Examenul național de bacalaureat 2022 Proba E. d) FIZICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la zece.

A. MECANICĂ (45 de puncte)

Subjectul I

Nr.ltem	Soluţie, rezolvare	Punctaj
I.1.	C	3р
2.	b	3р
3.	a	3р
4.	b	3р
5.	d	3р
TOTAL	pentru Subiectul I	15p

A. Subiectul al II-lea

II.a.	Pentru:		3р
	$m_2 a = m_2 g - T$	2p	
	rezultat final $T = 0.9 \text{ N}$	1p	
b.	Pentru:		4p
	$m_1 a = T + G_{t1} - F_t$	2p	
	$G_{t1} = m_1 g \sin \alpha$	1p	
	rezultat final $F_f = 13.4 \mathrm{N}$	1p	
C.	Pentru:		4p
	$F_f = \mu N$	1p	
	$0 = N - G_{n1}$	1p	
	$G_{m1} = m_1 g \cos \alpha$	1p	
	rezultat final $\mu = 0.67$	1p	
d.	Pentru:		4p
	$F = \sqrt{T^2 + T^2 + 2T^2 \cos(90 + \alpha)}$	3р	
	rezultat final $F \cong 0.8 \text{ N}$	1p	
TOTAL	pentru Subiectul al II-lea		15p

A. Subiectul al III-lea

III.a.	Pentru:	3р
	$E_{c0} = \frac{mv_0^2}{2}$	
	rezultat final: $E_{c0} = 9J$	
b.	Pentru:	4p
	$\frac{mv_B^2}{2} - \frac{mv_0^2}{2} = L_f $	
	$L_f = -\mu mg \cdot d$	
	rezultat final: $v_B = 5 \text{ m/s}$	
C.	Pentru:	4p
	$\frac{mv_C^2}{2} - \frac{mv_B^2}{2} = -mgR $ 2p	
	$p_{\rm C} = m \cdot v_{\rm C}$ 1p	
	rezultat final: $p_C = 1,5 \text{ N} \cdot \text{s}$	

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

d.	Pentru:		4p
	$\frac{mv_B^2}{2} = E_c + E_p$	1p	
	$E_p = mgh$	1p	
	$E_c = \frac{E_p}{4}$	1p	
	rezultat final: $h=1$ m	1p	
TOTAL pentru Subiectul al III-lea			15p

B. ELEMENTE DE TERMODINAMICĂ (45 de puncts Subiectul I) Nr. Item Soluție, rezolvare Puncte 3p 3p 3p 3p 3p 3p 3p 3		Centrul Național de Politici și Evaluare în Educație	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			de puncte)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			тэр
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii.a.		op .
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\rho_1 = \frac{\rho_1 \rho_1}{\rho_T}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b.		4p
$ v_2 = \frac{m_2}{\mu_2} $ 1p rezultat final $x = 45 \text{ cm}$ 1p rezultat final $x = 45 \text{ cm}$ 1p $ v_1 + v_2 = \frac{m_1 + m_2}{\mu} $ 2p $ m_1 = \rho_1 V_1 $ 1p rezultat final $\mu = 8,8 \text{ g/mol}$ 1p $ P_0 (V_1 + V_2) = (V_1 + V_2 - \Delta V)RT $ 3p rezultat final: $\Delta V = 1,5 \text{ mol}$ 1p $ TOTAL \text{ pentru Subiectul al II-lea} $ 15p $ P. \text{B. Subiectul al III-lea} $ 1fl. a. Pentru: 4p $ T_3 = 9T_1 $ 1p $ \Delta U_{13} = VC_V (T_3 - T_1) $ 1p $ \rho_1 V_1 = VRT_1 $ 1p rezultat final $\Delta U_{13} = 8 \text{ kJ} $ 1p $ C. Pentru: 4p$ 4p $ L_{notal} = VR (T_3 - T_2) + VRT_3 \ln \frac{V_4}{V_3} + VR (T_1 - T_3) $ 1p $ V_4 = 9V_1 $ 1p rezultat final $L_{notal} = 3,16 \text{ kJ} $ 1p $ C_{cocdat} = VC_{\rho} (T_1 - T_4) $ 1p rezultat final $Q_{cocdat} = -11,2 \text{ kJ} $ 1p		$\rho_0(V_1 + xS + V_2) = (v_1 + v_2)RT$)
$ v_2 = \frac{m_2}{\mu_2} $ 1p rezultat final $x = 45 \text{ cm}$ 1p rezultat final $x = 45 \text{ cm}$ 1p $ v_1 + v_2 = \frac{m_1 + m_2}{\mu} $ 2p $ m_1 = \rho_1 V_1 $ 1p rezultat final $\mu = 8,8 \text{ g/mol}$ 1p $ P_0 (V_1 + V_2) = (V_1 + V_2 - \Delta V)RT $ 3p rezultat final: $\Delta V = 1,5 \text{ mol}$ 1p $ TOTAL \text{ pentru Subiectul al II-lea} $ 15p $ P. \text{B. Subiectul al III-lea} $ 1fl. a. Pentru: 4p $ T_3 = 9T_1 $ 1p $ \Delta U_{13} = VC_V (T_3 - T_1) $ 1p $ \rho_1 V_1 = VRT_1 $ 1p rezultat final $\Delta U_{13} = 8 \text{ kJ} $ 1p $ C. Pentru: 4p$ 4p $ L_{notal} = VR (T_3 - T_2) + VRT_3 \ln \frac{V_4}{V_3} + VR (T_1 - T_3) $ 1p $ V_4 = 9V_1 $ 1p rezultat final $L_{notal} = 3,16 \text{ kJ} $ 1p $ C_{cocdat} = VC_{\rho} (T_1 - T_4) $ 1p rezultat final $Q_{cocdat} = -11,2 \text{ kJ} $ 1p		p_4V_4	
$ v_2 = \frac{m_2}{\mu_2} $ 1p rezultat final $x = 45 \text{ cm}$ 1p rezultat final $x = 45 \text{ cm}$ 1p $ v_1 + v_2 = \frac{m_1 + m_2}{\mu} $ 2p $ m_1 = \rho_1 V_1 $ 1p rezultat final $\mu = 8,8 \text{ g/mol}$ 1p $ P_0 (V_1 + V_2) = (V_1 + V_2 - \Delta V)RT $ 3p rezultat final: $\Delta V = 1,5 \text{ mol}$ 1p $ TOTAL \text{ pentru Subiectul al II-lea} $ 15p $ P. \text{B. Subiectul al III-lea} $ 1fl. a. Pentru: 4p $ T_3 = 9T_1 $ 1p $ \Delta U_{13} = VC_V (T_3 - T_1) $ 1p $ \rho_1 V_1 = VRT_1 $ 1p rezultat final $\Delta U_{13} = 8 \text{ kJ} $ 1p $ C. Pentru: 4p$ 4p $ L_{notal} = VR (T_3 - T_2) + VRT_3 \ln \frac{V_4}{V_3} + VR (T_1 - T_3) $ 1p $ V_4 = 9V_1 $ 1p rezultat final $L_{notal} = 3,16 \text{ kJ} $ 1p $ C_{cocdat} = VC_{\rho} (T_1 - T_4) $ 1p rezultat final $Q_{cocdat} = -11,2 \text{ kJ} $ 1p		$v_1 = \frac{v_1}{RT}$,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$v_2 = \frac{m_2}{m_1}$)
c. Pentru: 4p $v_1 + v_2 = \frac{m_1 + m_2}{\mu}$ 2p $m_1 = \rho_1 V_1$ 1p rezultat final $\mu = 8,8$ g/mol 1p d. Pentru: 3p $\rho_0(V_1 + V_2) = (v_1 + v_2 - \Delta v)RT$ 3p rezultat final: $\Delta v = 1,5$ mol 1p TOTAL pentru Subiectul al III-lea B. Subiectul al III-lea III.a. Pentru: Teprezentare corectă 4p b. Pentru: 4p $T_3 = 9T_1$ 1p $\Delta U_{13} = VC_v(T_3 - T_1)$ 1p 1p $\rho_1 V_1 = \nu R T_1$ 1p 1p rezultat final $\Delta U_{13} = 8$ kJ 1p 1p C. Pentru: 4p $V_4 = 9V_1$ 1p 1p $V_4 = 9V_1$ 1p $V_4 = 9V_1$ 1p $V_2 = (T_1 - T_4)$ 1p $V_2 = (T_1 - T_4)$ 1p $V_3 = (T_1 - T_2) + vRT_3$ 1p V		· -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C.		4p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$v_4 + v_2 = \frac{m_1 + m_2}{m_1 + m_2}$,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μ	'
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$m_1 = \rho_1 V_1$,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	u.		-
TOTAL pentru Subiectul al III-lea B. Subiectul al III-lea III.a. Pentru: reprezentare corectă 4p b. Pentru: $T_3 = 9T_1$ 1p $\Delta U_{13} = vC_v(T_3 - T_1)$ 1p $p_tV_1 = vRT_1$ 1p rezultat final $\Delta U_{13} = 8 \text{ kJ}$ 1p c. Pentru: 4p $L_{total} = vR(T_3 - T_2) + vRT_3 \ln \frac{V_4}{V_3} + vR(T_1 - T_3)$ 1p $V_4 = 9V_1$ 1p $T_2 = 3T_1$ 1p rezultat final $L_{total} = 3,16 \text{ kJ}$ 1p d. Pentru: 3p $Q_{cedat} = vC_p(T_1 - T_4)$ 1p $C_p = C_v + R$ 1p rezultat final $Q_{cedat} = -11,2 \text{ kJ}$ 1p			
