$\{x_t\}_{\infty}^{\infty}$ is a weakly stationary time series and $E[x_t]=0$ 4th Note: $P_n(x_{n+n})$ is projection—of x_{n+n} to the space space space $\{x_n, \dots, x_l\}$

50 Pr. (Xn+n) is best linear projector

iff it is prejection of X_{n+h} to the spaniff $P_n(X_{n+h})$ is a linear func of $\{X_n, ..., X_n\}$

and $E[(X_{n+h} - P_n(X_{n+h})) \times_{n-j}] = 0 \quad \forall j = 0,1,2,...,n-1$

Note $E[x_t] = 0 + t$

Consider L2 space.

Now consider $\overline{P}_n(x_{n+n})$ best linear predictor of x_{n+n} on the bases of $\{x_n, x_{n-1}, \dots, x_1, x_0, x_{-1}, x_{-2}, \dots\}$

Best linear projector may not be of the form $\sum_{j=0}^{\infty} l_j \times_{n-j}$.

But it should belong to $5p\{x_n, x_{n-1}, ..., x_i, x_o, x_{-i}, ...\} = Kn$ $\overline{P}_n(x_{n+n}) = ang min_{E[(x_{n+n}-u)^2]} = projection_{A} \times_{n+n} onto_{A} \times_{n+n} onto_$

Result: From a vector of (X_{n+h}) to a closed subspace (K_n) of a L^2 space always exists

The state of the

shall use this to prove the following decomposition theorem

If $\{X_n\}_{\infty}^{\infty}$ is a coeably stationary time series, then I

WN (0,0-2), {Z,} s.t.

$$X_{n} = \sum_{j=-\infty}^{\infty} Y_{j} Z_{n-j} + V_{n} \quad \text{when} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad \text{and} \quad V_{n} \in \bigcap_{j \geqslant 1} X_{n-j} \quad$$

 $\sum_{n=1}^{\infty} \frac{y_{n}^{2}}{\sqrt{n}} < \infty$ $\sum_{n=1}^{$ $\overline{P}_{n-1} \vee_m = \overline{P}_{n-2} \vee_m = \cdots = \vee_{m-1}$

and $\sum_{j=\infty}^{\infty} \psi_j^2 < \infty$ O Here V_n is no

companent and $\sum_{i=1}^{\infty} Y_i Z_{n-i}$ is non-deterministic

component.

$$X_n = X_n + U$$
, $X_n \stackrel{\text{id}}{\sim} N(Q_1)$ indep.

U > deterministic component In non-deterministic component

Vn is a function of n only.

Consider Xn+1, Pn (Xn+1), Pn-1 (Xn+1), ...

Define,

$$Y_{n,1} = X_{n+1} - \bar{P}_n(X_{n+1})$$

and so on.

From the proporty of projection.

and $x_{n+1} = (x_{n,2} + x_{n,2} + \cdots) + v_n$ where

$$V_{n} \in \bigcap_{j \ge 1} K_{n-j}$$
 i.e. $\overline{P}_{n-j} V_{n} = V_{n} + j > 1$

claim: In,2 and In-1,1 one multiple of same vector L where Kn = L@Kn-1

BKn and Kn-1 has dimension difference I at most and $y_{n,2}$ and $y_{n-1,1}$ one both onthogonal to k_{n-1} : In,2 and In-1,1 are multiple of same vector L where Kn = L @ Kn+

 $\therefore \times_{n+1} = \sum_{j=-\infty}^{\infty} Y_j \times_{n-j} + \vee_n \quad \text{where } Z_j \text{ are obtained from } L \text{ (unique)}$

: By scaling use get wood (Zz) = 02 and use get 4;

Note: Y depends only on correlation structure of (XnH, Xn, Xn-1,...) which is some if use coonsider (Xn-k, Xn-k-1,....) 4; doesn't depend on (nok).

Thm. If {X+} is weakly stationary then for some {Z+} we have $X_{\pm} = \sum_{i=-\infty}^{\infty} \Psi_i Z_{\pm -i}$ cohere V_{\pm} , where $V_{\pm} \in \bigcap_{j=1}^{\infty} K_{\pm -j}$ i.e.

