Geometría Diferencial de Curvas y Superficies. Grupo U.

2 de junio de 2022

Examen Práctico

Nombre y apellidos:

El examen consiste en la realización 4 problemas. Está permitido utilizar los apuntes de la asignatura y/o los libros de la asignatura. NO está permitido utilizar ningún dispositivo electrónico. Se evaluará la redacción y el orden de las ideas presentadas en la resolución de los problemas.

- 1. (5,5 puntos) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable. Considérese la superficie diferenciable S_f definida por el grafo de f con su parametrización natural $\varphi: \mathbb{R}^2 \to S_f \subseteq \mathbb{R}^3, (x,y) \mapsto (x,y,f(x,y)).$
 - (i) (0,5 puntos) Determine una base del plano tangente T_pS_f para todo $p \in S$ y una aplicación de Gauss $N: S_f \to \mathbb{S}^2$.
 - (ii) (1 punto) Fíjese la aplicación de Gauss del apartado anterior. Determine las matrices de la primera y segunda forma fundamental respecto de la base $\langle \varphi_x, \varphi_y \rangle$. Respecto de la misma base, escriba la matriz de la aplicación de Weingarten en términos de las matrices anteriores.
 - (iii) (1 puntos) Pruebe que la curvartura de Gauss K de S_f viene dada por la expresión en coordenadas

$$K \circ \varphi(x, y) = \frac{1}{F^4} \det(Hf(x, y)),$$

donde $F(x,y)=(1+f_x^2+f_y^2)^{\frac{1}{2}}$ y Hf(x,y) es la matriz Hessiana de f en el punto $(x,y)\in\mathbb{R}^2$. Pruebe también que si $(x,y)\in\mathbb{R}^2$ es un punto crítico de f entonces la curvatura media H de S_f cumple que

$$H \circ \varphi(x,y) = \pm \frac{f_{xx} + f_{yy}}{2}.$$

¿A qué se debe la ambigüedad en el signo?

- (iv) (1,5 puntos) ¿Existe alguna función diferenciable f tal que las líneas coordenadas sean líneas de curvatura y $H \circ \varphi \neq 0$?
- (v) (1,5 puntos) Considérese la función $f(x,y) = x^2 e^y$. ¿Tiene la superficie S_f puntos elípticos, hiperbólicos, planos o parabólicos aislados?
- 2. (2 puntos) Sean $S \subseteq \mathbb{R}^3$ una superficie diferenciable orientable y $\alpha: I \to S$ una curva parametrizada por longitud de arco, birregular y asintótica. Demuéstrese que

$$|\tau_{\alpha}(t)| = (-K(\alpha(t)))^{\frac{1}{2}},$$

dónde $\tau_{\alpha}: I \to \mathbb{R}$ es la torsión de α y $K: S \to \mathbb{R}$ es la función de curvatura de S.

- 3. (1,5 puntos) Contéstese verdadero o falso y arguméntese la respuesta.
 - (i) (0,5 puntos) Sea $S\subseteq\mathbb{R}^3$ una superficie orientable y $\alpha:I\to S$ una curva geodésica y asintótica; entonces α parametriza una recta.
 - (ii) (0,5 puntos) Existe una superficie diferenciable compacta $\Sigma \subseteq \mathbb{R}^3$ y un difeomorfismo local $f: \Sigma \to \mathbb{R}^2 \times \{0\} \subseteq \mathbb{R}^3$.
 - (iii) (0,5 puntos) Si $S \subseteq \mathbb{R}^3$ es una superficie *minimal*, esto es, tiene curvatura media nula en todo punto; entonces S no es compacta.

- 4. (1 punto) Sean (r, θ) coordenadas polares en $\mathbb{R}^2 \setminus \{0\}$. Sean $\varepsilon > 0$ muy pequeño, $A = \{(r, \theta) : 1 \varepsilon < r < 2 + \varepsilon\} \subseteq \mathbb{R}^2 \setminus \{0\}$ y $C = \{(r, \theta) \in A : 1 \le r \le 2\}$. Sea $\alpha \in (0, \frac{\pi}{2}]$ y $\varphi_{\alpha} : A \to \mathbb{R}^3$ una parametrización de cierta superficie tal que
 - $\varphi_{\alpha}(C) \subseteq \{(x, y, z) \in \mathbb{R}^3 : 1 \le z \le 2\},\$
 - Para $i \in \{1, 2\}$ se tiene que $\varphi_{\alpha}(i, \theta)$ parametriza la circunferencia C_i de radio 1 contenida en el plano $\{(x, y, z) : z = i\}$ centrada en el punto (0, 0, i).
 - Para cada $\alpha \in (0, \frac{\pi}{2}]$ existe cierto número positivo $R(\alpha) > 0$ tal que
 - $-\varphi_{\alpha|\{2-\varepsilon < r < 2+\varepsilon\}}$ parametriza un entorno abierto de la circunferencia C_2 contenido en cierta esfera de radio $R(\alpha)$ y centro en el eje Z que incide en el plano $\{z=2\}$ con ángulo α . Dicha esfera contiene a C_2 en su hemisferio norte.
 - $-\varphi_{\alpha|\{1-\varepsilon < r < 1+\varepsilon\}}$ parametriza un entorno abierto de la circunferencia C_1 contenido en cierta esfera de radio $R(\alpha)$ y centro en el eje Z que incide en el plano $\{z=1\}$ con ángulo α . Dicha esfera contiene a C_1 en su hemisferio sur.

Aquí entiéndase por hemisferio norte (resp. sur) de una esfera S de radio R > 0 y centro $(0,0,z_0)$ el conjunto $\{(x,y,z) \in S : z \ge z_0\}$ (resp. $\{(x,y,z) \in S : z \le z_0\}$).

Para cada $\alpha \in (0, \frac{\pi}{2}]$ considérese la función de curvatura $K_{\alpha} : \varphi_{\alpha}(A) \to \mathbb{R}$ de la superficie $\varphi_{\alpha}(A)$ y la función de variable real

$$F: (0, \frac{\pi}{2}] \to \mathbb{R}, \alpha \mapsto \int_{\varphi_{\alpha}(C)} K_{\alpha}.$$

- (i) (0,5 puntos) Pruebe que $F(\frac{\pi}{2}) = 0$.
- (ii) (0,25 puntos) Halle una expresión en término de funciones elementales de $F(\alpha)$.
- (iii) (0,25 puntos) Justifique geométricamente que $\lim_{\alpha \to 0^+} F(\alpha) = 4\pi$.