

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India **Department of Computer Engineering**

Name	Sujal Sandeep Dingankar
UID no.	2024301005
Experiment No.	5

AIM:	Learning Data Visualization Libraries				
Program 1					
PROBLEM STATEMENT:	In the 'Marks.csv' file, you can find the scores obtained by 200 students in 4 subjects of a standardised test. The different columns - Score A, Score B, Score C and Score D indicate the score obtained by a particular student in the respective subjects A, B, C and D.Load the dataset to your notebook and answer the following questions				
	 Load the dataset and plot a histogram for the Score A column by keeping the number of bins to 6. Which bin range among the following has the highest frequency? Plot a box plot for the column Score C and choose the correct option. 				
	In the superstore.csv file, you have the details of orders purchased in an American online retail store. Load the dataset, observe and analyse the different columns and answer the following questions.				
	 Plot a pie-chart to find the Ship Mode through which most of the orders are being delivered. Plot a bar chart comparing the average Discount across all the Regions and report back the Region getting the highest average discount 				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India

Department of Computer Engineering

PROGRAM:	import pandas as pd				
	import numpy as np				
	import seaborn as sns				
	import matplotlib.pyplot as plt				
	# Reading data from CSV files				
	df1 = pd.read_csv('Marks.csv') # Marks data				
	df2 = pd.read_csv('superstore.csv') # Superstore data				
	# Creating a Histogram for 'Score A' column				
	plt.hist(df1['Score A'], bins=6, color='yellow', edgecolor='black')				
	plt.title('Subject A')				
	plt.xlabel('Marks')				
	plt.ylabel('Students')				
	plt.show()				
	# Creating a boxplot for 'Score C' column				
	sns.boxplot(x=df1['Score C'])				
	plt.title('Box Plot for Subject C column')				
	plt.xlabel('Score')				
	plt.ylabel('Frequency')				
	plt.show()				
	# Creating a Pie chart for 'Ship Mode'				
	mylabels = ["Standard Class", "First Class", "First Class", "Same Day"]				
	y = df2['Ship Mode'].value_counts()				
	myexplode = [0.2, 0, 0, 0]				
	plt.pie(y, labels=mylabels, explode=myexplode)				
	plt.legend()				
	plt.show()				
	# Converting 'Discount' column to float and calculating average discount by				
	region				
	df2['Discount'] = df2['Discount'].astype(str).str.rstrip('%').astype('float') /				
	100				
	average_discount_by_region = df2.groupby('Region')['Discount'].mean()				
	# Creating a bar chart for Average Discount by Region				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India

Department of Computer Engineering

```
plt.figure(figsize=(8, 8))
plt.bar(average_discount_by_region.index,
average discount by region.values)
plt.xlabel('Region')
plt.ylabel('Average Discount')
plt.title('Average Discount by Region')
plt.show()
# Finding the region with the highest average discount
region with highest discount = average discount by region.idxmax()
print(f"The region with the highest average discount is:
{region_with_highest_discount}")
# Extra 3 graphs
# Pie Chart for 'Segment' column
mylabels = ["Corporate", "Consumer", "Home Office"]
y = df2['Segment'].value counts()
myexplode = [0.1, 0.1, 0]
colors = ['green', 'gray', 'purple']
plt.pie(y, labels=mylabels, explode=myexplode, colors=colors)
plt.legend()
plt.show()
# Bar Chart for Average Marks per Subject
avg_marks = df1[['Score A', 'Score B', 'Score C', 'Score D']].mean()
plt.bar(avg_marks.index, avg_marks.values, color='orange')
plt.xlabel('Subject')
plt.ylabel('Average Marks')
plt.title('Average Marks in Each Subject')
plt.show()
# Bar Chart for Region-wise Profit
profit_by_region = df2.groupby('Region')['Profit'].sum()
plt.bar(profit by region.index, profit by region.values, color='#C02323')
plt.xlabel('Region')
plt.ylabel('Profit')
plt.title('Profit per Region')
```


Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India

Department of Computer Engineering

Bin range 200-250 has the highest frequency

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India

Department of Computer Engineering

The 75th percentile lies between 40 and 60 while the 25th percentile lies between 0 and 20

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India

Department of Computer Engineering

The Ship Mode through which most of the orders are being delivered is Standard Class.

The region with the highest average discount is: Central

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India

Department of Computer Engineering

Majority of the orders are given by the Corporate segment while Home Office gives least orders.

Subject A has the highest average marks while Subject D has least average marks.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai – 400058-India

Department of Computer Engineering

The graph shows the Profit per region. It is evident that West Region is the most profitable Followed by East, South and Central regions.

CON	CI	JUSI	[ON]
\sim	\cdot	\sim	

In this experiment, I was able to understand the Matplotlib and seaborn libraries in Python and how to create histrograms, bar plots, boxplots and other graphs with help of it.