주소 버스가 한 개로만 구성되어 있으면 같은 시각에 CPU로부터 여 러 모듈들로 동시에 주소를 전달할 수 없기 때문에, CPU가 각 모듈로 전송할 주소를 교대로 배치한 후 차례대로 전송하여 여러 모듈을 병행 접근하 는 기법이다.
- CPU가 버스를 통해 주소를 전달하는 속도는 빠르지만 메모리 모듈의 처리 속도가 느리기 때문에 병행 접근이 가능하다.
- 기억장치의 접근 시간을 효율적으로 높일 수 있다.
- 캐시 기억장치, 고속 DMA 전송 등에서 많이 사용된다.
- 각 모듈을 번갈아가면서 접근할 수 있다.

유 사 문 제

1회 ▶ 12-2

- 1. CPU와 주기억장치 사이의 속도 차이로 인해서 발생하는 문제 를 해결하기 위해 주기억장치를 모듈별로 주소를 배정한 후 각 모듈을 번갈아 가면서 접근하는 방식은?
- 1 Virtual Memory
- (2) Cache Memory
- (3) Interleaving
- (4) Serial Processing

2회 ▶ 09-1, 03-2

- 2. 기억장치를 각 모듈이 번갈아 가며 접근하는 방법은?
- ① 페이징
- ② 스테이징
- ③ 인터리빙
- ④ 세그멘팅

3회 ▶ 14-3 09-2 04-4

- 3. 중앙처리장치와 기억장치 사이에 실질적인 대역폭(band-width) 을 늘리기 위한 방법으로 사용하는 것은?
- ① 메모리 인터리빙 ② 자기기억장치
- ③ RAM
- ④ 폴링

2회 ▶ 14-2, 07-1

- 4. 중앙처리장치의 기억 모듈에 중복적인 데이터 접근을 방지하기 위해서 연속된 데이터 또는 명령어들을 기억장치모듈에 순차적 으로 번갈아 가면서 처리하는 방식은?
- ① 복수 모듈
- ② 인터리빙
- ③ 멀티플렉서
- ④ 셀렉터

1회 ▶ 07-4

- 5. 프로그램 수행 도중 서로 다른 번지의 주소를 동시에 지정하는 방식은?
- ① 파이프라인 방식
- ② 인터리빙 방식
- ③ 인코딩 방식
- ④ 메모리 캐시 방식
- 1회 ▶ 05-4
- 6. 데이터를 디스크에 분산 저장하는 기술은?
- ① 디스크 인터리빙
- ② 블록킹
- ③ 페이징
- ④ 세그먼트

2회 ▶ 00-3, 99-2

- 7. "Instruction의 빠른 처리 속도를 위해 중앙처리장치의 속도와 기억장치의 속도를 유효 Cycle동안 병행 실행한다."와 관련 있 는 것은?
- 1 Handshaking
- ② DMA
- ③ Interleaving
- 4 Associative Memory

1회 ▶ 99-1

- 8. 메모리 인터리빙(interleaving)의 설명이 아닌 것은?
- ① 저속의 블록 단위 전송이 가능하다.
- ② 캐시 기억장치, 고속 DMA 전송 등에서 많이 사용된다.
- ③ 기억장치의 접근시간을 효율적으로 높일 수 있다.
- ④ 각 모듈을 번갈아가면서 접근(access)할 수 있다.
- 3호 ▶ 14-1, 11-2, 06-4
- 9. 메모리 인터리빙(interleaving)의 설명으로 옳지 않은 것은?
- ① 단위 시간에 여러 메모리의 접근이 불가능하도록 하는 방법이다.
- ② 캐시 기억장치, 고속 DMA 전송 등에서 많이 사용된다.
- ③ 기억장치의 접근시간을 효율적으로 높일 수 있다.
- ④ 각 모듈을 번갈아 가면서 접근(access)할 수 있다.

2회 ▶ 10-2, 07-2

- 10. Interleaved Memory에 대한 설명과 관계가 없는 것은?
- ① 중앙처리장치의 쉬는 시간을 줄일 수 있다.
- ② 단위 시간당 수행할 수 있는 명령어의 수를 증가 시킬 수 있다.
- ③ 이 기억장치를 구성하는 모듈의 수만큼의 단어들에 동시 접근이 가능하다.
- ④ 데이터의 저장 공간을 확장하기 위한 방법이다.

1회 ▶ 03-4

- 11. 기억장치를 인터리빙(interleaving)하는 주된 목적은?
- ① 프로그램 재배치가 용이하다.
- ② 주기억장치의 보안을 위함이다.
- ③ 주기억장치의 액세스 속도를 빠르게 한다.
- ④ 결함 허용에 의한 기억장치 신뢰도를 향상시킨다.

3회 ▶ 산 13-2, 03-1, 01-1

- 12. 메모리 인터리빙(interleaving) 방법의 사용 목적이 되는 것은?
- ① 메모리 액세스의 효율 증대 ② 기억 용량의 증대
- ③ 입・출력장치의 증설 ④ 전력 소모 감소
- 4회 ▶ 11-1, 05-1, 02-1, 99-3
- 13. 다음 중 잘못 연결한 것은?
- ① Associative Memory Memory Access 속도 향상
- ② Virtual Memory Memory 공간 확대
- ③ Cache Memory Memory Access 속도 향상
- ④ Memory Interleaving Memory 공간 확대