Analízis I Vizsga - Elméleti áttekintő

Karsa Zoltán István

2018. december 14.

A jegyzetben megtalálható a hivatalos honlapról származó tételsor kidolgozott változata, ahol a tételsor nem kéri a bizonyítást, nem is mutatom be. Ugyanakkor érdemes ellenőrizni az éppen aktuális tételeket. A triviális definíciókat, összefüggéseket nem tárgyalom.

Tételek				Alső és felső közelítőösszeg viszonya	10
1.1.	Algebra alaptétele	3		Darboux-féle alsó és felső integrál.	11
2.1.	Határérték egyértelműsége	3	7.3.	0 0	11
2.2.	Cauchy-féle konvergenciakritérium	4	F 4	Riemann-integrálhatóságra	11
2.3.	Bolzano-Weierstrass kiválasztási tétel	4	7.4.	Elégséges tételek Riemann-	
2.4.	Rendőr-elv	4	- -	integrálhatóságra	11
2.5.	Speciális rendőr-elv	4	7.5.	Newton-Leibniz tétel	11
2.6.	Összeg határértéke	4	7.6.	Integrálszámítás középértéktétele .	11
2.7.		4	7.7.	Az integrálszámítás II. alaptétele .	12
2.8.	Szorzat határértéke	4	7.8.	Határozott integrál, helyettesítéssel	12
2.9.	Reciprok határértéke	5			
	. Tört határértéke	5	Defin	íciók	
	. Monoton, korlátos sorozat konvergens	5			
	. Nevezetes számsorozatok	5	1.1.	Komplex számok algebrai alakja	3
	Átviteli elv (szükséges és elégséges		2.1.	Valós számsorozatok konvergenciája	3
-	felt. határértékre)	6	2.2.	Divergencia	3
3.2.	Összeg és szorzatfüggvény határér-		2.3.	Környezet	5
	téke	6	2.4.	Torlódási pont	5
3.3.	Bolzano-tétele	6	2.5.	Limesz szuperior, inferior	5
3.4.	Weiesstrass I. tétele	7	3.1.	Véges helyen vett véges határérték	6
3.5.	Weiesstrass II. tétele	7	3.2.	Folytonosság	6
3.6.	Elégséges tétel invertálhatóságra .	7	3.3.	Szakadások osztályozása	6
3.7.	Heine tétele	7	3.4.	Kompakt halmaz	6
4.1.	Szükséges és elégséges tétel derivál-		3.5.	Inverz függvény	7
	hatóságra	7	3.6.	Egyenletes folytonosság	7
4.2.	Szükséges feltétel	8	4.1.	Differenciahányados	7
4.3.	Deriválási szabályok	8	4.2.	Differenciálhányados	7
4.4.	Inverz függvény deriváltja	8	4.3.	Hiperbolikus függvények	8
5.1.	Érintő egyenes egyenlete	8	5.1.	Lokális szélsőérték	8
5.2.	Lokális szélsőérték és a derivált kö-		6.1.	Primitív függvények	10
	zötti kapcsolat	9	6.2.	Határozatlan integrál	10
5.3.	Rolle-tétel (Rolle-féle középérték) .	9	7.1.	Alsó és felső közelítő összeg	10
5.4.	Lagrange-féle középértéktétel	9	7.2.	Minden határon túl finomodó fel-	
5.5.	Integrálszámítás I. alaptétele	9		osztás sorozat	10
5.6.	L'Hospital-szabály	9	7.3.	Riemann-féle határozott integrál .	11
5.7.	Paraméteres görbék t_0 -beli deriváltja	9	7.4.	Oszcillációs összeg	11
6.1.	Parciális integrálás	10	7.5.	Integrálközép	11
6.2.	Helyettesítéses integrál	10	7.6.	Integrálfüggvény	12

1. Komplex számok

Definíció 1.1 ▶ Komplex számok algebrai alakja

Komplex számnak nevezzük azokat a z=x+iy kifejezéseket, ahol $x,y\in\mathbb{R}$ és $i^2=-1,x$ -t valós résznek, míg y-t képzetes (imaginárius) résznek hívjuk és így jelöljük: Re(z)=x és Im(z)=y. A komplex számok halmaza: $\mathbb C$

Egy komplex szám konjugáltja: $\bar{z} = x - iy$, abszolút értéke, a szám origótól vett távolsága: $|z| = \sqrt{x^2 + y^2}$ A komplex számokat megadhatjuk még trigonometrikus és exponenciális alakban is:

Trigonometrikus alak: A φ szöggel elforgatott r hosszúságú komplex szám trigonometrikus alakja: $z = r(\cos \varphi + i \sin \varphi)$. Az algebrai alakból a φ szögre: $\tan \varphi = Im(z)/Re(z)$, fontos hogy a tangens függvény tulajdonságai miatt ellenőriznünk kell, valóban abba a negyedbe-e esik a szám.

