IN THE CLAIMS

(Previously Presented) An organic electroluminescent element comprising an
anode, a cathode and a component layer including a light emission layer, the component layer
being provided between the anode and the cathode, wherein the component layer contains a
compound represented by formula 1.

Formula 1

$$X_1$$
- $(A_1)_n$

wherein A_1 represents a group represented by formula 2, provided that plural A_1 may be the same or different.

Formula 2

wherein Ar₁ represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R_1 and R_2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted earlkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; na and nb independently represent an integer of from 1 to 4; and X_1 represents a group represented by formula (b), (c), (d), (e), (f), (g), (h), (i), (j), or (k).

wherein R21 through R24, R31, R33, and R34 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom, and R₃₂ represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom, provided R21 through R24 are not simultaneously hydrogen atoms, and R31 through R34 are not simultaneously hydrogen atoms; R41 and R42 independently represent an alkyl group, provided that the total carbon atom number of the alkyl group is from 3 to 9; R51 and R52 independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted

alkenyl group, or a halogen atom; R_{61} represents an alkyl group; Xa represents a divalent 6- or 7-membered monocyclic heterocyclic ring which is unsubstituted or alkyl-substituted; R_{71} through R_{78} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R_{81} through R_{88} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R_{91} through R_{98} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; and "**" represents a linkage site, provided that when X_1 represents formula (b), (c), (d), (e), (f) or (g), n is 2 and when X_1 represents formula (h), (i), (j), or (k), n is 4.

- (Original) The organic electroluminescent element of claim 1, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- (Original) The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- (Original) The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8.

Formula 5 Formula 6

$$R_{a3}$$
 N
 R_{a2}
 N
 N

Formula 7

Formula 8

wherein R_{ai} through R_{ai} , R_{bi} through R_{bi} , and R_{ci} and R_{ci} independently represent an alkyl group, an aryl group or a heterocyclic group; and A_{ra} through A_{rc} independently represent an aryl group or a heterocyclic group.

- (Original) The organic electroluminescent element of claim 1, wherein the light emission layer contains the compound represented by formula 1 above.
- (Original) The organic electroluminescent element of claim 1, wherein the organic electroluminescent element contains a phosphorescent compound.
- (Original) The organic electroluminescent element of claim 6, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 8. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 3,

Formula 3

X2-(A2)...

wherein A_2 represents a group represented by formula 4, provided that plural A_2 may be the same or different.

Formula 4

wherein Ar_2 represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R_3 and R_4 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a

substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; no and nd independently represent an integer of from 1 to 4; m represents an integer of 2; and X_2 represents a group represented by formula (1), (m), (n), or (o),

Formula (1)

Formula (m)

Formula (n)

Formula (o)

wherein R_{101} through R_{110} independently represent a hydrogen atom, an alkyl group, or an alkoxy group, provided that R_{101} through R_{110} does not simultaneously hydrogen atoms; and any two of R_{101} through R_{110} do not combine with each other to form a ring; R_{111} through R_{110} independently represent a hydrogen atom, an alkyl group, or an alkoxy group: A_1 , A_2 , A_3 , and A_4 independently represent $-C(R_{k1})=$ or -N=, in which R_{k1} represents a hydrogen atom or an alkyl group, provided that at least one of A_1 , A_2 , A_3 , and A_4 is -N=; A_5 , A_6 , A_7 , and A_8 independently represent $-C(R_{k2})=$ or -N=; X_b represents

- $-N(R_{E3})$ = or $-Si(R_{k4})(R_{k5})$ -, which R_{k2} . R_{k3} , R_{k4} , and R_{k5} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and "** represents a linkage site.
- (Original) The organic electroluminescent element of claim 8, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 10. (Original) The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- (Original) The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- (Original) The organic electroluminescent element of claim 8, wherein the light emission layer contains the compound represented by formula 3 above.
- (Original) The organic electroluminescent element of claim 8, wherein the organic electroluminescent element contains a phosphorescent compound.
- (Original) The organic electroluminescent element of claim 13, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 15. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula, H2, H3 or H4.

Formula H2

$$(R_1)_{mg}$$
 $N-Ar_5-L_2-Ar_6-N$
 $(R_{10})_{mg}$
 $(R_{10})_{mg}$

wherein L₂ represents an alkylene group having at least one fluorine atom; Ar₅ and Ar₆ independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R₉, R₁₀, R₁₁, and R₁₂ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkenyl group, or a halogen atom; and me, mf, mg, and mh independently represent an integer of from 1 to 4,

$$(R_{15})_{mi}$$

$$N-Ar_7 \xrightarrow{R_{n1}} Ar_8 \xrightarrow{R_{n3}} Ar_9 - N$$

$$(R_{14})_{mj}$$

$$(R_{14})_{mj}$$

$$(R_{14})_{mj}$$

wherein A_{17} , A_{18} and A_{19} independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_{h1} , R_{h2} , R_{h3} , and R_{h1} independently represent an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R_{15} , R_{18} , R_{18} , and R_{16} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a

substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and mi, mj, mk, and ml independently represent an integer of from 1 to 4.

Formula H4

$$(R_{19})_{mn}$$
 $N-Ar_{10}$
 R_{h5}
 R_{h6}
 $R_{20})_{mn}$
 R_{20}

wherein Ar_{10} and Ar_{11} independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_{h5} and R_{h6} independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted alkenyl group, a halogen atom, or — $\{C(R_{01})(R_{02})\}_P CF_3$, in which R_{01} and R_{02} independently represent a hydrogen atom or a fluorine atom, and p represents an integer of not less than 0, provided that at least one of R_{h5} and R_{h6} is $-\{C(R_{01})(R_{02})\}_P CF_3$; R_{17} , R_{18} , R_{19} , and R_{30} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkoxy group, a substituted alkenyl group, or a halogen atom; and mm, mn, mo, and mp independently represent an integer of from 1 to 4.

 (Original) The organic electroluminescent element of claim 15, wherein a hole blocking layer is provided between the light emission layer and the cathode.

- 17. (Original) The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 18. (Original) The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- (Original) The organic electroluminescent element of claim 15, wherein the light emission layer contains the compound represented by formula H1, H2, H3, or H4 above.
- (Original) The organic electroluminescent element of claim 15, wherein the organic electroluminescent element contains a phosphorescent compound.
- 21. (Original) The organic electroluminescent element of claim 20, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 22. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 11, 12 or 13,

Formula I1

$$(R_{21})_{ia} \\ N - \begin{bmatrix} R_{i1} & R_{i2} \\ R_{i3} & R_{i3} \\ R_{i4} & R_{i5} \end{bmatrix} \\ (R_{22})_{ib} & R_{i6} & R_{i5} \\ R_{i6} & R_{i5} \\ R_{i6} & R_{i5} \\ R_{i6} & R_{i6} \\ R_{24})_{id} \\ R_{i6} & R_{i6} \\ R_{i7} & R_{i8} \\ R_{i8} & R_{i8} \\ R_{i8} & R_{i8} \\ R_{i8} & R_{i8} \\ R_{i9} & R_{i9} \\ R_{i9} &$$

Formula 12

$$(R_{25})_{i0} = (R_{27})_{i0}$$

$$(R_{27})_{i0}$$

$$(R_{27})_{i0}$$

$$(R_{28})_{i1}$$

$$(R_{28})_{i1}$$

Formula I3

$$(R_{20})_{ii} \\ N \\ = \\ R_{i13} \\ R_{i14} \\ R_{i15} \\ R_{i16} \\ (R_{30})_{ij} \\ = \\ R_{i15} \\ R_{i16} \\ R_{i16} \\ = \\ R_{i16} \\ R_{i16} \\ = \\ R_{i16} \\ =$$

wherein R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} , R_{17} , R_{38} , R_{19} , R_{110} , R_{111} , R_{112} , R_{113} , R_{113} , and R_{116} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , R_{29} , R_{31} , and R_{32} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a

substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ia, ib, ic, id, ie, if, ig, ih, ii, ij, ik, and io independently represent an integer of from 1 to 4.

- (Original) The organic electroluminescent element of claim 22, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 24. (Original) The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 25. (Original) The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- (Original) The organic electroluminescent element of claim 22, wherein the light emission layer contains the compound represented by formula 11, 12 or 13 above.
- (Original) The organic electroluminescent element of claim 22, wherein the organic electroluminescent element contains a phosphorescent compound.
- (Original) The organic electroluminescent element of claim 27, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 29. (Original) An organic electroluminescent comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula J1 or J2.

Formula J1

$$(R_{33})_{j_0} = \begin{pmatrix} R_{j1} & R_{j2} & R_{j3} & R_{j4} \\ R_{j5} & R_{j6} & R_{j7} & R_{j8} \end{pmatrix}$$

Formula J2

$$(R_{39})_{j_0}$$
 $(R_{39})_{j_1}$
 $(R_{39})_{j_1}$
 $(R_{39})_{j_1}$
 $(R_{30})_{j_1}$

wherein R_{j1} , R_{j2} , R_{j3} , R_{j4} , R_{j5} , R_{j6} , R_{j7} , R_{j6} , R_{j16} , R_{j11} , and R_{j12} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{36} , R_{39} , and R_{46} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted aryloxy group, a

- (Original) The organic electroluminescent element of claim 29, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 31. (Original) The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.

- 32. (Original) The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- (Original) The organic electroluminescent element of claim 29, wherein the light emission layer contains the compound represented by formula J1 or J2 above.
- (Original) The organic electroluminescent element of claim 29, wherein the organic electroluminescent element contains a phosphorescent compound.
- (Original) The organic electroluminescent element of claim 34, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.

36-42. (Canceled)

43. (Original) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains an electron transporting material having a phosphorescence 0-0 band of not more than 450 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A,

Formula A

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

- (Original) The organic electroluminescent element of claim 43, wherein the organic electroluminescent element emits a white light.
- 45. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a hole transporting material having a phosphorescence 0-0 band of not more than 480 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A:

Formula A

$$\{R_1\}_{n_1}$$

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group: n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

46. (Original) The organic electroluminescent element of claim 45, wherein the organic electroluminescent element emits a white light.

47. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the light emission layer contains a phosphorescent compound having a phosphorescence 0-0 band of not more than 480 nm and a compound represented by formula A:

Formula A

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

- 48. (Original) The organic electroluminescent element of claim 47, wherein the organic electroluminescent element emits a white light.
- (Previously Presented) A display comprising the organic electroluminescent element of any one of claims 1. 8, 15, 22, 29, 43, and 45.
- (Previously Presented) An illuminator comprising the organic electroluminescent element of any one of claims 1, 8, 15, 22, 29, 43, and 45.
- (Original) A display comprising the illuminator of claim 50, and a liquid crystal cell as a displaying element.