Chapter 6

6.1 Eigenvalues and eigenvectors of S_d are:

$$\lambda_1 = 449.778, e'_1 = [.333, .943]$$

 $\lambda_2 = 168.082, e'_2 = [.943, -.333]$

Ellipse centered at $\frac{1}{2}$ = [-9.36, 13.27]. Half length of major axis is 20.57 units. Half length of minor axis is 12.58 units. Major and minor axes lie in e_1 and e_2 directions, respectively.

Yes, the test answers the question: Is $\delta = 0$ inside the 95% confidence ellipse?

6.2 Using a critical value $t_{n-1}(\alpha/2p) = t_{10}(0.0125) = 2.6338$,

	LOWER	UPPER
Bonferroni C. I.:	-20.57	1.85
	-2.97	29.52
Simultaneous C. I.:	-22.45	3.73
	-5.70	32.25

Simultaneous confidence intervals are larger than Bonferroni's confidence intervals.

6.3 The 95% Bonferroni intervals are

	LOWER	UPPER
Bonferroni C. I.:	-21.92	-2.08
	-3.36	20.56
Simultaneous C. I.:	-23.70	-0.30
	-5.50	22.70

Since the hypothesized vector $\delta = 0$ (denoted as * in the plot) is outside the joint confidence region, we reject H_0 : $\delta = 0$. Bonferroni C.I. are consistent with this result. After the elimination of the outlier, the difference between pairs became significant.

6.4

(a). Hotelling's $T^2 = 10.215$. Since the critical point with $\alpha = 0.05$ is 9.459, we reject $H_0: \underline{\delta} = 0$.

(b).

	Lower	Upper
Bonferroni C. I.:	-1.09	-0.02
	-0.04	0.64

T² Simultaneous C. I.:

-1.18 0.07 -0.10 0.69

95% Confidence Ellipse About the Mean Vector

Figure 1: 95% Confidence Ellipse and Simultaneous T^2 Intervals for the Mean Difference

(c) The Q-Q plots for ln(DiffBOD) and ln(DiffSS) are shown below. Marginal normality cannot be rejected for either variable. The χ^2 plot is not straight (with at least one apparent bivariate outlier) and, although the sample size (n=11) is small, it is difficult to argue for bivariate normality.

6.5 a)
$$H_0: C_{\underline{\mu}} = 0$$
 where $C = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$, $\underline{\mu}' = [\mu_1, \mu_2, \mu_3]$.
$$C_{\underline{x}} = \begin{bmatrix} -11.2 \\ 6.9 \end{bmatrix}, CSC' = \begin{bmatrix} 55.5 & -32.6 \\ -32.6 & 66.4 \end{bmatrix}$$

$$T^2 = n(C\bar{x})^{1}(CSC^{1})^{-1}(C\bar{x}) = 90.4; \quad n = 40; \quad q = 3$$

$$\frac{(n-1)(q-1)}{(n-q+1)} F_{q-1,n-q+1}(.05) = \frac{(39)2}{38} (3.25) = 6.67$$

Since
$$T^2 = 90.4 > 6.67$$
 reject $H_0: C_{\mu} = 0$

b) 95% simultaneous confidence intervals:

$$\mu_1 - \mu_2$$
: (46.1 - 57.3) $\pm \sqrt{6.67}$ $\sqrt{\frac{55.5}{40}} = -11.2 \pm 3.0$
 $\mu_2 - \mu_3$: 6.9 \pm 3.3
 $\mu_1 - \mu_3$: -4.3 \pm 3.3

The means are all different from one another.

Treatment 3: Sample mean vector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$; sample covariance matrix $\begin{bmatrix} 2 & -4/3 \\ -4/3 & 4/3 \end{bmatrix}$

$$S_{pooled} = \begin{bmatrix} 1.6 \\ -1.4 \end{bmatrix}$$

b)
$$T^2 = [2-3, 4-2] \left[\left(\frac{1}{3} + \frac{1}{4} \right) \begin{bmatrix} 1.6 & -1.4 \\ -1.4 & 2 \end{bmatrix} \right]^{-1} \begin{bmatrix} 2-3 \\ 4-2 \end{bmatrix} = 3.88$$

$$\frac{(n_1+n_2-2)p}{(n_1+n_2-p-1)} F_{p,n_1+n_2-p-1}(.01) = \frac{(5)2}{4} (18) = 45$$

Since $T^2 = 3.88 < 45$ do not reject $H_0 = 0$ at the $\alpha = .01$ level.

c) 99% simultaneous confidence intervals:

$$\mu_{21} - \mu_{31}$$
: (2-3) $\pm \sqrt{45} \sqrt{(\frac{1}{3} + \frac{1}{4})1.6} = -1 \pm 6.5$

$$\mu_{22} - \mu_{32}$$
: 2 ± 7.2

6.7
$$T^2 = [74.4 \ 201.6]$$
 $\left[\left(\frac{1}{45} + \frac{1}{55} \right) \begin{bmatrix} 10963.7 & 21505.5 \\ 21505.5 & 63661.3 \end{bmatrix} \right]^{-1} \begin{bmatrix} 74.4 \\ 201.6 \end{bmatrix} = 16.1$

$$\frac{(n_1+n_2-2)p}{n_1+n_2-p-1} F_{p,n_1+n_2-p-1}(.05) = 6.26$$

Since $T^2 = 16.1 > 6.26$ reject $H_0: \mu_1 - \mu_2 = 0$ at the $\alpha = .05$ level.

$$\hat{\mathbf{a}} \propto S_{\text{pooled}}^{-1} (\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} .0017 \\ .0026 \end{bmatrix}$$

6.8 a) For first variable:

observation = mean + treatment effect + residual
$$\begin{bmatrix} 6 & 5 & 8 & 4 & 7 \\ 3 & 1 & 2 \\ 2 & 5 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 2 & 2 & 2 & 2 \\ -2 & -2 & -2 \\ -1 & -1 & -1 & -1 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 2 & -2 & 1 \\ 1 & -1 & 0 \\ -1 & 2 & 0 & -1 \end{bmatrix}$$

$$SS_{obs} = 246 \qquad SS_{mean} = 192 \qquad SS_{tr} = 36 \qquad SS_{res} = 18$$

For second variable:

Cross product contributions:

b) MANOVA table:

Source of Variation	SSP		d.f.	•
Treatment	B = 36 48	48 84	3 - 1	= 2
Residual	W = \begin{bmatrix} 18 \\ -13 \end{bmatrix}	-13 18	5 + 3 + 4 -	3 = 9
Total (corrected)	54 35	35 102	1	1

c)
$$\Lambda^* = \frac{|W|}{|B+W|} = \frac{155}{4283} = .0362$$

Using Table 6.3 with p = 2 and g = 3

$$\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right)\left(\frac{\Sigma n_{\varrho}-g-1}{g-1}\right) = 17.02.$$

Since $F_{4,16}(.01) = 4.77$ we conclude that treatment differences exist at $\alpha = .01$ level.

Alternatively, using Bartlett's procedure,

$$-(n-1-\frac{(p+q)}{2}) \ln \Lambda^* = -(12-1-\frac{5}{2}) \ln(.0362) = 28.209$$

Since $\chi_{+}^{2}(.01) = 13.28$ we again conclude treatment differences exist at $\alpha = .01$ level.

6.9 For any matrix C

and
$$\frac{d}{dj} = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{di} = C(\frac{1}{n} \sum_{i=1}^{n} x_{i}) = C \frac{1}{n}$$

$$\frac{d}{dj} - \frac{1}{n} = C(\frac{1}{n} \sum_{i=1}^{n} x_{i})$$

$$S_{d} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{d}{di} - \frac{1}{n} \cdot \frac{d}{di} - \frac{1}{n} \cdot \frac{1}{n-1} \sum_{i=1}^{n} \frac{d}{di} - \frac{1}{n-1} \cdot \frac{1}{n} \cdot \frac{1}{n-1} \cdot \frac{1}{n-$$

6.10
$$(\bar{x}_{1})'[(\bar{x}_{1}-\bar{x})\underline{u}_{1} + \dots + (\bar{x}_{g}-\bar{x})\underline{u}_{g}]$$

$$= \bar{x}[(\bar{x}_{1}-\bar{x})n_{1} + \dots + (\bar{x}_{g}-\bar{x})n_{g}]$$

$$= \bar{x}[n_{1}\bar{x}_{1} + \dots + n_{g}\bar{x}_{g}-\bar{x}(n_{1} + \dots + n_{g})]$$

$$= \bar{x}[(n_{1} + \dots + n_{g})\bar{x} - \bar{x}(n_{1} + \dots + n_{g})] = 0$$

6.11
$$L(\mu_1, \mu_2, \pm) = L(\mu_1, \pm)L(\mu_2, \pm)$$

$$= \left[\frac{1}{(n_1+n_2)p} \frac{1}{2} \frac{n_1+n_2}{|t|^{\frac{n_1+n_2}{2}}} \right] \exp \left\{ -\frac{1}{2} \left(\operatorname{tr} \ t^{-1} [(n_1-1)S_1+(n_2-1)S_2] \right) + n_1 (\bar{x}_1 - \mu_1)^{\frac{1}{2}} t^{-1} (\bar{x}_2 - \mu_2)^{\frac{1}{2}} + n_2 (\bar{x}_2 - \mu_2)^{\frac{1}{2}} t^{-1} (\bar{x}_2 - \mu_2)^{\frac{1}{2}} \right\}$$

using (4-16) and (4-17). The likelihood is maximized with respect to μ_1 and μ_2 at $\hat{\mu}_1 = \bar{x}_1$ and $\hat{\mu}_2 = \bar{x}_2$ respectively and with respect to \hat{x} at

$$\frac{2}{7} = \frac{1}{n_1 + n_2} [(n_1 - 1)S_1 + (n_2 - 2)S_2] = \left(\frac{n_1 + n_2 - 2}{n_1 + n_2}\right) S_{pooled}$$

(For the maximization with respect to \ddagger see Result 4.10 with $b = \frac{n_1 + n_2}{2}$ and $B = (n_1 - 1)S_1 + (n_2 - 2)S_2$)

6.13 a) and b) For first variable:

For second variable:

Sum of cross products:

$$SCP_{tot} = SCP_{mean} + SCP_{fac 1} + SCP_{fac 2} + SCP_{res}$$

 $227 = 36 + 148 + 51 - 8$

c) MANOVA table:

Source of Variation	SSP	d.f.
Factor 1	[104 148] [148 248]	g1 = 3 - 1 = 2
Factor 2	90 51 51 54	b-1=4-1=3
Residual	14 -8 -8 30	(g-1)(b-1) = 6
Total (Corrected)	$\begin{bmatrix} 208 & 191 \\ 191 & 332 \end{bmatrix}$	gb - 1 = 11

d) We reject $H_0: \tau_1 = \tau_2 = \tau_3 = 0$ at $\alpha = .05$ level since

$$- [(g-1)(b-1) - (\frac{p+1-(g-1)}{2})] \ln \Lambda^* = -[6 - \frac{3-2}{2}] \ln \left(\frac{|SS_{res}|}{|SSP_{fac}|^{+ SSP_{res}}} \right)$$

$$= -5.5 \ln \left(\frac{356}{13204} \right) = 19.87 > \chi_*^2(.05) = 9.49$$

and conclude there are factor 1 effects.

We also reject $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ at the $\alpha = .05$ level since

$$- [(g-1)(b-1) - (\frac{p+1-(b-1)}{2}) \ln \Lambda^* = -[6 - \frac{3-3}{2}] \ln \left(\frac{|SSP_{res}|}{|SSP_{fac} 2 + SSP_{res}|} \right)$$

$$= -6 \ln \left(\frac{356}{6887} \right) = 17.77 > \chi_6^2 (.05) = 12.59$$

and conclude there are factor 2 effects.

6.14 b) MANOVA Table:

c)

Source of Variation	SSP	d.f.
Factor 1	496 184 184 208	2
Factor 2	[36 24] 24 36]	3
Interaction	[32 0] 0 44]	.
Residual	312 -84 -84 400	12
Total (Corrected)	876 124 124 688	23
ince -[gb(n-1)-(p	F1 - (g-1)(b-1))/2]&nA*:	= -13.52 n $\frac{ SSP_{res} }{ SSP_{int} + SSP_{res} }$

= -13.52n(.808) = 2.88 <
$$\chi_{12}^2$$
(.05) = 21.03 we do not reject
 $H_0: Y_{11} = Y_{12} = \dots = Y_{34} = 0$ (no interaction effects) at the α = .05 level.

Since

$$-[gb(n-1)-(p+1-(g-1))/2] \ln \Lambda^* = -11.5 \ln \left(\frac{|SSP_{res}|}{|SSP_{fac}|^{+} |SSP_{res}|} \right)$$

= -11.5
$$\ln(.2447)$$
 = 16.19 > $\chi^2(.05)$ = 9.49 we reject

$$H_0:\tau_1 = \tau_2 = \tau_3 = 0$$
 (no factor I effects) at the $\alpha = .05$

level.

Since

$$-[gb(n-1)-(p+1-(b-1))/2]ln\Lambda^* = -12ln\left(\frac{|SSP_{res}|}{|SSP_{fac} 2 + SSP_{res}|}\right)$$

$$= -12 \ln(.7949) = 2.76 < \chi_6^2(.05) = 12.59$$
 we do not reject

$$H_0:\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$
 (no factor 2 effects) at the

 $\alpha = .05$ level.

6.15 Example 6.11, g = b = 2, n = 5;

a) For
$$H_0: \tau_1 = \tau_2 = 0$$
, $\Lambda^* = .3819$
Since

$$-[gb(n-1)-(p+1-(g-1))/2] \ln \Lambda^{*} = -14.5 \ln(.3819) =$$

$$= 13.96 > \chi_{3}^{2} (.05) = 7.81,$$

we <u>reject</u> H_0 at α = .05 level. For H_0 : β_1 = β_2 = 0. Δ^* = .5230 and -14.52n (.5230) = 9.40. Again we reject H_0 at α = .05 level. These results are consistent with the exact F tests.

6.16
$$H_0: C\mu = 0; H_1: C\mu \neq 0$$
 where $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

Summary statistics:

$$\bar{x} = \begin{bmatrix} 1906.1 \\ 1749.5 \\ 1509.1 \\ 1725.0 \end{bmatrix}$$
; $S = \begin{bmatrix} 105625 & 94759 & 87249 & 94268 \\ & 101761 & 76166 & 81193 \\ & & 91809 & 90333 \\ & & & 104329 \end{bmatrix}$

$$T^2 = n(C\bar{x})'(CSC')^{-1}(C\bar{x}) = 254.7$$

$$\frac{(n-1)(q-1)}{(n-q+1)} F_{q-1,n-q+1}(\alpha) = \frac{(30-1)(4-1)}{(30-4+1)} F_{3,27}(.05) = 9.54$$

Since $T^2 = 254.7 > 9.54$ we reject H_0 at $\alpha = .05$ level. 95% simultaneous confidence interval for "dynamic" versus "static" means $(\mu_1 + \mu_2) - (\mu_3 + \mu_4)$ is, with $C' = [1 \ 1 \ -1 \ -1]$, $C'\bar{x} \pm \sqrt{\frac{(n-1)(q-1)}{(n-q+1)}} \, f_{q-1,n-q+1}(\alpha) \, \sqrt{\frac{c'Sc}{n}}$

$$= 421.5 \pm 174.5$$
 \longrightarrow (247.596)

Fiffecto

Liteus	Contrast
Parity main:	$(\mu_2 + \mu_4) - (\mu_1 + \mu_3)$
Format main:	$(\mu_3 + \mu_4) - (\mu_1 + \mu_2)$
Interaction:	$(\mu_2 + \mu_3) - (\mu_1 + \mu_4)$

Contrast matrix:

$$C = \begin{pmatrix} -1 & 1 & -1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & 1 & -1 \end{pmatrix}$$

Since $T^2 = 135.9 > \frac{31(3)}{29}(2.93) = 9.40$, reject $H_0 : \mathbb{C}\mu = 0$ (no treatment effects) at the 5% level.

(b) 95% simultaneous T^2 intervals for the contrasts:

Parity main effect:
$$-206.4 \pm \sqrt{9.40} \sqrt{\frac{20,598.6}{32}} \rightarrow (-280.3, -125.1)$$

Format main effect: $-307 \pm \sqrt{9.40} \sqrt{\frac{42,939.5}{32}} \rightarrow (-411.4, -186.9)$
Interaction effect: $22.4 \pm \sqrt{9.40} \sqrt{\frac{9,818.5}{32}} \rightarrow (-32.3, 75.0)$

No interaction effect. Parity effect—"different" responses slower than "same" responses. Format effect—"words" slower than "Arabic".

(c) The M model of numerical cognition is a reasonable population model for the scores.

(d) The multivariate normal model is a reasonable model for the scores corresponding to the parity contrast, the format contrast and the interaction contrast.

mean vector for females:

mean vector for males:

X1BAR	X2BAR
4.9006593	4.7254436
4.6229089	4.4775738
3.9402858	3.7031858

SPOOLED 0.0187388 0.0140655 0.0165386

0.0140655 0.0113036 0.0127148 0.0165386 0.0127148 0.0158563

TSQ CVTSQ F CVF PVALUE 85.052001 8.833461 27.118029 2.8164658 4.355E-10

linear combination most responsible for rejection

of HO has coefficient vector:

COEFFVEC -43.72677 -8.710687 67.546415

95% simultaneous CI for the difference

in female and male means

LOWER UPPER 0.0577676 0.2926638 0.0541167 0.2365537 0.1290622 0.3451377

Bonferroni CI

LOWER UPPER 0.0768599 0.2735714 0.0689451 0.2217252 0.1466248 0.3275751

6.19
a)
$$\bar{x}_1 = \begin{bmatrix} 12.219 \\ 8.113 \\ 9.590 \end{bmatrix}$$
; $\bar{x}_2 = \begin{bmatrix} 10.106 \\ 10.762 \\ 18.168 \end{bmatrix}$;

$$\mathbf{S_1} = \begin{bmatrix} 223.0134 & 12.3664 & 2.9066 \\ & 17.5441 & 4.7731 \\ & & 13.9633 \end{bmatrix}$$

$$S_2 = \begin{bmatrix} 4.3623 & .7599 & 2.3621 \\ 25.8512 & 7.6857 \\ 46.6543 \end{bmatrix};$$

$$S_{pooled} = \begin{bmatrix} 15.8112 & 7.8550 & 2.6959 \\ 20.7458 & 5.8960 \\ 26.5750 \end{bmatrix}$$

$$\left[\left(\frac{1}{n_1} + \frac{1}{n_2}\right)S_{\text{pooled}}\right]^{-1} = \begin{bmatrix} 1.0939 -.4084 -.0203 \\ .8745 -.1525 \\ .5640 \end{bmatrix}$$

$$H_0: \mu_1 - \mu_2 = 0$$

Since
$$T^2 = (\bar{x}_1 - \bar{x}_2)^{1} [(\frac{1}{n_1} + \frac{1}{n_2}) S_{pooled}]^{-1} (\bar{x}_1 - \bar{x}_2) = 50.92$$

$$> \frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)} F_{p, n_1 + n_2 - p - 1} (.01) = \frac{(57)(3)}{55} F_{3,55} (.01) = 13,$$

we reject H_0 at the α = .01 level. There is a difference in the (mean) cost vectors between gasoline trucks and diesel trucks.

b)
$$\hat{a} = S_{\text{pooled}}^{-1} (\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} 3.58 \\ -1.88 \\ -4.48 \end{bmatrix}$$

c) 99% simultaneous confidence intervals are:

$$\mu_{11} - \mu_{21}$$
: 2.113 ± 3.790

$$\mu_{12} - \mu_{22}$$
: -2.650 ± 4.341

$$\mu_{13} - \mu_{23}$$
: -8.578 ± 4.913

d) Assumption $\ddagger_1 = \ddagger_2$.

Since S_1 and S_2 are quite different, it may not be reasonable to pool. However, using "large sample" theory $(n_1 = 36, n_2 = 23)$ we have, by Result 6.4,

$$(\bar{\underline{x}}_1 - \bar{\underline{x}}_2 - (\underline{\mu}_1 - \underline{\mu}_2))' [\frac{1}{n_1} s_1 + \frac{1}{n_2} s_2]^{-1} (\bar{\underline{x}}_1 - \bar{\underline{x}}_2 - (\underline{\mu}_1 - \underline{\mu}_2)) \sim \chi_p^2$$

Since

$$(\bar{x}_1 - \bar{x}_2)'[\frac{1}{n_1}S_1 + \frac{1}{n_2}S_2]^{-1}(\bar{x}_1 - \bar{x}_2) = 43.15 > \chi_3^2(.01) = 11.34$$

we reject $H_0: \mu_1 - \mu_2 = 0$ at the $\alpha = .01$ level. This is consistent with the result in part (a).

6.20 (a)

- (b) The output below shows that the analysis does not differ when we delete the observation 31 or when we consider it equals 184. Both tests reject the null hypothesis of equal mean difference. The most critical linear combination leading to the rejection of H_0 has coefficient vector [-3.490238; 2.07955]'and the the linear combination most responsible for the rejection of H_0 is the Tail difference.
- (c) Results below.

Comparing Mean Vectors from Two Populations

Obs. 31 Deleted

T2 25.005014 5.9914645

Reject HO. There is mean difference

95% simultaneous confidence intervals:

LABELCI

LICIMD

LSCIMD

Mean Diff. 1: Mean Diff. 2:

-11.76436 -1.161905 (Tail difference) -5.985685 8.3392202 (Wing difference)

RESULT COEF

Coefficient Vector:

-3.490238

2.07955

Comparing Mean Vectors from Two Populations

T2 C 25.662531 5.9914645

Reject HO. There is mean difference

95% simultaneous confidence intervals:

LABELCI LICIMD LSCIMD

Mean Diff. 1: -11.78669 -1.27998 Mean Diff. 2: -6.003431 8.1812088

RESULT COEF

Coefficient Vector: -3.574268 2.1220203

(d) Female birds are generally larger, since the confidence interval bounds for difference in Tails (Male - Female) are negative and the confidence interval for difference in Wings includes zero, indicating no significance difference.

- 6.21 (a) The (4,2) and (4,4) entries in S_1 and S_2 differ considerably. However, $n_1 = n_2$ so the large sample approximation amounts to pooling.
 - (b) $H_0: \mu_1 \mu_2 = 0$ and $H_1: \mu_1 \mu_2 \neq 0$ $T^2 = 15.830 > \frac{(38)(4)}{35} F_{4,35}(.05) = 11.47$

so we reject H_0 at the α = .05 level.

(c)
$$\hat{z} = s_{\text{pooled}}^{-1} (\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} -.24 \\ .16 \\ -3.74 \\ .01 \end{bmatrix}$$

- Looking at the coefficients $\hat{a}_i\sqrt{s_{ii,pooled}}$, which apply to the standardized variables, we see that X_2 : long term interest rate has the largest coefficient and therefore might be useful in classifying a bond as "high" or "medium" quality.
- (e) From (b), $T^2 = 15.830$. Have p = 4 and $v = \frac{4+16}{.53556} = 37.344$ so, at the 5% level, the critical value is

$$\frac{vp}{v-p+1}F_{p,v-p+1}(.05) = \frac{37.344(4)}{37.344-4+1}F_{4,37,344-4+1}(.05) = \frac{149.376}{34.344}(2.647) = 11.513$$

Since $T^2 = 15.830 > 11.513$, reject $H_0: \mu_1 - \mu_2 = 0$, the same conclusion reached in (b). Notice the critical value here is only slightly larger than the critical value in (b).

6.22 (a) The sample means for female and male are:

$$\overline{x}_F = \begin{bmatrix} 0.3136 \\ 5.1788 \\ 2.3152 \\ 38.1548 \end{bmatrix}, \quad \overline{x}_M = \begin{bmatrix} 0.3972 \\ 5.3296 \\ 3.6876 \\ 49.3404 \end{bmatrix}.$$

The Hotelling's $T^2 = 96.487 > 11.00$ where 11.00 is a critical point corresponding to $\alpha = 0.05$. Therefore, we reject $H_0: \mu_1 - \mu_2 = 0$. The coefficient of the linear combination of most responsible for rejection is (-95.600, 6.145, 5.737, -0.762)'.

(b) The 95% simultaneous C. I. for female mean -male mean:

$$\begin{bmatrix} -0.1697234, & 0.00252336 \\ -1.4650835, & 1.16348346 \\ -1.8760572, & -0.8687428 \\ -17.032834, & -5.3383659 \end{bmatrix}$$

(c) We cannot extend the obtained result to the population of persons in their midtwenties. Firstly this was a self selected sample of volunteers (friends) and is not even a random sample of graduate students. Further, graduate students are probably more sedentary than the typical persons of their age.

6.23
$$n_{1} = n_{2} = n_{3} = 50; \quad p = 2, \quad g = 3 \quad \left(\text{sepal width and petal width} \right)$$

$$\bar{x}_{1} = \begin{bmatrix} 3.428 \\ .306 \end{bmatrix}; \quad s_{1} = \begin{bmatrix} .14364 & -.00474 \\ .18576 \end{bmatrix}$$

$$\bar{x}_{2} = \begin{bmatrix} 2.770 \\ 1.326 \end{bmatrix}; \quad s_{2} = \begin{bmatrix} .09860 & .04128 \\ .03920 \end{bmatrix}$$

$$\bar{x}_{3} = \begin{bmatrix} 2.974 \\ 2.026 \end{bmatrix}; \quad s_{3} = \begin{bmatrix} .10368 & .04764 \\ .07563 \end{bmatrix}$$

MANOVA Table:

Source	SSP	d.f.
Treatment	$B = \begin{bmatrix} 11.344 & -21.820 \\ & 75.352 \end{bmatrix}$	2
Residual	$W = \begin{bmatrix} 16.950 & 4.125 \\ & 14.729 \end{bmatrix}$	147
Total	B+W = \[28.294 -17.695 \] 90.081	149

$$\Lambda^* = \frac{|W|}{|B+W|} = \frac{232.64}{2235.64} = .104$$

Since
$$\left(\frac{\Sigma n_{\chi}-p-2}{p}\right)\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) = 153.3 > 2.37 = F_{4,292}(.05)$$

we reject H_0 : $\tau_1 = \tau_2 = \tau_3$ at the $\alpha = .05$ level.

6.24 Wilks' lambda:
$$\Lambda^* = .8301$$
. Since $g = 3$, $\left(\frac{90 - 4 - 2}{4}\right) \left(\frac{1 - \sqrt{.8301}}{\sqrt{.8301}}\right) = 2.049$ is an F

value with 8 and 168 degrees of freedom. Since p-value = P(F > 2.049) = .044, we would just reject the null hypothesis $H_0: \underline{\tau}_1 = \underline{\tau}_2 = \underline{\tau}_3 = \underline{0}$ at the 5% level implying there is a time period effect.

F statistics and p-values for ANOVA's:

	<u>F</u>	<i>p</i> -value
MaxBrth:	3.66	.030
BasHght:	0.47	.629
BasLgth:	3.84	.025
NasHght:	0.10	.901

Any differences over time periods are probably due to changes in maximum breath of skull (MaxBrth) and basialveolar length of skull (BasLgth).

95% Bonferroni simultaneous intervals: m = pg(g-1)/2 = 12, $t_{87}(.05/24) = 2.94$

BasBrth
$$au_{11} - au_{21}: -1 \pm 2.94 \sqrt{\frac{1785.4}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow -1 \pm 3.44$$
 $au_{11} - au_{31}: -3.1 \pm 3.44$
 $au_{21} - au_{31}: -2.1 \pm 3.44$

BasHght $au_{12} - au_{22}: 0.9 \pm 2.94 \sqrt{\frac{1924.3}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow 0.9 \pm 3.57$
 $au_{12} - au_{32}: -0.2 \pm 3.57$
 $au_{22} - au_{32}: -1.1 \pm 3.57$

BasLgth $au_{13} - au_{23}: 0.10 \pm 2.94 \sqrt{\frac{2153}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow 0.10 \pm 3.78$
 $au_{13} - au_{33}: 3.14 \pm 3.78$
 $au_{23} - au_{33}: 3.03 \pm 3.78$

NasHgth $au_{14} - au_{24}: 0.30 \pm 2.94 \sqrt{\frac{840.2}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow 0.30 \pm 2.36$
 $au_{14} - au_{34}: -0.03 \pm 2.36$
 $au_{24} - au_{34}: -0.33 \pm 2.36$

All the simultaneous intervals include 0. Evidence for changes in skull size over time is marginal. If changes exist, then these changes might be in maximum breath and basialveolar length of skull from time periods 1 to 3.

The usual MANOVA assumptions appear to be satisfied for these data.

6.25

Without transforming the data, $\Lambda^* = |W| = .1159$ and F = 18.98. |B + W|

After transformation, $\Lambda^* = .1198$ and $F = 18.52 > F_{10.98}(.05) = 1.93$ There is a clear need for transforming the data to make the hypothesis tenable.

To test for parallelism, consider H_{01} : $C\mu_1 = C\mu_2$ with C given by (6-61).

$$C(\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} -.413 \\ -.167 \\ -.036 \end{bmatrix}; \quad (CS_{pooles}C')^{-1} = \begin{bmatrix} 1.674 & .947 & .616 \\ & 2.014 & 1.144 \\ & & 2.341 \end{bmatrix}$$

 $T^2 = 9.58 > c^2 = 8.0$, we reject H_0 at the $\alpha = .05$ level. The excess electrical usage of the test group was much lower than that of the control group for the 11 A.M., 1 P.M. and 3 P.M. hours. The similar 9 A.M. usage for the two groups contradicts the parallelism hypothesis.

- 6.27 a) Plots of the husband and wife profiles look similar but seem disparate for the level of "companionate love that you feel for your partner".
 - b) Parallelism hypothesis $H_0: C\mu_1 = C\mu_2$ with C given by (6-61).

$$C(\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} -.13 \\ -.17 \\ .33 \end{bmatrix}; \quad CS_{pooled}C' = \begin{bmatrix} .685 & .733 & .029 \\ & .870 & -.028 \\ & .095 \end{bmatrix}$$

For α = .05, c^2 = 8.7 (see (6-62)). Since T^2 = 19.58 > c^2 = 8.7 we reject H_0 at the α = .05 level.

6.28 $T^2 = 106.13 > 16.59$. We reject $H_0: \mu_1 - \mu_2 = 0$ at 5% significance level. There is a significant difference in the two species.

Sample Mean for L.torrens and L.carteri:

L.torrens	L.carteri	Difference
96.457	99.343	-2.886
42.914	43.743	-0.829
35.371	39.314	-3.943
14.514	14.657	-0.143
25.629	30.000	-4.371
9.571	9.657	-0.086
9.714	9.371	0.343

Pooled Sample Covariance Matrix:

```
6.078 3.675
                                  2.426
                                         2.649
       14.595
                            9.573
36.008
       16.639 2.764 2.992 6.101
                                 1.053
                                         0.934
                    0.692 1.615 0.211
                                         0.671
               6.437
                                  0.274 0.229
                     3.039 2.407
                                  0.565
                                         0.637
                           13.767
                                   1.213
                                        0.914
                                         0.990
```

Linear Combination of most responsible for rejection of Ho: L.torrens mean - L.carteri mean = 0 is: (0.006, 0.151, -0.854, 0.268, -0.383, -2.187, 2.971)'

95% Simultaneous C. I. for L.torrens mean - L.carteri mean:

```
UPPER
LOWER
-8.73
         2.96
-4.80
         3.14
-6.41
        -1.47
-1.84
         1.55
        -0.76
-7.98
         0.99
-1.16
-0.63
         1.31
```

The third and fifth components are most responsible for rejecting H_0 . The χ^2 plots look fairy straight.

CHI-SQUARE PLOT FOR L.carteri

6.29

(a).

	XBAR	S
Summary Statistics:	0.02548	0.00366259 0.00482862 0.00154159
Jumped y	0.05784	0.00482862 0.01628931 0.00304801
	0.01056	0.00154159 0.00304801 0.00602526

Hotelling's $T^2 = 5.946$. The critical point is 9.979 and we fail to reject $H_0: \mu_1 - \mu_2 = 0$ at 5% significance level.

(b). (c).

	LUWER	UPPER
Bonferroni C. I.:	-0.0057	0.0566
	-0.0079	0.1235
	-0.0294	0.0505
Simultaneous C. I.:	-0.0128	0.0637
	-0.0228	0.1385
	-0.0385	0.0596

6.30

HOTELLING T SQUARE - 9.0218 P-VALUE 0.3616

				T2 INT	ERVAL	BONFER	RONI
	N	MEAN	STDEV	T	0	TO	
x1	24	0.00012	0.04817	0443	.0445	0283	.0285
x2	24	-0.00325	0.02751	0286	.0221	0195	.0130
xЗ	24	-0.0072	0.1030	1020	.0876	0679	. 0535
×4	24	-0.0123	0.0625	0701	.0455	0493	.0247
x5	24	0.01513	0.03074	0130	.0436	0030	.0333
хб	24	0.00017	0.04689	0430	.0434	0275	.0278

The Bonferroni intervals use t (.00417) = 2.89 and the T intevals use the constant 4.516.

6.31 (a) Two-factor MANOVA of peanuts data

7.1291666667

X3

E =	Error SS&CP Matrix		
	X1	X2	X3
X1	104.205	49.365	76.48
X2	49.365	352.105	121.995
ХЗ	76.48	121.995	94.835
H =	Type III SS&CP Matrix	for FACTOR1	(Location)
	X1	X2	хз
X1	0.7008333333	-10.6575	7.1291666667
X2	-10.6575	162.0675	-108 4125

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall FACTOR1 Effect H = Type III SS&CP Matrix for FACTOR1 E = Error SS&CP Matrix

-108.4125

72.520833333

S=1 $M=0.5$ $N=1$					
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.10651620	11.1843	3	4	0.0205
Pillai's Trace	0.89348380	11.1843	3	4	0.0205
Hotelling-Lawley Trace	8.38824348	11.1843	3	4	0.0205
Roy's Greatest Root	8.38824348	11.1843	3	4	0.0205

H = Ty	pe III SS&CP Matrix	for FACTOR2	(Variety)
	X1	X2	73 X3
X1	196.115	365.1825	42.6275
X2	365.1825	1089.015	414.655
ХЗ	42.6275	414.655	284.10166667

Manova Test Criteria and F Approximations for the Hypothesis of no Overall FACTOR2 Effect H = Type III SS&CP Matrix for FACTOR2 E = Error SS&CP Matrix

S=2 M=0 N=1					
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.01244417	10.6191	6	8	0.0019
Pillai's Trace	1.70910921	9.7924	6	10	0.0011
Hotelling-Lawley Trace	21.37567504	10.6878	6	6	0.0055
Roy's Greatest Root	18.18761127	30.3127	3	5	0.0012

H = Type III SS&CP Matrix for FACTOR1*FACTOR2

	X1	X2	хз
X1	205.10166667	363.6675	107.78583333
X2	363.6675	780.695	254.22
ХЗ	107.78583333	254.22	85.951666667

Manova Test Criteria and F Approximations for the Hypothesis of no Overall FACTOR1*FACTOR2 Effect H = Type III SS&CP Matrix for FACTOR1*FACTOR2 E = Error SS&CP Matrix

S=2 $M=0$ $N=1$					
Statistic	Value	F	Num DF	Den DF	Pr > F
Wilks' Lambda	0.07429984	3.5582	6	8	0.0508
Pillai's Trace	1.29086073	3.0339	6	10	0.0587
Hotelling-Lawley Trace	7.54429038	3.7721	6	6	0.0655
Roy's Greatest Root	6.82409388	11.3735	3	5	0.0113

(b) The residuals for X_2 at location 2 for variety 5 seem large in absolute value, but Q-Q plots of residuals indicate that univariate normality cannot be rejected for all three variables.

CODE	FACTOR1	FACTOR2	PRED1	RES1	PRED2	RES2	PRED3	RES3
a	4 1	5	194.80	0.50	160.40	-7.30	52.55	-1.15
a	1	5	194.80	-0.50	160.40	7.30	52.55	1.15
	2	5	185.05	4.65	130.30	9.20	49.95	5.55
ъ	2	5	185.05	-4.65	130.30	-9.20	49.95	-5.55
C	. 1	6	199.45	3.55	161.40	-4.60	47.80	2.00
С	1	6	199.45	-3.55	161.40	4.60	47.80	-2.00
ď	2	6	200.15	2.55	163.95	2.15	57.25	3.15
đ	2	6	200.15	-2.55	163.95	-2.15	57.25	-3.15
е	1	8	190.25	3.25	164.80	-0.30	58.20	-0.40
e	1	8	190.25	-3.25	164.80	0.30	58.20	0.40
f	2	8			170.30			
f	2	8	200.75	-0.75	170.30	3.50	66.10	1.10

(c) Univariate two factor ANOVAs follow. Evidence of variety effect and, for X_1 = yield and X_2 = sound mature kernel, a location*variety interaction.

Dependent Variable: yield

DF			Mean Square	F Value	Pr > F
5	401.917	75000	80.3835000	4.63	0.0446
6	104.205	50000	17.3675000		
11	506.122	25000			
Coef	f Var	Root	MSE yield Me	ean	
2.1	36324	4.167	7433 195.07	750	
DF	Туре І	II SS	Mean Square	F Value	Pr > F
	0.700	ายสสส	0.7008333	0.04	0.8474
9			-	5.65	0.0418
2			102.5508333	5.90	0.0382
	5 6 11 Coef 2.13 DF 1 2	DF Squ 5 401.917 6 104.209 11 506.122 Coeff Var 2.136324 DF Type II 1 0.700 2 196.119	5 401.9175000 6 104.2050000 11 506.1225000 Coeff Var Root 2.136324 4.167 DF Type III SS 1 0.7008333 2 196.1150000	DF Squares Mean Square 5 401.9175000 80.3835000 6 104.2050000 17.3675000 11 506.1225000 Coeff Var Root MSE yield Me 2.136324 4.167433 195.07 DF Type III SS Mean Square 1 0.7008333 0.7008333 2 196.1150000 98.0575000	DF Squares Mean Square F Value 5 401.9175000 80.3835000 4.63 6 104.2050000 17.3675000 11 506.1225000 Coeff Var Root MSE yield Mean 2.136324 4.167433 195.0750 DF Type III SS Mean Square F Value 1 0.7008333 0.7008333 0.04 2 196.1150000 98.0575000 5.65

Dependent Variable: sdmatker

-	Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model	5	2031.777500	406.355500	6.92	0.0177
	Error	6	352.105000	58.684167		
	Corrected Total	11	2383.882500			
	R-Square	Coeff	Var Root	MSE sdmatker	Mean	
	0.852298	4.83	2398 7.660	559 158.	5250	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
				Haan Couppo	F Value	Pr > F
	Source	DF	Type III SS	Mean Square	1 value	,, - ,
		1:	162.067500	162.067500	2.76	0.1476
	location	2	1089.015000	544.507500	9.28	0.0146
	variety	2	780.695000	390.347500	6.65	0.0300
	location*variety		700.055000			
			The GLM Procedu	ıre		
Depe	ndent Variable: seedsize					
			Sum of			
		DF	Squares	Mean Square	F Value	Pr > F
	Source	Dr	Oqual ou			
	Model	5	442.5741667	88.5148333	5.60	0.0292
	Error	6	94.8350000	15.8058333		
	Corrected Total	11	537.4091667			
					Noon	
	R-Square	Coeff	Var Root	MSE seedsize	меан	
	0.823533	7.18	8166 3.975	5655 55.	30833	
	Source	DF	Type III SS	Mean Square	F Value	Pr > F
	laadion	1.	72.5208333	72.5208333	4.59	0.0759
	location	2	284.1016667	142.0508333	8.99	0.0157
	variety	2	85.9516667	42.9758333	2.72	0.1443
	location*variety	<u> </u>	00.00.007			

(d) Bonferroni simultaneous comparisons of variety. Only varieties 5 and 8 differ, and they differ only on X_3 .

Bonferroni (Dunn) T tests for variable: X1
Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 38.66333
Critical Value of T= 3.01576
Minimum Significant Difference= 13.26
Comparisons significant at the 0.05 level are indicated by '***'.

	Simultaneous		Simultaneous
	Lower	Difference	Upper
FACTOR2	Confidence	Between	Confidence
Comparison	Limit	Means	Limit
6 - 8	-8.960	4.300	17.560
6 - 5	-3.385	9.875	23.135
8 - 6	-17.560	-4.300	8.960
8 - 5	-7.685	5.575	18.835
5 - 6	-23.135	-9.875	3.385
5 - 8	-18.835	-5.575	7.685

Bonferroni (Dunn) T tests for variable: X2
Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 141.6
Critical Value of T= 3.01576
Minimum Significant Difference= 25.375
Comparisons significant at the 0.05 level are indicated by '***'.

		Simultaneous		Simultaneous
		Lower	Difference	Upper
FAC	TOR2	Confidence	Between	Confidence
Comp	arison	Limit	Means	Limit
8	- 6	-20.500	4.875	30.250
8	- 5	-3.175	22.200	47.575
6	- 8	-30.250	-4.875	20.500
6	- 5	-8.050	17.325	42.700
5	- 8	-47.575	-22.200	3.175
5	- 6	-42.700	-17.325	8.050

Bonferroni (Dunn) T tests for variable: X3
Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 22.59833
Critical Value of T= 3.01576
Minimum Significant Difference= 10.137
Comparisons significant at the 0.05 level are indicated by '***'.

	Simultaneous		Simultaneous	5	
		Lower	Difference	Upper	
FACTOR2		Confidence	Between	Confidence	
Cc	mparison	Limit	Means	Limit	
8	- 6	-0.512	9.625	19.762	
8	- 5	0.763	10.900	21.037	***
6	- 8	-19.762	-9.625	0.512	
6	- 5	-8.862	1.275	11.412	
5	- 8	-21.037	-10.900	-0.763	***
5	- K	-11 A19	-1 275	8 867	

6.32 (a) MANOVA for Species: Wilks' lambda $\Lambda_1^* = .00823$

F = 5.011; p-value = P(F > 5.011) = .173

 $F_{4.2}(.05) = 19.25$

Do not reject H_0 : No species effects

MANOVA for Nutrient: Wilks' lambda $\Lambda_2^* = .31599$

$$F = 1.082$$
; p -value = $P(F > 1.082) = .562$

 $F_{2.1}(.05) = 199.5$

Do not reject H_0 : No nutrient effects

(b) Minitab output for the two-way ANOVA's:

560CM

Analysis of Variance for 560CM

Source	DF	SS	MS	F	P
Spec	2	47.476	23.738	10.06	0.090
Nutrient	1	8.260	8.260	3.50	0.202
Error	2	4.722	2.361	•	
Total	5	60.458			

<u>720CM</u>

Analysis of Variance for 720CM

Source	DF	SS	MS	F	P
Spec	2	262.239	131.119	28.82	0.034
Nutrient	.1	4.489	4.489	0.99	0.425
Error	2	9.099	4.550		
Total	5	275.827			

The ANOVA results are mostly consistent with the MANOVA results. The exception is for 720CM where there appears to be Species effects. A look at the data suggests the spectral reflectance of Japanese larch (JL) at 720 nanometers is somewhat larger than the reflectance of the other two species (SS and LP) regardless of nutrient level. This difference is not as apparent at 560 nanometers.

For MANOVA, the value of Wilks' lambda statistic does not indicate Species effects. However, Pillai's trace statistic, 1.6776 with F = 5.203 and p-value = .07, suggests there may be Species effects. (For Nutrient, Wilks' lambda and Pillai's trace statistic give the same F value.) For larger sample sizes, Wilks' lambda and Pillai's trace statistic would give essentially the same result for all factors.

6.33 (a) MANOVA for Species: Wilks' lambda $\Lambda_1^* = .06877$

$$F = 36.571$$
; p -value = $P(F > 36.571) = .000$

$$F_{4.52}(.05) = 2.55$$

Reject H_0 : No species effects

MANOVA for Time:

Wilks' lambda
$$\Lambda_2^* = .04917$$

$$F = 45.629$$
; p -value = $P(F > 45.629) = .000$

$$F_{4,52}(.05) = 2.55$$

Reject H_0 : No time effects

MANOVA for Species*Time: Wilks' lambda $\Lambda_{12}^* = .08707$

$$F = 15.528$$
; p -value = $P(F > 15.528) = .000$

$$F_{8,52}(.05) = 2.12$$

Reject H₀: No interaction effects

(b) A few outliers but, in general, residuals approximately normally distributed (see histograms below). Observations are likely to be positively correlated over time. Observations are not independent.

Histogram of the Residuals (response is 560nm)

Histogram of the Residuals (response is 720nm)

(c) Interaction shows up for the 560nm wavelength but not for the 720nm wavelength. See the Minitab ANOVA output below.

Analysis of Variance for 560nm

Source	DF	SS	MS	F	D
Species	2	965.18	482.59	169.97	0.000
Time	2	1275.25	637.62	224.58	0.000
Species*Time	. 4	795.81	198.95		0.000
Error	27	76.66	2.84	, 0.07	0.000
Total	35	3112.90	2.01		

Analysis of Variance for 720nm

			P*		
Source	DF	SS	MS	F	Þ
Species	2	2026.86	1013.43	15.46	0.000
Time	2	5573.81	2786.90	42.52	0.000
Species*Time	. 4	193.55	48.39	0.74	0.574
Error	27	1769.64	65.54		
Total	35	9563 85			

6.33 (Continued)

- (d) The data might be analyzed using the growth curve methodology discussed in Section 6.4. The data might also be analyzed assuming species are "nested" within date. In this case, an interesting question is: Is spectral reflectance the same for all species for each date?
- 6.34 Fitting a linear growth curve to calcium measurements on the dominant ulna

	XBAR	Grand mean	MLE of beta $[B'Sp^{-}(-1)B]^{-}(-1)$
	72.3800 69.28	375 71.1939	73.4707 70.5049 93.1313 -5.2393
	73.2933 70.65	562 71.8273	
	72.4733 71.18		-1.9035 -0.9818 -5.2393 1.2948
	64.7867 64.53		
		00.2007	
	S1		
		AA —A — A — — .	S2
		06 73.3623 74.5890	
		64 72.9555 71.7728	
		55 71.8907 63.5918	
	74.5890 71.77	28 63.5918 75.4441	86.1111 88.2095 80.5506 81.4156
	Cmaalad		
	Spooled		W = (N-g)*Spooled
		00 81.7003 80.5487	
		48 80.8108 80.2745	2660.749 2756.009 2343.514 2327 961
1	81.7003 80.810	08 79.3694 72.3636	2369.308 2343.514 2301.714 2098.544
1	80.5487 80.274	15 72.3636 78.5328	2335.912 2327.961 2098.544 2277.452
			2021.001 2030.044 2211.402
I	Estimated cova	riance matrix	W1
	7.1816 -0.404		2803.839 2610.438 2271.920 2443.549
	-0.4040 0.099		
	0.0000 0.000		2610.438 2821.243 2464.120 2196.065
			2271.920 2464.120 2531.625 1845.313
	0.0000 0.000	0 -0.3788 0.0936	2443.549 2196.065 1845.313 2556.818

Lambda = |W|/|W1| = 0.201

Since, with $\alpha = 0.01$, $-\left[N - \frac{1}{2}(p - q + g)\right] \log(\Lambda) = 45.72 > \chi^2_{(4-1-1)2}(0.01) = 13.28$, we reject the null hypothesis of a linear fit at $\alpha = 0.01$.

6.35 Fitting a quadratic growth curve to calcium measurements on the dominant ulna, treating all 31 subjects as a single group.

XBAR MLE of beta	[B'Sp^(-1)B]^(-1)
70.7839 71.6039	92.2789 -5.9783 0.0799
71.9323 3.8673	-5.9783 9.3020 -2.9033
71.8065 -1.9404	0.0799 -2.9033 1.0760
64.6548	
S	W = (n-1)*S
94.5441 90.7962 80.0081 78.0676	2836.322 2723.886 2400.243 2342.027
90.7962 93.6616 78.9965 77.7725	2723.886 2809.848 2369.894 2333.175
80.0081 78.9965 77.1546 70.0366	2400.243 2369.894 2314.639 2101.099
78.0676 77.7725 70.0366 75.9319	2342.027 2333.175 2101.099 2277.957
Estimated covariance matrix	W2
3.1894 -0.2066 0.0028	2857.167 2764.522 2394.410 2369.674
-0.2066 0.3215 -0.1003	2764.522 2889.063 2358.522 2387.070
0.0028 -0.1003 0.0372	2394.410 2358.522 2316.271 2093.362
	2369.674 2387.070 2093.362 2314.625

Lambda = |W|/|W2| = 0.7653

Since, with $\alpha = 0.01$, $-\left[n - \frac{1}{2}(p - q + 1)\right] \log(\Lambda) = 7.893 > \chi^2_{4-2-1}(0.01) = 6.635$, we reject the null hypothesis of a quadratic fit at $\alpha = 0.01$.

6.36 Here

$$p = 2$$
, $n_1 = 45$, $n_2 = 55$, $\ln |S_1| = 19.90948$, $\ln |S_2| = 18.40324$, $\ln |S_{pooled}| = 19.27712$

so
$$u = \left[\frac{1}{44} + \frac{1}{54} - \frac{1}{44 + 54}\right] \left[\frac{2(4) + 3(2) - 1}{6(2+1)(2-1)}\right] = .02242$$

and

$$C = (1 - .02242)(98(19.27712) - 44(19.90948) - 54(18.40324)) = 18.93$$

The chi-square degrees of freedom $v = \frac{1}{2}2(3)(1) = 3$ and $\chi_3^2(.05) = 7.81$. Since $C = 18.93 > \chi_3^2(.05) = 7.83$, reject $H_0: \Sigma_1 = \Sigma_2 = \Sigma$ at the 5% level.

6.37 Here

$$p = 3$$
, $n_1 = 24$, $n_2 = 24$, $\ln |S_1| = 9.48091$, $\ln |S_2| = 6.67870$, $\ln |S_{pooled}| = 8.62718$

so
$$u = \left[\frac{1}{23} + \frac{1}{23} - \frac{1}{23 + 23}\right] \left[\frac{2(9) + 3(3) - 1}{6(3+1)(2-1)}\right] = .07065$$

and

$$C = (1 - .07065)(46(8.62718) - 23(9.48091) - 23(6.67870)) = 23.40$$

The chi-square degrees of freedom $v = \frac{1}{2}3(4)(1) = 6$ and $\chi_6^2(.05) = 12.59$. Since $C = 23.40 > \chi_6^2(.05) = 12.59$, reject $H_0: \Sigma_1 = \Sigma_2 = \Sigma$ at the 5% level.

6.38 Working with the transformed data, X_1 = vanadium, X_2 = $\sqrt{\text{iron}}$, X_3 = $\sqrt{\text{beryllium}}$, X_4 = 1/{saturated hydrocarbons}, X_5 = aromatic hydrocarbons, we have p = 5, $n_1 = 7$, $n_2 = 11$, $n_3 = 38$, $\ln |S_1| = -17.81620$, $\ln |S_2| = -7.24900$, $\ln |S_3| = -7.09274$, $\ln |S_{pooled}| = -7.11438$

so
$$u = \left[\frac{1}{6} + \frac{1}{10} + \frac{1}{37} - \frac{1}{6+10+37}\right] \left[\frac{2(25) + 3(5) - 1}{6(5+1)(3-1)}\right] = .24429$$

and

$$C = (1 - .24429)(53(-7.11438) - 6(-17.81620) - 10(-7.24900) - 37(-7.09274)) = 48.94$$

The chi-square degrees of freedom $v = \frac{1}{2}5(6)(2) = 30$ and $\chi_{30}^2(.05) = 43.77$. Since $C = 48.94 > \chi_{30}^2(.05) = 43.77$, reject $H_0: \Sigma_1 = \Sigma_2 = \Sigma_3 = \Sigma$ at the 5% level.

6.39 (a) Following Example 6.5, we have $(\bar{x}_F - \bar{x}_M)' = (119.55, 29.97)$,

$$\left[\frac{1}{28}S_F + \frac{1}{28}S_M\right]^{-1} = \begin{bmatrix} .033186 & -.108533 \\ -.108533 & .423508 \end{bmatrix} \text{ and } T^2 = 76.97. \text{ Since}$$

 $T^2 = 76.97 > \chi_2^2(.05) = 5.99$, we reject $H_0: \mu_F - \mu_M = 0$ at the 5% level.

(b) With equal sample sizes, the large sample procedure is essentially the same as the procedure based on the pooled covariance matrix.

(c) Here p=2,
$$t_{54}(.05/2(2)) \approx z(.0125) = 2.24$$
, $\left[\frac{1}{28}S_F + \frac{1}{28}S_M\right] = \begin{bmatrix} 186.148 & 47.705 \\ 47.705 & 14.587 \end{bmatrix}$, so

 $\mu_{\text{Fl}} - \mu_{\text{MI}}$: 119.55 ± 2.24 $\sqrt{186.148} \rightarrow (88.99, 150.11)$

$$\mu_{\rm F2} - \mu_{\rm M2}$$
: 29.97 ± 2.24 $\sqrt{14.587} \rightarrow$ (21.41, 38.52)

Female Anacondas are considerably longer and heavier than males.

6.41 Three factors: (Problem) Severity, (Problem) Complexity and (Engineer)
Experience, each at two levels. Two responses: Assessment time,
Implementation time. MANOVA results for significant (at the 5% level) effects.

Effect	Wilks' lambda	F	P-value
Severity	.06398	73.1	.000
Complexity	.01852	265.0	.000
Experience	.03694	130.4	.000
Severity*Complexity	.33521	9.9	.004

Individual ANOVA's for each of the two responses, Assessment time and Implementation time, show only the same three main effects and two factor interaction as significant with p-values for the appropriate F statistics less than .01 in all cases. We see that both assessment time and implementation time is affected by problem severity, problem complexity and engineer experience as well as the interaction between severity and complexity. Because of the interaction effect, the main effects severity and complexity are not additive and do not have a clear interpretation. For this reason, we do not calculate simultaneous confidence intervals for the magnitudes of the mean differences in times across the two levels of each of these main effects. There is no interaction term associated with experience however. Since there are only two levels of experience, we can calculate ordinary t intervals for the mean difference in assessment time and the mean difference in implementation time for gurus (G) and novices (N). Relevant summary statistics and calculations are given below.

Error sum of squares and crossproducts matrix = $\begin{bmatrix} 2.222 & 1.217 \\ 1.217 & 2.667 \end{bmatrix}$

Error deg. of freedom: 11

Assessment time: $\bar{x}_G = 3.68, \bar{x}_N = 5.39$

95% confidence interval for mean difference in experience:

$$3.68 - 5.39 \pm 2.201 \sqrt{\frac{2.222}{11} \frac{2}{8}} = -1.71 \pm .49 \rightarrow (-2.20, -1.22)$$

Implementation time: $\bar{x}_G = 6.80, \bar{x}_N = 10.96$

95% confidence interval for mean difference in experience:

$$6.80 - 10.96 \pm 2.201 \sqrt{\frac{2.667}{11} \frac{2}{8}} = -4.16 \pm .54 \rightarrow (-4.70, -3.62)$$

The decrease in mean assessment time for gurus relative to novices is estimated to

be between 1.22 and 2.20 hours. Similarly the decrease in mean implementation time for gurus relative to novices is estimated to be between 3.62 and 4.70 hours.