

图论习题课

李佳伟 张强 2017-10-26

第一次作业

第一章: 1题

• 1.1 举出两个可以化成图论模型的实际问题

路线规划(时间最短?少换乘?价格最低?) 城市间道路规划 课程安排

第一章: 2题

1.2 证明|E(G)|≤(^v₂), 其中G是单图
 证明:

(思路)根据单图无环无重边的特点,所以E(G)是最大的情形为任意两个顶点间有一条边相连,即极端情况为 $\binom{\upsilon}{2}$ 。

第一章: 4题

• 1.4 画出不同构的一切四顶单图.

解:

0条边: • • • 1条边: ●● ●

2条边: ●●

5条边:

6条边:

第一章: 10题

1.10 *G* ≅ *H*当且仅当存在可逆映射*θ*: *V*(*G*) → *V*(*H*), 使得 *uv* ∈ *E*(*G*) ⇔ *θ*(*u*)*θ*(*v*)∈*E*(*H*), 其中*G*和*H*是单图。
 证明:

必要性

• 若 $G \cong H$,由定义可得,存在可逆映射 θ : $V(G) \to V(H)$ φ : $E(G) \to E(H)$ 当且仅当 $\psi_{G(e)} = uv$ 时, $\psi_{H(\varphi(e))} = \theta(u)\theta(v)$,所以 $uv \in E(G) \Rightarrow \theta(u)\theta(v) \in E(H)$

充分性

• 定义 ϕ : $E(G) \to E(H)$,使得 $uv \in E(G)$ 和 $\theta(u)\theta(v) \in E(H)$ 一一对应,于是 ϕ 可逆,且 $\psi_G(e) = uv$ 的充要条件是 $\psi_{H(\phi(e))} = \theta(u)\theta(v)$,得 $G \cong H$

第一章: 32题

• 1.32 证明 $\sigma \leq \frac{2\varepsilon}{v} \leq \Delta$

证明:

对任意顶点 V_i 有: $\sigma \leq d(V_i) \leq \Delta$ 。(i=1,2,...,v)

因此, $v\sigma \leq \sum_{i=1}^{v} d(V_i) \leq v\Delta$

即
$$\sigma \leq \frac{\sum_{i=1}^{v} d(V_i)}{v} \leq \Delta$$

由Euler定理得: $\sigma \leq \frac{2\varepsilon}{v} \leq \Delta$,命题得证。

第一章: 35题

1.35 证明: (a)7,6,5,4,3,3,2和6,6,5,4,3,3,1不是单图的次数序列。 (b) $d_1, d_2, ..., d_n$ 是单图的次数序列且 $d_1 \ge d_2 \ge ... \ge d_n$, 则 $\sum_{i=1}^{n} d_i$ 是偶数,且对 $1 \leq k \leq n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}$$

证明:

(a)第一个序列考虑度数7,第二个序列考虑6,6,1

(b)将顶点v分成两部分v'和v"

$$v' = \{v \mid v = v_i, 1 \le i \le k\},\$$

$$v'' = \{v | v = v_i, k < i \le n\}$$

以v'点为顶的原图的导出子图度数之和小于 k(k-1)

然后考虑剩下的点贡献给这 \mathbf{k} 个点的度数之和最大可能为 \sum m in $\{\mathbf{k}_{i},\mathbf{d}_{i}\}$

$$\sum_{i=k+1}^{n} m in \{k, d_i\}$$

第一章: 37题

• 1.37 证明:无环图G含二分生成子图H,使得 $d_{H(v)} \geq \frac{1}{2} d_{G(v)}$ 对每个 $v \in V(G)$ 成立。

证明:

任取X,Y满足X \cup Y = V(G), X \cap Y = Ø,且令X,Y中的顶两两不相邻,所得的图是H且是二分子图,令H是G边数最多的二分生成子图,若存在v \in V(G),使得d_H(v) < $\frac{1}{2}$ d_G(v),不妨设v \in X,则将v所连的边取消,换成d_G(v) - d_H(v) 条边,且将v加入Y中,于是H的边数增加了d_G(v) - 2d_H(v)条,与H边数最多矛盾,故原命题成立。

第二次作业

第一章: 42题

• 1.42 若G是单图, $\varepsilon > \binom{v-1}{2}$,则G是连通图

证明:

假设G不是连通图,则G至少由两个连通片G1和G2组成, 顶点数分别为V1,V2。

$$\text{Im}_{\mathcal{E}^{\leq}} \binom{v_1}{2} + \binom{v_2}{2} = v_1(v_1 - 1)/_{2^+} v_2(v_2 - 1)/_{2^{\leq}} (v_1 + v_2 - 1)(v_1 + v_2 - 2)/_{2^{\leq}}$$

$$= \binom{v_1 + v_2 - 1}{2} = \binom{v - 1}{2}$$

与 ε > $\binom{v-1}{2}$ 矛盾,故假设错误,**G**是连通图。

第一章: 47题

• 1.47 证明:连通图若有两条最长轨,则二最长轨有公共顶点。

证明: 反证法:

假设两条最长轨 $P=P(v_1,v_2)$ 和 $Q=P(v_3,v_4)$ 无公共顶点.

由于连通性,不妨设 $v_m v_n$ 连接了轨P和Q,且 $v_m \in \mathfrak{N}$ P,

 $v_m \in \mathfrak{N}Q$. 那么,可以找出一条更长轨:

 $\max\{P(v_1,v_m),P(v_2,v_m)\} + v_m v_n + \max\{P(v_n,v_3),P(v_n,v_4)\},$

得出矛盾,故二最长轨有公共顶点。

第一章:58题

• 1.58 v_1 , v_2 , v_3 , v_4 , v_5 , v_6 是6个城市,下面矩阵的(i,j)号元素是 v_i 到 v_j 的机票票价,试为一个旅行者制作一张由 v_1 到各城去旅游的最便宜的航行路线图。解:

根据Dijkstra算法

到达城市	最便宜路线	票价
v2	v1v6v2	35
v3	v1v5v3 or v1-v6-v4-v3	45
v4	v1-v5-v4 or v1-v6-v4	35
v5	v1-v5	25
v6	v1-v6	10

ГО	50	∞	40	25	107	
50	0	15	20	00	25	
∞	15 20 ∞	0	10	20	00	
40	20	10	0	10	25	
25	∞	20	10	0	55	
	25		25	55	0	

第一章: 改写Dijkstra算法,输出最短路径

解:

- (1).若顶点u,v不相邻, $\omega(u,v) = ∞$.
- (2). $\diamondsuit l(u_0) = 0$, $pre(u_0) = -1$, $l(v) = \infty$ $(v \neq u_0)$; $S_0 = \{u_0\}$, i = 0.
- (3).对 $\forall v \in V S_i$,用 min $\{l(v), l(u_i) + \omega(u_i, v)\}$ 替代l(v),若替代前 $l(v) > l(u_i) + \omega(u_i, v)$,则 $pre(v) = u_i$,设 u_{i+1} 是使 l(v)取最小值的 $V(G) S_i$ 中的顷,令 $S_{i+1} = S_i \cup \{u_{i+1}\}$.
- (4). i = v-1, 止; 若i < v-1, 用i+1代替i, 转(3).

对于每个 u_i ,轨道 $P(u_0, u_i)$ 中 u_i 的前驱为 $pre(u_i)$,依次找到前驱直至 u_0 ,则 $u_0, ..., pre(u_i)$, u_i 为 u_0 到 u_i 的最短路径。

第二章:1题

• 2.1 至少两个顶的树其最长轨的起止顶皆是叶, 试证明之。

证明:

设最长轨P为 $v_0v_1 ... v_n$, 若 $d(v_0) \ge 2$

- 1. v_0 与除P上的顶相连,则P可继续延长,与P为最长 轨矛盾。
- 2. v_0 与P上的某顶相连,则构成圈,与树矛盾。 从而,起止顶皆为叶。

第二章: 3题

• 2.3 证明: 若T是树,且 $\Delta(T) \ge n$,则T至少有n个叶。

反证法:设树T有v个顶,叶子数为s,且s<n

則
$$2\varepsilon(T) = \sum_{v \in v(T)} d(v) \ge 2(v-s-1)+n+s$$
 =2v-2+(n-s) >2(v-1)

得到 ε(T) > v-1.

对树T,有ε=v-1,矛盾

第二章:5题

• 2.5 证明: 树有一个中心或两个中心,但有两个中心时,此二中心是领顶。

证:

- ①结论对于树K₁, K₂显然成立。
- ②对于v(T)>2的树,将T中所有叶删去后,新树T'与原树T中心相同。(下证)
- ③重复②。 因为T有限,所以,有限步之后,得到树 K_1 或 K_2 . 且它的中心就是T的中心。得证

证:将树T中所有叶子删去后,新树T'与原树T中心相同:

- 因为对于T中任意一点 ω , 当 d(w,v) ($v \in T$)取最大值,v只能为叶子。则满足,删去所有叶子后:
- max d(w,v') ($v' \in T'$) = max d(w,v) 1 ($v \in T$)
- 所以T'与T有相同中心。

第二章: 10题

• 2.10 $求 K_{2,3}$ 生成树的个数。

解:

$$1+1+2+1+2+2+3 = 12$$

第三次作业

第二章: 13题

• 2.13 画出带权0.1,0.1,0.1,0.1,0.2,0.4 的Huffman树。

解:

第二章: 18题

• 2.18 求图2.16中图的最优树

2.4节: 求最优树算法

第二章: 30题

• 2.30 加权连通图G有边权相等的长为m的圈C, 且其权为E(G)中边权最小值,则G至少有m棵不 同最优树.

证明:由于圈C中边的权是E(G)中边权最小值,故由kruskal算法,G的最优树的m-1条边可在圈C中选择,且不同的m-1条边的选择可以由kruskal算法生成不同的最优树,m条边中选择m-1条边有m种选法,因此可得到m棵不同最优树,故G至少有m棵不同最优树,得证。

第三章:5题

• 3.5 证明: (1)若G为自对偶图,则 $\varepsilon(G) = 2v(G) - 2$. (2)对于 $\forall n \in \mathbb{N}, n \geq 4$,构作一个n项自对偶图.

证明:

- (1) 由Euler公式,对平面图G,有v(G)- ε (G)+ \emptyset (G)=2,由于G为自对偶图,由对偶图的顶集为原图的面集,故 \emptyset (G)=v(G),带入Euler公式即得证。
- (2) 当n≥4, n顶的轮Wn(即一个单独的顶点和n-1条边的圈上点都相邻的图)满足题意要求,定义一个映射将轮的内部的n-1个面映射为圈上的n-1个点,轮外部的面映射为轮中心的点,则由该映射可知Wn与其对偶图同构,故Wn为自对偶图。

第三章: 11题

• 3.11 设 ω 是平面图G的连通片个数,则 $v(G) - \varepsilon(G) + \emptyset(G) = \omega + 1$

证:对于每个连通片 G_i , $1 \le i \le \omega$,运用欧拉定理:

$$\nu(G_i) - \varepsilon(G_i) + \phi(G_i) = 2$$

$$\sum_{i=1}^{w} \left[\nu(G_i) - \varepsilon(G_i) + \phi(G_i) \right] = 2\omega$$

而 $\phi(G) = \sum_{i=1}^{N} \phi(G_i) - \omega + 1$ (最外面的平面被重复计算 $\omega - 1$ 次)

$$\nu(G) - \varepsilon(G) + \phi(G) = 2\omega - \omega + 1 = \omega + 1$$

第四次作业

第三章: 7题

• 3.7 若G的顶点数不少于11个,则G^c不是平面图

证明:

由于G为平面图,故 $\varepsilon(G) \leq 3v(G) - 6$ 若 G^c 也是平面图,则也有 $\varepsilon(G^c) \leq 3v(G^c) - 6$ 因此有 $\varepsilon(G) + \varepsilon(G^c) \leq 3v(G) + 3v(G^c) - 12$ 由于 K_n 的边数为 $\frac{n(n-1)}{2}$,故由补图的定义可得, $v(G^c) = v(G) = n$, $\varepsilon(G) + \varepsilon(G^c) = \frac{n(n-1)}{2}$,代入上面的不等式得到 $\frac{n(n-1)}{2} \leq 6n - 12$,即 $n^2 - 13n + 24 \leq 0$ 求解该不等式得到 $n \leq 10$,与题设矛盾,故 G^c 不是平面图。

第三章:8题

• 3.8 $S=\{X_1, X_2, ..., X_n\}$ 是平面上的点组成的集合,n>=3, S中任二点距离至少为1,则距离恰为1的顶对在S中最多 3n-6对。

解:

以点集S构成V(G),在距离恰为1的顶对之间连边构成E(G),下面用反证法证明图G是平面图:若G不是平面图,则存在两边除端点外有公共点,设为边AB、CD,公共点为O。

则不失一般性可以设OD<=1/2, OB<=1/2

$$BD = \sqrt{0D^2 + 0B^2 - 20D \times 0B \times \cos \theta}$$

$$<\sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2 - 2 \times (\frac{1}{2}) \times (\frac{1}{2}) \times (-1)} = 1$$

与任两点距离至少为1矛盾,所以图G是

平面图,因此 $\varepsilon \leq 3v - 6 = 3n - 6$,而图G的边数对应距离为1的顶对,所以距离恰为1顶对在S中最多3n-6对。

第四章: 2题

• 4.2 树上是否可能有两个不同的完备匹配? 为什么?

解:不可能。

反证法: 假设树T中存在两个不同的完备匹配 M_1 和 M_2 ,考虑 $T[M_1 \ominus M_2]$,记为T',T'中任一顶点必定同时与 M_1 , M_2 中的一条边关联,所以T'中顶点的度均为2,则必然存在环。T'为 T的子图,因此T中必有环,与T为树矛盾。所以树中不可能 有两个不同的完备匹配。

第四章:11题

• 4.11 矩阵的行或列成为矩阵的"线",证明: 0-1 矩阵中含所有1的线集合的最小阶数(集合元素个数)等于没有两个在同一线上的1的个数。

证明:设X为行集合,Y为列集合 若某行与某列交点为1,则将这两点之间连线,构 成二分图**G**。

含所有1的线集合的最小阶数为最小覆盖|M|。 没有两个在同一线上的1的个数为最大匹配 $\beta(G)$ 。 由konig定理, $|M|=\beta(G)$,得证。

第四章: 14题

• 4.14 用*K*Ønig定理来证明Hall定理.

解:设M是二分图G的最大匹配,X与Y是G的顶划分由于(X-S) \cup N(S)是G的一个覆盖,故下式为G的最小覆盖数 $min_{S\subseteq X}\{(|X|-|S|)+|N(S)|\}=|X|-max_{S\subseteq X}\{|S|-|N(S)|\},$ 因此由König定理可得, $|M|=|X|-max_{S\subseteq X}\{|S|-|N(S)|\}$

- 必要性: M将X中的顶皆许配 $\Rightarrow |M| = |X|$
- $\Rightarrow \max_{S \subseteq X} \{ |S| |N(S)| \} = 0 \Rightarrow |S| \le |N(S)|$
- 充分性: $|S| \leq |N(S)| \Rightarrow \max_{S \subseteq X} \{|S| |N(S)|\} \leq 0$
- ⇒ $|M| \ge |X|$, 故|M| = |X|, 即M将X中的顶皆许配

第四章: 17题

• 4.17 写出树有完备匹配的充要条件并加以证明

解: 树有完备匹配的充要条件是对 $\forall v \in V(G)$, O(G - v) = 1证明如下:

- 必要性: 若树G有完备匹配,则V(G) = 偶数,<math>V(G v) = 奇数,故G v的所有分支不可能都是偶分支,因此 $O(G v) \ge 1$,由Tutte定理 $O(G v) \le 1$,即可得O(G v) = 1
- 充分性: 对 $\forall v \in V(G)$, O(G-v) = 1, 即G-v存在唯一的奇分支C(v), 令v与C(v)在G中关联的边为e(v) = vu, 显然当v确定后,u与e(v)都被唯一确定,且易知对u用同样方式得到的e(u) = uv。于是 $M = \{e(v)\}$ 构成G的一个完备匹配。

第五次作业

第四章: 19题

• 4.19 求下列矩阵A的最佳匹配

第五章: 2题

• 5.2 给出求二分图正常△边着色的算法.

解:设G为二分图,其中 $|X|\ge|Y|$,首先加点扩充Y,使|X|=|Y|,添加边使G变成 Δ 次正则二分图,记为 G^* ,利用匈牙利算法逐次求其完备匹配,直至求出 G^* 的 Δ 个边不重的完备匹配,每一个完备匹配着一种颜色即可。最后去掉扩充的顶及边即可。

第五章: 3题

• 5.3 证明: 若二分图的顶之最小次数为 $\delta > 0$,则对此图边进行 δ 着色时,能使每顶所关联的边中皆出现 δ 种颜色.

证明:利用反证法

若不存在这种着色方式,考虑图K的最佳 δ 着色,由假设,存在一个顶,且所关联的边的颜色数小于 δ ,即小于该顶的次数。故存在颜色x, y,使得x不出现在v的着色中,y出现了至少两次,则着色x和y的边 $E_x \cup E_y$ 所组成的子图在v处的连通片为奇圈,与二分图中没有奇圈矛盾,故原命题成立。