Robotics Problem Sheet 7

Andreas Birk

Notes

The homework serves as preparation for the exams. It is strongly recommended that you solve them before the given deadline - but you do not need to hand them in. Feel free to work on the problems as a group - this is even recommended.

1 Problem

Given 4 beacons b_i at 4 known positions (x_i, y_i) in the plane as follows:

i=	x_i	y_i		
1	35	40		
2	12	23		
3	7	18		
4	9	9		

A robot r at an unknown position $p_r = (x_r, y_r)$ has a sensor to measure the distances to the beacons. Us multilateration to determine p_r when the ranges $D(b_i, r)$ between all beacons and the robot are as follows:

	b_1	b_2	b_3	b_4
$D(b_i,r)$	37	9	2	10

2 Problem

Given a sensor network with 4 nodes p_i at 4 positions (x_i, y_i) in the plane. The ranges $D(p_i, p_j)$ between the nodes are given as follows:

$D(p_i, p_j)$	p_1	p_2	p_3	p_4
p_1	0	50	45	32
p_2	50	0	61	22
p_3	45	61	0	58
p_4	32	22	58	0

Determine the 4 positions (x_i, y_i) of the nodes via MDS using the step by step algorithm from the lecture, i.e.,:

- compute a suited matrix A from the distance matrix D
- double center A (getting B)
- use SVD on B
- find a good rank approximation B'
- get the locations X