LÓGICA

M. Lurdes Teixeira Dep. Matemática Univ. Minho

2º semestre de 2023/2024

Cálculo Proposicional

Sintaxe do Cálculo proposicional
 Semântica do Cálculo proposicional

Sistema Formal de Dedução Natural

Correção e Completude do Sistema Formal de Dedução

2 Cálculo de Predicados de Primeira Ordem

e Indução estrutural Cálculo Proposicional Cálculo de Predicados de Pred

Sintaxe do Cálculo proposicional

Definição

O alfabeto do Cálculo Proposicional, que se denota por \mathcal{A}^{CP} , é o conjunto constituído por:

• $p_0, p_1, \ldots, p_n, \ldots$ (com $n \in \mathbb{N}_0$) símbolos designados variáveis proposicionais, que formam o conjunto numerável \mathcal{V}^{CP} ;

os símbolos: ∧, ∨, →, ↔, ¬ e ⊥, designados conetivos (proposicionais);

dois símbolos auxiliares (e).

M. Lurdes Teixeira Dep. Matemática Univ. Minho

ndice indução estrutural Calculo Propo

Cálculo de Predicados de Pi

Sintaxe do Cálculo proposicional

Definição

A linguagem do Cálculo Proposicional, que se denota por $\mathcal{F}^{\mathit{CP}}$, é o subconjunto de $(\mathcal{A}^{\mathit{CP}})^*$ definido indutivamente pelas seguintes regras:

- $p_j \in \mathcal{F}^{CP}$ para qualquer $j \in \mathbb{N}_0$;
- ullet $\perp \in \mathcal{F}^{CP}$;
- se φ , $\psi \in \mathcal{F}^{CP}$ então $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi) \in \mathcal{F}^{CP}$;
- se $arphi \in \mathcal{F}^{\mathit{CP}}$ então $(\neg arphi) \in \mathcal{F}^{\mathit{CP}}.$

Os elementos de $\mathcal{F}^{\mathit{CP}}$ designam-se fórmulas proposicionais ou fórmulas do Cálculo Proposicional.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Sintaxe do Cálculo proposicional

As regras que definem $\mathcal{F}^{\mathit{CP}}$ poderiam ser representadas pelas seguintes árvores:

- $p_j \in \mathcal{F}^{CP}$ para cada $p_j \in \mathcal{V}^{CP}$;
- \bullet $\perp \in \mathcal{F}^{CP}$;
- $arphi \in \mathcal{F}^{CP} \; \psi \in \mathcal{F}^{CP} \ (arphi \lor \psi) \in \mathcal{F}^{CP} \ .$

 $(\varphi \to \psi) \in \mathcal{F}^{CP}$;

 $\varphi \in \mathcal{F}^{\mathit{CP}} \ \psi \in \mathcal{F}^{\mathit{CP}}$

- $\varphi \in \mathcal{F}^{\mathsf{CP}} \quad \psi \in \mathcal{F}^{\mathsf{CP}} \quad (\varphi \wedge \psi) \in \mathcal{F}^{\mathsf{CP}} \quad (\varphi \wedge \psi) \in \mathcal{F}^{\mathsf{CP}} \quad (\varphi \leftrightarrow \psi) \in \mathcal{F}^{\mathsf{CP}} \quad (\varphi \to \psi$
- $arphi \in \mathcal{F}^{CP} \ \overline{(\neg arphi) \in \mathcal{F}^{CP}}^{t}$.

Indução estrutural **Cálculo Pro**l o ooo⊕ooooc

Sintaxe do Cálculo proposicional

Exemplos

- $\qquad \qquad ((\neg(p_2 \land \bot)) \to (\neg p_4)) \in \mathcal{F}^{CP};$ ullet $(p_1 ee p_3) \in \mathcal{F}^{CP}$
- $\bullet \ ((p_2(\neg \wedge)\bot) \to (\neg p_4)) \not\in \mathcal{F}^{CP}.$

Será que $\neg(p_2 \land \bot) \rightarrow \neg p_4 \in \mathcal{F}^{CP}$? Que leituras poderia ter?

plificar a escrita retiram-se os parêntesis exteriores e, interpretando os conetivos como operações em \mathcal{F}^{CP} , convenciona-se que a prioridade de Os parêntesis servem apenas para clarificar a leitura, mas para simaplicação dos conetivos a fórmulas é a seguinte:

- < e >,

Então $\neg(\rho_2 \land \bot) \rightarrow \neg \rho_4$ representa $((\neg(\rho_2 \land \bot)) \rightarrow (\neg \rho_4))$. E o que representa $\neg \rho_2 \land \bot \rightarrow \neg \rho_4$?

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Sintaxe do Cálculo proposicional

Princípio de Indução Estrutural para $\mathcal{F}^{\mathit{CP}}$

Seja P uma propriedade relativa aos elementos de \mathcal{F}^{CP}

- $oldsymbol{0}$ para qualquer $oldsymbol{
 ho}\in\mathcal{V}^{CP},\ P(oldsymbol{
 ho}),$
- **②** *P*(⊥),
- $oldsymbol{0}$ para quaisquer $arphi,\psi\in\mathcal{F}^{\mathit{CP}},$ P(arphi) e $P(\psi)$ implicam
- a) $P(\varphi \lor \psi)$,
- b) $P(\varphi \wedge \psi)$,
- c) $P(\varphi \to \psi)$,
- d) $P(\varphi \leftrightarrow \psi)$,
 - e) *P*(¬*ψ*),

então $P(\varphi)$, para todo o $\varphi \in \mathcal{F}^{CP}$

ice Indução estrutural **Cálculo Proposic** ○

Cálculo de Predicados de Pi o o

Sintaxe do Cálculo proposicional

Proposição

A definição indutiva de $\mathcal{F}^{\mathit{CP}}$ apresentada anteriormente é determinista.

Demonstração

A demonstração efetua-se mostrando que cada fórmula de \mathcal{F}^{CP} admite uma única árvore de formação, o que requer a utilização do Princípio de Indução Estrutural para \mathcal{F}^{CP} .

Definição

Uma subfórmula de uma fórmula φ é um sub-objeto de φ .

