• Experimentally measurable properties (e.g., P, V, T, ...)

- Experimentally measurable properties (e.g., P, V, T, ...)
- States of matter (phase equilibria, critical and triple points)
 - Antoine equation

- Experimentally measurable properties (e.g., P, V, T, ...)
- States of matter (phase equilibria, critical and triple points)
 - Antoine equation
- Definition(s) of temperature

- Experimentally measurable properties (e.g., P, V, T, ...)
- States of matter (phase equilibria, critical and triple points)
 - Antoine equation
- Definition(s) of temperature
- Molecular pairwise interactions

Extensive Intensive

Extensive Intensive

Depend on size of system

Extensive

Intensive

- Depend on size of system
 - E.g., Volume, Potentials (U, H, G, ...)

Extensive

- Depend on size of system
 - E.g., Volume, Potentials (U, H, G, ...)

Intensive

Size independent

Extensive

- Depend on size of system
 - E.g., Volume, Potentials (U, H, G, ...)

Intensive

- Size independent
 - E.g., Temperature (T), Pressure (P)

Extensive

- Depend on size of system
 - E.g., Volume, Potentials (U, H, G, ...)

Intensive

- Size independent
 - E.g., Temperature (T), Pressure (P)
- Specific
 - Normalized properties
 - E.g., Molar Volume, Mass Density

Isobars (horizontal)

- Isobars (horizontal)
- Isotherms (vertical)

- Isobars (horizontal)
- Isotherms (vertical)
- Single component, single phase →

- Isobars (horizontal)
- Isotherms (vertical)
- Single component, single phase →
 - $(T,P) \rightarrow V$

- Isobars (horizontal)
- Isotherms (vertical)
- Single component, single phase →
 - $(T,P) \rightarrow V$
- Two phases?

Vapor Pressure (Antoine's Equation)

Kinetic Theory of Gases

Kinetic Theory of Gases

•
$$E_k = \frac{1}{2}mv^2 \rightarrow$$

Kinetic Theory of Gases

•
$$E_k = \frac{1}{2}mv^2 \rightarrow$$

• $T = \frac{M\overline{v^2}}{3R} \rightarrow$

•
$$T = \frac{Mv^2}{3R} \rightarrow$$

Kinetic Theory of Gases

•
$$E_k = \frac{1}{2}mv^2 \rightarrow$$

$$\bullet \ T = \frac{M\overline{v^2}}{3R} \to$$

•
$$T \propto E_k$$

Kinetic Theory of Gases

•
$$E_k = \frac{1}{2}mv^2 \rightarrow$$

•
$$T = \frac{M\overline{v^2}}{3R} \rightarrow$$

•
$$T \propto E_k$$

Equilibrium (Entropy)

•
$$T = \frac{dU}{dS}$$

• To be continued (chapter 4)

Velocity Distribution

Velocity Distribution

- Hard Spheres: inelastic collisions →
 - Maxwell-Boltzmann distribution

Velocity Distribution

- Hard Spheres: inelastic collisions →
 - Maxwell-Boltzmann distribution
- $v_p \approx 0.886\bar{v} < \bar{v} < 1.085 \ \bar{v} \approx v_{rms} = \sqrt{\bar{v}^2}$

Bruna, Maria & Chapman, Stephen & Robinson, Martin. (2017). Diffusion of Particles with Short-Range Interactions. SIAM Journal on Applied Mathematics. 77. 10.1137/17M1118543.

- Hard-Sphere
 - Infinite repulsion

Bruna, Maria & Chapman, Stephen & Robinson, Martin. (2017). Diffusion of Particles with Short-Range Interactions. SIAM Journal on Applied Mathematics. 77. 10.1137/17M1118543.

- Hard-Sphere
 - Infinite repulsion
- Soft-Sphere
 - Repulsion only
 - $u(r) \propto r^{-12}$

Bruna, Maria & Chapman, Stephen & Robinson, Martin. (2017). Diffusion of Particles with Short-Range Interactions. SIAM Journal on Applied Mathematics. 77. 10.1137/17M1118543.

- Hard-Sphere
 - Infinite repulsion
- Soft-Sphere
 - Repulsion only
 - $u(r) \propto r^{-12}$
- Lennard-Jones
 - Repulsion r^{-12}
 - Attraction r^{-6}

Bruna, Maria & Chapman, Stephen & Robinson, Martin. (2017). Diffusion of Particles with Short-Range Interactions. SIAM Journal on Applied Mathematics. 77. 10.1137/17M1118543.

Hard Sphere Phase Diagram

Hard Sphere Phase Diagram

• Volume fraction η

Hard Sphere Phase Diagram

- Volume fraction η
- Reduced pressure $\beta p \sigma^3$

Hard Sphere Phase Diagram

- Volume fraction η
- Reduced pressure $\beta p \sigma^3$
- Two phases:
 - Solid
 - Fluid

Lennard-Jones Phase Diagram

Lennard-Jones Phase Diagram

•
$$u(r) \propto \epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right)$$

Lennard-Jones Phase Diagram

•
$$u(r) \propto \epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right)$$

 Qualitatively captures phase behavior

Lennard-Jones Phase Diagram

•
$$u(r) \propto \epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right)$$

- Qualitatively captures phase behavior
- Quantitative for Argon:
 - $\sigma = 0.34 \, \text{nm}$

•
$$\frac{\epsilon}{k_B} = 120 \text{ K}$$

Lennard-Jones Phase Diagram

•
$$u(r) \propto \epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right)$$

- Qualitatively captures phase behavior
- Quantitative for Argon:
 - $\sigma = 0.34 \, \text{nm}$
 - $\frac{\epsilon}{k_B} = 120 \text{ K}$

• State Variables and Phase Equilibria

- State Variables and Phase Equilibria
- Ideal gas: $T \propto E_k \propto \overline{v^2}$

- State Variables and Phase Equilibria
- Ideal gas: $T \propto E_k \propto \overline{v^2}$
- Particle attraction and repulsion alone leads to familiar, realistic solid/liquid/vapor behavior

Terminology

- Terminology
 - Thermodynamic state variables (T, P)

- Terminology
 - Thermodynamic state variables (T, P)
- Phase Diagrams

- Terminology
 - Thermodynamic state variables (T, P)
- Phase Diagrams
 - $P(T,V), P(V,T), P(\rho,T)$

- Terminology
 - Thermodynamic state variables (T, P)
- Phase Diagrams
 - $P(T,V), P(V,T), P(\rho,T)$
- Thermodynamic Potentials U, H, G, ...

- Terminology
 - Thermodynamic state variables (T, P)
- Phase Diagrams
 - $P(T,V), P(V,T), P(\rho,T)$
- Thermodynamic Potentials *U*, *H*, *G*, ...
 - Conservation of Energy (the energy balance)

- Terminology
 - Thermodynamic state variables (T, P)
- Phase Diagrams
 - $P(T,V), P(V,T), P(\rho,T)$
- Thermodynamic Potentials U, H, G, ...
 - Conservation of Energy (the energy balance)
 - Heat and Work

- Terminology
 - Thermodynamic state variables (T, P)
- Phase Diagrams
 - $P(T,V), P(V,T), P(\rho,T)$
- Thermodynamic Potentials U, H, G, ...
 - Conservation of Energy (the energy balance)
 - Heat and Work
 - Heat Capacity

- Terminology
 - Thermodynamic state variables (T, P)
- Phase Diagrams
 - $P(T,V), P(V,T), P(\rho,T)$
- Thermodynamic Potentials *U*, *H*, *G*, ...
 - Conservation of Energy (the energy balance)
 - Heat and Work
 - Heat Capacity
 - Latent Heat

• $E_{orange} > E_{blue}$

Equilibrium • $E_{orange} > E_{blue}$

$$E_1 = E_2$$

$$E_1 = E_2$$

$$E_1 = E_2$$

- $E_1 = E_2$
- Zeroth law of thermodynamics

- $E_1 = E_2$
- Zeroth law of thermodynamics
- $E_1 = E_2 = E_3$

- $E_1 = E_2$
- Zeroth law of thermodynamics
- $E_1 = E_2 = E_3$
 - $E_k \propto T$

- $E_1 = E_2$
- Zeroth law of thermodynamics
- $E_1 = E_2 = E_3$
 - $E_k \propto T$
 - Only works for positive *T*!

- $E_1 = E_2$
- Zeroth law of thermodynamics
- $E_1 = E_2 = E_3$
 - $E_k \propto T$
 - Only works for positive *T*!
 - Kelvin (Rankine)

Isobars

- Isobars
- Isotherms

- Isobars
- Isotherms
- Single component, single phase →

- Isobars
- Isotherms
- Single component, single phase →
 - $(T,P) \rightarrow V$

- Isobars
- Isotherms
- Single component, single phase →
 - $\bullet \quad (T,P) \to V$
- Two phases?

- Isobars
- Isotherms
- Single component, single phase →
 - $(T,P) \to V$
- Two phases?
 - V_{liquid}

Phase Diagram (Water)

- Isobars
- Isotherms
- Single component, single phase →
 - $(T,P) \rightarrow V$
- Two phases?
 - V_{liquid}
 - V_{vapor}

Phase Diagram (Water)

- Isobars
- Isotherms
- Single component, single phase →
 - $(T,P) \to V$
- Two phases?
 - V_{liquid}
 - V_{vapor}
 - \bullet P(V)

Phase Diagram (Water)

- Isobars
- Isotherms
- Single component, single phase →
 - $(T,P) \to V$
- Two phases?
 - V_{liquid}
 - V_{vapor}
 - P(V)

Horizontal lines → "tie lines"

- Horizontal lines → "tie lines"
 - $\left(T = 600 \, K, V \approx 400 \frac{cm^3}{mol}\right) \rightarrow P_{sat} \approx 16.2 \, MPa$

- Horizontal lines → "tie lines"
 - $\left(T = 600 \, K, V \approx 400 \, \frac{cm^3}{mol}\right) \rightarrow P_{sat} \approx 16.2 \, MPa$
- $V_{vapor}(T = 400 \, K, P \approx 2.3 \, MPa)$?

$T = 400 \, \text{K}$

T = 400 K $P_{sat}(T = 400 \text{ K}) \approx 2.3 \text{ MPa}$

T = 273 K?

$P(\log V)$!

log P(log V) !!

$V \rightarrow \infty$?

$$P\left(\frac{1}{V}\right) = P(\rho)$$

Water van der Waals phase diagram

$\log P \dots$

Water van der Waals phase diagram

• Pure, single component:

- Pure, single component:
 - Two degrees of freedom

- Pure, single component:
 - Two degrees of freedom
 - P(T,V) or U(T,V) or H(T,V)

- Pure, single component:
 - Two degrees of freedom
 - P(T,V) or U(T,V) or H(T,V)
- $\frac{\partial P}{\partial T}$

- Pure, single component:
 - Two degrees of freedom
 - P(T,V) or U(T,V) or H(T,V)
- $\frac{\partial P}{\partial T}$
- $\frac{\partial U}{\partial T} \equiv C_V$

- Pure, single component:
 - Two degrees of freedom
 - P(T,V) or U(T,V) or H(T,V)
- $\bullet \ \frac{\partial P}{\partial T}$
- $\frac{\partial U}{\partial T} \equiv C_V$
- $\frac{\partial H}{\partial T} \equiv C_P$