

ZFW

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Akkerman et al.

Serial No.:

10/701,183

Filed:

November 4, 2003

For:

DEVICES HAVING LARGE ORGANIC SEMICONDUCTOR CRYSTALS AND

METHODS OF MAKING THE SAME

Group:

2871

Examiner:

Not Yet Assigned

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on the date set forth below:

Signed:

Navanne Torrell

Name: Marianna Tortorelli

Date: June 14, 2004

Durham, North Carolina June 14, 2004

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT UNDER § 197(a)

Sir:

This Information Disclosure Statement is being filed before a first Official Action has been mailed in this case.

Pursuant to 37 C.F.R. 1.56, 1.97 and 1.98, applicant's attorney wishes to bring to the attention of the Patent and Trademark Office the following items listed on the accompanying Forms PTO/SB/08A and PTO/SB/08B.

ITEMS

	Document No.	<u>Publication</u>	Patentee/Applicant
1.	U.S. Patent No. 5,192,580	<u>Date</u> 03/09/1993	Blanchet-Fincher
2.	U.S. Patent No. 5,288,528	02/22/1994	Blanchet-Fincher
3.	U.S. Patent No. 5,347,144	09/13/1994	Garnier et al.
4.	U.S. Patent No. 5,523,192	06/04/1996	Blanchet-Fincher
5.	U.S. Patent No. 5,563,019	10/08/1996	Blanchet-Fincher
6.	U.S. Patent No. 5,625,199	04/29/1997	Baumbach et al.
7.	U.S. Patent No. 5,766,819	06/16/1998	Blanchet-Fincher
8.	U.S. Patent No. 5,840,463	11/24/1998	Blanchet-Fincher
9.	U.S. Patent No. 5,981,970	11/09/1999	Dimitrakopoulos et al.
10.	U.S. Patent No. 6,051,318	04/18/2000	Kwon
11.	U.S. Patent No. 6,143,451	11/07/2000	Blanchet-Fincher
12.	U.S. Patent No. 6,146,792	11/14/2000	Blanchet-Fincher et al.
13.	U.S. Patent No. 6,174,651	01/16/2001	Thakur
14.	U.S. Patent No. 6,265,243	07/24/2001	Katz et al.
15.	U.S. Patent No. 6,352,811	03/05/2002	Patel et al.
16.	U.S. Patent No. 6,352,812	03/05/2002	Shimazu et al.
17.	U.S. Patent No. 6,403,397	06/11/2002	Katz
18.	U.S. Patent No. 6,551,717	04/22/2003	Katz et al.
19.	U.S. Publication No. 2002/0149315 A1	10/17/2002	Blanchet-Fincher
20.	U.S. Application No. 10/256,885	09/27/2002	Bao et al.
21.	U.S. Application No. 10/669,780	09/24/2003	Bao

22.	U.S. Application No. 60/505,533	09/24/2003	Meth
23.	U.S. Application No. 60/505,880	09/24/2003	Meth et al.
24.	U.S. Application No. 10/671,303	09/24/2003	Bao et al.
25.	U.S. Application No. 10/722,613	11/26/2003	Aizenberg et al.
26.	PCT Publication No. WO 01/87634 A2	11/22/2001	E.I. du Pont de Nemours and Company
27.	PCT Publication No. WO 02/08801 A1	01/31/2002	E.I. du Pont de Nemours and Company
28.	PCT Publication No. WO 02/092352 A1	11/21/2002	E.I. du Pont de Nemours and Company

Other Publications

- 29. AFZALI ET AL., High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor, J. Am. Chem. Soc., 2002, Page(s) 8812-8813, Volume 124
- 30. AFZALI ET AL., Synthesis and Application of Pentacene Precursor in OTFT, Publisher: IBM Research Division, Published in: Yorktown Heights, NY
- 31. AIZENBERG ET AL., Control of Crystal Nucleation by Patterned Self-Assembled Monolayers, Nature, April 8, 1999, Page(s) 495-498, Volume 398
- 32. AIZENBERG ET AL., Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver, J. Am. Chem. Soc., 1999, Page(s) 4500-4509, Volume 121
- 33. AKIMICHI ET AL., Field-Effect Transistors Using Alkyl Substituted Oligothiophenes, Appl. Phys. Lett., 1991, Page(s) 1500-1502, Volume 58, Number 14
- 34. BUTKO ET AL., Limit of Field Effect Mobility on Pentacene Single Crystal, Publisher: Los Alamos National Laboratory, Published in: Los Alamos, New Mexico
- 35. CAI ET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120

- 36. COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics
- 37. COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14
- 38. COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18
- 39. DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19
- 40. ECHAVARREN ET AL., J. Am. Chem. Soc., 1987, Page(s) 5478-5486, Volume 109
- FORREST, Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques, Chem. Rev., Page(s) 1793-1896, Volume 97, Publisher: American Chemical Society
- 42. HALIK ET AL., High-Mobility Organic Thin-Film Transistors Based on a, a'-didecyloligothiophenes, Journal of Applied Physics, March 1, 2003, Page(s) 2977-2981, Volume 93, Number 5
- 43. HAN ET AL., Effect of Magnesium Ions on Oriented Growth of Calcite on Carboxylic Acid Functionalized Self-Assembled Monolayer, J. Am. Chem. Soc., 2003, Page(s) 4032-4033, Volume 125
- 44. HAN ET AL., Face-Selective Nucleation of Calcite on Self-Assembled Monolayers of Alkanethiols: Effect of the Parity of the Alkyl Chain, Angew. Chem. Int. Ed., 2003, Page(s) 3668-3670, Volume 42
- HONG ET AL., Thiophene-Phenylene and Thiophene-Thiazole Oligomeric Semiconductors with High Field-Effect Transistor On/Off Ratios, Chem. Mater., 2001, Page(s) 4686-4691, Volume 13, Number 12
- JOHNSTON ET AL., Low-Energy Vibrational Modes in Phenylene Oligomers Studied by THz Time-Domain Spectroscopy, Chemical Physics Letters, 2003, Page(s) 256-262, Volume 377

- KATZ ET AL., Synthesis, Solubility, and Field-Effect Mobility of Elongated and Oxasubstituted a,w-Dialkyl Thiophene Oligomers: Extension of 'Polar Intermediate' Synthetic Strategy and Solution Deposition on Transistor Substrates, Chem. Mater., 1998, Page(s) 633-638, Volume 10, Number 2
- 48. KLAUK ET AL., High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors, Journal of Applied Physics, November 1, 2002, Page(s) 5259-5263, Volume 92, Number 9
- 49. KLAUK ET AL., Pentacene Organic Thin-Film Transistors and ICs, Solid State Technology, March 2000, Page(s) 63-76, Volume 43, Number 3
- 50. LI ET AL., Field-Effect Transistors Based on Thiophene Hexamer Analogues with Diminished Electron Donor Strength, Chem. Mater., 1999, Page(s) 458-465, Volume 11, Number 2
- 51. MATTERS ET AL., Organic Field-Effect Transistors and All-Polymer Integrated Circuits, Optical Materials, 1999, Page(s) 189-197, Volume 12
- 52. MEYER ZU HERINGDORF ET AL., Growth Dynamics of Pentacene Thin Films, Nature, August 2, 2001, Page(s) 517-520, Volume 412
- 53. MUSHRUSH ET AL., Easily Processable Phenylene-Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements, J. Am. Chem. Soc., 2003, Page(s) 9414-9423, Volume 125, Number 31
- 54. SEO ET AL., Interpretation of the Mass Change Behavior in the Binary Monolayer of Hydroquinone-tethered Alkylthiol and Aminoalkythiol, Bull. Korean Chem. Soc., 2002, Page(s) 1671-1673, Volume 23, Number 11
- 55. STABEL ET AL., Scanning Tunneling Microscopy of Alkylated Oligothiophenes at Interfaces with Graphite, Synthetic Metals, 1994, Page(s) 47-53, Volume 67
- 56. TANIMOTO ET AL., Binary Phase Chlorination of Aromatic Hydrocarbons with Solid Copper(II) Chloride: Reaction Mechanism, Bull. Chem. Soc. Japan, 1979, Page(s) 3586-3591, Volume 52, Number 12
- 57. XIA ET AL., Soft Lithography, Angew. Chem. Int. Ed., 1998, Page(s) 550-575, Volume 37

The filing of this Information Disclosure Statement shall not be construed as a representation that a search has been made nor shall it be construed as an admission that the

information cited is considered to be material to patentability, nor shall it be construed that no other material information exists.

