Problem Statement

A person's creditworthiness is often associated (conversely) with the likelihood they may default on loans. Here, we ask you to look at data on loan applicants and build a model to predict whether or not an application can be deemed creditworthy.

We're giving you anonymised data about 1000 loan applications, along with a certain set of attributes about the applicant itself, and whether they were considered high risk. We want you to work your magic † and predict whether or not a future loan application is a high credit risk given this data.

Do note that it is worse to predict an applicant as a low credit risk when they are actually a high risk (cost=4 below), than it is to predict an applicant to be a high credit risk when they aren't (cost=1 below).

		Prediction	
		0	1
Actual	0	0	1
	1	4	0

This table contains a possible cost matrix where rows represent the actual classification and the columns the predicted classification with classes: 0 = Low credit risk, 1 = High Credit risk

What we will be looking for:

- EDA (exploratory data analysis), any data preprocessing you performed on the data, and feature engineering to create a dataset for modelling. We want to see how your feature engineering evolves from your EDA!
- 2. Using your EDA, try and answer these questions (and use the write-up to explain how you arrived at the answers):
 - a. Would a person with critical credit history be more creditworthy?
 - b. Are young people more creditworthy?
 - c. Would a person with more credit accounts be more creditworthy?
- 3. Choose an evaluation metric you will use to compare & evaluate model performance on a hold-out test set.
- 4. Train model(s) to predict the creditworthiness of a customer. Describe your strategy when choosing the model(s) you train and provide an explanation for why you feel a subsequent model would improve upon a prior one (and your insights when it does/doesn't).

5. Compare the model(s) performance with the evaluation metric(s) and choose a final model you feel is most optimal along with your reasoning.

Optional, but good to have:

- A non-ML predictor that you can use as a baseline to compare your models' performance.
- Some degree of model optimisation/fine-tuning. (As much as you're able to!)
- Modular, functional/object-oriented code is always appreciated!
- Using your real-world knowledge, tell us which other data features might have helped.

Expected Submission

We're flexible in terms of how you'd like to present your output though do remember to <u>share your code/scripts</u> (even simple scripts used to explore the data) and <u>a brief write up about your solution</u> (can even be a Jupyter - or any other - notebook). We would appreciate a README file with an overview of the files included.

Do use a standard archival format (.zip, .tar, .tar.gz, etc) vs proprietary archival formats please.

Code

- Please submit all the code/scripts/notebooks you've written, even if it is just a simple script to explore the data. You can even do it as an Jupyter (or any other) notebook.
- Please do not include any pyc files, ipynb checkpoints, or other libraries/output generated by the interpreter/ from the build process.

Write-up

This gives us a sense of your approach and thinking. Here are some ideas on what to include:

- A description of your approach to the solution.
- Your model evaluation metric and why you chose it.
- Relevant details on your model(s), along with the evaluation metric value for each on a held-out test set, and reason for choosing the final model.
- Any visualizations you may have created (along with corresponding observations).
- Any interesting insights that you may have found in the data.
- Any other information that you feel is relevant.
- Your write up should be preferably in pdf, odf, markdown or html.

Dataset Description

The dataset has two files:

- 1. 'applicant.csv': This file contains personal data about the (primary) applicant
 - Unique ID: `applicant_id` (string)
 - Other fields:
 - i. Primary_applicant_age_in_years (numeric)
 - ii. Gender (string)
 - iii. Marital_status (string)
 - iv. Number_of_dependents (numeric)
 - v. Housing (string)
 - vi. Years at current residence (numeric)
 - vii. Employment_status (string)
 - viii. Has_been_employed_for_at_least (string)
 - ix. Has_been_employed_for_at_most (string)
 - x. Telephone (string)
 - xi. Foreign_worker (numeric)
 - xii. Savings_account_balance (string)
 - xiii. Balance_in_existing_bank_account_(lower_limit_of_bucket) (string)
 - xiv. Balance_in_existing_bank_account_(upper_limit_of_bucket) (string)
- 2. `loan.csv`: This file contains data more specific to the loan application
 - Unique ID: `loan application id` (string)
 - Target: `high risk application` (numeric)
 - o Other fields:
 - i. applicant_id (string)
 - ii. Months loan taken for (numeric)
 - iii. Purpose (string)
 - iv. Principal_loan_amount (numeric)
 - v. EMI_rate_in_percentage_of_disposable_income (numeric)
 - vi. Property (string)
 - vii. Has_coapplicant (numeric)
 - viii. Has_guarantor (numeric)
 - ix. Other EMI plans (string)
 - x. Number_of_existing_loans_at_this_bank (numeric)
 - xi. Loan_history (string)