Exponenciális alak: A φ szöggel elforgatott r hosszúságú komplex szám exponenciális alakja: $z=re^{i\varphi}$, a szöget megkaphatjuk az előbbihez hasonlóan. Az **Euler-formula**: $e^{i\varphi}=(\cos\varphi+i\sin\varphi)$, ami fennáll $\forall \varphi \in \mathbb{R}$ -re. Láthatjuk, ha $\varphi=\pi$ és r=1, akkor egy olyan számot kapunk, ami pont -1, innen: $e^{\pi}+1=0$

Míg az algebrai alakban két komplex szám összegét, különbségét könnyen megállapíthatjuk, addig n-dik hatványát, vagy több szám szorzata már igen nehézkes, ezeket érdemes trigonometrikus vagy exponenciális alakban megadni, néhány összefüggés:

- $z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$
- $\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot (\cos(\varphi_1 \varphi_2) + i\sin(\varphi_1 \varphi_2))$
- $z^n = (re^{i\pi})^n = r^n e^{in\pi}$
- $\sqrt[n]{z} = \sqrt[n]{r}e^{i(\frac{\varphi}{n} + k\frac{2\pi}{n})}$ és $k = \{0, 1, 2, ..., n-1\}$

Tétel 1.1 ▶ Algebra alaptétele

Bármely legalább elsőfokú $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ polinomnak van gyöke, multiplicitással számolva pontosan n = deg(p) (polinom foka) db komplex gyöke van és ezen polinomok a tényezők sorrendjétől eltekintve egyértelműen szorzattá alakíthatók a gyökök segítségével: $p(x) = a_n(x - z_1)(x - z_2)...(x - z_n)$

2. Valós számsorozatok

Definíció 2.1 ▶ Valós számsorozatok konvergenciája

Azt mondjuk hogy a_n sorozat konvergens és határértéke $A \in \mathbb{R}$, ha $\forall \varepsilon > 0$ -hoz $\exists N(\varepsilon) \in \mathbb{N}$ küszöbszám, hogy $|a_n - A| < \varepsilon$, ha $n > N(\varepsilon)$.

Definíció 2.2 \blacktriangleright Divergencia

A nem konvergens sorozatokat divergensnek mondjuk. Egy sorozat divergens, azaz $\lim_{n\to\infty} a_n = +\infty[-\infty]$, ha $\forall P>0[P<0]$ -hoz $(P\in\mathbb{R})\ \exists N(P)\in\mathbb{N}$, hogy $a_n>P[a_n< P]$, ha n>N(P)

Tétel 2.1 ▶ Határérték egyértelműsége

Ha $\lim_{n\to\infty} a_n = A$ és $\lim_{n\to\infty} a_n = B$, akkor A = B

Bizonyítás: Indirekt módon bizonyítunk: T.f.h. ekkor $A \neq B$, valamint A > B (ez igazából mindegy is), ekkor a határértékeke közötti különbség: d = A - B, adjuk meg a határértékek egy ε

sugarú környezetét d-vel, pl.: $\varepsilon = d/3$, ekkor a környezetek metszete üres halmaz (képzeljünk el egy számegyenest). A konvergencia definíciója alapján, létezik $N_1(\varepsilon)$ és $N_2(\varepsilon)$, ekkor igaz, hogy:

$$a_n \longrightarrow A$$
, ha $n > N_1(\varepsilon)$, akkor $A - \varepsilon < a_n < A + \varepsilon$
 $a_n \longrightarrow B$, ha $n > N_2(\varepsilon)$, akkor $B - \varepsilon < a_n < B + \varepsilon$

Tehát ekkor ha $n > max\{N_1(\varepsilon), N_2(\varepsilon)\}$, akkor $a_n \in (A - \varepsilon, A + \varepsilon) \cap (B - \varepsilon, B + \varepsilon) = 0$, üres halmaz, ellentmondás.

Tétel 2.2 ▶ Cauchy-féle konvergenciakritérium

Az a_n sorozat akkor és csak akkor konvergens, ha $\forall \varepsilon > 0$ -hoz $\exists M(\varepsilon) \in \mathbb{N}$ fennáll, $|a_m - a_n| < \varepsilon$, $\forall n, m > M(\varepsilon)$ esetén.

A tétel azt a tényt fejezi ki, hogy konvergens sorozat elemei egymáshoz is tetszolegesen közel vannak, ha indexeik elég nagyok. Ezt a tételt használhatjuk a konvergencia bizonyítására akkor is, ha a határértéket nem ismerjük.

Tétel 2.3 ▶ Bolzano-Weierstrass kiválasztási tétel

Korlátos sorozatnak van konvergens részsorozata. (Ez racionális számok halmazán már nem igaz)

Tétel 2.4 ▶ Rendőr-elv

Ha $a_n \longrightarrow A$, $b_n \longrightarrow A$, és $\forall n$ -re $a_n < c_n < b_n$, akkor $c_n \longrightarrow A$

Bizonyítás: A határérték def. szerint: $A - \varepsilon < a_n < A + \varepsilon$ és $A - \varepsilon < b_n < A + \varepsilon$ mivel $a_n < c_n < b_n$: $A - \varepsilon < a_n < c_n < b_n < A + \varepsilon$, innen $c_n \longrightarrow A$

Tétel 2.5 ▶ Speciális rendőr-elv

 $\forall n$ -re, ha $a_n \geq [\leq] b_n$ és $b_n \longrightarrow \infty[-\infty]$, akkor $a_n \longrightarrow \infty[-\infty]$

Tétel 2.6 ▶ Összeg határértéke

$$a_n \longrightarrow A, b_n \longrightarrow B, \text{ akkor } (a_n + b_n) \longrightarrow A + B$$

Bizonyítás: Legyen A + B = C, azaz $(a_n + b_n) \longrightarrow C$. Mivel a_n és b_n konvergens, és határértékei A, B, ezért, ha $n > N_a(\varepsilon)$, akkor $A - \varepsilon < a_n < A + \varepsilon$ illetve ha $n > N_b(\varepsilon)$, akkor $B - \varepsilon < b_n < B + \varepsilon$, innen: $|(a_n + b_n) - (A + B)| < 2\varepsilon$, ha $n > N_c(\varepsilon) = max\{N_a(\varepsilon/2), N_b(\varepsilon/2)\}$

Tétel 2.7 ▶ Szorzat határértéke - Zérósorozat

 $a_n \longrightarrow 0, b_n \text{ korlátos, akkor } (a_n b_n) \longrightarrow 0$

Bizonyítás: Mivel a_n konvergens, $|a_n| < \varepsilon$, ha $n > N_a(\varepsilon)$, illetve b_n korlátos, azaz $\exists K$, hogy $|b_n| \le K$, bármely n-re. Így $|a_n b_n - 0| = |a_n| |b_n| < \varepsilon K$, ha $n > N_a(\varepsilon)$, tehát $N_{ab}(\varepsilon) = N_a(\varepsilon/K)$

Tétel 2.8 ► Szorzat határértéke

$$a_n \longrightarrow A, b_n \longrightarrow B, \text{ akkor } (a_n b_n) \longrightarrow AB$$

Bizonyítás: Bontsuk fel a szorzatot az alábbi módon: $a_nb_n = (a_n - A)(b_n - B) + Ab_n + Ba_n - AB$ (látható, hogy a szorzat értékét nem változtattuk így meg), midőn n tart a végtelenbe $(a_n - A)(b_n - B) \longrightarrow 0$ (összeg és az előző tétel szerint), valamint $Ab_n \longrightarrow AB$ és $Ba_n \longrightarrow AB$ (konstans szorzat sz.), így $a_nb_n \longrightarrow 0 + AB + AB - AB = AB$

Tétel 2.9 ► Reciprok határértéke

$$b_n \longrightarrow B(\neq 0)$$
, ekkor $\frac{1}{b_n} \longrightarrow \frac{1}{B}$

Bizonyítás: T.f.h. B>0, a határérérték definíciója szerint: $\left|\frac{1}{b_n}-\frac{1}{B}\right|=\left|\frac{B-b_n}{b_nB}\right|=\frac{|B-b_n|}{b_nB}<\frac{\varepsilon}{B/2B}$

Tétel 2.10 ▶ Tört határértéke

$$a_n \longrightarrow A, b_n \longrightarrow B(\neq 0)$$
, ekkor $\frac{a_n}{b_n} \longrightarrow \frac{A}{B}$

Bizonyítás: Átalakítva: $\frac{a_n}{b_n}=a_n\frac{1}{b_n}$, az előző tétel és a szorzat határértéke szerint: $\longrightarrow A\frac{1}{B}=\frac{A}{B}$

Tétel 2.11 ▶ Monoton, korlátos sorozat konvergens

- i. Ha a_n sorozat monoton nő és felülről korlátos, akkor konvergens
- ii. Ha a_n sorozat monoton nő és felülről korlátos, akkor konvergens

Bizonyítás: A bizonyításhoz az alábbi segédtételt használjuk fel, csak az i) esetet bizonyítom:

1. Lemma (Cantor-axióma). Egymásba skatulyázott nem üres, korlátos, zárt intervallumok metszete nem üres.

Konstruáljunk egy nem üres, zárt, intervallum skatulyázást: $I_k = [c_k, d_k]$, ahol c_k a sorozat egy-egy eleme, míg d_k felső korlát. Láthatjuk hogy $d_k - c_k = 0$, ha $k \longrightarrow \infty$, azaz az intervallumok hossza szinte nulla. Ekkor a Cantor-axióma szerint, az intervallum sokaságok metszete nem üres, méghozzá: $\bigcap I_k = A \text{ és ekkor } a_n \longrightarrow A. \text{ Legyen tehát } c_1 = a_1 \text{ és } d_1 = K, \text{ ekkor köztes pont: } f_1 = \frac{c_1 + d_1}{2}. \text{ Ha } f_1 \text{ felső korlát, akkor } d_2 = f_1, c_2 = c_1, \text{ ha nem, akkor } \exists a_n > f_1, \text{ így } f_2 = \frac{(c_2 =)a + d_2}{2}...$

Tétel 2.12 ▶ Nevezetes számsorozatok

i.
$$a^n \longrightarrow \begin{bmatrix} \infty, & a > 1 \\ 1, & a = 1 \\ 0, & |a| < 1 \\ div. & a \le -1 \end{bmatrix}$$

ii.
$$\sqrt[n]{p} \longrightarrow 1 (p > 0), \sqrt[n]{n} \longrightarrow 1$$

- iii. Nagyságrendek: $\log n << n^k << a^n << n! << n^n$
- iv. $(1+1/n)^n \longrightarrow e$

Definíció 2.3 ► Környezet

Egy t pont ε sugarú környezete, ha $t \in \mathbb{R}$: $K_{\varepsilon}(t) = (t - \varepsilon, t + \varepsilon)$, ha $t = \infty$ esetén $K_p(+\infty) = (p, \infty)$, míg $t = -\infty$ esetén $K_m(-\infty) = (-\infty, m)$

Definíció 2.4 ► Torlódási pont

Az a_n sorozat torlódási pontja t, ha t minden környezete az a_n sorozat végtelen sok elemét tartalmazza. Azaz $\exists a_{n'}$ részsorozat, hogy $a_{n'} \longrightarrow t$

Definíció 2.5 ► Limesz szuperior, inferior

 $\lim \sup a_n =$ a torlódási pontok halmazának legnagyobb eleme $\lim \inf a_n =$ a torlódási pontok halmazának legkisebb eleme

Egyéb említésre érdemes dolgok: rekurzív sorozatok határértéke

3. Függvény analízis

Definíció 3.1 ▶ Véges helyen vett véges határérték

 $\lim_{x\to x_0} f(x) = A$, ha x_0 a D_f torlódási pontja, $\forall \varepsilon > 0$ esetén $\exists \Omega(\varepsilon) > 0$, hogy $|f(x) - A| < \varepsilon$, ha $|x - x_0| < \Omega(\varepsilon)$

Hasonlóan: véges helyen vett végtelen, végtelen helyen vett véges... bal- és jobboldali határérérték definíciója...

Tétel 3.1 ▶ Átviteli elv (szükséges és elégséges felt. határértékre)

 $\lim_{x\to x_0} f(x) = A$ akkor, és csak akkor $\forall x_n \longrightarrow x_0$ -ra $(x_n \neq x_0 \text{ és } x_n \in D_f) \exists \lim_{n\to\infty} f(x_n) = A$

Megjegyzés: a tétel egy függvény és végtelen sok sorozat határértéke között teremt kapcsolatot, ez főleg akkor hasznos, ha azt szeretnénk bemutatni, hogy egy függvény adott helyen nincs határértéke

Tétel 3.2 ▶ Összeg és szorzatfüggvény határértéke

Ha $\exists \lim_{x\to x_0} f(x) = A$ és $\exists \lim_{x\to x_0} f(x) = B$, akkor

- i. $\lim_{x \to x_0} (f + g)(x) = A + B$
- ii. $\lim_{x\to x_0} (fq)(x) = AB$

Bizonyítás: Csak az elsőt bizonyítom (a 2. tételnél is ugyanezt kell csinálni). Az átviteli-elvből és a sorozatokra vonatkozó hasonló szabályokból következik. Így $\lim_{x\to x_0} f(x) = A$ akkor, és csak akkor $\forall x_n \longrightarrow x_0$ -ra $(x_n \neq x_0$ és $x_n \in D_f)$ $\exists \lim_{n\to\infty} f(x_n) = A$, illetve $\lim_{x\to x_0} g(x) = B$ akkor, és csak akkor $\forall x_n \longrightarrow x_0$ -ra $(x_n \neq x_0$ és $x_n \in D_g)$ $\exists \lim_{n\to\infty} g(x_n) = B$, mivel $\lim_{n\to\infty} (f(x_n) + g(x_n)) = A + B$, ezért $\lim_{x\to x_0} (f+g)(x) = A + B$.

Definíció 3.2 ► Folytonosság

Az f függvény folytonos egy x_0 pontjában, ha $\exists \lim_{x\to x_0} f(x) = f(x_0)$

Az f függvény balról (jobbról) folytonos egy x_0 pontjában, ha $\exists \lim_{x\to x_0-(+)} f(x) = f(x_0)$

Definíció 3.3 ► Szakadások osztályozása

Ha f nem folytonos x_0 -ban akkor azt mondjuk, hogy f-nek szakadása van x_0 -ban:

- i. Elsőfajú, megszüntethető szakadás, ha $\exists f(x_0 + 0) = \exists f(x_0 0)$, de vagy $x_0 \notin D_f$ vagy $f(x_0) \neq f(x_0 + 0) = f(x_0 0)$
- ii. Elsőfajú, véges ugrás típusú, ha $\exists f(x_0+0) \neq \exists f(x_0-0)$
- iii. Másodfajú: minden más esetben

Definíció 3.4 ► Kompakt halmaz

Egy halmaz kompakt, ha korlátos és zárt

Tétel 3.3 ▶ Bolzano-tétele

Ha f folytonos [a, b]-n és f(a) < c < f(b), akkor $\exists \xi \in (a, b)$, melyre $f(\xi) = c$

Következmény: bármely páratlan fokszámú polinomnak van legalább egy gyöke

Tétel 3.4 ▶ Weiesstrass I. tétele

Kompakt halmazon folytonos függvény korlátos.

Tétel 3.5 ▶ Weiesstrass II. tétele

Kompakt halmazon folytonos f függvény felveszi infimumát és szuprémumát.

Definíció 3.5 ► Inverz függvény

Az f függvény invertálható értelmezési tartományának egy $I\subset D_f$ részhalmazán, ha bármely két $x_1,x_2\in I$ szám esetén az f(x1)=f(x2) egyenlőség teljesülése maga után vonja, hogy x1=x2, tehát ha az f függvény az I halmazon injektív (kölcsönösen egyértelmű). Ekkor bármely $y\in R_f$ szám esetén legfeljebb egyetlen olyan $x\in I$ szám létezik, melyre f(x)=y. Ezesetben azt mondjuk, hogy x az y szám f-inverze általi képe; $x=f^{-1}(y)$.

Tétel 3.6 ▶ Elégséges tétel invertálhatóságra

Ha f szigorúan monoton az $I \in D_f$ intervallumon, akkor itt f injektív, így invertálható.

Definíció 3.6 ► Egyenletes folytonosság

Az f függvény egyenletesen folytonos az A halmazon, ha $\forall \varepsilon > 0$ -hoz $\exists \Omega(\epsilon)$, hogy $|f(x_1) - f(x_2)| < \varepsilon$, ha $|x_1 - x_2| < \Omega$; $x_1, x_2 \in A$

Tétel 3.7 ▶ Heine tétele

Ha f folytonos az [a, b] zárt intervallumon, akkor ott egyenletesen is folytonos.

4. Valós, egyváltozós függvények differenciálása

Definíció 4.1 ▶ Differenciahányados

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Definíció 4.2 ▶ Differenciálhányados

Legyen $K_{x_0,\omega} \subset D_f$, ekkor

$$f'(x) := \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

f deriválható (differenciálható) x_0 -ban ha a fenti határérték létezik és véges. Ekkor $f'(x_0) \in \mathbb{R}$ az f függvény x_0 pontbeli deriváltja (differenciálhányadosa).

