Bayes' Theorem: Basics

Total probability Theorem:

- X: a data sample ("evidence")
- H: X belongs to class C

Prediction can be done based on Bayes' Theorem:

Classification is to derive the maximum posteriori

Naïve Bayes Classifier: Making a Naïve Assumption

- Practical difficulty of Naïve Bayes inference: It requires initial knowledge of many probabilities, which may not be available or involving significant computational cost
- A Naïve Special Case
 - Make an additional assumption to simplify the model, but achieve comparable performance.

attributes are conditionally independent (i.e., no dependence relation between attributes)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

Only need to count the class distribution w.r.t. features

Naïve Bayes Classifier: Categorical vs. Continuous Valued Features

□ If feature x_k is categorical, $p(x_k = v_k | C_i)$ is the # of tuples in C_i with $x_k = v_k$, divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

 \Box If feature x_k is continuous-valued, $p(x_k = v_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$p(x_k = v_k | C_i) = N(x_k | \mu_{C_i}, \sigma_{C_i}) = \frac{1}{\sqrt{2\pi}\sigma_{C_i}} e^{-\frac{(x - \mu_{C_i})^2}{2\sigma^2}}$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <=30, Income = medium,

Student = yes, Credit_rating = Fair)

classified ภาคนที่มีลึกชานะแบบน้ำเช้งคอมพิวเทอร์เรื่อใม่ชื่อ

<u> </u>		— x—		y	
age	income	student	credit_rating	buys_computer	yes = 9
<=30	high	no	fair	no/	No = 5
<=30	high	no	excellent	no /	
3140	high	no	fair	yes /	
>40	medium	no	fair	yes ′	
>40	low	yes	fair	yes -	
>40	low	yes	excellent	no 🗸	Training
3140	low	yes	excellent	yes /	data
<=30	medium	no	fair	no /	/ aa ja
<=30	low	yes	fair	yes ⁄	
>40	medium	yes	fair	yes ,	
<=30	medium	yes	excellent	yes.	
3140	medium	no	excellent	yes ′	
3140	high	yes	fair	yes /	
>40	medium	no	excellent	no /	

นาชีฟ ามข์...

Naïve Bayes Classifier: An Example

💙 ทุกๆ ปีเจอร์ ไม่มีดาวมสำพันธ์กัน

```
P(C<sub>i</sub>): P(buys_computer = "yes") = 9/14 = 0.643
P(buys_computer = "no") = 5/14 = 0.357
```

```
Compute P(X|C_i) for each class P(age = "<=30" | buys\_computer = "yes") = 2/9 = 0.222 P(age = "<=30" | buys\_computer = "no") = 3/5 = 0.6 P(income = "medium" | buys\_computer = "yes") = 4/9 = 0.444 P(income = "medium" | buys\_computer = "no") = 2/5 = 0.4 P(student = "yes" | buys\_computer = "yes) = 6/9 = 0.667 P(student = "yes" | buys\_computer = "no") = 1/5 = 0.2 P(credit\_rating = "fair" | buys\_computer = "yes") = 6/9 = 0.667
```

X = (age <= 30 , income	e = medium, student = y	es, credit_ratir	ng = fair	r)
P(credit_rating = "fair"	<pre>buys_computer = "no")</pre>	= 2/5 = 0.4	>40	me
P(credit_rating = "fair" P(credit_rating = "fair"	<pre>buys_computer = "yes")</pre>	= 6/9 = 0.667	3140	hig

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044

P(X|buys\_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019

P(X|C_i)*P(C_i): P(X|buys\_computer = "yes") * <math>P(buys\_computer = "yes") = 0.028
```

P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007

Therefore, X belongs to class ("buys_computer = yes")

Lazy Learner: Instance-Based Methods

าล้อได้ข้อมูล train มา เก็บเอาไว้เลยๆ เมื่อ มี data เข้ามากัว จะทำ ไ เก็บไว้ จน สุดท้าย รริง ๆ ค่อย ทั

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledge-based inference

The k-Nearest Neighbor Algorithm

- □ All instances correspond to points in the n-D space
- \Box The nearest neighbor are defined in terms of Euclidean distance, dist(X_1, X_2)
- Target function could be discrete- or real- valued
- \square For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_a
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

