Atiyah Commutative Algebra: Problems

Youngduck Choi *

Abstract

This work contains solutions to some exercises from Atiyah's Commutative Algebra text.

1 Chapter 2: Modules

Question 2.1.

1. Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime.

Solution.

As m, n are coprime, by Bezout, there exists $a, b \in \mathbb{Z}$ such that

$$am + bn = 1$$
.

Therefore,

$$x \otimes y = am(x \otimes y) + bn(x \otimes y) = a(mx \otimes y) + b(x \otimes ny) = a(0 \otimes y) + b(x \otimes 0) = 0$$
 for any $x \otimes y \in \mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$.

Question 2.4.

4. Let M_i ($i \in I$) be any family of A-modules, and let M be their direct sum. Prove that M is flat \Leftrightarrow each M_i is flat.

Solution.

Let $M = \bigoplus_{i \in I} M_i$. Then, M is exact iff for any exact sequence of A-modules

$$0 \to N' \to N \to N'' \to 0$$

^{*}Department of Mathematics, Courant Institute of Mathematical Sciences, yc1104@nyu.edu; If you find an error and want to share with me, you can reach me via email.

the tensored sequence

$$0 \to N' \otimes M \to N \otimes M \to N'' \otimes M \to 0$$

is exact. Observe that the above tensored sequence can be written as

$$0 \to \bigoplus_{i \in I} N' \otimes M_i \to \bigoplus_{i \in I} N \otimes M_i \to \bigoplus_{i \in I} N'' \otimes M_i \to 0.$$

Hence M is exact iff for any $i \in I$ and for any exact sequence of A-modules

$$0 \to N' \to N \to N'' \to 0$$

the tensored sequence

$$0 \to N' \otimes M_i \to N \otimes M_i \to N'' \otimes M_i \to 0$$
,

but the later is equivalent to M_i being flat for all $i \in I$, so we are done.

Question 2.5.

5. Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra. [Use Exercise 4.]

2 Chapter 1: Rings and Ideals

Question 1.15.

The prime spectrum of a ring

- 15. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that
 - i) if a is the ideal generated by E, then V(E) = V(a) = V(r(a)).
 - ii) $V(0) = X, V(1) = \emptyset$.
 - iii) if $(E_i)_{i \in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

iv) $V(a \cap b) = V(ab) = V(a) \cup V(b)$ for any ideals a, b of A.

These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the *Zariski topology*. The topological space X is called the *prime spectrum* of A, and is written Spec (A).

Solution.

(i) Any prime ideal containing $r(\mathfrak{a})$ contains \mathfrak{a} , so $V(r(\mathfrak{a})) \subset V(\mathfrak{a})$. Now, if $\mathfrak{p} \in V(\mathfrak{a})$, then by closure of multiplication of \mathfrak{p} , $r(\mathfrak{a}) \subset \mathfrak{p}$. Hence, $V(\mathfrak{a}) \subset V(r(\mathfrak{a}))$, and $V(\mathfrak{a}) = V(r(\mathfrak{a}))$. Now, any prime ideal containing E, as \mathfrak{a} is generated by E, contains E, therefore $V(\mathfrak{a}) \subset V(E)$. Now, let $\mathfrak{p} \in V(E)$. Then, as by definition, \mathfrak{a} is the smallest ideal that contains E, so $\mathfrak{a} \subset \mathfrak{p}$, and therefore $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$. This shows that

$$E \subset \mathfrak{p} \iff \mathfrak{a} \subset \mathfrak{p} \iff r(\mathfrak{a}) \subset \mathfrak{p}$$

for any prime ideal \mathfrak{p} of A.

- (ii) It is clear that $V(0) \subset X$. Any prime ideal \mathfrak{p} of A contains 0, so V(0) = X. And as there is no prime ideal that contains $1, V(1) = \emptyset$.
- (iii) Let $\mathfrak{p} \in V(\bigcup_{i \in I} E_i)$. Then, $E_i \subset \mathfrak{p}$ for all $i \in I$. Therefore, $\mathfrak{p} \in V(E_i)$ for all $i \in I$, so $\mathfrak{p} \in \bigcap_{i \in I} V(E_i)$. This shows $V(\bigcup_{i \in I} E_i) \subset \bigcap_{i \in I} V(E_i)$. Now, suppose $\mathfrak{p} \in \bigcap_{i \in I} V(E_i)$. Then, $E_i \subset \mathfrak{p}$ for all $i \in I$, so $\bigcup_{i \in I} V(E_i) \subset \mathfrak{p}$. Therefore, $p \in V(\bigcup_{i \in I} E_i)$, so we are done.

