Lecture 9 (Adv): Karger's algorithms

Randomization

- Algorithmic design patterns.
 - Greed.
 - Divide-and-conquer.
 - Dynamic programming.
 - Network flow.
 - Randomization.

 __in practice, access to a pseudo-random number generator
- Randomization: Allow fair coin flip in unit time.
- Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.
- Examples: Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

13.2 Global Minimum Cut

Input: A connected, undirected graph G = (V, E).

For a set $S \subset V$ let $\delta(S) = \{(u,v) \in E : u \in S, v \in V \setminus S\}.$

 $|\delta(S)| = 4$

Aim: Find a cut (S, S') of minimum cardinality.

13.2 Global Minimum Cut

Input: A connected, undirected graph G = (V, E).

For a set $S \subset V$ let $\delta(S) = \{(u,v) \in E : u \in S, v \in V \setminus S\}.$

Aim: Find a cut (S, S') of minimum cardinality.

13.2 Global Minimum Cut

Applications: Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

- Replace every edge (u, v) with two directed edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

Running time: O(n·MaxFlow)

Definition: A multigraph is a graph that allows multiple edges

3

between a pair of vertices.

Definition: A multigraph is a graph that allows multiple edges between a pair of vertices.

Algorithm:

- 1. Start with the input graph G=(V,E).
- While |V|>2 do
 Contract an arbitrary edge (u,v) in G.
- 3. Return the cut (only one possible cut).

Let G=(V,E) be a multigraph (without self-loops).

Contract an edge $e=(u,v)\in E \implies G\setminus e$

- Replace u and v by single new super-node w
- Replace all edges (u,x) or (v,x) with an edge (w,x)
- Remove self-loops to w.

Definition: A multigraph is a graph that allows multiple edges between a pair of vertices.

Algorithm:

- 1. Start with the input graph G=(V,E).
- While |V|>2 do
 Contract an arbitrary edge (u,v) in G.
- 3. Return the cut (only one possible cut).

Observation: An edge (u,v) contraction preserves those cuts where u and v are both in S or in S'.

Observation: An edge (u,v) contraction preserves those cuts where u and v are both in S or in S'.

Observation: An edge (u,v) contraction preserves those cuts where u and v are both in S or in S'.

If $u,v \in S$ then $\delta_G(S) = \delta_{G \setminus e}(S)$. (with u and v replaced with w)

Algorithm: General idea

Contract n-2 edges ⇒ two vertices remain in G'

Algorithm: General idea

- Contract n-2 edges ⇒ two vertices remain in G'
- The two vertices in G' correspond to a partition (S,S') in G.

Algorithm: General idea

- Contract n-2 edges \Rightarrow two vertices remain in G'
- The two vertices in G' correspond to a partition (S,S') in G.
- The edges remaining in G' corresponds to $\delta_{\rm G}({\rm S})$.
- Output $\delta_G(S)$.

If we never contract edges from a minimal cut $\delta(S^*)$ then the algorithm will report $\delta(S^*)$.

How do we select the edges?

Algorithm:

- 1. Start with the input graph G=(V,E).
- While |V|>2 do
 Contract an arbitrary edge (u,v) in G.
- 3. Return the cut S (only one possible cut).

Algorithm: Since S* is a minimum cut it has few edges!

Claim: This algorithm has a reasonable chance of finding a minimal cut.

Claim: The algorithm returns a minimal cut with probability $\geq 2/n^2$.

Proof: Consider a global min cut (S,S') of G. Let δ be edges

with one endpoint in S and the other in S'.

Let $k = |\delta| = \text{size of the min cut.}$

Claim: The algorithm returns a minimal cut with probability $\geq 2/n^2$.

Proof: Consider a global min cut (S,S') of G. Let δ be edges

with one endpoint in S and the other in S'.

Let $k = |\delta| = \text{size of the min cut.}$

Step 1: contract an edge in δ with probability k/|E|.

Size of E?

δ

Claim: The algorithm returns a minimal cut with probability $\geq 2/n^2$.

δ

Proof: Consider a global min cut (S,S') of G. Let δ be edges with one endpoint in S and the other in S'.

Let $k = |\delta| = \text{size of the min cut.}$

Step 1: contract an edge in δ with probability k/|E|.

Every node has degree $\geq k$ otherwise (S,S') would not be min-cut.

 \Rightarrow $|E| \ge \frac{1}{2}kn$.

Claim: The algorithm returns a minimal cut with probability $\geq 2/n^2$.

δ

Proof: Consider a global min cut (S,S') of G. Let δ be edges

with one endpoint in S and the other in S'.

Let $k = |\delta| = \text{size of the min cut.}$

Step 1: contract an edge in δ with probability k/|E|. with probability $\leq 2/n$.

Claim: The algorithm returns a minimal cut with probability $\geq 2/n^2$.

δ

Proof: Consider a global min cut (S,S') of G. Let δ be edges

with one endpoint in S and the other in S'.

Let $k = |\delta| = \text{size of the min cut.}$

Step 1: contract an edge in δ with probability 2/n.

Observation:

The minimum degree in any (intermediate) multigraph is at least k. (Otherwise there would be a smaller cut)

Specifically this means that if an intermediate multigraph has n' vertices, it will have at least $n' \cdot k/2$ edges.

Claim: The algorithm returns a minimal cut with probability $\geq 2/n^2$.

δ

Proof: Consider a global min cut (S,S') of G. Let δ be edges

with one endpoint in S and the other in S'.

Let $k = |\delta| = \text{size of the min cut.}$

Step 1: contract an edge in δ with probability 2/n.

After step i: The multigraph G_i has n-i vertices and at least (n-i)·k/2 edges.

Claim: The algorithm returns a minimal cut with probability $\geq 2/n^2$.

Proof: Consider a global min cut (S,S') of G. Let δ be edges with one endpoint in S and the other in S'.

Let $k = |\delta| = \text{size of the min cut.}$

Step 1: contract an edge in δ with probability 2/n.

After step i: The multigraph G_i has n-i vertices and at least (n-i)·k/2 edges.

Proof

Theorem:
$$Pr[e_1, e_2, ..., e_{n-2} \notin \delta] > 2/n^2$$

Proof:

$$Pr[e_1, e_2, \dots, e_{n-2} \notin \delta] =$$

$$= \Pr[e_1 \notin \delta] \quad \prod \Pr[e_{i+1} \notin \delta : e_1, \dots, e_i \notin \delta]$$

$$\geq (1 - \frac{2}{n})(1 - \frac{2}{n-1})(1 - \frac{2}{n-2}) \dots (1 - \frac{2}{3})$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \dots \frac{2}{4} \cdot \frac{1}{3}$$

$$= \frac{2}{n(n-1)}$$

Proof

Theorem:
$$Pr[e_1, e_2, ..., e_{n-2} \notin \delta] > 2/n^2$$

Proof:

$$Pr[e_1, e_2, \dots, e_{n-2} \notin \delta] =$$

$$= \Pr[e_1 \notin \delta] \quad \prod \Pr[e_{i+1} \notin \delta : e_1, \dots, e_i \notin \delta]$$

$$\geq (1 - \frac{2}{n})(1 - \frac{2}{n-1})(1 - \frac{2}{n-2}) \dots (1 - \frac{2}{3})$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \dots \frac{2}{4} \cdot \frac{1}{3}$$

$$= \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}}$$

Amplification

To amplify the probability of success, run the contraction algorithm many times.

Claim: If we repeat the contraction algorithm $r \binom{n}{2}$ times with independent random choices, the probability that all runs fail is at most

$$(1-\frac{1}{\binom{n}{2}})^{r\binom{n}{2}} \geq (1/e)^{r}$$

$$(1-\frac{1}{x})^{x} \geq 1/e$$

Amplification

constant

To amplify the probability of success, run the contraction algorithm many times.

Claim: If we repeat the contraction algorithm $r \binom{n}{2}$ times with independent random choices, the probability that all runs fail is at most

$$(1-\frac{1}{\binom{n}{2}})^{r\binom{n}{2}} \geq (1/e)^{r}$$

$$(1-\frac{1}{x})^{x} \geq 1/e$$

Set $r = (c \ln n)$ then probability of failure is: $e^{-c \ln n} = n^{-c}$

and probability of success is: $1-1/n^c$

Algorithm:

- 1. Start with the input graph G=(V,E).
- 2. While |V|>2 do

 Contract an arbitrary edge (u,v)
- 3. Return the cut S (only one possible cut).

Running time?

Algorithm:

- 1. Start with the input graph G=(V,E).
- 2. While |V|>2 do

 Contract an arbitrary edge (u,v)
- 3. Return the cut S (only one possible cut).

Running time: n-2 iterations.

each iteration requires O(n) time

 \Rightarrow O(n²)

The algorithm is iterated $O(n^2 \log n)$ times...total running time $O(n^4 \log n)$.

Improvement. [Karger-Stein 1996] O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Running time?

Improvement. [Karger-Stein 1996] O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when n/ $\sqrt{2}$ nodes remain .
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Running time:
$$T(n) = 2(n^2+T(n/\sqrt{2}))$$

= $O(n^2 \log n)$ [Master Thm]

Improvement. [Karger-Stein 1996] O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain .
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Running time:
$$T(n) = 2(n^2+T(n/\sqrt{2}))$$

= $O(n^2 \log n)$ [Master Thm]

Probability of success?

Improvement. [Karger-Stein 1996] O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain .
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Running time:
$$T(n) = 2(n^2+T(n/\sqrt{2}))$$

= $O(n^2 \log n)$ [Master Thm]

Probability of failure:
$$Pr[n] \le (1-\frac{1}{2} \cdot Pr[n/\sqrt{2}])^2$$

= $O(1/\log n)$

Improvement. [Karger-Stein 1996] O(n² log³n).

Run the algorithm $c log^2 n times$

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain .
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Running time:
$$T(n) = 2(n^2+T(n/\sqrt{2}))$$

= $O(n^2 \log n)$

Probability of failure:
$$Pr[n] \le (1-\frac{1}{2} \cdot Pr[n/\sqrt{2}])^2$$

= $O(1/\log n)$

Improvement. [Karger-Stein 1996] O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Best known. [Karger 2000] O(m log³n).

faster than best known max flow algorithm or deterministic global min cut algorithm

Reading material

Eric Vigoda's lecture notes http://www.cc.gatech.edu/~vigoda/7530-Spring10/Kargers-MinCut.pdf