Hodina 13. októbra 2023

Program:

- 1. Domáca úloha (z minula)
- 2. Niekoľko príkladov na zahriatie a pozdvihnutie mysli.
- 3. Geometria: Izometrie roviny rýchle opakovanie
- 4. Domáca úloha (nová)
- 5. Program na budúci týždeň

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://g ithub.com/PKvasnick/Erik. Odporúčam Github Desktop (na Windows) pre uloženie a synchronizáciu repozitára.

Videohovor Používame SpeakApp, link postnem vždy pred hodinou, *je možné, že sa bude týždeň od týždňa líšiť*.

1. Domáca úloha

Príklad 1

1. Nájdite dĺžku vyznačenej úsečky.

Návod: toto nemusí byť nevyhnutne príklad na kruhovú inverziu, ale môže to byť aj príklad na podobné trojuholníky alebo oboje spolu.

Riešenie

Už neviem, prečo som to nakreslil naopak.

Dve kružnice po bokoch polkruhu sú kruhové inverzie malých kružníc podľa polkruhu. V rovnakej inverzii sa priamka AB zobrazuje sama na seba, rovnobežka s AB cez C je obrazom polkruhu, a obrazy malých kružníc sa musia oboch dotýkať.

Vieme, že AB=8. Označme polomer polkružnice R, potom R=4. Polomery menších kružníc sú po rade $r_1=R/2,\,r_2=R/4.$

Trojuholník OBG je pravouhlý, pričom $OB=R/2, \quad OG=R+R/2$ a teda

$$BG^{2} = (3R/2)^{2} - (R/2)^{2} = 2R^{2}$$

 $BG = \sqrt{2} \cdot R$

Trojuholník OIJ je podobný trojuholníku OGH, takže

$$\frac{IJ}{OI} = \frac{GH}{OG} \implies IJ = \frac{GH}{OG}OI = \frac{2\sqrt{2}R}{3R/2}R = \frac{16\sqrt{2}}{3} \approx 7.542$$

Táto úloha ide riešiť aj bez kruhovej inverzie, ale bez trojuholníka OGH to je zložitejšie.

Príklad 2

2. Nájdite a, pre ktoré má funkcia

$$f(x) = \sqrt{ax^2 + x}$$

rovnaký definičný obor ako rozsah hodnôt.

Riešenie

Pozrime sa, či vieme rýchlo nájsť nejaké riešenie metódou "pozriem a vidím". Najjednoduchšie je sústrediť sa na hodnoty a, ktoré celý výraz nejako trivializujú, a to je v našom prípade a=0.

Pre a=0 je $f(x)=\sqrt{x}$, s definičným oborom $D(f)=\langle 0,\infty \rangle$ a rovnakým oborom hodnôt., takže a=0 je riešenie.

Na druhej strane, odmocnina je nezáporná, a teda obor hodnôt bude nejaká podmnožina intervalu $(0,\infty)$. Ale pre kladné a máme pod odmocninou kladné hodnoty aj pre veľké záporné x, takže a < 0.

Takže môžeme svoje pátranie sústrediť na záporné a . Pre tieto hodnoty vyzerá funkcia ax^2+x takto (červená a=-1, modrá a=-2, zelená a=-3).

Pretože $ax^2+x=ax(x+1/a)$, bude pre a<0 definičný obor funkcie f $\langle 0,-1/a\rangle$. Obor hodnôt bude medzi nulou a maximom funkcie, Funkcia zjavne nadobúda maximálnu hodnotu uprostred definičného intervalu, teda pre x=-1/(2a)., a hodnota maxima je

$$f_{max}^2 = a rac{1}{4a^2} - rac{1}{2a} = -rac{1}{4a}$$
 $f_{max} = \sqrt{-rac{1}{4a}}$

Aby sa definičný obor rovnal oboru hodnôt, musí platiť

$$-rac{1}{a} = \sqrt{-rac{1}{4a}}$$
 $a^2 = -4a \quad a(a+4) = 0$

Odtiaľ máme a=4, ale nie a=0, pretože pre túto hodnotu neplatia prakticky žiadne úvahy v posledných odstavcoch.

Záver: Funkcia $f(x)=\sqrt{ax^2+x}$ má rovnaký definičný obor a obor hodnôt pre a=0 a a=-4. Samozrejme si ukážeme aj víťazné riešenie.

Príklad 3

3. Vyriešte

Riešenie

Najprv odvoďme výraz pre polomer kružnice vpísanej do pravouhlého trojuholníka.

Uvažujme trojuholník CBF na obrázku. Bisektory uhlov, v ktorých priesečníku leží stred vpísanej kružnice, ho rozdeľujú na tri trojuholníky BGC, CGF, FGB.

Pozorovanie za euro: Tieto tri trojuholníky majú rovnakú výšku, a teda vieme zrátať ich obsah. Teraz to už je ľahké:

$$S_{BFC}=S_{BGF}+S_{FGC}+S_{CGB} \ rac{ab}{2}=rac{ar}{2}+rac{br}{2}+rac{cr}{2} \ r=rac{ab}{a+b+c}=rac{S}{s} \quad S\equivrac{ab}{2}, \quad s\equivrac{a+b+c}{2}$$

Mimochodom, toto je špeciálny prípad vzťahu pre polomer vpísanej kružnice r a opísanej kružnice R pre všeobecný trojuholník :

$$rR = rac{abc}{2(a+b+c)}$$

Ešte jeden vzťah pre polomer vpísanej kružnice je

$$\frac{1}{r} = \frac{1}{v_a} + \frac{1}{v_b} + \frac{1}{v_c}$$

a pre pravouhlý trojuholník sa redukuje na predošlý vzťah.

Hoci vzťah pre r vyzerá jednoducho, dá sa prekvapivo ešte viac zjednodušiť:

$$r = \frac{ab}{a+b+c} = \frac{ab(a+b-c)}{(a+b+c)(a+b-c)} = \frac{ab(a+b-c)}{(a+b)^2-c^2} = \frac{ab(a+b-c)}{(a^2+b^2-c^2)+2ab} = \frac{a+b-c}{2}$$

Pozrime sa na obvod pravouhlého trojuholníka a jeho vzťah k polomeru vpísanej kružnice:

1. Zjavne a+b-c=a+b-(a-r)-(b-r)=2r\$ v súlade s predošlým vzťahom.

2.
$$a + b + c = a + b + a - r + b - r = 2a + 2b - 2r$$
.

Vráťme sa teraz k nášmu zadaniu so štvorcom a dvoma vpísanými kružnicami. Toto je ťažký príklad, pretože sa ľahko môžeme utopiť v mori podobných trojuholníkov.

Nech je pre jasnosť v trojuholníku zo zadania a zvislá odvesna, b vodorovná, c prepona. Stranu štvora označíme x, ale polomery vpísaných kružníc označíme veľkými písmenami A,B, aby sa nám neplietli označenia.

Začneme tým, že dvoma spôsobmi vyjadríme plochu horného trojuholníka. Jeho strany sú a-x, x, a a-x-A+x-A=a-2A. Pripomínam, že to sú iné označenia ako na predošlom obrázku a vzťahujú sa k trojuholníku zo zadania. Plocha trojuholníka je

$$S = \frac{1}{2}(a - x)x$$

ale môžeme ju vyjadriť aj ako

$$S = sA$$

kde s je polovičný obvod horného trojuholníka

$$s = \frac{1}{2}(a - x + x + a - 2A) = a - A$$

a teda

$$S = \frac{1}{2}(a-x)x = (a-A)A$$

Potrebujeme x v termínoch A a B, takže potrebujeme eliminovať a. Z podobnosti trojuholníkov s vpísanými kružnicami máme:

$$\frac{a-x}{x} = \frac{A}{B}$$

odkiaľ

$$a-x=rac{A}{B}x$$
 $a=rac{A+B}{B}x$

Z rovnosti dvoch výrazov pre S máme

$$(a-x)x = 2(a-A)A$$
 $rac{A}{B}x^2 = 2rac{A+B}{B}Ax - 2A^2$ $x^2 = 2(A+B)x - 2AB$ $x^2 - 2(A+B)x + 2AB = 0$ $x_{1,2} = rac{2(A+B) \pm \sqrt{4(A+B)^2 - 8AB}}{2}$ $x_{1,2} = A + B \pm \sqrt{A^2 + B^2}$

Máme dve reiešenia, ale z obrázku k zadaniu vidno, že $2A < x, \ 2B < x$ a teda A+B < x. Z toho vyplýva, že prípustné je iba riešenie s plusom, a teda

$$\mathbf{x} = \mathbf{A} + \mathbf{B} + \sqrt{\mathbf{A}^2 + \mathbf{B}^2}$$

Iné riešenie

Zatiaľ čo prvé riešenie nám umožnilo začať niekoľkými poznatkami o vpísaných kružniciach, toto riešenie dobre demonštruje priamočiaru stratégiu riešenia takýchto úloh: nájdi niečo, čo sa dá vyjadriť viacerými spôsobmi a v termínoch požadovaných veličín.

