THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial Week 12

STAT3023: Statistical Inference

Semester 2, 2022

Lecturers: Linh Nghiem, Michael Stewart and Rachel Wang

1. Suppose $X \sim B(n, \theta)$ and that $\tilde{d}(X)$ is the Bayes procedure based on a $U[\theta_0, \theta_1]$ prior under squared-error loss. Suppose also that for all $\theta_0 < \theta < \theta_1$,

$$\lim_{n\to\infty} nE_{\theta} \left\{ \left[\tilde{d}(X) - \theta \right]^2 \right\} \to \theta(1-\theta) .$$

Use the Asymptotic Minimax Lower Bound Theorem to show that the maximum likelihood estimator of θ is asymptotically minimax (over any interval [a, b] for 0 < a < b < 1).

- **2.** Suppose $\mathbf{X} = (X_1, \dots, X_n)$ consists of iid random variables with a gamma distribution with known shape α_0 but unknown *scale* parameter $\theta = \Theta = (0, \infty)$. Consider the decision problem where the decision space is $\mathcal{D} = \Theta$ and loss is $L(d|\theta) = (d-\theta)^2$. Write $T = \sum_{i=1}^n X_i$.
 - (a) Define the family of estimators $\{d_{k\ell}(\cdot): k, \ell \in \mathbb{R}\}$ according to

$$d_{k\ell}(\mathbf{X}) = \frac{T+k}{n\alpha_0 + \ell} \,.$$

Determine the risk

$$R(\theta|d_{k\ell}) = E_{\theta} \left\{ \left[d_{k\ell}(\mathbf{X}) - \theta \right]^2 \right\}.$$

- (b) Determine $d_{\text{flat}}(\mathbf{X})$, the Bayes procedure using the "flat prior" $w(\theta) \equiv 1$.
- (c) Show that for any $k, \ell \in \mathbb{R}$, $d_{k\ell}(\mathbf{X})$ is asymptotically minimax. You may assume that for any $0 \le \theta_0 < \theta_1 < \infty$, the Bayes procedure $\widetilde{d}(\mathbf{X})$ based on the $U[\theta_0, \theta_1]$ prior has the same limiting (rescaled) risk as $d_{\text{flat}}(\mathbf{X})$: for all $\theta_0 < \theta < \theta_1$,

$$\lim_{n \to \infty} nR(\theta | \widetilde{d}) = \lim_{n \to \infty} nR(\theta | d_{\text{flat}}). \tag{1}$$

- (d) Show that
 - (i) the maximum likelihood estimator;
 - (ii) $d_{\text{flat}}(\mathbf{X})$;
 - (iii) any Bayes procedure based on an Inverse Gamma (conjugate) prior are all asymptotically minimax.
- **3.** The beta function is given by

$$beta(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

(where $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$ is the gamma function, satisfying $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$, for all $\alpha > 0$), and is the normalising constant in the beta (α, β) density:

$$f_X(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{\text{beta}(\alpha, \beta)}$$
 for $0 < x < 1$.

Suppose X has the density $f_X(\cdot)$ above, and then define Y = 1/X.

- (a) For $\alpha > 1$, determine E(Y).
- (b) Determine the density of Y.

4. If Y has a geometric distribution with

$$P(Y = y) = (1 - p)^{y-1}p$$
 for $y = 1, 2, \cdots$

then E(Y) = 1/p and $Var(Y) = (1-p)/p^2$. Suppose $\mathbf{X} = (X_1, \dots, X_n)$ consists of iid geometric random variables with unknown $mean \ \theta \in \Theta = (1, \infty)$. Consider the decision problem with decision space $\mathcal{D} = \Theta$ and loss $L(d|\theta) = (d-\theta)^2$. Assume that $n \geq 3$.

- (a) Determine $E_{\theta}(T)$ and $Var_{\theta}(T)$ where $T = \sum_{i=1}^{n} X_i$ as functions of θ .
- (b) Define the family of estimators $\{d_{k\ell}(\cdot): k, \ell \in \mathbb{R}\}$ according to

$$d_{k\ell}(\mathbf{X}) = \frac{T+k}{n+\ell} \,.$$

Determine the risk

$$R(\theta|d_{k\ell}) = E_{\theta} \left\{ [d_{k\ell}(\mathbf{X}) - \theta]^2 \right\}.$$

- (c) Write down the probability mass function of X_1 as a function of θ .
- (d) Write out the likelihood.
- (e) Determine the Bayes procedure $d_{\text{flat}}(\mathbf{X})$ using a flat prior $w(\theta) \equiv 1$ (question 3 may prove useful here).
- (f) Show that
 - (i) the maximum likelihood estimator;
 - (ii) $d_{\text{flat}}(\mathbf{X})$;
 - (iii) any Bayes procedure based on a (conjugate) prior of the form

$$w(\theta) = \frac{1}{\cot(\alpha_0, \beta_0)} \frac{(\theta - 1)^{\beta_0 - 1}}{\theta^{\alpha_0 + \beta_0}}, \quad \text{for } \theta > 1$$
 (2)

are all asymptotically minimax. You may assume that for any $1 < \theta_0 < \theta_1 < \infty$, the Bayes procedure $\widetilde{d}(\mathbf{X})$ based on the $U\left[\theta_0, \theta_1\right]$ prior has the same limiting (rescaled) risk as $d_{\text{flat}}(\mathbf{X})$: for all $\theta_0 < \theta < \theta_1$,

$$\lim_{n \to \infty} nR(\theta | \widetilde{d}) = \lim_{n \to \infty} nR(\theta | d_{\text{flat}}).$$

Hint: determine the forms of all the estimators first.