Math 107-Lecture 19

Dr. Adam Larios

University of Nebraska-Lincoln

General Series

Definition [Infinite series] Let (a_n) be a sequence beginning with the index n_0 . Then we define

$$\sum_{n=n_0}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=n_0}^{N} a_n$$

Examples:

•

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}...$$

•

$$\sum_{n=0}^{\infty} \left(\frac{4}{3}\right)^n$$

Convergence/divergence issues

Convergence means that we have a finite sum.

Can we tell if a series converges or diverges without evaluating it?

- First few terms of a series do not affect convergence or divergence
- Geometric series $\sum_{n=0}^{\infty} ar^n$ converges if |r| < 1 and diverges otherwise.
- **Divergence test**: If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=n_0}^{\infty} a_n$ diverges. But if $\lim_{n\to\infty} a_n = 0$ we can not say anything.

 $n\rightarrow\infty$

Clicker question #1

Find

$$\sum_{n=1}^{\infty} (0.1)^n$$

- $\frac{1}{9}$
- **0**.2
- lacktriangle diverges to ∞
- diverges (neither to $+\infty$, nor to $-\infty$)

More examples

What can you say about the following two series?

$$\sum_{n=0}^{\infty} (-1)^n$$

$$\sum_{n=1}^{\infty} \frac{n+2}{n+3}$$

The Harmonic Series

$$\sum_{N=1}^{1} \frac{1}{N} = 1$$

$$\sum_{N=1}^{1} \frac{1}{N} = 1 \qquad \qquad \sum_{N=1}^{2} \frac{1}{N} = 1 + \frac{1}{2} = \frac{3}{2}$$

$$\sum_{N=1}^{10} \frac{1}{N} \approx 2.9290$$

$$\sum_{N=1}^{10} \frac{1}{N} \approx 2.9290 \qquad \qquad \sum_{N=1}^{100} \frac{1}{N} \approx 5.1874 \qquad \qquad \sum_{N=1}^{1000} \frac{1}{N} \approx 7.4855$$

$$\sum_{N=1}^{1000} \frac{1}{N} \approx 7.4855$$

$$\sum_{N=1}^{10000} \frac{1}{N} \approx 9.7876$$

$$\sum_{N=1}^{100000} \frac{1}{N} \approx 12.090 \qquad \sum_{N=1}^{10^6} \frac{1}{N} \approx 14.393$$

$$\sum_{N=1}^{10^6} \frac{1}{N} \approx 14.393$$

The integral test

Let $\sum_{n=n_0}^{\infty} a_n$ be a series of **non-negative terms**, such that for

f(x): a **non-increasing continuous** function s.t. $f(n) = a_n$ for $n \ge c$. Then

- $\int_{c}^{\infty} f(x)dx$ converges $\Rightarrow \sum_{n=n_0}^{\infty} a_n$ converges.
- $\int_{c}^{\infty} f(x)dx = \infty$ (diverges to ∞) $\Rightarrow \sum_{n=n_0}^{\infty} a_n$ diverges (to ∞)

In other words, the series will converge only if the integral converges!

A. Larios (UNL) Lecture 19 7/10

How things look geometrically

The integral test in action

Use the integral test to find out if the following series converge or diverge.

$$\bullet \sum_{n=1}^{\infty} \frac{1}{n}$$

$$\bullet \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$$

Clicker question #2

What would you use to calculate the integral

$$\int \frac{1}{\sqrt{x} \left(\sqrt{x} + 1\right)} dx$$

- Elementary integral
- Regular substitution u = ...
- Trigonometric subtitution
- Partial fractions
- Integration by parts