

Introduction to Reinforcement Learning

Lecture 4. Policy Gradient Methods

Sungjoon Choi, Korea University

Content

- Proving Policy Gradient Theorem
- Trust Region Policy Optimization (TRPO)
- Proximal Policy Optimization (PPO)
- Generalized Advantage Estimation (GAE)
- Soft Actor-Critic (SAC)

Policy Gradient Theorem

Policy Optimization

• Policy gradient methods cast reinforcement learning into an optimization problem.

Policy Optimization

 Policy gradient methods cast reinforcement learning into an optimization problem.

• Find θ that maximizes the return:

$$\eta(\pi_{ heta}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t | \pi_{ heta}
ight]$$

Policy Optimization

 Policy gradient methods cast reinforcement learning into an optimization problem.

• Find θ that maximizes the return:

$$\eta(\pi_{ heta}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t | \pi_{ heta}
ight]$$

• We update the parameters of the **policy** function by computing the **gradient** of the parameters of the objective function:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \eta(\pi_{\theta})$$

How to compute the gradients

$$abla_{ heta} \eta(\pi_{ heta}) =
abla_{ heta} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R_t | \pi_{ heta} \right]$$

Policy Gradient Theorem:

$$\nabla_{\theta} \eta(\pi_{\theta}) = \frac{1}{(1 - \gamma)} \sum_{s} \rho_{\pi_{\theta}} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)$$
$$\nabla_{\theta} \eta(\pi_{\theta}) \approx \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) Q_{\pi_{\theta}}(s_{t}, a_{t})$$

• Note that we only require the gradient of $\pi_{\theta}(\,\cdot\,)$ not $Q^{\pi_{\theta}}(\,\cdot\,)!$

State Visitation

• Stationary distribution of the state given $\pi_{\theta}(\,\cdot\,)$

$$\rho_{\pi_{\theta}}(s) = (1 - \gamma) \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \mathbb{I}_{(St=s)}\right] = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s)$$

State Visitation

• Stationary distribution of the state given $\pi_{\theta}(\,\cdot\,)$

$$\rho_{\pi_{\theta}}(s) = (1 - \gamma) \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \mathbb{I}_{(St=s)}\right] = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s)$$

• $\rho_{\pi\theta}(s)$ is a probability mass function

$$\sum_{s} \rho_{\pi_{\theta}}(s) = (1 - \gamma) \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{s} \mathbb{I}_{(S_{t} = s)}\right] = (1 - \gamma) \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t}\right] = (1 - \gamma) \frac{1}{1 - \gamma} = 1$$

• Return $\eta(\pi_{\theta})$ of a policy $\pi_{\theta}(\,\cdot\,)$ and its gradient:

$$\eta(\pi_{\theta}) = \sum_{s} d(s) V_{\pi_{\theta}}(s)$$

$$\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \nabla_{\theta} V_{\pi_{\theta}}(s)$$

• Return $\eta(\pi_{\theta})$ of a policy $\pi_{\theta}(\,\cdot\,)$ and its gradient:

$$\eta(\pi_{\theta}) = \sum_{s} d(s) V_{\pi_{\theta}}(s)$$

$$\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \nabla_{\theta} V_{\pi_{\theta}}(s)$$

• Let's select an arbitrary state, say s_1 , and compute $\nabla_{\theta}V_{\pi_{\theta}}(s_1)$:

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \nabla_{\theta} \sum_{a} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a)$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a) + \pi_{\theta}(a \mid s_1) \nabla_{\theta} Q_{\pi_{\theta}}(s_1, a)$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a) + \pi_{\theta}(a \mid s_1) \nabla_{\theta} Q_{\pi_{\theta}}(s_1, a)$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a) + \pi_{\theta}(a \mid s_1) \nabla_{\theta} Q_{\pi_{\theta}}(s_1, a)$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a) + \pi_{\theta}(a \mid s_1) \nabla_{\theta} \left[r(s_1, a) + \gamma \sum_{s'} V_{\pi_{\theta}}(s') P(s' \mid s_1, a) \right]$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a) + \pi_{\theta}(a \mid s_1) \nabla_{\theta} Q_{\pi_{\theta}}(s_1, a)$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a) + \pi_{\theta}(a \mid s_1) \nabla_{\theta} \left[r(s_1, a) + \gamma \sum_{s'} V_{\pi_{\theta}}(s') P(s' \mid s_1, a) \right]$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a) + \pi_{\theta}(a \mid s_1) \left[\gamma \sum_{s'} \nabla_{\theta} V_{\pi_{\theta}}(s') P(s' \mid s_1, a) \right]$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_{1}) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_{1}) Q_{\pi_{\theta}}(s_{1}, a) + \pi_{\theta}(a \mid s_{1}) \left[\gamma \sum_{s'} \nabla_{\theta} V_{\pi_{\theta}}(s') P(s' \mid s_{1}, a) \right]$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s') = \sum_{a'} \nabla_{\theta} \pi_{\theta}(a'|s') Q_{\pi_{\theta}}(s',a') + \pi_{\theta}(a'|s') \left[\gamma \sum_{s''} \nabla_{\theta} V_{\pi_{\theta}}(s'') P(s''|s',a') \right]$$

• By plugging in:

$$\nabla_{\theta} V_{\pi_{\theta}}(s_{1}) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_{1}) Q_{\pi_{\theta}}(s_{1}, a) + \pi_{\theta}(a \mid s_{1}) \left[\gamma \sum_{s'} \left[\sum_{a'} \nabla_{\theta} \pi_{\theta}(a' \mid s') Q_{\pi_{\theta}}(s', a') + \pi_{\theta}(a' \mid s') \left[\gamma \sum_{s''} \nabla_{\theta} V_{\pi_{\theta}}(s'') P(s'' \mid s', a') \right] \right] P(s' \mid s_{1}, a) \right]$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_{1}) = \sum_{a} \left[\nabla_{\theta} \pi_{\theta}(a \mid s_{1}) Q_{\pi_{\theta}}(s_{1}, a) + \pi_{\theta}(a \mid s_{1}) \left[\gamma \sum_{s'} \left[\sum_{a'} \nabla_{\theta} \pi_{\theta}(a' \mid s') Q_{\pi_{\theta}}(s', a') + \pi_{\theta}(a' \mid s') \left[\gamma \sum_{s''} \nabla_{\theta} V_{\pi_{\theta}}(s'') P(s'' \mid s', a') \right] \right] P(s' \mid s_{1}, a) \right] \right]$$

• $\nabla_{\theta} V_{\pi_{\theta}}(s_1)$ contains three terms

$$\sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_{1}) Q_{\pi_{\theta}}(s_{1}, a)$$

$$+ \sum_{a} \pi_{\theta}(a \mid s_{1}) \left[\gamma \sum_{s'} \left[\sum_{a'} \nabla_{\theta} \pi_{\theta}(a' \mid s') Q_{\pi_{\theta}}(s', a') \right] P(s' \mid s_{1}, a) \right]$$

$$+ \sum_{a} \pi_{\theta}(a \mid s_{1}) \left[\gamma \sum_{s'} \left[\sum_{a'} \pi_{\theta}(a' \mid s') \left[\gamma \sum_{s''} \nabla_{\theta} V_{\pi_{\theta}}(s'') P(s'' \mid s', a') \right] \right] P(s' \mid s_{1}, a) \right]$$

• If we focus on the **first** term

$$\sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_1) Q_{\pi_{\theta}}(s_1, a)$$

$$P_{\pi_{\theta}}(S_0=s'\,|\,S_0=s_1)$$
 is nonzero only when $s'=s_1$

$$\sum_{s} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_{1}) Q_{\pi_{\theta}}(s, a) P_{\pi_{\theta}}(S_{0} = s \mid S_{0} = s_{1})$$

$$\begin{split} \nabla_{\theta} V_{\pi_{\theta}}(s_1) \text{ contains three terms} \\ &\sum_{a} \overline{\nabla_{\theta} \pi_{\theta}(a \mid s_1)} Q_{\pi_{\theta}}(s_1, a) \\ &+ \sum_{a} \pi_{\theta}(a \mid s_1) \left[\gamma \sum_{s'} \left[\sum_{a'} \overline{\nabla_{\theta} \pi_{\theta}(a' \mid s')} Q_{\pi_{\theta}}(s', a') \right] P(s' \mid s_1, a) \right] \\ &+ \sum_{a} \pi_{\theta}(a \mid s_1) \left[\gamma \sum_{s'} \left[\sum_{a'} \pi_{\theta}(a' \mid s') \left[\gamma \sum_{s'} \nabla_{\theta} V_{\pi_{\theta}}(s'') P(s'' \mid s', a') \right] \right] P(s' \mid s_1, a) \right] \end{split}$$

• If we focus on the **second** term

$$\sum_{a} \pi_{\theta}(a \mid s_1) \gamma \sum_{s'} \sum_{a'} \nabla_{\theta} \pi_{\theta}(a' \mid s') Q_{\pi_{\theta}}(s', a') P(s' \mid s_1, a)$$

$$\sum_{s'} \sum_{a'} \nabla_{\theta} \pi_{\theta}(a'|s') Q_{\pi_{\theta}}(s',a') \gamma \sum_{a} P(s'|s_1,a) \pi_{\theta}(a|s_1)$$

$$\sum_{s'} \sum_{a'} \nabla_{\theta} \pi_{\theta}(a' | s') Q_{\pi_{\theta}}(s', a') \gamma P_{\pi_{\theta}}(S_1 = s' | S_0 = s_1)$$

Rearrange

State Transition Probability

$$\begin{split} \nabla_{\theta} V_{\pi_{\theta}}(s_1) \text{ contains three terms} \\ &\sum_{a} \nabla_{\theta} \pi_{\theta}(a \, | \, s_1) Q_{\pi_{\theta}'}(s_1, a) \\ &+ \sum_{a} \pi_{\theta}(a \, | \, s_1) \left[\gamma \sum_{s'} \left[\sum_{a'} \nabla_{\theta} \pi_{\theta}(a' | \, s') Q_{\pi_{\theta}}(s', a') \right] P(s' | \, s_1, a) \right] \\ &+ \sum_{a} \pi_{\theta}(a \, | \, s_1) \left[\gamma \sum_{s'} \left[\sum_{a'} \pi_{\theta}(a' | \, s') \left[\gamma \sum_{s'} \nabla_{\theta} V_{\pi_{\theta}}(s'') P(s'' | \, s', a') \right] \right] P(s' | \, s_1, a) \right] \end{split}$$

• If we focus on the **third** term

$$\sum_{a} \pi_{\theta}(a \mid s_{1}) \gamma \sum_{s'} \sum_{a'} \pi_{\theta}(a' \mid s') \gamma \sum_{s''} \nabla_{\theta} V_{\pi_{\theta}}(s'') P(s'' \mid s', a') P(s' \mid s_{1}, a)$$
Rearrange
$$\sum_{s''} \nabla_{\theta} V_{\pi_{\theta}}(s'') \gamma^{2} \sum_{a} \sum_{s'} \sum_{a'} \pi_{\theta}(a \mid s_{1}) \pi_{\theta}(a' \mid s') P(s'' \mid s', a') P(s' \mid s_{1}, a)$$
State Transition Probability

Substituting the first, second and third terms:

$$\nabla_{\theta} V_{\pi_{\theta}}(s_{1}) = \sum_{s} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s_{1}) Q_{\pi_{\theta}}(s, a) P_{\pi_{\theta}}(S_{0} = s \mid S_{0} = s_{1}) + \sum_{s'} \sum_{a'} \nabla_{\theta} \pi_{\theta}(a' \mid s') Q_{\pi_{\theta}}(s', a') \gamma P_{\pi_{\theta}}(S_{1} = s' \mid S_{0} = s_{1}) + \sum_{s''} \nabla_{\theta} V_{\pi_{\theta}}(s'') \gamma^{2} P_{\pi_{\theta}}(S_{2} = s'' \mid S_{0} = s_{1})$$

Mathematical Induction

$$\nabla_{\theta} V_{\pi_{\theta}}(s_{1}) = \sum_{s} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q_{\pi_{\theta}}(s, a) \Big(P_{\pi_{\theta}}(S_{0} = s \mid S_{0} = s_{1}) + \gamma P_{\pi_{\theta}}(S_{1} = s \mid S_{0} = s_{1}) + \gamma^{2} P_{\pi_{\theta}}(S_{2} = s \mid S_{0} = s_{1}) + \gamma^{3} P_{\pi_{\theta}}(S_{3} = s \mid S_{0} = s_{1}) + \cdots \Big)$$

$$\nabla_{\theta} V_{\pi_{\theta}}(s_{1}) = \sum_{s} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q_{\pi_{\theta}}(s, a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s \mid S_{0} = s_{1})$$

Plugging in
$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{s} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q_{\pi_{\theta}}(s, a) \sum_{t=0}^{\infty} \gamma^t P_{\pi_{\theta}}(S_t = s \mid S_0 = s_1)$$
 to $\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \nabla_{\theta} V_{\pi_{\theta}}(s)$

Plugging in
$$\nabla_{\theta}V_{\pi_{\theta}}(s_1) = \sum_{s} \sum_{a} \nabla_{\theta}\pi_{\theta}(a \mid s)Q_{\pi_{\theta}}(s, a) \sum_{t=0}^{\infty} \gamma^{t}P_{\pi_{\theta}}(S_t = s \mid S_0 = s_1)$$
 to $\nabla_{\theta}\eta(\pi_{\theta}) = \sum_{s} d(s) \nabla_{\theta}V_{\pi_{\theta}}(s)$

$$\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s' \mid S_{0} = s)$$

Plugging in
$$\nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{s} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q_{\pi_{\theta}}(s, a) \sum_{t=0}^{\infty} \gamma^t P_{\pi_{\theta}}(S_t = s \mid S_0 = s_1)$$
 to $\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \nabla_{\theta} V_{\pi_{\theta}}(s)$

$$\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s' \mid S_{0} = s)$$

$$= \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} \sum_{s} P_{\pi_{\theta}}(S_{t} = s' \mid S_{0} = s) d(s)$$
Rearrange

Plugging in
$$\nabla_{\theta}V_{\pi_{\theta}}(s_1) = \sum_{s} \sum_{a} \nabla_{\theta}\pi_{\theta}(a \mid s)Q_{\pi_{\theta}}(s, a) \sum_{t=0}^{\infty} \gamma^{t}P_{\pi_{\theta}}(S_t = s \mid S_0 = s_1)$$
 to $\nabla_{\theta}\eta(\pi_{\theta}) = \sum_{s} d(s) \nabla_{\theta}V_{\pi_{\theta}}(s)$

$$\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s' \mid S_{0} = s)$$

$$= \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} \sum_{s} P_{\pi_{\theta}}(S_{t} = s' \mid S_{0} = s) d(s)$$

$$= \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s')$$
By definition
$$= \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s')$$

$$\text{Plugging in } \nabla_{\theta} V_{\pi_{\theta}}(s_1) = \sum_{s} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q_{\pi_{\theta}}(s, a) \sum_{t=0}^{\infty} \gamma^t P_{\pi_{\theta}}(S_t = s \mid S_0 = s_1) \text{ to } \nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \nabla_{\theta} V_{\pi_{\theta}}(s)$$

$$\nabla_{\theta} \eta(\pi_{\theta}) = \sum_{s} d(s) \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s' \mid S_{0} = s)$$

$$= \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} \sum_{s} P_{\pi_{\theta}}(S_{t} = s' \mid S_{0} = s) d(s)$$

$$= \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \sum_{t=0}^{\infty} \gamma^{t} P_{\pi_{\theta}}(S_{t} = s')$$

$$= \frac{1}{1 - \gamma} \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \rho_{\pi_{\theta}}(s')$$

$$\nabla_{\theta} \eta(\pi_{\theta}) = \frac{1}{1 - \gamma} \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \rho_{\pi_{\theta}}(s')$$

$$\propto \mathbb{E}_{s \sim \rho_{\pi_{\theta}}} \left[\sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q_{\pi_{\theta}}(s, a) \right]$$

- Note that the states should be sampled from the distribution induced from the current policy (i.e., $s \sim \rho_{\pi_o}(s)$)
- This makes policy gradient methods on-policy.

Log Ratio Trick

$$\nabla_{\theta} \eta(\pi_{\theta}) = \frac{1}{1 - \gamma} \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \rho_{\pi_{\theta}}(s')$$

• However, we should summate over all possible states and actions.

Log Ratio Trick

$$\nabla_{\theta} \eta(\pi_{\theta}) = \frac{1}{1 - \gamma} \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \rho_{\pi_{\theta}}(s')$$

- However, we should summate over all possible states and actions.
- We can use the log ratio trick to overcome this issue.

$$\nabla_{\theta} \mathbb{E}\left[f(x)\right] = \sum_{x} f(x) \nabla_{\theta} p_{\theta}(x) = \sum_{x} f(x) p_{\theta}(x) \frac{\nabla_{\theta} p_{\theta}(x)}{p_{\theta}(x)} = \sum_{x} f(x) p_{\theta}(x) \nabla_{\theta} \log p_{\theta}(x) = \mathbb{E}\left[f(x) \nabla_{\theta} \log p_{\theta}(x)\right]$$

To summarize

$$\nabla_{\theta} \mathbb{E}\left[f(x)\right] = \mathbb{E}\left[f(x) \nabla_{\theta} \log p_{\theta}(x)\right]$$

Log Ratio Trick

$$\nabla_{\theta} \eta(\pi_{\theta}) = \frac{1}{1 - \gamma} \sum_{s'} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \rho_{\pi_{\theta}}(s')$$

$$= \frac{1}{1 - \gamma} \sum_{s'} \sum_{a} \pi_{\theta}(a \mid s') \frac{\nabla_{\theta} \pi_{\theta}(a \mid s')}{\pi_{\theta}(a \mid s')} Q_{\pi_{\theta}}(s', a) \rho_{\pi_{\theta}}(s')$$

$$= \frac{1}{1 - \gamma} \sum_{s'} \sum_{a} \pi_{\theta}(a \mid s') \nabla_{\theta} \log \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \rho_{\pi_{\theta}}(s')$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{a \sim \pi_{\theta}, s \sim \rho_{\pi}(S)} \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s') Q_{\pi_{\theta}}(s', a) \right]$$

$$\approx \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) Q_{\pi_{\theta}}(s_{t}, a_{t})$$

To summarize

$$\nabla_{\theta} \eta(\pi_{\theta}) \approx \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q_{\pi_{\theta}}(s_t, a_t)$$

Trust Region Policy Optimization (TRPO)

"Trust Region Policy Optimization", 2015

PG as an optimization problem

Policy-based reinforcement learning is an optimization problem.

• The goal is to find θ that maximizes

$$\eta(\pi_{\theta}) = \mathbb{E}_{s,a} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right]$$

where $s_0 \sim \rho_0(s)$, $a_t \sim \pi(a_t | s_t)$, $s_{t+1} \sim P(s_{t+1} | s_t, a_t)$.

PG as an optimization problem

Policy-based reinforcement learning is an optimization problem.

• The goal is to find θ that maximizes

$$\eta(\pi_{\theta}) = \mathbb{E}_{s,a} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right]$$
 where $s_0 \sim \rho_0(s)$, $a_t \sim \pi(a_t \mid s_t)$, $s_{t+1} \sim P(s_{t+1} \mid s_t, a_t)$.

- We can use optimization techniques:
 - Minorization maximization
 - Conjugate gradient descent

Newton Method

Minorization Maximization

Preliminaries

• The goal of reinforcement learning is to find π_{θ} that maximizes the expected return:

$$\eta(\pi_{\theta}) = \mathbb{E}_{s,a} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right]$$

where
$$s_0 \sim \rho_0(s)$$
, $a_t \sim \pi(a_t | s_t)$, $s_{t+1} \sim P(s_{t+1} | s_t, a_t)$.

Basic definitions of Markov decision processes

$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{s,a} \left[\sum_{l=0}^{\infty} \gamma^l r(s_{t+l}) \right]$$

$$V_{\pi}(s_t) = \mathbb{E}_{s,a} \left[\sum_{l=0}^{\infty} \gamma^l r(s_{t+l}) \right]$$

$$A_{\pi}(s, a) = Q_{\pi}(s, a) - V_{\pi}(s)$$

Useful Identity

The improvement of the expected return:

$$\eta(\pi') = \eta(\pi) + \mathbb{E}_{s,a \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi}(s_t, a_t) \right]$$

Improvement of π' over π

• Let $\rho_{\pi}(s)$ be the (unnormalized) discounted visitation frequencies

$$\rho_{\pi}(s) = P(s_0 = s) + \gamma P(s_1 = s) + \gamma^2 P(s_2 = s) + \cdots$$

Then the return improvement can be written as

$$\eta(\pi') = \eta(\pi) + \sum_{s} \rho_{\pi'}(s) \sum_{a} \pi'(a \mid s) A_{\pi}(s, a).$$

The return improvement

$$\eta(\pi') = \eta(\pi) + \sum_{s} \rho_{\pi'}(s) \sum_{a} \pi'(a \mid s) A_{\pi}(s, a)$$

• Then, the **policy improvement** step of policy iteration will increase the policy performance if the following is guaranteed:

$$\sum_{a} \pi'(a \mid s) A_{\pi}(s, a) \ge 0$$

- . Hence, $\pi'(s) = \arg\max_a A_{\pi}(s,a)$ will improve the policy there is at least one state-action pair with a positive value per each state s.
- However, due to the approximation of $A_{\pi}(s, a)$, it is not always guaranteed.

• The following return improvement is not practical due to $\rho_{\pi'}(s)$:

$$\eta(\pi') = \eta(\pi) + \sum_{s} \rho_{\pi'}(s) \sum_{a} \pi'(a \mid s) A_{\pi}(s, a)$$

Why?

• The following return improvement is not practical due to $\rho_{\pi'}(s)$:

$$\eta(\pi') = \eta(\pi) + \sum_{s} \rho_{\pi'}(s) \sum_{a} \pi'(a \mid s) A_{\pi}(s, a)$$

Why?

• The following local approximation, $\rho_{\pi'}(s) \Rightarrow \rho_{\pi}(s)$, is made:

$$L_{\pi}(\pi') \approx \eta(\pi')$$

$$L_{\pi}(\pi') = \eta(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi'(a \mid s) A_{\pi}(s, a)$$

Local approximation:

$$L_{\pi}(\pi') = \eta(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi'(a \mid s) A_{\pi}(s, a)$$

• Hence the following can be used as a learning objective:

$$\mathbb{E}_{s_t \sim P, a_t \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi}(s_t, a_t) \right]$$

• If we want to use the state-action pairs collected from the current policy π , we can use importance-sampling:

$$\mathbb{E}_{s_t \sim P, a_t \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t \frac{\pi'(a_t \mid s_t)}{\pi(a_t \mid s_t)} A_{\pi}(s_t, a_t) \right]$$

$$= \mathbb{E}_{s_t \sim \rho_{\pi}, a_t \sim \pi} \left[\frac{\pi'(a_t \mid s_t)}{\pi(a_t \mid s_t)} A_{\pi}(s_t, a_t) \right]$$

Minorization for RL

$$L_{\pi}(\pi') = \mathbb{E}_{s \sim \rho_{\pi}, a \sim \pi} \left[\frac{\pi'(a_t | s_t)}{\pi(a_t | s_t)} A_{\pi}(s_t, a_t) \right]$$

• We can define the following **minorization** of $\eta(\pi)$ using KLD

$$M_\pi(\pi')=\eta(\pi)+L_\pi(\pi')-cD_{KL}^{max}(\pi,\pi')$$
 where $D_{KL}^{max}(\pi,\pi')=\max_s D_{KL}\left(\pi(\,\cdot\,|\,s),\pi'(\,\cdot\,|\,s)\right)$

Then the following properties hold:

$$M_{\pi}(\pi) = \eta(\pi)$$

$$M_{\pi}(\pi') \le \eta(\pi')$$

Minorization for RL

• Now, we optimize

$$L_{\pi}(\pi') = \mathbb{E}_{s \sim \rho_{\pi}, a \sim \pi} \left[\frac{\pi'(a \mid s)}{\pi(a \mid s)} A_{\pi}(s, a) \right]$$

$$M_{\pi}(\pi') = \eta(\pi) + L_{\pi}(\pi') - cD_{KL}^{max}(\pi, \pi')$$

$$\max_{\theta_{i+1}} M_{\pi_{\theta_i}}(\pi_{\theta_{i+1}}) = \eta(\pi_{\theta_i}) + L_{\pi_{\theta_i}}(\pi_{\theta_{i+1}}) - cD_{KL}^{max}(\pi_{\theta_i}, \pi_{\theta_{i+1}})$$

Lagrangian relaxation becomes

$$\max_{\theta_{i+1}} L_{\pi_{\theta_i}}(\pi_{\theta_{i+1}})$$
 subject to $D_{KL}^{max}(\pi_{\theta},\pi_{\theta_{i+1}}) \leq \delta$

$$\max_{\boldsymbol{\theta}_{i+1}} L_{\pi_{\theta_i}}(\boldsymbol{\pi}_{\boldsymbol{\theta}_{i+1}}) = \mathbb{E}_{s \sim \rho_{\pi_{\theta_i}}, a \sim \pi_{\theta_i}} \left[\frac{\boldsymbol{\pi}_{\boldsymbol{\theta}_{i+1}}(a \mid s)}{\boldsymbol{\pi}_{\boldsymbol{\theta}_i}(a \mid s)} A_{\pi_{\theta_i}}(s, a) \right]$$

subject to
$$D_{KL}^{max}(\pi_{\theta}, \pi_{\theta_{i+1}}) \leq \delta$$

• We approximate the KL divergence:

$$D_{KL}^{max}(\pi_{\theta}, \pi_{\theta_{i+1}}) = \max_{s} D_{KL} \left(\pi_{\theta_{i}}(\cdot \mid s), \pi_{\theta_{i+1}}(\cdot \mid s) \right)$$

$$D_{KL}^{\rho}(\pi_{\theta}, \pi_{\theta_{i+1}}) = \mathbb{E}_{s \sim \rho_{\pi_{\theta_{i}}}} \left[D_{KL} \left(\pi_{\theta_{i}}(\cdot \mid s), \pi_{\theta_{i+1}}(\cdot \mid s) \right) \right]$$

$$\max_{\theta_{i+1}} L_{\pi_{\theta_i}}(\pi_{\theta_{i+1}}) = \mathbb{E}_{s \sim \rho_{\pi_{\theta_i}}, a \sim \pi_{\theta_i}} \left[\frac{\pi_{\theta_{i+1}}(a \mid s)}{\pi_{\theta_i}(a \mid s)} A_{\pi_{\theta_i}}(s, a) \right]$$
 subject to $D_{KL}^{\rho}(\pi_{\theta}, \pi_{\theta_{i+1}}) \leq \delta$

- In summary,
 - TRPO is a minorization maximization framework for RL.
 - Interpretation of the trust region method:
 - 1. Update policy distribution slowly
 - 2. Consider the geometry of the distribution space
 - There are two approximations: 1) $\mathbb{E}_{s\sim \rho_{\pi'}}\Rightarrow \mathbb{E}_{s\sim \rho_{\pi}}$ and 2) $D_{KL}^{\max}\Rightarrow D_{KL}^{\rho}$

- How do we estimate $A_{\pi_{\theta_i}}$?
- We estimate $Q_{\pi_{\theta_i}}(s,a)$ instead of $A_{\pi_{\theta_i}}(s,a)$:

$$A_{\pi_{\theta_i}}(s, a) = Q_{\pi_{\theta_i}}(s, a) - V_{\pi_{\theta_i}}(s)$$

• We use the Monte Carlo Estimate of Q:

$$Q_{\pi_{\theta_i}}(s_t, a_t) \approx G_t = \sum_{k=1}^{\infty} \gamma^k R_{t+1+k}$$

$$\max_{\boldsymbol{\theta}_{i+1}} L_{\pi_{\theta_i}}(\boldsymbol{\pi}_{\boldsymbol{\theta}_{i+1}}) = \mathbb{E}_{s \sim \rho_{\pi_{\theta_i}}, a \sim \pi_{\theta_i}} \left[\frac{\boldsymbol{\pi}_{\boldsymbol{\theta}_{i+1}}(a \mid s)}{\boldsymbol{\pi}_{\boldsymbol{\theta}_i}(a \mid s)} A_{\pi_{\theta_i}}(s, a) \right]$$

subject to
$$D_{KL}^{\rho}(\pi_{\theta}, \pi_{\theta_{i+1}}) \leq \delta$$

Linear approximation to the loss and quadratic approximation to the constraint

$$\begin{split} \max_{\theta} \nabla_{\theta} L_{\theta_{old}}(\theta) \,|_{\theta = \theta_{old}} \cdot (\theta - \theta_{old}) \\ \text{subject to } \frac{1}{2} (\theta_{old} - \theta)^T H(\theta_{old}) (\theta_{old} - \theta) \leq \delta \end{split}$$
 where $H(\theta_{old})_{(i,j)} = \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_i} \mathbb{E}_{s \sim \rho_{\pi}} \left[D_{KL}(\pi(\, \cdot \, | \, s, \theta_{old}) \| \pi(\, \cdot \, | \, s, \theta)) \right] \,|_{\theta = \theta_{old}} \end{split}$

• The final TRPO objective becomes:

$$\begin{split} \max_{\theta} g(\theta_{old})^T(\theta - \theta_{old}) \\ \text{subject to } \frac{1}{2}(\theta_{old} - \theta)^T H(\theta_{old})(\theta_{old} - \theta) \leq \delta \\ \text{where } g(\theta_{old}) = \nabla_{\theta} L_{\theta_{old}}(\theta) \big|_{\theta = \theta_{old}} \text{ and} \\ H(\theta_{old})_{(i,j)} = \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_j} \mathbb{E}_{s \sim \rho_{\pi}} \left[D_{KL}(\pi(\, \cdot \, | \, s, \theta_{old}) || \pi(\, \cdot \, | \, s, \theta)) \right] \big|_{\theta = \theta_{old}} \end{split}$$

• The update rule of the above problem is

$$\theta_{new} = \theta_{old} + \frac{1}{\lambda} H(\theta_{old})^{-1} g(\theta_{old})$$

The update rule of the above problem is

$$\theta_{new} = \theta_{old} + \frac{1}{\lambda} H(\theta_{old})^{-1} g(\theta_{old})$$

• However, the hessian matrix $H(\theta_{old}) \in \mathbb{R}^{n \times n}$ where n is the number of parameters and the computational complexity of the inverse becomes $O(n^3)$.

• Instead of computing H^{-1} , we solve the linear equation Hx = g using a conjugate gradient method.

Proximal Policy Optimization (PPO)

"Proximal Policy Optimization Algorithms", 2017

Preliminaries

- Policy gradient method
 - The gradient estimate of the policy w.r.t. the return is

$$\hat{g} = \mathbb{E}_{s_t, a_t} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \hat{A}_t \right]$$

where \hat{A}_t is an estimator of the advantage function.

- Trust region method
 - The TRPO objective is

$$\max_{\theta} \mathbb{E} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{old}}(a_t | s_t)} \hat{A}_t \right]$$
s.t. $D_{KL}^{\rho} \left[\pi_{old}(\cdot | s_t), \pi_{\theta}(\cdot | s_t) \right] \leq \delta$

Clipped Surrogate Objective

• The objective of the TRPO is:

$$L(\theta) = \mathbb{E}\left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{old}}(a_t | s_t)} \hat{A}_t\right] = \mathbb{E}\left[r_t(\theta) \hat{A}_t\right]$$

The main objective of clipped surrogate is:

$$L^{\text{CLIP}}(\theta) = \mathbb{E}\left[\min\left(r_t(\theta)\hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A}_t\right)\right]$$

- The first term $r_t(\theta)\hat{A}_t$ is identical to the TRPO objective.
- The second term clips the probability ratio $r_t(\theta)$, which removes the incentive for moving $r_t(\theta)$ outside of the interval $[1 \epsilon, 1 + \epsilon]$.

Clipped Surrogate Objective

$$L(\theta) = \mathbb{E}\left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{old}}(a_t \mid s_t)} \hat{A}_t\right] = \mathbb{E}\left[r_t(\theta) \hat{A}_t\right] \text{ and } L^{\text{CLIP}}(\theta) = \mathbb{E}\left[\min\left(r_t(\theta) \hat{A}_t, \, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t\right)\right]$$

• When $A_t > 0$, we have to worry about increasing $L(\theta)$ by increasing $r_t(\theta)$, and vice versa. Hence, we clip the objective when $r_t(\theta)$ exceeds $1 + \epsilon$ when $A_t > 0$.

Proximal Policy Optimization (Adaptive KL Penalty)

The TRPO objective is:

$$\max_{\theta} \mathbb{E}\left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}\hat{A}_t\right] \text{ s.t. } D_{KL}^{\rho}\left[\pi_{old}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)\right] \leq \delta$$

The unconstrained objective of TRPO is:

$$L(\theta) = \max_{\theta} \mathbb{E} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{old}}(a_t | s_t)} \hat{A}_t - \beta D_{KL}^{\rho} \left[\pi_{\theta_{old}}(\cdot | s_t), \pi_{\theta}(\cdot | s_t) \right] \right]$$

• The adaptive KL penalty method for PPO is to adaptively change β by checking

$$d = \mathbb{E}_t \left[D_{KL}[\pi_{\theta_{old}}, \pi_{\theta}] \right]$$
:

• If
$$d < d_{targ}/1.5$$
, $\beta \leftarrow \beta/2$

• If
$$d > d_{targ} \times 1.5$$
, $\beta \leftarrow \beta \times 2$

Generalized Advantage Estimation (GAE)

"HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION," 2018

• Let V be an approximate value function. Then define

$$\delta_t^V = r_t + \gamma V(s_{t+1}) - V(s_t)$$

i.e., the TD residual of V with discount γ .

- Note that δ_t^V can be considered as an estimate of the advantage of the action a_t , i.e., \hat{A}_t . Now, let's define the following series:
 - $\bullet \hat{A}_t^{(1)} = \delta_t^V$
 - $\hat{A}_t^{(2)} = \delta_t^V + \gamma \delta_{t+1}^V$
 - $\hat{A}_t^{(3)} = \delta_t^V + \gamma \delta_{t+1}^V + \gamma^2 \delta_{t+2}^V$
- Finally, we define the λ -exponentially-weighted average of \hat{A}_t :

$$\hat{A}_{t}^{\mathsf{GAE}(\gamma,\lambda)} = (1-\lambda) \Big(\hat{A}_{t}^{(1)} + \lambda \hat{A}_{t}^{(2)} + \lambda^{2} \hat{A}_{t}^{(3)} + \cdots \Big) = \sum_{t=0}^{\infty} (\gamma \lambda)^{t} \delta_{t+1}^{V}$$

Rewards

```
# Plot rewards
plt.bar(times,rewards,color='b')
plt.title("Rewards",fontsize=15)
plt.xlabel("Time",fontsize=15)
plt.show()
```


Values

$$V(s_t) = \sum_{l=0}^{\infty} \gamma^l r(s_{t+l})$$
 and $V(s_t) = r(s_t) + \gamma V(s_{t+1})$

```
values = np.zeros(L); values[L-1] = rewards[L-1]
for t in reversed(range(L-1)):
    values[t] = rewards[t] + gamma*values[t+1]

# Plot values
plt.bar(times,values,color='r')
plt.title("Values",fontsize=15)
plt.xlabel("Time",fontsize=15)
plt.show()
```


Generalized Advantage Estimates

$$\delta_t^V = r_t + \gamma V(s_{t+1}) - V(s_t) - (9)$$

$$\hat{A}_t^{\text{GAE}(\gamma,\lambda)} = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}^V - (16)$$

```
gaes = np.zeros(L); gaes[L-1] = rewards[L-1]
for t in reversed(range(L-1)):

delta = rewards[t] + (gamma*values[t+1]) - values[t]

gaes[t] = delta + (gamma*lamda*gaes[t+1])

# Plot GAEs
plt.bar(times,gaes,color='g')
plt.title("Generalized Advantage Estimates",fontsize=15)
plt.xlabel("Time",fontsize=15)
plt.show()
```

Generalized Advantage Estimates

$$\hat{A}_{t}^{\mathsf{GAE}(\gamma,\lambda)} = (1-\lambda) \Big(\hat{A}_{t}^{(1)} + \lambda \hat{A}_{t}^{(2)} + \lambda^{2} \hat{A}_{t}^{(3)} + \cdots \Big) = \sum_{t=0}^{\infty} (\gamma \lambda)^{t} \delta_{t+1}^{V}$$

https://gist.github.com/sjchoi86/38c7a378cfa482a1cde5630e5dde937e

Soft Actor-Critic (SAC)

"Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor," 2018

Maximum Entropy RL

Standard RL objective

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} \left[r(s_t, a_t) \right]$$

Maximum Entropy RL objective

$$J(\boldsymbol{\pi}) = \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\boldsymbol{\pi}}} \left[r(s_t, a_t) + \alpha \mathcal{H} \left(\boldsymbol{\pi}(\cdot \mid s_t) \right) \right]$$

Maximum Entropy RL

Maximum Entropy RL objective

$$J(\boldsymbol{\pi}) = \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\boldsymbol{\pi}}} \left[r(s_t, a_t) + \alpha \mathcal{H} \left(\boldsymbol{\pi}(\cdot \mid s_t) \right) \right]$$

- Policy evaluation step
 - The Bellman backup operator for Max-Ent RL is:

$$T^{\pi}Q(s_t, a_t) \triangleq r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} \left[V(s_{t+1}) \right]$$
 where
$$V(s_{t+1}) = \mathbb{E}_{a_t \sim \pi} \left[Q(s_t, a_t) - \log \pi(a_t | s_t) \right].$$

Policy improvement step

$$\pi_{new} = \arg\min_{\pi'} D_{KL} \left(\pi'(\cdot \mid s_t) \| \frac{\exp(Q^{\pi_{old}}(s_t, \cdot))}{Z^{\pi_{old}}(s_t)} \right)$$

Soft Actor-Critic

- SAC learns three functions: $V_{\psi}(s)$, $Q_{\theta}(s,a)$, and $\pi_{\phi}(a \mid s)$.
- For learning $V_{\psi}(s)$:

$$J_{V}(\boldsymbol{\psi}) = \mathbb{E}_{s_{t} \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\boldsymbol{\psi}}(s_{t}) - \mathbb{E}_{a_{t} \sim \boldsymbol{\pi_{\phi}}} \left[\boldsymbol{Q_{\theta}}(s_{t}, a_{t}) - \log \boldsymbol{\pi_{\phi}}(a_{t} | s_{t}) \right] \right)^{2} \right]$$

where actions are being sampled from the current policy $\pi_{\phi}(a \mid s)$ not from the replay.

• For learning $Q_{\theta}(s, a)$:

$$J_{\underline{Q}}(\boldsymbol{\theta}) = \mathbb{E}_{(s_t, a_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(\underline{Q}_{\boldsymbol{\theta}}(s_t, a_t) - \hat{Q}(s_t, a_t) \right)^2 \right] \text{ where } \hat{Q}(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} \left[\underline{V}_{\psi}(s_{t+1}) \right]$$

• For learning $\pi_{\phi}(a \mid s)$:

$$J_{\pi}(\phi) = \mathbb{E}_{s_t \sim \mathcal{D}} \left[D_{KL} \left(\frac{\pi_{\phi}(\cdot \mid s_t) \| \frac{\exp(Q_{\theta}(s_t, \cdot))}{Z_{\theta}(s_t)} \right) \right]$$

If we reparameterize the stochastic policy $a_t = f_{\phi}(\epsilon_t; s_t)$ where ϵ_t is sampled from some distribution,

$$J_{\pi}(\phi) = \mathbb{E}_{s_t \sim D, \epsilon_t \sim \mathcal{N}} \left[\log \frac{\pi_{\phi}}{\sigma} \left(f_{\phi}(\epsilon_t; s_t) \mid s_t \right) - Q_{\theta} \left(s_t, f_{\phi}(\epsilon_t; s_t) \right) \right]$$

Soft Actor-Critic

Policy improvement with KL control

Summary

- Policy Gradient Theorem
 - Optimize the policy directly via $\nabla_{\theta} \eta(\pi_{\theta}) \approx \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q_{\pi_{\theta}}(s_t, a_t)$
- Trust Region Policy Optimization (TRPO)
 - From policy improvements using minorization maximization to a trust-region method.
- Proximal Policy Optimization (PPO)
 - Approximate TRPO with policy ratio clipping and adaptive KL weights.
- Generalized Advantage Estimation (GAE)
 - More robust than the value estimate, similar to $TD(\lambda)$.
- Soft Actor-Critic (SAC)
 - Entropy-regularized RL with an actor-critic method.

Thank You

ROBOT INTELLIGENCE LAB