

בי אונים :

התדר של התמרת DFT הוא תדר בדיד, k, כאשר $k=0,1,\ldots,N-1$ התדר של התמרת $k=0,1,\ldots,N-1$

 $\frac{2\pi}{N}$ המרווח בין דגימות התדר של DTFT הוא $\frac{2\pi}{N}$ א המרווח בין דגימות התדר של $\omega_{\rm K}=\frac{9\pi}{N}$ א $\omega_{\rm K}=\frac{9\pi}{N}$

$$\omega_k \to \Omega_k = \frac{\omega_k}{T} = 2\pi \frac{k}{N} \cdot \frac{1}{T} = 2\pi \frac{k}{N} F_s$$
 Dift \to fT

H[H] Se K pairs be [Hz] > 130
$$F_k = \frac{\Omega_k}{2\pi} \rightarrow \boxed{F_k = \frac{k}{N} \frac{1}{T} = \frac{k}{N} F_s}$$

ם תדרי ω הקשורים להתמרת DFT הם בתחום $(0,2\pi)$, $\omega_k=\frac{2\pi}{N}, k=0,1,\dots,N-1$ בהתאם לקשר $\left(-\frac{\Omega_s}{2},0\right)$ המתיחסים לתחום תדרים שליליים של $\left(\pi,2\pi\right)$ החזרת התדרים "למקומם" נעשת ע"י פקודה fftshift.

Page 1 עיבוד אותות ספרתי

EITHE MOGEN:

$$X(t) = \cos(2\pi F_0 t) \qquad \text{NE} \qquad \text{INS}$$

$$F_S = \frac{1}{T} = 1 \text{ kHz}$$

$$F_0 = 12S \text{ Hz}$$

$$X[k] \quad \text{s. L. Aprol} \qquad \Rightarrow \quad x[n] = x(nT) = \cos(2\pi F_0 T_n)$$

$$N = 200 \quad : \text{NNZ3} \qquad h = 0, ..., 199 \qquad \Rightarrow \quad \cos(2\pi \frac{F_0}{F_S k})$$

$$X = 0, ..., 199 \qquad \Rightarrow \quad \cos(\pi \cdot \frac{2 \cdot 12S}{1000} n) = \cos(\frac{T_0}{4} n)$$

X(K) = DFT x[m]y

8 x be 77x 65 7"e8: 770/

* קכלנו פין ב צ=2 באירך ססף

 $F_k = \frac{\Omega_k}{2\pi} \to \boxed{F_k = \frac{k}{N} \frac{1}{T} = \frac{k}{N} F_s}$

 $N - \lambda$ 7716824 ET NE SN718 e' - $F_{(K=25)} = \frac{k \frac{25}{200} \cdot 1000 F_5}{1200} = 125 H_2 - \frac{k^2}{200} \cdot \frac{25}{100} = 125 H_2 - \frac{k^2}{200} = 125 H_2 - \frac{k^2}{200$

u e e e de 19.9 a 4888 0.19.50

M=100 PR 7 FS/N 7 BA 001=N/N FS/N 7 BA 001=N/N S/N 125 = 125 BA 125 = 125 BA 125 = 125 BA 125 = 125 BA 125

=> K = 125

ריכור באבסים ביט ביט את לתקרין אור ליטור:

אורך הגם של התחרה א אורך הגם של התחרה א אורך הגדלה של תספר בצימה כתור (של דקדם).

עפוראר

Mora: BROE'C NGIL 8-8 XEIN SEIS

Cald "200 6.30 PAN 45H (E) MODE, FLUM

$$\begin{split} &\delta(\mathfrak{L}) \quad \text{id} \quad \text{21S} \quad \text{7 S} \quad \cos \quad \delta \mathfrak{C} \quad \text{3.2 A.S.} \quad \Leftarrow \\ &x_c(t) = A\cos(\Omega_1 t + \varphi) \\ &= \frac{A}{2} e^{-j\Omega_1 t} e^{-j\varphi} + \frac{A}{2} e^{j\Omega_1 t} e^{j\varphi}. \end{split}$$

 $w_c(t)$ $w_c(j\Omega)$ $M_c(j\Omega)$ $M_c(j$

 $| \frac{1}{\sqrt{2}} | \frac$

 $\tilde{x}_c(t) = w_c(t)x_c(t)$ $\tilde{X}_c(j\Omega) = W_c(j(\Omega)) * X_c(j\Omega)$ $\frac{T_0}{2}$ t Ω

Sinc 215 Fig. 8() 215 Pip $\sqrt{2}$ $\stackrel{\checkmark}{\Leftarrow}$ $\tilde{x}_c(t) = w_c(t)x_c(t) = \frac{A}{2}w_c(t)e^{-j\Omega_1t}e^{-j\varphi} + \frac{A}{2}w_c(t)e^{j\Omega_1t}e^{j\varphi}$

s

 $\tilde{X}_c(j\Omega) = W_c(j(\Omega)) * X_c(j\Omega) = \frac{A}{2}W_c(j(\Omega + \Omega_1))e^{-j\varphi} + \frac{A}{2}W_c(j(\Omega - \Omega_1))e^{j\varphi}$ טיכום:

- יטיעי אות ארוך יותר בזמן ש ה-sinc בתדר הוא צר יותר. (אבל אלפליטונת ארוך יותר בזמן ש ה-sinc בתדר הוא צר יותר.

ם מדובר במגבלה מובנת.

- א. דליפה ספקטרלית (spectral leakage) הגורמת להופעת תדרים "חדשים".
 - ם האות התאורטי הוא פונ' דלתה.
 - ם בפועל מתקבל פיק ברוחב משמעותי.
- ב. התרחבות (smearing) ספקטראלית, הגורמת לפונציות דלתא להיות רחבות יותר.
 - ם בתאוריה, האות אמור להיות שווה ל-0 למחוץ לפיק המרכזי.
 - ם בפועל ישנה גליות, דועכת או קבוע, בכל התדרים מחוץ לפיק המרכזי.

חלון לא מלבני

