SYD366 Week 1

INTRODUCTION TO COURSE CONTENT

Today's Agenda

Short Introduction Learning Outcomes Defining a System

System
Development
Life Cycle

A Short Introduction

- Who am I?
 - Cassandra Laffan
 - Email: Cassandra.Laffan@senecapolytechnic.ca
 - PhD Student at Toronto Metropolitan University
 - Specialties include the C programming language, Python, CLISP
 - Hobbies include baking, working out, going to concerts, video games

Office Hours

- No one ever shows up to office hours properly
- Office hours are scheduled via email

Semester Timeline

- ▶ The course schedule is posted in the addendum
 - ► Familiarize yourselves with it!
- ▶ There are three tests in this course
 - ► Money test (5%, week 5)
 - ▶ Inventory test (20%, week 7)
 - ▶ Sales and Scheduling test (35%, last week of classes)

Lab Due Dates

- Labs become available on Sundays and are due the subsequent Sunday
- ► For example, lab 1 became available on the 3rd and is due on the 10th of December
 - ► There is only one exception: lab 3 is very long, so it will become available alongside lab 2
- ▶ I do not accept late submissions, email submissions or .zip files

Learning Outcomes

Learning By Example

- You'll be learning about businesses by reading about businesses!
 - Topics include money, inventory, accounting, sales and scheduling
- The examples you see throughout the semester will be used to frame and teach UML and OOP basics
 - You'll learn how to define classes, attributes and relationships
 - You'll create solutions using the MVC control pattern
 - You will define actions which the UI controller, Domain Controller and Entity Manager must each manage

Why UML?

 You will learn very quickly that jumping into coding without knowing what your system will look like is a disaster waiting to happen.

Software Requirements

- Visual Paradigm Community Edition
 - Available through Seneca's Cloud Apps and on school computers
 - In the lab, I'll do a quick demo showing you how to create a class diagram in Visual Paradigm
- An IDE or text editor which can read .h files
 - I recommend VSCode

Systems

What is a System?

- A collection of inter-related components which collect, process and store input
- It then outputs the information needed to complete (business) tasks.

Characteristics of a System

- Exists in an environment
- Separated from its environment by a boundary
- Has inputs and outputs which come from, or are sent to the environment
- Has interfaces
 - These allow communication between two systems
- Can have sub-systems
- Has a control mechanism

What is a Software System?

A combination of hardware and developed software which create the solution to solve a problem or meet business requirements

What is Software Development?

- "Software Development" implies developing some sort of software
 - Does not involve simply coding programs
- Software is developed:
 - to turn manual processes into automated processes.
 - to improve/enhance existing automated processes.

What is Software Development?

- Software Development entails understanding:
 - how a business operates
 - the problem to be solved
 - that the solution to be developed will be of value to the business

Why do we develop software?

- Environments are rapidly changing
 - New Operating Systems, changes to office workspaces, etc.
- New technologies are frequently introduced
 - Haptics, voice-to-text, AR, VR, etc.
- Companies merge and need to combine their systems
 - Combine two separate database systems (a nightmare)
- Governments pass new legislation or make changes to it
 - New tax codes (also nightmarish)

Typical Software Development Solutions

- Each approach has pros and cons
- Customized
 - Developed in-house or contracted out
- Off-the-Shelf
 - Turnkey
- Combination
 - Off-the-Shelf software with custom components
 - Customized Software with Off-the-Shelf components

Learning Outcome: Systems Analysis

- What goes into a system?
- How do we determine what needs to be built?
- Who is involved with these decisions?

Learning Outcome: System Design

- How will our system work?
- What is the 'flow' of input and output?
- How does the user's interaction affect the system's behaviour?
- What will the system look like?
- How will data be stored?

Learning Outcome: System Development

BUILD A SYSTEM

CREATE ITS DOCUMENTATION

TEST THE SYSTEM

MAINTAIN THE SYSTEM

Quick Aside: Systems Stream Subjects

- Gives CPA students the experience of completing the SDLC using OOP project management design techniques
- SYD366 (this course!)
 - Experience the difference between Predictive and Agile Project Management methodologies
 - Follows a small business through selection of software
 - Build Class and Sequence Diagrams by reviewing User Stories and Systems Use Case Specifications. (Agile artifacts)
 - Research off the shelf software solutions and determine the best fit.

Quick Aside: Systems Stream Subjects

- Completion of the aforementioned courses will give you the tools to:
 - Understand the system development life cycle (SDLC)
 - Use and follow agile methodologies and artifacts

Potential Career Path: Systems Analyst

- Not a meme (I swear)!
- What is a Systems Analyst?
 - An IT professional involved in the development of a computerized solution to a business problem
 - Requires extensive technical, business and people knowledge, communication, business and technical skills
 - Focuses on understanding the business problem
 - Focuses on the approach to be taken to solve the business problem

Systems Analyst Skills

- Technical Knowledge and Skills
- Business Knowledge and Skills
- People Knowledge and Skills
- Integrity & Ethics

Speaking of Integrity and Ethics...

- Don't cheat.
- What is cheating?
 - Handing an assignment in you bought off a website
 - Handing in an assignment which you did not write yourself
 - Copying others' tests while writing your own

SDLC

Systems Development Life Cycle

Software Development Projects are developed according to a definite methodology called the SDLC:

- Waterfall, Interactive and Incremental
- Organizes the activities of a project
- Followed by professionals involved in software development

Problem Solving Approach

- 1. Research and understand the problem
- 2. Verify that the benefits of solving the problem outweigh the costs
- 3. Develop a set of possible solutions (alternatives)
- 4. Decide which solution is best and make a recommendation
- 5. Define the details of the chosen solution
- 6. Implement the solution
- 7. Monitor to make sure that you obtain the desired results

Activities in SDLC

Analysis

- Systems requirements are determined, defined and documented
- Looks at functions (at a high level) and the data that will be used
- Defines what the system will do

Analysis

Understanding business needs includes:

- Researching and understanding the problem
- Identifying Stakeholders
- Identifying Business Needs
- Documenting Business Processes

Design

Conceptualizing computer-system solutions:

- Developing a set of possible solutions (alternatives)
- Deciding which solution is best and make a recommendation
- Defining the details of the chosen solution

Implementation

- Coding
- Creating data constructs
- Installation
- Deployment to testing environments

Testing

- Finding bugs, glitches and other abnormalities in your program
- Error tracking

Evaluation

Determining the success of a solution:

- Monitoring to ensure the desired results are obtained
- Determining what changes, if any, need to be made

What is a Methodology?

- A body of methods, rules and postulates employed by a discipline: a particular procedure or set of procedures.
- Within the context of systems, it's a set of comprehensive guidelines to follow while completing every SDLC activity:
 - Structured (traditional)
 - Object-oriented

Methodology: Waterfall (Structured)

- Worked well for centralized processing applications and procedural languages
- Linear methodology, difficult to evolve project
- Rigid Development, minimal reusability
- Uses Data Flow
 Diagrams and Entity
 Relationship Diagrams

Methodology: Agile

- Pretty much ever modern company uses this methodology!
- Effective for most solutions, but particularly userfacing ones such as GUIs and websites
- Useful when constantly making many small changes
- You'll repeat the SDLC cycle until your boss tells you to stop

Variances in SDLC

Developers encounter many variations of SDLC in practice:

- Phases may vary
- Number of iterations may change
- Emphasis on people
- Speed of development (agile cycles can be a week to a month!)

BUT you must understand the basic methodology before you can vary it!

Why might Software Projects Fail?

- Common causes of failure:
 - Deadlines that cannot be met
 - Budgets that have been exceeded
 - Solutions that don't work as defined or required
 - Systems too complex to maintain
 - Customer's requirements not fully understood or captured correctly
 - Customers continually change their requirements
 - Customers are not committed to the project
- SDLC helps minimize failure by adding details in successive iterations and incremental releases of software.

Any questions?