Length of stay prediction using Factor Graphs

Johann & Jannis

Factor Graphs

very brief introduction

- graphical probabilistic model
- model factor structure of joint probabilities as a bipartite graph of
 - factors and
 - () variables
- example application: Bayesian Ranking, e.g. which ad do you see on Amazon
- further reading: Frey, Brendan J, Hans-Andrea Loeliger, Frank R Kschischang, and Niclas Wiberg. 1998 "Factor Graphs and Algorithms." or watching: https://www.tele-task.de/lecture/video/10061/ and following

Factor Graphs

length of stay model & assumptions

- during a stay, multiple series of temporal data are recorded
 - e.g. daily temperature measurements as one series
- the most recent data point in each series is the most relevant
- new records have additive influence on length of stay
- outcome of record is normally distributed
- records in different series are independent

Modelling a series D_i

Modelling a series D_i

Model parameters

Gaussian parameters μ, σ Sum weights p, 1-p

Final prediction

Final prediction

Model parameters

Sum weights $p_0, p_1, ..., p_i$ scaled to have sum of 1

Training

Parameters

- Sum weights p, p-1 for exponential rolling average in each series, i.e. "How important is a new record compared to all old ones?"
- Gaussian parameters for all records, i.e. "How does this record influence the mean & variance of length of stay"
 - for continuous records like temperature: map value to parameters
- Weights of final sum for each series, i.e. "How influential is this series overall"

Training

Process

- Build factor graphs for
 - all stays
 - subsets of records for each stay by omitting 1...n-1 last (ordered by time) records
- use gradient descent to find maximum likelihood parameters

Outcomes

- very explainable & easy to understand model
- a normal distribution is modeled for each record
 - very interesting, e.g. to compare our diagnosis distributions with catalog stays and validate model or to find out exactly what a record implies for the length of stay
- weighted sum weights also have interesting meaning