

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 11.1 – Lösung

Stoffdaten für Ethylen, Zustände markiert:

Zweiphasengebiet:

1					
T	p	ho'	ho''	u'	u''
$[^{\circ}C]$	[bar]	$[\mathrm{kg/m^3}]$	$[kg/m^3]$	[kJ/kg]	[kJ/kg]
0.0	40.990	341.21	98.265	293.05	448.60
2.0	42.897	329.94	107.18	302.43	443.75
4.0	44.877	316.65	118.13	312.85	437.44
8.0	49.080	274.25	155.75	341.79	413.72

Zustand ① und ④			
Zustand ② - zwischen den Zeilen			
Zustand (3) - zwischen den Zeilen			

Einphasengebiet:

	$p = 60 \mathrm{bar}$		
T	ρ	u	
$[^{\circ}C]$	$[kg/m^3]$	[kJ/kg]	
0	374.49	273.24	
5	353.04	293.58	
10	323.87	318.18	
12	307.66	330.49	
14	285.68	345.97	
16	251.45	368.36	
20	170.07	425.40	
25	135.84	457.99	
30	119.82	477.73	

a) Der Zustandspunkt ① befindet sich im Nassdampfgebiet. Hier ist jeder Temperatur einem festen Druck, dem Dampfdruck, zugeordnet. Der Dampfdruck kann der Stoffdaten-Tabelle für das Zweiphasengebiet entnommen werden. Da sich der Zustandspunkt ④ laut Aufgabenstellung ebenfalls im Zweiphasengebiet befindet und die Zustandsänderung ④ \longrightarrow ① isotherm verläuft, ist $T_4 = T_1$ und damit $p_4 = p_1$.

$$\boxed{p_1 = p_4} = p_{\text{Nassdampf}}(T = 0 \,^{\circ}\text{C}) = \boxed{40.99 \,\text{bar}}$$
 (1)

b) Der Dampfmassenanteil x lässt sich aus dem spezifischen Volumen v_1 und den spezifischen Volumina auf der Siedelinie $v'(0\,^{\circ}\text{C})$ und Taulinie $v''(0\,^{\circ}\text{C})$ wie folgt berechnen:

$$\boxed{x_1} = \frac{v_1 - v'(0 \,^{\circ}\text{C})}{v''(0 \,^{\circ}\text{C}) - v'(0 \,^{\circ}\text{C})} \tag{2}$$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

$$= \frac{\left(\frac{1}{\rho_1} - \frac{1}{\rho'(0 \circ C)}\right)}{\left(\frac{1}{\rho''(0 \circ C)} - \frac{1}{\rho'(0 \circ C)}\right)} = \frac{\left(\frac{1}{120 \text{ kg/m}^3} - \frac{1}{341.21 \text{ kg/m}^3}\right)}{\left(\frac{1}{98.265 \text{ kg/m}^3} - \frac{1}{341.21 \text{ kg/m}^3}\right)}$$
(3)

$$= \boxed{0.7456} \tag{4}$$

mit
$$\rho_1 = \frac{1}{v_1} = \frac{m}{V_1} = \frac{0.12 \,\text{kg}}{1 \,\text{dm}^3} = \frac{0.12 \,\text{kg}}{1 \cdot 10^{-3} \,\text{m}^3} = 120 \,\frac{\text{kg}}{\text{m}^3}$$
 (5)

$$\boxed{x_4} = \frac{v_4 - v'(0 \,^{\circ}\text{C})}{v''(0 \,^{\circ}\text{C}) - v'(0 \,^{\circ}\text{C})} \tag{6}$$

$$= \frac{\left(\frac{1}{\rho_4} - \frac{1}{\rho'(0\,^{\circ}\mathrm{C})}\right)}{\left(\frac{1}{\rho''(0\,^{\circ}\mathrm{C})} - \frac{1}{\rho'(0\,^{\circ}\mathrm{C})}\right)} = \frac{\left(\frac{1}{300\,\mathrm{kg/m^3}} - \frac{1}{341.21\,\mathrm{kg/m^3}}\right)}{\left(\frac{1}{98.265\,\mathrm{kg/m^3}} - \frac{1}{341.21\,\mathrm{kg/m^3}}\right)}$$
(7)

$$= \boxed{0.0556} \tag{8}$$

mit
$$\rho_4 = \frac{1}{v_4} = \frac{m}{0.4 \cdot V_1} = \frac{0.12 \text{ kg}}{0.4 \cdot 1 \text{ dm}^3} = 300 \frac{\text{kg}}{\text{m}^3}$$
 (9)

