Elementare Geometrie

Mitschrieb, gehört bei Prof. Leuzinger im WS17/18

Jens Ochsenmeier

Inhaltsverzeichnis

1	Ein	stieg — Metrische Räume	5		
	1.1	Vorbemerkungen	5		
	1.2	Definitionen zu metrischen Räumen	5		
	1.3	Beispiele zu metrischen Räumen	6		
2	Län	genmetriken	9		
	2.1	Graphen — Definitionen	9		
	2.2	Euklidische Metrik	10		
	2.3	Sphärische Geometrie	13		
	2.4	Wozu sind Metriken gut?	15		
3	Gru	ındbegriffe der allgemeinen Topologie	1 7		
	3.1	Toplogischer Räume	17		
	3.2	Hausdorffsches Trennungsaxiom	21		
	3.3	Stetigkeit	22		
	3.4	Zusammenhang	25		
	3.5	Kompaktheit	28		
4	Spe	zielle Klassen von topologischen Räumen	33		
	4.1	Topologische Mannigfaltigkeiten	33		
5	Übungen				
	5.1	2017-10-27	35		
		2017-11-03	37		
	53	2017-11-10	37		

Einstieg — Metrische Räume

1.1 Vorbemerkungen

Inhalt dieser Vorlesung wird sowohl *Stetigkeitsgeometrie* (Topologie) als auch *metrische Geometrie* sein. Die seitlich abgebildeten Objekte sind im Sinne der Stetigkeitsgeometrie "topologisch äquivalent", im Sinne der metrischen Geometrie sind diese allerdings verschieden.

1.1.1 Kartographieproblem.

Ein zentrales Problem der Kartographie ist die *längentreue* Abbildung einer Fläche auf der Weltkugel auf eine Fläche auf Papier. Mithilfe der Differentialgeometrie und der Gauß-Krümmung lässt sich zeigen, dass das nicht möglich ist.

1.2 Definitionen zu metrischen Räumen

1.2.1 Definition — Metrik.

Sei X eine Menge. Eine Funktion $d: X \times X \to \mathbb{R}_{>0}$ ist eine *Metrik* (Abstandsfunktion), falls $\forall x, y, z \in X$ gilt:

- 1. **Positivität**: $d(x, y) = 0 \Leftrightarrow x = y$
- 2. **Symmetrie**: d(x,y) = d(y,x)
- 3. **Dreiecksungleichung**: $d(x,z) \le d(x,y) + d(y,z)$

1.2.2 Definition — Metrischer Raum.

Ein metrischer Raum ist ein Paar (X, d) aus einer Menge und einer Metrik auf dieser.

1.2.3 Definition — Pseudometrik.

Eine *Pseudometrik* erfüllt die gleichen Bedingungen wie eine Metrik, außer $d(x, y) = 0 \Rightarrow x = y$ — die Umkehrung gilt.

Abbildung 1.1: Diese Objekte sind "topologisch äquivalent" (später mehr zur genauen Definition), aus Sicht der metrischen Geometrie allerdings nicht.

Abbildung 1.2: Die Projektion einer Fläche auf einer Kugel auf Papier — nicht längentreu möglich!

1.2.4 Definition — Abgeschlossener r-Ball um x.

Eine Teilmenge $\overline{B_r(x)} := \{ y \in X : d(x,y) \le r \}$ heißt *abgeschlossener* r-Ball $um \ x$.

1.2.5 Definition — Abstandserhaltende Abbildung.

Sind (X, d_X) und (Y, d_Y) metrische Räume, so heißt eine Abbildung $f: X \to Y$ abstandserhaltend, falls

$$\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$$

1.2.6 Definition — Isometrie.

Eine *Isometrie* ist eine bijektive, abstandserhaltende Abbildung. Falls eine Isometrie $f:(X,d_X)\to (Y,d_Y)$ existiert, so heißen X und Y isometrisch.

1.3 Beispiele zu metrischen Räumen

1.3.1 Beispiel — Triviale Metrik.

Menge $X, d(x,y) \coloneqq \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$ jede Menge lässt sich zu einem metrischen Raum verwursten.

1.3.2 Beispiel — Simple Metriken.

Sei $X = \mathbb{R}$.

- $d_1(s,t) := |s-t|$ ist Metrik.
- $d_2(s,t) := \log(|s-t|+1)$ ist Metrik.

1.3.3 Beispiel — Euklidische Standardmetrik.

 $X = \mathbb{R}^n$, $d_e(x,y) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = ||x - y||$ ist die (euklidische) Standardmetrik auf dem \mathbb{R}^n . Die Dreiecksungleichung folgt aus der Cauchy-Schwarz-Ungleichung¹.

Bemerkung (aus LA II): Isometrien von (\mathbb{R}^n, d_e) sind Translationen, Rotationen und Spiegelungen.

Anmerkung: Wenn d(x,y) eine Metrik ist, so ist auch $\widetilde{d}(x,y) \coloneqq \lambda d(x,y)$ mit $\lambda \in \mathbb{R}_{>0}$ eine Metrik.

¹ Cauchy-Schwarz-Ungleichung: $\langle x,y\rangle \leq ||x||\cdot||y|| \quad (x,y\in\mathbb{R})$

1.3.4 Beispiel — Maximumsmetrik.

$$X = \mathbb{R}, d(x,y) := \max_{1 \le i \le n} |x_i - y_i| \text{ ist Metrik.}$$

1.3.5 Beispiel — 1.3.3 und 1.3.4 allgemein: Norm.

V sei \mathbb{R} -Vektorraum. Eine *Norm* auf V ist eine Abbildung

$$\|\cdot\|:V\to\mathbb{R}_{>0},$$

so dass $\forall v, w \in V, \lambda \in \mathbb{R}$:

- 1. **Definitheit**: $||v|| = 0 \Leftrightarrow v = 0$
- 2. absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
- 3. **Dreiecksungleichung**: $||v + w|| \le ||v|| + ||w||$

Eine Norm definiert eine Metrik durch d(v, w) := ||v - w||.

1.3.6 Beispiel — Einheitssphären.

 $S_1^n := \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ ist die *n*-te Einheitssphäre. Auf dieser ist mit

$$d_W(x,y) := \arccos(\langle x,y \rangle)$$

die Winkel-Metrik definiert.

1.3.7 Beispiel — Hamming-Metrik.

Es ist \mathbb{F}_2 der Körper mit zwei Elementen $\{0,1\}$,

$$X := \mathbb{F}_2^n = \{ (f_1, \dots, f_n) : f_i = 0 \lor f_i = 1 \ (i \in 1, \dots, n) \}$$

die Menge der binären Zahlenfolgen der Länge n. Die Hamming-*Metrik* ist definiert als

$$d_H: X \times X \to \mathbb{R}_{>0}, \quad d_H(u,v) = |\{i: u_i \neq v_i\}|.$$

Längenmetriken

2.1 Graphen — Definitionen

2.1.1 Definition — Graph.

Ein *Graph* G = (E, K) besteht aus einer *Ecken*-Menge E und einer Menge von Paaren $\{u, v\}$ $\{u, v \in E\}$, genannt *Kanten*.

2.1.2 Definition — Erreichbarkeit.

Seien $p,q \in E$ von G = (E,K). q ist *erreichbar* von p aus, falls ein *Kantenzug* von p nach q existiert.

2.1.3 Definition — Zusammenhängend.

G = (E, K) heißt *zusammenhängend*, falls alle Ecken von einer beliebigen, festen Ecke aus erreichbar sind.

Ist G ein zusammenhängender Graph, so ist d(p,q) = minimale Kantenzahl eines Kantenzuges von p nach q eine Metrik.

2.1.4 Beispiel — Wortmetrik.

Sei $\Gamma \coloneqq \langle S \rangle$ vom endlichen Erzeugendensystem S erzeugte Gruppe. Dann:

$$g \in \Gamma \Rightarrow g = s_1 \cdot \dots \cdot s_n$$
 (multiplikativ, nicht eindeutig), (2.1)

 $z.B. \mathbb{Z} = \langle +1 \rangle$

Dann lässt sich über die Länge von $g \in \Gamma$ (minimales n in Gleichung 2.1) eine Metrik definieren:

Abbildung 2.1: Ein einfacher Graph. Dieser Graph ist <u>nicht</u> zusammenhängend, da die Ecke 1 nicht von den anderen Ecken aus erreicht werden kann.

2.1.5 Definition — Wortmetrik.

$$d_S(g,k) \coloneqq |g^{-1}k|$$

ist eine Metrik mit

$$d_{s}(kg, kh) = |(kg)^{-1}kh|$$

$$= |g^{-1}\underbrace{k^{-1}k}_{=e}h| = |g^{-1}h|$$

$$= d_{s}(g, h),$$

also ist d_s linksmultiplikativ mit $k \in \Gamma$ und damit eine Isometrie.

2.1.6 Definition — Cayley-Graph.

Der Cayley-Graph Cay (Γ, S) von Γ bezüglich S ist der Graph G = (E, K) mit

$$E := \Gamma$$
, $K := \{(g, gs) : g \in \Gamma, s \in S\}$.

Die Graphen-Metrik auf Cay(Γ , S) ist isometrisch zur Wortmetrik.

2.2 Euklidische Metrik

2.2.1 Beispiel — Euklidische Metrik auf \mathbb{R}^2 als Standardmetrik.

Sei

$$c:[a,b]\to\mathbb{R}^2,\quad t\mapsto (x(t),y(t))$$

eine stückweise differenzierbare 1 Kurve. Die euklidische Länge von C ist

$$L_{\text{euk}}(c) := \int_{a}^{b} ||C'(t)|| dt \quad \text{(via Polynom-Approximation)}$$
$$= \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$$

Beispiel: Geraden-Segment.

$$g:[0,1] \to \mathbb{R}^2, \quad t \mapsto g(t) = (1-t)p + tq$$

Dann:

$$g'(t) = -p + q$$
, $||g'(t)|| = ||p - q||$

und damit

$$\underline{L_{\text{euk}}(g)} = \int_0^1 ||p - q|| dt = ||p - q|| = \underline{d_e(p, q)}.$$

¹ **Hinweis**: Mit *differenzierbar* ist im Folgenden immer C^{∞} -differenzierbar gemeint, wenn nicht anders angegeben.

Abbildung 2.2: c bildet ein Intervall $[a, b] \subseteq \mathbb{R}$ auf eine Kurve im \mathbb{R}^2 ab.

Abbildung 2.3: Durch *Polynom-Approximation* wird eine Kurve sukzessive angenähert.

2.2.2 Lemma — Unabhängigkeit von L_{euk}.

- 1. $L_{\text{euk}}(c)$ ist unabhängig von Kurvenparametrisierung.
- 2. $L_{\text{euk}}(c)$ ist invariant unter Translationen, Drehungen und Spiegelungen.

Beweis:

1. Zu zeigen: Für $c:[a,b] \to \mathbb{R}^2$, $t\mapsto c(t)$ und einen monoton wachsenden Diffeomorphismus² $t: [c,d] \rightarrow [a,b], s \mapsto t(s)$ gilt:

$$L_{\rm euk}(c(t(s))) = L_{\rm euk}(c(t)).$$

Das folgt unmittelbar aus der Substitutionsregel für Integrale:

$$\int_{c}^{d} \left\| \frac{dc}{ds} \right\| ds = \int_{c}^{d} \left\| \frac{d_{c}(t(s))}{dt} \right\| \frac{dt}{ds} ds = \int_{t(c)=a}^{t(d)=b} \left\| \frac{dc}{dt} \right\| dt.$$

2. • Translation.

 $\overline{\text{Für } p = (p_1, \dots, p_n)} \in \mathbb{R}^2 \text{ sei}$

$$T_p(c(t)) = c(t) + p = (\lambda(t) + p_1, y(t) + p_2)$$

die von p verschobene Kurve. Es gilt

$$(T_p \circ c)(t) = c'(t) \Rightarrow \int_a^b \left\| (T_p \circ c)' \right\| dt = \int_a^b \left\| c' \right\| dt$$

und damit gilt das Lemma für Translationen.

· Drehung.

 $\overline{\operatorname{Für}\,\theta}\in[0,2\pi]$ sei

$$D_{\theta} \circ c(t) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} c(t)$$
$$= (\cos \theta x(t) - \sin \theta y(t), \sin \theta x(t) + \cos \theta y(t))$$

die um Winkel θ gedrehte Kurve.

Da D_{θ} eine orthogonale Abbildung ist, folgt

$$(D_\theta \circ c(t))' = D_\theta \cdot c'(t)$$

und damit

$$||(D_{\theta} \circ c(t))'|| = ||D_{\theta} \cdot c'|| \stackrel{\text{orth.}}{=} ||c'||$$

und damit gilt das Lemma für Drehungen.

 Spiegelungen sind wie Drehungen orthogonal, ihre Invarianz folgt aus der Invarianz der Drehungen.

² **Diffeomorphismus**: Bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar

2.2.3 Lemma — Geraden sind am kürzesten.

Die kürzesten Verbindungskurven zwischen Punkten in \mathbb{R}^2 sind genau die Geradensegmente.

Beweis: Seien $p,q \in \mathbb{R}^2$ beliebig. Durch geeignete Rotation und Translation kann man (p,q) überführen in Punkte in spezieller Lage;

$$p' = (0,0), q' = (0,l).$$

Wegen 2.2.2 ändert sich dabei die Länge entsprechender Verbindungskurven nicht.

Sei jetzt c(t) := (x(t), y(t)) eine stückweise differenzierbare Kurve zwischen p' und q'. Dann gilt:

$$L_{\text{euk}}(c) = \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2}} dt \ge \int_{a}^{b} |y'| dt \ge \int_{a}^{b} y'(t) dt = \int_{y(a)=0}^{y(b)=1} dy$$

$$= 1.$$

l ist die Länge des Geradensegmentes zwischen p' und q'. \Rightarrow Infimum der Längenwerte wird angenommen. Eindeutigkeit

bleibt zu zeigen.

Gilt für eine Kurve c, dass $L_{\mathrm{euk}}(c) = l$, so hat man in obigen Ungleichungen überall Gleichheit, also insbesondere x'(t) = 0 ($\forall t$), also $x(t) = \mathrm{konstant} = x(0) = 0$ und somit $\tilde{c} = (0, y(t))$. Also ist \tilde{c} auch (parametrisiertes) Geradensegment.

2.2.4 Definition — Euklidische Metrik auf \mathbb{R}^2 -Kurven.

Für $p, q \in \mathbb{R}^2$ sei $\Omega_{pq}(\mathbb{R}^2)$ die Menge der stetig differenzierbaren Verbindungskurven zwischen p und q. Wir setzen dann:

$$(p,q) = \inf L_{\text{euk}}(c), \quad c \in \Omega_{pq}(\mathbb{R}^2).$$

2.2.5 Satz — "Neuer" metrischer \mathbb{R}^2 .

$$(\mathbb{R}^2, d_{\mathrm{euk}})$$

ist ein metrischer Raum und isometrisch zu (\mathbb{R}^2 , d_e).

Beweis: Direkter Beweis nach 2.2.3.

Man hat eine explizite Formel

$$d_{\text{euk}}(p,q) = ||p-q|| = d_e(p,q).$$

Die Identität ist eine Isometrie.

Abbildung 2.4: Verschiebung von p und q auf p' und q'.

Beweis: Konzeptioneller, allgemeinerer Beweis. Es werden die Metrik-Eigenschaften gezeigt.

• Symmetrie.

Sei

$$\Omega_{pq}(\mathbb{R}^2)\ni c:[a,b]\to\mathbb{R}^2.$$

Idee: Kurve wird rückwärts durchlaufen.

Es ist $d_e = d_{euk}$, denn ist $\tilde{c}(t) = (a + b - t) \in \Omega_{qp}(\mathbb{R}^2)$ (mit gleicher Länge wie c) und die Abbildung $c \mapsto \tilde{c}$ ist bijektiv. Dann $L(\tilde{c}) = L(c)$, und damit

$$d(q, p) = \inf(L(\tilde{c})) = \inf(L(c)) = d(p, q).$$

• Dreiecksungleichung.

Zu zeigen: $d_{\text{euk}}(p,q) \le d_{\text{euk}}(p,r) + d_{\text{euk}}(r,q) \ (\forall p,q,r \in \mathbb{R}^2).$ Verknüpfen von Wegen von p nach r mit solchen von r nach qliefert gewisse — aber i.A. nicht alle — Wege von *p* nach *q*:

$$\Omega_{pr} \cup \Omega_{rq} \subseteq \Omega_{pq}$$
.

Infimumbildung liefert die Behauptung.

Positivität.

Zu zeigen: $d_{\text{euk}}(p,q) = 0 \iff p = q$.

- Falls p = q.

Die konstante Kurve $c:[0,1] \to \mathbb{R}^2, t \mapsto c(t) = p$ hat

$$c'(t) = 0 \Rightarrow L_{\text{euk}}(c) = 0 \Rightarrow d_{\text{euk}}(p, p) = 0.$$

- Falls $p \neq q$.

Die kürzeste Kurve ist das Geradensegment³

$$t \mapsto (1-t)p + tq$$

mit der Länge $d_{\text{euk}} = ||p - q|| = 0$.

³ Anmerkung: nur an dieser Stelle wird die Geometrie des \mathbb{R}^2 benötigt!

2.3 Sphärische Geometrie

2.3.1 Beispiel — 2-dimensionale sphärische Geometrie als Längenraum.

Eine 2-dimensionale Sphäre von Radius R in \mathbb{R}^3 ist

$$S_{\mathbb{R}}^2 := \{x \in \mathbb{R}^3 : ||x|| = \mathbb{R}\} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = \mathbb{R}^2\}.$$

Für eine stückweise differenzierbare Kurve

$$c:[a,b] \to S_{\mathbb{R}}^2 \subset \mathbb{R}^3, \ t \mapsto (x_1(t), x_2(t), x_3(t))$$

definiere die sphärische Länge durch

$$L_S(c) := \int_a^b ||c'(t)|| dt = \int_a^b \sqrt{x_1'^2 + x_2'^2 + x_3'^2} dt$$

und

$$d_s(p,q) := \inf L_s(c) \quad (c \in \Omega_{pq}(S_{\mathbb{R}}^2)).$$

2.3.2 Lemma — Kurvenlängen rotationsinvariant.

Die Länge einer differenzierbaren Kurve auf $S_{\mathbb{R}}^2$ ist invariant unter Rotationen von \mathbb{R}^2 .

Beweis: Eine orthogonale Matrix im \mathbb{R}^2 ist (bzgl. Standardbasis) gegeben durch eine orthogonale Matrix $D \in \mathbb{R}^{2 \times 2}$. Da ||D(x)|| = ||x|| für $x \in \mathbb{R}^3$ gilt, ist $D(S_{\mathbb{R}}^2) = S_{\mathbb{R}}^2$. Insbesondere ist für eine Kurve c in $S_{\mathbb{R}}^2$ auch das Bild $D \circ c \in S_{\mathbb{R}}^2$.

Weiter folgt aus $(D \circ c(t))' = D \circ c'(t)$:

$$L_{s}(D \circ c) = \int_{a}^{b} ||(D \circ c(t))'|| dt = \int_{a}^{b} ||D(c'(t))|| dt$$
$$= \int_{a}^{b} ||c'(t)|| dt = L_{s}(c).$$

2.3.3 Lemma — Großkreise sind am kürzesten.

Die kürzesten Verbindungskurven zwischen zwei Punkten in $S_{\mathbb{R}}^2$ sind Großkreise, also Schnitte von $S_{\mathbb{R}}^2$ und zweidimensionalen Untervektorräumen des \mathbb{R}^3 .

Beweis: Seien zwei beliebige Punkte p,q auf $S_{\mathbb{R}}^2$. Dann finden wir eine Rotation von \mathbb{R}^3 , die p auf p' = (0,0,R) — also den "Nordpol" — und q auf $q' = (0,y,z) \in S_{\mathbb{R}}^2$ abbildet. Nach Lemma 2.3.2 und der Definition ist $d_s(p,q) = d_s(p',q')$. Es genügt also eine kürzeste Verbindung zwischen p' und q' zu finden.

Idee: Mittels "geographischer Koordinaten" φ und θ . Nun kann eine Verbindung zwischen p' und q' geschrieben werden als

$$c(t) = R(\sin \theta(t) \cos \varphi(t), \sin \theta(t) \sin \varphi(t), \cos \theta(t))$$

und somit

 $c'(t) = (\theta'\cos\theta\cos\varphi - \varphi'\sin\theta\sin\varphi, \ \theta'\cos\theta\sin\varphi + \varphi'\sin\theta\cos\varphi, \ -\theta'\sin\theta),$

also

$$||c'(t)|| = R^2(\theta'^2 + \varphi'^2 \sin^2 \theta)$$

und somit

$$L_s(c) = R \int_a^b \sqrt{\theta'^2 + \varphi'^2 \sin^2 \theta} dt \ge R \int_a^b \sqrt{\theta'^2(t)} dt$$
$$= R \int_a^b |\theta'(t)| dt \ge R \int_a^b \theta'(t) dt = \int_{\theta(a)}^{\theta(b)} d\theta = R(\theta(b) - \theta(a))$$

mit oBdA $\theta(b) \ge \theta(a)$.

Diese untere Schranke wird durch ein Großkreissegment reali-

Eine weitere Kurve diese Länge kann es (wieder) nicht geben man hätte sonst überall Gleichheit in den Ungleichungen, also insbesondere $\varphi' = 0$, also wäre φ konstant = $\varphi(a) = \frac{\pi}{2}$. Also liegt die Kurve auf Meridian und ist somit Großkreis.

2.3.4 Satz — Infimums- & Winkelmetrik isometrisch.

 $(S^2_{\mathbb{R}},d_s)$ ist ein metrischer Raum und isometrisch zu $(S^2_{\mathbb{R}},R\cdot d_W)$. **Beweis**: Analog zu (R^2, d_{euk}) .

Wozu sind Metriken gut?

2.4.1 In Analysis I.

In Analysis I heißt eine Folge von reellen Zahlen $(a_n)_{n\in\mathbb{N}}$ konvergent, wenn

$$\exists a \in \mathbb{R} : \forall \epsilon > 0 \ \exists \ N = N(\epsilon) : |a_n - a| < \epsilon \quad (\forall n \ge N).$$

2.4.2 Analogie zu metrischen Räumen.

Sei (X, d) metrischer Raum.

Eine Folge $(x_n)_{n\in\mathbb{N}}$ aus X heißt *konvergent*, wenn

$$\exists \ x \in X \forall \epsilon > 0 \ \exists \ N = N(\epsilon) : d(x_n, x) \le \epsilon \quad (\forall n \ge N).$$

Also $x_n \in B_{\epsilon}(x) \ (\forall n \ge N)$.

2.4.3 Erinnerung — Stetigkeit.

 $f: \mathbb{R} \to \mathbb{R}$ heißt stetig in $t_0 \in \mathbb{R}$ falls $\forall s > 0$ ein $\delta = \delta(\epsilon) > 0$ existiert und $|f(t) - f(t_0)| < \epsilon$ falls $|t - t_0| < \delta$. f heißt stetig, wenn sie stetig ist $\forall t_0 \in \mathbb{R}$.

2.4.4 Verallgemeinerung.

Metrische Räume (X, d_X) , (Y, d_Y) . Eine Abbildung

$$f: X \to Y$$

heißt stetig in $x_0 \in X$, falls $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0$ sodass

$$d_Y(f(x), f(x_0)) < \epsilon \text{ falls } d_X(x, x_0) < \delta.$$

Also wenn $f(x) \in B_{\epsilon}^{Y}(f(x))$ falls $x \in B_{\delta}^{X}(x_0)$. f heißt stetig, falls f stetig ist $\forall x \in X$.

2.4.5 Bemerkung.

 $f: X \to Y \text{ stetig} \Rightarrow f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n).$

Als Übungsaufgabe zu zeigen, der Beweis ist analog zum Beweis in der Analysis.

Diese Beobachtung führt historisch (um 1900) durch die Verallgemeinerung metrischer Räume zu topologischen Räume.

Grundbegriffe der allgemeinen Topologie

3.1 Toplogischer Räume

3.1.1 Definition — Topologischer Raum.

Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus einer Menge X und einem System bzw. einer Familie

$$\mathcal{O} \subseteq \mathcal{P}(X)$$

von Teilmengen von X, so dass gilt

- 1. $X, \emptyset \in \mathcal{O}$
- 2. Durchschnitte von *endlich* vielen und Vereinigungen von *beliebig* vielen Mengen aus \mathcal{O} sind wieder in \mathcal{O} .

Ein solches System $\mathcal O$ heißt *Topologie* von X. Die Elemente von $\mathcal O$ heißen *offene Teilmengen* von X.

 $A \subset X$ heißt *abgeschlossen*, falls das Komplement $X \setminus A$ offen ist.

3.1.2 Beispiel — Extrembeispiele.

- 1. Menge X, $\mathcal{O}_{trivial} := \{X, \emptyset\}$ ist die *triviale Topologie*.
- 2. Menge X, $\mathcal{O}_{diskret} := \mathcal{P}(X)$ ist die *diskrete Topologie*.

3.1.3 Beispiel — Standard-Topologie auf \mathbb{R} .

 $X = \mathbb{R}$,

 \mathcal{O}_s (standard) := { $I \subset \mathbb{R} : I = \text{Vereinigung von offenen Intervallen}$ }

ist Topologie auf \mathbb{R} .

Offenes Intervall: $(a,b) := \{t \in \mathbb{R} : a < t < b\},$

 $(a, b) := \{t \in \mathbb{R} : a < t \}$ a und b beliebig

3.1.4 Beispiel — Zariski-Topologie auf \mathbb{R} .

 $X = \mathbb{R}$,

$$\mathcal{O}_{Z(ariski)} := \{ O \subset \mathbb{R} : O = \mathbb{R} \setminus, E \subset \mathbb{R} \text{ endlich} \} \cup \{\emptyset\}$$

ist die *Zariski-Topologie* auf \mathbb{R} .

(Mit anderen Worten: Die abgeschlossenen Mengen sind genau die endlichen Mengen, \emptyset und \mathbb{R} .)

Diese Topologie spielt eine wichtige Rolle in der algebraischen Geometrie beim Betrachten von Nullstellen von Polynomen:

$$(a_1 \dots, a_n) \leftrightarrow p(X) = (X - a_1) \cdots (X - a_n)$$

 $\mathbb{R} \leftrightarrow \text{Nullpolynom}$
 $\emptyset \leftrightarrow X^2 + 1$

3.1.5 Definition — Metrischer \rightarrow topologischer Raum.

Metrische Räume (z.B. (X,d)) sind topologische Räume: $U \subset X$ ist d-offen $\Leftrightarrow \forall p \in U \exists \epsilon = \epsilon(p) > 0$, sodass der offene Ball $B_{\epsilon}(p) = \{x \in X : d(x, p) < \epsilon\}$ um p mit Radius ϵ ganz in U liegt: $B_{\epsilon}(p) \subset U$.

Die d-offenen Mengen bilden eine Topologie — die von der Metrik d induzierte Topologie¹.

¹ Übungsaufgabe: Zeigen, dass es sich wirklich um eine Topologie handelt

3.1.6 Definition — Basis.

Eine Basis für die Topologie \mathcal{O} ist eine Teilmenge $\mathcal{B} \subset \mathcal{O}$, sodass für jede offene Menge $\emptyset \neq V \in \mathcal{O}$ gilt:

$$V = \bigcup_{i \in I} V_i, \quad V_i \in \mathcal{B}.$$

Beispiel: $\mathcal{B} = \{\text{offene Intervalle}\}\ \text{für Standard-Topologie auf }\mathbb{R}.$

3.1.7 Beispiel — Komplexität einer Topologie.

 \mathbb{R} , \mathbb{C} haben eine abzählbare Basis bezüglich Standard-Metrik d(x, y) = |x - y| (beziehungsweise Standard-Topologie): Bälle mit rationalen Radien und rationalen Zentren.

3.1.8 Bemerkung — Gleichheit von Topologien.

Verschiedene Metriken können die gleiche Topologie induzieren: Sind d, d' Metriken auf X und enthält jeder Ball um $x \in X$ bezüglich d einen Ball um x bezüglich d' ($B_{\epsilon'}^{\tilde{d}}(x) \subset B_{\epsilon}^{\tilde{d}}(x)$), dann ist jede *d*-offene Menge auch d'-offen und somit $\mathcal{O}(d) \subset \mathcal{O}(d')$. Gilt auch die Umkehrung ($\mathcal{O}(d') \subset \mathcal{O}(d)$), so sind die Topologien gleich: $\mathcal{O}(d) = \mathcal{O}(d')$.

3.1.9 Beispiel — Bälle und Würfel sind gleich.

$$X = \mathbb{R}^2$$
, $x = (x_1, x_2)$, $y = (y_1, y_2)$

$$d(x,y) \coloneqq \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$$

$$d'(x,y) := \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Die induzierten Topologien sind gleich.

3.1.10 Beispiel — Metrische Information sagt nichts über Topologie.

(X, d) sei ein beliebiger metrischer Raum,

$$d'(x,y) \coloneqq \frac{d(x,y)}{1+d(x,y)}$$

ist Metrik mit $\mathcal{O}(d) = \mathcal{O}(d')$.

Für d' gilt: $d'(x, y) \le (\forall x, y)$, insbesondere ist der Durchmesser von X bezüglich d':

$$= \sup_{x,y \in X} d'(x,y) \le 1,$$

das heißt, der Durchmesser eines metrischen Raumes ("metrische Information") sagt nichts über die Topologie aus.

3.1.11 Definition — Umgebung.

 (X, \mathcal{O}) sei ein topologischer Raum. $U \subset X$ heißt *Umgebung* von $A \subset X$, falls

$$\exists O \in \mathcal{O} : A \subset O \subset U$$
.

3.1.12 Definition — Innerer Punkt.

Für $A \subset X$, $p \in X$ heißt p ein innerer Punkt von A (bzw. äußerer Punkt von A), falls A (bzw. $X \setminus A$) Umgebung von $\{p\}$ ist. Das *Innere* von A ist die Menge $\overset{\circ}{A}$ der inneren Punkte von A.

3.1.13 Definition — Abgeschlossene Hülle.

Die abgeschlossene Hülle von A ist die Menge $\overline{A} \subset X$, die nicht äußere Punkte sind.

Beispiel:
$$(a,b) = \{t \in \mathbb{R} : a < t < b\},\ \overline{(a,b)} = [a,b] = \{t \in \mathbb{R} : a \le t \le b\}.$$

3.1.14 Drei konstruierte topologische Räume.

Folgende drei einfache Konstruktionen von neuen topologischen Räumen aus gegebenen:

1. **Teilraum-Topologie**: (X, \mathcal{O}_X) topologischer Raum, $Y \subseteq X$ Teilmenge.

$$\mathcal{O}_Y \coloneqq \{U \subseteq Y : \exists \ V \in \mathcal{O}_X \land U = V \cap Y\}$$

definiert eine Topologie auf Y, die sogenannte *Teilraum-Topologie*. 2

Achtung! $U \in \mathcal{O}_Y$ ist i.a. <u>nicht</u> offen in X. Z.B. $X = \mathbb{R}$, Y = [0,1], V = (-1,2), also $U = V \cap Y = Y$.

2. **Produkträume**: (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) zwei topologische Räume. Eine Teilmenge $W \subseteq X \times Y$ ist *offen* in der *Produkt-Topologie* $\iff \forall (x,y) \in W \exists$ Umgebung U von x in X und Y von y in Y sodass das "Kästchen" $U \times V \subseteq W$. **Achtung!** Nicht jede offene Menge in $X \times Y$ ist ein Kästchen: die Vereinigung von zwei Kästchen ist beispielsweise auch offen.

Beispiel: $X = \mathbb{R}$ mit Standard-Topologie, dann ist

$$\underbrace{X \times \cdots \times X}_{x \text{ mal}} = \mathbb{R}^n$$

induzierter topologischer Raum.

3. **Quotienten**: (X, \mathcal{O}) topologischer Raum, ~ Äquivalenzrelation³ auf X. Für $x \in X$ sei

$$\lceil x \rceil \coloneqq \{ y \in X : y \sim x \}$$

die Äquivalenzklasse von x,

die Menge der Äquivalenzklassen und

$$\pi: X \to X/\sim$$
$$x \mapsto \lceil x \rceil$$

die kanonische Projektion (surjektiv!).

Die *Quotienten-Topologie* auf X/\sim nutzt:

$$U \subset X/\sim \text{ist } \underline{\text{offen}} \overset{\text{Def.}}{\Leftrightarrow} \pi^{-1}(U) \text{ ist offen in } X.$$

Beispiel: $X = \mathbb{R}$ mit Standard-Topologie (induziert durch Standard-Metrik $d_{\mathbb{R}}(s,t) = |s-t|$).

Seien $s, t \in \mathbb{R}$. Wir definieren

$$s \sim t \stackrel{\text{Def.}}{\Leftrightarrow} \exists m \in \mathbb{Z} : t = s + 2\pi m.$$

² Zu überprüfen!

 $^{^3}$ Impliziert Partitionierung von X in disjunkte Teilmengen

Dann ist

$$\mathbb{R}/\sim = S' = \text{Einheitskreis}.$$

Anstatt dies heuristisch auszudrücken kann dies auch explizit getan werden:

$$\mathbb{R} \to S' = \{ z \in \mathbb{C} : |z| = 1 \} = \{ (x, y) \in \mathbb{R} : x^2 + y^2 = 1 \}$$
$$t \mapsto e^{it}.$$

Bemerkung: Andere Interpretation via Gruppen-Aktionen.

 $G = (\mathbb{Z}, +)$ operiert auf $X = \mathbb{R}$.

 $Bahnen-Raum = \mathbb{R}/\sim mit$

$$\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$$
$$(m,t) \mapsto t + 2\pi m.$$

Die Äquivalenzklasse [t] ist die Bahn von

$$t = \mathbb{Z} \cdot t = \{t + 2\pi m : m \in \mathbb{Z}\},\$$

mehr dazu später.

3.2 Hausdorffsches Trennungsaxiom

3.2.1 Hausdorffsches Trennungsaxiom T_2 .

Ein topologischer Raum (X, \mathcal{O}) heißt *hausdorffsch*, falls man zu je zwei verschiedenen Punkten $p, q \in X$ disjunkte Umgebungen finden kann, also Umgebungen $U \ni p$ und $V \ni q$ mit $U \cap V = \emptyset$. **Beispiel**:

1. Metrische Räume sind hausdorffsch.

Beweis: Sei $d(p,q) =: \epsilon$.

Behauptung: $B_{\epsilon/3}(p) \cap B_{\epsilon/3}(q) = \emptyset$.

Sei z in $B_{\epsilon/3}(p) \cap B_{\epsilon/3}(q)$. Dann gilt

$$d(p,q) \stackrel{\triangle\text{-Ugl.}}{\leq} d(p,z) + d(z,q) \leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{2\epsilon}{3} > \epsilon \quad \not z$$

- 2. $(\mathbb{R}, \mathcal{O}_{standard})$ ist hausdorffsch, da die Standard-Topologie von der Metrik induziert wird.
- 3. (\mathbb{R} , $\mathcal{O}_{Zariski}$) ist <u>nicht</u> hausdorffsch: offene Mengen sind Komplemente von endlich vielen Punkten, also für $p, q \in \mathbb{R}$, $p \neq q$:

$$U_p = \mathbb{R} \setminus \{p_1, \ldots, p_n\}$$

$$U_q = \mathbb{R} \setminus \{q_1, \ldots, q_k\},\$$

also $U_p \cap U_q \neq \emptyset$.

Wichtige Konsequenz von "hausdorffsch": In einem Hd-Raum hat jede Folge höchstens einen Limespunkt/Grenzwert.

 $(x_n)_{n\in\mathbb{N}}\subset X$ (top. Raum). $X\ni a$ heißt *Limes* um $(x_n)_{n\in\mathbb{N}}$ falls es zu jeder Umgebung U von a ein $n_0 \in \mathbb{N}$ gibt, sodass $x_n \in U \ \forall n \geq n_0$.

Erinnerung - Konvergenz.

3.2.2 Bemerkung.

- 1. Jeder Teilraum (mit TR-Topologie) eines Hd-Raumes ist Hd.
- 2. $X, Y \text{ Hd-R\"{a}ume} \Rightarrow X \times Y \text{ ist Hd-Raum bez\"{u}glich Produkt-}$ Topologie.

3.3 Stetigkeit

3.3.1 Definition — Stetigkeit.

 $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ topologische Räume. Eine Abbildung $f: X \to Y$ heißt stetig, falls die Urbilder von offenen Mengen in Y offen sind in X.

3.3.2 Beispiel — Einfache Stetigkeiten.

- 1. Id: $X \to X$, $x \mapsto x$ ist stetig.
- 2. Die Komposition von stetigen Abbildungen ist stetig.
- 3. Für $(X, \mathcal{O}) = (\mathbb{R}, \mathcal{O}_{standard}) = (Y, \mathcal{O}_Y)$ gibt es unendlich viele Beispiele in Analysis I. Für metrische Räume ist diese Definition äquivalent zur ϵ - δ -

Übungsaufgabe!

3.3.3 Definition — Homöomorphismus.

Definition und zur Folgenstetigkeit⁴.

- Eine bijektive Abbildung $f: X \to Y$ zwischen topologischen Räumen heißt *Homöomorphismus*, falls f und f^{-1} stetig sind.
- X und Y heißen homöomorph, falls ein Homöomorphismus $f: X \to Y$ existiert (notiere $X \cong Y$).

3.3.4 Bemerkung — Homöomorphismengruppe.

- $Id_X : X \to X$, $x \mapsto x$ ist Homöomorphismus.
- · Verkettungen von Homöomorphismen sind wieder Homöomorphismen.
- Inverses eines Homöomorphismus ist ein Homöomorphismus. Aus diesen drei Punkten folgt, dass die Homöomorphismen eine Gruppe bilden.

3.3.5 Beispiel — Einfache Homöomorphismen.

- $[0,1] = \{t \in \mathbb{R} : 0 \le t \le 1\} \cong [a,b] \text{ mit } a < b \in \mathbb{R}$ (via f(t) = a + t(b - a)).
- $(0,1) = \{t \in \mathbb{R} : 0 < t < 1\} \cong (a,b) \text{ mit } a < b \text{ beliebig.}$
- $\mathbb{R} \cong (-1,1) \cong (0,1)$ (z.B. via $t \mapsto \tanh t = \frac{e^{2t} - 1}{e^{2t} + 1}$).
- Stetig und injektiv, aber kein Homöomorphismus! $f: [0,1) \to S^1, t \mapsto e^{2\pi i t} = \cos(2\pi t) + i\sin(2\pi t)$ ist stetig, injektiv, aber kein Homöomorphismus.
- Projektions-Abbildungen sind stetig, z.B. $p_1: X_1 \times X_2 \to X_1$, $(x_1, x_2) \mapsto x_1$: Für *U* offen in X_1 ist $p^{-1}(U) = U \times X_2$ offen bezüglich der Produkttopologie.
- Metrische Räume (X, d_X) , (Y, d_Y) und Isometrie $f: X \to Y$, also eine bijektive Abbildung, so dass

$$\forall x,y \in X : d_Y(f(x),f(y)) = d_X(x,y).$$

Behauptung: f ist Homöomorphismus (bzgl. der durch Metriken definierten Topologien).

Beweis (über ϵ - δ -Definition): $\delta := \epsilon$.

 $d_X(x,y) < \delta \Rightarrow d_Y(f(x),f(y)) = d_X(x,y) < \delta = \epsilon$, also ist f stetig. Analog für f^{-1} .

• $S^n = \{x \in \mathbb{R}^{n+1} : ||x||^2 = 1\}$ ist die *n*-dimensionale Einheitssphäre in \mathbb{R}^{n+1} .

 $e_{n+1} = (0, ..., 0, 1)$ sei der "Nordpol" von S_n .

Behauptung: $S^n \setminus \{e_{n+1}\} \cong \mathbb{R}^n$.

Beweis (via stereographische Projektion):

$$\mathbb{R}^{n} \cong \{x \in \mathbb{R}^{n+1} : x_{n+1} = 0\},$$

$$f(x) := \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right) \text{ stetig,}$$

$$f^{-1} : \mathbb{R}^{n} \to S^{n}, \quad y \mapsto \left(\frac{2y_{1}}{\|y\|^{2} + 1}, \dots, \frac{2y_{n}}{\|y\|^{2} + 1}, \frac{\|y\|^{2} - 1}{\|y\|^{2} + 1}\right) \text{ auch stetig.}$$

Also ist *f* homöomorph.

Achtung: S^n ist nicht homöomorph zu \mathbb{R}^n (da S^n kompakt und \mathbb{R}^n nicht kompakt ist, mehr dazu später).

3.3.6 Bemerkung — Isometrien-Untergruppe.

Isometrien bilden eine Untergruppe der Homöomorphismen von X (versehen mit von der Metrik induzierten Topologie):

$$\operatorname{Isom}(X,d) \subseteq \operatorname{Hom\"o}(X,\mathcal{O}_d) \subseteq \operatorname{Bij}(X).$$

3.3.7 Exkurs 1 — Kurven.

Was ist eine Kurve?

Naive Definition: Eine Kurve ist ein stetiges Bild eines Intervalls.

Problem: \exists stetige, surjektive (aber nicht injektive) Abbildungen $I = [0,1] \rightarrow I^2$ ("Peano-Kurven", "space-filling curves")⁵.

Ausweg 1: Jordan-Kuven (bzw. geschlossene J-Kurven).

:= top. Raum, homöomorph zu I = [0, 1] (J-Kurve)

= top. Raum, homöomorph zu S^1 (geschlossene J-Kurve)

Ausweg 2: reguläre stetig differenzierbare Kurven (lokal injektiv).

Verwendung: z.B. *Knoten* — spezielle geschlossene Jordankurve als Unterraum von \mathbb{R}^3 :

$$\exists f: S^1 \to \mathbb{R}^3 \text{ mit } f(S^1) \cong S^1$$

mit Teilraumtopologie von R^3 .

Zwei Knoten K_1 , $K_2 \subset \mathbb{R}^3$ sind *äquivalent*, falls es einen Homöomorphismus h von \mathbb{R}^3 gibt mit $h(K_1) = K_2$.

3.3.8 Exkurs 2 — Topologische Gruppen.

Eine topologische Gruppe ist eine Gruppe versehen mit einer Topologie, sodass die Gruppenmultiplikation

$$m: G \times G \to G$$
, $(g,h) \mapsto g \cdot h$

mit Produkt-Topologie und die Inversenbildung

$$i: G \to G, \quad g \mapsto g^{-1}$$

stetig sind.

3.3.9 Beispiel — Topologische Gruppen.

- 1. G beliebige Gruppe mit diskreter Topologie ist topologische Gruppe.
- 2. \mathbb{R}^n mit Standard-Topologie ist abelsche topologische Gruppe.
- 3. $\mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}$ sind multiplikative topologische Gruppen.
- 4. $H \subset G$ Untergruppe einer topologischen Gruppe ist topologische Gruppe bzgl. Teilraumtopologie.
- 5. Das Produkt von topologischen Gruppen mit Produkttopologie ist eine topologische Gruppe.
- 6. $GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : \det A \neq 0\}$ allg. reelle lineare Gruppe.

 $GL(n,\mathbb{R}) \subset \mathbb{R}^{n^2}$ versehen mit Teilraum-Topologie induziert von $\mathbb{R}^{n^2} = \mathbb{R}^{n \times n}$ ist topologische Gruppe:

⁵ Mehr dazu in Königsberger — Analysis I.

⁶ **Knotentheorie** studiert die Äquivalenz von Knoten, siehe z.B. Sossinsky — Mathematik der Knoten

- Matrizenmultiplikation ist stetige Abbildung ($\mathbb{R}^{n^2} \times \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$ \mathbb{R}^{n^2}).
- · Inversen-Abbildung ist ebenfalls stetig (wegen expliziter Formel für A^{-1}).
- 7. $SO(n) = \{A \in GL(n, \mathbb{R}) : A^{\top}A = E_n, \det A = 1\}$ ist die spezielle orthogonale Gruppe. Sie ist eine topologische Gruppe nach Beispiel 4 und 6.

Insbesondere ist

$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in [0, 2\pi] \right\} \cong S'$$

eine abelsche topologische Gruppe.

3.4 Zusammenhang

3.4.1 Definition — Zusammenhängend.

Ein topologischer Raum (X, \mathcal{O}) heißt zusammenhängend, falls Ø und X die einzigen gleichzeitig offenen und abgeschlossenenen Teilmengen von X sind.

Äquivalent: X ist zusammenhängend $\Leftrightarrow X$ ist nicht disjunkte Vereinigung von 2 offenen, nichtleeren Teilmengen.

Beweis: $A \subset X$ offen und abgeschlossen $\Leftrightarrow A$ und $X \setminus A$ offen \Leftrightarrow A und $X \setminus A$ abgeschlossen.

3.4.2 Beispiel — Zusammenhang.

1. \mathbb{R} (und ebenso beliebige Intervalle) ist zusammenhängend, $\mathbb{R} \setminus \{0\}$ ist *nicht* zusammenhängend.

Beweis: Sei $I \subseteq \mathbb{R}$ (abgeschlossenes oder offenes oder halboffenes) Intervall.

Annahme: $I \neq U \neq \emptyset$, sei eine offen-abgeschlossene Teilmenge von I. Dann gibt es mindestens einen Punkt $u \in U$ und $v \in U$ $I \setminus U$. OBdA u < v. Setze $U_0 := \{x \in U : x < v\}$ und $c := \sup U_0$. Also $u \le c \le v$. Weiter ist $c \in U$, da U abgeschlossen ist. Eine ganze Umgebung von c gehört auch zu U, da U offen ist. Damit gehört eine ganze Umgebung von c auch zu U_0 4

3.4.3 Ergänzung — Zusammenhang von Teilmengen.

Allgemein: Eine Teilmenge $B \subset X$ heißt zusammenhängend, falls sie bezüglich der Teilraumtopologie zusammenhängend ist.

3.4.4 Bemerkung — Einpunktige Mengen.

Einpunktige Mengen sind zusammenhängend: $\{x\}$ mit Teilraumtopologie ist diskret (also sind $\{x\}$ und \emptyset die einzigen offenen Mengen).

3.4.5 Definition — Zusammenhangskomponente.

Sei $x \in X$. Die *Zusammenhangskomponente* Z(x) ist die Vereinigung aller zusammenhängenden Teilmengen, die x enthalten.

3.4.6 Lemma — Eigenschaften zusammenhängender Mengen.

- 1. A ist zusammenhängend $\Rightarrow \overline{A}$ (abgeschlossene Hülle von A) ist zusammenhängend.
- 2. A, B zusammenhängend, $A \cap B \neq \emptyset \Rightarrow A \cup B$ zusammenhängend.⁷
- ⁷ Übungsaufgabe, es wird nur die Definition von Zusammenhang benötigt.

3.4.7 Folgerung.

Zusammenhangskomponenten von X sind zusammenhängende Mengen und bilden eine disjunkte Zerlegung von X.

Beweis: Definiere eine Äquivalenzrelation (für $x, y \in X$):

$$x \sim y \overset{\text{Def}}{\Longleftrightarrow} \exists$$
 zusammenhängende Menge $A: x, y \in A$.

- ~ ist Äquivalenzrelation:
- **Reflexivität**: $x \sim x$, denn die einpunktige Menge $\{x\}$ ist zusammenhängend.
- **Symmetrie**: $x \sim y \Rightarrow y \sim x$ nach Definition.
- Transitivität: $x \sim y \land y \sim z \Rightarrow x \sim z$: $x \sim y$: $\exists A$ zusammenhängend mit $x, y \in A$. $y \sim z$: $\exists B$ zusammenhängend mit $y, z \in B$. Also $y \in A \cap B \stackrel{\text{Lemma}}{\Rightarrow} A \cup B$ zusammenhängend.

3.4.8 Beispiel — Zusammenhangskomponenten.

- 1. $\mathbb{R} \setminus \{t\} = \{s \in \mathbb{R} : s < t\} \cup \{s \in \mathbb{R} : s > t\}$ hat 2 Zusammenhangskomponenten.
- 2. $\mathbb{Q} = \mathbb{R} \setminus \{\text{irrationale Zahlen}\}\ \text{mit Teilraum-Topologie von}$ $(\mathbb{R}, \mathcal{O}_{\text{standard}})\ \text{ist } total\ unzusammenhängend},\ d.h.\ alle\ Zusammenhangskomponenten\ sind\ einpunktig.$

Beweis. Annahme: $A \subset \mathbb{O}$ mit mindestens 2 verschiedenen Punkten.

Behauptung: A ist nicht zusammenhängend.

Sei $\{q_1, q_2\} = A \subset \mathbb{Q}$ mit $q_1 \neq q_2$ (oBdA $q_1 < q_2$). Sei $s \in \mathbb{R} \setminus \mathbb{Q}$ mit $q_1 < s < q_2, O_1 = \{t \in \mathbb{R} : t < s\}, O_2 = \{t \in \mathbb{R} : t > s\}, \widetilde{O_1} = O_1 \cap A,$ $\widetilde{O_2} = O_2 \cap A$. $\widetilde{O_1}$ und $\widetilde{O_2}$ sind offen in A oder in \mathbb{Q} bezüglich der Teilraumtopoogie. Es ist $A = \widetilde{O_1} \cup \widetilde{O_2}$ mit $\widetilde{O_1} \cap \widetilde{O_2} \neq \emptyset$, d.h. A ist nicht zusammenhängend.

3.4.9 Definition — Weg-Zusammenhängend.

Sei (X, \mathcal{O}) ein topologischer Raum. X heißt weg-zusammenhängend, wenn es zu je zwei Punkten $p, q \in X$ einen Weg (d.h. stetige Abbildung $\alpha : [0,1] \to X \text{ mit } \alpha(0) = p \text{ und } \alpha(1) = q)$ zwischen p und qgibt.

3.4.10 Lemma — Weg-Zusammenhang.

X ist weg-zusammenhängend $\Rightarrow X$ ist zusammenhängend.

Beweis: Wäre X nicht zusammenhängend, dann \exists eine disjunkte Zerlegung $X = A \cup B$ mit A, B offen und nicht-leer, $A \cap B =$ \emptyset mit $p \in A$ und $q \in B$. Sei $\alpha : [0,1] \to X$ ein (stetiger) Weg zwischen p und q, also $\alpha(0) = p$ und $\alpha(1) = q$. Daraus folgt, dass $\lceil 0,1 \rceil = \alpha^{-1}(\alpha(\lceil 0,1 \rceil)) = \alpha^{-1}(A \cap \alpha(\lceil 0,1 \rceil)) \cup \alpha^{-1}(B \cap \alpha(\lceil 0,1 \rceil)) \Rightarrow$ [0,1] ist nicht zusammenhängend 🖠

Achtung: Umkehrung gilt nicht! Z.B. "topologische Sinuskurve": $X := \{(x, \sin \frac{1}{x}) \in \mathbb{R}^2 : 0 < x \le 1\} \cup \{(0, y) : |y| < 1\}.^8 X \text{ ist zusam-}$ menhängend, aber nicht weg-zusammenhängend.

8 Details: Singer-Thorpe p.52

3.4.11 Lemma — Weg-Zusammenhang von Bildern.

Stetige Bilder von (weg-)zusammenhängenden Räumen sind (weg-)zusammenhängend.

Beweis:

- 1. Sei $f: X \to X$ stetig und $f(X) = A \cup B$ eine disjunkte Zerlegung in nichtleere offene Mengen.
 - Dann ist $X = f^{-1}(A) \cup f^{-1}(B)$ eine disjunkte Zerlegung.
- 2. Seien x = f(p), y = f(q) zwei Punkte in f(X). Es ist $p = f^{-1}(x)$, $q = f^{-1}(y).$

Dann existiert $a:[0,1] \rightarrow X$ mit a(0) = p und a(1) = q und somit ist $f \circ a : [0,1] \to f(X)$ ein stetiger Weg in f(X).

3.4.12 Korollar — Zwischenwertsatz.

Eine stetige Funktion $f:[a,b] \to \mathbb{R}$ nimmt jeden Wert zwischen f(a) und f(b) an.

3.4.13 Test auf Homöomorphie via Zusammenhang.

Beispiel: $\mathbb{R} \cong \mathbb{R}^n$ nur falls n = 1.

Beweis: Wir nehmen an, dass $R \cong \mathbb{R}^n$ für $n \ge 1$. Es ist

$$\underbrace{\mathbb{R} \setminus \{\text{Punkt}\}}_{\text{nicht zusammenhängend}} \cong \underbrace{\mathbb{R}^n \setminus \{\text{Punkt}\}}_{\text{zusammenhängend für } n \ge 2}$$

Ebenso: $[0,1] \cong [0,1]^n$ nur für n = 1.

3.4.14 Satz — von Brouwer.

 $\mathbb{R}^n \not\equiv \mathbb{R}^m$ für $m \neq n$.

Beweis: Der Beweis benutzt den Satz von Gebietstreue (Brouwer):

Ist $U \subseteq$ offen und $f: U \to \mathbb{R}^n$ eine injektive stetige Abbildung, so ist $f(U) \subseteq \mathbb{R}^n$ offen.

Beweisidee: Ist m < n, so ist

$$j:\mathbb{R}^m\to\mathbb{R}^n,\quad (x_1,\ldots,x_m)\mapsto (x_1,\ldots,x_m,0,\ldots,0)$$

eine Einbettung und eine injektive, stetige Abbildung von \mathbb{R}^m auf eine *nicht* offene Teilmenge von \mathbb{R}^n . Wäre $\mathbb{R}^m \cong \mathbb{R}^n$, so hat man einen Widerspruch zum Satz von Gebietstreue.

⁹ siehe auch Alexandrov-Hopf, Topologie, 1935, Kap. X.2

3.5 Kompaktheit

3.5.1 Definition — (Lokal) kompakt.

Ein topologischer Raum heißt kompakt, wenn jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt, also

$$X = \bigcup_{i \in I} U_i, \ U_i \text{ offen } \Rightarrow \exists i_1, \dots, i_k \in I:$$

 $X = U_{i_1} \cup \dots \cup U_{i_k}$

- $A \subseteq X$ heißt kompakt, wenn A bezüglich der Teilraumtopologie kompakt ist.
- *X* heißt *lokal kompakt*, wenn jeder Punkt von *X* eine kompakte Umgebung besitzt.

3.5.2 Bemerkung — Verwendung kompakter Räume.

Kompakte Räume sind oft "einfacher" als nicht-kompakte, weil man beispielsweise von lokalen Eigenschaften auf globale schließen kann.

Begründung: $\forall x \in X \exists U_x : f|_{U_x} \le c_x$. Schreibe $X = \bigcup_{x \in X} U_x$. Da Xkompakt ist existieren $x_1, \ldots, x_k \in X$, sodass $X = \bigcup_{i=1}^k U_{x_i}$. $\Rightarrow f(x) \leq \max\{c_{x_1}, \ldots, c_{x_k}\}.$

3.5.3 Beispiel — Beschränktheit im Kompakten.

Ist X kompakt und $f: X \to \mathbb{R}$ lokal beschränkt (d.h. jeder Punkt von X hat eine Umgebung, in der f beschränkt ist — z.B. wahr für stetige Funktionen), dann ist f beschränkt.

3.5.4 Beispiel — Kompaktheit von Intervallen.

I = [0, 1] ist kompakt (ebenso [a, b]).

Beweis: Sei $(U_i)_{i \in I}$ eine offene Überdeckung von [0,1]. Dann existiert eine sogenannte *Lebesgue-Zahl* $\delta > 0$, sodass jedes Teilintervall $I_{\delta} \subset I$ der Länge δ in einem U_i liegt. Da [0,1] mit endlich vielen Intervallen der Länge δ überdeckt werden kann, kann man das auch mit endlich vielen U_i .

3.5.5 Hinweise zur Lebesgue-Zahl.

Gäbe es ein solches $\delta > 0$ nicht, so wählt man eine Folge von Intervallen $(I_n)_{n\geq 1}$, $I_n \subset [0,1]$ der Länge $\frac{1}{n}$, die jeweils in keiner Überdeckungsmenge U_i liegen. Nach Bolzano Weierstraß ("jede konvergente Folge in \mathbb{C} hath konvergente Teilfolgen") folgt, dass eine Teilfolge der Mittelpunkte m_n von I_n konvergiert gegen ein $t \in I$. Dieses t liegt aber in einem U_i . Also, da U_i offen ist, liegen auch die m_n in U_i für genügend großes $n \not = 1$

3.5.6 Satz — Sätze über kompakte Räume.

- 1. Stetige Bilder von kompakten Räumen sind kompakt.
- 2. Abgeschlossene TR von kompakten Räumen sind kompakt.
- 3. Produkte von kompakten Räumen sind kompakt.

Beweis:

1. Sei $f(X) = \bigcup_{i \in I} U_i$ eine offene Überdeckung. Daraus folgt, dass $(F^{-1}(U_i))_{i\in I}$ eine offene Überdeckung von X ist. X ist kompakt,

$$X = F^{-1}(U_{i_1}) \cup \cdots \cup F^{-1}(U_{i_k})$$

und schließlich

$$f(X)=U_{i_1}\cup\cdots\cup U_{i_k}.$$

2. Sei X kompakt und $A \subset X$ abgeschlossen.

 $A = \bigcup_{i \in I} U_i$ ist offene Überdeckung, also ist $U_i = V_i \cap A$ für V_i offen in X.

A ist abgeschlossen, also ist $X \setminus A$ offen und $X = (X \setminus A) \cup \bigcup_{i \in I} V_i$ ist offene Überdeckung von X.

Da X kompakt ist gilt:

$$X = (X \setminus A) \cup V_{i_1} \cup \cdots \cup V_{i_k} \Rightarrow A = X \cap A$$

also

$$A = X \cap A = (V_{i_1} \cup \cdots \cup V_{i_k}) \cap A = U_{i_1} \cup \cdots \cup U_{i_k}.$$

3. Die allgemeine Aussage ($Satz \ von \ Tichonow^{10}$) benutzt das $Lemma \ von \ Zorn^{11}$.

Seien X und Y kompakte Räume.

Behauptung: $X \times Y$ ist kompakt.

Sei $X \times Y = \bigcup_{\lambda \in \Lambda} W_{\lambda}$ offene Überdeckung. Für jedes $(x,y) \in X \times Y$ existiert $\lambda(x,y)$ sodass $(x,y) \in W_{\lambda(x,y)}$. Da $W_{\lambda(x,y)}$ offen ist existiert $U_{(x,y)} \subset X$ und $V_{(x,y)} \subset Y$ sodass

$$(x,y) \in U_{(x,y)} \times V_{(x,y)} \subset W_{\lambda(x,y)}.$$

Für festes x ist $\bigcup_{y \in Y} V_{(x,y)}$ eine offene Überdeckung von Y, also — da Y kompakt ist — existieren $y_1(x), \ldots, y_{m_x}(x)$ sodass

$$Y = V_{(x,y_1(x))} \cup \cdots \cup V_{(x,y_{m_x}(x))}.$$

Setze

$$U_x\coloneqq U_{(x,y_1(x))}\cap\cdots\cap U_{(x,y_{m_x}(x))}.$$

Da X kompakt ist existieren x_1, \ldots, x_n sodass $X = U_{x_1} \cup \cdots \cup U_{x_n}$. Dann ist

$$X \times Y = \bigcup_{\substack{k=1,\dots,n\\j=1,\dots,m_X}} W_{\lambda(x_k,y_j(x_k))}.$$

 10 Ist $(X_i)_{i\in I}$ eine Familie kompakter topologischer Räume, dann ist auch das kartesische Produkt mit der Produkttopologie kompakt.

¹¹ Eine halbgeordnete Menge, in der jede Kette eine obere Schranke hat, enthält mindestens ein maximales Element.

3.5.7 Beispiel — Weitere Beipsiele.

1. Produkte kompakter Mengen:

$$[0,1]^n = \underbrace{[0,1] \times \cdots \times [0,1]}_{n \text{ Faktoren}}$$
 ist kompakt (Würfel — allgemein $[a,b]^n$ ist kompakt)

2. Abgeschlossene Teilräume kompakter Mengen:

Abgeschlossene Teilräume des *n*-dimensionalen Würfels sind kompakt. Insbesondere: jede abgeschlossene beschränkte¹²

 $^{^{12}}$ Eine Menge $A\subset\mathbb{R}^n$ ist beschränkt, wenn sie in einem beliebig großen Ball um den Nullpunkt liegt, also falls $\forall a\in A: ||a||\leq x<\infty$

Teilmenge von \mathbb{R}^n (mit Standard-Topologie) ist kompakt (da diese Teilmenge im Würfel mit Kantenlänge 2c liegt, wenn sie in einem Ball um den Nullpunkt mit Radius c liegt).

3.5.8 Satz — Heine-Borel.

Die kompakten Teilmengen von \mathbb{R}^n sind genau die abgeschlossenbeschränkten Teilmengen.

Beweis:

- ←. Siehe obiges Beispiel 2.
- \Rightarrow . Sei $K \subset \mathbb{R}^n$ kompakt. Die Norm $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}, x \mapsto \|x\| = \sqrt{x_1^2 + \dots + x_n^2} = d(0, x)$ ist stetig, also insbesondere lokal beschränkt und damit global beschränkt.

Dass *K* abgeschlossen ist folgt aus dem nächsten Lemma.

3.5.9 Lemma — Kompakte Mengen in Hausdorffraum abgeschlossen.

Sei X ein topologischer Raum, der hausdorffsch ist, und $K \subseteq X$ kompakt. Dann ist K abgeschlossen.

Beweis: Es ist zu zeigen dass $X \setminus K$ offen ist in X.

Sei dafür $x_0 \in X \setminus K$. Für jedes $x \in K$ wähle eine offene Umgebung U_x von x_0 und V_x von x, sodass $U_x \cap V_x = \emptyset$ (das geht, weil Xhausdorffsch ist).

Da *K* kompakt ist, existieren Punkte $x_1 \dots, x_n \in K$ mit

$$K = (V_{x_1} \cap K) \cup \cdots \cup (V_{x_n} \cap K).$$

K kann also durch endlich viele Mengen überdeckt werden. Setze $U := U_{x_1} \cap \cdots \cap U_{x_n}$. Dann gilt:

$$U \cap K \subseteq U \cap (V_{x_1} \cup \cdots \cup V_{x_n})$$

$$= (V_{x_1} \cap U) \cup \cdots \cup (V_{x_n} \cap U)$$

$$\subseteq (V_{x_1} \cap U_{x_1}) \cup \cdots \cup (V_{x_n} \cap U_{x_n}) = \emptyset,$$

also $x_0 \in U \subset X \setminus K$.

3.5.10 Korollar — Min. und Max. von Teilmengen.

Jede stetige Funktion $f: K \to C$ auf einer kompakten Teilmenge eines Hausdorffraums nimmt ein endliches Maximum und Minimum an.¹³

¹³ Übungsaufgabe: Beweisen (siehe Satz von Weierstraß in Analysis)

3.5.11 Satz — Homöomorphismen.

Eine stetige, bijektive Abbildung $f: K \rightarrow Y$ von einem kompakten Raum *K* auf einen Hausdorff-Raum *Y* ist ein Homöomorphismus. Bemerkung: Das gilt im Allgemeinen nicht! Beispielsweise

$$X = [0,1), \quad Y = S^1, \quad f(t) = e^{it2\pi}$$

ist bijektiv und stetig, aber kein Homöomorphismus. Sonst wäre $[0,1) \cong S^1$ $\frac{1}{2}$ (da S^1 kompakt ist, aber [0,1) nicht) **Beweis**: Zu zeigen: Inverse Abbildung f^{-1} ist stetig. Wir müssen zeigen, dass die Bilder von offenen (bzw. abgeschlossenen) Mengen von $f = (f^{-1})^{-1}$ offen (bzw. abgeschlossen) sind. Sei $A \subseteq K$ abgeschlossen. Dann ist A kompakt (als Teilraum eines kompakten Raumes). Dann ist f(A) kompakt (als stetiges Bild einer kompakten Menge) in Y und somit ist $f(A) \subset Y$ abgeschlossen (als kompakter Teilraum eines Hausdorff-Raumes).

Spezielle Klassen von topologischen Räumen

4.0.1 Übersicht.

Folgende spezielle Klassen sollen diskutiert werden:

- metrische Räume → metrische Geometrie
- Mannigfaltigkeiten (Grundobjekte in Differenzialgeometrie, Physik,...)
- Polyeder, Simplizialkomplexe (Kombinatorik, algebraische Topologie)
- Bahnen-Räume von Gruppenaktionen (geometrische Gruppentheorie)

4.1 Topologische Mannigfaltigkeiten

4.1.1 Definition — Topologische Mannigfaltigkeit.

Eine topologische Mannigfaltigkeit ist ein topologischer Raum ${\cal M}$ mit folgenden Eigenschaften:

- 1. M ist $lokal\ euklidisch$, d.h. $\forall p \in M \ \exists$ offene Umgebung U von p und ein Homöomorphismus $\varphi : U \to \varphi(U) \subset \mathbb{R}^n$ mit festem n. Das Paar (φ, U) heißt $Karte^1$ und eine Menge $\mathcal{A} = \{(\varphi_a, U_\alpha) : \alpha \in A\}$ mit $\bigcup_{\alpha \in A} U_\alpha = M$ heißt Atlas.
- 2. *M* ist hausdorffsch und besitzt abzählbare Basis der Topologie.

Bemerkung:

- Die zweite Eigenschaft ist "technisch" und garantiert, dass eine "Zerlegung der Eins" existiert (braucht man z.B. für die Existenz von Riemannschen Metriken).
- Die Zahl *n* heißt *Dimension* von *M* (eindeutig, wenn *M* zusammenhängend ist, siehe Satz von Gebietstreue).

¹ Eine mathematische Karte ist einer echten Karte ähnlich. Man nehme einen Punkt, zum Beispiel Karlsruhe, und beschreibt die Umgebung von Karlsruhe in Form einer Karte auf einer DIN A4-Karte. Das ist natürlich nicht bijektiv, aber man versucht es möglichst bijektiv zu machen.

4.1.2 Beispiel — Topologische Mannigfaltigkeiten.

- 0. Eine abzählbare Menge mit diskreter Topologie (jeder Punkt ist offen) ist eine 0-dimensionale Mannigfaltigkeit
- 1. S^1 ist eine kompakte, zusammenhängenge 1-dimensionale Mannigfaltigkeit.
 - \mathbb{R} ist nichtkompakte, zusammenhängende 1-Mannigfaltigkeit.

Übungen

5.1 2017-10-27

5.1.1 Aufgabe 1.

Zeigen Sie: (\mathbb{R}^2, d) mit $d(x, y) = |(x_1 - y_1) + (x_2 - y_2)|$ ist pseudometrischer Raum.

- **Positivität**. Zu zeigen: $\forall x \in \mathbb{R}^2 : d(x, x) = 0$. $d(x, x) = |(x_1 x_1) + (x_2 x_2)| = |0| = 0$.
- **Symmetrie**. Zu zeigen: $\forall x, y \in \mathbb{R}^2 : d(x, y) = d(y, x)$. $d(x, y) = |(x_1 y_1) + (x_2 y_2)| = |(y_1 x_1) + (y_2 x_2)| = d(y, x)$.
- **Dreiecksungleichung**. Zu zeigen: $\forall x, y, z \in \mathbb{R}^2 : d(x, z) \le d(x, y) + d(y, z)$. $d(x, y) + d(y, z) = |(x_1 y_1) + (x_2 y_2)| + |(y_1 z_1) + (y_2 z_2)| \ge |(x_1 z_1) + (x_2 z_2)| = d(x, z)$.

5.1.2 Aufgabe 2.

Gegeben:

- $||x||_1 := \sum_{i=1}^n |x_i|$,
- $||x||_2 := \sqrt{\sum_{i=1}^n x_i^2}$,
- $||x||_{\infty} := \max_{i=1,...,n} |x_i|$.

Wir zeigen, dass alle drei Normen sind. Dafür ist zu zeigen:

- 1. **Positivität**: $||x|| \ge 0 \forall x, x = 0 \Leftrightarrow ||x|| = 0$.
- 2. **Sublinearität**: $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$
- 3. Homogenität: $\forall x \in V \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| \cdot ||x||$.

Positivität ist klar für alle drei. Homogenität ist auch arg simpel. **Sublinearität**:

1.

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + |y_i|$$
$$= ||x||_1 + ||y||_1$$

2.

$$||x + y||_{2}^{2} = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\langle x, y \rangle - \langle y, y \rangle$$

$$\stackrel{\text{CSU}}{\leq} ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2} = (||x||_{2} + ||y||_{2})^{2}$$

$$\Rightarrow ||x + y||_{2} \leq ||x||_{2} + ||y||_{2}$$

3.

$$||x + y||_{\infty} = \max_{i=1,\dots,n} |x_i + y_i| \le \max_{i=1,\dots,n} (|x_i| + |y_i|)$$

$$\le \max_{i=1,\dots,n} \max_{j=1,\dots,n} (|x_i| + |y_j|) = (\max_i |x_i|) + (\max_j |y_j|)$$

$$= ||x||_{\infty} + ||y||_{\infty}$$

5.1.3 Aufgabe 3.

Sei (X, d) ein metrischer Raum, $r_1, r_2 \in \mathbb{R}_{>0}$.

- 1. Beweise:
 - (a) Falls $d(x,y) \ge r_1 + r_2$, dann sind $B_{r_1}(x)$, $B_{r_2}(y)$ disjunkt. <u>Beweis</u>: Angenommen, $\exists z \in B_{r_1}(x) \cap B_{r_2}(y)$. Dann ist $d(x,y) \le d(x,z) + d(z,y) < r_1 + r_2$ \not
 - (b) Falls $d(x, y) \le r_1 r_2$, so ist $B_{r_2}(y) \subseteq B_{r_1}(x)$. <u>Beweis</u>: Angenommen, $\exists z \in B_{r_2}(y) \setminus B_{r_1}(x)$. Dann ist

$$d(x,z) \ge r_1 = (r_1 - r_2) + r_2$$

> $d(x,y) + d(z,y)$ $\ \ \Box$

- 2. Finde je ein Gegenbeispiel für die Rückrichtung:
 - (a) Sei $X = \{0, 1\}$ und d Metrik auf X mit d(0, 1) = 1. **Idee**: Wir nehmen zwei Bälle, die sich in der Theorie überschneiden, weil die Summe der Radien kleiner ist als der Abstand, aber in der Schnittmenge liegen keine Elemente. Wir wählen $r_1 = r_2 = \frac{2}{3}$, x = 0, y = 1. Wir haben $B_{r_1}(0) = \{0\}$, $B_{r_2}(1) = \{1\}$, aber $r_1 + r_2 = \frac{4}{3} > d(0, 1)$.
 - (b) Metrik wie in erstem Gegenbeispiel, $r_1 = r_2 = 100$, x = 0, y = 1. Dann ist $B_{r_1}(0) = \{0, 1\}$, $B_{r_2}(1) = \{0, 1\}$, aber d(0, 1) > 100 - 100.

5.1.4 Aufgabe 4.

1. Zeigen Sie, dass (\mathbb{R}^2 , d_1) und (\mathbb{R}^2 , d_{∞}) isometrisch sind.

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x,y) \mapsto (x+y,x-y)$.

Behauptung: $f:(\mathbb{R}^2,d_1)\to(\mathbb{R}^2,d_\infty)$ ist Isometrie.

f ist linear mit Rang 2, also bijektiv.

Seien $p = (x_1, y_1), q = (x_2, y_2) \in \mathbb{R}^2$. Zu zeigen:

$$d_{\infty}(f(p),f(q))=d_1(p,q).$$

Es ist

$$d_1(p,q) = |x_1 - x_2| + |y_1 - y_2|$$

$$= \max\{|(x_1 - x_2) + (y_1 - y_2)|, |(x_1 - x_2) - (y_1 - y_2)|\}$$

$$= \max\{|(x_1 + y_1) - (x_2 + y_2)|, |(x_1 - y_1) - (x_2 - y_2)|\}$$

$$= (\text{undeutlich}) = d_{\infty}(f(p), f(q)). \quad \Box$$

2. Zeigen Sie, dass (\mathbb{R}^n, d_1) und $(\mathbb{R}^n, d_{\infty})$ **nicht** isometrisch sind für n > 2.

Angenommen, es gibt eine Isometrie $\varphi^1:(\mathbb{R}^n,d_\infty)$ nach (\mathbb{R}^n, d_1) . Die Abbildung $\varphi^2 : (\mathbb{R}^n, d_1) \to (\mathbb{R}^n, d_1), x \mapsto x - \varphi^1(0)$ ist eine Translation, also eine Isometrie.

Wähle $\varphi := \varphi^2 \circ \varphi^1$. φ ist Isometrie mit $\varphi(0) = 0$.

