利用方向-能量重建探测 K-40 地球中微子

孙昊哲 清华大学工程物理系

2025.05.19

• K40 Th232 U238衰变中微子能谱

• 地球模型

• 地球中微子通量计算

K40 Th232 U238衰变中微子能谱

红色: U238

绿色: Th232

蓝色: K40

地球模型

- 地壳 Crust1.0
 - 1deg x 1 deg
 - 8 layers
- 地幔
 - CLM DM EM
- 元素含量
- 依据文献

		1000000	0.77	
Upper CC + sediments	$(2.32 \pm 8\%) \times 10^{-2}$	$(10.5\pm10\%)\times10^{-6}$	$(2.7 \pm 21\%) \times 10^{-6}$	64
Middle CC	$(1.91\pm14\%)\times10^{-2}$	$(6.5 \pm 8\%) \times 10^{-6}$	$(1.3 \pm 31\%) \times 10^{-6}$	64
Lower CC	$(0.51 \pm 30\%) \times 10^{-2}$	$(1.2 \pm 30\%) \times 10^{-6}$	$(0.2 \pm 30\%) \times 10^{-6}$	64
OC sediments	$(1.83 \pm 7\%) \times 10^{-2}$	$(8.10 \pm 7\%) \times 10^{-6}$	$(1.73 \pm 5\%) \times 10^{-6}$	69
OC crust	$(716 \pm 30\%) \times 10^{-6}$	$(0.21\pm30\%)\times10^{-6}$	$(0.07 \pm 30\%) \times 10^{-6}$	70
CLM	$315^{+432}_{-183} \times 10^{-6}$	$150^{+277}_{-97} \times 10^{-9}$	$33^{+49}_{-20} \times 10^{-9}$	15
Depleted Mantle	$(152\pm20\%)\times10^{-6}$	$(21.9 \pm 20\%) \times 10^{-9}$	$(8.0 \pm 20\%) \times 10^{-9}$	71
Enriched Mantle	$402^{+350}_{-238}\times10^{-6}$	$147^{+74}_{-57} \times 10^{-9}$	$30^{+24}_{-18} \times 10^{-9}$	
Bulk Silicate Earth	$(280 \pm 21\%) \times 10^{-6}$	$(80 \pm 15\%) \times 10^{-9}$	$(20\pm20\%)\times10^{-9}$	72

Ref.

PHYSICAL REVIEW D 95, 053001 (2017)

Geoneutrinos at Jinping: Flux prediction and oscillation analysis

Linyan Wan,* Ghulam Hussain,† Zhe Wang, and Shaomin Chen

Department of Engineering Physics, Tsinghua University, Beijing 100084, China

(Received 1 December 2016; published 3 March 2017)

• 由模型给出不同格点的密度、元素含量

- 计算该格点放出中微子数
- 按照立体角计算锦屏处的通量

$$d\phi(\vec{r})_e = \frac{X\lambda N_A}{\mu} n_v P_{ee}^{\oplus} \frac{A(\vec{r})\rho(\vec{r})}{4\pi |\vec{r} - \vec{d}|^2} dv,$$

- 锦屏位置
 - (28.15323° N, 101.7114° E, 海拔1500 m)

10⁻² NeutrinoEnergy [MeV]

点线:不考虑振荡 实线:振荡后

相差大约1个数量级 使用的元素含量、地球模型有些不同

Figure B.15: Predicted non-oscillating geo electron-antineutrino energy spectra on the Earth's surface.

- •程序可能有bug
- 后续可以对比的量
 - 用matlab计算结果
 - Pee'
 - 地壳、地幔中微子总通量

