	<pre>import pandas as pd import numpy as np import talib import pickle import seaborn as sns import matplotlib.pyplot as plt from itertools import cycle from sklearn.calibration import label_binarize from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score, roc_curve, roc_auc_score, auc, classification_report from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split, cross_val_score</pre>
<pre>In [2]: Out[2]: In [3]: Out[3]:</pre>	DATA UNDERSTANDING df = pd.read_csv("Datasets/ASUS.csv") df.head(5) Date Open High Low Close Adj Close Volume 0 2018-03-13 272.5 277.5 272.5 276.5 185.351166 1137998 1 2018-03-14 274.5 276.0 274.0 274.0 183.675293 487354 2 2018-03-15 274.0 277.5 274.0 275.0 184.345627 779897 3 2018-03-16 277.5 279.0 275.0 276.0 185.015991 2009095 4 2018-03-19 276.0 278.0 275.0 275.0 186.021515 394556 df.shape (1216, 7)
In [4]: Out[4]: In [5]: Out[5]:	df.isnull().sum() Date
In [6]:	DATA PREPROCESSING Features Engineering Penambahan fitur-fitur berupa indikator teknikal yang umum dipakai oleh trader saham meliputi diantaranya relative strength index (RSI), Stochastic Oscillator (STOCH), Williams %R, Rate of Change Price (ROCP / PROC), serta Moving Average Convergence/Divergence (MACD). # Calculate RSI df['RSI'] = talib.RSI(df['close']) # Calculate Stochastic Oscillator slowk, slowd = talib.STOCH(df['High'], df['Low'], df['Close'], fastk_period=14, slowk_period=3, slowd_period=3) df['SlowK'] = slowk
	df['Slowb'] = slowd # Calculate Williams %R df['WILLR'] = talib.WILLR(df['High'], df['Low'], df['Close'], timeperiod=14) # Calculate Price Rate of Change df['PROC'] = talib.ROCP(df['Close'], timeperiod=10) # Calculate MACD macd, macdsignal, macdhist = talib.MACD(df['Close'], fastperiod=12, slowperiod=26, signalperiod=9) df['MACD'] = macd df['MACDSignal'] = macdsignal df['MACDHist'] = macdhist Labelling Data Proses labelling data dengan memperhitungkan perbedaan harga saham dengan hari sebelumnya. Setelah perbedaan diketahui maka asumsi yang digunakan adalah jika harga <0 sinyal jual (-1), tidak ada perubahan sinyal hold (0), dan jika >0 maka sinyal beli (1)
<pre>In [7]: Out[7]:</pre>	df['Diff'] = df['Close'].diff() df['Signal'] = df['Close'].transform(lambda x : np.sign(x.diff())) df.dropna(inplace=True) Date Open High Low Close Adj Close Volume RSI SlowK SlowD WILLR PROC MACD MACDSignal MACDHist Diff Signal
In [10]:	Visualisasi Grafik harga saham berdasarkan sinyal yang dihasilkan pada tahap labelisasi diatas fig, ax = plt.subplots(figsize=(20,10)) ax.plot(df.index, df['close'], label='Price') # Plot the buy and sell signals on the Adj Close price figure ax.plot(df[df['Signal'] == 1].index, df['close'][df['Signal'] == 1],
	Price and Signal 400 350 300
	250 200 400 600 800 1000 1200 Data Splitting
In [9]: In [10]: In [11]:	Object untuk menyimpan data splitting untuk nanti digunakan pada tahap modelling. datasets = { } df.dropna(inplace=True) df.reset_index(drop=True, inplace=True) Pemisahan Independent dan Dependent Variable Independent variable atau features yang kami gunakan sepenuhnya merupakan indikator teknikal pada trading saham yang dihasilkan pada proses feature engineering sebelumnya, dengan target atau dependent variable adalah signal hasil labelisasi. cols = ['RSI','SlowK','SlowD','WILLR','PROC','MACD'] X = df[cols]
n [12]:	<pre>y = df[['Signal']].values.reshape(-1, 1).ravel() Pemisahan Data Training dan Testing Pemisahan dilakukan dengan ukuran 80:20 dan stratified dengan nilai y, hal ini dilakukan agar proporsi penyebaran data merata. X_train, X_test, y_train, y_test = train_test_split(</pre>
In [13]:	SMOTE Oversampling Data Memahami bahwa data bersifat imbalanced, maka dari itu kami melakukan SMOTE Oversampling agar data yang dihasilkan memiliki ratio data training yang sama. def visualize_count(df): # Count the number of instances for each class class_counts = df['Signal'].value_counts() # Plot the counts using a bar plot plt.bar(class_counts.index, class_counts.values) plt.title('Signal Variable Count') plt.ylabel('class') plt.ylabel('class') plt.ylabel('clount') plt.show() visualize_count(df)
[n [14]:	sm = SMOTE(random_state=42) X_train_resampled, y_train_resampled = sm.fit_resample(X_train, y_train) df_resampled = pd.concat([pd.DataFrame(X_train_resampled), pd.DataFrame(y_train_resampled, columns=['Signal'])], axis=1)
	df_resampled.head(5) visualize_count(df_resampled) Signal Variable Count 400 100 100 100 100 100 100 10
In [15]: In [16]: In [17]: In [18]: In [19]:	datasets['multiclass_oversampled'] = (X_train_resampled, X_test, y_train_resampled, y_test) Data Tanpa Class 0 atau Sinyal Hold Selanjutnya pemisahan data tanpa class 0 dilakukan untuk menguji performa data tanpa sinyal hold, hal ini dilakukan karena akurasi macro pada class 0 yang sangatlah rendah. df_binary = df[df['Signal'] != 0] X_binary, y_binary = df_binary[cols], df_binary['Signal'].values.ravel() X_train, X_test, y_train, y_test = train_test_split(X_binary, y_binary, test_size=0.25, stratify=y_binary) datasets['binary_class'] = (X_train, X_test, y_train, y_test)
In [20]:	<pre>Deklarasi Fungsi Fungsi roc_curve_plot menerima input berupa model random forest serta object data untuk nantinya membuat visualisasi ROC Curve berdasarkan dengan jumlah class. def roc_curve_plot(rf_model, data): (X_train, X_test, y_train, y_test) = data unique_labels = np.unique(np.concatenate((y_train, y_test))) if len(unique_labels) == 2: # Binary classification: Convert labels to binary format y_test_bin = label_binarize(y_test, classes=unique_labels) y_pred_proba = rf_model.predict_proba(X_test)[:, 1] # Probability predictions for positive class</pre>
	<pre>fpr, tpr, _ = roc_curve(y_test_bin, y_pred_proba) auc_score = roc_auc_score(y_test_bin, y_pred_proba) plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, label='ROC Curve (AUC = {:.2f})'.format(auc_score)) plt.plot([0, 1], [0, 1], 'k') # Diagonal line plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve') plt.legend(loc='lower right') plt.show() else: # Multiclass classification: Calculate macro-average ROC curve and AUC score y_test_bin = label_binarize(y_test, classes=unique_labels) y_pred_proba = rf_model.predict_proba(X_test) # Compute ROC curve and AUC for each class fpr = dict() tpr = dict() tpr = dict()</pre>
	<pre>roc_auc = dict() for i in range(len(unique_labels)): fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_pred_proba[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute macro-average ROC curve and AUC all_fpr = np.unique(np.concatenate([fpr[i] for i in range(len(unique_labels))])) mean_tpr = np.zeros_like(all_fpr) for i in range(len(unique_labels)): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= len(unique_labels)</pre>
	<pre>roc_auc["macro"] = auc(all_fpr, mean_tpr) # Plot macro-average ROC curve plt.figure(figsize=(8, 6)) plt.plot(all_fpr, mean_tpr, label='Macro-average ROC Curve (AUC = {:.2f})'.format(roc_auc["macro"])) plt.plot([0, 1], [0, 1], 'k') # Diagonal line plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve')</pre>
In [21]:	<pre>roc_auc["macro"] = auc(all_fpr, mean_tpr) # Plot macro-average ROC curve plt.figure(figsize=(8, 6)) plt.plot(all_fpr, mean_tpr, label='Macro-average ROC Curve (AUC = {:.2f})'.format(roc_auc["macro"])) plt.plot([0, 1], [0, 1], 'k') # Diagonal line plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate')</pre>
