Target project-SQL

Q5 Analysis on sales, freight and delivery time

Q5.1--Calculate days between purchasing, delivering and estimated delivery

```
select order_id,order_status,
format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on ,
FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date ,
FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as Actual_delivery,
date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as Estimated_delivery
    from
    `oceanic-base-302317.Demo_target.Orders`
where order_status='delivered';
```

order_id	order_status	cust_purchased_on	estimated_date	deliverd_on	Actual_deliv	Estimated_d
cec8f5f7a13e5ab934a486ec9e	delivered	17/03/2017	18/05/2017	07/04/2017	20	61
58527ee4726911bee84a0f42c	delivered	20/03/2017	18/05/2017	30/03/2017	10	58
10ed5499d1623638ee810eff1	delivered	21/03/2017	18/05/2017	18/04/2017	28	57
818996ea247803ddc123789f2	delivered	20/08/2018	04/10/2018	29/08/2018	9	44
d195cac9ccaa1394ede717d38	delivered	12/08/2018	04/10/2018	23/08/2018	10	52
64eeb35d3ade7fcdff9fbb1ca5	delivered	16/08/2018	04/10/2018	23/08/2018	6	48
2691ae869f13b10f3d356461b	delivered	22/08/2018	04/10/2018	29/08/2018	6	42
1cd147d1c0fe18f3b742a3533	delivered	20/08/2018	04/10/2018	29/08/2018	8	44
b36d2e6b1781d380e140608a	delivered	09/08/2018	04/10/2018	22/08/2018	12	55
88ab6b0ede7f19c65b5b71771	delivered	13/08/2018	04/10/2018	29/08/2018	16	51
c15790c4480e97b6a152024a4	delivered	20/08/2018	04/10/2018	30/08/2018	10	44
cc8068a058758e65bf6626652	delivered	21/08/2018	04/10/2018	27/08/2018	6	43
44879a8f19c5e8a5e9278477b	delivered	23/08/2018	04/10/2018	30/08/2018	6	41

Count of orders where (actual_delivery > estimated delivery)

```
select count(*) count_of_orders
from (select order_id,order_status,
format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on ,
FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date ,
FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as Actual_delivery,
date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as Estimated_delivery
    from
    `oceanic-base-302317.Demo_target.Orders`
where order_status='delivered' and
date_diff(order_delivered_customer_date,order_purchase_timestamp,day)>date_diff(order_estimated_delivery_date,order_purchase_timestamp,day));
```



```
select order_id,order_status,
format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on ,
FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date ,
FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as Actual_delivery,
date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as Estimated_delivery
    from
    `oceanic-base-302317.Demo_target.Orders`
where order_status='delivered' and
date_diff(order_delivered_customer_date,order_purchase_timestamp,day)>date_diff(order_estimated_delivery_date,order_purchase_timestamp,day)
```

_id	order_status	cust_purchased_on	estimated_date	deliverd_on	Actual_deliv	Estimated_d
9ec344d3bf029ff83a161c	delivered	08/04/2017	18/05/2017	22/05/2017	43	39
8ab302de39ef3087f6a3a	delivered	25/04/2018	06/06/2018	06/06/2018	42	41
2e3f591a1f8ab11d51f2ae	delivered	28/12/2017	06/02/2018	20/02/2018	54	39
e1f2d1b360c34d90175e1	delivered	31/01/2017	15/03/2017	30/03/2017	57	42
)503f2ebd9f53deba18716	delivered	31/03/2017	10/05/2017	19/09/2017	172	39
3fbfb4e41c26246ea6097	delivered	17/04/2018	29/05/2018	13/06/2018	56	41
6b80d080e344c3698d9d	delivered	19/04/2018	29/05/2018	29/05/2018	40	39
15e915694747f4d7f7501	delivered	18/04/2018	29/05/2018	08/06/2018	50	40

;

- This table gives the information about Actual days and Estimated days for a particular order.
- If the Actual day is lesser than the Estimated days then the Customer is satisfied.
- Note: We have considered only those orders for which order status ='Delivered'
- We have 7307 orders for which Actual days is greater than Estimated days
- We have 96478 orders for status ='Delivered'
- Approx around 7.75 % of the total orders which has order_status= 'Delivered' have Actual days greater than Estimated days

Recommendations

- Make sure that customers gets there order in time or before to Estimated time.
- Analyse the difficulties faced for delivering the 7.75% of orders, so that it could be taken care from next orders.

- time to delivery = order purchase timestamp-order delivered customer date
- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

select order_id,customer_id,order_status, format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on , FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date , FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on, date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as time_to_delivery , date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery from `oceanic-base-302317.Demo_target.Orders`

order_id //	customer_id	order_status	cust_purchased_on	estimated_date	deliverd_on	time_to_delivery	diff_estimated
770d331c84e5b214b	6c57e61193691	canceled	07/10/2016	29/11/2016	14/10/2016	7	45
950d777989f6a877	1bccb206de9f0f	canceled	19/02/2018	09/03/2018	21/03/2018	30	-12
c45c33d2f9cb8ff8b	de4caa97afa80c	canceled	09/10/2016	08/12/2016	09/11/2016	30	28
abf2b0e35b423f94	5cdec0bb8cbdf5	canceled	09/10/2016	30/11/2016	16/10/2016	7	44
beb59392e21af5eb	bf609b5741f716	canceled	08/10/2016	30/11/2016	19/10/2016	10	41
60b53ad0bb7dacac	2f9902d85fcd93	delivered	10/05/2017	18/05/2017	23/05/2017	12	-5
76e9ec344d3bf029f	d33e520a99eb4	delivered	08/04/2017	18/05/2017	22/05/2017	43	-4
a0b31f08d0d7e879	7e769bb9acb55	delivered	11/04/2017	18/05/2017	18/04/2017	6	29

Actionable Insights

- If diff_estimated_delivery column is negative than (ie estimated_date < delivered_on) ,which implies customer waited longer than estimated date.
- If diff_estimated_delivery = -7 → Customer got his order late by 7 days compared to estimated date.
- If diff_estimated_delivery = 7 → Customer got his order early by 7 days compared to estimated date.

```
select coust.customer_state,ROUND(avg(order_items1.freight_value),2) as AVG_freight_value,
ROUND(avg(order1.time_to_delivery),2) AVG_time_to_delivery,
ROUND(avg(order1.diff_estimated_delivery),2) AS AVG_diff_estimated_delivery FROM
`oceanic-base-302317.Demo_target.Order_items` as order_items1
join
(select
order_id,customer_id,order_status,
format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on ,
FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date ,
FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as time_to_delivery ,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery
`oceanic-base-302317.Demo_target.Orders`) as order1
on order1.order_id=order_items1.order_id
join `oceanic-base-302317.Demo_target.Customers` as coust
on coust.customer_id=order1.customer_id
group by 1
```

customer_state	AVG_freight_value	AVG_	time_to_delivery	AVG_diff_estimated_delivery
MT		28.17	17.51	13.64
MA		38.26	21.2	9.11
AL		35.84	23.99	7.98
SP		15.15	8.26	10.27
MG		20.63	11.52	12.4
PE		32.92	17.79	12.55
RJ		20.96	14.69	11.14
DF		21.04	12.5	11.27
RS		21.74	14.71	13.2
SE		36.65	20.98	9.17
PR		20.53	11.48	12.53
PA		35.83	23.3	13.37
BA		26.36	18.77	10.12

- Lesser the value of AVG_time_to_delivery for a state → implies that customers in this state gets orders faster compared to other states (Customer is happy)
- Greater the value of AVG_diff_estimated_delivery for a state → implies that customers in this state gets orders faster with respect to estimated date when compared to other state (Customer is happy)
- Lesser the value of AVG_freight_value for a state → implies that cost for delivery of orders within that state is cheap compared to other state.

Recommendations

- Try to decrease the AVG_freight (by decreasing freight_value per order by state) value for a state which has low AVG_time_to_delivery → since Avg_time_ro_delivery is less it is more likely that this state have strong delivery connection, If freight_value is decreased → then cost per order will become less → more customers.
- States which has large AVG_time_to_delivery and small AVG_diff_estimated_delivery →Give more importance to this because customers are not satisfied by the delivery time.

Q5.4--Sort the data to get the following

a. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Highest freight value:

```
select coust.customer state, ROUND(avg(order items1.freight value), 2) as AVG freight value,
ROUND(avg(order1.time to delivery),2) AVG time to delivery,
ROUND(avg(order1.diff estimated delivery),2) AS AVG diff estimated delivery FROM
`oceanic-base-302317.Demo_target.Order_items` as order_items1
join
(select
order id, customer id, order status,
format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on ,
FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date ,
FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as time_to_delivery ,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery
from
`oceanic-base-302317.Demo_target.Orders`) as order1
on order1.order_id=order_items1.order_id
join `oceanic-base-302317.Demo_target.Customers` as coust
on coust.customer_id=order1.customer_id
group by 1
order by 2 desc
limit 5
```

customer_state	AVG_freight	AVG_time_t	AVG_diff_es
RR	42.98	27.83	17.43
PB	42.72	20.12	12.15
RO	41.07	19.28	19.08
AC	40.07	20.33	20.01
PI	39.15	18.93	10,68

Lowest freight value:

```
select coust.customer_state,ROUND(avg(order_items1.freight_value),2) as AVG_freight_value,
ROUND(avg(order1.time_to_delivery),2) AVG_time_to_delivery,
ROUND(avg(order1.diff estimated delivery),2) AS AVG diff estimated delivery FROM
`oceanic-base-302317.Demo_target.Order_items` as order_items1
join
(select
order_id,customer_id,order_status,
format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on ,
FORMAT DATE('%d/%m/%Y',order estimated delivery date) as estimated_date ,
FORMAT_DATE('%d/%m/%Y', order_delivered_customer_date) as deliverd on,
date diff(order delivered customer date,order purchase timestamp,day) as time to delivery ,
date diff(order estimated delivery date, order delivered customer date, day) as diff estimated delivery
`oceanic-base-302317.Demo_target.Orders`) as order1
on order1.order id=order items1.order id
join `oceanic-base-302317.Demo target.Customers` as coust
on coust.customer_id=order1.customer_id
group by 1
order by 2
limit 5
```

customer_state	AVG_freight	AVG_time_t	AVG_diff_es
SP	15.15	8.26	10.27
PR	20.53	11.48	12.53
MG	20,63	11.52	12.4
RJ	20.96	14.69	11.14
DF	21.04	12.5	11.27

b. Top 5 states with highest/lowest average time to delivery

Highest average time to delivery:

```
select coust.customer state, ROUND(avg(order items1.freight value), 2) as AVG freight value,
ROUND(avg(order1.time_to_delivery),2) AVG_time_to_delivery,
ROUND(avg(order1.diff_estimated_delivery),2) AS AVG_diff_estimated_delivery FROM
`oceanic-base-302317.Demo_target.Order_items` as order_items1
join
(select
order_id,customer_id,order_status,
format\_date('\%d/\%m/\%Y', order\_purchase\_timestamp) \ as \ cust\_purchased\_on \ ,
FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date ,
FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as time_to_delivery ,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery
`oceanic-base-302317.Demo_target.Orders`) as order1
on order1.order_id=order_items1.order_id
join `oceanic-base-302317.Demo_target.Customers` as coust
on coust.customer_id=order1.customer_id
group by 1
```

customer_state	AVG_freight	AVG_time_t	AVG_diff_es
RR	42.98	27.83	17.43
AP	34.01	27.75	17.44
AM	33.21	25.96	18.98
AL	35.84	23.99	7.98
PA	35.83	23.3	13.37

Lowest average time to delivery:

```
select coust.customer_state,ROUND(avg(order_items1.freight_value),2) as AVG_freight_value,
      ROUND(avg(order1.time_to_delivery),2) AVG_time_to_delivery,
      ROUND(avg(order1.diff_estimated_delivery),2) AS AVG_diff_estimated_delivery FROM
      `oceanic-base-302317.Demo_target.Order_items` as order_items1
      join
      (select
      order_id,customer_id,order_status,
      format_date('%d/%m/%Y',order_purchase_timestamp) as cust_purchased_on ,
      FORMAT_DATE('%d/%m/%Y',order_estimated_delivery_date) as estimated_date ,
      FORMAT_DATE('%d/%m/%Y',order_delivered_customer_date) as deliverd_on,
      date diff(order delivered customer date, order purchase timestamp, day) as time to delivery ,
      date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delive
ry
      `oceanic-base-302317.Demo target.Orders`) as order1
      on order1.order_id=order_items1.order_id
      join `oceanic-base-302317.Demo_target.Customers` as coust
      on coust.customer id=order1.customer id
     group by 1
     order by 3
     limit 5
```

customer_state	AVG_freight	AVG_time_t	AVG_diff_es
SP	15.15	8.26	10.27
PR	20.53	11.48	12.53
MG	20.63	11.52	12.4
DF	21.04	12.5	11.27
SC	21.47	14.52	10.67

c. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
select coust.customer_state,avg(order_items1.freight_value) as AVG_freight_value,
avg(order1.time_to_delivery) AVG_time_to_delivery,
avg(order1.diff_estimated_delivery) AS AVG_diff_estimated_delivery FROM
`oceanic-base-302317.Demo_target.Order_items` as order_items1
join
(select
order_id,customer_id,order_status,
format date('%d/%m/%Y',order purchase timestamp) as cust purchased on ,
FORMAT DATE('%d/%m/%Y',order estimated delivery date) as estimated_date ,
FORMAT DATE('%d/%m/%Y', order delivered customer date) as delivered on,
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as time_to_delivery ,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery
from
`oceanic-base-302317.Demo target.Orders`) as order1
on order1.order_id=order_items1.order_id
join `oceanic-base-302317.Demo_target.Customers` as coust
on coust.customer_id=order1.customer_id
having avg(order1.time_to_delivery) > avg(order1.diff_estimated_delivery)
order by 3
limit 5
```

customer_state	AVG_freight	AVG_time_t	AVG_diff_es
DF	21.0413549	12.5014861	11.2747346
SC	21.4703687	14.5209858	10,6688628
RJ	20.9609239	14.6893821	11.1444931
RS	21.7358043	14.7082993	13.2030001
G0	22.7668152	14.9481774	11.3728590

Actionable Insights

- Top 5 States which has high avg freight value \(\rightarrow\) Customers pay more amount for delivery
- Top 5 states which has high avg_time_to_delivery → Customers need to wait a bit longer period for their orders.

Recommendations

- The state which has high avg time to delivery needs to work of their delivery people's network.
- The state which has high avg_freight_value, needs to work on building up delivery connections within states, so the cost of delivering from one place to another place decreases.

Q6. Payment type analysis:

Tableau Dashboard

https://public.tableau.com/app/profile/abhilash.v.a/viz/project_wk/Q6-DASHBOARD?publish=yes

Q6.1--Month over Month count of orders for different payment types

```
select y.year,y.month,sum(y.credit_card) as credit_card,sum(y.voucher) as voucher
,sum(y.not_defined) as not_defined ,sum(y.debit_card)as debit_card,sum(y.UPI) as UPI,
sum(y.credit_card)+sum(y.voucher)+sum(y.not_defined)+sum(y.debit_card)+sum(y.UPI) as total_
from (
select x.year,x.month,
when x.payment_type="credit_card"
then x.cnt
else 0
end as credit_card,
case
when x.payment_type="voucher"
then x.cnt
else 0
end as voucher,
case
when x.payment_type="not_defined"
then x.cnt
else 0
end as not_defined,
when x.payment_type="debit_card"
then x.cnt
else 0
end as debit_card,
case
when x.payment_type="UPI"
then x.cnt
else 0
end as UPI
from (
select extract(year from Ord.order_purchase_timestamp) as year,extract(month from Ord.order_purchase_time
stamp) as month ,pay.payment_type,count(*) as cnt from
`oceanic-base-302317.Demo_target.Orders` as Ord
left join `Demo_target.payments` as pay
on pay.order id=Ord.order id
group by 1,2,3
order by 1,2,3) as x) as y
group by 1,2
order by 1,2;
```

year	month	credit_card	voucher	not_defined	debit_card	UPI	total_
2016	9	3	0	0	0	0	3
2016	10	254	23	0	2	63	342
2016	12	1	0	0	0	0	1
2017	1	583	61	0	9	197	850
2017	2	1356	119	0	13	398	1886
2017	3	2016	200	0	31	590	2837
2017	4	1846	202	0	27	496	2571
2017	5	2853	289	0	30	772	3944
2017	6	2463	239	0	27	707	3436
2017	7	3086	364	0	22	845	4317
2017	8	3284	294	0	34	938	4550
2017	9	3283	287	0	43	903	4516
2017	10	3524	291	0	52	993	4860

year //	month	credit_card	voucher	not_defined	debit_card	UPI	total_
2017	11	5897	387	0	70	1509	7863
2018	1	5520	416	0	109	1518	7563
2018	3	5691	391	0	78	1352	7512
2018	4	5455	370	0	97	1287	7209

- These are the top 4 months which has received highest number of payments.
- 2017 Nov month → Received number of payments[7893] → out of which [5897] are from credit cards.
- For 2017 Nov month → credit card = 74.99 % of total payment → upi =19.19%
- Usually most of the payments are done by credit cards.

Recommendations

- Since credit card is the most used payment type, providing offers on them (credit card) helps in customer attraction.
- UPI is the second most used payment, providing offers on them(UPI) helps in customer attraction.
- From the above data, we have observed that in the month of NOV, JAN, MARCH happens most of the payments, providing good deals on these months helps in customer attractions.
- And also make sure that payment server are stable on these months.

Q6.1 Distribution of payment installments and count of orders

```
with pre_1 as (select payment_installments ,count(order_id) count_of_orders from `oceanic-base-
302317.Demo_target.payments`
group by 1),
pre_2 as (select sum(count_of_orders) from pre_1)
select payment_installments,count_of_orders,round(count_of_orders/(select * from pre_2)*100,2) as pert_sh
are from pre_1
order by 2 desc
```

payment_installments	count_of_orders	pert_share
1	52546	50.58
2	12413	11.95
3	10461	10.07
4	7098	6.83
10	5328	5.13
5	5239	5.04
8	4268	4.11
6	3920	3.77
7	1626	1.57
9	644	0.62
12	133	0.13
15	74	0.07
18	27	0.03

- **Most** of the orders are one month instalment i.e. about 50.5%
- 16,22,0,23,22-month payment instalments have 0% contribution
- Customers are most unlikely to pay amount in one shot, → 0 month payment instalment has 0% contribution

Recommendations

- Since payment instalment for 2,3 months are approx. 11 %, give more importance to this type. It will generate more profit (because of the interest and more time period) → this payment instalment has more potential.
- Since 50% of customers choose 1 month instalment payment, Less interest on these will attract more customers.

Q4 Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and other

Tableau dashboard--https://public.tableau.com/app/profile/abhilash.v.a/viz/project_wk/q4-Dashboard?publish=yes

Q4.1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
with pre_comp as
select extract(year from o.order_purchase_timestamp) as year,
extract(month from o.order_purchase_timestamp) as month,
count(oi.order_item_id) as no_items,
avg(oi.freight_value) as total_freght,
avg(oi.price) as price
from `oceanic-base-302317.Demo_target.Order_items` as oi
join `oceanic-base-302317.Demo_target.Orders` as o
on o.order_id=oi.order_id
group by 1,2
having (year=2017 or year=2018) and (month in (1,2,3,4,5,6,7,8))
order by 1,2),
date 17 as (
 select * from pre_comp where year=2017
date 18 as (
 select * from pre_comp where year=2018
),
calcu all as (
select d17.month,d17.no_items as no_items_2017,
d18.no_items as no_items_2018,
d17.total_freght as total_freght_2017,
d18.total_freght as total_freght_2018,
d17.price as price_2017,
d18.price as price_2018
from date_17 as d17
join date_18 as d18
on d17.month=d18.month),
pre 21 as (
select *.
total_freght_2017+price_2017 as cost_in_2017,
total_freght 2018+price 2018 as cost in 2018,
round((no items 2018-no items 2017)/no items 2017*100,2) as perct change no items,
round((total freght 2018-total freght 2017)/total freght 2017*100,2) as perct change in freght,
round((price_2018-price_2017)/price_2017*100,2 )as perct_price
from calcu all
order by 1)
select *,round((cost_in_2018-cost_in_2017)/cost_in_2017*100,2) as perct_change_in_cost from pre_21
```

month //	no_items	no_item	total_freght	total_freght	price_2017 /	price_2018	cost_in_2017	cost_in_2018	perct_change/	perct_chang/	perct_price	perct_change_in_cost
1	955	8208	17.6708062	19.1607614	125.982062	115.744439	143.652869	134.905201	759.48	8.43	-8.13	-6.09
2	1951	7672	19.9782675	18.6040471	126.757057	110.033721	146.735325	128.637768	293.23	-6.88	-13.19	-12.33
3	3000	8217	19.2347633	20.9216721	124.781433	119.656010	144.016196	140.577682	173.9	8.77	-4.11	-2.39
-4	2684	7975	19.5584985	20.4451774	134.101054	124.971504	153.659552	145.416682	197.13	4.53	-6.81	-5.36
5	4136	7925	19.3713273	19.3393236	122.357625	125.743555	141.728953	145.082879	91.61	-0.17	2.77	2.37
6	3583	7078	19.5156126	22.2595083	120.859224	122.227226	140.374836	144.486734	97.54	14.06	1.13	2.93
7	4519	7092	19.2388006	23.0147786	110.208338	126.270053	129.447138	149.284832	56.94	19.63	14.57	15.32
8	4910	7248	19.1920407	20.5052621	116.898509	117.920299	136.090549	138.425561	47.62	6.84	0.87	1.72

- The no_itmes (count of orders) in 2017 for (jan-aug) months has increased in 2018 (jan-aug) > which implies that sales are good in 2018 when compared to 2017
- 759 % increase in orders (2017 jan month \rightarrow 2018 jan month)
- Price has been decreased in 2018 when compared to 2017 (prect_price are in negative)[for Jan ,feb ,march ,April]
- -13% drop-in price in 2018 feb compared to 2107 feb
- Freght valye has increased in 2018 when compared to 2017 (jan ,march ,April ,jun ,jul ,aug)
- Cost=freght value+price (corelated to each other liner relation)
- Highest cost percentage → Jul month
- Lowest cost percentage → Feb month

Recommendations

- JUL and AUG month doesn't have 2x growth rate on orders, check what is reason behind this.
- Jul month has most increase in price ie 14% and 19% change in freight vale, This will impact the customers since it increase the cost of the product.

Q4.2 Mean & Sum of price and freight value by customer state

customer_state	freight_value_AVG	freight_value_SUM	price_AVG	price_SUM
MT	28.1662843601896	29715.43000000	148.297184834	156453.52999
MA	38.257002427184	31523.77000000	145.204150485	119648.21999
AL	35.843671171171	15914.58999999	180.889211711	80314.81
SP	15.147275390419	718723.0699999	109.653629159	5202955.0500
MG	20.630166806306	270853.4600000	120.748574148	1585308.0299
PE	32.917862679955	59449.6599999999	145.508322259	262788.02999
RJ	20.960923931682	305589.3100000	125.117818094	1824092.6699
DF	21.041354945968	50625.499999999	125.770548628	302603.93999
RS	21.735804330392	135522.7400000	120.337453087	750304.02000
SE	36.653168831168	14111.46999999	153.041168831	58920.850000
PR	20.531651567944	117851.6800000	119.004139372	683083.76000
PA	35.832685185185	38699.30000000	165.692416666	178947.80999
BA	26.363958936562	100156.6799999	134.601208212	511349.99000

customer_state	freight_valu	freight_valu	price_AVG	price_SUM
PB	42.7238039	25719.7300	191.475215	115268.079
AL	35.8436711	15914.5899	180.889211	80314.81
AC	40.0733695	3686.74999	173.727717	15982.9499

• Top 3 states which has highest avg price and sum price

customer_state	freight_valu	freight_valu	price_AVG	price_SUM
RR	42.9844230	2235.19	150.565961	7829.42999
PB	42.7238039	25719.7300	191.475215	115268.079
RO	41.0697122	11417.3799	165.973525	46140.6400

• Top 3 states which has highest avg freight value and sum freight value

Recommendations

• Since PB ,AL , AC has high price value → implies that customers in this state buys more or buys products which is expensive . recommending costly products for these customers helps increase in sales(and visa versa for low price value states)

 Since RR,PB,RO has high freight value → implies that in these states the transportation cost for delivering from one place to another is more →Look into the connection or network of delivery peoples.

Q3 Evolution of E-commerce orders in the Brazil region

Tableau Dashboard

https://public.tableau.com/app/profile/abhilash.v.a/viz/project_wk/Q3-dASHBOARD?publish=yes

Q3.1 Get month on month orders by region, states

```
with pre_comp as (select customer_state,customer_city,extract(month from order_purchase_timestamp) as mon
th,count(order_id) as count1
from (
select * from
`oceanic-base-302317.Demo_target.Orders` as ord
join `oceanic-base-302317.Demo_target.Customers` as cust
on cust.customer_id=ord.customer_id)
group by 1,2,3
order by 1, 2, 3),
cpm1 as (
select customer_state, customer_city,
case
when month=1
then count1
else 0
end as JAN,
case
when month=2
then count1
else 0
end as FEB,
case
when month=3
then count1
else 0
end as MAR,
case
when month=4
then count1
else 0
end as APRIL,
case
when month=5
then count1
else 0
end as MAY,
case
when month=6
then count1
else 0
end as JUN,
when month=7
then count1
```

```
else 0
end as JUL,
case
when month=8
then count1
else 0
end as AUG,
case
when month=9
then count1
else 0
end as SEP,
case
when month=10
then count1
else 0
end as OCT,
case
when month=11
then count1
else 0
end as NOV,
case
when month=12
then count1
else 0
end as DEC,
from pre_comp
),
pre2 as (
SELECT customer_state,customer_city,SUM(JAN) AS JAN,
SUM(FEB) AS FEB,
SUM(MAR) AS MAR,
SUM(APRIL) AS APRIL,
SUM(MAY) AS MAY,
SUM(JUN) AS JUN,
SUM(JUL) AS JUL,
SUM(AUG) AS AUG,
SUM(SEP) AS SEP,
SUM(OCT) AS OCT,
SUM(NOV) AS NOV,
SUM(DEC) AS DEC,
SUM(JAN+FEB+MAR+APRIL+MAY+JUN+JUL+AUG+SEP+OCT+NOV+DEC) AS TOTAL_COUNT
from cpm1
GROUP BY 1,2
ORDER BY 1,2)
select * from pre2
```

customer_state	customer_city //	JAN /	FEB /	MAR	APRIL /	MAY /	JUN /	JUL /	AUG //	SEP //	OCT	NOV	DEC	TOTAL_COUNT
AC	brasileia	0	1	0	0	0	0	0	0	0	0	0	0	1
AC	cruzeiro do sul	0	0	0	0	1	0	0	0	0	0	0	2	3
AC	epitaciolandia	0	0	0	0	0	0	0	0	0	1	0	0	1
AC	manoel urbano	0	0	0	0	0	0	0	0	1	0	0	0	1
AC	porto acre	0	0	0	1	0	0	0	0	0	0	0	0	1
AC	rio branco	8	5	4	7	9	7	9	7	3	5	4	2	70
AC	senador guiomard	0	0	0	0	0	0	0	0	1	0	0	1	2
AC	xapuri	0	0	0	1	0	0	0	0	0	0	1	0	2
AL	agua branca	0	1	0	0	0	0	0	0	0	0	0	0	1
AL	anadia	1	0	0	0	1	0	0	0	0	0	0	0	2
AL	arapiraca	3	3	2	2	6	2	1	2	2	2	3	1	29
AL	atalaia	0	0	0	0	0	0	0	0	0	0	1	0	1
AL	barra de santo a	0	0	0	0	0	0	0	2	0	0	0	0	2

