THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

Best Available Copy

UNCLASSIFIED 4 4 4 8 0 8

FENSE DUCUMENTATION CENTER

FOR

CIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

artment of AERONAUTICS and ASTRONAU TANFORD UNIVERSITY

CREEP RUPTURE OF DUCTILE MATERIALS SUBJECTED TO STRAIN HARDENING OR TIME HARDENING CREEP

Technical Report No. 7 Prepared for the Office of Nava: Research of the U.S. Navy Under Contract None 225(47) Project NR 064 434

Department of Aeronautics and Astronautics Stanford University Stanford, California

CREEP RUPTURE OF DUCTILE MATERIALS SUBJECTED TO STRAIN HARDENING OR TIME HARDENING CREEP

by

Josef Singer*
Visiting Associate Professor, Stanford University

SUDAER No.196
June 1964

Reproduction in whole or in part is purmitted for any purpose of the United States Government

The work here presented was supported by the United States Navy under Contract Nonr 225(47) monitored by the Mechanics Branch of the Office of Naval Research

On leave from the Department of Aeronautical Engineering, Technion, Israel Institute of Technology, Haifa, Israel

ABSTRACE

An analysis of creep rupture of ductile materials subjected to atrain hardening creep is presented. The analysis is similar to an earlier one by Hoff, but is based on a different generalization of the primary excep rate relation. Both approaches are then extended to time hardening creep. Simple approximate formulae for critical times are presented and the results of both approaches for the two types of creep are compared. Correlation with experimental data for some aluminum-copper, aluminum-magnesium and aluminum-zinc alloys shows fairly good agreement of rupture times for these very ductile materials. However, attempted correlation with data for other materials which do not exhibit such prominent ductility indicates that the basic assumption of the analysis, that creep rupture is caused primarily by a process of reduction of area, holds only for very ductile materials.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
RUFTURE TIME FOR STRAIN HARDENING CREEP	5
RUPTURE TIME FOR TIME HARDENING CREEP	6
COMPARISON OF RUPTURE TIMES	8
CORRELATION WITH EXPERIMENTAL DATA AND DISCUSSION	ľŁ
REFERENCES	15
FIGURES	16
TABLES	50

LIST OF ILLUSTRATIONS

Pigu	res	Page
1	Typical Greep Curve without Secondary Creep	16
2	Comparison of Rupture Times for Strain Hardening Creep	17
3	Comparison of Rupture Times for Time Hardening Creep	18
4	Comparison of Theory with Tests on Aluminum Magnesium Alloys by Robinson, Tietz and Dorn	19
Table		
1	Comparison of Theory and Experiment: Copper-Aluminum Alloys at 300°F Tested by Robinson, Tietz and Dorn	20
2	Comparison of Theory and Experiment: Magnesius-Aluminum Alloys at 350°F Tested by Robinson, Tietz and Dorn	21
3	Comparison of Theory and Experiment: Zinc-Aluminum Alloys at 350°F Tested by Robinson. Tietz and Dorn	22

NOTATION

```
A<sub>o</sub>
                  initial cross sectional area of specimen
ъ
                  (1 - p)/p
                  constant in primary creep law, Eq.(1), called sometimes
                   "primary creep index"
p
                  constant in primary creep law, Eq.(1)
R
                  1+\epsilon, defined by Eq. (9)
                 p -1
                 mp
                  time
                 rupture time
                 rupture time predicted for strain hardening creep
                 with Eoff's generalization
                  rupture time predicted for strain hardening creep with
^{\mathrm{t}}\epsilon_{\mathrm{ENG}}
                  the alternative generalization proposed here
^{\mathrm{t}}TH.\epsilon_{\mathrm{nat}}
                 rupture time predicted for time bardening creep with
                 Hoff's generalization
tm.eeng
                 rupture time predicted for time hardening creep with
                 the alternative generalization
t<sub>exp</sub>
                  rupture time from tests
3
                  t_{\text{TH.}\epsilon_{\text{net}}}/t_{\text{TH.}\epsilon_{\text{ENG}}}
                 t /t TH. e nat
                 engineering strain
                 natural strain = ln(1+\epsilon)
\epsilon_{\mathtt{nat}}
                 teng/theeng
η
                 constant in primary creep law, Eq.(1)
λ
```

NOTATION (Cont'd.)

σ true stress

σ initial applied stress

o, ultimate stress of the material at test temperature

INTRODUCTION

The creep rupture of a tensile bar of ductile material, undergoing creep deformations which are governed almost entirely by a steady state creep law, was analyzed by Hoff (Ref.1). A very simple approximate formula was obtained for the critical time, which agreed well with experimental data for pure aluminum and some aluminum alloys. However, many creep curves, especially at higher stresses and temperatures, do not exhibit the usual steady phase, but have a longer primary phase which transforms directly into a tertiary phase (see for example, Fig.1, replotted from Ref.2).

The primary phase is usually considered to be governed by a crosslaw of the form

$$\epsilon = (\sigma/\lambda)^m t^{1/p}$$
 (1)

where ϵ is the engineering scrain, σ the applied stress, t the time and $m_i \lambda$ and p are constants. For variable stress, Eq.(1) has to be considered as defining implicitly the strein rate as a function of the stress and the strain, or as a function of the stress and the time (Ref. 5). Then, for strain hardening ereep behavior, one obtains

$$\dot{\epsilon} = (1/p)(\sigma/\lambda)^{\frac{n}{2}} \epsilon^{1-p} \tag{2}$$

which is essentially the relation proposed much earlier by Medai (Ref. 4).

