Rebecca Kurtz-Garcia

12/11/2021

What is a decision tree?

A **decision tree** is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes.

Figure 1: https://www.reddit.com/r/funny/comments/1j4gf7/cats_decision_tree/

 $Figure\ 2:\ https://hackernoon.com/what-on-earth-is-data-science-eb1237d8cb37$

 $Figure \ 3: \ https://depositphotos.com/342609572/stock-illustration-decision-tree-example-diagram-vector.html$

Figure 4: I made this one :)

Data Types

- ▶ Before getting started on decision trees we need to review properties of data.
- ▶ In a typical data set each row corresponds to an *observation*, and each column refers to a *feature* or a *variable*.
- Features can either be categorical or numeric. We use a lot of other ways to describe features: qualitative vs quantitative, discrete vs continuous, etc.
 - Examples of categorical features: hair color, species, pet (cat, dog, fish)
 - Examples of numeric features: age, height, blood pressure
- We pick a categorical feature to be the focus of our analysis, or the response feature.

Data Types

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.10	3.50	1.40	0.20	setosa
4.90	3.00	1.40	0.20	setosa
4.70	3.20	1.30	0.20	setosa
4.60	3.10	1.50	0.20	setosa
5.00	3.60	1.40	0.20	setosa
5.40	3.90	1.70	0.40	setosa

- In most of our examples we made tree splits based on logic and outside knowledge.
- When we have a lot of data (or do not know much about our data) we want to find a impartial splitting rule based on mathematical properties.
- We use splitting rules to segment the predictor space. These splitting rules can be summarized using graphs that look like trees.

➤ So the goal is to separate the data into different species variables:

Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width.

- ▶ Why would we want to build a tree?
 - To predict what type of species we have for a new unknown flower
 - ▶ To assess the relationships between features of a data set.
 - i.e. How are sepals, petals, and species all related?

- ► The graphs we create look like trees.
- ► The final regions are known as **terminal nodes** or **leaves**
- ► Trees are typically drawn upside down.

- Can we always create a decision tree? Not necessarily.
- We must assume that all observations are independent. That is, we don't repeatedly sample an observations, have time series data, etc.

Making Predictions

- We make predictions based on the data that is in the terminal nodes and the feature we are interested in predicting.
- ▶ When we are interested in predicting a categorical variable we use most common value (the mode).

70 Observations			
Setosa	Versicolor	Virginica	
0	26	44	

80 Observations			
Setosa	Versicolor	Virginica	
50	24	6	

Sepal.Length	 Speices
5.1	Setosa
4.9	Setosa
5.0	Setosa
5.7	Virginica
6.2	Virginica
5.9	Virginica

A few notes about nodes

- ► Terminal nodes are usually not *pure*, meaning the values in the terminal node are mixed.
- Values in terminal nodes are repeated.

- ► How do we grow a good tree?
- lt is usually unfeasible to consider every possible partition.
- We typically use a top-down/greedy/recursive-binary-splitting approach.
 - At each split take the best possible split at that particular point.

The Best Split

- ▶ What criteria is used to determine the best split? Depends on the type of response variable.
- For categorical data: error rate, entropy, information, gini impurity, chi-square

▶ We can quantify what best separates the data by seeing what would by asking ourselves: If we stopped splitting the data right now, what would be the *error rate* (E) ?

$$E = \frac{\text{Number of Observations Incorrectly Predicted}}{\text{Total Amount of Data}}$$

- ► We consider every possible split at every opportunity and always pick the one with the lowest error rate.
- This is one of the reasons why this technique become popular when computers became more readily available. Considering every possible type of split is computationally difficult.

Sepal.Length	Speices
5.1	Setosa
4.9	Setosa
5.0	Setosa
·	
5.7	Virginica
6.2	Virginica
5.9	Virginica

What would be the predicted values if we stopped here?

Sepal.Length	 Speices	Predicted
5.1	Setosa	Setosa
4.9	Setosa	Setosa
5.0	Setosa	Setosa
· .		
5.7	Virginica	Setosa
6.2	Virginica	Virginica
5.9	Virginica	Virginica

If we stopped now and looked at the classification **error rate**, the error rate would be 37.33%.

- ▶ We could continue splitting or growing our tree until...
 - ▶ all our nodes our pure, if possible.
 - there are no more possible splits.
- This practice often leads to overfitting our data.

- Overfitting occurs when your model or tree becomes too specific to your data set, and not the overall population.
- ► The tree will not be relevant to new observations that were not used to build the tree.

- ► There are several techniques to prevent overfitting. The one we will focus on is stunting.
- When growing a tree in real life you can stunt its growth in various ways to prevent it from growing to big. We can also do this with decision trees!
- Recall, a decision tree always tries to do the best possible separation. Subsequent splits tend to be less important for separating the data.
- So we only make our tree stop growing once it reaches a maximum number of splits.

- More ways we could stunt a tree:
 - Only split if it results a specific amount of error reduction.
 - Only split if there are a minimum number of observations in the resulting node.
 - Only split if there are a minimum number of observations in the current node.
 - Only consider a maximum number of splits no matter what.
 - etc.

- ▶ We "stunt" decision trees to prevent overfitting, however if we are too restrictive we could result in *underfitting*.
- Underfitting occurs when our model/tree is simple and missing important information.
- ► To determine if we have a good fit with the right balance we can evaluate our model using a *training* set and a *test* set.

- It is very difficult to accurately assess a model using the same data you used to build the model. This typically leads to inaccurate results.
- To assess how well your model is preforming you need to test it with observations that you did not consider when building your model.
- ▶ When you first get a large data set you should separate your data set into two parts: **test set** (20%), and **training set** (80%).

Test Error vs Training Error

- ▶ The test data set should be used to assess the model.
- ▶ We want to stunt our decision tree in order to get the least complicated model that gives us good results.
- This part of the analysis is not an exact science, use your judgment.

How do we know if we have a good tree?

- One of the most important ways to evaluate your model is by error rate. Was your model better than random guessing (50%).
- ➤ You should also investigate where the errors occurred, and what type of error was the most common.
- It is also important to highlight any interesting trends or relationships in your model.

General Steps

- 1) Establish which variables will be used for splitting, and which variable are we interested in predicting (the response variable). Is our data independent?
- 2) Divide the data into two parts, a *test set* (20%) and a training set (80%).
- 3) Build your tree. Consider a stunting method and look at the *test error* to determine how you should stunt your tree.
- 4) Evaluate and interpret your tree.

Step 1 & 2: Set up

Step 1:

► The response variable is Species. It is safe to assume the data is independent.

Step 2:

- ▶ 30 observations are randomly selected to be in the test set.
- ▶ 120 observations are used to build the tree.

Step 3: Build tree

Now lets build a decision tree using the training set. Let's see how big it will be if we do not stunt the tree.

Step 3: Build Tree

Compare training error and test error for different levels of stunting.

Step 3: Build Tree

Max depth = 4

The test error rate is 6.67%

Step 4: Evaluate and Interpret

- What can we do with our tree?
- ► If we get a new flower with the petal and sepal information we can use this to predict what species the flower is.
- We can also learn about general trends in the data!
 - Setosa tends to have small petal lengths, dramatically so compared to the others.
 - Versicolor and Virginica are very similar, it is harder to tell the difference between them.
 - Petal Length appears to be the most important variable, it appeared the most.
 - Sepal width does not appear to be a distinguishing feature compared to the others.

Decision Tree PROs

- ► Can be applied to lot of different types of data. They are very flexible and very few assumptions.
- Easy to read once they are created.
- Intuitive explanation of variable relationships.
- ► The methods described here can be extended to very complex settings.

Decision Tree CONs

- Although we can make decision tree for many situations, some are situations are far more difficult to make a decision tree for (time series!).
- Deciding how much to prune a tree or which is the best split is not always clear.
- ▶ Not as mathematically rigorous as other methods.