

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001404

International filing date: 01 February 2005 (01.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-066626
Filing date: 10 March 2004 (10.03.2004)

Date of receipt at the International Bureau: 24 February 2005 (24.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁 03.2.2005
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2004年 3月10日
Date of Application:

出願番号 特願2004-066626
Application Number:

[ST. 10/C] : [JP2004-066626]

出願人
Applicant(s):

2005年 1月20日

特許庁長官
Commissioner,
Japan Patent Office

小川

【書類名】 特許願
【整理番号】 IP2004
【提出日】 平成16年 3月10日
【あて先】 特許庁長官殿
【国際特許分類】 C07C 13/615
【発明者】
 【住所又は居所】 山口県周南市新宮町1番1号
 【氏名】 畠山 直良
【発明者】
 【住所又は居所】 山口県周南市新宮町1番1号
 【氏名】 田中 慎司
【特許出願人】
 【識別番号】 000183657
 【氏名又は名称】 出光石油化学株式会社
【代理人】
 【識別番号】 100078732
 【弁理士】
 【氏名又は名称】 大谷 保
【選任した代理人】
 【識別番号】 100081765
 【弁理士】
 【氏名又は名称】 東平 正道
【手数料の表示】
 【予納台帳番号】 003171
 【納付金額】 21,000円
【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 要約書 1
 【包括委任状番号】 0000936
 【包括委任状番号】 0000758

【書類名】特許請求の範囲

【請求項 1】

一般式 (I)

【化 1】

(式中、Rは水素原子、メチル基又はトリフルオロメチル基、Yは炭素数1～10のアルキル基、ハロゲン原子、水酸基又は2つのYが一緒になって形成された=Oを示す。また、複数のYは同じでもよく、異なっていてもよい。R¹は炭素数1～10のアルキル基又はシクロアルキル基を示し、kは0～14の整数を示し、m、nは独立に、0又は1の整数を示す。)

で表される構造を有することを特徴とするアダマンタン誘導体。

【請求項 2】

Y以外の置換基が橋頭位に存在するものである請求項1記載のアダマンタン誘導体。

【請求項 3】

R¹が、Oに隣接する第3級の炭素を有するものである請求項1又は2に記載のアダマンタン誘導体。

【請求項 4】

一般式 (II)

【化 2】

(式中、Rは水素原子、メチル基又はトリフルオロメチル基、Yは炭素数1～10のアルキル基、ハロゲン原子、水酸基又は2つのYが一緒になって形成された=Oを示す。また、複数のYは同じでもよく、異なっていてもよい。kは0～14の整数を示し、m、nは独立に、0又は1の整数を示す。)

で表されるアダマンタン化合物のアルコール体を、アルカンスルホニルオキシ体に誘導し、次いで、アルコールと反応させることを特徴とする、一般式 (I)

【化3】

(式中、R、Y、R¹、k、m及びnは前記に同じである。)
で表されるアダマンタン誘導体の製造方法。

【請求項5】

一般式 (II) で表されるアダマンタン化合物のアルコール体が、3-ヒドロキシアダマンチル（メタ）アクリレートである請求項4記載のアダマンタン誘導体の製造方法。

【請求項6】

アルコールが、第3級アルコールである請求項4又は5に記載のアダマンタン誘導体の製造方法。

【書類名】明細書

【発明の名称】アダマンタン誘導体及びその製造方法

【技術分野】

【0001】

本発明は、新規なアダマンタン誘導体及びその製造方法に関し、さらに詳しくは、フォトリソグラフィー分野における感光性樹脂などの機能性樹脂のモノマーとして有用な新規なアルコキシ基置換アダマンチル（メタ）アクリレート類及びこのものを効率よく製造する方法に関する。

【背景技術】

【0002】

アダマンタンは、シクロヘキサン環が4個、カゴ形に縮合した構造を有し、対称性が高く、安定な化合物であり、その誘導体は、特異な機能を示すことから、医薬品原料や高機能性工業材料の原料などとして有用であることが知られている。例えば光学特性や耐熱性などを有することから、光ディスク基板、光ファイバーあるいはレンズなどに用いることが試みられている（例えば、特許文献1、特許文献2参照）。

また、アダマンタンエステル類を、その酸感応性、ドライエッティング耐性、紫外線透過性などをを利用して、フォトトレジスト用樹脂原料として、使用することが試みられている（例えば、特許文献3参照）。

