MAELAS code

User manual v1.0

Authors: P. Nieves, S. Arapan, S.H. Zhang, A.P. Kądzielawa, R.F. Zhang and D. Legut

Outline

- WHAT IS MAELAS CODE?
- INSTALLATION
- HOW TO USE MAELAS CODE
- WORKFLOW
- BRIEF REVIEW OF KNOWN MAGNETOSTRICTIVE MATERIALS
- MAELAS TESTS
- BIBLIOGRAPHY

WHAT IS MAELAS CODE?

- MAELAS code is a software to calculate spin-dependent magnetostriction coefficients and magnetoelastic constants up to second order.
- ➤ It generates required input files for VASP code to perform Density Functional Theory calculations, and it deduces the value of magnetostriction coefficients from the calculated energies given by VASP.
- If the elastic tensor is provided, then it can also calculate the magnetoelastic constants.
- MAELAS can also be used with other DFT codes instead of VASP, after file conversion to VASP format files.

INSTALLATION

MAELAS code is just one python3 file "maelas.py", so it only requires to have Python3 and imported python libraries. For example, in Ubuntu Linux machine you can check the installed version of python3 by opening a terminal and typing

python3 -version

In case you need to install it in your machine, you can type

sudo apt-get update sudo apt-get install python3.8

In HPC facilities you may need to load the Python3 module. For example, in Centos 7 Linux you can check all installed Python modules by typing

ml avail Python

and load the last version of Python3 using command ml

ml Python/3.8.2-GCC-8.3.0-2.32-base

Additionally, MAELAS makes use of the following python libraries: pymatgen, scikit-learn, pyfiglet, argparse, numpy, matplotlib, scipy, math, os and stat. In case you need to install them, you can do it using pip3 as:

pip3 install library name

where "library_name" is the name of the python library that you need to install. For example, you should type the following command to install numpy library:

pip3 install numpy

Step 1: Cell relaxation

If your initial POSCAR is not relaxed and you want to perform a cell relaxation before calculating the magentostriction coefficients, then you can use MAELAS code to generate INCAR and KPOINTS files to relax the structure with VASP. To do so, in the terminal you should copy your initial POSCAR and maelas.py files in the same folder where you want to generate the input files for VASP, and after going to this folder then type

python3 maelas.py -r -i POSCAR0 -k 40

where tag -r indicates that you want to generate VASP files for cell relaxation, -i POSCAR0 is the input non-relaxed POSCAR file (you can name it whatever you want) and -k 40 is the length parameter that determines a regular mesh of k-points. It will generate 4 files: POSCAR, INCAR, KPOINTS and vasp_jsub_rlx. Here, one still needs to copy manually the POTCAR file in this folder in order to have all required files for VASP run. The generated file vasp_jsub_rlx is a script to submit jobs in HPC facilities, one can specify some settings in this script by adding more tags in the command line. For instance,

python3 maelas.py -r -i POSCAR0 -k 40 -t 48 -c 24 -q qprod -a OPEN-00-00 -f /scratch/example_rlx

where -t 48 indicates that the number of maximum CPU hours for the VASP calculation is 48 hours,-c 24 means that the number of cores for the VASP calculation is 24, -q qprod set to production queuethe type of queue in HPC facilities, -a OPEN-00-00 is the project identification number for running jobs in HPC facilities and -f /scratch/example_rlx is the folder where you want to run VASP calculations. All these data are included in the vasp_jsub_rlx file, so one can submit this VASP job inmediately in HPC facilities by typing

qsub vasp jsub rlx

This procedure might be helpful for high-throughput routines. More options can be added in vasp_jsub_rlx file through the terminal command line, to see them just type

python3 maelas.py -h

Note that generated INCAR and KPOINTS files contain standard setting for cell relaxation. The user are free to change this setting either directly on the generated files or in the maelas.py. In case your structure is already relaxed or you do not want to perform a cell relaxation, then you can skip this step and move to step 2.

Step 2: Generation of VASP files for the calculation of spin-dependent magnetostriction coefficients

Copy the relaxed POSCAR, POTCAR and maelas.py files in the same folder where you want to generate the input files for VASP run. In the terminal, after going to this folder then type

python3 maelas.py -g -i POSCAR_rlx -k 70 -n 7 -s 0.1

where -g indicates that you want to generate input VASP files for the calculation of spin-dependent magnetostriction coefficients, -i POSCAR_rlx is the initial relaxed POSCAR file (you can name it whatever you want), -k 40 is the length parameter that determines a regular mesh of k-points, -n 7 means that it will generate 7 distorted states for each magentostriction mode and-s 0.1 is the maximum strain applied for distorting the structure. It will generate the following files:

POSCAR_A_B (volume-conserving distorted cell where A=magnetostriction mode, B=1,...,n distorted cell for each magentostriction mode) INCAR_A_C (non-collinear calculation where A=magnetostriction mode, C=1,2 is the spin orientation case) INCAR_std (collinear calculation to generate the WAVECAR and CHGCAR files to run non-collinear calculations) KPOINTSvasp_maelas, vasp_jsub and vasp_0 (interconnected bash scripts to run VASP calculations automatically) vasp_cp_oszicar (bash script to get calculated OSZICAR_A_B_C files after VASP calculation is finished)

The generated files vasp_maelas, vasp_jsub and vasp_0 are interconnected scripts to submit jobs in HPC facilities, one can specify some job settings in these scripts by adding more tags in the command line. For instance,

python3 maelas.py -g -i POSCAR_rlx -k 70 -n 7 -s 0.1 -t 48 -c 24 -q qprod -a OPEN-00-00 -f /scratch/example_mag

where -t 48 indicates that the number of maximum CPU hours for the VASP calculation is 48 hours,-c 24 means that the number of cores for the VASP calculation is 24, -q qprod set to production queuethe type of queue in HPC facilities, -a OPEN-00-00 is the project identification number for running jobs in HPC facilities and -f /scratch/example_mag is the folder where you want to run VASP calculations. This procedure might be helpful for high-throughput routines. More options can be added in these script files through the terminal command line, to see them just type

python3 maelas.py -h

Step 3: Run VASP calculations

For each generated POSCAR_A_B one should run first a collinear calculation using INCAR_std and use the generated WAVECAR and CHGCAR files to run non-collinear calculations for each INCAR_A_C (C=1,2) using the same POSCAR_A_B. This procedure can be automatically done in HPC facilities just by running the generated bash script

./vasp_maelas

This will launch independent jobs for each POSCAR_A_B. Each job will run 3 VASP calculations: a collinear one to generate WAVECAR and CHGCAR files, and two non-collinear for INCAR_A_1 and INCAR_A_2. The jobs will be executed in subfolders P_A_B inside the folder indicated by tag -f in the step 2.

Once all jobs are finished, then one can easily get calculated non-collinear OSZICAR files (needed in step 4), by running the bash script

./vasp_cp_oszicar

it will copy these OSZICAR files and name them as OSZICAR_A_B_C (C=1,2) in the same folder where this script is executed.

Step 4: Derivation of spin-dependent magnetostriction coefficients and magnetoelastic constants

Finally, to derive the spin-dependent magnetostriction coefficients one needs to have in the same folder the following files:

maelas.py
POSCAR_rlx (the relaxed POSCAR file used as input in step 2)
POSCAR_A_B (distorted POSCAR generated in step 2)
OSZICAR_A_B_C (non-collinear OSZICAR files calculated in step 3 for each POSCAR_A_B and INCAR_A_C)

Next, in the terminal go to this folder a type

python3 maelas.py -d -i POSCAR_rlx -n 7

where -d indicates that you want to derive the spin-dependent magnetostriction coefficients from the calculated OSZICAR files, -i POSCAR_rlx is the relaxed POSCAR file used as input in step 2 (you can name it whatever you want) and -n 7 is the number of distorted states for each magentostriction mode used in step 2.

It will derive and print the calculated spin-dependent magnetostriction coefficients in the terminal. If you want to print it in a file (for example, "results.out"), then you can type

python3 maelas.py -d -i POSCAR_rlx -n 7 > results.out

Additionally, the energy values extracted from OSZICAR_A_B_C files are shown in generated files ene_A_C.dat and fit_ene_A_C.png. The energy difference between the two spin configurations for each magnetostriction mode are shown in Fig. dE_A.png. If the elastic tensor is provided as input, then MAELAS can also calculate the magnetoelastic constants. To do so, one needs to add tags -b and -e with the name of the file containing the elastic tensor with the same format and units (GPa) as it is written by AELAS code (file ELADAT). Hence, you could type

Format of the

elastic tensor file

python3 maelas.py -d -i POSCAR_rlx -n 7 -b -e ELADAT

where ELADAT is the name of the file (it could be whatever name you want) with the elastic tensor data.

Elastic tensor: 262.03 186.20 186.20 0.00 0.00 0.00 186.20 262.03 186.20 0.00 0.00 186.20 186.20 262.03 0.00 0.00 0.00 0.00 0.00 0.00 116.63 0.00 0.00 0.00 0.00 116.63 0.00 0.00 116.63

Full list of arguments in MAELAS code

User can see all possible optional arguments by typing

python3 maelas.py -h

The optional arguments are the following:

```
-h, --help
           show this help message and exit
-i POS
           name of the initial non-distorted POSCAR file (default: POSCAR)
-n NDIST
           number of distorted states for each magnetostriction mode (default: 7)
-s STRAIN
           maximum strain to generate the distorted POSCAR files (default: 0.01)
-k KP
           VASP automatic k-point mesh generation to create the KPOINTS file (default: 60)
           Generation of required VASP files for the calculation of magnetostriction coefficients.
-g
           Derivation of magnetostriction coefficients from the energy written in the OSZICAR files.
-d
           Generation of required VASP files for the cell relaxation
-r
-b
           Calculation of the magnetoelastic constants from the calculated magnetostriction coefficients and provided elastic tensor.
-e ELAS
           File with the elastic tensor data in the same format and units (GPa) as it is written by ELAS code (file ELADAT).
-c CORE
           Number of cores for the VASP calculation (default: 24)
-t TIME
           Number of maximum CPU hours for the VASP calculation (default: 48)
-f VASP_FOLD Folder where you will run VASP calculations (default: /scratch)
-m MPI
            Command for mpi run of VASP (default: mpiexec.hydra)
-a P ID
            Project id for running jobs in HPC facilities (default: OPEN-X-X)
-l LOAD MODULE Module of VASP that should be loaded (default: VASP/5.4.4-intel-2017c-mkl=cluster)
-q QUEUE Type of queue to be used for VASP calculations in HPC facilities (default: qprod)
```

Summary: In a nutshell

Step 1: Cell relaxation

python3 maelas.py -r -i POSCAR0 -k 40

qsub vasp_jsub_rlx

Step 2: Generate VASP inputs for calculation of magnetostriction coefficients

python3 maelas.py -g -i POSCAR_rlx -k 70 -n 7 -s 0.1

Step 3: Run VASP calculations

./vasp_maelas

./vasp_cp_oszicar

Step 4: Derivation of spin-dependent magnetostriction coefficients

python3 maelas.py -d -i POSCAR rlx -n 7

Step 4: Derivation of spin-dependent magnetostriction coefficients and magnetoelastic constants

python3 maelas.py -d -i POSCAR_rlx -n 7 -b -e ELADAT

Step 1 Cell relaxation Step 2 Symmetry Generation Material **VASP** inputs Analysis Step 3 Step 4 Run VASP Processing **AELAS** code calculations output data Elastic Magnetoelastic Magnetostrictive constants (c_{ii}) constants (b_i) coefficients (λ)

MAELAS code

See all optional arguments:

python3 maelas.py -h

Using MAELAS with other DFT codes instead of VASP

MAELAS has been designed to read and write files for VASP code automatically. However, it is possible to use MAELAS with other DFT codes instead of VASP, after file conversion to VASP format files. Although, this process might require some extra work for the user. Namely, converting initial and distorted POSCAR files into the other DFT code format, reading the spin direction of each state from INCAR_A_C files (variable SAXIS) and write the calculated energies in a OSZICAR-like file (called OSZICAR_A_B_C) on the penultimate line and third column with same format as in VASP (this is the place where MAELAS reads the energy value of each OSZICAR_A_B_C file). For instance, in the following OSZICAR file, one should write the energy value at "**Energy_DFT_code**":

	N	E	dE	d eps ncg	rms	rms(c)	
DAV:	1	-0.219086777516E+02	-0.21909E+02	0.99185E+02*****	0.709E+00		
DAV:	2	-0.219092777733E+02	-0.60002E-03	-0.60002E-03*****	0.452E-01		
DAV:	3	-0.219092846144E+02	-0.68411E-05	-0.68405E-05*****	0.485E-02		
DAV:	4	-0.219092847670E+02	-0.15258E-06	-0.15274E-06*****	0.641E-03		
DAV:	5	-0.219092847725E+02	-0.55161E-08	-0.52995E-08*****	0.117E-03		
DAV:	6	**Energy_DFT_code**	-0.19827E-09	-0.11530E-09868760	0.143E-04		
1	F=	21909285E+02 E0=2190	99330E+02 d E	=0.135168E-03 mag=	0.0000	0.0000	2.5077

Crystal systems supported by MAELAS v1.0

Current version supports the following crystal systems:

- Cubic (I) (space groups 207-230)
- Cubic (II) (space groups 195-206)
- ➤ Hexagonal (I) (space groups 177-194)
- ➤ Hexagonal (II) point group 6/m (space groups 175-176)
- > Trigonal (I) (space groups 149-167)
- > Tetragonal (I) (space groups 89-142)
- Orthorhombic (space groups 16-74)

In the future, if the theoretical expressions of magnetostriction are derived for the remain crystal systems, then we will try to implement them in the new versions of the code.

Magnetostriction coefficients

PHYSICAL REVIEW

 $x^2+y^2+z^2$

 $\{(x^2-y^2)/2, (\sqrt{3}/2)(z^2-\frac{1}{3}r^2)\}$

[xy,yz,xz] $x^{3}+y^{2}+z^{3}$

 $(x^2-y^2)/2$, $(\sqrt{3}/2)(z^2-\frac{1}{3}r^2)$

[xy,yz,xz]

 $\frac{23}{m3}$

 $^{432}_{43m}$

m3m

SG 195-206

SG 207-230

Cubic

Not supported by MAELAS v1.0

∫1 complex

1 complex

3

2

Number of

two-ion magneto-

elastic coupling

constants

VOLUME 139	LY 1965		Dimensionality	Number of	Number of one-ion magneto- elastic	constants (= number of macroscopic magneto- striction
System	Point groups	Basis functions ^a	of irreducible representation	elastic constants	coupling constants	coefficients) for $l=0,2$
Triclinic SG 1-2	1,Ĩ	$x^2, y^2, z^2, xy, yz, xz$	1	21 21	30 30	36 36
Monoclinic SG 3-15	2,m,2/m	x^2, y^2, z^2, xy xz, yz	1	$\frac{10}{3}$ 13	$^{12}_{4}$ 16	$^{16}_{4}$ 20
Orthorhombic SG 16-74	222, mm2, mmm	x^2, y^2, z^2 xy yz xz	1 1 1	6 1 1 1	6 1 1 1	9 1 1 1
SG 75-88	$^{4,\overline{4},}_{4/m}$	$x^{2}+y^{2}+z^{2}$, $(\sqrt{3}/2)(z^{2}-\frac{1}{3}r^{2})$ $\frac{1}{2}(x^{2}-y^{2})$, xy $\{yz,xz\}$	1 1 complex 1 complex	$\frac{3}{3}$ 7	3 4 2	$\frac{4}{4}$ 10
Tetragonal SG 89-142	$422, \\ 4/mmm, \\ 4mm, \\ \bar{4}2m$	$x^{2}+y^{2}+z^{2}$, $(\sqrt{3}/2)(z^{2}-\frac{1}{3}r^{2})$ $\frac{1}{2}(x^{2}-y^{2})$ xy [yz,xz]	1 1 1 2	3 1 1 1	$\begin{array}{ccc} 3 \\ 1 \\ 1 \end{array}$	1 7 1 1
SG 143-148	3,3	$x^{2}+y^{2}+z^{2}$, $(\sqrt{3}/2)(z^{2}-\frac{1}{3}r^{2})$ { $(x^{2}-y^{2})/2,xy$ }, { yz,xz }	$\begin{cases} 1 & \text{complex} \\ 1 & \text{complex} \end{cases}$	$\frac{3}{4}$ 7	3 8 11	4 8 12
Trigonal SG 149-167	$\frac{32,3m}{3m}$	$x^2+y^2+z^2$, $(\sqrt{3}/2)(z^2-\frac{1}{3}r^2)$ $[(x^2-y^2)/2,xy]$, $[yz,xz]$	1 2	$\frac{3}{3}$ 6	$\frac{3}{4}$ 7	4 8
SG 168-174 SG 175-176 Hexagonal	6,6, 6/m	$x^{2}+y^{2}+z^{2}$, $(\sqrt{3}/2)(z^{2}-\frac{1}{3}r^{2})$ { xy,xz } { $(x^{2}-y^{2})/2,xy$ }	1 complex 1 complex 1 complex 1 complex 1 complex 1 complex	3 1 5	3 2 7 2	4 2 2
SG 177-194	622, 6 mm , $\bar{6}m2$, 6/mmm	$x^{2}+y^{2}+z^{2}$, $(\sqrt{3}/2)(z^{2}-\frac{1}{3}r^{2})$ [yz,xz] $[(x^{2}-y^{2})/2,xy]$	1 2 2	3 1 5	3 1 1	4 1 6 —

 $\lambda = \lambda_1 \lceil \alpha_1^2 \beta_1^2 - \alpha_1 \alpha_2 \beta_1 \beta_2 - \alpha_1 \alpha_3 \beta_1 \beta_3 \rceil$ $+\lambda_2 \lceil \alpha_2^2 \beta_1^2 - \alpha_1 \alpha_2 \beta_1 \beta_2 \rceil + \lambda_3 \lceil \alpha_1^2 \beta_3^2 - \alpha_1 \alpha_2 \beta_1 \beta_2 \rceil$ $+\lambda_4\lceil\alpha_2^2\beta_2^2-\alpha_1\alpha_2\beta_1\beta_2-\alpha_2\alpha_3\beta_2\beta_3\rceil+\lambda_5\lceil\alpha_1^2\beta_3^2$ $-\alpha_1\alpha_3\beta_1\beta_3$ $+\lambda_6$ $\left[\alpha_2^2\beta_3^2-\alpha_2\alpha_3\beta_2\beta_3\right]+4\lambda_7(\alpha_1\alpha_2\beta_1\beta_2)$ $+4\lambda_8\alpha_1\alpha_3\beta_1\beta_3+4\lambda_9\alpha_2\alpha_3\beta_2\beta_3$,

$$+2\lambda^{\epsilon} \left[\alpha_{x}\alpha_{y}\beta_{x}\beta_{y} + \alpha_{y}\alpha_{z}\beta_{y}\beta_{z} + \alpha_{x}\alpha_{z}\beta_{x}\beta_{z}\right]$$

$$\downarrow \frac{\Delta l}{l}\Big|_{\text{cubic}} = \lambda^{\alpha} + \frac{3}{2}\lambda_{100}\left(\alpha_{x}^{2}\beta_{x}^{2} + \alpha_{y}^{2}\beta_{y}^{2} + \alpha_{z}^{2}\beta_{z}^{2} - \frac{1}{3}\right)$$

$$+3\lambda_{111}\left(\alpha_{x}\alpha_{y}\beta_{x}\beta_{y} + \alpha_{y}\alpha_{z}\beta_{y}\beta_{z} + \alpha_{x}\alpha_{z}\beta_{x}\beta_{z}\right)$$

 $\delta l/l = \frac{1}{3} \lambda^{\alpha} + \frac{1}{2} \lambda_1^{\gamma} \left[3(\alpha_z^2 - \frac{1}{3})(\beta_z^2 - \frac{1}{3}) + (\alpha_x^2 - \alpha_y^2)(\beta_x^2 - \beta_y^2) \right]$

Elastic constants

Not supported by MAELAS v1.0

PHYSICAL REVIEW B 90, 224104 (2014)

	Crystal system	Laue class	Point groups	C_i
SG 1-2	Triclinic	Ī	1, 1	2
SG 3-15	Monoclinic	2/m	2, m, 2/m	1
SG 16-74	Orthorhombic	mmm	222, 2mm, mmm	
SG 75-88	Tetragonal (II)	4/m	$4, \bar{4}, 4/m$,
SG 89-142	Tetragonal (I)	4/mmm	$4mm, 422, \bar{4}2m, 4/mmm$	
SG 143-148	Rhombohedral (II)	3	$3, \bar{3}$,
SG 149-167	Rhombohedral (I)	$\bar{3}m$	$32, 3m, \bar{3}m$	
SG 168-176	Hexagonal (II)	6/m	$6, \bar{6}, 6/m$	
SG 177-194	Hexagonal (I)	6/ <i>mmm</i>	$6mm, \overline{622}, \overline{6}2m, 6/mmm$:
SG 195-206	Cubic (II)	$m\bar{3}$	$23, m\bar{3}$	
SG 207-230	Cubic (I)	$m\bar{3}m$	$432, \bar{4}3m, m\bar{3}m$	

$$E = E_0 + \frac{1}{2}V_0 \sum_{i,j=1}^{6} C_{ij} \varepsilon_i \varepsilon_j + O(\varepsilon^3)$$

CUBIC (I)

SG 207-230

Cubic (I)

Workflow

Elastic energy

$$\begin{split} E_{\rm el}|_{\rm cubic} &= \tfrac{1}{2} \, C_{1\,1} (\varepsilon_{x\,x}^2 + \varepsilon_{y\,y}^2 + \varepsilon_{z\,z}^2) \,+ \\ &\quad + C_{1\,2} \, (\varepsilon_{x\,x} \, \varepsilon_{y\,y} + \varepsilon_{x\,x} \, \varepsilon_{z\,z} + \varepsilon_{y\,y} \, \varepsilon_{z\,z}) \,+ \\ &\quad + \tfrac{1}{2} \, C_{4\,4} \, (\varepsilon_{x\,y}^2 + \varepsilon_{x\,z}^2 + \varepsilon_{y\,z}^2) \end{split} \tag{16-15}$$

J. R. Cullen, A. E. Clark, and K. B. Hathaway, in Materials, Science and Technology (VCH Publishings, 1994), pp. 529 – 565.

