МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» ТЕМА: Изучение режимов адресации и формирования исполнительного адреса.

Вариант 2.

Студентка гр. 0382	Довченко М.К
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Целью данной работы является изучение режимов адресации и формирование исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

Порядок выполнения работы:

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Выполнение работы.

Программа с подставленными в нее данными из варианта 2 была протранслирована, создан файл диагностических сообщений.

Ошибки:

1. mov mem3,[bx]: error A2052: Improper operand type

Неподходящий тип операндов. Перемещение из памяти в напрямую память недопустимо.

2. mov cx,vec2[di]: warning A4031: Operand types must match

Несоответствие типов операндов. Оба операнда должны иметь одинаковую длину.

3. mov ex,matr[bx][di]: warning A4031: Operand types must match

Несоответствие типов операндов. Оба операнда должны иметь одинаковую длину.

4. mov ax,matr[bx*4][di]: error A2055: Illegal register value

Недопустимое использование регистра. Умножение двухбайтовых регистров недопустимо.

5. mov ax,matr[bp+bx]: error A2046: Multiple base registers

Слишком много базовых регистров. Для адресации нельзя использовать более одного базового регистра.

6. mov ax,matr[bp+di+si]: error A2047: Multiple index registers

Слишком много индексных регистров. Для адресации нельзя использовать больше одного индексного регистра.

Программа была протранслирована еще раз после комментирования ошибок и выполнена в пошаговом режиме под управлением отладчика.

Результаты выполнения данной программы представлены в таблице 1.

Таблица 1.

Начальные значения сегментных регистров: CS =1A0A, DS =19F5, ES =19F5, SS =1A05.

Адрес	Символический	16-ричный	Содержимое	реги	истров	И	ячеек
команды	код команды	код команды	памяти				
			До выполнени	После			

				выполнения
0000	PUSH DS	1E	IP = 0000	IP = 0001
			DS = 19F5	DS = 19F5
			SP = 0018	SP = 0016
			STACK +0 0000	STACK +0 19F5
0001	SUB AX, AX	2BCO	AX = 0000	AX = 0000
			IP = 0001	IP = 0003
0003	PUSH AX	50	IP = 0003	IP = 0004
			$\mathbf{AX} = 0000$	AX = 0000
			SP = 0016	SP = 0014
			STACK +0 19F5	STACK +0 0000
			+2 0000	+2 19F5
0004	MOV AX, 1A07	B8071A	AX = 0000	AX = 1A07
			IP = 0004	IP = 0007
0007	MOV DS, AX	8ED8	DS = 19F5	DS = 1A07
			IP = 0007	IP = 0009
0009	MOV AX, 01F4	B8F401	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C
000C	MOV CX, AX	8BC8	IP = 000C	IP = 000E
			CX = 00B0	CX = 01F4
000E	MOV BL, 24	B324	BX = 0000	BX = 0024
			IP = 000E	IP = 0010
0010	MOV BH, CE	B7CE	IP = 0010	IP = 0012
			BX = 0024	BX = CE24
0012	MOV [0002],	C7060200CE	IP = 0012	IP = 0018
	FFCE	FF	DS = 1A07	DS = 1A07
			00 00 00 00 00	00 00 CE FF 00
0018	MOV BX, 0006	BB0600	BX = CE24	BX = 0006
			IP = 0018	IP = 001B
001B	MOV [0000],	A30000	IP = 001B	IP = 001E
	AX			