一方、近年、半導体素子の微細化が進むに伴い、その製造におけるリソグラフィー工程において、さらなる微細化が要求されており、したがって、KrF、ArFあるいはF₂エキシマレーザー光などの短波長の照射光に対応したフォトトレジスト材料を用いて、微細パターンを形成させる方法が種々検討されている。そして、前記エキシマレーザー光などの短波長の照射光に対応できる新しいフォトトレジスト材料の出現が望まれている。従来、シリコン基板の密着性向上の目的で、水酸基を導入したモノマーは知られているが（例えば、特許文献4参照）、これまで知られていない機能性官能基をもったフォトトレジスト材料が望まれている。

【0003】

【特許文献1】特開平6-305044号公報

【特許文献2】特開平9-302077号公報

【特許文献3】特開平4-39665号公報

【特許文献4】特開昭63-33350号公報

【発明の開示】

【発明が解決しようとする課題】

【0004】

本発明者らは、このような状況下で、新規なメタンスルホニルオキシ置換アダマンチル（メタ）アクリレートを見出した（特願2004-29034号明細書）。しかし、該メタンスルホニルオキシ置換アダマンチル（メタ）アクリレートを中間体として、さらなる新規化合物の期待があった。

本発明は、このような状況下でなされたもので、フォトリソグラフィー分野における感光性樹脂などの機能性樹脂のモノマーとして有用な新規なアダマンタン誘導体及びその製造方法を提供することを目的とするものである。

【課題を解決するための手段】

【0005】

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の構造を有するアルコキシ置換アダマンチル（メタ）アクリレート類は、新規な化合物であって、その目的に適合し得ること、そしてこれらの化合物は、対応するアダマンチル基を有するアルコール体を原料として反応させることにより、効率よく製造し得ることを見出した。本発明は、かかる知見に基いて完成したものである。

すなわち、本発明は、

(1) 一般式(I)

【0006】
【化1】

【0007】

(式中、Rは水素原子、メチル基又はトリフルオロメチル基、Yは炭素数1～10のアルキル基、ハロゲン原子、水酸基又は2つのYが一緒になって形成された=Oを示す。また、複数のYは同じでもよく、異なっていてもよい。R¹は炭素数1～10のアルキル基又はシクロアルキル基を示し、kは0～14の整数を示し、m、nは独立に、0又は1の整数を示す。)

で表される構造を有することを特徴とするアダマンタン誘導体、

(2) Y以外の置換基が橋頭位に存在するものである上記(1)記載のアダマンタン誘導体、

(3) R¹が、Oに隣接する第3級の炭素を有するものである上記(1)又は(2)に記載のアダマンタン誘導体、

(4) 一般式(II)

【0008】

【化2】

【0009】

(式中、Rは水素原子、メチル基又はトリフルオロメチル基、Yは炭素数1～10のアルキル基、ハロゲン原子、水酸基又は2つのYが一緒になって形成された=Oを示す。また、複数のYは同じでもよく、異なっていてもよい。kは0～14の整数を示し、m、nは独立に、0又は1の整数を示す。)

で表されるアダマンタン化合物のアルコール体を、アルカンスルホニルオキシ体に誘導し、次いで、アルコールと反応させることを特徴とする、一般式(I)

【0010】

【化3】

【0011】

(式中、R、Y、R¹、k、m及びnは前記に同じである。)

で表されるアダマンタン誘導体の製造方法、

(5) 一般式(II)で表されるアダマンタン化合物のアルコール体が、3-ヒドロキシアダマンチル(メタ)アクリレートである上記(4)記載のアダマンタン誘導体の製造方法、及び

(6) アルコールが、第3級アルコールである上記(4)又は(5)に記載のアダマンタン誘導体の製造方法、

を提供するものである。

【発明の効果】

【0012】

本発明のアダマンタン誘導体は、新規なアルコキシ基置換アダマンチル(メタ)アクリレート類であって、フォトリソグラフィー分野における感光性樹脂などの機能性樹脂のモノマーとして有用であり、露光後の表面荒れ(LER:レジストの側面にできる凹凸、LWR:配線を真上から見た場合のうねり)及びPEB(露光によって発生した酸を、拡散させるための熱処理)の温度依存性等の改善効果が期待できる。

【発明を実施するための最良の形態】

【0013】

本発明のアダマンタン誘導体は、一般式(I)で表される化合物であり、新規な化合物である。以下、化合物及びそれらの製造方法について説明する。

まず、本発明の化合物は、一般式(I)

【0014】

【化4】

【0015】

で表される構造を有するアルコキシ基置換アダマンチル(メタ)アクリレート類である。

上記一般式(I)において、Rは水素原子、メチル基又はトリフルオロメチル基、Yは炭素数1～10のアルキル基、ハロゲン原子、水酸基又は2つのYが一緒になって形成された=Oを示す。ここで、複数のYは同じでもよく、異なっていてもよい。R¹は炭素数1～10のアルキル基を示し、kは0～14の整数を示し、m、nは独立に、0又は1の整数を示す。

上記において、Y、R¹における炭素数1～10のアルキル基として、メチル基、エチ

ル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基を挙げることができ、これらは直鎖状、分岐状いずれでもよい。このアルキル基は、ハロゲン原子、水酸基等によって置換されたものであってもよい。また、R¹はシクロアルキル基をも示す。R¹として、具体的には、下記のものを挙げることができる。

【0016】

第1級炭素と結合しているものとして、メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、3-メチル-1-ブチル基、2-メチル-1-ブチル基、2,2-ジメチル-1-ブチル基、3,3-ジメチル-1-ブチル基、シクロヘキシルメチル基、1-アダマンチルメチル基、3-ヒドロキシメチル-1-アダマンチルメチル基、2-ヒドロキシ-1-エチル基、2-クロロ-1-エチル基等を挙げることができる。

【0017】

第2級炭素と結合しているものとして、2-プロピル基、2-ブチル基、2-ペンチル基、3-メチル-2-ブチル基、3,3-ジメチル-2-ブチル基、シクロヘキシル基、2-アダマンチル基、4-オキソ-2-アダマンチル基、1-メトキシ-2-プロピル基等を挙げることができる。

第3級炭素と結合しているものとして、2-メチル-2-プロピル基(tert-ブチル基)、2-メチル-2-ブチル基(tert-ペンチル基)、2,3-ジメチル-2-ブチル基(tert-ヘキシル基)、1-アダマンチル基、3-ヒドロキシ-1-アダマンチル基、4-オキソ-1-アダマンチル基、パーフルオロー-1-アダマンチル基、パーフルオロー-3-ヒドロキシ-1-アダマンチル基等を挙げることができる。

【0018】

新規物質としての利用価値の点で、R¹はOに隣接する第3級炭素を有するものが好ましく、中でも、tert-ブチル基、tert-ペンチル基、tert-ヘキシル基が好ましい。また、Y以外の置換基は橋頭位に存在するものが好ましい。

Yにおけるハロゲン原子として、フッ素、塩素、臭素、ヨウ素を挙げることができる。

【0019】

前記一般式(I)で表される特に好ましい化合物として、例えば、3-tert-ペンチルオキシ-1-アダマンチルメタクリレート、3-tert-ブチルオキシ-1-アダマンチルアクリレート、3-tert-ペンチルオキシ-1-アダマンチル2-トリフルオロメチルアクリレート、3-tert-ヘキシルオキシ-1-アダマンチルメタクリレート、3-tert-ペンチルオキシメチル-1-アダマンチルメチルメタクリレート、3-tert-ブチルオキシメチル-1-アダマンチルメチルアクリレート、3-tert-ペンチルオキシメチル-1-アダマンチルメチル2-トリフルオロメチルアクリレート、3-tert-ブチルオキシ-パーフルオロー-1-アダマンチルメタクリレート、3-tert-ペンチルオキシ-パーフルオロー-1-アダマンチルアクリレートなどを挙げることができる。

【0020】

次に、上記本発明のアダマンタン誘導体好ましい製造方法について説明する。

上記本発明のアダマンタン誘導体は、前記一般式(II)で表されるアダマンタン化合物のアルコール体を、アルカンスルホニルオキシ体に誘導し、次いで、アルコールと反応させて得られる。その他、予めエーテル化した後、最後に(メタ)アクリレート化することもできる。

すなわち、前記一般式(II)で表されるアダマンタン化合物のアルコール体を下記一般式(III)

【0021】

【化5】

【0022】

(式中、 R^2 は炭素数1～3のアルキル基を示し、Xはハロゲン原子を示す。)で表されるアルカンスルホニルハライドと反応させて、下記一般式(IV)

【0023】

【化6】

【0024】

(式中、R、Y、 R^2 、k、m及びnは前記に同じである。)で表されるアルカンスルホニルオキシ体を得る工程(第1工程：スルホニル化工程)と、該アルカンスルホニルオキシ体を下記一般式(V)

(式中、 R^1 は前記に同じである。)

で表されるアルコールと反応させて目的のアダマンタン誘導体得る工程(第2工程：エーテル化工程)

からなり順に説明する。

【0025】

(1) 第1工程(スルホニル化工程)

原料の一般式(II)で表されるアダマンタン化合物のアルコール体として、例えば、3-ヒドロキシー-1-アダマンチルメタクリレート、3-ヒドロキシー-1-アダマンチルアクリレート、3-ヒドロキシー-1-アダマンチル2-トリフルオロメチルアクリレート、3-ヒドロキシメチル-1-アダマンチルメタクリレート、3-ヒドロキシメチル-1-アダマンチルメチルアクリレート、3-ヒドロキシメチル2-トリフルオロメチルアクリレート、3-ヒドロキシパーカロ-1-アダマンチルメタクリレート、3-ヒドロキシパーカロ-1-アダマンチルアクリレートなどのヒドロキシル基含有アダマンチル(メタ)アクリレート類を挙げることができる。次に、一般式(III)において、 R^2 としてメチル基、エチル基、プロピル基を挙げができるが、メチル基が好ましく、アルカンスルホニルハライドとして、一般にメタンスルホニルクロライドが使用される。両者の仕込み比は、前者1モルに対して後者が1～1.5モルの範囲が好ましい。

【0026】

この反応において、一般に触媒として塩基が使用され、必要により溶媒が使用される。

塩基として、ナトリウムアミド、トリエチルアミン、トリブチルアミン、トリオクチルアミン、ピリジン、N,N-ジメチルアニリン、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、炭酸カリウム、酸化銀、ナ

トリウムメトキシド、カリウムtーブトキシド等を挙げることができる。これらの触媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。

【0027】

溶媒としては、原料であるヒドロキシル基含有アダマンチル（メタ）アクリレート類の溶解度が、反応温度において、0.5質量%以上、望ましくは5質量%以上のものである。溶媒量は反応混合物中のヒドロキシル基含有アダマンチル（メタ）アクリレート類の濃度が0.5質量%以上、望ましくは5質量%以上となる量である。この際、ヒドロキシル基含有アダマンチル（メタ）アクリレート類が懸濁状態でもよいが、溶解していることが望ましい。また、使用前に溶媒中の水分を取り除くことが望ましい。具体的には、n-ヘキサン、n-ヘプタン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ジクロロメタン、四塩化炭素等のハロゲン系溶媒、ジメチルスルホキシド、N,N-ジメチルスルホキシドなどを挙げができる。これらの溶媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。

【0028】

反応温度については、通常、-200～200℃の範囲が採用される。この範囲であれば、反応速度が低下することもなく、反応時間が長くなり過ぎることもない。また、重合物の副生が増加することもない。好ましくは、-50～50℃の範囲である。

反応圧力については、通常、絶対圧力で0.01～10MPaの範囲が採用される。この範囲であれば、特別な耐圧の装置は必要ではなく、経済的である。好ましくは、常圧～1MPaの範囲である。

反応時間については、通常、1分～24時間、好ましくは30分～6時間の範囲である。

【0029】

また、本発明の製造方法においては、反応終了液から反応生成物を分離し、次いで、該反応生成物に、その中に含まれる副生重合物に対する貧溶媒を加え、生成する副生重合物の沈殿を除去することによって副生物と分離することができる。その場合、貧溶媒として、メタノール、エタノール、ジエチルエーテルなどが使用でき、なかでもメタノールが好ましい。

具体的には、反応終了液に水を加えて、メタンスルホニルハライドを失活させたのち、溶媒を留去し、残液を洗浄して触媒を除去する。次いで、残液中に含まれる副生重合物に対する貧溶媒、例えばメタノールを加え、該副生重合物を沈殿させ、これをろ過などの手段により除去したのち、貧溶媒を留去させる。次に、貧溶媒留去後の残渣を、例えばエーテル系溶媒を用いて再結晶することにより、目的のアダマンタン誘導体を高純度で得ることができる。

目的とする反応生成物の精製については、蒸留、晶析、カラム分離などが採用可能であり、生成物の性状と不純物の種類により精製方法を選択すればよい。

【0030】

(2) 第2工程（エーテル化工程）

一般式(V)で表されるアルコールは、R¹として前記に述べたものが使用できるが、本願発明の新規物質としての利用価値の点でtert-ブチルアルコール、tert-ペンチルアルコール、tert-ヘキシルアルコールなどの第3級アルコールが好ましい。仕込み割合については、第1工程で得られたアルカンスルホニルオキシ体1モルに対して1～1.5モルの範囲であればよい。

【0031】

この反応において、一般に触媒として塩基が使用され、必要により溶媒が使用される。

塩基として、ナトリウムアミド、トリエチルアミン、トリブチルアミン、トリオクチルアミン、ピリジン、N,N-ジメチルアニリン、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、炭酸カリウム、酸化銀、ナトリウムメトキシド、カリウムtーブトキシド等を挙げることができる。これらの触媒は

、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。

【0032】

溶媒としては、アルカンスルホニルオキシ体の溶解度が、反応温度において、0.5質量%以上、望ましくは5質量%以上のものである。溶媒量は反応混合物中のアルカンスルホニルオキシ体の濃度が0.5質量%以上、望ましくは5質量%以上となる量である。この際、アルカンスルホニルオキシ体類が懸濁状態でもよいが、溶解していることが望ましい。また、使用前に溶媒中の水分を取り除くことが望ましい。具体的には、n-ヘキサン、n-ヘプタン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ジクロロメタン、四塩化炭素等のハロゲン系溶媒、ジメチルスルホキシド、N,N-ジメチルスルホキシドなどを挙げることができる。これらの溶媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。

【0033】

反応温度については、通常、-200～200℃の範囲が採用される。この範囲であれば、反応速度が低下することもなく、反応時間が長くなり過ぎることもない。また、重合物の副生が増加することもない。好ましくは、100～150℃の範囲である。

反応圧力については、通常、絶対圧力で0.01～10MPaの範囲が採用される。この範囲であれば、特別な耐圧の装置は必要ではなく、経済的である。好ましくは、常圧～10MPaの範囲である。

反応時間については、通常、1～48時間の範囲である。

【0034】

目的化合物の精製分離については、未反応のアルカンスルホニルオキシ体を、炭酸水素ナトリウム水溶液等のアルカリ水溶液で加水分解して一般式(I)に相当するアルコール体に変え、該アルコール体をシリカゲル等に吸着させて行うことができる。

得られた化合物の同定は、ガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)、ガスクロマトグラフィー質量分析(GC-MS)、核磁気共鳴分光法(NMR)、赤外分光法(IRR)、融点測定装置などを用いて行うことができる。

【実施例】

【0035】

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。

【0036】

実施例1

構造式

【0037】

【化7】

【0038】

で表される3-tert-ペンチルオキシー-1-アダマンチルメタクリレートの合成

(1) スルホニル化反応

2リットルのガラス反応器に、攪拌装置を取り付け、ここに3-ヒドロキシー-1-アダマンチルメタクリレート(アダマンテートHM、出光石油化学社製)118.16g(500ミリモル)、乾燥したトリエチルアミン104.5ミリリットル(750ミリモル)

および乾燥したテトラヒドロフラン1リットルを加え、氷浴で0℃に冷却して攪拌した。ここにメタンスルホニルクロライド46.4ミリリットル(600ミリモル)を加え、5分間攪拌し、ガスクロマトグラフィー分析をおこなったところ、転化率92.6%、選択率99.8%で3-メタンスルホニルオキシー-1-アダマンチルメタクリレートが得られていることを確認した。そこに、水50ミリリットルを加え、未反応のメタンスルホニルクロライドを失活させ、エバポレーターでテトラヒドロフランを除去した。それを2リットルの分液ロートに移し、ジエチルエーテル600ミリリットル、水550ミリリットルを2回加えて2度水洗し、トリエチルアミン塩、ポリマー1.01gを除去した。無水硫酸マグネシウム12.0g(100ミリモル)を加え、脱水した後、ろ過により、硫酸マグネシウムを除去した。それをエバポレートしてジエチルエーテルを除去し、ガスクロ分析およびGPC分析をおこなったところ、収量が156.26g、純度が91.3%(GC)、97.8%(GPC)で3-メタンスルホニルオキシー-1-アダマンチルメタクリレートが得られていることを確認した。

