Welcome to Biostats Recitation!

Eric R. Scott, Natalie Kerr

Information

Office Hours:

- Avalon:
- Eric:

Objectives

- Build a toolset to work with, explore, visualize, and analyze data
- Become familiar with resources to help learn more on your own
- Apply concepts learned in lecture to new situations
- Get the tools you need to work through homework assignments

Expectations

- Attendance (Recitation is required)
- Collaboration
 - Ask for help from your classmates
 - Ask your classmates if they need help
- Experiment, play, and have fun with R!
- Tell us if we need to slow down!

Why R?

- Open source (free!)
- Vibrant, helpful, friendly community online
- Reproducibility of code vs. point-and-click
- Used in many data-science, statistics, and science jobs

What is R? What is R Studio?

R is a programing language, but it's one that's designed to work interactively.

That means I can run one line of code at a time, instead of having to write a whole program.

x^2

[1] 625

This makes it easy to learn and debug

What is R? What is R Studio?

R Studio is an integrated development environment, or IDE. Think of R as a car's engine and RStudio as the car's dashboard.

R: Engine RStudio: Dashboard

In this class we will always interact with R through RStudio, never directly.

Tour of RStudio

Launch RStudio

Launch RStudio NOT R

Review of DataCamp Lesson

R as a calculator

```
5+5

12/2

44*15

10^10

## [1] 10

## [1] 6

## [1] 660

## [1] 1e+10
```

Variable Assignment

```
x <- 2
y <- 3
x + y

## [1] 5
z <- "Hello"
z</pre>
## [1] "Hello"
```

Functions

```
sqrt(25)
abs(-5)
round(1.522222, digits = 3)

## [1] 5
## [1] 1.522

Commenting your code

Use "#" to add notes in your code
```

```
Use "#" to add notes in your code

x <- c(1, 3, 7)

#the 'c()' function concatenates elements into a vector

x

## [1] 1 3 7

mean(x) #this takes the mean of 'x'

## [1] 3.666667
```

Getting Help With R

```
help() / ?
```

```
?round
#or
help(round)
```

With RStudio Help Tab:

Google R Help:

• Include "R" or "rstats" and the name of the function in your search

• Stack Overflow and blog posts can be good sources

Help On Social Media:

- Twitter: #rstats and #r4ds (R for Data Science) are often very helpful
- The R community is usually *very* friendly to beginners.

Come to office hours!

• All of the TAs for this course know R and use it for their work

Extending R

Packages

- Packages extend the capabilities of R
- Think of them like apps for a smartphone
- For example, the abd package contains all the datasets used in your textbook
- We will use abd, ggplot2, and dplyr heavily in this course
- Install R packages using the "Packages" tab in RStudio

Install Packages

- Install abd and ggplot2 now
 - Packages only need to be installed **once**
- Load packages with library(package_name)
 - Packages need to be loaded **once per R session**

Exploring Data

- Today we'll be using a built-in dataset called iris
- What is the iris dataset?
 - (hint: use help())
- Try head(iris).
 - What does the head() function do?

Iris Data

head(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Visualize Data

The Grammar of Graphics

ggplot2 is based on a data visualization framework called the "grammar of graphics" The short version is:

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.

All plots require three parts:

- 1. data, which must be a data frame
- 2. A geom, which describes how the data are to be plotted (points, lines, boxplots, etc.)
- 3. aes, which describes the aesthetic mapping of variables to representation by the geom

Aesthetic Mapping

- What variable is mapped to x?
- What variable is mapped to y?
- What variable is mapped to color?
- What variable is mapped to size?

ggplot2 Code

- Find the data, the aesthetic mappings, and the geom
- Try changing them!

Recreate plots in chapter 2 of abd

Sara wants the first week to be all about plotting

- \bullet stripcharts/jitter plots
- histograms
- faceting
- violin plots

Week 1 Code Cheatsheet

function	purpose	example
help()	get help on how to use a	help(geom_point)
library()	function load an already installed package	library(ggplot2)
ggplot()	set up a ggplot. Data and aesthetic mappings go in this function	
geom_*()	Use geom_* functions to map aesthetics to geometry	<pre>ggplot(iris, aes(x = Species, y = Sepal.Width)) + geom_boxplot()</pre>

R Notebooks

Your first homework uses an R Notebook document. Today, you'll get a very brief orientation so you can complete the homework, but we'll go more into depth in the future.

Make an R Notebook

- Start a new notebook with File > New File > R Notebook
- Take a look
- Click "Preview"

R Notebook Anatomy

- YAML header
 - Don't touch for now!
- Code chunks
 - Grey background
 - Bounded by three backticks (don't edit these)
 - Edit code inside and type your own code to complete homework
 - You can test code by clicking the "play" button in a chunk
- "Prose"
 - Not evaluated as R code, just writing
 - Type your answers to questions in the white spaces

"Knitting" an R Notebook

When you are finished with your homework, click the "knit" button and it should output a Word doc! Print, write your name, and hand it in.