Mathematical modelling for All-solid-state battery

Tuan Vo^{a,b†}, Claas Hüter^b, Stefanie Braun^a

^aDepartment of Mathematics, Applied and Computational Mathematics (ACoM), RWTH Aachen University, Schinkelstraße 02, 52062 Aachen, Germany ^bInstitute of Energy and Climate Research (IEK-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

Mathematical modelling for the next-generation All-solid-state batteries: Nucleation (SE|SSE)^(*)-Interface

Rechargeable Lithium-ion battery (LIB) is at the heart of every electric vehicle (EV), portable electronic device, and energy storage system [5]. Nowadays, LIBs enable human life more efficient and help to solve global environment issues thanks to EVs' zero However, conventional LIB (c-LIB) is emission. sensible to temperature and pressure, hence, flammable and explosive, which is undesirable. This bottleneck is mainly due to liquid-based electrolyte found in c-LIBs.

All-solid-state battery (ASSB) is one of promising candidates to overcome bottlenecks of c-LIBs. Thanks to solid-state electrolyte (SSE), ASSB is highly stable towards temperature and pressure. Nevertheless, Limetal dendrite triggered at (SE|SSE)-Interface is the main drawback of ASSB since these dendritic threads extrapolate into SSE grain boundary network, causing crevice, degradation of ionic conductivity, and the probability of short-circuit, which is unfavorable [10].

Next-generation All-solid-state battery (ng-ASSB) with a consideration of nucleation criterion defined by

$$\rho_{\text{\tiny SCL}} \frac{D^2 \boldsymbol{u}_{\text{\tiny SCL}}}{Dt^2} + \nabla \cdot \left(\mathbb{C}(\lambda, \mu) : \nabla \boldsymbol{u}_{\text{\tiny SCL}}^{(s)} \right) + \rho_{\text{\tiny SCL}} \, \boldsymbol{b} = -\rho_{\text{\tiny SCL}} \, \nabla V_e, \tag{1}$$

s.t.
$$a_{\text{Griffith}}^{\text{generalised}} := a^* = \arg\{\min_{a \in \mathcal{V}} \iiint_{\Omega} f(a_{\text{crevice}}, \boldsymbol{u}_{\text{SCL}}, \theta_{\text{SCL}}, n^{\text{Li}^+}; \lambda, \mu, \boldsymbol{d}_{\text{SCL}} \otimes \boldsymbol{d}_{\text{SCL}}) d\Omega - \iint_{\Gamma} f(a_{\text{crevice}}; \gamma) d\Gamma\}, \quad (2)$$

hold for $\forall a \in \mathcal{V}$. Here, $V_e : \mathbb{R}^3 \to \mathbb{R}$ is the electric potential applied globally on ASSB. Due to nature setting of ASSB taking the form (SE|SSE|SE) the electric potential becomes uniform. Additionally, u is the displacement field, θ temperature field, a crevice length, λ, μ Lamé constants, $\mathbf{d} \otimes \mathbf{d}$ embedded misorientation SCL structural tensor, and γ cracking-surface energy density, can help to improve ASSB performance [1][2].

Aim: The study is with the purpose of gaining a better insight into dendrite nucleation and formation in ASSB.

Next-generation All-solid-state battery

Griffith nucleation criterion governs (SE|SSE)-Interface [4].

Observation: Space-charge Layer

SCL manifests in ASSB [8], predictably in Semiconductors.

Motivation: Energy density landscape

ASSB enables **energy demand** due to (i), and followed by (ii). Energy density: ASSB versus LIB versus Petroi THEORETICAL CAPACITY OF CHARGE: PURE METALLIC LITHIUM (Li) VERSUS GRAPHITE (C₆) $[Ah l^{-1}]^{[?][?]} \mid [mAh cm^{-3}]^{[?]}$ $3800^{[?]}|3860^{[?][?][?][?]}|3861^{[?]}$

Artificial Neural Networks

Application: Steel's property prediction. HIDDEN LAYER

The ANNs scheme enhances bainitic trafo. temperature prediction, validated by [9].

Semiconductor

Application: Start/Stop-System in Starter.

Use-case: BMW B47 (-25°C, 0°C, 120°C).

Optimisation: Pareto @BoschForschung.

(Multi-objective optimisation framework)

State-of-the-art: Nucleation interface taking place at the unstable (SE|SSE)-Discontinuity

Coupled fields are Displacement field \boldsymbol{u} and Temperature field $\boldsymbol{\theta}$:

$$m{u}: egin{cases} \Omega imes \mathbb{R}_+ & \to \mathbb{R}^3, \\ (m{x},t) & \mapsto m{u}(m{x},t), \end{cases} \quad heta: egin{cases} \Omega imes \mathbb{R}_+ & \to \mathbb{R}, \\ (m{x},t) & \mapsto m{\theta}(m{x},t). \end{cases}$$

Governing conservation equations account for mass balance, linear and angular momentum, and energy conservation. These equations include variables such as mass density $\rho(\boldsymbol{x},t)$, body force $\boldsymbol{b}(\boldsymbol{x},t)$, velocity $\boldsymbol{v}(\boldsymbol{x},t)$, internal energy $e(\boldsymbol{x},t)$, heat flux $\boldsymbol{q}(\boldsymbol{x},t)$, heat source $r(\boldsymbol{x},t)$, Cauchy stress $\boldsymbol{\sigma}$, and infinitesimal strain $\boldsymbol{\varepsilon}$ per unit volume.

unstable (SE|SSE)-Interface:

Strain energy (E_{st}) is derived | **Surface energy** (E_{sf}) is assessed from the SSE deformation due | through the analysis of crevices to dendrite formation at the | at the (SE|SSE)-Interface under specific pressure conditions:

$$E_{ ext{sf}}\!:=\!\!\iint_{\Gamma}\!f(a;\gamma)\,d\Gamma$$

Griffith criterion on (100-Li-termination)-{50Ta_{Zr}}-doped-Li₇La₃Zr₂O₁₂ at T=298°K Persuada pre-existing crevice per unit length at (Li|{50Ta_{Zr}}-LLZO)-Interface Pressure a_{crevice} = 1% crevice = 5% revice = 10% evice = 30% evice = 50%

(i) Theoretical capacity of charge

Griffith nucleation

criterion computed based relation where the Cauchy stress σ is computed based OpenFOAM library.

Modelling: Swelling phenomena @FEM [5]. **Use-case**: Bosch-48-V-Battery.

Nd/Gd Negative-Temperature Coefficient

(NTC) semiconductor model validated [7].

Lithium-ion battery

Temperature [°K]

Contact

 NTC_{B3}^{B1}

[4] **T. Vo**, C. Hüter, S. Braun, R. Spatschek, Mathematical modelling for All-solid-state battery: Griffith criterion. Doctoral presentation, IEK-2, Forschungszentrum Jülich, **2020**.

References