Introduction to Audio Content Analysis

Module 2.4: Fundamentals — Blocking

alexander lerch

introduction

overview

corresponding textbook section

Chapter 2 — Fundamentals: pp. 18–20

- lecture content
 - splitting the audio signal into blocks
 - block length and hop size
- learning objectives
 - describe the reasons for blocking
 - summarize the principle using the correct terminology

introduction

overview

corresponding textbook section

Chapter 2 — Fundamentals: pp. 18–20

- lecture content
 - splitting the audio signal into blocks
 - block length and hop size
- learning objectives
 - describe the reasons for blocking
 - summarize the principle using the correct terminology

block based processing introduction

- typical audio applications process blocks of audio data
- instead of having a function called per sample, it is called with block of samples

reasons:

- block based processing methods such as the Short-Time Fourier Transform
- quasi-stationary signal properties within block
- audio hardware characteristics (real-time systems)
- efficiency (memory allocation, SIMD)
- typical block lengths:
 - 1...thousands of samples
 - often powers of 2

block based processing introduction

- typical audio applications process blocks of audio data
- instead of having a function called per sample, it is called with block of samples

reasons:

- block based processing methods such as the Short-Time Fourier Transform
- quasi-stationary signal properties within block
- audio hardware characteristics (real-time systems)
- efficiency (memory allocation, SIMD)
- typical block lengths:
 - 1... thousands of samples
 - often powers of 2

block based processing description

Georgia Center for Music Tech Technology
College of Design

block based processing description

Georgia Center for Music Tech Technology

College of Design

block based processing terms and definitions

Georgia Center for Music Tech | Technology

block boundaries:

$$i_{\mathrm{s}}(n) = i_{\mathrm{s}}(n-1) + \mathcal{H}$$

 $i_{\mathrm{e}}(n) = i_{\mathrm{s}}(n) + \mathcal{K} - 1$

overlap ratio:

$$o_{
m r} = rac{\mathcal{K} - \mathcal{H}}{\mathcal{K}}$$

time stamp:

$$t_{\mathrm{s}}(n) = rac{i_{\mathrm{e}}(n) - i_{\mathrm{s}}(n) + 1}{2 \cdot f_{\mathrm{S}}} + rac{i_{\mathrm{s}}(n)}{f_{\mathrm{S}}} = rac{\mathcal{K}}{2 \cdot f_{\mathrm{S}}} + rac{i_{\mathrm{s}}(n)}{f_{\mathrm{S}}}$$

- Κ: block length
- \bullet \mathcal{H} : hop size
- n: block index
- i: sample index
- fs: sample rate

summary

lecture content

- audio signal is typically split into blocks
- each block processed individually
- terms:
 - block length:
 - minimum: 1
 - typical: 256...16384
 - hop size:
 - minimum: 1
 - maximum: block length
 - typical: half of block length
 - block time stamp:
 - typically refers to middle of block

