2017年秋季《捷联惯导与组合导航原理》课程复习提纲

主要内容	试题
	何为导航?
	导航 (navigation) 就是正确地引导机动载体沿着预定的航线在规定的时间内到达目的地,为运
	动物体提供实时的导航参数是导航的基本任务。所以,导航是一种广义的动态定位,我们
	把能够提供运动物体位置、速度、航向等运动状态的系统称为导航定位系统。
	与制导什么区别?
	制导 (Guidance):即轨迹规划 (Trajectory Planning),从起始位置/状态到目标位置/状态全程的
	位移、速度、加速度 (或更高阶量) 的规划;导航 (Navigation):指的是 "the state at a given
	time",即任一指定时刻运动体处的位置/状态。从这个意义看,导航是制导结果在当前(
다. 하는 FT TH MT '-	或某一) 时刻的应用体现;
导航原理概述	惯性导航的分类及优缺点。
	具有物理稳定平台的惯性导航系统叫做平台惯性导航系统,稳定平台是平台惯性导航系统的核
	心部分。平台惯导系统已经发展到了很高的水平,但是其成本高,后期维护费用昂贵,并
	且采用了伺服系统,可靠性得不到保障。
	把陀螺仪和加速度计直接安装在载体上,其中陀螺仪和加速度计分别用来感知载体的角速度和
	线加速度信息,称为捷联式惯导。捷联惯导系统省去了惯性平台,大大减小了整个系统的
	质量、体积与成本,其敏感元件更容易安装、维修或更换。但是把惯性元件直接固连在载
	体上,载体震动会对惯性元件产生冲击,系统精度受到影响,因此需要制定相应的误差补
	偿方案或者采用性能更好的元件。
陀螺仪原理	陀螺仪定义
	双曲 <i>化济</i> 克 () 对我可能的方法提供圆体 - 田土河的具状状界上之村表 - 医胚状的圆体处域上
	经典、传统定义:对称平衡的高速旋转刚体,用专门的悬挂装置支承起来,使旋转的刚体能绕与
	自转轴不相重合或平行的另一条轴或另二条轴转动的专门装置。
	广义陀螺仪定义:能自主地测量物体角速度或角位移的器件,也称为陀螺仪。包括光学陀螺仪

、振动陀螺仪、硅微机械陀螺仪等新型陀螺仪应运而生,扩大了陀螺仪家族的阵营,它们 具有完全崭新的特性。没有陀螺框架结构。

按陀螺仪的基本工作原理分类

□ 机械转子陀螺:液浮、动调、静电以及气浮自由转子、磁浮陀螺和超导陀螺;

□ 振动陀螺仪:音叉振动陀螺、半球谐振陀螺、压电振动陀螺、硅微陀螺仪;

□ 光学陀螺仪:激光、光纤及集成光学或称为光波导陀螺

按陀螺仪的精度分类

高精度 (惯性级), error<10⁻³ °/h, 远程火箭洲际导弹核潜艇

中等精度 (导航级), error<10⁻² °/h, 飞机船只

中低精度陀螺仪, error<10⁻¹ °/h, 工作时间短精度需求低, 战术武器

低精度陀螺仪, error<1°/h, 交通车辆、工业运动检测

角速率传感器, error 0.01°/s, 同上

名词解释:陀螺效应、进动性、定轴性

陀螺效应:陀螺具有一系列特殊的运动现象和规律,称为陀螺效应。如进动性、定轴性。

进动性:陀螺仪的外力矩作用方向与支架运动方向不一致,而呈互相垂直的现象,叫陀螺仪的进动现象,或称陀螺仪的进动性。

定轴性:在外干扰力矩,陀螺仪转子轴几乎看不出有什么方向的变化,好像这时支承的摩擦等干扰力矩带不动转子轴似的,陀螺仪的这种现象,叫定轴现象,或称陀螺仪的定轴性。

陀螺仪的主要技术指标

新型陀螺仪

漂移:没有外部角速度输入时,陀螺的输出角速度

角随机游走:角速度积分获取的角度中的噪声

标度因数误差:传感器的输出值与实际角速度的比值量 K 引起的误差

光学陀螺仪-工作原理 (Sagnac 效应)

光学陀螺中有两条光束在一条封闭的环路里反向传播,它的基本原理就是检测两条有效光程的差。当干涉仪以角速率û转动时,分束器的位置已经发生了移动(位置Y),每条光束通过圆周的时间就不同。沿顺时针方向传播的光束必须走过比固定不动时更长的路程。逆时针传播的光束则反之。顺、逆两束光在环路传播一周后,通过集束器(半反片)发生干涉,形成干涉条纹。当光程差改变一个波长,干涉条纹就移动一个,因此干涉条纹的移动速度与陀螺转动的角速度成正比。这一现象称为 Sagnac 效应。

MEMS (微机械) 陀螺仪分类

MEMS (Micro Electro-Mechanical Systems)即微机械陀螺仪主要有转子式、振动式微机械陀螺仪和微机械加速度计陀螺仪三种。转子式的 MEMS 陀螺较为少见,振动式和微加速度计式的微陀螺基本原理一致,都是利用柯氏效应。目前,MEMS 陀螺仪基本都是振动式的。

加速度计测量量的定义 (比力)

加速度计测量的加速度不是载体在惯性空间的加速度,而是视加速度,称为比力 (Specific Force)。比力是单位质量的物体受到的除地球引力外的作用力 。视加速度的物理意义是载体 动力 (推力等) 加速度和阻力加速度 (气动力等) 的矢量和。

MEMS 加速度计分类及性能指标

加速度计原理

MEMS 加速度计又称硅加速度计,根据读取元件的不同,微机械加速度计又有压阻式、电容式

、静电平衡式和石英振梁式之分。

量程、灵敏度、动态范围、反应时间

捷联惯导误差方程

理解捷联惯导系统的主要误差源

- (1) 惯性仪表误差,如陀螺和加速度计的漂移和的零位误差等随机误差、标度因子误差、安 装误差等;
- (2) 初始对准误差,由静基座或动基座对准造成的误差,包括位置初始误差、速度初始误差 和姿态航向的初始误差;
- (3) 计算误差,主要考虑姿态航向系统计算误差,即数学平台的计算误差;
- (4) 模型误差,如对地球模型建模的不准确所导致的误差。

掌握典型的激光/光纤陀螺误差模型 (安装误差,刻度系数误差,偏置)

2. 典型的激光/光纤陀螺误差模型为

$$\delta \boldsymbol{\omega}_{ib}^b = \boldsymbol{B}_g^b + \boldsymbol{M}_g \boldsymbol{\omega}_{ib}^b + \boldsymbol{\varepsilon}_g$$

$$\delta\boldsymbol{\omega}_{ib}^{b} = \begin{bmatrix} \boldsymbol{B}_{gx} \\ \boldsymbol{B}_{gy} \\ \boldsymbol{B}_{gz} \end{bmatrix} + \begin{bmatrix} \boldsymbol{S}_{gx} & \boldsymbol{M}_{gxy} & \boldsymbol{M}_{gxz} \\ \boldsymbol{M}_{gyx} & \boldsymbol{S}_{gy} & \boldsymbol{M}_{gyz} \\ \boldsymbol{M}_{gzx} & \boldsymbol{M}_{gzy} & \boldsymbol{S}_{gz} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{x}^{b} \\ \boldsymbol{\omega}_{y}^{b} \\ \boldsymbol{\omega}_{z}^{b} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{gx} \\ \boldsymbol{\varepsilon}_{gy} \\ \boldsymbol{\varepsilon}_{gz} \end{bmatrix}$$

 \mathbf{B}_{σ}^{b} ——陀螺零偏向量;

 ω_{ib}^{b} ——陀螺输入角速度向量;

 M_s ——与陀螺一次项相关的误差矩阵;

 ε_a ——陀螺随机噪声向量;

 S_{qi} ——陀螺标度因子误差, i=x,y,z

掌握典型的加速度计误差模型 (安装误差,刻度系数误差,偏置)

3. 典型的加速度计误差模型为

$$\delta \boldsymbol{f}^{b} = \boldsymbol{B}_{a}^{b} + \boldsymbol{M}_{a} \boldsymbol{f}^{b} + \boldsymbol{D}_{a} (\boldsymbol{f}^{b})^{2} + \boldsymbol{\varepsilon}_{a}$$

$$\delta \boldsymbol{f}^{b} = \begin{bmatrix} B_{ax} \\ B_{ay} \\ B_{az} \end{bmatrix} + \begin{bmatrix} S_{ax} & M_{axy} & M_{axz} \\ M_{ayx} & S_{ay} & M_{ayz} \\ M_{azx} & M_{azy} & S_{az} \end{bmatrix} \begin{bmatrix} f_{x}^{b} \\ f_{y}^{b} \\ f_{z}^{b} \end{bmatrix} + \begin{bmatrix} d_{ax} & 0 & 0 \\ 0 & d_{ay} & 0 \\ 0 & 0 & d_{az} \end{bmatrix} \begin{bmatrix} \left(f_{x}^{b} \right)^{2} \\ \left(f_{y}^{b} \right)^{2} \\ \left(f_{z}^{b} \right)^{2} \end{bmatrix} + \begin{bmatrix} \varepsilon_{ax} \\ \varepsilon_{ay} \\ \varepsilon_{az} \end{bmatrix}$$

 B_a^b ——加速度计零偏向量;

 f^b ——加速度计输入比力向量;

 M_a ——与加速度一次项相关的误差矩阵;

 D_a ——与加速度二次项相关的误差矩阵;

 ε_a ——加速度计随机噪声向量;

 S_{ai} ——加速度计标度因子误差,i=x,y,z

什么是 GPS?

GPS 的英文全称是

Navigation Satellite Timing And Ranging Global Position System

简称 GPS,有时也被称作 NAVSTAR GPS。其意为"导航星测时与测距全球定位系统",或简称全球定位系统。

GPS 定位系统的组成

卫星导航

□ 空间部分 (GPS 卫星星座)、地面控制部分 (地面监控系统)、用户部分 (GPS 信号接收机)

GPS 卫星星座组成

- □ GPS 系统的空间部分由 24 颗 GPS 卫星组成, 称为卫星星座。
- □ 卫星星座的分布设置要保证地球上任何地点,任何时刻至少可以同时观测到四颗卫星。

GPS 接收机类型

• 导航型:用于确定船舶、车辆、飞机等运载体的实时位置和速度,保障按预定路线航行

或选择最佳路线。采用测码伪距为观测量的单点实时定位或差分 GPS 定位, 精度低, 结构简单, 价格便宜, 应用广泛。

- 测量型接收机:采用载波相位观测量进行相对定位,精度高。观测数据可测后处理或实时处理(RTK),需配备功能完善的数据处理软件。与导航型相比,结构复杂,价格昂贵
- 授时型接收机:主要用于天文台或地面监控站,进行时频同步测定。

理解天文导航基本思路

天文导航是利用天体敏感器测量恒星天体方向信息,通过解算获得运载体的惯性姿态,或在给 定水平信息条件下进行定位、定向的导航方法。

天文导航利用对天空中星体的观察来确定飞行器的运动参数、天文导航突出的优点是自主性强

、隐蔽性好、精度高、无姿态累积误差。

掌握星光定姿最小二乘算法

天文导航

星光定姿算法技术研究-LS算法

$$Z = HX + V$$

最小二乘估计要求 Z_i 与由估计 \hat{X} 确定的量测估计 Z_i 之差的平方和 最小

$$J = (\mathbf{Z} - \mathbf{H}\hat{X})^{T} (\mathbf{Z} - \mathbf{H}\hat{X})$$

$$\frac{\partial J}{\partial X}\Big|_{X=\hat{X}} = 0 \qquad \frac{\partial J}{\partial X}\Big|_{X=\hat{X}} = -2H^{T}(Z - H\hat{X}) = 0$$

$$\hat{\boldsymbol{X}} = (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T \boldsymbol{Z}$$

$$\boldsymbol{A}^{T} = (\boldsymbol{V}^{T}\boldsymbol{V})^{-1}\boldsymbol{V}^{T}\boldsymbol{U}$$

理解星敏感器工作原理、星图识别的作用

质心提取算法、星图匹配算法、定姿算法。

利用星图识别算法及导航星库对视场内的 N 颗星进行识别,得出视场内 N 颗星在天球惯性坐标 系中的位置矢量。与此同时,通过这 N 颗星在视场内的坐标值及相应处理算法得到星体 在运载体基准坐标系中的位置矢量。

掌握天球坐标系的概念、星光矢量和星光惯性矢量计算(?)

天球坐标系是以天极和春分点作为天球定向基准的坐标系。天球是以地球球心为中心、半径无 限大的想象球体。所有天体不管到地球距离有多远,都把它们投影到天球的球面。天体 的位置即可看成是天体在天球上的位置 (用赤经,赤纬来表示)。

理解恒星间和像平面坐标系上星光角距的计算

金字塔法星图识别算法

两颗导航星 赤经和赤纬 天球坐标系的方向矢量

$$s_{i} = \begin{pmatrix} \cos \alpha_{i} \cos \delta_{i} \\ \cos \alpha_{i} \sin \delta_{i} \\ \sin \alpha_{i} \end{pmatrix} \qquad s_{j} = \begin{pmatrix} \cos \alpha_{j} \cos \delta_{j} \\ \cos \alpha_{j} \sin \delta_{j} \\ \sin \alpha_{j} \end{pmatrix}$$

恒星间角距

$$d(i, j) = \arccos(\frac{s_i \cdot s_j}{|s_i| \cdot |s_j|})$$

	金字塔法星图识别算法 两颗导航星 在成像面上成像的坐标 $s_1 = \frac{1}{\sqrt{X_1^2 + Y_1^2 + f^2}} \binom{X_1}{Y_1}{f} \qquad s_1 = \frac{1}{\sqrt{X_1^2 + Y_1^2 + f^2}} \binom{X_1}{Y_1}{f}$ $d_m = \arccos(\frac{s_1 \cdot s_2}{\mid s_1 \mid \cdot \mid s_2 \mid})$
数学基础	掌握地心惯性坐标系, 地心地固坐标系, 载体坐标系, 当地水平坐标系的概念及其转换 载体坐标系:普通载体系顺了一个度(航空常用) 当地水平坐标系:东北天
	反对称矩阵 设 A 为 n 维方阵,若有 A'=-A,则称矩阵 A 为反对称矩阵。对于反对称矩阵,它的主对角线上的元素全为零,而位于主对角线两侧对称的元反号。
捷联惯性导航原理	理解捷联式惯导力学编排

掌握姿态矩阵, 位置矩阵及其推导过程

$$\begin{split} &C_n^b = C_\gamma C_\theta C_\psi \\ &= \begin{bmatrix} \cos \gamma & 0 & -\sin \gamma \\ 0 & 1 & 0 \\ \sin \gamma & 0 & \cos \gamma \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \psi & \cos \psi & 0 \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos \gamma \cos \psi + \sin \gamma \sin \theta \sin \psi & -\cos \gamma \cos \psi + \sin \gamma \sin \theta \sin \psi & -\sin \gamma \cos \theta \\ \cos \theta \sin \psi & \cos \theta \cos \psi & \sin \theta \\ \sin \gamma \cos \psi - \cos \gamma \sin \theta \sin \psi & -\sin \gamma \sin \psi - \cos \gamma \sin \theta \cos \psi & \cos \gamma \cos \theta \end{bmatrix} \end{split}$$

注意: C_n^b 是正交阵,即 $C_b^n = [C_n^b]^{-1} = [C_n^b]^T$

掌握矢量叉乘计算方法

掌握哥氏定理

掌握比力方程及推导过程

$$\frac{d\mathbf{R}}{dt}\bigg|_{i} = \frac{d\mathbf{R}}{dt}\bigg|_{e} + \boldsymbol{\omega}_{ie} \times \mathbf{R} = \boldsymbol{v}_{en} + \boldsymbol{\omega}_{ie} \times \mathbf{R}$$

$$\frac{d^{2}\mathbf{R}}{dt^{2}}\bigg|_{i} = \frac{d\boldsymbol{v}_{en}}{dt}\bigg|_{i} + \frac{d}{dt}(\boldsymbol{\omega}_{ie} \times \mathbf{R})\bigg|_{i}$$

$$= \frac{d\boldsymbol{v}_{en}}{dt}\bigg|_{i} + \boldsymbol{\omega}_{ie} \times \frac{d\mathbf{R}}{dt}\bigg|_{i} = \frac{d\boldsymbol{v}_{en}}{dt}\bigg|_{i} + \boldsymbol{\omega}_{ie} \times (\boldsymbol{v}_{en} + \boldsymbol{\omega}_{ie} \times \mathbf{R})$$

	$egin{align*} \left. \frac{doldsymbol{v}_{en}}{dt} \right _{i} &= \left. \frac{doldsymbol{v}_{en}}{dt} \right _{n} + oldsymbol{\omega}_{in} imes oldsymbol{v}_{en} \ f + oldsymbol{G} &= \dot{oldsymbol{v}}_{en} + (2oldsymbol{\omega}_{ie} + oldsymbol{\omega}_{en}) imes oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} imes oldsymbol{R} ight) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} + \mathbf{w}_{en} \right) \times oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{ie} imes oldsymbol{R} ight) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} + oldsymbol{\omega}_{en} \right) \times oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{ie} \times oldsymbol{R} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} \times \mathbf{w}_{en} \right) \times oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{ie} \times oldsymbol{R} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} \times \mathbf{w}_{en} \right) \times oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{ie} \times oldsymbol{R} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} \times \mathbf{w}_{en} \right) \times oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{ie} \times oldsymbol{R} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} \times \mathbf{w}_{en} \right) \times oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{ie} \times oldsymbol{R} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} \times \mathbf{w}_{en} \right) \times oldsymbol{v}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{ie} \times oldsymbol{w}_{en} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} \times \mathbf{w}_{en} \right) \times oldsymbol{w}_{en} + oldsymbol{\omega}_{ie} \times (oldsymbol{\omega}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{ie} \times \mathbf{w}_{en} \right) \times oldsymbol{w}_{en} + oldsymbol{\omega}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{en} \times \mathbf{w}_{en} \right) \times oldsymbol{w}_{en} + oldsymbol{\omega}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \right) \ &= \mathbb{E}_{\mathbf{w}} \left(\mathbf{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsymbol{w}_{en} \times oldsy$
	理解四元数与刚体定点转动的关系 掌握二子样等效旋转矢量求解
	掌握速度、位置求解增量形式以及姿态更新方法
初始对准	静基座粗对准基本思想
	利用重力矢量和地球自转角速率的测量值,直接估算载体坐标系到地理坐标系的变换矩阵。
	$(\boldsymbol{g}^b)^T = (\boldsymbol{g}^n)^T \boldsymbol{C}_b^n, (\boldsymbol{\omega}_{ie}^b)^T = (\boldsymbol{\omega}_{ie}^n)^T \boldsymbol{C}_b^n$
	粗对准的精度并不高,原因是忽略了晃动及惯性器件的测量误差,失准角一般在数角分至数十
	角分范围内,视晃动剧烈程度。因此进行完粗对准后必须要进行精对准。
	掌握静基座对准的流程
组合导航	理解性/卫星组合导航状态空间描述 (间接法)
	掌握状态空间方程离散化方法
	掌握卡尔曼滤波方法及其状态预测、增益求取、协方差计算公式
	掌握直接法、间接法区别,反馈校正、输出校正区别