IPD

GUIOL

Calcul d'Ità

MARTINGALES

G----

QUADRATIQUE

BI-DIMENSIONNEI

FORMULE D'ITÔ

BI-DIMENSIONNELI

MOUVEMENT BROWNIEN EN

THÉORÈME D CAMERON-

PROBABILITÉS ÉQUIVALENTES

PROBABILITÉS

THÉORÉME DE CAMEDON-MARTI

INTRODUCTION AUX PRODUITS DÉRIVÉS PAGE DU COURS SUR CHAMILO

Hervé Guiol (IPS LJK)

Kiyosi Itô 1915-2008

Robert H. Cameron 1908-1989

W. Ted Martin 1911-2004

PLAN DU COURS D'IPD

IPD

GUIOL

CALCUL D'ITC

MARTINGALES BROWNIENNES COVARIATION

QUADRATIQUE FORMULE D'ITÓ BI-DIMENSIONN

FORMULE D'ITÔ BI-DIMENSIONNE

MOUVEMENT BROWNIEN EN

THÉORÈME DE CAMERON-

PROBABILITÉS ÉQUIVALENTES CHANGEMENT DE PROBABILITÉS

PROBABILITÉS

THÉORÈME DE

CAMERON-MARTIN

1. Vecteurs Gaussiens.

- 2. Généralités sur les processus. Mouvement Brownien Standard.
- 3. Premières propriétés du MBS.
- 4. Martingales à temps continu : filtrations, temps d'arrêt.
- Martingales (suite): martingales du Mouvement Brownien, théorème d'arrêt et applications au Mouvement Brownien.
- 6. Intégrale de Wiener.
- Intégrale d'Itō : définitions et construction. Processus d'Itō. Variation quadratique.
- Calcul d'Itō : formules d'Itō. Représentation des martingales Browniennes.
- 9. Formule de Cameron-Martin.
- Equation Différentielle Stochastique. Théorèmes d'Itō.
- Modèle de Black-Scholes-Merton : stratégies, prix et portefeuille de couverture.

RÉSUMÉ

IPD

GUIOL

CALCUL D'ITÔ

- MARTINGALES
- COVARIATION
- QUADRATIQUE
- FORMULE D'ITO BI-DIMENSIONNELI
- FORMULE D'ITÔ
- BI-DIMENSIONNEL
- MOUVEMENT
- BROWNIEN EN DIMENSION d

THÉORÈME D CAMERON-

- PROBABILITÉS ÉQUIVALENTES
- CHANGEMENT I PROBABILITÉS
- THÉORÈME DE CAMERON-MARTI

- CALCUL D'ITÔ
 - Martingales Browniennes
 - Covariation Quadratique
 - Formule d'Itô bi-dimensionnelle
 - Formule d'Itô bi-dimensionnelle
 - Mouvement Brownien en dimension d
- 2 Théorème de Cameron-Martin

REPRÉSENTATION DES MARTINGALES BROWNIENNES

IPD

GUIOL

CALCUL D

MARTINGALES

COVARIATION

QUADRATIQUE FORMULE D'ITÔ

BI-DIMENSIONNEI

FORMULE D'ITÔ

BI-DIMENSIONNEL

BROWNIEN EN DIMENSION d

THÉORÈME I CAMERON-

PROBABIL

CHANGEMENT

THÉORÈME DE CAMERON-MARTIS

THÉORÈME 6.11

Soit $W = (W_t)_{0 \le t \le T}$ un M.B.S. sur $(\Omega, \mathcal{F}, \mathbb{P})$ on considère $(\mathcal{F}_t^W)_{0 \le t \le T}$ sa **filtration naturelle complétée** i.e. $\mathcal{F}_t^W = \sigma(W_s, 0 \le s \le t) \vee \mathcal{N}$ telle que $\mathcal{F}_T^W = \mathcal{F}$. Pour toute $(\mathcal{F}_t^W)_{0 \le t \le T}$ -martingale $M = (M_t)_{0 \le t \le T}$ il existe un processus $H \in \Pi_3^2([0, T])$ tel que \mathbb{P} -p.s. $\forall t \in [0, T]$

$$M_t = M_0 + \int_0^t H_s \ dW_s = \mathbb{E}(M_T) + \int_0^t H_s \ dW_s.$$

Si de plus M est de carré intégrable alors $H \in \Pi_2^2([0, T])$.

