Supplement 3

Number of pain sites

Peter Kamerman

Last knitted: 10 May 2020

Contents

1	Imp	ort and	check d	ata															1
2	Data	a analys	is																4
	2.1 Process data													4					
											5								
				up															
				categorica															
			2.2.2.1	By sex															5
		•	2.2.2.1	By HAART															6
		-	2.2.2.3	-															
				By education															
		-	2.2.2.4	By employ															
	2.3			s															
				on of pain o															
			2.3.1.1	Overall cou	-	-													8
		:	2.3.1.2	Count by s	ex								 		 				10
		2	2.3.1.3	Count by H	AART								 		 				11
		;	2.3.1.4	Count educ	cation .								 		 				13
		:	2.3.1.5	Count by e	mploym	ent st	atus						 		 				15
	2.4			lysis															
		_		data															
				odel negativ															
				binomial re															
	2.5		-		-														
3	Ses	sion info	ormation	1															22

1 Import and check data

```
# Import
data <- read_rds('data-cleaned/data-pain-sites.rds')
demo <- read_rds('data-cleaned/data-demographics.rds')
# Check</pre>
```

```
## Pain sites
dim(data)
## [1] 596 21
names (data)
        [1] "ID"
                                                          "Head"
                                                                                                   "Throat"
##
       [4] "Shoulder"
                                                          "Arms"
                                                                                                  "Elbows"
       [7] "Wrists.Hands"
                                                          "Chest"
                                                                                                  "Upper_back"
## [10] "Lower_back"
                                                                                                   "Cervical_spine"
                                                          "Abdomen"
## [13] "Thoracic_spine"
                                                          "Lumbosacral_spine" "Groin"
## [16] "Hips"
                                                          "Legs"
                                                                                                   "Knees"
## [19] "Ankles.Feet"
                                                          "Buttocks"
                                                                                                   "Site"
glimpse(data)
## Rows: 596
## Columns: 21
## $ ID
                                               <chr> "RPB73", "RPB74", "RPB75", "RPB76", "RPB77", "RPB...
## $ Head
                                               <chr> "No", "No", "No", "Yes", "Yes", "No", "No", "No", ...
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Throat
## $ Shoulder
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Arms
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Elbows
## $ Wrists.Hands
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
                                               <chr> "No", "No", "No", "Yes", "No", "No", "No", "No", ...
## $ Chest
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Upper_back
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Lower_back
                                               <chr> "No", "No", "Yes", "Yes", "No", "No", "Yes", "No"...
## $ Abdomen
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Cervical_spine
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Thoracic_spine
## $ Lumbosacral_spine <chr> "No", "
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "No", "...
## $ Groin
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "Yes", ...
## $ Hips
                                               <chr> "No", "No", "No", "No", "Yes", "No", "Yes", ...
## $ Legs
                                               <chr> "No", "No", "No", "No", "No", "Yes", "No", "Yes",...
## $ Knees
                                               <chr> "No", "No", "No", "No", "Yes", "No", "Yes", ...
## $ Ankles.Feet
                                               <chr> "No", "No", "No", "No", "No", "No", "No", "Yes", ...
## $ Buttocks
## $ Site
                                               <chr> "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "...
data %>%
        select(-ID, -Site) %>%
       mutate_if(is.character, factor) %>%
       skim()
```

Table 1: Data summary

Name	Piped data
Number of rows	596
Number of columns	19
Column type frequency: factor	19
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	n_unique	top_counts
Head	0	1	2	No: 401, Yes: 195
Throat	0	1	2	No: 577, Yes: 19
Shoulder	0	1	2	No: 549, Yes: 47
Arms	0	1	2	No: 571, Yes: 25
Elbows	0	1	2	No: 574, Yes: 22
Wrists.Hands	0	1	2	No: 561, Yes: 35
Chest	0	1	2	No: 479, Yes: 117
Upper_back	0	1	1	No: 596
Lower_back	0	1	2	No: 554, Yes: 42
Abdomen	0	1	2	No: 437, Yes: 159
Cervical_spine	0	1	2	No: 566, Yes: 30
Thoracic_spine	0	1	2	No: 522, Yes: 74
Lumbosacral_spine	0	1	2	No: 504, Yes: 92
Groin	0	1	2	No: 542, Yes: 54
Hips	0	1	2	No: 556, Yes: 40
Legs	0	1	2	No: 497, Yes: 99
Knees	0	1	2	No: 512, Yes: 84
Ankles.Feet	0	1	2	No: 412, Yes: 184
Buttocks	0	1	2	No: 577, Yes: 19

```
## Demographics
dim(demo)
## [1] 596
             8
names (demo)
## [1] "ID"
                                                "Sex"
## [4] "Age"
                           "Employment_status" "CD4_recent"
## [7] "ART_currently"
                           "Education"
glimpse(demo)
## Rows: 596
## Columns: 8
## $ ID
                       <chr> "RPB73", "RPB74", "RPB75", "RPB76", "RPB77", "RPB...
## $ Site
                       <chr> "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "...
                       <chr> "Female", "Female", "Female", "Female", "Female", ...
## $ Sex
## $ Age
                       <dbl> 36, 27, 39, 36, 31, 32, 28, 37, 31, 25, 31, 24, 3...
## $ Employment_status <chr> "Other", "Unemployed", "Other", "Unemployed", "Un...
                       <dbl> 391, 571, 591, 207, 126, 225, 543, 410, 74, 212, ...
## $ CD4_recent
                       <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", ...
## $ ART_currently
## $ Education
                       <chr> "Tertiary", "Secondary", "Secondary", "Primary", ...
demo %>%
   select(-ID, -Site) %>%
   mutate_if(is.character, factor) %>%
   skim()
```

Table 3: Data summary

Name Piped data

Table 3: Data summary

Number of rows	596				
Number of columns	6				
Column type frequency:					
factor	4				
numeric	2				
	_				
Group variables	None				

Variable type: factor

skim_variable	n_missing	complete_rate	n_unique	top_counts
Sex	0	1.00	2	Fem: 481, Mal: 115
Employment_status	49	0.92	4	Une: 330, Ful: 131, Par: 52, Oth: 34
ART_currently	5	0.99	2	Yes: 460, No: 131
Education	37	0.94	3	Sec: 395, Pri: 99, Ter: 65

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Age	8	0.99	37.28	9.06	19	31	36	42	76
CD4_recent	99	0.83	320.71	238.92	1	155	261	432	1232

2 Data analysis

2.1 Process data

2.2 Summary statistics

2.2.1 Total group

```
analysis_set %>%
select(Count) %>%
skim()
```

Table 6: Data summary

Name Number of rows	Piped data 596
Number of columns	1
Column type frequency: numeric	1
Group variables	 None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Count	0	1	2.24	1.68	0	1	2	3	12

2.2.2 For each categorical variable

```
analysis_set %>%
  select(Count, Sex) %>%
  group_by(Sex) %>%
  skim()
```

2.2.2.1 By sex

Table 8: Data summary

Name Number of rows Number of columns	Piped data 596 2
Column type frequency:	. 1
Group variables	Sex

Variable type: numeric

skim_variable	Sex	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Count	Female	0	1	2.27	1.69	0	1	2	3	12

skim_variable	Sex	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Count	Male	0	1	2.13	1.63	0	1	2	3	9

```
analysis_set %>%
select(Count, ART_currently) %>%
filter(complete.cases(.)) %>%
group_by(ART_currently) %>%
skim()
```

2.2.2.2 By HAART

Table 10: Data summary

Name	Piped data
Number of rows	591
Number of columns	2
Column type frequency:	-
numeric	1
Group variables	 ART_currently

Variable type: numeric

skim_variable	ART_currently	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
Count	No	0	1	2.18	1.64	0	1	2	3	12
Count	Yes	0	1	2.27	1.70	0	1	2	3	9

```
analysis_set %>%
select(Count, Education) %>%
filter(complete.cases(.)) %>%
group_by(Education) %>%
skim()
```

2.2.2.3 By education

Table 12: Data summary

Name Number of rows Number of columns	Piped data 559 2
Column type frequency: numeric	1
Group variables	 Education

Variable type: numeric

skim_variable	Education	n_missing	sing complete_rate		sd	р0	p25	p50	p75	p100
Count	Primary	0	1	2.38	1.64	0	1	2	3	8
Count	Secondary	0	1	2.24	1.73	0	1	2	3	12
Count	Tertiary	0	1	2.06	1.52	0	1	2	3	6

```
analysis_set %>%
select(Count, Employment_status) %>%
filter(complete.cases(.)) %>%
group_by(Employment_status) %>%
skim()
```

2.2.2.4 By employment status

Table 14: Data summary

Name	Piped data
Number of rows	547
Number of columns	2
Column type frequency: numeric	1
Group variables	Employment_status

Variable type: numeric

skim_variable	Employment_status	n_missing	complete_rate	mean	sd	р0	p25	p50	p75	p100
Count	Full-time work	0	1	2.21	1.46	0	1	2	3	6
Count	Other	0	1	2.18	1.64	0	1	2	4	5
Count	Part-time work	0	1	2.50	1.89	0	1	2	3	9
Count	Unemployed	0	1	2.21	1.75	0	1	2	3	12

2.3 Exploratory plots

2.3.1 Distribution of pain counts

2.3.1.1 Overall count frequency

All participants

(Complete cases = 596)


```
position = position_jitter(height = 0.2, width = 0.2),
           fill = '#000000',
           colour = '#000000',
           alpha = 0.5) +
labs(title = 'All participants',
     subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                         analysis_set$Count), ])})'),
     y = 'Number of body sites with pain') +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
      plot.subtitle = element_text(size = 12),
     plot.caption = element_text(size = 12),
      panel.grid = element_blank(),
      axis.title.x = element_blank(),
      axis.text = element_text(colour = '#000000'),
      axis.line = element_line(size = 0.5),
      axis.ticks = element_line(size = 0.5)); all
```

All participants

(Complete cases = 596)


```
analysis_set %>%
  select(Count, Sex) %>%
  filter(complete.cases(.)) %>%
  ggplot(data = .) +
```

```
aes(Count) +
geom_histogram(binwidth = 1,
               colour = '#FFFFFF') +
labs(title = 'Sex',
     subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                         analysis_set$Sex), ])})'),
     x = 'Number of body sites with pain',
     y = 'Count') +
facet_wrap(~Sex) +
coord_flip() +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
      plot.subtitle = element_text(size = 12),
      panel.grid = element_blank(),
      axis.text = element_text(colour = '#000000'),
      axis.line = element_line(size = 0.5),
      axis.ticks = element_line(size = 0.5))
```

2.3.1.2 Count by sex

Sex

(Complete cases = 596)


```
sex <- analysis_set %%
   select(Count, Sex) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(y = Count,
```

```
x = Sex) +
geom_boxplot(outlier.colour = '#FFFFFF',
             outlier.size = 0) +
geom_point(size = 2,
           shape = 21,
           position = position_jitter(height = 0.2, width = 0.2),
           fill = '#000000',
           colour = '#000000',
           alpha = 0.5) +
scale_x_discrete(labels = c('Female', 'Male')) +
labs(title = 'Sex',
     subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                         analysis_set$Sex), ])})'),
     y = 'Number of body sites with pain') +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
      plot.subtitle = element_text(size = 12),
      plot.caption = element_text(size = 12),
      panel.grid = element_blank(),
      axis.title.x = element_blank(),
      axis.text = element_text(colour = '#000000'),
      axis.line = element_line(size = 0.5),
      axis.ticks = element_line(size = 0.5))
```

```
analysis_set %>%
    select(Count, ART_currently) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(Count) +
    geom_histogram(binwidth = 1,
                   colour = '#FFFFFF') +
    scale_y_continuous(limits = c(0, 150),
                       breaks = c(0, 50, 100, 150)) +
   labs(title = 'Currently on HAART',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$ART_currently), ])})'),
         x = 'Number of body sites with pain',
         y = 'Count') +
   facet_wrap(~ART_currently) +
   coord flip() +
    theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          panel.grid = element_blank(),
          axis.text = element_text(colour = '#000000'),
          axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
```

2.3.1.3 Count by HAART

Currently on HAART

(Complete cases = 591)


```
haart <- analysis_set %>%
    select(Count, ART_currently) %>%
   filter(complete.cases(.)) %>%
    ggplot(data = .) +
    aes(y = Count,
        x = ART_currently) +
    geom boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0) +
    geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
    scale_x_discrete(labels = c('No', 'Yes')) +
   labs(title = 'Currently on HAART',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$ART_currently), ])})'),
         y = 'Number of body sites with pain') +
    theme_minimal(base_size = 18) +
    theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          plot.caption = element_text(size = 12),
          panel.grid = element blank(),
          axis.title.x = element_blank(),
```

```
axis.text = element_text(colour = '#000000'),
axis.line = element_line(size = 0.5),
axis.ticks = element_line(size = 0.5))
```

```
analysis set %>%
   select(Count, Education) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(Count) +
   geom_histogram(binwidth = 1,
                   colour = '#FFFFFF') +
   scale_y_continuous(limits = c(0, 150),
                      breaks = c(0, 50, 100, 150)) +
   labs(title = 'Level of education',
        subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                            analysis_set$Education), ])})'),
        x = 'Number of body sites with pain',
        y = 'Count') +
   facet_wrap(~Education, ncol = 2) +
   coord_flip() +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
         plot.subtitle = element_text(size = 12),
         panel.grid = element_blank(),
         axis.text = element_text(colour = '#000000'),
         axis.line = element_line(size = 0.5),
         axis.ticks = element_line(size = 0.5))
```

2.3.1.4 Count education

Level of education

(Complete cases = 559)


```
edu <- analysis_set %>%
    select(Count, Education) %>%
   filter(complete.cases(.)) %>%
    ggplot(data = .) +
    aes(y = Count,
        x = Education) +
    geom boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0) +
   geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
    scale_x_discrete(labels = c('Primary', 'Secondary',
                                'Tertiary')) +
   labs(title = 'Level of Education',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Education), ])})'),
         y = 'Number of body sites with pain') +
   theme_minimal(base_size = 18) +
    theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          plot.caption = element text(size = 12),
          panel.grid = element_blank(),
```

```
axis.title.x = element_blank(),
axis.text = element_text(colour = '#000000'),
axis.line = element_line(size = 0.5),
axis.ticks = element_line(size = 0.5))
```

```
analysis_set %>%
   select(Count, Employment_status) %>%
   filter(complete.cases(.)) %>%
   mutate(Employment_status = factor(Employment_status,
                                      levels = c('Full-time work',
                                                 'Part-time work',
                                                 'Other',
                                                 'Unemployed'),
                                      ordered = TRUE)) %>%
   ggplot(data = .) +
   aes(Count) +
   geom histogram(binwidth = 1,
                   colour = '#FFFFFF') +
   scale_y_continuous(limits = c(0, 150),
                      breaks = c(0, 50, 100, 150)) +
   labs(title = 'Employment status',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Employment_status), ])})'),
         x = 'Number of body sites with pain',
         v = 'Count') +
   facet_wrap(~Employment_status, ncol = 2) +
    coord_flip() +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          panel.grid = element_blank(),
          axis.text = element_text(colour = '#000000'),
          axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
```

2.3.1.5 Count by employment status

Employment status

(Complete cases = 547)


```
employment <- analysis_set %>%
    select(Count, Employment_status) %>%
   filter(complete.cases(.)) %>%
   mutate(Employment_status = factor(Employment_status,
                                      levels = c('Full-time work',
                                                  'Part-time work',
                                                  'Other',
                                                  'Unemployed'),
                                      ordered = TRUE)) %>%
    ggplot(data = .) +
    aes(y = Count,
        x = Employment_status) +
   geom_boxplot(outlier.colour = '#FFFFFF',
                 outlier.size = 0) +
   geom_point(size = 2,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
    scale_x_discrete(labels = c('Full-time\nwork', 'Part-time\nwork',
                                 'Other', 'Unemployed')) +
   labs(title = 'Employment status',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Employment_status), ])})'),
```

```
caption = 'Other: receiving social grants or were students',
    y = 'Number of body sites with pain') +
theme_minimal(base_size = 18) +
theme(plot.title = element_text(size = 18),
    plot.subtitle = element_text(size = 12),
    plot.caption = element_text(size = 12),
    panel.grid = element_blank(),
    axis.title.x = element_blank(),
    axis.text = element_text(colour = '#000000'),
    axis.ticks = element_line(size = 0.5),
    axis.ticks = element_line(size = 0.5))
```

2.4 Regression analysis

2.4.1 Process data

```
analysis_set <- analysis_set %>%
    # Re-factor Employment_status
mutate(Employment_status = case_when(
    Employment_status == 'Unemployed' ~ ' 1_unemployed',
    Employment_status == 'Part-time work' ~ ' 3_employed PT',
    Employment_status == 'Full-time work' ~ ' 2_employed FT',
    Employment_status == 'Other' ~ ' 4_other'
)) %>%
filter(complete.cases(.))
```

2.4.2 Mixed model negative binomial regression for count data

```
# Null model
null <- glmer.nb(Count ~ 1 +</pre>
                       (1|Site),
                    data = analysis_set)
# Full model
mod.mmnb <- glmer.nb(Count ~ Sex +</pre>
                        # Center and scale age
                        scale(Age) +
                        # Center and scale CD4
                        scale(CD4_recent) +
                        Employment_status +
                        Education +
                        ART_currently +
                        (1|Site),
                    data = analysis_set)
## Fit is singular, print model to check SD of random effect
mod.mmnb
```

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

```
## Family: Negative Binomial(9.4138) ( log )
## Formula: Count ~ Sex + scale(Age) + scale(CD4_recent) + Employment_status +
       Education + ART_currently + (1 | Site)
##
      Data: analysis_set
##
##
         AIC
                   BIC
                          logLik deviance df.resid
## 1607.0596 1655.8251 -791.5298 1583.0596
## Random effects:
## Groups Name
                       Std.Dev.
           (Intercept) 4.934e-06
## Site
## Number of obs: 430, groups: Site, 5
## Fixed Effects:
##
                        (Intercept)
                                                             SexMale
                          0.863760
                                                           -0.104051
##
##
                                                   scale(CD4_recent)
                        scale(Age)
##
                          0.082128
                                                            0.026444
  Employment_status 2_employed FT
                                    Employment_status 3_employed PT
##
                         -0.004002
                                                            0.195143
##
         Employment_status 4_other
                                                  EducationSecondary
##
                          0.012448
                                                           -0.054655
##
                 EducationTertiary
                                                    ART currentlyYes
##
                         -0.182910
                                                            0.040985
## convergence code 0; 1 optimizer warnings; 0 lme4 warnings
```

2.4.3 Negative binomial regression for count data

theta Resid. df

1 8.192033 ## 2 9.413800 429

420

```
# Null model
null <- glm.nb(Count ~ 1,</pre>
               data = analysis_set)
# Full model
mod.nb <- glm.nb(Count ~ Sex +
                      # Center and scale age
                      scale(Age) +
                      # Center and scale CD4
                      scale(CD4_recent) +
                      Employment_status +
                      Education +
                      ART_currently,
                 data = analysis_set)
# Compare models
anova(null, mod.nb)
## Likelihood ratio tests of Negative Binomial Models
##
## Response: Count
##
                                                                                        Model
```

2 Sex + scale(Age) + scale(CD4_recent) + Employment_status + Education + ART_currently

Test

df LR stat.

9 13.12491 0.1570351

Pr(Chi)

2 x log-lik.

-1596.185

-1583.060 1 vs 2

Table 16: Coefficients and 95% CI

	Estimate	Lower 95%CI	Upper 95%CI	z-value	P-value
SexMale	-0.104	-0.302	0.089	-1.046	0.296
scale(Age)	0.082	0.007	0.156	2.159	0.031
scale(CD4_recent)	0.026	-0.045	0.097	0.733	0.463
Employment_status 2_employed FT	-0.004	-0.182	0.172	-0.044	0.965
Employment_status 3_employed PT	0.195	-0.043	0.427	1.627	0.104
Employment_status 4_other	0.012	-0.270	0.284	0.088	0.930
EducationSecondary	-0.055	-0.245	0.139	-0.558	0.577
EducationTertiary	-0.183	-0.460	0.091	-1.302	0.193
ART_currentlyYes	0.041	-0.142	0.228	0.435	0.663

2.5 Publication plot

```
# Generate plots for age and CD4
## Count by age
age <- analysis_set %>%
   select(Count, Age) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(y = Count,
       x = Age) +
   geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
   labs(title = 'Age',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$Age), ])})'),
         x = 'Age (years)',
         y = 'Number of body sites with pain') +
    scale_x_continuous(limits = c(18, 80),
                       breaks = seq(20, 80, by = 20)) +
   theme_minimal(base_size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          plot.caption = element_text(size = 12),
         panel.grid = element blank(),
          axis.text = element_text(colour = '#000000'),
```

```
axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
## Count by CD4 T-cell count
cd4 <- analysis_set %>%
    select(Count, CD4_recent) %>%
   filter(complete.cases(.)) %>%
   ggplot(data = .) +
   aes(y = Count,
        x = CD4_recent) +
    geom_point(size = 2,
               shape = 21,
               position = position_jitter(height = 0.2, width = 0.2),
               fill = '#000000',
               colour = '#000000',
               alpha = 0.5) +
   labs(title = 'Recent CD4 T-cell count',
         subtitle = str_glue('(Complete cases = {nrow(analysis_set[!is.na(
                             analysis_set$CD4_recent), ])})'),
         x = expression('CD4 T-cell count (cells.mm'^-3*')'),
         y = 'Number of body sites with pain') +
    scale_x_continuous(limits = c(0, 1400),
                       breaks = seq(0, 1400, by = 400)) +
    scale_y_continuous(breaks = seq(0, 12, 4)) +
   theme minimal(base size = 18) +
   theme(plot.title = element_text(size = 18),
          plot.subtitle = element_text(size = 12),
          plot.caption = element_text(size = 12),
          panel.grid = element_blank(),
          axis.text = element_text(colour = '#000000'),
          axis.line = element_line(size = 0.5),
          axis.ticks = element_line(size = 0.5))
# Fix figures for patchwork plot
sex2 <- sex +
  theme(axis.title.y = element_blank())
haart2 <- haart +
 theme(axis.title.y = element_blank())
employment2 <- employment +</pre>
 theme(axis.title.y = element_blank())
edu2 <- edu
age2 <- age +
  theme(axis.title.y = element_blank())
cd42 <- cd4 +
  theme(axis.title.y = element_blank())
pubs <- sex2 + haart2 + edu2 + employment2 + age2 + cd42 +</pre>
 plot_layout(ncol = 2)
```


Figure 1: Number of pain sites by predictor variable

3 Session information

sessionInfo()

```
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.4
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                               datasets methods
                                                                   base
## other attached packages:
                                                                 forcats_0.5.0
## [1] patchwork_1.0.0
                           knitr_1.28
                                              skimr_2.1
## [5] stringr_1.4.0
                           dplyr_0.8.5
                                              purrr_0.3.3
                                                                 readr 1.3.1
                                              ggplot2_3.3.0.9000 tidyverse_1.3.0
## [9] tidyr 1.0.2
                           tibble_3.0.0
## [13] MASS_7.3-51.5
                           lme4_1.1-21
                                              Matrix_1.2-18
##
## loaded via a namespace (and not attached):
## [1] Rcpp 1.0.4
                         lubridate 1.7.4 lattice 0.20-38 utf8 1.1.4
## [5] assertthat 0.2.1 digest 0.6.25
                                          R6 2.4.1
                                                           cellranger 1.1.0
## [9] repr_1.1.0
                         backports_1.1.5 reprex_0.3.0
                                                           evaluate_0.14
## [13] highr 0.8
                         httr 1.4.1
                                          pillar 1.4.3
                                                           rlang 0.4.5
## [17] readxl_1.3.1
                         minqa_1.2.4
                                          rstudioapi_0.11 nloptr_1.2.2.1
## [21] rmarkdown_2.1
                         labeling_0.3
                                          splines_3.6.3
                                                           munsell_0.5.0
## [25] broom_0.5.5
                         compiler_3.6.3
                                          modelr_0.1.6
                                                           xfun_0.12
## [29] pkgconfig_2.0.3
                         base64enc_0.1-3
                                          htmltools_0.4.0
                                                           tidyselect_1.0.0
## [33] fansi_0.4.1
                         crayon_1.3.4
                                          dbplyr_1.4.2
                                                           withr_2.1.2
## [37] grid_3.6.3
                         nlme_3.1-145
                                          jsonlite_1.6.1
                                                           gtable_0.3.0
## [41] lifecycle_0.2.0
                         DBI_1.1.0
                                          magrittr_1.5
                                                           scales_1.1.0
## [45] cli_2.0.2
                         stringi_1.4.6
                                          farver_2.0.3
                                                           fs_1.3.1
## [49] xml2 1.3.0
                         ellipsis_0.3.0
                                          generics_0.0.2
                                                           vctrs_0.2.4
## [53] boot 1.3-24
                         tools 3.6.3
                                                           hms 0.5.3
                                          glue 1.3.2
## [57] yaml_2.2.1
                                                           haven_2.2.0
                         colorspace_1.4-1 rvest_0.3.5
```