ANALIZA MATEMATYCZNA

LISTA ZADAŃ 10

13.12.2021

1. Wyznacz promień zbieżności szeregu Maclaurina funkcji:

(a)
$$f(x) = \sqrt{x+2}$$
, (b) $f(x) = \frac{1}{x+3}$, (c) $f(x) = \log(x+e)$.

2.	Znajdź pu	nkty przegięcia i	przedziały	wypukłości funkcji	danych	wzorami:
	(a)	$x^3 + 2x^2 + 3x + 4$	4, (b)	$x^8 - x^2 + 7x - 15,$	(c)	e^{-x^2} ,
	(d)	$\sin^4(x)$,	(e)	$\sqrt{x} - \log(x),$	(f)	$x^4 + \sqrt[4]{x}.$

- 3. Znajdź punkt przecięcia stycznej do wykresu funkcji $f(x) = x^2$ w punkcie (2,4) z osią
- 4. Znajdź punkt przecięcia stycznej do wykresu funkcji $f(x)=e^x$ w punkcie (0,1) z osią OX.
- 5. Znajdź punkt przecięcia stycznych do wykresu funkcji $f(x) = x^3$ odpowiednio w punk- $\tanh (-1, -1) i (2, 8).$
- 6. Oblicz $\int f(x) dx$ jeśli f(x) dane jest wzorem:
 - (a) 10^x .

- (b) $\sqrt[m]{n}$, $m, n \in \mathbb{N}$,

(d) $3.4 x^{-0.17}$.

- (e) 1 2x, (f) $\left(\frac{1-x}{x}\right)^2$,
- (g) $(\sqrt{x}+1)(x-\sqrt{x}+1)$, (h) $\frac{\sqrt{x}-x^3e^x+x^2}{x^3}$, (i) $(x+1)^{22}$, (j) $\frac{x^{100}-1}{x-1}$, (k) $\frac{x\sqrt[6]{x}+\sqrt[7]{x}}{x^2}$, (l) $\frac{x^3}{x+1}$,

(j) $\frac{x^{100}-1}{x-1}$,

- 7. Znaleźć taką funkcję F, żeby F''(x) było równe:
 - (a) $x^2 + 2x$, (b) $\cos(x)$,

- 8. Znajdź taką funkcję F, że:
 - (a) $F''(x) = x^2 + 1$, F'(0) = 2, F(0) = 3;
 - (b) $F''(x) = \frac{1}{x^3}$, F'(2) = 1, F(3) = 5; (c) $F'''(x) = \sin(x)$, F''(0) = F'(0) = F(0) = 0;

 - (d) $F''(x) = \frac{1}{x^2}$, F'(1) = F'(-1) = 1, F(1) = F(-1) = 3.
- 9. Oblicz $\int f(x) dx$ jeśli f(x) dane jest wzorem:
 - (a) $x\sin(2x)$,

(c) $x^n \log(x), n \in \mathbb{N},$

- (d) $x^3 e^{5x}$.

- (g) $x \sin(x) \cos(x)$,
- (b) $x e^{-x}$, (c) $x^n \log(x)$, (e) $e^x \sin^2(x)$, (f) $x 3^x$, (h) $e^{3x} \sin(2x)$, (i) $\sqrt{e^x 1}$, (1) $1 \cdot \sin(\log x)$

- (j) $e^x \sin(e^x)$,
- (l) $1 \cdot \sin(\log(x))$,

(m) $e^{-x^2} x$,

- (h) $x e^{x^2}$, (n) $\frac{\cos(\sqrt{x})}{\sqrt{x}}$,
- (o) $e^{\sqrt[3]{x}}$,

(p)
$$\frac{1}{x \log(x) \log(\log(x))},$$

(t)
$$\frac{e^{2x}}{\sqrt{x+1}}$$

(r)
$$6^{1-x}$$
,

(s)
$$\sin^5(x)\cos(x)$$
,

(t)
$$\frac{e^{2x}}{\sqrt[4]{e^x + 1}}$$
,
(w) $e^{5x} \cos(3x)$,

(u)
$$x e^{x^2} (x^2 + 1)$$
,

$$(v) \quad e^{5x} \sin(3x),$$

(w)
$$e^{5x} \cos(3x)$$
,

(q) $\cos(x) e^{\sin(x)}$,

(x)
$$\sin(3x) \cdot \sin(5x)$$
,

$$(y) \quad \sin(15x) \cdot e^{-4x},$$

(z)
$$\frac{\arctan(x)}{x^2+1}$$

(aa)
$$\frac{\arctan^{7}(x) + 9 \arctan^{5}(x)}{x^{2} + 1}$$

(ab)
$$\frac{x^3}{(x-1)^{12}}$$
,

(z)
$$\frac{\arctan(x)}{x^2 + 1},$$
(ac)
$$\frac{\log^7(x) + \log^2(x)}{x},$$
(af)
$$\sqrt{2 + \log(x)}$$

(ad)
$$e^{-x^2} x^5$$
,

(ae)
$$\sin(\sqrt{x})$$
,

(af)
$$\frac{\sqrt{2 + \log(x)}}{x}$$