EXEMPLE

Pour toute variable aléatoire Z, \mathcal{F}_{T}^{W} -mesurable, de carré intégrable alors il existe H, càd-làg $(\mathcal{F}_{t}^{W})_{0 \leq t \leq T}$ -adapté, vérifiant $\int_{0}^{T} \mathbb{E}(H_{s}^{2}) \ ds < +\infty$ tel que

$$\mathbb{E}(Z|\mathcal{F}_t^W) = \mathbb{E}(Z) + \int_0^t H_s \ dW_s.$$

COVARIATION QUADRATIQUE

IPD

GUIOL

CALCUL D'I

MARTINGALES

BROWNIENNES

COVARIATION OUADRATIOUE

FORMULE D'ITÉ

BI-DIMENSIONNEI

FORMULE D'ITÔ

RI-DIMENSIONNELL

MOUVEMENT

BROWNIEN EN DIMENSION d

THÉORÈME D CAMERON-

PROBABILITÉ

CHANGEMENT

PROBABILITÉS

THÉORÈME DE CAMERON-MARTIN

Définition 6.12

Pour deux processus X et Y on définit leur covariation quadratique comme le processus $(X, Y) = ((X, Y)_t)_{t>0}$ défini par

$$\langle X, Y \rangle_t = \lim_{n \to \infty} \sum_{t_i \in \Delta_n(t)} (X_{t_i} - X_{t_{i-1}}) (Y_{t_i} - Y_{t_{i-1}})$$

où
$$\Delta_n(t) = \{t_0 = 0 < t_1 < ... < t_n = t\}, \lim_{n \to \infty} \sup_{t_i \in \Delta_n(t)} (t_i - t_{i-1}) = 0.$$

Proposition 6.13

- On a $\langle X, X \rangle = \langle X \rangle$;
- Identité de polarisation : $\langle X, Y \rangle = \frac{1}{4} (\langle X + Y \rangle \langle X Y \rangle);$
- L'opérateur ⟨·,·⟩ est une forme bilinéaire symétrique;
- Si X et Y sont à trajectoires continues alors $\langle X, Y \rangle$ l'est aussi.
- $t \mapsto \langle X, Y \rangle_t$ est à variations finies.

COVARIATION QUADRATIQUE

IPD

GUIOL

COVARIATION

QUADRATIQUE

Proposition 6.14

• Si M et N sont des $(\mathcal{F}_t)_{t>0}$ -martingales de carrés intégrables, à trajectoires continues, alors $\langle M, N \rangle$ est l'unique processus à variations finies, $(\mathcal{F}_t)_{t\geq 0}$ -adapté, à trajectoires continues, valant 0 en t=0 tel que

$$MN - \langle M, N \rangle = (M_t N_t - \langle M, N \rangle_t)_{t \geq 0}$$

est une $(\mathcal{F}_t)_{t>0}$ -martingale.

- Si X est à variation finie et Y continu alors $\langle X, Y \rangle = 0$;
- Si X et Y sont deux processus indépendants alors $\langle X, Y \rangle = 0$.
- Si $X_t = X_0 + \int_0^t K_s ds + \int_0^t H_s dW_s$ et $Y_t = Y_0 + \int_0^t L_s \, ds + \int_0^t R_s \, dW_s$ sont deux processus d'Itô alors

$$\langle X, Y \rangle_t = \int_0^t H_s R_s \ ds$$

COVARIATION QUADRATIQUE

IPD

GUIOL

CALCUL D'ITO

MADTINGALES

COVARIATION

QUADRATIQUE

FORMULE D'I

DI DIMENDIONNE

FORMULE D'ITO

BI-DIMENSIONNEL

MOUVEMENT BROWNIEN EN

THÉORÈME I CAMERON-

PROBABILITÉS ÉOUIVALENTES

CHANGEMENT : PROBABILITÉS

THÉORÈME DE CAMERON-MARTIN

EXEMPLE

- 1. Soit *B* un M.B.S. et $M = (M_t)$ définit par $M_t = B_t^2 t$. Calculer $\langle B, M \rangle_t$. Indication : on écrit $B_t = \int_0^t 1 \ dB_s$ et $M_t = \int_0^t 2B_s \ dB_s$
- 2. Prouvez que $B_t M_t \langle B, M \rangle_t$ est une martingale sans utiliser le premier point de la proposition 6.14.

Indication : appliquer Itô à $f(t, B_t) = B_t^3 - tB_t$.

Proposition 6.15

Soient X et Y deux processus de covariation quadratique $\langle X,Y\rangle$ alors pour toute fonction continue f on a avec probabilité 1

$$\lim_{n\to\infty} \sum_{t_i\in\Delta_n(t)} f(t_{i-1})(X_{t_i}-X_{t_{i-1}})(Y_{t_i}-Y_{t_{i-1}}) = \int_0^t f(s) \ d\langle X,Y\rangle_s$$

FORMULE D'ITÔ BI-DIMENSIONNELLE

IPD

GUIOL.

FORMULE D'ITÔ

THÉORÈME 6.16. FORMULE D'ITÔ BI-DIMENSIONNELLE

Soient X et Y deux processus à trajectoires continues et à variations quadratiques finies. Pour toute fonction $f: \mathbb{R}^+ \times \mathbb{R}^2 \to \mathbb{R}$ de classe $\mathcal{C}^{1,2}$ on a presque sûrement $\forall t \geq 0$

$$f(t, X_t, Y_t) = f(0, X_0, Y_0) + \int_0^t f'_t(s, X_s, Y_s) ds + \int_0^t f'_x(s, X_s, Y_s) dX_s$$

$$+ \int_0^t f'_y(s, X_s, Y_s) dY_s + \frac{1}{2} \int_0^t f''_{xx}(s, X_s, Y_s) d\langle X \rangle_s$$

$$+ \frac{1}{2} \int_0^t f''_{yy}(s, X_s, Y_s) d\langle Y \rangle_s + \int_0^t f''_{xy}(s, X_s, Y_t) d\langle X, Y \rangle_s$$

COROLLAIRE 6.17. FORMULE D'IPP

Soient X et Y deux processus à trajectoires continues et à variations quadratiques finies.

$$X_t Y_t = X_0 Y_0 + \int_0^t Y_s dX_s + \int_0^t X_s dY_s + \langle X, Y \rangle_t$$

FORMULE D'ITÔ BI-DIMENSIONNELLE

IPD

GUIOL

CALCUL D'IT

OHLOOLD II.

BROWNIENNES

QUADRATIQUE

FORMULE D'ITÔ BI-DIMENSIONNEI

FORMULE D'ITÔ BI-DIMENSIONNELLE

BROWNIEN EN DIMENSION d

THÉORÈME D CAMERON-

MARTIN PROPABILITÉS

CHANGEMENT I

PROBABILITÉS

ΓΗÉORÈME DE Cameron-Martin

THÉORÈME 6.16. FORMULE D'ITÔ BI-DIMENSIONNELLE

Soient X et Y deux processus à trajectoires continues et à variations quadratiques finies. Pour toute fonction $f: \mathbb{R}^+ \times \mathbb{R}^2 \to \mathbb{R}$ de classe $\mathcal{C}^{1,2}$ on a presque sûrement $\forall t \geq 0$

$$f(t, X_t, Y_t) = f(0, X_0, Y_0) + \int_0^t f'_t(s, X_s, Y_s) ds + \int_0^t f'_x(s, X_s, Y_s) dX_s$$

$$+ \int_0^t f'_y(s, X_s, Y_s) dY_s + \frac{1}{2} \int_0^t f''_{xx}(s, X_s, Y_s) d\langle X \rangle_s$$

$$+ \frac{1}{2} \int_0^t f''_{yy}(s, X_s, Y_s) d\langle Y \rangle_s + \int_0^t f''_{xy}(s, X_s, Y_t) d\langle X, Y \rangle_s$$

