PROF. TIAGO MACEDO

		4
Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Questão 1 (3,5 pontos).

- (a): (1,0 ponto) Escreva formalmente a definição de função.
- (b): (1,0 ponto) Considere o conjunto $\mathbb{R}_{\geq 0} = \{\alpha \in \mathbb{R} : \alpha \geq 0\}$ e a relação $r : \mathbb{R}^2_{\geq 0} \to \mathbb{R}$, onde $r(\alpha, \beta) = \pm \sqrt{\alpha}$ para cada $(\alpha, \beta) \in \mathbb{R}^2_{\geq 0}$. Explique por que r não é uma função.
- (c): (1,5 ponto) Considere a função $r_+: \mathbb{R}^2_{\geq 0} \to \mathbb{R}$ dada por $r_+(\alpha, \beta) = \sqrt{\alpha}$. Escreva o domínio, contra-domínio e a imagem de r_+ .

Data: 11 de setembro de 2014.

Questão 2 (2,0 pontos).

- (a): (1,0 ponto) Defina formalmente curvas de nível de uma função $F:\mathbb{R}^2\to\mathbb{R}.$
- (b): (1,0 ponto) Calcule as curvas de nível da função $G:\mathbb{R}^2\to\mathbb{R}$ dada por $G(x,y)=x^2+y^2$ para cada $(x,y)\in\mathbb{R}^2.$

Questão 3 (4,5 pontos).

- (a): (1,0 ponto) Dada uma função $H: \mathbb{R}^2 \to \mathbb{R}$, defina formalmente continuidade de H em um ponto $(a,b) \in \mathbb{R}^2$.
- (b): (1,0 ponto) Mostre que a função $R: \mathbb{R}^2 \to \mathbb{R}$, dada por

$$R(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{, se } (x,y) \neq (0,0). \\ 0 & \text{, se } (x,y) = (0,0). \end{cases}$$

é contínua em todo ponto diferente de (0,0).

- (c): (1,0 ponto) Calcule o limite $\lim_{(x,y)\to(0,0)} R(x,y)$. Justifique.
- (d): (0,5 ponto) Mostre que a função $R:\mathbb{R}^2\to\mathbb{R}$ não é contínua no ponto (0,0).
- (e): (1,0 ponto) Considere a função $S: \mathbb{R}^2 \to \mathbb{R}$ dada por $S(a,b) = (a^2 + b^2) \operatorname{sen}(a+b)$ para cada $(a,b) \in \mathbb{R}^2$. Mostre que S é contínua no ponto (0,0).

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Considere as seguintes funções:

- $P: \mathbb{R}^2 \to \mathbb{R}$, dada por $P(x, y) = x^2 + y^2$.
- $Q: \mathbb{R}^2 \to \mathbb{R}$, dada por Q(x, y) = |x| + |y| 1.
- $w: \mathbb{R}^2 \to \mathbb{R}$, dada por

$$w(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{, se } (x,y) \neq (0,0) \\ 0 & \text{, se } (x,y) = (0,0). \end{cases}$$

Data: 09 de outubro de 2014.

Questão 1 (3,5 pontos). Considere um ponto $(a,b) \in \mathbb{R}^2$.

- (a): (0,5 ponto) Calcule $\nabla P(a,b)$, o gradiente de P em (a,b).
- (b): (0,5 ponto) Dada uma função $F: \mathbb{R}^2 \to \mathbb{R}$, escreva formalmente a definição de diferenciabilidade de F em (a,b).
- (c): (0.5 ponto) Mostre que a função P é diferenciável em todo ponto de \mathbb{R}^2 .
- (d): (0,5 ponto) Considere um vetor $(u,v) \in \mathbb{R}^2$ satisfazendo $u^2 + v^2 = 1$. Calcule $D_{(u,v)}P(a,b)$, a derivada direcional da função P na direção de (u,v) no ponto (a,b).
- (e): (0.5 ponto) Escreva o plano tangente ao gráfico de P no ponto (0,0,0).
- (f): (0,5 ponto) Calcule $H_P(a,b)$, a matriz Hessiana de P em (a,b).
- (g): (0,5 ponto) Calcule $D_{(a,b)}T$, a diferencial de P em (a,b).

Questão 2 (2,5 pontos).

- (a): (0,5 ponto) Calcule $\nabla w(0,0)$, o gradiente de w no ponto (0,0).
- (b): (0,5 ponto) Dado um vetor $(u,v) \in \mathbb{R}^2$, calcule $D_{(u,v)}w(0,0)$, usando a definição.
- (c): (0,5 ponto) Dado um vetor $(u,v) \in \mathbb{R}^2$, calcule $\nabla w(0,0) \cdot (u,v)$.
- (d): (1,0 ponto) A função w é diferenciável no ponto (0,0)? Justifique.

Questão 3 (1,5 pontos). Considere um subconjunto $X \subseteq \mathbb{R}^2$.

- (a): (0,5 ponto) Dada uma função $\varphi:X\to\mathbb{R},$ escreva formalmente a definição de ponto de máximo global para $\varphi.$
- (b): (0,5 ponto) Dada uma função $\psi:X\to\mathbb{R}$ escreva formalmente a definição de ponto de mínimo local para $\psi.$
- (c): (0,5 ponto) Dada uma função $\xi:X\to\mathbb{R},$ escreva formalmente a definição de ponto de sela para $\xi.$

Questão 4 (4,5 pontos). Suponha que uma formiga esteja caminhando em uma região \mathcal{L} de \mathbb{R}^2 cujos pontos (x,y) satisfazem a inequação $Q(x,y) \leq 0$ e cuja temperatura é dada pela função $P: \mathcal{L} \to \mathbb{R}$.

- (a): (0,5 ponto) Calcule os pontos críticos de P em \mathcal{L} .
- (b): (1,0 ponto) Mostre que os pontos críticos obtidos no item (a) são os pontos mais frios na região \mathcal{L} .
- (c): (1,0 ponto) Usando o método dos multiplicadores de Lagrange, calcule os possíveis pontos mais quentes e mais frios da fronteira $\{(x,y) \in \mathcal{L} : Q(x,y) = 0\}$ de \mathcal{L} .
- (d): (1,0 ponto) Mostre que a função Q não é diferenciável nos pontos $(a,b) \in \mathbb{R}^2$ satisfazendo ab=0.
- (e): (1,0 ponto) Use o item (d) para justificar o fato de que os pontos mais quentes de \mathcal{L} , são (1,0), (-1,0), (0,1) e (0,-1) e não são detectados no item (c).

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Considere uma casquinha de sorvete de formato cônico e suponha que uma pessoa a encha da seguinte forma. Primeiro, ela enche o fundo da casquinha com calda de chocolate até a altura a>0, formando uma superfície circular de raio a. Depois ela coloca uma bola de sorvete de morango perfeitamente esférica de raio s>0 tangenciando a borda da casquinha e a superfície da calda. Conforme a figura abaixo

Data: 06 de novembro de 2014.

Questão 1 (4,5 pontos). Primeiro vamos calcular o volume da calda de chocolate usando integrais duplas.

(a) Descreva a região

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid b \le x \le c, f(x) \le y \le g(x)\}$$

sobre o qual vamos calcular a integral.

- (b) Descreva a função $F: \mathcal{R} \to \mathbb{R}$ que vamos integrar.
- (c) Escreva o volume da calda na forma

$$\int_{\mathcal{R}} F = \int_b^c \int_{f(x)}^{g(x)} F(x, y) \ dy \ dx.$$

(d) Descreva $\mathcal{C} = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{R}^2$ e a função

$$\gamma: \mathcal{C} \longrightarrow \mathcal{R}$$
 $(r,\theta) \longmapsto (x(r,\theta), y(r,\theta)),$

que muda de coordenadas cartesianas para coordenadas polares.

- (e) Calcule a matriz Jacobiana J de γ .
- (f) Calcule $\mathcal{J} = |\det(J)|$.
- (g) Usando a mudança de variáveis, escreva o volume da calda na forma

$$\int_{\mathcal{C}} (F \circ \gamma) \mathcal{J} = \int_{a_2}^{b_2} \int_{a_1}^{b_1} (F \circ \gamma)(r, \theta) \mathcal{J}(r, \theta) \ dr \ d\theta.$$

(h) Calcule

$$I_1(\theta) = \int_{a_1}^{b_1} (F \circ \mu)(r, \theta) \mathcal{J}(r, \theta) dr.$$

(i) Calcule

$$I_2 = \int_{a_2}^{b_2} I_1(\theta) \ d\theta.$$

Questão 2 (5,0 pontos). Agora vamos calcular o volume da bola de morango usando integrais triplas.

(a) Descreva o sólido

$$\Gamma = \{(x, y, z) \in \mathbb{R}^3 \mid b < x < c, f(x) < y < q(x), \phi(x, y) < z < \psi(x, y)\}$$

sobre o qual vamos calcular a integral.

