Finding the Keys to Peano Curve

Presenter: Khang Vo Huynh

Research Advisor: Professor Paul Humke

Mathematics on the Northern Plain Conference 2021

I. Historical Context

II. Construction idea

The four Peano Patterns

III. Inductive construction

First stage of Peano Curve (The initial Pattern and its first numbering)

III. Inductive construction

Second stage of Peano Curve

- Initial Point
- Terminal Point

III. Inductive construction

Replacement

Table

Level n triadic subsquare ${\bf S}_{\sigma}$

Level n+1 triadic subsquare $S_{\sigma 4}$

IV. Specific Example

Suppose $x = 0.027..._9$

$$x = I_0 \cap \ I_{02} \cap \ I_{027} \cap \ \dots \ \text{and} \ f_P(x) = \ S_0 \cap \ S_{02} \cap \ S_{027} \cap \ \dots$$

V. Our Results

1. We can use this base 9 identification of points in [0,1] to points of S to determine if a point is 1-to-1, 2-to-1 or 4-to-1 point

2. We prove that there are no 3-to-1 points

3. We can prove that the replacement table is generated by the action of the Klein 4-group.

$$(1/3,1/3) = f_P(0.088.._9) = S_0 \cap S_{08} \cap S_{088} \cap ...$$

$$(1/3,1/3) = f_P(0.100..._9) = S_1 \cap S_{10} \cap S_{100} \cap ...$$

$$(1/3,1/3) = f_P(0.488..._9) = S_4 \cap S_{48} \cap S_{488} \cap ...$$

$$(1/3,1/3) = f_P(0.500..._9) = S_5 \cap S_{50} \cap S_{500} \cap ...$$

VI. References

- [1] Cantor, G (1878) Ein beitrag zur mannigfaltigkeitslehre Crelle J. 84 242–258
- [2] Bader, M. (2012) An Introduction with Applications in Scientific Computing
- [3] Borel, E. (1949). Elements de la Theorie des Ensembles. Paris: Albin Michel.
- [4] Flaten, S., Humke, P. D., Olson, E., Vo, T. (2021) Delicate details of filling space. Amer. Math. Monthly 128 (2): 99–114 doi.org/10.1007/978-3-662-38452-71.
- [5] Flaten, S., Humke, P. D., Olson, E., Vo, T. (2021) Filling gaps in space filling. J. Math. Anal. App. accepted for publication.
- [6] Hilbert, D. (1891). Uber die stetige Abbildung einer Linie auf ein Fl achenst uck. Math. Annln. 38: 459–460. doi.org/10.1007/978-3-662-38452-71
- [7] Lera D., Sergeyev Y., Strongin R. (2013) Introduction to Global Optimization Exploiting Space-Filling Curves
- [8] Moore, E. H. (1900). On certain crinkly curves. Trans. Amer. Math. Soc. 1: 72-90. doi.org/10.2307/1986405
- [9] Netto, E. (1879). Beitrag zur mannigfaltigkeitslehre. J. Reine Angew. Math., 86: 263-268. doi.org/10.1515/crll.1879.86.263
- [10] Olmsted, J. M. H. (1959). Real Variables: an Introduction to the The-ory of Functions. New York: The Appleton-Century Mathematics Series. Appleton-Century-Crofts, Inc.
- [11] Peano, G. (1890). Sur une corbe qui remplit toute une aire plane. Math. Ann. 36: 157–160. doi.org/10.1007/bf01199438
- [12] Rose, N. J. (2001). Hilbert-type space-filling curves.researchgate.net/profile/NicholasRose/publication/265074953Hilbert-TypeSpace-FillingCurves/links/55d3f90e08aec1b0429f407a.pdf
- [13] Sagan, H. (1992). On the geometrization of the Peano curve and the arithmetization of the Hilbert curve. *Internat. J. Math. Ed. Sci. Tech*, 23(3):403–411. doi.org/10.1080/0020739920230309
- [14] Sagan, H. (2012). Space-filling Curves. New York: Springer Science & Business Media.