(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年8 月21 日 (21.08.2003)

PCT

(10) 国際公開番号 WO 03/069001 A1

(51) 国際特許分類7:

C22C 1/04

(21) 国際出願番号:

PCT/JP03/01612

(22) 国際出願日:

2003年2月14日(14.02.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-037983 2002年2月15日(15.02.2002) J

- (71) 出願人 (米国を除く全ての指定国について): 株式会社先端科学技術インキュベーションセンター (CENTER FOR ADVANCED SCIENCE AND TECHNOLOGY INCUBATION, LTD.) [JP/JP]: 〒100-0005 東京都 千代田区 丸の内一丁目 5番 1 号新丸の内ビルヂング 6階 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 近藤 勝義 (KON-DOH, Katsuvoshi) [JP/JP]: 〒153-0041 東京都 目黒区

駒場 4-6-1 東京大学先端科学技術研究センター Tokyo (JP).

- (74) 代理人: 伊藤 英彦, 外(ITOH,Hidehiko et al.); 〒 542-0082 大阪府 大阪市 中央区島之内 1 丁目 2 1番 1 9 号 協和島之内ビル アイミー国際特許事務所 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI

/続葉有/

- (54) Title: MAGNESIUM BASE COMPOSITE MATERIAL AND METHOD FOR PRODUCTION THEREOF
- (54) 発明の名称: マグネシウム基複合材料及びその製造方法

an alloy matrix of magnesium and, dispersed uniformly therein, particles of compounds having been formed through reactions with magnesium, wherein the particles of compounds dispersed uniformly in the matrix contain magnesium silicide (Mg₂Si) and magnesium oxide (MgO). The magnesium base composite material is excellent in strength, hardness and abrasion resistance, and also is suppressed in the attack on an opposite element when used, for example, as the material of sliding or friction parts.

(57) Abstract: A magnesium base composite material which comprises

A... STARTING MATERIAL (BEFORE HEAT TREATMENT)
B... AFTER HEAT TREATMENT UNDER VACUUM

特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, 一 補正書・説明書 MR, NE, SN, TD, TG).

添付公開書類: 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

マグネシウム基複合材料は、マグネシウム合金素地中に、マグネシウムとの固 相反応によって生成する化合物粒子を均一に分散させている。このマグネシウム 基複合材料が、優れた強度、硬さおよび耐摩耗性を有しつつ、緩和された相手攻 撃性を有するようにするために、素地中に分散する化合物粒子は、マグネシウム シリサイド (Mg,Si) および酸化マグネシウム (MgO) を含む。

明細書

マグネシウム基複合材料及びその製造方法

5 技術分野

本発明は、優れた機械的特性および耐食性を有するマグネシウム基複合材料、及びその製造方法に関する。

背景技術

- 10 従来よりマグネシウムシリサイド(Mg_2Si)粒子が分散したマグネシウム 基複合材料に関する研究開発は、精力的に進められている。例えば、特開平 6-81068 号公報は、高Si 含有のマグネシウム合金を半溶融状態で射出成形する際にマトリックスのMg とSi との反応によって Mg_2Si を合成し、この Mg_2Si 粒子が分散したマグネシウム基複合材料の製造方法を開示している。
- また、特開平8-41564 号公報は、鋳造法によって得られる、 Mg_2Si 粒子及びSiC 位子が分散したマグネシウム基複合材料を開示している。さらに、特開2000-17352 号公報は、球状の Mg_2Si 粒子が分散したマグネシウム基複合材料、及びその鋳造法による製法を開示している。
- しかしながら、上述のマグネシウム基複合材料に関する製造方法はいずれも、 60 鋳造法又は含浸法などの溶解法を基調としている。即ち、これらの方法は、マトリックスを構成するマグネシウム又はマグネシウム合金を一旦溶解させた後に、 凝固・固化する工程を経ている。このため、マトリックスのマグネシウムの結晶 粒径およびMg₂Si粒子の粗大成長が観察され、且つこれによる強度・硬度等 の機械的特性の低下が観察される。
- 25 また、上述の溶解法を基調とする製法は、それ自体、消費エネルギー増加、特にリサイクルを考慮した際の消費エネルギーの増加が避けられず、コスト面における課題を伴っていた。

これに対して本発明者らは、粉末冶金技術を用いて、マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (Si) 粉末とを配合した混合粉末を圧

粉成形し、これを管理された加熱雰囲気中でMgの融点未満の適切な固相温度域において加熱・保持することでMgとSi粉末とを反応させて微細な Mg_2Si を生成してマトリックス中に分散させる方法を提案した。具体的には、平成13年9月25日に特願2001-292117号として「マグネシウム基複合材料、マグネシウム基複合材料前駆体およびそれらの製造方法」を、および平成<math>13年9月25日に特願2001-292118号として「マグネシウム基複合材料、マグネシウム基複合材料前駆体およびそれらの製造方法」を特許出願した。これらの出願は、現時点では、未だ出願公開されていない。

本発明者らの上記方法によって得られるマグネシウム基複合材料は、微細なM g_2Si 粒子が均一に分散することにより強度や硬さといった、複合材料の機械的特性が向上すると共に、硬質な Mg_2Si 粒子の均一分散により複合材料の耐摩耗性を向上させることができる。

しかしながら、この複合材料を摩擦摺動部品用材料として使用する場合、自分 自身の耐摩耗性は改善されるものの、相手材が比較的柔らかい材料の場合には相 手材を攻撃するといった問題が生じる。

発明の開示

5

10

15

20

そこで、本発明の目的は、更に向上した特性を有するマグネシウム基複合材料を提供することにある。特に、本発明の目的は、強度及び硬さ、並びに耐摩耗性を有しつつ、相手攻撃性を改善したマグネシウム基複合材料を提供することにある。

また、本発明の目的は、上記目的の他に、又は上記目的に加えて、上記マグネシウム基複合材料の製造方法を提供することにある。

本発明者は、鋭意検討の結果、以下のように構成することにより、上記課題を 25 解決できることを見出した。

即ち、この発明に従ったマグネシウム基複合材料は、マグネシウムシリサイド(Mg₀S_i)、酸化マグネシウム(MgO)、及びマグネシウムを有する。

上記のマグネシウム基複合材料は、さらに SiO_2 成分を含んでいても良い。 好ましくは、 Mg_2Si 及びMgOは、マグネシウム基複合材料中に均一分散

2

している。

15

20

25

また、好ましくは、マグネシウム基複合材料100重量部中、 $Mg_2Siが3$ 重量部以上である。さらに好ましくは、マグネシウム基複合材料100重量部中、MgOが3重量部以上である。

5 一つの好ましい実施形態では、マグネシウム合金素地中に、マグネシウムとの 固相反応によって生成する化合物粒子が均一に分散するマグネシウム基複合材料 において、化合物粒子は、マグネシウムシリサイド(Mg₂Si)および酸化マ グネシウム(MgO)を含むことを特徴とする。化合物粒子は、さらに、SiO 。成分を含んでもよい。

10 好ましくは、当該マグネシウム基複合材料100重量部に対して、マグネシウムシリサイドが3重量部以上15重量部以下である。さらに好ましくは、マグネシウムシリサイドが5重量部以上8重量部以下である。

好ましくは、当該マグネシウム基複合材料100重量部に対して、酸化マグネシウムが3重量部以上15重量部以下である。さらに好ましくは、酸化マグネシウムが5重量部以上8重量部以下である。

マグネシウム基複合材料は、固形潤滑剤として黒鉛粉末を含むものであっても よい。この場合、好ましくは、黒鉛粉末の含有量は、当該マグネシウム基複合材 料に対して重量基準で0.5%~3%である。

この発明に従ったマグネシウム基複合材料の製造方法は、マグネシウム(Mg)を有してなる第1の材料とSiO₂成分を含む第2の材料とを混合して混合物を得る工程と、該混合物を所定の容器又は金型に充填して加圧することで圧粉成形体を得る工程と、該圧粉成形体を不活性ガス雰囲気又は真空中で加熱する工程とを有するものであって、上記の加熱工程において混合物中のMgとSiO₂との反応によりマグネシウムシリサイド(Mg₂Si)、酸化マグネシウム(MgO)を生成させて、Mg₂Si、MgO及びMgを有してなるマグネシウム基複合材料を製造する。

好ましくは、加熱工程の加熱温度は250 \mathbb{C} 以上である。また、好ましくは、 $\mathbb{M}_{g_2}S$ i 及び \mathbb{M}_{g} \mathbb{O} は、マグネシウム基複合材料中に均一分散する。

マグネシウム基複合材料はSiO2をさらに有していてもよく、この場合、該

SiO₂が、マグネシウム基複合材料中に均一分散するのが望ましい。

好ましくは、マグネシウム基複合材料100重量部中、 Mg_2Si が3重量部以上である。また、好ましくは、マグネシウム基複合材料100重量部中、MgOが3重量部以上である。

一つの好ましい実施形態では、マグネシウム基複合材料の製造方法は、マグネシウムを含む第1の材料とSiO。成分を含む第2の材料とを混合して混合物を得る工程と、混合物を加圧して圧粉成形体を得る工程と、圧粉成形体を不活性ガス雰囲気中または真空中で加熱し、圧粉成形体中のMgとSiO。との反応によりマグネシウムシリサイド(Mg2Si)および酸化マグネシウム(MgO)をマグネシウム合金素地中に生成する工程とを備える。

圧粉成形体を得るのに先立ち、混合物を粉砕する工程を備えるようにしてもよい。また、混合物を粉砕した後に圧着する工程を備えるようにしてもよい。さらに、混合物を圧着した後に破砕する工程を備えるようにしてもよい。

好ましくは、圧粉成形体の加熱温度は、250℃以上で、かつマグネシウムの 融点以下である。

圧粉成形体を得るのに先立ち、混合物を粉砕および/または圧着および/または破砕することにより上記第1材料中のマグネシウムに新生面を形成する工程を さらに備えるようにしてもよい。

20 図面の簡単な説明

5

10

15

図1は複合材料X-1の(a)加熱前の混合粉末;及び(b)真空熱処理後の 試料粉末のX線回折の結果を示す図である。

図2は試料X-2のX線回折の結果を示す図である。

図3は試料X-2の走査型電子顕微鏡画像の概略図である。

25 図4Aは試料X-3の加熱処理前;及び図4Bは真空熱処理後のX線回折の結果を示す図である。

図5は摩耗試験の試験方法の概要を示す図である。

発明を実施するための最良の形態

以下、本発明を詳細に説明する。なお、本発明について、マグネシウム基複合 材料、及びその製造方法の順で説明する。

<マグネシウム基複合材料>

5

20

25

本発明のマグネシウム基複合材料は、マグネシウムシリサイド(Mg₂Si)、酸化マグネシウム(MgO)、及びマグネシウムを有する。

本発明の複合材料に含まれる Mg_2Si は、熱膨張率がマグネシウムよりも小さく、高剛性・高硬度を有し、しかも低比重で耐熱性・耐食性に優れている。

本発明の複合材料において、 Mg_2Si 微細粒子は、均一に分散しているのがよい。

10 Mg_2Si 微細粒子を含むこと、特に均一分散して含むことにより、本発明の複合材料の機械的特性(例えば強度及び/又は硬さ)、並びに耐摩耗性及び耐食性を向上させることができる。なお、本明細書において、 Mg_2Si の均一分散とは、 Mg_2Si 地子間の距離が最大でも 300μ m程度であることをいう。ただし、 Mg_2Si 地子同士が凝集・偏析したり、ネットワーク等を形成してはいけない。 Mg_2Si 地子間の距離が小さくなると、引張強さ等の機械的特性が向上する。

本発明の材料中の Mg_2Si の量は、該材料100重量部中、3重量部以上、好ましくは5重量部以上であるのがよい。また、本発明の材料中の Mg_2Si の量は、その値が大であれば強度等の機械的特性を向上させることができるが、複合材料自身の被削性の観点及び/又は機械的特性向上の非顕著性(特性向上の飽和)から、材料100重量部中、 Mg_2Si の量は、15重量部以下、好ましくは8重量部以下であるのがよい。

本発明の複合材料に含まれるMgOは、 Mg_2Si と同様に、複合材料の機械的特性(例えば強度及び/又は硬さ)を向上させることができる。また、MgOは、相手攻撃性を改善することができる。

本発明の複合材料において、MgO微細粒子は、均一に分散しているのがよい。均一分散させることにより、複合材料の機械的特性を一層向上させ、また相手攻撃性を一層改善させることができる。なお、一般に、MgOを含む酸化物粒子は、他の非酸化物系セラミックス(例えば、窒化物、炭化物、又はホウ化物など

)と比べて硬さが低いために相手材と擦り合わせて使用した場合、相手材を著し く攻撃することがないという特性を有する。

本発明の材料中のMgOの量は、該材料100重量部中、3重量部以上、好ましくは5重量部以上であるのがよい。また、本発明の材料中のMgOの量は、その値が大であれば強度等の機械的特性を向上させることができるが、複合材料自身の被削性の観点及び/又は機械的特性向上の非顕著性(特性向上の飽和)から、材料100重量部中、MgOの量は、15重量部以下、好ましくは8重量部以下であるのがよい。なお、本明細書において、MgOの均一分散とは、MgO粒子間の距離が最大でも300 μ m程度であることをいう。

5

20

25

10 このように、MgOを含むこと、特に均一分散して含むことにより、本発明の複合材料の機械的特性(例えば強度及び/又は硬さ)を向上させつつ、複合材料に所望の相手攻撃性に対する改善を与えることができる。即ち、Mg及びMg2Siのみからなる複合材料では相手攻撃性が高すぎた点を改善することができる。このため、本発明の複合材料は、摩擦摺動部品用材料として使用することができる。

なお、本発明の材料を摩擦摺動部品用材料として使用する場合、本発明の材料中のMgOの量に依存するか又は本発明の材料の相手攻撃性に依存するが、相手材として、比較的柔らかい材料、例えばマグネシウム合金、アルミニウム合金、銅合金などを用いることができる。

本発明のマグネシウム基複合材料は、所望により、SiO₂成分を有していて もよい。SiO₂は、酸化物であり、上述のようにMgOと同様、マグネシウム 基複合材料中に分散することで相手攻撃性を改善することができる。

本発明のマグネシウム基複合材料は、上記成分の他に、種々の成分を含んでいてもよい。例えば、種々の成分の金属種としてA1、Zn、Mn、Zr、Ce、Li及びAg等を挙げることができるが、これらに限定されない。即ち、本発明の複合材料に含まれ得る種々の成分は、上記金属種の合金であっても、酸化物等の化合物であってもよい。これらの成分を有することにより、複合材料の特性を変化、調整することができる。

摩擦係数を低下させたい場合、マグネシウム基複合材料は、好ましくは、固形

潤滑剤として黒鉛粉末を含む。この黒鉛粉末の含有量は、当該マグネシウム基複合材料に対して重量基準で0.5%~3%であるのが望ましい。

<マグネシウム基複合材料の製造方法>

本発明のマグネシウム基複合材料は、次のような工程により製造することができる。即ち、本発明の方法は、マグネシウム(Mg)を有してなる第1の材料とSiO₂成分を含む第2の材料とを混合して混合物を得る工程;該混合物を所定の容器又は金型に充填して加圧することで圧粉成形体を得る工程;及び該圧粉成形体を不活性ガス雰囲気又は真空中で加熱する工程;を有する。

加熱工程において混合物中のMg と SiO_2 とが反応することにより、マグネシウムシリサイド(Mg_2Si)及び酸化マグネシウム(MgO)が生じ、 Mg_2Si 、MgO及びMgを有してなるマグネシウム基複合材料を得る。

<混合工程>

5

10

15

20

上記方法の混合工程において用いる材料について説明する。

混合工程において、マグネシウム(Mg)を有してなる第1の材料と SiO_2 成分を含む第2の材料とを用いる。

マグネシウム(Mg)を有してなる第1の材料には、Mgを含む合金、又はMgのみからなるものが含まれる。Mgのみを用いる場合、粉塵爆発等に対する防爆の観点から粒径が 10μ m以上の粉末を用いるのが好ましい。この点を満たせば、Mgを有してなる第1の材料の形態は、特に限定されないが、例えば粉末、チップ、又は塊状小片等の形態であるのがよい。

Mgを有してなる第1の材料が合金である場合、Mg以外に含まれるものとして、A1、Zn、Mn、Zr、Ce、Li 及びAg等を挙げることができるが、これらに限定されない。例えばMgを含む合金として、AZ31及びAZ91などの工業用マグネシウム合金を挙げることができる。

SiO₂成分を含む第2の材料には、SiO₂成分を含むもの、例えば石英ガラスなどのガラス、及びSiO₂成分のみからなるシリカなどが含まれる。

なお、第2の材料として「 SiO_2 成分を含むもの」、例えば石英ガラスを用いる場合、該石英ガラスの主成分である SiO_2 成分の量は、該石英ガラス 100重量部中、90重量部以上含有するのが好ましい。

7

なお、石英ガラスなどを用いる場合、該ガラス中には、複合材料の特性、及び / 又は本発明の製造方法に悪影響を及ぼす成分が含まれていないことが望ましい。例えば、悪影響を及ぼす成分として Fe_2O_3 などを挙げることができる。 Fe_2O_3 が含まれる場合、該 Fe_2O_3 がMgにより還元され、本発明の複合材料に不所望なFeが存在することになる。このFeは、例えば強度、耐食性などの低下を誘発するため、本発明にとっては好ましくない。

5

10

15

20

25

また、 SiO_2 成分の量は、第1の材料と第2の材料との合計を100重量部とした場合、 $2.5\sim12$ 重量部であるのがよい。

 SiO_2 成分を含む第2の材料の形態は、特に粒径などは、特に限定されない。その形態は、数センチメートル単位のブロック状の粗大な試料をはじめ、機械的粉砕処理を施した数ミクロン程度の微細粒子までの幅広い範囲のものを用いることができる。なお、後述する圧粉成形体を得る工程において、第1の材料との機械的な結合を向上させる観点から、第2の材料は、その粒径が $10 \mu m \sim 50 u m$ 、好ましくは $10 \sim 200 \mu m$ であるのがよい。

なお、第2の材料として、シリカ、特にSiO₂成分を含むガラスを用いることにより、原材料として安価なものを用いることができ、ひいては最終的な生成物であるマグネシウム基複合材料の価格をより顕著に低下させることができる。

第1の材料と第2の材料との混合は、従来から用いられている混合粉砕機を使用することができる。例えば、V型ミキサー又はボールミルなどを挙げることができるがこれらに限定されない。

混合は、種々の環境下、例えば大気中で行うことができる。望ましくは、微粒子を用いる場合、混合容器の中に窒素ガスやアルゴンガスなどの不活性ガスを充填することにより、混合工程での粉末表面の酸化、特にMg粉末の表面の酸化を防止するのがよい。なお、混合は、上述したように、複合材料において Mg_2S i及び/又はMgOが均一分散するように、均一混合するのがよい。

混合工程後、後述の「圧粉成形体を得る工程」前に、混合物を粉砕及び/又は 圧着及び/又は<u>破砕</u>する工程に付してもよい。また、この粉砕及び/又は圧着及 び/又は破砕する工程を複数回繰返し行ってもよい。

この粉砕・圧着・破砕工程は、粉砕機を用いて行うのがよい。粉砕機は、ボー

ルメディアによる衝撃エネルギーを利用した機械的な粉砕処理能力を有するのがよく、例えば回転ボールミル、振動ボールミル、遊星ボールミルからなる群から選ばれるのがよい。このような機械的な粉砕・混合・圧着・破砕を行うことにより、第1の材料及び第2の材料を微細に粉砕してMg及び SiO_2 成分を均一分散させることができる。

また、この粉砕・圧着・破砕工程により、Mgを含む第1の材料中のMgに新生面を形成することができる。即ち、純Mg粉末あるいはMg合金粉末の表面は、酸化皮膜(MgO)に覆われている。このMgOは、他の酸化物と比べて生成自由エネルギーが小さく安定であるため、粉末表面に存在するMgO表面皮膜が、後述するMgとSiO2成分との反応を抑制する。しかしながら、上記の粉砕・圧着・破砕工程を設けることにより、表面酸化皮膜、即ちMgO表面皮膜を機械的に分断・破壊して活性なMg新生面を形成できることを、本発明者らは見出した。この結果、後述の加熱工程において、Mgの融点(650℃)よりも低い温度域、つまり固相状態で微細なMg2SiとMgOを合成できることを、本発明者らは見出した。なお、Mg新生面の出現面積が多いほど、Mg2Si/MgO合成温度はより低温側に移行することがわかった。即ち、粉砕・圧着・破砕工程及び/又は後述の「圧粉成形体を得る工程」により緻密な圧粉成形体を創製することによって、より低温での微細なMg2Si/MgO反応合成にとって有利である。

20 <圧粉成形体を得る工程>

5

10

15

25

混合工程後、上記で得られた混合物を、圧粉成形体を得る工程に付する。圧粉成形体を得る工程は、上記で得られた混合物を所定の容器又は金型に充填して加圧する。

得られた混合物から圧粉成形体を得る工程は、従来の粉末冶金法で用いられているプロセスを適用することができる。例えば、容器に混合物を充填して冷間等圧成形 (CIP) する方法;金型に混合物を充填した状態で上下パンチにより圧縮することで圧粉体を創製する方法;又は混合物の温度を100~200℃程度に加熱した状態での温間成形などによる固化方法などを挙げることができるが、これらに限定されない。

<加熱工程>

5

15

20

25

圧粉成形体を得る工程後、該圧粉成形体を不活性ガス雰囲気又は真空中で加熱 する工程に付する。

この加熱工程において、以下の式 I で表される酸化還元反応により Mg_2S_i 及びMgOが生成し、本発明のマグネシウム基複合材料が得られる。

4Mg + SiO₂ → Mg₂Si + 2MgO (式I).

加熱雰囲気は、特に限定されないが、圧粉成形体中のMg又はMg含有合金の酸化を抑制する目的から、窒素又はアルゴンなどの不活性ガス雰囲気下、もしくは真空中とするのがよい。

加熱温度は250 C以上とするのがよい。また、例えば $\mathrm{Mg}_2\mathrm{S}$ i 及び Mg O を比較的短時間で合成させるため、加熱温度を450 C以上にしてもよい。

この加熱温度において、Mgによる SiO_2 の還元反応が進行し、その結果として上記式Iのように、 Mg_2Si 及びMgOが合成される。この加熱温度は、Mgの融点(650C)よりも十分低い温度であり、いわゆる固相温度域において Mg_2Si 及びMgOの反応合成を進行させることができる。

なお、所望により、例えば所望とする材料の大きさに応じて、最高加熱温度に 達する、ある温度、及び/又は最高加熱温度で該温度を保持するのがよい。

上記方法を経ることで、粉末冶金法によりMg液相を出現させることなく、固相状態において Mg_2Si 及びMgOの合成が可能であり、その結果、複合材料のマトリックスであるMgは微細結晶粒を有し、かつ Mg_2Si 及びMgOも微細にマトリックス中に分散することで機械的特性および耐食性に優れたマグネシウム基複合材料を経済性よく創製することができる。また、Mgの液相が出現しないことから圧粉成形体と加熱後に得られた複合材料との寸法変化が小さいといった利点もある。

一例として、マグネシウム粉末(平均粒子径 $110\mu m$)とシリカ粉末(平均粒子径 $21\mu m$)とを準備し、シリカ粉末が38重量%となるように両者を配合して混合粉末を得た。この混合粉末を圧力600MPaで圧粉成形した後、この成形体を真空熱処理、即ち加熱温度530 において10分間保持して複合材料X-1を得た。

5

10

15

20

25

また、他の例として、第2の材料として粒径が約183 μ mのシリカ (SiO を用いた場合を次に説明する。

マグネシウムのみからなるマグネシウム粉末圧粉体を予め用意した。この圧粉体にシリカ粉末(粒径:約 183μ m)を埋め込み、この状態のものを真空熱処理、即ち温度530で10分間加熱保持して、試料サンプルX-2を得た。

次いで、得られた試料 X-2 の X 線回折を行った。その結果を図 2 に示す。図 2 からわかるように、試料サンプル X-2 から、Mg、 Mg_2 Si 及び Mg O に 加えて Si O_2 の回折ピークが検出された。これから、試料サンプル X-2 には 出発原料である未反応の Si O_2 が残存していることがわかる。

また、得られた試料X-2、特に試料X-2中に残存する未反応 SiO_2 粒子のEDX面分析(エネルギ分散型X線マイクロアナリシス:Energy dispersive X-ray spectroscopy)を行った(成分Si、Mg、及びOについてそれぞれ行った)。その結果を走査型電子顕微鏡写真で撮影した。この走査型電子顕微鏡写真の結果の概略を図3に示す。図3中、1は走査型電子顕微鏡写真の概略図を示す。EDX面分析の結果、3はMgのみからなり、 SiO_2 粒子と思われる箇所の5はSi及びOが検出されMgは検出されなかった。また、7はSi、O及びMgが検出された。図3のEDX面分析の結果と、図2のX線回折の結果から、5は未反応の SiO_2 であり、7は Mg_2Si 及びMgOであるものと考察される。これは、原料粉末として使用するシリカが粗大である場合、加熱保持条件及び/又は原材料、特に SiO_2 の粒子径によって、Mgによる還元反応が SiO_2 粒子内部にまで進行せず、該粒子の中央部に SiO_2 が残存することがあること

を示唆している。

10

15

20

この例から、第1の材料及び/又は第2の材料の粒子径を制御すること、例えば第2の材料としてのSiO $_2$ の粒子径を制御することにより、反応合成により生成するMg $_2$ Si及びMgOに加えて、未反応SiO $_2$ が分散するようなマグネシウム基複合材料を調製設計することができる。

さらに他の例として、第2の材料として石英ガラスを用いた場合について、以下に述べる。

純Mg粉末(平均粒子径 $112\mu m$)と石英ガラス粉末(同 $62\mu m$)を準備し、両者の混合物を100重量%としたとき石英ガラスが10重量%となるように両者を配合して混合粉末を得た。これを真空熱処理、即ち温度600℃で10分間加熱保持して、試料サンプルX-3を得た。

次いで、得られた試料X-3のX線回折を行った。その結果を図4Aおよび図4Bに示す。図4Aは加熱処理前の混合粉末のX線回折結果、図4Bは真空熱処理を施した試料X-3のX線回折結果である。図4Aの混合粉末において石英ガラスはアモルファス(非晶質)ゆえ回折ピークは検出されず、他方の原料のMgのピークのみが検出される。一方、図4Bに見るように熱処理後は、原料のMgに加えてMg $_2$ Si及びMgのの回折ピークも検出される。図4A及び図4Bから、石英ガラスを用いた場合であってもMg $_2$ Si及びMgのが分散するようなマグネシウム基複合材料を創製することが可能であることがわかる。

本発明のマグネシウム基複合材料及び本発明の製法によりマグネシウム複合材料は、軽量化に加えて、高強度・高耐食性と優れた耐摩耗性を有し、さらに緩和された相手攻撃性を有することから、例えばそれらの特性が同時に望まれる自動車用部品や家電部品などの構造用部品材料として利用することができる。

(実施例)

25 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明は本実施 例に限定されるものではない。

(実施例1)

出発原料として純Mg粉末(平均粒子径:165 μ m)とシリカ粉末(平均粒子径:58 μ m)を準備し、両者の混合粉末100重量%中、表1に示すシリカ

粉末の割合(重量%)で該シリカ粉末を添加・配合し、ボールミルを用いて均一に混合した。

得られたそれぞれの混合粉末を直径 $3.4 \,\mathrm{mm}$ の円形金型に充填し、面圧 6.t / $c.m^2$ の荷重を付与して圧粉成形体 $A-1\sim A-7$ を作製した。

圧粉成形体 $A-1\sim A-7$ とは別個に、次のような管状炉を準備した。即ち、窒素ガス(ガス流量: $3\ d\ m^3/m\ i\ n$)を流入した管状炉であって、その炉内温度を480%に管理した状態の管状炉を準備した。この管状炉に上述で得られた圧粉成形体 $A-1\sim A-7$ を挿入して10分間加熱保持した後、炉から成形体を取り出し、直ちに粉末鍛造法によって相対密度99%以上に固化して固化体、

10 即ちマグネシウム基複合材料B $-1\sim$ B-7を得た。なお、粉末鍛造法の条件は、金型温度:250%;及び面圧: $8t/cm^2$ であり、固化体と金型との凝着防止の観点から金型壁面には水溶性潤滑剤を塗布した。

得られたマグネシウム基複合材料B $-1\sim$ B-7についてX線回折によりMg $_2$ S i 及びMg Oの生成の有無を確認すると共に、Mg $_2$ S i 及びMg Oの生成量を求めた。これらの結果と共に、引張強さと硬さHR E (ロックウェル硬度/Eスケール)の測定結果も表 1 に示す。なお、複合材料B $-1\sim$ B-7は、Mg $_2$ S i 及びMg Oの成分以外に、Mg のみを有していた。

なお、引張り強さの測定は、それぞれ以下のように行った。

<引張り強さの測定>

5

15

20 試験試料として、直径: φ3.5 mm、平行部:14 mmの試験片を用意した。この試験片を10 tonオートグラフに装着して変位速度0.5 mm/分で引張荷重を付与して引張試験を行った。試験片が破断した際の荷重を試料の破断面積で除した値を引張強度とした。

【表1】

5

10

15

表1、圧粉成形体A-1~7及び複合材料B-1~7の特性

Run	圧粉成	シリカ量	複合材	反応生成量(重量%)		機械	的特性	その
No.	形体	(重量%)	料	Mg ₂ Si	MgO	硬さ	引張強さ	他
				_		HRE	(MPa)	
1	A — 1	3.0	B-1	3. 7	3. 9	52. 2	102	
2	A-2	5.0	B-2	6. 2	6. 6	60. 1	114	
3	A - 3	7. 5	B-3	9. 4	9. 9	69. 8	132	
4	A — 4	10.0	B-4	12. 5	13. 1	78. 6	144	
5	A – 5	13. 5	B-5	16.8	17.8	87. 4	146	工具
								摩耗
6	A-6	1.5	B-6	1.7	1. 8	42. 5	68	
7	A - 7	0	B-7	0	0	40. 2	63	工具
								へ凝
								着

圧粉成形体 $A-1\sim4$ 即ち複合材料 $B-1\sim4$ は、加熱工程においてMg粉末とシリカ粉末との反応により Mg_2Si 及びMgOが生成することがわかる。また、複合材料中に分散する両者の生成含有量が適正であるためマグネシウム基複合材料が良好な機械的特性および被削性を有することがわかった。

一方、圧粉成形体A-5即ち複合材料B-5は、Mg₂Si及びMgOの生成含有量が適正範囲を越えるため、工具摩耗による被削性の問題が生じた。また、圧粉成形体A-6及び7即ち複合材料B-6及び7は、Mg₂Si及びMgOの生成含有量が適正範囲を下回るため、十分な機械的特性の向上効果が得られなかった。特に、圧粉成形体A-7即ち複合材料B-7は、純Mg素材ゆえ、機械加工過程での工具への素材の凝着・付着が著しく増加し、被削性の低下を招いた。(実施例2)

出発原料として、純Mg粉末(平均粒子径:112 μ m)及びAZ91Dマグネシウム合金粉末(平均粒子径:61 μ m;公称組成:Mg-9A1-1Zn/mass%)、並びにシリカ粉末(平均粒径:24 μ m)とを準備した。純Mg粉末とシリカ粉末との混合粉末;及びMg合金粉末とシリカ粉末との混合粉末を、該混合粉末100重量%中シリカ粉末の量が8重量%となるように、配合した

。配合後、ボールミルを用いて均一に混合して、混合粉末を得た。得られた混合粉末を直径 $1.1 \, \mathrm{mm}$ の円形金型に充填し、面圧 $8.t / \mathrm{cm}^2$ の荷重を付与して圧粉成形体 $A-8\sim1.7$ を作製した。

15 【表 2】

5

10

表2. 圧粉成形体A-8~17及び複合材料B-8~17の特性

Run	圧粉成	混合粉末	加熱温度	複合材	X線回折による検出の有無		
No.	形体	の	(°C)	料	Mg ₂ Si	MgO	SiO2
		組合せ					
8	A — 8	Mg/シリカ	280	B-8	有	有	なし
9	A-9	Mg/シリカ	360	B-9	有	有	なし
10	A - 10	Mg/シリカ	450	B-10	有	有	なし
11	A-11	Mg/シリカ	520	B-11	有	有	なし
12	A -12	Mg/シリカ	610	B-12	有	有	なし
13	A -13	Mg 合金/シリ	260	B - 13	有	有	なし
		ъ					
14	A 14	Mg 合金/シリ	480	B-14	有	有	なし
		ħ					
15	A -15	Mg 合金/シリ	580	B-15	有	有	なし
		ъ					
16	A -16	Mg/シリカ	200	B-16	なし	なし	有
17	A -17	Mg 合金/シリ	225	B-17	なし	なし	有
		ħ					

圧粉成形体A-8~15即ち複合材料B-8~15は、純Mg粉末とシリカ粉

末との組合せ、又はMg 合金粉末とシリカ粉末との組合せを用いているがそれぞれ、適正な加熱保持条件を与えることで加熱工程において純Mg 粉末とシリカ粉末、又はMg 合金粉末とシリカ粉末との反応により Mg_2 S i 及びMg Oが生成することがわかる。

一方、圧粉成形体A-16及び17即ち複合材料B-16及び17は、適正な加熱温度条件を下回るため、加熱工程において反応合成が進行せず、その結果、 Mg_2Si 及びMgOは生成せず、出発原料である未反応 SiO_2 が残存する結果となった。

(実施例3)

5

15

10 出発原料として純Mg粉末(平均粒子径: $112\mu m$)と石英ガラス粉末(平均粒子径: $45\mu m$)を準備し、両者の混合粉末100重量%中、石英ガラス粉末の量が5重量%となるように、該石英ガラス粉末を配合し、ボールミルを用いて均一に混合した。

得られたそれぞれの混合粉末を直径 $1.1 \,\mathrm{mm}$ の円形金型に充填し、面圧 $8\,\mathrm{t}$ / $\mathrm{c}\,\mathrm{m}^2$ の荷重を付与して圧粉成形体 $\mathrm{A}-1.8 \,\mathrm{c}\,\mathrm{A}-2.4$ を作製した。

圧粉成形体 $A-18\sim A-24$ とは別個に、次のような管状炉を準備した。即ち、窒素ガス(ガス流量: $3dm^3/min$)を流入した管状炉であって、その炉内温度を表3に示す値に管理した状態の管状炉を準備した。この管状炉に上述で得られた圧粉成形体 $A-18\sim A-24$ を挿入して30分間加熱保持した後、

窒素ガスを流入した炉内において常温まで冷却し、その後、炉から成形体を取り出し、マグネシウム基複合材料B $-18\sim$ B-24を得た。これらについてX線回折によりMg $_2$ S i 及びMg Oの生成の有無を確認した。その結果も表3に示す。なお、複合材料B $-18\sim$ B-24は、表3に記載するMg $_2$ S i 及びMg Oの成分以外に、Mg のみを有していた。

25

20

【表3】

Run	圧粉成形	加熱温度	複合材料	X線回折によ	る検出の有無
No.	体	(°C)		Mg ₂ Si	MgO
18	A - 18	280	B-18	有	有
19	A - 19	3 4 0	B-19	有	有
20	A -20	470	B-20	有	有
21	A -21	575	B-21	有	有
22	A -22	620	B-22	有	有
22	A - 22	100	B - 23	<i>t</i> : 1	たし

B - 24

なし

表3. 圧粉成形体A-18~24及び複合材料B-18~24の特性

圧粉成形体 $A-18\sim22$ 即ち複合材料 $B-18\sim22$ は、純Mg粉末と石英ガラス粉末との圧粉成形体に、適正な加熱保持条件を与えることで加熱工程において純Mg粉末と石英ガラス粉末との反応により Mg_2Si 及びMgOが生成することがわかる。

一方、圧粉成形体A-23及び24即ち複合材料B-23及び24は、適正な加熱温度条件を下回るため、加熱工程において反応合成が進行せず、その結果、 Mg_2Si 及びMgOは生成することができなかった。

(実施例4)

24

5

10

A - 24

235

出発原料として純Mg粉末(平均粒子径: 165μ m)、シリカ粉末(平均粒子径: 58μ m)、及びSi粉末(平均粒子径: 165μ m)を準備した。

15 これを用いて、以下の手法 (a) \sim (c) により、圧粉成形体A- (a) \sim A- (c) 、マグネシウム基複合材料B- (a) \sim B- (c) を得た。

手法(a):純Mg粉末とシリカ粉末の混合粉末において、該混合粉末100 重量%中シリカ粉末が4.5重量%となるように配合した後、混合粉末をボール ミルによって均一に混合した。

20 手法(b):純Mg粉末とSi粉末の混合粉末において、該混合粉末100重量%中Si粉末が2重量%となるように配合した後、混合粉末をボールミルによって均一に混合した。

手法(c):純Mg粉末とSi粉末の混合粉末において、該混合粉末100重

量%中Si粉末が4重量となるように配合した後、混合粉末をボールミルによって均一に混合した。

得られた各混合粉末を直径 $3.4\,\mathrm{mm}$ の円形金型に充填し、面圧 $7.t/c\,\mathrm{m}^2$ の荷重を付与して圧粉成形体末 $A-(a)\sim A-(c)$ を作製した。

圧粉成形体Aー(a)~Aー(c)とは別個に、次のような管状炉を準備した。即ち、窒素ガス(ガス流量: $3 \text{ d m}^3/\text{m i n}$)を流入した管状炉であって、その炉内温度を500℃に管理した状態の管状炉を準備した。この管状炉に上述で得られた圧粉成形体Aー(a)~Aー(c)を挿入して10分間加熱保持した後、炉から成形体を取り出し、直ちに粉末鍛造法によって相対密度99%以上に固化して固化体、即ちマグネシウム基複合材料Bー(a)~Bー(c)を得た。なお、粉末鍛造法の条件は、金型温度:250%;及び面圧: 8 t / c m^2 であり、固化体と金型との擬着防止の観点から金型壁面には水溶性潤滑剤を塗布した

得られたマグネシウム基複合材料 $B-(a)\sim B-(c)$ 中の Mg_2Si 及びMgOの生成量を確認した。

その結果、複合材料Bー(a)100重量%中、 Mg_2Si の生成量は5.5 重量%、MgOの生成量は5.8重量%であった。なお、残部は、MgOみであった。

複合材料B-(b)100重量%中、Mg2Siの生成量は5.3重量%であったが、MgOの生成量は検知できない量であった。なお、残部は、Mgのみであった。

複合材料B-(c) 100重量%中、 Mg_2Si の生成量は11.2重量%であったが、MgOの生成量は検知できない量であった。これらの結果は表4に示す。なお、残部は、Mgのみであった。

材料B-(a)と材料B-(b)のMg₂Siの生成量は、共にほぼ同程度であることを確認した。また、材料B-(c)のMg₂Siの生成量:11.2重量%は、材料B-(a)のMg₂Si生成量(5.5重量%)+MgO生成量(5.8重量%)即511.3重量%とほぼ同程度であることを確認した。

<摩耗試験>

5

10

15

25

複合材料 $B-(a)\sim B-(c)$ の摩耗試験を行った。試験方法の概要を図 5の模式図に示す。

複合材料B-(a) \sim B-(c) から直径 $7\,\mathrm{mm}$ のピン状摩耗試験片 $13\,\mathrm{を採}$ 取した。また、相手材としてAZ91Dマグネシウム合金からなるディスク状試験片 $17\,\mathrm{を}$ 用いた。

試験条件は加圧力:50kg、滑り速度:1m/秒、試験時間:30分とし、 試験片13及び15を潤滑油(エンジンオイル)15中に浸漬した状態で、湿式 環境下、摩耗試験を行った。

試験後の各試料の摺動面の最大高さR \max を、JIS B 0651:1996に準じて、表面粗さ計(触針式表面粗さ測定器)を用いて測定した。その結果も表4に示す。なお、 $R\max$ とは、「断面曲線を基準長さLの距離だけ抜き取った部分の最大高さ」であり、マイクロメートル(μ m)で表す。但し、傷とみなされるような並はずれて高い山や深い谷が存在しない部分から基準長さだけを抜き取って測定した。なお、試験開始前のピン状およびディスク状摩耗試験片の摺動面の面粗さは $R\max$:1.5~2であった。

【表4】

5

10

15

20

表4. 圧粉成形体A-(a)~(c)及び複合材料B-(a)~(c)の特性

	Run	圧粉成形	複合材料	生成量(重量%)		摩耗試験後表面粗さRmax	
	No.	体				(μm)	
				Mg ₂ S	MgO	ピン状試験	ディスク状試
				i		片	験片
	(a)	A — (a)	B — (a)	5. 5	5. 8	8.8	11. 2
T	(b)	A — (b)	B-(b)	5. 3	0	12.3	26.5
	(c)	A – (c)	B-(c)	11.2	0	7. 2	39.4

複合材料Bー(a)は、これとほぼ同量の Mg_2Si を含有する複合材料Bー(b)と比較して、自分自身の面粗さ、即ちピン状摩耗試験片の表面粗さの値が小さい。また、相手材の面粗さ、即ちディスク状摩耗試験片の表面粗さも半分以下と小さい。これは、複合材料Bー(a)が Mg_2Si だけでなくMgOを含有するため、これにより相手攻撃性を著しく改善したことを示している。

また、複合材料B-(a)を複合材料B-(c)と比較すると次のことがわか

る。即ち、複合材料中の Mg_2Si 量が大であると、複合材料自身の耐摩耗性は幾分改善されることがわかる。即ち、 Mg_2Si 量が大である複合材料B-(c)のピン状摩耗試験片の表面粗さの値が小さくなることがわかる。しかしながら、複合材料B-(c)においての相手材の摺動面の面粗さ(ディスク状摩耗試験片の表面粗さ)は、複合材料B-(a)のそれよりも3倍以上大である。したがって、複合材料B-(a)は、複合材料B-(c)とほぼ同程度の耐摩耗性を保持しつつ相手攻撃性が改善されていることがわかる。

(実施例5)

5

10

15

20

AZ31粗粒粉末とシリカ (SiO₂) 微粒粉末とを準備した。さらに、固形 潤滑成分として平均粒子径3μmの黒鉛粉末も出発原料に用いた。各粉末の配合 比率を表5に示す。

【表 5】

No.	配合組成	文 (重量	 表準)	XRDにより同定した相	平均摩擦係数	押出材の引張強
	シリカ	黒鉛	A Z 3		(μ)	さ (MPa)
	1					
1	3	0	残	MgO, Mg ₂ Si, Mg ₂ Al ₃ , Mg	0.035	3 4 4
2	3	0.5	残	MgO, Mg ₂ Si, Mg ₂ Al ₃ , Mg	0.014	3 2 0
3	3	1. 0	残	MgO, Mg ₂ Si, Mg ₂ Al ₃ , Mg	0.012	3 1 2
4	3	2. 0	残	MgO, Mg ₂ Si, Mg ₂ Al ₃ , Mg	0.011	306
5	3	3. 0	残	MgO, Mg ₂ Si, Mg ₂ Al ₃ , Mg	0.010	302
6	3	3. 5	残	MgO, Mg ₂ Si, Mg ₂ Al ₃ , Mg	0.058	268

各混合粉末から直径 $40 \, \mathrm{mm}$ の円柱状圧粉固化体を作製し、窒素ガスを流入した管状炉内で各固化体を $550 \, \mathrm{C}$ で $5 \, \mathrm{O}$ 間加熱保持した後、直ちに押出比 $25 \, \mathrm{C}$ 温間押出加工を行い直径 $8 \, \mathrm{mm}$ の押出棒材を得た。なお、押出加工後の各マグネシウム合金について X 線回折を行なった結果、いずれにおいても固相反応による Mg_{2} S_{1} 粒子の生成が確認された。

摩擦試験によって摩擦係数を測定すべく、押出素材からピン状摩耗試験片(直径7.8mm)を採取した。相手側のディスク材にはS35C鋼材を用い、押し付け荷重を500N、すべり速度を1m/s、試験時間を連続30分とした。なお、ピン状試験片の上部からエンジン潤滑油(10W30)を滴下し、ピン状試験片とディスク試験片との摺動界面に、常に潤滑油が存在するような湿式潤滑条件下で試験を行なった。測定した摩擦トルクから摩擦係数を算出した結果を表5

に示す。

試料No. 1~5において、潤滑成分である黒鉛粉末の含有量が増加するに連れて、マグネシウム合金の引張強さは僅かに低下するものの、摩擦係数は大きく低減できる。

5 一方、試料No.6では、黒鉛添加量が適正範囲を超えるため、押出材の引張 強さが著しく低下し、その結果、摩擦試験の過程でピン状試験片の摩耗損傷によ り相手材との凝着現象も誘発するので、摩擦係数がかえって増大した。

請求の範囲

- 1. マグネシウムシリサイド(Mg_2Si)、酸化マグネシウム(MgO)、及びマグネシウムを有してなるマグネシウム基複合材料。
- SiO₂成分をさらに備える、請求項1に記載のマグネシウム基複合材料
 - 3. 前記Mg2Si及びMgOは、前記マグネシウム基複合材料中、均一分散してなる請求項1に記載のマグネシウム基複合材料。
- 4. 前記マグネシウム基複合材料100重量部中、前記Mg₂Siが3重量部 10 以上である請求項1に記載のマグネシウム基複合材料。
 - 5. 前記マグネシウム基複合材料100重量部中、前記MgOが3重量部以上である請求項1に記載のマグネシウム基複合材料。
 - 6. マグネシウム合金素地中に、マグネシウムとの固相反応によって生成する 化合物粒子が均一に分散するマグネシウム基複合材料において、
- 15 前記化合物粒子は、マグネシウムシリサイド(Mg_2Si)および酸化マグネシウム(MgO)を含むことを特徴とする、マグネシウム基複合材料。
 - 7. 前記化合物粒子は、S i O $_2$ 成分をさらに含む、請求項 6 に記載のマグネシウム基複合材料。
- 8. 当該マグネシウム基複合材料100重量部に対して、前記マグネシウムシリ 20 サイドが3重量部以上15重量部以下である、請求項6に記載のマグネシウム基 複合材料。
 - 9. 前記マグネシウムシリサイドが5重量部以上8重量部以下である、請求項8に記載のマグネシウム基複合材料。
- 10. 当該マグネシウム基複合材料100重量部に対して、前記酸化マグネシウムが3重量部以上15重量部以下である、請求項6に記載のマグネシウム基複合材料。
 - 11. 前記酸化マグネシウムが5重量部以上8重量部以下である、請求項8に記載のマグネシウム基複合材料。
 - 12. 当該マグネシウム基複合材料は、固形潤滑剤として黒鉛粉末を含み、この

黒鉛粉末の含有量は、当該マグネシウム基複合材料に対して重量基準で0.5% ~3%である、請求項6に記載のマグネシウム基複合材料。

13. マグネシウム(Mg)を有してなる第1の材料と SiO_2 成分を含む第2の材料とを混合して混合物を得る工程;該混合物を所定の容器又は金型に充填して加圧することで圧粉成形体を得る工程;及び該圧粉成形体を不活性ガス雰囲気又は真空中で加熱する工程を有するマグネシウム基複合材料の製造方法であって、前記加熱工程において前記混合物中のMgと SiO_2 との反応によりマグネシウムシリサイド(Mg_2Si)、酸化マグネシウム(MgO)を生成させて、 Mg_2Si 、MgO及びMgを有してなるマグネシウム基複合材料を製造する、上記方法。

5

20

- 10 上記方法。 1 4 前記加熱工程の加熱温度は 2 5 0 ℃以上である請求項 1 3 に記載の方法
 - 15. 前記Mg₂Si及びMgOは、前記マグネシウム基複合材料中、均一分散してなる請求項13に記載の方法。
- 16. 前記マグネシウム基複合材料は SiO_2 をさらに有し、該 SiO_2 が、 前記マグネシウム基複合材料中、均一分散してなる請求項13に記載の方法。
 - 17. 前記マグネシウム基複合材料100重量部中、前記Mg₂Siが3重量 部以上である請求項13に記載の方法。
 - 18. 前記マグネシウム基複合材料100重量部中、前記MgOが3重量部以上である請求項13に記載の方法。
 - 19. マグネシウムを含む第1の材料とSiO。成分を含む第2の材料とを混合して混合物を得る工程と、

前記混合物を加圧して圧粉成形体を得る工程と、

前記圧粉成形体を不活性ガス雰囲気中または真空中で加熱し、前記圧粉成形体 中のMg と S i O $_2$ との反応によりマグネシウムシリサイド(Mg_2 S i) およ び酸化マグネシウム(Mg O)をマグネシウム合金素地中に生成する工程とを備 える、マグネシウム基複合材料の製造方法。

20. 前記圧粉成形体を得るのに先立ち、前記混合物を粉砕する工程を備える、請求項19に記載のマグネシウム基複合材料の製造方法。

21. 前記混合物を粉砕した後に圧着する工程を備える、請求項20に記載のマグネシウム基複合材料の製造方法。

- 22. 前記混合物を圧着した後に破砕する工程を備える、請求項21に記載のマグネシウム基複合材料の製造方法。
- 2 3. 前記圧粉成形体の加熱温度は、250℃以上で、かつマグネシウムの融点 以下である、請求項19に記載のマグネシウム基複合材料の製造方法。
 - 24. 前記圧粉成形体を得るのに先立ち、前記混合物を粉砕および/または圧着および/または破砕することにより前記第1材料中のマグネシウムに新生面を形成する工程をさらに備える、請求項19に記載のマグネシウム基複合材料の製造
- 10 方法。

補正書の請求の範囲

[2003年7月14日(14.07.03)国際事務局受理:出願当初の請求の範囲1-5, 14,15及び19は取り下げられた;出願当初の請求の範囲6,11,13,20,23及 び24は補正された;他の請求の範囲は変更なし。(2頁)]

- 1. (削除)
- 2. (削除)
- 5 3. (削除)
 - 4. (削除)
 - 5. (削除)
 - 6. (補正後)マグネシウム合金素地中に、マグネシウムとの固相反応によって生成する化合物粒子が均一に分散するマグネシウム基複合材料において、
- 10 前記化合物粒子は、マグネシウムシリサイド(Mg_2Si)および酸化マグネシウム(MgO)を含み、

前記マグネシウム基複合材料 100 重量部中、前記マグネシウムシリサイド(Mg_2Si)が 3 重量部以上で、前記酸化マグネシウム(MgO)が 3 重量部以上であることを特徴とする、マグネシウム基複合材料。

- 15 7. 前記化合物粒子は、SiO₂ 成分をさらに含む、請求項6に記載のマグネシウム基複合材料。
 - 8. 当該マグネシウム基複合材料100重量部に対して、前記マグネシウムシリサイドが3重量部以上15重量部以下である、請求項6に記載のマグネシウム基複合材料。
- 20 9. 前記マグネシウムシリサイドが5重量部以上8重量部以下である、請求項8に記載のマグネシウム基複合材料。
 - 10. 当該マグネシウム基複合材料100重量部に対して、前記酸化マグネシウムが3重量部以上15重量部以下である、請求項6に記載のマグネシウム基複合材料。
- 25 11. (補正後) 前記酸化マグネシウムが5重量部以上8重量部以下である、 請求項10に記載のマグネシウム基複合材料。
 - 12. 当該マグネシウム基複合材料は、固形潤滑剤として黒鉛粉末を含み、この

黒鉛粉末の含有量は、当該マグネシウム基複合材料に対して重量基準で0.5% ~3%である、請求項6に記載のマグネシウム基複合材料。

13. (補正後)マグネシウムを含む第1の材料とSiO。成分を含む第2の材料とを混合して混合物を得る工程と、

5 前記混合物を加圧して圧粉成形体を得る工程と、

前記圧粉成形体を不活性ガス雰囲気中または真空中でかつ250 C以上の温度で加熱し、前記圧粉成形体中のMg と SiO_2 との反応によりマグネシウムシリサイド(Mg_2Si)および酸化マグネシウム(MgO)をマグネシウム合金素地中に生成する工程とを備える、マグネシウム基複合材料の製造方法。

10 14. (削除)

15

- 15. (削除)
- 16. 前記マグネシウム基複合材料は SiO_2 をさらに有し、該 SiO_2 が、前記マグネシウム基複合材料中、均一分散してなる請求項13に記載の方法。
- 17. 前記マグネシウム基複合材料100重量部中、前記Mg₂Siが3重量 部以上である請求項13に記載の方法。
- 18. 前記マグネシウム基複合材料100重量部中、前記MgOが3重量部以上である請求項13に記載の方法。
- 19. (削除)
- 20. (補正後)前記圧粉成形体を得るのに先立ち、前記混合物を粉砕する工 20 程を備える、請求項13に記載のマグネシウム基複合材料の製造方法。

5

21. 前記混合物を粉砕した後に圧着する工程を備える、請求項20に記載のマグネシウム基複合材料の製造方法。

- 22. 前記混合物を圧着した後に破砕する工程を備える、請求項21に記載のマグネシウム基複合材料の製造方法。
- 23. (補正後) 前記圧粉成形体の加熱温度は、250℃以上で、かつマグネシウムの融点以下である、請求項13に記載のマグネシウム基複合材料の製造方法。
- 24. (補正後) 前記圧粉成形体を得るのに先立ち、前記混合物を粉砕および / または圧着および/または破砕することにより前記第1材料中のマグネシウム に新生面を形成する工程をさらに備える、請求項13に記載のマグネシウム基複合材料の製造方法。

PCT19条(1)の規定に基づく説明書

請求の範囲第6項は、マグネシウム基複合材料100重量部中、マグネシウムシリサイドが3重量部以上で、酸化マグネシウムが3重量部以上であることを明確にした。引用例には、マグネシウムシリサイドの量および酸化マグネシウムの量が記載されていない。

請求の範囲第11項は、引用する請求項の番号を変更した。

請求の範囲第13項は、出願当初の請求項19の内容に対応するものであり、 さらに加熱温度の条件を明確に規定した。引用例には、加熱工程の加熱温度が2 50℃以上であることが記載されていない。

請求の範囲第20項は、引用する請求項の番号を変更した。 請求の範囲第23項は、引用する請求項の番号を変更した。 請求の範囲第24項は、引用する請求項の番号を変更した。

FIG.1

(a) 出発原料(Mg粉末とシリカガラス粉末の混合粉末)

(b) 真空熱処理後の混合粉末

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/01612

	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C22C1/04								
According to	According to International Patent Classification (IPC) or to both national classification and IPC								
	SEARCHED								
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C22C1/04-1/05, 1/10, 23/00-23/06								
Jitsu Kokai	on searched other than minimum documentation to the tyo Shinan Koho 1926—1996 Jitsuyo Shinan Koho 1971—2003	Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Toroku Koho	1994–2003 1996–2003						
	ata base consulted during the international search (name	e of data base and, where practicable, sear	ch terms used)						
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.						
Y									
Y	Katsuyoshi KONDO et al., "Kangen Hanno o Riyo 1-24 shita Mg ₂ Si/MgO Gosei Process (Second Report), Japan Society of Powder and Powder Metallurgy Koen Gaiyoshu, 30 October, 2001 (30.10.01), Heisei 13 nendo Shuki, page 62								
Y	Akihiro YAMAZAKI et al., "Mechanical Alloying-ho ni yoru Mg-SiO ₂ Kei no Koso Hanno", Journal of the Japan Society of Powder and Powder Metallurgy, 15 January, 2001 (15.01.01), Vol.48, No.1, pages 61 to 66								
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.							
"A" docum conside "E" earlier date "L" docum cited to special docum means "P" docum than th	"A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "A" document defining the general state of the art which is not considered to be of particular relevance; the claimed invention cannot be considered novel or cannot be considered novel or cannot be document of particular relevance; the claimed invention cannot be sep when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art								
Name and n Japa	nailing address of the ISA/ nese Patent Office	Authorized officer							
Faccimile N		Telephone No.							

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/01612

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	Katsuyoshi KONDO et al., "Mg ₂ Si no Koso Gosei ni Oyobosu Huntai Tokusei oyobi Atsufun Joken no Eikyo", Journal of the Japan Society of Powder and Powder Metallurgy, 15 September, 2001 (15.09.01), Vol.48, No.9, pages 816 to 823	1-24
A	JP 6-81068 A (Honda Motor Co., Ltd.), 22 March, 1994 (22.03.94), Claims; page 2, column 1, line 38 to column 2, line 9; table 1 (Family: none)	1-24
		×

	国際調査報告	国際出願番号 PCT/JP0	3/01612
A. 発明の	属する分野の分類(国際特許分類(IPC))		
Ιn	t. Cl ⁷ C22C 1/04		
B. 調査を行			
	最小限資料(国際特許分類(IPC))	· · ·	
In	t. Cl ⁷ C22C 1/04-1/05, 1	/10, 23/00-23/06	·
最小限資料以外	外の資料で調査を行った分野に含まれるもの		
	案公報 1926-1996年		
3	用新案公報 1971-2003年 用新案公報 1994-2003年		
日本国実用新			
国際調査で使用	用した電子データベース(データベースの名称、	調査に使用した用語)	
	ると認められる文献		
引用文献の			関連する
カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	請求の範囲の番号
Y	近藤勝義ら,還元反応を利用したMま (第1報),粉体粉末冶金協会講演校 0,平成13年度秋季,p. 61		1-24
\mathbf{Y}	 近藤勝義ら,還元反応を利用したM ₄	o。Si/MoO合成プロヤス	1-24
_	(第2報),粉体粉末冶金協会講演		
	0, 平成13年度秋季, p. 62		
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
x C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	J紙を参照。
* 引用文献 <i>0</i>	ウカテゴリー	の日の後に公表された文献	м
	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	された文献であって
もの		出願と矛盾するものではなく、	
	頭日前の出願または特許であるが、国際出願日	の理解のために引用するもの	tanta kata
	公表されたもの E張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、 の新規性又は進歩性がないと考	
	くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	
文献(理	里由を付す)	上の文献との、当業者にとって	自明である組合せに
	はる開示、使用、展示等に言及する文献	よって進歩性がないと考えられ	るもの
「ピ」国際出版	順日前で、かつ優先権の主張の基礎となる出願 	「&」同一パテントファミリー文献	
国際調査を完了	アした日 , 0.5 0.3	国際調査報告の発送日 20.05.0	3

特許庁審査官(権限のある職員)

鈴木 毅

電話番号 03-3581-1101 内線 3435

4 K

9154

様式PCT/ISA/210 (第2ページ) (1998年7月)

東京都千代田区霞が関三丁目4番3号

日本国特許庁 (ISA/JP) 郵便番号100-8915

国際調査機関の名称及びあて先

C (続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	山崎晃弘ら,メカニカルアロイング法によるMg-SiO2系の固相反応,粉体および粉末冶金,2001.01.15,第48巻,第1号,p.61-66	1-24
A	近藤勝義ら、Mg2Siの固相合成に及ぼす粉体特性および圧粉条件の影響、粉体および粉末冶金、2001.09.15,第48巻、第9号、p.816-823	1-24
A	JP 6-81068 A (本田技研工業株式会社) 1994. 03.22,特許請求の範囲,第2頁第1欄38行-第2欄9行, 表1(ファミリーなし)	$1 - 2 \ 4$
,		
,		
	A.	