$\ddot{\mathbf{U}}\mathbf{bersichtstabellen}\ \mathbf{zum}\ \mathbf{SI\text{-}Einheitensystem}$

- SI-Basiseinheiten
- Einheitenvorsätze (Zehnerpotenzen)
- Physikalische Größen mit Einheiten
- Physikalische Konstanten

Tabelle der SI-Basiseinheiten			
Basisgröße	Zeichen	SI-Ein	heit
Länge	l	1 m	Meter
Masse	m	$1\mathrm{kg}$	Kilogramm
Zeit	t	$1\mathrm{s}$	Sekunde
Stromstärke	I	1 A	Ampere
Temperatur	T	$1\mathrm{K}$	Kelvin
Stoffmenge	n	$1\mathrm{mol}$	Mol
Lichtstärke		$1 \mathrm{cd}$	Candela

Tabelle der SI-Vorsätze			
Name	Vorsatz	Faktor	
Peta	Р	10^{15}	
Tera	${ m T}$	10^{12}	
Giga	G	10^{9}	
Mega	M	10^{6}	
Kilo	k	10^{3}	
Hekto	h	10^{2}	
Dezi	d	10^{-1}	
Zenti	\mathbf{c}	10^{-2}	
Milli	m	10^{-3}	
Mikro	μ	10^{-6}	
Nano	n	10^{-9}	
Piko	p	10^{-12}	
Femto	f	10^{-15}	
Atto	a	10^{-18}	

Übersichtstabelle der physikalischen Größen und ihrer Einheiten SI-Einheit[†] def. Formel[‡] Name der Größe Zeichen Einheit $\frac{1}{s}$ $A = -\frac{dN}{dt}$ Aktivität A1 Bq (Becquerel) N1 N =Anzahl 1 $1 \frac{m^2}{s^2}$ Äquivalentdosis $H = q \cdot D$ H1 Sv (Sievert) $a = \frac{\Delta v}{\Delta t}$ Beschleunigung $1\frac{m}{s^2}$ $1\frac{\mathrm{m}}{\mathrm{s}^2}$ a $L = J \cdot \omega$ Drehimpuls $1\,\mathrm{N}\,\mathrm{m}\,\mathrm{s}$ L $M = r \cdot F$ Drehmoment M $1\,\mathrm{N}\,\mathrm{m}$ $1\frac{N}{m^2}$ $P = \frac{F}{\Lambda}$ Druck P1 Pa (Pascal) $1\frac{V}{m}$ $1\frac{N}{A_S}$ Elektrische Feldstärke $E = \frac{F}{O}$ EEnergie (elektr.) $W_{\rm el.}$ $1\,\mathrm{J}$ $1\,\mathrm{V}\,\mathrm{A}\,\mathrm{s}$ $W_{\rm el.} = Q \cdot U$ (Joule) $P = U \cdot I$ PLeistung (elektr.) $1\,\mathrm{W}$ 1 V A(Watt) $1\,\mathrm{m}^2$ $1\,\mathrm{m}^2$ $A = l \cdot b$ Fläche A(Quadratmeter) $1\,\mathrm{Hz}$ $f = \frac{N}{t}$ Frequenz (Hertz) f $1 \frac{m}{s}$ $1\frac{m}{s}$ $v = \frac{\Delta s}{\Delta t}$ Geschwindigkeit $^{\prime\prime}$ $1 \frac{\text{kg m}}{s}$ $1\frac{\mathrm{kg}\,\mathrm{m}}{\mathrm{s}}$ **Impuls** $p = m \cdot v$ p $1\frac{Vs}{A}$ $L = U_L / \left(\frac{\Delta I}{\Delta t}\right)$ Induktivität L $1 \, \mathrm{H}$ (Henry) $I = \frac{\Delta W}{\Delta \Delta t}$ $1\frac{W}{m^2}$ $1\frac{\text{kg}}{\text{s}^3}$ Intensität Ι $1\frac{As}{V}$ $C = \frac{Q}{U}$ Kapazität C1 F (Farad) $F = m \cdot a$ Kraft F $1 \,\mathrm{N}$ (Newton) $1 \,\mathrm{A}\,\mathrm{s}$ $Q = I \cdot t$ Ladung Q $1 \,\mathrm{C}$ (Coulomb) $P = \frac{W}{t}$ P $1\,\mathrm{W}$ Leistung (Watt) $1\frac{Vs}{m^2}$ $B = \frac{F}{Is}$ Magnetische Feldstärke B1 T (Tesla) Magnetischer Fluss Φ $1\,\mathrm{V}\,\mathrm{s}$ $\Phi = B \cdot A$ 1 Wb (Weber) $W_{\text{me.}} = F \cdot s$ Energie (mechanisch) $W_{\rm me.}$ 1 J (Joule) $1\,\mathrm{N}\,\mathrm{m}$ $1\frac{Nm}{As}$ $\varphi = \frac{W}{Q}$ Potenzial 1 V (Volt) φ $1\frac{Nm}{As}$ Spannung U1 V $U = \Delta \varphi$ (Volt) $1 \frac{m^3}{6}$ $1 \frac{m^3}{}$ $I_W = \frac{\Delta v}{\Delta t}$ Stromstärke (z.B. Wasser) I_W $1\,\mathrm{N}\,\mathrm{m}\,\mathrm{s}^2$ $J = \frac{M}{\alpha}$ J $1 \,\mathrm{kg}\,\mathrm{m}^2$ Trägheitsmoment Volumen V $1\,\mathrm{m}^3$ $1\,\mathrm{m}^3$ V =(Kubikmeter) $1\frac{V}{A}$ Widerstand R $1\,\Omega$ (Ohm) $R = \frac{U}{I}$ $1\frac{m}{m}$ $\varphi = \frac{b}{a}$ Winkel 1 φ (Bogenmaß) Winkelgeschwindigkeit $\omega = \frac{\Delta \varphi}{\Delta t}$ $\frac{1}{s^2}$ $\frac{1}{s^2}$ $\alpha = \frac{\Delta \omega}{\Delta t}$ Winkelbeschleunigung

