None Leon

2021/2/4

1.在一个红济体中,产品 A 与产品 B 必须联合生产。所有企业使用完全相同的生产技术,每个 企业的总成本函数为: $c(q_A,q_B)=1+q_A^2+q_B^2$, 其中, q_A 和 q_B 分别代表两种产品的产出量。需求方面,消费 者们对这两种产品的总需求函数分别为 $Q_A(P_A)=30-P_A$ 和 $Q_B(P_B)=40-P_B$ 。其中, P_A 和 P_B 分别代表两种 产品的市场价格。所有企业均为市场价格的"接受者",且可以自由进出市场。请找出这两个产品的长期均衡价格。

solution:

单个企业利润最大化

$$\max: \pi = P_A \cdot q_A + P_B \cdot q_B - q_A^2 - q_B^2 - 1$$

st:
$$\pi \ge 0$$

FOC:
$$\begin{cases} \frac{\partial \pi}{\partial q_A} = P_A - 2q_A = 0\\ \frac{\partial \pi}{\partial q_B} = P_B - 2q_B = 0 \end{cases}$$

$$\mathbb{H} \pi = q_A^2 + q_B^2 - 1 \ge 0$$

长期均衡时 $\pi^* = 0$

设单个企业的产量/数量为为 q_A^* , q_B^* , n^*

$$\begin{cases} (q_A^*)^2 + (q_B^*)^2 = 1\\ (Q_A^*)^s = \frac{n^*}{2} p_A = (Q_A^*)^d = 30 - p_A\\ (Q_B^*)^s = \frac{n^*}{2} p_B = (2\beta)^\alpha = 40 - p_B \end{cases}$$

此处为均衡点的加总,而不是供给曲线的加总

解得
$$\begin{cases} p_A^* = 1.2 & q_A^* = 28.8 \\ p_B^* = 1.6 & q_B^* = 38.4 \end{cases}$$

至此,本题求解完成。这应该是出题人的本意,若考察队市场均衡与市场结构的立即。但本题中的 q_A^* 和 $q_B^* = 1$ 都小于 1,非整数。这与现实不符,若加上整数限制,君合的结果又会如何?

若 q_A^* , q_B^* 存在限制

产品 A 市场规模小于 B,从 A 开始分析:

无约束时, $0 < q_A^* < 1$,存在整数约束时, $q_A^{**} = 1$ 此时 $p_A = MC = 2q_A$ 知

$$P_A = 2$$
, $Q_A = 28$, $n^{**} = 28$

当企业数量 $n^{**}=28$ 时,产品 B 的市场总供给为 $Q_{13}^S=n^{**}q_R^S=14P_R$

联立得: $q_B = \frac{4}{3}$

由于存在整数约束,此时 28 甲企业最小的产量为 $q_B^{**}=1$,此时 B 的超额供给为 10.

故还有10甲企业企业进入市场,生产

$$q'_{B} = 1$$
, $q'_{A} = 0$

至此, A, B 市场均达到饱和, 在进入无利润。

总上:存在整数约束,长期均衡时有38甲企业。

先进入的 28 家企业, $q'_A = q'_B = 1$, $\pi' = 1$

后进入的 10 家企业, $q_A^2 = 0$, $q_B^2 = 1$, $\pi^2 = 0$

市场价格: $P_A = P_B = 2$

note:本题的取整约束形成的市场结构类似于下面的情形。联合生产+取整约束+市场规模不同形成长期均衡时企业利润的分化,与市场形成的顺序有关。

2.假设市场上有 A_1 和 A_2 两个生产者, A_1 先决定他的产量 Q_1 , A_2 再决定他的产量 Q_2 。。假设整个市场的需求曲线为 P=a-bQ,其中 $Q=Q_1+Q_2$,并且对于这两个人来说,生产的单位成本均为 C_0 ,并且两个人的目标均为利润最大化。试求:

- 1) Stakelberg 均衡时的每个生产者的产量、利润以及市场价格。
- 2) 假设现在市场中又出现了其他生产者 A_3 , A_4 , … A_N , 总共 N 个竞争者,他们生产的单位成本均为 c_0 现在 A_1 仍先决定他的产量 Q_1 , 其他 N 1 个生产者在观察到 Q_1 后,同时选择自己的产量, 并且每个人的目标仍为利润最大化。试问均衡时市场价格以及每个生产者的产量、利润都为多少? 随着 N 趋向于无穷大, A_1 的"先发优势"是增强还是减弱了?

3) 假设有越来越多的生产者发现了"先发"的好处。现在有 M(M<N)个生产 者同时决定产量,而其他 N-M 个人在观测到他们的产量后再决定产量。 这 时市场上的价格以及每个人的产量、利润均为多少?

solution:

1)A2利润最大化:

$$\max: \pi_2 = (a - bQ) \cdot Q_2 - c \cdot Q_2$$

$$FOC: \frac{\partial \pi_2}{\partial Q_2} = a - c - bQ_1 - 2bQ_2 = 0$$

其反应函数为:

$$Q_2 = \frac{a-c-bQ_1}{2b}$$

 A_1 利润最大化:

$$\max: \pi_1 = [a - bQ_1 - bQ_2(Q_1)] \cdot Q_1 - Q_1$$

$$FOC: \frac{\partial \pi_1}{\partial Q_1} = \frac{1}{2}(a - c - 2bQ_1) = 0$$

解得:
$$\begin{cases} p^{s} = \frac{a+3c}{4} \\ a_{1}^{s} = \frac{a-c}{2b} \\ Q_{2}^{s} = \frac{a-c}{4b} \end{cases}$$

$$\pi_1^s = \frac{(a-c)^2}{8b} \pi_2^s = \frac{(a-c)^2}{16b}$$

 $2)A_i$ 利润最大化 ($i = 2 \cdots N$):

$$\max: \quad \pi_i = (a - bQ) \cdot Q_i - cQ_i$$

Foc:
$$\frac{\partial \pi i}{\partial Q_i} = a - bQ - bQ_i - c = 0$$

由对城西知 A_i 的反应函数为:

$$Q_i = \frac{a - c - bQ_1}{Nb}$$

 A_1 利润最大化:

$$\max: \pi_1 = [a - bQ_1 - b(Q_2 + \dots + Q_N)]Q_1 - cQ_1$$

Foc:
$$\frac{\partial \pi_1}{\partial Q_1} = \frac{1}{N}(a - c - 2bQ_i) = 0$$

解得:
$$Q_1^s = \frac{a-c}{2h}$$
 $Q_i^s = \frac{a-c}{2Nh}$

$$\pi_1^S = \frac{(a-c)^2}{4Nb}$$
 $\pi_i^S = \frac{(a-c)^2}{4N^2b} p^S = \frac{a+(2n-1)c}{2N}$ $Q^S = \frac{2N-1}{N} \frac{a-c}{2b}$

当 $N \to +\infty$ 时, A_1 的先发优势减弱,原因在于 N 增肌,跟随者的竞争更加激励,不断压低 p^s 到 c,以至于即使 Q_1^s 不变, π_1^s 也会随着其价格的下降而下降,且 $N \to +\infty$ 时 A_1 与其他平方市场。

在古诺模型中

$$N \to +\infty$$
 时, $p^c \to c$ N 个企业评分市场份额,即 $q_i^c \to \frac{Q^c}{N}$

综上: $N \to +∞$ 时,斯塔克伯格模型趋向于完全竞争,但市场份额的划分是不同的。

3)N-M 个跟随者利润最大化:
$$\max: \pi_i = (a-bQ)Q_i - cQ_i$$
 $(i=m+1\cdots N)$ $Foc: \frac{\partial \pi_i}{\partial Q_i} = a - bQ - bQ_i - c = 0$

由对称性可知,追随者的反应函数为: $Q_i = \frac{a-c-b\overline{Q}}{(N-M+1)b}$

其中 \overline{Q} 为 M 个领导者的总产量

M 个领导者进行完全竞争, 利润最大化:

$$\max \pi_j = \left[a - b\bar{Q} - (N - M)bQ_i(\overline{Q}) \right] Q_j - cQ_j$$

$$(j = 1, 2 \cdots M)$$

FOC:
$$\frac{\partial \pi j}{\partial Qj} = \frac{1}{N-M+1} \quad (a-c-b\overline{Q}-bQ_j) = 0$$

由对称性知,单个领导者的产量为: $Q_j = \frac{a-c}{(M+1)b} \pi_j = \frac{(a-c)^2}{(m+1)(MN-M^2+N+1)b}$

其单个追随者的产量为:
$$Q_i = \frac{a-c}{(N-M+1)(M+1)b}$$
, $\pi_i = \frac{\pi_j}{N-M+1}$