Equação não-linear é toda equação que apresenta pelo menos uma variável com grau maior que 1 ou apresenta produto de variáveis.

Exemplo:

Resolva o sistema:

$$\begin{cases} x - 2y = 0 \\ x^2 - 4y = -1 \end{cases}$$

Solução:

Podemos resolver o sistema por algum método já conhecido. Isolando x na 1ª equação e substituindo na 2ª, obtemos:

$$x = 2y$$

$$(2y)^{2} - 4y = -1$$

$$4y^{2} - 4y + 1 = 0$$

$$\Delta = (-4)^{2} - 4 \cdot 4 \cdot 1$$

$$\Delta = 0$$

$$y = \frac{4 \pm 0}{8}$$

$$y_{1} = y_{2} = \frac{1}{2}$$

Substituindo y =
$$\frac{1}{2}$$
 em x = $2 \cdot \frac{1}{2}$, obtemos:

$$x = 1$$

Logo, a solução será
$$\left\{ \left(1, \frac{1}{2} \right) \right\}$$
.

EXERCÍCIOS PROPOSTOS

1) Construa as seguintes matrizes:

a) A =
$$(a_{ij})_{2x3}$$
 com $a_{ij} = \begin{cases} 1, \text{ se } i = j \\ i - j, \text{ se } i \neq j \end{cases}$

b)
$$A = (a_{ij})_{3x2} \text{ com } a_{ij} = \begin{cases} j^{ij} \text{ se } i \ge j \\ -3 \text{ se } i = j \end{cases}$$

c) B =
$$(b_{ij})_{3x3}$$
 com $b_{ij} = -i^2 - j$

d)
$$C = (c_{ii})_{1x4} \text{ com } c_{ii} = i - 2ij + 3j$$

2) Dadas as matrizes A = $(a_{ij})_{2x2'}$ sendo $a_{ij}=i^2$ e B = $(b_{ij})_{2x2'}$ sendo $b_{ii}=i+j$, determine:

a)
$$b_{12} - a_{11}$$

b)
$$2a_{12} + b_{22}^2$$

3) Dadas as matrizes

$$A = \begin{pmatrix} 1 & 3 & -2 \\ -4 & 2 & b \\ 3 & 1 & 2 \end{pmatrix} e B = \begin{pmatrix} 1 & a & 3 \\ 3 & 2 & 1 \\ c & 3 & 2 \end{pmatrix}, \text{ calcule a, b, e c, sabendo}$$

que
$$B = A^t$$
.

4) Determine os números reais x e y, tais que:

a)
$$\begin{pmatrix} x-1 & 3 \\ 4 & 2y \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix}$$

b)
$$\begin{pmatrix} 3^{y} & 4 \\ -1 & \log_{x}^{8} \end{pmatrix} = \begin{pmatrix} 9 & 4 \\ -1 & 3 \end{pmatrix}$$

c)
$$\begin{pmatrix} x-y & -5 \\ 3 & 2x+y \end{pmatrix} = \begin{pmatrix} 1 & -5 \\ 3 & 5 \end{pmatrix}$$

5) Sendo
$$A = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 4 & 3 \end{pmatrix} e B = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 3 & 4 \end{pmatrix}$$
, determine $X = A + 3B^t$.

6)(CISESP-PE) Dadas as matrizes reais $A=(a_{ij})$ e $B=(b_{ij})$, em que i=1,2,3 e j=1,2,3, tais que $a_{ij}=i+j$ e $b_{ij}=2i-j+1$, indique a alternativa correspondente ao elemento c_{22} da matriz $C=A\cdot B$.

- a) 40
- b) 36
- c) 4
- d) 120
- e) 22

7) (FATEC-SP) Uma indústria automobilística produz carros X e Y nas versões standard, luxo e superluxo. Na montagem desses carros são utilizadas as peças A, B e C.

