DM 30 : Polynôme minimal

Partie I : La sous-algèbre $\mathbb{K}[a]$.

Dans toute cette partie, \mathbb{K} désigne un corps quelconque, A est une \mathbb{K} -algèbre et a est un élément de A.

Si
$$P = \sum_{n \in \mathbb{N}} b_n X^n \in \mathbb{K}[X]$$
, on notera $P(a) = \sum_{n \in \mathbb{N}} b_n a^n : P(a)$ est un élément de A .

- $\mathbf{1}^{\circ}$) Montrer que l'application $\varphi_a: \mathbb{K}[X] \longrightarrow A$ est un morphisme d'algèbres.
- $\mathbf{2}^{\circ}$) L'image de φ_a sera notée $\mathbb{K}[a]$. Montrer que $\mathbb{K}[a]$ est une algèbre commutative et que $\mathbb{K}[a]$ est la plus petite sous-algèbre de A contenant a.
- **3**°) Dans la \mathbb{Q} -algèbre \mathbb{R} , montrer que $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}/(a, b) \in \mathbb{Q}^2\}$.
- **4**°) Pour toute la suite de cette partie, on suppose que $\operatorname{Ker}(\varphi_a) \neq \{0\}$. Montrer qu'il existe un unique polynôme unitaire π_a dans $\mathbb{K}[X]$ tel que $\operatorname{Ker}(\varphi_a) = \pi_a \mathbb{K}[X]$. π_a est appelé le **polynôme minimal** de a.
- 5°) Dans la \mathbb{Q} -algèbre \mathbb{R} , montrer que $\sqrt{2}$ possède un polynôme minimal puis déterminer $\pi_{\sqrt{2}}$.
- **6**°) On note n le degré de π_a . Montrer que $(a^k)_{0 \le k \le n-1}$ est une base de $\mathbb{K}[a]$.
- 7°) Montrer qu'un élément P(a) de $\mathbb{K}[a]$ est inversible dans l'algèbre A si et seulement si P et π_a sont premiers entre eux et que dans ce cas, P(a) est inversible dans l'algèbre $\mathbb{K}[a]$.
- $\mathbf{8}^{\circ})\;\;$ Lorsque A est intègre, montrer que $\mathbb{K}[a]$ est un corps.
- **9°**) Montrer que $\{a+b\sqrt[3]{2}+c\sqrt[3]{2}^2/(a,b,c)\in\mathbb{Q}^3\}$ est un sous-corps de \mathbb{R} et un \mathbb{Q} -espace vectoriel de dimension 3.

Partie II : Les matrices de Toeplitz

Dans $\mathcal{M}_n(\mathbb{C})$, on considère les deux matrices suivantes :

$$S = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & \cdots & 0 \end{pmatrix} \quad \text{et} \quad Z = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -1 & 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

- $\mathbf{10}^{\circ}$) Montrer que $\mathbb{C}[S]$ est l'ensemble des matrices $M=(m_{i,j})_{1\leq i,j\leq n}$ telles que, pour tout $i,j,k,h\in\{1,\ldots,n\},\,[i-j\equiv k-h \bmod n \Longrightarrow m_{i,j}=m_{k,h}].$
- 11°) Montrer que $\mathbb{C}[S]$ est une algèbre commutative de dimension n. Lorsque $M \in \mathbb{C}[S]$, donner une CNS portant sur les coefficients de M pour qu'elle soit inversible et montrer que dans ce cas, $M^{-1} \in \mathbb{C}[S]$.
- $\mathbf{12}^{\circ}$) De manière analogue, décrire les matrices de $\mathbb{C}[Z]$ puis montrer que $\mathbb{C}[Z]$ est une algèbre commutative de dimension n et donner une CNS portant sur les coefficients de $M \in \mathbb{C}[Z]$ pour qu'elle soit inversible.
- 13°) On dit qu'une matrice $M=(m_{i,j})_{1\leq i,j\leq n}$ de $\mathcal{M}_n(\mathbb{C})$ est une matrice de Toeplitz si et seulement si pour tout $i,j,k,h\in\{1,\ldots,n\},\ i-j=k-h\Longrightarrow m_{i,j}=m_{k,h}$. En notant T l'ensemble des matrices de Toeplitz, montrer que $T=\mathbb{C}[S]+\mathbb{C}[Z]$.
- 14°) Soit $M \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$. On dit que λ est une valeur propre de M si et seulement si il existe $X \in \mathbb{C}^n$ avec $X \neq 0$ tel que $MX = \lambda X$. Dans ce cas, on dit que X est un vecteur propre de M pour la valeur propre λ .
- Si X est un vecteur propre de M pour la valeur propre λ , montrer que, pour tout $P \in \mathbb{C}[X]$, X est un vecteur propre de P(M) pour la valeur propre $P(\lambda)$.
- Soit $P \in \mathbb{C}[X]$ tel que P(M) = 0. Montrer que les valeurs propres de M sont nécessairement des racines de P.
- 15°) Déterminer les valeurs propres et les vecteurs propres de S.
- 16°) On note P la matrice suivante de $\mathcal{M}_n(\mathbb{C})$: $P = \left(e^{2i\pi\frac{hk}{n}}\right)_{0 \le h,k \le n-1}$. On s'est permis de faire varier les indices de lignes et de colonnes de 0 à n-1. Montrer que SP = PD, où D est une matrice diagonale que l'on précisera.
- 17°) Montrer que P est une matrice inversible et que $P^{-1} = \frac{1}{n}\overline{P}$, où $\overline{P} = \left(e^{-2i\pi\frac{hk}{n}}\right)_{0 \le h,k \le n-1}$.
- 18°) Montrer que, pour tout $M \in \mathbb{C}[S]$, $P^{-1}MP$ est diagonale : on dit que les matrices de $\mathbb{C}[S]$ sont simultanément diagonalisables.
- 19°) On note R la matrice diagonale de $\mathcal{M}_n(\mathbb{C})$ suivante : $R = \left(e^{-i\pi \frac{h}{n}}\delta_{h,k}\right)_{0 \le h,k \le n-1}$. Montrer que R est inversible et calculer RZR^{-1} .
- 20°) En déduire que les matrices de $\mathbb{C}[Z]$ sont simultanément diagonalisables.

Partie III : Irréductibilité dans $\mathbb{Q}[X]$

21°) Soit p un nombre premier. Pour tout $Q = \sum_{n \in \mathbb{N}} a_n X^n \in \mathbb{Z}[X]$, on pose

$$\overline{Q} = \sum_{n \in \mathbb{N}} \overline{a_n} X^n \in \mathbb{F}_p[X], \text{ où } \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}.$$

Montrer que l'application $Q \longmapsto \overline{Q}$ est un morphisme d'anneaux.

22°) Lorsque $Q = \sum_{n \in \mathbb{N}} a_n X^n \in \mathbb{Z}[X]$, on note c(Q) le pgcd de la famille $(a_n)_{n \in \mathbb{N}}$ des

coefficients de Q. c(Q) s'appelle le contenu du polynôme Q.

On dit que Q est primitif si et seulement si c(Q) = 1.

En utilisant le morphisme de la question précédente, montrer que le produit de deux polynômes primitifs de $\mathbb{Z}[X]$ est aussi un polynôme primitif. Il s'agit du lemme de Gauss.

En déduire le théorème de Gauss : pour tout $P, Q \in \mathbb{Z}[X], c(PQ) = c(P)c(Q)$.

- 23°) Soit $P \in \mathbb{Z}[X]$ un polynôme de degré supérieur à 2 que l'on suppose réductible dans $\mathbb{Q}[X]$. Montrer qu'il existe $A, B \in \mathbb{Z}[X]$ tels que P = AB avec $\deg(A) \geq 1$ et $deg(B) \geq 1$.
- $\mathbf{24}^{\circ}$) Critère d'Eisenstein : Soit $P \in \mathbb{Z}[X]$ un polynôme de degré $n \geq 1$. En notant $P = \sum_{k=0}^{\infty} a_k X^k$, on suppose qu'il existe un nombre premier p tel que p ne divise pas a_n ,

p divise a_0, \ldots, a_{n-1} et p^2 ne divise pas a_0 . Montrer que P est irréductible dans $\mathbb{Q}[X]$. En déduire que, pour tout $n \in \mathbb{N}^*$, $X^n - 2$ est irréductible dans $\mathbb{Q}[X]$

- 25°) Soit $P \in \mathbb{Z}[X]$ un polynôme non nul et unitaire. Soit $A, B \in \mathbb{Q}[X]$ tels que AB = P et A unitaire. Montrer que $A, B \in \mathbb{Z}[X]$.
- **26**°) Pour tout $n \in \mathbb{N}^*$, on pose $\Phi_n = \prod_{\substack{1 \le k \le n \\ k \wedge n = 1}} (X e^{2i\pi \frac{k}{n}})$: c'est le n-ième polynôme cyclotomique. Montrer que, pour tout $n \in \mathbb{N}^*$, $X^n 1 = \prod_{\substack{1 \le d \le n \\ J = 1}} \Phi_d$.

- **27°**) Montrer que pour tout $n \in \mathbb{N}^*$, $\Phi_n \in \mathbb{Z}[X]$.
- 28°) Soit p un nombre premier. Montrer que l'application f_p , définie de $\mathbb{F}_p[X]$ dans lui-même par $f_p(A) = A^p$, est un endomorphisme d'algèbre (que l'on appelle l'endomorphisme de Frobenius). En déduire que, pour tout $h \in \mathbb{Z}[X]$, selon les notations de la question 21, $(h(X))^p = h(X^p)$.
- **29**°) Jusqu'à la fin du problème, on fixe $n \in \mathbb{N}^*$ et on pose $\omega = e^{2i\frac{\pi}{n}}$. Dans la \mathbb{Q} -algèbre \mathbb{C} , montrer que ω possède un polynôme minimal. Montrer que $\pi_{\omega} \in \mathbb{Z}[X]$ et qu'il existe $h \in \mathbb{Z}[X]$ tel que $X^n - 1 = \pi_{\omega}(X)h(X)$.

- 30°) Soit p un nombre premier qui ne divise pas n et soit u une racine complexe de π_{ω} . On souhaite montrer que $\pi_{\omega}(u^p) = 0$. On raisonne par l'absurde en supposant que $\pi_{\omega}(u^p) \neq 0$.
- a) Montrer que $h(u^p) = 0$ et en déduire l'existence de $g \in \mathbb{Z}[X]$ tel que $h(X^p) = \pi_{\omega}(X)g(X)$.
- **b)** Dans $\mathbb{F}_p[X]$, considérons un facteur irréductible P(X) de $\overline{\pi_\omega}$. Montrer qu'il existe $Q \in \mathbb{F}_p[X]$ tel que $\overline{X^n 1} = P^2 Q$.
- c) En déduire que P est un polynôme constant et conclure.
- **31**°) Montrer que, pour tout $k \in \{1, ..., n\}$ tel que $k \wedge n = 1$, $\pi_{\omega}(\omega^k) = 0$.
- **32**°) Montrer que Φ_n est irréductible dans $\mathbb{Q}[X]$.