V tomto prípade je tým "niečím" vzdialenosť medzi stredmi vpísaných kružníc, ktorá je preponou dvoch rôznych pravouhlých trojuholníkov, a to takých, ktorých strany vieme vyjadriť pomocou a, b, x (v tomto riešení vôbec nepoužívame označenie strán pravouhlého trojuholníka, takže môžeme použiť označenie podľa zadania).

Predovšetkým, vzdialenosť bodov dotyku kružníc na prepone veľkého trojuholníka je

$$|T_1T_2| = |DT_1| + |DT_2| = x - a + x - b = 2x - a - b$$

Modrý trojuholník O_1KO_2 má odvesny $O_1K=2x-a-b$ a $O_2K=b-a$. Zelený trojuholník O_1LO_2 má odvesny $O_1L=x+a-b$ a $LO_2=x+b-a$. Pomocou Pythagorovej vety vyjadríme preponu O_1O_2 z oboch trojuholníkov a dáme do rovnosti:

$$O_1O_2^2 = (2x-a-b)^2 + (b-a)^2 = (x+a-b)^2 + (x+b-a)^2$$

To je výraz, obsahujúci iba a,b,x. Upravíme a vyjadríme x:

$$4x^2 + a^2 + b^2 - 4xa - 4xb + 2ab + b^2 + a^2 - 2ab = 2x^2 + 2a^2 + 2b^2 - 4ab$$
 $2x^2 - 4x(a+b) + 2ab = 0$ $x^2 - 2x(a+b) + ab = 0$

a to je rovnica, ktorú sme dostali aj v predchádzajúcom riešení.

2. Príklady na zahriatie

Kruhová inverzia

Doteraz sme sa zaoberali izometriami - teda zobrazeniami, ktoré zachovávajú vzdialenosti bodov. Dnes sa krátko pozrieme na zobrazenie, ktoré nie je izometriou: kruhovú inverziu.

Majme kruh so stredom O, ohraničený kružnicou k o polomere r. Kruhová inverzia zobrazí body vnútri kružnice k na doplnok kruhu v rovine a body mimo kruhu dovnútra kruhu.

Konkrétne, bod P sa zobrazí do bodu P' na priamke OP tak, že $OP.\,OP'=r^2$

- Body vnútri kruhu sa zobrazia do bodov mimo kruhu
- Body mimo kruhu sa zobrazia dovnútra kruhu
- Body na kružnici sa zobrazujú samy na seba .

Ako z obrázka vyplýva, že OP. OP'?

Inverzia kružnice, prechádzajúcej stredom

Stred invertujúcej kružnice sa zobrazuje do nekonečne vzdialeného bodu. Preto kružnica prechádzajúca stredom sa zobrazuje na kružnicu s nekončným polomerom - priamku.

Pretože

$$OP \cdot OP' = r^2$$
 $OQ \cdot OQ' = r^2$
 $\frac{OQ}{OP} = \frac{OQ'}{OP'}$

a uhol pri O majú trojuholníky OPQ a OQ'P' spoločný, sú si tieto trojuholníky podobné. Pretože OPQ je pravouhlý trojuholník, musí byť pravouhlý aj trojuholník OQ'P'. Teda kružnica c sa zobrazuje na priamku, kolmú na OP a prechádzajúcu bodom P'.

Načo to je dobré 2: Ptolemaiova veta

Naposledy sme sa zaoberali takýmito zvieratkami:

a dnes si dokážeme Ptolemaiovu vetu:

$$AB \cdot CD + BC \cdot DA = AC \cdot BD$$

Načo nám tu môže byť kruhová inverzia? Vlastnosť, ktorú chceme je, že kruhová inverzia vie zobrazovať kruhy na priamky a naopak. Skutočne, ak urobíme stredom inverzie ľubovoľný bod na kružnici, opísanej nášmu štvoruholníku, bude obrazom kružnice priamka a na nej budú všetky vrcholy štvoruholníka.

Zvolíme si na kružnici bod P a nakreslíme nejakú kružnicu, ktorej stredom je P. Tu nám ide o topológiu, takže nie je dôležité, ktorá kružnica to bude, pretože pre každú bude obraz kružnice c priamka a obraz vrcholov štvoruholníka budú body na tejto priamke.

Aby sme ale dokázali niečo vypočítať, musíme si veci zjednodušiť: namiesto ľubovoľného bodu P zvolíme za stred kruhovej inverzie vrchol D štvoruholníka.

Opäť veľmi nezáleží na tom, okolo akej kružnice invertujeme, ale iba že jej stredom je D. A všetko, čo od inverzie potrebbujeme, je toto:

$$A'B' + B'C' = A'C'$$

Poďme vyskúmať, ako sa invertované vzdialenosti - napríklad A'B' majú k pôvodným (v tomto prípade AB).

1. Trojuholníky DAB a $DB^{\prime}A^{\prime}$ sú si podobné.

Skutočne, tieto trojuholníky zdeiľajú uhol AOB a platí $OA \cdot OA' = OB \cdot OB' = r^2$, kde r je polomer invertujúcej kružnice. Odtiaľ máme

$$\frac{A'B'}{AB} = \frac{OB'}{OA}$$
$$A'B' = \frac{OB'}{OA}AB = \frac{r^2}{OA \cdot OB}AB$$

To vyzerá dobre, máme invertovanú vzdialenosť vyjadrenú v termínoch vzdialeností v priamom svete. Použime tento vzťah predchádzajúcom vzťahu pre invertované vzdialenosti:

$$A'B' + B'C' = A'C'$$

$$\frac{r^2}{DA \cdot DB}AB + \frac{r^2}{DB \cdot DC}BC = \frac{r^2}{DA \cdot DC}AC \qquad / \cdot DA \cdot DB \cdot DC$$

$$AB \cdot DC + BC \cdot DA = AC \cdot BD$$

a posledný vzťah je Ptolemaiova veta.

3. Geometria

Dnes sme najviac urobili na domácu úlohu.

5 izometrií roviny

Každú izometriu roviny (teda zobrazenie, zachovávajúce vzdialenosti) vieme vyjadriť ako jedno z piaich základných zobrazení: zrkadlenie, posunutie, rotácia, stredová súmernosť, posunuté zrkadlenie.

- Zrkadlenie
- Posunutie
- Rotácia
- Stredová symetria
- Posunuté zrkadlenie

Ďalšie tvrdenia

Toto budeme dokazovať nabudúce:

- Každú izometriu môžeme vyjadriť ako kompozíciu najviac troch zrkadlení.
- Každú izometriu môžeme vyjadriť ako kompozíciu posunutia a izometrie s najmenej jedným pevným bodom.
- Kompozícia rotácie a posunutia je rotácia (má pevný bod!)

1. Rotácia + posunutie = rotácia

Tieto tvrdenia dokazujeme kombináciou dvoch vecí:

- invariancie rotácií a translácií k rotáciám, resp. transláciám zrkadlení, ktoré ich tvoria.
- algebry zobrazení

Namiesto vysvetľovania poďme tvrdenie dokázať:

Máme priamky f, g, h, i. Priamky f, g sa pretínajú v bode A a zrkadlenia okolo nich tvoria rotáciu. Priamky h, i sú rovnobežné a zrkadlenia okolo nich tvoria posunutie. Celkové zobrazenie je kompozícia rotácie a zrkadlenia:

$$Z = \underbrace{\sigma_i \circ \sigma_h}_T \circ \underbrace{\sigma_g \circ \sigma_f}_R$$

Najprv využijeme, že zrkadlenia okolo priamok f, g rotovaných o ľubovoľný uhol α okolo bodu A definujú rovnakú rotáciu. Preto môžeme túto dvojicu priamok otočiť tak, aby sa priamka g stala rovnobežnou s priamkami h, i. Tieto priamky sú označené f', g'. Teraz využijeme fakt, že zrkadlenia okolo priamok h, i posunutých v kolmom smere o ľubovoľnú vzdialenosť d definujú rovnaké posunutie. Preto môžeme túto dvojicu priamok posunúť tak, aby priamka h splynula s priamkou g'.

Naše zobrazenie teraz vyzerá takto:

$$Z = \sigma_{i'} \circ \underbrace{\sigma_{h'} \circ \sigma_{g'}}_{id} \circ \sigma_{f'} = \sigma_{i'} \circ \sigma_{f'}$$

Priamky g' a h' sú totožné, takže kompozícia zrkadlení okolo nich je identické zobrazenie. Zostáva nám kompozícia dvoch zrkadlení okolo priamok f' a i', ktorá je rotáciou okolo priesečníka týchto priamok A'.

Kompozícia rotácie a posunutia je znova rotácia.

Domáca úloha Dokážte, že rovnaké tvrdenie platí aj o opačnej kompozícii posunutia a rotácie.

2. Kompozícia zrkadlení okolo troch rôznobežných priamok je posunuté zrkadlenie.

Majme tri po dvojiciach rôznobežné priamky f, g, h, pretínajúce sa v bodoch A, B, C (čierne čiary). Dokážeme, že zobrazenie, zložené zo zrkadlení okolo priamok f, g, h je ekvivalentné posunutému zrkadleniu.

Postupujeme rovnako ako v predchádzajúcom prípade: sérou dvoch otočení prevedieme sústavu priamok na dve rovnobežky a kolmicu na ne.

- Otočíme priamky g, h okolo ich priesečníka C o rovnaký uhol, aby priamka g' bola kolmá na f (modré čiary).
- Teraz budeme otáčať dvojicou na seba kolmých priamok f a g' tak, aby sa priamka g'' stala rovnobežnou s h' (červené čiary).

Výsledkom je kompozícia zrkadlení okolo červenej priamky f' a dvojice na ňu kolmých priamok g'' (červenej) a h' (modrej), čo je posunuté zrkadlenie.

3. Dve bodové zrkadlenia sú ekvivalentné posunutiu

Pomocná veta

Nech f, g sú na seba kolmé priamky. Potom zobrazenie, vzniknuté kompozíciou zrkadlení okolo priamky f a potom okolo priamky g je rovnaké ako zobranie, vzniknuté zložením týchto zrkadlení v opačnom poradí:

$$\sigma_g \circ \sigma_f = \sigma_f \circ \sigma_g$$

Toto tvrdenie môžeme veľmi užitočne formulovať tak, že zrkadlenia okolo navzájom kolmých priamok *komutujú*.

Dôkaz

Zložené zrkadlenie okolo dvoch kolmých priamok je bodové zrkadlenie či stredová súmernosť, a ako zrkadlenie je involúciou, teda sa rovná svojmu inverznému zobrazeniu. Aby sme ale boli dôkladní, uvedomíme si, že priamky f, g môžeme okolo ich priesečníka otočiť o ľubovoľný uhol a dostaneme to isté zobrazenie. Tento uhol môže byť aj 90°, čo je práve tvrdenie tejto vety. \square

Teraz už ľahko dokážeme tvrdenie z nadpisu tejto časti. Nech f, g, h, i sú také priamky ,že

- f, g, sú na seba kolmé a pretínajú sa v bode P
- h, i sú na seba kolmé a pretínajú sa v bode Q.

Bez ujmy na všeobecnosti môžeme predpokladať, že f je rovnobežné s h a g je rovnobežné s i (ak nie sú, môžeme ich do tejto polohy pootočiť okolo bodov P, resp. Q). Potom celkové zobrazenie je

$$Z = \underbrace{\sigma_i \circ \sigma_h}_{P_Q} \circ \underbrace{\sigma_g \circ \sigma_f}_{P_P} = \sigma_i \circ \sigma_g \circ \sigma_h \circ \sigma_f = \underbrace{\sigma_i \circ \sigma_g}_{T_{qi}} \circ \underbrace{\sigma_h \circ \sigma_f}_{T_{fh}}$$

čo je kompozícia dvoch posunutí a je teda tiež posunutím. To by sme ale tiež mali dokázať!

Domáca úloha Dokážte, že kompozícia dvoch posunutí je tiež posunutie.

4. Tri bodové zrkadlenia sú ekvivalentné jednému

Domáca úloha

4. Domáca úloha (nová)

Okrem úloh, zadaných v texte, dáme ešte dva príklady:

- 1. Dve rotácie okolo bodov P_1, P_2 sú ekvivalentné jedinej rotácii. Zostrojte túto rotáciu.
- 2. Sú dané dve kružnice k_1, k_2 a bod P. Zostrojte dva body $A \in k_1, B \in k_2$ tak, aby bol bod P stredom úsečky AB.
- 3. Priamka g prechádza bodmi A[1,2] a P[3,0] a priamka h cez Q[2,4] a R[6,3]. Zostrojte rovnostranný trojuholník ABC tak, aby bod B ležal na g a bod C na h.

5. Program na budúci týždeň

Ešte mám nejakú geometriu, a chcel som pohovoriť o dlaždiciach.

Ale dosť hrozí, že už ideme na goniometriu a komplexné čísla.