

Prova escrita especialmente adequada destinada a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

# AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA QUÍMICA E BIOLÓGICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

#### **PROVA 2019**

Duração da prova: 120 minutos

| Candidatura n.º              |              |             |
|------------------------------|--------------|-------------|
| Nome:                        |              |             |
| C.C. / B.I. / Passaporte N.º | Emitido por: | Validade:// |

#### INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das notas aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnico científico.
- Indique em todas as folhas o número de candidatura e o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

#### ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- Grupo 2 Um problema de matemática.
- **Grupo 3 -** Três questões de resposta múltipla de física.
- Grupo 4 Um problema de física.
- **Grupo 5** Cinco questões de resposta múltipla enquadradas nos conteúdos do curso.
- Grupo 6 Um problema no âmbito do curso.
- Grupo 7 Questão para desenvolvimento de assunto de cultura científica na área do curso.



C.C. / B.I. / Passaporte N.º

## Grupo 1

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -0,2 valores)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

| 1. | Considere as fund           | ções $f(x)$ | $=e^x,g$ | (x) =  x | e h(x) | $=\sqrt[3]{x}$ . | Quais | destas | funções | são |
|----|-----------------------------|-------------|----------|----------|--------|------------------|-------|--------|---------|-----|
|    | contínuas em $\mathbb{R}$ ? | •           |          |          |        |                  |       |        |         |     |

- $\square$  (A) f
- $\square$  (B)  $f \in g$
- $\square$  (C) f e h
- $\square$  (D) g e h
- $\square$  (E) todas
- **2.** Uma capicua é um número que se lê da mesma forma da direita para a esquerda e da esquerda para a direita, por exemplo 12321. Quantos números com 5 algarismos são capicuas?
  - ☐ (A) 1000
  - □ (B) 900
  - □ (C) 9000
  - □ (D) 10000
  - □ (E) 5000
- **3.** Em  $\mathbb{R}^3$ , considere o plano  $\pi$ , de equação 2x+y-z=-3. Uma equação da reta r, que passa no ponto A(1,2,3) e é perpendicular a  $\pi$  é:
  - $\Box (A) x 1 = 2 y = z 3$
  - $\square$  (B)  $x + 1 = \frac{y+2}{2} = \frac{z+3}{3}$
  - $\square$  (C)  $(x, y, z) = (2,1,-1) + k(1,2,3), k \in \mathbb{R}$

  - $\square$  (E)  $(x, y, z) = (1,2,3) + k(1,0,2), k \in \mathbb{R}$



Candidatura n.º

C.C. / B.I. / Passaporte N.º

## Grupo 2

(Cotação total: 2,0 valores; cotação parcial: 1,0 valor por alínea.)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo.

Recorra somente a métodos analíticos e não utilize a calculadora.

Considere a função definida por  $f(x) = \frac{\ln(1-2x)}{x+1}$  (**In** designa o logaritmo natural, de base *e*).

*Usando métodos exclusivamente analíticos, sem recorrer à calculadora*, responda às questões que se seguem:

- a) Determine o domínio de f.
- b) Determine a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa 0.



Tel. (+351) 21 831 70 00 Fax. (+351) 21 831 70 01



| :an |  |  |  |  |
|-----|--|--|--|--|
|     |  |  |  |  |

C.C. / B.I. / Passaporte N.º ..



C.C. / B.I. / Passaporte N.º

## Grupo 3

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: - 0,2 valores)

Indique <u>as respostas corretas</u> do seguinte modo ⊠.

**1.** O gráfico velocidade-tempo seguinte mostra como varia o valor da velocidade de um comboio, ao longo do tempo, num percurso retilíneo.



Diga qual das afirmações é verdadeira:

- ☐ (A) O comboio parte do repouso.
- ☐ (B) O comboio nunca inverte o sentido do movimento.
- $\square$  (C) O comboio fica parado no intervalo [2,4] s.
- □ (D) O movimento nunca é acelerado.
- ☐ (E) Inicialmente o comboio move-se no sentido negativo.



C.C. / B.I. / Passaporte N.º

**2.** Duas cargas elétricas pontuais e, ambas positivas, são colocadas e fixas a uma certa distância, como se mostra na figura.



Sabendo que  $q_1 > q_2$ , e que C é o ponto médio entre as duas cargas, em que posição pode ser colocada uma terceira carga negativa, de modo que esta carga fique imóvel:

- $\square$  (A) no ponto A;
- $\square$  (B) no ponto B;
- $\square$  (C) no ponto C;
- $\square$  (D) no ponto D;
- $\square$  (E) no ponto E.

3. Um recipiente contém 0,5 litros de água a uma temperatura Ti = 25 °C (massa volúmica  $\rho = 1 \text{ kg/l}$ ). Sabe-se que a capacidade térmica mássica da água essa temperatura é 4186 J/(kg.K). Se fornecermos 10465 J de calor a essa quantidade de água, qual será a temperatura final  $T_F$  obtida?

- $\square$  (A)  $T_F = 35^{\circ} C$
- $\Box$  (B) T<sub>F</sub> = 30° C
- $\Box$  (C) T<sub>F</sub> = 32,5° C
- $\Box$  (D) T<sub>F</sub> = 25° C
- $\Box$  (E) T<sub>F</sub> = 22,5° C



C.C. / B.I. / Passaporte N.º

## Grupo 4

(Cotação: 2,0 valores, cotação parcial: 0,5 valores por alínea)

Um bloco de gelo com a massa m = 1,5 kg está a uma temperatura de  $-15^{\circ}$  C à pressão atmosférica. Sabe-se que o calor específico do gelo é 2090 J. kg<sup>-1</sup>.  $^{\circ}$ C<sup>-1</sup>. Determine:

- a) A temperatura final do bloco se lhe for fornecida uma quantidade de calor de 20 kJ.
- b) A quantidade de calor necessária para o bloco atingir a temperatura de 0 °C.
- c) A quantidade de calor libertada pelo bloco se, da situação inicial (T = -15 °C) ele passar a ter uma temperatura de -25 °C.
- d) Que acontece ao bloco de gelo se se fornecer uma quantidade de calor superior à pretendida na alínea b).



Tel. (+351) 21 831 70 00 Fax. (+351) 21 831 70 01



| ٦_ | nd | ملم | <br> | - | 0 |
|----|----|-----|------|---|---|
|    |    |     |      |   |   |

C.C. / B.I. / Passaporte N.º ..



## Grupo 5

(Cotação total: 3 valores; cotação parcial: 0,6 valores por questão; por cada resposta errada: - 0,12 valores)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

1. Considere a reação de síntese do amoníaco representada pela seguinte equação química

 $N_2\left(g\right) + 3H_2\left(g\right) \rightarrow 2NH_3\left(g\right)$  e indique qual das seguintes afirmações está correta:

- $\square$  (A) A formação de NH<sub>3</sub> é o dobro do consumo de H<sub>2</sub>;
- $\square$  (B) O consumo de H<sub>2</sub> é o triplo da formação de N<sub>2</sub>;
- ☐ (C) O consumo de N<sub>2</sub> é metade da formação de NH<sub>3</sub>;
- $\square$  (D) O consumo de H<sub>2</sub> é igual ao consumo de N<sub>2</sub>;
- ☐ (E) A reação é heterogénea.
- **2.** A figura A representa:
  - $\square$  (A) um aldeído.
  - □ (B) uma amina.
  - □ (C) um ácido carboxílico.
  - □ (D) um álcool.
  - $\square$  (E) uma cetona.

H----C-----OH

Figura A

- **3.** Uma solução aquosa de cloreto de sódio com o volume de 50 mL contém 3 g deste sal. Das seguintes afirmações escolha a alternativa correta.
  - ☐ (A) A concentração de cloreto de sódio na solução é 0,1 mol/L.
  - □ (B) A concentração de ião cloreto na solução é 0,2 mol/L
  - ☐ (C) A percentagem (peso/volume) de cloreto de sódio na solução é 3%.
  - □ (D) A concentração de cloreto de sódio na solução é 60 mg/mL.
  - ☐ (E) A concentração, em mol/L, do ião sódio na solução é metade da concentração, em mol/L, de ião cloreto.

Dados: M(Na)=23 g/mol; M(Cl)=35.5 g/mol



| _    |      |      |    |   | - |
|------|------|------|----|---|---|
| ີ:an | -1:- | -1-  |    |   | n |
|      | ПI   | иати | шы | n | • |

C.C. / B.I. / Passaporte N.º ......

| 4. A decar    | 4. A decantação líquido-líquido é um processo de separação entre líquidos imiscíveis que se baseia      |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| na diferen    | ça de:                                                                                                  |  |  |  |  |  |
|               |                                                                                                         |  |  |  |  |  |
| $\square$ (A) | reatividades.                                                                                           |  |  |  |  |  |
| □ (B)         | solubilidades.                                                                                          |  |  |  |  |  |
| □ (C)         | densidades.                                                                                             |  |  |  |  |  |
| □ (D)         | tamanhos de partículas.                                                                                 |  |  |  |  |  |
| □ (E)         | pontos de fusão.                                                                                        |  |  |  |  |  |
| 5. O ácido    | clorídrico (HCl) é um ácido forte, porque:                                                              |  |  |  |  |  |
|               |                                                                                                         |  |  |  |  |  |
| $\square$ (A) | se dissocia completamente em H <sup>+</sup> (aq) e Cl <sup>-</sup> (aq) quando se dissolve em água.     |  |  |  |  |  |
| □ (B)         | não pode ser neutralizado por uma base fraca.                                                           |  |  |  |  |  |
| □ (C)         | (C) as suas soluções aquosas contêm iguais concentrações de H <sup>+</sup> (aq) e OH <sup>-</sup> (aq). |  |  |  |  |  |
| □ (D)         | não se dissocia quase nada quando dissolvido em água.                                                   |  |  |  |  |  |
| □ (E)         | as suas soluções apresentam um valor de pH superior a 7.                                                |  |  |  |  |  |
|               |                                                                                                         |  |  |  |  |  |



Candidatura n.º

C.C. / B.I. / Passaporte N.º

# Grupo 6

(Cotação: 3 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo.

Considere a reação do óxido de sódio com a água para formar hidróxido de sódio conforme a equação:

$$Na_2O(s) + H_2O(l) \rightarrow NaOH(aq)$$

- a) Acerte a equação que representa a reação.
- b) Indique os valores dos coeficientes estequiométricos da reação.
- c) Considerando que a reação é completa e partindo de 10 g de óxido de sódio e 5 g de água:
  - c1) indique, justificando, qual dos reagentes se encontra em excesso na reação;
  - c2) determine a massa de hidróxido de sódio que se obtém na reação.

Dados: M(Na)=23 g/mol; M(O)=16 g/mol M(H)=1g/mol

Tel. (+351) 21 831 70 00 Fax. (+351) 21 831 70 01



| <b>^</b> |   | <br>4 |    | 0  |  |
|----------|---|-------|----|----|--|
| Car      | M | 111   | ra | nυ |  |
|          |   |       |    |    |  |

C.C. / B.I. / Passaporte N.º



C.C. / B.I. / Passaporte N.º

# Grupo 7

(Cotação: 4 valores)

A indústria, particularmente a indústria química e biológica, lida diariamente com novos desafios do ponto de vista económico. Novos materiais, novas técnicas ou novos equipamentos potenciam a geração de riqueza, sem descuidar as preocupações ambientais. Apresente a sua perspetiva sobre o papel do Engenheiro Químico e Biológico na criação de riqueza e no desenvolvimento do país.

| Escrev | Escreva entre 10 a 15 linhas. |  |  |  |  |  |
|--------|-------------------------------|--|--|--|--|--|
| _      |                               |  |  |  |  |  |
|        |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
| -      |                               |  |  |  |  |  |
|        |                               |  |  |  |  |  |