- (b) Descreva a função $G:\Gamma\to\mathbb{R}$ que vamos integrar.
- (c) Escreva o volume da bola na forma

$$\int_{\Gamma} G = \int_{b}^{c} \int_{f(x)}^{g(x)} \int_{\phi(x,y)}^{\psi(x,y)} G(x,y,z) \ dz \ dy \ dx.$$

(d) Descreva $\mathcal{D}=[a_1,b_1]\times[a_2,b_2]\times[a_3,b_3]\subset\mathbb{R}^3$ e a função

$$\mu: \mathcal{D} \longrightarrow \Gamma$$

$$(\rho, \theta, \varphi) \longmapsto (x(\rho, \theta, \varphi), y(\rho, \theta, \varphi), z(\rho, \theta, \varphi)),$$

que muda de coordenadas cartesianas para coordenadas esféricas.

- (e) Calcule a matriz Jacobiana J de μ .
- (f) Calcule $\mathcal{J} = |\det(J)|$.
- (g) Usando a mudança de variáveis, escreva o volume da bola na forma

$$\int_{\mathbb{D}} (G \circ \mu) \mathcal{J} = \int_{a_2}^{b_3} \int_{a_2}^{b_2} \int_{a_1}^{b_1} (G \circ \mu) (\rho, \theta, \varphi) \mathcal{J}(\rho, \theta, \varphi) \ d\rho \ d\theta \ d\varphi.$$

(h) Calcule

$$I_1(\theta,\varphi) = \int_{a_1}^{b_1} (G \circ \mu)(\rho,\theta,\varphi) \mathcal{J}(\rho,\theta,\varphi) \ d\rho.$$

(i) Calcule

$$I_2(\varphi) = \int_{a_2}^{b_2} I_1(\rho, \theta, \varphi) \ d\theta.$$

(j) Calcule

$$I_3 = \int_{a_2}^{b_3} I_2(\varphi) \ d\varphi.$$

Questão 3 (1,5 pontos). Dê um exemplo de uma função $\Phi:[0,1]\times[0,1]\to\mathbb{R}$ que não é integrável. Justifique.

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Observações

- (1) Provas sem nomes e sem assinaturas serão consideradas inválidas.
- (2) A prova é individual, sem consulta e sem uso de calculadora.
- (3) Serão aplicadas sanções a alunos por improbidade na execução de trabalhos acadêmicos.
- (4) Não é permitida a utilização de quaisquer aparelhos eletrônicos durante a prova. A utilização de um por um aluno implicará na invalidação da avaliação deste aluno.
- (5) Resolva as questões de forma clara, objetiva e organizada, e justifique cada passo. Estes pontos serão levados em consideração durante a correção.

Questão 1 (4,0 pontos). Suponha que uma formiguinha \mathcal{F} esteja caminhando sobre um certo caminho $c:[0,2\pi]\to\mathbb{R}^3$ dado por $c(t)=(\operatorname{sen}(t),\cos(t),(t-\pi)^2)$ e que uma força $F:\mathbb{R}^3\to\mathbb{R}^3$ dada por $F(x,y,z)=(\sqrt{x^2+y^2+z^2}\ x,\sqrt{x^2+y^2+z^2}\ y,\sqrt{x^2+y^2+z^2}\ z)$ esteja agindo sobre ela.

- (a): (1,0 ponto) Calcule a distância total que $\mathcal F$ percorre de t=0 a $t=2\pi$. (Sugestão: use que $\int_0^{2\pi} (1+4(\theta-\pi)^2)d\theta=21.256$.)
- (b): (1,0 ponto) Mostre que rot F é nulo.
- (c): (1,0 ponto) Mostre que o campo F é conservativo.
- (d): (1,0 ponto) Calcule o trabalho total da formiguinha para percorrer toda a curva c.

Questão 2 (3,0 pontos). Suponha que um ônibus O siga o seguinte percurso p

no sentido anti-horário e partindo de (-1,-1). Suponha também que a força do vento sobre $0, V : \mathbb{R}^2 \to \mathbb{R}^2$, seja dada por $V(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ em cada ponto do percurso.

- (a): (1,0 ponto) Parametrize a curva p que o ônibus percorre.
- (b): (1,0 ponto) Usando a parametrização do item (a), calcule a distância percorrida pelo ônibus.
- (c): (1,0 ponto) Calcule o trabalho que o ônibus vai ter para completar o percurso p. (Sugestão: use o fato que a integral do campo V independe da curva fechada, simples, C^1 por partes, mesma orientação de p e contornando a origem sobre a qual a integral é calculada.)

Questão 3 (3,0 pontos). Considere a elipse \mathcal{E} cujos pontos satisfazem $x^2/4 + y^2/9 = 1$.

- (a): (2,0 pontos) Use o Teorema de Green para calcular a área de
 $\mathcal E.$
- (b): (1,0 ponto) Se a densidade dos pontos de \mathcal{E} for dada por $\delta(x,y) = \frac{36}{9x^2+4y^2}$, calcule a massa de \mathcal{E} . (Sugestão: use que a circunferência de \mathcal{E} é 8.)