4. Исследование нелинейной нейросетевой модели системы биометрической аутентификации

Цель работы

Исследовать модель системы бинарной классификации «Свой-Чужой» с использованием однослойной нелинейной искусственной нейронной сети.

Постановка задачи и сведения из теории

Постановка задачи.

С помощью метода Бокса-Мюллера сгенерировать искусственные выборки объектов двух классов («Свой», «Чужой») на основе моделирования двумерных эмпирических функций распределения вероятностей, соответствующих нормальному гауссовому закону с двумерной функцией плотности вероятности:

$$N(\mu_{x}, \mu_{y}; \sigma_{x}^{2}, \sigma_{y}^{2}): \quad pdf(x, y) = \frac{1}{2\pi\sigma_{x}\sigma_{y}} e^{-\frac{\left((x-\mu_{x})^{2} + \frac{(y-\mu_{y})^{2}}{2\sigma_{x}^{2}}\right)}{2\sigma_{y}^{2}}}.$$
 (4.1)

Класс «Чужой» получить объединением двух подклассов «Чужой-1», «Чужой-2».

Для разделения классов в соответствии с вариантом построить оптимальную дискриминантную кривую, определяемую вектором синаптических весовых коэффициентов $\mathbf{w}=(w_{ij})_{i+j\leq n}$, с помощью однослойной нелинейной искусственной нейронной сети (ИНС) с правилом обучения Видроу–Хоффа. Нейронная сеть должна иметь входы $x_1^i x_2^j \in \mathbb{R}$, соответствующие варианту, единичный вход смещения $x_0=1$, двоичный выход $y\in\{0,1\}$ и пороговую функцию активации $f:\mathbb{R}\to\{0,1\}$.

Рис. 4.1. Архитектура ИНС

Рабочий режим НС. Алгоритм функционирования ИНС имеет вид:

$$net = \sum_{0 \le i+j \le n} w_{ij} x_1^i x_2^j; \quad y(net) = \begin{cases} 1, & net \ge 0, \\ 0, & net < 0, \end{cases}$$
 (4.2)

где net – комбинированный вход; *у* – реальный выход ИНС.

<u>Режим обучения НС.</u> Для необученной ИНС ее реальный выход y в общем случае отличается от целевого выхода t, представляющего собой маркеры известных классов «Свой» (1) и «Чужой» (0), т.е. имеется ошибка

$$\delta = t - y. \tag{4.3}$$

На каждой эпохе обучения k=0,1,...,K на вход ИНС последовательно предъявляется образец обучающей выборки $\mathbf{x}^{(l)} = \left(x_{ij}^{(l)}\right)_{i+j \le n}$ (l=1,2,...,L), и вектор весовых коэффициентов \mathbf{w} корректируется по рассчитанному согласно (4.2) выходному значению $y^{(lk+l)}$ и соответствующему целевому выходу $t^{(l)}$ в соответствии с правилом Видроу-Хоффа (дельта-правило):

$$w_{ij}^{(Lk+l)} = w_{ij}^{(Lk+l-1)} + \Delta w_{ij}^{(Lk+l)},$$

$$\Delta w_{ij}^{(Lk+l)} = \eta \delta^{(Lk+l)} x_{ij}^{(l)},$$
(4.4)

где $x_{ij}^{(l)} = \left[x_1^{(l)}\right]^i \left[x_2^{(l)}\right]^j$ — компоненты обучающего l-го вектора на k-м шаге обучения; $\delta^{(Lk+l)}$ — ошибка (4.3) на l-м шаге внутри эпохи k; $\Delta w_{ij}^{(Lk+l)}$ — коррекция веса; $\eta \in (0,1]$ — норма обучения.

Начальные значения весовых коэффициентов $w_{ij}^{(0)}$ инициализируются случайным образом из интервала [-1,1].

На каждой эпохе k суммарная ошибка (1 и 2 рода) E(k) равна расстоянию Хемминга между векторами целевого и реального выхода по всем векторам обучающей выборки l=1,2,...,L. В качестве обучающей выборки следует взять долю равновероятно выбранных образцов из каждого класса. Обучение следует проводить до достижения стабилизации, когда в течение последовательных T=10 эпох суммарная ошибка не уменьшается.

<u>Режим тестирования</u>. Для тестирования следует выбрать оставшиеся элементы совокупности обоих классов. Рассчитать ошибки 1 и 2 рода классификации объектов тестовой выборки.

Требования к отчету

Отчет должен содержать: титульный лист; цель работы; постановку задачи; распределения образов обоих классов, приведенные на одном графике; найденные синаптические коэффициенты дискриминантной кривой и ее график; график динамики ошибки в зависимости от номера эпохи обучения; матрица ошибок.

Варианты работы

Исходные данные:

- количество образов класса «Свой»: $N_{\text{friend}} = 300$;
- количество образов подкласса «Чужой-1»: $N_{\rm foel} = 500$;
- количество образов подкласса «Чужой-2»: $N_{\rm foe2} = 400$;
- дисперсия распределений класса «Свой» и подклассов «Чужой-1», «Чужой-2»: $\sigma^2 = 1$;
- количество элементов обучающей выборки: M=200 (по 100 из каждого класса, «Свой», «Чужой).

Таблица 4.1. Варианты заданий

No	$\mu_{\scriptscriptstyle \! x}, \mu_{\scriptscriptstyle \! y}$			руони ИНС
	«Свой»	«Чужой-1»	«Чужой-2»	входы ИНС
1	(0, 0)	(6, 0)	(0, -6)	$\{1, x_1, x_2, x_1^2, x_1^3\}$
2	(0, 0)	(0, -6)	(6, 6)	$\{1, x_1, x_2, x_2^2\}$
3	(0, 0)	(6, 0)	(-6, 0)	$\{1, x_1, x_2, x_1^2, x_2^2\}$
4	(0, 0)	(6, 6)	(0, -6)	$\{1, x_1, x_2, x_1x_2, x_1^2, x_2^2\}$
5	(0, 0)	(6, 6)	(0, -6)	$\{1, x_1, x_2, x_1^2, x_1^3\}$
6	(0, 0)	(6, 6)	(6, -6)	$\{1, x_1, x_2, x_1^2, x_2^2\}$
7	(0, 0)	(6, 6)	(-6, -6)	$\{1, x_1, x_2, x_1x_2\}$
8	(0, 0)	(-6, -6)	(6, 6)	$\{1, x_1, x_2, x_1^2, x_2^2\}$
9	(0, 0)	(6, 6)	(-6, -6)	$\{1, x_1, x_2, x_1x_2, x_1^2, x_2^2\}$
10	(0, 0)	(6, 0)	(-6, 6)	$\{1, x_1, x_2, x_2^2, x_2^3\}$
11	(0, 0)	(6, 0)	(-6, 0)	$\{1, x_1, x_2, x_1^2\}$
12	(0, 0)	(0, 6)	(0, -6)	$\{1, x_1, x_2, x_1^2, x_2^2\}$
13	(0, 0)	(6, -6)	(-6, 6)	$\{1, x_1, x_2, x_1x_2, x_1^2, x_2^2\}$
14	(0, 0)	(6, 0)	(0, -6)	$\{1, x_1, x_2, x_2^2, x_2^3\}$
15	(0, 0)	(6, -6)	(-6, 6)	$\{1, x_1, x_2, x_1^2, x_2^2\}$
16	(0, 0)	(-6, -6)	(6, 6)	$\{1, x_1, x_2, x_1x_2\}$