P3 - Second theoretical work

The method of interest to be tested is "ActivityRecommendation.

Identify the variables for testing

The variables that modifies the behavior of the "ActivityRecommendation" method are:

1. Weather:

- <u>Temperature</u>: Determines the type of activity or if no activity is recommended.
- <u>Humidity</u>: Used to evaluate conditions for skiing or outdoor tourism.
- <u>Precipitation:</u> Affects whether outdoor activities are recommended.
- <u>isCloudy:</u> Impacts recommendations for outdoor tourism.

2. HealthStatus:

- <u>isHealthy:</u> If false, no activity is recommended.
- <u>hasValidVaccinationCard:</u> If false, no activity is recommended.

3. SpaceConstraint:

- <u>currentCapacity:</u> The number of people currently in the space.
- maxCapacity: The maximum alowed capacity
- <u>isWithinCapacity:</u> Determines if certain activities are possible

Variable	Туре	Class	Purpose	
Temperature	Float	Weather	Determines activity based on temperature ranges.	
Humidity	Float	Weather	Impacts skiing and tourism recommendations.	
isPrecipitation	Boolean	Weather	Indicates if it is raining; impacts outdoor activities.	
isCloudy	Boolean	Weather	Affects outdoor tourism recommendations.	
isHealth	Boolean	HealthStatus	Ensures user is healthy for activity recommendations.	
hasVaccinationCard	Boolean	HealthStatus	Ensures user has the necessary vaccinations.	
currentCapacity	Int	SpaceConstraint	Tracks the current number of people in the space.	
maxCapacity	Int	SpaceConstraint	Tracks the maximum allowed capacity for the space.	
isWithinCapacity	Boolean	Derived	Determines if the space is undercapacity (currentCapacity < maxCapacity).	

Identify test values for variables.

1. Weather:

Temperature:

Equivalence partitioning:

- Below freezing (<0°C), "0 is not included": "-5".
- o Cool (0-14°C), "15" is not included: "10".
- o Moderate (15-25°C), from 15 to 25 both included: "20".
- o Warm (26-35^oC), from 26 to 35 both included: "30".
- o Hot (>35°C), "35" is not included: "40".

Boundary Value Analysis:

- o Lower boundary for cold: "0".
- Transition to moderate: "15".
- Transition to warm: "25".
- o Upper limit for drinks recommendation: "35".

Error guessing:

- o Extremely low value: "-100".
- o Extremely high value: "100".

• Humidity:

Equivalence partitioning:

- o Low (<15%): "10".
- o Medium (15-60%): "50".
- o High (>60%): "70".

Boundary value analysis:

- Minimum boundary: "0"
- Boundary for skiing: "15"
- o Boundary for tourism: "60".
- o Maximum boundary: "100".

Error guessing:

- o Invalid negative value: "-1".
- Out-of-range value: "101".

• Precipitation:

Equivalent partitioning:

- o "True".
- o "False".

Boundary value analysis:

Not applicable for boolean values.

Error guessing:

Not applicable for boolean values.

• isCloudy:

Equivalent partitioning:

- o "True".
- o "False".

Boundary value analysis:

Not applicable for boolean values.

Error guessing:

o Not applicable for boolean values.

2. HealthStatus:

• isHealthy:

Equivalent partitioning:

- o "True".
- o "False".

Boundary value analysis:

Not applicable for boolean values.

Error guessing:

Not applicable for boolean values.

• hasVaccinationCard:

Equivalent partitioning:

- o "True".
- o "False".

Boundary value analysis:

Not applicable for boolean values.

Error guessing:

Not applicable for boolean values.

3. SpaceConstraint:

• currentCapacity:

Equivalent partitioning:

- Under capacity: "5" (current < max)
- At capacitty: "10" (current = max)
- Over capacity: "15" (current>max)

Boundary value analysis:

o Minimum boundarty: "0"

Valid capacity: "maxCapacity -1"

o Exact boundary: "maxCapacity".

o Invalid boundary: "maxCapacity + 1".

Error guessing:

Negative capacity: "-1".

maxCapacity:

Equivalent partitioning:

o Small capacity: "5"

o Moderate capacity: "10" (current = max)

Large capacity: "20" (current>max)

Boundary value analysis:

Invalid minimum boundarty: "0"
Valid case: "currentCapacity+1"
Edge case: "currentCapacity".

Error guessing:

Negative capacity: "-1".

Variable	EP Values	BVA Values	Error guessing
Temperature	-5, 10, 20, 30, 40	0, 15, 25, 35	-100, 100
Humidity	10, 50, 70	0, 15, 60, 100	-1, 101
IsPrecipitation	True, false	-	-
isCloudy	True, false	-	-
isHealthy	True, false	-	-
HasValidVaccinationCard	True, false	-	-
currentCapacity	5, 10, 15	0, max-1, max, max+1	-1
maxCapacity	5, 10, 20	0, current, current+1	-1

Calculate the maximum possible test cases.

