

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Georgia Tech

Mechanics of Materials I:

Fundamentals of Stress & Strain and Axial Loading

- ✓ Internal Forces due to External Loads
- ✓ Axial Centric Loads
- ✓ Normal Stress and Shear Stress
- ✓ General State of Stress at a Point (3D)
- ✓ Plane Stress (2D)
- ✓ Normal Strain and Shear Strain
- ✓ Stress-Strain Diagrams
- ✓ Mechanical Properties of Materials
- ✓ Linear Elastic Behavior, Hooke's Law, and Poisson's Ratio
- Stresses on Inclined Planes
- ✓ Principal Stresses and Max Shear Stress
- ✓ Mohr's Circle for Plane Stress
- Stress Concentrations
- Mohr's Circle for Plane Strain
- Strain Transformation and Measuring Strains
- ☐ Factor of Safety and Allowable Stresses/Loads
- Nonlinear Behavior and Plasticity
- **☐** Statically Indeterminate Structures
- Thermal and Pre-strain Effects

Module 29 Learning Outcome

• Define Two-Dimensional (2D) or Plane Strain

Recall

Normal Strain, ${\cal E}$

Elongation per unit length

$$\mathcal{E} = \frac{\delta}{L}$$
 [dimensionless]

Sign Convention

- (+) Tension causes (+) elongation
- (-) Compression causes (-) shortening

Recall

Change in the angle between perpendicular reference axes; Angular Distortion Shear Strain, γ (Shear Distortion)

$$\gamma \equiv Shear \ Strain \ [dimensionless]$$

$$\gamma = \gamma_1 + \gamma_2 = \frac{\pi}{2} - \beta$$

State of Strain at a Point

Strains are often easier to measure than stress

Therefore, we often use experimental analysis techniques to measure strains

And then we can use stress-strain equations (derived later) to calculate stresses

Again we will focus on biaxial or two-dimensional (2D) loading

Therefore let's subject a small unrestrained rectangular parallelepiped to a system of two dimension loads (combination of both axial and shear loads)

Recall

$$-\frac{1}{L}$$
 $x' - dx$

$$= \frac{dx' - dx}{dx}$$

Plane Strain

 $dx = dx + \varepsilon_x dx = (1 + \varepsilon_x) dx$

$$\varepsilon_z = \gamma_{xz} = \gamma_{zx} = \gamma_{yz} = \gamma_{zy} = 0$$

$$\gamma_{xy} = \gamma_1 + \gamma_2$$

Plane Strain

$$\varepsilon_{zz} = \gamma_{xz} = \gamma_{zx} = \gamma_{yz} = \gamma_{zy} = 0$$

Plane Strain

No strains in z-direction.
But there can be stresses in the z-direction

Large relative dimension in zdirection with restraints to prevent strain in z-direction

Examples: thick plates

Recall Plane Stress

For Two-Dimensional (2D) or Plane Stress, all out of plane stresses are zero

$$\sigma_z = \tau_{xz} = \tau_{zx} = \tau_{yz} = \tau_{zy} = 0$$

Small relative dimension in z-direction with no surface stress in z-direction

No stresses in z-direction.

But there can be strains in the z-direction

Examples: thin plates

Plane Strain

$$\varepsilon_z = \gamma_{xz} = \gamma_{zx} = \gamma_{yz} = \gamma_{zy} = 0$$

No strains in z-direction. But there can be stresses in the z-direction

Large relative dimension in zdirection with restraints to prevent strain in z-direction

Dams, Retaining Walls, Tunnels

Should I use Plane Stress or Plane Strain?

You must use engineering judgment in modeling and be aware of the assumptions you are making!