Clase 13

IIC 1253

Prof. Diego Bustamante

Outline

Obertura

Funciones

Epílogo

Segundo Acto: Relaciones Conjuntos, relaciones y funciones

Objetivos de la clase

- □ Comprender concepto de función.
- Demostrar propiedades básicas de las funciones.

Outline

Obertura

Funciones

Epílogo

Introducción

¿Por qué queremos funciones en Ciencias de la Computación?

- Calcular → métodos
- Modelar → simulación
- Estructuras de datos y algoritmos → hashing, map reduce, ordenamiento
- Encriptar → MD5, SHA-1
- ¡Contar o indexar!

Formalizaremos el concepto y lo aplicaremos.

Definición

Sea f una relación binaria de A en B; es decir, $f \subseteq A \times B$.

Diremos que f es una función de A en B si dado cualquier elemento $a \in A$ y si existe un elemento en $b \in B$ tal que afb, este es único. Es decir,

$$afb \land afc \Rightarrow b = c$$

Si *afb*, escribimos b = f(a).

- b es la imagen de a.
- a es la preimagen de b.

Notación: $f: A \rightarrow B$

Una función $f: A \rightarrow B$ se dice **total** si todo elemento en A tiene imagen.

- Es decir, si para todo $a \in A$ existe $b \in B$ tal que b = f(a).
- Una función que no sea total se dice parcial.
- De ahora en adelante, toda función será total a menos que se diga lo contrario.

Ejemplos

Las siguientes relaciones son todas funciones de \mathbb{N}_4 en \mathbb{N}_4 :

$$f_1 = \{(0,0), (1,1), (2,2), (3,3)\}$$

$$f_2 = \{(0,1), (1,1), (2,1), (3,1)\}$$

$$f_3 = \{(0,3), (1,2), (2,1), (3,0)\}$$

¿Cuántas funciones $f: \mathbb{N}_4 \to \mathbb{N}_4$ podemos construir?

También podemos definir funciones mediante expresiones que nos den el valor de f(x).

Ejemplos

Las siguientes son definiciones para funciones de $\mathbb R$ en $\mathbb R$:

$$\forall x \in \mathbb{R}. \ f_1(x) = x^2 + 1$$

$$\forall x \in \mathbb{R}. \ f_2(x) = \lfloor x + \sqrt{x} \rfloor$$

$$\forall x \in \mathbb{R}. \ f_3(x) = 0$$

$$\forall x \in \mathbb{R}. \ f_4(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

Ejemplos

Dado un conjunto A cualquiera, las siguientes son definiciones para funciones de A en $\mathcal{P}(A)$:

$$\forall a \in A, f_1(a) = \{a\}$$

$$\forall a \in A, f_2(a) = A - \{a\}$$

$$\forall a \in A, f_3(a) = \emptyset$$

Definición

Diremos que una función $f: A \rightarrow B$ es:

- 1. Inyectiva (o 1-1) si para cada par de elementos $x, y \in A$ se tiene que $f(x) = f(y) \Rightarrow x = y$. Es decir, no existen dos elementos distintos en A con la misma imagen.
- 2. Sobreyectiva (o sobre) si cada elemento $b \in B$ tiene preimagen. Es decir, para todo $b \in B$ existe $a \in A$ tal que b = f(a).
- 3. Biyectiva si es inyectiva y sobreyectiva a la vez.

Ejercicio

Determine qué propiedades cumplen o no cumplen las siguientes funciones:

- 1. $f: A \rightarrow \mathcal{P}(A)$, $\forall a \in A, f(a) = \{a\}$
- 2. $f: A \to \mathcal{P}(A)$, $\forall a \in A, f(a) = \emptyset$
- 3. $f: \mathbb{N} \to \mathbb{N}_4$, $\forall n \in \mathbb{N}$, $f(n) = n \mod 4$
- 4. $f: \mathbb{N}_4 \to \mathbb{N}_4$, $\forall n \in \mathbb{N}_4$, $f(n) = (n+2) \mod 4$
- 1. es inyectiva y no sobreyectiva.
- 2. ni inyectiva ni sobreyectiva.
- 3. es sobreyectiva y no inyectiva.
- 4. es inyectiva, sobreyectiva y biyectiva.

- Recordemos que las relaciones (y por lo tanto las funciones) son conjuntos (de pares ordenados).
- Esto significa que podemos usar las operaciones de conjuntos.
 - Unión
 - Intersección
 - Complemento
 - . . .
- Existen también operaciones exclusivas para relaciones (y funciones).

Definición

Dada una relación R de A en B, la relación inversa de R es una relación de B en A definida como:

$$R^{-1} = \{(b, a) \in B \times A \mid aRb\}$$

Definición

Dada una función f de A en B, diremos que f es **invertible** si su relación inversa f^{-1} es una función de B en A.

Definición

Dadas relaciones R de A en B y S de B en C, la composición de R y S es una relación de A en C definida como:

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \land bSc\}$$

Proposición

Dadas funciones $f: A \to B$ y $g: B \to C$, la composición $g \circ f$ es una función de A en C.

