

10/03/654

1/44

FIG. 1

10/03/654

2/44

FIG.2

10/031654

3/44

FIG. 3

	Twist of LC layer ϕ (degrees)	Input director of LC $\theta(\phi)$ (degrees)	$\Delta n/\lambda$ ($\lambda=550\text{nm}$)	Thickness of LC d (μm)
1	0	-45	.25	2.007
2	-11.4	-37.76	.252	2.023
3	-23.4	-30	.26	2.088
4	-36.7	-21.1	.275	2.208
5	-50.6	-11.1	.304	2.441
6	-63.6	0	.334	2.842
7	-70.1	8	.405	3.252
8	-72.5	15.2	.467	3.73
9	-69.9	21.78	.536	4.304
10	-63.5	25.66	.582	4.673
11	-58.1	29.6	.63	5.058
12	-50	32.7	.667	5.355
13	-38.4	36.2	.704	5.653
14	-25.1	39.5	.731	5.869
15	-12.1	42.4	.746	5.99
16	0	45	.75	6.022

10/031654

4/44

FIG. 4

10/031654

5/44

FIG. 5

10/031654

6/44

FIG. 6

10/051654

7/44

FIG. 7

10/031654

8/44

FIG. 8

10/02/654

9/44

FIG. 9

10/051654

10/44

FIG. 10

10/031654

11/44

FIG. 11

12/44

FIG. 12

10/031654

13/44

FIG. 13

10 '031654

14/44

FIG. 14

10/031654

15/44

FIG. 15

10/03/1654

16/44

FIG. 16

10/05/1854

17/44

FIG. 17

10/05/05

18/44

FIG. 18

FIG. 19

FIG. 20

10/03/654

21/44

FIG. 21

10/03/654

22/44

FIG. 22

10/031654

23/44

FIG. 23

24/44

FIG. 24

10/03/654

25/44

FIG. 25

10/031654

26/44

FIG. 26

10/03/654

27/44

FIG. 27

10/031654

28/44

FIG. 28

10/031654

29/44

FIG. 29

10/031654

30/44

FIG. 30

10/03/654

31/44

FIG. 31

10/031654

32/44

FIG. 32

10/031654

33/44

FIG. 33

10/031654

34/44

FIG. 34

10/031654

35/44

FIG. 36

10/03/62

37/44

FIG. 37

10/031654

38/44

FIG. 38

10/031654

39/44

FIG. 39

10/03/654

40/44

FIG. 40

10/03/654

41/44

10/031654

42/44

FIG. 42

10/031654

43/44

FIG. 43

10/03/654

44/44

FIG. 44

