CLEMSON UNIVERSITY, SCHOOL OF COMPUTING CPSC 3500 FOUNDATIONS OF COMPUTER SCIENCE

Assignment 1: Languages, Induction, Recursion

Return by 11:59pm 1/24/2019

Problem 1 5%

The language *Balanced* over $\Sigma = \{(,)\}$ is defined recursively as follows

- 1. $\Lambda \in Balanced$.
- 2. $\forall x, y \in Balanced$, both xy and (x) are elements of Balanced.

A prefix of a string x is a substring of x that occurs at the beginning of x. Prove by induction that a string x belongs to this language if and only if (iff) the statement B(x) is true.

B(*x*): *x* contains equal numbers of left and right parentheses, and no prefix of *x* contains more right than left.

Reminder for this and all following assignments: if you need to prove the "iff" statement, i.e., $X \iff Y$, you need to prove both directions, namely, "given X, prove that Y follows from X ($X \implies Y$)", and "given Y, prove that X follows from Y ($X \iff Y$)".

Problem 2 5%

Complete proof of claim about the reverse function (see Lecture 3).

Problem 3 5%

Finite language is a language with finite number of strings in it, i.e., there exist exactly k strings in this language such that $k \in \mathbb{N}$ and $k \neq \infty$. For a finite language L, let |L| denote the number of elements of L. For example, $|\{\Lambda, a, ababb\}| = 3$. (Do not mix up with the length |x| of a string x.) The statement $|L_1L_2| = |L_1||L_2|$ says that the number of strings in the concatenation L_1L_2 is the same as the product of the two numbers $|L_1|$ and $|L_2|$. Is this always true? If so, prove, and if not, find two finite languages $L_1, L_2 \subseteq \{a, b\}^*$ such that $|L_1L_2| \neq |L_1||L_2|$.

Problem 4 5%

We proved in class that if L_1 , and L_2 are subsets of $\{a,b\}^*$ then $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$. Show that $L_1^* \cup L_2^* \neq (L_1 \cup L_2)^*$.

Problem 5 5%

Find an example of languages L_1 and L_2 for which neither of L_1 , L_2 is a subset of the other, but $L_1^* \cup L_2^* = (L_1 \cup L_2)^*$. Prove the correctness of your example.

Problem 6 10%

Given language $L = \{yy | y \in \{a, b\}^*\}$. L can be represented as a concatenation

$$L = L\{\Lambda\} = \{\Lambda\}L$$

like any language. Can you express L as $L = L_1L_2$, where $L_1 \neq \{\Lambda\}$, and $L_2 \neq \{\Lambda\}$? Prove your answer.

Problem 7 5%

Each case below gives a recursive definition of $L \subseteq \{a,b\}^*$. Give a simple nonrecursive definition of L in each case. Example: $a \in L$; $\forall x \in L$ $ax \in L$ can be defined as "The set of all non-empty strings that do not contain b."

- 1. $a \in L$; $\forall x \in L \ xa, xb \in L$
- 2. $a \in L$; $\forall x \in L \ bx, xb \in L$
- 3. $a \in L$; $\forall x \in L$ $ax, xb \in L$
- 4. $a \in L$; $\forall x \in L$ $xb, xa, bx \in L$
- 5. $a \in L$; $\forall x \in L$ xb, ax, $bx \in L$
- 6. $a \in L$; $\forall x \in L \ xb, xba \in L$

Problem 8 5%

Suppose that Σ is an alphabet, and that $f: \Sigma^* \to \Sigma^*$ has the property that $f(\sigma) = \sigma$ for every $\sigma \in \Sigma$ and f(xy) = f(x)f(y) for every $x, y \in \Sigma^*$. Prove that for every $x \in \Sigma^*$, f(x) = x.

Problem 9 15%

In each case below, find a recursive definition for the language *L* and prove that it is correct.

- 1. $L = \{a^i b^j | j \ge 2i\}$
- 2. $L = \{a^i b^j | j \le 2i\}$

Problem 10 10%

Suppose $L \subseteq \{a,b\}^*$ is defined as follows: $\Lambda \in L$; for every x and y in L, the strings axb, bxa, and xy are in L. Show that L = AEqB, the language of all strings x in $\{a,b\}^*$ satisfying $n_a(x) = n_b(x)$.

Problem 11 10%

Let L_1, L_2 , and L_3 be languages over some alphabet. In each case below, two languages are given. Say what the relationship is between them. (Are they always equal? If not, is one always a subset of the other?) Give reasons for your answers, including counterexamples if appropriate.

- 1. $L_1(L_2 \cap L_3)$, $L_1L_2 \cap L_1L_3$
- 2. $L_1^* \cap L_2^*$, $(L_1 \cap L_2)^*$
- 3. $L_1^*L_2^*$, $(L_1L_2)^*$

Problem 12 10%

For $x \in EXPR$ defined in class, $n_a(x)$ denotes the number of a's in the string, and we will use $n_{op}(x)$ to stand for the number of operators in x (the number of occurrences of + or *). Show that for every $x \in EXPR$, $n_a(x) = 1 + n_{op}(x)$.

Problem 13 10%

Show using induction that for every $x \in \{a, b\}^*$ such that x begins with a and ends with b, x contains the substring ab.

Solutions to Assignment 1

Solution to Problem 1

See solution in the textbook.

Solution to Problem 2

See solution in the slides. Use *b* instead of *a*.

Solution to Problem 3

The statement is not true. Example: $L_1 = \{\Lambda, a, b\}$, and $L_2 = \{\Lambda, a\}$, then $L_1L_2 = \{\Lambda, a, b, aa, ba\}$, i.e., $|L_1L_2| = 5$, whereas $|L_1||L_2| = 6$.

Solution to Problem 4

 $L_1 = \{\Lambda, a\}, L_1 = \{\Lambda, b\}.$ String aba is in $(L_1 \cup L_2)^*$ but not in $L_1^* \cup L_2^*$.

Solution to Problem 5

Example: $L_1 = \{aa, aaaaa\}$, and $L_2 = \{aaa, aaaaa\}$.

Solution to Problem 6

See solution in the textbook.

Solution to Problem 7

- 1. The set of all strings beginning with *a*.
- 2. The set of all strings containing exactly one a.
- 3. The set of all strings containing at least one *a*, and no *ba* substring.
- 4. The set of all strings containing at least one *a*.
- 5. The set of all strings containing at least one *a*.
- 6. The set of all strings starting with a, with no substring aa.

Solution to Problem 8

Proof by structural induction

- basis: Show for Λ . $f(\Lambda) = f(\Lambda\Lambda) = f(\Lambda)f(\Lambda)$, i.e., we have a formula of form z = zz, where $z = f(\Lambda)$, which can be true for $z = \Lambda$ only.
- induction hypothesis: true for string x, f(x) = x
- induction step: $\forall a \in \Sigma \ f(xa) = f(x)f(a)$ by assumption. By IH f(x) = x, and by assumption f(a) = a, then f(xa) = xa.

Solution to Problem 9

- 1. $\Lambda \in L$; $\forall x \in L$, $axbb \in L$, and $xb \in L$.
- 2. $\Lambda \in L$; $\forall x \in L$, $axbb \in L$, and $axb \in L$, and $ax \in L$.

Let us prove (2) as an example. Let $L_0 = \{a^i b^j | j \le 2i\}$.

First we use structural induction to show that $L \subseteq L_0$. Clearly $\Lambda \in L_0$. Suppose that $a^i b^j \in L_0$ (by inductive hypothesis), which means that $j \le 2i$. Let's verify if all possible rules that extend this string lead us to L_0 . It follows that $j + 2 \le 2(i + 1)$, which means that $a(a^i b^j)bb \in L_0$. It also follows that $j + 1 \le 2(i + 1)$, so that $a(a^i b^j)b \in L_0$. Finally, it is also true that $j \le 2(i + 1)$, so that $a(a^i b^j) \in L_0$. Therefore, $L \subseteq L_0$.

Now we use induction on |x| to show that if $x \in L_0$, then $x \in L$. The basis step is straightforward. Suppose that $k \ge 0$ and that for any i and j in $\mathbb N$ satisfying $i+j \le k$, and $j \le 2i$, $a^ib^j \in L$. Now suppose that i+j=k+1 and $j \le 2i$. We must show that $a^ib^j \in L$. We consider three cases. First, if j=2i, then j-2=2(i-1), which implies that $a^{i-1}b^{j-2} \in L$. By the induction hypothesis, $a^{i-1}b^{j-2} \in L$; therefore, $a^ib^j = a(a^{i-1}b^{j-2})bb \in L$, by the definition of L. Second, if j=2i-1, then j-1=2i-2, which means that $a^{i-1}b^{j-1}=a^{i-1}b^{2(i-1)}$ and therefore that $a^{i-1}b^{j-1} \in L_0$. Therefore, by the induction hypothesis, $a^{i-1}b^{j-1} \in L$, and by the recursive definition of L, $a^ib^j=a(a^{i-1}b^{j-1})b \in L$. Finally, if j < 2i-1, then $j \le 2(i-1)$, which means that $a^{i-1}b^j \in L_0$. By the induction hypothesis, $a^{i-1}b^j \in L$; therefore, by the recursive definition of L, $a^ib^j=a(a^{i-1}b^j) \in L$.

Solution to Problem 10

See solution in the textbook.

Solution to Problem 11

- 1. $L_1(L_2 \cap L_3) \subseteq L_1L_2 \cap L_1L_3$. If $L_1 = \{a, aa\}, L_2 = \{\Lambda\}, L_3 = \{a\}$ then $L_1L_2 \cap L_1L_3 = \{aa\}$, and $L_1(L_2 \cap L_3) = \emptyset$.
- 2. $(L_1 \cap L_2)^* \subseteq L_1^* \cap L_2^*$, and they are not always equal. If $L_1 = \{a\}$, and $L_2 = \{aa\}$, then $L_1^* \cap L_2^*$ contains aa, and $(L_1 \cap L_2)^* = \emptyset$.
- 3. $L_1^*L_2^*$, $(L_1L_2)^*$. Neither is necessarily a subset of the other. If $L_1 = \{a\}$, and $L_2 = \{b\}$, then $aabb \in L_1^*L_2^* (L_1L_2)^*$, and $abab \in (L_1L_2)^* L_1^*L_2^*$.

Solution to Problem 12

Use structural induction on the recursive definition of EXPR. We need to prove the statement P(x) that is $n_a(x) = n_{op}(x) + 1$.

- Basis step: if x = a, P(x) is true because $n_a(a) = n_{op}(a) + 1 = 0 + 1$.
- Induction hypothesis: we assume that P(x), and P(y) are true, i.e., $n_a(x) = n_{op}(x) + 1$, and $n_a(y) = n_{op}(y) + 1$.
- Induction step: We need to prove P(z) for three cases z = x + y, z = x * y, and z = (x). Let us prove it for z = x + y.

$$\begin{array}{lll} n_a(z) & = & n_a(x) + n_a(y) & \text{(because there is no } a \text{ in +)} \\ & = & n_{op}(x) + 1 + n_{op}(y) + 1 & \text{(by induction hypothesis)} \\ & = & n_{op}(z) + 1 & \text{(because } n_{op}(z) = n_{op}(x) + n_{op}(y) + 1) \end{array}$$

Other cases are similar.

Solution to Problem 13

We prove the statement: $\forall n \in \mathbb{N}_{\geq 2}$, if $x \in \{a, b\}^*$, |x| = n, and x begins with a, ends with b, then x contains ab.

- BS: n = 2, the statement is true because if |x| = 2, starts with a, ends with b then x = ab.
- IH: the statement is true for some *k*
- IS: We need to prove it for |x| = k + 1. If the second symbol of x is b then x contains ab and the statement is correct; otherwise x = ay, where |y| = k, and y begins with a, ends with b. By IH, y contains ab, and therefore x also does.