Ao's Notes on Medical Imaging Software

Ao Dong

February 2, 2020

Table 1: Revision History

Date	Author(s)	Change
Jan/30/2020 Feb/02/2020		Initial draft Update

1 Software List

PACS: Picture Archiving and Communication System

TK: Tool kit V: Visualization A: Analysis C: Convertion

Functions	Sftwr Name	Latest Release	Link	Source & reference	Notes
TK	VTK	2019	link	[Samala, 2014]	
TK	ITK	2019	link	[Samala, 2014]	
TK	DCMTK	2019	link	[Hasan, 2020] [Mu, 2019]	
TK	dcm4che	2020	link	[Emms, 2019] [Björn, 2017] [Hasan, 2020]	
PACS	orthanc	2019	link	[Björn, 2017] [Hasan, 2020]	
PACS V	ClearCanvas	2015	link	[Björn, 2017]	
PACS	Conquest	2020	link	[Björn, 2017]	
V	Aliza	2020	link	[Emms, 2019] [Mu, 2019]	Maybe not open source

V	3D Slicer	2019	link	[Emms, 2019] [Hasan, 2020] [Samala, 2014] [Haak et al., 2015]	
V	Mango	2019	link	[Emms, 2019] [Hasan, 2020] [Mu, 2019]	Only open source for iPad and web app version
V	Ginkgo CADx	2019	link	[Emms, 2019] [Björn, 2017] [Hasan, 2020] [Brühschwein et al., 2019] [Mu, 2019] [Haak et al., 2015]	
V	XMedCon	2019	link	[Emms, 2019] [Hasan, 2020] [Mu, 2019] [Haak et al., 2015]	
V	WEASIS	2019	link	[Emms, 2019] [Hasan, 2020] [Mu, 2019] [Haak et al., 2015]	
V	MRIcroGL	2019	link1 link2	[Emms, 2019] [Hasan, 2020] [Samala, 2014] [Haak et al., 2015]	
V	Amide	2017	link	[Emms, 2019] [Hasan, 2020] [Mu, 2019]	
V	SMILI	2019	link	[Emms, 2019] [Hasan, 2020] [Mu, 2019]	
V	ImageJ	2019	link	[Emms, 2019] [Hasan, 2020] [Samala, 2014] [Haak et al., 2015]	
V	DicomBrowser	2016	link	[Emms, 2019] [Hasan, 2020]	
V	3DimViewer	2019	link	[Björn, 2017] [Hasan, 2020] [Mu, 2019]	
V	MicroDicom	2020	link	[Mu, 2019] [Björn, 2017]	Maybe not open source
V	Horos	2019	link	[Björn, 2017] [Brühschwein et al., 2019]	

V	Osimis	2020	link	[Björn, 2017]	
				[Björn, 2017]	
V	OsiriX Lite	2013	link	[Brühschwein et al., 2019]	
				[Haak et al., 2015]	
17	V jivex	2019	link	[Mu, 2019]	M
V				[Haak et al., 2015]	Maybe not open source
V	Open Dicom Viewer	2015	link	[Mu, 2019]	
V				[Haak et al., 2015]	
V	dwy	2019	link	[Björn, 2017]	
		2019		[Haak et al., 2015]	
V	OHIF	2020	link	[Björn, 2017]	
V	VV	2019	link	[Björn, 2017]	
V	drishti	2018	link	[Björn, 2017]	
V	BioImage Suite	2020	link	[Haak et al., 2015]	
V	cornerstone	2018	link	[Haak et al., 2015]	
V	Oviyam	2018	link	[Haak et al., 2015]	Maybe not open source
V	MicroView	2015	link	[Haak et al., 2015]	
V	MIPAV	2019	link	[Haak et al., 2015]	
V	Slice:Drop	2019	link	[Haak et al., 2015]	
V	Fiji	2018	link	[Samala, 2014]	Distribution of ImageJ
V	GATE	2019	link	[Emms, 2019]	
V	ITK-SNAP	2019	link	[Samala, 2014]	
V	ParaView	2019	link	[Samala, 2014]	
V	MeVisLab	2018	link	[Samala, 2014]	
V	MatrixUser	2018	link	[Hasan, 2020]	
V	NextCloud	2019	link	[Hasan, 2020]	
С	dcm2niix	2019	link	[Hasan, 2020]	
V	INVESALIUS 3	2019	link	[Hasan, 2020]	
V	Trimage	2019	link	[Hasan, 2020]	
V	Gwyddion	2020	link	[Hasan, 2020]	
V	dicompyler	2016	link	[Mu, 2019]	
V	Sante DICOM	2010	link	[M 2010]	Marsha not an an access
V	Viewer Lite	2019		[Mu, 2019]	Maybe not open source
	Navegatium				
V	DICOM	2014?	link	[Mu, 2019]	
	Viewer			_	

