Question 1.

Consider a standard Brownian Motion W_u .

A useful formula:

$$E(W_u^{2k}) = (2k-1)!!u^k = \frac{(2k)!}{k!2^k}u^k$$
, for $u > 0$ and $k = 1, 2, 3, \dots$

Evaluate the following expectations.

(a)
$$E[(W_t^2 + 7)^2]$$
, for $t \ge 0$. (10 pts)

(b)
$$E(W_{12} - W_5 + 7)^3$$
, (10 pts)

(c)
$$E[(W_s)^4(W_t)^2]$$
, for $t \ge s \ge 0$ (10 pts)

Consider the equation $dX_t = X_t(ae^{-at}dt + bdW_t)$ with the initial condition $X_0 = c$, where a, b and c are constants. It is known that the solution for X_t has the form $f(t)e^{\lambda W_t}$. Here λ is a constant and f(t) is a function of t. Determine the constant λ and the function f(t) in terms of t, a, b and c.

Given

$$dX_t = X_t(adt + bdW_t)$$

with the initial condition X(t=0)=9. Here a and b are constants.

Consider

$$Y_t = e^{\lambda t} X_t^n$$
, where λ and n are constants.

Which equations govern the process Y_t ?

Solve the stochastic differential equation

$$dS_t = S_t(\lambda cos(t)dt + \sigma dW_t)$$
, with $S_0 = x$,

where λ and σ are constants. (Hint: apply Itô lemma to $ln(S_t)$).

Determine the solution for the equation

$$U_t = U_{xx} - \infty < x < \infty$$

with the initial condition X(t=0) = 3 + 7x.

Determine the solution for the equation

$$U_t = (3+7t)U_{xx} - \infty < x < \infty$$

with the initial condition $X(t=0) = 11x^2$.