CSE2301 Digital Logic Design

Department of Computer Science and Engineering
University of Connecticut

CSE2301: Digital Logic Design

Why is this course important?

- Design processor/motherboard/ Nintendo Wii
 - Write operating system, device drivers
 - Write software for embedded systems
 - Understand how software interacts with hardware
 - Do hardware security

-

This class is really important for you!

Digital Logic Design

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

Source:

http://www.computersciencelab.com/ComputerHistory/HistoryPt4.htm

John Bardeen, William Shockley and Walter Brattain at Bell Labs, 1948.

Miniaturization was the key

Now, what are the main ideas?

- In our everyday world, we have many symbols
 - A,B,C,....0,1,2,3,....\$,@,.....
- In digital world, there are only two symbols in our system
 - 0 and 1 (Welcome to the Binary system!)
 - You can only communicate using these two symbols!
 - You can use multiple of these symbols!

Now, wait a second

 How do you represent 0 or 1? There is no such thing in physical world!

Now, wait a second

 How do you represent 0 or 1? There is no such thing in physical world!

- You are right! These are just two numbers!
- In physical world, voltage and current are real!
- In digital world, we use 5V to represent 1 and 0v to represent 0
 (Different voltage level may be used as well!)

American Standard Code for

Information Interchange (ASCII)

	T	T	1
-	T	T	

				$b_7 b$	0 ₆ b ₅			
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	6	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	\mathbf{Z}	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	О		О	DEL

Some Example Problems

- Design a circuit with the following specification-
 - Takes two one-bit input from two users
 - (a) If either of the input is 1, output 1
 - (b) If both input are 1, output 1
 - (c) If both input are same, output 1

Some Example Problems

 Assume that you are designing a circuit that beeps if any of the door in your car is not properly locked. Assume that each door is equipped with a sensor that outputs 1 if the door is not properly locked. You have 4 doors in your car.

- It is all about playing with voltage and switches!
- We just need to come up with the logic behind this switching.

Hence, the term "Digital Logic" Design

Some Example Problems

- Design a digital clock.
- How is this problem different than the first two examples?

- It is all about playing with voltage and switches!
- We just need to come up with the logic behind this switching.

Hence, the term "Digital Logic" Design

What do I mean by "switches"?

Inverter

• Let us assume that we have only two doors in our car. If one of the two doors are open, set the alarm signal to 1.

2 door Door Open Close
 X
 Y
 1
 0
 0

How would you express the logic?

• If (X= =1 **Or** Y = = 1) then alarm = 1

• If $(X = 1 \ O'' \ Y = 1)$ then alarm = 1

• If (X= =1 **Or** Y = = 1) then alarm = 1

Χ	Υ	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

• If (X= =1 **Or** Y = = 1) then alarm = 1

$$Z = X + Y$$

OR Gate

Х	Υ	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Now, a changed Car Example...

• If and only if both of the two doors are open, set the alarm signal to 1.

How would you express the logic?

• If (X = 1) and Y = 1 then alarm = 1

• If (X = 1) and Y = 1 then alarm = 1

• If (X= =1 and Y = = 1) then alarm = 1

Gates

- Gates are basic digital devices
- A gate takes one or more inputs and produces an output
 - Can be considered as a function
 - Inputs are either 0 or 1

0

0

Χ	NOT X
0	1
1	0

Boolean operators

• Complement: X' (opposite of X)

• AND: X · Y

• OR: X + Y

Χ	Υ	X AND Y	Χ	Υ	XORY
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

Function described with truth table.

Χ	NOT X
0	1
1	0
1	0

Logic symbols of NOT, AND, and OR

Now, another changed Car Example...

• If and only if both of the two doors are open (or close), set the alarm signal to 1.

How would you express the logic?

If
$$((X = 1 \text{ and } Y = 1) \text{ or } (X = 0 \text{ and } Y = 0))$$

then alarm = 1

Can you generate the truth table for this?

If
$$((X = 1 \text{ and } Y = 1) \text{ or } (X = 0 \text{ and } Y = 0))$$

then alarm = 1

_	X	Y	Alarm
•	0	0	1
	0	1	0
	1	0	0
	1	1	1

Can you implement this logic using the gates we have seen so far?

If
$$((X = 1) \text{ and } Y = 1) \text{ or } (X = 0) \text{ and } Y = 0)$$

then alarm = 1

X	Y	Alarm
0	0	1
0	1	0
1	0	0
1	1	1

Can you implement this logic using the gates we have seen so far?

- So, the idea is to
 - First, express the circuit design problem in terms of input binary variables
 - Second, identify the output binary variables
 - Third, build a truth table where you need to assign a value to the output variable for each combination of input variables
 - Finally, express the output variable(s) in terms of input variables
 - We will see how to do the last step soon!