CS5800 PS1 - Aditya Shanmugham (NUID: 002738073)

Problem 1: Asymptotics

In order to solve this problem, I am comparing equations in a set of 2, strategically

1) Comparing $g01 = n^{101/100}$ and $g02 = n * 2^{(n+1)}$:

$$n^{101/100}$$
 $n * 2^{(n+1)}$

Applying log on both sides:

$$log(n^{(101/100)})$$
 $log(n * 2^{(n+1)})$ $log(n) * log(n) + (n+1) * log(2)$ $log(n) + (1/100) * log(n)$ $log(n) + (n+1) * log(2)$

Ignoring log(n) on both sides and applying log:

$$log(1/100) + log^{2}(n)$$
 - (1) $log(n+1) + log^{2}(2)$ - (2)

Here (2) is greater than (1)

•
$$g01 = n^{101/100} < g02 = n * 2^{(n+1)}$$

2) Comparing $g03 = n * (log(n)^3)$ and $g04 = n^{log(log(n))}$:

$$n * log(n)^{3}$$

$$n * log(n)^{3}$$

$$n * log(n)^{3}$$

$$n log(log(n))$$

$$n log(log(n))$$
Applying log on both sides:
$$log(n) + log(log(n)^{3})$$

$$log(n) + 3 * log^{2}(n)$$

$$[log^{2}(n)] * log(n)$$

$$[log^{2}(n)] * log(n)$$

$$log(n) + 3 * log^{2}(n)$$
 - (1) $log^{2}(n) * log(n)$ - (2)

•
$$g03 = n * (log(n)^3) > g04 = n^{log(log(n))}$$

3) Comparing $g11 = 2^{(\log(n^{0.5})}$ and $g12 = n^{0.5^{\log(n)}}$:

$$2^{(\log(n^{0.5})} \qquad \qquad n^{0.5^{\log(n)}}$$
 Applying log on both sides:
$$\log(2^{\log(n^{0.5})}) \qquad \qquad \log(2^{0.5^{\log n}}) \qquad \qquad \log(2^{0.5^{\log n}}) \qquad \qquad \log(n^{0.5}) * \log(2) \qquad \qquad \log(n) * \log(2^{0.5}) \qquad \qquad \log(n^{0.5}) * \log(2) \qquad \qquad \log(n) * \log(2^{0.5}) \qquad \qquad \log(n) * \log(n$$

Here (1) is equal to (1):

•
$$2^{(\log(n^{0.5})} = n^{0.5^{\log(n)}}$$

4) Comparing $g07 = 2^{(\log(n)^{0.5})}$ and $g08 = 2^{2^{n+1}}$:

$2^{(log(n)^{0.5})}$	$2^{2^{n+1}}$
$2^{(log(n)^{0.5})}$	4^{n+1}
Applying log on both sides:	
$log(2^{log(n)^{0.5}})$	$log(4^{n+1})$
$log(n)^{0.5} * log(2)$	(n+1)*log(4)

$$log[log(n)^{0.5} * log(2)]$$

$$log(log(n)^{0.5} + log^{2}(2))$$

$$0.5 * log^{2}(n) + log^{2}(2)$$
- (1)

$$log(n) * 0.5 * log(2)$$

$$log[(n+1) * log(4)]$$

$$log(n+1) * log^{2}(4)$$

$$log(n + 1) + log^{2}(4)$$
 - (2)

•
$$g07 = 2^{(\log(n)^{0.5})} < g08 = 2^{2^{n+1}}$$

5) Comparing $g07 = 2^{(\log(n)^{0.5})}$ and $g03 = n * (\log(n)^3)$:

$$2^{(\log(n)^{0.5})} \qquad \qquad n*(\log(n)^3)$$
 Applying log on both sides:
$$\log(2^{\log(n)^{0.5}}) \qquad \qquad \log(n*\log(n)^3)$$

$$\log(n)^{0.5}*\log(2) \qquad \qquad -\textbf{(1)} \qquad \log(n)+3*\log^2(n) \qquad -\textbf{(2)}$$

- (1)

 $log(n) + 3 * log^{2}(n)$

- (2)

Here (2) is greater than (1)

