TUM EI 70360: MACHINE LEARNING AND OPTIMIZATION FALL 2023

LECTURER: REINHARD HECKEL TEACHING ASSISTANT: TOBIT KLUG

Problem Set 9

Issued: Tuesday, Dec. 12, 2023 Due: Thursday, Dec. 21, 2023

Problem 1. Let \mathcal{H} be a finite hypothesis class. Let \hat{h} be the empirical risk minimizer and $h_{\mathcal{H}} = \arg\min_{h \in \mathcal{H}} R(h)$. Suppose $\sup_{h \in \mathcal{H}} |\hat{R}(h) - R(h)|$ decays as shown by the blue curve in Figure 1 (a), when n increases, where $\hat{R}(h)$ is the empirical risk on n i.i.d. examples and R(h) is the population (true) risk.

- i) Suppose $R(h_{\mathcal{H}}) = 2\epsilon$. Draw one possible curve that shows how the population risk $R(\hat{h})$ of \hat{h} changes as a function of n and mark the intervals where the curve locates in at n_1 and n_2 .
- ii) Suppose $R(h_{\mathcal{H}}) = 0$. Draw one possible curve that shows how the empirical risk $\hat{R}(\hat{h})$ of \hat{h} changes as a function of n.

Figure 1: Empirical risk minimization.

Problem 2 (Generalization of SGD iterate). Consider a binary classification problem with a linear classifier parameterized by $\theta \in \mathbb{R}^d$. We consider the hinge loss

$$\ell(\boldsymbol{\theta}, \mathbf{x}, y) = \max\{0, 1 - y \langle \boldsymbol{\theta}, \mathbf{x} \rangle\}.$$

Define the empirical risk on n i.i.d. examples and the population risk of θ as

$$\hat{R}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{\theta}, \mathbf{x}_i, y_i), \qquad R(\boldsymbol{\theta}) = \mathbb{E}_{(\mathbf{x}, y)} \left[\ell(\boldsymbol{\theta}, \mathbf{x}, y) \right].$$

The empirical risk minimizer is defined as

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \hat{R}(\boldsymbol{\theta}).$$

The number of examples n is large, so we apply SGD to minimize $\hat{R}(\boldsymbol{\theta})$ using the update rule

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \alpha_k G(\boldsymbol{\theta}^k).$$

where α_k is the stepsize, and $G(\theta)$ is equal to the sub-gradient of $\ell(\theta, \mathbf{x}_i, y_i)$ with respect to θ where i is chosen uniformly at random from the training examples for each iteration.

- 1. (3 points) Show that the empirical risk $\hat{R}(\theta)$ is convex in θ .
- 2. (3 points) Compute the sub-gradient $\mathbf{g}(\boldsymbol{\theta}, \mathbf{x}_i, y_i)$ of $\ell(\boldsymbol{\theta}, \mathbf{x}_i, y_i)$ and show that

$$\mathbb{E}\left[G(\boldsymbol{\theta})\right] = \nabla_{\boldsymbol{\theta}} \hat{R}(\boldsymbol{\theta}).$$

3. (3 points) Let θ^n be the iterate after n SGD iterations. We bound the risk of θ^n . First, it can be shown that with probability at least $1 - \delta_1$ with respect to the SGD updates,

$$\hat{R}(\boldsymbol{\theta}^n) \leq \epsilon_1(n, \delta_1),$$

for some function $\epsilon_1(n, \delta_1)$ of n and δ_1 . Second, suppose it can be shown that with probability at least $1 - \delta_2$ with respect to the random draw of the training set,

$$\sup_{\boldsymbol{\theta}} \left(R(\boldsymbol{\theta}) - \hat{R}(\boldsymbol{\theta}) \right) \le \epsilon_2(n, \delta_2),$$

for some function $\epsilon_2(n, \delta_2)$ of n and δ_2 . Show that with probability at least $1 - \delta_1 - \delta_2$ with respect to the SGD updates and the random draw of the training set,

$$R(\boldsymbol{\theta}^n) < \epsilon_1(n, \delta_1) + \epsilon_2(n, \delta_2).$$