			AX = 01F4	AX = 01F4
			DS = 1A07	DS = 1A07
			00 00 CE FF 00	F4 01 CE FF 00
001E	MOV AL, [BX]	8A07	AX = 01F4	AX = 0105
			IP = 001E	IP = 0020
0020	MOV AL,	8A4703	IP = 0020	IP = 0023
	[BX+03]		AX = 0105	AX = 0108
0023	MOV CX,	8B4F03	CX = 01F4	CX = 0c08
	[BX+03]		IP = 0023	IP = 0026
0026	MOV DI, 0002	BF0200	IP = 0026	IP = 0029
			DI = 0000	DI = 0002
0029	MOV AL,	8A850E00	IP = 0029	IP = 002D
	[000E+DI]		AX = 0108	AX = 0114
002D	MOV BX, 0003	BB0300	IP = 002D	IP = 0030
			BX = 0006	$\mathbf{BX} = 0003$
0030	MOV AL,	8A811600	IP = 0030	IP = 0034
	[0016+BX+DI]		AX = 0114	AX = 0103
0034	MOV AX, 1A07	D8071A	IP = 0034	IP = 0037
			AX = 0103	AX = 1A07
0037	MOV ES, AX	8ECO	IP = 0037	IP = 0039
			ES = 19F5	ES = 1A07
0039	MOV AX, ES:	268B07	IP = 0039	IP = 003C
	[BX]		AX = 1A07	AX = 00FF
003C	MOV AX, 0000	B80000	IP = 003C	IP = 003F
			AX = 00FF	AX = 0000
003F	MOV ES, AX	8EC0	IP = 003F	IP = 0041
			ES = 1A07	ES = 0000
0041	PUSH DS	1E	IP = 0041	IP = 0042
			DS = 1A07	DS = 1A07
			SP = 0014	SP = 0012

			STACK +0 0000	STACK +0 1A07
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0042	POP ES	07	IP = 0042	IP = 0043
			ES = 0000	ES = 1A07
			SP = 0012	SP = 0014
			STACK +0 1A07	STACK +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
0043	MOV CX, ES:	268B4FFF	IP = 0043	IP = 0047
	[BX-01]		CX = 0C08	CX = FFCE
0047	XCHG AX, CX	91	IP = 0047	IP = 0048
			AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
0048	MOV DI, 0002	BF0200	IP = 0048	IP = 004B
			DI = 0002	DI = 0002
004B	MOV ES:	268901	IP = 004B	IP = 004E
	[BX+DI],AX		ES = 1A07	ES = 1A07
			DS = 1A07	DS = 1A07
			F4 01 CE FF 00	F4 01 CE FF 00
			00 0C	CE FF
004E	MOV BP, SP	8BEC	IP = 004E	IP = 0050
			BP = 0000	BP = 0014
0050	PUSH [0000]	FF360000	IP = 0050	IP = 0054
			SP = 0014	SP = 0012
			STACK +0 0000	STACK +0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0054	PUSH [0002]	FF360200	IP = 0054	IP = 0058
			SP = 0012	SP = 0010

			STACK +0 01F4	STACK +0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP, SP	8BEC	IP = 0058	IP = 005A
			BP = 0014	BP = 0010
005A	MOV DX,	8B5602	IP = 005A	IP = 005D
	[BP+02]		DX = 0000	DX = 01F4
005D	RET FAR 0002	CA0200	IP = 005D	IP = FFCE
			CS = 1A0A	CS = 01F4
			SP = 0010	SP = 0016
			STACK +0 FFCE	STACK +0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000

Выводы.

При выполнении данной лабораторной работы были изучены принципы режимов адресации и формирования исполнительного адреса.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: source.asm

```
;Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
    DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9
vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5
DATA ENDS
; Код программы
CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
    push DS
    sub AX, AX
    push AX
    mov AX, DATA
    mov DS, AX
```

```
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
   mov ax, n1
   mov cx, ax
   mov bl, EOL
   mov bh, n2
; Прямая адресация
   mov mem2, n2
   mov bx, OFFSET vec1
   mov mem1,ax
; Косвенная адресация
   mov al, [bx]
   mov mem3, [bx]
; Базированная адресация
   mov al, [bx]+3
   mov cx, 3[bx]
; Индексная адресация
   mov di, ind
   mov al, vec2[di]
   mov cx,vec2[di]
; Адресация с базированием и индексированием
   mov bx,3
   mov al, matr[bx][di]
   mov cx,matr[bx][di]
   mov ax, matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx,ax
; ----- вариант 3
mov di, ind
```

```
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
mov ax, matr[bp+bx]
mov ax, matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
Название файла: corr.asm
;Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
    DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9
vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
matr DB -5, -6, -7, -8, 4, 3, 2, 1, -1, -2, -3, -4, 8, 7, 6, 5
DATA ENDS
```

```
; Код программы
CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
   push DS
   sub AX, AX
   push AX
   mov AX, DATA
   mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
   mov ax, n1
   mov cx,ax
   mov bl, EOL
   mov bh, n2
; Прямая адресация
   mov mem2, n2
   mov bx, OFFSET vec1
   mov mem1,ax
; Косвенная адресация
   mov al, [bx]
   mov mem3, [bx]
; Базированная адресация
   mov al, [bx]+3
   mov cx, 3[bx]
; Индексная адресация
   mov di, ind
   mov al, vec2[di]
   mov cx, vec2[di]
; Адресация с базированием и индексированием
   mov bx, 3
   mov al, matr[bx][di]
   mov cx, matr[bx][di]
   mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
```

```
mov ax, SEG vec2
      mov es, ax
      mov ax, es:[bx]
      mov ax, 0
     ; ----- вариант 2
      mov es, ax
      push ds
      pop es
      mov cx, es:[bx-1]
      xchg cx,ax
     ; ----- вариант 3
      mov di, ind
      mov es:[bx+di],ax
     ; ----- вариант 4
      mov bp,sp
     ; mov ax,matr[bp+bx]
     ; mov ax,matr[bp+di+si]
     ; Использование сегмента стека
      push mem1
      push mem2
      mov bp,sp
      mov dx, [bp] + 2
     ret 2
     Main ENDP
     CODE ENDS
      END Main
     Название файла: source.lst
     Microsoft (R) Macro Assembler Version 5.10
                                                                   10/6/21
15:17:45
                                                                      Page
                           ;Программа изучения режимов адресации
процессора IntelX86
      = 0024
                                EOL EQU '$'
      = 0002
                                ind EQU 2
```

1-1

```
n1 EQU 500
      =-0032
                               n2 EQU -50
                          ; Стек программы
      0000
                          AStack SEGMENT STACK
      0000 000C[
                                   DW 12 DUP(?)
             3333
                      ]
      0018
                          AStack ENDS
                          ; Данные программы
      0000
                         DATA SEGMENT
                          ; Директивы описания данных
      0000 0000
                               mem1 DW 0
      0002 0000
                               mem2 DW 0
      0004 0000
                               mem3 DW 0
      0006 05 06 07 08 0C 0B vecl DB 5,6,7,8,12,11,10,9
           0A 09
      000E EC E2 14 1E D8 CE vec2 DB -20,-30,20,30,-40,-50,40,50
            28 32
      0016 FB FA F9 F8 04 03
                              matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-
4,8,7,6,5
            02 01 FF FE FD FC
            08 07 06 05
      0026
                          DATA ENDS
                          ; Код программы
      0000
                          CODE SEGMENT
                              ASSUME CS:CODE, DS:DATA, SS:AStack
                          ; Головная процедура
      0000
                          Main PROC FAR
      0000
           1E
                              push DS
      0001 2B C0
                                   sub AX, AX
      0003 50
                             push AX
      0004 B8 ---- R
                             mov AX, DATA
      0007 8E D8
                                   mov DS, AX
```

= 01F4

0034 8A 81 0016 R mov al, matr[bx][di]
0038 8B 89 0016 R mov cx, matr[bx][di]
source.asm(60): warning A4031: Operand types must match
003C 8B 85 0022 R mov ax, matr[bx*4][di]
source.asm(61): error A2055: Illegal register value

