Hojas entregadas:

JUSTIFIQUE TODAS SUS AFIRMACIONES

1. (15 puntos) Sea
$$f(x)=$$

$$\begin{cases} \frac{1}{x-2} & x>2\\ x & x\leq 2 \end{cases}$$
 (a) Determine si f es continua en $x=2$ y, en caso de no serlo, clasifique

- de acuerdo al tipo de discontinuidad.
- (b) Grafique la función f sin hacer tabla de valores.
- **2.** (20 puntos) Sea $f(x) = \tan(\sqrt{x})$.
 - (a) Obtenga la derivada de f.
 - (b) Obtenga la ecuación de la recta tangente al gráfico de f(x) en el punto $(\frac{\pi^2}{16}, 1)$.
- 3. (20 puntos) Calcule los siguientes límites:

(a)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin(x)}$$
 (b) $\lim_{x \to 0^+} x^x$

- **4.** (30 puntos) Dada la función $f(x) = x 2\arctan(x)$:
 - (a) Determine su dominio y paridad o imparidad de la función, en caso de ser posible.
 - (b) Obtenga las rectas asíntotas horizontales y verticales, en caso de existir.
 - (c) Obtenga los puntos críticos de la función.
 - (d) Determine intervalos de crecimiento y decrecimiento de f.
 - (e) Determine máximos y mínimos locales de f.
 - (f) Determine intervalos de concavidad hacia arriba y hacia abajo.
 - (g) Obtenga los puntos de inflexión de f.
 - (h) Esboce el gráfico de la función f.
- **5.** (15 puntos)
 - (a) Calcule $\int \left(-2\sin(x) + x^2 3\right) dx$.
 - (b) Dada f(x) = x + 1, obtenga una primitiva F de f tal que F(1) = 1.

1a	1b	2a	2b	3a	3b	4a	4b	4c	4d	4e	4f	4g	4h	5a	5b	ТОТ	Parc	NOTA