Project Name:- Malignant-Comments-Classifier. Importing Libraries In []: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings	
warnings.filterwarnings('ignore') from sklearn.model_selection import train_test_split Loading Dataset In [6]: import pandas as pd df=pd.read_csv('train.csv') df.head() Outlest id comment_text malignant highly_malignant rude threat abuse loathe O 0000997932d777bf ExplanationInvWhy the edits made under my userm O O O O O O O	
0 0000997932d7777bf Explanation/nWhy the edits made under my usern 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 000103f0d9cfb60f D'aww! He matches this background colour I'm s 0 </td <td></td>	
159569 fff125370e4aaaf3 And it looks like it was actually you who put 0 0 0 0 0 0 0 0 159570 fff46fc426af1f9a "\nAnd I really don't think you understand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Out[7]: array([0, 1], dtype=int64) In [9]: df["highly_malignant"].shape Out[9]: (159571,) Checking Null Values In [10]: df.isnull() Out[10]: id comment_text malignant highly_malignant rude threat abuse loathe	
O False Fals	
159569 False Fal	
rude 0 threat 0 abuse 0 loathe 0 dtype: int64 Checking Isnull Heatmap In [84]: fig, ax = plt.subplots(figsize=(12,9)) sns.heatmap(df.isnull(), ax=ax);	
- 0.100 (650 (650 13100 13100 132000 132000 132000 132000 132000 132000 132000 132000 1	
0.100	
In [12]: df.isnull().sum().sum() Out[12]: 0 Describing Dataset	
Malignant bighly_malignant rude threat abuse loathe cout 159571.00000 <td></td>	
75% 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	
- 140000 - 120000 - 100000 - 80000	
- 60000 - 40000 - 40000 - 20000 - 20000 - 20000	
In [18]:	
a duse 159571 non-null int64 7 loathe 159571 non-null int64 dtypes: int64(6), object(2) memory usage: 9.7+ MB In [20]: sns.violinplot(x=df['loathe'], inner="quartile", color="#36B37E");	
Correlation In [83]: df. corr()	
Out [83]: malignant national m	
fig, ax = plt.subplots(figsize=(12,9)) sns.heatmap(df.corr(), ax=ax); malignant highly_malignant - 0.8 - 0.7	
- 0.7 nude	
EXPLORATORY DISTRIBUTION ANALYSIS Scatterplot	
In [23]: sns.scatterplot(x="malignant",y="loathe",data=df) out[23]: <axessubplot:xlabel='malignant', ylabel="loathe"> 10</axessubplot:xlabel='malignant',>	
In [24]: sns.scatterplot(x="highly_malignant",y="loathe",data=df) Out[24]: <axessubplot:xlabel='highly_malignant', ylabel="loathe"> 10</axessubplot:xlabel='highly_malignant',>	
0.8 -	
In [25]: sns.scatterplot(x="rude",y="loathe",data=df) Out[25]: <axessubplot:xlabel='rude', ylabel="loathe"> 10</axessubplot:xlabel='rude',>	
In [26]: sns.scatterplot(x="threat",y="loathe",data=df) Out[26]: <axessubplot:xlabel='threat', ylabel="loathe"> 10</axessubplot:xlabel='threat',>	
0.8 -	
In [27]: sns.scatterplot(x="abuse",y="loathe",data=df) Out[27]: <axessubplot:xlabel='abuse', ylabel="loathe"> 10 0 08 06 06 06 04 06 06 06 06 06 06 06 06 06 06 06 06 06</axessubplot:xlabel='abuse',>	
02 - 00 - 00 02 04 06 08 10 In [29]: sns.pairplot(df) Out[29]: <seaborn.axisgrid.pairgrid 0x22c9638e130="" at=""> 10 10 10 10 10 10 10 10</seaborn.axisgrid.pairgrid>	
0.8 1 10 10 10 10 10 10 10 10 10 10 10 10 1	
0.0	
10 10 10 10 10 10 10 10	
3 0001b41b1c6bb37e "'nMore\nI can't make any real suggestions on 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
159571 rows × 8 columns	
Normal Distribution Curve In [39]: sns.displot(df['malignant']) Out[39]: <seaborn.axisgrid.facetgrid 0x22c96448af0="" at=""></seaborn.axisgrid.facetgrid>	
100000 - ES 80000 - ES 800000 - ES 80000 - E	
The data of the column is not normalised. The building blocks is out of the normalised curve In [40]: sns.displot(df['highly_malignant']) Out[40]: <seaborn.axisgrid.facetgrid 0x22c9a7aaca0="" at=""> 160000 - 14000</seaborn.axisgrid.facetgrid>	
120000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 10000	
The data of the column is not normalised. The building blocks is out of the normalised curve In [41]: sns.displot(df['rude']) out[41]: <seaborn.axisgrid. 0x22c96427400="" at="" facetgrid=""> 140000 - 1200000 - 1200000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200</seaborn.axisgrid.>	
100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 10000	
The data of the column is not normalised. The building blocks is out of the normalised curve In [42]: sns.displot(df['threat']) Out[42]: <seaborn.axisgrid.facetgrid 0x22c9a720580="" at=""> 160000</seaborn.axisgrid.facetgrid>	
12000 - 10000	
