Kari Dalnoki-Vere	ess (Course Coordina	tor) Physics 1A0		Messages [Fall 2015]	Roles Help	Logout
Main Menu	Course Contents	Course Editor		Switch course r	ole to 🗘	
Course	Contents » Not	es Bookmark	Evaluate	Communic	cate 👛 Print	info Info
Functions	(Modify parameter	settings for this res	ource			
along the x-axis. What is the part particle moves is 4.20 m	versus-time graph is a versus-time graph is a versus-time graph is a lite initial position at t=2. A lite in a versus and the maximal and the	$x_0=2.20$ m at $t_0=0$ 00s if the total time	.00s. e the $oldsymbol{v}$	v _x (m/s)		
	ect. Previous Tries			1	Book	<i></i>
•	hat is the particle's v	elocity? 1.00 m/s	3	 	t_{to}	– t(s) tol
	ect. Previous Tries				- <u>,,</u>	tan
	hat is the particle's a	cceleration? 0.00	m/s^2			
	ect. Previous Tries					
•	hat is the particle's p	osition? 7.70 m				
You are corre	ect. Previous Tries					
e.)At t=6.00s, w	hat is the particle's v	elocity? 5.00×10	¹ m/s			
You are corre	ect. Previous Tries					
.)At t=6.00s, wh	nat is the particle's a	cceleration? -2.50	×10 ⁻¹ m/s^	2		
You are corre	ect. Previous Tries					
An object is thro	wn vertically upward	with a speed of 34	3m/s. How	high does it ris	e?	
Submit Answer	-					
low long does it	take to reach this hi	ghest altitude?	-			
Submit Answer	Tries 0/10					
low long does it	take the object to hi	t the ground after	it reaches th	e highest altitu	ıde?	
Submit Answer	Tries 0/10					
What is the spee	d when it returns to	the level from whic	h it was initi	ally released?		
Submit Answer						
¶ ♥ [[] [] [] [] [] [] [] [] []	o the grocery store a	t 12.1m/s. You are	189.0m fror	n an intersection	on when the tra	affic

light turns red. Assume that your reaction time is 0.140s and that your car brakes with constant

acceleration. How far are you from the intersection when you begin to apply the brakes?

Submit Answer Tries 0/10

What acceleration will bring you to rest as you just reach the intersection?

Submit Answer Tries 0/10

How long does it take you to stop?

Submit Answer Tries 0/10

A ball is tossed from an upper-story window of a building. The ball is given an initial velocity of 8.35m/s at an angle of 19.9deg below the horizontal. It strikes the ground 3.25s later. How far horizontally from the base of the building does the ball strike the ground?

Submit Answer Tries 0/10

Calculate the height from which the ball was thrown.

Submit Answer Tries 0/10

How long does it take the ball to reach a point 11.5m below the level of launching?

Submit Answer Tries 0/10

Larry leaves home at 4:03 and runs at a constant speed to the lamppost. He reaches the lamppost at 4:16, immediately turns, and runs to the tree. Larry arrives at the tree at 4:21. What is Larry's average velocity during his trip from home to the lamppost, if the lamppost is 360.0m west of home, and the tree is 633.0m east of home?

Submit Answer Tries 0/10

What is Larry's average velocity during his trip from the lamppost to the tree?

Submit Answer Tries 0/10

What is the average velocity for Larry's entire run?

Submit Answer Tries 0/10

A motorist drives north for 35.9min at 73.3km/hr and then stops for 15.4min. He then continues north, traveling 114.5km in 1.93hr. What is his total displacement in kilometers? 1.58×10^2 km

You are correct. Previous Tries

What is his average velocity in kilometers per hour? 5.69×10¹ km/hr

You are correct. Previous Tries

The velocity graph of a particle moving along the x-axis is shown. The particle has zero velocity at t=0.00s and reaches a maximum velocity, v_{max} , after a total elapsed time, t_{total} . If the initial position of the particle is $x_0 = 8.58m$, the maximum velocity of the particle is $v_{max} = 40.5m/s$, and the total elapsed time is $t_{total} = 17.8s$, what is the particle's position at t=11.9s?

Submit Answer Tries 0/10

At t=11.9s, what is the particle's velocity?

Submit Answer Tries 0/10

At t=11.9s, what is the particle's acceleration?

Submit Answer Tries 0/10

In 1865, Jules Verne suggested sending people to the Moon by launching a space capsule with a 215.9m long cannon. The final speed of the capsule must reach 10.96 km/s. What acceleration would the passengers experience?

Submit Answer Tries 0/10

A rock is tossed straight up with a velocity of 38.0m/s. When it returns, it falls into a hole 23.4m deep. What is the rock's velocity as it hits the bottom of the hole? -4.36×10^1 m/s

You are correct. Previous Tries

How long is the rock in the air, from the instant it is released until it hits the bottom of the hole? 8.32 s

You are correct. Previous Tries

A motorist drives along a straight road at a constant speed of 13.8m/s. Just as she passes a parked motorcycle police officer, the officer starts to accelerate at 1.8m/s^2 to overtake her. Assuming the officer maintains this acceleration, determine the time it takes the police officer to reach the motorist (in seconds).

Submit Answer Tries 0/10

Determine the speed at which the officer overtakes the motorist.

Submit Answer Tries 0/10

Find the total displacement of the officer as he overtakes the motorist.

Submit Answer Tries 0/10

A ball thrown horizontally at 26.9m/s travels a horizontal distance of 45.9m before hitting the ground. From what height was the ball thrown? 1.43×10^1 m

A bird watcher meanders through the woods, walking 0.86 km due east, 0.58 km due south, and 2.04 km in a direction 35.0 degrees north of west, The time required for this trip is 2.81 h. Determine the magnitude and the direction (relative to due west) of the bird watcher's displacement (in km). **1.00 km**

You are correct. Previous Tries

3.61×10¹ deg

You are correct. Previous Tries

What is the magnitude and direction (relative to due west) of his average velocity (in km/h)? 3.57×10^{-1} km/h

You are correct. Previous Tries

3.61×10¹ deg

You are correct. Previous Tries

Submit All

Physics 1103 Assignment 2 solutions

or) at t=25, particle has been moving at a constant speed, Vmax=1.0 m/s, for 25.

 $X = X_0 + V\Delta t$ $X_0 = 2.20m$ = 2.20m + 1.0m/5 * 25 V = 1.0m/5= 2.20 + 2 $\Delta t = 2.5$ = 4.20m

b) at t=2s, v is still constant at Umax.

V= 1.0 m/s

- c) at t=2s, since v is constant, acceleration is zero. a=0 m/s²
- d) particle's position @ t=65 is initial x + x travelled at constant velocity + x travelled white accolerating.

AX= X0 + AX constant + AX auchertion

 $\Delta \times_{construt} = vat$ $= lm/s \times 4s$ = 4 m $\Delta \times_{construt} = \frac{(V_1 + V_4)}{2} \Delta t$ $= (1.0 m/s + 0.5 m/s) \times 2s$

Δ×_{tot} = ×₀ + Δ×_{construl} + Δ×_{coccelection} = 1.5m = 2.20 m + 4m + 1.5m = 7.7m

e) at t=65, U is 1/2 of Umax V=1/2 m/s

PROPER

f) He are accelerates over a 4s period.

$$V_i = 1m/s$$
 $V_c = 0m/s$ $\Delta t = 4s$
 $a = \frac{\Delta V}{\Delta t}$
 $= \frac{V_c - V_i}{4s}$
 $= \frac{0m/s - 1m/s}{4s}$

$$= -\frac{1}{4} \frac{m}{s^2}$$
$$= 0.25 \frac{m}{s^2}$$

2.

$$\phi = 34.3 \, \text{m/s}^2$$

a) at its highest point, the object's velocity is zero. $V_1 = 34.3 \,\text{m/s}$ $V_4 = 0 \,\text{m/s}$ $a = -9.8 \,\text{m/s}^2$ $\Delta y = ?$ $V_4^2 = V_1^2 + 2a\Delta y$ $(0 \,\text{m/s})^2 = (34.3 \,\text{m/s})^2 + 2(-9.8 \,\text{m/s}^2)\Delta y$ $(-2)(-9.8)\Delta y = (34.3)^2$ $\Delta y = (34.3)^2$ $\Delta y = (34.3)^2$ (-2)(-9.8) $= 60.025 \,\text{m}$

b) $V_i = 34.3 \, \text{m/s} \ V_f = 0 \, \text{m/s} \ \alpha = -9.8 \, \text{m/s}^2 \ \Delta y = 60.025 \, \text{m} \ \Delta t = ?$ $V_f = v_i + \alpha \Delta t \\ 0 \, \text{m/s} = 34.3 \, \text{m/s} + (4.8 \, \text{m/s}^2) \Delta t \\ 9.8 \, \Delta t = 34.3 \, \text{m/s} \\ \Delta t = \frac{34.3 \, \text{m/s}}{9.8 \, \text{m/s}^2}$

3

$$\Delta y = 60.025 m \ v_i = 0 m/s \ t = 3.5 s \ a = -9.8 m/s^2 \ v_f = ?$$

$$\Delta y = \frac{V_i + v_f}{2} \times \Delta t$$

$$\frac{2\Delta y}{\Delta t} = v_i + v_f$$

a)
$$x_0 = 189.0 \text{m}$$
 $t = 0.140 \text{s}$ $v = 12.1 \text{m/s}$

$$= 187.306$$

Vearrange:

