$11n_{62} (K11n_{62})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2464615243943u^{19} + 4244123981661u^{18} + \dots + 9728979932592b + 197070286033, \\ &- 5509715115239u^{19} - 10822359944445u^{18} + \dots + 9728979932592a + 3267475985807, \\ u^{20} + 2u^{19} + \dots + 5u^2 + 1 \rangle \\ I_2^u &= \langle b, -u^3 - u^2 + a - u, \ u^4 + u^3 + u^2 + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 24 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 2.46 \times 10^{12} u^{19} + 4.24 \times 10^{12} u^{18} + \dots + 9.73 \times 10^{12} b + 1.97 \times 10^{11}, -5.51 \times 10^{12} u^{19} - 1.08 \times 10^{13} u^{18} + \dots + 9.73 \times 10^{12} a + 3.27 \times 10^{12}, \ u^{20} + 2u^{19} + \dots + 5u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.566320u^{19} + 1.11238u^{18} + \dots + 2.54326u - 0.335850 \\ -0.253327u^{19} - 0.436235u^{18} + \dots + 1.56632u - 0.0202560 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.819647u^{19} + 1.54862u^{18} + \dots + 0.976937u - 0.315594 \\ -0.253327u^{19} - 0.436235u^{18} + \dots + 1.56632u - 0.0202560 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.819647u^{19} + 1.54862u^{18} + \dots + 0.976937u - 0.315594 \\ -0.396913u^{19} - 0.728464u^{18} + \dots + 2.38597u - 0.110931 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.650241u^{19} - 1.16470u^{18} + \dots + 2.95229u - 0.131187 \\ 0.105052u^{19} + 0.296152u^{18} + \dots - 1.03621u + 0.246713 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.755292u^{19} - 1.46085u^{18} + \dots + 3.98849u - 0.377900 \\ 0.105052u^{19} + 0.296152u^{18} + \dots - 1.03621u + 0.246713 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.246713u^{19} - 0.388373u^{18} + \dots - 0.520256u - 1.03621 \\ 0.135781u^{19} + 0.563424u^{18} + \dots - 0.131187u + 0.650241 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.296445u^{19} - 0.863365u^{18} + \dots - 0.142357u - 1.79150 \\ 0.253735u^{19} + 0.918450u^{18} + \dots - 0.0814545u + 1.02577 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.408108u^{19} - 0.952751u^{18} + \dots + 1.33641u - 1.23004 \\ -0.300860u^{19} - 0.485772u^{18} + \dots - 0.821932u + 0.544643 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.408108u^{19} - 0.952751u^{18} + \dots + 1.33641u - 1.23004 \\ -0.300860u^{19} - 0.485772u^{18} + \dots - 0.821932u + 0.544643 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{815395233485}{405374163858}u^{19} + \frac{427506532937}{135124721286}u^{18} + \dots - \frac{421979351069}{405374163858}u - \frac{2038924430399}{405374163858}u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_4	$u^{20} - 5u^{19} + \dots - 4u + 1$
c_2	$u^{20} + 3u^{19} + \dots - 4u + 1$
c_3, c_8	$u^{20} - u^{19} + \dots - 8u + 16$
<i>C</i> 5	$u^{20} + 2u^{19} + \dots + 154u + 445$
c_6, c_7, c_{10} c_{11}	$u^{20} + 2u^{19} + \dots + 2u + 1$
<i>C</i> 9	$u^{20} - 2u^{19} + \dots + 5u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{20} - 3y^{19} + \dots + 4y + 1$
c_2	$y^{20} + 33y^{19} + \dots + 4y + 1$
c_3, c_8	$y^{20} - 27y^{19} + \dots - 1344y + 256$
<i>C</i> 5	$y^{20} + 38y^{19} + \dots + 4809874y + 198025$
c_6, c_7, c_{10} c_{11}	$y^{20} + 22y^{19} + \dots + 10y + 1$
<i>C</i> 9	$y^{20} + 26y^{19} + \dots + 10y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.673071 + 0.753931I		
a = 0.535459 - 0.003526I	0.02154 - 2.08472I	2.36846 + 5.36236I
b = 0.731278 + 0.210088I		
u = 0.673071 - 0.753931I		
a = 0.535459 + 0.003526I	0.02154 + 2.08472I	2.36846 - 5.36236I
b = 0.731278 - 0.210088I		
u = -0.094946 + 0.739352I		
a = 1.098280 + 0.336321I	-4.77753 + 2.99094I	-0.69176 - 3.46155I
b = 0.448296 + 1.074360I		
u = -0.094946 - 0.739352I		
a = 1.098280 - 0.336321I	-4.77753 - 2.99094I	-0.69176 + 3.46155I
b = 0.448296 - 1.074360I		
u = -0.177522 + 0.687359I		
a = -0.716990 + 0.247004I	0.995000 - 0.993446I	5.17867 + 4.04800I
b = -0.553957 + 0.621299I		
u = -0.177522 - 0.687359I		
a = -0.716990 - 0.247004I	0.995000 + 0.993446I	5.17867 - 4.04800I
b = -0.553957 - 0.621299I		
u = -1.12972 + 0.93010I		
a = -0.456176 - 0.088007I	-7.51526 + 3.82239I	0.11541 - 4.60594I
b = -0.757198 + 0.007629I		
u = -1.12972 - 0.93010I		
a = -0.456176 + 0.088007I	-7.51526 - 3.82239I	0.11541 + 4.60594I
b = -0.757198 - 0.007629I		
u = -0.382707 + 0.237846I		
a = 2.61545 + 0.82402I	-7.81656 + 1.26535I	-3.51291 - 0.02866I
b = -0.767833 + 0.639917I		
u = -0.382707 - 0.237846I		
a = 2.61545 - 0.82402I	-7.81656 - 1.26535I	-3.51291 + 0.02866I
b = -0.767833 - 0.639917I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.18268 + 1.66062I		
a = 0.734667 - 0.455842I	3.14125 + 1.95377I	-0.018441 - 0.726692I
b = 1.90756 - 0.02696I		
u = 0.18268 - 1.66062I		
a = 0.734667 + 0.455842I	3.14125 - 1.95377I	-0.018441 + 0.726692I
b = 1.90756 + 0.02696I		
u = 0.177052 + 0.214813I		
a = -2.67119 + 2.37138I	-1.76070 - 0.62769I	-5.52555 - 1.68478I
b = 0.317909 + 0.453091I		
u = 0.177052 - 0.214813I		
a = -2.67119 - 2.37138I	-1.76070 + 0.62769I	-5.52555 + 1.68478I
b = 0.317909 - 0.453091I		
u = -0.21357 + 1.74539I		
a = -0.684239 - 0.489378I	9.48767 + 1.51858I	3.11046 + 0.47571I
b = -1.90198 - 0.23325I		
u = -0.21357 - 1.74539I		
a = -0.684239 + 0.489378I	9.48767 - 1.51858I	3.11046 - 0.47571I
b = -1.90198 + 0.23325I		
u = 0.24322 + 1.81257I		
a = 0.640240 - 0.509585I	9.21922 - 6.23574I	2.42777 + 5.05678I
b = 1.85951 - 0.39598I		
u = 0.24322 - 1.81257I		
a = 0.640240 + 0.509585I	9.21922 + 6.23574I	2.42777 - 5.05678I
b = 1.85951 + 0.39598I		
u = -0.27754 + 1.87563I		
a = -0.595500 - 0.521593I	2.29524 + 9.61446I	-0.95211 - 4.92599I
b = -1.78359 - 0.53915I		
u = -0.27754 - 1.87563I		
a = -0.595500 + 0.521593I	2.29524 - 9.61446I	-0.95211 + 4.92599I
b = -1.78359 + 0.53915I		

II.
$$I_2^u = \langle b, -u^3 - u^2 + a - u, u^4 + u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u^{2} + u \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} + u \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 + 5u 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_8	u^4
c_5,c_9	$u^4 + u^3 + u^2 + 1$
c_6, c_7	$u^4 + u^3 + 3u^2 + 2u + 1$
c_{10}, c_{11}	$u^4 - u^3 + 3u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_8	y^4
c_5, c_9	$y^4 + y^3 + 3y^2 + 2y + 1$
c_6, c_7, c_{10} c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = -0.547424 + 1.120870I	-1.43393 - 1.41510I	-0.82145 + 5.62908I
b = 0		
u = 0.351808 - 0.720342I		
a = -0.547424 - 1.120870I	-1.43393 + 1.41510I	-0.82145 - 5.62908I
b = 0		
u = -0.851808 + 0.911292I		
a = 0.547424 + 0.585652I	-8.43568 + 3.16396I	-5.67855 - 1.65351I
b = 0		
u = -0.851808 - 0.911292I		
a = 0.547424 - 0.585652I	-8.43568 - 3.16396I	-5.67855 + 1.65351I
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{20} - 5u^{19} + \dots - 4u + 1)$
c_2	$((u+1)^4)(u^{20}+3u^{19}+\cdots-4u+1)$
c_{3}, c_{8}	$u^4(u^{20} - u^{19} + \dots - 8u + 16)$
c_4	$((u+1)^4)(u^{20} - 5u^{19} + \dots - 4u + 1)$
<i>C</i> ₅	$(u^4 + u^3 + u^2 + 1)(u^{20} + 2u^{19} + \dots + 154u + 445)$
c_6, c_7	$(u^4 + u^3 + 3u^2 + 2u + 1)(u^{20} + 2u^{19} + \dots + 2u + 1)$
<i>C</i> 9	$(u^4 + u^3 + u^2 + 1)(u^{20} - 2u^{19} + \dots + 5u^2 + 1)$
c_{10}, c_{11}	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^{20} + 2u^{19} + \dots + 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^4)(y^{20}-3y^{19}+\cdots+4y+1)$
c_2	$((y-1)^4)(y^{20} + 33y^{19} + \dots + 4y + 1)$
c_3, c_8	$y^4(y^{20} - 27y^{19} + \dots - 1344y + 256)$
<i>C</i> ₅	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{20} + 38y^{19} + \dots + 4809874y + 198025)$
c_6, c_7, c_{10} c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{20} + 22y^{19} + \dots + 10y + 1)$
<i>c</i> ₉	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{20} + 26y^{19} + \dots + 10y + 1)$