Data Structures for Disjoint Set

Union-Find Data Structure

Disjoint Set Data Structure

Disjoint Set Data Structure

- ▶ Storing a family of sets $S = \{S_1, S_2, ..., S_k\}$ with $i \neq j \rightarrow S_i \cap S_j = \emptyset$.
- ▶ Each set S_i is identified by a *representative* $s_i \in S_i$.
- ► Three operations: Make-Set, Union, Find-Set

Make-Set(x)

- \triangleright Creates a new set $\{x\}$. (Clearly, x is representative of the set.)
- x cannot be in any other set already.

Union(x, y)

Merges the sets containing x and y into one set.

Find-Set(x)

ightharpoonup Finds the representative of the set containing x.

Implementation

Idea

- ▶ Represent each set S_i as rooted tree (i. e., S is a forest).
- ► Root of tree is representative

Example: $S = \{\{b, c, e, h\}, \{d, f, g\}\}$

Implementation — Find-Set

Find-Set

Follow pointers to root.

Example: Find(b) = c

Implementation — Find-Set

```
1 Procedure Find-Set(x)
2 While par(x) \neq x
3 Let x := par(x).
4 Return x
```

Implementation — Union

Union(x, y)

- Find the representatives r_x and r_y of x and y (i. e., find roots of trees).
- ▶ Make r_x parent of r_y

Example: Union(b, g)

Implementation — Union

```
1 Procedure Union(x, y)
2 \subseteq Set par(Find-Set(x)) := Find-Set(y)
```

Implementation

Questions

- What is the worst-case runtime for these operations?
- Can we improve the runtime?

Implementation

Questions

- What is the worst-case runtime for these operations?
- ► Can we improve the runtime?

Example

- Assume that we perform Union(1, 2), Union(1, 3), Union(1, 4), . . ., Union(1, n).
- ▶ Then, the runtime is in $O(n^2)$.

Improving Find-Set

Observation

If we use Find-Set multiple times on the same element, we have to search for the root each time again.

Idea

 Update the parent pointer when calling Find-Set such that it points on the root.

```
1 Procedure Find-Set(x)
2 | If par(x) \neq x Then
3 | Set par(x) := Find-Set(par(x))
4 | Return par(x)
```

Improving Find-Set

Example: Find(*a*)

Improving Find-Set

Example: Find(*a*)

Improving Union

Idea: Union by Rank

- Keep track of height of a tree.
 Number is denoted as rank of a vertex.
- Make root of smaller tree child of root of larger tree.

Observation

We only need to keep track of the rank of the root.

Improving Union

```
Procedure Union(x, y)
      Let x := Find-Set(x).
2
      Let y := Find-Set(y).
      If rank(x) > rank(y) Then
4
         Set par(y) := x.
6
      Else
         Set par(x) := y.
         If rank(x) = rank(y) Then
8
             Set rank(y) := rank(y) + 1.
```

Runtime

Assume our sets contain n elements in total.

Runtime

- ▶ Worst case for single operation: $O(\log n)$ (Why?)
- ► Worst case for m operations: $O(m \cdot \alpha(n))$ Thus, $O(\alpha(n))$ amortised runtime per operation.

α -Function

- Inverse Ackermann function
- α (atoms in the universe) ≤ 4
- Grows extremely slow. However, it is strictly speaking not constant.

Partition Refinement

Partition Refinement

Union-Find

- ▶ Start with a partition $\mathcal{P} = \{S_1, S_2, \dots, S_k\}$ of a set \mathcal{S}
- ► Step by step join two sets S_i and S_j together.
- ▶ $Union(i, j): \mathcal{P} := (\mathcal{P} \setminus \{S_i, S_j\}) \cup \{S_i \cup S_j\}$

Partition Refinement

- ► Start with a partition $\mathcal{P} = \{S_1, S_2, \dots, S_k\}$ of a set \mathcal{S} (often $\mathcal{P} = \{\mathcal{S}\}$)
- ▶ Step by step, based on a set $X \subseteq S$, split subsets S_i into $S_i \setminus X$ and $S_i \cap X$.
- ▶ Refine(X): $\mathcal{P} := \{ S \setminus X, S \cap X \mid S \in \mathcal{P} \}$

Implementation - Data Structure

Data Structure

- Set $\mathcal S$ is an array storing all its elements.
- ▶ Partition \mathcal{P} is a (doubly-linked) list of subsets S_i
- Subset S_i is represented by two integers which describe the interval (i. e., the first and last index) of S_i in the array S

Implementation – Refinement

Refinement

▶ Flag all elements $s_i \in X$.

Implementation - Refinement

Refinement

- ▶ Flag all elements $s_i \in X$.
- \triangleright For each subset S_i
 - Reorder such that flagged elements are in front.

Implementation - Refinement

Refinement

- ▶ Flag all elements $s_i \in X$.
- \triangleright For each subset S_i
 - Reorder such that flagged elements are in front.
 - ightharpoonup Split S_i into two sets containing only flagged or non-flagged elements.

Computing Twins

Twins

In a graph G, two vertices u and v are called *twins* if they have the same neighbourhood. We distinguish between *true twins* where N[u] = N[v] and *false twins* where N(u) = N(v).

Algorithm Idea

- ▶ Let S be a copy of V and $P = {S}$.
- For each vertex v of G, Refine(N[v]).

Observation

- Two vertices u and v are twins if and only if there is no vertex w such that Refine (N[w]) separates u and v.
- ► Therefore, in the resulting partition $\mathcal{P} = \{S_1, S_2, \dots, S_k\}$, each subset S_i is a set of twins.