Algorithmique et programmation C++

CHAPITRE 1 Introduction

Partie 1: environnement informatique

Objectifs de ce chapitre

- Comprendre la composition interne d'un ordinateur et les rôles des éléments principaux qui le constituent.
- Comprendre comment l'information est représentée et comment elle est véhiculée à l'intérieur de l'ordinateur.
- Comprendre les différentes couches, matérielles et logicielles, sur lesquelles repose le fonctionnement d'un ordinateur.

Ces aspects seront détaillés d'avantage dans l'élément de module « Bases d'informatique »

Définition d'un ordinateur

- Un ordinateur = ensemble de circuits électroniques permettant de manipuler des données numériques sous forme binaire : 1 bit = 0 ou 1.
- Ces deux valeurs sont faciles à représenter électriquement: le 0 correspond à l'absence de tension électrique (0V) et le 1 correspond à une valeur de tension (5V par exemple).
- "Ordinateur" = terme amélioré de "calculateur ", traduction de computer. Origine : la firme IBM.
- Un ordinateur est généralement assimilé à un ordinateur personnel. Le PC (Personal Computer) est le plus courant.
- Il existe également d'autres types d'ordinateurs qui ne sont pas des PCs, comme:
 - Apple Macintosh
 - stations Alpha
 - stations SUN
 - stations Silicon Graphics
- Toutes les données manipulées et traitées par un ordinateur (fichiers, images, sons, vidéo, documents, etc.) sont <u>numériques</u>.

Qu'est ce que le numérique (vs. l'analogique)?

- Les signaux analogiques sont:
 - continus dans le temps.
 - Représentés par des courbes qui varient dans le temps sans discontinuité, c'està-dire qu'à chaque instant (point sur l'axe du temps) correspond une valeur du signal.

Par exemple, le son produit par la parole est continu (analogique).

- Les signaux numériques sont:
 - Un sous-ensemble de valeurs du signal analogique
 - Obtenus par échantionnalge du signal analogique
 - Formés par l'ensemble des valeurs du signal à des instants bien déterminés.

Signal analogique

Signal échantionné

La numérisation

- Transformation d'un signal analogique en numérique;
- Se fait en deux étapes principales:
 - l'échantillonnage: prélever périodiquement des échantillons d'un signal analogique.
 - la quantification: affecter une valeur numérique à chaque échantillon prélevé, à partir d'un ensemble de valeurs pré-définies.
 Ces valeurs dépendent du nombre de bits sur lequel chaque échantillon est représenté (qu'on appelle: la résolution).
- Exemple: si on décide de représenter notre signal sur 8 bits (1 octet), alors on dispose de 256 valeurs possibles (2⁸=256), allant de 00000000 à 11111111, pour chaque échantillon.
 - → Si notre signal électrique analogique d'origine fluctue entre 0V (valeur minimale) et 5V (valeur maximale) alors on peut diviser cet intervalle de 5V en 256 niveaux. Chaque niveau correspond à l'une des valeurs pouvant être représentées par 8 bits.
 - → Ainsi, chaque échantillon prendra l'une de ces 256 valeurs (la valeur la plus proche).

Unités de mesure

Multiples de l'octet :

préfixes SI et mésusages

Nom	Symbole	Valeur	Mésusage ²
kilooctet	ko	10 ³	210
mégaoctet	Mo	10 ⁶	2 ²⁰
gigaoctet	Go	10 ⁹	230
téraoctet	То	10 ¹²	2 ⁴⁰
pétaoctet	Po	10 ¹⁵	
exaoctet	Eo	10 ¹⁸	
zettaoctet	Zo	10 ²¹	
yottaoctet	Yo	10 ²⁴	

Multiples de l'octet :

préfixes binaires

Nom	Symbole	Valeur
kibioctet	kio	2 ¹⁰
mébioctet	Mio	2 ²⁰
gibioctet	Gio	230
tébioctet	Tio	240
pébioctet	Pio	2 ⁵⁰
exbioctet	Eio	260
zébioctet	Zio	2 ⁷⁰
yobioctet	Yio	280

Composition d'un ordinateur

Un ordinateur est composé d'éléments modulaires :

```
d'une unité centrale;
d'un moniteur (l'écran);
d'un clavier, d'une souris;
d'interfaces d'entrée-sortie (ports séries, parallèle...);
de périphériques externes (imprimante, scanner,..);
de périphériques internes (carte son, vidéo, ...);
d'unités de stockage de données et de mémoires (en lecture ou en écriture): lecteur de disquettes, lecteur de CD-ROM, de DVD, de cartes diverses, ...
```

 C'est la carte mère qui gère les périphériques comme un chef d'orchestre.

Carte mère

Carte mère (2)

Composants essentiels

Processeur

Mémoire vive (RAM)

Disque dur

Processeur

AMD

K5 (IA-32; 1996)

Athlon 64 (AMD64; 2003)

A8 (2011...)

Intel

80386 (IA-32; 1985)

Pentium 4 (x86-64; 2004)

Core i5, i7, i9, ...

RAM

- DRAM (Dynamic Random Acces Memory)
- SRAM (Static Random Access Memory)

Disque dur

Solid State Drive (SSD)

Hard Disk Drive (HDD)