ESTUDO DO PROBLEMA DE RECUPERAÇÃO DA MALHA DE EMPRESA AÉREA

Mestrado em Engenharia de Transportes Fábio Emanuel de Souza Morais Orientador: Prof. Dr. Nicolau D. Fares Gualda

Co-Orientador: Daniel Jorge Caetano

- PROBLEMA DE RECUPERAÇÃO DA MALHA
- REVISÃO BIBLIOGRÁFICA
- CARACTERIZAÇÃO/MODELAGEM DE DADOS
- METODOLOGIAS
- RESULTADOS
- •CONCLUSÕES/PRÓXIMOS PASSOS

PROBLEMA DE RECUPERAÇÃO DA MALHA

<u>Perturbações</u>

- Atrasos
- Cancelamentos

2016

- > US\$ 60 bilhões
- > 8% Receita / 9% Custo

Longo Prazo

Aumenta a propensão do
 PAX para trocar de empresa
 (COOK et al. 2009)

		Depa	rtures	
	low 08:3907			
Time	Destination	Plat Expt	Time Destination	Plat Exp
08:39	Chessington Sth	Cancelled	09:15 via Guildford	Cancelled
08:42	Basingstoke	Cancelled	09:15 Reading	Cancelled
08:42	Strawberry Hill	Cancelled	09:18 Teddington	Cancelled
08:45	Portsmouth Hbr via	Cancelled	09:20 Salisbury	Cancelled
08:45	Reading	Cancelled	09:20 Woking	Cancelled
08:48	Teddington	Cancelled	09:24 Dorking	Cancelled
08:50	Woking	Cancelled	09:27 Strawberry Hill	Cancelled
08:53	Alton	Cancelled	09:28 Windsor & Eton	Cancelled
08:54	Dorking	Cancelled	09:33 Teddington	Cancelled
08:57	Strawberry Hill	Cancelled	09:35 Bournemouth	Cancelled
08:58	Windsor & Eton	Cancelled	09:36 via Cobham	Cancelled
09:03	Teddington	Cancelled		
09:05	Bournemouth	Cancelled		
09:06	Guildford via	Cancelled		
09:09	Chessington Sth	Cancelled		
09:12	Basingstoke	Cancelled		
09:12	Strawberry Hill	Cancelled		

OBJETIVO

Resolver o PROBLEMA DE RECUPERAÇÃO DA MALHA

Definição → Encontrar uma nova Programação de Voos que atenda às perturbações e que a operação volte a normalidade depois de um Período de Recuperação;

Objetivo da Otimização → Minimizar as alterações na malha

Instâncias → Pequenas, Médias e Grandes;

Perturbações → Atraso de Voo, Cancelamento de Voo, Manutenção Não-Programada e Redução de Capacidade Aeroportuária;

Tempo de Processamento → Até 20 min

- PROBLEMA DE RECUPERAÇÃO DA MALHA
- REVISÃO BIBLIOGRÁFICA
- CARACTERIZAÇÃO/MODELAGEM DE DADOS
- METODOLOGIA
- RESULTADOS
- •CONCLUSÕES/PRÓXIMOS PASSOS

REVISÃO BIBLIOGRÁFICA - REFERÊNCIAS

Thengvall(2001)

- Aircraft Recovery Problem (ARP)
- Fluxo de Rede Multi-Commodity por Tipo de Aeronave;
- Divide o Problema da programação de malha em dois: Atribuição de Frota e Rotação de Aeronaves;
- Fechamento de Hub
- Atrasos, Cancelamento, Traslados e Trocas de aeronave em nível de frota
- Instância Grandes
- Não Prevê Manutenção

Zhang et al(2016)

- Aircraft + Passenger
- O ARP segue a proposta de <u>Thengvall(2001)</u>
- Redução de capacidade aeroportuária
- Manutenção Programada e Não-Programada
- Problemas na Rotação:
 - Alocação Aleatória
 - Arco de Manutenção não é atribuído a aeronave específica
 - Solução não é válida para o ambiente operacional

- PROBLEMA DE RECUPERAÇÃO DA MALHA
- REVISÃO BIBLIOGRÁFICA
- CARACTERIZAÇÃO/MODELAGEM DE DADOS
- METODOLOGIA
- RESULTADOS
- •CONCLUSÕES/PRÓXIMOS PASSOS

CARACTERIZAÇÃO/MODELAGEM DE DADOS

$$Custo = 40 \times $10/\min + 10 \times $10/\min = $500$$

CARACTERIZAÇÃO/MODELAGEM DE DADOS

CARACTERIZAÇÃO/MODELAGEM DE DADOS

- PROBLEMA DE RECUPERAÇÃO DA MALHA
- REVISÃO BIBLIOGRÁFICA
- CARACTERIZAÇÃO/MODELAGEM DE DADOS
- METODOLOGIA
- RESULTADOS
- •CONCLUSÕES/PRÓXIMOS PASSOS

METODOLOGIAS

MÉTODO INTEGRADO EXATO

METODOLOGIAS - MÉTODO INTEGRADO EXATO

$$\min \sum_{fc \in FC} \sum_{k \in K_f} x_{fck} * cost_delay_swap_{fck} + \sum_{f \in F} y_f * cost_cancel_f$$
 Função Objetivo

Restrições:

$$\sum_{fc \in FC} \sum_{k \in K_f} x_{fck} + y_f = 1$$

$$\forall f \in F$$
Cobertura de Voo

$$n_{input,k}^{e} + \sum_{fc \in FC_{fc\,in}^{n}} x_{fck} + \sum_{ga \in GA_{g\,in}^{n}} z_{gak} = \sum_{fc \in FC_{fc\,out}^{n}} x_{fck} + \sum_{ga \in GA_{g\,out}^{n}} z_{gak}$$
Balanceamento

$$\sum_{fc \in FC_s} \sum_{k \in K_f} x_{fck} \leq Cap_s$$
 Capacidade Aeroportuária

$$x_{fck} = 1$$

$$\forall fck \in FC_m$$

Manutenção Programada

METODOLOGIAS - MÉTODO INTEGRADO EXATO

<u>PERTURBAÇÕES</u>

METODOLOGIAS

MÉTODO HÍBRIDO

METODOLOGIAS - MÉTODO HÍBRIDO

FRA-FRA

Inviabilidades

VIE-CDG

CDG-LHR

Atraso do 60 min em V1

Time

VIE-CDCDG-FRA

METODOLOGIAS

- PROBLEMA DE RECUPERAÇÃO DA MALHA
- REVISÃO BIBLIOGRÁFICA
- CARACTERIZAÇÃO/MODELAGEM DE DADOS
- METODOLOGIAS
- RESULTADOS
- •CONCLUSÕES/PRÓXIMOS PASSOS

RESULTADOS – ATRASOS E MANUTENÇÃO

RESULTADOS – ATRASOS E MANUTENÇÃO

A321_206ASS

RESULTADOS – ATRASOS E MANUTENÇÃO

A321_206ASS

RESULTADOS - MÉTODO INTEGRADO EXATO

GRUPO A

Instâncias Pequenas

					(177)		777
Grupo	ID	Δ Reg pp^{14}	Δ Pont pp	% swap	GAP	Cost	Time (s)
	1	0,0	-7,8	11,2%	0,0%	41.752	42
	2	0,0	-4,3	8,0%	0,0%	96.087	48
	3	0,0	-7,0	7,8%	0,0%	157.885	45
	4	0,0	-36,4	17,5%	0,0%	28.181	105
A	5						_
	6	0,0	-7,8	11,2%	0,0%	41.752	48
	7	0,0	-4,3	8,0%	0,0%	96.087	45
	8	0,0	-7,0	7,8%	0,0%	157.885	46
	9	0,0	-36,4	17,5%	0,0%	128.181	98
	10						
					الالالا		

RESULTADOS - MÉTODO HÍBRIDO - GRUPO A

Modelo Exato não foi Chamado em nenhuma das Instâncias

RESULTADOS - MÉTODO HÍBRIDO

GRUPOS B e C

Instâncias Médias e Grandes

Modelo Exato foi Chamado em todas as Instâncias

Grupo	ID	Δ Reg Pp	Δ Pont Pp	% swap	GAP	Cost	Time (s)
	1	-0,5	-10,2	19,2%	0,4%	740.387	885
	2	-1,2	-12,7	25,1%	0,0%	1.738.427	614
	3	-0,6	-10,8	20,9%	0,7%	804.882	904
В	4	-0,7	-12,6	24,9%	0,0%	915.331	576
	5	-14,0		14,3%	0,0%	7.359.614	999
	6	-0,5	-10,2	19,2%	0,4%	740.387	869
	7	-1,2	-12,7	25,1%	0,0%	1.738.427	614
	8	-0,6	-10,8	20,9%	0,8%	805.331	926
	9	-0,7	-12,6	24,9%	0,0%	915.331	619
	1						
	2						
	3	-0,2	-2,7	3,0%	0,0%	350.334	1.126
	4						
	5	0,0	-8,7	11,7%	0,0%	165.104	25
C	6	-3,0	-49,6	35,8%	0,0%	1.929.522	638
	7	0,0	-8,7	11,7%	0,0%	165.104	22
	8	-3,0	-49,6	35,8%	0,0%	1.929.522	636
	9	-0,7	-10,7	22,6%	1,1%	831.973	903
	10	-13,5	-12,9	17,2%	0,0%	7.318.530	1.200
	11	-0,7	-10,4	22,2%	0,3%	882.014	912
	12						

RESULTADOS - MÉTODO HÍBRIDO

VALIDAÇÃO DO MÉTODO

GRUPO A

Instâncias Pequenas

Sem Inviabilidade

 $GAP \leq 0.01\%$

Inviabilidade

GAP ≤ 2,00%

RESULTADOS - MÉTODO HÍBRIDO

Análise do Tempo de Execução

- PROBLEMA DE RECUPERAÇÃO DA MALHA
- REVISÃO BIBLIOGRÁFICA
- CARACTERIZAÇÃO/MODELAGEM DE DADOS
- METODOLOGIAS
- RESULTADOS
- CONCLUSÕES/PRÓXIMOS PASSOS

CONCLUSÕES/PRÓXIMOS PASSOS

Próximos Passos

- Aprofundar Validação de Dados (3 semanas)
 - Provocar Inviabilidades nas Instância do Grupo A
 - Rodar o Método Exato para uma Instância do Grupo B por alguns dias
- Análises do Efeito das Perturbações (2 semanas)
 - Perturbação Isolada
 - Perturbações Combinadas
- Análise do Relaxamento da Restrição de Posicionamento (2 semanas)
- Investigação dos Resultados das Instâncias do Grupo C (2 semanas)

CONCLUSÕES/PRÓXIMOS PASSOS

Conclusões Preliminares

- Foi alcançada a recuperação da malha em praticamente qualquer malha;
- > 0 tempo de processamento variou entre alguns segundos até vinte minuto;
- A validação da heurística sugere que o método alcance um GAP de até 5%;
- As manutenções foram modelas e alocadas da forma correta, ou seja, às aeronaves específicas pertinentes;
- O resultados são aplicáveis à realidade dos centros de controle operacionais.