

Yuji Roh¹, Kangwook Lee², Steven E. Whang¹, and Changho Suh¹

¹KAIST, ²University of Wisconsin-Madison

ICLR 2021

slides based on 'J. Lee, Y. Roh, H. Song, and S. E. Whang, Machine Learning Robustness, Fairness, and their Convergence (Tutorial), ACM SIGKDD 2021'

Deep Learning (DL)

- DL is widely used to glean knowledge from massive amounts of data
- Applications: natural language understanding, healthcare, self driving cars, ...

<Google Translate>

<Diabetic Retinopathy>

<Self-driving car>

<AlphaStar>

Source: Google

Game Changer 1: Big Data

1 ZB = 1,000,000,000,000 GB ≈ 1 Great Wall of China

Game Changer 2: Fast Computation

Tensor Processing Unit (TPU) 4.0

Source:Joel Garcia Jr

Source: Wikipedia

Source: The Verge

Fairness

- Along with the proliferation of Al applications, there has been a growing concern on gender, race, and other types of bias in these systems
 - Example: Severe bias against African Americans in COMPAS to score criminal defendants for recidivism risk

Source: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Bias and Fairness

Fairness Criteria [Barocas et al., FairMLBook19]

Most fairness measures fall into the following three criteria

 \sim Independence: $\hat{Y} ot Z$ Demographic parity [Feldman et al., KDD15]

 \supset Separation: $\hat{Y} ot Z | Y$ Equalized odds [Hardt et al., NeurlPS16]

 $Sufficiency: Yot Z|\hat{Y}$ Predictive parity [Chouldechova, BigData17]

 \hat{Y} Model prediction Y True label Z Sensitive attribute

Demographic Parity

[Feldman et al., KDD15]

- Sensitive groups have same positive prediction rates
- Applications: predicting crime, hiring, and giving loans

Equalized Odds

[Hardt et al., NeurIPS16]

- Sensitive groups have same positive prediction rates when label = 0 or 1
- Intuitively, distinguishes "qualified" from "unqualified" people

Predictive Parity [Chouldechova, BigData17]

- Sensitive groups have same positive label rates when prediction = 0 or 1
- Intuitively, the model's precision rates are similar for sensitive groups

Unfairness Mitigation

[Bellamy et al., CoRR18]

- Addressing data bias can be categorized into pre-/in-/post-processing
- Depends on whether bias is mitigated before/during/after model training

Pre-processing: Preparing Unbiased Data

- Approach: fix unfairness before model training
- Pros: can solve root cause of unfairness
- Cons: tricky to ensure model fairness actually improves

[Feldman et al., KDD15] [Salimi et al., SIGMOD19] [Kamiran and Calders, KIS11]

...

What Doesn't Work: Removing Sensitive Attributes

Sensitive attributes are usually correlated with other attributes

What Doesn't Work: Removing Sensitive Attributes

Sensitive attributes are usually correlated with other attributes

In-processing: Training on Biased Data

- Approach: fix model training for fairness
- Pros: can directly optimize accuracy and fairness
- Cons: may have to make significant changes in model training

Fairness Constraints

[Zafar et al, AISTATS17]

Maximize accuracy with fairness constraints for convex margin classifiers

- Want to satisfy demographic parity as much as possible: $P(\hat{Y} = 1|Z = 0) \approx P(\hat{Y} = 1|Z = 1)$
- However, this constraint is not convex, so use a proxy instead
- Proxy: covariance between sensitive attribute and signed distance to decision boundary

Intuition: sensitive attribute should not imply which side you are on the decision boundary (i.e., the label)

Adversarial Debiasing

[Zhang et al., AIES18]

Compete: predictor (predict Y) and adversary (predict Z from \hat{Y})

Demographic parity theorem (similar for other fairness criteria): If adversary optimally predicts Z from \hat{Y} and predictor completely fools adversary, then $\hat{Y} \perp Z$, so $P(\hat{Y}=1|Z=0) = P(\hat{Y}=1|Z=1)$

