

Design of a 32-bit RISC-V Processor

Arvin Delavari – Summer 2023 Supervisor: Professor Mirzakuchaki PhD.

Contents:

- Error Configurable Approximate Multiplier Design
- Image Processing using Approximate Multiplier
- 32-bit RISC-V Processor Design
- Processor Physical Layout and Verification
- Assistant Software for Code Execution
- References

Error Configurable Approximate Multiplier Design

A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design [1]

Carry Maskable Adder (CMA)

Proposal of a new approximate multiplier architecture

Error Configurable Multiplier

Error Configurable Approximate Multiplier Design

 $1 \leftarrow 2$

 $3 \leftarrow 2$

Proposal of a new Error Configurable Adder:

			Er = o		Er = 1	
A	В	Cin	Cout	Sum	Cout	Sum
0	0	О	0	О	0	0
0	0	1	0	1	0	1
0	1	О	0	1	0	1
0	1	1	О	1	1	О
1	0	0	0	1	0	1
1	О	1	1	1	1	О
1	1	О	1	0	1	0
1	1	1	1	1	1	1

^{*} Normalized gate delay models to analyze circuit performance mentioned in [2]

Error Configurable Approximate Multiplier Design

	NMED	MRED	ER
m_7b	0.25	0.85	36.16
m_6b	0.26	0.99	43.46
m_5b	0.29	1.31	52.07
m_4b	0.35	1.93	61.05
m_3b	0.49	3.05	69.61
m_2b	0.71	4.57	74.93
m_1b	1.05	6.5	78.1
m_ob	1.64	9.02	80.02

	NMED	MRED	ER
ecm_7b	0.25	0.85	36.16
ecm_6b	0.25	0.85	36.16
ecm_5b	0.26	0.97	39.73
ecm_4b	0.28	1.33	44.33
ecm_3b	0.34	2.11	50.33
ecm_2b	0.48	3.59	57.02
ecm_1b	0.76	5.89	61.8
ecm_ob	1.25	8.94	65.07

MRED Comparison between multipliers implmented with CMA and ECA

Error Rate Comparison between multipliers implemented with CMA and ECA

Image Processing using Approximate Multiplier

PSNR for image sharpening algorithm on Lenna image

	M_7b	M_6b	M_5b	M_4b	M_3b	M_2b	M_1b	M_ob
CMA	46.32	44.78	42.94	38.93	33.63	28.15	24.81	15.90
ECA	46.32	46.32	43.99	41.78	37.51	31.27	26.52	21.82

Original

Sharpened

Sharpened with ECA

32-bit RISC-V Processor Design

- Modular and Extensive Design
- Distributed Control Logic
- 5 stage pipeline

- Compatible with GCC compiler [3] (C and Assembly)
- I-Extension of RISC-V ISA [4]
- Synthesizable and implementable on FPGA (Ultrascale)

Processor Physical Layout and Verification

Core specifications				
Clock Cycle Time	4 ns			
CPI (R,I-TYPE)	1.13			
Frequency	250MHz			

Module	Max Delay (ps)		
Address Generator	3844.84		
Arithmetic Logic Unit	3099.01		
Control Status Registers	747.689		
Hazard Forward Unit	1131.73		
Immediate Generator	1016.44		
Instruction Decoder	716.437		
Jump Branch Unit	243.115		
Register File	695.34		
Normalized Memory Access Time	10000 - 40000		
Fetch Unit	308.907		
Load Store Unit	569.903		

• Processed with TSMC 180nm technology [5]

Synthesis tool: Yosys [6]Layout: Magic VLSI [7]

Assistant Software for Code Execution

• Windows:

Venus Simulator (Assembly code) "Visual Studio Code" extension

Test flow:

Assembly output (.txt) \rightarrow Python Script \rightarrow instruction memory HEX file \rightarrow Testbench

• Linux:

RISC-V GCC compiler toolchain (C and Assembly code)

Test flow:

C code \rightarrow makefile \rightarrow GCC compiler toolchain \rightarrow instruction memory HEX file \rightarrow Testbench

References

- [1] T. Yang, T. Ukezono, and T. Sato, "A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design", 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, Korea (south), 2018, pp.605-610
- [2] Wen-Chang Yeh and Chein-Wei Jen, "High-speed Booth encoded parallel multiplier design," in IEEE Transactions on Computers, vol. 49, no. 7, pp. 692-701, July 2000
- [3] https://github.com/riscv-collab/riscv-gnu-toolchain
- [4] https://riscv.org/technical/specifications/
- [5] https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_018micron
- [6] https://www.yosyshq.com/open-source
- [7] http://opencircuitdesign.com/magic/
- [8] D. A. Patterson and J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface," 5th ed., *Morgan Kaufmann*, 2013.
- [9] J. L. Hennessy and D. A. Patterson, "Computer Organization and Design: A Quantitative Approach," 6th ed., *Morgan Kaufmann*, 2017.

