Chapitre 5

Logarithme népérien

I. Fonction réciproque

1) <u>Définition</u>

Définition:

Soit I et J des intervalles de \mathbb{R} .

Si $f: I \to J$ est une fonction **continue** et **strictement monotone** sur I, et d'image J, alors, pour tout réel $a \in J$, il existe un unique réel $b \in I$ tel que f(b) = a.

La fonction $g: J \to I$ qui, au réel a associe le réel b est appelée la fonction réciproque de f.

Pour tous $a \in J$ et $b \in I$, on a :

$$a = f(b) \Leftrightarrow b = g(a)$$

La fonction réciproque de f est notée f^{-1} .

Exemple:

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = x^2$.

f est continue est strictement monotone sur $[0;+\infty[$ et, à valeurs dans $[0;+\infty[$ car $f(x)=x^2 \ge 0$ pour tout réel x.

Pour tout $y \ge 0$, l'équation $x^2 = y$ admet une solution unique : $x = \sqrt{y}$.

La fonction définie sur $[0;+\infty[$: $x=\sqrt{y}$ est la fonction réciproque de la fonction carrée.

C'est la fonction racine carrée.

Propriété :

Soit f une fonction définie, continue et strictement monotone sur un intervalle I et, à valeurs dans un intervalle J, de fonction réciproque f^{-1} .

Pour tout réel x appartenant à f, on a $f(f^{-1}(x)) = x$ et, pour tout réel x appartenant à f, on a $f^{-1}(f(x)) = x$

2) Interprétation graphique

Dans un repère orthonormé, les courbes représentatives de ces deux fonctions sont symétriques par rapport à la droite Δ , d'équation y=x.

Exemple:

On considère les fonctions f et g définies sur $[0;+\infty[$ par $f(x)=x^2$ et $g(x)=\sqrt{x}$.

Les fonctions f et g sont réciproques l'une de l'autre.

II. La fonction logarithme népérien

1) Liens avec la fonction exponentielle

La fonction exponentielle est continue et strictement croissante sur \mathbb{R} .

De plus, $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to +\infty} e^x = +\infty$, donc d'après la généralisation du théorème des valeurs intermédiaires, pour tout nombre réel x de $]0;+\infty[$, il existe un unique nombre réel y tel que $e^y = x$.

Définition:

La fonction **logarithme népérien**, notée \ln , est la fonction définie sur $]0;+\infty[$ qui à tout nombre réel x>0, associe l'unique solution de l'équation $e^y=x$ d'inconnue y.

On note $y = \ln x$.

Conséquences:

Elles découlent directement de la définition précédente.

- Pour tout nombre réel x>0 et tout nombre réel y, $x=e^y$ équivaut à $y=\ln x$.
- Pour tout nombre réel x>0, $e^{\ln x}=x$.
- Pour tout nombre réel x, $\ln(e^x) = x$.
- $\ln 1=0$ (car $e^0=1$); $\ln e=1$ (car $e^1=e$); $\ln \frac{1}{e}=-1$ (car $e^{-1}=\frac{1}{e}$)

Propriété:

Dans un repère orthonormé, les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation y=x.

<u>Démonstration</u>:

On note respectivement $\mathscr C$ et $\mathscr C'$ les courbes représentatives des fonctions exp et \ln .

Pour tous nombres réels x et y>0, dire que M'(x;y) appartient à \mathscr{C}' équivaut à $y=\ln x$ c'est-à-dire $x=e^y$ ce qui équivaut à dire que M(y;x) appartient à \mathscr{C} .

 \mathscr{C} et \mathscr{C}' sont donc symétriques par rapport à la droite d'équation y=x.

Remarque:

Les fonctions exp et ln sont réciproques l'une de l'autre.

2) Sens de variation de la fonction In

Propriété :

La fonction logarithme népérien est **strictement croissante** sur $]0;+\infty[$.

<u>Démonstration</u>:

a et b sont deux nombres réels tels que 0 < a < b, c'est-à-dire tels que $e^{\ln a} < e^{\ln b}$.

La fonction exponentielle est strictement croissante sur $\mathbb R$ donc :

 $\ln a < \ln h$

Conséquences:

Pour tous nombres réels a>0 et b>0.

- $\ln a = \ln b$ équivaut à a = b
- $\ln a < \ln b$ équivaut à a < b
- $\ln a > 0$ équivaut à a > 1 et $\ln a < 0$ équivaut à 0 < a < 1.

III. Propriétés algébriques

1) Relation fonctionnelle

Propriété:

Pour tous nombres réels a>0 et b>0,

$$\ln(ab) = \ln(a) + \ln(b)$$

Remarques:

- On dit que la fonction ln transforme les produits en somme.
- Pour tous nombres strictement positifs a_1 , a_2 , ..., a_n : $\ln(a_1 \times a_2 \times ... \times a_n) = \ln(a_1) + \ln(a_2) + ... + \ln(a_n)$

2) Logarithme d'un inverse, d'un quotient

Propriétés:

Pour tous nombres réels a>0 et b>0.

- $\ln \frac{1}{b} = -\ln b$
- $\ln \frac{a}{b} = \ln a \ln b$

3) Logarithme d'une puissance, d'une racine carrée

Propriété:

Pour tout nombre réel a>0 et pour tout nombre entier relatif n:

$$\ln(a^n) = n \ln a$$

Exemple:

Pour tout nombre réel x>0, $\ln(x^2)=2\ln x$.

Propriété :

Pour tout nombre réel a>0:

$$\ln \sqrt{a} = \frac{1}{2} \ln a$$

Exemple:

$$\ln \sqrt{2} - \frac{1}{3} \ln 4 = \frac{1}{2} \ln 2 - \frac{1}{3} \ln (2^2) = \frac{1}{2} \ln 2 - \frac{2}{3} \ln 2 = -\frac{1}{6} \ln 2.$$

IV. Étude de la fonction In

1) Dérivabilité et continuité de ln

Propriétés:

La fonction ln est **dérivable** sur $]0;+\infty[$ et pour tout nombre réel x>0.

$$\ln'(x) = \frac{1}{x}$$

Propriété:

La fonction $\ln \operatorname{est} \operatorname{continue} \operatorname{sur} \left]0; +\infty\right[$.

En effet, toute fonction dérivable sur un intervalle est continue sur cet intervalle.

2) Limite de ln en 0 et en +∞

Propriétés:

- $\lim_{x \to +\infty} \ln x = +\infty$
- $\lim_{x\to 0} \ln x = -\infty$

3) Tableau de variation et courbe

5

L'axe des ordonnées est asymptote verticale à la courbe représentative de ln .

V. Compléments sur la fonction In

1) Limites

Propriété :

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Remarque:

On en déduit que pour h proche de 0: $\ln(1+h) \approx h$.

Croissances comparées

Propriétés :

- $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$
- $\bullet \quad \lim_{x \to 0} x \ln x = 0$

Généralisation:

Pour tout $n \in \mathbb{N}^*$,

- $\bullet \quad \lim_{x \to 0} x^n \ln x = 0$
- $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$

2) Fonction $x \mapsto \ln(u(x))$

Notation:

u désigne une fonction strictement positive sur un intervalle I.

La fonction $x \mapsto \ln(u(x))$ définie sur I est notée $\ln u$.

$$x \mapsto u(x) \mapsto \ln(u(x))$$

Propriété :

u est une fonction dérivable et strictement positive sur un intervalle I.

La fonction $\ln u$ est **dérivable** sur I et $(\ln u)' = \frac{u'}{u}$.

Propriété:

Les fonctions u et $\ln u$ ont le même sens de variation sur I.

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1)$.

 $f = \ln u$ où u est la fonction définie sur \mathbb{R} par $u(x) = x^2 + 1$.

Or, u est dérivable et strictement positive sur \mathbb{R} , donc f est dérivable sur \mathbb{R} .

6

Pour tout nombre réel x, $f'(x) = \frac{2x}{x^2 + 1}$.