

Inbetriebnahme einer freien Software zur Satellitenbahnvorhersage und Ansteuerung einer Hochleistungsantenne

STUDIENARBEIT

über das dritte Studienjahr

im Studiengang Elektrotechnik, Nachrichten- und Kommunikationstechnik

> an der DHBW Ravensburg Campus Friedrichshafen

> > von

Sarah Brückner, Maximilian Stiefel und Hannes Bohnengel

15. Juli 2016

Bearbeitungszeitraum: Oktober - Dezember 2015

April - Juni 2016

Betreuer: Dipl.-Ing. (DH) Hardy Lau

Kurfassung

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Abstract

Translation of "Kurzfassung" comes here...

Erklärung

Hannes Bohnengel

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2015.

Wir versichern hiermit, dass wir unsere Studienarbeit mit dem Thema:

Inbetriebnahme einer freien Software zur Satellitenbahnvorhersage und Ansteuerung einer Hochleistungsantenne

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Sour demon 1 des and a or eme emine.	
Friedrichshafen, den 5. Mai 2016	
Sarah Brückner	-
Maximilian Stiefel	_
	-

Inhaltsverzeichnis

Formelgrößen und Einheiten	Ι
Abkürzungen	ίΙ
1 Einleitung	1
2 Hintergründe	2
2.1 Bahnmechanik	2
2.1.1 Die Keplerschen Gesetze	2
2.1.2 Die Bahnelemente	3
2.1.3 Vorhersagemodelle	6
3 GPredict	7
3.1 Übersicht	7
3.2 Grafische Oberfläche	8
3.3 Inbetriebnahme unter Windows	0
3.4 Inbetriebnahme unter Linux	0
4 Zusammenfassung und Ausblick	1
Abbildungsverzeichnis	ΙI
Tabellenverzeichnis	V
Literatur- und Quellenverzeichnis	V
A Detemblett VV7	/ T

Formelgrößen und Einheiten

Formelzeichen	Einheit	Abkürzung	Physikalische Größe
R	Ohm	Ω	Elektrischer Widerstand
U	Volt	V	Elektrische Spannung
P	Watt	W	Elektrische Leistung
f	Hertz	Hz	Frequenz
D	Bit	-	Daten
1	Meter	m	Länge
_	Dezibel	dB	Logarithmisches Maß (Pseudoeinheit)

Abkürzungen

GPL General Public License

1 Einleitung

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Aliquam sed finibus sapien. Cras sapien purus, tempus vel lorem nec, egestas auctor urna. Morbi iaculis felis eget mi sollicitudin consectetur sit amet sit amet turpis. Donec malesuada risus sit amet erat euismod dignissim. Etiam faucibus eleifend est in molestie. Maecenas nec elit at purus vulputate tincidunt. Vivamus pulvinar viverra porttitor. Fusce aliquet tristique enim, eget sollicitudin ex tincidunt vel. Praesent turpis erat, consequat at finibus eget, ultrices vel neque. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque turpis nulla, suscipit at mauris quis, rhoncus pharetra ligula. Suspendisse leo lorem, imperdiet a vehicula at, porta eu mauris.

2 Hintergründe

2.1 Bahnmechanik

2.1.1 Die Keplerschen Gesetze

Seit der Antike galt die Erklärung der Bewegung der Planeten und die Vorhersage dieser als eine große Herausforderung. Theorien von Ptolemaios mit seinem geozentrischen Weltbild und Kopernikus mit seinem heliozentrischen Weltbild führten bereits im 16. Jahrhundert zu brauchbaren Modellen zur Vorhersage der Planetenbewegungen. Diese Modelle unterlagen jedoch Ungenauigkeiten, "die in mit Instrumenten des 16. Jahrhunderts bereits messbaren Breichen lagen" (siehe S. 20 in [2]). Der mathematische Aufwand hinter diesen

Abbildung 2.1: Johannes Kepler (1571-1630), Quelle: [1]

Modellen war enorm. Selbst das kopernikanische Weltbild, dass einige Vereinfachnugen mit sich brachte, bediente sich der Überlagerung einer Vielzahl von Kreisbwegungen, um das Verhalten der Planeten zu erklären. Resignierend zog sich zu der Zeit die katholische Kirsche und mit ihr viele Gelehrte auf den Standpunkt zurück, dass "die Frage, welche der Theorien die korrekte sei, [...] schlicht unbeantwortbar" wäre (siehe S. 21 in [2]).

