Aprendizado Supervisionado

Prof. Leandro Alvim, D.Sc.

Julho, 2016

Agenda

- 1. O que é
- 2. Classificação e Regressão
- 3. Terminologias
- 4. O Problema de Otimização
- 5. Exercícios

Aprendizado Supervisionado

- É fornecido um gabarito para cada exemplo
- Tipos de Problemas
 - Classificação
 - Regressão

Problema de Classificação

Conceito de Classe

- Email: Spam ou Não?
- Identificação de Caracteres Manuscritos (a,b, ..1,2,..)
- Tumor: Maligno ou Benigno?
- Análise de Sentimentos

Exemplo...

Densidade	Tamanho	Câncer?
0,10	1,2	0
0,15	1,3	0
0,3	2	0
0,4	3	1
0,8	8	1

Tabela: Conjunto de Dados

Dados extraídos a partir de imagens de tumores e diagnosticados manualmente por um especialista

Problema de Regressão

Nosso **alvo** agora é **contínuo** Exemplos...

- Estimar preços de ações
- Estimar preços de casas

Exemplo...

Tamanho (m^2)	Preço (R\$)	
55	250.000	
70	450.000	
40	120.000	
80	500.000	
110	780.000	

Tabela: Conjunto de Dados

Nosso **alvo** é o preço (contínuo).

Aprendizado Supervisionado

- É fornecido um gabarito para cada exemplo
- Tipos de Problemas
 - Classificação (discreto)
 - Regressão (contínuo)

Terminologia

Definindo alguns conceitos...

Densidade	Tamanho	Câncer?
0,10	1,2	0
0,15	1,3	0
0,3	2	0
0,4	3	1
0,8	8	1

Tabela: Conjunto de Dados

Exemplo: linha da matriz

Característica: coluna da matriz Alvo: o que desejamos aprender

Terminologia

Densidade	Tamanho	Câncer?
0,10	1,2	0
0,15	1,3	0
0,3	2	0
0,4	3	1
0,8	8	1

Tabela: Conjunto de Dados

Exemplo: linha da matriz

Característica: coluna da matriz

Alvo: o que desejamos aprender é discreto

classe 0 : benigno classe 1 : maligno

Visualizando os Dados

Exemplos, atributos e gabaritos...

Figura: Classificação de tumores

$$x_i = \begin{bmatrix} 1 \\ tam_i \\ den_i \end{bmatrix}, y_i = \{0, 1\}$$

Classificação - Objetivo

Encontrando um separador ou modelo θ ideal...

Figura: Classificação de tumores

$$\theta_i^T = \begin{bmatrix} \theta_0 \ \theta_1 \ \theta_2 \end{bmatrix}$$

Classificação - Objetivo

Encontrando um separador ou modelo θ ideal...

Figura: Classificação de tumores

Classificação - Objetivo

Nossa hipótese h_{θ} é...

 $h_{\theta}(x) = \theta^T x$ Limiar de classificação em 0: Se $h_{\theta}(x) \ge 0$, estimar "y=1" Caso contrário, estimar "y=0"

Regressão - Objetivo

Encontrando um modelo θ ideal...

Figura: Regressão Linear ($h_{\theta} = 8.95x_1 - 212$)

Regressão - Objetivo

Encontrando um modelo θ ideal...

Figura: Regressão Logística $(h_{\theta} = \frac{889.83}{1+42.88e^{-0.05x_1}})$

Regressão - Objetivo

Encontrando um modelo θ ideal...

Figura: Regressão Polinomial $(h_{\theta} = 0x^5 - 0x^4 + 0.24x^3 - 12.75x^2 + 326.22x - 3091.71)$

Formalizando

Seja um conjunto de treino

$$\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$
 em que y_i discreto ou contínuo

tal que,
$$x_i = \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_d \end{bmatrix}$$
, y_i

em que a_i corresponde ao i-ésimo atributo do exemplo $x_i \in \mathbb{R}^{d+1}$.

Formalizando

Nosso objetivo é:

$$\operatorname{argmin}_{\theta} J(\theta)$$

em que,

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} custo(h_{\theta}(x_i, y_i))$$

Exercícios

- Elabore uma função de custo para o problema de regressão
- Como podemos melhorar a qualidade do modelo de regressão de preços de casas?
- O que aconteceria se descartássemos uma característica do conjunto de dados de tumores?
- Dentre os modelos de regressão vistos, qual você acha que possui maior qualidade?