Algebra I (ISIM), lista 11, 22.05.2017.

Teoria: Przykłady izometrii liniowych: obrót w płaszczyźnie W < V, względem W^{\perp} . Odbicie względem W < V. Orientacja bazy w przestrzeni V. Klasyfikacja izometrii liniowych V: każda jest złozeniem pewnej liczby oodbić względem hiperpłaszczyzn przechodzących przez O i obrotów wokół O w pewnych płaszczyznach. Poztać macierzy przekształcenia ortogonlanego w pewnej bazie o.n. Diagonalizacja przekształceń unitarnych. Przestrzeń sprzężona (dualna). Izomorfizm kanoniczny $V \cong V^{**}$. Kategorie: definicje, podstawowe przykłady. Funktory kowariantne i kontrawariantne. Sprzężenie jako funktor kontrawariantny w kategorii $Vect_{\mathbb{R}}$. $m_{\mathcal{C}^*\mathcal{B}^*}(f^*) = m_{\mathcal{BC}}(f)^*$.

 $(V, \langle \cdot, \cdot \rangle)$ jest przestrzenią euklidesową skończonego wymiaru, chyba że zaznaczono inaczej. Dla W < V $P_W : V \to V$ oznacza rzut prostopady na W.

- 1. Załóżmy, że $B = \{b_1, \ldots, b_n\}$, $C = \{c_1, \ldots, c_n\}$ są dwiema bazami ortonormalnymi przestrzeni V. Udowodnić, że bazy B i C są tak samo zorientowane \iff jedną z nich można przekształcić na drugą (tzn. $b_i \mapsto c_i$) przy pomocy pewnej liczby obrotów.
- 2. Załóżmy, że L_1, L_2 są prostymi na płaszczyźnie \mathbb{R}^2 . Opisać, kiedy istnieje izometria liniowa $f: \mathbb{R}^2 \to \mathbb{R}^2$ przekształcająca L_1 na L_2 .
- 3. Dla jakich W, U < V prawdą jest, że:
 - (a) $P_W \circ P_U = P_{W \cap U}$?
 - (b) $P_W + P_{W^{\perp}} = id_V$?
- 4. Niech α_n będzię kątem między krawędzią n-wymiarowej kostki foremnej w \mathbb{E}^n , a jej główną przekątną. Obliczyć $\lim_n \alpha_n$.
- 5. Dla jakich $z \in \mathbb{C}$ przekształcenie liniowe $f_z : \mathbb{R}^2 \to \mathbb{R}^2$ dane wzorem $f_z \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Re(z \cdot (x+iy)) \\ Im(z \cdot (x+iy)) \end{pmatrix}$ jest ortogonalne ?
- 6. * Udowodnić, że dowolną izometrię liniową przestrzeni V można przedstawić jako złożenie pewnej liczby odbić względem podprzestrzeni kowymiaru 1.
- 7. Niech n = dim(V) oraz niech W będzie podprzestrzenią V wymiaru k < n. Niech f będzie odbiciem V względem W. Dowieść, że $det(f) = (-1)^{n-k}$.
- 8. * Udowodnić, że jeśli w zadaniu poprzednim n-k jest parzyste, to f można przedstawić jako złożenie pewnej liczby obrotów.
- 9. Załóżmy, że $F:V\to V$ jest ortogonalne i w pewnej bazie ortonormalnej B ma macierz diagonalną. Udowodnić, że F jest odbiciem względem pewnej podprzestrzeni lub F=id.
- 10. * Zrobić powyższe zadanie bez założenia, że baza B jest ortonormalna.

- 11. Załóżmy, że $\mathcal{B} = \{b_1, b_2, b_3\}$ jest bazą V, zaś $\mathcal{B}^* = \{b_1^*, b_2^*, b_3^*\}$ bazą V^* sprzężoną do \mathcal{B} . Niech $\mathcal{C} = \{c_1, c_2, c_3\}$, gdzie $c_1 = b_1 + b_2 + b_3$, $c_2 = b_2$, $c_3 = b_3$ oraz niech $\mathcal{C}^* = \{c_1^*, c_2^*, c_3^*\}$ będzie bazą V^* sprzężoną do \mathcal{C} . Wyrazić wektory c_1^*, c_2^*, c_3^* jako liniowe kombinacje wektorów b_1^*, b_2^*, b_3^* .
- 12. Załóżmy, że $\varphi_1, \ldots, \varphi_n \in V^*$. Udowodnić, że (a) $Lin(\varphi_1) = Lin(\varphi_2) \iff Ker(\varphi_1) = Ker(\varphi_2)$, (b)* $\dim_{V^*} \{ \varphi_1, \ldots, \varphi_n \} = codim_V \bigcap_{i=1}^n Ker(\varphi_i)$.