

6. Consumption-Saving Models: Extensions

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl & Patrick Moran 2023

Introduction

Consumption-Saving Models

• **Goal for today:** Extend the traditional consumption-saving model to better capture important aspects of household behavior

Consumption-Saving Models

• **Goal for today:** Extend the traditional consumption-saving model to better capture important aspects of household behavior

Central economic questions:

- 1. How do we explain excess smoothness in consumption data?
- 2. How to distinguish between habits vs inattention?
- 3. What if households have trouble saving due to temptation?

Consumption-Saving Models

• **Goal for today:** Extend the traditional consumption-saving model to better capture important aspects of household behavior

Central economic questions:

- 1. How do we explain excess smoothness in consumption data?
- 2. How to distinguish between habits vs inattention?
- 3. What if households have trouble saving due to temptation?

• Plan for today:

- 1. Discuss the problem of "excess smoothness" of consumption
- 2. Study the model of sticky expectations (Carroll et al, 2019)
- Study the role of housing as a "savings commitment device" (Attanasio et al, 2021)

Important Note

 The views expressed in this presentation are those of the author and do not represent the views of the Federal Reserve Board or Federal Reserve System.

Excess Smoothness

Excess smoothness

• One of the key puzzles in consumption-saving models is the "excess smoothness" of consumption

• Theory: Consumption responds instantly, completely to shock

• Evidence: Consumption is too smooth

Excess smoothness

 One of the key puzzles in consumption-saving models is the "excess smoothness" of consumption

• Theory: Consumption responds instantly, completely to shock

• Evidence: Consumption is too smooth

 Campbell and Deaton (1989): Consumption does not react sufficiently to innovations to the permanent component of income

Hall (1978) Random Walk

• Household utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \mathbf{u}(\mathbf{c}_t)$$

Hall (1978) Random Walk

· Household utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \mathbf{u}(\mathbf{c}_t)$$

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

Hall (1978) Random Walk

Household utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \mathbf{u}(\mathbf{c}_t)$$

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathbf{R} + \zeta_{t+1}$$

C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

Hall (1978) Random Walk

Household utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \mathbf{u}(\mathbf{c}_t)$$

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathbf{R} + \zeta_{t+1}$$

C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

ullet For simplicity, assume quadratic utility $(\mathrm{u}(c)=c^2)$ and $\mathsf{R}eta=1$

Hall (1978) Random Walk

· Household utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \mathbf{u}(\mathbf{c}_t)$$

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathbf{R} + \zeta_{t+1}$$

• C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

- ullet For simplicity, assume quadratic utility $(\mathrm{u}(c)=c^2)$ and $\mathsf{R}eta=1$
- Under these assumptions, consumption follows a random walk:

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

Hall (1978) Random Walk

Household utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \mathbf{u}(\mathbf{c}_t)$$

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

• C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

- ullet For simplicity, assume quadratic utility $(\mathrm{u}(c)=c^2)$ and $\mathsf{R}eta=1$
- Under these assumptions, consumption follows a random walk:

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

But in the data: permanent income much nosier than consumption

Excess Smoothness

One Explanation: Habit Formation

Popular solution in DSGE models: habit formation

• Household utility depends on both $c_{i,t}$ and $c_{i,t-1}$

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(\tilde{c}_{i,t})$$

where

$$\tilde{c}_{i,t} = c_{i,t} - \chi c_{i,t-1}$$

- ullet χ is positive if goods provide services across periods
- zero if goods are fully non-durable, non-habit forming

• Consumption Euler equation (for full derivation, see Dynan 2000):

$$E_t\left[(1+r)etarac{MU_{i,t+1}}{MU_{i,t}}
ight]=1$$

Consumption Euler equation (for full derivation, see Dynan 2000):

$$E_t\left[(1+r)\beta\frac{MU_{i,t+1}}{MU_{i,t}}\right]=1$$

• If we assume CRRA utility function, $u(c) = \frac{c^{1-\rho}}{1-\rho}$ then:

$$(1+r)\beta\left(\frac{\tilde{c}_{i,t}}{\tilde{c}_{i,t-1}}\right)^{-\rho}=1+\varepsilon_{i,t}$$

where $\varepsilon_{i,t}$ is the expectational error

• Taking logs and substituting for \tilde{c} gives:

$$\Delta \ln \left(c_{i,t} - \chi c_{i,t-1} \right) = \frac{1}{\rho} [\ln(1+r) + \ln(\beta)] - \frac{1}{\rho} \ln \left(1 + \varepsilon_{i,t} \right)$$

