

CIENCIAS DE LA COMPUTACIÓN

MULTIPLICACIÓN DE MATRICES

ANALISIS Y DISEÑO DE ALGORITMOS

Villanueva Borda, Harold

Alejandro

5° SEMESTRE

2022

"Los alumnos declaran haber realizado el presente trabajo de acuerdo a las normas de la Universidad Católica San Pablo"

```
#include <iostream>
    return matrix;
    int product = 0;
                   product = (*(*(A + i) + k)) * (*(*(B + k) + j));
                    *(*(C + i) + j) += product;
         int **a12 = new int*[(N / 2)];
int **a21 = new int*[(N / 2)];
         int **a22 = new int*[(N / 2)];
         int **b12 = new int*[(N / 2)];
int **b21 = new int*[(N / 2)];
         int **b22 = new int*[(N / 2)];
         int **c21 = new int*[(N / 2)];
int **c22 = new int*[(N / 2)];
         int **temp1 = new int*[(N / 2)];
         int **temp2 = new int*[(N / 2)];
```

```
int **m2 = new int*[(N / 2)];
int **m3 = new int*[(N / 2)];
int **m4 = new int*[(N / 2)];
      c12[i] = new int[(N / 2)];
c21[i] = new int[(N / 2)];
      temp1[i] = new int[(N / 2)];
temp2[i] = new int[(N / 2)];
      m3[i] = new int[N / 2];
m4[i] = new int[N / 2];
      m5[i] = new int[N / 2];
m6[i] = new int[N / 2];
            a12[i][j] = A[i][j + (N / 2)];

a21[i][j] = A[i + (N / 2)][j];

a22[i][j] = A[i + (N / 2)][j + (N / 2)];
            b11[i][j] = *(*(B + i) + j);
            b12[i][j] = B[i][j + (N / 2)];

b21[i][j] = B[i + (N / 2)][j];

b22[i][j] = B[i + (N / 2)][j + (N / 2)];
adition(a11, a22, temp1, (N / 2)); adition(b11, b22, temp2, (N / 2)); strassen_algorithm(temp1, temp2, m1, (N / 2));
adition(a21, a22, temp1, (N / 2));
strassen algorithm(temp1, b11, m2, (N / 2));
substraction(b12, b22, temp1, (N / 2));
strassen_algorithm(all, temp1, m3, (N / 2));
substraction(b21, b11, temp1, (N / 2));
strassen algorithm(a22, temp1, m4, (N / 2));
adition(a11, a12, temp1, (N / 2));
strassen algorithm(temp1, b22, m5, (N / 2));
substraction(a21, a11, temp1, (N / 2));
```

```
adition(b11, b12, temp2, (N / 2));
strassen algorithm (temp1, temp2, m6, (N / 2));
substraction(a12, a22, temp1, (N / 2)); adition(b21, b22, temp2, (N / 2));
strassen algorithm(temp1, temp2, m7, (N / 2));
adition(m1, m4, temp1, N / 2);
adition(temp1, m7, temp2, N / 2); substraction(temp2, m5, c11, N / 2);
adition (m3, m5, c12, N / 2);
adition(m1, m3, temp1, N / 2);
adition(temp1, m6, temp2, N / 2);
substraction(temp2, m2, c22, N / 2);
for (int i = 0; i < N / 2; ++i)
  for (int j = 0; j < N / 2; ++j){
    *(*(C + i) + j) = c11[i][j];
    C[i][j + (N / 2)] = c12[i][j];</pre>
     delete[] a11[i];
delete[] a12[i];
delete[] a21[i];
     delete[] a22[i];
     delete[] c11[i];
delete[] c12[i];
delete[] c21[i];
     delete[] temp1[i];
     delete[] temp2[i];
cout << endl;
```

```
if(!matrixA.is_open() and !matrixB.is_open()){
    cout << "Error" << endl;
    return 1;
}

A = create_matrix(m, n);
B = create_matrix(n, o);
C = create_matrix(m, o);

for(int i = 0; i < m; ++i)
    for(int j = 0; j < n; ++j)
        matrixA >> *(*(A + i) + j);

for(int i = 0; i < n; ++i)
    for(int j = 0; j < o; ++j)
    matrixB >> *(*(B + i) + j);

standard_algorithm(A, B, C, m, n, o);
cout << endl;
strassen_algorithm(A, B, C, m);

print(A, m, n);
cout << endl;
print(B, n, o);
cout << endl;
print(C, m, o);

for (int i = 0; i < m; ++i)
    delete[] A[i];
    delete[] B[i];
    delete[] B[i];
    delete[] C[i];
    delete[] C[i];
    delete[] C[i];
    delete[] C[i];
    delete[] C[i];
    delete[] C[i];
</pre>
```

multipl	icacion	strassen:		
1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	
16	15	14	13	
12	11	10	9	
8	7	6	5	
4	3	2	1	
80	70	60	50	
240	214	188	162	
400	358	316	274	
560	502	444	386	

multipl	icacion	clasica:	
1	2	3	
4	5	6	
7	8	9	
10	11	12	
9	8	7	6
5	4	3	2
1	1	2	3
22	19	19	19
67	58	55	52
112	97	91	85
157	136	127	118

multipl	icacion	clasica:	
1	2	3	4
5	6	7	8
9	10	11	12
9	8	7	
6	5	4	
3	2	1	
1	2	3	
34	32	30	
110	100	90	
186	168	150	

multiplicacion strassen:							
1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
9	8	7	6	5	4	3	2
1	1	2	3	13	14	7	4
9	8	7	6	5	4	3	2
1	1	2	3	13	14	7	4
9	8	7	6	5	4	3	2
1	1	2	3	13	14	7	4
9	8	7	6	5	4	3	2
1	1	2	3	13	14	7	4

164	148	152	156	340	344	188	112
484	436	440	444	916	920	508	304
164	148	152	156	340	344	188	112
484	436	440	444	916	920	508	304
164	148	152	156	340	344	188	112
484	436	440	444	916	920	508	304
164	148	152	156	340	344	188	112
484	436	440	444	916	920	508	304