БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

Протокол №	ОТ	_Председатель
Протокол №	OT	_Председатель
Протокол №	OT	_ Председатель
Протокол №	от	Председатель
Протокол №	OT	Предселатель

Дисциплина

«Теория вероятностей и математическая статистика»

Задания для проведения практической работы №5

НАИМЕНОВАНИЕ РАБОТЫ: Решение задач на применение формул Бернулли и Лапласа.

ЦЕЛЬ РАБОТЫ: сформировать умения и навыки по применению формул Бернулли и Лапласа при нахождении вероятностей случайных событий.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1.1. Формула Бернулли.
- 1.2. Локальная теорема Лапласа.
- 1.3. Интегральная теорема Лапласа.

2. Работа в аудитории

2.1. Решение типовых заданий

Задание №1. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна p = 0.75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

Решение:

№	Алгоритм	Действие
1	Определить: — количество <i>п</i> независимых испытаний; — вероятность события в каждом испытании <i>p</i> ; — вероятность ненаступления события в каждом испытании <i>q</i> ; — количество раз наступления события <i>k</i> .	По условию, $n=6;$ $p=0.75;$ $q=1-0.75=0.25;$ $k=4.$
2	Воспользоваться формулой Бернулли $P_n(k) = C_n^k p^k q^{n-k}$	$P_6(4) = C_6^4 p^4 q^2 = \frac{6 \cdot 5}{1 \cdot 2} (0.75)^4 (0.25)^2 = 0.3.$

Задание №2. Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Решение:

№	Алгоритм	Действие
	Определить:	По условию,
	 количество <i>п</i> независимых испытаний; 	n = 400;
1	 вероятность события в каждом испытании p; 	p = 0.2; q = 1 - 0.8;
	- вероятность q ;	q = 1 - 0.8;
	– количество раз наступления события k.	k = 80.
2	Вычислить определяемое данными задачи значение х.	$x = \frac{80 - 400 \cdot 0.2}{8} = 0.$

3	Найти значения функции в точке х.	$\varphi(0) = 0.3989.$
4	Воспользоваться формулой Лапласа $P_n(k) = \frac{1}{\sqrt{npq}} \cdot \varphi(x)$	$P_{400}(80) = \frac{1}{\sqrt{400 \cdot 0.2 \cdot 0.8}} \cdot 0.3989 = 0.04986.$

Задание №3. Вероятность того, что деталь не прошла проверку ОТК, равна p = 0,1. Найти вероятность того, что среди 500 случайно отобранных деталей окажется непроверенных от 20 до 50 деталей.

Решение:

No	Алгоритм	Действие
1	Определить: — количество n независимых испытаний; — вероятность события в каждом испытании p ; — вероятность ненаступления события в каждом испытании q ; — количество раз наступления события k_1 и k_2 .	По условию, $n = 500$; $p = 0.1$; $q = 1 - p = 0.9$; $k_1 = 20$; $k_2 = 50$.
2	Вычислить нижний и верхний пределы интегрирования $x_1 = \frac{k_1 - np}{\sqrt{npq}}; x_2 = \frac{k_2 - np}{\sqrt{npq}}$	$x_{1} = \frac{20 - 500 \cdot 0,1}{\sqrt{500 \cdot 0,1 \cdot 0,9}} = -4,47;$ $x_{2} = \frac{50 - 500 \cdot 0,1}{\sqrt{500 \cdot 0,1 \cdot 0,9}} = 0.$
3	Найти значения функции Лапласа в точках x_1 и x_2 .	$\Phi(-4,47) = -0,4999, \qquad \Phi(0) = 0.$
4	Воспользовавшись интегральной теоремой Лапласа найти искомую вероятность $P_n(k_1;k_2) \approx \Phi(x_2) - \Phi(x_1)$	$P_{500}(20;50) = 0 + 0,4999 = 0,4999.$

2.2. Выполните задания, применения формулы Бернулли и Лапласа при нахождении вероятностей случайных событий.

<u>Уровни I-III</u> (при выполнении заданий значение N соответствует номеру варианта)

Задание №1. Батарея произвела 5 выстрелов по военному объекту. Вероятность попадания в объект при одном выстреле равна (60+N)/100. Найти:

- а) наивероятнейшее число попаданий;
- б) вероятность наивероятнейшего числа попаданий;
- в) вероятность того, что того, что в объект попало ровно 4 выстрела;
- г) вероятность того, что объект будет разрушен, если для этого достаточно хотя бы двух попаданий.

Задание №2. Вероятность поражения мишени стрелком при одном выстреле равна (60+N)/100. Найти вероятность того, что при 100 выстрелах мишень, будет поражена: а) ровно 70 раз; б) не менее 50 и не более 70 раз; в) не более 70 раз; г) не менее 50 раз.

Задание №3. Мастерская по гарантийному ремонту телевизоров обслуживает 100 абонентов. Вероятность того, что купленный телевизор потребует гарантийного ремонта, равна (10+N)/100. Найти, какое возможное число телевизоров с вероятностью 0, 0973 потребуют гарантийного обслуживания.

Уровень IV. Составьте и решите задачу, в которой необходимо определить вероятность при повторных испытаниях.

Контрольные вопросы:

- 1. Какой вид имеет формула Бернулли?
- 2. Каким должны быть события, чтобы можно было применить формулу Бернулли?
- 3. Как вычислить вероятность того, что в пнезависимых испытаниях событие наступит: a) менее k pas; k0 более k1 pas до k2 pas?

Литература

- 1. Гмурман, В. Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов/В. Е. Гмурман. 9-е изд., стер. М.: Высш. шк., 2003. с.55 61.
- 2. Гусак А.А. Теория вероятностей: справ. Пособие к решению задач / А.А. Гусак, Е.А. Бричикова. 6-е изд. Минск: ТетраСистемс, 2007. с.173 184.

Преподаватель В.П. Кошелева