2 Quality Measurements

2.1 Interoperability

There are not many measuring methods in papers, and most of them are very complicated.

- Can the workstation software (for visualization, analysis, etc.) connect with the PACS (server)?
- Does the software use output from or provide input to other software?
- Can the software work with customized plug-ins?

Measuring aspects from [Smith et al., 2018]:

- Does the software interoperate with external systems? (yes*, no)
- Is there a workflow that uses other softwares? (yes*, no)
- If there are external interactions, is the API clearly defined? (yes*, no, n/a)

2.2 Visibility/Transparency

- Does the software use any version and issue tracking system, such as Github, Gitlab for development?
- Does the software have documents recording the development process and status?
- Does the software have clear release log with essential information, such as release date, bug fixed and new features?

Measuring aspects from [Smith et al., 2018]:

- \bullet Is the development process defined? If yes, what process is used. (yes*, no, n/a)
- Ease of external examination relative to other products considered? (1 .. 10)

2.3 Productivity

Can be measured by the summation of all output (such as the number of lines of new code, the number of pages of new documents and the number of new test cases) produced per person-day.

However, it is hard for a third party to carry out the above method without knowing the exact number of developers or how much time they spent on the project.

- 2.4 Completeness
- 2.5 Consistency

References

- Kari Björn. Evaluation of open source medical imaging software: A case study on health technology student learning experience. *Procedia Computer Science*, 121:724–731, 01 2017. doi: 10.1016/j.procs.2017.11.094. URL https://www.sciencedirect.com/science/article/pii/S1877050917322949.
- Andreas Brühschwein, Julius Klever, Anne-Sophie Hoffmann, Denise Huber, Elisabeth Kaufmann, Sven Reese, and Andrea Meyer-Lindenberg. Free dicomviewers for veterinary medicine: Survey and comparison of functionality and user-friendliness of medical imaging pacs-dicom-viewer freeware for specific use in veterinary medicine practices. *Journal of Digital Imaging*, 03 2019. doi: 10.1007/s10278-019-00194-3.
- Steve Emms. 16 best free linux medical imaging software. https://www.linuxlinks.com/medicalimaging/, 2019. [Online; accessed 02-February-2020].
- Daniel Haak, Charles-E Page, and Thomas Deserno. A survey of dicom viewer software to integrate clinical research and medical imaging. *Journal of digital imaging*, 29, 10 2015. doi: 10.1007/s10278-015-9833-1.
- Mehedi Hasan. Top 25 best free medical imaging software for linux system. https://www.ubuntupit.com/top-25-best-free-medical-imaging-software-for-linux-system/, 2020. [Online; accessed 30-January-2020].
- Hamza Mu. 20 free & open source dicom viewers for windows. https://medevel.com/free-dicom-viewers-for-windows/, 2019. [Online; accessed 31-January-2020].
- Ravi Samala. Can anyone suggest free software for medical images segmentation and volume? https://www.researchgate.net/post/Can_anyone_suggest_free_software_for_medical_images_segmentation_and_volume, 2014. [Online; accessed 31-January-2020].
- W. Spencer Smith, Zheng Zeng, and Jacques Carette. Seismology software: State of the practice. *Journal of Seismology*, 22(3):755–788, May 2018.