Type 2 (Initial velocity $(\frac{\partial u}{\partial t})_{t=0} = f(x)$. Problem 1. A tightly stretched string of length l' with fixed ends is unitially in equilibrium posetion. It is set vibrating by giving each point a velocity Vo Sin 3 Tix. Find the displacement y(x,t). Soln. The 1-D Wave eqn is $\frac{\partial^2 u}{\partial t^2} = \frac{a}{a} \frac{\partial^2 u}{\partial x^2}$. The boundary Conditions are (i) u(0,t) = 0 } t > 0(ii) u(l,t) = 0 $(1V) \left(\frac{\partial u}{\partial t}\right) t = 0 = V_0 \sin^3 \frac{\pi x}{l}.$ 412,t)=0

The suitable Soln of wave egn is u(x,t)= (A cospx + B sin px) (e cospat + D sin pat) — 0 Sub bc(i) in O i put x=0 in O. 0 = A (ecospat + D simpat) =) [A=0] Sub in O. .. u(n,t) = Bsimpx (ccospat + Dsimpat) -Sub b.c (11) in (2) is put x=l in (2) 0 = B Simpl (c cospat + DSim pat) $=) Simpl = 0 = Sim n\pi \quad (:B \neq 0.,)$ =) $pl = n\pi$ $\Rightarrow | p = \frac{n\pi}{2} | Sub in (2)$

 $U(x,t)=B\sin\frac{n\pi x}{l}\left(C\cos\frac{n\pi at}{l}+D\sin\frac{n\pi at}{l}\right)$ — (3) Sub (III) b.c in 3 is put t=0 in 3 $0 = B \sin \frac{n \pi \pi}{l} (e.1 + 0) (:: Sm 0 = 0, Cos 0 = 1)$ =) [c=0. Sub in 3) $U(x,t) = B \sin \frac{n\pi x}{l}$ D Sin $\frac{n\pi at}{l} = BD \sin \frac{n\pi x}{l}$ Sin $\frac{n\pi at}{l}$ Jaking BD= Bn, the most general Soln is $U(x,t) = \frac{0}{2} B_n S_m n \pi x . S_m n \pi at$ (4). 19iff. (4) partially w.r. to t.

Equating the coeff of like terms on both sides.

$$\frac{3V_0}{4} = \frac{\pi a}{l} \cdot B_1 = \frac{3V_0 l}{4\pi a}$$

$$0 = \frac{2\pi a}{l} \cdot B_2 - \frac{V_0}{l} = \frac{3\pi a}{l} \cdot B_3 = \frac{3}{l} \cdot B_3 = \frac$$

2) A tightly stretched string with fixed end points x=0 4x=1 is initially at rest in its equilibrium position. If each of its points is given a velocity Kx(l-x), find the displacement of the string at any distance à from one end at any time t.

Soln. The 1-D Wave egn is $\frac{\partial^2 u}{\partial t^2}$

The boundary conditions are

(i)
$$u(o,t) = 0$$
 $\int_{0}^{\infty} t > 0$
(ii) $u(l,t) = 0$

(III)
$$u(x,0) = 0$$

 $(v)(\frac{2u}{2t}) \text{ or } u_t(x,0) = kx(l-x) \int_{0}^{\infty} 0 \le x \le l$.

The suitable soln of 1-D Wave egn is U(x,t) = (Acospa + Bsinpx) (Clospat+ Dsinpat) -Sub becinno à put reso in O 0 = A (ewspat + Dsin pat) u(x,t) = Bsin pra (ccos pat + Dsin pat) -2. => [A =0] Subin (1) Sub b.c(11) in 2 is put rel in 2 0 = B simpl (cospat + Dsimpat) =) Simpl=0 = SinnT (Since B = 0 cannot be) =) Simpl = Sim non =) pl = non =) [= 2] Sule in (2)

 $U(x,t) = B \sin n\pi x$ (e cos $n\pi at + D \sin n\pi at$) — (3) Sub b.c (111) in (3) is put t=0 in (3) $0 = B \sin \frac{\eta \eta \chi}{l} \cdot (c + D.0) \cdot (c \cdot \cos 0 = 1), \quad \sin 0 = 0$ =) [C=0] Sub in 3. $U(x,t) = B \sin \frac{n\pi x}{2}$, $D \sin \frac{n\pi at}{2} = BD \sin \frac{n\pi x}{2}$, $Sin \frac{n\pi at}{2}$. Jaking BD = Bn, The most general Soln is $U(n,t) = \frac{\partial}{\partial B_n} S_m \frac{\partial \Pi n}{\partial L} - \frac{\partial}{\partial L}$ Leift (4) partially w.r. to t. $\left(\frac{\partial u}{\partial t}\right)_{(a,t)} = \sum_{k=1}^{\infty} B_k S_k n_{k} n_{k} n_{k} Cos n_{k} n_{k} n_{k} \left(\frac{n_{k}}{n_{k}}\right) - \left(\frac{4a}{n_{k}}\right)$

 $K_{\mathcal{H}}(l-x) = \sum_{n=1}^{\infty} B_n S_m \frac{n\pi n}{l}$, Which is a Halfrange fourier $S_n = \sum_{n=1}^{\infty} \int_{0}^{\infty} f(n) S_m \frac{n\pi n}{l} dx$. is $B_n = \frac{2}{2} \int K(nl - n^2) \sin \frac{n\pi n}{2} dn$. Applying Bernoullis' integral formula, $V_1 = -\cos \frac{n\pi x}{l} = -\frac{l}{n\pi}.$

$$B_{n} = \frac{2k}{l} \int \left(2x - x^{2} \right) \left(-\frac{l}{n} \cos \frac{nx}{l} \right) - (l - 2x) \cdot \left(-\frac{l^{2}}{n^{2}} \sin \frac{nn\pi}{l} \right) + (-2x) \cdot \left(\frac{l^{3}}{n^{3}n^{3}} \cos \frac{nn\pi}{l} \right) \Big/ 2l.$$

$$= \frac{2k}{l} \left[\left(0 - 0 - \frac{2l^{3}}{n^{3}n^{3}} (-1)^{2} \right) - \left(0 - 0 - \frac{2l^{3}}{n^{3}n^{3}} \right) \right]$$

$$= \frac{2k}{l} \cdot \frac{2l^{3}}{n^{3}n^{3}} \left(1 - (-1)^{2} \right) = \frac{4kl^{2}}{n^{3}n^{3}} \left(1 - (-1)^{2} \right)$$

$$= \frac{3kl^{2}}{n^{3}n^{3}} \text{ if } n \text{ is odd} \left(\cdot \cdot \cdot (-1)^{2} = -1 \right)$$

$$= 0 \text{ if } n \text{ is even}.$$

$$= 0 \text{ if } n \text{ is even}.$$

The read soln is $u(x,t) = \frac{8kl^2}{n^3\pi^3} \cdot \frac{8\pi n\pi x}{l} \cdot \frac{Sm}{l} \cdot \frac{n\pi at}{l}$ $n=1,315 \cdot \cdot \cdot$