M. Lurdes Teixeira Dep. Matemática Univ. Minho LÓGICA

Sintaxe do Cálculo proposicional

Teorema de Recursão Estrutural para \mathcal{F}^{CP}

Sejam Y um conjunto, $y, y_0, y_1, \ldots, y_n, \ldots$ uma sequência numerável de elementos de Y. Sejam $f_{\backslash}, f_{\backslash}, f_{\downarrow}$ operações de aridade 2 e $\overline{f_{\downarrow}}$ uma operação de aridade 1 em Y. Então, existe e é única a função $\mathfrak{g}: \mathcal{F}^{CP} \to Y$ tal que:

- **1** para $i \ge 0$, $g(p_i) = y_i$;
- $\qquad \qquad \textbf{9} \quad \mathsf{para} \; \mathsf{quaisquer} \; \varphi, \, \psi \in \mathcal{F}^{\mathit{CP}}, \\$
- a) $\mathfrak{g}(\varphi \vee \psi) = \overline{t_{\vee}}(\mathfrak{g}(\varphi), \mathfrak{g}(\psi)),$
- b) $\mathfrak{g}(\varphi \wedge \psi) = \overline{f_{\wedge}}(\mathfrak{g}(\varphi), \mathfrak{g}(\psi)),$
- c) $\mathfrak{g}(\varphi \to \psi) = \overline{f_{\rightarrow}}(\mathfrak{g}(\varphi), \mathfrak{g}(\psi)),$
- d) $\mathfrak{g}(\varphi \leftrightarrow \psi) = \overline{t_{\leftrightarrow}}(\mathfrak{g}(\varphi), \mathfrak{g}(\psi))$ e
- e) $\mathfrak{g}(\neg \varphi) = \overline{f_{\neg}}(\mathfrak{g}(\varphi)).$

Sintaxe do Cálculo proposicional

proposicional ψ pode ser definido como sendo $\mathit{var}(\psi)$ em que a função $\mathit{var}:\mathcal{F}^{\mathit{CP}}\longrightarrow\mathcal{P}(\mathcal{V}^{\mathit{CP}})$ é tal que : O conjunto das variáveis proposicionais que ocorrem numa fórmula

- ① para cada $p \in \mathcal{V}^{CP}$, $var(p) = \{p\}$;
- 2 $var(\bot) = \emptyset$;
- $\bigcirc \quad \text{para quaisquer } \varphi, \psi \in \mathcal{F}^{\mathit{CP}},$
- a) $var(\varphi \lor \psi) = var(\varphi) \cup var(\psi)$,
- b) $var(\varphi \wedge \psi) = var(\varphi) \cup var(\psi)$,
- c) $var(\varphi \to \psi) = var(\varphi) \cup var(\psi)$,
- d) $var(\varphi \leftrightarrow \psi) = var(\varphi) \cup var(\psi) e$

e) $var(\neg \varphi) = var(\varphi)$.

Tal definição é uma definição da função \emph{var} por recursão estrutural em \mathcal{F}^{CP}

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Sintaxe do Cálculo proposiciona

Definição

Sejam $\psi \in \mathcal{F}^{\mathit{CP}}$ e $p_i \in \mathcal{V}^{\mathit{CP}}$. A função

$$\underline{-[\psi/\rho_i]}: \begin{array}{ccc} \mathcal{F}^{CP} & \to & \mathcal{F}^{CP} \\ \varphi & \mapsto & \varphi[\psi/\rho_i] \end{array}$$

onde $\varphi[\psi/p_i]$ é a fórmula obtida de φ pela substituição de todas as ocorrências de ρ_l por ψ , é definida por:

- - $\square \perp [\psi/\rho_i] = \bot;$
- $(\varphi_1 \square \varphi_2)[\psi/p_i] = (\varphi_1[\psi/p_i] \square \varphi_2[\psi/p_i]).$

dice Indução estrutural Cálculo Proposicion

Cálculo de Predicados de Pl

Sintaxe do Cálculo proposicional

Exemplo

Consideremos a fórmula $\psi=p_0\to p_2$. A substituição da variável p_1 por ψ na fórmula $\varphi=\neg p_2\wedge(p_1\vee\bot)$ é a fórmula

$$\varphi[\psi/\rho_{1}] = (\neg \rho_{2} \wedge (\rho_{1} \vee \bot))[\psi/\rho_{1}]$$

$$= (\neg \rho_{2})[\psi/\rho_{1}] \wedge (\rho_{1} \vee \bot)[\psi/\rho_{1}]$$

$$= \neg \rho_{2}[\psi/\rho_{1}] \wedge (\rho_{1}[\psi/\rho_{1}] \vee \bot[\psi/\rho_{1}])$$

$$= \neg \rho_{2} \wedge (\psi \vee \bot)$$

Exercício: Defina por recursão estrutural a função que a cada fórmula proposicional associa o conjunto das suas subfórmulas.

 $\neg p_2 \wedge \big((p_0 \to p_2) \vee \bot \big).$

M. Lurdes Teixeira Dep. Matemática Univ. Minho

ice Indução estrutural Cálculo Proposicional

Sintaxe do Cálculo proposicional

Exemplo

A cada fórmula $\psi \in \mathcal{F}^{CP}$ pode associar-se uma árvore $T(\psi)$, designada a árvore de parsing de ψ , do seguinte modo:

- ① para cada $p \in \mathcal{V}^{CP}$, $\mathcal{T}(p) = \bullet p$;

$$T(\varphi \Box \psi) =$$

- $oldsymbol{4}$ para qualquer $arphi\in\mathcal{F}^{CP},$
- $\mathcal{T}(\neg arphi) = (\varphi \cap \mathcal{T})$

1(\varphi)

Semântica do Cálculo proposicional

Valores lógicos

Definição

Os valores lógicos do Cálculo Proposicional são os símbolos:

- 1 (ou V, ou verdade);
- 0 (ou F, ou falsidade).

As proposições podem ser verdadeiras ou falsas. Ou seja, podemos atribuir a uma proposição o valor lógico 1 ou 0.

Quando se aplica a uma proposição φ o conetivo negação obtém-se a proposição $\neg \varphi$ de valor lógico oposto:

E o que acontece relativamente aos conetivos $\lor, \land, \rightarrow, \leftrightarrow$?