Respectfully submitted,

yay M. Brown Reg. No. 30,033

Priest & Goldstein, PLLC 5015 Southpark Drive, Suite 230

Durham, NC 27713-7736

(919) 806-1600

PTO/SB/08a (08-03)

Approved for use through 07/31/2006. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE to a collection of information unless it displays a valid OMB coaled to the collection.

Substitute for form 1449A/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT				Co	mplete if Known
				Application Number	10/701,183
				Filing Date	November 4, 2003
				First Named Inventor	Akkerman et al.
	(Use as many sheets as neces	sary)		Art Unit	2871
				Examiner Name	
Sheet	1	of	5	Attorney Docket Number	100.2498

			U.S. PATENT	DOCUMENTS	
Examiner Initials*	Cite No.1	Document Number Number - Kind Code ² (# known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
· N.	1	US- 5,192,580	03/09/1993	Blanchet-Fincher	
	2	US- 5,288,528	02/22/1994	Blanchet-Fincher	
	3	US- 5,347,144	09/13/1994	Garnier et al.	
	4	US- 5,523,192	06/04/1996	Blanchet-Fincher	
	5	US- 5,563,019	10/08/1996	Blanchet-Fincher	
	6	US- 5,625,199	04/29/1997	Baumbach et al.	
***************************************	7	US- 5,766,819	06/16/1998	Blanchet-Fincher	
	8	US- 5,840,463	11/24/1998	Blanchet-Fincher	
	9	US- 5,981,970	11/09/1999	Dimitrakopoulos et al.	
	10	US- 6,051,318	04/18/2000	Kwon	
	11	US- 6,143,451	11/07/2000	Blanchet-Fincher	
	12	US- 6,146,792	11/14/2000	Blanchet-Fincher et al.	
)- <u> </u>	13	US- 6,174,651	01/16/2001	Thakur	
	14	US- 6,265,243	07/24/2001	Katz et al.	
	15	US- 6,352,811	03/05/2002	Patel et al.	
	16	US- 6,352,812	03/05/2002	Shimazu et al.	
)	17	US- 6,403,397	06/11/2002	Katz	
	18	US- 6,551,717	04/22/2003	Katz et al.	
	19	US- 2002/0149315 A1	10/17/2002	Blanchet-Fincher	
	20	US- 10/256,885	09/27/2002	Bao et al.	

	FOREIGN PATENT DOCUMENTS								
Examiner Initials*	Cite	Foreign Patent Document	Publication Date	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages	T ⁶			
	No.1	Country Code ³ - Number ⁴ - Kind Code ⁵ (<i>if known</i>)	IVIIVI-DD-1111		or Relevant Figures Appear				
	<u></u>					ļ			
	ļ					t			
	-					İ			
.,,	<u> </u>								
	-								

Examiner	Date	
Signature	 Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). 'See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 'Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 'For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 'Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 'Applicant is to place a check mark here if English language Translation is attached.' Translation is attached.

Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required				Complete if Known			
Subs	stitute for form 1449A/PTO			Application Number	10/701,183		
				Filing Date	November 4, 2003		
	STATEMENT BY APPLICANT (Use as many sheets as necessary)			First Named Inventor	Akkerman et al.		
S				Art Unit	2871		
				Examiner Name			
Sheet	2	of	5	Attorney Docket Number	100.2498		

			U.S. PATENT	DOCUMENTS	
Examiner Initials*	Cite No.1	Document Number Number - Kind Code ^{2 (# known)}	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
	21	US- 10/669,780	09/24/2003	Bao	
	22	US- 60/505,533	09/24/2003	Meth	
	23	US- 60/505,880	09/24/2003	Meth et al.	
	24	US- 10/671,303	09/24/2003	Bao et al.	
	25	US- 10/722,613	11/26/2003	Aizenberg et al.	
		US-			
		US-			
		US-			
	1	US-			
		US-			

FOREIGN PATENT DOCUMENTS								
Examiner Initials*	Cite No.	Foreign Patent Document Country Code ³ - Number ⁴ - Kind Code ⁵ (<i>if known</i>)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T⁰		
	26	WO 01/87634 A2	11/22/2001	E.I. du Pont de Nemours and Company		_		
	27	WO 02/08801 A1	01/31/2002	E.I. du Pont de Nemours and Company				
	28	WO 02/092352 A1	11/21/2002	E.I. du Pont de Nemours and Company				
						_		
						_		

