Live actieherkenning met de Kinect sensor in Python Master of Science in de industriële wetenschappen: informatica Bert De Saffel

prof. dr. ir. Peter Veelaert & prof. dr. ir. Wilfried Philips ing. Sanne Roegiers & ing. Dimitri van Cauwelaert

13 februari 2019

Inhoudsopgave

- Context
- 2 Probleemstellingen
 - Probleemstellingen
 - Gewenst eindresultaat
- Plan van aanpak
 - Literatuurstudie
 - Python wrapper
 - Actieherkenning met machine learning

Context

• Onderzoek naar menselijke actieherkenning

Context

- Onderzoek naar menselijke actieherkenning
- Kinect Sensor
 - Genereert skelet via dieptebeelden
 - Skelet wordt getransformeerd tot features
 - Features worden gebruikt om pose of actie te classificeren

Inhoudsopgave

- Context
- Probleemstellingen
 - Probleemstellingen
 - Gewenst eindresultaat
- Plan van aanpak
 - Literatuurstudie
 - Python wrapper
 - Actieherkenning met machine learning

Probleemstellingen

- Invariant zijn van de features, onafhankelijk van o.a.:
 - verschillen in lichaamsbouw (kind of volwassen)
 - actie-uitvoering
 - camerahoek
 - snelheid (trage of snelle actie)

Probleemstellingen

- Invariant zijn van de features, onafhankelijk van o.a.:
 - verschillen in lichaamsbouw (kind of volwassen)
 - actie-uitvoering
 - camerahoek
 - snelheid (trage of snelle actie)
- Python implementatie voor de Kinect sensor
 - Live mapping van de verschillende sensoren
 - Beelden opslaan in toegankelijk videoformaat

Gewenst eindresultaat

- Wat?
 - Prototype
 - Snelle herkenning van eenvoudige acties
 - Beelden beschikbaar in toegankelijk videoformaat

Gewenst eindresultaat

- Wat?
 - Prototype
 - Snelle herkenning van eenvoudige acties
 - Beelden beschikbaar in toegankelijk videoformaat
- Waarom nuttig?
 - Uitbreidmogelijkheden: interactie mens-robot, analyseren fitnessoefeningen, ...
 - Demonstratie op opendeurdag

Inhoudsopgave

- Context
- 2 Probleemstellingen
 - Probleemstellingen
 - Gewenst eindresultaat
- Plan van aanpak
 - Literatuurstudie
 - Python wrapper
 - Actieherkenning met machine learning

Literatuurstudie

Planning: 04/feb - 17/feb

- Mogelijkheden en limitaties van de kinect sensor
- Bestaande actieherkenningsalgoritmen bestuderen
- Bestuderen bestaande implementaties Kinect code

Python wrapper

Planning: 18/feb - 17/mrt

- Kinect sensor aanspreken vanuit Python
- Twee hoofdfunctionaliteiten:
 - Live mapping van de Kinect sensoren
 - Opslaan beelden in toegankelijk videoformaat
- Testen
 - Handmatige testen
 - Performantietesten

Actieherkenning met machine learning

Planning: 18/mrt - 26/mei

- Toepassen/uitbreiden van bestaande actieherkenningalgoritmen
 - Op één enkel persoon
 - Op meerdere personen

Actieherkenning met machine learning

Planning: 18/mrt - 26/mei

- Toepassen/uitbreiden van bestaande actieherkenningalgoritmen
 - Op één enkel persoon
 - Op meerdere personen
- Supervised learning

Actieherkenning met machine learning

Planning: 18/mrt - 26/mei

- Toepassen/uitbreiden van bestaande actieherkenningalgoritmen
 - Op één enkel persoon
 - Op meerdere personen
- Supervised learning
- Training data: bestaande datasets

Buffer

Overige weken: 27/mei - 10/jun

- Bufferperiode
- Afwerken scriptie

Vragen, opmerkingen, ...?