Data Preparation: Data Types

Mining Massive Datasets

Prof. Carlos Castillo

Topic 03

Main Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapter 2) + slides by Lijun Zhang
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapter 2)
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 3)

"凡事豫(预)则立,不豫(预)则废"——《礼记·中庸》

Success depends upon previous preparation, and without such preparation there is sure to be failure – Confucius

Typical datasets

- Records / Matrices
- Documents
- Transactions
- Graphs
- Temporal / Sequences
- Spatial

Data preparation

- Feature Extraction and Portability
 - Extract relevant elements for our analysis
 - Convert heterogeneous data types
- Data Cleaning
 - Deal with missing, erroneous, and inconsistent data
- Data Integration
 - Bring different data sources into a common framework
- Data Reduction, Selection, and Transformation
 - Done for both efficiency and effectiveness

Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (page 87)

Feature extraction examples

Domain	Raw Data	Features
Sensor	Low-level signals	Wavelet or Fourier transforms
Image	Pixels	Color histograms Visual words
Web logs	Text strings	IP address Action
Network traffic	Characteristics of the network packets	Number of bytes transferred Network protocol
Document data	Text strings	Bag-of-words Entity extraction

This is both a skill and an art that the analyst develops over the years.

Data type conversions

Data type conversions

- Data is often heterogeneous
 - A demographic data set may contain both numeric and mixed attributes
- Possible solution
 - Designing an algorithm for an arbitrary combination of data types
 - Time-consuming and sometimes impractical
- Converting between various data types
 - Using off-the-shelf tools for processing

Data type conversions (cont.)

Some ways of converting between data types

Source data type	Destination data type	Methods	
Numeric	Categorical	Discretization	
Categorical	Numeric	Binarization	
Text	Numeric	Latent Semantic Analysis (LSA)	
Time series	Discrete sequence	Symbolic Aggregate Approximation (SAX)	
Time series	Numeric multidimensional	Discrete Wavelet Transform (<i>DWT</i>), Discrete Fourier Transform (<i>DFT</i>)	
Discrete sequence	Numeric multidimensional		
Spatial	Numeric multidimensional	2-d <i>DWT</i>	
Graphs	Numeric multidimensional	Multidimensional Scaling (MDS), spectral	
Any type	Graphs	Similarity graph (restricted applicability)	

Numerical ——— Categorical

Numerical to categorical: discretization

 Divide the range for the numerical variable into Φ different ranges

Numerical to categorical: discretization (cont.)

- Equi-width ranges $(l_i r_i)$ is constant)
- Equi-log ranges ($log r_i log l_i$ is constant)
- Equi-depth ranges (num. items in $[l_i, r_i]$ constant)

Example discretization in IRIS dataset

Continuous variables are converted to three possible values per feature: small, medium, large Answer in Google Spreadsheet

Exercise

- Given this database
- Create two categorical (ordinal) attributes
 - Salary bin (equi width) with salary binned into equi-width categories
 - Salary bin (equi depth) with salary binned into equi-depth categories
- Values: low, medium, high

Salary
34,000
49,000
53,000
54,000
32,000
44,000
41,000
37,000
48,000

Categorical to numerical: binarization (one-hot encoding)

- One categorical value with K categories
 - ⇒ indicator vector with K binary variables

Series and sequences

Time series to discrete sequence

- Symbolic aggregate approximation (SAX)
 - Window-based averaging
 - Evaluate the average value in each window
 - Value-based discretization
 - Discretize the average value by equi-depth intervals
- How to ensure equi-depth without seeing the entire series?
 - Assume certain distribution, such as Gaussian
 - Estimate the distribution

Time series to numeric data

- Discrete Wavelet Transform (DWT)
- Discrete Fourier transform (DFT)
 (Seen elsewhere, e.g., signal processing)

Discrete sequence to numeric

- Discrete sequence to a set of (binary) time series
 - ACACACTGTGACTG (4 Symbols)
 - 1010100001000 (A)
 - 0101010000100 (C)
 - 00000010100010 (T)
 - 0000001010001 (G)
- Map each of these time series into a multidimensional vector
- Features from the different series are combined

Graphs - Numerical

Convert any data type to a graph

- Determine distance d(u,v) between all pairs of elements (u,v)
- All elements with $d(u,v) \le \theta$ are connected

Graphs to numerical

- Graph embeddings
 - Each node is converted into a point in a lowdimensional space
 - Nearby nodes in the low-dimensional space are connected by short paths in the graph

We might see more on this on the spectral graph clustering topic, possibly (if we get to that topic)

Summary

Things to remember

Converting across data types

Exercises for TT03-TT05

- Exercises 3.7 of Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al.
- Exercises 2.6 of Introduction to Data Mining,
 Second Edition (2019) by Tan et al.
 - Mostly the first exercises, say 1-6