The Naive Bayes Algorithm: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2020

Concepts

• When a new message " w_1 , w_2 , ..., w_n " comes in, the Naive Bayes algorithm classifies it as spam or non-spam based on the results of these two equations:

$$P(Spam|w_1, w_2, \dots, w_n) \propto P(Spam) \cdot \prod_{i=1}^n P(w_i|Spam)$$

$$P(Spam^C|w_1, w_2, \dots, w_n) \propto P(Spam^C) \cdot \prod_{i=1}^n P(w_i|Span^C)$$

• To calculate $P(w_i|Spam)$ and $P(w_i|Spam^C)$, we need to use the additive smoothing technique:

$$P(w_i|Spam) = rac{N_{w_i|Spam} + lpha}{N_{Spam} + lpha \cdot N_{Vocabulary}}$$

$$P(w_i|Spam^C) = rac{N_{w_i|Spam^C} + lpha}{N_{Spam^C} + lpha \cdot N_{Vocabulary}}$$

• Below, we see what some of the terms in equations above mean:

 $N_{w_i|Spam}= ext{the number of times the word }w_i ext{ occurs in }S_i$

 $N_{Spam}={
m total\ number\ of\ words\ in\ spam\ messages}$ $N_{Spam^C}={
m total\ number\ of\ words\ in\ non-spam\ messages}$

 $N_{Vocabulary} = ext{total number of words in the vocabulary}$ $\alpha = 1 \quad (\alpha ext{ is a smoothing parameter})$

Resources

• A technical intro to a few version of the Naive Bayes algorithm

• An intro to conditional independence

Takeaways by Dataquest Labs, Inc. - All rights reserved $\ensuremath{\text{@}}$ 2020