#### **COIMBATORE INSTITUTE OF TECHNOLOGY**

## (An Autonomous Institution Affiliated to Anna University)

**COIMBATORE - 641 014.** 



### **TEAM NO: 07**

| REGISTER NO | NAME             |
|-------------|------------------|
| 71762131023 | JAYA VARMA S     |
| 71762131049 | SREEMATHI P      |
| 71762131055 | SWEHA S          |
| 71762131060 | VIJAYAPRAVIN M S |

**DEPARTMENT**: MSc SOFTWARE SYSTEMS

BATCH : 2021 - 2026

COURSE CODE : 20MSS84

COURSE NAME : INTERNET OF THINGS LABORATORY

# **SMART ROAD SAFETY MONITORING SYSTEM**

# **Problem Statement:**

| Create an Arduino-based system to detect and map pavement distresses (IRC : 82) like |                                                                                                       |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
|                                                                                      | Potholes Indian Road Congress                                                                         |  |  |
|                                                                                      | slippage                                                                                              |  |  |
|                                                                                      | cracks etc, and Unmarked Speed Brakers.                                                               |  |  |
|                                                                                      | The system updates a central map to highlights the distresses and improve road maintenance and        |  |  |
|                                                                                      | safety.                                                                                               |  |  |
| <u>Objec</u>                                                                         | <u>ctive:</u>                                                                                         |  |  |
|                                                                                      | Develop an Arduino-based embedded system for detecting pavement distresses, such as potholes,         |  |  |
|                                                                                      | slippage and cracks.[ Model Distance UpTo = 10 Meter ]                                                |  |  |
|                                                                                      | Detection of Unmarked Speed Brakers during night for Vehicles.                                        |  |  |
|                                                                                      | Integrate a vibration sensor to measure vehicle vibrations caused by rough road conditions and speed  |  |  |
|                                                                                      | breakers.                                                                                             |  |  |
|                                                                                      | Design and build a centralized map to update with detected pavement distresses.                       |  |  |
|                                                                                      | Enhance road maintenance efficiency and safety by providing real-time distress information to         |  |  |
|                                                                                      | maintenance teams.                                                                                    |  |  |
|                                                                                      | Ensure the system is energy-efficient for continuous operation and minimal maintenance.               |  |  |
|                                                                                      | Develop a user-friendly interface for maintenance teams to easily access, interpret, and act on the   |  |  |
|                                                                                      | distress data.                                                                                        |  |  |
|                                                                                      | Ensure the need of establishment without affecting the IRC: 37 flexible pavement designs.             |  |  |
| Methodology                                                                          |                                                                                                       |  |  |
|                                                                                      | Sensor Calibration – Adjust ultrasonic sensors using known distances for accurate readings [ultra     |  |  |
|                                                                                      | sonic sensor].                                                                                        |  |  |
|                                                                                      | Vibration Sensor Integration – Use a vibration sensor to detect abnormal vehicle vibrations due to    |  |  |
|                                                                                      | road conditions, such as potholes and unmarked speed breakers.                                        |  |  |
|                                                                                      | Data Collection – Mount sensors on a vehicle, measure road surface distance, and record data with     |  |  |
|                                                                                      | GPS coordinates.                                                                                      |  |  |
|                                                                                      | Data Processing – Detect issues like potholes, cracks, and unmarked speed breakers. Set thresholds to |  |  |
|                                                                                      | flag irregularities.                                                                                  |  |  |

| Data Integration – Use mapping software (e.g., Google Maps API) to plot distress locations using GPS |
|------------------------------------------------------------------------------------------------------|
| data.                                                                                                |

- ☐ **Visualization & Reporting** Develop a user-friendly interface to display mapped issues and allow reporting.
- ☐ Maintenance Planning Use collected data to prioritize and schedule road repairs

#### **Expected Outcome:**

- ☐ **High Detection Accuracy**: The system will accurately identify pavement distress like potholes, cracks etc.., and Unmarked Speed Breakers achieving a high detection rate and minimizing false positives.
- ☐ Map Integration: The detected data will be integrated with mapping software to visualize the locations of pavement distress on a map, enabling easy identification and analysis.
- ☐ Improved Maintenance Planning: Data collection will enhance road maintenance strategies by providing up-to-date information, allowing for efficient prioritization and planning of repair activities.
- □ Reduce Fatal Accidents
- Minimize Road Difficulties

#### **Execution Difficulties:**

□ Data Transmission: Ensuring reliable data transmission from the sensors to the central system, particularly in areas with limited connectivity, can pose significant challenges and may require robust communication solutions.

## **Architecture Diagram:**





#### Approximate Estimate of the Cost (If implemented).

- ☐ Ultrasonic Sensors: Quantity: 2-4 sensors Cost per Sensor: ₹150 ₹200 Total: ₹300 ₹700.
- **□ Arduino Board**: Cost: ₹1,200 ₹1,700.
- ☐ Miscellaneous Components: Wires, breadboards, connectors, etc.: ₹500 ₹1,000.
- **□ Total Estimated Cost**: Approximately: ₹2,600 ₹4000.

(NOTE:FOR SINGLE MINIATURE PROTOTYPE)

### **Key Benefits:**

- ☐ Enhanced Road Safety: Early detection of pavement issues prevents accidents and vehicle damage.
- ☐ Efficient Maintenance: Data ensures timely, targeted repairs.
- ☐ Improved Public Satisfaction: Leads to smoother roads and better user experiences.
- ☐ Data-Driven Decisions: Enables informed, strategic maintenance planning