Codebook for Tidy Dataset

Krishnakanth Allika

2020-04-29 20:23:04

Data origins and transformations

Source: UCI HAR (Human Activity Recognition)

Original data structure

Data Transformation Flow (left to right)

activity_labels					
I_	test_activities _				
y_test	(Step 1)	 			
features Mean,Std _ (Step 2)	 test_MeanStd _	1	test set		
X_test					
N_0050	1 (bucp 0)	i	(buch 1)	İ	
subject_test				ļ ,	
activity_labels	train_activities _				Tidy_Dataset (Step 6)
y_train		 		İ	1
features Mean,Std _		İ		į	
X_train	train_MeanStd	 	train_set (Step 5)		
subject_train		i			

Steps:

- 1. Add activity labels to y_test. Output: test_activities
- 2. Identify and extract features that were measurements on mean and standard deviation. Output: $f_MeanStd$
- 3. Extract specific columns from X_test that only contained the above features. Output: test_MeanStd
- 4. Add subject_test and y_test columns to the above to create test_set. Output: test_set
- 5. Follow the same steps to create train_set. Output: train_set
- 6. Combine test_set and train_set to form a full_dataset. Output: Tidy_Dataset

Dataset overview

The dataset examined has the following dimensions:

Feature	Result
Number of observations	10299
Number of variables	68

Codebook summary table

Label	Variable	Class	# unique values	Missing	Description
Subject ID Activity type	SubjectID ActivityLabel	factor factor	30 6	0.00 % 0.00 %	Participants identifier. Type of activity performed by subjects and measured across various features.
Mean of time domain measurement of body linear acceleration in X axis	tBodyAccMeanX	numeric	10292	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and A directions.
Mean of time domain mea- surement of body linear acceleration in Y axis	tBodyAccMeanY	numeric	10299	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and 3 directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of time domain measurement of body linear acceleration in Z axis	tBodyAccMeanZ	numeric	10293	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measurement of body linear acceleration in X axis	tBodyAccStdX	numeric	10295	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measure- ment of body linear acceleration in Y axis	tBodyAccStdY	numeric	10297	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Standard deviation of time domain measurement of body linear acceleration in Z axis	tBodyAccStdZ	numeric	10297	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain measurement of gravity linear acceleration in X axis	tGravityAccMeanX	numeric	10296	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain measurement of gravity linear acceleration in Y axis	tGravityAccMeanY	numeric	10298	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of time domain measurement of gravity linear acceleration in Z axis	tGravityAccMeanZ	numeric	10299	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measurement of gravity linear acceleration in X axis	tGravityAccStdX	numeric	10288	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measure- ment of gravity linear acceleration in Y axis	tGravityAccStdY	numeric	10293	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Standard deviation of time domain measurement of gravity linear acceleration in Z axis	tGravityAccStdZ	numeric	10296	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain measurement of body linear acceleration jerk signals in X axis	tBodyAccJerkMeanX	numeric	10299	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain measurement of body linear acceleration jerk signals in Y axis	tBodyAccJerkMeanY	numeric	10299	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of time domain measurement of body linear acceleration jerk signals in Z axis	tBodyAccJerkMeanZ	numeric	10299	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measurement of body linear acceleration jerk signals in X axis	tBodyAccJerkStdX	numeric	10290	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measure- ment of body linear acceleration jerk signals in Y axis	tBodyAccJerkStdY	numeric	10296	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Standard deviation of time domain measurement of body linear acceleration jerk signals in Z axis	tBodyAccJerkStdZ	numeric	10293	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain measurement of body angular velocity in X axis	tBodyGyroMeanX	numeric	10298	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain mea- surement of body angular velocity in Y axis	tBodyGyroMeanY	numeric	10299	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of time domain measurement of body angular velocity in Z axis	tBodyGyroMeanZ	numeric	10297	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measurement of body angular velocity in X axis	tBodyGyroStdX	numeric	10292	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measure- ment of body angular velocity in Y axis	tBodyGyroStdY	numeric	10296	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Standard deviation of time domain measure- ment of body angular velocity in Z axis	tBodyGyroStdZ	numeric	10296	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain mea- surement of body angular velocity jerk signals in X axis	t Body Gyro Jerk Mean X	numeric	10295	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of time domain mea- surement of body angular velocity jerk signals in Y axis	tBodyGyroJerkMeanY	numeric	10299	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of time domain measurement of body angular velocity jerk signals in Z axis	tBodyGyroJerkMeanZ	numeric	10298	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measure- ment of body angular velocity jerk signals in X axis	tBodyGyroJerkStdX	numeric	10292	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of time domain measure- ment of body angular velocity jerk signals in Y axis	tBodyGyroJerkStdY	numeric	10295	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Standard deviation of time domain measurement of body angular velocity jerk signals in Z axis	tBodyGyroJerkStdZ	numeric	10291	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of magnitide of time domain measure- ment of body linear acceleration	tBodyAccMagMean	numeric	10296	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean
Standard deviation of magnitide of time domain measure- ment of body linear acceleration	tBodyAccMagStd	numeric	10294	0.00 %	norm. Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of magnitide of time domain measurement of gravity linear acceleration	tGravityAccMagMean	numeric	10296	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Standard deviation of magnitide of time domain measure- ment of gravity linear acceleration	tGravityAccMagStd	numeric	10294	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate gravity signals from body. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Mean of magnitide of time domain measure- ment of body linear acceleration jerk signals	tBodyAccJerkMagMean	numeric	10292	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.

			# unique		
Label	Variable	Class	values	Missing	Description
Standard deviation of magnitide of time domain measure- ment of body linear acceleration jerk signals	tBodyAccJerkMagStd	numeric	10294	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Mean of magnitide of time domain measure- ment of body angular velocity	tBodyGyroMagMean	numeric	10298	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Standard deviation of magnitide of time domain measure- ment of body angular velocity	tBodyGyroMagStd	numeric	10298	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.

-			# unique		
Label	Variable	Class	# unique values	Missing	Description
Mean of magnitide of time domain measure- ment of body angular velocity jerk signals	tBodyGyroJerkMagMean	numeric	10293	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Standard deviation of magnitide of time domain measure- ment of body angular velocity jerk signals	tBodyGyroJerkMagStd	numeric	10297	0.00 %	Time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Mean of frequency domain mea- surement of body linear acceleration in X axis	fBodyAccMeanX	numeric	10295	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of frequency domain mea- surement of body linear acceleration in Y axis	fBodyAccMeanY	numeric	10292	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of frequency domain mea- surement of body linear acceleration in Z axis	fBodyAccMeanZ	numeric	10295	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain mea- surement of body linear acceleration in X axis	fBodyAccStdX	numeric	10294	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain mea- surement of body linear acceleration in Y axis	fBodyAccStdY	numeric	10297	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain measurement of body linear acceleration in Z axis	fBodyAccStdZ	numeric	10296	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of frequency domain mea- surement of body linear acceleration jerk signals in X axis	fBodyAccJerkMeanX	numeric	10293	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

Label	Variable	Class	# unique	Missing	Description
Label	Variable	Class	values	Missing	Description
Mean of frequency domain mea- surement of body linear acceleration jerk signals in Y axis	fBodyAccJerkMean Y	numeric	10296	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of frequency domain mea- surement of body linear acceleration jerk signals in Z axis	fBodyAccJerkMeanZ	numeric	10294	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain mea- surement of body linear acceleration jerk signals in X axis	fBodyAccJerkStdX	numeric	10291	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain mea- surement of body linear acceleration jerk signals in Y axis	fBodyAccJerkStdY	numeric	10294	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain mea- surement of body linear acceleration jerk signals in Z axis	fBodyAccJerkStdZ	numeric	10290	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

			# unique		
Label	Variable	Class	values	Missing	Description
Mean of frequency domain mea- surement of body angular velocity in X axis	fBodyGyroMeanX	numeric	10297	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of frequency domain mea- surement of body angular velocity in Y axis	fBodyGyroMeanY	numeric	10296	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of frequency domain mea- surement of body angular velocity in Z axis	fBodyGyroMeanZ	numeric	10297	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain mea- surement of body angular velocity in X axis	fBodyGyroStdX	numeric	10297	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Standard deviation of frequency domain mea- surement of body angular velocity in Y axis	fBodyGyroStdY	numeric	10293	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.

		<u> </u>	# unique		
Label	Variable	Class	values	Missing	Description
Standard deviation of frequency domain mea- surement of body angular velocity in Z axis	fBodyGyroStdZ	numeric	10295	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. XYZ is used to denote 3-axial signals in the X, Y and Z directions.
Mean of magnitide of frequency domain mea- surement of body linear acceleration	fBodyAccMagMean	numeric	10296	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Standard deviation of magnitide of frequency domain mea- surement of body linear acceleration	fBodyAccMagStd	numeric	10298	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Mean of magnitide of frequency domain mea- surement of body linear acceleration jerk signals	fBodyBodyAccJerkMagMe	an numeric	10290	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Standard deviation of magnitide of frequency domain mea- surement of body linear acceleration jerk signals	fBodyBodyAccJerkMagStd	numeric	10296	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.

Label	Variable	Class	# unique values	Missing	Description
Mean of magnitide of frequency domain mea- surement of body angular velocity	fBodyBodyGyroMagMean	numeric	10297	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Standard deviation of magnitide of frequency domain mea- surement of body angular velocity	fBodyBodyGyroMagStd	numeric	10296	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Mean of magnitide of frequency domain mea- surement of body angular velocity jerk signals	fBodyBodyGyroJerkMagMo	e an umeric	10293	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.
Standard deviation of magnitide of frequency domain mea- surement of body angular velocity jerk signals	fBodyBodyGyroJerkMagSto	d numeric	10292	0.00 %	A Fast Fourier Transform (FFT) was applied to some of these signals to produce frequency domain signals. Another low pass Butterworth filter with a corner frequency of 0.3 Hz. is used to separate body signals from gravity. Magnitude of these three-dimensional signals were calculated using the Euclidean norm.

Variable list

SubjectID

Subject ID

Feature	Result
Variable type	factor
Number of missing obs.	0 (0 %)
Number of unique values	30
Mode	"25"
Reference category	1

• Observed factor levels: "1", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "4", "5", "6", "7", "8", "9".

ActivityLabel

Activity type

Feature	Result
Variable type	factor
Number of missing obs.	0 (0 %)
Number of unique values	6
Mode	"Laying"
Reference category	Laying

• Observed factor levels: "Laying", "Sitting", "Standing", "Walking", "WalkingDownstairs", "WalkingUpstairs".

tBodyAccMeanX

Mean of time domain measurement of body linear acceleration in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10292
Median	0.28
1st and 3rd quartiles	0.26; 0.29
Min. and max.	-1; 1

tBodyAccMeanY

Mean of time domain measurement of body linear acceleration in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10299
Median	-0.02
1st and 3rd quartiles	-0.02; -0.01
Min. and max.	-1; 1

tBodyAccMeanZ

Mean of time domain measurement of body linear acceleration in ${\it Z}$ axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10293
Median	-0.11
1st and 3rd quartiles	-0.12; -0.1
Min. and max.	-1; 1

tBodyAccStdX

Standard deviation of time domain measurement of body linear acceleration in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10295
Median	-0.94
1st and 3rd quartiles	-0.99; -0.25
Min. and max.	-1; 1

tBodyAccStdY

Standard deviation of time domain measurement of body linear acceleration in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.84
1st and 3rd quartiles	-0.98; -0.06
Min. and max.	-1; 1

tBodyAccStdZ

Standard deviation of time domain measurement of body linear acceleration in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.85
1st and 3rd quartiles	-0.98; -0.28
Min. and max.	-1; 1

tGravityAccMeanX

Mean of time domain measurement of gravity linear acceleration in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	0.92
1st and 3rd quartiles	0.81; 0.95
Min. and max.	-1; 1

t Gravity Acc Mean Y

Mean of time domain measurement of gravity linear acceleration in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10298
Median	-0.14
1st and 3rd quartiles	-0.24; 0.12
Min. and max.	-1; 1

t Gravity Acc Mean Z

Mean of time domain measurement of gravity linear acceleration in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10299
Median	0.04
1st and 3rd quartiles	-0.12; 0.22
Min. and max.	-1; 1

tGravityAccStdX

Standard deviation of time domain measurement of gravity linear acceleration in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10288
Median	-0.98
1st and 3rd quartiles	-0.99; -0.96
Min. and max.	-1; 1

tGravityAccStdY

Standard deviation of time domain measurement of gravity linear acceleration in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10293
Median	-0.98
1st and 3rd quartiles	-0.99; -0.95
Min. and max.	-1; 1

t Gravity Acc Std Z

Standard deviation of time domain measurement of gravity linear acceleration in Z axis

Result
numeric
0 (0 %)
10296
-0.97
-0.99; -0.93
-1; 1

t Body Acc Jerk Mean X

Mean of time domain measurement of body linear acceleration jerk signals in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10299
Median	0.08
1st and 3rd quartiles	0.06; 0.09
Min. and max.	-1; 1

t Body Acc Jerk Mean Y

Mean of time domain measurement of body linear acceleration jerk signals in Y axis

Result
numeric
0 (0 %)
10299
0.01
-0.02; 0.03
-1; 1

t Body Acc Jerk Mean Z

Mean of time domain measurement of body linear acceleration jerk signals in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10299
Median	0
1st and 3rd quartiles	-0.03; 0.02
Min. and max.	-1; 1

tBodyAccJerkStdX

Standard deviation of time domain measurement of body linear acceleration jerk signals in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10290
Median	-0.95
1st and 3rd quartiles	-0.99; -0.29
Min. and max.	-1; 1

tBodyAccJerkStdY

Standard deviation of time domain measurement of body linear acceleration jerk signals in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.93
1st and 3rd quartiles	-0.99; -0.22
Min. and max.	-1; 1

tBodyAccJerkStdZ

Standard deviation of time domain measurement of body linear acceleration jerk signals in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10293
Median	-0.95
1st and 3rd quartiles	-0.99; -0.55
Min. and max.	-1; 1

tBodyGyroMeanX

Mean of time domain measurement of body angular velocity in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10298
Median	-0.03
1st and 3rd quartiles	-0.05; -0.01
Min. and max.	-1; 1

tBody Gyro Mean Y

Mean of time domain measurement of body angular velocity in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10299
Median	-0.07
1st and 3rd quartiles	-0.1; -0.05
Min. and max.	-1; 1

t Body Gyro Mean Z

Mean of time domain measurement of body angular velocity in Z axis

tBodyGyroStdX

Standard deviation of time domain measurement of body angular velocity in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10292
Median	-0.9
1st and 3rd quartiles	-0.99; -0.48
Min. and max.	-1; 1

tBodyGyroStdY

Standard deviation of time domain measurement of body angular velocity in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.91
1st and 3rd quartiles	-0.98; -0.45
Min. and max.	-1; 1

tBodyGyroStdZ

Standard deviation of time domain measurement of body angular velocity in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.88
1st and 3rd quartiles	-0.99; -0.34
Min. and max.	-1; 1

tBody Gyro Jerk Mean X

Mean of time domain measurement of body angular velocity jerk signals in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10295
Median	-0.1
1st and 3rd quartiles	-0.12; -0.08
Min. and max.	-1; 1
Number of missing obs. Number of unique values Median 1st and 3rd quartiles	0 (0 %) 10295 -0.1 -0.12; -0.08

tBody Gyro Jerk Mean Y

Mean of time domain measurement of body angular velocity jerk signals in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10299
Median	-0.04
1st and 3rd quartiles	-0.06; -0.03
Min. and max.	-1; 1

tBody Gyro Jerk Mean Z

Mean of time domain measurement of body angular velocity jerk signals in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10298
Median	-0.05
1st and 3rd quartiles	-0.08; -0.03
Min. and max.	-1; 1

tBody Gyro Jerk Std X

Standard deviation of time domain measurement of body angular velocity jerk signals in X axis

Result
numeric
0 (0 %)
10292
-0.93
-0.99; -0.49
-1; 1

tBody Gyro Jerk Std Y

Standard deviation of time domain measurement of body angular velocity jerk signals in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10295
Median	-0.95
1st and 3rd quartiles	-0.99; -0.63
Min. and max.	-1; 1

tBody Gyro Jerk StdZ

Standard deviation of time domain measurement of body angular velocity jerk signals in Z axis

Result
numeric
0 (0 %)
10291
-0.95
-0.99; -0.51
-1; 1

tBodyAccMagMean

Mean of magnitide of time domain measurement of body linear acceleration

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.87
1st and 3rd quartiles	-0.98; -0.12
Min. and max.	-1; 1

tBodyAccMagStd

Standard deviation of magnitide of time domain measurement of body linear acceleration

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10294
Median	-0.84
1st and 3rd quartiles	-0.98; -0.24
Min. and max.	-1; 1

tGravityAccMagMean

Mean of magnitide of time domain measurement of gravity linear acceleration

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.87
1st and 3rd quartiles	-0.98; -0.12
Min. and max.	-1; 1

t Gravity Acc Mag Std

Standard deviation of magnitide of time domain measurement of gravity linear acceleration

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10294
Median	-0.84
1st and 3rd quartiles	-0.98; -0.24
Min. and max.	-1; 1

t Body Acc Jerk Mag Mean

Mean of magnitide of time domain measurement of body linear acceleration jerk signals

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10292
Median	-0.95
1st and 3rd quartiles	-0.99; -0.3
Min. and max.	-1; 1

t Body Acc Jerk Mag Std

Standard deviation of magnitide of time domain measurement of body linear acceleration jerk signals

Result
numeric
0 (0 %)
10294
-0.93
-0.99; -0.27
-1; 1

tBody Gyro Mag Mean

Mean of magnitide of time domain measurement of body angular velocity

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10298
Median	-0.82
1st and 3rd quartiles	-0.98; -0.25
Min. and max.	-1; 1

tBody Gyro Mag Std

Standard deviation of magnitide of time domain measurement of body angular velocity

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10298
Median	-0.83
1st and 3rd quartiles	-0.98; -0.39
Min. and max.	-1; 1

t Body Gyro Jerk Mag Mean

Mean of magnitide of time domain measurement of body angular velocity jerk signals

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10293
Median	-0.96
1st and 3rd quartiles	-0.99; -0.55
Min. and max.	-1; 1

tBody Gyro Jerk Mag Std

Standard deviation of magnitide of time domain measurement of body angular velocity jerk signals

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.94
1st and 3rd quartiles	-0.99; -0.61
Min. and max.	-1; 1

fBodyAccMeanX

Mean of frequency domain measurement of body linear acceleration in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10295
Median	-0.95
1st and 3rd quartiles	-0.99; -0.26
Min. and max.	-1; 1

fBodyAccMeanY

Mean of frequency domain measurement of body linear acceleration in Y axis

	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10292
Median	-0.86
1st and 3rd quartiles	-0.98; -0.1
Min. and max.	-1; 1

fBodyAccMeanZ

Mean of frequency domain measurement of body linear acceleration in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10295
Median	-0.9
1st and 3rd quartiles	-0.98; -0.37
Min. and max.	-1; 1

fBodyAccStdX

Standard deviation of frequency domain measurement of body linear acceleration in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10294
Median	-0.94
1st and 3rd quartiles	-0.99; -0.25
Min. and max.	-1; 1

fBodyAccStdY

Standard deviation of frequency domain measurement of body linear acceleration in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.83
1st and 3rd quartiles	-0.98; -0.09
Min. and max.	-1; 1

fBodyAccStdZ

Standard deviation of frequency domain measurement of body linear acceleration in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.84
1st and 3rd quartiles	-0.98; -0.3
Min. and max.	-1; 1

fBodyAccJerkMeanX

Mean of frequency domain measurement of body linear acceleration jerk signals in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10293
Median	-0.95
1st and 3rd quartiles	-0.99; -0.33
Min. and max.	-1; 1

fBodyAccJerkMeanY

Mean of frequency domain measurement of body linear acceleration jerk signals in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.93
1st and 3rd quartiles	-0.98; -0.26
Min. and max.	-1; 1

fBodyAccJerkMeanZ

Mean of frequency domain measurement of body linear acceleration jerk signals in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10294
Median	-0.95
1st and 3rd quartiles	-0.99; -0.51
Min. and max.	-1; 1

fBodyAccJerkStdX

Standard deviation of frequency domain measurement of body linear acceleration jerk signals in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10291
Median	-0.96
1st and 3rd quartiles	-0.99; -0.32
Min. and max.	-1; 1

fBodyAccJerkStdY

Standard deviation of frequency domain measurement of body linear acceleration jerk signals in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10294
Median	-0.93
1st and 3rd quartiles	-0.99; -0.24
Min. and max.	-1; 1

fBodyAccJerkStdZ

Standard deviation of frequency domain measurement of body linear acceleration jerk signals in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10290
Median	-0.96
1st and 3rd quartiles	-0.99; -0.59
Min. and max.	-1; 1

fBody Gyro Mean X

Mean of frequency domain measurement of body angular velocity in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.89
1st and 3rd quartiles	-0.99; -0.38
Min. and max.	-1; 1

fBodyGyroMeanY

Mean of frequency domain measurement of body angular velocity in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.92
1st and 3rd quartiles	-0.98; -0.47
Min. and max.	-1; 1

fBody Gyro Mean Z

Mean of frequency domain measurement of body angular velocity in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.89
1st and 3rd quartiles	-0.99; -0.32
Min. and max.	-1; 1

fBodyGyroStdX

Standard deviation of frequency domain measurement of body angular velocity in X axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.91
1st and 3rd quartiles	-0.99; -0.52
Min. and max.	-1; 1

fBodyGyroStdY

Standard deviation of frequency domain measurement of body angular velocity in Y axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10293
Median	-0.91
1st and 3rd quartiles	-0.98; -0.44
Min. and max.	-1; 1

fBody Gyro StdZ

Standard deviation of frequency domain measurement of body angular velocity in Z axis

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10295
Median	-0.89
1st and 3rd quartiles	-0.99; -0.42
Min. and max.	-1; 1

fBodyAccMagMean

Mean of magnitide of frequency domain measurement of body linear acceleration

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.88
1st and 3rd quartiles	-0.98; -0.22
Min. and max.	-1; 1

fBodyAccMagStd

Standard deviation of magnitide of frequency domain measurement of body linear acceleration

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10298
Median	-0.85
1st and 3rd quartiles	-0.98; -0.38
Min. and max.	-1; 1

fBodyBodyAccJerkMagMean

Mean of magnitide of frequency domain measurement of body linear acceleration jerk signals

fBodyBodyAccJerkMagStd

Standard deviation of magnitide of frequency domain measurement of body linear acceleration jerk signals

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.93
1st and 3rd quartiles	-0.99; -0.31
Min. and max.	-1; 1

fBodyBodyGyroMagMean

Mean of magnitide of frequency domain measurement of body angular velocity

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10297
Median	-0.88
1st and 3rd quartiles	-0.98; -0.45
Min. and max.	-1; 1

fBodyBodyGyroMagStd

Standard deviation of magnitide of frequency domain measurement of body angular velocity

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10296
Median	-0.83
1st and 3rd quartiles	-0.98; -0.47
Min. and max.	-1; 1

fBodyBodyGyroJerkMagMean

Mean of magnitide of frequency domain measurement of body angular velocity jerk signals

_	
Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10293
Median	-0.95
1st and 3rd quartiles	-0.99; -0.61
Min. and max.	-1; 1

fBodyBodyGyroJerkMagStd

Standard deviation of magnitide of frequency domain measurement of body angular velocity jerk signals

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	10292
Median	-0.94
1st and 3rd quartiles	-0.99; -0.64
Min. and max.	-1; 1

Codebook generation information:

- Created by: Krishnakanth Allika
- Report creation time: Wed Apr 29 2020 18:07:13
- dataMaid v1.4.0 [Pkg: 2019-12-10 from CRAN (R 3.6.3)]
- R version 3.6.1 (2019-07-05).
- Platform: x86_64-w64-mingw32/x64 (64-bit)(Windows 10 x64 (build 18363)).

License:

Use of this dataset in publications must be acknowledged by referencing the following publication [1]

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.

Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita. November 2012.