CDAC MUMBAI

Concepts of Operating System

Assignment No: 2

Part A

Name: Akash Bhadane

What will the following commands do?

1. echo "Hello, World!"

- Print the text Hello World! on the terminal.

2. name="Productive"

- Create a one Variable name and assign the value Production.

3. touch file.txt

- Create a new empty txt file named file.txt

4. ls -a

- list all files in the directory, including all hidden files.

5. rm file.txt

- Delete the file name file.txt.

6. cp file1.txt file2.txt

- Copy the content of file1.txt into a new file file2.txt.

7. mv file.txt /path/to/directory/

- Move the file file.txt into the specified directory.

8. chmod 755 script.sh

- change file permission so that:
- The owner can read, write, and execute.
- The group can read and execute.
- Others can read and execute

9. grep "pattern" file.txt

- Search for the word pattern inside file.txt prints the match line.

10. kill PID

- Terminates the process with the given process PID.

11. mkdir mydir && cd mydir && touch file.txt && echo "Hello, World!" > file.txt && cat file.txt

- Create a folder mydir.
- Change directory to mydir.
- Create a file named file.txt.
- Write Hello, World! Into the file.
- Displays the content of the file on the terminal.

12. ls -l | grep ".txt"

- Shows file in long format but only displays those ending with .txt.

13. cat file1.txt file2.txt | sort | uniq

- Combines the content of two files, sorts the lines, and removes any duplicates.

14. ls -l | grep "^d"

- lists only directories or starting with d.

15. grep -r "pattern" /path/to/directory/

- Search the pattern word in all files under the given directory, including subfolder

16. cat file1.txt file2.txt | sort | uniq -d

- show only the lines that appear in both files or duplicates.

17. chmod 644 file.txt

- Set the file permissions using a numeric code 644.
- The owner can read and write.
- The group and others can only read.

18. cp -r source_directory destination_directory

- copy an entire folder to another location.

19. find /path/to/search -name "*.txt"

- Finds all .txt files inside the given path.

20. chmod u+x file.txt

- Owner u executes permission, without changing other permissions.

21.echo \$PATH

- Display the systems PATH variable.

Part B

Identify True or False:

- 1. **Is** is used to list files and directories in a directory.
 - True
- 2. **mv** is used to move files and directories.
 - True
- 3. **cd** is used to copy files and directories.
 - False
 - Correct -cd used to change directory.
- 4. **pwd** stands for "print working directory" and displays the current directory.
 - True
- 5. **grep** is used to search for patterns in files.
 - True
- 6. **chmod 755 file.txt** gives read, write, and execute permissions to the owner, and read and execute permissions to group and others.
 - True
- 7. **mkdir -p directory1/directory2** creates nested directories, creating directory2 inside directory1 if directory1 does not exist.
 - True
- 8. **rm** -**rf** file.txt deletes a file forcefully without confirmation.
 - True

Identify the Incorrect Commands:

- 1. **chmodx** is used to change file permissions.
 - Incorrect command
 - Correct command: correct command chmod.
- 2. **cpy** is used to copy files and directories.
 - Incorrect command
 - Correct command: the correct command is **cp.**
- 3. **mkfile** is used to create a new file.
 - Incorrect command
 - Correct command: touch filename.
- 4. catx is used to concatenate files.
 - Incorrect command.
 - Correct command: is **cat**
- 5. **rn** is used to rename files.
 - Incorrect command
 - Correct command: is my

Part C

Question 1: Write a shell script that prints "Hello, World!" to the terminal.

Commands: 1. vi hello.sh

- 2. Insert text into the vi Editor press Esc + I
- 3. save and exit: Esc + :wq
- 4.chmod +x hello.sh
- 5. ./hello.sh

```
cdac@Akash:~$ vi hello.sh
cdac@Akash:~$ chmod +x hello.sh
cdac@Akash:~$ ./hello.sh
Hello,World!
cdac@Akash:~$
```

Question 2: Declare a variable named "name" and assign the value "CDAC Mumbai" to it. Print the value of the variable.

