Segmenting and Clustering Neighborhoods in Toronto

```
In [1]:
       import pandas as pd
In [2]: from bs4 import BeautifulSoup
In [3]: import requests
        url = 'https://en.wikipedia.org/wiki/List of postal codes of Canada: M'
        r = requests.get(url)
        soup = BeautifulSoup(r.content)
In [4]:
        table = soup.find('table')
        df = pd.read html(str(table))[0]
In [5]: df.head()
Out[5]:
            Postal Code
                              Borough
                                              Neighbourhood
         0
                  M1A
                           Not assigned
                                                Not assigned
                  M2A
                           Not assigned
                                                Not assigned
                  МЗА
                             North York
                                                  Parkwoods
         3
                  M4A
                             North York
                                               Victoria Village
                  M5A Downtown Toronto Regent Park, Harbourfront
In [6]: # remove rows whos Borough value is Not assigned
        df = df.drop(df[df.Borough == "Not assigned"].index)
In [7]: df.info()
         <class 'pandas.core.frame.DataFrame'>
        Int64Index: 103 entries, 2 to 178
        Data columns (total 3 columns):
              Column
                             Non-Null Count Dtype
                              -----
          0
              Postal Code
                             103 non-null
                                              object
              Borough
                             103 non-null
                                              object
          1
              Neighbourhood 103 non-null
                                              object
        dtypes: object(3)
        memory usage: 3.2+ KB
```

In [8]: df.head(10)

Out[8]:

Neighbourhood	Postal Code Borough		
Parkwoods	North York	МЗА	2
Victoria Village	North York	M4A	3
Regent Park, Harbourfront	Downtown Toronto	M5A	4
Lawrence Manor, Lawrence Heights	North York	M6A	5
Queen's Park, Ontario Provincial Government	Downtown Toronto	M7A	6
Islington Avenue, Humber Valley Village	Etobicoke	M9A	8
Malvern, Rouge	Scarborough	M1B	9
Don Mills	North York	МЗВ	11
Parkview Hill, Woodbine Gardens	East York	M4B	12
Garden District, Ryerson	Downtown Toronto	M5B	13

```
In [9]: # check any neighbourhood has value Not assigned.
         df[df.Neighbourhood == "Not assigned"].count()
 Out[9]: Postal Code
                          0
         Borough
                          0
         Neighbourhood
                          0
         dtype: int64
In [10]: # Show data frame Shape
         df.shape
Out[10]: (103, 3)
In [11]: #import geocoder # import geocoder
         ## initialize your variable to None
         #lat_lng_coords = None
         ## loop until you get the coordinates
         #while(lat_lng_coords is None):
         # g = geocoder.google('{}, Toronto, Ontario'.format(postal_code))
         # Lat Lng coords = q.Latlng
         #latitude = lat_lng_coords[0]
         #longitude = lat_lng_coords[1]
```

```
In [12]: #Load geographical coordinates
geo_df = pd.read_csv('Geospatial_Coordinates.csv')
geo_df.head()
```

Out[12]:

	Postal Code	Latitude	Longitude
0	M1B	43.806686	-79.194353
1	M1C	43.784535	-79.160497
2	M1E	43.763573	-79.188711
3	M1G	43.770992	-79.216917
4	M1H	43.773136	-79.239476

```
In [13]: # Merge Neighbourhood dataframe with geographical coordinates
dfall = pd.merge(df, geo_df, on=['Postal Code','Postal Code'])
```

In [14]: dfall.head()

Out[14]:

	Postal Code	Borough	Neighbourhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494

```
In [15]: #get only Toronto borough
dfToronto = dfall[dfall['Borough'].str.contains("Toronto")]

dfToronto.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 39 entries, 2 to 100

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Postal Code	39 non-null	object
1	Borough	39 non-null	object
2	Neighbourhood	39 non-null	object
3	Latitude	39 non-null	float64
4	Longitude	39 non-null	float64

dtypes: float64(2), object(3)

memory usage: 1.8+ KB

```
In [16]: dfToronto.head()
```

Out[16]:

	Postal Code	Borough	Neighbourhood	Latitude	Longitude
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494
9	M5B	Downtown Toronto	Garden District, Ryerson	43.657162	-79.378937
15	M5C	Downtown Toronto	St. James Town	43.651494	-79.375418
19	M4E	East Toronto	The Beaches	43.676357	-79.293031

The dataframe has 4 boroughs and 39 neighborhoods.

```
In [20]: from geopy.geocoders import Nominatim
    address = 'Toronto'

geolocator = Nominatim(user_agent="ny_explorer")
    location = geolocator.geocode(address)
    latitude = location.latitude
    longitude = location.longitude
    print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude, longitude)
```

The geograpical coordinate of Toronto are 43.6534817, -79.3839347.

```
In [25]: # create map of Toronto using latitude and longitude values
         import folium # map rendering library
         map_Toronto = folium.Map(location=[latitude, longitude], zoom_start=10)
         # add markers to map
         for lat, lng, borough, neighborhood in zip(dfToronto['Latitude'], dfToronto['Long
             label = '{}, {}'.format(neighborhood, borough)
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                 [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill_opacity=0.7,
                 parse_html=False).add_to(map_Toronto)
         map_Toronto
```

Out[25]:

In []: