8

Taylor-sorok

Matematika G2 – Valós analízis Utoljára frissítve: 2025. május 4.

8.1. Elméleti Áttekintő

Definíció 8.1: Taylor-polinom

Legyen $f:I\subset\mathbb{R}\to\mathbb{R}$ függvény, mely az x_0 pontban legalább p-szer differenciálható. Ekkor az f függvény x_0 körüli p-edik Taylor-polinomja:

$$T_p(x) = \sum_{k=0}^{p} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Tétel 8.1: Taylor-formula Lagrange-féle maradéktaggal

Ha az f függvény legalább (r+1)-szer differenciálható az $(x; x_0)$ intervallumon és $f^{(k)}$ $\forall k \in \{1, 2, ..., r\}$ esetén folytonos ay x és x_0 pontokban, akkor $\exists \xi \in (x; x_0)$, hogy

$$f(x) = \sum_{k=0}^{r} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \underbrace{\frac{f^{(r+1)}(\xi)}{(r+1)!} (x - x_0)^{r+1}}_{\text{Lagrange-féle maradéktag}}$$

Definíció 8.2: Taylor-sor

Legyen az f függvény az x_0 pontban akárhányszor differenciálható. Ekkot a

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

hatványsort az f függvény x_0 körüli Taylor-sorának nevezzük.

Ha $x_0 = 0$, akkor a Taylor-sorot Maclaurin-sornak nevezzük.

Írjuk fel a $p(x) = x^3 + 3x^2 + 2$ függvény $x_0 = 1$ körüli harmadfokú Taylor-polinomját!

$$\begin{array}{|c|c|c|}\hline p^{(n)}(x) & p^{(n)}(1)\\\hline p(x) = x^3 + 3x^2 + 2 & 6\\ p'(x) = 3x^2 + 6x & 9\\ p''(x) = 6x + 6 & 12\\ p'''(x) = 6 & 6\\\hline \end{array}$$

$$T_3(x) = \frac{6}{0!} + \frac{9}{1!}(x - 1) + \frac{12}{2!}(x - 1)^2 + \frac{6}{3!}(x - 1)^3\\ = 6 + 9(x - 1) + 6(x - 1)^2 + (x - 1)^3$$

$$T_3(x) = \frac{6}{0!} + \frac{9}{1!}(x-1) + \frac{12}{2!}(x-1)^2 + \frac{6}{3!}(x-1)^3$$

= 6 + 9(x - 1) + 6(x - 1)^2 + (x - 1)^3

Írjuk fel az $f(x) = e^x$ függvény Maclaurin-sorát!

$f^{(n)}(x)$	$f^{(n)}(0)$
$f(x) = e^x$	1
$f'(x) = e^x$	1
:	:
$f^{(k)}(x) = e^x$	1

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=0}^{\infty} \frac{1}{k!} x^k = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Írjuk fel az $f(x) = \sin x$ függvény Maclaurin-sorát!

$f^{(n)}(x)$	$f^{(n)}(0)$
$f(x) = \sin x$	0
$f'(x) = \cos x$	1
$f''(x) = -\sin x$	0
$f'''(x) = -\cos x$	-1
:	:

$$T(x) = \frac{x^1}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Fontosabb függvények Maclaurin-sorai:

Függvény	Taylor-sor	Konvergencia intervallum
e^x	$\sum_{k=0}^{\infty} \frac{x^k}{k!}$	$\mathbb R$
sin x	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$ $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$	R
cos x	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$	$\mathbb R$
arctan x	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$	[-1;1]
sinh x	$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$	$\mathbb R$
$\cosh x$	$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$ $\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	R
artanh x	$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$	(-1;1)
ln(1+x)	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1}$	(-1;1]
$(1+k)^{\alpha}$	$\sum_{k=0}^{\infty} {\alpha \choose k} x^k$	(-1;1)

8.2. Feladatok

- 1. Írja fel a $p(x) = (1 + x)^3$ függvény Maclauren-sorát!
- 2. Határozza meg az alábbi függvények adott pont körüli Taylor-sorát! Adja meg az összegfüggvények konvergenciasugarát is!

$$f(x) = (1 - x)^3, \quad x_0 = 1$$

 $g(x) = e^x, \qquad x_0 = 1$
 $h(x) = \ln x, \qquad x_0 = 1$

3. Határozza meg az alábbi függvények Maclauren-sorát! Adja meg az összegfüggvények konvergenciasugarát is!

$$f(x) = \cos 5x$$

$$g(x) = \sin \sqrt{x}$$

$$h(x) = \sin^2 x$$

$$i(x) = \sqrt[3]{\exp(-x^2)}$$

4. Adja meg az alábbi törtfüggvények Taylor-sorát!

$$f(x) = \frac{x+1}{x+3}, \quad x_0 = -2$$
$$g(x) = \frac{x+1}{x+3}, \quad x_0 = -1$$

5. Írja fel az alábbi függvény $x_0=2$ pontra illeszkedő Taylor sorát! Mi lesz a konvergenciasugár?

$$f(x) = \frac{1}{x^2 - 3x + 2}$$

6. Határozza meg az alábbi függvények Maclauren-sorát! Adja meg az összegfüggvények konvergenciasugarát is!

$$f(x) = \frac{x}{1 + x^2}$$
$$g(x) = \arctan x$$
$$h(x) = \frac{1}{\sqrt{2 + x^2}}$$

7. Melyik függvény Taylor-sora az alábbi?

$$\sum_{n=0}^{\infty} \frac{2n+1}{n!} x^{2n}$$

- 8. Hanyadfokú taylor polinom közelíti a $\sin(\pi/60)$ értékét 4 tizedesjegy pontossággal?
- 9. Számítsa ki 3 tizedesjegy pontossággal az alábbi integrált!

$$\int_0^{0,2} e^{2x} \, \mathrm{d}x$$