

VERSION 2 NOV 16, 2022

WORKS FOR ME 1

Chromosomal DNA extraction from Gram-positive bacteria, V2 V.2

COMMENTS 0

DOI

dx.doi.org/10.17504/protocols.io.5jyl85119l2w/v2

Anders Kiledal¹, Julia A Maresca²

¹University of Delaware, Department of Biological S ciences:

²University of Delaware, Department of Civil and En vironmental Engineering

CivilMicroLab

ABSTRACT

Extraction of high-molecular-weight DNA from Gram-positive bacterial species, with optional steps for removing surfactants. This DNA is suitable for sequencing and the protocol can be scaled up at least 5-fold. Modified from a protocol by Tina Wecke, <u>LMU-Munich</u>.

DOL

dx.doi.org/10.17504/protocols.io.5jyl85119l2w/v2

PROTOCOL CITATION

Anders Kiledal, Julia A Maresca 2022. Chromosomal DNA extraction from Gram-positive bacteria, V2. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.5jyl85119l2w/v2

Version created by Julia A Maresca

KEYWORDS

Gram-positive, chromosomal DNA, Firmicutes, Actinobacteria, sequencing

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons</u>

<u>Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

IMAGE ATTRIBUTION

Julia Maresca, University of Delaware

CREATED

Feb 25, 2022

LAST MODIFIED

Nov 16, 2022

1

Citation: Anders Kiledal, Julia A Maresca Chromosomal DNA extraction from Gram-positive bacteria, V2 https://dx.doi.org/10.17504/protocols.io.5jyl85119l2w/v2

PROTOCOL INTEGER ID

58771

GUIDELINES

Recommend wearing gloves throughout and working in a biosafety cabinet if possible to prevent contamination. This protocol can be scaled up at least 5-fold. If the isopropanol precipitation step is used, subsequent steps do not have to be scaled up unless the culture volume is substantially larger.

MATERIALS TEXT

SOLUTIONS

TEN

- 10 mM Tris-HCl, pH 8.0
- 10 mM EDTA
- 150 mM NaCl

TEN*

- 10 mM Tris-HCL, pH 8.0
- 1 mM EDTA
- 50 mM NaCl

RNAse A

■ 20 mg/mL in water

Lysozyme

■ 20 mg/mL in water

SDS

■ 10% (w/v) in water

Other reagents:

Isopropanol, ethanol (100% and 70%), phenol, chloroform:isoamyl alcohol (24:1), sterile water.

Enzyme solutions should be stored at -20 between uses or prepared freshly. Other solutions can be stored at room temperature.

CONSUMABLES

- microcentrifuge tubes (or larger centrifuge tubes, depending on volume)
- pipetment (P1000, P200, P20)
- pipet tips (P1000, P200, P20)
- Glass Pasteur pipet with tip bent

SAFETY WARNINGS

2

Citation: Anders Kiledal, Julia A Maresca Chromosomal DNA extraction from Gram-positive bacteria, V2 https://dx.doi.org/10.17504/protocols.io.5iyl85119l2w/v2

Phenol and chloroform:isoamyl alcohol should be handled in a fume hood and the liquid waste and contaminated tubes should be disposed of in accordance with the institution's rules for handling organic solvent waste.

BEFORE STARTING

Grow culture to high cell density and prepare all solutions.

Grow culture

1 Inoculate 10 mL rich medium from a fresh overnight culture, and incubate at appropriate temperature on shaker. At OD600 of ~0.8-1.0, harvest cells by centrifugation (10 min., 5000 rpm).

Cell lysis

- 2 Resuspend cell pellet in 2 mL TEN (10 mM Tris-HCl, pH 8.0, 10 mM EDTA, 150 mM NaCl).
- 3 Add 100 μ L lysozyme (20 mg/mL) and incubate for 20 min at 37°C.
- 4 Add 20 μL RNAse (10 mg/mL) and incubate for 3 min at 65°C.
- 5 Add 40 μl SDS, a small scoop of proteinase K and 550 μl TEN*. Vortex, then incubate at 60°C for 2 hours.

Remove surfactants (optional)

IF THE STRAIN PRODUCES A SURFACTANT THAT INTERFERES WITH THE PHASE SEPARATION, Add 0.1 volume 3 M sodium acetate and 1 volume cold isopropanol, mix, and incubate on ice for 20 min. Centrifuge for 10 min at 5000 rpm and decant the supernatant. Then resuspend in 400 μ L TEN and 550 μ L TEN* and transfer to a microcentrifuge tube.

Phenol & chloroform:isoamyl alcohol extractions

- 7 Add 900 μ L phenol, mix by inversion. Centrifuge for 5 min. at 13000 rpm and transfer the upper phase to a clean microcentrifuge tube.
- Re-extract once with phenol (1 volume) and twice with chloroform: isoamyl alcohol (24:1 v/v, 1 volume)

DNA precipitation

- 9 Collect DNA by coiling on the end of a glass Pasteur pipet.
- Air dry, then resuspend DNA in 100 μ L sterile water overnight at 4°C.