1 /

Post-processing: Debiasing a Trained Model

- Approach: fix model predictions for fairness
- Pros: only option if data and model cannot be modified
- Cons: usually results in worse accuracy

[Hardt et al., NeurIPS16] [Chzhen et al., NeurIPS19] [Pleiss et al., NeurIPS17]

This paper: FairBatch Batch Selection for Model Fairness

- Idea: perform "fair" sampling during batch selection
- Categorized as in-processing, but actually does not modify training algorithm

Batch Selection

- Model training commonly employs batch selection to get minibatches from training data
- Random sampling is often used to select minibatches

Batch Selection

- Model training commonly employs batch selection to get minibatches from training data
- Random sampling is often used to select minibatches

As the training data is biased, random sampling-based batch selection may lead to unfair model predictions

- Adaptively selects minibatch sizes for the purpose of improving model fairness
- Adjusts the sizes w.r.t. sensitive groups based on the fairness of intermediate models

- Adaptively selects minibatch sizes for the purpose of improving model fairness
- Adjusts the sizes w.r.t. sensitive groups based on the fairness of intermediate models

- Adaptively selects minibatch sizes for the purpose of improving model fairness
- Adjusts the sizes w.r.t. sensitive groups based on the fairness of intermediate models

- Key features
 - Adaptively selects minibatch sizes for the purpose of improving model fairness
 - Solves bilevel optimization for fairness and accuracy
 - Can be employed with a single-line change of PyTorch code
- Performance results
 - Obtains high accuracy and fairness within one training
 - Runs 15 ~ 96x faster than fair training baselines
 - Gracefully merges with existing batch selection techniques used for faster convergence

Problem formulation: ERM

w: model parameter; $x \in X$: input feature; $\hat{y} \in Y$: predicted class; $z \in Z$: sensitive attribute (e.g., gender)

Consider the 0/1 loss: $\ell(y, \widehat{y}) = 1(y \neq \widehat{y})$, and let m be the total number of train samples.

 $L_{y,z}(\mathbf{w})$: the empirical risk aggregated over samples subject to y = y and z = z;

The overall empirical risk is written as $L(\mathbf{w}) = \frac{1}{m} \sum_{i} \ell(y_i, \widehat{y}_i)$.

Batch Selection + minibatch SGD = Bilevel Optimization Solver

Consider a scenario where one is minimizing the overall empirical risk L(w) via minibatch SGD.

The minibatch SGD algorithm picks b of the m indices uniformly at random, say j_1, j_2, \ldots, j_b , and updates its iterate with $\frac{1}{b} \sum_{i=1}^b \nabla \ell(y_{j_i}, \widehat{y}_{j_i})$, called a batch gradient. Note that a batch gradient is an unbiased estimate of the true gradient $\nabla L(w)$.

Not **uniform distribution**? if we draw train example i with probability p_i for all i such that $\sum p_i = 1$, the batch gradient is an unbiased estimate of $L'(w) = \sum_i p_i \ell(y_i, \hat{y}_i)$

Batch Selection + minibatch SGD = Bilevel Optimization Solver

Algorithm 1: Bilevel optimization with MinibatchSGD

Minibatch sampling distribution \leftarrow Uniform sampling **for** *each epoch* **do**

Draw minibatches according to minibatch sampling distribution **for** *each minibatch* **do**

 $w \leftarrow \texttt{MinibatchSGD}(w, each minibatch)$

Update minibatch sampling distribution

- How to design the cost function to capture a desired fairness criterion?
- How to design an update rule for the outer optimizer?

Equalized Odds $P(\hat{Y} = 1 | Z = 0, Y = A) = P(\hat{Y} = 1 | Z = 1, Y = A)$

Equalized odds requires the prediction to be independent from the sensitive attribute conditional on the true label, i.e., $L_{0,0}(\mathbf{w}) = L_{0,1}(\mathbf{w})$ and $L_{1,0}(\mathbf{w}) = L_{1,1}(\mathbf{w})$.