Der Volumenanteil der flüssigen Phase lässt sich über die Masse und den Dampfgehalt wie folgt berechnen:

$$m = \underbrace{m_1''}_{=m \cdot x_1} + m_1' = m \cdot x_1 + m_1' \tag{10}$$

$$\iff m_1' = (1 - x_1) \cdot m \tag{11}$$

$$\implies V_1' = \frac{m_1'}{\rho_1'} = \frac{(1 - x_1) \cdot m}{\rho'(0 \, ^{\circ}\text{C})} = \frac{(1 - 0.7456) \cdot 0.12 \text{ kg}}{\underbrace{341.21 \frac{\text{kg}}{\text{m}^3}}}$$
(12)

$$= 0.0895 \,\mathrm{dm}^3 \tag{13}$$

$$\Longrightarrow \boxed{\frac{V_1'}{V_1}} = \frac{0.0895 \,\mathrm{dm}^3}{1 \,\mathrm{dm}^3} = \boxed{8.95 \,\%} \tag{14}$$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

c) p- ρ -Diagramm:

Achtung! Auf der Abszissenachse ist hier die Dichte ρ , also der Kehrwert des spez. Volumens eingetragen. Das Gas-Gebiet befindet sich also nun links, und das Flüssigkeits-Gebiet rechts des Zweiphasengebietes!

d) $\textcircled{2} \longrightarrow \textcircled{3}$ (reversibel-isobare ZÄ):

$$\overline{W_{23}} = -m \cdot \int_{2}^{3} p \, dv \stackrel{\text{isobar}}{=} -mp \cdot \int_{2}^{3} dv \tag{15}$$

$$= -m \cdot p \cdot (v_3 - v_2) \tag{16}$$

$$= -m \cdot p \cdot (v_4 - v_1) \tag{17}$$

$$= -m \cdot p \cdot \left(\frac{1}{\rho_4} - \frac{1}{\rho_1}\right) \tag{18}$$

$$= -0.12 \text{ kg} \cdot 60 \cdot 10^5 \text{ Pa} \cdot \left(\frac{1}{300 \text{ kg/m}^3} - \frac{1}{120 \text{ kg/m}^3}\right)$$
(19)

$$= 3.6 \,\mathrm{kJ} \tag{20}$$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

 $\textcircled{3}\longrightarrow \textcircled{4}$ (isochore ZÄ):

1. HS für geschlossene Systeme:

$$\underbrace{W_{34}}_{\text{isocher}} + Q_{34} = m \cdot (u_4 - u_3) \tag{21}$$

 u_4 wird über den Dampfmassenanteil x_4 berechnet:

$$u_4 = u'(0 \,^{\circ}\text{C}) + x_4 \cdot [u''(0 \,^{\circ}\text{C}) - u'(0 \,^{\circ}\text{C})]$$
(22)

$$= 293.05 \,\frac{\text{kJ}}{\text{kg}} + 0.055 \,56 \cdot (448.60 \,\frac{\text{kJ}}{\text{kg}} - 293.05 \,\frac{\text{kJ}}{\text{kg}}) \tag{23}$$

$$=301.7 \frac{\mathrm{kJ}}{\mathrm{k}\sigma} \tag{24}$$

 u_3 ermitteln wir durch lineare Interpolation über $v_3=v_4 \implies \rho_3=300\,\mathrm{kg/m^3}$ auf der 60 bar-Isobaren:

$$\alpha = \frac{300 \,\mathrm{kg/m^3} - 307.66 \,\mathrm{kg/m^3}}{285.68 \,\mathrm{kg/m^3} - 307.66 \,\mathrm{kg/m^3}} = 0.3485 \tag{25}$$

$$u_3 = \alpha \cdot 345.97 \frac{\text{kJ}}{\text{kg}} + (1 - \alpha) \cdot 330.49 \frac{\text{kJ}}{\text{kg}}$$
 (26)

$$= \alpha \cdot (345.97 \frac{\text{kJ}}{\text{kg}} - 330.49 \frac{\text{kJ}}{\text{kg}}) + 330.49 \frac{\text{kJ}}{\text{kg}}$$
 (27)

$$= 335.88 \frac{\mathrm{kJ}}{\mathrm{k}\sigma} \tag{28}$$

Nun können wir Q_{34} berechnen:

$$\implies \boxed{Q_{34}} = 0.12 \text{ kg} \cdot (301.7 \frac{\text{kJ}}{\text{kg}} - 335.88 \frac{\text{kJ}}{\text{kg}}) = \boxed{-4.1 \text{ kJ}}$$
 (29)

e) Hier ist die Siedetemperatur T' gesucht, bei der die Siededichte ρ' der Dichte $\rho_3 = \rho_4 = 300 \,\mathrm{kg/m^3}$ entspricht. Dies ist zwischen 4°C und 8°C der Fall (vgl. Stoffdaten-Tabelle). Die gesuchte Siededichte muss folglich durch lineare Interpolation bestimmt werden:

$$\alpha = \frac{300 \,\mathrm{kg/m^3} - 316.65 \,\mathrm{kg/m^3}}{274.25 \,\mathrm{kg/m^3} - 316.65 \,\mathrm{kg/m^3}} = 0.3927 \tag{30}$$

$$\boxed{T'} = \alpha \cdot (8^{\circ}\text{C} - 4^{\circ}\text{C}) + 4^{\circ}\text{C} = \boxed{5.571^{\circ}\text{C}}$$
(31)