• Taking logs and substituting for \tilde{c} gives:

$$\Delta \ln \left(c_{i,t} - \chi c_{i,t-1} \right) = \frac{1}{\rho} [\ln (1+r) + \ln (\beta)] - \frac{1}{\rho} \ln \left(1 + \varepsilon_{i,t} \right)$$

• This yields the following estimable equation:

$$\Delta \ln (c_{i,t}) = \gamma_0 + \chi \Delta \ln (c_{i,t-1}) + e_{i,t}$$

which can be estimated on either micro data or macro data (if macro data, then just remove the $\it i$ subscript)

Empirical estimates of habit persistence

 $\bullet~\chi$ has been estimated by over 597 different papers

- Mean χ in macro studies: 0.6
- Mean χ in micro studies: 0.0-0.1

Why the disagreement between macro and micro studies?

Macro: Representative Agent Models

- Theory: C responds instantly, completely to shock
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\rm Macro} \approx 0.6 \sim~0.8$

Why the disagreement between macro and micro studies?

Macro: Representative Agent Models

- Theory: C responds instantly, completely to shock
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\text{Macro}} \approx 0.6 \sim 0.8$

Micro: Heterogeneous Agent Models

- Uninsurable risk is essential, changes everything
- Var of micro income shocks much larger than of macro shocks:

$$\mathsf{var}(\Delta \log \mathbf{p}) \approx 100 \times \mathsf{var}(\Delta \log \mathbf{P})$$

• Evidence: "Habits" parameter $\chi^{\text{Micro}} \approx 0.0 \sim 0.1$

Macro Inattention

Alternative Explanation: Inattention to Macro Aggregates

Carroll, Crawley, Slacalek, Tokuoka, White (2019):

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Alternative Explanation: Inattention to Macro Aggregates

Carroll, Crawley, Slacalek, Tokuoka, White (2019):

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Idiosyncratic Variability Is $\sim 100\times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of Micro Data

Alternative Explanation: Inattention to Macro Aggregates

Carroll, Crawley, Slacalek, Tokuoka, White (2019):

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of Micro Data

Utility Cost of Inattention Small

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

Returning to simple theory

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

ullet Consumer who happens to update at t and t+n

$$\mathbf{c}_t = (r/R)\mathbf{o}_t$$

• Consumer who happens to update at t and t + n

$$\mathbf{c}_t = (r/R)\mathbf{o}_t$$

$$\mathbf{c}_{t+1} = (r/R)\widetilde{\mathbf{o}}_{t+1} = (r/R)\mathbf{o}_t = \mathbf{c}_t$$

• Consumer who happens to update at t and t + n

$$\mathbf{c}_{t} = (r/R)\mathbf{o}_{t}$$

$$\mathbf{c}_{t+1} = (r/R)\widetilde{\mathbf{o}}_{t+1} = (r/R)\mathbf{o}_{t} = \mathbf{c}_{t}$$

$$\vdots \qquad \vdots$$

$$\mathbf{c}_{t+n-1} = \mathbf{c}_{t}$$

• Consumer who happens to update at t and t + n

$$\mathbf{c}_t = (r/R)\mathbf{o}_t$$
 $\mathbf{c}_{t+1} = (r/R)\widetilde{\mathbf{o}}_{t+1} = (r/R)\mathbf{o}_t = \mathbf{c}_t$
 $\vdots \qquad \vdots$
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$

• Implies that $\Delta^n \mathbf{o}_{t+n} \equiv \mathbf{o}_{t+n} - \mathbf{o}_t$ is white noise

ullet Consumer who happens to update at t and t+n

$$\mathbf{c}_t = (r/R)\mathbf{o}_t$$
 $\mathbf{c}_{t+1} = (r/R)\widetilde{\mathbf{o}}_{t+1} = (r/R)\mathbf{o}_t = \mathbf{c}_t$
 $\vdots \qquad \vdots$
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$

- ullet Implies that $\Delta^n oldsymbol{o}_{t+n} \equiv oldsymbol{o}_{t+n} oldsymbol{o}_t$ is white noise
- So **individual c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (r/R) \underbrace{(\mathbf{o}_{t+n} - \mathbf{o}_t)}_{\Delta^n \mathbf{o}_{t+n}}$$

