Package 'RoBSA'

May 30, 2023

Type Package

Title Robust Bayesian Survival Analysis

Version 1.0.2

Maintainer František Bartoš < f.bartos 96@gmail.com>

Description A framework for estimating ensembles of parametric survival models with different parametric families. The RoBSA framework uses Bayesian model-averaging to combine the competing parametric survival models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual predictors or preference for a parametric family (Bartoš, Aust & Haaf, 2022, <doi:10.1186/s12874-022-01676-9>). The user can define a wide range of informative priors for all parameters of interest. The package provides convenient functions for summary, visualizations, fit diagnostics, and prior distribution calibration.

URL https://fbartos.github.io/RoBSA/

BugReports https://github.com/FBartos/RoBSA/issues

License GPL-3 Encoding UTF-8 RoxygenNote 7.2.3

SystemRequirements JAGS >= 4.3.1 (https://mcmc-jags.sourceforge.io/)

Depends R (>= 4.0.0)

Imports BayesTools (>= 0.2.14), survival, rjags, runjags, scales, coda, stats, graphics, rlang, Rdpack

Suggests parallel, ggplot2, flexsurv, testthat, vdiffr, knitr, rmarkdown, covr

RdMacros Rdpack

NeedsCompilation yes

Author František Bartoš [aut, cre] (https://orcid.org/0000-0002-0018-5573),
Julia M. Haaf [ths] (https://orcid.org/0000-0001-5122-706X),
Matthew Denwood [cph] (Original copyright holder of some modified code

2 R topics documented:

where indicated.), Martyn Plummer [cph] (Original copyright holder of some modified code where indicated.)

Repository CRAN

Index

Date/Publication 2023-05-30 15:10:02 UTC

R topics documented:

RoBSA-package	3
calibrate_meta_analytic	3
calibrate_quartiles	4
check_RoBSA	5
check_setup	5
contr.meandif	8
contr.orthonormal	8
default_prior	9
diagnostics	0
· · · · · · · · · · · · · · · · · · ·	1
	2
3	3
is.RoBSA	4
8	4
	5
	6
	8
. - 1	20
	22
	24
,,,	24
	25
	26
_	28
	30
	80
	31
	34
- 1	35
	36
······································	88
weibull-aft	1

43

RoBSA-package 3

RoBSA-package

RoBSA: Robust Bayesian survival analysis

Description

Bayesian model-averaged parametric survival analysis with ability to specify informed prior distributions and draw inference with inclusion Bayes factors. See Bartoš et al. (2022) for more details about the methodology.

User guide

See Bartoš et al. (2022), for details regarding the RoBSA methodology.

Author(s)

František Bartoš < f.bartos 96@gmail.com>

References

Bartoš F, Aust F, Haaf JM (2022). "Informed Bayesian survival analysis." *BMC Medical Research Methodology*. doi:10.1186/s12874022016769.

See Also

Useful links:

- https://fbartos.github.io/RoBSA/
- Report bugs at https://github.com/FBartos/RoBSA/issues

calibrate_meta_analytic

Create meta-analytic predictive prior distributions

Description

Calibrates prior distributions for parametric survival analysis based on historical data. Returns a list of prior distribution for the intercepts and auxiliary parameters.

4 calibrate_quartiles

Arguments

list of data.frames containing the historical data. Each data.frame must contain a column named "time" with the survival times and a column named "status" with the censoring status.

distributions vector of parametric families for which prior distributions ought to be calibrated prior_mu prior distribution for the meta-analytic mean parameter prior_tau prior distribution for the the meta-analytic heterogeneity parameter additional parameters to be passed to the meta-analytic function. See BayesTools::JAGS_fit

for more details.

Value

returns a list of prior distribution for the intercepts and auxiliary parameters.

calibrate_quartiles Calibrate prior distributions based on quartiles

Description

Calibrates prior distributions for parametric survival analysis based on median survival and interquartile range. Returns a list of prior distribution for the intercepts and auxiliary parameters.

Usage

```
calibrate_quartiles(
  median_t,
  iq_range_t,
  prior_sd = 0.5,
  distributions = c("exp-aft", "weibull-aft", "lnorm-aft", "llogis-aft", "gamma-aft"),
  verbose = FALSE,
  search_bounds1 = c(-100, 100),
  search_bounds2 = c(0 + 0.01, 100)
)
```

Arguments

median_t	median survival
iq_range_t	interquartile range of the survival
prior_sd	pre-specified standard deviation of the prior distributions (either a single value that is used for both the intercept and auxiliary parameter or a vector where the first value corresponds to the sd for the prior distribution on the intercept and the second value to the sd for the prior distribution on the auxiliary parameter)
distributions	vector of parametric families for which prior distributions ought to be calibrated
verbose	whether debug information be printed
search_bounds1	search boundaries for the intercept parameter
search_bounds2	search boundaries for the auxiliary parameter

check_RoBSA 5

Value

returns a list of prior distribution for the intercepts and auxiliary parameters.

Examples

```
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)
```

check_RoBSA

Check fitted RoBSA object for errors and warnings

Description

Checks fitted RoBSA object for warnings and errors and prints them to the console.

Usage

```
check_RoBSA(fit)
```

Arguments

fit

a fitted RoBSA object.

Value

check_RoBSA returns a vector of error and warning messages.

check_setup

Prints summary of "RoBSA" corresponding to the input

Description

check_setup prints summary of "RoBSA" ensemble corresponding to the specified formula, data, and priors. This function is useful for checking the ensemble configuration prior to fitting all models.

6 check_setup

Usage

```
check_setup(
  formula,
  data,
 priors = NULL,
  test_predictors = NULL,
 distributions = c("exp-aft", "weibull-aft", "lnorm-aft", "llogis-aft", "gamma-aft"),
  distributions_weights = rep(1, length(distributions)),
  prior_beta_null = get_default_prior_beta_null(),
 prior_beta_alt = get_default_prior_beta_alt(),
  prior_factor_null = get_default_prior_factor_null(),
  prior_factor_alt = get_default_prior_factor_alt(),
  prior_intercept = get_default_prior_intercept(),
  prior_aux = get_default_prior_aux(),
  chains = 3,
  sample = 5000,
  burnin = 2000,
  adapt = 500,
  thin = 1,
  parallel = FALSE,
  autofit = TRUE,
  autofit_control = set_autofit_control(),
  convergence_checks = set_convergence_checks(),
  save = "all",
  seed = NULL,
  silent = FALSE,
  rescale_data = FALSE,
 models = FALSE,
)
```

Arguments

formula formula for the survival model data data frame containing the data priors names list of prior distributions for each predictor. It allows users to specify both the null and alternative hypothesis prior distributions by assigning a named list (with "null" and "alt" object) to the predictor test_predictors vector of predictor names to be tested with Bayesian model-averaged testing. Defaults to NULL, no parameters are tested. distributions of parametric survival models distributions distributions_weights prior odds for the competing distributions prior_beta_null default prior distribution for the null hypotheses of continuous predictors prior_beta_alt default prior distribution for the alternative hypotheses of continuous predictors check_setup 7

prior_factor_null

default prior distribution for the null hypotheses of categorical predictors

prior_factor_alt

default prior distribution for the alternative hypotheses of categorical predictors

prior_intercept

named list containing prior distribution for the intercepts (with names corre-

sponding to the distributions)

prior_aux named list containing prior distribution for the auxiliary parameters (with names

corresponding to the distributions)

chains a number of chains of the MCMC algorithm.

sample a number of sampling iterations of the MCMC algorithm. Defaults to 5000. burnin a number of burnin iterations of the MCMC algorithm. Defaults to 2000. a number of adaptation iterations of the MCMC algorithm. Defaults to 500.

thin a thinning of the chains of the MCMC algorithm. Defaults to 1.

parallel whether the individual models should be fitted in parallel. Defaults to FALSE.

The implementation is not completely stable and might cause a connection error.

autofit whether the model should be fitted until the convergence criteria (specified in

autofit_control) are satisfied. Defaults to TRUE.

autofit_control

allows to pass autofit control settings with the set_autofit_control() func-

tion. See ?set_autofit_control for options and default settings.

convergence_checks

automatic convergence checks to assess the fitted models, passed with set_convergence_checks()

function. See ?set_convergence_checks for options and default settings.

save whether all models posterior distributions should be kept after obtaining a model-

averaged result. Defaults to "all" which does not remove anything. Set to "min" to significantly reduce the size of final object, however, some model di-

agnostics and further manipulation with the object will not be possible.

seed a seed to be set before model fitting, marginal likelihood computation, and pos-

terior mixing for reproducibility of results. Defaults to NULL - no seed is set.

silent do not print the results.

rescale_data whether continuous predictors should be rescaled prior to estimating the model.

Defaults to FALSE.

models should the models' details be printed.

... additional arguments.

Value

check_setup invisibly returns list of summary tables.

See Also

RoBSA()

8 contr.orthonormal

contr.meandif

Mean difference contrast matrix

Description

Return a matrix of mean difference contrasts. This is an adjustment to the contr.orthonormal that ascertains that the prior distributions on difference between the gran mean and factor level are identical independent of the number of factor levels (which does not hold for the orthonormal contrast). Furthermore, the contrast is re-scaled so the specified prior distribution exactly corresponds to the prior distribution on difference between each factor level and the grand mean – this is approximately twice the scale of contr.orthonormal.

Usage

```
contr.meandif(n, contrasts = TRUE)
```

Arguments

n a vector of levels for a factor, or the number of levels contrasts logical indicating whether contrasts should be computed

Value

A matrix with n rows and k columns, with k = n - 1 if contrasts = TRUE and k = n if contrasts = FALSE.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

```
contr.meandif(c(1, 2))
contr.meandif(c(1, 2, 3))
```

contr.orthonormal

Orthornomal contrast matrix

Description

Return a matrix of orthornomal contrasts. Code is based on stanova::contr.bayes and corresponding to description by Rouder et al. (2012)

```
contr.orthonormal(n, contrasts = TRUE)
```

default_prior 9

Arguments

n a vector of levels for a factor, or the number of levels contrasts logical indicating whether contrasts should be computed

Value

A matrix with n rows and k columns, with k = n - 1 if contrasts = TRUE and k = n if contrasts = FALSE.

References

Rouder JN, Morey RD, Speckman PL, Province JM (2012). "Default Bayes factors for ANOVA designs." *Journal of Mathematical Psychology*, **56**(5), 356–374. doi:10.1016/j.jmp.2012.08.001.

Examples

```
contr.orthonormal(c(1, 2))
contr.orthonormal(c(1, 2, 3))
```

default_prior

Default prior distributions

Description

Functions for setting default prior distributions. Note that these default prior distributions might (and probably won't) apply to your specific data scenario.

Usage

```
get_default_prior_beta_null()
get_default_prior_beta_alt()
get_default_prior_factor_null()
get_default_prior_factor_alt()
get_default_prior_intercept()
get_default_prior_aux()
```

Value

get_default_prior_beta_null and get_default_prior_beta_alt return a prior distribution and get_default_prior_intercept and get_default_prior_aux return a list of prior distributions.

10 diagnostics

diagnostics

Visualizes MCMC diagnostics for a fitted RoBSA object

Description

diagnostics creates visual checks of individual models convergence. Numerical overview of individual models can be obtained by summary(object, type = "diagnostics"), or even more detailed information by summary(object, type = "individual").

```
diagnostics(
  fit,
  parameter = NULL,
  type,
  plot_type = "base",
  show_models = NULL,
  lags = 30,
  title = is.null(show_models) | length(show_models) > 1,
)
diagnostics_autocorrelation(
  fit,
  parameter = NULL,
  plot_type = "base",
  show_models = NULL,
  lags = 30,
  title = is.null(show_models) | length(show_models) > 1,
)
diagnostics_trace(
  fit,
  parameter = NULL,
  plot_type = "base",
  show_models = NULL,
  title = is.null(show_models) | length(show_models) > 1,
)
diagnostics_density(
  fit,
  parameter = NULL,
  plot_type = "base",
  show_models = NULL,
  title = is.null(show_models) | length(show_models) > 1,
```

exp-aft 11

```
)
```

Arguments

fit a fitted RoBSA object parameter a parameter to be plotted. type of MCMC diagnostic to be plotted. Options are "trace" for the chains' type trace plots, "autocorrelation" for autocorrelation of the chains, and "densities" for the overlaying densities of the individual chains. Can be abbreviated to first letters. whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to plot_type "base". MCMC diagnostics of which models should be plotted. Defaults to NULL which show_models plots MCMC diagnostics for a specified parameter for every model that is part of the ensemble. lags number of lags to be shown for type = "autocorrelation". Defaults to 30. title whether the model number should be displayed in title. Defaults to TRUE when

Value

. . .

diagnostics returns either NULL if plot_type = "base" or an object/list of objects (depending on the number of parameters to be plotted) of class 'ggplot2' if plot_type = "ggplot2".

additional arguments to be passed to the plotting functions.

See Also

```
RoBSA(), summary.RoBSA()
```

evn.	-aft	

Exponential AFT parametric family.

more than one model is selected.

Description

(log) density, hazard, and survival functions for AFT exponential parametric family.

```
exp_aft_log_density(t, eta)
exp_aft_log_hazard(t, eta)
exp_aft_log_survival(t, eta)
```

12 extract_flexsurv

```
exp_aft_density(t, eta)
exp_aft_hazard(t, eta)
exp_aft_survival(t, eta)
exp_aft_mean(eta)
exp_aft_sd(eta)
exp_aft_r(n, eta)
exp_aft_q(p, eta)
exp_aft_p(q, eta)
```

Arguments

t	vector of survival times
eta	linear predictor
n	number of observations
p	vector of probabilities
q	vector of quantiles

Value

exp_aft_density, exp_aft_hazard, and exp_aft_survival return the density, hazard, and survival of the specified survival distribution. The exp_aft_log_density, exp_aft_log_hazard, exp_aft_log_survival return log of the corresponding qualities. exp_aft_mean and exp_aft_sd return the mean and standard deviation of the specified survival distribution. exp_aft_r, exp_aft_q, and exp_aft_p return a random generation, quantiles, and cumulative probabilities of the specified survival distribution.

extract_flexsurv

Extract parameter estimates from flexsurv object

Description

extract_flexsurv extracts estimates from a flexsurv object in and transform them to match the RoBSA output.

```
extract_flexsurv(fit)
```

gamma-aft 13

Arguments

fit

an object fitted with the flexsurv::flexsurvreg function

Value

extract_flexsurv return list of estimates lists for each parameter.

gamma-aft

Gamma AFT parametric family.

