Chap1- Limites de fonctions

Asymptote oblique

On donne la fonction f définie sur $I =]-5; +\infty[$ par $\frac{5x-x^2}{5+x}$. On note C_f sa courbe représentative.

- 1. Déterminer les coordonnées des points d'intersection de la courbe \mathcal{C}_f avec l'axe des abscisses.
- 2. Montrer que pour tout $x \in I$, $f(x) = -x + 10 \frac{50}{5+x}$
- 3. Déterminer la dérivée f' de f.
- 4. Etudier le sens de variation de f. Dresser le tableau de variation de f.
- 5. On donne \mathcal{D} la droite d'équation y = -x + 10. Résoudre f(x) = -x + 10 et interpréter graphiquement le résultat.
- 6. On note M et N les points de C_f et \mathcal{D} de même abscisse x.
 - (a) Montrer que pour tout $x \in I$,

$$MN = |f(x) - (-x + 10)| = \frac{50}{5 + x}$$

- (b) Déterminer le réel x_0 , tel que pour tout $x > x_0$, on a $MN < 10^{-1}$.
- (c) Déterminer le réel x_1 , tel que pour tout $x > x_1$, on a $MN < 10^{-2}$.
- (d) Déterminer le réel x_2 , tel que pour tout $x > x_2$, on a $MN < 10^{-3}$.
- (e) Justifier que la distance MN peut être rendue aussi petite que l'on le souhaite dès que x est supérieure à une certaine valeur.

Conclusion: La distance MN tend vers 0 lorsque x tend vers l'infini. La droite \mathcal{D} est appelée asymptote à la courbe \mathcal{C}_f en l'infini.