PREDICTING HOUSE PRICES IN KING COUNTY

BUSINESS UNDERSTANDING

- ☐ From observations and experience, one of the greatest challenge when searching for a house to buy is finding a suitable property within your budget range.
- ☐ It can be really frustrating when price becomes the determinant factor of whether you get to own your dream house or not.
- ☐ The current market trends show that house prices are very volatile and have not been well standardized, therefore, sellers get to set apply price based on their needs and market rates based on location regardless of size and quality.
- ☐ So this prompts the big question:

**** What factors influence property value?****

PROJECT OVERVIEW

Hypothesis:

There are more than a single factor that influence house pricing.

Objectives:

- ✓ Provide Insight to homebuyers on key factors that influence price
- ✓ Develop statistical models that help predict house prices
- ✓ Understand the relationship between price and different factors assumed to influence market prices

Project Scope:

In this case study, we explored housing sale prices in King County(KC), Seattle USA to help answer our hypothesis. The dataset includes house prices and different factors that are assumed to influence the prices. We analysed each feature to establish relationship with price. We then used the results to develop price prediction models.

Project Start Time: 20th March 2023 Project End Time: 26th March 2023

Duration: 7 days

DATA UNDERSTANDING

General Overview KC Average House Prices

Trend of prices in KC over the years

On the trend of prices map, we used median prices from the 70 given zip codes. It is observed that there is no linear relationship between year built and prices. It is expected as house prices are volatile and are influenced by different direct and indirect factors including economic and political. (Each year cannot be the same)!

Data Source: https://www.kaggle.com/datasets/harlfoxem/housesalesprediction

Data Overview:

Data contains:

- 20 variables (Objects, floats, & integers).
- Continuous and categorical data
- Missing values

<cla< th=""><th>ss 'pandas.core</th><th>.frame.DataFrame</th><th>'></th></cla<>	ss 'pandas.core	.frame.DataFrame	'>								
	RangeIndex: 21597 entries, 0 to 21596										
_	columns (total	•									
#	Column	Non-Null Count	Dtype								
0	id	21597 non-null	int64								
1	date	21597 non-null	object								
2	price	21597 non-null	float64								
3	bedrooms	21597 non-null	int64								
4	bathrooms	21597 non-null	float64								
5	sqft_living	21597 non-null	int64								
6	sqft_lot	21597 non-null	int64								
7	floors	21597 non-null	float64								
8	waterfront	19221 non-null	float64								
9	view	21534 non-null	float64								
10	condition	21597 non-null	int64								
11	grade	21597 non-null	int64								
12	sqft_above	21597 non-null	int64								
13	sqft_basement	21597 non-null	object								
14	yr_built	21597 non-null	int64								
15	yr_renovated	17755 non-null	float64								
16	zipcode	21597 non-null	int64								
17	lat	21597 non-null	float64								
18	long	21597 non-null	float64								
19	sqft_living15	21597 non-null	int64								
20	sqft_lot15	21597 non-null	int64								
dtyp	es: float64(8),	int64(11), obje	ct(2)								
memo	ry usage: 3.5+	MB									

Distribution

#Observations

price, sqft_lot, sqft_living, sqft_above, long,sqft_living15 and sqft_lot15 are continuous variables and appear to be #log normally distributed. # Most houses have 3 bedrooms and 2 bathrooms #Most houses were built in the early 2000s

NB: To be able to build models using the given data, we need to do handle outliers, perform data Standardization, normalize and deal with the categorical data

DATA PREPARATION

DATA MODELLING

1. Simple Linear Regression

		OLS Regre	ssion Resu	lts			
Dep. Variable:		price	R-squar	ed:		0.455	
Model:		OLS Adj. R-squared:		0.455			
Method:		Least Squares	F-stati	stic:		1.805e+04	
Date:	Sun	, 26 Mar 2023	Prob (F	Prob (F-statistic):		0.00	
Time:		12:44:22	Log-Lik	Log-Likelihood:		-10231.	
No. Observation	s:	21597	21597 AIC:		2.047e+04		
Df Residuals:		21595	BIC:			2.048e+04	
Df Model:		1					
Covariance Type	:	nonrobust					
========	coef	std err	t	P> t	[0.025	0.975	
Intercept	6.7234	0.047	142.612	0.000	6.631	6.81	
sqft_living	0.8376	0.006	134.368	0.000	0.825	0.85	
Omnibus:			Durbin-			1.977	
Prob(Omnibus):		0.000		Bera (JB):		114.096	
Skew:			Prob(JE			1.68e-25	
Kurtosis:		2.787	Cond. N	0.		137.	

Add Sqft_lot

R-Squared of 45% means the model is only able to account for 45% of the total variation in the dependent variable, while the remaining 55% is due to other factors not included in the model or random error.

Model Accuracy = 45%

```
accuracy = regressor.score(x_test, y_test)
"Accuracy: {}%".format(int(round(accuracy * 100)))
'Accuracy: 45%'
```

		OLS Regr	ession Resu	lts		
Dep. Variable:		pric	e R-squar	ed:		0.463
Model:		OL:	5 Adj. R-	squared:		0.463
Method:		Least Square	s F-stati	stic:		9303.
Date:	Sun	, 26 Mar 202	B Prob (F	-statistic):		0.00
Time:		08:59:3	2 Log-Lik	elihood:		-10081.
No. Observation	ons:	2159	7 AIC:			2.017e+04
Df Residuals:		2159	4 BIC:			2.019e+04
Df Model:			2			
Covariance Typ	oe:	nonrobus	t			
	coef	std err	t	P> t	[0.025	0.975
sqft_living	0.8746	0.007	133.555	0.000	0.862	0.88
sqft_lot	-0.0534	0.003	-17.330	0.000	-0.059	-0.04
const	6.9238	0.048	143.563	0.000	6.829	7.01
Omnibus:		94.62	Durbin-	Watson:		1.977
Prob(Omnibus):		0.00		Bera (JB):		92.481
Skew:			3 Prob(JB			8.28e-21
Kurtosis:			5 Cond. N			218.
		2.00				