Description

(log) density, hazard, and survival functions for AFT gamma parametric family.

Usage

```
gamma_aft_log_density(t, eta, shape)
gamma_aft_log_hazard(t, eta, shape)
gamma_aft_log_survival(t, eta, shape)
gamma_aft_density(t, eta, shape)
gamma_aft_hazard(t, eta, shape)
gamma_aft_survival(t, eta, shape)
gamma_aft_mean(eta, shape)
gamma_aft_sd(eta, shape)
gamma_aft_r(n, eta, shape)
gamma_aft_r(n, eta, shape)
gamma_aft_q(p, eta, shape)
gamma_aft_p(q, eta, shape)
```

Arguments

t	vector of survival times
eta	linear predictor
shape	auxiliary parameter
n	number of observations
p	vector of probabilities
q	vector of quantiles

14 llogis-aft

Value

gamma_aft_density, gamma_aft_hazard, and gamma_aft_survival return the density, hazard, and survival of the specified survival distribution. The gamma_aft_log_density, gamma_aft_log_hazard, gamma_aft_log_survival return log of the corresponding qualities. gamma_aft_mean and gamma_aft_sd return the mean and standard deviation of the specified survival distribution. gamma_aft_r, gamma_aft_q, and gamma_aft_p return a random generation, quantiles, and cumulative probabilities of the specified survival distribution.

is.RoBSA

Reports whether x is a RoBSA object

Description

Reports whether x is a RoBSA object

Usage

```
is.RoBSA(x)
```

Arguments Х

an object to test

Value

is.RoBSA returns a boolean.

llogis-aft

Log-logistic AFT parametric family.

Description

(log) density, hazard, and survival functions for AFT log-logistic parametric family.

```
llogis_aft_log_density(t, eta, shape)
llogis_aft_log_hazard(t, eta, shape)
llogis_aft_log_survival(t, eta, shape)
llogis_aft_density(t, eta, shape)
llogis_aft_hazard(t, eta, shape)
```

lnorm-aft

```
llogis_aft_survival(t, eta, shape)
llogis_aft_mean(eta, shape)
llogis_aft_sd(eta, shape)
llogis_aft_r(n, eta, shape)
llogis_aft_q(p, eta, shape)
llogis_aft_p(q, eta, shape)
```

Arguments

t	vector of survival times
eta	linear predictor
shape	auxiliary parameter
n	number of observations
p	vector of probabilities
q	vector of quantiles

Value

llogis_aft_density, llogis_aft_hazard, and llogis_aft_survival return the density, hazard, and survival of the specified survival distribution. The llogis_aft_log_density, llogis_aft_log_hazard, llogis_aft_log_survival return log of the corresponding qualities. llogis_aft_mean and llogis_aft_sd return the mean and standard deviation of the specified survival distribution. llogis_aft_r, llogis_aft_q, and llogis_aft_p return a random generation, quantiles, and cumulative probabilities of the specified survival distribution.

_							_	
1	n	O	r	m	_	2	4.4	۰

Log-normal AFT parametric family.

Description

(log) density, hazard, and survival functions for AFT log-normal parametric family.

```
lnorm_aft_log_density(t, eta, sd)
lnorm_aft_log_hazard(t, eta, sd)
lnorm_aft_log_survival(t, eta, sd)
```

16 plot.RoBSA

```
lnorm_aft_density(t, eta, sd)
lnorm_aft_hazard(t, eta, sd)
lnorm_aft_survival(t, eta, sd)
lnorm_aft_mean(eta, sd)
lnorm_aft_sd(eta, sd)
lnorm_aft_r(n, eta, sd)
lnorm_aft_q(p, eta, sd)
lnorm_aft_p(q, eta, sd)
```

Arguments

t	vector of survival times
eta	linear predictor
sd	auxiliary parameter
n	number of observations
p	vector of probabilities
q	vector of quantiles

Value

Inorm_aft_density, lnorm_aft_hazard, and lnorm_aft_survival return the density, hazard, and survival of the specified survival distribution. The lnorm_aft_log_density, lnorm_aft_log_hazard, lnorm_aft_log_survival return log of the corresponding qualities. lnorm_aft_mean and lnorm_aft_sd return the mean and standard deviation of the specified survival distribution. lnorm_aft_r, lnorm_aft_q, and lnorm_aft_p return a random generation, quantiles, and cumulative probabilities of the specified survival distribution.

plot.RoBSA	Plots a fitted RoBSA object

Description

plot.RoBSA allows to visualize posterior distribution of different "RoBSA" object parameters. See plot_survival for plotting the survival ways. See type for the different model types.

plot.RoBSA 17

Usage

```
## S3 method for class 'RoBSA'
plot(
    x,
    parameter = NULL,
    conditional = FALSE,
    plot_type = "base",
    prior = FALSE,
    dots_prior = NULL,
    ...
)
```

Arguments

a fitted RoBSA object Х a name of parameter to be plotted. Defaults to the first regression parameter if parameter left unspecified. Use "intercept" and "aux" to plot the intercepts and auxiliary parameters of each distribution family. conditional whether conditional estimates should be plotted. Defaults to FALSE which plots the model-averaged estimates. whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to plot_type "base". prior whether prior distribution should be added to figure. Defaults to FALSE. dots_prior list of additional graphical arguments to be passed to the plotting function of the prior distribution. Supported arguments are 1wd, 1ty, col, and col. fill, to adjust the line thickness, line type, line color, and fill color of the prior distribution respectively. list of additional graphical arguments to be passed to the plotting function. Sup-. . . ported arguments are lwd, lty, col, col.fill, xlab, ylab, main, xlim, ylim to adjust the line thickness, line type, line color, fill color, x-label, y-label, title, x-axis range, and y-axis range respectively.

Value

plot.RoBSA returns either NULL if plot_type = "base" or an object object of class 'ggplot2' if plot_type = "ggplot2".

See Also

RoBSA()

Examples

```
## Not run:
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
```

plot_models

```
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)</pre>
df <- data.frame(</pre>
              = veteran$time / 12,
 time
 status
             = veteran$status,
 treatment = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
 karno_scaled = veteran$karno / 100
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(</pre>
 Surv(time, status) ~ treatment + karno_scaled,
 data = df,
 priors = list(
                 = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
   treatment
                                truncation = list(0, Inf), contrast = "treatment"),
   karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
 ),
 test_predictors = "treatment",
 prior_intercept = priors[["intercept"]],
 prior_aux = priors[["aux"]],
 parallel = TRUE, seed = 1
)
# plot posterior distribution of the treatment effect
plot(fit, parameter = "treatment")
## End(Not run)
```

plot_models

Models plot for a RoBSA object

Description

plot_models plots individual models' estimates for a "RoBSA" object.

```
plot_models(
    x,
    parameter = NULL,
    conditional = FALSE,
    plot_type = "base",
    order = "decreasing",
    order_by = "model",
    ...
)
```

plot_models 19

Arguments

X	a fitted RoBSA object
parameter	a name of parameter to be plotted. Defaults to the first regression parameter if left unspecified.
conditional	whether conditional estimates should be plotted. Defaults to FALSE which plots the model-averaged estimates.
plot_type	whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to "base".
order	how the models should be ordered. Defaults to "decreasing" which orders them in decreasing order in accordance to order_by argument. The alternative is "increasing".
order_by	what feature should be use to order the models. Defaults to "model" which orders the models according to their number. The alternatives are "estimate" (for the effect size estimates), "probability" (for the posterior model probability), and "BF" (for the inclusion Bayes factor).
	list of additional graphical arguments to be passed to the plotting function. Supported arguments are lwd, lty, col, col.fill, xlab, ylab, main, xlim, ylim to adjust the line thickness, line type, line color, fill color, x-label, y-label, title, x-axis range, and y-axis range respectively.

Value

plot_models returns either NULL if plot_type = "base" or an object object of class 'ggplot2' if plot_type = "ggplot2".

Examples

```
## Not run:
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)</pre>
df <- data.frame(</pre>
 time
              = veteran$time / 12,
  status
             = veteran$status,
 treatment = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
  karno_scaled = veteran$karno / 100
)
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(</pre>
  Surv(time, status) ~ treatment + karno_scaled,
  data = df,
  priors = list(
                 = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
                                truncation = list(0, Inf), contrast = "treatment"),
   karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
  test_predictors = "treatment",
```

20 plot_prediction

plot_prediction

Survival plots for a RoBSA object

Description

Survival plots for a RoBSA object

```
plot_prediction(
  х,
  type = "survival",
  time_range = NULL,
  new_data = NULL,
  predictor = NULL,
  covariates_data = NULL,
  conditional = FALSE,
 plot_type = "base",
  samples = 10000,
)
plot_survival(
  time_range = NULL,
  new_data = NULL,
  predictor = NULL,
  covariates_data = NULL,
  conditional = FALSE,
  plot_type = "base",
  samples = 10000,
)
plot_hazard(
```

plot_prediction 21

```
Χ,
  time_range = NULL,
  new_data = NULL,
 predictor = NULL,
  covariates_data = NULL,
  conditional = FALSE,
  plot_type = "base",
  samples = 10000,
)
plot_density(
  х,
  time_range = NULL,
  new_data = NULL,
  predictor = NULL,
  covariates_data = NULL,
  conditional = FALSE,
  plot_type = "base",
  samples = 10000,
)
```

Arguments

x a fitted RoBSA object.

type what type of prediction should be created

time_range a numeric of length two specifying the range for the survival prediction. Defaults

to NULL which uses the range of observed times.

new_data a data.frame containing fully specified predictors for which predictions should

be made

predictor an alternative input to new_data that automatically generates predictions for

each level of the predictor across all either across levels of covariates specified

by covariates_data or at the default values of other predictors

covariates_data

a supplementary input to predictor that specifies levels of covariates for which

predictions should be made

conditional whether only models assuming presence of the specified predictor should be

used

plot_type whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to

"base".

samples number of posterior samples to be evaluated

... additional arguments.

Value

returns either NULL if plot_type = "base" or an object object of class 'ggplot2' if plot_type = "ggplot2".

22 predict.RoBSA

Examples

```
## Not run:
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)</pre>
df <- data.frame(</pre>
 time
              = veteran$time / 12,
 status
              = veteran$status,
 treatment = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
 karno_scaled = veteran$karno / 100
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(
 Surv(time, status) ~ treatment + karno_scaled,
 data = df,
 priors = list(
                 = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
   treatment
                                truncation = list(0, Inf), contrast = "treatment"),
   karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
 ),
 test_predictors = "treatment",
 prior_intercept = priors[["intercept"]],
 prior_aux
               = priors[["aux"]],
 parallel = TRUE, seed = 1
)
# plot survival for each level the treatment
plot_survival(fit, parameter = "treatment")
# plot hazard for each level the treatment
plot_hazard(fit, parameter = "treatment")
# plot density for each level the treatment
plot_density(fit, parameter = "treatment")
## End(Not run)
```

predict.RoBSA

Predict method for RoBSA objects.

Description

Predicts survival/hazard/density/mean/sd for a given RoBSA object. Either predicts values for each row of a fully specified new_data data.frame, or for all levels of a given predictor at the mean of continuous covariate values and default factor levels or covariate values specified as covariates_data data.frame.

predict.RoBSA 23

Usage

```
## S3 method for class 'RoBSA'
predict(
  object,
  time = NULL,
  new_data = NULL,
  predictor = NULL,
  covariates_data = NULL,
  type = c("survival", "hazard", "density", "mean", "sd"),
  summarize = TRUE,
  averaged = TRUE,
  conditional = FALSE,
  samples = 10000,
  ...
)
```

Arguments

object a fitted RoBSA object

time a vector of time values at which the survival/hazard/density will be predicted

(for each passed data point)

new_data a data.frame containing fully specified predictors for which predictions should

be made

predictor an alternative input to new_data that automatically generates predictions for

each level of the predictor across all either across levels of covariates specified

by covariates_data or at the default values of other predictors

covariates_data

a supplementary input to predictor that specifies levels of covariates for which

predictions should be made

type what type of prediction should be created

summarize whether the predictions should be aggregated as mean and sd. Otherwise, pre-

diction for for posterior samples is returned.

averaged whether predictions should be combined with Bayesian model-averaging or whether

predictions for each individual model should be returned.

conditional whether only models assuming presence of the specified predictor should be

used

samples number of posterior samples to be evaluated

... additional arguments (unused)

Value

a list with predictions (or a list of lists in case that predictions for each individual model are requested averaged = FALSE)

print.RoBSA

Prints a fitted RoBSA object

Description

Prints a fitted RoBSA object

Usage

```
## S3 method for class 'RoBSA'
print(x, ...)
```

Arguments

x a fitted RoBSA object.... additional arguments.

Value

print.RoBSA invisibly returns the print statement.

See Also

RoBSA()

print.summary.RoBSA

Prints summary object for RoBSA method

Description

Prints summary object for RoBSA method

Usage

```
## S3 method for class 'summary.RoBSA'
print(x, ...)
```

Arguments

x a summary of a RoBSA object... additional arguments

Value

print.summary.RoBSA invisibly returns the print statement.

prior 25

See Also

RoBSA()

prior

Creates a prior distribution

Description

prior creates a prior distribution. The prior can be visualized by the plot function.

Usage

```
prior(
   distribution,
   parameters,
   truncation = list(lower = -Inf, upper = Inf),
   prior_weights = 1
)
```

Arguments

distribution

name of the prior distribution. The possible options are

"point" for a point density characterized by a location parameter.

"normal" for a normal distribution characterized by a mean and sd parameters.

"lognormal" for a lognormal distribution characterized by a meanlog and sdlog parameters.

"cauchy" for a Cauchy distribution characterized by a location and scale parameters. Internally converted into a generalized t-distribution with df = 1.

"t" for a generalized t-distribution characterized by a location, scale, and df parameters.

"gamma" for a gamma distribution characterized by either shape and rate, or shape and scale parameters. The later is internally converted to the shape and rate parametrization

"invgamma" for an inverse-gamma distribution characterized by a shape and scale parameters. The JAGS part uses a 1/gamma distribution with a shape and rate parameter.

"beta" for a beta distribution characterized by an alpha and beta parameters.

"exp" for an exponential distribution characterized by either rate or scale parameter. The later is internally converted to rate.

"uniform" for a uniform distribution defined on a range from a to b

parameters truncation list of appropriate parameters for a given distribution.

list with two elements, lower and upper, that define the lower and upper truncation of the distribution. Defaults to list(lower = -Inf, upper = Inf). The truncation is automatically set to the bounds of the support.

26 prior_factor

prior_weights

prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions.

Value

prior and prior_none return an object of class 'prior'. A named list containing the distribution name, parameters, and prior weights.

See Also

plot.prior(), Normal, Lognormal, Cauchy, Beta, Exponential, LocationScaleT, InvGamma.

Examples

```
# create a standard normal prior distribution
p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1))
# create a half-normal standard normal prior distribution
p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1),
truncation = list(lower = 0, upper = Inf))
# the prior distribution can be visualized using the plot function
# (see ?plot.prior for all options)
plot(p1)</pre>
```

prior_factor

Creates a prior distribution for factors

Description

prior_factor creates a prior distribution for fitting models with factor predictors. (Note that results across different operating systems might vary due to differences in JAGS numerical precision.)

```
prior_factor(
  distribution,
  parameters,
  truncation = list(lower = -Inf, upper = Inf),
  prior_weights = 1,
  contrast = "orthonormal"
)
```

prior_factor 27

Arguments

distribution

name of the prior distribution. The possible options are

"point" for a point density characterized by a location parameter.

"normal" for a normal distribution characterized by a mean and sd parameters.

"lognormal" for a lognormal distribution characterized by a meanlog and sdlog parameters.

"cauchy" for a Cauchy distribution characterized by a location and scale parameters. Internally converted into a generalized t-distribution with df = 1.

"t" for a generalized t-distribution characterized by a location, scale, and df parameters.

"gamma" for a gamma distribution characterized by either shape and rate, or shape and scale parameters. The later is internally converted to the shape and rate parametrization

"invgamma" for an inverse-gamma distribution characterized by a shape and scale parameters. The JAGS part uses a 1/gamma distribution with a shape and rate parameter.

"beta" for a beta distribution characterized by an alpha and beta parameters.

"exp" for an exponential distribution characterized by either rate or scale parameter. The later is internally converted to rate.

"uniform" for a uniform distribution defined on a range from a to b

parameters

list of appropriate parameters for a given distribution.

truncation

list with two elements, lower and upper, that define the lower and upper truncation of the distribution. Defaults to list(lower = -Inf, upper = Inf). The truncation is automatically set to the bounds of the support.

prior_weights

prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions.

contrast

type of contrast for the prior distribution. The possible options are

"meandif" for contrast centered around the grand mean with equal marginal distributions, making the prior distribution exchangeable across factor levels. In contrast to "orthonormal", the marginal distributions are identical regardless of the number of factor levels and the specified prior distribution corresponds to the difference from grand mean for each factor level. Only supports distribution = "mnormal" and distribution = "mt" which generates the corresponding multivariate normal/t distributions.

"orthonormal" for contrast centered around the grand mean with equal marginal distributions, making the prior distribution exchangeable across factor levels. Only supports distribution = "mnormal" and distribution = "mt" which generates the corresponding multivariate normal/t distributions.

"treatment" for contrasts using the first level as a comparison group and setting equal prior distribution on differences between the individual factor levels and the comparison level.

28 prior_informed

"independent" for contrasts specifying dependent prior distribution for each factor level (note that this leads to an overparameterized model if the intercept is included).

Value

return an object of class 'prior'.

See Also

```
prior()
```

Examples

prior_informed

Creates an informed prior distribution based on research

Description

prior_informed creates an informed prior distribution based on past research. The prior can be visualized by the plot function.

Usage

```
prior_informed(name, parameter = NULL, type = "smd")
```

Arguments

name

name of the prior distribution. There are many options based on prior psychological or medical research. For psychology, the possible options are

"van Erp" for an informed prior distribution for the heterogeneity parameter tau of meta-analytic effect size estimates based on standardized mean differences (van Erp et al. 2017),

"Oosterwijk" for an informed prior distribution for the effect sizes expected in social psychology based on prior elicitation with dr. Oosterwijk (Gronau et al. 2017).

For medicine, the possible options are based on Bartoš et al. (2021) who developed empirical prior distributions for the effect size and heterogeneity parameters of the continuous standardized outcomes based on the Cochrane database of systematic reviews. Use "Cochrane" for a prior distribution based on the whole database or call print(prior_informed_medicine_names) to inspect the names of all 46 subfields and set the appropriate parameter and type.

prior_informed 29

parameter parameter name describing what prior distribution is supposed to be produced in

cases where the name corresponds to multiple prior distributions. Relevant only

for the empirical medical prior distributions.

type prior type describing what prior distribution is supposed to be produced in cases

where the name and parameter correspond to multiple prior distributions. Rel-

evant only for the empirical medical prior distributions.

Details

Further details can be found in van Erp et al. (2017), Gronau et al. (2017), and Bartoš et al. (2021).

Value

prior_informed returns an object of class 'prior'.

References

Bartoš F, Gronau QF, Timmers B, Otte WM, Ly A, Wagenmakers E (2021). "Bayesian model-averaged meta-analysis in medicine." *Statistics in Medicine*. doi:10.1002/sim.9170.

Gronau QF, Van Erp S, Heck DW, Cesario J, Jonas KJ, Wagenmakers E (2017). "A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: The case of felt power." *Comprehensive Results in Social Psychology*, **2**(1), 123–138. doi:10.1080/23743603.2017.1326760.

van Erp S, Verhagen J, Grasman RP, Wagenmakers E (2017). "Estimates of between-study heterogeneity for 705 meta-analyses reported in Psychological Bulletin from 1990–2013." *Journal of Open Psychology Data*, **5**(1). doi:10.5334/jopd.33.

See Also

```
prior(), prior_informed_medicine_names
```

Examples

```
# prior distribution representing expected effect sizes in social psychology
# based on prior elicitation with dr. Oosterwijk
p1 <- prior_informed("Oosterwijk")

# the prior distribution can be visualized using the plot function
# (see ?plot.prior for all options)
plot(p1)

# empirical prior distribution for the standardized mean differences from the oral health
# medical subfield based on meta-analytic effect size estimates from the
# Cochrane database of systematic reviews
p2 <- prior_informed("Oral Health", parameter = "effect", type = "smd")
print(p2)</pre>
```

prior_none

```
prior_informed_medicine_names
```

Names of medical subfields from the Cochrane database of systematic reviews

Description

Contain names identifying the individual subfields from the Cochrane database of systematic reviews. The individual elements correspond to valid name arguments for the prior_informed() function.

Usage

```
prior_informed_medicine_names
```

Format

An object of class character of length 47.

prior_none

Creates a prior distribution

Description

prior creates a prior distribution. The prior can be visualized by the plot function.

Usage

```
prior_none(prior_weights = 1)
```

Arguments

prior_weights

prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions.

Value

prior and prior_none return an object of class 'prior'. A named list containing the distribution name, parameters, and prior weights.

See Also

plot.prior(), Normal, Lognormal, Cauchy, Beta, Exponential, LocationScaleT, InvGamma.

