ŀ

Patent Claims

 Liquid-crystalline medium based on a mixture of polar compounds having negative dielectric anisotropy, characterised in that it comprises at least one compound of the formula I

$$R^{1}-(A^{1}-Z^{1})_{m} \xrightarrow{F} F$$

in which

15

5

R⁰ and R¹ each, independently of one another, denote H, an alkyl or alkenyl radical having up to 15 C atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may be replaced by -O-, -S-, -C=C-, -OC-O- or -O-CO- in such a way that O atoms are not linked directly to one another,

25

20

A¹ a) denotes a 1,4-cyclohexenylene or 1,4-cyclohexylene radical, in which one or two non-adjacent CH₂ groups may be replaced by -O- or -S-,

30

 denotes a 1,4-phenylene radical, in which one or two CH groups may be replaced by N,

35

c) denotes a radical from the group consisting of piperidine-1,4-diyl-, 1,4-bicyclo[2.2.2]octylene-, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, phenanthrene-2,7-diyl and fluorene-2,7-diyl,

15

20

30

where the radicals a), b) and c) may be mono- or polysubstituted by halogen atoms,

5 Z^1 denotes -CO-O-, -O-CO-, -CF₂O-, -OCF₂-, -CH₂O-, -OCH₂-, -CH₂CH₂-, -(CH₂)₄-, -C₂F₄-, -CH₂CF₂-, -CF₂CH₂-, -CF=CF-, -CH=CF-, -CF=CH-, -CH=CH-, -C=C- or a single bond, and

10 m denotes 0, 1 or 2.

 Liquid-crystalline medium according to Claim 1, characterised in that it comprises at least one compound selected from the formulae I1 to I18

 R^1 F F F

25 · · · F

 R^1 O O F

35 F F F H

$$R^{1} \longrightarrow O \longrightarrow F$$

$$F \longrightarrow F$$

$$F \longrightarrow F$$

$$I5$$

$$R^{1} \longrightarrow 0 \longrightarrow F$$

$$F = F$$

$$18$$

$$R^{1} \longrightarrow F$$
II0

G

 $R^{1} \longrightarrow 0 \longrightarrow F$ F F F F I13

 $R^{1} \longrightarrow F F F F$ 114

 $R^{1} \longrightarrow F \qquad F$

 $R^{1} \longrightarrow 0 \longrightarrow F$ F = F 117

 $R^{1} \longrightarrow F F F F$

in which

R⁰ and R¹ have the meanings indicated in Claim 1.

5

- 3. Liquid-crystalline medium according to Claim 1 or 2, characterised in that R⁰ denotes H.
- 4. Liquid-crystalline medium according to Claim 2 or 3, characterised in that it comprises at least one compound of the formula I1.
 - 5. Liquid-crystalline medium according to one of Claims 1 to 4, characterised in that it additionally comprises one or more compounds of the formulae IIA and/or IIB:

15

20

25

in which

 R^2

30

denotes an alkyl or alkenyl radical having up to 15 C atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, where, in addition, one or more CH₂ groups in these radicals may each be replaced, independently of one another, by -O-, -S-, -C=C-, -CO-, -CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another,

35

p denotes 1 or 2, and

v denotes 1 to 6.

 Liquid-crystalline medium according to one of Claims 1 to 5, characterised in that it additionally comprises one or more compounds of the formula III

 $R^{31} - A - R^{32}$

in which

25

15 R³¹ and R³² each, independently of one another, denote a straightchain alkyl, alkenyl, alkylalkoxy or alkoxy radical having up to 12 C atoms, and

20 — A— denotes — O— or — H—

- 7. Liquid-crystalline medium according to one of Claims 1 to 6, characterised in that it comprises one, two, three, four or more compounds of the formula I.
- 8. Liquid-crystalline medium according to one of Claims 1 to 7, characterised in that the proportion of compounds of the formula I in the mixture as a whole is at least 5% by weight.
- 9. Liquid-crystalline medium according to one of Claims 1 to 8, characterised in that the proportion of compounds of the formulae IIA and/or IIB in the mixture as a whole is at least 20% by weight.
- 10. Liquid-crystalline medium according to one of Claims 1 to 9, characterised in that the proportion of compounds of the formula III in the mixture as a whole is at least 5% by weight.

35

	11.	Liquid-crystalline medium according to one of Claims 1 to 10, characterised in that it essentially consists of		
5		5-30	% by weight of one or more compounds of the formula I	
		and		
10		20-70	% by weight of one or more compounds of the formulae IIA and/or IIB.	
	12.	Electro-optical display with active-matrix addressing based on the ECB, PALC or IPS effect, characterised in that it contains, as dielectric, a liquid-crystalline medium according to one of Claims 1 to		
15		11.		
20				
20				
25				
30				