Lecture 4: Statistics For Transcriptomics

BIOINF3005/7160: Transcriptomics Applications

Dr Stephen Pederson

Bioinformatics Hub. The University of Adelaide

March 30th, 2020

Sampling and the Null Hypothesis

The Sample Mean

Hypothesis Tests

Multiple Testing

Moderated *T*-tests

•0

Introduction

Introduction

Today we'll

Introduction

- Discuss the relationship between our experiment and "truth"
- Revise Hypothesis Testing
- Introduce strategies for managing error rates
- Introduce the moderated *T*-test

Sampling and the Null Hypothesis

Sampling

Most experiments involve measuring something:

- Continuous values e.g. Ct values, fluorescence intensity
 - These values are often Normally distributed

Sampling

Most experiments involve measuring something:

- Continuous values e.g. Ct values, fluorescence intensity
 - These values are often Normally distributed
- Discrete values e.g. read counts, number of colonies
 - These values often involve rates, i.e. colonies/cm²

Sampling

- We are always interested in the true underlying values from the entire population
- We use our sample-derived estimates (i.e. from our data) to make inference about the true values

Population Parameters

- Experimentally-obtained values represent an estimate of the true effect
 - More formally referred to as population-level parameters
- Every experiment is considered a random sample of the complete population
- Repeated experiments would give a different (but similar) estimate

In biological research we often ask:

"Is something happening?" or "Is nothing happening?"

In biological research we often ask:

"Is something happening?" or "Is nothing happening?"

We might be comparing:

- Cell proliferation in response to antibiotics in media
- Methylation levels across genomic regions
- Allele frequencies in two populations
- mRNA abundance in two related cell types

In biological research we often ask:

"Is something happening?" or "Is nothing happening?"

How do we decide if our experimental results are "significant"?

- Do our measurements represent normal variability?
- What would the data look like if our experiment had no effect?
- What would our data look like if there was some kind of effect?

The Null Hypothesis

- The Null Hypothesis (H_0) is used to describe the data if **nothing is happening**
- The Alternate Hypothesis (H_A) captures all other possibilities

The Null Hypothesis

- H_0 : we have a test value (e.g. $\mu_0 = 0$) which allows us to define an expected distribution
 - This test value represents our population statistic of interest (e.g. logFC)
- H_A : Values which are unlikely to come from the defined H_0 distribution are assumed to come from H_A
 - H_A is every possibility besides no change \implies we can't define this statistically

For normally distributed data, we usually make inference about a **mean** of some type:

- We have an experiment-specific **estimate** of the *mean logFC* (\bar{x})
- We make inference about the **unknown** true mean logFC (μ)
- We use our 'best guess' of the value we care about, e.g. $\mu_0 = 0$

For normally distributed data, we usually make inference about a **mean** of some type:

- We have an experiment-specific **estimate** of the *mean logFC* (\bar{x})
- We make inference about the **unknown** true mean logFC (μ)
- ullet We use our 'best guess' of the value we care about, e.g. $\mu_0=0$
- In regression models, we fit **slope** and **intercept** terms
 - Principles introduced below are analogous: We estimate a true value

For normally distributed data, we usually make inference about a **mean** of some type:

- We have an experiment-specific **estimate** of the *mean logFC* (\bar{x})
- We make inference about the **unknown** true mean logFC (μ)
- We use our 'best guess' of the value we care about, e.g. $\mu_0 = 0$
- In regression models, we fit **slope** and **intercept** terms
 - Principles introduced below are analogous: We estimate a true value

$$\bar{x} \sim \mathcal{N}(\mu, \mathsf{SE}_{\bar{x}})$$

The standard error of \bar{x} (SE_{\bar{x}}) represents how variable this value is around μ e.g. $SE_{\bar{x}} = \frac{\sigma}{\sqrt{p}}$, where σ is population standard deviation

- If we know the population variance (σ^2) , and have our sample size (n)
 - We almost never know σ and never know μ
- We can then use our value of interest, e.g. $\mu_0 = 0$
 - This is the value that we expect if H_0 is true

$$ar{x} \sim \mathcal{N}(\mu_0, rac{\sigma}{\sqrt{n}})$$

$$ar{x} \sim \mathcal{N}(\mu_0, rac{\sigma}{\sqrt{n}})$$

$$ar{x} \sim \mathcal{N}(\mu_0, \frac{\sigma}{\sqrt{n}})$$

$$ar{x} - \mu_0 \sim \mathcal{N}(0, \frac{\sigma}{\sqrt{n}})$$

$$egin{align} ar{x} &\sim \mathcal{N}(\mu_0, rac{\sigma}{\sqrt{n}}) \ &ar{x} - \mu_0 &\sim \mathcal{N}(0, rac{\sigma}{\sqrt{n}}) \ &Z = rac{ar{x} - \mu_0}{rac{\sigma}{\sqrt{n}}} &\sim \mathcal{N}(0, 1) \ \end{array}$$

Hypothesis Tests

If we know the population variance (σ^2), and have our sample size (n)

$$Z = rac{ar{x} - \mu_0}{rac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$$

- We use this as the underlying principle for H_0
- We don't know μ but we have a value (μ_0) of interest (usually $\mu_0=0$)

So if H_0 is true, we know what kind of distribution our data will be drawn from

Once we can calculate a Z-score, we compare this to $\mathcal{N}(0,1)$ and ask:

How likely are we to see this Z-score if H_0 is true?

If we obtain Z = 2

- The shaded area is the probability of obtaining Z > 2, assuming H_0 is true
- Most of the time we are look for $H_A: \mu_0 \neq 0$ so we need to look on both sides
- This is known as a two-sided test.
- Can also be described as |Z| > 2

$$P(|Z| > 2) = 0.0455$$

$$P(|Z| > 2) = 0.0455$$

- So if H_0 is true, we would see Z>2 about 4.5 times every 100 experimental repeats
- We could then choose to accept H_0 as the most likely truth, or reject H_0 as the most likely truth
- How do we know if we have one of the 4.5 in 100?

$$P(|Z| > 2) = 0.0455$$

- So if H_0 is true, we would see Z>2 about 4.5 times every 100 experimental repeats
- We could then choose to accept H_0 as the most likely truth, or reject H_0 as the most likely truth
- How do we know if we have one of the 4.5 in 100?
 - We don't know
 - Often set p < 0.05 as the rejection value (i.e. $\alpha = 0.05$)

Definition

A p-value is the probability of obtaining data as extreme, or more extreme than we have, if H_0 is true

- 1. We have defined what our data should look like under H_0
- 2. We have determined how likely we are to see our results
- 3. We accept or reject H_0 if $p < \alpha$

In our context

- We are usually comparing μ_1 against $\mu_2 \implies \mu_1 \mu_2 = 0$
 - This would be the expression level in two groups/conditions/treatments etc
 - $\mu_1 \mu_2 = 0$ is testing logFC = 0

In our context

- We are usually comparing μ_1 against $\mu_2 \implies \mu_1 \mu_2 = 0$
 - This would be the expression level in two groups/conditions/treatments etc
 - $\mu_1 \mu_2 = 0$ is testing logFC = 0
- We don't know the population variance (σ)
- We estimate σ using our sample variance \implies T-tests

T-Tests

A T-test is very similar to a Z-test

$$egin{align} Z &= rac{ar{x} - \mu_0}{rac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1) \ T &= rac{ar{x} - \mu_0}{rac{s}{\sqrt{n}}} \sim \mathcal{T}_
u \end{aligned}$$

The value ν means 'degrees of freedom'

The Sample Variance

To calculate the sample variance (s^2) for a set of values $x = (x_1, x_2, \dots, x_n)$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Degrees of Freedom

- The degrees of freedom (ν) describe how 'fat' the tails of a T-distribution are
 - As $\nu \uparrow$ the tails become 'less fat'
- The more individual samples we have (n), the more degrees of freedom we have
 - The more samples we have, the less likely we are to see extreme values
 - Commonly $\nu = n-1$

T-Distributions

- 1. We now compare our T statistic to the appropriate T distribution
- 2. Find the probability (p) of observing data as (or more) extreme if H_0 is true
- 3. Accept or reject H_0

Transcriptomics

- \bullet For Microarrays (i.e continuous data) we simply perform a T-test for every gene
- Expression estimates are analysed on the log₂ scale

$$H_0: \mu_1 - \mu_2 = 0 \text{ Vs } H_A: \mu_1 \neq \mu_2$$

• The expression estimates $ar{x_1}$ and $ar{x_2}$ estimate μ_1 and μ_2

Transcriptomics

- We will also have a sample variance for each group s_1 and s_2
 - Sample variances are assumed to be equal between groups
 - We pool sample variances $(s_p = \ldots)$
 - $\nu = n_1 + n_2 2$

$$T = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Transcriptomics

- We often have k > 2 groups \implies multiple pairwise comparisons
- Or some kind of regression model with discrete predictors (i.e. group-wise)

$$s_p^2 = \frac{\sum_{i=1}^k (n_i - 1) s_i^2}{\sum_{i=1}^k (n_i - 1)}$$

In transcriptomics we usually refer to this as the residual variance

Multiple Testing

P Values

- We perform '000's of *T*-tests in every experiment (one per gene)
- A *p*-value of 0.05 \implies 1 in 20 times we will see data this (or more) extreme **if** H_0 **is true**
- A p-value of 0.01 \implies 1 in 100 times we will see data this (or more) extreme **if** H_0 **is true**
- So if we have 10,000 genes for which H_0 is true, how many times will we see:
 - *p* < 0.05
 - *p* < 0.01

P Values

- We perform '000's of *T*-tests in every experiment (one per gene)
- A *p*-value of 0.05 \implies 1 in 20 times we will see data this (or more) extreme **if** H_0 **is true**
- A *p*-value of 0.01 \implies 1 in 100 times we will see data this (or more) extreme **if** H_0 **is true**
- So if we have 10,000 genes for which H_0 is true, how many times will we see:
 - $p < 0.05 \implies \sim 500 \text{ times}$
 - $p < 0.01 \implies \sim 100 \text{ times}$

Error Rates

- If we reject H_0 using $p < 0.05 \implies \sim 500$ errors (false rejections)
- If we reject H_0 using $p < 0.01 \implies \sim 100$ errors (false rejections)

These are known as *Type I* errors

- In biological research, these can waste \$\$\$
- We need to control these errors

Error Rates

	H ₀ True	H ₀ Not True
Reject H ₀	Type I Error	✓
Accept H ₀	✓	Type II Error

We need to minimise both Type I and Type II errors

Error Rates

Two primary strategies for controlling error rates

- 1. Bonferroni's Method
 - This sets the bar very high to reject H_0
 - Big increase in Type II errors
- 2. False Discovery Rate
 - Allows a small number of false discoveries
 - Reduces Type II errors (compared to Bonferroni)

Error Rate

The Bonferroni Adjustment

- If you have m=10,000 tests and $\alpha=0.05$
- Set $\alpha_{\text{bonf}} = \frac{\alpha}{m} = \frac{0.05}{10000} = 5 \times 10^{-7}$
- Alternatively, adjust each p-value: $p_{bonf} = min(1, m * p)$

Error Rate

The Bonferroni Adjustment

- If you have m=10,000 tests and $\alpha=0.05$
- Set $\alpha_{\text{bonf}} = \frac{\alpha}{m} = \frac{0.05}{10000} = 5 \times 10^{-7}$
- Alternatively, adjust each p-value: $p_{bonf} = min(1, m * p)$

The Family-Wise Error Rate (FWER)

- The effect is P(one Type I Error) ≤ 0.05
- This is strict control of the family-wise error rate
- The family is the complete set of m tests

The False Discovery Rate

- False Discovery Rate strategies are very common in transcriptomics
- We allow a small amount of noise into our results implies signal still swamps noise
 - An $FDR = 0.05 \implies \le 5\%$ of our results are 'false discoveries' (Type I Errors)
- The most common method is the Benjamini-Hochberg method¹
- Other methods include Storey's *q*-value²
- These methods do not control the FWER but do control the FDR

¹Yoav Benjamini and Yosef Hochberg. "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing". In: Journal of the Royal Statistical Society. Series B (Methodological) 57.1 (1995), pp. 289–300. ISSN: 00359246. URL: http://www.istor.org/stable/23446101.

²John D. Storey and Robert Tibshirani. "Statistical significance for genomewide studies". In: Proceedings of the National Academy of Sciences UNIVERSITY 100.16 (2003), pp. 9440-9445. ISSN: 0027-8424. DOI: 10.1073/pnas.1530509100. eprint:
https://www.pnas.org/content/100/16/9440.full.pdf.URL: https://www.pnas.org/content/100/16/9440.

- When conducting our m simultaneous T-tests, we use an estimate of the population variance s_p
 - Some of these are going to be larger than the true population value
 - Others are going to be smaller than the true population value

- When conducting our m simultaneous T-tests, we use an estimate of the population variance s_p
 - Some of these are going to be larger than the true population value
 - Others are going to be smaller than the true population value
- What impact will this have?

$$T = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- If $s_p <<<\sigma \implies T \uparrow$
- We may get significant results with small logFC, due to small variances

$$T = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- If $s_p <<<\sigma \implies T \uparrow$
- We may get significant results with small logFC, due to small variances
- If $s_p >>> \sigma \implies T \downarrow$
- We will miss truly DE genes due to large variances

- This situation exists in **every** *T*-test
- In transcriptomics, we perform '000's in parallel
- This gives us a moderated value of $s_p \implies Moderated \ T$ -test³

- Variances are usually drawn from a Scaled Inverse χ^2 distribution
- Given that we have '000's of genes, we can estimate the hyperparameters for a Bayesian Model
- We end up with a *posterior estimate* known as the moderated variance $(\tilde{s}_p^2 = E[\sigma^2|s_p^2])$
- Overestimates/Underestimates are shrunk towards the mean
- Increases Power (↓ Type II Errors) and Decreases Type I Errors

