Statistics for the Sciences

Split-plot Designs

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- Split-plot design
- Lab

- A split-plot design is an experimental design in which researchers are interested in studying two factors in which:
 - One of the factors is 'easy' to change or vary.
 - One of the factors is 'hard' to change or vary.
- This type of design was developed in 1925 by mathematician Ronald Fisher for use in agricultural experiments.
- To illustrate the idea of the split-plot design, consider an example in which researchers want to study the effects of two irrigation methods (Factor A) and two fertilizers (Factor B) on crop yield.
 - ▶ There are four treatments: A_1B_1 , A_1B_2 , A_2B_1 , A_2B_2
 - Suppose there are only 4 fields (experimental units)
 - ★ A completely randomized design does not work

- In this particular example, it's not possible to apply different irrigation methods to areas smaller than one field, but it is possible to apply different fertilizers to small areas.
 - ▶ We can randomly assign one of the irrigation methods (A₁ and A₂) to each field:

• Then we can split each field in half and randomly assign one fertilizer (B_1 and B_2) to each half:

• In this example, we have 4 "whole" plots and within each whole plot we have 2 "split" plots.

Split-plot designs have two advantages over completely randomized designs:

- Cost: Since one of the factors in a split-plot design doesn't have to be changed for each split-plot, this means this type of design tends to be cheaper to carry out in practice.
- **Efficiency**: A split-plot design leads to an increase in precision in the estimates for all factor effects except for the whole-plot main effects.

Statistical model:

$$Y_{ijk} = \mu + \tau_i + \eta_{k(i)} + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk},$$

$$i = 1, \dots, a; j = 1, \dots, b; k = 1, \dots, c$$

- Whole plot effects:
 - \triangleright τ_i : whole plot treatment effects (factor A)
 - $\eta_{k(i)}$: whole plot errors
- Split-plot effects
 - β_j : the split-plot treatment (factor B)
 - $(\tau\beta)_{ij}$: interaction effects
 - $ightharpoonup arepsilon_{ijk}$: subplot random error

- Example (stokes.csv): Stokes et al. (2014) studied the neurotoxin tetrodotoxin (TTX) in flatworms. The between-plots factor was flatworm species (fixed with two groups: Bipalium adventitium and Bipalium kewense) with individual flatworms (plots) nested within species. The within-plots factor was body segment (fixed with three groups: head, anterior body, posterior body) and each segment represented a "sub-plot". The response variable was the TTX concentration of tissue adjusted for weight.
 - ▶ The main research questions were about the fixed effects of **species**, body **segment** and their **interaction** on TTX concentration, but the analyses also provide information about the variances associated with the random effects of individual within species and the random interaction between individuals within species and body segment.
 - Response Variable: TTX concentration ttxweight
 - Main factor: flatworm species with two levels: Badventitium and Bkewense
 - Whole plots: Individual flatworms nested within each species, indiv.
 - ▶ Split Plot Factor: Body segment with three groups: h, b, and p

##		indiv	species	segment	finalttx	ttxweight	conc
##	1	1	Badventitium	h	59.942130	29.97106516	78.86305
##	2	1	Badventitium	р	18.330584	0.22354371	26.84862
##	3	1	Badventitium	b	36.837527	0.63512977	49.98230
##	4	2	Badventitium	h	62.033825	62.03382496	81.47767
##	5	2	Badventitium	р	46.976133	0.62634844	62.65555
##	6	2	Badventitium	b	61.316483	0.94333051	80.58099
##	7	3	Badventitium	h	29.104440	14.55221979	41.90968
##	8	3	Badventitium	p	50.882196	1.88452579	69.13188
##	9	3	${\tt Badventitium}$	b	66.454131	4.74672366	88.59680
##	10	4	${\tt Badventitium}$	h	46.064966	23.03248288	63.11034
##	11	4	${\tt Badventitium}$	p	55.289019	1.08409841	74.64041
##	12	4	${\tt Badventitium}$	b	64.832549	1.75223104	86.56982
	13	5	${\tt Badventitium}$	h		20.17650074	55.97038
	14	5	${\tt Badventitium}$	p	42.508300	0.67473492	58.66451
##	15	5	${\tt Badventitium}$	b	83.629044	2.69771109	110.06544
##	16	6	${\tt Badventitium}$	h	45.773678	45.77367827	62.74623
##	17	6	${\tt Badventitium}$	p	75.437948	2.28599842	99.82657
##	18	6	${\tt Badventitium}$	b	66.198278	3.67768214	88.27698
	19	7	Bkewense	h		21.67923649	
	20	7	Bkewense	P	58.131332	2.07611899	76.59955
##		7	Bkewense	b	6.653189	0.05544324	12.25188
##		8	Bkewense	h		12.51503962	
	23	8	Bkewense	P	26.944873	0.31699851	37.61648
##		8	Bkewense	b	50.761514	0.31925480	67.38728
##		9	Bkewense	h		15.63987512	
	26	9	Bkewense	p	9.360317	0.07091150	17.22953
	27	9	Bkewense	Ъ	49.695106	1.71362435	67.64801
	28	10	Bkewense	h		17.32427480	70.49516
	29	10	Bkewense	p	49.734262	0.68129127	67.69696
	30	10	Bkewense	b	50.483634	1.80298694	68.63367
	31	11	Bkewense	h		25.22310859	
	32	11	Bkewense	p	19.082570	0.20518892	29.38234
	33	11	Bkewense	b	76.367489	2.31416634	
	34	12	Bkewense	h		26.54247987	71.88533
##	35	12	Bkewense	p	49.266253	0.74645838	67.11195
##	36	12	Bkewense	b	44.945554	1.66465016	61.71107

• Consider log10 transformation of ttxweight

```
##
      indiv
                 species segment
                                    finalttx
                                               ttxweight
                                                               conc
## 1
          1 Badventitium
                                   59.942130 29.97106516
                                                           78.86305
## 2
                                   18.330584
                                              0.22354371
          1 Radventitium
                                                           26.84862
## 3
                                   36.837527
                                              0.63512977
                                                           49.98230
          1 Badventitium
          2 Badventitium
                                   62.033825 62.03382496
                                                           81.47767
## 5
          2 Badventitium
                                   46.976133
                                              0.62634844
                                                           62.65555
## 6
                                   61.316483
                                              0.94333051
          2 Badventitium
                                                           80.58099
## 7
          3 Badventitium
                                   29.104440 14.55221979
                                                           41.90968
## 8
                                   50.882196
                                              1.88452579
                                                           69.13188
          3 Badventitium
## 9
          3 Badventitium
                                   66.454131
                                              4.74672366
                                                           88.59680
## 10
                                   46.064966 23.03248288
                                                           63.11034
          4 Badventitium
## 11
                                   55.289019 1.08409841
                                                           74.64041
          4 Radventitium
## 12
          4 Badventitium
                                   64.832549
                                             1.75223104
                                                           86.56982
## 13
                                   40.353001 20.17650074
                                                           55.97038
          5 Badventitium
## 14
          5 Badventitium
                                   42.508300
                                              0.67473492
                                                           58.66451
## 15
          5 Badventitium
                                   83.629044
                                              2.69771109 110.06544
## 16
          6 Badventitium
                                   45.773678 45.77367827
                                                           62.74623
## 17
          6 Badventitium
                                   75.437948
                                              2.28599842
                                                           99.82657
## 18
          6 Badventitium
                                   66.198278
                                              3.67768214
                                                           88.27698
## 19
                Bkewense
                                h 108.396182 21.67923649 182.72076
## 20
                Bkewense
                                   58.131332
                                              2.07611899
                                                           76.59955
## 21
                Bkewense
                                    6.653189
                                              0.05544324
                                                           12.25188
## 22
                Bkewense
                                h 100.120317 12.51503962 166.86719
## 23
                Bkewense
                                   26.944873
                                              0.31699851
                                                           37.61648
## 24
                Bkewense
                                   50.761514
                                              0.31925480
                                                           67.38728
## 25
                Bkewense
                                   78.199376 15.63987512 103.27835
## 26
                Bkewense
                                    9.360317
                                              0.07091150
                                                          17.22953
## 27
                Bkewense
                                   49.695106
                                              1.71362435
                                                           67.64801
                                   51.972824 17.32427480
## 28
         10
                Bkewense
                                                           70.49516
## 29
         10
                Bkewense
                                   49.734262
                                              0.68129127
                                                           67.69696
## 30
                                   50.483634
                                              1.80298694
         10
                Bkewense
                                                           68.63367
## 31
         11
                Bkewense
                                   75.669326 25.22310859 100.11579
## 32
         11
                Bkewense
                                   19.082570
                                              0.20518892
                                                           29.38234
## 33
         11
                                   76.367489 2.31416634 100.98849
                Bkewense
## 34
         12
                Rkevense
                                   53.084960 26.54247987
                                                           71.88533
## 35
         12
                                   49.266253
                                             0.74645838
                                                          67.11195
                Bkewense
## 36
                Bkewense
                                b 44.945554
                                             1.66465016 61.71107
```


LMER estimation with hypothesis testing

```
## Linear mixed model fit by REML, t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: logttxweight ~ species + segment + species * segment + (1 | indiv)
     Data: stokes
##
## REML criterion at convergence: 41.9
## Scaled residuals:
       Min
                     Median
                                           Max
## -2.81144 -0.39960 0.08694 0.72676 1.72771
## Random effects:
                        Variance Std.Dev.
## Groups Name
## indiv
            (Intercept) 0.0000
## Residual
                        0.1654
                                0.4067
## Number of obs: 36, groups: indiv, 12
## Fixed effects:
##
                           Estimate Std. Error
                                                   df t value Pr(>|t|)
## (Intercept)
                            1.4600
                                        0.1660 30.0000 8.793 8.36e-10 ***
## speciesBkewense
                            -0.1780 0.2348 30.0000 -0.758
                                                                 0.454
## segmentb
                            -1.1777 0.2348 30.0000 -5.015 2.23e-05 ***
                            -1.5192
## segmentp
                                       0.2348 30.0000 -6.470 3.78e-07 ***
## speciesBkewense:segmentb -0.2171
                                       0.3321 30.0000 -0.654
                                                                 0.518
## speciesBkewense:segmentp -0.1482
                                       0.3321 30.0000 -0.446
                                                                 0.659
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
                   (Intr) spcsBk sgmntb sgmntp spcsBkwns:sgmntb
## specisBkwns
                   -0.707
## segmentb
                   -0.707 0.500
## segmentp
                   -0.707 0.500 0.500
## spcsBkwns:sgmntb 0.500 -0.707 -0.707 -0.354
## spcsBkwns:sgmntp 0.500 -0.707 -0.354 -0.707 0.500
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
```

ANOVA table

```
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

## species 0.8087 0.8087 1 30 4.8890 0.03479 *

## segment 17.1494 8.5747 2 30 51.8402 1.844e-10 ***

## species:segment 0.0738 0.0369 2 30 0.2232 0.80128

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 After importing the data stokes.csv, add a variable of log10 transformation of ttxweight

I ah

- ullet Click on Analyze o Mixed Models o Linear... and
 - then click Continue

• Move the response variable to the Dependent Variable box and move the three factors indiv, species and segment to Factor(s) box.

 Click on Fixed Effects to specify the interaction between species and segment

• We may want to compare the means of the fixed effects

Type III Tests of Fixed Effectsa

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	30	2.198	.149
species	1	30	4.889	.035
segment	2	30	51.840	<.001
species * segment	2	30	.223	.801

a. Dependent Variable: logttxweight.

Estimates of Fixed Effectsa

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	385	.316	30	-1.219	.232	-1.031	.260
[species=Badventitium]	.326	.235	30	1.389	.175	153	.806
[species=Bkewense]	0_{ρ}	0					
[segment=b]	.273	.235	30	1.161	.255	207	.752
[segment=h]	1.667	.235	30	7.101	<.001	1.188	2.147
[segment=p]	0_p	0					
[species=Badventitium] * [segment=b]	.069	.332	30	.207	.837	609	.747
[species=Badventitium] * [segment=h]	148	.332	30	446	.659	826	.530
[species=Badventitium] * [segment=p]	0_p	0					
[species=Bkewense] * [segment=b]	0_p	0					
[species=Bkewense] * [segment=h]	0_p	0					
[species=Bkewense] * [segment=p]	0_p	0	٠	-	-	-	

a. Dependent Variable: logttxweight.

b. This parameter is set to zero because it is redundant.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.