

| FORMATO DE SYLLABUS                        | Código: AA-FR-003                  |  |  |
|--------------------------------------------|------------------------------------|--|--|
| Macroproceso: Direccionamiento Estratégico | Versión: 01                        |  |  |
| Proceso: Autoevaluación y Acreditación     | Fecha de Aprobación:<br>27/07/2023 |  |  |



| FACULTAD:                                           |                                                    | Tecnológica                         |                                |                      |                     |                          |                        |       |  |  |  |
|-----------------------------------------------------|----------------------------------------------------|-------------------------------------|--------------------------------|----------------------|---------------------|--------------------------|------------------------|-------|--|--|--|
| PROYECTO CURI                                       | RICULAR:                                           |                                     | Tecnología en El               | ectrónica Industrial |                     | CÓDIGO PLAN DE ESTUDIOS: |                        |       |  |  |  |
| I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO             |                                                    |                                     |                                |                      |                     |                          |                        |       |  |  |  |
| NOMBRE DEL ESPACIO ACADÉMICO: SENSORES Y ACTUADORES |                                                    |                                     |                                |                      |                     |                          |                        |       |  |  |  |
| Código del espacio académico:                       |                                                    | 24904                               | Número de créditos académicos: |                      |                     | 2                        |                        |       |  |  |  |
| Distribución horas de trabajo:                      |                                                    |                                     | HTD                            | 2                    | нтс                 | 2                        | НТА                    | 2     |  |  |  |
| Tipo de espacio académico:                          |                                                    | Asignatura                          | х                              | Cátedra              |                     |                          |                        |       |  |  |  |
| NATURALEZA DEL ESPACIO ACADÉMICO:                   |                                                    |                                     |                                |                      |                     |                          |                        |       |  |  |  |
| Obligatorio<br>Básico                               | х                                                  | Obligatorio<br>Complementario       |                                |                      | Electivo Intrínseco |                          | Electivo<br>Extrínseco |       |  |  |  |
| CARÁCTER DEL ESPACIO ACADÉMICO:                     |                                                    |                                     |                                |                      |                     |                          |                        |       |  |  |  |
| Teórico                                             |                                                    | Práctico                            |                                | Teórico-Práctico     | х                   | Otros:                   |                        | Cuál: |  |  |  |
| MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:          |                                                    |                                     |                                |                      |                     |                          |                        |       |  |  |  |
| Presencial                                          | х                                                  | Presencial con incorporación de TIC |                                | Virtual              |                     | Otros:                   |                        | Cuál: |  |  |  |
|                                                     | II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS |                                     |                                |                      |                     |                          |                        |       |  |  |  |

Se recomienda que los estudiantes que cursen esta asignatura tengan conocimientos sólidos en fundamentos de electrónica, especialmente en circuitos análogos y digitales, instrumentación básica, física general (especialmente electricidad y magnetismo), y matemáticas aplicadas. También es importante poseer habilidades básicas en programación y manejo de herramientas de simulación como Proteus, LTSpice o Multisim, ya que serán utilizadas en el desarrollo de proyectos prácticos. La comprensión de principios de medición, señales eléctricas y nociones básicas de control proporcionará una base sólida para el aprendizaje en este curso.

#### III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La automatización de procesos industriales depende críticamente del adecuado funcionamiento de los sensores y actuadores. Estos dispositivos permiten captar variables físicas y generar respuestas precisas que garanticen la eficiencia, seguridad y calidad en los sistemas automatizados. Esta asignatura proporciona al estudiante las competencias necesarias para seleccionar, integrar y evaluar tecnologías de sensado y actuación, dentro de un marco normativo y técnico exigente. En el contexto de la Industria 4.0, donde convergen tecnologías como IoT, inteligencia artificial y redes industriales, comprender el funcionamiento y aplicación de sensores y actuadores es esencial para la transformación digital de los procesos industriales.

# IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Estudiar y comprender el funcionamiento de los sensores y actuadores dentro de los sistemas automatizados, desarrollando habilidades para su selección, diseño, integración y aplicación en entornos industriales.

# Objetivos Específicos:

Describir los principios físicos que rigen el funcionamiento de los sensores y actuadores.

Clasificar los sensores según el tipo de variable medida y su principio de funcionamiento.

Establecer criterios técnicos y normativos para la selección de sensores y actuadores en procesos industriales.

Diseñar sistemas básicos de adquisición de datos empleando sensores, acondicionadores de señal y elementos de actuación.

Interpretar normas y estándares internacionales relacionados con instrumentación industrial.

### V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

#### Propósitos de formación:

Integrar competencias en instrumentación y control, fomentando la aplicación de sensores y actuadores en sistemas industriales automatizados.

Desarrollar habilidades para el diseño de soluciones tecnológicas innovadoras alineadas con los principios de sostenibilidad y transformación digital.

Estimular el pensamiento crítico mediante la resolución de problemas reales usando metodologías activas de aprendizaje.

Promover el uso responsable de tecnologías de sensado y actuación, considerando aspectos éticos, ambientales y sociales.

#### Resultados de aprendizaje esperados:

Aplica conocimientos técnicos y científicos en la selección e integración de sensores y actuadores.

Diseña soluciones de hardware integrando sensores y actuadores en procesos automatizados.

Implementa proyectos de instrumentación aplicando normativas vigentes y criterios de calidad.

Integra sistemas de sensado y actuación con comunicaciones industriales garantizando eficiencia.

Evalúa el impacto de las tecnologías de instrumentación en el entorno productivo y social.

#### VI. CONTENIDOS TEMÁTICOS

#### 1. Generalidades (4 semanas)

Norma NTC 1000 y vocabulario técnico

Normas IP, IK, NEMA, SAMA y de seguridad (EX)

Sistemas de medición y control

Clasificación de señales y características estáticas y dinámicas

#### 2. Sensores (4 semanas)

Sensores resistivos, capacitivos, inductivos

Termoeléctricos, piezoeléctricos, ópticos, digitales, biométricos

Acondicionadores de señal y amplificadores de instrumentación

Sensores de gases, conductividad, fibra óptica, humo

#### 3. Elementos mecánicos (4 semanas)

Elementos de desplazamiento: turbina, membrana

Aplicaciones y adaptaciones mecánicas

# 4. Elementos finales de control (4 semanas)

Válvulas proporcionales (globo, rotatorias)

Válvulas de bloqueo, actuadores, convertidores de posición

# VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante estrategias activas de aprendizaje basado en problemas y proyectos. Las sesiones teóricas incluirán exposiciones, debates, resolución de ejercicios y análisis de casos. Las sesiones prácticas se enfocarán en el montaje experimental, registro de datos y análisis de resultados. Se promoverá la autonomía, el trabajo colaborativo y el pensamiento crítico a través del desarrollo de proyectos que articulen teoría y práctica en entornos reales de automatización.

# VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

### IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con módulos de instrumentación, sensores de distintas tecnologías, fuentes de alimentación, multímetros, osciloscopios, tarjetas de adquisición de datos y software de simulación. La disponibilidad de kits didácticos permitirá a los estudiantes realizar actividades de medición, acondicionamiento de señales y accionamiento de dispositivos reales.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

#### X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Durante el curso se pueden organizar visitas a un entorno industrial o centro tecnológico donde los estudiantes puedan observar la aplicación de sensores y actuadores en procesos reales de automatización. Esto permitirá complementar la formación teórica y práctica con experiencias significativas, fomentar la contextualización del aprendizaje y promover el análisis crítico de tecnologías implementadas en el sector productivo

# XI. BIBLIOGRAFÍA

Pallas, Ramón. Sensores y Acondicionadores de señal. Ed. Marcombo

Creus, Antonio. Instrumentación Industrial. Ed. Marcombo

Morris, Allan. Principios de medición e instrumentación. Ed. Prentice Hall

Doebelin, Ernest. Measurement Systems. Ed. McGraw Hill

Considine. Process/Industrial Instrument and Control Handbook

Fraden, Jacob. Handbook of Modern Sensors. Ed. Springer

Fecha revisión por Consejo Curricular: Fecha aprobación por Consejo Curricular:

Ollero, P. & Camacho, E.F. Control e Instrumentación de procesos químicos. Ed. Síntesis

Curtis, Johnson. Process Control Instrumentation Technology

# XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS Número de acta: