A 500-MHz processor was used to execute a program with the instruction mix

Instr. type	CPI	Instr. count
ALU operations	3	40000
Memory accesses	4	25000
Branches	2	15000
Floating-point	5	20000

- (a) Determine the average CPI.
- (b) Assume we build an optimizing compiler which discards 50% of ALU instruction. What's the average CPI of this improved version? How much faster is the improved version than the original one?
- 2) Suppose a program runs in 100 seconds on a machine, with floating-point operations responsible for 60 seconds of this time. How much do we have to improve the speed of floating-point operation if we want this program run two times faster? How about making it 2.5 times faster?

1.

(a) Average CPI =
$$(3 * 40000 + 4 * 25000 + 2 * 15000 + 5 * 20000)$$
 / $(40000 + 25000 + 15000 + 20000) = 3.5$ Execution time = $100000 * 3.5$ / $(500 * 10^6) = 0.0007$ = $7 * 10^{-4}$ (sec)

(b) Average CPI = $(3 * 20000 + 4 * 25000 + 2 * 15000 + 5 * 20000)$ / $(20000 + 25000 + 15000 + 20000) = 3.625$ Execution time = $80000 * 3.625$ / $(500 * 10^6)$ = $5.8 * 10^{-4}$ (sec)

Speedup = $(7 * 10^{-4})$ / $(5.8 * 10^{-4}) = 1.207$ (times)

The average CPI only cannot be used as performance metric. '.' Only the execution time can be the performance metric.

2. (a) Speedup = 2 = 100 / (40 + 60/
$$n$$
)
 $\Rightarrow n = 6$

(b) Speedup =
$$2.5 = 100 / (40 + 60/n)$$

$$\Rightarrow$$
 n = infinity

So It is **impossible** to make the program 2.5 times faster.

Amdahl's Law: The performance enhancement possible with a given improvement is limited by the amount that the improved feature is used.