Para um certo plano de montagem, são dadas as seguintes informações:

	Carro X	Carro Y
Peça A	4	3
Peça B	3	5
Peça C	6	2

	Standard	Luxo	Superluxo
Carro X	2	4	3
Carro Y	3	2	5

Em termos matriciais, temos:

$$\text{matriz peça/carro} = \begin{pmatrix} 4 & 3 \\ 3 & 5 \\ 6 & 2 \end{pmatrix}$$

matriz carro/versão =
$$\begin{pmatrix} 2 & 4 & 3 \\ 3 & 2 & 5 \end{pmatrix}$$

Então, a matriz peça/versão é:

- 8) Resolva a equação matricial $X \cdot \begin{pmatrix} -2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 6 & 2 \\ -2 & 3 & 1 \end{pmatrix}$
- 9) Efetue as multiplicações:

a)
$$\begin{pmatrix} 0 & 1 \\ 3 & -4 \end{pmatrix}$$
 $\cdot \begin{pmatrix} 2 & 7 \\ 6 & -5 \end{pmatrix}$ b) $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ $\cdot \begin{pmatrix} 0 & -3 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix}$ $\cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$

10) Calcule a de modo que as matrizes

$$A = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} e B = \begin{pmatrix} 4 & a \\ 0 & 4 \end{pmatrix}$$
 sejam comutativas.

11) Considere as matrizes:

$$A = \begin{pmatrix} x & y & 1 \\ -1 & 1 & x \end{pmatrix} e B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Determine x e y, sabendo que: $A \cdot B^t = \begin{pmatrix} 3 & 4 \\ -2 & 1 \end{pmatrix}$

12) (UCS-BA) A equação matricial
$$\begin{pmatrix} -2 & 1 & 0 \\ 1 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$

é verdadeira se x, y e z são tais que x + y + z é igual a c) 0

13) Determine a matriz inversa das matrizes:

a)
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ c) $C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

b)
$$B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

14) Dadas as matrizes
$$M = \begin{pmatrix} 1 & 3 \\ 0 & -4 \end{pmatrix} e N = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
, determine $(M \cdot N^{-1})^{t}$:

15) Calcule o valor dos determinantes:

a)
$$\begin{vmatrix} 2 & 3 \\ 4 & -1 \end{vmatrix}$$

c)
$$\log_2^4$$
 1

b)
$$\begin{vmatrix} \sqrt{3} & \sqrt{2} \\ 2\sqrt{2} & -\sqrt{3} \end{vmatrix}$$

b)
$$\begin{vmatrix} \sqrt{3} & \sqrt{2} \\ 2\sqrt{2} & -\sqrt{3} \end{vmatrix}$$
 d) $\begin{vmatrix} \text{sen a} & \cos a \\ -\cos a & \sin a \end{vmatrix}$

- 16) Sendo A = $(a_{ij})_{2x2'}$ em que $a_{ij} = 3i + j e B = (b_{ij})_{2x2'} e b_{ij} = \begin{cases} 0 \text{ se } i = j \\ -1 \text{ se } i \neq i' \end{cases}$
- calcule o valor dos determinantes:

c)
$$A^t + B^t$$
 d) $(A . B)^t$

17) Aplicando a regra de Sarrus, calcule os seguintes determinantes:

b)
$$\begin{vmatrix} 1 & 2 & 1 \\ 3 & 4 & -1 \\ 0 & 1 & 3 \end{vmatrix}$$

a)
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 2 & 1 \end{vmatrix}$$
 b) $\begin{vmatrix} 1 & 2 & 1 \\ 3 & 4 & -1 \\ 0 & 1 & 2 \end{vmatrix}$ c) $\begin{vmatrix} 0 & 1 & 3 \\ -2 & 1 & 1 \\ 3 & -1 & 2 \end{vmatrix}$