We can also see

$$\mathfrak{p} \in \bigcap_{i \in I} V(E_i) \iff p \in V(E_i) \ \forall i \in I \iff E_i \subset \mathfrak{p} \ \forall i \in I$$
$$\iff \bigcup_{i \in I} E_i \subset \mathfrak{p} \iff \mathfrak{p} \in V(\bigcup_{i \in I} E_i)$$

for any prime ideal \mathfrak{p} in A.

(iv) For any prime ideal \mathfrak{p} of A,

$$\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b}) \implies \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p} \implies \mathfrak{a} \mathfrak{b} \subset \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p}
\implies \mathfrak{p} \in V(\mathfrak{a} \mathfrak{b}) \implies \mathfrak{a} \subset \mathfrak{p} \text{ or } \mathfrak{b} \subset \mathfrak{p}
\implies \mathfrak{p} \in V(\mathfrak{a}) \text{ and } \mathfrak{p} \in V(\mathfrak{b}) \implies \mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})
\implies \mathfrak{a} \subset \mathfrak{p} \text{ or } \mathfrak{b} \subset \mathfrak{p} \implies \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p} \implies \mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$$
(1)

where (1) holds by primality of \mathfrak{p} . Therefore,

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a})V(\mathfrak{b}),$$

as required. \Box

Question 1.16.

16. Draw pictures of Spec (Z), Spec (R), Spec (C[x]), Spec (R[x]), Spec (Z[x]).

Question 1.17.

- 17. For each $f \in A$, let X_f denote the complement of V(f) in $X = \operatorname{Spec}(A)$. The sets X_t are open. Show that they form a basis of open sets for the Zariski topology, and that

 - i) $X_f \cap X_g = X_{fg}$; ii) $X_f = \emptyset \Leftrightarrow f$ is nilpotent;
 - iii) $X_f = X \Leftrightarrow f$ is a unit;
 - iv) $X_f = X_g \Leftrightarrow r((f)) = r((g));$
 - v) X is quasi-compact (that is, every open covering of X has a finite subcovering).
 - vi) More generally, each X_i is quasi-compact.
 - vii) An open subset of X is quasi-compact if and only if it is a finite union of sets X_f .

The sets X_t are called basic open sets of X = Spec (A).

[To prove (v), remark that it is enough to consider a covering of X by basic open sets X_{f_i} ($i \in I$). Show that the f_i generate the unit ideal and hence that there is an equation of the form

$$1 = \sum_{i \in J} g_i f_i \qquad (g_i \in A)$$

where J is some finite subset of I. Then the X_{I_i} $(i \in J)$ cover X.]

Solution.

We claim that $\mathscr{B} = \{X_f = X \setminus V(f)\}_{f \in A}$ is a basis of the Zariski topology on X. Let O be an open subset in the Zariski topology, so $O = X \setminus V(E)$ for some $E \in 2^A$. Then,

$$O = X \setminus V(E) = X \setminus V(\bigcup_{f \in E} \{f\})$$

$$= X \setminus \bigcap_{f \in E} V(\{f\}) = X \setminus \bigcap_{f \in E} X_f$$

$$= \bigcup_{f \in E} X \setminus X_f$$
(2)

where (2) holds by 1-15-(iii) and (3) holds by DeMorgan's law. Therefore, any open O in the Zariski topology is a union of elements in \mathcal{B} , so \mathcal{B} is a basis for the Zariski topology.

(i) For any prime ideal \mathfrak{p} of A,

$$\mathfrak{p} \in X_f \cap X_g \iff \mathfrak{p} \in X_f \text{ and } \mathfrak{p} \in X_g \iff \mathfrak{p} \not\in V(f) \text{ and } \mathfrak{p} \not\in V(g)$$

$$\iff f \not\in \mathfrak{p} \text{ and } g \not\in \mathfrak{p} \iff fg \not\in \mathfrak{p}$$

$$\iff \mathfrak{p} \not\in V(fg) \iff \mathfrak{p} \in X_{fg}$$

$$(4)$$

where (4) holds by primality of \mathfrak{p} . Therefore, $X_f \cap X_q = X_{fq}$.

(ii) Observe that

$$X_{f} = \emptyset \iff X \subset V(f) \iff \forall \text{ prime ideal } \mathfrak{p} \text{ of } A \quad f \in \mathfrak{p}$$

$$\iff f \in \bigcap_{\mathfrak{p}: \text{ prime ideal of } A} \mathfrak{p} \iff f \text{ belongs to the nilradical of } f$$

$$\iff f \text{ is nilpotent.}$$

$$(5)$$

where (6) holds by preposition 1-8.

(iii)

Question 1.18.

- 18. For psychological reasons it is sometimes convenient to denote a prime ideal of A by a letter such as x or y when thinking of it as a point of X = Spec (A). When thinking of x as a prime ideal of A, we denote it by \mathfrak{p}_x (logically, of course, it is the same thing). Show that
 - i) the set {x} is closed (we say that x is a "closed point") in Spec (A) ⇔ p_x is maximal;
 - ii) $\overline{\{x\}} = V(\mathfrak{p}_x);$
 - iii) $y \in \{x\} \Leftrightarrow \mathfrak{p}_x \subseteq \mathfrak{p}_y$;
 - iv) X is a T_0 -space (this means that if x, y are distinct points of X, then either there is a neighborhood of x which does not contain y, or else there is a neighborhood of y which does not contain x).

Solution.

Question 1.19.

19. A topological space X is said to be *irreducible* if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that Spec (A) is irreducible if and only if the nilradical of A is a prime ideal.

Solution.

Question 1.21.

- 21. Let $\phi: A \to B$ be a ring homomorphism. Let X = Spec(A) and Y = Spec(B). If $q \in Y$, then $\phi^{-1}(q)$ is a prime ideal of A, i.e., a point of X. Hence ϕ induces a mapping $\phi^*: Y \to X$. Show that
 - i) If $f \in A$ then $\phi^{*-1}(X_f) = Y_{\phi(f)}$, and hence that ϕ^* is continuous.
 - ii) If a is an ideal of A, then $\phi^{*-1}(V(a)) = V(a^e)$.
 - iii) If b is an ideal of B, then $\overline{\phi^*(V(b))} = V(b^c)$.
 - iv) If ϕ is surjective, then ϕ^* is a homeomorphism of Y onto the closed subset $V(\text{Ker }(\phi))$ of X. (In particular, Spec (A) and Spec (A/ \Re) (where \Re is the nilradical of A) are naturally homeomorphic.)
 - v) If ϕ is injective, then $\phi^*(Y)$ is dense in X. More precisely, $\phi^*(Y)$ is dense in $X \Leftrightarrow \text{Ker } (\phi) \subseteq \mathfrak{R}$.
 - vi) Let $\psi \colon B \to C$ be another ring homomorphism. Then $(\psi \circ \phi)^* = \phi^* \circ \psi^*$.
 - vii) Let A be an integral domain with just one non-zero prime ideal \mathfrak{p} , and let K be the field of fractions of A. Let $B = (A/\mathfrak{p}) \times K$. Define $\phi \colon A \to B$ by $\phi(x) = (\bar{x}, x)$, where \bar{x} is the image of x in A/\mathfrak{p} . Show that ϕ^* is bijective but not a homeomorphism.
- 2. Let M be an A-module. If every non-empty set of finitely generated submodules of M has a maximal element, then M is Noetherian.

3 Chapter 6: Chain Conditions

Question 6.2.

Solution.

Suppose M is not Noetherian. Then, there exists a non finitely-generated submodule N of M. Choose x_1 from N. Then, since N is non finitely-generated, $N - \{x_1\} \neq \emptyset$, so we can choose $x_2 \neq x_1$ from N. Repeat this process inductively, then we have a nonempty set of finitely generated submodules of M

$$\{(x_1), (x_1, x_2), (x_1, x_2, x_3)...\}$$

such that it does not have a maximal element. Therefore, by contradiction, we have that M must be Noetherian.

4 Chapter 3: Rings and Modules of Fractions

Question 3.1.

1. Let S be a multiplicatively closed subset of a ring A, and let M be a finitely generated A-module. Prove that $S^{-1}M = 0$ if and only if there exists $s \in S$ such that sM = 0.

Solution.

Suppose there exists $s_0 \in S$ such that $s_0 M = 0$. Then, for any $(a, s), (b, t) \in A \times S$,

$$(at - bs)s_0 = 0$$

so $(a, s) \sim (b, t)$, and hence S = 0. Conversely, suppose $S^{-1}M = 0$. As M is finitely generated, there exists $\{x_1, ..., x_m\}$ for some m that generates M. As $S^{-1}M = 0$, we can choose $\{s_1, ..., s_m\}$ such that

$$s_i x_i = 0$$

for all $1 \le i \le m$. Consider $s^* = s_1...s_m$. Then,

$$s^*x = s_1...s_m x = s_1...s_m (\sum_{i=1}^m a_i x_i)$$
$$= \sum_{i=1}^m s_1...s_m a_i x_i = 0$$

for some $a_1, ... a_m \in A$, for all $x \in M$. Therefore, $s^*M = 0$.

