Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Прикладные информационные технологии»

Отчет по лабораторной работе №8.2 работе «РЕШЕНИЕ ЗАДАЧ ПО ОПТИМИЗАЦИИ Транспортная задача» ВАРИАНТ 11 по дисциплине

«Теория систем и системный анализ»

. . . .

Выполнил: студент группы Б-ПИНФ31 Нефедов Данила

Вариант 11

Решить транспортную задачу со следующими условиями (табл. 8.21).

Таблица 8.21

Поставщики	Мощность поставщиков	Потребители и их спрос				
		1	2	3	4	
		450	250	100	100	
1	200	6	4	4	5	
2	300	6	9	5	8	
3	100	8	2	10	6	

Необходимо так спланировать перевозки, чтобы минимизировать суммарные транспортные расходы.

Поскольку данная модель сбалансирована (суммарный объем произведенной продукции равен суммарному объему потребностей в ней), то в этой модели не надо учитывать издержки, связанные как со складированием, так и с недопоставками продукции. В противном случае в модель нужно было бы ввести:

- в случае перепроизводства фиктивный пункт распределения, стоимость перевозок единицы продукции в который полагается равной стоимости складирования, а объемы перевозок объемам складирования излишков продукции на фабриках;
- в случае дефицита фиктивную фабрику, стоимость перевозок единицы продукции с которой полагается равной стоимости штрафов за недопоставку продукции, а объемы перевозок объемам недопоставок продукции в пункты распределения.

Для решения данной задачи построим ее математическую модель:

$$Z = \sum_{i=1}^{4} \sum_{j=1}^{5} c_{ij} x_{ij}$$

Неизвестными в данной задаче являются объемы перевозок. Пусть x_{ij} - объем перевозок с i-ой фабрики в j-й центр распределения. Функция цели - это суммарные транспортные расходы, т. е. где c_{ij} – стоимость перевозки единицы продукции с i-и фабрики j-й центр распределения.

Неизвестные в данной задаче должны удовлетворять следующим ограничениям:

- Объемы перевозок не могут быть отрицательными.
- Так как модель сбалансирована, то вся продукция должна быть вывезена с фабрик, а потребности всех центров распределения должны быть полностью удовлетворены.

В результате имеем следующую модель:

$$Z = \sum_{i=1}^4 \sum_{j=1}^5 c_{ij} x_{ij}$$
 - минимизировать при ограничениях:

$$\begin{split} \sum_{i=1}^4 x_{ij} &= b_{ij}, \mathbf{j} \in [1,5], \\ \mathbf{x}_{ij} &\geq 0, \mathbf{i} \in [1,4], \mathbf{j} \in [1,5], \\ \sum_{i=1}^4 x_{ij} &= a_i, \mathbf{i} \in [1,4], \end{split}$$

где a_{ij} - объем производства на i-й фабрике, bj - спрос в j-м центре распределения.

Решение задачи с помощью MS Excel.

4	A	В	С	D	Е	F
1	6	4	4	5		
2	6	9	5	8		
3	8	2	10	6		
4						
5						
6					0	200
7					0	300
8					0	100
9	0	0	0	0	0	
10	450	250	100	100		
11						

E9	E9 → : × ✓ <i>f</i> _x =CУММПРОИЗВ(A1:D3;A6:D8)						
	Α	В	С	D	Е	F	G
1	6	4	4	5			
2	6	9	5	8			
3	8	2	10	6			
4							
5							
6	150	50	0	0	200	200	
7	300	0	0	0	300	300	
8	0	0	0	100	100	100	
9	450	50	0	100	3500		
10	450	250	100	100			
11							

Вывод

Средство поиска решений находит оптимальный план поставки.

150	50	0	0
300	0	0	0
0	0	0	100

Данная таблица показывает объёмы поставок с железнодорожных станций с вагонами на железнодорожные станции, нуждающиеся в вагонах. Первая строчка показывает объём поставок первого поставщика, вторая строчка — второго, а третья — третьего. Первый столбец показывает объём поставок для первого, второго, третьего и четвертого потребителя. Число 3500 — минимальная общая стоимость поставок.