Means borsymmung

W(t) = 100 (1 -
$$e^{-\frac{t}{2}t}$$
)

The sourt $u(2) = 80$, $d.h.$ $80 = 100 (1 - $e^{-\frac{2}{2}t}$) |: 100

 $0,8 = 1 - e^{-\frac{2}{2}t}$
 $e^{-\frac{2}{2}t} = 1 - 0,8 = 0,2$ | $ln()$
 $ln(e^{-\frac{2}{2}t}) = ln(0,2)$
 $e^{-\frac{2}{2}t} = ln(0,2)$
 $e^{-\frac{2}{2}t}$$

D	Definitions menge, Bildmenge, Graph
	geg.: Funtionsgleichung $y = \sqrt{2x+6}' = f(x)$.
	· gravst mögliche Definitionsmenge: Wurzel nur von positiven Zahlen
	oder Wull, d.h. 2x+6>0 1-6
	2×≥-6 1:2
	$x \ge -3$ Also Def: menge $D = [-3, \infty)$.
	· Bildmenge derzu: f(-3) = 12(-3)+6 = 10'=0
	f(-2) = 12(-2)+6 = 12 > 0
	f ist streng monoton steigend, siche graph
	Daherist du Bildmenge B=[0,00].
	· Wetetabelle: x f(x)
	-3 0.
	-2 12 = 1,414
	-1 2
	0 2,449
	1 2,828
	2 3,162
	· Graph: siehe Code, Skizze:
	18
	-3 -2 -1 1 2 3 X
×	

7.) f(x)=ex, f(-x)=ex + f(x) oder -f(x) => weder genade 8.) $f(x) = \frac{x^2}{x^3 + x}$ $f(-x) = \frac{(-x)^2}{(-x)^3 + (-x)} = \frac{x^2}{-x^3 - x} = \frac{x^2}{-(x^3 + x)}$ = - + = - f(x) = unglado 9.) $f(x) = \omega_0(2x) - \omega_0(x)$, $f(-x) = \omega_0(2(-x)) - \omega_0(-x) =$ = $\omega_{5}(-2\times) - \omega_{5}(\times) = \omega_{5}(2\times) - \omega_{5}(\times) = f(\times) \Rightarrow \text{ genede}.$ 10.) f(x) = ln(|x|), f(-x) = ln(|-x|) = ln(|x|) = f(x) => gtrade. D (Un-) Gerader Anteil geg.: f(x) grade Anteil: fo(x) = 1/2 [f(x) + f(-x)] ungerader Auter: fu(x) = [f(x)-f(-x)] Deachte: fo(x) + fu(x) = = [f(x) + f(-x) + f(x) - f(-x)] = $= \frac{1}{2} \left[2f(x) \right] = \frac{1}{2} 2 \cdot f(x) = f(x)$ Check, ob fo gerade und fu ungerade sind: $f_{q}(-x) = \frac{1}{2} \left[f(-x) + f(-(-x)) \right] = \frac{1}{2} \left[f(-x) + f(x) \right] = f_{q}(x)$ fu (-x) = = [f(-x) - f(-(-x))] = = [f(x) - f(x)] = $= \frac{1}{2} \left[- \left(\frac{1}{2} (x) - \frac{1}{2} (-x) \right) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{1}{2} \left[\frac{1}{2} (-x) - \frac{1}{2} (-x) - \frac{1}{2} (-x) \right] = -\frac{$ Gerader und ungerader Anteil von ex = f(x): $f_{q}(x) = \frac{1}{2}(e^{x} + e^{-x}) = \omega h(x)$ f. (x) = 1/2 (ex-ex) = sinh(x) Phot: riche Code, Shitse: 634(H)

D Umbehrfunktion von f:
$$\mathbb{R} \to \mathbb{R} : f(x) = \text{sinh}(x) \text{ inld. Probe.}$$
 $y = \text{sinh}(x) = \frac{1}{4} (e^{x} - e^{-x}) | \cdot 2$
 $2y = e^{x} - e^{-x} = 2y | \cdot e^{x}$
 $e^{x} - e^{x} - e^{x} = 2y e^{x}$
 $e^{x} - e^{x} - e^{x} = 2y e^{x}$
 $e^{2x} - e^{x} = 2y e^{x}$
 $e^{2x} - e^{x} = 2y e^{x}$
 $e^{2x} - e^{x} = 2y e^{x} - 2y e^{x}$
 $e^{2x} - 1 - 2y e^{x} = 0$
 $e^{2x} - 2y \cdot e^{x} - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot e^{x} - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot e^{x} - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot e^{x} - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot e^{x} - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{x}$
 $u^{2} - 2y \cdot u - 1 = 0$

Sethe $u = e^{$