Walmart Sales Analysis

A brief analysis of the Walmart sales using R

Customer ratings, revenue and profit analysis of Walmart for the last 10 years

Visualization

Milestone 1

Q

Data Upload

Milestone 2

Data Cleaning

Milestone 3

Data Analysis

Milestone 2

Data Presenting

I. Dependencies used in the project

 dplyr: This is used for data manipulation tasks such as grouping, summarizing, filtering, and arranging data.

```
    Functions used: filter(), group_by(), summarize(), arrange(), mutate(),
slice_head()
```

- tidyr: This is used to reshape data, such as pivoting the data from long to wide format with the spread() function.
 - Functions used: spread()
- 3. ggplot2: This is used for visualizing the data, such as creating bar charts and customizing plots.
 - Functions used: ggplot(), geom_bar(), geom_text(), theme(), labs()
- 4. readr: This is used to read CSV files or other data sources into R.
 - Functions used: read_csv()
- 5. lubridate: This is used for handling and manipulating date and time columns easily.
 - Functions used: ymd(), mdy(), month(), year(), day()

R Dependencies : Libraries & Packages

Following libraries and packages have been used:

dplyr

• tidyr

• readr

lubridate

Dataset: Wallmart Sales

You can see 10051 entries with 11 columns and data type of each columns

Observe the <u>unit price</u> column structure to understand the need of the cleaning

III. Data View

	(2

e= invoice_id =	∆ Branch =	∆ City =	△ category =	∆ unit_price =	# quantity =	△ date =	time =	△ payment =	# rating =
1	WALM003	San Antonio	Health and beauty	\$74.69	7	05/01/19	13:08:00	Ewallet	9.1
2	WALM048	Harlingen	Electronic accessories	\$15.28	5	08/03/19	10:29:00	Cash	9.6
3	WALM067	Haltom City	Home and lifestyle	\$46.33	7	03/03/19	13:23:00	Credit card	7.4
4	WALM064	Bedford	Health and beauty	\$58.22	8	27/81/19	20:33:00	Ewallet	8.4

IV. Cleaning & Data Preparation : missing values and duplicates

```
# Display all occurrences of duplicate rows (including first occurrence)
all_duplicates <- walmart_data1[duplicated(walmart_data1) | duplicated(walmart_data1, fromLast = TRUE), ]
# Display the result</pre>
```

A tibble: 102 x 11

				120		DEC 1733				
profit_margi	rating	payment_method	time	date	quantity	unit_price	category	City	Branch	invoice_id
≼dbl	∢dbl>	<chr></chr>	<time></time>	<date></date>	<dbl></dbl>	<chr></chr>	<chr></chr>	≼chr≽	<chr≽< th=""><th><dbl></dbl></th></chr≽<>	<dbl></dbl>
0.4	3	Cash	09:15:00	2027-11-23	1	\$17	Fashion accessories	Sugar Land	WALM038	9950
0.3	6	Cash	12:39:00	2008-07-20	2	\$58	Home and lifestyle	Weslaco	WALM082	9951
0.4	6	Cash	16:34:00	2002-10-21	3	\$76	Fashion accessories	San Angelo	WALM035	9952
0.3	5	Cash	10:52:00	2013-06-21	3	\$68	Home and lifestyle	Schertz	WALM084	9953
0.4	6	Cash	14:38:00	2022-08-20	31 8	\$40	Fashion accessories	Temple	WALM046	9954
0,2	3	Cash	07:46:00	2005-12-21	3	\$61	Home and lifestyle	Sherman	WALM054	9955
0.4	4	Cash	07:13:00	2029-10-20	3	\$17	Fashion accessories	San Antonio	WALM003	9956
0.4	4	Cash	13:41:00	2020-06-23	1	\$53	Home and lifestyle	Round Rock	WALM029	9957
0.3	7	Cash	14:58:00	2010-04-22	2	\$35	Fashion accessories	Schertz	WALM084	9958
0.3	4	Cash	10:26:00	2011-03-22	1	\$36	Home and lifestyle	Texas City	WALM065	9959

all_duplicates

```
# Count missing values in each column
missing_values <- colSums(is.na(walmart_data1_clean))

# Print the result
missing_values
```

invoice_id: 0 Branch: 0 City: 0 category: 0 unit_price: 31 quantity: 31 date: 0 time: 0 payment_method: 0 rating: 0 profit_margin: 0

```
# Load the dplyr package if not already loaded
# library(dplyr)

# Check the number of rows before removing rows with NA values
nrow(walmart_data1_clean)

# Remove rows with any NA values using drop_na
walmart_data_clean_no_na <- walmart_data1_clean %>% drop_na()

# Check the number of rows after removing rows with NA values
nrow(walmart_data_clean_no_na)
```

```
# Since the unit price has character data type, data conversion is needed
 # Remove the dollar sign and convert to numeric
 unitprice <- walmart_data_clean_no_na$unit_price <- as.numeric(gsub("[$,]", "", walmart_data_clean_no_na$unit_price))
 # Check the structure of the dataset again to ensure the change
 str(walmart_data_clean_no_na)
tibble [9,969 x 11] (S3: tbl_df/tbl/data.frame)
$ invoice_id : num [1:9969] 1 2 3 4 5 6 7 8 9 10 ...
              : chr [1:9969] "WALM003" "WALM048" "WALM067" "WALM064" ...
$ Branch
              : chr [1:9969] "San Antonio" "Harlingen" "Haltom City" "Bedford" ...
$ City
              : chr [1:9969] "Health and beauty" "Electronic accessories" "Home and lifestyle" "Health and beauty" ...
$ category
$ unit price : num [1:9969] 74.7 15.3 46.3 58.2 86.3 ...
$ quantity
              : num [1:9969] 7 5 7 8 7 7 6 10 2 3 ...
               : Date[1:9969], format: "2005-01-19" "2008-03-19" ...
$ date
$ time
                ; 'hms' num [1:9969] 13:08:00 10:29:00 13:23:00 20:33:00 ...
 ... attr(*, "units")= chr "secs"
$ payment_method: chr [1:9969] "Ewallet" "Cash" "Credit card" "Ewallet" ...
               : num [1:9969] 9.1 9.6 7.4 8.4 5.3 4.1 5.8 8 7.2 5.9 ...
$ rating
```

V. Cleaned Data Upload

\$ profit_margin : num [1:9969] 0.48 0.48 0.33 0.48 0.48 0.33 0.18 0.33 0.33 ...

```
# Define the path to the dataset
file_path <- "/kaggle/input/walmart1/Walmart.csv"
# Load the dataset
walmart_data1 <- read_csv(file_path)
head(walmart_data1,5) #Read the data
head(walmart_data1,5) #Read the data</pre>
```

Rows: 10051 Columns: 11

— Column specification

Delimiter: ","

chr (5): Branch, City, category, unit_price, payment_method

dbl (4): invoice_id, quantity, rating, profit_margin

date (1): date
time (1): time

Use 'spec()' to retrieve the full column specification for this data.

Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 5 x 11

invoice_id	Branch	City	category	unit_price	quantity	date	time	payment_method	rating	profit_margin
<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<date></date>	<time></time>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	WALM003	San Antonio	Health and beauty	\$74.69	7	2005-01-19	13:08:00	Ewallet	9.1	0.48
2	WALM048	Harlingen	Electronic accessories	\$15.28	5	2008-03-19	10:29:00	Cash	9.6	0.48
3	WALM067	Haltom City	Home and lifestyle	\$46.33	7	2003-03-19	13:23:00	Credit card	7.4	0.33
4	WALM064	Bedford	Health and beauty	\$58.22	8	2027-01-19	20:33:00	Ewallet	8.4	0,33
5	WALM013	Irving	Sports and travel	\$86.31	7	2008-02-19	10:37:00	Ewallet	5.3	0.48

A tibble: 5 x 11

invoice_id	Branch	City	category	unit_price	quantity	date	time	payment_method	rating	profit_margin
<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr>></chr>	<dbl></dbl>	<date></date>	<time></time>	<chr></chr>	<dbl></dbl>	<dbi></dbi>
1	WALM003	San Antonio	Health and beauty	\$74.69	7	2005-01-19	13:08:00	Ewallet	9.1	0.48
2	WALM048	Harlingen	Electronic accessories	\$15.28	5	2008-03-19	10:29:00	Cash	9.6	0,48
3	WALM067	Haltom City	Home and lifestyle	\$46.33	7	2003-03-19	13:23:00	Credit card	7.4	0.33
4	WALM064	Bedford	Health and beauty	\$58.22	8	2027-01-19	20:33:00	Ewallet	8.4	0.33
5	① WALM013	Irving	Sports and travel	\$86.31	7	2008-02-19	10:37:00	Ewallet	5.3	0.48

VI. Data Preparation for Time-bound Analysis

							A tibble: 6	× 17								
invoice_id	Branch	City	category	unit_price	quantity	date	time	payment_method	rating	profit_margin	revenue	profit	time_of_day	year	month	day
<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<date></date>	<period></period>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	WALM003	San Antonio	Health and beauty	74.69	7	2005-01-19	13H 8M 0S	Ewallet	9.1	0.48	522.83	250.9584	Afternoon	2005	1	19
2	WALM048	Harlingen	Electronic accessories	15.28	5	2008-03-19	10H 29M 0S	Cash	9.6	0.48	76.40	36.6720	Morning	2008	3	19
3	WALM067	Haltom City	Home and lifestyle	46.33	7	2003-03-19	13H 23M 0S	Credit card	7,4	0.33	324.31	107.0223	Afternoon	2003	3	19
4	WALM064	Bedford	Health and beauty	58.22	8	2027-01-19	20H 33M 0S	Ewallet	8.4	0.33	465.76	153.7008	Evening	2027	-1	19
:5	WALM013	Irving	Sports and travel	86.31	7	2008-02-19	10H 37M 0S	Ewallet	5.3	0.48	604.17	290.0016	Morning	2008	2	19
6	WALM026	Denton	Electronic accessories	85.39	7	2025-03-19	18H 30M 0S	Ewallet	4.1	0.48	597.73	286.9104	Evening	2025	3	19

Time (Year Month Day) Breakdown

```
# Convert 'time' column to POSIXct if it's not already in the right format (assuming 'time' is in hms)
walmart_data_clean_no_na$time <- hms(walmart_data_clean_no_na$time)</pre>
# Create a new column to categorize time into Morning, Afternoon, and Evening
walmart_data_with_period <- walmart_data_clean_no_na %>%
 mutate(
    time_of_day = case_when(
     hour(time) >= 6 & hour(time) < 12 ~ "Morning", # 6 AM to 12 PM
     hour(time) >= 12 & hour(time) < 18 ~ "Afternoon", # 12 PM to 6 PM
     hour(time) >= 18 & hour(time) < 24 ~ "Evening", # 6 PM to 12 AM
     TRUE ~ "Other" # This handles times that fall outside the expected range (e.g., if there's any data anomaly)
# Count the number of transactions for each branch in each time category
transaction_by_time <- walmart_data_with_period %>%
 group_by(Branch, time_of_day) %>%
 summarize(
   transaction_count = n(), # Count the number of transactions
   .groups = "drop"
 ) 8>8
 arrange(Branch, time_of_day) # Arrange by branch and time of day
# View the result
#print(transaction_by_time)
head(walmart_data_with_period) # View the time period col.
```

						A tibble:	6 × 14						
invoice_id	Branch	City	category	unit_price	quantity	date	time	payment_method	rating	profit_margin	revenue	profit	time_of_day
≼dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<date></date>	<period></period>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
31	WALM003	San Antonio	Health and beauty	74.69	7	2005-01-19	13H 8M 0S	Ewallet	9.1	0.48	522.83	250.9584	Afternoon
2	WALM048	Harlingen	Electronic accessories	15.28	5	2008-03-19	10H 29M 0S	Cash	9.6	0.48	76.40	36,6720	Morning
3	WALM067	Haltom City	Home and lifestyle	46.33	7	2003-03-19	13H 23M 0S	Credit card	7.4	0.33	324.31	107,0223	Afternoon
4	WALM064	Bedford	Health and beauty	58.22	8	2027-01-19	20H 33M 0S	Ewallet	8.4	0.33	465.76	153.7008	Evening
5	WALM013	Irving	Sports and travel	86.31	7	2008-02-19	10H 37M 0S	Ewallet	5.3	0.48	604.17	290,0016	Morning
6	WALM026	Denton	Electronic accessories	85.39	7	2025-03-19	18H 30M 0S	Ewallet	4.1	0.48	597.73	286,9104	Evening

Shift Breakdown:

Morning

Afternoon

Evening

```
Subsetting for last 10 years

4. Subset data for the years 2001-2014

almart_data_2001_2014 <- walmart_data_2001_2024 %>%

filter(year >= 2001 & year <= 2014)

5. Subset data for the years 2015-2024

almart_data_2015_2024 <- walmart_data_2001_2024 %>%

filter(year >= 2015 & year <= 2024)

ead(walmart_data_2001_2014)

ead(walmart_data_2001_2014)
```

							A tibble: 6	× 17								
oice_id	Branch	City	category	unit_price	quantity	date	time	payment_method	rating	profit_margin	revenue	profit	time_of_day	year	month	day
<dbl></dbl>	<chr></chr>	<chr>></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<date></date>	<period></period>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>
1:	WALM003	San Antonio	Health and beauty	74.69	7	2005-01-19	13H 8M 0S	Ewallet	9.1	0.48	522.83	250.9584	Afternoon	2005	31	19
2	WALM048	Harlingen	Electronic accessories	15.28	5	2008-03-19	10H 29M 05	Cash	9.6	0.48	76.40	36.6720	Morning	2008	3	19
3	WALM067	Haltom City	Home and lifestyle	46.33	7	2003-03-19	13H 23M 05	Credit card	7.4	0.33	324.31	107.0223	Afternoon	2003	3	19
5	WALM013	Irving	Sports and travel	86.31	7	2008-02-19	10H 37M 0S	Ewallet	5.3	0.48	604.17	290.0016	Morning	2008	2	19
9	WALM066	Grapevine	Health and beauty	36.26	2	2010-01-19	17H 15M 0S	Credit card	7.2	0.33	72.52	23.9316	Afternoon	2010	1	19
11	WALM013	Irving	Fashion accessories	14.48	4	2006-02-19	18H 7M 05	Ewallet	4.5	0.48	57.92	27.8016	Evening	2006	2	19

							A tibble: b	× 17								
oice_id	Branch	City	category	unit_price	quantity	date	time	payment_method	rating	profit_margin	revenue	profit	time_of_day	year	month	di
<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<date></date>	<period></period>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int< th=""></int<>
8	WALM100	Canyon	Home and lifestyle	73.56	10	2024-02-19	11H 38M 0S	Ewallet	8.0	0.18	735.60	132.4080	Morning	2024	2	
10	WALM065	Texas City	Food and beverages	54.84	3	2020-02-19	13H 27M 0S	Credit card	5.9	0.33	164.52	54,2916	Afternoon	2020	2	
16	WALM008	Corpus Christi	Sports and travel	93.72	6	2015-01-19	16H 19M 0S	Cash	4.5	0.48	562.32	269.9136	Afternoon	2015	1	
19	WALM053	Conroe	Food and beverages	54.67	3	2021-01-19	18H 0M 0S	Credit card	8.6	0.57	164.01	93.4857	Evening	2021	:1	
23	WALM083	Farmers Branch	Home and lifestyle	33.20	2	2015-03-19	12H 20M 0S	Credit card	4.4	0.33	66.40	21.9120	Afternoon	2015	3	
24	WALM067	Haltom City	Electronic accessories	34.56	5	2017-02-19	11H 15M 0S	Ewallet	9.9	0.33	172.80	57.0240	Morning	2017	2	-

VIII. Presentation

A. Branches General Scenario

```
Q
```

```
# Group by Branch and Payment Method, then count the occurrences
most_occuring_payment_method <- walmart_data_clean_no_na %>%
  group_by(Branch, payment_method) %>%
  summarize(
    payment_method_count = n(), # Count the occurrences of each payment method
     .groups = "drop"
  ) %>%
  group_by(Branch) %>%
  # Find the most occurring payment method in each branch
  summarize(
     most_occuring_payment_method = payment_method[which.max(payment_method_count)]
    count_of_occurrence = max(payment_method_count), # Number of occurrences
     .groups = "drop"
# View the result
print(most_occuring_payment_method)
# A tibble: 100 x 3
  Branch most occurring payment method count of occurrence
  (chr) (chr)
                                                   cint>
1 WALM001 Ewallet
                                                      45
2 WALM002 Ewallet
                                                      37
3 WALM003 Credit card
                                                     115
4 WALM004 Ewallet
                                                      44
5 WALM005 Ewallet
                                                      56
6 WALM006 Ewallet
                                                      50
7 WALM007 Ewallet
                                                      52
8 WALM008 Ewallet
                                                      39
9 WALM009 Credit card
                                                     139
LØ WALM010 Ewallet
                                                      47
```

Payment Method Per Branches

```
# Calculate average rating for each branch and category combination
top_10_branch_category_rating <- walmart_data_clean_no_na %>%
group_by(Branch, category) %>%
summarize(
    average_rating = mean(rating, na.rm = TRUE), # Calculate average rating
    .groups = "drop"
    ) %>%
    arrange(desc(average_rating)) %>% # Sort by average rating in descending or
    slice_head(n = 10) # Select the top 10 combinations

# View the result
print(top_10_branch_category_rating)
```

```
# A tibble: 10 x 3
  Branch category
                                average_rating
  kchr> kchr>
                                         <dbl>
 1 WALM034 Health and beauty
                                          10
2 WALM060 Health and beauty
                                          9.9
3 WALM086 Health and beauty
                                          9.9
4 WALM098 Health and beauty
                                          9.8
5 WALM027 Health and beauty
                                          9.7
6 WALM067 Sports and travel
                                          9.7
7 WALM068 Electronic accessories
                                         9.7
8 WALM009 Sports and travel
                                          9.6
9 WALM048 Electronic accessories
                                          9.6
10 WALM073 Food and beverages
                                           9.6
```

```
Q
```

```
# Sequencing branches by year's profit (Highest first)
 # Summing revenue, profit, and transaction count for each branch from 2015 to 2024
 branch_year_summary <- walmart_data_2015_2024 %>%
   group_by(Branch) %>%
   summarize(
     total_revenue = sum(revenue, na.rm = TRUE), # Total revenue for the years 2015-2024
     total_profit = sum(profit, na.rm = TRUE), # Total profit for the years 2015-2024
     total_transactions = n(),
                                                   # Total transactions for the years 2015-2024
     .groups = "drop"
   ) %>%
   arrange(desc(total_profit)) # Arrange by profit in descending order
 # View top 10 branches by profit
 top_10_branches_by_profit <- head(branch_year_summary, 10)
 print(top_10_branches_by_profit)
# A tibble: 10 x 4
  Branch total_revenue total_profit total_transactions
                  <dbl>
                              <dbl>
  <chr>>
                                                <int>
                 10122.
                              4858.
 1 WALM809
                                                   90
                  8139.
                              3907.
                                                   56
 2 WALM025
                11153.
                              3681.
                                                   84
 3 WALM074
                  7604.
4 WALM046
                              3650.
                                                   67
                  7597.
 5 WALM029
                              3646.
                                                   61
6 WALM030
                  7507.
                              3604.
                                                   71
                  8870.
7 WALM058
                              2927.
                                                   89
8 WALM038
                  5833.
                              2800.
                                                   54
                 5552.
                              2665.
9 WALM032
                                                   56
10 WALM003
                 5587.
                              2616.
                                                   50
```

Top 10 Earners in Last 10 Years

```
# Analyze revenue, profit, and transaction count by Branch and time_period
 store_time_period_analysis <- walmart_data_with_period %>%
   group_by(Branch, time_of_day) %>%
   summarize(
     total_revenue = sum(revenue, na.rm = TRUE), # Total revenue
     total_profit = sum(profit, na.rm = TRUE), # Total profit
    transaction_count = n(),
                                                 # Number of transactions
     .groups = "drop"
   1 858
   arrange(Branch, time_of_day) # Arrange by Branch and time period
 # View the result
 print(store_time_period_analysis)
# A tibble: 300 x 5
  Branch time of day total revenue total profit transaction count
                                        <dbl>
  <chr> <chr>
                            <dbl>
                                                         <int>
 1 WALM001 Afternoon
                            4807.
                                        1731.
                                                            36
 2 WALM001 Evening
                            4627.
                                        1666.
                                                           30
 3 WALM001 Morning
                            791
                                        285.
4 WALM002 Afternoon
                                       1438.
                                                           29
                            3995.
5 WALM002 Evening
                                      781.
                                                           21
                            2169.
6 WALM002 Morning
                           1570.
                                         565.
                                                           15
 7 WALM003 Afternoon
                           11700.
                                        5460.
                                                           95
8 WALM003 Evening
                                                           41
                            6026.
                                        2739.
```

Earning Per Shift

3258.

1729.

50

27

7164.

3603.

9 WALM003 Morning

10 WALM004 Afternoon

```
# Assuming walmart_data_with_year_month_day contains the 'year' and 'profit' columns
# Filter data for current year and last year
current_year <- max(walmart_data_2015_2024Syear) # Get the most recent year
last_year <- current_year - 1 # Calculate last year
# Summarize profit by Branch and Year
profit_comparison <- walmart_data_2015_2024 %>%
  filter(year %in% c(current_year, last_year)) %>% # Filter data for current and last year
 group_by(Branch, year) %>%
 summarize(total_profit = sum(profit, na.rm = TRUE), .groups = "drop") %>%
 spread(key = year, value = total_profit) %>% # Spread data into wide format (current year and last year)
 rename(
    last_year_profit = '2023', # Replace with actual last year's number
   current_year_profit = '2024' # Replace with actual current year's number
  1 808
 mutate(
   profit_difference = current_year_profit - last_year_profit, # Calculate the difference
    profit_percentage_change = (profit_difference / last_year_profit) * 100 # Percentage change in profit
  1 8>8
 arrange(desc(profit_difference)) %>% # Arrange branches by the profit difference (descending order)
 mutate(
    last_year_profit = round(last_year_profit, 2), # Round profit for last year to 2 decimal places
   current_year_profit = round(current_year_profit, 2), # Round profit for current year to 2 decimal places
    profit_difference = round(profit_difference, 2), # Round profit difference to 2 decimal places
   profit_percentage_change = round(profit_percentage_change, 2) # Round percentage change to 2 decimal places
# View the result
head(profit_comparison, 5)
```

A tibble: 5 × 5

Branch last_year_profit current_year_profit profit_difference profit_percentage_change

<chr></chr>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
WALM062		73.26	399.97	326.71	445.95
WALM029		247.20	553.92	306.72	124.08
WALM082		229.02	519.10	290.08	126,66
WALM079	i	40.92	265.22	224.30	548.15

i. Year Over Year:

Comparing **Profit** in relation to last year

```
# Same as above for top 10 branches
 # Assuming walmart_data_2015_2024 contains the 'year', 'month', 'revenue', and 'Branch' columns
 # Filter data for December 2024 and December 2023
 december_revenue_comparison_top_10 <- walmart_data_2015_2024 %>%
   filter(month == 12 & year %in% c(2024, 2023)) %>%
   group_by(Branch, year) %>%
   summarize(total_revenue = sum(revenue, na.rm = TRUE), .groups = "drop") %>%
   spread(key = year, value = total_revenue) %>%
   rename(
     revenue_2023 = '2023', # December 2023 revenue
     revenue_2024 = '2024' # December 2024 revenue
   1 8>8
   mutate(
     revenue_difference = revenue_2024 - revenue_2023, # Calculate the difference in revenue
     revenue_percentage_change = (revenue_difference / revenue_2023) * 100 # Percentage change
   1 858
   arrange(desc(revenue_difference)) %>% # Arrange branches by the revenue difference (descending order)
   slice_head(n = 10) %>% # Keep only the top 10 branches
   mutate(
     revenue_2023 = round(revenue_2023, 2), # Round 2023 revenue to 2 decimal places
     revenue_2024 = round(revenue_2024, 2), # Round 2024 revenue to 2 decimal places
     revenue_difference = round(revenue_difference, 2), # Round revenue difference to 2 decimal places
     revenue_percentage_change = round(revenue_percentage_change, 2) # Round percentage change to 2 decimal places
 # View the result
 print(december_revenue_comparison_top_10)
# A tibble: 10 × 5
   Branch revenue 2023 revenue 2024 revenue difference revenue percentage cha...1
                 <dbl>
                             <dbl>
                                               <dbl>
   <chr>>
                                                                       <dbl>
 1 WALM809
                  207
                               661
                                                 454
                                                                      219.
 2 WALM099
                  258
                               639
                                                 381
                                                                      148.
 3 WALM065
                  272
                               484
                                                 212
                                                                       77.9
                   75
 4 WALM014
                               237
                                                 162
                                                                      216
 5 WALM886
                  242
                               394
                                                 152
                                                                      62.8
 6 WALM855
                  112
                               226
                                                 114
                                                                      102.
7 WALM040
                   84
                               195
                                                 111
                                                                      132.
 8 WALM025
                               137
                                                 79
                                                                      136.
                   58
 9 WALM058
                   267
                               335
                                                  68
                                                                       25.5
10 WALM003
                  157
                               217
                                                  60
                                                                       38.2
# i abbrevi ad name: ¹revenue percentage change
```

X