Let's Datafy Big Mountain Resort

Business Recommendations and Skiable Pricing Model

Problem Identification

How to maximize profit without lower price?

- Increase ticket price?
- Cut costs? Which one?

Context

- New chair lift increases operating costs by \$1.5M
- Lowering ticket price will hamper investment strategy

Key Findings

- Permanently close down 5 of the least used runs at maximum (\$1.2M expected decrease in revenue)
- Extend vertical drop by 150 feet plus new chair lift installment that leads to increasing expected revenue by \$3.47M

Exploratory Data Analysis EDA DP PM

- Big cleanup remove AdultWeekday and FastEight variables
- Big Dirty Finding size area of night skiing and fast quads have a positive correlation with ticket price.

Data Preprocessing

EDA DP PM

- Baseline:
 - R-squared: 0.0
 - MAE: 17.92
- Best Model:
 - CV R-squared: 0.721
 - CV MAE: 9.64
- Components in Model:
 - Random Forest Regression
 - Median Imputation
 - K = 8 (i.e., fastQuads & Runs)

Pricing Model

EDA DP PM

- Out-of-sample test set:
 - MAE: 10.39
 - MAE STD: 1.47
- Result for Big Mountain Resort
 - Predicted Price: \$95.87
 (between \$85.48 \$106.26)
 - Actual Price: \$81.00

Pricing Model

EDA DP PM

- First Scenario
 - Permanently close 5 runs at maximum
 - If 6th run closes, the large drop revenue will be expected.
- Limitations in Model
 - Lack of scrap value
 - Lack of maintenance cost
 - Lack of predicted number of customers

Conclusion

- Pricing model can turn into user-friendly Ad Hoc analysis
- Mismatch price in Big Mountain Resort requires more assessments