

INF211

LABORATORY LEAFLET

FOR STUDENTS

LABORATORY-1 Strings, Iterations and Branching

Tasks	Explanations
1-a	Summation
1-b	Slicing
2-a	String operations
2-b	Factorial operation
3-a	Divisibility
3-b	Divisibility
4	Loops and Branching

Task 1-a: Sum up all the digits on your id number and print the result.

inputs: N/A outputs: integer $my_{id} = "1234"$ >>> 10 Task 1-b: Ask two numbers from the user to define indexes, then find the substring of your

my_name variable taking these two index values as beginning and end. Print this substring.

- Both of these numbers should be taken as modulo of the length of your name.
- Order of the numbers does not matter, slice it using minimum maximum.
- Both indexes are inclusive.
- inputs: input1, input2 $\in \mathbb{Z}$.
- output: string

my_name = "Tarkan" >>> Enter first number: 2 Enter second number: 5 Rkan

Task 2-a: Ask for a string from the user, then count the number of vowels in the input and print the result.

- If the input does not have any vowels, print 0.
- vowels ∈ { 'a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'}
- inputs: input = $\{x: printable characters except whitespaces and len(x) \in$
- [1, 100]}. (This includes letters in English, numbers and punctuation characters.)
- outputs: integer

	input:	inf211
1		
>>> Enter 3	input:	F!ucvh1!UjK\;'an!+!@#

Task 2-b: Ask for a number from the user, then calculate and print the factorial of that number.

- Do NOT use any libraries or predefined functions
- inputs: input = $\{x: x \in \mathbb{N} \text{ and } x \leq 30\}$
- outputs: integer

>>>			
Enter input:	4		
24			

• inputs: input $\in \mathbb{N}$

Task 3-a: Ask for a number from the user. If that number is divisible to both 3 and 7 print True, else print False.

	outputs: boolean
>>>	
Ente:	a number: 12
False	
>>>	
Ente:	a number: 21
True	
	-b: Ask for a number from the user, then find if that number is a prime number. If the er is a prime number, print True, else print False. (You can check reference [1] for this)
•	inputs: input = $\{x: x \in \mathbb{N} \text{ and } x > 1\}$
•	inputs: input = $\{x: x \in \mathbb{N} \text{ and } x > 1\}$ outputs: boolean
• >>>	
• >>>	outputs: boolean a number: 12
• >>> Ente	outputs: boolean a number: 12
• >>> Ente False >>>	outputs: boolean a number: 12
• >>> Ente False >>>	outputs: boolean a number: 12
• Ente. False >>> Ente.	outputs: boolean a number: 12
• Ente. False >>> Ente.	outputs: boolean a number: 12

Task 4: Find the square root of a given number using Heron's method (Babylonian method) that we discussed in the first lecture. (You are advised to see reference [2])

- Do NOT use any libraries or predefined functions (i.e. sqrt)
- Choose an appropriate iteration number.
- Choose an appropriate starting guess. (i.e 1)
- inputs: input = $\{x: x \in R \text{ and } 1e9 \ge x \ge 0.0\}$
- outputs: float

>>>
Enter a number: 16
4.0
>>>
Enter a number: 12
3.4641016151377544

[1] https://en.wikipedia.org/wiki/Prime_number

[2]https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method