Paragraph Ran in the Queries

Paper Title: Improving ductility and strength of high-entropy alloy via multi-directional forging and annealing

Content:

Mechanical properties

Fig. 6 displays the tensile engineering stress –strain curves of different kinds of Fe50Mn30Co10Cr10 samples. All mechanical properties including yield strength (σY), ultimate tensile strength (σUTS), elongation at failure εεf and the product εσUTS×εf are summarized and list in Table 2. It should be noted that σY is measured via drawing a straight line starting at 0.2% of the plastic strain parallel to the initial tangent to the elastic curve. The stress at the point where this line intercepts the stress –strain curve is the yield strength [73]. σ UTS is the maximum stress that a material can withstand before breaking and EEf is the elongation at failure. Among these five Fe50Mn3oCo1oCr10 samples, the MDF sample presents the highest σY (~859 MPa) and σUTS (~1028 MPa) but the lowest $\varepsilon\varepsilon$ f (~11%). After annealing treatments, both σ Y and σ UTS decrease gradually with apparently increased $\varepsilon \varepsilon$ f compared with the MDF sample. The MDF800 and MDF1000 samples exhibit both superior strength and ductility in contrast with the raw sample. The product of σUTS and εεf (εσUTS×εf) is used to evaluate the comprehensive mechanical property of materials [74], [75]. Overall, the MDF1000 sample shows the best mechanical property among these samples with the balanced combination of high σY , σUTS and good $\varepsilon \varepsilon f$.