C)
$$V_i = 12.1 \text{ m/s}$$
 $V_f = 0 \text{ m/s}$ $\Delta d = 187.306 \text{ m}$ $a = -0.391 \text{ m/s}^2 \text{ s.t.} = ?$
 $V_f = V_i + a \text{ s.t.}$
 $V_{m/s} = 12.1 \text{ m/s} + (-0.391 \text{ m/s}^2) \cdot \Delta t$
 $\Delta t = -12.1 \text{ m/s}$
 $\frac{-0.391 \text{ m/s}^2}{-0.391 \text{ m/s}^2}$

- 30,946

=30.9s

a) we need to find the horizontal component of the velocity vector.

$$\cos \theta = \frac{\text{adjacent}}{\text{hypothuse}}$$

$$\cos (9.9) = \frac{\sqrt{x}}{\sqrt{x}}$$

$$= \frac{\sqrt{x}}{8.35 \text{m/s}}$$

$$\sqrt{x} = 7.85 \text{m/s}$$

now we can find how for it goes horizontally.

```
b) t=3.255 V;=Vy a=-9.8m/s2
        first let's find Uy:
              They this time we need by, which is opposite from 0, so we'll use sin.
       5in 0 = 1/4
      Sin(19.9) = \frac{Vy}{8.35m/s}
                              - since we've defined I as the
          Vy = 2.84m/s
                                 positive direction, this is actually
   now we can find Ay:
                                   -2.84~/5
      y= y; + v; st + = ast2
  y,-y; = v; at +2 aut2
    Dy = Viat = 1/2 ast 2
        = (-2.89m/s)(3.25s)+1/2(-9.8m/s2)(3.25s)2
        = -60.98
        =-61.0m
c) \Delta y = -11.5 m v_1 = -2.89 m/s \alpha = -9.8 m/s^2 \Delta t = ?
         Yf=Y; +V; st+/2ast?
          0=y;-y++1;4t+2aat2
                                             e we can use the
            = - Dy + U; At + /2 a Dt 2
                                                quachetic tormala
            =-611.5m)+(-2.84)st+2(-9.8m/s')st2
                                                to some for st
            =-4.9 st2-2.84 at +11.5
        At = -b+162-4ac
```

5

$$\Delta t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2.84) \pm \sqrt{(-2.84)^2 - 4(-4.9)(0.5)}}{2(-4.9)}$$

solving for At gives two possible solutions: 4t = -1.85 or at= 1.27 since time cannot be negative,

Dt = 1.275

a)
$$\Delta t = 13min \ \Delta x = 360.0m \ west \ v = ?$$

first let's convert Δt to seconds:
 $13min \cdot 60sec = 780s$

V=
$$\frac{\Delta X}{\Delta t} = \frac{360.0m}{780s} = 0.4615 m/s west$$

b) At = 5min
$$\Delta X = X$$
 true to have $+ X$ have to tree

 $V = \frac{\Delta X}{\Delta t}$
 $= \frac{X}{4 \pi c} \frac{1}{4 \pi c}$

C)
$$\Delta t = 18 min \Delta x_{total} = distance from origin (hone) to final (tree) = 633.0 m$$

$$Varg = \frac{\Delta x}{\Delta t}$$

= $\frac{633.0m}{1080s}$
= $0.586m/s$ east

6. Here are three legs to his journey:

1. north @ 73.3 km/hr for 35.9 min

2. at rest for 15.4 min

3. north @ 114.5 km in 1.93 hr

a) let's figure out how tarke went

1. let's concert 35,9min to hours
35,9min - 1hn = 0.5483hr

AX = VAt = 73.3km/hr - 0.5983hr = 43.85783 = 43.9 km

2. at rest, no distance travelled

3.114.5 km travelled

ΔX_{bot} = ΔX, + ΔX₂ + ΔX₃ = 43.9km + Okm + 114.5km = 158.4km

b) AXbot = 158.4km At =? Vary = AX = ?

