2 THE LAWS OF MATTER AND ENERGY

STUDENT LEARNING OUTCOMES

After reading this chapter, students will be able to

- Explain the importance of the law of conservation of matter for environmental science.
- Describe the limits that the laws of thermodynamics place on energy conversion.
- Distinguish the important differences between chemical, physical, and nuclear changes in matter.
- Provide examples of the entropy law in nature and in their everyday lives.
- Define and describe the major forms of energy they use in their everyday lives.

Lead: Industrial Marvel and Environmental Villain

- Soft, extremely dense, bluish element
- Body paint and ceremonial powders (Native Americans)
- Romans had lead aqueducts
- Paint, batteries, water pipes, gasoline in 20th century
- Nervous system and hearing problems, and kidney damage in children
- High blood pressure, digestive problems, and nerve disorders in adults

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Matter: Elements and Compounds

- Matter
 - Solid, liquid, gas
- Elements
 - Cannot be broken down by chemical means
 - 92 naturally occurring
 - Carbon (C), Hydrogen (H), Sulfur (S), Sodium (Na)
- Compounds
 - Two or more elements in combination
 - H₂O,NaCl, CO₂, NH₃

Elements Essential for Life

- 25 elements are essential for life
- Carbon, Hydrogen, Oxygen, Nitrogen, Phosphorus, and Sulfur (CHONPS) are macronutrients
- Carbon makes up 2/3 of the dry weight of an organism
- Trace elements include manganese, iodine, selenium
- Toxic metals include lead, cadmium, aluminum, copper, and zinc

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TA	RI	F.	2	1
100	יי	-		-

Naturally Occurring Elements in the Human Body

Symbol	Element	Atomic Number	Percent Weight of Human Body
0	Oxygen	8	65.0%
С	Carbon	6	18.5
Н	Hydrogen	1	9.5
N	Nitrogen	7	3.5
Ca	Calcium	20	1.5
P	Phosphorus	15	1.0
К	Potassium	19	0.4
S	Sulfur	16	0.3
Na	Sodium	11	0.2
CI	Chlorine	17	0.2
Mg	Magnesium	12	0.1

Trace elements (less than 0.01%): boron(B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), and zinc (Zn).

Source: Data from Campbell, Biology, Third Edition, Benjamin Cummings.

Elements in the Earth's Crust

- 10 elements make up more than 99% of the Earth's crust.
- Material Resources include copper, iron, uranium, nickel, phosphorus, sulfur, and silicon.
- Energy Resources include hydrocarbons (C and H) such as coal, oil, and natural gas.

TABLE 2.	2 Average Con	position of Ea	arth's Crust
Symbol	Element	Atomic Number	Percent Weight of Earth's Crust
0	Oxygen	8	46.60%
Si	Silicon	14	27.72
Al	Aluminum	13	8.13
Fe	Iron	26	5.00
Ca	Calcium	20	3.63
Na	Sodium	11	2.83
K	Potassium	19	2.59
Mg	Magnesium	12	2.09
TI	Titanium	22	0.44
Н	Hydrogen	1	0.14
		Total	99.17
	All	other elements	0.83
			100.00%

Elements and the U.S. Automobile

Atoms: The Building Blocks of Elements

 Atoms are units of matter; the smallest units having the chemical and physical properties of its element.

 $\frac{12}{6}$ C

- Subatomic particles
 - Protons (atomic number)
 - Neutrons (isotope)
 - Electrons (chemical bonds)
- A molecule is an assembly of two or more tightly bound atoms behaving as a single object.

²³⁵₉₂U

 $^{238}_{92}U$

H₂O

Chemical Reactions

 A substance is transformed into a different substance by changing its chemical composition.

$$2H_2 + O_2 \rightarrow 2H_2O$$
reactants products

Matter is conserved in a chemical reaction

Reactions cannot create or destroy matter but only rearrange the atoms

Combustion to Release Energy

 In this reaction the energy contained within the chemical bonds of methane (natural gas) is released during combustion

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 210.8$$
 kcals
reactants products

The release of CO2 is of concern to many scientists because of the link to climate change

Nuclear Changes

- 1898 radioactivity was identified by Marie Curie, a French scientist
- Alpha particles, beta particles, gamma rays
- More than 50 such radioactive isotopes or radioisotopes have been identified. All elements with greater than 83 protons are radioactive.

Radioactivity and Half-Lives

- A half-live is the time it takes for the process of radioactive decay to convert one-half of the atoms of one element to atoms of the second element.
- Each isotope has a characteristic half-life, ranging from millionths of a second to billions of years.

TABLE 2.3	The Half-Lives of Some Radioactive Isotopes	
Isotope	Half-Life	
²³⁸ U	4.5×10^9 years (4.5 billion years)	
⁴⁰ P	1.3×10^9 years	
²³⁹ Pu	24,000 years	
¹⁴ C	5,730 years	
¹³⁷ Cs	30 years	
²³⁰ U	20.8 days	
²²² Ac	5 seconds	
²¹² Po	0.3 microseconds (0.3 one-thousandth of a second)	

Fission and Fusion

 Fission occurs when a large isotope splits into lighter isotopes Fusion occurs when nuclei of two light elements are combined together to form a heavier nucleus

Law of Conservation of Matter

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Lavoisier dans son laboratoire Experiences sur la respiration de l'homme au repos Fac simile réduit d'un desam de Mes Launimer

© Courtesy Edgar Fahs Smith Collection, University of Pennsylvania

Importance of Energy

- Aristotle first used the term energeia (at + work)
- Energy is the ability to do work
- Used to organize materials into goods, provides heat, light, and other useful services
- In natural environment, energy evaporates water, makes plants grow, moves the large plates of the crust

Electromagnetic Radiation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mechanical Energy

- Energy of organized motion
- Potential and kinetic energy

Potential Energy

- Energy of position
- Water stored behind dam, gallon of gasoline

Kinetic Energy

- Energy of Motion
- Flowing Water, moving car, person walking up stairs

Chemical Energy

- Energy stored in the arrangement of elements, such as energy stored in fossil fuels or carbohydrates
- Energy stored in the chemical bonds between the atoms
- Potential energy as chemical bonds until released

Nuclear Energy

- Energy that binds the protons and neutrons together in the nuclei of atoms.
- **E = MC**² Einstein's famous equation which relates matter to energy. A very small mass is converted to very large amount of energy
- Release of this energy is used to generate electricity in nuclear power plants

Electrical Energy

- The force of charged particles acting on one another.
 An electric current, is caused by the flow of electric charges.
- In electrical wires and appliances, the flow of energy is caused by the back and forth flow of electrons.

Heat

- Kinetic energy associated with the random motion of atoms and molecules.
- Temperature measures the average speed of atoms or molecules
- Heat is an important form of energy because all forms of energy can be expressed in their heat equivalent.

Gasoline is a form of potential energy, one liter of gasoline releases 32,500 kcals of heat when burned

Uranium is a form of nuclear fuel, one kilogram of uranium releases 4 billion kcals of heat when used

Work and Force

- Energy is the capacity to do work
- Work = Force x Distance
- Heat of fusion (80 calories/gram)
- Heat of vaporization (539 calories/gram)
- Solar energy also creates wind
- Society uses fossil fuels to do work in the manufacture of goods and services.
- What is an energy converter?

Solar energy → Chemical Energy → Kinetic Energy → Heat

Energy and Power

- Power is the rate at which work is done or more generally, the rate at which energy is used.
- Power = Quantity of Work/Time to do Work
- 1 Horse can do work at 11kcals/minute (1 HP)

Average power of 2005 car in the U.S. is 170

Horsepower

TABLE 2.4	Power of Various Events in Nature and Society		
Event		Power	(Watts)
Flight of hummingbird		10-1	(.1)
CD player spinni latest song	ng U2's	101	(10)
Running a 100-n dash	neter	103	(1000)
Intercity truck tri	р	105	(100,000)
Avalanche with 5 drop	00-meter	107	(10,000,000)
Tornado		109	(1,000,000,000)
Lightning		1013	(10,000,000,000,000)
Richter magnitude 8 earthquake		1015	(1,000,000,000,000,000)
Source: Data from V. and Civilization, Wil		l Energetics:	Energy in the Biosphere

First Law of Thermodynamics

- There is no increase or decrease in the quantity of energy in any energy conversion.
- The QUANTITY of energy remains constant in every conversion process.

Second Law of Thermodynamics

- In all energy conversion processes energy loses its ability to do work and is degraded in quality.
- The QUALITY of the energy decreases with each energy conversion (i.e. more and more energy in the form of heat)
- Energy Conversion Efficiency:

Efficiency = <u>kcals of work out</u> kcals of total energy converted

Efficiency of Energy Conversions

Entropy

- Conversion of energy from a highly organized state to a disorganized state
- It is the degree of order or organization in a system.
- Clausius' work applied the concept to energy, but scientists since then have found the same principle applies to all changes in materials.
- Spontaneous process

Energy and Materials Balance

- The law of conservation of matter, laws of thermodynamics, and the entropy law provide a foundation for the study of environmental problems.
- Pollution, Resource Depletion, Waste Assimilation are examples
- Energy and Materials Balance

Coal Burning Power Plant

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