Die Menge $\{(x_1, \dots, x_n) : x_i \in \{-1, 1\}\} =: A$ hat folgende Eigenschaft: Für alle $p, q \in A$ mit $p \neq q$ gilt $d_{\infty}(p,q) = 2$ und $d_{\infty}(p,0)=1.$

Sei $B = \varphi(A)$. Für alle $p, q \in B$ mit $p \neq q$ gilt $d_1(p,q) = 2$ und $d_1(p,0) = 1$. Da φ injektiv ist, gilt $|B| = |A| = 2^n > 2n$ (weil n ≥ 3). Da jedes $x \in B$ mindestens eine Koordinate $\neq 0$ hat, gibt es ein $i \in \{1, ..., n\} \text{ und } p, q, r \in B \text{ mit } p_i, q_i, r_i \neq 0.$

Dann gibt es oBdA verschiedene $p,q \in B$ mit $p_i,q_i > 0$ (bzw haben selbes Vorzeichen, da es nur zwei mögliche Vorzeichen

Es gilt
$$d_1(p,q) = \sum_{j=1}^n |p_j - q_j| < \sum_{\text{da beide} > 0} \sum_{j=1}^n |p_j| + |q_j| = d_1(p,0) + d_1(0,q) = 2$$

5.2 2017-11-03

Nachtragen

5.3 2017-11-10

5.3.1 Aufgabe 1.

d- **offen**: $U \subset X$ heißt d-offen, falls $\forall x \in U \exists \, \epsilon > 0 : B_{\epsilon}(x) \subseteq U.$

Sei (X,d) ein metrischer Raum. Zu zeigen: Die Menge O aller d-offenen Teilmengen von X ist Topologie. Wir zeigen die Eigenschaften einer Topologie.

- 1. $\emptyset \in O, X \in O \checkmark$
- 2. Zu zeigen: beliebige Vereinigungen von d-offenen Mengen sind wieder d-offen.

Sei $\{A_i\}_{i\in I}$ eine Familie von d-offenen Mengen. Zu zeigen: $A:=\bigcup_{i\in I}A_i$ ist d-offen.

Beweis: Sei $x \in A$ beliebig. Dann $\exists i \in I \text{ mit } x \in A_i$. Da A_i *d*-offen ist, gibt es ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subseteq A_i \subseteq A$. Damit ist A *d*-offen.

3. Zu zeigen: endliche Durchschnitte *d*-offener Mengen sind wieder *d*-offen.

Seien A, B d-offen. Zu zeigen: $A \cap B$ ist wieder d-offen. Sei $x \in A \cap B$. Da A und B d-offen sind, gibt es $\epsilon, \epsilon' > 0$, sodass $B_{\epsilon}(x) \subseteq A$ und $B_{\epsilon'}(x) \subseteq B$. Wähle $\epsilon'' = \min\{\epsilon, \epsilon'\}$. Dann ist $B_{\epsilon''}(x) = B_{\epsilon}(x) \cap B_{\epsilon'}(x) \subseteq A \cap B$ und $A \cap B$ ist d-offen. Es ist immer nur der Schnitt zweier Mengen zu zeigen, da $A_1 \cap \cdots \cap A_n = (((A_1 \cap A_2) \cap A_3) \cdots)$. Also ist sukzessive der gesamte Schnitt offen.

5.3.2 Aufgabe 2.

Seien X, Y_1, Y_2 topologische Räume, seien

$$p_i: Y_1 \times Y_2 \to Y_i$$

 $(y_1, y_2) \mapsto y_i \quad \text{(für } i = 1, 2\text{)}.$

- 1. Zu zeigen: f ist stetig $\Leftrightarrow f_1 := p_1 \circ f$, $f_2 := p_2 \circ f$ stetig. **Beweis**:
 - ⇒. Sei f stetig. Zu zeigen (oBdA): f₁ ist stetig, i.e. die Urbilder offener Mengen sind wieder offen.
 Sei U ⊆ Y₁. Zu zeigen: f₁⁻¹(U) offen.
 Es gilt¹:

$$f_1^{-1}(U) = f^{-1}(p_1^{-1}(U)) = f^{-1}(U \times Y_2).$$

Diese Menge ist offen, da f stetig ist.

• \Leftarrow . Seien f_1, f_2 stetig. Zu zeigen: f ist stetig. Wir zeigen wieder, dass die Urbilder offener Mengen wieder offen sind. Sei $U \in Y_1 \times Y_2$ offen. Zu zeigen: $f^{-1}(U)$ ist wieder offen. Sei $x \in f^{-1}(U)$. Zu zeigen: Es gibt eine offene Menge $U' \subseteq f^{-1}(U)$ sodass $x \in U'$. Es ist $f(x) \in U$. Da U offen ist in $Y_1 \times Y_2$ gibt es offene $V_1 \subseteq Y_1$, $V_2 \subseteq Y_2$, sodass $f(x) \in V_1 \times V_2 \subseteq U$. Jetzt sei $U_1 := f_1^{-1}(U_1), U_2 := f_2^{-1}(U_2)$. Da f_1, f_2 stetig sind, sind U_1 und U_2 offen, also auch $U_1 \cap U_2 := U'$ offen.

$$p_1^{-1}(U) = U \times Y_2$$

Da $f(x) \in V_1 \times V_2$, ist $f_1(x) = p_1(f(x)) \in V_1$, $f_2(x) = p_2(f(x)) \in V_1$ V_2 , also $x \in U_1 \cap U_2 = U'$.

2. Sind p_1 , p_2 immer offen? Ja — sei $U \subseteq Y_1 \times Y_2$ offen. Dann ist

$$U = \bigcup \{V_1 \times V_2 : V_1 \subseteq Y_1 \text{ offen, } V_2 \subseteq Y_2 \text{ offen, } V_1 \times V_2 \subseteq U\}.$$

Dann ist $p_1(U) = \bigcup \{V_1 : \text{ analog zu } U, V_2 \neq \emptyset \}$ eine Vereinigung offener Mengen, also wieder offen — p_2 analog.

3. Sind p_1 , p_2 immer abgeschlossen? Nein — sei

$$M = \left\{ (x, y) \in \mathbb{R}^2 : x \cdot y = 1 \right\}.$$

Das ist eine klassische Hyperbel. M ist abgeschlossen, aber $p_1(M) = \mathbb{R} \setminus 0$ nicht, auch nicht $p_2(M) = \mathbb{R} \setminus 0$.

5.3.3 Aufgabe 3.

Seien X, Y Hausdorffräume, $f, g : X \rightarrow Y$ stetig. Zu zeigen: $\{x \in X : f(x) = g(x)\}\$ ist abgeschlossen. Da Y Hausforffraum ist

$$\Delta_y \coloneqq \{(y,y) : y \in Y\}$$

in Y^2 abgeschlossen. (*) Die Funktion

$$h: X \to Y,$$

 $x \mapsto (f(x), g(x))$

ist stetig, denn $p_1 \circ h = f$ und $p_2 \circ h = g$ sind stetig nach Voraussetzung, also können wir den ersten Teil der Aufgabe 2 anwenden. Da Δ_v abgeschlossen ist, ist $h^{-1}(\Delta_v) = \{x \in X : f(x) = g(x)\}$ ebenfalls abgeschlossen.

5.3.4 Aufgabe 4.

Sei X topologischer Raum und ~ Äquivalenzrelation auf X. Die kanonische Abbildung $\pi: X \to X/_{\sim}$ sei offen.

1. Zu zeigen: Falls X eine abzählbare Basis hat, dann auch $X/_{\sim}$. Sei B eine beliebige Basis von X. Sei $U \in X/_{\sim}$ offen. Dann ist $\pi^{-1}(U)$ nach Definition der Quotiententopologie offen, also existiert $A \subseteq B$ mit $\pi^{-1}(U) = \bigcup_{M \in A} M$. Dann ist

$$U=\pi(\pi^{-1}(U))=\pi\left(\bigcup_{M\in A}M\right)=\bigcup_{M\in A}\pi(M).$$

Offene + geschlossene Abbildungen.

 $f: X \to Y$ heißt offen, wenn für alle offenen $U \subseteq X$ auch f(U) offen ist. $f: X \to Y$ heißt abgeschlossen, wenn für alle abgeschlossenen $U \subseteq X$ auch f(U)abgeschlossen ist.

Beweis (*):

Zu zeigen: $\{(y, y') \in Y^2 : y \neq y'\} =: \Delta_y^c$

Sei $(y, y') \in \Delta_y^c$. Da Y hausdorffsch ist, gibt es offene Räume U_{ν} und $U_{\nu'}$, sodass $y \in U_{\nu}, y' \in U_{\nu'}, U_{\nu} \cap U_{\nu'} = \emptyset$. Dann ist $(y,y') \in U_y \times U_{y'} \subseteq \Delta_y^c$.

Damit ist $\pi(B) := {\pi(M) : M \in B}$ eine Basis von $X/_{\sim}$ und wenn B abzählbar ist, so ist auch $\pi(B)$ abzählbar.

2. Zu zeigen: Ist $A := \{(x,y) \in X^2 : x \sim y\}$ abgeschlossen, so ist $X/_{\sim}$ hausdorffsch.

Beweis: Sei *A* abgeschlossen. Seien $p_1, p_2 \in X/_{\sim}, p_1 \neq p_2$. Wir wollen zeigen, dass p_1 und p_2 durch offene Mengen getrennt werden können.

Seien $x_1 \in \pi^{-1}(p_1), x_2 \in \pi^{-1}(p_2)$ (x_1 und x_2 existieren, weil die kanonische Abbildung surjektiv ist). Da $[x_1]_{\sim} = p_1 \neq p_2 = [x_2]_{\sim}$ ist $x_1 \neq x_2$, also $(x_1, x_2) \in A^c$.

Da A_c in der Produkttopologie auf X^2 offen ist, gibt es $U_1, U_2 \subseteq$ *X* offen, sodass $(x_1, x_2) \in U_1 \times U_2 \subseteq A^c$.

Sei nun $V_1 = \pi(U_1), V_2 = \pi(U_2)$. Es gilt $p_1 \in V_1, p_2 \in V_2$. V_1 und V_2 sind offen, da die kanonische Abbildung nach Voraussetzung offen ist.

Es bleibt zu zeigen, dass $V_1 \cap V_2 = \emptyset$. Sei $q_1 \in V_1$, $q_2 \in V_2$, $x_1 \in q_1$, $x_2 \in q_2$. Dann ist $(x_1, x_2) \in U_1 \times U_2 \subseteq A_c$, also ist $x_1 \not = x_2$ und demnach $q_1 = [x_1]_{\sim} \neq [x_2]_{\sim} = q_2$.