اَعُودٌ بِاللهِ مِنَ الشَّيطنِ الرَّحِيمُ بِسْمِ اللهِ الرَّحَمٰنِ الرَّحِيمُ

Association Rule Mining

Course Instructor: Dr. Muhammad Kamran Malik

Note: Some slides and/or pictures are adapted from the Books of

- Data Mining: Concepts and Techniques
- Introduction to Data Mining
- Data Mining: Practical Machine Learning Tools and Techniques

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)
 that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis,
 Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Find all the rules X □ Y with minimum support and confidence
 - support, s, probability that a transaction contains X U Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
 - **Beer** □ *Diaper* (60%, 100%)
 - Diaper □ Beer (60%, 75%)

Association Rule Mining

- In general, association rule mining can be viewed as a two-step process:
 - Find all frequent itemsets: By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, min sup.
 - Generate strong association rules from the frequent itemsets: By definition, these rules
 must satisfy minimum support and minimum confidence.
- A major challenge in mining frequent itemsets from a large data set is the fact that such mining often generates a huge number of itemsets satisfying the minimum support (*min sup*) threshold, especially when *min sup* is set low.
- This is because if an itemset is frequent, each of its subsets is frequent as well.
- A long itemset will contain a combinatorial number of shorter, frequent sub-itemsets.

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: ~10⁻⁴⁰
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

Improving the Efficiency of Apriori

FPGrowth: A Frequent Pattern-Growth Approach

ECLAT: Frequent Pattern Mining with Vertical Data Format

The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation & Test Approach

 Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

Method:

- First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each item, and collecting those items that satisfy minimum support. The resulting set is denoted by L1.
- Next, L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and so on, until no more frequent k-itemsets can be found.
- The finding of each Lk requires one full scan of the database.

Apriori: A Candidate Generation & Test Approach

- To improve the efficiency of the level-wise generation of frequent itemsets, an important property called the **Apriori property** is used to reduce the search space.
- **Apriori property:** All nonempty subsets of a frequent itemset must also be frequent.
- "How is the Apriori property used in the algorithm?" To understand this, let us look at how L_{k-1} is used to find L_k for $k \ge 2$. A two-step process is followed, consisting of **join** and **prune** actions.

• The join step: To find L_k , a set of candidate k-itemsets is generated by joining L_{k-1} with itself. This set of candidates is denoted C_k . Let l_1 and l_2 be itemsets in L_{k-1} . The notation $l_i[j]$ refers to the jth item in l_i (e.g., $l_1[k-2]$ refers to the second to the last item in l_1). For efficient implementation, Apriori assumes that items within a transaction or itemset are sorted in lexicographic order. For

 $< \cdots < l_i[k-1]$. The join, $L_{k-1} \bowtie L_{k-1}$, is performed, where members of L_{k-1} are joinable if their first (k-2) items are in common. That is, members l_1 and l_2 of L_{k-1} are joined if $(l_1[1] = l_2[1]) \land (l_1[2] = l_2[2]) \land \cdots \land (l_1[k-2] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1])$. The condition $l_1[k-1] < l_2[k-1]$ simply ensures that no duplicates are generated. The resulting itemset formed by joining l_1 and l_2 is

 $\{l_1[1], l_1[2], \ldots, l_1[k-2], l_1[k-1], l_2[k-1]\}.$

the (k-1)-itemset, l_i , this means that the items are sorted such that $l_i[1] < l_i[2]$

2. The prune step: C_k is a superset of L_k , that is, its members may or may not be frequent, but all of the frequent k-itemsets are included in C_k . A database scan to determine the count of each candidate in C_k would result in the determination of L_k (i.e., all candidates having a count no less than the minimum support count are frequent by definition, and therefore belong to L_k). C_k , however, can be huge, and so this could involve heavy computation. To reduce the size of C_k , the Apriori property is used as follows. Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k-1)-subset of a candidate k-itemset is not in L_{k-1} , then the candidate cannot be frequent either and so can be removed from C_k . This **subset testing** can be done quickly by maintaining a hash tree of all frequent itemsets.

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

Scan D for count of each candidate

Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
{I4}	2
{I5}	2

Compare candidate support count with minimum support count

Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
{I4}	2
{I5}	2

Scan D for count of each candidate

 C_2 Itemset Sup. count $\{11, 12\}$ {I1, I3} {I1, I4} $\{I1, I5\}$ {I2, I3} $\{12, 14\}$ $\{12, 15\}$ $\{13, 14\}$ $\{13, 15\}$ 0 {I4, I5}

 L_2 Compare candidate Sup. count Itemset support count with {I1, I2} 4 minimum support {I1, I3} count {I1, I5} {I2, I3} {I2, I4} {I2, I5}

	C_3		C_3	
Generate C_3		Scan D for	Itemset	S
candidates	{I1, I2, I3}	count of each	{I1, I2, I3}	
from L_2	And the state of t	candidate	1000 VP 3000 1000 3000 11	
	{11, 12, 15}	-	{I1, I2, I5}	

	C_3	C
100	Itemset	Sup, count
h	{I1, I2, I3}	2
-	{11, 12, 15}	2

Compare candidate	$E = L_3$	
support count	Itemset	Sup. count
with minimum support count	{11, 12, 13}	2
	{I1, I2, I5}	2

Generating Association Rules from Frequent Itemsets

Two steps:

- For each frequent itemset *I*, generate all nonempty subsets of *I*.
- For every nonempty subset s of l, output the rule $s \square (l-s)$ if $support_count(l)/support\ count(s) >= min\ conf$, where $min\ conf$ is the minimum confidence threshold.
- Generate Association rules of X = {I1, I2, I5} and min confidence threshold is 70%.

Questions