Discrete Computational Structures Take Home Exam 1

 $\begin{array}{c} {\rm Mert~Kaan~YILMAZ} \\ 2381093 \end{array}$

Question 1 (7 pts)

a) Construct a truth table for the following compound proposition.

$$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$$

(3.5/7 pts)

p	q	$ \neg p $	$q \rightarrow \neg p$	$\neg q$	$p \leftrightarrow \neg q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$
T	T	F	F	F	F	T
T	F	F	T	T	T	T
F	T	T	T	F	T	T
F	F	T	F T T	T	F	F

b) Show that whether the following conditional statement is a tautology by using a truth table.

$$[(p \lor q) \land (r \to p) \land (r \to q)] \to r$$

(3.5/7 pts)

p	q	r	$p \lor q$	$r \rightarrow p$	$r \rightarrow q$	$\mid (p \lor q) \land (r \to p) \land (r \to q)$	$ [(p \lor q) \land (r \to p) \land (r \to q)] $
T	T	T	T	T	T	T	T
T	T	F	T	T	T	T	F
T	F	T	T	T	F	F	T
T	F	F	T	T	T	T	F
F	T	T	T	F	T	F	T
F	T	F	T	T	T	T	F
F	F	T	F	F	F	F	T
F	F	F	F	T	T	F	T

Question 2 (8 pts)

Show that $(p \to q) \land (p \to r)$ and $(\neg q \lor \neg r) \to \neg p$ are logically equivalent. Use tables 6,7 and 8 given under the section "Propositional Equivalences" in the course textbook and give the reference to the table and the law in each step.

$$\begin{array}{cccc} (\neg q \vee \neg r) \to \neg p & \equiv & \neg (\neg q \vee \neg r) \vee \neg p \\ & \equiv & (\neg (\neg q) \wedge \neg (\neg r)) \vee \neg p \\ & \equiv & (q \wedge r) \vee \neg p \\ & \equiv & \neg p \vee (q \wedge r) \\ & \equiv & (\neg p \vee q) \wedge (\neg p \vee r) \\ & \equiv & (p \to q) \wedge (p \to r) \end{array}$$

Table 7 first equivalence
Table 6 De Morgan's law
Table 6 double negation law
Table 6 commutative laws
Table 6 distributive law
Table 7 third equivalence

Question 3

(30 pts, 2.5 pts each)

Let F(x, y) mean that x is the father of y; M(x, y) denotes x is the mother of y. Similarly, H(x, y), S(x, y), and B(x, y) say that x is the husband/sister/brother of y, respectively. You may also use constants to denote individuals, like Sam and Alex. You can use $\vee, \wedge, \rightarrow, \neg, \forall, \exists$ rules and quantifiers. However, you are not allowed to use any predicate symbols other than the above to translate the following sentences into predicate logic. \exists ! and exclusive-or (XOR) quantifiers are forbidden:

- 1) Everybody has a mother.
- 2) Everybody has a father and a mother.
- 3) Whoever has a mother has a father.
- 4) Sam is a grandfather.
- **5**) All fathers are parents.
- **6)** All husbands are spouses.

- 7) No uncle is an aunt.
- 8) All brothers are siblings.
- 9) Nobody's grandmother is anybody's father.
- **10**) Alex is Ali's brother-in-law.
- 11) Alex has at least two children.
- **12**) Everybody has at most one mother.

- 1) $\forall y \exists x M(x,y)$
- 2) $\forall y \exists x (M(x,y) \land F(x,y))$
- 3) $\forall z \exists x \exists y (M(x,z) \rightarrow F(y,z))$
- 4) $\exists y \exists x (F(Sam, x) \land F(x, y))$
- 5) $\forall x \exists y (F(x,y) \rightarrow (F(x,y) \lor M(x,y)))$
- 6) $\forall x \exists y (H(x,y) \rightarrow (H(x,y) \lor H(y,x)))$
- 7) $\forall z \exists x \exists y ((B(x,y) \land (M(y,z) \lor F(y,z))) \rightarrow \neg (S(x,y) \land (M(y,z) \lor F(y,z)))$
- 8) $\exists x \exists y (B(x,y) \to (B(x,y) \lor S(x,y)))$
- 9) $\forall z \exists x \exists y (M(x,y) \land M(y,z) \rightarrow \neg F(x,z))$
- 10) $\exists x (H(Ali, x) \land B(Alex, x))$
- 11) $\exists x \exists z (F(Alex, x) \land F(Alex, z)) \rightarrow \neg (x = z)$
- 12) $\forall z \exists x \exists y ((M(x,z) \land M(y,z) \rightarrow (x=y)))$

Question 4 (25 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

$$\mathbf{a)}\ p \to q, r \to s \vdash (p \lor r) \to (q \lor s)$$

(12.5/25 pts)

	$p \to q, r \to s \vdash (p \lor r) \to (q \lor$	s)	_
1.	p o q	premise	
2.	r o s	premise	
3.	$(p \lor r)$	assumption	
4.	p	assumption	
5.	q	$\rightarrow e, 1-4$	
6.	$q \lor s$	$\forall i, 5$	
7.	r	assumption	
8.	q	$\rightarrow e, 2-7$	
9.	$s \lor q$	$\vee i, 8$	
10.	$(q \lor s)$	$\forall e, 3, 4-6, 7-9$	
11.	$(p \vee r) \to (q \vee s)$	$\rightarrow i, 3-10$	1

b)
$$(p \to (r \to \neg q)) \to ((p \land q) \to \neg r)$$
 (12.5/25 pts)

Question 5 (30 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg , \forall , \exists introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

a)
$$\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$$
 (12.5/25 pts)

1.	$\forall P(x) \lor \forall x Q(x)$	premise
2.	$\forall P(x)$	assumption, 1
.	a	freshname
4.	P(a)	$\forall e, 2$
5.	$P(a) \vee Q(a)$	$\lor i, 4$
6. <u> </u>	$\forall (P(x) \lor Q(x))$	$\forall i, 5$
7.	$\forall Q(x)$	assumption, 1
3.	b	freshname
).	Q(b)	$\forall e, 7$
0.	$Q(b) \vee P(b)$	$\lor i, 9$
.1.	$\forall (Q(x) \lor P(x))$	$\forall i, 10$
2.	$\forall (P(x) \lor Q(x))$	$\vee e, 1, 2 - 6, 7 - 11$

b)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$
 (17.5/25 pts)

