2019 年度 卒業論文 単眼カメラ SLAM を完遂する環境要件

Environmental requirements to complete monocular camera SLAM

千葉工業大学 先進工学部 未来ロボティクス学科 学籍番号 16C1096 鳴海 和真

2020年2月7日

謝辞

和文だとうしろに持っていくことが多いのですが、私は前のほうが好きです。 南武線に感謝します。 横須賀線に感謝します。 総武線に感謝します。

京葉線に吹き付ける横風に感謝します。

目次

謝辞		iii
第1章	序論	1
第2章	研究の目的	3
第 3 章 3.1	上田の研究をもっと引用してもらう手法の開発 手法の概要	5 5
第 4 章	結論	9
付録 A	Appendix is 何?	11

第1章

序論

上田は、いろいろ書いているが、あまり引用されない。例えば、[?,?,?] がある。 2 章で目的を述べる。

第2章

研究の目的

そこで、上田の研究をもっと時代におもねった方法に変える手法の研究を行う。

第3章

上田の研究をもっと引用してもらう 手法の開発

ここに書いてある方法を使えば、秒速で秒速で1億円稼ぐ男になれます。なれません。

3.1 手法の概要

図に書くと図 3.1 っていう感じ。式で書くとだいたい以下のような感じになるんじゃないんかなー。式 (3.12) が肝。

$$s_0, a(t_0), s(t_1), a(t_1), s(t_2), a(t_2), \dots, a(t_{T-1}), s_f \quad (s_0 = s(t_0), s_f = s(t_T)).$$
 (3.1)

$$s_0, \pi(s_0), s(t_1), \pi(s(t_1)), s(t_2), \pi(s(t_2)), \dots, \pi(s(t_{T-1})), s_f$$
 (3.2)

$$\pi: \mathcal{S} \to \mathcal{A} \tag{3.3}$$

$$S = \{s_i | i = 0, 1, 2, \dots, N - 1\}, \text{ and}$$
 (3.4)

$$\mathcal{A} = \{a_i | j = 0, 1, 2, \dots, M - 1\}$$
(3.5)

$$\pi: \mathcal{S} - \mathcal{S}_{f} \to \mathcal{A}.$$
 (3.6)

$$\dot{x}(t) = f[x(t), u(t)], \quad x(0) = x_0, \quad t \in [0, t_f].$$
 (3.7)

$$g[\boldsymbol{x}(t), \boldsymbol{u}(t)] \in \Re \quad (t \in [0, t_{\mathrm{f}}]). \tag{3.8}$$

$$J[\boldsymbol{u}] = \int_0^{t_{\rm f}} g[\boldsymbol{x}(t), \boldsymbol{u}(t)] dt + V(\boldsymbol{x}_{\rm f}). \tag{3.9}$$

(black: $\tau=1[Nm]$, gray: $\tau=0[Nm]$, white: $\tau=-1[Nm]$)

 $\boxtimes 3.1$ Representative Vectors of the $N_c = 128$ Map

$$\max_{\boldsymbol{u}:[0,t_{\mathrm{f}})\to\Re^{m}}J[\boldsymbol{u};\boldsymbol{x}_{0}]. \tag{3.10}$$

$$\boldsymbol{\pi}^*: \mathfrak{R}^n \to \mathfrak{R}^m \tag{3.11}$$

$$\max_{\boldsymbol{u}:[0,t_{\mathrm{f}})\to\Re^{m}} J[\boldsymbol{u};\boldsymbol{x}_{0}] = \max_{\boldsymbol{u}:[0,t')\to\Re^{m}} \int_{0}^{t'} g[\boldsymbol{x}(t),\boldsymbol{u}(t)]dt \\
+ \max_{\boldsymbol{u}:[t',t_{\mathrm{f}})\to\Re^{m}} \int_{t'}^{t_{\mathrm{f}}} g[\boldsymbol{x}(t),\boldsymbol{u}(t)]dt + V(\boldsymbol{x}_{\mathrm{f}}) \\
= \max_{\boldsymbol{u}:[0,t')\to\Re^{m}} \int_{0}^{t'} g[\boldsymbol{x}(t),\boldsymbol{u}(t)]dt + \max_{\boldsymbol{u}:[t',t_{\mathrm{f}})\to\Re^{m}} J[\boldsymbol{u};\boldsymbol{x}(t')]. \quad (3.12)$$

$$V^{\boldsymbol{\pi}}(\boldsymbol{x}) = J[\boldsymbol{u}; \boldsymbol{x}],$$
 where $\boldsymbol{u}(t) = \boldsymbol{\pi}(\boldsymbol{x}(t)), \ 0 \le t \le t_{\mathrm{f}}.$ (3.13)

