1) a) Ho: p=0.05 (5% of children had autism)
H1: p>0.05 (more than 5% children had autism)

b) The test to be conducted is a one sample test of proportions. The test is given by 12

test statistics p is observed statistics pois the null hypothesis.

c) $\hat{p} = 0.02$ $p_0 = 0.05$ $p_0 = 0.05$ $p_0 = 0.05$ $p_0 = 0.01112$ $p_0 = 0.01112$

· p̂-po = 0.12-0.05 = 6295

JPoplin 0 01112

d) This lies outside the critical value of 1.6449

so we have enough evidence to reject the null hypothesis. p̂ = 46 and po is given as 0.05

2] a)
$$H_0: P = 0.2$$

 $H_1: P > 0.2$

b)
$$np_0 = 22 \times 0.2 = 4.4 \times 10$$

 $nq_0 = 22 \times 0.8 = 17.6 \times 10$

We expect more than 60x 10 cars that failed to meet pollution control quidelines and more than to care with people emission systems

- c) The sample is not large enough to continue the test.
- 3) a) Ho: P= 0.44 Hi:p > 0.44

Since it lies outside the 5% critical value 1.6449 we can reject the hull hypothesis.

c)
$$\vec{p} - \vec{p_0} = 0.98 \text{ N}(0,1)$$

$$5.99 \vec{p} = [-2.3263 \times 0.01663] + 0.44 < \vec{p} < 2.3263 \times 0.0063$$

$$CI = (0.40131, 0.47869)$$

4) a) Ho: And MI= MI
HI: MI + MI

56. (x,-F2) - (M1-M2) NN(0,1)

 $\frac{(26.6 - 13.8) - 0}{\sqrt{\frac{0.01}{25}} + \frac{0.25}{25}} = \frac{12.8}{0.102} = 125.49$

which tells us that the value is much higher than the critical value so we can reject the null hypothesis.

5] a) n-1=51 and we don't have n=51 in the t table

So we will be using 50 as the degree of
freedom.

b) 984 CZ = $7 \pm \frac{1}{5} = 98.2851 \left(2.403 \times 0.6824\right)$ = (98.06, 98-51)

C) Ho: M & 98.6 H1: M & 98.6

In the 98.1 (I we got (98.06, 98.51) which is less than 98.6 so we can say that we do not have enough evidence to eject to the null hypothesis.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

b)
$$\bar{x}_{1}=23.1$$
 $\bar{x}_{2}=25.1$ $Sp=6.02$

N tritnz-2

55	30.2			
45.7	2.2		Variable 1	Variable 2
43.3	7.5	Mean	46.8	10.169
50.3	4.4	Variance	41.19555556	55.8858
45.9	22.2	Observations	19	29
53.5	16.6	Pooled Variance	50.13743628	
43	14.5	Hypothesized Mean Differ	0	
44.2	21.4	df	46	
44	3.3	t Stat	17.52763427	
33,6	10	P(T<=t) one-tail	2.72001E-22	
55.1	1	t Critical one-tail	1.678660414	
48.8	4.4	P(T<=t) two-tail	5.44002E-22	
50.4	1.3	t Critical two-tail	2.012895599	
37.8	8.1			
60.3	6.6			
46.6	7.8			
47.4	10.6			
44	10.6			
	16.2			
	14.5			-
	4.1			+
	15.8			-
	4.1			-
	2.4			
	3.5			-
	8,5			-
	4.7			-
	18.4			-