Ayudantía 5 Análisis Funcional

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

29 de septiembre de 2022

Teorema 1 (Aplicación abierta). Sean $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ espacios de Banach y $T: X \to Y$ operador lineal continuo. Si T es sobreyectivo entonces es abierto.

Teorema 2 (Grafo cerrado). Sean $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ espacios de Banach y $T: X \to Y$ operador lineal tal que su grafo

$$Gr(T) := \{(x, y) \in X \times Y | y = T(x) \}$$

es cerrado en $(X \times Y, \|\cdot\|_{X \times Y})$. Entonces T es continuo.

Problema 1. Sean X, Y e.v.n. y $T: X \to Y$ operador lineal de rango finito, i.e., dim $\text{Im}(T) < +\infty$. Demuestre que si el grafo de T es cerrado entonces T es continuo.

Indicación. Suponga por contradicción que T no es continuo. Construya una sucesión $(x_n) \subseteq X$ convergente de tal modo que $||T(x_n)||_Y \to \infty$ y concluya.

Problema 2. Sea X espacio de Banach y $T: X \to X'$ lineal tal que

$$T(x)(x) \ge 0 \quad \forall x \in X$$

Demuestre que T es un operador acotado.

Problema 3. El objetivo de este problema es probar que el Teorema del Grafo Cerrado implica el Teorema de la Aplicación Abierta, i.e., que ambos teoremas son equivalentes. Consideramos entonces X, Y espacios de Banach y $T: X \to Y$ operador lineal acotado y sobreyectivo. Asuma de aquí en adelante que el Teorema del Grafo Cerrado es verdadero y considere los siguientes pasos:

- 1. Defina la aplicación $L: Y \to X/\ker(T)$ mediante $y \mapsto [x]$ donde T(x) = y. Pruebe que L está bien definido y es lineal.
- 2. Empleando el teorema del grafo cerrado demuestre que L es continuo.
- 3. Concluya el resultado.

Problema 4. Sean Y, Z espacios de Banach, X e.v.n. Considere $T_Y: Y \to X, T_Z: Z \to X$ operadores lineales continuos tales que la ecuación $T_Y(y) = T_Z(z)$ posee una única solución $z \in Z$ para cada $y \in Y$. Demuestre que la aplicación $T: Y \to Z, y \mapsto z$ es lineal y continua.