Curs 7

Cuprins

I Rezoluție SLD - cazul logicii propoziționale

2 Logica de ordinul I - recapitulare

3 Logica Horn

Rezoluție SLD - cazul logicii propoziționale

Avem o metodă de decizie (decision procedure) pentru a verifica $\mathcal{S} \vdash q$

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției $f_{\mathcal{S}}$
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Avem o metodă de decizie (decision procedure) pentru a verifica $\mathcal{S} \vdash q$

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției $f_{\mathcal{S}}$
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Exercițiu. De ce?

Avem o metodă de decizie (decision procedure) pentru a verifica $\mathcal{S} \vdash q$

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Exercițiu. De ce?

Program Prolog = baza de cunoștințe

□ Un program Prolog reprezintă o bază de cunoștințe (knowledge base) KB. Cel mai mic punct fix al funcției f_{KB} definește totalitatea cunoștintelor care pot fi deduse din KB.

Avem o metodă de decizie (decision procedure) pentru a verifica $\mathcal{S} \vdash q$

Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Exercițiu. De ce?

Program Prolog = baza de cunoștințe

- □ Un program Prolog reprezintă o bază de cunoștințe (knowledge base) KB. Cel mai mic punct fix al funcției f_{KB} definește totalitatea cunoștintelor care pot fi deduse din KB.
- ☐ Pentru o bază de cunoștințe formată numai din clauze propoziționale definite, cel mai mic punct fix poate fi calculat în timp liniar.

Clauze definite

- ☐ Singurele formule admise sunt de forma:
 - \Box q
 - $p_1 \wedge \ldots \wedge p_n \rightarrow q$, unde toate p_i, q sunt variabile propozitionale.
- \square O clauză definită $p_1 \wedge \ldots \wedge p_n \to q$ poate fi gândită ca formula $\neg p_1 \vee \ldots \vee \neg p_n \vee q$

Clauze definite

- ☐ Singurele formule admise sunt de forma:
 - \Box q
 - $p_1 \wedge \ldots \wedge p_n \rightarrow q$, unde toate p_i, q sunt variabile propozitionale.
- \square O clauză definită $p_1 \wedge \ldots \wedge p_n \to q$ poate fi gândită ca formula $\neg p_1 \vee \ldots \vee \neg p_n \vee q$

Echivalent, putem reprezenta clauza definită de mai sus și prin $\{\neg p_1, \dots, \neg p_n, q\}$

```
KB: LFP:  \{oslo\}   \{\neg oslo, windy\}   \{\neg oslo, norway\}   \{\neg norway, cold\}   \{\neg cold, \neg windy, winter\}
```

```
LFP:
{oslo}
{windy}
{norway}
{cold}
{winter}
```

Propagarea unității

- ☐ În procedeul anterior am folosit o metodă asemănătoare rezoluției în care una din clauze are un singur literal.
- □ Clauzele formate dintr-un singur literal se numesc clauze unitate (unit clause), iar metoda anterioară se numește propagarea unității (unit propagation).
- □ Printr-o reprezentare adecvată a datelor, propagarea unității poate fi implementată în timp liniar în raport cu dimensiunea bazei de cunoștințe inițiale.
- □ Clauzele Horn propoziționale sunt clauze care au cel mult un literal pozitiv. Clauzele propoziționale definite sunt clauze Horn care au exact un literal pozitiv. Folosind metoda de propagare a unității problema satsfiabilității pentru clauze Horn propoziționale HORNSAT poate fi rezolvată în timp liniar.

Forward chaining / Backward chaining

- Metoda anterioară este centrată pe lărgirea bazei de cunoștințe.
- □ Pentru a afla răspunsul la o întrebare (-? winter) adăugăm pas cu pas cunoștințe noi, verificând de fiecare dată dacă am răspuns la întrebare.
- ☐ Acest procedeu se numește forward chaining.

Forward chaining / Backward chaining

- ☐ Metoda anterioară este centrată pe *lărgirea bazei de cunoștințe*.
- □ Pentru a afla răspunsul la o întrebare (-? winter) adăugăm pas cu pas cunoștințe noi, verificând de fiecare dată dacă am răspuns la întrebare.
- ☐ Acest procedeu se numește forward chaining.

Nu acesta este algoritmul folosit de Prolog!

Forward chaining / Backward chaining

- ☐ Metoda anterioară este centrată pe *lărgirea bazei de cunoștințe*.
- □ Pentru a afla răspunsul la o întrebare (-? winter) adăugăm pas cu pas cunoștințe noi, verificând de fiecare dată dacă am răspuns la întrebare.
- ☐ Acest procedeu se numește forward chaining.

Nu acesta este algoritmul folosit de Prolog!

☐ Metoda folosită de Prolog se numește backward chaining. Această metodă este centrată pe *găsirea răspunsului la întrebare*.

Backward chaining

- ☐ În backward chaining pornim de la întrebare (-? winter) și analizăm baza de cunoștinte, căutând o regulă care are drept concluzie scopul (winter :- cold, windy).
- În continuare vom încerca să satisfacem scopurile noi (cold şi windy) prin acelaşi procedeu.
- □ Această metodă este realizată printr-o implementare particulară a rezoluției - rezoluția SLD.

Rezoluția SLD (cazul propozițional)

Fie S o mulțime de clauze definite.

$$\mathsf{SLD} \left[\begin{array}{c} \neg p_1 \lor \cdots \lor \neg q \lor \cdots \lor \neg p_n \\ \hline \neg p_1 \lor \cdots \lor \neg q_1 \lor \cdots \lor \neg q_m \lor \cdots \lor \neg p_n \end{array} \right]$$

unde $q \vee \neg q_1 \vee \cdots \vee \neg q_m$ este o clauză definită din S.

Fie S o mulțime de clauze definite și q o întrebare.

O derivare din S prin rezoluție SLD este o secvență

$$G_0 := \neg q, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD.

Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Teoremă (Completitudinea SLD-rezoluției)

Sunt echivalente:

- □ există o SLD-respingere a lui q din S,
- \square $S \vdash q$,
- \square $S \models q$.

```
Baza de cunoștințe KB: Întrebarea:

oslo . -? winter.

windy :- oslo.
norway :- oslo.
cold :- norway.
winter :- cold, windy.
```

```
Baza de cunoștințe KB:
                                                                                                                                                                                                                                                                                                                                                   Întrebarea:
oslo.
                                                                                                                                                                                                                                                                                                                                                   -? winter.
windy :- oslo.
norway :- oslo.
cold :- norway.
winter :- cold, windy.
                                      Formă clauzală:
                                       KB = \{\{oslo\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg norway, cold\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{oslo, norway\}, \{
                                                                                                                                       \{\neg cold, \neg windy, winter\}\}
               \square KB \vdash winter dacă și numai dacă KB \cup {\negwinter} este satisfiabilă.
```

```
Baza de cunoștințe KB:
                                                                                                                                                                                                                                                                       Întrebarea:
oslo .
                                                                                                                                                                                                                                                                       -? winter.
windy :- oslo.
norway :- oslo.
cold :- norway.
winter :- cold, windy.
                             Formă clauzală:
                              KB = \{\{oslo\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg norway, cold\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{oslo, norway\},
                                                                                                        \{\neg cold, \neg windy, winter\}\}
           \square KB \vdash winter dacă și numai dacă KB \cup {\negwinter} este satisfiabilă.
                            Satisfiabilitatea este verificată prin rezoluție
                                          SLD = Linear resolution with Selected literal for Definite clauses
```

```
Demonstrăm KB \vdash winter prin rezoluție SLD: \{\neg winter\}
```

Exempli

```
Demonstrăm KB \vdash winter prin rezoluție SLD: 
{¬winter} {¬cold, ¬windy, winter} 
{¬cold, ¬windy}
```

```
Demonstrăm KB \vdash winter prin rezoluție SLD:

\{\neg winter\} \{\neg cold, \neg windy, winter\}

\{\neg cold, \neg windy\} \{\neg norway, cold\}

\{\neg norway, \neg windy\}
```

```
Demonstrăm KB \vdash winter prin rezoluție SLD: 
{¬winter} {¬cold,¬windy, winter} 
{¬cold,¬windy} {¬norway, cold} 
{¬norway,¬windy} {¬oslo, norway} 
{¬oslo,¬windy}
```

```
Demonstrăm KB \vdash winter prin rezoluție SLD: 

\{\neg winter\} \{\neg cold, \neg windy, winter\}

\{\neg cold, \neg windy\} \{\neg norway, cold\}

\{\neg norway, \neg windy\} \{\neg oslo, norway\}

\{\neg oslo, \neg windy\} \{oslo\}

\{\neg windy\}
```

```
Demonstrăm KB \vdash winter prin rezoluție SLD: \{\neg winter\} \{\neg cold, \neg windy, winter\} \{\neg cold, \neg windy\} \{\neg norway, cold\} \{\neg norway, \neg windy\} \{\neg oslo, norway\} \{\neg oslo, \neg windy\} \{oslo\} \{\neg windy\} \{\neg oslo, windy\} \{\neg oslo\}
```

Clause Horn propoziționale - rezoluția SLD

Exempli

```
Demonstrăm KB ⊢ winter prin rezoluție SLD:
 \{\neg winter\}
                           \{\neg cold, \neg windy, winter\}
 \{\neg cold, \neg windy\} \{\neg norway, cold\}
 \{\neg norway, \neg windy\} \{\neg oslo, norway\}
 \{\neg oslo, \neg windy\} \{oslo\}
 \{\neg windy\}
                 \{\neg oslo, windy\}
 \{\neg oslo\}
                            {oslo}
```

Clause Horn propoziționale - rezoluția SLD

Exemplu

```
Demonstrăm KB ⊢ winter prin rezoluție SLD:
 \{\neg winter\}
                           \{\neg cold, \neg windy, winter\}
 \{\neg cold, \neg windy\} \{\neg norway, cold\}
 \{\neg norway, \neg windy\} \{\neg oslo, norway\}
 \{\neg oslo, \neg windy\} \{oslo\}
 \{\neg windy\}
                \{\neg oslo, windy\}
 \{\neg oslo\}
                            {oslo}
```

În continuare vom studia aceste mecanisme în logica de ordinul I.

Logica de ordinul I - recapitulare

Limbaje de ordinul I

```
Un limbaj \mathcal{L} de ordinul I este format din:

o mulțime numărabilă de variabile V = \{x_n \mid n \in \mathbb{N}\}

conectorii \neg, \rightarrow, \land, \lor

paranteze

cuantificatorul universal \forall și cuantificatorul existențial \exists

o mulțime \mathbf{R} de simboluri de relații

o mulțime \mathbf{F} de simboluri de funcții

o mulțime \mathbf{C} de simboluri de constante

o funcție aritate ar : \mathbf{F} \cup \mathbf{R} \rightarrow \mathbb{N}^*
```

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
- $\ \square \ au$ se numește signatura (vocabularul, alfabetul) lui $\mathcal L$

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
- \square au se numește signatura (vocabularul, alfabetul) lui $\mathcal L$

Exemplu

Un limbaj $\mathcal L$ de ordinul I în care:

- \square $\mathbf{R} = \{P, R\}$
- \Box **F** = {*f*}
- \Box **C** = {*c*}
- \square ari(P) = 1, ari(R) = 2, ari(f) = 2

Sintaxa Prolog

Atenție!

- ☐ În sintaxa Prolog
 - termenii compuși sunt predicate: father(eddard, jon_snow)
 - operatorii sunt funcții: +, *, mod
- □ Sintaxa Prolog nu face diferență între simboluri de funcții și simboluri de predicate!
- □ Dar este important când ne uităm la teoria corespunzătoare programului în logică să facem acestă distincție.

Termenii lui \mathcal{L} sunt definiți inductiv astfel:

- orice variabilă este un termen;
- □ orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

Termenii lui \mathcal{L} sunt definiți inductiv astfel:

- orice variabilă este un termen;
- orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

Exemplu

$$c, x_1, f(x_1, c), f(f(x_2, x_2), c)$$

Formulele atomice ale lui \mathcal{L} sunt definite astfel:

dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

Formulele atomice ale lui \mathcal{L} sunt definite astfel:

□ dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

Exemplu

$$P(f(x_1,c)), R(c,x_3)$$

Formulele lui \mathcal{L} sunt definite astfel:

- □ orice formulă atomică este o formulă
- \square dacă φ este o formulă, atunci $\neg \varphi$ este o formulă
- \square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
- \square dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi$, $\exists x \varphi$ sunt formule

Formulele lui \mathcal{L} sunt definite astfel:

- orice formulă atomică este o formulă
- \square dacă φ este o formulă, atunci $\neg \varphi$ este o formulă
- \square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
- □ dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi$, $\exists x \varphi$ sunt formule

Exemplu

$$P(f(x_1,c)), P(x_1) \vee P(c), \forall x_1 P(x_1), \forall x_2 R(x_2,x_1)$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemplu

Fie limbajul \mathcal{L}_1 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și ari(s) = 1, ari(+) = ari(<) = 2.

Exemple de termeni:

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

$$0, x, s(0), s(s(0)), s(x), s(s(x)), \ldots,$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemple de formule atomice:

$$<(0,0),<(x,0),<(s(s(x)),s(0)),\ldots$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemple de formule atomice:

$$<(0,0),<(x,0),<(s(s(x)),s(0)),\ldots$$

Exemple de formule:

$$\forall x \, \forall y < (x, +(x, y))$$

 $\forall x < (x, s(x))$

Semantica

Pentru a stabili dacă o formulă este adevărată, avem nevoie de o interpretare într-o structură!

Structură

Definiție

- O structură este de forma $A = (A, \mathbf{F}^A, \mathbf{R}^A, \mathbf{C}^A)$, unde
 - ☐ A este o mulțime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulţime de operaţii pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulţime de relaţii pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
 - \square A se numește universul structurii A.
 - \Box $f^{\mathcal{A}}$ (respectiv $R^{\mathcal{A}}$, $c^{\mathcal{A}}$) se numește interpretarea lui f (respectiv R, c) in \mathcal{A} .

Structură

Exemplu

$$\mathcal{L}_1: \mathbf{R} = \{<\}, \ \mathbf{F} = \{s, +\}, \ \mathbf{C} = \{0\} \ \text{cu} \ ari(s) = 1, \ ari(+) = ari(<) = 2.$$

$$\mathcal{N} = (\mathbb{N}, \textit{s}^{\mathcal{N}}, +^{\mathcal{N}}, <^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \quad s^{\mathcal{N}}(n):=n+1,$
- \square + $^{\mathcal{N}}$: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} , + $^{\mathcal{N}}$ (n, m) := n + m,
- $\square <^{\mathcal{N}} \subseteq \mathbb{N} \times \mathbb{N}, <^{\mathcal{N}} = \{(n, m) \mid n < m\},$
- \square $0^{\mathcal{N}} := 0$

Fie $\mathcal L$ un limbaj de ordinul I și $\mathcal A$ o ($\mathcal L$ -)structură.

Definiție

O interpretare a variabilelor lui ${\mathcal L}$ în ${\mathcal A}$ este o funcție

$$I:V\rightarrow A.$$

Fie $\mathcal L$ un limbaj de ordinul I și $\mathcal A$ o ($\mathcal L$ -)structură.

Definiție

O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ este o funcție

$$I:V\rightarrow A$$
.

Definiție

Inductiv, definim interpretarea termenului t în A sub I (t_I^A) prin:

- \square dacă $t = x_i \in V$, atunci $t_i^A := I(x_i)$
- \square dacă $t = c \in \mathbf{C}$, atunci $t_I^{\mathcal{A}} := c^{\mathcal{A}}$
- \square dacă $t = f(t_1, \ldots, t_n)$, atunci $t_l^{\mathcal{A}} := f^{\mathcal{A}}((t_1)_l^{\mathcal{A}}, \ldots, (t_n)_l^{\mathcal{A}})$

$$\square \mathcal{A}, I \models P(t_1, \ldots, t_n) \text{ dacă } P^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \ldots, (t_n)_I^{\mathcal{A}})$$

- \square $\mathcal{A}, I \models P(t_1, \ldots, t_n)$ dacă $P^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \ldots, (t_n)_I^{\mathcal{A}})$
- $\ \ \Box \ \mathcal{A}, \mathit{I} \models \neg \varphi \ \mathsf{dac} \ \widecheck{\mathcal{A}}, \mathit{I} \not\models \varphi$

- $\square \mathcal{A}, I \models P(t_1, \ldots, t_n) \text{ dacă } P^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \ldots, (t_n)_I^{\mathcal{A}})$
- $\square \ \mathcal{A}, I \models \neg \varphi \ \mathsf{dac} \ \mathcal{A}, I \not\models \varphi$
- \square $A, I \models \varphi \lor \psi$ dacă $A, I \models \varphi$ sau $A, I \models \psi$

- $\square \mathcal{A}, I \models P(t_1, \ldots, t_n) \text{ dacă } P^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \ldots, (t_n)_I^{\mathcal{A}})$
- $\square \ \mathcal{A}, I \models \neg \varphi \ \mathsf{dac} \ \mathcal{A}, I \not\models \varphi$
- $\ \square \ \mathcal{A}, I \models \varphi \lor \psi \ \mathsf{dac} \ \widetilde{\mathcal{A}}, I \models \varphi \ \mathsf{sau} \ \mathcal{A}, I \models \psi$
- $\square \ \mathcal{A}, I \models \varphi \land \psi \ \mathsf{dac} \ \mathcal{A}, I \models \varphi \ \mathsf{si} \ \mathcal{A}, I \models \psi$

- $\square A, I \models P(t_1, \ldots, t_n)$ dacă $P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- \square \mathcal{A} , $I \models \neg \varphi$ dacă \mathcal{A} , $I \not\models \varphi$
- $\square \mathcal{A}, I \models \varphi \lor \psi \text{ dacă } \mathcal{A}, I \models \varphi \text{ sau } \mathcal{A}, I \models \psi$
- $\square \ \mathcal{A}, \mathit{I} \models \varphi \land \psi \ \mathsf{dac} \ \mathcal{A}, \mathit{I} \models \varphi \ \mathsf{si} \ \mathcal{A}, \mathit{I} \models \psi$
- \square $A, I \models \varphi \rightarrow \psi$ dacă $A, I \not\models \varphi$ sau $A, I \models \psi$

- $\square A, I \models P(t_1, \ldots, t_n)$ dacă $P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \mathcal{A}, I \models \neg \varphi \text{ dacă } \mathcal{A}, I \not\models \varphi$
- $\square \ \mathcal{A}, I \models \varphi \lor \psi \ \mathsf{dac} \ \mathcal{A}, I \models \varphi \ \mathsf{sau} \ \mathcal{A}, I \models \psi$
- \square $A, I \models \varphi \land \psi$ dacă $A, I \models \varphi$ și $A, I \models \psi$
- $\square \ \mathcal{A}, I \models \varphi \rightarrow \psi \ \mathsf{dac} \ \mathcal{A}, I \not\models \varphi \ \mathsf{sau} \ \mathcal{A}, I \models \psi$
- \square $A, I \models \forall x \varphi$ dacă pentru orice $a \in A$ avem $A, I_{x_i \leftarrow a} \models \varphi$
- \square $A, I \models \exists x \varphi$ dacă există $a \in A$ astfel încât $A, I_{x_i \leftarrow a} \models \varphi$

unde pentru orice
$$a \in A$$
, $I_{x \leftarrow a}(y) = \begin{cases} I(y) & \text{dacă } y \neq x \\ a & \text{dacă } y = x \end{cases}$

- \square O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \models \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare.
 - Spunem că \mathcal{A} este model al lui φ .
- \square O formulă φ este adevărată în logica de ordinul I, notat $\models \varphi$, dacă este adevărată în orice structură.

Exemplu

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Exemple

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Fie structura $\mathcal{N}=\left(\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}}\right)$ unde $0^{\mathcal{N}}:=1$ și

- $\ \ \square \ s^{\mathcal{N}}:\mathbb{N}\to\mathbb{N},\ s^{\mathcal{N}}(n):=n^2$
- \square $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Exemple

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Fie structura $\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$ unde $0^{\mathcal{N}}:=1$ și

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$
- \square $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că $\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$

Exempli

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că $\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$

Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că $\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x)))$.

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\hat{\mathcal{N}}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că $\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x)))$.

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \models \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\ \ \square \ \ s^{\mathcal{N}}:\mathbb{N}\rightarrow\mathbb{N},\ s^{\mathcal{N}}(n):=n^2$$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x))).$$

Fie
$$I:V \to \mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \models \forall x (P(x) \rightarrow P(s(x)))$$
 dacă $\mathcal{N}, I_{x \leftarrow n} \models P(x) \rightarrow P(s(x))$ oricare $n \in N$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$. Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\square s^{\mathcal{N}} : \mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\square P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$ Demonstrați că $\mathcal{N} \models \forall x \, (P(x) \to P(s(x)))$. Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar. $\mathcal{N}, I \models \forall x \, (P(x) \to P(s(x)))$ dacă $\mathcal{N}, I_{x \leftarrow n} \models P(x) \to P(s(x))$ oricare $n \in \mathcal{N}$ $\mathcal{N}, I_{x \leftarrow n} \not\models P(x)$ sau $\mathcal{N}, I_{x \leftarrow n} \models P(s(x))$ oricare $n \in \mathcal{N}$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.
Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N} \to \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar } \}$ Demonstrați că $\mathcal{N} \models \forall x \, (P(x) \to P(s(x)))$.
Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$ oricare $P^{\mathcal{N}}(I(x))$ orica

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.
Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N} \to \mathbb{N}$, $p^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$ Demonstrați că $\mathcal{N} \models \forall x \, (P(x) \to P(s(x)))$.
Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$ oricare $P^{\mathcal{N}}(I(x))$ oricar

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}} := 1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că
$$\mathcal{N} \models \forall x (P(x) \rightarrow P(s(x)))$$
.

Fie
$$I:V \to \mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, I \models P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \models \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

$$\mathcal{N}, I_{x \leftarrow n} \models P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$\mathcal{N}, I_{x \leftarrow n} \not\models P(x) \text{ sau } \mathcal{N}, I_{x \leftarrow n} \models P(s(x)) \text{ oricare } n \in N$$

$$I_{x \leftarrow n}(x)$$
 nu este impar sau $I_{x \leftarrow n}(s(x))$ este impar oricare $n \in \mathbb{N}$ n este par sau n^2 este impar oricare $n \in \mathbb{N}$

ceea ce este întodeauna adevărat.

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1,\ldots,\varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\models\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \models \varphi_1$$
 și \dots și $\mathcal{A} \models \varphi_n$, atunci $\mathcal{A} \models \varphi$

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1,\ldots,\varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\models\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \models \varphi_1$$
 și ... și $\mathcal{A} \models \varphi_n$, atunci $\mathcal{A} \models \varphi$

Problemă semidecidabilă!

Nu există algoritm care să decidă mereu dacă o formula este sau nu consecință logică a altei formule în logica de ordinul I!

Logica de ordinul I - sintaxa

Limbaj de ordinul I \mathcal{L} unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
Termenii lui \mathcal{L} , notați $Trm_{\mathcal{L}}$, sunt definiți inductiv astfel: \square orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.
Formulele atomice ale lui ${\cal L}$ sunt definite astfel:
□ dacă $R \in \mathbb{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\Box dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
\square dacă α este o formulă și x este o variabilă atunci $\forall x \alpha \exists x \alpha$ sunt formule

Logica de ordinul I - semantică (opțional)

- O structură este de forma $A = (A, \mathbf{F}^A, \mathbf{R}^A, \mathbf{C}^A)$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \ \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I: V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \models \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \models \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare. Spunem că \mathcal{A} este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\models \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\models \varphi$.
- O formulă φ este satisfiabilă dacă există o structură \mathcal{A} și o \mathcal{A} -interpretare I astfel încât \mathcal{A} , $I \models \varphi$.

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

 $\{\varphi_1,\ldots,\varphi_n\}\models\varphi$ este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\}\models\varphi$$
 este echivalent cu

$$\models \varphi_1 \wedge \ldots \wedge \varphi_n \rightarrow \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\}\models\varphi$$
 este echivalent cu

$$\models \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\models \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \models \varphi$$
 este echivalent cu

$$\models \varphi_1 \wedge \ldots \wedge \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\models \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

$$\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \varphi$$
 este satisfiabilă

Logica Horn

Literali

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

 $literal := p \mid \neg p$ unde p este variabilă propozițională

Literali

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$
 unde $P \in \mathbf{R}, \textit{ari}(P) = n$, și t_1, \ldots, t_n sunt termeni.

□ O clauză este o disjuncție de literali.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1, \ldots, L_n sunt literali atunci clauza $L_1 \vee \ldots \vee L_n$ o vom scrie ca mulțimea $\{L_1, \ldots, L_n\}$

clauză = mulțime de literali

- O clauză este o disjuncție de literali.
- □ Dacă $L_1, ..., L_n$ sunt literali atunci clauza $L_1 \lor ... \lor L_n$ o vom scrie ca mulțimea $\{L_1, ..., L_n\}$

clauză = mulțime de literali

□ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.

- O clauză este o disjuncție de literali.
- □ Dacă $L_1, ..., L_n$ sunt literali atunci clauza $L_1 \lor ... \lor L_n$ o vom scrie ca mulțimea $\{L_1, ..., L_n\}$

clauză = mulțime de literali

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.

- O clauză este o disjuncție de literali.
- □ Dacă $L_1, ..., L_n$ sunt literali atunci clauza $L_1 \lor ... \lor L_n$ o vom scrie ca mulțimea $\{L_1, ..., L_n\}$

clauză = mulțime de literali

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n=0 obținem clauza vidă, care se notează \square

O clauză este o disjunctie de literali. \square Dacă L_1, \ldots, L_n sunt literali atunci clauza $L_1 \vee \ldots \vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$ clauză = mulțime de literali \square Clauza $C = \{L_1, \ldots, L_n\}$ este satisfiabilă dacă $L_1 \vee \ldots \vee L_n$ este satisfiabilă. □ O clauză C este trivială dacă conține un literal și complementul lui. \square Când n=0 obținem clauza vidă, care se notează \square □ Prin definiție, clauza □ nu este satisfiabilă.

O clauză este o disjunctie de literali. \square Dacă L_1, \ldots, L_n sunt literali atunci clauza $L_1 \vee \ldots \vee L_n$ o vom scrie ca mulțimea $\{L_1, \ldots, L_n\}$ clauză = mulțime de literali \square Clauza $C = \{L_1, \ldots, L_n\}$ este satisfiabilă dacă $L_1 \vee \ldots \vee L_n$ este satisfiabilă. □ O clauză C este trivială dacă conține un literal și complementul lui. \square Când n=0 obtinem clauza vidă, care se notează \square □ Prin definiție, clauza □ nu este satisfiabilă. Rezoluția este o metodă de verificare a satisfiabilității

unei mulțimi de clauze.

Clauze în logica de ordinul I

$$\{\neg Q_1,\ldots,\neg Q_n,P_1,\ldots,P_k\}$$

unde $n, k \ge 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

☐ formula corespunzătoare este

$$\forall x_1 \ldots \forall x_m (\neg Q_1 \vee \ldots \vee \neg Q_n \vee P_1 \vee \ldots \vee P_k)$$

unde x_1, \ldots, x_m sunt toate variabilele care apar în clauză

□ echivalent, putem scrie

$$\forall x_1 \ldots \forall x_m (Q_1 \wedge \ldots \wedge Q_n \to P_1 \vee \ldots \vee P_k)$$

cuantificarea universală a clauzelor este implicită

$$Q_1 \wedge \ldots \wedge Q_n \rightarrow P_1 \vee \ldots \vee P_k$$

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \to P_1 \vee \dots \vee P_k$
unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n = 0: $\top \rightarrow P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \to P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n = 0: $\top \rightarrow P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ clauză scop definită (țintă, întrebare): k=0
 - $\square Q_1 \wedge \ldots \wedge Q_n \to \bot$
- \square clauza vidă \square : n = k = 0

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ clauză scop definită (țintă, întrebare): k=0
 - $\square Q_1 \wedge \ldots \wedge Q_n \to \bot$
- \square clauza vidă \square : n = k = 0

Clauza Horn = clauză program definită sau clauză scop $(k \le 1)$

Clauze Horn țintă

□ clauză scop definită (țintă, întrebare): $Q_1 \land \ldots \land Q_n \rightarrow \bot$ □ fie x_1, \ldots, x_m toate variabilele care apar în Q_1, \ldots, Q_n $\forall x_1 \ldots \forall x_m (\neg Q_1 \lor \ldots \lor \neg Q_n) \boxminus \neg \exists x_1 \ldots \exists x_m (Q_1 \land \ldots \land Q_n)$ □ clauza țintă o vom scrie Q_1, \ldots, Q_n

Negația unei "întrebări" în PROLOG este clauză Horn țintă.

Programare logica

□ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn □ formule atomice: $P(t_1, \ldots, t_n)$ □ $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ unde toate Q_i, P sunt formule atomice, \top sau \bot

Programare logica

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
- \square Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice

$$KB \models Q_1 \wedge \ldots \wedge Q_n$$

- ☐ Variabilele din KB sunt cuantificate universal.
- □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

Limbajul PROLOG are la bază logica clauzelor Horn.

Logica clauzelor definite

Exemple

```
Fie următoarele clauze definite:
    father(jon, ken).
    father(ken, liz).
    father(X, Y) \rightarrow ancestor(X, Y)
    daugther(X, Y) \rightarrow ancestor(Y, X)
    ancestor(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)
Putem întreba:
  □ ancestor(jon, liz)
    dacă există Q astfel încât ancestor (Q, ken)
     (adică \exists Q \ ancestor(Q, ken))
```

Pe săptămâna viitoare!