Examples of Markov chains from Hopf algebras (in the sense of [Pan15]). This version: April 9, 2015. Curated by Amy Pang. Printer-friendly version, plus related summary tables, available at my website. If you spot an error, or know of any other Markov chains built in a similar way, please let me know.

Markov chain	Hopf algebra / Hopf monoid	algebra is		basis	basis is		$ \mathscr{B}_1 $	product	coproduct	rescaling	stationary distribution	references
		commutative? cocommutative?	free? cofree?	free-commutative	? free? cofree? self-dua	nl? multigraded?						
shuffling	shuffle algebra ${\mathscr S}$	X	X	words / decks of cards	X	X	arbitrary	shuffle	deconcatenation	none	uniform	[Pan14, Sec. 6.1]
inverse-shuffling	free associative algebra \mathscr{S}^*	X	X	words / decks of cards	X	X	arbitrary	concatenation	deshuffle	none	uniform	[DPR14, Sec. 6] [Pan14, Ex. 4.6.2, Ex. 4.7.2]
edge-removal	$ar{\mathcal{G}}$	X X		unlabelled graphs x			1	disjoint union	induced on subsets	none	absorbing at empty graph	[DPR14, Ex. 3.1] [Pan14, Sec. 5.1]
edge-removal	G	X	X	labelled graphs	X		1	disjoint union	induced on subsets	none	absorbing at empty graph	[DPR14, Ex. 3.2]
restriction-then-induction	representations of symmetric groups	X X	X	irreducible representations	X		1	external induction	sum of restrictions	dimension	plancherel	[Pan14, Ex. 4.1.4, Ex. 4.3.2, Ex. 4.4.3, Ex. 4.5.3, Ex. 4.6.4] [Pan15, Ex. 3.5]
rock-breaking	symmetric functions (partitions) $\subseteq \overline{\mathscr{G}}$	x x	X	elementary or complete x			1	disjoint union	$\Delta((n)) = \sum_{i=1}^{n} (i) \otimes (n-i)$	$\frac{n!}{\prod \lambda_i!}$	absorbing at $(1,1,\ldots,1)$	[DPR14, Sec. 4] [Pan14, Sec. 5.2]
tree-pruning	Connes-Kreimer	x		rooted forests x			1		cut branches ⊗ trunks		absorbing at disconnected forest	[Pan14, Sec. 5.3] [Pan15, Ex. 5.3]
descent-set-under-shuffling	g quasisymmetric functions	X	X	fundamental (compositions)	X		1	(non-explicit - use	Projection Theorem)	none	proportion of permutations with this descent set	[Pan13][Pan14, Sec. 6.2]

REFERENCES

[DPR14] P. Diaconis, C. Y. A. Pang, and A. Ram. Hopf algebras and Markov chains: two examples and a theory. J. Algebraic Combin., 39(3):527–585, 2014.

[Pan13] C. Y. A. Pang. A Hopf-power Markov chain on compositions. In 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Discrete Math. Theor. Comput. Sci., Nancy, 2013.

[Pan14] C. Y. A. Pang. Hopf algebras and Markov chains. *ArXiv e-prints*, December 2014. A revised thesis.

[Pan15] C. Y. A. Pang. Card-shuffling via convolutions of projections on combinatorial Hopf algebras. In 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Discrete Math. Theor. Comput. Sci., Proc., ??, pages ??—?? Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2015. available on Arxiv.