TRƯỜNG ĐẠI HỌC BÁCH KHOA ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH KHOA KHOA HỌC VÀ KỸ THUẬT MÁY TÍNH

CÔNG NGHỆ PHẦN MỀM (CO3001)

BÀI TẬP LỚN

Hệ thống hỗ trợ Tutor tại Trường Đại học Bách khoa Đại học Quốc gia - TP.HCM

Giáo viên hướng dẫn: Phan Trung Hiếu, CSE-HCMUT

Sinh viên - Nhóm 3: Nguyễn Tấn Phát - 2352888 (CN01)

Vũ Hà Như Ngọc - 2352818 (CN01)
Lê Diệu Quỳnh - 2353036 (CN01)
Mã Nhật Tiến - 2353178 (CN01)
Bùi Phan Khánh Duy - 2352170 (CN01)
Lương Đức Huy - 2352384 (CN01)
Nguyễn Ngọc Phát - 2352887 (CN01)
Văn Bá Trọng Khiêm - 2352546 (CN01)

THÀNH PHỐ HỒ CHÍ MINH, THÁNG 9 NĂM 2025

Mục lục

Danh sách Ký hiệu	3
Danh sách Từ viết tắt	3
Danh sách Hình ảnh	5
Danh sách Bảng	5
Danh sách thành viên & khối lượng công việc	5
1. Tổng quan dự án	6
1.1. Giới thiệu dự án 1.1.1. Mục đích 1.1.2. Bối cảnh và lý do cần hệ thống 1.1.3. Kỳ vọng và mục tiêu 1.1.4. Sản phẩm bàn giao	6 6 6 7 7
1.2. Phạm vi dự án 1.2.1. Trong phạm vi 1.2.2. Ngoài phạm vi 1.2.3. Ràng buộc hệ thống	8 8 8 9
1.3. Tài liệu tham khảo liên quan 1.3.1. Các nền tảng tương tự 1.3.2. Bài học rút ra 1.3.3. Tính năng tổng hợp cho hệ thống	9 9 10 10
2. Phân tích yêu cầu dự án	12
2.1. Tác nhân	12
3. Mô hình hóa hệ thống	13
3.1. Sơ đồ hành vi	13
3.2. Sơ đồ lớp hệ thống	13
3.3. Các sơ đồ khác	13
4. Kết luận	14
4.1. Tỗng kết	14
4.2. Hạn chế hiện tại	14

4.3. Định hướng phát triển

14

Danh sách Ký hiệu Danh sách Từ viết tắt

Danh sách Hình ảnh

Danh sách thành viên & khối lượng công việc

STT	Họ Tên	MSSV	Vai trò	% Hoàn thành
1	Nguyễn Tấn Phát	2352888	Scrum Master	100%
2	Vũ Hà Như Ngọc	2352818	Business Analyst	100%
3	Lê Diệu Quỳnh	2353036	Product Owner	100%
4	Mã Nhật Tiến	2353178	Quality Controller	100%
5	Bùi Phan Khánh Duy	2352170	Techlead + SysAdmin	100%
6	Lương Đức Huy	2352384	Developer	100%
7	Nguyễn Ngọc Phát	2352887	Developer	100%
8	Văn Bá Trọng Khiêm	2352546	Developer	100%

Bảng 1: Danh sách thành viên &khối lượng công việc

1. Tổng quan dự án

Dự án "Hệ thống hỗ trợ Tutor tại Trường Đại học Bách khoa – ĐHQG TP.HCM" là một sáng kiến công nghệ nhằm mục tiêu hiện đại hóa và nâng cao hiệu quả của chương trình Tutor/Mentor. Đây là một chương trình có ý nghĩa quan trọng, được nhà trường triển khai nhằm hỗ trợ sinh viên phát triển một cách toàn diện cả về tri thức học thuật lẫn các kỹ năng cần thiết. Báo cáo này sẽ trình bày chi tiết về quá trình, từ việc phân tích bối cảnh, xác định yêu cầu, đến thiết kế và xây dựng hệ thống.