Sticky Expectations—Aggregate C

• Population normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$

Sticky Expectations—Aggregate C

- Population normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$
- Calvo-Type Updating of Expectations: (Probability $\Pi=0.25$, per quarter)

Sticky Expectations—Aggregate C

- Population normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$
- Calvo-Type Updating of Expectations: (Probability $\Pi = 0.25$, per quarter)
- \bullet Economy composed of many sticky- $\!\mathbb E$ consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi)\underbrace{\mathbf{C}_{t+1}^{\not \tau}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{\equiv \chi = 0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

Sticky Expectations—Aggregate C

- Population normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$
- Calvo-Type Updating of Expectations: (Probability $\Pi = 0.25$, per quarter)
- ullet Economy composed of many sticky- ${\mathbb E}$ consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi)\underbrace{\mathbf{C}_{t+1}^{\pi}}_{=\mathbf{C}_{t}} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{\equiv \chi = 0.75} \Delta \mathbf{C}_{t} + \epsilon_{t+1}$$

• Substantial persistence ($\chi=0.75$) in aggregate C growth

One More Ingredient: Idiosyncratic Uncertainty ...

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity

One More Ingredient: Idiosyncratic Uncertainty ...

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity
- Result:
 - Idiosyncratic Δc : dominated by frictionless RW part
 - Aggregate ΔC: highly serially correlated
 Law of large numbers ⇒ idiosyncratic part vanishes

Macro Inattention

Full Heterogeneous Agent Model

Full Heterogeneous Agent Model

Partial Equilibrium

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
- Liquidity Constraint
- Mildly Impatient Consumers

Income Process

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{p}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

• Idiosyncratic and aggregate p evolve according to

$$\begin{array}{lcl} \rho_{t+1,i} & = & \rho_{t,i} \psi_{t+1,i} \\ P_{t+1} & = & \Phi_{t+1} P_t \ \Psi_{t+1} \end{array}$$

Income Process

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{p}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i} \psi_{t+1,i}$$
 $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Blanchard (1985) Model of "Perpetual Youth"

• Household survives from t to t+1 with probability (1-D):

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors} \end{cases}$$

Blanchard (1985) Model of "Perpetual Youth"

• Household survives from t to t+1 with probability (1-D):

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors} \end{cases}$$

Blanchardian scheme:

$$\mathbf{k}_{t+1,i} = \begin{cases} 0 & \text{if HH } i \text{ dies, is replaced by newborn} \\ \mathbf{a}_{t,i}/(1-\mathsf{D}) & \text{if household } i \text{ survives} \end{cases}$$

Blanchard (1985) Model of "Perpetual Youth"

• Household survives from t to t+1 with probability (1-D):

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors} \end{cases}$$

Blanchardian scheme:

$$\mathbf{k}_{t+1,i} = \begin{cases} 0 & \text{if HH } i \text{ dies, is replaced by newborn} \\ \mathbf{a}_{t,i}/(1-\mathsf{D}) & \text{if household } i \text{ survives} \end{cases}$$

 Why useful? Allows us to have mortality without an additional state variable:

$$v(\cdot) = \max_{c} u(c) + \beta \mathbb{E}_{t}[(1 - \mathsf{D})v(\cdot)]$$

Resources

Market resources:

$$\mathbf{m}_{t,i} = \underbrace{\mathbf{W}_{t}\boldsymbol{\ell}_{t,i}}_{\equiv \mathbf{y}_{t}} + \underbrace{\mathcal{R}_{t}}_{\mathbf{1}+\mathbf{r}_{t}}\mathbf{k}_{t,i}$$

• End-of-Period 'Assets'—Unspent resources:

$$\mathbf{a}_{t,i} = \mathbf{m}_{t,i} - \mathbf{c}_{t,i}$$

• Capital transition depends on prob of survival 1 - D:

$$\mathbf{k}_{t+1,i} = \mathbf{a}_{t,i}/(1-\mathsf{D})$$

Frictionless Solution

- Normalize everything by $\mathbf{p}_{t,i} \equiv p_{t,i} P_t$, e.g. $m_{t,i} = \mathbf{m}_{t,i}/(p_{t,i} P_t)$
- $c(m, \Phi)$ is the function that solves:

$$v(m_{t,i}, \Phi_t) = \max_{c} u(c) + (1-D)\beta \mathbb{E}_t \big[(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, \Phi_{t+1}) \big]$$

• Level of consumption:

$$\mathbf{c}_{t,i} = \mathrm{c}(m_{t,i}, \Phi_t) \times p_{t,i} P_t$$

Calvo Updating of Perceptions of Aggregate Shocks

- 1. True Permanent income: $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$
- 2. Tilde (\tilde{P}) denotes perceived variables
- 3. Perception for consumer who has not updated for n periods:

$$\widetilde{P}_{t,i} = \mathbb{E}_{t-n} \big[P_t \big| \Omega_{t-n} \big] = \Phi^n_{t-n} P_{t-n}$$

because Φ is random walk

Sequence Within Period

1. Income shocks are realized and every individual sees her true \mathbf{y} and \mathbf{m} , i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i

Sequence Within Period

- 1. Income shocks are realized and every individual sees her true \mathbf{y} and \mathbf{m} , i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i
- 2. Updating shocks realized: i observes true P_t, Φ_t w/ prob Π ; forms perceptions of her normalized market resources $\widetilde{m}_{t,i}$

Sequence Within Period

- 1. Income shocks are realized and every individual sees her true \mathbf{y} and \mathbf{m} , i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i
- 2. Updating shocks realized: i observes true P_t, Φ_t w/ prob Π ; forms perceptions of her normalized market resources $\widetilde{m}_{t,i}$
- 3. Consumes based on her perception, using $c(\widetilde{m}_{t,i},\widetilde{\Phi}_{t,i})$

Key Assumption:

• People act as if their perceptions about aggregate state $\{\widetilde{P}_{t,i},\widetilde{\Phi}_{t,i}\}$ are the true aggregate state $\{P_t,\Phi_t\}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} \big/ (p_{t,i} \widetilde{P}_{t,i})$ is perceived

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - ullet in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i}
 eq m_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} \big/ (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But **based on** $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$

 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} \big/ (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But **based on** $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

• Correctly perceive level of their own spending $\mathbf{c}_{t,i}$

Taking the Model to the Data

Macro Inattention

Dynan (2000) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

Dynan (2000) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

• χ : Extent of habits

```
Data: Micro: \chi^{\rm Micro} = 0.1 (EER 2017 paper) 
Macro: \chi^{\rm Macro} = 0.6
```

Dynan (2000) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

• *χ*: Extent of habits

```
Data: Micro: \chi^{\text{Micro}} = 0.1 (EER 2017 paper)
Macro: \chi^{\text{Macro}} = 0.6
```

• η : Fraction of Y going to 'rule-of-thumb' C = Y types

```
Data: Micro: 0 < \eta^{\text{Micro}} < 1 (Depends . . . )
Macro: \eta^{\text{Macro}} \approx 0.5 (Campbell and Mankiw (1989))
```

Dynan (2000) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

χ: Extent of habits

Data: Micro:
$$\chi^{\text{Micro}} = 0.1$$
 (EER 2017 paper)
Macro: $\chi^{\text{Macro}} = 0.6$

• η : Fraction of Y going to 'rule-of-thumb' C = Y types

```
Data: Micro: 0 < \eta^{\text{Micro}} < 1 (Depends ...)

Macro: \eta^{\text{Macro}} \approx 0.5 (Campbell and Mankiw (1989))
```

α: Precautionary saving (micro) or IES (Macro)

```
Data: Micro: \alpha^{\text{Micro}} < 0 (Zeldes (1989))
Macro: \alpha^{\text{Macro}} < 0 (but small)
```

Micro vs Macro: Theory and Empirics

Macro Data

 ≈ 0.75

 ≈ 0

 ≈ 0

 ≈ 0

< 0

< 0

 $\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Traditional RA model = one without consumption habits

Theory: Traditional RA Model

Model with 'Sticky Expectations' of aggregate variables can match both micro and macro consumption dynamics

$$\Delta \log \mathbf{C}_{t+1} \ \approx \ \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

	χ	η	α
Micro			
Data	≈ 0	$0 < \eta < 1$	< 0
Theory: Habits	≈ 0.75	$0 < \eta < 1$	< 0
Theory: Sticky Expectations	≈ 0	$0 < \eta < 1$	< 0
Macro			
Data	≈ 0.75	≈ 0	< 0
Theory: Habits	≈ 0.75	≈ 0	< 0
Theory: Sticky Expectations	≈ 0.75	≈ 0	< 0

Temptation & Commitment

Temptation & Commitment

A Model of Hand-to-Mouth Behavior

Motivation

Why do households choose to be wealthy hand to mouth?

