EE227BT: Convex Optimization

September 4, 2014

1 Lecture 1—8/28/2014

Def: A set C in \mathbb{R}^n is convex if for any $X, y \in C$, the line segment $\theta x + (1 - \theta)y(\theta \ge 0)$ also lies in C

Convex: $\theta_1 x + \theta_2 y \in C$, where $\theta_1, \theta_2 \geq 0$, and $\theta_1 + \theta_2 = 1$ Linear: restrictions on θ_1, θ_2 are dropped Conic: if restriction $\theta_1 + \theta_2 = 1$ is dropped

 $S_{+}^{n} = \{Xpositive semidefinite\}$

Is a convex cone, because $V^T Z V \ge 0 \forall V$

Theorem: C_1, C_2 are convex, $C_1 \cap C_2$ is also convex

Convex hull is the intersection of all convex sets that contain a point

2 Lecture 2—9/2/2014

epigraph: $epif = \{(x, t), t \ge f(x)\}$

epif is convex if f is convex, and vv

composition with affine functions: if we have a convex function, and we compose it with a linear/affine function, the resulting function composition will be convex

adding convex functions will maintain convexity, subtracting will not necessarily how do you prove convexity with subtraction?

$$\hat{f}(y) - f(Ay + b)\nabla \hat{f}(y) = A^T \nabla f(Ay + b)\nabla^2 \hat{f}(y) = A^T \nabla^2 f(Ay + b)A$$

2.1 Fenchel Conjugate

Fenchel Conjugate: take a function, make another function that is always convex

Let ||.|| be a norm on \mathbb{R}^n . Its dual norm is $||u||_* := \sup\{u^T x |||x|| \le 1\}$

The Fenchel Conjugate of a function f is:

 $f^*(z) = \sup_{x \in f} x^T z - f(x)$

indicator function is convex iff set is convex

If f(x) is convex (and a technical condition is met), $f^{**} = f(x)$

2.2 Subdifferentials

First order global under estimator: $f(x) \ge f(y) + \langle g, x - y \rangle$

Line supporting a graph: whole epigraph is on one side of the line, line passes through the point of interest

If function is differentiable, there is a single line (slope matches the gradient), if the function is undifferentiable, there are i.i. 1 functions that can support the graph

g is a valid sub gradient if

$$x \in \mathbb{R}^n g \in \mathbb{R}^n f(y) \ge f(x) + g^T (y - x)$$

$$x - > x^T S x G = x x^T (x^T S x) = (S x x^T)$$

3 Lecture 3-9/4/2014

3.1 Homework hints

- ullet Sum of k largest eigenvalues of a matrix \to not obvious to prove that it is convex
 - Know that the largest eigenvalue is convex
 - If you have a matrix S, you can add a positive semidefinite matrix, which gives another symmetric matrix; how do the eigenvalues change \rightarrow they increase
 - Theorem \rightarrow minimax representation of eigenvalues

3.2 Optimization problem

Let $f_i: \mathbb{R}^n \to \mathbb{R} (0 \le u \le m)$, generic nonlinear program is:

$$\min f_0(x) s.t. f_i(x) \le 0, 1 \le i \le mx \in \{f_0 \cap ... \cap f_m\}$$

Drop condition on domains for brevity.

• If f_i are differentiable \rightarrow smooth optimization

Convex optimization is specifically:

$$\min f_0(x)$$

$$s.t.f_i(x) \le 0, 1 \le i \le m$$

$$Ax = b$$

Observe:

- All f_i are convex
- Direction of inequality $f_i(x) \leq 0$ is critical
- \bullet Only allow affine equality \rightarrow affine functions are both convex and concave

We denote the feasible set \mathcal{X} :

$$\mathcal{X} = x \in \mathbb{R}^n | f_i(x) \le 0, 1 \le i \le m, Ax = b$$

The optimal value p^* is defined by:

$$p^* := \inf f_0(x) | x \in \mathcal{X}$$

IFF $\mathcal{X} =$, problem is infeasible, $p^* = +\infty$ If $p^* = -\infty$, we call problem unbounded below

3.3 Optimality

A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \geq f(x) \forall x$ in a neighborhood of x^* . x^* is globally optimal if $f(x^*) \geq f(x) \forall x \in \mathcal{X}$.

Only allow a single constraint; can turn multiple constraints, e.g.:

$$f_1(x) \le 0$$

$$f_2(x) \le 0$$

Into a single constraint via:

$$\max_{x} f_1(x), f_2(x) \le 0$$

We are at a stable point if f(x) = 0. If we are convex, x is a global minimum. If we are convex and at a non differentiable point, we are at a minimum if 0 is a valid subgradient (e.g., $0 \in \delta f(x)$).

Subgradient:

 $g \in \mathbb{R}^n$ is a sub gradient of f(x) if $\forall y, f(y) \geq f(x) + g^T(y - x)$.

3.4 Monotonic Transformation

Say $\phi_0, \mathbb{R} \to \mathbb{R}$ is monotonically increasing, ϕ_i satisfies $\phi_i(u) \leq 0$, $\iff u \leq 0$, can transform to convex via composition.

E.g., $f(x_1, x_2, x_3) = x_1^{1.5} x_2^{-2} x_3^3$ is non-convex. However, $\log f(x_1, x_2, x_3)$ is convex $(f(x_1, x_2, x_3) \rightarrow 1.5y_1 - 2y_2 + 3y_3, x_i = log y_i)$.

3.5 Slack variables

Turn inequalities into equalities $\to Ax \ge b \to Ax + s = b, s \ge 0$. Useful if you can use variables to reduce the dimension of the problem.