CS685: Data Mining Data Preprocessing and Data Cleaning

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2021-22 Mon 1030-1200 (online)

Data Quality

- Data should have the following qualities
 - Accuracy
 - Completeness
 - Consistency
 - Timeliness
 - Reliability
 - Interpretability
 - Availability

• Data values can be classified as discrete or continuous

- Data values can be classified as discrete or continuous
- Discrete
 - Finite or countably infinite set of values
 - Countably infinite sets have a one-to-one correspondence with the set of natural numbers

- Data values can be classified as discrete or continuous
- Discrete
 - Finite or countably infinite set of values
 - Countably infinite sets have a one-to-one correspondence with the set of natural numbers
- Continuous
 - Real numbers
 - Precision of measurement and machine-representation limit possibilities
 - Not continuous in the actual sense

- Data values can be classified as discrete or continuous
- Discrete
 - Finite or countably infinite set of values
 - Countably infinite sets have a one-to-one correspondence with the set of natural numbers
- Continuous
 - Real numbers
 - Precision of measurement and machine-representation limit possibilities
 - Not continuous in the actual sense
- Data can also be classified in other ways

• Categorical data is qualitative

- Categorical data is qualitative
- Nominal
 - Categories
 - Example: color
 - Operations: equal, not equal
- Binary
 - Special case of nominal
 - Example: gender, diabetic
 - Symmetric: Two cases are equally important
 - Asymmetric: One case is more important

- Categorical data is qualitative
- Nominal
 - Categories
 - Example: color
 - Operations: equal, not equal
- Binary
 - Special case of nominal
 - Example: gender, diabetic
 - Symmetric: Two cases are equally important
 - Asymmetric: One case is more important
- Ordinal or Rank or Ordered scalar
 - Can order
 - Example: small, medium, large
 - Operations: equality, lesser, greater

- Categorical data is qualitative
- Nominal
 - Categories
 - Example: color
 - Operations: equal, not equal
- Binary
 - Special case of nominal
 - Example: gender, diabetic
 - Symmetric: Two cases are equally important
 - Asymmetric: One case is more important
- Ordinal or Rank or Ordered scalar
 - Can order
 - Example: small, medium, large
 - Operations: equality, lesser, greater
 - Difference has no meaning

Numeric Data

• Numeric data is quantitative

Numeric Data

- Numeric data is quantitative
- Ratio-scaled
 - Has a zero point: absolute values are ratios of each other
 - Example: temperature in Kelvin, age, mass, length
 - Operations: difference, ratio

Numeric Data

- Numeric data is quantitative
- Ratio-scaled
 - Has a zero point: absolute values are ratios of each other
 - Example: temperature in Kelvin, age, mass, length
 - Operations: difference, ratio
- Interval-scaled
 - Measured on equal sized units
 - Example: temperature in Celsius, date
 - No zero point: absolute value has no meaning
 - Operations: difference

- Errors in data due to
 - Measurement error
 - Data collection error
 - Noise: probabilistic
 - Artifact: deterministic distortions

- Errors in data due to
 - Measurement error
 - Data collection error
 - Noise: probabilistic
 - Artifact: deterministic distortions
- Parameters to measure the quality of measurements
 - Precision: closeness of repeated measurements
 - Bias: systematic variation of measurements
 - Accuracy: closeness of measurements to true value

- Errors in data due to
 - Measurement error
 - Data collection error
 - Noise: probabilistic
 - Artifact: deterministic distortions
- Parameters to measure the quality of measurements
 - Precision: closeness of repeated measurements
 - Bias: systematic variation of measurements
 - Accuracy: closeness of measurements to true value
- Data problems
 - Missing values
 - Noise
 - Outliers
 - Inconsistent values
 - Duplicate objects

- Errors in data due to
 - Measurement error
 - Data collection error
 - Noise: probabilistic
 - Artifact: deterministic distortions
- Parameters to measure the quality of measurements
 - Precision: closeness of repeated measurements
 - Bias: systematic variation of measurements
 - Accuracy: closeness of measurements to true value
- Data problems
 - Missing values
 - Noise
 - Outliers
 - Inconsistent values
 - Duplicate objects
- Domain knowledge about data and attributes helps data mining

Data Preprocessing

- Data preprocessing is the process of preparing the data to be fit for data mining algorithms and methods
- Known as ETL (Extract, Transform, Load)
- It may involve one or more of the following steps
 - Data cleaning
 - Data reduction/summarization
 - Data integration
 - Data transformation

Data Cleaning

- Process of handling errors in data
- Different ways
- Filling in missing values
- Handling noise
- Removing outliers
 - One of the main methods in handling noise
- Resolving inconsistent data
 - Out of range
 - Once identified as inconsistent data, handled as missing value
- De-duplicating duplicated objects

• Ignore the data object

- Ignore the data object
- Ignore only the missing attribute during analysis

- Ignore the data object
- Ignore only the missing attribute during analysis
- Estimate the missing value

- Ignore the data object
- Ignore only the missing attribute during analysis
- Estimate the missing value
- Use a measure of overall central tendency
 - Mean or median
- Use a measure of central tendency from only the neighborhood

- Ignore the data object
- Ignore only the missing attribute during analysis
- Estimate the missing value
- Use a measure of overall central tendency
 - Mean or median
- Use a measure of central tendency from only the neighborhood
- Interpolation
 - Useful for temporal and spatial data

- Ignore the data object
- Ignore only the missing attribute during analysis
- Estimate the missing value
- Use a measure of overall central tendency
 - Mean or median
- Use a measure of central tendency from only the neighborhood
- Interpolation
 - Useful for temporal and spatial data
- Use the most probable value
 - Mode

- Noise is a random perturbation in the data
- It is generally assumed that magnitude of noise is smaller than magnitude of attribute of interest
 - Signal-to-noise ratio should not be too low
- White noise
 - Gaussian distribution with zero mean

- Noise is a random perturbation in the data
- It is generally assumed that magnitude of noise is smaller than magnitude of attribute of interest
 - Signal-to-noise ratio should not be too low
- White noise
 - Gaussian distribution with zero mean
- As opposed to noise, bias can be corrected since it is deterministic

- Noise is a random perturbation in the data
- It is generally assumed that magnitude of noise is smaller than magnitude of attribute of interest
 - Signal-to-noise ratio should not be too low
- White noise
 - Gaussian distribution with zero mean
- As opposed to noise, bias can be corrected since it is deterministic
- Histogram binning
 - Bin values are replaced by mean or median
 - Equi-width histograms are more common than equi-depth

- Noise is a random perturbation in the data
- It is generally assumed that magnitude of noise is smaller than magnitude of attribute of interest
 - Signal-to-noise ratio should not be too low
- White noise
 - Gaussian distribution with zero mean
- As opposed to noise, bias can be corrected since it is deterministic
- Histogram binning
 - Bin values are replaced by mean or median
 - Equi-width histograms are more common than equi-depth
- Regression
 - Fitting a function to describe the values
 - Small values of noise do not affect the overall fit
 - Noisy value replaced by most likely value predicted by the function

- Noise is a random perturbation in the data
- It is generally assumed that magnitude of noise is smaller than magnitude of attribute of interest
 - Signal-to-noise ratio should not be too low
- White noise
 - Gaussian distribution with zero mean
- As opposed to noise, bias can be corrected since it is deterministic
- Histogram binning
 - Bin values are replaced by mean or median
 - Equi-width histograms are more common than equi-depth
- Regression
 - Fitting a function to describe the values
 - Small values of noise do not affect the overall fit
 - Noisy value replaced by most likely value predicted by the function
- Outlier identification and removal

Data Duplication

• Same (or almost same) values

Data Duplication

- Same (or almost same) values
- Duplicate objects may appear during data insertion or data transfer
- Mostly due to data collection errors

Data Duplication

- Same (or almost same) values
- Duplicate objects may appear during data insertion or data transfer
- Mostly due to data collection errors
- Introduces errors in statistics about the data
- If most attributes are exact copies, then it is easy to remove
- Sometimes one or more attributes are slightly different
- Domain knowledge needs to be utilized to identify such cases
- Process is called de-duplication

Data Integration

- Data integration is the process of transforming multiple data sources into one single coherent source
- Useful when there are multiple databases about the same set of objects

Data Integration

- Data integration is the process of transforming multiple data sources into one single coherent source
- Useful when there are multiple databases about the same set of objects
- Schema matching and entity identification
 - Is cust_id equal to cust_number?
- Correlation analysis to reduce redundancy
- Chi-square test for categorical data
- De-duplication

Data Transformation

Data transformation is useful when

Data Transformation

- Data transformation is useful when
 - Identifying trends
 - Normalizing to correctly get statistics
 - Applying particular data mining algorithms

Data Transformation

- Data transformation is useful when
 - Identifying trends
 - Normalizing to correctly get statistics
 - Applying particular data mining algorithms
- Smoothing of bins using histograms
- Aggregation and summarization
- Generalization
- Normalization

• Normalization changes the range of values

- Normalization changes the range of values
- Min-max normalization

$$x' = \frac{x - \min}{\max - \min}$$

This puts range to

- Normalization changes the range of values
- Min-max normalization

$$x' = \frac{x - \min}{\max - \min}$$

- This puts range to (0,1)
- If new range is (min', max')

- Normalization changes the range of values
- Min-max normalization

$$x' = \frac{x - \min}{\max - \min}$$

- This puts range to (0,1)
- If new range is (min', max')

$$x' = \left(\frac{x - \min}{\max - \min}\right) (\max' - \min') + \min'$$

- Normalization changes the range of values
- Min-max normalization

$$x' = \frac{x - \min}{\max - \min}$$

- This puts range to (0,1)
- If new range is (min', max')

$$x' = \left(\frac{x - \min}{\max - \min}\right) (\max' - \min') + \min'$$

Z-score normalization

$$x' = \frac{x - \mu}{\sigma}$$

where μ is the mean and σ is the standard deviation

• This puts range to

- Normalization changes the range of values
- Min-max normalization

$$x' = \frac{x - min}{max - min}$$

- This puts range to (0,1)
- If new range is (min', max')

$$x' = \left(\frac{x - \min}{\max - \min}\right) (\max' - \min') + \min'$$

Z-score normalization

$$x' = \frac{x - \mu}{\sigma}$$

where μ is the mean and σ is the standard deviation

- This puts range to $(-\infty, +\infty)$
- Also called standard score or z-score since it corresponds to the standard normal distribution N(0,1)