Machine Learning with TensorFlow & Keras

Ganesh Katrapati - PhD Candidate @ IIITH, EC Member - Swecha

ML?

Look at the past to predict **a possible** future.

Two Problem Classes (mostly)

Regression

- Age vs Height I have data for ages 1-20, 40-60. Can I form a pattern for 20-40?
- Experience vs Salary
- Global Temperature vs FF Emission.
- Price Rise vs Demand.
- Change vs Risk (degree)

Classification

- Apples vs Oranges: I have a labeled dataset for Apples vs Oranges. Given a fruit, can I decide?
- Risk vs Not-A-Risk
- Carcinogenic or Not
- Disease Classification

The General Idea

- So, in general, both Classification and Regression are about learning a *line*.
- Lets go back to math. What is a line?

$$Y = MX + C$$

- We know : X (input), Y(output)
- We don't know : M & C (Slope & Intercept)
- Lets call these : weights

The Machine

- Algorithm
 - For every input **X**, we run it through the Perceptron (**P**)
 - P outputs some output Y'
 - Our goal is to make Y' as similar as possible to Y.

The Algorithm

- The central goal : minimise loss function (J)
 - J = Y Y'
- What is learning?
 - Learn the required weights which minimise J.
 - For each turn, adjust weights proportional to the loss encountered.
 - Usually, learning is not one-shot. So, learning is according to a learning rate.

Lets Complicate it a little bit:)

- Input can have more than one property
 - For apples and oranges, it can be color & shape for example
 - \circ Y = W₁X₁ + W₂X₂ + C
- Consider a case where Drawing a line is useless.

Linear vs. nonlinear problems

A Super Power : Non-Linearity

 We have to send our output (which is a sum) through a non-linear function (eg:sigmoid)

$$Y = F^{\sim}(W_1X_1 + W_2X_2 + C)$$

ML is a generic function approximation algorithm

Put it all together = NN

- At each 'neuron', we determine its contribution to the loss function.
- When units are stacked in the shown manner (layers). Complex functions can be learnt
- When we do this for all the units, we approach a desired state
- This is called
 Backpropagation.

Lets get started

- TensorFlow -> A library which is very customisable to the extent of individual layers and units to learn and use neural nets
- Keras: TensorFlow for humans (kind-of).

Setting Up

- Python
- pip install tensorflow
- pip install keras
- Windows?
 - Install Anaconda 3.6
 - Conda install mingw libpython
 - Conda install tensorflow
 - Pip install keras

Our First Neural Net

- Problem: Let us make our NN learn addition.
- Inputs: X_1, X_2
- Output: Y (where $Y = X_1 + X_2$)
- The data will be linearly separable.

Anatomy of a Keras Script

Imports

from keras.models import Sequential from keras.layers import Dense, Activation

The basic keras api.
Dense = Summing unit

Activation = A function upon dense.

Create a model

model = Sequential()
model.add(Dense(1, input_dim=2))

Input Dimensions = 2 (X1, X2) Output Dimensions = 1 (Y)

Compile the model

model.compile(optimizer='sgd', loss='mse')

SGD = Stochastic Gradient Descent

MSE = Mean Squared Error

A Side Note: SGD & MSE

- Error (J) will be better if it is squared (Y - Y')² because it will be smoother.
- Gradient Descent is a process of slowly crawling down to the lowest J possible.

Anatomy of a Keras Script - Training

Anatomy of a Keras Script - Testing

Generate Training data

TEST_SIZE = 100 X_test = np.random.random((TRAIN_SIZE, 2)) Y test = X test.sum(axis = 1)

Evaluate(Optional)

score = model.evaluate(X_test, Y_test)
print("Error is", score * 100, "%")

Score is the Mean Squared Error over all the samples

Get the predicted Y's

Y_pred = model.predict(X_test) print(Y_test, Y_pred)

Bonus: Plot

#Y_test vs Y_pred

import matplotlib.pyplot as plt
plt.plot(range(0,len(Y_test)), Y_test)
plt.plot(range(0,len(Y_pred)), Y_pred)
plt.show()

Get the predicted Y's

from mpl_toolkits.mplot3d import Axes3D fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X_test[:,0], X_test[:,1], Y_test)
ax.scatter(X_test[:,0], X_test[:,1], Y_pred)
plt.show()

Take 2: Multi-Class Classification

- Problem : Classify IRIS flowers into subtypes.
- **Inputs**: Sepal Length, Sepal Width, Petal Length, Petal Width
- Output : Class Name
 - o Iris Setosa
 - Iris Versicolor
 - Iris Virginica

IRIS

IRIS - Network Design

IRIS - Network Design

Why More Layers?

- For more complex problems (data is not simply separable), more layers allow learning these complex decision boundaries
- Any NN with #L > 2 is called a Deep Neural Net. aka "Deep Learning"
- Usually, each layer learns a level of generalisation.
 - Say for face recognition,
 - Layer 1 learns edges & lines
 - Layer 2 learns facial components
 - Layer 3 learns to distinguish faces themselves.