Programación con Restricciones Tarea 4

Daniel San Martín

Departamento de Informática Universidad Técnica Federico Santa María

12 de julio de 2017

Dada una lista de ciudades y las distancias entre cada par de ellas, el problema del vendedor viajero o (TSP por sus sigas en inglés) busca encontrar la ruta más corta posible que visita cada ciudad exactamente una vez y al finalizar regresa a la ciudad origen.

Complejidad

Dentro de la optimización combinatoria se considera un problema *NP-completo*, muy importante en la investigación de operaciones y en la ciencia de la computación.

Este problema puede ser formulado como un problema de programación lineal entera. Etiquetando las ciudades con 1, ..., n y definiendo

$$x_{ij} = \begin{cases} 1 & \text{si existe un camino para ir de la ciudad } i \text{ a la ciudad } j \\ 0 & \text{en otro caso} \end{cases}$$

Para i = 1, ..., n, sea u_i una variable artificial, y sea c_{ij} la distancia desde la ciudad i a la ciudad j. El modelo queda definido por

Minimizar
$$Z = \sum_{i=1}^{n} \sum_{j \neq i, j=1}^{n} c_{ij} x_{ij}$$

Sujeto a

$$0 \le x_{ij} \le 1 \qquad i, j = 1, ..., n$$

$$u_i \in \mathbb{Z} \qquad i = 1, ..., n$$

$$\sum_{i=1, i \ne j}^{n} x_{ij} = 1 \qquad j = 1, ..., n$$

$$\sum_{j=1, j \ne i}^{n} x_{ij} = 1 \qquad i = 1, ..., n$$

$$u_i - u_j + nx_{ij} \le n - 1 \quad 2 \le i \ne j \le 2$$

EJERCICIOS

Se probaron 3 de los 4 ejercicios que vienen implementados en el código de ejemplo de *Gecode*.

- \bullet Problema de 7×7 .
- 2 Problema de 10×10 .
- \bullet Problema de 17×17

Desarrollo: Estadísticas Gecode ejercicio 1

Estrategia		Ejercicio 1
Initial	Propagators:	11
	Branchers:	2
Summary	Runtime:	$\sim 0.618 \text{ ms}$
	Solutions:	3
	Propagations:	395
	Nodes:	27
	Failures:	11
	Restarts:	0
	No-goods:	0
	Peak depth:	5

CUADRO 1: Resumen resultados

Desarrollo: Estadísticas Gecode ejercicio 2

Estrategia		Ejercicio 2
Initial	Propagators:	14
	Branchers:	2
Summary	Runtime:	$\sim 0.814 \text{ ms}$
	Solutions:	5
	Propagations:	617
	Nodes:	53
	Failures:	19
	Restarts:	0
	No-goods:	0
	Peak depth:	12

CUADRO 2: Resumen resultados

Desarrollo: Estadísticas Gecode ejercicio 3

Estrategia		Ejercicio 3
Initial	Propagators:	21
	Branchers:	2
Summary	Runtime:	$\sim 3.632 \text{ ms}$
	Solutions:	3
	Propagations:	4044
	Nodes:	393
	Failures:	185
	Restarts:	0
	No-goods:	0
	Peak depth:	25

CUADRO 3: Resumen resultados

Conclusiones

Del desarrollo de la tarea se obtuvieron las siguientes conclusiones:

- El número de propagaciones aumenta notablemente a medida que el número de ciudades aumenta.
- Esto también conlleva un aumento considerable en el tiempo de cómputo.

REFERENCIAS

Schulte, C., Lagerkvist, M., y Tack, G. (2017). Gecode. Software download and online material at the website: http://www.gecode.org.