At= 0.5983 hr At= 15.4 min = thr = 0.2567hr

462 = 1.93 hr

Athor = 0.5983+0.2567+1.93 = 2.78496hr

Vary = 4x = 158.4 km 2.78496m

= 56.8768

= 56.9 km/hn

7. Vi= Om/s Vmax = 40.5 m/s At= 17.8s

a) He distorce covered by the patick is represented by the shaded crea under the graph.

$$x = \frac{b \times b}{2}$$

= 11.95 × 27m/s
= 160.65m

$$X_{tot} = X_0 + X$$

= $8.58 + 160.65$
= 169.23
= $169.2 m$

b) at t= 11.9s, U is 2/3rds of Umax 40.5m/s x2 = 27.0 m/s

U=27.0m/s

c) since the slope on the ut graph is constant, acceleration is also constant.

$$a = \frac{40}{\Delta t}$$
= $\frac{40.5m/s - 0m/s}{17.8s}$
= 2.275
= $2.3m/s^2$

$$V_i = Om/s$$
 $V_f = 10.96 km/s$ $\Delta d = 215.9 m$

$$V_{f}^{2} = V_{i}^{2} + 2a \Delta c \left(\frac{10960 m/s}{2} = (0m/s)^{2} + 2a (215.9 m) \right)$$

$$\frac{10960^{2}}{2(215.9)} = \alpha$$

$$\alpha = 278 188.05 \text{ m/s}^2$$
 02
 278.19 km/s^2

$$V_{i} = 38.0 \, m/s$$
 $q = -9.8 \, m/s^{2}$

a) if the rock is tossed up uf a relocity of 38.0m/s from grand bend, its velocity on the way claus will also be -38.0m/s at ground level.

Let's take ground level as our starting point.

$$\frac{18011234m}{49=-23.4m}$$

$$a=-9.8m/s^{2}$$

$$V_f^2 = V_i^2 + 2a\Delta y$$

= $(-3.8.0 m/s)^2 + 2(-9.8 m/s^2)(-23.4 m)$
= 1902.69

50 :

motorist: $\Delta d_m = U\Delta t$ = 13.8 m/s Δt officer: $\Delta d_o = U_i \Delta t + \frac{1}{2} (a\Delta t)^2$ = $O_0 / s\Delta t + \frac{1}{2} (1.8 m/s^2) \Delta t^2$ = $O_0 / s\Delta t + \frac{1}{2} (1.8 m/s^2) \Delta t^2$ since $\Delta d_m = \Delta d_o$: 13.8 $\Delta d_o = \Delta t^2$ $\Delta t = 15.3s$

b)
$$V_f = V_1 + \alpha st$$
 $V_1 = 0 m/s$ $\alpha = 1.8 m/s^2$ $st = 15.3 s$ $v_f = ?$ $= 27.5 y$ $= 27.6 m/s$

11

c)
$$V_1 = 0m/s$$
 $V_4 = 27.6 m/s$ $a = 1.8 m/s^2$ $\Delta t = 15.3 s$ $\Delta d = ?$

$$\Delta d = V_1 \Delta t + \frac{1}{2} a \Delta t^2$$

$$= 0 \Delta t + \frac{1}{2} (1.8)(15.3)^2$$

$$= 210.681$$

$$= 210.7 m$$

11. if we know how long the ball was in the cur for, we can find the height it was thrown from.

$$V_{x} = 26.9 \, m/s$$
 $\Delta x = 45.9 \, m$ $\Delta t = ?$

$$\Delta x = V\Delta t$$

$$45.9 \, m = 26.9 \, m/s \, \Delta t$$

$$\Delta t = 1.71 \, s$$

$$y_1 = 0 \, \text{m/s} \quad \text{A} y = ? \quad \text{A} t = 1.71 \text{s} \quad \text{a} y = -9.8 \, \text{m/s}^2$$

$$Ay = v_2 \cdot \text{A} t + \frac{1}{2} \cdot \text{a} y A t^2$$

$$= 0 \, \text{M} t + \frac{1}{2} \cdot (-9.8) \cdot (1.71 \text{s})^2$$

$$= -14.3 \, \text{m}$$

```
12. let's define north and west as positive
         d,=-0.86km
     de de = -0.58 km
                d2 = 2.04km
                0 = 35.00
  a) Ad = JAx 2+ 1342
       let's split the three districes into x and y components
           dix = -0.86 km
                                   diy = 0
                                  dzy = -0.58km
          d3x = d3. cos0
                                  day = da. sin &
             = 1.671 km
                                      = (170 km
         1 Xx++= (-0.86)+0+1.671
                                 Ayrot = 0 + (-0.58) + 1.170
= 0.59 km
        = 0.811km
Ad=JAx2+ dy2
           = 1 (0.811) + (0.59)=
           = 1.0029
           = 1.00 km
     now let's find the direction:
                       Ad = 1.00 km
Ady = 0.59 km
                       Adx = 0.811km
      we can use any of SOH CAH TOA, but let's use tan:
             tand = Xdy
                   = 0.59km
                   = 1200x101 0.715
                d=35.57
                    = 35.60
```

The magnitude of the displacement is 1.00km and the direction is 35.6° north of west.

b) Vaug = Adtor

 $=\frac{1.00km}{2.81hr}$

= 0.3569

= 0.36 km/hr

since the average velocity is in the same direction as the total displacement, so:

Vary = 0.36 km/hr at 35.6° north from the west.