## Credit Card Fraud Detection

## Scotiabank Data Science Contest

There are over \$6 billion in credit card transactions made each year in Canada, so preventing fraud accurately is essential to the business and customers. Given that our company's fraud detection models have not been updated in years, we decided to build a new algorithm that gives a holistic and practical solution to the problem.

We began our analysis by completing a preliminary exploratory data analysis. During our analysis, we found that the relationships between most variables are nonlinear. Therefore, linear classifiers such as logistic regression, naive bayes, and linear discriminant analysis are unsuitable for our analysis. Based on our EDA, we decided to employ a nonparametric approach. Specifically, we modelled our data using random forest and neural networks. We used machine learning models for our algorithm as opposed to a rule-based one because machine learning models are better at learning patterns that evolve whereas rule-based algorithms require overhead to create a large set of rules and may be impervious to outliers such as large transactions that may not be fraudulent.

We discovered our data has extreme class imbalance with 97.6% of normal transactions and 2.4% of fraudulent transactions creating bias. Data scientists should be aware of this shortcoming. To mitigate this issue, we rebalanced our data with SMOTE and used F1 instead of accuracy as our metric to train the neural network.





Based on our feature selection results with elastic net and random forest variable importance plot as seen above, factors such as the size of the transaction, the account's history of transactions, the location, available credit, and time should be considered amongst other features when detecting fraud. International transactions are especially likely to be fraudulent. Employees need to pay extra attention to transactions conducted internationally, as well as accounts with a large number of phone orders in the past 30 days. We also recommend declining both very big transactions and small but frequent transactions, as the volume of these transactions may add up when fraudsters try to stay undetected.

The sum of phone orders in the past is also an important predictor for fraudulent credit card transactions. For minimizing the negative impacts of fraud, we should prioritize verifying phone transactions and train employees to ask security questions to verify customers' identities while on a phone call. Therefore, we can catch fraudsters early on and flag accounts that have been made attempts by fraudsters on phone calls.

To prevent fraud in the future, it is vital to keep retraining our model with new data gathered so our model can detect new patterns that data fraudsters come up with. As fraudsters came up with new ways to identify thievery, we need to update our detection methods accordingly to continue our fraud prevention efforts and provide secure transactions to our customers.