COROLLAIRE 6.17. FORMULE D'IPP

Soient X et Y deux processus à trajectoires continues et à variations quadratiques finies.

$$X_t Y_t = X_0 Y_0 + \int_0^t Y_s dX_s + \int_0^t X_s dY_s + \langle X, Y \rangle_t$$

MOUVEMENT BROWNIEN EN DIMENSION d

IPD

GUIOL.

MOUVEMENT BROWNIEN EN DIMENSION d

DÉFINITION

Sur $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ on définit un $(\mathcal{F}_t)_{t>0}$ -Mouvement Brownien de dimension d un processus $B = (B_1, ..., B_d)$ à valeurs dans \mathbb{R}^d tels que

- $\forall i \in \{1, ..., d\}$ le processus $(B_i(t))_{t>0}$ est un $(\mathcal{F}_t)_{t>0}$ -M.B.S.
- $\forall i \neq j$ les processus B_i et B_i sont indépendants.

Processus d'Itô

Dans ce contexte on appelle processus d'Itô tout processus X de représentation

$$X_t = X_0 + \int_0^t K_s \ ds + \sum_{i=1}^d H_i(s) \ dB_i(s)$$

où les processus K, $H_1,..., H_d$ sont $(\mathcal{F}_t)_{t>0}$ -adapté et vérifient

$$\int_0^t \left(|\mathcal{K}_{\mathcal{S}}| + \sum_{i=0}^d H_i^2(s) \right) \ ds < +\infty$$

RÉSUMÉ

IPD

GUIOL.

THÉORÈME DE CAMERON-MARTIN

CALCUL D'ITÔ

- ⚠ THÉORÈME DE CAMERON-MARTIN
 - Probabilités équivalentes
 - Changement de Probabilités
 - Théorème de Cameron-Martin

PROBABILITÉS ÉQUIVALENTES

IPD

GUIOL

CALCUL D'ITÓ

OHLOOLD II.

COVADIATION

COVARIATION

QUADRATIQU

BI-DIMENSIONNE

FORMULE D'ITÔ

BI-DIMENSIONNEL
MOUVEMENT

BROWNIEN EN DIMENSION d

THÉORÈME D CAMERON-

PROBABILITÉS ÉQUIVALENTES

CHANGEMENT DE PROBABILITÉS

THÉORÈME DE CAMERON-MARTIN

Définition 7.1

Etant donné un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ on dira qu'une mesure de probabilité \mathbb{Q} sur (Ω, \mathcal{F}) est

• absolument continue par rapport à $\mathbb P$, noté $\mathbb Q << \mathbb P$, si

$$\forall A \in \mathcal{F} : \mathbb{P}(A) = 0 \Rightarrow \mathbb{Q}(A) = 0$$

• équivalente à $\mathbb P$ si $\mathbb Q << \mathbb P$ et $\mathbb P << \mathbb Q$. On note alors $\mathbb Q \sim \mathbb P$.

EXEMPLE

Sur $\Omega=\mathbb{R}$ et $\mathcal{F}=\mathcal{B}(\mathbb{R})$ les probabilités \mathbb{P} et \mathbb{Q} définies par

$$\mathbb{P}(]a,b]) = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx \text{ et } \mathbb{Q}(]a,b]) = \int_{a}^{b} \frac{\lambda}{2} e^{-\lambda |x|} dx$$

sont équivalentes. Par contre elles ne sont pas équivalentes à $\widetilde{\mathbb{Q}}$ définie par :

$$\widetilde{\mathbb{Q}}(]a,b]) = \int_a^b \lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}^+}(x) dx$$

on a seulement $\widetilde{\mathbb{O}} << \mathbb{P}$ et $\widetilde{\mathbb{O}} << \mathbb{O}$.

16

CHANGEMENT DE PROBABILITÉS

IPD

GUIOL

CALCUL D'IT

CHECOLD II

BROWNIENNE

COVARIATION

QUADRATIQUE FORMULE D'ITÉ

FORMULE D'ITÔ

FORMULE D'ITO BI-DIMENSIONNE

BROWNIEN EN DIMENSION d

CAMERON-

ÉQUIVALENTES

CHANGEMENT DE

PROBABILITÉS

THÉORÈME DE CAMERON-MARTIN

DÉFINITION 7.2

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Une mesure de probabilité \mathbb{Q} sur (Ω, \mathcal{F}) définit un changement de probabilités par rapport à \mathbb{P} s'il existe une v.a. L, \mathcal{F} -mesurable telle que

$$\forall A \in \mathcal{F} : \mathbb{Q}(A) = \int_A L \ d\mathbb{P} = \mathbb{E}_{\mathbb{P}}(\mathbf{1}_A L)$$

La v.a. L est appelée densité de $\mathbb Q$ par rapport à $\mathbb P$. On note alors $\frac{d\mathbb Q}{d\mathbb P}=L$ ou $d\mathbb Q=L$ $d\mathbb P$ et on a $\mathbb Q<<\mathbb P$.

Propriétés.

- Pour toute v.a. Z, \mathbb{Q} -intégrable $\mathbb{E}_{\mathbb{Q}}(Z) = \mathbb{E}_{\mathbb{P}}(LZ)$.
- Radon-Nykodym : si $\mathbb{Q} << \mathbb{P}$ alors il existe L vérifiant la définition ci dessus.
- Si de plus $\mathbb{Q} \sim \mathbb{P}$ alors L est strictement positive \mathbb{P} -p.s. et on a $\frac{d\mathbb{P}}{d\mathbb{Q}} = L^{-1}$.

/16

CHANGEMENT DE MOYENNE ET DE MOYENNE/VARIANCE D'UNE V.A. GAUSSIENNE

IPD

GUIOL

CALCUL D'IT

BROWNIENNES COVARIATION

QUADRATIQUE

BI-DIMENSIONNEL

FORMULE D'ITÔ BI-DIMENSIONNEI

MOUVEMENT
BROWNIEN EN
DIMENSION d

THÉORÈME D CAMERON-

PROBABILITÉS ÉQUIVALENTES

CHANGEMENT DE PROBABILITÉS

THÉORÈME DE CAMERON-MARTIS

Propositions 7.3 et 7.4

Soit X une v.a. de loi $\mathcal{N}(\mu, \sigma^2)$ sur $(\Omega, \mathcal{F}, \mathbb{P})$.

1. Soit $\lambda \in \mathbb{R}$ fixé on pose

$$L = L_{\lambda}(X) = \exp\left(\lambda(X - \mu) - \frac{1}{2}\lambda^{2}\sigma^{2}\right)$$

La v.a. L est > 0 et d'espérance 1 sous $\mathbb P$ et elle définit une nouvelle probabilité $\mathbb Q$ équivalente sous laquelle X suit la loi $\mathcal N(\mu + \lambda \sigma^2, \sigma^2)$.

2. Soient $\lambda \in \mathbb{R}$ et $\theta < \frac{1}{2\sigma^2}$ fixés on pose $\Sigma^2 = \frac{\sigma^2}{1-2\theta\sigma^2}$ et

$$Z = Z_{\lambda, heta}(X) = rac{\Sigma}{\sigma} \exp\left(heta(X - \mu)^2 + \lambda(X - \mu) - rac{1}{2}\lambda^2\Sigma^2
ight)$$

La v.a. Z est > 0 et d'espérance 1 sous $\mathbb P$ et elle définit une nouvelle probabilité $\mathbb Q$ équivalente sous laquelle X suit la loi $\mathcal N(\mu + \lambda \Sigma^2, \Sigma^2)$.

CHANGEMENT DE MOYENNE POUR LES VECTEURS GAUSSIENS

IPD

GUIOL

CALCUL D'IT

BROWNIENNE

QUADRATIQUI

BI-DIMENSIONNE

FORMULE D'ITÔ

MOUVEMENT PROWNIEN EN

BROWNIEN EN DIMENSION d

CAMERON-

PROBABILITÉS ÉQUIVALENTES

CHANGEMENT DE PROBABILITÉS

THÉORÈME DE CAMERON-MARTII

Proposition 7.5

Soit $(X_1, X_2, ..., X_n, Z)$ un vecteur Gaussien sur $(\Omega, \mathcal{F}, \mathbb{P})$. La v.a.

$$L = \exp\left(Z - \mathbb{E}_{\mathbb{P}}(Z) - \frac{1}{2} \mathrm{Var}_{\mathbb{P}}(Z)\right)$$

définit une nouvelle probabilité $\mathbb Q$ équivalente sous laquelle le vecteur $(X_1,X_2,...,X_n)$ est Gaussien de matrice de covariance inchangée et de vecteur des espérance vérifiant

$$\mathbb{E}_{\mathbb{Q}}(X_i) = \mathbb{E}_{\mathbb{P}}(X_i) + \operatorname{Cov}_{\mathbb{P}}(X_i, Z)$$

En particulier pour toute fonction $f : \mathbb{R}^n \to \mathbb{R}^+$ borelienne positive

$$\mathbb{E}_{\mathbb{Q}}(f(X_1,...,X_n)) = \mathbb{E}_{\mathbb{P}}\left[\exp\left(Z - \mathbb{E}_{\mathbb{P}}(Z) - \frac{1}{2}\operatorname{Var}_{\mathbb{P}}(Z)\right)f(X_1,...,X_n)\right]$$
$$= \mathbb{E}_{\mathbb{P}}\left[f\left(X_1 + \operatorname{Cov}_{\mathbb{P}}(X_1,Z),...,X_n + \operatorname{Cov}_{\mathbb{P}}(X_n,Z)\right)\right]$$

THÉORÈME DE CAMERON-MARTIN

IPD

GUIOL

CALCUL D'IT

BROWNIENNES COVARIATION

COVARIATION QUADRATIQUE

FORMULE D'ITO

BI-DIMENSIONN

MOUVEMENT BROWNIEN EN

THÉORÈME

CAMERON-MARTIN

ÉQUIVALENTES

CHANGEMENT D

THÉORÈME DE CAMERON-MARTIN

Théorème 7.6. Formule de Camron-Martin

Soient $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq \mathcal{T}}, \mathbb{P})$ un espace de probabilité filtré et $B = (B_t)_{0 \leq t \leq \mathcal{T}}$ un $(\mathcal{F}_t)_{0 \leq t \leq \mathcal{T}}$ -M.B.S. Soit $h : \mathbb{R} \to \mathbb{R}$ une fonction mesurable déterministe telle que $\int_0^\mathcal{T} h^2(s) \ ds < +\infty$. Alors le processus $L = (L_t)_{0 \leq t \leq \mathcal{T}}$ définit par

$$L_t = \exp\left(-\int_0^t h(s) \ dB_s - \int_0^t h^2(s) \ ds\right)$$

est une $(\mathcal{F}_t)_{0 \leq t \leq T}$ -martingale et il existe une probabilité \mathbb{Q}_T equivalente à \mathbb{P} telle que $L_T = d\mathbb{Q}_T/d\mathbb{P}$ sous laquelle le processus $W = (W_t)_{0 \leq t \leq T}$ définit par

$$W_t = B_t + \int_0^t h(s) ds$$

est un $(\mathcal{F}_t)_{0 \leq t \leq T}$ -M.B.S.