CSCE 625 Homework #2

Jacob Fenger

November 20, 2017

1)

- $\forall x.tomato(x) \implies fruit(x) \lor vegetable(x)$
- $\exists x.mushroom(x) \land poisonous(x)$
- $\forall x.sides(x,3) \land sumOfAngles(x,180) \implies triangle(x)$
- $\forall x.plant(x) \land polinated(x) \implies produce(x, seeds)$
- $\forall x.movie(x) \land made(StephenKing, x) \land \neg is(x, Cujo) \implies favorite(John, x)$
- $\forall x, y, z.game(z, football) \land greater(points(x), points(y)) \land IsTeam(x) \land IsTeam(y) \implies winner(x)$
- $\forall x, g.FordExplorer(x) \land GasTank(g, x) \land leq(PercentFuelLeft(g), 0.1) \implies WarningLight(x)$
- $\exists x, y.computer(x) \land computer(y) \land bought(Al, x) \land bought(Bob, y) \implies SameManufacturer(x, y)$
- $\forall x.laptop(x) \land sold(Dell, x, 2012) \implies geq(MemoryInGigs(x), 4)$

2)

- 1. $\forall x. P(x) \implies [\forall y. P(y) \implies P(f(x,y))] \land [\neg \forall y. Q(x,y) \implies P(y)]$
- 2. $\forall x. \neg P(x) \lor [\forall y. \neg P(y) \lor P(f(x,y))] \land [\neg \forall y. \neg Q(x,y) \lor P(y)]$ (Remove implications)
- 3. $\forall x. \neg P(x) \lor [\forall y. \neg P(y) \lor P(f(x,y))] \land [\exists y. Q(x,y) \land \neg P(y)]$ (Negate universal quantifier)
- 4. $\forall x. \neg P(x) \lor \left[\forall y. \neg P(y) \lor P(f(x,y)) \right] \land \left[Q(x,f(x)) \land \neg P(f(x)) \right]$ (Skolemize y)
- 5. $(\neg P(x) \lor (\neg P(y) \lor P(f(x,y)))) \land (\neg P(x) \lor (Q(x,(f(x)) \land \neg P(f(x)))))$ (Remove universal quantifier and distribute terms)
- 6. $(\neg P(x) \lor (\neg P(y) \lor P(f(x,y)))) \land ((\neg P(x) \lor Q(x,(f(x)) \land (\neg P(x) \lor \neg P(f(x))))))$ (Distribute the \lor over the \land)

3)

a)

- 1. pompeian(Marcus)
- 2. $\forall x.pompeian(x) \implies roman(x)$
- 3. ruler(Caesar)
- 4. $\forall x.roman(x) \implies (loyal(x, Caesar) \land \neg hate(x, Caesar)) \lor (\neg loyal(x, Caesar) \land hate(x, Caesar))$

- 5. $\forall x. \exists y. loyal(x,y)$
- 6. $\forall x, y.person(x) \land AttemptAssassination(x, y) \land ruler(y) \implies \neg loyal(x, y)$
- $7. \ AttemptAssassination (Marcus, Caesar)$
- 8. person(Marcus)

b)

- 9. Roman(Marcus) $[GMP|1, 2, \theta = x/Marcus]$
- 10. $\neg loyal(Marcus, Caesar)$ $[GMP|3, 6, 7, 8\theta = x/Marcus, y/Caesar]$
- 11. $(loyal(Marcus, Caesar) \land \neg hate(Marcus, Caesar)) \lor (\neg loyal(marcus, Caesar) \land hate(marcus, Caesar)) \lor (\neg loyal(marcus, Caesar)) \lor (\neg loyal(marcus, Caesar)) \land hate(marcus, Caesar)) \lor (\neg loyal(marcus, Caesar)) \lor (\neg$
- 12. (a) $loyal(Marcus, Caesar) \lor (\neg loyal(Marcus, Caesar) \land hate(Marcus, Caesar))[Distributive : 10]$
 - (b) $\neg hate(Marcus, Caesar) \lor (\neg loyal(Marcus, Caesar) \land hate(Marcus, Caesar))[Distributive : 10]$
- 13. We can distribute the \vee further in both 11a and 11b and then split the clauses up to end with the following:
 - (a) $loyal(Marcus, Caesar) \lor \neg loyal(Marcus, Caesar)$
 - (b) $loyal(Marcus, Caesar) \lor hate(Marcus, Caesar)$
 - (c) $\neg hate(Marcus, Caesar) \lor \neg loyal(Marcus, Caesar)$
 - (d) $\neg hate(Marcus, Caesar) \lor hate(Marcus, Caesar)$

For all of the clauses in 12 to be true, hate(Marcus, Caesar) must be true since we know $\neg loyal(Marcus, Caesar)$ is true.

14. hate(Marcus, Caesar) [From the above reason.]

4)

\mathbf{a}

- 1. obs(1, Y)
- 2. obs(2, W)
- 3. obs(3, Y)
- 4. lab(1, W)
- 5. lab(2, Y)
- 6. lab(3, B)
- 7. $\forall x.lab(1,x) \implies \neg Cont(1,x)$
- 8. $\forall x.lab(2,x) \implies \neg Cont(2,x)$
- 9. $\forall x.lab(3,x) \implies \neg Cont(3,x)$
- 10. $\forall x.obs(1,x) \implies (cont(1,B) \lor cont(1,x))$
- 11. $\forall x.obs(2,x) \implies (cont(2,B) \lor cont(2,x))$
- 12. $\forall x.obs(3,x) \implies (cont(3,B) \lor cont(3,x))$

- 13. $\forall x.cont(x, Y) \lor cont(x, W) \lor cont(x, B)$
- 14. $\forall x.cont(1,x) \implies \neg cont(2,x) \land \neg cont(3,x)$
- 15. $\forall x.cont(2,x) \implies \neg cont(1,x) \land \neg cont(3,x)$
- 16. $\forall x.cont(3,x) \implies \neg cont(1,x) \land \neg cont(2,x)$

b)

- 17. $cont(2, B) \lor cont(2, W)$ [GMP 2, 11, $\Theta = \{x/W\}$]
- 18. $\neg cont(3, B)$ [GMP 6, 9, $\Theta = \{x/B\}$]
- 19. $cont(3, B) \lor cont(3, Y)$ [GMP 3, 12, $Theta = \{x/Y\}$]
- 20. cont(3, Y) [Res. on 18, 19]
- 21. (a) $\neg cont(1, Y)$ [GMP 16, 20, $\Theta = \{x/Y\}$]
 - (b) $\neg cont(2, Y)$ [GMP 16, 20, $\Theta = \{x/Y\}$]
- 22. $cont(1, B) \vee cont(1, Y)$ [GMP 1, 10, $\Theta = \{x/Y\}$]
- 23. cont(1, B) [Res. on 21a, 22]
- 24. (a) $\neg cont(2, B)$ [GMP 14, 23, $\Theta = \{x/B\}$]
 - (b) $\neg cont(3, B)$ [GMP 14, 23, $\Theta = \{x/B\}$]
- 25. cont(2, W) (Res. on 17, 24a)

5)

The following is an FOL knowledge base:

- 1. $\forall i, j. Tow In ARow(O, i) \land b(i, j) \implies CanWin(O, i, j)$
- 2. $\forall i, j.TowInACol(O, j) \land b(i, j) \implies CanWin(O, i, j)$
- 3. $\forall i, j. TowinADiag(O, i, j) \land b(i, j) \implies CanWin(O, i, j)$
- 4. $\forall i, j. TwoInARow(X, i) \land b(i, j) \implies CanWin(X, i, j)$
- 5. $\forall i, j. Tow In ACol(X, j) \land b(i, j) \implies Can Win(X, i, j)$
- 6. $\forall i, j. Tow In ADiag(X, i, j) \land b(i, j) \implies Can Win(X, i, j)$
- 7. $\forall i, j. CanWin(X, i, j) \implies Move(X, i, j)$
- 8. $\forall i, j. \neg CanWin(X, i, j) \implies CannotWin(X, i, j)$
- 9. $\forall i, j. CanWin(O, i, j) \land CannotWin(X, i, j) \implies ForcedMove(X, i, j)$
- 10. $\forall i, j.ForcedMove(X, i, j) \implies Move(X, i, j)$