ECE M146 Introduction to Machine Learning

Prof. Lara Dolecek

ECE Department, UCLA

Today's Lecture

Recap:

Naïve Bayes Classifier

New topic:

Gaussian Discriminant Analysis

Today's Lecture

Recap:

Naïve Bayes Classifier

New topic:

Gaussian Discriminant Analysis

Naïve Bayes Classifier

Example of generative modeling

Uses conditional independence

Bernoulli RV models p(y) – binary classification

• Bernoulli RV models conditional probability $p(x_i=1 | y)$

Naïve Bayes Classifier

• Estimate the parameters from these distributions by maximizing log of the joint distribution.

• This is done by taking derivatives (scalars, so in the usual sense).

End result are estimates that correspond to sample frequency.

Today's Lecture

Recap:

Naïve Bayes Classifier

New topic:

Gaussian Discriminant Analysis

Gaussian generative modeling

- Used for binary classification.
- Assumption is that the data in the given class is derived from a Gaussian distribution.

Gaussian generative modeling

• Expression for the joint distribution:

Visualization

- Class label is y in $\{0,1\}$, where $p(y=1) = \theta$
- Conditional probability

Fitting a Gaussian distribution for each class

- Suppose there are M points in class y=1.
- Write the expression for the conditional density.

How to find the best estimate?

Sample mean

Sample mean, continued

Sample variance

Sample variance, continued

Class parameter estimate

 Same as what we did last time for Naïve Bayes (with Bernoulli conditionals) – why?

Note that at this point we have all 5 parameter estimates

At test time

• Compare the posteriors

At test time, continued

At test time, continued

Decision boundary:

Now, let's consider the case of both classes having the same variance

• Write the joint pdf:

- How many parameters to be estimated do we have now?
- Take the log, as before.

• Estimate of the variance is new:

At test time

• Again, compare conditional probabilities:

• This is equivalent to:

At test time, continued

At test time, continued

Decision boundary

• In the case of unequal class variances:

• In the case of equal class variances: