

MACHINE-LEARNING (3) CHAINE DE TRAITEMENTS

Vincent Guigue vincent.guigue@agroparistech.fr

Introduction

Chaine de traitements

- Intégration des connaissances expert/métier
 - Construction de caractéristiques
 - Sélection de caractéristiques
 - Choix des métriques
- Stabilisation numérique
 - Normalisation

Intégration de nos outils dans scikit-learn

Objectifs

- Comprendre les principaux leviers de performances en machine learning (encore!)
- Savoir les mettre en œuvre [dans scikit-learn]

VALEURS MANQUANTES

Caractéristiques

Comment gérer les valeurs manquantes (continues)?

	mpg	cylinders	displacement	horsepower	weight	acceleration
30	28.0	4	140.0	90	2264	15.5
31	25.0	4	113.0	95	2228	14.0
32	25.0	4	98.0		2046	19.0
33	19.0		232.0	100	2634	13.0
34	16.0	6	225.0	105	3439	15.5
35	17.0		250.0	100	3329	15.5
36	19.0	6	250.0	88	3302	15.5
37	18.0		232.0	100	3288	15.5
38	14.0	8	350.0	165	4209	12.0
39	14.0	8	400.0	175	4464	11.5
40	14.0	8	351.0	153	4154	13.5

Souvent localiser sur une (ou quelques) colonne(s)

- EM : estimation des données manquantes
- Estimer les données simplement (interpolation)
- Suppression des lignes affectées
- Affectation d'une valeur arbitraire
 - Moyenne / Médiane
 - Plus proche voisin

Comment gérer les valeurs manquantes (Discrètes)?

- Valeur la plus fréquente
- Echantillonnage (multinomial)
- Plus proche voisin (sur les autres caractérstiques)
- Construire un prédicteur

FEATURE ENGINEERING

Variables discrètes

■ Cas binaire / Cas n-aire

- Option intéressante : grouper les catégories peu fréquentes OneHotEncoder(min_frequency=6, sparse=False)
- Pour aller plus loin
 - ECoC
 - Embedding

Variables discrètes

■ Cas binaire / Cas n-aire

Color		Red	Yellow	Green
Red				
Red		1	0	0
Yellow		1	0	0
Green		0	1	0
Yellow		0	0	1
	1			

- Option intéressante : grouper les catégories peu fréquentes OneHotEncoder(min_frequency=6, sparse=False)
- Pour aller plus loin
 - ECoC
 - Embedding

Introduction Missing Caractéristiques 0 • 0 0 0 0 Normalisation Conclusion

Ouverture vers le deep learning

C'est quoi le **deep learning**?

réponse assez ouverte...

- Apprendre des représentations (et des distances) entre éléments discrets
 - e.g. Distance sémantique et/ou grammaticale entre les mots
 - Distance entre les profils utilisateurs dans les systèmes de recommandation
 - Distance entre des graphes / des noeuds d'un graphe
- Apprendre des représentations d'objets complexes
 - e.g. en vision, projeter les données dans un espace de faible dimension sémantique
- Des architectures génératives
 - GPT, Dall-e, ...
 - Transférables d'une application à l'autre
- Architectures complexes : différents objectifs/modalités de données
 - Modélisation directe des contraintes métiers

Introduction Missing Caractéristiques O • O O O Normalisation Conclusion

Ouverture vers le deep learning

C'est quoi le deep learning?

réponse assez ouverte...

- Apprendre des représentations (et des distances) entre éléments discrets
 - e.g. Distance sémantique et/ou grammaticale entre les mots
 - Distance entre les profils utilisateurs dans les systèmes de recommandation
 - Distance entre des graphes / des noeuds d'un graphe
- Apprendre des représentations d'objets complexes
 - e.g. en vision, projeter les données dans un espace de faible dimension sémantique
- Des architectures génératives
 - GPT, Dall-e, ...
 - Transférables d'une application à l'autre
- Architectures complexes : différents objectifs/modalités de données
 - Modélisation directe des contraintes métiers
- ⇒ Apprendre la meilleure représentation Conférence deep-learning : ICLR (Int. Conf. on Representation Learning)

Simplification des données

■ Binarisation

e.g. pixel dans une image usps

■ Discrétisation (quantiles ou linéaires)

Simplification des données

■ Binarisation

e.g. pixel dans une image usps

■ Discrétisation (quantiles ou linéaires)

■ e.g. CV (auto-mpg)

Transformations arbitraires / métiers

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
	18.0	8	307.0	130	3504	12.0	70		chevrolet chevelle malibu
	15.0		350.0	165	3693	11.5	70		buick skylark 320
	18.0	8	318.0	150	3436	11.0	70		plymouth satellite
	16.0		304.0	150	3433	12.0	70		amc rebel sst
	17.0	8	302.0	140	3449	10.5	70		ford torino
	15.0		429.0	198	4341	10.0	70		ford galaxie 500
6	14.0	8	454.0	220	4354	9.0	70		chevrolet impala
	14.0		440.0	215	4312	8.5	70		plymouth fury iii
8	14.0	8	455.0	225	4425	10.0	70		pontiac catalina
	15.0		390.0	190	3850	8.5	70		amc ambassador dpl
10	15.0	8	383.0	170	3563	10.0	70		dodge challenger se
	14.0		340.0	160	3609	8.0	70		plymouth 'cuda 340
	15.0	8	400.0	150	3761	9.5	70		chevrolet monte carlo
	14.0		455.0	225	3086	10.0	70		buick estate wagon (sw)
14	24.0	4	113.0	95	2372	15.0	70		toyota corona mark ii
15	22.0		198.0	95	2833	15.5	70		plymouth duster
16	18.0	6	199.0	97	2774	15.5	70		amc hornet
	21.0		200.0	85	2587	16.0	70		ford maverick
18	27.0	4	97.0	88	2130	14.5	70		datsun pl510
19	26.0		97.0	46	1835	20.5	70		volkswagen 1131 deluxe sedan
20	25.0	4	110.0	87	2672	17.5	70		peugeot 504
21	24.0	4	107.0	90	2430	14.5	70	2	audi 100 Is

Comment gérer la dernière colonne?

000000

Avec un classifieur linéaire...

■ Classification linéaire par défaut :

ScoresCV: [0.5, 0.5, 0.3, 0.5, 0.4]

Ajout de colonnes : intervalles binaires (pair/impair) sur les deux dimensions

ScoresCV: [0.75, 0.85, 0.9, 0.8, 0.8

■ Intéressant... Mais dangereux : gros risque de fuite

Target Encoding

workclass	target
State-gov	0
Self-emp-not-inc	1
Private	0
Private	0
Private	1

	workclass	target mean
	State-gov	0
ľ	Self-emp-not-inc	1
ŀ	Private	1/3

workclass

0

Normalisation

Pourquoi normaliser?

Par ordre d'usage :

- 1 Pour améliorer les performances
 - Tirer parti d'informations à différentes échelles
- 2 Pour faciliter le réglage des hyper-paramètres
 - Mêmes ordres de grandeur ⇒ mêmes réglages
- 3 Pour respecter les propriétés du modèle utilisé
 - e.g. hypothèse multinomiale
 - \blacksquare modèles sans biais (normalisation des y)

Normalisation gaussienne

Centrer réduire chaque variable :

$$Z_j = \frac{X_j - \mu_j}{\sigma_j}$$

- = Normalisation standard (dans scikit-learn)
- Un test à faire systématiquement (la fonction est implémentée dans tous les systèmes)

La normalisation par individus

ATTENTION:

- Lié à la nature des données
- min-max

$$\tilde{\mathbf{x}_i} = \frac{\mathbf{x}_i - \min(\mathbf{x}_i)}{\max(\mathbf{x}_i) - \min(\mathbf{x}_i)} \in [0, 1]$$

■ multinomiale

$$\widetilde{\mathbf{x}}_i = \frac{\mathbf{x}_i}{\sum_j x_{ij}} \in [0, 1], \qquad \sum_j \widetilde{x}_{ij} = 1$$

Normalisation des produits scalaires (matrices de Gram)

$$\tilde{\mathbf{x}}_i = \frac{\mathbf{x}_i}{\sum_i x_{ii}^2}, \qquad \|\mathbf{x}_i\|^2 = 1$$

CONCLUSION

Exemple de la classification de signaux

Que veut certaines propriétés :

- Détection de motifs indépendamment de l'échelle
 - Normalisation par individu (min-max)
 - Somme à 1 (signaux positifs), somme des carrés à 1, somme à 0, ...
- Invariance en translation (ou pas, selon la nature des informations discriminantes)
 - Calcul des moyennes, écart-types
 - FFT, PSD

0

Conclusion: approche standard en ML

- **1** Traitements = interprétation des informations métier/expert
- 2 Batteries de tests classiques pour estimer les performances attendues
 - normalisation standard
 - modèles linéaires + forêts
 - validation croisée ou autre selon les cas
- 3 Optimisation (idéalement automatisée ou semi-automatisée)
 - Feature engineering
 - Grid-search
 - Ensembling

Beaucoup d'outils existent en sklearn Lorsqu'il manque un outil \Rightarrow Maitrise + documentation \Rightarrow Penser intégration