Tétel 4.1 ▶ Szükséges és elégséges tétel deriválhatóságra

f akkor és csak akkor differenciálható x_0 pontban, ha $K_{x_0,\omega}\subset D_f,\,|h|<\Omega$ -ra:

$$\Delta f = f(x_0 + h) - f(x_0) = Ah + \varepsilon(h)h,$$

ahol $h \in \mathbb{R}$ és $\lim_{h \to 0} \varepsilon(h) = 0$

Tétel 4.2 ► Szükséges feltétel

Ha f differenciálható x_0 -ban, akkor f folytonos x_0 -ban, vagyis a differenciálhatóság szükséges feltétele a folytonosság.

Tétel 4.3 ▶ Deriválási szabályok

Legyen f és g differenciálható x-ben, ekkor

i.
$$(f+g)'(x) = f'(x) + g'(x)$$

ii.
$$(cf)'(x) = cf'(x)$$

iii.
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
 (Leibnicz-szabály)

iv.
$$(\frac{1}{g})'(x) = -\frac{g'(x)}{g^2(x)}$$

v.
$$(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Bizonyítás (i):

$$(f+g)' = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - (f(x) + g(x))}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f'(x) + g'(x)$$

Bizonyítás (iii):

Bizonyitas (iii):
$$(fg)' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h$$

Bizonyítás (iv):

$$(1/g)' = \lim_{h \to 0} \frac{1/g(x+h) - 1/g(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{g(x+h)} - \frac{1}{g(x)} \right) = \lim_{h \to 0} \frac{g(x) - g(x+h)}{hg(x+h)g(x)} = \lim_{h \to 0} \frac{-1}{g(x+h)g(x)} \frac{g(x+h) - g(x)}{h} = -\frac{g'(x)}{g^2(x)} \text{ (Mivel } g \text{ folytonossága miatt } \lim_{h \to 0} g(x+h) = g(x) \text{)}$$

Tétel 4.4 ▶ Inverz függvény deriváltja

Legyen f szigorúan monoton I-n, ekkor itt invertálható, illetve f differenciálható I-n, így ffolytonos itt. Ekkor f^{-1} is differenciálható az f(I) tetszőleges belső pontjában, ekkor

$$f^{-1'}(x_0) = \frac{1}{f'(f^{-1}(x_0))}$$

Definíció 4.3 ▶ Hiperbolikus függvények

$$sh(x) = \frac{e^x - e^{-x}}{2}, ch(x) = \frac{e^x + e^{-x}}{2}$$

5. Differenciálszámítás alkalmazása

Tétel 5.1 ▶ Érintő egyenes egyenlete

$$y(x) = f(x_0) + f'(x_0)(x - x_0)$$

Definíció 5.1 ► Lokális szélsőérték

f-nek lokális maximuma [minimuma] van az értelmezési tartománya egy belső x_0 pontjában, ha $\exists K_{\Omega,x_0}: f(x) \leq f(x_0)[f(x) \geq f(x_0)]$, ha $x \in K_{\Omega,x_0}$. Azaz létezik egy olyan Ω sugarú kis környezet x_0 körül, ahol $f(x_0)$ értéke maximális [minimális].

8

Tétel 5.2 ▶ Lokális szélsőérték és a derivált közötti kapcsolat

Ha f az x_0 helyen differenciálható és ott lokális szélsőértéke van, akkor $f'(x_0) = 0$. Azaz a szélsőérték létezésének szükséges feltétele. Ha f' az x_0 hely kis környezetében előjelet vált, akkor az már elégséges feltétel is.

Bizonyítás: Lokális maximumra ekkor: $f'_{-}(x_0) = \lim_{h \to 0-} \frac{f(x_0+h) - f(x_0)}{h} \ge 0$ és $f'_{+}(x_0) = \lim_{h \to 0+} \frac{f(x_0+h) - f(x_0)}{h} \le 0$, tehát $f'(x_0) = 0$

Tétel 5.3 ▶ Rolle-tétel (Rolle-féle középérték)

Ha f folytonos [a, b]-n és differenciálható (a, b)-n és f(a) = f(b), akkor $\exists \xi \in (a, b)$: $f'(\xi) = 0$

Bizonyítás: Weierstrass II. tétele szerint f-nek van maximuma és minimuma (a, b)-n. Ha mindkettőt a végpontokban veszi fel, akkor f konstansfüggvény és így $\forall \xi \in (a, b)$ -re $f'(\xi) = 0$. Ha valamelyiket az intervallum belsejében veszi fel, a szélsőérték és derivált közötti kapcsolat miatt (előző tétel) lesz olyan, ahol $f'(\xi) = 0$

Tétel 5.4 ► Lagrange-féle középértéktétel

Ha f folytonos [a, b]-n és differenciálható (a, b)-n akkor $\exists \xi \in (a, b)$:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Tétel 5.5 ▶ Integrálszámítás I. alaptétele

Ha f folytonos [a,b]-n és differenciálható (a,b)-n és f'(x)=g'(x), ha $x\in(a,b)$, akkor $\exists C\in\mathbb{R}$:

$$f(x) = g(x) + C \quad \forall x \in [a, b]$$

Bizonyítás: A bizonyításhoz felhasználom a következő segédtételt:

2. Lemma. Ha f folytonos [a,b]-n és deriválható (a,b)-n és ott f'(x)=0, akkor f(x)=c, ha $x \in [a,b]$ Legyen h'(x)=f'(x)-g'(x)=0, ekkor a fenti lemma alapján h(x)=f(x)-g(x)=c, azaz f(x)=g(x)+c, ha $x \in (a,b)$

Tétel 5.6 ► L'Hospital-szabály

Legyen f és g differenciálható egy környezetében, és itt $g(x) \neq 0$ és $g'(x) \neq 0$ és $\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} g(x) = 0$. Ha $\lim_{x \to \alpha} \frac{f'(x)}{g'(x)} = \beta$, akkor $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \beta$

A tételt felhasználva: $\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\cos x}{1}=1/1=1$

Tétel 5.7 \blacktriangleright Paraméteres görbék t_0 -beli deriváltja

Legyen a G görbe paraméteres egyenlete:

$$x = x(t)$$
 $y = y(t)$

Hax(t) szig. monoton t_0 egy környezetében, létezik inverze, így a függvény explicit is megadható: f(x) = y(t(x)) Ekkor a függvény deriválható a $x_0 = x(t_0)$ pontban és:

$$f'(x_0) = \frac{\dot{y}(t_0)}{\dot{x}(t_0)} \qquad f''(x_0) = \frac{\ddot{y}(t_0)\dot{x}(t_0) - \dot{y}(t_0)\ddot{x}(t_0)}{\dot{x}^3(t_0)}$$

Egyéb: kapcsolat a monotonitás, konvexitás és a derivált között, inflexiós pontok, implicit görbék deriválása, elemi függvények deriváltjai, függvényvizsgálat

6. Határozatlan integrál

Definíció 6.1 ▶ Primitív függvények

Az I halmazon F függvény f primitív függvénye, ha $\forall x \in I\text{-re: } F'(x) = f(x)$

Definíció 6.2 ► Határozatlan integrál

Az f függvény határozatlan integrálja I-n: a primitív függvények összessége:

$$\int f(x)dx = F(x) + C \qquad C \in \mathbb{R}$$

Tétel 6.1 ▶ Parciális integrálás

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

Bizonyítás: A szorzatfüggvény deriválási szabályából: (u(x)v(x))' = u'(x)v(x) + u(x)v'(x), majd átrendezve: (u(x)v(x))' - u'(x)v(x) = u(x)v'(x), az egyenlet integrálját véve: $\int (u(x)v(x))'dx - \int u'(x)v(x)dx = \int u(x)v'(x)dx$, amiből kiintegrálva valóban a fenti összefüggés adódik.

Tétel 6.2 ▶ Helyettesítéses integrál

$$\int f(x)dx|_{x=\varphi(t)} = \int f(\varphi(t))\varphi'(t)dt$$

Egyéb: Integrálási szabályok, racionális törtfüggvények integrálása.

7. Határozott integrál

Definíció 7.1 ► Alsó és felső közelítő összeg

Legyen $a=x_0 < x_1 < ... < x_{k-1} < x_k < ... < x_n=b$ az F=[a,b] intervallum osztópontjai. Ekkor a k-adik részintervallumot jelölje: $I_k=[x_{k-1},x_k]$, hossza $\Delta x=x_k-x_{k-1}>0$. A részintervallum infimuma: $m_k=\inf_{x\in I_k}f(x)$, míg szuprémuma: $M_k=\sup_{x\in I_k}f(x)$ (Dedekind folytonossági tétel értelmében léteznek: Felülről korlátos nem üres számhalmaznak mindig van szuprémuma...), ekkor:

Alsó közelítő összeg:
$$s_F = \sum_{k=1}^n m_k \Delta x_k$$

Felső közelítő összeg:
$$S_F = \sum_{k=1}^n M_k \Delta x_k$$

Definíció 7.2 ► Minden határon túl finomodó felosztás sorozat

Az F felosztás finomsága: $\Delta F = \max(\Delta x_k)$. Az [a,b] intervallum felosztásainak sorozatát minden határon túl finomodónak mondjuk, ha $\lim_{n\to\infty} \Delta F_n = 0$

Tétel 7.1 ► Alső és felső közelítőösszeg viszonya

Bármely felosztásra: $s_F \leq S_F$

Tétel 7.2 ▶ Darboux-féle alsó és felső integrál

Ha $\exists \sup s_F = h$ és inf $S_F = H$, akkor

$$h=\int_{\underline{a}}^{b}f(x)dx$$
alsó, míg $H=\overline{\int_{a}^{b}}f(x)dx$ felső integrál

Definíció 7.3 ► Riemann-féle határozott integrál

Azt mondjuk, hogy az f függvény az [a,b] intervallumon Riemann szerint integrálható, h=H=I. Ezt az f függvény [a,b]-beli határozott integráljának nevezzük:

$$I = \int_{a}^{b} f(x)dx = \int_{[a,b]} f(x)dx = \int_{a}^{b} f(x)dx$$

Definíció 7.4 ► Oszcillációs összeg

Az F felosztáshoz tartozó oszcillációs összeg: $O_F = S_F - s_F = \sum_{k=1}^n (M_k - m_k) \Delta x_k \ge 0$

Tétel 7.3 ▶ Szükséges és elégséges tételek Riemann-integrálhatóságra

- i. Ha $\exists F_n$ m.h.t.f.f.s., melyre $\lim_{n\to\infty} s_{F_n} = \lim_{n\to\infty} S_{F_n} = I$, akkor és csak akkor f(x) Riemann-integrálható [a,b]-n (röviden: $f\in R_{[a,b]}$)
- ii. $f \in R_{[a,b]}$, akkor és csak akkor, ha $\forall \varepsilon > 0$ -hoz $\exists F(\varepsilon)$, hogy $O_F < \varepsilon$

Tétel 7.4 ► Elégséges tételek Riemann-integrálhatóságra

- i. f:[a,b] folytonos, korlátos és monoton, akkor $f\in R_{[a,b]}$
- ii. Ha f korlátos és véges sok pont kivételével folytonos [a,b]-n, akkor $f \in R_{[a,b]}$

Tétel 7.5 ▶ Newton-Leibniz tétel

Ha $f \in R_{[a,b]}$ és itt létezik primitív függvénye (F, azaz F'(x) = f(x)), akkor

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = [F(x)]_{a}^{b}$$

Definíció 7.5 ► Integrálközép

$$\psi := \frac{\int_a^b f(x)dx}{b-a} \quad (a < b)$$

11

Tétel 7.6 ► Integrálszámítás középértéktétele

Ha $f \in R_{[a,b]}$, akkor $\inf_{x \in [a,b]} \{f(x)\} \le \psi \le \sup_{x \in [a,b]} \{f(x)\}$ Ha $f \in C[a,b]$, akkor $\exists \xi \in [a,b]$, hogy $f(\xi) = \psi$

Definíció 7.6 ► Integrálfüggvény

Ha $f \in R_{[a,b]},$ az f függvény integrálfüggvényének nevezzük, a...

$$F(x) = \int_{a}^{x} f(t)dt = \int_{a}^{x} f(x)dx, \qquad x \in [a, b]$$

Tétel 7.7 \blacktriangleright Az integrálszámítás II. alaptétele

$$f \in R_{[a,b]};$$

$$\int_a^x f(x)dx, \qquad x \in [a,b]$$

Az integrálfüggvény folytonos [a,b]-n, ha f folytonos is $x_0 \in (a,b)$ -n, akkor F differenciálható x_0 -ban és $F'(x_0) = f(x_0)$

Tétel 7.8 ► Határozott integrál, helyettesítéssel

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt, \qquad (\varphi(\alpha) = a, \varphi(\beta) = b)$$

Hivatkozások

- [1] Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás *Matematika 1.* https://math.bme.hu/ tasnadi/merninf_anal_1/anal1_elm.pdf
- [2] Tasnádi Tamás Alaízis 1. Tételsor (2017/2018) https://math.bme.hu/ tasnadi/merninf_anal_1/analinfo1_tetelsor_2017_TT.pdf