本节内容

定点数

补码乘法运算

王道24考研交流群: 769832062

补码一位乘法

设机器字长为5位(含1位符号位,n=4),x = -0.1101,y = +0.1011,采用Booth算法 $求x \cdot y$ [x] $_{\land}=1.0011$,[-x] $_{\land}=0.1101$,[y] $_{\land}=0.1011$

原码一位乘法: 进行 n 轮加法、移位

每次加法可能 +0 、 $+[|x|]_{原}$

每次移位是"逻辑右移"

符号位不参与运算

朋友, 过两招?

根据当前MQ中的最低 位来确定加什么

MQ中最低位 = 1时,(ACC)+[|x|]_原 MQ中最低位 = 0时,(ACC)+0

补码一位乘法: 进行 n 轮加法、移位,最后再多来一次加法

每次加法可能 +0 、 $+[x]_{i}$ 、 $+[-x]_{i}$

每次移位是"补码的算数右移"

符号位参与运算

根据当前MQ中的最低位、 **辅助位** 来确定加什么

辅助位 - MQ中最低位 = 1时, $(ACC)+[x]_{\uparrow}$

辅助位 - MQ中最低位 = 0时, (ACC)+0

辅助位 - MQ中最低位 = -1时,(ACC)+[-x]*

补码一位乘法

设机器字长为5位(含1位符号位,n=4),x = -0.1101,y = +0.1011,采用Booth算法 $求x \cdot y$ [x] $_{\land}=1.0011$,[-x] $_{\land}=0.1101$,[y] $_{\land}=0.1011$

建: 769832062

补码一位乘法:

进行n轮加法、移位,最后再多来一次加法

每次加法可能 +0 、+[x]*、+[-x]*

每次移位是"补码的算数右移"

符号位参与运算

根据当前MQ中的最低位、 **辅助位** 来确定加什么

辅助位 - MQ中最低位 = 1时, $(ACC)+[x]_{\uparrow}$

辅助位 - MQ中最低位 = 0时,(ACC)+0

辅助位 - MQ中最低位 = -1时,(ACC)+[-x]*

补码一位乘法 (手算模拟)

设机器字长为5位(含1位符号位,n=4),x=-0.1101,y=+0.1011,采用Booth算法求 $x\cdot y$

 $[x]_{\dot{\gamma}\dot{\gamma}}=11.0011$, $[-x]_{\dot{\gamma}\dot{\gamma}}=00.1101$, $[y]_{\dot{\gamma}\dot{\gamma}}=0.1011$

	(高位部	分积)	(低位部分积/乘数)	
		00.0000	0.1011 0 丢失位	
正数	+[-x] _*	00.1101	辅助位	
算数		00.1101		
开致 右移	右移	00.0110	10.10 <u>1</u> <u>1</u> 0	
	+0	00.0000		
	× ×	00.0110		
	右移	00.0011	010.1 <u>0</u> <u>1</u> 10	
负数	$+[x]_{\not = h}$	11.0011		
算数		11.0110		
右移	右移	11.1011	0010. <u>1</u> ¦ <u>0</u> 110	
<i>)</i>	$+[-x]_{\stackrel{*}{\nearrow} h}$	00.1101	原符	
		00.1000	号位	
最后	右移	00.0100	<u>0001</u> 0. <u> 1</u> 0110	
多一口	+[x] _*	11.0011	,	
次加		11.0111	构成 $[x \cdot y]_{in}$	
洪		-7K	<i></i>	

说明

起始情况

 $Y_4Y_5=10$, $Y_5-Y_4=-1$, \emptyset +[-x]*

右移部分积和乘数

 $Y_4Y_5=11$, $Y_5-Y_4=0$, $\emptyset+0$

右移部分积和乘数

 $Y_4Y_5=01$, $Y_5-Y_4=1$, \emptyset +[x] $\stackrel{*}{\wedge}$

右移部分积和乘数

 $Y_4Y_5=10$, $Y_5-Y_4=-1$, \emptyset +[-x]*

右移部分积和乘数

 $Y_4Y_5=01$, $Y_5-Y_4=1$, \emptyset +[x]*

n轮加法、算数右移,加法规则如下:

辅助位 - MQ中最低位 = 1时,(ACC)+[x]补

辅助位 - MQ中最低位 = 0时, (ACC)+0

辅助位 - MQ中最低位 = -1时,(ACC)+[-x]补

补码的算数右移:

符号位不动,数值位右移,正数右移补0,负数右移补1(符号位是啥就补啥)

注:一般来说,Booth算法的被乘数、部分积采用双符号位补码

 $[x \cdot y]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray$

知识点回顾

部分积、被乘数、乘数都可 采用双符号位原码,也可用 单符号位原码(手算时乘数 的符号位可不写)

部分积、被乘数采用双符号位补码;乘数采用单符号位 补码,并在末位添个0

原码一位乘法:

符号位通过异或确定,数值位由被乘数和 乘数的绝对值进行 n 轮加法、移位

每次加法可能 +0 、+[|x|]_原

每次移位是"逻辑右移"

乘数的符号位不参与运算

朋友,过两招?

补码一位乘法(Booth算法):

符号位、数值位都是由被乘数和乘数进行 n 轮加法、移位,最后再多来一次加法

每次加法可能 +0 、+[x]*、+[-x]*

每次移位是"补码的算数右移"

乘数的符号位参与运算

MQ中最低位 = 1时,(ACC)+[|x|]_原 MQ中最低位 = 0时,(ACC)+0 辅助位 - MQ中"最低位" = 1时,(ACC)+[x]_补

辅助位 - MQ中"最低位" = 0时,(ACC)+0

辅助位-MQ中"最低位"=-1时,(ACC)+[-x]*