B. Subiectul al III-lea III.a. Pentru: reprezentare corectă 4p b. Pentru: $T_3 = 9T_1$ 1p $\Delta U_{13} = \nu C_{\nu} (T_3 - T_1)$ 1p $\rho_1 V_1 = \nu R T_1$ 1p rezultat final $\Delta U_{13} = 8 \text{ kJ}$ 1p c. Pentru: 4p $L_{total} = \nu R (T_3 - T_2) + \nu R T_3 \ln \frac{V_4}{V_3} + \nu R (T_1 - T_3)$ 1p $V_4 = 9V_1$ 1p $T_2 = 3T_1$ 1p rezultat final $L_{total} = 3,16 \text{ kJ}$ 1p d. Pentru: $Q_{cedat} = \nu C_{\rho} (T_1 - T_4)$ 1p $C_p = C_v + R$ 1p rezultat final $Q_{cedat} = -11,2 \text{ kJ}$ 1p			
$ \begin{array}{ c c c c } \hline \textbf{III.a.} & \text{Pentru:} \\ \hline \textbf{reprezentare corectă} & 4p \\ \hline \textbf{b.} & \text{Pentru:} \\ \hline T_3 = 9T_1 & 1p \\ \hline \Delta U_{13} = \nu C_{\nu} (T_3 - T_1) & 1p \\ \hline p_1 V_1 = \nu R T_1 & 1p \\ \hline \text{rezultat final } \Delta U_{13} = 8 \text{ kJ} & 1p \\ \hline \textbf{c.} & \text{Pentru:} & 4p \\ \hline \end{bmatrix} $			15p
$ \begin{array}{ c c c c c } \hline \textbf{b.} & \text{Pentru:} & \textbf{4p} \\ \hline \textbf{b.} & Pentru: & \textbf{1p} \\ & \Delta U_{13} = \nu C_{\nu} (T_3 - T_1) & \textbf{1p} \\ & \rho_1 V_1 = \nu R T_1 & \textbf{1p} \\ & \text{rezultat final } \Delta U_{13} = 8 \text{ kJ} & \textbf{1p} \\ \hline \textbf{c.} & Pentru: & \textbf{4p} \\ & L_{total} = \nu R (T_3 - T_2) + \nu R T_3 \ln \frac{V_4}{V_3} + \nu R (T_1 - T_3) & \textbf{1p} \\ & V_4 = 9 V_1 & \textbf{1p} \\ & T_2 = 3 T_1 & \textbf{1p} \\ & \text{rezultat final } L_{total} = 3,16 \text{ kJ} & \textbf{1p} \\ \hline \textbf{d.} & Pentru: & \textbf{3p} \\ & Q_{cedat} = \nu C_p (T_1 - T_4) & \textbf{1p} \\ & C_p = C_{\nu} + R & \textbf{1p} \\ & \text{rezultat final } Q_{cedat} = -11,2 \text{ kJ} & \textbf{1p} \\ \hline \end{array} $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	III.a.		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D.		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
rezultat final $\Delta U_{13} = 8 \text{ kJ}$ 1p c. Pentru: $L_{total} = \nu R(T_3 - T_2) + \nu R T_3 \ln \frac{V_4}{V_3} + \nu R(T_1 - T_3)$ 1p $V_4 = 9V_1$ 1p $T_2 = 3T_1$ 1p rezultat final $L_{total} = 3,16 \text{ kJ}$ 1p d. Pentru: $Q_{cedat} = \nu C_p(T_1 - T_4)$ 1p $C_p = C_v + R$ 1p rezultat final $Q_{cedat} = -11,2 \text{ kJ}$ 1p)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$p_1V_1 = vRT_1$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	
$L_{total} = \nu R(T_3 - T_2) + \nu R T_3 \ln \frac{V_4}{V_3} + \nu R(T_1 - T_3)$ $V_4 = 9V_1$ $T_2 = 3T_1$ $\text{rezultat final } L_{total} = 3,16 \text{ kJ}$ $1p$ $Q_{cedat} = \nu C_p(T_1 - T_4)$ $C_p = C_V + R$ $\text{rezultat final } Q_{cedat} = -11,2 \text{ kJ}$	C.		
$V_4 = 9V_1$ $T_2 = 3T_1$ $\text{rezultat final } L_{total} = 3,16 \text{ kJ}$ $1p$ $Q_{cedat} = vC_p (T_1 - T_4)$ $C_p = C_v + R$ $\text{rezultat final } Q_{cedat} = -11,2 \text{ kJ}$ $1p$	•	···	۳
$V_4 = 9V_1$ $T_2 = 3T_1$ $\text{rezultat final } L_{total} = 3,16 \text{ kJ}$ $1p$ $Q_{cedat} = vC_p (T_1 - T_4)$ $C_p = C_v + R$ $\text{rezultat final } Q_{cedat} = -11,2 \text{ kJ}$ $1p$		$L_{total} = vR(T_3 - T_2) + vRT_3 \ln \frac{v_4}{v} + vR(T_1 - T_3)$)
$T_2 = 3T_1$ 1p rezultat final $L_{total} = 3,16 \text{ kJ}$ 1p $\mathbf{d.}$ Pentru: $Q_{cedat} = vC_p \left(T_1 - T_4 \right)$ 1p $C_p = C_v + R$ 1p rezultat final $Q_{cedat} = -11,2 \text{ kJ}$ 1p		3	
rezultat final $L_{total}=3,16 \text{ kJ}$ 1p d. Pentru: $Q_{cedat}=\nu C_p \left(T_1-T_4\right)$ 1p $C_p=C_v+R$ 1p rezultat final $Q_{cedat}=-11,2 \text{ kJ}$ 1p		•)
d. Pentru: $Q_{cedat} = vC_p \left(T_1 - T_4\right)$ 1p $C_p = C_v + R$ 1p $rezultat final \ Q_{cedat} = -11,2 \text{ kJ}$ 1p		$T_2 = 3T_1$)
d. Pentru: $Q_{cedat} = vC_p \left(T_1 - T_4\right)$ 1p $C_p = C_v + R$ 1p $rezultat final \ Q_{cedat} = -11,2 \text{ kJ}$ 1p		rezultat final $L_{total} = 3,16 \text{ kJ}$)
$Q_{cedat} = \nu C_p \left(T_1 - T_4 \right)$ 1p	d.		
$C_p = C_v + R$ 1p rezultat final $Q_{cedat} = -11.2 \text{ kJ}$ 1p			-
rezultat final $Q_{cedat} = -11,2 \text{ kJ}$			
		$C_p = C_V + R$)
		rezultat final $Q_{cedat} = -11,2 \text{ kJ}$)
TOTAL PENTIL SUDJECTULAL III-lea TOD	TOTAL	pentru Subiectul al III-lea	15p

C DDOD	Centrul Naţional de Politici și Evaluare în Educaţie	/AF -1	a mumat-\
C. PROD Subjectu	UCEREA ŞI UTILIZAREA CURENTULUI CONTINUU I I	(45 d	e puncte)
Nr.ltem	Soluţie, rezolvare		Punctaj
l.1.	C		3р
2.	d		3р
3.	<u>a</u>		3p
4.	<u>b</u>		3p
5. TOTAL	b pentru Subiectul I		3p 15p
	ctul al II-lea		l 19b
II.a.	Pentru:		3р
	$E = I_a \left(R_{e_a} + r \right)$	2p	
	rezultat final: $R_{\rm e_a} = 30 \ \Omega$	1p	
b.	Pentru:	•	4p
	$R_{p} = \frac{R_{2}}{2}$	2p	
	$R_{e_a} = R_1 + R_3 + R_p$	1p	
	rezultat final: $R_3 = 18 \Omega$	1p	
C.	Pentru:		4p
	$R_{\theta_b} = R_1 + R_2$	1p	
	$E = I_b \left(R_{e_b} + r \right)$	1p	
	$U = E - I_b r$	1p	
	rezultat final $U = 21,6 \text{ V}$	1p	
d.	Pentru: $R_{e_c} = R_1 + R_2 + R_3$	1p	4p
	$E = I_c \left(R_{e_c} + r \right)$	1p	
	$U = I_c \left(R_2 + R_3 \right)$	1p	
	rezultat final $U \cong 18,9 \text{ V}$	1p	
	pentru Subiectul al II-lea		15p
	ctul al III-lea		
III.a.	Pentru:		3р
	$R_2 = \frac{U_d^2}{P_2}$	2p	
	2		
•.	rezultat final: $R_2 = 500 \Omega$	1p	4.
b.	Pentru:	4	4p
	$E = U_1 + I \cdot r$	1p	
	$I = \frac{P_1}{U_1} + \frac{P_2}{U_1}$	1p	
	1 U^2 .		
	$r = \frac{1}{3} \cdot \frac{U_d^2}{P_1}$	1p	
	rezultat final: E = 300 V	1p	
C.	Pentru:		4p
	$R_{e_{deschis}} = \frac{R_1 R_2}{R_1 + R_2}$	1p	
	$R_{e_{inchis}} = \frac{R_{e_{deschis}} \cdot R_3}{R_{e_{deschis}} + R_3}$	1p	
	$R_{e_{inchis}} \cdot R_{e_{deschis}} = r^2$	1p	
	regultat final: $R \approx 55.6 \Omega$	1p	

1p

rezultat final: $R_3\cong$ 55,6 Ω

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

d.	Pentru:	4p
	$P_{\text{max}} \Rightarrow R'_{\text{e}} = r$ 3p	
	$R_{ ext{e}}' = rac{R_{ ext{e}_{ ext{deschis}}} \cdot R_3'}{R_{ ext{e}_{ ext{deschis}}} + R_3'}$	
	rezultat final: $R_3' \cong 167 \Omega$	
TOTAL pentru Subiectul al III-lea		15p

D. OPTICĂ		(45 de puncte)
Subiectul I		

Nr.ltem	Soluţie, rezolvare	Punctaj
l.1.	b	3р
2.	C	3р
3.	b	3р
4.	d	3р
5.	b	3р
TOTAL	pentru Subjectul I	15n

D. Subjectul al II-lea

II.a.	Pentru:	4p
	1 1_0	
	$\frac{1}{x_2} - \frac{1}{x_1} = C_1$ 2p	
	$x_2 = x_1 / 2$ 1p	
	rezultat final: $-x_1 = 80 \mathrm{cm}$	
b.	Pentru:	3р
	$\beta = \frac{y_2}{y_1}$	
	$\beta = \frac{x_2}{x_1}$	
	rezultat final: $y_2 = 1,5 \text{ cm}$	
C.	Pentru:	4p
	construcția corectă a imaginii 4p	
d.	Pentru:	4p
	$C_{sist} = C_1 + C_2 $	
	$\frac{1}{f_{sist}} = C_{sist} $ 1p	
	$\frac{1}{x_2'} - \frac{1}{x_1} = \frac{1}{f_{sist}}$ 1p	
	rezultat final: $x'_2 = 20 \text{ cm}$	
TOTAL	pentru Subiectul al II-lea	15p
D. Subie	ctul al III-lea	

D. Suble	ctui ai III-lea	
III.a.	Pentru:	3p
	$v = \frac{c}{\lambda}$	
	rezultat final: $v = 4.8 \cdot 10^{14}$ Hz	
b.	Pentru:	4p
	$i = \frac{\lambda D}{2\ell}$	
	rezultat final: $i = 0.5$ mm	
c.	Pentru:	4p
	$\Delta X = X_{\min} + X_{\max} $ 1p	
	$\Delta x = x_{\min} + x_{\max}$ $x_{\min} = 7 \cdot \frac{i}{2}$ 1p	
	$X_{\text{max}} = 3 \cdot i$	
	rezultat final: $\Delta x = 3,25 \mathrm{mm}$	
d.	Pentru:	4p
	$\Delta x_1 = \frac{e_1(n_1 - 1)D}{2\ell}$	
	$\Delta x_1 = \frac{e_1(n_1 - 1)D}{2\ell}$ $\Delta x_1 = \frac{e_2(n_2 - 1)D}{2\ell}$ 1p	
	$\Delta x_1 = \Delta x_2 $ 1p	
	rezultat final: $n_2 = 1,5$	
TOTAL	pentru Subiectul al III-lea	15p