1.1. Giới thiệu dự án

Trong bối cảnh giáo dục đại học đang không ngừng đổi mới, việc ứng dụng công nghệ để tối ưu hóa các hoạt động hỗ trợ sinh viên là một yêu cầu tất yếu. Dự án này ra đời nhằm xây dựng một nền tảng phần mềm chuyên biệt, đóng vai trò xương sống cho chương trình Tutor, qua đó tạo một môi trường học tập tương tác, hiệu quả và có hệ thống tại Trường Đại học Bách khoa TP.HCM.

1.1.1. Mục đích

Mục đích chính của dự án là phát triển một phần mềm quản lý tập trung, giúp vận hành chương trình Tutor một cách hiệu quả, hiện đại và có khả năng mở rộng. Hệ thống này sẽ là cầu nối vững chắc giữa Tutor (giảng viên, nghiên cứu sinh, sinh viên năm trên có thành tích tốt) và sinh viên cần hỗ trợ. Thông qua đó, dự án hướng đến việc nâng cao chất lượng học tập, tăng cường sự tương tác và gắn kết trong cộng đồng sinh viên, đồng thời góp phần vào việc phát triển kỹ năng mềm và định hướng nghề nghiệp cho người học.

1.1.2. Bối cảnh và lý do cần hệ thống

Trên thực tế, chương trình Tutor/Mentor tại Trường Đại học Bách khoa TP.HCM đã được triển khai và mang lại những lợi ích nhất định. Tuy nhiên, quy trình vận hành hiện tại vẫn còn phụ thuộc nhiều vào các phương pháp thủ công, dẫn đến một số thách thức và hạn chế đáng kể:

- Về quản lý thông tin và kết nối: Việc quản lý hồ sơ năng lực của Tutor và nhu cầu cụ thể của sinh viên còn khó khăn, khiến quá trình ghép cặp chưa đạt được hiệu quả tối ưu. Sinh viên thường gặp khó khăn trong việc chủ động tìm kiếm và kết nối với người hướng dẫn phù hợp nhất.
- **Về tổ chức và sắp xếp:** Công tác lên lịch, thay đổi hoặc hủy các buổi học phụ thuộc nhiều vào việc trao đổi cá nhân, tiềm ẩn nguy cơ nhầm lẫn, thiếu sót và tốn nhiều thời gian không cần thiết.
- Về đo lường và cải tiến: Việc thiếu một công cụ theo dõi và đánh giá bài bản đã tạo ra
 một khoảng trống trong việc đo lường tiến bộ của sinh viên cũng như chất lượng của các
 buổi học, gây khó khăn cho việc cải tiến và nâng cao hiệu quả chương trình.

Trước những bất cập đó, việc xây dựng một "Hệ thống hỗ trợ Tutor" là một giải pháp cấp thiết. Bằng cách tự động hóa các quy trình từ quản lý, ghép cặp, lên lịch cho đến đánh giá, hệ thống được kỳ vọng sẽ giải quyết hiệu quả những tồn tại này, đáp ứng các đòi hỏi thực tiễn của môi trường giáo dục đại học trong kỷ nguyên số.

1.1.3. Kỳ vọng và mục tiêu

Dự án được định hướng bởi những kỳ vọng và mục tiêu rõ ràng, hướng đến lợi ích của các bên liên quan: **Kỳ vọng:**

- Đối với Sinh viên: Hệ thống được kỳ vọng sẽ trở thành một cổng thông tin thân thiện, giúp sinh viên dễ dàng tìm kiếm sự hỗ trợ học thuật, chủ động lựa chọn Tutor, linh hoạt sắp xếp lịch học và nhận được sự giúp đỡ kịp thời, đúng nhu cầu.
- Đối với Tutor: Cung cấp một bộ công cụ số hóa mạnh mẽ để quản lý thông tin cá nhân, sắp xếp lịch làm việc một cách khoa học, theo dõi và ghi nhận sự tiến bộ của sinh viên
- Đối với Nhà trường: Trao cho các Khoa và Phòng ban một công cụ quản lý tổng thể, cho phép giám sát, phân tích và đánh giá hiệu quả của chương trình. Dữ liệu thu thập được sẽ là cơ sở thực tiễn để tối ưu hóa việc phân bổ nguồn lực và đưa ra các quyết sách quan trọng, chẳng hạn như xét điểm rèn luyện hoặc học bổng.

Mục tiêu:

- Phát triển một nền tảng phần mềm hoàn chỉnh, bao quát các chức năng cốt lõi: quản lý hồ sơ, đăng ký, ghép cặp, lên lịch, thông báo và đánh giá.
- Tích hợp liền mạch và an toàn với hạ tầng công nghệ thông tin hiện có của trường, bao gồm dịch vụ xác thực tập trung (HCMUT_SSO), cơ sở dữ liệu lõi (HCMUT_DATACORE) và thư viện số (HCMUT_LIBRARY).
- Đảm bảo giao diện người dùng (UI/UX) thân thiện, trực quan, dễ sử dụng trên nhiều nền tảng, đồng thời thiết kế kiến trúc hệ thống theo hướng mở, sẵn sàng cho việc mở rộng và tích hợp các tính năng nâng cao trong tương lai.

1.1.4. Sản phẩm bàn giao

Kết thúc dự án, nhóm sẽ bàn giao các sản phẩm sau:

- Báo cáo phân tích yêu cầu phần mềm: Tài liệu mô tả chi tiết các yêu cầu chức năng và phi chức năng của hệ thống, cùng với các biểu đồ Use-case.
- Tài liệu thiết kế hệ thống: Bao gồm thiết kế kiến trúc tổng quan, thiết kế chi tiết các module, thiết kế giao diện người dùng (UI), và các biểu đồ liên quan như biểu đồ tuần tự, biểu đồ lớp.
- Mã nguồn của ứng dụng (MVP Minimum Viable Product): Một phiên bản phần mềm có thể hoạt động được, bao gồm các chức năng cốt lõi đã được thống nhất.
- Tài liệu hướng dẫn sử dụng: Hướng dẫn chi tiết cho các đối tượng người dùng khác nhau như sinh viên, Tutor và quản trị viên.
- Slide thuyết trình và video demo sản phẩm: Trình bày tổng quan về dự án, các chức năng chính của hệ thống và demo cách thức hoạt động.
- Báo cáo cuối kỳ: Tổng hợp toàn bộ quá trình thực hiện dự án, từ việc phân tích yêu cầu, thiết kế, triển khai cho đến kết quả đạt được và những bài học kinh nghiệm.

1.2. Pham vi dư án

Để đảm bảo tính khả thi và sự tập trung của dự án, việc xác định rõ ràng ranh giới là vô cùng quan trọng. Phần này sẽ trình bày cụ thể các chức năng sẽ được xây dựng, những hạng mục nằm ngoài khuôn khổ, cùng các ràng buộc về kỹ thuật và nghiệp vụ mà hệ thống phải tuân thủ.

1.2.1. Trong phạm vi

Phạm vi của dự án được xác định rõ ràng, tập trung vào việc phát triển một bộ chức năng cốt lõi, đủ mạnh để quản lý và vận hành chương trình Tutor một cách toàn diện. Các nhóm chức năng chính của hệ thống bao gồm:

- Nền tảng Quản lý Tài khoản và Hồ sơ: Cung cấp một không gian tập trung để người dùng (Sinh viên, Tutor) khởi tạo và quản lý thông tin cá nhân. Chức năng này cho phép cập nhật hồ sơ, năng lực chuyên môn và các nhu cầu hỗ trợ cụ thể.
- Module Đăng ký và Ghép cặp: Hệ thống sẽ cung cấp một module linh hoạt, hỗ trợ sinh viên đăng ký tham gia các chương trình học và được ghép cặp với Tutor thông qua hai hình thức:
 - Thủ công: Cho phép sinh viên chủ động tìm kiếm, xem xét hồ sơ và gửi yêu cầu đến Tutor mà họ cho là phù hợp nhất.
 - Tự động: Cung cấp cơ chế gợi ý Tutor dựa trên các tiêu chí cơ bản như môn học và sự trùng khớp về lịch rảnh.
- Hệ thống Quản lý Lịch và Buổi học: Đây là chức năng quan trọng, giúp tự động hóa toàn bộ quy trình sắp xếp và quản lý các buổi học. Các tính năng bao gồm việc Tutor thiết lập lịch rảnh, sinh viên đặt lịch, hệ thống tự động gửi thông báo khi có thay đổi, và Tutor thực hiện các tác vụ như điểm danh, cập nhật trạng thái buổi học.
- Không gian Quản lý Tài liệu: Hỗ trợ Tutor tải lên và chia sẻ các tài liệu học tập liên quan (như slide, bài tập, đề cương) đến sinh viên trong nhóm của mình, đồng thời cho phép sinh viên dễ dàng truy cập và tải xuống.
- Cơ chế Đánh giá, Phản hồi và Báo cáo: Nhằm đảm bảo và không ngừng nâng cao chất lượng, hệ thống tích hợp một cơ chế thu thập phản hồi từ sinh viên sau mỗi buổi học. Dữ liệu này sẽ được tổng hợp thành các báo cáo đa chiều, phục vụ cho từng đối tượng người dùng, từ sinh viên, Tutor cho đến các cấp quản lý của nhà trường.

1.2.2. Ngoài pham vi

Nhằm đảm bảo đội ngũ phát triển có thể tập trung vào các giá trị cốt lõi và hoàn thành dự án đúng tiến độ, phạm vi đã được giới hạn một cách có chủ đích. Các chức năng nâng cao sau đây sẽ được xem xét cho các giai đoạn phát triển trong tương lai và không nằm trong khuôn khổ của phiên bản hiện tại:

- Các thuật toán Ghép cặp thông minh (AI-based Matching): Việc ứng dụng Trí tuệ Nhân tạo để phân tích sâu hồ sơ và tự động tối ưu hóa việc ghép cặp sẽ không được triển khai.
- Xây dựng Cộng đồng Trực tuyến: Các tính năng mang tính mạng xã hội như diễn đàn (forum) hay nhóm trò chuyện (chat groups) để mở rộng tương tác sẽ không được phát triển.

- Hỗ trợ các chương trình Tutor phi học thuật: Hệ thống chỉ tập trung vào việc hỗ trợ học thuật. Các hoạt động tư vấn khác như hướng nghiệp, kỹ năng mềm hay tâm lý học đường đều nằm ngoài phạm vi.
- Module cá nhân hóa: Các tính năng sử dụng Trí tuệ Nhân tạo (AI) để phân tích quá trình học tập của từng sinh viên, từ đó tự động đề xuất lộ trình học tập riêng biệt hoặc gợi ý các tài liệu phù hợp sẽ không được triển khai. Lý do là các chức năng này đòi hỏi thuật toán phức tạp và một khối lượng lớn dữ liệu lịch sử để có thể hoạt động hiệu quả. Trong giai đoạn đầu, dự án sẽ ưu tiên tập trung vào việc hoàn thiện nền tảng cốt lõi là kết nối Tutor và sinh viên một cách hiệu quả nhất.

1.2.3. Ràng buộc hệ thống

Quá trình thiết kế và phát triển hệ thống phải tuân thủ nghiêm ngặt các ràng buộc quan trọng sau:

- Tích hợp với Hạ tầng Công nghệ của HCMUT: Đây là một ràng buộc mang tính nền tảng, đòi hỏi hệ thống phải có khả năng kết nối và giao tiếp hiệu quả với các dịch vụ hiện có của trường, cụ thể là:
 - Sử dụng dịch vụ xác thực tập trung HCMUT SSO cho việc đăng nhập
 - Đồng bộ dữ liệu cá nhân từ hệ thống lõi HCMUT DATACORE
 - Liên kết với kho tài nguyên của thư viện số HCMUT LIBRARY.
- Cơ chế Phân quyền Dựa trên Vai trò Tập trung: Hệ thống không tự định nghĩa vai trò người dùng mà phải tự động gán quyền truy cập dựa trên thông tin vai trò (sinh viên, tutor, điều phối viên...) được cung cấp từ hệ thống trung tâm của nhà trường.
- Yêu cầu về Cơ sở dữ liệu cho Phiên bản MVP: Theo đặc tả của đề bài, phiên bản MVP (Minimum Viable Product) không bắt buộc phải triển khai một hệ quản trị cơ sở dữ liệu hoàn chỉnh ở tầng backend. Dữ liệu có thể được mã hóa cứng (hard-coded) trong mã nguồn để phục vụ mục đích trình diễn.
- Tuân thủ Quy định về sử dụng Generative AI: Nhóm cam kết tuân thủ các quy định về đạo đức học thuật, đặc biệt là việc khai báo minh bạch và có trách nhiệm về mức độ và phạm vi sử dụng các công cụ AI tạo sinh trong suốt quá trình thực hiện dự án.

1.3. Tài liệu tham khảo

Để đảm bảo hệ thống được xây dựng không chỉ đáp ứng yêu cầu mà còn hiệu quả và phù hợp với thực tiễn, nhóm đã tiến hành một quá trình nghiên cứu và tham chiếu (benchmarking) các nền tảng hỗ trợ học tập và quản lý lịch hẹn tương tự đang vận hành thành công trên thị trường. Việc phân tích này giúp chúng tôi đúc kết những bài học giá trị, từ đó định hình các tính năng cốt lõi cho hệ thống.

1.3.1. Các nền tảng tương tự

Nhóm đã tập trung phân tích ba nhóm nền tảng chính, mỗi nhóm đại diện cho một khía cạnh quan trong của hệ thống cần xây dưng:

- Nền tảng Gia sư Trực tuyến (Online Tutoring Platforms): Các dịch vụ thương mại như Chegg, TutorMe, và Preply là những ví dụ tiêu biểu. Chúng nổi bật với hệ thống tìm kiếm và bộ lọc mạnh mẽ, cho phép người dùng tìm kiếm gia sư theo môn học, chuyên ngành, khung giờ và mức đánh giá. Đặc biệt, hồ sơ (profile) của gia sư được xây dựng rất chi tiết, tạo sự tin cậy thông qua việc trình bày kinh nghiệm, trình độ học vấn và các nhận xét xác thực từ học viên.
- Hệ thống Quản lý Sinh viên Chuyên dụng: Các giải pháp phần mềm như Navigate và Starfish được nhiều trường đại học trên thế giới tin dùng để hỗ trợ sự thành công của sinh viên. Điểm mạnh cốt lõi của chúng là khả năng tích hợp sâu rộng với cơ sở dữ liệu của nhà trường, cho phép theo dõi toàn diện tiến trình học tập. Các hệ thống này không chỉ đơn thuần hỗ trợ đặt lịch hẹn với cố vấn học tập mà còn có khả năng gửi cảnh báo sớm khi nhận diện các sinh viên có dấu hiệu sa sút.
- Nền tảng Đặt lịch hẹn Chuyên dụng: Các công cụ như Calendly và Doodle là minh chứng cho hiệu quả của sự đơn giản và tập trung. Chúng giải quyết triệt để bài toán sắp xếp lịch hẹn bằng cách loại bỏ hoàn toàn các bước trao đổi thủ công. Người dùng chỉ cần thiết lập các khung giờ khả dụng và chia sẻ một liên kết duy nhất; hệ thống sẽ tự động xử lý việc đặt lịch, kiểm tra trùng lặp và gửi thông báo xác nhận, nhắc nhở.

1.3.2. Bài học rút ra

Từ việc phân tích các giải pháp trên, nhóm đã đúc kết được những bài học kinh nghiệm sâu sắc, đóng vai trò kim chỉ nam cho quá trình thiết kế hệ thống:

- Trải nghiệm người dùng (UX) là yếu tố quyết định: Quy trình từ tìm kiếm Tutor đến đặt lịch thành công phải được thiết kế tối giản, nhanh chóng và trực quan. Bất kỳ sự phức tạp nào trong luồng thao tác đều có thể làm giảm tỷ lệ sử dụng của sinh viên.
- Hiệu quả của tìm kiếm và bộ lọc là giá trị cốt lõi: Chức năng quan trọng nhất đối với sinh viên là khả năng tìm được đúng người hướng dẫn mình cần. Do đó, hệ thống bắt buộc phải có các bộ lọc cơ bản và hiệu quả như khoa, môn học và lịch rảnh.
- Tự động hóa là chìa khóa của sự hiệu quả: Toàn bộ quy trình đặt, hủy và nhắc lịch cần được tự động hóa. Điều này không chỉ giúp tiết kiệm thời gian cho cả Tutor và sinh viên mà còn giảm thiểu đáng kể các sai sót do con người.
- Sự tin cậy được vun đấp từ cơ chế đánh giá: Việc cho phép sinh viên để lại nhận xét và đánh giá sau mỗi buổi học là phương thức minh bạch và hiệu quả nhất để xây dựng một cộng đồng chất lượng, đồng thời cung cấp thông tin tham khảo giá trị cho những người dùng khác.
- Quản lý tập trung tạo ra hiệu quả vận hành: Thay vì các quy trình rời rạc, một bảng điều khiển (dashboard) quản lý tập trung sẽ cung cấp cho các bên liên quan một cái nhìn tổng thể, giúp việc theo dõi và đánh giá hiệu quả chương trình trở nên dễ dàng và chính xác hơn.

1.3.3. Tính năng tổng hợp cho hệ thống

Dựa trên những bài học đúc kết và các yêu cầu đặc thù của Trường Đại học Bách khoa TP.HCM, nhóm đã tổng hợp và đề xuất các nhóm tính năng trọng tâm cho hệ thống như sau:

- Nền tảng Quản lý Người dùng và Hồ sơ chuyên nghiệp: Mỗi người dùng sẽ sở hữu một không gian hồ sơ riêng, nơi Tutor có thể trình bày một cách chuyên nghiệp về chuyên môn, kinh nghiệm và thành tích của mình.
- Module Tìm kiếm và Gợi ý Ghép cặp thông minh: Cho phép sinh viên tìm kiếm Tutor theo các tiêu chí linh hoạt, đồng thời tích hợp chức năng gợi ý cơ bản dựa trên môn học và lịch trình tương thích.
- Module Quản lý Lịch hẹn Tinh gọn: Lấy cảm hứng từ sự đơn giản của Calendly, module này cho phép Tutor thiết lập lịch rảnh một cách trực quan, giúp sinh viên đặt lịch chỉ với vài thao tác. Toàn bô quy trình thông báo xác nhân và nhắc nhở sẽ được tư đông hóa.
- Cơ chế Đánh giá và Phản hồi hai chiều: Sau mỗi buổi học, hệ thống sẽ chủ động mời sinh viên đánh giá, từ đó tạo ra một nguồn dữ liệu quý giá, tạo một vòng lặp cải tiến liên tục cho chất lượng chương trình.
- Module Báo cáo và Thống kê Trực quan: Cung cấp các bảng điều khiển cho phép ban quản lý, các khoa và phòng ban dễ dàng theo dõi các chỉ số hiệu suất quan trọng (KPIs) như số lượng buổi học, tỷ lệ tham gia và mức độ hài lòng của sinh viên.
- Khả năng Tích hợp sâu với Ha tầng Công nghệ HCMUT: Đây là yếu tố khác biệt và mang tính nền tảng, đảm bảo dữ liệu được đồng bộ, nhất quán và bảo mật thông qua việc kết nối chặt chẽ với các hệ thống lõi của nhà trường như HCMUT SSO và HCMUT DATACORE.

2. Phân tích yêu cầu dự án

2.1. Tác nhân

3. Mô hình hóa hệ thống

- 3.1. Sơ đồ hành vi
- 3.2. Sơ đồ lớp hệ thống
- 3.3. Các sơ đồ khác

4. Kết luận

- 4.1.Tỗng kết
- 4.2. Hạn chế hiện tại
- 4.3. Định hướng phát triển