Assignment 4

Question 1.

Given two sequences of integer numbers $r_1, r_2, ..., r_n$ and $s_1, s_2, ..., s_m$. Then $s_1, s_2, ..., s_m$ is called an *increasing subsequence* of $r_1, r_2, ..., r_n$ if there exists $1 \le i_1 < i_2 < ... < i_m \le n$ such that $s_j = r_{i_j}$ for all $1 \le j \le n$, and $s_i < s_{j+1}$ for all $1 \le j \le n$.

Design an algorithm using dynamic programming that solves the following problem.

Input: Sequences of integers $s_1, s_2, ..., s_n$ and $t_1, t_2, ..., t_m$. Output: A longest increasing common subsequence $r_1, r_2, ..., r_k$ of $s_1, s_2, ..., s_n$ and $t_1, t_2, ..., t_m$, that is $r_1, r_2, ..., r_k$ is an increasing subsequence of $s_1, s_2, ..., s_n$ and $t_1, t_2, ..., t_m$, and there is no longer sequence that is increasing subsequence of $s_1, s_2, ..., s_n$ and $t_1, t_2, ..., t_m$.

Describe your algorithm in pseudocode.

Question 2.

The dynamic programming algorithm studied in class that finds a longest common subsequence for 2 strings (of length n and m, respectively) takes time O(nm) and also space O(nm). Adjust the algorithm such that its space complexity is O(n+m) for the case that only the length of a longest common subsequence has to be computed (but not the sequence). Describe your idea clearly in words or pseudocode.

Question 3.

A variant of the Maximum Flow problem is as follows:

Max Flow with minimum capacities

Input: A directed graph G = (V,E) with source s and sink t where each edge is given a minimum capacity c_{min} and a maximum capacity c_{max} with $0 \le c_{min} < c_{max}$

Question: A maximum *st*-flow where for each edge e its flow capacity f(e) is either zero or $c_{min}(e) < f(e) < c_{max}(e)$

Describe an algorithm that solves Max Flow with minimum capacities.