Steinmann Relations and the Two-Loop MHV Amplitude in Eight-Particle Kinematics

John Golden, 1,2 Andrew J. McLeod 2,3,4

- ¹ Michigan Center for Theoretical Physics and Randall Laboratory of Physics, Department of Physics, University of Michigan Ann Arbor, MI 48109, USA
- ² Kavli Institute for Theoretical Physics, UC Santa Barbara, Santa Barbara, CA 93106, USA
- ³ SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
- ⁴ Niels Bohr International Academy, Blegdamsvej 17, 2100 Copenhagen, Denmark

ABSTRACT: We present the full functional form of the two-loop eight-point MHV amplitude in the planar limit of maximally supersymmetric Yang-Mills theory, in terms of cluster polylogarithms. We also compute the two BDS-like ansätze that can be formulated in eight-particle kinematics, and find that . . .

\mathbf{C}	Contents	
1	Introduction	
2	Promoting $R_8^{(2)}$ from Symbol to Function	
3	The Functions $R_8^{(2)},{}^3\mathcal{E}_8^{(2)},$ and ${}^4\mathcal{E}_8^{(2)}$	

1

1

1

1 Introduction

2 Promoting $R_8^{(2)}$ from Symbol to Function

Briefly describe the method outlined in [?] for upgrading the n-point two-loop MHV symbol to a function.

3 The Functions
$$R_8^{(2)}$$
, ${}^3\mathcal{E}_8^{(2)}$, and ${}^4\mathcal{E}_8^{(2)}$

Work out the BDS-like ansätze that preserve the Steinmann relations between the three-particle and four-particle Mandelstam invariants, respectively. Check that