0031 BB 0003

; Адресация с базированием и индексированием

mov bx,3

СЕГМЕНТОВ

```
; Переопределение сегмента
                     ; ---- вариант 1
0040 B8 ---- R mov ax, SEG vec2
 0043 8E CO
                         mov es, ax
 0045 26: 8B 07
                     mov ax, es:[bx]
 0048 B8 0000
                          mov ax, 0
                     ; ----- вариант 2
004B 8E C0
                         mov es, ax
004D
     1E
                     push ds
004E
     07
                     pop es
004F 26: 8B 4F FF
                         mov cx, es:[bx-1]
 0053 91
                     xchg cx, ax
                     ; ---- вариант 3
0054 BF 0002
                         mov di, ind
 0057 26: 89 01
                    mov es:[bx+di],ax
                    ; ----- вариант 4
005A 8B EC
                          mov bp,sp
005C 3E: 8B 86 0016 R
                               mov ax, matr[bp+bx]
source.asm(80): error A2046: Multiple base registers
0061 3E: 8B 83 0016 R
                              mov ax, matr[bp+di+si]
source.asm(81): error A2047: Multiple index registers
                    ; Использование сегмента стека
0066 FF 36 0000 R
                         push mem1
006A FF 36 0002 R
                         push mem2
006E 8B EC
                          mov bp,sp
0070 8B 56 02
                          mov dx, [bp]+2
0073 CA 0002
                          ret 2
0076
                    Main ENDP
source.asm(88): error A2006: Phase error between passes
0076
                    CODE ENDS
                     END Main
```

Microsoft (R) Macro Assembler Version 5.10 10/6/21 15:17:45

Symbol

Segments and Groups:

		N a m e	Length Alig	gn Combine Class
			. 0076 PARA	NONE
	Symbols:			
		N a m e	Type Value	Attr
	EOL		. NUMBER	0024
	IND		. NUMBER	0002
0076	MAIN		. F PROC	0000 CODE Length =
	MATR		. L BYTE	0016 DATA
	MEM1		. L WORD	0000 DATA
	MEM2		. L WORD	0002 DATA
	MEM3		. L WORD	0004 DATA
	N1		. NUMBER	01F4
	N2		. NUMBER	-0032
	VEC1		. L BYTE	0006 DATA
	VEC2		. L BYTE	000E DATA
	@CPU		. TEXT 0101	h
	@FILENAME		. TEXT sour	ce
	@VERSION		. TEXT 510	

⁹⁰ Source Lines

47814 + 459446 Bytes symbol space free

⁹⁰ Total Lines

¹⁹ Symbols

- 2 Warning Errors
- 5 Severe Errors

Название файла: corr.lst

Microsoft (R) Macro Assembler Version 5.10 10/6/21 15:21:36

Page

1-1

;Программа изучения режим ов адресации процессора In telX86

= 0024 EOL EQU '\$' = 0002 ind EQU 2 = 01F4 n1 EQU 500 =-0032 n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK
0000 000C[DW 12 DUP(?)
????

28 32

0018 AStack ENDS

]

; Данные программы

0000 DATA SEGMENT

; Директивы описания данных

0000 0000 mem1 DW 0
0002 0000 mem2 DW 0
0004 0000 mem3 DW 0
0006 05 06 07 08 0C 0B vec1 DB 5,6,7,8,12,11,10,9
0A 09
000E EC E2 14 1E D8 CE vec2 DB -20,-30,20,30,-40,-50,40,50

17

```
0016 FB FA F9 F8 04 03 matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-
4,8,7,6,5
           02 01 FF FE FD FC
           08 07 06 05
      0026
                         DATA ENDS
                         ; Код программы
      0000
                         CODE SEGMENT
                             ASSUME CS:CODE, DS:DATA, SS:AStack
                         ; Головная процедура
      0000
                         Main PROC FAR
      0000 1E
                            push DS
      0001
           2B C0
                                 sub AX, AX
      0003 50
                             push AX
      0004 B8 ---- R
                            mov AX, DATA
      0007 8E D8
                                  mov DS, AX
                          ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ
СМЕЩЕНИЙ
                          ; Регистровая адресация
      0009 B8 01F4
                                  mov ax, n1
      000C 8B C8
                                  mov cx, ax
      000E B3 24
                                  mov bl, EOL
      0010 B7 CE
                                  mov bh, n2
                          ; Прямая адресация
     Microsoft (R) Macro Assembler Version 5.10
                                                               10/6/21
15:21:36
                                                                  Page
1-2
      0012 C7 06 0002 R FFCE mov mem2, n2
      0018 BB 0006 R mov bx, OFFSET vec1
      001B A3 0000 R
                            mov mem1,ax
                         ; Косвенная адресация
```

