STOR 614 - Linear Programming, Spring 2019 Homework No. 2

Zhenghan Fang

Problem 1.

Suppose that P contains a line $Q = \{x + \lambda d \mid \lambda \in \mathbb{R}\}$, where $x \in \mathbb{R}, d \in \mathbb{R}, d \neq 0$. Because the set $\{a_1, \ldots, a_m\}$ contains n linearly independent vectors, there exists a_k , such that $a_k^T d \neq 0$. Therefore,

$$\left\{a_k^T q \mid q \in Q\right\} = \left\{a_k^T x + \lambda a_k^T d \mid \lambda \in \mathbb{R}\right\} = \mathbb{R},$$

which contradicts with

$$a_k^T q \ge b_k$$
, for all $q \in Q$

Problem 2.

Basic feasible solutions:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix}, \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Degenerate BFS:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix}$$

because it has 3 active constraints:

$$x_1 + x_2 \le 1$$
$$4x_1 + x_2 \le 2$$
$$2x_1 + x_2 \le 4/3.$$

Problem 3.

$$\begin{array}{lll} \min & z = 3x_1 + x_2 \\ \mathrm{s.t} & x_1 & -\beta_1 & = 3 \\ & x_1 + x_2 & +\beta_2 = 4, \\ & 2x_1 - x_2 & = 3, \\ & x_1, \ x_2, \ \beta_1, \ \beta_2 \geq 0 \end{array}$$

Problem 4. Problem 4(a)

True.

Let $A \in \mathbb{R}^{m \times n}$. Because A has full row rank, $m \leq n$. Let x_{B1} and x_{B2} be the bases of x. Let x_{N1} and x_{N2} be the corresponding collections of nonbasic variables, i.e.

$$x_{N1} = \{x_1, \dots, x_n\} \setminus x_{B1}$$
$$x_{N2} = \{x_1, \dots, x_n\} \setminus x_{B2}$$

Let n_0 be the number of zeros in x. Then,

$$x_{B1} \neq x_{B2}$$

 $\Rightarrow x_{N1} \neq x_{N2}$
 $\Rightarrow |x_{N1} \cup x_{N2}| > n - m \quad (|\cdot| \text{ denotes cardinality})$
 $\Rightarrow n_0 > n - m$

Therefore, x is degenerate.

Problem 4(b)

False.

Counter example: $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 \end{bmatrix}$. $x = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ is a degenerate basic solution but has only one basis, $\begin{bmatrix} 1 \end{bmatrix}$.

Problem 5. Problem 5(a)

Proposition 1. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, $b \neq 0$. If

- 1. Ax = b has a solution x^* , $x_i^* > 0$, for i = 1, ..., n
- 2. The columns of A are not linearly independent

then there exists a solution of Ax = b, x', such that

- 1. $x_i' \ge 0$, for i = 1, ..., n,
- 2. The columns of A corresponding to nonzero entries of x' are linearly independent.

Proof. Assume the induction hypothesis that the proposition holds for all $n < N(N \ge 3)$. Consider n = N. Let d be a nontrivial solution of Ax = 0. Then, $\exists \lambda \in \mathbb{R}$, such that $y = (x^* + \lambda d)$ has at least one zero entry and no negative entries. Let $A' \in \mathbb{R}^{m \times N'}$ be the matrix containing the columns of A corresponding to nonzero entries of y (N' < N). If the columns of A' are linearly independent, then x' = y. Otherwise, by induction hypothesis, there exists a solution of A'x = b, y', such that $y'_i \ge 0$, for $i = 1, \ldots, N'$, and the columns of A' corresponding to nonzero entries of y' are linearly independent. Then, x' can be obtained by replacing the nonzero entries of y by corresponding entries of y'.

Proof for problem 5(a).

If b = 0, then 0 is a degenerate basic feasible solution of P, so $b \neq 0$.

Suppose that x is not a basic feasible solution, then the columns of A corresponding to nonzero entries of x are not linearly independent. By proposition 1, there exists $x' \in \mathbb{R}^n$, such that x' is a feasible solution, x' has more than (n-m) zeros, and the columns of A corresponding to nonzero entries of x' are linearly independent. Therefore, x' is a degenerate basic feasible solution, which contradicts with that all basic feasible solutions are nondegenerate.

Problem 5(b) A counter example:

$$A = \begin{bmatrix} 2 & 0 \end{bmatrix}$$
$$b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

x has exactly 1 positive component but is not a basic feasible solution.