Projet DRONE

Gestion de L'OS Embarqué et de l'environnement Graphique

Pierre-jean TEXIER

Ecole Supérieure des Technologies Electronique Informatique Infographie

13 Février 2014

Sommaire

- Présentation du Projet
- 2 Segment SOL
- Gestion de Projet
- 4 Droit

- S Réalisations
- 6 Bilan de LOT
- Conclusion

Présentation du Projet

Projet de FIN d'étude
"Contexte Industriel" durant 6 mois
PROJET Drone **Next GEN**2 Composants => 2 Equipes

Phase Programme Analyse Fonctionnelle Matrice de Compétenc Cahier des Charges

Présentation du Segment SOL

Présentation

Phase Programme Analyse Fonctionnelle Matrice de Compétenc Cahier des Charges

Présentation du Segment SOL

Présentation

• L'équipe (OBS : Organization Breakdown Structure)

Phase Programme Analyse Fonctionnelle Matrice de Compétenc Cahier des Charges

Présentation du Segment SOL

Présentation

• L'équipe (OBS : Organization Breakdown Structure)

Phase Programme Analyse Fonctionnelle Matrice de Compétenc Cahier des Charges

Expression des Besoins

Besoins Exprimés par le Client :

- Affichage
- Ergonomie
- Vidéo
- Communication
- Gamme de Température
 - Commerciale : 0°C à 70°C
 - Industrielle : -45°C à 85°C

Diagramme Fonctionnel de Degré 1

Phase Programme Analyse Fonctionnelle Matrice de Compétence Cahier des Charges

Matrice de compétence Segment SOL

Remarques

Permet d'organiser au mieux les ressources

Phase Programme Analyse Fonctionnelle Matrice de Compétence Cahier des Charges

Cahier des Charges Personnel

Tâches à réaliser

- OS Linux embarqué Fonctionnel
- Préparation de l'environnement graphique (Qt, openCV, ...)
- Optimisation du temps de boot hardware et subjectif
- Gestion de l'énergie

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Outils

Gestion de Projet

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Outils

Cycle de vie Logiciel

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Outils

ROADMAP: Segment SOL

	2013			2014		
Phases	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.
Analyse des besoins CLIENT / Cahier des Charges fonctionnelle du système.	<u> </u>					
Définition architecture système et sous- système.	<u> </u>					
Spécifications sous-systèmes et choix matérielles et logicielles.						
Conception et réalisation des composants spécifiques logicielles et matérielles.						
Tests unitaire du software, Qualifications des composants spécifiques hardwares.				<	\Rightarrow	
Test d'intégration des sous-ensembles et sous-systèmes						
Validation / Qualification du système complet.						>

Remarques

- 2 Jalons : Intégration
- Suivi du cycle de Vie Logiciel

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Outils

Suivi des dépenses : Segment SOL

Ce qu'il faut retenir

- 750 Euros de Budget à l'instant t0
- Environ 450 Euros dépensés en fin de PROJET

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANTT Outils

Gantt Prévisionnel

Remarques

Les tâches du cahier des charges sont présentées ainsi que les relations entre elles

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Outils

Outils mis en place

Gestion de Version

- GIT
 - GITHUB Segment SOL

Gestion de Documentation

- Doxygen

Gestion de Publication

- Doku-Wiki

Droit

- 2 types de Licences utilisées pour le Projet
 - GPLv3 🧖
 - → Texte GPLv3
 - Creative Commons
 - ► Texte Creative Commons

A savoir

- Développement avec des Outils Libres
- Améliore la Maintenabilité, Portabilité du développement

Quelques Outils

• GIMP, GNU Linux, GNU plot, bootchart, LATEX, fbvis, ...

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Suytème

Réalisations

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Choix technologiques Etude Materiel

• System On Chip?

Allwiner A20 → Synoptique

- 2 processeurs : Dual Core ARM Cortex A7
- 2 co-processeurs Graphique : GPU Mali 400MP2, ...
- Single Board Computer?

OlinuXino A20 Disponible sur le marchés

- 160 GPIO
- Connecteur 40 Broches pour LCD, ...

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Pour Management
Optimisation du Système

Environnement "Linux Embarqué"

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Chaine de compilation croisée

Compilation Croisée?

Une chaîne de compilation croisée est un groupe d'outils permettant la compilation d'un programme d'une architecture processeur à une autre (x86 => ARM).

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Systèmi

Chaine de compilation croisée

Compilation Croisée?

Une chaîne de compilation croisée est un groupe d'outils permettant la compilation d'un programme d'une architecture processeur à une autre (x86 => ARM).

Choix technologiques
Environnement.
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Systèms
Optimisation du Systèms

Chaine de compilation croisée

Compilation Croisée?

Une chaîne de compilation croisée est un groupe d'outils permettant la compilation d'un programme d'une architecture processeur à une autre (x86 => ARM).

Possibilitées

Crosstool-ng,

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Systèmi

Chaine de compilation croisée

Compilation Croisée?

Une chaîne de compilation croisée est un groupe d'outils permettant la compilation d'un programme d'une architecture processeur à une autre (x86 => ARM).

Possibilitées

Crosstool-ng,

Pourquoi HardFloat?

co-processeur : FPU neon-vfvp4

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Risques et Opportunités

Composant	Risque	•	71	Opportunité	a b	71
Bootloader	Créer une image u-boot		Temps	Utiliser l'image présente sur la SD	Temps	
Kernel	Paramétrer/ Recompiler le Kernel	Optimisé pour le projet	Temps	Utiliser l'image présente sur la SD	Temps	lmage trop lourde
RootFS	Créer		Temps	Utiliser le rootFS sur la SD	Temps	

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Kernel in a Nutshell

Kernel?

▶ Linux

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Kernel in a Nutshell

Kernel?

Pourquoi Optimiser?

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Kernel in a Nutshell

Kernel?

Pourquoi Optimiser?

Empreinte Mémoire

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Kernel in a Nutshell

Kernel?

→ Linux

Pourquoi Optimiser?

- Empreinte Mémoire
- Besoins pour le Projet (V4L, Tactile, ...)

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Kernel in a Nutshell

Kernel?

→ Linux

Pourquoi Optimiser?

- Empreinte Mémoire
- Besoins pour le Projet (V4L, Tactile, ...)

Informations

- Version 3.4.67
- Non mainline

▶ Lien github

A savoir

- Plusieurs branches
- 3.0 et 3.4.67 = stable
- 3.10 = experimental

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management

Configuration

- Interface : xconfig (make ARCH=arm xconfig)
- Suppression :
 - Options inutiles dans l'embarqué (ex : Swap)
 - Options de Debug / Profilling (ex : Ftrace)
 - Options Inutiles pour notre Projet (ex : HDMI)

Empreinte Mémoire

Début du Projet : **5.20 MB** -> Fin du Projet : **3.33 MB**

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Implantation sur cible

- Système sur carte SD
- u-boot, image noyau et script.bin sur la 1ère partition
- rootFS sur la seconde partition

Choix technioogiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Préparation de l'environnement **GRAPHIQUE** "Fournir l'abstraction bas niveau avec le développement Logiciel"

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Sustème

Qt embedded 🗵

Notre Contexte:

Choix: Affichage graphique **Framebuffer**

Qt embedded?:

- Framework IHM et application embarqué
- Linux Android
- Architecture Serveur/Client : QWS

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management

Qt embedded 🛚

Ce qu'il nous faut : "qmake" spécifique à notre architecture :

Etapes

- Cross-compilation de la librairie Tactile : tslib tslib
- Modification du fichier qmake.conf
- Génération du Makefile spécifique aux besoins (./configure)
- Cross-compilation de Qt embedded 4.8.2 (make)
- Installation des binaires (make install)
- Portage des binaires générés sur cible
- Tests

