MULTIPLEXERS (PART - 03)

HALF ADDER USING 4:1 MUX

٧	ISB	LSB
•		D

Α	В	Sum (S)	Carry (C)	
0	0	0	0	D.
0	1	1	0	\mathcal{D}_{1}
1	0	1	0	D2
1	1	0	1	D

HALF ADDER USING 2:1 MUX

Α	В	Sum (S)	Carry (C)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

HALF SUBTRACTOR USING 2:1 MUX

Α	В	Difference (D)	Borrow (B)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Subtactor

FULL ADDER USING 4:1 MUX

	TRUTH TABLE					
	Α	В	Cin	SUM	CARRY	
0	0	0	0	0	0	
1	0	0	1	1	0	
2	0	1	0	1	0	
3	0	1	1	0	1	
4	1	0	0	1	0	
5	1	0	1	0	1	
6	1	1	0	0	1	
7	1	1	1	1	1	

FULL SUBTRACTOR USING 4:1 MUX

	TRUTH TABLE				
	Α	В	Bin	Diff	Bout
0	0	0	0	0	0
1	0	0	1	1	1
2	0	1	0	1	①
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	0
6	1	1	0	0	0
7	1	1	1	1	1

Let	gnb	ut	Vono	ble = A	
& B	cia	be	the	select	line
Su Bo	m = ut :	₹ - ₹	m(. ,m(1	1, 2, 4,7 ., 2,3,7)	.)

IMPLEMENTATION OF HIGH ORDER MUX TO LOWER ORDER MUX

IMPLEMENTATION OF HIGH ORDER MUX TO LOWER ORDER MUX

General formula to implement B: 1 mux from A: 1 Mux

for Implementing B:1 mox wing A:1 Mox we have to follow the following sequence

$$K_{2/A} = K_{3} (3^{14} Shage)$$

$$\frac{K_{N-1}}{K_{N-1}} = K_{N} = 1 \left(\text{Hill we get 1} \right)$$

Total Mux Required = $K_1 + K_2 + K_3 + ... + k_n \Rightarrow \sum_{R=1}^{n} k_i$

Stage 1 - Stage'n'
LSB - MCR

$$\frac{4}{A} = Kn \neq 0$$

Eg deign 16: 1 mux using 8:1 mux
B:1

B:1

 $B/A = \frac{16}{8} = 2$ (first Stage = 2 mux) $2/8 = \frac{7}{8} = 1$ take 2:1 mux at 2hd stage

Let

Select lines Be (A,B,C,D)
MSB LAB

IMPLEMENTATION OF HIGH ORDER MUX TO LOWER ORDER MUX

How many 4:1 mux are required to implement a 64:1 mux?

$$64/4 = 16 \text{ (Stage 1)}$$
 $16/4 = 4 \text{ (Stage 2)}$