• It prevents consumption smoothing over income shocks

Motivation

Why do households choose to be wealthy hand to mouth?

• It prevents consumption smoothing over income shocks

Traditional explanation (Kaplan and Violante, 2014)

- Illiquid assets give large excess returns relative to all liquid assets
- But this is a controversial assumption
- There exists a high return liquid asset: publicly traded equities

Our Goal

Our goal: develop a new model of the wealthy hand to mouth

- In our model, HHs face temptation, making it difficult to save
- Households can overcome these issues through illiquid housing

Our Goal

Our goal: develop a new model of the wealthy hand to mouth

- In our model, HHs face temptation, making it difficult to save
- Households can overcome these issues through illiquid housing

Temptation and commitment help explain additional facts on HH behavior

- Generates good fit of the evidence on MPC heterogeneity
- Experimental evidence points to a demand for illiquidity

Our Goal

Our goal: develop a new model of the wealthy hand to mouth

- In our model, HHs face temptation, making it difficult to save
- Households can overcome these issues through illiquid housing

Temptation and commitment help explain additional facts on HH behavior

- Generates good fit of the evidence on MPC heterogeneity
- Experimental evidence points to a demand for illiquidity

This view of WH2M behavior helps us understand other important policies

- We study housing subsidies and mandatory amortization
- Do policies simply encourage substitution from liquid to illiquid assets?

Main Findings

Model with commitment obtains a good fit of the empirical evidence

- Matches large share of WH2M despite high return liquid asset
- Restricted model cannot match WH2M using housing utility alone
- MPC declines slowly with the size of income shocks

Main Findings

Model with commitment obtains a good fit of the empirical evidence

- Matches large share of WH2M despite high return liquid asset
- Restricted model cannot match WH2M using housing utility alone
- MPC declines slowly with the size of income shocks

Subsidies to commitment devices can increase overall savings

- Housing subsidies generate mild substitution from liquid assets to housing, but nevertheless boost overall wealth accumulation by 7%
- ullet Mortgage amortization increases wealth accumulation by 10%
- The policies have little effect on the share of WH2M households

Temptation & Commitment

The Model

Model

Life cycle model of consumption and savings

- \bullet Demographics: households work for $\overline{\mathcal{T}}$ years, then retired for $\widetilde{\mathcal{T}}$ years
- Choices: consumption, housing
- Assets: Liquid assets, housing, and mortgages

Model

Life cycle model of consumption and savings

- Demographics: households work for \overline{T} years, then retired for \widetilde{T} years
- Choices: consumption, housing
- Assets: Liquid assets, housing, and mortgages

Novel features

- Temptation preferences make it costly to hold liquid assets
- A commitment device (housing) can reduce temptation

Standard model

- Households are committed to their choices
- No need for commitment

Standard model

- Households are committed to their choices
- No need for commitment

Hyperbolic discounting model (Strotz, 1956 and Laibson, 1997)

- Relaxes the assumption of standard model on discounting
- Different discount rates, time inconsistent
- Commitment: present self wants to restrict choice set for future self

Standard model

- Households are committed to their choices
- No need for commitment

Hyperbolic discounting model (Strotz, 1956 and Laibson, 1997)

- Relaxes the assumption of standard model on discounting
- Different discount rates, time inconsistent
- Commitment: present self wants to restrict choice set for future self

Temptation preferences (Gul and Pesendorfer, 2001 and 2004)

- Tempting, feasible alternative that is not chosen
- This tempting alternative impacts your utility
- Axiomatic, time consistent
- Commitment: reduce temptation by restricting choice set

$$\max_{\{c_t,h_t\}_{t=0,\dots,T}} \mathbb{E}_0 \sum_{t=0}^T \beta^t U(c_t,h_t,\tilde{c}_t,\tilde{h}_t)$$

$$\max_{\{c_t,h_t\}_{t=0,\dots,T}} \mathbb{E}_0 \sum_{t=0}^T \beta^t U(c_t,h_t,\tilde{c}_t,\tilde{h}_t)$$

$$U(c_t,h_t,\tilde{c}_t,\tilde{h}_t) = u(c_t,h_t) - \underbrace{\lambda \left[u(\tilde{c}_t,\tilde{h}_t) - u(c_t,h_t) \right]}_{\text{utility cost of self-control}}$$