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Semântica do Cálculo proposicional

Valorações

Definição

Uma valoração é uma função $\nu:\mathcal{F}^{CP}\to\{0,1\}$ definida por recursão estrutural por: para quaisquer $\varphi,\psi\in\mathcal{F}^{CP}$,

- $(\bot, \bot) = 0;$

Sendo φ uma fórmula, $\nu(\varphi)$ é chamado o valor lógico de φ para a valoração ν .

Cálculo Prop

Semântica do Cálculo proposicional

Observação

Na definição anterior de valoração v, a condição 2, relativa ao conetivo ¬, pode ser representada pela seguinte tabela:

(つん)	0	-
v(♥)	-	0

As condições 3-6, relativas aos conetivos $\lor, \land, \to e \leftrightarrow$, respetivamente, poderiam ser representadas pela seguinte tabela:

 V (♥)	$\nu(\psi)$	$\nu(\varphi \lor \psi)$	$\nu(\varphi \wedge \psi)$	$ \mathbf{v}(\varphi \lor \psi) \mid \mathbf{v}(\varphi \land \psi) \mid \mathbf{v}(\varphi \to \psi) $	$\nu(\varphi \leftrightarrow \psi)$
 -	-	-	-	-	-
 -	0	-	0	0	0
 0	-	-	0	1	0
 0	0	0	0	-	_

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Cálculo Prop

Semântica do Cálculo proposicional

Proposição

Seja $g:\mathcal{V}^{\mathit{CP}}
ightarrow \{0,1\}$ uma função. Então, existe uma única valoração ν tal que $\nu(p_i)=g(p_i)$ para todo o $i\in\mathbb{N}_0$.

Demonstração Pelo Teorema de Recursão Estrutural, $\nu:\mathcal{F}^{\mathit{CP}} \to \{0,1\}$ é a única função tal que:

- lacktriangledown para cada $i \in \mathbb{N}_0$, $\nu(p_i) = g(p_i)$;
- $oldsymbol{Q} \;\;
 u(oldsymbol{\perp}) = 0$ por definição de valoração;

- $v(\varphi \lor \psi) = max\{v(\varphi), v(\psi)\};$
- $v(\varphi \land \psi) = min\{v(\varphi), v(\psi)\};$
- $v(\varphi \to \psi) = 0$ sse $v(\varphi) = 1$ e $v(\psi) = 0$;
- $v(\varphi \leftrightarrow \psi) = 1 \text{ sse } v(\varphi) = v(\psi).$

Proposição

Se Sejam ν_1 e ν_2 valorações e seja φ uma fórmula proposicional. $v_1(p_i) = v_2(p_i)$ para quaisquer $p_i \in var(\varphi)$, então $v_1(\varphi) = v_2(\varphi)$.

Demonstração Por indução estrutural em \mathcal{F}^{CP} .

Semântica do Cálculo proposicional

Exemplo

Seja ν a única valoração tal que $\nu(p_i) = \left\{ egin{array}{cc} 1 & ext{se i \'e par} \\ 0 & ext{se i \'e impar.} \end{array}
ight.$

Consideremos a fórmula $\psi = \neg p_4 \leftrightarrow (p_4 \lor p_1)$. Calculemos $\nu(\psi)$.

Tem-se

$$u(\psi) = \begin{cases}
1 & \text{se } v(\neg \rho_4) = v(\rho_4 \lor \rho_1) \\
0 & \text{caso contrário.}
\end{cases}$$

Ora,
$$\nu(\neg p_4) = 1 - \nu(p_4) = 1 - 1 = 0$$
, enquanto que

$$v(p_4 \lor p_1) = max\{v(p_4), v(p_1)\} = max\{1, 0\} = 1.$$

Assim, conclui-se que $\nu(\psi)=0$.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Semântica do Cálculo proposicional

Exemplo

Seja ν_1 a única valoração tal que $\nu_1(\rho_i)=1$ para todo o $i\in\mathbb{N}_0$. Determinemos o valor lógico da fórmula $\varphi=(\rho_3\wedge\bot)\to\neg\rho_3$ para a valoração ν_1 . Tem-se

$$u_1(\varphi) = \begin{cases}
0 & \text{se } u_1(p_3 \wedge \bot) = 1 \text{ e } u_1(\neg p_3) = 0 \\
1 & \text{caso contrário.}
\end{cases}$$

Assim,

$$v_1(\rho_3 \wedge \bot) = min\{v_1(\rho_3), v_1(\bot)\} = min\{1, 0\} = 0.$$

Logo,
$$v_1(\varphi) = 1$$
.

Considere uma valoração ν_2 tal que $\nu_2(p_i)=1$ se i<6 e $\nu_2(p_i)=0$ caso contrário.

Calcule $\nu_2(\varphi)$.

Semântica do Cálculo proposicional

Tautologias

Definição

Uma fórmula ⊊ diz-se uma

- tautologia se $\nu(\varphi) = 1$ para toda a valoração ν (em tal caso escreve-se $\models \varphi$);
- contradição se $\nu(\varphi)=0$ para toda a valoração ν .

Exemplo

A fórmula $\varphi=(\rho_3\wedge\perp)\to\neg\rho_3$ (do exemplo anterior) é uma tautologia. De facto, para qualquer valoração ν , tem-se $\nu(\rho_3\wedge\perp)=\min\{\nu(\rho_3),\nu(\perp)\}=\min\{\nu(\rho_3),0\}=0.$ Logo $\nu(\varphi)=1.$

Exercício: Mostre que $\neg(p_0 \land p_2) \rightarrow (p_0 \lor p_2)$ não é uma tautologia.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Semântica do Cálculo proposicional

Tabela de verdade de uma fórmula

Resulta da proposição anterior que o cálculo do valor lógico de uma dada fórmula φ , para as várias valorações possíveis, pode ser apresentado numa tabela, designada tabela de verdade. Tal tabela é formada por .

- lacktriangle uma coluna para cada uma das subfórmulas de φ ;
- uma linha para cada uma das combinações possíveis dos valores lógicos das variáveis proposicionais que ocorrem na fórmula φ .

Note-se que, dado que a cada variável proposicional se pode atribuir um de dois valores possíveis (1 ou 0), a tabela de verdade de uma fórmula com n variáveis tem 2^n linhas.

Semântica do Cálculo proposicional

Equivalência lógica

Definição

Uma fórmula $\varphi \in \mathcal{F}^{CP}$ diz-se logicamente equivalente a uma fórmula $\psi \in \mathcal{F}^{CP}$, e escreve-se $\varphi \Leftrightarrow \psi$, se $\varphi \leftrightarrow \psi$ é uma tautologia.