 \overline{P}_{n-1} $V_n = \overline{P}_{n-2}$ $V_n = \cdots = V_n$

shall use the thm_ to show

nem

Result: If {X1} is stationary and q-correlated (for 921) then_{Xt} is a MA(q)

Hint: Getting decomposition of X_t according to the Thm. We get $\{Z_t\}_{-\infty}^{\infty}$ and V_t

Ynji ∈ Kn-j+2 (depending on Xn-j+2, Xn-j+1,)

: 4n, 1 Xn+1 for 1>9+2 (check)

: 4j = 0 + 1> 9+2

Now need to show Vt=0

Pt-q-j Vt = Vt [linear func & Kt-j-q]

Cov $(x_t, v_t) = 0$

> V_t = 0

Thm: (Wald's Decomposition Thm):

If $\{x_t\}_{\infty}^{\infty}$ is a stalionary (weakly) time series, we can get $\{z_t\}_{\infty}^{\infty}$ $\omega N(0,\sigma^2)$ s.t.

 $X_{t} = \sum_{j=0}^{\infty} \Psi_{j} Z_{t-j} + V_{t} \qquad \text{where} \qquad \sum_{j=0}^{\infty} \Psi_{j}^{2} < \infty \quad \text{and} \quad \Psi_{j} \in \mathbb{R} \ \forall j$ $\text{and} \quad V_{t} \quad \text{is} \quad \text{deterministic component s.t.}$ $\overline{P}_{t-1} V_{t} = \overline{P}_{t-2} V_{t} = \cdots = V_{t} \quad \text{and}$

 $V_{t} \in \bigcap_{j=1}^{n} K_{t-j}$, $K_{t-j} = S_{p}\{x_{t-j}, x_{t-j-1}, ...\}$

B

[Our proof in last classes goes through to probe Wald's Decomposition Thm.]

Corollary: If {x_t} is q-correlated then it is a MA(q) process.

$$\rightarrow \quad \chi_{t} = \sum_{i=0}^{\infty} Y_{i} Z_{t-i} + V_{t}$$

From the proof of Wold's Decomposition Thm.,

Only thing to show, Vt = 0, 4t

=> Vt IXs, * sight + sight

$$\Rightarrow V_t \perp V_t \Rightarrow Vor(V_t) = 0 \Rightarrow V_t = 0$$

$$\Rightarrow \frac{1}{m} \sum_{i=1}^{n} X_i = U + \frac{1}{m} \sum_{i=1}^{n} X_i \xrightarrow{L_{a}^{2}} U$$

$$\Rightarrow \overline{P}_{t-1}(x_t) = 0$$

Note:
$$V_j = \begin{cases} 1 & \text{for } j=0 \\ 0 & \text{ow} \end{cases}$$

$$\rightarrow$$
 con $(X_t, X_{t+h}) = g(h) = con(\omega h)$

Deterministic component of Xt is Xt itself.

$$E(A) = E(B) = 0$$

$$Vor(A) = Vor(B) = 1$$

$$2(\cos(\omega)) \times_{t-1} - \times_{t-2}$$

$$P_{t-1}(X_t) = P_{t-1}(2 \cos(\omega) X_{t-1} - X_{t-2})$$

=
$$2 \cos(\omega) X_{t-1} - X_{t-2} = X_t$$

Simillarly,

$$\overline{P_{tj}} x_t = X_t$$
 , $j > 1$

Def": P>1, Auto Regressive process of order P, AR(P) is a stationary

$$X_{\pm} = \phi_1 \times_{\pm -1} + \cdots + \phi_p \times_{\pm -p} + Z_{\pm}, \text{ where } \phi_i \in \mathbb{R} \text{ const.}$$

$$Z_{\pm} \sim WN(0, \sigma^2)$$

and
$$Con(x^2, x^4) = 0$$
 Ay(f

$$P_{\pm}(x_{\pm 11}), \pm \lambda P$$

$$= P_{\pm}(\phi, x_{\pm 10} + \phi_{p} x_{\pm -p+1} + \chi_{\pm 11})$$

$$= P_{\pm}(\phi, x_{\pm 10} + \phi_{p} x_{\pm -p+1} + \chi_{\pm 11})$$

$$= P_{\pm}(x_{\pm 11}), \pm \lambda P_{\pm}(x_{\pm -p+1}) + O \quad [Since Cou(Z_{\pm}, x_{0}) = 0]$$

$$= P_{\pm}(x_{\pm 11}), \pm \lambda P_{\pm}(x_{\pm -p+1}) + O \quad [Since Cou(Z_{\pm}, x_{0}) = 0]$$

$$P_{\pm}(x_{\pm +1}), \quad \pm p$$

$$= P_{\pm}(\phi, x_{\pm +}) + \phi_{p}(x_{\pm -p+1}) + O \quad [since cou(z_{\pm}, x_{0}) = 0]$$

$$= \phi_{1} P_{\pm}(x_{\pm}) + \phi_{2} P_{\pm}(x_{\pm -1}) + ... + \phi_{p} P_{\pm}(x_{\pm -p+1}) + O \quad [since cou(z_{\pm}, x_{0}) = 0]$$

$$= \phi_{1} P_{\pm}(x_{\pm}) + \phi_{2} P_{\pm}(x_{\pm -1}) + ... + \phi_{p} P_{\pm}(x_{\pm -p+1}) + O \quad [since cou(z_{\pm}, x_{0}) = 0]$$

Eg4.
$$P_{t}(x_{t+h})$$
, $h \ge 1$ in AR(1) process

$$E(x^f) = 0$$

$$E(x_t) = 0$$

$$P_t(x_{t+h}) = P_t(\phi x_{t+h-1} + Z_t) = \phi P_t(x_{t+h-1}) = \phi^h x_t \text{ (by induction)}$$

$$P_t(x_{t+h}) = P_t(\phi x_{t+h-1} + Z_t) = \phi P_t(x_{t+h-1}) = \phi^h x_t \text{ (by induction)}$$

$$\Gamma_{n} = \begin{pmatrix} 1 & \emptyset & \dots & \emptyset & \frac{n-1}{n} \\ \emptyset & 1 & \dots & \emptyset & \frac{n-1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ \emptyset & n-1 & \emptyset & n-2 \end{pmatrix} \qquad \tilde{S}_{n}(h) = \begin{pmatrix} \emptyset & h & h \\ \emptyset & h & h \end{pmatrix}$$

$$\tilde{O} = \begin{pmatrix} 0^{1} \\ \vdots \\ 0^{n} \end{pmatrix}$$

$$\alpha' = (\phi^h, 0, 0, \dots, 0)$$

Let
$$\{ \mathcal{I}_{t} \}$$
 be $AR(1)$

$$E(Y_t) = \mu \neq 0$$

 $X_t = Y_t - \mu$ is AR(1) with mean 0

for
$$h \geqslant 1$$
,
$$P_{t}(X_{t+h}) = \phi^{h} X_{t}$$

$$\Rightarrow P_{t}(\lambda_{t+h}-\mu) = \phi_{t}(\lambda_{t+h}-\mu)$$

In a sample of size 100 from an AR(1) process with mean= 1, \$=0.6 $\sigma^2=2$. From the data $x_1,x_2,...,x_{100}$; we got $\overline{x}_{100}=0.271$. Construct approximate 95% confidence interval for μ . Hence test $H_0: \mu=0$

$$x_t = \phi x_{t-1} + Z_t$$
, where $Z_t \sim \omega n(0,\sigma^2)$
 $x_t = \Delta_t + \Delta_t$

2.12. χ,..., χ₁₀₀ data from MA(1) with mean=μ. θ=-0.6, σ²=1 and x_n=0.157 consider approximate 95% confidence interval for u. Hence test Ho: u=0

$$X_{t} = \theta X_{t-1} + X_{t} \quad \text{where} \quad X_{t} \sim WN(0, \sigma^{2})$$

$$X_{t} = \theta X_{t-1} + X_{t} \quad \text{where} \quad X_{t} \sim WN(0, \sigma^{2})$$

We need sampling disting of \$100 (û?)

We shall do it and also use shall get estimate $\widehat{S}(h)$ of auto-considerce function and get their sampling dist".