- ullet c_t : nondurable consumption
- \bullet h_t : housing status
- λ : degree of temptation

$$\max_{\{c_t,h_t\}_{t=0,...,T}} \mathbb{E}_0 \sum_{t=0}^T \beta^t U(c_t,h_t,\tilde{c}_t,\tilde{h}_t)$$

$$U(c_t,h_t,\tilde{c}_t,\tilde{h}_t) = u(c_t,h_t) - \underbrace{\lambda \left[u(\tilde{c}_t,\tilde{h}_t) - u(c_t,h_t) \right]}_{\text{utility cost of self-control}}$$

- ullet c_t : nondurable consumption
- \bullet h_t : housing status
- λ : degree of temptation

Most tempting alternative: maximize current period utility

$$\left[\tilde{c}_t, \tilde{h}_t\right] = \arg\max_{c_t, h_t \in \mathscr{A}_t} u(c_t, h_t)$$

- \tilde{c}_t : most tempting consumption
- \tilde{h}_t : most tempting housing status

Assets and Mortgages

- 1. Liquid asset (a_t)
 - Certain return, r
 - Most tempting alternative: consume all liquid assets

Assets and Mortgages

- 1. Liquid asset (a_t)
 - Certain return, r
 - Most tempting alternative: consume all liquid assets
- 2. Illiquid housing asset (h_t)
 - Discrete asset with N different sizes (rental, flat, house, mansion)
 - Certain return, r^H
 - ullet Transaction costs: fraction f of the house price and utility cost χ
 - Transaction costs generate commitment benefit

Assets and Mortgages

- 1. Liquid asset (a_t)
 - Certain return, r
 - Most tempting alternative: consume all liquid assets
- 2. Illiquid housing asset (h_t)
 - Discrete asset with N different sizes (rental, flat, house, mansion)
 - Certain return, r^H
 - ullet Transaction costs: fraction f of the house price and utility cost χ
 - Transaction costs generate commitment benefit
- 3. Mortgages (m_t)
 - Buying a home automatically comes with a mortgage
 - \bullet Downpayment of ψ percent of the house price
 - Fixed-rate mortgage, r^M
 - Fixed repayment each period until retirement or house sale

Housing Preferences

Functional form follows Attanasio et al (2012)

$$u(c_t, h_t) = \underbrace{\frac{c_t^{1-\gamma}}{1-\gamma}}_{\text{consumption utility}} \underbrace{e^{\theta\phi(h_t)}}_{\text{multip housing utility}} + \underbrace{\mu\phi(h_t)}_{\text{additive housing utility}} - \underbrace{\chi\mathbb{I}_{h_t\neq h_{t-1}}}_{\text{utility cost of moving}}$$

- γ : coefficient of relative risk aversion
- ullet θ and μ : housing preference parameters
- φ: relative utility of house choice h_t
- χ : utility cost of housing adjustment (only applies if $h_t \neq h_{t-1}$)

Income Process

$$Iny_t = g_t + z_t$$

- g: Deterministic age profile for income (third order polynomial)
- z: Idiosyncratic income process

• Exogenous AR(1) process

$$z_t = \rho z_{t-1} + \varepsilon_t$$

$$\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

$$z_0 \sim N(0, \sigma_0^2)$$

Value Functions

Given state variables $\Omega_t = \{a_t, z_t, m_t, h_{t-1}\}$

$$V_t(\Omega_t) = \max \left\{ V_t^0(\Omega_t), V_t^1(\Omega_t) \right\}$$

where $V_t^0(\Omega_t)$ and $V_t^1(\Omega_t)$ are the value functions conditional on not adjusting and adjusting housing.

Value Functions

Those who choose not to adjust in period t:

$$V_t^0(\Omega_t) = \max_{\{c_t, a_{t+1}\}} U(c_t, h_t, \tilde{c}_t, \tilde{h}_t) + \beta \mathbb{E}_t V_{t+1}(\Omega_{t+1}), \tag{1}$$

subject to:

$$a_{t+1} = (1+r) \Big[a_t + \widetilde{y}_t - c_t - \mathbb{I}_t^{own} m p_t - (1 - \mathbb{I}_t^{own}) rent_t \Big]$$

$$\widetilde{y}_t = \begin{cases} exp(g_t + z_t), & \text{if } t \leq W \\ SS \text{ Benefit}(y_W), & \text{if } t > W \end{cases}$$

$$z_t = \rho z_{t-1} + \varepsilon_t \quad \text{and} \quad c_t > 0$$

$$(2)$$

Value Functions

Those who choose to adjust housing in period t:

$$V_t^1(\Omega_t) = \max_{\{c_t, h_t, m_{t+1}, a_{t+1}\}} U(c_t, h_t, \tilde{c}_t, \tilde{h}_t) + \beta \mathbb{E}_t V_{t+1}(\Omega_{t+1}),$$
 (3)

subject to:

$$a_{t+1} = (1+r) \left[a_t + \widetilde{y}_t - c_t - (1+F)p_t(h_t) + \frac{m_{t+1}}{(1+r^M)} + (1-F)p_t(h_{t-1}) - m_t \right]$$

$$m_{t+1} \le (1-\psi^{\min})p_t(h_t)(1+r^M)$$

$$y_t = \begin{cases} exp(g_t + z_t), & \text{if } t \le W \\ SS \text{ Benefit}(y_W), & \text{if } t > W \end{cases}$$

$$z_t = \rho z_{t-1} + \varepsilon_t \text{ and } c_t > 0$$

$$(4)$$

Temptation & Commitment

Model Calibration

Calibration

- ullet Set temptation $\lambda=0.28$ following Kovacs, Low and Moran (2021)
 - \bullet Semi-structural Euler equation approach to estimate λ using CEX data

Calibration

- ullet Set temptation $\lambda=0.28$ following Kovacs, Low and Moran (2021)
 - ullet Semi-structural Euler equation approach to estimate λ using CEX data
- Allow for a high-return liquid assets calibrated to the S&P 500 index
 - Traditional models of WH2M behavior require the assumption that $r^{H}>r$
 - But this is a controversial assumption, which we choose to relax (e.g. Flavin and Yamashita 2002; Goetzmann and Spiegel 2002; Piazzesi, Schneider, and Tuzel 2007)

Calibration

- ullet Set temptation $\lambda=0.28$ following Kovacs, Low and Moran (2021)
 - ullet Semi-structural Euler equation approach to estimate λ using CEX data
- Allow for a high-return liquid assets calibrated to the S&P 500 index

 - But this is a controversial assumption, which we choose to relax (e.g. Flavin and Yamashita 2002; Goetzmann and Spiegel 2002; Piazzesi, Schneider, and Tuzel 2007)
- Remaining preference parameters are calibrated internally
 - Parameters: time preference, risk aversion, housing utility parameters, utility cost of moving
 - Target a combination of life-cycle and aggregate moments

Key Insight: Temptation alters the relationship between consumption growth and assets

Key Insight: Temptation alters the relationship between consumption growth and assets

• Consumption dynamics governed by the following Euler equation:

$$c_t^{-\gamma} = \beta R \mathbb{E}_t \left[c_{t+1}^{-\gamma} - \frac{\lambda}{1+\lambda} \tilde{c}_{t+1}^{-\gamma}
ight] \quad \text{if } a_{t+1} > 0$$

where $ilde{c}_{t+1}$ is the most tempting consumption alternative

Key Insight: Temptation alters the relationship between consumption growth and assets

• Consumption dynamics governed by the following Euler equation:

$$c_t^{-\gamma} = \beta R \mathbb{E}_t \left[c_{t+1}^{-\gamma} - \frac{\lambda}{1+\lambda} \tilde{c}_{t+1}^{-\gamma}
ight] \qquad ext{if} \;\; a_{t+1} > 0$$

where $ilde{c}_{t+1}$ is the most tempting consumption alternative

This insight allows us to identify λ separately from β using data on consumption and assets (see Kovacs, Low, Moran, 2021)

Temptation & Commitment

Model Fit

Baseline Model

Baseline model generates good fit, despite presence of high-return liquid asset

Restricted Model

Restricted model predicts 50% less hand-to-mouth homeowners

Out-of-Sample Fit

In addition, the model with temptation & commitment matches recent empirical evidence showing

- The average MPC remains large even in response to large income shocks (e.g. Fuster, Kaplan, Zafar 2018; Kueng 2018; Fagereng, Holm, Natvik 2021)
- 2. Households have a demand for illiquidity (Beshears et al, 2021)
- Mandatory amortization increases wealth accumulation (Bernstein and Koudijs, 2021)

Temptation & Commitment

Implications for Policy

Policy

- 1. Substantial tax benefits to homeownership in the U.S.
- Mortgage interest tax deduction is \$90 billion/year subsidy (7% personal income tax)

Policy

1. Substantial tax benefits to homeownership in the U.S.

Mortgage interest tax deduction is \$90 billion/year subsidy (7% personal income tax)

2. Growing debate about "mandatory amortization" policies

- Many countries force homeowners to build wealth through mortgage amortization payments
- Concern: May increase WH2M and reduce resilience to income shocks (Svensson, 2019, 2020)

Policy

1. Substantial tax benefits to homeownership in the U.S.

Mortgage interest tax deduction is \$90 billion/year subsidy (7% personal income tax)

2. Growing debate about "mandatory amortization" policies

- Many countries force homeowners to build wealth through mortgage amortization payments
- Concern: May increase WH2M and reduce resilience to income shocks (Svensson, 2019, 2020)

We evaluate two opposing views of such illiquid saving incentives

- May induce portfolio rebalancing from liquid to illiquid assets
- May improve access to commitment, potentially helping HHs accumulate wealth

Policy 1: Housing Subsidies

Policy 2: Mandatory Amortization

Conclusion

- Temptation and commitment obtain a good fit of the data
 - Large share of WH2M, while relaxing strong assumptions on returns
 - Generates good out-of-sample fit of MPCs and recent evidence

Conclusion

- Temptation and commitment obtain a good fit of the data
 - Large share of WH2M, while relaxing strong assumptions on returns
 - Generates good out-of-sample fit of MPCs and recent evidence

- Understanding WH2M has important implications for policy
 - Subsidies to commitment can increase overall savings
 - Mortgage amortization can boost wealth accumulation

Summary

- **Today:** Two applications of dynamic programming to understand household spending dynamics
 - 1. Macro inattention and its effect on consumption
 - 2. Temptation to consume for short-term gratification

- **Today:** Two applications of dynamic programming to understand household spending dynamics
 - 1. Macro inattention and its effect on consumption
 - 2. Temptation to consume for short-term gratification
- Next week: Turn towards Aiyagari-style equilibrium models and study their ability to match empirical evidence on wealth inequality

- **Today:** Two applications of dynamic programming to understand household spending dynamics
 - 1. Macro inattention and its effect on consumption
 - 2. Temptation to consume for short-term gratification
- Next week: Turn towards Aiyagari-style equilibrium models and study their ability to match empirical evidence on wealth inequality
- Practice exercises:
 - 1. Continue to work on exercises from last week
 - Start with the model with unemployment from last week, then explore what happens to saving if households have biased beliefs about their job loss probability.*

- **Today:** Two applications of dynamic programming to understand household spending dynamics
 - 1. Macro inattention and its effect on consumption
 - 2. Temptation to consume for short-term gratification
- Next week: Turn towards Aiyagari-style equilibrium models and study their ability to match empirical evidence on wealth inequality
- Practice exercises:
 - 1. Continue to work on exercises from last week
 - Start with the model with unemployment from last week, then explore what happens to saving if households have biased beliefs about their job loss probability.*

- **Today:** Two applications of dynamic programming to understand household spending dynamics
 - 1. Macro inattention and its effect on consumption
 - 2. Temptation to consume for short-term gratification
- Next week: Turn towards Aiyagari-style equilibrium models and study their ability to match empirical evidence on wealth inequality

Practice exercises:

- 1. Continue to work on exercises from last week
- Start with the model with unemployment from last week, then explore what happens to saving if households have biased beliefs about their job loss probability.*

^{*}Biased beliefs = when solving the value function, HHs expect a job loss probability that is different than what happens in the simulation.

References

- BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93(2), 223-247.
- CAMPBELL, JOHN Y., AND N. GREGORY MANKIW (1989): "Consumption, Income, and Interest Rates: Reinterpreting the Time-Series Evidence," in NBER Macroeconomics Annual, 1989, ed. by Olivier J. Blanchard, and Stanley Fischer, pp. 185–216. MIT Press, Cambridge, MA, http://www.nber.org/papers/w2924.pdf.
- DYNAN, KAREN E. (2000): "Habit Formation in Consumer Preferences: Evidence from Panel Data," American Economic Review, 90(3), http://www.jstor.org/stable/117335.
- HALL, ROBERT E. (1978): "Stochastic Implications of the Life-Cycle/Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, 96, 971-87, Available at http://www.stanford.edu/-rehall/Stochastic-JPE-Dec-1978.pdf.
- ZELDES, STEPHEN P. (1989): "Consumption and Liquidity Constraints: An Empirical Investigation," Journal of Political Economy, 97, 305–46, Available at http://www.jstor.org/stable/1831315.