Exemplo

Tem-se $p_0 o p_2 \Leftrightarrow \neg p_2 o \neg p_0$ pois, como vimos $(p_0 o p_2) \Leftrightarrow (\neg p_2 o \neg p_0)$

é uma tautologia. Mais geralmente,

para quaisquer φ , $\psi \in \mathcal{F}^{CP}$.

Observação

Esta equivalência lógica fundamenta as "demonstrações por contrarrecíproco (ou contraposição)" . Ou seja, provar uma proposição do tipo "se φ , então ψ " é o mesmo que provar que "se $\neg \psi$, então $\neg \varphi$ ".

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Exemplo

Para toda a fórmula $\varphi \in \mathcal{F}^{\mathit{CP}},$

De facto, consideremos a fórmula $\psi=\bot\leftrightarrow(\varphi\wedge\neg\varphi)$. A tabela de verdade de ψ (simplificada, pois faltam as colunas relativas às subfórmulas de φ) é

$(\mathcal{S} \vdash \vee \mathcal{S}) \Leftrightarrow \top$	-	-
€ > 1€	0	0
<u>ئ</u>	0	-
P	-	0
4	0	0

donde se pode concluir que ψ é uma tautologia.

Lema

Em $\mathcal{F}^{\mathit{CP}}$, a relação de equivalência lógica é uma relação de equivalência.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

LÓGICA

Cálculo de Predicados Cálculo Prop

Semântica do Cálculo proposicional

Teorema

Para quaisquer $\varphi, \psi, \sigma \in \mathcal{F}^{\mathit{CP}}$, são válidas as seguintes equivalências lógicas:

- (i) $(\varphi \lor \psi) \lor \sigma \Leftrightarrow \varphi \lor (\psi \lor \sigma)$,
- $(\varphi \wedge \psi) \wedge \sigma \Leftrightarrow \varphi \wedge (\psi \wedge \sigma), \dots (associatividade)$
- (ii) $\varphi \lor \psi \Leftrightarrow \psi \lor \varphi$, $\varphi \land \psi \Leftrightarrow \psi \land \varphi$,....(comutatividade)
- (iii) $\varphi \lor \varphi \Leftrightarrow \varphi$, $\varphi \land \varphi \Leftrightarrow \varphi$,(idempotência)
- (iv) $\varphi \lor \bot \Leftrightarrow \varphi$, $\varphi \land \neg\bot \Leftrightarrow \varphi$,....(elemento neutro)
- $\varphi \wedge (\psi \vee \sigma) \Leftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \sigma), \dots$ (distributividade) (v) $\varphi \lor (\psi \land \sigma) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \sigma)$,

(vi) $\neg(\varphi \lor \psi) \Leftrightarrow (\neg \varphi \land \neg \psi), \neg(\varphi \land \psi) \Leftrightarrow (\neg \varphi \lor \neg \psi), \dots$ (leis de De Morgan)

(Vii) $\neg \neg \varphi \Leftrightarrow \varphi$,(lei da dupla negação)

LÓGICA M. Lurdes Teixeira Dep. Matemática Univ. Minho

Cálculo Proposicional Cálculo de Predicados ocococococococo o úsiculo de Predicados Semântica do Cálculo proposicional

Dado que a disjunção e a conjunção são associativas, utilizaremos as notações

 $\varphi_1 \vee \ldots \vee \varphi_n \quad \mathbf{e} \quad \varphi_1 \wedge \ldots \wedge \varphi_n,$

respetivamente, da disjunção e da conjunção às fórmulas $\varphi_1, \varphi_2 \dots, \varphi_n$, onde $n \in \mathbb{N}$, para representar o resultado de aplicações sucessivas, independentemente da forma como elas são agrupadas.

Índice Indução estrutural **Cálculo Proposicional**

Semântica do Cálculo proposicional

O resultado seguinte mostra que uma implicação ou uma equivalência é logicamente equivalente a uma disjunção ou a uma conjunção e vice-versa. Informalmente, diríamos que "se podem definir alguns conetivos à custa de outros".

Teorema

Sejam $\varphi,\ \psi\in\mathcal{F}^{\mathit{CP}}.$ Então,

(i)
$$\varphi \Leftrightarrow \psi \Leftrightarrow (\varphi \to \psi) \land (\psi \to \varphi)$$
, (ii) $\varphi \to \psi \Leftrightarrow \neg \varphi \lor \psi$,

(iii)
$$\varphi \lor \psi \Leftrightarrow \neg (\neg \varphi \land \neg \psi)$$
,

(iv)
$$\varphi \wedge \psi \Leftrightarrow \neg (\neg \varphi \vee \neg \psi)$$
,

$$(\mathsf{v}) \ \neg \varphi \Leftrightarrow \varphi \to \bot,$$

(vi)
$$\bot \Leftrightarrow \varphi \land \neg \varphi$$
.

Resulta daqui que é possível retirar alguns dos conetivos de $\mathcal{A}^{\mathit{CP}}$ e obter

uma linguagem com a mesma capacidade expressiva.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Semântica do Cálculo proposicional

Substituição de variáveis por fórmulas

Teorema (Generalização)

Sejam $\varphi,\psi\in\mathcal{F}^{CP}$ e $p_i\in\mathcal{V}^{CP}$. Se φ é uma tautologia, então $\varphi[\psi/p_i]$ também é uma tautologia.

Demonstração

Dada uma valoração v qualquer, seja v' a valoração definida por:

$$v'(p_n) = \left\{ egin{array}{ll} v(\psi) \ ext{se} \ p_n = p_i, \ v(p_n) \ ext{se} \ p_n
eq p_i, \end{array}
ight. \qquad (n \in \mathbb{N}_0).$$

Prova-se que $v'(\varphi) = v(\varphi[\psi/p_i])$ (fazer como exercício).

Logo, se φ é uma tautologia, então $v'(\varphi)=1$ e, consequentemente, $v(\varphi[\psi/\rho])=1$.

Assim, conclui-se que qualquer que seja a valoração ν , $\nu(\varphi[\psi/p_i])=1$, ou seja, concluise que $\varphi[\psi/p_i]$ é uma tautologia.

