Дубровских Никита 221-361

Вариант 7

 а) Построить код Фано и Хаффмана для списка сообщений с заданным распределением частот. Определить стоимость кода.

S	Т	U	V	W	X	Y	Z
0,15	0,1	0,15	0,14	0,11	0,08	0,15	0,12

Проверим выполнимость необходимого условия:

$$0.15 + 0.1 + 0.15 + 0.14 + 0.11 + 0.08 + 0.15 + 0.12 = 1$$

Расположим элементы в порядке убывания вероятностей. Затем будем последовательно делить, не меняя порядка, все элементы на две группы, максимально близкие по суммарной вероятности (т.е. модуль разности сумм вероятностей первой и второй группы должен быть минимальных из всех возможных разбиений на группы). Для «верхней» группы будем ставить значение 0, «нижней» - 1:

Символ	Вероятность	Шаг 1	Шаг 2	Шаг 3	Шаг 4	Полученный код
S	0,15		0	0		000
U	0,15	0		1		001
Υ	0,15		1			01
V	0,14	1	0	0		100
Z	0,12			1		101
W	0,11		1	0		110
Т	0,1]		1	0	1110
Х	0,08				1	1111

Найдем стоимость кода (средняя длина кодового слова). Он является критерием степени оптимальности кодирования. Вычислим ее в нашем случае.

$$l = \sum_{i=1}^{8} l_i \cdot p_i = 3 \cdot (0, 15 \cdot 2 + 0, 14 + 0, 12 + 0, 11) + 2 \cdot 0, 15 + 4 \cdot (0, 1 + 0, 08) = 0$$

$$= 3 \cdot 0,67 + 0.3 + 4 \cdot 0,18 = 2,01 + 0,3 + 0,72 = 3,03$$

По Хаффману: