

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination December 2023

Max. Marks: - 100

Class: S.E

Course Code: - MA201

Name of the Course: Linear Algebra

Duration: 3 Hours

Semester: III

Branch: EXTC (A & B Division)

Instructions:

1) All Questions are Compulsory.

2) Assume suitable data if necessary.

Q No.		Max. Mks	C	BL
Q.1	a) Construct an orthonormal basis of R^3 by applying Gram Schmidt process where $u_1 = (1, 0, 0), u_2 = (3, 7, -2), u_3 = (0, 4, 1).$	8	4	3
	 b) State only one axiom that fails to hold for each of the following sets W to be subspaces of the respective real vector spaces V with Standard operations. 1) W = {(x, y) x² = y²}, V = R² 2) W = {(x, y) x y ≥ 0}, V = R² 3) W = {(x, y, z) x² + y² + z² = 1}, V = R³ 4) W = {f f (x) ≤ 0 for all x}, V = F(-∞, ∞) 	8	4	3
	c) Show that the vectors (1, 2, 1), (2, 1, 0), (1, -1, 2) form a basis of R ³ OR	7	4	2
	c) Determine the linear dependence or independence of vectors (2,-1,3,2), (1, 3, 4, 2) and (3, -5, 2, 2). Find the relation between them if dependent.	7	4	2
	d) Find the basis for row space and column space of the matrix $A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ -2 & 1 & 7 & 2 \\ -1 & -4 & -1 & 3 \\ 3 & 2 & -7 & -1 \end{bmatrix}$	6	4	1
	e) Find the least square solution of AX= B where $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 2 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$	5	4	3

Q.2	a) Find the highest Page Rank from the given directed graph. Do till 3 iterations.	8	6	3
	OR			
	a) Solve the following system of differential equation $y' = \begin{bmatrix} 4 & -5 \\ -2 & 1 \end{bmatrix}$ y	8	6	3
	Using diagonalisation with initial conditions $y_1(0) = -4$ and $y_2(0) = 3$.			
	b) Define monic polynomial and show that $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$ is a derogatory matrix.	7	6	3
	c) Find the singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$	8	6	2
	d) i) If λ is an eigen value of a non singular matrix A then prove that $\frac{ A }{\lambda}$ is an eigen value of adj.A.	3	6	1
Q.3	a) Apply Crout's Method to solve the following equations	8	2	3
	3x + 2y + 7z = 4			
	2x + 3y + z = 5 $3x + 4y + z = 7$			
	b) Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is diagonalisable. Find the	8	5	3
	diagonal matrix and the transforming matrix.			
Q.4	a) Given the Hill 2-cipher key $A = \begin{bmatrix} 1 & 1 \\ 2 & 6 \end{bmatrix}$	8	3	3
	Compute A ⁻¹ modulo 27 and hence decode the following message X, N, U, F, Y, V, C, R, S, Q, E, J			

Q.5	a) Show that the system of equations	8	1	3
	ax + by + cz = 0			
	bx + cy + az = 0			
	cx + ay + bz = 0 has a non-trivial solution if $a + b + c = 0$ or if $a = b = c$			
	Find the non-trivial solution when the condition is satisfied.			
	OR			
	a) Investigate for what values of λ and μ , the equations $x + y + z = 6$,	8	1	3
	$x + 2y + 3z = 10$ and $x + 2y + \lambda z = \mu$ have i) no solution			
	ii) a unique solution iii) infinite number of solutions.			
	b) The diagram in the Figure below describes the four one-way streets in Kumasi (vph is number of vehicles per hour). Determine the amount of traffic between each of four intersections.	8	1	3
	190vph Atonsu-Prempeh Rd B			
	241vph x 105vph			
	Roman Hill Road y W Labour-Asafo interchange			
	280vph D Asafo market-Kaietia Rd C 230vph			
	236vph 110vph			

****** All the Best *******

