

PMAC Servo Loop Tuning

Interactive Tuning

Servo Tuning

- PMAC's Servo Algorithm must be configured to properly control any given system with motors and amplifiers
- Configuration is done by adjusting I-Variables (Ixx30 through Ixx35) pertaining to the PID gains
- Ixx68 (Friction Feedforward) is also needed
- The process of determining proper values of PID gains is called "Tuning"

PID Servo Loop

Adjust Servo Algorithm parameters for desired position response, including how quickly and accurately the motor can move to a target position

e(t) = Commanded Position - Actual Position

	lxx30	Proportional Gain (K _n)		lxx34	Integration Mode
	lxx31	Derivative Gain (K _d)		lxx35	Acceleration Feedforward (K _{aff})
>	lxx32	Velocity Feedforward (K _{vff})	>	lxx68	Friction Feedforward (K _{fff})
>	lxx33	Integral Gain (K _i)			

Steps for Tuning

- Perform the DAC Calibration as described in the Motor Setup section
- 2. Set Ixx34 (Motor xx PID Integration Mode) – can be changed on the fly as needed
 - =1, position error integration is performed only when Motor xx is not commanding a move (when desired velocity is zero)
 - =0, position error integration is performed always
- 3. Using the Step Response, tune the following parameters in this order:
 - 1. Proportional Gain, K_p (Ixx30)
 - 2. Derivative Gain, K_d (Ixx31)
 - 3. Integral Gain, K_i (Ixx33)
- Using the Parabolic Move, tune the following parameters, not necessarily in this order:
 - Velocity Feedforward, K_{vff} (Ixx32)
 - \triangleright Acceleration Feedforward, $K_{aff}(Ixx35)$
 - Friction Feedforward, K_{fff} (Ixx68)

- When tuning the feedforward gains, set Ixx34=1 so that the dynamic behavior of the system may be observed without integrator action.
- Setting Kvff = Kd (Ixx32 = Ixx31) is a good place to start when tuning Kvff.

Interactive Tuning

Interactive Tuning can be accessed in PMAC Tuning Pro2

Interactive Tuning for Position

- Use the controller gains obtained from Auto Tuning as the starting point for Interactive Tuning
- Change one gain at a time to adjust the response
- Different types of moves are available for tuning purposes

Step Tuning (lxx30, lxx31, lxx33)

Note:

The intent is to operate within the linear range of the system. This is usually a step size approx. ½ to ¼ revolution

Overshoot and Oscillation

Cause:

Too much Proportional gain or too little Damping

Fix:

Decrease K_p (Ixx30) Increase K_d (Ixx31)

Position Offset

Cause:

Friction or Constant Force

Fix:

Increase K_i (Ixx33)

Increase K_p (Ixx30)

Sluggish Response

Cause:

Too much Damping or too little Proportional gain *Fix*:

F 1X:

Increase K_p (Ixx30) or Decrease K_d (Ixx31)

Physical System Limitation

Cause:

Limit of the Motor/Amplifier/Load and gain combination

Fix:

Evaluate Performance and maybe add K_p (Ixx30)

Parabolic Tuning (lxx32-lxx35, lxx68)

Following Error Profile (F.E.)

High Vel./F.E. Correlation

Cause: Damping

Fix: Increase K_{vff} (Ixx32)

High Vel./F.E. Correlation

Cause: Friction

Fix:

Add Friction Feedforward (Ixx68) and/or turn on Integral Gain

(Ixx33, Ixx34)

High Acc./F.E. Correlation

Cause: Inertial Lag

Fix:

Increase K_{aff} (Ixx35)

High Acc./F.E. Correlation

Cause:

Physical System Limitation

Fix:

Use softer acceleration or add more Ixx68

Parabolic Tuning (lxx32-lxx35, lxx68)

Following Error Profile (F.E.)

Negative Vel./F.E. Correlation

Cause:

Too much Velocity Feedforward

Fix:

Decrease K_{vff} (Ixx32)

High Vel./F.E. Correlation

Cause: Damping & Friction

Fix:

Increase K_{vff} first (Ixx32)

Possibly adjust Ixx68

Negative Acc./F.E. Correlation

Cause:

Too much acceleration

Feedforward

Fix:

Decrease K_{aff} (Ixx35)

High Vel./F.E. & Acc./F.E. Correlation

Cause:

Inertial Lag & Friction

Fix:

Increase K_{aff} (Ixx35)

Possibly adjust Ixx68

Tuning Exercise

In the Terminal Window, set lxx30 through lxx39 to 0. This will clear the servo loop tuning for Motor xx.

- Launch PMAC Tuning Pro2 from Tool menu. Tune all available PMAC motors for minimum following error.
- Use previous slides as references to change I-Variables for servo tuning to have better performance.

Well-Tuned Step Response

Well-Tuned Parabolic Move

