Azure MachineLearning (ML) und R

Was, wie und warum? Ein Crash-Kurs.

Mario Schnalzenberger

About me – Mario Schnalzenberger

- Informatiker, Statistiker und Volkswirt
- Forscher (Uni Linz)
 - > Forschung im Bereich Gesundheit, Alterung, Pensionen und vielem mehr
 - > Veröffentlichungen in Klinischer Forschung, Economics und Econometrics
- Bei cubido unterstütze ich Kunden im Bereich
 - > DWH und Business Intelligence
 - > Predictives in Richtung Industrie 4.0 und Marketing Intelligence
 - > Big Data und verwandten Themen
 - > SQL Server, Cubes, MDX, R, C#, SAP Infinite Insights, MCSA, MCSE BI, uvm.
- m.schnalzenberger@cubido.at

Agenda

Was?
Big Data?

Wie?
Demo

Warum?
Use Cases

Mit Cubido

Was?

Big Data - nur größer

Big Data – Wirklich?

4 V's (Big Data)

4 A's (Predictive Analytics)

6 C's (of Trusted Data)

Big Data als Schlagwort MachineLearning als (ein) Weg

Statistics,
Analytics,
MachineLearning

Erst durch
Auswertung der
Daten entsteht der
Mehrwert, egal ob
Small, Medium
oder Big Data.

Sammeln und Aufbereiten – in der Cloud?

Big Data

- Entsteht durch das Sammeln von Daten
 (Cloud als einfacher Partner zum Scale out)
- Sammeln und das IoT ist erst im entstehen
 (Cloud anpassungsfähig und hochverfügbar)
- Aufbereitung der Daten für die Analyse bedarf (kurzfristig) hoher Kapazitäten (Hadoop o.ä. Technologien, Cloud?)
- Analyse und Synthese mit Rechenkapazitäten

Analytics – Das haben wir doch schon?

Analytics?

- Berichte, die descriptive Analytics, meist keine statistische Analyse, Daten haben keinen zusätzlichen Wert, wenn Sie niemand sieht
- Advanced Analytics Statistik schon im frühen Stadium. Vieles ist möglich.
 - Automatisierung
 - Fokussierung
 - Interaktion

Agility – Prozesse verändern

Vorzeitig mit Analyse beginnen

Analytiker /
Statistiker frühzeitig
einbinden

Sammeln – Daten und Visionen!

Cloud als einfachen Partner sehen

Langfristig die Prozesse optimieren und aus eigenen Daten lernen

Wie – eine Quasi-Demo

Schon mal geflogen?

- Welchen Flug?
- Welche Airline?
- Welcher Flughafen?
- Welche Uhrzeit?
- Welche Anschlussflüge?

Konzeptuelle Voraussetzungen

Was brauchen wir? Womit arbeiten wir?

- Daten
- Experimente (Modelle)
- Web Services
- (Microsoft Account)

Werkzeuge

- Azure Portal und ML-Workspaces
- ML Studio

ML Studio

- GUI mit vielen Funktionen (Copy/Paste)
- Daten für Experimente hochladen
- Experimente (Modelle) entwickeln und prüfen (validieren)
- Web Services veröffentlichen und freigeben

MachineLearning in Azure Portal

MachineLearning (ML) Studio

UBIDO

Experiments

Experiments

Visualize the Sources and Outputs

My First Flight Delay Experiment > Score Model > Scored dataset rows columns 18 1550068 Scored \wedge Statistics Label DayofMonth DayOfWeek CRSDepTime DepDelay DepDel15 CRSArrTime ArrDelay ArrDel15 Carrier Cancelled Standard Deviation Mean 6.4836 3.6408 Median -27.3379 193.2833 Max 12.252 Standard Deviation 26 DL 1340 -4 1457 -8 0 -4.32455 19.675623 1462406 Unique Values 18 5 US 1800 -8 0 1915 -8 0 0 -2.916969 18.722552 Missing Values 25 7 00 627 22 723 17 0 -1.520425 17.27603 Feature Type Numeric Score 23 715 -9 0 950 -16 0 8.044899 49.963153 MO Visualizations 15 WN 1700 10 0 11 0 0 -1.439296 20.535412 1800 3 5 WN 840 -5 0 935 -8 0 0 0.142071 22.785005 Scored Label Mean Histogram 25 2 VX 1840 363 2150 356 0 90.110313 106.616985 11 4 WN 1500 8 0 1510 17 0 8.548382 30.016789 19 3 UA 935 0 0 1131 16 0 0.855321 26.883996 1.2e+6-1.1e+6-13 DL 2125 0 0 -2.41632 23.844859 544 -1 0 1.0e+6-24 WN 1540 18 12 0 0 11.497718 29.919001 1705 9.0e+5 17 0 19.854124 43.148306 WN 1510 1900 -17 -1 8.0e+5 €7.0e+5 19 5 WN 1710 0 1830 -10 0 0 10.893888 34.347628 -4 €6.0e+5 24 3 DL 1030 0 1405 0 0 1.16815 28.306764 -1 ₽5.0e+5 20 AA 600 -3 0 740 -19 0 0 -3.679286 19.488942 4.0e+5 3.0e+5-6 AA 930 -2 0 1155 -10 0 0 -1.851285 22.558995 2.0e+5 0 15.173034 42.938912 UA 1259 117 2130 97 1.0e+5 21 53 11 39 61 83 182 382 582 182 182 26 4 ΕV 600 -6 0 716 2 0 0 -3.64327 26.246258

Visualize Results – Ergebnisse anzeigen

Training-Ergebnisse speichern

"Deploy a WebService"

Ein neues Experiment:

MachineLearning (ML) Studio

Jetzt noch einfacher

Was ist R?

- Freie Programmiersprache für statistisches Rechnen
- Viele Möglichkeiten auch grafisch auszuwerten

- Interpreter
- Für komplexe Modelle die so noch nicht in Azure enthalten sind

Beispiel und eine (kleine) Demo

Autopreise

R

Und?

Experimenteditor – Best Practice

Design einer Analyse

- 1. (Roh-)Daten zusammen aufbereiten (viel Arbeit!)
- 2. Daten ins Azure hochladen (direkt im Editor)
- 3. Analyse Designen (Statistik)
- 4. Verschiedene Methoden vergleichen
- 5. Bestes Modell für weitere Verwendung "speichern"

Offene Punkte

Was würde ich mir wünschen ...

- 1. Ergebnisse im Detail anzeigen
- 2. Analyse von Modelle im Detail ermöglichen (Statistik Tools)
- 3. Vergleich Modelle von ML mit R?
- 4. Modelle analysieren alle Covariate im Dataset (complex)
- 5. Predictions von Modellen mit mehr als "nur" Score und SD ...

Bitte fundierte statistische Kenntnisse

- Plausiblität
- mathematische Verteilungsaspekte
- mögliche richtige Modelle
- Modelle gegeneinander rechnen lassen
- Modellauswahl treffen

Warum? — Use Cases

Data Driven Business

Use Cases

Problem und Glaubhaftigkeit

Alle Daten können analysiert werden, daher können wir alles machen?

- Marketing verbessern (bis in einzelne Details)
- Produktion überwachen (Maintenance)
- Qualität überwachen, Fehler verhindern
- Adaptive Lagerhaltung/Logistik (Wetterdaten für Eisladen)
- Recommender
- Churn Analysis (Kundenabgang verhindern)

Ausblick – Mit Cubido

Business Intelligence

Individuelle Softwareentwicklung

Fragen?

