Session 2:

Application of Monte Carlo simulation and Markov Chain Monte Carlo in PBPK modeling

Nan-Hung Hsieh, PhD

Postdoc @ Texas A&M Superfund Decision Science Core

12/09/2019

Content

- 1 Uncertainty and Variability
- 2 Monte Carlo simulation Prediction
- 3 Markov Chain Monte Carlo Calibration
- 4 Hands-on Exercise

Uncertainty and Variability

Deterministic vs Probabilistic

Traditional - Deterministic

Choose the "specific" value (or the most conservative scenario) in the risk assessment

Is it good enough?

Deterministic vs Probabilistic

Traditional - Deterministic

Choose the "specific" value (or the most conservative scenario) in the risk assessment

Modern - Probabilistic

Combine "all" information and characterize the **uncertainty**

Modeling in Risk Assessment

Uncertainty vs. Variability

Uncertainty relates to "lack of knowledge"" that, in theory, could be reduced by better data, whereas **variability** relates to an existing aspect of the real world that is outside our control.

World Health Organization (2017)

Variability in Risk Assessment

- Reduce chances using a strain that is a "poor" model of humans
- Obtaining information about "potential range" to inform risk assessment

Population Models Have Greater Likelihood of Human Relevant-Responses Than Single-Strain Models

Chiu WA and Rusyn I, 2018. Advancing chemical risk assessment decision-making with population variability data: challenges and opportunities.

Variability & Uncertainty

If you have *known* "parameters"

----->

Parameters / Model / Data

<-----

If you have known "data"

--- Calibration ---

Monte Carlo Simulation

Monte Carlo Simulation

- A method of estimating the value of unknown quantity using the principle of inferential statistics
- Inferential statistics
 - **Population**: Universal information
 - **Sample**: a proper subset of population
- Repeatedly Random Sampling

Stanislaw Ulam

John von Neumann

ENIAC (Electronic Numerical Integrator and Computer)

Uncertainty in Risk Analysis

The objective of a **probabilistic risk analysis** is the quantification of risk from made man-made and natural activities (**Vesely and Rasmuson, 1984**).

Two major types of uncertainty need to be differentiated:

- (1) Uncertainty due to physical variability
- (2) Uncertainty due to lack of knowledge in
 - Modeling uncertainty
 - Parameter uncertainty
 - Completeness uncertainty

Modeling uncertainty

Deterministic Simulation

• Define exposure unit & calculate point estimate

1-D Monte Carlo Simulation: Uncertainty

• Identify probability distributions to simulate probabilistic outputs

2-D Monte Carlo Simulation: Uncertainty & Variability

• Bayesian statistics to characterize population uncertainty and variability

Uncertainty in parameter

- The parameter is an element of a system that determine the model output.
- **Parameter uncertainty** comes from the model parameters that are inputs to the mathematical model but whose exact values are unknown and cannot be controlled in physical experiments.

$$y=f(x_i)$$

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

-John von Neumann

Uncertainty in PBPK model parameter

Physiological parameters

Cardiac output

Blood flow rate

Tissue volume

Absorption

Absorption fraction, absorption rate, ...

Distribution

Partition coefficient, distribution fraction, ...

Metabolism

Michaelis-Menten kinetics, ...

Elimination

First order elimination rate, ...

Simulation in GNU MCSim

Monte Carlo simulations

• Perform repeated (stochastic) simulations across a randomly sampled region of the model parameter space.

Used to: Check possible simulation (under given parameter distributions) results before model calibration

SetPoints simulation

• Solves the model for a series of specified parameter sets. You can create these parameter sets yourself or use the output of a previous Monte Carlo or MCMC simulation.

Used to: Posterior predictive check, Local/global sensitivity analysis

Markov Chain Monte Carlo

Currently, the Bayesian Markov chain Monte Carlo (MCMC) algorithm is an effective way to do population PBPK model calibration.

It is a powerful tool, Because...

It gives us the opportunity to understand and quantify the "uncertainty" and "variability" from individuals to <code>population</code> through **data** and **model**.

Frequentist vs. Bayesian

Bayes' rule

$$p(heta|y) = rac{p(heta)p(y| heta)}{p(y)}$$

y: Observed data

 θ : Observed or unobserved parameter

 $p(\theta)$: Prior distribution of model parameter

p(y| heta): Likelihood of the experiment data given by a parameter vector

p(heta|y): Posterior distribution

p(y): Likelihood of data

Frequentist vs. Bayesian

Traditional Power:

Point Hypothesis and Single Goal of Rejecting the Null

Bayesian Generalized Power:

Distributional Hypothesis and Various Goals such as Precision

Through Markov Chain Monte Carlo ...

The product of output is not best-fit, but "prior" and "posterior".

Probabilistic Modeling

https://doi.org/10.1016/j.ddmod.2017.08.001

Markov Chain Monte Carlo

• Metropolis-Hastings sampling algorithm

The algorithm was named for Nicholas Metropolis (physicist) and Wilfred Keith Hastings (statistician). The algorithm proceeds as follows.

Initialize

1. Pick an initial parameter sets $heta_{t=0} = \{ heta_1, heta_2, \dots heta_n\}$

Iterate

- 1. Generate: randomly generate a candidate parameter state heta' for the next sample by picking from the conditional distribution $J(heta'| heta_t)$
- 2. Compute: compute the acceptance probability $A\left(heta', heta_t
 ight)=\min\left(1,rac{P(heta')}{P(heta_t)}rac{J(heta_t| heta')}{J(heta'| heta_t)}
 ight)$
- 3. Accept or Reject:
 - 1. generate a uniform random number $u \in [0,1]$
 - 2. if $u \leq A(x', x_t)$ accept the new state and set $\theta_{t+1} = \theta'$, otherwise reject the new state, and copy the old state forward $\theta_{t+1} = \theta_t$

Simulation in GNU MCSim

Markov-chain Monte Carlo (MCMC) simulation

- Performs a series of simulations along a Markov chain in the model parameter space.
- They can be used to obtain the Bayesian **posterior** distribution of the model parameters, given a statistical model, **prior** parameter distributions and data for which a **likelihood function** can be computed. **Used to** Model calibration

Calibration & evaluation

Prepare model and input files

Need at least 4 chains in simulation

Check convergence & graph the output result

- Parameter, log-likelihood of data
- Trace plot, density plot, correlation matrix, auto-correlation, running mean, ...
- Gelman-Rubin convergence diagnostics

Evaluate the model fit

- Global evaluation
- Individual evaluation

Example - Linear model


```
## linear.model.R ####
Outputs = {y}

# Model Parameters
A = 0; #
B = 1;
CalcOutputs { y = A + B * t); }
End.
```

```
## linear mcmc.in.R ####
MCMC ("MCMC.default.out", "", # name of output
         # name of data file
    2000,0, # iterations, print predictions flag,
    1,2000, # printing frequency, iters to print
    10101010):  # random seed (default )
Level {
 Distrib(A, Normal, 0, 2); # prior of intercept
 Distrib(B, Normal, 1, 2); # prior of slope
 Likelihood(y, Normal, Prediction(y), 0.05);
 Simulation {
   PrintStep (y, 0, 10, 1);
   Data (y, 0.01, 0.15, 2.32, 4.33, 4.61, 6.68,
               7.89, 7.13, 7.27, 9.4, 10.0);
End.
```

Example - MCMC simulation


```
model ← "models/linear.model"
input ← "inputs/linear.mcmc.in"
set.seed(1111)
out ← mcsim(model, input)
```

```
head(out)
```

```
LnPrior
     iter
             A.1.
                       B.1.
                                           LnData LnPosterior
###
        0 5.17187 -0.421849 -6.820405 -591.1577
                                                    -597,9781
## 2
        1 5.17187 -0.421849 -6.820405 -591.1577
                                                    -597,9781
## 3
        2 5.43465 -0.421849
                             -7.168811 -565.2515
                                                    -572,4203
        3 8.62813 -0.421849 -12.782460 -493.2532
                                                    -506,0356
## 4
## 5
        4 7.97506 -0.421849 -11.427070 -471.4773
                                                    -482,9044
## 6
        5 7.51347 -0.421849 -10.533410 -467.4057
                                                    -477,9391
```

```
tail(out, 4)
```

```
## 1998 1997 0.706138 0.957902 -3.286722 -19.06480 -22.35153
## 1999 1998 0.706138 0.957902 -3.286722 -19.06480 -22.35153
## 2000 1999 0.706138 0.974017 -3.286585 -19.13584 -22.42242
## 2001 2000 0.462481 0.974017 -3.250992 -18.92306 -22.17405
```


Example - Posterior check


```
plot(out$A.1., out$B.1., type = "b",
    xlab = "Intercept", ylab = "Slope")
```


Example - Posterior check

Example - Evaluation of prediction


```
# Observed
x \leftarrow seq(0,10,1)
y \leftarrow c(0.0, 0.15, 2.32, 4.33, 4.61, 6.68,
       7.89, 7.13, 7.27, 9.4, 10.0)
# Expected
dim.x \leftarrow ncol(out)
for(i in 1:11){
  out[,ncol(out)+1] \leftarrow out$A.1. + out$B.1.*x[i]
# Plot
plot(x, y, pch ="")
for(i in 1901:2000){
  lines(x, out[i,c((dim.x+1):ncol(out))],col="grey")
points(x, y)
```


Example - Evaluation of prediction

General Bayesian-PBPK Workflow

- 1 Model constructing or translating
- 2 Verify modeling result
 - Compare with published result
 - Mass balance
- 3 Uncertainty (and sensitivity) analysis
- 4 Model calibration and validation
 - Markov chain Monte Carlo
 - Diagnostics (Goodness-of-fit, convergence)

Summary

- In the real-word study, we need to consider the **uncertainty** (from different sources) and **variability** (inter or intra-individual data) to include all possible scenarios.
- If we have parameter, we can apply **Monte Carlo technique** to qunatify the uncertainty and variability.
- If we have data, we can calibrate the "unknown" parameter (prior) to "known" parameter (posterior) in our model through **Bayesian statistics**.

Task 1. Uncertainty analysis on PK model (code: https://rpubs.com/Nanhung/SRP19_6)

• Before model calibration, we need to learn how to conduct Monte Carlo simulation to set the proper parameter distribution

Task 2. Model calibration (code: https://rpubs.com/Nanhung/SRP19_7)

• After the uncertainty analysis, we can calibrate the model parameters by Markov chain Monte Carlo technique

Task 3. Monte Carlo Simulation for PBPK model (code: https://rpubs.com/Nanhung/SRP19_8)

• Learn how parameter effect on model variable in PBPK model

Task 4. PBPK model in MCSim (code: https://rpubs.com/Nanhung/SRP19_9)

• Sometimes, the simulation process in R is very computational expensive. We need to solve it.

Task 1: Uncertainty analysis on PK model

- In the previous exercise, we find that the predcited result can not used to describe the real cases.
- Therefore, we need to conduct the uncertainty analysis to figure out how to reset the model parameter.

Task 2: Model calibration

- After the uncertainty analysis, we can calibrate the model parameters by Markov chain Monte Carlo technique
- Use the parameter distributions that we test in uncertainty analysis and conduct MCMC simulation to do model calibration.

Task 3: Monte Carlo Simulation for PBPK model

• Reproduce the published Monte Carlo analysis result in Bois and Brochot (2016)*

• Testing parameter include body mass (BDM), pulmonary flow (Flow_pul), partition coefficient of arterial blood

(PC_art) and metabolism rate (Kmetwp)

• Construct the relationship between body mass and quantity in fat

Task 4: Monte Carlo Simulation for PBPK model (MCSim)

- The Monte Carlo Simulation take a little bit longer with ode function in **deSolve** package.
- Therefore we want to improve the computational speed. Now, rewrite the R model code to **MCSim** and conduct Monte Carlo Simulation with the same parameter setting.
- The goal of this exercise is to compare the computational time and output (MCSim vs. R).

```
Distrib (BDM, Normal, 73, 7.3);
Distrib (Flow_pul, Normal, 5, 0.5);
Distrib (PC_art, Normal, 2, 0.2);
Distrib (Kmetwp, Normal, 0.25, 0.025);
```