# F- Test (ANOVA)

#### **ANOVA= Analysis of Variance**

• Used to compare **means** between **two or more groups** to determine if at least one differs significantly.

https://www.youtube.com/watch?v=tRqUNwEY63Y

- Used when Independent variables are categorical and dependent variables are numeric→Use ANOVA/T-test
  - 2 Categories → T-Test
  - 2+ Categories → ANOVA
- Used to **compare means** of 2 or more groups.
- Means of 2 group → Z Test, t test
- Difference between groups variables matters more than the within group variables.





## • Less F-value= There is less diff between groups







## 2 Most Important parameters:

- 1. Factors (Variables)
- 2. Levels

#### **Factors:**

- If a medicine has 5 mg, 10 mg, 15 mg dosage → This is level
  - Medicine is factor
- Mode of payment → Factor
  - ∘ Gpay, Phonepe, IMPS, NEFT → Levels

# **Types of ANOVA**

| Туре             | Used When                                                         | Example                                                         |
|------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
| One-Way<br>ANOVA | Comparing means of one independent variable with multiple groups. | Comparing exam scores of students from three different schools. |

| Туре                          | Used When                                                                                  | Example                                                              |
|-------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Two-Way<br>ANOVA              | Comparing means of two independent variables to see if they affect the dependent variable. | Checking if teaching method and gender affect exam scores.           |
| Repeated<br>Measures<br>ANOVA | When the same individuals are measured multiple times (before and after changes).          | Measuring <b>blood pressure</b> before, during, and after treatment. |

## **Types of ANOVA**

- 1. One way: 1 factor with 2 levels. These levels are independent
  - eg. Dr. wants to test a medication with 5mg, 10mg and 15 mg medicine
- 2. Repeated measure: 1 factor with at least 2 levels. Levels are **dependent**.
  - eg. A man running → Day 1, Day 2, Day 3
    - a study measuring participants' anxiety levels at three different times:
       before therapy, one month after therapy, and six months after therapy
- 3. Factorial: 2 or more factors: Each with at least 2 or more levels. Levels could be dependent or independent

eg.

- 1. Study Method (Factor A):
  - Level 1: Visual
  - Level 2: Auditory
- 2. Time of Day (Factor B):
  - Level 1: Morning
  - Level 2: Evening

## Design

This creates a 2 × 2 factorial design:

- Group 1: Visual Study Method in the Morning
- Group 2: Visual Study Method in the Evening

- Group 3: Auditory Study Method in the Morning
- Group 4: Auditory Study Method in the Evening

ANOVA is done in F- Distribution

#### **Assumptions**

- Normality: Means are Normally distributed
- No outliers
- Homogeneity of variance → variance (or spread) of data is equal across different groups or samples.
  - In simpler terms, it means that the data in each group is equally spread out.
  - Same variance



- Population variance in different levels of each independent variables are equal.
- Samples are independent and random.

Null Hypothesis: H0: μ1=μ2=μ3...μk

Alt Hypothesis: H1: μ1≠μ2 ≠ μ3...μk

# Formula / Test Statistics (F- Test)

The ANOVA test is based on the **F-statistic**, which compares the variance between groups to the variance within groups:

# $F = \frac{\text{Variance Between Groups}}{\text{Variance Within Groups}}$

#### Where:

- Variance Between Groups: Measures how much the group means differ from the overall mean.
- Variance Within Groups: Measures how much individual data points differ from their group mean.

# **Steps to Perform ANOVA**

- 1. State the Hypotheses:
  - $H_0: \mu_1 = \mu_2 = \mu_3$
  - $H_1$ : At least one mean is different.
- 2. Choose Significance Level (αα):
  - Common choice: α=0.05
- 3. Calculate the F-Statistic:
  - Use the formula above to compute F.
- 4. Find the Critical Value or p-value:
  - Use the F-distribution table or Python's scipy.stats to find the p-value.
    - o f\_stat, p\_value = stats. **f\_oneway** (group1, group2, group3)
- 5. Make a Decision:
  - If p< $\alpha$ , reject  $H_0$
  - ullet Otherwise, fail to reject  $H_0$

$$\frac{\xi_{1}}{\xi_{1}} = \frac{\chi_{1}}{\chi_{1}} = \frac{\chi_{2}}{\chi_{2}} = \frac{\chi_{3}}{\chi_{1}} = \frac{\chi_{2}}{\chi_{3}} = \frac{\chi_{3}}{\chi_{3}} = \frac{\chi_{3}}{\chi_{1}} = \frac{\chi_{3}}{\chi_{2}} = \frac{\chi_{3}}{\chi_{3}} = \frac{\chi_{3}}{\chi$$

