5 Exercise Solutions: Chapter 5

1. (a) $\lambda = 0$ is an eigenvalue of A

$$\Leftrightarrow \det(A - 0I) = 0$$

$$\Leftrightarrow \det(A) = 0 \Leftrightarrow A \text{ is singular.}$$

(b) Suppose $A\mathbf{x} = \lambda \mathbf{x} \ (\mathbf{x} \neq \mathbf{0})$.

Then
$$A^2 \mathbf{x} = A(A\mathbf{x}) = A(\lambda \mathbf{x}) = \lambda(A\mathbf{x}) = \lambda(\lambda \mathbf{x}) = \lambda^2 \mathbf{x}$$
.

Thus, λ^2 is an eigenvalue of A^2 (with eigenvector \boldsymbol{x}) whenever λ is an eigenvalue of A (with eigenvector \mathbf{x}).

Now use induction.

(c) Let $V_{\lambda} = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \lambda \boldsymbol{x} \}$ $(\lambda \in \mathbb{R} \text{ fixed})$ and let $\boldsymbol{x}_1, \ \boldsymbol{x}_2 \in V_{\lambda}; \ \alpha, \beta \in \mathbb{R}$. Then

$$A(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) = \alpha A \mathbf{x}_1 + \beta A \mathbf{x}_2$$

$$= \alpha \lambda \mathbf{x}_1 + \beta \lambda \mathbf{x}_2 \quad (\mathbf{x}_1, \mathbf{x}_2 \in V_\lambda)$$

$$= \lambda(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2)$$

 $\Rightarrow \alpha \mathbf{x}_1 + \beta \mathbf{x}_2 \in V_{\lambda}$, and hence V_{λ} is a subspace of \mathbb{R}^n .

{Note: For V_{λ} to be a subspace we must include **0** which is **not** regarded as an eigenvector.}

(d) Let A be nilpotent. Then $\exists r \in \mathbb{N}$ such that $A^r = O_{n \times n}$. By part (b) above, if λ is an eigenvalue of A then λ^r is an eigenvalue of $A^r = O_{n \times n}$.

Hence $\lambda^r = 0$ (only eigenvalue of $O_{n \times n}$ is 0) and it follows that $\lambda = 0$.

2. Let
$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 $(a, b \in \mathbb{R})$.

Then
$$\det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ -b & a - \lambda \end{bmatrix} = (a - \lambda)^2 + b^2$$

$$\Rightarrow \det(A - \lambda I) = 0 \Leftrightarrow \lambda = a \pm ib \ (i^2 = -1).$$

Eigenvectors

$$\lambda = a + ib$$
. Solve $(A - \lambda I)x = 0$.

This is

$$\begin{bmatrix} -bi & b \\ -b & -bi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Solution is

$$x = k \begin{bmatrix} 1 \\ i \end{bmatrix}$$
 $\left(k = 1 \text{ gives } \begin{bmatrix} 1 \\ i \end{bmatrix}\right)$.

$$\lambda = a - ib$$
 Solve $\begin{bmatrix} bi & b \\ -b & bi \end{bmatrix} x = 0$

Solution is
$$\boldsymbol{x} = k \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
, and $k = 1$ gives $\begin{bmatrix} 1 \\ -i \end{bmatrix}$.

3. (a)
$$\begin{vmatrix} 1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 0 \\ 0 & 0 & 1-\lambda \end{vmatrix} = (1-\lambda)^3 = 0 \text{ when } \lambda = 1 \text{ (three times)}$$

 \Rightarrow Algebraic multiplicity = 3.

Geometric multiplicity is dimension of $N(A - \lambda I)$ —dimension of eigenspace of A corresponding to eigenvalue λ .

Solve

$$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \boldsymbol{x} = \boldsymbol{0}$$

and obtain

$$\boldsymbol{x} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Three linearly independent eigenvectors, so geometric multiplicity = 3.

(b)
$$\begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 = 0 \text{ when } \lambda = 1 \text{ (three times)}$$

 \Rightarrow Algebraic multiplicity = 3.

For geometric multiplicity we solve

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}.$$

This gives $x_3 = 0$ and x_1, x_2 arbitrary.

Hence

$$\boldsymbol{x} = \mu \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

 \exists 2 linearly independent eigenvectors, so geometric multiplicity = 2.

(c)
$$\begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 = 0 \text{ when } \lambda = 1 \text{ (three times)}$$

 \Rightarrow Algebraic multiplicity = 3.

For geometric multiplicity we solve

$$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right] \boldsymbol{x} = \boldsymbol{0}.$$

This gives $x_2 = x_3 = 0$, and x_1 arbitrary.

Hence

$$oldsymbol{x} = \mu \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight].$$

Geometric multiplicity = 1.

4. The characteristic equation of A is

$$f(\lambda) = \lambda^3 - 2\lambda^2 - 2\lambda - 1 = 0.$$

Hence by the Cayley-Hamilton Theorem

$$A^3 - 2A^2 - 2A - I_3 = O_{3 \times 3}.$$

In other words,

$$I_3 = A^3 - 2A^2 - 2A.$$

Hence $A^{-1} = A^2 - 2A - 2I_3$. Since

$$A^2 = \left[\begin{array}{rrr} 1 & 2 & 6 \\ 0 & 2 & 5 \\ 2 & 1 & 5 \end{array} \right],$$

this gives

$$A^{-1} = \begin{bmatrix} -3 & 2 & 2 \\ -4 & 2 & 3 \\ 2 & -1 & -1 \end{bmatrix}.$$

5. (a)
$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 6 & 1 \\ 1 & 2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)[(1 - \lambda)(2 - \lambda) - 6]$$

$$= (3 - \lambda)(\lambda^2 - 3\lambda - 4)$$

$$= (3 - \lambda)(\lambda - 4)(\lambda + 1)$$

$$= 0 \text{ when } \lambda = -1, 3, 4$$

Hence eigenvalues are -1, 3, 4.

Eigenvectors

$$\lambda = -1$$
: $A - \lambda I = \begin{bmatrix} 2 & 6 & 1 \\ 1 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 2 & 6 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 4 \end{bmatrix}$.

Hence
$$(A - \lambda I)\boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x} = \alpha \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$$
 for any $\alpha \in \mathbb{R}$.

This is an eigenvector corresponding to $\lambda = -1$ for any $\alpha \neq 0$.

$$\lambda = 3$$
: $A - \lambda I = \begin{bmatrix} -2 & 6 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} -2 & 6 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Hence
$$(A - \lambda I)\boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x} = \beta \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}$$
 for any $\beta \in \mathbb{R}$.

This is the eigenvector for any $\beta \neq 0$.

$$\lambda = 4$$
: $A - \lambda I = \begin{bmatrix} -3 & 6 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} -3 & 6 & 1 \\ 0 & 0 & +1 \\ 0 & 0 & -1 \end{bmatrix}$.

Hence
$$(A - \lambda I)\boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x} = \gamma \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
 for any $\gamma \in \mathbb{R}$.

This is the eigenvector for any $\gamma \neq 0$.

(b)
$$\det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & -1 & -5 \\ 1 & 2 - \lambda & 1 \\ 3 & 1 & 6 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 0 & 1 - \lambda \\ 1 & 2 - \lambda & 1 \\ 3 & 1 & 6 - \lambda \end{vmatrix}$$

$$r_1 := r_1 + r_3$$

$$= (1 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 1 & 2 - \lambda & 1 \\ 3 & 1 & 6 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 - \lambda & 0 \\ 3 & 1 & 6 - \lambda \end{vmatrix}$$

$$r_2 := r_2 - r_1$$

$$= (1 - \lambda)[(2 - \lambda)(6 - \lambda) - 3(2 - \lambda)]$$

$$= (1 - \lambda)(2 - \lambda)(3 - \lambda)$$

$$\Rightarrow \det(A - \lambda I) = 0 \text{ when } \lambda = 1, 2, 3.$$

Hence eigenvalues of A are 1, 2, 3.

Eigenvectors

$$\lambda = 1: \quad A - \lambda I = \begin{bmatrix} -3 & -1 & -5 \\ 1 & 1 & 1 \\ 3 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} -3 & -1 & -5 \\ -2 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$
$$r_2 := r_2 + r_1$$
$$r_3 := r_3 + r_1$$

Solution for $\mathbf{x} = (x_1, x_2, x_3)$ is given by $x_3 = \alpha$, $x_2 = \alpha$, $x_1 = -2\alpha$.

Hence eigenvector is $\mathbf{x} = \alpha(-2, 1, 1)$ for any $\alpha \neq 0$.

$$\lambda = 2: \quad A - \lambda I = \begin{bmatrix} -4 & -1 & -5 \\ 1 & 0 & 1 \\ 3 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} -4 & -1 & -5 \\ 1 & 0 & 1 \\ -1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} -4 & -1 & -5 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

 \Rightarrow Eigenvector is $\mathbf{x} = \beta(-1, -1, 1)$ for any $\beta \neq 0$.

$$\lambda = 3: \quad A - \lambda I = \begin{bmatrix} -5 & -1 & -5 \\ 1 & -1 & 1 \\ 3 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} -5 & -1 & -5 \\ 6 & 0 & 6 \\ -2 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} -5 & -1 & -5 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Eigenvector is $\boldsymbol{x} = \gamma(1, 0, -1)$ for any $\gamma \neq 0$.