From the summary, the model is only able to account for a total variation of 46% in the dependent variable while the rest 54% remain unaccounted for. However the model has improved by 1% with the addition of sqft_lot

	id	price	bedrooms	sqft_living	sqft_lot	floors	condition	grade	predictions
0 71293	00520	12.31	3	7.07	8.64	1	3	7	12.65
1 64141	00192	13.20	3	7.85	8.89	2	3	7	13.32
2 56315	00400	12.10	2	6.65	9.21	1	3	6	12.25
3 24872	00875	13.31	4	7.58	8.52	1	5	7	13.10

*****Prediction column shows price prediction

print(results.predict([7.07,8.64,1]))
[12.64642298]

Multiple Regression

		_	ssion Resu				
Dep. Variable:		price				0.589	
Model:		OLS	_	squared:		0.588	
Method:		east Squares				1065.	
Date:	Sun,			-statistic):		0.00	
Time:		09:05:52		elihood:		-7195.4	
No. Observatio	ns:	21597				1.445e+04	
Df Residuals:		21567				1.469e+04	
Of Model:		29					
Covariance Type		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
sqft living	0.5757	0.011	53.716	0.000	0.555	0.597	
aft lot	-0.0594		-19.609	0.000	-0.065	-0.053	
pedrooms 2	-0.0878	0.026	-3.416	0.001	-0.138	-0.037	
bedrooms 3	-0.2491	0.026	-9.664	0.000	-0.300	-0.199	
bedrooms_5	-0.2730		-10.308	0.000	-0.325	-0.221	
bedrooms 5	-0.2455	0.028	-8.790	0.000	-0.323	-0.191	
bedrooms 6	-0.2288	0.034	-6.760	0.000	-0.295	-0.162	
pedrooms 7	-0.2502	0.061	-4.083	0.000	-0.370	-0.130	
bedrooms 8	-0.0957	0.098	-0.979	0.328	-0.287	0.096	
bedrooms_6	-0.0039	0.141	-0.028	0.978	-0.280	0.272	
bedrooms_9	-0.0676	0.197	-0.343	0.732	-0.454	0.319	
pedrooms_10	-0.1599	0.339	-0.472	0.732	-0.824	0.505	
bedrooms_11	0.1002	0.339	0.296	0.767	-0.564	0.765	
floors 2	-0.1029		-16.886	0.000	-0.115	-0.091	
floors_2	-0.0080	0.015	-0.520	0.603	-0.038	0.022	
condition 2	-0.0913	0.068	-1.341	0.180	-0.225	0.042	
condition 3	-0.0060	0.063	-0.095	0.924	-0.130	0.118	
condition_3	0.0775	0.063	1.223	0.221	-0.130	0.110	
condition 5	0.2046	0.064	3.211	0.001	0.080	0.330	
grade 4	-0.2120	0.345	-0.615	0.538	-0.887	0.463	
grade 5	-0.2120	0.339	-0.609	0.542	-0.872	0.458	
grade_5 grade 6	-0.2007	0.339	-0.215	0.830	-0.737	0.430	
grade_0 grade 7	0.0928	0.339	0.274	0.784	-0.737	0.757	
grade 8	0.2920	0.339	0.861	0.389	-0.372	0.757	
grade_0 grade 9	0.5477	0.339	1.615	0.106	-0.373	1.213	
grade_9 grade 10	0.7766	0.339	2.288	0.022	0.111	1.442	
grade 11	1.0039	0.340	2.955	0.003	0.338	1.670	
grade_11 grade 12	1.2825	0.341	3.758	0.000	0.614	1.951	
grade_12 grade 13	1.6084	0.352	4.566	0.000	0.918	2.299	
grade_15	9.2338	0.352	26.384	0.000	8.548	9.920	
=========							
Omnibus:		34.523		Watson:		1.976	
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		35.194	
Skew:		0.086			2.28e-08		
				*			

Model Validation

Great we see that the model does improve to R-squared to 59% when we add in the categorical data. We also observe that the data is symmetrical with a very slight tendency towards the right but it's very small to be significant.

Split Train Test

Results:

Train Mean Squared Error: 0.1138816185667106 Test Mean Squared Error: 0.11433987779287012

The test error is not that significantly different from the train meaning that the model is able to generalize future cases well

K-Fold Cross Validation

There is no significance differece between Train_score and Test_score, the model is able to generalize future cases

We observe that the data has Homoscedasticity i.e. dependent variable is equal across values of the independent variables

Bias-Variance Tradeoff:

Results: Train bias: 4.134633132394236e-17 Train variance: 0.16304818835004653

> Test bias: 0.0013848834907673557 Test variance: 0.1605880164739517

******From the results, our model has a relatively low bias and variance, therefore predictions will be accurate

Conclusion & Recommendation

Conclusions:

- The Simple linear regression model can only account for 45% of the total variation for the dependent variables
- Multiple regression improves the model as we are now able to account for 59% of the total variations for the dependent variables
- Both model validation methods i.e. split trai-test and K-Fold shows that there is no significant difference between the actual and model data.
- Bias-Variance tradeoff shows relatively low bias and variance.
- We fail to reject the null hypothesis.

Recommendation:

- Apply other advanced methods to see if this improves predictions