For time hardening behavior, which is sometimes observed when time of exposure has a more pronounced effect then the amount of creep strain, a parallel relation for the primary creep rate results

$$\hat{\epsilon} = (1/p)(e/\lambda)^{k} t^{(1-p)/p}$$
 (3)

RUPTURE TIME FOR STRAIN HARDENING CREEP

For strain hardening creep, Hoff (Ref.5) obtained the creep rupture time by assuming that Eq.(2) can be generalized to hold for large deformations

$$\hat{\epsilon}_{\text{nat}} = (1/p)(\sigma/\lambda)^{\text{mp}} \epsilon_{\text{nat}}^{1-p}$$
 (4)

where σ is the true stress and $\epsilon_{\rm nat}$ is the natural strain defined by

$$\epsilon_{\text{nat}} = \ln(1+\epsilon)$$
 (5)

and

$$\sigma = r_{ij}(1+\epsilon)$$
 (6)

 σ_{Ω} being the initial applied stress

$$\sigma_{o} = P/A_{o} \tag{7}$$

Hoff obtained a very simple approximate formula also for strain hardening creep, which becomes, when p is an integer,

$$t_{cr} \simeq [p /(pm)^{p}](\lambda/\sigma_{o})^{pm}$$
 (8)

Hoff's generalization of the primary creep law, Eq.(4), means that the same relation between strain rate, stress and strain is assumed to hold for the entire strain range from primary creep to rupture, provided the relation is expressed in natural strain and strain rate and true stress. In the small strain region, the natural strain practically equals the engineering strains and Eq.(4) reduces to Eq.(2). Hence the assumption implies identical constants in both equations.

However, since primary creep curves are usually given only for small strains, another approach is possible. Instead of the generalization proposed by Hoff, the observed relation between engineering strain rate and strain and stress, Eq.(2), is assumed to hold only for engineering strain rate and strain, but to be valid also in the region

of large strains. The natural strain rate involved in the calculation of rupture time has then to be related appropriately to the engineering strain rate which appears in Eq.(2). It is felt that such an approach gives one more confidence in the use of the primary creep constants which are obtained from experiments at small strains.

In other words, the two approaches are two different extrapolations of Eq.(2) to the region of large strains. The actual applied stress varies, due to the reduction in area, in the same manner in both approaches and is represented by Eq.(6). The extrapolations differ, however, with respect to strain and strain rate.

The analysis is an extension of Hoff's work. As in Refs. 1 and 5, a constant load tensile test is considered, and the material is assumed to be incompressible. The symbol R is also introduced again,

$$R = 1 + \epsilon \tag{9}$$

Hence

松野谷 なないたこと チーを

$$\epsilon_{\text{nat}} = lnR$$
 (10)

and

$$\sigma = \sigma_{O} R \tag{11}$$

For strain hardening creep the strain rate is governed by Eq.(2), coing the creep strain (the total strain less the initial elastic and plastic strain). Rupture occurs at large strains, and hence the natural strain rate is required for calculation of the time to rupture. Now, Eq.(5) may be rewritten, on account of Eq.(9),

$$e^{\text{nat}} = 1 + \epsilon = R \tag{12}$$

or

$$c = e^{-\text{nat}} - 1 = R - 1 \tag{13}$$

By differentiating Eq.(5) with respect to time, one obtains

$$\dot{\epsilon}_{nat} = \left[1/(1+\epsilon)\right]\dot{c} \tag{3.1}$$

Substitution of $\dot{\epsilon}$ from Eq.(2), ϵ from Eq.(13) and σ from Eq.(11) into Eq.(14) yields

$$d\epsilon_{\text{nat}} dt = (1/p)(\sigma_0 R/\lambda)^{m_1} \left[(R-1)^{1-p}/R \right]$$
 (15)

For convenience let

$$q = p - 1$$
and $s = mp$ (16)

Separation of variables of Eq.(15) and integration yield the critical time

$$t_{cr} = p(\lambda/\sigma_0)^s \int_1^{(\sigma_u/\sigma_0)} \left[(R-1)^q/R^s \right] dR \qquad (17)$$

where σ_{u} is the ultimate stress of the material at the test temperature.

For most materials, p may be approximated by 2 or 3. For these values the critical time is given by

$$t_{er} = 2(\lambda/\sigma_{o})^{6} \left\{ -\left[1/(2-\kappa)\right] \left[1 - (\sigma_{o}/\sigma_{u})^{6-2}\right] + \left[1/(1-\kappa)\right] \left[1 - (\sigma_{o}/\sigma_{u})^{6-1}\right] \right\}$$
(18)

for q = 1 (p = 2)

or

$$t_{cr} = 3(\lambda/\sigma_{o})^{8} \left\{ -\left[1/(3-s)\right] \left[1 - (\sigma_{o}/\sigma_{u})^{8-5}\right] + \left[2/(2-s)\right] \left[1 - (\sigma_{c}/\sigma_{u})^{8-2}\right] - \left[1/(1-s)\right] \left[1 - (\sigma_{o}/\sigma_{u})^{8-1}\right] \right\}$$
(19)

for q = 2 (p = 3).

For other values of q Eq.(17) can be integrated in a similar manner to yield similar expressions for $t_{\rm cr}$. Now, since s is generally fairly large, $(\sigma_{\rm o}/\sigma_{\rm u})^{\varepsilon-3}$ and the corresponding higher powers of $(\sigma_{\rm o}/\sigma_{\rm u})$ in Eqs.(18) and (19) may be neglected in comparison to unity, even when $\sigma_{\rm o}$ is not far from $\sigma_{\rm u}$. Eqs.(18) and (19) may therefore be simplified to

$$t_{cr} \simeq (\lambda/\sigma_0)^{s} \left[2/(s-2)(s-1) \right]$$
 for $p=2$ (20)

and

$$t_{cr} \simeq (\lambda/\sigma_0)^8 [6/(s-3)(s-2)(s-1)]$$
 for p = 3 (21)

HUPTURE TIME FOR TIME HARDENING CREEP

The analysis can readily be extended to time hardening creep defined by the creep law of Eq.(3), by both approaches. First, generalization of Eq.(3) in the manner proposed by Hoff for strain hardening creep yields for the natural strain rate

$$\hat{\epsilon}_{\text{nat}} = (1/p)(\sigma/\lambda)^{m} t^{(1-p)/p}$$
 (22)

With the quantities defined by Eqs. (9), (10), (11) and (16) and denoting

$$(1-p)/p = b$$
 (23)

one can rewrite Eq. (22) as

$$dlnR/ct = (1/p)(\sigma_0 R/\lambda)^m t^b$$
 (24)

Separation of variables and integration yields

$$t_{cr} = \left\{ \left[(b+1)p/m \right] (\lambda/\sigma_{o})^{m} \left[1 - (\sigma_{o}/\sigma_{u})^{m} \right] \right\}^{1/(b+1)}$$
$$= (1/m)^{p} (\lambda/\sigma_{o})^{s} \left[1 - (\sigma_{o}/\sigma_{u})^{m} \right]^{p}$$
(25)

since

$$b + 1 = 1/p$$
 (26)

Now, if $\sigma_{\rm u} \gg \sigma_{\rm o}$

$$\left[1 - \left(\sigma_{o}/\sigma_{u}\right)^{m}\right]^{p} \approx 1 - p\left(\sigma_{o}/\sigma_{u}\right)^{m} \approx 1$$
 (27)

provided m is sufficiently large. As p can be taken 2 or 3 for most materials and m is usually larger than 3, the approximation of Eq.(27) does, in general, not involve large errors. With this approximation Eq.(25) becomes

$$t_{cr} \simeq (1/m^{\nu})(\lambda/\sigma_{o})^{s}$$
 (28)

However, it should be noted that the approximation here is inferior to that employed in the case of strain hardening creep. There, at most $(\sigma_0/\sigma_u)^{pm-3}$ was neglected in comparison with unity, whereas in Eq.(27) $p(\sigma_0/\sigma_u)^m$ is neglected in comparison with unity. Hence the error implied by Eq.(28) is $p(\sigma_u/\sigma_0)^{mp-m-3}$ times as large as that introduced by the approximation leading to Eqs.(8) or (20) and (21).

In the second approach, Eq.(3) is again assumed to hold for the engineering strain rate for both small and large strains. With the quantities defined by Eqs.(9), (10), (11), (16) and (23) and with Eqs.(3) and (14), the natural strain rate can be rewritten as

$$d\epsilon_{nst}/dt = (1/pR)(\sigma_{o}R/\lambda)^{m}t^{b}$$
 (29)

Separation of variables and integration yields then, on account of Eq. (26),

$$t_{cr} = \left[1/(m-1)\right]^{p} (\lambda/\sigma_{o})^{s} \left[1 - (\phi_{o}/\sigma_{u})^{m-1}\right]^{p}$$
 (30)

For $\sigma_u \gg \sigma_o$, an approximate expression can again be obtained for the critical time provided π_c is sufficiently large,

$$t_{cr} \simeq \left[1/(\omega - 1)^{p}\right] (\chi/\sigma_{o})^{s}$$
 (31)

The accuracy of this approximation is, however, even lower than that of Eq.(28), since here $p(\sigma_0/\sigma_u)^{m-1}$ is neglected in comparison with unity. The error introduced by Eq.(31) relative to Eq.(30) is therefore (σ_u/σ_0) times that introduced in Eq.(28).

COMPARISON OF RUPTURE TIMES

It is of interest to compare the rupture times obtained by the various approaches. If one compares the approximate formulae for the critical times, very simple relations are obtained. However, as the approximations in these formulae are different, the more exact formulae for the rupture time have to be employed in the comparison for the low values of m, when the initial applied stress approaches the ultimate stress and the approximations lose their validity. Only the simple approximate relations are given below, but the results of computations with the more exact relations are also shown in Figs. 2 and 3.

If β denotes the relation of the rupture time for strain hardening obtained by Hoff to that obtained by the alternative generalization proposed in this paper.

$$\beta = (s-1)(s-2)/s^2$$
 for $p = 2$ (32)

and

$$\beta = (s-1)(s-2)(s-3)/s^3$$
 for $p = 3$ (33)

if the approximate formulae, Eqs.(8) and (20), (21) are compared. Fig. 2 shows a plot of β versus the primary creep index m. For two typical initial applied stress to ultimate stress ratios, $(\sigma_{\rm o}/\sigma_{\rm u})$ = 0.5 and $(\sigma_{\rm o}/\sigma_{\rm u})$ = 0.9, the values of β as obtained from a comparison of the more exact Eq.[59] of Ref.5 and Eqs.(18) and (19) are also shown.

If one compares the results of the two approaches for time hardening creep, the approximate formulae Eqs. (28) and (31) are related by

$$\gamma = \left[(m-1)/m \right]^{p} \tag{34}$$

This ratio is plotted in Fig. 3 for p=2 and p=3. The relation of the more exact formulae Eqs.(25) and (30) is also included for $(\sigma_0/\sigma_0)=0.5$ and $(\sigma_0/\sigma_0)=0.9$.

Figures 2 and 3 show that as the primary creep index m increases, the difference between the two approaches diminishes both for strain hardening and time hardening creep. For low applied stresses, say, $\sigma_{_{\rm O}} \leq 0.5~\sigma_{_{\rm U}}$, the noticeable difference byween the two approaches, predicted by the approximate relations, is verified by the results obtained by the more exact relations. When the applied stress approaches the ultimate stress, for example, when $\tau_{_{\rm O}} = 0.9~\sigma_{_{\rm U}}$, the difference practically disappears. This would be expected since the strains at rupture tend to be small when the applied stress approaches the ultimate.

Similar simple relations can be obtained by comparison of the approximate rupture time for strain hardening creep with that for time hardening creep by one of the approaches. For the first approach, which assumes that the primary creep relations hold for the entire strain range if expressed in natural strain rates and strains, the rupture time for strain hardening creep divided by that for time hardening creep yields

$$\delta = p!/p^{D} \tag{35}$$

For the second approach, which assumes the primary creep relations to hold only for engineering strain rates and strains, but to be valid also in regions of large strains, the rupture time for strain hardening creep divided by that for time hardening creep yields

$$\eta = (m-1)/(2m-1)$$
 for $p = 2$ (36)

and

$$\eta = 2(m-1)^2/(3m-2)(3m-1)$$
 for $p = 3$ (37)

However, these relations, Eqs. (35), (36) and (37), are again valid only within the accuracy of the approximations, on account of the considerable difference in the error included in the approximate formulae.

The comparison shows that the second approach yields longer critical times than the first one, in both types of creep deformation. Also time hardening creep will yield longer rupture times than strain

hardening creep by both approaches. However, since the analysis is basically a generalization of empirical primary creep laws, only correlation with experimental data can determine the relative usefulness of the proposed formulae. This is attempted in the next section.

CORRELATION WITH EXPERIMENTAL DATA AND DISCUSSION

The results of tests carried out by Robinson, Tietz and Dorn (Ref.2) were compared with the theoretical predictions by the two approaches for strain hardening and time hardening creep. The test meterials were a series of high purity binary alpha solid solutions in aluminum. Three groups of aluminum alloys were compared: copperaluminum alloys, magnesium-aluminum alloys and zinc-aluminum alloys. Each group includes four alloys with different percentages of alloying element, and all tests were at 300°F. In Tables 1, 2 and 3 the predicted and experimental values of the rupture times are given for different applied stresses. The data for the magnesium-aluminum alloys are also plotted in Fig.4.

To obtain a theoretical rupture time, the primary creep constants p, m and \(\lambda\) have first to be found from the creep curves of Ref.2. The left hand portions of the creep curves (for relatively short times) have to be used to find these constants, since for longer times the curves include the effects of the reduction in area. The time index p is found from Eq.(1) with σ and λ constant. For the alloys of Figs. 4-6 of Ref.2, the nearest integer for p is 2. Now, from short time stress-strain curves at 300°F, Figs.15-17 of Ref.2, the initial strains are found for the nominal applied stresses. The total strain less the initial strain is the croop strain. The creen strains at particular times are plotted versus the corrected applied stress on a log-log scale yielding straight lines whose slope is m. The integer nearest to the average value of m obtained from about 5 or 6 of such isochronous lines is taken as the appropriate value. λ is then found from Eq. (1) with these p and m from about 10 points and averaged.

In Tables 1, 2 and 3, the rupture time for strain hardening creep with Hoff's generalization is denoted $t_{\rm enst}$, and that obtained with the alternative generalization of this paper $t_{\rm ENG}$. The rupture times for time hardening creep are similarly denoted $t_{\rm TH......enst}$ and $t_{\rm TH....enst}$

respectively. The more exact formulae, Eqs. (18), (25) and (30), and an expression which is equivalent to Eq. (59) of Ref. 5, have been used in the calculation of the rupture times.

