2.1 Una empresa genera cuatro productos informáticos diferentes, P1, P2, P3 y P4, donde cada uno, a su vez, depende de 3 costes, (c1, c2 y c3), derivados de cada uno de los equipos de trabajo utilizados en su desarrollo y puesta a punto para cada cliente, donde las horas-hombre trabajadas por cada coste y unidad de producto, [hh/ud], y expresado en la matriz A_{4x3} siguiente,

$$A = \begin{pmatrix} 15 & 7 & 14 \\ 12 & 5 & 20 \\ 8 & 6 & 34 \\ 10 & 9 & 18 \end{pmatrix} \begin{bmatrix} P1 \\ P2 \\ P3 \\ P4 \end{bmatrix}$$

El coste de hh de cada equipo, dado en \in de cada equipo de trabajo por hh, $[\in/hh]$, viene dado en la matriz B_{3x1} ,

$$B = \begin{pmatrix} 40 \\ 45 \\ 60 \end{pmatrix} \quad \begin{bmatrix} c1 \\ c2 \\ c3 \end{bmatrix}$$

El número de unidades vendidas de cada producto a dos distribuidores, (d1, d2), viene dado por la matriz traspuesta de D_{2x4} ,

$$D = \begin{pmatrix} 55 & 150 & 530 & 200 \\ 85 & 180 & 245 & 225 \end{pmatrix} \quad \begin{bmatrix} d1 \\ d2 \end{bmatrix}$$

- a) Calcula e interpreta el significado del producto matricial AB (0,75 ptos)
- b) Haz lo mismo para DAB. (0,75 ptos)
- c) ¿Cuántas hh se consumen de cada materia prima para satisfacer las demandas de d1 y d2? (0,75 ptos)

Si cada distribuidor, d1 y d2 vende lo adquirido con un margen calculado como 1,6 y como 1,5 veces respectivamente su coste de compra total,

d) Calcula los ingresos totales de dichas ventas.

(0,75 ptos)

SOLUCIÓN

$$\begin{cases} 3662 & 6112 & 52340 \\ 12 & 2 & 500 \\ 12 & 2 & 500 \\ 12 & 3 & 6 & 341 \\ 12 & 2 & 500 \\ 12 & 3 & 6 & 341 \\ 12 & 2 & 500 \\ 12 & 3 & 6 & 341 \\ 13 & 2 & 500 \\ 12 & 3 & 6 & 341 \\ 13 & 2 & 500 \\ 12 & 3 & 6 & 341 \\ 13 & 3 & 6 & 341 \\ 14 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 6 & 341 \\ 15 & 3 & 10 \\ 15 & 3 & 10 \\ 15 & 3 & 10 \\ 15 & 3 & 10 \\ 15 & 3 & 10 \\ 10 & 0 & 18 \\ 10 & 0 & 19 & 10 \\ 10$$

2.2 Resolver el siguiente ejercicio, en el que encriptamos un vector a partir de la transformación de sus coordenadas al pasar de una base a otra dentro de un espacio vectorial en R³. Para ello, siga los siguientes pasos:

a) hallar las coordenadas del vector $\vec{u}=(1,6,5)$, expresado en base canónica, respecto de la base $B=\{(1,0,0),(0,2,1),(0,0,-1)\}$. (1,5 ptos)

Partiendo ahora del vector expresado en la base B,

b) calcular ahora las coordenadas resultantes dicho vector expresado en la nueva base $B'=\{(1,0,2),(0,2,1),(1,2,0)\}.$ (1,5 ptos)

	version 2
Universidad	Titulación:
Francisco de Vitoria	Apellidos Martier Epinasa Nombre Gimen Ma
UFV Madrid	Curso:Fecha:Fecha:
, ,	
22	coordenadas de is = (1,6,5) expresado en base aviorios
a) Hair last	la base B {(1,0,0),(0,2,1),(0,0,-1)}
Patiendo	del vertir expresado el la base B.
I (100)	= a v1 +bvz +c v3
ii =(1,6,5)	(1,6,5)=(0,0,0)+(0,2b,b)+(0,0,-c)
1= a,	a=1 b=2 c=-5
6 = 3b	Covidence de m (1,2,-5),
5=-C b) Glavia	ar coordenadors de dicho voctor expresado
	page - B, {(1'0'5)'(5'0'4)'(4'5'0){
	$\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \\ 3 & 0 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 9 \\ -3 \\ 5 \end{pmatrix}$ 3x1 3x3
	(x,y,z) = (9,3,5)

2.3 La empresa CiberAcme SL está especializada en gestionar tres tipos de equipos de comunicación: A, B y C. Estos requieren que se haga frente a:

Recursos requeridos	Tipo de Equipo			
	Α	В	С	
Costes derivados por equipo	7	10	5	
Horas de trabajo por equipo	2	3	2	

Para ello, se dispone de un presupuesto diario de 2.000 € y un máximo de 600 horas laborables. La máxima demanda solicitada por tipo de equipo es de 200 de tipo A, 300 de tipo B y 150 de tipo C. Los servicios se venden a 15 € por cada equipo tipo A, 20 € para los de tipo B y 12 € los de tipo C. La compañía quiere saber qué combinación óptima de productos maximizaría las ventas totales.

Para ello, se pide plantear y resolver el problema a través de alguna técnica de investigación operativa indicando expresamente:

- a) Cuáles son las variables, la función objetivo y el conjunto de restricciones (equivalencias y condiciones) identificables en el enunciado y que se requerirían para su resolución. (2 ptos)
- b) Los valores óptimos de las variables de decisión para que la función objetivo del apartado anterior sea lo más económica posible y, a su vez, cumpla las condiciones indicadas, así como el valor de dicha función óptima.
 (2 ptos)

TIPO A (X)	15		FUNCIÓN OBJETIVO F(X,Y,Z) = 14X + 20Y + 12Z			1020	
COMBINACIÓN	200						
SUBTOTAL	3000						
				DEMANDA MÁXIMA	PRECIO		
TIPO B (Y)	20		TIPO A	200	15		
COMBINACIÓN	300		TIPO B	300	20		
SUBTOTAL	6000		TIPO C	150	12		
TIPO C(Z)	12						
COMBINACIÓN	100						
SUBTOTAL	1200			SOLUCIÓN - Los valores	e ántimos de la	a e	
RESTRICCIONES				SOLUCIÓN = Los valores óptimos de las variables para que la fc objetivo sea lo más economica posible debe ser, x = 200, y =			
	<= X + Y + Z	600		300 y z =100.			
	<= X + Y + Z	300		Es decir, 200 del tipo A, 300 del tipo B y 100 del tipo C.			
	<= X	200		100 dei tipo ci			
300	<= Y	300					
150	<= Z	100					