In [21]:	roc_auc["macro"] = auc(all_fpr, mean_tpr) # Plot macro-average ROC curve plt.figure(figsize=(8, 6)) plt.plot(all_fpr, mean_tpr, label='Macro-average ROC Curve (AUC = {:.2f})'.format(roc_auc["macro"])) plt.plot([0, 1], [0, 1], 'K-') # Diagonal line plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.lejend(loc='lower right') plt.show() Fungsi best_random_forest_model() menerima input berupa data, serta param_grid. Fungsi ini mengimplementasi GridSearchCV dalam rangka mengoptimalisasi pencarian model dengan akurasi terbaik, serta menampilkan seluruh hasil. param_grid = { 'n_estimators': [100, 200, 300], # Number of trees in the forest 'max_depth': [None, 5, 10], # Maximum depth of each tree 'min_samples_split': [2, 5, 10], # Minimum number of samples required to split an internal node 'min_samples_split': [1, 2, 4], # Minimum number of samples required to be at a leaf node 'max_features': ['sqrt', 'log2'] # Number of features to consider when looking for the best split def best_random_forest_model(data, param_grid = param_grid): X_train, X_test, y_train, y_test = data
In [21]:	roc_auc("macro") = auc(all_fpr, mean_tpr) # Plot macro-average ROC curve plt.Tigure(Tigsize=(8, 6)) plt.plot(all_fpr, mean_tpr, label='Macro-average ROC Curve (AUC = {:.2f})'.format(roc_auc["macro"])) plt.plot([8, 1], [8, 1], [k-']) # Diaponal line plt.vladea[('False Positive Rate') plt.till("Seciever Operating Characteristic (ROC) Curve') plt.till("Seciever Operating Characteristic (ROC) Curve') plt.show() Fungsi best random forest_model() menerima input berupa data, serta param_grid. Fungsi ini mengimplementasi GridSearchCV dalam rangka mengoptimalisasi pencarian model dengan akurasi terbaik, serta menampikan seluruh hasil. param_grid = { "n.estimators': [180, 200, 388], # Number of trees in the forest "max_depth": [Mone, 5, 18], # Naximum depth of each tree "min.samples_ppit': [2, 5, 18], # Number of samples required to split an internal node "min.samples_ppit': [2, 5, 18], # Number of samples required to be at a leaf node "min.samples_ppit': [2, 5, 18], # Number of reatures to consider when looking for the best split } def best_random_forest_model(data, param_grid = param_grid): X_train, X_test, Y_train, Y_test = data rf_classifier = RandomForestClassifier() grid_search = GridsearchCv(estimator=rf_classifier, param_grid=param_grid, cv=5) grid_search = GridsearchCv(estimator=rf_classifier, param_grid=param_grid, cv=5) grid_search_fit(X_train, Y_train) print("Best parameters found: ", grid_search_best_params_) ##Train and Test Accuracy y_pred_train = grid_search_predict(X_train) train_accuracy = accuracy_score(y_train, y_pred_train) y_pred_train = grid_search_predict(X_train) print("Test accuracy", train_accuracy) print("Test accuracy", train_accuracy) ##Print Classification Report print(classification Report print(classification Report print(classification Report print(classification Report print(classification Report
	### ### ### ### #### #### ############
	re_new_transport = mention
In [22]:	## SOCIAL CONTROL OF THE PROPERTY OF THE PROPE
n [22]:	## Commence of the Commence of
n [22]:	The control of the co
n [22]:	The state of the s
n [22]:	The second control of
n [22]: n [23]:	The control of the co
n [22]: n [23]:	For example of the control of the co
n [23]:	Personal Control of Co
In [23]:	The control of the co
In [23]: In [24]:	The control of the co
	Processor and Control of Control
In [23]: In [24]: In [27]:	Temperature and an activation of the control of the
In [23]: In [24]: In [27]:	The control of the co