Fairly good agreement is found for most of the tests. The rupture times for time-hardening cross, with the generalization of the primary creep law proposed in this paper, appear to be closest to the experimental results. Better agreement is found for the magnesium-aluminium and copper-aluminum alloys (except the 0.1015 Cu alloy for which the predictions are noticeably too long)than for the zinc-aluminum alloys. It is interesting to note that the rupture times computed with the assumption of strain-hardening creep are rather conservative for all the test results (except those for two tests of 0.101% Cu Al alloy). It might be added, that if the plastic strain component is taken into account (Hef.6) the predicted rupture time is further shortened. Since this effect would be most roticeable at the high applied stresses, where the predictions based on time-hardening creep often exceed the experimental rupture times, it would tend to improve the overall agreement of the time-hardening theory. It appears, therefore, that for the materials compared here, a time-hardening creep law provides a realistic description of the rupture behavior.

An extensive literature serveh for additional experimental data of primary creep and rupture for ductile materials revealed a remarkable scarcity of such data. Most investigators report either details of primary creep behavior or rupture times, but very seldom both. Since only creep curves which do not exhibit a significant steady phase are suitable for comparison with the present theory, no additional data was found. However, through the courtesy of the Research Division of High Duty Alloys Ltd., Slough, England, creep curves for RR 58 and RR 257 anuminium alloys (which are used in the Anglo-French supersonic transport) were obtained with records of rupture times and corresponding total strains (Ref.7). Some of these curves had no significant secondary phase. Correlation was attempted with some of these curves, but the predicted rupture times greatly exceeded the experimental values (the computed values were 50 to 36,000 times the experimental ones). As a

check on the order of magnitude of the prediction, the rupture times were computed by the steady creep analysis of Ref.1 (the steady creep constants were obtained from approximate tangents to the central portion of the creep curves). However, again the predictions were many times too large, though to a lesser extent (6 to 60 times).

During the literature search some creep curves of suitable form were encountered, for which rupture times were also reported. However, they represented materials which exhibited only small amounts of permanent deformation prior to fracture, and hence cannot be adequately described by the present theory. For comparison, correlation was attempted for a typical case of this group, a 5 molybdenum steel at 1020°F (Ref.8). The predicted rupture times greatly exceeded the experimental values (by 100 to 500,600 times), and a steady creep analysis produced similar discrepancies (700 to 3000 times).

It may be pointed out that "ductile theory", which assumes rupture by reduction of area, disagrees noticeably with experiments also for creep with a predominant secondary phase in the case of age-hardening aluminium alloys. For example, for 7075 TC at 375°F (Ref.5) rupture times 10 to 20 times the experimental ones are predicted.

Hence it is apparent that theories which are based on the premise that rupture is caused primarily .y a necking process are applicable to very ductile materials only (like those tested in Ref.2 or the 3003 and 5052 aluminium alloys tested in Ref.9). For other materials one has to turn to other theories which try to account for brittle or partly brittle behavior at rupture (see, for example, Refs.10, 11 or 12).

It may be observed, that the difference between the rupture times obtained from four different creep laws, is insignificant compared to the difference between predicted and experimental values, except for the very ductile materials of Ref.2. Hence, the marked disagreement between theory and experiment for the more commonly used alloys cannot be attributed to inadequacies in the creep laws, but rather to the character of the rupture process.

ACKNOWLEDGMENT

The author would like to express his gratitude to Professor N. J. Hoff and to Dr. R. L. Carlson of Stanford University for helpful discussions.

REFERENCES

- N. J. Hoff, The Necking and the Runture of Rods Subjected to Constant Tensile Loads. Journal of Applied Mechanics, Vol.20, No.1, p.105, Morch 1953.
- 2. A. T. Robinson, T. E. Tietz and J. E. Dorn, The Functions of Alloying Elements in the Creep Resistance of Alpha Solid Solutions of Aluminum, Transactions of American Society for Metals, Vol. 44, p.896, 1952.
- 3. N. J. Hoff, Stress Distribution in the Presence of Creep, Chapter 12 of High Temperature Effects in Aircraft Structures, edited by N. J. Hoff, Pergamon Press, p.248, London, 1958.
- 4. A. Madai, The Influence of Time Upon Caep, S. Timoshenko 60th Anniversary Volume, The Macmillan Co., New York, 1938, p.155-
- N. J. Hoff, Structures and Materials for Finite Lifetime, Proceedings of the First International Congress of the Aeronautical Sciences, Advances in Aeronautical Sciences, Vol.2, Pergamon Press, p.928, London, 1959.
- 6. R. L. Carlson, An Analysis of Creep Rupture, SUDAER Report No. 183, Stanford University, February 1964.
- Private Communications from W. M. Boyle, Research Division, High Duty Alloys Ltd., Slough, England, February and March 1964.
- 3 A. R. Johnson and N. E. Frost, Note on the Fracture Under Complex Stress Creep Conditions of a 5% Molybdenum Steel at 550°C and a Commercially Pure Copper at 250°C, Creep and Fracture of Metals at High Temperatures, Proceedings of Symposium held at MPL 1954, p.363, HMSO, London, 1956.
- 9. J. E. Dorn and T. E. Tietz, Creep and Stress-Rupture Investigations on Some Aluminum Alloy Sheet M-tals, Proceedings of the American Society for Testing Materials, Vol.49, 1949, p.815.
- 10. C. Crussard and T. Friedel, Theory of Accelerated Creep and Rupture, Creep and Fracture of Metals at High Temperatures, Proceedings of Symposium held at NPL 1954, p.243, HMSO, London, 1956.
- 11. L. M. Kachanov, Rupture Time Under Creep Conditions, Problems of Continuum Mechanics, Noordheaf, Groningen, 1961, p.202.
- 12. F. K. G. Odqvist, On Theories of Creep Rupture, Proceedings of the IUTAM Symposium on Second Order Effects in Elasticity, Plasticity and Fluid Dynamics, Haifa, Israel, April 1962.