Semântica do Cálculo proposicional

Teorema (Substituição)

Sejam $\psi_1, \psi_2 \in \mathcal{F}^{CP}$ e seja $p_i \in \mathcal{V}^{CP}$. Então

$$\psi_1 \Leftrightarrow \psi_2$$
 sse $\varphi[\psi_1/p_i] \Leftrightarrow \varphi[\psi_2/p_i]$, para todo $\varphi \in \mathcal{F}^{CP}$

Demonstração

I) Suponhamos que $\psi_1 \Leftrightarrow \psi_2$. Sendo $\varphi \in \mathcal{F}^{CP}$, considere-se $P(\varphi)$ a afirmação

$$\varphi[\psi_1/p_i] \Leftrightarrow \varphi[\psi_2/p_i]$$

Vamos fazer a demonstração de $P(\varphi)$, para qualquer $\varphi\in \mathcal{F}^{CP}$, usando o Princípio de Indução Estrutural em \mathcal{F}^{CP} .

- P(p_i) é verdadeira porque:
- (i) se j=i, então $p_j[\psi_1/p_j]=\psi_1$ e $p_j[\psi_2/p_i]=\psi_2$, e por hipótese $\psi_1\Leftrightarrow\psi_2;$ (ii) se $j\neq i$, então $p_j[\psi_1/p_i]=p_j=p_j[\psi_2/p_i].$
- $P(\perp)$ é verdadeira pois $\perp [\psi_1/p_i] = \perp = \perp [\psi_2/p_i]$.
- Seja $\varphi \in \mathcal{F}^{CP}$ em que, por h.i., $\varphi[\psi_1/p_i] \Leftrightarrow \varphi[\psi_2/p_i]$. Queremos provar $P(\neg \varphi)$. Para qualquer ν valoração ν verifica-se

$$\begin{split} v((\neg\varphi)[\psi_1/p_i]) &= v(\neg\varphi[\psi_1/p_i]) = 1 - v(\varphi[\psi_1/p_i]) \\ &\stackrel{h_i.}{=} 1 - v(\varphi[\psi_2/p_i]) = v(\neg\varphi[\psi_2/p_i]) = v((\neg\varphi)[\psi_1/p_i]) \end{split}$$

M. Lurdes Teixeira Dep, Matemática Univ. Minho

Teorema (Substituição)

Sejam $\psi_1,\psi_2\in\mathcal{F}^{CP}$ e seja $p_i\in\mathcal{V}^{CP}.$ Então

$$\psi_1 \Leftrightarrow \psi_2$$
 sse $\varphi[\psi_1/p_i] \Leftrightarrow \varphi[\psi_2/p_i]$, para todo $\varphi \in \mathcal{F}^{CP}$

Demonstração(continuação)

- Seja $\square \in \{\lor, \land, \rightarrow, \leftrightarrow\}$.
- Sejam $\psi, \sigma \in \mathcal{F}^{CP}$ e $\varphi = \psi \Box \sigma$. Por h.i., suponhamos que $P(\psi)$ e $P(\sigma)$, ou seja,

$$\varphi[\psi_1/p_i] \Leftrightarrow \varphi[\psi_2/p_i]$$
 e $\sigma[\psi_1/p_i] \Leftrightarrow \sigma[\psi_2/p_i]$.

Pretende-se provar que $P(\varphi \Box \sigma)$ (fazer como exercício).

II) Reciprocamente, suponhamos que $\varphi[\psi_1/p_i] \Leftrightarrow \varphi[\psi_2/p_i]$ para todo $\varphi \in \mathcal{F}^{CP}$. Então, em particular, para $\varphi = p_i$, $p_i[\psi_1/p_i] \Leftrightarrow p_i[\psi_2/p_i]$, ou seja, $\psi_1 \Leftrightarrow \psi_2$.

Com base no Teorema da Substituição podemos concluir que "numa fórmula proposicional, se substituir uma subfórmula por uma fórmula equivalente, o resultado global que se obtém é uma fórmula proposicional equivalente à inicial".

Cálculo de Predicados Cálculo Prop

Semântica do Cálculo proposicional

Exemplo

Sejam $arphi,\ \psi\in\mathcal{F}^{\mathit{CP}}$. Então,

$$\neg(\varphi \to \psi) \Leftrightarrow \neg(\neg \varphi \lor \psi) \quad \text{pois } \varphi \to \psi \Leftrightarrow \neg \varphi \lor \psi \text{ e portanto}$$
 pelo Teorema da Substituição

$$(\neg p_i)[\varphi \to \psi/p_i] \Leftrightarrow (\neg p_i)[\varphi \lor \psi/p_i]$$

$$\Leftrightarrow \neg \neg \varphi \land \neg \psi$$
 por uma das leis de De Morgan

\$

pela lei da dupla negação, $\neg\neg\varphi \Leftrightarrow \varphi$.

LÓGICA M. Lurdes Teixeira Dep. Matemática Univ. Minho

Cálculo Propos

Semântica do Cálculo proposicional

Conjunto completo de conetivos

tivos do alfabeto do Cálculo Proposicional, no sentido em que qualquer Usando o Teorema da Substituição e as equivalências lógicas já referidas atrás, é possível usar apenas um subconjunto do conjunto dos conefórmula do Cálculo Proposicionalé logicamente equivalente a outra em que apenas ocorrem conetivos desse subconjunto.

Definição

para cada $\varphi \in \mathcal{F}^{\mathit{CP}}$ existe $\psi \in \mathcal{F}^{\mathit{CP}}$ tal que $\varphi \Leftrightarrow \psi$ e todos os conetivos que ocorrem em ψ pertencem a A. Um conjunto A de conetivos diz-se completo se

Quais são os conjuntos completos minimais?

