中国农业大学

2015~2016 学年秋季学期 (2016.01)

高等数学 A (上) 课程试题(A 卷)

一、填空题(本题共有5道小题,每小题3分,满分15分),请将合适的答案填在横线上.

$$1. \quad \lim_{n\to\infty} 2^n \sin\frac{9}{2^n} = \underline{\hspace{1cm}}.$$

2. 设函数
$$f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$$
, 则 $x = 1$ 是 $f(x)$ 的第 _____ 类间断点.

3. 已知向量
$$\vec{a}$$
, \vec{b} ,且 $|\vec{a}|$ =3, $|\vec{b}|$ =26, $|\vec{a} \times \vec{b}|$ =72,则点积 $\vec{a} \cdot \vec{b}$ =______.

4. 设函数
$$f(x) = (1+x)(1+2x)\cdots(1+nx)$$
, $(n$ 为正整数),则 $f^{(n)}(x) =$ _______

5. 反常积分
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \underline{\qquad}$$
.

二、单项选择题(本题共有5道小题,每小题3分,满分15分,请将所选答案填在括号内).

1. 设函数
$$f(x)$$
 可微,则 $df(e^x) = \mathbb{I}$ 】.

(A)
$$f'(x)e^x dx$$
; (B) $f'(e^x) dx$;

(B)
$$f'(e^x) dx$$
;

(C)
$$f'(e^x) e^x dx$$
; (D) $f'(e^x) e^x$.

(**D**)
$$f'(e^x)e^x$$
.

2. 若
$$x \to 0$$
时, $\sqrt{1-ax^2} - 1$ 与 $x \sin x$ 是等价无穷小,则 $a = \mathbb{I}$ 】.

(A)
$$-1$$
; (B) 1; (C) 2; (D) -2 .

$$(\mathbf{C})$$
 2

$$3. \int \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = \mathbf{I}$$

(A)
$$\frac{1}{2}\arcsin\sqrt{x} + C$$
 (C为任意常数); (B) $\arcsin\sqrt{x} + C$ (C为任意常数);

(C)
$$2\arcsin(2x-1)+C$$
 (C 为任意常数); (D) $\arcsin(2x-1)+C$ (C 为任意常数).

1

4. 若
$$f(x) = f(-x)$$
, $(-\infty < x < +\infty)$. 在 $(-\infty, 0)$ 内 $f'(x) > 0$, $f''(x) < 0$,

则在 $(0, +\infty)$ 内有【

(A)
$$f'(x) > 0$$
, $f''(x) < 0$; (B) $f'(x) > 0$, $f''(x) > 0$;

(B)
$$f'(x) > 0$$
, $f''(x) > 0$;

(C)
$$f'(x) < 0$$
, $f''(x) < 0$; (D) $f'(x) < 0$, $f''(x) > 0$.

(D)
$$f'(x) < 0$$
, $f''(x) > 0$.

- (A) a < b; (B) a > b;
- (C) a = b; (D) 以上结论都不对.

三、求解下列各题(本题共有4道小题,每小题6分,满分24分).

- 1. 求极限 $\lim_{x\to 0} \frac{\tan x x}{x \sin x}$.
- 2. 计算曲线 $y = \frac{2}{3}x^{\frac{3}{2}}$ 上相应于 $3 \le x \le 8$ 的一段弧的长度.
- 3. 设函数 y = y(x) 由参数方程 $\begin{cases} x = \cos t, \\ y = \int_0^t e^{-u^2} \sin u \, du. \end{cases}$ 所确定,求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.
- 4. 计算定积分 $\int_{-1}^{1} \frac{2x^2 + x \cos x}{1 + \sqrt{1 x^2}} dx$
- 四、(本题满分 10 分) 求经过点 A(-1,2,3), 垂直于直线 $L: \frac{x}{4} = \frac{y}{5} = \frac{z}{6}$ 且与平面 $\Pi:7x+8y+9z+10=0$ 平行的直线方程.
- (本题满分 10 分) 证明函数 $f(x) = (1 + \frac{1}{r})^x$ 在[1,+ ∞) 上单调增加.
- 六、(本题满分 10 分) 设常数 k > 0,曲线 $y = k x^2$ 与 $y = \sin x (0 \le x \le \frac{\pi}{2})$ 在 $x = t (0 < t < \frac{\pi}{2})$ 处相交(如图所示).
 - (1) 记 $S_1(t)$ 为 $y = k x^2$ 与 $y = \sin x$ 围成的图形的面积, 求 $S_1(t)$;
 - (2) 记 $S_2(t)$ 为曲线 $y = \sin x$ 与两直线 $y = \sin t$ 和 $x = \frac{\pi}{2}$ 围成的图形的 面积, 求 $S_2(t)$;

(3) 试证: $S(t) = S_1(t) + S_2(t) \pm (0, \frac{\pi}{2})$ 内必有惟一极小值.

- 七、(本题满分 10 分)设连续函数 f(x) 满足等式 $\int_0^1 f(tx) dt = x^2 e^{-x}$, 求 f(x).
- 八、(本题满分 6 分)假设 f(x) 和 g(x) 在闭区间 [a,b] 上存在二阶导数,

$$f(a) = f(b) = g(a) = g(b) = 0$$
,在开区间 (a,b) 内 $g(x) \neq 0$, $g''(x) \neq 0$.

试证: 在开区间(a,b)内至少存在一点 ξ , 使得 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$ 成立.