

ECE380 Digital Logic

Implementation Technology: NMOS and PMOS Transistors, CMOS logic gates

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 13-1

Logic values as voltage levels

- V_{ss} is the minimum voltage that can exist in the system. We will use V_{ss}=0V.
- V_{DD} is the power supply voltage. We will use $V_{DD} = +5V$. $V_{DD} = +3.3V$ is also common.
- Exact levels of V_{0,max} and V_{1,min} depend on the implementation technology

Electrical & Computer Engineering

Transistor switches

- · Logic circuits are built with transistors
- We will assume a transistor operates as a simple switch controlled by a logic signal x
- The most popular type of transistor for implementing a simple switch is the metal oxide semiconductor field effect transistor (MOSFET)
- Two types of MOSFETs
 - N-channel (NMOS)
 - P-channel (PMOS)
- Early circuits relied on NMOS or PMOS transistors, but not both
- Current circuits use both NMOS and PMOS transistors in a configuration called *complementary MOS* (CMOS)

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 13-3

NMOS transistor as a switch

A simple switch controlled by the input x

Electrical & Computer Engineering

NMOS transistor as a switch

- The transistor operates by controlling the voltage V_G at the gate terminal
- If V_G is low, there is no connection between the source and the drain terminals. The transistor is turned off.
- If V_G is high, the transistor is turned on and acts as a closed switch between the source and drain terminals.

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 13-5

PMOS transistor as a switch

A simple switch controlled by the input x

Electrical & Computer Engineering

PMOS transistor as a switch

- The transistor operates by controlling the voltage V_{G} at the gate terminal
- $\bullet \quad \text{If V_G is high, there is no} \\$ connection between the source and the drain terminals. The transistor is turned off.
- If V_G is low, the transistor is turned on and acts as a closed switch between the source and drain terminals.

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 13-7

NMOS and PMOS in logic circuits

NMOS transistor

Closed switch when $V_G = V_{DD}$

Open switch when $V_G = 0V$

PMOS transistor

 V_{DD} Open switch

when $V_G = V_{DD}$

 V_{DD} Closed switch when $V_G = 0V$

Electrical & Computer Engineering

NMOS and PMOS in logic circuits

- When the NMOS transistor is turned on, its drain is pulled down to Gnd
- When the PMOS transistor is turned on, its drain is **pulled up to V_{DD}**
- Because of the way transistors operate:
 - An NMOS transistor cannot be used to pull its drain terminal completely up to V_{DD}
 - A PMOS transistor cannot be used to pull its drain terminal completely down to Gnd
- Therefore, NMOS and PMOS transistors are commonly used in pairs in CMOS circuits

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 13-9

CMOS logic gates

- A CMOS logic gate involves NMOS transistors in a pull-down network (PDN) and PMOS transistors in a pull-up network (PUN)
- The functions realized by the PDN and PUN networks are complements of one another
- The PDN and PUN have equal numbers of transistors, which are arranged so that the two networks are duals of one another
 - Wherever the PDN has NMOS transistors in series, the PUN has PMOS transistors in parallel, and vice versa

Electrical & Computer Engineering

