Function GET_EUV - single-thread version

Calling syntax:

```
res = call_external(libname, 'GET_EUV', $
Lparms, Rparms, Parms, $
logTe_rsp, response, $
logTe_DEM, DEM_cor_arr, DEM_tr, $
flux)
```

Function parameters:

- 0. Lparms 4-element long integer array of dimensions (see below).
- 1. Rparms 3-element double array of global real parameters (see below).
- 2. Parms array of LOS parameters, $6 \times Nz$ elements, double. Parms[*, i] represents the parameters for *i*th voxel (see below).
- 3. $logTe_rsp$ the temperature grid ($log_{10}T$, where the temperature T is in K) of the instrumental response matrix, NT_rsp elements, double.
- 4. response the instrumental response matrix, NT_rsp × Nchannels elements, double.
- 5. $logTe_DEM$ the temperature grid ($log_{10}T$, where the temperature T is in K) of the DEM distribution(s), NT_DEM elements, double. This grid is assumed to be the same in all voxels, and the same for both the coronal and transition region DEMs.
- 6. DEM_cor_arr array of coronal DEMs, NT_DEM \times Nz elements, double, in cm⁻⁶ K⁻¹. DEM_arr[*, i] represents the DEM for *i*th voxel.
- 7. DEM_tr the integrated DEM of the transition region, NT_DEM elements, double, in cm⁻⁵ K⁻¹. Note that DEM_tr may be omitted (set to 0); in such a case, contribution of the transition region is not computed.
- 8. flux the output array of the computed EUV fluxes, $2 \times N$ channels elements, double (see below).

Array of dimensions Lparms:

Lparms = [Nz, Nchannels, NT_rsp, NT_DEM]

- 0. Nz number of voxels along LOS;
- 1. Nchannels number of EUV channels;
- 2. NT_rsp size of the temperature grid of the instrumental response matrix (i.e., the matrix is an NT_rsp × Nchannels array).
 - 3. NT_DEM size of the temperature grid of the DEM distribution(s).

Array of global real parameters Rparms:

Rparms = [dS map, dS rsp, TRfactor]

- 0. dS map visible source area, in arcsec².
- 1. dS_rsp the default pixel area of the instrumental response matrix, in arcsec².

Note that the units of dS_map and dS_rsp can be arbitrary (but the same). Actually, the flux computed by convolving the DEM with the response matrix is then multiplied by the factor dS_map/dS_rsp, to obtain the actual flux corresponding to the chosen pixel size.

2. TRfactor – the factor applied to the contribution of the transition region, to account for the projection effects. The contribution of the transition region is computed if TRfactor > 0 and DEM tr $\neq 0$.

Array of parameters Parms (for a single voxel, 6 parameters):

- 0. Parms[0] = Δz voxel length, in cm.
- 1. Parms[1] = T_0 plasma temperature, in K (is used if DEM is not specified).
- 2. Parms[2] = n_0 plasma density, in cm⁻³ (is used if DEM is not specified).
- 3. Parms[3] DEM_on, the key specifying how the EUV emission is computed:
 - a. DEM on \neq 0: the DEM distribution corresponding to this voxel is used;
 - b. DEM_on = 0: DEM is not used; the emission is computed using T_0 and n_0 .
- 4. Parms[4] reserved.
- 5. Parms[5] reserved.

Output array flux:

On output, this array contains the computed EUV fluxes. The units are determined by the used instrumental response matrix, usually DN s⁻¹ pixel⁻¹. Each column of this array, flux[*, i], corresponds to *i*th spectral channel.

The first row of this array, flux[0, *], contains the coronal emission without the contribution of the transition region. The second row, flux[1, *], contains the emission with the contribution of the transition region. The contribution of the transition region is computed if TRfactor > 0 and DEM_tr \neq 0; otherwise, flux[0, *] and flux[1, *] will contain the same data.

Return value: currently, -1 if the input was incorrect (incorrect number of parameters); 0 otherwise.

Function GET_EUV_SLICE - multi-thread version

Calling syntax:

```
res = call_external(libname, 'GET_EUV_SLICE', $
Lparms_M, Rparms_M, Parms_M, $
logTe_rsp, response, $
logTe_DEM, DEM_cor_arr_M, DEM_tr_M, $
flux M)
```

Function parameters:

- 0. Lparms_M 5-element long integer array of dimensions. Lparms_M = [Npix, Nz, Nchannels, NT_rsp, NT_DEM], where Npix is the number of LOSs, and other elements are the same as in the single-thread version (they are assumed to be the same for all LOSs).
- 1. Rparms_M array of real parameters common for all voxels within each LOS, $3 \times \text{Npix}$ elements, double. Rparms_M[*, i] represents the parameter Rparms of the single-thread version for *i*th LOS.
- 2. Parms_M array of voxel parameters, $6 \times Nz \times Npix$ elements, double. Parms_M[*, *, i] represents the parameter Parms of the single-thread version for *i*th LOS.
- 3. logTe_rsp is the same as in the single-thread version (this grid is assumed to be the same for all LOSs).
- 4. response is the same as in the single-thread version (the response matrix is assumed to be the same for all LOSs).
- 5. logTe_DEM is the same as in the single-thread version (this grid is assumed to be the same for all LOSs).
- 6. DEM_cor_arr_M array of coronal DEMs, NT_DEM \times Nz \times Npix elements, double. DEM_cor_arr_M[*, *, i] represents the parameter DEM_cor_arr of the single-thread version for *i*th LOS.
- 7. DEM_tr_M array of integrated DEMs of the transition region, NT_DEM \times Npix elements, double. DEM_tr_M[*, *, i] represents the parameter DEM_tr of the single-thread version for *i*th LOS.
- 8. flux_M the output array of the computed EUV fluxes, $2 \times \text{Nchannels} \times \text{Npix}$ elements, double. flux_M[*, *, i] represents the parameter flux of the single-thread version for *i*th LOS.

Return value: currently, -1 if the input was incorrect (incorrect number of parameters); 0 otherwise.