 $L_{y,z}(\mathbf{w})$: the empirical risk aggregated over samples subject to y = y and z = z;

To mitigate these disparities, we adjust (i) the sampling probability between $L_{0,0}(\mathbf{w})$ and $L_{0,1}(\mathbf{w})$ and (ii) the sampling probability between $L_{1,0}(\mathbf{w})$ and $L_{1,1}(\mathbf{w})$.

$$\min_{\lambda \in [0, \frac{m_{0, \star}}{m}] \times [0, \frac{m_{1, \star}}{m}]} \max\{|L_{0, 0}(\boldsymbol{w}_{\lambda}) - L_{0, 1}(\boldsymbol{w}_{\lambda})|, |L_{1, 0}(\boldsymbol{w}_{\lambda}) - L_{1, 1}(\boldsymbol{w}_{\lambda})|\}, \\
\boldsymbol{w}_{\lambda} = \arg\min_{\boldsymbol{w}} \lambda_{1} L_{0, 0}(\boldsymbol{w}) + (\frac{m_{0, \star}}{m} - \lambda_{1}) L_{0, 1}(\boldsymbol{w}) + \lambda_{2} L_{1, 0}(\boldsymbol{w}) + (\frac{m_{1, \star}}{m} - \lambda_{2}) L_{1, 1}(\boldsymbol{w})$$

Demographic parity $P(\hat{Y} = 1|Z = 0) = P(\hat{Y} = 1|Z = 1)$

Demographic parity is satisfied if two sensitive groups have equal positive prediction rates, i.e., $L_{0,0}(\mathbf{w}) = L_{0,1}(\mathbf{w})$ and $L_{1,0}(\mathbf{w}) = L_{1,1}(\mathbf{w})$.

To satisfy this sufficient condition, we now adjust (i) the the sampling probability between $L_{0,0}(\mathbf{w})$ and $L_{1,0}(\mathbf{w})$ and (ii) the the sampling probability between $L_{0,1}(\mathbf{w})$ and $L_{1,1}(\mathbf{w})$.

$$\min_{\lambda \in [0, \frac{m_{\star,0}}{m}] \times [0, \frac{m_{\star,1}}{m}]} \max\{|L_{0,0}(\boldsymbol{w}_{\lambda}) - L_{1,0}(\boldsymbol{w}_{\lambda})|, |L_{0,1}(\boldsymbol{w}_{\lambda}) - L_{1,1}(\boldsymbol{w}_{\lambda})|\},
\boldsymbol{w}_{\lambda} = \arg\min_{\boldsymbol{w}} \lambda_{1} L_{0,0}(\boldsymbol{w}) + (\frac{m_{\star,0}}{m} - \lambda_{1}) L_{1,0}(\boldsymbol{w}) + \lambda_{2} L_{0,1}(\boldsymbol{w}) + (\frac{m_{\star,1}}{m} - \lambda_{2}) L_{1,1}(\boldsymbol{w})$$

Bi-level Optimization for FairBatch

Find best λ value to minimize fairness cost w_{λ} Inner objective: Accuracy

Empirical Risk Minimization

(ERM) with weights

Based on the quasi-convexity* of $F(\cdot)$, we design the signed gradient-based optimization algorithm:

$$\forall t \in \{0, 1, \ldots\} : \lambda^{(t+1)} = \lambda^{(t)} - \alpha \cdot \operatorname{sign}(g_1(\boldsymbol{w}_{\lambda}) - f_1(\boldsymbol{w}_{\lambda}))$$

* $F(t\lambda + (1-t)\lambda') \leq \max\{F(\lambda), F(\lambda')\}\$ for all $t \in [0,1]$ 31

Sample Code for Model Training

```
loader = DataLoader(training_data, sampler = sampler)

for epoch in range(epochs):
    for i, data in enumerate(loader):
        # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
```

return model

Pre- and In-Processing Approaches

Pre- & In-processing approaches require significant non-trivial changes in either data generation or algorithmic design

