Virtual Resolutions and Syzygies

2022 AMS Fall Western Sectional Meeting Salt Lake City, UT

John Cobb (University of Wisconsin-Madison)
October 23, 2022

Polynomials come in different flavors...

Increasing structure

Polynomials

Graded Polynomials

Multigraded Polynomials

or \mathbb{Z} -graded polynomials

or \mathbb{Z}^r -graded polynomials

$$5xy + y^2 - x^3$$

$$x_0^2 + 3x_1x_3 - 6x_2^2$$

$$degree = 2 \in \mathbb{Z}$$

$$x_0^3 y_1^2 - 2x_0 x_1^2 y_0 y_1$$

$$degree = (3,2) \in \mathbb{Z}^2$$

affine geometry

projective geometry

toric geometry

Goal: Move tools studying graded polynomials to the multigraded setting

Syzygies

Hilbert Syzygy Theorem (1890): If M is finitely generated, M has a unique minimal free resolution with length \leq dim S

Example.
$$S = k[x_0, x_1, x_2]$$
 and $I = \langle x_0 x_1, x_0 x_2 \rangle$.

Goal: Study syzygies of M = S/I.

minimal free resolution

$$S(-3)_i = S_{i-3}$$

$$0 \longleftarrow M \longleftarrow S \stackrel{(x_0x_1 \quad x_0x_2)}{\longleftarrow} S(-2)^2 \stackrel{\begin{pmatrix} x_2 \\ -x_1 \end{pmatrix}}{\longleftarrow} S(-3) \longleftarrow 0$$

 $\langle x_0 x_1, x_0 x_2 \rangle$ is the module of 1st syzygies module of 2nd syzygies

 $\langle (x_2, -x_1) \rangle$ is the

they give relations on the generator 1

$$(1)x_0x_1 = 0$$

$$(1)x_0x_2 = 0$$

they give relations on the generators x_0x_1 and x_0x_2

$$x_2(x_0x_1) - x_1(x_0x_2) = 0$$

Syzygies

Hilbert Syzygy Theorem (1890): If M is finitely generated, M has a unique minimal free resolution with length \leq dim S

Example.
$$S = k[x_0, x_1, x_2]$$
 and $I = \langle x_0 x_1, x_0 x_2 \rangle$.

Goal: Study syzygies of M = S/I.

minimal free resolution

$$S(-3)_i = S_{i-3}$$

$$0 \longleftarrow M \longleftarrow S \stackrel{(x_0x_1 \quad x_0x_2)}{\longleftarrow} S(-2)^2 \stackrel{(x_2)}{\longleftarrow} S(-3) \longleftarrow 0$$

Geometrically: If I defines some variety $V(I) \subseteq \mathbb{P}^n$, the minimal free resolution is bounded by dim $\mathbb{P}^n = n$

Syzygies

Main Point: All degrees and ranks of the syzygies are numerical invariants of M!

Green (1984), Green-Lazarsfeld (1985), Schreyer (1986), Voisin (2002, 2005), Aprodu (2003), Farkas-Kemeny (2014), ...

Cox '95

Toric geometry

$$\mathbb{C}[\underline{x_0, x_1}, \underline{y_0, y_1}]$$
 degrees: $(1,0)$ $(0,1)$

$$\mathbb{P}^1 \times \mathbb{P}^1$$

Collection of \mathbb{Z}^2 -graded polynomials

toric subvariety

maximal ideals*
$$\langle bx_0 - ax_1, dy_0 - cy_1 \rangle$$

points $[a:b] \times [c:d]$

Irrelevant ideal $\langle x_0, x_1 \rangle \cap \langle y_0, y_1 \rangle$

Ø, the empty set

$$0 \longleftarrow M \longleftarrow F_0 \longleftarrow F_1 \longleftarrow \cdots$$

What goes wrong?

Example. Let $I = \langle x_0 x_1, x_1 y_0, x_0 y_1, y_0 y_1 \rangle$ be the ideal corresponding to the two points $[0:1] \times [0:1]$ and $[1:0] \times [1:0]$ in $\mathbb{P}^1 \times \mathbb{P}^1$. Here's a minimal free resolution of S/I:

The length of this is longer than $\dim(\mathbb{P}^1 \times \mathbb{P}^1) = 2$.

Essential issue: If you generate a minimal free resolution, you get algebraic structure that is *geometrically irrelevant*.

Virtual Resolutions

Example. Let $I = \langle x_0 x_1, x_1 y_0, x_0 y_1, y_0 y_1 \rangle$ be the ideal corresponding to the two points $[0:1] \times [0:1]$ and $[1:0] \times [1:0]$ in $\mathbb{P}^1 \times \mathbb{P}^1$.

minimal free resolution

 $\ker \mathrm{d}^i/\mathrm{im}\,\mathrm{d}^{d+1}=0$

$$0 \longleftarrow S/I \stackrel{(x_0x_1 \quad x_1y_0 \quad x_0y_1)}{\longleftrightarrow} S(-2,0) \stackrel{\begin{pmatrix} -x_0 & -x_1 \\ y_0 & 0 \\ 0 & y_1 \end{pmatrix}}{\longleftrightarrow} S(-2,-1)^2 \longleftarrow 0$$

$$\underset{H = I/\langle x_0x_1, x_1y_0, x_0y_1 \rangle}{\longleftrightarrow} S(-1,-1)^2$$

Virtual Resolutions

Example. Let $I = \langle x_0 x_1, x_1 y_0, x_0 y_1, y_0 y_1 \rangle$ be the ideal corresponding to the two points $[0:1] \times [0:1]$ and $[1:0] \times [1:0]$ in $\mathbb{P}^1 \times \mathbb{P}^1$.

minimal free resolution

 $\ker d^i/\text{im } d^{d+1} = 0$

virtual resolution

"geometrically exact" homology is supported on irrelevant ideal

$$0 \longleftarrow S/I \longleftarrow S \longleftarrow S(-2,0) \begin{pmatrix} -x_0 & -x_1 \\ y_0 & 0 \\ 0 & y_1 \end{pmatrix}$$

$$H = I/\langle x_0 x_1, x_1 y_0, x_0 y_1 \rangle S(-1, -1)^2$$

$$= \frac{1}{\langle x_0 x_1, x_1 y_0, x_0 y_1 \rangle} S(-1, -1)^2$$

you can check: $B^2H = 0$

Questions about Virtual Resolutions

(1) How can we construct examples of virtual resolutions?

Theorem [Booms, C.] Here are some criteria for checking if an important family of complexes (generalized eagon-northcott complexes) are virtual.

2 How can we measure how algebraically complicated virtual syzygies can get?

Theorem [C.] A bound for curves.

How can we construct examples of virtual resolutions?

Generalizing Koszul Complexes

Koszul Complex: $\varphi: S^n \xrightarrow{(S_1 \dots S_n)} S$ gives a canonical complex

This complex tells you about $S/(s_1, ..., s_n)$

Complex:

[Eagon, Northcott '62]

Eagon-Northcott
$$\varphi: S^n \xrightarrow{\begin{pmatrix} s_{1,1} & \cdots & s_{1,n} \\ \vdots & \ddots & \vdots \\ s_{m,1} & \cdots & s_{m,n} \end{pmatrix}} S^m$$
 gives a canonical complex

This complex tells you about $S/I_m(\varphi)$

$$I_m(\varphi) = m \times m \text{ minors of } \varphi$$

$$\Lambda^{e}E \qquad \qquad \Lambda^{f+2}E \qquad \Lambda^{f+1}E
0 \to \otimes \qquad \to \cdots \to \otimes \qquad \to E \to F \to 0 \quad (EN_{1})
(S^{e-f-1}F)^{*} \otimes \Lambda^{f}F^{*} \qquad F^{*} \otimes \Lambda^{f}F^{*} \qquad \Lambda^{f}F^{*}$$

Eagon-Northcott Complex \in Generalized Eagon-Northcott Complexes

$$\Lambda^{f+2}E^{f} \qquad \qquad \Lambda^{f+2}E^{f} \\
0 \to \otimes \qquad \to \cdots \to \otimes \qquad \to \Lambda^{2}E \to E \otimes F \to S^{2}F \to 0 \quad (EN_{2}) \\
(S^{e-f-2}F)^{*} \otimes \Lambda^{f}F^{*} \qquad \qquad \Lambda^{f}F^{*}$$

1) How can we construct examples of virtual resolutions?

Theorem [Booms, C.] Let $\varphi: F \to G$ be $\operatorname{Pic}(X)$ -graded map. Let $f = \operatorname{rank} F$ and $g = \operatorname{rank} G$ and B be the irrelevant ideal. The generalized Eagon-Northcott complexes C^i are all virtual when $\operatorname{depth}(\langle \operatorname{max'I \ minors \ of } \varphi \rangle: B^\infty) \geq f - g + 1$

Upshot: Virtual resolutions seemingly not coming from a larger minimal free resolution

(1) How can we construct examples of virtual resolutions?

Theorem [Booms, C.] Let $\varphi: F \to G$ be $\operatorname{Pic}(X)$ -graded map. Let $f=\operatorname{rank} F$ and $g=\operatorname{rank} G$ and B be the irrelevant ideal. The generalized Eagon-Northcott complexes C^i are all virtual when $\operatorname{depth}(\langle \operatorname{max'l\ minors\ of\ } \varphi \rangle: B^\infty) \geq f-g+1$

Upshot: First virtual resolutions not coming from a larger minimal free resolution

2 How can we measure how algebraically complicated virtual syzygies can get?

Castelnuovo-Mumford Regularity

In algebraic geometry, you learn:

- the hilbert function of a projective variety X is eventually polynomial $h_X(r) = \dim H^0(\mathcal{O}_X(r))$ agrees with some polynomial when r > 0
- Serre vanishing: As long as r >> 0, a coherent sheaf $\mathcal{F}(r)$ on projective space is globally generated and its higher cohomology vanishes

•

Moral: Life is easier when we look past some magic number.

This magic number is the Castelnuovo-Mumford Regularity

Castelnuovo-Mumford Regularity

Definition ['66 Mumford] The *Castelnuovo-Mumford regularity* of a coherent sheaf \mathscr{F} on \mathbb{P}^n are all the $r\in\mathbb{Z}$ satisfying

$$H^{i}(\mathbb{P}^{r}, \mathcal{F}(r-i)) = 0 \text{ for all } i > 0$$

Castelnuovo-Mumford Regularity

Definition ['66 Mumford] The *Castelnuovo-Mumford regularity* of a coherent sheaf \mathscr{F} on \mathbb{P}^n are all the $r \in \mathbb{Z}$ satisfying

$$H^i(\mathbb{P}^r, \mathcal{F}(r-i)) = 0$$
 for all $i > 0$

— this region is a cone in \mathbb{Z} of the form $a + \mathbb{N}$.

— if n is in the regularity of I_X defining some variety X, then I_X is generated by polynomials of degree $\leq n$.

Castelnuovo-Mumford Regularity

Example. Consider the twisted cubic

$$\mathbb{P}^1 \longrightarrow \mathbb{P}^3$$

$$[s:t] \mapsto [s^3, s^2t, st^2, t^3]$$

Minimal free resolution: $0 \to S(-3)^2 \to S(-2)^3 \to I_X \to 0$ Eagon-Northcott of $\varphi = \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix}$

Castelnuovo-Mumford regularity is the "width", or how quickly the degrees of the syzygies are rising.

Castelnuovo-Mumford Regularity

"Most important theorem on regularity to date" - Eisenbud (The Geometry of Syzygies, 2002)

Theorem [Gruson, Lazarsfeld, Peskine '83]: Let $C \subseteq \mathbb{P}^r$ be a smooth curve of deg d. Then $d+2-r+\mathbb{N}\subseteq \operatorname{reg} C$.

Example.
$$\mathbb{P}^1 \longrightarrow \mathbb{P}^3$$
 $[s:t] \mapsto [s^3, s^2t, st^2, t^3]$

degree is 3, $r=3\Longrightarrow 2+\mathbb{N}\subseteq \operatorname{reg} C\Longrightarrow I_X$ generated by degree 2 polynomials

Castelnuovo-Mumford Regularity

Theorem [Gruson, Lazarsfeld, Peskine '83]: Let $C \subseteq \mathbb{P}^r$ be a smooth curve of deg d. Then $d+2-r+\mathbb{N}\subseteq \operatorname{reg} C$.

Why is this important?

- settled and generalized classical work of Mumford, Castelnuovo, ...
- gave progress towards a larger program of study (Eisenbud-Goto conjecture)
- The ideas that went into the proof

Ideas in Proof of

Theorem [Gruson, Lazarsfeld, Peskine '83]: Let $C \subseteq \mathbb{P}^r$ be a smooth curve of deg d. Then $d+2-r+\mathbb{N}\subseteq \operatorname{reg} C$.

— A map $X \to \mathbb{P}^r$ is given by a globally generated line bundle \mathscr{L} on X globally generated \Longrightarrow surjection $V \otimes \mathscr{O}_X \to \mathscr{L} \to 0$ where $V \subseteq H^0(X,\mathscr{L})$

$$0 \to \mathcal{M}_V \to V \otimes \mathcal{O}_X \to \mathcal{L} \to 0$$

Insight 1: Syzygies of $X \to \mathbb{P}^r$ are controlled by cohomology of \mathcal{M}_V

Ideas in Proof of

Theorem [Gruson, Lazarsfeld, Peskine '83]: Let $C \subseteq \mathbb{P}^r$ be a smooth curve of deg d. Then $d+2-r+\mathbb{N}\subseteq \operatorname{reg} C$.

— A map $X \to \mathbb{P}^r$ is given by a globally generated line bundle \mathscr{L} on X globally generated \Longrightarrow surjection $V \otimes \mathscr{O}_X \to \mathscr{L} \to 0$ where $V \subseteq H^0(X,\mathscr{L})$

$$0 \to \mathcal{M}_V \to V \otimes \mathcal{O}_X \to \mathcal{L} \to 0$$

Insight 1: Syzygies of $X \to \mathbb{P}^r$ are controlled by cohomology of \mathcal{M}_V

Imagine you have a presentation

$$\mathscr{E} \xrightarrow{\varphi} \mathscr{F} \longrightarrow I_X \longrightarrow 0$$

Insight 2: Eagon-Northcott complexes of ϕ can tell you things about I_X

Ideas in Proof

Theorem [Gruson, Lazarsfeld, Peskine '83]: Let $C \subseteq \mathbb{P}^r$ be a smooth curve.

Suppose \mathscr{A} is a line bundle on C such that

$$H^1(\mathbb{P}^r, \wedge^2 \mathcal{M}_{\mathcal{L}} \otimes \mathcal{A}) = 0.$$

Then we get a resolution

$$\cdots \longrightarrow \bigoplus \mathcal{O}_{\mathbb{P}^r}(-a-1) \rightarrow \bigoplus \mathcal{O}_{\mathbb{P}^r}(-a) \rightarrow I_C \rightarrow 0.$$

where $a = \dim H^0(\mathbb{P}^r, \mathscr{A})$.

Ideas in Proof

Theorem [Gruson, Lazarsfeld, Peskine '83]: Let $C \subseteq \mathbb{P}^r$ be a smooth curve.

Suppose $\mathcal A$ is a line bundle on C such that

$$H^1(\mathbb{P}^r, \wedge^2 \mathcal{M}_{\mathscr{L}} \otimes \mathscr{A}) = 0.$$

Then we get a resolution

$$\cdots \longrightarrow \bigoplus \mathcal{O}_{\mathbb{P}^r}(-a-1) \rightarrow \bigoplus \mathcal{O}_{\mathbb{P}^r}(-a) \rightarrow I_C \rightarrow 0.$$

where $a = \dim H^0(\mathbb{P}^r, \mathscr{A})$.

Facts relating resolutions to regularity

Corollary [Gruson, Lazarsfeld, Peskine '83]: Let $C \subseteq \mathbb{P}^r$ be a smooth curve of deg d. Then $\operatorname{reg}(\mathcal{O}_{\mathbb{P}^r}(-d-2+r)) \subseteq \operatorname{reg}(I_C)$.

Generalizing to $\mathbb{P}^{\vec{r}} = \mathbb{P}^{r_1} \times \cdots \times \mathbb{P}^{r_n}$

Castelnuovo-Mumford regularity

Multigraded regularity ['07 Maclagan, Smith]

Generalizing to $\mathbb{P}^{\vec{r}} = \mathbb{P}^{r_1} \times \cdots \times \mathbb{P}^{r_n}$

Theorem [C.]: Let $p:C\hookrightarrow \mathbb{P}^{\vec{r}}$ be a smooth curve. Suppose \mathscr{A} is a line bundle on C such that

$$H^{1}(\mathbb{P}^{\vec{r}}, p*\Omega^{\vec{m}}_{\mathbb{P}^{\vec{r}}}(\vec{m}) \otimes \mathscr{A}) = 0 \text{ for all } m_{1} + \dots + m_{n} = 2$$

Then we get a resolution

$$\cdots \longrightarrow \mathscr{E}_1 \to \mathscr{E}_0 \to I_C \to 0.$$

Furthermore, this resolution is "linear" in some sense.

Generalizing to
$$\mathbb{P}^{\vec{r}} = \mathbb{P}^{r_1} \times \cdots \times \mathbb{P}^{r_n}$$

Theorem [C.]: Let $p:C\hookrightarrow \mathbb{P}^{\vec{r}}$ be a smooth curve. Suppose \mathscr{A} is a line bundle on C such that

$$H^{1}(\mathbb{P}^{\vec{r}}, p*\Omega^{\vec{m}}_{\mathbb{P}^{\vec{r}}}(\vec{m}) \otimes \mathscr{A}) = 0 \text{ for all } m_{1} + \dots + m_{n} = 2$$

Then we get a resolution

$$\cdots \longrightarrow \mathscr{E}_1 \to \mathscr{E}_0 \to I_C \to 0.$$

Furthermore, this resolution is "linear" in some sense.

New facts relating resolutions to regularity

Corollary: $reg(\mathscr{E}_0) \subseteq reg(I_C)$.

Generalizing to
$$\mathbb{P}^{\vec{r}} = \mathbb{P}^{r_1} \times \cdots \times \mathbb{P}^{r_n}$$

Example. Consider this map:

$$\mathbb{P}^{1} \longrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}$$

$$[s:t] \mapsto [t^{2}s - 4s^{3}:t^{3} - 4s^{2}t:t^{2}s - 3s^{2}] \times [s^{2}t - t^{3}:s^{3} - st^{2}:t^{3}]$$

This has degree (3,3). The theorem says:

$$(4,4) + \mathbb{N}^2 \subseteq \operatorname{reg}(I_C)$$

So I_C is generated by equations of degree $\leq (4,4)$

Ideas of Proof of

Theorem [C.]: Let $p:C\hookrightarrow \mathbb{P}^{\vec{r}}$ be a smooth curve. Suppose \mathscr{A} is a line bundle on C such that $H^1(\mathbb{P}^{\vec{r}},p*\Omega^{\overrightarrow{m}}_{\mathbb{D}^{\vec{r}}}(\overrightarrow{m})\otimes\mathscr{A})=0$ for all $m_1+\cdots+m_n=2$

Then we get a resolution $\cdots \longrightarrow \mathscr{E}_1 \to \mathscr{E}_0 \to I_C \to 0$.

Crux of proof: Show that the following is exact:

$$\bigoplus_{|\overrightarrow{m}|=1} \mathcal{O}_{\mathbb{P}^{\overrightarrow{r}}}(-\overrightarrow{m})^{\bigoplus h_{\mathcal{A}}^{0}(\overrightarrow{m})} \xrightarrow{\varphi} H^{0}(X, \mathcal{A}) \otimes \mathcal{O}_{\mathbb{P}^{\overrightarrow{r}}} \longrightarrow p_{*}\mathcal{A} \longrightarrow 0$$

$$h_{\mathcal{A}}^{i}(\overrightarrow{m}) := \dim H^{i}(X, p^{*}\Omega_{\mathbb{P}^{\overrightarrow{r}}}^{\overrightarrow{m}}(\overrightarrow{m}) \otimes \mathcal{A})$$

The resolution in the theorem is the Eagon-Northcott of ϕ

Ideas of Proof of

Theorem [C.]: Let $p:C\hookrightarrow \mathbb{P}^{\vec{r}}$ be a smooth curve. Suppose \mathscr{A} is a line bundle on C such that $H^1(\mathbb{P}^{\vec{r}},p*\Omega^{\overrightarrow{m}}_{\mathbb{D}\vec{r}}(\overrightarrow{m})\otimes\mathscr{A})=0$ for all $m_1+\cdots+m_n=2$

Then we get a resolution $\cdots \longrightarrow \mathcal{E}_1 \to \mathcal{E}_0 \to I_C \to 0$.

Crux of proof: Show that the following is exact:

$$\bigoplus_{|\overrightarrow{m}|=1} \mathcal{O}_{\mathbb{P}^{\overrightarrow{r}}}(-\overrightarrow{m})^{\bigoplus h_{\mathcal{A}}^{0}(\overrightarrow{m})} \xrightarrow{\varphi} H^{0}(X,\mathcal{A}) \otimes \mathcal{O}_{\mathbb{P}^{\overrightarrow{r}}} \longrightarrow p_{*}\mathcal{A} \longrightarrow 0$$

$$\downarrow_{\mathcal{A}}^{i}(\overrightarrow{m}) := \dim H^{i}(X,p^{*}\Omega_{\mathbb{P}^{\overrightarrow{r}}}^{\overrightarrow{m}}(\overrightarrow{m}) \otimes \mathcal{A})$$

The resolution in the theorem is the Eagon-Northcott of ϕ

$$C \times \mathbb{P}^{\vec{r}} \xrightarrow{p \times \mathrm{id}} \mathbb{P}^{\vec{r}} \times \mathbb{P}^{\vec{r}}$$

Step 1: Create a resolution K of the graph of p inside $\Gamma_p \subset C \times \mathbb{P}^{\vec{r}}$ $K = (p \times \mathrm{id})^*(B) \longleftrightarrow B = \bigotimes_{i=0}^n B_i$

Ideas of Proof of

Theorem [C.]: Let $p:C\hookrightarrow \mathbb{P}^{\vec{r}}$ be a smooth curve. Suppose \mathscr{A} is a line bundle on C such that $H^1(\mathbb{P}^{\vec{r}},p*\Omega^{\overrightarrow{m}}_{\mathbb{D}^{\vec{r}}}(\overrightarrow{m})\otimes\mathscr{A})=0$ for all $m_1+\cdots+m_n=2$

Then we get a resolution $\cdots \longrightarrow \mathscr{E}_1 \to \mathscr{E}_0 \to I_C \to 0$.

Crux of proof: Show that the following is exact:

$$\bigoplus_{|\overrightarrow{m}|=1} \mathcal{O}_{\mathbb{P}^{\overrightarrow{r}}}(-\overrightarrow{m})^{\bigoplus h_{\mathcal{A}}^{0}(\overrightarrow{m})} \xrightarrow{\varphi} H^{0}(X, \mathcal{A}) \otimes \mathcal{O}_{\mathbb{P}^{\overrightarrow{r}}} \longrightarrow p_{*}\mathcal{A} \longrightarrow 0$$

$$h_{\mathcal{A}}^{i}(\overrightarrow{m}) := \dim H^{i}(X, p^{*}\Omega_{\mathbb{P}^{\overrightarrow{r}}}^{\overrightarrow{m}}(\overrightarrow{m}) \otimes \mathcal{A})$$

The resolution in the theorem is the Eagon-Northcott of ϕ

Step 1: Create a resolution K of the graph of p inside $\Gamma_p \subset C \times \mathbb{P}^r$

Step 2: Compute the derived pushforward $\mathbf{R}\pi_*(K\otimes\pi^*\mathscr{A})$

$$C \times \mathbb{P}^{\vec{r}} \xrightarrow{p \times \mathrm{id}} \mathbb{P}^{\vec{r}} \times \mathbb{P}^{\vec{r}}$$

$$\pi \downarrow$$

$$\mathbb{P}^{\vec{r}}$$

Ideas of Proof of

Theorem [C.]: Let $p:C\hookrightarrow \mathbb{P}^{\vec{r}}$ be a smooth curve. Suppose \mathscr{A} is a line bundle on C such that $H^1(\mathbb{P}^{\vec{r}},p*\Omega^{\overrightarrow{m}}_{\mathbb{P}^{\vec{r}}}(\overrightarrow{m})\otimes\mathscr{A})=0$ for all $m_1+\cdots+m_n=2$

Then we get a resolution $\cdots \longrightarrow \mathscr{E}_1 \to \mathscr{E}_0 \to I_C \to 0$.

Crux of proof: Show that the following is exact:

$$\bigoplus_{|\overrightarrow{m}|=1} \mathcal{O}_{\mathbb{P}\overrightarrow{r}}(-\overrightarrow{m})^{\bigoplus h_{\mathcal{A}}^{0}(\overrightarrow{m})} \xrightarrow{\varphi} H^{0}(X, \mathcal{A}) \otimes \mathcal{O}_{\mathbb{P}\overrightarrow{r}} \longrightarrow p_{*}\mathcal{A} \longrightarrow 0$$

$$h_{\mathcal{A}}^{i}(\overrightarrow{m}) := \dim H^{i}(X, p^{*}\Omega_{\mathbb{P}\overrightarrow{r}}^{\overrightarrow{m}}(\overrightarrow{m}) \otimes \mathcal{A})$$

The resolution in the theorem is the Eagon-Northcott of ϕ

Step 1: Create a resolution K of the graph of p inside $\Gamma_p \subset C \times \mathbb{P}^r$

Step 2: Compute the derived pushforward $\mathbf{R}\pi_*(K \otimes \pi^* \mathscr{A})$

 $C \times \mathbb{P}^{\vec{r}} \xrightarrow{p \times \mathrm{id}} \mathbb{P}^{\vec{r}} \times \mathbb{P}^{\vec{r}}$ $\pi \downarrow$ $\mathbb{P}^{\vec{r}}$

Corollary. Let $C \subseteq \mathbb{P}^{\vec{r}}$ be a integral nondegenerate curve of degree **d** and define $a := \max\{d_i + d_j - r_i - r_j \mid i \neq j\} + 2$. Then $(\min\{d_k + ar_k, a\})_k + \mathbb{N}^n \subseteq \operatorname{reg} I_C$.

Thanks!