Fuerrines	Date	
Examiner	Considered	
Signature	Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ¹Applicant's unique citation designation number (optional). ²See Kinds Codes of considered. Include copy of this form with next communication to applicant is unique citation designation number (optional). ²See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴For USPTO Patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶Applicant is to place a check mark here if English language

Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

PTO/SB/08b (08-03)
Approved for use through 06/30/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

	Substitute for form 1	449B/PTO			Complete if Known			
					Application Number	10/701,183		
					Filing Date	November 4, 2003		
STATEMENT BY APPLICANT				\NT	First Named Inventor	Akkerman et al.		
					Art Unit	2871		
(Use as many sheets as necessary)					Examiner Name			
She	et	3	of	5	Attorney Docket Number	100.2498		

Examiner Cite Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published. 29 AFZALI ET AL., High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor, J. Am. Chem. Soc., 2002, Page(s) 8812-8813, Volume 124 30 AFZALI ET AL., Synthesis and Application of Pentacene Precursor in OTFT, Publisher: IBM Research Division, Published in: Yorktown Heights, NY 31 AIZENBERG ET AL., Control of Crystal Nucleation by Patterned Self-Assembled Monolayers, Nature, April 8, 1999, Page(s) 495-498, Volume 398 32 AIZENBERG ET AL., Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver, J. Am. Chem. Soc., 1999, Page(s) 4500-4509, Volume 121 33 AKIMICHI ET AL., Field-Effect Transistors Using Alkyl Substituted Oligothiophenes, Appl. Phys. Lett., 1991, Page(s) 1500-1502, Volume 58, Number 14 34 BUTKO ET AL., Limit of Field Effect Mobility on Pentacene Single Crystal, Publisher: Los Alamos National Laboratory, Published in: Los Alamos, New Mexico 35 CALET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120 36 COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics 37 COLLET ET AL., Nano-field Effect Transistor with an Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, Applied Physics Letters, November 2, 1998, Page(s) 2881-2883, Volume 73, Number 19 38 COLLET ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, La			NON PATENT LITERATURE DOCUMENTS	
Precursor, J. Am. Chem. Soc., 2002, Page(s) 8812-8813, Volume 124 30			magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city	T ²
Published in: Yorktown Heights, NY 31 AIZENBERG ET AL., Control of Crystal Nucleation by Patterned Self-Assembled Monolayers, Nature, April 8, 1999, Page(s) 495-498, Volume 398 32 AIZENBERG ET AL., Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver, J. Am. Chem. Soc., 1999, Page(s) 4500-4509, Volume 121 33 AKIMICHI ET AL., Field-Effect Transistors Using Alkyl Substituted Oligothiophenes, Appl. Phys. Lett., 1991, Page(s) 1500-1502, Volume 58, Number 14 34 BUTKO ET AL., Limit of Field Effect Mobility on Pentacene Single Crystal, Publisher: Los Alamos National Laboratory, Published in: Los Alamos, New Mexico 35 CAI ET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120 36 COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics 37 COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14 38 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		29	AFZALI ET AL., High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor, J. Am. Chem. Soc., 2002, Page(s) 8812-8813, Volume 124	
1999, Page(s) 495-498, Volume 398 32 AIZENBERG ET AL., Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver, J. Am. Chem. Soc., 1999, Page(s) 4500-4509, Volume 121 33 AKIMICHI ET AL., Field-Effect Transistors Using Alkyl Substituted Oligothiophenes, Appl. Phys. Lett., 1991, Page(s) 1500-1502, Volume 58, Number 14 34 BUTKO ET AL., Limit of Field Effect Mobility on Pentacene Single Crystal, Publisher: Los Alamos National Laboratory, Published in: Los Alamos, New Mexico 35 CAI ET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120 36 COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics 37 COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14 38 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		30	AFZALI ET AL., Synthesis and Application of Pentacene Precursor in OTFT, Publisher: IBM Research Division, Published in: Yorktown Heights, NY	
Alkanethiols Supported on Gold and Silver, J. Am. Chem. Soć., 1999, Page(s) 4500-4509, Volume 121 33 AKIMICHI ET AL., Field-Effect Transistors Using Alkyl Substituted Oligothiophenes, Appl. Phys. Lett., 1991, Page(s) 1500-1502, Volume 58, Number 14 34 BUTKO ET AL., Limit of Field Effect Mobility on Pentacene Single Crystal, Publisher: Los Alamos National Laboratory, Published in: Los Alamos, New Mexico 35 CAI ET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120 36 COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics 37 COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14 38 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		31	AIZENBERG ET AL., Control of Crystal Nucleation by Patterned Self-Assembled Monolayers, Nature, April 8, 1999, Page(s) 495-498, Volume 398	
Page(s) 1500-1502, Volume 58, Number 14 34 BUTKO ET AL., Limit of Field Effect Mobility on Pentacene Single Crystal, Publisher: Los Alamos National Laboratory, Published in: Los Alamos, New Mexico 35 CAI ET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120 36 COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics 37 COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14 38 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19	*	32	AIZENBERG ET AL., Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver, J. Am. Chem. Soc., 1999, Page(s) 4500-4509, Volume 121	
Laboratory, Published in: Los Alamos, New Mexico 35 CAI ET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120 36 COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics 37 COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14 38 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		33	AKIMICHI ET AL., Field-Effect Transistors Using Alkyl Substituted Oligothiophenes, Appl. Phys. Lett., 1991, Page(s) 1500-1502, Volume 58, Number 14	
Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120 36 COLLET ET AL., High Anisotropic Conductivity in Organic Insulator/Semiconductor Monolayer Heterostructure, Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics 37 COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14 38 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		34		
Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of Physics COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19	***************************************	35	CAI ET AL., Self Assembly in Ultrahigh Vacuum: Growth of Organic Thin Films with a Stable In-Plane Directional Order, J. Am. Chem. Soc., 1998, Page(s) 8563-8564, Volume 120	
38 COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		36	Applied Physics Letters, 3/6/2000, Page(s) 1339-1341, Volume 76, Number 10, Publisher: American Institute of	
Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18 39 DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		37	COLLET ET AL., Low-Voltage, 30 nm Channel Length, Organic Transistors with a Self-Assembled Monolayer as Gate Insulating Films, Applied Physics Letters, April 3, 2000, Page(s) 1941-1943, Volume 76, Number 14	
Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19		38	COLLET ET AL., Nano-field Effect Transistor with an Organic Self-Assembled Monolayer as Gate Insulator, Applied Physics Letters, November 2, 1998, Page(s) 2681-2683, Volume 73, Number 18	
40 ECHAVARREN ET AL., J. Am. Chem. Soc., 1987, Page(s) 5478-5486, Volume 109		39	DE BOER ET AL., Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers, Langmuir, 2003, Page(s) 4272-4284, Volume 19	
		40	ECHAVARREN ET AL., J. Am. Chem. Soc., 1987, Page(s) 5478-5486, Volume 109	

Examiner	Date	
Signature	Considered	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Undor	the Panenwork Reduction Act of	1995. no pe	ersons are req	U.S. Patent an	PTO/SB/08b (08-03) Approved for use through 06/30/2006. OMB 0651-0031 d Trademark Office; U.S. DEPARTMENT OF COMMERCE information unless it displays a valid OMB control number.
					Complete if Known
Substitu	te for form 1449B/PTO			Application Number	10/701,183
				Filing Date	November 4, 2003
INFORMATION DISCLOSURE STATEMENT BY APPLICANT				First Named Inventor	Akkerman et al.
				Art Unit	2871
				Examiner Name	
(Use as many sheets as necessary)			,		
Sheet	4	of	5	Attorney Docket Number	100.2498

		NON PATENT LITERATURE DOCUMENTS	
Examiner Initials*	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ²
mudio	41	FORREST, Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques, Chem. Rev., Page(s) 1793-1896, Volume 97, Publisher: American Chemical Society	
	42	HALIK ET AL., High-Mobility Organic Thin-Film Transistors Based on a, a'-didecyloligothiophenes, Journal of Applied Physics, March 1, 2003, Page(s) 2977-2981, Volume 93, Number 5	
	43	HAN ET AL., Effect of Magnesium Ions on Oriented Growth of Calcite on Carboxylic Acid Functionalized Self-Assembled Monolayer, J. Am. Chem. Soc., 2003, Page(s) 4032-4033, Volume 125	
	44	HAN ET AL., Face-Selective Nucleation of Calcite on Self-Assembled Monolayers of Alkanethiols: Effect of the Parity of the Alkyl Chain, Angew. Chem. Int. Ed., 2003, Page(s) 3668-3670, Volume 42	
	45	HONG ET AL., Thiophene-Phenylene and Thiophene-Thiazole Oligomeric Semiconductors with High Field-Effect Transistor On/Off Ratios, Chem. Mater., 2001, Page(s) 4686-4691, Volume 13, Number 12	
	46	JOHNSTON ET AL., Low-Energy Vibrational Modes in Phenylene Oligomers Studied by THz Time-Domain Spectroscopy, Chemical Physics Letters, 2003, Page(s) 256-262, Volume 377	
	47	KATZ ET AL., Synthesis, Solubility, and Field-Effect Mobility of Elongated and Oxa-substituted a,w-Dialkyl Thiophene Oligomers: Extension of 'Polar Intermediate' Synthetic Strategy and Solution Deposition on Transistor Substrates, Chem. Mater., 1998, Page(s) 633-638, Volume 10, Number 2	
	48	KLAUK ET AL., High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors, Journal of Applied Physics, November 1, 2002, Page(s) 5259-5263, Volume 92, Number 9	
-	49	KLAUK ET AL., Pentacene Organic Thin-Film Transistors and ICs, Solid State Technology, March 2000, Page(s) 63-76, Volume 43, Number 3	
	50	LI ET AL., Field-Effect Transistors Based on Thiophene Hexamer Analogues with Diminished Electron Donor Strength, Chem. Mater., 1999, Page(s) 458-465, Volume 11, Number 2	
	51	MATTERS ET AL., Organic Field-Effect Transistors and All-Polymer Integrated Circuits, Optical Materials, 1999, Page(s) 189-197, Volume 12	
:	52	MEYER ZU HERINGDORF ET AL., Growth Dynamics of Pentacene Thin Films, Nature, August 2, 2001, Page(s) 517-520, Volume 412	
	53	MUSHRUSH ET AL., Easily Processable Phenylene-Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements, J. Am. Chem. Soc., 2003, Page(s) 9414-9423, Volume 125, Number 31	

Examiner	Date	
Examine	Considered	
Signature	Considered	
Oignature		if+ ifarmanaa and not

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

'Applicant's unique citation designation number (optional).

'Applicant's unique citation designation number (optional).

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, uspection of the USPTO. Time will vary depending upon the individual case. Any comments on including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450.

ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

PTO/SB/08b (08-03)

Approved for use through 06/30/2006. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

	ute for form 1449B/PTO			Complete if Known		
Substitu	16 101 10101 1449D/F1O			Application Number	10/701,183	
INF	ORMATION DISC	LOS	JRE	Filing Date	November 4, 2003	
	ATEMENT BY AP			First Named Inventor	Akkerman et al.	
017				Art Unit	2871	
	(Use as many sheets as ned	cessary)		Examiner Name		
Sheet	5	of	5	Attorney Docket Number	100.2498	

NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	nitials* No.' and/or country where published.						
	54	SEO ET AL., Interpretation of the Mass Change Behavior in the Binary Monolayer of Hydroquinone-tethered Alkylthiol and Aminoalkythiol, Bull. Korean Chem. Soc., 2002, Page(s) 1671-1673, Volume 23, Number 11					
	55	STABEL ET AL., Scanning Tunneling Microscopy of Alkylated Oligothiophenes at Interfaces with Graphite, Synthetic Metals, 1994, Page(s) 47-53, Volume 67					
	56	TANIMOTO ET AL., Binary Phase Chlorination of Aromatic Hydrocarbons with Solid Copper(II) Chloride: Reaction Mechanism, Bull. Chem. Soc. Japan, 1979, Page(s) 3586-3591, Volume 52, Number 12					
	57	XIA ET AL., Soft Lithography, Angew. Chem. Int. Ed., 1998, Page(s) 550-575, Volume 37					
TO THE STATE OF TH							

Examiner		Date	
Signature		Considered	
*EXAMINER:	Initial if reference considered, whether or not citation is in conformance with MPEP 609.	Draw line through citati	on if not in conformance and not

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation in the incommence and not considered. Include copy of this form with next communication to applicant.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.