

RELACIÓN DE PROBLEMAS Nº 1 **FUNDAMENTOS DE LÓGICA**

MATEMÁTICA DISCRETA (GRADO EN ING. INFORMÁTICA)

- 1. Distinguir entre proposición simple o atómica y proposición compuesta o molecular. Para las proposiciones moleculares decir cuáles son los términos de enlaces y traducir a forma simbólica:
 - (a) Si llueve, Juan se quedará en casa y estudiará Álgebra.
 - (b) La suma de dos números es par si, y solo si, los dos números son pares o impares.
 - (c) Si x es un número racional e y es un número entero, entonces z es no real.
 - (d) Si y es un número entero entonces z no es real supuesto que x sea racional.
 - (e) Muchos estudiantes estudian Lógica y Álgebra en el primer curso de la carrera.
 - (f) Si z > 10, entonces x + z > 10 e y + z > 10.
 - (g) x + y = y + x.
 - (h) Si se da prisa llegará a tiempo.
 - (i) Ha llegado el invierno y los días son más cortos.
 - (i) Los patos no se transforman en cisnes.
 - (1) Este no es mi mejor día.
 - (m) Si x + y > z y z = 1, entonces x + y > 1.
- 2. Escribir las tablas de verdad de las siguientes formas enunciativas:

a)
$$(p \rightarrow (q \lor p))$$
.

b)
$$((q \lor r) \to ((\sim r) \to q))$$
.

c)
$$(((\sim p) \rightarrow q) \rightarrow (((\sim p) \rightarrow (\sim q)) \rightarrow p))$$
.

3. ¿Cuáles de las siguientes formas enunciativas son tautología?

a)
$$(p \rightarrow (q \rightarrow p))$$
.

b)
$$((q \lor r) \to ((\sim r) \to q))$$
.

c)
$$((p \land (\sim q)) \lor ((q \land (\sim r)) \lor (r \land (\sim p))))$$
.

d)
$$((p \rightarrow (q \rightarrow r)) \rightarrow ((p \land (\sim q)) \lor r))$$
.

4. Demostrar que los siguientes pares de formas son lógicamente equivalentes:

a)
$$(\sim (p \land q))$$
; $((\sim p) \lor (\sim q))$.

b)
$$(\sim (p \vee q))$$
; $((\sim p) \wedge (\sim q))$.

c)
$$(((\sim p) \vee (\sim q)) \rightarrow (\sim r))$$
; $(r \rightarrow (q \land p))$.

d)
$$(((\sim p) \lor q) \rightarrow r)$$
; $((p \land (\sim q)) \lor r)$.

5. Demostrar que para cualesquiera formas enunciativas \mathcal{A} , \mathcal{B} , \mathcal{X} se tiene:

a)
$$(\mathcal{A} \vee (\mathcal{B} \vee X)) \iff ((\mathcal{A} \vee \mathcal{B}) \vee X)$$

$$\begin{array}{c} l.e. \\ \text{b) } (\mathcal{A} \wedge (\mathcal{B} \wedge \mathcal{X})) \iff (((\mathcal{A} \wedge \mathcal{B}) \wedge \mathcal{X}) \end{array}$$

c)
$$(\mathcal{A} \wedge \mathcal{B}) \stackrel{i.l.}{\Longrightarrow} \mathcal{A} \text{ y } (\mathcal{A} \wedge \mathcal{B}) \stackrel{i.l.}{\Longrightarrow} \mathcal{B}$$

$$\stackrel{l.e.}{\bowtie} ((\mathcal{A} \leftrightarrow \mathcal{B}) \iff ((\mathcal{A} \to \mathcal{B}) \wedge (\mathcal{B} \to \mathcal{A})).$$

6. Demostrar que:

i)
$$(p \lor (\sim q)) \iff (q \to p),$$
 ii) $((\sim q) \lor r) \iff (q \to r).$

Deducir usando lo anterior, las leyes de Morgan y las leyes de manipulación que sean necesarias que la forma enunciativa:

$$((\sim(p\vee(\sim q)))\to(q\to r))$$

es lógicamente equivalente a:

- (a) $((\sim(p\vee(\sim q))) \rightarrow ((\sim q)\vee r))$.
- (b) $(((\sim p) \land q) \rightarrow (\sim (q \land (\sim r))))$.
- (c) $((\sim ((\sim q) \lor r)) \rightarrow (q \rightarrow p))$.
- (d) $(q \rightarrow (p \lor r))$.
- 7. Calcular la forma normal disyuntiva y la forma normal conjuntiva que sea lógicamente equivalente a las siguientes formas:
 - (a) $(((p \rightarrow q) \rightarrow r) \rightarrow s)$.
 - (b) $((p \land q) \lor ((\sim q) \leftrightarrow r))$.
 - (c) $((p \rightarrow ((\sim q) \lor r)) \land (((\sim p) \lor q) \rightarrow r))$.
- 8. Demostrar que:

$$\begin{array}{c} l.e. \\ (\mathcal{A} \wedge \mathcal{B}) \iff (\sim (\mathcal{A} \rightarrow (\sim \mathcal{B}))) \\ \end{array} \quad \text{y} \quad (\mathcal{A} \vee \mathcal{B}) \iff ((\sim \mathcal{A}) \rightarrow \mathcal{B}).$$

Con lo anterior, demostrar que $(((\sim p_1) \lor p_2) \to p_3)$ es lógicamente equivalente a:

- a) $(\sim((\sim p_1) \vee p_2) \vee p_3)$.
- b) $(\sim (\sim (p_1 \land (\sim p_2)) \land (\sim p_3)))$.
- c) $((p_1 \rightarrow p_2) \rightarrow p_3)$.
- 9. Demostrar que el conjunto {|} es un conjunto adecuado de conectivas, comprobando:

$$(n \mid n)$$

a)
$$(\sim p) \iff (p \mid p)$$
.

l.e.

b) $(p \lor q) \Leftrightarrow ((p \mid p) \mid (q \mid q)).$

c) $(p \land q) \iff ((p \mid q) \mid (p \mid q))$.

Usando lo anterior, encontrar una forma enunciativa en la que sólo figure la conectiva NAND (|) y que sea equivalente a $(p \rightarrow (q \lor (\sim r)))$.

10. Dada la forma enunciativa

$$(((({\sim}p) \vee q) \to r) \to ((p \wedge ({\sim}q)) \vee r))$$

a) Calcular su tabla de verdad.

- b) ¿Qué podemos decir de los enunciados \mathcal{A}_1 : (((~p) \vee q) \rightarrow r) y \mathcal{A}_2 : ((p \wedge (~q)) \vee r))? ¿son equivalentes?
- c) Usar las reglas de manipulación y sustitución para pasar de \mathcal{A}_1 a \mathcal{A}_2 .
- d) Calcular la forma normal conjuntiva de \mathcal{A}_1 .
- e) Encontrar una forma enunciativa en la que sólo figuren las conectivas $\{\sim, \rightarrow\}$ y que sea equivalente a \mathcal{A}_2 .
- 11. Demostrar que el conjunto $\{\downarrow\}$ es un conjunto adecuado de conectivas, comprobando:

$$\begin{array}{c} \textit{l.e.} \\ \text{i) } (\sim p) & \Longleftrightarrow (p \downarrow p). \\ \textit{l.e.} \\ \text{ii) } (p \lor q) & \Longleftrightarrow ((p \downarrow q) \downarrow (p \downarrow q)). \\ \textit{l.e.} \\ \text{iii) } (p \land q) & \Longleftrightarrow ((p \downarrow p) \downarrow (q \downarrow q)). \end{array}$$

Usando lo anterior, encontrar una forma enunciativa en la que sólo figure la conectiva NOR (\downarrow) y que sea equivalente a (p \rightarrow (q \vee (\sim r))).

