Image Classification with CNNs

Fei-Fei Li, Yunzhu Li, Ruohan Gao 2023

Recap: Image Classification with Linear Classifier

$$f(x,W) = Wx + b$$

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap: Loss Function

- We have some dataset of (x,y)
- We have a **score function**: s = f(x; W) = Wx
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ SVM x_i score function $f(x_i, W)$ data loss $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Recap: Optimization

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

Linear classifiers can only draw linear decision boundaries

Last time: Neural Networks

Linear score function:

$$f = Wx$$

2-layer Neural Network

 $f = W_2 \max(0, W_1 x)$

Last time: Computation Graph

Backprop with Matrices (or Tensors)

dL/dx always has the $[D_x \times M_x]$ "local same shape as x! gradients" $[D_x \times M_x]$ $[(D_x \times M_x) \times (D_z \times M_z)]$ $[D_7 \times M_7]$ [']Downstream Matrix-vector $[(\mathsf{D}_{_{\mathsf{y}}} \mathsf{\times} \mathsf{M}_{_{\mathsf{y}}}) \mathsf{\times} (\mathsf{D}_{_{\mathsf{z}}} \mathsf{\times} \mathsf{M}_{_{\mathsf{z}}})]$ gradients" multiply $[D_7 \times M_7]$ $[D_v \times M_v]$ $\partial z \, \partial \Gamma$ **Jacobian** $\partial y \partial z$ matrices "Upstream gradient" $[D_v \times M_v]$ For each element of z, how For each element of y, how much much does it influence L?

does it influence each element of z?

Loss L still a scalar!

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of labels) {dog, cat, truck, plane, ...} cat bird deer truck

Pixel space

Class scores

Image features

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Example: Bag of Words

Image Features

Image features vs. ConvNets

Last Time: Neural Networks

f = WxLinear score function: $f = W_2 \max(0, W_1 x)$ 2-layer Neural Network The spatial structure of W2 W1 S images is destroyed! 10 32x32x3 100 bird dog frog ship plane cat deer horse truck

Next: Convolutional Neural Networks

A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

20

A bit of history: Gradient-based learning applied to document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

21

A bit of history:

ImageNet Classification with Deep Convolutional Neural Networks

[Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

"AlexNet"

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Detection

Segmentation

24

Figures copyright Clement Farabet, 2012. n. Reproduced with permission.

[Farabet et al., 2012]

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

self-driving cars

Photo by Lane McIntosh. Copyright CS231n 2017.

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

25

Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

[Simonyan et al. 2014]

optical flow

Figures copyright Simonyan et al., 2014. Reproduced with permission.

pool 2x2

pool 2x2

pool 2x2

Illustration by Lane McIntosh,

photos of Katie Cumnock used

with permission.

conv3

conv1

26

conv2

softmax

[Toshev, Szegedy 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.

[Dieleman et al. 2014]

From left to right: public domain by NASA, usage permitted by ESA/Hubble, public domain by NASA, and public domain.

[Sermanet et al. 2011] [Ciresan et al.]

28

Photos by Lane McIntosh. Copyright CS231n 2017.

Whale recognition, Kaggle Challenge

Mnih and Hinton, 2010

No errors

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

Minor errors

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

Somewhat related

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

All images are CC0 Public domain:

https://pixabay.com/en/luggage-antique-cat-1643010/ https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/ https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/ https://pixabay.com/en/woman-female-model-portrait-adult-983967/ https://pixabay.com/en/handstand-lake-meditation-496008/ https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach from a <u>blog post</u> by Google Research.

Gatys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016 Gatys et al, "Controlling Perceptual Factors in Neural Style Transfer", CVPR 2017

31

Convolutional Neural Networks

Recap: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

33

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Convolution Layer

32x32x3 image -> preserve spatial structure

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

6 activation maps, each 1x28x28

Stack activations to get a 6x28x28 output image!

3x32x32 image Consider 6 filters, each 3x5x5 Convolution Layer 32 6x3x5x5 filters

Slide inspiration: Justin Johnson

each 1x28x28 3x32x32 image Also 6-dim bias vector: Convolution Layer 32 6x3x5x5 Stack activations to get a filters 6x28x28 output image! Slide inspiration: Justin Johnson

46

6 activation maps,

28x28 grid, at each point a 6-dim vector

N x C_{out} x H' x W' Batch of outputs

Preview: ConvNet is a sequence of Convolution Layers

Preview: ConvNet is a sequence of Convolution Layers

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: What do convolutional filters learn?

Preview: What do convolutional filters learn?

MLP: Bank of whole-image templates

Preview: What do convolutional filters learn?

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

56

elementwise multiplication and sum of a filter and the signal (image)

activation map

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Output size:

(N - F) / stride + 1

e.g.
$$N = 7$$
, $F = 3$:
stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$
stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$
stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33$:

In practice: Common to zero pad the border

e.g. input 7x7 3x3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

In practice: Common to zero pad the border

e.g. input 7x7 3x3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

7x7 output!

```
(recall:)
(N + 2P - F) / stride + 1
```

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g.
$$F = 3 \Rightarrow zero pad with 1$$

 $F = 5 \Rightarrow zero pad with 2$
 $F = 7 \Rightarrow zero pad with 3$

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input

Input Output

Slide inspiration: Justin Johnson

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Be careful – "receptive field in the input" vs. "receptive field in the previous layer"

Slide inspiration: Justin Johnson

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Slide inspiration: Justin Johnson

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network

Slide inspiration: Justin Johnson

Solution: Strided Convolution

7x7 input (spatially) assume 3x3 filter applied with stride 2

Solution: Strided Convolution

7x7 input (spatially) assume 3x3 filter applied with stride 2

=> 3x3 output!

Convolution layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding **P**

This will produce an output of $W_2 \times H_2 \times K$ where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F2CK and K biases

Convolution layer: summary Common settings:

Let's assume input is $W_1 \times H_1 \times C$ K = (powers of 2, e.g. 32, 64, 128, 512)

Conv layer needs 4 hyperparameters: $\frac{1}{2}$ $\frac{F=3}{5}$ $\frac{S=1}{5}$ $\frac{F=1}{5}$

- Number of filters **K** F = 5, S = 2, P = ? (whatever fits)
- The filter size \mathbf{F} $\mathbf{F} = 1$, $\mathbf{S} = 1$, $\mathbf{P} = 0$
- The stride **S**
- The zero padding **P**

This will produce an output of W₂ x H₂ x K where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F2CK and K biases

(btw, 1x1 convolution layers make perfect sense)

(btw, 1x1 convolution layers make perfect sense)

Example: CONV layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size **F**
- The stride S
- The zero padding P

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_xize, stride=1, padding=8, diletion=1, groups=1, bias=True)

(NOUNCE)

Applies a 2D convolution over an input signal composed of several input planes.

in the simplest case, the output value of the layer with input size (N, C_{in}, H, W) and output $(N, C_{out}, H_{out}, W_{out})$ can be precisely described as:

$$\mathrm{out}(N_i, C_{\mathrm{out}_i}) = \mathrm{bias}(C_{\mathrm{out}_i}) + \sum_{k=0}^{C_{\mathrm{oit}_i}-1} \mathrm{weight}(C_{\mathrm{out}_i}, k) \star \mathrm{input}(N_i, k)$$

where \star is the wild 2D cruss-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

- . at 150 controls the stride for the cross-correlation, a single number or a tuple.
- pedding controls the amount of implicit zero-paddings on both sides for saidsting number of points for each dimension.
- atlantion controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dillation does.
- groups controls the connections between inputs and putputs. in channels and surt channels must both be divisible by groups. For example,
 - At groups=1, all inputs are convolved to all outputs.
 - At groups-2, the operation becomes equivalent to having two convilayers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
 - * At groups= in_channels , each input channel is convolved with its own set of filters, of size: $\begin{bmatrix} C_{0x} \\ C_{x} \end{bmatrix}$.

The parameters hermel_wire, stride, padding, dilution can either be:

- a single. Int. in which case the same value is used for the height and width dimension.
- a tuple of two ints in which case, the first int is used for the height dimension, and the second int for the width dimension.

PyTorch is licensed under BSD 3-clause.

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Each neuron looks at the full input volume

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

- No learnable parameters
- Introduces spatial invariance

Pooling layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 2 hyperparameters:

- The spatial extent **F**
- The stride S

This will produce an output of $W_2 \times H_2 \times C$ where:

- $W_2 = (W_1 F)/S + 1$
- $H_2 = (H_1 F)/S + 1$

Number of parameters: 0

Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Historically architectures looked like
 - [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 - where N is usually up to \sim 5, M is large, 0 <= K <= 2.
- -But recent advances such as ResNet/GoogLeNet have challenged this paradigm

Next time: CNN Architectures

