Formelsammlung EDS

I. Logiksynthese

1. Grundlagen der Logiksynthese

- Zweiwertige Boolesche Algebra

o Sc	haltalgebra	$(\{1, 0\}; \cdot; +;$)
------	-------------	------------------------	---

- o Aussagenalgebra $(\{w, f\}; \land; \lor; \neg)$
- Schaltfunktionen
 - o UND, ODER, NICHT, XOR, XNOR
- Boolesche Algebra

0	Kommutativgesetz	xy = yx
0	Assoziativgesetz	(xy)z = x(yz)

o Distributivgesetz
$$x(y+z) = xy + xz$$

o Idempotenzgesetz
$$xx = x$$

o Absorbtionsgesetz $x(x + y) = x$

o Neutrales Element
$$x \cdot 1 = x$$

o Dominantes Element $x \cdot 0 = 0$
o Negation $x \cdot \overline{x} = 0$

o Doppelte Negation
$$\overline{\overline{x}} = x$$

o De Morgan $\overline{x} \cdot y = \overline{x} + \overline{y}$

2. Binäre Boolesche Funktionen

- Darstellungsmöglichkeiten
 - o Wertetabelle
 - o Abbildungsvorschrift: z = f(x)
 - Gatterschaltung
 - Binärer Entscheidungsbaum (BDD)
 - o Pfeildiagramm der Abbildung $f: B^2 \longrightarrow B$; B = {1, 0}
 - \circ Einsmenge, onset(f), offset(f)

•
$$onset(x \cdot y) = \{11\}$$

•
$$onset(x + y) = \{01, 10, 11\}$$

•
$$offset(x + y) = \{00\}$$

o Kubengraphen

n = 3

111

101

010

000

Vorsätze für Maßeinheiten

Е	10 ¹⁵	Exa -
Т	10 ¹²	Terra -
G	10 ⁹	Giga -
M	10 ⁶	Mega -
k	10 ³	Kilo -
С	10-2	Centi -
mm	10 ⁻³	Milli -
μ	10-6	Micro -
n	10 ⁻⁹	Nano -
р	10-12	Pico -
f	10 ⁻¹⁵	Femto -
а	10-18	Atto -

$$x + y = y + x$$

 $(x + y) + z = x + (y + z)$
 $x + yz = (x + y)(x + z)$

$$x + x = x$$

$$x + xy = x$$

$$x + 0 = x$$

$$x + 1 = 1$$

011

001

- Boolescher Raum, Definitionen und Formale Schreibweisen
 - \hat{x}_i : Belegungs-n-Tupel, i wird als Dualzahl interpretiert ($\hat{x}_5 \triangleq 101$)
 - \circ m_i : Vollproduktterm, Minterm, 0-Kubus, enthält alle Literale, i wird wie oben
 - \circ c_i : d_i -Kubus, Produktterm (einer Literalteilmenge)
 - Dimension des Kubus = n Anzahl der Literale des Kubus (n = Dimension des Boolschen Raumes)
 - o x_i , \overline{x}_i : Literal
 - $\circ \quad \delta(c_i, c_j) = \delta_{ii} = \left| \{ l \mid l \in c_i \land \bar{l} \in c_j \} \right|$

Belegungsabstand zwischen zwei Kuben = Kardinalität der Menge von Literalen die im ersten Kubus positiv und im zweiten negativ enthalten sind

- Kubengraph: $\delta = 1$ => Kante
- MOC: Menge aller 0-Kuben in Bⁿ
- MC: Menge aller Kuben in Bⁿ
- n-stellige Boolsche Funktion

$$\circ \quad f(\underline{x}) = f(x_1, x_2, ..., x_n); \qquad f: B^n \longrightarrow B$$

$$\circ f = \{(\hat{\underline{x}}, \hat{y}) | f(\hat{\underline{x}}) = \hat{y} \}_{R^n \times R}; \quad f \subseteq R^n \times R$$

$$\circ \quad onset(f) = \{\hat{x} \in B^n | f(\hat{x}) = 1\}$$

- o Vereinbarung f = onset(f)
- KDNF = Canonical sum of products formula = CSOP

$$\quad \text{OSOP: } f = \sum_k m_k = \bigcup_k m_k \; ; \; m_k \subseteq f \; , \; m_k \in MOC$$

DNF = sum of products formula = SOP

$$\circ \quad \text{SOP: } f = \sum_{\mathbf{k}} c_{\mathbf{k}} = \bigcup_{\mathbf{k}} c_{\mathbf{k}} \; ; \; c_{\mathbf{k}} \subseteq f \; , \; c_{\mathbf{k}} \in MC$$

$$\qquad cov(f) = \{c_1, c_2, c_3, ..., c_k\} \text{ mit } \ f = \sum_{c_k \in \operatorname{cov}(f)} c_k \text{ (Überdeckung, H\"ulle von f)}$$

$$\mathsf{KKNF} = \mathsf{CPOS}$$

$$\circ \quad \mathsf{CPOS} \colon f = \prod_k \overline{m}_k = \bigcap_k \overline{m}_k \; ; \; m_k \subseteq \overline{f} \; , \; m_k \in MOC \; (\mathsf{NOT} \; \mathsf{aus} \; \mathsf{De} \; \mathsf{Morgan} \; !!!)$$

$$\circ \quad \text{POS: } f = \prod_k \overline{c}_k = \bigcap_k \overline{c}_k \; ; \; c_k \subseteq \overline{f} \; , \; c_k \in MC \text{ (NOT aus De Morgan !!!)}$$

- Implikanten von Funktionen
 - $MI = \{c \in MC \mid c \subseteq f\}$ Menge der Implikanten:
 - o Menge der Prim-Implikanten $MPI = \{ p \in MI \mid p \not\subset c, fiir alle c \in MI \};$ kann durch Literalentfernung überprüft werden
 - \circ $MPI \subseteq MI \subseteq MC$

3. Optimierungsverfahren für boolesche Funktionen

- Bestimmung der VollSOP (Quine / McKluskey)
 - o SOP durch erweitern in CSOP umwandeln
 - o Problem: Zahl der Minterme in der SOP kann sehr groß werden
 - Ermittlung der Prim-Implikanten durch:
 - Spezielles Resolutionsgesetz (R): $xa + \overline{x}a = a$
 - Absorbtionsgesetz (A): a + ab = a
 - VollSOP: Summe aller Prim-Implikanten einer Funktion

-	p_2				
2-Kubus	¹ X				
Я	_m ₄ ∪m ₅ ∪m ₆ ∪m ₇				
٧	p ₁	>	\geq	>	\geq
1-Kubus A	$\bar{X}_2 X_3$	$X_1 \bar{X_2}$	$X_1 \overline{X_3}$	x1x x1x	$X_1 X_2$
	2	n_5	m ₆		m ₆ ∪m ₇
ш	₂ m∪ ₁ m	m ₄ ∪m ₅	m₄∪m ₆	m _s (J° m
A	√ m₁∪m	√ m₄∪ı	√ m₄∪	\ 	_³m >
m, 0-Kubus A R	$\bar{x_1}\bar{x_2}x_3$ $\sqrt{m_1\cup m_2}$		_	_	$x_1x_2x_3$ $\sqrt{m_6}$

- o Prim-Überdeckung: $pcov(f) = \{p_1, p_2, ...\}$
- o MinSOP: Summe aller essentiellen Prim-Implikanten
- Bestimmung der MinSOP aus der VollSOP (Quine / McKluskey)
 - a) Überdeckungsbedingung (C = 1)
 - $\circ \quad C = (m_0 \subseteq p_1) \cdot (m_2 \subseteq p_1 + m_2 \subseteq p_2)...$
 - o Einführung einer Auswahlvariable τ_{ν} von p_{ν} mit τ_{ν} = 1 wenn p_{ν} gewählt
 - \circ $C = \tau_1(\tau_1 + \tau_2)...$
 - o vereinfachen (Absorption), Produkt als Ergebnis liefert Lösung
 - b) Überdeckungstabelle

	m_1	m_4	m ₅	m_6	m ₇
p_1	1		1		
p_2		1	1	1	1

- Bestimmung der VollSOP: Resolventenmethode
 - SOP kann direkt verwendet werden
 - Ermittlung der Prim-Implikanten durch:
 - Allgemeines Resolutionsgesetz: $xa + \overline{x}b = xa + \overline{x}b + ab$ $a,b \in MC$ und ab ist Resolvente
 - Absorptionsgesetz:

a + ab = a

f	Schicht
x y z+zw+xyŵ+xyîx	0
+yzw+xzw+xyw+yŵ+yzŵ+xzw	1
+zw+xw+xw+zw	2
+w	3

- o Schichtenalgorithmus:
 - Entwicklung der Schichten durch Resolventenbildung
 - Streichung von Kuben durch Absorption
 - Ergebnis, wenn Tautologie oder keine weitere Schichtenbildung mehr möglich ist
- Bestimmung der VollSOP aus POS
 - o Theorem: $f_1 \cdot f_2$ ist VollSOP wenn f_1 und f_2 jeweils VollSOP ist
- Operationen auf Boolsche Funktionen
 - o Kofaktor: teilweises Einsetzen von Variabeln: $f_{x_i}=f\Big|_{x_i=1}$ $f_{ar{x}_i}=f\Big|_{ar{x}_i=0}$
 - o Kommutativgesetz: $f(0,1,\,x_3) = f_{\bar{x}_1x_2} = (f_{\bar{x}_1})_{x_2} = (f_{x_2})_{\bar{x}_1}$
 - o Substitutionsregel: $c \cdot f = c \cdot f$
 - Entwicklungssatz (Shannon Dekomposition):

$$f(x_1,...,x_i,...,x_n) = x_i f_{x_i} + \overline{x}_i f_{\overline{x}_i} = \beta(x_i, f_{x_i}, f_{\overline{x}_i})$$

- o Tautologie: $f(\underline{x}) = 1 \Leftrightarrow f_{x_i} = 1$ und $f_{\overline{x}_i} = 1$
- o Monotonie:
 - $\qquad \text{monoton fallend:} \qquad f_{x_i} \subseteq f_{\overline{x}_i} \qquad f = \overline{x} \cdot g + h$

 - vereinfachter Tautologienachweis, es muss nur noch h auf Tautologie überprüft werden
- Heuristische Optimierung (Lokale Suche)
 - o Suche nach einem minimalen cov(f) (= MinSOP) aus der Menge aller cov(f): $mincov(f) = min\{...cov_i(f)...\}$
 - o Menge aller zulässigen cover: $H = \{cov_1(f),...,cov_i(f),...,cov_N(f)\}$
 - o Nummernmenge: $H = \{1, ..., i, ..., N\}$; $N < \infty$
 - o Kosten der Konfiguration (= des covers i), Literalanzahl: $\varphi(i)$
 - Konfigurationsgraph:
 - Knoten: cover, Konfiguration
 - Kante: Modifikation, Literalentfernung, Literalzahlerhöhung, Kubenentfernung
 - Kantenrichtung: Abnahme der Kosten, Abnahme der Literale
 - ▶ Konfigurationsgraph: G = (H, R), H = Kontenmenge, R = Kantenmenge $R \subset H \times H$
 - Knoten mit ausschließlich Pfeilspitzen ist lokales Minimum

- o Modifikationen (f = c + h, $c \in cov(f)$, cov(h) = [cov(f)]/c):
 - Expand (Literalentfernung): wenn $c_l \subseteq f$ oder $c_l \cdot \bar{l} \subseteq h$
 - Reduce (Literalzahlerhöhung): wenn $c \cdot \bar{l} \subseteq h$
 - Remove (Kubenentfernung): wenn $c \subseteq h$
- o Inklusionsprüfung durch Tautologienachweis:
 - $c \subseteq f \Leftrightarrow f_c = 1$
 - $c_1 + c_2 \subseteq f \Leftrightarrow f_{c_1} = 1 \land f_{c_2} = 1$
 - Kofaktorisierung einer Funkion führt zu einfacheren Kofaktoren
 - Allgemeines Standartproblem (-> Schichtenalgorithmus + OBB)
 - Effizientes Verfahren: Resolventenmethode mit Tiefensuche
- OBDD (= Ordered Binary Decision Diagramm)
 - o Anwendung der Shannon-Entwicklung

$$f(x_1,...,x_i,...,x_n) = x_i f_{x_i} + \overline{x}_i f_{\overline{x}_i} = \beta(x_i, f_{x_i}, f_{\overline{x}_i})$$

- o kein Zusammenfassen gleicher Zustände oder weglassen von Zuständen
- ROBDD = (Reduced OBDD): OBDD so weit wie möglich vereinfachen

4. Schaltungen mit mehren Ausgängen und mehr als 2 Ebenen

- Synthese von Schaltungen mit mehreren Ausgängen
 - o Bestimmung der Mehrfach-Implikanten: $f_1 \cdot f_2$
 - o Funktionen von SOP auf MinSOP expandieren (Expand)
 - Funktionen von durch Addition der Mehrfach-Implikanten reduzieren (Reduce)
 - o Funktionen durch Kubenentfernung minimieren (Remove)
 - > Irredundant Cover
- Synthese von Schaltungen mit Don't Cares
 - Hinzufügen der Don't Care Sets
 - Vereinfachung
 - o Don't Care Sets können wieder weggelassen werden
- Synthese von Schaltungen mit mehr als zwei Ebenen
 - o optimierte zweistufige Form geschickt faktorisieren -> geschicktes Ausklammern
 - algebraische Umformungen -> ungünstige Lösungen
 - o boolesche Verfahren -> sehr aufwändig
- Funktionale Dekomposition
 - Ziel: Zerlegung eines Moduls f in Module g und h
 - o Bedingung Dekompositionsgewinn: $|z| \le |x| 1$
 - o Ermittlung einer günstigen Aufteilung mittels BDDs
 - o Schritt 1:
 - Auswerten von $f(\hat{\underline{x}}_i, \underline{y})$ -> Dekompositionsmatrix
 - Zusammenfassen der $\hat{\underline{x}}_i$ zu Äquivalenzklassen
 - o Schritt 2:
 - Codierung der Äquivalenzklassen durch z = h(x)
 - Aufstellen einer Zuordnungstabelle
 - Ermittlung der Dekompositionsfunktion h(x)
 - o Schritt 3:
 - Konstruktion einer Kompositionsfunktion $w = g(\underline{z}, y)$
 - Residuation contribution for the state of t
 - Produktterme mit Don't Care Werte dürfen beliebig hinzuaddiert werden

gebundene freie Variable Variable

	$(\hat{x}_1, \hat{x}_2, \hat{x}_3)_i$							
(\hat{y}_1, \hat{y}_2)	000	010	100	001	111	011	101	110
00	1	1	1	1	1	1	1	1
01	1	1	1	0	0	0	0	0
10	0	0	0	1	1	1	1	1
11	0	0	0	1	1	0	0	0
$f(\hat{\underline{x}}_i, \underline{y})$	\overline{y}_1 $y_1 + \overline{y}_2$ \overline{y}_2							
	Dekompositions-Matrix für $f(\underline{x}, y)$							

$\hat{\underline{x}}_i \in X$	$\hat{\underline{z}}_k \in Z$ $(\hat{z}_1, \hat{z}_2)_k$	$\underline{z} = \underline{h}(\underline{x})$	$g(\hat{\underline{z}}_k, \underline{y})$	
000,010,100	00	$z_1 \cdot z_2 = m_0 + m_2 + m_4$	y_1	
001,111	10	$z_1 \cdot \overline{z}_2 = m_1 + m_7$	$y_1 + \overline{y}_2$	
011,101,110	. 11	$z_1 \cdot z_2 = m_3 + m_5 + m_6$	\overline{y}_2	
	01	$\bar{z}_1 \cdot z_2 = 1$ nicht möglich		
Zuordnungs-Tabelle				

 $z_1 = z_1 \cdot \overline{z}_2 + z_1 \cdot z_2 = m_1 + m_7 + m_3 + m_5 + m_6$

Kombinatorische Schaltung $\lambda(\underline{s},\underline{x}) = \underline{y}$

 $\delta(\underline{s},\underline{x}) = \underline{s}$

5. Endliche Automaten - Finite State Machines (FSM)

Zustandsmenge S:

1: Eingabealphabet

O: Ausgabealphabet

 δ : Zustandsübergangsfunktion

Ausgangsfunktion

 $S \times I \rightarrow S$

 $S \times I \rightarrow O$ (Mealy); $S \rightarrow O$ (Moore)

 X_i : Eingabezeichen Y_i : Ausgabezeichen

 S_i : Zustand

 S_k : Folgezustand

δ	 X_j	
:	÷	
S_i	 S_k	
:	:	

λ	 X_j	
:	÷	
S_{j}	 Y_l	
:	:	

- Zustands-Ausgangs-Funktion: $\mu: S \times I \rightarrow S \times O$
- ZA-Tabelle / Zustandsgraph / Codierte Kuben-Tabelle

μ	 X_j	
:	÷	
S_i	 (S_k,Y_l)	
:	:	

x	$s_1 s_2$	z ₁ z ₂	у
0	0 0	0 0	0
1	0 0	0 1	1
0	0 1	0 0	0
1	0 1	1.0	0
0	10	1 0	0
1	10	0.0	1
0	1 1	(1)* *(0)	
1	11	(1)**(0)	*(0)

- Realisierung der FSM durch Zustandskodierung
- Zustandsminimierung
 - Streichung aller nichterreichbaren Zustände
 - Zusammenfassen äquivalenter Zustände:
 - Zwei Zustände S_i und S_i sind genau dann äquivalent, wenn sie für jede Folge von Eingabezeichen die gleiche Folge von Ausgabezeichen lieferen.
 - Ziel: Partitionierung der ZA-Tabelle bis Zustände nicht mehr unterscheidbar
 - Sind mehrere Zustände untereinander nicht mehr unterscheidbar, so sind sie äquivalent zueinander

•
$$S_i \sim S_j \iff S_i \sim S_j \wedge S_i \sim S_j \wedge S_i \sim S_j \wedge \dots$$

$$\qquad S_i \overset{1}{\sim} S_j \Leftrightarrow \left[\lambda(S_i, 0) = \lambda(S_j, 0)\right] \wedge \left[\lambda(S_i, 1) = \lambda(S_j, 1)\right] \ \, \text{(1-äquivalent)}$$

$$S_i \stackrel{2}{\sim} S_j \Leftrightarrow S_i \stackrel{1}{\sim} S_j \wedge \left[\delta(S_i, 0) \stackrel{1}{\sim} \delta(S_j, 0) \right] \wedge \left[\delta(S_i, 1) \stackrel{1}{\sim} \delta(S_j, 1) \right]$$

71 IL)				
	μ	x = 0	x = 1	
	S_1	$(S_4, 0)$	$(S_2,1)$	
	S4			,
	S_3	$(S_3,0)$	$(S_1,1)$	1
SW.	S_2	$(S_4,0)$	$(S_3,0)$	1
		ZA-Tab	elle	

	3	2	_ 2	1	$\lceil \qquad 2 \qquad \rceil$	
•	$S_i \sim S_j \Leftarrow$	$\Rightarrow S_i \sim S_j \land$	$\delta(S_i,0) \stackrel{2}{\sim} \delta(S_j,0)$	^	$\delta(S_i,1) \sim \delta(S_j,1)$	usw.
		-	_	_	L J	

z.B. sind bei dieser Tabelle S₁ und S₄ 3-äquivalent und damit nicht weiter unterscheidbar -> S₁ und S₄ sind zueinander äquivalent

II. Logiksimulation

- Schaltungsmodellierung
 - einfügen von Gatterlaufzeiten und Leitungslaufzeiten in die Schaltung
 - Hazard = Signal das der reinen Logik widerspricht und durch Verzögerungszeiten entsteht

OR	0	1	X
0	0	1	X
1	1	1	1
X	X	1	X

- Simulation
 - Schritt 1: Auswertung der reinen Logikschaltung
 - Schritt 2: Auswertung des Zeitverlaufs ohne Logik
 - -> ablesen der maximalen Einschwingunsicherheit möglich

AND	0 1 X	NOT	
0	0 0 0	0	1
1	0 1 X	1	0
X	0 X X	X	X

0 0 0 X 1 1 1

0 X 1 1 1 1 1 1 X 0 0 0 0

1 1 1 1 X X 0 0 0 0 0 X X

- Simulation mit Flankenunsicherheit
 - o Einführung eines neuen Signalwerts X
 - Wertetabellen mit den neuen Signalwert X
 - o Graphik: Verzögerung des Gatters = 2Δ , X = Δ
- Simulation mit Laufzeitunsicherheit
 - worst-case Analyse, Auffüllung mit X
 - o Graphik: Gatter: $3\Delta 4\Delta$
- Simulation mit einer Ereignisstabelle:
- VHDL
 - o transport delay: unendliche Bandbreite
 - o inertial delay: reale Gatter

III. Testverfahren

1. Fehlerdiagnose

- Arten von Fehlern:
 - dynamisch (wird nicht weiter behandelt)
 - o statisch (stuck at 1 / stuck at 0)
- Probleme der Fehlererkennung
 - o Beobachtbarkeit
 - o Einstellbarkeit

								ausgewertete	neue Ereignisse
t	A	В	Sel	Sel_n	S_1	S_2	Q	Elemente	(signal, val, t _{gen} , t _{exe})
0	'0'	'0'	'1'	'0'	'1'	'1'	'0'	Initialzustand	(A, '1', 0, 20);
								(Stimuli)	(B, '1', 0, 10);
									(Sel, '0', 0, 30)
10		'1'						Nand_b	(S ₂ , '0', 10, 12)
12						'0'		Nand_c	(Q, '1', 12, 14)
14							'1'	-	
20	'1'							Nand_a	_
30			'0'					Inv, Nand_b	(Sel _n , '1', 30, 32);

Nand_a, Nand_c

 $(x_1=0)$

0

0

0

 $v(x_2=1)$

1

1 0

 $y(x_1=1)$

0

1

1

(S₁, '0', 32, 34)

(Q, '0', 32, 34)

 $y(x_2=0)$

0

0

Eingangs-

 $t_v \mid x_2 x_1$

t₀ 0 0

1 1

t₁ 0 1 0

t₂ 1 0

Testpunkt

0

2. Fehlerüberdeckungstabelle

2.1 Fehlersimulation

- Eingangsbelegung
 - o Test t_{ν} entspricht Testmuster ... x_2x_1
- Testpunkt y (Wert der Logik bei fehlerfreier Funktion)
- Werte der Logik bezogen auf die (Einfach-)Fehler f_{μ} :

$$y_{\mu} = y(x = 1/0)$$
 Wert der Logik für x stuck at 1/0

- Fehlererkennung
 - \circ $y \oplus y_{\mu} = 1$ Fehler muss am Ausgang einen andern Wert als y erzeugen

34 36

- o x muss zur Beobachtbarkeit den negierten Fehlerwert besitzen
- Fehlerunterscheidung

$$y_{\mu} \oplus y_{\kappa} = 1$$
 Testmuster muss unterschiedliche Werte erzeugen

2.2 Fehlerüberdeckungstabelle

- ist ein Fehler durch ein Testmuster beobachtbar, so erhält die Tabelle den Eintrag 1
- Begriffe
 - o Menge aller Eingangsbelegungen (Tests): $T = \{t_{\nu} \mid \nu \in N\}$
 - N = Testnummernmenge
 - $|T| = |N| = 2^n$; n = Anzahl der Eingangsvariablen
 - o Menge aller angenommenen Fehler: $F = \{f_{\mu} \mid \mu \in M\}$
 - M = Fehlernummernmenge
 - m = |M| = |F|; m = Anzahl der zu testenden Fehler

	f_1	f_2	f ₃	f ₄	f ₅
t_0					1
t ₁		1			1
t ₂	1				1
t ₄				1	1
t ₄		1		1	1
t ₆	1			1	1

- Definitionen
 - o Test-Fehler-Relation R
 - $\blacksquare R = \{(t, f) \in T \times F \mid t_{v}Rf_{u}\}$
 - Menge aller Paare $(t_v, f_\mu) \in T \times F$ in welchen der Test t_v den Fehler f_μ beobachtbar macht
 - $t_{\nu}Rf_{\mu} \in \{1,0\}$; Der Test t_{ν} steht in Relation zu den Fehler f_{μ}
 - o Fehlererkennung: $t_{\nu}Rf_{\mu} = y(\underline{x}_{\nu}) \oplus y_{\mu}(\underline{x}_{\nu})$
 - o Fehlergruppe:
 - $\bullet \quad F_{v} = \{ f_{u} \in F \mid t_{v}Rf_{u} \}$
 - Menge aller Fehler, die durch den Test t_{ν} beobachtbar werden
 - Testgruppe:
 - $T_{\mu} = \{t \, v \in T \mid t_{\nu} R f_{\mu}\}$
 - Menge aller Tests, die den Fehler f_μ beobachtbar machen
 - o Menge nicht unterscheidbarer Fehler
 - ullet F_{U}
 - alle Fehler die eine identische Testgruppe enthalten
 - Mindesttestmenge zur Fehlererkennung
 - $C_{M,N} = \bigwedge_{u \in M} \bigvee_{v \in N} (t_v \in T) \cdot \tau_v = 1$
 - Schnitt aller Vereinigungen von Testwahlvariablen $au_{\scriptscriptstyle \nu}$ für den jeweiligen Fehler $f_{\scriptscriptstyle \mu}$
 - ullet kürzeste Terme (Vereinigungen) markieren Mindestmenge $T_{c\,\mathrm{min}}$
 - Heuristische Minimierung mit Hilfe der Fehlerüberdeckungstabelle
 - suche fortwährend die mächtigste Fehlermenge und füge deren Test zur Testmenge hinzu
 - streiche alle abgedeckten Fehler

3. Testbestimmung in Schaltnetzen

3.1 Die Boolesche Differenz

- Eingangsbelegung: \underline{x} Testvariable: z Testpunkt: $y(z(\underline{x}),\underline{x})$
- Entwicklungssatz: $y = y_z \cdot z \oplus y(z = 0)$
- Boolesche Differenz: $y_z = y(z,\underline{x}) \oplus y(\overline{z},\underline{x})$ $y_z = y(z=1) \oplus y(z=0)$
- Berechnung der Testbelegung:
 - o z stuck at 0

o z stuck at 1

•
$$\underline{x}R \ z/1 = \overline{z} \cdot y_z = 1$$

- \circ <u>x</u> muss so jeweils so gewählt werden, dass obige Gleichung erfüllt ist
- Überprüfung der Einstellbarkeit (Fehlerbelegung)
 - es muss gelten $z(\underline{x}) = 1$ für z/0
 - es muss gelten z(x) = 0 für z/1
- o Überprüfung der Beobachtbarkeit (Sensibilisierungsbelegung)
 - es muss gelten $y_{z}(\underline{x}) = 1$

- Umrechung von Logikterme in das AND-EXOR-System (OR bzw. NOT stören)
 - $\circ \quad \overline{xy} = xy \oplus 1$
 - $\circ \quad \overline{x+y} = \overline{x} \cdot \overline{y} = (x \oplus 1)(y \oplus 1) = xy \oplus x \oplus y \oplus 1$
 - $\circ \quad x + y = x \oplus y \oplus xy$
 - $o \quad \overline{x} = x \oplus 1$
- Rechenregeln mit Booleschen Differenzen
 - 1.) $y_x = 0$ falls $y \neq f(x)$
- 5.) $(z \cdot w)_x = zw_x \oplus z_x w \oplus z_x w_x$

2.) $y_{y} = 1$

6.) $(z+w)_x = \overline{z}w_x \oplus z_x \overline{w} \oplus z_x w_x$

3.) $(\overline{y})_x = y_x$

7.) $y_x = y_z z_x \text{ falls } y = y(z(x))$

4.) $(z \oplus w)_r = z_r \oplus w_r$

8.) $(y_z)_w = (y_w)_z$

3.2 Strukturbezogene Berechnung der Booleschen Differenz

- lokale Sensibilität: $y_z = (\overline{z} \circ w) \oplus (z \circ w)$ bzw. $y_w = (z \circ \overline{w}) \oplus (z \circ w)$
- globale Sensibilität: $y_x = \underbrace{y_z z_x \overline{w}_x}_{1. \text{Einfachfehlerpfad}} + \underbrace{y_w w_x \overline{z}_x}_{2. \text{Einfachfehlerpfad}} + \underbrace{z_x w_x}_{\text{Mehrfachfehlerpfad}} \cdot \underbrace{\left[\overline{z} \circ \overline{w} \oplus z \circ w\right]}_{\text{Selbstmaskierung} \rightarrow = 0}$
- Schaltnetze mit Rekonvergenzmaschen
 - o es kann zur Selbstmaskierung kommen
 - o Zwischenvariablen daher nicht immer automatisch mitgetestet
- $x \circ y y(z(x), w(x))$ $= z \circ w$ x : Verzweigungspunkt y: Vereinigungspunkt

- Schaltnetze mit Baumstruktur
 - o keine Mehrfachpfadsensibilisierung und keine Selbstmaskierung möglich
 - o Berechnung der globalen Sensibilität mithilfe der Kettenregel
 - Kettenregel: $y_x = y_z z_x$
 - o durch testen aller Eingangsvariablen werden alle Zwischenvariablen mitgetestet

3.3 Fehlersimulation

- Aufgabenstellung: Testmuster gegen, getestete Fehler gesucht
- Gutsimulation: Berechne alle Signale für fehlerfreies Schaltnetz
- Beobachtbarkeitsanalyse:
 - o Simulation der Fehler an den Fanout-Stämmen (Selbstmaskierung...!)
 - o Entfernung der Fanout-Stämme
 - Fehlerbaumkonstruktion
 - Aufbau von Ausgang zum Eingang
 - ist abhängig von der Signalbelegung der Gutsimulation
 - markiere Pfadsensibilisierung und sensiblen Pfad
- Menge der beobachtbaren Signale: $S^O = \{a, b, c, ...\}$; alle Signale der sensiblen Pfade
- Menge der getesteten Fehler: $F_t = \{a/0, b/1, ...\}$; soweit einstellbar bzgl. S^o

3.4 Der D-Algorithmus

- 5-Wertige Logik:
 - o X: undefiniert, unbekannt, nicht relevant
 - o D: 1 im fehlerfreien Fall, 0 im fehlerhaften Fall
- Fehlerpfad $V_D = \{x, a, b, ..., y\}$
- Ablauf:
 - o Initialisiere alle Signale mit X
 - o Fehlerbelegung (F)
 - Sensibilisierung (S)
 - o Implikationen (Vorwärts und Rückwärts)(I)
 - Optionale Wahl (O)
 - o Backtracking: Suche nach Widersprüchen

- Beschleunigungstechniken
 - o Globale Implikation
 - Voraussetzung: keine Fehlereffektauswirkungen in benachbarter Teilschaltung
 - Kontrapositionsgesetz:
 - $(P \Rightarrow Q) \ gdw (\neg Q \Rightarrow \neg P)$
 - $(a=0) \Rightarrow (f=0)$ gdw $(f=1) \Rightarrow (a=1)$
 - Lernkriterium:
 - Globale Implikation ist nur lernenswert wenn nicht durch lokale Implikation ausführbar und wenn gilt: $y_{xx} \cdot y_{z} = 1$

- Auswahlbewertung für optionale Wertzuweisungen
 - C_0 = Nulleinstellbarkeit (Wahrscheinlichkeit)
 - C_1 = Einseinstellbarkeit (Wahrscheinlichkeit)
 - AND (IN: a, b -> OUT: c): OR (IN: a, b -> OUT: c):

$$C_1(c) = C_1(a) \cdot C_1(b)$$
 $C_0(c) = C_0(a) \cdot C_0(b)$
 $C_0(c) = 1 - C_1(c)$ $C_1(c) = 1 - C_0(c)$

es wird bei optionaler Wahl immer das Einstellmaß mit dem höchsten Wert ausgewählt

3.5 Testmustergenerierung bei sequentiellen Schaltungen

- Bestimmung der Zusammenhänge der sequentiellen Schaltung
 - Zustandsvariablen mit Zeit als Superskript kennzeichnen
 - Zeitdifferenz von einer Zeiteinheit vom Eingang zum Ausgang eines FFs
 - Bestimmung der Ausgangsvariable y der Schaltung in Abhängigkeit der Eingangsvariablen (möglichst keine Zwischensignale s oder z!)
- Bestimmung der Testbelegung ohne Boolesche Differenz
 - Bestimmung von y_u durch Einsetzen des Fehlers in y
 - Bestimmung der Testbelegung durch $y \oplus y_{\mu} = 1$
 - Ziel: SOP
- Bestimmung der Testbelegung mit Boolescher Differenz
 - Bestimmung der Booleschen Differenz (Sensibilisierung des Fehlers)
 - Bestimmung der Testbelegung wie üblich 0
 - Ziel: SOP
- Bestimmung der Testbelegung mittels D-Algorithmus
 - Achtung: Implikationen auch über Zeiteinheiten hinweg möglich; d.h. es sind auch Implikationen in die Zukunft oder Vergangenheit möglich
- Schreibweisen

$$\circ \quad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 1 & X & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 Eingangsfolge

- $\begin{array}{ccc} & & & & & & \\ \circ & Y & & \text{Ausgangsfolge ohne Fehler (aus Schaltung ermittelbar!)} \\ \circ & Y_{\mu} & & \text{Ausgangsfolge mit Fehler} \end{array}$

Formelsammlung DS

1. Moore'sches Gesetz

- alle 18 24 Monate verdoppelt sich die Anzahl der Transistoren auf gleicher Fläche
- Positive Seiten: Exponentielles Wachstum der Transistorzahl, exponentieller Rückgang des Preises pro Transistor
- Herausforderungen:
 - Herstellungskosten (Fixkosten, Variable Kosten, Technologiefaktor)
 - Entwicklerproduktivität (Problem des productivity gap)
 - Verlustleistungsdichte

$$n = \frac{d_{\textit{Wafer}} \cdot \pi}{\sqrt{A_{\textit{Dies}}}}$$

$$Ausbeute\left(\textit{yield}\right) = \left(1 + \frac{D_f \cdot A_{\textit{Die}}}{\alpha}\right)^{-\alpha}$$

$$D = \text{Fehlerdichte, } \alpha = \text{Technologiefaktor}$$

Unvollständige Dies (Abschätzung)

)

2. Zahlensysteme und Signaldarstellung

- Polyadische Zahlensysteme:

p = Anzahl der Ziffern rechts vom Basispunkt

n = Anzahl der Ziffern links vom Basispunkt

r = Basis, Radix

d_i = Ziffer der i-ten Stelle

$$Z = \sum_{i=-n}^{p-1} r^i \cdot d_i$$

- Bekannte Zahlensysteme: Binär (Radix = 2), Oktal (Radix = 8), Hexadezimal (Radix = 16)
- Zahlenkonvertierung (Dezimal -> Radix n):
 - o Systematisch (i > 0): Dezimalzahl durch Radix teilen, Rest ergibt Ziffer (LSB oben)
 - Systematisch (i < 0): Dezimalzahl mit Radix multiplizieren, Ergebnis Radix = Ziffer (MSB oben)
- Zahlenkonvertierung (Radix n -> Dezimal): obige Formel verwenden
- Binäre Addition: wie bei Dezimalzahlen
- Negative Zahlen mit Vorzeichenbetrag: -> Aufwendige Logik
- Darstellung Negativer Zahlen mittels **Zweier-Komplement**:
 - o Komplementbildung: alle Stellen invertieren
 - Addition von 1
 - MSB = Vorzeichenbit

$$K(Z) = r^n - Z = (r^n - 1) - Z + 1$$

- Zweier-Komplement -> Zahl in Betrag
 - o Komplementbildung
 - Addition von 1
- Binäre Subtraktion: wie Addition, nur gültigen Stellenbereich auswerten
- Binäre Multiplikation (Addition- und Shiftoperation):
 - Systematik wie bei Dezimalzahlen
 - Multiplikation von links nach rechts -> partielle Produkte von links nach rechts verschieben
 - Multiplikation von rechts nach links -> partielle Produkte von rechts nach links verschieben
- Binäre Division (Subtraktion- und Shiftoperation)
 - Systematik wie bei Dezimalzahlen
 - gehe n Stellen nach links bis zahl abziehbar ist, rechne mit Rest weiter

- Gleitkommadarstellung(GKD) für Binärsystem (IEEE 754):
 - o Darstellung einer Gleitkommazahl (GKZ): v e m
 - Vorzeichen v (0 = positiv; 1 = negativ)
 - o Exponent e (mit Bias addiert zum Vermeiden von negativen Zahlen; 8-bit)
 - Matisse m (enthält Wert zwischen 1 und 2 -> m = Nachkommazahl mit 23-bit)
 - o Formel zur Berechnung einer Dezimalzahl aus der GKD:

$$Z = (-1)^{v} \cdot m \cdot 2^{e}$$

- ➤ e muss durch Subtraktion der Bias = 127 ermittelt werden
- > m enthält nur die Nachkommazahl; 1. muss vorgestellt werden
- Formeln zur Berechnung einer GKZ einer Dezimalzahl:

$$m = \left(\frac{|Z|}{2^e} - 1\right) \cdot 2^{23} \qquad e = \lfloor \log_2(|Z|) \rfloor$$

- bei der Bestimmung von e muss zu e ein Bias von 127 hinzuaddiert werden (Definition! Kein Zweierkomplement)
- > bei der Bestimmung von m kann m direkt zur Binärzahl umgerechnet werden
- o Besonderheiten: $e = 0 \rightarrow Z = 0$; $e = 0xFF \rightarrow Z = unendlich$
- o Nachteile: Rundungsfehler (treten vor allem bei Subtraktion fast gleicher Zahlen auf)
- Analog Digital Wandler (ADC):
 - Analog: wertkontinuierlich + zeitkontinuierlich
 - o Digital: wertdiskret und zeitdiskret
 - o Filtern = Begrenzung des Frequenzbereichs nach oben (f < f_{max})
 - o Abtasten ($f_{Sample} \ge 2 \cdot f_{signal, max}$)
 - o Quantisierung der analogen Signalamplitude (wertkontinuierlich -> wertdiskret)
 - o Quantisierung: $B = f(V_{in}/V_{Ref})$; $V_{in} \leq V_{Ref}$
 - o Quantisierungsschritt: $\Delta = 2^{-N} \cdot V_{\text{Ref}}$
 - o Quantisierungsfehler: $\pm 0.5\Delta$
- Digital Analog Wandler (DAC):
 - Wie oben nur in umgekehrter Reihenfolge

3. Kombinatorische Logik

- Boolsche Algebra: Boolsche Rechenregeln
- Logische Operationen auf Bitvektoren werden Bitweise durchgeführt
- Disjunktive Normalform: ODER auf oberer Ebene; UND und NOT auf unterer Ebene
- Konjunktive Normalform: UND auf oberer Ebene; ODER und NOT auf unterer Ebene
- Karnaugh Tabelle:
 - Kopfzeile und Kopfspalte immer aufteilen, sodass der Belegungsabstand eins beträgt
 - o Produkttermminimierung durch Zusammenfassung benachbarter Felder
- Optimierung von Schaltungen durch reuse von Schaltnetzen
- Logik Zeitverhalten: Verzögerungen = propagation delay (50%in -> 50%out)
- Volladdierer: IN: A, B, C_{in} -> OUT: S, C_{out}
- Ripple-Carry-Adder: Serielle Verschaltung von Volladdierern
- Multiplexer (MUX): IN: A, B, S -> OUT: Z
- Bitwort-Schiebeoperator: Verschaltung von Multiplexern
 - erste Spalte: Verschiebung um eins wenn S = 1
 - o zweite Spalte: Verschiebung um zwei wenn S = 1 usw.
- Vergleichsoperatoren:
 - o Vergleich auf ≥ und > mit Hilfe eines Subtrahierers
 - Vergleich auf Gleichheit mittels EOR und OR

$$S = P \oplus C_{in}$$

$$C_{out} = G + P \cdot C_{in}$$

R

D

 $\overline{\mathsf{D}}$

S

4. Sequentielle Logik

- Basisspeicherzelle: Ring aus Invertern
- Set-Reset-Latch: IN: S, R -> OUT: Q, Q'
 - Set durch S = 1
 - o Reset durch R = 1
 - o S = 1 und R = 1 sind nicht erlaubt
- Enable-Latch: IN: e, D -> OUT: Q, Q'
 - Enable durch E = 1 (Pegel der an D anliegt wird gespeichert)
 - o Besteht aus einem RS-Latch mit zusätzlicher Eingangslogik (2 NAND Gatter)

1

е

0

D

- Latches sind Pegelgesteuert (level-controlled) und NICHT Flankengesteuert
- Flip-Flop (FF): IN: c, D -> OUT: Q, Q'
 - taktflankengesteuert: low-high-Flanke an c führt zur Speicherung des an D anliegenden Pegels
 - Verschaltung von zwei Enable-Latch (Master-Slave-Schaltung)
 - Master speichert D im Low-Pegel von c
 - o Slave speichert Ausgangspegel vom Master in der High-Phase von c

- Register: Zusammenfassung mehrer FFs
- Flip-Flop-Timing:
 - o t_{setup} : Zeitintervall vor der Flanke, in welchem D konstant anliegen muss
 - \circ t_{hold} : Zeitintervall nach der Flanke, in welchen D konstant anliegen muss
 - o t_{c2a} : Latenzzeit des FFs, Verzögerung zwischen Ein- und Ausgang
- Sequentielles Schaltwerk
 - Schaltwerk mit Gedächtnis: O = S(I,t)
 - o Die Ausgabe hängt von der Eingabe zu diskreten Zeiten ab
- Endliche Automaten (FSM):
 - Moore-Automat
 - Mealy-Automat (In der Praxis zu vermeiden!)
- Moore-Automat:
 - o s' = f(s,i); o = g(s); i = Input; o = Output; s' = Folgezustand;
 - o $f: S \times I \rightarrow S$; Übergangsrelation, wird mit kombinatorischen Schaltnetzen realisiert
 - $g: S \to O$; Ausgangsrelation, wird mit kombinatorischen Schaltnetzen realisiert
 - s wird in einen Register gespeichert
 - Vorteil: kurze kombinatorische Pfade (kein Pfad Eingang -> Ausgang)
 - Nachteil: hohe Anzahl von Zuständen
- Mealy-Automat:
 - o s' = f(s,i); o = g(s,i);
 - o $g: S \times I \rightarrow O$; Ausgangsrelation
 - o Vorteile: übersichtlich, wenige Zustände
 - o Nachteil: lange kombinatorische Pfade
- Separation von Kontroll- und Datenpfad:
 - o Datenpfad: Transformation der Daten
 - o Kontrollpfad: Steuerung der Einheiten im Datenpfad (meist mit FSM)
- Timinganalyse sequentieller Schaltungen
 - o Kritische Pfade: längster und kürzester Pfad

$$t_{clk} \ge t_{c2q} + t_{setup} + \sum_{längsterPfad} t_{gate}$$

- Fließbandverarbeitung Pipelining:
 - o Einteilung der Logik in mehrere gleich große Teillogiken
 - \circ Längster Pfad in einer Teilfunktion bestimmt t_{clk}
 - > Taktfrequenz kann erhöht werden
 - Latenzzeit kann zunehmen!

- Parallele Verarbeitung:
 - kombinatorische Logik in mehrfacher Ausführung
 - Kontrolllogik zum Verteilen der Signale (DEMUX -> MUX)
- RISC (= reduced instruction set computer)
 - Prozessorbestandteile:
 - Rechenwerk (ALU)
 - Registerbank (Register File)
 - L1 Cache
 - Steuerwerk
 - Bussystem:
 - I/O
 - L2 Cache
 - RAM
 - o einfaches Instructionset
 - ALU-Operationen nur auf Register anwendbar
 - separate Instruktionen f
 ür Speicherzugriff
 - Instruktionsphasen:
 - IF (= instruction fetch)ID (= instruction decode)
 - OF (= operand fetch)
 - EX (= execute)
 - WB (= write back)
 - die Instruktionsphasen werden durch pipelining in der Ausführung beschleunigt
 - > CPI ist nahezu gleich eins (CPI = clocks per instruction)
 - MIPS = million instuctions per second
 - stall = Lehrlauf der pipeline durch warten auf ein Ergebnis der vorhergehenden Operation

5. MOSFET Transistor

- undotierter Halbleiter
 - o Ladungsträger: e und "Löcher" (entstehen durch thermische Generation)
 - o Leitfähigkeit nimmt mit zunehmender Temperatur zu
 - o z.B. Si (4-wertig)
- n-dotierter Halbleiter
 - Ladungsträger: e⁻, hohe Leitfähigkeit
 - o nach außen hin neutral geladen
 - Dotierung mit Atomen der Wertigkeit 5
- p-dotierter Halbleiter
 - o Ladungsträger: "Löcher", mittlere Leitfähigkeit
 - o nach außen hin neutral geladen
 - o Dotierung mit Atomen der Wertigkeit 3
- pn-Übergang
 - hohe p-Dotierung, geringere n-Dotierung (-> Raumladungszone weiter im n-Bereich)
 - o e und "Löcher" diffundieren über pn-Grenze
 - Raumladungszone mit Elektrischen Feld
 - verhindert weiteres diffundieren
 - Betrieb in Sperrrichtung -> Raumladungszone vergrößert sich (- an p-Dot, + an n-Dot)
 - o Betrieb in Flussrichtung
 - E-Feld der Raumladungszone muss überwunden werden
 - Fluss der Ladungsträger (+ an p-Dot, an n-Dot)
- MOS-Struktur (MOS = metal oxid semiconductor)
 - o p-dotierte Hauptschicht, SiO₂ als Isolator zwischen Halbleiter und Gate-Elektrode
 - o Verarmung: $V_{gs} < V_t$ (V_t = Thresholdspannung, Spannung zum Lösen der e $\bar{}$)
 - durch negatives Potential am Gate werden e von der Gate verdrängt
 - o Inversion: $V_{as} > V_t$
 - durch positives Potential am Gate werden e unter der Gate angereichert

EX WB

IF

ID OF

- n-MOS-Transistor
 - o Source und Drain n-doteriert
 - o Ausbildung eines n-Kanals, wenn $V_{gs} > V_t$
 - o V_{gs}, V_{ds} > 0, Source immer am niedrigeren Pot.
 - Eingangskennlinie: Parabellast, um V_t nach rechts verschoben
 - o Einteilung in Arbeitsbereiche:
 - Sperrbereich: $V_{gs} < V_{t}$

$$I_{Dn} = 0$$

- Linearbereich: $V_{es} > V_t$ und $0 < V_{ds} < V_{es} V_t$
- \bullet Sättigungsbereich (Pinch-Off): $V_{\rm gs} > V_{\rm t}$ und $V_{\rm gs} V_{\rm t} < V_{\rm ds}$

- Pinch-Off: n-Kanal wird in Richtung Drain dünner, da Drain ein h\u00f6heres positives
 Potential als das Gate besitzt
- o Pinch-Off-Potential: $V_{Pinch-Off} = V_{gs} V_{t}$
- o Formel für den Drain-Strom des n-Kanals im Linearbereich:

$$I_{Dn} = \beta \left(V_{GS} - V_t - \frac{V_{DS}}{2} \right) V_{DS} \qquad C_G = \varepsilon_{Ox} \varepsilon_0 \frac{WL}{t_{Ox}} \qquad \mu = -\frac{dx}{dV} \cdot V_{DS}$$

o Formel für den Drain-Strom des n-Kanals im Sättigungsbereich:

$$I_{Dn} = 0.5 \beta (V_{GS} - V_t)^2 \qquad \beta = \frac{C_G \mu}{L^2} = \frac{\mu \varepsilon_{Ox} \varepsilon_0}{t_{Ox}} \cdot \frac{W}{L} = K' \cdot \frac{W}{L} \qquad I = \rho v = \frac{dQ}{dx} \cdot v$$

 C_G = Gate-Kapazität bei einer Oxiddicke von t_{Ox} und einer Fläche A = WL

μ = Ladungsträgerbeweglichkeit

L = DS-Abstand

- o Technologieparameter: μ , L_{min} , ϵ_{ox} , t_{ox}
- Design Parameter: W

- o Drain und Source p-dotiert, V_{gs} , V_{ds} < 0, Source immer am höheren Pot.
- o Einteilung in Arbeitsbereiche:

• Sperrbereich:
$$V_{gs} > V_{t}$$

$$I_{Dp} = 0$$

 \bullet Linearbereich: $V_{\mathit{gs}} < V_{\mathit{t}}$ und $V_{\mathit{gs}} - V_{\mathit{t}} < V_{\mathit{ds}} < 0$

$$I_{Dp} = -\beta \left(V_{GS} - V_t - \frac{V_{DS}}{2} \right) V_{DS}$$

$$I_{Dp} = -0.5\beta (V_{GS} - V_t)^2$$

6. CMOS Inverter und Logik

- Vorteile der CMOS-Technologie (technisch)
 - Geringe Verlustleistung / Störungsunempfindlichkeit / nur eine Stromversorgung
 - o saubere Logikpegel (Noise Margin) / Kaskadierbarkeit
- Vorteile der CMOS-Technologie (wirtschaftlich)
 - o einfacher Entwurf / hoch integrierbar / ausgereifte Herstellung
- CMOS-Inverter
 - o p-Dotierte Schicht als Träger
 - Statische Spannungs-Übertragung-Kennlinie(VTC)
- Lastkapazität und Verzögerungszeit (propagation delay)
 - $t_p = R_{on,p}C|\ln(0.5)|$ R_{on,p} = Einschaltwiderstand des p-MOS (Modell: Linearbereich)

Spannungspegel und Verzögerungszeit

$$\begin{split} R_{on,\,p} &= \frac{V_{DSp}}{I_{Dp}} \approx \frac{1}{\beta \cdot (\left|V_{GSp}\right| - \left|V_{tp}\right|)} & \text{für } \left|V_{DSp}\right| << (\left|V_{GSp}\right| - \left|V_{tp}\right|) \\ t_{pHL} &\propto \frac{C_{load}t_{ox}L_{p}}{W\mu_{p}\mathcal{E}_{ox}(V_{DD} - \left|V_{tp}\right|)} & \approx \text{: direkt proportional} \end{split}$$

 $V_{\scriptscriptstyle tn}$: manipulierbar durch $t_{\scriptscriptstyle ox}$, Kanaldotierung und Substratspannung $V_{\scriptscriptstyle bulk}$

- CMOS Verlustleistung
 - Dynamische Verlustleistung (50% der gesamten Verlustleistung)
 - Schalthäufigkeit α_{01} : $P = \alpha_{01} f_{clk} E$ E: Energie pro Schaltvorgang
 - Kapazitive Verlustleistung = Wärme an $R_{on,p}$ + Energie der Ladung auf C

$$P_{Cap} = \alpha_{01} f C V_{DD}^{2}$$

Kurzschlussverlustleistung

$$P_{Short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_m)^3$$
 τ : Rise-Fall-Time

- Verlustleistung pro Gatter sinkt pro Technologie Skalierung
- Verlustleistung pro Chip/Fläche steigt
- Statische Verlustleistung
 - Sub-Schwellströme (Ströme durch die n/p-Kanäle bei $V_{GS} \leq V_t$)
 - nicht ideale Ausgangspannungen vorheriger Gatter
 - Rauschen / kapazitive Kopplungen

$$\begin{split} I_D &= I_0 e^{(V_{GS} - V_t)/nV_{Temp}} \left(1 - e^{-V_{DS}/V_{Temp}}\right) \qquad V_{GS} \leq V_t \\ I_0 &= I_D(V_{GS} = V_t); \qquad \text{n: Prozesskonstante (1-2,5)} \\ I_1 &\approx I_1 e^{V_t/nV_{Temp}} \quad \text{für } V_1 = 0. \end{split}$$

$$I_{\scriptscriptstyle D} \approx I_{\scriptscriptstyle 0} e^{V_{\scriptscriptstyle t}/nV_{\scriptscriptstyle Temp}} \ \text{für} \ V_{\scriptscriptstyle GS} = 0$$

- Diodenleckstrom / Gate-Strom
 - Leckströme ins Substrat verursachen Verlustleistung
 - Gate-Oxid isoliert nicht perfekt
 - $I_{Gate} \propto \exp(t_{ox}^{-1})$
- früher: Statische Verlustleistung vernachlässigbar (< 1% von $P_{versamt}$)
- wird in Zukunft immer größere Rolle spielen
- Subschwellstrom nimmt mit steigender V_t ab
- CMOS-Logik
 - Immer invertierende Logik, da n-MOS immer direkt an GND liegen muss
 - Seriellschaltung von n-MOS für logische UND
 - Parallelschaltung von n-MOS für logische ODER
 - im p-MOS Block wird die serielle Schaltung von n-MOS in eine parallele p-MOS Schaltung konvertiert
 - gleiches gilt für n-MOS parallel -> p-MOS seriell
- Fan-In und Fan-Out
 - o Gatter mit hohem Fan-Out sind langsamer
 - Gatter mit hohem Fan-In sind größer und langsamer

7. Speicher

- Klassifizierung
 - Random Access RAM
 - SRAM (static random access memory)
 - DRAM (dynamic random access memory)
 - Register

- Non-Random Access RAM
 - FIFO (first in first out) / LIFO (last in first out)
 - CCD (charge coupled device); ähnlich einem Schieberegister
 - CAM (content addressable memory); inhaltsaddressierbarer Speicher
 - Shift-Register
- o Non-Volatile Read Write Memory
 - EPROM (Erasable Programmable Read-Only-Memory)
 - EEPROM (Electrically Erasable Programmable Read-Only Memory)
 - Magneto RAM (Widerstandsänderung durch Magnetfelder)
- o Read Only Memory
 - Mask-programmed / Fuse-programmed
- Aufbau von Speichern
 - Bandbreite [bit/sec]
 - o Latenz: Zeitdifferenz zwischen Ein- und Ausgabe
 - o Zykluszeit: Zeitdifferenz zwischen aufeinander folgende Schreib- und Lesezyklen
 - Asynchrone Speicher: Lesen / Schreiben mit anlegen der Adresse bzw. der Steuersignale
 - o Synchroner Speicher: R/W-Operationen an Takt gebunden
- Speicherarchitektur: Array-Struktur
 - o Row Decoder / Column Decoder
 - o Leseverstärker
 - adressiert wird immer ein der Wortleitungsbreite entsprechendes Datenwort
- Speicherarchitektur: Hierarchie
 - o Gliederung der Speicherarrays zusätzlich in Blöcke
 - o kürzere Verdrahtung -> schneller
 - nur einzelne Blöcke sind aktiv -> geringerer Verlustleistung
- 1-Transistor DRAM Zelle
 - o Speicherzelle besteht aus einem Transistor und einem Kondensator
 - o hohe Speicherdichte / symmetrische Zugriffszeit
 - o Bitleitung wird beim lesen auf $0.5V_{DD}$ vorgeladen
 - o Bitleitungskapazität wesentlich höher als Speicherkapazität
 - o geringer Signalhub ΔV beim Lesen -> Leseverstärker notwendig

- o Speicherkondensator
 - Leiter (Polysilicium) mit V_{DD} verbunden
 - Isolator (SiO₂)
 - p-Si mit Transistor verbunden (X in der Graphik)
 - Trench Cell: Vergrößerung von Cs durch Bau in die Tiefe
 - Stacked-Capacitor Cell: f\u00e4cherf\u00f6rmiger Bau in die H\u00f6he
- o Leseverstärker
 - Positionierung in der Mitte eines Speicherfeldes
 - halbe Bitleitungskapazität
 - Lesen: Equalize, Aktivierung der Wortleitung, Sense, Pullup
- CMOS-SRAM (6 Transistoren)
 - o zwei rückgekoppelte CMOS-Inverter
 - o über jeweils einen n-MOS mit BL und BL verbunden
- FLASH-Speicher
 - o einfügen eines floating gate in die Oxidschicht eines n-MOS Transistor
 - o ,0' speichern: 4mal V_{DD} an G und D, GND an S
 - o ,0' löschen: S von GND trennen, G an GND und D an 4mal V_{DD}
- ROM-Speicher
 - o fuse programming; Programmierung ist irreversibel

1024 1024x1024

1M

 2^{10}

2²⁰

WL

