Lösung zu Blatt 4, Aufgabe 3: "Satz von Kieboom"

3 | Satz von Kieboom ★

Ziel dieser Aussge ist eine Verallgemeinerung von Blatt 3 Aufgabe 3(a) zu zeigen (Produkte von Kofaserungen sind Kofaserungen, siehe (l) und (m)).

Zur Vorbereitung:

(a) Sei $i_a: A \hookrightarrow B$ eine Kofaserung und $p: E \to B$ eine Faserung. Zeigen Sie, dass $p^{-1}(i_A(A)) \hookrightarrow E$ eine Kofaserung ist.

(Hinweis: Die Abbildung $u\colon B\to I$ in der Definition eines UDRs kann "besser" gewählt werden.) Lösung: Weil $i_a\colon A\hookrightarrow B$ eine Kofaserung ist, gibt es eine Homotopie $H\colon B\times I\to B$ und ein $u\colon B\to I$ mit

$$H(-,0) = \mathrm{id}_B,$$

$$H(x,t) \in i_A(A) \qquad \forall t > u(x),$$

$$H(a,-) = a \qquad \forall a \in i_A(A),$$

$$i_A(A) = u^{-1}(\{0\}).$$

Die Existenz der hier verwendeten Funktion $u\colon B\to I$ folgt aus dem Beweis der Vorlesung. Da $p\colon E\to B$ eine Faserung ist, gibt es eine Abbildung $\overline{H}\colon E\times I\to E$, sodass das folgende Diagramm kommutiert:

$$E \xrightarrow{\operatorname{id}_{E}} E$$

$$\downarrow^{i_{0}} \xrightarrow{\overline{H}} P$$

$$E \times I \xrightarrow{p \times \operatorname{id}_{I}} B \times I \xrightarrow{H} B$$

Definiere jetzt die folgenden Abbildungen, die zeigen, dass $p^{-1}(i_A(A)) \hookrightarrow E$ ein Umgebungsdeformationsretrakt, also eine Kofaserung, ist.

$$\begin{split} \widetilde{H} \colon E \times I \to E, & (e,t) & \mapsto \ \overline{H} \left(e, \min \{ t, u(p(e)) \} \right), \\ \widetilde{u} \colon E \to I, & e & \mapsto \ u(p(e)). \end{split}$$

Wir überprüfen die Umgebungsdeformationsretraktsbedingungen:

$$\begin{split} \widetilde{H}(e,0) &= \overline{H}(e,0) = e, \\ \widetilde{H}(e,1) &= \overline{H}(e,u(p(e))) \in p^{-1}(i_A(A)) & \forall e \in p^{-1}(u^{-1}([0,1))), \\ \widetilde{H}(e,t) &= \overline{H}(e,\min\{t,\underbrace{u(p(e))}\}) = \overline{H}(e,0) = e & \forall e \in p^{-1}(i_A(A)) \ \forall t, \\ \widetilde{u}^{-1}(\{0\}) &= \{e \in E \mid \widetilde{u}(e) = u(p(e)) = 0\} = p^{-1}(i_A(A)), \\ \widetilde{u}^{-1}([0,1)) &= p^{-1}(u^{-1}([0,1])). \end{split}$$

wobei die zweite Aussage gilt, weil $i_A(A)$ abgeschlossen ist.

(b) Seien $j: B \to A$ und $i: A \to X$ Abbildungen, wobei i und $i \circ j$ Kofaserungen sind. Zeigen Sie, dass j eine Kofaserung ist.

 $L\ddot{o}sung$: Wir zeigen die Homotopieerweiterungseigenschaft für j. Betrachte dafür folgendes Diagramm:

$$\begin{array}{ccc} B & \xrightarrow{H} & Y^I \\ \downarrow \downarrow & & \downarrow \operatorname{ev}_0 \\ A & \xrightarrow{f} & Y \end{array}$$

Weil $i: A \to X$ eine Kofaserung ist, gibt es eine offene Umgebung $i(A) \subseteq U \subseteq X$ und eine Retraktion $r: U \to A$, also $r \circ i = \mathrm{id}_A$ und $i \circ r \simeq \mathrm{id}_U$. Betrachte nun folgendes Diagramm,

wobei der Lift $G: U \to Y^I$ existiert, da $i \circ j$ eine Kofaserung ist. Ein Lift im ursprünglichen Diagramm ist durch $G \circ i: A \to Y^I$ gegeben, da

$$(G \circ i) \circ j = H,$$

 $\operatorname{ev}_0 \circ (G \circ i) = (\operatorname{ev}_0 \circ G) \circ i = f \circ r \circ i = f.$

(c) Betrachte das folgende kommutative Diagramm, wobei $i: A \to X$ ein (starker) Deformationsretrakt und $p: E \to B$ eine Faserung ist. Zusätzlich gebe es ein $u: X \to I$ mit $u^{-1}(\{0\}) = A$.

$$\begin{array}{ccc}
A & \xrightarrow{f} & E \\
\downarrow i & & \downarrow p \\
X & \xrightarrow{g} & B
\end{array}$$

Zeigen Sie, dass ein Lift $H: X \to E$ existiert.

Lösung: Da $i: A \to X$ ein starker Deformationsretrakt ist, gibt es ein $r: X \to A$ mit $r \circ i = \mathrm{id}_A$ und $i \circ r = H(-,0) \simeq_A H(-,1) = \mathrm{id}_X$ für eine Homotopie $H: X \times I \to X$. Definiere die Abbildung:

$$\widetilde{H} \colon X \times I \to X, \qquad (x,t) \mapsto \begin{cases} H(x,t/u(x)), & t < u(x) \\ H(x,1), & t \geq u(x) \end{cases}$$

Betrachte nun das folgende Diagramm:

$$X \xrightarrow{r} A \xrightarrow{f} E$$

$$\downarrow i_0 \downarrow \qquad \qquad \downarrow p$$

$$X \times I \xrightarrow{\widetilde{H}} X \xrightarrow{g} B$$

Das Diagramm kommutiert, weil

$$(g \circ \widetilde{H} \circ i_0)(x) = g(\widetilde{H}(x,0)) = \begin{cases} g(H(x,0)), & x \notin i(A) \\ g(H(x,1)), & x \in i(A) \end{cases} = (g \circ i \circ r)(x) = (p \circ f \circ r)(x).$$

Die Abbildung $\overline{H}: X \times I \to E$ existiert, weil $p: E \to B$ eine Faserung ist. Der gewünschte Lift ist gegeben durch,

weil

$$\overline{H}(i(a), u(i(a))) = \overline{H}(i(a), 0) = f(r(i(a))) = f(a),$$

$$p(\overline{H}(x, u(x))) = g(\widetilde{H}(x, u(x))) = g(H(x, 1)) = g(x).$$

(d) Betrachte das folgende kommutative Diagramm, wobei $i: A \to X$ eine Kofaserung und p_A, p_X Faserungen sind:

$$A \xrightarrow{i} X$$

$$B \xrightarrow{p_A} X$$

Folgern Sie, dass $i: A \to X$ eine Kofaserung über B ist, d.h. eine Retraktion $r: X \times I \to M_i$ existiert, sodass das folgende Diagramm kommutiert:

Lösung: Faktorisiere $i\colon A\to X$ durch den Abbildungszylinder als $A\stackrel{j}{\longrightarrow} M_i\stackrel{q}{\longrightarrow} X$, wobei j eine Kofaserung ist, und q eine Homotopieäquivalenz und Faserung. Das folgende Diagramm erfüllt die Bedingung für (c) (j ist ein (starker) Deformationsretrakt, weil i eine Kofaserung ist, und $p_X\circ q$ eine Faserung als Verknüpfung von Faserungen):

$$\begin{array}{ccc} M_i & \xrightarrow{\operatorname{id}_{M_i}} & M_i \\ \downarrow & & \downarrow p_X \circ q \\ X \times I & \xrightarrow{p_X \circ \operatorname{DF}_1} & B \end{array}$$

Betrachte nun das folgende kommutative Diagramm:

wobei i_{X_0} , i_{B_0} , i_{E_0} Kofaserungen, und p_0 , p Faserungen sind.

- (e) Zeigen Sie, dass $p^{-1}(i_{B_0}(B_0)) \hookrightarrow E$ eine Kofaserung ist. $L\ddot{o}sung$: Folgt aus (a) für die Kofaserung $i_{B_0} \colon B_0 \to B$ und die Faserung $p \colon E \to B$.
- (f) Zeigen Sie, dass $E_0 \hookrightarrow p^{-1}(i_{B_0}(B_0))$ eine Kofaserung ist. $L\ddot{o}sung$: Folgt aus (b) für $E_0 \to p^{-1}(i_{B_0}(B_0)) \hookrightarrow E$ (Voraussetzungen: Annahme und (e))
- (g) Zeigen Sie, dass $p_0|_{p^{-1}(i_{B_0}(B_0))}: p^{-1}(i_{B_0}(B_0)) \to B_0$ eine Faserung ist. *Lösung:* Folgt daraus, dass es ein Pullback einer Faserung ist.

$$p^{-1}(i_{B_0}(B_0)) \longrightarrow E$$

$$p_0|_{p^{-1}(i_{B_0}(B_0))} \downarrow \qquad \qquad \downarrow p$$

$$B_0 \cong i_{B_0}(B_0) \longrightarrow B$$

(h) Zeigen Sie, dass $E_0 \hookrightarrow p^{-1}(i_{B_0}(B_0))$ eine Kofaserung über B_0 ist.

Lösung: Folgt aus (d) für das Diagramm:

wobei die Voraussetzungen nach Annahme, (f) und (g) gelten.

(i) Zeigen Sie, dass $X_0 \times_{B_0} E_0 \hookrightarrow X_0 \times_B p^{-1}(i_{B_0}(B_0))$ eine Kofaserung ist. Lösung: Sei $r \colon p^{-1}(i_{B_0}(B_0)) \times I \to (p^{-1}(i_{B_0}(B_0)) \times \{0\}) \cup_{(h)} (E_0 \times I)$ die Retraktion über B aus (h). Dann ist

$$(X_0 \times_B p^{-1}(i_{B_0}(B_0))) \times I \longrightarrow (X_0 \times_B p^{-1}(i_{B_0}(B_0))) \times \{0\} \cup_{(i)} (X_0 \times_B E_0) \times I$$
$$((x_0, e), t) \longmapsto (x_0, r(e, t))$$

ein Deformationsretrakt, der zeigt, dass die Abbildung in (i) eine Kofaserung ist. (Aufgabenteil (h) war nötig, damit die Abbildung auf dem Faserprodukt über B_0 wohldefiniert ist. Da die Abbildungen keine Namen bekommen haben wurden die Abbildungen/Abbildungszylinder mit ihren Aufgabennamen bezeichnet.)

(j) Zeigen Sie, dass $\overline{p} \colon X \times_B E \to X$ eine Faserung ist. Lösung: Folgt daraus, dass es ein Pullback einer Faserung ist.

$$\begin{array}{ccc} X \times_B E & \longrightarrow & E \\ & \downarrow p & & \downarrow p \\ X & \longrightarrow & B \end{array}$$

(k) Zeigen Sie, dass $X_0 \times_B p^{-1}(i_{B_0}(B_0)) \hookrightarrow X \times_B E$ eine Kofaserung ist. $L\ddot{o}sung$: Folgt aus (a) für die Kofaserung $i_{X_0} \colon X_0 \hookrightarrow X$ und Faserung $\overline{p} \colon X \times_B E \to X$ aus (j), da $\overline{p}^{-1}(i_{X_0}(X_0)) = X_0 \times_B p^{-1}(B_0)$.

Endlich folgt das Finale:

(l) Zeigen Sie, dass $X_0 \times_{B_0} E_0 \hookrightarrow X \times_B E$ eine Kofaserung ist. *Lösung:* Folgt, da die Abbildung eine Komposition von Kofaserungen ist.

$$X_0 \times_{B_0} E_0 \stackrel{\text{(i)}}{\longleftrightarrow} X_0 \times_B p^{-1}(i_{B_0}(B_0)) \stackrel{\text{(k)}}{\longleftrightarrow} X \times_B E$$

(m) Folgern Sie, dass das Produkt zweier Kofaserungen eine Kofaserung ist (Blatt 3, Aufgabe 3(a)). Lösung: Folgt aus der Anwendung von (l) auf das folgende Diagramm: