Вычислительная геометрия и алгоритмы компьютерной графики Лекция №2

Рябинин Константин Валентинович

e-mail: kostya.ryabinin@gmail.com

- Атомарная управляемая единица геометрии вершина
- Вершина имеет набор атрибутов (типа float), интерпретация которых, вообще говоря, лежит на программисте:
 - Координаты в пространстве
 - Координаты нормали
 - **⊚** Координаты текстуры
 - Цвет
 - **—** ...
- Вершины объединяются в примитивы:
 - Линии
 - Многоугольники (треугольники)

- Для произведения растеризации, системе для каждой вершины необходимо получить от программиста как минимум следующую информацию:
 - Тип примитива, в который входит вершина (соответственно, вместе с данной вершиной должны быть указаны все остальные, входящие в примитив)
 - Проекцию вершины на плоскость экрана, выраженную в однородных координатах
- Перед тем, как быть спроецированной на плоскость экрана, вершина может претерпевать различные пространственные преобразования. Этими преобразованиями достигается «размещение» объектов на сцене

- Все типовые задачи «размещения» объектов решаются при помощи аффинных преобразований вершин этих объектов:
 - Параллельного переноса
 - Масштабирования
 - Поворота
- Для этого удобно использовать аппарат матриц, так как он предоставляет единый механизм осуществления как аффинных преобразований, так и преобразований проекции

Аффинные преобразования

Аффинные преобразования – отображение пространства в себя, при котором параллельные прямые переходят в параллельные прямые:

```
f: \mathbb{R}^n 	o \mathbb{R}^n f(x) = M \cdot x + v, где M- матрица аффинного преобразования размерности n, v \in \mathbb{R}^n
```

- Иначе говоря, преобразование называется аффинным, если его можно получить следующим образом:
 - Выбрать «новый» базис пространства с «новым» началом координат v
 - \bigcirc Каждой точке x пространства поставить в соответствие точку f(x), имеющую те же координаты относительно «новой» системы координат, что и x в «старой».

Аффинные преобразования

- В трёхмерной компьютерной графике преобразования производятся в трёхмерном пространстве (ваш К.О.)
- Помимо аффинных преобразований, используются ещё преобразования проекции
- С целью упрощения формулы и унификации аффинных и проективных преобразований, переходят к однородным координатам векторов и матрицам размерности 4х4:

$$f(x) = M \cdot x$$

При использовании матриц все преобразования сводятся к умножению вектора однородных координат вершины на матрицу преобразования, в результате чего получается вектор «новых» координат данной вершины:

$$\begin{pmatrix} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

ось X новой системы координат ось Y новой системы координат ось Z новой системы координат начало новой системы координат

Матрица масштаба Матрица переноса

$$\begin{vmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}$$

Матрица поворота вокруг оси

$$c = \cos \theta$$
, $s = \sin \theta$, $|(x, y, z)| = 1$

→ Заданием параметров проекции определяется видимая область пространства

Параллельная проекция

Перспективная проекция

2	0	0	_ <u>right+left</u>
right – left	·	·	right – left
0	2	0	_top+bottom
	top – bottom	O	top – bottom
0	Λ	2	_far+near
U	U	far – near	far – near
0	0	0	1

2 near right – left	0	right + left right – left	0
0	2 near top – bottom	top+bottom top-bottom	0
0	0	far + near far – near	_2far near far – near
0	0	-1	0

→ Заданием параметров проекции определяется видимая область пространства

Параллельная проекция

Перспективная проекция

Важным свойством матричных преобразований является их комбинируемость:

 В связи с этим, в компьютерной графике имеется паттерн хранения и применения преобразований Model-View-Projection:

$$v' = (P \cdot V \cdot M) \cdot v$$

v'-вектор координат, передаваемый системе для произведения растеризации

v – вектор координат вершины

Р-матрица проекции

V — матрица вида (преобразование камеры)

M – матрица модели (преобразование размещения объекта на сцене)

 $M=M_{
m podumens}\cdot M_{
m oбъекта}$

- Камера это псевдообъект в трёхмерном пространстве, характеризующий положение наблюдателя
- Камера лишь полезная метафора, на низком уровне она выражена матричным преобразованием, математически ничем не отличающимся от всех остальных
- Часто преобразование камеры является лишь аффинным
- В связи с этим, иногда преобразование камеры не хранят отдельно, а «смешивают» его с преобразованием резмещения, получая матрицу, которую принято называть ModelView (в «классическом» OpenGL было именно так)

В итоге, преобразование координат, осуществляемое в графическом приложении, имеет вид:

^{*} В новых версиях OpenGL, преобразования из первого ряда должен выполнять программист, а преобразования из второго ряда система выполняет автоматически

Буфер глубины

Буфер глубины (zBuffer) – это структура данных для сохранения глубины каждой точки изображения

- Чаще всего представлен двумерным массивом
- В современных системах реализуется аппаратно
- zBuffer характеризуется разрядностью своих ячеек
- Каждая новая точка отрисовывается на экране и записывается в ячейку буфера только тогда, когда уже записанное значение больше текущего (обратная ситуация носит название wBuffer)
- Если значения оказались равными (с учётом принятой погрешности) ситуация «борьбы», необходима арбитражная стратегия
- Так как расчёт цвета точки наиболее трудоёмкий процесс, рекомендуется, чтобы объекты были отсортированы по удалённости
- Сортировка по удалённости необходима, если объекты используют alpha-смешивание

Буфер глубины

Трёхмерная сцена

Представление в z-буфере

 → Дамп z-буфера может быть использован в постобработке изображения – он предоставляет данные о фактической глубине сцены в каждой точке

Буфер цвета

Буфер цвета – это структура данных для сохранения цвета каждой точки изображения

- Представлен двумерным массивом
- Фактически представляет собой визуализацию сцены (результат рендеринга)
- Точка сохраняется в буфере цвета только если она прошла тест видимости и только тогда, когда полностью вычислен её цвет