ÖVEGES JÓZSEF Fizikaverseny

2023. március 13.

Megyei szakasz

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VII. osztály

Tudod-e?

Karikázd be a három válasz közül a helyes választ az alábbi kérdésekre!

Translate of a marchi variable robust a mery es variable all and on restaurance.			
a) Melyik nem skalármennyiség? (0,1p)	sűrűség	sebesség	időtartam
b) Melyik nem vektormennyiség? (0,1p)	erő	tömeg	hosszúság
c) Mi nem jellemzi a vektorokat? (0,1p)	számérték	irány	erősség
d) Minek a mértékegysége a kg/m ³ ? (0,1p)	térfogat	tömeg	sűrűség
e) Minek a mértékegysége a N/kg? (0,1p)	az erő	a sűrűség	gravitációs állandó
f) Melyik a sűrűség képlete? (0,1p)	$\rho = V/m$	$\rho = m/V$	$\rho = m \cdot V$
g) Melyik a sebesség képlete? (0,1p)	$v = d/\Delta t$	$v = \Delta t/d$	$v = d \cdot \Delta t$
h) Melyik a gyorsulás képlete? (0,1p)	$a = \Delta t / \Delta v$	$a = \Delta v \cdot \Delta t$	$a = \Delta v/\Delta t$

Összesen 0,8 pont

Kísérlet

Hogyan mérnéd meg egy táblatörlő szivacs sűrűségét a lehető legpontosabban? (0,5 pont)

Összesen 0,5 pont

1. Feladat

Az ábra öt különböző nagyságú vektort tartalmaz, amelyeknek közös a támadópontjuk.

- a) Mekkora nagysága van az öt vektor eredőjének? $R = F_1 + F_2 + F_3 + F_4 + F$ (0,6 pont)
- b) Rajzoljuk meg az öt vektor eredőjét a sokszög-módszer alapján történő összetevésével! (0,5 pont)
- c) Mekkora nagysága van a rajzon látható F ferde vektornak? (0,1 pont)
- d) Tekintsük a mellékelt ábrán látható, a koordináta tengelyek mentén, az óramutató járásának irányában növekvő sorrendben elhelyezkedő $F_1 = 1$ N, $F_2 = 2$ N, $F_3 = 3$ N és $F_4 = 4$ N nagyságú négy vektort.

Ezekhez rendre, az óramutató járásának irányában tovább adódnak növekvő sorrendben újabb vektorok, amelyek nagysága mindig 1-1 N-al tovább növekedik. Pl. $F_5 = 5$ N, $F_6 = 6 \text{ N}$ és így tovább ötven körig. Az ábra a második kör négy további vektorának az előző négyhez a hozzáadását mutatja. Mekkora lesz az erők eredője az 50-ik kör után? (0,5 pont)

2. Feladat

A h=60 cm magas és d=1 m hosszú lejtőn az m=2 kg tömegű üvegtégla a lejtővel párhuzamos, k=100 N/m állandójú,

*l*₀ = 40 cm kezdeti hosszúságú rugóra támaszkodik.

a) A téglát lassan ráengedjük a rugóra, amíg beáll az egyensúly. Mennyivel nyomná össze a tégla a rugót, ha a lejtő és a test között nem lenne súrlódás? Mennyi lenne a rugó *l* hossza ebben az egyensúlyi helyzetben?

 b) Mennyivel nyomná össze a rugót a tégla az előző esetnek megfelelően, ha a lejtő és a test között a súrlódási együttható μ = 0,05?
Mennyi lenne a rugó l₁ új hossza ebben az egyensúlyi helyzetben?

c) Mennyivel marad maximálisan összenyomva téglástól a rugó, amikor az összenyomás után óvatosan szabadon engedjük? Mennyi lenne a rugó l2 hossza ebben az egyensúlyi helyzetben?

Összesen 3 pont

3. Feladat

Az M = 10 kg tömegű test egy asztalon található, amelyhez egy nyújthatatlan, elhanyagolható tömegű zsineget erősítünk. A zsineget a vízszintes asztallap végén található ideális csigán vezetjük át, és a lelógó másik végét egy m = 1 kg tömegű vederhez kötjük. A test és az asztallap között súrlódási együttható $\mu = 0.2$. A vederbe egy vízcsapból percenként n = 120 perc⁻¹, egyenként $m_0 = 1$ g tömegű vízcsepp esik.

- b) Ábrázoljuk grafikusan a súrlódási erő nagyságát az idő függvényében a kezdőpillanattól számított t = 20 perc időtartamra! Hogyan néz ki a zsinegben fellépő T feszítőerő grafikus képe?
- c) Milyen mozgást végez a test? Változik-e a súrlódási erő nagysága a mozgás ideje alatt?
- d) Számítsuk ki a súrlódási erő függvénye alatti területet a grafikon alapján!

Összesen 3 pont

Hivatalból: (1p)

Munkaidő: 2 óra