2. Subset Component

You are given an array with n 64-bit integers: $d[0], d[1], \ldots, d[n-1]$.

BIT(x, i) = (x >> i) & 1, where B(x,i) is the i^{th} lower bit of x in binary form. If we regard every bit as a vertex of a graph G, there is an undirected edge between vertices i and j if there is a value k such that BIT(d[k], i) == 1 && BIT(d[k], j) == 1.

For every subset of the input array, how many connected-components are there in that graph?

A connected component in a graph is a set of nodes which are accessible to each other via a path of edges. There may be multiple connected components in a graph.

Example

```
d = \{1, 2, 3, 5\}
```

In the real challenge, there will be 64 nodes associated with each integer in d represented as a 64 bit binary value. For clarity, only 4 bits will be shown in the example but all 64 will be considered in the calculations.

```
Decimal Binary Edges Node ends

d[0] = 1 0001 0

d[1] = 2 0010 0

d[2] = 3 0011 1 0 and 1

d[3] = 5 0101 1 0 and 2
```

Consider all subsets:

	Ed	ges					
Subset	Count	Nodes	Connected	components			
{1}	0		64				
{2}	0		64				
{3}	1	0-1	63				
{5}	1	0-2	63				
{1,2}	0		64				
{1,3}	1	0-1	63				
{1,5}	1	0-2	63				
{2,3}	1	0-1	63				
{2,5}	1	0-2	63				
{3,5}	2	0-1-2	62				
{1,2,3}	1	0-1	63				
{1,2,5}	1	0-2	63				
{1,3,5}	2	0-1-2	62				
{2,3,5}	2	0-1-2	62				
{1,2,3,5]	2	0-1-2	62				
Sum			944				

The values 3 and 5 have 2 bits set, so they have 1 edge each. If a subset contains only a 3 or 5, there will be one connected component with 2 nodes, and 62 components with 1 node for a total of 63.

If both 3 and 5 are in a subset, 1 component with nodes 0,1 and 2 is formed since node 0 is one end of each edge described. The other 61 nodes are solitary, so there are 62 connected components total.

All other values have only 1 bit set, so they have no edges. They have 64 components with 1 node each.

Function Description

Complete the findConnectedComponents function in the editor below.

findConnectedComponents has the following parameters:

• int d[n]: an array of integers

Returns

ullet int: the sum of the number of connected components for all subsets of d

Input Format

The first row contains the integer n, the size of d[].

The next row has n space-separated integers, d[i].

Constraints

 $1 \le n \le 20$

 $0 \leq d[i] \leq 2^{63}-1$

Sample Input 0

```
3
2 5 9
```

Sample Output 0

504

Explanation 0

There are 8 subset of $\{2,5,9\}$.

{}

=> We don't have any number in this subset => no edge in the graph => Every node is a component by itself => Number of connected-components = 64.

{2}

=> The Binary Representation of 2 is 00000010. There is a bit at only one position. => So there is no edge in the graph, every node is a connected-component by itself => Number of connected-components = 64.

{5}

=> The Binary Representation of 5 is 00000101. There is a bit at the 0^{th} and 2^{nd} position. => So there is an edge: (0, 2) in the graph => There is one component with a pair of nodes (0,2) in the graph. Apart from that, all remaining 62 vertices are indepenent components of one node each (1,3,4,5,6...63) => Number of connected-components = 63.

{9}

=> The Binary Representation of 9 is 00001001. => There is a 1-bit at the 0^{th} and 3^{rd} position in this binary representation. => edge: (0, 3) in the graph => Number of components = 63

{2, 5}

=> This will contain the edge (0, 2) in the graph which will form one component

=> Other nodes are all independent components

=> Number of connected-component = 63

ro ar

=> This has edge (0,3) in the graph

=> Similar to examples above, this has 63 connected components

{5, 9}

=> This has edges (0, 2) and (0, 3) in the graph

=> Similar to examples above, this has 62 connected components

{2, 5, 9}

=> This has edges(0, 2) (0, 3) in the graph. All three vertices (0,2,3) make one component => Other 61 vertices are all independent components

=> Number of connected-components = 62

S = 64 + 64 + 63 + 63 + 63 + 63 + 62 + 62 = 504