

SEQUENCE LISTING

<110> E.I. duPont de Nemours and Company, Inc.
Cheng, Qiong
Tao, Luan
Sedkova, Natalia

<120> GENES ENCODING CAROTENOID COMPOUNDS

<130> CL2346 US NA

<150> US 60/468,596
<151> 2003-05-07

<150> US 60/527,083
<151> 2003-12-03

<160> 20

<170> PatentIn version 3.2

<210> 1
<211> 906
<212> DNA
<213> Pectobacterium cypripedii DC416

<400> 1
atgaccgcac atgtcgatac cacagcaagc caggaaagcg atctccttca gttgcac 60
gcattgcagg cccatcttga acatttatttgc cctgccgggc agcaggccga tcgcgttcgg 120
gccgcacatgc gtgccggcac gctggcaccgc ggcaaacgta ttcgtccgct cttgctgctg 180
ctggcagcac gcgatataggg ctgtgacgtg ggcgcaggcagg gcatccttga tcttgccctgt 240
gcggtcgaaa tggcgcacgc tgccctactg atcctcgacg acattccatc aatggataac 300
gcccggatgc gacgtggcgcccggcaatc cactgtgaat atggggaaaaa cgtggcgatc 360
ctggcagcgg tcgcgtact cagccgcgcc tttgaggtga ttgccctcgc gccgggtctg 420
ccagcaacgc acaaagccga agccattgcc gagctctcct ctgccgtggg cctgcaggga 480
ctggttcagg gtcagttcca ggatctgcat gacggcgac acagccgcag tccggaagcc 540
atcaccctga ccaatgaact gaaaaccagc gtcctgtttc ggcgcacgct gcagatggcg 600
gcgattgcgg ccgatgcgtc agtgcaggta cgtcagcgat taagctattt tgccgcaggat 660
ttaggtcagg ctttccagtt actggacgac ctggcggatg gctctaagca caccggcaag 720
gactgtcatc aggatcaggg caaatccacg ctggcgcaga tgctggcccc ggaaggggct 780
gagcgtcgatc tgccgcacca tctaaaggcgc gccgatgcac accttgcctg cgcctgccc 840
cgcgggtgtcg ccacccgtca atatatgcac gcccctgttta atcaacagct ggcgtatgttc 900
aactga 906

<210> 2
<211> 301
<212> PRT
<213> Pectobacterium cypripedii DC416

<400> 2

Met Thr Ala His Val Asp Thr Thr Ala Ser Gln Glu Ser Asp Leu Leu
1 5 10 15

Gln Leu His His Ala Leu Gln Ala His Leu Glu His Leu Leu Pro Ala
20 25 30

Gly Gln Gln Ala Asp Arg Val Arg Ala Ala Met Arg Ala Gly Thr Leu
35 40 45

Ala Pro Gly Lys Arg Ile Arg Pro Leu Leu Leu Leu Ala Ala Arg
50 55 60

Asp Met Gly Cys Asp Val Ala Gln Gln Gly Ile Leu Asp Leu Ala Cys
65 70 75 80

Ala Val Glu Met Val His Ala Ala Ser Leu Ile Leu Asp Asp Ile Pro
85 90 95

Ser Met Asp Asn Ala Arg Met Arg Arg Gly Arg Pro Ala Ile His Cys
100 105 110

Glu Tyr Gly Glu Asn Val Ala Ile Leu Ala Ala Val Ala Leu Leu Ser
115 120 125

Arg Ala Phe Glu Val Ile Ala Leu Ala Pro Gly Leu Pro Ala Thr His
130 135 140

Lys Ala Glu Ala Ile Ala Glu Leu Ser Ser Ala Val Gly Leu Gln Gly
145 150 155 160

Leu Val Gln Gly Gln Phe Gln Asp Leu His Asp Gly Ala His Ser Arg
165 170 175

Ser Pro Glu Ala Ile Thr Leu Thr Asn Glu Leu Lys Thr Ser Val Leu
180 185 190

Phe Arg Ala Thr Leu Gln Met Ala Ala Ile Ala Ala Asp Ala Ser Val
195 200 205

Gln Val Arg Gln Arg Leu Ser Tyr Phe Ala Gln Asp Leu Gly Gln Ala
210 215 220 225

Phe Gln Leu Leu Asp Asp Leu Ala Asp Gly Ser Lys His Thr Gly Lys
230 235 240

Asp Cys His Gln Asp Gln Gly Lys Ser Thr Leu Val Gln Met Leu Gly
245 250 255

Pro Glu Gly Ala Glu Arg Arg Leu Arg Asp His Leu Ser Ser Ala Asp
260 265 270

Ala His Leu Ala Cys Ala Cys His Arg Gly Val Ala Thr Arg Gln Tyr
275 280 285

Met His Ala Leu Phe Asn Gln Gln Leu Ala Met Phe Asn
290 295 300

<210> 3
<211> 1278
<212> DNA
<213> *Pectobacterium cypripedii* DC416

<400> 3
atggggcatt ttgccgttat tgcgccaccg ctctacagcc actttcacgc attgcaggcg 60
ctggcgcaaa cgctgctggc gcgcggacat cgcatcacct ttatccagca aagtgatgca 120
cgcaccttgc tgagcgacga ggcattgcc tttgtggccg tcggcgagcg cacgcaccc 180
gccggatcgc tctccagcga actcaggcgg ctggccgcac cgggccccct gtcgctgttt 240
cgcgtgattc acgatctggc cagcaccacc gatatgctat gccgcgaact gcccgcggtg 300
ctgcaacggc tgcaggtcga tggcgtgatt gccgatcaaa tggaaagcggc tggcgtgtctg 360
gtggcagagg cgttacagct gccgttcgtg tcggcgtgcct ggcgcgtgcc ggtcaatcgc 420
gaagcggcca ttccgcttgt ggtgatgccc tttcgctttg ctcaggatga gaaagcgtg 480
cagcgctatac aggccagcag tgacatctac gaccgcacca tgcgtcgtca tggcgtgtc 540
atcgctcgta atgcgcgcgc cttcgccctg cccgaacgcgc atggcttaca tcagtgtctg 600
tcgcccgtgg cgcaaatacg tcagctggtg cccgcttttgc attttccacg ccagcaactg 660
ccagcctgtc atcacagcgt gggtccgtg cggactccag ttgctagcgg cgcgtcgcc 720
gcaccctggc cagcgtcgc ccagccggcgt gtgtatgcct cgctggcgcac gctacagggg 780
catcgctttc gcctgtttct gcacatctac caggcctgccc gcaatcagca gctgtcgtc 840
gtggtggcac actgtggcgg gttgaccgcgc agccaggcac atcagctcag actggccgg 900
gctgcgtggg tgaccgattt tgtggatcag cggcggcgc tgcagcatgc gcaactgttt 960
atcactcactc cccgtctgaa cagtcgtcgtg gaagcactgg agtgtggcac gccgatgctg 1020
gcgcgtccga tcgccttcga tcagccccggc gtggcggcac gtattgatgt gcacggcg 1080
ggccggcgcg cctcacgtt cagccgggtc gcgcagctgg agcaccaccc gcaacagttg 1140
ctgagtgacg atcgctatcg tctgcgtatgc tcagccattc aggccgcagct gcagcggcc 1200
ggtggctgtta cgcgcgcggc tgatattgtc gagcaggcgc tgtgtcagca gcaaatcgtg 1260
ctggcggagg ccacctga 1278

<210> 4
<211> 425
<212> PRT
<213> *Pectobacterium cypripedii* DC416

<400> 4

Met Gly His Phe Ala Val Ile Ala Pro Pro Leu Tyr Ser His Phe His
1 5 10 15

Ala Leu Gln Ala Leu Ala Gln Thr Leu Leu Ala Arg Gly His Arg Ile
20 25 30

Thr Phe Ile Gln Gln Ser Asp Ala Arg Thr Leu Leu Ser Asp Glu Arg
35 40 45

Ile Ala Phe Val Ala Val Gly Glu Arg Thr His Pro Ala Gly Ser Leu
50 55 60

Ser Ser Glu Leu Arg Arg Leu Ala Ala Pro Gly Gly Leu Ser Leu Phe
65 70 75 80

Arg Val Ile His Asp Leu Ala Ser Thr Thr Asp Met Leu Cys Arg Glu
85 90 95

Leu Pro Ala Val Leu Gln Arg Leu Gln Val Asp Gly Val Ile Ala Asp
100 105 110

Gln Met Glu Ala Ala Gly Gly Leu Val Ala Glu Ala Leu Gln Leu Pro
115 120 125

Phe Val Ser Val Ala Cys Ala Leu Pro Val Asn Arg Glu Ala Ala Ile
130 135 140

Pro Leu Val Val Met Pro Phe Arg Phe Ala Gln Asp Glu Lys Ala Leu
145 150 155 160

Gln Arg Tyr Gln Ala Ser Ser Asp Ile Tyr Asp Arg Ile Met Arg Arg
165 170 175

His Gly Ala Val Ile Ala Arg His Ala Arg Ala Phe Gly Leu Pro Glu
180 185 190

Arg His Gly Leu His Gln Cys Leu Ser Pro Leu Ala Gln Ile Ser Gln
195 200 205

Leu Val Pro Ala Phe Asp Phe Pro Arg Gln Gln Leu Pro Ala Cys Tyr
210 215 220

His Ser Val Gly Pro Leu Arg Thr Pro Val Ala Ser Gly Ala Leu Ala
225 230 235 240

Ala Pro Trp Pro Ala Leu Arg Gln Pro Val Val Tyr Ala Ser Leu Gly
245 250 255

Thr Leu Gln Gly His Arg Phe Arg Leu Phe Leu His Leu Ala Gln Ala
260 265 270

Cys Arg Asn Gln Gln Leu Ser Leu Val Val Ala His Cys Gly Gly Leu
275 280 285

Thr Ala Ser Gln Ala His Gln Leu Arg Leu Ala Gly Ala Ala Trp Val
290 295 300

Thr Asp Phe Val Asp Gln Arg Ala Ala Leu Gln His Ala Gln Leu Phe
305 310 315 320

Ile Thr His Ala Gly Leu Asn Ser Ala Leu Glu Ala Leu Glu Cys Gly
325 330 335

Thr Pro Met Leu Ala Leu Pro Ile Ala Phe Asp Gln Pro Gly Val Ala
340 345 350

Ala Arg Ile Glu Trp His Gly Val Gly Arg Arg Ala Ser Arg Phe Ser
355 360 365

Arg Val Ala Gln Leu Glu His His Leu Gln Gln Leu Leu Ser Asp Asp
370 375 380

Arg Tyr Arg Leu Arg Met Ser Ala Ile Gln Ala Gln Leu Gln Arg Ala
385 390 395 400

Gly Gly Cys Thr Arg Ala Ala Asp Ile Val Glu Gln Ala Leu Cys Gln
405 410 415

Gln Gln Ile Val Leu Ala Glu Ala Thr
420 425

<210> 5

<211> 1167

<212> DNA

<213> *Pectobacterium cypripedii* DC416

<400> 5

atgcgcgcac	cttatgtatgt	cattctggtc	ggtgccggcc	tggctaacgg	gctgattgcg	60
ctgcgtttac	gccagctgca	ccccgcactt	aagggtttgc	tactggagag	tcagggcgcag	120
ccggccggca	atcataacctg	gtcggtccat	cgcgaagacg	tcagcgaagc	gcagttcgc	180
tggctcgagc	cgctgcttgc	ggcgcgctgg	cccggttatac	aggtacgctt	ccccaccctg	240
cgtcgcgcagc	.tggatggta	atattgctcg	attgcctcgg	aggatttgc	ccggcactta	300
cagcaggtgc	tcggtgccgc	gctacgcacc	gcagcgccgg	tcagcgaggt	ctcacccacc	360
ggggtcagac	tggcggatgg	cggatgtta	caggcgcagg	cggtgattga	cggacgcggg	420
ctgcagccga	caccgcatct	gcagctcgcc	tatcaggcat	ttgtcggtca	ggagtggcaa	480
ctggccgcgc	cgcattggct	gcagcagcca	atattgatgg	acgcccagcgt	cgatcagcag	540
cagggttatc	gctttgttta	caccctgccc	ctcagtgcca	gccgttact	gattgaagat	600
acccactaca	tcaaccatgc	cacgctggat	gccgcacagg	cgcgcgtca	cattacggat	660
tatgcccacc	agcgcggctg	gaatttgcgc	cagctgctgc	gcgaggagca	cggctcgctg	720
ccgatcacgc	tcagcggcga	tatcgatcag	ttctggcaac	agcagcacgg	gcaaccgtgc	780
agcgggctgc	gcgccggact	gttcacgcc	accaccggtt	actcgctgcc	cggccggtg	840
gcgctggcgg	agaagattgc	cagcacgctg	ccgcggacg	ctcacacgct	gagccactgc	900

atcgaatcct ttgccccgtca gcactggcgc gagcagcgct tttccgtct gttaaatcgc	960
atgctgttgc ttgccggacg gcctgaacag cgctggcgcg taatgcagcg ttttaccgg	1020
cttgacgccg gattgattag ccgtttac gccgggcaac tgccctcag cgataaagca	1080
cgcattctgt gcggcaaacc gccggccct ctcggcgaag cgctgcgcgc attgatgatg	1140
acctctccgt taccaggaa gaaataa	1167

<210> 6
<211> 388

<212> PRT

<213> *Pectobacterium cypripedii* DC416

<400> 6

Met Arg Ala Pro Tyr Asp Val Ile Leu Val Gly Ala Gly Leu Ala Asn			
1	5	10	15

Gly Leu Ile Ala Leu Arg Leu Arg Gln Leu Gln Pro Ala Leu Lys Val		
20	25	30

Leu Leu Leu Glu Ser Gln Ala Gln Pro Ala Gly Asn His Thr Trp Ser		
35	40	45

Phe His Arg Glu Asp Val Ser Glu Ala Gln Phe Arg Trp Leu Glu Pro		
50	55	60

Leu Leu Ser Ala Arg Trp Pro Gly Tyr Gln Val Arg Phe Pro Thr Leu			
65	70	75	80

Arg Arg Gln Leu Asp Gly Glu Tyr Cys Ser Ile Ala Ser Glu Asp Phe		
85	90	95

Ala Arg His Leu Gln Gln Val Leu Gly Ala Ala Leu Arg Thr Ala Ala		
100	105	110

Pro Val Ser Glu Val Ser Pro Thr Gly Val Arg Leu Ala Asp Gly Gly		
115	120	125

Met Leu Gln Ala Gln Ala Val Ile Asp Gly Arg Gly Leu Gln Pro Thr		
130	135	140

Pro His Leu Gln Leu Gly Tyr Gln Ala Phe Val Gly Gln Glu Trp Gln			
145	150	155	160

Leu Ala Ala Pro His Gly Leu Gln Gln Pro Ile Leu Met Asp Ala Ser		
165	170	175

Val Asp Gln Gln Gln Gly Tyr Arg Phe Val Tyr Thr Leu Pro Leu Ser		
180	185	190

Ala Ser Arg Leu Leu Ile Glu Asp Thr His Tyr Ile Asn His Ala Thr		
195	200	205

Leu Asp Ala Ala Gln Ala Arg Arg His Ile Thr Asp Tyr Ala His Gln
210 215 220

Arg Gly Trp Asn Leu Arg Gln Leu Leu Arg Glu Glu His Gly Ser Leu
225 230 235 240

Pro Ile Thr Leu Ser Gly Asp Ile Asp Gln Phe Trp Gln Gln Gln His
245 250 255

Gly Gln Pro Cys Ser Gly Leu Arg Ala Gly Leu Phe His Ala Thr Thr
260 265 270

Gly Tyr Ser Leu Pro Ala Ala Val Ala Leu Ala Glu Lys Ile Ala Ser
275 280 285

Thr Leu Pro Ala Asp Ala His Thr Leu Ser His Cys Ile Glu Ser Phe
290 295 300

Ala Arg Gln His Trp Arg Glu Gln Arg Phe Phe Arg Leu Leu Asn Arg
305 310 315 320

Met Leu Phe Leu Ala Gly Arg Pro Glu Gln Arg Trp Arg Val Met Gln
325 330 335

Arg Phe Tyr Arg Leu Asp Ala Gly Leu Ile Ser Arg Phe Tyr Ala Gly
340 345 350

Gln Leu Arg Leu Ser Asp Lys Ala Arg Ile Leu Cys Gly Lys Pro Pro
355 360 365

Val Pro Leu Gly Glu Ala Leu Arg Ala Leu Met Met Thr Ser Pro Leu
370 375 380

Pro Gly Lys Lys
385

<210> 7
<211> 1482
<212> DNA
<213> Pectobacterium cypripedii DC416

<400> 7
atgaaacgca cctatgtat tggcgccaggc ttcgggtggcc tggcgctggc gattcgtctg 60
caagcggccg gcgtgccggt cacgctgctg gaacagcgcg ataagcctgg cggggcgcc 120
tatgtgtatc aggatcaggg ttttaccttt gatgccggtc cgacggtgat taccgatccc 180
agcgctatcg aggcgctgtt tacgctggca ggcaagcaac tcagtgatta tgtcgacctg 240
atgcccggta cgccatttta tcgcctgtgc tggaaagacg gcaggcagct ggactacgac 300
aacaatcagg cgccagctgga gcagcagatt gccactttt atccccagga tgtcgccgg 360
taccggccagt ttctggcccta ttcacaggat gtgtttcgtg agggctatct gaaactgggc 420

accgtacctt ttctgcattt ccgcgacatg ctgcgtgccg ggccacagct gggtcggctg	480
caggcctggc gcagtgtcta cagcatggtg gcgaaattta ttcatgacga tcatctgcgc	540
caggctttt cctttactc gttgctggtc ggcgtaatc ctttgcac acgttcgatc	600
tataccttaa ttcacgcact ggagcgcgaa tggggcgtgt ggttccgcg cggcggtacc	660
ggtgcgctgg ttgatggcat ggcgcggctg tttcgcgatt tggcggtga actgctgctc	720
aaccccgaag tcagccagct ggagaccgag ggtaaccgca tcagcggtgt ccagctgaag	780
gatggcgcc gtttgccgc cgccgcgtt gcgtcaaatg ctgacgtggt gcataacctac	840
gatgcctgt taagccagca tcctgcggcg cgtaaacgcg cggcaacgct gaagcgcaag	900
cggatgagca actcgctgtt tgtactctat tttggtctta atcatgccc ccccgagctg	960
gcmcaccaca cggtgtgctt tggccgcgc tatcgtgaat tgatcgatga gatcttcaat	1020
agcagccagc tggcggaga tttctcgctg tatctgcatt cgccctgctc cagcgatccg	1080
tcgctggcac cggcgggctg cggcagttt tacgtgctgg cgccgggtgcc gcatactcggt	1140
accggccaa ttgactggca acaggaaggg ccgcgttgc gcgatcgcat ttttgcttat	1200
ctggaggagc actatatgcc gggctgcga cagcagttt tagcacacaccg tatgtttacg	1260
ccgtttgatt ttcgcgacac gctgcacgcg catcagggtc cagcgtttc gctcgAACCC	1320
attttgacgc aaagcgctg gttccggccg cataaccgcg atgcccacat tactaacctt	1380
tatctggtgg gggctggcac gcatcccggt gccgggtgtgc caggcgtgat cggctccgcg	1440
aaagcgaccg cccagctgat ggtggaggat ctgaccggat ga	1482

<210> 8

<211> 493

<212> PRT

<213> *Pectobacterium cypripedii* DC416

<400> 8

Met Lys Arg Thr Tyr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu
 1 5 10 15

Ala Ile Arg Leu Gln Ala Ala Gly Val Pro Val Thr Leu Leu Glu Gln
 20 25 30

Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Gln Asp Gln Gly Phe
 35 40 45

Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu
 50 55 60

Ala Leu Phe Thr Leu Ala Gly Lys Gln Leu Ser Asp Tyr Val Asp Leu
 65 70 75 80

Met Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Asp Gly Arg Gln
 85 90 95

Leu Asp Tyr Asp Asn Asn Gln Ala Gln Leu Glu Gln Gln Ile Ala Thr
 Page 8

100 105 110

Phe Asn Pro Gln Asp Val Ala Gly Tyr Arg Gln Phe Leu Ala Tyr Ser
115 120 125

Gln Asp Val Phe Arg Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe
130 135 140

Leu His Phe Arg Asp Met Leu Arg Ala Gly Pro Gln Leu Gly Arg Leu
145 150 155 160

Gln Ala Trp Arg Ser Val Tyr Ser Met Val Ala Lys Phe Ile His Asp
165 170 175

Asp His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly
180 185 190

Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu
195 200 205

Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val
210 215 220

Asp Gly Met Ala Arg Leu Phe Arg Asp Leu Gly Gly Glu Leu Leu Leu
225 230 235 240

Asn Ala Glu Val Ser Gln Leu Glu Thr Glu Gly Asn Arg Ile Ser Gly
245 250 255

Val Gln Leu Lys Asp Gly Arg Arg Phe Ala Ala Ala Ala Val Ala Ser
260 265 270

Asn Ala Asp Val Val His Thr Tyr Asp Arg Leu Leu Ser Gln His Pro
275 280 285

Ala Ala Arg Lys Arg Ala Ala Thr Leu Lys Arg Lys Arg Met Ser Asn
290 295 300

Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His Ala His Pro Gln Leu
305 310 315 320

Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile Asp
325 330 335

Glu Ile Phe Asn Ser Ser Gln Leu Ala Glu Asp Phe Ser Leu Tyr Leu
340 345 350

His Ala Pro Cys Ser Ser Asp Pro Ser Leu Ala Pro Ala Gly Cys Gly
355 360 365

Ser Phe Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Ala Ile
370 375 380

Asp Trp Gln Gln Glu Gly Pro Arg Leu Arg Asp Arg Ile Phe Ala Tyr
385 390 395 400

Leu Glu Glu His Tyr Met Pro Gly Leu Arg Gln Gln Leu Val Thr His
405 410 415

Arg Met Phe Thr Pro Phe Asp Phe Arg Asp Thr Leu His Ala His Gln
420 425 430

Gly Ser Ala Phe Ser Leu Glu Pro Ile Leu Thr Gln Ser Ala Trp Phe
435 440 445

Arg Pro His Asn Arg Asp Ala Asp Ile Thr Asn Leu Tyr Leu Val Gly
450 455 460

Ala Gly Thr His Pro Gly Ala Gly Val Pro Gly Val Ile Gly Ser Ala
465 470 475 480

Lys Ala Thr Ala Gln Leu Met Val Glu Asp Leu Thr Gly
485 490

<210> 9
<211> 930
<212> DNA
<213> *Pectobacterium cypripedii* DC416

<400> 9
atgaaccaac cgccgctgat tgagcaggc acgcaaacca tggcgccagg ctccaaaagt 60
ttcgccagcg ctacccggct atttgatcct tcaacgcgcc gcagtcgct gatgtgtac 120
gcctggtgtc gtcactgtga cgatgtgata gatggtcaga cgctggcgca aggccgcacg 180
cagcacgcgg tggcgatgc acaggcgcgg atgcgccacc tgcaaatcga aaccgcgcgc 240
gcctacagcg gtgcccacat ggatgaacca gcgttcgtg ccttcagga agtggcgctg 300
acgcatcagc ttccccagca gctggctttt gatcatctgg aagggtttgc gatggatgcg 360
cgtgaagaac gttatgcgtg tttcgggac acgctgcgtt actgctatca cgtggccggc 420
gtgggtgggt taatgatggc gcgcgtgatg ggcgtacgtg atgagcgcgt actcgatcac 480
gcctgtgatt tgggtctggc gttcagctt accaatatcg cacggatat cgttgaggac 540
gcggagaatg gccgttgcta tctgccacaa agctggctgg atgaggccgg actgagcgcc 600
gcccagctt ccgatccgca acatcgccgca gcgcgtggccc cgctggcagc gcgtctgg 660
cgcgaggccg agccgtacta tcagtcagcg cgccaggatt gccgctccgt 720
tcggcgtggg cgatcgccac cgccgcggc gtttaccggg aaattggcgt aaaagtgcag 780
catgccgtg cccgggcatg ggatacgcgc cagcgcacca gtaaaggcga aaagctggcg 840
ctgctggta aaggtgccgg cgtcgcgtt acttcgcgcc ttgctcatcc cgaggcgcgt 900
cctgccgtc tgtggcagcg tccgcgttga 930

<210> 10
<211> 309
<212> PRT
<213> *Pectobacterium cypripedii* DC416
<400> 10

Met Asn Gln Pro Pro Leu Ile Glu Gln Val Thr Gln Thr Met Ala Gln
1 5 10 15

Gly Ser Lys Ser Phe Ala Ser Ala Thr Arg Leu Phe Asp Pro Ser Thr
20 25 30

Arg Arg Ser Thr Leu Met Leu Tyr Ala Trp Cys Arg His Cys Asp Asp
35 40 45

Val Ile Asp Gly Gln Thr Leu Gly Glu Gly Gly Thr Gln His Ala Val
50 55 60

Ala Asp Ala Gln Ala Arg Met Arg His Leu Gln Ile Glu Thr Arg Arg
65 70 75 80

Ala Tyr Ser Gly Ala His Met Asp Glu Pro Ala Phe Arg Ala Phe Gln
85 90 95

Glu Val Ala Leu Thr His Gln Leu Pro Gln Gln Leu Ala Phe Asp His
100 105 110

Leu Glu Gly Phe Ala Met Asp Ala Arg Glu Glu Arg Tyr Ala Cys Phe
115 120 125

Gly Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val Val Gly Leu
130 135 140

Met Met Ala Arg Val Met Gly Val Arg Asp Glu Arg Val Leu Asp His
145 150 155 160

Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile Ala Arg Asp
165 170 175

Ile Val Glu Asp Ala Glu Asn Gly Arg Cys Tyr Leu Pro Gln Ser Trp
180 185 190

Leu Asp Glu Ala Gly Leu Ser Ala Ala Gln Leu Ala Asp Pro Gln His
195 200 205

Arg Ala Ala Leu Ala Pro Leu Ala Ala Arg Leu Val Arg Glu Ala Glu
210 215 220 225

Pro Tyr Tyr Gln Ser Ala Arg Ser Gly Leu Pro Gly Leu Pro Leu Arg
225 230 235 240

Ser Ala Trp Ala Ile Ala Thr Ala Arg Gly Val Tyr Arg Glu Ile Gly
245 250 255

Val Lys Val Gln His Ala Gly Ala Arg Ala Trp Asp Thr Arg Gln Arg
260 265 270

Thr Ser Lys Gly Glu Lys Leu Ala Leu Leu Val Lys Gly Ala Gly Val
275 280 285

Ala Leu Thr Ser Arg Leu Ala His Pro Glu Ala Arg Pro Ala Gly Leu
290 295 300

Trp Gln Arg Pro Arg
305

<210> 11
<211> 537
<212> DNA
<213> Pectobacterium cypripedii DC416

<400> 11
atgatgctct gtttatggaa tgcgttatac ctgctggcta ccgtgatact gatggagatc 60
gtcgccgcgc tgtcgataa atacattatg catggctgg gatggggctg gcatttgtcg 120
catcatgaac cacatgagag caaatggag ctcaacgacc tgtatgccgt ggtgtttgcg 180
ctgttgcga ttggcctgat ttggctgggt gtcaacggcg tctggccgct gcagtggatt 240
ggcgctggca tgacgaccta tggcgctctc tattttatgg tgcacatgacgg cctggccat 300
caacgctggc cgtttcgcta tattccacgc aaaggctatc tgaagcgggt gtatatggcg 360
caccgcacgc atcatgcggt gcggggacgg gaaggctgcg tttcctttgg ctttctttac 420
gccccaccgt tgcacaagct gcaggcgacg ctgcgccagc gccatggcg tcgtgtcaac 480
gcggacgctg ccacagacccg gcaggacgacg cctcggatg agcaaggcgc gaagtaa 537

<210> 12
<211> 178
<212> PRT
<213> Pectobacterium cypripedii DC416

<400> 12

Met Met Leu Trp Leu Trp Asn Ala Leu Ile Leu Leu Ala Thr Val Ile
1 5 10 15

Leu Met Glu Ile Val Ala Ala Leu Ser His Lys Tyr Ile Met His Gly
20 25 30

Trp Gly Trp Gly Trp His Leu Ser His His Glu Pro His Glu Ser Lys
35 40 45

Phe Glu Leu Asn Asp Leu Tyr Ala Val Val Phe Ala Leu Leu Ser Ile
50 55 60

Gly Leu Ile Trp Leu Gly Val Asn Gly Val Trp Pro Leu Gln Trp Ile
65 70 75 80

Gly Ala Gly Met Thr Thr Tyr Gly Ala Leu Tyr Phe Met Val His Asp
85 90 95

Gly Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly
100 105 110

Tyr Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg
115 120 125

Gly Arg Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu
130 135 140

His Lys Leu Gln Ala Thr Leu Arg Gln Arg His Gly Arg Arg Val Asn
145 150 155 160

Ala Asp Ala Ala Thr Asp Arg Gln Asp Ala Pro Arg Asp Glu Gln Gly
165 170 175

Ala Lys

<210> 13

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer HK12

<400> 13

gagtttgatec ctggctcag

19

<210> 14

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer JCR14

<400> 14

acgggcggtg tgtac

15

<210> 15

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer JCR15

<400> 15

gccagcagcc gcggta

16

<210> 16

<211> 1331

<212> DNA

<213> Pectobacterium cypripedii DC416

<400> 16
 aacacatgca agtcgaacgg cagcacagaa gagcttgctc tttgggtggc gagtggcgga 60
 cgggtgagta atgtctggga aactgcccga tggaggggaa taactactgg aaacggtagc 120
 taataccgca taacgtcgca agacccaaagt gggggacctt cgggcctcac accatcgat 180
 gtgcccagat gggattagct agtaggtggg gtaatggctc acctaggcga cgatccctag 240
 ctggctcgag aggatgacca gccacactgg aactgagaca cggtccagac tcctacggga 300
 ggcagcagtg gggaatattt cacaatgggc gcaagcctga tgcagccatg ccgcgtgtat 360
 gaagaaggcc ttcgggttgtt aaagtacttt cagcggggag gaaggcggtg aggttaataa 420
 ccttgcgat tgacgttacc cgcaagaagaa gcaccggcta actccgtgcc agcagccgcg 480
 gtaatacgga gggtgcaagc gttaatcgga attactggc gtaaagcgcg cgcaggcggt 540
 ctgttaagtc agatgtgaaa tccccggct taacctggga actgcattt aaactggcag 600
 gctttagtct ctagagggg ggtagaattt caggtgttagc ggtgaaatgc gtagagatct 660
 ggaggaatac cggtggcgaa ggccggccccc tggacgaaga ctgacgctca ggtgcgaaag 720
 cgtggggagc aaacaggatt agataccctg gtagtccacg ccgtaaacga tgtcacttg 780
 gaggttgc ccttgaggcg tggcttccgg agctaacgcg ttaagtcgac cgcctggga 840
 gtacggccgc aaggtaaaa ctcaaattt gacgggggg cccgcacaag cggtggagca 900
 tgtggttaa ttcgatgca cgcgaagaac cttacctggc cttgacatcc agagaactta 960
 gcagagatgc tttgggtgcct tcgggaactc tgagacaggt gctgcatggc tgtcgctcagc 1020
 tcgtgttgtg aaatgttggg ttaagtcgg caacgagcgc aacccttatac ctttgttgc 1080
 agcggttcgg ccgggaactc aaaggagact gccgggtgata aaccggagga aggtggggat 1140
 gacgtcaagt catcatggcc cttacggcca gggctacaca cgtgctacaa tggcgcatac 1200
 aaagagaagc gacctcgcga gagcaagcgg acctcataaa gtgcgtcgta gtccggattt 1260
 gagtctgcaaa ctcgactcca tgaagtcgga atcgctagta atcgtagatc agaatgctac 1320
 ggtgaataacg t 1331

<210> 17
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer TET-1 FP-1

<400> 17
 gggtgcgcat gatcctctag agt 23

<210> 18
 <211> 8675
 <212> DNA
 <213> Pectobacterium cypripedii DC416

<400> 18
 aaccgggct aatgggggtg acaagccca ggccggccaa acaatcaggt ggaaggccc 60

ggtgccgagg caatttgc	tc gatttgc	aac gcaccagcc	g tggcaa	aac ag cg	cgcacgg	tag	120
cgctcacgaa actgatcggc	gatggca	cta tgagtgc	acg gcgg	agc cg	ccgatc	ggcc	180
aggtgatcga gatccagcgc	ctgt	aac aca	ggt cccgc	cgcgtcc	ccgc	acgtt	240
agctgcggag aaatcaggtt	ggtgcca	aaagc gataac	acggt gtgg	tgcg	ccaga	gcca	300
aagctgcagg ccaccgc	atc aggctt	gctg	caatca gccc	gacgtt	cagacca	aaagc	360
gtatgcagca gctgatttgc	ccagcgt	cc	gtc	ccagca	ccagacgatc	accctg	420
cgctcaccct gctccagct	ctg acccg	tcac	g	ccat	tttca	ctat	480
gcctgatgct gatgcagta	c	cgcgt	gc	ctgc	ccct	acta	540
ta	cagcgt	gat	agagc	ac	cgattcc	gtt	600
gacgcgc	g	ttc	cag	aaat	ccgt	atgc	660
tagccagcgg cctgcaaggc	gg	gttgg	ca	gc	tgct	cg	720
ccggcccact cccaggtg	cc	aca	agg	ttcc	gc	gtc	780
tgcagccga tatgctc	tc	cat	cgcc	agg	gc	at	840
tttccgttgg agtttaccc	ca	gg	caa	atgt	gt	gat	900
cggtaaaga gggtcac	ctg	cccc	ctgc	cg	ccac	ggc	960
atcacacccg caccgatt	ac	cccc	ttt	tg	gtc	tc	1020
ccaacatcat aacagt	cacc	ttt	tg	gtc	gtc	tc	1080
agattattca ataaataaaa	aa	agcgt	gac	gg	tcgtt	aa	1140
cactccctt accgggt	cta	cgtt	aa	ttt	gc	gtt	1200
aagccgctat gaccgccc	at	gtc	gat	cc	at	tc	1260
tgcacgc attgcagg	cc	at	ttt	ga	tt	tg	1320
gcgttgcggc cgccat	gcgt	gc	ccgg	ac	cc	ggc	1380
tgctgctgct ggcagc	ac	gc	at	gg	gtt	ggc	1440
ttgcctgtgc ggtc	ga	at	gt	tc	act	gt	1500
tggataacgc ccggat	gc	gt	gg	cc	at	tc	1560
tggcgatcct ggcagc	gg	tc	gg	ct	act	ca	1620
cgggtctgcc agcaac	gc	aa	gccc	ga	cc	ttc	1680
tgcagggact ggtc	agg	gt	ttcc	agg	at	tc	1740
cggaagccat cacc	ct	at	gaa	act	gt	tc	1800
agatggcggc gattgc	gg	tc	gg	cc	gt	tc	1860
cgcaggattt aggtc	agg	gt	tc	tttac	tc	acgtt	1920
ccggcaagga ctgt	cat	ca	gt	ggac	at	ggc	1980
aaggggctga gcgtc	gt	tc	tc	atc	gtc	atc	2040
cctgccc	at	cg	tc	gg	ccat	ttt	2100
cgatgttcaa ctga	agg	cc	gg	tat	ttt	ggc	2160

ctacagccac tttcacgcacat	tgcaggcgct ggcgcaaacg	ctgctggcgc gcggacatcg	2220
catcacctt atccagcaaa	gtgatgcacg caccttgctg	agcgacgagc gcattgcctt	2280
tgtggccgtc ggcgagcgca	cgcacccctgc cggatcgctc	tccagcgaac tcagggcgct	2340
ggccgcaccg ggcgggctgt	cgctgttgc	cgtgattcac gatctggcca	2400
tatgctatgc cgcaactgc	ccgcgggtgct	gcaacggctg caggtcgatg	2460
cgatcaaatg gaagcggctg	gtggctcggt	ggcagaggcg ttacagctgc	2520
ggtggcctgc gcgctgccgg	tcaatcgca	agcggccatt ccgctggtgg	2580
tcgcttgct caggtatgaga	aagcgctgca	gcgcatacg gccagcagt	2640
ccgcatcatg cgtcgtcatg	gcmcgtcat	cgctcgatgc gcgcgcgcct	2700
cgaacgccc	ggcttacatc	agtgtctgtc	2760
cgctttgtat ttccacgcc	agcaactgccc	agcctgctat	2820
gactccagtt gctagcggcg	cgctcgccgc	accctggcca	2880
gtatgcctcg ctgggcacgc	tacagggca	tcgctttcgct	2940
ggcctgccgc aatcagcagc	tgtcgctgg	ggcgcacac	3000
ccaggcacat cagctcagac	tggccggc	tgcggttg	3060
ggcggcgctg cagcatgcgc	aactgttat	cactcaca	3120
agcactggag tgtggcacgc	cgatgctggc	gctgccgatc	3180
ggcggcacgt attgagtggc	acggcgtcgg	ccggcgcgc	3240
gcagctggag caccacctgc	aacagttgct	gagtgcacat	3300
agccattcag ggcgcagctgc	agcggccgg	tggctgtacg	3360
gcagggcgtg tgtcagcagc	aatcgtgct	ggcggaggcc	3420
gatgtcattc tggtcgggtc	cggctggct	aacggctga	3480
ctgcagcccg cacttaaggt	tttgcactg	gagagtca	3540
acctggtcgt tccatcgca	agacgtcagc	gaagcgcagt	3600
ctttcggcgc gctggccgg	ttatcaggta	cgcttcccc	3660
ggtgaatatt gctcgattgc	ctcgaggat	tttgcggc	3720
gccgcgtac gcaccgcagc	gccggtcagc	gaggtctcac	3780
gatggcggga tgttacaggc	gcaggcgggt	attgacggac	3840
catctgcagc tcggctatca	ggcatttgc	ggtcaggagt	3900
ggcctgcagc agccaatatt	gatggacgccc	ggcaactggc	3960
gtttacaccc tgccgctcag	tgccagccgt	ttactgattt	4020
catgccacgc tggatgcgc	acaggcgcgc	cgtcacatta	4080
ggctggaatt tgccgcagct	gctgcgcag	gagcacggct	4140
ggcgatatcg atcagttctg	gcaacagcag	cacggcaac	4200

ggactgtttc acgccaccac cggttactcg ctgcccgcg cggggcgct ggcggagaag 4260
attgccagca cgctgcccgc cgacgctcac acgctgagcc actgcacatcga atccttgcc 4320
cgtcagcaact ggcgcgagca gcgcgttttc cgtctgttaa atcgcatgct gtttcttgcc 4380
ggacggcctg aacagcgctg gcgcgtaatg cagcgtttt accggcttga cgccggattg 4440
attagccgtt tttacgcccgg gcaactgcgc ctcagcgata aagcacgcat tctgtgcggc 4500
aaaccggccgg tccctctcg cgaagcgctg cgccgttga tgatgacctc tccgttacca 4560
gggaagaaat aatgaaacgc acctatgtga ttggcgcagg ctccgggtgc ctggcgctgg 4620
cgattcgct gcaaggcgcc ggcgtgcgg tcacgctgct ggaacagcgc gataaggctg 4680
gcgggcgcgc ctatgtgtat caggatcagg gtttacctt tgatgcccgtt ccgacgggtga 4740
ttaccgatcc cagcgctatc gaggcgctgt ttacgctggc aggcaagcaa ctcagtgatt 4800
atgtcgacct gatgcccggt acgcatttt atcgccctgtg ctgggaagac ggcaggcagc 4860
tggactacga caacaatcag gcgcagctgg agcagcagat tgccactttt aatccccagg 4920
atgtcgccgg ttaccgcccag tttctggcct attcacagga tgtgtttcgt gagggtatc 4980
tgaaaactggg caccgtacct tttctgcatt tccgcgacat gctgcgtgcc gggccacagc 5040
tgggtcggct gcaggcctgg cgcaatgtct acagcatggt ggcggaaattt attcatgacg 5100
atcatctgcg ccaggctttt tccttcact cggtgctggt cggcggtaat cctttgcaa 5160
cgtcttcgat ctataccctta attcacgcac tggagcgcga atggggcgtg tggttccgc 5220
gcggcggtac cggtgcgctg gttgatggca tggcgcggct gttcgcgat tggttccgt 5280
aactgctgct caacgcccggaa gtcagccagc tggagaccga gggtaaccgc atcagcggtg 5340
tccagctgaa ggatggcgc cgtttgcccgc cccgcgcgt tgcaat gctgacgtgg 5400
tgcatacccta cgatgcctg ttaagccagc atcctgcggc gcgtaaacgc gcggcaacgc 5460
tgaagcgcaa gcggatgagc aactcgctgt ttgtactcta ttttgtctt aatcatgccc 5520
acccgcagct ggccgaccac acgggtgtct ttggccgcgt ctatcgtaa ttgatcgatg 5580
agatcttcaa tagcagccag ctggcggaag atttctcgct gtatctgcat gcgcctgct 5640
ccagcgatcc gtcgctggca cccgcggct gcggcagttt ttacgtgctg gcgcgggtgc 5700
cgcatctcg taccgcgcga attgactggc aacaggaagg gccgcgttg cgcaatcgca 5760
ttttgctta tctggaggag cactatatgc cgggtctgcg acagcagttt gtgacacacc 5820
gtatgtttac gccgtttgat tttcgcgaca cgctgcacgc gcatcaggc tcagcggttt 5880
cgctcgaaacc cattttgacg caaagcgctt ggttccggcc gcataaccgc gatgccgaca 5940
ttactaacct ttatctggtg ggggtggca cgcattccgg tgccgggttg ccaggcgtga 6000
tcggctccgc gaaagcgacc gcccagctga tggtgagga tctgaccggta tgaaccaacc 6060
gccgcgtatt gagcagggtca cgcaaacat ggccgcaggc tccaaaagtt tcgcccgcgc 6120
tacccggcta tttgatcctt caacgcgcgc cagtcgtatcgt atgctgtacg cctgggtgc 6180
tcactgtgac gatgtgatag atggtcagac gctgggcgaa ggccgcacgc agcacgcgtt 6240
ggcggatgca caggcgcggta tgcgccaccc gcaaatcgaa acccgccgcg cctacagcgg 6300

tgcccacatg gatgaaccag cgtttcgtgc ctttcaggaa gtggcgctga cgcatcagct	6360
tccccagcag ctggcttttgc atcatcttgc aagggtttgcg atggatgcgc gtgaagaacg	6420
ttatgcgtgt ttcggggaca cgctgcgtta ctgctatcac gtggccggcg tgggtgggtt	6480
aatgatggcg cgcgtatgg gcgtacgtga tgagcgcgtta ctcgatcacg cctgtgattt	6540
gggtctggcg tttcagctta ccaatatcgc acgggatatac gttgaggacg cggagaatgg	6600
ccggttgcata ctgccacaaa gctggcttgc tgaggccgga ctgagcgcgc cccagcttgc	6660
cgcgttgcata catcgccgacg cgctggccccc gctggcagcg cgtctgggtgc gcgaggccga	6720
gccgtactat cagtcagcgc gcagcgggct gccaggattt ccgctccgtt cggcgtgggc	6780
gatgccacc gcgcgcggcg tttaccggaa aattggcgta aaagtgcagc atgcccgtgc	6840
ccgggcattgg gatacgcgc agcgcaccag taaaggcgaa aagctggcg tcgttgcgaa	6900
aggtgccggc gtcgcgcctt cttcgccct tgctcatccc gaggcgcgtc ctgcccgtct	6960
gtggcagcgt ccgcgttgc acgacgccta tggcgcgttgc gcagcgtcgc ctgcagcttgc	7020
tgcaacggtg gggcgtaaag aaagccaaag gaaacgcagc cttcccggtcc ccgcaccgc	7080
tgtatgcatgc ggtgcgcattt atacaaccgc ttcatatgc ctttgcgtgg aatatacgaa	7140
aacggccagc gttgatggac caggccgtca tgcaccataa aatagagagc gccataggc	7200
gtcatgcgcag cgccaatcca ctgcagcggc cagacgcgt tgacacccag ccaaattcagg	7260
ccaaatcgaca acagcgcaaa caccacggca tacaggtcgt tgagctcaaa tttgtctca	7320
tgtggttcat gatgcgacaa atgccagccc catccccagc catgcataat gtatttatgc	7380
gacagcgcgc cgacgatctc catcgtatc acggtagcca gcaggataag cgcattccat	7440
aaccagagca tcattggtcc atttgcgaag agtgagagta taaagggtggc cgtggatagc	7500
gaaaggcgca agtccccggc aaaaaaacgc accggcagcg taaataccag ccaggtcacf	7560
gacgcgtgct atcacccatca gacaaggcaaa gcggcaagag ggttatcctg catggcgcc	7620
gggtgggtct gctttacatc gattnaacat ctggtttagta tagccagcgg ttcagcggc	7680
caggctgctg cgtacgcgtt aacgtcaatc aacgcaccat atgcagagac tttctgcctc	7740
atttctatgg tgcgcacat gtcccatacc gctttatctg ctgattctgc cctgcgtcgt	7800
tccggctttt tcctgctgct actgttactc accggcccca acttacgcac gcccattcacc	7860
gctaccgggc cggtaactgga aaatattcgc ctgacatgg gcctgagcgc cagcgtgccc	7920
ggcgtgatta actttttacc gctgctgatg tttgcccacgc tggctccggcc agccgcctgg	7980
tttggcaatc gctttggcct ggagcgcagt ctgtgggggg ctttactcct gatgcgtcctg	8040
ggttcactgc tgcgaatcag cggcagcgaa acggcactgt ggctgggtac gctgattctc	8100
agcagcggga tcgcggcgcc caacgtcctg ctgcccggc tgattaagcg ggattacacc	8160
gcccacaccg cgcgttatat cggcgttat gccatgacca tggccatcac cgccagcatc	8220
gcttccggcg tggccgtgcc gctggccgaa ctcagcagcg ccggctggcg tctgtcgctg	8280
gcggcttgcgc tgattccggc tctggtcgcg ctactggcgt ggctgcccgc gctgaaaaat	8340

cccgcgacgc gtgagcagcg cgcgacagag gtcaccgtaa cgcgttgcgc gtgtcggtcc 8400
gcgatcggt ggcagggtgc gctgttcatg gccagccagt cgctgctgtt ttataccctg 8460
attggcttgtt ttaccccggtt cgcacaggat aatggcatca gtcagcttca ggcaggcagc 8520
atgttggtttgc tctatcaaatttgtggcgatc gcctccaatc tggcctgttat gcgggcgtg 8580
aaggcagctgc gcgatcagcg tctgatcggtt ctactggcct cgctgtcgat cttcatcg 8640
gtgaccggcc tgctgctggc acccgcatgg tctct 8675

<210> 19
<211> 31
<212> DNA
<213> artificial sequence

<220>
<223> Primer pWEB416F

<400> 19
gaattcacta accatggaaa gccgctatga c 31

<210> 20
<211> 26
<212> DNA
<213> artificial sequence

<220>
<223> Primer pWEB416R

<400> 20
gaattcaacg cggacgctgc cacaga 26