LA FONCTION CUBE

I Définition et étude de la fonction cube

Définition n°1.

La fonction cube est la fonction $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x \end{cases}$

Définition n°2.

Soit f une fonction sur D_f . « f est impaire » signifie que : **Pour tout** $x \in D_f$, f(-x) = -f(x)

Propriété n°1.

La fonction cube est impaire

preuve:

Notons g la fonction cube. Soit $x \in \mathbb{R}$ (car $D_g = \mathbb{R}$) $g(-x) = (-x)^3 = -x \times (-x) \times (-x) = -x^3 = -g(x)$ Ainsi g est impaire.

Remarque n°1.

Si une fonction est impaire, alors son domaine de définition est symétrique par rapport à zéro.

Propriété n°2. Variations de la fonction cube

La fonction est strictement croissante sur \mathbb{R}

preuve:

Nous allons montrer que la fonction cube est strictement croissante sur $]-\infty$; 0] et strictement croissante sur $[0;+\infty[$ (Cela suffira car les deux intervalles ont un point commun).

• Soient $a < b \le 0$

Nous devons montrer que $a^3 < b^3$ ce qui équivaut à $a^3 - b^3 < 0$.

Remarquons que : $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Comme $a < b \Leftrightarrow a-b < 0$

De plus $a^2 > 0$, $b^2 \ge 0$ et $ab \ge 0$ (car a et b sont de même signe)

Ainsi $a^2 + ab + b^2 > 0$

D'après la règle des signes : $(a-b)(a^2+ab+b^2) < 0$

Et donc $a^3 - b^3 < 0$.

La fonction cube bien strictement croissante sur $]-\infty$; 0].

• La stricte croissance sur $[0; +\infty[$ se démontre de la même manière et est laissée à titre d'exercice.

Propriété n°3. La représentation graphique de la fonction cube

L'origine du repère est le centre de symétrie de la courbe

Remarque n°2. Parité, imparité et représentation graphique

- Si f est paire alors C_f est symétrique par rapport à l'axe des ordonnées.
- Si f est **impaire** alors C_f est **symétrique** par rapport au **centre** du repère.

En images: fonction paire, fonction impaire

II Comparaison des fonctions identité, carré et cube Propriété n°4.

- Pour $x \in]0; 1[, x > x^2 > x^3]$ Pour $x \in]1; +\infty[, x < x^2 < x^3]$
- Et bien sûr $0=0^2=0^3$ et $1=1^2=1^3$

preuve:

Comparons $x \mapsto x$ et $x \mapsto x^2$ pour $x \in]0$; 1[$x^2 - x = x(x-1)$ x > 0 et x - 1 < 0

d'après la règle des signes : x(x-1) < 0 et donc $x^2 - x < 0$ ce qui équivaut à $x^2 < x$

La comparaison pour $x \in]0$; 1[de $x \mapsto x^2$ et $x \mapsto x^3$ est laissée à titre d'exercice (la méthode est la même, faites le!).

On a donc bien, pour $x \in]0$; 1[, $x > x^2 > x^3$

- Les comparaisons pour $x \in]1$; $+\infty[$ sont laissées à titre d'exercices (c'est encore la même méthode, faites le!) On a donc bien, pour $x \in]1$; $+\infty[$, $x < x^2 < x^3$
- Enfin les égalités sont évidentes.