Basics

Summary of R functions

2021-07

Simple arithmetics

Basics	

Adding	Division
> 17 + 4	> 17 / 4
[1] 21	[1] 4.25

Subtraction	Integer Division
> 17 - 4 [1] 13	> 17 %/% 4 [1] 4
	[I] 4

Multiplication	Modulus
> 17 * 4 [1] 61	> 17 %% 4 [1] 1

Exponentiation									
>	17	^	4	or	17	**	4		
[1	[] 8	335	521						

Assignments, basic functions, local environment

Help

?<function> \rightarrow show help text for function Press "Q" in order return to command prompt

Declare and assign an object with value

var <- 10 (or 10 -> var)

List environment objects

ls()

Get information about an object

str(var)

Print (to console)

print("Text") print(a)

Numeric functions ("Scalar" / element-wise)

Exponential function	Square Root			
> exp(1) [1] 2.718282	> sqrt(4) [1] 2			
Trigonometric functions	Logarithms			
> sin(0) > cos(pi) > tan(pi/4) [1] 0 [1] -1 [1] 1	> log(x) natural			
Absolute values	> log10(x) base of 10			
> abs(-40) [1] 40	> log(x, base) variable base			

Data structures: Vector generation

Combination

Basics

```
> vec < c(1.2, 2.3, 4.5, 7, 9, 10)
```

> print(vec)

[1] 1.2 2.3 4.5 7.0 9.0 10.0

Dot operator (Integer sequence)

> vec <- 1:5

> print(vec)

[1] 1 2 3 4 5

General sequence

$$> seq(from = 2, to = 10, by = 2)$$

[1] 2 4 6 8 10

Data structures: Vector specific functions

Basics

Length of a vector

- > vec <- 3:27
- > length(vec) [1] 25

Sorting

- > vec <- c(1, 63, 45, 27, 34)
- > sort(vec)
- [1] 1 27 34 45 63

Reversing

- > vec <- 1:5
- > rev(vec)
- [1] 5 4 3 2 1

Data structures: Vector subsetting (I)

By single index

Basics

```
> vec <- seq(from = 10, to 50, by = 0,1)
> vec[5]
[1]
```

By index vector

```
> vec <- seq(from = 10, to 50, by = 0,1)
> vec[5:10]
[1] 10.4 10.5 10.6 10.7 10.8
```

All but ...

```
> vec <- seq(from = 10, to 50, by = 0,1)
> vec[-(3:4)]
[1] 10 10.1 10.4 10.5 10.6
```

Basics

vec <- c(11:30, 15:40)

Arithmetic Mean

> mean(vec)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Median

> median(vec)

$$\tilde{x} = \begin{cases} x_{m+1} & \forall n = 2m+1 \\ \frac{x_m + x_{m+1}}{2} & \forall n = 2m \end{cases}$$

Variance of sample

> sd(vec)

Basics

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Variance of population

> var(vec) * n / (n-1)

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Standard deviation of sample

> sd(vec)

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Standard deviation of population

> sd(vec) * sqrt(n / (n-1))

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Descriptive statistical parameters (III)

$$vec.x <- 11:30$$

 $vec.y <- seq(from = 101, to = 139, by = 2)$

Covariance of 2 Vectors

> cov(vec.x, vec.y)

$$Cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

Correlation of 2 Vectors

> cor(vec)

$$r(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Data types: Numeric & Character

Data structures: List

Data structures: Data Frame

blank