Отчёт

Иван Рубачёв, 161

28 ноября 2018 г.

Содержание

1	Модуль интегрирования]
	1.1 Сравнение с scipy.integrate.quad	. 1
	1.2 Оценка с использованием правила Рунге	
2	Модуль интерполяции	:
	2.1 Описание алгоритма	
	2.2 Графики	. :

1 Модуль интегрирования

Необходимо реализовать и протестировать модуль интегрирования. Было решено для интегрирования использовать метод трапеций. Реализацию можно найти в файле integral.py. Здесь приведен код для тестирования и результаты.

1.1 Сравнение с scipy.integrate.quad

Были выбраны следющие функции:

1. Непрерывная

$$f(x) = \arctan(x+2) + 1 \tag{1}$$

2. Осцилирующая

$$f(x) = \sin(100x) \tag{2}$$

3. Разрывная

$$f(x) = \begin{cases} x^3 - 2x + 2 & \text{if } x \geqslant 0\\ x - 1 & \text{otherwise} \end{cases}$$
 (3)

Метод трапеций, заключается в замене на каждом элементарном отрезке подынтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольными трапециями.

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} (x_{i+1} - x_i)$$
(4)

Порядок аппроксимации p=3 для метода трапеций (т.к. ошибка оценивается сверху $O(h^3)=O(1/N^3)$). На Рис. 1 изобрашены отклонения от значения интеграла, вычисляемого функцией scipy.integrate.quad

Рис. 1: Графики ошибки в зависимости от числа разбиений сетки

1.2 Оценка с использованием правила Рунге

Оценка на погрешность вычисления интеграла при числе шагов 2n можно оценить сверху:

$$\Delta_{2N} \leqslant \frac{|I_{2N} - I_N|}{2^{p-1} - 1} = \frac{|I_{2N} - I_N|}{3}$$
 т.к. для метода трапеций $p = 3$

Графики зависимости погрешности (верхней оценки) изображены на Рис. 2

Рис. 2: Оценка на погрешность вычисления интеграла

2 Модуль интерполяции

В данном разд описан метод интерполяции, использующий кубический сплайн дефекта 1 и метод прогонки для вычислени коэффициентов.

2.1 Описание алгоритма

2.2 Графики