Detecting Inconsistencies in Healthcare Provider Data

Randy Pantinople Anjali Pathak Jay Kim

What is Healthcare Fraud?

- A type of white-collar crime
- Involves filing of dishonest health care claims to turn a profit
- Impacts the healthcare system both financially and in the way how the integrity and value of the country's health care system is being perceived

Significance of the study

- NHE (National Health Expenditure) grew 4.6% to \$3.6 trillion in 2018 for billions of claims (\$11,172 per person)
- The National Health Care Anti-Fraud Association (NHCAA)
 estimates that the financial losses due to health care fraud are in
 the tens of billions of dollars each year.
- Through our project, we will be uncovering the types of ways in which providers commit healthcare fraud

Introduction to the Dataset

- Total number of claims: 558,211
- Total number of providers : 5,410
- Different types of providers: Inpatients only, outpatients only, and both
- Inpatient Patients who had been formally admitted to hospitals
- Outpatient Patients who had not been formally admitted to hospitals

Exploratory Data Analysis

How does the number of doctors and patients affect the probability of encountering potentially fraudulent providers?

Number of Doctors and Patients Per Provider

How does the number of claims differ for different ages of patients?

Do patients with more chronic conditions have more claims than those with less chronic conditions?

Number of Chronic Conditions VS. Number of Claims

How are deductible amounts and insurance reimbursed amounts distributed for inpatient and outpatient?

Frequency Log of Deductible Amount Paid for Inpatient and Outpatient Legend Outpatient 12 Inpatient 10 FrequencyLog 2 -0 200 400 1000 600 800 0 DeductAmtPaid

Analysis of Types of Services

Evaluating the Relationship between Number of Claims and Claim Admit Diagnosis Codes

Distribution of Claims' Average Duration

Potentially Fraud VS. Duration of the Claims

Feature Engineering

Feature Engineering

- Datasets provided based on patients and claims
- Aggregated inpatient, outpatient, beneficiary, and fraud datasets
- Created new dataset based on providers
- Flow:

EDA ➡ Engineer ➡ Feature Selection ➡ EDA ➡ Engineer ➡ Model➡ Analysis

Features' Categories			
Days Admitted	Financial	Age	
Race	Type of Service	Claims	
States	Counties	Chronic Conditions	
Diagnosis Codes	Procedure Codes	Gender	
Number of Patients	Number of Doctors	Attending / Operating Physicians	

Assessing Fraudulent Providers Based on Deductible Amount Paid

Outpatient: Potentially Fraudulent Providers vs. Deductible Amount Paid

Assessing Fraudulent Providers Based on Insurance Claim Amount Reimbursed

Combining Features: Assessing Potentially Fraudulent Providers Based on Total Claim Amounts

Feature Importance/Selection Example

- Extra Trees Classifier
- Lasso Regression for Feature Importance
- Determined which features to retain and which to drop

Lasso

- total features: 55
- selected features: 42
- features with coefficients shrank to zero: 13

Analyzing Group Diagnosis Codes and Claim Admit Diagnosis Codes as Means of Detecting Fraudulent Providers

Assessing Validity of Features Using Logistic Regression

Features	Train Accuracy Score	Test Accuracy Score
 Number of Duplicated Beneficiary IDs Patients with 12 Chronic Conditions 	0.65	0.63
 Number of Duplicated Beneficiary IDs Patients with 12 Chronic Conditions Total Claim Amount 	0.76	0.76
 Number of Duplicated Beneficiary IDs Patients with 12 Chronic Conditions Total Claim Amount NumUniqGroupDiagCode 	0.85	0.85

Final Dataset Going into Machine Learning Models

- Inpatient, Outpatient,
 Beneficiary datasets = 79
 features
- Combined above datasets= 55 features
- Our engineered dataset with most features = 57 features
- Final engineered dataset =42 features

Machine Learning Models

Stochastic Gradient Descent Classifier

Best parameters:

Alpha = 0.01, penalty: 12

Cross validation score: 0.869

Performance score: 0.863

Best parameters:

C= 4300, degree= 3, kernel = poly

Cross validation score : 0.958

Performance score : 0.964

Random Forest Classifier

Best parameters:

Criterion = entrophy max_depth= 30 Min_samples_leaf = 4, min_samples_split =6 N_estimators = 70

Cross validation score = 0.974

Performance score = 0.978

Gradient Boosting Classifier

Best parameters:

Min_samples_split = 8 min_samples_leaf= 6 Learning rate = 0.56 n_estimators = 1500 Max_features = 5 max_depth = 25

Cross validation score = 0.979

Performance score = 0.982

Clustering Using K-Means: Unlabelled Dataset

Final Analysis

Unary classification vs Random Forest and Gradient Boosting:

Most Important Features

Why do the Gradient Boosting and Random Forest models choose 'Number of Group Diagnosis Codes' as the most important feature?

Diagnosis Related Group Code (DRG)

- Diagnosis Related Group Code (DRG): means of classifying patients under a particular group
 - Same group: patients likely to need similar level of hospital resources
- Each DRG has a payment weight assigned to it
 - Allows hospital to determine how much it can charge for its services

Where could a possible anomaly come from?

- Why do we care about the total number of unique group diagnosis code?

Upcoding

Unbundling

Recommendations

Market Basket Analysis

Conclusion

- Most Important Features for Detecting Fraudulent Providers:
 - Unique Group Diagnosis Codes
 - Unique Claim Admit Diagnosis Codes
 - Total Claim Amount
 - Service Type
- Future Work:
 - Hypertuning K-Means Model to Affirm Whether our Label Assumptions are Correct
 - Also use K-Means to identify new features
 - Further analyze fraudulent providers using Market Basket Analysis, and use correlations to create new features

Questions?