Cognome	
Nome	

Informatica teledidattica 2020/2021 Scritto di ALGEBRA del 12/02/2021

L'esame ha la durata di due ore. Rispondere negli spazi predisposti e giustificare le risposte in modo chiaro ed esauriente. Risposte non giustificate non saranno accreditate.

Esercizio 1.

(a) Siano a e b numeri interi. Determinare la classe di congruenza modulo 4 del numero a^2+b^2 sapendo che a^2+b^2 è un numero dispari.

(b) Risolvere se possibile il seguente sistema di congruenze lineari:

$$\begin{cases} (X+Y)^3 \equiv 2 \pmod{3} \\ X^3 \equiv 1 \pmod{3} \end{cases}.$$

(c) Calcolare la classe di congruenza modulo 5 del numero $13^{23^{21}}$.

Esercizio 2. Sia $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ la base standard di \mathbb{R}^3 , sia b un numero reale e sia f_b l'unico endomorfismo di \mathbb{R}^3 tale che $f_b(\mathbf{e}_1) = \mathbf{e}_2$, $f_b(\mathbf{e}_2) = \mathbf{e}_1 + b\mathbf{e}_3$ e $f_b(\mathbf{e}_3) = b\mathbf{e}_2$.

(a) Calcolare la dimensione dell'immagine di f_b al variare di b in \mathbb{R} .

(b) Stabilire se esiste $b \in \mathbb{R}$ in corrispondenza del quale f_b ammetta una base di autovettori rispetto a cui la matrice che rappresenta f_b sia:

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}$$

- (c) In corrispondenza di b=0 si ponga $f_0=f$ e si determini l'unico endomorfismo non nullo g di \mathbb{R}^3 tale che
 - (i) $\operatorname{Im} g \subseteq \ker f$;
 - (ii) $g(\mathbf{e}_1) = g(\mathbf{e}_2) = g(\mathbf{e}_3);$
- (iii) 1 è autovalore di g.

Esercizio 3.

(a) Elencare tutti i sottogruppi del gruppo \mathbb{Z}_{42} .

 (\mathbf{b}) Sia H un sottogruppo di un gruppo abeliano finito G. Si consideri l'insieme

$$\widetilde{H} = \{g \in G | g + g \in H\}$$

Si stabilisca se \widetilde{H} è un sottogruppo di G.

(c) Sia n un intero maggiore o uguale a 3. Quante sono le permutazioni di S_n che mandano 1 in 3?