

第九章 中央处理器(三)

秦磊华 计算机学院

本讲主要内容

9.5 硬布线控制器设计

1. 控制器设计任务

设计功能部件,产生指令执行过程中所需要的控制信号

计算机组成原理

2. 传统时序硬布线控制器设计

时序产生器循环产生周期电位、节拍电位,供控制器对信号进行时间调制

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤
 - (1)分析数据通路,画指令周期流程图,明确各节拍控制信号
 - (2) 设计时序发生器: 根据机器周期、节拍划分构建时序状态图,设计时序电路
 - (3)找出同一微操作控制信号产生条件
 - (4)写出各微操作控制信号的逻辑表达式
 - (5) 对相关信号进行归并处理(可选项,根据需要执行)
 - (6)利用组合逻辑电路实现控制信号

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤
 - (1)指令周期方框图

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤
 - (2)设计时序发生器

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤

(2)设计时序发生器(同步)

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤

(2)设计时序发生器(同步)

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤

(2)设计时序发生器(异步)

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤

2. 传统时序硬布线控制器设计

- 1) 三级时序硬布线控制器设计步骤
 - (3)找出同一微操作控制信号产生条件
 - (4)写出各微操作控制信号的逻辑表达式

T1	PC _{out} , AR _{in} , X _{in}
T2	+4
Т3	Z _{out} , PC _{in} , DRE _{in,} Read
T4	DR _{out} , IR _{in}

ſ	节 拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	addi (3 cycles)	add (3 cycles)
M _{cal} _	T1	RegR=0, R _{out} , X _{in}	RegR=0, R _{out} , X _{in}	RegR=0, R _{out} , X _{in}		
	T2	IR_imm _{out} ال imms, Ads, ADD, Zin	IR_imm _{out} , l_imms, Ads, ADD, Zin	RegR , R_{out} , Ads , SUB, PSW $_{in}$		
M_{ex}	T1	Z _{out} 、AR _{in}	Z_{out} AR_{in}	PC _{out} 、 X _{in}	RegR=0, R _{out} , X _{in}	RegR=0 , R _{out} , X _{in}
	T2	Read , DRM _{in}	RegR、DR _{in}	IR_imm _{out} , I_imms =0, Ads , ADD, Zin	IR_imm _{out} J_imms, Ads, ADD, Zin	RegR, R _{out} , Ads, ADD, Zin
	T3	DRout , RegW=0 , R _{in}	Write	Z _{out} , PC _{in}	Z _{out} , R _{in} , RegDst	Z _{out} 、RegW、R _{in}

 $IR_{imm_{out}} = (Iw + sw) \cdot M_{cal} \cdot T2 + (addi + beq) \cdot M_{EX} \cdot T2$

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤
 - (3)找出同一微操作控制信号产生条件
 - (4)写出各微操作控制信号的逻辑表达式

	节拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	addi (3 cycles)	add (3 cycles)
M_{cal}	T1	RegR=0, R _{out} , X _{in}	RegR=0, R _{out} , X _{in}	RegR=0, R _{out} , X _{in}		
	T2	IR_imm _{out} ,l_ <mark>imms,</mark> [Ads, ADD, Zin	IR_imm _{out} , I_imms ,	RegR , R _{out} , Adsi, SUB, PSW _{in}		
	T1	Z_{out} , AR_{in}	Z _{out} 、AR _{in}	PC _{out} 、 X _{in}	RegR=0, R _{out} , X _{in}	RegR=0 , R _{out} , X _{in}
M_{ex}	T2	Read , DRM _{in}	RegR、DR _{in}	IR_imm _{out} , I_imms =0, iAds_, ADD, Zin	IR_imm _{out} , I_ <mark>imms,</mark> Ads, ADD, Zin	RegR, R _{out} , Ads, ADD, Zin
	T3	DRout , RegW=0 , R _{in}	Write	Z _{out} , PC _{in}	Z _{out} , R _{in} , RegDst	Z _{out} 、RegW、R _{in}

Ads = $(/w+sw + beq) \cdot M_{cal} \cdot T2 + (addi + beq+add) \cdot M_{EX} \cdot T2$

计算机组成原理

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

- 2. 传统时序硬布线控制器设计
 - 1) 三级时序硬布线控制器设计步骤
 - (6)利用组合逻辑电路实现

3. 现代时序硬布线控制器设计

3. 现代时序硬布线控制器设计

- 1) 现代时序硬布线控制器设计步骤
 - (1)分析数据通路,画出指令周期流程图,明确各节拍控制信号
 - (2)绘制指令执行状图
 - (3)构建状态转换表
 - (4)实现有限状态机逻辑电路
 - (5)利用组合逻辑电路产生控制信号

- (1)**分析数据通路,画指令周期流程图**, 明确各节拍**控制信号**
- (2)**设计时序发生器:**根据机器周期、节拍划分构建状态图,设计时序电路
- (3)找出同一微操作控制信号产生条件
- (4)写出各微操作控制信号的逻辑表达式
- (5) 对相关信号进行归并处理
- (6)利用组合逻辑电路实现

3. 现代时序硬布线控制器设计

- 1) 现代时序硬布线控制器设计步骤
- (1)分析数据通路,画出指令周期流程
- 图, 明确各节拍控制信号
- (2)绘制指令执行状图

节拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	addi (3 cycles)	add (3 cycles)
T1 S4	RegR=0, R _{out} , X _{in}	SegR=0, R _{out} , X _{in}	RegR=0, R _{out} , X _{in}		
T2 S ₅	IR_imm _{out} ,I_imms, Ads, ADD, Zin	imm _{out} , I_imms , Ads, ADD, Zin	egR , R _{out} , Ads , SUB, PSW _{in}		
T1 S6		S ₁₁ Z _{out} 、AR _{in}	S ₁₆ PC _{out} 、X _{in}	S ₁₉ RegR=0, R _{out} , X _{in}	S ₂₂ RegR=0 , R _{out} , X _{in}
T2 S ₇	Read , DRM _{in}	S ₁₂ RegR、DR _{in}	IR_imm _{out} , I_imms =0, (S ₁₇ Ads , ADD, Zin	S ₂₀ IR_imm _{out} , I_imms, Ads, ADD, Zin	gR, R _{out} , Ads, ADD, Zin
T3 S ₈	PRout , RegW=0 , R _i	S ₁₃ Write	Z _{out} , PC _{in}	S ₂₁ Z _{out} , R _{in} , RegDst	Z _{out} 、RegW、R _{in}

| 计算机组成原理

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

- 3. 现代时序硬布线控制器设计
 - 1) 现代时序硬布线控制器设计步骤
 - (2)绘制指令执行状图
 - (3)构建状态转换表

现态	lw	sw	beq	add	addi	equal	次态
S0	X	X	X	Х	х		S1
S1	Х	Х	Х	Х	Х		S2
S2	X	X	Х	X	Х		S3
S3	1						S4
S3		1					S9
S3			1				S14
S3				1			S19
S3					1		S22
S4							S5

.....

是否所有指令执行阶段都采用完全 不同的状态路径?

- 3. 现代时序硬布线控制器设计
 - (2)绘制指令执行状图
 - (3)构建状态转换表

	现态	lw	SW	beq	add	addi	Equal	次态
1	S0	Х	Х	Х	х	х	х	S1
HΩ	S1	Х	Х	Х	х	х	х	S2
指	S2	Х	Х	х	х	х	х	S3
取指令周期状态	S 3	1						S4
周曲	S 3		1					S9
双	S 3			1				S14
态	S 3				1			S19
	S 3					1		S22
	S4	Х	Х	х	x	х	х	S5
	S 5	X	X	x	x	X	x	S6
/w	S6	Х	Х	х	x	X	x	S7
	S7	Х	Х	x	X	х	x	S8
	S8	X	X	x	x	X	x	S0
beq	•••							•••
	S15						1	S16
	S15						0	S0
	S16							S17

- 3. 现代时序硬布线控制器设计
- (4)实现有限状态机逻辑电路
- 1) 现代时序硬布线控制器设计步骤

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

- 3. 现代时序硬布线控制器设计
- 1) 现代时序硬布线控制器设计步骤
- (4)实现有限状态机逻辑电路

实现该状态机的同步时序电路该选择什么类型?

Moore or Mealy?

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

- 3. 现代时序硬布线控制器设计
- 1) 现代时序硬布线控制器设计步骤
- (5)利用组合逻辑电路产生控制信号

操作控制信号仅仅是状态的函数

第三部分完