

What do we know?

Mycelium needs water + moisture^{1, 2}

Fungi prone to evaporative water loss³

Sudden low temperatures kickstart fruiting body growth⁴

What do we know?

Fire alters soil composition and carbon availability⁵

Post-fire environments are suitable for some pioneer species⁵

Citizen science can be unreliable

Data Sources: MushroomObserver

- > Citizen science database
- Each entry includes date, ID, and location

Manipulations:

- Applied ID and location info
- Observation dates matched up to fire/weather data

Data Sources: Fire

Public opendatasoft

- Repository of datasets.
- Border data relating to counties.

CalFire Incident Data

- > Fire data from California including inactive and active fires/wildfires recorded from local firelines.
- Does not include fires less than 10 acres in size.
- Subsetted to include relevant and interpretable data.

Manipulations:

- Related subsetting for readability
- Reformatting data types to a standard convention throughout
- Applied latitude and longitude values to locations to match another dataset that already included them.

Wrangled Data: Fire

For 15 randomly selected counties from California:

1	2013	Riverside	53538	33	216.6653		
2	2014	Riverside	57	12	0.230676		
3	2015	Riverside	1570	24	6.353703		
4	2016	Riverside	139	12	0.562525		
			:				
149	2020	Sonoma	248	397	1.003642	To	otal area
150	2021	Sonoma	22	204	0.089033		irned by
151	2022	Sonoma	84	135	0.339943		re (km²)
	†	<u> </u>	†	<u> </u>			Does the total
	Year	County	Total area burned by fire (acres)	, mu	Total number of mushroom observations		area burned by fire affect the total number of mushroom
							observations?

Data Manipulation for Analysis: Fire

Before the transformation:

Data Manipulation for Analysis: Fire

After the transformation:

Fire search function; QOL feature

```
fireSearch <- function(dataset, search_value=NULL, lat=NULL, lon=NULL,
             error_threshold=1){
 if (is.null(search_value) && (is.null(lat) || is.null(lon))) {
  stop("Provide either 'search_value' or 'lat' and 'lon'")
 if (!is.null(search_value)) {
  search_value <- tolower(search_value)</pre>
  result <- dataset[tolower(dataset$incidentCounty) == search_value, ]
 else {
  # Latitude and longitude search threshold to find close proximity fires.
  result <- dataset[</pre>
   abs(dataset$lat - lat) <= error_threshold &</pre>
   abs(dataset$lon - lon) <= error_threshold,</pre>
 return(result)
```


RAWS USA
Climate Archive

California

• 2007 - 2020

Ontario Climate

Data Portal

Ontario

• 2010 - 2022

Climatic Research Unit gridded Time Series

Colombia

• 2010 - 2022

- 1. Monthly mean temperature, total precipitation
- 2. Grouped MushroomObserver data by month to match climate data
 - 3. Shannon Diversity Index for each month (Family diversity)

Visual map using Leaflet

Results of the Regression Test: Fire

If without random effects:

With counties as a random effect

```
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: n^{(1/4)} \sim squareKmBurnt + (1 | incidentCounty)
   Data: regressionData
             BIC logLik deviance df.resid
    AIC
   311.1
           322.7 -151.6 303.1
                                       129
Scaled residuals:
   Min
            10 Median
                                  Max
-3.0888 -0.5627 -0.0181 0.4409 3.4440
Random effects:
                          Variance Std.Dev.
Groups
               Name
incidentCounty (Intercept) 0.8345 0.9135
Residual
                          0.4107 0.6409
Number of obs: 133, groups: incidentCounty, 15
Fixed effects:
              Estimate Std. Error df t value Pr(>|t|)
(Intercept) 2.812e+00 2.438e-01 1.514e+01 11.536 6.68e-09 ***
                                                                             p-value larger
squareKmBurnt 7.655e-05 4.168e-04 1.202e+02 0.184
                                                                             than \alpha = 0.05
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
           (Intr)
squarKmBrnt -0.104
```

AIC: 311.1 AIC: 314.8

Possible Reasons for a Lack of Significant Relationship: Fires

Other variables masking the effect of fire

. Some species of mushroom may be more tolerant than the others⁶

Mushrooms may be more tolerant than expected⁷

San Francisco

- > n = 9364 (149 months)
- > Mediterranean Climate
 - o 4 °C 21 °C
 - o 0 mm 500 mm

Abundance of MushroomObserver observations (green), precipitation (blue), and temperature (red) in San Francisco, California (2010-2020)

Correlations between observed fungal abundance, temperature (red) and precipitation (blue) in San Francisco, California

Fungal diversity (green), precipitation (blue), and temperature (red) in San Francisco, California (2010-2020)

Ontario

> n = 26692 (132 months)

> Humid Continental

- o -11 °C 25 °C
- o 7 mm 200 mm

Abundance of observations (green), precipitation (blue), and temperature (red) in Ontario, Canada (2010-2022)

Fungal diversity (green), precipitation (blue), and temperature (red) in Ontario, Canada (2010-2022)

Correlations between observed fungal diversity, temperature (red) and precipitation (blue) in Ontario, Canada

Colombia

- > n = 20870 (133 months)
- **➤** Mostly Tropical
 - o 24 °C 27 °C
 - 50 mm 400 mm precipitation

Abundance of observations (green), precipitation (blue), and temperature (red) in Colombia (2013-2022)

Correlations between observed fungal abundance, temperature (red) and precipitation (blue) in Colombia

Fungal diversity (green), precipitation (blue), and temperature (red) in Colombia (2013-2022)

Correlations between observed fungal diversity, temperature (red) and precipitation (blue) in Colombia

Diversity Distribution?

$$H = -\sum_{j=1}^{S} p_i \ln p_i$$

Abundance GLMs

San Francisco

Coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 5.200e+00 6.155e-02 84.483 < 2e-16 *** precipitation -4.011e-03 4.896e-04 -8.192 2.57e-16 *** temp -1.460e-01 4.933e-03 -29.605 < 2e-16 *** precipitation: temp 9.587e-04 5.185e-05 18.487 < 2e-16 ***
```

Ontario

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	3.9261635	0.0194367	202.00	<2e-16	***
precipitation	0.0017011	0.0001551	10.97	<2e-16	***
temp	0.0855267	0.0009053	94.47	<2e-16	***

Colombia

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	16.8019084	1.1947446	14.06	<2e-16	***
precipitation	-0.1201076	0.0052710	-22.79	<2e-16	***
temp	-0.4918155	0.0467676	-10.52	<2e-16	***
precipitation: temp	0.0048859	0.0002077	23.52	<2e-16	***

Diversity GLMs

San Francisco

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.410e-01	6.714e-02	3.590	0.000461	***
precipitation	1.582e-03	5.983e-04	2.644	0.009152	**
temp	2.093e-02	4.983e-03	4.201	4.77e-05	***
precipitation: temp	-2.238e-04	6.068e-05	-3.688	0.000326	***

Ontario

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.491988 0.020421 24.09 < 2e-16 ***
temp -0.007196 0.001189 -6.05 1.96e-08 ***

Colombia

Coefficients:

References:)

- 1. Lendzian KJ, Beck A. 2021. Barrier properties of fungal fruit body skins, pileipelles, contribute to protection against water loss. Scientific Reports. 11(1). doi:10.1038/s41598-021-88148-0. https://doi.org/10.1038/s41598-021-88148-0.
- 2. Stojek K, Gillerot L, Jaroszewicz B. 2022. Predictors of mushroom production in the European temperate mixed deciduous forest. Forest Ecology and Management. 522:120451. doi:10.1016/j.foreco.2022.120451. https://doi.org/10.1016/j.foreco.2022.120451.
- 3. Straatsma G, Ayer F, Egli S. 2001. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycological Research. 105(5):515–523. https://doi.org/10.1017/s0953756201004154.
- 4. Pinna S, Gévry M -f., Côté M, Sirois L. 2010. Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. Forest Ecology and Management. 260(3):294–301. doi:10.1016/j.foreco.2010.04.024. https://doi.org/10.1016/j.foreco.2010.04.024.)
- 5. Treseder KK, Mack MC, Cross A. 2004. RELATIONSHIPS AMONG FIRES, FUNGI, AND SOIL DYNAMICS IN ALASKAN BOREAL FORESTS. Ecological Applications. 14(6):1826–1838. doi:https://doi.org/10.1890/03-5133
- 6. Rangel, D.E.N., Braga, G.U.L., Fernandes, É.K.K. et al. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 61, 383–404 (2015). https://doi.org/10.1007/s00294-015-0477-y
- 7. Tiwari S, Thakur R, Shankar J. Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. Biotechnol Res Int. 2015;2015:132635. doi: 10.1155/2015/132635. Epub 2015 Dec 31. PMID: 26881084; PMCID: PMC4736001.