The data of the column is not normalised. The building blocks is out of the normalised curve In [43]: sns.displot(df['abuse']) Out[43]: <seaborn.axisgrid.facetgrid 0x22c9a0eed99="" at=""> 14000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 1200000 - 1200000 - 1200000 - 1200000 - 1200000 - 12000000 - 12000000 - 12000000 - 12000000 - 120000000 - 120000000 - 1200000000 - 1200000000 - 120000000000</seaborn.axisgrid.facetgrid>	
The data of the column is not normalised. The building blocks is out of the normalised curve In [44]: sns.displot(df['loathe']) Out[44]: <seaborn.axisgrid.facetgrid 0x22c98b33550="" at=""> 160000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 120000 - 120000 - 120000 - 1200000 - 120000 - 120000 - 120000 - 1200000 - 1200000 - 1200000 - 120000 - 1200000 - 1200000 - 12000000 - 120000000 - 120000000 - 12</seaborn.axisgrid.facetgrid>	
100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 10000000 - 1000000 - 1000000 - 1000000 - 10000000 - 10000000 - 100000000	
The data of the column is not normalised. The building blocks is out of the normalised curve In [45]: df.corr()['loathe'] Out[45]: malignant	
# load dataset url = 'train.csv' dataframe = read_csv(url, header=None) # split into input and output elements data = dataframe.values X, y = data[:, :-1], data[:, -1] print(X.shape, y.shape) [159572, 7) (159572,) In [53]: X, y = data[:, :-1], data[:, -1] print(X.shape, y.shape)	
(159572, 7) (159572,) In [58]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) print(X_train.shape, X_test.shape, y_test.shape) (139, 60) (69, 60) (139,) (69,) In [59]: model = RandomForestClassifier(random_state=1) model.fit(X_train, y_train) Out[59]: RandomForestClassifier(random_state=1) In [60]: # make predictions	
<pre>yhat = model.predict(X_test) # evaluate predictions acc = accuracy_score(y_test, yhat) print('Accuracy: %.3f' % acc) Accuracy: 0.783 In [54]: from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # load dataset url = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/sonar.csv'</pre>	
<pre>dataframe = read_csv(ur1, header=None) data = dataframe.values # split into inputs and outputs X, y = data[:, :-1], data[:, -1] print(X.shape, y.shape) # split into train test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) # fit the model model = RandomForestClassifier(random_state=1) model.fit(X_train, y_train) # make predictions yhat = model.predict(X_test) # evaluate predictions</pre>	
acc = accuracy_score(y_test, yhat) print('Accuracy: %.3f' % acc) (208, 60) (208,) (139, 60) (69, 60) (139,) (69,) Accuracy: 0.783 In [56]: from pandas import read_csv # load dataset url = 'train.csv' dataframe = read_csv(url, header=None) # summarize shape print(dataframe.shape)	
(159572, 8) In [57]: # split into inputs and outputs	
0 0000997932d7777bf Explanation/nWhy the edits made under my userm 0<	
159570 fff46fc426af1f9a "\nAnd I really don't think you understand 0 0 0 0 0 0 0 0 159571 rows × 8 columns In [80]: from sklearn.datasets import load_iris iris = load_iris() # store the feature matrix (X) and response vector (y) X = iris. data y = iris. target # splitting X and y into training and testing sets	
<pre># splitting X and y into training and testing sets from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1) # training the model on training set from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(X_train, y_train) # making predictions on the testing set y_pred = gnb.predict(X_test) # comparing actual response values (y_test) with predicted response values (y_pred) from sklearn import metrics print("Gaussian Naive Bayes model accuracy(in %):", metrics.accuracy_score(y_test, y_pred)*100)</pre>	
print("Gaussian Naive Bayes model accuracy(in %):", metrics.accuracy_score(y_test, y_pred)*100) Gaussian Naive Bayes model accuracy(in %): 95.0 In [81]: # Necessary imports from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV # Creating the hyperparameter grid c_space = np.logspace(-5, 8, 15) param_grid = {*C*: c_space} # Instantiating logistic regression classifier logreg = LogisticRegression()	
# Instantiating the GridSearchCV object logreg_cv = GridSearchCV(logreg, param_grid, cv = 5) logreg_cv.fit(X, y) # Print the tuned parameters and score print("Tuned Logistic Regression Parameters: {}".format(logreg_cv.best_params_)) print("Best score is {}".format(logreg_cv.best_score_)) Tuned Logistic Regression Parameters: {'C': 31.622776601683793} Best score is 0.98000000000000001 This is the best models for Malignant-Comments-Classifier.We also suggest that people take into consideration the features that were deemed as most important as seen in the previous section; this might help them estimate the Malignant-Comments-Classifier Prediction.	
Thankyou In []:	