For each variable:

- Temperature: 11 values.

- Humidity: 9 values.

- isPrecipitation: **2 values**.

- isCloudy: **2 values**.

- hasVaccinationCard: 2 values.

- isHealthy: **2 values**.

currentCapacity: 8 values.maxCapacity: 7 values.

Including currentCapacity and maxCapacity explicitly adds detail for edge cases in the capacity-related logic (e.g., near and equal thresholds). This approach is helpful for thorough testing of boundary and error conditions but increases complexity significantly.

Using combinatorial testing:

Maximum Test Cases = 11x9x2x2x2x2x8x7= 88704 test cases.

Define a minimal set of test cases.

Using the "each-use" approach (ensuring each value is tested at least once):

Test Case	Temp.	Humid.	Precip.	ls Cloudy	ls Healthy	hasVaccination Card	Current Capacity	maxCapacity
1	-5	10	True	False	True	True	5	Current+1
2	10	50	False	False	True	True	10	current
3	20	70	False	False	True	True	15	0
4	30	0	False	True	True	True	0	5
5	40	15	False	False	True	True	Max-1	10
6	0	60	True	True	False	True	Max	15
7	15	100	False	False	True	False	Max+1	15
8	25	-1	True	False	True	True	-1	10
9	35	101	False	True	False	False	10	-1
10	-100	50	True	False	True	True	15	15
11	100	70	False	False	False	False	0	5

Define sets of tests to achieve pairwise coverage using the algorithm explained in class.

Temperature: -5, 10, 20, 30, 40, 0, 15, 25, 35, -100, 100

Humidity: 10, 50, 70, 0, 15, 60, 100, -1, 101

IsPrecipitation: True, False

IsCloudy: True, False

IsHealthy: True, False

hasVaccinationCard: True, False

currentCapacity: 5, 10, 15, 0, max-1, max, max+1, -1

maximumCapacity: 5, 10, 20, 0, current, current+1, -1

Temp. Humid. IsPrecipit. IsCloudy IsHealthy hasVaccin. currentCapacity maxCapacity

15	70	False	False	False	True	15	20
25	100	True	True	True	False	10	current
30	0	False	True	True	True	5	0
10	70	True	True	False	False	max	10
0	15	True	False	True	False	max-1	current+1
30	100	False	False	False	False	max+1	1
20	0	True	False	False	False	0	5
30	101	True	True	True	False	-1	20
20	-1	False	True	True	True	max	current+1
40	15	False	True	False	True	max+1	. current
20	50	True	True	True	True	10	-1
40	100	True	False	True	False	0	0
10	-1	False	True	False	True	max-1	5
0	101	False	False	False	True	5	10
25	70	False	False	False	True	-1	current+1
-5	60	True	True	True	False	15	5
-100	100	True	False	True	True	-1	10

```
40 -1 True False True False 5 -1
```

- -100 50 False False False False 0 current
- 10 101 True False True True 0 current+1
- 0 10 True True True False max+1 20
- 15 0 True False True False max current
- 20 60 False False False True 5 20
- 20 10 False False False True 15 10
- 100 101 True True True False max 0
- 15 101 False True False True max+15
- 0 0 False True True False -1 -1
- 10 0 False True True True 10 20
- -5 0 False False False True max+1 10
- 0 100 True False False True max 5
- 25 50 True False True False max-1 0
- -5 50 False False True False 5 current+1
- -100 0 True True False False 15 current+1
- 100 100 False False False True max-1 20
- 30 10 True False True True max-1 current
- 20 15 False False False -1 0
- -5 10 True True True 0 -1
- 100 60 True False True True -1 current
- -100 101 False True True False max-1 -1
- 25 101 False True True False 15 10
- 15 100 False True True False 10 current+1
- 25 60 True False True False max -1
- 0 70 False False True True 15 current
- 35 0 True True True False max-1 5
- -5 15 False False False True max 20
- 30 15 False False True False 10 10
- 40 0 False False True False -1 5

- 25 -1 True False True False 0 20
- 100 50 False True True False 5 5
- -5 100 False False False False 15 0
- 30 -1 True True False True 15 10
- 35 -1 False True True True max+1 current
- 35 101 True False True True 0 10
- 40 101 True False True True max-1 10
- 100 10 False True True False 10 current+1
- 15 50 False False False True -1 10
- 10 10 False False True False -1 0
- 100 70 False True False True 15 -1
- 30 70 True True False True 0 5
- 30 50 True False True False max+1 current+1
- 15 60 True True False True max+10
- 40 10 False True True False max 5
- 25 0 True True False True 10 5
- 15 15 False False True False 5 -1
- -5 101 True True True False 10 current
- 15 -1 False False False True -1 0
- 10 60 True False True True 5 current
- 40 50 True False False True 15 20
- -100 10 True True True 5 5
- -5 70 True False False True max-1 20
- 35 10 True True True False 5 -1
- 25 15 True False False True max+15
- 0 -1 True False True True 10 0
- 15 10 False False True False 0 current
- -100 70 True False False False max+10
- 100 15 True True True False 0 10
- 20 100 True False False False max+1 current

35	15	False	True	True	True	15	current+1
30	60	False	False	True	False	10	10
100	-1	False	True	True	False	max+1	. 20
20	101	False	True	False	False	max-1	5
-100	60	True	False	False	False	0	current+1
-5	-1	False	True	True	False	-1	10
0	60	True	False	False	True	0	current+1
35	100	False	True	False	True	max	20
0	50	True	False	True	False	max	-1
-100	15	False	False	True	False	10	20
35	60	True	True	True	True	-1	0
35	50	True	True	False	False	5	5
40	70	True	True	True	True	5	current+1
25	10	False	False	True	True	5	current
10	50	True	False	False	True	max+1	1
10	100	True	True	False	True	5	20
20	70	True	True	True	True	0	-1
40	60	True	True	True	True	10	current
10	15	True	False	False	True	15	-1
30	-1	True	False	True	False	max	current
-100	-1	True	True	False	True	max	current
100	0	False	True	True	True	15	-1
15	60	True	False	True	True	max-1	current

For code snippets that include decisions, propose a set of test cases to achieve decision coverage.

Test Case	Temp.	Humid.	Precip.	ls Cloudy	Is Healthy	hasVacc.	Current Capacity	Max Capacity	Expected Output
1	10	50	False	False	False	true	5	10	No acitvity recommen ded
2	10	50	False	False	True	false	5	10	No acitvity recommen ded
3	-5	10	True	False	True	True	5	10	Stay home
4	-5	10	False	False	True	True	5	10	Go skiing
5	10	50	False	False	True	True	5	10	Go hiking
6	25	70	False	False	True	True	5	10	Outdoor turism
7	25	70	True	False	True	True	5	10	No specific recommen dation
8	35	50	False	False	True	True	5	10	Go for drinks
9	40	50	False	False	True	True	5	10	Go to the beach or pool
10	31	50	False	False	True	True	10	10	No specific recommen dation

For code snippets that include decisions, propose a set of test cases to achieve MC/DC coverage.

MC/DC Coverage for Decision 1:

if (!healthStatus.isHealthy() || !healthStatus.hasValidVaccinationCard())

Case	isHealthy	hasValidVaccinationCard	ExpectedO	utcome
1	False	True	No	activity
			recommen	ded
2	True	False	No	activity
			recommen	ded
3	True	True	No	specific
			recommen	dation
			(doesn`t	reject
			activity)	

MC/DC Coverage for Decision 2:

if (weather.getTemperature() < 0)</pre>

Case	Temperature	Expected outcome	
4	-5	Stay Home	
5	10	No specific	
		recommendation.	

MC/DC Coverage for Decision 3:

if (weather.getHumidity() < 15)</pre>

Case	Humidity	Expected outcome	
6	10	Stay Home / Go skiing	
7	20	No specific	
		recommendation	

MC/DC Coverage for Decision 4:

if (weather.isPrecipitation())

Case	isPrecipitation	Expected outcome
8	True	Stay Home
9	False	Go skiing

MC/DC Coverage for Decision 5:

if (spaceConstraint.isWithinCapacity())

We will test both cases: when the capacity is within limits and when it is not.

Case	currentCapacity	MaximumCapacity	ExpectedOutcome
10	5	10	Go skiing
11	10	10	No specific
			recommendation

MC/DC Coverage for Decision 6:

else if (weather.getTemperature() < 15 && !weather.isPrecipitation())

We will test both cases: when the capacity is within limits and when it is not.

Case	temperature	precipitation	ExpectedOutcome
12	5	False	Go hiking
13	10	true	No specific
			recommendation
14	20	False	No specific
			recommendation

MC/DC Coverage for Decision 7:

else if (weather.getTemperature() < 15 &&!weather.isPrecipitation())

We will test both cases: when the capacity is within limits and when it is not.

Case	temperature	precipitation	isCloudy	Humidity	ExpectedOutcome	
15	25	False	False	70	Outdoor toui	rism.
16	25	False	False	50	No s	pecific
					recommendo	ition
17	25	True	False	70	No s	pecific
					recommendo	ition
18	25	False	True	70	No s	pecific
					recommendo	it i on
19	10	False	False	70	Go hiking	

Case 15 tests when all conditions are true.

Case 16 tests when humidity is not greater than 60.

Case 17 tests when there is precipitation.

Case 18 tests when the weather is cloudy.

Case 19 tests when the temperature is below 25.

Comment on the results of the number of test cases achieved in sections 4, 5 and 6. What could be said about the coverage achieved?

As we got a maximum 88704 test cases in section 4, the coverage in:

• Section 5: 11/88704 -> 0.0124% of coverage

• Section 6: 100/88704 -> 0.113% of coverage