Teorema

Os seguintes conjuntos de conetivos são completos:

$$\{\neg, \lor\}, \{\neg, \land\}, \{\neg, \rightarrow\} \mathbf{e} \{\bot, \rightarrow\}.$$

Semântica do Cálculo proposicional

{¬, ∨} é completo

Demonstração

Seja $f:\mathcal{F}^{CP}\longrightarrow\mathcal{F}^{CP}$ a única função tal que:

- ① para cada $p \in \mathcal{V}^{CP}$, f(p) = p;
 - $(\bot) = \neg (p_0 \lor \neg p_0);$
- (b) $f(\varphi \lor \psi) = f(\varphi) \lor f(\psi)$,
- (c) $f(\varphi \wedge \psi) = \neg(\neg f(\varphi) \vee \neg f(\psi))$, (d) $f(\varphi \to \psi) = \neg f(\varphi) \vee f(\psi)$, (a) $f(\neg \varphi) = \neg f(\varphi)$,
- (e) $f(\varphi \leftrightarrow \psi) = \neg(\neg(\neg f(\varphi) \lor f(\psi)) \lor \neg(\neg f(\psi) \lor f(\varphi))).$

A demonstração conclui-se com a prova de que para qualquer $\varphi \in \mathcal{F}^{CP},$

- $\varphi \Leftrightarrow f(\varphi);$
- todos os conetivos que ocorrem em $f(\varphi)$ pertencem a $\{\neg, \lor\}$.

(Sugestão: provar estas duas propriedades para todo o $\varphi\in\mathcal{F}^{CP}$ usando indução estrutural em \mathcal{F}^{CP} .)

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Semântica do Cálculo proposicional

Exemplo

Consideremos a fórmula $\varphi = (\neg p_1 \land p_2) \to \bot$. Da demonstração do teorema anterior deduz-se que φ é logicamente equivalente à fórmula

$$f(\varphi) = \neg f(\neg \rho_1 \land \rho_2) \lor f(\bot)$$

$$= \neg \neg (\neg f(\neg \rho_1) \lor \neg f(\rho_2)) \lor \neg (\rho_0 \lor \neg \rho_0)$$

$$= \neg \neg (\neg \neg f(\rho_1) \lor \neg \rho_2) \lor \neg (\rho_0 \lor \neg \rho_0)$$

$$= \neg \neg (\neg \neg \rho_1 \lor \neg \rho_2) \lor \neg (\rho_0 \lor \neg \rho_0)$$

Alternativamente, pelo Teorema da Substituição, deduz-se que:

$$\varphi \Leftrightarrow \neg(\neg p_1 \land p_2) \lor \bot$$

$$\Leftrightarrow (\neg \neg p_1 \lor \neg p_2) \lor \neg(p_0 \lor \neg p_0)$$

$$\Leftrightarrow p_1 \lor \neg p_2 \lor \neg(p_0 \lor \neg p_0)$$

Dado que ⇔ é uma relação transitiva, são lógicamente equivalentes duas a duas as fórmulas:

$$\varphi$$
, $p_1 \lor \neg p_2 \lor \neg (p_0 \lor \neg p_0)$ e $\neg \neg (\neg \neg p_1 \lor \neg p_2) \lor \neg (p_0 \lor \neg p_0)$.

Semântica do Cálculo proposicional

Formas normais

Definição

- ◆ As variáveis proposicionais, p_i, e as negações de variáveis proposicionais, ¬p_i, são chamadas (fórmulas) literais.
- Fórmulas do tipo
- i) $(\ell_{11} \vee \cdots \vee \ell_{1m_1}) \wedge \cdots \wedge (\ell_{n1} \vee \cdots \vee \ell_{nm_n})$
- ii) $(\ell_{11} \wedge \cdots \wedge \ell_{1m_1}) \vee \cdots \vee (\ell_{n_1} \wedge \cdots \wedge \ell_{nm_n})$

onde os ℓ_{ij} são literais e $n, m_1, \ldots, m_n \in \mathbb{N}$, são chamadas, respetivamente, formas normais conjuntivas (FNC) e formas normais disjuntivas (FND).

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Semântica do Cálculo proposicional

Exemplos

- ① Um literal ℓ é simultaneamente uma FNC e uma FND com $n=m_n=1$, em ambos os casos.
- **2** A fórmula $\neg p_0 \land p_5 \land \neg p_5$ é simultaneamente uma
- FNC $(n=3, m_1=m_2=m_3=1, \ell_{11}=\neg \rho_0, \ell_{21}=\rho_5$ e $\ell_{31}=\neg \rho_5)$
 - $\ell_{31} = \neg p_5$ FND $(n = 1, m_1 = 3, \ell_{11} = \neg p_0, \ell_{12} = p_5 e \ell_{13} = \neg p_5)$.
- **3** A fórmula $p_0 \lor \neg p_2$ é também uma FNC e uma FND.

Em geral, literais, conjunções de literais e disjunções de literais são, em simultâneo, formas normais conjuntivas e disjuntivas.

- A fórmula $(\neg p_3 \lor p_2) \land (p_3 \lor p_2)$ é uma FNC, mas não é uma FND.
- **⑤** A fórmula $\neg (p_2 \land p_1 \land p_0) \lor \neg p_1$ não é uma FNC nem uma FND.

Cálculo de Predicados

Semântica do Cálculo proposicional

orema

Para cada fórmula $\varphi\in\mathcal{F}^{CP}$, existem uma forma normal conjuntiva φ^c e uma forma normal disjuntiva φ^d tais que $\varphi\Leftrightarrow\varphi^c$ e $\varphi\Leftrightarrow\varphi^d$.

Demonstração

FNC's e FND's logicamente equivalentes a φ podem ser obtidas através das seguintes transformações:

 $\boxed{ \textbf{0} } \text{ Eliminar as ocorrências dos conetivos} \leftrightarrow, \rightarrow e \perp, \text{ utilizando as equivalências}$

$$\begin{array}{ccc} \varphi_1 \leftrightarrow \varphi_2 & \Leftrightarrow & (\varphi_1 \to \varphi_2) \wedge (\varphi_2 \to \varphi_1), \\ \varphi_1 \to \varphi_2 & \Leftrightarrow & \neg \varphi_1 \vee \varphi_2, \\ \bot & \Leftrightarrow & p_0 \wedge \neg p_0. \end{array}$$

- 2 Transformar negações de conjunções ou de disjunções, respetivamente, em disjunções ou conjunções de negações, utilizando as leis de De Morgan.
- Eliminar duplas negações.
- Aplicar a distributividade entre a conjunção e a disjunção.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Semântica do Cálculo proposicional

Exemplo

Consideremos $\varphi=p_2\vee(\bot\to(p_1\wedge\neg p_0))$. Pretende-se calcular uma FND e uma FNC logicamente equivalentes a φ .