FIG. 1. TYPICAL CREEP CURVE WITHOUT SECONDARY CREEP (replotted from Ref.2)

FIG. 3. COMPARISON OF RUPTURE TIMES FOR TIME HARDENING CREEF

THE PROPERTY OF THE PROPERTY O

FIG. 4. COMPARISON OF THEORY WITH TESTS ON ALUMINUM MAGNESINM ALLOYS BY ECBINSON, TIETZ and DORN (Ref.2).

TABLE 1
Comparison of Theory and Experiment: Copper-Aluminum Alloys at 300°F Tested by Nobinson, Tietz and Dorn

Ľ,

, ,	V.	Pre	Predicted Rupture Times		(
Acomic 7	Ann Ctness	Strain Hardening	rdening	Time Hardening	ning	Experimental
Element	Apr.Stress (pst)	t _e (Ref.5) nat	£ENG	^t TH. €nat	tra. Eng	t. (Ref.2)
0.029% Ca	2800	29.7	50.9	54.7	102	154
	3500	6.71	10.9	11.5	19.7	26.4
	4000	2.56	4.12	4.12	6.56	6.73
	4800	0.48	0.66	0.67	0.93	1.00
0.054≴ cu	2900	61.1	98.7	119	201	216
	3500	12.6	18.9	23.9	58.9	49.4
	1000	4.01	2.5	7.37	11.6	13.0
	5000	0.51	17.0	0.83	1.19	2.12
0.101 % cu	3000	501	696	995	1533	380
	3500	104	1144	205	312	100
	4000	25.8	36.3	51.1	76.6	38.0
	6000	0.27	0.35	0.44	0.59	1.01
0.233 6 cu	4,000	634	881	1257	1929	> 1000
	4,800	96.0	136	191	289	220
	5500	23.7	32.6	45.5	67.0	41.0
	6500	3.86	4.06	7.03	9.95	7.60
	7500	0.70	0.93	1.18	1.57	1.28

.

TABLE 2 Comparison of Theory and Experiment: Magnesium-Aluminum Alloys at 500°F Tested by Robinson, Tietz and Dorn

		Pre	Predicted Rupture	Times (Hours)		
Atomic &	Nomine	Strain Hardening	rdening	Time Hardening	ning	Punture mine
of A.loying Element	Appl.Stress (pe1)	te (Ref.5) rat	£ ENG	^t TH.€nat	^t TH. €eng	texp. (Ref.2)
0.5% NB	5300	42.4	55.5	32.6	116	385
	6500	3.17	4.08	5.84	7.87	15.5
	7200	0.73	0.93	5.84	1.64	5.44
	8000	0.13	0.16	0.80	0.24	0.54
1.10% Mg	7000	82.0	107	163	234	266
	8000	14.6	19.1	28. ř	40.7	45.0
	9500	1.40	1.8k	2. 50	3.44	2.78
	10000	0.60	0.78	0. 99	1.33	1.16
1.62 % Ng	8500	82.0	112	154	224	260
	9 400	28.1	38.2	50.8	71.8	50.8
	10 800	5.87	7.65	9.71	13.0	6.00
	12000	1.31	1.61	1.92	2.38	1.23
3.23% Ng	11300	65.0	85.0	126	177	280
	12000	29.7	38.7	57.2	79.1	95.4
	14000	5.88	4.93	7.04	9.38	10.1
	16000	0.53	0.70	0.92	1.16	0.91

- F. W. S. S.

TABLE 3

Comparison of Theory and Experiment: Zinc-Aluminum Alloys at 300°F Tested by Robinson, Tietz and Dorn

			Predicted Rupture	Times (Hours)		
Atomic \$ of Alloying	Appl.Stress	Strain Hardening	rdening		11.16 t	Rupture Times
Element	(ps1)	#	ENG	Til. nat	TH ENG	exp. (ner.e.)
0.21\$ Zn	2500	28.3	42.3	かま	89.7	268
	88 87 87	5.86 1.87	8.69 2.70	10.8 3.28	17.1 4.99	8.00°
	4000	0.33	1 /10	0.51	0.71	0.31
0.40% Zn	2500	Ĺ-żz	35.7	43.6	72.0	500
	S 8	1.49	0.03 2.13	8.63 2.63	3.97	6.77
	7,000	0.26	0.35	0.41	0.56	1.20
0.76% Zn	2500	25.9	59.2	6.64	8 2. 7	506
	, 580 1,	<u>ુ</u> સંજ	7.41	18.5	29.9	તું હ
	000	0.33	0.45	0.53	47.0	1.29
1.62% Zn	2300	70.9	4.86	141	217	539
	2500	30.5	12.3	00°	8,8 7,1	155
	5000	50.65	15.4	70°0	0.0	200
	Q 60 F 2	1.28	1.69	₹ 0.0	÷ c	86
	8	R .0) v.o); ;	۵۲۰۰	2

mana mana mandan ya kadini na mandan man

Lhief of Naval Research		Commanding Officer		Special Projects Office	
Department of the Navy	(2)	Engineer Research Development Laboratory	(2)	Bureau of Naval Weapons	
Wasnington 25, D. C.		Fort Belvoir, Virginia		Department of the Navy	
Attn: Code 430		000		Washington 25, D. C.	12
Commanding Officer		Office of the Chief of Ordance		Attn: Missile Branch Technical Director	(1
Office of Kavai Research	(1)	Bepartment of the Army Washington 25, D. C.		recentest pirector	٠,
Mranch Office	117	Attn. Research and Materials		Chief, Bureau of Yards and Dock:	
494 Semmer Street		Branch (Ord RendD Div.)	(1)	Department of the Navy	
Reston 10, Massachusetts			***	Washington 25, D. C.	
_		Office of the Chief Signal Officer		Attn: Code D-202	(1
Commanding Officer		Department of the .irmy		Com D-292,3	0 0
Office of Naval Research	(1)	Washington to, D. C.		Code D-220	(1
Branch Office		Atta: Engineering and Technical Division	(1)	Code D-222	- (1
John Crerar Library Building				Code D-110C	- 6
66 E. Randolph Street		Commanding Officer		Code D-440	Ü
Chicago II, Minois		Watertown Arsenal	(1)	Code D-599	a
Commenting Officer		Watertown, Mannachusetta Attra: Laboratory Dirision		Commanding Officer and Director	
Office of Naval Research	(1)	ACCOUNT CHANGE OF S PAGE		David Taylor Model Basia	
Branch Office	117	Office of Ordance Burearch		Washington 7, D. C.	
344 Broadway		2127 Myrtle Drive		Atta: Code 140	(1
New York 13, New York		Dube Station		Cod. 600	ä
		Durham, North Caroline		Code 700	i a
Commading Officer		Attn. Division of Engineering Sciences	(4)	Code 720	0
Office of Naval Research	(1)	* *		Code 725	(l
Branch Office		Commanding Officer		Code 731	(1
1630 E. Green Street		Squier Signal Laboratory		Cude 740	(2
Pasadena, California		Fort Monmouth, New Jersey			
		Attn: Components and Material's Branch	(b)	Commander	
Commanding Officer		Ob. A.AM Lon		U.S. Naval Ordnance Laboratory	
Office of Naval Research Branch Office	(1)	Chief of Naval Operations Depositment of the Navy		White Oak, Maryland	
Besiden Cities 1888 Geary Street		Washington 25, D. C.		Atta: Technical Library	(2
Son Francisco, California		Atta: Op 91	(1)	DE.	(1
em timemo, cathotara		Op #3EG	(3)	K	ä
Commanding Utilizes		Op 03E0	1+7	•	4,
Office of Naval Research	(25)	Commendant, Marine Corps		Director	
Branch Office	(00)	Hondquarters, U. S. Marine Corps	(1)	Miterials Laboratory	(1
Navy No. 100, Fleet Post Office		Washington 25, D. C.	***	New York Naval Ships and	•
-		•		Brooklyn I, New York	
Director		Computer		• • •	
Naval Research Laboratory		Wright Air Development Conter		Commander	
Washington 25, D. C.		Wright-Patterson Air Force Base		Portsmooth Naval Shipyard	(2
Attn: Tech. Info. Officer (6)		Dayton, Chio		Portsworth New Mampshire	
Code 4200 (1)		Attn: Dynamics Branch	(b)		
Code 6246 (1)		Aircraft Laboraton	(b	Commander	
Code 6250 (1) Code 6360 (2)		WCLFY	(1)	Mary Johns Naval Shipyard	(2
Com (20) 91		Commanding Officer		Vallejo, California	
Armed Services Technical Information		CERCONDELL CHICAL		Commending Officer and Director	
Agency	(10)	Kirtiani Air Force Base		U.S. Neval Electronics Liberstory	(1
Arington Hall Station	(,	Albuquerque, New Mexico		Fan Diego 52, California	٠,
Arlington IZ, Virginia		Attn: Code 29 (Dr. J. N. Brennan)	(1)		
		, , , , , , , , , , , , , , , , , , ,		Officer-in-Charge	
Office of Technical Services		Chief, Bureau of Ships		Naval Civil Engineering Research	(2
Department of Commerce	(1)	Doportment of the Navy		and Evaluation Laboratory	
Washington 25, D. C.		Washington 25, D. C.		U.S. Naval Construction Buttalion Center	
		Attn: Code 106	(1)	Port Hueneme, California	
Director of Defense Research and Eng		Code 335	<u>(b)</u>	S	
The Pentagon Washington 25, D. C.	(1)	Code 345 Code 346	(1)	Director	
Attn: Tochnical Library		Code 429	(b)	Naval Air Experiment Station	
10-com at the 101)		Code 421	(i)	Naval Air Moterial Center Naval Base	
Chief, Defense Atomic Support Agency	,	Code 423	(2)	Philadelphia 12, Pennsylvania	
The Pentagen	•	Crode 425	7)	Atta: Materials Laboratory	(1
Washington 25, D, C.		Code 440	iii	Aretures Laboratory	ö
Atta: Tectalical & formation Division	(2)	C:sb: 442	(2)		•
Weapane Eff is Division	(1)	Code 443	(1)	Officer-in-Charge	
Special Field Projects	(1)	C~4e 1500	(1)	Underwater Explosion Research Division	(2
Plant and Sheck Branch	(1)			Aorfolk Naval Shippard	
		Chief, Bureas of Naval Weapons		Pertamouth, Virginia	
Office of the Secretary of the Arxy		Department or the Navy		Attn: Dr. H. M. Schmer	
The Pentagen	(.)	Washington 25 D. C.		- ·	
Washington 26, D. C.		Attn RRMA RAAV-14	0	Commander	
Atta: Army Library		RAAD	(i) (i)	U.S. Naval Proving Ground	(i
Chief of Staff		RAAD-2	ö	Dahigren, Virginia	
Department of the Army		RASY-7	Ö	Sepervisor of Shipbullding, USS and	
Washington 26. D. C.		RB6-e	iii	Naval Inspector of Ordnance	a
Attn: Development R: such (RendO D	iv. (1))tSee	ä	General Dynamics Corporation	"
Breenrck Brunch (Rando Div.	(1)	DU-3	ili	Lictric Boat Division	
Special Weepons Br (Rand) (NT. (1)	R	(i)	Groton, Connecticut	
		RM .	(i)		
Office of the Chief of Engineers		RV	i i	So, a program of Miliabullding . CHN and	
Deportment of the Army		RMLG	(l)	Naval Inspector of Ordinance	(I
Washington 25, D. C.	(n. 11)	RMGA	0	Semport News Shipbuilding and Dry Dork Co	n
Attn: ENG-HL Lib. Br., Adm. Ser. D.		RR	(1)	Newport News, Virginia	
ENG-WD Planning Liv. Civ I W ENG-EB Port. Constr. Pr Er		Commendence Officers		Companies of Table 1881 Acres 1	
Div., Mil. Conver.	g. (1)	Cotamanding Officer		Supervisor of Juphulling, USV and	
ENG-EA Struc. Br., Eng. Div.,		Frankford Arsensi Bridesburg Station		Naval Inductor of Ordinance Installs Shiphutiding Corporation	(1)
201. Constr.					
	(1)	Philadelphia 27, Pennsylvania	a)	Pascago la, Mississippi	
EMG-NB Special Engr. Br. , F. Rando Div.	(1)		(1)		

. The second second

The Company of the party is an experience of the state of the party of the state of

THE MICHIGAN AND THE PROPERTY OF THE PROPERTY

Fulcasor Josepa Marin, Head A particulat of Englicering Muchanics College of Engineering and Architecture Tomosylvania State University Adversity Park, Pennsylvania	(1)
Polet sor R. D. Musdin hyarir sea of Civil Engineering formula University 32 W. 125th Street fen York 27, New York	(i)
rofessor Pa. I M. Nagbdi helding T-1 felices of Engineering niversity of California serkeley 4, California	(1)
Professor William A. Nash Reportment of Engineering Mechanics Intersity of Florida Intersitie, Florida	(t)
Professor N. M. Newmark, sleet legariment of Civil Engineerin, 'niversity of Illinois 'rivina', Illinois	(1)
Professor II. Oronan Apartment of Mechanical Engineering Hassachusetts Lastitute of Technologo Inmbridge ID. Massachusetts	(t)
Professory Aris Position Reportment of Civil Engineering 5 Prospect Street falle University Leve Haven, Commeticut	(h
Professor W. Proger, Chairman Mysical Sciences Council Brown University Providence 12, Riode Island	ø
Professor J. M. M. Radek Department of Aeromantical Engineering and Applied Medmatica Postachmic Contitute of Breaklyn 333 Jay Mirect Brooklyn I. New York	(I)
Professor E. Reiso metitude of Miriternatical Sciences New York University Sewarerly Place Sew York J. New York	(1)
Professor E. Reissaur Department of Mathematics Manachusetts fatitule of Technology Cambridge 29, Massachusetts	(1)
Professor M. A. Badowsky Department of Mechanics Renovelser Polyteclade (notHule Proy. New York	(1)
Dr. Hyrson Serbin Draign belogration Dryarimer* Higher Aircraft Company Culver City, California	a)
Professor Bernard W. Staffer Department of Mechanical Engineering Sen York University University Heighta Sen York 53, New York	(1)
Professor J, Wallimotor Department of Civil Engineering Cuiversity of Rilmois Privana, Rilmois	(I)
Professor Eli Stersberg Department of Mechanica Brown University Providence 12, Rhode Island	(f)
Dr. T. Y. Thomas Graduate Smilitude for Hollomatics and Mici Indiana University	(l)

Professor S. P. Timoslauko Velori of Engineering Stanford University Stanford, California

(1)

CHOICE WHEN LINE WHEN THE BY LINE WAS COMMON AND A SECTION OF THE PARTY OF THE PART

Protessor A. S. Velestor Department of Civil Engineering Paircrafty of Ellipsia Urbana, Illinois	(1)
Dr. E. Werk, Senior Specialist Science and Technicopy Library of Congress Washington 25, D. C.	(1)
Professor Dana Young Yale University New Haves, Connection	(1)
Project Molf	(:0)
For your future distribution	(10)