Exercice 1 (Dilworth's theorem):

Recall Dilworth's theorem: Let k be the maximal cardinality of an antichain in E. Then E is a disjoint union of k chains (a set of comparable elements).

1. Let \mathcal{I} be a family of $N \in \mathbb{N}$ closed intervals in \mathbb{R} . Let m and n be two natural numbers such that N-1=nm. Show that there are either m+1 disjoint intervals in \mathcal{I} or there are n+1 intervals with a non empty intersection.

Exercice 2 (Théorème de Cantor-Bernstein) :

Let A and B two sets and $f:A\to B$ and $g:B\to A$ two injective functions. Let $H:\mathcal{P}(A)\to\mathcal{P}(A)$ the map:

$$X \mapsto A \setminus g[B \setminus f[X]]$$

- 1. Using the Knaster-Tarski theorem, show that H has a fixed point
- 2. Deduce that A and B are equipotent.

Exercise 3:

Show that any function from \mathbb{R} to \mathbb{R} , is Scott continuous iff it is left continuous and monotonically increasing.

1 Mid-term 2019

Exercise 4:

For all $n, k \in \mathbb{N}$ such that $k \leq n$, we denote by $\binom{n}{k}$ the number of subsets of [n] with cardinality k. By using the following formula

$$(k+1)\binom{n+1}{k+1} = (n+1)\binom{n}{k}$$

for al $n, k \in \mathbb{N}$ such that $k \leq n$, show that

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for all $n, k \in \mathbb{N}$ such that $k \leq n$.

Exercise 5:

A finite complete ternary tree is a finite tree such that any node has either zero or three children. More formally, a ternary tree is composed either of only a leaf, denoted [], or of a root having three children T_1, T_2, T_3 , which is denoted by $[T_1, T_2, T_3]$. A childless node is a leaf, the others are internal nodes.

- 1. Conjecture a formula linking the number of leaves $\ell(T)$ and the number of internal nodes i(T) in a finite ternary tree T.
- 2. Define recursively (on the structure of the tree) the functions ℓ and i.
- 3. Prove the formula conjectured previously by structural induction.

Exercise 6:

Let $D \subseteq \mathbb{Z}$. A function $f: D \to \mathbb{Z}$ is convex (or concave) if for every $x, y, z \in D$ such that x < y < z, we have $\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y}$ (resp. $\frac{f(y) - f(x)}{y - x} \ge \frac{f(z) - f(y)}{z - y}$). A function $f: D \to \mathbb{Z}$ is affine if it is convex and concave.

1.

- 1. What is the cardinality of the set of affine functions from \mathbb{Z} to \mathbb{Z} , countable or uncountable?
- 2. Are the following two assertions equivalent? (If not, does one imply the other?)
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$ is convex.
 - (b) For all $n \in \mathbb{Z}$ we have $f(n+1) f(n) \le f(n+2) f(n+1)$.
- 3. What is the cardinality of the set of convex functions from \mathbb{Z} to \mathbb{Z} , countable or uncountable?
- 4. Let $f: \mathbb{Z} \to \mathbb{Z}$. Show that there exists an infinite subset $D \subseteq \mathbb{Z}$ such that $f|_D: D \to \mathbb{Z}$ (i.e. $f|_D(n) := f(n)$ for all $n \in D$) has the following two properties:
 - $f|_D$ is increasing or decreasing, and
 - $f|_D$ is convex or concave.

Exercise 7:

Let (E, \leq) be a partially ordered set. Let \mathcal{C} be the set of well-founded chains of (E, \leq) . We define a binary relation R on \mathcal{C} as follows: for all $C_1, C_2 \in \mathcal{C}$ we put $C_1 R C_2$ if $C_1 \subseteq C_2$ and for all $x \in C_1$ and $y \in C_2 \setminus C_1$ we have $x \leq y$.

- (a) Which type of relation is R?
- (b) Show that all the chains $\{C_i\}_{i\in I}$ in (\mathcal{C},R) have a least upper bound in (\mathcal{C},R) .
- (c) Deduce that there is a chain of (E, \leq) which is a maximal element of (C, R).
- 2. Let (E, \leq) a lattice for which any well-founded chain has an upper bound.
 - (a) Show that (E, \leq) has a least element \perp .
 - (b) Let A be a subset of E. Let B be the set of all elements smaller that all elements in A. Show that if B has a maximum element b, then b is the greatest element of B.
 - (c) Show that B has a maximal element b. (you may use question 7.1.c)
 - (d) Show that (E, \leq) is a complete lattice.