Федеральное агентство связи Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

Кафедра прикладной математики и кибернетики

Лабораторная работа № 2 «Нахождение всех базисных решений системы линейных уравнений»

по дисциплине «Алгоритмы и вычислительные методы оптимизации»

Бригада № 1

Выполнил: студент 3 курса группы ИП-811 Мироненко К. А

Проверил: ассистент кафедры ПМиК Новожилов Д.И.

Оглавление

1. Постановка задачи	3
2. Примеры работы программы	4
Приложение Листинг	8

1. Постановка задачи

Написать программу, находящую все базисные решения системы линейных уравнений методом Жордана-Гаусса.

Программа должна выводить промежуточные матрицы после каждого шага исключений и все найденные базисные решения.

Программа должна работать для различных тестов: система имеет единственное решение, система имеет бесконечно много решений, система не имеет решения.

Должна иметься возможность быстро ввести входные данные для различного количества переменных и уравнений. Начальную работу программу необходимо продемонстрировать на предложенной ниже системе (система выбирается по номеру бригады).

Для получения максимальной оценки необходимо, чтобы все вычисления выполнялись в простых дробях. Для этого использовать класс простых дробей, реализованный в лабораторной 1.

2. Примеры работы программы

от Командная строка	× + ×	-			**************************************	-		×
D:_study\algorithms	sAndComputation	alOptimizationM	ethods\labs\2lab	>python main.p	у		H- 1-	
<Исходная матрица>								
	-11	13	-6					
	12		-3		54			
-6		-17	13		-16			
-17		-30	30	-14	-86			
<Произошел свап>								
- 1 7		-30	30	-14	-86			
	12		-3		54			
-6		-17	13		-16			
	-11	13	-6	8				
	7/17	30/17	-30/17	14/17	86/17			
	12				54			
-6		-17	13		-16			
	-11	13	-6		8			
1	7/17	30/17	-30/17	14/17	86/17			
	155/17	-125/17	159/17	55/17	316/17			
	195/17	-109/17	41/17	-35/17	244/17			
	-215/17	101/17	18/17	80/17	-208/17			
<Произошел свап>								
	7/17	30/17	-30/17	14/17	86/17			
	-215/17	101/17	18/17	80/17	-208/17			
	195/17	-109/17	41/17	-35/17	244/17			
	155/17	-125/17	159/17	55/17	316/17			
1	7/17	30/17	-30/17	14/17	86/17			

Рис.1.1 Решение системы по варианту

вы Командная строка ×	+ ~				-	
0, 1, 2)						
:Исходная матрица>						
1	0		599/55			
0	1	0	-29/55			
		1	-35/11			
1	0	0	599/55			
0	ĺ	ő	-29/55			
	ō		-35/11			
1	0	0	599/55			
0	1	ō	-29/55			
	ō		-35/11			
1	0	0	599/55			
- 0	1		-29/55			
		1	-35/11			
ешение:						
1 = 599/55 x2 = -29/5	$5 ext{ x3 = } -35/11$					
0, 1, 3)						
Исходная матрица>	0	1020/220	E00/EE			
1		1039/220	599/55			
0 0		-359/220	-29/55 35/11			
0		-145/44	-35/11			

Рис.1.2 Решение системы по варианту

Рис.1.3 Решение системы по варианту

Рис.1.4 Решение системы по варианту

ж. Командная строка	×				
:_study\algorithms	AndComputation	alOptimizationN	 ethods\labs\2la	b>python main.py	
Исходная матрица>					
	-17	-6	-5	-17	
43	24	-1	3	28	
	1	2	1	9	
2	1	0	0	1	
Іроизошел свап>					
43	24	-1	3	28	
4	-17	-6	-5	-17	
ó	1	2	1	9	
2	1	0	ō	í	
	-				
1	24/43	-1/43	3/43	28/43	
4	-17	-6	-5	-17	
0	1	2	1	9	
2		0	ő		
		•	v		
1	24/43	-1/43	3/43	28/43	
0	-827/43	-254/43	-227/43	-843/43	
0	1	-234/43 2	1	-643/43	
0	-5/43	2/43	-6/43	-13/43	
V	-5/43	2/43	-0/43	-13/43	
1	24/43	-1/43	3/43	28/43	
0	1	254/827	227/827	843/827	
0	1	2	1	9	
ō	-5/43	2/43	-6/43	-13/43	

Рис.2.1 Пример из практики с единственным решением

Командная строка	+ ~				
Ø	0	68/827	-89/827	-152/827	
1	0	-161/827	-69/827	68/827	
0	1	254/827	227/827	843/827	
0	0	1	3/7	33/7	
0	0	68/827	-89/827	-152/827	
1	0	0	0	1	
0	1	0	1/7	-3/7	
0	0	1	1/7 3/7	33/7	
	0	0	-1/7	-4/7	
1	0	0	0	1	
0	1	0	1/7	-3/7	
ō	ō	1	3/7	33/7	
	0	ō	1		
1	0	0	0	1	
0	1	0	0	-1	
0	0	1	0	3	
	Ō	ō	ī		
		######################################	#		
Сокращенная матрица>					
	0	0	0	1	
0	1	0	0	-1	
ρ	0	1	0	3	
		0	1	4	

Рис.2.2 Пример из практики с единственным решением

0 0 1 3/7 33/7 0 0 0 0 -1/7 -4/7 1 0 0 0 1 0 1 0 1/7 -3/7 0 0 1 3/7 33/7 0 0 0 1 3/7 33/7 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 1 0 1 0 0 0 -1 0 0 1 0 3 0 0 0 1 4	- 🗆 X
0 0 0 -1/7 -4/7 1 0 0 0 1 0 1 0 1/7 -3/7 0 0 1 3/7 33/7 0 0 0 1 3/7 33/7 1 0 0 0 1 4 1 0 0 0 1 4 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 3 0 0 0 1 4 ##################################	
0 1 0 1/7 -3/7 0 0 0 1 3/7 33/7 0 0 0 1 4 1 0 0 0 1 4 1 0 1 0 0 1 0 0 1 0 3 0 0 0 1 4	
0 1 0 1/7 -3/7 0 0 0 1 3/7 33/7 0 0 0 0 1 4 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 -1 0 0 0 1 0 3 0 0 0 1 4	
0 0 1 3/7 33/7 0 0 0 0 1 4 1 0 0 0 0 1 0 1 0 1 0 1 0 0 -1 0 0 0 1 0 3 0 0 0 1 4 ##################################	
0 0 0 0 1 4 1 0 0 0 1 0 1 0 -1 0 0 1 0 -1 0 0 1 0 3 0 0 0 1 4 ##################################	
1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	
0 1 0 0 -1 0 0 1 0 3 0 0 0 0 1 4 ###################################	
0 0 1 0 3 0 0 0 0 1 4 ###################################	
0 0 0 0 1 4 пинининининининининининининининининини	
#####################################	
<Сокращенная матрица>	
1 0 0 1	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
0 0 1 0 3 0 0 0 1 4	
0 0 1 4	
Решение:	
x1 = 1	
x2 = -1	
x3 = 3 x4 = 4	
A9 - 9	
D:_study\algorithmsAndComputationalOptimizationMethods\labs\2lab>	

Рис.2.3 Пример из практики с единственным решением

Приложение Листинг

```
import sys
import math
import itertools
class Fraction:
  Класс, реализующий дроби
  slots = (' numerator', ' denominator')
  def __init__(self, numerator=0, denominator=1):
    if type(numerator) is not int or type(denominator) is not int:
       raise TypeError(
         'Fraction(%s, %s) - the numerator and denominator values must be integers' % (numerator,
denominator))
    if denominator == 0:
       raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
    g = math.gcd(numerator, denominator)
    if denominator < 0:
       g = -g
    numerator //= g
    denominator //= g
    self._numerator = numerator
    self. denominator = denominator
  def __add__(self, other):
    """Сумма 2-х дробей"""
    if isinstance(other, Fraction):
       return Fraction(self._numerator * other._denominator + other._numerator * self._denominator,
                 self._denominator * other._denominator)
    return NotImplemented
  def sub (self, other):
    """Разность 2-х дробей"""
    if isinstance(other, Fraction):
       return Fraction(self._numerator * other._denominator - other._numerator * self._denominator,
                 self._denominator * other._denominator)
    return NotImplemented
  def mul (self, other):
    """Произведение 2-х дробей"""
    if isinstance(other, Fraction):
       return Fraction(self._numerator * other._numerator,
                 self._denominator * other._denominator)
    return NotImplemented
  def __truediv__(self, other):
    """Частное 2-х дробей"""
    if isinstance(other, Fraction):
       return Fraction(self._numerator * other._denominator,
                 self._denominator * other._numerator)
    return NotImplemented
  def lt (self, other):
```

```
"""x < y"""
    if isinstance(other, Fraction):
       return self._numerator * other._denominator < other._numerator * self._denominator
    return NotImplemented
  def __le__(self, other):
    """x <= y"""
    if isinstance(other, Fraction):
       return self._numerator * other._denominator <= other._numerator * self._denominator
    return NotImplemented
  def __eq__(self, other):
    """x == v"""
    if isinstance(other, Fraction):
       return self._numerator * other._denominator == other._numerator * self._denominator
    return NotImplemented
  def __ne__(self, other):
    """x != y"""
    if isinstance(other, Fraction):
       return self. numerator * other. denominator != other. numerator * self. denominator
    return NotImplemented
  def __gt__(self, other):
    """x > y"""
    if isinstance(other, Fraction):
       return self. numerator * other. denominator > other. numerator * self. denominator
    return NotImplemented
  def __ge__(self, other):
    """x >= y"""
    if isinstance(other, Fraction):
       return self._numerator * other._denominator >= other._numerator * self._denominator
    return NotImplemented
  def __repr__(self):
    if self._denominator == 1:
       return 'Fraction(%s)' % self._numerator
    else:
       return 'Fraction(%s, %s)' % (self._numerator, self._denominator)
  def __str__(self):
    if self._denominator == 1:
       return str(self. numerator)
       return '%s/%s' % (self._numerator, self._denominator)
  def abs(self):
    return Fraction(abs(self._numerator), abs(self._denominator))
def print_matrix(matrix):
  for i in matrix:
    for j in i:
       print('%15s' % j, end=")
    print()
```

```
print()
```

```
def jordan_gauss_method(matrix, flag=True):
  print("<Исходная матрица>")
  print_matrix(matrix)
  # По столбцам
  for c in range(len(matrix)):
    index = c
    # По элементам столбца
    for i in range(c + 1, len(matrix)):
       if matrix[index][c].abs() < matrix[i][c].abs():
         index = i
    if index != c:
       matrix[index], matrix[c] = matrix[c], matrix[index]
       print("<Произошел свап>")
       print_matrix(matrix)
    if matrix[c][c] == Fraction(0):
       continue
    if matrix[c][c] != Fraction(1):
       # Сокращение строки
       matrix[c] = [i / matrix[c][c] for i in matrix[c]]
       print_matrix(matrix)
    # По всем строкам для их "зануления"
    for i in range(len(matrix)):
       if matrix[i][c] == Fraction(0) or i == c:
         continue
       coeff = matrix[i][c] * Fraction(-1)
       # По элементам строк, начиная с с-ого
       for j in range(c, len(matrix[0])):
         matrix[i][j] = matrix[i][j] + matrix[c][j] * coeff
    print_matrix(matrix)
  count no null str = 0
  for i in matrix:
    null_sum_flag = True
    for j in i[:-1]:
       if j != Fraction(0):
         null\_sum\_flag = False
         break
    # Если элементы строки нулевые и значение не нулевое
    if null sum flag and i[-1] != Fraction(0):
       count no null str = 0
       break
    # Если строка нулевая
    elif null_sum_flag and i[-1] == Fraction(0):
       continue
    count_no_null_str += 1
  if not count no null str:
    return None
  elif count_no_null_str == len(matrix) and count_no_null_str == len(matrix[0]) - 1:
    return [[matrix[i][-1] for i in range(len(matrix))]]
  else:
    res = [[], []]
```

```
# Общее решение
     for i in matrix:
       tmp\_sum = Fraction(0)
       for j in i:
          tmp_sum += j.abs()
       if tmp_sum != Fraction(0):
          res[0].append(i)
     matrix = res[0]
     # Базисное решение
       for i in itertools.combinations([i for i in range(len(matrix[0])-1)], count_no_null_str):
          print("-" * 30)
          print(i)
          tmp_res = [0 \text{ for i in } range(len(matrix[0]) - 1)]
          tmp_matrix = []
          # Получение необходимых столбов, как строк
          for j in i:
            tmp_matrix.append([x[j] for x in matrix])
          tmp matrix.append([x[-1] \text{ for } x \text{ in matrix}])
          # Транспонирование
          tmp matrix = [list(j) for j in zip(*tmp matrix)]
          res_r = jordan_gauss_method(tmp_matrix, False)
          if not res_r:
            print("\nНет решения")
          elif len(res r) == 1:
            print("\nРешение:")
            ans = res r[0]
            for j in range(len(ans)):
               print("x{} = {} ".format(j + 1, ans[j]), end=" ")
            t = 0
            for j in i:
               tmp_res[i] = ans[t]
               t += 1
            print("\n")
            res[1].append(tmp_res)
          elif len(res_r) == 2:
            print("\nСЛАУ имеет множество решений")
     return res
def main():
  matrix = []
  f = open('input.txt', 'r')
  # TODO: возможность ввода дробей
  for line in f:
     a = list(map(int, line.strip().split(' ')))
     matrix.append(list(map(Fraction, a)))
  res = jordan_gauss_method(matrix)
  print("#" * 50)
  print("<Сокращенная матрица>")
  print matrix(matrix)
  if not res:
     print("\nНет решения")
  elif len(res) == 1:
     print("\nРешение:")
```

```
ans = res[0]
     for i in range(len(ans)):
       print("\tx{} = {} ".format(i + 1, ans[i]))
     print("\n")
  elif len(res) == 2:
     o_ans = res[0]
     ans = res[1]
     print("\nОбщее решение:")
     for i in o_ans:
       tmp_str = ""
       for j in range(len(i) - 1):
          tmp = i[i]
          if tmp != Fraction(0):
            if tmp.abs() != Fraction(1):
               if tmp < Fraction(0):
                  tmp_str += " - "
               else:
                  tmp str += " + "
               tmp_str += str(tmp.abs()) + " * "
            tmp\_str += "x" + str(j+1)
       tmp_str += " = " + str(i[-1])
       print(tmp_str)
     print("\nБазисные решения:")
     for i in ans:
       for j in range(len(i)):
          print("\tx{} ) = {} ".format(j + 1, i[j]))
  else:
     print("Вышла какая-то ошибочка :c")
  return
def test():
  a = Fraction(-1, 5)
  b = Fraction(4, 10)
  print(a + b)
  print(a < b)
if __name__ == '__main__':
  main()
  # test()
```