Satate wise analysis

customer_state	// JAN //	FEB //	MAR	APRIL	MAY	JUN /	JUL	AUG	SEP	OCT	NOV //	DEC	TOTAL_COUNT
AC	8	6	4	9	10	7	9	7	5	6	5	5	81
AL	39	39	40	51	46	34	40	34	20	30	26	14	413
AM	12	16	14	19	19	8	23	9	9	3	10	6	148
AP	11	4	8	5	11	4	7	5	2	3	4	4	68
BA	264	273	340	318	368	307	405	323	170	170	250	192	3380
CE	99	101	126	143	136	121	140	130	77	74	108	81	1336
DF	151	196	207	183	208	220	243	232	97	104	168	131	2140
ES	159	186	182	188	228	204	206	200	93	104	170	113	2033
GO	164	176	199	177	226	184	192	213	88	117	157	127	2020
MA	66	67	77	73	65	59	79	70	42	52	56	41	747
MG	971	1063	1237	1061	1190	1080	1111	1177	511	600	943	691	11635
MS	71	75	79	58	74	76	74	59	33	34	46	36	715
MT	96	84	71	92	104	83	85	78	35	55	74	50	907
PA	82	83	109	107	75	92	96	104	41	58	70	58	975
PB	33	47	55	51	47	51	79	46	29	31	30	37	536
PE	113	146	153	154	174	140	210	170	76	87	126	103	1652
PI	55	46	48	50	56	43	52	43	23	25	31	23	495
PR	443	460	504	500	524	478	523	556	183	225	378	271	5045
RJ	990	1176	1302	1172	1321	1128	1288	1307	612	725	1048	783	12852
RN	51	31	52	42	39	49	56	40	24	27	44	30	485
RO	23	25	29	20	26	22	27	23	16	14	17	11	253
RR	2	7	8	4	3	8	6	0:	2	4	2	0	46

City wise analysis

customer_city	// JAN	FEB //	MAR //	APRIL //	MAY //	JUN //	JUL //	AUG	SEP //	OCT //	NOV //	DEC /	TOTAL_COU
abadia dos dourados	0	0	1	0	0	0	1	0	1	0	0	0	3
abadiania	1	0	0	0	0	0	0	0	0	0	0	0	1
abaete	0	1	2	0	1	2	2	2	0	0	2	0	12
abaetetuba	0	0	2	2	1	1	1	2	1	0	0	1	11
abaiara	0	0	0	0	1	0	0	0	0	0	1	0	2
abaira	0	0	0	0	1	0	0	1	0	0	0	0	2
abare	0	0	0	0	1	0	0	1	0	0	0	0	2
abatia	0	0	0	1	0.	0	0	0	0	1	1	0	3
abdon batista	0	0	0	1	0	0	0	0	0	0	0	0	1
abelardo luz	0	0	0	0	1	1	0	1	1	0	2	0	6
abrantes	0	0	1	0	0	0	0	0	0	1	0	0	2
abre campo	0	0	0	0	0	1	0	0	1	0	1	3	6
abreu e lima	1	3	0	0	2	2	1	0	0	0	0	2	11
acaiaca	0	0	0	0	0	0	1	10	0	0	0	0	2
acailandia	0	0	0	2	0	2	1	0	1	0	1	0	7
acajutiba	0	0	0	0	1	0	0	0	0	0	0	0	1
acarau	2	0	2	0	0	0	0	2	0	1	1	0	8

• Top 5 states which has max orders

• Top 5 cities which has max orders

• Top 4 cities by states which has high orders.

• Top 5 cities which has lowest orders approx 1 order

• Top 5 states which has lowest orders

Recommendations

- States which has lowest order rate \rightarrow needs more advertising and offers.
- Cities which has lowest order rate \rightarrow needs more advertising and offers.
- Find out the reason behind these (why these states or cites has least order rate).

Q3.2 How are customers distributed in Brazil

State wise:

```
with pre as (select customer_state,count(distinct customer_id) as count_1 from
`oceanic-base-302317.Demo_target.Customers`
group by customer_state),
pre1 as (select sum(count_1) from pre)
select customer_state,count_1,
  round((count_1/(select * from pre1))*100,2) as cust_contribution
  from pre
```

customer_state	// count_1 //	cust_contrib
RN	485	0.49
CE	1336	1.34
RS	5466	5.5
sc	3637	3.66
SP	41746	41.98
MG	11635	11.7
BA	3380	3.4
RJ	12852	12.92
GO	2020	2.03
MA	747	0.75
PE	1652	1.66
PB	536	0.54
ES	2033	2.04
PR	5045	5.07
RO	253	0.25
MS	715	0.72
PA	975	0.98

Cities wise:

```
with pre as (select customer_city,count(distinct customer_id) as count_1 from
`oceanic-base-302317.Demo_target.Customers`
group by customer_city),
pre1 as (select sum(count_1) from pre)
select customer_city,count_1,
round((count_1/(select * from pre1))*100,2) as cust_contribution
from pre
```

customer_city	count_1	cust_contrib
acu	3	0.0
ico	8	0.01
ipe	2	0.0
ipu	4	0.0
ita	3	0.0
itu	136	0.14
jau	74	0.07
luz	2	0.0
poa	85	0.09
uba	53	0.05
una	5	0.01
anta	4	0.0
avai	1	0.0
bage	65	0.07
bodo	1	0.0
bora	1	0.0
buri	10	0.01

City wise for each state:

```
with pre1 as (select customer_state,customer_city,min(c1) as c1,max(c2) as c2 from (
select customer_state,customer_city,
count(customer_id) over(partition by customer_state ) as c1,
count(customer_id) over(partition by customer_state ,customer_city) as c2
from `oceanic-base-302317.Demo_target.Customers`)
group by 1,2),
pre_3 as (
select customer_state,customer_city,c1,c2,round(c2/c1*100,1) as prect_share from pre1)
select * from pre_3
order by 1,2
```

customer_state	customer_city	/ c1 / c2	1	prect_share
AC	brasileia	81	1	1.2
AC	cruzeiro do sul	81	3	3.7
AC	epitaciolandia	81	1	1.2
AC	manoel urbano	81	1	1.2
AC	porto acre	81	1	1.2
AC	rio branco	81	70	86.4
AC	senador guiomard	81	2	2.5
AC	xapuri	81	2	2.5
AL	agua branca	413	1	0.2
AL	anadia	413	2	0.5
AL	arapiraca	413	29	7.0
AL	atalaia	413	1.	0.2
AL	barra de santo antonio	413	2	0.5
AL	barra de sao miguel	413	2	0.5
AL	batalha	413	3	0.7
AL	belem	413	3	0.7
AL	boca da mata	413	2	0.5

customer_state	count_1	cust_contrib
SP	41746	41.98
RJ	12852	12.92
MG	11635	11.7
RS	5466	5.5
PR	5045	5.07

• Top 5 states with max no of customers

customer_state	count_1	cust_contrib
RR	46	0.05
AP	68	0.07
AC	81	0.08
AM	148	0.15
RO	253	0.25

• Top 5 states with lowest customers

customer_city	count_1	cust_contrib
sao paulo	15540	15.63
rio de janeiro	6882	6.92
belo horizonte	2773	2.79
brasilia	2131	2.14
curitiba	1521	1.53

• Top 5 cities with highest customers

customer_city	count_1	cust_contrib
acu	3	0.0
ipe	2	0.0
ipu	4	0.0
ita	3	0.0
luz	2	0.0

• Top 5 cities with lowest customers (approx. 0% contribution)

Recommendations

- We can observe that number of customers is directly proportional to the orders
- Advertising needs to be done for lowest customer base (state or cities)
- More offers needed to be given to attract them.

Q2 In-depth Exploration: Tableau Dashboard

https://public.tableau.com/app/profile/abhilash.v.a/viz/project_wk/Q2-DASHBOARD?publish=yes

Q2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select *,
lag(no_of_orders,1) over(partition by year order by month) as prev_month_orders,
round((no_of_orders-
lag(no_of_orders,1) over(partition by year order by month)) /lag(no_of_orders,1) over(partition by year o
rder by month)*100,2) as perct_change
from(

select extract(year from order_purchase_timestamp) as year,extract(month from order_purchase_timestamp) a
s month,count(order_id) as no_of_orders
from `oceanic-base-302317.Demo_target.Orders`
group by 1,2
order by 1,2)
order by 1
```

Percent change in orders partitioned by year

year /	month //	no_of_orders	prev_month	perct_change
2016	9	4	null	null
2016	10	324	4	8000.0
2016	12	1	324	-99.69
2017	1	800	null	null
2017	2	1780	800	122.5
2017	3	2682	1780	50.67
2017	4	2404	2682	-10.37
2017	5	3700	2404	53.91
2017	6	3245	3700	-12.3
2017	7	4026	3245	24.07
2017	8	4331	4026	7.58
2017	9	4285	4331	-1.06
2017	10	4631	4285	8.07

Year to year analysis (for different order status)

month	created //	shipped	delivered	canceled	unavailable	processing	approved //	invoiced	total_count
2017	4	530	43428	265	457	240	2	175	45101
2018	1	568	52783	334	145	59	0	121	54011
2016	0	9	267	26	7	2	0	18	329

Month to month analysis (for different order status) perct_change_deliered → this column describes the change in order count for order status ="'delivered''

month	created	shipped	delivered	cancled	unavailable	processing	approved	invoiced	perct_change_diliverd
1	0	90	7819	37	58	38	0	27	null
2	1	78	8208	90	75	38	1	17	4.98
3	0	178	9549	59	49	32	32	26	16.34
4	0	148	9101	33	14	18	18	28	<mark>-4</mark> .69
5	0	109	10295	53	47	29	29	40	13.12
6	0	90	9234	34	28	12	0	14	-10.31
7	0	116	10031	69	70	12	0	20	8.63
8	0	88	10544	111	39	18	0	43	5.11
9	0	40	4151	37	38	22	0	17	-60.63
10	0	41	4743	54	65	22	0	34	14.26
11	2	72	7289	37	84	25	0	35	53.68
12	2	57	5514	11	42	35	0	13	-24.35

Month-month (for all years)

```
select *,
lag(no_of_orders,1) over(order by month) as prev_month_orders,
round((no_of_orders-
lag(no_of_orders,1) over(order by month)) /lag(no_of_orders,1) over(order by month)*100,2) as perct_chang e
from(
select extract(month from order_purchase_timestamp) as month,count(order_id) as no_of_orders
from `oceanic-base-302317.Demo_target.Orders`
group by 1
order by 1)
order by 1
```

month	no_of_orders	prev_month	perct_change
1	8069	null	null
2	8508	8069	5.44
3	9893	8508	16.28
4	9343	9893	-5.56
5	10573	9343	13.16
6	9412	10573	-10.98
7	10318	9412	9.63
8	10843	10318	5.09
9	4305	10843	-60.3
10	4959	4305	15.19
11	7544	4959	52.13
12	5674	7544	-24.79

- 11th month ie November we see raise in order compared to prev month.
- 12th month ie Dec we see a fall in orders.
- Over all 5,7,8 ie (may ,jul ,aug) month has highest orders.

•

Recommendations

- Since Nov,May,Jul,Aug month is more likely to have more orders, please make sure that all things are going smooth
- After Nov (ie highest orders) → but the exact next month ie Dec we see fall in the orders (customer retention are not happening).
- Make sure that in the dec month customers get good deals.

Q2.1 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select
sum(
case
when hour between 4 and 11
then no of orders
end ) as Morning,
sum(
case
when hour between 12 and 15
then no_of_orders
end )as Afternoon,
sum(
case
when hour between 16 and 22
then no_of_orders
end )as Evening,
sum(
case
when hour =23 or hour between 0 and 3
then no of orders
end )as Night,
from (
select extract(hour from order_purchase_timestamp) as hour,count(order_id) as no_of_orders
from `oceanic-base-302317.Demo_target.Orders`
group by 1
order by 1)
```

Morning	Afternoon	Evening	Night
22634	25536	42802	8469

- Morning 4 − 11
- Afternoon 12-15
- Evening 16 -22
- Night 23 3
- Evening has highest orders ie from 16 hours to 22 hours

Recommendations

- Provide customers good deals on evening because they are most likely to buy.
- Increase the service at night.

Q1 Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

Q1.1 Data type of columns in a table

• Customers Table

Field name	Type	Mode
customer_id	STRING	NULLABLE
customer_unique_id	STRING	NULLABLE
customer_zip_code_prefix	INTEGER	NULLABLE
customer_city	STRING	NULLABLE
customer_state	STRING	NULLABLE

• Order Items Table

Туре	Mode
STRING	NULLABLE
INTEGER	NULLABLE
STRING	NULLABLE
STRING	NULLABLE
TIMESTAMP	NULLABLE
FLOAT	NULLABLE
FLOAT	NULLABLE
	STRING INTEGER STRING STRING TIMESTAMP FLOAT

• Order Review Table

Field name	Type	Mode	10
review_id	STRING	NULLABLE	
order_id	STRING	NULLABLE	
review_score	INTEGER	NULLABLE	
review_comment_title	STRING	NULLABLE	
review_creation_date	TIMESTAMP	NULLABLE	
review_answer_timestamp	TIMESTAMP	NULLABLE	

• Orders Table

Field name	Туре	Mode
order_id	STRING	NULLABLE
customer_id	STRING	NULLABLE
order_status	STRING	NULLABLE
order_purchase_timestamp	TIMESTAMP	NULLABLE
order_approved_at	TIMESTAMP	NULLABLE
order_delivered_carrier_date	TIMESTAMP	NULLABLE
order_delivered_customer_date	TIMESTAMP	NULLABLE
order_estimated_delivery_date	TIMESTAMP	NULLABLE

• Payments Table

Field name	Type	Mode
order_id	STRING	NULLABLE
payment_sequential	INTEGER	NULLABLE
payment_type	STRING	NULLABLE
payment_installments	INTEGER	NULLABLE
payment_value	FLOAT	NULLABLE

• Products Table

Field name	Туре	Mode
product_id	STRING	NULLABLE
product_category	STRING	NULLABLE
product_name_length	INTEGER	NULLABLE
product_description_length	INTEGER	NULLABLE
product_photos_qty	INTEGER	NULLABLE
product_weight_g	INTEGER	NULLABLE
product_length_cm	INTEGER	NULLABLE
product_height_cm	INTEGER	NULLABLE

• Seller Table

Field name	Туре	Mode
seller_id	STRING	NULLABLE
seller_zip_code_prefix	INTEGER	NULLABLE
seller_city	STRING	NULLABLE
seller_state	STRING	NULLABLE

• Geo-location Table

Field name	Туре	Mode
geolocation_zip_code_prefix	INTEGER	NULLABLE
geolocation_lat	FLOAT	NULLABLE
geolocation_lng	FLOAT	NULLABLE
geolocation_city	STRING	NULLABLE
geolocation_state	STRING	NULLABLE

Q1.2 Time period for which the data is given

SELECT min(order_purchase_timestamp) as start_date ,max(order_purchase_timestamp) end_date FROM `oceanic -base-302317.Demo_target.Orders`

start_date	end_date
2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC

(purchasetimestamp from order table is used)

Q1.3 Cities and States covered in the dataset

States:

SELECT distinct customer_state FROM `oceanic-base-302317.Demo_target.Customers`

There are total 27 states

- 1. RN

- 2. CE 3. RS 4. SC 5. SP
- 6. MG

- 7. BA 8. RJ 9. GO 10. MA
- 11. PE 12. PB
- 13. ES
- 14. PR
- 15. RO
- 16. MS 17. PA
- 18. TO
- 19. MT
- 20. PI
- 21. AL 22. AM 23. DF
- 24. SE
- 25. RR
- 26. AP
- 27. AC

Cities:

SELECT distinct customer_city FROM `oceanic-base-302317.Demo_target.Customers`

There are total 4119 cities

