Problem Set #5

OSM Lab, Jorge Barro John Wilson

Problem 7.1 Consider $x, y \in \text{conv}(S)$. Then for $x_i, y_i \in S$, $x = \lambda_1 x_1 + \dots + \lambda_k x_k$, $y = \gamma_1 y_1 + \dots + \gamma_m y_m$. Then we know that $z = \lambda x + (1 - \lambda)y = \lambda \lambda_1 x_1 + \dots + \lambda \lambda_k x_k + (1 - \lambda)\gamma_1 y_1 + \dots + (1 - \lambda)\gamma_m y_m$. Observe that the sum of these coefficients is $\lambda(\lambda_1 + \dots + \lambda_k) + (1 - \lambda)(\gamma_1 + \dots + \gamma_m) = \lambda + 1 - \lambda = 1$. Thus $z \in \text{conv}(S)$, and conv(S) is a convex set.

Problem 7.2

- i) Consider a hyperplane P. Let $x, t \in P$. Then we know that $\langle a, x \rangle = b = \langle a, y \rangle$ for some vector a and scalar b. Then $\langle a, \lambda x + (1 \lambda)y \rangle = \langle a, \lambda x \rangle + \langle a, (1 \lambda)y \rangle = \lambda \langle a, x \rangle + (1 \lambda)\langle a, y \rangle = b$. Thus P is convex.
- ii) Consider a half space H. We know that for some vector a and some scalar b, given $x, y \in H$, $\langle a, x \rangle \leq b$, $\langle a, y \rangle \leq b$. So by the logic in part (i), $\langle a, \lambda x + (1 \lambda)y \rangle = \langle a, \lambda x \rangle + \langle a, (1 \lambda)y \rangle = \lambda \langle a, x \rangle + (1 \lambda)\langle a, y \rangle \leq \lambda b + (1 \lambda)b = b$. Thus H is a convex set.

Problem 7.4 Let $p, y \in C$, where $C \subset \mathbb{R}^n$ is a non-empty, closed, and convex set.

- i) $||x = p||^2 + ||p y||^2 + 2\langle x p, p y \rangle = \langle x p, x p \rangle + \langle p y, p y \rangle + 2\langle x p, p y \rangle$. Expansion and simplification yields that $||x = p||^2 + ||p y||^2 + 2\langle x p, p y \rangle = \langle x y, x y \rangle = ||x y||^2$.
- ii) Assume (7.14) holds and $y \neq p$. Then by the positivity of norms, we have $||x-y||^2 \ge ||p-y||^2 + ||x-p||^2 \Rightarrow ||x-y||^2 > ||x-p||^2 \Rightarrow ||x-y|| > ||x-p||$.
- iii) Since $p,y\in C$, we know that $z=\lambda y+(1-\lambda)p\in C$ since C is a convex set. Then by the equality established in (i), we have $\|x-z\|^2=\|x-p\|^2+\|p-\lambda y-(1-\lambda)p\|^2+2\langle x-p,p-\lambda y-(1-\lambda)p\rangle=\|x-p\|^2+\langle p-\lambda y-p+\lambda p,p-\lambda y-p+\lambda p\rangle+2\langle x-p,p-\lambda y-p+\lambda p\rangle=\|x-p\|^2+\langle \lambda (p-y),\lambda (p-y)\rangle+2\langle x-p,\lambda (p-y)\rangle=\|x-p\|^2+\lambda^2\langle p-y,p-y\rangle+2\lambda\langle x-p,p-y\rangle=\|x-p\|^2+2\lambda\langle x-p,p-y\rangle+\lambda^2\|y-p\|^2$ iv) Suppose p is the projection of x into C. Then by definition of projection, for $z\in C,\ z\neq p,\ \|x-z\|>\|x-p\|$. First use the definition of z in the formulation of part (iii), and suppose $\lambda=0$, so y=p. Using the equality established in (i), we immediately have that $0=2\langle x-p,0\rangle$. Now suppose that $\lambda\neq 0$, so $z\neq p$. Then we know that $\|x-z\|>\|x-p\|$, so $\|x-z\|^2>\|x-p\|^2$ and $0<\|x-z\|-\|x-p\|=2\lambda\langle x-p,p-y\rangle+\lambda^2\|y-p\|^2$, so $0<2\langle x-p,p-y\rangle+\lambda\|y-p\|^2$. Letting $\lambda=0$ yields the desired inequality. Parts ii and iv are the required arguments to prove the desired statement.

Problem 7.6 Let f be a convex function, and pick \mathbf{x}, \mathbf{y} such that $f(\mathbf{x}), f(\mathbf{y}) \leq c$. Then for $\lambda \in [0, 1], \ f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \leq (\lambda + 1 - \lambda)c = c$. Thus the set is convex.

Problem 7.7 Suppose $\{f_i\}_{i=1}^k$ is a set of convex functions. Then $f(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) =$

$$\sum_{i=1}^{k} \lambda_i f_i(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \leq \sum_{i=1}^{k} (\lambda \lambda_i f_i(\mathbf{x}) + (1-\lambda)\lambda_i f_i(\mathbf{y})) = \lambda \sum_{i=1}^{k} \lambda_i f_i(\mathbf{x}) + (1-\lambda)f(\mathbf{y}).$$
 Thus f is a convex function.

Problem 7.13 Let f be convex and bounded above, and suppose by contradiction that f is not constant. Then some element of the derivative of f at some x_0 is nonzero. Suppose without loss of generality that it is the i^{th} element of $Df(x_0)$ that does not equal zero. Let $x = \lim_{c \to \infty} c\mathbf{e}_i$. Then by Theorem 7.2.9, f(x) approaches infinity. Thus f is not bounded above. So it must be constant.

Problem 7.20 Let f and -f be convex. Then $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$ and $-f(\lambda x + (1-\lambda)y) \leq -\lambda f(x) - (1-\lambda)f(y)$, and be necessity, $f(\lambda x + (1-\lambda)y) = \lambda f(x) + (1-\lambda)f(y)$. Then f is a linear function, and by 7.4.2, it must be affine.

Problem 7.21 Suppose ϕ is increasing. Then $x > y \Leftrightarrow \phi(x) > \phi(y)$. Suppose \mathbf{x}^* is a local minimizer for the problem of minimizing $\phi(f(\mathbf{x}))$ subject to the constraints. Then $\phi(f(\mathbf{x}^*)) < \phi(f(\mathbf{x}))$ for all feasible x not equal to x^* . Because ϕ is increasing, we know that $f(\mathbf{x}^*) < f(\mathbf{x})$ for all feasible x, and thus \mathbf{x}^* is a local minimizer for the problem of minimizing f(x) subject to given constraints. Similarly, suppose \mathbf{x}^* is a local minimizer for the problem of minimizing $f(\mathbf{x})$ subject to the constraints. Then $f(\mathbf{x}^*) < f(\mathbf{x})$ for all feasible x not equal to x^* , and since ϕ is increasing, $\phi(f(\mathbf{x}^*)) < \phi(f(\mathbf{x}))$ for all feasible x not equal to x^* . Thus the two problems are equivalent.