 α

[†] Als SI-Einheit wird die Einheit der Größe in andere Einheiten zerlegt (m, kg, s, A, als auch N und V).

[‡] Bei den definierenden Formeln wird der entsprechende Kontext angenommen. Außerdem sind einige Größen nicht angegeben, etwa Bogenlänge b und Radius r bei der Definition des Winkels φ .

Tabelle der physikalischen Konstanten

Name	Zeichen	Größenwert	Beziehung
Atomare Masseneinheit	1 u	$1,66 \cdot 10^{-27} \mathrm{kg}$	$1 u = \frac{1}{12} m(^{12}C)$
Avogadro-Konstante	N_A	$6,022 \cdot 10^{23} \frac{1}{\text{mol}}$	
Boltzmann-Konstante	k	$1,380 \cdot 10^{-23} \frac{\text{J}}{\text{K}}$	
Elektrische Feldkonstante	$arepsilon_0$	$8,85 \cdot 10^{-12} \frac{\mathrm{A s}}{\mathrm{V m}}$	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$
Elektronenvolt	$1\mathrm{eV}$	$1,602 \cdot 10^{-19} \mathrm{J}$	$1\mathrm{eV} = e \cdot 1\mathrm{V}$
Elementarladung	e	$1,602 \cdot 10^{-19} \mathrm{C}$	
Erdbeschleunigung	g	$9,81 \frac{m}{s^2}$	$g = \gamma \frac{m_E}{r_E^2}$
Gravitationskonstante	γ	$6.67 \cdot 10^{-11} \frac{\mathrm{m}^3}{\mathrm{kg s}^2}$	
Lichtgeschwindigkeit	c	$3,00 \cdot 10^8 \frac{\text{m}}{\text{s}}$	$c = \sqrt{\frac{1}{\varepsilon_0 \mu_0}}$
Magnetische Feldkonstante	μ_0	$4\pi \cdot 10^7 \frac{\mathrm{N}}{\mathrm{A}^2}$	$\mu_0 = \frac{1}{\varepsilon_0 c^2}$
Masse des Elektrons	m_e	$9{,}11\cdot10^{-31}\mathrm{kg}$	
Masse des Neutrons	m_n	1,0087 u	
Masse des Protons	m_p	$1,\!0073\mathrm{u}$	
Masse des Wasserstoffatoms	m_H	$1,0078\mathrm{u}$	
Plancksches Wirkungsquantum	h	$6,626 \cdot 10^{-34} \mathrm{Js}$	
Spezifische Ladung des Elektrons	$\frac{e}{m_e}$	$1{,}76\cdot10^{11}\tfrac{\mathrm{C}}{\mathrm{kg}}$	
Universelle Gaskonstante	R	$8,31 \cdot 10^3 \frac{\mathrm{J}}{\mathrm{K kmol}}$	

lame:	18.1.2019
-------	-----------

Einheiten-Abfrage, Physik (K1)

Antworten

Runde bei Rechenaufgaben ggf. auf drei relevante Stellen.

