Software Project Time Management

Meeting 14

Project Scheduling

- Scheduling is an approximate process in that it tries to predict the future
- it is not possible to know with certainty how long a project will take
 - There are techniques that can increase the likelihood of being close
 - If you are close in your planning and estimation, you can manage the project to achieve the schedule by accelerating some efforts or modifying approaches to meet required deadlines

- There are techniques for estimating the duration and effort of an Activity like:
 - Similar activities
 - Historical data
 - Expert advice
 - Delphi technique
 - Three-point technique
 - Wide-band Delphi technique

Similar Activities

- This just means estimate an activity based on similar activities in the past
 - If you've developed lots of web pages, you can safely estimate how long it'll take to develop similar pages

Historic Data

- If you can find data from similar projects developed by your organization, they can form the basis for a good estimate
 - This assumes the project uses similar technology as previous projects

Expert Advise

- If you don't know anything about the task, ask someone who does!
 - Could find experts within your organization, outside consultants, vendors, academia, etc.
- Notice all three estimation methods depend on someone having experience doing the task before

Delphi technique

- The Delphi technique is a formal way to get group consensus on a wild guess for the estimate
 - 1. Get a group of people together
 - 2. Tell them about the project and its tasks
 - 3. Get them to all estimate the duration of each task
 - 4. Tabulate the guesses in a histogram called First Pass
 - 5. For estimates in the outer quartile (<25% and >75%), ask them for their rationale
 - 6. Have everyone guess again, and retabulate the results: Second Pass
 - 7. Have the outer quartile defend their choices again
 - 8. Make a third set of guesses, and use the average value for the task's estimate
- "Though it sounds a bit goofy, this method actually works pretty well"

- Three Point Estimate
 - The actual duration of a task could vary, depending on many factors
 - Hence there could be a distribution of possible values for the duration
 - Based on best judgment, determine the
 - Optimistic, Most likely, and Pessimistic values for the duration, then use
 - Estimate = (O + 4*M + P)/6

PERT For Dealing With Uncertainty

- Times can be estimated with relative certainty, confidence but for many situations this is not possible, e.g Research, development, new products and projects etc.
- Use 3 time estimates
 - m= most likely time estimate,
 - -a = optimistic time estimate,
 - b = pessimistic time estimate, and
 - Expected Value (TE) = (a + 4m + b)/6
 - Variance $(V) = ((b-a)/6)^2$
 - Std Deviation (δ) = SQRT (V)

	Precedence A						
Activity	Predecesso	Optimistic	Most likely	Pessimis	EXP	Var S.	.Dev
	r	Time	Time	Tin	TE	V	σ
A	_	10	22	22			
В	-	20	20	20	20	4	2
С	-	4	10	16	20	0	0
D	A	2	14	32	10	4	2
Е	В,С	8	8	20	15	25	5
F	В,С	8	14	20	10	4	2
G	В,С	4	4	4	14 4	4 0	2
Н	С	2	12	16	11	5.4 2	
I	G,H	6	16	38	18	28.4 5	
J	D,E	2	8	14	8	4	2

The complete network

A PERT Activity time estimate Exercise

Activity	Optimistic (a)	Most Likely (m)	Pessimistic (b)
Α	5	6	8
В	3	4	5
С	2	3	3
D	3.5	4	5
E	1	3	4
F	8	10	15
G	2	3	4
Н	2	2	2.5

Calculate:

A PERT Activity time estimate

Activity	(a)	(m)	(b)	Те	v	(s)
А	5	6	8	6.17	0.25	0.50
В	3	4	5	4.00	0.108	0.33
С	2	3	3	2.83	0.028	0.17
D	3.5	4	5	4.08	0.062	0.25
Е	1	3	4	2.83	0.25	0.50
F	8	10	15	10.50	1.36	1.17
G	2	3	4	3.00	0.108	0.33
Н	2	2	2.5	2.08	0.006	0.08

Te = a + 4m + b/6

 $V = (b-a/6)^2$

S = sqrt(v)

Draw the PERT Diagram

NETWORK TECHNIQUES

PERT

CPM

- -Program Evaluation and Review Technique
- developed by the US Navy on the Polaris Missile/Submarine program 1958

Critical Path Method Developed for Chemical Plant Shutdown Projectabout same time as PERT

- ✓ Both use same calculations, almost similar
- ✓ Main difference is probabilistic and deterministic in time estimation
- ✓ Gantt Chart also used in scheduling

Program Evaluation and Review Technique, Based on idea that estimates are uncertain. Therefore:

- uses duration ranges, And the probability of falling to a given range
- Uses an "expected value" (or weighted average) to determine durations