## 2 Involutes i Evolutes

**Exercici 2.1.** (La involuta<sup>1</sup> o evolvent.) Sigui  $\alpha: I \to \mathbb{R}^2$  una corba regular de curvatura mai nul·la. S'anomena *involuta* de  $\alpha$  a qualsevol corba  $\beta$  que talli ortogonalment a totes les rectes tangents de  $\alpha$ .

- a) Trobeu una parametrització de  $\beta$  en funció del paràmetre arc de  $\alpha$ .
- b) Trobeu una parametrització de  $\beta$  quan  $\alpha$  no està parametritzada per l'arc.
- c) Interpreteu geomètricament la parametrització obtinguda. (Indicació: podeu utilitzar un cordill.)
- d) Trobeu la involuta de la  $catenària y = \cosh x$ , que passa pel punt (0,1). Comproveu que es tracta de la tractriu.
- e) Trobeu parametritzacions de les involutes de la circumferència i de la cicloide.

Exercici 2.2. (L'evoluta.) Diem que una corba regular plana  $\beta$  és l'evoluta d'una altra corba regular plana  $\alpha$  si i només si  $\alpha$  és una involuta de  $\beta$ . Dit d'una altra manera,  $\beta$  és l'envolupant de la família de rectes normals de  $\alpha$ . Recordem que s'anomena envolupant d'una família de corbes a una corba que és tangent en cada punt a una de les corbes de la família.

- a) Trobeu una parametrització de  $\beta$  en funció del paràmetre arc de  $\alpha$ , suposant que la curvatura de  $\alpha$  no s'anul·la. (Solució:  $\beta(s) = \alpha(s) + \frac{1}{k(s)}\mathbf{n}(s)$ ).
  - Generalitzeu-la a qualsevol paràmetre de  $\alpha$ .
- b) Interpreteu geomètricament la parametrització obtinguda. (Indicació: Recordeu la definició de centre de curvatura.)
- c) Demostreu que la longitud de  $\beta$  entre  $\beta(s_0)$  i  $\beta(s_1)$  és igual a la diferència dels radis de curvatura de  $\alpha$  en els punts  $\alpha(s_0)$  i  $\alpha(s_1)$ .
- d) Demostreu que la tangent de  $\beta$  en un punt  $s \in I$  és la normal de  $\alpha$  en s.
- e) Considerem les normals a  $\alpha$  en dos punts propers  $s_1 \neq s_2$  i fem tendir  $s_1$  a  $s_2$ . Demostreu que la intersecció d'aquestes normals convergeix a un punt de l'evoluta.
- f) Trobeu l'evoluta de la cicloide.
- g) Comproveu que la curvatura de la catenària  $\alpha(t) = (t, \cosh t)$  és  $k(t) = 1/\cosh^2 t$ , i que la seva evoluta és  $\beta(t) = (t \sinh t \cosh t, 2 \cosh t)$ .

Exercici 2.3. (Relació entre la curvatura d'una corba i la curvatura de la seva evoluta.)

- a) Trobeu la curvatura de la catenària en paràmetre arc.
- b) Trobeu la curvatura de la tractriu en el paràmetre induït per la catenària.
- c) Deduïu una fórmula general per la curvatura d'una involuta de  $\alpha$  en el paràmetre induït per l'arc de  $\alpha$ .

Exercici 2.4. Comproveu geomètricament que l'evoluta de la tractriu és la catenària.

<sup>&</sup>lt;sup>1</sup>Per un índex de corbes vegeu: http://www-history.mcs.st-and.ac.uk/Curves/Curves.html



En negreta evolutes

En negreta involutes