2.1 Оператори замикання і взяття внутрішності

Система аксіом, наведена в означенні топології належить радянському математику П.С. Александрову (1925). Проте першу систему аксіом, що визначає топологічну структуру, запропонував польський математик К. Куратовський (1922).

Визначення 2.1. Нехай X — довільна множина. Відображення cl : $2^X \to 2^x$ називається *оператором замикання Куратовського на X*, якщо воно задовольняє наступні умови (*аксіоми Куратовського*):

K1.
$$\operatorname{cl}(M \cup N) = \operatorname{cl}(M) \cup \operatorname{cl}(N)$$
 (аддитивність);

K2. $M \subset cl(M)$;

K3. $\operatorname{cl}(\operatorname{cl}(M)) = \operatorname{cl}(M)$ (ідемпотентність);

K4. $cl(\emptyset) = \emptyset$.

Теорема 2.2

Якщо в деякій множині X введено топологію в розумінні Александрова, то відображення cl, що задовольняє умові $\operatorname{cl}(M) = \overline{M}$ є оператором Куратовського на X.

Доведення. Неважно помітити, що аксіоми K1--K4 просто співпадають із властивостями замикання, доведеними в теоремі про властивосты замикання. \Box

Теорема 2.3 (про завдання топології оператором Куратовського)

Кожний оператор Куратовського cl на довільній множині X задає в X топологію $\tau = \{U \subset X : \operatorname{cl}(X \setminus U) = X \setminus U\}$ в розумінні Александрова, до того ж замикання \overline{M} довільної підмножини M із X в цій топології τ збігається з $\operatorname{cl}(M)$, тобто $\operatorname{cl}(M) = \overline{M}$.

Доведення. Побудуємо сімейство

$$\sigma = \{M \subset X : M = X \setminus U, U \in \tau\},$$

що складається із всіх можливих доповнень множин із системи τ , тобто таких множин, для яких с $\mathrm{l}(M)=\overline{M}$. Інакше кажучи, система σ складається з нерухомих точок оператора замикання Куратовського. За принципом двоїстості де Моргана, для сімейства σ виконуються аксіоми замкненої топології

F1. $X, \emptyset \in \sigma$.

F2.
$$F_{\alpha} \in \sigma, \alpha \in A \implies \bigcap_{\alpha \in A} F_{\alpha} \in \sigma, \text{ де } A - \text{довільна множина.}$$

F3.
$$F_{\alpha} \in \sigma, \alpha = 1, 2, \dots, n \implies \bigcup_{\alpha=1}^{n} G_{\alpha} \in \sigma.$$

Отже, щоб перевірити аксіоми Александрова для сімейства множин au, достатньо перевірити виконання аксіом F1–F3 для сімейства множин σ .

1. Перевіримо аксіому F1: $X \in \sigma$? $\emptyset \in \sigma$?

Аксіома K2 стверджує, що $M \subset \operatorname{cl}(M)$. Покладемо M = X. Отже, $X \subset \operatorname{cl}(X) \subset X \implies \operatorname{cl}(X) = X \implies X \in \sigma$. Аксіома K4 стверджує, що $\operatorname{cl}(\varnothing) = \varnothing \implies \varnothing \in \sigma$.

2. Перевіримо виконання аксіоми F2.

Спочатку покажемо, що оператор cl є *монотонним*:

$$\forall A, B \in \sigma : A \subset B \implies \operatorname{cl}(A) \subset \operatorname{cl}(B).$$

Нехай $A, B \in \sigma$ і $A \subset B$. Тоді за аксіомою K1:

$$cl(B) = cl(B \cup A) = cl(B) \cup cl(A).$$

Отже,

$$\operatorname{cl}(A) \subset \operatorname{cl}(A) \cup \operatorname{cl}(B) = \operatorname{cl}(B \cup A) = \operatorname{cl}(B).$$

Використаємо це допоміжне твердження для перевірки аксіоми F3. З одного боку,

$$\forall F_{\alpha} \in \sigma : \bigcap_{\alpha \in A} F_{\alpha} \subset F_{\alpha} \quad \forall \alpha \in A \implies$$

$$\Longrightarrow \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right) \in \operatorname{cl}(F_{\alpha}) = F_{\alpha} \quad \forall \alpha \in A \implies$$

$$\Longrightarrow \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right) \subset \bigcap_{\alpha \in A} F_{\alpha}.$$

З іншого боку, за аксіомою К2

$$\bigcap_{\alpha \in A} F_{\alpha} \subset \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right).$$

Отже,

$$\operatorname{cl}\left(\bigcap_{\alpha\in A}F_{\alpha}\right)=\bigcap_{\alpha\in A}F_{\alpha}\in\sigma.$$

3. Перевіримо виконання аксіоми F3.

$$A, B \in \sigma \implies \operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B) = A \cup B \implies A \cup B \in \sigma.$$

Таким чином, σ — замкнена топологія, а сімейство τ , що складається із доповнень до множин із сімейства σ — відкрита топологія.

Залишилося показати, що в просторі (X, τ) , побудованому за допомогою оператора cl, замикання \overline{M} довільної множини M збігається з cl(M).

Дійсно, за критерієм замкненості, множина M є замкненою, якщо $\overline{M}=M$. Із аксіом K2 і K3 випливає, що множина $\mathrm{cl}(M)$ є замкненою і містить M. Покажемо, що ця множина — найменша замкнена множина, що містить множину M, тобто є її замиканням.

Нехай F — довільна замкнена в (X, τ) множина, що містить M:

$$M \subset F$$
, $\operatorname{cl}(F) = F$.

Внаслідок монотонності оператора сІ отримуємо наступне:

$$M \subset F$$
, $\operatorname{cl}(F) = F \implies \operatorname{cl}(M) \subset \operatorname{cl}(F) = F$.

Визначення 2.4. Нехай X — довільна множина. Відображення Int : $2^X \to 2^X$ називається *оператором взяття внутрішності множини* X, якщо воно задовольняє наступні умови:

- K1. $Int(M \cap N) = Int(M) \cap Int(N)$ (аддитивність);
- K2. $Int(M) \subset M$;
- K3. Int(Int(M)) = Int(M) (ідемпотентність);
- K4. $Int(\emptyset) = \emptyset$.

П

3

Наслідок 2.5

Оскільки

Int
$$A = X \setminus \overline{X \setminus A}$$
,

оператор взяття внутрішності є двоїстим для оператора замикання Куратовського. Отже, система множин $\tau = \{A \subseteq X : \text{Int } A = A\}$ утворює в X топологію, а множина Int A в цій топології є внутрішністю множини A.

2.2 Бази

Для завдання в множині X певної топології немає потреби безпосередньо указувати всі відкриті підмножини цієї топології. Існує деяка сукупність відкритих підмножин, яка повністю визначає топологію. Така сукупність називається базою цієї топології.

Визначення 2.6. Сукупність β відкритих множин простору (X, τ) називається базою топології τ або базою простору (X, τ) , якщо довільна непорожня відкрита множина цього простору є об'єднанням деякої сукупності множин, що належать β :

$$\forall G \in \tau, G \neq \emptyset \quad \exists B_{\alpha} \in \beta, \alpha \in A : \quad G = \bigcup_{\alpha \in A} B_{\alpha}.$$

Зауваження 2.7 — Будь-який простір (X, τ) має базу, оскільки система всіх відкритих підмножин цього простору утворює базу його топології.

Зауваження 2.8 — Якщо в просторі (X, τ) існують ізольовані точки, вони повинні входити в склад будь-якої бази цього простору.

Теорема 2.9

Для того щоб сукупність β множин із топології τ була базою цієї топології, необхідно і достатньо, щоб для кожної точки $x \in X$ і довільної відкритої множини U, що містить точку x, існувала множина $V \in \beta$, така щоб $x \in V \subset U$.

Доведення. Необхідність. Нехай β — база простору (X, τ) , $x_0 \in X$, а $U_0 \in \tau$, таке що $x_0 \in U_0$. Тоді за означенням бази $U_0 = \bigcup_{\alpha \in A} V_\alpha$, де $V_\alpha \in \beta$. З цього випливає, що $x_0 \in V_{\alpha_0} \subset U_0$.

$$\beta = \mathcal{B}(\tau), x_0 \in X, U_0 \in \tau, x_0 \in U_0 \implies U_0 = \bigcup_{\alpha \in A} V_\alpha, V_\alpha \in \beta \implies$$
$$\implies x_0 \in V_{\alpha_0} \subset U_0.$$

Достатність. Нехай для кожної точки $x\in X$ і довільної відкритої множини $U\in \tau$, що містить точку x, існує множина $V_x\in \beta$, така що $x\in V_x\subset U$. Легко перевірити, що $U=\bigcup_{x\in U}V_x$.

Дійсно, якщо точка $x \in U$, то за умовою теореми, вона належить множині $V_x \subset U$, а отже і об'єднанню таких множин $\bigcup_{x \in U} V_x$:

$$x \in U \implies \exists V_x \subset U : x \in V_x \implies x \in \bigcup_{x \in U} V_x.$$

I навпаки, якщо точка належить об'єднанню $\bigcup_{x\in U} V_x$, то вона належить принаймні одній із цих множин $V_x\subset U$, а отже — вона належить множині U:

$$x \in \bigcup_{x \in U} V_x \implies \exists V_x \subset U : x \in V_x \implies x \in U.$$

Таким чином, довільну відкриту множину $U \in \tau$ можна подати у вигляді об'єднання множин із β .

Приклад 2.10

Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (a_0,b_0) \subset (a,b)$, то за попередньою теоремою сукупність всіх відкритих інтервалів утворює базу топології в \mathbb{R}^1 .

Приклад 2.11

Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (r_1,r_2) \subset (a,b), r_1,r_2 \in \mathbb{Q}$, то за попередньою теоремою сукупність всіх відкритих інтервалів із раціональними кінцями також утворює базу топології в \mathbb{R}^1 .

Із цієї теореми випливають два наслідки.

Наслідок 2.12

Об'єднання всіх множин, які належать базі β топології τ , утворює всю множину X.

Доведення. Оскільки $X \in \tau$, то за означенням бази $X = \bigcup_{\alpha \in A} V_{\alpha}$, де $V_{\alpha} \in \beta$.

У подальшому будемо також називати цей наслідок першою властивістю бези топології.

Наслідок 2.13

Для довільних двох множин U і V із бази β і для кожної точки $x \in U \cap V$ існує множина W із β така, що $x \in W \subset U \cap V$.

Доведення. Оскільки $U \cap V \in \tau$, то за попередньою теоремою в множині $U \cap V$ міститься відкрита множина W із бази, така що $x \in W$.

У подальшому будемо також називати цей наслідок другою властивістю бези топології.

Теорема 2.14 (про завдання топології за допомогою бази)

Нехай в довільній множині X задана деяка сукупність відкритих множин β , що має властивості бази топології. Тоді в множині X існує єдина топологія τ , однією з баз якої є сукупність β .

Доведення. Припустимо, що τ — сімейство, що містить лише порожню множину і всі підмножини множини X, кожна з яких є об'єднанням підмножин із сукупності β :

$$\tau = \left\{ \varnothing, G_{\alpha} \subset X, \alpha \in A, G_{\alpha} = \bigcup_{i \in I} B_{i}^{\alpha}, B_{i}^{\alpha} \in \beta \right\}.$$

Перевіримо, що це сімейство множин є топологією. Виконання аксіом топології 1 і 2 є очевидним: $\varnothing \in \tau$, $X \in \tau$ і

$$G_{\alpha} \in \tau, \alpha \in A \implies \bigcup_{\alpha \in A} G_{\alpha} \in \tau.$$

Аксіома 3 є наслідком властивостей. Не обмежуючи загальності, можна перевірити її для випадку перетину двох множин.

Нехай $U,U'\in \tau$. За означенням, $U=\bigcup_{i\in I}V_i$ і $U'=\bigcup_{j\in J}V_j'$, де $V_i,V_j'\in \beta$. Розглянемо перетин

$$U \cap U' = \left(\bigcup_{i \in I} V_i\right) \cap \left(\bigcup_{j \in J} V_i'\right) = \bigcup_{i \in I, j \in J} (V_i \cap V_j').$$

Доведемо, що $V_i\cap V_j'\in \tau$. Нехай $x\in V_i\cap V_j'$. Тоді, за другою властивістю, існує множина $W_x\in \beta$, така що $x\in W_x\subset V_i\cap V_j'$. Оскільки точка $x\in V_i\cap V_j'$ є довільною, то $V_i\cap V_j'=\bigcup_{x\in V_i\cap V_j'}W_x\in \tau$. Отже, $U\cap U'\in \tau$.

Таким чином, сімейство τ дійсно утворює топологію на X, а система β є її базою.