Evaluating Statistical Methods for Nuclear Forensics Analysis

Preliminary Examination

Arrielle Opotowsky

University of Wisconsin-Madison

29 January 2018

Outline

- 2 Literature Review
 Nuclear Forensics
 Statistical Models
 Algorithms for Prediction
 ML Model Assessment
 ML Model Validation
 Computational Tools

- 3 Demonstration
 Training Data
 Reactor Parameter Prediction
 ML Model Validation
- Research Proposal
 Experiment 1
 Experiment 2
 Experiment 3
 Method Comparison
- Summary

Research Overview

How does the ability to determine forensic-relevant spent nuclear fuel attributes using machine learning techniques degrade as less information is available?

Determine

The inverse problem: given end measurements, calculate the model parameters that created them

Information

Nuclide vectors, measurements of isotope ratios

Forensic-relevant Attributes

Reactor type, enrichment, cooling time, burnup

Machine Learning Techniques

Creating statistical models (not physical)

Degrade

Model prediction performance

Less Information

Error in nuclide vectors, fewer measurements, etc

Figure 1: Definitions of terms within the main research question

Nuclear Security and Forensics

Figure 2: 24 years of incidents: HEU (12), Pu (2), Pu-Be neutron sources (4) [Obtained from: https://www.iaea.org/sites/default/files/17/12/itdb-factsheet-2017.pdf]

- FY2016 DHS DNDO budget: 0.3 bill
- FY2016 DOE NNSA nonpro budget : 1.6 bill

Needs in Nuclear Forensics

Figure 3: Typical techincal nuclear forensics workflow

Material-specific:

- Measurement needs
- Measurement techniques
- Forensic signatures

Challenges:

- Rapid characterization
- Forensics databases
 - Multidimensional
 - Inconsistent uncertainties
 - International cooperation

Computational Methods

Figure 4: Nuclear forensics research: physical, experimental, and computational

Computational Methods

Figure 5: Comparison of two different computational approaches

Statistical Methods

Figure 6: Workflow of a methodology using statistical models

- Training data: large set of SNF measurements
 - Labels (e.g., burnup)
 - Features (e.g., nuclide concs)
 - Instances (individual SNF recipe)
- Statistical learner
 - Machine learning algorithms
 - Algorithm parameters
 - Predict label of new instance
- Model evaluation
 - Diagnostic curves
 - Learning curves
 - Validation curves
 - Prediction error
 - Bias versus variance
 - Generalizability

Statistical Methods

Figure 7: Illustration of data set modularity

Outline

- Introduction Motivation Methodolog
- 2 Literature Review

Nuclear Forensics Statistical Models

Algorithms for Prediction ML Model Assessment ML Model Validation

Computational Tools Previous Work

- 3 Demonstration
 Training Data
 Reactor Parameter Prediction
 ML Model Validation
- Proposal
 Experiment 1
 Experiment 2
 Experiment 3
 Method Comparison
- Summary

Nuclear Forensics Investigations

Post-detonation

- Collection: debris, swipe samples
- Characterization: rapid analysis of isotope ratios
- Goals
 - Inverse problem: reconstruct weapon design/yield
 - Safety: informing disaster response
- Data evaluation

Nuclear Forensics Investigations

Post-detonation

- Collection: debris, swipe samples
- Characterization: rapid analysis of isotope ratios
- Goals
 - Inverse problem: reconstruct weapon design/yield
 - Safety: informing disaster response
- Data evaluation

Pre-detonation

- Collection: depends on intercepted material
- Characterization: non-destructive and destructive
- Goals:
 - Inverse problem: material chain of custody
 - Safety: material handling and security
- Data evaluation

Nuclear Forensics as an Inverse Problem

Use Bayes' Framework: $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

M : **M**odel parameters
D : Measured **D**ata

Calculated from: Physical System **Bayes Representation** Model Parameterization Prior Probability: P(M) Model Space Simulation Input: Rxtr Parameters Forward Problem Marginal Likelihood: P(D) Data Space Simulation Output: SNF Recipes Likelihood: P(DIM) Both Output + Input = (Statistical) Model Inverse Problem Posterior Probability: P(M|D) Both (Statistical) Model : Output->Input

Table 1: Mapping the study of a physical system its Bayesian representation

Machine Learning

machine vs. statistical (domain knowledge-¿none) supervised and unsupervised clustering, dimensionality reduction classification, regression – discrete and continuous variables

Supervised Regression

Figure 8: Schematic of a representative prediction workflow

Linear Models

Objective: minimize error over all training data wrt their labels

 $F(\boldsymbol{X}) = \beta_0 + \sum_{i=1}^p x_i \beta_i$

Input Feature (x), $\lambda = 0$

Smoothing model using regularization by varying λ $F(\mathbf{X}) = \beta_0 + \sum_{i=1}^p x_i \beta_i + \lambda \sum_{j=1}^p \beta_j^2$

Figure 9: How regularization might affect the generalizability of an ML model

Nearest Neighbor Methods

Objective: minimum distance between test sample and training instance(s)

$$Y(\boldsymbol{X}) = \frac{1}{k} \sum_{x_i \in N_k(\boldsymbol{X})} y_i$$

Input Feature (x)

Figure 10: Illustration of the regularization effects by choosing k

Ŵ

Support Vector Machines and Regression

Figure 11: Classification with SVM and regression with SVR

Support Vector Regression with Many Dimensions

Objective: minimize margin width and outliers

$$\begin{aligned} \min \ & \frac{1}{2} \|w\|^2 + C \sum_i \xi_i \\ \text{subject to} : \ & |y_i - (w\phi(x_i) + b)| \leq \varepsilon + \xi_i \\ \text{where} : & w = \sum_i \alpha_i y_i \phi(x_i) \\ \text{and} : & K(x_i, x_j) = \phi(x_i) \phi(x_j) = e^{\gamma \|x_i - x_j\|^2} \end{aligned}$$

Figure 12: Diagram showing the use of the kernel trick with SVR

Dimensionality Reduction

Manual via domain knowledge or some measure PCA Factor Analysis ICA

Types of Error

Figure 13: Diagram explaining the concept of k-fold cross-validation

Ŵ

Error Metrics

$$\begin{array}{c} \text{Mean Squared Error (MSE)} \ : \ \frac{\sum_{i=1}^{n}(y_i-f(x_i))^2}{n} \\ \text{Mean Absolute Error (MAE)} \ : \ \frac{\sum_{i=1}^{n}|y_i-f(x_i)|}{n} \\ \text{Mean Absolute Percentage Error (MAPE)} \ : \ \frac{\sum_{i=1}^{n}\frac{|y_i-f(x_i)|}{y_i}}{n} \\ \text{Coefficient of Determination, } R^2 \ : \ \frac{\sum_{i=1}^{n}(f(x_i)-\overline{y})^2}{\sum_{i=1}^{n}(y_i-\overline{y})^2} \end{array}$$

Sources of Error

Figure 14: Bias and variance comprise the prediction error

Training Set Size: Learning Curves

Figure 15: Learning curves for three training scenarios with respect to training set size

Model Complexity: Validation Curves

Figure 16: Validation curve showing different fitness of models with respect to model complexity

Model Comparison

$$Posterior = \frac{Likelihood * Prior}{Marginal \ Likelihood}$$

Probabilities	Calculation Method	Example
P(D M) Likelihood	MLE or ML model prediction w/ CV	Given [M] : BWR, burnup = x GWd/MTU Then [D] : Pu-239 concentration = y%
P(M) Prior	Histogram of simulation inputs	Given [D] : No direct information Then [M] : BWR, burnup = x GWd/MTU
P(D) Marginal L.	Histogram of simulation outputs	Given [M] : No direct information Then [D] : Pu-239 concentration = y%
P(M D) Posterior	Indirectly, from 3 probabilities above	Given [D] : Pu-239 concentration = y% Then [M] : BWR, burnup = x GWd/MTU

Table 2: Table showing how each component of the model comparison framework will be computed

Computational Tools

- Training Data: SNF recipes from SCALE/ORIGEN-ARP [11, 13]
- Information Reduction
 - Gamma energies: ORIGEN
 - Computational gamma spectra: GADRAS [2]
- Statistics Toolkit : scikit-learn (python) [12]

Pre-detonation Materials of Interest

UOC UOX powder SNF Reprocessed SNF

Statistical Methods Employed

Figure 17: Unsupervised clustering for visualization separating reactor types [4]

Figure 18: Factor analysis employed to determine provenance of unknown plutonium [8]

Statistical Methods Employed

Figure 19: Burnup prediction error with respect to random nuclide error, using nearest neighbor & ridge regression methods [1]

Outline

- 1 Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools
Provious Work

3 Demonstration

Training Data
Reactor Parameter Prediction
ML Model Validation

- 4 Research Proposal
 - Experiment 1
 - Experiment 2
 - Experiment 3
 - Method Comparison
- Summary

Proposed Experiment Methodology

Figure 20: Workflow of the experiments with tools used for each step

Training Data Reactor Parameter Prediction ML Model Validation

Training Set

ORIGEN Rxtr	Rxtr Type	Enrichment
CE14x14	PWR	2.8
CE16x16	PWR	2.8
W14x14	PWR	2.8
W15x15	PWR	2.8
W17x17	PWR	2.8
S14x14	PWR	2.8
VVER440	PWR	3.60
VVER440_3.82	PWR	3.82
VVER440_4.25	PWR	4.25
VVER440_4.38	PWR	4.38
VVER1000	PWR	2.8
GE7x7-0	BWR	2.9
GE8x8-1	BWR	2.9
GE9x9-2	BWR	2.9
GE10x10-8	BWR	2.9
Abb8x8-1	BWR	2.9
Atrium9x9-9	BWR	2.9
SVEA64-1	BWR	2.9
SVEA100	BWR	2.9
CANDU28	PHWR	0.711
CANDU37	PHWR	0.711

	PWR	BWR	PHWR
Power Density [MW/MTU]	32	23	22
Burnup [MWd/MTU]	600-17700	600-12300	600-12300
Cooling Time	{1m, 7d, 30d, 1y}		

Table 4: Range of burnups and cooling times simulated for the training set [1]

Table 3: ORIGEN simulations [1]

Ŵ

Independent Testing Set

Reactor	Type	Enrichment	Cooling Time	Burnup
CANDU28	PHWR	0.711	{1m, 7d, 30d, 1y}	{1400, 5000, 11000}
CANDU28	PHWR	0.711	{3m, 9d, 2y}	{5000, 6120}
CE16x16	PWR	2.8	{1m, 7d, 30d, 1y}	{1700, 8700, 17000}
CE16x16	PWR	2.8	{3m, 9d, 2y}	{8700, 9150}
CE16x16	PWR	3.1	{7d, 9d}	{8700, 9150}
GE7x7-0	BWR	2.9	{1m, 7d, 30d, 1y}	{2000, 7200, 10800}
GE7x7-0	BWR	2.9	{3m, 9d, 2y}	{7200, 8800}
GE7x7-0	BWR	3.2	{7d, 9d}	{7200, 8800}

Table 5: Separate testing set used in previous work [1]

Initial Results

Algorithm	Error Origin	MAPE	RMSE [MWd/MTU]
Nearest Neighbor	Testing Set	9.82	812.43
Regression	5-fold Cross-Validation	2.24	421.41
Ridge	Testing Set	15.68	1049.66
Regression	5-fold Cross-Validation	0.08	13.08
Support Vector	Testing Set	12.28	769.97
Regression	5-fold Cross-Validation	2.08	188.07

Table 6: MAPE and RMSE for both CV and testing sets

Information Reduction

Demonstrated: Random error

Introduced 0% $< E_{max} < 10\%$ Each nuclide receives $[1-E_{max}, 1+E_{max}]$ error

Not Demonstrated : Systematic error

Gamma energies (ORIGEN), radionuclides only Gamma spectra (GADRAS), reduced radionuclide observation

ML Model Prediction with Reduced Information

Figure 21: Negative MAPE for three algorithms given increasing random nuclide error

Algorithm Parameters

Algorithm	Parameter	Value
Nearest Neighbor Regression	<i>n</i> -neighbors	1
	Weights	uniform
	Distance Metric	L2: Euclidian Distance
Ridge Regression	Regularization, α	1.0
	Normalization	False
	Stopping Tolerance	0.001
Support Vector Regression	Kernel	Radial Basis Function
	Gamma, γ	0.001
	С	1000
	Epsilon, $arepsilon$	0.1
	Stopping Tolerance	0.001

Table 7: Parameters chosen for demonstration; ${\it C}$ and ${\it \gamma}$ are not the default values

Learning Curves

Figure 22: Learning curve and comparison schematic for SVR

Learning Curves

Figure 23: Learning curve and comparison schematic for NN Regression

Validation Curves

Figure 24: Validation curve and comparison schematic for SVR

Validation Curves

Figure 25: Validation curve and comparison schematic for NN Regression

Outline

- 1 Introduction
 Motivation
 Methodolog
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools

3 Demonstration Training Data Reactor Parameter Prediction ML Model Validation

4 Research Proposal

Experiment 1 Experiment 2

Experiment 2
Experiment 3

Method Comparison

5 Summary

Experiment 1
Experiment 2
Experiment 3
Method Comparison

Research Proposal Preparations

Previous Work -¿ SFCOMPO-based Finalizing set of algorithms computational resources

W

Statistical Learning with Direct Isotopics

Goals: Understand limits of simplest scenario

- Usefulness of statistical methods for reactor parameter prediction
- 2 Best performing methods

Variables

- 1 the complexity of the ML algorithm used,
- g feature reduction, and
- **3** different subsets of the decision space.

Statistical Learning with Direct Isotopics

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Manual preprocessing (feature reduction): speed, accuracy
- Reduction of decision space should help: PWR vs. BWR?

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Statistical preprocessing: PCA, ICA
- New materials: Pu, UOC, Post-detonation (urban canyon [3])

Statistical Learning with Gamma Spectra

Goals: Understand limits of real-world scenario

- Level of reduction in reactor parameter prediction
- Best performing methods

Variables

- 1 the complexity of the ML algorithm used,
- 2 feature reduction (implicit), and
- **3** quality of training and/or testing data set.

Statistical Learning with Gamma Spectra

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Indirect isotopics = implicit feature reduction: less accurate
- Higher quality gamma spectra will yield better results

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Further manual or statistical preprocessing
- Add isotope identification step

Statistical Learning with Reprocessed Fuel

Goals: Probe prediction performace in reprocessing scenario

- Experiment with both direct and indirect isotopics
- 2 Fresh evaluation of preprocessing
- 8 Best performing methods for materials with multiple sources

Variables

- 1 the complexity of the ML algorithm used,
- 2 quality of training data set, and
- 3 type of preprocessing for feature reduction.

Ŵ

Statistical Learning with Reprocessed Fuel

Qualitative Hypotheses

- Complex algorithm will provide best behavior
- Reduced information will provide less accurate results
- ICA may outperform PCA, but factor analysis may outperform components analysis [7, 9, 10, 15, 14, 4, 5]

Risk Mitigation

- New algorithms: tree-based, neural nets, Bayesian MLE
- Manual preprocessing
- Results may be interesting even if prediction fails
- Ensemble methods or other creative solutions [15, 14]

W

Probability Distributions

Include uncertainty for measures of confidence, posterior probs become prob distribs

C: constant given by marginal likelihood

d : training data setm : model parameters

P(d|m): likelihood distribution function

P(m): prior probability distribution

 $P(\boldsymbol{m}|\boldsymbol{d})$: posterior probability distribution

$$P(\boldsymbol{m}|\boldsymbol{d}) = C * P(\boldsymbol{d}|\boldsymbol{m}) * P(\boldsymbol{m})$$

Integrate over prob densities to get prob distrib

m: range of predicted model parameters

d is a set of nuclide vectors

$$\rho(\mathbf{x}) = \prod_{i} \rho(x_{i})$$

$$P(\mathbf{m}) = \int_{\mathbf{m}} \rho(\mathbf{d}) d\mathbf{d}$$

Likelihood distribution function:

$$P(\boldsymbol{d}|\boldsymbol{m}) = \int_{\boldsymbol{d},\boldsymbol{m}} \rho(\boldsymbol{d}|\boldsymbol{m}) d\boldsymbol{m}$$

But, we infer them...

Estimating Density Functions

estimate rho, have a 'sense' or try different prior probability distributions are given by the model space, e.g., reactor parameters as predicted from the ML models. [17] Note: This implies the posterior is now only dependent on the likelihood.

likelihood function: the training phase provides the maximum likelihood distribution through the use of CV, since the results are reported as a mean error with a standard deviation (which can be converted to accuracy for likelihood) [12]

MLE is not this simple for other methods that do not employ CV [16, 17]

Posterior Odds

citations plz

calc a non-normalized posterior probability distribution, $P(m_i|d)$ then do it for a model obtained from a different algorithm, $P(m_i|d)$

relative posterior probability distribution : posterior odds $B_{ij} = \frac{\rho(d|m_i)}{\rho(d|m_i)}$: Bayes factor.

$$\frac{P(m_i|d)}{P(m_j|d)} = B_{ij} \frac{P(m_i)}{P(m_j)}$$

Likelihood Strength	Probability	In <i>B_{ij}</i>	
Inconclusive	< 0.750	< 1.0	
Weak	0.750	1.0	
Moderate	0.923	2.5	
Strong	0.993	5.0	

Table 8: Model comparison using likelihood strength

posterior probabilities calculated from $|lnB_{ij}|$ Summarize:

Given a mean-squared error and its standard deviation from using CV with any alg, get $\ensuremath{\mathsf{MLE}}$

compare two models : MLE: to MLE:

Outline

- 1 Introduction
 Motivation
 Methodology
- 2 Literature Review

Nuclear Forensics
Statistical Models
Algorithms for Prediction
ML Model Assessment
ML Model Validation
Computational Tools
Provious Work

3 Demonstration

Training Data Reactor Parameter Prediction ML Model Validation

4 Research Proposal

Experiment 1

Experiment 2

Experiment 3

Method Comparisor

5 Summary

Introduction
Literature Review
Demonstration
Research Proposal
Summary

Summary

Summarize

References I

- Kenneth Dayman and Steven Biegalski.
 Feasibility of fuel cycle characterization using multiple nuclide signatures.
 Journal of Radioanalytical and Nuclear Chemistry, 296:195–201, 2013.
- [2] Steven M. Horne, Gregory G Thoreson, Lisa A. Theisen, Dean J. Mitchell, Lee Harding, and Wendy A. Amai.
 - Gamma Detector Response and Analysis Software Detector Response Function (GADRAS-DRF).
 - User's Manual, Sandia National Laboratories, Albuquerque, New Mexico, USA, Dec 2014.
 - Version 18.5; SAND2014-19465.
- [3] Kenneth G.W. Inn, Jacqueline Mann, Jeffrey Leggitt, JoAnne Buscaglia, Simon Jerome, John Molloy, and William Pramenko.
 - Nuclear forensic reference materials for attribution of urban nuclear terrorism, 2015.

Presentation for NIST.

References II

- [4] Andrew Jones, Phillip Turner, Colin Zimmerman, and J.Y. Goulermas.
 Machine learning for classification and visualisation of radioactive substances for nuclear forensics.
 - In Techniques and Methods for Safeguards, Nonproliferation and Arms Control Verification Workshop, Portland, Oregon, May 2014.
- [5] Andrew E. Jones, Phillip Turner, Colin Zimmerman, and John Y. Goulermas. Classification of spent reactor fuel for nuclear forensics. Analytical Chemistry, 86:5399–5405, 2014.
- [6] I. Lantzos, Ch Kouvalaki, and G. Nicolaou. Plutonium fingerprinting in nuclear forensics of spent nuclear fuel. Progress in Nuclear Energy, 85(Supplement C):333–336, 2015.
- [7] G. Nicolaou.
 Determination of the origin of unknown irradiated nuclear fuel.
 Journal of Environmental Radioactivity, 86:313–318, 2006.

References III

[8] G. Nicolaou.

Provenance of unknown plutonium material.

Journal of Environmental Radioactivity, 99(10):1708–1710, 2008.

[9] G. Nicolaou.

Identification of unknown irradiated nuclear fuel through its fission product content.

Journal of Radioanalytical and Nuclear Chemistry, 279(2):503-508, 2009.

[10] G. Nicolaou.

Discrimination of spent nuclear fuels in nuclear forensics through isotopic fingerprinting.

Annals of Nuclear Energy, 72:130-133, Oct 2014.

Technical Note.

References IV

[11] Oak Ridge National Laboratory.

SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design.

Code suite, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, Aug 2016.

Version 6.2.1, ORNL/TM-2005/39, Available from Radiation Safety Information Computational Center as CCC-834.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

References V

- [13] B.T. Rearden and M.A. Jessee.
 - Ch. 5 Depletion, Activation, and Spent Fuel Source Terms.

In SCALE Code System: User Documentation, pages 5–1–5–263, Oak Ridge,

Tennessee, USA, Apr 2016. Oak Ridge National Laboratory.

Version 6.2.1; ORNL/TM-2005/39.

[14] Martin Robel and Michael J. Kristo.

Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

Journal of Environmental Radioactivity, 99(11):1789-1797, November 2008.

[15] Martin Robel, Michael J. Kristo, and Martin A. Heller.

Nuclear forensic inferences using iterative multidimensional statistics.

In Proceedings of the Institute of Nuclear Materials Management 50th Annual Meeting, Tuscon, AZ, USA, Jul 2009. Institute of Nuclear Materials Management.

LLNL-CONF-414001.

References VI

[16] Tan Bui-Thanh.

A Gentle Tutorial on Statistical Inversion using the Bayesian Paradigm.

Note. ICES REPORT 12-18, The University of Texas at Austin, The Institute for Computational Engineering and Sciences, May 2012.

[17] Roberto Trotta.

Bayes in the Sky: Bayesian Inference and Model Selection in Cosmology.

Contemporary Physics, 49(2):71–104, 2008.

Invited review.