PARTITIONING BASES OF TOPOLOGICAL SPACES

DÁNIEL T. SOUKUP AND LAJOS SOUKUP*

ABSTRACT. We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a T_3 Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first countable, 0-dimensional, Hausdorff space of size 2^{ω} and weight ω_1 which admits a point countable base without a partition to two bases.

1. Introduction

At the Trends in Set Theory conference in Warsaw, Barnabás Farkas¹ raised the natural question whether one can partition any given base for a topological space into two bases; we will call this property being base resolvable. Note that every space with an isolated is not base resolvable; hence, from now on by space we mean a dense-in-itself topological space. The aim of this paper is to present two streams of results: in the first part of the article, we will show that certain natural classes of spaces are base resolvable. In the second part, we present a method to construct non base resolvable spaces.

The paper is structured as follows: in Section 2, we will start with general observations about bases and we prove that metric spaces and left-or right-separated spaces are base resolvable. This section also serves as an introduction to the methods that will be applied in Section 3 where we prove one of our main results in Theorem 3.6: every T_3 (locally) Lindelöf space is base resolvable.

In Section 4, we investigate base resolvability from a purely combinatorial viewpoint which leads to further results: every hereditarily Lindelöf space (without any separation axioms) is base resolvable and any base for a T_1 topology which is closed to finite unions can be partitioned into two bases, see Theorem 4.6 and 4.7 respectively.

²⁰¹⁰ Mathematics Subject Classification. 54A35, 03E35, 54A25.

Key words and phrases. base, resolvable, partition.

The preparation of this paper was partially supported by OTKA grants K 83726.

^{*}Corresponding author.

¹personal communication

Next in Theorem 5.6, we prove that every base \mathbb{B} for a space X (resolvable or not) contains a large negligible portion, i.e. there is $\mathcal{U} \in [\mathbb{B}]^{|\mathbb{B}|}$ such that $\mathbb{B} \setminus \mathcal{U}$ is still a base for X.

The second part of the paper starts with Section 6; here, we isolate a partition property, denoted by $\mathbb{P} \to (I_{\omega})_{2}^{1}$, of the partial order $\mathbb{P} = (\mathbb{B}, \supseteq)$ associated to a base \mathbb{B} which is closely related to base resolvability. We will construct a partial order \mathbb{P} with this property in Theorem 6.5 and deduce the existence of a T_0 non base resolvable topology (in ZFC) in Corollary 6.13.

Next, in Section 7 we present a ccc forcing (of size ω_1) which introduces a first countable, 0-dimensional, Hausdorff space X of size 2^{ω} and weight ω_1 such that X is not base resolvable. The main ideas of the construction already appear in Section 6 however the details here are much more subtle and the proofs are more technical.

The paper finishes with a list of open problems in Section 8. We remark that Section 7 was prepared by the second author and the rest of the paper is the work of the first author.

The first author would like to thank his PhD advisor, William Weiss, the long hours of useful discussions. Both authors are grateful for the help of all the people they discussed the problems at hand, especially Allan Dow, István Juhász, Arnie Miller, Assaf Rinot, Santi Spadaro, Zoltán Szentmiklóssy and Zoltán Vidnyánszky. Finally, we thank Barnabás Farkas for the excellent question!

2. General results

In this section, we prove some basic results concerning partitions of bases; these proofs will introduce us to the more involved techniques of the upcoming sections.

Definition 2.1. A base \mathbb{B} for a space X is **resolvable** iff it can be decomposed into two bases. A space X is **base resolvable** if every base of X is resolvable.

Recall that by space we will mean a dense-in-itself topological space throughout the paper.

Partitioning sets with additional structure is a highly investigated theme in mathematics; let us cite a classical result of A. H. Stone which is relevant to our case:

Theorem 2.2 (A. H. Stone, [2]). Every partially ordered set (\mathbb{P}, \leq) without maximal elements can be partitioned into two cofinal subsets.

Proposition 2.3. (1) Every base can be partitioned to a cover and a base.

- (2) Every π -base can be partitioned to two π -bases.
- (3) Every neighborhood base can be partitioned to two neighborhood bases.

Proof. To prove (1), note that every cover contains a well founded (with respect to \subset) subcover. Also, well founded families of open sets cannot form neighborhood bases in dense-in-itself spaces; thus, if \mathcal{U} is a well founded cover of X and \mathbb{B} is a base then $\mathbb{B} \setminus \mathcal{U}$ is still a base of X.

Note that (2) and (3) follows from Theorem 2.2.

Now we prove our first general result.

Proposition 2.4. Every space with a σ -disjoint base is base resolvable; in particular, every metrizable space is base resolvable.

Proof. Fix a space X with a base $\cup \mathbb{E}_n$ where each \mathbb{E}_n is a disjoint family; fix an arbitrary base \mathbb{B} as well which we aim to partition.

By induction on $n \in \omega$, construct $\mathbb{B}_{i,n} \subseteq \mathbb{B}$ for i < 2 such that

- (1) $\mathbb{B}_{i,n}$ is well founded for $i < 2, n \in \omega$,
- (2) $\mathbb{B}_{i,n} \cap \mathbb{B}_{j,m} = \emptyset$ if $i, j < 2, n, m \in \omega$ and $(i, n) \neq (j, m)$,
- (3) for every $V \in \mathbb{E}_n$ and i < 2 there is $\mathcal{U} \subseteq \mathbb{B}_{i,n}$ such that $\cup \mathcal{U} = V$.

Note that property (1) assures that $\mathbb{B} \setminus \bigcup \{\mathbb{B}_{i,k} : i < 2, k < n\}$ is still a base of X for each $n < \omega$ thus the induction can be carried out. Let $\mathbb{B}_i = \bigcup \{\mathbb{B}_{i,n} : n \in \omega\}$ for i < 2; it is easy to see that these disjoint families will form a base by property (3).

Note that every σ -disjoint base is point countable, however our example of an irresolvable base constructed in Section 7 is point countable.

A somewhat similar technique, which will be used later as well, gives the following result:

Proposition 2.5. Suppose that a regular space X satisfies $L(X) < \kappa = w(X) = \min\{\chi(X,x) : x \in X\}$. Then X is base resolvable.

Proof. Fix a base \mathbb{B} for X and an enumeration $\{(U_{\alpha}, V_{\alpha}) : \alpha < \kappa\}$ of all pairs of elements $U, V \in \mathbb{B}$ such that $\overline{U} \subseteq V$; without loss of generality, we can suppose that \mathbb{B} has size κ .

By induction on $\alpha < \kappa$ construct $\mathbb{B}_{0,\alpha}, \mathbb{B}_{1,\alpha} \subseteq \mathbb{B}$ such that

- (1) $\mathbb{B}_{0,\alpha} \cap \mathbb{B}_{1,\alpha} = \emptyset$ and $\mathbb{B}_{i,\alpha} \subseteq \mathbb{B}_{i,\beta}$ for $\alpha < \beta < \kappa$ and i < 2,
- (2) there is $\mathcal{U} \subseteq \mathbb{B}_{i,\alpha}$ such that $\overline{U_{\alpha}} \subseteq \cup \mathcal{U} \subseteq V_{\alpha}$ for every i < 2,
- (3) $|\mathbb{B}_{i,\alpha}| \leq L(X) \cdot |\alpha|$ for i < 2.

Note that our assumptions on the space and the inductive hypothesis (3) implies that

$$\mathbb{B} \setminus \bigcup \{ \mathbb{B}_{i,\beta} : \beta < \alpha, i < 2 \}$$

is still a base for X for every $\alpha < \kappa$. It follows that the induction can be carried out and the disjoint families $\mathbb{B}_i = \bigcup \{\mathbb{B}_{i,\alpha} : \alpha < \kappa\}$ form a base for X by (2); thus X is base resolvable.

We end this section by giving further classes of spaces which are base resolvable.

Observation 2.6. Every right or left separated space is base resolvable. Furthermore, the Sorgenfrey line or the Double Arrow space is base resolvable.

Proof. Recall that every neighborhood base can be partitioned into two neighborhood bases by Proposition 2.3. Thus, if \mathbb{B} is a base of X and there is a map $f: \mathbb{B} \to X$ such that $f^{-1}(x)$ is a base at x for any $x \in X$ then by partitioning $f^{-1}(x)$ for each $x \in X$ into two neighborhood bases of x we get a partition of \mathbb{B} into two bases of X. Now, it is straightforward to finish the proof.

3. Lindelöf spaces are base resolvable

Our aim in this section is to prove that T_3 Lindelöf spaces are base resolvable; we start with a definition and some observations while the most important part of the work is done in the proof of Lemma 3.3.

Definition 3.1. Let A, B families of open sets in a space X. We say that A weakly fills B iff for every $U, V \in B$ such that $\overline{U} \subset V$ there is $W \subseteq A$ such that

$$\overline{U} \subseteq \cup \mathcal{W} \subset V$$
.

 \mathcal{A}, \mathcal{B} is called a **weakly good pair** iff \mathcal{A}, \mathcal{B} are disjoint, \mathcal{A} weakly fills \mathcal{B} and \mathcal{B} weakly fills \mathcal{A} .

We remark that in the next section we introduce stronger notions called *filling* and *good pairs*. The following observations summarize the importance of weakly good pairs:

Observation 3.2. Suppose that X is a regular space.

- (1) If (A, B) is a weakly good pair in X then A contains a neighborhood base at x iff B contains a neighborhood base at x, for any $x \in X$.
- (2) If a family of open sets A weakly fills a base \mathbb{B} of X then A is a base as well.
- (3) If $\{A_{\alpha} : \alpha < \kappa\}$ and $\{B_{\alpha} : \alpha < \kappa\}$ are increasing and (A_{α}, B_{α}) is a weakly good pair in X then $(\bigcup_{\alpha < \kappa} A_{\alpha}, \bigcup_{\alpha < \kappa} B_{\alpha})$ is a weakly good pair as well.

We encourage the reader to compare these observations with the proof of Proposition 2.5.

We say that the weakly good pair $(\mathcal{A}', \mathcal{B}')$ extends the weakly good pair $(\mathcal{A}, \mathcal{B})$ iff $\mathcal{A} \subseteq \mathcal{A}'$ and $\mathcal{B} \subset \mathcal{B}'$. A family of weakly good pairs $\{(\mathcal{A}_{\xi}, \mathcal{B}_{\xi}) : \xi < \Theta\}$ is **pairwise disjoint** iff $\mathcal{A}_{\xi} \cap \mathcal{B}_{\zeta} = \emptyset$ for each $\xi, \zeta < \Theta$.

Next, we prove that weakly good pairs can be nicely extended in Lindelöf spaces.

Lemma 3.3. Suppose that X is a T_3 Lindelöf space with a base \mathbb{B} . Given a weakly good pair $(\mathcal{A}, \mathcal{B})$ from elements of \mathbb{B} and a single pair of open sets $\{U, V\}$ such that $\overline{U} \subset V$ there is a weakly good pair $(\mathcal{A}', \mathcal{B}')$ formed by elements of \mathbb{B} extending $(\mathcal{A}, \mathcal{B})$ such that both \mathcal{A}' and \mathcal{B}' weakly fills $\{U, V\}$.

Proof. We will show this essentially by induction on the size of \mathcal{A} and \mathcal{B} however we need to prove something significantly stronger (and more technical) then the statement of the lemma itself.

Let \triangle_{κ} stand for the following statement: <u>for each</u> pairwise disjoint family of weakly good pairs $\{(\mathcal{A}_i, \mathcal{B}_i), (\mathcal{C}_j, \mathcal{D}_j) : i < n, j < k\}$, each a subfamily from \mathbb{B} , such that $|\mathcal{A}_i|, |\mathcal{B}_i| \leq \kappa$ and arbitrary open family \mathcal{E} of size at most κ there is a weakly good pair $(\mathcal{A}, \mathcal{B})$ from \mathbb{B} of size at most κ such that

- $(1) \cup_{i < n} \mathcal{A}_i \subset \mathcal{A} \text{ and } \cup_{i < n} \mathcal{B}_i \subset \mathcal{B},$
- (2) \mathcal{A} and \mathcal{B} weakly fills \mathcal{E} ,
- (3) $\{(\mathcal{A}, \mathcal{B}), (\mathcal{C}_j, \mathcal{D}_j) : j < k\}$ is still pairwise disjoint.

We prove that \triangle_{κ} holds for every infinite κ by induction on κ .

Claim 3.4. \triangle_{ω} holds.

Proof. Fix $\{(\mathcal{A}_i, \mathcal{B}_i), (\mathcal{C}_j, \mathcal{D}_j) : i < n, j < k\}$ and \mathcal{E} as above. By induction on $m \in \omega$ we build increasing $\{\mathcal{A}^m : m \in \omega\}$ and $\{\mathcal{B}^m : m \in \omega\}$ such that $\mathcal{A}^m, \mathcal{B}^m$ are disjoint subfamilies of \mathbb{B} and

- $(1) \mathcal{A}^0 = \cup_{i < n} \mathcal{A}_i, \mathcal{B}^0 = \cup_{i < n} \mathcal{B}_i,$
- (2) $\mathcal{A}^{m+1} \setminus \mathcal{A}^m$ and $\mathcal{B}^{m+1} \setminus \mathcal{B}^m$ are countable well-founded families for each $m \in \omega$,
- (3) $\mathcal{A}^m \cap \mathcal{B}_i = \emptyset, \mathcal{A}^m \cap \mathcal{D}_j = \emptyset$ and $\mathcal{B}^m \cap \mathcal{A}_i = \emptyset, \mathcal{B}^m \cap \mathcal{C}_j = \emptyset$ for $i < n, j < k, m < \omega$.

Furthermore, we will make sure that $\mathcal{A} = \bigcup_{m \in \omega} \mathcal{A}^m$ and $\mathcal{B} = \bigcup_{m \in \omega} \mathcal{B}^m$ forms a weakly good pair and they both weakly fill \mathcal{E} . Therefore, we partition ω into infinite sets $\omega = \bigcup \{D_m : m \in \omega\}$ and at each step we define a surjective map $f_m : D_m \setminus (m+1) \to \{(U, V) \in (\mathcal{A}^m \cup \mathcal{B}^m \cup \mathcal{E})^2 : \mathcal{B}^m \cup \mathcal{E}\}$

 $\overline{U} \subset V$; if $m \in D_l \setminus (l+1)$ and $f_l(m) = (U, V)$ then at step m we extend so that \mathcal{A}^m and \mathcal{B}^m weakly fills $\{U, V\}$.

Now our goal is reduced to construct \mathcal{A}^{m+1} and \mathcal{B}^{m+1} from \mathcal{A}^m and \mathcal{B}^m such that they satisfy (2)-(3) above while they both weakly fill a given $\{U, V\}$. We construct \mathcal{A}^{m+1} , the proof for \mathcal{B}^{m+1} is analogous. Define

$$F_i = \{x \in X : \mathcal{A}_i \text{ contains a neighborhood base at } x\}$$

= $\{x \in X : \mathcal{B}_i \text{ contains a neighborhood base at } x\}$

and

$$G_j = \{x \in X : C_j \text{ contains a neighborhood base at } x\}$$

= $\{x \in X : D_j \text{ contains a neighborhood base at } x\}.$

For every i < 2 and $x \in F_i \cap \overline{U}$ pick $U_{x,i} \in \mathcal{A}_i$ such that $x \in U_{x,i} \subset V$; let $\mathcal{U} = \{U_{x,i} : i < 2, x \in F_i \cap \overline{U}\}$. For j < k and $x \in G_j \cap \overline{U}$ pick $V_{x,j} \in \mathcal{C}_i$ such that $x \in V_{x,j} \subset V$; let $\mathcal{V} = \{V_{x,j} : j < k, x \in F_j \cap \overline{U}\}$. Now note that for every $x \in \overline{U} \setminus \bigcup (\mathcal{V} \cup \mathcal{U})$ there is a neighborhood base for x in $\mathbb{B} \setminus \bigcup_{i < 2, j < k} (\mathcal{B}_i \cup \mathcal{D}_j)$; hence for every $x \in \overline{U} \setminus \bigcup (\mathcal{V} \cup \mathcal{U})$ we can pick $W_x \in \mathbb{B} \setminus \bigcup_{i < 2, j < k} (\mathcal{B}_i \cup \mathcal{D}_j)$ such that $x \in W_x \subset V$; let $\mathcal{W} = \{W_x : x \in \overline{U} \setminus \bigcup (\mathcal{V} \cup \mathcal{U})\}$. Select a countable well-founded subcover $\mathcal{Q} \subset \mathcal{U} \cup \mathcal{V} \cup \mathcal{W}$ of \overline{U} and define $\mathcal{A}^{m+1} = \mathcal{A}^m \cup \mathcal{Q}$.

Claim 3.5. Suppose that \triangle_{λ} holds for every $\omega \leq \lambda < \kappa$. Then \triangle_{κ} holds.

Proof. Fix $\{(\mathcal{A}_i, \mathcal{B}_i), (\mathcal{C}_j, \mathcal{D}_j) : i < n, j < k\}$ and \mathcal{E} , let $\mathrm{cf}(\kappa) = \mu$ and fix a cofinal sequence of ordinals $(\kappa_{\xi})_{\xi < \mu}$ in κ . Take a chain of elementary submodels $(M_{\xi})_{\xi < \mu}$ such that everything relevant is in M_0 , $\kappa_{\xi} \subset M_{\xi}$ and $|M_{\xi}| = |\kappa_{\xi}|$ for $\xi < \mu$. The following is an easy consequence of M_{ξ} being elementary and X being Lindelöf:

Subclaim 3.5.1. $(A_i \cap M_{\xi}, \mathcal{B}_i \cap M_{\xi})$ are weakly good pairs of size at most $|\kappa_{\xi}|$ for all i < n.

By induction on $\xi < \mu$ construct an increasing sequence of weakly good pairs $\{(\mathcal{A}^{\xi}, \mathcal{B}^{\xi}) : \xi < \mu\}$ such that

- (i) $\cup_{i < n} (A_i \cap M_{\xi}) \subset \mathcal{A}^{\xi} \subset \mathbb{B}$ and $\cup_{i < n} (B_i \cap M_{\xi}) \subset \mathcal{B}^{\xi} \subset \mathbb{B}$,
- (ii) $\mathcal{A}^{\xi}, \mathcal{B}^{\xi}$ has size $\leq |\kappa_{\xi}|$,
- (iii) $\mathcal{A}^{\xi}, \mathcal{B}^{\xi}$ weakly fills $\mathcal{E} \cap M_{\xi}$,
- (iv) $\mathcal{A}^{\xi} \cap \mathcal{B}_i = \emptyset$, $\mathcal{A}^{\xi} \cap \mathcal{D}_j = \emptyset$ and $\mathcal{B}^{\xi} \cap \mathcal{A}_i = \emptyset$, $\mathcal{B}^{\xi} \cap \mathcal{C}_j = \emptyset$.

This can be done using $\triangle_{|\kappa_{\xi}|}$ at stage ξ . First note that $\mathcal{A}^{<\xi} = \bigcup \{\mathcal{A}^{\zeta} : \zeta < \xi\}$ and $\mathcal{B}^{<\xi} = \bigcup \{\mathcal{B}^{\zeta} : \zeta < \xi\}$ are of size at most $|\kappa_{\xi}|$ and $(\mathcal{A}^{<\xi}, \mathcal{B}^{<\xi})$

is a weakly good pair. Also, the family

$$\{(\mathcal{A}^{<\xi}, \mathcal{B}^{<\xi}), (\mathcal{A}_i \cap M_{\xi}, \mathcal{B}_i \cap M_{\xi}); (\mathcal{A}_i, \mathcal{B}_i), (\mathcal{C}_j, \mathcal{D}_j) : i < n, j < k\}$$

is pairwise disjoint. Hence $\triangle_{|\kappa_{\xi}|}$ implies that there is a weakly good pair $(\mathcal{A}^{\xi}, \mathcal{B}^{\xi})$ from \mathbb{B} of size at most $|\kappa_{\xi}|$ which fills $\mathcal{E} \cap M_{\xi}$ and is pairwise disjoint from $\{(\mathcal{A}_i, \mathcal{B}_i), (\mathcal{C}_j, \mathcal{D}_j) : i < n, j < k\}$ while

$$\mathcal{A}^{<\xi} \cup \bigcup_{i < n} (A_i \cap M_{\xi}) \subset \mathcal{A}^{\xi}$$

and

$$\mathcal{B}^{<\xi} \cup \bigcup_{i < n} (B_i \cap M_{\xi}) \subset \mathcal{B}^{\xi}.$$

Note that $\triangle_{|\kappa_{\xi}|}$ was used to find the common extension of n+1 weakly good pairs such that this extension is disjoint from n+k given weakly good pairs. Now define $\mathcal{A} = \bigcup \{\mathcal{A}^{\xi} : \xi < \zeta\}$ and $\mathcal{B} = \bigcup \{\mathcal{B}^{\xi} : \xi < \zeta\}$; $(\mathcal{A}, \mathcal{B})$ is the desired extension.

This finishes the proof the lemma.

Corollary 3.6. Every T_3 (locally) Lindelöf space is base resolvable. In particular, every T_3 locally countable or locally compact space is base resolvable.

Proof. Fix a base \mathbb{B} for a T_3 Lindelöf space X and consider the set \mathbb{P} of all weakly good pairs $(\mathcal{A}, \mathcal{B})$ from \mathbb{B} partially ordered by extension. Note that we can apply Zorn's lemma to \mathbb{P} by Observation 3.2; pick a maximal weakly good pair $(\mathcal{A}, \mathcal{B}) \in \mathbb{P}$. Lemma 3.3 implies that a maximal weakly good pair must weakly fill every $\overline{U} \subset V$ pair, hence both \mathcal{A} and \mathcal{B} are bases of X.

Given a T_3 locally Lindelöf space X with a base \mathbb{B} consider it's one-point Lindelöfization $X^* = X \cup \{x^*\}$ with the base $\mathbb{B}^* = \mathbb{B} \cup \{U \subseteq X^* : U \text{ is open in } X^*, x^* \in U\}$. X^* is T_3 Lindelöf hence base resolvable; thus \mathbb{B}^* can be partitioned to two bases which clearly gives a partition of \mathbb{B} .

4. Combinatorics of resolvability

In this section, we will prove a combinatorial lemma which will be our next tool in showing that further classes of space are base resolvable.

Definition 4.1. Let
$$A, B \subseteq P(X)$$
. We say that A fills B iff $U = \bigcup \{V \in A : V \subseteq U\}$

for every $U \in \mathcal{B}$. \mathcal{A}, \mathcal{B} is called a **good pair** iff \mathcal{A}, \mathcal{B} are disjoint, \mathcal{A} fills \mathcal{B} and \mathcal{B} fills \mathcal{A} . \mathcal{A} is **self-filling** if \mathcal{A} fills \mathcal{A} .

Note that $\mathcal{A} \subseteq P(X)$ generates a topology on X iff \mathcal{A} fills $\{ \cap \mathcal{B} : \mathcal{B} \in [\mathcal{A}]^{<\omega} \}$ and covers X.

Definition 4.2. A self-filling family \mathcal{A} is **resolvable** iff there is a partition \mathcal{A}_0 , \mathcal{A}_1 of \mathcal{A} such that \mathcal{A}_i fills \mathcal{A} for i < 2.

Lemma 4.3. Suppose that $\mathbb{B} \subseteq P(X)$ fills itself. Then the following are equivalent:

- (1) for every $U \in \mathbb{B}$ there is a good pair $(\mathbb{B}_0^U, \mathbb{B}_1^U)$ from \mathbb{B} such that $U = \cup \mathbb{B}_0^U = \cup \mathbb{B}_1^U$,
- (2) \mathbb{B} is resolvable.

Proof. (2) implies (1) is trivial.

Let \mathcal{P} be the set of all good pairs $(\mathbb{B}_0, \mathbb{B}_1)$ formed by elements of \mathbb{B} ; \mathcal{P} is partially ordered by $(\mathbb{B}_0, \mathbb{B}_1) \leq (\mathbb{B}'_0, \mathbb{B}'_1)$ iff $\mathbb{B}_i \subseteq \mathbb{B}'_i$ for i < 2. It is clear that every chain in (\mathcal{P}, \leq) has an upper bound hence, by Zorn's lemma, we can pick a \leq -maximal element $(\mathbb{B}_0, \mathbb{B}_1) \in \mathcal{P}$.

We claim that \mathbb{B}_i fills \mathbb{B} for i < 2. Pick any $U \in \mathbb{B}$ and consider the good pair $\mathbb{B}_0^U, \mathbb{B}_1^U$ with $U = \cup \mathbb{B}_0^U = \cup \mathbb{B}_1^U$. Define

$$\mathbb{B}_i' = \mathbb{B}_i \cup (\mathbb{B}_i^U \setminus \mathbb{B}_{1-i})$$

for i<2. It is easy to see that $(\mathbb{B}'_0, \mathbb{B}'_1)$ forms a good pair which fills $\{U\}$. Also, $(\mathbb{B}_0, \mathbb{B}_1) \leq (\mathbb{B}'_0, \mathbb{B}'_1)$ thus by the maximality of $(\mathbb{B}_0, \mathbb{B}_1)$ we have that $\mathbb{B}'_i = \mathbb{B}_i$. This finishes the proof.

The first corollary is a direct application and shows that resolvability is preserved by unions.

Corollary 4.4. Suppose that \mathbb{B}_{α} is a resolvable self-filling family for each $\alpha < \kappa$. Then $\cup \{\mathbb{B}_{\alpha} : \alpha < \kappa\}$ is a resolvable self-filling family as well.

Corollary 4.5. Suppose that a self-filling family \mathbb{B} has the property that for every $U \in \mathbb{B}$ there is $\mathcal{U} \in [\mathbb{B} \setminus \{U\}]^{\leq \omega}$ such that $U = \cup \mathcal{U}$. Then \mathbb{B} is resolvable.

Proof. We apply Lemma 4.3: fix a $U \in \mathbb{B}$ and we build the good pair $\mathbb{B}_0^U, \mathbb{B}_1^U \subseteq \mathbb{B}$ covering U by induction of length ω . First pick disjoint well founded, countable covers of U denoted by $\mathbb{B}_0^0, \mathbb{B}_1^0$. Then in each step $n \in \omega$ pick countable well founded subfamilies $\mathbb{B}_0^n, \mathbb{B}_1^n$ from $\mathbb{B} \setminus \bigcup \{\mathbb{B}_i^j : i < 2, j < n\}$ such that they are disjoint and they both fill in a previously chosen member of $\bigcup \{\mathbb{B}_i^j : i < 2, j < n\}$. By a straightforward bookkeeping argument we can guarantee that $\mathbb{B}_i^U = \bigcup \{\mathbb{B}_i^n : n \in \omega\}$ (both covering U) is a good pair.

Corollary 4.6. Locally countable or hereditarily Lindelöf spaces are base resolvable without assuming any separation axioms.

Our next corollary establishes that every reasonable space admits a resolvable base.

Corollary 4.7. Suppose that \mathbb{B} is a base closed to finite unions in a T_1 topological space. Then \mathbb{B} is resolvable.

Proof. We apply Lemma 4.3 again: fix $U \in \mathbb{B}$ and we construct a good pair covering U. Fix an arbitrary strictly decreasing sequence $\{U_n : n \in \omega\} \subseteq \mathbb{B}$ such that $U_0 \subseteq U$. Let

$$\mathbb{B}_{i}^{U} = \{ V \in \mathbb{B} \cap \mathcal{P}(U) : \exists k \in \omega : U_{2k+i} \subseteq V \text{ but } U_{2k-1+i} \not\subseteq V \}$$

for i < 2. $\mathbb{B}_0^U \cap \mathbb{B}_1^U = \emptyset$ and it is easy to see that the assumption on the base guarantees that $(\mathbb{B}_0^U, \mathbb{B}_1^U)$ is a good pair.

Corollary 4.8. The set of all open sets in a T_1 topological space is resolvable.

Corollary 4.9. Under Martin's Axiom every space X of local size $< 2^{\omega}$ is base resolvable without assuming any separation axioms.

Proof. We apply Lemma 4.3: fix $U \in \mathbb{B}$ and we construct a good pair covering U. Note that we can suppose that $|U| = \kappa < 2^{\omega}$ without loss of generality. Select $\mathbb{B}_U \in [\mathbb{B}]^{\kappa}$ which fills itself and $\cup \mathbb{B}_U = U$. Now consider the ccc partial order $\mathbb{P} = Fn(\mathbb{B}_U, 2, \omega)$, i.e. the set of all finite partial functions from \mathbb{B}_U to 2. Now consider

$$D_{x,V,i} = \{ f \in \mathbb{P} : \text{ there is } W \in f^{-1}(i) : x \in W \subset V \}$$

for $i < 2, x \in U$ and $V \in \mathbb{B}_U$; note that each $D_{x,V,i}$ is dense in \mathbb{P} . Hence there is a filter $G \subseteq \mathbb{P}$ which intersects $D_{x,V,i}$ for $i < 2, x \in U$ and $V \in \mathbb{B}_U$. Let $\mathbb{B}_i = \{V \in \mathbb{B}_U : (\cup G)(V) = i\}$ for i < 2 and note that $(\mathbb{B}_0, \mathbb{B}_1)$ is the desired good pair.

5. Thinning self filling families

Let \mathbb{B} be a self filling family; note that \mathbb{B} is *redundant* in the sense that $\mathbb{B} \setminus \mathcal{U}$ still fills \mathbb{B} for a finite or more generally, a well founded family \mathcal{U} .

Definition 5.1. We say that $\mathcal{U} \subseteq \mathbb{B}$ is negligible iff $\mathbb{B} \setminus \mathcal{U}$ still fills \mathbb{B} .

Our aim in this section is to show that every self filling family \mathbb{B} contains a negligible subfamily of size $|\mathbb{B}|$. Note that a base \mathbb{B} for a space X is resolvable iff it contains a negligible subfamily $\mathcal{U} \subseteq \mathbb{B}$ such that \mathcal{U} is a base of X as well. We will make use of the following definitions:

Definition 5.2. $\mathcal{U} \subseteq \mathcal{P}(X)$ is weakly increasing iff there is a well order \prec of \mathcal{U} such that $A \prec B$ implies that $B \setminus A \neq \emptyset$.

Definition 5.3. If \mathbb{B} fills itself then let

$$L(U, \mathbb{B}) = \min\{|\mathcal{V}| : \mathcal{V} \subseteq \mathbb{B} \setminus \{U\}, U = \cup \mathcal{V}\}$$

for $U \in \mathbb{B}$.

Observation 5.4. Suppose that \mathbb{B} fills itself and $\mathcal{U} \subseteq \mathbb{B}$.

- (1) There is weakly increasing $\mathcal{U}' \subseteq \mathcal{U}$ such that $\cup \mathcal{U} = \cup \mathcal{U}'$.
- (2) If \mathcal{U} is weakly increasing then \mathcal{U} is well founded with respect to inclusion; in particular, \mathcal{U} is negligible.
- (3) If $\mathbb{B} \setminus \mathcal{U}$ fills \mathcal{U} then \mathcal{U} is negligible.

Our first proposition establishes the main result for regular $|\mathbb{B}|$.

Proposition 5.5. Suppose that \mathbb{B} fills itself, and $\kappa = |\mathbb{B}|$ is regular. Then \mathbb{B} contains a negligible family of size κ .

Proof. We can suppose that $L(U, \mathbb{B}) < \kappa$ for every $U \in \mathbb{B}$; otherwise we can find a weakly increasing subfamily of size κ which is negligible by (2) of Observation 5.4. It suffices to define an increasing sequence of disjoint subsets $\mathcal{U}_{\xi}, \mathcal{V}_{\xi} \in [\mathbb{B}]^{<\kappa}$ for $\xi < \kappa$ such that \mathcal{V}_{ξ} fills \mathcal{U}_{ξ} and $\mathcal{U}_{\xi+1} \setminus \mathcal{U}_{\xi} \neq \emptyset$; clearly, $\mathcal{U} = \bigcup \{U_{\xi} : \xi < \kappa\}$ is a negligible set of size κ in \mathbb{B} by (3) of Observation 5.4. Suppose we have $\mathcal{U}_{\xi}, \mathcal{V}_{\xi} \in [\mathbb{B}]^{<\kappa}$ for $\xi < \zeta$ as above for some $\zeta < \kappa$; then $\mathbb{B} \setminus \bigcup \{\mathcal{U}_{\xi}, \mathcal{V}_{\xi} : \xi < \zeta\} \neq \emptyset$ by κ being regular hence we can select $\mathcal{U}_{\zeta} \in \mathbb{B} \setminus \bigcup \{\mathcal{U}_{\xi}, \mathcal{V}_{\xi} : \xi < \zeta\}$ and define

$$\mathcal{U}_{\zeta} = \{U_{\zeta}\} \cup \bigcup \{\mathcal{U}_{\xi} : \xi < \zeta\}.$$

Find $W \subseteq \mathbb{B} \setminus \{U_{\zeta}\}$ of size $< \kappa$ such $\cup W = U_{\zeta}$; define

$$\mathcal{V}_{\zeta} = \bigcup \{\mathcal{V}_{\xi} : \xi < \zeta\} \cup (\mathcal{W} \setminus \mathcal{U}_{\zeta}).$$

It is easy to show that \mathcal{V}_{ζ} fills \mathcal{U}_{ζ} ; see the proof of Lemma 4.3.

Theorem 5.6. Suppose that \mathbb{B} fills itself. Then \mathbb{B} contains a negligible family of size $|\mathbb{B}|$.

Proof. We can suppose that $\mu = \mathrm{cf}(\kappa) < \kappa = |\mathbb{B}|$ and that every weakly increasing sequence in \mathbb{B} is of size less than κ . Fix a cofinal strictly increasing sequence of regular cardinals κ_{ξ} in κ such that $\mu < \kappa_0$ and define

$$\mathbb{B}_{\xi} = \{ U \in \mathbb{B} : L(U, \mathbb{B}) \le \kappa_{\xi} \}.$$

If there is a ξ such that every weakly increasing sequence is of size less than κ_{ξ} then $\mathbb{B} = \mathbb{B}_{\xi}$; define a set mapping $F : \mathbb{B} \to [\mathbb{B}]^{<\kappa_{\xi}^{+}}$ such that $U = \cup F(U)$ where $F(U) \subseteq \mathbb{B} \setminus \{U\}$. As $\kappa_{\xi}^{+} < \kappa$ we can apply Hajnal's

Set Mapping theorem (see Theorem 19.2 in [1]): there is an F-free set \mathcal{U} of size κ in \mathbb{B} , i.e. $F(U) \cap \mathcal{U} = \emptyset$ for all $U \in \mathcal{U}$; observe that \mathcal{U} is negligible as $\cup \{F(U) : U \in \mathcal{U}\} \subset \mathbb{B} \setminus \mathcal{U}$ fills \mathcal{U} .

From now on we suppose that there are arbitrarily large weakly increasing sequences in \mathbb{B} . It suffices to define increasing sequences $\mathcal{U}_{\xi}, \mathcal{V}_{\xi} \in [\mathbb{B}]^{<\kappa}$ for $\xi < \mu$ such that

- (i) $\mathcal{U}_{\xi}, \mathcal{V}_{\xi}$ are disjoint and $\kappa_{\xi} \leq |U_{\xi}|$,
- (ii) \mathcal{V}_{ξ} fills \mathcal{U}_{ξ} .

Indeed, the union $\cup \{\mathcal{U}_{\xi} : \xi < \mu\}$ is negligible in \mathbb{B} of size κ . Suppose we defined $\mathcal{U}_{\xi}, \mathcal{V}_{\xi} \in [\mathbb{B}]^{<\kappa}$ for $\xi < \zeta$; let

$$\lambda = (|\bigcup \{\mathcal{U}_{\xi} \cup \mathcal{V}_{\xi} : \xi < \zeta\}| \cdot \kappa_{\zeta})^{+}.$$

Note that $\lambda < \kappa$ thus we can pick a weakly increasing $\mathcal{W} \in [\mathbb{B}]^{\lambda}$; without loss of generality, we can suppose that \mathcal{W} is disjoint from $\bigcup \{\mathcal{U}_{\xi} \cup \mathcal{V}_{\xi} : \xi < \zeta\}$. Note that

$$\mathcal{W} = \cup \{ \mathbb{B}_{\delta} \cap \mathcal{W} : \delta < \mu \}$$

and that $\mu < \operatorname{cf}(\lambda) = \lambda$, hence there is $\delta < \mu$ such that $\mathcal{W}' = \mathcal{W} \cap \mathbb{B}_{\delta}$ has size λ . Define $U_{\zeta} = \mathcal{W}' \cup \bigcup \{\mathcal{U}_{\xi} : \xi < \zeta\}$.

Now, for every $U \in \mathcal{W}'$ select $F(U) \in [\mathbb{B} \setminus \{U\}]^{\kappa_{\delta}}$ such that $U = \cup F(U)$. Define

$$\mathcal{V}_{\zeta} = \bigcup \{\mathcal{V}_{\xi} : \xi < \zeta\} \cup \bigcup \{F(U) : U \in \mathcal{W}'\} \setminus \mathcal{U}_{\zeta}.$$

Note that $\kappa_{\zeta} \leq |\mathcal{U}_{\zeta}| = \lambda$ and $|\mathcal{V}_{\zeta}| \leq \lambda \cdot \kappa_{\delta} < \kappa$. It is only left to prove that \mathcal{V}_{ζ} fills \mathcal{U}_{ζ} ; in fact, it suffices to show that \mathcal{V}_{ζ} fills \mathcal{W}' . Suppose that \prec is the well ordering witnessing that \mathcal{W}' is weakly increasing and suppose that there is a $U \in \mathcal{W}'$ which is not filled by \mathcal{V}_{ξ} ; we can suppose that U is \prec -minimal. Fix an $x \in U$ witnessing that \mathcal{V}_{ζ} does not fill U. Pick $V \in F(U)$ such that $x \in V \subset U$; if $V \in \mathcal{W}'$ then $V \prec U$, thus V is filled by \mathcal{V}_{ζ} by the minimality of U. This contradicts the choice of x, hence $V \notin \mathcal{W}'$. Thus $V \in \mathcal{V}_{\zeta} \cup \bigcup \{\mathcal{U}_{\xi} : \xi < \zeta\}$ which is filled by \mathcal{V}_{ζ} by the inductional hypothesis; this again contradicts the choice of x, which finishes the proof.

6. Irresolvable self filling families

The aim of this section is to construct an irresolvable self filling family and deduce the existence of a non base resolvable T_0 topological space.

Given a partial order (\mathbb{P}, \leq) and $p, q \in \mathbb{P}$ let

$$[p,q] = \{r \in \mathbb{P} : p \le r \le q\}.$$

The key to our construction is the following definition:

Definition 6.1. We say that a poset \mathbb{P} without maximal elements satisfies

$$\mathbb{P} \to (I_{\omega})_2^1$$

iff for every partition $\mathbb{P} = D_0 \cup D_1$ there is i < 2 and strictly increasing $\{p_n : n \in \omega\} \subseteq D_i$ such that $[p_0, p_n] \subseteq D_i$ for every $n \in \omega$. The negation is denoted by $\mathbb{P} \to (I_\omega)_2^1$.

The above definition is motivated by the following:

Observation 6.2. For any irresolvable self filling family $\mathbb{B} \subseteq \mathcal{P}(X)$ the partial order $\mathbb{P} = (\mathbb{B}, \supseteq)$ satisfies $\mathbb{P} \to (I_{\omega})_2^1$.

Proof. Consider a partition of $\mathbb{P} = (\mathbb{B}, \supseteq)$ into sets D_0, D_1 ; as \mathbb{B} is irresolvable, there is i < 2, $x \in X$ and $U \in D_i$ such $V \in D_i$ for every $V \in \mathbb{B}$ with $x \in V \subseteq U$. Pick a strictly decreasing sequence $\{V_n : n \in \omega\} \subseteq \mathbb{B}$ such that $x \in V_n \subseteq U$ for every $n \in \omega$; clearly, $[V_0, V_n] \subseteq D_i$ for every $n \in \omega$.

Our next aim is to find a partial order \mathbb{P} first with $\mathbb{P} \to (I_{\omega})_2^1$; note that trees or $Fn(\kappa, 2)$ cannot satisfy $\mathbb{P} \to (I_{\omega})_2^1$. Moreover:

Proposition 6.3. $\mathbb{P} \nrightarrow (I_{\omega})_{2}^{1}$ for every countable poset \mathbb{P} without maximal elements.

Proof. Define a rank function rk_p by induction on a well founded subset of $U_p = \{q \in \mathbb{P} : p \leq q\}$ (for each $p \in \mathbb{P}$) as follows:

$$rk_p(p) = 0,$$

$$rk_p(t) = \sup\{rk_p(s) + 1 : s \in U_p, s < t\}$$
if $rk_p(s)$ is defined for all $s \in U_p, s < t$.
$$(6.1)$$

We will refer to rk_p as the p-rank. Also, let $\{I_n : n \in \omega\}$ enumerate all intervals I = [p', p] in \mathbb{P} which contain an infinite chain and let $\mathbb{P} = \{p_n : n \in \omega\}$ denote a 1-1 enumeration.

By induction on $n \in \omega$ construct disjoint $P_{0,n}, P_{1,n} \subseteq \mathbb{P}$ such that

- (i) $P_{i,n}$ is a finite union of antichains for i < 2,
- (ii) $p_n \in \bigcup_{i < 2} P_{i,n}$ and there is $q \in P_{i,n}$ such that $p_n \le q$ for each i < 2,
- (iii) $I_n \cap P_{i,n} \neq \emptyset$ for i < 2,
- (iv) for every strictly increasing chain $C = \{c_k : k \in \omega\} \subseteq P$ containing only well founded intervals such that $p_n \in C$ we have

$$\bigcup_{k\in\omega}[c_0,c_k]\cap P_{i,n}\neq\emptyset$$

for each i < 2.

It is easy to see that such a construction yields a partition $P_i = \bigcup \{P_{i,n} : n \in \omega\}$ witnessing $\mathbb{P} \nrightarrow (I_{\omega})_2^1$.

Suppose we constructed $P_{i,n-1}$ satisfying the above conditions; note that finitely many elements can be added to both $P_{0,n-1}$ and $P_{1,n-1}$ without violating (i), thus (ii) and (iii) are easy to satisfy; note that $I_n \setminus \bigcup_{i < 2} P_{i,n-1}$ is infinite as I_n contains an infinite chain.

It suffices to show the following to finish our proof:

Claim 6.4. Fix $p \in \mathbb{P}$ and $A \subseteq \mathbb{P}$ which is covered by finitely many antichains. Then there is an antichain $B \subseteq \mathbb{P} \setminus A$ such that for every increasing chain $C = \{c_k : k \in \omega\} \subseteq P$ containing only well founded intervals with $p \in C$ we have

$$\bigcup_{k\in\omega}[c_0,c_k]\cap B\neq\emptyset.$$

Proof. Let $Q = \{q \in \mathbb{P} \setminus A : [p,q] \text{ is well founded} \}$ and define q^+ to be the element minimizing rk_p on $[p,q] \setminus A$ for $q \in Q$; let $B = \{q^+ : q \in Q\}$. First note that B is an antichain. Now fix a strictly increasing chain $C = \{c_k : k \in \omega\} \subseteq P$ containing only well founded intervals with $p \in C$; note that there is $q \in C \setminus A$ such that p < q; also, $q \in Q$ by [p,q] being well founded. Thus $q^+ \in \bigcup_{k \in \omega} [c_0, c_k] \cap B$.

To finish the proof of the theorem, apply the claim twice: to $A = \cup P_{i,n-1}$ and define $P_{0,n} = P_{0,n-1} \cup B$ and next to $A = P_{0,n} \cup P_{1,n-1}$ similarly.

We will call a countable strictly increasing sequence of elements of \mathbb{P} a *branch*; we say that a branch $x = (x_n)_{n \in \omega}$ goes above an element $p \in \mathbb{P}$ iff $p \leq x_n$ for some $n \in \omega$.

Theorem 6.5. There is a partial order \mathbb{P} of size ω_1 without maximal elements such that $\mathbb{P} \to (I_\omega)_2^1$. Furthermore,

- (1) every $p \in \mathbb{P}$ has finitely many predecessors,
- (2) if $p \nleq q$ in \mathbb{P} then there is a branch x in \mathbb{P} which goes above q but not p.

Proof. Let us fix a function $c : [\omega_1]^2 \to \omega$ such that $c(\cdot, \zeta) : \zeta \to \omega$ is 1-1 for every $\zeta \in \omega_1$. It is easy to see that such functions satisfy the following:

Fact 6.6. If $c(\cdot, \zeta): \zeta \to \omega$ is 1-1 for every $\zeta \in \omega_1$ for some $c: [\omega_1]^2 \to \omega$ then for every uncountable, disjoint family $\mathcal{A} \subseteq [\omega_1]^{<\omega}$ and $N \in \omega$ there are $a < b^1$ in \mathcal{A} such that $c(\xi, \zeta) > N$ for every $\xi \in a, \zeta \in b$.

 $¹a < b \text{ iff } \xi < \zeta \text{ for all } \xi \in a, \zeta \in b$

Also, fix an enumeration $\{(y_{\alpha}, w_{\alpha}) : \omega \leq \alpha < \omega_1\}$ of all pairs of elements of $\omega_1 \times \omega$ such that $y_{\alpha}, w_{\alpha} \in \alpha \times \omega$.

We define $\mathbb{P} = (\omega_1 \times \omega, \leq)$ as follows: by induction on $\alpha \in L_1$ (where L_1 stands for the limit ordinals in ω_1) we construct a poset $\mathbb{P}_{\alpha} = ((\alpha + \omega) \times \omega, \leq_{\alpha})$ with properties:

- (i) \mathbb{P}_{α} has no maximal elements and every $p \in \mathbb{P}_{\alpha}$ has finitely many predecessors,
- (ii) $\leq_{\alpha} \upharpoonright \beta = \leq_{\beta}$ for all $\beta < \alpha$,
- (iii) $(\xi, n) <_{\alpha} (\zeta, m)$ implies that $\xi < \zeta$ and $\max(n, c(\xi, \zeta)) < m$,
- (iv) there is $t_{\alpha} \in \mathbb{P}_{\alpha}$ such that $t <_{\alpha} t_{\alpha}$ if and only if $t \leq_{\alpha} y_{\alpha}$ or $t \leq_{\alpha} w_{\alpha}$,
- (v) if $p \nleq q$ in \mathbb{P}_{α} then there is a branch x in \mathbb{P}_{α} which goes above q but not p.

We only sketch the inductive step: suppose that $y_{\alpha} = (\xi, n)$ and $w_{\alpha} = (\zeta, m)$. Now find $k \in \omega$ larger than n, m and $c(\nu, \alpha)$ for every $\nu \in \omega_1$ such that there is $s \leq y_{\alpha}$ or $s \leq w_{\alpha}$ with $s = (\nu, l)$ for some $l \in \omega$; this can be done by (i). Now define $t_{\alpha} = (\alpha, k)$ and \leq_{α} so that $t <_{\alpha} t_{\alpha}$ implies that $t \leq_{\alpha} y_{\alpha}$ or $t \leq_{\alpha} w_{\alpha}$. Extend \leq_{α} further so that \mathbb{P}_{α} has no maximal elements and satisfies (v); this can be done by "placing" copies of $2^{<\omega}$ above elements of $\mathbb{P}_{\alpha} \setminus \bigcup \{\mathbb{P}_{\beta} : \beta < \alpha\}$.

Let us define $\mathbb{P} = \bigcup \{\mathbb{P}_{\alpha} : \alpha < \omega_1\}$ and $\leq = \bigcup \{\leq_{\alpha} : \alpha < \omega_1\}$; observe that (\mathbb{P}, \leq) is well defined and trivially satisfies (1) and (2). In what follows, π_{ω_1} and π_{ω} denotes the projections from $\omega_1 \times \omega$ to the first and second coordinates respectively.

Claim 6.7. $\mathbb{P} \to (I_{\omega})_2^1$.

Proof. Suppose that $\mathbb{P} = D_0 \cup D_1$; we can assume that D_0 and D_1 are both cofinal. Now suppose that there is no increasing chain with each interval in one of the D_i and reach a contradiction as follows. We will say that an interval [s,t] in \mathbb{P} is i-maximal for some i < 2 if $[s,t] \subseteq D_i$ but $[s,t'] \nsubseteq D_i$ for every t < t'. Observe that for every $s \in D_i$ there is $t \in D_i$ such that [s,t] is i-maximal; otherwise we can construct an increasing chain starting from s with each interval in D_i . Now construct increasing 4-element sequences $R_{\alpha} = \{\tilde{x}_{\alpha} \leq \tilde{y}_{\alpha} \leq \tilde{z}_{\alpha} \leq \tilde{w}_{\alpha}\} \subseteq \mathbb{P}$ for $\alpha < \omega_1$ such that

- (a) $[\tilde{x}_{\alpha}, \tilde{y}_{\alpha}] \subseteq \mathbb{P}_0$ is a 0-maximal interval,
- (b) $[\tilde{z}_{\alpha}, \tilde{w}_{\alpha}] \subseteq \mathbb{P}_1$ is a 1-maximal interval,
- (c) $\pi_{\omega_1} R_{\alpha} < \pi_{\omega_1} R_{\beta}$ if $\alpha < \beta$.

By passing to a subsequence of $\{R_{\alpha} : \alpha < \omega_1\}$ we can suppose that $\pi_{\omega}R_{\alpha}$ is independent of α ; let $N = \max \pi_{\omega}R_{\alpha}$. Find $\alpha < \beta$, using Fact 6.6, such that

$$c \upharpoonright [\pi_{\omega_1} R_{\alpha}, \pi_{\omega_1} R_{\beta}] > N.$$

Observe that $\tilde{x}_{\alpha} \nleq \tilde{w}_{\beta}$ by $\pi_{\omega} w_{\beta} = N < c(\pi_{\omega_1} \tilde{x}_{\alpha}, \pi_{\omega_1} \tilde{w}_{\beta})$ and (iii). Now find $\gamma < \omega_1$ such that $(y_{\gamma}, w_{\gamma}) = (\tilde{y}_{\alpha}, \tilde{w}_{\beta})$ and consider $t_{\gamma} \in \mathbb{P}_{\gamma}$. We claim that t_{γ} is a minimal extension of \tilde{y}_{α} and \tilde{w}_{β} in the following sense:

- (1) $[\tilde{x}_{\alpha}, t_{\gamma}] = [\tilde{x}_{\alpha}, \tilde{y}_{\alpha}] \cup \{t_{\gamma}\},$ (2) $[\tilde{z}_{\beta}, t_{\gamma}] = [\tilde{z}_{\beta}, \tilde{w}_{\beta}] \cup \{t_{\gamma}\}.$

Indeed, if $\tilde{x}_{\alpha} \leq t' < t_{\gamma}$ then $t' \leq \tilde{y}_{\alpha}$ or $t' \leq \tilde{w}_{\beta}$; $\tilde{x}_{\alpha} \nleq \tilde{w}_{\beta}$ implies that $t' \nleq w_{\beta}$ hence $t' \in [\tilde{x}_{\alpha}, \tilde{y}_{\alpha}]$. Similarly, if $\tilde{z}_{\beta} \leq t' < t_{\gamma}$ then $t' \leq \tilde{y}_{\alpha}$ or $t' \leq \tilde{w}_{\beta}$; however, $t' \nleq \tilde{y}_{\alpha}$ by $\pi_{\omega}t' > \pi_{\omega}\tilde{y}_{\alpha}$ so $t' \in [\tilde{z}_{\beta}, \tilde{w}_{\beta}]$.

Note that $t \in \mathbb{P}_0$ contradicts the 0-maximality of $[\tilde{x}_{\alpha}, \tilde{y}_{\alpha}]$ and (1) while $t \in \mathbb{P}_1$ contradicts the 1-maximality of $[\tilde{z}_{\beta}, \tilde{w}_{\beta}]$ and (2).

The above claim finishes the proof.

Using the previous theorem, we construct an irresolvable self-filling family; we can actually realize this family as a system of open sets in a first countable compact space. We remark that this space is base resolvable, as every compact space, by Corollary 3.6.

Theorem 6.8. There is a first countable Corson compact space (X, τ) and $\mathcal{U} \subseteq \tau$ such that \mathcal{U} fills $\{\cap \mathcal{V} : \mathcal{V} \in [\mathcal{U}]^{<\omega}\}$ and \mathcal{U} is irresolvable.

Proof. Consider the poset \mathbb{P} in Theorem 6.5. We say that $x \in \mathbb{P}^{\omega}$ is a maximal chain iff $(x(n))_{n\in\omega}$ is a branch in \mathbb{P} , x(0) is a minimal element of \mathbb{P} and $[x(n), x(n+1)] = \{x(n), x(n+1)\}$. Note that there are no increasing chains of order type $\omega + 1$ in \mathbb{P} . Furthermore

(1) Any branch $y \in \mathbb{P}^{\omega}$ can be extended to a Observation 6.9. maximal chain $\bar{y} \in \mathbb{P}^{\omega}$

(2) there is an $n_0 \in \omega$ such that $\bigcup_{n_0 \leq n} [\bar{y}(n_0), \bar{y}(n)] \subseteq \bigcup_{n \in \omega} [y(0), y(n)]$.

Note that (2) implies that if $y \in \mathbb{P}^{\omega}$ has homogeneous intervals with respect to some coloring of \mathbb{P} then the an end-segment of the maximal extension \bar{y} has the same property.

Now consider $X = \{x \in \mathbb{P}^{\omega} : x \text{ is a maximal chain} \}$ as a subspace of $2^{\mathbb{P}}$; here $2^{\mathbb{P}}$ is equipped with the usual product topology.

Claim 6.10. X is a compact subspace of $\Sigma(2^{\mathbb{P}}) = \Sigma(2^{\omega_1})$.

Proof. $\Sigma(2^{\mathbb{P}}) = \Sigma(2^{\omega_1})$ follows from $|\mathbb{P}| = \omega_1$ and clearly every chain is countable so $X \subseteq \Sigma(2^{\mathbb{P}})$.

We prove that X is a closed subset of $2^{\mathbb{P}}$. Suppose that $y \in 2^{\mathbb{P}} \setminus X$; clearly, if y is not a chain then y can be separated from X. Suppose that y is a chain, then either y(0) is not minimal in \mathbb{P} or there is $n \in \omega$ such that $(y(n), y(n+1)) \neq \emptyset$. In the first case let $\varepsilon \in Fn(\mathbb{P}, 2)$ be defined to be 1 on y(0) and $\varepsilon(p) = 0$ for $p < y(0), p \in \mathbb{P}$ (note that each element in \mathbb{P} has only finitely many predecessors); then $y \in [\varepsilon]$ and $[\varepsilon] \cap X = \emptyset$.

In the second case let $\varepsilon \in Fn(\mathbb{P}, 2)$ such that $1 = \varepsilon(y(n)) = \varepsilon(y(n+1))$ and $\varepsilon \upharpoonright (y(n), y(n+1)) = 0$; then $y \in [\varepsilon]$ and $[\varepsilon] \cap X = \emptyset$.

Claim 6.11. $\{x\} = \cap \{[\chi_{x(n)}] \cap X : n \in \omega\}$ for every $x \in X$. Hence every point in X has countable Ψ -character; in particular, X is first countable.

Proof. Suppose that $y \in \cap \{ [\chi_{x(n)}] \cap X : n \in \omega \}$, that is $\{x(n) : n \in \omega \} \subset \{y(n) : n \in \omega \}$. We prove that x(n) = y(n) by induction on $n \in \omega$. y(0) = x(0) as they are both minimal elements in \mathbb{P} . Suppose that x(i) = y(i) for i < n; if $x(n) \neq y(n)$ then x(n) = y(k) for some n < k, thus $y(n) \in (x(n-1), x(n)) = (y(n-1), y(k))$ which contradicts the maximality of the chain x.

Now define

$$V_p = \{x \in X : \exists n \in \omega : x(n) \ge p\} \text{ for } p \in \mathbb{P},$$

and note that V_p is open since $V_p = \bigcup \{ [\chi_{\{q\}}] \cap X : p \leq q \}$. We define $\mathcal{U} = \{V_p : p \in \mathbb{P}\}.$

Claim 6.12. \mathcal{U} is an irresolvable self filling family.

Proof. Note that p < q in \mathbb{P} if and only if $V_q \subsetneq V_p$; the nontrivial direction is implied by property (2) of \mathbb{P} in Theorem 6.5. Now it is easy to see that \mathcal{U} fills itself.

We show that \mathcal{U} is irresolvable; suppose that we partitioned \mathcal{U} , equivalently \mathbb{P} into two parts $\mathbb{P}_0, \mathbb{P}_1$. Applying $\mathbb{P} \to (I_\omega)_2^1$ we that there is a chain $y \in \mathbb{P}^\omega$ and i < 2 such that $[y(0), y(n)] \subseteq \mathbb{P}_i$ for every $n \in \omega$. By our previous Observation 6.9 there is $\bar{y} \in X$ such that $[\bar{y}(n_0), \bar{y}(n)] \subseteq \mathbb{P}_i$ for some $n_0 \in \omega$ and every $n \geq n_0$. We claim that there is no $V \in \{V_p : p \in \mathbb{P}_{1-i}\}$ such that $\bar{y} \in V \subseteq V_{\bar{y}(n_0)}$. Indeed, if $\bar{y} \in V_p \subseteq V_{\bar{y}(n_0)}$ for some $p \in \mathbb{P}$ then $\bar{y}(n_0) \leq p$ and there is $n \in \omega \setminus n_0$ such that $p \leq \bar{y}(n)$; that is $p \in [\bar{y}(n_0), \bar{y}(n)] \subseteq \mathbb{P}_i$.

The last claim finishes the proof of the theorem. \Box

Let us finish this section with the following:

Corollary 6.13. There is a non base resolvable, T_0 topological space.

Proof. There is an irresolvable self filling family $\mathcal{U} \subseteq \mathcal{P}(X)$ (on some set X) such that \mathcal{U} fills $\{ \cap \mathcal{V} : \mathcal{V} \in [\mathcal{U}]^{<\omega} \}$ by Theorem 6.8. Define a relation \sim on X by $x \sim y$ iff $\{U \in \mathcal{U} : x \in U\} = \{U \in \mathcal{U} : y \in U\}$; clearly, \sim is an equivalence relation on X. Let [x] stand for the \sim -class of $x \in X$; let $[U] = \{[x] : x \in U\}$ and note that $[\mathbb{B}] = \{[U] : U \in \mathcal{U}\}$ is a base for a T_0 topology on [X]. It is easy to see that $[\mathbb{B}]$ is an irresolvable base.

7. A 0-dimensional, Hausdorff space with an irresolvable

In this section, we significantly strengthen Corollary 6.13 by showing

Theorem 7.1. It is consistent that there is a first countable, 0-dimensional, T_2 space which has a point countable, irresolvable base. Furthermore, the space has size \mathfrak{c} and weight ω_1 .

Proof. For $\langle \alpha, n \rangle$, $\langle \beta, m \rangle \in \omega_1 \times \omega$ write $\langle \alpha, n \rangle \triangleleft \langle \beta, m \rangle \in \omega_1 \times \omega$ iff $\langle \alpha, n \rangle = \langle \beta, m \rangle$ or $(\alpha < \beta \text{ and } n < m)$.

Definition 7.2. If $\leq_1, \leq_2 \subset \triangleleft$, then let $\leq_1 \subseteq \subseteq_2$ be the partial order generated by $\leq_1 \subseteq \subseteq_2$.

Definition 7.3. If $A = \langle \omega_1 \times \omega, \preceq \rangle$ is a poset with $\preceq \subset \triangleleft$, and for each $\alpha \in L_1$ we have a set $T_{\alpha} \subset \alpha \times \omega$ such that

(C) $\langle T_{\alpha}, \preceq \rangle$ is an everywhere ω -branching tree,

then we say that the pair $\langle \mathcal{A}, \langle T_{\alpha} : \alpha \in L_1 \rangle \rangle$ is a candidate.

Denote $T_{\alpha}(n)$ the n^{th} level of the tree $\langle T_{\alpha}, \preceq \rangle$.

Definition 7.4. Fix a candidate $\mathbb{A} = \langle \mathcal{A}, \langle T_{\alpha} : \alpha \in L_1 \rangle \rangle$. We will define a topological space $X(\mathbb{A})$ as follows.

For $\alpha \in L_1$ let $B(T_\alpha)$ be the collection of the cofinal branches of T_α , and let

$$\mathcal{B}(\mathbb{A}) = \bigcup \{ \mathcal{B}(T_{\alpha}) : \alpha \in L_1 \}.$$

The underlying set of the space $X(\mathbb{A})$ is $\mathcal{B}(\mathbb{A})$.

For $x \in \omega_1 \times \omega$ let $U(x) = \{ y \in \omega_1 \times \omega : x \leq y \}$ and

$$V(x) = \{ b \in \mathcal{B}(\mathbb{A}) : \exists y \in b \ (x \le y) \}.$$

Clearly $V(x) = \{b \in \mathcal{B}(\mathbb{A}) : b \subseteq^* U(x)\}.$

We declare that the family

$$\mathcal{V} = \{V(x) : x \in \omega_1 \times \omega\}$$

is the base of $X(\mathbb{A})$.

Lemma 7.5. V is a base, and so $X(\mathbb{A})$ is a topological space.

Proof. Assume that $b \in V(x) \cap V(y)$. Then there is $z \in b$ such that $x \leq z$ and $y \leq z$. Then $b \in V(z) \subset V(x) \cap V(y)$.

For $x, y \in \omega_1 \times \omega$ with $x \leq y$ let

$$[x,y] = \{t \in \omega_1 \times \omega : x \leq t \leq y\}.$$

Definition 7.6. We say that a candidate $\mathbb{A} = \langle \mathcal{A}, \langle T_{\alpha} : \alpha \in L_1 \rangle \rangle$ is good iff

- (G1) $V(u) \supset V(v)$ iff $u \leq v$.
- $(G2) \ \forall \alpha \in L_1 \ \forall \zeta < \alpha \ (T_{\alpha} \setminus (\zeta \times \omega)) \neq \emptyset.$
- (G3) (a) $\forall \alpha \in L_1 \ (\forall x, y \in T_\alpha) \ U(x) \cap U(y) \neq \emptyset \ iff \ x \ and \ y \ are \preceq -$
 - (b) for each $\{\alpha, \beta\} \in [L_1]^2$ there is $f(\alpha, \beta) \in \omega$ such that

$$\forall x \in T_{\alpha}(f(\alpha, \beta)) \ \forall y \in T_{\beta}(f(\alpha, \beta)) \ U(x) \cap U(y) = \emptyset.$$

(G4) For each $x \in \omega_1 \times \omega$ and $\alpha \in L_1$ there is $g(x, \alpha) \in \omega$ such that for each $y \in T_{\alpha}(g(x,\alpha))$

$$U(y) \subset U(x)$$
 or $U(y) \cap U(x) = \emptyset$.

(G5) If for all $\alpha \in L_1$ and $\zeta < \alpha$ we choose a four element \prec -increasing sequence

$$\langle x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}, z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha} \rangle \subset T_{\alpha} \setminus (\zeta \times \omega)$$

then there are $\{\alpha, \beta\} \in [L_1]^2$, $\zeta < \alpha$, $\xi < \beta$, and $t \in T_\alpha \cap T_\beta$ such that

- (i) $y_{\zeta}^{\alpha} \prec t$ and $[x_{\zeta}^{\alpha}, t] = [x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}] \cup \{t\},$ (ii) $w_{\xi}^{\beta} \prec t$ and $[z_{\xi}^{\beta}, t] = [z_{\xi}^{\beta}, w_{\xi}^{\beta}] \cup \{t\}.$

Lemma 7.7. If \mathbb{A} is a good candidate, then $X(\mathbb{A})$ is a dense-in-itself, first countable, 0-dimensional T_2 space such that the base $\{V(x): x \in$ $\omega_1 \times \omega$ is point countable and irresolvable.

Proof. We prove this lemma in several steps.

Claim 7.8. $X(\mathbb{A})$ is dense-in-itself.

Indeed, assume that $b \in B(T_{\alpha})$ and V(x) is an open neighbourhood of b. Then there is $y \in b$ with $x \leq y$ and so $b \in V(y) \subset V(x)$. Thus $V(x) \supset V(y) \supset \{b' \in B(T_{\alpha}) : y \in b'\}, \text{ and so } V(x) \text{ has } 2^{\omega} \text{ many}$ elements. So b is not isolated.

Claim 7.9. $X(\mathbb{A})$ is T_2 .

Indeed, let $b \in B(T_{\alpha})$ and $c \in B(T_{\beta})$.

If $\alpha = \beta$ then pick n such that x, the n^{th} element of b, and y, the n^{th} element of c, are different. Then $b \in V(x)$, $c \in V(y)$ and $V(x) \cap V(y) = \emptyset$ by (G3)(a).

If $\alpha \neq \beta$ then write $n = f(\alpha, \beta)$ (see G3)(b)), let x be the n^{th} element of b, and let y be the n^{th} element of c. Then $b \in V(x)$, $c \in V(y)$ and $V(x) \cap V(y) = \emptyset$ by (G3)(b).

Claim 7.10. $X(\mathbb{A})$ is θ -dimensional.

Indeed, assume that $x \in \omega_1 \times \omega$, $b \in \mathcal{B}(T_\alpha)$ and $b \notin V(x)$. Let $\{y\} = b \cap T_\alpha(g(\alpha, x))$. Then $y \notin U(x)$ because $b \notin V(x)$, so $U(x) \cap U(y) = \emptyset$ by (G4). Thus $V(x) \cap V(y) = \emptyset$ as well.

Claim 7.11. The base $\{V(x): x \in \omega_1 \times \omega\}$ is irresolvable.

Assume on the contrary that there is a partition (K_0, K_1) of $\omega_1 \times \omega$ such that both $\mathcal{V}_0 = \{V(x) : x \in K_0\}$ and $\mathcal{V}_1 = \{V(x) : x \in K_1\}$ are bases.

Assume that $\alpha \in L_1$, $x, y \in T_\alpha$ with $x \leq y$ and $i \in 2$. We say that interval [x, y] is *i-maximal in* T_α iff

(i) $[x,y] \subset K_i$, but $[x,z] \not\subset K_i$ for any $y \prec z \in T_\alpha$.

Subclaim 7.11.1. If $\alpha \in L_1$ and $x \in T_\alpha \cap K_i$, then there is $x \leq y \in T_\alpha$ such that the interval [x, y] is K_i -maximal in T_α .

Proof of the Claim. Assume on the contrary that there is no such y. Then we can construct a strictly increasing sequence $\langle x, y_0, y_1, \ldots \rangle$ in T_{α} such that $[x, y_n] \subset K_i$ for all $n < \omega$.

Then $b = \{ y \in T_{\alpha} : \exists n \in \omega \ y \leq y_n \} \in \mathcal{B}(T_{\alpha}).$

Since $b \in V(x)$, and we assumed that $\{V(z) : z \in K_{1-i}\}$ is a base, there is $z \in K_{1-i}$ with $b \in V(z) \subset V(x)$. Then $x \leq z$ by (G1). Moreover, there is $y \in b$ with $z \prec y$ because $b \in V(z)$. Thus $z \in [x,y] \cap K_{1-i}$, so $[x,y] \not\subset K_i$. Contradiction, the subclaim is proved. \square

Using the subclaim, for all $\alpha \in L_1$ and for all $\zeta < \alpha$ we will construct a four element \preceq -increasing sequence

$$\langle x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}, z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha} \rangle \subset T_{\alpha} \setminus (\zeta \times \omega)$$

as follows.

First, using (G2) pick $s_{\zeta}^{\alpha} \in T_{\alpha} \setminus (\zeta \times \omega)$.

If
$$K_0 \cap U(s_{\zeta}^{\alpha}) \cap T_{\alpha} = \emptyset$$
, then let $x_{\zeta}^{\alpha} = y_{\zeta}^{\alpha} = s_{\zeta}^{\alpha}$.

Otherwise pick

$$x_{\zeta}^{\alpha} \in K_0 \cap U(s_{\zeta}^{\alpha}) \cap T_{\alpha},$$

and then, using the Subclaim above, pick

$$y_{\zeta}^{\alpha} \in U(x_{\zeta}^{\alpha}) \cap T_{\alpha}$$

such that

$$[x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}]$$
 is 0-maximal in T_{α} .

If
$$K_1 \cap U(y_{\zeta}^{\alpha}) \cap T_{\alpha} = \emptyset$$
, then let $z_{\zeta}^{\alpha} = w_{\zeta}^{\alpha} = y_{\zeta}^{\alpha}$. Otherwise pick

$$z_{\zeta}^{\alpha} \in K_1 \cap U(y_{\zeta}^{\alpha}) \cap T_{\alpha},$$

and then, using the Subclaim above, pick

$$w_{\zeta}^{\alpha} \in U(z_{\zeta}^{\alpha}) \cap T_{\alpha}$$

such that

$$[z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha}]$$
 is 1-maximal in T_{α} .

By (G5), there are $\{\alpha, \beta\} \in [L_1]^2$, $\zeta < \alpha, \xi < \beta$, and $t \in T_\alpha \cap T_\beta$ such that

- $\begin{array}{l} \text{(i)} \ y^\alpha_\zeta \prec t \ \text{and} \ [x^\alpha_\zeta,t] = [x^\alpha_\zeta,y^\alpha_\zeta] \cup \{t\}, \\ \text{(ii)} \ w^\beta_\xi \prec t \ \text{and} \ [z^\beta_\xi,t] = [z^\beta_\xi,w^\beta_\xi] \cup \{t\}. \end{array}$

Assume first that $t \in K_0$. Then $t \in K_0 \cap T_\alpha$, and $[x_\zeta^\alpha, t] = [x_\zeta^\alpha, y_\zeta^\alpha] \cup$ $\{t\}$, so $[x_{\zeta}^{\alpha},t] \subset K_0$, i.e. $[x_{\zeta}^{\alpha},y_{\zeta}^{\alpha}]$ was not 0-maximal in T_{α} . Contradiction. If $t \in K_1$, then a similar argument works using the interval $[z_{\xi}^{\beta}, w_{\xi}^{\beta}]$ and K_1 .

So in both cases we obtained a contradiction, so the base $\{V(x):$ $x \in \omega_1 \times \omega$ is irresolvable, which proves the lemma.

Next we show that some c.c.c. forcing introduces a good candidate. Define the poset $\mathcal{P} = \langle P, \leq \rangle$ as follows. The underlying set consists of 6-tuples

$$\langle A, \preceq, I, \{T_{\alpha} : \alpha \in I\}, f, g \rangle$$
,

where

- (P1) $A \in [\omega_1 \times \omega]^{<\omega}$, $\langle A, \preceq \rangle$ is a poset, $\preceq \subset \triangleleft$, $I \in [\omega_1]^{<\omega}$, (P2) $T_{\alpha} \subset (A \cap \alpha) \times \omega$ and $\langle T_{\alpha}, \preceq \rangle$ is a tree for $\alpha \in I$,
- (P3) f and g are functions, $dom(f) \subset [I]^2$, $dom(g) \subset A \times I$, $ran(f) \cup$
- (P4) To simplify our notation write $U(x) = \{y \in A : x \leq x\}$ for $x \in A$.
 - (a) If $\alpha \in I$ and $x, y \in T_{\alpha}$ then $U(x) \cap U(y) \neq \emptyset$ iff x and y are \leq -comparable.
 - (b) If $\{\alpha, \beta\} \in [\text{dom}(f)]^2$ and $n = f(\alpha, \beta)$, then

$$U[T_{\alpha}(n)] \cap U[T_{\beta}(n)] = \emptyset$$
 and $U[T_{\alpha}(n)] \cap T_{\beta}(< n) = \emptyset$.

(P5) if $\langle x, \alpha \rangle \in \text{dom}(g)$ then for all $y \in T_{\alpha}(g(x, \alpha))$ we have $U(y) \subset$ U(x) or $U(y) \cap U(x) = \emptyset$.

For $p \in P$ write $p = \langle A^p, \preceq^p, I^p, \{T^p_\alpha : \alpha \in I^p\}, f^p, g^p \rangle$, and for $x \in A^p$ let $U^p(x) = \{ y \in A^p : x \preceq^p y \}.$

For $p, q \in P$ let $p \le q$ iff

- (O1) $A^p \supset A^q$, and $\preceq^q = \preceq^p \upharpoonright A_q$,
- (O2) $I^p \supset I^q$ and $T^q_\alpha = T^p_\alpha \cap A^q$ for $\alpha \in I^q$,
- (O3) if $x \in A^p \setminus A^q$, then $U^p(x) \cap A^q = \emptyset$,
- (O4) $f^p \supset f^q$ and $g^p \supset g^q$.
- (O5) if $U^q(x) \cap U^q(y) = \emptyset$ then $U^p(x) \cap U^p(y) = \emptyset$.

Clearly \leq is a partial order on P.

For $p \in P$ write supp $(p) = I^p \cup \{\alpha : \langle \alpha, n \rangle \in A^p \text{ for some } n \in \omega \}.$ If \mathcal{G} is a \mathcal{P} -generic filter, then let

$$A = \bigcup \{A^p : p \in \mathcal{G}\},$$

$$\preceq = \bigcup \{\preceq^p : p \in \mathcal{G}\},$$

$$I = \bigcup \{I^p : p \in \mathcal{G}\},$$

$$T_{\alpha} = \bigcup \{T_{\alpha}^p : \alpha \in p \in \mathcal{G}\} \text{ for } \alpha \in L_1,$$

$$f = \bigcup \{f^p : p \in \mathcal{G}\},$$

$$g = \bigcup \{g^p : p \in \mathcal{G}\}.$$

We show that \mathcal{P} satisfies c.c.c, and $\mathbb{A} = \langle \langle \omega_1 \times \omega, \preceq \rangle, \{T_\alpha : \alpha \in L_1 \} \rangle$ is a good candidate.

Definition 7.12. We say that the conditions p and q are twins iff

 $(T1) | \operatorname{supp}(p) | = | \operatorname{supp}(q) |, moreover \max(\operatorname{supp}(p) \cap \operatorname{supp}(q)) < \min(\operatorname{supp}(p) \triangle$ supp(q),

Denote ρ the unique order preserving bijection between supp(p) and $\operatorname{supp}(q)$, and define the function $\rho : \operatorname{supp}(p) \times \omega \to \operatorname{supp}(q) \times \omega$ by the formula $\rho(\langle \alpha, n \rangle = (\langle \rho(\alpha), n \rangle).$

$$(T2) \ \underline{\rho}'' A^p = A^q$$

$$(T3) \ \overline{x} \leq^p y \ iff \ \underline{\rho}(x) \leq^q \underline{\rho}(y)$$

$$(T4) \ \rho'' I^p = I^q$$

$$(T4) \rho'' I^p = I^q$$

$$(T5) T_{\rho(\alpha)}^q = \underline{\rho}'' T_{\alpha}.$$

$$(T5) \begin{array}{l} T^q_{\rho(\alpha)} = \underline{\rho}'' T_{\alpha}. \\ (T6) f^p(x, y) = m \text{ iff } f^q(\underline{\rho}(x), \underline{\rho}(y)) = m, \\ (T6) f^p(x, y) = m \text{ iff } f^q(\underline{\rho}(x), \underline{\rho}(y)) = m, \end{array}$$

(T7)
$$g^p(x,\alpha) = m \text{ iff } g^q(\underline{\overline{\rho}}(x),\overline{\overline{\rho}}(\alpha)) = m.$$

Lemma 7.13. If p and q are twins then

$$p \oplus q = \langle A^p \cup A^q, \preceq^p \cup \preceq^q, I^p \cup I^q, \{T^p_\alpha \cup T^q_\alpha : \alpha \in I^p \cup I^q\}, f^p \cup f^q, g^p \cup g^q \rangle$$

is a common extension of p and q, where $T^p(\alpha) = \emptyset$ for $\alpha \notin I^p$.

Proof. Straightforward.
$$\Box$$

Lemma 7.14. There is a function φ from P into some countable set such that if $\varphi(p) = \varphi(q)$ and $\operatorname{supp}(p) \cap \operatorname{supp}(q) < \operatorname{supp}(p) \triangle \operatorname{supp}(q)$, then p and q are twins.

Proof. Let $\varphi(p)$ be the type of the first order structure

$$\langle \operatorname{supp}(p) \times \omega, A^p, \preceq^p, I^p, \{T^p_\alpha : \alpha \in I^p\}, f^p, g^p \rangle$$
.

Lemmas 7.13 and 7.14 yield that \mathcal{P} satisfies c.c.c

Lemma 7.15. $A = \omega_1 \times \omega$, $I = L_1$ and $T_{\gamma}(0) \setminus (\zeta \times \omega)$ is infinite for all $\gamma \in L_1$ and $\zeta < \gamma$, and so (G2) holds.

Proof. For $p \in P$, $\gamma \in L_1$ and $y \in (\gamma \times \omega) \setminus A^p$ define $p \uplus \{y\}_{\gamma}$ as follows:

$$p \uplus \{y\}_{\gamma} =$$

$$\langle A^p \cup \{y\}, \preceq^p, I^p \cup \{\gamma\}, \{T^p_\gamma \cup \{y\}, T^p_\alpha : \alpha \in I^p \setminus \{\gamma\}\}, f^p, g^p \rangle$$
.

Then $q = p \uplus \{y\}_{\gamma} \in P$ and $p \uplus \{y\}_{\gamma} \leq p$. If we pick $y \notin \zeta \times \omega$, then $q \Vdash y \in T_{\gamma} \setminus (\zeta \times \omega)$, so we are done.

Lemma 7.16. (a) Assume that $p \in P$, $a \in T^p_{\gamma}$, and $b \in (\gamma \times \omega) \setminus A^p$ with $a \triangleleft b$. Let

$$p \uplus_a \{b\}_{\gamma} = \langle A^p \cup \{b\}, \preceq^p \underline{\cup} \{\langle a, b \rangle\}, \{T^p_{\gamma} \cup \{b\}, T^p_{\alpha} : \alpha \in I^p \setminus \{\gamma\}\}, f^p, g^p \rangle.$$

Then $p \uplus_a \{b\}_{\gamma} \in P \text{ and } p \uplus_a \{b\}_{\gamma} \leq p$.

(b) The structure \mathbb{A} is a candidate.

Proof. First we check $q = p \uplus_a \{b\}_{\gamma} \in P$.

(P1)-(P3) are straightforward.

(P4)(a): Since $U^q(b) = \{b\}$, we can assume that $x, y \neq b$. If $U^p(x) \cap U^p(y) \neq \emptyset$ then x and y are \leq^p -comparable. So we can assume that $b \in U^q(x) \cap U^q(y)$. But then $a \in U^p(x) \cap U^p(y)$, so we are done.

(P4)(b): Assume that $x \in T^q_{\alpha}(n)$, $y \in T^q_{\beta}(n)$ and $z \in U^q(x) \cap U^q(y)$. If $z \neq b$, then $z \in U^p(x) \cap U^p(y)$ which is not possible. So z = b.

If $x, y \neq b$, then $a \in U^p(x) \cap U^p(y)$ which is not possible. So we can assume that x = b and $\alpha = \gamma$. So $b \in T^q_\alpha(n)$ and so $a \in T^p_\alpha(n-1)$. Thus $T^p_\alpha(n-1) \cap U^p(y) \neq \emptyset$ which is not possible because (P4)(b) holds for p.

Assume that $x \in T_{\alpha}^{q}(n)$, $y \in T_{\beta}^{q}(< n)$ and $y \in U^{q}(x)$. If $y \neq b$, then $y \in U^{p}(x) \cap T_{\beta}^{p}(< n)$ which is not possible. So y = b and $\beta = \gamma$. Thus $a \in T_{\beta}^{p}(< n) \cap U_{\alpha}^{p}(x)$ which is not possible because (P4)(b) holds for p. (P5) Since $U(b) = \{b\}$, we can assume that $y \in A^{p}$. Since $b \in U^{q}(z)$ iff $a \in U^{q}(z)$ for $z \in A^{p}$, if $U^{p}(y) \subset U^{p}(x)$ then $U^{q}(y) \subset U^{q}(x)$, and if $U^{p}(y) \cap U^{p}(x) = \emptyset$ then $U^{q}(y) \cap U^{q}(x) = \emptyset$.

Thus we proved $q \in P$. Since $q \leq p$ is straightforward, we are done. (b) is clear from (a) by standard density arguments.

Lemma 7.17. A has property (G1).

Proof. Assume that $p \in P$, $u, v \in A^p$, $v \notin U^p(u)$ Pick $\gamma \in L_1 \setminus I^p$ with $\operatorname{supp}(p) \subset \gamma$, and pick $b \in \gamma \times \omega$ with $v \triangleleft b$.

Consider the condition $q = p \uplus_v \{b\}_{\gamma} \leq p$.

Since $b \in T^q_{\gamma}$, we have $V(b) \cap \mathcal{B}(T_{\gamma}) \neq \emptyset$, so $V(b) \neq \emptyset$. Since $U^q(u) \cap$ $U^q(b) = \emptyset$ we have $U(u) \cap U(b) = \emptyset$, and so $V(u) \cap V(b) = \emptyset$, and so $\emptyset \neq V(b) \subset V(v) \setminus V(u)$.

Lemma 7.18. dom $(f) = [L_1]^2$ and dom $(g) = \omega_1 \times \omega \times L_1$. Hence (G3) and (G4) hold.

Proof. Assume that $\{\gamma, \delta\} \in [I^p]^2 \setminus \text{dom}(f^p)$.

Pick m such that $T^p_{\alpha}(m) = \emptyset$ for all $\alpha \in I^p$.

Extends f^p to f^q as follows: $dom(f^q) = dom(f^p) \cup \{\{\gamma, \delta\}\}$ and $f^q(\gamma, \delta) = m.$

Let

$$q = \langle A^p, \preceq^p, I^p, \{A^p_\alpha : \alpha \in I^p, f^q, g^p\} \rangle$$
.

Then $q \in P$ and $q \leq p$.

Similar argument works for g.

Finally we verify that (G5) also holds.

Assume that

$$V^P \models \forall \alpha \in L_1 \ \forall \zeta < \alpha$$

$$\langle x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}, z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha} \rangle \subset T_{\alpha} \setminus (\zeta \times \omega)$$
 is \preceq -increasing.

For all $\alpha \in L_1$ and $\zeta < \alpha$ pick a condition $p_{\zeta}^{\alpha} = \langle A_{\zeta}^{\alpha}, \preceq_{\zeta}^{\alpha}, \ldots \rangle$ which decides the sequence $\langle x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}, z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha} \rangle$ and $\{ x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}, z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha} \} \subset T_{\zeta}^{\alpha}$.

Let us say that a Δ -system $\mathcal{A} \subset [\omega]^{<\omega}$ is *nice* iff $A \cap B < A \triangle B$ for all $A \neq B \in \mathcal{A}$.

Using the Fodor lemma, for each $\zeta \in \omega_1$ find $m_{\zeta} < \omega$ and $I_{\zeta} \in [L_1]^{\omega_1}$ such that

- (i) $\varphi(p_{\zeta}^{\alpha}) = m_{\zeta}$ for all $\alpha \in I_{\zeta}$, where φ is from Lemma 7.14.
- (ii) $\{\operatorname{supp}(p_{\zeta}^{\alpha}) : \alpha \in I_{\zeta}\}\$ forms a nice Δ -system with kernel S_{ζ} , moreover $\alpha \in \operatorname{supp}(p_{\zeta}^{\alpha}) \setminus S_{\zeta}$.
- (iii) $\langle x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}, z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha} \rangle = \langle x_{\zeta}, y_{\zeta}, z_{\zeta}, w_{\zeta} \rangle$ for $\alpha \in I_{\zeta}$.

Then $\{x_{\zeta}^{\alpha}, y_{\zeta}^{\alpha}, z_{\zeta}^{\alpha}, w_{\zeta}^{\alpha}\} = \{x_{\zeta}, y_{\zeta}, z_{\zeta}, w_{\zeta}\} \subset S_{\zeta} \times \omega$. Find $m \in \omega$ and $I \in [\omega_{1}]^{\omega_{1}}$ such that

(iv) $m_{\zeta} = m$ for all $\zeta \in I$, and so

$$\forall \zeta \in I \ \forall \alpha \in I_{\zeta} \ \varphi(p_{\zeta}^{\alpha}) = m.$$

(v) $\{S_{\zeta}: \zeta \in I\}$ forms a nice Δ -system with kernel S.

Pick $\{\xi,\zeta\}\in [I]^2$. Then pick $\alpha\in I_\zeta$ such that $S_\xi\cup S_\zeta<\operatorname{supp}(p_\zeta^\alpha)\setminus S_\zeta$. So

$$S < (S_{\xi} \cup S_{\zeta}) \setminus S < \operatorname{supp}(p_{\zeta}^{\alpha}) \setminus S_{\zeta}.$$

Now pick $\beta \in I_{\xi}$ such that $\operatorname{supp}(p_{\xi}^{\alpha}) < \operatorname{supp}(p_{\xi}^{\beta}) \setminus S_{\xi}$. So

$$S < (S_{\xi} \cup S_{\zeta}) \setminus S < \operatorname{supp}(p_{\zeta}^{\alpha}) \setminus S_{\zeta} < \operatorname{supp}(p_{\xi}^{\beta}) \setminus S_{\xi}.$$

Thus supp $(p_{\zeta}^{\alpha}) \cap \text{supp}(p_{\xi}^{\beta}) = S$, $\alpha \in \text{supp}(p_{\zeta}^{\alpha}) \setminus S_{\zeta}$ and $\beta \in \text{supp}(p_{\xi}^{\beta}) \setminus S_{\xi}$. Since $\varphi(p_{\zeta}^{\alpha}) = \varphi(p_{\xi}^{\beta})$, the conditions $\varphi(p_{\zeta}^{\alpha})$ and $\varphi(p_{\xi}^{\beta})$) are twins, and

$$q = p_{\zeta}^{\alpha} \oplus p_{\xi}^{\beta}$$

is a common extension. Pick $t \in (\alpha \times \omega) \setminus (A_{\zeta}^{\alpha} \cup A_{\zeta}^{\beta})$ with $y_{\zeta} \triangleleft t$ and $w_{\xi} \triangleleft t$.

Define r as follows:

$$r = \langle A^q, \preceq_q \underline{\cup} \langle y_\zeta, t \rangle \underline{\cup} \langle w_\xi, t \rangle, I^q,$$
$$\{ T^q_\alpha \cup \{t\}, T^q_\beta \cup \{t\}, T^\gamma : \gamma \in I^q \setminus \{\alpha, \beta\} \}, f^q, g^q \rangle.$$

To check $r \in P$ we will use the following observation:

$$r \upharpoonright (\operatorname{supp}(p_{\zeta}^{\alpha}) \cup \{t\}) = p_{\zeta}^{\alpha} \uplus_{y_{\zeta}^{\alpha}} \{t\}_{\alpha}$$
 (7.1)

and

$$r \upharpoonright (\operatorname{supp}(p_{\xi}^{\beta}) \cup \{t\}) = p_{\xi}^{\beta} \uplus_{w_{\xi}^{\beta}} \{t\}_{\beta}. \tag{7.2}$$

Now let us check (P1)–(P5).

- (P1) is trivial for r.
- (P2). Let $\gamma \in I^q$. If $\gamma \neq \alpha, \beta$, then $T^q_{\gamma} = T^p_{\gamma}$, so we are done. Moreover, $T^r_{\alpha} = T^q_{\alpha} \cup \{t\}$, $t \in \alpha \times \omega$, and $\langle T^r_{\alpha}, \preceq \rangle$ is a tree by (7.1) and (7.2).

The same argument works for T_{β}^{r} .

- (P3) is trivial.
- (P4)(a). Assume that $\gamma \in I^r$, $x, y \in T^r_{\gamma}$ with $U^r(x) \cap U^r(y) \neq \emptyset$. Since $U^r(t) = \{t\}$ we can assume $x, y \in A^q$.

Assume that $\gamma \in I_{\zeta}^{\alpha}$. Then $T_{\gamma}^{q} \subset A_{\zeta}^{\alpha}$, and so $x, y \in A_{\zeta}^{\alpha}$. Thus $t \in U^{r}(x) \cap U^{r}(y)$ implies $y_{\zeta}^{\alpha} \in U^{r}(x) \cap U^{r}(y)$. So $U^{q}(x) \cap U^{q}(y) \neq \emptyset$, which yields that x and y are \leq^{q} comparable because $q \in P$.

Similar argument works when $\gamma \in I^{p_{\xi}^{\beta}}$.

(P4)(b). Assume that $\{\alpha', \beta'\} \in \text{dom}(f^r) = \text{dom}(f^q) = \text{dom}(p_{\zeta}^{\alpha}) \cup \text{dom}(p_{\xi}^{\beta})$. We can assume that $\{\alpha', \beta'\} \in \text{dom}(p_{\xi}^{\beta})$.

Write $n = f^r(\{\alpha', \beta'\})$.

(i) Assume on the contrary that there are $a \in T^r_{\alpha'}(n)$ and $b \in T^r_{\beta'}(n)$ with $U^r(a) \cap U^r(b) \neq \emptyset$.

First assume that $\{a,b\} \in [A^q]^2$. Since $q \in P$, we have $U^q(a) \cap U^q(b) = \emptyset$. So $t \in U^r(a) \cap U^q(b)$ should hold.

If $c \in A_{\zeta}^{\alpha}$, then $t \in U(c)$ implies $y_{\zeta} \in U(c)$ by 7.1. Similarly, if $c \in A_{\xi}^{\beta}$, then $t \in U(c)$ implies $w_{\xi} \in U(c)$ by 7.2.

Since $U^q(a) \cap U^q(b) = \emptyset$, we can assume that $a \in A_{\zeta}^{\alpha} \setminus A_{\xi}^{\beta}$ and $b \in A_{\xi}^{\beta} \setminus A_{\zeta}^{\alpha}$.

But then $\alpha' \in \text{supp}(p_{\zeta}^{\alpha}) \setminus S$ and $\beta' \in \text{supp}(p_{\xi}^{\beta}) \setminus S$, so $f^{r}(\alpha', \beta')$ is undefined. Contradiction.

So we can assume that e.g t=a and $b\in A^q$. Assume first that $b\in A^{p^{\alpha}_{\zeta}}$. Then $\alpha'=\alpha$ and $y_{\zeta}\in A^{\alpha}_{\zeta}$ by (7.1). Thus $y_{\zeta}\in T^{p^{\alpha}_{\zeta}}_{\alpha}(< n)\cap U^{p^{\alpha}_{\zeta}}(b)$, and so $T^{p^{\alpha}_{\zeta}}_{\alpha}(< n)\cap U[T^{p^{\alpha}_{\zeta}}_{\beta'}(n)]\neq\emptyset$, so (P4)(b) fails for p^{α}_{ζ} .

If $b \in A_{\xi}^{\beta}$, then we can use similar arguments using (7.2) instead of (7.1).

(ii) Assume on the contrary that there are $a \in T_{\alpha'}^r(n)$ and $b \in T_{\beta'}^r(< n) \cap U^r(a)$.

Clearly $a \neq t$. If $b \neq t$, then $a \in T^q_{\alpha'}(n)$ and $b \in T^q_{\beta'}(< n) \cap U^q(a)$ which contradicts $q \in P$.

Assume that b = t. If $b \in A^{p_{\zeta}^{\alpha}}$, then (7.1) implies $\beta' = \alpha$ and $y_{\zeta} \in U^{q}(a) \cap T^{q}(< n)$. Thus $y_{\zeta} \in T_{\beta'}^{q}(< n) \cap U^{q}(a)$, which contradicts $q \in P$.

If $b \in A^{p_{\xi}^{\beta}}$, then we can use similar arguments using (7.2) instead of (7.1).

(P5). Let $\langle x, \gamma \rangle \in \text{dom}(g^r)$ and $y \in T_{\gamma}^r(g(x, \gamma))$

Since $U^r(t) = \{t\}$, we can assume that $x, y \neq t$.

So $x, y \in A^q$. If $U^q(y) \subset U^q(x)$, then $x \preceq^q y$ and so $U^r(y) \subset U^r(x)$.

Assume on the contrary that $U^q(x) \cap \overline{U}^q(y) = \emptyset$, but $t \in U^r(x) \cap U^r(y)$.

We can assume that $\langle x, \gamma \rangle \in g^{p_{\zeta}^{\alpha}}$. Thus $x \in A_{\zeta}^{\alpha}$ and $\gamma \in I_{\zeta}^{\alpha}$.

However $T^q_{\gamma} \subset A^{\alpha}_{\zeta}$, so $y \in A^{\alpha}_{\zeta}$.

Since $x, y \in A_{\zeta}^{\alpha}$ and $\gamma \in I_{\zeta}^{\alpha}$, $t \in U^{r}(x) \cap U^{r}(y)$ implies $y_{\zeta} \in U^{p_{\zeta}^{\alpha}}(x) \cap U^{p_{\zeta}^{\alpha}}(y)$ by (7.1), which contradicts $U^{q}(x) \cap U^{q}(y) = \emptyset$.

So we proved $r \in P$.

Next we show that $r \leq p_{\zeta}^{\alpha}, p_{\xi}^{\beta}$. (O1)–(O4) are trivial. To check (O5), assume on the contrary that $U^{p_{\zeta}^{\alpha}}(a) \cap U^{p_{\zeta}^{\alpha}}(b) = \emptyset$, but $U^{r} \cap U^{r}(b) \neq \emptyset$.

Then $t \in U^r(a) \cap U^r(b)$, and so $y_{\zeta}^{\alpha} \in U^{p_{\zeta}^{\alpha}}(a) \cap U^{p_{\zeta}^{\alpha}}(b)$ by (7.1), which is a contradiction.

Finally, it is also straightforward that

$$r \Vdash (G5)(i)-(ii) \text{ holds for } \alpha, \beta, \zeta, \xi, \text{ and } t.$$
 (7.3)

So we proved the theorem.

8. Open problems

In this section, we present a list of open problems which could be of further interest and are closely connected to our results.

Problem 8.1. Is every linearly ordered space base resolvable?

Problem 8.2. Is every T_3 (hereditarily) separable space base resolvable?

Problem 8.3. Is every paracompact space base resolvable?

Note that under PFA, every T_3 hereditarily separable space is Lindelöf hence base resolvable by Corollary 3.6. Also, we conjecture that our forcing construction can be modified to produce a separable non base resolvable space.

Problem 8.4. Is every power of \mathbb{R} base resolvable? Is it true that base resolvability is preserved by products?

We know that every π -base is the union of two disjoint π -bases by Proposition 2.3. However:

Problem 8.5. Does every base contain a disjoint base and π -base?

Bases closed to finite unions are resolvable by Corollary 4.7 which raises to following question:

Problem 8.6. Is it true that every base which is closed to finite intersections is base resolvable?

It would be interesting to look into the following:

Problem 8.7. Is every self filling family \mathcal{F} of closed (Borel) sets of ω^{ω} resolvable?

Concerning negligible subsets we ask the following:

Problem 8.8. Is there a base \mathbb{B} for some space X such that every $\mathcal{U} \in [\mathbb{B}]^{|\mathbb{B}|}$ contains a neighborhood base at some point?

References

- [1] A. Hajnal, P. Hamburger, Set Theory, London Mathematical Society Student Texts 48, ISBN 0 521 59667 X.
- [2] A. H. Stone, On partitioning ordered sets into cofinal subsets. Mathematika 15 1968 217–222.

University of Toronto

E-mail address: daniel.soukup@mail.utoronto.ca

 URL : http://math.utoronto.ca/ \sim dsoukup

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY

 $E ext{-}mail\ address: soukup@renyi.hu} \ URL: \ http://www.renyi.hu/\sim soukup$