

PHYSICS STAGE 3 FORMULAE AND CONSTANTS SHEET 2010

Motion and Forces in gravitational fields		
Mean velocity	$v_{av} = \frac{s}{t}$ $= \frac{v + u}{2}$	
Equations of motion	$a = \frac{v - u}{t};$ $s = ut + \frac{1}{2}at^{2};$ $v^{2} = u^{2} + 2as;$ $v = u + at$	
Force	F = ma	
Weight force	F = mg	
Momentum	p = mv	
Change in momentum (impulse)	Ft = mv-mu	
Kinetic energy	$E_k = \frac{1}{2} m v^2$	
Gravitational potential energy	$E_p = mgh$	

Motion and Forces in gravitational fields			
Work done	$W = Fs$ $= \Delta E$		
Power	$P = \frac{W}{t}$ $= \frac{\Delta E}{t}$ $= Fv_{av}$		
Centripetal acceleration	$a_{c} = \frac{v^{2}}{r}$		
Centripetal force	$F_{c} = ma_{c}$ $= \frac{mv^{2}}{r}$		
Newton's Law of Universal Gravitation	$F = G \frac{m_1 m_2}{r^2}$		
Gravitational field strength	$g = G \frac{M}{r^2}$		
Moment of a force	$\tau = rF$		

Note: the variable "t" refers to the "time taken" sometimes referred to as the "change in time" or Δt

PHYSICS STAGE 3

4 FORMULAE AND CONSTANTS SHEET

Electricity and Magnetism		
Electric current	$I = \frac{q}{t}$	
Electric field	$E = \frac{F}{q}$ $= \frac{V}{d}$	
Work and energy	W = Vq = VIt	
Ohm's Law	V = IR	
Resistances in series	$R_T = R_1 + R_2 + \dots$	
Resistances in parallel	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$	
Power	$P = VI$ $= I^{2}R$ $= \frac{V^{2}}{R}$	
Magnetic flux	$\Phi = BA$	
Electromagnetic induction	$emf = -N \frac{\Phi_2 - \Phi_1}{t},$ $emf = \ell v B$	

Electricity and Magnetism		
Magnetic force	$F = I \ell B$	
	F = qvB	
Ideal transformer turns ratio	$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	

Particles and waves		
Energy of photon	E = hf	
Energy transitions	$E_2 - E_1 = hf$	
Wave period	$T = \frac{1}{f}$	
Wave equation	$v_{\text{wave}} = f\lambda$	
Internodal distance	$d = \frac{1}{2}\lambda$	

Motion and Forces in electric and magnetic fields			
Electric field	$E = \frac{F}{q}$ $= \frac{V}{d}$		
Magnetic force	F = qvB		

Physical Constants

Speed of light in vacuum or airc	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Speed of sound in air at 25 °Cv	$= 346 \text{ m s}^{-1}$
Electron chargee	$= -1.60 \times 10^{-19} C$
Mass of electron m _e	$= 9.11 \times 10^{-31} \text{ kg}$
Mass of protonm _p	$= 1.67 \times 10^{-27} \text{ kg}$
Mass of alpha m_{α}	= $6.65 \times 10^{-27} \text{ kg}$
Planck's constanth	$= 6.63 \times 10^{-34} \text{ J s}$
Universal gravitational constantG	= $6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Electron volt1 eV	= 1.60 x 10 ⁻¹⁹ J

Phν	/sical	Data
гиν	/ Sicai	Data

Mean acceleration due to gravity on Earthg	$= 9.80 \text{ m s}^{-2}$
Mean acceleration due to gravity on the Moon g_M	$= 1.62 \mathrm{m s^{-2}}$
Mean radius of the EarthR _E	$= 6.37 \times 10^6 \text{ m}$
Mass of the EarthM _E	$= 5.98 \times 10^{24} \text{ kg}$
Mean radius of the SunR _S	$= 6.96 \times 10^8 \text{ m}$
Mass of the Sun M _S	$= 1.99 \times 10^{30} \text{ kg}$
Mean radius of the MoonR _M	$= 1.74 \times 10^6 \text{ m}$
Mass of the Moon M _M	$= 7.35 \times 10^{22} \text{ kg}$
Mean Earth-Moon distance	3.84 x 10 ⁸ m
Mean Earth-Sun distance	1.50 x 10 ¹¹ m
Tonne	$e = 10^3 \text{ kg} = 10^6 \text{ g}$

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap.

2. Gamma rays and X-rays occupy a common region.

Prefixes of the Metric System

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ¹²	tera	T	10 ⁻³	milli	m
10 ⁹	giga	G	10 ⁻⁶	micro	μ
10 ⁶	mega	M	10 ⁻⁹	nano	n
10 ³	kilo	k	10 ⁻¹²	pico	p

Mathematical expressions

Given
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The following expressions apply to the triangle ABC as shown:

$$a = \sqrt{b^2 + c^2 - 2bc \cos A}$$

The following expressions apply to the rightangled triangle ABC as shown:

Copyright

© Curriculum Council, 2010

This document—apart from any third party copyright material contained in it—may be freely copied, or communicated on an intranet, for non-commercial purposes by educational institutions, provided that it is not changed in any way and that the Curriculum Council is acknowledged as the copyright owner.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act or by permission of the Curriculum Council.

Copying or communication of any third party copyright material contained in this document can be done only within the terms of the Copyright Act or by permission of the copyright owners.