Discrete Probability Distributions

Name	Parameters	Support	PMF	CDF	MGF	E[X]	V[X]
Bernoulli	<i>p</i> ∈ [0,1]	$x \in \{0,1\}$	$ \begin{cases} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0 \end{cases} $	$\begin{cases} 0, & \text{if } x < 0 \\ 1 - p, & \text{if } 0 \le x < 1 \\ 1, & \text{if } x \ge 1 \end{cases}$	$(1-p)+pe^t$	p	p(1-p)
Binomial $X \sim BIN(n, p)$	$n \in \{0,1,\dots\}$ $p \in [0,1]$	$x \in \{0, \dots, n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	-	$(1 - p + pe^t)^n$	np	np(1-p)
Geometric $X \sim GEO(p)$	<i>p</i> ∈ (0,1]	$x \in \{0, \dots\}$	$(1-p)^x p$	$1-(1-p)^{x+1}$	$\frac{p}{1 - (1 - p)e^t}$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Negative Binomial $X \sim NB(n, p)$	$n = \{1, \dots\}$ $p \in (0,1)$	$x \in \{0, \dots\}$	$\binom{n+x-1}{n-1}(1-p)^x p^n$	-	$\left(\frac{p}{1-(1-p)e^t}\right)^n$	$\frac{n(1-p)}{p}$	$\frac{n(1-p)}{p^2}$
Poisson $X \sim POI(\lambda)$	$\lambda > 0$	$x \in \{0, \dots\}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	-	$\exp[\lambda(e^t-1)]$	λ	λ

Continuous Probability Distributions

Name	Parameters	Support	PDF	CDF	MGF	E[X]	V[X]	
Uniform $X \sim U(\alpha, \beta)$	$\alpha < \beta$	$x \in [\alpha, \beta]$	$\frac{1}{\beta - \alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\begin{cases} \frac{e^{t\beta} - e^{t\alpha}}{t(\beta - \alpha)}, t \neq 0 \\ 1, t = 0 \end{cases}$	$\frac{1}{2}(\alpha+\beta)$	$\frac{1}{12}(\beta-\alpha)^2$	
Exponential $X \sim EXP(\lambda)$	$\lambda \in (0, \infty)$	$x \in [0, \infty)$	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	
Gamma $X \sim GAMMA(\alpha, \lambda)$	$\alpha \in (0, \infty)$ $\lambda \in (0, \infty)$	$x \in (0, \infty)$	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	-	$\left(1-\frac{t}{\lambda}\right)^{-\alpha}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	
Chi-Square $X \sim \chi^2(k)$	$k = \{1,2,\}$	$x \in [0, \infty)$	$\frac{x^{\left(\frac{k}{2}-1\right)}e^{\left(-\frac{x}{2}\right)}}{2^{\left(\frac{k}{2}\right)}\Gamma\left(\frac{k}{2}\right)}$	-	$(1-2t)^{\left(-rac{k}{2} ight)}$	k	2 <i>k</i>	
Standard Normal $X \sim N(0,1)$	-	$x \in (-\infty, \infty)$	$\frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$	-	$\exp\left[\frac{t^2}{2}\right]$	0	1	
Normal $X \sim N(\mu, \sigma^2)$	$\mu \in (-\infty, \infty)$ $\sigma \in (0, \infty)$	$x \in (-\infty, \infty)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	-	$\exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]$	μ	σ^2	
Log-Normal	$\mu \in (-\infty, \infty)$ $\sigma \in (0, \infty)$	$x \in (0, \infty)$	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right]$	-	-	$\exp\left[\mu + \frac{\sigma^2}{2}\right]$	$(\mathrm{e}^{\sigma^2}-1)\exp(2\mu+\sigma^2)$	

Where $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ for t > 0.