

Sharing Knowledge

Python The Series: Learning Python and Data Wrangling with Pandas

Open Source Community Sunday, 6th October 2019 Bekasi

Asep Andri Fauzi

Introduce my self

Name : Asep Andri Fauzi

Job : Master's Student,

IPB University, Mayor Statistics

Address: Dramaga, Kota Bogor

Activities : Training Assistance in IYKRA

Freelance Statistics Consultant

Head of Scientific Division HIMPRO STK IPB

Email : <u>asepandrif@gmail.com</u>

Disclaimer

- Seluruh sintaks ditulis agar dapat dieksekusi oleh Python 3
- Materi dalam slide ini hanya pemantik, banyak diskusi dilakukan secara langsung
- Materi dalam slide ini bersifat pengantar sehingga tidak sangat lengkap
- Beberapa sintaks direproduksi dari website resmi Python dan terinspirasi dari bukubuku tentang Python
- Penulisan baris kode dalam file ini tidak baik karena alasan teknis
- Tidak semua kodingan yang didiskusikan ditulis di sini

Tujuan kita untuk hari ini: Pengantar

- 1. Mengenal Python dan lingkungannya
- 2. Mengerti beberapa bahasa Python dasar
- 3. Mengerti teknik-teknik manipulasi data (data wrangling) menggunakan Pandas

Metode belajar: Diskusi terpimpin

Semua orang boleh bertanya dan menjawab dalam topik yang diatur pemateri

Hasil:

Wawasan bertambah dan tergerak untuk ngulik lebih banyak

Which companies use Python?

Sumber: quora.com (2019)

Python's Official Website

https://www.python.org/about/

Applications

Scientific and Numeric

Python is widely used in scientific and numeric computing:

- SciPy is a collection of packages for mathematics, science, and engineering.
- Pandas is a data analysis and modeling library.
- IPython is a powerful interactive shell that features easy editing and recording of a work session, and supports visualizations and parallel computing.
- The <u>Software Carpentry Course</u> teaches basic skills for scientific computing, running bootcamps and providing open-access teaching materials.

Programming language

Bahasa pemrograman yang mudah dibaca (readable) sehingga menjadi bersifat intuitif.

Interpreter

Setiap "baris" perintah akan langsung dieksekusi.

Open Source

Siapapun boleh berkontribusi. Lisensi Python:

PSF LICENSE AGREEMENT FOR PYTHON 3.7.5rc1

Python 2

Python 3

Terjadi beberapa perubahan.

Misalnya, print objek menjadi print(objek)

Video

Mari nonton video ... :D

Sumber: TFiR

Kelahiran 31 January 1956

Kebangsaan Belanda

Pendidikan Magister Matematika dan Ilmu

Komputer, University of

Amsterdam (1982)

Pekerjaan Google (2005 – 2012)

Dropbox (2013 – Sekarang)

Tayangan favorit Monty Python's Flying Circus

Beware with ...

Case Sensitive

A≠a

Shallow Copy

Saat kita menulis:

objek1 = objek2

maka kedua objek akan diletakan pada lokasi yang sama, sehingga perubahan pada salah satu objek dirasakan oleh objek lain.

Identation

Perintah di dalam looping dan pendefinisian fungsi ditulis menjorok ke dalam

Sumber referensi

Bedakan bahasa Python 2 dan 3

2020

Dukungan pada Python 2 akan dihentikan

Before we start, please let me ask: is there any question?

python Coding Style

For Python, <u>PEP 8</u> has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-pleasing <u>coding style</u>.

- Use 4-space indentation, and no tabs.
 - 4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation (easier to read). Tabs introduce confusion, and are best left out.
- Wrap lines so that they don't exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.

- Use blank lines to separate functions and classes, and larger blocks of code inside functions.
- When possible, put comments on a line of their own.
- Use docstrings.
- Use spaces around operators and after commas, but not directly inside bracketing constructs: a = f(1, 2) + g(3, 4).
- Name your classes and functions consistently; the convention is to use UpperCamelCase for classes and lowercase_with_underscores for functions and methods. Always use self as the name for the first method argument (see A First Look at Classes for more on classes and methods).
- Don't use fancy encodings if your code is meant to be used in international environments. Python's default, UTF-8, or even plain ASCII work best in any case.
- Likewise, don't use non-ASCII characters in identifiers if there is only the slightest chance people speaking
 a different language will read or maintain the code.

PENGANTAR TIPE OBJEK DASAR

1 Numbers, Strings, and List

Python as a calculator (Numbers) & assignment

Mencetak (print) hasil

print(123) # fungsi print
123

Penjumlahan dan pengurangan

10 + 10 # penjumlahan

10 + -10 # penjumlahan dengan bilangan negatif

10 - 10 # pengurangan

Perkalian dan pembagian

6 * 3 # perkalian

6 * 1/3 # pekalian dengan hasil bagi

6/3 # pembagian

2 ** 3 # pangkat

25 ** (1/2) # akar pangkat dua

8 ** (1/3) # akar pangkat tiga

Modulus

7 % 2 11 % 3

Operator //

11 // 3 13 // 4

Penugasan (Assignment)

bonus honor = 2000 pajak = 0.025 pendapatan = honor - honor * pajak print(pendapatan)

python Working in strings

String pendek

print('pendek') print("pendek") print("don't")

Tanda \ (Menghilangkan pengaruh "")

print("don\'t") print("\"Siap!\" kata orang itu")

String panjang

Print("" string panjang

Operator +

print("Py" + "thon") prefiks = "di" dasar_1 = "terima" dasar 2 = "tolak" print(prefiks + dasar_1) print(prefiks, dasar 2) print("Py" "thon")

Tanda \ dan r

Tanda \ berguna sebagai penginterpretasi karakter spesial sedangkan r membuat string menjadi terbaca sebagai raw strings (apa adanya) print("ganti baris \n ke bawah") print("C:\invata\nama") # \n turun satu baris print(r"C:\invata\nama")

Working in strings

Indexed

kata_sambutan = "Hello"

kata_sambutan[0] indeks ke 0

kata_sambutan[:2] indeks ke 0 sampai 2-1

kata_sambutan[1:2] indeks ke 1 sampai 2-1

kata_sambutan[1:] indeks ke 1 sampai terakhir

kata_sambutan[-1] indeks ke 1 dari belakang

kata sambutan[-0] indeks ke 0

kata_sambutan[:-3] dari indeks ke 0 sampai -3 -1

← string	0	1	1	е	Н
indeks	4	3	2	1	0
macks	-1	-2	-3	-4	-5

Metode

kata_sambutan.lower(); kata_sambutan.upper()

Fungsi len dan operator in

sambutan = kata_sambutan + ", Pak Febri. Ada yang bias Elen bantu?"
len(sambutan)

"Elen" in sambutan

Working in List

Create list

akurasi = [0.6,0.7, 0.8, 0.9]
kredit = ['macet', 'lancar', 'macet']
feature = [1,2,3,4]
container_1 = list()
container_2 = []
type(container_1) # mengecek tipe

Concatenating (operator +)

akurasi+feature cacah = [1, 3, 5, 7, 9] + [2, 4, 6, 8] dua_list = [akurasi, feature] campur = feature + kredit isistance(campur, str)

Concatenating (append & extend)

akurasi.append(1) # hanya 1 nilai feature.extend([5,6,7])

Indexed

feature[0]
feature[:3]
feature[1:]
dua_list[0][2]

Edited

cacah[1] = 3cacah[1:4] = [9,9,9]

Tambahan infromasi

.append()
.count() method
etc...

Fungsi len

len(feature)
len(dua list)

More on List

akurasi.insert(0,0.2)
akurasi.pop() # menghapus nilai yang ditambahkan
del campur [0] # menghapus nilai pada indeks ke 0
kredit.reverse() # membalik urutan nilai
kredit.count('macet') # menghitung nilai 'macet'
kredit.index('macet) # mencari indeks nilai 'macet'
kredit.sort() # mengurutkan data secara, ascending (reverse = F)

STRUKTUR DATA LAINNYA

2 Range, Tuple, Set, Frozenset dan Dictionary

Range, Tuple

Tuple is **immutable**

Create Range

$$r_1 = range(10)$$

$$r_2 = range(1,10,2)$$

$$r_3 = range(10,0,-1)$$

Create Tuple

$$t_2 = (1/a/2/b)$$

$$t_3 = tuple([1,2,3])$$

$$t_4 = tuple(r_2)$$

Indexed

t[0]

sama seperti List

Tuples may be nested

$$u = t, (1, 2, 3, 4, 5)$$

Tuples are immutable

But they can contain mutable objects

$$v = ([1, 2, 3], [3, 2, 1])$$

More in Tuple

empty = ()

singleton = 'hello', # note trailing comma

len(empty)

len(singleton)

x, y, z = t # sequence unpacking

x; y; z

Set, Frozenset, Dictionary

Frozenset seperti set tapi elemennya tidak bisa ditambah atau dikurangi

Create Set

basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
basket = set('apple', 'orange', 'apple', 'pear', 'orange', 'banana')

Method: add dan remove

basket.add('belimbing')
basket.remove('belimbing')

Operator in

'orange' in basket 'crabgrass' in basket

Set operations on unique letters from two words

a = set('abracadabra')b = set('alacazam')a # unique letters in aa - b # letters in a but not in b

a & b # letters in both a and b

a | b # letters in a or b or both

a ^ b # letters in a or b but not both

Create Set

himp_beku = frozenset(['januari', 'februari', 'maret'])

Dictionary

tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 # insert guido tel['jack'] # print jack's value

Delete and insert in dictionary

del tel['sape'] tel['irv'] = 4127

Convert to list

list(tel) sorted(tel)

Operator in

'guido' in tel 'jack' not in tel

Control Flow and Function

If, for, and while Function

python if Statements

```
if
x = int(input("Please enter an integer: "))
if x < 0:
  x = 0
  print('Negative changed to zero')
elif x == 0:
  print('Zero')
elif x == 1:
  print('Single')
else:
  print('More')
```

pass Statment

```
xx = 1
if xx \% 2 == 0:
  print('genap')
else:
  pass # do nothing
```


for, while Statements

```
For
words = ['cat', 'window', 'defenestrate']
for w in words:
  print(w, len(w))
for w in words[:]:
  if len(w) > 6:
    words.insert(0, w)
bilangan = [11, 12, 13]
for i, nilai in enumerate(bilangan, 1): # start indeks from 1
  print(i, nilai, nilai**2)
While
count = 0
while (count < 9):
 print('The count is:', count)
 count = count + 1
```

Break Statement

```
for n in range(2, 10):
    for x in range(2, n):
        if n % x == 0:
            print(n, 'equals', x, '*', n//x)
            break
    else:
        # loop fell through without finding a factor
        print(n, 'is a prime number')
```

Continue Statement

```
for num in range(2, 10):
   if num % 2 == 0:
     print("Found an even number", num)
     continue
   print("Found a number", num)
```

Function

Just Print

```
def fib(n): # write Fibonacci series up to n
"""Print a Fibonacci series up to n."""
a, b = 0, 1
while a < n:
   print(a, end=' ')
a, b = b, a+b
print()</pre>
```

fib(2000) # call the function

Print with Special Character %s, %d, %.f

```
fibo = "Fibonacci"
suku = 1
def KarakterSpesial():
   print("Deret %s adalah suku ke %d adalah
%.1f" % (fibo, suku, f100[suku-1]))
```

Store Result

```
def fib2(n): # return Fibonacci series up to n
   """Return a list containing the Fibonacci series up to n."""
   result = []
   a, b = 0, 1
   while a < n:
      result.append(a) # see below
      a, b = b, a+b
   return result

f100 = fib2(100) # call it</pre>
```

```
f100 = fib2(100) # call it
f100 # write the result
```

Fungsi lambda

lambda seperti def dengan return sqrt = lambda x: $x^{**}(1/2)$ # membuat fungsi akar

Python Packages

Packages, modules

In addition to the standard library, there is a growing collection of several thousand components (from individual programs and modules to packages and entire application development frameworks), available from the Python Package Index. The following table contains some packages in python.

Module	Keterangan	Function
Built in	Tidak perlu dipanggil	abs(), dict(), dir(), enumerate(), frozenset(), input(), int(), list(), max(), min(), object(), range(), round(), set(), sum(), tuple(), type()
math	Matematika	ceil(), factorial(), fsum(), isfinite(), isinf(), isnan(), exp(), log(), log10(), sqrt()
statistics	Statistika	<pre>mean(), harmonic_mean(), median(), mode(), pstdev(), pvariance(), stdev(), variance()</pre>
сору	Menyalin data	copy(), deepcopy()
pickle	Implementasi	dumps(), loads()
sqlite3	Database	commit(), rollback(), execute(), keys()
numpy	Array computing	array(), linspace(), arrange(), mean(), median(), nanmean(), nanmedian()
pandas	Data manipulation	Series(), DataFrame(), dypes(), index(), columns(), dropna(), fillna(), stack(), aggregate(), groupby, count()
scikit-learn	Machine learning	

Pandas An Introduction

History of Development

In 2008, *pandas* development began at <u>AQR Capital Management</u>. By the end of 2009 it had been <u>open sourced</u>, and is actively supported today by a community of likeminded individuals around the world who contribute their valuable time and energy to help make open source *pandas* possible. Thank you to <u>all of our contributors</u>.

Import library import numpy as np import pandas as pd

Since 2015, *pandas* is a <u>NumFOCUS</u> sponsored project. This will help ensure the success of development of *pandas* as a world-class open-source project.

<u>Pandas</u> adalah pustaka Python yang menyajikan struktur data yang cepat, fleksibel, dan ekspresif dengan tujuan untuk membuat pengolahan data lebih mudah dan intuitif. Pandas dapat menampung tipe data yang heterogen. Tulisan ini hanya berisi sedikit saja tentang pandas. Adapun <u>resep</u> atau tutorial lengkap tentang pandas sudah disediakan oleh pengembang.

Ekosistem pandas sangat besar dan terbuka. Issue tentang pandas dapat dilihat di github pandas dan jika berhadapan dengan persoalan yang belum dapat diatasi kita dapat bertanya (dengan kemungkinan terjawab sangat besar) di stackoverflow. Pengembangan pandas dilakukan oleh banyak orang tapi orang-orang yang tergabung dalam tim core pandas dapat kita lihat di sini. Selain individu, pandas juga disokong oleh institusi Anaconda, Two sigma, dan Paris-Saclay,

Pandas dtype

Pandas dtypes mapping

Pandas dtype	Python type	NumPy type	Usage
object	str	string_, unicode_	Text
int64	int	int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64	Integer numbers
float64	float	float_, float16, float32, float64	Floating point numbers
bool	bool	bool_	True/False values
datetime64	NA	datetime64[ns]	Date and time values
timedelta[ns]	NA	NA	Differences between two datetimes
category	NA	NA	Finite list of text values

Sumber: pbpython.com

Pandas Series

Create Pandas Series

ss = pd.Series([1, 3, 5, np.nan, 6, 8]) type(ss)

Index berupa tanggal

tanggal = pd.date_range('20181222', periods = 10)
dt = pd.Series(np.random.randn(10), index = tanggal)

Index berupa string

dts = pd.Series(np.random.randn(3), index = ['asep', 'andri', 'fauzi'])

Index tidak beraturan

dn1 = pd.Series(np.random.randn(3), index = [10, 4, 12])

Memuat tipe data campuran

dc1 = pd.Series([1,2,'tiga',4, 0.4])

Melihat isi Pandas Series

ss.values # mengakses nilai ss ss.dtypes # mengakses tipe data ss dc1.dtypes

Pandas DataFrame

DataFrame vs Series

df = pd.DataFrame(ss) # perhatikan tampilannya

Mengecek ukuran objek

import sys
print("Ukuran series ss adalah", ss.nbytes, "bytes")
print("Ukuran dataframe df adalah", sys.getsizeof(df),
"bytes")

Create DataFrame

Mengubah dimensi list

```
series = list(range(0,99,10))
df_list = pd.DataFrame(np.reshape(series,(5,2)),
columns = ["x1", "x2"])
```

Membuat dari kamus

Mengubah dimensi Pandas Series

df_series = pd.DataFrame(ss.values.reshape(2,3), columns
= ["s1", "s2", "s3"])

Membuat DataFrame dengan index tertentu

tanggal
nilai = np.random.binomial(n=1, p=0.5, size = 20)
df_indeks = pd.DataFrame(nilai.reshape(10,2), index = tanggal, columns = ['kolom 1', 'kolom 2'])

Melihat "isi" DataFrame


```
df info = pd.DataFrame({'A': 1.,
             'B1': pd.Timestamp('20130102'),
             'B2': pd.date_range("09:00", "10:30", freq="30min").time,
              'C': pd.Series(1, index=list(range(4)), dtype='float32'),
             'D': np.array([3] * 4, dtype='int32'),
             'E': pd.Categorical(["d", "e", "c", "b"]),
             'F': 'foo'})
df_info.info() # informasi penting
df info.dtypes # type data perkolom
df large = pd.DataFrame(np.random.randn(1000,5), # membangkitkan bilangan acak normal baku ukuran 1000 x 5
             index = pd.date range('20000101', periods = 1000),
             columns= ['x1','x2','x3','x4','x5'])
print('Dimensi DataFrame df large adalah', df large.shape)
df large.head(3) # 3 baris pertama
df large.tail(4) # 4 baris terakhir
df large.index # nama index
df large.columns # nama kolom
```


Summary statistic, DataFrame to numpy

Melihat ringkasan statistik

df_large.describe()
df_info.describe()
df_info[['B1','B2','E']].describe()

Convert DataFrame to numpy

numpy_df = df_info.to_numpy()

Practice case: HR Analytics

<u>Dataset</u> description

Variable Definition

employee_id Unique ID for employee

department Department of employee

region Region of employment (unordered)

education Education Level

gender Gender of Employee

recruitment_channel Channel of recruitment for employee

no_of_trainings no of other trainings completed in previous year on soft skills, technical skills etc.

age Age of Employee

previous_year_rating Employee Rating for the previous year

length_of_service Length of service in years

KPIs_met >80% if Percent of KPIs(Key performance Indicators) >80% then 1 else 0

awards_won? if awards won during previous year then 1 else 0

avg_training_score Average score in current training evaluations

is_promoted (Target) Recommended for promotion

Normalisasi

Let's start with normalization.

Here your data z is rescaled such that any specific z will now be $0 \le z \le 1$, and is done through this formula:

$$z = \frac{x - \min(x)}{\max(x) - \min(x)}$$

How to Normalize

Credit: <u>DeFilippi</u> (2018)

Standarisasi

Here your data z is rescaled such that $\mu = 0$ and $\sigma = 1$, and is done through this formula:

$$z=rac{x_i-\mu}{\sigma}$$

Standardization Formula

Credit: DeFilippi (2018)

Mulai Belajar Python

Python adalah bahasa pemrograman yang memungkinkan Anda bekerja lebih cepat dan mengintegrasikan sistem Anda lebih efektif.

Pelajari Sekarang

