(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年2月15日 (15.02.2001)

PCT

(10) 国際公開番号 WO 01/10439 A1

(51) 国際特許分類7: A61K 31/40, 31/4025, 31/445, 31/4468, 31/4525, 31/4535, 31/454, 31/422, 31/404, 31/4155, 31/4245, 31/5377, 31/4545, 31/4709, 31/4184, 31/427, 31/506, 31/433, 31/423, 31/4192, 31/429, 31/53, A61P 37/08, 29/00, 31/18, 11/08, 43/00 // C07D 207/14, 211/56, 211/58, 211/26, 401/04, 401/06, 401/12, 401/14, 403/06, 403/12, 405/06, 405/12, 405/14, 409/12, 409/14, 413/06, 413/14, 417/06, 487/04, 495/06, 495/04, 513/04

(21) 国際出願番号:

PCT/JP00/05260

(22) 国際出願日:

2000年8月4日 (04.08.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願平11/220864

1999年8月4日 (04.08.1999)

(71) 出願人 (米国を除く全ての指定国について): 帝人株 式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府 大阪市中央区南本町1丁目6番7号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 塩田辰樹 (SH-IOTA, Tatsuki) [JP/JP]; 〒191-0065 東京都日野市旭 が丘4丁目3番2号 帝人株式会社 東京研究センター 内 Tokyo (JP). 須藤正樹 (SUDOH, Masaki) [JP/JP]; 〒 475-0837 愛知県半田市有楽町7丁目106-1 ユートピ アタウン112D Aichi (JP). 横山朋典 (YOKOYAMA, Tomonori) [JP/JP]. 室賀由美子 (MUROGA, Yumiko) [JP/JP]. 上村 孝 (KAMIMURA, Takashi) [JP/JP]. 中 西頭伸 (NAKANISHI, Akinobu) [JP/JP]; 〒191-0065 東 京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研 究センター内 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東 京都千代田区内幸町2丁目1番1号 帝人株式会社 知的 財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CYCLIC AMINE CCR3 ANTAGONISTS

(54) 発明の名称: 環状アミンCCR3拮抗剤

R¹
$$(CH_2)_1 - N$$
 $(CH_2)_m$ $(CH_2)_n - N - C - (CH_2)_p$ R^4 $(CH_2)_q - G - R^6$ (I)

(57) Abstract: Drugs containing as the active ingredient cyclic amine derivatives represented by general formula (I), pharmaceutically acceptable C allowed addition salts thereof or pharmaceutically acceptable C allowed addition salts thereof or pharmaceutically acceptable C .

cally acceptable acid addition salts thereof or pharmaceutically acceptable C1.6 alkyl adducts thereof. These drugs are efficacious in preventing and treating diseases in which CCR3 participates such as asthma and allergic rhinitis.

(57) 要約:

下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分として含有する医薬。喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療、予防する作用を有する。

明細書

環状アミンCCR3拮抗剤

5 技術分野

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮 膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびク ローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症 、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、およ び好酸球性白血病など、好酸球、好塩基球、活性化T細胞などの増加、組織への浸 潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不 全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対す る治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

15 背景技術

10

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫, 現代医療, 1999, 31, 1297など参照)。例えば、サル の喘息モデルにおいて抗接着分子(ICAM-1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C. D. et al., Science, 1990, 247, 456)。

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同定された(例えば、Jose, P. J., et al., J. Exp. Med., 1994, 179, 881; Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725など参照)。さらに、エオタキシンは好酸球上に発現しているCCR3レセプターに結合し作用を発現することが解明され、また、エオタキシンー2、RANTES(regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2(monocyte chemoattractant protein-2の略称)、MCP-3(

15

monocyte chemoattractant protein—3の略称)、MCP—4 (monocyte chemoatt ractant protein—4の略称) などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている (例えば、Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B. L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. eta l., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. eta l., J. Exp. Med., 1996, 183, 2437; Hiath, H. et al., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体(CD11b)の発現増強(例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など参照)、活性酸素の産生促進(例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進(El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている(例えば、Palframan, R. T. et al., Blood, 1998, 91, 2240など参照)。

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要 な役割を演じていることが、多くの報告により示されている。例えば、マウス喘息 モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること(Gonzalo, 20 J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮膚アレルギー モデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixeir a, M. M. et al., J. Clin. Invest., 1997, 100, 1657) 、マウスモデルにおいて 抗工オタキシン抗体が肺肉芽腫の形成を抑制すること(Ruth, J. H. et al., J. I mmunol., 1998, 161, 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モ デルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenber g, M. E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健 常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルとも に亢進していること (Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照) 、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(A 30 m. J. Respir. Cell Mol. Biol., 1997, 17, 683参照) などが報告されている。

20

25

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

5 これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性間の腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。

さらに、CCR3レセプターは好酸球のみならず好塩基球、Th2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR3は、これらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365など参照)。

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

また、HIV-1 (ヒト免疫不全ウイルス-1)が宿主細胞に感染する際にCCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルス 感染に起因するエイズ(AIDS:後天性免疫不全症候群)の治療薬もしくは予防 薬としても有用であると考えられる(例えば、et al., Choe, H. et al., Cell, 19 96, 85, 1135; Doranz, B. J. et al., Cell, 1996, 85, 1149参照)。

最近、キサンテン-9-カルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP903349; W00029377; W00031033; W00035449; W00035451; W00035452; W00035453; W00035454; W00035876; W00035877参照)、ピロリジン誘導体(W00031032参照)、フェニルアラニン誘導体(W09955324; W099553300; W00004003; W00027800; W00027835; W00027843参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同っのものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

発明の開示

5

10

したがって、本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細 15 胞上のCCR3に結合することを阻害する活性を有する低分子化合物を提供するこ とである。

本発明のさらなる目的は、CCR3拮抗剤を用いて、エオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することが病因の一つであるような疾患の治療法および/または予防法を提供することである。

20 本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン 誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容さ れ得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結 合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関 与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、さら に研究を進めた結果、本発明を完成した。

すなわち、本発明によれば、下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

[式中、R¹はフェニル基、C₃-C₃シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1~3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1~3個有する 10 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ ェニル基、C₃~C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C,-C。アルキル基、C,-C。シクロアルキル基、C,-C。アルケニル基 、C,-C,アルコキシ基、C,-C,アルキルチオ基、C,-C,アルキレン基、C, 15 -C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C。 -C,アルカノイル基、C,-C,アルコキカルボニル基、C,-C,アルカノイルオ キシ基、C,-C,アルカノイルアミノ基、C,-C, N-アルキルカルバモイル基、 20 C₄-C₆N-シクロアルキルカルバモイル基、C₁-C₆アルキルスルホニル基、C 3-C。(アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくは、ジ($C_1 - C_6$ アルキル) アミノ基で置換されていてもよく、これらのフェニル基、CューC。シク 25 ロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲ ン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C₁-C₆アルキル基、 もしくはC,-C。アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒ 30 ドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは

 $C_1 - C_6$ アルコキシ基によって置換されていてもよい。ただし、j = 0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

kは0-2の整数を表す。

5 mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ ルバモイル基、メルカプト基、グアニジノ基、C₃-C₈シクロアルキル基、C₁-C ₆アルコキシ基、C₁-C₆アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 15 、C₁-C₆アルキル基、C₁-C₆アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₂アルカノイル基、C₂-C₂アルコキシカルボニル 基、 $C_2 - C_3$ アルカノイルオキシ基、 $C_2 - C_3$ アルカノイルアミノ基、 $C_3 - C_3$ N 20 ーアルキルカルバモイル基、C,-C,アルキルスルホニル基、アミノ基、モノ(C, - C₆アルキル) アミノ基、ジ(C₁-C₆アルキル) アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水 25 素を形成していてもよい。

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ 30 R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 と

30

いっしょになってC2-C5アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルキンジオキシ基、フェニルス・フェニルス・フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、

- 3 フェニルウレイド基、 $C_2 C_7$ アルカノイル基、 $C_2 C_7$ アルコキシカルボニル基、 $C_2 C_7$ アルカノイルオキシ基、 $C_2 C_7$ アルカノイルアミノ基、 $C_2 C_7$ N-アルキルカルバモイル基、 $C_1 C_6$ アルキルスルホニル基、フェニルカルバモイル基、N, N-ジ($C_1 C_6$ アルキル)スルファモイル基、アミノ基、モノ($C_1 C_6$ アルキル)アミノ基、ベンジルアミノ基、
- C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、もしくはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよく、これらのフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、
- 25 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。]

さらに、本発明によれば、上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

ここに、上記式(I)で表される化合物は、エオタキシンなどのCCR3レセプ

ターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンな PCT/JP00/05260 どのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すな わち、上記式(I)で表される化合物はCCR3拮抗剤である。

発明を実施するための最良の形態

上記式(I)において、 R^{\perp} はフェニル基、 C_3-C_8 シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベン ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子

- を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに 10 上記R 「におけるフェニル基、 C_3 - C_8 シクロアルキル基、芳香族複素環基、または 縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキ シル基、カルバモイル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2 $-C_6$ アルケニル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_3 - C_5
- Pルキレン基、 C_2 $-C_4$ Pルキレンオキシ基、 C_1 $-C_3$ Pルキレンジオキシ基、フ 15 エニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベン ゾイルアミノ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキカルボニル基、 C_2 $-C_{7}$ アルカノイルオキシ基、 $C_{2}-C_{7}$ アルカノイルアミノ基、 $C_{2}-C_{7}$ N-アル キルカルバモイル基、 C_4-C_9 $N-シクロアルキルカルバモイル基、<math>C_1-C_6$ アル
- キルスルホニル基、 C_3-C_8 (アルコキシカルボニル)メチル基、N-フェニルカ20 ルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1 - ピロリジ ニルカルボニル基、式:-NH(C=O)O-で表される2価基、式:-NH(C=S) O-で表される2価基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、も しくはジ (C,-C₆アルキル) アミノ基で置換されていてもよい。 25
- R 1 における「 C_{3} $^{-}$ C_{8} 2 $^{$ プチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基な どの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、 ^{シクロペンチル基、およびシクロヘキシル基などが挙げられる。}

R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原 子を1-3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル 、イミダソリル、ピラソリル、オキサソリル、イソオキサゾリル、チアソリル、イ

30

ソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

5 R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1 - 3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル基、ベンゾフラニル基、またはインドリル基である場合が特に好ましい。

 R^{1} におけるフェニル基、 $C_{3}-C_{8}$ シクロアルキル基、芳香族複素環基、または縮 15 合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、 ヨウ素原子などを意味する。

 R^1 の置換基としての「 C_3-C_8 シクロアルキル基」とは、前記 R^1 における「 C_3-C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2-C_6 アルケニル基」とは、例えば、ビニル、アリル、1-プロペニル、2-プテニル、3-プテニル、2-メチル-1-プロペニル、4-ペンテニル、5-ヘキセニル、4-メチル-3-ペンテニル基などの C_2-C_6 の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基および2-メチル-1-プロペニル基などが挙げられる。

15

20

 R^1 の置換基としての「 C_1-C_6 アルコキシ基」とは、前記 C_1-C_6 アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルチオ基」とは、前記 $C_1 - C_6$ アルキル基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 C_3-C_5 アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの C_3-C_5 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_4 アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2CH_2O-$)、1、1 - ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O-$)基などの、 C_2 - C_4 の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1 - C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ(-OC H_2 O-)、エチレンジオキシ(-OC H_2 C H_2 O-)、トリメチレンジオキシ(-OC H_2 C H_2 C H_2 C H_2 O-)、プロピレンジオキシ(-OC H_2 CH(C H_3)O-)基などの C_1 - C_3 の2価アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイル基」とは、例えば、アセチル、プロパノイル、プタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルプタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルブタノイル、5-メチルヘキサノイル基などの C_2-C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としては、アセチル基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_7 アルコキシカルボニル基」とは、前記 C_1 - C_6 30 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

WO 01/10439 PCT/JP00/05260

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルアミノ基」とは、前記 C_2-C_7 アルカノイル基とアミノ基とからなる基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_4-C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3-C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロペキシルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルスルホニル基」とは、前記 $C_1 - C_6$ アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

20

30

 R^1 の置換基としての「 C_3-C_8 (アルコキシカルボニル)メチル基」とは、前記 C_2-C_7 アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具 体例としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基などが 挙げられる。

 R^1 の置換基としての「モノ(C_1 - C_6 アルキル)アミノ基」とは、前記 C_1 - C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ(C_1-C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル-N-メチルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ 基、 $C_3 - C_5$ アルキレン基、 $C_2 - C_4$ アルキレンオキシ基、メチレンジオキシ基、

10

25

フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ(C_1 - C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、ハロゲン原子、ヒドロキシ基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を挙げることができる。

さらに、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキ

ル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

上記式(I)において、 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

 R^2 における $C_1 - C_6$ アルキル基および $C_2 - C_7$ アルコキシカルボニル基は、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環 の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な 具体例として挙げることができる。

 R^2 における C_1-C_6 アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

なかでも R^2 は、水素原子を表す場合が特に好ましい。

上記式 (I) において、jは0-2の整数を表す。jは0である場合が特に好ましい。

30 上記式 (I) において、kは0-2の整数を表し、mは2-4の整数を表す。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場

合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

上記式(I)において、nは0または1を表す。

特に、kが1でmが2でnが0である場合の3-7ミドピロリジン、およびkが2でmが2でnが1である場合の4-(アミドメチル) ピペリジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^3 における C_1 - C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 - C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基が挙げられる。

 R^3 における $C_1 - C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、および $C_1 - C_6$ アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

なかでも、 R^3 は水素原子または無置換の $C_1 - C_6$ アルキル基である場合が特に好ましい。

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、

ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって3-6 員環状炭化水素を形成していてもよい。

 R^4 および R^5 における C_1 - C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 10 - C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのハロゲン原子、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイ

- 15 ルアミノ基、 C_2-C_7 N- アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。
- 20 R^4 および R^5 における C_1-C_6 アルキル基の置換基としての C_3-C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基 としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 、 R^5 およびその隣接炭素原子とからなる「3-6員環状炭化水素」の好適な 30 具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロ ヘキサンなどが挙げられる。なかでも、水素原子と C_1-C_6 アルキル基を、 R^4 と R^4

25

5の特に好ましい例として挙げることができる。

上記式(I)において、pは0または1を表し、qは0または1を表す。pとqがともに0である場合が特に好ましい。

上記式(I)において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7 ^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH- で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

10 ここで、-CO-はカルボニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7$ -CO-および-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと

15 同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 - C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、 R^6 はフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香

原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、

30 トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 C_1

 $-C_6$ アルキルチオ基、 C_1 - C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2 - C_7 アルカノイル基、 C_2 - C_7 アルカノイルオキシ基、 C_2 - C_7 アルカノイルオキシ基、 C_2 - C_7 アルカノイルアミノ基、 C_2 - C_7 アルカルバモイル基、 C_1 - C_6 アルキルスルホニル基、フェニルカルバモイル基、N, N- \mathcal{O} (C_1 - C_6 アルキル) スルファモイル基、アミノ基、モノ (C_1 - C_6 アルキル) アミノ基、 \mathcal{O} (C_1 - C_6 アルキル) アミノ基、ベンジルアミノ基、 C_2 - C_7 (アルコキシカルボニル) アミノ基、 C_1 - C_6 (アルキルスルホニル) アミノ基、もしくはビス (C_1 - C_6 アルキルスルホニル) アミノ基、4年により置換されていてもよい。

 R^6 における C_3 - C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

R 6 における「 C_3 - C_8 シクロアルケニル基」とは、例えば、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル 基など環状アルケニル基を意味し、その好適な具体例としては、1 - シクロペンテニル基、1 - シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好ましい例として挙げることができる。

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_1 - C_6$ アルキレンジオキシ基、 $C_2 - C_7$ アルカノイル基、 C_2 $- C_7$ アルコキシカルボニル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ アルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を

30 好適な具体例として挙げることができる。

 R^6 の置換基としての $C_3 - C_8$ シクロアルキル基は、前記 R^1 における $C_3 - C_8$ シ

WO 01/10439 PCT/JP00/05260

17

クロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例とし て挙げることができる。

 R^6 の置換基としての「 C_3-C_8 シクロアルキルオキシ基」とは、前記 C_3-C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、

5 シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基など を挙げることができる。

10

15

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記 C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具 体例としては、例えばメトキシカルボニルアミノ基、エトキシカルボニルアミノ基 などを挙げることができる。

 R^6 の置換基としての「 C_1 - C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1 - C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同 20 一または異なった 2 つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基 などを挙げることができる。

なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、

25 ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニルスルフィニル基、およびアミノ基を挙げることができる。

さらに、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ

10

15

20

アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カ プセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 30 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

5

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢や性別、および疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、以下のTable1. 1-1. 221に示される各置換基を含有する化合物を挙げることができる。

20 Table1.1-1.221において、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

Table 1.1

Compd. No.	R (CH ₂),-	k	m	n	chirality	R ³	-(CH ₂) _p CH ₂) _q -G-R ⁶
1	CH-CH ₂ -	1	2	0	-	н	- CH ₂ -N-C-
2	CH_CH ₂ -	1	2	0	-	н	- CH ₂ -N-C-C-CH ₃
3	С⊢СН₂-	1	2	.0	-	н.	- CH ₂ - N- C- N
4	С├─{	1	. 2	0	-	H	- CH ₂ -N-C-CF ₃
5	С⊢СН2-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
6	CH-CH ₂ -	1	2	0 :	S	н	-CH₂-N-C- F₃C
7	CH2−	. 1	2	0	S	н	-CH ₂ -N-C-
8	CH-€	1	2	0	S	н	-CH ₂ -N-C
9	C⊢-CH₂-	1	2	0	S	н	-CH ₂ -N-C-CI
10	С⊢ СН₂-	1	2	0	S	н	-CH ₂ -N-C-CH ₃
11	С⊢—СН₂-	1	2	0	S	н	-CH ₂ -N-C-OCH ₃

Table 1.2

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ G^4$ $+ CH_2)_{q}G-R^6$
12	CI-CH ₂ -	1	2	0	S	н	- CH ₂ - N C - OCH ₃
13	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
14	CH-CH ₂ -	1	2	0	S	н .	- CH ₂ - N C- СН ₃
15	CH-CH2-	1	2	0	S	Н .	-CH2-N-C
16	CH2-	1	2	0.	S	. н	-CH ₂ -N-C- → OCH ₃
17	CH-CH₂-	1	2	0	S	н	- CH ⁵ - M C CI
18	C⊢CH₂-	1	2	0	S	. н	-CH ₂ -N-C-CN
19	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
20	С⊢С СН₂-	1	2	0	S.	н	-CH ₂ -N-C-CF ₃
21	CH-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C- H F C- F CF ₃
22	CHCH ₂ -	1 .	. 2	0	S	н	- CH₂-N-C-S

Table 1.3

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
23	C├ - CH₂-	1	2	0	S	Н	-CH ₂ -N-C
24	С├─{	1	2	0	S	н	- CH ₂ -N-C
25	с⊢-{	1	2	0	S	н	-CH ₂ -N-C-CF ₃
26	С⊢-СН₂-	1	2	0	S	н	$-CH_2-N$ C O_2N
27	CH-2-	1	2	0	S .	. н	-CH ₂ -N-C-NO ₂
28	C	1	2	0	S	Н	- CH ₂ -N-C
29	С⊢√_СН₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	C⊢√CH₂-	1	2	0	R	Н	-CH ₂ -N-C
31	C⊢-()- CH₂-	1	2	0	R	Н	- CH ₂ -N-C-
32	C├ - CH₂-	1	2	0	R	н	- CH ₂ -N-C
33	С├-{СН₂-	1	2	0	R	H	- CH ₂ -N-C-CI

Table 1.4

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	[°] R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
34	CH-2-	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
35	CH- C H ₂ -	1	2	0	R	Н	-CH ₂ -N-C
36	C├ - ⟨CH₂-	1	2	0	R _.	н	-CH2-MC- OCH3
37	CH-2-	1	2	0	.R	н .	-CH ₂ -N-C-CF ₃
38	CH-CH ₂ -	1	2	0	Ŕ	H	- CH ₂ -N-C CH ₃
39	СН ₂ -	1	2	0	R	H	- CH ₂ -N-CI
40	CH-CH ₂ -	1	2	0	Ŕ	н	-CH ₂ -N С-ОСН ₃
41	C	1	2	0	R	Н	- CH ₂ - N- C-
42	CH₂-	1	2	0	R .	н	- CH ₂ - N- C-
43	C ⊢ CH₂-	1	2	0	R	н	-CH ₂ -N-C
44	C ⊢ C H₂-	1	2	0	R	н	$-CH_{2}-NC$ $-CH_{2}-NC$ $-CF_{3}$

Table 1.5

45 $CH \longrightarrow CH_2 - 1 2 0 R H $						
45 $CH \longrightarrow CH_2 - 1 2 0 R H $	Compd. No.	R ¹ (CH ₂) _j	k m	n chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
47 $CH \longrightarrow CH_2 - 1 $	45	C⊢(CH₂-	1 2	0 R	н	-CH ₂ -N-C
48 $CH \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1	46	С├-{}СН₂-	1 2	0 R	Н	- CH ₂ -N-C-CF ₃
49 $CH \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ 1 C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ 1 C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ 1 C $-$	47	CHCH ₂ -	1 2	0 R	Н	- CH ₂ -N-C-
50 $CH - CH_2 - 1 2 0 R H - CH_2 - N C - CH_2 - 1 2 0 R H - CH_2 - N C - CH_2 - N $	48	С├-{}СН₂-	1 2 (0 R	н	-CH ₂ -N-C
51 CH_{2} — 1 2 0 R H $-CH_{2}$ — N CH_{2} — 1 2 0 R H $-CH_{2}$ — N CH_{2} — 1 2 0 R H $-CH_{2}$ — N CH_{2} — 1 2 0 R H $-CH_{2}$ — N CH_{2} — 1 2 0 R H $-CH_{2}$ — N CH_{2} — N CH_{2} — 1 2 0 R H $-CH_{2}$ — N CH_{2}	49 (C├ - CH₂-	1 2 () R	Н	- CH ₂ -N C O ₂ N
52 CH ₂ - 1 2 0 R H -CH ₂ -NC- 53 CH ₂ - 1 2 0 R H -CH ₂ -NC- CI	50 c	C├ - CH ₂ -	1 2 0	R	н	- CH ₂ -N-C
53 CH ₂ - 1 2 0 R H -CH ₂ -N-C-	51 c	CH ₂ -	1 2 0	R	н	- CH ₂ -N C- H Br
	52 cı	CH ₂ -	1 2 0	R	н	-CH₂-N-C- F
	53 CH	⊢-{CH ₂ -	1 2 0	R	н	-CH ₂ -N-C-CI
54 CH ₂ - 1 2 0 R H OCH ₂ -N-C-	54 CH	⊢()- CH ₂ -	1 2 0	R	н	-CH ₂ -N-C-CI
55 CH ₂ - 1 2 0 R H -CH ₂ -N-C-	5 c⊦	-CH ₂ -	1 2 0	R	н	- CH2-NC-CI

Table 1.6

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G~R ⁶
56	C├─ੑੑੑि}-CH₂-	1	2	0	R	н	- CH ₂ -N-C-
57	C⊢√CH₂-	1	2	0	R	н	-CH2-NC-
- 58	C⊢√CH₂-	1	2	0	R	н.	- CH ₂ - N- C-
59 .	CHCH ₂ -	1	2	0	R	н	- CH ₂ - N- C
60	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N C-
61	CH2⁻	1	2	0	R	н	O -CH ₂ -NC
62	CH-2−	1	2	0	R	н	-CH ₂ -N-C
63	CH√CH₂-	1	2	0	R	н	- CH ₂ - N- CH ₂ CH ₃
64	C├─()—CH₂-	1	2	0	R	н	- CH ₂ -N C-CN
65	CH-2-	1	2	0	R	н	- CH ₂ -N-C-
66	C⊢-{	1	2	0	R	н	-CH ₂ -N C

Table 1.7

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _ρ + (CH ₂) _q G-R ⁶
67	CI	1	2	0	R	н	- CH ₂ -N-C
68	CH2-	1	2	0	R	н	- CH ₂ -N-C
69	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C-F
70	C├ ~ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
71	CH	1	2	0	R	Н	-CH ₂ -N-C
72	СН-СН2-	1	. 2	0	R R	н	-CH ₂ -N-C
73	CH-€-	1	2	0	R	н ′	-CH ₂ -N-C
74	C⊢——CH₂-	1	2	0	R	н	-CH ₂ -N-C
75	C⊢-(CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ F_3C
76	CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
77	CH-2-	1	2	0	R		- CH ₂ -N-C-F
	·			-			

Table 1.8

			•				
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
78	С⊢СН2-	1	2	0	R	н	-CH ₂ -N-C
79	C├ - CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C F_3C
80	CH-CH ₂ -	1	2	0	R	н	- CH ₂ - N- C- CF ₃
81	CH-2-	1	2	0	R	н	-CH ₂ -N-CH ₃
82	CI	1	2	0	-	−CH ₃	-CH _Z -N-C-CF ₃
83	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
84	CH2−	1	2	0	R	н	-CH ₂ -N-C-NO ₂
85	CH2-	1	2	0	-	н	-(CH ₂) ₂ -N-C-
86	C├ - CH ₂ -					н	-(CH ₂) ₂ -N-C-NO ₂
87	C├────────────────────────────────────	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
88	CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C- H F ₃ C

Table 1.9

Compd. No.	R ¹	−(CH ₂) _j −	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
89	с⊢√		1	2	0	S	н	-(CH ₂) ₂ -N-C
90	cı—(1	2	0	S	Н	-(CH ₂) ₂ -N-C-
91	c⊢{		1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	сҢ		1	2	0	S	H	~(CH ₂) ₂ -N-C-✓
93	с-{		1	2	0	S	н	-(CH ₂) ₂ -N-C
94	c⊢(-}-CH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C OCH ₃
95	c⊢{		1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
96	сн	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CH ₃
97	c-{	-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
98	с⊢	}-CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
99	с⊢	CH₂-	1	2	0	S _.	н	-(CH ₂) ₂ - N- C- CI

Table 1.10

Compd. No.	R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂)p k ⁵ (CH ₂)q G-R ⁶
100	с⊢ СН₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CN
101	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-O
102	С⊢СН2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-
103	CH_CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	C├ - CH2-	1	2	0	S	н ,	-(CH ₂) ₂ -N-C-F ₃
105	C ⊢ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
106	CH-2-	1	2	0	S	н .	-(CH ₂) ₂ -N-C
	С⊢—СН₂-				S	н	-(CH ₂) ₂ -N-C
108	ССН2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-O ₂ N
							-(CH ₂) ₂ -N-C-NO ₂
110	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-NC ₂

Table	1.11						
Compd No.	· R - (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
111	C├─ \ CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
112	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
113	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
114	С⊢-{СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
115	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	CH-2-	1	2	О	R	H	-(CH ₂) ₂ -N-C
117	CH-CH ₂ -	1	2	-0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
118	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
119	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
120	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	C├ (CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI

Table 1.12

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
122	C	1	2	0	R	н	-(CH ₂) ₂ -N-C
123	CH-€ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-(CN
125	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
126	CHQ-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
127	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
128	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F ₃
129	C├ - CH ₂ -	1	2	Ö	R	Н	-(CH ₂) ₂ -N-C-CF ₃
130	C	1	2	0	R .	Н	-(CH ₂) ₂ -N-C-OCF ₃
131	C├ - CH₂-	1	2	0	R .	н	O CF ₃
132	C CH₂-	1	2	0	R	н	-(CH2)2-N-C- $-(CH2)2-N-C-$ $-(CH2)2-N-C-$ $O2$ $O2$ $O2$

Table 1.13

Compd. No.	R (CH ₂)	k	. n	ח ח	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
133	CI—CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NO ₂
134	C├────────────────────────────────────	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
135	CICH₂-	1	2	0	R	н .	-(CH ₂) ₂ -N-C-
136	CH√CH₂-	1	2	0	R	Н.	-(CH ₂) ₂ -N-C
137	C⊢-(CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CI
138	C⊢√ CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
139	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
140	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
141	CH-CH ₂ -	1	2	0	R	н	H ₃ CO □ -(CH ₂) ₂ - N C - H ₃ CO
142	CH- (CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
143 (CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br

Table 1.14

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŗ³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
144	CICH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
145	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
146	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₂ CH ₃
148	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CN
149	C ⊢ CH ₂ -	1	2 .	0	R	H	-(CH ₂) ₂ -N-C-
150	C⊢——CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N C-
151	С⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
152	С⊢СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
153	CHCH ₂ -	1.	2	0	R	Н	-(CH ₂) ₂ -NC-F
154	С├-СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-

Table 1.15

						•
Compd. No.	R^{1} $(CH_{2})_{i}$	k	m n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH-{	· 1	2 0	R	Н	-(CH ₂) ₂ -N-C- H H ₃ CO
156	CH-CH₂-	1	2 0	R	н	-(CH ₂) ₂ -N-C
157	СН-СН2-	1	2 0	R	н	-(CH ₂) ₂ -N-C- H F ₃ CO
158	CHCH ₂ -	1	2 0	R	н	-(CH ₂) ₂ -N-C
159	C├-{	1 :	2 0	R	H.	-(CH ₂) ₂ -N-C
160	CH-CH ₂ -	.1 2	2 0	R	н	-(CH ₂) ₂ - N C → F ₃ C
161	CH2-	1 2	2 0	R	Н	-(CH ₂) ₂ -N-C
162	CH-√CH₂-	1 2	0	R	н	-(CH ₂) ₂ -N-C-F
163	C├ - CH ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C- H F ₃ C
164	CHCH2-	1 2	0	R		-(CH ₂) ₂ -N-C
165	CH-()- CH ₂ -	1 2	. 0	R		-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

Table	1.10						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p (CH₂)q G-R⁶
166	CH-CH ₂ -	1	2	0	R	н	(S) P CF ₃ -CH ₃ CH ₃
167	CH-2-	1	2	0	R ·	н	(S) P -CH-N-C- CH ₃
168	CH-CH ₂ -	1	2	0	R	H	(S) P CI -CH-N-C-CI CH ₃
169	CH-CH ₂ -	1	2	0	R	Н	(S) CI -CH-N-C-CI -CH ₃
170	CH-CH ₂ -	1	2	0	R .	Н	(S) P CF ₃ -CH-N-C F
171	CH-CH ₂ -	1	2	. 0	R	Н .	(S) P -CH-N-C-CD-CI CH ₃
172	CHCH ₂ -	1	2	0	·R	H .	(S) (P) (CH ₃
173	CHCH ₂ -	1	2	0	R	н	(S) P NO2. -CH-N-C- NO2. CH3
174	CH-CH ₂ -	1	2	0	R	н	(F) P CF ₃ -CH-N-C-CF ₃ -CH ₃
175	CH-CH ₂ -	1	2	0	R	н	(F) Q Br
176	C├ - CH₂-	1	2	0	R	н	(F) Br CH ₃ (F) CI CH ₃ (F) CI CH ₃ (F) CI CH ₃ (F) CI CH ₄ CH ₃

Table 1.17

10010							
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p=1}^{R^4}(CH_2)_{q}-G-R^6$
177	СІ—(СН₂-	1	2	0	R	н	(A) 0 CI -CHN-C-CI
178	CI—CH ₂ -	1	2	0	R	н	(F) P CF3 -CH-N-C- F
179	CH-CH ₂ -	1	2	0	R	н	(R) O C C C CH ₃
180	CH-CH ₂ -	1	2	0	R	Н	(F) P -CHN-C-
181	CH-CH ₂ -	1	2	0	R	Н	(R) P NO ₂ -CH-N-C- NO ₂ CH ₃
182	CH₂-	1	2	0	R	н	CH ₃ O CF ₃
183	CH-2-	1	2	0	R	н	CH3 O Br
184	CHCH ₂ -	1	2	0	R	Н	CH ₃ O CI - CH-N C C
185	CI——CH ₂ -	1	2	0	R	н	CH3 O CI -CH N-C CI CH3
186	C⊢-CH₂-	1	2	0	R	Н	CH ₃ O CF ₃ -CH _N C CH ₃ F
187	C	1	2	0	R	н	CH3 O -CH N C-CI CH3

Table 1.18

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
188	CI-CH ₂ -	1	2	0	R	H	СH ³ О СН ³ О
189	CI-CH ₂ -	1	2	0	R	н	CH ₃ O NO ₂
190	CICH ₂ -	1	2	0	R	н	(A) P CF3 -CHNC-CH2-CF3
191	CH2-	1	2	0	R	н	CH-N-C-
192	CH2−	1	2	0	R	н	CH2 CH2
193	C⊢√CH₂-	1	2	0	R	н	(A) P C C O C C C C C C C C C C C C C C C C
194	CH√2-	1	2	0	R	н	(A) OF 3 -CH-NC- CH ₂ F
195	C ├── CH ₂ -	1	2	0	R	н .	(F) P -CHN-C-CI CH2-CS
196	CH2-	1	2	0	R·	Н	(A) P - CHN-C- CH ₂ S
197	C├ - CH ₂ -	1	2	0	R	Н	(F) P NO 2 -CH-N-C- NO 2 -CH2-S
198	CH2-	1	2	0	R	Н	(R) CHILLS OF CH

Table 1.19

							•
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
199	CI-CH ₂ -	1	2	0	R	н	(S) P Br CH2 CH2 CH2
200	CHCH ₂ -	1	2	0	R	н	(S) P C- C
201	CH2-	1	· 2	0	- R	н	(5) P CI - CH 2 - C - C
202	С⊢СН₂-	1	2	0	R	н	(S) P CF 3
203	С⊢СH ₂ -	1	2	0	R	н	(5) P -C++-C
204	С⊢С СН₂-	1	2	0	R	н .	(S) P -CHN-C- CH ₂ -C
205	CHCH ₂ -	1	2	0	R	Н.	(S) P NO 2
206	CH-2-	1	2	0	R	н	(CH2)2-8-CH3
207	CH2-	1	2	0	R	н	(OH ₂) ₂ -\$ CH ₃
208	СНСН2-	1	2	0	R .	н	(CH ₂) ₂ - CH ₃
209	С⊢СН₂-	1	2	0	R	н	(S) P CI −CH+N-C CI (OH ₂) ₂ −S-CH ₃
	-						

Table 1.20

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
210	CHCH ₂ -	1	2	0	R	Н	(S) P CF3
211	С⊢СН₂-	1	2	0	R	н.	(CH ₂) ₂ -S-CH ₃
212	C├ - CH ₂ -	1	2	0	R	н	(S) P CH ₃ (CH ₂) ₂ -5-CH ₃
213	С├─(СН2-	1	2	0	R	Н	(CH ³) ² - ² -2-CH ³
214	CH-CH ₂ -	1	2	0	- .	н	-(CH ₂) ₃ -c-
215	CH-2-	1	2	0		н	-(CH ₂) ₃ -C
216	C├ - CH ₂ -	1	2	0	-	H	-(CH ₂) ₃ -C-(S)
217	С⊢—СН₂-	1	2	0	-	н	-(CH ₂) ₂ -C-OCH ₃ H ₃ CO
218	CH ₂ -	1	2	0	-	н	$-(CH_2)_2$ $-CH_3$ H_3C
219	CH-CH ₂ -	1	2	0	-	н .	-(CH ₂) ₂ -C-C-C-CH ₃
220	CH ₂ -	1	2 .	0 .	-	H	O -(CH ₂) ₂ -C-CH ₃

Table 1.21

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	-(CH ₂) _p (CH ₂) _q G-R ⁶
221	С⊢√ СН₂-	1	2	0	-	Н	-(CH ₂) ₂ -C-
222	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ - С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С
224	С⊢ СН₂-	1	2	0	-	Н	- CH ₂ - \$СН ₃
225	с⊢С-сн₂-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-
226	CH-CH ₂ -	. 1	2	0		н	-(CH ₂) ₃ -C-N-OCH ₃
227	CH2-	1	2 .	0	-	н	-(CH ₂) ₃ -C·N-C1
228	C├ - CH ₂ -	1	2	0	-	H	-(CH ₂) ₃ -C-N-OCH ₃
229	С⊢√СН₂-	1	2	0	-	н	- CH ₂ - C- N- CH ₃ CH ₃ CH ₃
230	CHCH ₂ -	1	2	0	-	н	-CH ₂ -CH ₂ -C-N-F
231	CHCH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-CH ₃

Table 1.22

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	[.] R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
232	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-()
233	CH-CH ₂ -	1	2	0	-	н	O -(CH ₂) ₃ - C-N-CH ₂ -
234	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	CHCH ₂ -	1	2	0	-	н	- CH2- CH- CH2- C- N CH2- C- CI
236	CH-CH₂-	1	2	0	-	н .	-CH ₂ -N-S-CH ₃
237	CH2 ⁻	1	2	0	- -	н	- CH ₂ - N- C- O- CH ₂ -
238	CH2-	1	2	0	-	H .	cн о с н С н С н
239	СН ₂ −	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
240	<	1	2	0	S .	н	-CH ₂ -N-C-C-CF ₃
241	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CH_CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.23

	_ 1						
Compo No.	$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
243	CI CH ₂ -	1	2	. 0	S	н	-CH ₂ -N-C- CF ₃
244	CH ₃	1	2	0	S	Н .	-CH ₂ -N-C-CF ₃
245	F_CH₂-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
246	CI → CH ₂ -	1	2	0	S·	н	CH ₂ -N-C
247	CL CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
248	H₃CQ CH₂-	1	2	0	S _.	H .	-CH ₂ -N-C-CF ₃
249	F ₃ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H ₃ C ←CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
251	F	1	2	0	S	Н	-CH ₂ -N-C-
252	H₃CO-{}CH₂-	1 .	2	0	S	H · ·········	
253	H ₃ C-⟨CH ₂ -	1 :	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.24

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p R⁴ (CH ₂) q G−R ⁶
254 	NO ₂	. 1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1 .	2	0	S	н	-CH ₂ -N-C
257	CF ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO₂CH₂CH₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	Сн3	1	2	0	S	н	-CH ₂ -N-C-CF ₃
260	CI CH₂-	1	2	0	S	Н	-CH ₂ -N-C-
261	F ₃ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1.	2	0	S	н	-CH ₂ -N-C-CF ₃
263	Br CH ₂ -	1	2	0	S	_. н	-CH₂-N-C-CF3
264	OH ₂ -	1	2	0	S	Н .	-CH ₂ -N-C-CF ₃

Table 1.25

. 45.0	1.20						
Compd.	R ¹ /(CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
265	Вг—СН₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
267	OCH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	4c-c-h-€>-012	1	2 .	0	S	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	HO-CH ₂ -					н	CF ₃
273	CN —CH ₂ -	· 1	2	0	S	Н .	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
275	CN CH ₂ - NC CH ₂ - NC CH ₂ -	1 .	2	0	S	Н	-сн ₂ -N-с-С-

Table 1.26

rable	1.20						
Compd.	R ¹ / _P -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
276	F-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	CH2−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	H ₃ ∞ ₂ C-√	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F ₃ CO-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280	F₃CQ . CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
282	(H ₃ C) ₃ C-\(\bigc\)-OH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
283	CH ₃ CH ₂ - CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
284	СНССН	1	2	0	S	н	-CH ₂ -N-C-CF ₃
285	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.27

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
287	CI CH ₂ -	1	2	0	· R	н	-CH ₂ -N-C-CF ₃
288	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R [·]	н	-CH ₂ -N-C- CF ₃
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
292	CICH ₂ _	1.	2.	. 0	R	н	-CH ₂ -N-C-⟨CF ₃
293	CI CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
294	H ₃ CO CH ₂ -	1	2	0	R ·		-CH ₂ -N-C-CF ₃
	F ₃ C —CH ₂ -					н	-CH ₂ -N-C- CF ₃ CF ₃
296	H ₃ C —CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
297	F-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3

Table 1.28

H ₂) _q G-R ⁶
رة.
CE.
CF₃
CF ₃
CF₃
CF₃
CF ₃

Table 1.29

							<u> </u>
Compd. No.	R ¹ (CH ₂) _j	k	. w	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
309	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
310	OH₂-OH₂-	1	2	. 0	R	н.	-СH ₂ -N-С-С-С-
311	Вг-СН ₂ -	1	2	0	R	H	-CH ₂ -N-C- CF ₃
312	O-CH2-	. 1	2	0	R	Н	-CH ₂ -N-C
313	OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
314 (rrc-c-H-⟨>-a+≤	1	2	0	R	н	-CH ₂ -N-C-CF ₃
315	H ₂ C-§-()-OH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
316	H ₃ CO ₂ C ————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
317	CH₂−	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	HOCH ₂ -	1	2	0	R	н ,	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
319	CN CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.30

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $- G - R^6$
320	NC CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
323	CH₂-	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{	1	2	0	R	н	-CH ₂ -N-C-CF ₃
325	F₃CO-⟨□ - CH₂-	1	2	0	R [.]	H	-CH ₂ -N-C-CF ₃
326	F ₃ CQ —CH ₂ -	1	2	0	R	. н	-СH ₂ -N-С-С-С-3
327	HO ₂ C-CH ₂ -	1	2	0	R	H .	-СH ₂ -N-С-С-С-С-
•	(H ₃ C) ₃ C						-CH ₂ -N-C-CF ₃
329	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
330	CICH ₂ -	Ó	3	1	-	н	-CH ₂ -N-C-

Table 1.31

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
331	CH-2-	0	3	1	-	Н	- CH2- N- C- CH3
332	С⊢—СН₂-	0	·3	1	•	н	- CH ₂ -N-C-ОСН ₃
333	CHCH ₂ -	0	3	. 1	-	Н	- CH ₂ -N-C-\(\big \)
334	CH-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CH ₃
335	CHCH2-	0	3	1	-	н	-CH ₂ -N-C-NO ₂
336	CH-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	CHCH2-	0	3	1	-	н	-CH ₂ -N-C
338	C⊢√CH₂-	0	3	1	-	H	-CH ₂ -N-C-
339	C⊢CH₂-	0	3	1	R	н	- CH ₂ -N-C-CF ₃
340	C⊢√CH₂-	0	3	1	S	н	- CH ₂ -N-C-CF ₃
341	C⊢√CH₂-	0	3	1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32

CH N- C- CH(CH ₃) ₂ G-R ⁶
CH N- C- CH(CH ₃) ₂
CH(CH ₃) ₂
CH N- C- H CH ₂ CH(CH ₃) ₂
2 , 3/2
O CH ₂) ₃ - C-
OCH ₃
O H ₃ C CH ₃
O H ₂) ₂ -C-CH ₃
H ₂ -\$-CH ₃
O
0 - N- C- O- CH ₂ -
CH O C N CI
12

Table 1.33

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
353	с⊢—Сн₂-	1	2	1	-	,H	- CH ₂ -N-C-
354	CH-CH ₂ -	1	3	0	-	н	-CH ₂ -N-C-
355	C	1	3	0	-	н	- CH ₂ -N-C-CH ₃
356	С⊢С СН₂-	1	3	0_	-	н	- CH ₂ -N-C-
357	C├───────────────────────────	1	3	0	-	н	-CH ₂ -N-C-
358	CH_CH ₂ -	1	3	0		н	- CH ₂ -N-C-CF ₃
359	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	CHCH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -N-C
361	CH ₂ -	1	3	.0	· -	н	-(CH ₂) ₃ -C-
362	CH-2-	1	3	0		н	-(CH ₂) ₃ -C
363	CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ - C-(S)

Table 1.34

							•
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
364	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
365	C⊢√ CH₂-	1	3	0	-	н	-(CH2)2-CH3 $H3C$
366	CH-CH ₂ -	1	3	Ö	-	Н	-(СH ₂) ₂ -с-С-С-ОСН ₃
367	C⊢√CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CF-CH₂-	1	3	. 0	-	н	-(CH ₂) ₂ -C-
369	CH√_CH₂-	1	3	0		н	-(CH ₂) ₂ -CI
370	C⊢√CH₂-	1	3	0	-	н	O -(CH ₂) ₂ -C-C-C(CH ₂) ₃ CH ₃
371	C⊢√CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C
372 ·	CI—CH₂-	1	3	0	-	н	- CH ₂ - S
373	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C-N-
374	CH2-	1	3	0		н	-(CH ₂) ₃ -C-N-OCH ₃

Table 1.35

· abte	1.55						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
375	С⊢ СН₂-	1	3	0		н	-(CH ₂) ₃ -C-NH
376	С-СН2-	1	3	0	-	Н	-(CH ₂) ₃ - C- N- OCH ₃
377	С├-{СН₂-	1	3	0	-	Н	- CH ₂ - C- CH ₂ - C- N- CI CH ₃
378	CH_CH ₂ -	1	3	0	-	Н .	- CH ₂ - CH ₂ - C N- F
379	CHCH ₂ -	1	3	0		н	-(CH ₂) ₃ -С-СН ₃
380	CHCH2-	1	3	0	-	н	-(CH ₂) ₃ - C- N- CH ₂ -
381	CHCH ₂ -	1	3	0	-	н.	-CH ₂ -N-S-CH ₃
382	CH-2−	1	3	0	-	н	- CH ₂ - N- C- O- CH ₂ -
383	C├ - CH ₂ -	1	3	0	-	н	- cн о с . и С С С С С С С С С С С С С С С С С С
384	CI—(CH₂-	2	2	0	-	н	-CH ₂ -N-C-CH ₃
385	C⊢√CH₂-	2	2	0	-	н	-CH ₂ -N-C-\(\sigma\) NO ₂

Table 1.3.6

Compd.	R ¹ (CH ₂),	ı			chirality	D3	$-(CH_2)_{\rho}$ $+ \frac{R^4}{D_5}$ $+ (CH_2)_q$ $+ G$
No.	R ² (3.27)						β ⁵
386	CH₂-	2	2	0	-	H	-CH ₂ -N-C-
387	СН₂-	2	2	0	-	н	-CH ₂ -N-C-
388		2	2	0	-	Н	-CH ₂ -N-C-\(\sigma\)
389	- CH ₂ -	2	2	0	-	. н	-CH ₂ -N-С-СО ₂ CH ₃
390	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-CF ₃
391	— CH₂-	2	2.	0	-	н	-CH ₂ -N-C-CF ₃
392	- CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
393	CH₂-	2	2	0	-	н	-CH2-N-C-
394	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-C
395	—CH₂-	2	2	0	-	н	CH ₂ N-C
396	CH2-	2	2	0	-		-CH ₂ -N-C

Table 1.37

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
397	CH₂-	2	2	0	-	н	-CH ₂ -N-C-CI
398	—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
400	€ CH ₂ -	2	2	0		н	-(CH ₂) ₂ -N-C-NO ₂
401	. CH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-С-С-С-2СH ₃
402	СН₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
403	€ CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
404	—CH₂-	2	2	0	- ·	н	-(CH ₂) ₂ -N-C-OCF ₃
405	CH₂−	2	2	0	-	н .	-(CH ₂) ₂ -N-C-
406	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
407	CH₂-	2	2	0	· <u>-</u>	H	-(CH ₂) ₂ -N-C-\Br

Table 1.38

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	[·] R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
408	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-F
409	CH₂-	2	2	0	-	H	-(CH ₂) ₂ -N-C-CI
410	CH ₂ -	2	2	0	-	Н	(S) P -CH-N-C- CH ₂ CH(CH ₃) _{2:}
411	_CH ₂ -	2	2	0	-	н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂
412	~ −CH ₂ −	2	2	0	-	H	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
413	CH ₂ -	2	2	0	-	H .	$(S) \qquad \bigcap_{C \\ C \\$
414	CH₂-	2	2	0	-	H	(S) (CF ₃ -CH-N-C
415	⟨	. 2	2	0	-	Н	(S) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
416	CH₂−	2	2	0	-	Н	$(S) \qquad Q \qquad QCF_3$ $-CH-N-C-Q$ $H \qquad Q$ $CH_2CH(CH_3)_2$
417	CH₂-	2	2	0	-	Н	(S)
418	CH₂-	2	2	0	-	н	(S) −CH−N-C− H CH ₂ CH(CH ₃) ₂

Table 1.39

Compd.	R ¹ (CH ₂)j-	k n	n n	chirality	['] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - CH_2$
419.	CH₂-	2 2	· 0	-	Н	(S) P -CH-N-C
420	CH ₂	2 2	0	-	н .	(S) P -CH-N-C
421	—CH₂−	2 2	0	-	н	(S) CI -CH-N-C-C-CI CH ₂ CH(CH ₃) ₂
422	CH ₂ -	2 2	0	-	H	(A) P -CH-N-C- EH ₂ CH(CH ₃) ₂
423	CH₂-	2 2	. 0	-	Н	(<i>F</i>) 0 -CH-N-C- H CH ₂ CH(CH ₃) ₂
424	—CH₂-	2 2			н	(F) NO ₂ -CH-N-C
425	CH2	2 2	0	-	Н	(H) P -CH-N-C-C-CO ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
426		2 2	0	-	н	(A) 0 CF ₃ -CH-N-C- H
427	CH₂-	2 2	0	-	Н	(A) D CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
428	CH₂-	2 2	0.	-	Н	(F) OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
429	CH₂-	2 2	0	-	н	(F) P -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ¹ (CH ₂),	k	m	n	chirality	Ή³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
430	CH₂-	2	2	. 0	-	н	(F) P CH-N-C- H CH ₂ CH(CH ₃) ₂ .
431	CH ₂ -	2	2	0	-	н	(H) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
432	CH ₂ -	2	2	0	-	H ·	(A) 10 F -CH-N-C-F -CH ₂ CH(CH ₃) ₂
433	CH₂-	2	2	0	-	н	(A) CH -CH-N-C-C-CI -CH2CH(CH3)2
434	СН-СН2-	1	3	1	-	H	-CH ₂ -N-C-
435	CHCH2_	1	3	1	-	н	-CH ₂ -N-C-
436	CHCH ₂ -	1	3	1	-	н	-CH ₂ -N-C-NO ₂
437	CH2-	1	3	1	-	н	-СH ₂ -N-С
	CH_CH2-						Ч ←
439	CH-CH₂-	1	3	1	-	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
440	CH-CH ₂ -	1	3	1	-	H	-CH ₂ -N-C

Table 1.41

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
441	CH-2-	1	3	1	-	н	-CH ₂ -N-C
442	С ⊢ СН ₂ −	1	3	1	-	н	-CH ₂ -N-C-CI
443	С⊢—СН₂-	1	3	1	-	Н .	-CH ₂ -N-CBr
444	CHCH2-	1	3	1	-	н	CH ₂ -N-C
445	CHCH_2-	1	3	1	-	н	-CH2-N-C CI
446	CHCH2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
447	с⊢—СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
448	C├─ੑੑੑੑੑੑੑੑ}—CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
449	СН2-	1	3	1		H	-(CH ₂) ₂ -N-C
450	CH	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CF ₃
451	CH ₂ -	1	3	1	-	H _.	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-CF ₃

Table 1.42

Idole	1.74						
Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^- R^6$
452	C├ \ CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
453	C⊢√CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454	C⊢ √ CH₂−	1	3	1	-	Н.	-(CH ₂) ₂ -N-C-C
455	C⊢√CH₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C
456	C⊢√CH₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C
457	CH ₂ -	1	3	1		H	-(CH ₂) ₂ -N-C-CI
458	CH2-	2	2	1	-	н	-CH ₂ -N-C-
459	C├ \ CH ₂ -	2	2	1	-	H	- CH ₂ - N- C- CH ₃
460	C├-{\bigcirc}- CH2-	2	2	1	-	н	-CH₂-N-C- H
461	CH-CH2-	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
462	C	2	2	1	-	н	- CH ₂ -N-C-

Table 1.43

.. -

							•
Compd. No.	R ² (CH ₂) _i -	k	m	n	chirality	. [*] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
463	C├ - CH₂-	2	2	1	-	н	- CH ₂ -N-C- CH ₃
464	CH-2-	2	2		-	Н	-CH ₂ -N-C-OCH ₃
465	С⊢—СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-N
466	C├ - CH ₂ -	2	2	1	-	. Н	- CH ₂ - N- C- NO ₂
467	CH-2-	2	2 -	1	-	Н	-CH ₂ -N-C-
468	CH-CH₂-	2	2	1	-	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
469	CH-CH₂-	2	2	1	-	н	-CH ₂ -N-C-
470	С⊢—СН₂-	2	2	1	-	H	-CH ₂ -N-C- H C- CN
471	С⊢—СН₂-	2	2	1	-	H	-CH ₂ -N-C- H
472	С⊢—СН₂-	2	2	1	-	н	- CH ₂ -N-C
473	с⊢Су-сн₂-	2	2	1	-	н .	- CH ₂ - N- C- С- СН ₃

Table 1.44

· abic ·							
Compd. No.	R (CH ₂)j-	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5}(CH_2)_{q} - G-R^6$
474	CH-{	2	2	1	-	н	-CH ₂ -NC-CF ₃
475	CH2-	2	2	1	-	н	- CH ₂ -N-C-CH(CH ₃) ₂
476	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
477	CH-CH₂-	2	2	1		н	- CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
478	CH2−	2	2	1	-	н	-CH₂-N-C-() H₃C
479	CH-€T-CH2-	2	2	1	-	н	-CH ₂ -NC-0
480	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -NC-OBr
481	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
482	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-S
483 ⁻	CH-2-	2	. 2	1	-	[′] H	-CH₂-N°C- SCH₃
484	CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-H

Table 1.45

. 45,6	1.75						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ G^4$ $+$
485	CH-€-	2	2	1	-	н	- CH ₂ - N C CF ₃
486	СН-СН2-	2	2	1	-	н	-CH ₂ -N-C-CN
487	C⊢-€CH₂-	2	2	1		н	-CH ₂ -N-C-CI
488	C├ - CH₂-	2	2	1	<u></u>	Н	- CH ₂ - N- C- NH ₂
489	С⊢{СН₂-	2	2	1	- -	н	-CH ₂ -N-C
490	CH-√CH₂-	2	2	1		Ĥ·	-CH ₂ -N-C-<
491	CHCH2-	ż	2	1	-	н	- СH ₂ - № С- СF ₃
492	CH CH₂-	2	. 2	1	- · .	н	-CH ₂ -N-C-CS
493	C⊢-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
494	C⊢√ CH₂-	2	2	1	-	н	- CH ₂ -N-C- H F
495	С⊢(Сн₂-	2	2	1	-	Н	- CH₂- N-C

Table 1.46

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
496	CH-CH₂-	2	2	1	-	н	- CH ₂ -N C- CF ₃
497	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
498	CH-CH2-	2	2	1		H	- CH ₂ -N-C
499	CH-CH2-	2	2	1	٠	н	-CH ₂ -N-CH ₃) ₂
500	с⊢(сн₂-	2	2	1	-	Н	-CH ₂ -N-C-OCH ₃
501	CI-CH ₂ -	2	2	1	· -	Н	-CH ₂ -N-C-NO ₂
502	CI-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
503	CH-CH2-	2	2	1		H	-CH ₂ -N-C
504	CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ OCH ₃ OCH ₃
505		2	2	1	-		O NO ₂ - CH ₂ - N- C - Br
506	CH-2-	2	2	1	-	н	-CH ₂ -HC-NO ₂

Table 1.47

Compd. No.	R (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
507	CICH ₂ -	2	2	1	-	н	- CH2- N C-
508	CI-CH ₂ -	2	2	1	-	н .	- CH ₂ -N-C-S
509	CHCH ₂ -	2	2	1		н	- CH ₂ -N-C-S
510	C├ ~ CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- CH ₃
511	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
512	CHCH ₂ -	2	2	1	-	н	CHCH ₃ − CH ₂ −N+ C−
513	CH-CH ₂ -	2	2	1	-	н	— CH ₂ -N-C- H
514	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-C(CH ₃) ₃
515	CI—CH ₂ -	2	2	1	-	H	- СН ₂ - N- С- Н С- СН ₂ -ОН
	H ₂ N-CH ₂ -					Н	-CH ₂ -N-C-CF ₃
517	H ₂ N —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\(\sigma\)

Table 1.48

rable	1.40						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	Ŕ³	$-(CH_2)_p + (CH_2)_q G - R^6$
518	NH ₂	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
519	C-N-C-H2-	2	2	1		Н	-CH ₂ -N-C-CF ₃
520	CH2−	2	2	1		−сн₃	-CH ₂ -N-C-CF ₃
521	С-СН2-	2	2	1	<u>.</u>	-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	С⊢—СН₂-	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	CH-CH ₂ -	. 2	2	1	<u>-</u>	(CH ₂) ₂ CH−	-CH2-N-C-
524	с⊢—СН₂-	2	2	1	· .	-CH ₂ CH-	-CH2-N-C-
525 _.	CI—CH₂-	2	. 2	1	-	н	-CH ₂ -N-C
526	C├ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
527	C├ - CH₂-	2	2	1	-	Н .	-CH ₂ -N-C-\S
528	C├ ~ }-CH₂-	2	2	1	-	н	-CH ₂ -N-C-√S -CH ₂ -N-C-√CH ₃ F ₃ C

Table 1.49

	–		•		
Compd. No.	R ¹ (CH ₂) _i -	k m	n chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
529	С⊢СН2-	2 2	1 -	н	-CH ₂ -N-C-\0
530	C├ - CH ₂ -	2 2	1 -	н	-CH ₂ -N-CN
531	CH-CH ₂ -	2 2	1 -	н .	-CH ₂ -N-C-S
532	C ├────────── CH ₂ -	2 2	1 -	н	$-CH_2-N-C-O$ H_3C
533	CH-2-	2 2	· -	н	-CH ₂ -N-C
534	C├ - CH₂-	2 2 1	•	Н	-CH ₂ -N-C-NO ₂
535	С⊢—СН₂-	2 2 1	-	н	-CH ₂ -N-C-\S H ₃ C-C
536	C	2 2 1	-	н	-CH ₂ -N-C-X-CH ₃ H ₃ C CH ₃
537	C⊢—CH₂-	2 2 1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
538	CI—⟨¯_}−CH₂−	2 2 1	-	н	-CH ₂ -N-C-CO
539 d	CH-∕CH₂-	2 2 1	•	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃

Table 1.50

Compd. No.	R ² (CH ₂)	k	m	n (chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
540	CI—CH₂-	2	2	1.		н	-CH ₂ -N-C-N-C-N-CH ₃
541	CI—CH₂-	2	2	1	<u>-</u>	н	-CH ₂ -N-C
542	CH-√CH₂-	2	2	1 .	-	н	-CH ₂ -N-C-CH ₂ CH ₃
543	CH⊋-	2	2	1	.	н	-CH ₂ -N-C-⟨CH ₂ CH ₃
544	CH2−	2	2	1	•	н .	-CH ₂ -N-C-
545	CH2-	2	2	1	- .	H	-CH ₂ -N-C-
546	CH-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CI
547	CI—(CH₂-	2	2	1	-	. Н	-CH ₂ -N-C-CI
548	C⊢√ CH₂-	2	2	1	<u>.</u>	н	-CH ₂ -N-C-CI
549	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-
550	CH-CH2-	2	2 .	1	· -	Н	$-CH_2-N-C-$ O_2N CI

Table 1.51

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
551	С├-{СН2-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -⟨CH ₃
552	С⊢√_СН₂-	2	2	. 1	-	Н	-CH ₂ -N-C-CH ₂ -CF ₃
553	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ CF ₃
554	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H
555	CH	2	2	1	-	н	-CH ₂ -N-C-V-CI
556	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
557	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CH2-	2	2	·1	-	н	- CH N- C-
559	C├ \ CH ₂ -	2	2	1	-	Н	-CHNC-CF3
560	C⊢CH₂-	2	2	1	-	H	- CH ² CH ² CN
561	CI—CH₂-	2	2	1	<u>-</u> .	н	- CH N C - Bu

Table 1.52

Compd.	R ¹ / _{R²} -(CH ₂) _i -	k	m	n	chirality	₽³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
562	CH-CH ₂ -	2	2	1	-	н	- CH N- C- CI
563	CHCH ₂ -	2	2	1	-	н	- CH N C - CF3
564	CH-CH ₂ -	2	2	1		н	OCH ₂ CH ₃ -CH N C
565	C├ - CH ₂ -	2	2	1	-	Н	-CH N C CF3
566	CI-CH ₂ -	2	2	1	-	н	- CH N C OCF3 - CH3
567	CH-CH ₂ -	2	2	1	-	H.	-CH-N-C- I H CH ₃ CF ₃
568	CH	2	2	1	-	H ·	-CH N C- I H CH ₃ CF ₃
569	CH-CH ₂ -	2	2	-1	-	Н	-CHNC-CF3
570	CH-CH ₂ -	2	2	1	-	н	-CHN C-F
571	CI-CH ₂ -	2	2 ·	1	, -	Н	OHO CH(CH ₃) ₂ -CH N C CH 1 H CH ₃
572	CHCH2-	2	2	1	-	н	CH ₃ -CH-N-CCH ₃ -CH ₃

