

INTELLIGENT CONTROLOFDC MOTOR USING OMPUTATIONAL INTELLIGENCE TECHNIQUES

MCTA 3371

GROUP 4

GROUP MEMBERS

AKMAL FAUZAN BIN AZHAR

2319531

AIMAN SAIFULLAH BIN AMINNURLLAH 2319185

MUHAMMAD DANISH FARHAN BIN AMIRUDDIN 2315423

PROJECT OBJECTIVES

- 1. Model a DC motor using standard electrical and mechanical parameters
- 2.Design and implement three control techniques:
 - PID Control (Classical)
 - Mamdani Fuzzy Logic Control
 - ANFIS Hybrid Control
- 3. Compare system responses using MATLAB simulation
- 4. Analyze controller performance using metrics: rise time, overshoot, settling time, steady-state error, and MSE

DC MOTOR MODELLING

DC Motor Parameters

- $R = 1 \Omega$ (Resistance)
- L = 0.5 H (Inductance)
- J = 0.01 kg·m² (Rotor Inertia)
- B = 0.1 N⋅m⋅s (Viscous Damping)
- K = 0.01 (Motor Constant)

Tool: MATLAB System Modeling
Output: State-space representation (SS)

Transfer Function

$$P(s) = \frac{K}{(Js + b)(Ls + R) + K^2}$$

CONTROLLER OVERVIEW

PID CONTROLLER

Result:

- Fast rise time (0.132 s)
- Low overshoot (1.03%)
- Steady-state error ≈ 0
- MSE: 0.00642

Gains:

- K_p = 100
- $K_i = 200$
- K_d = 10

Implemented with MATLAB control system toolbox

Used for performance benchmark

FUZZY LOGIC CONTROLLER

Mamdani Fuzzy Logic

Inputs:

- Error
- Delta Error

Output:

 Control effort (scaled to ±12V)

Performance:

Overshoot: 0%

 Steady-state value: ~0.37

• MSE: 0.45843

Design Details:

- Membership functions : NB, NS, ZE, PS, PB
- 9 Rule Base System
- Implemented using evalfis()

ANFIS CONTROLLER

ANFIS (Adaptive Neuro-Fuzzy Inference System)

- Input data from fuzzy logic performance
- 2000 training samples: error, delta error → output
- Trained using MATLAB anfisedit GUI
- Output scaled ×36 for effective torque

Performance:

- Better than
 Fuzzy Logic
- Steady-state
 value ≈ 0.77
- MSE: 0.12409

SIMULATION ENVIRONMENT

Simulation Details

- Time domain: 5 seconds
- Sampling: dt = 0.01s
- MATLAB + Simulink (optional)
- Euler integration using state-space model
- Step response compared across all controllers

Metrics Used:

- Rise Time
- Settling Time
- Overshoot
- Steady-State Error
- Mean Squared Error (MSE)

RESULTS COMPARISON

Metric	PID	Fuzzy	ANFIS
Rise Time (s)	O.132	0.805	0.09
Settling Time (s)	0.199		
Overshoot (%)	1.03	0	0
Steady- State Value	1	0.43	0.41
MSE	0.00642	0.38658	0.2244

CONCLUSION

PID: Best accuracy and speed, slight overshoot

Fuzzy: Stable, zero overshoot, but too slow and weak

ANFIS: Improved fuzzy behavior with training, no overshoot, higher steady state

Trade-off:

- PID is ideal for precision
- ANFIS has potential for adaptive systems
- Fuzzy is easy to implement but needs tuning

THANKYOU