(c)
$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 2 & 2 & -4 \\ 2 & 4 - \lambda & 2 & -1 \\ 1 & 1 & 3 - \lambda & -1 \\ 2 & 2 & 2 & -\lambda \end{vmatrix} = \begin{vmatrix} 4 - \lambda & 2 & 2 & -4 \\ 0 & 2 - \lambda & 2\lambda - 4 & 1 \\ 1 & 1 & 3 - \lambda & -1 \\ 0 & 0 & 2\lambda - 4 & 2 - \lambda \end{vmatrix}$$

$$r_2 := r_2 - 2r_3$$

$$r_4 := r_4 - 2r_3$$

$$= \begin{vmatrix} 4 - \lambda & 2 & -6 & -4 \\ 0 & 2 - \lambda & 2\lambda - 2 & 1 \\ 1 & 1 & 1 - \lambda & -1 \\ 0 & 0 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 4 - \lambda & 2 & -6 \\ 0 & 2 - \lambda & 2\lambda - 2 \\ 1 & 1 & 1 - \lambda \end{vmatrix}$$

$$r_1 := r_1 + r_2$$

$$= (2 - \lambda)(4 - \lambda) \begin{vmatrix} 1 & 1 & -2 \\ 0 & 2 - \lambda & 2\lambda - 2 \\ 1 & 1 & 1 - \lambda \end{vmatrix}$$

$$r_3 := r_3 - r_1$$

$$= (2 - \lambda)(4 - \lambda) \begin{vmatrix} 1 & 1 & -2 \\ 0 & 2 - \lambda & 2\lambda - 2 \\ 0 & 0 & 3 - \lambda \end{vmatrix}$$

$$= (2 - \lambda)^2(3 - \lambda)(4 - \lambda).$$

Hence eigenvalues are 2 (with algebraic multiplicity 2), 3, 4.

Eigenvectors

$$\lambda = 2: \quad A - \lambda I = \begin{bmatrix} 2 & 2 & 2 & -4 \\ 2 & 2 & 2 & -1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & 2 & 4 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Solution for $\mathbf{x} = (x_1, x_2, x_3, x_4)$ is given by $x_4 = 0$,

$$x_3 = \alpha$$
, $x_2 = \beta$, $x_1 = -\alpha - \beta$

Hence

$$\mathbf{x} = \alpha(-1, 0, 1, 0) + \beta(-1, 1, 0, 0)$$

The geometric multiplicity is 2 (2 linearly independent eigenvectors).

This is the dimension of N(A-2I).

$$\lambda = 3$$
 gives $x = \gamma(-2, 4, 1, 2)$ and $\lambda = 4$ gives $x = \delta(0, 3, 1, 2)$.

6. The eigenvalues of A are 5 and 4 and the corresponding eigenvectors are $\mathbf{u}_1 = (1,1)$ and $\mathbf{u}_2 = (1,2)$. Hence $D = P^{-1}AP$, where

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \ D = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}$$

and

$$P^{-1} = \left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array} \right].$$

Therefore $A = PDP^{-1}$ and $A^k = PD^kP^{-1}$. Now,

$$D^k = \left[\begin{array}{cc} 5^k & 0 \\ 0 & 4^k \end{array} \right].$$

Hence

$$A^{k} = PD^{k}P^{-1} = \begin{bmatrix} 2 \cdot 5^{k} - 4^{k} & 4^{k} - 5^{k} \\ 2(5^{k} - 4^{k}) & 2 \cdot 4^{k} - 5^{k} \end{bmatrix}.$$

7. The characteristic equation of A is

$$f(\lambda) = (\lambda - 2)^2(\lambda - 4) = 0.$$

Hence it has an eigenvalue $\lambda=2$ of algebraic multiplicity 2. However, there is only one linearly independent eigenvector, $\boldsymbol{u}=(1,0,0)$ corresponding to this eigenvalue, so one cannot construct the 3×3 matrix of eigenvectors and the matrix A cannot therefore be diagonalised.

8. The eigenvalues of A are 4 and 1. Corresponding to to the eigenvalue $\lambda = 1$ we have two linearly independent eigenvectors $\mathbf{u}_1 = (1, 1, 0)$ and $\mathbf{u}_2 = (-1, 0, 1)$ and corresponding to $\lambda = 4$, we have an eigenvector $\mathbf{u}_3 = (1, 1, 1)$. Hence A is diagonalisable and the matrix P is given by

$$P = \left[\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Hence $A = PDP^{-1}$, where

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \text{ and } P^{-1} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}.$$

(Note: you can use the idea of Q4 to compute P^{-1} !) Therefore if $B^2 = A$, we should have $B = PXP^{-1}$ where $X^2 = D$. There are many (see below) choices of X, e.g.

$$X_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \text{ or } X_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

In the first case we have

$$B = PX_1P^{-1} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}.$$

and in the second case

$$C = PX_2P^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 3 & -3 & 2 \end{bmatrix}.$$

Please check that $B^2 = A$ and $C^2 = A$.

As there are 3 (positive) eigenvalues of A, there are $2^3 = 8$ choices of the matrices X_i and hence of square roots of the matrix A.