Лекция по эконометрике № 3

2 модуль

Функциональные преобразования переменных

Демидова
Ольга Анатольевна
https://www.hse.ru/staff/demidova_olga
E-mail:demidova@hse.ru
09.11.2020

План лекции

- •Линейная в логарифмах регрессия, как модель с постоянной эластичностью.
- •Модель с постоянными темпами роста (полулогарифмическая модель).
- •Интерпретация оценок коэффициентов различных функциональных форм.
- •Выбор между моделями. Тесты Бокса-Кокса, Бера и МакАлера, МакКиннона, Уайта и Дэвидсона.

Линейная модель и ее интерпретация

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_K X_K + \varepsilon,$$

 β_j значим=>

Если X_j увеличится на 1 единицу, то Y увеличится на $\hat{\beta}_{j}$ Единиц (при прочих равных факторах).

3

Линейная в логарифмах модель и ее интерпретация

$$\ln Y = \beta_0 + \beta_1 \ln X_1 + \dots + \beta_j \ln X_j + \beta_k \ln X_k + \varepsilon$$

$$\ln Y = \hat{\beta}_0 + \hat{\beta}_1 \ln X_1 + \dots + \hat{\beta}_j \ln X_j + \hat{\beta}_k \ln X_k$$

$$\dot{Y}$$

$$\frac{Y'}{Y} = \beta \hat{X}_{j} \frac{X_{j}}{X_{j}}$$

$$\hat{\beta}_{j} = \frac{\dot{Y}/Y}{\dot{X}_{j}/X_{j}} -$$
эластичнос ть.

Полулогарифмическая модель и ее интерпретация

$$\ln Y = \beta_0 + \beta_1 X_1 + ... + \beta_j X_j + \beta_k X_k + \varepsilon$$

$$\ln Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + ... + \hat{\beta}_j X_j + \hat{\beta}_k X_k$$

$$\frac{\dot{Y}}{Y} = \hat{\beta}_{j} \dot{X}_{j}, \qquad \hat{\beta}_{j} = \frac{\dot{Y}/Y}{\dot{X}_{j}}$$

Если Хі увеличится на 1 единицу, то У увеличится на

$$\hat{\beta}_i \cdot 100\%$$
.

Выбор между моделями

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$
 (1)

$$\ln Y = \beta_0 + \beta_1 \ln X_1 + ... + \beta_k \ln X_k + \varepsilon \quad (2)$$

$$\ln Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$
 (3)

(2) и (3) можно сравнить по R_{adj}^2 .

Тест Бокса-Кокса

$$Y^{(\theta)} = \frac{Y^{\theta} - 1}{\theta}, \theta \neq 0$$

$$\lim_{\lambda \to 0} \frac{Y^{\theta} - 1}{\theta} = \lim_{\theta \to 0} \frac{Y^{\theta} \cdot \ln Y}{1} = \ln Y$$

$$Y^{(\theta)} = \begin{cases} \frac{Y^{\theta} - 1}{\theta}, & \text{если } \theta \neq 0, \\ \ln Y, & \text{если } \theta = 0 \end{cases}$$

Тест Бокса-Кокса

$$Y^{(\theta)} = \beta_0 + \beta_1 X_1^{(\lambda)} + ... + \beta_k X_k^{(\lambda)} + \varepsilon$$

RSS
$$(\beta_0, \beta_1, ..., \beta_k, \lambda, \theta) \rightarrow \min$$

$$\hat{eta}_{0ML}$$
 , \hat{eta}_{1ML} ,..., \hat{eta}_{kML} , $\hat{\lambda}_{ML}$, $\hat{ heta}_{ML}$

Тест Бокса-Кокса

$$Y^{(\theta)} = \beta_0 + \beta_1 X_1^{(\lambda)} + ... + \beta_k X_k^{(\lambda)} + \varepsilon$$

$$H_0: \lambda = \theta = 1$$
 Линейная модель

$$H_0: \lambda = \theta = 0$$
 Линейная в логарифмах модель

Тест Бокса-Кокса. Пример

$$W^{(\theta)} = \beta_0 + \beta_1 H^{(\lambda)} + \varepsilon$$

Number of obs = 540

LR chi2(2) = 230.68

Prob > chi2 = 0.000

WEIGHT02 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

Log likelihood = -2659.5656

/lambda | 1.055498 1.892654 0.56 0.577 -2.654035 4.76503 /theta | -.0263371 .1471576 -0.18 0.858 -.3147607 .2620865

/anota | .0200071 .11111070 0.10 0.000 .0117001 .2020000

Тест Бокса-Кокса. Пример

$$W^{(\theta)} = \beta_0 + \beta_1 H^{(\lambda)} + \varepsilon$$

H0:	Test log likelihood		Restricted chi2 Prob > chi2	
theta=lamb	bda = 0	-2680.8693	42.61	0.000
theta=lamb		-2659.7618	0.39	0.531
theta=lamb		-2685.5201	51.91	0.000

Выбор между линейной и полулогарифмической моделями

$$Y = \beta_0 + \beta_1 X + \varepsilon \quad (1)$$

$$\log Y = \beta_0 + \beta_1 X + \varepsilon \quad (2)$$

H₀: качество подгонки моделей (1) и (2) одинаковое

H₁: модель с меньшей RSS лучше

Выбор между линейной и полулогарифмической моделью можно осуществить с помощью теста Пола Зарембки (частный случай теста Бокса – Кокса).

Тест П.Зарембки

1) Вычисляется среднее геометрическое значение Y:

$$\sqrt[n]{Y_1 \cdot Y_2 \cdot \dots \cdot Y_n}$$

- 2) Вводится вспомогательная переменная $Y^* = Y$ / geometric mean of Y
- 3) Оцениваются параметры вспомогательных регрессий

$$Y^* = \beta_0' + \beta_1' X + \varepsilon \tag{3}$$

$$\log Y^* = \beta_0' + \beta_1' X + \varepsilon \quad (4)$$

Тест П.Зарембки

4) Вычисляется значение тестовой статистики

$$\chi^2 = \frac{n}{2} \ln \frac{RSS_3}{RSS_4}$$

где RSS_3 , RSS_4 – суммы квадратов остатков в оцененных регрессиях (3) и (4).

5) Если при выбранном уровне значимости α

то гипотеза H₀ отвергается, между моделями (1) и (2) есть значимое различие. Лучше та модель, при оценивании которой меньше RSS.

Bera and McAleer test

$$H_0: \ln Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

$$H_1: Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

Шаг 1:
$$l \hat{n} Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + ... + \hat{\beta}_k X_k$$
, $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + ... + \hat{\beta}_k X_k$

Bera and McAleer test

Шаг 2:Оценивается вспомогательные регрессии:

$$\exp(\ln \hat{Y}) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \nu_1,$$

$$\ln \hat{Y} = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \nu_2$$

 $Coxpaняются \ \hat{v_1}, \hat{v_2}.$

Шаг 3 : Оцениваются вспомогательные регрессии : $\ln Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \theta_1 \hat{v_1} + \varepsilon_1$,

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \theta_2 \hat{v}_2 + \varepsilon_2$$

Oбычные t – tests.

Если $\theta_1 = 0$ не отвергается, а $\theta_2 = 0$ отвергается выбирается полулогарифмическая модель.

Если $\theta_2 = 0$ не отвергается, а $\theta_1 = 0$ отвергается, выбирается линейная модель.

Возникает проблема если обе гипотезы отвергаются или не отвергаются.

MacKinnon-White-Davidson PE test

$$H_0: \ln Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

$$H_1: Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

Шаг 1:
$$l \hat{n} Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + ... + \hat{\beta}_k X_k$$
,

$$\hat{Y} = \hat{\beta}_1 + \hat{\beta}_2 X_2 + ... + \hat{\beta}_k X_k$$

MacKinnon-White-Davidson PE test

Шаг 2 : Оцениваются вспомогательные регрессии :

$$\ln Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \theta_1 [\hat{Y} - \exp(\ln Y)] + \varepsilon_1,$$

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \theta_2 [\ln Y - \ln \hat{Y}] + \varepsilon_2,$$

MacKinnon-White-Davidson PE test

Шаг 2 : Оцениваются вспомогательные регрессии :

$$\ln Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \theta_1 [\hat{Y} - \exp(\ln Y)] + \varepsilon_1,$$

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \theta_2 [\ln Y - \ln \hat{Y}] + \varepsilon_2,$$

MacKinnon-White-Davidson PE test

Обычные t – tests. $Eсли \ \theta_1 = 0$ не отвергается, $a \ \theta_2 = 0$ отвергается, выбирается полулогари фмическая модель.

Если $\theta_2 = 0$ не отвергается, $a \theta_1 = 0$ отвергается, выбирается линейная модель.

Возникает проблема, если обе гипотезы отвергаются или не отвергаются.