

1 Introducere Mediul fizic

4-5 octombrie 2016

Obiective

- Ce este o rețea de calculatoare?
- Dispozitive de reţea
- Topologii de rețele
- Stiva de protocoale
- Funcţiile nivelului fizic
- Medii de transmisie
- Exemple de codificări

"Getting information off the Internet is like taking a drink from a fire hydrant."

Mitchell Kapor

"The Internet is the first thing that humanity has built that humanity doesn't understand, the largest experiment in anarchy that we have ever had."

Eric Schmidt

Ce este o rețea de calculatoare?

- Sistem de interconectare a mai multor sisteme de calcul
- Conexiunea între componentele unui calculator se realizează prin magistrale (circuite electrice pe placa de bază) și chipset-uri
- Conexiunea între sisteme de calcul diferite se realizează prin intermediul unor dispozitive (plăci de rețea, switch-uri, rutere) și a unor medii de comunicație (cabluri electrice, fibră optică) dedicate

Avantajele rețelelor de calculatoare

Dimensiunea fizică a unei rețele

Distanța între procesoare	Localizare procesoare	Rețea
1 mm	Centimetru pătrat	Micro nw (pe siliciu)
1 cm	Decimetru pătrat	Platformă multiprocesor
1m	Metru pătrat	Personal Area Network
10 m	Cameră	Local Area Network
100 m	Clădire	
1 km	Campus	
10 km	Oraș	Metropolitan Area Net
100 km	Ţară	
1000 km	Continent	Wide Area Network
10 000 km	Planetă	Internet

LAN, MAN, WAN

• Clasificare în funcție de distanța între nodurile rețelei, concretizată printr-un număr de protocoale specifice fiecărui tip de rețea

LAN – Local Area Network

Standardele dominante sunt Ethernet și WLAN (IEEE 802.11) Separația (conectarea) între LAN și MAN/WAN se realizează cu un ruter (gateway)

MAN – Metropolitan Area Network rar întâlnite în rețelele actuale

WAN – Wide Area Network

Numeroase protocoale: MPLS, ATM, Frame Relay, PPP

- Placă de rețea network card, network adapter, NIC (Network Interface Controller)
 - Permite sistemului să comunice cu un altul aflat în aceeași rețea
- Repetor, hub folosit pentru regenerarea și amplificarea semnalului
- Switch folosit pentru interconectarea sistemelor de calcul dintro rețea (topologie stea)
- Ruter folosit pentru interconectarea mai multor rețele de calculatoare (LAN); folosit în WAN

Dispozitive de rețea - imagine

Interfața de rețea

- Network interface
- Se referă la un punct de comunicație cu o rețea de calculatoare (o placă de rețea, un port al unui dispozitiv avansat de rețea)
- Un calculator cu o placă de rețea are o singură interfață de rețea; un calculator cu două plăci are două interfețe
- Un switch/ruter are mai multe interfețe de rețea mai multe porturi de comunicație
- Denumirea de interfață de rețea se referă și la abstracția dată de sistemul de operare
 - configurarea unei plăci de rețea sau a unui port al unui ruter se numește "configurarea unei interfețe"
 - pe un sistem Unix/Linux, interfețele de plăci de rețea Ethernet sunt denumite eth0, eth1, etc.
 - o interfață virtuală denumită interfață de loopback este folosită pentru a referi stația curentă ca și cum aceasta s-ar afla într-o rețea (deși aceasta nu există fizic)

Protocol

- Comunicația între două entități necesită existența unui protocol
- Ce este un protocol?
 - Un set de reguli care guvernează modul în care două dispozitive schimbă informație într-o rețea

Stiva de protocoale OSI

 Pentru a abstractiza complexitatea lucrului cu rețeaua, se stabilește o stivă de protocoale; protocolul de nivel inferior oferă servicii celui de nivel superior

Stiva de protocoale TCP/IP

- Stiva de protocoale utilizată în Internet este stiva TCP/IP
- IP este protocolul esențial de la nivelul Internet, iar TCP de la nivelul Transport
- Nivelul Aplicație este cel care oferă servicii utilizatorului (transfer de fișiere, control de la distanță, transmitere e-mail, etc.)
- Nivelul Transport este responsabil cu asigurarea controlului fluxului (pachetele să ajungă în ordine și nealterate)

Stiva OSI vs Stiva TCP/IP

Cursul 1

- Roluri
- Transmisii analogice
- Transmisii digitale
- Transmiterea datelor digitale cu carrier analog
- Medii de transmisie
- Multiplexare
- Exemple

Transmisii analogice

- Caracteristici
- AM
- FM

Transmisii analogice

- Folosesc valori continue pentru a transmite informația
- Caracteristici
 - Amplitudine nivelul maxim al semnalului
 - Perioada/frecvenţa viteza de schimbare raportată la timp
 - Faza poziția formei de undă raportată la momentul de timp zero

Transmisie analogică - AM

- AM = Amplitude Modulation
- Folosește valori continue ale amplitudinii pentru a transmite informația
- Folosită în special în transmisii radio

Transmisie analogică - FM

- FM = Frequency Modulation
- Folosește valori continue ale frecvenței pentru a transmite informația
- Folosită în special în transmisii radio

Cursul 1

Transmisii digitale

- Caracteristici
- Manchester
- Manchester diferențial
- NRZ-L
- NRZ-I
- MLT-3
- PAM-5
- Exemplu: Fast Ethernet
- Exemplu: Gigabit Ethernet

Transmisii digitale

- Folosesc valori discrete pentru a transmite informație
- Caracteristici:
 - Bit interval (echivalent perioadă)
 - Bit rate (echivalent frecvenţă)
- Line coding este denumită și digital baseband modulation
 - Unipolară un singur nivel de tensiune care reprezintă 1; absența înseamnă 0
 - Polară două niveluri de tensiune
 - Bipolară trei niveluri: pozitiv, negativ și zero

Codificare Pulse-Amplitude Modulation 5

- Un nivel din cele 5 poate fi folosit pentru corecția erorilor
- Transmite doi biți într-o perioadă de ceas

Codificare 4B5B

- Convertește blocuri de 4 biți în blocuri de 5 biți
- Folosit în combinație cu NRZ-I (fibră optică) sau MLT-3 (100BASE-TX, FDDI peste cupru)
- Blocurile de 5 biți au suficient de mulți biți de 1 a.î. NRZ-I/MLT-3 să nu piardă sincronizarea
- Nu se pot obţine mai mult de 3 biţi de 0 consecutivi

Nume	4b	5 b
0	0000	11110
1	0001	01001
2	0010	10100
3	0011	10101
4	0100	01010
5	0101	01011
6	0110	01110
7	0111	01111

Nume	4b	5b
8	1000	10010
9	1001	10011
Α	1010	10110
В	1011	10111
С	1100	11010
D	1101	11011
E	1110	11100
F	1111	11101

Nume	4b	5b
Q	-	00000
I	-	11111
J	-	11000
K	-	10001
Т	-	01101
R	-	00111
S	-	11001
Н	-	00100

Exemplu: Gigabit Ethernet

Cursul 1

Transmiterea datelor digitale cu carrier analog

- Caracteristici
- ASK
- PSK
- FSK
- Diagrame de constelații

Transmisie analogică a datelor digitale

- Dacă se dorește transmiterea datelor digitale peste un mediu ce folosește semnale analogice (de exemplu linii telefonice), semnalul analog trebuie modulat
- Există mai multe tipuri de modulare:
 - ASK Amplitude Shift Keying
 - PSK Phase Shift Keying
 - FSK Frequency Shift Keying
- Bit rate numărul de biți pe secundă
- Baud rate numărul de semnalepesecundă
- Baud rate ≤ bit rate
- Tehnicile de modulare sunt caracterizate prin raportul $rac{bit\ rate}{baud\ rate}$

Combinație PSK-ASK

Diagrame de constelații

Cod	Α	ф	Cod	Α	ф
000	1	0°	100	1	180°
001	2	0°	101	2	180°
010	1	90°	110	1	270°
011	2	90°	111	2	270°

Exemple de constelații

Exercițiu

- Se consideră o linie cu o capacitate de 2400 baud. Câți biți de date pot fi trimiși pe secundă dacă se folosește QAM-16 pentru modulare?
- R: Sunt folosite 16 puncte de constelație pentru a trimite 4 biți per simbol, ceea ce înseamnă:

$$4 \cdot 2400 = 9600 \ bps$$

MOdulator/DEModulator

Multiplexare

- FDM
- WDM
- TDM
- Exemplu: DSL

Multiplexare

- Constă în gruparea mai multor fluxuri de date într-un singur semnal peste un singur mediu partajat
- Analogică
 - FDM frequency division multiplexing
 - WDM wavelength division multiplexing (mediu optic)
- Digitală
 - TDM time division multiplexing

High Speed Digital Access: DSL

- Digital Subscriber Line
- ADSL Asymmetric DSL: destinată utilizatorilor; nepotrivită pentru mediu business
- "Asymmetric" reprezintă faptul că mai mult din lățimea de bandă se folosește pentru trafic spre utilizator
- Lățimea de bandă poate ajunge la 1.1 MHz

Medii de transmisie

- Cablu coaxial
- Cablu torsadat
- Fibră optică
- Wireless

Medii de transmisie

- Cu fir (ghidat)
 - Cablu coaxial
 - Cablu torsadat (twisted-pair cable)
 - UTP
 - STP / FTP
 - ScTP
 - Fibră optică
 - Multimode
 - Singlemode
- Fără fir (neghidat)
 - Unde radio
 - Microunde
 - Infraroşii

Category	Impedance	Use
RG-59	75 Ω	Cable TV
RG-58	50 Ω	Thin Ethernet
RG-11	50 Ω	Thick Ethernet

Categorii de cablu torsadat

Categorie	Frecvență	Viteză	Standard
Cat 1		1Mbps	Telefonia clasică
Cat 2		4Mbps	Transmisiuni seriale
Cat 3	16MHz	10 Mbps 100 Mbps	TokenRing 10BaseT 100BaseT4
Cat 4	20MHz	16 Mbps 100 Mbps	TokenRing 10BaseT 100BaseT4
Cat 5	100MHz	10 Mbps 100 Mbps	TokenRing, 10BaseT 100BaseTX
Cat 5e	155MHz	10 Mbps 100 Mbps 1 Gbps	10BaseT, 100BaseTX, 1000BaseT
Cat 6	250MHz	100Mbps 1 Gbps	100BaseTX 1000BaseT
Cat 6a	500MHz	10 Gbps	10GBaseT
Cat 7	625MHz	10 Gbps	10GbaseT
Cat 8	1200Mhz	10 Gbps	10GbaseT

Cablări twisted-pair: Straight-through

Cablări twisted-pair: Crossover

Cablări twisted-pair: Rollover

Fibră optică (2)

a. Multimode, step-index

b. Multimode, graded-index

c. Single-mode

Туре	Core	Cladding	Mode
50/125	50	125	Multimode, graded- index
62.5/125	62.5	125	Multimode, graded- index
100/125	100	125	Multimode, graded- index
7/125	7	125	Single-mode

Fibră optică (3)

Wireless

Reţea de tip ad-hoc

Spectrul electomagnetic

- Unde radio comunicații multicast: radio si televiziune
- Microunde comunicații unicast: telefoane mobile, rețele de sateliți, Wireless LAN
- Infraroşii transmisii pe distanţă scurtă

Atenuare

Soluție: Repetor

Crosstalk

Soluție: Torsadare

Zgomot

Soluție: Ecranare

Electric - electric

Electric - optic

Electric - wireless

Repetor optic

Repetor wireless

Performanța unei rețele

Throughput

- Cantitatea de date transmise în unitatea de timp
- Unități de măsură:
 - KB = 2^{10} bytes
 - Mbps = 10⁶ bits per second

Latenţa

- Timpul necesar pentru ca un semnal (sau bit) să ajungă din punctul A în punctul B
- one-way vs round-trip time (RTT)
- Componente:
 - Timpul de propagare
 - Latența introdusă de echipamente

Cuvinte cheie