mov al, [bx]

001E 8A 07

```
; mov mem3, [bx]
                         ; Базированная адресация
      0020 8A 47 03
                                  mov al, [bx]+3
      0023 8B 4F 03
                                 mov cx, 3[bx]
                         ; Индексная адресация
      0026 BF 0002
                                  mov di, ind
      0029 8A 85 000E R
                                 mov al, vec2[di]
                         ; mov cx,vec2[di]
                         ; Адресация с базированием и индексированием
      002D BB 0003
                                 mov bx,3
      0030 8A 81 0016 R
                                 mov al, matr[bx][di]
                            mov cx, matr[bx] [di]
                            mov ax,matr[bx*4][di]
                         ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ
CETMEHTOB
                         ; Переопределение сегмент
                         ; ---- вариант 1
                        mov ax, SEG vec2
      0034 B8 ---- R
      0037 8E CO
                              mov es, ax
      0039 26: 8B 07
                         mov ax, es:[bx]
      003C B8 0000
                              mov ax, 0
                         ; ---- вариант 2
      003F 8E C0
                              mov es, ax
      0041
          1E
                         push ds
      0042 07
                          pop es
      0043 26: 8B 4F FF
                             mov cx, es: [bx-1]
      0047 91
                         xchg cx, ax
                         ; ---- вариант 3
      0048 BF 0002
                              mov di,ind
      004B 26: 89 01
                        mov es:[bx+di],ax
                         ; ---- вариант 4
      004E 8B EC
                              mov bp,sp
                         ; mov ax,matr[bp+bx]
                         ; mov ax,matr[bp+di+si]
                         ; Использование сегмента стека
      0050 FF 36 0000 R
                              push mem1
      0054 FF 36 0002 R
                              push mem2
      0058 8B EC
                              mov bp,sp
      005A 8B 56 02
                              mov dx, [bp]+2
```

005D	CA 0002		ret 2
0060		Main	ENDP
0060		CODE	ENDS
		END	Main

Microsoft (R) Macro Assembler Version 5.10 10/6/21

N a m e Length Align Combine Class

15:21:36

Symbol

s-1

Segments and Groups:

		ASTAC	CK								•			0018	PARA	STACK	ζ		
		CODE												0060	PARA	NONE			
		DATA												0026	PARA	NONE			
		Symbo	ols	s:															
						N	J a	a n	1 ∈)			Туре	Valı	ıe	Attr	:		
		EOL		•	•	•		•	•			•		NUMBI	ER	0024			
		IND												NUMBI	ER	0002			
		MAIN												F PRO	OC	0000	CODE	Length	=
(0060																		
		MATR												L BY	ΓE	0016	DATA		
		MEM1												L WOE	RD	0000	DATA		
		MEM2												L WOE	RD	0002	DATA		
		мемз		•		•				•				L WOE	RD	0004	DATA		
		N1 .											•	NUMBI	ER	01F4			
		N2 .		•		•				•				NUMBI	ER	-0032)		
		VEC1		•									•	L BY	ΓE	0006	DATA		
		VEC2												L BY	ΓE	000E	DATA		

@CPU	•	•	•	•	•	•	•	•	•	•	TEXT	0101h
@FILENAME			•								TEXT	corr
@VERSION											TEXT	510

- 90 Source Lines
- 90 Total Lines
- 19 Symbols

47828 + 459432 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors