PHƯƠNG PHÁP DÙNG HÀM SỐ LIÊN TỤC ĐỂ KHẢO SÁT NGHIỆM PHƯƠNG TRÌNH ĐẠI SỐ

PHÀN 1 : LÍ THUYẾT

1.1. GIỚI HẠN CỦA DẪY SỐ

1.1.1. Dãy số

Định nghĩa. Một hàm số $\varphi: \mathbb{N}^* \to \mathbb{R}$ được gọi là một dãy số.

Đặt $\varphi(n) = x_n$, ta kí hiệu dãy số φ như sau : $\{x_n\}_{n \in \mathbb{N}}$ hoặc $\{x_n\}$.

Số hạng thứ n của dãy $\{x_n\}$ được gọi là số hạng tông quát của dãy.

1.1.2. Dãy số bị chặn

Định nghĩa

Dãy $\{x_n\}$ gọi là bị chặn trên nếu có số M sao cho $x_n \le M$ với mọi $n \in \mathbb{N}$.

Dãy $\{x_n\}$ gọi là bị chặn dưới nếu có số m sao cho m $\leq x_n$ với mọi n $\in \mathbb{N}$.

Dãy $\{x_n\}$ gọi là bị chặn nếu có hai số m, M sao cho m $\leq x_n \leq M$ với mọi $n \in \mathbb{N}$, tức là một dãy bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới.

1.1.3. Dãy đơn điệu

Định nghĩa

Dãy $\{x_n\}$ gọi là dãy tăng nếu $x_n \le x_{n+1}$ với mọi $n \in \mathbb{N}$.

Dãy $\{x_n\}$ gọi là dãy giảm nếu $x_n \ge x_{n+1}$ với mọi $n \in \mathbb{N}$.

Dãy $\{x_n\}$ gọi là tăng nghiêm ngặt nếu $x_n < x_{n+1}$ với mọi $n \in \mathbb{N}$.

Dãy $\{x_n\}$ gọi là giảm nghiêm ngặt nếu $x_n > x_{n+1}$ với mọi $n \in \mathbb{N}$.

Các dãy tăng, dãy giảm được gọi chung là dãy đơn điệu.

1.1.4. Giới hạn của dãy số

Định nghĩa. Một số a được gọi là giới hạn của dây số $\{x_n\}$ nếu với mọi số $\epsilon > 0$, tồn tại số tự nhiên n_0 sao cho với mọi $n > n_0$, ta có $|x_n - a| < \epsilon$.

Kí hiệu
$$\lim_{n\to\infty} x_n = a$$
 hay $x_n \to a$.

 $\text{Nhu vây } \lim_{n\to\infty} x_{_{n}} = a \Longleftrightarrow \forall \epsilon > 0, \exists n_{_{0}} \in \mathbb{N} : n > n_{_{0}} \Longrightarrow \left|x_{_{n}} - a\right| < \epsilon.$

Khi đó ta nói dãy $\{x_n\}$ hội tụ về a, còn ngược lại, dãy $\{x_n\}$ được gọi là phân kì.

Kết quả. - Giới hạn của một dãy, nếu có thì duy nhất.

- Mọi dãy hội tụ đều bị chặn.

1.1.5. Các phép toán trên các dãy hội tụ

Định lí 1.1

Nếu hai dãy $\{x_n\}$ và $\{y_n\}$ hội tụ thì các dãy tổng, hiệu, tích, thương:

$$\{x_n \pm y_n\}, \{x_n, y_n\}, \left\{\frac{x_n}{y_n}\right\}$$
 (nếu $y_n \neq 0, \forall n \in \mathbb{N}$ và $\lim_{n \to \infty} y_n \neq 0$)

đều hội tụ và:

a)
$$\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n$$
;

b)
$$\lim_{n\to\infty} (x_n.y_n) = \lim_{n\to\infty} x_n . \lim_{n\to\infty} y_n;$$

c)
$$\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}$$
.

Hệ quả

Nếu $\{x_n\}$ là một dãy hội tụ và c là một hằng số thì hai dãy $\{cx_n\}$; $\{c+x_n\}$ đều hội tụ và : $\lim_{n\to\infty} (cx_n) = c \cdot \lim_{n\to\infty} (x_n)$

$$\lim_{n\to\infty} (c+x_n) = c + \lim_{n\to\infty} (x_n).$$

1.1.6. Một số tính chất của dãy hội tụ

Định lí 1.2

Nếu
$$\lim_{n\to\infty} x_n = a$$
 thì $\lim_{n\to\infty} |x_n| = |a|$, $\forall n \in \mathbb{N}$.

Chứng minh. Ta có bất đẳng thức : $||x_n| - |a|| \le |x_n - a|$.

Với mọi $\epsilon > 0$, vì $x_n \to a$ nên theo định nghĩa, tồn tại số tự nhiên n_0 sao cho với mọi $n > n_0$ thì $|x_n - a| < \epsilon$.

Do đó
$$||x_n| - |a|| \le \epsilon$$
. Vậy $\lim_{n \to \infty} |x_n| = |a|$.

Định lí 1.3

Nếu dãy $\{x_n\}$ có giới hạn là a khác 0 thì tồn tại $n_0 \in \mathbb{N}$ sao cho $|x_n| > \frac{|a|}{2}$ với $n > n_0$. Hơn nữa, nếu a > 0 thì có các số hạng

$$x_{_{n}}>\frac{a}{2} \text{ và nếu a} \leq 0 \text{ thì có các số hạng } x_{_{n}}<\frac{a}{2}\,.$$

Như vậy, bắt đầu từ một chỉ số của n thì số hạng x_n cùng dấu với a.

Chứng minh. Với $\varepsilon = \frac{|a|}{2}$, tồn tại $n_0 \in \mathbb{N}$ sao cho với mọi $n > n_0$ thì

có
$$\frac{|a|}{2} > |a - x_n| \ge |a| - |x_n| \, \text{nên} \, |x_n| > |a| - \frac{|a|}{2} = \frac{|a|}{2}$$
.

Mà
$$|x_n - a| < \frac{|a|}{2} \iff a - \frac{|a|}{2} < x_n < a + \frac{|a|}{2}$$

Do đó nếu a > 0 thì $\frac{a}{2} = a - \frac{|a|}{2} < x_n$ và nếu a < 0 thì

$$x_n < a + \frac{|a|}{2} = a - \frac{a}{2} = \frac{a}{2}.$$

Định lí 1.4

Nếu $x_n \le y_n$ và $x_n \to a$ và $y_n \to b$ với mọi $n \in \mathbb{N}$ thì $a \le b$.

Chứng minh. Giả sử a > b. Ta chọn ε sao cho $0 < \varepsilon < \frac{a - b}{2}$.

Do $x_n \rightarrow a$, $y_n \rightarrow b$ nên ta tìm được n_1, n_2 sao cho

$$a-\varepsilon < x_n (\forall n > n_1) \text{ và } y_n < b+\varepsilon (\forall n > n_2).$$

Đặt $n_0 = \max(n_1, n_2)$ thì $y_n < b + \varepsilon < a - \varepsilon < x_n$ với $n > n_0$.

Điều này mâu thuẫn với giả thiết $x_n \le y_n$ với mọi $n \in \mathbb{N}$. Vậy $a \le b$.

Định lí 1.5

Nếu hai dãy $\{x_n\}$, $\{y_n\}$ cùng có giới hạn là a và $x_n \le z_n \le y_n$ với mọi $n \in \mathbb{N}$ thì $z_n \to a$.

Chúng minh. Với $\varepsilon > 0$, từ định nghĩa giới hạn thì ta tìm được $n_1, n_2 \in \mathbb{N}$ sao cho

$$\forall n > n_1: |x_n - a| < \varepsilon \text{ hay } a - \varepsilon < x_n < a + \varepsilon$$

$$\forall n > n_2 : |y_n - a| < \varepsilon \text{ hay } a - \varepsilon < y_n < a + \varepsilon.$$

Đặt $n_0 = \max(n_1, n_2)$ thì với $n > n_0$ ta có:

$$a - \varepsilon < x_n \le z_n \le y_n < a + \varepsilon$$
.

Ta suy ra $|z_n - a| < \varepsilon$ với $n > n_0$. Vậy $z_n \to a$.

1.1.7. Tiêu chuẩn hội tụ của một dãy đơn điệu

Định lí 1.6

Nếu một dãy tăng và bị chặn trên thì dãy đó hội tụ. Nếu một dãy giảm và bị chặn dưới thì dãy đó hội tụ. **Chứng minh.** Giả sử $\{x_n\}$ tăng và bị chặn trên.

Lúc đó tồn tại $a = \sup\{x_n\}.$

Như vậy $x_n \le a$ với mọi $n \in \mathbb{N}$ và với mỗi $\epsilon > 0$, tồn tại $n_0 \in \mathbb{N}$ sao cho $a - \epsilon < x_{n_0}$.

Do $\{x_n\}$ tăng nên $x_n \ge x_{n_0}$ với mọi $n > n_0$. Ta suy ra

$$a-\varepsilon < x_{n_0} \le x_n < a+\varepsilon$$
 hay $|x_n-a|<\varepsilon$ với mọi $n > n_0$.

Do đó $\lim_{n\to\infty} x_n = a$.

Tương tự nếu $\{x_n\}$ giảm và bị chặn dưới thì $\{x_n\}$ hội tụ và

$$\lim_{n\to\infty} x_n = a = \inf \{x_n\}.$$

Chú ý : Một dãy tăng thì bị chặn dưới và một dãy giảm thì bị chặn trên.

1.1.8. Nguyên lí về dãy các đoạn thắt

Định nghĩa. Một dãy $(\Delta_n)_n$ những đoạn $\Delta_n = [a_n \; ; \; b_n \;] \subset \mathbb{R} \;$ được gọi là dãy các đoạn thắt (hoặc một dãy thắt những đoạn) nếu $\Delta_{n+1} \subset \Delta_n$ với mọi $n \in \mathbb{N} \;$ và $\lim_{n \to \infty} (b_n - a_n) = 0$.

Định lí 1.7 (Nguyên lí về dãy các đoạn thắt)

Nếu $\{\Delta_n\}$ là một dãy thắt những đoạn thì tồn tại duy nhất một điểm thuộc về mọi đoạn Δ_n .

Chứng minh. Vì $\Delta_{n+1} \subset \Delta_n$ với mọi $n \in \mathbb{N}$ nên ta suy ra dãy $\{a_n\}$ là một dãy tăng và $\{b_n\}$ là một dãy giảm.

Cả hai dãy này đều thuộc đoạn [a1; b1] nên chúng bị chặn.

Vây $\{a_n\}$ và $\{b_n\}$ đều hội tụ.

Vì
$$\lim_{n\to\infty} (b_n - a_n) = 0$$
 nên $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c$

Do $a_n \le c \le b_n$ với mọi n nên c thuộc về mọi đoạn $[a_n; b_n]$.

Giả sử có thêm $c' \in [a_n ; b_n]$ với mọi $n \in \mathbb{N}$.

Lúc đó $0 \le |c-c'| \le b_n - a_n$ với mọi n. Chuyển qua giới hạn thì c=c' nên tồn tại duy nhất một điểm thuộc về mọi đoạn Δ_n .

Nguyên li Bolzano-Weierstrass

Mọi dãy bị chặn đều có chứa một dãy con hội tụ.

Chứng minh. Giả sử $\{x_n\}$ là một dãy bị chặn.

Lúc đó có hai số thực a, b sao cho a $\leq x_n \leq b$ với mọi $n \in \mathbb{N}$. Ta chia đoạn [a; b] thành hai đoạn có độ dài bằng nhau. Lúc đó có ít nhất một đoạn chứa vô số phần tử của $\{x_n\}$, ta kí hiệu đoạn đó là Δ_1 . Lại chia đoạn Δ_1 thành hai đoạn có độ dài bằng nhau thì một trong hai đoạn này phải chứa vô số phần tử của dãy $\{x_n\}$ mà ta kí hiệu là Δ_2 . Tiếp tục quá trình này ta tìm được một dãy các đoạn $\{\Delta_n\}$ có tính chất

$$\Delta_{n+1} \subset \Delta_n$$
 với mọi $n \in \mathbb{N}$.

Và nếu
$$\Delta_n = [a_n; b_n]$$
 thì $\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b - a}{2^n} = 0$.

Như vậy $\{\Delta_n\}$ là một dãy thắt những đoạn nên theo định lí 1.7 thì tồn tại c thuộc vào mọi đoạn Δ_n . Hơn nữa $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$.

Bây giờ ta chọn $x_{n_1} \in \Delta_1$. Do Δ_2 chứa vô số phần tử của $\{x_n\}$ nên ta chọn được $x_{n_2} \in \Delta_2$, $n_2 > n_1$. Tiếp tục quá trình thì được dãy $\{x_{n_k}\}$ mà $x_{n_k} \in \Delta_k$ với mọi k.

Như vậy $a_k \le x_{n_k} \le b_k$ với mọi k nên chuyển qua giới hạn thì ta được

$$\lim_{k\to\infty} x_{n_k} = c.$$

Đây là điều phải chứng minh.

1.2. GIỚI HẠN CỦA HÀM SỐ

1.2.1. Giới hạn của hàm số tại một điểm

Dưới đây, ta gọi một lân cận của x_0 là một khoảng (mở hoặc đóng hoặc nửa mở) chứa x_0 .

Trong các định nghĩa về giới hạn sau đây, khi ta nói hàm f xác định trên một lân cận của x_0 thì ta quy ước rằng f có thể không xác định tại \mathbf{x}_0 .

Định nghĩa 1. Cho f là một hàm xác định trên một lân cận của x_0 . Trong lân cận đó bao giờ ta cũng tìm được dãy $\{x_n\}_n$ sao cho $x_n \neq x_0$ và $\lim_{n \to \infty} x_n = x_0$.

Hàm f được gọi là có giới hạn bằng L khi $x \to x_0$ nếu với mọi dãy $\{x_n\}_n$ có tính chất trên thì dãy $\{f(x_n)\}_n$ có giới hạn bằng L.

Ta kí hiệu
$$\lim_{x \to x_0} f(x) = L$$
 hay $f(x) \to L$ khi $x \to x_0$

Như vậy
$$\lim_{x \to x_0} f(x) = L \Leftrightarrow \forall \{x_n\}, x_n \neq x_0 : x_n \to x_0 \text{ thì } f(x_n) \to L.$$

Định nghĩa 2. Cho f xác định trong lân cận của x_0 . Khi đó, hàm f có giới hạn bằng L khi $x \to x_0$ nếu với mỗi $\varepsilon > 0$, tồn tại $\delta > 0$ sao cho với mọi x thoa mãn :

$$0 < |x - x_0| < \delta \text{ thi } |f(x) - L| < \epsilon.$$

1.2.2. Giới hạn một phía

Định nghĩa. Hàm f được gọi là có giới hạn bên phải là số L khi $x \to x_0$ nếu với mọi dãy $\{x_n\}$ mà $x_n > x_0$ và $x_n \to x_0$ thì $f(x_n) \to L$.

Khi đó ta viết
$$\lim_{x \to a} f(x) = L$$
.

Hàm f được gọi là có giới hạn bên trái là số L khi $x \to x_0$ nếu với mọi dãy $\{x_n\}_n$ mà $x_n < x_0$ và $x_n \to x_0$ thì $f(x_n) \to L$.

Khi đó ta viết
$$\lim_{x \to x} f(x) = L$$
.

Từ các định nghĩa giới hạn ta dễ dàng chứng minh được định lí sau :

Định lí 1.8

Hàm f có giới hạn là L khi $x \to x_0$ khi và chỉ khi tồn tại các giới hạn bên phải, giới hạn bên trái của f khi $x \to x_0$ và hai giới hạn một phía đó đều bằng L.

1.2.3. Giới hạn ở vô tận và giới hạn vô tận

Các định nghĩa

- Giả sử hàm f xác định trên (a; $+\infty$).

Hàm f được gọi là có giới hạn bằng L khi $x \to +\infty$ nếu với mọi dãy $\{x_n\}$ mà $x_n \to +\infty$ thì $f(x_n) \to L$. Kí hiệu $\lim_{x \to +\infty} f(x) = L$.

- Giả sử hàm f xác định trên khoảng $(-\infty; a)$.

Hàm f được gọi là có giới hạn bằng L khi $x\to -\infty$ nếu với mọi dãy $\{x_n\}$ mà $x_n\to -\infty$ thì $f(x_n)\to L$. Kí hiệu $\lim_{n\to\infty} f(x)=L$.

- Giả sử hàm f xác định trên một lân cận của x_0 .

Hàm f được gọi là có giới hạn bằng $+\infty$ khi $x \to x_0$ nếu với mọi dãy $\{x_n\}_n$ mà $x_n \neq x_0$ và $x_n \to x_0$ thì $f(x_n) \to +\infty$. Kí hiệu $\lim_{x \to x_0} f(x) = +\infty$.

Hàm f được gọi là có giới hạn bằng $-\infty$ khi $x \to x_0$ nếu với mọi dãy $\{x_n\}_n$ mà $x_n \neq x_0$ và $x_n \to x_0$ thì $f(x_n) \to -\infty$. Kí hiệu $\lim_{x \to x_0} f(x) = -\infty$.

- Giả sử hàm f xác định trên (a; +∞)

Hàm f được gọi là có giới hạn bằng $+\infty$ khi $x \to +\infty$ nếu với mọi dãy $\{x_n\}$ mà $x_n \to +\infty$ thì $f(x_n) \to +\infty$. Kí hiệu $\lim_{x \to +\infty} f(x) = +\infty$.

Hàm f được gọi là có giới hạn bằng $-\infty$ khi $x \to +\infty$ nếu với mọi dãy $\{x_n\}$ mà $x_n \to +\infty$ thì $f(x_n) \to -\infty$. Kí hiệu $\lim_{x \to +\infty} f(x) = -\infty$.

- Giả sử hàm f xác định trên $(-\infty; a)$.

Hàm f được gọi là có giới hạn bằng $+\infty$ khi $x \to -\infty$ nếu với mọi dãy $\{x_n\}$ mà $x_n \to -\infty$ thì $f(x_n) \to +\infty$. Kí hiệu $\lim_{n \to \infty} f(x) = +\infty$.

Hàm f được gọi là có giới hạn bằng $-\infty$ khi $x \to -\infty$ nếu với mọi dãy $\{x_n\}$ mà $x_n \to -\infty$ thì $f(x_n) \to -\infty$. Kí hiệu $\lim_{n \to \infty} f(x_n) = -\infty$.

1.2.4. Tính chất của hàm số có giới hạn

Định lí 1.9

Nếu
$$\lim_{x\to x_0} f(x) = L$$
 thì $\lim_{x\to x_0} |f(x)| = |L|$.

Chứng minh.

Ta có, nếu $u_n \rightarrow a$ thì $|u_n| \rightarrow |a|$ nên từ định nghĩa giới hạn hàm số ta suy ra kết quả cần chứng minh.

Định lí 1.10

Giả sử $\lim_{x \to x_0} f(x) = L_1$, $\lim_{x \to x_0} g(x) = L_2$ và $f(x) \le g(x)$ trên một lân

cận $U(x_0)$ của x_0 . Lúc đó $L_1 \le L_2$.

Định lí 1.11

Giả sử $\lim_{x \to x_0} f_1(x) = \lim_{x \to x_0} f_2(x) = L$ và $f_1(x) \le g(x) \le f_2(x)$ với mọi

x thuộc lân cận $U(x_0)$ của x_0 . Lúc đó $\lim_{x\to x_0} g(x) = L$.

1.2.5. Các phép toán giới hạn hàm số Định lí 1.12

Giả sử
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} g(x) = b$. Lúc đó
$$\lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = a \pm b$$
;
$$\lim_{x \to x_0} f(x) \cdot g(x) = a \cdot b$$
;
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b} \text{ (nếu } b \neq 0).$$

1.3. HÀM SỐ LIÊN TỤC

1.3.1. Định nghĩa hàm số liên tục

Cho f là một hàm số xác định trên khoảng (a; b) và $x_0 \in (a; b)$. Ta nói f liên tục tại x_0 nếu $\lim_{x \to x_0} f(x) = f(x_0)$.

1.3.2. Số gia

Cho f là một hàm số xác định trên khoảng (a; b) và $x_0 \in (a; b)$.

Số gia của biến số tại x_0 là $\Delta x = x - x_0$.

Số gia của hàm số tại x_0 là $\Delta f = f(x) - f(x_0)$.

Đẳng thức của định nghĩa hàm số liên tục trên được viết lại là:

$$\lim_{x\to x_0} [f(x) - f(x_0)] = 0.$$

Lúc đó điều kiện này tương đương với $\lim_{\Delta x \to 0} \Delta f = 0$.

1.3.3. Liên tục một bên

Hàm f được gọi là liên tục bên phải tại x_0 nếu $\lim_{x\to x_0} f(x) = f(x_0)$.

Hàm f được gọi là liên tục bên trái tại x_0 nếu $\lim_{x \to x_0} f(x) = f(x_0)$.

Từ định nghĩa và tính chất của giới hạn, ta có : hàm f liên tục tại $x_0 \in (a;b)$ nếu f liên tục bên phải và liên tục bên trái tại x_0 .

Hàm f liên tục trên khoảng (a; b) nếu f liên tục tại mọi $x_0 \in (a; b)$.

Hàm f liên tục trên đoạn [a;b] nếu f liên tục tại mọi $x_0 \in (a;b)$, f liên tục bên phải tại a và liên tục bên trái tại b.

1.3.4. Hàm số gián đoạn

Nếu f không liên tục tại x_0 thì f được gọi là gián đoạn tại x_0 . Lúc đó x_0 được gọi là một điểm gián đoạn của hàm f.

1.3.5. Các phép toán trên các hàm liên tục

Từ định nghĩa và các kết quả về giới hạn, ta có

Định lí 1.13

Nếu f và g là hai hàm liên tục tại x_0 thì các hàm f+g, f-g, fg cũng liên tục tại x_0 và nếu $g(x_0) \neq 0$ thì hàm $\frac{f}{g}$ cũng liên tục tại x_0 .

Định lí 1.14

Nếu hàm f liên tục tại x_0 và hàm g liên tục tại $y_0 = f(x_0)$ thì hàm hợp g_0 f liên tục tại điểm x_0 .

1.3.6. Tính chất của hàm số liên tục trên một đoạn

Định lí 1.15

Nếu hàm f liên tục tại x_0 và $f(x_0) \neq 0$ thì có một lân cận $U(x_0)$ của x_0 sao cho tại mỗi x thuộc về lân cận đó thì f(x) cùng dấu với $f(x_0)$.

Định lí 1.16

Nếu hàm f liên tục trên [a; b] thì f bị chặn ở trên [a; b].

Chứng minh. Giả sử f không bị chặn ở trên [a; b].

Lúc đó với mỗi $n \in \mathbb{N}$ tồn tại $x_n \in [a; b]$ để $|f(x_n)| > n$.

Dãy $\{x_n\} \subset [a\;;\;b]$ nên là một dãy bị chặn. Theo nguyên lí Bolzano –Weierstrass, dãy $\{x_n\}$ có chứa dãy con $\left\{x_{n_k}\right\}$ hội tụ.

Đặt
$$x_0 = \lim_{k \to \infty} x_{n_k}$$
 thì $x_0 \in [a; b]$.

Hàm f liên tục tại x_0 nên $\lim_{k\to\infty} f(x_{n_k}) = f(x_0)$.

Từ giả thiết ta có $|f(x_{n_k})| > n_k$ với mọi $k \in \mathbb{N}$. Điều này mâu thuẫn với $f(x_{n_k}) \to f(x_0)$ nên f bị chặn ở trên [a; b].

1.3.7. Các định lí về giá trị trung bình

Định lí 1.17

Nếu f liên tục trên [a; b] thì f đạt được giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó, nghĩa là có những phần tử α , β của [a; b] để cho $\min_{x \in [a,b]} f(x) = \beta$; $\max_{x \in [a,b]} f(x) = \alpha$.

Định lí 1.18

Nếu hàm số f liên tục trên đoạn [a;b] và $f(a).f(b) \le 0$ thì có ít nhất một điểm $c \in (a;b)$ để f(c) = 0.

Chứng minh. Vì f(a).f(b) < 0 nên f(a) và f(b) trái dấu.

Không mất tính tổng quát ta có thể giả sử f(a) > 0 và f(b) < 0.

Chia đoạn [a; b] thành hai phần bằng nhau bởi điểm chia $\frac{a+b}{2}$ là trung điểm của đoạn [a; b].

Nếu $f\left(\frac{a+b}{2}\right) = 0$ thì định lí được chứng minh.

Nếu f $\left(\frac{a+b}{2}\right) \neq 0$ thì ta gọi $\Delta_1 = \left[\frac{a+b}{2}; b\right]$ khi f $\left(\frac{a+b}{2}\right) > 0$ và gọi $\Delta_1 = \left[a; \frac{a+b}{2}\right]$ khi f $\left(\frac{a+b}{2}\right) < 0$.

Như vậy $[a_1;b_1]$ là một trong hai đoạn $\left[a;\frac{a+b}{2}\right], \left[\frac{a+b}{2};b\right]$ sao cho $f(a_1)>0$, $f(b_1)<0$. Ta lại chia đoạn Δ_1 thành hai phần bằng nhau bởi điểm chia là $\frac{a_1+b_1}{2}$.

Nếu $f\left(\frac{a_1 + b_1}{2}\right) = 0$ thì định lí được chứng minh.

Nếu f $\left(\frac{a_1+b_1}{2}\right)\neq 0$ thì ta gọi $\Delta_2=\left[a_2\,;b_2\right]$ là một trong hai đoạn $\left[a_1\,;\,\frac{a_1+b_1}{2}\right], \left[\frac{a_1+b_1}{2}\,;\,b_1\right]$ sao cho f $(a_2)>0$, f $(b_2)<0$. Tiếp tục quá trình này ta kết luận được rằng hoặc ta gặp điểm $c\in(a\;;b)$ để f(c)=0 hoặc ta sẽ có được một dãy các đoạn $\Delta_n=\left[a_n\,;b_n\right]$ mà f $(a_n)>0$, f $(b_n)<0$ với mọi

 $n \in \mathbb{N}, \Delta_{n+1} \subset \Delta_n$ và $b_n - a_n = \frac{a-b}{2^n}$. Dãy $\{\Delta_n\}$ như thế là một dãy các đoạn thắt nên có điểm c thuộc về mọi Δ_n . Lúc đó $c = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

f liên tục và $f(a_n) > 0$ với mỗi n nên $f(c) = \lim_{n \to \infty} f(a_n) \ge 0$;

 $f(b_n) \le 0$ với mọi n nên $f(c) = \lim_{n \to \infty} f(b_n) \le 0$.

Do đó f(c) = 0. Rỗ ràng $c \neq a$ và $c \neq b$ vì $f(a) \neq 0$ và $f(b) \neq 0$.

Định lí 1.19

Giả sư f là một hàm liên tục trên [a;b] và f(a) = A, f(b) = B. Lúc đó nếu C là một số bất kì nằm giữa A và B thì có ít nhất điểm $c \in (a;b)$ để f(c) = C.

Chứng minh. Không mất tính tổng quát ta có thể giả sử A < B.

Với số C bất kì mà A < C < B, ta lập hàm số phụ F như sau:

$$F(x) = f(x) - C$$

Vì f liên tục trên [a; b] nên hàm F cũng liên tục trên đoạn đó. Ta có

$$F(a). F(b) = [f(a) - C][f(b) - C]$$
$$= (A - C). (B - C) < 0$$

Theo định lí 1.18 thì ta có $c \in (a; b)$ để F(c) = 0. Do đó f(c) = C.

Định lí 1.22

Nếu f là một hàm liên tục trên [a; b] thì f nhận mọi giá trị trung gian giữa giá trị nhỏ nhất m và giá trị lớn nhất M của nó trên đoạn đó.

Chứng minh. Do f liên tục trên [a; b] nên có x_1 , x_2 thuộc đoạn [a; b] để $f(x_1) = \min_{x \in [a,b]} f(x) = m$, $f(x_2) = \max_{x \in [a,b]} f(x) = M$.

Ta có thể xem $x_1 < x_2$.

Hàm f liên tục trên $[x_1; x_2]$ và $f(x_1) = m$, $f(x_2) = M$.

Theo định lí 1.19 nếu m < C < M thì có c \in (x_1 ; x_2) để f(c) = C.

Nhưng $(x_1; x_2) \subset (a; b)$ nên có $c \in (a; b)$ để f(c) = C.

PHÀN 2: CÁC VẤN ĐỀ GIẢI TOÁN

VẤN ĐỀ 1 : BÀI TOÁN CHỨNG MINH PHƯƠNG TRÌNH CÓ NGHIỆM

1. CÁC ĐỊNH HƯỚNG

ĐINH HƯỚNG 1

Bài toán chứng minh phương trình f(x) = 0 có nghiệm

Ta có thể xét hàm số y = f(x), kiểm tra tính chất liên tục.

Trên miền liên tục đó, tìm chọn 2 giá trị a, b phân biệt mà $f(a).f(b) \le 0$.

- Nếu f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại c thuộc khoảng (a;b) để f(c) = 0 tức là phương trình f(x) = 0 có nghiệm x = c thuộc khoảng (a;b).
- Nếu f(x) liên tục trên đoạn [a;b] và $f(a).f(b) \le 0$ thì tồn tại c thuộc đoạn [a;b] để f(c) = 0 tức là phương trình f(x) = 0 có nghiệm x = c thuộc đoạn [a;b].

Chú ý: Nếu có $\lim_{x \to a} f(x) = -\infty$ thì tồn tại a < 0, |a| khá lớn để f(a) < 0.

Nếu có $\lim_{x\to +\infty} f(x) = +\infty$ thì tồn tại b > 0, b khá lớn để f(b) > 0.

ĐINH HƯỚNG 2

Bài toán chứng minh phương trình f(x) = g(x) có nghiệm

Ta có thể xét hàm số h(x) = f(x) - g(x), kiểm tra tính chất liên tục.

Từ đó đưa về bài toán chứng minh h(x) = 0 có nghiệm, bài toán định hướng 1.

Đặc biệt nếu phương trình dạng $\frac{A(x)}{B(x)} = C(x)$ thì đặt điều kiện $B(x) \neq 0$ và

có thể biến đổi thành phương trình
$$\frac{A(x)}{B(x)} - C(x) = 0$$
 hoặc $A(x) - B(x) \cdot C(x) = 0$.

Đôi khi ta còn biến đổi tương đương theo nhiều cách khác, chẳng hạn nâng luỹ thừa, lấy căn thức của 2 vế phương trình, ... (Chú ý đến điều kiện để phương trình xác định).

ĐINH HƯỚNG 3

Bài toán chứng minh tồn tại số c thoả mãn một đẳng thức

Ta có thể thay thế c bởi biến x và đưa đẳng thức về dạng phương trình có ẩn số x. Bài toán trở về bài toán định hướng 1 hay 2.

2. CÁC BÀI TOÁN

Trên cơ sở các định hướng trên, ta giải các bài toán sau : BÀI TOÁN 1

Chứng minh mọi phương trình bậc lẻ đều có ít nhất 1 nghiệm.

Giải.

Phương trình bậc lẻ có dạng

$$a_0 x^{2m+1} + a_1 x^{2m} + \ldots + a_{2m} x + a_{2m+1} = 0$$
, $a_0 \neq 0$, m là số tự nhiên.

Xét hàm số $P(x)=a_0x^{2m+1}+a_1x^{2m}+\ldots+a_{2m}x+a_{2m+1}$, khi đó hàm đa thức P(x) xác định và liên tục trên $\mathbb R$.

- Xét $a_0 > 0$ thì $\lim_{x \to -\infty} P(x) = -\infty$ nên tồn tại a < 0 để P(a) < 0 và $\lim_{x \to +\infty} P(x) = +\infty$ nên tồn tại b > 0 để P(b) > 0.
- Xét $a_0 < 0$ thì $\lim_{x \to -\infty} P(x) = +\infty$ nên tồn tại a < 0 để P(a) > 0 và $\lim_{x \to +\infty} P(x) = -\infty$ nên tồn tại b > 0 để P(b) < 0.

Do đó trong 2 trường hợp thì luôn có P(a).P(b) < 0 nên phương trình bậc lẻ P(x) = 0 luôn luôn có ít nhất 1 nghiệm.

Hệ quả: Phương trình bậc 3 luôn luôn có nghiệm. BÀI TOÁN 2

Chứng minh phương trình:

$$m(x-3)(x-5) + x^2 - 15 = 0$$
 luôn luôn có nghiêm với moi m.

Giải.

Xét
$$f(x) = m(x-3)(x-5) + x^2 - 15$$
, khi đó f liên tục trên \mathbb{R} .

Ta có:
$$f(3) = -6$$
 và $f(5) = 10$.

Do đó
$$f(3).f(5) < 0, \forall m$$
.

Vậy phương trình luôn luôn có nghiệm với mọi m.

BÀI TOÁN 3

Chứng minh phương trình:

$$ab(x - a)(x - b) + bc(x - b)(x - c) + ca(x - c)(x - a) = 0$$

luôn có nghiệm với mọi a, b, c.

Đặt f(x) = ab(x - a)(x - b) + bc(x - b)(x - c) + ac(x - a)(x - c) thì f liên tục trên $D = \mathbb{R}$.

Ta có :
$$f(a) = bc(a - b)(a - c)$$

$$f(b) = ac(b - a)(b - c)$$

$$f(c) = ab(c - a)(c - b)$$

Suy ra
$$f(a).f(b).f(c) = -a^2b^2c^2(a-b)^2(b-c)^2(c-a)^2 \le 0$$
.

Do đó trong 3 giá trị f(a), f(b), f(c) có một giá trị không dương, giả sử là f(a).

Mà
$$f(0) = a^2b^2 + b^2c^2 + a^2c^2 \ge 0$$
 nên $f(a).f(0) \le 0$.

Vậy phương trình luôn có nghiệm với mọi a, b, c.

BÀI TOÁN 4

Chứng minh các phương trình sau có nghiệm:

a)
$$3^x + 4^x = 8^x$$
;

b)
$$\sin x + 1 = x$$
.

Giải.

a) Ta có
$$3^x + 4^x = 8^x \Leftrightarrow 3^x + 4^x - 8^x = 0$$

Xét hàm số $f(x) = 3^x + 4^x - 8^x$, khi đó f(x) liên tục trên \mathbb{R} .

Vì f(0) = 1 và f(1) = -1 nên f(0).f(1) < 0 nên phương trình f(x) = 0 có nghiệm.

b) Ta có sinx + 1 =
$$x \Leftrightarrow \sin x + 1 - x = 0$$

Xét hàm số $f(x) = \sin x + 1 - x$, khi đó f(x) liên tục trên \mathbb{R} .

Vì
$$f(0) = 1$$
 và $f(\pi) = -\pi + 1$ nên $f(0)$. $f(\pi) < 0$.

Vậy phương trình f(x) = 0 có nghiệm.

BÀI TOÁN 5

Chứng minh các phương trình sau luôn luôn có nghiệm với mọi tham số:

a)
$$\frac{1}{\sin x} + \frac{3}{\cos x} = m \text{ (m : tham số)};$$

b)
$$a.\sin 3x + b.\cos 2x + c.\cos x + \sin x = 0$$
 (a, b, c : tham số).

a) Xét hàm số $f(x) = \frac{1}{\sin x} + \frac{3}{\cos x} - m$, khi đó f(x) liên tục trên khoảng $(\frac{\pi}{2}; \pi)$.

Ta có
$$\lim_{x \to \frac{\pi^*}{2}} f(x) = -\infty \Rightarrow \exists a \in (\frac{\pi}{2}; \frac{\pi}{2} + \epsilon), (\frac{\pi}{2}; \frac{\pi}{2} + \epsilon) \subset (\frac{\pi}{2}; \pi), f(a) < 0.$$

$$\lim_{x\to\pi} f(x) = +\infty \Rightarrow \exists b \in (\pi - \varepsilon'; \pi), (\pi - \varepsilon'; \pi) \subset (\frac{\pi}{2}; \pi), f(b) > 0.$$

(Với ε và ε' dương, khá bé).

Do đó f(a).f(b) < 0 với mọi m nên phương trình luôn luôn có nghiệm.

b) Xét hàm số $f(x) = a.\sin 3x + b.\cos 2x + c.\cos x + \sin x$, khi đó f(x) liên tục trên \mathbb{R} . Ta có f(0) = b + c; $f(\frac{\pi}{2}) = -a - b + 1$;

$$f(\pi) = b - c$$
; $f(\frac{3\pi}{2}) = a - b - 1$.

Nên
$$f(0) + f(\frac{\pi}{2}) + f(\pi) + f(\frac{3\pi}{2}) = 0$$
 với mọi a, b, c.

Do đó tồn tại 2 giá trị
$$p, q \in \left\{0 ; \frac{\pi}{2} ; \pi ; \frac{3\pi}{2}\right\}$$
 thoá $f(p).f(q) \le 0$.

Vậy phương trình luôn luôn có nghiệm với mọi tham số a, b, c. BÀI TOÁN 6

Cho 3 số a, b, c thoả mãn : 12a + 15b + 20c = 0.

Chứng minh phương trình $ax^2 + bx + c = 0$ luôn có nghiệm x thuộc $\left[0; \frac{4}{5}\right]$.

Giải.

Đặt $f(x) = ax^2 + bx + c$ thì f là hàm sơ cấp nên f liên tục trên $D = \mathbb{R}$.

Ta có
$$f\left(\frac{4}{5}\right) = \frac{16}{25}a + \frac{4}{5}b + c$$
 nên $\frac{75}{4}f\left(\frac{4}{5}\right) = 12a + 15b + \frac{75}{4}c$.

$$f(0) = c \text{ nên } \frac{5}{4} f(0) = \frac{5}{4} c.$$
Do đó $\frac{75}{4} f\left(\frac{4}{5}\right) + \frac{5}{4} f(0) = 12a + 15b + \frac{75}{4}c + \frac{5}{4}c$

$$= 12a + 15b + 20c = 0.$$

Trong 2 giá trị $f\left(\frac{4}{5}\right)$ và f(0) có một giá trị âm và một giá trị dương hay cả hai giá trị đều bằng 0 nên ta có $f(0).f\left(\frac{4}{5}\right) \le 0$.

Mà f liên tục trên \mathbb{R} nên phương trình f(x) = 0 luôn có nghiệm thuộc $\left[0; \frac{4}{5}\right]$.

BÀI TOÁN 7

Chứng minh phương trình $ax^2 + bx + c = 0$ luôn có nghiệm với mọi tham số a, b, c trong trường hợp:

$$5a + 4b + 6c = 0$$
.

Giải.

Xét $f(x) = ax^2 + bx + c$, khi đó f(x) liên tục trên \mathbb{R} .

Ta có
$$f(0) = c$$
, $f(2) = 4a + 2b + c$, $f(\frac{1}{2}) = \frac{a}{4} + \frac{b}{2} + c$

nên
$$f(0) + 4$$
. $f(\frac{1}{2}) + f(2) = 5a + 4b + 6c = 0$.

Do đó tồn tại 2 giá trị $p,q \in \left\{0; \frac{1}{2}; 2\right\}$ thoả $f(p).f(q) \le 0$.

Vậy phương trình luôn có nghiệm với mọi tham số a,b,c. BÀI TOÁN 8

Cho hàm số f(x) xác định, liên tục trên \mathbb{R} .

Chứng minh rằng nếu f(0) = f(1) và với m nguyên dương bất kì thì phương trình $f(x + \frac{1}{m}) = f(x)$ có nghiệm.

Giải.

Với m nguyên dương

Đặt
$$g(x) = f(x + \frac{1}{m}) - f(x)$$
, khi đó $g(x)$ liên tục trên \mathbb{R} .

Ta có tổng
$$g(0) + g(\frac{1}{m}) + g(\frac{2}{m}) + ... + g(\frac{m-1}{m})$$

$$= (f(\frac{1}{m}) - f(0)) + (f(\frac{2}{m}) - f(\frac{1}{m})) + (f(\frac{3}{m}) - f(\frac{2}{m})) + ... + (f(1) - f(\frac{m-1}{m}))$$

$$= f(1) - f(0) = 0.$$

Nếu $g(0) = g(\frac{1}{m}) = ... = g(\frac{m-1}{m}) = 0$ thì suy ra ngay kết quả.

Nếu các giá trị g(0), $g(\frac{1}{m})$, ..., $g(\frac{m-1}{m})$ không đồng thời bằng 0 thì tồn tại 2 số a, b $\in \{0; \frac{1}{m}; \frac{2}{m}; ...; \frac{m-1}{m}\}$ để g(a).g(b) < 0. Do đó g(x) có nghiệm.

Vậy phương trình $f(x + \frac{1}{m}) = f(x)$ có nghiệm.

BÀI TOÁN 9

Cho hàm số f(x) xác định, liên tục trên [a;b] mà $f(a) \neq f(b)$; hai số c, d bất kì mà cd > 0. Chứng minh tồn tại số r thoả mãn

$$cf(a) + df(b) - (c + d)f(r) = 0.$$

Giải

Đặt g(x) = cf(a) + df(b) - (c + d)f(x), khi đó g(x) liên tục trên [a; b].

Ta có g(a) = cf(a) + df(b) - (c + d)f(a) = d(f(b) - f(a))

Và
$$g(b) = cf(a) + df(b) - (c + d)f(b) = c(f(a) - f(b)).$$

Do đó $g(a).g(b) = -cd(f(b)-f(a))^2 < 0$ nên phương trình g(x) = 0 có nghiệm x = r.

Vậy tồn tại số r để cf(a) + df(b) - (c + d)f(r) = 0.

BÀI TOÁN 10

Cho a, b, c, d là các số thực. Chứng minh nếu phương trình

$$ax^2 + (b + c)x + d + e = 0$$

có nghiệm thực thuộc $[1; +\infty)$ thì phương trình :

$$ax^4 + bx^3 + cx^2 + dx + e = 0$$
 cũng có nghiệm thực.

Gọi x_0 thuộc [1; $+\infty$) là nghiệm thực của phương trình cho thì $ax_0^2 + (b+c)x_0 + d + e = 0$ hay: $ax_0^2 + cx_0 + e = -(bx_0 + d)$ Xét hàm số $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, khi đó f liên tục trên \mathbb{R} .

Ta có
$$f(\sqrt{x_0}) = (ax_0^2 + cx_0 + e) + \sqrt{x_0}(bx_0 + d)$$
$$f(-\sqrt{x_0}) = (ax_0^2 + cx_0 + e) - \sqrt{x_0}(bx_0 + d)$$

Suy ra

$$f(\sqrt{x_0}).f(-\sqrt{x_0}) = (ax_0^2 + cx_0 + e)^2 - x_0(bx_0 + d)^2$$
$$= (ax_0^2 + cx_0 + e)^2 - x_0(ax_0^2 + cx_0 + e)^2$$
$$= (ax_0^2 + cx_0 + e)^2(1 - x_0) \le 0.$$

Do đó phương trình f(x) = 0 có ít nhất l nghiệm thuộc đoạn $\left[-\sqrt{x_0}; \sqrt{x_0}\right]$.

Vậy phương trình $ax^4 + bx^3 + cx^2 + dx + e = 0$ có nghiệm thực.

VẨN ĐỂ 2 : BÀI TOÁN VỀ SỐ LƯỢNG NGHIỆM CỦA PHƯƠNG TRÌNH

1. CÁC ĐỊNH HƯỚNG

ĐỊNH HƯỚNG 1

Bài toán chứng minh phương trình f(x) = 0 có nghiệm thuộc khoảng (a; b)

- Nếu f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại c thuộc khoảng (a;b) để f(c) = 0 tức là phương trình f(x) = 0 có nghiệm x = c thuộc khoảng (a;b).
- Nếu f(x) liên tục trên đoạn [a; b] và f(a).f(b) ≥ 0 thì ta phải chọn
 đoạn [c; d] mà [c; d] ⊂ [a; b] và f(c).f(d) < 0 để đưa về trường họp trên.

ĐINH HƯỚNG 2

Bài toán chứng minh phương trình f(x) = 0 có ít nhất k nghiệm Xét hàm số y = f(x), kiểm tra tính chất liên tục.

Trên miền liên tục đó, tìm chọn k+1 giá trị $\alpha_1 < \alpha_2 < ... < \alpha_{k+1}$ mà $f(\alpha_1); f(\alpha_2); ...; f(\alpha_{k+1})$ đổi dấu liên tiếp.

Từ đó suy ra phương trình f(x) = 0 có ít nhất k nghiệm thuộc k khoảng rời nhau $(\alpha_1; \alpha_2), (\alpha_2; \alpha_3), ..., (\alpha_k; \alpha_{k+1})$.

Đặc biệt, hàm đa thức bậc n nếu đủ n nghiệm phân biệt thì đó là tất cả các nghiệm của phương trình.

2. CÁC BÀI TOÁN

BÀI TOÁN 1

Chứng minh phương trình

$$x^4 + ax^3 + bx^2 + cx - 1 = 0$$
 có ít nhất 2 nghiệm với mọi a, b, c.

Giải.

Xét
$$f(x) = x^4 + ax^3 + bx^2 + cx - 1$$
, khi đó f liên tục trên \mathbb{R} và:
$$\lim_{x \to -\infty} f(x) = +\infty \text{ nên } \exists \ p < 0 \text{ để } f(p) > 0.$$
$$f(0) = -1 < 0$$

$$\lim_{x \to +\infty} f(x) = +\infty \text{ nên } \exists q > 0 \text{ dê } f(q) > 0.$$

Do đó f(p).f(0) < 0 và f(0).f(q) < 0 với mọi a, b, c nên phương trình có ít nhất 2 nghiệm.

BÀI TOÁN 2

Chứng minh phương trình:

$$mx^4 + 2x^2 - x - m = 0$$
 luôn có 2 nghiệm, $\forall m$.

Giải.

Xét m = 0 : Phương trình trở thành

$$2x^2 - x = 0 \Leftrightarrow x = 0 \lor x = \frac{1}{2}$$
: phương trình có 2 nghiệm.

Xét m
$$\neq 0$$
: Phương trình $x^4 + \frac{2}{m}x^2 - \frac{1}{m}x - 1 = 0$.

Đặt
$$f(x) = x^4 + \frac{2}{m}x^2 - \frac{1}{m}x - 1$$
 thì f liên tục trên $D = \mathbb{R}$.

$$Vi \lim_{x \to -x} f(x) = +\infty \implies \exists \alpha < 0 \text{ de } f(\alpha) > 0.$$

$$f(0) = -1 < 0.$$

Vì
$$\lim_{x \to +\infty} f(x) = +\infty \Rightarrow \exists \beta > 0 \text{ dễ } f(\beta) > 0.$$

Suy ra $f(\alpha).f(0) < 0$ và $f(0).f(\beta) < 0$.

Vậy phương trình luôn có 2 nghiệm với mọi m. BÀI TOÁN 3

Chứng minh phương trình

$$3x^4 - 4x^3 - 6x^2 + 12x - 20 = 0$$
 có 2 nghiệm.

Giải.

Đặt
$$f(x) = 3x^4 - 4x^3 - 6x^2 + 12x - 20$$
 thì f liên tục trên \mathbb{R} .

Ta có
$$f(0) = -20$$
.

Mặt khác : $\lim_{x \to -\infty} f(x) = +\infty$ nên tồn tại $x_1 < 0$ để $f(x_1) > 0$.

và
$$\lim_{x \to +\infty} f(x) = +\infty$$
 nên tồn tại $x_2 > 0$ để $f(x_2) > 0$.

Do đó $f(0).f(x_1) \le 0$ và $f(0).f(x_2) \le 0$.

Suy ra
$$\exists x_0 \in (x_1; 0)$$
 và $x'_0 \in (0; x_2)$ để $f(x_0) = 0$ và $f(x'_0) = 0$.

Vậy phương trình đã cho có 2 nghiệm.

BÀI TOÁN 4

Chứng minh phương trình

$$2x^3 - 6x + 1 = 0$$
 có 3 nghiệm phân biệt.

Giải.

Đặt $f(x) = 2x^3 - 6x + 1$ thì f liên tục trên \mathbb{R} .

Ta có
$$f(0) = 1$$
, $f(1) = -3$, $f(2) = 5$, $f(-2) = -3$.

$$\Rightarrow$$
 f(-2).f(0) < 0; f(0).f(1) < 0; f(1).f(2) < 0.

Vậy phương trình có 3 nghiệm trên các khoảng (-2;0), (0;1) và (1;2). BÀI TOÁN 5

Chứng minh phương trình

$$x^5 - 5x^3 + 4x - 1 = 0$$
 có 5 nghiệm phân biệt.

Xét hàm số $f(x) = x^5 - 5x^3 + 4x - 1$, khi đó f(x) liên tục trên \mathbb{R} .

Ta có
$$f(-2) = -1$$
, $f(-\frac{3}{2}) = \frac{73}{32}$, $f(0) = -1$,

$$f(\frac{1}{2}) = \frac{13}{32}$$
, $f(1) = -1$, $f(3) = 119$.

Suy ra
$$f(-2).f(-\frac{3}{2}) < 0$$
; $f(-\frac{3}{2}).f(0) < 0$;

$$f(0).f(\frac{1}{2}) < 0$$
; $f(\frac{1}{2}).f(1) < 0$; $f(1).f(3) < 0$.

Do đó phương trình có 5 nghiệm thuộc 5 khoảng rời nhau : $(-2; -\frac{3}{2})$,

$$(-\frac{3}{2};0), (0;\frac{1}{2}), (\frac{1}{2};1)$$
 và $(1;3)$.

Vậy phương trình có 5 nghiệm phân biệt.

BÀI TOÁN 6

Tìm số nghiệm của phương trình

$$x^5 - 10x^3 + 9x - 1 = 0$$
.

Giải

Xét
$$f(x) = x^5 - 10x^3 + 9x - 1$$
 thì f liên tục trên $D = \mathbb{R}$.

Ta có
$$f(-10) = -90091 < 0$$
; $f(-2) = 29 > 0$; $f(0) = -1 < 0$;

$$f(\frac{1}{2}) = \frac{73}{32} > 0$$
; $f(1) = -1 < 0$; $f(10) = 90089 > 0$.

Vì
$$f(-10)f(-2) < 0$$
; $f(-2)f(0) < 0$; $f(0)f(\frac{1}{2}) < 0$;

$$f(\frac{1}{2})f(1) < 0$$
; $f(1)f(10) < 0$;

Nên phương trình f(x) = 0 có 5 nghiệm thuộc 5 khoảng riêng biệt (-10;

$$-2$$
), $(-2; 0)$, $(0; \frac{1}{2})$, $(\frac{1}{2}; 1)$ và $(1; 10)$.

Vậy phương trình có 5 nghiệm phân biệt.

BÀI TOÁN 7

Cho a > 0, b > 0 và a + b = 1, với n nguyên dương.

Chứng minh phương trình $x^2 - b^n.x - a^n = 0$ có 2 nghiệm phân biệt thuộc khoảng (-1; 1).

Giải.

Xét $f(x) = x^2 - b^n \cdot x - a^n$ thì f liên tục trên \mathbb{R} .

Từ giả thiết, suy ra a, b thuộc khoảng (0; 1)

Ta có
$$f(-1) = 1 + b^n - a^n = b^n + (1 - a^n) > 0$$

 $f(0) = -a^n < 0$
 $f(1) = 1 - b^n - a^n = a + b - b^n - a^n = a(1 - a^{n-1}) + b(1 - b^{n-1}) > 0$.

Do đó f(-1).f(0) < 0 và f(0).f(1) < 0.

Vậy phương trình có 2 nghiệm phân biệt thuộc khoảng (-1 ; 1). BÀI TOÁN 8

Cho a > 0, b > 0. Chứng minh phương trình

$$\frac{1}{x} + \frac{1}{x-a} + \frac{1}{x+b} = 0$$

có 2 nghiệm phân biệt thuộc khoảng (-b; a).

Giải.

Điều kiện $x \neq 0$, $x \neq a$, $x \neq -b$

Phương trình đã cho trở thành x(x - a) + x(x + b) + (x - a)(x + b) = 0.

Đặt f(x) = x(x-a) + x(x+b) + (x-a)(x+b) thì f liên tục trên \mathbb{R} .

Ta có
$$f(-b) = b(a + b) > 0$$

$$f(0) = -ab < 0$$

$$f(a) = a(a+b) > 0.$$

Do đó phương trình f(x) = 0 có 2 nghiệm x_1, x_2 thoả $-b < x_1 < 0 < x_2 < a$.

Hai nghiệm x₁, x₂ thoá điều kiện ban đầu.

BÀI TOÁN 9

Chứng minh họ đồ thị

$$y = (m + 3)x^3 - 3(m + 3)x^2 - (6m + 1)x + m + 1$$

luôn đi qua 3 điểm cố định thẳng hàng với mọi m.

Giải.

Ta có
$$y = (m+3)x^3 - 3(m+3)x^2 - (6m+1)x + m + 1$$

= $(x^3 - 3x^2 - 6x + 1)m + (3x^3 - 9x^2 - x + 1)$.

Họ đồ thị đi qua điểm cố định có toạ độ (x;y) thoả hệ:

$$\begin{cases} x^3 - 3x^2 - 6x + 1 = 0 & (1) \\ y = 3x^3 - 9x^2 - x - 1 & (2) \end{cases}$$

Ta chứng minh phương trình (1) có đúng 3 nghiệm phân biệt.

Thật vậy, xét hàm số $f(x) = x^3 - 3x^2 - 6x + 1$, khi đó f(x) liên tục trên \mathbb{R} và $\lim_{x \to \infty} f(x) = -\infty \Rightarrow \exists a < 0, \ f(a) < 0$.

$$f(0) = 1 > 0, f(2) = -15 < 0$$

 $\lim_{x \to 0} f(x) = +\infty \Rightarrow \exists b > 2, f(b) > 0$

Do đó f(x) = 0 có 3 nghiệm phân biệt $x_1 < 0 < x_2 < 2 < x_3$.

Với
$$i = 1, 2, 3$$
 thì tung độ $y_i = 3x_i^3 - 9x_i^2 - x_i + 1$
= $3(x_i^3 - 3x_i^2) - x_i + 1$
= $3(6x_i - 1) - x_i + 1 = 17x_i - 2$.

Vậy họ đồ thị luôn đi qua 3 điểm cố định thắng hàng, 3 điểm này nằm trên đường thẳng y = 17x - 2.

BÀI TOÁN 10

Giải phương trình $8x^3 - 4x^2 - 4x + 1 = 0$.

Giải.

Xét hàm số $f(x) = 8x^3 - 4x^2 - 4x + 1$, khi đó f(x) liên tục trên \mathbb{R} .

Ta có f(-1) = -7; f(0) = 1; $f(\frac{1}{2}) = -1$; f(1) = 1 nên f(x) = 0 có đúng 3 nghiệm và 3 nghiệm này thuộc khoảng (-1; 1).

Xét khoảng (-1; 1), đặt $x = \cos t$, $0 < t < \pi$ thì phương trình trở thành $8\cos^3 t - 4\cos^2 t - 4\cos t + 1 = 0$

$$\Leftrightarrow 4\cos(2\cos^2(t-1)) = 4(1-\sin^2(t)) - 1$$

$$\Leftrightarrow$$
 4cost.cos2t = 3 - 4sin²t \Leftrightarrow sin4t = sin3t (vi sint > 0)

Giải rồi chọn nghiệm
$$t_1 = \frac{\pi}{7}, t_2 = \frac{3\pi}{7}, t_3 = \frac{5\pi}{7}$$
.

Vậy phương trình đã cho có 3 nghiệm

$$x_1 = \cos \frac{\pi}{7}, x_2 = \cos \frac{3\pi}{7}, x_3 = \cos \frac{5\pi}{7}.$$

VẤN ĐỀ 3 : TOÁN TỔNG HỢP SỬ DỤNG TÍNH LIÊN TỤC

BÀI TOÁN 1

Cho hàm số $f: [a; b] \rightarrow [a; b]$, với a < b và thoả điều kiện:

$$|f(x) - f(y)| \le |x - y|$$
, với mọi x, y phân biệt thuộc [a; b].

Chứng minh rằng phương trình f(x) = x có duy nhất một nghiệm thuộc [a; b].

Giải.

Từ giá thiết, ta có f(x) liên tục trên [a; b].

Xét hàm số g(x) = |f(x) - x|, khi đó g(x) liên tục trên [a; b].

Do đó tồn tại
$$x_0$$
 thuộc [a; b] sao cho: $g(x_0) = \min_{x \in [a,b]} g(x)$. (*)

Ta sẽ chứng minh $g(x_0) = 0$.

Thật vậy, giả sử $g(x_0) \neq 0$ suy ra $f(x_0) \neq x_0$.

Từ bất đẳng thức đã cho thì có

$$|f(f(x_0)) - f(x_0)| < |f(x_0) - x_0|.$$

Suy ra $g(f(x_0)) \le g(x_0)$: mâu thuẫn với (*).

Do đó $g(x_0) = 0$ nghĩa là $f(x_0) = x_0$.

Giả sử phương trình f(x) = x còn có nghiệm $x_1 \neq x_0$, x_1 thuộc [a; b]. Khi đó $|f(x_1) - f(x_0)| = |x_1 - x_0|$: mâu thuẫn với giả thiết.

Vậy phương trình f(x) = x có duy nhất một nghiệm thuộc [a; b]. BÀI TOÁN 2

Cho 2 hàm số f(x), g(x) liên tục trên \mathbb{R} và thoả mãn f[g(x)] = g[f(x)].

Chứng minh rằng nếu phương trình f(x) = g(x) vô nghiệm thì phương trình f[f(x)] = g[g(x)] cũng vô nghiệm.

Giải.

Vì phương trình f(x) = g(x) vô nghiệm và f(x), g(x) liên tục trên $\mathbb R$ nên có 2 khả năng xảy ra.

• Hoặc f(x) - g(x) > 0, $\forall x \Rightarrow f(x) > g(x)$, $\forall x$ $\Rightarrow f(f(x)) > g(f(x)) = f(g(x)) > g(g(x)), \forall x.$

Do đó phương trình f[f(x)] = g[g(x)] vô nghiệm.

• Hoặc $f(x) - g(x) < 0, \forall x \Rightarrow f(x) < g(x), \forall x$

$$\Rightarrow$$
 f(f(x)) < g(f(x)) = f(g(x)) < g(g(x)), \forall x.

Do đó phương trình f[f(x)] = g[g(x)] vô nghiệm.

Vậy trong cả 2 trường hợp thì phương trình f[f(x)] = g[g(x)] vô nghiệm. BÀI TOÁN 3

Tìm đa thức f(x) hệ số nguyên, $f \neq 0$, có giá trị tuyệt đối các hệ số nhỏ hơn 8 và f(x) chia hết cho $g(x) = 4x^3 - 5x^2 - 2012$.

Giải.

• **Bổ đề**: Nếu f(x) = $\sum_{i=0}^{n} a_i x^{n-i}$, $a_0 \neq 0$ có 1 nghiệm là x_0 thì

$$x_0 \le 1 + M \text{ v\'oi } M = \max \left\{ \left| \frac{a_1}{a_0} \right| \right\}.$$

Chứng minh. Vì x₀ là nghiệm nên

$$a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0, a_0 \neq 0.$$
 (1)

Xét $x_0 \le 1$ thì khẳng định là đúng.

Xét $x_0 > 1$ thì (1) suy ra

$$\begin{aligned} x_0^n &= -\left(\frac{a_1}{a_0}.x_0^{n-1} + \frac{a_2}{a_0}.x_0^{n-2} + ... + \frac{a_n}{a_0}\right) \\ &\leq \left|\frac{a_1}{a_0}\right|.x_0^{n-1} + \left|\frac{a_2}{a_0}\right|.x_0^{n-2} + ... + \left|\frac{a_n}{a_0}\right| \\ &\leq M.(x_0^{n-1} + x_0^{n-2} + ... + 1) \\ &\leq M.\frac{x_0^n - 1}{x_0 - 1} \leq M.\frac{x_0^n}{x_0 - 1}. \end{aligned}$$

Do đó:
$$1 \le \frac{M}{x_0 - 1} \Rightarrow x_0 \le 1 + M$$
.

• Giả sử tồn tại đa thức $f(x) = \sum_{i=0}^{n} a_i x^{n-i}$ thoả bài toán :

$$a_0 \neq 0$$
, $|a_i| < 8$ và $f(x)$ chia hết cho $g(x)$.

Vì g(x) = $4x^3 - 5x^2 - 2012$ liên tục trên \mathbb{R} .

$$g(8) = -284 < 0 \text{ và } g(10) = 1488 > 0 \text{ nên } g(8) \cdot g(10) < 0.$$

Do đó g(x) có 1 nghiệm $x_0 \in (8; 10)$ nên f(x) cũng có 1 nghiệm $x_0 \in (8; 10)$.

Theo bổ đề thì $x_0 \le 1 + M$.

Mà a_i nguyên, $|a_i| < 8 \Rightarrow -7 \le a_i \le 7$ nên $M \le 7 \Rightarrow x_0 \le 8$: mâu thuẫn.

Vậy không tồn tại đa thức f(x).

BÀI TOÁN 4

Cho phương trình

$$x^{12} + 1 = 4x^4 \sqrt{x^n - 1}$$
.

Tìm số n nguyên dương bé nhất để phương trình có nghiệm.

Giăi.

Ta có điều kiện $x^n - 1 > 0$. Nếu n lẻ thì x > 1. Còn nếu n chẵn, khi phương trình có nghiệm thì phải có nghiệm x > 1.

Do đó ta chỉ cần xét x > 1.

Áp dụng bất đẳng thức Cauchy

$$x^{12} + 1 = (x^{4} + 1)(x^{8} - x^{4} + 1) = (x^{4} + 1)(x^{4}(x^{4} - 1) + 1)$$

$$> 2x^{2} \cdot 2x^{2} \cdot \sqrt{x^{4} - 1} = 4x^{4} \cdot \sqrt{x^{4} - 1}$$

$$> 4x^{4} \cdot \sqrt{x^{3} - 1} > 4x^{4} \cdot \sqrt{x^{2} - 1} > 4x^{4} \cdot \sqrt{x - 1}$$

Do đó phương trình không có nghiệm khi n = 1, n = 2, n = 3, n = 4.

Xét n = 5, phương trình trở thành $x^{12} + 1 = 4x^4 \sqrt{x^5 - 1}$.

Đặt $f(x) = x^{12} + 1 - 4x^4 \sqrt{x^5 - 1}$, khi đó f(x) liên tục trên $(1, +\infty)$

Ta có f(1) = 2 > 0,
$$f\left(\frac{6}{5}\right) = \left(\frac{6}{5}\right)^{12} + 1 - 4\left(\frac{6}{5}\right)^4 \cdot \sqrt{\left(\frac{6}{5}\right)^5 - 1} < 0$$

nên f(x) có nghiệm x > 1.

Vậy giá trị n nguyên dương bé nhất cần tìm là n = 5.