18) Aplicando o teorema de Laplace, calcule o valor dos determinantes:

a)
$$\begin{vmatrix} 0 & 3 & 0 \\ -2 & 3 & 1 \\ 4 & -2 & 5 \end{vmatrix}$$

b)
$$\begin{vmatrix} 3 & 2 & 3 & 2 \\ 2 & 2 & 4 & 3 \\ 5 & 4 & 3 & 2 \\ 4 & 3 & 2 & 2 \end{vmatrix}$$

a)
$$\begin{vmatrix} 0 & 3 & 0 \\ -2 & 3 & 1 \\ 4 & -2 & 5 \end{vmatrix}$$
 b) $\begin{vmatrix} 3 & 2 & 3 & 2 \\ 2 & 2 & 4 & 3 \\ 5 & 4 & 3 & 2 \\ 4 & 3 & 2 & 2 \end{vmatrix}$ c) $\begin{vmatrix} 0 & 0 & 0 & 3 \\ -1 & 2 & 1 & 4 \\ 3 & 4 & 6 & -1 \\ 2 & 0 & 4 & 1 \end{vmatrix}$

19) Calcule o valor dos determinantes a seguir, sem desenvolvê-los. Justifique a resposta:

a)
$$\begin{vmatrix} 0 & 0 \\ -1 & 3 \end{vmatrix}$$

b)
$$\begin{vmatrix} 3 & 0 & 3 \\ 2 & -1 & 2 \\ 1 & 1 & 1 \end{vmatrix}$$

b)
$$\begin{vmatrix} 3 & 0 & 3 \\ 2 & -1 & 2 \\ 1 & 1 & 1 \end{vmatrix}$$
 c) $\begin{vmatrix} 2 & -1 & 3 \\ 4 & 0 & 1 \\ 8 & -2 & 7 \end{vmatrix}$

d)
$$\begin{vmatrix} 1 & 2 & -5 \\ 2 & 4 & 1 \\ 3 & 6 & 7 \end{vmatrix}$$
 e) $\begin{vmatrix} 4 & 0 & 0 \\ 1 & -3 & 0 \\ 2 & 1 & 2 \end{vmatrix}$ f) $\begin{vmatrix} 1 & 2 & 0 & 3 \\ -1 & 1 & 1 & 2 \\ 1 & 0 & -1 & 1 \\ 1 & 5 & 1 & 8 \end{vmatrix}$

20) Determine o conjunto-verdade das equações:

a)
$$\begin{vmatrix} 1 & 2 & -1 \\ 0 & 1 & x \\ 1 & x & -1 \end{vmatrix} = 1$$
 b) $\begin{vmatrix} x^2 - 1 & 2 \\ 3 & 3 \end{vmatrix} = 0$ c) $\begin{vmatrix} x & 4 & -1 \\ -1 & 1 & 0 \\ -15 & 3 & x \end{vmatrix} = 0$ (Mauá)

21) Dada a matriz
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 4 & -1 & 2 \\ 5 & 2 & -1 \end{pmatrix}$$
, calcule os cofatores de A_{11} , A_{21}

22) Seja a matriz B =
$$(b_{ij})$$
 de ordem 3, em que $b_{ij} = \begin{cases} i-j, se \ i>j \\ -1, se \ i, calcule o valor do determinante de B.$

23) (Unifor – CE) A inequação
$$\begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 1 & 1 & 1 \end{vmatrix}$$
 < 0 tem por conjunto solução:

a)
$$\{x \in \mathbb{R} \mid 0 < x < 1\}$$

b)
$$\{x \in \mathbb{R} \mid x > 1 \text{ ou } x < 0\}$$

24) (PUC–SP) 0 determinante
$$\begin{vmatrix} x & 0 & 0 & 3 \\ -1 & x & 0 & 0 \\ 0 & -1 & x & 1 \\ 0 & 0 & -1 & -2 \end{vmatrix}$$
 representa o polinômio:

a)
$$-2x^3 + x^2 + 3$$

d)
$$2x^3 - x^2 - 3$$

b)
$$-2x^3 - x^2 + 3$$

e)
$$2x^3 - x^2 + 3$$

c)
$$3x^3 + x - 2$$

25) Sejam A =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 3 & 4 & -3 & 0 \\ 0 & 3 & 1 & 4 \end{pmatrix} \text{e B} = \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & -2 & 1 & 3 \\ 0 & 0 & 6 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{, calcule}$$

det (A.B).

- 26) Sendo A e B matrizes quadradas de ordem 3, com det A = 2 e $\det B = 3$, calcule:
 - a) det (3A)

- b) det (A · B)
- 27) Dado o sistema $\begin{cases} 4x+y=0 \\ x+v=6 \end{cases} \text{, verifique se \'e solução cada um dos pares:}$
- a) (-2.8)

- 28) Verifique quais dos sistemas são normais:
- a) $\begin{cases} 2x + y = 1 \\ x 3y = 0 \end{cases}$

- c) $\begin{cases} x y = 2 \\ 2x 2y = 4 \end{cases}$
- b) $\begin{cases} x + y z = 0 \\ 4x y + z = 1 \\ x + 3y 2z = 2 \end{cases}$ d) $\begin{cases} x + y + z = 1 \\ 2x + 3y + 2z = 5 \\ x y + 2z = -4 \end{cases}$
- 29) Resolva, com o auxílio da regra de Cramer, os seguintes sistemas:
- a) $\begin{cases} 3x 2y = 5 \\ 2x + y = 1 \end{cases}$

- c) $\begin{cases} 3x y + 2z = 5 \\ 2x + 3y 4z = 2 \\ -x + y z = 0 \end{cases}$
- b) $\begin{cases} x + y z = -5 \\ 2x + y + z = -1 \\ 4x + 2y z = -11 \end{cases}$
- 30) Classifique os sistemas:
- a) $\begin{cases} 3x y = 2 \\ x + 4y = 1 \end{cases}$

c) $\begin{cases} -3x + 4y = 4 \\ 3x - 4y = 1 \end{cases}$

b) $\begin{cases} 2x - y = 1 \\ 4x - 2y = 2 \end{cases}$

d) $\begin{cases} 2x + y + 4z = 0 \\ 5x + 2y - z = 1 \end{cases}$

31) (UF-PA) O valor de K para que os sistemas
$$\begin{cases} x=2\\y=3 \end{cases} e \begin{cases} Kx+3y=5K\\-x-Ky=-11 \end{cases}$$

sejam equivalentes é um valor pertencente ao intervalo:

- a) $1 \sqrt{3}$. $\sqrt{3}$ [
- d)]3, 3 √3]
- b) $[0, \sqrt{3}]$
- e) $1-\sqrt{3}$. 01
- c) [3, $3\sqrt{3}$]

32) (FUVEST-SP) Para quais valores de a o sistema linear

$$\begin{cases} x + y + z = 1 \\ 2x + 3y + 4z = a \text{ admite solução?} \\ -y - 2z = a^2 \end{cases}$$

- 33) (UC-MG) O valor de m para que o sistema $\begin{cases} mx + y = 0 \\ 4x + y = 0 \end{cases}$ seja indeterminado é:
 - a) 0
- b) 1
- c) 2 d) 3
- 34) Determine K, de modo que o sistema $\begin{cases} 3x + 2y = 3 \\ Kx + y = 4 \end{cases}$ seja impossível.

35) (MACK-SP)
$$\begin{cases} x + y = -z \\ 2x + z = 3y \text{ de variáveis } x, y \in z \\ 9y + z = -4x \end{cases}$$

- a) não é homogêneo; b) apresenta três soluções distintas;
- c) é impossível; d) é possível e indeterminado;
- e) é possível e determinado.
- 36) (UNESP-SP) Para quais valores reais de p e q o sistema

$$\begin{cases} 3x + py + 4z = 0 \\ x + y + 3z = -5 \text{ não admite solução?} \\ 2x - 3y + z = q \end{cases}$$

- a) p = -2 e q = 5 b) $p > -2 e q \neq 4$ c) p = q = 1
- d) $p = -2 e a \neq 5$ e) p = 2 e a = 5