Ejercicio

Demuestre la proposición.

Proposición

Dadas funciones f de A en B y g de B en C, la **composición** $g \circ f$ es una función de A en C.

1. $g \circ f$ es función: supongamos que

$$(g \circ f)(x) = z_1 \text{ y } (g \circ f)(x) = z_2, \text{ con } x \in A, z_1, z_2 \in C.$$

Por definición de composición:

$$g(f(x)) = z_1 \text{ y } g(f(x)) = z_2, \text{ con } x \in A, z_1, z_2 \in C.$$

Como f es función, existe un único $y \in B$ tal que y = f(x), y luego

$$g(y) = z_1 \ y \ g(y) = z_2, \ \text{con} \ x \in A, y \in B, z_1, z_2 \in C$$

y como g también es función, $z_1 = z_2$. Concluimos que $g \circ f$ es función.

Proposición

Dadas funciones f de A en B y g de B en C, la composición $g \circ f$ es una función de A en C.

2. $g \circ f$ es total: sea $x \in A$.

Como f es función total, $\exists y \in B$ tal que $(x, y) \in f$.

Similarmente, como g es función total, $\exists z \in C$ tal que $(y,z) \in g$.

Luego, $(x, z) \in g \circ f$.

Como para cada $x \in A$ existe $z \in C$ tal que $z = (g \circ f)(x)$, $g \circ f$ es total.

Teorema

Si $f:A\to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

Corolario

Si f es biyectiva, entonces es invertible.

Ejercicio

Demuestre el teorema.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 1. <u>Función:</u> supongamos que $yf^{-1}x_1$ e $yf^{-1}x_2$, con $y \in B$ y $x_1, x_2 \in A$. Por definición de relación inversa, esto significa que $x_1 fy$ y $x_2 fy$. Como f es inyectiva, $x_1 = x_2$, y por lo tanto f^{-1} es función.
- 2. <u>Total</u>: como f es sobre, para todo $y \in B$ existe $x \in A$ tal que y = f(x). Luego, para todo $y \in B$ existe $x \in A$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es total.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- Inyectiva: supongamos que f⁻¹(y₁) = f⁻¹(y₂) = x, con y₁, y₂ ∈ B y x ∈ A. Por definición de relación inversa, esto significa que f(x) = y₁ y f(x) = y₂. Como f es función, y₁ = y₂, y por lo tanto f⁻¹ es inyectiva.
- 4. Sobre: como f es total, para todo $x \in A$ existe $y \in B$ tal que y = f(x). Luego, para todo $x \in A$ existe $y \in B$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es sobre.

Teorema

Dadas dos funciones $f : A \rightarrow B$ y $g : B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.

Corolario

Si f y g son biyectivas, entonces $g \circ f$ también lo es.

Ejercicio

Demuestre el teorema.

Teorema

Dadas dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.
- 1. Supongamos que $(g \circ f)(x_1) = (g \circ f)(x_2)$, con $x_1, x_2 \in A$. Por definición de composición, $g(f(x_1)) = g(f(x_2))$. Como g es inyectiva, se tiene que $f(x_1) = f(x_2)$, y como f también es inyectiva, $x_1 = x_2$. Por lo tanto, $g \circ f$ es inyectiva.
- Sea z ∈ C. Como g es sobre, sabemos que existe y ∈ B tal que z = g(y). Similarmente, como f es sobre, sabemos que existe x ∈ A tal que y = f(x). Entonces, tenemos que z = g(y) = g(f(x)) = (g ∘ f)(x), y por lo tanto para cada z ∈ C existe x ∈ A tal que z = (g ∘ f)(x). Concluimos que g ∘ f es sobre.

Una aplicación muy importante de las funciones es que nos permiten razonar sobre el tamaño de los conjuntos. Una propiedad interesante sobre los conjuntos finitos es la siguiente:

Principio del palomar

Se tienen m palomas y n palomares, con m > n. Entonces, si se reparten las m palomas en los n palomares, necesariamente existirá un palomar con más de una paloma.

Principio del palomar (para inyectividad)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m > n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x, y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Principio del palomar (para sobreyectividad)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m < n, la función f no puede ser sobreyectiva.

Corolario

La única forma en que una función $f: \mathbb{N}_m \to \mathbb{N}_n$ sea biyectiva es que m = n.

Ejemplo

Si en una sala hay 8 personas, entonces este año necesariamente dos de ellas celebrarán su cumpleaños el mismo día de la semana.

Las 8 personas las podemos modelar como el conjunto $P = \{0, \dots, 7\}$ y los días de la semana como el conjunto $S = 0, \dots, 6$. El día de la semana que se celebra el cumpleaños de cada una resulta ser una función de P en S, por el principio de los cajones, esta función no puede ser inyectiva, luego al menos dos personas distintas celebrarán su cumpleaños el mismo día de la semana.

Outline

Obertura

Funciones

Epílogo

Objetivos de la clase

- □ Comprender concepto de función.
- Demostrar propiedades básicas de las funciones.