【0039】

(2) エーテル化反応

2リットルのガラス反応器に、攪拌装置を取り付け、ここに(1)で得られたものを入れ、乾燥した2-メチル-2-ブタノール750.0ミリリットル(6,849ミリモル)および乾燥した1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)80.0ミリリットル(535ミリモル)、メトキノン0.30g(2,000ppm)を加え、攪拌した。オイルバスの温度を120℃に設定し、36時間還流した。また、6時間ごとにメトキノン0.03g(200ppm)を逐次添加した。ガスクログラフィー分析をおこなったところ、転化率86.9%、選択率99.8%で目的物が得られていることがわかった。転化していない、3-メタンスルホニルオキシー-1-アダマンチルメタクリレートを3-ヒドロキシー-1-アダマンチルメタクリレートにするために、飽和炭酸水素ナトリウム水溶液100ミリリットルを加え、攪拌し、60℃で8時間攪拌した。エバポレーターで2-メチル-2-ブタノールを除去した。それを2リットルの分液ロートに移し、ジエチルエーテル600ミリリットル、水550ミリリットルを2回加えて2度水洗し、DBU塩を除去した。無水硫酸マグネシウム12.0g(100ミリモル)を加え、脱水した後、ろ過により、硫酸マグネシウムを除去した。それをエバポレートしてジエチルエーテルを除去し、ガスクロマトグラフィー分析をおこなったところ、収量149.1g、純度80.7%で目的物が得られていることがわかった。それをn-ヘキサン1リットルに溶かし、それをシリカゲル100gに3-ヒドロキシー-1-アダマンチルメタクリレートを吸着させて、ろ過、脱色した。エバポレーターでn-ヘキサンを除去し、無色透明液体81.0gを得た。ガスクロマトグラフィー分析をおこなったところ、99.8%の純度で目的物が得られていることを確認した。以下、¹H-NMR、¹³C-NMR、GC-MSの各データを示した。

【0040】

・核磁気共鳴分光法(NMR) : CDC13

¹H-NMR(500MHz) : 0.85(n)、1.22(b, e or i)、
1.45~1.48(e or i)、1.82~1.86(k)、
1.97~1.99(m)、2.08~2.10(f)、2.21(g or h)、
2.25(g or h)、5.44(a2)、5.97(a1)
¹³C-NMR(126MHz) : 8.74(n)、18.3(b)、29.16(f)
31.51(f)、35.19(m)、37.61(h)、40.18(e)、
44.01(i)、49.08(g)、75.47(d+j)、81.66(l)
124.43(a)、137.91(o)、166.40(c)

・ガスクロマトグラフィー質量分析(GC-MS) : EI

291(M⁺-CH₃, 0.05%)、219(M⁺-C₅H₁₁O, 100%)、
133(25.6%)、69(98.6%)、41(26.1%)

【書類名】要約書

【要約】

【課題】 フォトリソグラフィー分野における感光性樹脂などの機能性樹脂のモノマーとして有用な新規なアダマンタン誘導体及びその製造方法を提供する。

【解決手段】 一般式 (I)

【化1】

(式中、Rは水素原子、メチル基又はトリフルオロメチル基、Yは炭素数1～10のアルキル基、ハロゲン原子、水酸基又は2つのYが一緒になって形成された=Oを示す。また、複数のYは同じでもよく、異なっていてもよい。R¹は炭素数1～10のアルキル基又はシクロアルキル基を示し、kは0～14の整数を示し、m、nは独立に、0又は1の整数を示す。)

で表される構造を有することを特徴とするアダマンタン誘導体、及び対応するアダマンタン化合物のアルコール体を、アルカンスルホニルオキシ体に誘導し、次いで、アルコールと反応させて、前記アダマンタン誘導体を製造する方法である。

【選択図】 なし

特願 2004-066626

出願人履歴情報

識別番号 [000183657]

1. 変更年月日 2000年 6月30日

[変更理由] 住所変更

住所 東京都墨田区横網一丁目6番1号
氏名 出光石油化学株式会社