COIMBATORE INSTITUTE OF TECHNOLOGY

NAME : DEVA DHARSHINI D

ROLL NO: 1832015

Problem Statement 2:

Explore the given brazil house rent data set using EDA techniques visualize the results and build a suitable model to predict the house rent.

DESCRIPTION

Rent of a house increases or decreases depends on various factors like area, location ,facility, pet, safety and security, etc. A housing market can be understood as any market for properties which are negotiated either directly from their owners to buyers, or through the services of real estate brokers. People and companies are drawn to this market, which presents many profit opportunities that come from housing demands worldwide. These demands are influenced by several factors, such as demography, economy, and politics. For this reason, the analysis of such markets has been challenging data scientists and ML engineers around the world, as they must take into account a wide range of scientific fields, each one addressing different kinds of data, to come up with accurate results to customers and stakeholders.

DATA SET

City: City where the property is located

Area: Size of area

Rooms: Number of rooms

Bathroom: Number of bathrooms

Parking spaces: Number of parking spaces

Floor: Number of floors

Animal: If accept animals (1) or not (0) **Furniture**: If it is furnished (1) or not (0)

Hoa: Homeowners association tax

Rent amount: Rent amount in Real (R\$)
Property tax: Property tax in Real (R\$)
Fire insurance: Fire insurance in Real (R\$)

Total: Total amount in Real (R\$)

Importing library's

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import statsmodels.api as sm

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

% matplotlib inline

sns.set_style('darkgrid')

Loading and Reading the Data

houses = pd.read_csv('houses_to_rent.csv')

houses.head()

	city	area	rooms	bathroom	parking spaces	floor	animal	furniture	hoa (R\$)	rent amount (R\$)	property tax (R\$)	fire insurance (R\$)	total (R\$)
0	São Paulo	70	2	1	1	7	acept	furnished	2065	3300	211	42	5618
1	São Paulo	320	4	4	0	20	acept	not furnished	1200	4960	1750	63	7973
2	Porto Alegre	80	1	1	1	6	acept	not furnished	1000	2800	0	41	3841
3	Porto Alegre	51	2	1	0	2	acept	not furnished	270	1112	22	17	1421
4	São Paulo	25	1	1	0	1	not acept	not furnished	0	800	25	11	836

Exploring the data

houses.info()

#	Column	Non-Null Count	Dtype
0	city	10692 non-null	object
1	area	10692 non-null	int64
2	rooms	10692 non-null	int64
3	bathroom	10692 non-null	int64
4	parking spaces	10692 non-null	int64
5	floor	10692 non-null	object
6	animal	10692 non-null	object
7	furniture	10692 non-null	object
8	hoa (R\$)	10692 non-null	int64
9	rent amount (R\$)	10692 non-null	int64
10	property tax (R\$)	10692 non-null	int64
11	fire insurance (R\$)	10692 non-null	int64
12	total (R\$)	10692 non-null	int64

dtypes: int64(9), object(4)

memory usage: 1.1+ MB

houses.describe().round(2)

	area	rooms	bathroom	parking spaces	hoa (R\$)	rent amount (R\$)	property tax (R\$)	fire insurance (R\$)	total (R\$)
count	10692.00	10692.00	10692.00	10692.00	10692.00	10692.00	10692.00	10692.00	10692.00
mean	149.22	2.51	2.24	1.61	1174.02	3896.25	366.70	53.30	5490.49
std	537.02	1.17	1.41	1.59	15592.31	3408.55	3107.83	47.77	16484.73
min	11.00	1.00	1.00	0.00	0.00	450.00	0.00	3.00	499.00
25%	56.00	2.00	1.00	0.00	170.00	1530.00	38.00	21.00	2061.75
50%	90.00	2.00	2.00	1.00	560.00	2661.00	125.00	36.00	3581.50
75%	182.00	3.00	3.00	2.00	1237.50	5000.00	375.00	68.00	6768.00
max	46335.00	13.00	10.00	12.00	1117000.00	45000.00	313700.00	677.00	1120000.00

DATA PREPROCESSING

#change spaces for underscores

cols = houses.columns

cols = cols.map(lambda x: x.replace(' ','_') if isinstance(x, (str)) else x)

houses.columns = cols

#change the categorical variables

houses.animal.replace(['acept','not acept'],[1,0], inplace = True)

houses.furniture.replace(['furnished','not furnished'],[1,0], inplace = True)

#change "\$" for use queries

```
houses.rename(columns={'hoa_(R$)': 'hoa',
```

'rent_amount_(R\$)': 'rent_amount',

'property_tax_(R\$)': 'property_tax',

'fire_insurance_(R\$)': 'fire_insurance',

'total_(R\$)': 'total'}, inplace = True)

EXPLORATING DATA ANALYSIS

ax = sns.countplot(houses['furniture'], hue = houses['city'])

ax.figure.set_size_inches(12, 8)

ax.set_xlabel('Furniture?', fontsize=13)

ax.set_ylabel('Count', fontsize=13)

ax.set_xticklabels(['No','Yes'], fontsize=13)

ax

<matplotlib.axes._subplots.AxesSubplot at 0x2f02bbea190>

Sao Paulo has more information than other cities. In addition, it's also possible to identify in the dataset more houses for rent that are not furnished.

```
ax = sns.violinplot(x ='animal', y ='rent_amount',
data = houses, hue ='city')
ax.figure.set_size_inches(12, 8)
ax.set_xlabel('Acept Animals?', fontsize=13)
ax.set_ylabel('Rent Amount (R$)', fontsize=13)
ax.set_xticklabels(['No','Yes'], fontsize=13)
ax
```

<matplotlib.axes._subplots.AxesSubplot at 0x2f02c5895b0>

In above graph I observed the biggest rent amount is from Sao Paulo and I can also see that animals (if accept or no) distribution is similar to each city. Besides that, it's notorious that Porto Alegre and Campinas has a big density.

```
ax = sns.barplot(x='rooms', y='area', data = houses,
palette = 'GnBu_d')
ax.figure.set_size_inches(12, 8)
ax.set_xlabel('Number of rooms', fontsize=13)
ax.set_ylabel('Size of Area', fontsize=13)
```

Text(0, 0.5, 'Size of Area')

This image shows the relationship between area and rooms. Until 5 rooms have a crescent and then stabilize with little variation but remember this data has influence of Outliers.

```
plt.figure(figsize=(12,8))
sns.heatmap(houses.corr(), annot=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x2f02c41dfa0>

As you can see, not all features are correlated with the dependent variable rent_amount. Hence I will drop all other features apart from these. However this is not the end of the process. One of the assumptions of linear regression is that the independent variables need to be uncorrelated with each other. If these variables are correlated, then we need drop it. So let's check the correlation of selected features with each other. This can be done either by visually checking it from the above correlation matrix.

FITTING THE MODEL

#Splitting data

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state = 8)
reg = LinearRegression()
reg.fit(x_train, y_train)
predict = reg.predict(x_test)
```

#add a constant and looking the summary

```
x_train_constant = sm.add_constant(x_train)
```

```
model_sm = sm.OLS(y_train, x_train_constant, hascont = True).fit()
print(model_sm.summary())
```

#add a constant and looking the summary

```
x_train_constant = sm.add_constant(x_train)
model_sm = sm.OLS(y_train, x_train_constant, hascont = True).fit()
print(model_sm.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Lea Sat, 0	OLS st Squares 6 Mar 2021 23:30:40 7474 7470 3 nonrobust	R-squared: Adj. R-squ F-statisti Prob (F-st Log-Likeli AIC: BIC:	uared: .c: :atistic):	1.58 -5 1.11	0.985 0.985 8e+05 0.00 5668. 3e+05 4e+05
=========			t	P> t	[0.025	0.975]
const hoa property_tax fire_insurance	0.3262 -0.1154	0.005 0.011	64.693 -10.831	0.000 0.000	0.316 -0.136	0.336 -0.095
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	0.000	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.	son: a (JB):	29807	2.039 7.986 0.00 9e+03

#looking the metrics

```
print('MAE: ', mean_absolute_error(y_test, predict).round(3))
print('RMSE: ', np.sqrt(mean_squared_error(y_test, predict)).round(3))
print('R2:', r2_score(y_test, predict).round(3))
metrics.append(np.sqrt(mean_squared_error(y_test, predict)))
```

MAE: 248.495 RMSE: 462.259 R2: 0.982

CONCLUSION

In this problem with seaborn and matplotlib to improve the understanding of some variables from the data, pandas to handle and analyzing some columns, and using statsmodels

model. The value of will perfectly predictions urance are the n	comprehesion of the of r-square resembles ict the House rent. From ajor factors that affectill be high, Otherwise	98% of accuracy and my observation ets the house rent is	score, which means bathrooms, HOA p n Brazil. If this fact	that the model roperty tax, fire ors are high the