Sparse inverse time correlation model for signal identification in fNIRS data

David Causeur IRMAR, UMR 6625 CNRS Agrocampus, Rennes, France

Joint work with Ching-Fan Sheu (Institute of Education, NCKU, Tainan, Taiwan)

Phonological Neighborhood Density (PND) of a word: number of words that can be generated by replacing a phoneme with another phoneme in the same position.

Examples: SHORT has a high PND, PROOF has a low PND

Words with high PND:

[(Chen et al., 2011)]

- · are recognized more slowly;
- elicits greater changes in blood oxygenation in the left than in the right hemisphere of the brain.

PND \times channels hemodynamic curve data for 14 subjects.

Is the Low PND versus High PND difference curve the same in the left and right side of the brain?

Is the Low PND versus High PND difference curve the same in the left and right side of the brain?

Within-subjects functional ANOVA design

- Two factors: PND condition and Brain side
- Test for the PND condition × Brain side interaction effect
- Responses are high-resolution hemodynamic curves

Two issues

- Signal detection: is the effect curve non-zero somewhere within the whole time frame?
- Signal identification: in which time intervals is the effect curve non-zero?

Functional ANOVA

The linear function-to-scalar regression framework

- Hemodynamic response curve : $Y = (Y(t_1), \dots, Y(t_p))'$
- PND condition, Brain side, Subject effects, Interactions : $x = (x_1, \dots, x_m)'$

$$Y = x'\beta + \varepsilon$$
, with $\varepsilon \sim \mathcal{N}(0; \Sigma)$

In the PND study design

- p = 3005 time points (200 samples/sec.).
- $n = 14 \times 4 \times 2 = 112$ response curves
- m = 43

Functional ANOVA

Functional ANOVA

- At each time point, a F-test statistic : $F = (F_{t_1}, \dots, F_{t_p})$
- The global test statistic aggregates the F_{t_k} , $k = 1, \ldots, p$
 - Sum-based aggregations
 - Max-based aggregations

See R package fdanova implementing 12 fANOVA tests for one-way designs

Górecki, T., Smaga, Ł. (2019) fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data. *Comput Stat* **34**, 571–597.

Wald-type testing in Functional ANOVA (see R package ERP)

- $\hat{\pmb{\delta}} = (\hat{\delta}_{t_1}, \dots, \hat{\delta}_{t_p})$, OLS estimate of the effect curve;
- Wald-type test statistic : $F = \hat{\delta}' \hat{V}_{\hat{\delta}}^{-1} \hat{\delta} = (\hat{\delta}' \hat{V}_{\hat{\delta}}^{-1/2}) (\hat{V}_{\hat{\delta}}^{-1/2'}) \hat{\delta}$;
- $\hat{V}_{\hat{s}}^{-1} = n \hat{\Omega} \otimes S_{xx}$, where $\hat{\Omega} = \hat{\Sigma}^{-1}$;
- $\hat{\Sigma}$: low-rank q-factor approximation of the sample variance-covariance matrix of $\hat{\varepsilon}$.

Low-rank factor model for Σ

$$oldsymbol{\Sigma}_{\scriptscriptstyle p imes p} = oldsymbol{\Psi}_{\sf diag} + oldsymbol{B}_{\scriptscriptstyle p imes q} oldsymbol{B}_{\scriptscriptstyle p imes q}'$$

"Lightening" of pointwise F-tests

- q = 0: sum of correlated (coloured) pointwise F-tests
- q as large as possible : sum of whitened pointwise F-tests

PND condition x Brain side interaction effect

	q = 0	q = 17	q = 45
p-value	0.869	0.022	0.209

Optimal handling of time-dependence depends on the interplay between the dependence structure and the pattern of association signal

Causeur, D., Sheu, C. F., Perthame, E. and Rufini, F (2020). A functional generalized F-test for signal detection with applications to event-related potentials significance analysis. *Biometrics*. **76**(1), 246-256.

Searching for peaks

Time points with nonzero regression parameters

- Multiple testing viewpoint : strong dependence induces unstability [Sheu et al., AoAS, 2016]
- ℓ_1 -penalized estimation of the effect curve

ℓ_1 -penalized estimation

[(Rothman et al., 2010)]

$$\mathcal{D}(\boldsymbol{eta}; \boldsymbol{\Omega}, \kappa) = -n \log \det(\boldsymbol{\Omega}) + \sum_{i=1}^{n} (Y_i - \boldsymbol{x}_i' \boldsymbol{eta})' \boldsymbol{\Omega} (Y_i - \boldsymbol{x}_i' \boldsymbol{eta}) + \kappa ||\boldsymbol{eta}||_1,$$

where $\kappa > 0$ is a penalty parameter and $\Omega = \Sigma^{-1}$.

Searching for peaks

How does the choice of $\Omega = \Sigma^{-1}$ affect estimation?

• Two options for High vs Low PND difference curve :

- Two options for Σ in $\mathcal{D}(\beta; \Sigma, \kappa)$:
 - $\Sigma = D_{\sigma}^2$ diagonal;
 - Close factor approximation of the sample estimate of Σ .

Searching for peaks

Focus on feature selection

Sparse inverse time-correlation model

Illustration by the AR(1) correlation model

 Σ dense

 Ω sparse

Sparse inverse time-correlation model

New parametrization

$$\left\{ egin{array}{lll} oldsymbol{arphi}_{ ext{diag}} &=& oldsymbol{\Psi}^{-rac{1}{2}} \ oldsymbol{ heta}_{p imes q} &=& oldsymbol{\Psi}^{-rac{1}{2}} oldsymbol{B} (oldsymbol{I}_q + oldsymbol{B}'oldsymbol{\Psi}^{-1}oldsymbol{B})^{-rac{1}{2}} \end{array}
ight.
ight.
ight.
ightarrow oldsymbol{\Omega} = oldsymbol{\Sigma}^{-1} = oldsymbol{arphi} (oldsymbol{I}_p - oldsymbol{ heta}oldsymbol{ heta}') oldsymbol{arphi}
ight.$$

Doubly-penalized deviance minimization

$$\mathcal{D}(\boldsymbol{\beta};\boldsymbol{\Omega},\kappa_1,\kappa_2) \ = \ \mathcal{D}(\boldsymbol{\beta};\boldsymbol{\Omega},\kappa_1) + \kappa_2 \sum_{r=1}^p \sum_{s=1}^q |\theta_{rs}|^k, \text{ with } k=1 \text{ or } 2,$$

and $\kappa_2 > 0$ is the second penalty parameter.

See Witten, D. and Tibshirani, R. (2009) Covariance-regularized regression and classification for high-dimensional problems, *Journal of the Royal Statistical Society*, Series B **71**(3): 615-636. For p = 1, m large, no dimension reduction.

PND study data-driven simulation: two-group comparison

- n = 112, m = 3005 as in the PND study
- Time-correlation : 45-factor approximation of Σ
- Association signal : weak on a late interval

Low-rank model for time-correlation

Friguet, C., Kloareg, M. and Causeur, D. (2009). A factor model approach to multiple testing under dependence. *Journal of the American Statistical Association*. **104** (488), 1406–1415.

Sparse-inverse time correlation model (ridge)

PND study: PND condition x Brain side interaction effect

- 10 factors
- κ_1 and κ_2 minimize CV'd errors

Conclusion

Three take-home messages

- Handling dependence is not a two-option issue
- The best handling depends on the true association signal and the dependence pattern
- Optimizing the handling of dependence is not only a high-dimensional issue