MT09-A2014 - Examen Final - Questions de cours

Durée : 30mn. Sans documents ni outils électroniques – Rédiger sur l'énoncé

NOM PRÉNOM :	Numéro de Table :

ATTENTION, il y a TROIS exercices indépendants pour cette partie questions de cours! Exercice 1 $(bar\`eme\ approximatif:\ 1.5\ points)$

Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ une matrice $m \times n$, avec $m \geq n$.

- 1. Montrer que A et A^TA ont le même noyau.
- 2. On suppose que A est de rang maximal. Donner, en le justifiant, le nombre de solutions du problème de moindres carrés : $\min_{x \in \mathbb{R}^n} ||Ax b||_2$, où $b \in \mathbb{R}^m$.

Exercice 2 (barème approximatif: 2 points)

Soit $\alpha>0$ un nombre réel, et soient $\omega_1,\omega_2,\omega_3$ trois nombres réels. Nous considérons la formule de quadrature définie par

$$J(f) = \omega_1 f(-\alpha) + \omega_2 f(0) + \omega_3 f(+\alpha),$$

où f est une fonction continue sur \mathbb{R} .

- 1. Trouver ω_j , j=1,2,3, en fonction de α , tel que $J(p)=\int_{-1}^1 p(t)dt$, pour tout polynôme p de degré inférieur ou égal à 2.
- 2. Existe-t-il α tel que la formule de quadrature soit exacte pour tout polynôme p de degré inférieur ou égal à 4? Si oui, que valent α et les ω_j , j=1,2,3? Écrire J.
- 3. Quel est le degré d'exactitude de la formule de quadrature avec cette valeur de α ?

Exercice 3 (barème approximatif: 2 points)

Soit $A \in \mathcal{M}_n(\mathbb{R})$, avec n > 0, $b \in \mathbb{R}^n$ et $c \in \mathbb{R}$. On pose $f : x \in \mathbb{R}^n \mapsto f(x) = x^T A x + b^T x + c \in \mathbb{R}$.

- 1. Calculer $\delta f(x) = f(x+h) f(x)$, pour x et h dans \mathbb{R}^n .
- 2. En déduire la différentielle df(x) et le gradient $\nabla f(x)$.
- 3. On suppose qu'il existe $\hat{x} \in \mathbb{R}^n$ tel que $(A + A^T)\hat{x} = -b$. Que vaut $\delta f(\hat{x})$?
- 4. Si A est symétrique définie positive, que peut-on dire du signe de $\delta f(\hat{x})$? \hat{x} est-il un minimum, un maximum, ou rien, pour f?