Sistemas Embebidos

Trabajo Práctico Nº1 – Año 2025

Conversores AD y DA: Protocolos de Comunicación Serial Cableados

Integrantes:

- Arrieta, Nahuel
- Del Longo, Micaela
- Maglione, Andrés

Introducción

Este informe describe la implementación de un sistema de control de LED y monitoreo de un sensor LDR (Light Dependent Resistor) utilizando una plataforma basada en Arduino, una interfaz web y un servidor desarrollado con Flask. Se detalla el diseño de la arquitectura del sistema y el flujo de datos entre la interfaz web y el hardware.

Arquitectura del Sistema

El sistema consta de tres componentes principales:

- Frontend (index.html y script.js): Permite a los usuarios interactuar con el sistema mediante controles de deslizamiento (sliders) y botones.
- Backend (arduino_web_server.py): Procesa las solicitudes del usuario y envía comandos al Arduino a través de un puerto serie.
- Arduino (led_ldr_controller.ino): Recibe los comandos, ajusta el brillo de los LED y envía datos de sensores al servidor.

La comunicación entre el microcontrolador y la interfaz web se realiza a través de WebSockets y un puerto serie, permitiendo el control remoto de los dispositivos conectados al Arduino.

Código de Arduino

El Arduino está programado para recibir comandos desde el puerto serie, modificar el estado de los LED y enviar la información actualizada a la interfaz web. Los valores de los LED y el sensor LDR se envían en el siguiente formato:

L1:valor;L2:valor;L3:valor;D13:valor;A3:valor;

Donde cada "valor" representa el estado de cada dispositivo.

Sistemas Embebidos Trabajo Práctico 2

Backend: Flask y SocketIO

El servidor Flask utiliza Flask-SocketIO para establecer una comunicación en tiempo real entre el Arduino y la interfaz web. Se encarga de:

- **serial_reader()**: Leer los datos provenientes del Arduino y emitir actualizaciones a la interfaz web mediante WebSockets.
- set_control(data): Recibir comandos desde la interfaz y enviarlos al Arduino a través del puerto serie.

El backend utiliza hilos para la lectura continua de datos desde el puerto serie sin bloquear la ejecución del programa.

Frontend: HTML, JavaScript, jQuery y Socket.IO

La interfaz permite a los usuarios controlar los LED mediante sliders y botones. Además, muestra en tiempo real el estado de los LED y la lectura del sensor LDR. Se utilizan eventos de WebSocket para actualizar la información y enviar comandos al servidor.

Figura 1: Captura de pantalla de la aplicación web en la parte para controlar los LED.

Figura 2: Captura de pantalla de la aplicación web en la parte con la información del sensor LDR.

Sistemas Embebidos Trabajo Práctico 2

Flujo de Datos

El sistema sigue el siguiente flujo de datos:

- 1. Entrada de datos desde la interfaz web:
 - El usuario ajusta un deslizador para cambiar la intensidad de un LED (PWM) o presiona un botón para encender/apagar el LED digital (pin 13).
 - script.js captura estos eventos y envía los datos mediante WebSockets al servidor Flask.
- 2. Procesamiento en el servidor Flask:
 - El servidor Flask recibe los datos mediante el evento control_led de WebSocket.
 - Convierte los datos a un formato compatible y los envía a Arduino a través del puerto serie.
- 3. Recepción y ejecución en Arduino:
 - Arduino recibe los comandos a través del puerto serie.
 - Interpreta los datos y ajusta los pines de salida para modificar la intensidad de los LEDs o cambiar el estado del LED digital.
 - También lee el valor del sensor LDR (A3) y prepara un mensaje con el estado actual del sistema.
- 4. Envío de datos de Arduino al servidor:
 - Arduino envía el estado actual de los LEDs y la lectura del LDR a través del puerto serie en formato clave:valor;.
 - El servidor Flask recibe estos datos, los almacena en un diccionario y los transmite a la interfaz web mediante WebSockets.
- 5. Actualización en la interfaz web:
 - script.js recibe los datos de WebSocket y actualiza la interfaz de usuario con los nuevos valores.
 - Se actualizan los deslizadores de los LEDs, el estado del LED digital y la lectura del sensor LDR en la web en tiempo real.

Sistemas Embebidos Trabajo Práctico 2

Figura 3: Foto del Arduino en funcionamiento con las configuraciones mostradas en la Figura 1.