一手资源 持续更新 认准淘宝旺旺ID: 蔚然科技学堂 或者: 君学赢精品课堂 如在其他店购买请差评或退款, 他们断更新且残缺。可找我店免费领完整新资料

7.2 关系运算

主要考点

- 1、基本的关系代数运算
- 2、扩展的关系运算

一手资源 持续更新 认准淘宝旺旺ID: 蔚然科技学堂 或者: 君学赢精品课堂 如在其他店购买请差评或退款,他们断更新且残缺。可找我店免费领完整新资料

1、并(Union)

• 关系R与S具有相同的关系模式,即R与S的元数相同(结构相同),关系R与S"并"由属于R或属于S的元组构成的集合组成,记作R∪S,其形式定义如下:

RUS={t|t∈R∨t∈S} 式中t为元组变量

		R	
1	Α	В	С
	а	b	С
	b	а	d
	С	d	е
	d	f	g

A B C
b a d
d f g
f h k

RUS

A B C

a b c

b a d

c d e

d f g

f h k

2、差

- 关系R与S具有相同的关系模式,关系R与S的差是由属于R但不属于S的元组构成的集合,记作R-S,其形式定义如下:
- $R-S=\{t|t\in R\land t\not\in S\}$

		R	
	Α	В	С
	а	b	С
1	b	a	d
	С	d	е
	d	f	g

R-S				
A	В	С		
а	b	С		
С	d	е		

3、广义笛卡儿积

• 两个元数分别为n目和m目的关系R和S的广义笛卡儿积是一个(n+m)列的元组的集合。 元组的前n列是关系R的一个元组,后m列是关系S的一个元组,记作R×S。

N/\S					
Α	R.B	S.B	С	D	
1	2	а	b	С	
1	2	а	b	е	
1	2	С	d	е	
3	'4	а	b	С	
3	4	а	b	е	
3	4	С	d	е	

RXS

4、投影及广义投影

• 投影是从关系的垂直方向进行运算,在关系R中选择出若干属性列A组成新的关系,记作 $\pi_A(R)$,其形式定义如下:

$$\pi_A(R) = \{t[A] | t \in R\}$$

• 广义投影运算允许在投影列表中使用算术运算,实现了对投影运算的扩充。若有关系R,条件 F1,F2,...,Fn中的每一个都是涉及R中常量和属性的算术表达式,那么广义投影运算的形式定义为:

 $\pi_{F1, F2, ..., Fn}(R)$

Salary

ID	基本工资	奖励
1001	2600	5000
1002	3000	6000
1003	2600	6500
1004	2800	4500

π_{ID,基本工资}(Salary)

1	ID	基本工资
	1001	2600
	1002	3000
	1003	2600
	1004	2800

π_{ID,基本工资+奖励}(Salary)

ID	基本工资+奖励
1001	7600
1002	9000
1003	9100
1004	7300

5、选择

• 选择运算是从关系的水平方向进行运算,是从关系R中选择满足给定条件的诸元组,记作 $\sigma_F(R)$,其形式定义如下:

$$\sigma_F(R) = \{t | t \in R \land F(T) = True\}$$

- 其中, F中的运算对象是属性名(或列的序号)或常数,运算符、算术比较符(<、>、≥、≤、≠)和逻辑运算符(∧、∨、¬)。
- 例如, $\sigma_{1>6}(R)$ 表示选取关系R中第1个属性值大于等于第6个属性值的元组; $\sigma_{1>'6'}(R)$ 表示选取关系R中第1个属性值大于6的元组。

注意6和'6'的区别,6是指从左往右数第6个属性,'6'是指数字6(数值格式或文本格式)

例:设有关系R、S如下图所示,请求出R×S, $\pi_{A,c}(R)$, $\sigma_{A>B}(R)$, $\sigma_{3<4}(R\times S)$ 。

R
A B C
a b c
b a d
c d e
d f g

A B C
b a d
d f g
f h k

 $\sigma_{A>B}(R)$

Α	В	С
b	a	d

 $\sigma_{3<4}(R\times S)$

R.A	R.B	R.C	S.A	S.B	s.c
a	b	С	d	f	g
a	b	C /	f	h	k
b	а	d	f	h	k
С	d	е	f	h	k

 $R \times S$

R.A	R.B	R.C	S.A	S.B	S.C
а	b	С	b	а	d
а	b	С	d	f	g
а	b	С	f	h	k
b	а	d	b	а	d
b	а	d	d	f	g
b	а	d	f	h	k
С	d	е	b	а	d
С	d	е	d	f	g
С	d	е	f	h	k
d	f	g	b	а	d
d	f	g	d	f	g
d	f	g	f	h	k

1、交

• 关系R与S具有相同的关系模式,关系R与S的交由属于R同时又属于S的元组构成, 关系R与S的交记作R∩S, 其形式定义如下:

 $R \cap S = \{t | t \in R \land t \in S\}$

	R				
	Α	В	C		
	1	2	3		
X	4	5	6		
	7	8	9		
	10	11	12		

Α	В	С
3	7	11
4	5	6
5	9	13
6	10	14

	R∩S		
Α	В	С	
4	5	6	

2、连接

- 分为θ连接、等值连接与自然连接
 - (1) 6连接:可以由基本的关系运算笛卡儿积和选取运算导出。

$$R \bowtie_{X\Theta Y} S = \sigma_{X\Theta Y} (R \times S)$$

- 其中,θ为比较运算符,如>、<、=、≠,X和Y分别为R和S上可以进行比较的属性组。
- 例: 设有关系R和S如下图所示, 求 R ⋈ S

例:设有关系R和S如下图所示,求 R ⋈ S R.A<S.B

								$R \times S$	5
	R	i i				R.A	R.B	С	S.
Α	В	С			5	2	1	4	2
2	1	4		Α	В	2	1	4	6
3	4	5	R ⋈ S R.A <s.b< td=""><td>2</td><td>1</td><td>3</td><td>4</td><td>5</td><td>2</td></s.b<>	2	1	3	4	5	2
4	6	7		6	8	3	4	5	6
						4	6	7	2
						2000		MAN MAN	

		$1 \wedge 3$		
R.A	R.B	С	S.A	S.B
2	1	4	2	1
2	1	4	6	8
3	4	5	2	1
3	4	5	6	8
4	6	7	2	1
4	6,	7	6	8

	Marine Control	R.A <s.b< th=""><th></th><th>5\x = 3</th></s.b<>		5\x = 3
R.A	R.B	C	S.A	S.B
2	1	4	6	8
3	4	5	6	8
4	6	7	6	8

 $R\bowtie S$

- (2) 等值连接
- 当θ为"="时,称为等值连接,记为R⋉S。

	R	
Α	В	С
а	b	С
b	а	d
С	d	е
d	f	g

R ⋈ S R.A=S.C d f g

(3) 自然连接

- 是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相同的属性组,并且在结果集中将重复属性列去掉。如果没有重复属性,那么自然连接就转化为笛卡儿积。
- 例:设有关系R与S如下图所示,求R⋈S。

3、除

R

Α	В	С	D
а	b	С	d
а	b	е	f
С	f	С	d
gg	h	е	f
а	b	h	k
b	d	е	f
b	d	d	
C	k	С	d
С	k	е	f

4、外连接

- 外连接运算是连接运算的扩展,可以处理缺失的信息。
 - (1) 左外连接⋈(左侧为准,右侧填充)
- 取出左侧关系中所有与右侧关系中任一元组都不匹配的元组,用空值NULL填充所有来自右侧关系的属性,构成新的元组,将其加入自然连接的结果中。

R
A B C
a b c
b a d
c d e
d f g

M

MAN TALL S		
В	С	D
b	С	d
d	е	g
f	d	g
d	е	С

Α	В	С	D
а	b	С	d
С	d	е	g
С	d	е	С
b	а	d	NULL
đ	f	g	NULL

 $R \bowtie S$

(2) 右外连接⋈(右侧为准,左侧填充)

