OTTIMIZZAZIONE NEI SISTEMI DI CONTROLLO 1

COMPITO A

Esame 21 Settembre 2018

1. Si consideri il seguente gioco differenziale scalare a due giocatori:

- (a) Determinare i valori del parametro α per cui esiste un equilibrio di Nash del gioco (1) [3 PUNTI]
- (b) Scrivere le strategie di equilibrio in funzione di α [2 PUNTI]
- (c) Se $\alpha = 1$ è ammissibile, calcolare il costo del giocatore 2 a partire dalla condizione iniziale x(0) = 1. [1 PUNTI]
- 2. Si consideri il seguente problema di controllo ottimo:

$$\min_{u} J(u) = \left\{ \frac{1}{2} \int_{0}^{\infty} (6x_1(t)^2 + 10x_1(t)x_2(t) + 5x_2(t)^2 + u(t)^2) dt \right\}, \quad s.t. \quad \left\{ \begin{array}{l} \dot{x}_1 & = -2x_1 + u \\ \dot{x}_2 & = -x_1 + ax_2 - u \end{array} \right. \tag{2}$$

Determinare un valore di a, se esiste, tale che la legge di controllo $\bar{u}=x_2$ sia ottima per il problema (2), sapendo che la funzione valore associata \bar{V} soddisfa $\frac{\partial \bar{V}}{\partial x_1}=x_1+x_2$. [7 PUNTI]

3. Si consideri il seguente problema di controllo ottimo:

$$\min_{u} J(u) = \left\{ \frac{1}{2} \int_{0}^{\infty} (5x_1(t)^2 + 6x_1(t)x_2(t) + 3x_2(t)^2 + u(t)^2) dt \right\}, \quad s.t. \quad \left\{ \begin{array}{ll} \dot{x}_1 & = x_2 + u \\ \dot{x}_2 & = u \end{array} \right. \tag{3}$$

(a) Verificare se la legge di controllo in retroazione $u_0 = -x_1 - x_2$ e la matrice

$$P_0 = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

possono essere utilizzate per inizializzare l'algoritmo di Kleinman. [3 PUNTI]

- (b) Iterare l'algoritmo fino a quando la legge di controllo $u_i = K_i x$ fornisce un costo strettamente minore di 1 a partire dallo condizione iniziale $x_0 = [1, 0]^{\top}$. [3 PUNTI]
- 4. Enunciare il teorema di esistenza della soluzione del LQR ad orizzonte infinito. Dimostrare inoltre che la sequenza di soluzioni $P_T(t)$ del problema ad orizzonte finito ha un limite per $T \to \infty$. [6 PUNTI]
- 5. Dare la definizione di gioco differenziale non-cooperativo e di equilibrio di Nash su orizzonte infinito. Discutere i passaggi fondamentali per derivare le condizioni che forniscono un equilibrio di Nash nel caso ad orizzonte infinito. [6 PUNTI]

1