Divide and Conquer

Sorting & Inversions

Sorting Problem

- Input: A set of n integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.

How many sorting algorithms you know?

- Input: A set of n integers
 - $x_1, x_2, x_3, ..., x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

1	10	5	26	3	4	16	4	2

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

1	10	5	26	3	4	16	4	2
1								

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

. 1	10	5	26	3	4	16	4	2
					*			
1	10							

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, ..., x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

. 1	10	5	26	3	4	16	4	2
1	5	10						

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

, 1	10	5	26 -	3	4	16	4	2
1	5	10	26					

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

1	10	5	26	3	4	16	4	2
1	3	5	10	26				

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

. 1	10	5	26	3	4.5	16	4	2
1	3	4	5	10	26			

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

How many number we should insert?

How long it takes to insert one number?

- **Input:** A set of *n* integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 1:
 - Try Insertion Sort: fix the output one by one.
 - How fast is it?

n numbers

At most n operations

Don't forget the correctness!

- Is it correct?
- How to prove it!
 - Using Induction?

Prove correctness by induction.

- Base Case
 - If we only insert one integer, it is sorted.
- Induction
 - Assume the list is sorted after the k-1-th insertion.
 - Prove the list is sorted after the k-th insertion.
 - Assume the integer j is inserted at location i.
 - $j \geq a_i \geq a_{\leq i}$.

Ok! Let's move to divide and conquer!

Divide and Conquer

Recall the divide and conquer

Divide

- Divide the problem into small size subproblems.

Recurse

- Solve the small size subproblems.

Combine

 Combine the output of small size subproblems to get the answer of the original problem.

Basic solver

- If the problem size is small enough, we should solve it directly.

Merge sort

- Input: A set of n integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: The same set of n integers in ascending order.
- Plan 2: Divide and Conquer (Merge Sort)
 - Divide: Dive the input into two subsets:
 - $x_1, x_2, ..., x_{n/2}; x_{n/2+1}, x_{n/2+2}, ..., x_n$
 - Recurse: Sort two subsets (smaller size problems).
 - Let $y_1, y_2, ..., y_{n/2}$; $y_{n/2+1}, y_{n/2+2}, ..., y_n$ be the output (sorted list).
 - Combine: Merge to sorted list to one long sorted list.

1 10 5 26 3 4 16 4 2

What is the next?

The remaining questions

- How to merge two sorted lists?
- How fast we can make it?

Merge two sorted lists

- Input: two sorted lists $A = a_1, a_2, \dots, a_n$, $B = b_1, b_2, \dots, b_m$
- Output: a sorted list C
- Straightforward Plan
 - Insert each b into A iteratively.
 - Time:
 - *m* integer to insert.
 - *n* times for each insertion.
 - Totally: O(mn)
 - Merge Sort:
 - $T(n) = 2T\left(\frac{n}{2}\right) + O(n^2/4)$

Do we really need so many comparisons?

Merge two sorted lists

- **Input**: two sorted lists $A = a_1, a_2, ..., a_n, B = b_1, b_2, ..., b_m$
- Output: a sorted list C
- Smarter Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

Example

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

	2	3	4	/.			
C CONTROL OF STREET	_	5		4	E-120-5374E		

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to $\mathcal C$

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C.

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

1 2 3	4	4	5	10	16	
-------	---	---	---	----	----	--

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C

- Plan
 - Maintain 2 pointers i = 1, j = 1
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C.

Is it correct?

Prove by induction.

Is Merge Sort correct?

Prove by induction.

How fast is the algorithm?

Plan

- Maintain 2 pointers i = 1, j = 1
- Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - Break if i > n or j > m
- Append the reminder of the non-empty list to \mathcal{C}

Analysis 1

- -i at most move n times.
- -j at most move m times for one i move.
- O(nm)?

How fast is the algorithm?

Analysis 1

- *i* at most move *n* times.
- j at most move m times for one i movement.
- O(nm)?

Analysis 2

- How many time it takes to append one number to C?
- 1 number → 1 comparison!
- Output m + n numbers → m + n comparisons!
- A **linear time** algorithm!
- -O(n+m)

Charging Argument!

Finally...

- What is the running time of merge sort?
 - Equip the linear time combining into merge sort.
 - Assume merge sort runs T(n) time to sort a size n list.
 - What is T(n)?

$$- T(n) = 2T\left(\frac{n}{2}\right) + O(n) < \frac{n}{2} + \frac{n}{2}$$

- I believe you know it is $O(n \log n)$! But, why?

$$T(n) = T\left(\frac{n}{2}\right) + O(n)$$

An efficient tool to r(n) = 4r(n) + 0(n3) calculate these expressions

$$T(n) = 3T\binom{n}{2} + O(n^4)$$

Master Theorem

Master Theorem

- If
$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

$$-T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

How to understand it?

Understand the parameters

Master Theorem

- If
$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

Divide into *a* problems

$$-T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

Understand the parameters

Master Theorem

- If
$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

Divide into *a* problems

$$-T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

Subproblem size: n/b

Understand the parameters

Master Theorem

- If
$$T(n) = aT(\frac{n}{b}) + O(n^d)$$

Combining cost: $O(n^d)$

Divide into *a* problems

$$-T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

Subproblem size: n/b

Running time of merge sort

Recall

- Merge sort divides the problem to **two** n/2-size problems.
- Merging two n/2-size sorted lists takes O(n) times.

$$-T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

Use Master Theorem

- If
$$T(n) = \mathbf{a}T\left(\frac{n}{\mathbf{b}}\right) + O(n^{\mathbf{d}})$$
, then $T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \end{cases}$.
$$O(n^d \log n) \quad a = b^d$$

$$-a=2, b=2, d=1$$

$$- T(n) = O(n \log n)$$

Understand the formula & proof

Understand the formula & proof

- The running time of solving all size-1 problem is $-a^{\log_b n} \cdot O(1) = O(n^{\log_b a})$
- The total running time is

$$-O(n^d) + a \cdot O\left(\left(\frac{n}{b}\right)^d\right) + \dots + a^k \cdot O\left(\left(\frac{n}{b^k}\right)^d\right) + \dots + a^{\log_b n} \cdot O(1)$$

Simplification

$$-O(n^d)\cdot (1+\frac{a}{b^d}+\cdots+\left(\frac{a}{b^d}\right)^k+\cdots+\left(\frac{a}{b^d}\right)^{\log_b n})$$

$$n = b^{\log_b n}$$

Case 1: $a < b^d$

$$T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

$$T(n) = O(n^d) \cdot \left(1 + \frac{a}{b^d} + \dots + \left(\frac{a}{b^d}\right)^k + \dots + \left(\frac{a}{b^d}\right)^{\log_b n} \right)$$

•
$$a < b^d \rightarrow \frac{a}{b^d} < 1$$

$$- T(n) = O(n^d)$$

Case 2: $a > b^d$

$$T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

$$T(n) = O(n^d) \cdot \left(1 + \frac{a}{b^d} + \dots + \left(\frac{a}{b^d}\right)^k + \dots + \left(\frac{a}{b^d}\right)^{\log_b n} \right)$$

$$a > b^d \rightarrow \frac{a}{b^d} > 1$$

The last term dominates the sum

$$T(n) = O\left(n^d \left(\frac{a}{b^d}\right)^{\log_b n}\right) = O\left(n^d \frac{a^{\log_b n}}{n^d}\right)$$

$$= O\left(a^{\log_b n}\right) = O(n^{\log_b a})$$

Case 3: $a = b^d$

$$T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

$$T(n) = O(n^d) \cdot \left(1 + \frac{a}{b^d} + \dots + \left(\frac{a}{b^d}\right)^k + \dots + \left(\frac{a}{b^d}\right)^{\log_b n}\right)$$

$$\bullet \ a = b^d \to \frac{a}{b^d} = 1$$

$$T(n) = O(n^d \log_b n)$$

Divide and Conquer

- Input: A list of n integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: number of inversions
- Application
 - You rank n songs.
 - Music site consults database to find people with similar tastes.
 - What is **similar**?
 - My rank: 1, 2, 3, 4, 5, ..., n
 - Your rank: $x_1, x_2, x_3, ..., x_n$
 - Songs i, j are **inverted** if i < j but $x_i > x_j$.
 - Similar metric: number of inversions.

Counting Inversions vs Merge Sort

- Input: A list of n integers
 - $x_1, x_2, x_3, ..., x_n$
- Output: number of inversions
- Plan 1: Brute-force
 - $-O(n^2)$

- Input: A list of n integers
 - $x_1, x_2, x_3, \dots, x_n$
- Output: number of inversions
- Plan 2: Divide and Conquer (Merge Sort Style)
 - Divide: Dive the input into two subsets:
 - $x_1, x_2, ..., x_{n/2}, x_{n/2+1}, x_{n/2+2}, ..., x_n$
 - Recurse: count inversions in the two subsets.
 - Let c_1 , c_2 be the two numbers.
 - Combine: Return the total number of inversions.
 - Count the inversions across subsets, to be c_3 .
 - Return $c_1 + c_2 + c_3$.

1 10 5 26 3 4 16 4 2

Counting Inversions

Counting Inversions (

19

Count inversions across two lists

- Input: two lists $A = a_1, a_2, ..., a_n, B = b_1, b_2, ..., b_m$
- Output: number of inversions across two lists
- Plan
 - For each a_i in A
 - Count the number of $b_i < a_i$ in B.
 - Add the number into total number of inversions.
 - Return the total number.

1 10 5 26

3	/,	16	/,	2
)				STATE OF THE STATE OF

Counter = o

- Plan
 - For each a_i in A
 - Count the number of $b_j < a_i$ in B.
 - Add the number into total number of inversions.
 - Return the total number.

- Plan
 - For each a_i in A
 - Count the number of $b_j < a_i$ in B.
 - Add the number into total number of inversions.
 - Return the total number.

- Plan
 - For each a_i in A
 - Count the number of $b_j < a_i$ in B.
 - Add the number into total number of inversions.
 - Return the total number.

- Plan
 - For each a_i in A
 - Count the number of $b_j < a_i$ in B.
 - Add the number into total number of inversions.
 - Return the total number.

2

- Plan
 - For each a_i in A
 - Count the number of $b_j < a_i$ in B.
 - Add the number into total number of inversions.
 - Return the total number.

How long it takes?

- Analysis
 - Each a_i , scan the whole list B.
 - It takes O(nm).
- How to improve?
 - It become easier when the two lists are sorted!
 - Why not do **merging** and **counting** together!

Merge & Count

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_i is smaller, then move j to j + 1.
 - If we move i to i+1, then c=c+j-1. $a_i>b_j$, $\forall j'< j$
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

$$a_{i\prime} > b_{j\prime}, \forall j' \leq m, \forall i' \geq i$$

Plan

- Maintain 2 pointers i = 1, j = 1, and a counter c = 0
- Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
- Append the reminder of the non-empty list to C
- If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_j\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_i is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_j is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

- Plan
 - Maintain 2 pointers i = 1, j = 1, and a counter c = 0
 - Repeat
 - Append $min\{a_i, b_i\}$ to C
 - If a_i is smaller, then move i to i + 1; If b_i is smaller, then move j to j + 1.
 - If we move i to i + 1, then c = c + j 1.
 - Break if i > n or j > m
 - Append the reminder of the non-empty list to C
 - If $i \le n$, $c = c + m \cdot (n i + 1)$

Try to prove to yourself the correctness.

How fast is it now?

- The same as Merging two sorted listed.
- Counting Inversion is as fast as Merge Sort.
- $T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n\log n)$

Today's goal

- Learn Insertion Sort and Merge Sort
- Learn how to Count Inversions with Merge Sort
- Learn to prove the correctness of them
- Learn to analyze their running time
 - **Charging Argument**
- Learn the Master Theorem