SR						
N						

PES University, Bengaluru

(Established under Karnataka Act No. 16 of 2013)

UE20CS904

AUG 2021 : END SEMESTER ASSESSMENT (ESA) M TECH DATA SCIENCE AND MACHINE LEARNING_ SEMESTER I

UE20CS904 - Mathematical Foundation

Time: 3 Hrs Answer All Questions Max Marks: 100

							Sec	ction	A (20	marks)				
1	a)	Find the determinant of the matrix A : $\begin{bmatrix} 2 & 4 & 5 \\ 6 & 1 & 3 \\ 4 & 0 & 7 \end{bmatrix}$												
	b)	the sta for the the sar	A A	positio	n(A) a	nd en	B	ositior er diag	n (B) c	the least number of squares moved between on the chessboard (each square of unit length) or vertically or horizontally)? Give formula for	2			
	c)	Calculate the angel between two given vectors. The two vectors are, $a = \overrightarrow{i} + 2\overrightarrow{j} \text{ and}$ $b = 9 \overrightarrow{i} + 3 \overrightarrow{j}$												

2

2

d)	We have an rgb image saved as img. An RGB image has length and width 63.We are creating
	a new image by concatenating img[:,:63,1], img[:,63:126,:2] & img[:,126:,0]. Wha kind of
	changes can we observe in the new image as compared to the original image (img).

In the plot shown below the un-dotted box portion represents the original coordinates e) of an object and the same after transformation is represented by the dotted box object. Write the coordinates, the transformation matrix and the coordinates after transformation.

1			
2	a)	Find out if the following is a concave function or convex function for the interval (-5, -2) $f(x) = -x^2 - 7x$	2
	b)	Find the point of inflection, local maxima & minima for the following graph in the interval, (-2, 3) $f(x) = 5x^3 + 2x^2 - 3x$	2
	c)	Statement: For any orthogonal matrix, inverse of a matrix is same as transpose of the matrix. Check whether the following matrix is orthogonal or not. Verify whether the above statement is	2

c)	Statement: For any orthogonal matrix, inverse of a matrix is same as transpose of the matrix.
	Check whether the following matrix is orthogonal or not. Verify whether the above statement is
	true or not.
i	

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Calculate the Jacobian matrix for the following function d) $f_1(x,y) = x^3y$ $\underline{x^2} + y^2$ $f_2(x,y)$ y 2

SR						
N						

		Section B (40 marks)	
3	a)	Find out the inverse of the following matrix. A = [1 5 7 2 6 0 3 5 1]	5
	b)	Find the number of independent vectors in the following matrix. $\begin{bmatrix} 1 & 3 & 5 & 6 \\ 3 & 5 & 0 & 7 \\ 2 & 6 & 2 & 0 \\ 7 & 5 & 1 & 0 \end{bmatrix}$	5
	c)	Find out the derivative of the following function using chain rule. Perform step-wise operation. $f(x) = \cos\left(\frac{1}{\sqrt{1+x^2}}\right)$ Find out the Hessian Matrix of the following function $x^2y^2 + \frac{x}{y^2}$ $f(x,y) = \frac{1}{\sqrt{1+x^2}}$	7
	d)	Mr. Johns sells Mango, Apple and Peach. The price of a kg of Mango, 3 kgs of Apple, and a kg of Peach is Rs 145. The price of 3 kgs of Mango, 4 kgs of Apple, and a kg of Peach is Rs 280. The price of 2 kgs of Apple, and a kg of Peach is Rs 65. Find out the price of a kg of each fruit.	7
	e)	Find the covariance for the following set of vectors. $\begin{bmatrix} -1 & 2 \\ 3 & 5 \\ 0 & 1 \\ 4 & 2 \\ 6 & 1 \end{bmatrix}$	8
	f)	Find the Singular value decomposition of the following matrix	8
		$A = \begin{bmatrix} 4 & 0 \\ 3 & -5 \end{bmatrix}$ The Σ or the D matrix is given as $\begin{bmatrix} \sqrt{40} & 0 \\ 0 & \sqrt{10} \end{bmatrix}$	
		G (* G (40 1)	
4	a)	Section C (40 marks) Find out the Eigen values and the Eigen vector for the corresponding Eigen values for the following matrix. $\begin{bmatrix} 1 & 5 & 7 \\ 2 & 6 & 0 \\ 3 & 5 & 1 \end{bmatrix}$	15
	b)	Transform the following basis into orthogonal basis using Gram-Schmidt Process. U1 = (2,1,0) U2 = (3,2,1)	10

This file is meant for personal use by rg.ravigupta91@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

									N											
	U3 = (4,1,2	<u>'</u> ')																		
c)	We have	recorde	d the	wee	kly a	avera	ige c	onve	rsio	n r	ate	9 0	f D)ola	r fo	r	ove	r 6	1	5
	consecutive weeks. Y shows the weekly average conversion rate and x shows																			
	the number of the week. Try to fit the best possible function 'f' to stablish the																			
	relationship between the number of the day and conversion rate.(Applying																			
	Gradient	descent)	where	f(x)	= y =	a + l	b * x													
		ŕ		, ,	-															
	х	V	1																	
	1	10																		
	2	14																		
	3	18																		
	4	22																		
	5	25																		
	6	33																		
	The initia	l values	of a &	b are	e, a=	4.9	& b=4	4.401	I.Th	e le	arr	nin	g ra	ate i	s m	er	ntior	ned		
	as .05. Th	ne error ra	ate of a	a & b	sho	uld b	e les	s tha	n .0	1.										
	Plot the p	redicted	and ad	ctual	data	a in a	grap	h.												
l																				