

Métodos Quantitativos

Séries Estatísticas

Distribuição de Frequências

Ponto de fusão (°C)	Nº de mediçõe:	
49,50 50,00	5	
50,00 50,50	12	
50,50 51,00	28	
51,00 51,50	15	
51,50 52,00	2	
TOTAL	50	

1- Séries Estatísticas

Uma série estatística é a representação de uma coleção de dados originados de um conjunto de dados, em uma tabela ou gráfico.

Características de uma série estatística:

Fenômeno: é o fato que foi investigado e cujos valores numéricos estão sendo apresentados na tabela ou gráfico.

Local: É o espaço geográfico onde o fenômeno ocorreu.

Época: Tempo em que o fenômeno foi analisado.

1. Série Temporal, histórica ou cronológica: a variável é o tempo, permanecendo fixo o local e o fenômeno investigado.

Exemplo: Faturamento líquido da Indústria Química Brasileira, em bilhões US\$, (2002 – 2006).

- **2. Série Específica ou categórica:** a ocorrência do fenômeno é variável, permanecendo fixos o local e o tempo.
 - **Exemplo 1:** Casos registrados de intoxicação humana, segundo a causa determinante. Brasil, 1993. (Causas determinantes: Acidente, suicídio, Ignorado e Outros).
 - **Exemplo 2**: Faturamento líquido da Indústria Química Brasileira (em bilhões US\$), por produtos químicos, no ano de 2006.
- **3. Série Geográfica, espaciais, territoriais ou de localização:** A variável é o local, permanecendo fixos o tempo e o fenômeno.

Exemplo: Suicídios ocorridos no Brasil em 2005, por regiões.

Exemplo: Faturamento líquido da Indústria Química Brasileira, em US\$, por regiões do Brasil, no ano de 2006.

4. Mista ou Conjugada: É a junção das séries temporal-específica, temporal-geográfica, específico-geográfica e temporal-específico-geográfica em uma única tabela.

Exemplo: Nascidos vivos registrados segundo o ano de registro e o sexo;

Exemplo: Faturamento líquido da Indústria Química Brasileira (em bilhões US\$), por produtos químicos, nos anos de 2005 e 2006;

2- Apresentação Tabular

Tabela estatística: É uma representação matricial, isto é, em linhas e colunas, das séries Estatísticas. A finalidade da tabela é poder apresentar os dados de modo organizado, simples e de fácil percepção. Dessa forma, a tabela deve ser construída de modo a fornecer o máximo de esclarecimento.

Elementos fundamentais de uma tabela estatística: As Tabelas não possuem linhas verticais externas traçadas e as verticais internas são facultativas, enquanto os quadros podem apresentar laterais fechadas.

2.1 Elementos fundamentais de uma tabela estatística

- Título: Deve responder os seguintes questionamentos: O quê? Ou Quem? Quando?
 Onde?
- **Fonte**: Indicação da entidade responsável pelo fornecimento dos dados ou pela sua elaboração.
- Notas: São informações suplementares destinadas a conceituar ou esclarecer o conteúdo das tabelas ou indicar a metodologia adotada no levantamento ou na elaboração dos dados.
- Chamadas: É o esclarecimento de dados específicos. Usar algarismos (* ou 1, 2, 3,...).
- Zona Designativa: Está colocado logo abaixo do título e compreendem o chamado cabeçalho, nessa zona são colocadas às informações referentes ao conteúdo de cada coluna.
- **Zona Indicativa:** Situa—se ao lado esquerdo, nessa zona são colocadas as informações referentes ao conteúdo de cada linha.
- **Zona Enumerativa:** São as expressões numéricas do fato estudado, compondo se de colunas, linhas e células ou casas.

2.2 Sinais Convencionais

Todos os campos da tabela estatística devem ser preenchidos, desta forma adotam-se sinais:

- 0; 0,0 ou 0,00: O dado é nulo ou muito pequeno para a unidade adotada. Resultado de arredondamento;
- __: O dado não existe;
- ...: O dado existe, porém sua apresentação não está disponível;
- ?: Quando há dúvida sobre a veracidade do dado.

2.3 Tipos de Tabelas Estatísticas

- **1. Tabelas Simples ou Unidimensional**: Apresentam dados ou informações relativas a uma única Variável.
- 2. Tabela de Dupla Entrada, Cruzada (bidimensional) ou de Contingência: Apresentam dados ou informações de mais de uma Variável.

Exemplo: Faturamento líquido da Indústria Química Brasileira (em bilhões US\$), por produtos químicos, no ano de 2006.

Produtos Químicos	Faturamento (US\$ bilhões)		
Farmacêutico	9,2		
Adubos e fertilizantes	5,3		
Sabões e Detergentes	2,5		
Tintas	1,9		
Outros ¹	2,0		
Total	20,9		

Fonte: ABIQUIM - Associação Brasileira de Indústria Química

¹ Produtos químicos com pouca aceitação

2.4 Tipos de Tabelas Estatísticas

Exemplo: Estabelecimentos de saúde públicos e particulares, por espécie, Brasil, 1985

Estabalasimanta	População (milhões)				
Estabelecimento	Públicos	Particulares			
Hospital	1.002	5.132			
Pronto - socorro	150	156			
Policlínicas*	1.531	6.136			
Outros	14.393	472			
Total	17.076	11.896			

Fonte: IBGE (1988) (*) Incluem postos de saúde, centros de saúde e unidades mistas.

2.5 Banco de Dados

Banco de dados: É um local onde ficam organizados conjuntos de dados de forma bem estruturada e lógica a respeito de algo. O objetivo do banco de dados é apenas de repositório de dados permitindo acesso rápido, e não de apresentar resultados de forma simplificada.

Exemplo:

Na secretaria de uma faculdade tem-se uma determinada quantidade de alunos cadastrados, cada qual com sua pasta de documentos e informações, imagine precisar de alguma informação a respeito de um destes alunos, para evitar ter que ir até um arquivo e pegar a pasta para ter acesso a esta informação, existe um programa interno para cadastro de todos os alunos e assim através do banco de dados onde se tem cadastrados todos os alunos pode-se verificar qualquer informação cadastrada tudo organizado de tal forma que facilite essa busca.

Segue abaixo um banco de dados referente a 10 funcionários da empresa de Consultoria Empresarial "X", Fortaleza, Ceará, dezembro 2007.

Quadro 1 - Banco de Dados

Nº.	Estado Civil Sexo		Grau de instrução	Salário (S.M*)	Idade
1	Solteiro	Feminino	Ensino Médio	6.	20
2	Solteiro	Feminino	Ensino Médio	7.	23
3	Solteiro	Masculino	Superior	11	25
4	Solteiro	Masculino	Ensino Fundamental	4	26
5.	Casado	Feminino	Superior	13	26
6	Solteiro	Feminino	Ensino Fundamental	8.	27
7.	Casado	Feminino	Ensino Fundamental	Z	28
8	Casado	Feminino	Ensino Médio	15	29
2	Casado	Masculino	Ensino Médio	2	30
10	Casado	Feminino	Ensino Médio	11	30

Fonte: Recursos Humanos da Consultoria X (*) S.M: Salários Mínimos

2.5 Distribuição de Frequências

Tipos de frequências:

- Frequência absoluta simples f_i: corresponde a frequência ou contagem efetiva de cada valor da variável no conjunto de dados;
- Frequência relativa simples $f_{i\%}$: corresponde à frequência absoluta em termos percentuais ou relativos. Algumas bibliografias trazem as notações fr (decimal) e fr% (percentual);

$$f_{i\%} = \frac{f_i}{n}.100$$

• Frequência acumulada crescente - f_{aci} : Para um valor considerado, corresponde ao acumulado das frequências de todos os valores anteriores ao valor considerado até ele, seria o "teto". Algumas bibliografias trazem a notação F_i

• Frequência acumulada decrescente - f_{adi}: Para um valor considerado, corresponde ao acumulado das frequências de todos os valores posteriores ao valor considerado a partir dele, seria o "piso".

2.5.1 - Distribuição de Frequências: Dados Discretos

Sendo a variável em estudo quantitativa discreta, a distribuição de frequências pode ser construída apenas listando as categorias de valores em ordem, atribuir às respectivas frequências.

Exemplo: Os dados abaixo correspondem ao número de apartamentos vendidos pela construtora **GM Branco** nos últimos vinte meses.

Dados brutos:

Q	Q	1	4	5	3	2	4	1	4
2	2	4	5	2	1	1	1	5	3

Variável: Nº de apartamentos vendidos – quantitativa discreta

Resolução:

Passos para elaboração da Distribuição:

- Listam-se as categorias de valores diferentes que ocorreram no conjunto: 0, 1, 2, 3, 4,
 5;
- Indicam-se as respectivas frequências absolutas ou quantas vezes cada valor aparece no conjunto;
- Indicam-se as demais frequências (relativas e acumuladas).

	Nº de apartamentos vendidos	f i	£i%	f aci	f _{adi}	
$f_i = 5$: existem 5	0	2	10%	2	20	f _{adi} =18: é soma
valores iguais a	<u>→1</u>	5	→ 25%	7	18 <	de 5+4+2+4+3.
1 no conjunto	2	4	20%	11	13	(f _{is} de 1,2,3,4 e5)
	3.	2	10%	13	9	
f _‰ =25%: é	A	4	20%	17	7←	
(5/20)*100	5.	3	15%	20	3	f _{aci} =7: é soma de 2 +5 (f _{is} de 0 e 1)
Olivi Av	Total	20	100%	-	-	5155 104 FT 5 T 7/

2.5.2 - Distribuição de Frequências: Dados Contínuos

Tipos de Intervalos

Além da definição do tipo de intervalo, existem outras definições a serem tomadas:

- O nº de intervalos (K) e
- O tamanho dos intervalos (h).

O pesquisador tem autonomia para tomar estas decisões, utilizando-se do seu conhecimento empírico sobre a variável estudada. Porém, existem alguns critérios para a definição do número de classes, vejamos:

Roteiro para elaboração da distribuição de frequências:

I. Amplitude total (At): maior distância entre os valores do conjunto

 $A_t = Xi_{máx}$ – $Xi_{mín}$ (diferença entre o maior e menor valor do conjunto)

II. Número de Classes (k): número de intervalos utilizados

$$K = \begin{cases} 5, se \ n \le 25 \\ \sqrt{n}, se \ n > 25 \end{cases}$$
Regra de Sturges: $K = 1 + 3.3. \log n$

- Regra de *Sturges*: $K = 1 + 3,3.\log n$

Observação: Nos dois casos deve-se arredondar para o inteiro mais próximo. A regra da raiz quadrada é normalmente mais utilizada, mas independente da regra, o bom senso deve ser considerado, não é interessante utilizar muitas classes.

III. Amplitude de classe (h): o comprimento ou largura de cada intervalo

$$h = \frac{A_t}{k}$$

Exemplo: Para estudo da melhoria do conforto de automóveis, uma montadora realizou uma pesquisa quantitativa com 40 pessoas. Uma das variáveis estudada foi à altura (m) das pessoas. Os dados seguem abaixo:

Dados brutos

1,40	1,45	1,45	1,47	1,56	1,56	1,56	1,56	1,58	1,58
1,59	1,65	1,65	1,67	1,67	1,67	1,67	1,67	1,68	1,68
1,69	1,69	1,70	1,70	1,75	1,75	1,76	1,78	1,78	1,78
1,79	1,85	1,87	1,87	1,89	1,89	1,89	1,90	2,00	2,00

Resolução

Passos:

- **I.** Amplitude total: At =2,00-1,40=0,60 m ("maior menos o menor")
- II. Número de classes: como n= 40 (n>25), temos: $k=40=6,32\cong 6,0$ ("inteiro mais próximo")
- **III. Amplitude de Classe**: h = 0,60 / 6 = 0,10 m;

Neste caso serão 6 classes de comprimento 0,10 m. Tomando como limite inferior da 1º classe o menor conjunto, temos:

$$L_{inf}$$
 = 1,40 m
 L_{sup} = L_{inf} + h = 1,40 + 0,10 = 1,50 m

1º Classe: 1,40 I--- 1,50, siga com o processo até completar o total de classes. Segue abaixo resultado:

Altura (m)	fi	f _i 96	<i>f</i> esi	f _{edi}
1,40 11,50	4	10%	4	40
1,50 11,60	7	18%	11	36
1,60 1,70	11	28%	22	29
1,70 1,80	9	23%	31	18
1,80 1,90	6	15%	37	9
1,90112,00	3	8%	40	3
Total	40	100%	+	-

3 - Apresentação Gráfica

Gráfico e tabelas são recursos para apresentação de dados. A percepção visual é muito eficiente, mas é preciso atenção em alguns pontos, vejamos as situações indicadas abaixo:

Questionamento: Seria possível que os dois gráficos (A e B) se refiram a mesma situação?

Estatísticas

3 - Apresentação Gráfica

Segue abaixo exemplo dos principais tipos de Gráficos:

1. Setor, Pizza ou Torta (Pie Chart):

2. Barra Vertical e horizontal

Estatísticas

PROBABILIDADE E ESTATÍSTICA

- 3 Apresentação Gráfica
 - 3. Linha

Estatísticas

3 - Apresentação Gráfica

4. Ponto

PROBABILIDADE E ESTATÍSTICA -

Estatísticas

3 - Apresentação Gráfica

5. Histograma

Estatísticas

Fonte: Dados Fictícios

3 - Apresentação Gráfica

6. Colunas e Barras Múltiplas

PROBABILIDADE E ESTATÍSTICA -

Estatísticas

3 - Apresentação Gráfica

7. Estereograma

Estatísticas

Fonte: Dados Fictícios

Estatísticas

- 3 Apresentação Gráfica
 - 8. Pictogramas

Estatísticas

Fonte: Revista Super Interessante - 04/2010