Introducción al Razonamiento Deductivo y Clingo

Jorge Baier

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile

Objetivos

- Discutir sobre el sistema 1 y 2 del pensamiento
- Introducir el Razonamiento Deductivo Automático
- Introducir el uso de Clingo para resolver problemas de Answer Set Programming

Psicología del pensamiento: Sistema 1 y Sistema 2

Desde el área de la psicología/economía podemos encontar algo de inspiración

- **Sistema 1**: Aquellas conclusiones que nuestro cerebro parece hacer en forma automática (sin esfuerzo consciente).
- **Sistema 2**: Aquellas conclusiones que nos cuesta obtener (con esfuerzo consciente).

Vemos el video "Thinking Fast, Slow – Daniel Kahneman"

Razonamiento Deductivo (Sistema 2)

- En la primera parte del curso nos concentramos solo en algunos problemas asociados al razonamiento.
- Los seres humanos somos capaces de resolver una gran variedad de problemas de razonamiento que van más allá del aprendizaje.

Razonamiento Deductivo (Sistema 2)

- En la primera parte del curso nos concentramos solo en algunos problemas asociados al razonamiento.
- Los seres humanos somos capaces de resolver una gran variedad de problemas de razonamiento que van más allá del aprendizaje.
- ¿Pero qué es razonar?

Razonamiento Deductivo (Sistema 2)

- En la primera parte del curso nos concentramos solo en algunos problemas asociados al razonamiento.
- Los seres humanos somos capaces de resolver una gran variedad de problemas de razonamiento que van más allá del aprendizaje.
- ¿Pero qué es razonar?
- Definición RAE: Ordenar y relacionar ideas para llegar a una conclusión
- No daremos una definición ahora, en vez, veamos ejemplos

Problemas de Razonamiento: Planificación de Rutas

Encuentre una secuencia de movimientos que lleve desde la situación inicial a la final

Problemas de Razonamiento: Mundo Desconocido

¿Cómo encontramos el oro?

Problemas de Razonamiento: Diagnóstico

Juan enciende el interruptor y la linterna no produce luz. Sin cambiar la posición del interruptor, Juan cambia las baterías y ahora sí la linterna produce luz. ¿Qué puedo inferir sobre la linterna?

Answer Set Programming (ASP)

- Tipo de programación lógica que usa un lenguaje declarativo para resolución de problemas de búsqueda difíciles
- Los programas de ASP se construyen a partir de reglas lógicas
- Las reglas expresan deducciones o restricciones que se deben cumplir sobre lo deducido por el programa
- Aquello que se deduce de un programa es un modelo
- A los modelos también se les llama answer sets.

Reglas Básicas (Definición Matemática)

Definición

Una regla en programación en lógica es un objeto de la forma:

$$Head \leftarrow Body$$
,

donde *Head* y *Body* son conjuntos de *átomos*. Esta regla indica que si *Body* se encuentra en el modelo, entonces *Head* también se encuentra en él.

Ejemplo:
$$\{u\} \leftarrow \{t, r\}$$

En el sistema clingo esta regla se anota así:

$$u := t, r.$$

Y significa que si t y r se encuentran en el modelo, entonces u también

Átomos

Sintácticamente un átomo es de la forma:

- p, donde p es un string que comienza con minúscula.
- p(c1,c2,...,cn), donde p es un string que comienza con minúscula y que se llama predicado y c1, c2, ..., cn son constantes. Cada constante es un string que comienza con minúscula.

Hechos

Definición

Un *hecho* en programación en lógica es una regla cuyo *Tail* es vacío.

En clingo se ven de la forma:

q.

Qué es un programa básico

Definición

Un programa es un conjunto de reglas básicas.

Modelo

Informalmente, un *modelo* contiene lo que se "deduce" de un programa.

Para construir un modelo M de un programa básico Π :

- **1** Agregamos todos los hechos del programa Π a M.
- **2** Si hay una regla $Head \leftarrow Tail$ en Π que cumple:
 - (a) Head no está contenido en M
 - (b) Todos los elementos de *Tail* están en *M* entonces agregamos *Head* a *M*.
- 3 Si el paso 2 agrega algo a *M* volvemos al paso 2. En caso contrario, terminar.

Ejemplo

Un ejemplo de lo anterior es

```
gato(tom).
animal(tom) :- gato(tom).
```

La segunda linea significa que si tom es gato, entonces tom es un animal. A partir de esto, el modelo resultante es {gato(tom), animal(tom)}

Ejemplo

Tomando el ejemplo anterior, si consideramos que hay otro gato, garfield, y queremos decir que el hecho de que garfield sea gato, implica que garfield también es animal, escribiremos:

```
gato(tom).
gato(garfield).
animal(tom) :- gato(tom).
animal(garfield) :- gato(garfield).
```

Para no escribir una regla para cada hecho podemos usar variables.

Variables

Variables

Una variable es una forma de generar una familia de reglas.

En Clingo, para las variables comienzan con mayúscula.

De esta manera, podemos generar los mismos modelos de este ejemplo:

```
gato(tom).
gato(garfield).
animal(tom) :- gato(tom).
animal(garfield) :- gato(garfield).
con el siguiente programa:
  gato(tom).
  gato(garfield).
  animal(X) :- gato(X).
```

Donde la tercera linea indica que todo profesor forma parte del curso.

Objetivos

- Introducir el Razonamiento Deductivo Automático
- Introducir el uso de Clingo para resolver problemas de Answer Set Programming

