

L'INTELLIGENCE ARTIFICIELLE

SCIENCE TECHNIQUES ET APPLICATIONS

Pr. Adil CHERGUI

IAGI 2 - 2020/2021

Objectifs de la séance :

- Définir la notion d'agent intelligent.
- Comprendre l'analyse PEAS (Performance measure, Environment, Actuators and Sensors)
 - Distinguer divers types d'environnements
 - Distinguer divers types des agents intelligents.

Pf. Adil CHERGUI

Séance 1

Les deux visions de l'IA

Compréhension de l'intelligence

- Neurosciences computationnelles
 - Développer des modèles mathématiques de fonctionnement du cerveau au niveau neuronal
- Sciences cognitives, psychologie
 - Comprendre le raisonnement humain
 - Prédire la performance d'humain à une tâche, exemple : l'architecture ACT-R pour évaluer le risque couru en parlant au téléphone lors de conduite d'une voiture modèle multitasking chez l'humain).

Création d'agents intelligents

- Capacités fondamentales :
 - Perception
 - Représentation des connaissances (modélisation)
 - Apprentissage
 - Raisonnement
 - Prise de décision

Programmation d'actions vs Décisions automatiques

Programmation d'actions

- Scripts
- Machine à états finis

Décisions automatiques

- Les action ne sont **ni scriptées**, **ni programmées** à l'avances
- L'agent décide lui-même de ses propres actions, à partir d'un certain calcul ou « raisonnement » dépendant de son environnement
- On donne à l'ordinateur la capacité de prendre des **décisions intelligentes** dans toute **situation possible**

Définition de l'Agents

Un agent est n'importe quel entité qui **perçoit son environnement** par des **capteurs** (*sensors*) et **agit** sur cet environnement par des **actionneurs** (*actuators*)

Un agents **humain** a :

- Des yeux des oreilles, et d'autres senseurs.
- Des mains des jambes, une bouche et d'autres actionneurs

Un agent **robot** a :

- Des cameras, des capteurs infra rouges et autres capteurs.
- Des roues des jambes, des bras articulés, et autres actionneurs

Un agent logiciel a:

- Un clavier, un accès lecture à un disque dur et autres capteurs.
- Un écran, un accès écriture à un disque dur comme actionneurs.

Agents et environnement

Un agent est un **système informatique** situé dans un environnement qu'il peut **percevoir** et sur lequel il peut **agir**.

Le processus agent f prend en entrée une séquence d'observations (percepts) et retourne une action en passant par la fonction agent :

$$f: P^* \to A$$

En pratique le processus est implémenté par un **programme** sur une architecture matérielle particulière.

Exemple: un robot

Exemple : Aspirateur robotisé

C'est l'exemple le plus fréquemment utilisé pour introduire la notion d'agent, nous avons :

- L'environnement : l'aspirateur agit sur 2 salles (A et B), un robot aspirateur de la saleté
- **Observations** (données sensorielles) : position et états des lieux Par exemple : [A,Clean], [A,Dirty] , [B,Clean], [B, Dirty]
- **Actions**: Allez Gauche (*Left*), Allez Droite(*Right*), Aspirer(*Suck*), ne rien faire (*NoOp*)

Exemple : Aspirateur robotisé

Cet Agent est défini par :

adéquate

 Sa fonction agent : qui spécifie l'action qu'il exécute en réponse à une séquence de percepts donnée.

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	1 :
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

 Son programme agent : qui est une implémentation de la fonction agent. Il associe à la perception actuelle l'action

fonction AGENT-ASPIRATEUR-RÉFLEXE([emplacement,état]) retourne une action

si état = Sale alors retourner Aspirer sinon si emplacement = A alors retourner Droite sinon si emplacement = B alors retourner Gauche

Agents rationnels

Un agent rationnel* doit agir « correctement » en fonction de ce qu'il perçoit et de ses capacités d'action :

- L'action correcte est celle permettant à l'agent de réussir au mieux sa tâche
- Mesure de performance : Le succès d'un agent est évalué par une mesure de performance
- Une fonction objective mesurant la qualité d'un comportement de l'agent

Par exemple, une **mesure de performance** pour le robot aspirateur pourrait être :

- La quantité de déchets aspires
- La propreté des lieux
- La durée de la tâche
- le bruit génère
- ..

^{*}Agent rationnel : étant donne une séquence d'observations (données sensorielles) et des connaissances propres, un agent rationnel devrait choisir une action qui maximise la mesure de performance.

Intelligence

Agents rationnels – confusions

Rationnel ≠ **Omniscient**

La perception de son environnement avec les senseurs peuvent ne pas fournir toutes les informations pertinentes

Rationnel ≠ **Clairvoyant**

Les résultats de l'action peuvent ne pas être ceux attendus, et par conséquence :

Rationnel ≠ Réussi

En effet

Rationnel => exploration, apprentissage, autonomie

Agents autonome

Un agent est autonome, s'il est capable d'adapter son comportement aux changements dans l'environnement en fonction de son expérience (capable d'apprendre, de planifier, de raisonner)

Modèle PEAS

Avant de concevoir un agent, il est nécessaire de spécifier son modèle

PEAS

- **P**erformance,
- **E**nvironment,
- Actuators,
- **S**ensors

Modèle PEAS

PEAS: Un modèle de conception des agents par la **spécification** des composantes **majeures** suivantes :

- La mesure de **performance** (*Performance*)
- Les éléments de **l'environnement** (*Environnement*)
- Les actions que l'agent peut effectuer (Actionneurs ou Actuators)
- La séquence des observations ou percepts de l'agent (Capteurs ou Sensors)

Modèle PEAS – Exemple : Taxi Autonome

Agent: Taxi autonome

- ☐ Performance : sécurité, vitesse, respect de code routier, empreint du plus court chemin, voyage confortable, maximisation des profits
- ☐ Environnement : route, trafic, piétons, clients
- ☐ Actionneurs: volant, boite à vitesse, accélérateur, frein, clignotants, klaxon, essuies glace
- □ Senseurs: caméras, sonar, compteur de vitesse, GP, odomètre, témoins de moteur,...

Modèle PEAS – Exemple : Système de diagnostique médical automatisé

Agent : Système de diagnostique médical

- ☐ Performance: santé des patients, minimisation des coûts, satisfaction des patients
- ☐ Environnement : patients, hôpital, personnel soignant
- Actionneurs: moniteur pour afficher des questions aux patients, les résultats des tests ou de diagnostique, le traitement, des injections...
- □ Senseurs: clavier et souris pour saisir les symptômes et les réponses aux questions, interfaces fréquents de tests et diagnostiques: tensiomètre, rythme cardiaque...,

Modèle PEAS – Exemple : Détection automatique de Spams

Agent : Filtre de Spam

- ☐ Performance: minimisation des faux positives, faux négatives
- ☐ Environnement : les comptes emails des utilisateurs, le serveur des émail
- ☐ Actionneurs : désactivation des scripts interne au message, marquer comme spam, suppression, ...
- □ Senseurs : boite de réception, autres informations sur les comptes emails utilisateurs,...

Modèle PEAS – Exemple : Agents interactives self-driving

L'exemple du Taxi autonome est un exemple du self-driving. La conduite automatique est un système multi-agents agissant avec des tâches et objectives différents : nous proposons dans la suite deux exemples d'agents : *(CCA) et (LKA)*

Modèle PEAS – Exemple : Agents interactives self-driving

Agent: Collision Avoidance Agent (CAA)

☐ Performance : Eviter au maximum de rencontrer des obstacles

☐ Environnement : Route

☐ Actionneurs : Volant, Accélérateur, Freins, Klaxon, Phares

☐ Senseurs: Vision, capteurs de détection de proximité

Modèle PEAS – Exemple : Agents interactives self-driving

Agent: Lane Keeping Agent (LKA)

☐ Performance : Rester au maximum dans la voie routière

☐ Environnement : Route

☐ Actionneurs : Volant, Accélérateur, Freins.

☐ Senseurs: Vision (détection de centre de voie, limites de voie, trajectoire).

Caractéristiques d'environnement

Différents problèmes auront des environnements avec des caractéristiques différentes caractéristiques que l'on distingue :

- ☐ Complètement observables (vs. Partiellement observable)
- □ Déterministe (vs. Stochastique)
- ☐ Épisodique (vs. Séquentiel)
- ☐ Statique (vs. Dynamique)
- ☐ Discret (vs. Continu)
- Mono-agent (vs. Multi-agent)

Ces caractéristiques d'environnement influe directement la conception du programme agent.

Caractéristiques d'environnement

Complètement observable (vs. Partiellement observable)

Les senseurs d'un agent peuvent accéder à l'état complet (vs. Partiel) de l'environnement à chaque moment.

Exemples:

- Jeux d'échecs : Complètement observable car l'agent dans ce cas perçoit la position de toutes les pièces.
- Voiture autonome : Partiellement observable car l'observabilité est limitée par la portée des capteurs de cet environnement
- Le jeu du poker : Partiellement observable car l'agent ne connait pas les cartes dans la main de l'adversaire

Caractéristiques d'environnement

Déterministe (vs. Stochastique)

L'état suivant de l'environnement est entièrement déterminé par l'état courant et l'action effectuée par le ou les agents.

Exemple:

- Jeux d'échecs : Déterministe car déplacer une pièce donne toujours le même résultat.
- Voiture autonome : Stochastique car on ne peut jamais prédire l'état de la circulation.
- Le jeu du poker : Stochastique car la disposition des cartes des adversaires est probabilistique.

Notes importantes:

- on considère comme stochastique les phénomènes qui ne peuvent pas être prédits parfaitement.
- on ne tient pas compte des actions des autres agents pour déterminer si déterministe ou pas.
- Si l'environnement est déterministe sauf pour les actions d'autres agents, alors l'environnement est dites stratégique

Caractéristiques d'environnement

Épisodique (vs. Séquentiel)

Les opérations/comportements de l'agent sont divisés en épisodes :

- Chaque épisode consiste à observer l'environnement et effectuer une seule action.
- Cette action n'a pas d'influence sur l'environnement dans l'épisode suivant.

Exemple:

- La reconnaissance de caractères : **Episodique** car la prédiction du système n'influence pas le prochain caractère à reconnaître.
- Le jeu du poker : **Séquentiel** car le fait de décider de miser ou pas a un impact sur l'état suivant de la partie.
- La voiture autonome : Séquentiel car chaque action prise influe toute les décisions futures.
- Détection de pièces défectueuse dans une chaîne de montage : **Episodique** car une décision prise sur une pièce, elle est *indépendante* de la décision prise sur la pièce précédente et de la celle qui va suivre.

Caractéristiques d'environnement

Statique (vs. Dynamique)

l'environnement ne change pas lorsque le ou les agents n'agissent pas.

Exemple:

- Le jeu des échecs : **Statique** car l'état du jeu ne change pas si personne joue.
- Le jeu Ping-Pong : **Dynamique** car la balle bouge même l'agent ne fais rien.

Note importante : on ne tient pas compte des actions des autres agents pour déterminer si statique ou pas

Caractéristiques d'environnement

Discret (vs. Continu)

Un nombre limité et clairement distincts de données sensorielles et d'actions

Exemple:

- Le jeu des échecs : Discret car toutes les actions et état du jeu peuvent être énumérées.
- La conduite automatique d'une voiture : **Continu** car **l'angle du volant** est un nombre réel (représentant une action) .
- Le jeu Ping Pong : **Continu** car la **position de la balle** est une paire (x,y,z) est se sont de nombres réels non discrets.

Caractéristiques d'environnement

Mono-agent (vs. Multi-agent)

Un agent opérant **seul** dans un environnement

Exemple:

- Résoudre un Sudoku (ou les mots croisés) : Mono-agent car aucun adversaire.
- Le jeu des échecs : Multi-agent car il y a toujours un adversaire.

Caractéristiques d'environnement

Remarque importante

Parfois, plus d'une caractéristique est appropriée.

Prenons le cas du déplacement d'un robot :

- Discret (vs. Continu)
 - Si le robot se déplace sur un espace gérer par des grilles de positionnement alors l'environnement est discret.
 - est en mission sur Mars, son déplacement s'effectue dans un environnement continu.
- Déterministe (vs. Stochastique)
 - Si seul dans un environnement, ses déplacements sont théoriquement déterministes (la physique mécanique est déterministe)
 - Par contre, puisqu'un robot *pratiquement* ne contrôle pas parfaitement ses mouvements, on préfère normalement modéliser comme stochastique.

Les caractéristiques d'environnement sont souvent identifiables en réfléchissant à comment on programmerait/simulerait cet environnement

