

FCC 47CFR part 15C Test Report For One Flow

Reference Standard: FCC 47CFR part 15C Manufacturer: Imagination Technologies

For type of equipment and serial number, refer to section 3

Report Number: 01-435/4461/5/11

Report Produced by: - R.N. Electronics Ltd.

1 Arnolds Court Arnolds Farm Lane Mountnessing

Essex CM13 1UT

U.K.

www.RNelectronics.com Telephone +44 (0) 1277 352219

Facsimile +44 (0) 1277 352968

File name PURE.4461-5 PAGE 1 OF 128

1. Contents

1.	CONTENTS	2
2.	SUMMARY OF TEST RESULTS	3
3.	EQUIPMENT UNDER TEST (EUT)	4
3.1	Equipment Specification	4
3.2	EUT Configurations for testing	4
3.3	EUT Modes	4
3.4	Emissions Configuration	6
4.	SPECIFICATIONS	7
4.1	Deviations	7
4.2	Tests at Extremes of Temperature & Voltage	7
4.3	Measurement Uncertainties	7
5.	TESTS, METHODS AND RESULTS	8
5.1	Conducted Emissions	8
5.2	Radiated Emissions	9
5.3	Peak Conducted Power	11
5.4	Frequency Tolerance	13
5.5	Duty Cycle	13
5.6	Maximum Spectral Power Density	14
5.7	6 dB Bandwidth	16
5.8	Band Edge Compliance	18
5.9	Frequency Separation	21
5.10	Number of hopping Channels	21
6.	PLOTS AND RESULTS	22
6.1	Conducted Emissions	22
6.2	Radiated Emissions	26
6.3	Fundamental Emissions	54
6.4	Duty Cycle	55
6.5	6dB Bandwidth	56
6.6	Band Edge Compliance	74
6.7	Power Spectral Density plots	98
7	Explanatory Notes	116
7.1	Explanation of FAIL LIMIT 1 Statement	
7.2	Explanation of limit line calculations for radiated measurements	116
8.	PHOTOGRAPHS	
	IDENTIFYING PHOTOGRAPH OF THE EUT	121
9.	SIGNAL LEADS	122
10.	TEST EQUIPMENT CALIBRATION LIST	
11.	AUXILIARY EQUIPMENT	124
11.1	Auxiliary equipment supplied by Imagination Technologies	124
11.2	Auxiliary equipment supplied by RN Electronics Limited	124
12.	MODIFICATIONS	
12.1	Modifications before test	125
12.2	Modifications during test	125
13.	Compliance information	
14	DESCRIPTION OF TEST SITES	
15	ABBREVIATIONS AND UNITS	128

2. Summary of Test Results

The One Flow was tested to the following standards: -

FCC 47CFR Part 15C (effective date October 1st, 2010); Class DTS Intentional Radiator

Any compliance statements are made reliant on the modes of operation as instructed to us by the Manufacturer based on their specific knowledge of the application and functionality of the equipment tested. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard, particularly under different conditions to those during testing.

Title		Reference	Results	
1.	Conducted Emissions	FCC Part 15C §15.207	PASSED	
2.	Radiated Emissions	FCC Part 15C §15.205, §15.209 and §15.247(d)	PASSED	
3.	Modulation Bandwidth	FCC Part 15C §15.215(c), §15.247(a)(2)	PASSED	
4.	Peak Conducted Power	FCC Part 15C §15.247(b)	PASSED	
5.	Frequency Tolerance	FCC Part 15C §15.215(c)	NOT APPLICABLE ¹	
6.	Duty Cycle	FCC Part 15C §15.247	NOT APPLICABLE ²	
7.	Power Spectral Density	FCC Part 15C §15.247(e)	PASSED	
8.	Band Edge Compliance	FCC Part 15C §15.205, §15.209 and §15.247	PASSED	
9.	Frequency separation	quency separation FCC Part 15C §15.247		
10.	No. of hopping channels	FCC Part 15C §15.247	NOT APPLICABLE ²	

¹ No test requirement or limit specified for this type of device.

This report relates to the equipment tested as identified by a unique serial number and at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed.

Date of Test:	2nd December 2010 to 27th January 2011		
Test Engineer:			
Approved By:			
Customer Representative:			

File name PURE.4461-5 PAGE 3 OF 128

² EUT is not FHSS equipment.

3. Equipment Under Test (EUT)

3.1 Equipment Specification

Applicant	Imagination Technologies	
	Home Park Estate	
	Kings Langley	
	Hertfordshire	
	WD4 8DH	
Manufacturer of EUT	Pure Digital Ltd	
Brand name of EUT	Pure Digital Ltd	
Model Number of EUT	One Flow	
Serial Number of EUT	ES3-8	
Date when equipment was	18th October 2010	
received by RN Electronics		
Date of test:	2nd December 2010 to 27th January 2011	
Customer order number:	PO101005 & PO101511	
Visual description of EUT:	Small black enclosure with LCD display, controls and speaker on the front. The unit has four sockets on the side including a DC input from the supplied AC/DC PSU. The unit has a telescopic antenna and a battery compartment. The WIFI antenna is located inside the enclosure.	
Main function of the EUT:	802.11b/g internet radio and audio file streaming.	
Height	150mm	
Width	210mm	
Depth	70mm	
Weight	<2kg	
Voltage	100-240V AC/DC adapter. 5.5V DC from adapter @ 1A max	
Current required from above voltage source	<1A	

3.2 EUT Configurations for testing

Frequency range	2.412 - 2.462 GHz
Normal use position	Tabletop / Bench
Normal test signals	802.11B, 802.11G, OFMD, DSSS
Declared Power Level	+18dBm
Declared Channel Bandwidth	22MHz
Highest Frequencies	2.462 GHz
generated/used	

3.3 EUT Modes

Wi-Fi RF part

Mode	Description of mode	Used for Testing
TX channel 1	Unit constantly transmitting on 2.412GHz	YES
TX channel 6	Unit constantly transmitting on 2.437GHz	YES
TX channel 11	Unit constantly transmitting on 2.462GHz	YES
RX channel 1	Unit constantly Receiving on 2.412GHz	YES
RX channel 6	Unit constantly Receiving on 2.437GHz	YES
RX channel 11	Unit constantly Receiving on 2.462GHz	YES
Normal mode	Unit communicating with wireless Router network	NO

File name PURE.4461-5

Wi-Fi modes were provided with 100% TX duty cycle.

The Transmit modes referred to above were used in combination with the following table of modulation/ data rate schemes to fulfil the test requirements:-

Mode	Rate
802.11B	1 Mbps
802.11B	2 Mbps
802.11B	5.5 Mbps
802.11B	11 Mbps
802.11G	6 Mbps
802.11G	9 Mbps
802.11G	12 Mbps
802.11G	18 Mbps
802.11G	24 Mbps
802.11G	36 Mbps
802.11G	48 Mbps
802.11G	54 Mbps

Description of ancillary equipment connected to the equipment under test, for the purpose of tests, can be found in Section 10.

Any modifications made to the EUT, whilst under test, can be found in Section 11.

This report was printed on: 15 March 2011

File name PURE.4461-5 PAGE 5 OF 128

3.4 Emissions Configuration

Test area

The unit was powered from the dedicated AC/DC adapter provided with the unit (see below for details). For conducted tests an internal RF port was provided on the PCB. The unit was software modified to allow permanent transmit and receive modes of the Wi-Fi device on the top, middle and bottom channels as stated within section 3.3 of this report. The Wi-Fi TX and RX modes were set using the engineering mode provided within the main unit.

For radiated and conducted emissions tests the unit was populated with typical leads, a pair of headphones and the USB mini lead connected to a laptop. The AC/DC adapter was also placed on to the test table along with the main enclosure of the EUT.

The One Flow EUT came supplied with a dedicated AC/DC power supply with the details as below:-

- Manufacturer: Pure Digital (made in China).
- Model number: KSAA0550100W1UK.
- Input: 100-240V AC 50/60 Hz 0.18A.
- Output: 5.5V DC 1.0A.

The same unit was used for both Radiated and Conducted tests. For conducted type power tests a short lead was provided by Imagination Technologies to connect to an Internal RF port.

File name PURE.4461-5 PAGE 6 OF 128

4. Specifications

The tests were performed by RN Electronics Engineer Daniel Sims who set up the tests, the test equipment, and operated it in accordance with the *R.N. Electronics Ltd* procedures manual, FCC Part 15 and those specifications incorporated by reference into 47CFR15 (e.g. ANSI C63.4-2003).

R.N. Electronics Ltd sites M and OATS are listed with the FCC. Registration Number 293246

4.1 Deviations

None.

4.2 Tests at Extremes of Temperature & Voltage

A permanent integral antenna RF port was used for testing	J.
A test fixture was used for testing.	
A permanent internal RF port was used for testing.	
☐ The equipment external RF port was used for testing.	

4.3 Measurement Uncertainties

Parameter	Uncertainty	
Transmitter Tests		
RF frequency	<± 0.7 ppm	
Conducted RF power	<± 1.0 dB [*]	
Spectral power density	<± 1.5 dB	
Bandwidth	<± 1.9 %	
Radiated RF Power	<± 3.5 dB	
Radiated Spurious Emissions	<± 3.4 dB	
Receiver Tests		
Radiated Spurious Emissions	<± 3.4 dB	

^{*}Applies to average conducted power only

File name PURE.4461-5 PAGE 7 OF 128

5. Tests, Methods and Results

5.1 Conducted Emissions

5.1.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.207)

Test Method: ANSI C63.4, Reference (7.)

5.1.1.1 Configuration of EUT

The EUT and AC/DC adapter were placed on a wooden table 0.8m above the ground plane and connected to a LISN via a 1m mains cable.

Details of the Peripheral and Ancillary Equipment connected for this test is listed in section 11.

Initial scans were made in transmit, receive and normal Wi-Fi modes to determine any worst case mode for emissions. No discernable difference was noted. Therefore full tests were performed in Wi-Fi mode TX channel 6 (see section 3.3).

5.1.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted in the 'Test Equipment' Section. Measurements were made on the live and neutral conductors using both average and quasi-peak detection.

At least 6 signals within 20dB and/or all signals within 10dB of the limit were investigated.

Tests were performed in Test Site F.

5.1.2 Test results

Temperature of test Environment: 21°C

Analyser plots for the Quasi-Peak / Average values as applicable and a table of signals within 20dB of the limit line can be found in Section 6.1 of this report.

These results show that the EUT has PASSED this test.

5.1.2.1 Test Equipment used

E035, E150, E410, E411, E412, TMS952

See Section 10 for more details.

File name PURE.4461-5 PAGE 8 OF 128

5.2 Radiated Emissions

5.2.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.209)

Test Method: ANSI C63.4, Reference (8.)

5.2.1.1 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes.

5.2.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Below 30MHz, measurements were made in a semi-anechoic chamber (pre-scan) with final measurements on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment and the antenna were rotated 360° to record the worst case emissions.

30 MHz - 1 GHz, measurements were made on a site listed with the FCC. The equipment was rotated 360° and the antenna scanned 1-4 metres in both horizontal and vertical polarisations to record the worst case emissions.

Above 1GHz, measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. The antenna was placed 1m above the ground in line with the EUT, which was rotated through 360° to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

5.2.2 Test results

Tests were performed using Test Site M.

Test Environment: M

Temperature: 16-22°C Humidity: 33-54%

Analyser plots for the Quasi-Peak / Average values as applicable and any table of signals within 20dB of the limit line can be found in Section 6.2 of this report. Band Edge Compliance plots can be found in section 6.6 of this report.

Plot references above 1GHz

Frequency range	Plot reference
1 – 2 GHz	1 – 2 GHz Vert / 1 – 2 GHz Horiz
2 – 2.7 GHz	2 – 2.7 GHz Vert / 2 – 2.7 GHz Horiz
2.7 – 3 GHz	2.7 – 3 GHz Vert / 2.7 – 3 GHz Horiz
3 – 4 GHz	3 – 4 GHz Vert / 3 – 4 GHz Horiz
4 – 5 GHz	4 – 5 GHz Vert / 4 – 5 GHz Horiz
5 – 6 GHz	5 – 6 GHz Vert / 5 – 6 GHz Horiz
6 – 7 GHz	6 – 7 GHz Vert / 6 – 7 GHz Horiz
7 – 8 GHz	7 – 8 GHz Vert / 7 – 8 GHz Horiz

File name PURE.4461-5

8 – 9 GHz	8 – 9 GHz Vert / 8 – 9 GHz Horiz
9 – 10 GHz	9 – 10 GHz Vert / 9 – 10 GHz Horiz
10 – 11 GHz	10 – 11 GHz Vert / 10 – 11 GHz Horiz
11 – 12 GHz	11 – 12 GHz Vert / 11 – 12 GHz Horiz
12 – 13 GHz	12 – 13 GHz Vert / 12 – 13 GHz Horiz
13 – 14 GHz	13 – 14 GHz Vert / 13 – 14 GHz Horiz
14 – 15 GHz	14 – 15 GHz Vert / 14 – 15 GHz Horiz
15 – 16 GHz	15 – 16 GHz Vert / 15 – 16 GHz Horiz
16 – 17 GHz	16 – 17 GHz Vert / 16 – 17 GHz Horiz
17 – 18 GHz	17 – 18 GHz Vert / 17 – 18 GHz Horiz
18 – 19 GHz	18 – 19 GHz Vert & Horiz
19 – 20 GHz	19 – 20 GHz Vert& Horiz
20 – 22 GHz	20 – 22 GHz Vert& Horiz
22 – 24 GHz	22 – 24 GHz Vert& Horiz

All applicable channels were measured and signal lists for all three channels accompany the plots in Section 6.2. Only middle channel (channel 6) plots are listed/shown.

These show that the **EUT** has **PASSED** this test.

5.2.2.1 Test Equipment used

E410, E411, E412, TMS933, TMS78, E268, E429, TMS79, TMS82, TMS81

See Section 10 for more details

File name PURE.4461-5 PAGE 10 OF 128

5.3 Peak Conducted Power

5.3.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.247)

Test Method: FCC Part 15C, Reference (15.247)

ANSI C63.10, Reference (6.10.2.1 b))

5.3.1.1 Configuration of EUT

The EUT was measured on a bench using a power meter / spectrum analyser connected to the Internal RF port. The EUT was set to each mode and test signal in turn (see sections 3.2 and 3.3) and highest power levels recorded.

5.3.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Power meter reading stated is maximum power observed using an average power head. Where applicable, a duty cycle correction is applied to avoid averaging during blanking periods (see section 5.5 within this report).

Peak stated reading is maximum power observed using a spectrum analyser channel power function over the 6dB bandwidth + 1MHz using a 1MHz RBW, per ANSI C63.10.

Measurements were made on a test bench.

5.3.2 Test results

Test Environment: Temperature: 18-22°C Humidity: 26 %

Any Analyser plots can be found in Section 6.3 of this report.

Bottom channel results

Channel / scheme	Meter reading (dBm)	Duty cycle adjustment (dB)	Total (dBm)	Result (mW)	Peak ANSI C63.10 (mW)
bot 1Mbps	15.6	N/A	15.6	36.3	55.0
bot 2Mbps	15.6	N/A	15.6	36.3	57.5
bot 5.5Mbps	15.6	N/A	15.6	36.3	77.6
bot 11Mbps	15.6	N/A	15.6	36.3	97.7
bot 6Mbps	11.0	N/A	11.0	12.6	44.7
bot 9Mbps	11.0	N/A	11.0	12.6	46.8
bot 12Mbps	11.0	N/A	11.0	12.6	42.7
bot 18Mbps	11.0	N/A	11.0	12.6	42.7
bot 24Mbps	11.2	N/A	11.2	13.2	44.7
bot 36Mbps	11.3	N/A	11.3	13.5	43.7
bot 48Mbps	11.3	N/A	11.3	13.5	45.7
bot 54Mbps	11.0	N/A	11.0	12.6	39.8

Middle channel results

Channel / scheme	Meter reading (dBm)	Duty cycle adjustment (dB)	Total (dBm)	Result (mW)	Peak ANSI C63.10 (mW)
mid 1Mbps	15.4	N/A	15.4	34.7	52.5
mid 2Mbps	15.3	N/A	15.3	33.9	53.7
mid 5.5Mbps	15.3	N/A	15.3	33.9	70.8

mid 11Mbps	15.3	N/A	15.3	33.9	89.1
mid 6Mbps	11.5	N/A	11.5	14.1	50.1
mid 9Mbps	11.5	N/A	11.5	14.1	52.5
mid 12Mbps	11.5	N/A	11.5	14.1	49.0
mid 18Mbps	11.6	N/A	11.6	14.5	47.9
mid 24Mbps	11.7	N/A	11.7	14.8	51.3
mid 36Mbps	11.9	N/A	11.9	15.5	50.1
mid 48Mbps	11.9	N/A	11.9	15.5	51.3
mid 54Mbps	11.5	N/A	11.5	14.1	44.7

Top channel results

Channel / scheme	Meter reading (dBm)	Duty cycle adjustment (dB)	Total (dBm)	Result (mW)	Peak ANSI C63.10 (mW)
top 1Mbps	14.9	N/A	14.9	30.9	47.9
top 2Mbps	14.9	N/A	14.9	30.9	50.1
top 5.5Mbps	14.9	N/A	14.9	30.9	66.1
top 11Mbps	14.9	N/A	14.9	30.9	81.3
top 6Mbps	11.1	N/A	11.1	12.9	45.7
top 9Mbps	11.1	N/A	11.1	12.9	47.9
top 12Mbps	11.1	N/A	11.1	12.9	43.7
top 18Mbps	11.2	N/A	11.2	13.2	43.7
top 24Mbps	11.3	N/A	11.3	13.5	46.8
top 36Mbps	11.4	N/A	11.4	13.8	45.7
top 48Mbps	11.4	N/A	11.4	13.8	46.8
top 54Mbps	11.1	N/A	11.1	12.9	40.7

Limits: 1Watt.

These results show that the EUT has **PASSED** this test.

5.3.2.1 Test Equipment used

E252, E434, C031, C032, E003

See Section 10 for more details

5.4 Frequency Tolerance

Test not applicable. No test requirement nor limit given for DTS devices.

5.5 Duty Cycle

Test not applicable. However, a basic duty cycle measurement was made in order to ascertain any duty cycle corrections required to be applied to the test results.

The Transmit mode was confirmed as being 100% TX On.

5.5.1 Test Equipment used

E412

See Section 10 for more details

File name PURE.4461-5 PAGE 13 OF 128

5.6 Maximum Spectral Power Density

5.6.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.247)

Test Method: FCC Part 15C, Reference (15.247)

KDB558074, PSD Option 1

5.6.1.1 Configuration of EUT

The EUT was tested on a bench via the Internal RF Port.

5.6.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. PEP was recorded per KDB558074, PSD Option 1.

5.6.2 Test results

Tests were performed using Test Site A.

Temperature of test Environment: 18-22°C

Channel 1 Test results

Channel/ scheme	PEP (dBm/3kHz)	Plot reference
1MB	-8.5	J4461-5, Channel 1, 1MB scheme, PK power density
2MB	-9.8	J4461-5, Channel 1, 2MB scheme, PK power density
5.5MB	-7.8	J4461-5, Channel 1, 5.5MB scheme, PK power density
11MB	-6	J4461-5, Channel 1, 11MB scheme, PK power density
6MB	-14.5	J4461-5, Channel 1, 6MB scheme, PK power density
9MB	-9.2	J4461-5, Channel 1, 9MB scheme, PK power density
12MB	-10.7	J4461-5, Channel 1, 12MB scheme, PK power density
18MB	-7.2	J4461-5, Channel 1, 18MB scheme, PK power density
24MB	-6.2	J4461-5, Channel 1, 24MB scheme, PK power density
36MB	-3.7	J4461-5, Channel 1, 36MB scheme, PK power density
48MB	-4.8	J4461-5, Channel 1, 48MB scheme, PK power density
54MB	-4.8	J4461-5, Channel 1, 54MB scheme, PK power density

Channel 6 Test results

Channel/ scheme	PEP (dBm/3kHz)	Plot reference
1MB	-8.8	J4461-5, Channel 6, 1MB scheme, PK power density
2MB	-10.3	J4461-5, Channel 6, 2MB scheme, PK power density
5.5MB	-8.2	J4461-5, Channel 6, 5.5MB scheme, PK power density
11MB	-5.8	J4461-5, Channel 6, 11MB scheme, PK power density
6MB	-12.8	J4461-5, Channel 6, 6MB scheme, PK power density
9MB	-8.7	J4461-5, Channel 6, 9MB scheme, PK power density
12MB	-10.2	J4461-5, Channel 6, 12MB scheme, PK power density
18MB	-6.8	J4461-5, Channel 6, 18MB scheme, PK power density
24MB	-5.8	J4461-5, Channel 6, 24MB scheme, PK power density
36MB	-3.3	J4461-5, Channel 6, 36MB scheme, PK power density
48MB	-4.3	J4461-5, Channel 6, 48MB scheme, PK power density
54MB	-4.3	J4461-5, Channel 6, 54MB scheme, PK power density

File name PURE.4461-5

Channel 11 Test results

Channel/ scheme	PEP (dBm/3kHz)	Plot reference
1MB	-9.3	J4461-5, Channel 11, 1MB scheme, PK power density
2MB	-10.3	J4461-5, Channel 11, 2MB scheme, PK power density
5.5MB	-8.7	J4461-5, Channel 11, 5.5MB scheme, PK power density
11MB	-6.3	J4461-5, Channel 11, 11MB scheme, PK power density
6MB	-13.3	J4461-5, Channel 11, 6MB scheme, PK power density
9MB	-9.3	J4461-5, Channel 11, 9MB scheme, PK power density
12MB	-10.7	J4461-5, Channel 11, 12MB scheme, PK power density
18MB	-7.3	J4461-5, Channel 11, 18MB scheme, PK power density
24MB	-6.2	J4461-5, Channel 11, 24MB scheme, PK power density
36MB	-3.7	J4461-5, Channel 11, 36MB scheme, PK power density
48MB	-4.8	J4461-5, Channel 11, 48MB scheme, PK power density
54MB	-4.8	J4461-5, Channel 11, 54MB scheme, PK power density

Limit: +8dBm/3kHz.

These results show that the **EUT** has **PASSED** this test.

5.6.2.1 Test Equipment used

E342, E252, E434

See Section 10 for more details.

File name PURE.4461-5 PAGE 15 OF 128

5.7 6 dB Bandwidth

5.7.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.247)

Test Method: FCC Part 15C, Reference (15.247)

KDB558074 - Bandwidth

5.7.1.1 Configuration of EUT

The EUT was tested on a bench via the Internal RF port.

5.7.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. In accordance with KDB558074, the analyser's RBW was set to 100kHz and the span was set greater than this. Readings of 6dB bandwidth are taken directly from the analyser.

5.7.2 Test results

Tests were performed using Test Site A.

Temperature of test Environment: 21°C

Analyser plots illustrating the 6dB bandwidth can be found in Section 6.5 of this report.

Test results

Channel 1 / Scheme	BW result (MHz)	Plot reference
1Mbps	13.20	0001
2Mbps	13.10	0002
5.5Mbps	12.70	0003
11Mbps	13.55	0004
6Mbps	16.40	0005
9Mbps	16.40	0006
12Mbps	16.55	0007
18Mbps	16.30	0008
24Mbps	16.50	0009
36Mbps	16.25	0010
48Mbps	16.15	0011
54Mbps	16.45	0012

Channel 6 / Scheme	BW result (MHz)	Plot reference
1Mbps	13.15	0013
2Mbps	12.95	0014
5.5Mbps	12.70	0015
11Mbps	13.05	0016
6Mbps	16.50	0017
9Mbps	16.45	0018
12Mbps	16.55	0019
18Mbps	16.55	0020

File name PURE.4461-5

24Mbps	16.55	0021
36Mbps	16.55	0022
48Mbps	16.20	0023
54Mbps	16.55	0024

Channel 11 / Scheme	BW result (MHz)	Plot reference
1Mbps	13.15	0025
2Mbps	12.95	0026
5.5Mbps	12.75	0027
11Mbps	13.05	0028
6Mbps	16.45	0029
9Mbps	16.45	0030
12Mbps	16.50	0031
18Mbps	16.40	0032
24Mbps	16.55	0033
36Mbps	16.25	0034
48Mbps	16.20	0035
54Mbps	16.55	0036

Limits: > 500kHz BW.

These results show that the **EUT** has **PASSED** this test.

5.7.2.1 Test Equipment used

E252, E342, E434

See Section 10 for more details.

File name PURE.4461-5 PAGE 17 OF 128

5.8 Band Edge Compliance

5.8.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.215 and 15.247)

Test Method: FCC Part 15C, Reference (15.215)

5.8.1.1 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres.

5.8.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. The emission from the EUT was maximised before taking the plots.

5.8.2 Test results

Tests were performed using Test Site B.

Temperature of test Environment: 20°C

Analyser plots for the Band Edge Compliance can be found in Section 6.6 of this report. The following tables list the field strengths observed in the adjacent restricted bands, which are required to meet the tighter 15.209 limits:

Wi-Fi RF part results

Channel 1 / Scheme	Band edge PK reading (dBuV/m)	Band edge AV reading (dBuV/m)	Plot reference
1Mbps	57.4	49.7	J4461-5, Restricted band edge channel 1, 1MB
2Mbps	57.3	49.6	J4461-5, Restricted band edge channel 1, 2MB
5.5Mbps	56.2	45.7	J4461-5, Restricted band edge channel 1, 5.5MB
11Mbps	58.2	46.6	J4461-5, Restricted band edge channel 1, 5.5MB
6Mbps	54.8	41.0	J4461-5, Restricted band edge channel 1, 6MB
9Mbps	55.5	40.5	J4461-5, Restricted band edge channel 1, 9MB
12Mbps	57.5	40.7	J4461-5, Restricted band edge channel 1, 12MB
18Mbps	55.3	40.2	J4461-5, Restricted band edge channel 1, 18MB
24Mbps	52.8	40.1	J4461-5, Restricted band edge channel 1, 24MB
36Mbps	53.2	42.5	J4461-5, Restricted band edge channel 1, 36MB
48Mbps	52.5	40.9	J4461-5, Restricted band edge channel 1, 48MB
54Mbps	53.2	41.0	J4461-5, Restricted band edge channel 1, 54MB

Channel 11 / Scheme	Band edge PK reading (dBuV/m)	Band edge AV reading (dBuV/m)	Plot reference
1Mbps	51.8	43.7	J4461-5, Restricted band edge channel 11, 1MB
2Mbps	53.8	44.2	J4461-5, Restricted band edge channel 11, 2MB
	53.6	41.7	J4461-5, Restricted band edge channel 11,
5.5Mbps			5.5MB
11Mbps	54.0	42.2	J4461-5, Restricted band edge channel 11,

File name PURE.4461-5 PAGE 18 OF 128

			5.5MB
6Mbps	54.6	38.2	J4461-5, Restricted band edge channel 11, 6MB
9Mbps	50.9	38.8	J4461-5, Restricted band edge channel 11, 9MB
12Mbps	52.2	38.2	J4461-5, Restricted band edge channel 11, 12MB
18Mbps	51.8	37.7	J4461-5, Restricted band edge channel 11, 18MB
24Mbps	53.1	38.8	J4461-5, Restricted band edge channel 11, 24MB
36Mbps	52.3	40.0	J4461-5, Restricted band edge channel 11, 36MB
48Mbps	52.4	40.0	J4461-5, Restricted band edge channel 11, 48MB
54Mbps	51.8	37.8	J4461-5, Restricted band edge channel 11, 54MB

Limits: AV = 54dBuV/m at band edges PK = 74dBuV/m at band edges

These results show that the EUT has PASSED this test.

Non-Restricted band edges.

Analyser plots for the Band Edge Compliance can be found in Section 6.6 of this report. These show the 20dBc/30dBc requirement of 15.247(d) are met at the band edges of 2400 and 2483.5 MHz.

Channel	Scheme	Plot reference
1	1Mbps	J4461-5, Band edge channel 1, 1MB
1	2Mbps	J4461-5, Band edge channel 1, 2MB
1	5.5Mbps	J4461-5, Band edge channel 1, 5.5MB
1	11Mbps	J4461-5, Band edge channel 1, 11MB
1	6Mbps	J4461-5, Band edge channel 1, 6MB
1	9Mbps	J4461-5, Band edge channel 1, 9MB
1	12Mbps	J4461-5, Band edge channel 1, 12MB
1	18Mbps	J4461-5, Band edge channel 1, 18MB
1	24Mbps	J4461-5, Band edge channel 1, 24MB
1	36Mbps	J4461-5, Band edge channel 1, 36MB
1	48Mbps	J4461-5, Band edge channel 1, 48MB
1	54Mbps	J4461-5, Band edge channel 1, 54MB

Channel	Scheme	Plot reference
11	1Mbps	J4461-5, Band edge channel 11, 1MB
11	2Mbps	J4461-5, Band edge channel 11, 2MB
11	5.5Mbps	J4461-5, Band edge channel 11, 5.5MB
11	11Mbps	J4461-5, Band edge channel 11, 11MB
11	6Mbps	J4461-5, Band edge channel 11, 6MB
11	9Mbps	J4461-5, Band edge channel 11, 9MB
11	12Mbps	J4461-5, Band edge channel 11, 12MB
11	18Mbps	J4461-5, Band edge channel 11, 18MB
11	24Mbps	J4461-5, Band edge channel 11, 24MB
11	36Mbps	J4461-5, Band edge channel 11, 36MB
11	48Mbps	J4461-5, Band edge channel 11, 48MB
11	54Mbps	J4461-5, Band edge channel 11, 54MB

Limits: Average power complied with = 30dBc Peak power complied with = 20dBc

These results show that the **EUT** has **PASSED** this test.

5.8.2.1 Test Equipment used

E429, E252, E319, E463, E268, E342, TMS82

See Section 10 for more details.

File name PURE.4461-5 PAGE 20 OF 128

5.9 Frequency Separation

Test not applicable, EUT does not employ FHSS Technology.

5.10 Number of hopping Channels

Test not applicable, EUT does not employ FHSS Technology.

File name PURE.4461-5 PAGE 21 OF 128

6. Plots and Results

6.1 Conducted Emissions

Plot of peak emissions 150kHz - 30MHz on the mains live terminal against the quasi-peak limit line.

Plot of peak emissions 150kHz - 30MHz on the mains live terminal against the average limit line.

Table of signals measured.

Quasi-Peak and Average Live

Quasi-Peak and Average Live						
Signal No.	Freq (MHz)	Peak Amp (dBuV)	QP Amp (dBuV)	QP - Lim1 (dB)	AV Amp (dBuV)	AV - Lim1 (dB)
1	0.179	51.3	47.4	-17.1	28.3	-26.2
2	0.238	44.0	42.0	-20.2	22.6	-29.6
3	0.322	49.8	46.7	-13.0	25.2	-24.5
4	0.357	47.2	45.5	-13.3	26.1	-22.7
5	0.396	33.9	26.6	-31.3	10.6	-37.3
6	0.425	51.9	49.0	-8.3	29.1	-18.2
7	0.514	46.0	43.0	-13.0	21.2	-24.8
8	0.578	43.3	40.1	-15.9	19.4	-26.6
9	0.607	47.7	43.8	-12.2	23.3	-22.7
10	0.708	47.4	44.7	-11.3	22.9	-23.1
11	0.773	43.9	39.8	-16.2	20.4	-25.6
12	0.788	40.2	35.1	-20.9	15.9	-30.1
13	0.829	42.2	40.1	-15.9	19.2	-26.8
14	0.910	43.5	39.4	-16.6	17.9	-28.1
15	1.030	43.4	39.8	-16.2	18.2	-27.8
16	1.066	39.1	36.2	-19.8	16.7	-29.3
17	1.089	40.5	35.0	-21.0	16.0	-30.0
18	1.102	41.7	35.7	-20.3	15.5	-30.5
19	1.123	40.8	37.4	-18.6	17.2	-28.8
20	1.138	40.7	36.7	-19.3	16.3	-29.7
21	1.152	40.5	36.0	-20.0	16.3	-29.7
22	1.152	40.8	36.3	-19.7	16.2	-29.8
23	1.183	40.0	37.4	-18.6	18.8	-27.2
24	1.212	40.7	37.0	-19.0	18.0	-28.0
25	1.225	40.8	38.7	-17.3	18.6	-27.4
26	1.24	40.2	35.9	-20.1	16.9	-29.1
27	1.256	40.5	36.5	-19.5	16.9	-29.1
28	1.273	40.5	35.7	-20.3	17.2	-28.8
29	1.336	38.7	34.9	-21.1	15.8	-30.2
30	1.350	39.7	34.8	-21.2	15.9	-30.1
31	1.429	40.1	34.8	-21.2	15.2	-30.8
32	1.471	38.7	34.5	-21.5	14.5	-31.5
33	1.483	37.2	33.6	-22.4	17.4	-28.6
34	1.547	41.3	36.9	-19.1	16.1	-29.9

File name PURE.4461-5 PAGE 23 OF 128

Plot of peak emissions 150kHz - 30MHz on the mains neutral terminal against the quasi-peak limit line.

Plot of peak emissions 150kHz - 30MHz on the mains neutral terminal against the average limit line.

File name PURE.4461-5 PAGE 24 OF 128

Table of signals measured.

Quasi-Peak and Average Neutral

Quasi-r eak and Average Neutral						
Signal No.	Freq (MHz)	Peak Amp (dBuV)	QP Amp (dBuV)	QP - Lim1 (dB)	AV Amp (dBuV)	AV - Lim1 (dB)
1	0.179	49.8	46.2	-18.3	28.3	-26.2
2	0.240	43.1	41.1	-21.0	24.3	-27.8
3	0.320	47.2	45.2	-14.5	27.3	-22.4
4	0.356	48.3	46.4	-12.4	27.8	-21.0
5	0.426	51.3	48.7	-8.6	31.8	-15.5
6	0.509	44.4	41.6	-14.4	23.5	-22.5
7	0.565	46.2	40.1	-15.9	23.1	-22.9
8	0.578	45.5	41.2	-14.8	23.4	-22.6
9	0.593	49.6	47.1	-8.9	27.4	-18.6
10	0.773	44.6	41.7	-14.3	24.8	-21.2
11	0.829	45.6	42.7	-13.3	24.0	-22.0
12	0.908	46.5	41.6	-14.4	22.7	-23.3
13	0.953	44.1	40.4	-15.6	22.7	-23.3
14	1.030	44.6	42.1	-13.9	22.4	-23.6
15	1.065	44.1	39.4	-16.6	20.5	-25.5
16	1.079	43.1	38.4	-17.6	19.8	-26.2
17	1.091	43.5	39.2	-16.8	20.5	-25.5
18	1.102	43.1	38.5	-17.5	19.7	-26.3
19	1.124	44.5	40.8	-15.2	22.0	-24.0
20	1.165	42.6	38.6	-17.4	20.2	-25.8
21	1.181	43.0	39.0	-17.0	22.0	-24.0
22	1.224	44.7	40.9	-15.1	22.7	-23.3
23	1.241	43.0	38.6	-17.4	20.9	-25.1
24	1.257	43.2	38.4	-17.6	20.5	-25.5
25	1.270	41.8	38.5	-17.5	20.2	-25.8
26	1.289	44.4	40.5	-15.5	21.1	-24.9
27	1.301	42.3	38.7	-17.3	20.0	-26.0
28	1.362	42.1	39.0	-17.0	20.9	-25.1
29	1.418	42.5	37.9	-18.1	21.0	-25.0
30	1.426	41.4	37.4	-18.6	20.2	-25.8
31	1.439	40.3	36.8	-19.2	19.7	-26.3
32	1.483	42.1	38.4	-17.6	21.5	-24.5
33	1.530	40.5	35.4	-20.6	18.9	-27.1

File name PURE.4461-5 PAGE 25 OF 128

6.2 Radiated Emissions

Plot of peak Parallel emissions 150kHz - 30MHz against the quasi-peak limit line.

Plot of peak Perpendicular emissions 150kHz - 30MHz against the quasipeak limit line.

Plot of peak horizontal emissions 30MHz - 300MHz against the quasipeak limit line.

Plot of peak vertical emissions 30MHz - 300MHz against the quasi-peak limit line.

File name PURE.4461-5 PAGE 27 OF 128

Plot of peak horizontal emissions 300MHz - 1GHz against the quasi-peak limit line.

Plot of peak vertical emissions 300MHz - 1GHz against the quasi-peak limit line.

File name PURE.4461-5 PAGE 28 OF 128

Table of signals measured below 1GHz.

Horizontal

The signal list below is common to Top, Middle & Bottom channels

Signal No.	Freq (MHz)	Peak Amp (dBuV)	QP Amp (dBuV)	QP - Lim1 (dB)
1	688.094	42.6	40.7	-5.3
2	719.996	40.5	38.2	-7.8
3	737.244	40.2	37.3	-8.7
4	798.681	38.4	34.2	-11.8
5	799.995	40.4	37.5	-8.5
6	839.995	42.7	41.0	-5.0
7	879.995	37.5	34.2	-11.8
8	919.995	40.9	38.1	-7.9

Vertical

The signal list below is common to Top, Middle & Bottom channels

Signal No.	Freq (MHz)	Peak Amp (dBuV)	QP Amp (dBuV)	QP - Lim1 (dB)
1	688.095	38.7	36.3	-9.7
2	737.247	39.3	36.5	-9.5
3	839.995	40.6	36.8	-9.2
4	879.995	39.5	36.5	-9.5
5	919.995	42.8	40.6	-5.4
6	998.380	42.6	33.9	-20.1

File name PURE.4461-5 PAGE 29 OF 128

Plots of Average horizontal emissions 1GHz - 25GHz against the Average limit line.

File name PURE.4461-5 PAGE 30 OF 128

Res BW: 1 MHz 27/01/2011 14:13:54 Vid BW: 3 MHz

Sweep: 50.00 ms

HP8563E

J4461-5, 12-13GHz mid chan Horiz

27/01/2011 14:34:20

Vid BW: 3 MHz

Sweep: 50.00 ms

HP8563E

Res BW: 1 MHz 27/01/2011 14:36:44

27/01/2011 14:41:12

Vid BW: 3 MHz

Sweep: 50.00 ms HP8563E

HP8563E

J4461-5, 14-15GHz mid chan Horiz

PAGE 32 OF 128 File name PURE.4461-5

Res BW: 1 MHz

Atten: 10 dB Vid BW: 3 MHz Stop: 16.000000 GHz Sweep: 50.00 ms HP8563E

27/01/2011 14:42:02

J4461-5, 16-17GHz mid chan Horiz

Res BW: 1 MHz

Vid BW: 3 MHz

Stop: 17.000000 GHz Sweep: 50.00 ms HP8563E

27/01/2011 14:44:17

J4461-5, 18-19GHz mid chan Vert&Horiz

File name PURE.4461-5 PAGE 34 OF 128

J4461-5, 2-2.7GHz mid chan Horiz

File name PURE.4461-5 PAGE 35 OF 128

J4461-5, 20-22GHz mid chan Vert&Horiz

File name PURE.4461-5 PAGE 36 OF 128

J4461-5, 3-4GHz mid chan Horiz

File name PURE.4461-5 PAGE 37 OF 128

J4461-5, 5-6GHz mid chan Horiz

File name PURE.4461-5 PAGE 38 OF 128

J4461-5, 7-8GHz mid chan Horiz

File name PURE.4461-5 PAGE 39 OF 128

J4461-5, 9-10GHz mid chan Horiz

File name PURE.4461-5 PAGE 40 OF 128

Plot of Average Vertical emissions 1GHz - 25GHz against the Average limit line.

File name PURE.4461-5 PAGE 41 OF 128

J4461-5, 12-13GHz mid chan Vert

File name PURE.4461-5 PAGE 42 OF 128

Start: 13.000000 GHz Res BW: 1 MHz 27/01/2011 14:38:09

9

-1

Atten: 10 dB Vid BW: 3 MHz Stop: 14.000000 GHz Sweep: 50.00 ms HP8563E

J4461-5, 14-15GHz mid chan Vert

Res BW: 1 MHz 27/01/2011 14:40:48 Atten: 10 dB Vid BW: 3 MHz Stop: 15.000000 GHz Sweep: 50.00 ms HP8563E

File name PURE.4461-5 PAGE 43 OF 128

J4461-5, 16-17GHz mid chan Vert

File name PURE.4461-5 PAGE 44 OF 128

J4461-5, 18-19GHz mid chan Vert&Horiz

File name PURE.4461-5 PAGE 45 OF 128

J4461-5, 2-2.7GHz mid chan Vert

File name PURE.4461-5 PAGE 46 OF 128

J4461-5, 20-22GHz mid chan Vert&Horiz

File name PURE.4461-5 PAGE 47 OF 128

J4461-5, 3-4GHz mid chan Vert

File name PURE.4461-5 PAGE 48 OF 128

dBuV

File name PURE.4461-5 PAGE 49 OF 128

J4461-5, 7-8GHz mid chan Vert

File name PURE.4461-5 PAGE 50 OF 128

J4461-5, 9-10GHz mid chan Vert

File name PURE.4461-5 PAGE 51 OF 128

Table of signals measured within 20dB of limits above 1GHz.

Horizontal

Bottom channel TX.

Signal	Frequency (MHz)	PK measured	AV measured	AV-Lim
1	2295	43.0	33.0	-21.0
2	4824	56.8	53.0	-1.0
3	6431	45.0	40.5	-13.5
4	9648	52.0	48.0	-6.0

Middle channel TX.

Signal	Frequency (MHz)	PK measured	AV measured	AV-Lim
1	2321	44.0	33.5	-20.5
2	4874	55.0	51.5	-2.5
3	6498	45.0	39.0	-15.0
4	7311	43.0	30.0	-24.0
5	9748	49.0	45.0	-9.0

Top channel TX.

Signal	Frequency (MHz)	PK measured	AV measured	AV-Lim
1	2347	45.0	35.0	-19.0
2	4924	54.5	50.7	-3.3
3	6565	46.0	40.0	-14.0
4	9848	45.0	36.0	-18.0

Vertical

Bottom channel TX.

Signal	Frequency (MHz)	PK measured	AV measured	AV-Lim
1	4824	56.0	53.8	-0.2
2	6431	48.7	45.0	-9.0
3	7236	46.8	37.0	-17.0
4	9648	48.0	40.0	-14.0

Middle channel TX.

Signal	Frequency (MHz)	PK measured	AV measured	AV-Lim
1	2321	45.5	34.5	-19.5
2	4874	52.0	46.5	-7.5
3	6498	49.3	46.5	-7.5
4	7311	45.3	34.0	-20.0
5	9748	47.0	39.5	-14.5

Top channel TX.

Signal	Frequency (MHz)	PK measured	AV measured	AV-Lim
1	2347	46.5	36.0	-18.0
2	4924	52.8	47.0	-7.0
3	6565	48.2	43.5	-10.5

File name PURE.4461-5 PAGE 52 OF 128

©2004 RN ELECTRONICS LIMITED

REPORT NUMBER 01-435/4461/5/11

ALL RIGHTS RESERVED

4 9848 46.0 36.0 -18.0

File name PURE.4461-5 PAGE 53 OF 128

6.3 Fundamental Emissions

Please see Band edge plots for ERP field strength (PK)

File name PURE.4461-5 PAGE 54 OF 128

6.4 Duty Cycle

Not applicable, Tests performed with EUT in Constant 100% transmission state.

File name PURE.4461-5 PAGE 55 OF 128

6.5 6dB Bandwidth

Stop: 2.427000 GHz

Sweep: 50.00 ms HP8563E

Atten: 10 dB

Vid BW: 300 kHz

-69

-79

-89

Start: 2.397000 GHz

12/2/2010 2:04:56 PM

Res BW: 100 kHz

- 1 Trace A∇ 2.409100 GHz4.5000 dBm
- 2-1 Trace A

 √ -3.300000 MHz
- 3-2 Trace A

 ∇ 12.700000 MHz
 -0.3300 dB

-5.3300 dB

1 Trace A ∇ 2.407100 GHz 4.6700 dBm

2-1 Trace A √ -1.750000 MHz -6.0000 dB

3-2 Trace A ∇ 13.550000 MHz 0.1700 dB

HP8563E

12/2/2010 2:15:16 PM

1 Trace A ∇ 2.407950 GHz -1.8300 dBm

2-1 Trace A ∇ -4.050000 MHz -4.3300 dB

3-2 Trace A ∇ 16.400000 MHz -0.6700 dB

2-1 Trace A ∇ -4.050000 MHz -4.3300 dB

3-2 Trace A ∇ 16.400000 MHz -0.6700 dB

- Trace A
- ▼ 2.410150 GHz -2.5000 dBm
- 2-1 Trace A
- √ -6.300000 MHz -5.3300 dB
- 3-2 Trace A
- √ 16.550000 MHz
 -0.5000 dB

- Trace A
- 2-1 Trace A
- √ -7.500000 MHz -6.0000 dB
- 3-2 Trace A
- 7 16.300000 MHz 0 dB

1 Trace A
√ 2.413400 GHz
-1.1600 dBm

2-1 Trace A ∇ -9.550000 MHz -6.0000 dB

3-2 Trace A ∇ 16.250000 MHz 0.6600 dB

- 1 Trace A∇ 2.410800 GHz-1.3300 dBm
- 2-1 Trace A ∇ -6.900000 MHz -4.5000 dB
- 3-2 Trace A

 ∇ 16.150000 MHz

 -0.8300 dB

1 Trace A
√ 2.411650 GHz
-2.0000 dBm

2-1 Trace A ∇ -7.750000 MHz -5.8300 dB

3-2 Trace A ∇ 16.450000 MHz 1.3300 dB

- 1 Trace A ∇ 2.433600 GHz 5.1700 dBm
- 2-1 Trace A

 √ -3.050000 MHz
- 3-2 Trace A

 ∇ 13.150000 MHz
 -0.5000 dB

-4.5000 dB

1 Trace A
√ 2.437850 GHz4.5000 dBm

2-1 Trace A ∇ -7.200000 MHz -5.0000 dB

3-2 Trace A ∇ 12.950000 MHz -0.3300 dB

- 1 Trace A ∇ 2.434150 GHz 4.0000 dBm
- 2-1 Trace A ∇ -3.350000 MHz -5.5000 dB
- 3-2 Trace A

 ∇ 12.700000 MHz

 0.8400 dB

- 1 Trace A∇ 2.432100 GHz4.3400 dBm
- 3-2 Trace A ∇ 13.050000 MHz 0 dB

- Trace A
- √ 2.432950 GHz
 -1.5000 dBm
- 2-1 Trace A
- √ -4.050000 MHz -4.5000 dB
- 3-2 Trace A
- 7 16.500000 MHz -2.5000 dB

- Trace A
- 2-1 Trace A
- √ -6.550000 MHz -4.6600 dB
- 3-2 Trace A

12/2/2010 2:42:40 PM

HP8563E

- 1 Trace A∇ 2.435200 GHz-1.8300 dBm
- 2-1 Trace A ∇ -6.350000 MHz -5.3300 dB
- 3-2 Trace A

 ∇ 16.550000 MHz
 -0.3400 dB

- 1 Trace A

 ∇ 2.435200 GHz
 -1.8300 dBm
- 2-1 Trace A ∇ -6.350000 MHz -5.5000 dB
- 3-2 Trace A ∇ 16.550000 MHz 0 dB

Trace A

2-1 Trace A

-4.750000 MHz -5.8400 dB

3-2 Trace A

√ 16.550000 MHz 0.3400 dB

Trace A

2-1 Trace A

-4.750000 MHz -5.8400 dB

3-2 Trace A

12/2/2010 2:46:17 PM

HP8563E

Trace A

▼ 2.435850 GHz -1.0000 dBm

2-1 Trace A

√ -6.950000 MHz -4.6600 dB

3-2 Trace A

7 16.200000 MHz -0.8400 dB

Trace A

7 2.436700 GHz-1.5000 dBm

2-1 Trace A

√ -7.850000 MHz -6.0000 dB

3-2 Trace A

1 Trace A∇ 2.464850 GHz4.1700 dBm

2-1 Trace A ∇ -9.200000 MHz -5.0000 dB

3-2 Trace A ∇ 12.950000 MHz -0.3300 dB

- 1 Trace A ∇ 2.459150 GHz 3.6700 dBm
- 3.6700 dBm

 2-1 Trace A
- √ -3.350000 MHz -5.6700 dB
- 3-2 Trace A

 √ 12.750000 MHz

 -0.3300 dB

- 1 Trace A∇ 2.457100 GHz4.0000 dBm
- 2-1 Trace A ∇ -1.250000 MHz -5.8300 dB
- 3-2 Trace A ∇ 13.050000 MHz -0.1700 dB

7 2.457950 GHz-1.8300 dBm

2-1 Trace A

√ -4.050000 MHz -4.5000 dB

3-2 Trace A

J4461-5, Plot 0030

Trace A

7 2.457950 GHz-1.8300 dBm

2-1 Trace A

√ -4.050000 MHz -4.5000 dB

3-2 Trace A

12/2/2010 2:57:08 PM

HP8563E

-4.8400 dB

1 Trace A∇ 2.461500 GHz-1.3300 dBm

2-1 Trace A ∇ -7.550000 MHz -5.8300 dB

3-2 Trace A ∇ 16.400000 MHz 0 dB

- Trace A
- 2-1 Trace A
- √ -4.750000 MHz -5.8400 dB
- 3-2 Trace A
- √ 16.550000 MHz 0.3400 dB

J4461-5, Plot 0034

- Trace A
- √ 2.463450 GHz
 -1.3300 dBm
- 2-1 Trace A
- √ -9.550000 MHz -6.0000 dB
- 3-2 Trace A

12/2/2010 3:01:04 PM

HP8563E

1 Trace A

∇ 2.461700 GHz
-2.0000 dBm

2-1 Trace A ∇ -7.850000 MHz -6.0000 dB

3-2 Trace A ∇ 16.550000 MHz 1.5000 dB

Band Edge Compliance

Band edge plots. (100kHz RBW)

- PΚ
- ∇ 2.407250 GHz 95.1700 dBuV
- 2.415667 GHz 88.5000 dBuV
- 3 ΑV
- \triangle 2.400020 GHz 49.0500 dBuV
- 2.400000 GHz 56.8400 dBuV

J4461-5, Band edge channel 1, 12MB

- PΚ
- 2.407917 GHz 87.6700 dBuV
- ∇ 2.409000 GHz 84.0000 dBuV
- 2.400000 GHz 46.0000 dBuV
- PΚ
- 2.400000 GHz 53.8400 dBuV

PAGE 74 OF 128 File name PURE.4461-5

- PK
- 2 A\
- 3 A\
 - 2.399900 GHz 44.9720 dBuV
- 4 PK
- √ 2.399900 GHz
 53.1060 dBuV

J4461-5, Band edge channel 1, 1MB

- PK
- ▼ 2.408750 GHz 95.8400 dBuV
- 2 AV
- 3 AV
- √ 2.397333 GHz
 51.5000 dBuV
- 4 PK
- √ 2.397167 GHz 60.3400 dBuV

27

17

7

Atten: 10 dB

Vid BW: 300 kHz

Stop: 2.425000 GHz

Sweep: 50.00 ms

HP8563E

- PΚ
- ∇ 2.408833 GHz 88.3400 dBuV
- 2 AV
- ∇ 2.411250 GHz 85.0000 dBuV
- ∇
 - 2.399900 GHz 44.0000 dBuV
- 2.399400 GHz 52.6360 dBuV

Start: 2.375000 GHz Res BW: 100 kHz

21/12/2010 16:43:50

- PΚ
- \triangle 2.413000 GHz 95.1700 dBuV
- 2.414000 GHz 87.3400 dBuV
- ΑV
- ∇ 2.396833 GHz 51.5000 dBuV
- PΚ
- 2.398167 GHz 60.6700 dBuV

- PK
- ▼ 2.408833 GHz 84.5000 dBuV
- 2 AV
- √ 2.411250 GHz
 79.6700 dBuV
- 3 A\
 - 2.398100 GHz 47.6360 dBuV
- 4 PK
- √ 2.398500 GHz
 54.8400 dBuV

J4461-5, Band edge channel 1, 48MB

- PK
- ▼ 2.411000 GHz 88.5000 dBuV
- 2 A\
- 3 AV
- √ 2.397750 GHz 46.1700 dBuV
- 4 PK
- 2.397200 GHz 51.9400 dBuV

- PK
- √ 2.409250 GHz 94.8400 dBuV
- 2 AV
- 3 A\ ∇ 2.4
 - 2.400020 GHz 49.0500 dBuV
- 4 PK
- √ 2.400000 GHz
 59.5000 dBuV

J4461-5, Band edge channel 1, 54MB

- PK
- ▼ 2.411750 GHz 87.6700 dBuV
- 2 AV
- √ 2.411000 GHz
 85.3400 dBuV
- 3 AV
- √ 2.399400 GHz 45.3400 dBuV
- 4 PK
- √ 2.399450 GHz
 52.4000 dBuV

- PK
- 2 A\
- 3 A\

 ∇

- 2.398400 GHz 44.6340 dBuV
- 4 PK
- √ 2.399500 GHz
 54.5000 dBuV

J4461-5, Band edge channel 1, 9MB

- PK
- √ 2.410583 GHz 87.8400 dBuV
- 2 AV
- 3 AV
- √ 2.400000 GHz 45.3400 dBuV
- 4 PK
- √ 2.400000 GHz
 55.6700 dBuV

- PK
- ▼ 2.457167 GHz 94.0000 dBuV
- 2 A\
- 3 Δ\/

 ∇

- 2.486900 GHz 33.7040 dBuV
- 4 PK
- 7 2.486200 GHz43.6700 dBuV

J4461-5, Band edge channel 11, 12MB

- PK
- ▼ 2.460250 GHz 87.5000 dBuV
- 2 A\
- 3 AV
- √ 2.483900 GHz
 31.1040 dBuV
- 4 PK
- √ 2.485200 GHz 39.9700 dBuV

File name PURE.4461-5 PAGE 80 OF 128

- 1 PK
- ▼ 2.461500 GHz 88.1700 dBuV
- 2 A\
- 3 A\
 - 2.484900 GHz 31.0400 dBuV
- 4 PK
- 7 2.483750 GHz 39.3400 dBuV

22/12/2010 11:01:35

PK

HP8563E

- ▼ 2.458583 GHz 95.3400 dBuV
- 2 A\
- 3 AV
- √ 2.488500 GHz
 32.5000 dBuV
- 4 PK
- √ 2.483800 GHz
 45.2360 dBuV

- PK
- 2 A\
- 3 A\

 ∇

- 2.484750 GHz 33.0000 dBuV
- 4 PK
- 2.485300 GHz 40.0720 dBuV

- PK
- ▼ 2.458417 GHz 93.5000 dBuV
- 2 A\
- 3 AV
- √ 2.487650 GHz
 35.6400 dBuV
- 4 PK
- √ 2.488300 GHz 47.2040 dBuV

- 1 PK
- 2 A\
- 3 A\

 ∇

- 2.483850 GHz 33.8400 dBuV
- 4 PK
- √ 2.483600 GHz
 39.4060 dBuV

J4461-5, Band edge channel 11, 48MB

- PK
- √ 2.460917 GHz 88.0000 dBuV
- 2 Δ\
- √ 2.464083 GHz 85.0000 dBuV
- 3 AV
- √ 2.483850 GHz
 31.1060 dBuV
- 4 PK
- √ 2.484250 GHz
 41.1700 dBuV

- PK
- ▼ 2.459167 GHz 93.6700 dBuV
- 2 AV
- 3 AV
- √ 2.485150 GHz 33.6680 dBuV
- 4 PK
- 7 2.485750 GHz 43.6700 dBuV

J4461-5, Band edge channel 11, 54MB

- PK
- ▼ 2.461750 GHz 87.3400 dBuV
- 2 A\
- 3 AV
- √ 2.484500 GHz
 33.0000 dBuV
- 4 PK
- √ 2.484550 GHz
 38.4360 dBuV

- 1 PK
- ▼ 2.458000 GHz 88.3400 dBuV
- 2 A\
- 3 Δ\

 ∇

- 2.485150 GHz 30.5000 dBuV
- 4 Pk
- 7 2.484600 GHz 40.4680 dBuV

J4461-5, Band edge channel 11, 9MB

- PK
- √ 2.457167 GHz 87.5000 dBuV
- 2 AV
- 3 AV
- √ 2.484250 GHz 30.8400 dBuV
- 4 PK
- √ 2.484250 GHz 40.8400 dBuV

Restricted band edge. (1MHz RBW)

- PΚ
- \triangle 2.390000 GHz 56.0000 dBuV
- ∇ 2.390000 GHz 45.3400 dBuV
- ΑV
- 2.387420 GHz 46.6432 dBuV
- PΚ
- 2.386833 GHz 58.1667 dBuV

- PΚ
- ∇ 2.390000 GHz 57.5000 dBuV
- 2
- ∇ 2.390000 GHz 40.6700 dBuV
- ∇ 2.400000 GHz 52.6700 dBuV
- PΚ
- 2.400000 GHz 66.0000 dBuV

File name PURE.4461-5

Atten: 10 dB

Vid BW: 3 MHz

Stop: 2.425000 GHz

Sweep: 50.00 ms

HP8563E

- PK
- √ 2.390000 GHz
 55.3400 dBuV
- 2 A\
- 3 Δ\
- √ 2.400000 GHz
 51.8400 dBuV
- 4 PK
- √ 2.400000 GHz 64.5000 dBuV

J4461-5, Restricted band edge channel 1, 1MB

Start: 2.375000 GHz Res BW: 1 MHz

21/12/2010 16:40:06

- PK
- ▼ 2.390000 GHz 55.1700 dBuV
- 2 A\
- 3 AV
- √ 2.386517 GHz 49.6700 dBuV
- 4 PK
- 2.386100 GHz 57.4000 dBuV

J4461-5, Restricted Band edge channel 1, 24MB

- 1 PK
- √ 2.390000 GHz
 52.8400 dBuV
- 2 A\
- 3 Δ\

 ∇

- 2.387350 GHz 40.0700 dBuV
- 4 PK
- √ 2.386900 GHz
 52.2400 dBuV

J4461-5, Restricted Band edge channel 1, 2MB

- PK
- √ 2.390000 GHz
 54.3400 dBuV
- 2 A\
- 3 AV
- √ 2.386970 GHz 49.5512 dBuV
- 4 PK
- √ 2.387250 GHz
 57.3400 dBuV

File name PURE.4461-5 PAGE 88 OF 128

J4461-5, Restricted Band edge channel 1, 36MB

- 1 PK
- √ 2.390000 GHz
 52.6700 dBuV
- 2 A\
- 3 A\
- √ 2.389450 GHz
 42.4360 dBuV
- 4 PK
- ∑ 2.389800 GHz53.2040 dBuV

J4461-5, Restricted Band edge channel 1, 48MB

- PK
- ▼ 2.390000 GHz 52.5000 dBuV
- 2 AV
- 3 AV
- √ 2.389650 GHz 40.9400 dBuV
- 4 PK
- √ 2.388350 GHz
 52.2060 dBuV

J4461-5, Restricted Band edge channel 1, 5.5MB

- PΚ
- 2.390000 GHz ∇ 54.3400 dBuV
 - 2
- \bigvee 2.390000 GHz 44.5000 dBuV

 ∇

- 2.388670 GHz 45.6632 dBuV
- 2.387000 GHz 56.1700 dBuV

- PΚ
- 2.390000 GHz \triangle 52.3400 dBuV
- 2.390000 GHz 41.0000 dBuV
- ΑV
- ∇ 2.390000 GHz 41.0000 dBuV
- PΚ
- 2.389500 GHz 53.1700 dBuV

- PK
- √ 2.390000 GHz
 54.1700 dBuV
 - 2 A\
- 3 A\
- √ 2.390000 GHz 41.0000 dBuV
- 4 PK
- √ 2.386583 GHz
 54.8400 dBuV

J4461-5, Restricted Band edge channel 1, 9MB

- PK
- ▼ 2.390000 GHz 55.5000 dBuV
- 2 AV
- √ 2.390000 GHz 40.5000 dBuV

File name PURE.4461-5 PAGE 91 OF 128

- PK
- 2 A\
- 3 A\

 ∇

- 2.483500 GHz 40.0000 dBuV
- 4 PK
- √ 2.483500 GHz
 52.6700 dBuV

J4461-5, Restricted Band edge channel 11, 12MB

- PK
- ▼ 2.483850 GHz 52.2400 dBuV
- 2 AV
- 3 AV
- √ 2.483500 GHz
 38.1700 dBuV
- 4 PK
- √ 2.483500 GHz
 51.1700 dBuV

File name PURE.4461-5 PAGE 92 OF 128

Stop: 2.499000 GHz

Sweep: 50.00 ms

HP8563E

ALL RIGHTS RESERVED

Atten: 10 dB

Vid BW: 3 MHz

- PK
- √ 2.484900 GHz
 51.7720 dBuV
- 2 A\
- 3 A\
- √ 2.483500 GHz 37.0000 dBuV
- 4 PK
- 7 2.483500 GHz 50.8400 dBuV

J4461-5, Restricted band edge channel 11, 1MB

Start: 2.449000 GHz

22/12/2010 10:59:18

Res BW: 1 MHz

- PK
- ▼ 2.483500 GHz 51.3400 dBuV
- 2 AV
- 3 AV
- √ 2.483820 GHz
 43.7344 dBuV
- 4 PK
- √ 2.488400 GHz
 51.8400 dBuV

- 1 PK
- √ 2.485150 GHz
 53.1360 dBuV
 - 3 AV
- √ 2.483500 GHz
 38.8400 dBuV
- 4 PK
- √ 2.483500 GHz 52.6700 dBuV

J4461-5, Restricted Band edge channel 11, 2MB

- PK
- √ 2.488150 GHz
 53.7720 dBuV
- 2 A\
- 3 AV
- √ 2.483500 GHz
 42.0000 dBuV
- 4 PK
- √ 2.483500 GHz
 51.8400 dBuV

File name PURE.4461-5 PAGE 94 OF 128

- AV
- 2.483500 GHz ∇ 40.0000 dBuV
- PΚ
- 2.483500 GHz 52.3400 dBuV

J4461-5, Restricted Band edge channel 11, 48MB

- PΚ
- 2.484300 GHz \triangle 52.4360 dBuV
- 2.483833 GHz 39.9914 dBuV
- ΑV
- ∇ 2.483500 GHz 38.5000 dBuV
- PΚ
- 2.483500 GHz 51.5000 dBuV

- 1 PK
- 2 A\
- √ 2.485930 GHz
 41.7056 dBuV
- 3 A\

 ∇

- 2.483500 GHz 41.3400 dBuV
- 4 Pk
- 2.483500 GHz 52.6700 dBuV

J4461-5, Restricted Band edge channel 11, 54MB

- PK
- √ 2.485100 GHz
 51.7680 dBuV
- 2 ^1
- 3 AV
- √ 2.483500 GHz 37.1700 dBuV
- 4 PK
- √ 2.483500 GHz
 48.0000 dBuV

- PK
- √ 2.484450 GHz
 54.6020 dBuV
- 2 A\
- 3 Δ\

 ∇

- 2.483500 GHz 38.1700 dBuV
- 4 PK
- 2.483500 GHz 52.6700 dBuV

J4461-5, Restricted Band edge channel 11, 9MB

- PK
- √ 2.484450 GHz
 50.9040 dBuV
- 2 ^\
- 3 AV
- √ 2.483500 GHz 38.8400 dBuV
- 4 PK
- √ 2.483500 GHz
 50.5000 dBuV

6.7 Power Spectral Density plots

1 Trace A∇ 2.412655 GHz-10.6600 dBm

File name PURE.4461-5 PAGE 98 OF 128

HP8563E

ALL RIGHTS RESERVED

J4461-5, Channel 1, 18MB scheme, PK power density dBm Trace A 11 1 -9 -19 -29 -39 -49 -59 -69 -79 -89 Start: 2.410354 GHz Atten: 10 dB Stop: 2.410374 GHz Vid BW: 10 kHz Res BW: 3 kHz Sweep: 7.00 s

1 Trace A∇ 2.410364 GHz-7.1600 dBm

12/3/2010 12:19:56 PM

1 Trace A
√ 2.408500 GHz
-8.5000 dBm

PAGE 99 OF 128

HP8563E

ALL RIGHTS RESERVED

J4461-5, Channel 1, 24MB scheme, PK power density dBm Trace A 11 1 -9 -19 -29 -39 -49 -59 -69 -79 -89 Start: 2.411006 GHz Atten: 10 dB Stop: 2.411026 GHz Vid BW: 10 kHz Res BW: 3 kHz Sweep: 7.00 s

1 Trace A∇ 2.411016 GHz-6.1600 dBm

12/3/2010 12:22:07 PM

1 Trace A∇ 2.414948 GHz-9.8300 dBm

File name PURE.4461-5 PAGE 100 OF 128

Stop: 2.413290 GHz

Sweep: 7.00 s

HP8563E

ALL RIGHTS RESERVED

-89

Start: 2.413270 GHz

12/3/2010 12:28:38 PM

Res BW: 3 kHz

dBm Trace A

11

1
-9
-19
-29
-39
-49
-59
-69

Atten: 10 dB

Vid BW: 10 kHz

J4461-5, Channel 1, 36MB scheme, PK power density

1 Trace A∇ 2.413280 GHz-3.6600 dBm

1 Trace A
√ 2.410088 GHz
-4.6600 dBm

HP8563E

ALL RIGHTS RESERVED

J4461-5, Channel 1, 5.5MB scheme, PK power density dBm Trace A 11 1 -9 -19 -29 -39 -49 -59 -69 -79 -89 Start: 2.414583 GHz Atten: 10 dB Stop: 2.414603 GHz Vid BW: 10 kHz Res BW: 3 kHz Sweep: 7.00 s

1 Trace A∇ 2.414593 GHz-7.8300 dBm

12/3/2010 11:59:53 AM

1 Trace A∇ 2.413238 GHz-4.8300 dBm

HP8563E

ALL RIGHTS RESERVED

1 Trace A∇ 2.412610 GHz-14.5000 dBm

J4461-5, Channel 1, 9MB scheme, PK power density

12/3/2010 12:04:05 PM

1 Trace A∇ 2.407988 GHz-9.1600 dBm

File name PURE.4461-5 PAGE 103 OF 128

J4461-5, Channel 11, 11MB scheme, PK power density

1 Trace A∇ 2.459238 GHz-6.3300 dBm

1 Trace A∇ 2.462655 GHz-10.6600 dBm

J4461-5, Channel 11, 18MB scheme, PK power density

1 Trace A∇ 2.460363 GHz-7.3300 dBm

1 Trace A∇ 2.458476 GHz-9.3300 dBm

File name PURE.4461-5 PAGE 105 OF 128

HP8563E

ALL RIGHTS RESERVED

J4461-5, Channel 11, 24MB scheme, PK power density dBm Trace A 11 1 -9 -19 -29 -39 -49 -59 -69 -79 -89 Start: 2.461006 GHz Atten: 10 dB Stop: 2.461026 GHz Vid BW: 10 kHz Res BW: 3 kHz Sweep: 7.00 s

1 Trace A∇ 2.461016 GHz-6.1600 dBm

J4461-5, Channel 11, 2MB scheme, PK power density

12/3/2010 1:38:16 PM

1 Trace A∇ 2.462618 GHz-10.3300 dBm

File name PURE.4461-5 PAGE 106 OF 128

J4461-5, Channel 11, 36MB scheme, PK power density

1 Trace A∇ 2.463280 GHz-3.6600 dBm

1 Trace A∇ 2.460088 GHz-4.8300 dBm

File name PURE.4461-5 PAGE 107 OF 128

Start: 2.464583 GHz

Res BW: 3 kHz

Stop: 2.464603 GHz

Sweep: 7.00 s

HP8563E

ALL RIGHTS RESERVED

11

1

-9

-19

-29

-39

-49

-59

-69

-79

-89

J4461-5, Channel 11, 5.5MB scheme, PK power density dBm Trace A

Atten: 10 dB

Vid BW: 10 kHz

Trace A 2.464593 GHz ∇ -8.6600 dBm

12/3/2010 1:24:21 PM

Trace A 2.463238 GHz -4.8300 dBm

HP8563E

ALL RIGHTS RESERVED

1 Trace A∇ 2.462281 GHz-13.3300 dBm

12/3/2010 1:28:53 PM

1 Trace A∇ 2.457988 GHz-9.1600 dBm

File name PURE.4461-5 PAGE 109 OF 128

dBm

11

1

-9

-19

-29

-39

-49

-59

-69

-79

-89

Trace A

1 Trace A ∇ 2.434238 GHz -5.8300 dBm

Start: 2.434228 GHz Res BW: 3 kHz 12/3/2010 12:48:33 PM Atten: 10 dB Vid BW: 10 kHz Stop: 2.434248 GHz Sweep: 7.00 s

HP8563E

J4461-5, Channel 6, 12MB scheme, PK power density

1 Trace A∇ 2.437655 GHz-10.1600 dBm

HP8563E

ALL RIGHTS RESERVED

J4461-5, Channel 6, 18MB scheme, PK power density dBm Trace A 11 1 -9 -19 -29 -39 -49 -59 -69 -79 -89 Start: 2.435353 GHz Atten: 10 dB Stop: 2.435373 GHz Vid BW: 10 kHz Res BW: 3 kHz Sweep: 7.00 s

1 Trace A∇ 2.435363 GHz-6.8300 dBm

J4461-5, Channel 6, 1MB scheme, PK power density

12/3/2010 12:58:33 PM

1 Trace A∇ 2.433500 GHz-8.8300 dBm

File name PURE.4461-5 PAGE 111 OF 128

J4461-5, Channel 6, 24MB scheme, PK power density

Trace A 2.436016 GHz ∇ -5.8300 dBm

Trace A 2.439949 GHz -10.3300 dBm

HP8563E

ALL RIGHTS RESERVED

J4461-5, Channel 6, 36MB scheme, PK power density dBm Trace A 11 1 -9 -19 -29 -39 -49 -59 -69 -79 -89 Atten: 10 dB Stop: 2.438290 GHz Start: 2.438270 GHz Vid BW: 10 kHz Res BW: 3 kHz Sweep: 7.00 s

1 Trace A∇ 2.438280 GHz-3.3300 dBm

12/3/2010 1:04:37 PM

1 Trace A∇ 2.435088 GHz-4.3300 dBm

J4461-5, Channel 6, 5.5MB scheme, PK power density Trace A

Trace A 2.439593 GHz ∇ -8.1600 dBm

Trace A 2.438238 GHz -4.3300 dBm

PAGE 114 OF 128 File name PURE.4461-5

J4461-5, Channel 6, 6MB scheme, PK power density

1 Trace A∇ 2.437281 GHz-12.8300 dBm

J4461-5, Channel 6, 9MB scheme, PK power density

1 Trace A∇ 2.432988 GHz-8.6600 dBm

7 Explanatory Notes

7.1 Explanation of FAIL LIMIT 1 Statement

The **FAIL MARGIN 1** statement(s) may appear on the graphical plots when the receiver used to measure your equipment detects a signal that exceeds the dashed line. This does not mean that the **EUT** has failed the test, only that the 10 dB calculation margin set, has been exceeded on a peak measurement.

Following the indication that the margin has been exceeded, measurements are made at the frequency (ies) of the peaks. These peaks have been calculated to either Quasi Peak or Average Peak dependant on the test. A table of results has been printed on the reverse of the page. This table looks similar to the one illustrated below: -

Signal	Frequency	Peak	PK Delta	Avg	Av Delta
Number	(MHz)	($dB\mu V$)	L1 (dB)	($dB\mu V$)	L 1 (dB)
1	12345.0000	12.9	-2.5	10.2	-5.2

The First column, labelled Signal Number, is a number that the receiver has given to each signal, which has been calculated.

Column Two, labelled Frequency (MHz), is the frequency of the signal received.

Column Three, labelled Peak ($dB\mu V$), (can also be labelled, in the case of Quasi Peak, Peak $dB\mu V/m$) is the Level that was received at peak amount in dB above $1\mu V$.

Column Four, labelled PK Delta L1 (dB), is the same level as Column three but is given in a level relative to the limit line required.

Column Five, labelled AVG (dB μ V), (can also be labelled, in the case of Quasi Peak, QP dB μ V/m) when undertaking a Quasi peak test, This is the Average or Quasi peak calculation results given in dB μ V or dB μ V/m above 1 μ V.

Column Six, labelled AV Delta L 1 (dB), (can also be labelled, in the case of Quasi Peak, QP Delta L 1 (dB)) is the Average or Quasi Peak calculation relevant to the limit line. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in μ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB μ V/m referenced to the measuring instrument inputs. RN Electronics calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

- (a) limit of 500 μ V/m equates to 20.log (500) = 54 dB μ V/m.
- (b) limit of 300 μ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB μ V/m at 3m

File name PURE.4461-5 PAGE 116 OF 128

8. Photographs

Photograph of the EUT as viewed from in front of the antenna, site M.

File name PURE.4461-5 PAGE 117 OF 128

Diagram of the radiated emissions test setup.

File name PURE.4461-5 PAGE 118 OF 128

Photograph of the EUT as viewed from screened room (conducted emissions)

File name PURE.4461-5 PAGE 119 OF 128

Diagram of the conducted emissions test setup.

File name PURE.4461-5 PAGE 120 OF 128

Identifying Photograph of the EUT

File name PURE.4461-5 PAGE 121 OF 128

9. Signal Leads

Port Name	Cable Type	
AC/DC brick	AC plug to 2 core DC	
Headphones	2.5mm audio screened	
Auxiliary Input	2.5mm audio screened	
USB Mini	USB screened	

File name PURE.4461-5 PAGE 122 OF 128

10. Test Equipment Calibration list

The following table lists the test equipment used, last calibration date and calibration interval. All test equipment used has been maintained within the calibration requirements of *R.N. Electronics Ltd.* test facility quality system. Calibration intervals are regularly reviewed dependent on equipment manufacturer's recommendations and actual usage of the equipment.

RNNo	Model	Description	Manufacturer	Date Calibrated	Period
C031	437B	Power Meter	Hewlett Packard	10-Nov-10	12
C032	8482A	Power Sensor	Hewlett Packard	18-Nov-10	12
E003	HP8593E	Spectrum Analyser	Hewlett Packard	21-Oct-10	24
E035	HP11947A	Transient Limiter + 10dB Atten.	Hewlett Packard	21-Feb-11	6
E150	MN2050	LISN 13A	Chase	29-Oct-09	24
E252	6810.19.A	10 dB Attenuator	Suhner	29-Oct-10	12
E268	BHA 9118	1-18 GHz Horn Antenna	Schaffner	02-Mar-09	60
E319	H-34-2720-01	Transmit Filter 1.5-2.0 GHz	The Marconi Company Ltd	N/A	N/A
E342	8563E	Spectrum Analyser 26.5 GHz	HP	23-Feb-09	24
E410	N5181A	3 GHz MXG Signal Generator	Agilent Technologies	06-Oct-10	12
E411	N9039A	9 kHz - 1 GHz RF Filter Section	Agilent Technologies	05-Oct-10	12
E412	E4440A	3 Hz - 26.5 GHz PSA	Agilent Technologies	05-Oct-10	12
E429	=	5 Switch Filter Box 0.91 GHz - 16.3 GHz	RN Electronics	N/A	N/A
E434	G3RUH	10 MHz GPS Oscillator	James Miller	N/A	N/A
E463	8431A	Bandpass Filter 2-4 GHz	HP	N/A	N/A
TMS78	460420	Std Gain Horn Antenna 12.4-18 GHz	ETS Systems	03-Nov-10	24
TMS79	460451	Std Gain Horn Antenna 18-26.5 GHz	ETS Systems	03-Nov-10	24
TMS81	6502	Active Loop Antenna	EMCO	13-Apr-10	24
TMS82	8449B	Pre Amplifier 1 - 26 GHz	Agilent	29-Oct-10	12
TMS933	CBL6141A	Bilog Antenna 30MHz - 2GHz	York EMC	09-Sep-10	36
TMS952	MN2050D	LISN	Schaffner	24-Jul-09	24

File name PURE.4461-5 PAGE 123 OF 128

11. Auxiliary equipment

11.1 Auxiliary equipment supplied by Imagination Technologies

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

No Auxiliary equipment was provided.

11.2 Auxiliary equipment supplied by RN Electronics Limited

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

RN No.	Model Number	Description	Manufacturer	Serial Number
				CN-0W0940-12961-
1017	Inspiron 5150	Laptop PC	DELL	44J-2047
N453	Uni Tone	Hi-Fi Stereo Headphones	HD-828	-

File name PURE.4461-5 PAGE 124 OF 128

12. Modifications

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

12.1 Modifications before test

There were no modifications made by R.N. Electronics Ltd before testing commenced.

12.2 Modifications during test

In order to comply with the radiated emissions limits within this report the following modification was performed by an Imagination Technologies representative:

A series 1n5 inductor and shunt network of a 0.3pF capacitor in series with a 2.7nH inductor was fitted to the antenna feed line.

File name PURE.4461-5 PAGE 125 OF 128

13. Compliance information

Products subject to the Declaration of Conformity procedure are required to be supplied with a compliance information statement. A copy of this statement may be included here:

Not supplied.

EUT is subject to DoC as a Class B PC peripheral, details of which are to be held with the manufacturer.

File name PURE.4461-5 PAGE 126 OF 128

14 Description of Test Sites

Site A Radio / Calibration Laboratory and anechoic chamber

Site B Semi-anechoic chamber

Site B1 Control Room for Site B

Site C Transient Laboratory

Site D Screened Room (Conducted Immunity)

Site E Screened Room (Control Room for Site D)

Site F Screened Room (Conducted Emissions)

VCCI Registration No. C-2823

Site K Screened Room (Control Room for Site M)

Site M 3m Semi-anechoic chamber (indoor OATS)

FCC Registration No. 293246

Site Q Fully-anechoic chamber

Site OATS 3m and 10m Open Area Test Site

FCC Registration No. 293246 IC Registration No. 5612A-1 VCCI Registration No. R-2580

File name PURE.4461-5 PAGE 127 OF 128

15 Abbreviations and Units

%	Percent	LO	Local Oscillator
μA/m	microAmps per metre	mA	milliAmps
μV	microVolts	max	maximum
μW	microWatts	mbar	milliBars
AC	Alternating Current	Mbit/s	MegaBits per second
ALSE	Absorber Lined Screened	MHz	MegaHertz
	Enclosure	mic	Microphone
AM	Amplitude Modulation	min	minimum
Amb	Ambient	mm	milliMetres
ATPC	Automatic Transmit Power	ms	milliSeconds
	Control	mW	milliWatts
BER	Bit Error Rate	NA	Not Applicable
°С	Degrees Celsius	nom	Nominal
C/I	Carrier / Interferer	nW	nanoWatt
CEPT	European Conference of	OATS	Open Area Test Site
	Postal and	OFDM	Orthogonal Frequency
	Telecommunications		Division Multiplexing
	Administrations	ppm	Parts per million
COFDM	Coherent OFDM	PRBS	Pseudo Random Bit
CS	Channel Spacing		Sequence
CW	Continuous Wave	QAM	Quadrature Amplitude
dB	deciBels		Modulation .
dBµA/m	deciBels relative to 1µA/m	QPSK	Quadrature Phase Shift
dBµV	deciBels relative to 1µV		Keying
dBc	deciBels relative to	R&TTE	Radio and
	Carrier		Telecommunication
dBm	deciBels relative to 1mW		Terminal Equipment
DC	Direct Current	Ref	Reference
DTA	Digital Transmission	RF	Radio Frequency
	Analyser	RFC	Remote Frequency
EIRP	Equivalent Isotropic		Control
	Radiated Power	RSL	Received Signal Level
ERP	Effective Radiated Power	RTP	Room Temperature and
EU	European Union		Pressure
EUT	Equipment Under Test	RTPC	Remote Transmit Power
FM	Frequency Modulation		Control
FSK	Frequency Shift Keying	Rx	Receiver
g	Grams	S	Seconds
GHz	GigaHertz	SINAD	Signal to Noise And
Hz	Hertz	· · · · · ·	Distortion
IF	Intermediate Frequency	Tx	Transmitter
kHz	kiloHertz	V	Volts
LBT	Listen Before Talk	•	. 5.1.0
	Liston Bololo Taik		

File name PURE.4461-5 PAGE 128 OF 128

Certificate of Test 4461/5

The equipment noted below has been tested by *R.N. Electronics Limited* and conforms with the relevant subpart of FCC 47CFR part 15, subject to deviations as detailed in this report.

This certificate relates to the unit, as identified by unique serial number(s) and further detailed in the referenced report, in the condition(s) at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Furthermore, this is a certificate of test only and should not be confused with an equipment authorisation.

Equipment:	One Flow
Model Number(s):	One Flow
Unique Serial Number(s):	ES3-8
Manufacturer:	Imagination Technologies Home Park Estate Kings Langley Hertfordshire WD4 8DH
Customer Purchase Order Number:	PO101005 & PO101511
R.N. Electronics Limited Report Number:	01-435/4461/5/11
Test Standards:	FCC 47CFR Part 15C: effective date October 1 st 2010 , Class DTS Intentional Radiator
Date:	2nd December 2010 to 27th January 2011
For and on behalf of R.N. Electronics Limited	
Signature:	
Notes:	

QMF21J - 3: FCC PART 15C: RNE ISSUE 02: - JUN 10