Biomedical Informatics (BMI) 713

Computational Statistics for Biomedical Sciences

Fall, 2017; Tues & Thur, 10-11:30, Modell 100A

Lecture 1: Probability Distributions

BMI 713 October 18, 2017 Peter J Park

Acknowledgments: Kim Gauvreau Vince Carey

Teaching Assistants:

Eric Bartell, ebartell@g.harvard.edu
Jacob Luber, jluber@g.harvard.edu
Giorgio Melloni, Giorgio_Melloni@hms.harvard.edu
Tiziana Sanavia, Tiziana_Sanavia@hms.harvard.edu

Lab: There will be weekly laboratory sessions (times TBD) for programming exercises and reviewing lecture material. There will also be drop-by hours each week to get help with debugging one's code.

Prerequisites: No previous knowledge in statistics or programming is required, although those with no programming experience will be expected to devote a significant amount of extra time. If you are not familiar with R, extra help will be available.

Grading: Weekly assignments: 70%; Final: 30%. The course may be taken Pass/Fail if your program allows it.

Auditing: If there is space, anyone, including postdoctoral fellows, may audit the course with the permission of the course director.

Lab hours? Extra help for R programming?

Course Outline:

Week	Content			
Week 1 (10/19)	Probability distributionsExpectation and variance			
Week 2 (10/24, 10/26)	Sampling distributionConfidence intervals			
Week 3 (10/31, 11/2)	Two-sample testsNon-parametric tests			
Week 4 (11/7, 11/9)	Contingency tablesCorrelation analysis			
Week 5 (11/14, 11/16)	 Linear regression Multiple linear regression; survival analysis 			
Week 6 (11/21)	P-values revisitedMultiple testing; false discovery rate			
Week 7 (11/28, 11/30)	Bayesian methodsPaper discussions			
Week 8 (12/5, 12/7)	Paper discussionsFinal exam			

Your goals for this class?

Statistical Inference

- Methods used for drawing conclusions about a population based on the information contained in a sample of observations
- We need to introduce some basic principles of probability to establish foundation for statistical inference
- We investigate the properties of a sample mean
- We extrapolate findings from sample data to the larger population using the methods of confidence intervals and hypothesis testing
- We extend to the comparison of two (or more) means

Mean and variance

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{(x_1 + x_2 + x_3 + \dots + x_n)}{n}$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Random Variables

- Any quantity or characteristic that can assume a number of different values such as that any particular outcome is determined by chance
- It can be discrete (countable number of outcomes) or continuous (any value in a specified interval)
- ullet Represent a potential outcome of the random variable X by x
- Probability mass function:

$$0 < P(X = x) \le 1$$

$$\sum P(X=x) = 1$$

Expected value

- If a random variable is able to take on a large number of values, a probability mass function is not the most useful way to summarize its behavior
- Instead, we calculate measures of location and dispersion
- The average value assumed by a random variable is called its expected value (or population mean)
- ullet Represented by E(X) or μ
- Supposed a random variable X is able to take on the k distinct values, x_1, x_2, \ldots, x_k

$$E(x) = \sum_{i=1}^{k} x_i P(X = x_i)$$

Variance

- The variance of a random variable X is called the population variance and is represented by Var(x) or σ^2
- ullet It quantifies the dispersion of the possible outcomes of X around the expected value μ

$$Var(X) = E[(X - \mu)^{2}]$$

$$= \sum_{i=1}^{k} (x_{i} - \mu)^{2} P(X = x_{i})$$

$$= \sum_{i=1}^{k} x_{i}^{2} P(X = x_{i}) - \mu^{2}$$

Example:

• Let X be a r.v. that represents the number of diagnostic services that a child receives during an office visit.

x	P(X=x)	$\mathrm{E}(X)$	=	0(0.671) + 1(0.229) + 2(0.053)
0	0.671			+3(0.031) + 4(0.010) + 5(0.006)
1	0.229		=	0.498
2	0.053			
3	0.031	σ^2	=	$[0^2(0.671) + 1^2(0.229) + 2^2(0.053)$
4	0.010			$+3^{2}(0.031)+4^{2}(0.010)$
5	0.006			$+5^{2}(0.006)]-(0.498)^{2}$
			=	0.782
		σ	=	$\sqrt{0.782}$
			=	0.884

The binomial distribution

- Consider the dichotomous random variable Y, taking on one of two possible values, e.g., "failure" and "success"
- This type of r.v. is called Bernoulli random variable
- Example: Let Y represent the disease status of a person exposed to the hepatitis B virus
- Y = 1, if the person develops hepatitis; Y = 0, if he/she does not
- Suppose five people were infected with the virus. Let X be the r.v. that represents the number of persons who develop disease
- The probability distribution of X is called a binomial distribution

Back to the example

- Suppose that 30% of individuals who are exposed to the virus develop disease (p=0.3). Y_i = 1, if the ith person develops disease; Y_i = 0, otherwise.
- Consider *n*=2. Let *X* be the r.v. that represents the numbers of persons who develop disease.
- What is the probability that X=0, 1, or 2?

The binomial distribution

- Given n independent outcomes of a Bernoulli random variable Y, each with probability of success p.
- X is the total number of successes
- The probability of exactly k successes is

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Aside: permutation and combinations

Ex) In how many ways can A, B, and C be ordered?

- 3 choices for the first position, 2 choices for the second, and 1 choice for the last position: 3 x 2 x 1 = 6
- n! ("n factorial") = n x (n-1) x (n-2) x ... x 2 x 1
- Ex) In how many ways can 3 letters be selected out of the first 6 letters when the order of selection matters?

Combinations

- What if order does not matter?
- 3 letters can be ordered in 3! ways. Therefore, the number of ways in which 3 letters can be selected out of 6 when the order of selection does not matter is 120/6 = 20

$$nC_{k} = \binom{n}{k}$$

$$= \frac{nP_{k}}{k!}$$

$$= \frac{n(n-1) \times \dots \times (n-k+1)}{k(k-1) \times \dots \times (2)(1)}$$

$$= \frac{n!}{k! (n-k)!}$$

Back to the hepatitis example

• Suppose 5 are exposed. Recall p=0.3. What is the probability that 2 of them will develop disease?

• In the same example, what is the probability that *at most 2* of them will develop disease?

Mean and variance of a binomial r.v.

- A binomial distribution can be summarized in terms of a measure of location and measure of dispersion.
- Let q = 1-p

$$E(x) = \sum_{i=1}^{m} x_i P(X = x_i) \qquad Var(X) = E[(X - \mu)^2]$$

$$= \sum_{i=1}^{m} (x_i - \mu)^2 P(X = x_i)$$

$$= \sum_{i=1}^{m} (x_i - \mu)^2 P(X = \mu)$$

$$= \sum_{$$

Back to the example

- Suppose repeated samples of size 10 are selected from those exposed to hepatitis B.
- The mean number of disease per sample: np = (10)(0.3) = 3
- The variance: npq = (10)(0.3)(0.7) = 2.1. s.d. = sqrt(2.1) = 1.45

The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution with parameters size and prob.

This is conventionally interpreted as the number of 'successes' in size trials.

Usage

```
dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)
```

"density"

"probability distribution"

"quantile function"

$$P(X=x_i)$$

$$P(X \le x_i)$$

$$Q(p) = \{x | P(X \le x) = p\}$$

• In a previous example, n=2, p=0.3.

•
$$P(X=0) = (1-p)(1-p) = (0.7)2 = 0.49$$

- dbinom(0,2,prob=.3)
- P(X=1) = p(1-p)+(1-p)p = 0.42
- dbinom(1,2,prob=.3)

• barplot(dbinom(1:10,10,prob=.3))

Continuous probability distributions

- A continuous r.v. can take any value in a specified interval
- The probability distribution of X is represented by a smooth curve called a probability density function (pdf)
- The total area under the pdf is 1. $\int_{-\infty}^{\infty} f(x) \ dx = 1$

• The prob. associated with any one specific value is 0:
$$P(X=a) = 0$$

The cumulative distribution function (cdf) of X is

$$F(a) = P(X \le a)$$
$$= \int_{-\infty}^{a} f(x) dx$$

Expectation and variance

 The expected value E(X) is the average value taken on by the random variable X:

$$E(X) = \int_{-\infty}^{\infty} x \ f(x) \ dx$$

ullet Variance is the average squared distance of each possible value of X from μ

$$Var(X) = E[(X - \mu)^2]$$

$$= \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

• Standard deviation of X: $\sigma = \sqrt{Var(X)}$

The normal distribution

- Also called "Gaussian distribution"
- The probability density function of a normal random variable
 X is given by

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

$$\mu = E(X) \text{ and } \sigma^2 = Var(X)$$

```
x=seq(-5,5,.01)
plot(x,dnorm(x),type="n")
lines(x,dnorm(x))
lines(x,dnorm(x,sd=2))
lines(x,dnorm(x,sd=3))
```


- The normal distribution with mean and variance is represented by $N(\mu,\sigma^2)$
- To find $P(X \le b)$, we would have to draw the probability density function of $N(\mu, \sigma^2)$ and determine the area to the left of b
- The standard normal distribution: N(0.1)

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

- Useful approximations for the standard normal:
 - (-1,1) contains 68% of the area under the curve
 - (-2, 2) contains 95%, (-2.5, 2.5) contains 99%

 The cumulative distribution function for a standard normal curve is represented by

$$\Phi(x) = P(X \le x)$$

dnorm(x, mean = 0, sd = 1, log = FALSE)

- X~N(0,1)
 - P(X>2)?
 - P(-2<X<2)?


```
\begin{aligned} & \text{pnorm}(\textbf{q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE}) \\ & \text{qnorm}(\textbf{p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE}) \\ & \text{rnorm}(\textbf{n, mean = 0, sd = 1}) \end{aligned} Q(p) = \left\{x | P(X \leq x) = p\right\}
```

The standard normal

If
$$X \sim N(\mu, \sigma^2)$$
 and

$$Z = \frac{X - \mu}{\sigma},$$

then $Z \sim N(0,1)$.

Example

- Suppose the expression levels of gene X is normally distributed with mean = 100 and variance = 225 across my cohort.
- What is the probability that the expression of X in a randomly selected sample is above 120?

$$P(X > 120) = P\left(\frac{X - 100}{15} > \frac{120 - 100}{15}\right)$$
$$= P(Z > 4/3)$$
$$= 0.0912$$

 A z-score quantifies how far the value of interest lies from the mean, measured in units of the standard deviation