Evolving Creatures with the Principles of "Survival of the Fittest" in **julia**

Max Brenner, Thomas Stanton, Ketan Kapse, Dev Shah

Contents

- Project Description and Code Flow
- Demo
- Experiment with Good Performance
- Future Work

Project Description and Code Flow

High-Level Project Description

- Program evolves virtual creatures (individuals) to effectively move and gather food in an environment (survival of the fittest)
- A genetic algorithm is used to evolve the chromosomes of the individuals
- The chromosome is the weight values of a feed-forward neural network used to take in an individual's observations about the environment and translate this to a useful movement action

Code Architecture

Concurrent Episode Loop - Detail

Create Environment

- Spawn food, place individuals
- Example: 4 x 4, 3 ind, 2 food

Concurrently Move Individuals

Movement loop

Threads.@threads for individual in population move_individual(individual, environment) end

Respawn eaten food every so often

if time_to_respawn
 respawn_food(environment, amt_eaten)
end

Individual Movement using a Neural Network - Detail

Genetic Algorithm for **Evolving Individuals - Detail**

Chromosome: Fitness

- 1. [.4, .2, .5] : 5 -
- 2. [.2, .4, .6]: 4
- 3. [.3, .1, .5] : 4
- 4. [.6, .2, .3] : 1

Demo

Experiment with Good Performance

Specifications and Results

• Experiment info: Took ~2 minutes, 100 evolutions, best avg fitness at evolution 96 (10.92)

Episode 5 Performance Evaluation

- Evaluated after 5th evolution
- mean fitness: 2, max fitness: 6
- Reduced size of environment: top 10 individuals

Observations: Not great, some stuck at walls, oscillate between food

Episode 100 Performance Evaluation

- Evaluated after 100th evolution
- mean fitness: 18.7, max fitness: 32
- Reduced size of environment: top 10 individuals

Observations: Do much better, but some clump together, or still get stuck occasionally

Future Work

Future Work

- Increase performance of best individuals
 - More input types (neighboring individuals, etc.)
 - Longer training
 - Hyperparameter tuning (parent selection algorithm, mutation frequency, etc.)
- Increase complexity of environment
 - More objects (traps, internal walls)
 - Cone of vision instead of circle of vision
- Further speedups
 - o More effective collision detection with food
 - Use all multithreading possible if results in faster runtime

Questions?