Метод проекции градиента. Проксимальные методы.

Семинарист: Данилова М.

Метод проекции градиента

Проекция точки на выпуклое множество

Определение 1. Пусть $a \in \mathbb{R}^n$, $X \subseteq \mathbb{R}^n$. Тогда $\pi_X(a)$ – проекция a на X, если

$$\|\pi_{\mathbf{X}}(a) - a\| \le \|x - a\| \quad \forall x \in \mathbf{X}$$

Замечания

- Если $a \in X$, то $\pi_X(a) = a$.
- Если X открытое множество и $a \notin X$, то проекции точки a на X не существует.
- Если множество Х выпуклое и замкнутое, то проекция существует и единственна.
- В случае произвольного множества проекция может быть не единственна.

Теорема 1. (Критерий для нормы l_2)

 $\pi_X(a)$ – проекция точки а на X тогда и только тогда, когда $\langle \pi_X(a) - a, \ x - \pi_X(a) \rangle \geq 0 \quad \forall x \in X$

Метод проекции градиента

Будем решать задачу условной минимизации:

$$\min_{x \in Q} f(x),$$

где $\mathbf{Q} \subseteq \mathbb{R}^d$ – выпуклое и замкнутое, а f(x) – дифференцируема.

 \bullet Если x_* – точка минимума, то x_* – решение вариационного неравенства:

$$\langle \nabla f(x_*), x - x_* \rangle > 0 \quad \forall x \in \mathbf{Q}.$$

• Если f(x) – выпукла, то это условие является достаточным.

Метод проекции градиента

Algorithm 1 Метод проекции градиента

```
Require: размер шага \gamma>0, стартовая точка x^0\in\mathbb{R}^d, количество итераций N for k=0,1,\dots,N-1 do Вычислить \nabla f(x^k) x^{k+1}=\pi_{\mathbb{Q}}\left(x^k-\gamma\nabla f(x^k)\right) end for Ensure: x^N
```

Замечания

1. Пусть f - L-гладкая, $x_k \in Q$

$$x^{k+1} = \underset{x \in Q}{\operatorname{argmin}} \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|_2^2 \right\}$$

$$= \underset{x \in Q}{\operatorname{argmin}} \left\{ \frac{1}{2L} \|\nabla f(x^k)\|_2^2 + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|_2^2 \right\}$$

$$= \underset{x \in Q}{\operatorname{argmin}} \left\{ \left\| \frac{1}{\sqrt{2L}} \nabla f(x^k) + \sqrt{\frac{L}{2}} (x - x^k) \right\|_2^2 \right\}$$

$$= \underset{x \in Q}{\operatorname{argmin}} \left\{ \frac{L}{2} \left\| \frac{1}{L} \nabla f(x^k) + x - x^k \right\|_2^2 \right\}$$

$$= \underset{x \in Q}{\operatorname{argmin}} \left\{ \left\| x - (x^k - \frac{1}{L} \nabla f(x^k)) \right\|_2^2 \right\}$$

$$= \pi_Q(x^k - \frac{1}{L} \nabla f(x^k))$$

Таким образом, для L-гладкой функции на каждом шаге метода проекции градиента с длиной шага $\gamma = \frac{1}{L}$ мы минимизиурем квадратичную аппроксимацию на множестве Q (аналогично градиентному методу, где $Q = \mathbb{R}^n$).

2. Метод проекции градиента целесообразно использовать, когда множество Q – **простое множество** (легко искать проекцию точки на данное множество).

Можно формализовать следующим образом: Q – простое множество, если решение следующей задачи

$$\min_{x \in Q} \mathbf{c}^{\top} x$$

находится быстрее (чаще всего аналитически), чем решение исходной.

Пример:

$$\min_{\|x-a\|_2 \le r} \mathbf{c}^\top x$$
$$x^* = a - \frac{rc}{\|c\|_2}.$$

Примеры простых множеств:

- ullet Q = \mathbb{R}^n_+ неотрицательный ортант
- $Q = \{x \in \mathbb{R}^n \mid x_i \in [a_i, b_i]\}$ параллелипипед
- $Q = B_2(0,1) = \{x \in \mathbb{R}^n \mid ||x||_2 \le 1\}$ шар в 2-норме

Сходимость метода проекции градиента

Метод проекции градиента — **релаксационный метод**, то есть все точки принадлежат допустимому множеству Q, и функция убывает от итерации к итерации. (f(x) - L-гладкая функция, длина шага $\gamma < \frac{2}{L}$.)

$$\langle \pi_{\mathbf{Q}}(a) - a, \ x - \pi_{\mathbf{Q}}(a) \rangle \ge 0 \quad \forall x \in \mathbf{Q}$$

Пусть $\pi_{\mathbf{Q}}(a) = x^{k+1}, \ a = x^k - \gamma \nabla f(x^k), \ x = x^k$:

$$\langle x^{k+1} - (x^k - \gamma \nabla f(x^k)), \ x^k - x^{k+1} \rangle \ge 0.$$

Обозначим $s_k = x^{k+1} - x^k$:

$$\langle s_k + \gamma \nabla f(x^k), s_k \rangle \le 0.$$

Разложим функцию f(x) в ряд Тейлора с остаточным членом в форме Лагранжа:

$$f(x^{k+1}) = f(x^k) + \langle \nabla f(\tilde{x}^k, s_k), \tilde{x}^k \in [x^k, x^{k+1}].$$

Воспользуемся L-гладкостью функции f(x) и разложением:

$$f(x^{k+1}) \leq f(x^k) + \left\langle \nabla f(x^k), \ x^{k+1} - x^k \right\rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 = f(x^k) + \left\langle \nabla f(x^k), \ s_k \right\rangle + \frac{L}{2} \|s_k\|^2 = f(x^k) + \frac{1}{\gamma} \left[\left\langle \gamma \nabla f(x^k), \ s_k \right\rangle + \|s_k\|^2 \right] + \left(\frac{L}{2} - \frac{1}{\gamma} \right) \|s_k\|^2$$

Следовательно $f(x^{k+1})-f(x^k)\leq 0$ тогда и только тогда, когда $\frac{L}{2}-\frac{1}{\gamma}<0 \ \to \ \gamma<\frac{2}{L}.$

Теорема 2.

1. Пусть f – выпуклая, L–гладкая, $Q \in \mathbb{R}^n$ – выпукло и замкнуто, $\overline{x}^N = \frac{1}{N} \sum_{k=1}^N x^k$.

Тогда

$$f(\overline{x}_N) - f(x^*) \le \frac{LR^2}{2N},$$

где $R = ||x_0 - x^*||_2$, x^* – ближайшее к x_0 решение.

Для получения точности $\varepsilon>0$ необходимо сделать $N=O\left(\frac{LR^2}{\varepsilon}\right)$ итераций, сублинейная скорость сходимости.

2. Пусть $f-\mu-$ **сильно выпуклая**, L–**гладкая**, $\mathbf{Q} \in \mathbb{R}^n$ – выпукло и замкнуто, тогда

$$||x^N - x^*||_2^2 \le \left(1 - \frac{\mu}{L}\right)^N ||x_0 - x_*||_2^2.$$

Для получения точности $\varepsilon>0$ необходимо сделать $N=O\left(\frac{L}{\mu}\ln\frac{\|x_0-x_*\|_2^2}{\varepsilon}\right)$ итераций, линейная скорость сходимости.

Проксимальные методы

Рассмотрим общий вид задачи условной оптимизации:

$$f(x) \to \min_{x \in Q},$$
 (1)

где $\mathbf{Q} \subseteq \mathbb{R}^n$ — выпуклое замкнутое множество.

$N(\varepsilon)$	выпуклость	μ -сильная выпуклость
<i>L</i> -гладкость	$\Omega\left(\sqrt{\frac{LR^2}{arepsilon}} ight)$	$\Omega\left(\sqrt{\frac{L}{\mu}}\ln\frac{\mu R^2}{arepsilon}\right)$
$\ \nabla f(x)\ _2 \le M$	$\Omega\left(\frac{M^2R^2}{\varepsilon^2}\right)$	$\Omega\left(rac{M^2}{\muarepsilon} ight)$

Таблица 1: Нижние оценки на число итераций $N = N(\varepsilon)$, необходимых методу первого порядка для нахождения такой точки x^N , что $f(x^N) - f(x^*) \le \varepsilon$.

Все приведённые нижние оценки точны в том смысле, что существуют методы оптимизации с верхними оценками на необходимое число итераций, соответствующими этим нижним оценкам. Казалось бы, на этом можно заканчивать изучение оптимизации: оптимальные методы мы изучили, а ничего лучше в данной постановке задачи получить нельзя.

Пример

Рассмотрим задачу

$$F(x) = \underbrace{\frac{1}{2} x^{\top} A x}_{f(x)} + \underbrace{\lambda \|x\|_{1}}_{R(x)} \to \min_{x \in \mathbb{R}^{n}}, \tag{2}$$

где $A \in \mathbb{S}^n_+$ — симметричная положительно полуопределённая матрица, $\lambda > 0$.

- $f(x) = \frac{1}{2}x^{\top} Ax$ выпуклая и L-гладкая функция с $L = \lambda_{\max}(A)$.
- $R(x) = \lambda \|x\|_1$ выпуклая негладкая функция с ограниченными субградиентами: $\|\nabla R(x)\|_2 \le \lambda \sqrt{n}$, где $\nabla R(x)$ произвольный субградиент функции R(x) в точке x.

Единственный класс задач из четырёх классов, рассмотренных ранее, к которому мы можем отнести задачу (2) — это класс выпуклых функций с ограниченными субградиентами. Действительно, достаточно предполагать ограниченность субградиентов только на шаре $B_{2R}(x^*) = \{x \in \mathbb{R}^n \mid \|x - x^*\|_2 \le 2R\}$, где $R = \|x^0 - x^*\|_2$. Поэтому можно ограничить $\nabla f(x)$ по норме некоторой константой на этом шаре. Пусть $\|\nabla F(x)\|_2 \le M$, тогда градиентный спуск с правильно выбранным размером шага (порядка $\frac{\varepsilon}{M^2}$) будет сходиться для данной задачи со скоростью $O\left(\frac{M^2R^2}{\varepsilon^2}\right)$.

HO полученная оценка не учитывает структуру задачи: мы полностью проигнорировали тот факт, что f(x) имеет Липпицев градиент и что R(x) достаточно «простая» функция. Оказывается для такого вида задач можно немного видоизменить градиентный спуск и получить

метод, который будет сходиться со скоростью $O(\frac{LR^2}{\varepsilon})$. Более того, можно получить ускоренный метод, который будет работать ещё быстрее — со скоростью $O\left(\sqrt{\frac{LR^2}{\varepsilon}}\right)$. Но для начала нам нужно формально определить, с каким новым классом задач мы имеем дело.

Задачи выпуклой композитной оптимизации

(Задачи с регуляризацией)

Рассмотрим задачу

$$F(x) = f(x) + R(x) \to \min_{x \in \mathbb{R}^n}, \tag{3}$$

где

- $f(x): \mathbb{R}^n \to \mathbb{R}$ L-гладкая, выпуклая функция.
- $R(x): \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ правильная выпуклая замкнутая функция. Здесь
 - правильная функция = функция, которая не всюду равна $+\infty$,
 - замкнутая функция = функция, у которой множества уровня замкнуты, т.е. для всех $\alpha \in \mathbb{R}$ множество $\{x \in \mathbb{R}^n \mid R(x) \leq \alpha\}$ замкнуто.

Пример 2.

1.
$$R(x) = 0 \Rightarrow \min_{x \in \mathbb{R}^n} f(x)$$

2.
$$R(x) = \delta_{\mathbf{Q}}(x) = \begin{cases} 0, & x \in \mathbf{Q} \\ +\infty, & x \notin \mathbf{Q} \end{cases} \Rightarrow \min_{x \in \mathbf{Q}} f(x)$$

3.
$$R(x) = \lambda ||x||_1$$

Проксимальный оператор и его свойства

Для функции R(x), удовлетворяющей условиям (3), рассмотрим отображение из \mathbb{R}^n в \mathbb{R}^n :

$$\operatorname{prox}_{R}(x) \stackrel{\text{def}}{=} \underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} \left\{ R(y) + \frac{1}{2} \|y - x\|_{2}^{2} \right\}. \tag{4}$$

Далее мы будем рассматривать только такие функции R(x), относительно которых можно «быстро» вычислять проксимальный оператор.

1. $\operatorname{prox}_R(x)$ определяется однозначно для любого $x \in \mathbb{R}^n$, т.е. $\operatorname{prox}_R(x)$ — это отображение. Действительно, задача (4) является сильно выпуклой, а значит, имеет единственное решение.

2. $u = \operatorname{prox}_R(x) \iff x - u \in \partial R(u) \iff \langle x - u, y - u \rangle \leq R(y) - R(u) \ \forall y \in \mathbb{R}^n$. Действительно, \oplus следует из необходимого и достаточного условия оптимальности первого порядка

$$u = \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ R(y) + \frac{1}{2} \|y - x\|_2^2 \right\} \Longleftrightarrow 0 \in u - x + \partial R(u),$$

а $\mathfrak D$ следует из определения субградиента R в точке u,

3. Для всех $x, y \in \mathbb{R}^n$ выполняются неравенства:

$$\langle x - y, \operatorname{prox}_R(x) - \operatorname{prox}_R(y) \rangle \ge \| \operatorname{prox}_R(x) - \operatorname{prox}_R(y) \|_2^2,$$
 (5)

$$\|\operatorname{prox}_{R}(x) - \operatorname{prox}_{R}(y)\|_{2} \le \|x - y\|_{2}.$$
 (6)

Пусть $u = \text{prox}_R(x), v = \text{prox}_R(y)$, тогда по свойству 2 имеем: $\langle x-u, v-u \rangle \leq R(v) - R(u)$ и $\langle y-v, u-v \rangle \leq R(u) - R(v)$. Складывая эти неравенства, получаем: $\langle u-v, y-x+u-v \rangle \leq 0$, что эквивалентно (5). Теперь покажем (6). Если u=v, то неравенство (6) очевидно. Если же $u \neq v$, то из (5) и неравенства Коши-Буняковского-Шварца получаем: $\|u-v\|_2^2 \leq \langle x-y, u-v \rangle \leq \|x-y\|_2 \cdot \|u-v\|_2$, что после сокращения левой и правой частей на $\|u-v\|_2$ даёт (6).

Примеры вычисления проксимальных операторов

1. R(x) = c, где $c \in \mathbb{R}$. Тогда

$$\operatorname{prox}_{R}(x) = \operatorname*{argmin}_{y \in \mathbb{R}^{n}} \left\{ c + \frac{1}{2} \|y - x\|_{2}^{2} \right\} = x.$$

2. $R(x)=\delta_{\mathbf{Q}}(x)=\begin{cases} 0, & x\in\mathbf{Q}, \\ +\infty, & x\not\in\mathbf{Q}, \end{cases}$ где $\mathbf{Q}\subseteq\mathbb{R}^n$ — выпуклое замкнутое непустое множество.

Заметим, что минимум в определении проксимального оператора не может достигаться вне множества Q, т.к. функция под минимумом вне этого множества равняется $+\infty$. Поэтому

$$\begin{array}{lll} \mathrm{prox}_R(x) & = & \displaystyle \operatorname*{argmin}_{y \in \mathbb{R}^n} \left\{ \delta_{\mathrm{Q}}(y) + \frac{1}{2} \|y - x\|_2^2 \right\} = \operatorname*{argmin}_{y \in \mathrm{Q}} \left\{ \frac{1}{2} \|y - x\|_2^2 \right\} \\ & = & \displaystyle \pi_{\mathrm{Q}}(x) \quad - \text{метод проекции градиента.} \end{array}$$

3. $R(x) = \frac{1}{2}x^{\mathsf{T}}Ax + \mathbf{b}^{\mathsf{T}}x + \mathbf{c}$, где $\mathbf{A} \in \mathbb{S}^n_+$, $\mathbf{b} \in \mathbb{R}^n$ и $\mathbf{c} \in \mathbb{R}$. Пусть $u = \mathrm{prox}_R(x)$. Тогда

$$u = \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \frac{1}{2} y^{\top} A y + b^{\top} y + c + \frac{1}{2} ||y - x||_2^2 \right\},\,$$

что по свойству 2 эквивалентно тому, что

$$x - u = Au + b \iff u = (A + I)^{-1}(x - b) = \text{prox}_{R}(x).$$

4. $R(x) = \lambda ||x||_1$, где $\lambda > 0$. Чтобы найти прокс-оператор от данной функции, докажем вспомогательное утверждение.

Утверждение 1 (Прокс-оператор сепарабельной функции). Пусть $R(x) = R(x_1, \ldots, x_r) = \sum_{i=1}^r R_i(x_i)$, где $x = (x_1^\top, \ldots, x_r^\top)^\top \in \mathbb{R}^n$ и $x_i \in \mathbb{R}^{n_i}$ для $i = 1, \ldots, r$. Тогда

$$\operatorname{prox}_{R}(x) = \begin{pmatrix} \operatorname{prox}_{R_{1}}(x_{1}) \\ \vdots \\ \operatorname{prox}_{R_{r}}(x_{r}) \end{pmatrix}.$$

Доказательство. По определению мы имеем

$$\operatorname{prox}_{R}(x) = \operatorname{argmin}_{y \in \mathbb{R}^{n}} \left\{ \sum_{i=1}^{r} R_{i}(y_{i}) + \frac{1}{2} \|y - x\|_{2}^{2} \right\}$$
$$= \operatorname{argmin}_{y_{i} \in \mathbb{R}^{n_{i}}, i = \overline{1, n}} \left\{ \sum_{i=1}^{r} \left(R_{i}(y_{i}) + \frac{1}{2} \|y_{i} - x_{i}\|_{2}^{2} \right) \right\}.$$

Отсюда следует, что задача распадается на r независимых подзадач. Используя определение $\mathrm{prox}_{R_i}(x_i)$, получаем требуемое.

Возвращаясь к исходной задаче, замечаем, что $R(x) = \sum_{i=1}^{n} \lambda |x_i|$, то есть достаточно найти прокс-оператор функции одного аргумента $g(x) = \lambda |x|$, $x \in \mathbb{R}$:

$$u = \operatorname{prox}_g(x) = \underset{y \in \mathbb{R}}{\operatorname{argmin}} \left\{ \lambda |y| + \frac{1}{2} (y - x)^2 \right\}.$$

- Минимум достигается при y > 0, тогда и только тогда, когда $\lambda + u x = 0 \iff u = x \lambda$. Это означает, что если $x > \lambda$, то $\operatorname{prox}_{\sigma}(x) = x \lambda$.
- Аналогичными рассуждениями получаем, что если $x < -\lambda$, то $\operatorname{prox}_q(x) = x + \lambda$.

Полученный результат можно записать в следующем виде:

$$\operatorname{prox}_g(x) = [|x| - \lambda]_+ \cdot \operatorname{sign}(x), \text{ где } \operatorname{sign}(x) \stackrel{\text{def}}{=} \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0 \end{cases}$$

и $[y]_+\stackrel{\mathrm{def}}{=} \max\{y,0\}$. Отсюда следует, что для $R(x)=\lambda\|x\|_1$

$$\operatorname{prox}_{R}(x) = [|x| - \lambda \mathbf{1}]_{+} \odot \operatorname{sign}(x),$$

где $\mathbf{1} \stackrel{\text{def}}{=} (1,\dots,1)^{\top} \in \mathbb{R}^n$, модуль |x|, срезка $[|x|-\lambda\mathbf{1}]_+$ и сигнум (знак) $\mathrm{sign}(x)$ применяются к векторам покомпонентно и $y \odot z \stackrel{\text{def}}{=} (y_1z_1,\dots,y_nz_n)^{\top}$ обозначает произведение Адамара двух векторов (покомпонентное произведение).

Проксимальный градиентный спуск

Для задачи (3) рассмотрим следующий метод.

Algorithm 2 Проксимальный градиентный спуск

Require: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций N

- 1: **for** k = 0, 1, ..., N 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = \operatorname{prox}_{\gamma R} (x^k \gamma \nabla f(x^k))$
- 4: end for

Ensure: x^N

- Внешне метод очень похож на градиентный спуск: по-прежнему требуется вычислять градиентный шаг, но теперь дополнительно от получаемой градиентным шагом точки вычисляется прокс.
- Пусть $x^* = \operatorname*{argmin}_{x \in \mathbb{R}^n} F(x)$. Тогда $x^* = \operatorname*{prox}_{\gamma R} (x^* \gamma \nabla f(x^*))$.
- Пусть f(x) L-гладкая, тогда шаг проксимального метода можно выразить следующим образом:

$$x_{k+1} = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{L}{2} \|x - x_k\|_2^2 + R(x) \right\}$$

$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \frac{L}{2} \left\| x - x_k + \frac{1}{L} \nabla f(x_k) \right\|_2^2 + R(x) \right\}$$

$$= \underset{L}{\operatorname{prox}}_{\frac{1}{L}R(x)} \left(x_k - \frac{1}{L} \nabla f(x_k) \right)$$

Сильно выпуклый случай

Теорема 3. Пусть $f(x) - \mu$ -сильно выпуклая L-гладкая функция, R(x) — правильная выпуклая замкнутая функция и $\gamma \leq \frac{1}{L}$. Тогда для любого N>0 выход Алгоритма 2 удовлетворяет неравенству:

$$||x^{N} - x^{*}||_{2}^{2} \le (1 - \gamma \mu)^{N} ||x^{0} - x^{*}||_{2}^{2}.$$

$$(7)$$

Иными словами, для проксимального градиентного спуска с $\gamma = \frac{1}{L}$ через $N = O\left(\frac{L}{\mu} \ln \frac{R^2}{\varepsilon}\right)$ итераций, где $R = \|x^0 - x^*\|_2$, выполняется $\|x^N - x^*\|_2^2 \le \varepsilon$.

Доказательство. Пользуясь тем, что прокс-оператор является нерастягивающим (см. (6)), мы получаем

$$\begin{split} \|x^{k+1} - x^*\|_2^2 &= \|\operatorname{prox}_{\gamma R}(x^k - \gamma \nabla f(x^k)) - \operatorname{prox}_{\gamma R}(x^* - \gamma \nabla f(x^*))\|_2^2 \\ &\stackrel{(6)}{\leq} \|x^k - x^* - \gamma \left(\nabla f(x^k) - \nabla f(x^*)\right)\|_2^2 \\ &= \|x^k - x^*\|_2^2 - 2\gamma \langle x^k - x^*, \nabla f(x^k) - \nabla f(x^*) \rangle \\ &+ \gamma^2 \|\nabla f(x^k) - \nabla f(x^*)\|_2^2. \end{split}$$

Из сильной выпуклости функции f имеем

$$f(x^*) \ge f(x^k) + \langle \nabla f(x^k), x^* - x^k \rangle + \frac{\mu}{2} ||x^* - x^k||_2^2,$$

откуда следует, что

$$-\langle x^k - x^*, \nabla f(x^k) - \nabla f(x^*) \rangle \le -\frac{\mu}{2} \|x^k - x^*\|_2^2 - \underbrace{\left(f(x^k) - f(x^*) - \langle \nabla f(x^*), x^k - x^* \rangle\right)}_{V_f(x^k, x^*)}.$$

Из полученных неравенств имеем:

$$||x^{k+1} - x^*||_2^2 \le (1 - \gamma \mu)||x^k - x^*||_2^2 - 2\gamma V_f(x^k, x^*) + \gamma^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2.$$

Кроме того, из L-гладкости и выпуклости функции f следует (см. Теорему 2.1.5 из книги Ю.Е. Нестерова, 2010 года), что для любых $x,y\in\mathbb{R}^n$

$$\|\nabla f(x) - \nabla f(y)\|_{2}^{2} \le 2L(f(x) - f(y) - \langle \nabla f(y), x - y \rangle) = 2LV_{f}(x, y).$$

Используя это неравенство с $x=x^k$ и $y=x^*$, мы продолжаем наши цепочку неравенств для $\|x^{k+1}-x^*\|_2^2$:

$$||x^{k+1} - x^*||_2^2 \le (1 - \gamma \mu)||x^k - x^*||_2^2 - 2\gamma (1 - \gamma L) V_f(x^k, x^*)$$

Из выпуклости f имеем:

$$V_f(x^k, x^*) = f(x^k) - f(x^*) - \langle \nabla f(x^*), x^k - x^* \rangle \ge 0.$$

Кроме того, т.к. $\gamma>0$ и $\gamma\leq\frac{1}{L}$, то $2\gamma\left(1-\gamma L\right)V_f(x^k,x^*)\geq0$, откуда следует, что

$$||x^{k+1} - x^*||_2^2 \le (1 - \gamma \mu) ||x^k - x^*||_2^2$$
.

Поскольку формула выше выполнена для всех целых $k \ge 0$, то отсюда следует, что

$$||x^{k+1} - x^*||_2^2 \le (1 - \gamma \mu)^{k+1} ||x^0 - x^*||_2^2.$$

Наконец, подставляя $\gamma=\frac{1}{L}$ и пользуясь неравенством $(1-t)^k \leq e^{-tk}$, получаем, что для достижения $\|x^N-x^*\|_2^2 \leq \varepsilon$ достаточно $N=\frac{L}{\mu}\ln\frac{\|x^0-x^*\|_2^2}{\varepsilon}$ итераций данного метода.

Выпуклый случай

Теорема 4. Пусть f(x) — выпуклая L-гладкая функция, R(x) — правильная выпуклая замкнутая функция и $\gamma = \frac{1}{L}$. Тогда для любого N>0 выход Алгоритма 2 удовлетворяет неравенству:

$$F(x^N) - F(x^*) \le \frac{L\|x^0 - x^*\|_2^2}{2N}.$$
 (8)

Иными словами, для проксимального градиентного спуска с $\gamma = \frac{1}{L}$ через $N = O\left(\frac{LR^2}{\varepsilon}\right)$ итераций, где $R = \|x^0 - x^*\|_2$, выполняется $F(x^N) - F(x^*) \le \varepsilon$.

Проксимальный ускоренный градиентный метод (FISTA)

FISTA: выпуклый случай

Пусть функция f выпукла. Тогда проксимальный градиентный метод можно ускорить следуюшим способом.

Algorithm 3 Проксимальный ускоренный градиентный метод (FISTA) для выпуклых функций

Require: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций N

- 1: $y^0 = x^0$, $t_0 = 1$
- 2: **for** $k = 0, 1, \dots, N 1$ **do**
- Вычислить $\nabla f(y^k)$ 3:

- $x^{k+1} = \operatorname{prox}_{\frac{1}{L}R} \left(y^k \frac{1}{L} \nabla f(y^k) \right)$ $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$ $y^{k+1} = x^{k+1} + \frac{t_k 1}{t_{k+1}} (x^{k+1} x^k)$
- 7: end for

Ensure: x^N

Теорема 5. Пусть f(x) — выпуклая L-гладкая функция, R(x) — правильная выпуклая замкнутая функция. Тогда для любого N > 0 выход Алгоритма 3 удовлетворяет неравенству:

$$F(x^N) - F(x^*) \le \frac{2L\|x^0 - x^*\|_2^2}{(N+1)^2}.$$
(9)

Иными словами, для FISTA через $N = O\left(\sqrt{\frac{LR^2}{\varepsilon}}\right)$ итераций, где $R = \|x^0 - x^*\|_2$, выполняется $F(x^N) - F(x^*) < \varepsilon$.

FISTA: сильно выпуклый случай

Пусть теперь функция f μ -сильно выпукла.

Algorithm 4 Проксимальный ускоренный градиентный метод (FISTA) для сильно выпуклых функ-

Require: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций N

- 1: $y^0 = x^0$, $\varkappa = \frac{L}{\mu}$ 2: **for** k = 0, 1, ..., N-1 **do**
- Вычислить $\nabla f(y^k)$ 3:
- 4:
- $x^{k+1} = \underbrace{\text{prox}_{\frac{1}{L}R}}_{\frac{1}{L}R} (y^k \frac{1}{L} \nabla f(y^k))$ $y^{k+1} = x^{k+1} + \underbrace{\frac{\sqrt{\varkappa} 1}{\sqrt{\varkappa} + 1}}_{\sqrt{\varkappa} + 1} (x^{k+1} x^k)$
- 6: end for

Ensure: x^N

Теорема 6. Пусть $f(x) - \mu$ -сильно выпуклая L-гладкая функция, R(x) — правильная выпуклая замкнутая функция. Тогда для любого N>0 выход Алгоритма 4 удовлетворяет неравенству:

$$F(x^{N}) - F(x^{*}) \le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^{N} \left(F(x^{0}) - F(x^{*}) + \frac{\mu}{2} \|x^{0} - x^{*}\|_{2}^{2}\right). \tag{10}$$

Иными словами, для FISTA через $N=O\left(\sqrt{\frac{L}{\mu}}\ln{\frac{F(x^0)-F(x^*)+\mu R^2}{\varepsilon}}\right)$ итераций, где $R=\|x^0-x^*\|_2$, выполняется $F(x^N)-F(x^*)\leq \varepsilon$.