5.3 JARDUERA EBAZPENA

5.2 jardueran Ipar-mendebaldeko ertzaren metodoa erabiliz lortutako hasierako oinarrizko soluzioa ondorengoa da:

	1	2	3	4	5
1	15	10			
2		1	11		
3			5	21	1

Lehenengo eta behin soluzioa endekatua den aztertu behar da:

$$m+n-1=3+5-1=7$$
 = oinarrizko aldagaia ez-nuluen kopurua

Soluzioa ez-endekatua da, ondorioz garraio-algoritmoa aplikatzen hasi:

1. iterazioa:

<u>1. pausua:</u> Simplex metodoaren optimaltasun baldintzak betetzen diren aztertu. Horretarako oinarrizko aldagai bakoitzarentzat $u_i + v_j - c_{ij} = 0$ ekuazioa planteatu:

$$x_{11} \rightarrow u_1 + v_1 - c_{11} = 0 \Rightarrow u_1 + v_1 - 3 = 0$$

$$x_{12} \rightarrow u_1 + v_2 - c_{12} = 0 \Rightarrow u_1 + v_2 - 4 = 0$$

$$x_{22} \rightarrow u_2 + v_2 - c_{22} = 0 \Rightarrow u_2 + v_2 - 3 = 0$$

$$x_{23} \rightarrow u_2 + v_3 - c_{23} = 0 \Rightarrow u_2 + v_3 - 2 = 0$$

$$x_{33} \rightarrow u_3 + v_3 - c_{33} = 0 \Rightarrow u_3 + v_3 - 8 = 0$$

$$x_{34} \rightarrow u_3 + v_4 - c_{34} = 0 \Rightarrow u_3 + v_4 - 3 = 0$$

$$x_{35} \rightarrow u_3 + v_5 - c_{35} = 0 \Rightarrow u_3 + v_5 - 0 = 0$$

Sistema $v_1 = 0$ eginez ebatzi. Soluzio ondorengoa da:

$$v_1 = 0, v_2 = 1, v_3 = 0, v_4 = -5, v_5 = -8, u_1 = 3, u_2 = 2, u_3 = 8$$

$z_{ij} = u_i + v_j$	$v_1 = 0$	$v_2 = 1$	$v_3 = 0$	$v_4 = -5$	$v_5 = -8$
$u_1 = 3$	3	4	3	-2	-5
$u_2 = 2$	2	3	2	-3	-6
$u_3 = 8$	8	9	8	3	0

Ondorioz, kostu murriztuak:

$W_{ij} = z_{ij} - c_{ij}$	1	2	3	4	5
1	0	0	-2	-4	-5
2	-4	0	0	-10	-6
3	4	4	0	0	0

 $\exists W_{ij} \ge 0 \Rightarrow W_{ij}$ positibo handiena aukeratu: $W_{32} = W_{31} = 4$ denez, kostu handiena duena aukeratu $\Rightarrow W_{32} \Rightarrow x_{32}$ oinarrira sartzen da.

<u>2. pausua:</u> Oinarritik irteten den aldagaia aukeratu. Horretarako, oinarrizkoak diren aldagaien eta oinarrira sartuko den aldagaien artean ziklo bat sortzen da

	1	2	3	4	5	Eskaintza
1	15	10				25
2		1 -τ ₁	$11+\tau_1$			12
3		$ au_1$	5 -τ ₁	21	1	27
Eskaria	15	11	16	21	1	

Fluxu guztiak ez-negatiboak izan behar dira, gainera oinarrira sartzea erabaki den aldagaiari (x_{32}) fluxu positibo bat esleitu behar zaio, bukatzeko, zikloa osatzen duten aldagaien artetik batek fluxu nulua izan beharko du, oinarritik irtengo denak hain zuzen ere. Hortaz, $\tau_1=1$ da, x_{22} aldagaia oinarritik irteten da eta bigarren oinarrizko soluzio bideragarria hurrengoa da:

	1	2	3	4	5	Eskaintza
1	15	10				25
2			12			12
3		1	4	21	1	27
Eskaria	15	11	16	21	1	

2. iterazioa:

<u>1. pausua:</u> Simplex metodoaren optimaltasun baldintzak betetzen diren aztertu. Horretarako oinarrizko aldagai bakoitzarentzat $u_i + v_j - c_{ij} = 0$ ekuazioa planteatu:

$$\begin{array}{l} x_{11} \rightarrow u_1 + v_1 - c_{11} = 0 \Rightarrow u_1 + v_1 - 3 = 0 \\ x_{12} \rightarrow u_1 + v_2 - c_{12} = 0 \Rightarrow u_1 + v_2 - 4 = 0 \\ x_{23} \rightarrow u_2 + v_3 - c_{23} = 0 \Rightarrow u_2 + v_3 - 2 = 0 \\ x_{32} \rightarrow u_3 + v_2 - c_{32} = 0 \Rightarrow u_3 + v_2 - 5 = 0 \\ x_{33} \rightarrow u_3 + v_3 - c_{33} = 0 \Rightarrow u_3 + v_3 - 8 = 0 \\ x_{34} \rightarrow u_3 + v_4 - c_{34} = 0 \Rightarrow u_3 + v_4 - 3 = 0 \\ x_{35} \rightarrow u_3 + v_5 - c_{35} = 0 \Rightarrow u_3 + v_5 - 0 = 0 \end{array}$$

Sistema $v_1 = 0$ eginez ebatzi. Soluzio ondorengoa da:

$$v_1 = 0$$
, $v_2 = 1$, $v_3 = 4$, $v_4 = -1$, $v_5 = -4$, $u_1 = 3$, $u_2 = -2$, $u_3 = 4$

$z_{ij} = u_i + v_j$	$v_1 = 0$	$v_2 = 1$	$v_3 = 4$	$v_4 = -1$	$v_5 = -4$
$u_1 = 3$	3	4	7	2	-1
$u_2 = -2$	-2	-1	2	-3	-6
$u_3 = 4$	4	5	8	3	0

Ondorioz, kostu murriztuak:

$W_{ij} = z_{ij} - c_{ij}$	1	2	3	4	5
1	0	0	2	0	-1
2	-8	-4	0	-10	-6
3	0	0	0	0	0

 $\exists W_{ij} \geq 0 \Rightarrow W_{ij}$ positibo handiena aukeratu: $W_{13} = 2 \Rightarrow x_{13}$ oinarrira sartzen da.

<u>2. pausua:</u> Oinarritik irteten den aldagaia aukeratu. Horretarako, oinarrizkoak diren aldagaien eta oinarrira sartuko den aldagaien artean ziklo bat sortzen da

	1	2	3	4	5	Eskaintza
1	15	10 -τ ₂	$ au_2$			25
2			12			12
3		$1+ au_2$	$4-\tau_2$	21	1	27
Eskaria	15	11	16	21	1	

Fluxu guztiak ez-negatiboak izan behar dira, gainera oinarrira sartzea erabaki den aldagaiari (x_{13}) fluxu positibo bat esleitu behar zaio, bukatzeko, zikloa osatzen duten aldagaien artetik batek fluxu nulua izan beharko du, oinarritik irtengo denak hain zuzen ere. Hortaz, $\tau_2=4$ da, x_{33} aldagaia oinarritik irteten da eta hirugarren oinarrizko soluzio bideragarria hurrengoa da:

	1	2	3	4	5	Eskaintza
1	15	6	4			25
2			12			12
3		5		21	1	27
Eskaria	15	11	16	21	1	

3. iterazioa:

<u>1. pausua:</u> Simplex metodoaren optimaltasun baldintzak betetzen diren aztertu. Horretarako oinarrizko aldagai bakoitzarentzat $u_i+v_j-c_{ij}=0$ ekuazioa planteatu: $x_{11}\to u_1+v_1-c_{11}=0 \Rightarrow u_1+v_1-3=0$

$$\begin{array}{l} x_{11} \rightarrow u_1 + v_1 - c_{11} = 0 \Rightarrow u_1 + v_1 - 3 = 0 \\ x_{12} \rightarrow u_1 + v_2 - c_{12} = 0 \Rightarrow u_1 + v_2 - 4 = 0 \\ x_{13} \rightarrow u_1 + v_3 - c_{13} = 0 \Rightarrow u_1 + v_3 - 5 = 0 \\ x_{23} \rightarrow u_2 + v_3 - c_{23} = 0 \Rightarrow u_2 + v_3 - 2 = 0 \\ x_{32} \rightarrow u_3 + v_2 - c_{32} = 0 \Rightarrow u_3 + v_2 - 5 = 0 \\ x_{34} \rightarrow u_3 + v_4 - c_{34} = 0 \Rightarrow u_3 + v_4 - 3 = 0 \\ x_{35} \rightarrow u_3 + v_5 - c_{35} = 0 \Rightarrow u_3 + v_5 - 0 = 0 \end{array}$$

Sistema $v_1 = 0$ eginez ebatzi. Soluzio ondorengoa da:

$$v_1 = 0, v_2 = 1, v_3 = 2, v_4 = -1, v_5 = -4, u_1 = 3, u_2 = 0, u_3 = 4$$

$z_{ij} = u_i + v_j$	$v_1 = 0$	$v_2 = 1$	$v_3 = 2$	$v_4 = -1$	$v_5 = -4$
$u_1 = 3$	3	4	5	2	-1
$u_2 = 0$	0	1	2	-1	-4
$u_3 = 4$	4	5	6	3	0

Ondorioz, kostu murriztuak:

$W_{ij} = z_{ij} - c_{ij}$	1	2	3	4	5
1	0	0	0	0	-1
2	-6	-2	0	-8	-4
3	0	0	-2	0	0

 $W_{ij} \leq 0 \quad \forall i,j \Rightarrow \text{Lortutako hirugarren soluzio bideragarria optimoa da.}$