Table 1.53

	1.55						
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - R^6$
573	CH-CH ₂ -	2	2	1	-	Н	-CH N-C- - H S - CH3
574	C⊢CH₂-	2	2	1	-	н	-CH N C - S Br
575	CH ₂ -	2	2.	1	-	н	-CH N-C-(CH3)3
576	CICH ₂ -	2	2	1	-	н	-CHNC-O I H O SCH ₃
577	CHCH ₂ -	2	2	1	-	н	- CH ³ - CH ³ C O O O O O O O O O O O O O O O O O O
578	CH2-	2	ż	1	-	н	-CH N C-S
579 <u>,</u>	C├ - CH ₂ -	2	2	, 1	-	н	-CH N C N
580	CH ₂ -	2	2 .	1	-	н	-CHNC-CH3
581	CH-2-	2	2	1	-	н	-CH N C S
582	CH-CH₂-	2	2	1	-	H	-CH & C - S - CH3
583	ССН2-	2	2	1	-	н	-CH N CH3

Table 1.54

i dbic i							
Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
584	C⊢-()-CH ₂ -	2	2	1	-	н	- CH N C - C - C - C - C - C - C - C - C - C
585	CH_CH ₂ -	2	2	1	-	н	- CH N C - CN
586	CH-CH ₂ -	2	2	1	-	н	- CH N C-(-)- CI
587	CI-CH ₂ -	2	2	1	-	Н	-CHNC-CF ₃
588	CH-CH ₂ -	2	2	1		H	- CH N C- NH ₂ CH ₃
589	CH-CH ₂ -	2	2	1	٠٠	Н	-CH N C - C(CH ₃) ₃ CH ₃
590	CH-CH ₂ -	2	2	1	· .	н	- CH N C- CH(CH ₃) ₂ CH ₃
591	CH-CH ₂ -	2	2	1	-	Н	-CHNC
592	CI-CH ₂ -	2	2	1	-	Н	- СН N- С-
593	C	2	2	1	-	Н	-СН И С- СН3 СН3
594	CH-CH ₂ -	2	2	1	-	н	- СН И С — ОН

Table 1.55

Compd. No.	R ¹ /(CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{\rho} + (CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} - R^6$
595	CHCH2-	2	2	1	-	Н	О - СН N С — СО2СН3 - СН3
596	C⊢(CH ₂ -	2	2	1	-	н	-CHNC-C-CH3
597	CH-(-)-CH ₂ -	2	2	1		н	- CH- N C- C- CH ₃ - CH ₃ - CH ₃
598	С├─(СН₂-	2	2	1	-	Н	-CH N C-
599	C ⊢ CH ₂ -	2	2	1	<u>.</u> ·	Н	-CH-N-CH3 CH3
600	C⊢√ CH₂-	2	2	1	-	Н	-CHHCO Br
601	CH-CH₂-	2	2	1	-	н .	-CHNC-OCH3
602	CH-CH₂-	2	2	1	-	н	-CH-N-C
603	CH-€ CH ₂ -	2	2	1	-	н	-CH N C - NH ₂ -CH ₃
604	С⊢СН₂-	2	2	1	-	Н	-CH-N-C-
605	C├ ~ CH ₂ -	2	2	1	-	н	-c+vc-0

Table 1.56

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$ $+5$
606	C⊢(CH ₂ -	2	2	1	-	Н	-CH-V-C-_S
607	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-S
608	CH-CH ₂ -	2	2	1		Н	-CHN-C-CH3 CH3 H3C
609	CHCH2-	2	2	1	-	н	-CH-N-C
610	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-S CH3 O=CCH3
611	CH	2	2	1	.	н	-CHNC OC(CH3)3 $-CHNC OC$ $CH3 H3C$
612	С⊢СН2-	2	2	1	-	н	-ch h c
613	CH-CH ₂ -	2	2	1		н	CH ₃ F ₃ C
614	CHCH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃ CH ₃ F ₃ C CH ₃
615	CH-2-	2	2	1	-	н	-CH-N-C-NH
616	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-NH -CH-N-C-NH -CH-N-C-NH -CH-N-C-NH

Table 1.57

Table	1.57						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	⁻ R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
617	С⊢{_}-СН₂-	. 2	2	1	-	Н	-C+N-C-CF3
618	CH2-	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂
619	CH-2-	2	2	1	-	н	-CH-N-C
620	С⊢—СН₂-	2	2	1	•	н	-CH N C
621	C⊢√ CH₂-	2	2	1	-	н	O CI -CHN C- H CH(CH ₃) ₂
622	C⊢√ CH₂-	2	2	1	•	·. H	-CH-N-C-\(\) H
623	CH2-	2	2	1	-	н	-CH N C - OCH3 -CH(CH3)2
624	CH2-	2	2	1	-	н	- CH- N- C- NO ₂ - H- H- C- NO ₂ - CH(CH ₃) ₂
625	С⊢-{СН₂-	2	2	1	· -	н	- CH N C NH ₂ - CH(CH ₃) ₂
626	CH-2−	2	2	1		н	-CH-N-C- -CH-N-C- -CH(CH ₃) ₂ CF ₃
627	С⊢-{}-СН₂-	2	2	1	-	н	- CH № C - OCH2CH3 - CH(CH3)2

Table 1.58

iable	1.50						
Compd.	R ¹ /(CH ₂) _j -	k	'n	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G^- R^6$
628	C ⊢ CH₂-	2	2	1	-	н	- CH N C CO₂CH3
629	С⊢—СН ₂ -	2	2	1	-	н	OF CF ₃ -CH N C CF ₃ H CH(CH ₃) ₂
630	CH-CH ₂ -	. 2	2	1.	-	н	- CH N C - OCF3 - CH (CH3)2
631	CH-CH ₂ -	2	2	1	-	н	- CH N C - CF ₃
632	С⊢СТ-СН₂-	2	2	1	-	н	-CH-N-C
633	CH-CH ₂ -	2	2	1	-	H	-CHNC
634	CH-CH ₂ -	2	2	1	-	н	- CH N C - F CH(CH ₃) ₂
635	.CH_CH ₂ -	2	2	1		H	OHO CH(CH ₃) ₂ -CH N C- CH(CH ₃) ₂ -CH(CH ₃) ₂
636	C!	2	2	1	-	Н	-CHNC-CH3 -CH(CH3)2
637	CHCH ₂ -	2	2	1	-	н	- CH N C - CF ₃ - CH (CH ₃) ₂
638	CH-CH2-	2	2	1		н	- CH N C - CN CH(CH ₃) ₂

Table 1.59

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	ÎR³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
639	CH-CH ₂ -	2	2	1	-	Н	-CHN-C
640	C├─ \ CH ₂ -	2	2	1	-	Н	O −CH-N-C− H CH(CH ₃) ₂
641	C	2	2	1	-	н	-CHNC-CO ₂ CH ₃ H CH(CH ₃) ₂
642	CH-CH2-	2	2	1	-	н	-CH N C
643	CHCH2-	2	2	1	-	H	-CH-NC
644	C⊢√ CH₂-	2	2	1	-	н	- CH-N-C
645	C⊢—CH₂-	2	2	1	-	Н	- CH- N-C
646	CH2-	2	2	1	-	н	О - СН- N С Н СН(СН ₃) ₂ - СН ₂ ОН
647	CICH ₂ -	2	2	1	-	Н	- CH-N-C
648	С⊢(СН₂-	2	2	1	•	н	-CHNC-CH(CH ₃) ₂ -CH(CH ₃) ₂
649	CH-2	2	2	1	-	н	О - СН N С—————————————————————————————————

Table 1.60

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
650	с⊢{_}-сн₂-	2	2	1	-	н	- CH N-C
651	CHCH ₂ -	2	2	1	-	н	CH(CH ²) ⁵ CHCH ²
652	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
653	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
654	CH2-	2	2	1	-	Н	-CH-N-C-CH ₃ -CH(CH ₃) ₂
655	C├─ \ CH ₂ -	2	2	1	· -	н	-CH-N-C
656	CH-2-	2	2	1	-	H	-CH-N-C- CH(CH ₃) ₂
657	CH-CH ₂ -	2	2	1	·	Н	-CH-N-C CH(CH ₃) ₂
658	CH-CH ₂ -	2	2	1	-	Ή·	- CH-N-C- NH CH(CH ₃) ₂
659	CH2-	2	2	1	-	н	-CH-N-C
660	C├ ~ CH₂-	2	2	1	-	Н	-CH-N-C-N CH(CH ₃) ₂

Table 1.61

							
Compd.	R ² (CH ₂)	k	m	n	chirality	[.] R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
661	С⊢С СН₂-	2	2	1	-	н	-CH-N-C- H H CH(CH ₃) ₂ OCH ₃
662	CH-CH ₂ -	2	2	1	-	н	CH(CH ₃) ₂ CH ₃
663	CH2-	2	2	1	-	н	-CH-V-C- H CH(CH ₃) ₂
664	C	2	2	1	-	н	-CH-N-C
665	CHCH ₂ -	2	2	1		н	- CH-N-C
666	CI-CH ₂ -	2	2	1	-	н	-CH-N-CN-CH3
667	CHCH ₂ -	2	2	1	-	н	-CH-N-C-O CH (CH ₃) ₂
668	CH-CH ₂ -	2.	2	1	-	н	-CH-N-C- CH(CH ₃) ₂ CH ₃
669	CH ₂ -	2	2	1 .	-	н	-CHN-C-1 H N CH(CH ₃) ₂ CH ₃
670	CH-CH ₂ -	2	2	1	-	н	−CH-N-C− H CH(CH ₃) ₂
671	СН-СН2-	. 2	2	1		Н	-CH-N-C- H O NO ₂

Table 1.62

					•		
Compd.	R (CH ₂) _j	k	m	n	chirality	H3	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
672	С⊢(СН2-	2	2	1	-	н	-CH(CH ³) ⁵ H
673	СН-СН ₂ -	2	2	1	· -	н ,	-CHNC-S H S C(CH ₃) ₂
674	CHCH2-	2	2	1	-	Н	-CH-N-C-SI -CH(CH ₃) ₂
675 ·	.CH-CH ₂ -	2	2	1	-	н	-СНИС- С(СН3)2 СССН3)2
676	CH√_CH₂-	2	2	1	-	н	-CH-N-C-N-CH(CH ₃) ₂ H
677	C⊢√ CH₂-	2	2	1	-	н	-CH-N-C-N-CH(CH ₃) ₂ CH ₃
678	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
679	CH-€-CH2-	2	2	1	-	н	-CH-N-C-(ST) CH(CH ₃) ₂
680	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-S Br
681	C├ \ CH ₂ -	2	2	i	•	H	-CH-N-C- CH(CH ₃) ₂ CH ₃
682	с⊢С}-сн₂-	2	2	1	-	н	-CHNC- H CH(CH ₃) ₂ C(CH ₃) ₃

Table 1.63

Compd. No.	R ¹ (CH ₂) _j	k ı	ח ת	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
683	CH-CH2-	2 :	2 1	-	н	-CHN-C-S CH(CH ₃) ₂ SCH ₃
684	С├-{СН₂-	2 2	? 1	•	н	-CH-NC- S S-CH(CH3)2
685	CH-CH2-	2 2	! 1	-	н	-СH-N-С- П Р СН(СН3)2 В СН3
686	С├-{Сн₂-	2 2	1	-	н	- CH N- C- - CH 2CH(CH ₃) ₂
687	CH-CH ₂ -	2 2	1	-	Н	-CHN-C-
688	C	2 2	1	-	н	-CH N-C- CF3
689	CH-€-	2 2	1	-	H	-CH 14 C- ON
690	CI—CH₂-	2 2	1	-	Н	-CHNC-Br
691	CH ₂ -	2 2	1	-		-CH N-C- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
692	CH ₂ -	2 2	1	-	н	-CH N C- OCH3
693	CH- 2 -	2 2	1	-	н	-CHNC

Table 1.64

Compd. R^2 $(CH_2)_1$ No. R^2 CH_2			n	chirality	.R3	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^6$
694 сн Сн.	- 2	0				
		2	1	-	н .	-CH N C - OCH2CH3
695 с⊢√ сн₂	- 2	. 2	1	· -	Н	-CH N C - ∞ 2CH3
696 с⊢√ СН₂	- 2	2	1	-	н	- CHNC-OCF3
697 CI————————————————————————————————————	- 2	2	1	-	н	-CH-N-C
698 CH2-CH2-	- 2	2	1	-	н	-CH N-C-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
699 с⊢ Сн₂-	- 2	2	1	- -	н	-CH M-C- ОСН3
700 CH ₂ -CH ₂ -	. 2	2	1	-	н	-CH N-C- CO2CH3
701 CH ₂ -CH ₂ -	- 2	2	1	-	н	-CH N-C- C-CH3
702 сн-Сн ₂ -	. 2	2	1	-	Н	-CH N-C-CF3
703 CI————————————————————————————————————	- 2	2	1	-	н	-CH V-C- CH(CH3)3
704 C⊢√ CH₂-	. 2	2	1	-	Н	-CHN-C-NO2

Table 1.65

Comr	nd Ri					D4
No.	od. R^{1} $(CH_{2})_{j}$	- k г	n n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
705	C├─────CH ₂ -	- 2 2	2 1	-	н	-CHNC-S
706	CH-€ CH₂-	2 2	1	-	Н	-CHNC-STCH3
707	C├─(CH₂-	2 2	1	-	н	-CHN-C
708	CH-CH ₂ -	2 2	1	•	H	-CHN-C-ST Br
709	С├-{}СН₂-	2 2	1	- .	н	-CH-N-C-SSCH3
710	CI—CH₂-	2 2	1	-	Н	-CHN-C-S Br
711	CH—CH₂-	2 2	1	-	Н	-CH-N-C-CH ₃
712	CH-€-	2 2	1	-	н	-chyc-s
713	CH_CH₂-			-	Н	-CH-N-C
	CH-CH₂-					-CH-N-CS
715	С⊢-{	2 2	1	•	н	-c+n-c-s

Table 1.66

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
716	CH-€-	2	2	1	-	н	-c+v-c-h
717	CH ₂ -	2	2	1	-	H [.]	-CH4-C-01 NO2
718	CH-CH ₂ -	2	2	1		н	-chyc-N
719	CH-CH ₂ -	2	2	1	-	н	-c+n-c-
720	CHCH2-	2	2	1	-	Н	-CHN-C- Br
721	CH2-	2	2	1	- ···	н	-сн-v-с снэ
722	C├─ \ CH ₂ -	2	2 .	1	-	н	-сн-v-ссн ₂ он
723	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-NH ₂
724	CH-2-	2	2	.1	- 	H	-сн-у-с-(сн ₃) ₃
							-c+n-c
726	C├ - CH₂-	2	2	1		н	-CHN-C-CH3

Table 1.67

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
727	CI──CH₂-	2	2	1	-	Н	-CHN-C-()-CI
728	CI—CH2-	2	2	1	-	н ,	-CH-N-C-\(\sigma\)NH2
729	C├─ੑCH²-	2	2	1	-	н	-CH-N-C
730	CHCH ₂ -	2	2	1	•	н .	-c+-v-c
731	С⊢СН2-	2	2	1	-	н	-ch-yc-ch ₃
732	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CF3
733	С⊢—СН₂-	2	2	1	-	н	HO CH(CH³)⁵
734	CH ₂ -	2	2	1	-	H	-CHNC
	CHCH2-					Н	-CH-N-C-CF3
736	CH ₂ -	2	2	1	-	H	-CH-N-C
737	CI—CH₂-	2	2	1	-	н	-ch-n-c

Table 1.68

, abic							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
738	CHCH ₂ -	2	2	1	•	Н	-CH-N-C-CH ₃
739	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- NH
740	С⊢—СН₂-	2	2	1	-	Н	-CH-N-C-YO NO2
741	CHCH ₂ -	2	2	1	-	н	-CHN-C-CS
742	CH-CH ₂ -	2	2	1	-	H .	-CHN-C-S
743	CH-CH ₂ -	2	2	1	-	н	-CHNC-C
744	CHCH ₂ -	2	2	1	-	Н	-CHNC-CH3
745	CH-CH ₂ -	2	2	1		н	-CHN-C-(CH ₃) ₃
746	CH ₂ -	2	2	1	-	н	-CH-N-C-\N CH ₃
7 47	CI—CH₂-	2	2	1	-	н	-CH-N-C-CH ₃
748	C├ \ CH ₂ -	2	2	1	-	н	-chyc-Cs
							F₃Ć -CHN-C-

Table 1.69

- abic	1.03						
Compd No.	R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
749	С├-СН₂-	2	2	1		н	-c+-N-c
750	с⊢С≻сн₂-	2	2	1	•	н	-CH-M-C
751	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C-CH3 CH2OH
752	CH-CH2-	. 2	2	1		н	-CH-N-C-CF3 -CH ₂ OH CF ₃
753	CI—CH₂-	2	2	1	-	н	-CH-N-C
754	CH-CH ₂ -	2	2	1	-	. Н	-CH-N-C- H CH2OH
755	CH_CH ₂ -	2	2	1	-	н	-CH-N-C- CH2OH
756	CH2-	2	2	1	-	н	-CH-N-C-NO ₂
757	C├ - CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃
758	C├ - CH₂-	2	2	1	<u>-</u>	н	-CH-N-C- CH ₂ OH
759	CH ₂ -	2	2	1	-	н	OCF ₃ -CH-N-C-OCF ₃ -CH ₂ OH

Table 1.70

Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
760	CH-€CH2-	2	. 2	1	-	н	-CH-N-C-CF3 -CH-N-C-CF3 -CH ₂ OH F
761	CHCH ₂ -	2	2	1	-	н	-CH-N-C- H CH ₂ OH
762	CH-CH ₂ -	2	2	1	-	Н	CF ₃ -CH-N-C-C H CH ₂ OH
763	CH-CH ₂ -	2	2	1	-	н	-сн-N-с- сн ₂ он
764	CHCH ₂ -	2	2	1	-	, Н	CH ₃ P -C-N-C- CH ₃
765	CH-2-	2	2	1	-	Н	CH ₃ O CH ₃
766	CI—(2	2	۲.	-	Н	CH ₃ O CF ₃
767	CI—CH ₂ -	2	2	1	-	Ħ.	-C-N-C- -C-N-C-N
768	CI—CH ₂ -	2	2	1	-	н	-C-N-C-Br
769	CH_CH ₂ -	2	2	1	-	н	CH ₃ P Br CH ₃ P OCF ₃ CH ₃ P OCF ₃ CH ₃ P OCF ₃
770	C├ - CH ₂ -	2	2	1	-	Н	CH ₃ P CF ₃ -C-N-C- F

Table 1.71

Compd. No.	R ² (CH ₂) _j	k m n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
771	CI—CH₂-	2 2 1	-	н	СН ₃ Р СF ₃ -С-N-С-Б-F
772	C	2 2 1	-	н	CH ₃ P -C-N-C-C-CF ₃
773	CH2-	2 2 1	-	н	CH3 C(CH3)3
774	CH₂-	2 2 1	٠ -	н	CH ₃ O CH ₃ SCH ₃
775	CICH ₂ -	2 2 1	-	н	C(CH ₃) ₃
776	CH-(CH ₂ -	2 2 1	-	Н	CH ₃ P CH ₃ -C-N-C- O CH ₃
777	C ├── CH ₂ -	2 2 1	-	H	CH ₃ O CF ₃ -C-N-C-C-CH ₃
778	С⊢—СН₂-	2 2 1	-	н	CH ₃ P CH ₃ P CH ₃ NO₂ CH ₃ CI
779	C⊢————————————————————————————————————	2 2 1	-	н	-CH3 CH2 CI
780	CI{	2 2 1	-		-CH3 0 NO2
781 (С⊢{	2 2 1	-	H	-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-

Table 1.72

Table .							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
782	CI-CH ₂ -	2	2	1	-	н	CH3 P OCH3
783	C⊢√_CH₂-	2	2	1	- ,	Н	CH ₃ OCH ₂ CH ₃ -C-N-C-
784	C ⊢ C H₂-	2	2	1.	-	н	CF ₃ -C-N-C-CH ₂ CH ₃
785	CH-CH ₂ -	2	2	1	-	н	CH ₃ OCH ₃ -C-N-C- H CH ₃ OCH ₃
786	CI-CH ₂ -	2	2	1	-	н	-C-N-C
787	CH-CH ₂ -	2	2	1	- ' ' ' ' '	Н	P C C C C C C C C C C C C C C C C C C C
788	C├ - ⟨}-CH ₂ -	2	2	1	-	н	-C-H-C-CH ₂ CF ₃
789	CH-CH2-	2	2	1	-	н	-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
790	CH_CH ₂ -	2	2	1	-	Н	H ₂ C-CH ₂
791	CHCH ₂ -	2	2	1	-	н	H ₂ C—CH ₂ OCF ₃ H ₂ C—CH ₂
792	CH2-	2	2	1	· .	н	H ₂ C-CH ₂

Table 1.73

	0						
Compd. No.	R ² -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
793	С⊢(СН₂-	2	2	1	-	н	-C-N-CF H-CCH ₂
794	CH	2	2	1	-	Н .	P CF ₃ H ₂ C CH ₂ F
795	CHCH ₂ -	2	2	1	-	н	H_2C-CH_2
796	CH-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂
797	C⊢CH₂-	2	2	1	-	н	-C-N-C-CH ₃ -C(CH ₃) ₃
798	CH	2	2	1	-	н	+2C - CH ₂
799	C├─ ()-CH ₂ -	2	2	1	-	_. H	H ₂ C—CH ₂ CH ₃
800	C⊢√ CH₂-	2	2	1	-	H.	-C-N-C
801	CH-2-				٠	Н	H ₂ C—CH ₂
802	CH2-	2	2	1	-	н .	-C-N-C-OCH ₃
803	C⊢√CH₂-	2	2	1	-	н	H ₂ C-CH ₂ OCH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃

Table 1.74

Table 1	1,74						
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
804	С⊢(Сн₂-	2	2	1	-	Н	P CF ₃ -C-N-C-CH ₂ -C-CH ₂
805	C⊢(CH₂-	2	2	1	-	н	$ \begin{array}{c} & O \\ $
806	C├─ (.) − CH ₂ −	2	2	1	 	Н	H ₂ C-CH ₂
807	CH	2	2	1	-	н	-CH-N-C-NH2
808	с⊢ СН₂-	2	2	1	-	H	-CH-NC-CH3
809	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C
810	CHCH ₂ -	2	2	. 1	· -	н.	-CH-N-C
811	CHCH ₂ -	2	2	1	-	Н	- CH- N-C - NO ₂
812	CHCH_2-	2	2	1		н	-CHNC-S (OH2)2-C-NH2 SCH3
813	CHCH ₂ -	. 2	2	1	-	н	- CH-N-C- CF3 (CH ₂) ₂ - C-NH ₂ OCF3
814	CH-CH ₂ -	2	2	1		H	OCF3

Table 1.75

- abie	1.75						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
815	CH2-	2	2	1	-	Н	· -c+-wc
816	С⊢СН₂-	2	2	1	-	н	-CH-N-C
817-	C├ - CH ₂ -	2	2	1	-	н	CF3 -CH-N-C-C-F H (CH ₂) ₂ -C-NH ₂
818	CH-CH2-	2	2	1	-	н	-CH-N-C
819	CH-2-	2	2	1	-	н .	-CH-N-C
820	C⊢	2	2	1	-	н	-CH-N-C
821	CI—CH₂-	2	2	1	-	H	-CH-N-C
822	CH ₂ -	2	2	1	-	H	P S SCH ₃ -CH-N-C-S SCH ₃ CH ₂ OCH ₃
823	C├	2	2	1	-	н	-CH-N-C- H CH2OCH3
824	CI—CH₂-	2	2	1	-	Н	-CH-N-C-C(CH ₃) ₃
825	CH- ⟨ CH ₂ -	2	2	1	-	н	CH ⁵ OCH ³

Table 1.76

Compd.	R ¹ (CH ₂)	k	m	n	chirality	H3	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
826	С├-{}СН₂-	2	2	1	-	н	-CH-N-C-CH3 CH2OCH3 CH3
827	CH-CH ₂ -	2	2	1	- -	н	-CH-N-C-NH CH ₂ OCH ₃
828	CHCH ₂ -	2	2	1	-	н	OCF ₃ -CH-N-C- H CH ₂ OCH ₃
829	CH-2-	Ż	2	1	-	, н	CH-N-C-CF ₃ -CH-N-C-CF ₃ -CH ₂ OCH ₃ -CH ₂ OCH ₃ -CF ₃
830	CH2 [−]	2	2	1	-	н	-CH-N-C-CF ₃ -CH-N-C-F CH ₂ OCH ₃
831	CH-€	2	2	1	· -	н	-CH-N-C- H CH2OCH3
832 .	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C- H CH2OCH3
833	CH-2-	2	2	1		н	-CH-N-C
834	CHCH ₂ -	2	2	1	-	н	-CH-N-C
835	C├-{	2	2	1	-	н	-CH-N-C- H CH2OCH3
836	C├ - ⟨}-CH₂-	2	2	1	-	.Н	-CH-N-C-CH ₃ -CH ₂ OCH ₃

Table 1.77

_							
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) ,
837	С├-СН₂-	2	2	1	-	Н	-CH-N-C- H CH2OCH3
838	CHCH ₂ -	2	2	1	-	Н	-СH-N-С- СH ₂ ОСН ₃
839	с⊢{_}сн₂-	2	2	1	-	н	OCH3 -CH-N-C- H CH2OCH3 OCH3
840	С⊢СН₂-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CH-CH ₂ -	2	2	1	<u>.</u> .	Н	-(CH ₂) ₂ -C-
842	CH	2	2	1	-	н	O -(CH ₂) ₂ -C-Cl
843	CH2-	2	2	1	-	H	-(CH2)2-C - CH3 $H3C$
844	С⊢С СН₂-	2	2	1	-	Н	-(CH ₂) ₂ -C-CH ₃
845 <u>.</u>	СН-СН2-	2	2	1	-	Н	-(CH ₂) ₂ -C
846	CH-2-	2	2	1	-	н	-(CH ₂) ₂ -C
847	CHCH2-	2	2	1	-	н	-(CH ₂) ₂ -С-С-ОСН ₃

Table 1.78

849 $CH \longrightarrow CH_2^-$ 2 2 1 - H $-CH_2^- \bigcirc CH_2^-$ 3 - CH_2^- \(CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- 2 2 1 - H $-CH_2^- \bigcirc CH_2^-$ 3 - CH_2^- \(CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- 2 2 1 - H $-CH_2^- \bigcirc CH_2^-$ 3 - CH_2^- \(CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- 2 2 1 - H $-CH_2^- \bigcirc CH_2^-$ 3 - CH_2^- \(CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- 2 2 1 - H $-CH_2^- \bigcirc CH_2^-$ 3 - CH_2^- \(CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- 3 - CH_2^- \(CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- 3 - CH_2^- \(CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- \bigcirc CH_2^- \bigcirc CH_2^-	H ₂) _q -G-R ⁶	—(CH ₂) p 1 (CH ₂)	R³	chirality	n	m	k	R ¹ (CH ₂) _j	Compd. No.
850 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 3 0 851 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 7 CH_2 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 7 CH_2 8 8 6 $CH \longrightarrow CH_2$ 2 2 1 - H $-CH_2$ 8 7 CH_2 8 8 7 CH_2 8 8 7 CH_2 8 8 7 CH_2 8 8 8 8 9 CH_2 8 9 CH_2 9 8 9 CH_2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH₃	-(CH ₂) ₂ -C-	Н	-	1	2	2	CH2-	848
851 $CH \longrightarrow CH_2 - 2$ 2 1 - H $-CH_2 - N - C - N + C - $		-(CH ₂) ₂ -C- H ₃ CO	н	-	1	2	2	CH-CH ₂ -	849
852 $CH - CH_2 - 2$ 2 1 - H $-CH_2 - N - C - $	CH₃	- CH ₂ - \$	Н	-	1	2	2	CH-CH ₂ -	850
853 $CH - CH_2 - 2$ 2 1 - H $-CH_2 - N - C - $	CF ₃	CH2- N- C- N- H H	Н	-	1	2	2	CHCH ₂ -	851
854 CH_{2}^{-} 2 2 1 - H $-CH_{2}^{-}$ CH_{2}^{-} $CH_{2}^$	-CF ₃	-CH ₂ -N-C-N-	Н	-	1	2	2	CH2-	852
855 CH_2^- 2 2 1 - $H_2^ CH_2^-$ 2 2 1 - $H_2^ CH_2^ C$	H N	O - CH ₂ - N· C- N- H H	Н	-	1	2	2	CH-CH ₂ -	853
856 CH2- 2 2 1 - H CH2-N-C-N-	CH ₃	- CH ₂ - N C- N ←	Н	-	1	2	2	C├───────────────────────────	854
		- CH ₂ -N-C-N-C-N-	н	-	1	2	2	CHCH_2-	855
	о с-сн₃ —	- CH ₂ - N C- N-{	н	· -	1	2	2	CH-CH ₂ -	856
	OCH ₃	-CH2-N-C-N-<							
858 CH2- 2 2 1 - H -CH2-N-C-N-H H	-осн3	- CH ₂ - N- C- N- √ H H	н	-	1	2	2	С⊢(СН₂-	858

Table 1.79

Compd.	R ¹ (CH ₂) _j -	k	m n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
859	CH ₂ -	2	2 1	-	Н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
860	С⊢СН2-	2	2 1	-	н	- CH ₂ -N C-N CN
861	CH-CH2-	2	2 1	-	H	-CH ₂ -N-C-N-
862	C├ - CH₂-	2	2 1	-	Н	-CH ₂ -N-C-N-CH ₃
863	CH-CH₂-	2	2 1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	CHCH2-	2	2 1	-	·H	-CH ⁵ -HC-H OCH ³
865	CH-2-	2 2	2 1		Н	-CH ⁵ -N-2-CH ³
866	C├ - CH ₂ -	2 2	Ž 1	- · .		H 10
867	С⊢СН₂-	2 2	? 1	-	Н	-CH ₂ -N-S-CF ₃
					н	-CH ₂ -N-S-CH ₂ CH ₃
869	CH ₂ -	2 2	1	-	Н	-CH ₂ -N-S- CH(CH ₃) ₂

Table 1.80

Compd.	R ¹ (CH ₂) _j -	k	m	η	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
870	CH₂-	2	2	1		н	- CH ₂ -N-S-CH ₃
871	CI—CH₂-	2	2	1	-	н .	- CH ₂ -N-S-(CH ₂) ₃ CH ₃
872	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-
873	C├─(CH ₂ -	2	2	1	-	н •	- CH ₂ -N-C-O CH ₂ -
874	CH2⁻	2	2	1	- -	н	- CH O C- N CI
875	(CH₂-	2	2	1	• •	н	- CH ₂ -N-C-
876	Br—CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
	O O ← CH ₂ -						- CH ₂ -N-C-CF ₃
880	O^O CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.81

Compd.	R ² (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
881	Br CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
882	O-O-OH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
883	CI - CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
884	њс∙с-р - Д-сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
885	H ₃ C-\$-CH ₂ -	2	2	1	<u>-</u>	н	- CH ₂ -N-C- CF ₃
886	F-CH ₂ -	2	2	1	7	н	-CH ₂ -N-C- CF ₃
887	F ₃ C-CH ₂ -	2	2	ť	-	Н	- CH ₂ -N-C-⟨CF ₃
888	HO-CH ₂ -	2	2	1		н	- CH ₂ -N-C-CF ₃
·889	CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
890	CH ₂ - CH ₂ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
891	CH ₂ −	. 2	2	1		н	- CH ₂ -N-C-CF ₃

Table 1.82

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
892	H₃CO — CH₂-	2	2	1	-	н	- CH ₂ -N-C-
893	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N C-
894	HO CH ₃ H ₃ C ← CH ₂ - CH ₃	2	2	1	-	. н	-CH ₂ -NC-CF ₃
895	(CH ₂) ₂ -	2	2	1	- -	н	-CH ₂ -NC-CF ₃
896	CN CH₂-	2 ′	2	1	-	н	- CH ₂ -N-C
897	HO ₂ C ————————————————————————————————————	2	, 2	1	- .	н	-CH ₂ -N-C-CF ₃
898	HO ₂ C-\CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1		Н	-CH ₂ -N-C-CF ₃
90 <u>0</u>	H₃∞₂C-{-}-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
901	CH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
.902	O ₂ N CH ₂ -	2	2	1	-	Н .	- CH ₂ -N-CF ₃

Table 1.83

	Compd. No.	R ¹ /(CH ₂) _j -	k m n	chirality	R³	$-(CH_2)_{p}$ $\frac{R^4}{L^5}$ $(CH_2)_{q}$ $G-R^6$
	903	H ₃ CO CH ₂ -	2 2 1	•	Н	- CH ₂ - N- C- CF ₃
	904	HO CH ₂ -	2 2 1	-	н	- CH ₂ -N-C-CF ₃
	905	O ₂ N CH ₂ -	2 2 1	-	н	- CH ₂ -N-C-CF ₃
	906	(CH ₂) ₃ -	2 2 1	-	Н	- CH ₂ -N-C-CF ₃
	907	CH(CH ₂) ₂ -	2 2 1	-	н	- CH ₂ - N-C-CF ₃
	908	J-H C ₀	2 2 ··1	•	н	-CH ₂ -N-C-CF ₃
	909 (N C-√ CH₂-	2 2 1	-	н	- CH ₂ -N- C-
		CI CH ₂ -		-	н	-CH ₂ -N-C-CF ₃
			2 2 1		Н	- CH ₂ -N-C-CF ₃
, S	912 • E	CH ₂ -	2 2 1	-	H	- CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃
g	113 н₃с	O-{	2 2 1	-	H'	- CH ₂ -N-C-CF ₃

Table 1.84

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
914	OH2O-CH2-	2	2	1	-	Н	- CH ₂ - N- C-
915	OH CHCH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
916	. N CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
917	N ← CH ₂ -	2	2	.1	· _	Н	- CH ₂ -N-C-CF ₃
918	н,со, с он, — О— он, -	2	2	1	-	н .	- CH ₂ -N-C-CF ₃
919	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH₂-	2	2	1	-	H	- CH ₂ -N-C-CF ₃
922	CH₂-	2	2	1	-	н	- CH ₂ - N- C-
923	CH CH	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
924	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.85

-abie							
Compd No.	$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
925	H ₂ N-C	- 2	2	1	<u>-</u>	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-CH2	- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ ————————————————————————————————————	2	2	1	;	н	-CH ₂ -N-C-CF ₃
928	F ₃ CO-{}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	н₃сѕ-{_}_сн₂-	2	2	1	-	н	-CH ₂ -N-C- H
930	CH ₃	2	2	1	-	н	-CH ₂ -N-C-⟨CF ₃
931	NC CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
932	NO₂ CH2−	2	2	1	-	Н	-CH ₂ -N-C-C-CF ₃
933	СH- СH-	2	2	1	-	н	CH ₂ - N- С
934	~_CH ₂ -	2 :	2	1	-	н .	-CH ₂ -N-C-CF ₃
935	O ₂ N —CH ₂ -	2 2	2 7	I	-	Н	-CH ₂ -N-C-CF ₃

Table 1.86

Table	1.00	•					
Compd.	R ¹ /R ² (CH ₂) _j	k	m	n .	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
937	(H ₃ C) ₂ N-\(\bigc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
940	OH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C-CF ₃
942	С├-{}СН₂-	2	2	1		н	$ \begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & $
943	C├ - CH ₂ -	1	4	0		н	-CH ₂ -N-C-CF ₃
944	C├ - CH₂-	1	4	0	-	н	-CH ₂ -N-C-CH ₃
945	CH2 ⁻	1	4	0	<u>.</u> ·	н	-CH ₂ -N-C-NO ₂
946	CI-CH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.87

Compd. No.	R ² (CH ₂) _j	- km n	chirality	Ŕ³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
947	с⊢(сн₂	- 1 4 0	-	Н	-(CH ₂) ₂ -N-C
948	с⊢ СН₂-	1 4 0	-	Н	-(CH ₂) ₃ -C-N-CI
949	С⊢(СН₂-	1 4 0	-	.	-(CH ₂) ₃ -C-N-CH ₂ -
950	СН-СН2-	0 4 1	-	Ĥ	- CH ₂ -N-C-
951	С⊢-СН₂-	1 2 0	R	н	-СH ₂ -N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
952 ·	CHCH ₂ -	1 2 0	R	н	-CH ₂ -N-C-\(CH ₃) ₂
953	С├-{}СН₂-	1 2 0	R	н	-(CH ₂) ₂ -N-C-\ N(CH ₃) ₂
954 .	CHCH ₂ -	1 2 0	Ř.	н	-CH ₂ -N-C- H H₃C-NH
955 (CH-{	1 2 0	R	н	-(CH ₂) ₂ -N-C- H H ₃ C-NH
56 c	:⊢(CH ₂ -	1 2 0	R	н	-(CH ₂) ₂ -N-C- HO
57 c	⊢ (1 2 0	R	н	-сн ₂ -ү-с

Table 1.88

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
958	С⊢—СН ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
959	· CI	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
960	CH2−	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
961	CH2⁻	1	2	0	R	н	-СH2-N-С- Н Н -СH3-N-СH3
962	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-CH ₃
963	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-С-ОН
964	CI—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H C-CO ₂ CH ₃
965	CH-(-)-CH ₂ -	1	2	0	Ŗ	н	-(CH ₂) ₂ -N-C- H -∞ ₂ CH ₃
966	CH-2-	1	2	0	R	н	-СH ₂ -N-С-С-СH ₃
967	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
968	CHCH ₂ -	1	2	0	R	н	-CH2-N-C-NH

Table 1.89

<u> </u>	рţ				
No.	R ¹ (CH ₂),	k m n	chirality	Ř³	$-(CH_2)_{p} + (CH_2)_{q} G - R$
969	C├ - CH ₂ -	1 2 0	R	н	-(CH ₂) ₂ -N-C-NH
970	с⊢С}-сн₂-	1 2 0	R	н	-CH ₂ -N-C-N(CH ₃) ₂
971	CH-2-	1 2 0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	CH-2-	1 2 0	R	н	-CH ₂ -N-C-NH ₂
973	С├-{}СН₂-	1 2 0	R	H	-(CH ₂) ₂ -N-C-NH ₂
974	CH-CH ₂ -	1 2 0	R	н	-CH ₂ -N-C-⟨NH ₂
975	CH-€ CH ₂ -	1 2 0	Ŗ	H .	-(CH ₂) ₂ -N-C-NH ₂
976	C⊢(CH₂-	1 2 0	R	н	-CH ₂ -N-C-\\ NH
977	С⊢{	1 2 0	R	Н	-(CH ₂) ₂ -N-C-NH
978	С⊢√СН₂-	1 2 0	R	Н	-CH2-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
979	CH-2-	1 2 0	R	н	-(CH ₂) ₂ -N-CNH

Table 1.90

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_$
980	C├ - CH₂-	1	2	0	R	Н	- CH ₂ -N-C-CH ₃
981	CI-CH ₂ -	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	CH-CH ₂ -	1	2	0	R	· н	-CH ₂ -N-C-
983	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C- (H ₃ C) ₂ N
984	CH-CH ₂ -	1	2	0	R	Н	-СH ₂ -N-С-{>-СH ₂ ОН
985	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-С-СН ₂ ОН
986	CH-CH-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
987	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
988	CH2⁻	1	4	0	-	н .	-CH₂-N-C-
989	CH-2-	1	4	0	-	н .	-CH ₂ -N-C-O-CH ₂ -
990	CH2-	1	4	0	-	н	-CH2-N-C-

Table 1.91

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
991	C⊢CH₂-	1	4	0	-	Н	-(CH ₂) ₂ -C-
992	C⊢√_CH₂-	1	4	0	-	н	-(CH ₂) ₂ -C
993	C├ - CH ₂ -	1	4	0	- -	н	-(CH ₂) ₂ -C-CH ₃
994	С⊢—СН₂-	1	4	0	-	Н	-(CH ₂) ₃ -C-\ .
995	CH-2-	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	CH-CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CH₂-	2	2	1	-	н	-CHN-C
998	C├ - CH ₂ -	2	2	1	-	н .	CH-N-C-CF3 CH ₂ CH(CH ₃) ₂
999	CH₂-	2	2	1	-	н	-CH-N-C
1000	CH-{CH ₂ -	2	2	1	-	н	OCH3 -CH-N-C- OH2CH(CH3)2
1001	СН ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH ₁ N-C

Table 1.92

Compd. No.	R (CH ₂) _j -	k	m	n	chirality	⁻ R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1002	C├ - CH ₂ -	2	2	1	-	н	OCF ₃ -CHN-C
1003	CHCH ₂ -	. 2	2	1	- •	H	CH2CH(CH3)2
1004	С├─(СН2-	2	2	1	-	H	OH ₂ CH(CH ₃) ₂ OCH ₃
1005	C├────────────────────────────────────	2	2	1	-	н	-CH-V-C- CH ² CH(CH ³) ⁵ ∞CH ³
1006	CHCH2-	2	2	1	- '	н	OCH2CH3 -CH-N-C-(-)-OCH2CH3 CH2CH(CH3)2
1007	CH-CH ₂ -	2	2	1	-	H	О - CH N-C- - CH ₂ CH ₂ CH ₃ - CH ₂ CH(CH ₃) ₂ ОСН ₂ CH ₃
1008	CH	2	2	1	-	н	- CHN-C
1009	C ├── CH ₂ -	2	2 ·	1	-	н .	-CHH-C
1010	C├──CH2-	2	2	1	-	н	(CH2)2-C-NH2, OCH2CH3
1011	CH2−	2	2	1	-	н	CH ₂ CH ₃ (CH ₂) ₂ -G-NH ₂ (CH ₂) ₂ -G-NH ₂ (CH ₂) ₂ -G-NH ₂
1012	CH⊋-	2	2	1	-	н	CH3)2-C-NH2 OCH3

Table 1.93

Compd.	R ² (CH ₂) _i -	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R [€]
1013	С├-{}СН₂-	2	2	1		. н	(CH2)2-C-NH2 OCH3 -CH-H-C
1014	CI-CH ₂ -	2	2	1	-	н	-CH-N-C
1015	C⊢√ÇH₂-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
1016	C⊢√CH₂-	2	2	0	<u>.</u>	Н	CH ₂ -N-C-
1017	с⊢{	2	2	0 ·	•	н	-сн ₂ -N-с-
1018	CHCH2-	2	2	1	-	Н	OCH ₂ CH ₃
1019	с⊢СН₂-	2	2	1	-	Н	OCH ₂ CH ₃ -CH ₂ -N-C- OCH ₂ CH ₃ OCH ₂ CH ₃
1020	CH-CH₂-	2	2	1	-	H .	-CH ₂ -N-COCH ₃
1021	С⊢СН₂-	2	2	1	-	н	-CH ₂ -N-C
1022	C├ - CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C-OCH ₃ CH ₃ OCH ₃
1023	CI-CH ₂ -	2	2	1	-	н	(S) P CH ₂ CH ₃ -CH-N-C- CH ₃ CH ₃

Table 1.94

Compd	R\ (CU)						₽4
No.	R ² (CH ₂) _j -	.k	m	n —	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶ R ⁵
1024	CH-2	2	2	1	•	Н	(S) OCH ₃ -CH-N-C-OCH ₃ OCH ₃
1025	C├─────────────────	2	2	1	-	н	(S) Q OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ CH ₃
1026	CH-CH ₂ -	2	2	1	-	н .	(S) OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
1027	CH2-	2	2	1	-	н	(S) Q OCH ₂ CH ₃ -CH-N-C- OCH ₃
1028	CH-CH ₂ -	2	2	1	- ·	Н	(S) OCH ₂ CF ₃ -CH-N-C-CH-CH-CH-CH ₃ OCH ₂ CF ₃
1029	CH2-	2	2	1.	· <u>-</u>	н	(S) OCH ₂ CH ₃ -CH-N-C-C
1030	C⊢√CH₂-	2	2	1	- 	н	(5) P OCF ₃ -CH-N-C-CH ₃
1031	C	2	2	1		н	(S) OCH ₃ -CH-N-C-C
1032	C⊢√CH₂-	2	2	1	-	н	(A) OCH3 -CH-N-C-CH3 CH3 OCH3
1033	CH-{_}CH₂-	2	2 .	1	-	н	(F) Q CH₂CH₃ -CH-N-C- CH-CH₃ -CH-N-C- CH₂CH₃
	CH-2-					н	(F) OCH ₃ -CH-N-C

1 1 4

Table 1.95

Compd	R\ (QU)						R ⁴
No.	R ² (CH ₂) _j -	k	m	n	chirality	[°] R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
1035	С⊢√_СН2-	2	2	1	-	Н	(R) OCH ₂ CH ₃ -CH-N-C
1036	CH_CH2-	2	2	1	-	н	(A) O OCH ₂ CH ₃ -CH-N-C- OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
1037	. CHCH ₂ -	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1038	CHCH ₂ -	2	2	1	-	н	(A) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	СН-СН2-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1040	C├───────────────────────────────────	2	2	1	-	н	(A) O OCF3 -CH-N-C-CH-CH-CH3
1041	C⊢√CH₂-	2	2	1	-	H	(A) OCH3 -CHN-C-CHCCHG
1042	CH√CH₂-	2	2	1	-	H	-CH ₂ -N-C
1043	C⊢-(CH₂-	2	2	1	-	н .	-CH ₂ -N-C
	C├ - CH ₂ -					н	-CH ₂ -N-C- H ₂ N
1045	C├ -	2	2	1	-	н	$-CH_2-N-C$ H_2N OCH_3

Table 1.96

•							
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p}}_{\frac{1}{R^5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
1046	С⊢С СН₂-	2	2	1	.	н	-CH ₂ -N-C-CI
1047	с⊢(Сн₂-	2	2	. 1		н	-CH ₂ -N-C-CH ₃ H ₂ N CH ₃
. 1048	CH-CH ₂	2	2	1	-	Н.	$-CH_2-N-C \longrightarrow OCH_3$ $+ H_2N OCH_3$
1049	СН-СН2-	2	2	1	-	Н	-CH ₂ -N-C-CH ₃ H ₂ N Br
1050	_CHCH ₂ -	2	2	1		н	(S) OCH ₃ . -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH_CH ₂ -	2	2	1	-	H	(S) Q CH ₂ CH ₃ -CH-N-C
1052	CHCH ₂ -	2	2	1	· •	н	(S) Q OCH ₃ -CH-N-C- OCH ₃ H OCH ₂ CH(CH ₃) ₂ OCH ₃
1053	CH-CH ₂ -	2	2 .	1	- -	н	(S) OCH ₂ CH ₃ -CH-N-C
1054	C├ - CH₂-	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C
1055	C├ - ⟨}-CH ₂ -	2	2	. 1	-	н	(S) OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1056	CH-CH2-	2	2	1		н	(S) POCH ₂ CF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

							•
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
1057	C├ CH ₂ -	2	2	1	<u>-</u>	·H	(F) OCH ₂ CH ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1058	С⊢-{	2	2	1	-	н	(S) OCH ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1059	С⊢ СН₂-	2	2	1	-	н	(S) OCF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1060	CH-CH ₂ -	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C- OCH ₃ H H OCH ₃
1061	CH2-	2	2	1	-	н .	(F) QCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CH-2- 1	2	2	1	-	н .	(S) OCH ₂ CH ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1063	C├ ~ CH ₂ -	2	2	1	-	н	(A) OCH3 -CH-N-C- H CH2CH(CH3)2
1064	CH2−	2	2	1	-	н	(F) OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1065	C├ - CH ₂ -	2	2	1	-	н	(F) OCH ₃ -CH-N-C
1066	C⊢√ CH₂-	2	2	1	-	н	(F) CH ₂ CH ₃ -CH-N-C
1067	CH ₂ -	2 .	2	1	-	H	(F)
				·		•	į H \=(`

Table 1.98

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1068	CH-{_} CH₂-	2	2	1	-	н	(<i>F</i>)
1069	CH-CH2-	2	2	1	-	н	(F) OCH₂CH₃ -CHN-C OCH₂CH₃ H CH₂CH(CH₃)₂ OCH₂CH₃
1070	C├ - CH ₂ -	2	2	1	-	н	CH2OCH2
1071	CH-CH2-	2	2	1	-	Н	-CH-NC-
1072	CH-CH2-	2	2	1	: -	н	OH ₂ O CH ₂
1073	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
1074	CH2−	2	2	1	-	Н	-CH-N-C-CH ₃ -CH-N-C-CH ₃ -CH-N-C-CH ₃ -CH ₃ -C
1075	CH-2-	2	2	1		н	-CH-N-C
1076	CH-2-	2	2	1	-	н	-CH-N-C
- 1077	CH₂-	2	2	1	- ,	н	-CH-N-C
1078	CI-CH ₂ -	2	2	1		н	CH-N-C-C

Table 1.99

								•
	Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
•	1079	CH2-	2	2	1	-	Н	сн²осн²— Сн- № с— Сн- № с- Сн²
	1080	CHCH ₂ -	2	2	1	-	, н	OH ₂ O CH ₂ -CH ₃
	1081	с⊢С ⊢сн₂-	2	2	1	-	Н	CH-M-C-OCH3 OCH3 OCH3
	1082	CI—CH₂-	2	2	1	-	н	(S) P O (S) P (S)
	1083	CH-CH ₂ -	2	2	1	-	н	(A) O O O O O O O O O O O O O O O O O O O
	1084	CHCH2-	1	2	0	R	н	$-CH_2-NC-$ H_2N
	1085	CH-€-	1	2	0	R	н	$-CH_{2}-NC- \longrightarrow \begin{matrix} NO_{2} \\ H_{2}N \end{matrix}$
	1086	C ├── CH ₂ -	1	2	0	R	Н.	$-CH_2-NC-$ H_2N
	1087	C⊢—CH₂-	1	2	0	R	н	-CH2-N-C-\N
	1088	CH-2-	1	2	0	R	Н	-CH ₂ -N-C
	1089	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-

Table 1.100

Compd. R	(CH ₂);-	k	m	n	chirality		R ⁴
						н ⁻	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- R^6$
1090 ci	⊢—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1091 cı	⊢(¯)- CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092 cı	(¯) CH ₂ -	1.	2	0	R	н	-CH ₂ CH ₂ -N-C
1093 cı	() CH ₂	1	2	0	R		$-CH_2CH_2-N-C-$ H_2N
1094 ci	CH₂-	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H
1095 ci		1	2	0	R _.	H	-CH ₂ CH ₂ -N-C-
1096 cı	(CH ₂ -	1	2	0	R	Н	-CH₂CH₂-N-C-N-H
,	⊢(¯)-CH ₂ -					Н	-CH2CH2-N-C-
1098 cı		1	2	0	R	H _,	-CH ₂ -N-C
1099 ci	⊢()- CH₂-	1	2	. 0	R	н	-CH ₂ -N-C
1100 ci	⊢ ()-CH₂-	1	2	0	R	Н	-CH2-N-CF

Table 1.101

-(CH ₂) _j			n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
CH ₂ -	1					H~
	•	2	0	R	н	-CH2-N-C-CH3
CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
	1	2	0	R	н	-CH ₂ -N-C-Sr CH ₃
CH ₂ /	1	2	0	R	Н	-CH ₂ -N-C
	1	2	0	R	н	-CH ₂ -N-C
CH₂-	1	2	0	R	Н	-CH ₂ -N-C-✓ CH ₃
CH₂-	1	2	0	R	н	-CH ₂ -N-CNO ₂
CH ₃					н	-CH ₂ -N-C-S-CH ₃
:H ₃ ≻−CH ₂ − :H ₃	1	2	0	R	Н	-CH ₂ -N-C-⟨Sr
:H ₃ ≻−CH ₂ − :H ₃	1	2	0.	R	н	-CH ₂ -N-C-C-F
:H₃ CH₂- :H₃	1	2	0	R ·	н .	-CH2-N-C-(CH3
	H ₃	$-CH_2$ 1	$-CH_2$ 1 2	$-CH_2$ 1 2 0 $-CH_2$ 1 2 0 $-CH_2$ 1 2 0 $-CH_3$ 1 2 0 $-CH_3$ 1 2 0 $-CH_2$ 1 2 0 $-CH_3$ 1 2 0 $-CH_3$ 1 2 0 $-CH_3$ 1 2 0	$-CH_2$ 1 2 0 R	

Table 1.102

Compd.	R ¹ R ² —(CH ₂)j—	k	m	n	chirality	[.] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1112	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-CNO ₂
1113	С├-{	2	2	1	-	н	-CH ₂ -N-C CH ₃
1114	CHCH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1115	CH	2	2	1	-	н	-CH ₂ -N-C
1116	CH	2	2	1	-	Н	-CH ₂ -N-C
1117	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-CNO ₂
1118	₩ c-{>-c+²-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H₃CS—CH₂-					н	-CH ₂ -N-C-CF ₃
1120	H ₃ CO —CH ₂ - OCH ₃	1	2	. 0	R .	н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1122	H3C (H3C)2CH-CH2-CH(CH3)2	1	2	0	R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{3}-N+C$ $-CH_{4}-N+C$ $-CH_{5}-N+C$ $-CH_{5}-N+C$ $-CH_{5}-N+C$

Table 1.103

Compd No.	· R ¹ (CH ₂) _j -	k	m	n	chirality	ÏR³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1124	O ₂ N O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	С├-{	2	2	1	_	H	- CH-N-C
1126	С├-{}СН₂-	2	2	1	~	н	- CH-N-C
1127	ССH ₂	2	2	1	-	н	-CH-H-C-NH
1128	С⊢—СН₂-	2	2	1	-	Н	-CH-N-C-CF3
1129	С├-{	.2	2	1	-	н	CH ₂ OCH ₂ CF ₃
1130	C├ -	2	2	1	-	н	-CH-N-C
1131	С⊢√СН₂-	2	2	1	-	H .	- CH-N-C-
1132	C├ ~ }-CH₂-	2	2	1	-	. H	OH_N-C
1133	H₃CQ H₃CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C- H

Table 1.104

Compd. No.	R ¹ (CH ₂);-	k	m	Π	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
1134	H ₃ CQ H ₃ CO—CH ₂ — H ₃ CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1135	CH ₂ -NO ₂	1	2	0	R	н	-СH ₂ -N-С-СF ₃
1136	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1137	CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-СF ₃
1138	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1141	CH ₂ -	1	2	0	R	н _. .	-СH ₂ -N-С-СF ₃
1142	-CH ₂ -	1	2	0	R	H	$-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{3}$
1143	OH2O-CH2-	1	2	0	R	н	-CH2-N-C-CF3
1144	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.105

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1145	H ₃ CO CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- CF ₃
1146	С>- СН2СН2-	1	2	0	R	н	-CH ₂ -N-C
	₩C-C-N-{}-OH-г				R	н	-CH ₂ -N-C-CF ₃
	-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH ₂ −	1	2	0	R	н	CH ₂ -N-C
1150	CH³ CH³	1,	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH ₃ CH₂- CH₃	1	2	0	R.	н .	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH₃ CH₂- CH₃					Н.	H N
1153	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-CI
1154	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1155	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃

Table 1.106

							
Compd. No.	R ¹ (CH ₂);	k	m	n ·	chirality	. R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1156	CH ₃ CH₂- CH₃	1	2	0 .	R	н ,	-CH ₂ -N-C-(CH ₃) ₃
1157	CH ₃ CH ₂ - CH ₃	1	2	Ó	R	н	-CH ₂ -N-C-SCH ₃
1158	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1159	CH ₃ N−CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1160	CH₃ N—CH₂- CH₃	1	2	0	R	н	$-CH_2-N-C$ H_2N Br
1161	OH H ₃ CO-CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C-CF ₃
	H ₃ CO-CH ₂ -						-CH ₂ -N-C-CF ₃
-	H ₃ CO-CH ₂ -						-CH ₂ -N-C-CF ₃
11.64	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1165	O-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CF_{3}$ $-CH_{2}-N-C$ $-CF_{3}$
1166	H ₃ CO-CH ₂ -	1,	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.107

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	'R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1167	CH-CH ₂ -	2	2	1		н	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1169	H ₃ C- С- N N C- N C- N C- N C- N C- N C- N	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1171	CH-CH ₂ -	1 .	2	0	R	Н	-CH ₂ -N-C
1172	CH- (CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1173	C├ - CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-N-CH ₃
1174	С⊢∕СН₂−	1	2	0	R	н	$-CH_2-NC-$ H_2N
1175	H₃C-⟨CH ₂ -	1	2	0	R	Н	−CH ₂ −N-C−√DBr
176	H₃C()-CH₂-	1	2	0	R		-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
177	H₃C− € −CH₂−	1	2	0	R	н	-CH ₂ -N-C-N-OCH ₃

Table 1.108

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1178	H ₃ C-\(\)\(\)\-CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N
1179	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1180	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-N-C-N-H
1181	CH ₃ CH₂-	, 1	2	0	R	Н	-CH ₂ -N-C- CH ₃
1182	CH ₃ CH ₂ - CH ₃	1	2	0	. R	Н	-CH ₂ -N-C-N-N-OH
1183	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1184	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	H ₂ N
1185	CH₃ CH₂− CH₃				•		-CH ₂ -N-C-NO ₂
1186	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1187	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br
1188	C├─(CH₂-	2	2 ·	1	-	H .	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{3}$ $+CH_{3}$ $+CH_{3}$ $+CH_{4}$ $+CH_{3}$ $+CH_{4}$ $+CH_{5}$ $+CH_{5$

Table 1.109

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) p G G-R ⁶
1189	C├ - CH₂-	2	2	. 1	-	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1190	С-СН2-	. 2	2	1	-	н	-CH ₂ -N-C
	CH₃ N CH₂- CH₃					н	-CH₂-N-C-CF₃
1192	CH ₃ N—CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1193	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1194	CH₃ N—CH₂- CH₃	1	2	0	R	н	$-CH_2-N-C$ F_3C
1195	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-
	CH ₃ CH ₂ CH ₃					H	-CH ₂ -N-C
197	CH ₃ CH ₃ CH ₃	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
198	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
199	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃

Table 1.110

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1200	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CI
1201	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1202	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1204	H ₃ C-CH ₂ -	1	2	0	R	H ·	-CH ₂ -N-C
1205	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1207	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-S
1208	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1209	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
							-CH ₂ -N-C-CI

Table 1.111

Compd. No.	R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _р + (CH ₂) _q G-R ⁶
1211	Н ₃ С-СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1212	H₃C-⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	CH	2	2	1		н	-CH₂-N-C- F ₃ C
1214	CH	2	2	1	-	Н	CH ₂ -N-C
1215	СН2-	2	2	1	. -	Н	-CH2-N-C- CI
1216	C├ - CH ₂ -	2	2	1	-	. н	-CH2-N-C
1217	C├ - CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1218	СН-2-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1219	CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-CI
1220	C	1	2	0	R ·	н	-CH ₂ -N-C
1221	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F H H ₂ N

Table 1.112

							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R3	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1222	С⊢СТ}-СН₂-	1	· 2	0	R	н	-CH ₂ -N-C-√N H
1223	С⊢—СН₂-	1	2	0	R .	Н	-CH ₂ -N-C-
1224	С⊢—СН2-	1	2	0	R	н	-CH ₂ -N-C
1225	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CICF3
1226	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1227	H ₃ C-CH ₂ -	1	2	0	R	H	-CH₂-N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NCC\longrightarrow H_2N$
1229	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC H_2N$
1230	H ₃ C-\(\)-CH ₂ -	1	2	0	R	. Н	$-CH_2-N-C-V$
1231	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1232	H ₃ C-\(\bigc\)-CH2-	1	2	0	R	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+CH_{2}-N\cdot C$ $+O$ $+O$ $+O$ $+O$ $+O$ $+O$ $+O$ $+O$

Table 1.113

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{P_1}^{P_4}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_2}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_2}^{Q_2}$ $+(CH_2)_{Q_1}^{Q_2}$ $+(CH_2)_{Q_2}^{Q_2}$
1233	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1234	CH ₃ N CH ₂ − CH ₃	1	2	0	R .	Н	-CH ₂ -N-C-CH ₃
1235	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1236	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C-
1237	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C-F H ₂ N
1238	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-() CH ₃
1239	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1240	CH₃ CH₃	1	2	0 .	R	· н	-CH ₂ -N-C-NO ₂
1241	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
242	C⊢√CH₂-	2	2	1	•	н	-CH ₂ -N-C-F
243	CH-()CH ₂ -	2	2	1		Н	-CH₂-N-C-(CH₃

Table 1.114

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1244	с⊢{_}СН₂-	2	2	1	- .	н	-CH ₂ -N-C-
1245	с⊢{_}СН₂-	2	2	1	-	н	-CH ₂ -N-C-F
1246	с⊢{_}-сн₂-	2	2	1	-	Н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1247	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-S-S-S
1248	C├ - CH ₂ -	2	2	1		н	-CH ₂ -N-C-NO ₂
1249	C⊢√_CH₂-	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C- ⟨ _)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1251	CH ₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C
1252	CH-(1	2	0	R	· н	-CH ₂ -N-C- H CH(CH ₃) ₂
1253	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H C-(CH ₃) ₂
1254	CH₃ N CH₂- CH₃	1	2	. 0	R	н	-CH ₂ -N-C

Table 1.115

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1255	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
1256	H₃C	1	2	0	R	н	-CH ₂ -N-C-\Br
1257	CH ₃ CH ₂ - CH ₃	· 1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1258	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1259	CH₃ CH₂− CH₃	1	2	0	R .	Н	$-CH_2-N-C$ H_2N
1260	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1261	CHCH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V$ H_3C $C(CH_3)_3$
1262	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
1263	CH ₃ N CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1264	С⊢СН₂-	1	,2	0	R	н	-CH ₂ -N-C
1265	H ₃ C-CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C

Table 1.116

						-1
R^1 $(CH_2)_i$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-YO
С⊢{СН₂-	1	2	0.	R	н	-CH ₂ -N-C-N-C-N-H-H-M-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
C⊢—CH₂-	1	2	0	R	н	-CH ₂ -N-C-
C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
`C├ - CH ₂ -	1	2	Ó	R	н	-CH₂-N-C- HO
C├ \ CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C
H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
		•			н	-CH ₂ -N-C- H H ₃ CO
H ³ C-\CH ² -'	1	2	0	R _.	н	-CH ₂ -N-C Br
H ₃ CCH ₂ -	1	2	0	R	н .	-сн₂-N-с- н но .
H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	CH_3 CH_2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_{3} $CH_{2}-CH_{2}-1 2 0 R H$ $CH_{3}-CH_{2}-1 2 0 R H$ $H_{3}C-CH_{2}-1 2 0 R H$

Table 1.117

٠.٠

	Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	^{R³}	-(CH ₂) _p (CH ₂) _q G-R ⁶
•	1277	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-OCF ₃
	1278	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-CI
	1279	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
	1280	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-
	1281	CH ₃ N—CH ₂ - CH ₃	1	. 2	0	R	н	-CH ₂ -N-C
	1282	С⊢{СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
	1283	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI H H ₃ CO
	1284	СН ₂ -	2	2	1	-	н	-CH ₂ -N-C
	1285	C⊢(CH₂-	2	2	1		Н	-CH ₂ -N-C-
-	1286 H ₃ ,	¢ ,N(O1 ₂) ₃ O	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1	287 o	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.118

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1288	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1289	CH₃ N −CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
1290	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_{2}-N \cdot C \xrightarrow{CH_{3}}$ $H_{2}N CH_{3}$
1291	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-N-N-H-CH ₃
1292	H ₃ C-\(\bigce_2\)-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ CH_3 H_2N Br
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1294	H ₃ CCH ₂ -	1	2	. 0	R	н	$-CH_2-NC -CF_3$
1295	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-(CH ₃) ₃
1296	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCH ₃
1297	H ₃ C	1	2	0	R	н	-CH ₂ -N-C
1298	H ₃ CO CH ₂ -	1	2,	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.119

н,со) _p + (CH ₂) _q G−R ⁶
н₃со 1299 н₃со- Сн₂- 1 2 0 R н	
н₃со	H ₂ -N-C
1300 H ₃ CO CH ₂ - 1 2 0 R H -C	H ₂ -N-C-CF ₃
1301 H ₃ CO CH ₂ - 1 2 0 R H -C	H ₂ -N-C-CF ₃
11 C CII	H ₂ -N-C-CF ₃
H ₃ CQ 1303 H ₃ CO————————————————————————————————————	H ₂ -N-C-CF ₃
1304 — нь со -сн ₂ - 1 2 0 R н — сп	H ₂ -N-C-CF ₃
1305 H ₃ CO—CH ₂ — 1 2 0 R H —CH	
1306 H ₃ CCH ₂ Q 1 2 0 R H -CH	H ₂ -N-C-CF ₃
H ₃ CQ 1307 H ₃ CO—CH₂- 1 2 0 R H —CH	H ₂ -N-C-CF ₃
1308 O CH₂- 1 2 0 R H -cr	12-N-C-CF3
	H ₂ -N-C-CF ₃

Table 1.120

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1310	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1311	O_O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1314	O ₂ NCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH ₂	1	, 2	0	R	Н	-CH ₂ -N-C-CF ₃
1318	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Br—CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃

Tab!	le '	1.	1	2	1	
------	------	----	---	---	---	--

	1.121						
Compd No.	R^{1} $(CH_{2})_{j}$	- k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1321	С├─⟨СН₂-	- 1	2	. 0	R	Н	-CH ₂ -N-C- Br CI
1322	C	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1323	C├ \ _CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1324	С⊢СТ}-СН₂-	1	2	0	R	Н	-CH ₂ -N-C- HO CH ₃
1325	С├-{}-СН₂-	1	2	0	R	н	-CH ₂ -N-C
1326	СН-СН2-	. 1	2	0	R	н	-CH ₂ -N-C-
1327	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C
1328	H ₃ C	1	2	0	R	н	-CH2-N-C- Br CI.
1329	н₃с-{	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1330	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-()-CI
1331	H ₃ C-CH ₂ -	1	2	0	R .	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+CH_{3}$ $+CH_{2}-N\cdot C$ $+CH_{3}$

Table 1.122

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	ⁱ R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1334	H ₃ C-CH ₂ -	1	2	0	·R	H ·	$-CH_2-N$ CH_3 H_2N
1335	CH ₃ CH ₂ - CH ₃	1	2	0	R .	н	-CH ₂ -N-C
	CH ₃ CH ₂ -						-CH ₂ -N-C-CH ₃
1337	CH ₃ CH ₂ − CH ₃						-СH ₂ -N-ССI
1338	CH ₃ CH ₂ − CH ₃	1	2 .	0	R	н	-CH ₂ -N-C
1339	CH ₃ N→CH ₂ - CH ₃	1	2 ·	0	R	Н	-CH ₂ -N-C
1340	CH ₃ N CH ₂ - CH ₃	. 1	2	0	R	Н	-CH ₂ -N-C
1341	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
	C├ - CH ₂ -						-CH ₂ -N-C-Sr

Table 1.123

					•		
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1343	CH-2-	2	2	1	. -	Н	-сн ₂ -м-с-Сн ₃
1344	С-СН2-	2	2	1	-	н	-CH ₂ -N-C
1345	CH-CH2-	2	2	1	-	н .	-CH₂-N-C-→CH₃
1346	СН-СН2-	2	2	1	-	н	-CH ₂ -N-C-
1347	СНСН2-	1	2	0	R	Н	-CH2-N-C-S
.1348	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\S
1349	CH ₃	1	2	0	R	Н	-СH ₂ -N-С(S)-СН ₃
1350	ССН2-	2	2	1	-	н	-CH ₂ -N-C-S-CH ₃
1351	C⊢√_CH₂-	1	2	0	R	Н	-CH2-H-G-CH2
	H ₃ C-\CH ₂ -						- 042-H C- 043
1353	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-042-14 C-043

Table 1.124

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	ー(CH ₂) _p
1354	C⊢-{CH₂-	2	2	1	-	н	, -013-11 c B1
1355	CHCH2	1	2	0	R	н	$-CH_2-NCC$ H_2N CN
1356	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1357	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1358	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-CN
1359	CH ₃ CH ₂ − CH ₃	. 1	2	0	R	н	-CH ₂ -N-C-
1360	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	$-CH_{2} \xrightarrow{\text{N-C}} CH_{3}$ $-CH_{3} \xrightarrow{\text{CH}_{3}} CH_{3}$
1361	H ₃ C-(CH ₂ -	1	2	0	R .	н	-сн ₂ -м-с- Н
	CH₃ CH₂- CH₃						-сн ₂ -N-с-СН ₃
1363	CH ₃ CH ₂ - CH ₃	1	,2	0	Ŕ	Н .	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
1364	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ² -N-C-CH ³

Table 1.125

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C- H ₃ C
1366	CH₃ CH₃	1	2	0	R	H	-CH ₂ -N-CCH ₃
1367	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -ү-с- —сн ₃
1368	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1369	CH-2-	1	2	0	R	н	-CH ₂ -N-C
1370	C├ - CH ₂ -		2	0	R	Н	-CH ₂ -N-C-⟨S Br
1371	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-
1372	CH ₂ -	1	2	0	R	Н	-CH2-HC-
1373	H ₃ C-\(\bigc\)-CH ₂ -	1	2	. 0	R	Н	-CH ₂ -N-C-CI
	H₃C()-CH₂-				•	н	CH ₂ CF ₃ -CH ₂ -N-C
1375 (H ₃ C-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SBr

Table 1.126

Compd. No.	R ² (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1376	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1377	H ₃ C-⟨CH ₂ -	1	2	0	R	H	- CH ₂ -N C-
	CH ₃ CH₂- CH₃						-CH ₂ -N-C-CI
1379	CH ₃ CH ₂ − CH ₃	1	2	0	R	· н	-CH ₂ -N-C
1380	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-S Br
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-
1382	CH ₃ CH ₂ − CH ₃	1	2	0	R	H	-012-HC-
1383	CH-CH ₂ -	2	: 2	1	-	н	-CH ₂ -N-C-CI
1384	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SBr
1385	C	2	2	1 -	-	н	-CH ₂ -N-C-
1386	C├ - ⟨¯}-CH₂-	2	2	1	-	Н	-CH ₂ -N-C-

Table 1.127

Compd	R ¹ _(CH)_		•				R ⁴
	R ² (CH ₂) _j		 -			R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1387	CH ₃	1	2	0	R	н	-CH2-N-C
1388	CH₃ N − CH₂− CH₃	1	2	0	R	н.	-CH ₂ -N-C-\ H
	CH₃ CH₂−					н	-CH ⁵ -M-C- 8
1390	H_3C CH_3 H_3C CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1391	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1392	Cl H₃C−CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393 ı	ң,ссн ₂ —()—сн ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1394	O ₂ N - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
395 H	¹ ₂ C=CH - CH ₂ -	1	2	0	Ŗ	Н	-CH ₂ -N-C-CF ₃
	H ₃ C-CH ₂ -						-CH ₂ -N-C-CF ₃
397	Br CH ₂ -	1	2	0	R	н	CH ₂ -N-C

Table 1.128

Compd. No.	R ² (CH ₂) –	k	m	n	chirality	R ³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1398	CH-CH-CH-	1	2		R	н	-CH ₂ -N-C-CF ₃
1399	CH—CH—	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1400	C⊢CH- CH₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\ H
1402	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C- OCH_3$ $+CH_2N OCH_3$
1403	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-√N
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√N H ₃ CS
1406	H ₃ C-CH ₂ -	1	2	0	R`	н	-сн ₂ -м-с Сн ₃
1407	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-_N_

Table 1.129

Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1409	H ₃ C-\CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CH ₃
1410	CH₃ CH₂- CH₃	1 .	2	0	R	н	-CH ₂ -N-C-
1411	CHCH ₂ -	1	2	0	R	н	-CH2-NC-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-NH H ₃ C-C-NH
1413	CH₃ N CH₂- CH₃	· 1	2	0	R	н	-CH ₂ -N-C-C H ₃ C-C-NH
1414	C├ \ _CH ₂ -	2	2	1	-	н	
1415	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
	H ₃ CCH ₂ -					н	-CH ₂ -N-C-SCN H ₂ N
1417	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow SCN$ H_2N
	с⊢(сн₂-					Н	-CH ₂ -N-C-SCN H ₂ N
1419	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.130

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1420	H₃C- ()-CH₂-	1	2	0	R	н	-CH ₂ -N-C-SH
1421	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SH
1422	C⊢(2	2	1		н	-CH ₂ -N-C-SH
1423	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1424	H ₃ C-CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C-
1425	CH ₃ CH ₂ CH ₃	1	2	0	R .	н	-CH ₂ -N-C-
1426	CI—CH₂−	2	2	1	•	н	-CH ₂ -N-C-
1427	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-S H H ₃ C-NH
1428	CI—CH₂-	2	2	ì	-	Н	-CH ₂ -N-C
1429	њссн₂о-{С}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-S
1430	O-{ CH₂-	2	2	i	-	н	-CH ₂ -N-C-

Table 1.131

Compo	$H^{2} \longrightarrow (CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1431	ңссн₂о-{> сн₂	- 2	2	1	-	н	-CH ₂ -N-C
1432	O-CH2-	2	2	1	-	н	-CH ₂ -N-C
1433	ңссн ₂ о-()-сн ₂ -	2	2	1	-	н	-сн ₂ -м-с
1434	H ₂ CCH ₂ O-CH ₂ -	2	2	1	-	н	-CH2-N°C B' HN CH2-OCH2CH6
1435	H ₃ CCH ₂ —CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-
1436	(H6C)2CH-(-)-CH2-	2	2	1	-	н	-CH ₂ -N-C-
1437	H ₃ C(CH ₂) ₂ O{	2	2	1	-	H,	-CH ₂ -N-C
1438	H ₃ CCH ₂	2	2	1	-	н	-CH ₂ -N-C
1439 (HGC)2CH-⟨S)-CH2-	2	2	1	-	н	-CH ₂ -N-C
1440 H	GC(CH ₂) ₂ O	2	2	1	-	H	-CH₂-N-C- Han
441 F	H ₃ CS	2 :	2	1	-	н	-CH ₂ -N-C

Table 1.132

Compd No.	· R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1442	н₃ссн₂-{	2	2	1	-	н	-CH2-MC-CH2CH
1443	(њс)₂сн-СУ-сн-г	2	2	1	-	Н	-CH2-N-C
1444	ң ₅ С(СН ₂) ₂ О{	2	2	1	-	н	-CH2-NC
1445	н₃ссн ₂ —Сн ₂ -	2	2	1	-	Н	-CH2-NC
1446	(HgC)2'CH-CH2-	2	2	1,	-	Н	-CH ² -M-C- HM -CH ² -M-C- Bt
1447	н ₃ С(СН ₂) ₂ О{	2	2	1	-	н	-042-N-C- HN OH2
1448	H₃CS-CH₂-	2	2	1	-	н .	-CH2-N-CH2-SCH
1449	H ₃ CCH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1450	(H ₂ C) ₂ CH ← CH ₂ -CH ₂ -	2	2	1	-	н ,	-CH ₂ -N-C-CF ₃
1451	(H3CCH2)2N-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO————————————————————————————————————	2	2	1	-	· H	-CH ₂ -N-C-CF ₃

Table 1.133

Comp No.	od. R ² (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
1453	н²с(сн²)²о— <u> </u>	l₂- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1454	њссн₂о-{_}сн	₂ - 2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO—CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CF ₃
1456	O-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1457	(CH ₃) ₂ N-(CH ₂ -CH ₂ -	- 2	2	1	-	н	-CH ₂ -N-C
1458	H ₃ CQ	2	2	1	-	н	-CH ₂ -N-C
1459	(H ₃ C) ₂ N-CH ₂ -	2	2	1	- ·	H	$-CH_2-N-C$ H_2N H_2N Br
	H ₃ CQ HO—CH ₂ -					Н	$-CH_2-N-C$ H_2N H_2N
1461	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CHZ-NC-OCH, HN CHZ-OH
1462	H ₃ CQ HO- CH ₂ -	2	2	1	-	н .	-CHZ-N-C
1463	C⊢CH₂-	2	1	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.134

					•		
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G-R^6$
1464	C├ - CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-C-C-3
1465	C-CH ₂ -	2	1	1	-	н	-CH ₂ -N-CCF ₃
1466	C	2	1	1	-	н	-CH ₂ -N-C-S
1467	C├ - CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-
1468	CH2-	2	1	-1		H	-CH ₂ -N-C-
1469	C├ - CH ₂ -	2	. 1	1	-	н	-CH₂-N-C- F
1.470	С⊢—СН₂-	2	1	1		Н	-CH2-N-C- CI CI
1471	с⊢Сту−сн₂∸	2	1	1	-	н	-CH ₂ -N-C-√F
1472	CH ₃	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1473	Br S-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1474	Br S CH ₂ - Cl CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-CF3
					•		

Table 1.135

Comp	d BV.							D4
No.	d. R ² (Cl	-1 ₂) _i	k	m	n	chirality	R³	一(CH ₂) p 1 R ⁵ (CH ₂) q G-R ⁶
1475	a Dig	≻-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1476	Br	CH ₂ -	1	2	0	. _. R	Н	-CH ₂ -N-C-CF ₃
1477	Brook	−Сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	B-Q-3	-ОН ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1479	H₃C-CH CH	3 CH ₂	1	2	0	R _.	н	-CH ₂ -N-C-CF ₃
1480	H ₃ C-(CH	3 CH ₂ - 1	·	2	0	R ·	H	-CH ₂ -N-C-CF ₃
1481	H ₃ C — CH ₃	: :H ₂ 1	í	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br. S-CH	₂ – 1	2	2	0	R	н	-CH ₂ -N-C- CF ₃
1483	H³C O CH	2 1	2	! (0	R	Н	-CH ₂ -N-C-CF ₃
1484	crOSO-	CH2− 1	2	()	R	Н	-CH ₂ -N-C-CF ₃
1485	Н₃С-{_}СЬ	t ₂ - 1	2	0)	R	н	-CH ₂ -N-C

Table 1.136

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1486	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1487	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CI
1488	н₃С-{}Сн₂-	1	2	0	R	н	-CH ⁵ -V-C
1489	H ₃ C-\(\)_CH ₂ -	1	2	0	R	H	CH ₂ -N-C
1490	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1491	H₃C-CH₂-	1.	2	0	R	н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-\(\sigma\)
	CH ₃ CH ₂ - CH ₃					н	-015 Hc - 0
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
1495	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-CH ₃ H ₃ C
1496	CH ₃ N—CH ₂ - CH ₃	1	2.	0	R	Н	-CH ₂ -N-C + H ₃ CH ₃ -CH ₂ -N-C + N H ₃ C -CH ₂ -N-C + N H ₃ C -CH ₂ -N-C + N H ₃ C

Table 1.137

Comp No.	od. R ¹ /(CH ₂)	k	c m	n	chirality	₽³	$-(CH_2)_{p} + (CH_2')_{q} - (CH_2')_{q} - (CH_2')_{q}$
1497	CH³	1	2	0	R	Н	-CH ₂ -N-C:, CH ₃
1498	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
1499	CH ₃ CH ₂ - CH ₃	1	2	0	R	H .	CH ₂ -N-C✓
1500	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√CH ₃
1501	CH₃					н	-CH ₂ -N-C-
	CH ₃ CH ₂ - CH ₃					Н .	$-CH_2-N-C- F$
1503	CH₃ N—CH₂− CH₃	1	2.	0	R	н	-CH ₂ -N-C-OCHF ₂
	H ₂ N-CH ₂ -				•	н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	CH-2-	2	1	1	•	н	-CH ₂ -N-C-Br
1507	CHCH ₂ -	2	i 1	I	-	н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$

Table 1.138

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1508	CHZ−	2	1	1		н	-CH ₂ -N-C
1509	CH-CH ₂ -	2	1	1	-	н	- CH ₂ -N-C-
1510	C├ - CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-S
1511	СН-СН ₂ -	2	. 1	1	-	н	-CH ₂ -N-C-S Br
1512	CHCH ₂ -	2	1	1	-	Н	$-CH_2-N-C-$ H_2N
1513	C├ - CH ₂ -	2	1	1	-	Н	-CH2-N-C
1514	(H ₃ CCH ₂) ₂ N-{}-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1515	HQ H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
	(H ₃ CCH ₂) ₂ N-CH ₂ -					Н	$-CH_2-NC-$ H H_2N
1517	HQ . H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_{2}-N\cdot C$ $+L_{2}N\cdot C$ $+$
1518	HQ H₃CO—CH₂-	2	2	1	-	н	-CHZ-MC-CHZ-OCH

Table 1.139

							
Compd. No.	R ¹ (CH ₂) _j	k 	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1519	HQ H₃CO- CH₂	_ 2	2	1	-	н	-CH ₂ -N-C
1520	Вг—СН2-	1	2	0	R	н	-CH ₂ -N-C-Br
1521	н₃со-{_}-сн₂-	· 1	2	0	R	н	-CH ₂ -N-C-Br
,	CH ₂ -					н	-CH₂-N-C-
	H₃CO H₃CO CH₂-					Н	-CH ₂ -N-C
1524	H ₃ CQ HO—CH ₂ -	1	2	O	R	н	-CH ₂ -N-C-
1525	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
	H ₃ CO-()-CH ₂ -					Н	-CH ₂ -N-C-
	CH ₂ -					н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
	H ₃ CO					Н	-CHM-C
1529 .	H ₃ CQ HO-\CH ₂ -	1 :	2	0	R	н	-CH ₂ -N-C

Table 1.140

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1530	Br—√	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H₃CO-€ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1532	CH₂-	1	2	0	R	H [°]	-CH ₂ -N-C-CF ₃
1533	H ₃ CO — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1534	H ₃ CQ HO————————————————————————————————————	1	2	O	R	н	-CH ₂ -N-C-CF ₃
1535	Br—CH₂-	1	2	0	R 	Н	-CH ₂ -N-C
1536	H₃CO-€ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1537	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	H ₃ CQ H ₃ CO—CH ₂ -						-CH ₂ -N-C-CF ₃
1539	H ₃ CO HO-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1540	Br—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-F

Table 1.141

	R ² / (5/1)	·····	k 	m n	chirality	R ³	-(CH ₂) p (CH ₂) q G−R ⁶
1541	н₃со-{	CH₂−	1	2 0	R	Н	-CH ₂ -N-C
1542	c-C	H ₂	1	2 0	R	н	-CH ₂ -N-C-F
1543	H ₃ CO		1 .	2 0	R	н	-CH ₂ -N-C-⟨ CF ₃
1544	H0-CH	12- 1	2	2 0	R	н	-CH ₂ -N-C
1545	CL_S_CH ₂	- 1	2	? 0	R	Н	-CH ₂ -N-C-CF ₃
1546	H₃CO F F	12- 1	2	0	R	H.	-CH ₂ -N-C-CF ₃
1547 i	H₃CO-{\begin{picture}() \begin{picture}() \begi	12- 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1548	н₃с-{_}сн;	- 1	2	0	R	H	-CH ₂ -N-C - CH ₃ -CH ₃ -CH ₃ -CH ₃
549 · i	H₃С{	- 1	2	0	R	н .	-CH ₂ -N-C
550 F	I₃С-{СН ₂ -	· 1	2	0	R .	Н	-012-H-C-H-C-H-C-H-3
551 н	₃С-{}СН ₂ -	1	2	0	R	H	-CH2-NC-

Table 1.142

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1552	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R	Н	-012-Ho-0
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-\bigvee_{N}CH_{3}$
1556	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{Z}-N-C-\bigvee_{H_{3}}^{C}$
1557	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N H H ₃ C
1558	H ₃ C-CH ₂ -	1	2	0	R .	H	-CH ₂ -N-C- N=N H ₃ C CH ₃
1559	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
1560	H ₃ C-√CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1561	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ CH_3 CH_3 CH_3 CH_3
1562	H ₃ C- ⟨ ¯¯ ⟩ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H O ₂ N OCH ₃

Table 1.143

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	. R ₃	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
1563	H₃C-⟨CH₂-	1	2	0	R	. н	-cH-Hc-
1564	H₃C-⟨¯¯⟩-CH₂-	1	2	0	R	н	-c+2-lt-c-2
1565	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-√
1566	CH ₃ CH ₂ -					н	-CH ₂ -N-C
1567	CH₃ CH₂− CH₃	1	2	0	R	н	-CH2-NC-C-NH2
1568	CH₃ N — CH₂- CH₃		2	0	R	Н	-CH- MC
1569	CH_3 CH_2 CH_3	1	2	0	R	H	-c+:-H.cv.
1570 i	H₃CS-{}CH₂-	2	2	1	-	н	-CH ₂ -N-C
571 F	H₃CS-(CH₂-	2	2	1		н	-CH ₂ -N-C- H ₂ N -CH ₂ -N-C- CH ₂ -N-C- CH ₂ -SCH ₆
572 (N° CH2	2 .	2	1		н	-CH ₂ -N-C-CF ₃
573 n,	°°	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.144

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1574	₩c-Q-ħc-Q-a#-	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
1575	CH-CH2-CH2-	2	2	1.	-	н	-CH ₂ -N-C-CF ₃
1576	N-C	2	, 2	1	-	н	-CH ₂ -N-C
1577	но(сн.) - н с сч	2	2	1	-	н	-CH₂-N-C-CF3
1578	H ₂ C - CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
1579	CH3 P	2	2	1		н	-CH ₂ -N-C-CF ₃
1580	H C-CH ² -	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
1581	CH2-	2	2	1	- .	·H	H°C'&-NH -CH ² -NC- D -R
1582	C├ \ CH ₂ -	2	2	1	-	н .	-042-HC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
1583	CH ₂ -	1	2.	0	R	Н	-CH ₂ -N-C
1584	CH-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N\cdot C$ $+I_{2}N$

Table 1.145

							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p 5 (CH ₂) q G−R ⁶
1585	C├ ─ }─CH ₂ -	1	2	0	·R	H	-CH ₂ -N-C-
1586	С⊢—СН₂-	·1	2	0	R	н	-CH2-N-C-√N-CI
1587	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1588	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C
1589	H ₃ C	1	2	0	R	Н	-CH ₂ -N-C
1590	H₃C-{	1	2	0	R	Н.	$-CH_2-N-C$ H_2N O
1591 1	H₃C-(CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1592 F	H ₃ CCH ₂ -	1	2	0	R	H	-CH ₂ -N-C-\
1593 н	I₃C-⟨CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1594	CH ₃ CH ₃ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
595	CH ₃ CH ₂ -	1 :	2 .	0	R _.	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

Table 1.146

				_			
Compd.	R ² (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1596	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1597	CH ₃ CH ₃	1	2	0	R	н .	-CH2-N-C-
1598	CH ₃ CH ₂ - CH ₃		2	0	R	н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-СH ₂ -N-С-СН ₃
1600	C	2	2	1,	· -	н	$-CH_2-N-C$ H_2N CF_3
1601	CH-CH ₂ -	2	2	1	-	н 	-CH ₂ -N-C
1602	C├ - CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$
1603	СН ₂ —СН ₂ —				•	н .	-сн ₂ -N-С-()
1604	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C
1605	C	2	2	1	-	н	-CH ₂ -N-C-√CH ₃
1606	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-SCF ₃ -CH ₂ -N-C-SCF ₃
	•						

Table 1.147

							
Compd. No.	R ² (CH ₂) _j	- k	m	n	chirality	. R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1607	H³C-∕CI	H ₂ 1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	сн—Сн	₂- 2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1610	CE3 P	_{CHz} - 2	2	1	-	. н	CH ₂ -N-C-CF ₃
1611	CH CHECK	_{сн₂-} 2	2	1	-	н	-CH₂-N-C-CF3
1612	н ² со(сн ⁹⁴ - ^Н с()-	сң- 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1613	н°<Сн, }<	₀₄ - 2	2	1	-	Н	-СH ₂ -№ С
1614	F₃CS-{}-CH	₂ - 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1615	F₃CS-{}_CH	₂ - 2	2	1	-	Н	-CH₂-N-C-CF₃
1616	F₃CS-{	₂− 2	2	1	-	· н	-CH ₂ -N-C-
1617	F3CS(CH2	e 2	2	1	-	. н	-CH ₂ -N-C

Table 1.148

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
1618	. HQ H₃CO-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1620	HQ H ₃ CO—CH ₂ -	1	2	0	R	. H	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO-CH ₂ -	1	2	0	Ŗ	н	-CH ₂ -N-CF
1622	HQ H ₃ CO—CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃ F
1623	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1624	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃
	HO-CH ₂ -						-CH ₂ -N-C-CF ₃
1626	HO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1627	HOCH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1628	H ₃ CS—CH ₂ -	1	2	0	R .	н	$\begin{array}{c} & & CF_3 \\ -CH_2 - N - C - CF_3 \\ -CH_2 - CH_2 - C - CF_3 \\ -CH_2 - CH_2 - C - C - C - C - C - C - C - C - C - $

Table 1.149

							
Compd. No.	R^{1} (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p - (CH ₂) _q - G-R ⁶
1629	н₃сѕ-{_}-сн₂-	. 1	2	0	R	н	-CH ₂ -N-C
1630	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1632	CF_3 CI CH_2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1634 ((њс)₂сн-{}-ан₂-	1	.2	0	R	Н	-CH ₂ -N-C-€.
1635	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
•	H ₃ C-CH ₂ -				R	н	-CH ₂ -N-C
1637	CH³− CH³−	1	2	0	R	н	-CH ₂ -N-C-(CH ₂)₄CH ₃
1638	CH ₃	1	2	0	R	н.	-CH ₂ -N-C
639	CH ₃ N CH₂- CH₃	1	2	0	R	Н	-сн³-И-с-осн³сн³ Б

Table 1.150

•							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1640	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C
1641	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-___\CF2CHCIF
1642	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C- N$ O_2N-N
	CH ₃ N CH ₂ − CH ₃						- н 🖵
1644	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1645	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1646	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ ———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	, 1	2	0	R	н	-CH₂-N-C-CF3

Table 1.151

Comp No.	id. R ¹ (CH ₂) _j	k m n	chirality	R³	-(CH ₂) _p (CH ₂) _q -G-R ⁶
1651	H3C(CH2)3————————————————————————————————————	2 2 2 1	-	Н	-CH ₂ -N-C- HN CH ₂ -(CH ₂) ₃ C H ₃
1652	н,с(сн,),—С—сн	- 2 2 1	-	н	-CH ₂ -N-C
1653	н ₃ с(сн ₂) ₂ —Сн ₂	- 2 2 1	-	н	-CH ₂ -N-C
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2 2 1	-	н	-CH ₂ -N-C-Br
1655	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2 2 1	-	Н	-CH2-N-CH2-CH3-CH3
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2 2 1	-	н	-CH ₂ -N-C-
1657	H ₃ C(CH ₂) ₂ —CH ₂ -	2 2 1	-	н	-CH2-N-C-
1658	H ₃ C(CH ₂) ₂ {	2 2 1	-	н	-CH ₂ -N-C
1659	CH2-	2 2 1	-	н	$-CH_2-N \cdot C - \bigcirc$ $H_2 \cdot N \cdot CI$
1660	Br—CH₂-	1 2 0	R	н	-CH ₂ -N-C-CF ₃
661	Br—CH ₂ -	1 2 0	R	н	-CH ₂ -N-C

Table 1.152

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1662	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1663	ВСН ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1664	H₃CS	2	2	1	-	н	$-CH_2-N-C-$ H H_2N
1665	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1666	H ₃ CS-CH ₂ -	2	2	1	- •	Ĥ	$-CH_{2}-NC-$ $H_{2}N$
1667	н₃ссн₂—Сн₂-	2	2	1	<u>.</u>	Н	-CH ₂ -N-C-Br
1668	н₃ссн ₂ —Сн ₂ -	2	2	1		·H	$-CH_2-N - C - F$ H_2N
1669	ң₃ссн₂—Ѿ—сн ₂ -	2	2	1	-	Н	$-CH_2-NC$ H_2N
1670	H ₃ CCH ₂ ——————CH ₂ -	2	2	1	-	H .	$-CH_2-N-C \xrightarrow{Q}$ H_2N
1671	ӊссн₂—Ѿ—сн ₂ -	2	2	· 1		н	-CH ₂ -N-C
1672	ңссн₂—Ѿ—сн ₂ -	2	. 2	1	-	н	$-CH_{2}-N-C$

Table 1.153

Compo	$H = \frac{R^1}{R^2} - (CH_2)_j - \frac{R^2}{R^2}$	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂)q G-R ⁶
1673	н₃ссн₂— Сн₂-	2	2	1	-	н	-CH₂-N-C-S-CI
1674	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OBr
1675	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-FF
1676	F—CH₂-	2	2	1	-	н	$-CH_2-N^{-}C - $ $+ C + C - $ $+ C + C - $ $+ C + C - $
1677	F(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1678	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1679	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1680	FCH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1681	_ FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1682	FCH ₂ -	2	2	1	-	н	-CH2-N-C- HC- CI
1683	O-H°C-O-CH2-	2	2	1	•	н	-CH ₂ -N-CBr

Table 1.154

							D4
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1684	₩ c- C+12-	2	2	1		н	-CH ₂ -N-C
1685	M C- CH₂-	2	2	1	-	н	$-CH_2-NC-$ H_2N
1686		2	2	1	-	н	-CH ₂ -N-C
1687	H C-CH3-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1688	— H c − CH²-	2	2	1	-	н	-CH ₂ -N-C
1689	H c-CH2-	2	2	1	-	н .	$-CH_2-N-C$ H_2N H_2N
1690	H. C-(-)-CH ² -	2	2	1		,H	-CH ₂ -N-C
	N C − CH2-					н	-CH ₂ -N-C
1692	CH ₃	1	2	0-	R	Н	-CH ₂ -N-C-Br
1693	H ₃ C-CH ₂ -	. 1	2	0	R	н	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$
1694	CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.155

Compd No.	· R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1695	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1696	H ₃ C————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
1697	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1698	CH ₃	1	2	0	R	н.	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1699	CH ₃	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
1700	CH ₃	1	2	.0	R	. н	-CH ₂ -N-C
1701	H ₂ C ₌ CH-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	H ₃ CO-CH ₂ -				R	н	-CH ₂ -N-C
1703	O—CH₂-	1	2	0	R	н	$-CH_2-NCC-$ H_2N
1704	HOCH ₂ -	1	2	0	R	Н	$-CH_2-NC- CF_3$ H_2N
1705	CH_CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+_{2}N \cdot C$ $-CH_{2}-N\cdot C$ $+_{2}N \cdot C$ $+_{2}N \cdot C$ $+_{2}N \cdot C$ $+_{2}N \cdot C$ $+_{3}CF_{3}$ $-CH_{2}-N\cdot C$ $+_{4}N \cdot C$ $+_{2}N \cdot C$

Table 1.156

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1706	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1707	H₃CS-CH₂-	1	2	0	R	н.	$-CH_2-N$ H_2N CF_3 H_2N
1708	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1709	(HbC)2CH-(T)-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1710	H ₃ C Br—CH ₂ - H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH ₃	1	2	0	R	н	-CH₂-N-C-CF3
1712	HO_CH ₂ C	1	2	0	R	' н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH ₂ -				R	н	-CH ₂ -N-C-⟨S
1714	HQ . H ₃ CO—CH ₂ -	1	2	0	Ř	н	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.157

1717 $H_3CO - N - CH_2 - 1 2 0 R H $	Comp No.	od. R^1 $(CH_2)_i$	k	с п	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1719 $\stackrel{C}{\stackrel{N}{}} CH_2^-$ 1 2 0 R H $\stackrel{CF_3}{} CH_2^- \stackrel{N}{} CCF_3$ 1720 $\stackrel{H_5CO-\stackrel{C}{}}{} CH_2^-$ 1 2 0 R H $\stackrel{C}{} CH_2^- \stackrel{N}{} CCF_3$ 1721 $\stackrel{H_5CCH_2}{} CH_2^-$ 1 2 0 R H $\stackrel{C}{} CH_2^- \stackrel{N}{} CCF_3$ 1722 $\stackrel{C}{} CH_2^-$ 1 2 0 R H $\stackrel{C}{} CH_2^- \stackrel{N}{} CCF_3$ 1723 $\stackrel{C}{} CH_2^-$ 1 2 0 R H $\stackrel{C}{} CH_2^- \stackrel{N}{} CCF_3$ 1724 $\stackrel{C}{} CH_3^-$ 1 2 0 R H $\stackrel{C}{} CH_2^- \stackrel{N}{} CCF_3$ 1725 $\stackrel{C}{} H_3C \stackrel{C}{} CH_2^-$ 1 2 0 R H $\stackrel{C}{} CH_2^- \stackrel{N}{} CCF_3$	1717	H ₃ CO-()-CH ₂	_ 1	2	0	R	Н	
1720 $\xrightarrow{H_0CO-C} \xrightarrow{CH_2-} \xrightarrow{CH_2-} \xrightarrow{1} \xrightarrow{2} \xrightarrow{0} \xrightarrow{R} \xrightarrow{H} \xrightarrow{CH_2-N-C} \xrightarrow{CF_3} \xrightarrow{CH_2-N-C} \xrightarrow{CH_2-N-C} \xrightarrow{CF_3} \xrightarrow{CH_2-N-C} \xrightarrow{CH_2-N-C} \xrightarrow{CF_3} \xrightarrow{CH_2-N-C} \xrightarrow{CH_2-N-C} \xrightarrow{CF_3} \xrightarrow{CH_2-N-C} \xrightarrow{CH_3} \xrightarrow{CH_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CF_3} \xrightarrow{CH_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CF_3-N-C} \xrightarrow{CF_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CF_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CF_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CF_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CF_3-N-C} \xrightarrow{CF_3-N-C} \xrightarrow{CH_3-N-C} \xrightarrow{CF_3-N-C} CF_$	·1718	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1721 H_3CCH_2 1 2 0 R H $-CH_2$ 1 2 0 R $-C$	1719	€ N - CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1722 CH_{2}^{-} 1 2 0 R H $-CH_{2}^{-}$ 1 2 0 R $-CH_{2}^{-}$ 1 $-CH_{2}^$	1720	H ₃ C- CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1723 CH_2 1 2 0 R H $-CH_2$ 1 2 0 R	1721	Н₃ССН₂-{	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1724 $H_{3}C \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ 1 2 0 R $-CH_{2}$ 1 2	1722	O-CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
1725 H_3C CH_2 1 2 0 R H $-CH_2$ CF_3 $-CH_2$ 1 2 0 R H $-CH_2$	1723	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1726 н₃ссн₂—Сн₂- 1 2 0 R н СF₃ -Сн₂-N-С-—F	1724	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1726 н₃ссн₂—Сн₂- 1 2 0 R н СF₃ -Сн₂-N-С-—F	1725	CH ₃ H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1727 OCH ₂ - 1 2 0 R H OCH ₂ -N-C							н	-CH ₂ -N-C
- H \=-/	1727	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF

Table 1.158

Compd.	R ¹ (CH ₂) ₁	k	m	'n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1728	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F
1729	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1730	H ₂ C C C C C C C C C C C C C C C C C C C	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1731	H ₃ CO H ₂ -	1	2	0	R	н	-CH₂-N-C
1732	HOCH ₂ ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1733	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- CF ₃ CF ₃
1734	H ₃ CS—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1735	H ₃ CCH ₂ —CH ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1736	CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1737	CH ₃	1	2	0	R	Н	-CH₂-N-C-←F
1738	H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H F

Table	1.	. 1	5	9
-------	----	-----	---	---

Comp	od. R^{2} $(CH_{2})_{j}$						
No.	R ² /(01/2/j		m	n 	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
1739	(H ₆ C)₂CH-{}-CH₂	- 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1740	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1741	H₃CS-(T)-CH₂-	1 .	2	0	R	н	-CH ₂ -N-C-
1742	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1743	O CH₂-	1	2	0	R	н	-CH ₂ -N-C-Br
	H ₃ C-CH ₂ -CH ₂ -				R	н	-CH ₂ -N-C-
745	H ₃ C — CH ₂ — H ₃ C	1	2	0	R	Н	-CH₂-N-C-
746	(HgC)2CH	1	2	0	R	н	-CH ₂ -N-C-Br
747	CH ₂ -				R	н	-CH ₂ -N-C → Br H ₂ N
748	ң₀ссн₂-√О−сн₂-	1	2	0	Ř	н	-CH ₂ -N-C-Br
749	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$ Br $-CH_{2}-N-C$ $H_{2}N$

Table 1.160

							-	
Compd No.	(CH ₂)	_	k	m	п	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
1750	CH ₂	·	1	2	0	R	H	-CH ₂ -N-C
1751	н₃СЅ-{_}сі	H ₂ -	1	2	0	·R	н	-CH ₂ -N-C-OCF ₃
1752	ӊссн ₂ —С	H ₂ -	1	2	0	R .	н	-CH ₂ -N-C-
1753	0 Сн₂		1	2	0	R	· н	-CH ₂ -N-C
1754	H ₃ C-CH ₃	2	1	2	0	R	H.	-CH ₂ -N-C-OCF ₃
1755	H ₃ C CH ₃ H ₃ C CH ₂	<u>-</u> 1		2	0	R	н	-CH ₂ -N-C-
1756	(њс)₂сн-{}-а-	I _Z 1	٠	2	0	R	н	-CH ₂ -N-C
1757	Br Br CH ₂ -	· 1		2	0	R	н	-CH ₂ -N-C-CF ₃
1758	H ₃ CO————————————————————————————————————	₂ - 1		2 _.	0	R	Н	-CH ₂ -N-C-CF ₃
1759	н₃с-{_}сн₂	- 1		2	0	R	н .	-04-FHC
1760	H ₃ C-\CH ₂ -	· 1		2	0	R	н	-OH2-N-C

	Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	. Ka	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
,	1761	H ₃ C-\CH ₂ -	- 1	2	0	R	Н	-CH-NC-H-C-H-C1
	1762	CH ³	1	2	0	R	н	
	1763	СН2−	2	2	0	-	н	о. ° Н
	1764	СН2−	2	2	0	-	Н	-CH ₂ CH ₂ -N-C
	1765	CH₂-	2	2	0		Н	(S) OCH ₂ CH ₃ -CH-N-C
1	1766	—CH₂-	· 2	2	0	-	Н	(A) O OCH2CH3 -CH-N-C- CH2CH3 -CH2CH(CH3)2
1	767	С⊢—СН₂-	1	3	1	-	Н	-CH ₂ -N-C-
1	768	СН ₂ —	1	3	1	- ,	н	-CH2CH2-N-C-
10		CH ₃ CH ₂ CH ₃				R	Н	-CHZ-NC-CCH3
17	770	CH ₃ CH ₂ -	1	2 (0	R	н	-CH2-NC-HNC-N-CI
17	71	CH ₃ CH ₃ CH ₂ CH ₃	1 ;	2 ()	R	н	(H ₃ C) ₃ C-ÇH-N-C H ₃ C H O

Table 1.162

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	. Ł3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1772	CH ₃	1	2	0	R	н	-CH-H-C- H-C-H-C- H-C-H-C-
1773	CH ³	1	2	0	R	н	H ₃ C H ₃ C
1774	CH ₃	1	2	0	R	н	-CH2-HC-N-C-N-C-N-C-OCH3
1775	HO-√	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1776	H ₃ CO—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1777	CH ₂ −CH ₂ −	2	2	1	· -	н	$-CH_2-N-C-$ H_2N H_2N
1778	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
1779	CH2-	2	2	1	-	н .	$-CH_2-N-C \longrightarrow H_2N$
1780	BrCH ₂					н.	-CH ₂ -N-C- H H ₂ N
1781	HO-{}-CH ₂ -	2	2	1	: -	н	$-CH_2-N-C$ H_2N
1782	H ₂ C=CH-{\bigce}-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$

. .

	 		·- <u>-</u>				
Compo No.	$\begin{array}{ccc} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	- k	m	n	chirality	⁻ R³	—(CH ₂) _p
1783	NC-(-)-CH2	₂− 2	2	1	-	н	-CH ₂ -N-C- H H ₂ N
1784	CH₂-	2	2	1	•	н ·	-CH ₂ -N-C-CF ₃
1785	CH ₃ (CH ₂) ₂ —————————————————————————————————	H ₂ - 2	2	1	-	н	$-CH_2-N-C-$ H_2N CF_3
1786	CH ₂ -	. 2	2	1	-	н	$-CH_2-N-C H_2N$
1787	CH ₃ (CH ₂) ₂ —CH	b− 1	2	0	R	н	$-CH_2-N-C$ H_2N
1788	CH ₃	_ 2	2	1	•	H	-CH ₂ -N-C- H ₂ N
1789	н₃со-{	- 2	2	1 ·	-	н	-CH ₂ -N-C
17 <u>9</u> 0	CI—CH2-	1	2	0	S	H	$-CH_2-N-C-$ H_2N
1791	CI—CH ₂ —	1	2	0	S	н	$-CH_2-N-C$ H_2N O
1792	CH ₃	2	2	1	•	н	-CH ₂ -N-C
1793	CI—CH₂-	2	2	1	-		-CH ₂ -N-C-F H ₂ N

Table 1.164

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	. La	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1794	H₃C-{\bigcrup-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1795	O-CH₂-	2	2	1		Н	$-CH_2-N-C - F$ H_2N
1796	BrCH₂-	2	2	1	-	н	-CH ₂ -N-C
1797	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1798	H ₃ CO-CH ₂ -	2	2	1	-	H .	$-CH_2-N-C$ H_2N H_2N
1799	H ₂ C=CH-\CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1800	NC-CH ₂ -	. 2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1801	CH₂-	. 2	2	1	-	Н	$-CH_2-N-C$ H_2N F
1802	HO-√CH ₂ - H ₃ CCH ₂ O	1	2	0	R	н	$-CH_2-N-C- \longrightarrow H_2N$
1803	HO-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$
1804	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C-F H

Table 1.165

Comp No.	d. R^{1} (CH_{2})	k	m	n	chirality	R³	-(CH ₂) p (CH ₂)q G-R [€] R ⁵
1805	B	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	н₃со-()-сн₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	HO-CH ₂ -	1	2	.0	R	н	-CH ₂ -N-C-SCF ₃
1808	H ₃ CO−CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1809	но-{	1	2	0	R	H	-CH ₂ -N-C-SCF ₃
1810	CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-CH₂-	1	2	0	R	, Н	-CH ₂ -N-C-SCF ₃
1813	Н₃ССН₂-СН₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
	CH ₂ -					н	-CH ₂ -N-C-SCF ₃
1815	CH ₃ H ₃ C−CH ₂ −	1	2	0 .	R	н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ (CH ₂),-	k	m	n	chirality		$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1816	(CH ₃) ₂ C H-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1819	H ₃ CO-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1820	H ₃ CQ HO−CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C
1821	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1822	HOCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1823	O CH₂-	1	2	0	R ,	н	-CH ₂ -N-C-OCHF ₂
1824	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1825	H ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂ -CH ₂ -N-C-OCHF ₂
1826	H₃CCH₂—CH₂−	1	2	0	R	н	-CH ₂ -N-C

Table 1.167

Compd. R_2 (CH ₂)— k m n chirality R_3 — (CH ₂) $\frac{R_4}{R_3}$ (CH ₂) $\frac{R_4}{R_4}$ (CH ₂) $\frac{R_4}{R_4}$ (CH ₂) $\frac{R_4}{R_5}$ (CH ₂) (CH ₂) (CH ₂										
1828		Compd. No.	R^{1} (CH ₂)	j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1829 $H_{3}C \leftarrow CH_{2} - 1 2 0 R H CH_{2} - N C \leftarrow CH_{2} - 1 2 0 R H CH_{2} - N C \leftarrow $		1827	о-()-сн	2-	1	2	0	R	Н	-CH ₂ -N-C-COCHF ₂
1830 $(CH_3)_2CH \longrightarrow CH_2 - 1 2 0 R H $		1828	H ₃ C-CH ₃	H ₂ —	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1831 $B = CH_2 - 1 2 0 R H $		1829	H ₃ C CH ₃	12-	1	2	0	R	н	-CH ₂ -N-C
1832 $H_3CO \longrightarrow CH_2 - 1$ 2 0 R H $-CH_2 - N - C \longrightarrow C(CH_3)_3$ 1833 $H_3CO \longrightarrow CH_2 - 1$ 2 0 R H $-CH_2 - N - C \longrightarrow C(CH_3)_3$ 1834 $H_3CO \longrightarrow CH_2 - 1$ 2 0 R H $-CH_2 - N - C \longrightarrow C(CH_3)_3$ 1835 $HO \longrightarrow CH_2 - 1$ 2 0 R H $-CH_2 - N - C \longrightarrow C(CH_3)_3$ 1836 $O \longrightarrow CH_2 - 1$ 2 0 R H $-CH_2 - N - C \longrightarrow C(CH_3)_3$		1830	(CH₃)₂CH-{\bigce}-C	:H _Z -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1833 $H_0 \leftarrow CH_2 - 1$ 2 0 R H $-CH_2 - N \leftarrow C(CH_3)_3$ 1834 $H_3CO \leftarrow CH_2 - 1$ 2 0 R H $-CH_2 - N \leftarrow C(CH_3)_3$ 1835 $HO \leftarrow CH_2 - 1$ 2 0 R H $-CH_2 - N \leftarrow C(CH_3)_3$ 1836 $-CH_2 - 1$ 2 0 R H $-CH_2 - N \leftarrow C(CH_3)_3$		1831	вг-СН2	<u>-</u>	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1834 $H_{3}CO \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ N C C (CH ₃) ₃ 1835 $HO \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ N C C (CH ₃) ₃ 1836 $\longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ N C C (CH ₃) ₃		1832	H₃CO-{}C⊦	1 ₂ —	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1835 $HO \longrightarrow CH_2-$ 1 2 0 R H $-CH_2-N-C \longrightarrow C(CH_3)_3$ 1836 $O \longrightarrow CH_2-$ 1 2 0 R H $-CH_2-N-C \longrightarrow C(CH_3)_3$		1833	H ₃ CQ HO−⟨CH ₂ -	_	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1836 CH ₂ - 1 2 0 R H -CH ₂ -N-C- C(CH ₃) ₃		1834 _H	HQ H₃CO-⟨}-CH	2 [—]	1	2	0	R	H :	-CH ₂ -N-C-(CH ₃) ₃
—————————————————————————————————————	1	835	HO ~ ()−CH ₂ −	-	1	2	0 .	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1837 — CH ₂ — 1 2 0 R H — CH ₂ —N-C— C(CH ₃) ₃	1	836	O-√		1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
	1	837	CH ₂ -		1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃

Table	1.1	68
-------	-----	----

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	−(CH ₂) _p + (CH ₂) _q G−R ⁶
1838	H₃CS-⟨}CH₂-	1	2	0	Ŕ	н	-CH2-N-C-(CH3)3
1839	н₃ссн ₂ {Сн ₂ -	1	2	0	R	. н	-CH ₂ -N-C-(CH ₃) ₃
1840	O-CH2-	1	2	0	R ·	н	-CH ₂ -N-C-C(CH ₃) ₃
	CH ₃ H ₃ C ← CH ₂ -					н	-CH ₂ -N-C-(CH ₃) ₃
1842	H_3 C CH_3 CH_2 CH_2	1	2	0	R .	Н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ C H————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
	H₃CCH₂-CH₂-					н	-CH ₂ -NC-CH ₂ CH ₃
1846	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-SCF ₃
	(CH ₃₎₃ C-\CH ₂ -					н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-

Table 1.169

Comp No.	od. R^{1} $(CH_{2})_{j}$	k	m	n	chirality	₽³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1849	-CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1850	H₃CCH₂—⟨¯)—CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1851	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-NG-
1852	O CH₂-				R	н	-CH ₂ -N-C
1853	H ₃ CQ HO—CH ₂ −	1 .	2	0	R	н	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-
1855	H ₃ CCH ₂ -CH ₂ -			0	R	н	-CH ₂ -N-C-
1856	H ₃ C-CH ₂ -	1 2	2 ()	R	н	-CH ₂ -N-C
1857	CH ₂ -	1 2	? 0	,	R	н	-CH ₂ -N-C-
1858	Вг{СН₂-	1 2	0		R	н	$-CH_2-N-C$ H_2N H_2N
1859	H ₃ CO-CH ₂ -	1 2	0		R	Н	-CH ₂ -N-C

_	•			_	_	-	_
1	а	D	le		. I	-	υ

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
1860	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	- CH ₂ -N-C
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1862	HOCH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
1863	O-CH₂-	1	2	0	R	н	$-CH_2-N-C \longrightarrow Br$ H_2N
1864	H ₃ CS-CH ₂ -	1	2	0	R		$-CH_2-N-C \longrightarrow Br$ H_2N
1865	CH2-				R	н	-CH ₂ -N-C
1866	CH ₃ H ₃ C CH ₂ -	1	2	Ó	R	н	$-CH_2-N-C$ H_2N H_2N
1867	(CH ₃) ₂ C H-√CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C
1868	(CH ₃) ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1869	Br—CH₂-	1	2	0	R	H ·	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
1870	H₃CO	1	2	0	R	Н	$-CH_2-N^2C \xrightarrow{I}$ H_2N

Table 1.171

	m.1							
Com No	pd. H2 (1	CH ₂) _j —	k	. m	n n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1871	H ₃ CQ) −СН ₂ −	1	2	0	R	н	-CH ₂ -N-C-
1872	H ₃ CO-	_}_CH²-	. 1	2	0	R	H	-CH ₂ -N-C
1873	но-(}-сн ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1874		−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-
1875		−CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-
1876	н₃сѕ-{)—CH2—	1	2	0	R	н	$-CH_2-N-C$ H_2N
1877	Н₃ССН₂—{	}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1878	\sim	CH ₂ -			0	R	Н	-CH ₂ -N-C-
1879	H₃C → C	H₃ -CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1880	(CH₃)₂CH—) -сн _г -	1	2	0	R	н	-CH ₂ -N-C
1881	(сн _{э)} , с-	−сн ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$

Table 1.172

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
1882	Br—{	1	2	0	R	Н	-CH ₂ -N-C
1883	н₃со-{_}-сн₂-	1	2	0	R	Н	-CH ₂ -N-C
1884	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N NO_2
1885	HQ	1	2	0	R ·	н	$-CH_2-N-C$ H_2N NO_2
1886	HO-{	1	2	0	Ŗ	н	$-CH_2-N-C$ H_2N NO_2
1887	CH ₂	1	2	0	R	н .	$-CH_2-N-C$ H_2N NO_2
1888	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1889	H₃CS-{}-CH2-	1	2	0	R	Ħ .	$-CH_2-N-C$ H_2N H_2N
1890	н₃ссн₂—⟨}_сн₂-	. 1	2	0	Ŕ	н	-CH ₂ -N-C-\(\sigma\) H ₂ N\(\sigma\)
1891	0 ← CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\ H ₂ N
1892	CH ₂ -	.1	2	0	R	н .	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$

Table 1.173

Com No	pd. R ¹ /(CI	Ч ₂);—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1893	=	:H ₃ −CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C
1894	. (CH ₃) ₂ C H-	∕−сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1895	(CH ₃) ₃ C-	⊢СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1896	H ₃ CO−	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1897	н,сѕ-{-}-	·CH₂−	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1898	H3CCH2-	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1899	(CH ₃) ₂ CH-				0	R	н	$-CH_2-N-C$ H_2 H_2 N
1900	H ₃ CQ HO—CI	H ₂	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
1901	H ₃ C(CH ₂) ₂ —	·CH ₂ ~	1	2	0	R	н	-CH ₂ -N-COCF ₃
1902	о-(С)-сн	2 -	1 :	2	0	R	н .	-CH ₂ -N-C
1903	(CH ₃) ₂ C H	он _т 2	? 2	2	1	-	Н	-CH ₂ -N-C-OCF ₃

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	H ₂ C(CH ₂) ₂	2	2	1	-	H	-CH ₂ -N-C
1905	CH2−CH2−	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1906	CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1907	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1908	H ₃ CO-CH ₂ -	1	2	0	R	н	CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SOCF ₃
1910	Br—⟨¯¯)—CH₂−	2	2	1	-	н	-CH ₂ -N-C
1911	CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
1912	HO-CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2 H_2 H_2 OCF_3
1913	CH ₃	2	2	1	-	н	-CH ₂ -N-C
1914	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_{2}-N$ $-CH_$

194

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	ー(CH ₂) p G -R ⁶ (CH ₂) q G-R ⁶
1915	H ₃ CCH ₂ Q HO————————————————————————————————————	_ 1	2	0	R	Н	-CH ₂ -N-C
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	H ₂ N OCF ₃
1917	H ₃ CC H ₂ Q HO————————————————————————————————————	. 2	2	1	-	н	$-CH_2-N-C H_2N$ $CH_2-N-C H_2N$
1918	H ₃ C HO—CH ₂ —	2	2	1		н	$-CH_2-N-C$ H_2-N H_2-N H_3-N OCF_3
1919	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1920	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1921	CH ₂ —CH ₂ —	1	2	0	R	н	$-CH_2-N\cdot C-$ $H_2 N$ $H_2 N$
1922	CH2-	2	2	1	-	Н	-CH ₂ -N-C-OCF ₃
1923	Br-{	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
924 н	2CO-CH2-	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
925	F(-)	2	2	1	-	н	-CH ₂ -N-C-

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	ͳ	-(CH ₂) р (CH ₂) q G-R ⁶
1926	F-CH ₂ -	2	2	1	•	. н	-CH ₂ -N-C-SCF ₃
1927	HOCH ₂ -	2	2	1	-	н	-СH ₂ -N-С
1928	O-CH₂-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1929	CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1930	H ₃ CS-{	2	2	1	· <u>-</u>	н	-CH ₂ -N-C-SCF ₃
1931	н ₃ ссн ₂ — Сн ₂ -	2	2	1	-	Н	- CH ₂ -N-C
1932	O-√CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
1933	CH _{3.}	2	2	1	-	. н	-CH ₂ -N-C-SCF ₃
1934	CH ₃ H ₃ C ← CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1935	O ₂ N-{CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1936	H ₃ C-()-CH ₂ -	2	· 2	1	•	н	-CH ₂ -N-C-SCF ₃

Co	mpd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G-R^6$
								R ⁵
19:	37	(CH ₃)₂CH-CH ₂ -	- 2	2	1	-	н	-CH ₂ -N-C-SCF ₃
190	38	Вг—СН₂-	2	2	1	-	H.	-CH ₂ -N-C
193	39	H ₃ CO-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
194	10	F(-)-CH ₂ -	2	2	1		н	-CH ₂ -N-C
194	1	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
194	2	HO{CH₂-	2	2	1	-	н	-CH ₂ -N-C- O Br CH ₃
194	3	O ← CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1944	4	CH ₂ -	2	2	1	· ,	Н	-CH2-N-C
1945	5 ⊦	H₃CS-⟨CH₂-	2	2	1	-	н	-CH2-N-C-CH3
1946	S н _.	GCCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C → CH ₃
1947	•	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

1948 $H_3C - CH_2 - 2 2 1 - H - CH_2 - N C $	r
H ₃ C	-CH ₃
1950 O ₂ N CH ₂ - 2 2 1 - H	r -CH ₃
-CH ₂ -N-C-	r -CH ₃
1951 H₃C-⟨	r -CH₃
1952 Br—CH ₂ — 2 2 1 - H —CH ₂ —N-C	3r F
1953 H₃CO-CH₂- 2 2 1 - H —CH₂-N-C-	3r _{∙.} —F
1954 F—CH₂- 2 2 1 - H —CH₂-N-C	3r − F
1.955 F-CH ₂ - 2 2 1 - H -CH ₂ -N-C-	F
1956 но—СH₂— 2 2 1 - H —СH₂—N-С—Н	-F
1957 CH ₂ - 2 2 1 - H	Br ─F
1958 — CH ₂ - 2 2 1 - H — CH ₂ -N-C	

Table 1	.1	7 9	3
---------	----	-----	---

Comp No.	$ \begin{array}{c c} & R^2 \\ \hline & R^2 \end{array} $	k	c m	'n	chirality	R³	$-(CH_2)_{\rho} + (CH_2)_{\overline{q}} G - R^{\epsilon}$
1959	H₃CS-{\bigc\}-CH	₁₂ - 2	2	1	-	н	-CH ₂ -N-C
1960	н₃ссн₂—⟨СР	н₂- 2	2	1	-	н	-CH ₂ -N-C
	CH ₂ -				-	Н	-CH ₂ -N-C
	H ₃ C CH ₂				•	н	-CH ₂ -N-C
1963	H ₃ C CH ₂	- 2	2	1	•	н	-CH₂-N-C-Br
1964	O ₂ N-CH ₂	- 2	2	1	-	Н	-CH ₂ -N-C
1965	H ₃ C-(-)-CH ₂ -	- 2	2	1	-	. н	-CH ₂ -N-C
1966	(CH ₃) ₂ CH-CH ₂	- 2	2	1		H.	-CH ₂ -N-C
1967	B	2	2	1	-	Н	-CH ₂ -N-C
1968	H₃CO-CH₂-	2	2	1	<u>.</u>	н	-CH ₂ -N-C-
1969	HO-CH ₂ -	2	2	1		H	-CH ₂ -N-C
							

T	้ล	h	le	1	1	Я	n

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	H³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1970	O ← CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1972	H ₃ CSCH ₂ -	2	2	1	-	н	-CH2-N-C-√-F H2N
1973	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	$-CH_2-NC-$ H_2N
1974	CH ₃	2	2	1	-	н	$-CH_2-N^{-}C$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1		н	$-CH_{2}-NC-$ $H_{2}N$
1976	H ₃ C-CH ₂ -	2	2	. 1	· -	н	$-CH_2-NC-$ H_2N
1977	NC-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1978	(CH ₃) ₂ CH	2	2	1	-	Н	-CH ₂ -N-C-
1979	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1980	CH ₂ -	2	2	1		H	$-CH_2-N+C$ H_2N