[Xt] stationary time series with mean u and ACVF 8(h) We estimate $\hat{\mu} = \overline{\chi}_n = \frac{1}{n} (\chi_1 + \dots + \chi_n)$

Erron = $E[(\bar{x}_n - \mu)^2] \rightarrow 0$ iff \bar{x}_n is consistent estimator of μ .

$$E[(\overline{x}_{n}-\mu)^{2}] = \frac{1}{n^{2}} E[\sum_{i=1}^{n} (x_{i}-\mu)]^{2}$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \delta(^{n}-i)$$

$$= \frac{\omega_5}{1} \sum_{n=1}^{\lfloor \mu \rfloor < \mu} (u + \mu \mu) g(\mu)$$

Result: If $8(h) \rightarrow 0$ as $h \rightarrow \infty$, then $E(evor^2) \rightarrow 0$ as $n \rightarrow \infty$

→ 0 < E(evran2) <
$$\frac{1}{n}$$
 $\sum_{|h| < n} |8(h)| < \frac{2}{n} \sum_{h=0}^{n} |8(h)| \to 0$ as $|8(h)| \to 0$

Result 2:
$$n \in [(\bar{x}_n - \mu)^2] \longrightarrow \sum_{|h| < \infty} \bar{y}(h)$$
 whenever $\sum_{|h| < \infty} |\bar{y}(h)| < \infty$

$$\rightarrow n_{E}[(\overline{x}_{n}-\mu)^{2}] = \sum_{|h| < n} (1-\frac{|h|}{n}) g(h) \rightarrow \sum_{|h| < \infty} g(h)$$
[Abel's convergence Thm.]

$$\Rightarrow \sqrt{n} (\overline{X}_n - \mu) \sim AN(0,0)$$
 where $0 = \sum_{|h| < \infty} g(h)$

95% CI for
$$\mu$$
 is given by $(\overline{\chi}_n - \frac{1.96}{\sqrt{n}}\sqrt{n}, \overline{\chi}_n + \frac{1.96}{\sqrt{n}}\sqrt{n})$

$$\begin{split} & = \frac{1}{1 - \beta^{2}} \quad \exists_{t} \sim AR(1), \quad X_{t} = \exists_{t} + \mu \\ & = (X_{t}) = E \left[\exists_{t} \right] + \mu = \mu \\ & = \sum_{lhl < \infty} \gamma(h) = 2 \left(\sum_{h=0}^{\infty} \beta^{h} \right) \frac{\sigma^{2}}{1 - \beta^{2}} + \frac{\sigma^{2}}{1 - \beta^{2}} \\ & = \frac{\sigma^{2}}{1 - \beta^{2}} \left[\frac{2\beta}{1 - \beta} + 1 \right] \\ & = \frac{\sigma^{2}}{(1 - \beta)^{2}} \end{split}$$

$$E_{Q_{+}^{2}}$$
 $\{x_{t}\} \sim MA(1)$
 $X_{t} = X_{t} + M$
 $E(X_{t}) = M + 0 = M$

$$0 = \sum_{|h| < \infty} 8(h) = 8(0) + 28(1)$$

$$= (1 + \theta^{2})\sigma^{2} + 2\theta \sigma^{2}$$

$$= (1 + \theta)^{2}\sigma^{2}$$

NO = @ 11+01 O

Sample ACVF (8(h))

caires amit grancitates [x]

Data: X,, x2,..., xn is given

$$\widehat{\delta(h)} = \frac{1}{n} \sum_{i=1}^{n-|h|} (x_i - \overline{x}_n) (x_{i+|h|} - \overline{x}_n)$$

Note: Here in the estimate, we used divisor n and considered mean_ In [But if use did not do it, the ACVF motive Pour may not mnd] be

Thm: Fnxn thus obtained is nnd.

Thm:
$$\Gamma_{nxn}$$
 thus obtained is then $((\widehat{\rho(i-j)})_{i,j=1}^n$ is n.nd (orallary: $\widehat{\rho(h)} = \frac{\widehat{\gamma(h)}}{\widehat{\gamma(o)}}$, then $((\widehat{\rho(i-j)})_{i,j=1}^n$ is n.nd

$$\rightarrow$$
 Define $y_i = x_i - \overline{x}_n$, $i = I(i)^n$

Take k>n_, (8,,..., 8k)

Hence B FRXR is and

Principle submatrix of Pexe

: Fran is mid.

Result: If some &; #0, then Park is p.d.

 \rightarrow If $4, \pm 0$. The submatrix of T, with column's 2nd, 34rd, (k+1)th, is nonsingular

 $\therefore Rank(T) = k$

⇒ Frex es non-singular i.e. þ.d.

If $y_1=0$, $y_2\neq 0$, roots the submatrix of T with columns 3rd, 4th,..., (k+2)th, is non-singular.

⇒ Î_{kxk} is þd

Similarly use house Frex is pd-ifer any y; #0

 $\vec{\Gamma}_{nxn}$ is also βd .

Time Series data $\rightarrow x_1, x_2, ..., x_{100}$

We obtain $\widehat{P}(1) = 0.438$, $\widehat{P}(2) = 0.145$

[Assume sid noise]

- (a) Assuming the data generated from AR(1) model, construct the approximate 95% confidence interval for both P(1) and P(2). Bosed on these two CI, are the data consistent with AR(1) with \$=0.8.
- (b) Assuming the data generated from MA(1) model, construct 95%. confidence interval for both P(1) and P(2) based on these two CI. Are the data consistent with MA(1) model with $\theta = 0.6$.

We need assymptotic variance of $\widehat{p(i)}$ and $\widehat{p(i)}$ under the model. Estimate $\hat{\phi}$ from $\hat{p}(i)$ and $\hat{p}(i)$, use it in the expression. For assymp. variance.

Time series data $x_1, x_2, ..., x_n$

Sample ACVF 8(h), h=1,2,..., k with k << n_

Convention: $n \ge 50$, $k \le \frac{\pi}{4}$ Sample ACF $\widehat{p(h)} = \frac{\widehat{g(h)}}{\widehat{\chi(n)}}$, h = 1, 2, ..., k

ωt, ρω = (ρ(1),...,ρ(R))

$$\widehat{\rho}_{\mathbf{k}} = (\widehat{\rho(i)}, \dots, \widehat{\rho(k)})$$

Bootelett's Formula: $\hat{\rho}_k$ is assymptotically MVN ($\hat{\rho}_k$, $\hat{\eta}$ $\hat{\omega}_{kxk}$), where

$$\omega_{kxk} = ((\omega_{ij}))^{k}_{ij} = 1 \quad \text{and} \quad \omega_{ij} = \sum_{k=1}^{\infty} (\rho(k+i) + \rho(k-i) - 2\rho(k)\rho(i))$$

$$(\rho(k+i) + \rho(k-i) - 2\rho(k)\rho(i))$$

Works for Linear Process generated by it's noise.

Application 1:

MA(1) Process

$$\omega_{11} = 1 - 3 \rho \omega^{2} + 4 \rho \omega^{4}$$
 for $i=1$

$$= 1 + 2 \rho \omega^{2}$$
 for $i \ge 2$

Application 2:

ARW Process

$$\rho(h) = \phi^{(h)}$$

$$\omega_{ii} = \sum_{k=1}^{i} \phi^{2i} (\phi^{-k} - \phi^{k})^{2} + \sum_{k=i+1}^{\infty} \phi^{2k} (\phi^{-2i} - \phi^{2i})^{2}$$

=
$$(1-2\phi^{2i})$$
 $\frac{(1+\phi^2)}{(1-\phi^2)}$ - $2i\phi^{2i}$ (derive)

Application 3:

Testing for iid noise

$$\widehat{\rho}_{k} = (\widehat{\rho(0)}, \dots, \widehat{\rho(k)}) \sim N_{k}(0, \frac{1}{n} I_{k}) \quad \text{under iid noise}$$
i.e. $\omega_{ij} = \frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{n} 1_{i}$

The result gives us a scope to test ild noise time series

Ho: data is from iid noise

H: data is not from iid noise

Method1:

If more than 5% of i gives P(i) & CI, we reject Ho

$$Q^2 = n \sum_{i=1}^{k} \widehat{\rho(i)}^2 \sim \chi_R^2$$
 under H_0

If
$$Q^2 > \chi^2_{k,0.95}$$
, we reject H_0 (Portmanteau text)

Modify the Xx statistics as

$$Q_{LB} = n(n+2) \sum_{k=1}^{R} \widehat{\rho(i)}^2 / n-i \sim \chi_R^2$$
 under H_0

This test method based on this statistic is more efficient.