CIVL 215 Formula Sheet

Basics

Weight W = mg

 $g = 9.8\,\mathrm{m/s^2}$

Density $\rho = \frac{m}{V}$

Specific weight $\gamma = \frac{W}{V} = \frac{mg}{V} = \rho g$

Specific gravity $s = \frac{\rho}{\rho_{\text{water}}}$ $\rho_{\text{water}} = 1000 \,\text{kg/m}^3$

Pressure

Pressure $P = \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A}$

 $1 \, \text{bar} = 10^5 \, \text{Pa}$

Shear stress $\tau = \lim_{\Delta A \to 0} \frac{\Delta F_t}{\Delta A}$

Gage pressure $P_{\text{gage},A} = P_A - P_{\text{atm}}$

Hydrostatics

Fluid cube $-\frac{\partial P}{\partial x} = \rho a_x$ $-\frac{\partial P}{\partial y} = \rho a_y$ $-\frac{\partial P}{\partial z} = \rho (a_z + g)$

 $dP = \frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy + \frac{\partial P}{\partial z}dz$

 $dP = -\rho a_x dx - \rho a_y dy - \rho (a_z + g) dz$

 $\nabla P = -\rho(\vec{a} - \vec{g})$

Accelerated $a_x > 0, a_y = a_z = 0$

 $P = -\rho a_x x - \rho gz + P_{\text{atm}}$

 $z = -\frac{a_x}{a}x$

No force $a_x = a_y = a_z = 0$

 $dP = -\rho g dz$

 $P_2 = P_1 + \rho g h$

1st law of manometry: all points on a horizontal plane have the same pressure providing they are connected by a fluid of constant density.

Atmospheric Pressure

Hydrostatic $\frac{dP}{dz} = -\rho_a g$

Ideal gas $P = \rho_a R_a T$

 $R_a = \frac{R}{M_a} = \frac{8.31 \,\mathrm{J/(mol \, K)}}{0.029 \,\mathrm{kg/mol}} = 287 \,\mathrm{J/(kg \, K)}$

Temperature $T(z) = T_0 - \alpha z$

 $\alpha = 0.0065 \,\mathrm{K/m}$ $T_0 = 15\,^{\circ}\mathrm{C} = 288 \,\mathrm{K}$

Pressure $P = P_0 \left(\frac{T_0 - \alpha z}{T_0}\right)^{\frac{g}{\alpha R_a}}$

 $P_0 = 101.3 \,\text{kPa}$ $\frac{g}{\alpha R_a} = 5.25$

Hydrostatic Pressure

Planar Surfaces

Average pressure $\bar{P} = \frac{1}{2}\rho gh$

Point $h_p = \frac{2}{3}h$

 $M = Fh_p = \frac{1}{2}\rho gh^2 Wh_p$

Curved Surfaces

Use F_H , F_V , F_W , and P for moment balance.

Buoyancy

Buoyancy force $B = \rho_w g \int_0^L (h_b - h_a) W dx$

 $B = \rho_w g V$

Fluid Motion

Eulerian flow $\vec{V} = \vec{V}(x, y, z, t)$

Steady flow $\vec{V} = \vec{V}(x, y, z)$

Viscosity

Velocity u(0) = 0

u(H) = U

 $u(y) = \left(\frac{y}{H}\right)y$

Shear stress $\tau = \mu \frac{du}{dy} = \mu \frac{U}{H}$

Force $F = \tau A = \mu \frac{U}{H} A$

Kinematic viscosity $\nu = \frac{\mu}{\rho}$

Reynold's number $Re = \frac{UD}{\nu} = \frac{UD\rho}{\mu}$

 $\nu_{\mathrm{water}} = 1 \times 10^{-6} \,\mathrm{m}^2/\mathrm{s}$

Pipes Re $\lesssim 2000$ laminar

 $\mathrm{Re} \gtrsim 2000$ turbulent

Bernoulli's Equation

Bernoulli $\frac{p_1}{\gamma} + y_1 + \frac{v_1^2}{2g} = \frac{p_2}{\gamma} + y_2 + \frac{v_2^2}{2g}$

Torricelli $v_2 = \sqrt{2gh}$

 $T = \sqrt{\frac{2H}{g}} \frac{1}{A_R}, \quad A_R = \frac{A_2}{A_1}$

Corrected $V = C_v \sqrt{2gh}$

 $Q = AV = C_c A_o V$

 $Q = C_c C_v A_o \sqrt{2gh} = C_d A_o \sqrt{2gh}$

Conservation

Mass $\frac{d}{dt}m_{\text{sys}} = 0$ $\frac{d}{dt}m_{\text{cv}} = \dot{m}_{\text{in}} - \dot{m}_{\text{out}}$

Momentum $\sum \vec{F} = \frac{d}{dt}(m_{\rm sys}\vec{u}) = m_{\rm sys}\vec{a}$

Reynold's Transport Theorem

Extensive B

Intensive $\beta = \frac{dB}{dm}$

RTT $\frac{dB_{\text{sys}}}{dt} = \frac{d}{dt} \left[\int_{\text{cv}} \beta \rho \, dV \right] + \beta \dot{m}_{\text{out}} - \beta \dot{m}_{\text{in}}$

Mtm eqn $\sum \vec{F} = \sum \dot{m}_{\rm out} \vec{U}_{\rm out} - \sum \dot{m}_{\rm in} \vec{U}_{\rm in}$

 $\sum \vec{F} = \rho Q(\vec{U}_2 - \vec{U}_1)$

 $\sum \vec{F} = P_1 A_1 - P_2 A_2 - F_{\text{pipe}}$

Pipe Flow

Head loss $h_L = h_f + h_m$

Friction loss $h_f = f\left(\frac{L}{D}\right) \frac{v^2}{2g}$

Minor loss $h_m = \sum K_i \frac{v^2}{2g}$

Head $H = (f \frac{L}{D} + \sum K_i + 1) \frac{v^2}{2q}$

Speed $v = \frac{\sqrt{2gH}}{\sqrt{1 + f\frac{L}{D} + \sum K_i}}$

EGL $Z_{\text{EGL}} = \frac{p}{\gamma} + z + \frac{v^2}{2q}$

HGL $Z_{\text{HGL}} = \frac{p}{\alpha} + z$

Compressibility

Bulk modulus $B = \rho \frac{\partial P}{\partial \rho} \Big|_T$

Sound speed $c = \sqrt{\frac{B}{\rho}}$

Capillary $h = \frac{2\sigma\cos\theta}{r\gamma}$

Dimensional Analysis

n variables, m basic dimensions $\implies (n-m)$ dimensionless $\pi\text{-groups:}$

 $\pi_1 = f(\pi_2, \pi_3, \dots, \pi_{n-m})$

Similarity

Length scale $L_R = \frac{L_P}{L_M} = \frac{L_{\text{prototype}}}{L_{\text{model}}}$

Area scale $A_R = L_R^2$

Volume scale $V_R = L_R^3$

Reynolds $Re = \frac{VL}{\nu}$ (viscosity)

Froude $Fr = \frac{V}{\sqrt{aH}}$ (free surface)

Euler Eu = $\frac{\Delta P}{\rho V^2}$ (falling objects, pipe flow)

Weber $W = \frac{rhoV^2l}{\sigma}$ (surface tension)

Compiled December 22, 2024