

Introduction

- Signal detection = the problem of deciding which signal is present from 2 or more possibilities
 - one possibility may be that there is no signal
- ▶ Based on **noisy** observations
 - signals are affected by noise

The model for signal detection

Figure 1: Signal detection model

Contents:

- ▶ Information source: generates messages a_n with probabilities $p(a_n)$
- ▶ Modulator: transmits a signal $s_n(t)$ for message a_n
- Channel: adds random noise
- ▶ Sampler: takes samples from the signal $s_n(t)$
- \triangleright Receiver: **decides** what message a_n has been transmitted

Practical scenarios

- Data transmission
 - ▶ binary voltage levels (e.g. $s_n(t) = constant$)
 - ▶ PSK modulation (Phase Shift Keying): $s_n(t) = \text{cosine}$ with same frequency but various initial phase
 - ► FSK modulation (Frequency Shift Keying): $s_n(t) = \text{cosines with}$ different frequencies
- Radar
 - ▶ a signal is emitted; if there is an obstacle, the signal gets reflected back
 - the receiver waits for possible reflections of the signal and must decide
 - no reflection is present -> no object
 - reflected signal is present -> object detected

Generalizations

- ▶ Decide between more than two signals
- Number of observations:
 - use only one sample
 - use multiple samples
 - observe the whole continuous signal for some time T

Detection of a constant signal, white normal noise, 1 sample

- ► Simplest case: detection of a constant signal contaminated with white normal noise, using 1 sample
 - ▶ two messages *a*₀ and *a*₁
 - messages are encoded as constant signals
 - for a_0 : send $s_0(t) = 0$
 - for a_1 : send $s_1(t) = A$
 - over the signals there is white noise, normal distribution $\mathcal{N}(0, \sigma^2)$
 - ▶ receiver takes just 1 sample
 - decision: compare sample with a threshold

Decision

- ▶ The value of the sample taken is r = s + n
 - s is the true underlying signal ($s_0 = 0$ or $s_1 = A$)
 - n is a sample of the noise
- ▶ *n* is a (continuous) random variable, with normal distribution
- r is a random variable also
 - what distribution does it have?
- Decision is taken by comparing with a threshold T:
 - ▶ if r < T, take decision D_0 : decide the true signal is s_0
 - ▶ if $r \ge T$, take decision D_1 : decide the true signal is s_1

Hypotheses

- Receiver chooses between two hypotheses:
 - ▶ H_0 : true signal is s_0 (a_0 has been transmitted)
 - $ightharpoonup H_1$: true signal is s_1 (a_1 has been transmitted)
- Possible results
 - 1. No signal present, no signal detected.
 - ▶ Decision D_0 when hypothesis is H_0
 - ▶ Probability is $P(D_0 \cap H_0)$
 - 2. False alarm: no signal present, signal detected (error)
 - ▶ Decision S_1 when hypothesis is H_0
 - ▶ Probability is $P(D_1 \cap H_0)$
 - 3. **Miss**: signal present, no signal detected (error)
 - ▶ Decision D_0 when hypothesis is H_1
 - ▶ Probability is $P(D_0 \cap H_1)$
 - 4. Signal detected correctly: signal present, signal detected
 - ▶ Decision D_1 when hypothesis is H_1
 - ▶ Probability is $P(D_1 \cap H_1)$

Maximum likelihood criterion

- ► Choose the hypothesis that **seems most likely** given the observed sample *r*
- ▶ The **likelihood** = the probability density of *r* given

Minimum risk (cost) criterion

- How to choose the threshold? We need criteria
 - ▶ In general: how to delimit regions R_i ?
- Minimum risk (cost) criterion: assign costs to decisions, minimize average cost
 - $ightharpoonup C_{ij} = \text{cost of decision } D_i \text{ when symbol was } a_j$
 - $C_{00} = \text{cost for good } a_0 \text{ detection}$
 - $C_{10} = \text{cost for false alarm}$
 - $ightharpoonup C_{01} = \text{cost for miss}$
 - $C_{11} = \text{cost for good } a_1 \text{ detection}$
- ▶ The risk = the average cost

$$R = C_{00}P(D_0 \cap a_0) + C_{10}P(D_1 \cap a_0) + C_{01}P(D_0 \cap a_1) + C_{11}P(D_1 \cap a_1)$$

Minimum risk criterion: minimize the risk R

Computations

- Proof on table:
 - Use Bayes rule
 - Notations: $w(r|a_i)$ (likelihood)
 - ▶ Probabilities: $\int_{R_i} w(r|a_j) dV$
- Conclusion, decision rule is

$$\frac{w(r|a_1)}{w(r|a_0)} \ge \frac{(C_{10} - C_{00})p(a_0)}{(C_{01} - C_{11})p(a_1)}$$
$$\Lambda(r) \ge K$$

- ▶ Interpretation: effect of costs, probabilities (move threshold)
- Can also apply logarithm (useful for normal distribution)

$$\ln \Lambda(r) \geqslant \ln K$$

Example at blackboard: random noise with $N(0, \sigma^2)$, one sample

Ideal observer criterion

- ▶ Minimize the probability of decision error P_e
 - ▶ definition of P_e
- Particular case of minimum risk, with
 - $C_{00} = C_{11} = 0$ (good decisions bear no cost)
 - $C_{10} = C_{01}$ (pay the same in case of bad decisions)

$$\frac{w(r|a_1)}{w(r|a_0)} \gtrless \frac{p(a_0)}{p(a_1)}$$

Maximum likelihood criterion

▶ Particular case of above, with equal probability of messages

$$\frac{w(r|a_1)}{w(r|a_0)} \geqslant 1$$

$$\ln \frac{w(r|a_1)}{w(r|a_0)} \geqslant 0$$

- Example at blackboard: random noise with $N(0, \sigma^2)$, one sample
- **Example** at blackboard: random noise with $N(0, \sigma^2)$, **two** samples