Rain

Matthew Wiens, Kelly Kung

December 20, 2017

Abstract

Abstract Here

1 Introduction

Residents and visitors to the Pacific Northwest (Oregon and Washington) notice a distinct pattern year over year: most days during the winter are rainy, and then they feel that there a distinct point during the spring or early summer when the weather becomes dry most days. Similarly, during early fall the nice weather switches back to rain. However, the timing of the switch varies throughout the area, with the prominent Cascade Mountains being a key factor. There are many resorts on the east side of the Cascade Range that cater to residents of the west side looking to escape the rain.

Widmann and Bretherton developed a methodology to control for local variation in topography and precipitation data and generated a dataset of estimated precipitation data over 46 years in a 50km by 50km grid. In comparison, general models of atmospheric weather operate on the order of hundreds of kilometers, so there significant room to improve the spatial resolution of weather models. In particular, local topographic features are not captured by general model, which is a limitation in regions like the Pacific Northwest. The temporal and spatial correlation is also highly dependent on the topography and difficult to model.

2 Background

The Pacific Northwest has a varied climate, from temperate rainforests on the Pacific coast to desert in Southeastern Oregon, which has a major impact on the seasons. Therefore, each grid cell is classified into one of nine climatic zones as follows:

- 1. Washington Coastline (Temperate Rainforest)
- 2. Oregon Coastline
- 3. Western Washington / Seattle Metropolitan Area
- 4. Portland Metropolitan Area / Willamette Valley / Southwestern Oregon
- 5. Cascade Range
- 6. Columbia Plateau
- 7. Selkirk Mountains
- 8. Blue Mountains

9. Eastern Oregon / High Desert / Great Basin

These zones were decided by considering average precipitation over the time period of the data and the topographic features of the region. The rainfall for the region was aggregated by considering if there was measurable rainfall in each grid by day, and then for each day if the majority of grid cells reported rain, then a value of rain was assigned to the area, else it was dry

3 Model

We further developed our model by considering the probability of rain on each day for the summer (dry) and winter (rainy) seasons. This is motivated by the idea of trying to plan outdoor activity in each area of the Pacific Northwest and deciding if there is value in traveling to a different area to escape rain. Therefore, the following model is proposed:

- The data is binary data representing if it rained or not for each day of the year,
- π_w and π_d are the probability of rain during the wet season and dry season, respectively.
- θ_1 and θ_2 are the cutoff points for the wet and dry seasons. The wet season runs from January 1st until the day before θ_1 and from θ_2 to December 31st, and the dry season runs from θ_1 until the day before θ_2 , and the natural restriction is imposed that $\theta_1 < \theta_2$
- Let y_j be the data on day j. Then $p(y_j) = \pi_w 1_{j < \theta_1} + \pi_d 1_{\theta_1 \le j < \theta_2} + \pi_w 1_{j \ge \theta_2}$

4 Analysis

5 Discussion

6 Conclusion