•
$$g07 = 2^{(\log(n)^{0.5})} < g03 = n * (\log(n)^3)$$

6) Comparing $g07 = 2^{(\log(n)^{0.5})}$ and $g11 = 2^{(\log(n^{0.5})}$:

$2^{(log(n)^{0.5})}$	$2^{(log(n^{0.5})}$
$2^{(log(n)^{0.5})}$	$2^{0.5*log(n)}$
Applying log on both sides:	
$log(n)^{0.5} * log(2)$	0.5 * log(n) * log(2)

Applying log on both sides:

$$0.5 * log(n) + log^{2}(2)$$

- (1)

$$log(0.5) + log^{2}(n) + log^{2}(2)$$

- (2)

Here (2) is greater than (1)

•
$$g07 = 2^{(\log(n)^{0.5})} < g11 = 2^{(\log(n^{0.5}))}$$

7) Comparing $g08 = 2^{2^{n+1}}$ and $g11 = 2^{(\log(n^{0.5})}$:

$$2^{2^{n+}}$$

4ⁿ⁺¹

 $2^{(log(n^{0.5})}$

 $2^{(log(n^{0.5})}$

Applying log on both sides:

$$log(4^{n+1})$$

(n+1)*log(4)

$$(n+1) * log(4)$$

 $log(2^{(log(n^{0.5})})$

$$(\log(n^{0.5}) * \log(2)$$

0.5 * log(n) * log(2)

Applying log on both sides:

$$log(n + 1) + log^{2}(4)$$
 - (1)

 $log(0.5) + log^{2}(n) + log^{2}(2)$ - (2)

Here (1) is greater than (2)

•
$$g08 = 2^{2^{n+1}} > g11 = 2^{(\log(n^{0.5}))}$$

8) Compare $g03 = n * (log(n)^3)$ and $g01 = n^{101/100}$

$$n * (log(n)^3)$$

 $n^{101/100}$

Applying log on both sides:

$$log(n * log(n)^3)$$

 $log(n^{(101/100)})$

$$log(n) + log(log(n)^3)$$
 (101/100) * $log(n)$
 $(n + 1) * log(4)$ 0.5 * $log(n) * log(2)$
 $log(n) + 3 * log^2(n)$ -(1) $log(n) + (0.01) * log(n)$ -(2)

•
$$g03 = n * (log(n)^3) > g01 = n^{101/100}$$

9) Compare $g03 = n * (log(n)^3)$ and $g02 = n * 2^{(n+1)}$:

$$n*(log(n)^3)$$
 $n*2^{(n+1)}$

Applying log on both sides:
$$log(n*log(n)^3)$$
 $log(n*2^{n+1})$

$$log(n) + log(log(n)^3)$$
 $log(n) + log(2^{n+1})$

$$log(n) + 3*log^2(n)$$
 -(1) $log(n) + (n+1)*log(2)$ -(2)

Here (2) is greater than (1)

•
$$g03 = n * (log(n)^3) < g02 = n * 2^{(n+1)}$$

10) Compare $g04 = n^{\log(\log(n))}$ and $g01 = n^{101/100}$:

$n^{log(log(n))}$	$n^{101/100}$
$n^{log^2(n)}$	$n^{(101/100)}$
Applying log on both sides:	
$log(n^{log^2(n)})$	$log(n^{(101/100)})$

$$log^{2}(n) * log(n)$$
 (101/100) * $log(n)$ Applying log on both sides:
$$log^{3}(n) + log^{2}(n)$$
 -(1) $log(101/100) + log^{2}(n)$ -(2)

•
$$g04 = n^{\log(\log(n))} > g01 = n^{101/100}$$

11) Compare $g01 = n^{101/100}$ and $g11 = 2^{(\log(n^{0.5}))}$

$$n^{101/100} \qquad \qquad 2^{(\log(n^{0.5})}$$
 Applying log on both sides:
$$\log(n^{(101/100)}) \qquad \qquad \log(2^{\log(n^{0.5})})$$

$$(101/100) * \log(n) \qquad \qquad \log(n^{0.5}) * \log(2)$$

$$(101/100) * \log(n) \qquad \qquad 0.5 * \log(n) * \log(2)$$
 Applying log on both sides:
$$\log(101/101) + \log^2(n) \qquad -\textbf{(1)} \qquad \log(0.5) + \log^2(n) + \log^2(2) \qquad -\textbf{(2)}$$

Here (1) is greater than (2)

•
$$g01 = n^{101/100} > g11 = 2^{(\log(n^{0.5}))}$$

12) Compare $g08 = 2^{2^{n+1}}$ and $g02 = n * 2^{(n+1)}$:

$2^{2^{(n+1)}}$	$n * 2^{(n+1)}$
$4^{(n+1)}$	$n * (2^{n+1})$

Applying log on both sides:

$$(n+1) * log(4)$$

$$(n + 1) * log(2) * log(2)$$
 - (1)

$$log(n) + (n+1) * log(2)$$

$$log(n) + (n + 1) * log(2)$$
 - (2)

Here (1) is greater than (2)

•
$$g08 = 2^{2^{n+1}} > g02 = n * 2^{(n+1)}$$

13) Compare $g05 = log(n^{2n})$ and $g03 = n * (log(n)^3)$:

$$log(n^{2n})$$

$$2n * log(n)$$

Applying log on both sides:

$$log(2n * log(n))$$

$$log(2n) + log^2(n)$$

$$log(2n) + log^2(n)$$

$$log(2n) * log^{2}(n)$$
 - (1)

$$n * (log(n))^3$$

$$n * log(n)^3$$

$$log(n * log(n)^3)$$

$$log(n) + log(log(n)^3)$$

$$log(n) + 3 * log(log(n))$$

$$log(n) + 3 * log^{2}(n)$$
 - (2)

Here (1) is greater than (2)

•
$$g05 = log(n^{2n}) < g03 = n * (log(n)^3)$$

14) Compare $g05 = log(n^{2n})$ and $g04 = n^{log(log(n))}$:

$$log(n^{2n}) \qquad \qquad n^{log^2(n)}$$

$$2n*log(n) \qquad \qquad n^{log^2(n)}$$
 Applying log on both sides:
$$log(2n)*log^2(n) \qquad \qquad -\textbf{(1)} \quad log^2(n)*log(n) \qquad \qquad -\textbf{(2)}$$

Here (1) is greater than (2)

•
$$g05 = log(n^{2n}) > g04 = n^{log(log(n))}$$

15) Compare g06 = n! and $g08 = 2^{2^{n+1}}$:

$$n!$$

$$2^{2^{n+1}}$$

$$= 4^{n+1}$$
Applying log on both sides:
$$= log(n!)$$

$$(n+1) * log(4)$$
Using Sterling Approximation:
$$= n * log(n) - n$$

$$= n * log(n) - n$$

$$(n+1) * log(4)$$

$$- (2)$$

Here (1) is greater than (2). But when we plot the g06 and g08 in a graph, initially g06 seems slower than g08 until it converges and surpasses g08 at 10^{25}

•
$$g06 = n! > g08 = 2^{2^{n+1}}$$

16) Compare g09 = log(n!) and g10 = ceil(log(n)!):

$$log(n!) ceil(log(n)!)$$

$$= log(n * (n - 1) * (n - 2)..).$$

$$= log(n) + log(n - 1) + log(n - 2)..$$

$$<= log(n) * log(n) * log(n) *$$

$$= O(log(n) * n) - (1)$$

$$ceil(log(n)!)$$

$$log(x) * (log(x) - 1) * (log(x) - 2)...$$

$$<= log(x) * log(x) * log(x) * log(x)$$

$$= O(log(x)^{x}) - (2)$$

•
$$g09 = log(n!) < g10 = ceil(log(n)!)$$

17) Compare $g05 = log(n^{2n})$ and g09 = log(n!):

$$log(n^{2n})$$

$$= 2n * log(n)$$

$$- (1)$$

$$log(n!)$$
From comparison no (16):
$$log(n!) = O(log(n) * n)$$

$$- (2)$$

Here (1) is greater than (2)

•
$$g05 = log(n^{2n}) > g09 = log(n!)$$

18) Compare $g03 = n * (log(n)^3)$ and g10 = ceil(log(n)!):

$$n*log(n)^{3}$$

$$ceil(log(n)!)$$
From comparison no (16):
$$ceil(log(n)!) = O(log(x)^{x})$$
Applying log:
$$log(n*log(n))$$

$$log(log(x)^{x})$$

$$x*log(log(x))$$

$$log(n) + log(log(n))$$

$$x*log(log(x))$$

$$log(n) + 3*log^{2}(n)$$

$$x*log^{2}(x)$$
- (2)

•
$$g03 = n * (log(n)^3) < g10 = ceil(log(n)!)$$

Based on the above comparisons:

The order:

$$g06 > g08 > g02 > g10 > g03 > g05 > g09 > g04 > g01 > g11 = g12 > g07$$

Problem 2: More Asymptotics

1) If
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(f(n))$, then $f(n) = \theta(g(n))$:

$$-> f(n) = \Omega(g(n)) - (1)$$

then,

$$g(n) = O(f(n))$$
 as per Transpose Property (a)

$$-> g(n) = O(f(n))$$
 - (2)

Using property (b) on (1) and (2):

$$-> g(n) = \Theta(f(n)) - (3)$$

Using symmetry property (c) on (3)

$$-> f(n) = \Theta(g(n))$$

Properties used in this solution:

(a) Transpose Property:

If
$$f(n) = O(g(n))$$
 then $g(n) = \Omega(f(n))$

(b) If
$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$ then $f(n) = \Theta(g(n))$

(c) Symmetry Property:

If
$$f(n) = \Theta(g(n))$$
 then $g(n) = \Theta(f(n))$

The equality provided in the question is **True**.

2) f(n) = o(g(n)) then g(n) not $\in O(f(n))$

$$-> f(n) = o(g(n))$$
 - (1)

(1). Can be written as:

$$f(n) < g(n) * c$$
, where 'c' is a constant - (2)

From the question : g(n) = O(f(n)) - (3)

(3). Can be written as:

$$g(n) \iff f(n) * c$$
, where 'c' is a constant - (4)

In order for (2) to be equal to (4), the equation should be:

$$f(n) * c < (g(n)) * c <= f(n) * c - (5)$$

Where (5) is impossible.

Hence, g(n) not $\in O(f(n))$.

The equality provided in the question is **True**.

3) If f(n) = O(h(n)) and g(n) = O(h(n)), then f(n) + g(n) = O(h(n)):

$$-> f(n) = O(h(n))$$
 - (1)
-> $g(n) = O(h(n))$ - (2)

Using Property (a) on (1) and (2):

$$f(n) + g(n) = O(h(n) + h(n))$$

$$f(n) + g(n) = O(2 * h(n))$$

$$f(n) + g(n) = 2 * O(h(n))$$

$$0.5 * (f(n) + g(n)) = O(h(n))$$
 - (3)

Using Property (b) on (3):

$$f(n) + g(n) = O(h(n))$$

Properties used in this solution:

(a) If
$$f(n) = O(d(n))$$
 and $g(n) = O(e(n))$ then $f(n) + g(n) = O(d(n) + e(n))$

(b) If
$$f(n) = O(g(n))$$
 then $c * f(n) = O(g(n))$

The equality provided in the question is **True**.

4) If
$$f(n) = O(h(n))$$
 and $g(n) = O(h(n))$, then $f(n) * g(n) = O(h(n))$

$$-> f(n) = O(h(n))$$
 - (1)

$$-> g(n) = O(h(n))$$
 - (2)

Using Property (a) on (1) and (2):

$$f(n) * g(n) = O(h(n) * h(n))$$

$$f(n) * g(n) = O(h^2(n))$$

Properties used in this solution:

(a) If
$$f(n) = O(d(n))$$
 and $g(n) = O(e(n))$ then $f(n) * g(n) = O(d(n) * e(n))$

The equality provided in the question is **False**.

5) If
$$f(n) = O(g(n))$$
 then $2^{f(n)} = O(2^{g(n)})$
-> $f(n) = O(g(n))$ - (1)

Raising to the power of 2:

$$-> 2^{f(n)} <= 2^{g(n)*c}$$

$$-> 2^{f(n)} <= 2^{g(n)^c} - (2)$$

If c>1 in (2) then $2^{g(n)}$ won't be constant time. Hence, the equality is not true.

We can also prove it using log

Applying log on (1)

$$-> f(n) * log(2) <= g(n) * log(2) + log(c) - (3)$$

The equation (3) is valid only from c>1. If c=0 then the log(c) reaches - infinity thereby breaking the inequality.

The equality provided in the question is **False**.

Problem 3: Modular Arithmetic Computations

1) Compute $3^{1500} \, mod \, 11$:

1500 to binary = (1011 1011 100)

Initialise a=3 and out=1

Bits	а	out
0	3	1
0	(3*3) mod11 = 9	1
1	(3*9) mod 11 = 5	(9*1) mod 11 = 9
1	(3*5) mod 11 = 4	(9*5) mod 11 = 1
1	(3*4) mod 11 = 1	(1*4) mod 11 = 4
0	(3*1) mod 11 = 3	4
1	(3*3) mod 11 = 9	(4*3) mod 11 = 1
1	(3*9) mod 11 = 5	(1*9) mod 11 = 9
1	(3*5) mod 11 = 4	(9*5) mod 11 = 1
0	(3*4) mod 11 = 1	1

Bits	а	out
1	(3*1) mod 11 = 3	(1*1) mod 11 = 1

The answer is 1.

2) Compute $5^{4358} mod 10$

4358 to binary = (1000 1000 0011 0)

Initialise a=5 and out=1

Bits	а	out
0	5	1
1	(5*5) mod 10 = 5	(1*5) mod 10 = 5
1	(5*5) mod 10 = 5	(5*5) mod 10 = 5
0	(5*5) mod 10 = 5	5
0	(5*5) mod 10 = 5	5
0	(5*5) mod 10 = 5	5
0	(5*5) mod 10 = 5	5
0	(5*5) mod 10 = 5	5
1	(5*5) mod 10 = 5	(5*5) mod 10 = 5
0	(5*5) mod 10 = 5	5
0	(5*5) mod 10 = 5	5
0	(5*5) mod 10 = 5	5
1	(5*5) mod 10 = 5	(5*5) mod 10 = 5

The answer is **5**.

3) Compute $6^{22345} mod 7$

22345 to binary = (1010 1110 1001 001)

Initialise a=6 and out=1

Bits	a	out
1	6	6
0	(6*6) mod 7 = 1	6
0	(6*1) mod 7 = 6	6
1	(6*6) mod 7 = 1	(6*6) mod 7 = 1
0	(6*1) mod 7 = 6	1
0	(6*6) mod 7 = 1	1
1	(6*1) mod 7 = 6	(1*1) mod 7 = 1
0	(6*6) mod 7 = 1	1
1	(6*1) mod 7 = 6	(1*1) mod 7 = 1
1	(6*6) mod 7 = 1	(1*6) mod 7 = 6
1	(6*1) mod 7 = 6	(6*1) mod 7 = 6
0	(6*6) mod 7 = 1	6
1	(6*1) mod 7 = 6	(6*1) mod 7 = 6
0	(6*6) mod 7 = 1	6
1	(6*1) mod 7 = 6	(6*1) mod 7 = 6

The answer is 6.

4) Compute GCD(648,124)

Using Euclid Algorithm:

```
= GCD(648, 124) = GCD(124, 648 mod 124) = GCD(124, 28)

= GCD(124, 28) = GCD(28, 124 mod 28) = GCD(28, 12)

= GCD(28, 12) = GCD(12, 28 mod 12) = GCD(12, 4)

= GCD(12, 4) = GCD(4, 12 mod 4) = GCD(4, 0)
```

The answer is 4.

5) Compute GCD(123456789, 123456788)

Using Euclid Algorithm:

```
= GCD(123456789, 123456788) = GCD(123456788, 123456789 mod 123456788) = GCD(123456788, 1)
```

$$= GCD(123456788, 1) = GCD(1, 123456788 \mod 1) = GCD(1, 0)$$

The answer is 1.

6) Compute $GCD(10^{117}, 2^{200})$:

GCD of the number are:

$$10^{117} = 2^{117} * 5^{117}$$

$$2^{200} = 2^{117} * 2^{83}$$

 $GCD(10^{117}, 2^{200}) = GCD(5^{117} * 2^{117}, 2^{200}) = 2^{!17}$; since there are no more factors left (2 and 5 are coprime).

The answer is 2^{117} .