Graph of Equations

1 Review

Assume...

 P_1 : (x_1, y_1)

 P_2 : (x_2, y_2)

1.1 Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

where:

d: Distance between P_1 and P_2

1.2 The Midpoint Formula

$$m = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

where:

m: Midpoint between P_1 and P_2

2 Equations of Circles

You can draw a circle using an **relationship** not a function.

$$(x-h)^2 + (y-k)^2 = r^2$$

where:

(h,k): Center Point

r: Radius

3 Symmetry

3.1 Y-Axis

- Called an "Even Function"
- Looks the same after reflection over Y-Axis
- Has to meet the following requirement(s)...

$$f(x) = f(-x)$$

One example of such a function is $y = x^2$.

$$f(4) = 16$$

 $f(-4) = 16$
 $16 = 16$

3.2 X-Axis

- Not a function, doesn't pass vertical line test
- Called a **relationship**
- Has to meet the following requirement(s)...

$$x \mapsto \{-y, y\}$$

One example of such a equation is $x = y^2$ but **not** $y = \sqrt{x}$ because that would only allow positive x values.

$$9^2 = 81$$
$$(-9)^2 = 81$$

3.3 Origin

- Called an "Odd Function"
- Visually the same after 180° rotation about (0,0)
- Has to meet the following requirement(s)...

$$f(x) = y$$
$$f(-x) = -y$$

One example of such a function is $y = x^3$

$$f(2) = 8$$
$$f(-2) = -8$$

4 Equations of Lines

Assume...

m: Slope

 P_1 : (x_1, y_1)

 P_2 : (x_2, y_2)

4.1 Slope

$$m = \frac{\text{"Ryse"}}{\text{Run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

4.2 Forms

4.2.1 Slope-Intercept Form

y = mx + b

where:

b: x-intercept

4.2.2 Point Slope Form

If you need point-slope form, just sub out values. However, if you need to find slope-intercept form you can solve for y.

$$y - y_1 = m(x - x_1)$$

4.2.3 Intercept Form

$$\frac{x}{a} + \frac{y}{b} = 1$$

where:

a: x-intercept, point (a, 0) falls on the line

b: y-intercept, point (0, b) falls on the line

This form can be converted into **General Form** through the multiplication of the least common multiple of a and b. Then subtracting the value on the right side of the equation.

4.2.4 General Form

$$Ax + By + C = 0$$

where:

A is non-negative

A, B,and Care all integers

4.3 Relationships of Lines

4.3.1 Parallel Lines

- same slopes.

4.3.2 Perpendicular Lines

- opposite reciprocal slopes.

Consider the following where m_1 and m_2 are perpendicular.

$$m_1 = 3/8$$
$$m_2 = -8/3$$

5 Functions and Equations

5.1 Is it a function?

- Each x only maps to one y

6 Domain & Range

6.1 Formatting

 ${\bf Example...}$

$$D: (-1, 2]$$

 $R: (-\infty, 12)$

- "(", ")" means exclusive
- "[", "]" means inclusive
- Never use [] with ∞

6.2 Zeros

Solve for when y = 0They are y-ints

6.3 Increasing and Decreasing

Never use "[", "]", always "(", ")" Always Least \rightarrow Greatest

6.4 New Functions

6.4.1 Greatest Integer Function (Floor)

Represented by

$$f(x) = [[x]]$$

Left side solid, right side empty

6.4.2 Peace Function

An equation, but with conditionals Example...

атри...

$$f(x) = \begin{cases} x^2 - 3 & \text{if } x \ge 3 \\ -2x^4 + 9x^3 & \text{if } x < 3 \end{cases}$$

Plug it into calculator by multiplying things and conditions

$$f(x) = (x^2 - 3)(x \ge 3) + (-2x^4 + 9x^3)(x < 3)$$