Aggregated Residual Transformations for Deep Neural Networks

Анна Воронцова

ФКН НИУ ВШЭ

Москва, 2018

VGG

Модульность: последовательность базовых блоков одинаковой топологии \rightarrow

- ightarrow ограничение на кол-во возможных значений гиперпараметров
- ightarrow меньше риск переобучения
- ightarrow масштабируемость

K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-scale Image Recognition.

Inception

Принцип split-transform-merge:

- ightharpoonup преобразовать (transform) множеством фильтров (3 imes 3, 5 imes 5, etc.)
- конкатенировать пути (merge).

Ch. Szegedy et al. Going deeper with convolutions.

Inception

Проблема: оптимизация гиперпараметров (число фильтров и их размеры)

Простые нейроны

Inner product как split-transform-aggregate:

- ▶ разбить вход x на x_i
- ▶ преобразовать и масштабировать: w_ix_i
- ▶ агрегировать: $F(x) = \sum_{i=1}^{\infty} w_i x_i$.

Network-in-Neuron

$$F(x) = \sum_{i=1}^{D} w_i x_i.$$

Можем использовать более сложную функцию вместо $w_i x_i$ – например, нейросеть:

$$F(x) = \sum_{i=1}^{C} T_i(x)$$

Network-in-Neuron

Split-transform-aggregate:

$$F(x) = \sum_{i=1}^{C} T_i(x).$$

С – кардинальность – кол-во преобразований.

VGG + Inception + ResNet

 $VGG \rightarrow$ модульность, масштабируемость Inception \rightarrow split-transform-merge, ветвление ResNet \rightarrow residual connections

Aggregated Transformations:

$$y = x + \sum_{i=1}^{C} T_i(x),$$

 T_i имеют одинаковую топологию.

ResNeXt

ResNeXt

Эксперименты: ImageNet-1K

Кардинальность vs ширина

	setting	top-1 error (%)
ResNet-50	1 × 64d	23.9
ResNeXt-50	$2 \times 40d$	23.0
ResNeXt-50	$4 \times 24d$	22.6
ResNeXt-50	8 × 14d	22.3
ResNeXt-50	$32 \times 4d$	22.2
ResNet-101	1 × 64d	22.0
ResNeXt-101	$2 \times 40d$	21.7
ResNeXt-101	$4 \times 24d$	21.4
ResNeXt-101	8 × 14d	21.3
ResNeXt-101	$32 \times 4d$	21.2

setting: $C \times$ ширина

Сложность (FLOPs)

	setting	top-1 err (%)	top-5 err (%)		
1× complexity references:					
ResNet-101	1 × 64d	22.0	6.0		
ResNeXt-101	$32 \times 4d$	21.2	5.6		
2× complexity models follow:					
ResNet-200 [15]	1 × 64d	21.7	5.8		
ResNet-101, wider	1 × 100 d	21.3	5.7		
ResNeXt-101	2 × 64d	20.7	5.5		
ResNeXt-101	64 × 4d	20.4	5.3		

Residual connections

	setting	w/ residual	w/o residual
ResNet-50	1 × 64d	23.9	31.2
ResNeXt-50	$32 \times 4d$	22.2	26.1

Родственные архитектуры: Xception

Xception, октябрь 2016 (ResNext – ноябрь 2016)

 ${\sf F.\ Chollet.\ Xception:\ Deep\ Learning\ with\ Depthwise\ Separable\ Convolutions.}$

Заключение

ResNeXt:

- н/с для классификации изображений
- простая: однородная, с небольшим кол-вом гиперпараметров
- модульная: базовые блоки, преобразования одинаковой топологии
- ▶ кардинальность кол-во преобразований как еще одна размерность н/с
- при фикс. теор. сложности лучше увеличить кардинальность, чем глубину или ширину (эмпирически, ImageNet-1K)

Список литературы

- ► S. Xie et al. Aggregated Residual Transformations for Deep Neural Networks. [1611.05431]
- K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-scale Image Recognition. [1409.1556]
- ► Ch. Szegedy et al. Going deeper with convolutions. [1409.4842]
- ► F. Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. [1610.02357]