1. Which of the following is continuous at x = 0?

I.
$$f(x) = |x|$$

I.
$$f(x) = |x|$$

II. $f(x) = e^x$
III. $f(x) = \ln(e^x - 1)$

- A) I only
- B) II only
- C) I and II only
- D) II and III only
- E) none of these
- **2.** The graph of a function f is reflected across the x-axis and then shifted up 2 units. Which of the following describes this transformation on f?
 - A) -f(x)
 - B) f(x) + 2
 - C) -f(x+2)
 - D) -f(x-2)
 - E) -f(x) + 2
- **3.** Which of the following functions is *not* continuous for all real numbers x?

A)
$$f(x) = x^{1/3}$$

B)
$$f(x) = \frac{2}{(x+1)^4}$$

C)
$$f(x) = |x+1|$$

D)
$$f(x) = \sqrt{1 + e^x}$$

E)
$$f(x) = \frac{x-3}{x^2+9}$$

- **4.** $\lim_{x \to 1} \frac{\ln x}{x}$ is
 - **A)** 1
 - **B)** 0
 - **C**) *e*
 - D) −*e*
 - E) nonexistent

- **5.** $\lim_{x \to 0} \left(\frac{1}{x} + \frac{1}{x^2} \right) =$
 - **A)** 0
 - B) $\frac{1}{2}$
 - **C)** 1
 - D) 2
 - E) ∞

- **6.** $\lim_{x \to \infty} \frac{x^3 4x + 1}{2x^3 5} =$
 - A) $-\frac{1}{5}$
 - B) $\frac{1}{2}$
 - C) $\frac{2}{3}$
 - **D)** 1
 - E) Does not exist

- **7.** For what value of k does $\lim_{x\to 4} \frac{x^2 x + k}{x 4}$ exist?
 - **A)** −12
 - B) -4
 - **C**) 3
 - D) 7
 - E) No such value exists.
- $8. \lim_{x \to 0} \frac{\tan x}{x} =$
 - **A)** −1
 - B) $-\frac{1}{2}$
 - **C)** 0
 - D) $\frac{1}{2}$
 - **E**) 1
- **9.** Suppose f is defined as

$$f(x) = \begin{cases} \frac{|x| - 2}{x - 2} & x \neq 2\\ k & x = 2. \end{cases}$$

Then the value of k for which f(x) is continuous for all real values of x is k =

- **A)** −2
- **B)** -1
- **C)** 0
- **D)** 1
- **E)** 2

- **10.** The average rate of change of $f(x) = x^3$ over the interval [a, b] is
 - A) 3b + 3a
 - B) $b^2 + ab + a^2$
 - C) $\frac{b^2 + a^2}{2}$
 - D) $\frac{b^3 a^3}{2}$
 - E) $\frac{b^4 a^4}{4(b-a)}$
- **11.** The function

$$G(x) = \begin{cases} x - 5 & x > 2 \\ -5 & x = 2 \\ 5x - 13 & x < 2 \end{cases}$$

is not continuous at x = 2 because

- A) G(2) is not defined.
- B) $\lim_{x\to 2} G(x)$ does not exist.
- C) $\lim_{x\to 2} G(x) \neq G(2)$.
- D) $G(2) \neq -5$.
- E) None of the above
- **12.** $\lim_{x \to -2} \frac{\sqrt{2x+5}-1}{x+2} =$
 - **A)** 1
 - **B)** 0
 - C) ∞
 - D) $-\infty$
 - E) does not exist

13. The Intermediate Value Theorem states that given a continuous function f defined on the closed interval [a,b] for which 0 is between f(a) and f(b), there exists a point c between a and b such that

- A) c = a b
- B) f(a) = f(b)
- C) f(c) = 0
- D) f(0) = c
- E) c = 0

14. The function $t(x) = 2^x - \frac{|x-3|}{x-3}$ has

- A) a removable discontinuity at x = 3.
- B) an infinite discontinuity at x = 3.
- C) a jump discontinuity at x = 3.
- D) no discontinuities.
- E) a removable discontinuity at x = 0 and an infinite discontinuity at x = 3.

15. Find the values of c so that the function

$$h(x) = \begin{cases} c^2 - x^2 & x < 2\\ x + c & x \ge 2 \end{cases}$$

is continuous everywhere.

- A) -3, -2
- **B)** 2, 3
- C) -2, 3
- D) -3, 2
- E) There are no such values.