Krista Miller

Data Mining Exercise 6

Part 1:

_	INCOME	STUDENT	CREDIT	CLASS
(OUTH	4164	No	FAIR	110
10VTH	HIGH	No	EXCEIEN	10
YOUTH	MED	ИО	FAIR	NO
(OUTH	rom	YES	FAIR	YES
OUTH	MED	YES	EXCELLENT	VES

GAIN

INFO (D) =
$$-\frac{3}{5} \log_2 \left(\frac{3}{5} \right) - \frac{2}{5} \log_2 \left(\frac{2}{5} \right) = 0.971$$

$$(\text{Student})(D) = \frac{3}{5} \left(\frac{-3}{3} \log_2 \frac{3}{3} \right) + \frac{2}{5} \left(\frac{-2}{2} \log_2 \left(\frac{2}{2} \right) = 0 + 0$$

INFO (credit)(D):
$$\frac{3}{5}\left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right) + \frac{2}{5}\left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) = .551 + 0.4$$

EXCELLENT = 0.951

$$\frac{1NF0}{(incomg)}(D) = \frac{2}{5} \left(-\frac{2}{2} \log_2 \frac{2}{2} \right) + \frac{1}{5} \left(-1 \log_2 1 \right) + \frac{2}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0 + \frac{1}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2$$

Root + decision node RANK >= 0.845: True= 3 students graduated (leaf/terminal node); False= 7 students

Decision node GPA <= 2.785: True= 2 students graduated (leaf/terminal node); False= 5 students

Decision node RANK <= 0.815: True= 3 students not graduated(leaf/terminal node); False= 2 students

Decision node GPA <= 3.375: True= 1 student graduated(leaf/terminal node); False= 1 student(leaf/terminal node)