MATLAB BASICS FOR CONTROL SYSTEMS:

Table of Contents

Compulsary statements:	. 1
Solving DE:	. 1
Step response computation:	. 2
Eulers Method:	. 2
Range-kutta method:	. 3
ODE 45:	. 4
Joint Plot:	
Second Order System:	. 6
Ramp Response:	

This is to introduce the students of EE250 to MATLAB

Compulsary statements:

```
clc; clear all; close all;
```

Solving DE:

```
syms y(t);
Dy = diff(y,t);
ode = diff(y,t,2)-2*diff(y,t)+4*y==0
cond1 = y(0)==1
cond2 = Dy(0)==2
conds = [cond1 cond2];
ysol(t) = dsolve(ode, conds)

ode(t) =

4*y(t) - 2*diff(y(t), t) + diff(y(t), t, t) == 0

cond1 =
y(0) == 1

cond2 =
subs(diff(y(t), t), t, 0) == 2

ysol(t) =
```

```
\exp(t)*\cos(3^{(1/2)*t}) + (3^{(1/2)*}\exp(t)*\sin(3^{(1/2)*t}))/3
```

Step response computation:

Continuous-time transfer function.

Eulers Method:

$$x(1) = 0.5;$$

```
h = 0.1; t = 0; time(1)=0;
for i=1:100
     x(i+1) = x(i)+h*(-x(i)+x(i)*x(i));
     t = t+h;
     time(i+1) = t;
end
x1 = x;
figure(2);
plot(time,x);
grid on;
title('Eulers Method');
xlabel('Time');
ylabel('Magnitude');
```


Range-kutta method:

```
 \begin{split} &x(1) = 0.5; \\ &h = 0.1; \ t = 0; \ \text{time}(1) = 0; \\ &\text{for } i = 1:100 \\ &m0 = -x(i) + x(i)^2; \\ &m1 = -(x(i) + m0*h/2) + (x(i) + m0*h/2)^2; \\ &m2 = -(x(i) + m1*h/2) + (x(i) + m1*h/2)^2; \\ &m3 = -(x(i) + m2*h) + (x(i) + m2*h)^2; \\ &x(i+1) = x(i) + (h/6)*(m0 + 2*m1 + 2*m2 + m3); \\ &t = t + h; \\ &time(i+1) = t; \end{split}
```

```
end
x2 = x;
figure(3);
plot(time,x);
grid on;
title('RK Method');
xlabel('Time');
ylabel('Magnitude');
```


ODE 45:

```
tspan = [0 10];
x0 = 0.5;
[t,x] = ode45(@(t,x) -x+x^2, tspan, x0);
x3 = x;
figure(4);
plot(t,x);
grid on;
title('ODE45 Method');
xlabel('Time');
ylabel('Magnitude');
```


Joint Plot:

```
figure(5)
plot(time,x1,'-');
hold on;
plot(time,x2,'o');
hold on
plot(t,x3,'r');
legend('EM','RKM','ODE45');
grid on;
title('Comparison Between Methods');
xlabel('Time');
ylabel('Magnitude');
```


Second Order System:

```
s = tf('s');
G = 1/(s*(s+1))
D1 = (s+2)/2
sys1 = feedback(G*D1,1)
S1 = stepinfo(sys1)
figure(6);
stepplot(sys1);
grid on;
title('Step Response of Overall System');
xlabel('Time');
ylabel('Magnitude');
G =
     1
  s^2 + s
Continuous-time transfer function.
D1 =
```

MATLAB BASICS FOR CONTROL SYSTEMS:

s + 2 ----2

Continuous-time transfer function.

sys1 =

s + 2----- $2 s^2 + 3 s + 2$

Continuous-time transfer function.

S1 =

RiseTime: 1.9782
SettlingTime: 5.3051
SettlingMin: 0.9077
SettlingMax: 1.0348
Overshoot: 3.4832
Undershoot: 0

Peak: 1.0348
PeakTime: 3.9911

Ramp Response:

```
t=0:0.1:10;
ramp = t;
[x, t] = lsim(sys1,ramp,t);
figure(6);
plot(t,x);
hold on;
plot(t,t);
grid on;
title('Ramp Response of the system');
xlabel('Time');
ylabel('Magnitude');
```


Published with MATLAB® R2016a