CLIPPEDIMAGE= JP403222460A

PAT-NO: JP403222460A

DOCUMENT-IDENTIFIER: JP 03222460 A

TITLE: SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE

PUBN-DATE: October 1, 1991

INVENTOR-INFORMATION:

NAME

TONISHI, SHIGEJI

ASSIGNEE-INFORMATION:

NAME COUNTRY NEC CORP N/A

APPL-NO: JP02019775

APPL-DATE: January 29, 1990

INT-CL (IPC): H01L021/82

ABSTRACT:

PURPOSE: To facilitate the check of the propriety of trimming results by providing an alignment check patter for laser trimming, which has pads for continuity check at the tops of cross-shaped wiring whose material is the same as a fuse and line width is the same at most.

CONSTITUTION: A alignment check pattern for laser trimming is provided, which has pads 12a∼12d for continuity check at the tops of a cross-shaped wiring whose material is the same as a fuse and the line width is the same at most. The center of the cross of the cross-shaped wiring 11 becomes the target of alignment, and also it is used as a first fuse (the fuse to cut first). If the center of the cross is cut properly, four pads cease to conduct electricity to

03/12/2003, EAST Version: 1.03.0002

each other, so it can be checked after actual fuse cut. Hereby, the fuse cut check after alignment can be done together with accurate alignment.

COPYRIGHT: (C) 1991, JPO&Japio

⑲ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A) 平3-222460

Solnt. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)10月1日

H 01 L 21/82

8225-5F H 01 L 21/82

審査請求 未請求 請求項の数 1 (全3頁)

会発明の名称

半導体集積回路装置

願 平2-19775 20特

22出 願 平2(1990)1月29日

の出願 人 日本電気株式会社

東京都港区芝5丁目7番1号

74代 理 人 弁理士 内 原

発明の名称

半導体集積回路装置

特許請求の範囲

冗長回路用のヒューズを有する半導体集積回路 装置において、前記ヒューズと材質が同一で線幅 が高々同一の十字状配線の先端に導通チェック用 のパッドを有してなるレーザートリミング用アラ イメントチェックパターンを備えていることを特 微とする半導体集積回路装置。

発明の詳細な説明

〔産業上の利用分野〕

本発明は半導体集積回路装置に関し、特にレー ザートリミング用アライメントチェックパターン に関する。

〔従来の技術〕

従来の半導体集積回路装置において、レーザー

ビームで所定のヒューズを切断するレーザートリ ミング時のヒューズのアライメントチェックは、 通常実際のヒューズ方向に応じて一方向のみで行 われ、またレーザートリミング後もヒューズが適 切な状態で切断されているかどうかを検出する為 のチェックパターンは存在していなかった。通常 は切断すべきヒューズそのものを使用してアライ メントを行っていた。

(発明が解決しようとする課題)

上述した従来のアライメント方式では、実際の ヒューズが全て同一の方向である場合には、ほと んど問題とならないが、マスクレイアウト上の都 合などの為にヒューズの向きが、2方向混在した 場合は、ヒューズを切断する時の照準合わせが十 分に行なえないという欠点がある。また、ヒュー ズの切断は、照準以外にも、レーザーのビーム径 とパワーによっても左右されるが、従来は、トリ ミング後に実際にヒューズが切断されているかど うかをチェックする為のチェックパターンが存在 していなかった。従って従来の冗長回路を有する 半導体集積回路装置ではトリミング結果の適否の チェックが困難となるという欠点があり、ひいて は歩留りにも大きな影響を及ぼしていた。

〔課題を解決するための手段〕

本発明は、冗長回路用のヒューズを有する半導 体集積回路装置において、前記ヒューズと材質が・ 同一で線幅が高々同一の十字状配線の先端に導通 チェック用のパッドを有してなるレーザートリミ ング用アライメントチェックパターンを備えてい るというものである。

(実施例)

_____ 第 1 図は本発明の実施例1を示す平面図であ _____ 第 2 図は本発明の実施例2を示す平面図であ

11はヒューズと材質及び線幅が同一の十字状 配線で、一般にポリシリコンもしくはシリサイド によって構成される。12a~12dは十字状配 線の先端の導通チェック用のパッドで、Agもし くはAg系合金によって構成される。13a~ 13dは十字状配線11とパッド12a~12d をそれぞれ接続する為のコンタクトホールであ

ント後のヒューズカットチェックができるので、 冗長回路のトリミングが正確に行え、歩留向上に 寄与するという効果がある。

図面の簡単な説明

第1図及び第2図はそれぞれ本発明の実施例1 及び2を示す平面図である。

11,21…十字状配额、12a~12d, 22a~22d... Ny K, 13a~13d, 23 $a \sim 23 d = 3 + 3 + 3 + 4 = 3$ 24a~24d…カバーホール.

代理人 弁理士

る。14a~14dはパッド部及び十字状配線中 央部上のカバー絶縁膜の穴(カバーホール)を示 す。十字状配線11の十字の中心はアライメント 用の照準となるとともにファーストヒューズ(一 香最初に切断するヒューズ)として使用する。十 字の中心部が適切に切断されていれば、4つのパ ッドは互いに導通しなくなるので、それを実際の ヒューズカット後に確認することができる。

なお、十字状配線の線幅は、照準としての精度 を十分に確保するため高々冗長回路用のヒューズ の幅と同じにしておく。

この実施例では、十字状配線21の中央部をく びれさせてあるため、より中心に照準を合わせや すくなっているという利点がある。

〔発明の効果〕

以上説明したように本発明は、十字状のレーザ ーアライメント用チェックパターンを設けること により、正確なアライメントと同時に、アライメ

第 1 図

第2図