EEE5062计算方法 期末作业

作业提交DDL: 2022/6/16 23:59前 (不考试,期末占比非60%,具体未定)

姓名: 江宇辰 学号: 11812419

第一部分(5题计算题)

Q1

1. 给出 $f(x) = \ln x$ 的数值表,用线性插值、二次插值计算 $\ln 0.59$ 和 $\ln 0.64$ 。(第 2 章)

x	0.4	0.5	0.6	0.7	0.8
ln x	-0.916291	-0.693147	-0.510826	-0.356675	-0.223144

解: In 0.59:

• 线性插值:

选择[0.5, 0.6],此时 x1=0.5 y1=-0.693147 x2=0.6 y2=-0.510826 代入线性插值公式后可得

\$p(x) = 1.82321 * x - 1.604752 \$, 故 \$ In0.59 \approx p(0.59) = -0.529058\$

二次插值

根据二次插值,选择[0.5, 0.7],此时

x1 = 0.5 y1 = -0.693147 x2 = 0.6 y2 = -0.510826 x3 = 0.7 y3 = -0.356675 代入二次插值公式后可得

 $p(x) = -1.408500*x^2 + 3.372560*x - 2.027302$, 故 \$ In0.59 \approx p(0.59) = -0.527790\$

同理, In 0.64:

。 线性插值:

选择[0.6, 0.7],此时 $x1=0.6\,\,y1=-0.510826\,x2=0.7\,y2=-0.356675\,$ 代入线性插值公式后可得

$$p(x) = 1.541510 * x - 1.435732$$
, it $ln0.64 \approx p(0.64) = -0.449166$

二次插值

根据二次插值,选择[0.5, 0.7],此时

x1 = 0.5 y1 = -0.693147 x2 = 0.6 y2 = -0.510826 x3 = 0.7 y3 = -0.356675 代入二次插值公式后可得

 $p(x) = -1.408500*x^2 + 3.372560*x - 2.027302$, 故 \$ ln0.64 \approx p(0.64) = -0.445785\$

2. 计算函数 $f(x) = (x-2)^5$ 和 $f(x) = x^m (1-x)^n$,关于 C[0,1]的 $||f||_{\infty}$, $||f||_1$ 和 $||f||_2$ 。(第 3 章)

$$\begin{split} & \textbf{\mathbf{H}: } f(x) = (x-2)^5 \colon ||f||_{\infty} = \max_{0 \leq x \leq 1} |(x-2)^5| = 32 \text{ ,} \\ & ||f||_1 = \int_0^1 |f(x)| dx = \int_0^1 |(x-2)^5| dx = \int_0^1 (2-x)^5 dx = \frac{31}{6} \text{ ,} \\ & ||f||_2 = (\int_0^1 f^2(x) dx)^{\frac{1}{2}} = (\int_0^1 (x-2)^{10} dx)^{\frac{1}{2}} = \sqrt{93} \\ & f(x) = x^m (1-x)^n \colon ||f||_{\infty} = \max_{0 \leq x \leq 1} |x^m (1-x)^n| = (\frac{m}{m+n})^m (\frac{n}{m+n})^n \text{ ,} \\ & ||f||_1 = \int_0^1 |f(x)| dx = \int_0^1 |x^m (1-x)^n| dx = \frac{n! m!}{(n+m+1)!} \text{ ,} \\ & ||f||_2 = (\int_0^1 f^2(x) dx)^{\frac{1}{2}} = (\int_0^1 x^{2m} (1-x)^{2n} dx)^{\frac{1}{2}} = \sqrt{\frac{(2n)! (2m)!}{(2n+2m+1)!}} \end{split}$$

Q3

3. 用龙贝格求积方法计算 $\int_0^3 x \sqrt{1+x^2} \, dx$, 使误差不超过 10^{-4} 。(第 4 章)

解:由题意得:根据龙贝格求积方法,列出以下表格:

k	$T_0^{(k)}$	$T_1^{(k)}$	$T_2^{(k)}$	$T_3^{(k)}$	$T_4^{(k)}$
0	14.2302495				
1	11.1713699	10.1517434			
2	10.4437968	10.2012725	10.2045744		
3	10.2663672	10.207224	10.2076207	10.2076691	
4	10.2222702	10.2075712	10.2075943	10.2075939	10.2075936

故当误差不超过 10^{-4} 时,积分值约为10.2075936

Q4

4. 设线性方程组
$$\begin{cases} 5x_1+2x_2+x_3=-12\\ -x_1+4x_2+2x_3=18 \text{ , } 用高斯-塞德尔迭代法解此方程组,当\\ 2x_1-3x_2+10x_3=3 \end{cases}$$
 $||x^{k+1}-x^k||_{\infty}<10^{-3}$ 时迭代终止。(第6章)

解:由题意得:建立迭代公式

$$\begin{cases} x_1^{(k+1)} = -\frac{2}{5}x_2^{(k)} - \frac{1}{5}x_3^{(k)} - \frac{12}{5} \\ x_2^{(k+1)} = \frac{1}{4}x_1^{(k+1)} - \frac{1}{2}x_3^{(k)} + \frac{9}{2} \\ x_3^{(k+1)} = -\frac{1}{5}x_1^{(k+1)} + \frac{3}{10}x_2^{(k+1)} + \frac{3}{10} \end{cases}$$

取 $x^{(0)}=(1,1,1)^T$,迭代6次时,满足精度要求,此时 $x^{(6)}=(-2.836327,0.571571,1.038737)^T$

Q5

5. 用幂法计算 $A = \begin{bmatrix} 3 & -4 & 3 \\ -4 & 6 & 3 \\ 3 & 3 & 1 \end{bmatrix}$ 的主特征值及对应的特征向量,当特征值有 3 位小数稳定时迭代终止。(第 8 章)

解:使用幂法公式,
$$u_0 \neq 0, v_k = Au_{k-1}, u_k = \frac{v_k}{max(v_k)}, k=1,2,\dots$$
 取 $u_0 = (1,1,1)^T \neq 0$,根据给定的 A ,代入得:

k	u_k^T	$max(v_k)$
1	[0.28571429, 0.71428571, 1.]	7
2	[0.1627907 , 1. , 0.65116279]	6.142857142857142
3	[-0.2133758 , 1. , 0.56687898]	7.3023255813953485
4	[-0.34363366, 1. , 0.34214445]	8.554140127388536
5	[-0.47666741, 1. , 0.27511633]	8.400967982129561
6	[-0.52732975, 1. , 0.21130442]	8.732018612896077
7	[-0.56593212, 1. , 0.18635158]	8.743232269917478
8	[-0.58243997, 1. , 0.16871719]	8.822783237720643
9	[-0.59316669, 1. , 0.16086595]	8.835911465428236
10	[-0.5981642 , 1. , 0.15599374]	8.855264597415438
11	[-0.60114309, 1. , 0.15365724]	8.8606380142709

k	u_k^T	$max(v_k)$
12	[-0.6026091 , 1. , 0.15230063]	8.865544088884402
13	[-0.60344212, 1. , 0.15162084]	8.867338303341578
14	[-0.6038659 , 1. , 0.15124031]	8.868631010085302
15	[-0.60410027, 1. , 0.15104462]	8.869184514309877
16	[-0.60422187, 1. , 0.15093732]	8.869534947414126
17	[-0.60428808, 1. , 0.15088129]	8.86969941178975

故 A_1 的主特征值 $\lambda_1 = 8.86969941178975$, 特征向量 $x_1 = [-0.60428808, 1., 0.15088129]^T$

第二部分 (2-3页报告(限5页内), 注意图片大小, 排版格式不限, 中英不限)

包括:

- a. 自己提供数据(各自专业,不限学科,网络公开数据也可)
- b. 数据的背景(相关专业知识、如何获取、用于求解什么等)
- c. 数值处理(用到什么方法、效果如何、对结论有何贡献)
- d. 小结

简略模板:

- a. 电阻的 IV 数据。
- b. 器件电阻和功耗相关。探针台可测量电流和电压,利用 V=IR 即可求得不同电压/电流下电阻的变化情况。
- c. 线性方程的求解,去除周期波动的背景噪声,数值的保留,得到电阻。
- d. 温度会影响电阻,大功率下器件发热使性能下降。

其他内容:数值收敛、等高线、材料能带、浓度变化、平均耗时、强度分布等。

问题描述:针对求解矩阵特征值与特征向量的主题,我们对其具体的应用进行了探索。在主成分分析方法中运用到了求解矩阵特征值与特征向量的方法,同时主成分分析也是一种常见的数据降维与特征提取的方式,常用于数据挖掘工作中。

数据来源: [葡萄酒样本数据][http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data], 共178行14列, 代表178个葡萄酒样本的1列样本标签与13列参数特征(Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines, Proline)

(数据预览)

数值处理:

- 使用python对wine.data数据进行读取,手动分割数据与标签,并按8:2分割训练集与测试集。数据集中均为有效数据。
- 使用Linear Regression作为线性拟合的模型,分别对**原始数据**(13列特征)与**PCA转换后数据**(n列特征,n为转换后的维数)进行模型训练并观察模型效果。

实验过程:

使用原始数据进行模型训练:

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import fl_score
import warnings

warnings.filterwarnings('ignore')

clf_lr = LogisticRegression()
clf_lr.fit(X_train, y_train)

train_score = clf_lr.score(X_train, y_train)
test_score = clf_lr.score(X_test, y_test)
```

不难发现使用原始数据进行模型拟合时,效果已经达到了不错的效果。下面使用PCA方法对数据进行降维,主要步骤为: 1.对原始数据构建协方差矩阵 2.求协方差矩阵的特征值与特征向量(使用numpy.linalg.eig()方法) 3.按特征值从大到小选取n个对应的特征向量作为转换矩阵,与原始数据相乘得到新数据。这里我们选取n=5进行实验。

PCA过程:

```
def pca(dataMat, n):
    newData,meanVal=zeroMean(dataMat)
    covMat=np.cov(newData,rowvar=0) #求协方差矩阵,return ndarray: 若rowvar非0, 一
列代表一个样本,为0, 一行代表一个样本

    eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是接列放
的,即一列代表一个特征向量
    eigValIndice=np.argsort(eigVals) #对特征值从小到大排序
    n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标
    n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量
    lowDDataMat=newData*n_eigVect #低维特征空间的数据
    reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据
    return lowDDataMat,reconMat
```

使用PCA转换后的数据进行模型训练(n=5):

可以发现,当我们对原始13维数据进行降维后,降低了部分预测的准确率,但是同时降低了输入数据的复杂度,将原始13维数据压缩为5维**特征**数据,在这里,特征值与特征向量正是起到了提取主要特征的作用。

另外,我们对不同的n进行了测试实验:

n	Accuracy
3	0.75
4	0.916666
5	0.916666
6	0.916666
7	0.944444
8	0.944444
9	0.944444

结论:可以发现,当降维到7维时,已经达到了和原始数据 (13维)一样的效果,我们可以认为: PCA对原始数据进行了有效的数据特征提取,将其中有效的特征提取出来作为模型的输入。降低了模型的复杂度,对于后续的数据,我们依然可以使用PCA方法中的转换矩阵进行处理,再进行预测。

小结:在本实验中,我们结合特征值与特征向量的求解对葡萄酒数据进行PCA降维处理,提取出有效特征,大大降低了输入数据的维数与模型的复杂程度。同时我们也应思考:1.数据量是否限制了实验数据的效果2.对于PCA处理后的数据,我们无法对其进行实例化的解释(如原始数据中的酒精度、酸度、镁含量等特征是具体的特征,而PCA处理后的数据仅仅是数据处理的产物,没有实际意义)。总而言之,通过特征值与特征向量的方法,我们提取到了数据的核心特征,完成了模型的优化。