CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Cache Organization

Lecture No.- 05

Recap of Previous Lecture

Topics to be Covered

• Blocks in cache = 4 (00-11)

• Blocks in Main memory = 8 (000-111)

mm block no

CPU Request (MM block)	Mapping (CM block no.)	Hit /Miss	Comments
$(5)_{10}$ $= (101)_{2}$	5% 4= 1 Tag cm block no.	ากเรร	Bring block 5 at cm block 1 with tag 1
$(4)_{10} = (100)_{2}$	Tag cm block no.	Miss	Bring block 4 at cm block 0 with try 1

CPU Request (MM block)	Mapping (CM block no.)	Hit /Miss	Comments
(1)10	Tag cm block no.	Miss	Bring mm block 1 at cm block 1 by replacing block 5 and change the tag to 0.
(110)			

- Blocks in cache =4(00-11)
- Blocks in Main memory = 8 (000-111)
- Block Size = 2 Bytes
- Size of Cache memory
- Size of Main memory
- = 4 bits Size of Main memory address (byte address)

cm block no. (Index)

MM. adhess

for our example

mm add. 4->

Tag cm
block no. byte
1bit 2bits 1bit

no of bits for cm block no.

CPU Request (MM add.)	Mapping(CM block no.)	Hit/Miss	Comments
(1010) ₂ 101 0 byte 0	Tag cm block no.	Miss	Bring mm block 101 in cm at block 01 with tag 1
(1011) ₂ 101) byte 1 block no.	Tag block no.		

CPU generales add. 1010 byte no. L>goto cm block o1 => no any block present there

Topic: Indexing in Direct Mapping

cm block no. is known as index in direct mapping

cm block (=) cm line

Topic: Cache Controller

cache controller maintains one tag information for each block of cache.

cm blocks directory

*

Topic: Tag Directory

mm add. = 12-bits cm size = 64 bytes = 26B block size = 4 bytes Direct mapping

no of block in cm =
$$\frac{64B}{4B} = 16 = 24$$

cm block no. = 4 bits

[NAT]

- Pw
- #Q. Consider a direct mapped cache of size 64KB with block size 16 Bytes. The CPU generates 32-bits addresses.
 - 1. Number of bits for byte offset? 4 bits
 - 2. Number of blocks in cache? 212 or 4k
 - 3. The number of bits needed for cache indexing? 12 6%t
 - 4. The number of tag bits? 16 6ths
 - 5. Tag Directory size? 212 * 16 bits = 64 k bits = 8 k bytes

no. of blocks in cache = $\frac{64kB}{16B}$ = $4k = 2^{12}$ = cm block no. = 12 bits

*

Direct mapping: -

ex:- mm add. = 20 bits cm size = 256 bytes = ${}^{8}B$

Tag | cm byte

block no. byte

8-x

$$8-x+x=8$$

assume block size= 2x bytes

byte no. = x bits

no of blocks in cache =
$$\frac{2^8 B}{2^{\times} B} = 2^{8-3c}$$

cm block no. = (8-x) bits

#Q. Consider a direct mapped cache of size (32KB) The CPU generates 32-bits addresses. The number of tag bits in main memory address are?

215 B

La 17 bits

#Q) cm size = 256MB = 28 mm add = 35 bits

Tag = ____ bits

Dered mapping

Ans = 7

→ 01

10

11 [

10

11 0

Topic: Cache Initialization

when computer starts all valid/invalid bits are initialized with 0.

Topic: Performance Improvement of Write Back Cache

Tag directory Size = no. of blocks in cache * (Tag + extra bits)

[NAT]

#Q. Block Size

= $16 \text{ bytes} = 2^{9} \mathcal{B}$

Size of Cache memory

= 128KB = $2^{17}B$

Size of Main memory address

= 34-bits

no. of b

Direct Mapping

For each block apart from tag 1 valid bit and 1 modifies bit are stored in

cache

mm add.

Tag | cm block. byte no.

17

13

4

Bits in byte offset? 4 5ts

Bits in cache block number? 13 Lits

Bits in tag? 17 bits

Tag Directory size? $2^{13}*(17+111) = 2^{13}*19$ bits = 152 k bits

mm Size =
$$2^{23} * 2^6 B = 2^{29} B$$

Les mm = 29 lits
add. = 29 lits

Pw

mm add.

Tag

block no. = 23 bits

23

cm block

no.

byte

6

#Q. Blocks in Main memory = 2^{23}

Blocks in Cache memory = 2^{16}

Block Size: 64 Bytes

Direct Mapping

No of bits required for main memory address =? 29

Tag-bits =
$$? 7$$

NAT

#Q. 32-bit architecture CPU

Main Memory Size
$$= 4GB = 2^{32}B$$

Cache Size =
$$256KB = 2^{18}B$$

Block Size = 16 Words =
$$16 *4B = 64B = 2B$$

Direct Mapping

No. of bits required for Byte Offset =?

No of bits required for main memory address = ? 32

No of bits required for main memory block no. = $?^{26}$

2 mins Summary

Topic Cache Mapping

Topic Direct Mapping

Topic Tag

Topic Tag Directory

Happy Learning

THANK - YOU