	, , , , , , , , , , , , , , , , , , ,			
Name :	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	
Roll No.	•		• • • • • • • • • • • • • • • • • • • •	
Invigilat	or's Signature :	•••••		
	CS/	B.TECH(CSE)(N)/S	SEM-5/CS-503	/2012-13
		2012		
	DISCE	RETE MATHE	MATICS	
Time All	lotted: 3 Hours		Full N	Marks: 70
	The figures	in the margin indic	ate full marks.	
Candid	lates are requir	ed to give their ans	wers in their ou	vn words
		as far as practic	able.	
		GROUP – A		
	(Multip	le Choice Type Q	uestions)	
1. Ch	oose the correc	t alternatives for th	ne following: 1	$10 \times 1 = 10$
i)	What is the	chromatic number	r of the follow	ing graph
	with 7 vertice	es?		
	a) 6	b)	5	

5202(N) [Turn over

c)

d)

3. .

- ii) If there are n^r arrangements of r objects and n bins, then
 - a) the objects and bins are all distinguishable
 - b) the objects are distinguishable and bins are indistinguishable
 - c) the objects are indistinguishable and bins are distinguishable
 - d) the objects and bins are indistinguishable.
- iii) Consider the set A of all integers greater than 1. Let D be a relation defined on A by $(x,y) \in D$ iff x divides y. Then which of the following is true?
 - a) D is both a lattice and a partial ordering
 - b) D is a lattice but not a partial ordering
 - c) D is neither a lattice nor a partial ordering
 - d) D is a partial ordering but not a lattice.
- iv) If 12 distinct points are placed on the circumference of a circle and all the chords connecting these points are drawn, at how many points do the chords intersect? Assume that no three chords intersect at the same point.
 - a) C(12, 2)
- b) C(12,4)

c) 2^{12}

d) 12! / 2.

- v) The set of natural numbers N with the relation ship '|' (divides) is a poset. How many minimal and maximal elements does it have?
 - a) 1 minimal and 1 maximal
 - b) 1 minimal and 0 maximal
 - c) I minimal and more than I maximal
 - d) 0 minimal and 0 maximal.
- vi) What is the result of $(-3)X_85 +_8 (-3)X_8 (-5)$ in $[Z_8, +_8, X_8]$, where Z_8 is the set of integers modulo 8, $+_8$ is the modulo 8 addition operation and X_8 is the modulo 8 multiplication operation?
 - a) 0

b) 7

c) 8

- d) 2.
- vii) How many ways are there to travel in xyz space from the origin (0, 0, 0) to the point (4, 3, 5) by taking unit steps in positive x, y, z directions only?
 - a) 41.31.51
 - b) 60
 - c) 12!/(5!4!3!)
 - d) 3^{12} .
- viii) $A \wedge B$ is equivalent to which of the following?
 - a) $\neg A \rightarrow \neg B$

b) $\neg A \rightarrow F$

c) $\neg B \rightarrow A$

d) $\neg (A \rightarrow \neg B)$

5202(N)

.3

Turn over

ix) A sequence $d = (d_1, d_2, d_3, ..., d_n)$ is graphic if there is a simple undirected graph with degree sequence d. Which of the following degree sequences are graphic? Why?

P: (2, 3, 3, 4, 4, 5)

Q:(2,3,4,4,5)

- a) Neither P or Q
- b) Both P and Q

c) Ponly

- d) Q only.
- x) A complemented, distributive lattice is also called a Boolean Algebra. Consider a set $S = \{a, b, c\}$ and let $M = \wp(S)$ be the power set of S. Consider the inclusion (subset) relation ' \subseteq '. Then (M, \subseteq) is
 - a) not a partial ordering
 - b) a partial ordering but not a lattice
 - c) a lattice but not a boolean algebra
 - d) a boolean algebra.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

2. C_9 is a cycle (*i.e.*, a circular chain) with the nine vertices a, b, c, d, e, f, g, h, i. How many distinct maximal matchings of size four in C_9 contain the edge ab?

- 3. Consider K_6 , the complete graph on the six vertices a, b, c, d, e, f. The graph G_1 is obtained from K_6 by deleting the edge ab. The graph G_2 is obtained from G_1 by deleting the edge cd. What are the chromatic numbers of G_1 and G_2 ?
- 4. A new flag is to be designed with 6 vertical stripes using 4 colours. In how many ways can this be done so that no 2 adjacent stripes have the same colour?
- 5. Give the sequence whose generating function is $g(z) = 5(z^5 1)/(z 1).$
- 6. Consider the poset $S = \{2,4,6,9,12,18,27,36,48,60,72\}$ under the relation '|' (i.e. 'divides'). Find the following: Maximum element, Minimal element, Greatest element, Least element, lub (2, 9), glb (60, 72).

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Show that s is a valid conclusion from the premises $p \rightarrow \sim q$, $q \lor r$, $\sim s \rightarrow p$.
 - b) How many 10 bit binary strings are there none of which contains the patters '110'?
 - c) Use theory of congruence to prove that for $n \ge 1$, $17 \mid (2^{3n+1} + 3 \cdot 5^{2n+1})$. 5 + 5 + 5

5202(N)

5

[Turn over

- 8: a) Show that t is a valid conclusion from the premises $p \Rightarrow q, q \Rightarrow r, r \Rightarrow s$ and $p \lor t$.
 - b) For any integer n, prove that the integer 8n+3 and 5n+2 are relatively prime. Hence find integers x, y such that $(8n+3x)+(5n+2)=\gcd(8n+3,5n+2)$.
 - c) Define CRS (mode m) (complete residue system modulo m). Find all CRS (mod 5). 5+5+5
- 9. a) Solve the recurrence relation:

$$a_{n+2} - 4a_{n+1} + 4a_{n-2} = (r+1)2^r$$

- b) Show that every bipartite graph is 2-chromatic.
- c) A positive integer n is expressed in the form 10b + b. Prove that n is divisible by 17 if a - 5b is divisible by 17.

$$3 + 5 + 7$$

10. a) Show that the poset given in the following Hasse diagram is a lattice. Is it distributive and complemented? Justify your answer.

- b) Show that in a complemented distributive lattice $< L, \land, \lor >$
 - i) $(a \wedge b)' = a' \vee b'$
 - ii) $(a \lor b)' = a' \land b'$

5202(N)

c) Solve the following recurrence relation using generating function:

$$a_n = 4(a_{n-1} - a_{n-2}) + 2^n (n \ge 2); a_0 = 1, a_1 = 4.$$
 6 + 4 + 5

- 11. a) Check the validity of the following arguments:
 - "If my program runs successfully then I will submit my project. I can appear the examination only if I submit my project. Either my program runs successfully or the computer crashes then I can not appear in examination."
 - b) Define SDR of a family of finite sets. What is Hall's Marriage Condition? Consider the family of finite sets $S = \{A_1, A_2, A_3, A_4\}$ where $A_1 = \{a, b, d, e\}$, $A_2 = \{b, c, d, e, f\}$, $A_3 = \{c, f\}$ and $A_4 = \{b, c, f\}$. Show whether S satisfies the marriage condition. If yes, find two valid SDR of S.
 - c) Write down the truth table for conditional and bi-conditional proposition. 5+5+5

=========