Cavallaro, Jeffery Math 275A Homework #6 Rewrite

Example: Exercise 4.13

SPACE	T_1	T_2	REGULAR	NORMAL
R_{std}	√	✓	✓	✓
R^n_{std}	√	✓	✓	✓
indiscrete	X	×	×	×
discrete	✓	✓	✓	✓
cofinite	✓	X finite: \checkmark X infinite: \times	X finite: \checkmark X infinite: \times	X finite: \checkmark X infinite: \times
cocountable	✓	X countable: \checkmark X uncountable: \times	X countable: \checkmark X uncountable: X	X countable: \checkmark X uncountable: \times
R_{LL}	√	✓	✓	✓
R_{+00}	√	×	×	×
LOS	√	✓	√	✓

R and \mathbb{R}^n

Since there is a finite distance between points and closed sets (not containing those points), there is always room for enclosing disjoint balls.

indiscrete

Since the only non-empty set is the entire space, there is no separation.

discrete

Since all disjoint subsets are both open and closed, they are self-enclosed.

cofinite/cocountable

First note that all finite sets are closed. Thus, single points can be viewed as closed sets. So assume p and q are distinct points in X. This means that $X-\{p\}$ and $X-\{q\}$ are open. Furthermore, $p\in X-\{q\}$ but $p\notin X-\{p\}$ and $q\in X-\{p\}$ but $q\notin X-\{q\}$. Thus, cofinite/cocountable is T_1 .

Now assume that there exists disjoint $U,V\in \mathscr{T}.$ This means that X-U and X-V are finite/countable and since $U\cap V=\emptyset$ it is the case that $X-(U\cap V)=(X-U)\cup (X-V)=X$

and hence X is finite/countable. When X is finite/countable, all subsets are both open and closed, equivalent to the discrete topology, and so cofinite and cocountable are T_2 , regular, and normal. However, if X is infinite/uncountable then open sets will always intersect and so cofinite and countable are neither T_2 , regular, nor normal.

\mathbb{R}_{LL}

Since R_{LL} is finer than \mathbb{R} , it has the same separation properties.

\mathbb{R}_{+00}

Any two points can be T_1 separated using the basis elements; however, if one point or closed set contains 0' and the other point or closed set contains 0'' then there is always overlap between the two containing basis elements.

Lexigraphically Ordered Square

Use the alternate definitions. For any point $p \in X$, there exists some containing open set (strip), and it is always possible to use a smaller strip whose closure is contained in the original strip. For any closed set $A \in X$, X - A is an enclosing open set, and likewise, a smaller open set with contained closure is possible.

Theorem: 4.16

$$X, Y \text{ are } T_2 \implies X \times Y \text{ is } T_2.$$

Proof. Assume that X and Y are T_2 and assume $p_1, p_2 \in X \times Y$ where $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$. Since X is T_2 , there exists $U_1, U_2 \in \mathscr{T}_X$ such that $x_1 \in U_1$ and $x_2 \in U_2$ and $U_1 \cap U_2 = \emptyset$. Likewise, since Y is T_2 , there exists $V_1, V_2 \in \mathscr{T}_Y$ such that $y_1 \in V_1$ and $y_2 \in V_2$ and $V_1 \cap V_2 = \emptyset$. So $p_1 \in U_1 \times V_1$ and $p_2 \in U_2 \times V_2$. Furthermore, $U_1 \times V_1, U_2 \times V_2 \in \mathscr{T}_{X \times Y}$ and

$$(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) = \emptyset$$

Therefore $X \times Y$ is T_2 .

Lemma

Let X and Y be topological spaces and let $A \subset X$ and $B \subset Y$:

$$\overline{A \times B} = \overline{A} \times \overline{B}$$

Proof. Assume that $p \in \overline{A \times B}$. This means that for all $U \in \mathscr{T}_{X \times B}$ such that $p \in U$:

$$U \cap (A \times B) \neq \emptyset$$

Now assume $U_1 \in \mathscr{T}_X$ and $U_2 \in T_Y$ such that $p \in U_1 \times U_2 \in \mathscr{T}_{A \times B}$. Then it must be the case that $(U_1 \times U_2) \cap (A \times B) = (U_1 \cap A) \times (U_2 \cap B) \neq \emptyset$. This is only possible if $U_1 \cap A \neq \emptyset$ and $U_2 \cap B \neq \emptyset$.

Therefore $p \in \bar{A} \times \bar{B}$.

Assume that $p \in \bar{A} \times \bar{B}$. This means that for all $U_1 \in \mathscr{T}_X$ and $U_2 \in \mathscr{T}_Y$ such that $p \in U_1 \times U_2$:

$$(U_1 \cap A) \times (U_2 \cap B) \neq \emptyset$$

Now assume $U \in \mathscr{T}_{A \times B}$ such that $p \in U \in \mathscr{T}_{A \times B}$. Then there exists $U_1 \in \mathscr{T}_X$ and $U_2 \in T_Y$ such that $p \in U_1 \times U_2 = U$. So it must be the case that:

$$U \cap (A \times B) = (U_1 \times U_2) \cap (A \times B) = (U_1 \cap A) \times (U_2 \cap B) \neq \emptyset$$

Therefore $p \in \overline{A \times B}$.

Theorem: 4.17

X, Y are regular $\implies X \times Y$ is regular.

Proof. Assume that X and Y are regular and assume $p \in X \times Y$ and $U \in \mathcal{U}_p$. Then there exists $U_1 \in \mathscr{T}_X$ and $U_2 \in \mathscr{T}_Y$ such that $p \in U_1 \times U_2 \subset U$. Now, since X and Y are regular, there exists $V_1 \in \mathscr{T}_X$ and $V_2 \in \mathscr{T}_Y$ such that $p \in V_1 \times V_2$, $V_1 \subset \overline{V_1} \subset U_1$, and $V_2 \subset \overline{V_2} \subset U_2$. Furthermore, since $\overline{V_1}$ is closed in X and $\overline{V_2}$ is closed in $X \times Y$. And so:

$$p \in V_1 \times V_2 \subset \overline{V_1 \times V_2} = \overline{V_1} \times \overline{V_2} \subset U_1 \times U_2$$

Therefore $X \times Y$ is regular.

Theorem: 4.19

Every T_2 space is hereditarily T_2 .

Proof. Assume that X is a T_2 topological space and assume that $Y \subset X$. Now assume that $a,b \in Y$. Thus $a,b \in X$ and, since X is T_2 , there exists $U,V \in \mathscr{T}_X$ such that $a \in U,b \in V$, and $U \cap V = \emptyset$. Furthermore, $a \in U \cap Y \in \mathscr{T}_Y$ and $b \in V \cap Y \in \mathscr{T}_Y$. And so:

$$(Y\cap U)\cap (Y\cap V)=Y\cap (U\cap V)=Y\cap \emptyset=\emptyset$$

Therefore Y is also T_2 .

Theorem: 4.20

Every regular space is hereditarily regular.

Proof. Assume that X is a regular topological space and assume that $Y \subset X$. Assume that $p \in Y$. This means that there exists some $U_Y \in \mathscr{T}_Y$ such that $p \in U_Y$, and hence there exists $U_X \in \mathscr{T}_X$ such that $U_Y = U_X \cap Y$ and so $p \in U_X$. Now, since X is regular, there exists $V_X \in \mathscr{T}_X$ such that $P \in V_X \subset V_X \subset V_X$ and hence $P \in V_X \cap Y = V_Y \in \mathscr{T}_Y$. Furthermore, since $\overline{V_X}$

is closed in $X, \overline{V_X} \cap Y = W_Y$ is closed in Y. Finally, since $\overline{V_Y}$ is the smallest closed set in Y containing V_Y :

$$p \in V_Y \subset \overline{V_Y} \subset W_Y \subset U_Y$$

Therefore Y is regular.

Lemma

Let X be a normal topological space and let $Y \subset X$ such that Y is closed in X. For all $A \subset Y$, if A is closed in Y then A is closed in X.

Proof. Assume $A\subset Y$ such that A is closed in Y. This means that $Y-A\in \mathscr{T}_Y$, and so there exists $W\in \mathscr{T}_X$ such that $W\cap Y=Y-A$. Furthermore, X-W is closed in X. Now:

$$(X - W) \cap Y = (X \cap Y) - (W \cap Y) = Y - (Y - A) = A$$

But X-W and Y are closed in X and therefore A is also closed in X.

Theorem: 4.23

Let X be a normal topological space and let $Y \subset X$ such that Y is closed in X. Y is normal when given the relative topology.

Proof. Assume $A, B \subset Y$ such that A and B are closed in Y and $A \cap B = \emptyset$. This means that A and B are also closed in X. Since X is normal, there exists $U, V \in \mathscr{T}_X$ such that $A \in U, B \in V$, and $U \cap V = \emptyset$. Finally, since $A \subset (U \cap Y) \in \mathscr{T}_Y$ and $B \subset (V \cap Y) \in \mathscr{T}_Y$:

$$(U \cap Y) \cap (V \cap Y) = (U \cap V) \cap Y = \emptyset \cap Y = \emptyset$$

Therefore Y is normal.