Question 3.2.

2. Let α be an ideal of a ring A, and let $S = 1 + \alpha$. Show that $S^{-1}\alpha$ is contained in the Jacobson radical of $S^{-1}A$.

Use this result and Nakayama's lemma to give a proof of (2.5) which does not depend on determinants. [If $M = \alpha M$, then $S^{-1}M = (S^{-1}\alpha)(S^{-1}M)$, hence by Nakayama we have $S^{-1}M = 0$. Now use Exercise 1.]

Solution.

If $1 + a, 1 + a' \in 1 + \mathbf{a}$, then

$$(1+a)(1+a') = 1a + a' + aa' \in 1 + \mathbf{a}.$$

Therfore $1 + \mathbf{a}$ is a multiplicatively closed set in A. Now, for any $\in 1 + \mathbf{a}$,

$$1 - 1$$

Question 3.5.

5. Let A be a ring. Suppose that, for each prime ideal p, the local ring A_p has no nilpotent element $\neq 0$. Show that A has no nilpotent element $\neq 0$. If each A_p is an integral domain, is A necessarily an integral domain?

Solution.

Let \mathfrak{R} be a nilradical of A. By Corollary 3.12, $(\mathfrak{R})_{\mathfrak{p}}$ is a nilradical of $A_{\mathfrak{p}}$, which is 0 by assumption, for any prime ideal \mathfrak{p} . Therefore, by proposition 3.8, $\mathfrak{R} = 0$.

Question 3.12.

- 12. Let A be an integral domain and M an A-module. An element $x \in M$ is a torsion element of M if Ann $(x) \neq 0$, that is if x is killed by some non-zero element of A. Show that the torsion elements of M form a submodule of M. This submodule is called the torsion submodule of M and is denoted by T(M). If T(M) = 0, the module M is said to be torsion-free. Show that
 - i) If M is any A-module, then M/T(M) is torsion-free.
 - ii) If $f: M \to N$ is a module homomorphism, then $f(T(M)) \subseteq T(N)$.
 - iii) If $0 \to M' \to M \to M''$ is an exact sequence, then the sequence $0 \to T(M') \to T(M) \to T(M'')$ is exact.
 - iv) If M is any A-module, then T(M) is the kernel of the mapping $x \mapsto 1 \otimes x$ of M into $K \otimes_A M$, where K is the field of fractions of A. [For iv), show that K may be regarded as the direct limit of its submodules $A\xi$ ($\xi \in K$); using Chapter 1, Exercise 15 and Exercise 20, show that if $1 \otimes x = 0$ in $K \otimes M$ then $1 \otimes x = 0$ in $A\xi \otimes M$ for some $\xi \neq 0$. Deduce that $\xi^{-1}x = 0$.]

Solution.

We first show that T(M) is a A-sub-module of M. Let $x, y \in T(M)$, and $r \in A$. Then, there exists $a, b \in A$, such that $a, b \neq 0$, ax = 0 and by = 0. Then, as A is an integral domain, $ab \neq 0$ and ab(x+y) = abx + aby = bax + aby = 0, so $x+y \in T(M)$. Also, arx = rax = 0, so $rx \in T(M)$ and T(M) is a A-sub-module of M.

- (i) To show that M/T(M) is torsion-free, it suffices to show that T(M/T(M)) = 0.
- (ii) Let $y \in f(T(M))$. Then, there exists $x \in T(M)$ such that f(x) = y, and $0 \neq a \in A$ with ax = 0. Therefore, ay = af(x) = f(ax) = 0, as f is a module homomorphism. Therefore, $f(T(M)) \subset T(N)$.

(iii)

Question 3.13.

- 13. Let S be a multiplicatively closed subset of an integral domain A. In the notation of Exercise 12, show that $T(S^{-1}M) = S^{-1}(TM)$. Deduce that the following are equivalent:
 - i) M is torsion-free.
 - ii) $M_{\mathfrak{p}}$ is torsion-free for all prime ideals \mathfrak{p} .
 - iii) M_m is torsion-free for all maximal ideals m.