## **One way ANOVA Example**

```
O Doctors want to test a new medication which reduces headache. They Splik the pasticipant into 3 condition [15mg, 30mg, 45mg]. Laker on the doctor ask the patient to rate the headache between [1-10]. Are there any differences between the 3 conditions using alpha = 0.05?
```



## We have to solve this with Chi Square test.

 $H_0$ : μ15=μ30=μ45

 $H_1$ : At least 1 mean is not equal

## Degree of freedom

N=21 (entire sample)

a = 3 (categories)

n=7 (sample)

df between= a-1= 3-1=  ${f 2}$ 

df within= n-a= 21-3= 18

df total= N-1= 21-1= 20



We see (2,18) in the f table for 0.05 significance level

Critical values of F for the 0.05 significance level:

|    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1  | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 |
| 2  | 18.51  | 19.00  | 19.16  | 19.25  | 19.30  | 19.33  | 19.35  | 19.37  | 19.39  | 19.40  |
| 3  | 10.13  | 9.55   | 9.28   | 9.12   | 9.01   | 8.94   | 8.89   | 8.85   | 8.81   | 8.79   |
| 4  | 7.71   | 6.94   | 6.59   | 6.39   | 6.26   | 6.16   | 6.09   | 6.04   | 6.00   | 5.96   |
| 5  | 6.61   | 5.79   | 5.41   | 5.19   | 5.05   | 4.95   | 4.88   | 4.82   | 4.77   | 4.74   |
| 6  | 5.99   | 5.14   | 4.76   | 4.53   | 4.39   | 4.28   | 4.21   | 4.15   | 4.10   | 4.06   |
| 7  | 5.59   | 4.74   | 4.35   | 4.12   | 3.97   | 3.87   | 3.79   | 3.73   | 3.68   | 3.64   |
| 8  | 5.32   | 4.46   | 4.07   | 3.84   | 3.69   | 3.58   | 3.50   | 3.44   | 3.39   | 3.35   |
| 9  | 5.12   | 4.26   | 3.86   | 3.63   | 3.48   | 3.37   | 3.29   | 3.23   | 3.18   | 3.14   |
| 10 | 4.97   | 4.10   | 3.71   | 3.48   | 3.33   | 3.22   | 3.14   | 3.07   | 3.02   | 2.98   |
| 11 | 4.84   | 3.98   | 3.59   | 3.36   | 3.20   | 3.10   | 3.01   | 2.95   | 2.90   | 2.85   |
| 12 | 4.75   | 3.89   | 3.49   | 3.26   | 3.11   | 3.00   | 2.91   | 2.85   | 2.80   | 2.75   |
| 13 | 4.67   | 3.81   | 3.41   | 3.18   | 3.03   | 2.92   | 2.83   | 2.77   | 2.71   | 2.67   |
| 14 | 4.60   | 3.74   | 3.34   | 3.11   | 2.96   | 2.85   | 2.76   | 2.70   | 2.65   | 2.60   |
| 15 | 4.54   | 3.68   | 3.29   | 3.06   | 2.90   | 2.79   | 2.71   | 2.64   | 2.59   | 2.54   |
| 16 | 4.49   | 3.63   | 3.24   | 3.01   | 2.85   | 2.74   | 2.66   | 2.59   | 2.54   | 2.49   |
| 17 | 4.45   | 3.59   | 3.20   | 2.97   | 2.81   | 2.70   | 2.61   | 2.55   | 2.49   | 2.45   |
| 18 | 4.41   | 3.56   | 3.16   | 2.93   | 2.77   | 2.66   | 2.58   | 2.51   | 2.46   | 2.41   |
| 19 | 4.38   | 3.52   | 3.13   | 2.90   | 2.74   | 2.63   | 2.54   | 2.48   | 2.42   | 2.38   |
| 20 | 4.35   | 3.49   | 3.10   | 2.87   | 2.71   | 2.60   | 2.51   | 2.45   | 2.39   | 2.35   |
| 21 | 4.33   | 3.47   | 3.07   | 2.84   | 2.69   | 2.57   | 2.49   | 2.42   | 2.37   | 2.32   |
| 22 | 4.30   | 3.44   | 3.05   | 2.82   | 2.66   | 2.55   | 2.46   | 2.40   | 2.34   | 2.30   |
| 23 | 4.28   | 3.42   | 3.03   | 2.80   | 2.64   | 2.53   | 2.44   | 2.38   | 2.32   | 2.28   |

Critical value = 3.56

#### **Decision Rule:**

If  $F>3.56 \rightarrow We reject the H0$ 

If  $F \le 3.56 \rightarrow We$  fail to reject the H0

• Between-group variability (Mean Square Between, MSB):

$$MSB = rac{SSB}{df_{
m between}}$$

• Within-group variability (Mean Square Within, MSW):

$$MSW = rac{SSW}{df_{
m within}}$$

#### Where:

- *SSB* = Sum of squares between groups
- SSW = Sum of squares within groups
- df<sub>between</sub> = Degrees of freedom between groups
- $df_{
  m within}$  = Degrees of freedom within groups

#### **Calculate F-Test Statistics:**

 $SS_{Between}$  = some of squares

SS between = 
$$\frac{\sum (\sum a_i)^2 - \sum_{i=1}^2 n^2}{n}$$

$$= \frac{57^{2}+47^{2}+21^{2}}{47} - \left[\frac{57+47+21}{21}\right]$$

=98.67

 $SS_{within}$ =

SS within = 
$$\leq y^2 - \leq (\leq a_1)^2$$

$$2 y^{2} = 9^{2} + 8^{2} + 7^{2} + 8^{2} + 8^{2} + 9^{2} + - - -$$

$$= 853$$

 $SS_{within}$ =10.29

 $SS_{Total}$ = 98.67 + 10.29 = 108.45

MS= SS/df

#### 86.56>3.56

Therefore, we reject the H0.

Hence, there is a difference and we are 95% confident about it.

# Example 2:

|         | Low Noise        |  | Medium Noise |                  |  | Loud Noise |                  |  |
|---------|------------------|--|--------------|------------------|--|------------|------------------|--|
| Student | Questions<br>(X) |  | Student      | Questions<br>(X) |  | Student    | Questions<br>(X) |  |
| 1       | 10               |  | 5            | 8                |  | 9          | 4                |  |
| 2       | 9                |  | 6            | 4                |  | 10         | 3                |  |
| 3       | 6                |  | 7            | 6                |  | 11         | 6                |  |
| 4       | 7                |  | 8            | 7                |  | 12         | 4                |  |
|         |                  |  |              | 7                |  |            |                  |  |

| Low Noise |                  |                    | Medium Noise |                   |                    | Loud Noise |                  |                   |
|-----------|------------------|--------------------|--------------|-------------------|--------------------|------------|------------------|-------------------|
| Student   | Questions<br>(X) | X <sup>2</sup>     | Student      | Questions<br>(X)  | X <sup>2</sup>     | Student    | Questions<br>(X) | X <sup>2</sup>    |
| 1         | 10               | 100                | 5            | 8                 | 64                 | 9          | 4                | 16                |
| 2         | 9                | 81                 | 6            | 4                 | 16                 | 10         | 3                | 9                 |
| 3         | 6                | 36                 | 7            | 6                 | 36                 | 11         | 6                | 36                |
| 4         | 7                | 49                 | 8            | 7                 | 49                 | 12         | 4                | 16                |
|           | $\sum X_1 = 32$  | $\sum X_1^2 = 266$ |              | $\Sigma X_2 = 25$ | $\sum X_2^2 = 165$ |            | $\sum X_3 = 17$  | $\sum X_3^2 = 77$ |

$$\sum X_1 = 32 \quad \sum X_1^2 = 266$$

$$\sum X_2 = 25 \qquad \sum X_2^2 = 165$$

$$\sum X_3 = 17$$
  $\sum X_3^2 = 77$ 

Correction Term:

$$C_x = \frac{(\sum X)^2}{N} = \frac{(32 + 25 + 17)^2}{12} = \frac{(74)^2}{12} = \frac{5476}{12} = 456.33$$

Sum of Squares of Total:

$$SS_T = \sum_{x} X^2 - C_x = (266 + 165 + 77) - 456.33$$
  
= 508 - 456.33 = 51.67

Sum of Squares Among groups:

$$SS_A = \frac{(\sum X)^2}{n} - C_X = \left(\frac{32^2}{4} + \frac{25^2}{4} + \frac{17^2}{4}\right) - 456.33$$
$$= 484.5 - 456.33 = 28.17$$

Sum of Squares Within groups:

$$SS_w = SS_T - SS_A$$
  
= 51.67 - 28.17 = 23.5

Mean of Sum of Squares Among groups:  

$$MSS_A = \frac{SS_A}{k-1} = \frac{28.17}{3-1} = 14.085$$

Mean of Sum of Squares Within groups:

$$MSS_W = \frac{SS_W}{N - k} = \frac{23.5}{12 - 3} = 2.611$$

F Ratio:

$$F\ Ratio = \frac{MSS_A}{MSS_W} = \frac{14.085}{2.611} = 5.394$$

| 2 1<br>3 1<br>4 5<br>6 7        | Groups                                         | (N -                                           | (-1) = 2 $(-k) = 9$ $11$ $(-1) = 2$ $- k = 9$ $11$ $(-1) = 1$ $- k = 9$ $11$ $(-1) = 1$ $- k = 9$ $11$ $- k = 9$ | 23.5                                           | 2.0                                            | of Freedo                                      |                                                | Alternate Hypothesis $H_1$ : Significant effect of noise on number of questions solved $G$ and $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ and $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ are $G$ and $G$ are $G$ are $G$ and $G$ are $G$ are $G$ are $G$ are $G$ are $G$ and $G$ are $G$ and $G$ are |
|---------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| df <sub>2</sub> df <sub>1</sub> | 1                                              |                                                | 11<br>- Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ion ( $\alpha$ =                               | 0.05                                           | in the R                                       | tight Tail)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| df <sub>2</sub> df <sub>1</sub> | 1                                              | F 2                                            | - Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                | of Freedo                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 16<br>2 1<br>3 4<br>5 6<br>7  | 1                                              | F 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                                | of Freedo                                      |                                                | Calculated $F > F$ (table $\alpha = 0.05$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 16<br>2 1<br>3 4<br>5 6<br>7  | 1                                              | 2                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                              | 5                                              |                                                | 0111                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 7                             | 161.45<br>18.513<br>10.128<br>7.7086           | 199.50<br>19.000<br>9.5521<br>9.9443           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                | 30.16<br>19.296<br>9.0135<br>6.2561            | 233.99<br>19.330<br>8.9406<br>6.1631           | 7<br>236.77<br>19.353<br>8.8867<br>6.0942      | Hence, with 95% confidence, we can say that, there is a significant effect of noise on number of questions solv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | 6.6079<br>5.9874<br>5.5914<br>5.3177<br>5.1174 | 5.7861<br>5.1433<br>4.7374<br>4.4590<br>4.2565 | 5.4095<br>4.7571<br>4.3468<br>4.0662<br>3.8625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.1922<br>4.5337<br>4.1203<br>3.8379<br>3.6331 | 5.0503<br>4.3874<br>3.9715<br>3.6875<br>3.4817 | 4.9503<br>4.2839<br>3.8660<br>3.5806<br>3.3738 | 4.8759<br>4.2067<br>3.7870<br>3.5005<br>3.2927 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10<br>11                        | 4.9646<br>4.8443<br>4.7472                     | 4.1028<br>3.9823<br>3.8853                     | 3.7083<br>3.5874<br>3.4903<br>3.4105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.4780<br>3.3567<br>3.2592<br>3.1791           | 3.3258<br>3.2039<br>3.1059<br>3.0254           | 3.2172<br>3.0946<br>2.9961<br>2.9153           | 3.1355<br>3.0123<br>2.9134<br>2.8321           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Python Code**

# 1-Way ANOVA

```
# Sample data for three groups
group1 = [25, 30, 35, 40, 45] # Teaching Method A
group2 = [30, 35, 40, 45, 50] # Teaching Method B
group3 = [35, 40, 45, 50, 55] # Teaching Method C

# Perform One-Way ANOVA
f_stat, p_value = stats.f_oneway(group1, group2, group3)

print(f"F-statistic: {f_stat:.4f}")
print(f"P-value: {p_value:.4f}")

# Interpret the result
alpha = 0.05
if p_value < alpha:
    print("Reject H<sub>o</sub>: At least one group mean is significantly different.")
```

#### else:

print("Fail to reject Ho: No significant difference between group means.")

#### **Output:**

F-statistic: 2.0000 P-value: 0.1780

Fail to reject  $H_0$ : No significant difference between group means.

# **Two-Way ANOVA Python Code**

```
# Sample data
data = pd.DataFrame({
    "Score": [85, 88, 90, 86, 87, 89, 80, 82, 84, 78, 80, 81],
    "Method": ["Online"] * 6 + ["Offline"] * 6,
    "Gender": ["Male", "Male", "Female", "Female", "Female",
    "Male", "Male", "Female", "Female", "Female"]
```

|    | Score | Method  | Gender |
|----|-------|---------|--------|
| 0  | 85    | Online  | Male   |
| 1  | 88    | Online  | Male   |
| 2  | 90    | Online  | Male   |
| 3  | 86    | Online  | Female |
| 4  | 87    | Online  | Female |
| 5  | 89    | Online  | Female |
| 6  | 80    | Offline | Male   |
| 7  | 82    | Offline | Male   |
| 8  | 84    | Offline | Male   |
| 9  | 78    | Offline | Female |
| 10 | 80    | Offline | Female |
| 11 | 81    | Offline | Female |

```
from statsmodels.formula.api import ols
import statsmodels.api as sm
# Two-Way ANOVA
model = ols('Score ~ C(Method) + C(Gender) + C(Method):C(Gender)', data=dat
a).fit()
```

ols: Stands for Ordinary Least Squares, which helps fit the ANOVA model.

#### import statsmodels.api as sm

This imports the **Statsmodels** library, which is used for statistical modeling, hypothesis testing, and data analysis.

• api is a module in Statsmodels that provides access to key functions for regression, ANOVA, and other statistical tests.

```
'Score ~ C(Method) + C(Gender) + C(Method):C(Gender)':
```

**C(Method)**: Tests if **teaching method** affects scores.

**C(Gender)**: Tests if **gender** affects scores.

C(Method):C(Gender): Checks interaction effect (e.g., Does "Online" work better for males?).

.fit(): Fits the ANOVA model to the data by estimating coefficients and calculating F-values & p-values.

• Essentially "trains" the model using the given data.

```
anova_table = sm.stats.anova_lm(model, typ=2)
print(anova_table)
```

```
df
                                                 PR(>F)
                        sum_sq
C(Method)
                    133.333333 1.0 35.555556
                                               0.000337
                      5.333333 1.0
                                     1.422222
                                               0.267207
                     3.000000 1.0
                                     0.800000
                                               0.397204
Residual
                     30.000000 8.0
                                          NaN
                                                    NaN
```

typ=2 is preferred for balanced or slightly unbalanced designs.

| Term                | Sum of<br>Squares (SS) | df | F-Value | p-value<br>(PR(>F)) |
|---------------------|------------------------|----|---------|---------------------|
| C(Method)           | 133.33                 | 1  | 35.56   | 0.000337            |
| C(Gender)           | 5.33                   | 1  | 1.42    | 0.267207            |
| C(Method):C(Gender) | 3                      | 1  | 0.8     | 0.397204            |
| Residual (Error)    | 30                     | 8  | NaN     | NaN                 |

#### C(Method):

- F = 35.56, p-value = 0.000337 (< 0.05)
- **Conclusion:** The teaching method has a **significant effect** on scores. Different teaching methods lead to different results.

#### C(Gender):

- F = 1.42, p-value = 0.267207 (> 0.05)
- **Conclusion:** Gender **does not** have a significant impact on scores. Male and female students perform similarly.

#### C(Method):C(Gender) (Interaction Effect):

- F = 0.80, p-value = 0.397204 (> 0.05)
- Conclusion: There is no significant interaction between teaching method and gender. This means the effectiveness of a teaching method is not different between males and females.

# **Post-Hoc Tests**

If ANOVA rejects H0*H*0, you can perform **post-hoc tests** to identify which specific groups differ. Common post-hoc tests include:

- Tukey's HSD Test: Compares all possible pairs of group means.
- Bonferroni Correction: Adjusts the significance level for multiple comparisons.