Subject = COA Subjec

Average occess time

Historical

$$T_{avg} = H_1 T_1 + (1-H_1) H_2 (T_2 + T_1) + (1-H_2) (I-H_1) H_3 (T_1 + T_2 + T_3) - \dots$$

$$= \sum_{j=0}^{\infty} \left[\begin{bmatrix} j-1 \\ j-1 \\ i=0 \end{bmatrix} (1-H_2) H_3 \left[\frac{j}{T_1} T_1 \right] \right]$$

Simulaneus accu

$$T_{any} = H_1 T_1 + (1-H_1)H_2 T_2 + (1-H_1)(1-H_2)H_3 T_3 - \frac{m}{j=0} \left[\prod_{i=0}^{j-1} (1-H_i) H_i T_j \right]$$

Global min Rote = Number of Memory References generated by

local mis pote = Number of Mix Obachon in CM.
Total NO. of Access to the CM

thought of memory = - WPS [woods por second]

= # Floating Point IFFE

S	E	M	Yalue
0/1	E=0	M=0	+0 " " " " " " " " " " " " " " " " " " "
0/1	E=255	M=0	+00
0/1	1 LE 6 254	MEXXX	(-1)5. × 1.M × 2 E-127 (Implied normalized)
0/1	E=0	M to	(-1) × 0.Mx 2 126 (Focutional form)
0/1	E=255	M+0	NAN

# Pipline Hazerds	
1) 5 tourneral Harzard / Resource conflict	
3) control hozard / Branch Difficulty.	
(3) control hozord / Branch Difficulty.	
#1 Structural hazard / Resource conflict	
=) 2 different segments by to use same resource	at
some time.	
sul O Invocase Stall cycles	
1 Frereax number of resources	
40 oda un 1 loda diberit	
#3 Dala Hasard / Dala Dependency	or h
Desult of an instruction is used as infect in ne	
Sul" O'provided by compile (Delay Load) (Sushuare)	
" $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	sion
@ (naodward)	
(i) nardisare interlock	
FDA OF EXUB	
(11) operand forwarding / Bypassing	
* [] [] []	
Note ONO stalls for ALV to ALU depondency	
1 stalls for ALU to mannery	
(00) Mem de ALU	

Nota Hospids Clasification [RAW, WAW, WAR] # O PAW (Read Astern write) (towe dela depandency) If i reads a source before it is written by i, honce i incorractly gets old value. No. of spall 1: PE D + 13 = phase no. - phase no. -1 j: P5 - KJ + KA of wB of OF W8: write Back Delay load OF: - Opposed Jekh. 25 tell cycle for booth (1/6)
(i) H/W interlock depend instruction, if in operand forwarding there are immediately deponds # 2 WALL (Writer after unite) (And dependency) J' writes in a destination before I' writer it. i: RIE RZ+R3 j: PI & RAA RS Bol" @ Register Renaming J 1: RI - RZ+R3 R8 < P4 * R5 #3 WAR (worte often Read) (attent date depending) 'j' writes a destination before i reeds it; hence i incorrectly reads new value. of 1: RIX R2+R3 J: RI - RS+ R7 Set D Register Romaning

In ideal case

[with Marga = 5

A general pibline can't detect the branch problems

Bot O velaged Branch (s/v)

(5) Branch prediction (4/v)

cycles por Instruction

(PI = Fotal cycles

no of Instructions

 $CPI = \frac{k+n-1}{n}$

In ideal conditions (traignord)

Assume because g hazard total extra stall agale = 2

CPJ = K+n+ +m

In ideal andihon

 $\frac{(p2 = \frac{n+n}{n})}{(m)}$ $\frac{(m)}{(m)}$

Stul = In one methodon time execution time = (Play of

execution time of = [-CPIX max(...skge)]