

Inteligência Artificial

Métodos de Pesquisa (Search) – Parte II

Paulo Moura Oliveira

Departamento de Engenharias Gabinete F2.15, ECT-1 UTAD

email: <u>oliveira@utad.pt</u>

Método de Newton-Raphson

✓ Considere o seguinte exemplo. Considerando a solução atual v1 como obter v2? $f(v_I)$

$$v_{2} \qquad v_{1} \\ f'(v_{1}) = \frac{f(v_{1})}{(v_{1} - v_{2})}$$

$$\therefore v_1 - v_2 = \frac{f(v_1)}{f'(v_1)} \Rightarrow v_2 = v_1 - \frac{f(v_1)}{f'(v_1)}$$

$$v_{k+1} = v_k - \frac{f(v_k)}{f'(v_k)}$$

Método de Newton-Raphson

Newton-Raphson (10 Iterações)

k=2

f(k)=2.2500

k=3

f(k)=0.5625

k = 10

f(k)=0.0000

df(k)=3.0000

df(k)=1.5000

df(k)=0.0117

v(k)=4.0059

Método do Gradiente Descendente

✓ O método de Newton-Raphson pode ser de aplicação complexa. Em alguns casos, como o do veículo autónomo tem de ser simplificado

$$v_{k+1} = v_k - \alpha \ f'(v_k)$$

Gradient Descent (Alfa=0.2)

Gradieni Desceni (Alja-0.2)		
k=1	v(k)=7.0000	
k=2	v(k)=5.8000	
k=3	v(k)=5.0800	
<i>k</i> =4	v(k)=4.6480	
k=5	v(k)=4.3888	
k=6	v(k)=4.2333	
k=7	v(k)=4.1400	
k=8	v(k)=4.0840	
k=9	v(k)=4.0504	
k=10	v(k)=4.0302	

Caminhada Aleatória (Random Walk)

- ✓ Movimentos em qualquer direção têm a mesma probabilidade.
- ✓ Cada passo é independente do anterior.
- A Random Search Algorithm:
 - 1. Selecionar um estado inicial aleatoriamente.
 - 2. Fazer alteração local do estado atual.
- 3. Repetir passo 2 até que o estado objetivo seja atingido (ou o tempo se esgote...)

- ✓ Tópicos relacionados:
 - Movimento Browniano (ver https://en.wikipedia.org/wiki/Brownian motion)

Método da Subida da Colina (Hill-Climbing Method)

Problema: Considerando um ponto inicial da pesquisa gerado aleatoriamente no espaço de pesquisa como chegar ao máximo global?

Um algoritmo para a subida da colina (maximização):

✓ Exemplo de uma execução do algoritmo com sucesso:

✓ Exemplo de uma execução do algoritmo com insucesso:

✓ Questões relevantes:

Como é que sabemos que estamos num máximo (ou mínimo) global e não num local?

Como é evitamos ficar presos num máximo (ou mínimo) local?

Subida da Colina com Re-inicialização Múltipla (Hill-Climbing with Multiple Re-Start)

Porque não repetir a pesquisa da subida da colina várias vezes?

Qual o critério a utilizar para re-inicializar a pesquisa?

100 iterações 12 re-inicializações

Subida da Colina com Re-inicialização Múltipla

Um algoritmo para a subida da colina com re-inicialização múltipla:

```
t=0
                                       Maximização
inicializar x(t) aleatoriamente
best_x=x(t)
best_f = f(t)
while(!(critério de término))
                                                 Que critério de estagnação
 gerar uma nova solução aleatória x_new
                                                 utilizar?
 if f(x_new) > f(x(t))
    x(t) = x_new
    f(x(t))=f(x_new)
                                           determinar critério de estagnação
   if f(x(t)) > f(best\_x)
                                           if pesquisa estagnada
      best_x = x(t)
                                             inicializar x(t) aleatoriamente
      best_f = f(x(t))
                                             atualizar f(x(t))
   end if
                                           end if
 end if
                                           t = t + 1
                                         end while
```

Métodos de Pesquisa Probabilísticos

Tal como na vida, na pesquisa, por vezes é preciso dar um passo atrás antes de dar dois ou mais passos para a frente.

Métodos de Pesquisa Probabilísticos

Métodos de Pesquisa Probabilísticos

Função de Probabilidade

- ✓ A inspiração natural da técnica do Simulated Annealing (SA) vem de um processo metalúrgico conhecido como annealing.
- ✓ Neste procedimento metalúrgico os metais são aquecidos a alta temperatura de forma a obter um estado líquido e depois arrefecido lentamente para evitar ruturas no material.
- ✓ Método proposto em 1983 por Kirkpatrick et al. baseado num algoritmo desenvolvido por Metropolis (1953).

- Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. (pp. 671-680). Science.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Technical Report

✓ Estabelece-se uma analogia entre a temperatura do metal e um parâmetro ajustável do algoritmo SA: T- Temperatura.

A ideia consiste em fazer com que a probabilidade de aceitar uma solução pior que a solução atual seja:

- Maior no início da pesquisa e
- Gradualmente tender para zero no fim da pesquisa.

Energia da nova solução
$$f(x_new)$$

$$\Delta E(t) = E_new - E(t)$$
 Energia solução corrente (melhor até ao momento)

f(x(t))

Energia da nova solução
$$f(x_new)$$

$$\Delta E(t) = E_new - E(t)$$
 Energia solução corrente (melhor até ao momento)
$$f(x(t))$$

IA, Search-Parte II, Paulo Moura Oliveira

Função de Probabilidade

Exemplo: $\Delta E=20$ (const.) $T_{init}=90$

Iter.	T
1	90
20	80
40	70
60	60
80	50
100	40
120	30
140	20
160	10
180	0

IA, Search-Parte II, Paulo Moura Oliveira

19

Decisão Probabilística

✓ Com base numa comparação entre um número aleatório entre 0 e 1.

Algoritmo:


```
t = 0

T = Tmax

inicializar x(t) aleatoriamente

while(!(termination criterion))
```

Melhoria

$$n=1;$$
while $n <= Tit$
inicializar x_new aleatoriamente
 $\Delta E = ...$

$$p=\dots$$

if
$$\Delta E = f(x_new) - f(x(t)) < 0$$
 % Descida da colina $x(t) = x_new$ $f(x(t)) = f(x_new)$ elseif $rand(0,1) < p$ % Subida da Colina

end while

$$T=Tnew$$
 % Temperatura diminuída $t=t+1$

- ✓ O sucesso da aplicação do SA depende do ajustamento correto de uma série de aspetos para cada aplicação, tais como
 - 1. O valor da temperatura inicial
 - 2. A relação de decaimento da temperatura utilizada
 - 3. A lei probabilística utilizada
 - 4. O número de repetições da pesquisa para cada valor da temperatura.

Exemplo: $\Delta E=2$ (const.) $T_{init}=90$ $T_{fin}=0$

$$p(t) = \frac{1}{\underbrace{(E_new-E(t))}_{1+e}} = \frac{1}{\underbrace{\Delta E(t)}_{T}}$$

Tnew=0.94 *T*

Perfil

Exemplo: $\triangle E=2$ (const.) $T_{init}=90$

$$-\Delta E(t)$$

$$p(t) = e^{\frac{-\Delta E(t)}{T}}$$

Tnew=0.94 *T*

Perfil

Exemplo: Problema do Caixeiro Viajante (Traveling Salesman Problem)

- ✓ Considere que um caixeiro viajante tem de fazer uma rota que inclua cidades que constam no seguinte mapa (com estrela).
- ✓ A única cidade que pode ser visitada duas vezes é a de origem.
- ✓ Qual percurso que corresponde à distância mínima?

Exemplo: Problema do Caixeiro Viajante (Traveling Salesman Probelm)

✓ Será esta solução?

IA, Search-Parte II, Paulo Moura Oliveira

Exemplo: Problema do Caixeiro Viajante (Traveling Salesman Probelm)

✓ Ou esta? E com 20,30,40... cidades?

