AIR SERVICE INFORMATION CIRCULAR

(AVIATION)

PUBLISHED BY THE CHIEF OF AIR SERVICE, WASHINGTON, D. C.

Vol. IV

October 15, 1922

No. 373

TEST OF CURTISS EIGHT-CYLINDER MODEL OX-5 ENGINE RATED AT 90 HORSEPOWER AT 1,400 REVOLU-TIONS PER MINUTE

(POWER PLANT SECTION REPORT)

 ∇

Prepared by O. C. Christiansen Engineering Division, Air Service McCook Field, Dayton, Ohio May 16, 1922

WASHINGTON
GOVERNMENT PRINTING OFFICE
1922

CERTIFICATE: By direction of the Secretary of War the matter contained herein is published as administrative information and is required for the proper transaction of the public business.

(2)

TEST OF CURTISS EIGHT-CYLINDER MODEL OX-5 ENGINE RATED AT 90 HORSEPOWER AT 1,400 REVOLU-TIONS PER MINUTE.

OBJECT OF TEST.

The object of the test was to obtain reliable data for use by airplane designers on the performance of the Curtiss OX-5 engine.

SUMMARY OF RESULTS.

Normal brake horsepower at full throttle, 98.5 B. H. P. at 1,400 R. P. M.

Fuel consumption at normal horsepower, 0.490 pounds per B. H. P. hour.

Oil consumption at normal horsepower, 0.0228 pounds per B. H. P. hour.

Normal brake mean effective pressure, 111.0 pounds per square inch.

Total weight, dry, 377.0 pounds.

Weight dry per B. H. P., 3.83 pounds.

CONCLUSIONS.

In view of the eminent reliability of this type of engine during the World War no comment on this engine is necessary. From a technical standpoint the general performance and fuel and oil consumption of the engine are very good and it is well adapted for use in training airplanes. The engine developed no trouble of any kind during the test and revealed no point of excessive vibration. The carburetion appeared to be good at all speeds. Plugging one oil breather did not cause the loss of any oil or affect the engine operation in any way.

DESCRIPTION OF ENGINE.

The engine tested is a Curtiss Model OX-5 Air Service Serial No. 10536, eight-cylinder. Vee type, designed with a staggered cylinder arrangement more clearly understood by reference to figure 3. It is of the four stroke cycle, water cooled, tractor type and uses aviation gasoline as fuel. The propeller is directly driven from the crankshaft. The engine is one of several types designed by the Curtiss Aeroplane & Motor Corporation of Garden City, Long Island, N. Y. This particular engine was manufactured by the Willys-Morrow Co. (Inc.), of Elmira, N. Y. For additional illustrations see figures 1 and 2.

The characteristic features on this engine are the staggered cylinders, side-by-side connecting rods, the unique push rod arrangement and the location of the carburetor at the rear of the engine.

A great many handbooks and much information is available on this engine but perhaps the best is "The Curtiss Standard Model OX Aeronautical Motor Handbook" issued by the manufacturers. For more detailed information on various points not covered in this report the reader is referred to the handbook just mentioned.

METHOD OF TEST.

The test of this engine followed more or less closely the "Instructions for Conducting Standard Engine Tests." No part photographs, weights, or dimensions were taken. The following runs were made:

Two full-power runs.

A friction horsepower and compression pressure run.

A carburetion run.

A one-hour fuel and oil consumption run.

A water pump capacity run when pumping through the engine.

The fuel used for the test was domestic aviation gasoline and was measured by volume. The oil used was within the limits set by specification 2-23B. The power was measured by a Sprague electric dynamometer, the electrical resistance of which was adjusted to absorb the power output of the engine. For further details on the method of testing see Engineering Division reports, Serial Nos. 1506 and 1507.

The "carburetor vacuum" (see figure 5) was taken at the throat of the right-hand venturi tube.

ENGINE DATA.

Bore	4 inch	1es.
Stroke	5 inch	ies.
Compression volume	16.05	cubic inches.
Total cylinder displacement	502.80	cubic inches.
Compression ratio	4.92 ta	0 1.
Rotation of propeller (facing propeller)	Coun	terclockwise.
Firing order		
Method of numbering cylinders		
Timing, actual average:		,
	Opens.	Closes.
Inlet	17° ATC	41° ABC
Exhaust	49° BBC	3° ATC
Power plant weight:1		
France in address		Pounds.
Engine weight, dry		
Power plant constant weight		
Cooling system		
Tankage		
Fuel, 21 hours sea level full throttle		118.00
Oil, 21 hours sea level plus 22 pounds re		
, -		
Total		
Weight per horsepower (power plant)		6.85
Weight per horsepower (engine, dry)		3. 83
Carbureter setting:		Mm.
Chokes		
Main jets.		
Compensators		
Compensators		

¹ See power plant weight table in Engineering Division report serial No. 1506.

Digitized by Google

FULL-POWER RUNS.

FIRST RUN.

1	Act	ual—		Corrected	_	Wa	ter—	Oil	Comb			Mi-	Fuel	cons
R.P.M.	Brake load, lb.	в. н. р.	Torque lbft.	Нр.	B.m.e.p. lb. per sq. in.	Tem	o. °F.	press. lb. per sq. in.	Carb. air temp. *F.	Man. vac. in. Hg.	Carb. vac. in. Hg.	Mix.1 cont. posi- tion.	Lb. per hr.	Lb.per hp. per hr.
850 950	199 211	56.4 66.8	363. 0 385. 0	58.8 69.6	108.9 115.5	150 145	170 185	58 60	50 50	0.4	1.2 1.5	Full Rich 1.80	36. 2	0.642
1,050 1,160 1,230	216 216 214	75.6 83.6 87.8	394.0 394.0 390.5	78. 8 87. 2 91. 5	118. 1 118. 1 117. 1	142 150 155	167 164 170	60 63 62	50 50 50	0.6 0.7 0.8	1.6 1.8 2.0	1.25 1.65 1.5	39. 2 43. 6	.518
1,340 1,400 1,490 1,620	209 206 200 192	93.4 96.2 99.4 103.7	381.5 376.0 365.0 350.5	97.4 100.3 103.6 108.1	114.4 112.8 109.5 105.1	152 160 170 166	168 145 158 156	62 62 60 60	50 50 50 52	0.9 1.0 1.1 1.3	2.0 2.1 2.3 2.5	1.5 1.5 1.5 1.7	46.7 51.2	. 485

Average barometer, 28.70 in. Hg.

SECOND RUN.

				-						,				
- 1	830	210	58.1	384.0	60.8	115.2	155	170	57	60	0.4	1.1	1.5	37.5 0.646
	940	217	68.0	397.0	71.1	119.1	156	170	55	58	0.6	1.4	1.5	
	1,040	220	76.3	402.5	79.8	120.8	156	168	58	56	0.7	1.5	1.5	41.3 0.541
- 1	1,110	215	79.6	393.4	83.2	118.0	160	178	60	156	0.7	1.6	1.5	
	1,200	216	86.4	395.2	90.3	118.6	156	170	61	56	0.8	1.8	1.5	43.3 0.501
i	1,330	210	93.1	384.0	97.4	115.2	148	160	60	56	1,0	2.0	1.6	
- 1	1,420	206	97.5	376.9	101.9	113.0	156	168	60	56	1.1	2.1	1.5	46.9 0.481
1	1,540	200	102.7	366.0	107.4	109.8	160	149	60	64	1.1	2.4	1.5	
1	1,590	195	103.4	356.8	108.1	107.1	174	154	- 60	61	1.2	2.5	1.5	52.3 0.506

Average barometer, 28.62 in. Hg.

1 The control was full lean at 1.2 and full rich at 3.2.

PROPELLER LOAD RUNS.

FIRST RUN.

	Act	tual—		Wa	tor		7			- '		Fuel	cons.
R. P. M	Brake load lb.	В. Н. Р.	Cor- rected horse- power.	temp	. *F.	Oil press. lb. per sq. in.	Carb. air temp. F.	Man. vac. in. Hg.	Carb. vac. in. Hg.	Mix.1 cont. posi- tion.	Throttle posi- tion.	1	Lb. per hp. per
l .	10.			In.	Out.	1						111.	hr.
1, 430 1, 190 1, 010 820	205 148 105 67	97. 8 58. 7 35. 4 18. 3	100. 4 60. 3 36. 4 18. 8	156 162 162 160	170 174 174 168	62 61 59 57	58 60 62 64	1. 1 6. 4 9. 9 14. 6	2. 2 0. 8 0. 4 0. 1	1.5 1.5 1.5 1.5	10 1.5 1.0 0.9	47. 9 29. 9 21. 4 15. 2	0. 490 . 509 . 604 . 830
						BECONI	RUN.						

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-				7 - 1		ī	7			~~	7	-
	1, 1, 1,	410 210 190 000 030	202 150 142 104 96	95. 0 60. 5 ² 56. 3 34. 7 ² 33. 0	97. 5 15 62. 1 15 57. 8 15 35. 6 15 33. 9 15 18. 9 15	4 168 8 170 6 168 4 166 5 168 0 161	60 60 60 64 65	64 64 64 68 70	1. 0 6. 5 6. 6 10. 6 10. 9	2. 0 1. 0 0. 7 0. 4 0. 3	1. 2 3. 2 1. 2 3. 2 1. 75	0.9	46. 0 33. 1 29. 3 23. 0 20. 1	. 485 . 547 . 521 . 662 . 610	

Average barometer; 29.14 in. Hg.

The control was full rich at 3.2 and full lean at 1.2.
 The readings marked with (9) were with full rich mixture; the others were with best setting of the control at each speed.

FRICTION HORSEPOWER RUN.

	Corrected engine	Friction		F. M.	Per cent	Comp.	Water to	mp. °F.	Air
R. P. M.	B. H. P. (from curve).	load (lb.).	F. H. P.	E. P. (lb. per sq. in.).	mech. eff.	(lb. per sq. in.).	In.	Out.	temp.
120		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				78			
800	54. 5	21	5. 9	11.6	90. 2		156	168	50
900	64. 1	21	6.6	11.6	90. 7		170	168	50
1,000	73. 4	24	8.4	13. 2	89.8		168	168	50
1,100	82. 2	25	9.6	13.7	89.6		170	170	50
1, 200	90.0	25	10.5	13.7	89. 6		170	170	50
1,300	96. 3	25 25 27	12, 2	14.8	88.7		168	168	50
1,400	101.8	30	14.6	16. 4	87. 4		170	170	50
1,500	105. 8	31	16. 2	17.0	86. 7		170	170	50
1,600	108.0	32	17.9	17.6	85, 8		175	175	50

Length of brake arm, 21 inches. Kind of oil used, U. S. Spec. 2-23B. Average barometer, 28.62 in. Hg.

ONE HOUR FUEL AND OIL CONSUMPTION RUN.

Elapsed	R. P. M.	Act	ual.		B. M. E. P.		ater p. °F.	Oil	Carb.	Man.	Carb.	Mix.1	Gas.	cons.	Oil	cons.
time (min- utes).	by coun- ter.	Brake load (lbs.).	В. Н. Р.	Corr. H. P.	(lbs. per sq. in.).	In.	Out.	press. (lbs. per sq. in.).	air vac. vac. cont. temp. in. in. posi- Scale reading (lbs.). Hg. Hg. tion. Cont. temp. tion.	per per	Lbs. per hp. hr					
0		207				153	168	60	54	1.0	2.3	1.5	110.0			
10	1,430 1,426	207 207	98. 7 98. 4	100. 9 100. 6	111.1	160 162	173 174	61 62	54 54	1.0	2.2	1.5	105. 9 102. 0	0.498		
15	1, 404	207	96. 9	99. 1	111.1	156	170	62	54	1.0	2,2	1.5	97. 9	0. 508		
20	1,410	207	97.3	99.5	111.1	155	169	62	54	1.0	2, 2	1.5	93. 9	0. 494		
25		207	96.4	98.5	111.1	164	180	61	54	1.0	2, 1	1.5	89.8	0.510		
30	1,396	207	96.3	98.4	111, 1	156	170	61	55	1.1	2.2	1.5	85.8	0.499		
35	1,376	207	94.9	97.0	111.1	156	169	62	56	1.0	2.2	1.5	82.0	0.481		
40	1,384	206	95.0	97.1	110.5	159	174	62	56	1.0	2.1	1.5	78.2	0.480		
45	1,392	206	95.6	97.7	110.5	155	169	62	54	1.1	2, 2	1.5	74.3	0.490		
50	1,386	206	95. 2	97.3	110.5	154	168	62	55	1.1	2. 2	1.5	70.2	0.517		
55	1,388	206	95.3	97.4	110.5	156	170	62	56	1, 1	2.2	1.5	66. 7	0, 441		
60	1,388	206	95.3	97.4	110, 5	162	174	62	56	1.1	2.2	1.5	62.8	0.491	2.2	

AVERAGE RESULTS FOR ONE HOUR.

Management of the last			to the second to discuss				Commercial										_
	1,398	206. 6	96, 3	98. 5	111.0	158	171	62	55	1.0	2, 2	1.5	47. 22	0.490	2. 2	0. 0228	ĺ

 $^{^{\}rm l}$ The mixture control was full rich at 3.2 and full lean at 1.2. $^{\rm s}$ Total for one hour.

Data for all runs: Length of brake arm, 21 inches. Kind of oil, U. S. Spec. 2-23-B. Fuel used (spec. grav.), 0.710 at 15° C. Average barometer, 29.27 in. Hg.

WATER-PUMP CAPACITY RUN.

· Revolutions per minute.	Pounds per 15 seconds.	Gallons per minute.	Revolutions per minute.	Pounds per 15 seconds.	¹ Gallons per minute.
800	26, 5 26, 5 29, 25 28, 50 33, 50 33, 75 36, 60 36, 00 39, 25 37, 50	13. 1 13. 1 14. 4 14. 0 16. 5 16. 6 18. 0 17. 7 19. 3 18. 5	1, 300	41, 75 42, 00 44, 50 44, 75 48, 50 47, 75 51, 00 50, 50	20. 6 20. 7 21. 9 22. 0 23. 9 23. 5 25. 1 24. 9

 $^{^1\,\}mathrm{Water}$ temperature was 170° F.; 8.12 pounds of water per gallon at 170° F.

5459 - 22 - 2

Fig. 1.—Three-quarter front view.

Fig. 2-Three-quarter rear view.

Fig. 3-Top view with cylinder numbers.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 8.

