9 – High-Level Synthesis:Resource Sharing and Binding

ECE 474A/574A COMPUTER-AIDED LOGIC DESIGN

Sharing vs. Binding

Resource Sharing

- Assignment of a resource to more than one operation
- Goal reduce area by allowing multiple non-concurrent operations to share the same hardware operator

Resource Binding

Explicit mapping between operations and resources

Resource Sharing

We have 3 add operations and 2 adder units

Resource Binding

- Add op1 and op2 executes on adder unit 1
- Add op3 executes on adder unit2

Resource Binding

- Resource binding can be applied to scheduled or non-scheduled sequencing graphs
 - Scheduled sequencing graphs provides limitation on possible sharing

Requires 4 adders to meet the time constraint (upper bound = 1)

Requires 2 adders to meet the time constraint (upper bound = 2)

Resource Binding

- Resource binding can be applied to scheduled or non-scheduled sequencing graphs
 - Scheduled sequencing graphs provides limitation on possible sharing
 - Non-scheduled sequencing graphs, the limitation of resource sharing affects the latency by limiting the concurrency of operations (LIST_L scheduling)

At most 1 add operation can be executed in a time slice, latency = 4

At most 2 add operations can be executed in a time slice, latency = 2

Sharing and Binding for Resource Dominated Circuits

- We are interested in the set of vertices of the sequencing graph (omit source/sink nodes)
- How much sharing is possible?
- Two or more operations can be bound to the same resource if they are compatible
 - Not concurrent
 - Can be implemented with the same resource type

v1 and v3 are not concurrent

v7 and v10 are not concurrent

Two operations are NOT concurrent if

- Either one starts after the other has finished
- Alternative choices (mutually exclusive) of a branching decision

Resource Compatibility Graph

 Graph whose set of vertices is a one-to-one correspondence with operations in the sequencing graph and whose edges denotes the compatible operations pairs

- **3, 1** Same op, 3 starts after 1
- 3, 2 Same op, 3 starts after 2
- **3**, **4** Different ops
- **3, 5** Different ops
- 3, 6 Same op, BUT neither starts after the other and not alternative choices of branch1
- 3, 7 Same op, 3 starts in Time 2 and 7 starts in Time 3
- 3, 8 Same op, 3 starts in Time 2 and 8 starts in Time 3
- **3**, **9** Different ops
- 3, 10 Different ops

3, **11** – Different ops

Repeat for each node

Compatibility Graph Shows Resource Sharing

- As many disjoint (no common elements) components as resource types
 - A multiply operations is not compatible with an add operation
- Clique group of mutually compatible operations correspond to subset of vertices that are mutually connected
 - Each vertex connected to every other vertices
- Maximal set of mutually compatible operations are represented by maximal clique

- The optimum resource sharing is one that minimizes the number of required resource instances
 - Resource instance relates to cliques
 - Partitioning graph into minimum number of cliques yields optimal sharing

Maximize size of cliques, must ensure all vertices included

{1, 3, 7} {2, 6, 8} {1, 8} {4, 5, 10, 11} {9}

Resources = # cliques

We need 2 adders, 2 multipliers

```
CLIQUE_PARTITION( G(v, e) ){
     П = Ф
                                                 // initial set of partitions to empty
     while (G(v,e) not empty ) do{
                                                // while the graph is not empty, keep iterating
          C = MAX\_CLIQUE(G(v,e))
                                                 // compute a maximal clique in graph
          \Pi = \Pi \cup C
                                                 // add max clique to set of partitions
          delete C from G(v,e)
                                                // remove max clique from graph
MAX_CLIQUE( G(v, e) ){
     C = vertex with largest degree
     repeat {
          repeat {
               U = { v ∈ V : v ∉ C and adjacent to all vertices of C}
                                                 // no such vertices exist
               if (U \neq \Phi)
                    return C
               else{
                                                 // pick one
                    select v E U
                    C = C U v
                                                 // add to clique
```

Example 1

 $\Pi = \Phi$

// set of partitions is initially empty

Is G empty? No.

Find max clique

C = 1 // vertex with largest degree, anything with 4 will do

 $U = \{3, 7, 6, 8\}$ // these vertices are connected to 1

V = 3

 $C = \{1\} \cup \{3\} = \{1, 3\}$

 $U = \{7, 8\}$ // these vertices are connected to 1 and 3

 $C = \{1, 3\} \cup \{7\} = \{1, 3, 7\}$

 $U = \{ \Phi \}$ // no others vertices connect to 1, 3, and 7

Return {1, 3, 7}

 $\Pi = \{1, 3, 7\}$

Remove {1, 3, 7} from G

Vertices	Degree
1	4
2	4
3	4
4	4
5	3
6	4
7	4
8	4
9	3
10	4
11	4

Example 1

 $\Pi = \{1, 3, 7\}$

Is G empty? No.

Find max clique

C = 4 // vertex with largest degree, anything with 4 will do

 $U = \{5, 9, 10, 11\}$ // these vertices are connected to 4

V = 5

 $C = \{4\} \cup \{5\} = \{4, 5\}$

 $U = \{10, 11\}$ // these vertices are connected to 4 and 5

 $C = \{4, 5\} \cup \{10\} = \{4, 5, 10\}$

 $U = \{11\}$ // these vertices are connected to 4, 5, and 10

 $C = \{4, 5, 10\} \cup \{11\} = \{4, 5, 10, 11\}$

 $U = \{ \Phi \}$ // no others vertices connect to 4, 5, 10, and 11

Return {4, 5, 10, 11}

 $\Pi = \{1, 3, 7\}, \{4, 5, 10, 11\}$

Remove {4, 5, 10, 11} from G

Vertices	Degree
2	2
4	4
5	3
6	2
8	2
9	3
10	4
11	4

Example 1

 $\Pi = \{1, 3, 7\}, \{4, 5, 10, 11\}$

Is G empty? No.

Find max clique

C = 2 // vertex with largest degree, anything with 2 will do

 $U = \{6, 8\}$ // these vertices are connected to 2

V = 6

 $C = \{2\} \cup \{6\} = \{2, 6\}$

 $U = \{8\}$ // these vertices are connected to 2 and 6

 $C = \{2, 6\} \cup \{8\} = \{2, 6, 8\}$

 $U = \{ \Phi \}$ // no others vertices connect to 2, 6, and 8

Return {2, 6, 8}

 $\Pi = \{1, 3, 7\}, \{4, 5, 10, 11\}, \{2, 6, 8\}$

Remove {2, 6, 8} from G

Vertices	Degree
2	2
6	2
8	2
9	0

Example 1

$$\Pi = \{1, 3, 7\}, \{4, 5, 10, 11\}, \{2, 6, 8\}$$

9

Is G empty? No.

Find max clique

$$C = 9$$

$$U = \{9\}$$

 $U = \{ \Phi \}$ // no others vertices connect to 9

Return {9}

$$\Pi = \{1, 3, 7\}, \{4, 5, 10, 11\}, \{2, 6, 8\}, \{9\}$$

Remove {9} from G

Vertices	Degree
9	0

Example 1

13

$$\Pi = \{1, 3, 7\}, \{4, 5, 10, 11\}, \{2, 6, 8\}, \{9\}$$

Is G empty? Yes!

- What does clique partition tell us?
 - {1, 3, 7} multiplier
 - § {4, 5, 10, 11} alu
 - {2, 6, 8} multiplier
 - § {9} alu

Example 2

14

Resource Conflict Graph

- Instead of compatibility we can instead look at conflicts
 - May simplify the graph
- Resource conflict graph
 - Graph whose set of vertices is a one-to-one correspondence with operations in the sequencing graph and whose edges denotes the *conflicting* operations pairs
 - To simplify graph, we consider conflicts between each resource type independently

resource compatibility graph

resource conflict graph

Building Resource Conflict Graph

 To simplify graph, we consider conflicts between each resource type independently

Multipliers

ALUS

Consider Multipliers (1, 2, 3, 6, 7, 8)

1, 2 - concurrent

3, 6 - concurrent

7,8 - concurrent

Consider ALUs (4, 5, 9, 10, 11)

5, **9** – concurrent

Building Resource Conflict Graph

- Conflict graph is the complement of the compatibility graph
- In conflict graph, looking for set of mutually compatible operations
 - Subset of vertices that are NOT connected by edges
 - Also called independent set of G

resource compatibility graph

resource conflict graph

- Use graph coloring to find independent sets
 - Each color represents a resource instance (two adders will be represented by two different colors)
- Optimal resource sharing corresponds to vertex coloring with minimal amount of colors

Example 1

i = 1 // look at vertex 1

C = c1 // represents first color

Is there any adjacent vertices with color = 1? No.

 $v_1 = c1$

i = 2 // look at vertex 2

C = c1

Is there any adjacent vertices with color = 1? Yes.

C = c2

Is there any adjacent vertices with color = 2? No.

 $v_2 = c2$

i = 3 // look at vertex 3

C = c1 // represents first color

Is there any adjacent vertices with color = 1? No.

 $v_3 = c1$

Example 2

i = 1

C = c1

Adjacent vertices with color = 1? No.

 $v_1 = c1$

i = 2

C = c1

Adjacent vertices with color = 1? Yes.

C = c2

Adjacent vertices with color = 2? No.

 $v_2 = c2$

i = 3

C = c1

Adjacent vertices with color = 1? No.

 $v_3 = c1$

i = 4

C = c1

Adjacent vertices with color = 1? Yes.

C = c2

Adjacent vertices with color = 2? No.

 $v_4 = c2$

i = 5

C = c1

Adjacent vertices with color = 1? Yes.

C = c2

Adjacent vertices with color = 2? Yes.

C = c3

Adjacent vertices with color = 3? No.

 $v_5 = c3$

i = 6

C = c1

Adjacent vertices with color = 1? Yes.

C = c2

Adjacent vertices with color = 2? Yes.

C = c3

Adjacent vertices with color = 3? Yes.

C = c4

Adjacent vertices with color = 4? No.

 $v_6 = c4$

c3 5 3 c1 c2 1 2 c2

Four colors required – need four resources

c1 for node 1, 3 op

c2 for node 2, 4 op

c3 for node 5 op

c4 for node 6 op

- VERTEX_COLOR algorithm sensitive to ordering of vertices explored variety of modifications available
 - Switching pair assignment of colors
 - Backtracking to switching larger number of vertices

Requires 2 colors

- Node ordering 1, 5, 2, 3, 4
- Requires 3 colors

Conclusion

- Considered several types ways to find resource sharing and binding
 - Compatibility Graph / Max Clique
 - Conflict Graph / Vertex color
- Again, many other methods available
 - Golumbic's algorithm
 - Left-edge algorithm
 - ILP formulation
- Idea of sharing and binding not limited to adders and multipliers
 - Registers
 - Determining minimal number of memory ports
 - Bus sharing