$$\varphi \Leftrightarrow p_2 \vee (\neg \bot \vee (p_1 \wedge \neg p_0))$$

$$\Leftrightarrow p_2 \vee \neg (p_0 \wedge \neg p_0) \vee (p_1 \wedge \neg p_0)$$

$$\Leftrightarrow p_2 \vee \neg p_0 \vee \neg \neg p_0 \vee (p_1 \wedge \neg p_0)$$

$$\Leftrightarrow p_2 \vee \neg p_0 \vee p_0 \vee (p_1 \wedge \neg p_0).$$

Logo, $\varphi^d=\rho_2\vee\neg\rho_0\vee\rho_0\vee(\rho_1\wedge\neg\rho_0)$ é uma FND logicamente equivalente a φ .

$$\varphi \Leftrightarrow p_2 \lor \neg p_0 \lor p_0 \lor (p_1 \land \neg p_0)$$

$$\Leftrightarrow (p_2 \lor \neg p_0 \lor p_0 \lor p_1) \land (p_2 \lor \neg p_0 \lor p_0 \lor \neg p_0)$$

$$\Leftrightarrow (p_2 \lor \neg p_0 \lor p_0 \lor p_1) \land (p_2 \lor \neg p_0 \lor p_0).$$

Assim, $\varphi^c = (p_2 \lor \neg p_0 \lor p_0 \lor p_1) \land (p_2 \lor \neg p_0 \lor p_0)$ é uma FNC logicamente equivalente a φ .

Calculo de Predicados Cálculo Prop

Semântica do Cálculo proposicional

Exemplo

Consideremos a fórmula $\varphi = ((p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)) \land p_2$. A tabela de verdade de φ é

	Ш	$\beta_2 = p_1 \wedge p_2 \wedge \neg p_3$				$\beta_6 = \neg p_1 \land p_2 \land \neg p_3$		
e	-	-	0	0	0	-	0	0
:	:	:	:	:	:	:	:	:
ا م ر	0	0	0	0	-	-	-	-
\neg	0	0	0	0	0	0	0	0
ಹ	-	0	-	0	_	0	-	0
<i>p</i> ₂	1	-	0	0	-	-	0	0
ď	-	-	_	_	0	0	0	0
	<i>i</i> = 1 →	$i=2 \rightarrow$				<i>i</i> = 6 →		

Uma FND logicamente equivalente a φ é

$$\varphi^d = (p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3).$$

Exercício: Recorrendo à tabela de verdade de arphi e determine uma FNC, $arphi^c$, logicamente equivalente a φ .

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Calculo de Predicados Cálculo Prop

Semântica do Cálculo proposicional

Em geral, para cada fórmula φ , podemos obter uma FND, φ^d , tal que $\varphi \Leftrightarrow \varphi^d$, a partir da tabela de verdade de φ , aplicando os passos seguintes.

- Se φ é uma contradição, escolhe-se $\varphi^d=p_0\wedge\neg p_0$.
- Caso contrário, suponhamos que $var(\varphi) = \{p_1, p_2, ..., p_n\}$ e que a tabela de verdade de φ é:

Para cada linha *i* da tabela tal que $b_i = 1$, e cada $j \in \{1, ..., n\}$, definem-se

$$\alpha_{ij} = \left\{ \begin{array}{ll} \rho_i & \text{se } a_{ij} = 1 \\ \neg \rho_j & \text{se } a_{ij} = 0 \end{array} \right. \quad \text{e} \qquad \beta_i = \alpha_{i1} \wedge \alpha_{i2} \wedge \cdots \wedge \alpha_{in}.$$

Então, sendo $b_i = 1$ sse $i \in \{i_1, i_2, \dots, i_k\}$,

$$\varphi^{\mathbf{d}} = \beta_{i_1} \vee \beta_{i_2} \vee \cdots \beta_{i_k}.$$

Cálculo Proposicional Indução estrutural

Semântica do Cálculo proposicional

Satisfação de fórmulas

Definição

Se u é uma valoração e $\Gamma \subseteq \mathcal{F}^{CP}$, diz-se que:

- ν satisfaz Γ se $\nu(\varphi)=1$ para toda a fórmula $\varphi\in\Gamma$. Em tal caso escreve-se $\nu \models \Gamma$.
- ν não satisfaz Γ se existe $\varphi \in \Gamma$ tal que $\nu(\varphi) = 0$. Em tal caso escreve-se $\nu \not\models \Gamma$.

Exemplos

- $\Gamma_1 = \{ p_0 \land \neg p_2, p_2 \to p_0, \bot \lor p_0 \} \ \ \mathbf{e} \ \ \Gamma_2 = \{ p_0 \to p_2, \bot \lor p_0 \}.$ $oldsymbol{0}$ Sejam u uma valoração tal que $u(
 ho_0)=1$ e $u(
 ho_2)=0$,
- $\nu \models \Gamma_1 \text{ pois } \nu(p_0 \land \neg p_2) = \nu(p_2 \to p_0) = \nu(\bot \lor p_0) = 1.$ $\nu \not\models \Gamma_2 \text{ já que } \nu(p_0 \to p_2) = 0.$
- 2 $\nu \models \emptyset$ para toda a valoração ν .

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Calculo de Predicados Cálculo Proposicional Indução estrutural

Semântica do Cálculo proposicional

Consistência semântica

Definição

Um conjunto \(\text{de f\(\text{formulas diz-se:} \)

- (semanticamente) consistente se existe pelo menos uma valoração ν tal que $\nu \models \Gamma$.
- (semanticamente) inconsistente se não é consistente, i.e., se $\nu \not\models \Gamma$ para toda a valoração ν .

Exemplos

- 1) O conjunto $\Gamma_1 = \{p_0 \land \neg p_2, p_2 \rightarrow p_0, \bot \lor p_0\}$ é consistente.
- satisfeito por qualquer valoração ν tal que $\nu(p_0) = 1$ e $\nu(p_2) = 1$. 2) O conjunto $\Gamma_2 = \{p_0 \rightarrow p_2, \bot \lor p_0\}$ é consistente já que Γ_2 é
- qualquer valoração ν , se $\nu(p_4 \to \bot) = 1$, então $\nu(p_4) = 0$, don-3) O conjunto $\Gamma_3 = \{p_4 \rightarrow \bot, p_4 \land p_0\}$ é inconsistente, pois, para de $\nu(p_4 \wedge p_0) = 0$. Assim, $\nu \not\models \Gamma_3$ para qualquer valoração ν .

