Candidate Numbers:

```
* 640844 - Lynn Komen
* 837128 - Mark Mugo
```

Machine Learning for Business Analytics- UK Road Safety Dataset

This notebook is a Data Preprocessing and Explorary Data Analysis report on the UK Road Safety.

Table of Contents

- 1. Importing Libraries and Preparing Environment
- 2. Business Objective
- 3. Data Preparation
- 4. Descriptive Statistics
- 5. Data Exploration and Preprocessing
- 6. Conclusion
- 7. Data Exporting

0.0 - Importing Libraries and Preparing Environment

```
In [1]: import time
# We will monitor the time it takes to run the notebook
startnb = time.time()
```

```
In [3]:
        #Base Libraries
        import re
        import warnings
        import numpy as np
        import pandas as pd
        from scipy.stats import chi2_contingency
        #Library for Plotting
        import seaborn as sns
        sns.set(style="darkgrid")
        import matplotlib.pyplot as plt
        %matplotlib inline
        #Library for Data Preprocessing and Cleaning
        from sklearn.exceptions import ConvergenceWarning
        # Importing train_test_split function from scikit-learn to split data into
        from sklearn.model_selection import train_test_split
        from sklearn.base import TransformerMixin, BaseEstimator
        from sklearn.experimental import enable_iterative_imputer
        from sklearn.impute import IterativeImputer, SimpleImputer
        from sklearn.experimental import enable_iterative_imputer
        from sklearn.impute import IterativeImputer
        from sklearn.preprocessing import OrdinalEncoder
        from sklearn.preprocessing import LabelEncoder
        from sklearn.base import TransformerMixin, BaseEstimator
        from phik.report import plot_correlation_matrix
        from scipy.stats import chi2_contingency
        # Suppressing warnings to keep the output clean and more readable
        import warnings
        warnings.filterwarnings('ignore')
```

1.0 - Business Objective

Improving Casualty Severity Prediction and Response in the Health Sector

In the health sector, one of the primary objectives is to reduce fatalities and severe injuries from road accidents while improving the quality of care for casualties. Accurate and timely prediction of casualty severity can significantly enhance emergency response, allocate resources more effectively, and provide data-driven insights for preventative measures.

The current challenges in the health sector revolve around insufficient real-time data on casualty severity, which limits emergency response effectiveness, resource allocation, and subsequent medical interventions. Inadequate prediction models can lead to delays in providing appropriate treatment, with a high cost in terms of lives and hospital resources. There is an urgent need for advanced predictive models that integrate variables related to road accidents to predict casualty severity effectively.

The objective of this initiative is to build a robust predictive model for casualty severity, with the following goals:

 Predict Casualty Severity: Accurately predict the severity of casualties in road accidents based on various factors.

- Enhance Emergency Response: Provide emergency teams with valuable insights for optimal resource allocation and prioritization.
- Improve Health Outcomes: Tailor medical interventions to the severity of the injury, improving survival rates and recovery times.
- Data-Driven Policy Recommendations: Generate data-driven insights for policymakers to create better road safety policies.

2.0 - Data Preparation

2.1- Loading Data - Vehicle Dataset, Casualty Dataset and Data Guide

```
In [4]: # Loading data from a CSV file into a DataFrame
                       df1 = pd.read_csv("vehicle_2023.csv")
                       # Displaying the information about the DataFrame such as the number of entr
                       df1.info()
                        <class 'pandas.core.frame.DataFrame'>
                       RangeIndex: 189815 entries, 0 to 189814
                       Data columns (total 34 columns):
                                     Column
                                                                                                                                     Non-Null Count
                                    -----
                                                                                                                                      -----
                                                                                                                                     189815 non-null object
                          0
                                     accident index
                                     accident_year
                                                                                                                                    189815 non-null int64
                          1
                                                                                                                              189815 non-null object
189815 non-null int64
                                     accident reference
                          3
                                     vehicle_reference
                                    vehicle_type189815 non-null int64towing_and_articulation189815 non-null int64vehicle_manoeuvre189815 non-null int64vehicle_direction_from189815 non-null int64vehicle_direction_to189815 non-null int64
                          4
                          5
                          7
                          8
                                     vehicle_location_restricted_lane 189815 non-null int64
                          9
                         yenicle_location_restricted_lane layels non-null int64 lunction_location lunction_location_location lunction_location lunction_location lunction_location_location lunction_location lunction_location lunction_location lunction_location lunction_location lunction_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_location_loca
                          20 age band of driver
                                                                                                                                189815 non-null int64
                                                                                                                      189815 non-null int64
189815 non-null int64
189815 non-null int64
189815 non-null int64
189815 non-null int64
189815 non-null int64
                          21 engine_capacity_cc
                          22 propulsion code
                          23 age_of_vehicle
                          24 generic make model
                          25 driver imd decile
                          26 driver_home_area_type
                          27 lsoa_of_driver
                                                                                                                                  189815 non-null object
                          28 escooter_flag
                                                                                                                                  189815 non-null int64
                          29 dir_from_e
                                                                                                                                    19527 non-null float64
                          30 dir_from_n
                                                                                                                                     19527 non-null float64
                          31 dir to e
                                                                                                                                     19363 non-null float64
                          32 dir_to_n
                                                                                                                                     19363 non-null float64
                                                                                                                                     189815 non-null int64
                          33 driver distance banding
                        dtypes: float64(4), int64(26), object(4)
```

There are 189815 and 34 columns in the Vehicle Info dataset. We will drop and keep relevant variables based on judgement and interpretation from the business objective

memory usage: 49.2+ MB

In [5]: # Dropping specific columns from the DataFrame by their index positions
df1 = df1.drop(df1.columns[[0, 1, 2, 7, 8, 19, 27, 28, 29, 30, 31, 32, 33]]
Limiting the DataFrame to the first 6000 rows
df1 = df1[:6000]
Displaying the modified DataFrame
df1

Out[5]:

_		vehicle_reference	vehicle_type	towing_and_articulation	vehicle_manoeuvre	vehicle_lo
	0	1	11	0	4	
	1	1	11	0	18	
	2	2	9	0	9	
	3	3	9	0	8	
	4	1	9	0	18	
	5995	2	11	0	18	
	5996	1	1	9	99	
	5997	2	9	0	99	
	5998	1	9	0	99	
	5999	2	19	9	99	

6000 rows × 21 columns

In [6]: #The updated df with the necessary columns df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6000 entries, 0 to 5999
Data columns (total 21 columns):

memory usage: 984.5+ KB

#	Column	Non-Null Count	Dtype
0	vehicle_reference	6000 non-null	int64
1	vehicle_type	6000 non-null	int64
2	towing_and_articulation	6000 non-null	int64
3	vehicle_manoeuvre	6000 non-null	int64
4	<pre>vehicle_location_restricted_lane</pre>	6000 non-null	int64
5	junction_location	6000 non-null	int64
6	skidding_and_overturning	6000 non-null	int64
7	<pre>hit_object_in_carriageway</pre>	6000 non-null	int64
8	<pre>vehicle_leaving_carriageway</pre>	6000 non-null	int64
9	<pre>hit_object_off_carriageway</pre>	6000 non-null	int64
10	first_point_of_impact	6000 non-null	int64
11	vehicle_left_hand_drive	6000 non-null	int64
12	journey_purpose_of_driver	6000 non-null	int64
13	sex_of_driver	6000 non-null	int64
14	age_band_of_driver	6000 non-null	int64
15	<pre>engine_capacity_cc</pre>	6000 non-null	int64
16	propulsion_code	6000 non-null	int64
17	age_of_vehicle	6000 non-null	int64
18	<pre>generic_make_model</pre>	6000 non-null	object
19	driver_imd_decile	6000 non-null	int64
20	driver_home_area_type	6000 non-null	int64
dtyp	es: int64(20), object(1)		

```
In [7]: # Loading data from Casualty into a DataFrame called df2
df2 = pd.read_csv("casualty_2023.csv")
#information about the columns
df2.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 132977 entries, 0 to 132976
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	accident_index	132977 non-null	object
1	accident_year	132977 non-null	int64
2	accident_reference	132977 non-null	object
3	vehicle_reference	132977 non-null	int64
4	casualty_reference	132977 non-null	int64
5	casualty_class	132977 non-null	int64
6	sex_of_casualty	132977 non-null	int64
7	age_of_casualty	132977 non-null	int64
8	age_band_of_casualty	132977 non-null	int64
9	casualty_severity	132977 non-null	int64
10	<pre>pedestrian_location</pre>	132977 non-null	int64
11	pedestrian_movement	132977 non-null	int64
12	car_passenger	132977 non-null	int64
13	bus_or_coach_passenger	132977 non-null	int64
14	<pre>pedestrian_road_maintenance_worker</pre>	132977 non-null	int64
15	casualty_type	132977 non-null	int64
16	casualty_home_area_type	132977 non-null	int64
17	casualty_imd_decile	132977 non-null	int64
18	lsoa_of_casualty	132977 non-null	object
19	enhanced_casualty_severity	132977 non-null	int64
20	casualty_distance_banding	132977 non-null	int64
dtyp	es: int64(18), object(3)		
memo	ry usage: 21.3+ MB		

```
In [8]: # Dropping specific columns from the DataFrame df2 by their index positions
df2 = df2.drop(df2.columns[[0, 1, 2, 4, 7, 13, 14, 15, 17, 18, 19, 20]], ax

# Limiting the DataFrame df2 to the first 6000 rows
df2 = df2[:6000]

# Displaying the modified DataFrame df2
df2
```

Out[8]:

	vehicle_reference	casualty_class	sex_of_casualty	age_band_of_casualty	casualty_sev
0	1	3	2	4	
1	2	1	1	5	
2	3	2	2	7	
3	1	1	1	8	
4	2	1	1	6	
5995	1	3	1	5	
5996	1	1	1	7	
5997	1	1	2	6	
5998	1	1	1	8	
5999	1	1	1	8	

6000 rows × 9 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6000 entries, 0 to 5999
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	vehicle_reference	6000 non-null	int64
1	casualty_class	6000 non-null	int64
2	sex_of_casualty	6000 non-null	int64
3	age_band_of_casualty	6000 non-null	int64
4	casualty_severity	6000 non-null	int64
5	pedestrian_location	6000 non-null	int64
6	pedestrian_movement	6000 non-null	int64
7	car_passenger	6000 non-null	int64
8	casualty_home_area_type	6000 non-null	int64

dtypes: int64(9)
memory usage: 422.0 KB

Merging the datasets

Out[10]:

	vehicle_reference	vehicle_type	towing_and_articulation	vehicle_manoeuvre	vehicle_locati
0	1	11	0	4	
1	1	11	0	4	
2	1	11	0	4	
3	1	11	0	4	
4	1	11	0	4	

5 rows × 29 columns

In [11]: #Show the columns chosen for the analysis df3.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 18516174 entries, 0 to 18516173
Data columns (total 29 columns):

#	Column	Dtype
0	vehicle_reference	int64
1	vehicle_type	int64
2	towing_and_articulation	int64
3	vehicle_manoeuvre	int64
4	<pre>vehicle_location_restricted_lane</pre>	int64
5	junction_location	int64
6	skidding_and_overturning	int64
7	hit_object_in_carriageway	int64
8	vehicle_leaving_carriageway	int64
9	hit_object_off_carriageway	int64
10	first_point_of_impact	int64
11	vehicle_left_hand_drive	int64
12	journey_purpose_of_driver	int64
13	sex_of_driver	int64
14	age_band_of_driver	int64
15	<pre>engine_capacity_cc</pre>	int64
16	propulsion_code	int64
17	age_of_vehicle	int64
18	<pre>generic_make_model</pre>	object
19	driver_imd_decile	int64
20	driver_home_area_type	int64
21	casualty_class	int64
22	sex_of_casualty	int64
23	age_band_of_casualty	int64
24	casualty_severity	int64
25	pedestrian_location	int64
26	pedestrian_movement	int64
27	car_passenger	int64
28	casualty_home_area_type	int64
dtvn	es: int64(28), object(1)	

dtypes: int64(28), object(1)
memory usage: 4.1+ GB

In [12]: # Loading data from an Excel file named 'Data_Guide.xlsx' into a DataFrame
 df4 = pd.read_excel('Data_Guide.xlsx')

Displaying the first five rows of df4 to preview its content
 df4.head()

Note: This DataFrame, df4, contains descriptions for each data point in a

Out[12]:

label	code/format	field name	table	
Metropolitan Police	1	police_force	accident	0
Cumbria	3	police_force	accident	1
Lancashire	4	police_force	accident	2
Merseyside	5	police_force	accident	3
Greater Manchester	6	police_force	accident	4


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1775 entries, 0 to 1774
Data columns (total 4 columns):
```

#	Column	Non-Null Count	Dtype
0	table	1775 non-null	object
1	field name	1775 non-null	object
2	code/format	1722 non-null	object
3	label	1723 non-null	object
d+vn	oc: object(4)		

dtypes: object(4)
memory usage: 55.6+ KB

In [14]: # Filtering out rows from df4 where the 'table' column has the value 'accid df4 = df4[df4['table'] != 'accident'] # Dropping rows in df4 where the 'code/format' column contains missing valu df4 = df4.dropna(subset=['code/format'])

Displaying the first five rows of the modified DataFrame df4 to preview t
df4.head()

Out[14]:

it lab	code/format	field name	table	
1 Pedal cyc	1	vehicle_type	vehicle	1384
2 Motorcycle 50cc and und	2	vehicle_type	vehicle	1385
3 Motorcycle 125cc and und	3	vehicle_type	vehicle	1386
4 Motorcycle over 125cc and up to 500c	4	vehicle_type	vehicle	1387
5 Motorcycle over 5000	5	vehicle type	vehicle	1388

In [15]: #Check the new output
df4.head(60)

Out[15]:

1385 vehicle vehicle_type 2 Motorcycle 50cc at 1386 vehicle vehicle_type 3 Motorcycle 125cc at 1387 vehicle vehicle_type 4 Motorcycle over 125cc and up 1388 vehicle vehicle_type 5 Motorcycle over 1389 vehicle vehicle_type 8 Taxi/Private 1390 vehicle vehicle_type 9 10 Minibus (8 - 16 passenge 1391 vehicle vehicle_type 11 Bus or coach (17 or more pass 1393 vehicle vehicle_type 16 Ridde 1394 vehicle vehicle_type 17 Agricultura 1395 vehicle vehicle_type 18 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and ut 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric motor 1400 vehicle vehicle_type 25 Electric motor 1400 vehicle vehicle_type 26 Electric motor 1400 vehicle vehicle_type 27 Electric motor 150 vehicle vehicle_type 28 Electric motor 150 vehicle vehicle_type 29 Electric motor 150 vehicle vehicle_type 25 Electric motor 150 vehicle vehicle_type 26 Electric motor 150 vehicle vehicle_type 27 Electric motor 150 vehicle vehicle_type 27 Electric motor 150 vehicle vehicle_type 28 Electric motor 150 vehicle vehicle_type 29 Electric motor 150 vehicle vehicle_type 20 Electric motor 150 vehicle vehicle_type 26 Electric motor 150 vehicle vehicle_type 27 Electric motor 150 vehicle vehicle_type 27 Electric motor 150 vehicle vehicle_type 27 Electric motor 150 vehicle vehicle_type 28 Electric motor 150 vehicle vehicle_type 27 Electric motor 150 vehicle vehicle_type 27 vehicle vehicle_type 28 Electric motor 150 vehicle vehicle_type 29 vehicle vehicle_type 29 Electric motor 150 vehicle vehicle_type 29 vehicle vehicle_type 29 Electric motor 150 vehicle vehicle_type 20 vehicle vehicle_type 20 Electric motor 150 vehicle vehicle_type 20 Vehicle	nd under to 500cc er 500cc e hire car Car er seats) ss seats) en horse al vehicle Tram or under nder 7.5t and over
1386 vehicle vehicle_type 3 Motorcycle 125cc and up 1387 vehicle vehicle_type 4 Motorcycle over 125cc and up 1388 vehicle vehicle_type 5 Motorcycle over 1389 vehicle vehicle_type 8 Taxi/Private 1390 vehicle vehicle_type 9 1391 vehicle vehicle_type 10 Minibus (8 - 16 passenge) 1392 vehicle vehicle_type 11 Bus or coach (17 or more pass) 1393 vehicle vehicle_type 16 Ridde 1394 vehicle vehicle_type 17 Agricultura 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and un 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 90 Cothe 1401 vehicle vehicle_type 97 Motorcycle - unk 1402 vehicle vehicle_type 98 Goods vehicle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (195) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (195) 1406 vehicle vehicle_type 104 Motorcycle - Scooter (195)	nd under to 500cc er 500cc e hire car Car er seats) ss seats) en horse al vehicle Tram or under nder 7.5t and over
1387 vehicle vehicle_type 4 Motorcycle over 125cc and up 1388 vehicle vehicle_type 5 Motorcycle ov 1389 vehicle vehicle_type 8 Taxi/Private 1390 vehicle vehicle_type 9 1391 vehicle vehicle_type 10 Minibus (8 - 16 passenge) 1392 vehicle vehicle_type 11 Bus or coach (17 or more pass 1393 vehicle vehicle_type 16 Ridde 1394 vehicle vehicle_type 17 Agriculture 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and un 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric mc 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unk 1403 vehicle vehicle_type 98 Goods vehicle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self of the policy o	to 500cc er 500cc er 500cc er hire car Car er seats) es seats) en horse al vehicle Tram or under nder 7.5t and over y scooter
1388 vehicle vehicle_type 5 Motorcycle over 1389 vehicle vehicle_type 8 Taxi/Private 1390 vehicle vehicle_type 9 10 Minibus (8 - 16 passenger 1391 vehicle vehicle_type 11 Bus or coach (17 or more pass 1393 vehicle vehicle_type 16 Riddle 1394 vehicle vehicle_type 17 Agricultura 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and un 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric model 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self 1405 vehicle vehicle_type 103 Motorcycle - Scooter (1951) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (1951) 1406 vehicle vehicle_type 104 Motorcycle (1951) 1406 vehicle	rer 500cc e hire car Car er seats) ss seats) en horse al vehicle Tram or under nder 7.5t and over
1389 vehicle vehicle_type 8 Taxi/Private 1390 vehicle vehicle_type 9 1391 vehicle vehicle_type 10 Minibus (8 - 16 passenge) 1392 vehicle vehicle_type 11 Bus or coach (17 or more passenge) 1393 vehicle vehicle_type 16 Ridde 1394 vehicle vehicle_type 17 Agricultura 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and un 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric model 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self of the type) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (195) 1406 vehicle vehicle_type 103 Motorcycle - Scooter (195) 1406 vehicle vehicle_type 104 Motorcycle (195)	e hire car Car er seats) ss seats) en horse al vehicle Tram or under nder 7.5t and over
1390 vehicle vehicle_type 9 1391 vehicle vehicle_type 10 Minibus (8 - 16 passengers) 1392 vehicle vehicle_type 11 Bus or coach (17 or more passengers) 1393 vehicle vehicle_type 16 Ridders 1394 vehicle vehicle_type 17 Agricultures 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and understand the series of the	Car er seats) ss seats) en horse al vehicle Tram or under nder 7.5t and over
1391 vehicle vehicle_type 10 Minibus (8 - 16 passenge 1392 vehicle vehicle_type 11 Bus or coach (17 or more passenge 1393 vehicle vehicle_type 16 Riddle 1394 vehicle vehicle_type 17 Agricultura 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and use 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric masses 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unk 1403 vehicle vehicle_type 98 Goods vehicle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self at 1405 vehicle vehicle_type 103 Motorcycle - Scooter (1951) 1406 vehicle vehicle_type 104 Motorcycle (1951)	er seats) ss seats) en horse al vehicle Tram or under nder 7.5t and over
1392 vehicle vehicle_type 11 Bus or coach (17 or more pass 1393 vehicle vehicle_type 16 Ridde 1394 vehicle vehicle_type 17 Agricultura 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and ur 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric mode 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unk 1403 vehicle vehicle_type 98 Goods vehicle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self 1405 vehicle vehicle_type 103 Motorcycle - Scooter (1951) 1406 vehicle vehicle_type 104 Motorcycle (1951)	ss seats) en horse al vehicle Tram or under nder 7.5t and over
1393vehiclevehicle_type16Ridd1394vehiclevehicle_type17Agricultura1395vehiclevehicle_type181396vehiclevehicle_type19Van / Goods 3.5 tonnes mgw1397vehiclevehicle_type20Goods over 3.5t. and un1398vehiclevehicle_type21Goods 7.5 tonnes mgw1399vehiclevehicle_type22Mobility1400vehiclevehicle_type23Electric mode1401vehiclevehicle_type90Othe1402vehiclevehicle_type97Motorcycle - unknown1403vehiclevehicle_type98Goods vehicle - unknown1404vehiclevehicle_type99Unknown vehicle type (self of the type)1405vehiclevehicle_type103Motorcycle - Scooter (195)1406vehiclevehicle_type104Motorcycle (195)	en horse al vehicle Tram or under nder 7.5t and over y scooter
1394 vehicle vehicle_type 17 Agricultural 1395 vehicle vehicle_type 18 1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and under the control of the c	Tram or under nder 7.5t and over y scooter
1395vehiclevehicle_type181396vehiclevehicle_type19Van / Goods 3.5 tonnes mgw1397vehiclevehicle_type20Goods over 3.5t. and under the control of the control	Tram or under nder 7.5t and over y scooter
1396 vehicle vehicle_type 19 Van / Goods 3.5 tonnes mgw 1397 vehicle vehicle_type 20 Goods over 3.5t. and un 1398 vehicle vehicle_type 21 Goods 7.5 tonnes mgw 3 1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric mg 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unk 1403 vehicle vehicle_type 98 Goods vehicle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self of 1405 vehicle vehicle_type 103 Motorcycle - Scooter (1975 1406 vehicle vehicle_type 104 Motorcycle (1975 1406 vehicle vehicle_type 105 Motorcycle (1975 1406 vehicle vehicle_type 106 Motorcycle (1975 1406 vehicle vehicle_type 107 Motorcycle (1975 1406 vehicle vehicle_type 108 Motorcycle (1975 1406 vehicle vehicle_type 109 Motorcycle (1975 1406 ve	or under nder 7.5t and over y scooter
1397vehiclevehicle_type20Goods over 3.5t. and units1398vehiclevehicle_type21Goods 7.5 tonnes mgw 3.5t.1399vehiclevehicle_type22Mobility1400vehiclevehicle_type23Electric mode1401vehiclevehicle_type90Othe1402vehiclevehicle_type97Motorcycle - unknown1403vehiclevehicle_type98Goods vehicle - unknown1404vehiclevehicle_type99Unknown vehicle type (self of the self of the se	nder 7.5t and over y scooter
1398vehiclevehicle_type21Goods 7.5 tonnes mgw at 13991399vehiclevehicle_type22Mobility1400vehiclevehicle_type23Electric mode1401vehiclevehicle_type90Othe1402vehiclevehicle_type97Motorcycle - unknown1403vehiclevehicle_type98Goods vehicle - unknown1404vehiclevehicle_type99Unknown vehicle type (self of the product of the	and over
1399 vehicle vehicle_type 22 Mobility 1400 vehicle vehicle_type 23 Electric mode 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unknown 1403 vehicle vehicle_type 98 Goods vehicle - unknown 1404 vehicle vehicle_type 99 Unknown vehicle type (self region) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (197) 1406 vehicle vehicle_type 104 Motorcycle (197)	y scooter
1400 vehicle vehicle_type 23 Electric mode 1401 vehicle vehicle_type 90 Othe 1402 vehicle vehicle_type 97 Motorcycle - unknown 1403 vehicle vehicle_type 98 Goods vehicle - unknown 1404 vehicle vehicle_type 99 Unknown vehicle type (self to the type) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (197) 1406 vehicle vehicle_type 104 Motorcycle (197)	
1401 vehicle vehicle_type 90 Other 1402 vehicle vehicle_type 97 Motorcycle - unk 1403 vehicle vehicle_type 98 Goods vehicle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self transported type) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (197) 1406 vehicle vehicle_type 104 Motorcycle (197)	atorovala
1402 vehicle vehicle_type 97 Motorcycle - unk 1403 vehicle vehicle_type 98 Goods vehicle - unknow 1404 vehicle vehicle_type 99 Unknown vehicle type (self to the self type) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (1976) 1406 vehicle vehicle_type 104 Motorcycle (1976)	JUICYCIE
1403 vehicle vehicle_type 98 Goods vehicle - unknown 1404 vehicle vehicle_type 99 Unknown vehicle type (self to the self	er vehicle
1404 vehicle vehicle_type 99 Unknown vehicle type (self to the self type) 1405 vehicle vehicle_type 103 Motorcycle - Scooter (197) 1406 vehicle vehicle_type 104 Motorcycle (197)	(nown cc
1405vehiclevehicle_type103Motorcycle - Scooter (197)1406vehiclevehicle_type104Motorcycle (197)	/n weight
1406 vehicle vehicle_type 104 Motorcycle (197	rep only)
= 27	79-1998)
1407 vehicle vehicle type 105 Motorcycle - Combination (197	79-1998)
Tier vernere vernere vernere vernere (ver	79-1998)
1408 vehicle vehicle_type 106 Motorcycle over 125cc (199	99-2004)
1409 vehicle vehicle_type 108 Taxi (excluding private hire cars) (197	79-2004)
1410 vehicle vehicle_type 109 Car (including private hire cars) (197	79-2004)
1411 vehicle vehicle_type 110 Minibus/Motor caravan (197	79-1998)
1412vehiclevehicle_type113Goods over 3.5 tonnes (197)	79-1998)
1413 vehicle vehicle_type -1 Data missing or out	of range
1414 vehicle towing_and_articulation 0 No tow/art	ticulation
1415 vehicle towing_and_articulation 1 Articulated	d vehicle
1416 vehicle towing_and_articulation 2 Double or multiple	ole trailer
1417 vehicle towing_and_articulation 3	Caravan
1418 vehicle towing_and_articulation 4 Sing	gle trailer
1419 vehicle towing_and_articulation 5	Other tow
1420 vehicle towing_and_articulation 9 unknown (self relation)	reported)
1421 vehicle towing_and_articulation -1 Data missing or out	of range

	table	field name	code/format	label
1422	vehicle	vehicle_manoeuvre	1	Reversing
1423	vehicle	vehicle_manoeuvre	2	Parked
1424	vehicle	vehicle_manoeuvre	3	Waiting to go - held up
1425	vehicle	vehicle_manoeuvre	4	Slowing or stopping
1426	vehicle	vehicle_manoeuvre	5	Moving off
1427	vehicle	vehicle_manoeuvre	6	U-turn
1428	vehicle	vehicle_manoeuvre	7	Turning left
1429	vehicle	vehicle_manoeuvre	8	Waiting to turn left
1430	vehicle	vehicle_manoeuvre	9	Turning right
1431	vehicle	vehicle_manoeuvre	10	Waiting to turn right
1432	vehicle	vehicle_manoeuvre	11	Changing lane to left
1433	vehicle	vehicle_manoeuvre	12	Changing lane to right
1434	vehicle	vehicle_manoeuvre	13	Overtaking moving vehicle - offside
1435	vehicle	vehicle_manoeuvre	14	Overtaking static vehicle - offside
1436	vehicle	vehicle_manoeuvre	15	Overtaking - nearside
1437	vehicle	vehicle_manoeuvre	16	Going ahead left-hand bend
1438	vehicle	vehicle_manoeuvre	17	Going ahead right-hand bend
1439	vehicle	vehicle_manoeuvre	18	Going ahead other
1440	vehicle	vehicle_manoeuvre	99	unknown (self reported)
1441	vehicle	vehicle_manoeuvre	-1	Data missing or out of range
1442	vehicle	vehicle_direction_from	0	Parked
1443	vehicle	vehicle_direction_from	1	North

Mapping the data set according to the appropriate labels

```
In [17]: #Apply the code
df3_transformed = replace_codes_with_labels(df3, df4)
```

In [18]: #display the mapped data frame
df3_transformed.head(100)

Out[18]:

vehicle_loca	vehicle_manoeuvre	towing_and_articulation	vehicle_type	vehicle_reference	
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	0
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	1
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	2
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	3
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	4
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	95
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	96
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	97
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	98
On main c'	Slowing or stopping	No tow/articulation	Bus or coach (17 or more pass seats)	1	99
			c	rows x 20 column	100

100 rows × 29 columns

In [19]: #Show a brief overview of the categorical columns in the mapped data frame
df3_transformed.describe(include = 'object')

Out[19]:

	vehicle_type	towing_and_articulation	vehicle_manoeuvre	vehicle_location_restricted_
count	18516174	18516174	18516174	1851
unique	18	7	19	
top	Car	No tow/articulation	unknown (self reported)	On main c'way - not in restr
freq	9862985	16202126	7846361	995:

4 rows × 27 columns

In [20]: #Change the name of the transformed dataframe to understand the flow labell df5=df3_transformed

Out[21]:

vehicl	vehicle_manoeuvre	towing_and_articulation	vehicle_type	vehicle_reference	
On	Parked	No tow/articulation	Car	6	18516169
On	Parked	No tow/articulation	Car	6	18516170
On	Going ahead other	No tow/articulation	Car	6	18516171
On	Going ahead other	No tow/articulation	Car	6	18516172
On	Parked	No tow/articulation	Car	7	18516173

5 rows × 29 columns

In [22]: #We want to keep only 10,000 rows

df6 = df5.iloc[1799::1800]

#This is selecting every 1800th row starting from index 1799 to sample the

```
In [23]: #get info on the new data frame
df6.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 10286 entries, 1799 to 18514799
Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
	Column	NOII-NUIT COUIT	Dtype
0	vehicle_reference	10286 non-null	int64
1	vehicle_type	10286 non-null	object
2	towing_and_articulation	10286 non-null	object
3	vehicle_manoeuvre	10286 non-null	object
3 4	vehicle_location_restricted_lane	10286 non-null	object
4 5	junction location	10286 non-null	object
6	-	10286 non-null	-
	skidding_and_overturning		object
7	hit_object_in_carriageway	10286 non-null	object
8	vehicle_leaving_carriageway	10286 non-null	object
9	hit_object_off_carriageway	10286 non-null	object
10	first_point_of_impact	10286 non-null	object
11	vehicle_left_hand_drive	10286 non-null	object
12	journey_purpose_of_driver	10286 non-null	object
13	sex_of_driver	10286 non-null	object
14	age_band_of_driver	10286 non-null	object
15	<pre>engine_capacity_cc</pre>	10286 non-null	object
16	propulsion_code	10286 non-null	object
17	age_of_vehicle	10286 non-null	int64
18	<pre>generic_make_model</pre>	10286 non-null	object
19	driver_imd_decile	10286 non-null	object
20	driver_home_area_type	10286 non-null	object
21	casualty_class	10286 non-null	object
22	sex_of_casualty	10286 non-null	object
23	age_band_of_casualty	10286 non-null	object
24	casualty_severity	10286 non-null	object
25	<pre>pedestrian_location</pre>	10286 non-null	object
26	pedestrian_movement	10286 non-null	object
27	car_passenger	10286 non-null	object
28	casualty_home_area_type	10286 non-null	object
dtype	es: int64(2), object(27)		
memoi	ry usage: 2.4+ MB		

There 10286 entries, we will use this for the Exploratory Data Analysis

In [24]: #Inspect the data
df6.head()

Out[24]:

		vehicle_reference	vehicle_type	towing_and_articulation	vehicle_manoeuvre	vehicle_lo
•	1799	1	Bus or coach (17 or more pass seats)	No tow/articulation	Slowing or stopping	On main
	3599	1	Bus or coach (17 or more pass seats)	No tow/articulation	Slowing or stopping	On main
	5399	1	Bus or coach (17 or more pass seats)	No tow/articulation	Going ahead other	On main
	7199	1	Bus or coach (17 or more pass seats)	No tow/articulation	Going ahead other	On main
	8999	1	Bus or coach (17 or more pass seats)	No tow/articulation	Going ahead other	On main

5 rows × 29 columns

In [25]: #Check the general descriptive stats on the categorical variables
df6.describe(include = 'object')

Out[25]:

	vehicle_type	towing_and_articulation	vehicle_manoeuvre	vehicle_location_restricted_
count	10286	10286	10286	1
unique	17	6	19	
top	Car	No tow/articulation	unknown (self reported)	On main c'way - not in restr
freq	5460	8998	4352	1

4 rows × 27 columns

In [26]: # Count the number of missing values in each column of DataFrame
missing_values_count = df6.isna().sum()

Print the total number of missing values across all columns
print('Number of Missing Values : ' + str(missing_values_count.sum()))

Number of Missing Values : 0

2.2 - Variable Notes

Variables are categorised into multiple types: Nominal, Ordinal, Interval, Ratio.

To simplify, the types are narrowed down into 2 main types:

- Numeric : Variables containing numeric values.
- Categorical: Variables containing text data / each unique value indicates a category.

Category	Definition	Input Data
Categorical	The type of vehicle involved in the accident.e.q.,cars	vehicle type
Categorical	Indicates whether the vehicle was towing a trailer or articulated.	towing and articulation
Categorical	Describes the vehicle's movement before the accident	vehicle_manoeuvre
Categorica	Specifies if the vehicle was in a restricted lane e.g., a bus lane	vehicle_location_restricted_la ne
Categorica	Indicates the vehicle's position concerning a junction	junction_location
Categorica	Describes if the vehicle skidded, overturned	skidding_and_overturning
Categorica	Identifies objects that the vehicle hit within the carriageway	hit_object_in_carriageway
Categorica	Indicates whether the vehicle left the carriageway	vehicle_leaving_carriageway
Categorica	Identifies objects hit off the carriageway, such as trees	hit_object_off_carriageway
Categorica	The part of the vehicle that first made contact during the accident (e.g., front, rear, side).	First point of impact
Categorica	vehicle is designed for left- hand drive (Yes or No).	Vegicle left hand drive
Categorica	The reason for the journey at the time of the accident	Journey purpose of driver
Categorica	The gender of the driver	Sex of driver
Categorica	Age group category of the driver	Age band of driver
Numerica	The size of the vehicle's engine in cubic centimeters (cc).	Engine capacity cc
Categorica	The type of fuel or propulsion system	Propulsion code
Numerica	The number of years since the vehicle was first registered.	Age of vehicle
Categorica	A general description of the vehicle	Generic make model
Categorica	Representing the socio- economic status	Driver imd decile
Categorica	It categorizes the drivers' home locations	Driver Home Area Type
Categorica	This describes whether the casualty type	Casualty Class
Categorica	This states gender	Sex of Casualty
Categorica	age bands e.g., 21-25	Age Band of Casualty
Categorical	This states the intensity of the casuality	Casualty Severity
Categorica	This describes the location the passenger	Pedestrian Location
Categorical	This describes the direction the passenger	Pedestrian Movement
Categorica	if there was a passenger and position in the car	Car Passenger
Categorical	It categorizes the drivers' home locations	Casualty Home Area

Descriptive Stats on Training Datasets

```
In [27]: # Splitting DataFrame df6 into training and testing sets
# Set the seed for NumPy's random number generator
np.random.seed(1)

# Using 'vehicle_type' for stratification to maintain the proportion of dif
# Setting 'test_size' to 0.1 to allocate 10% of the data to the test set
# Using 'random_state' for reproducibility of the split
trainset, testset = train_test_split(df6, test_size=0.1, stratify=df6['vehi
```

```
In [28]: trainset.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9257 entries, 1151999 to 5570999
Data columns (total 29 columns):
```

	Columns (total 29 Columns):		
#	Column	Non-Null Count	Dtype
0	vehicle_reference	9257 non-null	int64
1	vehicle_type	9257 non-null	object
2	towing_and_articulation	9257 non-null	object
3	vehicle_manoeuvre	9257 non-null	object
4	vehicle_location_restricted_lane	9257 non-null	object
5	junction_location	9257 non-null	object
6	skidding_and_overturning	9257 non-null	object
7	hit_object_in_carriageway	9257 non-null	object
8	vehicle_leaving_carriageway	9257 non-null	object
9	hit_object_off_carriageway	9257 non-null	object
10	first_point_of_impact	9257 non-null	object
11	vehicle_left_hand_drive	9257 non-null	object
12	journey_purpose_of_driver	9257 non-null	object
13	sex_of_driver	9257 non-null	object
14	age_band_of_driver	9257 non-null	object
15	<pre>engine_capacity_cc</pre>	9257 non-null	object
16	propulsion_code	9257 non-null	object
17	age_of_vehicle	9257 non-null	int64
18	<pre>generic_make_model</pre>	9257 non-null	object
19	driver_imd_decile	9257 non-null	object
20	driver_home_area_type	9257 non-null	object
21	casualty_class	9257 non-null	object
22	sex_of_casualty	9257 non-null	object
23	age_band_of_casualty	9257 non-null	object
24	casualty_severity	9257 non-null	object
25	pedestrian_location	9257 non-null	object
26	pedestrian_movement	9257 non-null	object
27	car_passenger	9257 non-null	object
28	casualty_home_area_type	9257 non-null	object
dtype			-
memor	∽y usage: 2.1+ MB		

```
In [29]: # Remove the 'vehicle_reference' column from the trainset
trainset = trainset.loc[:, [col for col in trainset.columns if col != 'vehi
# Remove the 'vehicle_reference' column from the testset
testset = testset.loc[:, [col for col in testset.columns if col != 'vehicle
```

3.1 Target Variable

3.1.1 Casualty Severity

```
In [30]: # Displaying the statistical summary for 'casualty_severity'
pd.DataFrame(trainset.loc[:, 'casualty_severity'].describe())
```

Out[30]:

	casualty_severity
count	9257
unique	3
top	Slight
freq	7630

```
In [31]: # Getting the value counts of the 'casualty_severity' variable
  values = pd.DataFrame(trainset['casualty_severity'].value_counts())
  values.columns = ['Casualty Severity Count']

# The normalize attribute in the value_counts method computes the percentage
  percentages = pd.DataFrame(round(trainset['casualty_severity'].value_counts
  percentages.columns = ['% Casualty Severity']

# Converting the percentage values to a string format with a '%' sign
  percentages['% Casualty Severity'] = percentages['% Casualty Severity'].mag

# Joining the values and percentages dataframes
  summary_table = values.join(percentages)
  summary_table
```

Out[31]:

Casualty Severity Count % Casualty Severity

Slight	7630	82.42%
Serious	1625	17.55%
Fatal	2	0.02%

3.2 Dependent Variables

3.2.1 Numerical Variables

3.2.1.1 Engine Capacity cc

In [33]: # Generate summary statistics for the 'engine_capacity_cc' variable
Convert the output into a DataFrame for better readability
pd.DataFrame(trainset.loc[:,'engine_capacity_cc'].describe())

Out[33]:

	engine_capacity_cc
count	9257
unique	264
top	Data missing or out of range
freq	2250

```
sns.set_style("white") # Removes background gridlines
In [34]:
         # Separate numeric values and "Data missing or out of range"
         trainset['engine_capacity_cc'] = trainset['engine_capacity_cc'].astype(str)
         missing_count = trainset['engine_capacity_cc'].value_counts().get("Data mis")
         # Plot numeric values only
         numeric_data = trainset[trainset['engine_capacity_cc'] != "Data missing or
         sns.histplot(numeric_data, bins=30, kde=True, label="Valid Engine Capacity"
         # Add missing data count as a separate bar
         plt.axhline(y=missing_count, color='red', linestyle='dashed', label=f'Missi
         # Labels and title
         plt.xlabel("Engine Capacity (cc)")
         plt.ylabel("Number of Accidents")
         plt.title("Distribution of Engine Capacity (Including Missing Data)")
         plt.legend()
         plt.show()
```


 The distribution shows that most vehicles have engine capacities below 3000cc, with very few above 6000cc, possibly high-performance or commercial vehicles. A significant portion (2,250 cases) is missing or out of range, shown by the red dashed line. This missing data may skew analysis, requiring imputation or exclusion for accuracy.

```
#Check the descriptive stats on the numeric dataset
         numeric_data.describe()
Out[35]: count
                   7007.000000
         mean
                   1530.375482
                   1346.919051
         std
         min
                     49.000000
         25%
                    600.000000
         50%
                   1498.000000
         75%
                   1984.000000
         max
                  12902.000000
         Name: engine_capacity_cc, dtype: float64
```

3.2.1.2 Age of Vehicle

```
In [36]: pd.DataFrame(trainset.loc[:,'age_of_vehicle'].describe())
```

Out[36]:

	age_of_vehicle
count	9257.000000
mean	5.655504
std	5.795719
min	-1.000000
25%	1.000000
50%	5.000000
75%	9.000000
max	36.000000

The average vehicle age is 5.66 years, with most between 1 and 9 years. The minimum value of -1 suggests data entry errors that need cleaning. The oldest vehicle is 36 years, however the mean suggests a relatively young vehicle fleet and the high standard deviation (5.8) indicates a wide range of vehicle ages.

```
In [37]:
         # Set Seaborn style to a clean white background
         sns.set_style("white")
         # Create a histogram for the 'age_of_vehicle' column
         # - Use 30 bins for better granularity
         # - Includes a Kernel Density Estimate (KDE) to show the distribution curve
         # - Sets the color to "skyblue" for better visibility
         sns.histplot(trainset['age_of_vehicle'], bins=30, kde=True, )
         # Set x-axis label with a descriptive title
         plt.xlabel("Age of Vehicle (years)", fontsize=14, fontweight='bold')
         # Set y-axis label to indicate count
         plt.ylabel("Count", fontsize=14, fontweight='bold')
         # Set the title of the plot
         plt.title("Distribution of Vehicle Age", fontsize=16, fontweight='bold')
         # Display the plot
         plt.show()
```


• The vehicle age distribution is right-skewed, with most vehicles between 0-10 years old, peaking around newer vehicles (0-2 years). There are fewer older vehicles, but some exceed 30 years, possibly indicating classic or poorly maintained vehicles. The high frequency of very new cars suggests recent purchases or fleet vehicles.

3.2.2 Categorical variables

3.2.2.1 Vehicle Manoeuvre

In [38]: # Getting the value counts of the 'vehicle_manoeuvre' variable
This counts the occurrences of each unique value in the 'vehicle_manoeuvr
values = pd.DataFrame(trainset['vehicle_manoeuvre'].value_counts())
values.columns = ['Vehicle Manoeuvre Count'] # Renaming the column for cla

The normalize attribute in the value_counts method computes the percentag
This calculates the relative frequency (percentage) of each unique value
percentages = pd.DataFrame(round(trainset['vehicle_manoeuvre'].value_counts
percentages.columns = ['% Vehicle Manoeuvre'] # Renaming the column for cl

Converting the percentage values to a string format with a '%' sign for b
percentages['% Vehicle Manoeuvre'] = percentages['% Vehicle Manoeuvre'].map

Joining the values and percentages dataframes to create a summary table
This combines the count and percentage information into a single table fo
summary_table = values.join(percentages)

Displaying the summary table
summary_table

Out[38]:

	Vehicle Manoeuvre Count	% Vehicle Manoeuvre
unknown (self reported)	3924	42.39%
Going ahead other	2360	25.49%
Turning right	739	7.98%
Moving off	500	5.4%
Slowing or stopping	347	3.75%
Turning left	311	3.36%
Waiting to go - held up	236	2.55%
Going ahead right-hand bend	111	1.2%
Overtaking moving vehicle - offside	102	1.1%
Going ahead left-hand bend	99	1.07%
Waiting to turn right	85	0.92%
Overtaking static vehicle - offside	82	0.89%
Parked	77	0.83%
Reversing	75	0.81%
U-turn	62	0.67%
Overtaking - nearside	60	0.65%
Waiting to turn left	34	0.37%
Changing lane to left	32	0.35%
Changing lane to right	21	0.23%

- The most common manoeuvre is "unknown (self reported)" (41.9%), indicating a large portion of data lacks specific manoeuvre details.
- Rare manoeuvres like "Changing lane to right" (0.23%) highlight potential class imbalance in the dataset.

In [39]: # Creating a count plot to visualize the relationship between 'vehicle_mand # The plot uses a horizontal orientation (y-axis) for better readability of plt.figure(figsize=(12, 6)) # Setting the figure size for better visualized sns.countplot(y=trainset['vehicle_manoeuvre'], hue=trainset['casualty_sever plt.title('Vehicle Manoeuvre vs. Casualty Severity') # Adding a title to the plt.xlabel('Count') # Labeling the x-axis plt.ylabel('Vehicle Manoeuvre') # Labeling the y-axis plt.legend(title="Casualty Severity") # Adding a Legend to distinguish sever plt.show() # Displaying the plot

- "Unknown (self reported)" and "Going ahead other" have the highest incident counts, with most casualties being Slight.
- Fatal incidents are relatively rare but appear more frequently in manoeuvres like "Turning right" and "Moving off", indicating potential risk factors.

3.2.2.2 Junction Location

Getting the value counts of the 'junction_location' variable In [40]: # This counts the occurrences of each unique value in the 'junction_location' values = pd.DataFrame(trainset['junction_location'].value_counts()) values.columns = ['Junction Location Count'] # Renaming the column for cld # The normalize attribute in the value_counts method computes the percentag # This calculates the relative frequency (percentage) of each unique value percentages = pd.DataFrame(round(trainset['junction_location'].value_counts percentages.columns = ['% Junction Location'] # Renaming the column for cl # Converting the percentage values to a string format with a '%' sign for b percentages['% Junction Location'] = percentages['% Junction Location'].map # Joining the values and percentages dataframes to create a summary table # This combines the count and percentage information into a single table fo summary_table = values.join(percentages) # Displaying the summary table summary_table

Out[40]:

	Junction Location Count	% Junction Location
unknown (self reported)	3300	35.65%
Approaching junction or waiting/parked at junction approach	1808	19.53%
Not at or within 20 metres of junction	1779	19.22%
Mid Junction - on roundabout or on main road	844	9.12%
Cleared junction or waiting/parked at junction exit	622	6.72%
Entering main road	303	3.27%
Leaving main road	277	2.99%
Entering roundabout	151	1.63%
Leaving roundabout	133	1.44%
Entering from slip road	40	0.43%

- "Unknown (self reported)" is the most common category (35.1%), indicating a significant portion of data lacks specific junction location details.
- Incidents are also frequent "Approaching junction" (19.79%) and "Not at or within 20 metres of junction" (19.28%), suggesting these areas may require further safety analysis.

In [41]: # Creating a count plot to visualize the relationship between 'junction_loc # The plot uses a horizontal orientation (y-axis) for better readability of plt.figure(figsize=(12, 6)) # Setting the figure size for better visualized sns.countplot(y=trainset['junction_location'], hue=trainset['casualty_sever plt.title('Junction Location vs. Casualty Severity') # Adding a title to the plt.xlabel('Count') # Labeling the x-axis plt.ylabel('Junction Location') # Labeling the y-axis plt.legend(title="Casualty Severity") # Adding a Legend to distinguish severity plt.show() # Displaying the plot

• "Unknown (self reported)" has the highest incident counts, with most casualties being Slight, indicating a lack of detailed location data for many incidents.

3.2.2.3 Skidding and Overturning

In [42]: # Getting the value counts of the 'skidding_and_overturning' variable # This counts the occurrences of each unique value in the 'skidding_and_ove values = pd.DataFrame(trainset['skidding_and_overturning'].value_counts()) values.columns = ['Skidding and Overturning Count'] # Renaming the column # The normalize attribute in the value_counts method computes the percentag # This calculates the relative frequency (percentage) of each unique value percentages = pd.DataFrame(round(trainset['skidding_and_overturning'].value percentages.columns = ['% Skidding and Overturning'] # Renaming the column # Converting the percentage values to a string format with a '%' sign for b percentages['% Skidding and Overturning'] = percentages['% Skidding and Ove # Joining the values and percentages dataframes to create a summary table # This combines the count and percentage information into a single table fo summary_table = values.join(percentages) # Displaying the summary table summary_table

Out[42]:

	Skidding and Overturning Count	% Skidding and Overturning
None	4861	52.51%
unknown (self reported)	3944	42.61%
Skidded	238	2.57%
Overturned	127	1.37%
Skidded and overturned	85	0.92%
Jackknifed	2	0.02%

- "None" is the most common category (52.95%), indicating that most incidents did not involve skidding or overturning.
- A significant portion of data is labeled as "unknown (self reported)" (42.11%), highlighting potential gaps in reporting or data collection.

In [43]: # Creating a cross-tabulation (contingency table) to analyze the relationsh
'skidding_and_overturning' and 'casualty_severity'
The normalize='index' parameter computes proportions row-wise (i.e., for
cross_tab = pd.crosstab(trainset['skidding_and_overturning'], trainset['cas

Plotting the cross-tabulation as a stacked horizontal bar chart
cross_tab.plot(kind='barh', stacked=True, figsize=(10, 5))
plt.title('Skidding & Overturning vs. Casualty Severity') # Adding a title
plt.xlabel('Proportion') # Labeling the x-axis (proportions)
plt.ylabel('Skidding & Overturning') # Labeling the y-axis (skidding/overt
plt.legend(title="Casualty Severity", bbox_to_anchor=(1, 1)) # Adding a le
plt.show() # Displaying the plot

- "Skidded and overturned" has the highest proportion of Serious and Fatal incidents, making it the most severe scenario.
- "None" (no skidding or overturning) has the highest proportion of Slight incidents, indicating less severe outcomes in such cases.

3.2.2.4 Vehicle Leaving Carriageway

In [44]: # Getting the value counts of the 'vehicle_leaving_carriageway' variable # This counts the occurrences of each unique value in the 'vehicle leaving values = pd.DataFrame(trainset['vehicle_leaving_carriageway'].value_counts(values.columns = ['Vehicle Leaving Carriageway Count'] # Renaming the colu # The normalize attribute in the value_counts method computes the percentag # This calculates the relative frequency (percentage) of each unique value percentages = pd.DataFrame(round(trainset['vehicle_leaving_carriageway'].va percentages.columns = ['% Vehicle Leaving Carriageway'] # Renaming the col # Converting the percentage values to a string format with a '%' sign for b percentages['% Vehicle Leaving Carriageway'] = percentages['% Vehicle Leavi # Joining the values and percentages dataframes to create a summary table # This combines the count and percentage information into a single table fo summary_table = values.join(percentages) # Displaying the summary table summary_table

Out[44]:

	Vehicle Leaving Carriageway Count	% Vehicle Leaving Carriageway
Did not leave carriageway	4924	53.19%
unknown (self reported)	3901	42.14%
Nearside	251	2.71%
Offside	99	1.07%
Straight ahead at junction	39	0.42%
Offside on to central reservation	21	0.23%
Nearside and rebounded	12	0.13%
Offside and rebounded	8	0.09%
Offside on to centrl res + rebounded	2	0.02%

• "Did not leave carriageway" is the most common category (53.63%), indicating that in most incidents, vehicles remained on the carriageway.

In [45]: # Creating a count plot to visualize the relationship between 'vehicle_leav # The plot uses a horizontal orientation (y-axis) for better readability of plt.figure(figsize=(10, 4)) # Setting the figure size for better visualized sns.countplot(y=trainset['vehicle_leaving_carriageway'], hue=trainset['cast plt.title('Vehicle Leaving Carriageway vs. Casualty Severity') # Adding a plt.xlabel('Count') # Labeling the x-axis plt.ylabel('Vehicle Leaving Carriageway') # Labeling the y-axis plt.legend(title="Casualty Severity") # Adding a legend to distinguish sev plt.show() # Displaying the plot

• "Did not leave carriageway" has the highest incident counts, with most casualties being Slight, indicating less severe outcomes when vehicles remain on the carriageway.

3.2.2.5 Vehicle Type

In [46]: # Getting the value counts of the 'vehicle_type' variable # This counts the occurrences of each unique value in the 'vehicle_type' co values = pd.DataFrame(trainset['vehicle_type'].value_counts()) values.columns = ['Vehicle Type Count'] # Renaming the column for clarity # The normalize attribute in the value_counts method computes the percentag # This calculates the relative frequency (percentage) of each unique value percentages = pd.DataFrame(round(trainset['vehicle_type'].value_counts(norm percentages.columns = ['% Vehicle Type'] # Renaming the column for clarity # Converting the percentage values to a string format with a '%' sign for b percentages['% Vehicle Type'] = percentages['% Vehicle Type'].map(lambda x: # Joining the values and percentages dataframes to create a summary table # This combines the count and percentage information into a single table fo summary_table = values.join(percentages) # Displaying the summary table summary_table

Out[46]:

	Vehicle Type Count	% Vehicle Type
Car	4914	53.08%
Motorcycle 125cc and under	1569	16.95%
Pedal cycle	1036	11.19%
Van / Goods 3.5 tonnes mgw or under	473	5.11%
Bus or coach (17 or more pass seats)	375	4.05%
Taxi/Private hire car	292	3.15%
Motorcycle over 500cc	158	1.71%
Motorcycle over 125cc and up to 500cc	153	1.65%
Other vehicle	67	0.72%
Motorcycle 50cc and under	67	0.72%
Goods 7.5 tonnes mgw and over	36	0.39%
Motorcycle - unknown cc	31	0.33%
Minibus (8 - 16 passenger seats)	28	0.3%
Electric motorcycle	26	0.28%
Goods over 3.5t. and under 7.5t	17	0.18%
Goods vehicle - unknown weight	8	0.09%
Mobility scooter	7	0.08%

• Cars are the most common vehicle type involved in incidents (53.04%), followed by Motorcycles 125cc and under (16.98%).

In [47]: # Creating a count plot to visualize the relationship between 'vehicle_type # The plot uses a horizontal orientation (y-axis) for better readability of plt.figure(figsize=(10, 5)) # Setting the figure size for better visualize sns.countplot(y=trainset['vehicle_type'], hue=trainset['casualty_severity'] plt.title('Vehicle Type vs. Casualty Severity') # Adding a title to the pl plt.xlabel('Count') # Labeling the x-axis plt.ylabel('Vehicle Type') # Labeling the y-axis plt.legend(title="Casualty Severity") # Adding a legend to distinguish sev plt.show() # Displaying the plot

 Cars have the highest incident counts, with most casualties being Slight, indicating less severe outcomes for car-related incidents.

3.2.2.6 Towing and Articulation

In [48]: # Getting the value counts of the 'towing_and_articulation' variable # This counts the occurrences of each unique value in the 'towing and artic values = pd.DataFrame(trainset['towing_and_articulation'].value_counts()) values.columns = ['Towing and Articulation Count'] # Renaming the column ∱ # The normalize attribute in the value_counts method computes the percentag # This calculates the relative frequency (percentage) of each unique value percentages = pd.DataFrame(round(trainset['towing_and_articulation'].value] percentages.columns = ['% Towing and Articulation'] # Renaming the column # Converting the percentage values to a string format with a '%' sign for b percentages['% Towing and Articulation'] = percentages['% Towing and Articulation'] # Joining the values and percentages dataframes to create a summary table # This combines the count and percentage information into a single table fo summary_table = values.join(percentages) # Displaying the summary table summary_table

Out[48]:

Towing and Articulation Count % Towing and Articulation

-	_	
No tow/articulation	8094	87.44%
unknown (self reported)	1079	11.66%
Single trailer	33	0.36%
Caravan	21	0.23%
Other tow	19	0.21%
Articulated vehicle	11	0.12%

• "No tow/articulation" is the most common category (87.92%), indicating that most vehicles involved in incidents were not towing or articulated.

In [49]: # Creating a count plot to visualize the relationship between 'towing_and_a # The plot uses a horizontal orientation (y-axis) for better readability of plt.figure(figsize=(10, 6)) # Setting the figure size for better visualize sns.countplot(y=trainset['towing_and_articulation'], hue=trainset['casualty plt.title('Towing and Articulation vs. Casualty Severity') # Adding a titl plt.xlabel('Count') # Labeling the x-axis plt.ylabel('Towing and Articulation') # Labeling the y-axis plt.legend(title="Casualty Severity") # Adding a legend to distinguish sev plt.show() # Displaying the plot

• "No tow/articulation" has the highest incident counts, with most casualties being Slight, indicating less severe outcomes for vehicles not towing or articulated.

3.2.2.7 Vehicle Location Restricted

In [50]: # Getting the value counts of the 'vehicle_location_restricted_lane' variab # This counts the occurrences of each unique value in the 'vehicle_location values = pd.DataFrame(trainset['vehicle_location_restricted_lane'].value_cd values.columns = ['Vehicle Location Restricted Lane Count'] # Renaming the # The normalize attribute in the value_counts method computes the percentag # This calculates the relative frequency (percentage) of each unique value percentages = pd.DataFrame(round(trainset['vehicle_location_restricted_lane) percentages.columns = ['% Vehicle Location Restricted Lane'] # Renaming th # Converting the percentage values to a string format with a '%' sign for b percentages['% Vehicle Location Restricted Lane'] = percentages['% Vehicle # Joining the values and percentages dataframes to create a summary table # This combines the count and percentage information into a single table fo summary_table = values.join(percentages) # Displaying the summary table summary_table

Out[50]:

	Vehicle Location Restricted Lane Count	% Vehicle Location Restricted Lane
On main c'way - not in restricted lane	4978	53.78%
unknown (self reported)	3834	41.42%
Footway (pavement)	158	1.71%
Bus lane	112	1.21%
Cycle lane (on main carriageway)	43	0.46%
Cycleway or shared use footway (not part of main carriageway)	41	0.44%
Tram/Light rail track	39	0.42%
Busway (including guided busway)	23	0.25%
On lay-by or hard shoulder	14	0.15%
Entering lay-by or hard shoulder	8	0.09%
Leaving lay-by or hard shoulder	7	0.08%

• "On main carriageway - not in restricted lane" is the most common category (54.22%), indicating that most incidents occur on the main carriageway outside restricted lanes.

In [51]: # Creating a count plot to visualize the relationship between 'vehicle_loca' # The plot uses a horizontal orientation (y-axis) for better readability of plt.figure(figsize=(10, 6)) # Setting the figure size for better visualized sns.countplot(y=trainset['vehicle_location_restricted_lane'], hue=trainset[plt.title('Vehicle Location Restricted Lane vs. Casualty Severity') # Addit plt.xlabel('Count') # Labeling the x-axis plt.ylabel('Vehicle Location Restricted Lane') # Labeling the y-axis plt.legend(title="Casualty Severity") # Adding a legend to distinguish severits.show() # Displaying the plot

• "On main carriageway - not in restricted lane" has the highest incident counts, with most casualties being Slight, indicating less severe outcomes for incidents on the main carriageway.

3.2.2.8 Hit Object in Carriageway

In [52]: # Getting the value counts of the 'hit_object_in_carriageway' variable # This counts the occurrences of each unique value in the 'hit_object_in_ca values = pd.DataFrame(trainset['hit_object_in_carriageway'].value_counts()) values.columns = ['Hit Object in Carriageway Count'] # Renaming the column # The normalize attribute in the value_counts method computes the percentag # This calculates the relative frequency (percentage) of each unique value percentages = pd.DataFrame(round(trainset['hit_object_in_carriageway'].valu percentages.columns = ['% Hit Object in Carriageway'] # Renaming the colum # Converting the percentage values to a string format with a '%' sign for b percentages['% Hit Object in Carriageway'] = percentages['% Hit Object in (# Joining the values and percentages dataframes to create a summary table # This combines the count and percentage information into a single table fo summary_table = values.join(percentages) # Displaying the summary table summary_table

Out[52]:

	Hit Object in Carriageway Count	% Hit Object in Carriageway
None	4835	52.23%
unknown (self reported)	3905	42.18%
Kerb	182	1.97%
Parked vehicle	158	1.71%
Bollard or refuge	80	0.86%
Other object	62	0.67%
Open door of vehicle	18	0.19%
Any animal (except ridden horse)	10	0.11%
Previous accident	4	0.04%
Bridge (side)	3	0.03%

• "None" is the most common category (52.59%), indicating that in most incidents, no object was hit in the carriageway.

In [53]: # Creating a count plot to visualize the relationship between 'hit_object_i # The plot uses a horizontal orientation (y-axis) for better readability of plt.figure(figsize=(10, 4)) # Setting the figure size for better visualize sns.countplot(y=trainset['hit_object_in_carriageway'], hue=trainset['casual plt.title('Hit Object in Carriageway vs. Casualty Severity') # Adding a tiplt.xlabel('Count') # Labeling the x-axis plt.ylabel('Hit Object in Carriageway') # Labeling the y-axis plt.legend(title="Casualty Severity") # Adding a legend to distinguish sev plt.show() # Displaying the plot

• "Unknown (self reported)" has the highest incident counts, with most casualties being Slight, indicating a lack of detailed information for many incidents.

3.2.2.9 First point of impact

In [54]: pd.DataFrame(trainset.loc[:,'first_point_of_impact'].describe())

Out[54]:

	first_point_of_impact
count	9257
unique	6
top	Front
freq	4318

The variable is categorised into six types, with "Front" being the most common. This suggests that frontal collisions are the most frequent, likely due to head-on crashes, rearend collisions, or sudden braking scenarios. Understanding impact types can help improve vehicle safety measures and accident prevention strategies.

```
In [55]:
         # Set Seaborn style
         sns.set_style("white")
         # Define plot object with improved style
         count_plot = sns.countplot(x='first_point_of_impact', data=trainset, palett
         # Set title and labels with better formatting
         count_plot.set_title('Distribution of First Point of Impact in Accidents',
         plt.xlabel('First Point of Impact', fontsize=14, fontweight='bold', labelpa
         plt.ylabel('Count in Accidents', fontsize=14, fontweight='bold', labelpad=1
         # Rotate x-axis labels for better readability
         plt.xticks(rotation=45, ha='right')
         # Add horizontal gridlines for better readability
         plt.grid(axis='y', linestyle='--', alpha=0.5)
         # Show the plot
         plt.ylim(0, 4000)
         plt.show()
```

Distribution of First Point of Impact in Accidents

First Point of Impact

The front of the vehicle is the most common first point of impact in accidents, suggesting frequent head-on or rear-end collisions. Self-reported unknown impacts are the second highest, indicating potential data uncertainty. Rear, nearside, offside, and non-impact cases

occur less frequently.

3.2.2.10 Vehicle left hand drive

In [56]: pd.DataFrame(trainset.loc[:,'vehicle_left_hand_drive'].describe())

Out[56]:

	vehicle_left_hand_drive
count	9257
unique	3
top	No
freq	7027

Most vehicles are not left-hand drive, indicating that right-hand drive vehicles dominate in this dataset. The presence of left-hand drive vehicles suggests international or imported cars.

```
In [57]: # Getting the value counts of the 'vehicle_left_hand_drive' variable
   values = pd.DataFrame(trainset['vehicle_left_hand_drive'].value_counts())
   values.columns = ['vehicle_left_hand_drive Count']

# The normalize attribute in the value_counts method computes the percentage
   percentages = pd.DataFrame(round(trainset['vehicle_left_hand_drive'].value_
   percentages.columns = ['%vehicle_left_hand_drive']

# Converting the percentage values to a string format with a '%' sign
   percentages['%vehicle_left_hand_drive'] = percentages['%vehicle_left_hand_c

# Joining the values and percentages dataframes
   values.join(percentages)
```

Out[57]:

	vehicle_left_hand_drive Count	%vehicle_left_hand_drive
No	7027	75.91%
Unknown	2118	22.88%
Yes	112	1.21%

```
In [58]: # Bar Chart distribution
    sns.set(style="white")

count_plot = sns.countplot(x='vehicle_left_hand_drive', data=trainset, pale

# Setting the title and labels
    count_plot.set_title('Distribution of Vehicle Left Hand Drive', fontsize=16
    plt.xlabel('Vehicle Left Hand Drive', fontsize=14, fontweight='bold')
    plt.ylabel('Count', fontsize=14, fontweight='bold')

# Show the plot
    plt.ylim(0, 8000)
    plt.tight_layout()
    plt.show()
```


Most vehicles in the dataset are right-hand drive, making up the majority. Only 112 left-hand drive vehicles exist, likely imports or special-use cars.

3.2.2.11 Journey purpose of driver

In [59]: pd.DataFrame(trainset.loc[:,'journey_purpose_of_driver'].describe())

Out[59]:

	journey_purpose_of_driver
count	9257
unique	5
top	Not known
freq	5962

The journey purpose of the driver is mostly unknown, indicating data gaps in accident reporting. Among the five categories, the remaining provide meaningful insights into whether travel purpose affects accident risk.

In [60]: # Getting the value counts of the 'journey_purpose_of_driver' variable
 values = pd.DataFrame(trainset['journey_purpose_of_driver'].value_counts())
 values.columns = ['journey_purpose_of_driver Count']

The normalize attribute in the value_counts method computes the percentage
 percentages = pd.DataFrame(round(trainset['journey_purpose_of_driver'].value)
 percentages.columns = ['%journey_purpose_of_driver']

Converting the percentage values to a string format with a '%' sign
 percentages['%journey_purpose_of_driver'] = percentages['%journey_purpose_of_driver']

Joining the values and percentages dataframes
 values.join(percentages)

Out[60]:

	journey_purpose_of_driver Count	%journey_purpose_of_driver
Not known	5962	64.41%
Journey as part of work	1737	18.76%
Commuting to/from work	1409	15.22%
Taking pupil to/from school	130	1.4%
Pupil riding to/from school	19	0.21%

```
In [61]: # Countplot for 'journey_purpose_of_driver'
    sns.set(style="white")
    count_plot = sns.countplot(x='journey_purpose_of_driver', data=trainset, pa

# Set title and labels
    count_plot.set_title('Distribution of Journey Purpose of Driver', fontsize=
    plt.xlabel('Journey Purpose of Driver', fontsize=14, fontweight='bold')
    plt.ylabel('Count', fontsize=14, fontweight='bold')

# Adjust the y-axis to make sure smaller categories are visible
    plt.ylim(0, trainset['journey_purpose_of_driver'].value_counts().max() * 1.

# Rotate x-axis labels because they are long
    plt.xticks(rotation=45, ha='right')

# Show the plot
    plt.tight_layout()
    plt.show()
```


The majority of journey purposes are unknown. Among known cases, work-related journeys (part of work or commuting) dominate, suggesting higher accident risk for working drivers. School-related trips are rare, possibly indicating safer travel conditions or underreporting.

3.2.2.12 Sex of driver

In [62]: pd.DataFrame(trainset.loc[:,'sex_of_driver'].describe())

Out[62]:

	sex_of_driver
count	9257
unique	3
top	Male
freq	5913

Most drivers in the dataset are male, suggesting a higher involvement of men in reported accidents.

```
In [63]:
         sns.set(style="white")
         # Countplot
         count_plot = sns.countplot(x='sex_of_driver', data=trainset, palette="magma")
         # Set the title and labels with larger font sizes for clarity
         count_plot.set_title('Distribution of Driver Sex', fontsize=16, fontweight=
         plt.xlabel('Sex of Driver', fontsize=14, fontweight='bold')
         plt.ylabel('Number of Accidents', fontsize=14, fontweight='bold')
         # Annotate each bar with the count value and percentage
         total = len(trainset) # Total number of rows in the dataset
         for p in count_plot.patches:
             # Get the height of each bar (the count)
             height = p.get_height()
             # Calculate the percentage
             percentage = (height / total) * 100
         # Show the plot
         plt.ylim(0, 7000)
         plt.tight_layout()
         plt.show()
```


Most drivers in accidents are male (63.9%), significantly higher than female drivers (19.6%). This could indicate higher male driving exposure or riskier driving behavior.

3.2.2.13 Age band of driver

In [64]: pd.DataFrame(trainset.loc[:,'age_band_of_driver'].describe())

Out[64]:

	age_band_of_driver
count	9257
unique	11
top	26 - 35
freq	2383

The 26-35 age group is the most common among drivers in accidents. With 11 unique age bands, accidents involve a diverse age range. Understanding whether younger or older drivers have higher accident severity could improve targeted road safety campaigns and driver training programs.

```
In [65]: sns.set(style="white")
         plt.figure(figsize=(10, 6)) # Adjust figure size to make the plot clearer
         # Plot the countplot for 'age band of driver'
         count_plot = sns.countplot(x='age_band_of_driver', data=trainset, palette='
         # Set the title and labels with larger font sizes for better readability
         count_plot.set_title('Distribution of Driver Age Bands', fontsize=16, fontw
         plt.xlabel('Age Band of Driver', fontsize=14, fontweight='bold')
         plt.ylabel('Count of Drivers', fontsize=14, fontweight='bold')
         # Rotate x-axis labels for better readability
         plt.xticks(rotation=45, ha='right') # Rotate labels 45 degrees to avoid ov
         # Calculate total number of drivers for percentage calculation
         total = len(trainset)
         # Annotate the bars with the count and percentage
         for p in count_plot.patches:
             # Get the height of each bar (the count of each age band)
             height = p.get_height()
             # Calculate the percentage
             percentage = (height / total) * 100
             # Annotate with both count and percentage on top of the bars
             count_plot.annotate(f' ({percentage:.1f}%)',
                                 (p.get_x() + p.get_width() / 2., height), # Positi
                                 ha='center', va='bottom', # Horizontal center, ver
                                 fontsize=10, fontweight='bold', color='black',
                                 xytext=(5, 5), textcoords='offset points') # Sligh
         # Show the plot with tight layout to ensure labels and title fit properly
         plt.ylim(0, 3000)
         plt.tight layout()
         plt.show()
```


The 26-35 age group accounts for 25.7% of accidents, making them the most involved drivers. Accident frequency decreases with age, suggesting younger drivers may take more risks or have higher exposure.

3.2.2.14 Propulsion code

In [66]: pd.DataFrame(trainset.loc[:,'propulsion_code'].describe())

Out[66]:

	propulsion_code
count	9257
unique	7
top	Petrol
freq	4484

The majority of vehicles use petrol, followed by other propulsion types. With seven unique fuel types, the dataset represents a diverse vehicle mix.

Out[67]:

	propulsion_code Count	%propulsion_code
Petrol	4484	48.44%
Undefined	1993	21.53%
Heavy oil	1816	19.62%
Hybrid electric	685	7.4%
Electric	254	2.74%
Electric diesel	21	0.23%
Gas/Bi-fuel	4	0.04%

```
In [68]: # Bar plot with annotations for frequency
# Set the figure size
sns.set(style="white")
sns.countplot(x='propulsion_code', data=trainset, palette='magma')

# Title and axis labels
plt.title('Frequency of Each Propulsion Code', fontsize=16, fontweight='bol
plt.xlabel('Propulsion Type', fontsize=14, fontweight='bold')
plt.ylabel('Count of Vehicles', fontsize=14, fontweight='bold')

# Rotate x-axis labels for readability
plt.xticks(rotation=45, ha='right')

# Show the plot
plt.ylim(0, 6000)
plt.tight_layout()
plt.show()
```


Petrol-powered vehicles dominate, followed by heavy oil. Hybrid electric and electric vehicles are less common, suggesting limited adoption.

3.2.2.15 Generic make model

In [69]: pd.DataFrame(trainset.loc[:,'generic_make_model'].describe())

Out[69]:

	generic_make_model
count	9257
unique	423
top	-1
freq	2185

The dataset contains 423 unique vehicle models, but "-1" appears most frequently, likely indicating missing or unclassified data.

```
In [70]: # Getting the value counts of the 'generic_make_model' variable
    values = pd.DataFrame(trainset['generic_make_model'].value_counts())
    values.columns = ['generic_make_model Count']

# The normalize attribute in the value_counts method computes the percentage
    percentages = pd.DataFrame(round(trainset['generic_make_model'].value_count
    percentages.columns = ['%generic_make_model']

# Converting the percentage values to a string format with a '%' sign
    percentages['%generic_make_model'] = percentages['%generic_make_model'].map

# Joining the values and percentages dataframes
    values.join(percentages)
```

Out[70]:

. <u> </u>	generic_make_model Count	%generic_make_model
-1	2185	23.6%
YAMAHA GPD	380	4.11%
HONDA WW125	361	3.9%
TOYOTA PRIUS	257	2.78%
HONDA SH 125	210	2.27%
LEXUS GS 450	1	0.01%
SEAT ALTEA	1	0.01%
PIAGGIO FLY	1	0.01%
JEEP GRAND CHEROKEE	1	0.01%
BMW S 1000	1	0.01%

423 rows × 2 columns

```
In [71]:
         # Set the Seaborn style to a clean white background
         sns.set(style="white")
         # Create a figure with a specified size
         plt.figure(figsize=(12, 6))
         # Get the top 20 most common vehicle models in accidents
         top_models = trainset['generic_make_model'].value_counts().nlargest(20)
         # Create a bar plot with the "magma" color palette
         sns.barplot(x=top_models.index, y=top_models.values, palette="magma")
         # Set x-axis and y-axis labels
         plt.xlabel("Vehicle Make and Model", fontsize=14, fontweight='bold')
         plt.ylabel("Count", fontsize=14, fontweight='bold')
         # Set the plot title with better readability
         plt.title("Top 20 Most Common Vehicle Models in Accidents", fontsize=16, fc
         # Rotate x-axis labels at 45 degrees for better readability
         plt.xticks(rotation=45, ha='right')
         # Display the plot
         plt.show()
```


The most common entry is "-1", indicating a large amount of missing vehicle model data. Among known models, motorcycles (Yamaha, Honda WW125, Honda SH 125) and popular cars (Toyota Prius, Volkswagen Golf, Ford Focus) dominate. This suggests motorcycles may be overrepresented in accidents.

3.2.2.16 Driver IMD decile

In [72]: pd.DataFrame(trainset.loc[:,'driver_imd_decile'].describe())

Out[72]:

	driver_imd_decile
count	9257
unique	11
top	Data missing or out of range
freq	1677

```
In [73]: # Getting the value counts of the 'driver_imd_decile' variable
  values = pd.DataFrame(trainset['driver_imd_decile'].value_counts())
  values.columns = ['driver_imd_decile Count']

# The normalize attribute in the value_counts method computes the percentage
  percentages = pd.DataFrame(round(trainset['driver_imd_decile'].value_counts
  percentages.columns = ['%driver_imd_decile']

# Converting the percentage values to a string format with a '%' sign
  percentages['%driver_imd_decile'] = percentages['%driver_imd_decile'].map(]

# Joining the values and percentages dataframes
  values.join(percentages)
```

Out[73]:

	driver_imd_decile Count	%driver_imd_decile
Data missing or out of range	1677	18.12%
More deprived 10-20%	1500	16.2%
More deprived 20-30%	1453	15.7%
More deprived 30-40%	1050	11.34%
More deprived 40-50%	839	9.06%
Less deprived 40-50%	694	7.5%
Most deprived 10%	545	5.89%
Less deprived 30-40%	473	5.11%
Less deprived 20-30%	460	4.97%
Less deprived 10-20%	329	3.55%
Least deprived 10%	237	2.56%

A significant portion of driver IMD decile data is missing. The 11 unique values indicate a wide socio-economic distribution among drivers. Investigating whether deprivation levels correlate with accident severity could provide insights into road safety disparities and targeted interventions for high-risk areas.

```
In [74]:
         sns.set(style="white") # Seaborn style for a clean background.
         plt.figure(figsize=(10, 5)) # Adjust the size
         # Create a count plot with ordered categories
         count_plot = sns.countplot(
             data=trainset,
             x='driver_imd_decile',
             order=trainset['driver_imd_decile'].value_counts().index,
             palette="magma"
         )
         # Set labels and title
         plt.xlabel("IMD Decile (1 = Most Deprived, 10 = Least Deprived, 'Missing')"
         plt.ylabel("Count of Drivers", fontsize=12)
         plt.title("Distribution of Driver IMD Deciles (Including Missing Data)", fo
         # Rotate x-axis labels for better readability
         plt.xticks(rotation=45, ha='right')
         # Show the plot
         plt.ylim(0,1800)
         plt.show()
```


A large portion of driver IMD decile data is missing, affecting analysis. Most drivers come from more deprived areas (10-50%), while fewer are from less deprived areas (10-50%). This suggests higher accident involvement among drivers from deprived regions, warranting further investigation into socio-economic factors and road safety disparities.

3.2.2.17 Driver Home Area Type

In [75]: pd.DataFrame(trainset.loc[:,'driver_home_area_type'].describe())

Out[75]:

	driver_home_area_type
count	9257
unique	4
top	Urban area
freq	7427

```
In [76]: # Getting the value counts of the 'driver_home_area_type' variable
    values = pd.DataFrame(trainset['driver_home_area_type'].value_counts())
    values.columns = ['driver_home_area_type Count']

# The normalize attribute in the value_counts method computes the percentage
    percentages = pd.DataFrame(round(trainset['driver_home_area_type'].value_counts
    percentages.columns = ['%driver_home_area_type']

# Converting the percentage values to a string format with a '%' sign
    percentages['%driver_home_area_type'] = percentages['%driver_home_area_type']

# Joining the values and percentages dataframes
    values.join(percentages)
```

Out[76]:

	driver_home_area_type Count	%driver_home_area_type
Urban area	7427	80.23%
Data missing or out of range	1657	17.9%
Rural	96	1.04%
Small town	77	0.83%

Majority of the drivers live in urban areas

```
In [77]: # Define plot object with magma palette
    count = sns.countplot(data=trainset, x='driver_home_area_type', hue='casual
    # Setting graph title and labels
    count.set_title('Driver Home Area Type')
    count.set(xlabel='Home Type', ylabel='Count')

# Slant the x-axis labels by setting a rotation
    plt.xticks(rotation=45) # Rotate labels to 45 degrees for better visibilit
    # Show the plot
    plt.ylim(0,10000)
    plt.show()
```


3.2.2.18 Sex_of_casualty

In [78]: pd.DataFrame(trainset.loc[:,'sex_of_casualty'].describe())

Out[78]:

	sex_of_casualty
count	9257
unique	3
top	Male
freq	5873

Out[79]:

<u></u>	sex_of_casualty Count	%sex_of_casualty
Male	5873	63.44%
Female	3033	32.76%
Data missing or out of range	351	3.79%

Majority of the casualties are male

```
In [80]: # Define plot object with magma palette
    count = sns.countplot(data=trainset, x='sex_of_casualty', hue='casualty_seve
# Setting graph title and labels
    count.set_title('Gender')
    count.set(xlabel='Sex of Casualty', ylabel='Count')

# Slant the x-axis labels by setting a rotation
    plt.xticks(rotation=45) # Rotate labels to 45 degrees for better visibilit

# Showing the plot **after** adding labels
    plt.show()
```


3.2.2.19 Age band of casualty

In [81]: pd.DataFrame(trainset.loc[:,'age_band_of_casualty'].describe())

Out[81]:

	age_band_of_casualty
count	9257
unique	12
top	26 - 35
freq	2083

```
In [82]: # Getting the value counts of the 'age_band_of_casualty' variable
    values = pd.DataFrame(trainset['age_band_of_casualty'].value_counts())
    values.columns = ['age_band_of_casualty Count']

# The normalize attribute in the value_counts method computes the percentage
    percentages = pd.DataFrame(round(trainset['age_band_of_casualty'].value_coupercentages.columns = ['%age_band_of_casualty']

# Converting the percentage values to a string format with a '%' sign
    percentages['%age_band_of_casualty'] = percentages['%age_band_of_casualty']

# Joining the values and percentages dataframes
    values.join(percentages)
```

Out[82]:

	age_band_of_casualty Count	%age_band_of_casualty
26 - 35	2083	22.5%
36 - 45	1949	21.05%
46 - 55	1874	20.24%
21 - 25	914	9.87%
56 - 65	792	8.56%
16 - 20	466	5.03%
6 - 10	365	3.94%
66 - 75	364	3.93%
Over 75	334	3.61%
Data missing or out of range	66	0.71%
11 - 15	44	0.48%
0 - 5	6	0.06%

The 25-26 age band are most of the casualties

```
In [83]: # Create a DataFrame of the top 10 most frequent age bands of casualties
    top_age_bands = pd.DataFrame(trainset['age_band_of_casualty'].value_counts(

# Plotting the data
# 'kind='bar'' specifies that the plot should be a bar chart
plot = top_age_bands.plot(kind='bar' , legend=False) # Turn off the legend

# Adding title and labels to the plot
plot.set_title('Top 10 Age Bands of Casualties') # Set the title of the pl
plot.set_xlabel('Age Band') # Set the x-axis label
plot.set_ylabel('Count of Casualties') # Set the y-axis label

# Display the plot
plt.show()
```


3.2.2.20 Pedestrian location

In [84]: # Displaying the statistical summary for 'pedestrian_location'
pd.DataFrame(trainset.loc[:, 'pedestrian_location'].describe())

Out[84]:

	pedestrian_location
count	9257
unique	8
top	Not a Pedestrian
freq	7205

```
In [85]: # Getting the value counts of the 'pedestrian_location' variable
  values = pd.DataFrame(trainset['pedestrian_location'].value_counts())
  values.columns = ['Pedestrian Location Count']

# The normalize attribute in the value_counts method computes the percentage
  percentages = pd.DataFrame(round(trainset['pedestrian_location'].value_cour
  percentages.columns = ['% Pedestrian Location']

# Converting the percentage values to a string format with a '%' sign
  percentages['% Pedestrian Location'] = percentages['% Pedestrian Location']

# Joining the values and percentages dataframes
  summary_table = values.join(percentages)
  summary_table
```

Out[85]:

	Pedestrian Location Count	% Pedestrian Location
Not a Pedestrian	7205	77.83%
Crossing on pedestrian crossing facility	684	7.39%
In carriageway, crossing elsewhere	352	3.8%
Unknown or other	343	3.71%
On footway or verge	341	3.68%
In centre of carriageway - not on refuge, island or central reservation	326	3.52%
In carriageway, not crossing	5	0.05%
On refuge, central island or central reservation	1	0.01%

'Not a pedestrian' occurred the most as casualties

```
In [86]: #Pick the fig size
    plt.figure(figsize=(10, 6))

# Define plot object for 'pedestrian_location'
    count = sns.countplot(data = trainset, x = 'pedestrian_location', palette =

# Setting graph title and labels
    count.set_title('Pedestrian Location Distribution')
    count.set(xlabel='Pedestrian Location', ylabel='Count')

# Slant the x-axis labels by setting a rotation
    plt.xticks(rotation=45) # Rotate labels to 45 degrees for better visibilit

# Showing the plot
    plt.show()
```


3.2.2.21 Pedestrian_movement

```
In [87]: # Displaying the statistical summary for 'pedestrian_movement'
pd.DataFrame(trainset.loc[:, 'pedestrian_movement'].describe())
```

Out[87]:

	pedestrian_movement
count	9257
unique	5
top	Not a Pedestrian
freq	7205

```
In [88]: # Getting the value counts of the 'pedestrian_movement' variable
  values = pd.DataFrame(trainset['pedestrian_movement'].value_counts())
  values.columns = ['Pedestrian Movement Count']

# The normalize attribute in the value_counts method computes the percentage
  percentages = pd.DataFrame(round(trainset['pedestrian_movement'].value_cour
  percentages.columns = ['% Pedestrian Movement']

# Converting the percentage values to a string format with a '%' sign
  percentages['% Pedestrian Movement'] = percentages['% Pedestrian Movement']

# Joining the values and percentages dataframes
  summary_table = values.join(percentages)
  summary_table
```

Out[88]:

	Pedestrian Movement Count	% Pedestrian Movement
Not a Pedestrian	7205	77.83%
Unknown or other	690	7.45%
Crossing from driver's offside	683	7.38%
Crossing from driver's nearside	674	7.28%
In carriageway, stationary - not crossing (standing or playing)	5	0.05%

Majority of the casualties were drivers and the second cause was not known

```
In [89]: plt.figure(figsize=(10, 6))
    # Define plot object for 'pedestrian_movement'
    count = sns.countplot(data = trainset, x = 'pedestrian_movement', palette =

# Setting graph title and labels
    count.set_title('Pedestrian Movement Distribution')
    count.set(xlabel='Pedestrian Movement', ylabel='Count')

# Slant the x-axis labels by setting a rotation
    plt.xticks(rotation=45) # Rotate labels to 45 degrees for better visibilit

# Showing the plot
    plt.show()
```


3.2.2.22 Car Passenger

```
In [90]: # Displaying the statistical summary for 'car_passenger'
pd.DataFrame(trainset.loc[:, 'car_passenger'].describe())
```

Out[90]:

```
count 9257
unique 4
top Not car passenger
freq 8753
```

```
In [91]: # Getting the value counts of the 'car_passenger' variable
values = pd.DataFrame(trainset['car_passenger'].value_counts())
values.columns = ['Car Passenger Count']

# The normalize attribute in the value_counts method computes the percentage
percentages = pd.DataFrame(round(trainset['car_passenger'].value_counts(nor
percentages.columns = ['% Car Passenger']

# Converting the percentage values to a string format with a '%' sign
percentages['% Car Passenger'] = percentages['% Car Passenger'].map(lambda

# Joining the values and percentages dataframes
summary_table = values.join(percentages)
summary_table
```

Out[91]:

	Car Passenger Count	% Car Passenger
Not car passenger	8753	94.56%
Rear seat passenger	404	4.36%
Front seat passenger	98	1.06%
unknown (self reported)	2	0.02%

Most casualties occur when the driver is alone

```
In [92]: # Define plot object for 'car_passenger'
plt.figure(figsize=(10, 6))
    count = sns.countplot(data = trainset ,x = 'car_passenger', palette = 'magn

# Setting graph title and labels
    count.set_title('Car Passenger Distribution')
    count.set(xlabel='Car Passenger', ylabel='Count')

# Slant the x-axis labels by setting a rotation
plt.xticks(rotation=45) # Rotate labels to 45 degrees for better visibilit

# Showing the plot
plt.show()
```


3.2.2.23 Casualty Home Area Type

In [93]: # Displaying the statistical summary for 'casualty_home_area_type'
pd.DataFrame(trainset.loc[:, 'casualty_home_area_type'].describe())

Out[93]:

	casualty_home_area_type
count	9257
unique	4
top	Urban area
frea	8763

```
In [94]: # Getting the value counts of the 'casualty_home_area_type' variable
    values = pd.DataFrame(trainset['casualty_home_area_type'].value_counts())
    values.columns = ['Casualty Home Area Type Count']

# The normalize attribute in the value_counts method computes the percentage
    percentages = pd.DataFrame(round(trainset['casualty_home_area_type'].value_
        percentages.columns = ['% Casualty Home Area Type']

# Converting the percentage values to a string format with a '%' sign
        percentages['% Casualty Home Area Type'] = percentages['% Casualty Home Area
# Joining the values and percentages dataframes
summary_table = values.join(percentages)
summary_table
```

Out[94]:

_	Casualty Home Area Type Count	% Casualty Home Area Type
Urban area	8763	94.66%
Data missing or out of range	465	5.02%
Rural	15	0.16%
Small town	14	0.15%

Majority of casualties from accidents occur in urban areas

```
In [95]:
         # Define plot object for 'casualty_home_area_type'
         plt.figure(figsize=(4, 3))
         count = sns.countplot(data = trainset, x = 'casualty_home_area_type', palett
         # Setting graph title and labels
         count.set_title('Casualty Home Area Type Distribution')
         count.set(xlabel='Casualty Home Area Type', ylabel='Count')
         # Slant the x-axis labels by setting a rotation
         plt.xticks(rotation=45) # Rotate Labels to 45 degrees for better visibilit
         # Showing the plot
         plt.show()
```


Casualty Home Area Type

3.2.2.24 Casualty Home Area Type

In [96]: pd.DataFrame(trainset.loc[:,'casualty_class'].describe())

Out[96]:

	casualty_class
count	9257
unique	3
top	Driver or rider
frea	6333

```
In [97]: # Getting the value counts of the 'casualty_class' variable
  values = pd.DataFrame(trainset['casualty_class'].value_counts())
  values.columns = ['casualty_class Count']

# The normalize attribute in the value_counts method computes the percentage
  percentages = pd.DataFrame(round(trainset['casualty_class'].value_counts(not percentages.columns = ['%casualty_class']

# Converting the percentage values to a string format with a '%' sign
  percentages['%casualty_class'] = percentages['%casualty_class'].map(lambda)

# Joining the values and percentages dataframes
  values.join(percentages)
```

Out[97]:

	casualty_class Count	%casualty_class
Driver or rider	6333	68.41%
Pedestrian	2052	22.17%
Passenger	872	9.42%

The main casualties were either driver or riders

```
In [98]: # Define plot object
plt.figure(figsize=(4, 3))
count = sns.countplot(data = trainset, x = 'casualty_class', hue = trainset[
# Setting graph title and labels
count.set_title('Class of Casualty')
count.set(xlabel='Casualty Class', ylabel='Count',)
# Slant the x-axis labels by setting a rotation
plt.xticks(rotation=45) # Rotate labels to 45 degrees for better visibilit
# Showing the plot
plt.show()
```


4. Data Exploration and Preprocessing

4.1 Feature Selection

We will use a correlation to the casualty severity and rank them. This will be used for the individual tasks

```
In [99]:
         # Define target variable and dataframe
         target_variable = 'casualty_severity'
         df = trainset # Assuming 'trainset' is the dataframe
         # Identify categorical columns (excluding target variable)
         other_columns = df.select_dtypes(include=['object', 'category']).columns.tc
         other_columns = [col for col in other_columns if col != target_variable]
         # Compute Chi-Square test results
         results = []
         for column in other columns:
             contingency_table = pd.crosstab(df[target_variable], df[column])
             chi2, p_value, dof, expected = chi2_contingency(contingency_table)
             results.append({
                 'Column': column,
                 'Chi-square Statistic': chi2,
                 'P-value': f"{p_value:.2f}"
             })
         results_df = pd.DataFrame(results)
         sorted_results_df = results_df.sort_values('P-value').reset_index(drop=True)
         # Compute Phi-K correlation matrix
         phik_matrix = df.phik_matrix()
         # Extract Phi-K values for the target variable
         phik_target = phik_matrix[target_variable].drop(target_variable).reset_inde
         phik_target.columns = ['Column', 'Phi-K Correlation']
         # Merge Chi-Square results with Phi-K results
         final_results = sorted_results_df.merge(phik_target, on='Column')
         final_results
```

interval columns not set, guessing: ['age_of_vehicle']

Out[99]:

	Column	Chi-square Statistic	P-value	Phi-K Correlation
0	casualty_home_area_type	50.661409	0.00	0.052196
1	pedestrian_movement	1223.185911	0.00	0.321204
2	vehicle_location_restricted_lane	122.054637	0.00	0.127945
3	pedestrian_location	2385.717763	0.00	0.490737
4	age_band_of_casualty	3027.388713	0.00	0.680963
5	sex_of_casualty	187.922041	0.00	0.297488
6	casualty_class	535.575403	0.00	0.442660
7	car_passenger	94.151361	0.00	0.073284
8	junction_location	25.294465	0.12	0.033661
9	first_point_of_impact	14.882586	0.14	0.039558
10	vehicle_left_hand_drive	4.758345	0.31	0.021841
11	journey_purpose_of_driver	6.473962	0.59	0.000000
12	towing_and_articulation	6.904867	0.73	0.000000
13	driver_home_area_type	3.007982	0.81	0.000000
14	sex_of_driver	1.593469	0.81	0.000000
15	skidding_and_overturning	6.117353	0.81	0.000000
16	age_band_of_driver	13.176921	0.87	0.000000
17	hit_object_in_carriageway	11.093587	0.89	0.000000
18	vehicle_leaving_carriageway	9.231189	0.90	0.000000
19	driver_imd_decile	11.298669	0.94	0.000000
20	hit_object_off_carriageway	12.781867	0.94	0.000000
21	propulsion_code	3.985619	0.98	0.000000
22	generic_make_model	477.048961	1.00	0.000000
23	vehicle_manoeuvre	17.724584	1.00	0.000000
24	engine_capacity_cc	251.458684	1.00	0.000000
25	vehicle_type	14.304888	1.00	0.000000

The higher the Phi-K score the more probable the variable is to a vaible predictor

4.2 Handling missing values

We checked each variable that had missing values denoted by 'Data Missing or out of range' or '-1'

Target Variable

4.2.1 casualty_severity

```
In [100]: #Inspect the column
pd.DataFrame(trainset.loc[:,'casualty_severity'].unique())
#this column has no null values
```

Out[100]:

```
0SlightSeriousFatal
```

Dependent Variables - Categorical

4.2.2 Vehicle Type

```
In [101]: pd.DataFrame(trainset['vehicle_type'].unique())
#this variable has no null values
```

Out[101]:

	0
0	Motorcycle 125cc and under
1	Pedal cycle
2	Car
3	Other vehicle
4	Bus or coach (17 or more pass seats)
5	Van / Goods 3.5 tonnes mgw or under
6	Taxi/Private hire car
7	Motorcycle over 125cc and up to 500cc
8	Minibus (8 - 16 passenger seats)
9	Goods over 3.5t. and under 7.5t
10	Motorcycle over 500cc
11	Motorcycle - unknown cc
12	Goods 7.5 tonnes mgw and over
13	Motorcycle 50cc and under
14	Electric motorcycle
15	Mobility scooter
16	Goods vehicle - unknown weight

4.2.3 Towing And Articulation

```
In [102]: pd.DataFrame(trainset['towing_and_articulation'].unique())
#this variable has no null values
```

Out[102]:

	0
0	No tow/articulation
1	unknown (self reported)
2	Articulated vehicle
3	Caravan
4	Other tow
5	Single trailer

4.2.4 Vehicle Manouvre

```
In [103]: pd.DataFrame(trainset['vehicle_manoeuvre'].unique())
#this variable has no null values
```

Out[103]:

	0
0	Going ahead other
1	unknown (self reported)
2	Moving off
3	Slowing or stopping
4	Turning right
5	Changing lane to left
6	Turning left
7	Overtaking moving vehicle - offside
8	Going ahead right-hand bend
9	Waiting to turn right
10	U-turn
11	Waiting to turn left
12	Going ahead left-hand bend
13	Reversing
14	Waiting to go - held up
15	Overtaking - nearside
16	Changing lane to right
17	Overtaking static vehicle - offside
18	Parked

4.2.5 Vehicle Location

```
In [104]: pd.DataFrame(trainset['vehicle_location_restricted_lane'].unique())
#this variable has no null values
```

Out[104]:

	0
0	On main c'way - not in restricted lane
1	unknown (self reported)
2	Footway (pavement)
3	On lay-by or hard shoulder
4	Cycleway or shared use footway (not part of m
5	Cycle lane (on main carriageway)
6	Bus lane
7	Busway (including guided busway)
8	Tram/Light rail track
9	Entering lay-by or hard shoulder
10	Leaving lay-by or hard shoulder

4.2.6 Junction Location

```
In [105]: pd.DataFrame(trainset['junction_location'].unique())
#this variable has no null values
```

Out[105]:

	0
0	Not at or within 20 metres of junction
1	unknown (self reported)
2	Entering roundabout
3	Approaching junction or waiting/parked at junc
4	Cleared junction or waiting/parked at junction
5	Mid Junction - on roundabout or on main road
6	Leaving main road
7	Leaving roundabout
8	Entering main road
9	Entering from slip road

4.2.7 Skidding and Overturning

```
In [106]: pd.DataFrame(trainset['skidding_and_overturning'].unique())
#this variable has no null values
```

Out[106]:

	0
0	Overturned
1	unknown (self reported)
2	None
3	Skidded
4	Skidded and overturned
5	Jackknifed

4.2.8 Hit Object in Carriageway

```
In [107]: pd.DataFrame(trainset['hit_object_in_carriageway'].unique())
#this variable has no null values
```

Out[107]:

	0
0	None
1	unknown (self reported)
2	Kerb
3	Bollard or refuge
4	Parked vehicle
5	Open door of vehicle
6	Other object
7	Bridge (side)
8	Any animal (except ridden horse)
9	Previous accident

4.2.9 Hit Object Off Carriageway

In [108]: pd.DataFrame(trainset['hit_object_off_carriageway'].unique())
#this variable has no null values

Out[108]:

	0
0	None
1	unknown (self reported)
2	Lamp post
3	Road sign or traffic signal
4	Other permanent object
5	Tree
6	Bus stop or bus shelter
7	Wall or fence
8	Central crash barrier
9	Near/Offside crash barrier
10	Entered ditch

4.2.10 Age band of Driver

In [109]: pd.DataFrame(trainset['age_band_of_driver'].unique())
#this variable has null values

Out[109]:

	0
0	36 - 45
1	Data missing or out of range
2	21 - 25
3	46 - 55
4	26 - 35
5	66 - 75
6	16 - 20
7	Over 75
8	56 - 65
9	11 - 15
10	6 - 10

```
In [110]:
          # Encode the categorical data
          encoder = OrdinalEncoder()
          trainset_encoded = trainset.copy()
          trainset_encoded['age_band_of_driver'] = encoder.fit_transform(trainset[['a
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          trainset encoded['age band of driver'] = trainset encoded['age band of driv
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['age_bar
          # Decode the imputed data back to original categories
          trainset['age_band_of_driver'] = encoder.inverse_transform(trainset_encoded
          # Check the output
          pd.DataFrame(trainset.loc[:,'age_band_of_driver'].value_counts())
```

Out[110]:

	age_band_of_driver
26 - 35	3835
36 - 45	1727
46 - 55	1214
21 - 25	987
56 - 65	729
16 - 20	359
66 - 75	255
Over 75	120
11 - 15	23
6 - 10	8

```
In [111]:
          # Encode the categorical data in the testset as well
          encoder = OrdinalEncoder()
          testset_encoded = testset.copy()
          testset_encoded['age_band_of_driver'] = encoder.fit_transform(testset[['age
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          testset encoded['age band of driver'] = testset encoded['age band of driver
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          testset_encoded_imputed = imputer.fit_transform(testset_encoded[['age_band_
          # Decode the imputed data back to original categories
          testset['age_band_of_driver'] = encoder.inverse_transform(testset_encoded_i
          # Check the output
          pd.DataFrame(testset.loc[:,'age_band_of_driver'].value_counts())
```

Out[111]:

	age_band_of_driver
26 - 35	415
36 - 45	180
46 - 55	150
21 - 25	102
56 - 65	96
16 - 20	44
66 - 75	24
Over 75	15
11 - 15	2
6 - 10	1

4.2.11 driver imd decile

In [112]: pd.DataFrame(trainset.loc[:,'driver_imd_decile'].describe())

Out[112]:

	driver_imd_decile
count	9257
unique	11
top	Data missing or out of range
freq	1677

```
In [113]:
          # Encode the categorical data
          encoder = OrdinalEncoder()
          trainset_encoded = trainset.copy()
          trainset_encoded['driver_imd_decile'] = encoder.fit_transform(trainset[['dr
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          trainset_encoded['driver_imd_decile'] = trainset_encoded['driver_imd_decile']
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['driver_
          # Decode the imputed data back to original categories
          trainset['driver_imd_decile'] = encoder.inverse_transform(trainset_encoded_
          # Check the output
          pd.DataFrame(trainset.loc[:,'driver_imd_decile'].value_counts())
```

Out[113]:

	driver_imd_decile
More deprived 10-20%	3177
More deprived 20-30%	1453
More deprived 30-40%	1050
More deprived 40-50%	839
Less deprived 40-50%	694
Most deprived 10%	545
Less deprived 30-40%	473
Less deprived 20-30%	460
Less deprived 10-20%	329
Least deprived 10%	237

```
In [114]:
                   # Encode the categorical data
                    encoder = OrdinalEncoder()
                    testset_encoded = testset.copy()
                    testset_encoded['driver_imd_decile'] = encoder.fit_transform(testset[['driv
                    # Identify the encoded value for 'Data missing or out of range'
                    encoded_missing_value = encoder.transform([['Data missing or out of range']
                    # Replace encoded 'Data missing or out of range' values with np.nan
                    testset_encoded['driver_imd_decile'] = testset_encoded['driver_imd_decile']
                    # Set up the MICE imputer
                    imputer = IterativeImputer(max_iter=10, random_state=0)
                    testset_encoded_imputed = imputer.fit_transform(testset_encoded[['driver_imputed = imputer.fit_transform(testset_encoded][']]
                    # Decode the imputed data back to original categories
                    testset['driver_imd_decile'] = encoder.inverse_transform(testset_encoded_in
                    # Check the output
                    pd.DataFrame(testset.loc[:,'driver_imd_decile'].value_counts())
```

Out[114]:

	driver_imd_decile
More deprived 10-20%	344
More deprived 20-30%	171
More deprived 30-40%	122
More deprived 40-50%	92
Less deprived 40-50%	74
Most deprived 10%	65
Less deprived 20-30%	51
Less deprived 30-40%	48
Less deprived 10-20%	37
Least deprived 10%	25

4.2.12 generic make model

In [115]: pd.DataFrame(trainset['generic_make_model'].unique())

Out[115]:

	Ü
0	YAMAHA GPD
1	-1
2	AUDI Q2
3	DACIA DUSTER
4	MERCEDES E CLASS
418	DACIA SANDERO
419	AUDI A8
420	MITSUBISHI MODEL MISSING
421	MERCEDES CLK CLASS
422	BMW S 1000

423 rows × 1 columns

```
In [116]:
          # Encode the categorical data
          encoder = OrdinalEncoder()
          trainset_encoded = trainset.copy()
          trainset_encoded['generic_make_model'] = encoder.fit_transform(trainset[['g
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['-1']])[0, 0]
          # Replace encoded 'Data missing or out of range' values with np.nan
          trainset encoded['generic_make_model'] = trainset_encoded['generic_make_model']
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['generic
          # Decode the imputed data back to original categories
          trainset['generic_make_model'] = encoder.inverse_transform(trainset_encoded
          # Check the output
          pd.DataFrame(trainset.loc[:,'generic_make_model'].value_counts())
```

Out[116]:

generic_make_model

•	
LASS	2189
A GPD	380
/W125	361
PRIUS	257
H 125	210
S 450	1
LTEA	1
O FLY	1
OKEE	1
3 1000	1
	SLASS A GPD W125 PRIUS SH 125 SS 450 ALTEA O FLY OKEE

422 rows × 1 columns

```
In [117]:
          # Encode the categorical data
          encoder = OrdinalEncoder()
          testset_encoded = testset.copy()
          testset_encoded['generic_make_model'] = encoder.fit_transform(testset[['ger
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['-1']])[0, 0]
          # Replace encoded 'Data missing or out of range' values with np.nan
          testset encoded['generic make model'] = testset encoded['generic make model
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          testset_encoded_imputed = imputer.fit_transform(testset_encoded[['generic_m
          # Decode the imputed data back to original categories
          testset['generic_make_model'] = encoder.inverse_transform(testset_encoded_i
          # Check the output
          pd.DataFrame(testset.loc[:,'generic_make_model'].value_counts())
```

Out[117]:

generic_make_model

MERCEDES C CLASS	270
YAMAHA GPD	41
HONDA WW125	37
TOYOTA PRIUS	36
HONDA SH 125	25
LONDON TAXIS INT. TX4	1
MERCEDES SLK CLASS	1
SUBARU IMPREZA	1
DACIA DUSTER	1
BMW 6 SERIES	1

210 rows × 1 columns

4.2.13 driver_home_area_type

```
In [118]: #check if the dataframe has been updated
pd.DataFrame(trainset.loc[:,'driver_home_area_type'].unique())
```

Out[118]:

	U
0	Urban area
1	Data missing or out of range
2	Rural
3	Small town

```
In [119]: # Encode the categorical data
                                 encoder = OrdinalEncoder()
                                 trainset_encoded = trainset.copy()
                                 trainset_encoded['driver_home_area_type'] = encoder.fit_transform(trainset[
                                 # Identify the encoded value for 'Data missing or out of range'
                                 encoded_missing_value = encoder.transform([['Data missing or out of range']
                                 # Replace encoded 'Data missing or out of range' values with np.nan
                                 trainset encoded['driver home area type'] = trainset encoded['driver home a
                                 # Set up the MICE imputer
                                 imputer = IterativeImputer(max_iter=10, random_state=0)
                                 trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['driver]
                                 # Decode the imputed data back to original categories
                                 trainset['driver_home_area_type'] = encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.in
                                 # If you want to see the modified dataframe
                                 # Check the output
                                 pd.DataFrame(trainset.loc[:,'driver_home_area_type'].value_counts())
```

Out[119]:

	driver_home_area_type
Urban area	7427
Small town	1734
Rural	96

```
In [120]: # Encode the categorical data
encoder = OrdinalEncoder()
testset_encoded = testset.copy()
testset_encoded['driver_home_area_type'] = encoder.fit_transform(testset[['
# Identify the encoded value for 'Data missing or out of range'
encoded_missing_value = encoder.transform([['Data missing or out of range']

# Replace encoded 'Data missing or out of range' values with np.nan
testset_encoded['driver_home_area_type'] = testset_encoded['driver_home_area

# Set up the MICE imputer
imputer = IterativeImputer(max_iter=10, random_state=0)
testset_encoded_imputed = imputer.fit_transform(testset_encoded[['driver_home_area_type']
# Decode the imputed data back to original categories
testset['driver_home_area_type'] = encoder.inverse_transform(testset_encode
# Check the output
pd.DataFrame(testset.loc[:,'driver_home_area_type'].value_counts())
```

Out[120]:

	driver_nome_area_type
Urban area	827
Small town	189
Rural	13

4.2.14 casualty_class

```
In [121]: #Check if there any null values
pd.DataFrame(trainset.loc[:,'casualty_class'].unique())
```

Out[121]:

0

- 0 Pedestrian
- 1 Driver or rider
- 2 Passenger

4.2.15 sex_of_casualty

```
In [122]: #Check if there any null values
pd.DataFrame(trainset.loc[:,'sex_of_casualty'].unique())
```

Out[122]:

0	
Male	0
Female	1

2 Data missing or out of range

```
In [123]: # Encode the categorical data
          encoder = OrdinalEncoder()
          trainset encoded = trainset.copy()
          trainset_encoded['sex_of_casualty'] = encoder.fit_transform(trainset[['sex_
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          trainset_encoded['sex_of_casualty'] = trainset_encoded['sex_of_casualty'].r
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['sex_of]
          # Decode the imputed data back to original categories
          trainset['sex_of_casualty'] = encoder.inverse_transform(trainset_encoded_in
          # If you want to see the modified dataframe
          # Check the output
          pd.DataFrame(trainset.loc[:,'sex_of_casualty'].value_counts())
```

Out[123]:

	sex_of_casualty
Male	5873
Female	3384

```
In [124]:
          # Encode the categorical data
          encoder = OrdinalEncoder()
          testset_encoded = testset.copy()
          testset_encoded['sex_of_casualty'] = encoder.fit_transform(testset[['sex_of
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          testset encoded['sex of casualty'] = testset encoded['sex of casualty'].reg
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          testset_encoded_imputed = imputer.fit_transform(testset_encoded[['sex_of_ca
          # Decode the imputed data back to original categories
          testset['sex_of_casualty'] = encoder.inverse_transform(testset_encoded_impu
          # Check the output
          pd.DataFrame(testset.loc[:,'sex_of_casualty'].value_counts())
```

Out[124]:

	sex_of_casualty
Male	647
Female	382

4.2.16 age_band_of_casualty

In [125]: #Inspect the column
pd.DataFrame(trainset.loc[:,'age_band_of_casualty'].value_counts())

Out[125]:

	age_band_of_casualty
26 - 35	2083
36 - 45	1949
46 - 55	1874
21 - 25	914
56 - 65	792
16 - 20	466
6 - 10	365
66 - 75	364
Over 75	334
Data missing or out of range	66
11 - 15	44
0 - 5	6

```
In [126]:
                                 # Encode the categorical data
                                  encoder = OrdinalEncoder()
                                  trainset_encoded = trainset.copy()
                                  trainset_encoded['age_band_of_casualty'] = encoder.fit_transform(trainset[[
                                  # Identify the encoded value for 'Data missing or out of range'
                                  encoded_missing_value = encoder.transform([['Data missing or out of range']
                                  # Replace encoded 'Data missing or out of range' values with np.nan
                                  trainset_encoded['age_band_of_casualty'] = trainset_encoded['age_band_of_casualty']
                                  # Set up the MICE imputer
                                  imputer = IterativeImputer(max_iter=10, random_state=0)
                                  trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['age_bar
                                  # Decode the imputed data back to original categories
                                  trainset['age_band_of_casualty'] = encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_transform(trainset_encoder.inverse_trainset_encoder.inverse_transform(trainset_encoder.inverse_trainset_encoder.inverse_trainset_encoder.inverse_trainset_encoder.inverse_trainset_encoder.inverse_trainset_encoder.inverse_trainset_encoder.inverse_trainset_encoder.inverse_train
                                  # If you want to see the modified dataframe
                                  # Check the output
                                  pd.DataFrame(trainset.loc[:,'age_band_of_casualty'].value_counts())
```

Out[126]:

	age_band_of_casualty
26 - 35	2083
36 - 45	2015
46 - 55	1874
21 - 25	914
56 - 65	792
16 - 20	466
6 - 10	365
66 - 75	364
Over 75	334
11 - 15	44
0 - 5	6

```
In [127]:
          # Encode the categorical data
          encoder = OrdinalEncoder()
          testset_encoded = testset.copy()
          testset_encoded['age_band_of_casualty'] = encoder.fit_transform(testset[['a
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          testset encoded['age band of casualty'] = testset encoded['age band of casu
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          testset_encoded_imputed = imputer.fit_transform(testset_encoded[['age_band]
          # Decode the imputed data back to original categories
          testset['age_band_of_casualty'] = encoder.inverse_transform(testset_encoded
          # Check the output
          pd.DataFrame(testset.loc[:,'age_band_of_casualty'].value_counts())
```

Out[127]:

	age_band_of_casualty
26 - 35	242
36 - 45	226
46 - 55	220
21 - 25	92
56 - 65	77
Over 75	47
16 - 20	44
66 - 75	40
6 - 10	35
11 - 15	4
0 - 5	2

and bond of accusion

```
In [128]: #Inspect the column
pd.DataFrame(trainset.loc[:,'casualty_severity'].unique())
#this column has no null values
```

Out[128]:

```
0 Slight1 Serious
```

0

2 Fatal

4.2.17 pedestrian_location

```
In [129]: pd.DataFrame(trainset.loc[:,'pedestrian_location'].unique())
```

Out[129]:

0	On footway or verge
1	Not a Pedestrian
2	In carriageway, crossing elsewhere
3	In centre of carriageway - not on refuge, isla
4	Unknown or other
5	Crossing on pedestrian crossing facility
6	In carriageway, not crossing
7	On refuge, central island or central reservation

4.2.18 Pedestrian_movement

```
In [130]: pd.DataFrame(trainset.loc[:,'pedestrian_movement'].unique())
```

Out[130]:

	U
0	Unknown or other
1	Not a Pedestrian
2	Crossing from driver's nearside
3	Crossing from driver's offside
4	In carriageway, stationary - not crossing (st

4.2.19 car_passenger

```
In [131]: pd.DataFrame(trainset.loc[:,'car_passenger'].unique())
```

Out[131]:

	0
0	Not car passenger
1	Front seat passenger
2	Rear seat passenger
3	unknown (self reported)

4.2.20 casualty_home_area_type

```
In [132]: pd.DataFrame(trainset.loc[:,'casualty_home_area_type'].unique())
```

Out[132]:

```
0 Data missing or out of range
1 Urban area
2 Rural
3 Small town
```

```
In [133]:
          # Encode the categorical data
           encoder = OrdinalEncoder()
           trainset_encoded = trainset.copy()
           trainset_encoded['casualty_home_area_type'] = encoder.fit_transform(trainset_encoded['casualty_home_area_type']
           # Identify the encoded value for 'Data missing or out of range'
           encoded_missing_value = encoder.transform([['Data missing or out of range']
           # Replace encoded 'Data missing or out of range' values with np.nan
           trainset_encoded['casualty_home_area_type'] = trainset_encoded['casualty_home_area_type']
           # Set up the MICE imputer
           imputer = IterativeImputer(max_iter=10, random_state=0)
           trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['casualt
           # Decode the imputed data back to original categories
           trainset['casualty_home_area_type'] = encoder.inverse_transform(trainset_er
           # If you want to see the modified dataframe
           # Check the output
           pd.DataFrame(trainset.loc[:,'casualty_home_area_type'].value_counts())
```

Out[133]:

	casualty_home_area_type
Urban area	8763
Small town	479
Rural	15

```
In [134]:
                                  # Encode the categorical data
                                   encoder = OrdinalEncoder()
                                   testset_encoded = testset.copy()
                                   testset_encoded['casualty_home_area_type'] = encoder.fit_transform(testset[
                                   # Identify the encoded value for 'Data missing or out of range'
                                   encoded_missing_value = encoder.transform([['Data missing or out of range']
                                   # Replace encoded 'Data missing or out of range' values with np.nan
                                   testset encoded['casualty_home_area_type'] = testset_encoded['casualty_home
                                   # Set up the MICE imputer
                                   imputer = IterativeImputer(max_iter=10, random_state=0)
                                   testset_encoded_imputed = imputer.fit_transform(testset_encoded[['casualty]
                                   # Decode the imputed data back to original categories
                                   testset['casualty_home_area_type'] = encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testset_encoder.inverse_transform(testse
                                   # Check the output
                                   pd.DataFrame(testset.loc[:,'casualty_home_area_type'].value_counts())
```

Out[134]:

Urban area 971 Rural 58

4.2.21 vehicle_leaving_carriageway

In [135]: pd.DataFrame(trainset['vehicle_leaving_carriageway'].unique())

Out[135]:

	0
0	Did not leave carriageway
1	unknown (self reported)
2	Nearside
3	Offside
4	Straight ahead at junction
5	Offside and rebounded
6	Offside on to central reservation
7	Offside on to centrl res + rebounded
8	Nearside and rebounded

Dependent Variables - Numerical

```
In [136]: trainset.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9257 entries, 1151999 to 5570999
Data columns (total 28 columns):

	columns (cocal 20 columns).		
#	Column	Non-Null Count	Dtype
0	vehicle_type	9257 non-null	object
1	towing_and_articulation	9257 non-null	object
2	vehicle_manoeuvre	9257 non-null	object
3	<pre>vehicle_location_restricted_lane</pre>	9257 non-null	object
4	junction_location	9257 non-null	object
5	skidding_and_overturning	9257 non-null	object
6	hit_object_in_carriageway	9257 non-null	object
7	vehicle_leaving_carriageway	9257 non-null	object
8	hit_object_off_carriageway	9257 non-null	object
9	first_point_of_impact	9257 non-null	object
10	<pre>vehicle_left_hand_drive</pre>	9257 non-null	object
11	journey_purpose_of_driver	9257 non-null	object
12	sex_of_driver	9257 non-null	object
13	age_band_of_driver	9257 non-null	object
14	<pre>engine_capacity_cc</pre>	9257 non-null	object
15	propulsion_code	9257 non-null	object
16	age_of_vehicle	9257 non-null	int64
17	<pre>generic_make_model</pre>	9257 non-null	object
18	driver_imd_decile	9257 non-null	object
19	driver_home_area_type	9257 non-null	object
20	casualty_class	9257 non-null	object
21	sex_of_casualty	9257 non-null	object
22	age_band_of_casualty	9257 non-null	object
23	casualty_severity	9257 non-null	object
24	<pre>pedestrian_location</pre>	9257 non-null	object
25	pedestrian_movement	9257 non-null	object
26	car_passenger	9257 non-null	object
27	casualty_home_area_type	9257 non-null	object
dtypes: int64(1), object(27)			
memo	ry usage: 2.0+ MB		

4.2.22 vehicle_leaving_carriageway

We note that engine capacity was treated as categorical variable as the engine size tends to follow a certain ranking. We decided to handle these first as categorical but for analysis later we will use it as numeric

```
In [137]: trainset['engine_capacity_cc'] = trainset['engine_capacity_cc'].astype(str)
testset['engine_capacity_cc'] = testset['engine_capacity_cc'].astype(str)
```

```
In [138]:
          # Encode the categorical data
          #encoder = OrdinalEncoder()
          trainset_encoded = trainset.copy()
          trainset_encoded['engine_capacity_cc'] = encoder.fit_transform(trainset[['e
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          trainset_encoded['engine_capacity_cc'] = trainset_encoded['engine_capacity]
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          trainset_encoded_imputed = imputer.fit_transform(trainset_encoded[['engine]
          # Decode the imputed data back to original categories
          trainset['engine_capacity_cc'] = encoder.inverse_transform(trainset_encoded
          # If you want to see the modified dataframe
          # Check the output
          pd.DataFrame(trainset.loc[:,'engine_capacity_cc'].value_counts())
```

Out[138]:

	engine_capacity_cc
1790	2260
125	1247
1598	312
1995	265
124	210
1985	1
899	1
2364	1
2985	1
3246	1

263 rows × 1 columns

```
In [139]: # Encode the categorical data
          encoder = OrdinalEncoder()
          testset_encoded = testset.copy()
          testset_encoded['engine_capacity_cc'] = encoder.fit_transform(testset[['eng
          # Identify the encoded value for 'Data missing or out of range'
          encoded_missing_value = encoder.transform([['Data missing or out of range']
          # Replace encoded 'Data missing or out of range' values with np.nan
          testset_encoded['engine_capacity_cc'] = testset_encoded['engine_capacity_cd']
          # Set up the MICE imputer
          imputer = IterativeImputer(max_iter=10, random_state=0)
          testset_encoded_imputed = imputer.fit_transform(testset_encoded[['engine_ca
          # Decode the imputed data back to original categories
          testset['engine_capacity_cc'] = encoder.inverse_transform(testset_encoded_i
          # If you want to see the modified dataframe
          # Check the output
          pd.DataFrame(testset.loc[:,'engine_capacity_cc'].value_counts())
```

Out[139]:

	engine_capacity_cc
1600	251
125	134
1598	40
1798	34
1995	27
12777	1
1299	1
2487	1
49	1
1246	1

136 rows × 1 columns

4.2.23 age_of_vehicle

```
In [140]: # Replace -1 with NaN for missing values
    trainset['age_of_vehicle'] = trainset['age_of_vehicle'].replace(-1, np.nan)

# Set up the MICE imputer
    imputer = IterativeImputer(max_iter=10, random_state=0)

# Apply the imputer directly on 'age_of_vehicle' column (which is numeric)
    trainset_imputed = trainset.copy()
    trainset_imputed['age_of_vehicle'] = imputer.fit_transform(trainset_imputed)
```

```
In [141]: # Replace -1 with NaN for missing values
    testset['age_of_vehicle'] = testset['age_of_vehicle'].replace(-1, np.nan)

# Set up the MICE imputer
    imputer = IterativeImputer(max_iter=10, random_state=0)

# Apply the imputer directly on 'age_of_vehicle' column (which is numeric)
    testset_imputed = testset.copy()
    testset_imputed['age_of_vehicle'] = imputer.fit_transform(testset_imputed[[
```

Handling Outliers

```
In [142]: # The check is on numerical variables
```

```
In [143]: trainset['engine_capacity_cc'] = trainset['engine_capacity_cc'].astype(int)
    testset['engine_capacity_cc'] = testset['engine_capacity_cc'].astype(int)
```

```
In [144]: pd.DataFrame(trainset.loc[:,'engine_capacity_cc'].describe())
```

Out[144]:

	engine_capacity_cc
count	9257.000000
mean	1593.479637
std	1177.110824
min	49.000000
25%	1198.000000
50%	1790.000000
75%	1798.000000
max	12902.000000

```
In [145]: trainset.head()
```

Out[145]:

vehicle_location_restricted	vehicle_manoeuvre	towing_and_articulation	vehicle_type	
On main c'way - not in res	Going ahead other	No tow/articulation	Motorcycle 125cc and under	1151999
unknown (self rep	unknown (self reported)	unknown (self reported)	Pedal cycle	9503999
unknown (self rep	unknown (self reported)	No tow/articulation	Car	5639399
unknown (self rep	unknown (self reported)	No tow/articulation	Car	7336799
unknown (self rep	unknown (self reported)	No tow/articulation	Car	4147199

5 rows × 28 columns

In [146]: trainset.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9257 entries, 1151999 to 5570999

Data columns (total 28 columns):

Ducu	cordinis (cocar 20 cordinis).		
#	Column	Non-Null Count	Dtype
0	vehicle_type	9257 non-null	object
1	towing_and_articulation	9257 non-null	object
2	vehicle_manoeuvre	9257 non-null	object
3	<pre>vehicle_location_restricted_lane</pre>	9257 non-null	object
4	junction_location	9257 non-null	object
5	skidding_and_overturning	9257 non-null	object
6	<pre>hit_object_in_carriageway</pre>	9257 non-null	object
7	vehicle_leaving_carriageway	9257 non-null	object
8	hit_object_off_carriageway	9257 non-null	object
9	<pre>first_point_of_impact</pre>	9257 non-null	object
10	<pre>vehicle_left_hand_drive</pre>	9257 non-null	object
11	journey_purpose_of_driver	9257 non-null	object
12	sex_of_driver	9257 non-null	object
13	age_band_of_driver	9257 non-null	object
14	<pre>engine_capacity_cc</pre>	9257 non-null	int32
15	propulsion_code	9257 non-null	object
16	age_of_vehicle	7262 non-null	float64
17	generic_make_model	9257 non-null	object
18	driver_imd_decile	9257 non-null	object
19	driver_home_area_type	9257 non-null	object
20	casualty_class	9257 non-null	object
21	sex_of_casualty	9257 non-null	object
22	age_band_of_casualty	9257 non-null	object
23	casualty_severity	9257 non-null	object
24	<pre>pedestrian_location</pre>	9257 non-null	object
25	pedestrian_movement	9257 non-null	object
26	car_passenger	9257 non-null	object
27	casualty_home_area_type	9257 non-null	object
dtvpe	es: float64(1), int32(1), object(2	6)	

dtypes: float64(1), int32(1), object(26)

memory usage: 2.0+ MB

In [147]: pd.DataFrame(trainset.loc[:,'engine_capacity_cc'].describe())

Out[147]:

	engine_capacity_cc
count	9257.000000
mean	1593.479637
std	1177.110824
min	49.000000
25%	1198.000000
50%	1790.000000
75%	1798.000000
max	12902.000000

In [148]: pd.DataFrame(testset.loc[:,'engine_capacity_cc'].describe())

Out[148]:

	engine_capacity_cc
count	1029.000000
mean	1539.448008
std	1056.794803
min	49.000000
25%	1199.000000
50%	1600.000000
75%	1798.000000
max	12777.000000

```
In [149]:
          class OutlierTransformer(TransformerMixin, BaseEstimator):
              This class transforms outliers in specified columns into NaN.
              The definition of an outlier is a value smaller than quantile1 - (1.5 *
              or larger than quantile3 + (1.5 * IQR).
              def __init__(self, columns=None):
                  self.columns = columns # Columns to check for outliers (if None, w
                  self.quantiles = None # Initialize to store quantile values
                  self.fitted = False
              def fit(self, X, y=None):
                  Compute the upper and lower bounds for outlier detection based on t
                  # Select only specified columns (or all numeric columns if none are
                  if self.columns is not None:
                      X = X[self.columns]
                  # Select only numerical columns
                  numeric_X = X.select_dtypes(include=['number'])
                  # Compute the quantiles and IQR
                  lower_quantile = numeric_X.quantile(0.25)
                  upper_quantile = numeric_X.quantile(0.75)
                  IQR = upper_quantile - lower_quantile
                  # Calculate the upper and lower bounds for outlier detection
                  lower_bound = lower_quantile - 1.5 * IQR
                  upper_bound = upper_quantile + 1.5 * IQR
                  # Store quantiles and bounds in a dictionary for easy access
                  self.quantiles = {
                       'lower_bound': lower_bound,
                       'upper_bound': upper_bound
                  }
                  self.fitted = True
                  return self
              def transform(self, X):
                  Replace outliers with NaN for selected columns.
                  if not self.fitted:
                      raise ValueError("The transformer must be fitted before transfo
                  # Select only specified columns (or all numeric columns if none are
                  if self.columns is not None:
                      X = X[self.columns]
                  # Make a copy of the data to avoid modifying the original dataset
                  X_{copy} = X.copy()
                  # Count existing NaN values before transformation
                  old num na = X copy.isna().sum().sum()
                  # Replace outliers with NaN
                  for col in X_copy.columns:
                      X copy.loc[X copy[col] < self.quantiles['lower bound'][col], cd</pre>
```

```
X_copy.loc[X_copy[col] > self.quantiles['upper_bound'][col], cc
# Print the number of outliers identified
new_num_na = X_copy.isna().sum().sum()
print(f"{new_num_na - old_num_na} outliers were identified and repl
# Return the transformed DataFrame
return X_copy
```

```
In [150]: # Example usage:
    # Assuming 'trainset' is your DataFrame and contains columns 'engine_capaci
    # Initialize the transformer for specific columns
    transformer = OutlierTransformer()

# Fit the transformer
    transformer.fit(trainset)
```

Out[150]: v OutlierTransformer OutlierTransformer()

2440 outliers were identified and replaced with NaN.

In [152]: transformed_data.head()

Out[152]:

	engine_capacity_cc	age_of_vehicle
1151999	NaN	2.0
9503999	1790.0	NaN
5639399	1498.0	2.0
7336799	999.0	4.0
4147199	1950.0	4.0

In [153]: # Replace the original columns in the trainset with the transformed data
trainset[['engine_capacity_cc', 'age_of_vehicle']] = transformed_data[['engine_capacity_cc', 'age_of_vehicle']]

```
In [154]: pd.DataFrame(trainset.loc[:,'engine_capacity_cc'].describe())
```

Out[154]:

	engine_capacity_cc
count	6887.000000
mean	1664.737186
std	340.027759
min	313.000000
25%	1490.000000
50%	1790.000000
75%	1797.000000
max	2597.000000

```
In [155]: pd.DataFrame(trainset.loc[:,'age_of_vehicle'].describe())
```

Out[155]:

	age_ot_venicle
count	7192.000000
mean	7.304783
std	4.907147
min	0.000000
25%	3.000000
50%	6.000000
75%	10.000000
max	21.000000

```
In [156]: #Do the same for the testset
    transformer = OutlierTransformer(columns=['engine_capacity_cc', 'age_of_ver'

# Fit the transformer
    transformer.fit(testset)

# Transform the data to replace outliers with NaN
    transformed_data = transformer.transform(testset)
```

279 outliers were identified and replaced with NaN.

```
In [157]: # Separate numeric and categorical data
    numeric_columns = trainset.select_dtypes(include=['number']).columns

# Apply mean imputation for numeric columns
    num_imputer = SimpleImputer(strategy="mean")
    trainset[numeric_columns] = num_imputer.fit_transform(trainset[numeric_columns])
```

```
In [158]:
          # Separate numeric and categorical data
          numeric_columns = testset.select_dtypes(include=['number']).columns
          # Apply mean imputation for numeric columns
          num imputer = SimpleImputer(strategy="mean")
          testset[numeric_columns] = num_imputer.fit_transform(testset[numeric_column
In [159]: #Check the null values
          missing_values_count = trainset.isna().sum()
          missing_values_count
Out[159]: vehicle_type
                                               0
          towing_and_articulation
                                               0
          vehicle_manoeuvre
                                               0
          vehicle location restricted lane
          junction_location
          skidding_and_overturning
                                               0
          hit_object_in_carriageway
                                               0
          vehicle_leaving_carriageway
                                               0
          hit_object_off_carriageway
                                               0
          first_point_of_impact
                                               0
          vehicle_left_hand_drive
                                               0
          journey_purpose_of_driver
                                               0
          sex_of_driver
                                               0
          age_band_of_driver
                                               0
          engine capacity cc
                                               0
          propulsion_code
                                               0
          age_of_vehicle
                                               0
                                               0
          generic_make_model
          driver_imd_decile
                                               0
          driver_home_area_type
                                               0
          casualty_class
                                               0
                                               0
          sex_of_casualty
                                               0
          age_band_of_casualty
          casualty_severity
                                               0
          pedestrian_location
                                               0
          pedestrian_movement
                                               0
                                               0
          car passenger
          casualty_home_area_type
                                               0
          dtype: int64
```

```
In [160]:
          missing_values_count = testset.isna().sum()
          missing_values_count
Out[160]: vehicle_type
                                                0
          towing_and_articulation
                                                0
          vehicle_manoeuvre
                                                0
          vehicle_location_restricted_lane
                                                0
          junction_location
                                                0
          skidding_and_overturning
                                               0
          hit_object_in_carriageway
                                               0
          vehicle_leaving_carriageway
                                               0
          hit_object_off_carriageway
                                               0
          first_point_of_impact
                                               0
          vehicle_left_hand_drive
                                               0
                                               0
          journey_purpose_of_driver
          sex_of_driver
                                                0
          age_band_of_driver
                                               0
          engine_capacity_cc
                                                0
          propulsion_code
                                               0
          age_of_vehicle
                                               0
          generic make model
                                               0
          driver_imd_decile
                                               0
          driver_home_area_type
                                                0
          casualty_class
                                                0
          sex_of_casualty
                                                0
          age_band_of_casualty
                                               0
                                               0
          casualty_severity
                                               0
          pedestrian_location
          pedestrian_movement
                                               0
                                               0
          car_passenger
           casualty_home_area_type
          dtype: int64
```

6. Conclusion

In this Group assignment we successfully created a dataframe of casualty data. In the Individual assignment we will be generating a predictive model which predicts average Netflix rating based on independent variables which come from the casualty. By predicting ratings for casualty severity we should be able to determine help Predict Casualty Severity, Enhance Emergency Response, Improve Health Outcomes, Data-Driven Policy Recommendations

```
In [161]: ytrain = pd.DataFrame(trainset.loc[:, 'casualty_severity']) # This selects
Xtrain = trainset.drop(columns=['casualty_severity']) # This excludes the
# This selects the 'casualty_severity' column as y
ytest = pd.DataFrame(testset.loc[:, 'casualty_severity'])
# This excludes the 'casualty_severity' column for X
Xtest = testset.drop(columns=['casualty_severity'])
```

```
In [162]:
          # Save the trainset as an Excel file
          trainset.to_excel("trainset_inspection.xlsx", index=False)
          testset.to_excel("testset_inspection.xlsx", index=False)
          print("DataFrames saved successfully as excel")
          DataFrames saved successfully as excel
In [166]: |%%javascript
          var nb = IPython.notebook;
          var kernel = IPython.notebook.kernel;
          var command = "NOTEBOOK_FULL_PATH = '" + nb.notebook_path + "'";
          kernel.execute(command);
In [167]: import io
          from nbformat import read, NO_CONVERT
          with io.open(NOTEBOOK_FULL_PATH.split("/")[-1], 'r', encoding='utf-8') as f
              nb = read(f, NO_CONVERT)
          word_count = 0
          for cell in nb.cells:
              if cell.cell_type == "markdown":
                  word_count += len(cell['source'].replace('#', '').lstrip().split('
          print(f"Word count: {word_count}")
          Word count: 1941
In [168]:
          # Finish Timer
          notebook_duration = round((time.time() - startnb)/60, 5)
          print(f'The completion of the notebook took {notebook_duration} minutes.')
          The completion of the notebook took 2.43911 minutes.
  In [ ]:
```