Assignment

GATE-EE-50

EE23BTECH11034 - Prabhat Kukunuri

I. Question

The discrete-time Fourier transform of a signal x[n]is $X(\Omega) = (1 + \cos \Omega) e^{-j\Omega}$. Consider that $x_p[n]$ is a periodic signal of period N = 5 such that

$$x_p[n] = x[n], \text{ for } n = 0, 1, 2$$
 (1)

$$= 0, \text{ for } n = 3, 4$$
 (2)

Note that $x_p[n] = \sum_{k=0}^{N-1} a_k e^{j\frac{2\pi}{N}kn}$. The magnitude of the Fourier series coefficient a_3 is _____ (Round off to 3 decimal places).

Solution:

Using Euler's form of representation of complex numbers,

$$e^{j\Omega} = \cos\Omega + j\sin\Omega \tag{3}$$

 $X(\Omega)$ can be expressed as,

$$X(\Omega) = \frac{1}{2} + e^{-j\Omega} + \frac{e^{-j2\Omega}}{2}$$
 (4)

Symbol	Value	Description
$X(\Omega)$	$(1+\cos\Omega)e^{-j\Omega}$	Frequency function
Ω	ωF_s	angular frequency
ω	$\omega \in (-\pi,\pi)$	radian frequency
F_s	1Hz	Sampling frequency
$X(\omega)$	$\sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$	D.T.F.T
<i>x</i> (<i>n</i>)	x(n)	Signal
a_k	$\frac{1}{N}\sum_{n=0}^{N-1}x\left(n\right)e^{-\frac{j2\pi}{N}kn}$	Fourier coefficient
N	5	Period of the signal

TABLE 0 VARIABLE DESCRIPTION

As sampling frequency is 1Hz ($\omega = \Omega$) from On comparing coefficients we get, DTFT(discrete time fourier transform) we get,

$$X(\Omega) = \sum_{n=0}^{n=2} x(n) e^{-j\Omega n}, \Omega \in (-\pi, \pi)$$
 (5)

$$\Longrightarrow \sum_{n=0}^{n=2} x(n) e^{-j\Omega n} = \frac{1}{2} + e^{-j\Omega} + \frac{e^{-j2\Omega}}{2}$$
 (6)

$$\implies \sum_{n=0}^{n=2} x(n) e^{-j\Omega n} = \frac{1}{2} + e^{-j\Omega} + \frac{e^{-j2\Omega}}{2}$$
 (6)

$$x(n) = \begin{cases} \frac{1}{2} & \text{if } n=0\\ 1 & \text{if } n=1\\ \frac{1}{2} & \text{if } n=2\\ 0 & \text{if } n\neq\{0,1,2\} \end{cases}$$
 (7)

$$x_p(n) = \left[\frac{1}{2}, 1, \frac{1}{2}, 0, 0\right]$$
 with period, N=5 (8)

$$a_3 = \frac{1}{5} \sum_{n=0}^{4} x(n) e^{-\frac{j6\pi}{5}n}$$
 (9)

Fig. 0. Plot of x(n) vs n

Fig. 0. Plot of $x_p(n)$ vs n

Fig. 0. Plot of $x_p(n)$ vs n