

Short Charles and Subsequence of the Park of the Park

Course: Algorithms

Faculty: Dr. Rajendra Prasath

Solving Recurrence Relations

This class covers different methods to solve recurrence relations. This lecture illustrates a few methods of **solving recurrence relations** with a few selected examples and their analysis as well 2

Recap: Complexity Spectrum

Function	Common name
n!	factorial
2^n	exponential
$n^d, d > 3$	polynomial
n^3	cubic
n^2	quadratic
$n\sqrt{n}$	
$n \log n$	quasi-linear
$\mid n \mid$	linear
\sqrt{n}	root - n
$\log n$	logarithmic
1	constant

Recap: Handling Recursions?

- How to we define a recursive approach?
 - In terms of the input size n (smaller to bigger)
 - The rate of change of n (growing / decaying)
- Two Steps:
 - Basic Steps (terminating step !!)
 - Recursive Steps (Repeating Step)
- Important Points
 - Optimize Recursive Calls
 - Avoid Inefficient Recursions as n → ∞
 - Understand the way recursion works for the given problem

Recap: Analysis of Recursion

```
void f(int n) {
   if(n > 0) {
      DoSomething(n); // O(n)
      f(n/2); \rightarrow O(n)
      f(n/2); f(n/2); \rightarrow O(n \log n)
      f(n-1); \rightarrow O(n^2)
      f(n-1); f(n-1); \rightarrow O(2^n)
```

Recursion – The Closed Form

 How to get a closed form of a recurrence relation?

$$a_0 = 4$$
 $a_n = a_{n-1} - n$

• The Closed form solution for T(n) is

$$a_n = 4 - n(n+1)/2$$

How to find such Closed Form solutions?

Closed Form – Example 1

Consider the following recurrence relation:

$$T(n) = 5$$
, if $n \le 2$
= $T(n-1) + n$, otherwise

Find the Closed form solution for T(n)?

Example 1 - Solution

```
T(k + 1) = T(k) + k + 1
T(k + 2) = T(k + 1) + k + 2 = T(k) + k + 1 + k + 2
T(k + m) = T(k) + k + 1 + k + 2 + ... + k + m
   = T(k) + mk + 1 + 2 + ... + m = T(k) + mk + m*(m + 1) / 2
\rightarrowT(k + m) = T(k) + mk + m * (m + 1) / 2
Let k = 2:
T(m + 2) = T(2) + 2m + m * (1 + m) / 2
         = 5 + 2m + m * (m + 1) / 2
Finally, let m + 2 = n or m = n - 2:
T(n) = 5 + 2 * (n - 2) + (n - 1) * (n - 2) / 2 = n * (n + 1) / 2 + 2
We have
T(n) = n * (n + 1) / 2 + 2, if n > 2
                              if n <= 2
T(n) = 5
                                                                 8
```

Solving Recursive Relations

- How to find the closed form solution for T(n)
- Several Methods
 - Substitution Method
 - Recursive Tree based Method
 - Iterative Method
 - The Characteristic Root Method

and so on.

Substitution Method

- The Basic Idea
 - Make a guess of a possible solution
 - Use Induction to prove it.
- Look at the following Recursive Definition:

$$T(n) = 1,$$
 if $n = 1$
= $2T(n/2) + n,$ for all $n > 1$

How to solve this recurrence relation?

Substitution Method (cont.)

Solving the following recursive relation:

$$T(n) = 1,$$
 if $n = 1$
= $2T(n/2) + n,$ for all $n > 1$

- Solution:
 - 1) $T(n) = n \log n + n$
 - 2) Proof by Induction

Basis: if n = 1, => 1 log 1 = 1 \rightarrow **T(n) = 1**, true for n = 1 Induction Step:

$$T(n) = 2T(n/2) + n = 2((n/2) * log (n/2) + n/2) + n$$

= n log (n/2) + n + n
= n (log n - log 2) + n + n = n log n - n + n + n

$$T(n) = n \log n + n$$
 is true for for all $n > 1$

Iteration Method

- Problem: Assume that a recursive expression a_n is given with initial conditions: a_0
- Can we express a_n without depending on previous terms ??
- Example 1: $a_n = 2 a_{n-1}$ for $n \ge 1$ with initial condition $a_0 = 1$
- Solution:

$$a_n = 5_n \text{ (howss)}$$

Iteration Method (cont.)

- Example 2: The Growth of Tiger Population
- Tiger Population a_n at time n
- Initial Condition: $a_0 = 100$
- Tiger population increases from time n 1 to time n is 20%. Then the recursive function is modeled as follows:

$$a_n - a_{n-1} = 0.2 a_{n-1}$$

 $\Rightarrow a_n = 1.2 a_{n-1}$

Solution:

$$a_n = 100 (1.2)^n \text{ (how??)}$$

Recurrence Tree - Example

- $T(n) = T(n/4) + T(n/2) + cn^2$
- Solution:

Recurrence Tree - Solution

- $T(n) = T(n/4) + T(n/2) + cn^2$
- Solution: Calculate T(n)?
 - calculate sum of tree nodes level by level
 - The following series is obtained from the tree: $T(n) = c(n^2 + 5(n^2)/16 + 25(n^2)/256) + \dots$
 - This is a geometric progression with ratio 5/16
 - Upper bound: Sum = $n^2/(1 - 5/16)$ which is $O(n^2)$

Recurrence Tree Method

- Calculate the time taken by every level of the tree
- Sum the work done at all levels
- Pattern: an arithmetic of a geometric series
- Example: $T(n) = T(n/4) + T(n/2) + cn^2$
- How to solve this recurrence relation?

Master Method

Consider a recurrence of the form:

$$T(n) = aT(n/b) + f(n)$$
 where $a \ge 1$ and $b > 1$

- Recursive Tree based approach
- The running time is influenced by:
 - cost at **leaf nodes**: If $f(n) = \Theta(n^c)$ where $c < Log_b a$ then $T(n) = \Theta(n^{Log_b a})$
 - cost **evenly distributed** throughout the tree: If $f(n) = \Theta(n^c)$ where $c = Log_b a$ then $T(n) = \Theta(n^c Log n)$
 - cost at root nodes:

If
$$f(n) = \Theta(n^c)$$
 where $c > Log_b a$ then $T(n) = \Theta(f(n))$ 17

An Illustration

Height of recurrence tree is Log_bn

Master Theorem: Formal Defn.

For any recurrence relation of the form
 T(n) = a T(n/b) + cn^k, T(1) = c, the following relationships hold

$$\mathbf{T}(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^k) & \text{if } a < b^k \end{cases}$$

 Apply this recurrence whenever appropriate without deriving the solution for the recurrence

Master Theorem: Example 1

$$\mathbf{T}(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^k) & \text{if } a < b^k \end{cases}$$

Apply the theorem to solve

$$T(n) = 3 T(n/5) + cn^2$$
, $T(1) = c$

- Here a = 2, b = 5, c = 8 and k = 2
- Check whether $3 < 5^2$??
- As per case 3: The solution is

$$T(n) = \Theta(n^2)$$

Master Theorem: Example 2

$$\mathbf{T}(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^k) & \text{if } a < b^k \end{cases}$$

Apply the theorem to solve

$$T(n) = 2 T(n/2) + n$$
, $T(1) = 1$

- Here a = 2, b = 2, c = 1 and k = 1
- Can we find $2 = 2^{1}$??
- As per case 2: The solution is

$$T(n) = \Theta(n \log n)$$

Master Theorem: Example 3

$$\mathbf{T}(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^k) & \text{if } a < b^k \end{cases}$$

Average case Analysis of Quicksort:

$$\mathbf{T}(n) = cn + \frac{1}{n} \sum_{k=0}^{n-1} [\mathbf{T}(k) + \mathbf{T}(n-1-k)]$$
• T(0)

Solving the above recurrence relation, we get

$$= 2c\left(1+(n+2)\left(\frac{1}{n+1}+\frac{1}{n}+\cdots+\frac{1}{2}\right)\right)$$

→ Tight bound complexity:

$$T(n) = \Theta(n \log n)$$

A Few Examples

- Binary Search:
 - $T(n) = T(n/2) + \Theta(1)$
 - case 2: c is 0 and Log_ba is also 0
 - The solution is Θ (logn)
- Merge Sort:
 - $T(n) = 2T(n/2) + \Theta(n)$
 - case 2: c is 1 and Log_ba is also 1.
 - The solution is Θ (n Logn)
- Solve: $T(n) = 3 T(n/4) + n \log n$
 - case: 1, $T(n) = \Theta(n \log n)$
- Can you find more examples yourself ??

Linear Homogeneous RR

- Examples:
 - The recurrence relation $P_n = (1.05)P_{n-1}$ is a linear homogeneous recurrence relation of degree one.
 - The recurrence relation $f_n = f_{n-1} + f_{n-2}$ is a linear homogeneous recurrence relation of degree two.
 - The recurrence relation $a_n = a_{n-5}$ is a linear homogeneous recurrence relation of degree five.

Characteristic Equation

Let $a_n = r^n$ is a solution of the linear homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$$

if and only if

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + ... + c_k r^{n-k}$$

Divide this equation by r^{n-k} and subtract the right-hand side from the left:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0$$

This is called the **characteristic equation** of the recurrence relation

Fibonacci Series: An Example

- Problem: Give an explicit formula for the Fibonacci numbers
- Solution:
 - The Fibonacci numbers satisfy the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with initial conditions $f_0 = 0$ and $f_1 = 1$.
 - The characteristic equation is $r^2 r 1 = 0$.
 - Its roots are

$$r_1 = \frac{1+\sqrt{5}}{2}, \quad r_2 = \frac{1-\sqrt{5}}{2}$$

Fibonacci Series: An Example

The Fibonacci numbers are given by

$$f_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

- for some constants α_1 and α_2 .
- We can determine values for these constants so that the sequence meets the conditions $f_0 = 0$ and $f_1 = 1$:

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right) = 1$$

Fibonacci Series: (cont.)

 The unique solution to this system of two equations and two variables is:

$$\alpha_1 = \frac{1}{\sqrt{5}} , \ \alpha_2 = -\frac{1}{\sqrt{5}}$$

 So finally we obtained an explicit formula for the Fibonacci numbers:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Selection Sort

Why Θ(n²) complexity??

- Selection Sorting (put the largest term at the end or the smallest term in the beginning):
 - Given a sequence of n terms b_k , k = 1, 2, ..., n to be arranged in increasing order
 - Count the number of comparisons b_n with initial condition $b_1 = 0$
 - Obtain recursion relation

$$b_n = n - 1 + b_{n-1}$$
 for $n = 1, 2, 3, ...$

• $b_n = n(n-1)/2 \text{ (how??)}$

 $\rightarrow \Theta(n^2)$ complexity

- Binary Search Problem:
 - Search for a value in an increasing sequence.
 Return the index of the value, or 0 if not found.
- Initial condition $a_1 = 2$
- Recurrence relation $a_n = 1 + a_{\lfloor n/2 \rfloor}$
- Solution: $a_n = \Theta(\log n)$ (How??)

- Problem: Merging Two Sorted Sequences
 - How do we combine two sorted sequences into a single increasing sequence
- Solution:
 - To merge two sorted sequences, the sum of whose lengths is n, the number of comparisons required is n – 1.

- Problem: Merge Sort
 - Write a recursive algorithm to sort a given sequence into the increasing order

(using the algorithm for merging two increasing sequences into one increasing sequence)

- Solution:
 - The merge sort algorithm is Θ(n log n) in the worst case

Help among Yourselves?

- Perspective Students (having CGPA above 8.5 and above)
- Promising Students (having CGPA above 6.5 and less than 8.5)
- Needy Students (having CGPA less than 6.5)
 - Can the above group help these students? (Your work will also be rewarded)
- You may grow a culture of collaborative learning by helping the needy students

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- TA s would assist you to clear your doubts.
- You may leave me an email any time (email is the best way to reach me faster)

Thanks ...

