Math 146 Notes

velo.x

Instructor: Ross Willard NC 5006

Section: 001

Tutorial: Monday, 4:30, RCH 305

Contents

1	Vector Space		
	1.1	Vector Space Jan 6	
		Vector Space and Introduction to Linear Combination Jan 8	
		Subspace Jan 10	
	1.4	Span Jan 13	
	1.5	Basis Jan 17	
	1.6	Dimensioning a Vector Space - Jan 20	
	1.7	Direct Sum:	
2	Ion	22	
	Jan	Jan 24	
	4.1	Jan 24	

1 Vector Space

1.1 Vector Space Jan 6

Definition 1.1.1 (Pseudo-Field). A field is an algebraic system \mathbb{F} having:

- two elements 0 and 1
- operations $+, \times, -$, and $()^{-1}$ (defined on nonzero elements)

satisfying "the obvious" properties.

See appendix of the textbook.

Examples: \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{Z}_{prime} . $\mathbb{Q}(x) = \{\frac{f(x)}{g(x)} : f, g \ polynomials, g \neq 0\}$

NonExamples: $\{0\}$, $\mathbb{Z}_m(m \ not \ prime)$, Quaternions.

Definition 1.1.2 (Vector Space). A vector space over \mathbb{F} is a set V with two operations:

- Addition: $V \times V \rightarrow V \ x + y$
- Scalar Multiplication: $\mathbb{F} \times V \to V$ ax

satisfying 8 properties: $\forall x, y, z \in V$, $\forall a, b \in \mathbb{F}$

- *V1*: x + y = y + x
- V2: x + (y + z) = (x + y) + z
- V3: $\exists a "zero vector" 0 \in V s.t. x + 0 = x$
- V4: $\forall x \in V$, $\exists u \in V$, s.t. x + u = 0
- V5: 1x = x
- V6: (ab)x = a(bx) *let · denote scalar multiplication
- V7: a(x + y) = ax + ay
- V8: (a+b)x = ax + bx

Objective 1.1.1.

- Defining/Constructing
- Proving that a system is a vector space

Example 1: \mathbb{R} def: set of all n-tuples of real numbers

$$(x_1, \cdots, x_n) + (y_1, \cdots, y_n) =$$

 $a(x_1,\cdots,x_n)$ defined (ax_1,\cdots,ax_n) Claim: \mathbb{R}^n is a vector space over \mathbb{R}

Proof. Check V1:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

= $(y_1 + x_1, \dots, y_n + x_n)$
= $(y_1, \dots, y_n) + (x_1, \dots, x_n)$

More generally, for any field \mathbb{F} , \mathbb{F}^n is a field over \mathbb{F} .

Example 2: $\mathbb{R}^{[0,1]} = \{all \ functions \ f : [0,1] \to \mathbb{R} \}$

- $(f+h)(x) \stackrel{def}{=} f(x) + g(x)$
- (af)(x) = af(x)

Claim: $\mathbb{R}^{[0,1]}$ is a vector space $/\mathbb{R}$.

Proof. V3: Let $\overline{0}$ be the constant 0 function, i.e., $\overline{0}(x) = 0 \ \forall x \in [0,1] \ \overline{0} \in \mathbb{R}^{[0,1]}$

Check: $f + \overline{0} = f \ \forall f \in \mathbb{R}^{[0,1]}$

$$(f + \overline{0})(x) = f(x) + \overline{0}(x)$$
$$= f(x) + 0 = f(x)$$

Since $x \in [0,1]$ arbitrary, $f + \overline{o} = f$.

More generally, for any set D, and any field \mathbb{F} , \mathbb{F}^D is a vector space over \mathbb{F} .

Example 3: let $\mathbb{F} = \mathbb{Z}_2$.

Define $W = \{APPLE\},\$

- $APPLE + APPLE \stackrel{def}{=} APPLE$
- $0APPLE \stackrel{def}{=} APPLE$
- $1APPLE \stackrel{def}{=} APPLE$

Claim: W is a vector space over \mathbb{Z}_2 .

1.2 Vector Space and Introduction to Linear Combination Jan 8

Examples: 1. $\mathbb{R}^n : \mathbb{F}^n$, 2. $\mathbb{R}^{[0,1]}$, : \mathbb{F}^D , 3. $\{APPLE\}$.

4. Fix a field \mathbb{F} , for $n \geq 0$, $P_n(\mathbb{F})$ is the set of all polynomials, of degree $\leq n$, in variable x, with coefficients from \mathbb{F} ,

$$= \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n : a_i \in \mathbb{F}\}\$$

Addition, scalar mult are "obvious", using op's of \mathbb{F} .

Claim: $P_n(\mathbb{F})$ is a vecor space $/\mathbb{F}$.

5. $\mathbb{F}[x]$ = the set of all polynomials in x with coefficients from $\mathbb{F} = \bigcup_{n=0}^{\infty} P_n(\mathbb{F})$

<u>Claim:</u> with the "obvious" op's $\mathbb{F}[x]$ is a V.S. $/\mathbb{F}$.

Theorem 1.2.1 (Cancellation Law). Let V be a V.S., $/\mathbb{F}$, if $x, y, z \in V$, and x + z = y + z, then x = y.

Proof. Let $u \in V$ be such that z + u = 0 (from V4).

Then

$$x = x + 0$$
 (V3)
 $x = x + (z + u)$ (Choice of u)
 $x = (x + z) + u$ (hypothesis)
 $x = (y + z) + u$ (V2)
 $x = y + (z + u)$ (V2)
 $x = y + 0$ (choice of u)
 $x = y$

Corollary 1.2.1. Suppose V is a V.S., there is exactly one "zero vector". i.e. a vector satisfy V3. in V.

Proof. Assume $0_1, 0_2 \in V$, both satisfying V3, i,e, $x + 0_1 = x$ and $x + 0_2 = x$, $\forall x \in V$.

$$0_1 = 0_1 + 0_1$$
$$0_1 = 0_1 + 0_2$$

$$0_1 + 0_1 = 0_1 + 0_2$$

= $0_2 + 0_1$ (V1)
 $0_1 = 0_2$ (By Cancellation)

Corollary 1.2.2. Suppose V is a V.S. and $x \in V$, then the vector u in V4 is unique.

Proof. Assume $u_1, u_2 \in V$ both satisfy $x + u_1 = 0 = x + u_2$, then

$$u_1 + x = u_2 + x$$
 (V1)
 $u_1 = u_2$ (By Cancellation)

П

Definition 1.2.1. Given a V.S. V and $x \in V$,

- the unique vector $u \in V$ s.t. x + u = 0 is denoted -x.
- x y denotes x + (-y)

Note: V2 justifies $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_kx_k$ not worry about parentheses.

Definition 1.2.2 (Linear Combination). $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_kx_k$ is called a linear combination of x_1, \dots, x_k .

Basic Problem: Given a V.S. V/\mathbb{F} , and $u_1, u_2, \dots, u_n \in V$ and $x \in V$ to decide whether x is a linear combination of u_1, \dots, u_n .

Example: $V = \mathbb{Q}[x]$ over \mathbb{Q} . Let $p = 4x^4 + 7x^2 - 2x + 3$.

- $u_1 = x^4 x^2 + 2x + 1$
- $u_2 = 2x^4 + 3x^2 + 2x$
- $u_3 = x^4 + 4x^2 + 1$
- $u_4 = 2x^3 + 3$
- $u_5 = x^4 + 1$

Is p a linear combination of u_1, \dots, u_5 ? Solution: search for $a_1, \dots, a_5 \in \mathbb{Q}$ s.t.

$$p = a_1u_1 + a_2u_2 + \cdots + a_5u_5$$

$$4x^{4} + 7x^{2} - 2x + 3 = a_{1}(x^{4} - x^{2} + 2x - 1) + a_{2}(2x^{4} + 3x^{2} + 2x) + a_{3}(x^{4} + 4x^{2} + 1)$$

$$+ a_{4}(2x^{3} + 3) + a_{5}(x^{4} + 1)$$

$$= (a + 1 + 2a_{2} + a - 3 + a_{5})x^{4} + (2a^{4})x^{3} + (-a_{1} + 3a_{2} + 4a_{3})x^{2}$$

$$+ (2a_{1} + 2a_{2})x + (-a_{1} + a_{3} + 3a_{4} + a_{5})$$

$$\begin{cases} a_1 + 2a_2 + a_3 + a_5 = 4 \\ 2a_4 = 0 \\ -a_1 + 3a_2 + 4a_3 = 7 \\ 2a_2 + 2a_2 = -2 \\ -a_1 + a_3 + 3a_4 + a_5 = 3 \end{cases}$$

No solution.

1.3 Subspace Jan 10

Notation 1.3.1.

- ullet 0 denote the unique vector in V
- x denote the unique $u \in V$ satisfying V4

Theorem 1.3.1. Suppose V is a VS/ \mathbb{F} , $X \in V$, $a \in \mathbb{F}$.

- 1. 0x=0, the first 0 is scalar, the second 0 is a vector
- 2. (-a)x=a(-x)=-(ax)
- 3. a0=0

Definition 1.3.1. *Suppose* V *is a* V.S. *over* \mathbb{F} , $S \subseteq V$,

- Closed under Addition: if $x, y \in S$, $x + y \in S$.
- Closed under Scalar Multiplication: if $x \in S \Rightarrow ax \in S$, $\forall a \in \mathbb{F}$.

Definition 1.3.2 (Subspace). Let V be a VS/ \mathbb{F} , $S \subseteq V$, say S is a Subspace of V if

- 1. S is closed under addition and scalar multiplication
- 2. $S \neq \emptyset$

Theorem 1.3.2. Suppose V is a vector space $/\mathbb{F}$ and S is a subspace of V, then S, together the operations of V restricted to S.

- \bullet +_S: $S \times S \rightarrow S$
- $\bullet \cdot_S : \mathbb{F} \times S \to S$

Proof. Given V, S, must prove: S with restricted operations of V, satisfying V1 to V8.

V1: must show: if $X, y \in S$, then x + y = y + x. Since $S \in V$, hence $x, y \in S \Rightarrow x, y \in V$, and $V \models V1$. Same proof works for V2, 5, 6, 7, 8.

For V3, know $S \neq \emptyset$, take any $x \in S$, consider $0x = 0 \in S$. (S is closed under scalar multiplication) Hence there eixst a zero vector in S.

For
$$V4$$
, fix $x \in S$, let $u = (-x)x \in S$, then $x + u = 1x + (-1)x = (1 + (-1))x = 0x = 0$.

Note: in every \mathbb{F} , $\forall a \in \mathbb{F}$, $\exists c \in \mathbb{F}a + c = 0$, c = -a. Since $1 \in \mathbb{F}$, $-1 \in \mathbb{F}$.

1.4 Span Jan 13

Recall: If V is a V.S. / \mathbb{F} , and $u_1, \dots, u_n, x \in V$, then x is a linear combination (lin. combo.) of u_1, \dots, u_n if $\exists a_1, \dots, a_n$ such that $x = a_1u_1 + a_2u_2 + \dots + a_nu_n$.

Definition 1.4.1. *Suppose* V *is a V.S.* $/\mathbb{F}$, $x \in V$, and $\emptyset \neq S \subseteq V$.

- 1. Say x is a lin. combo. of S if \exists finitely many $u_1, \dots, u_n \in S$, s.t. x is a lin. combo. of u_1, \dots, u_n . $S = \{u_1, u_2, \dots, u_n\}, x = \sum_{n=0}^{\infty} a_n u_n$, converge.
- 2. The **Span** of S written span(S), is the set of all linear combinations of S.
- 3. $span(\emptyset) \stackrel{df}{=} \{0\}$

Examples

- In \mathbb{R}^2 , $S = \{(1,1)\}$, what is span(S)? the
- In \mathbb{R}^3 , $S = \{(1,0,0), (1,1,0)\} = \{a(1,0,0) + b(1,1,0) : a,b \in \mathbb{R}\} = \{(a+b,b,0) : a,b \in \mathbb{R}\} = (s,t,0) : s,t,\in \mathbb{R}$ =the plane given by z=0
- In $\mathbb{R}[x]$, let $S = \{x, x^2, x^3, \dots\}$, $span(S) = \{f \in \mathbb{R}[x] : f(0) = 0\}$.

Proposition 1.4.1. $(\emptyset \neq S \subseteq V)$. Suppose $u_1, \dots, u)n \in S$, $x \in V$. Suppose x is a linear combination of u_1, \dots, u_n . If v_1, \dots, v_n are more vectors from S, then x is also a linear combination of u_1, \dots, u_n , v_1, \dots, v_n .

Proposition 1.4.2. *If* $S = \{u_1, \dots, u_n\}$, then $span(S) = \{a_1u_1, \dots, a_ku_k, a_1, \dots, a_k \in \mathbb{F}\}$.

Proposition 1.4.3. *If* $S \subseteq T \subseteq V$, then $span(S) \subseteq span(T)$.

Proposition 1.4.4. If S is infinite, if $x, y \in span(S)$, say x is a linear combo of $u_1, \dots, u_n \in S$, y is a linear combo of $v_1, \dots, v_n \in S$, then x, y are linear combos of $u_1, \dots, u_n, v_1, \dots, v_n$.

Generalization 1.4.1. If $x_1, \dots, x_k \in span(S)$, then $\exists u_1, \dots, u_n \in S$, s.t. each x_l is a linear combo of u_1, \dots, u_n .

Theorem 1.4.1. Suppose V is a $V.S / \mathbb{F}$, $S \subseteq V$, then span(S) is the (unique) smallest subspace of $V \supseteq S$. i.e.

- 1. span(S) is a subspace of V.
- 2. $S \subseteq span(S)$
- 3. If W is any subspace of V containing S, then $span(S) \subseteq W$.

Proof. (2) Let $x \in S$, x = 1x, a linear combination of finitely many vectors in S.

(1) i) Closure under scalar multiplication: let $x \in span(S)$, $c \in \mathbb{F}$, $\Rightarrow \exists u_1, \dots, u_n \in S$, s.t. $x = a_1x_1 + \dots + a_nx_n$, so

$$cx = c(a_1u_1 + \dots + a_mu_m) = (ca_1)u_1 + \dots + (ca_n)u_n$$

II)Closure under vector addition: let $x, y \in span(S)$, want to prove that $x + y \in span(S)$.

By the technical remark, $\exists u_1, \dots, u_n \in S$ s.t. $x = a_1u_1 + \dots + a_nu_n, y = b_1u_1 + \dots + a_nu_n, a_i, b_i \in \mathbb{F}$,

Then,
$$x + y = (a_1u_1 + \dots + a_nu_n) + (b_1u_1 + \dots + b_nu_n) = (a_1 + b_1)u_1 + \dots + (a_n + b_n)u_n$$
.

So $x + y \in span(S)$.

Finally, if $S = \emptyset$, then $span(S) = \{0\}$, if $S \neq \emptyset$, then S ubseteqspan(S),

either case, $span(S) \neq \emptyset$, so span(S) is a subspace of V.

3) Let W be a subspace

<u>Intuition:</u> Redundancies in span. Example: V / \mathbb{F} , suppose $S = \{u_1, \dots, u_5\} \subseteq V$.

Assume u_3 is a linear combination of u_2, u_4, u_5 .

$$u_3 = c_2 u_2 + c_4 u_4 + c_5 u_5$$

 $\underline{\mathbf{Claim:}}\ (S) = Span(S - \{u_3\}).$

Proof. RTP \subseteq and \supseteq .

Span(S) is

- a subspace of V
- which contains $S \setminus \{u_3\} = \{u_1, u_2, \cdots, u_3\}$

By the theorem, the samllest subspace of V containing $S\setminus\{u_3\}$ is $Span(S\setminus\{u_3\})$. hence $Span(S)\supseteq Span(S\{u_3\})$.

To prove that $Span(S) \subseteq Span(S \setminus \{u_3\})$,

let $x \in Span(S)$, i.e.

$$x = a_1u_1 + a_2u_2 + a_3u_3 + a_4u_4 + a_5u_5$$

= $a_1u_1 + a_2u_2 + a_3(c_2u_2 + c_4u_4 + c_5u_5) + q_4u_4 + a_5u_5$
= $a_1u_1 + (a_2 + a_3c_2)u_2 + (a_4 + a_3c_4)u_4 + (a_5 + a_3c_5)u_5$

$$x \in Span(\{u_1, u_2, u_4, u_5\})$$

Also Observe:

$$0u_1 + c_2u_2 + (-1)u_3 + c_4u_4 + c_5u_5 = 0$$

A linear combination of u_1, \dots, u_5 equally the 0 vector with coefficients not all 0.

So we code redundacies formally with definition:

Definition 1.4.2. $(V\mathbb{F}, S \subseteq V)$, S is linearly dependent if \exists distinct vectors $u_1, \dots, u_n \in S$, and $\exists a_1, \dots, a_n \in \mathbb{F}$, not all 0, such that

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0(zero\ vector)$$

S is linearly independent if S is not linearly dependent.

S is linearly dependent \iff $(\exists distinct \ u_1, \cdots, u_n \in S)(\exists a_1, \cdots, a_n \in \mathbb{F}, \not \supset 0)(a_1u_1 + \cdots + a_nu_n) = 0$ $\equiv (\forall distinct \ u_1, \cdots, u_n \in S)()$

Technical Remark: when $S = \{u_1, \dots, u_n\}$ without reports

- Can drop $(\forall \ distinct \ u_1. \cdots, u_n \in S)$ in choice of linear independence.
- -Can drop $(\exists \ distinct \ u_1 \cdots u_1, \cdots, u_n \in S)$ in choice of linear dependence.

Example 2: Is $S = \{(0, 1, 1), (1, 0, 1), (1, 2, 3)\}$ linear dependent? (in \mathbb{R}^3)

Try to find: $a, b, c \in \mathbb{R}$ s.t.

$$a \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$$

Shows S is linearly dependent.

Question: If $S = \emptyset$, S is linearly dependent.

Question 2: If $S = \{0\}$, S linearly dependent. Can write $1 \cdot 0 = 0$.

More Generally, if $0 \in S \subseteq V$, then S is linearly dependent.

Theorem 1.4.2 (Linear Dependence). $V\mathbb{F}$, $S \subseteq V$, then S is linearly dependent, iff $S = \{0\}$ or $\exists x \in S$, s.t. x is a linear combination of some vectors in $S \setminus \{x\}$.

1.5 Basis Jan 17

Recall If V is a V.S. / \mathbb{F} , $S \subseteq B$.

- 1. span(S) = set of all linear combinations of S
- 2. S is linearly dependent if $\exists u_1, u_2, \cdots, u_n \in S$ (distinct), $\exists a_1, \cdots, a_n \in \mathbb{F}$ not all 0, s,t, $a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0$.
 - -else, S is linearly independent.

Definition 1.5.1. V is $V.S. / \mathbb{F}$,

- 1. A set $S \subseteq V$ is a spanning set of Span(S) = V. Also say S spans V.
- 2. *V* is finitely spanned if *V* has a finite spanning set. *V* is countably spanned if *V* has a countable spanning set.

Examples: \mathbb{R}^3 is finitely spanned, e.g. by $\{e_1, e_2, e_3\}$.

so is \mathbb{R}^n e.g. by $\{e_1, e_2, \cdots, e_n\}$, $e_i = (0, 0, \cdots, 1, 0, \cdots, 0)$ with 1 at i_{th} spot.

 $\mathbb{R}[x]$ is countably spanned e.g. by $\{1, x, x^2, x^3, \cdots\}$. not finitely spanned.

 $\mathbb{R}^{[0,1]}$ not countably spanned.

Definition 1.5.2. V is a $V.S. / \mathbb{F}$.

A <u>basis</u> for V is any $S \subseteq V$, which

- spans V, and
- S is linearly independent

Examples: $\{e_1, \cdots, e_n\} \subseteq \mathbb{F}^n$ is a basis for \mathbb{F}^n .

 $\{1, x, x^2, x^3, \cdots\} \subseteq \mathbb{R}[x]$ is a basis for $\mathbb{R}[x]$.

Theorem 1.5.1. Every countably spanned V.S. has a basis.

Proof. Suppose V.S. V is spanned by countable set S, so either $S = \{v_1, v_2, \cdots, v_n\}$, or $S = \{v_1, v_2, \cdots\}$, WLOG, we assume $0 \notin S$, define

$$T = \{v_j \in S, v_j \notin span(v_1, v_2, \cdots, v_{j-1})\},\$$

Claim that T is a basis for V.

<u>Proof of Claim:</u> 1^{st} show T is linearly independent, by contradiction, assume T is linearly dependent.

Then, $\exists k$, and scalars a_1, a_2, \dots, a_n (not all 0), s,t,

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$$

Choose least k for which this is true.

<u>Claim:</u> $k \neq 1$, if k = 1, $a_1v_1 = 0 \Rightarrow v_1 = 0$, but $0 \notin T$, contradiction.

so k > 1, Assume $a_k = 0$, then

$$a_1v_1 + a_2v_2 + a_{k-1}v_{k-1} = 0$$

Not all of $a_1, a_2, \dots, a_{k-1} = 0$.

Next, show span(S)

Remark:

- 1. Every Vector Space has a basis. proof: some version of axiom of choice
- 2. bases is not unique, every V.S. except $\{0\}$, has multiple bases.
- 3. What is a basis for $V = \{0\}$?

Theorem 1.5.2 (Axiom of Choice). Suppose A, B are sets, $f: A \rightarrow$.

1.6 Dimensioning a Vector Space - Jan 20

Given a vector space V, Is a basis unique?

No.

Relation between two basis of a vector space. (finitely spanned vector spaces)

Theorem 1.6.1. Let V be a finitely spanned vector space over a field \mathbb{F} , let $\{v_1, \dots, v_m\}$ be a basis of V, let $\{w_1, \dots, w_n\} \subset V$ and n > m. Then $\{w_1, \dots, w_n\}$ is linearly dependent.

Sketch. Idea: Replace successfully v_1, v_2, \dots, v_n , by w_1, w_2, \dots, w_n so that

$$span(\{w_1, w_2, \dots, w_i, v_{i+1}, \dots, v_m\}) = span(\{v_1, v_2, \dots, v_i, v_{i+1}\})$$

$$1 \le i \le m-1$$
.

Proof. Assume $\{w_1, \dots, w_n\}$ is linearly independent. Prove the statement by induction.

<u>Base Case:</u> (i=1), since $\{v_1, \dots, v_m\}$ is a basis for V and $w_1 \in V$, there exist $a_1, \dots, a_m \in \mathbb{F}$ s.t. $w_1 = a_1v_1 + \dots + a_mv_m$.

By the assumption, $w_1 \neq 0$, hence one of the a'_k s is nonzero.

By renumbering v_1, \dots, v_m , WLOG, we can assume $a_1 \neq 0$. We can solve for v_1 .

$$a_1v_1 = w_1 - a_2v_2 - \dots - a_mv_m$$

$$v_1 = a_1^{-1}w_1 - a_1^{-1}a_2v_2 - \dots - a_1^{-1}a_mv_m$$

so, span(
$$\{v_1, v_2, \dots, v_m\}$$
) \subset span($\{w_1, w_2, \dots, w_m\}$) = V .

Induction Assumption: Assume that the statement is true for r. It means after renumbering, v_1, v_2, \cdots, v_m we have

$$span(\{w_1, w_2, \cdots, w_i, v_{i+1}, \cdots, v_m\}) = V.$$

*replace w_{i+1} .

Prove for r+1: Rewrite w_{i+1} as a linear combination of $\{w_1, \dots, w_r, v_{r+1}, \dots, v_m\}$.

$$w_{i+1} = c_1 w_1 + \dots + c_r w_r + d_{i+1} v_{i+1} + \dots + d_m v_m$$

Observation: One of the d_{r+1}, \dots, d_m must be nonzero. Because if $d_{i+1} = \dots = d_m = 0$, then

$$w_{r+1} = c_1 w_1 + \dots + c_r 2_r$$

$$0 = c_1 w_1 + \dots + c_r w_r - w_{r+1}$$

Contradiction since $\{w_1, \dots, w_{r+1}\}$ is linearly independent.

WLOG, we can assume $d_{i+1} \neq 0$,

$$d_{r+1}v_{r_1} = w_{r+1} - c_1w_1 - \dots - a_rw_r - d_{r+2}v_{r+2} - \dots - d_mv_m$$

Since n > m, $w_n = a_i w_i + \cdots + a_m w_m$, so $\{w_1, \cdots, w_n\}$ is linearly dependent.

It completes the proof.

Theorem 1.6.2. Let V be a finitely spanned vector space, having one basis of m elements having another basis of n elements.

Then m = n.

Proof. We could not have m < n, or m > n. If it happends, the other set must be linearly dependent. \square

Definition 1.6.1. Let V be a vector: space having a basis consisting of n elements, we say n is the dimensioning of V.

$$\dim_{\mathbb{F}} V = n$$

$$\lim\{0=0\}$$

A vector space that has a basis consisting of n elements, zero elements, zero vector space, is called finite dimensional. Otherwise, V is called infinite dimensional(Hamel Basis)

Example:

• $\dim \mathbb{F}^n = n$

Since

$$\left\{ \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \cdots, \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} \right\}$$

is a basis for \mathbb{F}^n .

- $\dim P_n(\mathbb{F}) = n+1$ Since $\{1, x, \cdots, x^n\}$ is a basis for $P_n(\mathbb{F})$.
- $\dim \mathbb{F}[x] = \infty$

Corollary 1.6.1. Let V be an n-dimensional space, then

- If $\{v_1, \dots, v_n\} \subset V$ is linearly independent, then $\{v_1, \dots, v_n\}$ is a basis for V.
- If $\{v_1, \dots, v_n\} \subset V$, k < n is linearly we can add v_{k+1}, \dots, v_n so that $\{v_1, \dots, v_n\}$ is a basis for V.
- If W is a subspace of V, then $\dim W \leq \dim V$, if furthermore, $\dim W = \dim V$. Then W = V.

1.7 Direct Sum:

Corollary 1.7.1. If V is finitely spanned, and $\beta\{v_1, \dots, v_n\}$ is linearly independent, then β can be extended to a basis for V, i.e. $\exists w_1, \dots, w_n \in V$, s.t. $\{v_1, \dots, v_n, w_1, \dots, w_r\}$ is a basis for V

Proof. Let m = dim = V. So $n \le m$ by theorem.

Case 1: β is alreade a basis. (n=m)

Case 2: β is not a basis.

2 Jan 22

Corollary 2.0.1. If V is finitely spanned, and $\mathfrak{B} = \{v_1, \dots, v_n\}$ is linearly independent, then \mathfrak{B} can be extended to a basis for V.

i.e. $\exists w_1, \dots w_r \in V$, s.t. $\{v_1, \dots, v_n, w_1, \dots, w_n\}$ is a basis for V.

Proof. Let $m = \dim V$, so n < m. (By theorem).

case 1:

 \mathfrak{B} is already a basis (n = m). done

Case 2: \mathfrak{B} is not a basis, so span $\mathfrak{B} \neq V$, so $\exists w_1 \in V \setminus \mathfrak{B}$.

Theorem 2.0.1. For any V.S. V, if $\mathfrak{B} \subseteq V$ is linearly independent, then \mathfrak{B} can be extended to a basis for V. [use axiom of choice]

Example: Let $\mathfrak{B} = \{\cos(nx), n \ge 0\} \cup \{\sin(nx) : n > 0\} \cup \{e^x\}.$

This \mathfrak{B} can be extended to a basis \mathfrak{B}' for $\mathbb{R}^{[0,1]}$.

$$|\mathfrak{B}'| = 2^{2^{\aleph_0}}$$

Recall: If $\{v_1, \cdots, v_n\} \subseteq V$ is linearly independent. Say $\{v_1, \cdots, v_n\}$ is a maximal linearly independent set, if $\forall w \in V \setminus \{v_1, \cdots, v_n\}$, $\{v_1, \cdots, v_n, w\}$ is linearly dependent.

Corollary 2.0.2. If V is a finitely spanned set, then every basis is a maximal linearly independent set, and vice versa.

More generally,

Definition 2.0.1. Let V be a V.S., a subset $\mathfrak{B} \subseteq V$ is a maximal linearly independent set if

- B is linearly independent
- $\forall w \in V \backslash \mathfrak{B}, \mathfrak{B} \cup \{w\}$ is linearly dependent.

Theorem 2.0.2. In any V.S. V, every basis is a maximal linearly independent set, and vice versa.

Definition 2.0.2. A minimal spanning set is a set \mathfrak{B} such that

• span $\mathfrak{B} = V$

• $\forall w \in \mathfrak{B}, \operatorname{span}(\mathfrak{B} \setminus \{w\}) \neq V$

Theorem 2.0.3. *In every vector space V,*

- 1. Every bassi is a minimal spanning set and vice versa
- 2. Every spanning set can be "shrunk" to a basis i.e. if span $\mathfrak{B} = V$, then $\exists \mathfrak{B}' \subseteq \mathfrak{B}$ s.t. \mathfrak{B}' is a basis for V.

Proof. For (2), already proved when $\mathfrak B$ is countable. Can extend the proof to uncountable "well-ordering $\mathfrak B$ ".

To find a basis for $\mathbb{R}^{[0,1]}$

- 1. start with $\mathfrak{B}=\mathbb{R}^{[0,1]}$
- 2. well-order \mathfrak{B} ("enumerates" \mathfrak{B})
- 3. use the enumeration to shrink \mathfrak{B} to a basis

2.1 Jan 24

Review: $\mathbb{Z}_n = \text{the set of the congruence classes, } x \equiv y \pmod{m} \iff m|x-y|$

Revisit: $[0] = \{qm : a \in \mathbb{Z}\} = m\mathbb{Z}.$

 $-m\mathbb{Z}$ is collapsed to become zero

 $-x \equiv y \pmod{n} \iff x = y \in m\mathbb{Z}.$

-advanced notation: $\mathbb{F}/m\mathbb{Z}$.

Version of this:

- $(\mathbb{Z},+,\cdot) \to a$ vector space V.
- $(m\mathbb{Z}) \to a$ subspace of V.

Definition 2.1.1. Fix a V.S. V over \mathbb{F} , and a subspace W.

For $x, y \in V$ say $x \equiv y \pmod{W}$, if $x - y \in W$.

Claim: $\equiv \pmod{W}$ is an equiv relation on V.

Proof. For transitivity:

Assume $x, y, z \in V$, $x \equiv y \pmod{W}$ and $y \equiv z \pmod{W}$, by definition, $x - y \in W$, $y - z \in W$.

Then $x - z = (x - y) + (y - z) \in W$ since W is closed under addition.

Then by definition, $x \equiv z \pmod{W}$.

Notation 2.1.1. *Define* V, W *as before:*

For $x \in V$,

$$x + W := \{x + w : w \in W\}$$

(x is fixed, add x to every vector on W). x + W is called **translation of** W **by** x, or **coset of** W **through** x.

Claim: V, W as before, for any $x \in V$, the equivalence class (congruence class) of $\equiv \pmod{W}$ containing x is x + W.

if $y \equiv x \pmod{W}$, and $w \in W$, then $y \equiv x + w \pmod{W}$.

Proof. For any $y \in V$, $y \in$ the equiv of $\equiv \pmod{V}$ containing x

 $\iff y \equiv x \pmod{W}$

 $\iff y - x \in W$

 $\iff y - x = w$, for some $w \in W$

 $\iff y = x + w$

 $\iff y \in x + W$

Remark: For $x \beta nV$, the span class of $\equiv \pmod{W}$ containing x is

$$\{y \in V, y \equiv x \pmod{W}\}$$

Now define

$$V/W:=$$
 the set of all equiv classes of the $\equiv \pmod{W}$ relation := the set of all translations of W := $\{x+W:x\in V\}\neq V$

Next, we turn V/W into a vector space over \mathbb{F} ,

$$(x+W) \oplus (y+W) := (x+y) + W$$
$$c(x+w) := (cx) + W$$

Issue: Are the operations well-defined? Yes

E.g. check scalar multiplication:

assume
$$x + W = x_1 + W$$
, $x \equiv x_1 \pmod{W} \iff x - x_1 \in W$.

need to know: $\forall c \in \mathbb{F}$,

$$(cx + W) = (cx_1) + W$$

$$\updownarrow cx \equiv cx_1 \pmod{W}$$

$$\updownarrow (cx) - (cx_1) \in W$$

$$c(x - x_1) \in W$$