

2003 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

Staff Involved:

- · CFR*
- HG*
- DOK
- RMH
- MRB
- BJR • VAB

90 copies

General Instructions

- Reading time = 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Make sure your Barker Student Number is on ALL pages
- Board-approved calculators may be used
- A table of standard integrals is provided on page 9
- ALL necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged working

PM THURSDAY 14 AUGUST

Total marks - 84

- Attempt Questions 1 7
- All questions are of equal value

Total marks - 84

Attempt Questions 1 - 7

ALL questions are of equal value

Answer each question on a SEPARATE sheet of paper

Marks

Question 1 (12 marks) [BEGIN A NEW PAGE]

(a) If
$$f(x) = x^2$$
 and $g(x) = -\sqrt{x}$, what is the value of $f(g(9)) - g(f(9))$?

(b)
$$y = f(x)$$
 is a linear function with slope $\frac{1}{2}$

(i) Find an expression for the inverse function of
$$y = f(x)$$
 2

(ii) Hence find the slope of
$$y = f^{-1}(x)$$

(c) Find
$$\int \frac{2}{3\sqrt{16-x^2}} dx$$

(c) If
$$\sin 2A = \frac{1}{2}$$
, what is the value of $\frac{1}{\sin A \cos A}$?

(f) If
$$0 \le t \le 1$$
, find the Cartesian equation of the curve whose parametric equations are $y = t^2$ and $x = \sqrt{t}$

Marks

Question 2 (12 marks) [BEGIN A NEW PAGE]

- (a) Consider the function $y = 2\sin^{-1}\frac{x}{3}$
 - (i) State the domain and range of y = f(x)

2

(ii) Hence sketch the graph of y = f(x)

1

- (b) From the top, C, of a vertical cliff, 200 m high, two ships P and Q are observed at sea level. A is the foot of the cliff at sea level. P is the south of A and the angle of elevation of C from P is 45°. Q is \$50°W of A and the angle of elevation of C from Q is 60°.
 - Draw a diagram showing this information.

1

(ii) Find the distance PQ (to nearest metre).

3

- (c) Consider the curve whose equation is $y = \frac{x^2}{1 x^2}$
 - (i) Find any vertical asymptotes.

1

(ii) Find lim y

1

(iii) Show that the curve is an even function.

1

(iv) Hence (without using calculus), sketch the curve, showing all main features,

	•
240	
THE	

Question 3 (12 marks) [BEGIN A NEW PAGE]

(a) Differentiate x cos⁻¹ x

2

(b) Find $\int_0^x \sin^3 x dx$ using the result $\sin 3x = 3\sin x - 4\sin^3 x$

3

A boat is attached by a rope to a jetty 2 m above the bow of the boat.
 The rope is being pulled in at the rate of 1 m s⁻¹.
 At what rate is the boat approaching the jetty when 3 m of rope still remains to be pulled in? (Answer correct to 1 decimal place)

4

(d) (i) Express $x^2 + x + 1$ in the form $(x - A)^2 + B$ where A, B are constants.

1

(ii) Hence find $\int \frac{dx}{x^2 + x + 1}$

3

2

Question 4 (12 marks) [BEGIN A NEW PAGE]

(a) The curves $y^2 = 16x$ and y = 2x - 6 intersect at the points where x = 1 and x = 9.

Find the scute angle between the two curves at the point where x = 1

(b) If $\tan \frac{\theta}{2} = t$ and θ is acute, express $\sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}}$ in terms of t

(c) Evaluate in exact form cos105*

(d) Solve $\sqrt{2}\cos x - \sin x = \frac{3}{2}$ for $0^{\circ} \le x \le 360^{\circ}$

4

Question 5 (12 marks) [BEGIN A NEW PAGE]

(a) A body is cooling in a room of constant temperature 15°C.
 At time t minutes its temperature, T, decreases according to the equation.

$$\frac{dT}{dt} = -k(T - 15)$$

where k is a positive constant.

The initial temperature of the body is 75°C, and it cools to 55°C after 10 minutes. What is the temperature of the body after a further 5 minutes? (Answer correct to 1 decimal place)

- (b) (i) Show that the relation $v^2 = -kx^2 + c$, where k and c are constants, is satisfied by the equation $\frac{d}{dx} \left(\frac{v^2}{2} \right) = -kx$
 - (ii) A pendulum, P, swings so that it oscillates about its centre of motion according to the equation $\frac{d^2x}{dx^2} = \frac{-x}{9}$, where x is the distance of P from its centre of oscillation at any time t seconds.

 Show that $v^2 = \frac{1}{9}(4 x^2)$, given that its maximum displacement is 2 cm.

 Hence find the maximum speed of P.

(c) Evaluate
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin x \cos^2 x \, dx \text{ using } u = \cos x$$

Question 6 (12 marks) [BEGIN A NEW PAGE]

(a) Write down the value of ${}^{n}C_{j} - {}^{n}C_{n-j}$

1

(b) Find the term independent of x in the expansion of $\left(x^{1} + \frac{5}{x}\right)^{3}$

3

(c) By considering the identity $(1 + x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} x^k$, show that

$$\sum_{k=1}^{2n} k \binom{2n}{k} = n4^a$$

(d) What is the greatest coefficient in the expansion of $(2 + 3x)^{30}$?

5

2

3

Question 7 (12 marks) [BEGIN A NEW PAGE]

(a) Given that $y = \sin x$, and using the result $\cos x = \sin \left(x + \frac{\pi}{2}\right)$, it can be shown that:

$$\frac{dy}{dx} = \cos x$$

$$= \sin\left(x + \frac{\pi}{2}\right)$$

$$\frac{d^2y}{dx^2} = \cos\left(x + \frac{\pi}{2}\right)$$

$$= \sin\left[\left(x + \frac{\pi}{2}\right) + \frac{\pi}{2}\right]$$

$$= \sin\left[x + \frac{2\pi}{2}\right]$$

Similarly:

$$\frac{d^3y}{dx^3} = \sin\left(x + \frac{3\pi}{2}\right)$$

Therefore:

$$\frac{d^n y}{dx^n} = \sin\left(x + \frac{n\pi}{2}\right)$$

Prove, by induction, that the generalisation given above,

i.e.
$$\frac{d^n y}{dx^n} = \sin\left(x + \frac{n\pi}{2}\right)$$
, is correct for all positive integers n when $y = \sin x$

- (b) A particle is projected under gravity with speed u m s⁻¹ and at an angle $\frac{\pi}{4}$, from a point O on horizontal ground. It strikes the ground at P, where OP = R.
 - (i) Taking the x and y exes through 0, show that the equation of the trajectory is given by $y = x g \frac{x^2}{u^2}$
 - (ii) Hence, or otherwise, show that $R = \frac{u^2}{g}$
 - (iii) A ball is fired from O with velocity 30 m s⁻¹ at an angle $\frac{\pi}{4}$ to the horizontal. Find the speed of the ball when it has travelled a horizontal distance of 15 m from its starting point. (Take $g = 10 \text{ m s}^{-2}$)

 (Answer correct to 1 decimal place)

End of Paper

: m = -2 (at x=1)

= (当 - 多

: d(2) = - kx

まかっ一点が十ら

2-2504

- U560 c00 45 - 50 60 50 45

- 4×年 - 至×年

R=J657+1- -JE 1

·· C= 唐卡·

= 4(4-22) (d) Jacosa-shx=Reas(x+x) Max 2=0 : v= 4

- Max speed & const

O C) Shacestada 1. 53 coo(xc+35°16') = 3

1 11 = cos x de - sintedo cas(e+35'16') = 13 0 = 10 -u²du

: x = 294 04 or 354 44 0 = [1]

=0-- 書: 本 ①

QUESTION 5:

@ T=15+A=- Ht

too 1.75-15+ Az T=75 -1. A =60

to 10 : 35= 15+60 e lok 7=35 : = e 10k 47.1

(c) cos 105° = cos(60°+45°)

COOK - 13-13

... 2 " 35° 16'

- x+2516' = 30, 390, 370, -

おの一方加書

(or to la 是) T = 15+60 = 6 h 5

to15, T= 15+60 = 15 ln & -47.659 = 67.7° QUESTION 6

11: 24-47=0 for Tinday of se

"- T7 = (8)56 = 437 500

6. (c) (1+2) = = (21) xx Differentiating both sides wit oc:

(2) lead aide

Lot x=1, 2n x 2n-1 = = 2n & (2n)

 $\therefore n \mathcal{Z}^{2n} = \sum_{k=1}^{2n} \mathcal{R}(2n)$

: = k(k) = n4"

(d) (2+ 3x)30

call Try1 = n-r+1 x b

 $= \frac{3l-r}{r} \times \frac{3}{2}$

If THIST, Hen: 93-3r > 2r

5r < 93

(2) mobal r <183

93-3r < 2r 5r > 93

If THE <Tr then 1

--- 15 17-16, --- ·

r>18 🕏 1-r=19,20,

1. TA >TB >TA>... T20 < T19, T2, < T20, - Tig coeff. 15 greatest.

Zoeff. Ty = (30) 2 20-18 3/8

QUESTION 7:

() GTEP 1: Above true for 11=1

da = 062 = Sh(Z+ }

- True for nel

STEPA: Assume true for n= &

i.e. assume $\frac{d^2y}{dx} = \sin\left(x + \frac{d\pi}{2}\right)$

7. (cont. STEP 3: Prove true for n= R+1 ie. from det = sin x+ (+) IT Now dry = de dry = d sin (xx + kt) from assump. 3 including I for it concludes from proof $= \cos\left(x + \frac{k\pi}{2}\right)$ = 5小/2+基里+夏) = sin (2+(2+1)) 7 Hence if true for n=k, Then free for n=k+1. But true for n=1:- true for n=2, n=3 and all positive integers n. (b) (i) Initially: 这=Ucost , y=Usint = 些 = 世 $\dot{x} = 0$ Now: to Ez $\dot{x} = C$ = 2-9元 -- y=-gt+是 x= 卷 t + C, t=0 :- C=0