- 1. Per a cadascuna de les següents successions determineu el límit puntual i decidiu si convergeixen uniformement.
 - (a) $f_n(x) = \sqrt[n]{1 + x^{2n}}, \ x \in \mathbb{R}$ (b) $f_n(x) = \frac{x^{2n} + x^n + 1}{x^{2n+1} + 1}, \ x \in [0, \infty)$
 - (c) $f_n(x) = \frac{e^x}{x^n}, \ x \in [1, \infty)$ (d) $f_n(x) = nxe^{-nx}, \ x \in [0, \infty).$
- **2.** Sigui (f_n) definida per $f_n(x) = n^{\alpha}x(1-x^2)^n$ en [0,1]. Per a quins valors d' α la successió convergeix uniformement?
- 3. Considerem la successió de funcions $f_n(x) = \frac{nx}{1 + n^2x^2}$.
 - (a) Calculeu el límit puntual de (f_n) .
 - (b) Proveu que la successió (f_n) no és uniformement convergent a $[0, \infty)$.
 - (c) Proveu que per a qualsevol a > 0, (f_n) és uniformement convergent en $[a, \infty)$.
- **4.** Demostreu que $f_n(x) = \frac{x}{1 + nx^2}$ convergeix uniformement en \mathbb{R} a una funció f i que l'equació $f'(x) = \lim_{x \to \infty} f'_n(x)$ és certa si $x \neq 0$ però falsa si x = 0.
- **5.** Calculeu la suma de la sèrie $\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}$, i demostreu que no convergeix uniformement a \mathbb{R} . A quins intervals la convergència és uniforme?
- 6. Demostreu que la sèrie

$$\sum_{n=1}^{\infty} (-1)^n \, \frac{x^2 + n}{n^2}$$

convergeix uniformement en tot interval acotat però la sèrie no convergeix absolutament per cap valor de x.

- 7. Considerem la successió de funcions $f_n(x) = \frac{1}{2n-1} \left(\frac{x-1}{x+1}\right)^{2n-1}$ i siguin $0 < a < b < \infty$.
 - (a) Estudieu la convergència uniforme de $\sum f_n(x)$ a l'interval [a, b].
 - (b) Estudieu la convergència uniforme de $\sum f'_n(x)$ a l'interval [a,b].
 - (c) En el cas que $\sum f_n(x)$ i $\sum f'_n(x)$ siguin convergents, quina relació hi ha entre elles?

- 8. (a) Demostreu que la successió $f_n(x) = x^2 e^{-nx^2}$ convergeix uniformement a [0, 1].
 - (b) Demostreu que la successió $g_n(x) = e^{-nx^2}$ convergeix uniformement a $[\varepsilon, 1]$ si $0 < \varepsilon < 1$ però no pas a [0, 1].
 - (c) Demostreu que $\lim_{n\to\infty} \int_0^1 (f_n(x) + g_n(x)) dx = 0.$
- 9. Considerem la successió de funcions definides recurrentment a $[0, +\infty)$ per $f_1(x) = x$ i

$$f_{n+1}(x) = \frac{1}{2} + \frac{f_n(x)}{1 + f_n(x)}, n \ge 1.$$

- (a) Comproveu que si existeix $f(x) = \lim_{n} f_n(x)$, aleshores ha de ser f(x) = 1.
- (b) Demostreu que $|f_{n+1}(x) 1| \le \frac{1}{2} |f_n(x) 1|$ per a tot $x \in \mathbb{R}$.
- (c) Demostreu que $f_n \to 1$ uniformement en \mathbb{R} .
- **10.** Donada la successió de funcions $f_n(x) = \frac{x^n}{1 + x^{2n}}$,
 - (a) Estudieu la convergència puntual i la funció límit de f_n .
 - (b) Estudieu la convergència uniforme de f_n a [1,2] i [2,3].
 - (c) Calculeu $\lim_{n} \int_{1}^{2} f_{n}(x) dx$ i $\lim_{n} \int_{2}^{3} f_{n}(x) dx$