Quiz 18

1. Consider the following Turing Machine: $M = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{0, 1\}, \{0, 1, \bot\}, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$, where

$$\begin{array}{ll} \delta(q_0,0) = (q_1,1,\mathsf{R}) & \qquad \delta(q_1,1) = (q_2,0,\mathsf{L}) \\ \delta(q_2,1) = (q_0,1,\mathsf{R}) & \qquad \delta(q_1,\sqcup) = (q_{\mathsf{acc}},\sqcup,\mathsf{R}) \end{array}$$

As always, we assume for cases not mentioned above, $\delta(q, a) = (q_{rej}, \sqcup, R)$. Suppose the current configuration is $1q_11$. The next configuration is

- (A) q_201
- (B) $1q_20$
- (C) $q_2 10$
- (D) $10q_2 \sqcup$

Correct answer is (C).

2. Consider the following Turing Machine: $M = (\{q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}), \text{ where } q_{\mathsf{acc}} = (q_0, q_1, q_2, q_{\mathsf{acc}}, q_{\mathsf{rej}}), q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$

$$\begin{array}{ll} \delta(q_0,0) = (q_1,1,{\sf R}) & \qquad \delta(q_1,1) = (q_2,0,{\sf L}) \\ \delta(q_2,1) = (q_0,1,{\sf R}) & \qquad \delta(q_1,\sqcup) = (q_{\sf acc},\sqcup,{\sf R}) \end{array}$$

As always, we assume for cases not mentioned above, $\delta(q, a) = (q_{rej}, \sqcup, R)$. What can we say about the Turing machine M?

- (A) M halts on all inputs
- (B) M never halts on some inputs
- (C) M does not halt on any input
- (D) There is an input on which M sometimes halts and sometimes does not halt.

Correct answer is (A).

- 3. Which of the following is true for the input alphabet Σ (assuming $\Sigma \neq \emptyset$) and the tape alphabet Γ of Turing machine?
 - (A) It is possible that $\Sigma = \Gamma$.
 - (B) Γ is a strict superset of Σ .
 - (C) Σ is a strict superset of Γ .
 - (D) It is possible that Σ and Γ are disjoint.

Correct answer is (B).

- 4. How many Turing Machines are there with only three states q_0 $q_{\sf acc}$ and $q_{\sf rej}$, with $\Sigma = \{0,1\}$ and $\Gamma = \{0,1,\sqcup\}$?
 - (A) 3
 - (B) 3^2
 - (C) 18^3
 - (D) Infinitely many.

Correct answer is (C).