공개 데이터를 활용한 주식시장 동화 암호화폐 잔류효과 검증

목차

- ▶ 서론
- ▶ 기존 문헌 연구
- ▶ 가설
- ▶ 데이터와 방법
- ▶ 분석 결과
- ▶ 결론

서론

CryptoPotato

서론

-텍스트 마이닝 (비트코인 기반), 2021.10~2022.8

한국 기사 – 빅 카인즈

미국 기사 – 뉴욕타임즈 api

대중 반응 – 디시인사이드 비트코인 갤러리 (욕설 제외)

방법: Python (BeautifulSoup, Konlpy, Jpype 패키지 이용)

구글 자연어 api 이용

한국 기사	미국 기사	대중 반응
상승(세)	CrpytoCurrency	존버(텨), 콜, 사야, 수 익
급등, 화폐, 유가	Government, stocks and Bonds	손절, 팔어(아), 인증

급등, 이상수익에 주목하기로 함

기존 문헌 연구

- Common Risk Factors In Cryptocurrency, etl [Liu, Tsyvinski, Wu(2019&2022), Liu and Tsyvinski(2021),]
 암호화폐시장을 암호화폐 factor로 풀이함
- ▶ The Domestication of Crypto Assets [Ahn, D.H, Kang, K.H, Ko, S,D] Liu 논문에서 기반, 주식시장에 동화되어, 주식시장 factor로 설명가능한 코인 들을 찾음
- ▶ Availability heuristic, anchoring previous Studies [Kudryavtsev, Marco] 큰 가격변화 발생 시 주식시장에서 나타나는 이상수익률 변화
- ▶ How Do Investors Determine Stock Prices after Large Price Shocks? [Brady, Premti(2019)] 미국 CRSP 데이터 이용, 10% 이상 사건시 닻내림 어림짐작 따른 과소반응 확인

가설

- ▶ 만일 코인시장이 주식시장과 같은 메커니즘이라면, 코인시장 투자자들은 최고가, 최저가에 닻내림을 하기에,
- 1.최고가 근방에서 주가 하락시 음의 이상수익률 (최고가에 닻내림으로 주가하락시 불확실성 증폭으로 더 낮은 수익률 변화를 보일 것)
- 2.최저가 근방에서 주가 상승시 양의 이상수익률 (최저가에 닻내림으로 주가 상승시 불확실성 증폭으로 더 높은 수익률 변화를 보일 것)

데이터와 방법

공개데이터

1. 업비트 api

2. 코인시장api (바이낸스, <mark>Cryptocompare</mark>, coinGaeko, CoinMarketCap)

3. Kaggle

데이터와 방법

CryptoCompare api 이용 2017.1.1~2023.5.22 까지의 데이터 (종가, 거래량 등) 시가총액 상위 300개 코인 대상

이 중, 주식시장 변수로 잘 설명되는 동화(domestication) 된 코 인들을 찾고자 함

Ahn(2023) - comovement& domestication

1. comovement

	Date	global	S_BTC	G_BTC	D_BTC	B_BTC
Bitcoin	20.2.21 이전	0.01	0.002	0.026	0.007	0.956***
	20.2.21이후	0.02	0.627***	0.044	0.061	0.249**

2. Domestication — projection 이용

	СМОМ	CSMB	СМКТ	MRMF	SMB	HML	RMW	CMA	С
Coin	0.783	-1.339***	-0.927						2.523*
Stock				-4.734**	0.649	-0.073	-2.375	-6.688	14.280*
coin&stock	1.062**	-1.287**	-0.775	-3.831**	0.228	1.153	-1.044	-10.352***	15.930

comovement& domestication

1. Comovement – 제니스 써핀 알고리즘 방법 사용

S&P500 과의 correlation을 바탕으로 파이썬의 Jenskpy 방법을 사용해 chow test 와 같이 break point를 선정하여 데이터 가공

2. Domestication – LSTM 딥러닝 이용

이전 60일 치 데이터를 가중치로 투입 직전 수익률, S&P500, BTC 수익률을 변수로 투입

Comovement - 제니스 써핀

Jenks natural breaks

- 그 구간 내에서 분산 최소화, 구간 간의 분산 최대화
- 1. 구간설정 : 임의의 방식으로 구간을 나눔 (최대 최소를 기준으로)
- 2. 분산 : 각 구간 총 분산, 내부 분산 계산
- 3. 분할 : 데이터를 이동 혹은, 구간을 새롭게 분할하면서 총, 내부 분산 계산
- 4. 총 분산, 내부분산이 최소가 되는 분할 점 확인

1	2	3	4	5
1 2 3	569	13 15	18 19	23 25

Comovement - 제니스 써핀

300개 코인 중, CryptoCompare api 에서 검색이 가능하고 연속된 60일 이상의 데이터 있는 코인 로그 수익률로 변환이 가능한 데이터가 존재하는 269 코인

많은 연구 데이터에서 주목한 2019~2020년 이후 S&P500과 상관관계가 높은 코인에 주목 2019년 이후 가장 빠른 break point를 기준으로 전 후 데이터 분할

RNN의 장기 의존성 문제 (Input 이 많아질수록, 과거의 데이터들의 미분값들이 너무 많아서 제대로 학습 안됨)

다양한 과거 가중치도 추가로 학습이 가능함

1. Cell state

2. Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

3. Input Gate

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

4. Cell state update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

5. Output Gate

1.Input feature : 직전 수익률, SP500, BTC 의 이전 60개 데이터 (거래량, 유로피안 콜 금리 등도 가능)

2. Train, test 데이터는 랜덤하게 test 사이즈 0.2

3. Loss = MSE, optimizer = adam (관성의 모멘텀, 기울기 제곱의 값에 따라 학습의 정도를 줄이는 adagrad 합친거)

Domestication

Corr > 0.2	Before corr 큼	After corr 큼
Before loss 작음	선택	
After loss 작음		선택

269개 코인 -> 56개 코인

방법

- ▶ 사건일 이전 60일, 이후 10일 거래일 확보
- ▶ 최대 종가 변화량은 50%를 초과하지 않음
- ightharpoonup [Event Day] $|SR_i| > 10\%$, i 번째 사건의 일별 로그 주가수익률 기준
- ▶ 누적이상수익률 분석을 위한 CAPM 사용 $SR_i E(r_i)$, $E(r_i) = \alpha + \beta E(r_m)$, $r_m : S\&P500$
- ▶ 1, 2, 5, 10 의 누적이상수익률 분석
- ▶ 60일 최고, 저가 (HI,LO)

$$HI = \frac{\text{이벤트전날 종가}}{60일 최고가}, LO = \frac{60일 최저가}{\text{이벤트전날 종가}}$$

1. 전체 표본의 경우

	SR > 10% (305)	SR < 10% (250)
Day1	0.29(33.26%)	***-1.42(0.12%)
Day2	0.17(68.13%)	0.11(79.72%)
Day5	***15.97(0.0%)	***-15.07(0.0%)
Day10	***12.17(0.0%)	***-14.68(0.0%)

2. 최고,최저가 제약 하

주가상승	HI > 0.7 (175)	LO > 0.7 (133)
Day1	***1.09(0.2%)	-0.31(50.76%)
Day2	***1.8(0.01%)	***-1.99(0.0%)
Day5	***23.24(0.0%)	***7.53(0.0%)
Day10	***19.94(0.0%)	*2.66(7.06%)

주가하락	HI > 0.7 (101)	LO > 0.7 (122)
Day1	-0.33(60.97%)	***-2.19(0.0%)
Day2	0.67(34.15%)	**-0.74(1.68%)
Day5	***-9.81(0.0%)	***-19.02(0.0%)
Day10	***-10.85(0.0%)	***-18.69(0.0%)

3. 변동성 그룹 제약 하 (변동성 상위30%/하위30%)

주가상승	HI > 0.7 (53/52)	LO > 0.7 (40/39)
Day1	1.49/***1.49	-2.14/ 0.25
Day2	**3.05/***2.09	**-2.74/ 0.18
Day5	***27.84/***22.23	3.67/***14.89
Day10	***20.68/***18.19	-1.34/***11.64

주가하락	HI > 0.7 (31/30)	LO > 0.7 (37/36)
Day1	0.96/***-1.76	-0.81/***-2.57
Day2	2.96/ -0.11	-1.03/***-1.0
Day5	-2.75/***-15.73	***-15.06/***-20.86
Day10	-2.74/***-17.17	***-12.46/***-21.88

- 4. 회귀분석 결과
- 추가한 변수

Contradiction : 사건일 이전 누적 이상수익률 CAR(-5, -1) 과 사건일의 주가변화 방향이 같으면 0, 다르면 1

Capm_beta: 60 거래일의 CAPM 베타값을 300개 코인에 대해서 횡단면 표준화

SR_volat: 60 거래일의 표준편차를 300개 코인에 대해서 횡단면 표준화

|SRO|: 사건일 수익률의 절대값

BTC_std : 비트코인의 변동성 지수가 사건일 이후 수익률에 미치는 영향 통제

4. 회귀분석 결과

UP(305)	CAR1	CAR5	CAR10
С	-0.0(91.44%)	-0.01(91.62%)	-0.1(37.08%)
HI	**0.03(4.56%)	***0.22(0.0%)	***0.29(0.0%)
LO	-0.01(60.98%)	***-0.18(0.0%)	**-0.13(3.55%)
Contra	-0.01(29.51%)	*-0.03(5.22%)	**-0.05(4.81%)
Beta	-0.02(17.19%)	-0.03(35.94%)	0.02(75.89%)
SR_vola	**-0.07(3.76%)	**-0.21(1.6%)	***-0.37(0.48%)
SRO	-0.01(90.18%)	***1.08(0.0%)	***0.52(0.82%)
BTC_std	0.57(33.68%)	1.07(49.77%)	*4.42(5.89%)

DO(305)	CAR1	CAR5	CAR10
С	-0.01(77.52%)	-0.01(86.76%)	-0.05(62.86%)
HI	0.01(65.54%)	0.07(11.59%)	0.02(78.54%)
LO	-0.03(11.16%)	***-0.16(0.0%)	***-0.15(0.15%)
Contra	0.0(85.93%)	-0.02(17.87%)	-0.02(42.41%)
Beta	*0.04(7.83%)	***0.12(0.06%)	**0.11(2.01%)
SR_vola	-0.02(78.9%)	-0.14(14.49%)	-0.09(48.13%)
SRO	-0.01(90.5%)	***-0.92(0.0%)	***-0.75(0.0%)
BTC_std	-0.28(74.18%)	1.66(24.28%)	**3.87(4.85%)

결론

- 기존 주식시장의 닻내림 과소반응 효과 들과 는 다른 결과가 발생함
- ▶ 상한가 근방에서 주가 상승시, 하한가 근방에서 주가 하락시, 잔류효과가 강하게 지지되는 것으로 보임 (기존 논문들은, 주가 하락시 상한가, 주가 상승시 하한가 근방에서 잔 류효과가 강하게 지지됨)
- ▶ 이는 보호를 받지 못하는 암호화폐의 특성상, 잔류효과를 보이다가 더 큰 이득, 더 큰 손해를 피하고자 하는 투자자들의 성향을 보인다 고 할 수 있음
- ▶ 허나, 오류가 있어 개선이 필요하다 생각함

결론

