Honors Mathematics III RC 6

CHEN Xiwen

UM-SJTU Joint Institute

July 3, 2018

Table of contents

Functions and Derivatives Integrals

Curves in Vector Spaces

Curves

Reparametrization of Curves

Smooth Curves

Tangent Lines and Tangent Vectors

The Normal Vector of a Curve

Curve Length

Curvature

Exercises

Functions and Derivatives Integrals

Curves in Vector Spaces

Curves

Reparametrization of Curves

Smooth Curves

Tangent Lines and Tangent Vectors

The Normal Vector of a Curve

Curve Length

Curvature

Exercises

Integrals

2.2.25. Definition. A **step function** with respect to a partition $P = (a_0, \ldots, a_n)$ with elements $y_i \in V$, $f(t) = y_i$ whenever $a_{i-1} < t < a_i, i = 1, \ldots, n$. 2.2.29. Theorem. Let $f : [a, b] \to V$ be a step function with respect to some partition P. Then the **integral** of f is

$$I_P(f) := (a_1 - a_0)y_1 + \dots + (a_n - a_{n-1})y_n \in V$$

and is independent of the choice of P.

$$\left\| \int_{a}^{b} f(x) dx \right\|_{V} \le \int_{a}^{b} \|f(x)\|_{V} dx \le |b - a| \cdot \sup_{x \in [a,b]} \|f(x)\|_{V}$$

Mean Value Theorem

2.2.30. Mean Value Theorem. X,V are finite-dimensional vector spaces, $\Omega \subset X$ is open and $f \in C(\Omega,V)$. $x,y \in \Omega$ and the line segment $x+ty,0 \le t \le 1$ is wholly contained in Ω . Then

$$f(x+y) - f(x) = \int_0^1 Df|_{x+ty} y dt = \left(\int_0^1 Df_{x+ty} dt\right) y$$

Differentiating Under an Integral

2.2.33. Theorem.

- 1. X, V are finite-dimensional vector spaces.
- 2. $I = [a, b] \subset \mathbb{R}$, $\Omega \subset X$ an open set.
- 3. $f: I \times \Omega \to V$, $Df(t, \cdot)$ exists and is continuous for every $t \in I$.

Then

$$g(x) = \int_a^b f(t, x) dt$$
, $Dg(x) = \int_z^b Df(t, \cdot)|_x dt$

Integrals

Curves in Vector Spaces

Curves

Reparametrization of Curves
Smooth Curves
Tangent Lines and Tangent Vectors
The Normal Vector of a Curve
Curve Length

Exercises

Curves

Definition. Let V be a finite-dimensional vector space and $I \subset \mathbb{R}$ an interval.

- ▶ *Curve:* a set $C \subset V$ with a continuous, surjective and locally injective map $\gamma: I \to C$.
- **Parametrization:** the map γ .
- **Parametrized curve:** C together with its parametrization γ .
- **Simple curve:** γ is globally injective.
- ► Closed: $\lim_{t\to a} \gamma(t) = \lim_{t\to b} \gamma(t)$.
- ▶ Open: $x := \lim_{t \to a} \gamma(t), y := \lim_{t \to b} \gamma(t), x \neq y$. x is the *initial point* and y is the *final point*.

Curves

Example. The set

$$S := \{(x_1, x_2) \in \mathbb{R} : x_1^2 + x_2^2 = 1\}$$

with parametrization:

$$\gamma:[0,2\pi] o \mathcal{S}, \qquad \gamma(t)=egin{pmatrix}\cos(t)\\sin(t)\end{pmatrix}$$

or

$$ilde{\gamma}: [0,1]
ightarrow S, \qquad ilde{\gamma}(t) = egin{pmatrix} \cos(2\pi t) \ -\sin(2\pi t) \end{pmatrix}$$

are parametrized curves.

Integrals

Curves in Vector Spaces

Curves

Reparametrization of Curves

Smooth Curves

Tangent Lines and Tangent Vectors

The Normal Vector of a Curve

Curve Length

Curvature

Exercises

Reparametrization of Curves

Definition. Suppose $\mathcal{C} \subset V$ is a curve with parametrization $\gamma: I \to \mathcal{C}$.

- **Reparametrization:** a continuous, bijective map $r: J \rightarrow I$.
- Orientation-preserving r: r is increasing.
- Orientation-reversing r: r is decreasing.

Curves in Polar Coordinates

A curve in polar coordinates is parametrized by

$$\gamma(t) = \begin{pmatrix} f(t)\cos(t) \\ f(t)\sin(t) \end{pmatrix}$$

where $f: \mathbb{R} \to \mathbb{R}$.

Example. The curves $r = \sqrt{7}\cos(at)$ for a = 2, 3, ..., 7 represent the curves

$$\gamma(t) = \begin{pmatrix} \sqrt{7}\cos(at)\cos(t) \\ \sqrt{7}\cos(at)\sin(t) \end{pmatrix}$$

Curves in Polar Coordinates

Example (continued). The graphs are shown below.

Integrals

Curves in Vector Spaces

Curves

Reparametrization of Curves

Smooth Curves

Tangent Lines and Tangent Vectors
The Normal Vector of a Curve
Curve Length
Curvature

Exercises

Smooth Curves

Definition. A curve $\mathcal{C} \subset V$ with parametrization $\gamma:I \to \mathcal{C}$ is smooth if

- $ightharpoonup \gamma$ is continuously differentiable on $\mathrm{int}\,I$ and
- ▶ $D\gamma|_t \neq 0$ for all $t \in \text{int } I$.

Definition. A smooth parametrization is

- continuously differentiable and
- the derivative is non-vanishing in the interior of its domain.

Curves in Vector Spaces

Reparametrization of Curves

Tangent Lines and Tangent Vectors

The Normal Vector of a Curve Curve Length

Exercises

Tangent Lines and Tangent Vectors Definition.

▶ The *tangent line* to a curve $C \subset \mathbb{R}^n$ at $p = \gamma(t_0)$ is

$$\mathcal{T}_{p}\mathcal{C} = \{x \in \mathbb{R}^{n} : x = \gamma(t_{0}) + \gamma'(t_{0})t : t \in \mathbb{R}\}$$

The *unit tangent vector* of an <u>oriented smooth curve</u> $C^* \subset \mathbb{R}^n$ with parametrization γ at $p = \gamma(t)$ is

$$\mathcal{T} \circ \gamma(t) := \frac{\gamma'(t)}{\|\gamma'(t)\|}, \qquad t \in \operatorname{int} I$$

which defines the *tangent vector field* $T: \mathcal{C}^* \to \mathbb{R}^n$ on \mathcal{C} . For reparametrization $r: J \to I, \tilde{\gamma} = \gamma \circ r$,

$$ilde{\gamma}'(au) = \gamma'(t)r'(au), \quad T \circ ilde{\gamma}(au) = rac{r'(au)}{|r'(au)|} \, T \circ \gamma(t)$$

Note. The unit tangent vector depends on parametrization only w.r.t. the orientation.

Curves in Vector Spaces

Curves

Reparametrization of Curves

Smooth Curves

Tangent Lines and Tangent Vectors

The Normal Vector of a Curve

Curve Length

Curvature

Exercises

The Normal Vector of a Curve

Definition. The *unit normal vector* $N: \mathcal{C} \to \mathbb{R}$ of a smooth C^2 -curve with parametrization $\gamma: I \to V$ is

$$N \circ \gamma(t) := \frac{(T \circ \gamma)'(t)}{\|(T \circ \gamma)'(t)\|}, \qquad t \in \operatorname{int} I$$

Note. The unit normal vector does not depend on γ on

- magnitude and
- orientation.

Integrals

Curves in Vector Spaces

Curves

Reparametrization of Curves

Smooth Curves

Tangent Lines and Tangent Vectors

The Normal Vector of a Curve

Curve Length

Curvature

Exercises

Curve Length

2.3.25. Theorem. $\mathcal{C} \subset V$ is a smooth and *open* curve with parametrization $\gamma:[a,b] \to \mathcal{C}$. Then \mathcal{C} is rectifiable iff

$$\int_a^b \|\gamma'(t)\| \mathrm{d}t < \infty$$

and the *curve length* is

$$\ell(\mathcal{C}) = \int_a^b \|\gamma'(t)\| \mathrm{d}t$$

which is independent of γ .

Curve Length

The *length function* is defined as

$$(\ell \circ \gamma)(t) = \int_a^t \|\gamma'(\tau)\| d\tau$$

The curve length gives the *natural parametrization* of an oriented curve C.

$$\gamma = \ell : I \to \mathcal{C}, \quad \text{int } I = (0, \ell(\mathcal{C}))$$

Note. Then we also obtain

$$\|\gamma'(t)\| = \frac{\mathrm{d}\ell \circ \gamma(t)}{\mathrm{d}t}$$

Integrals

Curves in Vector Spaces

Curves

Reparametrization of Curves

Smooth Curves

Tangent Lines and Tangent Vectors

The Normal Vector of a Curve

Curve Length

Curvature

Exercises

Curvature

Definition. The *curvature* of a smooth C^2 -curve $C \subset V$ is

$$\kappa: \mathcal{C} o \mathbb{R}, \qquad \kappa \circ \ell^{-1}(s) := \left\| rac{\mathrm{d}}{\mathrm{d} s} (\mathcal{T} \circ \ell^{-1}(s))
ight\|$$

where T is the unit tangent vector and $\ell^{-1}: I \to \mathcal{C}$ is the curve length parametrization of \mathcal{C} .

Note. The curvature κ does not depend on the orientation of \mathcal{C} .

Curvature in \mathbb{R}^3

2.3.31. Lemma. Let $\mathcal{C} \subset \mathbb{R}^3$ be a smooth C^2 -curve with parametrization $\gamma:I\to\mathcal{C}$, then

$$\kappa \circ \gamma(t) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3}$$

Chain Rule

Exercise 1. Suppose a function u(x,y) is differentiable in \mathbb{R}^2 , find the representation of Laplace operator $\Delta_{(r,\theta)}$ in polar coordinates, where

$$x = r \cos \theta, \qquad y = r \sin \theta$$

Exercises.

Exercise 2. Prove the Euler's integral formula for n!.

$$\int_0^\infty x^n e^{-x} \mathrm{d}x = n!$$

Exercises

Exercise 3. A plane curve $\mathcal{C} \subset \mathbb{R}^2$ is parametrized by

$$\gamma:[0,\infty) o \mathbb{R}^2, \qquad \gamma(t) = egin{pmatrix} \int_0^t \cos(s^2) \mathrm{d}s \ \int_0^t \sin(s^2) \mathrm{d}s \end{pmatrix}$$

- 1. Sketch the curve. How does it behave as $t \to \infty$?
- 2. Show that γ is the curve length parametrization of \mathcal{C} .
- 3. Find the curvature of C.

Exercises

Exercise 2.

- ▶ Tangent line at a point $\gamma(t_0)$: $\{\gamma(t_0) + \gamma'(t_0)t, t \in \mathbb{R}\}$
- ▶ Unit tangent vector: $T \circ \gamma(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|}$.
- ► Unit normal vector: $N \circ \gamma(t) = \frac{(T \circ \gamma)'(t)}{\|(T \circ \gamma)'(t)\|}$.
- **Open** curve length: $\ell(\mathcal{C}) = \int_a^b \|\gamma'(t)\| dt$.
- ► Curve length function: $\ell \circ \gamma(t) = \int_a^t \|\gamma'(\tau)\| d\tau$.
- $||\gamma'(t)|| = \frac{\mathrm{d}(\ell \circ \gamma)(t)}{\mathrm{d}t}.$
- Curvature: $\kappa \circ \gamma(t) = \kappa \circ \ell^{-1}(s)|_{s=\ell \circ \gamma(t)} = \frac{\|(I \circ \gamma)'(t)\|}{\|\gamma'(t)\|}$.
- Curvature in \mathbb{R}^3 : $\kappa \circ \gamma(t) = \kappa \circ \ell^{-1}(s)|_{s=\ell \circ \gamma(t)} = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3}.$

Thanks for your attention!