Ein deutscher Mathematiker und Astronom, Johannes Kepler, war hier anderer Auffassung. Er war überzeugter Kopernikaniker und stand im Dienste des Kaisers Rudolph II. Schließlich gelang es ihm aus seinen Beobachtungen drei einfache Gesetze herzuleiten.

Seine Gesetze führten zu Vorhersagen der Planetenbewegungen nie da gewesener Präzision, welche er seinem Dienstherr widmend in den Rudolphinischen Tabellen niederschrieb. Steiner und Schlagerl schreiben in Ihrem Buch Raumflugmechanik, dass ohne die Vorarbeit Keplers keine Weltraumtechnik je existiert hätte (vgl. S. 21 in [2]). Die drei Gesetze lauten:

- 1. Keplersches Gesetz: Die Planeten umlaufen die Sonne auf elliptischen Bahnen. In einem der Brennpunkte dieser Ellipsen befindet sich die Sonne.
- 2. Keplersches Gesetz: Die Linie von der Sonne zu einem Planeten überstreicht in gleichen Zeiten gleiche Flächen.
- 3. Keplersches Gesetz: Die Quadrate der Umlaufzeiten zweier Planeten verhalten sich zueinander so wie die Kuben der großen Halbachsen ihrer Bahnellipsen.

Kepler starb 1630 und damit 12 Jahre vor Newtons Geburt. Mit seinen Werken hinterlies Kepler Newton alles, um das Gravitationsgesetz später herleiten zu können.

2.1.2 Die Bahnelemente

Die Bahnelemente dienen der Beschreibung einer Bewegung eines Himmelskörpers auf einer Umlaufbahn (meist einer Ellipse). Dieser Körper unterliegt den Keplerschen Gesetzen. Wird die Bewegung eines Himmelskörpers durch äußere Einflüsse (z.B. Gravitationskraft der Sonne) nicht gestört, so kann sie durch sechs Größen beschrieben werden. Diese Größen sind die Bahnelemente. Zwei Bahnelemente beschreiben die Form der Bahn, drei legen die Lage der Bahn im dreidimensionalen Raum fest und ein Bahnelement gibt an zu welcher Zeit sich der Himmelskörper wo auf der Bahn befunden hat.

Diese Bahnelemente reichen in der Praxis nicht aus, um die Position eines Himmelskörpers z.B. eines Satelliten mit einem Vorhersagemodell berechnen zu können. Aus diesem Grund werden die Bahnelemente meist um von Vorhersagemodellen benötigten Informationen ergänzt. Im Folgenden werden die Bahnelemente in Ihrer Bedeutung anhand der Abbildung 2.2 erläutert.

Abbildung 2.2: Bahnelemente, Quelle: [3]

Gestalt der Bahn

Um die Gestalt der Bahn zu beschreiben wird die **numerische Exzentrizität e** und die Angabe der Länge der **großen Halbachse a** benötigt.

Zunächst soll die Ellipse an sich betrachtet werden. Die einfachste Möglichkeit eine Ellipse zu konstruieren besteht darin zwei Nägel in einer Holzplatte mit einem Stück Schnur mit einer Schlaufe zu verbinden. Das Stück Schnur muss länger sein als der Abstand zwischen beiden Nägeln. Nimmt man nun einen Bleistift und drückt ihn in der Schlaufe gegen die Schnur, kann man die beiden Nägel mit Kontakt der Bleistiftspitze zum Holzbrett umrunden. Hält man die Schnur konstant auf Spannung, so ergibt sich eine Ellipse. Nichts anderes besagt die folgende Mengendefinition mit Bezug zu Abbildung 2.3.

$$E = \{P | \overline{F_1P} + \overline{F_2P} = 2a = konstant\}$$
 (2.1)

 F_1 und F_2 heißen Brennpunkte der Ellipse. M ist der Mittelpunkt der Ellipse. S_1 und S_2 sind die Haupt-, S_3 und S_4 die Nebenscheitel. Die Strecke $\overline{MS_1}$ ist gleich der Strecke $\overline{MS_2}$. Man spricht bei der Länge dieser Strecke von der großen Halbachse a. Beide Strecken

Abbildung 2.3: Ellipse, Quelle: Wikipedia

ergeben zusammen die Hauptachse $\overline{S_1S_2}$. Analog gibt es hierzu die Nebenachse, welche durch die Strecke $\overline{S_3S_4}$ bestimmt wird. Die kleinen Halbachsen sind $\overline{MS_3}$ und $\overline{MS_4}$. Diese haben die Längen b. Das Wort numerisch gibt bei der Exzentrizität an, dass diese sich auf eine andere Größe (die große Halbachse) bezieht. Der Wert der numerischen Exzentrizität lässt sich in vier Bereiche aufteilen:

- Der Wert 0 repräsentiert eine perfekte kreisförmige Bahn.
- Der Bereich von 0 bis 1 beschreibt eine elliptische Bahn.
- Der Wert 1 erzeugt eine exakt parabolische Bahn.
- Jeder Wert größer 1 gehört zu einer immer offener werdenden Hyperbel.

Bis zum Wert 1 handelt es sich um eine geschlossene Bahn. Oberhalb von 1 ist die Bahn immer geöffnet. Das bedeutet jeder Punkt der Bahn wird von einem Satellit nur einmal abgeschritten. Für eine elliptische Bahn (e < 1) kann aus der Halbachse der Ellipse und der numerischen Exzentrizität ein minimaler (r_{min}) und ein maximaler (r_{max}) Abstand vom Brennpunkt der Ellipse berechnet werden.

Lage der Bahn

Zeitlicher Bezug

• Unter der Inklination (i) versteht man den Winkel zwischen Bahn- (blau) und Äquatorebene (grün). Der Schnittpunkt mit der Äquatorebene ergibt die Konoten-

linie.

- Die Rektaszension des aufsteigenden Knotens (Ω) ist jener Winkel, der zwischen einer Geraden vom Brennpunkt (B) zum Frühlingspunkt (γ) und einer Geraden vom Brennpunkt zum aufsteigenden Knoten (Ω) ausgebildet wird.
- Die **Periapsisdistanz** r_{min} stellt den Abstand des Perigäums (P) zum Brennpunkt dar. Das Perigäum ist der Punkt auf der Bahn, welcher den geringsten Abstand zum Brennpunkt hat.
- Apogäum: Im Gegenzug zu dem Perigäum definiert das Apogäum den größten Erdabstand den der Satellit erreichen kann.
- Argument des Perigäums: Unter dem Argument des Perigäum versteht man den Winkel zwischen der Knotenlinie und der Apsidenlinie, welche die beiden Punkte Perigäum mit Apogäum verbindet.
- Exzentrizität: Dadurch dass ein Orbit nicht wie ein Kreis beschreiben lässt, wird ein Maß benötigt, welches die Form beschreibt. Die Exzentrizität gibt an, wie weit die beiden Brennpunkte vom Mittelpunkt der Ellipse entfernt sind und beschreibt somit die Form des Orbits.
- Mittlere Anomalie: Die Mittlere Anomalie sagt aus, wo sich der Satellit vom Referenzpunkt Perigäum auf seiner Bahn befindet.
- Große Halbache: Die Große Halbachse beschreibt die Größe der Bahn.

2.1.3 Vorhersagemodelle

3 GPredict

3.1 Übersicht

GPredict ist eine freie Software zur Satellitenverfolgung und Orbitvorhersage und steht als Quellcode oder bereits fertig kompiliertes Programm für Windows, Mac OS und Linux zur Verfügung. Die Software ist in C geschrieben und unter der GNU General Public License (GPL) lizenziert, somit kann sie frei verändert und an die entsprechenden Nutzervoraussetzungen angepasst werden.

In Abbildung 3.1 ist das Prinzip eines Satellitenverfolgungsprogramms zu sehen (die blauen Blöcke stellen hierbei die Funktionalität des Programms dar). Zunächst wird an Hand der Keplerschen Bahnelemente und dem aktuellen Zeitpunkt die absolute Position des Satelliten berechnet. Daraufhin wird der Vektor, der von der Bodenstation zum Satelliten zeigt, bestimmt. Nun können Azimut und Elevation dieses Vektors für die Ansteuerung der Antenne verwendet werden.

Abbildung 3.1: Prinzip eines Satellitenverfolgungsprogramms [4]

Zur Berechnung der Satellitenposition wird auf den NORAD SGP4/SDP4 Algorithmus zurückgegriffen (siehe Abschnitt XXX). Um hierfür zu jedem Zeitpunkt die aktuellen Kepler-Elemente des zu verfolgenden Satelliten zu kennen, gibt es unter GPredict die Möglichkeit einer automatischen Aktualisierung über HTTP, FTP oder aus dem lokalen Verzeichnis.

Bei GPredict ist im Gegensatz zu anderen Satellitenverfolgungsprogrammen wie SatPC32 kein Limit an zu verfolgenden Satelliten und Bodenstationen gegeben. Durch die Verwendung von Modulen kann außerdem unkompliziert zwischen verschiedenen Konfigurationen gewechselt werden. Die Orbitvorhersage eines Satelliten lässt sich sowohl grafisch als auch tabellarisch darstellen, wobei durch die Einstellungen verschiedenster Parameter eine sehr individuelle Anzeige erreicht werden kann [5].

3.2 Grafische Oberfläche

Abbildung 3.2: Standardoberfläche von GPredict

Abbildung 3.2

- Radio Control
- Rotator Control
- Sky at a Glance
- Time Controller
- Modul-Einstellungen (Configure)
- Polar View
- Single Sat View (Pass Details)

- 3.3 Inbetriebnahme unter Windows
- 3.4 Inbetriebnahme unter Linux

4 Zusammenfassung und Ausblick

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et kauffels Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Donec feugiat augue leo, a malesuada tortor laoreet eu. Praesent dictum tortor eu egestas sodales. Maecenas rhoncus pretium leo ut sodales. Praesent blandit sit amet ante posuere malesuada. Vestibulum egestas sit amet ex et placerat. In sed dapibus sem, placerat interdum mi. Sed eget eros ante. Duis varius molestie eleifend. Suspendisse eu aliquet velit. Nulla facilisi. Morbi eu sapien in odio viverra luctus.

Abbildungsverzeichnis

2.1	Bahnelemente	2
2.2	Bahnelemente	4
2.3	Ellipse	5
3.1	Prinzip eines Satellitenverfolgungsprogramms [4]	7
3.2	Standardoberfläche von GPredict	8
Alle	hier nicht eigens nachgewiesenen Abbildungen stammen von den Autoren.	

Tabellenverzeichnis

Literatur- und Quellenverzeichnis

- [1] W. F. Inc. (2016). Johannes Kepler, Adresse: https://en.wikipedia.org/wiki/ Johannes_Kepler (besucht am 05.05.2016).
- [2] W. Steiner und M. Schlagerl, *Raumflugmechanik*, Deutsch, 1. Aufl. Berlin Heidelberg: Springer Verlag, 2004.
- [3] W. F. Inc. (2016). Bahnelement, Adresse: https://de.wikipedia.org/wiki/Bahnelement (besucht am 01.05.2016).
- [4] GPredict User Manual. Adresse: https://sourceforge.net/projects/gpredict/files/Gpredict/1.3/gpredict-user-manual-1.3.pdf/download (besucht am 01.05.2016).
- [5] Sourceforge.net: GPredict 1.3. Adresse: https://sourceforge.net/projects/gpredict/files/Gpredict/1.3/ (besucht am 01.05.2016).

A Datenblatt XYZ