M

取出右侧关系中所有与左侧关系中任一元组都不匹配的元组,用空值NULL填充所有来自左侧关系的属性,构成新的元组,将其加入自然连接的结果中。

R
A B C
a b c
b a d
c d e
d f g

B C D
b c d
d e g
f d g
d e c

 A
 B
 C
 D

 a
 b
 c
 d

 c
 d
 e
 g

 c
 d
 e
 c

 NULL
 f
 d
 g

(3) 全外连接™

R
A B C
a b c
b a d
c d e
d f g

M

B C D
b c d
d e g
f d g
d e c

一手资源 持续更新 认准淘宝旺旺ID:蔚然科技学堂 或者:君学赢精品课堂 如在其他店购买请差评或退款,他们断更新且残缺。可找我店免费领完整新资料

R ⋈ S

A B C D

a b c d

c d e g

c d e c

b a d NULL

d f g NULL

R ⋈ S

A B C D

a b c d

c d e g

c d e c

NULL f d g

R → S

A B C D

a b c d

c d e g

c d e c

b a d NULL

d f g NULL

NULL f d g

一手资源 持续更新 认准淘宝旺旺ID:蔚然科技学堂 或者:君学赢精品课堂 如在其他店购买请差评或退款,他们断更新且残缺。可找我店免费领完整新资料

关	系运算	运算符	示例	一句话记忆	前提条件
	并	U	RUS	在R中或者在S中的行	R与S的关系模式相同
	差		R-S	在R中却不在S中的行	R与S的关系模式相同
	交	Π	R∩S	既在R中又在S中的行	R与S的关系模式相同
Í	笛卡儿积	×	$R \times S$		
	选择	σ	σ _{1<3} (R)	选择满足条件的行	
	投影	π	$\pi_{A,B-C}(R)$	选择满足条件的列	
	除	÷	R÷S		
	θ连接	×θΥ	$R \bowtie_{X \theta Y} S$	先求出笛卡儿积,再做选择运算,选取满足"xθγ"条件的行	
	等值连接	X=Y	$R \underset{X=Y}{\bowtie} S$	先求出笛卡儿积,再做选择运算,选取满足"X=Y"条件的行	
· 连 · 接	自然连接	\bowtie	R⋈S	R与S进行等值连接时,比较的属性相同,且结果中要去掉 重复属性列	R与S有相同的属性列
	左外连接	\bowtie	R≫S	在自然连接的基础上,以左侧为准,右侧补齐	
	右外连接	×	R⋈S	在自然连接的基础上,以右侧为准,左侧补齐	
	全外连接	M	R™S	将左外连接和右外连接的结果求并集	

表: 对关系运算的简单总结

【20年第36题】

对于两个关系E和F,()的运算结果的任一元组,同时属于E和F。

 $A. E \times F$

B. E并F

C. E \(\Gamma\) F

D.E – F

【21年第37题】

如下表所示,有两个关系E和F,若它们经过某一关系运算后的结果为计算机学院,这一关系运算为()。

 $A. E \times F$

 $B.F \times E$

C. E÷F

D. F÷E

关系E

	/ (// D
学院	课程
计算机学院	数据结构与算法
计算机学院	数据库
历史学院	中国近现代史
文学院	文学鉴赏

关系F

课程

数据库

【22年第38题】

假设有关系E(学校名称,所在地)和F(学校名称,专业代码,分数线),查询所有学校所有专业的分数线,以及学校所在地的信息,对应的关系表达式为()。

 $A.E \times F$ $B.E \cap F$ $C.E \cup F$ $D.E \bowtie F$

【22年第43题】

下表记录了某系统中各个学校的基本信息,关系运算 $\pi_{\pm \hat{\mathbb{P}}^{n}}$ (E)的结果是()。

A.{电子科技大学, 西安电子科技大学, 杭州电子科技大学, 桂林电子科技大学}

B.{教育部,浙江,广西}

C.{教育部,教育部,浙江,广西}

D.{四川,陕西,浙江,广西}

	关系 E	
院校名称	所在地	主管部门
电子科技大学	四川	教育部
西安电子科技大学	陕西	教育部
杭州电子科技大学	浙江	浙江
桂林电子科技大学	广西	广西

1、19年第39题

给定关系R(A,B,C,D)与S(C,D,E,F),则R×S与R⋈S操作结果的属性个数分别为(A)。

A. 8, 6 B. 6, 6 C. 8, 8 D. 7, 6

2、18年第37、38题

给定关系 R(A, B, C, D)和关系 S(A, C, D, E, F),对其进行自然连接运算 R⋈S 后的属性列为(C)个; 与 $\sigma_{R,C>S,F}$ (R⋈S) 等价的关系代数表达式为(B)。

A. 4 B.5

C.6

A. $\sigma_{3>9}(R\times S)$

B. $\pi_{1,2,3,4,8,9}(\sigma_{1=5 \land 3=6 \land 4=7 \land 3>9}(R \times S))$

C. $\sigma_{3'>9'}(R\times S)$

D. $\pi_{1,2,3,4,8,9}(\sigma_{1=5 \land 3=6 \land 4=7 \land '3'})$

3、17年第32题

在关系R(A1, A2, A3) 和 S(A2, A3, A4) 上进行 π_{A1,A4}(σ_{A2<'2017' ∧ A4='95'}(R⋈S))关系运算,与该关系表达式等价的 是(D)。

A.
$$\pi_{1,4}(\sigma_{2<'2017'V4='95'}(R\bowtie S))$$

C.
$$\pi_{1,4}(\sigma_{2<'2017'}(R) \times \sigma_{6='95'}(S))$$

B.
$$\pi_{1,6}(\sigma_{2<'2017'}(R) \times \sigma_{3='95'}(S))$$

D.
$$\pi_{1,6}(\sigma_{2=4 \land 3=5}(\sigma_{2<'2017'}(R) \times \sigma_{3='95'}(S)))$$

4、17年第54题

有两个关系模式R(A, B, C, D)和 S(A, C, E, G),则X=R×S的关系模式是(C)。

5、16年第31题

若对关系R1按(B)进行运算,可以得到关系R2。

- A. σ_{商品名='毛巾'∨'钢笔'}(R1)
- B. σ_{价格≥'8'} (R1)
- C. $\pi_{1,2,3}$ (R1)
- D. σ_{商品编号='01020211' ∨ '02110200'} (R1)

·手资源 持续更新 认准淘宝旺旺ID:蔚然科技学堂 或者:君学赢精品课堂

R1				
商品编号	商品名	单价		
01020210	手绢	2		
01020211	毛巾	18		
01020212	毛巾	8		
01020213	钢笔	5		
02110200	钢笔	8		

	K2		
商品编号	商品名	单价	
01020211	毛巾	18	
01020212	毛巾	8	
02110200	钢笔	8	

6、16年第35、36题

给定关系R(A,B,C,D)和关系S(C,D,E),对其进行自然连接运算R \bowtie S后的属性为(B)个: $\sigma_{R.B>S.E}$ (R \bowtie S)等价的关系代数表达式为(D)。

A. 4

- B. 5
- $A. \sigma_{2>7} (R \times S)$
- $C. \sigma_{'2'>'7'} (R \times S)$

- C. 6
- D.
- B. $\pi_{1,2,3,4,7}$ ($\sigma_{2'>7' \land 3=5 \land 4=6}$ (R×S)
- D. $\pi_{1,2,3,4,7}$ ($\sigma_{2>7 \land 3=5 \land 4=6}$ (R×S)

7、16年第48、49题

关系数据库中通常包含多个表,表与表之间的关联关系通过(B)来实现,通过(D)运算将两个关联的表 合并成一张信息等价的表。

A.指针

B.外码 **C**.索引

D.视图

A.选择

B.投影 C.笛卡尔积

D.自然连接

8、15年第37、38题

关系R、S如下表所示,R÷ $(\pi_{A1,A2}(\sigma_{1<3}(S)))$ 的结果为(A),R、S的左外连接、右外连接和完全外连接的元组个 数分别(D)

(37) A. {4} B. {3,4}

C. {3,4,7} D. { (1,2), (2,1), (3,4), (4,7)}

(38) A. 2, 2, 4 B. 2, 2, 6 C. 4, 4, 4 D. 4, 6

	R		
AI	A2	A3	
1	2	3	
2	1	4	
3	4	4	
4	6	7	

Al	A2	A4
1	9	- 1
2	1	8
3	4	4
4	8	3

9、14年第36、37题

给定关系模式R(A,B,C,D)和关系S(A,C,D,E),对其进行自然连接运算R⋈S后的属性列为(B)个,与 σ_{R.B>S.E}(R⋈S)等价的关系代数表达式为(B)。

- (36) A. 4 B. 5 C. 6

- (37) A. $\sigma_{2>8}$ (R×S)
 - $C. \sigma_{2'>8'} (R \times S)$

- B. $\pi_{1,2,3,4,8}$ ($\sigma_{1=5 \land 2>8 \land 3=6 \land 4=7}$ (R×S)
- D. $\pi_{1,2,3,4,8}$ ($\sigma_{1=5 \land '2'>'8' \land 3=6 \land 4=7}$ (R×S)

10、12年第41~44题

假设关系R1、R2和R3如下所示:

若进行R1⋈R2运算,则结果集分别为(B)元关系,共有(A)个元组;若进行R2×σ_{F<4}(R3)运算,则结果集为(D)元关系,共有(A)个元组。

(41)A.4 B.5 C.6 D.7

(42)A.4 B.5 C.6 D.7

(43)A.5 B.6 C.7 D.8

(44)A.9 B.10 C.11 D.12

R1

Α	В	C	D
1	5	3	6
3	2	1	6
5	6	3	6
6	7	5	1

R2

C	D	Е
1	6	3
1	6	1
3	6	2

R 2

D	Е	F	G	Н
6	1	1	2	8
6	1	3	5	3
6	2	3	6	2
6	2	7	5	3

11、11年第30~32题

若集合D1={0,1,2},集合D2={a,b,c},集合D3={a,c},则D1×D2×D3应为(A)元组,其结果集的元组个数为(D)。 若D1×(D2⋈D3),则结果集的元组个数为(C)。

(30) A.3	B.6	C.8	D.9
(31) A.6	B.9	C.12	D.18
(32) A.2	B.3	C.6	D.9