Groundwater Remediation using Bayesian Information-Gap Decision Theory

Daniel O'Malley omalled@lanl.gov Velimir V. Vesselinov vvv@lanl.gov

Computational Earth Science, Los Alamos National Laboratory, USA

AGU Fall meeting, December, 2016
Unclassified: LA-UR-16-29181

Data, Models & Decisions

Data, Models & Decisions

Models are often complex

Parameters

- heterogeneous, anisotropic permeability
- heterogeneous specific storage

▶ Model Physics

- saturated, confined aquifer
- ► isothermal, incompressible

▶ Discretization

- $ightharpoonup \sim 10^6 \text{ nodes}$
- solved with obtuse codes

Shortcomings of this approach

Parameters

- small scale heterogeneity unrepresented
- uncertainty not considered

Real Physics

- partially confined aquifer? vadose-zone effects?
- boundary conditions? dual porosity? Noordbergum effect?
- **.**...
- even more complex once contaminant transport is added

Discretization

- relatively coarse discretization
- numerical errors

► Therefore

- Address the fact that we do not know the model parameters
- Address the fact that we cannot represent the physics
- Address the fact that we have uncertain observations

Data, Models & Decisions

The modeling solution

The modeling problem

The Bayesian solution

The Bayesian problem

Geologic dice

Bayesian problems

Bayes' theorem is mathematically rigorous, but its application in science and engineering is not always rigorous. There are two reasons for this:

- We can enumerate the possible outcomes of dice-rolling, but not all the possible outcomes for real-world engineering problems.
 - We cannot enumerate all possible permeability fields, and this just covers the first-order physics
 - NRC: 90% of court-mandated groundwater remediations fail, often due to unanticipated complexities
- We can precisely determine conditional probabilities for coin-tossing, but substantial uncertainty surrounds the conditional probabilities for real-world engineering problems.
 - ▶ It is observed that the water level in a well is 1750 [m]
 - ▶ Model A predicts a water level of 1749 [m]
 - ▶ Model B predicts a water level of 1748 [m]
 - ▶ What are the likelihoods of models *A* and *B*?
 - No one knows

Bayesian problems: estimating gravitational acceleration

$$\frac{dv}{dt} = g - Cv^2, \frac{dz}{dt} = v, z(t_0) = v(t_0) = 0$$

First try (q, C):

$$E(g|\mathbf{d}) = 8.82 \ [m/s^2]$$
 $E(g|\mathbf{d}) = 8.64 \ [m/s^2]$

Allmaras et al. Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example, SIAM Review (2013).

BIG Decisions

- ▶ BIG Decision Theory (DT)
- ▶ Bayesian-Information-Gap (BIG) Decision Theory (DT)
- Use Bayes theorem to
 - Assess parametric uncertainty
- Use information-gap decision theory to
 - Place the problem in a decision context
 - Consider the sides of the dice that the Bayesian analysis doesn't see

How to do BIG Decision Theory

Bayesian
Information-Gap
Decision Support

How to do BIG Decision Theory

A representative scenario

Remedial options

Remedial options:

- Use the middle extraction well
- ▶ Use the outer extraction wells
- ▶ Use all extraction wells

BIG Decision Theory Results

