Personalization with Unobserved Heterogeneity

Leo Guelman

Head Statistician, DNA RBC Royal Bank

Motivation for Personalization

- Personalization is founded on the premise that individuals have heterogeneous responses to actions.
- Personalization algorithms aim to improve decision-making by identifying and exploiting this heterogeneity.

Personalized Paradigm

Unobserved and Heterogeneous Confounders

 Treatment effect (T) varies according to the value of unobserved confounders (U).

$$T := f(U) + N_T$$

$$Y := f(T, U, T \times U) + N_Y$$

 Likely the norm in observational settings.

Figure: Observational setting.

Motivating Questions

Given the high-level goal of personalization, and the context of unobserved heterogeneity:

- Alternatives to how I formulate this problem? For instance, what is a suitable causal estimand?
- What data do I need for identification?
- Is experimental data 'gold standard'?

Out-of-scope: Estimation (e.g., compare different estimators).

Motivating Example

- Business objective: Sell a credit card to new-to-RBC clients.
- **Current campaign**. All new-to-RBC clients who visited the RBC public site get a credit card offer + iPad incentive.

 Business Goal: Personalize the incentive. Identify which new-to-RBC clients should receive an iPad incentive in the future to maximize the expected profitability of the campaign.

Data Generating Process

Figure: Observational setting.

Data Generating Process

Figure: Observational setting.

$$P(R = 1) = 0.5$$
, $P(M = 1) = 0.5$
 $V := M \oplus R$
 $I := V$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$. Highlighted cells reflect (new-to-RBC) client's 'natural' choice to visit the Public site or not.

Four Approaches to Personalizing the Incentive

Business Goal: Identify which new-to-RBC clients should receive an iPad incentive in the future to maximize the expected profitability of the campaign.

1. Associational Inference

$$\mathsf{D}^*_{\mathsf{AI}}(M) = \underset{I \in 0,1}{\operatorname{argmax}} \ E[\pi|I,M]$$

1. Associational Inference

$$\mathsf{D}^*_{\mathsf{AI}}(M) = \underset{I \in \mathsf{0},1}{\operatorname{argmax}} \ E[\pi|I,M]$$

$$E[\pi|I=1, M=1] = 0.25$$

 $E[\pi|I=0, M=1] = 0.05$
 $E[\pi|I=1, M=0] = 0.05$
 $E[\pi|I=0, M=0] = 0.10$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
/ = 1	0.25	0.50	0.45	0.05
I = 0	0.50	0.10	0.05	0.30

Table: $E[\pi|M,R,I]$.

1. Associational Inference

$$\mathsf{D}^*_{\mathsf{AI}}(M) = \underset{I \in \mathsf{0},1}{\operatorname{argmax}} \ E[\pi|I,M]$$

$$E[\pi|I=1, M=1] = 0.25$$

 $E[\pi|I=0, M=1] = 0.05$
 $E[\pi|I=1, M=0] = 0.05$
 $E[\pi|I=0, M=0] = 0.10$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
I = 1	0.25	0.50	0.45	0.05
I = 0	0.50	0.10	0.05	0.30

Table: $E[\pi|M, R, I]$.

Decision Rule:

- If Visit Site \land Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.25$
- If Visit Site \wedge Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$

Expected profit =
$$\boxed{0.275}$$
 = $(0.25+0.30)/2$.

Figure: Causal DAG with post-visit randomization.

$$\mathsf{D}^*_{\mathsf{IPVR}}(M) = \underset{I \in 0,1}{\operatorname{argmax}} \ E[\pi|do(I), M, V = 1]$$

$$\mathsf{D}^*_{\mathsf{IPVR}}(M) = \underset{I \in 0.1}{\operatorname{argmax}} \ E[\pi|do(I), M, V = 1]$$

$$E[\pi|do(I=1), M=1, V=1] = 0.25$$

 $E[\pi|do(I=0), M=1, V=1] = 0.50$
 $E[\pi|do(I=1), M=0, V=1] = 0.05$
 $E[\pi|do(I=0), M=0, V=1] = 0.30$

	R =	= 0	R =	= 1
	M = 1	M = 0	M = 1	M = 0
/ = 1 / = 0	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

$$\mathsf{D}^*_{\mathsf{IPVR}}(M) = \underset{I \in \mathcal{I}, 1}{\operatorname{argmax}} \ E[\pi|do(I), M, V = 1]$$

$$E[\pi|do(I=1), M=1, V=1] = 0.25$$

 $E[\pi|do(I=0), M=1, V=1] = 0.50$
 $E[\pi|do(I=1), M=0, V=1] = 0.05$
 $E[\pi|do(I=0), M=0, V=1] = 0.30$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M, R, I]$.

Decision Rule:

- If Visit Site \land Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.50$
- If Visit Site \wedge Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$

Expected profit =
$$\boxed{0.40}$$
 = $(0.50+0.30)/2$.

3. Interventional Inference + Full Randomization

Figure: Causal DAG with A/B Test on all New-to-RBC clients.

3. Interventional Inference + Full Randomization

$$\mathsf{D}^*_{\mathsf{IFR}}(M) = \underset{I \in [0,1]}{\operatorname{argmax}} \ E[\pi| do(I), M]$$

$$E[\pi|do(I=1), M=1] = 0.350 = (0.25 + 0.45)/2$$

 $E[\pi|do(I=0), M=1] = 0.275 = (0.50 + 0.05)/2$
 $E[\pi|do(I=1), M=0] = 0.275 = (0.50 + 0.05)/2$
 $E[\pi|do(I=0), M=0] = 0.200 = (0.10 + 0.30)/2$

	R = 0		R =	= 1
	M = 1	M = 0	M = 1	M = 0
/ = 1	0.25	0.50	0.45	0.05
<i>l</i> = 0	0.50	0.10	0.05	0.30

Table: $E[\pi|M,R,I]$.

3. Interventional Inference + Full Randomization

$$\mathsf{D}^*_{\mathsf{IFR}}(M) = \underset{I \in 0,1}{\operatorname{argmax}} \ E[\pi|do(I), M]$$

$$E[\pi|do(I=1), M=1] = 0.350 = (0.25 + 0.45)/2$$

 $E[\pi|do(I=0), M=1] = 0.275 = (0.50 + 0.05)/2$
 $E[\pi|do(I=1), M=0] = 0.275 = (0.50 + 0.05)/2$
 $E[\pi|do(I=0), M=0] = 0.200 = (0.10 + 0.30)/2$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
I = 1 $I = 0$	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

Decision Rule:

- If Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.35$
- If Not Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.275$

Expected profit =
$$\boxed{0.315}$$
 = $(0.35+0.275)/2$.

$$\mathsf{D}^*_{\mathsf{CI}}(M,I) = \!\!\!\! \underset{a' \in \ 0,1}{\operatorname{argmax}} \ E[\pi_{a'}|I = a,M]$$

$$\begin{split} \mathsf{D}^*_{\mathsf{CI}}(M,I) =& \underset{a' \in \ 0,1}{\operatorname{argmax}} \quad E\big[\pi_{a'}|I = a,M\big] \\ &P(\pi_{a'},M) = P(\pi_{a'},M,a') + P(\pi_{a'},M,a) \\ &= P(\pi_{a'}|M,a')P(M,a') + P(\pi_{a'}|M,a)P(M,a) \\ &P(\pi_{a'}|M) = P(\pi_{a'}|M,a')P(a'|M) + P(\pi_{a'}|M,a)P(a|M) \\ &= P(\pi|M,a')P(a'|M) + P(\pi_{a'}|M,a)P(a|M) \text{ (Consistency)} \\ &P(\pi_{a'}|M,a) = \frac{1}{P(a|M)} \Big[P(\pi_{a'}|M) - P(\pi|M,a')P(a'|M)\Big] \\ &= \underbrace{\frac{1}{P(a|M)} \Big[P(\pi_{a'}|M,a) - P(\pi|M,a')P(a'|M)\Big]}_{\text{observational}} \end{split}$$

$$\begin{split} E(\pi_{I=1}|M=1,I=0) &= \\ &\frac{1}{P(I=0|M=1)} \Big[E\Big(\pi|M=1,do(I=1)\Big) - \\ &E(\pi|M=1,I=1)P(I=1|M=1) \Big]. \\ &= \frac{1}{1/2} \big(0.350 - 0.25 \times 1/2 \big) = 0.45 \end{split}$$

 $> 0.05 = E(\pi_{I=0}|M=1, I=0).$

$$E(\pi_{I=1}|M=0, I=0) = 0.50$$

$$E(\pi_{I=0}|M=1, I=1) = 0.50$$

$$E(\pi_{I=0}|M=0, I=1) = 0.30$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

$$\begin{split} E(\pi_{I=1}|M=1,I=0) &= \\ &\frac{1}{P(I=0|M=1)} \Big[E\Big(\pi|M=1,do(I=1)\Big) - \\ &E(\pi|M=1,I=1)P(I=1|M=1) \Big]. \\ &= \frac{1}{1/2} (0.350 - 0.25 \times 1/2) = 0.45 \\ &> 0.05 = E(\pi_{I=0}|M=1,I=0). \end{split}$$

	R :	= 0	R =	= 1
	M = 1	M = 0	M = 1	M = 0
/ = 1	0.25	0.50	0.45	0.05
I = 0	0.50	0.10	0.05	0.30

$E(\pi_{I=1} M=0,I=0)$	= 0.50
$E(\pi_{I=0} M=1,I=1)$	= 0.50
$E(\pi_{I=0} M=0, I=1)$	= 0.30

Table: $E[\pi|M,R,I]$.

Decision Rule:

- If Not Visit Site \land Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.45$
- If Not Visit Site \land Not Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.50$
- If Visit Site \wedge Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.50$
- If Visit Site \land Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$

Expected profit =
$$0.4375$$
 = $(0.45 + 0.50 + 0.50 + 0.30)/4$.

Summary of Methods

Criterion	Decision Rule	${\sf E}[\pi]$
EDC	 If Visit Site ∧ Married → Purchase Incentive If Visit Site ∧ Not Married → No Purchase Incentive 	.2750
PVR	Never Purchase Incentive	.4000
ABT	Always Purchase Incentive	.3150
RDC	• If Visit Site \wedge Married \rightarrow No Purchase Incentive	.4375
	 If Visit Site ∧ Not Married → No Purchase Incentive 	
	• If Not Visit Site \land Married \rightarrow Purchase Incentive	
	$ \begin{tabular}{ll} \bullet & \mbox{If Not Visit Site} \land \mbox{Not Married} \rightarrow \\ \mbox{Purchase Incentive} \\ \end{tabular} $	
Oracle		.4375

Remarks

- If the goal is to learn personalized actions, experimental data alone is sub-optimal in the presence of unobserved confounders.
- Combining experimental and observational data under a Regret Decision Criterion (RDC) can provide information about the unobserved confounders, and hence outperform alternative optimization criteria.
- The expression derived from RDC works only in the binary treatment case.
 RDC-type randomization (Forney et al., 2017) was proposed to estimate counterfactual expressions empirically from an arbitrary number of treatments.

Estimating Treatment Effects: Personalized Paradigm

- A/B Tests are 'gold standard' in the One-Treatment-Fits-All paradigm because they remove the influence of unobserved confounders (unmeasured variables that influence both the treatment and the outcome).
- In the presence of unobserved confounders, experimental data is not 'gold standard' for estimating heterogenous treatment effects (required for personalization)
- Experiments 'destroy' information that can be valuable to identify the values of unobserved confounders.
- Counterfactual-based decision making, which leads to a fusion of experimental and observational data, might be optimal for personalization.

References

- Elias Bareinboim, Andrew Forney, and Judea Pearl. 2015. Bandits with unobserved confounders: a causal approach. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15).
 - ► Implementation: https://github.com/leoguelman/mabuc
- Forney, A., Pearl, J.; Bareinboim, E.. (2017). Counterfactual Data-Fusion for Online Reinforcement Learners. Proceedings of the 34th International Conference on Machine Learning, in Proceedings of Machine Learning Research 70:1156-1164