Compo	$H^{1} \longrightarrow (CH_{2})_{j}$	k	m	n	chirality	Ř³	-(CH ₂) _p (CH ₂) _q G-R ¹
1981	O ₂ N-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1982	NC-⟨CH2-	2	2	1	-	н	-CH ₂ -N-C
1983	(CH ₃) ₂ C H-⟨ CH ₂ -	- 2	2	1	-	Н	$-CH_2-N$ C H_2N F H_2N
1984	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1985	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1986	но-{_}-сн₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1987	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1988	CH ₂ -	2	2	1	- -	Н	-CH ₂ -N-C
1989	H₃CS-{}CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1990	H ₃ CCH ₂ -CH ₂ -	2	2	1	-	н	H ₂ N -CH ₂ -N-C
1991	O ← CH ₂ -	2 .	2	1	-	Н	$-CH_2-NCC\longrightarrow H_2N$

Ta	b	le	1		18	2
----	---	----	---	--	----	---

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1992	CH ₃ H ₃ C-⟨ — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1993	O ₂ N-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-
1994	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1995	NC-{\bigce}-CH_2-	2	2	1	-	н	-CH ₂ -N-C-
1996	(CH ₃) ₂ CH-CH ₂ -				-	Н	$-CH_2-N-C$ H_2N
1997	H ₃ C — CH ₂ — CH ₂ —	. 2	2	1	-	н	-CH ₂ -N-C
1998	Br—CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-C
1999	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2000	F—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CI
2001	HO-{}CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2002	HO-CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-

Table 1.183

Compo No.	1. R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} _{R^5}^{R^4} (CH_2)_{q} G - R^6$
2003	-CH ₂ -	2	2	1	-	Н	-сн ₂ -м-с-
2004	H₃CS-{\bigcirc}-CH2-	2	2	1	-	. н	CH ₂ -N-C
2005	H₃CCH₂—CH₂-	2	2	1	-	Н	- CH2-N-C-
2006	H ₃ C-CH ₂ -	2	2	1 .	-	Н	-CH ₂ -N-C-
2007	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2008	. H₃C-⟨CH₂-	2	2	1	-	Н .	-CH2-N-C-
2009	NC-CH ₂ -	2	2	1	-	н Н	-CH ₂ -N-C-CI
2010	(CH ₃) ₂ CH-CH ₂ -	2 .	2	1	· ·	H	-CH ₂ -N-C-CI
2011	H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2012	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H C- Br -Cl
2013	H₃CO-⟨¯}-CH₂-	2	2	1	•	н	-CH ⁵ -V-C- Bu

Ta	h	ما	1	1	Я	4
10	u				O	•

Compd.	R ¹ / _{R²} -(CH ₂) _j -	k	m	n	chirality	H3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2014	НО-{	2	2	1	·.	н .	-CH ₂ -N-C → Br
2015	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C
2016	CH₂-	2	. 2	1	-	н	-CH2-N-C- Br
2017	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2018	н₃ссң₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-Br
2019	-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- Br
2020	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2021	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2022	H ₃ C-\(\bigc\)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2023	NC-CH ₂ -	2	2	1	-	H.	-CH₂-N-C
2024	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH₂-N-C-

Ta	ы	e	1	. 1	8	5

	Compd.	R ¹ (CH ₂) _j	•	k m	ı n	chirality	₽³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (CH_2)_{q} - (CH_2)_{q} + (C$
•	2025	H_3C CH_3 CH_2 CH_3	:- 2	2 2	1	-	н	-CH ₂ -N-C
	2026	F— CH ₂ -	2	2 2	1	-	н	-CH ₂ -N-C
	2027	Br—CH₂-	2	2	1	-	н .	-CH ₂ -N-C
	2028	H₃CO-CH₂	- 2	2	1	-	н	$-CH_2-N$ C Br H_2N
	2029	. НО- С Н₂-	2	2	1	. •	Н	$-CH_2-N-C$ H_2N Br
	2030	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C Br
	2031	CH ₂ -	2	2	1	-	н	$-CH_2-N-C \xrightarrow{\bigcap_{H} Br} Br$
:	2032	O CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N H_2N
2	2033	CH ₃	2	2	1	-	н	-CH ₂ -N-C-
2	2034	O ₂ N-{	2	2	1 .	-	н	-CH ₂ -N-C
2	035	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2036	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C-
2037	H ₃ C CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N H_2N
2038	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2039	H ₃ C-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C- H CN
2040	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH- H
2041	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH-
2042	H ₃ C-\(\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-H ₃ C-CH ₃
2043	H ₃ C-\CH ₂ -	1	2	0	R	н	$-CH_{2}-N+C-CH_{2}- \bigcirc CH_{3}$
	CH ₃ CH ₂ − CH ₃					Н	-CH ₂ -N-C
2045	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- HN C-N-CH ₃
							

Table 1.187

Compd No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ G-R^6$
2047	CH ₃ N CH ₂ -	1	2	0	R	Н	-CH,-N-C
2048	CH ₃ N CH ₂ − CH ₃				R	н	-CH2-N-C
2049	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-CH ₃
2050	H ₃ C S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C					н	-CH ₂ -N-C-CF ₃
2052	OCH ₂ CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2053	H ₃ CQ CH ₂ -	2	2	1	-	, н	-CH ₂ -N-C
2054	H ₃ CO-CH ₂ -					н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2055	H ₃ CQ CH ₂ -					Н	-CH ₂ -N-CF H ₂ N
2056	B ₄ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2057	Br H₃CO—CH₂−	2	2	1	-	н	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$

Table 1.188

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2058	H₃CQ OCH₃ CH₂-	2	2	1	-	Н	-CH ₂ -N-C
2059	CH₂	2	2	1		Н	-CH ₂ -N-C
2060	H ₃ CO CH ₂ OCH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2061	F_CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2062	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2063	H_3CO H_3CO CH_2	2	2	1	-	H	$-CH_2-N-C$ H_2N F
2064	Br CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
2065	H3CCH2Q H3CCH2O———————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
2066	OCH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2067	(H ₂ C) ₂ CHCH ₂ ————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N
2068	CI F—CH₂-	2	2	1	-	Ĥ	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$

Table 1.189

Compd No.	R^{1} (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2069	H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ -N-C
2070	Br-CH ₂ -OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2071	H ₃ CO-CH ₂ -OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2072	(H3C) ₂ CHO-CH2-	2	2	1	-	н	-CH ₂ -N-C
2073	CH ₂ Q -CH ₂ -	2	2	1	-	н	$-CH_2-N-CF$ H_2N
	H ₃ CO- CH ₂ -				•	н	-CH ₂ -N-C
2075	H ₃ CO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2076	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2077	CI CH ₂ - OH	2	2	1	-	н .	-CH ₂ -N-C
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	1	-	H '.	-CH ₂ -N-C-F H ₂ N
2079	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1		Н	$-CH_2-N-C$ H_2N
							·

Table 1.190

Compd.	R ¹ (CH ₂),-	k	m	'n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
2080	CH ₂ Q H ₃ CO-CH ₂ -				-	Н	-CH ₂ -N-C-F H ₂ -N-C-F
2081	CI	2	2	1	· _	н	$-CH_2-N-C$ H_2N
2082	OH -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2083	HO-CH ₂ -	1	2	. 0	R	Н	-CH ₂ -N-C- CF ₃
2084	H ₃ CO HO———————————————————————————————————	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3 H_2N
2085	OH H₃CO-CH₂-	1	2	0	R	н	$-CH_{2}-N-C \longrightarrow CF_{3}$ $+L_{2}N$
2086	CI HO—CH₂−	1	2	0	R	H	$-CH_2-N-C-4$ H_2N
2087	(H ₃ C) ₂ N-\(\bigcup_{2}\)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-4$ H_2N
2088	(H3CCH2)2N-\CH2-	1	2	0	R	н ′	-CH ₂ -N-C
2089	F—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\(\frac{\text{CF}_3}{\text{H}_2\text{N}}\)
2090	O-CH2-	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$

Table 1.191

Compd.	R ¹ /(CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
2091	CHCH ₂ -	2	2	1	-	Н	CH ₂ CH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃ R
2092	CH-2-	2	2	1	-	н	(A) NH OCH3CH3
2093	CH-CH ₂	2	2	1	-	н	(A) 0 −CH-N-C− H H CH ₂ CH ₂ SCH ₃
2094	C├─ੑੑੑि}─CH ₂ -	2	2	1	. •	н	(A O O CH ₂ CH ₃ - CH N C O CH ₂ CH ₃ CH ₂ S)
2095	C├ ─ CH ₂ -	2	2	1		Н	(FI) OCH ₂ CH ₃ -CH-N-C- H C(CH ₃) ₃
2096	CHCH ₂ -	2	2	1	-	Н	(R 0 OCH ₂ CH ₃ -CH-NC-CH
2097	CH-CH ₂ -	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
2098	CI—CH ₂ -	2	2	1	-	н .	(F O OCH ₂ CH ₃ -CH-NC-CH -CH ₂ CH ₂ CH ₃
2099	C	2	2	1	-	н	-CH-N-C
2100	C⊢—CH₂-	2	2	1	-	н	CH, OOCH, CH3
2101	CI—CH₂-	2	2	1	-	Н	CH2—OCH2CH3

Table 1.192

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	 R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
No.	R ² ,				, 		
2102	C⟨CH ₂ -	2	2	1	-	н	-CH-N-C-(-) CH2CH2-(-)OCH2-(-)
2103	CI—⟨CH ₂ -	2	2	1	-	н	H ₃ C-CHOCH ₂ -
2104	CI-CH ₂ -	2	2	1	-	н .	() Q OCH₂CH₃ -C HN-C- H CH₂CH₂-C-OCH₃ O R
2105	H ₃ CQ OH	2	2	1	-	н	-CH ₂ -N-C
2106	H ₃ C · OH CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2107	Br CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-F H ₂ N
2108	CH ₃ -CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-F H ₂ N
2109	Br CH ₂ -	2	2	1	-	Н	CH ₂ -N-C
	H ₃ CCH ₂ —O CH ₂ −					н	-CH ₂ -N-C
2111	C⊢—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2112	H ₃ CO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.193

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- GR^6$
2113	H ₂ N CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C
2114	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2115	CHCH2-	2	2	1	-	н	(A) O OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ H CH(CH ₃) ₂
2116	CI—⟨CH ₂ -	2	2	1,	-	н	(F) OCH ₂ CH ₃ -CH N-C CH CH(CH ₃)CH ₂ CH ₃
2117	CH ₂ →CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CHN-C- NH
2118	HO- HO- CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2119	OH HO—CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
2120	Br—{ CH₂-			0	R	H	-CH _z -N-C-CF ₃
2121	HO- CH₂-	1	2	0	R	н	-CH ₂ -N-C
2122	CH2-	1	2	0	R	н	-CH ₂ -N-C
2123	CH ₂ -NO ₂	1	2	0	,R·	н	$-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $-CF_{3}$ $-CF_{3}$ $-CF_{3}$ $-CH_{2}-N-C$ $+L_{2}N$

Table 1.194

Compd.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2124	O ₂ N	1	2	0	R	H	-CH ₂ -N-C
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2126	O ₂ N H ₃ C — CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2127	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2128	H ₂ N H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ H ₂ N
2129	H ₂ N H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2130	0. N CH ² -	2	2	1	-	, н	$-CH_{2}-N-C$ $H_{2}N$
2131	CH ₃ CH ₂ CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2132	H ₂ N CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2133	(H ₃ C) ₂ N CH————————————————————————————————————	1	2	0	R	н	O CF3
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$

Table 1.195

Compd No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(СН ₂) р С (СН ₂) q G-R ⁶
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	CH ₂ -N-C
2136	(H ₃ C) ₂ N CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-3
2137	CH_3 CH_2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2138	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2139	H ₃ C, CI CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2140	CH ₂ -NH ₂	2	2	1	-	H	-CH ₂ -N-C
2141	H ₂ N HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2142	H ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2143	HMC-CH ³	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2144	H ₂ N H ₃ CO—CH ₂ -	2	2	1		н	$-CH_2-N-C-$ H_2N CF_3 H_2N
2145	H ₂ N HO—CH ₂ -	2	2	1	-	Н	$-CH_{2}-N\cdot C$ $+L_{2}N$ $-CH_{2}-N\cdot C$ $+L_{2}N$ $-CH_{2}-N\cdot C$ $+L_{2}N$

Table 1.196

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
2146	CH ₂ -	2	2	1	-	н	$-CH_2-NC H_2N$ CF_3
2147	О Н ₃ С-С−NH Н ₃ СО СН ₂ −	2	2	1	-	н	-CH ₂ -N-C
2148	О Н ₃ С-С-NH НО-СН ₂ -	2	2	1	•	Н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2149	O ₂ N HO-CH ₂ -	1	2	0	R	Н	$-CH_2-NC- CF_3$ H_2N
2150	H ₃ C·C-NH CI-CH ₂ -	1	2	0	R	Н	$-CH_2-NC - CF_3$ H_2N
2151	HMC-CH3	1	2	0	R	Н	$-CH_2-NC- CF_3$ H_2N
2152	Q H ₃ C·C-NH H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2153	Q H ₃ C-C-NH H ₃ C-CH ₂ -	1	2	0	R	н .	$-CH_2-N C - CF_3$ $+ H_2 N$
2154	Q H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+I_{2}N$
2155	Q H ₃ C-C−NH HO− C H ₂ −	2	2	1	-	· H	$-CH_2-N$ C H_2N
2156	Huc-ch	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.197

Compd No.	I. R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
2157	HO-€ CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
2158	H0-CH2-	1	2	0	R	н	-CH ₂ -N-C
2159	H ₃ C-NH H ₃ CO- CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2160	H ₃ C-NH HO−CH ₂ −	2	2	1		н	-CH ₂ -N-C
2161	H ₃ C-NH CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-F
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2164	,сн ₃ Сh ₂ -	1	2	0	R	. н	- CH ₂ -N-C
2165	H N CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
2166	() CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2167	S - CH ₂ -	1	2	0	R	н	$\begin{array}{c} & & & & & \\ & & & & \\ & -\text{CH}_2 - \text{N} - \text{C} - \text{C} \\ & & & \\$

Table 1.198

Compd. No.	R^1 (CH ₂) _j					R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G^-R^5$
2168	C-OCH ₃ H ₃ C'N-CH ₂ - H ₃ C'N-CH ₃	1	2	0	R	н	-CH ₂ -N-C
2169	H ₃ C-CH ₃ -CH ₃ -CH ₃	1	2	0	R ·	Н	-CH ₂ -N-C-CF ₃
2170	CI N N CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
2171	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V$ H_2N
2172	F ₃ C CH ₂ CH ₂ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N-C H_2N$ H_2N
2173	S—CH ₂ —CH ₃	i	2	0	R	H	$-CH_2-N-C-$ H_2N
2174	H ₃ C CH ₃ Br-S CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V$ H_2N
2175	OC H ₃ H ₃ CO— CH ₂ CH ₂ -	1	2	0	R	Н	$-CH_{2}-NC- \longrightarrow H_{2}N$
2176	H ₃ C - CH ₂ -	1	. 2	0		Н	$-CH_2-N-C-$ H_2N H_2N
2177	H_3 C OH CH_2 - CH_2 OH	1	2	0	R	н	$-CH_2-NC- \longrightarrow H_2N$
2178					R	н	$-CH_{2}-N \cdot C - CF_{3}$

Table 1.199

		·					
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2179	H ₃ C-Ç, N, CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2180	C├─ (CH ₂) ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
2182	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2183	\$-N_CH ₂ -	1	2	0	R	· н	-CH ₂ -N-C- H ₂ N
2184	\$-N_CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C
2185	\$-N CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C
2186	CH2-	2	2	1	-	н	-CH ₂ -N-C
2187	H ₂ N HO—CH ₂ —				R	н	$-CH_2-N-C$ H_2N CF_3
2188	CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C
2189	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $+CF_{3}$ $-CH_{2}-N+C-$ $+CF_{3}$ $-CH_{2}-N+C-$ $+CF_{3}$ $+CF_{3}$

Table 1.200

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2190	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2191	CH ₂ -	2	2	1		н	-CH ₂ -N-C-\(\frac{CF_3}{H_2N}\)
2192	H CH ₂ -	2	2	1		н	$-CH_2-N-C- \xrightarrow{CF_3}$
2193	H N OCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2194	H_2N H_3C CH_2	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2195	H ₂ N CH-2-	2	2	1	-	Н	$-CH_2-NC- CF_3$ $+H_2N.$
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R ·	Н	-CH ₂ -N-C-CF ₃
2197	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	. R	н	-CH ₂ -N-C
2198	H ₃ C-NH CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2199	H₃C-NH H₃C-CH₂-	2	2	, 1	-	н .	CH ₂ -N-C
2200	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-CF ₃

Table 1.201

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2202	S H CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2203	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2204	CH ₃ -CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2205	CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2206	CH ₃	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
2207	HO-CH ₂ -	2	2	1.	-	н	-CH ₂ -N-C
2208	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
2209	CH2-	2	2	1	-	н	-CH ₂ -N-C
2210	CH₂-	1	2	0	R	н	-CH ₂ -N-C
2211	CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-F$

Table 1.202

Compd. No.	R^1 (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2212	CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C
2213	H ₂ N CH-2-	2	2	1	-	. Н	$-CH_2-N-C-$ H_2N H_2N
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N+C-$ H_2N H_2N
2215	H ₃ C-HN CH-2-	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2216	CH ₃ N CH ₂ -	1	2	0	. R	Н	$-CH_2-N-C-$ H_2N H_2N
2217	H ₃ CO-C H ₃ C-CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N - C - CF_3$ $H_2 N$
2218	CHCH ₂ -	1	2	0	R	н	-cH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
2219	CH-CH ₂ -	1	2	0	R	н	- CH₂- N C CF3
	CHCH ₂ -						-CH ₂ -N-C-N-CH(CH ₃) ₂
2221	CH-€ CH ₂ -	1	2	0	R	H .	
2222	H ₃ C CO ₂ CH ₃ H ₃ C CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-H ₃ -CH ₂ -N-C-N-C-H ₃ -CH ₂ -N-C-H ₃ -CH ₃ -N-C-H ₃

Table 1.203

Compd. No.	R^2 (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
2223	C├─ ॔ }─CH ₂ ─	1	2	0	R	Н	-CH ₂ -N-C-N-N-CF ₃
2224	C	1	2	0	R	Н	-CH ₂ -N-C-N
2225	C⊢ € CH ₂ -	1	2	0	R	· н	F ₃ C P CH ₃ CF ₃ -CH ₂ -N-C-N-N-N
2226	H ₃ C, CH ₂ - CH ₃	1	2	0	Ŗ	н	$-CH_2-N-CH_2-N-CF_3$
2227	CHCH ₂ -	1	2	0	R	н	-CH2-N-C-N-CH3-2-
2228	CHCH ₂ -	1 .	2	0	R	Н	-CH-N-CF3
2229	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
2230	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	OCF ₃
	CH ₃					н	-CH ₂ -N-C
	H ₃ CO-CH ₂ -					н	$-CH_2-N-C$ H_2N OCF_3 H_2N
2233	CH₂- N H	1	2	0	R	н	$\begin{array}{c} H_2 N \\ \\ -CH_2 - N - C \\ \\ H_2 N \end{array}$ $\begin{array}{c} OCF_3 \\ \\ H_2 N \end{array}$ $-CH_2 - N - C \\ \\ H_2 N \end{array}$

Table 1.204

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2234	CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2235	CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N C
2236	FCH ₂ -	1	2	0	R	н	$-CH_2-NCC \longrightarrow H_2N$
2237	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2238	H ₃ CQ CH ₂ -	1	2	0	R	н	$-CH_2-NCC$ H_2N OCF_3
2239	CH ₂ - CH ₃	1	2	0	R	H	$-CH_2-N$ C H_2 N
2240	CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2241	H ₃ C N H	1		0	R	н	-CH ₂ -N-C
2242	CH ₂ -	1	. 2	0	R	н	$-CH_2-NC H_2N$ OCF_3
2243	(H ₃ Ç) ₂ N-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
2244	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $+I_{2}N$

Table 1.205

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	ー(CH ₂) _p
2245	H ₃ C H ₂	_ 1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2246	H3CCH2 N CH2	_ 1	2	0	R	Н	-CH ₂ -N-C
2247	(H-C)2CH N CH2	. 1	2	0	R	н	$-CH_2-N$ H_2N CF_3
2248	H ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2249	H ₂ N H ₃ CO————————————————————————————————————	. 1	2	0	R	Н	-CH ₂ -N-C
2250	H ₂ N HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2251	H ₂ N H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
2252	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H H ₂ N
2253	F CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2254	H ₃ CO CH ₂ -				-	н	$-CH_2-N$ H_2N CF_3
2255	H ₃ C N H	2	2	1	-	н	$-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $+L_{2}N$

Table 1.206

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2256	CH ₂ -					Н	-CH ₂ -N-C
2257	H ₃ CQ C N H	2	2	1	-	H	$-CH_2-N-C-$ H_2-N-C- H_2-N-C-
2258	CHCH ₂ -	1	2	0	R	Н	
2259	H ₃ CS-CH ₂ -	1	2	0	R	н	
2260	CH2-	1	2	0	R	Н	(S) P -CH-N-C-N-
2261	. CHCH2-	1	2	0	R	Н	(S) P -CH-N-C-N-C-N-CH ₃
2262	H₃CS-CH₂-	1	2	0	Ŗ	Н	(S) P -CH+N-C-N- CH ₃
2263	CÍ CI—CH2−	1	2	0	S	Н	CH3
2264	C⊢∕CH ₂ -	1	. 2	.0	S	н	CH3
2265	H₃CS-CH ₂ -	1	2	0	S	н	CH ₃
2266	CI—(1	2	0	S	н	CH3 CH3

Table 1.207

Compd No.	R ¹ (C)	l ₂);—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
2267	CI CI	·CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CI
2268	c 	CH₂−	2	2	1	•	н	CH ₃
2269	H3CS-	−CH ₂ −	2	2	1	-	Н	(S) Q CI -CH-N-C-CI CH ₃
2270	CI_	CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- H H H
2271	cr—(CH ₂ −	2	2	1	-	· н	(S) P -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2272	н₃сѕ-{_}	·CH ₂ -	2	2	1	-	 Н	(S) 0 -CH-N-C-N-
2273	ci———c	:H ₂	2	2	1	-	н	(S) O CI -CH-N-C-CI CH(CH ₃) ₂
2274	H ₃ CS-	CH ₂ -	2	2	1	-	н	(S) O CI -CH-N-C-CI -CH(CH ₃) ₂
2275		H ₂ -	2	2	1	-	Н	(S) 0 -CH-N-C-N-C-N-CH(CH ₃) ₂
2276	CHCH	12-	2.	2	1	-	Н	(S) P -CH-N-C-N- - H H CH(CH ₃) ₂
2277	H₃CS-(C	`H2¯	2	2	1	-	н	(S) P -CH-N-C-N- H H CH(CH ₃) ₂

Table 1.208

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2278	CH2-CH2-	1	2	0	R	Н	(S) P CF ₃ -CH-N-C CH ₃ H ₂ N
2279	CH_CH2-	1	2	0	R	Н	(S) P CF ₃ -CH-N-C CF ₃ CH ₃ H ₂ N
2280	CL_CH2-	1	2	0	S	н	(S) OF3 -CH-N-C-CF3 CH3 H ₂ N
2281	H₃CS-()-CH ₂ -	. 1	2	0	S	H .	(S) O CF ₃ -CH-N-C- CF ₃ -CH ₃ H ₂ N
2282	CH-CH ₂ -	2	2	1	-	н	(S) O CF ₃ -CH-N-C CF ₃ CH ₃ H ₂ N
2283	H₃CS-(CH ₂ -	2	2	1	-	н	(S) O CF3 - CH+N-C-
2284	CI CI—CH₂-	2	2	1	-	н	(S) NH ₂ - CH-N-C NH ₂ - H CH(CH ₃) ₂ CF ₃
2285	CI—CH₂-	2	2	1	-	н	$(S) \qquad \bigcap_{C \\ C \\$
2286	H₃CS-⟨CH₂-	2	2	1		н	$(S) \qquad \bigcap_{\substack{C \\ C \\ H \\ CH(CH_3)_2}} \stackrel{NH_2}{\longleftarrow} CF_3$
2287	CH2-	2	2	1		н	(S) S CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
2288	H₃CS—⟨ CH₂-	2	2	1	-	н .	$(S) \qquad P \qquad CI$ $-CH \qquad H \qquad C \qquad CI$ $(CH_2)_2 CONH_2$

Table 1.209

	1.209							
Compo No.	d. R ¹	(CH ₂) _j —	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
2289	CI_	_>СН₂-	2	2	1	-	Н	(S) P -CH-N-C-N- H H (CH ₂) ₂ C ONH ₂
2290	CL_C	_}СН ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C-CI -CH ₂ OH
2291	c{_	_}СН ₂ −	2	2	1	-	н	(S) P -CH-N-C-CI CH ₂ OH
2292	н₃сѕ–{		2	2	1	•	Н	(S) P CI -CH-N-C-CI CH ₂ OH
2293	CH	∕р—CH ₂ —	2	2	1	-	н	(S)
2294	a-{_)—CH ₂ −	2	2	. 1	-	н	(S) P -CH-N-C-N- H H CH ₂ OH
2295	H₃CS-{		2	2	1	-	н	(S) Q -CH-N-C-N-C-N-CH ₂ OH
2296	CL CH	}—CH2−	1	2	0	R	н	(S) P CI -CH-N-C CI H H CCI (CH ₂) ₂ SO ₂ CH ₃
2297	H ₃ CS-	-CH2-	1	2	.0	R	. н	(S) O CI -CH-N-C-CI H CCH ₂) ₂ SO ₂ CH ₃
2298	CI-CI-	−CH ₂ ÷	1	2	0	R	н	(S) 0 -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2299	H₃CS-{)—СН ₂ —	1	2	0	R	Н	(S) \bigcirc

Table 1.210

iable	1.210						
Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
2300	CH-CH ₂ -	1	2	0	S	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2301	Cl Cl—CH₂-	1	2	0	S	н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2302	Cl CH₂-	1	2	0	R	н	(S) PH ₂ -CH-N-C
2303	CH2-	1	2	0	R	н	(S) P
2304	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) P NH ₂ -CH-N-C
2305	CICH ₂ -	1	2	0	S	H	(S) NH ₂ -CH-N-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	: H ₃ CS-CH ₂ -	1	2	0	S	н	(S) NH ₂ -CHN-C- H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2307	CHCH2-	1	2	0	R	н	(S)
2308	H ₃ CS-CH ₂ -	1	2	0	R	Н .	(S) S -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2309	CI—CH ₂ —	1	2	0	S	н	(S) S S S S S S S S S
2310	CH ₂ -	1	2	0	S	н	(S) S -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃

Table 1.211

Compo No.	d. R ¹ (CH ₂) _j —	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^6$
2311	н₃сѕ-√		1	2	0	S	Н	(S)
2312	н₃сѕ-{	CH ₂ -	1	2	0	R	н	(S) 0 CF ₃ -CH _N -C- CH ₃ H ₂ N
2313	CI	> −СН ₂ -	1	2	0	R	н	(S) CI CH ₃ CI
2314	H₃CS-{		1	2	0	S	н	(S) 0 -CH-N-C-N- H H H
2315	a ⊢ ()) —СН₂−	2	2	1	-	H	(S) Q CI -CH-N-C-CI CH(CH ₃) ₂
2316	q-{)—СН ₂ -	1	2	0	S	Н	(S) 0 NH ₂ -CH N C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2317	CI_	⊢СН ₂ -	2	2	1	-	н	(S) O NH ₂ -CH-N-C H CH ₂ OH CF ₃
2318	CI CI	−CH ₂ −	1	2	0	R	н	(S) S - CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2319	CI	-CH ₂ -	2	2	1	-	н .	(S) S -CH-N-C-N- H H H CH(CH ₃) ₂
2320	CI()-	-CH ₂ -	2	2	1	. .	н	(S) S -CH-N-C-N- H H H CH(CH ₃) ₂
2321	H₃CS-	≻-СН ₂	2	2	1	•	н	(S) S -CH-N-C-N- H H CH(CH ₃) ₂

Table 1.212

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2322	CL_CH2-	2	2	1	•	Н	(S) S -CH-N-C-N-C H H CH(CH ₃) ₂
2323	H ₃ CS-CH ₂ -	2	2	1	-	Н	(S) S - CH N C N (S)
2324	CICH ₂ -	2	2	1	-	Н	(S) OCF3 -CH-N-C-C-CF3 CH3 H2N
2325	CICH ₂ -	1	2	0	R	Н	(S) S -CH-N-C-N- H H H CH ₃
2326	C	1	2	0	R	Н	(S) S -CH-N-C-N- CH ₃
2327	Н₃СЅ—СН ₂ —	1	2	0	R	Н	(S) S -CH-N-C-N- H H H CH ₃
2328	CI—CH ₂ —	1	2	0	S	Н	(S) S CH ₃
2329	CHCH ₂ -	1	2	0	S	н	(S) S -CH-N-C-N- CH ₃
2330	H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) S -CH-N-C-N- H H H CH ₃
2331	CHCH ₂ -	1	2	0	S	н	$ \begin{array}{c c} (S) & CF_3 \\ -CH_N-C & CF_3 \\ CH_3 & H_2N \end{array} $
2332	CHCH_2-	1	2	0	R	н	$(S) \qquad \bigcap_{CH-N-C} CI$ $(CH_2)_2SO_2CH_3$

Table 1.213

Compo No.	$\begin{array}{cc} R^{1} \\ R^{2} \end{array}$ (CH ₂	,) _j - k	c m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
2333	c ()- -c	`H ₂ - 1	2	0	R	Н	(S) 0 - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2334	H ₃ CS-(CH ₂ – 1	2	0	S	н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2335	CICI	H ₂ - 1	2	0	S	Н	(S) O - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2336	CI-CI	⁺ 2− 1 •	2	0	S	н	(S) O - CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2337	H₃CS-{	CH ₂ - 1	2	0	S	н	(S) P -CH-N-C-N- H H CH ₂) ₂ SO ₂ CH ₃
2338	н₃сѕ-{∑}-с	CH ₂ − 2	2	1	-	н	(S) (P) (CH ₂) ₂ CONH ₂
2339	сн-{_}-сн	₂ - 2	2	1	-	н	(S) P NH2 - CH-N- C - P H (CH ₂) ₂ CONH ₂ CF ₃
2340	H₃CS-CI	H ₂ − 2	2	1	-	н	(S) NH ₂ -CHN-C
2341	с-{сн ₂	_₹ 2	2	1	-	н	(S) P NH ₂ -CHN-C- CH ₂ OH CF ₃
2342	Н₃СЅ-{_}СЬ	I ₂ - 2	2	1	-	н	(S) P NH2 -CHN-C- CH2 H H CH2OH CF3
2343	CI—CH _Z	_ 2	2	1	-	н	(S) O CI -CH-N-C- CI H (CH ₂) ₂ CONH ₂

Table 1.214

				_			_
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
2344	C-CH ₂ -	2	2	1	-	Н	(S) CI -CH-N-C-C-CI (CH ₂) ₂ CONH ₂
2345	C	2	2	1	-	н	(S) P -CH-N-C-N- (CH ₂) ₂ CONH ₂
2346	CICH ₂	2	2	1	•	Н	$(S) \qquad \bigcap_{\substack{\text{CHN-C} \\ \text{CH}_{2} \\ \text{CONH}_{2}}} \bigvee_{\substack{\text{CF}_{3}}} \bigvee_{\substack{\text{CF}_{3}}}$
2347	CICH ₂ _	1	2	0	s	Н	(S) P -CH+N-C-N- CH ₃
2348	CICH ₂ -	1	. 2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2349	F— CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C
2350	F—CH ₂ -	1	2	0	R	Н	(S) Q CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2351	CH ₂ -	1	2	0	R	Н	(CH ₂) ₂ SO ₂ CH ₃
2352	CICH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N-CI -CH3
2353	CICH ₂ -	2	2	1	-	н	CH₃
2354	CI—CH₂-	1	2	0	R	н	(S) OCI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.215

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (CH_2)_{q} - (CH_2)_{q} + (C$
2355	CL CH2-CH2-	1	2	0	R	Н	(S) OC CI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃
2356	CH ₂ -	1	2	0	R	Н	(S) P CI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ CI
2357	CH ₂ -	1	2	0	R	Н	(S) 0 -CH-N-C-(S) CI (CH ₂) ₂ SO ₂ CH ₃
2358	CICH ₂ -	1	2	0	R	н	(S) O - CH-N-C-CH ₃ - CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2359	CI—CH ₂ -	1	2	0	R	, H	(S) Q -CH-N-C-(S) H S (CH ₂) ₂ SO ₂ CH ₃
2360	CH ₂ -	1	2	0	R	н	(S) 0 - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2361	CH ₂ -	1	2	0	R	н	(S) 0 -CHN-C-N-CI H H CH ₂) ₂ SO ₂ CH ₃
	CI CH₂-					н	(S) P -CH-N-C-N
	CL CH ₂ -						(S) QCI -CH-N+C
2364	CICH ₂ -	2	2	1	-	Н	(S) QCL CI -CH-N-C-CH CH ₃ CI CH ₃ CI
2365	CL CH ₂ —CH ₂ —	2	2	1	-	н	(S) CI -C++N+C-C-CI

Table 1.216

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
2366	CL_CH2-	2	2	1	<u>-</u>	Н	(S) 0 -CH-N-C CH ₃ CH ₃
2367	CI_CH_CH_	2	2	1	-	H	(S) 0 -CHN-C-(S) CH3
2368	CI_CH2-	2	2	1	<u>-</u>	н	CH3 CI
2369	CI_CH ₂ -	2	2	1	· -	н	(S) P -CH-N-C-N
2370	CH2-CH2-	2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₃
2371	CtCH ₂ -	2	2	1	* *.** -	н	CI CH ₃ CCI CH ₃ CCI
2372	CH ₂ -	2	2	1	-	н	CH3 CH3 CI
·	F—CH ₂ -					н	CH3 CH3 CI
2374	F CH₂-	2	2	1	-	н	(S) CI CH ₃ CI
2375	F—CH ₂ -	2	2	1	-	Н	(S) CI -CH-N-C-CI CH ₃
2376	F_CH₂-	2	2	1	-	Н	CH3 CH3

Table 1.217

							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
2377	F⟨CH ₂ -	. 2	2	1	-	н	(S) Q CI -CH-N-C-CI
2378	CH₂-	2	2	1	-	н	(S) CI CI
2379	CICH ₂ -	2	2	1	-	н	(S) P CH _N C- CH ₃ H ₂ N
2380	CH ₂ —CH ₂ —	2	2	. 1	-	н	(S) P - CHN-C- CH ₃ H ₂ N
2381	CH ₂ -	2	2	1	-	Н	(S) 0 -CH-N-C- H H CH ₃ HO
2382	CH ₂ -	_. 2	2	1	-	Н	(S) P -CH-N-C-OH CH ₃
2383	CH ₂ -	2	2	1	. .	н	(S) S CH CH ₂ CH ₃ CH ₃
2384	CICI _CH ₂ -	1	2	0	R	н	(S) PCI -C++N-C
	CI . CH₂-					н	(S) CI -CH-N-C-CH-CI (CH ₂) ₂ SO ₂ CH ₃
	CI CH₂-					Н	(S) Q CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
387	CH₂-	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃ .

Table 1.218

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2388	F-CH ₂ -	1	2	0	R	Н	(S) O CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2389	CH ₂ -	1	2	0	R	н	(S) Q -CH-N-C-CI H (CH ₂) ₂ SO ₂ CH ₃
2390	CICH ₂ -	1	2	0	R	Н	(S) O NH ₂ -CHN-C- CH ₂ (CH ₂) ₂ SO ₂ CH ₃ Br
2391	CL CH2-	1	2	0	R	н	(S) O NH2 CH-N-C-
2392	CI—CH ₂ -	1	2	0	R	н	(S) O NH ₂ -CHN-C- (CH ₂) ₂ SO ₂ CH ₃
2393	CI—CH ₂ —	1 -	2	0	R	н	(S)
2394	CICH ₂ -	2	2	1	-	н	$(S) \bigcap_{CH-N+C$
2395	CI—CH₂-	2	2	1	-	н	(S) Q CI -CH-N-C-CI H CH ₂ OCH ₂ Ph
2396	Ct CH2−	2	2	1	-	Н	(S) O CI -CH-N-C
2397	CI CH2−	2	2	1	-	Н	(3) H H C - C - C - C - C - C - C - C - C -
2398	CI—CH₂−	2	2	1	· -	H	(S) CC CC(CH ₃) ₃

Table 1.219

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
2399	CL CH ₂ —CH ₂ —	2	2	1	-	Н	(S) CCI
2400	CL CH2-	2	2	1	-	Н	(S) CI -C++C-(-C)-CI
2401	CL CH ₂ -	. 2	2	1	-	н	(S) CI -CI+N-C-CI
2402	CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C-CI CH ₂ OH
2403	F—CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₂ OH
2404	F CH₂−	2	2	1	-	н	(S) Q -CH+N+C
2405	F—CH ₂ -	2	2	1	-	н	(S) PCI -CH-N-C-CI CH₂OH
	F_CH ₂ -					Н	(S) P CI - CH ₂ OH
2407	CH2-	2	2	1	-	н	(S) OCI -CH-N-C-CI H CH ₂ OH
408 н	3CSO _Z {CH ₂ -	2	2	1	-	н	(S) CI -CH-N-C-CI H CH ₂ OH
409 н	3CO ₂ C	2	2	1	-	н	(S) P -CHNC CH ₂ OH

Table 1.220

Compd. No.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2410	CICH ₂ -	2	2	1		Н	(S) OCI -CH+N-C- CH₂OH
2411	CICH ₂ -	2	2	1	-	Н	(S) PCI CI -CH-N-C CI CH₂OH
2412	CI_CH ₂ -	.2	2	1	-	н	(S) P -CHN-C-(S) CH2OH
2413	CICH ₂ -	2	2	. 1	-	н	(S) P -CH-N-C-N
2414	CICH ₂ -	2	2	1	-	н	(S)
- 2415	CICH ₂ -	2	2	1	-	Н	(S) S OC H ₃ -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2416	CICH ₂ -	2	2	1	-	н	(S) S OCH ₃
2417	CI—CH ₂ —	2	2	1	-	н	(S) S CH ₃ -CH-N-C-N-CH ₃ CH ₃
2418	CH ₂ -	2	2	1		н	(S) S CH ₃ CH ₃
2419	CL CH ₂ -	2	2	1	-	• н	(S) S CI CI CI CI CI CI CI
2420	CI CI—CH₂-	2	2	1	-	н	(S) S CH N C- N CI

Table 1.221

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^5$
2421	CL_CH2-	2	2	1	-	н	(S)
2422	CICH ₂ -	1	2	0	R	Н	(S) S OCH ₃ -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2423	CICH ₂ -	1	2	0	R	н	(S) S -CHN-C-N-C-OCH ₃ (CH ₂) ₂ SO ₂ CH ₃
2424	CI—CH ₂ -	1	2	0	R	н	(S) \$ CH ₃ -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2425	CI→CH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2426	CI CI—CH₂-	1	2	0	R	Н	(S) S CI -CHN-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2427	CI CH₂−	1	2	0	R	н	(S) S -C++N-C-N-C-N-C (CH ₂) ₂ SO ₂ CH ₃
2428	CICH ₂ _	1	2	0	R	Н	(S) S - CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

本発明においては、上記式(I)で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、国際公開WO9925686号パンフレットに記載されているように、下記に示すいずれかの一般的な製造法を用いることにより合成可能である。

(製造法1)

20

下記式(II)

25
$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow R^{3}
\end{array}$$
(II)

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれ の定義と同じである。]

で表される化合物1当量と、下記式([[[)

$$\begin{array}{c} O \\ HO - C - (CH_2)_p - + (CH_2)_q - G - R^6 \\ R^5 \end{array}$$
 (III)

10

[式中、 R^4 、 R^5 、 R^6 、G、p、および q は、上記式 (I) におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0.1-10当量を無溶媒下、 または溶媒存在下に反応させることによる製造方法。

上記式(III)で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシープなどの脱水剤;ジシクロヘキシルカ ルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カ 15 ルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、 Nーヒドロキシサクシンイミド(HOSu)、Nーヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾール-1-イルオキシトリス (ピロリジノール) ホ スホニウム ヘキサフルオロホスフェート(PyBOP)、2-(1H-ベンゾトリアゾール-1-1イル)-1,1,3,3-テトラメチルウロニウム ヘキサフ 20 ルオロホスフェート(HBTU)、2-(1H-ベンゾトリアゾール-1-イル)-1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレート (TBTU)、2-(5-ノルボルネン-2,3-ジカルボキシイミド)-1,1,3,3-テトラメチルウロニウム テトラフルオロボレート(TNTU)、O-(N-サク シニミジル) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレー 25 ト (TSTU)、プロモトリス (ピロリジノ) ホスホニウム ヘキサフルオロホス フェート (РуВгоР) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水 素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、 ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチ ル) ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4-ビニルピ 30 リジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進

2 4 3

行させることができる。

(製造法2)

下記式 (IV)

5

$$\begin{array}{c}
R^{1} \\
\longrightarrow (CH_{2})_{j} - X
\end{array}$$
(IV)

で表されるアルキル化試薬1当量と、下記式 (V)

15

$$\begin{array}{c} (CH_{2})_{k} \\ HN \\ (CH_{2})_{m} \end{array} \longrightarrow \begin{array}{c} (CH_{2})_{n} - N - C - (CH_{2})_{p} - \frac{R^{4}}{R^{5}} (CH_{2})_{q} - G - R^{6} \end{array} \qquad (V)$$

20 [式中、 R^3 、 R^4 、 R^5 、 R^6 、G、k、m、n、p、およびqは、上記式 (I) におけるそれぞれの定義と同じである。]

で表される化合物 0.1-10 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑に 25 に進行させることができる。さらに、本製造方法において、ヨウ化カリウム、ヨウ 化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合があ る。

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原30 子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基

などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式 (VI)

5

$$R^1$$
 $(CH_2)_{j-1}$ -CHO (VI)

10

[式中、 R^1 および R^2 は、上記式(I)におけるそれぞれの定義と同じであり、jは1または2を表す。]

または、下記式 (VII)

 $R^{1}-CHO$ (VII)

[式中、 R^1 は、上記式 (I) における R^1 の定義と同じであり、jは0を表す場合に相当する。]

で表されるアルデヒド1当量と、上記式(V)で表される化合物0. 1-10当量 20 を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボラン

25 を用いる水素化反応、または電解還元反応などを用いることができる。

2 4 5

(製造法4)

下記式 (VIII)

で表される化合物1当量と、下記式 (IX)

$$HO-A-R^6$$
 (IX)

15 [式中、R⁶は、上記式(I)におけるR⁶の定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0. 1-1 0当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例え 20 ば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一般に使 用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法5)

25 上記式 (VIII) で表される化合物 1 当量と、下記式 (X)

$$Z = C = N - R^{6} \tag{X}$$

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Zは酸素原子または 30 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート0.1-10当量を、無溶媒

下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式 (XI)

10 [式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、j、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じであり、A はカルボニル基またはスルホニル基を表す。]

で表される化合物1当量と、下記式(XII)

$$R^{6}-NH_{2} \qquad (XII)$$

30

[式中、 R^6 は、上記式 (I) における R^6 の定義と同じである。] で表されるアミン0. 1-10 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる ことにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供

25 した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、 還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上 記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換す ることによっても得ることができる。

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどの

ハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが反応に応じて適宜用いられる。

実施例

10

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。以下の実施例において各化合物に付された化合物番号は、Table1.1-1.221において好適な具体例として挙げた化合物に付された化合物番号(Compd.No.)と対応している。

[参考例1] (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジン(化合物番号69)の合成本発明の化合物はWO9925686号パンフレット記載の製造法により合成したが、例えば化合物番号69の(R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジンは以下のように合成した。

25

1) 3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩

4-クロロベンジルクロリド (4. 15g、25, 8 mmol) と *i*-Pr₂NE t (6. 67g, 51. 6 mmol) を、3-{(*tert*-プトキシカルボニル) アミノ} ピロリジン (4. 81g、25. 8 mmol) のDMF溶液 (50 mL 0) に加えた。反応混合物を70℃で15時間攪拌し、溶媒を減圧下に除去した。再結晶 (CH₃CN、50 mL) により目的とする3-{(*tert*-プトキシカルボ

30

ニル) アミノ} -1-(4-クロロベンジル) ピロリジン (6.43g.80%) を黄白色固体として得た:

 $^{1}\text{H-NMR}$ (CDCl $_{3}$, 300MH $_{Z}$) δ

1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83

5 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(9 8 %); ESI/MS m/e 3 1 1.0 (M++H、C₁₆H₂₄ClN₂O₂)

 $3-\{(tert-ブトキシカルボニル) アミノ\}-1-(4-クロロベンジル) ピロリジン(<math>6.38g$ 、20.5mmol)の CH_3OH (80mL)溶液に1

10 M HCI-Et₂O (100mL) を加え、25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶 (CH₃OH/CH₃CN=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩 (4.939g、85%)を白色粉末として得た:

 1 H-NMR (d_{6} -DMSO, 300MHz) δ

15 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(> 9 9%); ESI/MS m/e 211.0 (M++H、C₁₁H₁₆ClN₂)

光学活性(R) -3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸 塩と(S) -3-アミノ-1-(4-クロロベンジル)ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ 体と同じ¹H-NMRを示した。

(R) -3-7ミノー1-(4-0ロロベンジル)ピロリジン・二塩酸塩(4.54g、16.0 mmol)、2M NaOH溶液(80mL)、および酢酸エチル(80mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80mL×2)で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより遊離の(R) -3-7ミノー1-(4-0)ロロベンジル)ピロリジン(3.35g、99%)を得た。

- (R) -3-アミノー1-(4-クロロベンジル) ピロリジン(3.35g、16mmol)のCH₂Cl₂(80mL)溶液に、Et₃N(2.5mL、17.6mmol)、N-tert-ブトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2MNaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により、目的とする(R)-3-{N-(10tert-ブトキシカルボニル)グリシル}アミノー1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。
 - 3) (R) 1 (4 クロロベンジル) 3 (グリシルアミノ) ピロリジンの合成
- 15 **(R)−3−{N−(tert−ブトキシカルボニル)グリシル}アミノ−1−** (4-クロロベンジル) ピロリジン (5.39g、14.7mmol) のメタノー ル (60mL) 溶液に、4M HClジオキサン (38mL) 溶液を加えた。この 溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80m L) を加えた。混合液をジクロロメタン(80mL×3) で抽出し、抽出液を合わ 20 せて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(Si〇。、 AcOEt/EtOH/Et $_3$ N=90/5/5) により、(R) -3-(グリシル アミノ) -1- (4-クロロベンジル) ピロリジン (3.374g、86%) を得 $t: ^{1}H-NMR (CDC1_{3}, 270MHz) δ$ 1.77 (dd, J = 1.3および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 25 および9.6 Hz, 1 H), 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H) , 3. 31 (s, 2 H), 3. 57 (s, 2 H), 4. 38-4. 53 (br, 1 H), 7. 18-7. 32 (m, 4 H), 7. 3 9 (br. s. 1 H)
- 4) (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベ 30 ンゾイル) グリシル) アミノ] ピロリジン(化合物番号69)
 - 3, 4-ジフルオロベンゾイルクロリド(0.060mmol)のクロロホルム

[実施例1] エオタキシンにより惹起されるCCR3発現細胞の細胞内カルシウム 濃度上昇に対する被験化合物の阻害能の測定

15 CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

CCR3発現K562細胞を $10\,\text{mM}$ HEPES含有HBSS溶液に懸濁した ものに $1\,\text{mM}$ Fura $2\,\text{アセトキシメチルエステル}$ (同仁化学社製)を加え、 $3\,\text{7}$ でにて $3\,0\,\text{分間}$ インキュベートした。これを $3\,4\,0\,\text{nm}$ と $3\,8\,0\,\text{nm}$ で励起し、

20 340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。 アゴニストとしてヒトエオタキシン(0.5 μ g/ml)を用い、被験化合物の阻 害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で 処理したときの細胞内カルシウム濃度を測定し、下記の式により抑制率(%)を算出した。

25

30

10

抑制率 (%) = $\{1-(A-B) / (C-B)\} \times 100$

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずにエオタキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化

合物は、 10μ Mの濃度おいて、それぞれ20-50%、50%-80%、および、>80%の阻害能を示した。

 $10\mu M$ の濃度において20%-50%の阻害能を示した化合物:

化合物番号11、156、234、330、392、424、481、523、5
25、533、558、567、582、602、613、630、646、64
9、701、738、741、754、767、814、816、833、839
、873、902、909、945、1002、1159、1170、1258、
1315、1352、1357、1407、1417、1448、1472、15
04、1508、1531、1558、1562、1569、1661、1670
0、1686、1719、1751、1756、1769、1775、1783、1
797、1802、1803、1815、1834、1841、1846、188
3、1887、1889、1892、1913、1924、1928、1960、
2006、2013、2035、2052、2083、2113、2127、21
36、2189、2320、2321、2323、2327、2330、2334
5、2336、2338、2345、2394、2394、2398、2398、2
400、2400、2420、2421、2421

 10μ Mの濃度において 50% - 80%の阻害能を示した化合物:

化合物番号83、115、146、150、216、294、297、322、4 20 05, 440, 459, 461, 466, 482, 484, 487, 490, 49 2, 503, 526, 528, 550, 562, 570, 578, 620, 623 . 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 12 59, 1267, 1295, 1377, 1402, 1412, 1420, 1485 25 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1 $7\ 2\ 5\ ,\ 1\ 7\ 5\ 4\ ,\ 1\ 8\ 3\ 6\ ,\ 1\ 8\ 5\ 6\ ,\ 1\ 8\ 7\ 0\ ,\ 1\ 9\ 1\ 2\ ,\ 1\ 9\ 2\ 3\ ,\ 1\ 9\ 2$ 9, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 22 90. 2291. 2294. 2297. 2300. 2301. 2302. 2307 . 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2 30 329, 2333, 2335, 2343, 2344, 2346, 2347, 234

329, 2333, 2335, 2343, 2344, 2346, 2347, 234 8, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 24 03, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

10μΜの濃度において>80%の阻害能を示した化合物:

5

化合物番号7、32、68、169、173、203、209、215、520、544、547、851、852、855、874、910、1003、1012、1032、1038、1042、1043、1046、1114、1190、1

244、1247、1384、1441、1513、1527、1545、1582、1673、1687、1689、1705、1850、1869、1871、1876、1877、1899、2027、2289、2293、2296、2298、2315、2318、2319、2325、2332、2349、2352、2354、2355、2356、2357、2359、2362、2363、2356、2376、2378、2371、2372、2373、2374、2375、2376、2378、2382、2383、2390、2393、2396、2412、2413、2414、2415、2422、2423、2424、2425、2426、2427、2428

- 30 反応終了後、あらかじめ0.5%ポリエチレンイミン溶液にフィルターを浸漬した96ウェルフィルタープレート(ミリポア社製)で反応液をフィルター濾過し、フィ

WO 01/10439 PCT/JP00/05260

253

ルターを冷洗浄バッファー(アッセイバッファー+0.5M NaCl) 150μL で4回洗浄した(冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント(パッカード社製)にて測定した。

5 被験化合物の代わりに非標識ヒトエオタキシン100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

10 阻害率 (%) = $\{1 - (A-B) / (C-B)\} \times 100$

(A:被験化合物添加時のカウント、B:非標識ヒトエオタキシン100ng添加時のカウント、C: [125 I] 標識ヒトエオタキシンのみ添加したときのカウント) 本発明で用いる環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例1で認められた阻害能とほぼ同等であった。

産業上の利用可能性

15

20

25

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする薬剤、もしくはCCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有する。したがって、これらは気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

請求の範囲

1. 下記式 (I) で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗 作用を有する薬剤。

[式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ 15 テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R1におけるフ ェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基 20 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 $-C_4$ アルキレンオキシ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C2 - C₁アルカノイル基、C₂-C₁アルコキカルボニル基、C₂-C₁アルカノイルオ キシ基、C₂-C₇アルカノイルアミノ基、C₂-C₇ N-アルキルカルバモイル基、 25 C_4-C_9 N-シクロアルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、C $_3$ - \mathbb{C}_8 (アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、もしくはジ(C_1-C_6 ア 30 ルキル)アミノ基で置換されていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロ

アルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における $C_1 - C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコキシ基によって置換されていてもよい。ただし、j = 0 のときは R^2 はヒドロキシ基ではない。

´j は0-2の整数を表す。

10 kは0-2の整数を表す。

5

mは2-4の整数を表す。

nは0または1を表す。

素を形成していてもよい。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ 20 ルバモイル基、メルカプト基、グアニジノ基、C₃-C₈シクロアルキル基、C₁-C $_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 、C1-C6アルキル基、C1-C6アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₁アルカノイル基、C₂-C₁アルコキシカルボニル 25 基、 C_2-C_7 アルカノイルオキシ基、 C_3-C_7 アルカノイルアミノ基、 C_3-C_7 -アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、アミノ基、モノ(C₁ -C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され 30 ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベン 10 ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3 - C_8$ シク ロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 15 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、C $_1$ - C_6 7 ルコキシ基、 C_3 - C_8 シクロアルキルオキシ基、 C_1 - C_6 7 ルキルチオ基 、 $C_1 - C_3$ アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 20 3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニ ル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ (C_1-C_6 アルキル) スルファモイル基、アミノ基、モノ (C_1 $-C_6$ アルキル)アミノ基、ジ(C_1 - C_6 アルキル)アミノ基、ベンジルアミノ基、 25 C_2-C_7 (アルコキシカルボニル) アミノ基、 C_1-C_6 (アルキルスルホニル) ア ミノ基、もしくは、ビス(C_1-C_6 アルキルスルホニル)アミノ基により置換され ていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任

 $C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ アルキル)アミノ基によって置換されていてもよい。]

- 2. 上記式 (I) においてk=1かつm=2である、請求項1記載のCCR3括 5 抗作用を有する薬剤。
 - 3. 上記式(I)においてk=0かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 4. 上記式(I) においてk=1かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
 - 5. 上記式 (I) においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

15

- 6. 上記式 (I) においてk=1かつm=4である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 7. 上記式(I)で表される化合物、その薬学的に許容される酸付加体、または 20 その薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。
 - 8. 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。
- 25 9. 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬もしくは予防薬。
 - 10. 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは予防薬。
- 30 11. 疾患がエイズである請求項7記載の治療薬もしくは予防薬。

INTERNATIONAL SEARCH REPORT

International application No.

			micriational app	
A. CLA	ASSIFICATION OF SUBJECT MATTER		PCT/J	P00/05260
470 CO 413 According	A61831/40, 4025, 445, 4468, 09, 4184, 427, 506, 433, 423, 4192, 7D207/14, 211/56, 58, 26, 401/04, 0 3/06, 14, 417/06, 487/04, 495/06, p g to International Patent Classification (IPC) or to h	. 4525, 4535, 454, 4 429, 53, A61P37/08 6, 12, 14, 403/06, 4, 513/04 oth national classification ar	22, 404, 4155, , 29/00, 31/1 12, 405/06, 1	, 4245, 5377, 45 8, 11/08, 43/00 2, 14, 409/12,
470 C07 413	documentation searched (classification system foll. C17 A61K31/40, 4025, 445, 4468, 9, 4184, 427, 506, 433, 423, 4192, D207/14, 211/56, 58, 26, 401/04, 06/06, 14, 417/06, 487/04, 495/06, 04 ation searched other than minimum documentation	4525, 4535, 454, 42 429, 53, A61P37/08, 5, 12, 14, 403/06, 1	2, 404, 4155, 29/00, 31/18	11/08, 43/00
REG	data base consulted during the international search ISTRY (STN), CA (STN), CAOLD (STN)	(name of data base and, whe , CAPLUS (STN)	re practicable, sear	ch terms used)
	IMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, when	e appropriate, of the relevan	t nassager	D.I.
X A	I " " I J J J Z J G G G , A L (T K I T T N T T N)	ITED),	- Passages	Relevant to claim No
	27 May, 1999 (27.05.99) & EP, 1030840, A1 & AU, 99 & NO, 2000002486, A	13741, A		1-10
X A	EP, 217286, A1 (OKAMOTO SHOSU 08 April, 1987 (08.04.87), Compound No.42 & JP, 63-022061, A & US, 489 & AU, 8663051, A & CA, 129	25042		1,5,7-10 2-4,6,11
X A	WO, 98/50534, A1 (SMITHKLINE 12 November, 1998 (12.11.98) & EP, 991753, A1 & AU, 987 & BR, 9808502, A & ZA, 980	BEECHAM CORPORAT 2885, A 3843, A		1,2,5 3,4,6-11
	GB, 2106108, A (JOHN WYETH AN 07 April, 1983 (07.04.83) & US, 4443461, A	D BROTHER LIMITE	o),	1,5 2-4,6-11
-	WO, 97/40051, A1 (TAKEDA CHEM) 30 October, 1997 (30.10.97)	CAL INDUSTRIES,	LTD.),	1,5 2-4,6-11
	documents are listed in the continuation of Box C.	See patent family as		
special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannor document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannor considered novel or cannot be considered to involve an invention cannor considered to involve an invention cannor considered to involve an invention considered t			gate invention cannot be involve an invention cannot be involve an inventive ad invention cannot be in the document is ments, such	
te of the actu 31 Oct	al completion of the international search cober, 2000 (31.10.00)	Date of mailing of the inte 07 November,	mational seasab so-	
me and maili	ng address of the ISA/ see Patent Office	Authorized officer		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	& JP, 10-226689, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A	
X A	KHALID, M. et al., "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol.13, Suppl. 1, p.57-60	1,5 2-4,6-11
PX PA	WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 02 June, 2000 (02.06.00) & DE, 19955794, A & GB, 2343893, A & FR, 2786185, A	1,2,7-11 3-6

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調査報告

国際出願番号 PCT/JP00/05260

			0/05260	
429, 53, A61P	属する分野の分類(国際特許分類(I P C)) K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 40 37/08, 29/00, 31/18, 11/08, 43/00 // ,C07D207/ 4, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/0	4, 4155, 4245, 5377, 4545, 4709, 4184, 427, 50	06, 433, 423, 4192, 6, 12, 405/06, 12,	
B. 調査を	行った分野			
Int. C1 7 A611 429, 53, A61P	最小限資料(国際特許分類(IPC)) K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 40 37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/ 4, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/0		06, 433, 423, 4192, 5, 12, 405/06, 12,	
	外の資料で調査を行った分野に含まれるもの	:		
国際調査で使用	用した電子データベース(データベースの名称	r、調査に使用した用語)		
REGIST	TRY (STN), CA (STN), CAOL	D (STN), CAPLUS (STN)		
C. 関連する	ると認められる文献			
引用文献の カテゴリー*			関連する	
X X	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	請求の範囲の番号	
A	WO, 99/25686, A1 (TEIJIN LIMITED) &EP, 1030840, A1 &AU, 9913741, A &N	27. 5月. 1999 (27. 05. 99) 10, 2000002486, A	1-10 11	
X	EP, 217286, A1 (OKAMOTO SHOSUKE) 8	4月 1987 (08 04 87)	1 5 7 10	
A	化合物No. 42参照 &JP, 63-022061, A &US, 4895842, A &		1, 5, 7-10 2-4, 6, 11	
х	WO. 98/50534 A1 (SMITHKLINE DEECU	AM COPPORTATION		
A	WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) 12.11月.1998 (12.11.98)		1, 2, 5	
	&EP, 991753, A1 &AU, 9872885, A &BR	, 9808502, A &ZA, 9803843, A	3, 4, 6-11	
x C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する別様	紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の退後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献				
際調査を完了		国際調査報告の発送日 07.11.0	00	
日本国	名称及びあて先 特許庁 (ISA/JP) 便番号100-8915 千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 榎本 佳予子 (制定 電話番号 03-3581-1101	4 P 9 6 3 8 内線 3 4 9 2	

国際調査報告

国際出願番号 PCT/JP00/05260

C(続き).					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
X	GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED) 7. 4月. 1983 (07. 04. 83) &US, 4443461, A	1, 5 2-4, 6-11			
X A	WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 30. 10月.1997(30.10.97) &JP, 10-226689, A &EP, 915888, A1 &CA, 2251625, A &AU, 9724048, A &ZA, 9703493, A &CN, 1223659, A	1, 5 2-4, 6-11			
X A	KHALID, M. et al., "N, N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, p. 57-60	1, 5 . 2-4, 6-11			
PX ⁻ PA	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE, 19955794, A &GB, 2343893, A &FR, 2786185, A	1, 2, 7-11 3-6			
		<u>. </u>			
-					
	·				
		·			
	·				
	·				
		<u> </u>			

This Page Blank (uspto)