## Undirected Graphs and Their Associated Matrices

In this lecture we'll look at a method to encode an undirected graph in a special matrix called an *adjacency matrix*.

Consider the following undirected graph, G,



**Def**: The adjacency matrix A of an undirected graph G, is a square  $n \times n$  matrix where n is the number of vertices in the graph. The entries of A are given by

$$A_{ij} = \begin{cases} 1 & \text{if } i \leftrightarrow j \\ 0 & \text{otherwise} \end{cases}$$

This says that the (i, j)-entry of the adjacency matrix is 1 is there is an edge connecting vertices i and j and 0 if there is not.

**Example 1**: For the graph G pictured above, the adjacency matrix is

$$A = \left[ \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right]$$

**Fact 1**: The adjacency matrix A of an undirected graph is always symmetric.

**Def**: The **degree** of a vertex is the number of vertices that it is connected to (or alternatively, the number of edges that it is a part of). We denote the degree of vertex i by  $d_i$ .

**Example 2:** For the graph G pictured above the vertex degrees are

$$d_1 = 1$$
  $d_2 = 3$   $d_3 = 2$   $d_4 = 2$ 

**Fact 2**: The degree of vertex i is equal to the sum of row i.

**Def**: A walk is a list of vertices that can be traversed along edges in the graph. Note that there is no restriction on the number of times a vertex is touched during a walk.

**Example 3**. Denote the  $i^{\text{th}}$  vertex by  $v_i$ . Then the walk the walk that goes from vertex 1 to vertex 2 to vertex 4 is denoted by  $v_1 - v_2 - v_4$ . The walk that goes from vertex 1 to vertex 2 to vertex 3 and then back to vertex 2 is denoted by  $v_1 - v_2 - v_3 - v_2$ .

Fact 3: The (i, j)-entry of the matrix power  $A^k$  tell you how many walks of length k exist in the graph that start at vertex i and end at vertex j.

**Example 4**: We'll look at powers of the adjacency matrix corresponding to the graph G pictured above. For the first power of A we have

$$A^{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

This is of course just the adjacency matrix of G itself. According to Fact 3, since  $A_{12} = 1$  there is exactly one walk that starts at  $v_1$  and ends at  $v_2$ . This is of course true because there is an edge between  $v_1$  and  $v_2$ . Similarly,  $A_{13} = 0$ , indicating that there are no length-1 walks between  $v_1$  and  $v_3$ .

Squaring the matrix A, we have

$$A^2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

According to Fact 3, since  $A_{14} = 1$  there is exactly one length-2 walk that starts at  $v_1$  and ends at  $v_4$ . From the graph we see that this is the walk  $v_1 - v_2 - v_4$ . Notice that it is impossible to traverse a different sequences of vertices to get from  $v_1$  to  $v_4$ . Similarly, since  $A_{22} = 3$  there are exactly three length-2 walks that start at  $v_2$  and end at  $v_2$ . These are  $v_2 - v_1 - v_2$ ,  $v_2 - v_3 - v_2$ , and  $v_2 - v_4 - v_2$ .

Finally, cubing A we have

$$A^{3} = \begin{bmatrix} 0 & 3 & 1 & 1 \\ 3 & 2 & 4 & 4 \\ 1 & 4 & 2 & 3 \\ 1 & 4 & 3 & 2 \end{bmatrix}$$

Since  $A_{42}=4$  there are exactly four length-3 paths that start at  $v_4$  and end at  $v_2$ . Looking at the graph we see that these walks are  $v_4-v_2-v_1-v_2$ ,  $v_4-v_2-v_3-v_2$ ,  $v_4-v_2-v_4-v_2$ , and  $v_4-v_3-v_4-v_2$ .

**Def**: A graph is called *connected* if there exists a walk from  $v_i$  to  $v_j$  for all pairs i and j.

**Fact 4**: A graph G is connected if there exists some integer k > 0 such that  $B_k = I + A + A^2 + \cdots + A^k$  has all positive entries.

Essentially this works because the entries of the powers of A give the number of walks of length k that connect each of the vertices. If  $B_k$  has all positive entries, then there exists a walk of at most length k between any two vertices.

**Example 5**: For the adjacency matrix for the example graph, we have

$$B_1 = I + A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Since there are zero entries in  $B_1$  it is not the case that you can get from every vertex to every other in walks of length 1 (for instance, it's impossible to get from  $v_1$  to  $v_3$  in one step).

We then have

$$B_2 = I + A + A^2 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 4 & 2 & 2 \\ 1 & 2 & 3 & 2 \\ 1 & 2 & 2 & 3 \end{bmatrix}$$

Since  $B_2$  has all positive entries we know that G is connected, and you can get from any vertex to any other in a walk of length 2 or less. This is clearly verified by looking at the graph.

Example 6: Consider the following disconnected graph



The associated adjacency matrix is 
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Taking powers of A we have

$$A^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Clearly this pattern repeats. Thus for any integer k the matrix  $B_k$  has the form

$$B_k = I + A + A^2 + \dots + A^k = \begin{bmatrix} * & 0 & * & 0 \\ 0 & * & 0 & * \\ * & 0 & * & 0 \\ 0 & * & 0 & * \end{bmatrix}$$

Since  $B_k$  will not have all positive entries for any value of k the graph is not connected.

**Example 7**: Note that the analysis in Example 6 tells us that the associated graph has multiple disconnected components, but it doesn't really tell us where they are. It turns out that we can determine the disconnected components of a graph by examinging the eigenvectors of a new graph matrix: the so-called **Graph Laplacian Matrix**. First we need a diagonal matrix D called the degree matrix of an undirected graph. It has the following form

$$D_{ij} = \begin{cases} d_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Note that this is simply a diagonal matrix whose  $i^{\rm th}$  main diagonal entry is the degree of vertex i. The degree matrix D together with the adjacency matrix A allows us to construct the graph Laplacian, which we call L. We have

$$L = D - A$$

For the graph in Example 1, we have

$$L = D - A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

Notice that the -1's on the off-diagonals of L correspond to entries in the adjacency matrix A (i.e. they tell us which vertices are connected) and the diagonal entries of L tell us the degree of each vertex. Notice in particular that each row of L sums to zero. This must be true since the -1's in row i correspond to the vertices that are connected to vertex i, and the diagonal element is the degree of vertex i (i.e. the number of nodes the vertex is connected to).

Since the rows of L sum to zero, it is very easy to find an eigenvector of L corresponding to a zero eigenvalue. Any nonzero constant vector (e.g. a vector of all 1's) will work. Define  $\mathbbm{1}$  to be the vector of all 1's, then

$$L\mathbb{1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0 \times \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

So we have  $\mathbf{v} = \mathbb{1}$  and  $\lambda = 0$  is an eigenpair of L. For this particular graph, this is the only eigenvector associated with  $\lambda = 0$ . The other eigenvalues are  $\lambda_2 = 1$ ,  $\lambda_3 = 3$  and  $\lambda_4 = 4$ .

**Example 8:** Now consider the graph Laplacian of the graph in Example 6. We have

$$D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad L = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Notice that, as expected, the constant vector  $\mathbb{1}$  is in the nullspace of L, and therefore is an eigenvector of L with associated eigenvalue  $\lambda = 0$ . It turns out though, that this graph Laplacian has a second zero eigenvalue (or we could say,  $\lambda = 0$  is an eigenvalue with multiplicity 2). If you compute the eigenvalues of L (by hand, or with Matlab), you find that the eigenvalues are  $\lambda_1 = 0$ ,  $\lambda_2 = 0$ ,  $\lambda_3 = 2$ , and  $\lambda_4 = 2$ . We are interested in the eigenvectors of L associated with the zero eigenvalue. Solving for those eigenvectors, we have

$$L-0I = L = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Finding the two nullspace vectors (eigenvectors), we have

$$\mathbf{v}_1 = \left[ egin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array} 
ight] \quad \mathbf{v}_2 = \left[ egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array} 
ight]$$

OK, now think of the entries of  $\mathbf{v}_1$  and  $\mathbf{v}_2$  as corresponding to the vertices on the graph. Notice that for  $\mathbf{v}_1$ , the nonzero entries are in the first and third positions. If you look at the graph in Example 6, you'll see that vertices  $v_1$  and  $v_3$  are connected to each other, but disconnected from vertices  $v_2$  and  $v_4$ . Similarly, the nonzero entries in  $\mathbf{v}_2$  correspond to vertices  $v_2$  and  $v_4$ . Vertices  $v_2$  and  $v_4$  are connected to each other, but not connected to vertices  $v_1$  and  $v_2$ . In other words, each eigenvector associated with  $\lambda = 0$  corresponds to a particular disconnected component of the graph.

Furthermore, the graph corresponding to Examples 1 and 7 had only one eigenvector associated with  $\lambda = 0$ . This is because the graph from Examples 1 and 7 is connected.

Fact: The multiplicity of the  $\lambda = 0$  eigenvalue of the graph Laplacian tells you the number of disconnected components in a graph. The nonzero entries in each eigenvector corresponding to  $\lambda = 0$  tells you which vertices are in the corresponding component.