1.	Nenne das Formelzeichen für Kraft
2.	Gib in wissenschaftl. Schreibweise an: 2383 $\frac{1}{s^2}$
3.	Gib den Namen der Konstante an: m_e
4.	Nenne die Zehnerpotenz des Einheiten-Vorsatzes: a
5.	Gib die definierende Formel an für: U
6.	Gib das Formelzeichen an für: Erdbeschleunigungg
7.	Gib das Zeichen des Einheiten-Vorsatzes an: Nanon
8.	Benenne den zur Zehnerpotenz gehörigen Einheiten-Vorsatz: 10 ¹⁵ Peta
9.	Gib die Maßeinheit an für das Formelzeichen Φ
10.	Gib die definierende Formel an für: B
11.	Welche Konstante berechnet sich wie folgt: $\gamma \cdot \frac{m_E}{r_E^2}$
12.	Welche Konstante ist hier angegeben: $1,380 \cdot 10^{-23} \frac{J}{K}$
13.	Welche Konstante ist hier angegeben: $9,11\cdot 10^{-31}\mathrm{kg}$
14.	Gib den Namen der Konstante an: 1 u
15.	Welche Konstante berechnet sich wie folgt: $e \cdot 1 V \dots 1 eV$

Name:			
vaine.			

18.1.2019

Name:

Einheiten-Abfrage, Physik (K1)

Runde bei Rechenaufgaben ggf. auf drei relevante Stellen.

1. Nenne das Formelzeichen für Kraft	

- 2. Gib in wissenschaftl. Schreibweise an: 2383 $\frac{1}{s^2}$
- 3. Gib den Namen der Konstante an: m_e
- 4. Nenne die Zehnerpotenz des Einheiten-Vorsatzes: a
- 5. Gib die definierende Formel an für: *U*
- 6. Gib das Formelzeichen an für: Erdbeschleunigung
- 7. Gib das Zeichen des Einheiten-Vorsatzes an: Nano
- 8. Benenne den zur Zehnerpotenz gehörigen Einheiten-Vorsatz: 10¹⁵
- 9. Gib die Maßeinheit an für das Formelzeichen Φ
- 10. Gib die definierende Formel an für: B
- 11. Welche Konstante berechnet sich wie folgt: $\gamma \cdot \frac{m_E}{r_E^2}$
- 12. Welche Konstante ist hier angegeben: 1,380 \cdot 10⁻²³ $\frac{J}{K}$
- 13. Welche Konstante ist hier angegeben: $9,11 \cdot 10^{-31} \,\mathrm{kg}$
- 14. Gib den Namen der Konstante an: 1 u
- 15. Welche Konstante berechnet sich wie folgt: $e \cdot 1 \text{ V}$

Einheiten-Abfrage, Physik (K1)

Runde bei Rechenaufgaben ggf. auf drei relevante Stellen.

1. Nenne das Formelzeichen für Kraft

18.1.2019

- 2. Gib in wissenschaftl. Schreibweise an: 2383 $\frac{1}{s^2}$
- 3. Gib den Namen der Konstante an: m_e
- 5. Gib die definierende Formel an für: *U*
- 6. Gib das Formelzeichen an für: Erdbeschleunigung
- 7. Gib das Zeichen des Einheiten-Vorsatzes an: Nano
- 8. Benenne den zur Zehnerpotenz gehörigen Einheiten-Vorsatz: 10¹⁵
- 9. Gib die Maßeinheit an für das Formelzeichen Φ
- 10. Gib die definierende Formel an für: B
- 11. Welche Konstante berechnet sich wie folgt: $\gamma \cdot \frac{m_E}{r_F^2}$
- 12. Welche Konstante ist hier angegeben: 1,380 \cdot 10⁻²³ $\frac{J}{K}$
- 13. Welche Konstante ist hier angegeben: $9,11 \cdot 10^{-31} \,\mathrm{kg}$
- 14. Gib den Namen der Konstante an: 1 u
- 15. Welche Konstante berechnet sich wie folgt: $e \cdot 1V$