Homework 2

Rohan Kapur, Math 111A Summer 2023

July 30, 2023

1. If true, show that a group is abelian if every subgroup is normal. Otherwise, give a counterexample.

Counterexample: The quaternion group $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$ with $i^2 = j^2 = k^2 = -1, (-1)^2 = 1$ is an example of a *non*abelian group whose subgroups are all normal.

2. Suppose that N, M are two normal subgroups of G and that $N \cap M = \{e\}$. Show that for any $n \in N, m \in M, nm = mn$.

Proof: Since N, M are normal subgroups of G, for any $g \in G, gN = Ng$ and gM = Mg. Then, since $N \subset G$, we also have for any $n \in N, nM = Mn$, or $nMn^{-1} = M$, so for any $m \in M, nmn^{-1} \in M$, and since M is a subgroup, we have $m^{-1} \in M$, so by closure, $\binom{nmn^{-1}}{m^{-1}} = M$. Similarly, since $M \subset G$, we have for any $m \in M, mN = Nm$ or $mNm^{-1} = N$, and since N is a subgroup, for any $n \in N, n^{-1} \in N$, so $mn^{-1}m^{-1} \in N$, and by closure and associativity, $n \binom{mn^{-1}m^{-1}}{m^{-1}} = \binom{nmn^{-1}}{m^{-1}} = \binom{nmn^$

3. If N is normal in G and $a \in G$ is of order o(a), prove that the order, m, of Na in G/N is a divisor of o(a).

Proof: Let s = o(a). Then we have $a^n = e$, so $Na^n = (Na^n) = Ne = N$. And since ord(Na) = m, we also have $(Na)^m = N$. Thus we must have $m \le n$ since ord(Na) = m. By the division algorithm, let n = qm + r for $q, r \in \mathbb{Z}$ with $0 \le r < n$. We need to show that r = 0, so let r = n - qm and suppose r > 0. Then $a^r = a^{n-qm} = a^n a^{-qm} = a^{-qm}$, which contradicts r > 0. Therefore, we must have r = 0, and hence m divides a. **QED** (I'm unsure if this is correct...)

4. If G is a non-abelian group of order 6, prove that $G \approx S_6$ (G is isomorphic to S_6). **Proof:** Not sure how to approach this...

5. Let G_1 be group of all nonzero complex numbers under multiplication, and let G_2 be group of all real 2×2 matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ where not both a and b are 0 under matrix multiplication. Show that G_1 and G_2 are isomorphic.

Answer: Not sure...