- vi var.sh
- chmod +x var.sh
- ./var.sh
- #!/bin/bash
- name="CDAC Mumbai"
- echo \$name

```
cdac@Akash:~$ vi var.sh
cdac@Akash:~$ chmod +x var.sh
cdac@Akash:~$ ./var.sh
CDAC Mumbai
cdac@Akash:~$ cat var.sh
#!/bin/bash
name="CDAC Mumbai"
echo $name
cdac@Akash:~$
```

Question 3: Write a shell script that takes a number as input from the user and prints it.

- vi input.sh
- chmod +x input.sh
- ./input.sh

#!/bin/bash

echo -n "Enter the number:"

read num

echo "Number is: \$num"

Question 4: Write a shell script that performs addition of two numbers (e.g., 5 and 3) and prints the result.

- vi add.sh
- chmod +x add.sh
- ./add.sh

#!/bin/bash

a=5

b=3

sum=\$((a+b))

echo "add two numbers = \$sum"

Question 5: Write a shell script that takes a number as input and prints "Even" if it is even, otherwise prints "Odd"

- vi even.sh
- chmod +x even.sh
- ./even.sh

```
#!/bin/bash
echo -n "Enter number: "
read num
if [[ ($num -lt 10) && ($((num % 2)) -eq 0) ]]; then
echo "Even number"
else
echo "Odd number"
fi
```

```
cdac@Akash: ~
cdac@Akash:~$ vi even.sh
cdac@Akash:~$ chmod +x even.sh
cdac@Akash:~$ ./even.sh
Enter number: 4
Even number
cdac@Akash:~$ ./even.sh
Enter number: 5
Odd number
cdac@Akash:~$ cat even.sh
#!/bin/bash
echo -n "Enter number: "
read num
if [[ ($num -lt 10) && ($((num % 2)) -eq 0) ]]; then
    echo "Even number"
    echo "Odd number"
fi
cdac@Akash:~$
```

Question 6: Write a shell script that uses a for loop to print numbers from 1 to 5.

```
• vi loop.sh
```

- chmod +x loop.sh
- ./loop.sh

```
#!/bin/bash
for i in {1..5}
do
echo $i
```

done

Question 7: Write a shell script that uses a while loop to print numbers from 1 to 5.

- vi while.sh
- chmod +x while.sh
- cat while.sh
- ./while.sh

Question 8: Write a shell script that checks if a file named "file.txt" exists in the current directory. If it does, print "File exists", otherwise, print "File does not exist".

- vi check.sh
- cat check.sh
- chmod +x check.sh
- ./check.sh

```
#!/bin/bash
if [ -f file.txt ]
then
  echo "File exists"
else
  echo "File does not exist"
fi
```

```
cdac@Akash:~/Assignment$ vi check.sh
cdac@Akash:~/Assignment$ cat check.sh
#!/bin/bash
#
if [ -f file.txt ]

then
    echo "File exists"

else
    echo "File does not exist"

fi

cdac@Akash:~/Assignment$ chmod +x check.sh
cdac@Akash:~/Assignment$ ./check.sh
File does not exist

cdac@Akash:~/Assignment$ touch file.txt
cdac@Akash:~/Assignment$ touch file.txt
cdac@Akash:~/Assignment$ check.sh
File exists
cdac@Akash:~/Assignment$ touch file.txt
cdac@Akash:~/Assignment$ cat check.sh
```

Question 9: Write a shell script that uses the if statement to check if a number is greater than 10 and prints a message accordingly.

```
echo -n "Enter a number: "
read num
if [ $num -gt 10 ]
then
```

#!/bin/bash

```
echo "The number is greater than 10"
else
echo "The number is not greater than 10"
fi
```

```
cdac@Akash: ~
cdac@Akash:~$ vi greater.sh
cdac@Akash:~$ chmod +x greater.sh
cdac@Akash:~$ ./greater.sh
./greater.sh: line 4: read: Enter a number: : invalid number
./greater.sh: line 6: [: -gt: unary operator expected
The number is not greater than 10
cdac@Akash:~$ vi greater.sh
cdac@Akash:~$ ./greater.sh
Enter a number: 12
The number is greater than 10
cdac@Akash:~$ cat greater.sh
#!/bin/bash
echo -n "Enter a number: "
read num
  if [ $num -gt 10 ]
        echo "The number is greater than 10"
    echo "The number is not greater than 10"
fi
```

Question 10: Write a shell script that uses nested for loops to print a multiplication table for numbers from 1 to 5. The output should be formatted nicely, with each row representing a number and each column representing the multiplication result for that number.

```
#!/bin/bash

for i in {1..5}

do

for j in {1..5}

do

echo -n "$((i*j)) "

done

echo

done
```

Question 11: Write a shell script that uses a while loop to read numbers from the user until the user enters a negative number. For each positive number entered, print its square. Use the break statement to exit the loop when a negative number is entered.

```
#!/bin/bash
while true
do
  read -p "Enter a number: " num
  if [ "$num" -lt 0 ]; then
     break
  fi
  echo "Square = $((num * num))"
```

done

Part E

1. Consider the following processes with arrival times and burst times:

Proc	ess Arriv	al Time E	Burst Tir	ne
P1	0	5		
P2	1	3		
P3	2	6		

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

0	process	Arrivel	Time 6	Bourst Time
→			2	3.9
	61	0	le le le	11 gS
	PL	١.		3
	P3	12-1	doc troll.	165 6
		()	pully and only -1	(AC)
	1. Gantt	Chart! 1 se	guence P1	→ br → bi
	_9	C- 19 - 19 6	- 19 :311	SERNE
	PI	b5	P3 \	
-	0 5	8	t-140	1/10 D 9
	r -	1	1 10-10-	-AT WT =
	Process	1C T-9	RY THAT E CAT	TAT - BT
		₹1 © 5	5	
	PI	96 V (CO)	. 0	4
	P~	600	134014UP 1200 H	
	P3	. Bu 20 00 0 0 0 W	123621401 [1.8.2 W	13191100 (60)
7 0	-tul = 11V	+ (A +T) =(AT	7.)	100 . 11
	· Auna	Average watth	y Time (AWT	1201961
		0+4+6) = 10		/9
	, , , ,	3 3		
	1 = 1-2	5 = 5 - 2	J	<i>-</i> 3
	* Aven	ege Turkaro	erat (ATAT:	
	1 = 1-7	8-2-8	. 9	.19
		(5+1+12) = 2	1 = 8	
	1-5-21	3 1-213	21	_ T

2. Consider the following processes with arrival times and burst times:

Proce	ess An	rival Time l	Burst Time
P1	0	3	
P2	1	5	
P3	2	1	ĺ
P4	3	4	

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

20		A T	7 7 1100	BT	-/a-/-
y 0)	moce 23				Date (Control
-	61	0		3	
128E	11000 21	3.	or Lymnet	5	2000-14 1)
	P3	2		1	(-
	PH	3	Ú.	4	19
	1 5	1.	1		29
	• 55F	- Short De	toing di		27
		preempt			- 1
9 6	~9 E- 1.			italls	throsis is
	Sequent	e: p1	-> P3 -	184-	P2
		1 59	1	<u> </u>	19
	· Gantt a	chart	8		3 3
		4-4	,		
= 74	J 11-78				2000
771	0	3 4		13	
Ó		3		ナラ	19
P		T T T	8	8	27
(3)	combiection	Tur Kar	round to	ulting.	69
			To + 6-	A	*
	bocess	Ст	TAT= CT-		WT= TAT- BT
	(1)	14) Dail	pretotive of		
	L1	77 · 3	ox = 0 =	3-17-40	3-3=0
	- 72		4-2=	3 =	
	P3	4			2-1=)
	= /	8	MUDANHAM	2.0	VOVA *
	P34	8 =	8-3=	(+)+1)	5-4=1
		13	-13-1	= -	
	P2	17	14-1	5	12-8=7

'!	Avenage	Turnoros	d Time	si=10/ 24	L-SON IT	3
	(3	+2 +5 +12	2 22	= 8.0		
		- 9	4	12		
				2.5		
· .	AVT =	(0+1 +1+7) = 9	= 2.28		
			4	7	- 1	~

Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):
 Process | Arrival Time | Burst Time | Priority |

110000	S Milivai II	ine Daisi	Time Thorr
	-		
P1	0	6	3
P2	1	4	1
P3	2	7	4
P4	3	2	2

Calculate the average waiting time using Priority Scheduling.

mocess	AT	BT	priority planer +
,	•		
61	4 0	6	3
PZ	21	4	
P3	* 2	ד	4
Py	3	2	2
Gant	chort 8	0 6	P2 P4 P2
Gant	chort 8		19 12 - 16
Gant	5. *		19 12 - 16
CT	5. *	0 6	19 12 - 16 11 WT = TAT- B
CT 6	5. *	O 6 TAT = CT -A	19 12 - 16 IT WT = TAT- B
CT	5. *	0 6 TAT = CT -A	19 12 - 16 IT WT = TAT- B

· Average welting . T	time or occurred 97 mass 1
- 01+1+240 -	(314 74 248)
4 1	P
2 22	
1 34 5 - D -	- (++/+ \$+ 0) = 7 Total
ML = 2.2	e.3.
Average Turnord	and Time
KIER DONN - HOM 1 21	pulledado planed 1.
= (6+9+0+11)	0
TT = 10.25	70 10 200000
	4

4.	Consider the following processes with arrival times and burst times, and the time quantum for
	Round Robin scheduling is 2 units:

Proc	ess Arr	ival Time 1	Burst Time
P1	0	4	
P2	1	5	
P3	2	2	
P4	3	3	

Calculate the average turnaround time using Round Robin scheduling.

	mocess	Arrival time	Brust Time 131	(1.0
	(100	1. Tryace 1 mg	Orior Fronti .;	6-
_	PI	0 7	s but Annua	
4	PL	1	5	
_	P3	2	Commer 2011A	
4	PY	- 3 6 5	Luzend 3	
	1(ωςυΙα)	e average Juman	and Alme.	
1	Grantt o		Coth mountains	- 4
	GLAVITE C		Time Quantum = 2	
)	الرت في	Silver	
-		PI PZ PZ LP	Lau Las Las Las Las	
	0	P1 P2 P3 P1		
_		1 2 21	8 10 12 13 14	
	1400	termount -	1	- 11
+		ience - DI-DI-IE		
			アンラアノーラアノーラアレーラ	pu d
			MT = TAT- BT	pu d
	Sequ	TAT=CT-AT	WT = TAT - BT	pu d
	Seque	TAT= (T-AT 8-0= 8	NT = TAT - BT	pu d
	S=q1	TAT= (T-AT 8-0= 8 14-1= 13	WT = TAT - BT	pu d
	Seque CT 8 14	TAT= (T-AT 8-0= 8 14-1= 13 6-2= 4	9-4=4 19-5=8	pu d
	8 14 6	TAT= (T-AT 8-0= 8 14-1= 13	9-4=4 19-5= 8 4-2= 2	pu d
	8 14 6	TAT= (T-AT 8-0= 8 14-1= 13 6-2= 4	9-4=4 13-6=8 4-2=2 10-3=7	pu d
	8 14 6	TAT= (T-AT 8-0= 8 14-1= 13 6-2= 4 13-3= 10	9-4=4 13-6=8 4-2=2 10-3=7	pu d
	8 14 6	TAT= CT-AT 8-0= 8 14-1= 13 6-2= 4 13-3= 10 age Turnanound	7-4=4 13-6=8 4-2=2 10-3=7	pu d
	8 14 6	TAT= CT-AT 8-0= 8 14-1= 13 6-2= 4 13-7= 10 age Turnanound 8+13+4+16	9-4=4 13-6=8 4-2=2 10.3=7	pu e

5. Consider a program that uses the **fork()** system call to create a child process. Initially, the parent process has a variable **x** with a value of 5. After forking, both the parent and child processes increment the value of **x** by 1.

What will be the final values of x in the parent and child processes after the fork() call?