RoBSA 31

Examples

```
# create a standard normal prior distribution
p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1))
# create a half-normal standard normal prior distribution
p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1),
truncation = list(lower = 0, upper = Inf))
# the prior distribution can be visualized using the plot function
# (see ?plot.prior for all options)
plot(p1)</pre>
```

RoBSA

Fit Robust Bayesian Survival Analysis

Description

RoBSA is used to estimate a robust Bayesian survival analysis. The interface allows a complete customization of the ensemble with different prior distributions for the null and alternative hypothesis of each parameter. (See README for an example.)

```
RoBSA(
  formula,
  data,
  priors = NULL,
  test_predictors = NULL,
 distributions = c("exp-aft", "weibull-aft", "lnorm-aft", "llogis-aft", "gamma-aft"),
  distributions_weights = rep(1, length(distributions)),
  prior_beta_null = get_default_prior_beta_null(),
  prior_beta_alt = get_default_prior_beta_alt(),
  prior_factor_null = get_default_prior_factor_null(),
  prior_factor_alt = get_default_prior_factor_alt(),
  prior_intercept = get_default_prior_intercept(),
  prior_aux = get_default_prior_aux(),
  chains = 3,
  sample = 5000,
  burnin = 2000,
  adapt = 500,
  thin = 1,
  parallel = FALSE,
  autofit = TRUE,
  autofit_control = set_autofit_control(),
  convergence_checks = set_convergence_checks(),
  save = "all",
  seed = NULL,
```

32 RoBSA

```
silent = TRUE,
rescale_data = FALSE,
...
)
```

Arguments

formula for the survival model data data frame containing the data

priors names list of prior distributions for each predictor. It allows users to specify

both the null and alternative hypothesis prior distributions by assigning a named

list (with "null" and "alt" object) to the predictor

test_predictors

vector of predictor names to be tested with Bayesian model-averaged testing.

Defaults to NULL, no parameters are tested.

distributions distributions of parametric survival models

distributions_weights

prior odds for the competing distributions

prior_beta_null

default prior distribution for the null hypotheses of continuous predictors

prior_beta_alt default prior distribution for the alternative hypotheses of continuous predictors
prior_factor_null

default prior distribution for the null hypotheses of categorical predictors

prior_factor_alt

default prior distribution for the alternative hypotheses of categorical predictors

prior_intercept

named list containing prior distribution for the intercepts (with names corre-

sponding to the distributions)

prior_aux named list containing prior distribution for the auxiliary parameters (with names

corresponding to the distributions)

chains a number of chains of the MCMC algorithm.

sample a number of sampling iterations of the MCMC algorithm. Defaults to 5000.

burnin a number of burnin iterations of the MCMC algorithm. Defaults to 2000.

adapt a number of adaptation iterations of the MCMC algorithm. Defaults to 500.

thin a thinning of the chains of the MCMC algorithm. Defaults to 1.

parallel whether the individual models should be fitted in parallel. Defaults to FALSE.

The implementation is not completely stable and might cause a connection error.

autofit whether the model should be fitted until the convergence criteria (specified in

autofit_control) are satisfied. Defaults to TRUE.

autofit_control

allows to pass autofit control settings with the set_autofit_control() function. See ?set_autofit_control for options and default settings.

RoBSA 33

convergence_checks automatic convergence checks to assess the fitted models, passed with set_convergence_checks() function. See ?set_convergence_checks for options and default settings. save whether all models posterior distributions should be kept after obtaining a modelaveraged result. Defaults to "all" which does not remove anything. Set to "min" to significantly reduce the size of final object, however, some model diagnostics and further manipulation with the object will not be possible. a seed to be set before model fitting, marginal likelihood computation, and posseed terior mixing for reproducibility of results. Defaults to NULL - no seed is set. whether all print messages regarding the fitting process should be suppressed. silent Defaults to TRUE. Note that parallel = TRUE also suppresses all messages. whether continuous predictors should be rescaled prior to estimating the model. rescale_data

Defaults to FALSE.

additional arguments.

Value

RoBSA returns an object of class 'RoBSA'.

Examples

```
## Not run:
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)</pre>
df <- data.frame(</pre>
 time
             = veteran$time / 12,
              = veteran$status,
 status
 treatment = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
 karno_scaled = veteran$karno / 100
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(
 Surv(time, status) ~ treatment + karno_scaled,
 data = df,
 priors = list(
    treatment
                 = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
                                truncation = list(0, Inf), contrast = "treatment"),
   karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
 ),
 test_predictors = "treatment",
 prior_intercept = priors[["intercept"]],
                = priors[["aux"]],
 prior_aux
 parallel = TRUE, seed = 1
summary(fit)
## End(Not run)
```

RoBSA_control

RoBSA_control

Control MCMC fitting process

Description

Controls settings for the autofit process of the MCMC JAGS sampler (specifies termination criteria), and values for the convergence checks.

Usage

```
set_autofit_control(
 max_Rhat = 1.05,
 min_{ESS} = 500,
 max_error = NULL,
 max_SD_error = NULL,
 max_time = list(time = 60, unit = "mins"),
  sample_extend = 1000
)
set_convergence_checks(
 max_Rhat = 1.05,
 min_{ESS} = 500,
 max_error = NULL,
 max_SD_error = NULL,
 remove_failed = FALSE,
 balance_probability = TRUE
)
```

Arguments

max_Rhat	maximum value of the R-hat diagnostic. Defaults to 1.05.
min_ESS	minimum estimated sample size. Defaults to 500.
max_error	maximum value of the MCMC error. Defaults to NULL. Be aware that PEESE publication bias adjustment can have estimates on different scale than the rest of the output, resulting in relatively large max MCMC error.
max_SD_error	maximum value of the proportion of MCMC error of the estimated SD of the parameter. Defaults to NULL.
max_time	list with the time and unit specifying the maximum autofitting process per model. Passed to difftime function (possible units are "secs", "mins", "hours", "days" "weeks", "years"). Defaults to list(time = 60, unit = "mins").
sample_extend	number of samples to extend the fitting process if the criteria are not satisfied. Defaults to 1000.
remove_failed	whether models not satisfying the convergence checks should be removed from the inference. Defaults to FALSE - only a warning is raised.

RoBSA_options 35

```
balance_probability
```

whether prior model probability should be balanced across the combinations of models with the same H0/H1 for effect / heterogeneity / bias in the case of non-convergence. Defaults to TRUE.

Value

set_autofit_control returns a list of autofit control settings and set_convergence_checks returns a list of convergence checks settings.

See Also

RoBSA, update.RoBSA

RoBSA_options

Options for the RoBSA package

Description

A placeholder object and functions for the RoBSA package. (adapted from the runjags R package).

Usage

```
RoBSA.options(...)
RoBSA.get_option(name)
```

Arguments

... named option(s) to change - for a list of available options, see details below.

name the name of the option to get the current value of - for a list of available options,

see details below.

Value

The current value of all available RoBSA options (after applying any changes specified) is returned invisibly as a named list.

36 summary.RoBSA

summary.RoBSA

Summarize fitted RoBSA object

Description

summary. RoBSA creates a numerical summary of the RoBSA object.

Usage

```
## S3 method for class 'RoBSA'
summary(
  object,
  type = "ensemble",
  conditional = FALSE,
  exp = FALSE,
  parameters = FALSE,
  probs = c(0.025, 0.975),
  logBF = FALSE,
  BF01 = FALSE,
  transform_factors = TRUE,
  short_name = FALSE,
  remove_spike_0 = FALSE,
  ...
)
```

Arguments

object a fitted RoBSA object.

type whether to show the overall RoBSA results ("ensemble"), an overview of the

individual models ("models"), or detailed summary for the individual models

("individual").

conditional show the conditional estimates (assuming that the alternative is true). Defaults

to FALSE. Only available for type == "conditional".

exp whether exponents of the regression estimates should be also presented

parameters character vector of parameters (or a named list with of character vectors for

summary and diagnostics tables) specifying the parameters (and their grouping)

for the summary table

probs quantiles of the posterior samples to be displayed. Defaults to c(.025, .50,

.975)

logBF show log of the BFs. Defaults to FALSE.

show BF in support of the null hypotheses. Defaults to FALSE.

transform_factors

Whether factors with orthonormal prior distributions should be transformed to differences from the grand mean. Defaults to TRUE.

summary.RoBSA 37

```
short_name whether the prior distribution names should be shortened. Defaults to FALSE.

remove_spike_0 whether prior distributions equal to spike at 0 should be removed from the prior_list

... additional arguments
```

Value

```
summary of a RoBSA object
summary.RoBSA returns a list of tables of class 'BayesTools table'.
```

Note

See diagnostics() for visual convergence checks of the individual models.

See Also

```
RoBSA(), diagnostics(), check_RoBSA()
```

Examples

```
## Not run:
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)</pre>
df <- data.frame(</pre>
 time
              = veteran$time / 12,
             = veteran$status,
 status
 treatment = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
 karno_scaled = veteran$karno / 100
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(
 Surv(time, status) ~ treatment + karno_scaled,
 data = df,
 priors = list(
                 = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
   treatment
                                truncation = list(0, Inf), contrast = "treatment"),
   karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
 ),
 test_predictors = "treatment",
 prior_intercept = priors[["intercept"]],
                = priors[["aux"]],
 prior_aux
 parallel = TRUE, seed = 1
# summary can provide many details about the model
summary(fit)
# note that the summary function contains additional arguments
# that allow to obtain a specific output, i.e, the conditional estimates
```

38 update.RoBSA

```
# (assuming that the non-null models are true) can be obtained
summary(fit, conditional = TRUE)

# overview of the models and their prior and posterior probability, marginal likelihood,
# and inclusion Bayes factor:
summary(fit, type = "models")

# and the model diagnostics overview, containing maximum R-hat and minimum ESS across parameters
# but see '?diagnostics' for diagnostics plots for individual model parameters
summary(fit, type = "diagnostics")

# summary of individual models and their parameters can be further obtained by
summary(fit, type = "individual")

## End(Not run)
```

update.RoBSA

Updates a fitted RoBSA object

Description

update. RoBSA can be used to

- 1. add an additional model to an existing "RoBSA" object by specifying the distribution, and either null or alternative priors for each parameter and prior weight of the model,
- 2. change the prior weights of fitted models by specifying a vector prior_weights of the same length as the fitted models,
- 3. refitting models that failed to converge with updated settings of control parameters,
- 4. or changing the convergence criteria and recalculating the ensemble results by specifying new control argument and setting refit_failed == FALSE.

```
## S3 method for class 'RoBSA'
update(
  object,
  refit_failed = TRUE,
  formula = NULL,
  priors = NULL,
  test_predictors = "",
  distribution = NULL,
  model_weights = 1,
  prior_beta_null = get_default_prior_beta_null(),
  prior_beta_alt = get_default_prior_factor_null(),
  prior_factor_null = get_default_prior_factor_null(),
  prior_factor_alt = get_default_prior_factor_alt(),
```

update.RoBSA 39

```
prior_intercept = get_default_prior_intercept(),
  prior_aux = get_default_prior_aux(),
  chains = NULL,
  adapt = NULL,
  burnin = NULL,
  sample = NULL,
  thin = NULL,
  autofit = NULL,
  parallel = NULL,
  autofit_control = NULL,
  convergence_checks = NULL,
  save = "all",
  seed = NULL,
  silent = TRUE,
  ...
)
```

Arguments

object a fitted RoBSA object

refit_failed whether failed models should be refitted. Relevant only if new priors or prior_weights

are not supplied. Defaults to TRUE.

formula for the survival model

priors names list of prior distributions for each predictor. It allows users to specify

both the null and alternative hypothesis prior distributions by assigning a named

list (with "null" and "alt" object) to the predictor

test_predictors

vector of predictor names to be tested with Bayesian model-averaged testing.

Defaults to NULL, no parameters are tested.

distribution a distribution of the new model.

model_weights either a single value specifying prior model weight of a newly specified model

using priors argument, or a vector of the same length as already fitted models to

update their prior weights.

prior_beta_null

default prior distribution for the null hypotheses of continuous predictors

prior_beta_alt default prior distribution for the alternative hypotheses of continuous predictors
prior_factor_null

default prior distribution for the null hypotheses of categorical predictors

prior_factor_alt

default prior distribution for the alternative hypotheses of categorical predictors

prior_intercept

named list containing prior distribution for the intercepts (with names corre-

sponding to the distributions)

prior_aux named list containing prior distribution for the auxiliary parameters (with names

corresponding to the distributions)

40 update.RoBSA

chains a number of chains of the MCMC algorithm.

adapt a number of adaptation iterations of the MCMC algorithm. Defaults to 500.

burnin a number of burnin iterations of the MCMC algorithm. Defaults to 2000.

sample a number of sampling iterations of the MCMC algorithm. Defaults to 5000.

thin a thinning of the chains of the MCMC algorithm. Defaults to 1.

autofit whether the model should be fitted until the convergence criteria (specified in

autofit_control) are satisfied. Defaults to TRUE.

parallel whether the individual models should be fitted in parallel. Defaults to FALSE.

The implementation is not completely stable and might cause a connection error.

autofit_control

allows to pass autofit control settings with the set_autofit_control() func-

tion. See ?set_autofit_control for options and default settings.

convergence_checks

automatic convergence checks to assess the fitted models, passed with set_convergence_checks()

function. See ?set_convergence_checks for options and default settings.

save whether all models posterior distributions should be kept after obtaining a model-

averaged result. Defaults to "all" which does not remove anything. Set to "min" to significantly reduce the size of final object, however, some model di-

agnostics and further manipulation with the object will not be possible.

seed a seed to be set before model fitting, marginal likelihood computation, and pos-

terior mixing for reproducibility of results. Defaults to NULL - no seed is set.

silent whether all print messages regarding the fitting process should be suppressed.

Defaults to TRUE. Note that parallel = TRUE also suppresses all messages.

... additional arguments.

Details

See RoBSA() for more details.

Value

update. RoBSA returns an object of class 'RoBSA'.

See Also

RoBSA(), summary.RoBSA(), prior(), check_setup()

weibull-aft 41

weibull-aft

Weibull AFT parametric family.

Description

(log) density, hazard, and survival functions for AFT Weibull parametric family.

Usage

```
weibull_aft_log_density(t, eta, shape)
weibull_aft_log_hazard(t, eta, shape)
weibull_aft_log_survival(t, eta, shape)
weibull_aft_density(t, eta, shape)
weibull_aft_hazard(t, eta, shape)
weibull_aft_survival(t, eta, shape)
weibull_aft_mean(eta, shape)
weibull_aft_sd(eta, shape)
weibull_aft_r(n, eta, shape)
weibull_aft_r(p, eta, shape)
weibull_aft_q(p, eta, shape)
```

Arguments

t	vector of survival times
eta	linear predictor
shape	auxiliary parameter
n	number of observations
p	vector of probabilities
q	vector of quantiles

Value

weibull_aft_density, weibull_aft_hazard, and weibull_aft_survival return the density, hazard, and survival of the specified survival distribution. The weibull_aft_log_density, weibull_aft_log_hazard, weibull_aft_log_survival return log of the corresponding qualities. weibull_aft_mean and weibull_aft_sd return the mean and standard deviation of the specified survival distribution.

42 weibull-aft

 $weibull_aft_r, weibull_aft_q, and weibull_aft_p \ return \ a \ random \ generation, \ quantiles, \ and \ cumulative \ probabilities \ of the \ specified \ survival \ distribution.$

Index

```
* datasets
                                                Exponential, 26, 30
    prior_informed_medicine_names, 30
                                                extract_flexsurv, 12
* package
                                                gamma-aft, 13
    RoBSA-package, 3
                                                gamma_aft_density(gamma-aft), 13
_PACKAGE (RoBSA-package), 3
                                                gamma_aft_hazard (gamma-aft), 13
                                                gamma_aft_log_density (gamma-aft), 13
BayesTools::JAGS_fit, 4
                                                gamma_aft_log_hazard (gamma-aft), 13
Beta, 26, 30
                                                gamma_aft_log_survival(gamma-aft), 13
                                                gamma_aft_mean (gamma-aft), 13
calibrate_meta_analytic, 3
                                                gamma_aft_p (gamma-aft), 13
calibrate_quartiles, 4
                                                gamma_aft_q (gamma-aft), 13
Cauchy, 26, 30
                                                gamma_aft_r (gamma-aft), 13
check_RoBSA, 5
                                                gamma_aft_sd (gamma-aft), 13
check_RoBSA(), 37
                                                gamma_aft_survival (gamma-aft), 13
check_setup, 5
                                                get_default_prior_aux (default_prior), 9
check_setup(), 40
                                                get_default_prior_beta_alt
contr.meandif, 8
                                                         (default_prior), 9
contr.orthonormal.8
                                                get_default_prior_beta_alt,
                                                         (default_prior), 9
default_prior, 9
                                                get_default_prior_beta_null
diagnostics, 10
                                                         (default_prior), 9
diagnostics(), 37
                                                get_default_prior_beta_null,
diagnostics_autocorrelation
                                                         (default_prior), 9
        (diagnostics), 10
                                                get_default_prior_factor_alt
diagnostics_density (diagnostics), 10
                                                         (default_prior), 9
diagnostics_trace (diagnostics), 10
                                                get_default_prior_factor_alt,
difftime, 34
                                                         (default_prior), 9
                                                get_default_prior_factor_null
exp-aft, 11
                                                         (default_prior), 9
exp_aft_density (exp-aft), 11
                                                get_default_prior_factor_null,
exp_aft_hazard (exp-aft), 11
                                                         (default_prior), 9
exp_aft_log_density (exp-aft), 11
                                                get_default_prior_intercept
exp_aft_log_hazard (exp-aft), 11
                                                         (default_prior), 9
exp_aft_log_survival (exp-aft), 11
                                                get_default_prior_intercept,
exp_aft_mean (exp-aft), 11
                                                         (default_prior), 9
exp_aft_p (exp-aft), 11
exp_aft_q (exp-aft), 11
                                                InvGamma, 26, 30
exp_aft_r (exp-aft), 11
                                                is.RoBSA, 14
exp_aft_sd (exp-aft), 11
                                                llogis-aft, 14
exp_aft_survival (exp-aft), 11
```

INDEX

llogis_aft_density (llogis-aft), 14	ROBSA.get_option(ROBSA_options), 35
llogis_aft_hazard(llogis-aft),14	RoBSA.options (RoBSA_options), 35
<pre>llogis_aft_log_density (llogis-aft), 14</pre>	RoBSA.package (RoBSA-package), 3
llogis_aft_log_hazard(llogis-aft), 14	RoBSA_control, 34
llogis_aft_log_survival (llogis-aft), 14	RoBSA_options, 35
llogis_aft_mean (llogis-aft), 14	RoBSA_package (RoBSA-package), 3
llogis_aft_p (llogis-aft), 14	ant sutofit control (DaDCA control) 24
llogis_aft_q(llogis-aft), 14	set_autofit_control (RoBSA_control), 34
llogis_aft_r (llogis-aft), 14	set_autofit_control(), 7, 32, 40
llogis_aft_sd(llogis-aft), 14	<pre>set_autofit_control, (RoBSA_control), 34</pre>
<pre>llogis_aft_survival(llogis-aft), 14</pre>	<pre>set_convergence_checks(RoBSA_control),</pre>
lnorm-aft, 15	34
<pre>lnorm_aft_density (lnorm-aft), 15</pre>	set_convergence_checks(), 7, 33, 40
lnorm_aft_hazard (lnorm-aft), 15	summary.RoBSA, 36
lnorm_aft_log_density (lnorm-aft), 15	summary.RoBSA(), <i>11</i> , <i>40</i>
	7 , , , ,
<pre>lnorm_aft_log_hazard (lnorm-aft), 15</pre>	update.RoBSA, <i>35</i> , 38
lnorm_aft_log_survival (lnorm-aft), 15	
<pre>lnorm_aft_mean(lnorm-aft), 15</pre>	weibull-aft,41
<pre>lnorm_aft_p (lnorm-aft), 15</pre>	weibull_aft_density(weibull-aft),41
<pre>lnorm_aft_q (lnorm-aft), 15</pre>	weibull_aft_hazard (weibull-aft), 41
<pre>lnorm_aft_r (lnorm-aft), 15</pre>	weibull_aft_log_density (weibull-aft),
<pre>lnorm_aft_sd (lnorm-aft), 15</pre>	41 werburi art,
<pre>lnorm_aft_survival (lnorm-aft), 15</pre>	
LocationScaleT, 26, 30	weibull_aft_log_hazard (weibull-aft), 41
Lognormal, 26, 30	<pre>weibull_aft_log_survival (weibull-aft),</pre>
2051101 11141, 20, 20	41
Normal, 26, 30	<pre>weibull_aft_mean (weibull-aft), 41</pre>
101 mai, 20, 30	<pre>weibull_aft_p (weibull-aft), 41</pre>
plot.prior(), 26, 30	<pre>weibull_aft_q (weibull-aft), 41</pre>
	<pre>weibull_aft_r (weibull-aft), 41</pre>
plot.RoBSA, 16	<pre>weibull_aft_sd (weibull-aft), 41</pre>
plot_density(plot_prediction), 20	weibull_aft_survival(weibull-aft), 41
plot_hazard (plot_prediction), 20	
plot_models, 18	
plot_prediction, 20	
plot_survival (plot_prediction), 20	
predict.RoBSA, 22	
print.RoBSA, 24	
print.summary.RoBSA, 24	
prior, 25	
prior(), 28, 29, 40	
prior_factor, 26	
prior_informed, 28	
·	
prior_informed(), 30	
prior_informed_medicine_names, 29, 30	
prior_none, 30	
RoBSA, 31, 35	
RoBSA(), 7, 11, 17, 24, 25, 37, 40	
RoBSA-package, 3	
NODON Package, o	