$$\mathcal{P}_{ss'}^{a} = P[s(t_{i+1}) = s' | s(t) = s, a(t) = a],$$

$$(\forall t \in \{t_0, t_1, \dots, t_{T-1}\}, \forall s \in \mathcal{S} - \mathcal{S}_f, \text{ and } \forall s' \in \mathcal{S}).$$
(3.14)

$$\mathcal{R}_{ss'}^a \in \Re \tag{3.15}$$

3.1 手法の概要 7

$$J[a; s(t_0)] = J[a(0), a(1), \dots, a(t_{T-1})] = \sum_{i=0}^{T-1} \mathcal{R}_{s(t_i)s(t_{i+1})}^{a(t_i)} + V(s(t_T)),$$
(3.16)

$$\max J[a; s(t_0)]. \tag{3.17}$$

$$J^{\pi} = \int_{\mathcal{X}} p(\boldsymbol{x}_0) J[\boldsymbol{u}; \boldsymbol{x}_0] d\boldsymbol{x}_0 \quad (\boldsymbol{u}(t) = \boldsymbol{\pi}(\boldsymbol{x}(t))), \tag{3.18}$$

$$\frac{\partial V(\boldsymbol{x})}{\partial t} = \max_{\boldsymbol{u} \in \mathcal{U}} \left[g[\boldsymbol{x}, \boldsymbol{u}] + \frac{\partial V(\boldsymbol{x})}{\partial \boldsymbol{x}} \boldsymbol{f}[\boldsymbol{x}, \boldsymbol{u}] \right]. \tag{3.19}$$

$$U_{\text{att}}(\boldsymbol{x}) = \frac{1}{2}\xi\rho^2(\boldsymbol{x}) \tag{3.20}$$

$$U_{\text{rep}}(\boldsymbol{x}) = \begin{cases} \frac{1}{2} \eta \left(\frac{1}{\rho(\boldsymbol{x})} - \frac{1}{\rho_0} \right)^2 & \text{if } \rho(\boldsymbol{x}) \le \rho_0, \\ 0 & \text{if } \rho(\boldsymbol{x}) > \rho_0, \end{cases}$$
(3.21)

$$U(\mathbf{x}) = U_{\text{att}}(\mathbf{x}) + U_{\text{rep}}(\mathbf{x})$$
(3.22)

$$\mathbf{F}(\mathbf{x}) = -(\partial U/\partial x_1, \partial U/\partial x_2, \dots, \partial U/\partial x_n)^T$$

= $-\nabla U(\mathbf{x}).$ (3.23)

$$V(\boldsymbol{x}; \theta_1, \theta_2, \dots, \theta_{N_{\theta}})$$

$$\phi_i(\boldsymbol{x}) = \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{c}_i)^t M_i(\boldsymbol{x} - \boldsymbol{c}_i)\right\},\tag{3.24}$$

$$b_i(\mathbf{x}) = \frac{\phi_i(\mathbf{x})}{\sum_{j=1}^{N_{\phi}} \phi_j(\mathbf{x})}, \ (N_{\phi} : \text{ number of RBFs in the space})$$
 (3.25)

$$V(\boldsymbol{x}) = \sum_{i=1}^{N_{\phi}} \nu_i b_i(\boldsymbol{x}). \tag{3.26}$$

$$\phi_i(x) = \exp\left\{-\frac{1}{2}(x-i)^2\right\}$$

$$V(\boldsymbol{x}) = \sum_{i=0}^{3} w_i V(\boldsymbol{x}_i)$$
(3.27)

表 3.1 謎のパラメータ

(a)				(b)		
parameter	7	alue	•	variable	domain	
ℓ_1, ℓ_2	1.0	[m]	_	θ_1	$(-\infty,\infty)$	
ℓ_{c1},ℓ_{c1}	0.50	[m]		$ heta_2$	$(-\infty,\infty)$	
m_1, m_2	1.0	[kg]		$\dot{\theta}_1$	[-720, 720][deg/s]	
I_1,I_2	1.0	$[{\rm kg}~{\rm m}^2]$		$\dot{\theta}_2$	[-1620, 1620][deg/s]	
g	9.8	$[m/s^2]$		$\overline{\tau}$	-1, 0, or 1[Nm]	

第4章

結論

得られた知見を定量的に述べましょう。予稿等では箇条書きにしたほうがよいのですが、卒論の場合はどうせ長くなるので箇条書きは不要です。

素敵な結果になった。

付録 A

Appendix is 何?

付録です。