

planetmath.org

Math for the people, by the people.

characterizations of integral

Canonical name CharacterizationsOfIntegral

Date of creation 2013-03-22 14:56:54 Last modified on 2013-03-22 14:56:54

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 11

Author pahio (2872) Entry type Theorem Classification msc 12E99 Classification msc 13B21

Synonym characterisations of integral

Theorem. Let R be a subring of a field K, $1 \in R$ and let α be a non-zero element of K. The following conditions are equivalent:

- 1. α is integral over R.
- 2. α belongs to $R[\alpha^{-1}]$.
- 3. α is unit of $R[\alpha^{-1}]$.
- 4. $\alpha^{-1}R[\alpha^{-1}] = R[\alpha^{-1}].$

Proof. Supposing the first condition that an equation

$$\alpha^{n} + a_{1}\alpha^{n-1} + \ldots + a_{n-1}\alpha + a_{n} = 0,$$

with a_j 's belonging to R, holds. Dividing both by α^{n-1} gives

$$\alpha = -a_1 - a_2 \alpha^{-1} - \ldots - a_n \alpha^{-n+1}.$$

One sees that α belongs to the ring $R[\alpha^{-1}]$ even being a unit of this (of course $\alpha^{-1} \in R[\alpha^{-1}]$). Therefore also the principal ideal $\alpha^{-1}R[\alpha^{-1}]$ of the ring $R[\alpha^{-1}]$ coincides with this ring. Conversely, the last circumstance implies that α is integral over R.

References

[1] Emil Artin: . Lecture notes. Mathematisches Institut, Göttingen (1959).