M. Lurdes Teixeira Dep. Matemática Univ. Minho

LÓGICA

Cálculo de Predicados Indução estrutural Cálculo Proposicional

Semântica do Cálculo proposicional

Sejam Γ, $\Delta \subseteq \mathcal{F}^{\mathit{CP}}$ tais que Γ $\subseteq \Delta$.

- Se ∆ é consistente, então Γ é consistente.
- ii) Se Γ é inconsistente, então Δ é inconsistente.

Demonstração É uma consequência imediata da definição de consistência semântica.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Indução estrutural Cálculo Proposicional

Semântica do Cálculo proposicional

Consequência semântica

Definição

Sejam $arphi \in \mathcal{F}^{\mathit{CP}}$ e $\Gamma \subseteq \mathcal{F}^{\mathit{CP}}$. Diz-se que arphi é uma consequência semântica de Γ (ou que Γ é um modelo de φ), se $\nu \models \Gamma$ implica $v \models \varphi$ para toda a valoração v. Em tal caso, escreve-se $\Gamma \models \varphi$,

Notação

Sendo $arphi,arphi_1,\ldots,arphi_n\in \mathcal{F}^{\mathcal{CP}}$ e Γ, $\Delta\subseteq \mathcal{F}^{\mathcal{CP}}$, por simplificação, escreveremos em geral

- i) $\varphi_1, \ldots, \varphi_n \models \varphi$ em vez de $\{\varphi_1, \ldots, \varphi_n\} \models \varphi$;
- ii) $\Gamma, \varphi_1, \dots, \varphi_n \models \varphi$ em vez de $\Gamma \cup \{\varphi_1, \dots, \varphi_n\} \models \varphi$;
- iii) $\Gamma, \Delta \models \varphi$ em vez de $\Gamma \cup \Delta \models \varphi$.

Indução estrutural Cálculo Proposicional

Semântica do Cálculo proposicional

Exemplos

Sejam $\varphi,\ \psi\in\mathcal{F}^{\mathit{CP}}.$

1) $\varphi, \psi \models \varphi \wedge \psi$.

De facto, se $\nu(\varphi)=\nu(\psi)=1$, então $\nu(\varphi\wedge\psi)=1$ para cada valoração v.

2) $\varphi, \varphi \to \psi \models \psi$.

Notar que, se $\nu(\varphi) = \nu(\varphi \to \psi) = 1$, então $\nu(\psi) = 1$ para qualquer valoração v.

 $\varphi \to \psi, \neg \psi \models \neg \varphi.$ 3

(Escrever a justificação como exercício.)

4) $\emptyset \models \varphi \lor \neg \varphi$

(Escrever a justificação como exercício.)

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Cálculo Proposicional Semântica do Cálculo proposicional Indução estrutural

Teorema

 $0 \models \varphi$ se e só se Seja $\varphi \in \mathcal{F}^{CP}$. Então, $\models \varphi$

Demonstração

- ' \Longrightarrow " Se φ é uma tautologia, então $\nu(\varphi)=1$ para toda a valoração ν , e, em particular, $\nu(\varphi)=1$ para toda a valoração ν que satisfaz \emptyset . Ou seja, $\emptyset\models\varphi$.
- " \Longleftrightarrow " Se $\emptyset \models \varphi$, então $\nu(\varphi)=$ 1 para toda a valoração ν que satisfaz \emptyset . Mas toda a valoração satisfaz o conjunto vazio. Logo, $\nu(\varphi)=$ 1 para toda a valoração ν , ou seja, arphi é uma tautologia.

Semântica do Cálculo proposicional

eorema

Sejam $\varphi,\ \psi\in\mathcal{F}^{\mathit{CP}}$ e $\Gamma,\ \Delta\subseteq\mathcal{F}^{\mathit{CP}}$.

- (i) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$.
- (ii) Se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$.
- (iii) Se $\Gamma \models \varphi$ e $\Delta, \varphi \models \psi$, então $\Gamma, \Delta \models \psi$.
- (iv) $\Gamma \models \varphi \to \psi$ se e só se $\Gamma, \varphi \models \psi$. Em particular, $\emptyset \models \varphi \to \psi$ se e só se $\varphi \models \psi$.
- (v) Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$.

Demonstração

- i) Consideremos $\varphi\in\Gamma$. Seja ν uma valoração e suponhamos que $\nu\models\Gamma$. Então, $\nu(\sigma)=1$ para toda a fórmula $\sigma\in\Gamma$. Em particular, dado que $\varphi\in\Gamma$, tem-se $\nu(\varphi)=1$. Portanto $\Gamma\models\varphi$.
- ii)-v) Fazer como exercício.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Proposição

Sejam $\varphi, \varphi_1, \dots, \varphi_n \in \mathcal{F}^{CP}$. As seguintes afirmações são equivalantes:

- (i) $\varphi_1,\ldots,\varphi_n\models\varphi$;
- (ii) $\varphi_1 \wedge \cdots \wedge \varphi_n \models \varphi$;
- (iii) $\models (\varphi_1 \land \cdots \land \varphi_n) \rightarrow \varphi$.

Demonstração

A equivalência entre (i) e (ii) pode ser demonstrada por indução matemática sobre n (exercício).

A equivalência entre (ii) e (iii) é um caso particular da alínea iv) do teorema anterior.

Semântica do Cálculo proposicional

Teorema (Redução ao Absurdo)

Sejam $arphi \in \mathcal{F}^{\mathit{CP}}$ e $\Gamma \subseteq \mathcal{F}^{\mathit{CP}}$. Então,

 $\Gamma \models \varphi$ se e só se $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.

Demonstração

- " \Longrightarrow " Por hipótese $\Gamma \models \varphi$. Se ν é uma valoração tal que $\nu \models \Gamma$, então, $\nu(\varphi) = 1$, ou seja, $\nu(\neg \varphi) = 0$. Logo, não existe uma valoração ν tal que $\nu \models \Gamma \cup \{\neg \varphi\}$, pelo que $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.
- " \Longleftarrow " Se $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente e se ν é uma valoração que satisfaz Γ , então $\nu(\neg \varphi)=0$. Em tal caso, $\nu(\varphi)=1$.