Sequential Logic

State Diagram

S R Flip Flop

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	X

Undefined state

D Flip Flop

D Latch

_ C	D	Q(t+1)
0	Χ	Q(t)
1	0	o o
1	1	1

JK Flip Flop

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q(t)}$

Q_n	Q_{n+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

PIPO Register

SIPO Register

SIPO Register

Counter

The 74LS93A 4-bit binary counter logic diagram. (Pin numbers are in parentheses, and all J and K inputs are internally connected HIGH.)

An Example, Find a State Diagram

An Example, Design a Circuit

0/0

Current st		Next		Next st		Output				
<u>A</u>	В	()	Da	Db	Α		В		Υ
0) (0	1	0	1		0	1		0
0)	1	1	1	0		1	0		0
1	(0	1	1	1		1	1		1
1		1	1	0	0		0	0		0
0) (0	0	0	0		0	0		0
0)	1	0	0	1		0	1		0
1	(0	0	1	0		1	0		0
1		1	0	1	1		1	1		0

Karnaugh Map

	AB					
	00	01	11	10		
C 0	0	0	1	1		
1	0	1	0	1		

$$Da = A\overline{B} + A\overline{C} + \overline{A}BC$$

Karnaugh Map

	AB						
	00 01 11 1						
0	0	1	1	0			
1	1	0	0	1			

$$Db = B\overline{C} + \overline{B}C$$

Example, Circuit Diagram of Design

