Machine Learning Project 1

 $Data:\ Feature\ extraction,\ and\ visualization$

September 21, 2025

Group 94

Name	Student number
Vincent Van Schependom	s251739
Diego Armando Mijares Ledezma	s251777
Albert Joe Jensen	s204601

Table 1: Group members.

Task	Vincent	Diego	Albert
Section 1	30%	30%	40%
Section 2	40%	30%	30%
Section 3	30%	40%	30%
Section 4	30%	30%	40%
IAT _E X	90%	5%	5%

Table 2: Contributions & responsabilities table.

Introduction

The objective of this report is to apply the methods that were discussed during the first section of the course *Machine Learning* [1] to a chosen dataset. The aim is to get a basic understanding of the data prior to the further analysis (project report 2).

The particular dataset that is being investigated is the *Glass Identification* dataset from 1987 by B. German [2]. Table 1 lists our full names and student numbers, while Table 2 shows an overview of the contribution of each team member.

Contents

1	The Glass Identification dataset		
2	A close look at the different attributes		
3 Descriptive analysis of the dataset			
	3.1 Extreme values and outliers		
	3.2 Distribution of the attributes		
	3.3 Correlation between attributes		
4	Principal Component Analysis		
	4.1 Dimension reduction		
	4.2 Principal directions		
	4.3 Projected data		

1 The Glass Identification dataset

[TODO: The introduction to the data set.]

2 A close look at the different attributes

Attribute	Description	Type of variable
ID	Observation ID (excluded from analysis)	Numeric (discrete)
RI	Refractive Index	Continuous
Na	Sodium oxide (Na ₂ O)	Continuous
Mg	Magnesium oxide (MgO)	Continuous
Al	Aluminum oxide (Al_2O_3)	Continuous
Si	Silicon oxide (SiO ₂)	Continuous
K	Potassium oxide (K ₂ O)	Continuous
Ca	Calcium oxide (CaO)	Continuous
Ba	Barium oxide (BaO)	Continuous
Fe	Iron oxide (Fe ₂ O ₃)	Continuous
type	Type of glass	Nominal

Table 3: [TODO: Fill in.]

	Abbreviation in dataset	Description
1	BW-FP	Building Window, Float Processed
2	BW-NFP	Building Window, Non Float Processed
3	VW-FP	Vehicle Window, Float Processed
4	VW-NFP	Vehicle Window, Non Float Processed
5	containers	Containers
6	tableware	Tableware (e.g)
7	headlamps	Headlamps (e.g)

Table 4: [TODO: Fill in.]

[TODO: Detailed explaination of the attributes of the data.]

3 Descriptive analysis of the dataset

[TODO: ...]

3.1 Extreme values and outliers

[TODO: ...]

3.2 Distribution of the attributes

[TODO: ...]

3.3 Correlation between attributes

[TODO: ...]

4 Principal Component Analysis

[TODO: Explain why we standardise.]

4.1 Dimension reduction

We aim to reduce the 9-dimensional dataset into an M-dimensional one (with M < 9).

[TODO: How many PC's do we keep? I think M = 5.]

4.2 Principal directions

The principal directions of the (first M) principal components are the rotations, corresponding to each principal component $PC_i = v_i$ in the transform-matrix V_M . This matrix is used when computing the projected coordinates $B = V_M X$ of the original data X onto the subspace spanned by the first M principal components.

Variable	\mathbf{PC}_1	 $\mathbf{PC}_M = \mathbf{PC}_{5??}$
RI	0	 0
Na	0	 0
Mg	0	 0
Al	0	 0
Si	0	 0
K	0	 0
Ca	0	 0
Ba	0	 0
Fe	0	 0

Table 5: The principal directions (a.k.a. the *loadings*) of the first M principal components $PC_i = v_i$ in the rotation matrix V_M . [TODO: Describe what these directions mean in terms of the original attributes.]

4.3 Projected data

[TODO: Visualisations of the projected data]

Summary

[TODO: A short summary of what we discussed in the whole paper.]

References

- [1] Tue Herlau, Mikkel N. Schmidt, and Morten Mørup. *Introduction to Machine Learning and Data Mining*. Technical University of Denmark (DTU), Lyngby, Denmark, 2023. Lecture notes, Fall 2023, version 1.0. This document may not be redistributed. All rights belong to the authors and DTU.
- [2] B. German. Glass Identification. UCI Machine Learning Repository, 1987. DOI: https://doi.org/10.24432/C5WW2P.