Anharmonic Oscillations

14 September 2023 09:56

ANHARMONIC OSCILLATION (P.M. Morse)

Selection Rule $\Delta V = \pm 1, \pm 2, \pm 3$

P.E. = Deg [1- exp(a(neg-9))]²

potential energy

- Jundamental absorption: V=0 -> V=1
- 3 First Overtone: V=0 -> V=2
- 1 decord Overfore: V=0 -> V=3

SCHRODINGER'S EQUATION (ANHARMONIC)

Ev = (V+1/2) ve - (V+1/2) ve xe cm-1

anhomonicit

constant

oscillation

graphency

ZERO POINT ENERGY

$$\mathcal{E}_{V} = \frac{1}{2} \overline{V}_{e} \left[1 - \frac{1}{2} \cdot \chi_{e} \right]$$

FUNDAMENTAL ABSORPTION (V= 0 -> V= 1)

$$\Delta E = \left(V + \frac{1}{2}\right) \bar{v}_{e} - \left(V + \frac{1}{2}\right)^{2} \bar{v}_{e} \cdot x_{e} - \left[\left(V + \frac{1}{2}\right) \bar{v}_{e} - \left(V + \frac{1}{2}\right)^{2} \bar{v}_{e} \cdot x_{e}\right]$$

$$\Delta E = (V + \frac{1}{2}) \bar{v}_{e} - (V + \frac{1}{2})^{2} \bar{v}_{e} \cdot x_{e} - [(V + \frac{1}{2}) \bar{v}_{e} - (V + \frac{1}{2}) \bar{v}_{e} \cdot x_{e}]$$

$$= V \bar{v}_{e} + \frac{1}{2} \bar{v}_{e} - [V^{2} + \frac{1}{4} + V] \bar{v}_{e} \cdot x_{e} - [\frac{1}{2} \bar{v}_{e} (1 - \frac{1}{2} x_{e})]$$

$$\Delta E = \bar{v}_{e} [1 - 2x_{e}] cm^{-1}$$

$$\Delta E = 2\bar{v}_{e} \left[1 - 3x_{e} \right] cm^{-1}$$

HOT BAND (V=1 -> Y=2)

ANHARMONIC OSCILLATIONS: A SUMMARY

Jundamental Absorption	V=0 -> V=1	E1-E0	$\Delta E = \overline{V}_e \left[1 - 2x_e \right] \text{ cm}^{-1}$
Jisrat Oventone	V=0 → V=2	£2-E0	ΔE = 2 ve [1-3 xe] cm-1
Second Overtone	V=0 → V=3	E3-E0	ΔE = 3 ve [1-4 xe] cm-1
Hot Band	V=1 -> V=2 (high temp)	E2-E,	$\Delta E = \bar{V}_{e} \left[1 - 4x_{e} \right] cm^{3}$
Zero Point Energy	V= O		$\Delta E = \frac{1}{2} \bar{v}_e \left[1 - \frac{1}{2} x_e \right] cm^{-1}$

LKG PROBLEMS

(1) Calculate E in emil, Jundamental Absorption, First Overtone, Second Overtone, Hot Band, Zero Point Energy; Ve = 2134 cmil and re = 0.017

Boly. Fundamental

Second DE= 3v. [1-4n. 7 Zero Point

AF= 1 ve [1-1 xe] cm

Ash: Jundamental

$$\Delta E = 2\bar{v}_e \left[1 - 3\bar{a}_e \right]$$

= 4050.332 cm²

2)
$$\bar{y} = 12.604 \text{ cm}^{-1}$$
 $\bar{I} = \mu \eta$.

 $\bar{I} = \frac{h}{8\pi^{2} Bc}$
 $\mu = 1.613 \times 10^{-23} \text{ kg}$
 $12.604 = \underline{h}$ (J)(J

$$12.604 = h (J)(J+1)$$

$$I = h$$

$$8\pi^{2}Ic (2.604)(J)(J+1)$$

$$\Delta F = \frac{1}{2} \sqrt{e} \left[1 - \frac{1}{2} x_e \right] cm^2$$
= 1057.9305 cm⁷