

MONASH BUSINESS SCHOOL

Forecasting: principles and practice

Rob J Hyndman

1.1 Time series graphics

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

A time series is stored in a ts object in R:

- a list of numbers
- information about times those numbers were recorded.

Example

Year	Observation
2012	123
2013	39
2014	78
2015	52
2016	110

 $y \leftarrow ts(c(123,39,78,52,110), start=2012)$

For observations that are more frequent than once per year, add a frequency argument.

E.g., monthly data stored as a numerical vector z:

```
y \leftarrow ts(z, frequency=12, start=c(2003, 1))
```

```
start)
ts(data, frequency,
Type of data
                       frequency start example
Annual
Quarterly
Monthly
Daily
Weekly
Hourly
Half-hourly
```

ts(data, frequency	, start)	
Type of data	frequency	start example
Annual	1	
Quarterly		
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency	, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly		
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency	, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly		
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency,	start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily		
Weekly		
Hourly		
Half-hourly		

ts(data, frequency, start)		
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	
Weekly		
Hourly		
Half-hourly		

ts(data, frequency, start)		
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly		
Hourly		
Half-hourly		

ts(data, frequency	y, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	
Hourly		
Half-hourly		

ts(data, frequency	, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly		
Half-hourly		

ts(data, fre	quency, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly Half-hourly	24 or 168 or 8,766	

ts(data, frequency, start)			
Type of data	frequency	start example	
Annual	1	1995	
Quarterly	4	c(1995,2)	
Monthly	12	c(1995,9)	
Daily	7 or 365.25	1 or c(1995,234)	
Weekly	52.18	c(1995,23)	
Hourly Half-hourly	24 or 168 or 8,766	1	

ts(data, frequency, start)				
Type of data	frequency	start example		
Annual	1	1995		
Quarterly	4	c(1995,2)		
Monthly	12	c(1995,9)		
Daily	7 or 365.25	1 or c(1995,234)		
Weekly	52.18	c(1995,23)		
Hourly	24 or 168 or 8,766	1		
Half-hourly	48 or 336 or 17,532			

ts(data, frequency, start)				
Type of data	frequency	start example		
Annual	1	1995		
Quarterly	4	c(1995,2)		
Monthly	12	c(1995,9)		
Daily	7 or 365.25	1 or c(1995,234)		
Weekly	52.18	c(1995,23)		
Hourly	24 or 168 or 8,766	1		
Half-hourly	48 or 336 or 17,532	1		

Australian GDP

- Class: "ts"
- Print and plotting methods available.

ausgdp

Australian GDP

autoplot(ausgdp)

Residential electricity sales

```
elecsales
```

```
## Time Series:
## Start = 1989
## End = 2008
## Frequency = 1
## [1] 2354.34 2379.71 2318.52 2468.99 2386.09
## [9] 2844.50 3000.70 3108.10 3357.50 3075.70
## [17] 3430.60 3527.48 3637.89 3655.00
```

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

Time plots

autoplot(melsyd[,"Economy.Class"])

Time plots

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

Lab Session 1

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

Seasonal plots

```
ggseasonplot(a10, ylab="$ million",
  year.labels=TRUE, year.labels.left=TRUE) +
  ggtitle("Seasonal plot: antidiabetic drug sales")
```

Seasonal plot: antidiabetic drug sales

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: ggseasonplot

Seasonal polar plots

```
ggseasonplot(a10, polar=TRUE) + ylab("$ million")
```


Seasonal subseries plots

```
ggmonthplot(a10) + ylab("$ million") +
ggtitle("Seasonal subseries plot: antidiabetic drug sal
```

Seasonal subseries plot: antidiabetic drug sales

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: ggmonthplot

Quarterly Australian Beer Production

beer <- window(ausbeer,start=1992)
autoplot(beer)</pre>

Quarterly Australian Beer Production

ggseasonplot(beer, year.labels=TRUE)

Quarterly Australian Beer Production

ggsubseriesplot(beer)

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- **Seasonal** pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
autoplot(window(elec, start=1980)) +
  ggtitle("Australian electricity production")
  xlab("Year") + ylab("GWh")
```

Australian electricity production


```
autoplot(bricksq) +
   ggtitle("Australian clay brick production") +
   xlab("Year") + ylab("million units")
```



```
autoplot(hsales) +
  ggtitle("Sales of new one-family houses, USA"
  xlab("Year") + ylab("Total sales")
```

Sales of new one-family houses, USA


```
autoplot(ustreas) +
  ggtitle("US Treasury Bill Contracts") +
  xlab("Day") + ylab("price")
```

US Treasury Bill Contracts


```
autoplot(lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
```

Annual Canadian Lynx Trappings

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

Example: Beer production

```
beer <- window(ausbeer, start=1992)
gglagplot(beer, lags=9, do.lines=FALSE,
    continuous=FALSE)</pre>
```

Example: Beer production

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

```
We measure the relationship between: y_t and y_{t-1} y_t and y_{t-2} y_t and y_{t-3} etc.
```

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

```
We measure the relationship between: y_t and y_{t-1} y_t and y_{t-2} y_t and y_{t-3} etc.
```

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

```
We measure the relationship between: y_t and y_{t-1} y_t and y_{t-2} y_t and y_{t-3} etc.
```

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

- $Arr r_1$ indicates how successive values of y relate to each other
- $Arr r_2$ indicates how y values two periods apart relate to each other
- \blacksquare r_k is almost the same as the sample correlation between y_t and y_{t-k} .

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

- r₁ indicates how successive values of y relate to each other
- $Arr r_2$ indicates how y values two periods apart relate to each other
- $Arr r_k$ is almost the same as the sample correlation between y_t and y_{t-k} .

Results for first 9 lags for beer data:/footnotesize

r_1	r ₂	r_3	r ₄	r ₅	r ₆	r ₇	r ₈	r
-0.102	-0.657	-0.060	0.869	-0.089	-0.635	-0.054	0.832	-0.

ggAcf(beer)

- r_4 higher than for the other lags. This is due to **the** seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the *autocorrelation* or ACF.
- The plot is known as a correlogram

Recognizing seasonality in a time series

If there is seasonality, the ACF at the seasonal lag (e.g., 12 for monthly data) will be large and positive.

- For seasonal monthly data, a large ACF value will be seen at lag 12 and possibly also at lags 24, 36, ...
- For seasonal quarterly data, a large ACF value will be seen at lag 4 and possibly also at lags 8, 12, ...

Aus monthly electricity production

```
elec2 <- window(elec, start=1980)
autoplot(elec2)</pre>
```


Aus monthly electricity production

ggAcf(elec2, lag.max=48)

Aus monthly electricity production

Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

- The slowly decaying ACF indicates trend.
- The ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12.

Which is which?

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

Example: White noise

```
wn <- ts(rnorm(36))
autoplot(wn)</pre>
```


Example: White noise

```
wn <- ts(rnorm(36))
autoplot(wn)</pre>
```


Example: White noise

r_1	-0.05
r_2	0.18
r_3	0.27
r_4	0.14
r_5	0.13
r ₆	0.16
r ₇	0.07
r_8	0.09
r ₉	0.01
<i>r</i> ₁₀	-0.05

Sample autocorrelations for white noise series.

For uncorrelated data, we would expect each autocorrelation to be close to zero.

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the *critical values*.

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the *critical values*.

Example:

T = 36 and so critical values at

$$\pm 1.96/\sqrt{36} = \pm 0.327.4$$

All autocorrelation coefficients lie within these limits, confirming that the data are white noise. (More precisely, the data cannot be distinguished from white noise.)


```
pigs2 <- window(pigs, start=1990)
autoplot(pigs2) +
    xlab("Year") + ylab("thousands") +
    ggtitle("Number of pigs slaughtered in Victoria")</pre>
```

Number of pigs slaughtered in Victoria

ggAcf(pigs2)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows some significant autocorrelation at lags 1, 2, and 3.
- $Arr r_{12}$ relatively large although not significant. This may indicate some slight seasonality.

These show the series is **not a white noise series**.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows some significant autocorrelation at lags 1, 2, and 3.
- $Arr r_{12}$ relatively large although not significant. This may indicate some slight seasonality.

These show the series is **not a white noise series**.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows some significant autocorrelation at lags 1, 2, and 3.
- $Arr r_{12}$ relatively large although not significant. This may indicate some slight seasonality.

These show the series is **not a white noise series**.

Combination graph

ggtsdisplay(pigs2, plot.type='scatter')

Outline

- 1 Time series in R
- 2 Time plots
- 3 Lab session 1
- 4 Seasonal plots
- 5 Seasonal or cyclic?
- 6 Lag plots and autocorrelation
- 7 White noise
- 8 Lab session 2

Lab Session 2