Segment SOL Gestion de Proiet Réalisations OpenCV embedded

OpenCV embedded

Portage sur Architecture ARM OpenCV

Etapes

- Ohoix des Modules openCV : Utilisation de Cmake
- Cross-compilation librairies/modules
- Ortage des binaires générés sur cible
- Tests

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Optimisation du temps d'amorçage système

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Hardware

U-boot

Variable 'bootdelay'

Scripts de démarrage : Phootchart

- Networking
- ssh
- exim4
- apache

Temps de BOOT

Début du Projet : 1 minute -> Fin du Projet : 33 secondes

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Subjectif

Remplacement du Logo de démarrage : *logo_linux_clut224.ppm*

Logo de base

Logo personnalisé : 640*480¹

1. modifier script.fex

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

PBIT

Power On Built in Test

Utilisation simpliste du Framebuffer pour la phase de "PBIT"

Cross-compilation de la librairie fbvis

Réalisations

Power Management

Power Management

Réalisé

- Création d'un Crontab
- Test sur l'autonomie du Système

Consommation Batterie

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

- Système de fichier Temporaire
 - tmpFS (fichiers log)
- Autologin
 - agetty –autologin
- Lancement Automatique de l'application : ihm
- UDEV
 - iDVendor
 - iDProduct

Choix technologiques
Environnement
Kernel in a Nutshell
Graphique
Qt embedded
OpenCV embedded
Optimisation démarrage
Popur Management
Optimisation du Système

Optimisation du Système Possible

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système Possible

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

Accélération matérielle

② Gestion des Heuristiques : Variations dynamiques de fréquence processeur

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

- ② Gestion des Heuristiques : Variations dynamiques de fréquence processeur
 - powersave

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

- ② Gestion des Heuristiques : Variations dynamiques de fréquence processeur
 - powersave
 - perfomance

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

- ② Gestion des Heuristiques : Variations dynamiques de fréquence processeur
 - powersave
 - perfomance
 - ondemand

Choix technologiques Environnement Kernel in a Nutshell Graphique Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

- ② Gestion des Heuristiques : Variations dynamiques de fréquence processeur
 - powersave
 - perfomance
 - ondemand
 - interactive, ...

LOT Segment SOL : Coûts

LOT Segment SOL: Coûts

Coût de Developpement 🦸

Nom / Prénom	Coût
TEXIER Pierre-jean	3300 €
PRADEAU Martin	2719 €
POUCH Pierre	2640 €
L'HUILLIER Guillaume 2640 €	
OUKRAT Rémi	19 669 €

Coût D'industrialisation

: 100 Pièces => 33905 €

Conclusion

Lot Livrable

GIT: 249 Commits

Matrice de Validation

Cahier des Charges	TV	Commentaires
Choix SoC / SbC	Levée de risque sur carte	.
Chaine de compilation croisée	Compilation "hello world"	••
OS Linux sur cible	Sur carte SD	-6
Préparation graphique	Qt / OpenCV	-
Power Management	Via sysFS	1

Matrice de Validation Conclusion Questions

Conclusion

Compétences Acquises

- Portage d'application graphique sur Architecture ARM
- Optimisation d'un système Linux
- Gestion d'un Projet de bout en bout : Chef de Projet

Bilan Personnel

- Mise en pratique de l'enseignement 🗸 ectei
- Orientation en Linux Embarqué confortée
- Atout pour le prochain stage
- Implication dans la communauté "SUNXI"

Matrice de Validation Conclusion Questions

FIN

Tests de Validation

- Démarrage
- Version du noyau
- Oémo Qt embedded

Questions

Système Linux

Matrice de Validation Conclusion Questions

Synoptique du System On Chip

Matrice de Validation Conclusion Questions

Etude du Marché

∢ retour

Matrice de Validation Conclusion Questions

Qt embedded

Matrice de Validation Conclusion Questions

tslib

Matrice de Validation Conclusion Questions

openCV

Matrice de Validation Conclusion Questions

bootchart

