Assume that (M,g) has the property that all geodesics exist for a fixed time $\epsilon > 0$. Show that (M,g) is geodesically complete.

Fix $p \in M, v \in T_pM$. By assumption there exists a geodesic $\gamma : (-\epsilon/2, \epsilon/2) \to M$ with $\gamma(0) = p, \dot{\gamma}(0) = v$. However, taking $p' = \gamma(\epsilon/2), v' = \dot{\gamma}(\epsilon/2)$ we get another geodesic $\tilde{\gamma} : (-\epsilon/2, \epsilon/2) \to M$. Since they coincide at p', v' we can extend $\gamma : (-\epsilon/2, \epsilon) \to M$. Repeating this process we produce $\gamma : \mathbb{R} \to M$.

- 2 A Riemannian manifold is said to be homogeneous if the isometry group acts transitively. Show that homogeneous manifolds are geodesically complete.
- 3 Let $N \subset (M,g)$ be a submanifold. Let ∇^N denote the connection on N that comes from the metric induced by g. Define the second fundamental form of N in M by

$$II(X,Y) = \nabla_X^N Y - \nabla_X Y$$

Show that II = 0 on N iff N is totally geodesic. (The definition of *totally geodesic* is on p. 145)

A submanifold $N \subset (M, g)$ is said to be *totally geodesic* if for each $p \in N$ a neighborhood of $0 \in T_pN$ is mapped into N via the exponential map \exp_p .

- 4 Let p be a point in a Riemannian manifold (M,g) and $\sigma \subset T_pM$ a two-dimensional subspace. For small r>0, let $\Sigma_{\sigma}\subset M$ be the (diffeomorphic) image of $B(0,r)\cap\sigma\subset T_pM$ under the exponential map \exp_p . Show that the sectional curvature $\sec(\sigma)$ at p (computed inside M) is equal to the sectional curvature (that is, Gaussian curvature) of the surface Σ_{σ} at p, in the induced metric.
- 5 Let SO(n) be the Lie group of orthogonal matrices of determinant 1. Equip SO(n) with a bi-invariant Riemannian metric g of volume one, as constructed in the previous homework. The tangent space $T_ISO(n)$ can be identified with the space $\mathfrak{so}(n)$ of skew-adjoint matrices. Show that the exponential map (with respect to g)

$$\exp_I : \mathfrak{so}(n) \to SO(n)$$

coincides with the usual matrix exponentiation $A \to e^A$.

- *Hint:* Feel free to use Proposition 12 on p.79 in Petersen's book. Compare also exercise 19 in Petersen, Chapter 5, p.151.
- 6 Let $\gamma:[0,1]\to M$ be a geodesic. Show that $\exp_{\gamma(0)}$ has a critical point at $t\dot{\gamma}(0)$ iff there is a Jacobi field J along γ such that $J(0)=0,\ \dot{J}(0)\neq 0$, and J(t)=0.
- 7 Let γ be a geodesic and X a Killing field in a Riemannian manifold. Show that the restriction of X to γ is a Jacobi field. (See the definition of a *Killing field* on p.23.)
- 8 A Riemannian manifold is said to be k-point homogeneous if for all pairs of points (p_1, \ldots, p_k) and (q_1, \ldots, q_k) with $d(p_i, p_j) = d(q_i, q_j)$ there is an isometry F with $F(p_i) = q_i$. When k = 1 we simply say tat the space is homogeneous.
- 8.1 Show that a homogeneous space has constant scalar curvature.
- 8.2 Show that if k > 2 and (M, g) is k-point homogeneous, then M is also (k-1)-point homogeneous.
- 8.3 Show that if (M,g) is two-point homogeneous, then (M,g) is an Einstein metric.
- 8.4 Show that if (M,g) is three-point homogeneous, then (M,g) has constant curvature.
- 8.5 Classify all three-point homogeneous spaces. *Hint:* The only one that isn't simply connected is the real projective space.