- 12. Encontrar formas enunciativas en las que sólo figuren las conectivas que se indican en cada caso y que sean lógicamente equivalentes a las siguientes:
 - a) $(p \leftrightarrow q)$, a) $(p \leftrightarrow q)$, $\{\sim, \vee\}$. b) $(p \rightarrow (q \rightarrow r))$, $\{\sim, \wedge\}$. c) $((p \land q) \lor (r \land s))$, $\{\sim, \rightarrow\}$. d) $((p \leftrightarrow (\sim q)) \leftrightarrow r)$, $\{\sim, \wedge, \vee\}$. e) $((p \land q) \lor (p \rightarrow s))$, $\{|\}$. f) $((p \land q) \lor (p \rightarrow s))$, $\{\downarrow\}$.
- 13. Dada la forma enunciativa \mathcal{A} : $(p \downarrow q) \leftrightarrow r$, buscar formas enunciativas lógicamente equivalentes a la anterior en las que sólo aparezcan las conectivas:

A.1
$$\{\neg, \land, \lor\}$$

A.2 $\{\neg, \rightarrow\}$
A.3 $\{\downarrow, \uparrow\}$

- 14. Para cada una de las siguientes argumentaciones determinar si es válida o inválida:
 - (a) $((p \land q) \rightarrow (r \lor s)), (p \leftrightarrow q), (r \rightarrow q); \therefore r \rightarrow s$.
 - (b) $((p \land q \land r) \lor (q \land s)) \rightarrow a, q \land (\sim r), s; : a.$
 - (c) Si f es continua, entonces que f es diferenciable implica que f es integrable. f es diferenciable. Por tanto, f es continua implica que f es integrable.
 - (c) Si U es un subespacio de V, entonces U es subconjunto de V, contiene al vector cero y U es cerrado. U es un subconjunto de V y es cerrado, entonces U contiene al vector cero. Así pues, U es cerrado entonces es un subespacio de V.
- 15. Dadas las siguientes frases:
 - "Antonio necesita un matemático o un informático"
 - "Si Antonio necesita un informático entonces necesita un matemático"

Utilizar la lógica proposicional para contestar a las siguientes preguntas:

- i) ¿Necesariamente se deduce que Antonio necesita un informático?
- ii) ¿Necesariamente se deduce que Antonio necesita un matemático?

16. Se tienen las siguientes premisas:

Si Fernando tiene suerte y llueve entonces estudia.

Fernando aprobará si y sólo si estudia o tiene suerte.

Si Fernando no tiene suerte entonces no llueve.

Sabiendo que llueve, utilizar la lógica proposicional para responder a las siguientes preguntas:

- i) ¿Aprobará Fernando?
- ii) ¿Tendrá suerte Fernando?

17. Utilizar la lógica proposicional para resolver el siguiente problema:

Para aprobar las prácticas de Álgebra I: cada alumno debe asistir a clase, hacer un cuaderno de prácticas aceptable y demostrar que dicho cuaderno de prácticas ha sido realizado por el alumno mediante una prueba escrita; o hacer un cuaderno de prácticas aceptable y superar el examen final.

- 1. Pepito hizo un cuaderno de prácticas aceptable pero no demostró que lo hizo él en la prueba escrita. Sabiendo que Pepito superó el examen final, ¿aprobó Pepito las prácticas?
- 2. Juanito asistió a clase, hizo una patata de cuaderno pero realizó bien la prueba escrita donde demostraba que él era el autor del cuaderno. Juanito también aprobó el examen final, ¿aprobará las prácticas Juanito?

18. Sabiendo:

"La página web de la titulación tiene una errata o bien el examen de Álgebra I no es el 2 de julio. Si el examen es el 2 de Julio, el manual de la universidad tiene una errata. El examen de Álgebra I es el 14 de julio si y sólo si el manual tiene una errata y el periodo de exámenes no termina el 10 de julio. Teniendo en cuenta que le periodo de exámenes termina el 10 de julio y que el manual tiene una errata."

Usar la validez o invalidez de las argumentaciones para deducir la veracidad o falsedad de los siguientes enunciados:

- (i) El examen de Álgebra I es el 2 de julio.
- (ii) Si la página web de la titulación no tiene una errata, entonces el examen de Álgebra I es el 14 de julio.