Simple Employment of FairBatch

```
fairsampler = FairBatch(model, target_fairness, ...)
loader = DataLoader(training_data, sampler = fairsampler)

for epoch in range(epochs):
    for i, data in enumerate(loader):
        # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
```

return model

Experimental Settings

Datasets: COMPAS, AdultCensus (GENDER as the sensitive attribute)

Model: logistic regression

Measuring Fairness: equalized odds (ED) and demographic parity (DP)

ED disparity =
$$\max_{z \in \mathbb{Z}, y \in \mathbb{Y}, \widehat{y} \in \widehat{\mathbb{Y}}} | \Pr(\widehat{y} = \widehat{y} | z = z, y = y) - \Pr(\widehat{y} = \widehat{y} | y = y) |$$

DP disparity = $\max_{z \in \mathbb{Z}} | \Pr(\widehat{y} = 1 | z = z) - \Pr(\widehat{y} = 1) |$.

Experimental Results (ED disparity)

FairBatch achieves fair and accurate results efficiently COMPAS

AdultCensus

		Accuracy	Unfairness	Epochs	Accuracy	Unfairness	Epochs
Vanilla	Logistic regression	.681	.239	300	.845	.054	300
Pre-processing	Reweighing [1]	.685	.137	300	.835	.134	100
	Label bias correction [2]	.673	.031	3900	.841	.011	6300
In-processing	Adversarial debiasing [3]	.683	.067	300	.841	<u>.016</u>	400
	AdaBoost-based fair training [4]	.664	.018	9600	.844	.038	9000
Batch Selection	FairBatch	.681	.022	100	.844	.011	400

^[1] Kamiran and Calders, 2011 [2] Jiang and Nachum, 2020

^[3] Zhang et al., 2018 [4] Iosifidis and Ntoutsi, 2019

Experimental Results (ED disparity)

FairBatch achieves **fair** and **accurate** results **efficiently COMPAS**

AdultCensus

		Accuracy	Unfairness	Epochs	Accuracy	Unfairness	Epochs
Vanilla	Logistic regression	.681	.239	300	.845	.054	300
Pre-processing	Reweighing [1]	.685	.137	300	.835	.134	100
	Label bias correction [2]	.673	.031	3900	.841	.011	6300
In-processing	Adversarial debiasing [3]	.683	.067	300	.841	<u>.016</u>	400
	AdaBoost-based fair training [4]	.664	.018	9600	.844	.038	9000
Batch Selection	FairBatch	.681	<u>.022</u>	100	.844	.011	400

Fair, accurate, and fast

^[1] Kamiran and Calders, 2011 [2] Jiang and Nachum, 2020

^[3] Zhang et al., 2018 [4] Iosifidis and Ntoutsi, 2019

Experimental Results (demographic parity)

COMPAS

AdultCensus

		Accuracy	Unfairness	Epochs	Accuracy	Unfairness	Epochs
Vanilla	Logistic regression	.681	.192	300	.845	.125	300
Pre-processing	Reweighing [1]	.685	.103	300	.835	.052	300
	Label bias correction [2]	.671	.032	7900	.815	<u>.011</u>	12600
In-processing	Adversarial debiasing [3]	.683	.054	550	.815	.018	400
	AdaBoost-based fair training [4]	.642	<u>.033</u>	6300	.825	.040	27000
Batch Selection	FairBatch	.681	.036	300	.823	.010	600

^[1] Kamiran and Calders, 2011 [2] Jiang and Nachum, 2020

^[3] Zhang et al., 2018 [4] Iosifidis and Ntoutsi, 2019

Experimental Results

FairBatch: Compatibility with existing batch selection approaches that use importance sampling for faster convergence in training

(a) EO disparity curve of FairBatch.

(b) DP disparity curve of FairBatch.

Conclusion

- FairBatch improves model fairness and accuracy efficiently with a oneline change of code
- Idea: Adaptively selects batch sizes to improve fairness using bi-level optimization
- Also gracefully merges with existing batch selection techniques used for faster convergence