Practice	Exam	3	Discrete	Mathema	atics	TT

Name:	Due Date:	04/08
-------	-----------	-------

- Q 1)(i) How many nonisomorphic non rooted trees are there with 4 vertices?

 (ii) How many nonisomorphic rooted trees are there with 4 vertices?
- (iii) How many nonisomorphic non rooted trees are there with 5 vertices

- **Q** 2)a. How many edges does a tree with 10,000 vertices have?
 - b. How many vertices does a full 5-ary tree with 100 internal vertices have?
 - c. How many edges does a full binary tree with 1000 internal vertices have?
 - d. How many leaves does a full 3-ary tree with 100 vertices have?

- **Q** 3) Suppose that the address of the vertex v in the ordered rooted tree T is 3.4.5.2.4.
- a) At what level is v?
- b) What is the address of the parent of v?
- c) What is the least number of siblings v can have?
- d) What is the smallest possible number of vertices in T if v has this address?

Q 4) Use depth- first search to find a spanning tree of each of these graphs.

a) \dot{W}_6 , starting at the vertex of degree 6

 $b) K_5$

c) $K_{3,4}$, starting at a vertex of degree 3

 $d) Q_3$

 ${\bf Q}~{\bf 5}) Prove~Kruskal's~Theorem$

Q 6) Use Prim-Jarnik's or Kruskal's algorithm to find, step by step, the minimal spanning tree from the graph below. State what method you are using.

Q 7) Describe the tree produced by breadth-first search and depth-first search for the n-cube graph Q_n , where n is a positive integer.

 $\bf Q~8~\it Build~a~\it binary~\it search~\it tree~\it for~\it the~\it words:$ oenology, phrenology, campanology, ornithology, ichthyology, limnology, alchemy, $\it and~\it astrology~\it using~\it alphabetical~\it order.$

Q 9 For the tree in question 8 determine the order in which a inorder traversal visits the vertices of the given ordered rooted tree.

Q 10 For the tree in question 8 determine the order in which a postorder traversal visits the vertices of the given ordered rooted tree.

Q 11 How many nonisomorphic unrooted trees are there with six vertices?

 ${f Q}$ 12 How many nonisomorphic rooted trees are there with six vertices ?