Introduction to probability distribution

June 14, 2018

1 Starters

• When the random variable is discrete in nature, its probability distribution is characterized by **Probability Mass Function (PMF)**.

No. of fruits sold	no. of customers	PMF
3	30	30/60 20/60 10/60
5	20	20/60
7	10	10/60
	60	sum = 1

• A Cumulative Distribution Function (CDF) defines the less than, greater than or equal to argument of a function.

CDF is a monotonic increasing function.

For the above PMF, CDF of $P(X \leq x)$ could be calculated as -

No. of fruits sold	no. of customers	PMF	\mathbf{CDF}
3	30	30/60	30/60
5	20	20/60	(30/60) + (20/60)
7	10	10/60	(30/60) + (20/60) + (10/60)
	60	sum = 1	last value itself becomes 1

• When the random variable is continuous in nature, its probability distribution is characterized by **Probability Density Function (PDF)**.

2 Discrete PD

 $\textbf{Topics:} \ \operatorname{Uniform} - \operatorname{Binomial} - \operatorname{Negative} \ \operatorname{binomial} - \operatorname{Poisson}$

2.1 Uniform

• A random variable which assumes equal probability for its outcomes, is termed as discrete uniform PD.

e.g. getting 5 in a throw of a dice. Same goes with other number on dice.

2.2 Binomial

- a binomial distribution is formed by multiplying the total number of ways an event can occur to the probability of one of the way that event can occur.
- PMF of Binomial can be written as -

$$PMF = C(n, x) * p^x q^{n-x}$$

where,

C(n,x) determines the binomial coefficient and also the total number of ways the event can occur

n total number of trails

x total number of success

n-x total number of failures

p probability of success

q probability of failure

• Example: consider a shop sells 4 kinds of fruits mango, kiwi, banana and apple.

Further, consider a customer purchases only one out of all four which brings equal probability to all four fruits.

Let us determine the probability of a customer buying an apple in upcoming 5 customers.

Moving with the binomial distribution we can arrive at following PMF -

PMF =
$$C(4, 1) * 0.25^{1}(1 - 0.25)^{3} = 0.42$$

R code: dbinom(x = 1, size = 4, prob = 0.25)

2.3 Negative binomial

- In this distribution we need to pass the number of success not the number of trails and hence makes it opposite of binomial distribution and so does negative word comes.
- PMF of Negative Binomial can be written as -

$$PMF = C(x - 1, r - 1) * p^r q^{x - r}$$

where,

 $x = r, r + 1, r + 2, \dots$

r number of success trails

• Example: consider the previous fruits example of a shop with four fruits with equally likely outcome. Let us try to find the probability that it takes exactly 7 trails to find 2 customers who purchases an apple.

here,
$$r = 2, x = 7, p = 0.25, q = (1 - 0.25)$$

PMF =
$$C(6, 1) * 0.25^{2}(1 - 0.25)^{5} = 0.42$$

R code: dnbinom(x = 5, size = 2, prob = 0.25)

2.4 Poisson

- a poisson distribution is built upon three conditions
 - given an interval of real number constituting of an outcome of interest/success, if this interval is broken down into various sub-intervals
 - 1. there occurs only one success per sub-interval i.e. probability of more than one success in a sub-interval is zero.
 - 2. the probability of success in all sub-intervals remain same and proportional to the length of whole interval.
 - 3. the count of success in each sub-interval is independent of each other
- PMF of poisson

$$\frac{e^{-\lambda}\lambda^x}{x!}$$

where

x number of success

 λ expected number of successes

• Example: consider 15 customers arrive in an hour, what is the probability that exactly 20 customers can arrive in another hour.

$$PMF = \frac{e^{-20}20^{15}}{15!} = 0.051$$
 R code: dpois(x = 15,lambda = 20)