Lecture 12: Convergence

What we need to do

Convergence in probability

Definition: A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0$$

We write $X_n \stackrel{p}{\longrightarrow} X$.

Example: (Weak law of large numbers)

WLLN

Theorem: Let X_1, X_2, \ldots be iid random variables with

$$\mathbb{E}[X_i] = \mu \text{ and } Var(X_i) = \sigma^2 < \infty.$$
 Then

$$\overline{X_n} \stackrel{p}{\Rightarrow} \mu$$

Working with your neighbor, apply Chebyshev's inequality to prove the WLLN.

Another example

Let $U \sim Uniform(0,1)$, and let $X_n = \sqrt{n} \ \mathbb{I}\{U \leq 1/n\}$. Show that $X_n \stackrel{p}{\to} 0$.

Almost sure convergence

Definition: A sequence of random variables X_1, X_2, \ldots converges almost surely to a random variable X if, for every $\varepsilon > 0$,

$$P(\lim_{n\to\infty} |X_n - X| < \varepsilon) = 1$$

We write $X_n \stackrel{a.s.}{\longrightarrow} X$.

Example: (Strong law of large numbers)

Convergence in distribution

Definition: A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{\to} X$.

Example: (Central limit theorem)

Another example

Let $X \sim N(0, 1)$, and let $X_n = -X$ for n = 1, 2, 3, ...

Show that $X_n \stackrel{d}{\to} X$, but X_n does *not* converge to X in probability.

Relationships between types of convergence