Learning with Expectational Shocks in the New Keynesian Model

James Murray
Department of Economics
University of Wisconsin - La Crosse

Friday, March 19, 2010

- How much of macroeconomic volatility in post-war U.S. is explained by...
 - traditional structural shocks (natural rate shock, cost shock, monetary policy shock),
 - and shocks to judgment (aka expectational shocks)?
- 4 How much of judgment is explained by...
 - actual events (i.e. current structural shocks),
 - and expectational shocks?

- Examine predictions using an estimated three equation New Keynesian model (Woodford [2003]).
- Replace rational expectations with least-squares learning.
- Actual expectations = Least-squares forecast + Judgment.

- Oraphanides and Williams (JEDC, 2005): Monetary authority was optimizing, but misinformed.
- Primiceri (QJE, 2006): Monetary authority misinformed, expectations improved with time.
- Milani (JME, 2007): Agents learn, little evidence of difference in policy parameters.
- Milani (2008): Time varying expectations explains time-varying volatility.
- Bullard and Singh (2007): bad luck + Bayesian learning.

- Svensson (2005), Reifschneider, Stockton, and Wilcox (1997): judgment essential for central banking policy.
- Bullard, Evans, Honkapohja (2008), (2010): exuberance equilibria.
- Missing: empirical evaluation.

New Keynesian Model

- Consumer behavior:
 - Choose consumption and labor to maximize utility.
 - Habit formation: utility on consumption depends on past consumption.
- Producer behavior:
 - Intermediate goods are produced with labor in monopolistically competitive markets.
 - Intermediate goods subject to Calvo (1983) price friction.
 - Price indexation: when not re-optimizing prices, price can adjust according to past inflation.
- Taylor (1993) type monetary policy:
 - Nominal interest rate responds to inflation, expected future output gap, and past interest rate.

Optimal Consumer Behavior

$$\tilde{\lambda}_t = E_t \tilde{\lambda}_{t+1} + \hat{r}_t - E_t \pi_{t+1} - r_t^n,$$

$$\tilde{\lambda}_t = \frac{1}{(1 - \beta \eta)(1 - \eta)} \left[\beta \eta E_t \tilde{y}_{t+1} - (1 + \beta \eta^2) \tilde{y}_t + \eta \tilde{y}_{t-1} \right]$$

Variables:

- $\tilde{\lambda}_t$: marginal utility of income.
- \tilde{y}_t : output gap.
- \hat{r}_t : nominal interest rate.
- π_t : inflation.
- r_tⁿ: "natural rate" shock, deviation of interest rate from flexible price outcome.

Parameters:

- $\eta \in [0,1)$: degree of habit formation.
- $\beta \in (0,1)$: discount rate.

• Phillips curve:

$$\pi_t = \frac{1}{1 + \beta \gamma} \left[\gamma \pi_{t-1} + \beta E_t \pi_{t+1} + \kappa (\tilde{y}_t - \mu \tilde{\lambda}_t) + u_t \right]$$

- Cost push shock: u_t.
- Parameters:
 - $\gamma \in [0,1)$: degree of price indexation.
 - $\kappa \in (0, \infty)$: reduced form parameter inversely related to degree of price flexibility.

 Nominal interest rate responds to expected output gap and inflation:

$$\hat{r}_t = \rho_r \hat{r}_{t-1} + (1 - \rho_r) (\psi_{\pi} E_t \pi_{t+1} + \psi_y E_t \tilde{y}_{t+1}) + \epsilon_{r,t}$$

- Monetary policy shock: $\epsilon_{r,t}$.
 - $\psi_{\pi} \in (0, \infty)$: feedback on inflation.
 - $\psi_{y} \in (0, \infty)$: feedback on output.
 - $\rho_r \in (0,1)$: smoothing parameter.

Natural interest rate shock:

$$r_t^n = \rho_n r_{t-1}^n + \epsilon_{n,t}$$

Cost push shock:

$$u_t = \rho_u u_{t-1} + \epsilon_{u,t}$$

• Monetary policy shock, $\epsilon_{r,t}$ is not autoregressive.

Log-linearized New Keynesian model has the structural form:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 x_{t+1}^e + \Omega_3 x_{t+2}^e + \Psi z_t$$

- All observable by the agents: $x_t = [\tilde{y}_t \ \pi_t \ \hat{r}_t]$
- Shocks not observable to agents that learn: $z_t = [r_t^n \ u_t \ \epsilon_{r,t}]'$
- Rational expectations solution:

$$E_t x_{t+1} = G x_t + H z_t$$

- Agents estimate G by constant gain least squares.
 - Regressors: constant, first lag of x_t .
 - Constant learning gain, g, measures degree to which expectations are adaptive.

Judgment, η_t , is possibly informed by current structural shocks, and subject to is own shock:

$$\eta_t = \phi_0 + \Phi z_t + \zeta_t,$$

$$\zeta_{y,t} = \rho_{\zeta,y} \zeta_{y,t-1} + \xi_{y,t},$$

$$\zeta_{\pi,t} = \rho_{\zeta,\pi} \zeta_{\pi,t-1} + \xi_{\pi,t},$$

Notation:

- η_t is 2x1 vector, includes judgment on \tilde{y}_{t+1}^e and π_{t+1}^e .
- ϕ_0 : degree/direction of a consistent bias in judgment.
- Φ: dependence of judgment on actual structural shocks.
- ζ_t : persistent expectational shocks.

• Expectations are the sum of least squares forecasts $(E_t^* x_{t+1})$ and judgment (η_t) .

$$x_{t+1}^e = E_t^* x_{t+1} + \eta_t$$

= $E_t^* x_{t+1} + \phi_0 + \Phi z_t + \zeta_t$

- Special cases:
 - Φ = H, structural shocks are perfectly observable, expectations rational.
 - \bullet $\Phi = 0$, structural shocks are completely unobservable.
 - $Var(\zeta) = 0$, there are no expectational shocks.
- Elements of ϕ , Φ , and $Var(\zeta)$ are estimated jointly with all other parameters.

- Bayesian Estimation Metropolis Hastings Simulation Procedure.
- Quarterly data from 1968:Q3 through 2007:Q1 on
 - Output gap: measured by Congressional Budget Office.
 - GDP deflator inflation rate.
 - Federal funds rate.
 - Survey of Professional Forecasters One-Quarter ahead forecast on real GDP.
 - Survey of Professional Forecasters One-Quarter ahead forecast on GDP deflator.
- Pre-sample (1954:Q3 1968:Q2) data on first three variables initialize VAR(1) learning forecasts.

Judgment Results

Posterior Distribution

Parameter	Median	5th Percentile	95th Percentile
$\rho_{\zeta,y}$	0.9430	0.8872	0.9871
$ ho_{\zeta,\pi}$	0.8922	0.7918	0.9639
$\phi_{y,0}$	-0.0333	-0.0606	-0.0020
$\phi_{\mathbf{y},\mathbf{n}}$	-0.0187	-0.0357	-0.0089
$\phi_{y,u}$	0.1377	-0.0965	0.3448
$\phi_{y,r}$	0.0715	0.0481	0.0938
$\phi_{\pi,0}$	-0.0024	-0.0037	-0.0005
$\phi_{\pi,n}$	0.0005	-0.0032	0.0052
$\phi_{\pi,u}$	-0.6204	-0.7316	-0.5201
$\phi_{\pi,r}$	-0.0064	-0.1257	0.1232

- Judgment is very persistent.
- Output and inflation is consistent underestimated.
- Elements of Φ indicate judgments are at least partially based on structural shocks.

Variance Decompositions

Stochastic Shock	Output Judg.	Inflation Judg.
Natural Rate Shock	14.93%	0.08%
Cost Shock	0.25%	38.34%
Monetary Policy Shock	0.00%	0.00%
Output Judgment Shock	84.82%	_
Inflation Judgment Shock	_	61.58%
Total	100.00%	100.00%

- Judgment strongly influenced by uninformed stochastic shocks.
- Natural rate shock only informs output judgment.
- Cost shock only informs inflation judgment.
- Monetary policy shocks do not influence judgment.

Expectational Shocks

- Negative shocks to output expectations precede each recession since 1970.
- Positive shocks to inflation expectations are associated with recessions in middle and late 1970s.

Structural Shocks

- Natural rate shock positive during most period.
- Fall in natural rate shock precedes the 2001 recession.
- Little change in volatility of shocks during "Great Moderation".

Findings:

- Judgment is primarily determined by expectational shocks.
- Preliminary evidence suggests expectational shocks can be causing recessions.
- Preliminary evidence suggests expectational shocks Changes in macroeconomic volatility.

• Next steps:

- Impulse response functions to expectational shocks.
- Decomposition of forecast errors.

