Algebra booleana e Reti logiche

Reti sequenziali (prima parte)

Rete sequenziale

- Come abbiamo visto, in una rete combinatoria l'uscita è esclusivamente funzione dell'ingresso.
- In una rete sequenziale, invece, l'uscita è funzione, oltre che dell'ingresso, anche dello stato della rete.

La rete ha cioè "memoria"

dello stato interno raggiunto

per effetto degli ingressi

precedentemente applicati

v

L'esempio dell'ascensore

- Ingresso: comando impartito per raggiungere un certo piano
- Stato corrente: piano in cui si trova l'ascensore nel momento in cui viene impartito il comando
- Stato futuro: piano a cui si porta l'ascensore per effetto del comando impartito
- Uscita (risposta della macchina): la cabina si muove o meno a seconda dell'ingresso, cioè del comando impartito, e dello stato corrente

м

L'esempio dell'ascensore

Comportamento di un ascensore in un edificio a 4 piani:

Ingresso Stato corrente	I_{O}	I_1	I_2	I_3
S_{0}	S_0/O_0	S_1/O_1	S_2/O_1	S_3/O_1
S_I	S_0/O_1	S_I/O_0	S_2/O_1	S_3/O_1
S_2	S_0/O_1	S_1/O_1	S_2/O_0	S_3/O_1
S_3	S_0/O_1	S_1/O_1	S_2/O_1	S_3/O_0

Uscita: $O_0 \rightarrow$ "la cabina non si muove" $O_1 \rightarrow$ "la cabina si muove"

Variabili di

- \checkmark ingresso: $x_1, x_2, ..., x_n$
- ✓ uscita: $z_1, z_2, ..., z_m$
- \checkmark stato presente: $y_1, y_2, ..., y_\ell$
- \checkmark stato futuro: $Y_1, Y_2, ..., Y_\ell$

con x_i , z_i , y_i , Y_i definite su $\{0, 1\}$

×

Modello generale di una rete sequenziale

Una n-pla (x₁, x₂, ..., x_n)
 costituisce una configurazione di ingresso
 (o più semplicemente un ingresso)

L'insieme delle $N = 2^n$ configurazioni di ingresso rappresenta l'*alfabeto di ingresso*

$$I = \{I_1, I_2, ..., I_N\}$$

ogni configurazione I_k costituisce un *simbolo dell'alfabeto*

1

Modello generale di una rete sequenziale

In modo del tutto analogo si definiscono l'alfabeto di uscita e l'alfabeto di stato:

$$O = \{O_1, O_2, ..., O_M\}$$
 con $M = 2^m$

$$S = \{S_1, S_2, ..., S_L\}$$
 con $L = 2^{\ell}$

dove O_k ed S_k rappresentano rispettivamente una configurazione di uscita e una configurazione di stato (o più semplicemente un'uscita e uno stato del sistema)

10

Modello generale di una rete sequenziale

Si definisce macchina sequenziale la quintupla:

$$M = (I, O, S, f, g)$$

dove I, O e S rappresentano rispettivamente gli alfabeti di ingresso, di uscita e di stato, mentre f e g sono due funzioni così definite:

$$f: S \times I \rightarrow O$$
 (funzione di uscita o di trasferimento)

$$g: S \times I \rightarrow S$$
 (funzione di stato o di transizione)

w

Modello generale di una rete sequenziale

 Poiché l'alfabeto di stato è finito si parla anche di macchina o automa a stati finiti.

Due modelli:

✓ automa di Mealy:

$$f: S \times I \rightarrow O$$

✓ automa di Moore:

$$f: S \rightarrow O$$

М

Modello generale di una rete sequenziale

Le funzioni di stato e di uscita possono essere rappresentate in termini di diagrammi di stato e tabelle di flusso:

	I1	 Ix	Iy	Iz	 IN
S1					
::					
Si		Sj		(Si)	
Si Si Sj Sk		(Sj)	Sk	Si	
Sk			SI		
SI			(SI)		
SL					

Rappresentazione delle uscite con il modello di Mealy:

Rappresentazione delle uscite con il modello di Moore:

 Una rete logica sequenziale è l'implementazione di una macchina a stati finiti.

Parte combinatoria che realizza

le funzioni di uscita e di transizione

Stato futuro riportato in ingresso $(y_i \text{ diventa uguale a } Y_i \text{ dopo un intervallo di tempo } \tau_i)$

Rete combinatoria (ideale) che realizza le funzioni di uscita e di transizione

 y_i diventa uguale a Y_i dopo un tempo di ritardo τ_i

Comportamento sincrono e asincrono

- Reti asincrone: le variazioni delle configurazioni di ingresso vengono sentite e possono modificare lo stato e le uscite in qualsiasi istante.
- Reti sincrone: le variazioni delle configurazioni di ingresso vengono sentite e possono modificare lo stato e le uscite solo in presenza di un opportuno evento di sincronizzazione.

Ci occupiamo delle reti sincrone (che hanno maggiore rilevanza nei calcolatori)

Reti sincrone

Nelle reti sincrone, i ritardi τ_i sono realizzati da *elementi di memoria* dotati di un ingresso aggiuntivo (*Clock*) che permette di abilitare il cambiamento di stato:

×

Reti sincrone

Clock periodico:

I cambiamenti di stato avvengono in corrispondenza degli istanti t_n , t_{n+1} , t_{n+2} , di una sequenza temporale discreta

м

Reti sincrone

 In una rete reale, la parte combinatoria (RC) è costituita da porte con tempi di commutazione non nulli.

La frequenza del clock deve essere scelta in modo da permettere, entro il periodo T, la stabilizzazione di RC e degli stessi elementi di memoria.

M

Elementi di memoria

Circuiti sequenziali molto semplici detti flip-flop.

Diversi tipi di flip-flop:

- □ flip-flop SR (FF-SR)
- □ flip-flop JK (FF-JK)
- □ delay flip-flop (FF-D)
- □ trigger flip-flop (FF-T)

S: set, R: reset

Ck: clock

y: stato

Tabella che descrive le variazioni di stato:

SR y	00	01	11	10
0	0	0	1	1
1	1	0	•	1

$$y^{(n+1)} = S + \overline{R}y^{(n)}$$

м

Flip-flop SR

■ L'ingresso S = 1, R = 1 non è ammesso.

■ L'ingresso S = 1, R = 0 porta il FF nello stato 1.

■ L'ingresso S = 0, R = 1 porta il FF nello stato 0.

■ L'ingresso S = 0, R = 0 non modifica lo stato (che dipende da quale tra S e R ha assunto per ultimo il valore 1)

Funzione di transizione:

$$y' = S + \overline{R}y$$

ovvero

$$y^{(n+1)} = S + \overline{R}y^{(n)}$$

Lo stato in cui il flip-flop si troverà all'istante t_{n+1} dipende dallo stato in cui si trovava all'istante t_n e dal relativo ingresso

Schema logico:

Si assume che i segnali S e R non varino durante Δ_1 e che Δ_1 sia sufficiente a far completare l'eventuale transizione di stato della rete (*latch*).

Configurazione master-slave:

Durante Δ_1 (Ck = 1) cambia stato solo il latch di sinistra (*master*); durante Δ_2 (Ck = 0) il latch di destra (*slave*) si porta nello stato raggiunto dal master (che non può più commutare)

м

Configurazione master-slave

 Con tale configurazione è possibile garantire che, nella rete in cui il FF è inserito, nessun segnale cambi durante Δ₁:

- \square le variabili di stato y cambiano solo durante Δ_2
- \square si fa in modo che anche l'ingresso primario I cambi solo durante Δ_2 (sincronizzazione di I con il clock)

Configurazione master-slave

- Vincoli per Δ_1 e Δ_2 :
 - Δ₁ deve essere tale da permettere la commutazione dei master
 - \square Δ_2 deve essere tale da permettere la stabilizzazione della rete combinatoria

Ad ogni impulso di clock vengono così campionati ingressi ben definiti

Flip-flop JK

Il comportamento è analogo a quello di FF-SR tranne che per l'ingresso 11:

JK y	00	01	11	10
0	0	0	1	1
1	1	0	0	1

$$y' = \overline{y}J + y\overline{K}$$

Flip-flop D

Realizza un blocco di ritardo pari al periodo di clock T

$$y' = D$$

Flip-flop T

Cambia stato se T = 1, rimane nello stesso stato se T = 0.

$$y' = \overline{T}y + T\overline{y} = T \oplus y$$

Flop-flop: osservazioni

 Gran parte dei flip-flop sono oggi realizzati in modo da commutare sui fronti di salita o di discesa del clock (edge triggered flip-flop).

Inoltre, i flip-flop in commercio, oltre agli ingressi sincroni, spesso presentano anche ingressi asincroni (comunemente detti *Preset* e *Clear*), che possono essere usati per comandare la commutazione in maniera indipendente dal clock.

Funzioni di eccitazione dei flip-flop

Come si determinano gli ingressi da applicare ai flip-flop per ottenere il funzionamento voluto della rete sequenziale in cui essi sono inseriti?

Occorre tener conto della modalità di funzionamento dei flip-flop impiegati.

×

Funzioni di eccitazione dei flip-flop

A titolo d'esempio, supponiamo che la funzione di transizione della rete sequenziale sia la seguente:

$$y' = \overline{x}_1 \overline{x}_2 + \overline{x}_1 y + x_1 \overline{y}$$

M

Funzioni di eccitazione dei flip-flop

Nel caso di FF-D, l'ingresso D è la realizzazione della funzione y':

$$y' = \overline{x}_1 \overline{x}_2 + \overline{x}_1 y + x_1 \overline{y}$$

$$D = \overline{x}_1 \overline{x}_2 + \overline{x}_1 y + x_1 \overline{y}$$

М.

Funzioni di eccitazione dei flip-flop

Nel caso di FF-SR e FF-JK, occorre dare una coppia di ingressi tale da realizzare la transizione di stato prevista sulla mappa di y':

x1 :	x2 00	01	11	10	
0	1	0	1	1	
1	1	1	0	0	
y'					

$y \rightarrow y'$	S	R	$y \rightarrow y'$	J	K
$0 \rightarrow 0$	0	-	$0 \to 0$	0	-
$0 \rightarrow 1$	1	0	$0 \rightarrow 1$	1	-
$1 \rightarrow 0$	0	1	$1 \rightarrow 0$	_	1
$1 \rightarrow 1$	_	0	$1 \rightarrow 1$	_	0

1

Funzioni di eccitazione dei flip-flop

Dalla mappa di y' si passa alle mappe di S e R in caso di FF-SR:

7

Funzioni di eccitazione dei flip-flop

Idem per FF-JK:

$$J = x_1 + \overline{x}_2$$

$$K = x_1$$

w

Funzioni di eccitazione dei flip-flop

$$S = \overline{x}_1 \overline{x}_2 + x_1 \overline{y}$$
$$R = x_1 y$$

$$J = x_1 + \overline{x}_2$$
$$K = x_1$$

(Figure parzialmente tratte da *G. Bucci. Calcolatori elettronici. Architettura e organizzazione. Copyright* © 2009 - *The McGraw-Hill Companies*)