Magnetoelastic energy

$$\begin{split} E_{\text{me}}|_{\text{cubic}} &= b_0(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + \\ &+ b_1(\alpha_x^2 \, \varepsilon_{xx} + \alpha_y^2 \, \varepsilon_{yy} + \alpha_z^2 \, \varepsilon_{zz}) + \\ &+ b_2(\alpha_x \, \alpha_y \, \varepsilon_{xy} + \alpha_x \, \alpha_z \, \varepsilon_{xz} + \alpha_y \, \alpha_z \, \varepsilon_{yz}) \end{split}$$

$$\frac{\Delta l}{l} = \sum_{i,j} \varepsilon_{i,j} \beta_i \beta_j$$

$$\frac{\partial}{\partial \varepsilon_{ij}} (E_{el} + E_{me}) = 0$$

$$\frac{\Delta l}{l} = \frac{3}{2} \lambda_{100} \left(\alpha_x^2 \beta_x^2 + \alpha_y^2 \beta_y^2 + \alpha_z^2 \beta_z^2 - \frac{1}{3} \right) +
+ 3 \lambda_{111} (\alpha_x \alpha_y \beta_x \beta_y + \alpha_x \alpha_z \beta_x \beta_z +
+ \alpha_y \alpha_z \beta_y \beta_z)$$
(16-6)

$$\lambda_{100} = -\frac{2b_1}{3(C_{11} - C_{12})}$$
$$\lambda_{111} = -\frac{b_2}{3C_{44}}$$

$$\left(\frac{\Delta l}{l} = \frac{3}{2} \lambda_{100} \left(\alpha_x^2 \beta_x^2 + \alpha_y^2 \beta_y^2 + \alpha_z^2 \beta_z^2 - \frac{1}{3}\right) + 3 \lambda_{111} \left(\alpha_x \alpha_y \beta_x \beta_y + \alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z\right)\right)$$

Space Broup: 201.230

POSCAR 1 X (N POSCAR: Distortion along [0,0,1])

INCAR std (1 INCAR: collinear w/o SOC)

INCAR 1 1 (1 INCAR: non-collinear with SOC, SPIN=[0,0,1])

INCAR_1_2 (1 INCAR: non-collinear with SOC, SPIN=[1,0,0])

OSZICAR_1_X_1 OSZICAR_1_X_2

Cubic (I)

 λ_{111}

 λ_{001}

POSCAR 2 X (N POSCAR: Distortion along [1,1,1])

INCAR std (1 INCAR: collinear w/o SOC)

INCAR 2 1 (1 INCAR: non-collinear with SOC, SPIN=[1,1,1])

INCAR 2 2 (1 INCAR: non-collinear with SOC, SPIN=[1,0,-1])

OSZICAR_2_X_1

OSZICAR_2_X_2

POSCAR

Symmetry analysis

$$\begin{pmatrix} \frac{1}{\sqrt{1+\epsilon_z}} & 0 & 0\\ 0 & \frac{1}{\sqrt{1+\epsilon_z}} & 0\\ 0 & 0 & 1+\epsilon_z \end{pmatrix}$$

Fitting: $E(x)=a^*x^2+b^*x+c$

x=cell length along deformation

Minimum (E_{min}): $x_{min} = -b/(2*a)$

$$\lambda_{\substack{001\\111}} = \frac{2}{3} \cdot \frac{x_{min1} - x_{min}}{x_{min1}}$$

Volume-conserving transformations (determinant of transformation matrix = 1)

CUBIC (II)

SG 195-206

Elastic energy

$$\begin{split} E_{\rm el}|_{\rm cubic} &= \frac{1}{2} \, C_{1\,1} \left(\varepsilon_{x\,x}^2 + \varepsilon_{y\,y}^2 + \varepsilon_{z\,z}^2 \right) + \\ &\quad + C_{1\,2} \left(\varepsilon_{x\,x} \, \varepsilon_{y\,y} + \varepsilon_{x\,x} \, \varepsilon_{z\,z} + \varepsilon_{y\,y} \, \varepsilon_{z\,z} \right) + \\ &\quad + \frac{1}{2} \, C_{4\,4} \left(\varepsilon_{x\,y}^2 + \varepsilon_{x\,z}^2 + \varepsilon_{y\,z}^2 \right) \end{split} \tag{16-15}$$

Magnetoelastic energy

$$\begin{split} E_{me}^{cub(II)} &= b_0 \left(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \right) + \left[b_1 \left(1 - \alpha_x^2 \right) + b_2 \left(\alpha_z^2 - \alpha_y^2 \right) \right] \varepsilon_{xx} \\ &+ \left[b_1 \left(1 - \alpha_y^2 \right) + b_2 \left(\alpha_x^2 - \alpha_z^2 \right) \right] \varepsilon_{yy} + \left[b_1 \left(1 - \alpha_z^2 \right) + b_2 \left(\alpha_y^2 - \alpha_x^2 \right) \right] \varepsilon_{zz} \\ &+ b_3 \left(\alpha_x \alpha_y \varepsilon_{xy} + \alpha_x \alpha_z \varepsilon_{xz} + \alpha_y \alpha_z \varepsilon_{yz} \right) \end{split}$$

PHYSICAL REVIEW

VOLUME 139, NUMBER 2A

19 JULY 1965

$$\begin{split} \delta l/l &= \tfrac{1}{3} \lambda^{\alpha} + \tfrac{1}{2} \lambda_1^{\gamma} \left[3(\alpha_z^2 - \tfrac{1}{3})(\beta_z^2 - \tfrac{1}{3}) + (\alpha_x^2 - \alpha_y^2)(\beta_x^2 - \beta_y^2) \right] \\ &\quad + (\sqrt{3}/2) \lambda_2^{\gamma} \left[(\alpha_x^2 - \alpha_y^2)(\beta_z^2 - \tfrac{1}{3}) - (\alpha_z^2 - \tfrac{1}{3})(\beta_x^2 - \beta_y^2) \right] \\ &\quad + 2 \lambda^{\epsilon} \left[\alpha_x \alpha_y \beta_x \beta_y + \alpha_y \alpha_z \beta_y \beta_z + \alpha_x \alpha_z \beta_x \beta_z \right] \end{split}$$

$$b_0 = \frac{2}{3}(c_{12} - c_{11})\lambda_1^{\gamma} - \frac{1}{3}(2c_{12} + c_{11})\lambda^{\alpha}$$

$$b_1 = (c_{11} - c_{12})\lambda_1^{\gamma}$$

$$b_2 = \frac{1}{\sqrt{3}} (c_{11} - c_{12}) \lambda_2^{\gamma}$$

$$b_3 = -2c_{44}\lambda^{\epsilon}$$

(determinant of transformation matrix = 1) $D = d \cdot \begin{pmatrix} 1 & \frac{\varepsilon_{xy}}{2} & 0 \\ \frac{\varepsilon_{xy}}{2} & 1 & 0 \end{pmatrix}$

POSCAR 1 X (N POSCAR: Distortion along [0,0,1]) INCAR std (1 INCAR: collinear w/o SOC)

INCAR 1 1 (1 INCAR: non-collinear with SOC, SPIN=[0,0,1])

INCAR 1 2 (1 INCAR: non-collinear with SOC, SPIN=[1,1,0])

POSCAR 2 X (N POSCAR: Distortion along [1,1,0])

INCAR std (1 INCAR: collinear w/o SOC)

INCAR 2 1 (1 INCAR: non-collinear with SOC, SPIN=[0,1,0])

INCAR 2 2 (1 INCAR: non-collinear with SOC, SPIN=[1,0,0])

POSCAR 3 X (N POSCAR: Distortion along [1,1,1])

INCAR std (1 INCAR: collinear w/o SOC)

INCAR 3 1 (1 INCAR: non-collinear with SOC, SPIN=[1,1,1])

INCAR 3 2 (1 INCAR: non-collinear with SOC, SPIN=[1,0,-1])

OSZICAR_3_X_2

x=cell length along deformation

$$\lambda_1^{\gamma} = \frac{x_{min1} - x_{min2}}{x_{min1}}$$

$$\lambda_2^{\gamma} = \sqrt{3} \cdot \frac{x_{min1} - x_{min2}}{x_{min1}} \qquad \lambda^{\varepsilon} = \frac{x_{min1} - x_{min2}}{x_{min1}}$$

$$\lambda^{\varepsilon} = \frac{x_{min1} - x_{min2}}{x_{min1}}$$

Fitting: $E(x)=a^*x^2+b^*x+c$ Minimum (E_{min}): $x_{min} = -b/(2*a)$

OSZICAR_1_X_1

OSZICAR_1_X_2

OSZICAR 2 X 1

OSZICAR_2_X_2

OSZICAR 3 X 1

HEXAGONAL (I)

SG 177-194

Hexagonal (I)

Elastic energy

$$\begin{split} E_{\rm el}|_{\rm hex} &= \frac{1}{2} \, C_{11} \, (\varepsilon_{xx}^2 \, \varepsilon_{yy}^2) + C_{12} \, \varepsilon_{xx} \, \varepsilon_{yy} \, + \\ &\quad + \frac{1}{2} \, C_{33} \, \varepsilon_{zz}^2 + C_{13} \, (\varepsilon_{xx} + \varepsilon_{yy}) \, \varepsilon_{zz} \, + \\ &\quad + \frac{1}{2} \, C_{44} \, (\varepsilon_{yz}^2 + \varepsilon_{xz}^2) \, + \\ &\quad + \frac{1}{4} \, (C_{11} - C_{12}) \, \varepsilon_{xy}^2 \end{split} \tag{16-28}$$

Magnetoelastic energy

$$\begin{split} E_{\text{me}}|_{\text{hex}} &= b_{11} \left(\varepsilon_{xx} + \varepsilon_{yy} \right) + b_{12} \, \varepsilon_{zz} + \\ &+ b_{21} \left(\alpha_z^2 - \frac{1}{3} \right) \left(\varepsilon_{xx} + \varepsilon_{yy} \right) + \\ &+ b_{22} \left(\alpha_z^2 - \frac{1}{3} \right) \varepsilon_{zz} \\ &+ \frac{1}{2} b_3 \left(\left(\alpha_x^2 - \alpha_y^2 \right) \left(\varepsilon_{xx} - \varepsilon_{yy} \right) + 2 \, \alpha_x \, \alpha_y \, \varepsilon_{xy} \right) + \\ &+ b_4 \left(\alpha_x \, \alpha_z \, \varepsilon_{xz} + \alpha_y \, \alpha_z \, \varepsilon_{yz} \right) \end{split}$$
(16-29)

Workflow

J. R. Cullen, A. E. Clark, and K. B. Hathaway, in Materials, Science and Technology (VCH Publishings, 1994), pp. 529 – 565.

$$\frac{\Delta l}{l}\Big|_{\text{Hex}} = \lambda^{\alpha 1, 0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2, 0} + \\
+ \lambda^{\alpha 1, 2} (\alpha_z^2 - \frac{1}{3}) (\beta_x^2 + \beta_y^2) + \\
+ \lambda^{\alpha 2, 2} (\alpha_z^2 - \frac{1}{3}) \beta_z^2 + \\
+ \lambda^{\gamma, 2} (\frac{1}{2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + 2 \alpha_x \alpha_y \beta_x \beta_y) + \\
+ 2\lambda^{\varepsilon, 2} (\alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z) \tag{16-30}$$

$\lambda^{\alpha 1, 0}$	$(b_{11} c_{33} + b_{12} c_{13})/D$
$\lambda^{\alpha 2, 0}$	$[2b_{11}c_{13} - b_{12}(c_{11} + c_{22})]/D$
$\lambda^{\alpha 1, 2}$	$(-b_{21} c_{33} + b_{22} c_{13})/D$
$\lambda^{\alpha 2, 2}$	$[2b_{21}c_{13} - b_{22}(c_{11} + c_{12})]/D$
$\lambda^{\gamma, 2}$	$-b_3/(c_{11}-c_{12})$
$\lambda^{\epsilon, 2}$	$-b_4/(2c_{44})$

 $^{^{}a} D \equiv c_{33} (c_{11} + c_{12}) - 2c_{13}^{2}.$

Distorted states

 $|\boldsymbol{\alpha}| = 1, |\boldsymbol{\beta}| = 1$

strain along x-axis: $\beta = (1,0,0)$

$$\frac{\Delta l}{l} = \varepsilon_{xx} = \lambda^{\alpha 1} \left(\alpha_z^2 - \frac{1}{3} \right) + \lambda^{\gamma} (\alpha_x^2 - \alpha_y^2) \frac{1}{2}$$

$$\frac{\Delta l^{(1,1,1)}}{l_{(1,0,0)}} - \frac{\Delta l^{(1,1,0)}}{l_{(1,0,0)}} = \frac{1}{3} \cdot \lambda^{\alpha 1,2}$$

 $D = \begin{pmatrix} 0 & \frac{1}{\sqrt{1+\varepsilon_{xx}}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{1+\varepsilon_{xx}}} \\ \varepsilon_{xx} & \text{volume-conserving} \end{pmatrix}$

Distorted states

 $|\pmb{\alpha}|=1$, $|\pmb{\beta}|=1$

strain along z-axis: $\beta = (0,0,1)$

$$\frac{\Delta l}{l} = \varepsilon_{zz} = \lambda^{\alpha 2} \left(\alpha_z^2 - \frac{1}{3} \right)$$

$$\lambda^{\alpha 2,2}$$
 \rightarrow $\frac{\Delta l^{(0,0,1)}}{l_{(0,0,1)}} - \frac{\Delta l^{(1,0,0)}}{l_{(0,0,1)}} = \lambda^{\alpha 2,2}$

$$D = \begin{pmatrix} \frac{1}{\sqrt{1 + \varepsilon_{xx}}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{1 + \varepsilon_{xx}}} & 0 \\ 0 & 0 & 1 + \varepsilon_{xx} \end{pmatrix}$$

volume-conserving

S=(0,0,1)

Distorted states

 $|\boldsymbol{\alpha}| = 1, |\boldsymbol{\beta}| = 1$

strain along x-axis: $\beta = (1,0,0)$

$$\frac{\Delta l}{l} = \varepsilon_{xx} = \lambda^{\alpha 1} \left(\alpha_z^2 - \frac{1}{3} \right) + \lambda^{\gamma} (\alpha_x^2 - \alpha_y^2) \frac{1}{2}$$

$$\lambda^{\gamma,2}$$
 $\rightarrow \frac{\Delta l^{(1,0,0)}}{l_{(1,0,0)}} - \frac{\Delta l^{(0,1,0)}}{l_{(1,0,0)}} = \lambda^{\gamma,2}$

volume-conserving

$$\lambda^{\gamma,2} = \frac{x_{min1} - x_{min2}}{x_{min1}}$$

 x_{min1}

Distorted states

$$|\pmb{\alpha}|=1$$
, $|\pmb{\beta}|=1$

shear along xz: $\beta = (1,0,1)$

$$\frac{\Delta l}{l}\Big|_{\text{Hex}} = \lambda^{\alpha 1, 0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2, 0} + \\
+ \lambda^{\alpha 1, 2} (\alpha_z^2 - \frac{1}{3}) (\beta_x^2 + \beta_y^2) + \\
+ \lambda^{\alpha 2, 2} (\alpha_z^2 - \frac{1}{3}) \beta_z^2 + \\
+ \lambda^{\gamma, 2} (\frac{1}{2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + 2 \alpha_x \alpha_y \beta_x \beta_y) + \\
+ 2\lambda^{\varepsilon, 2} (\alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z) \tag{16-30}$$

$$\lambda^{\varepsilon,2}$$
 $\frac{\Delta l^{(1,0,1)}}{l_{(1,0,1)}} - \frac{\Delta l^{(-1,0,1)}}{l_{(1,0,1)}} = \lambda^{\varepsilon,2}$

volume-conserving

S=(1,0,1)

$$\lambda^{\varepsilon,2} = \frac{x_{min1} - x_{min2}}{x_{min1}}$$

Relation between different notations

Clark

PHYSICAL REVIEW
VOLUME 139, NUMBER 2A

19 JULY 1965

Callen $\lambda_{11}^{\alpha} = 2\lambda_{1}^{\alpha,0} + \lambda_{2}^{\alpha,0} + 2\lambda_{1}^{\alpha,2} + \lambda_{2}^{\alpha,2}$ $(\sqrt{3}/2)\lambda_{12}^{\alpha} = 2\lambda_{1}^{\alpha,2} + \lambda_{2}^{\alpha,2},$ $2\lambda_{21}^{\alpha} = -\lambda_{1}^{\alpha,0} + \lambda_{2}^{\alpha,0},$ $\sqrt{3}\lambda_{22}^{\alpha} = -\lambda_{1}^{\alpha,2} + \lambda_{2}^{\alpha,2}.$ $\lambda^{\epsilon} = \lambda^{\epsilon,2}$ $\lambda^{\gamma} = \lambda^{\gamma,2}$

MAELAS notation

The calculated magnetostriction coefficients are written in Clark, Mason, Birss and Callen notation in MAELAS code

HEXAGONAL (II) – point group 6/m

SG 175-176

Hexagonal (II) - point group 6/m

Workflow

 $\frac{\Delta l}{l} = \sum_{i,j} \varepsilon_{i,j} \beta_i \beta_j$

 $\frac{\partial}{\partial \varepsilon_{ij}} (E_{\rm el} + E_{\rm me}) = 0$

Elastic energy

$$\begin{split} E_{\rm el}|_{\rm hex} &= \frac{1}{2} \, C_{11} \, (\varepsilon_{xx}^2 \, \varepsilon_{yy}^2) + C_{12} \, \varepsilon_{xx} \, \varepsilon_{yy} \, + \\ &\quad + \frac{1}{2} \, C_{33} \, \varepsilon_{zz}^2 + C_{13} \, (\varepsilon_{xx} + \varepsilon_{yy}) \, \varepsilon_{zz} \, + \\ &\quad + \frac{1}{2} \, C_{44} \, (\varepsilon_{yz}^2 + \varepsilon_{xz}^2) \, + \\ &\quad + \frac{1}{4} (C_{11} - C_{12}) \, \varepsilon_{xy}^2 \end{split} \tag{16-28}$$

$$\begin{split} E_{\text{me}}|_{\text{hex}} &= b_{11} \left(\varepsilon_{xx} + \varepsilon_{yy} \right) + b_{12} \, \varepsilon_{zz} + \\ &+ b_{21} \left(\alpha_z^2 - \frac{1}{3} \right) \left(\varepsilon_{xx} + \varepsilon_{yy} \right) + \\ &+ b_{22} \left(\alpha_z^2 - \frac{1}{3} \right) \varepsilon_{zz} \\ &+ \frac{1}{2} b_3 \left(\left(\alpha_x^2 - \alpha_y^2 \right) \left(\varepsilon_{xx} - \varepsilon_{yy} \right) + 2 \, \alpha_x \, \alpha_y \, \varepsilon_{xy} \right) + \\ &+ b_4 \left(\alpha_x \, \alpha_z \, \varepsilon_{xz} + \alpha_y \, \alpha_z \, \varepsilon_{yz} \right) \\ &+ b_5 \left(\alpha_x \alpha_z \, \varepsilon_{yz} - \alpha_y \, \alpha_z \, \varepsilon_{xz} \right) \end{split} \tag{16-29}$$

J. R. Cullen, A. E. Clark, and K. B. Hathaway, in Materials, Science and Technology (VCH Publishings, 1994), pp. 529 – 565.

$$\begin{split} \frac{\Delta l}{l} \bigg|_{\text{Hex}} &= \lambda^{\alpha 1,\,0} (\beta_x^2 + \beta_y^2) + \lambda^{a 2,\,0} + \\ &+ \lambda^{\alpha 1,\,2} (\alpha_z^2 - \frac{1}{3}) (\beta_x^2 + \beta_y^2) + \\ &+ \lambda^{\alpha 2,\,2} (\alpha_z^2 - \frac{1}{3}) \beta_z^2 + \\ &+ \lambda^{\gamma,\,2} (\frac{1}{2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + 2 \,\alpha_x \,\alpha_y \,\beta_x \,\beta_y) + \\ &+ 2 \lambda^{\varepsilon,\,2} (\alpha_x \,\alpha_z \,\beta_x \,\beta_z + \alpha_y \,\alpha_z \,\beta_y \,\beta_z) \end{split} \tag{16-30}$$

$$\frac{\Delta l}{l}\bigg|_{b/m} = \frac{\Delta l}{l}\bigg|_{Hex} + 2\overline{\lambda}(\alpha_x \alpha_z \beta_y \beta_z - \alpha_y \alpha_z \beta_x \beta_z)$$
(16-31)

$$\begin{array}{lll} \lambda^{\alpha 1,\,0} & (b_{\,11}\,c_{\,33} + b_{\,12}\,c_{\,13})/D \\ \lambda^{\alpha 2,\,0} & [2\,b_{\,11}\,c_{\,13} - b_{\,12}\,(c_{\,11} + c_{\,22})]/D \\ \lambda^{\alpha 1,\,2} & (-\,b_{\,21}\,c_{\,33} + b_{\,22}\,c_{\,13})/D \\ \lambda^{\alpha 2,\,2} & [2\,b_{\,21}\,c_{\,13} - b_{\,22}\,(c_{\,11} + c_{\,12})]/D \\ \lambda^{\gamma,\,2} & -b_{\,3}/(c_{\,11} - c_{\,12}) \\ \lambda^{\varepsilon,\,2} & -b_{\,4}/(2\,c_{\,44}) \end{array}$$

$$\bar{\lambda} = \frac{-b}{2c}$$

 $^{^{\}text{a}} D \equiv c_{33} (c_{11} + c_{12}) - 2c_{13}^{2}.$

Minimum (E_{min}): $x_{min} = -b/(2*a)$

Hexagonal (II) point group 6/m

Distorted states

Include point group 6/m

Space group: 175,191,192

$$|\boldsymbol{\alpha}|=1, |\boldsymbol{\beta}|=1$$

shear along xz: $\beta = (1,0,1)$

$$\frac{\Delta l}{l}\bigg|_{b/m} = \frac{\Delta l}{l}\bigg|_{Hex} + \overline{\lambda}(\alpha_x \alpha_z \beta_y \beta_z - \alpha_y \alpha_z \beta_x \beta_z)$$
(16-31)

$$D = d \cdot \begin{pmatrix} 1 & 0 & \frac{\varepsilon_{XZ}}{2} \\ 0 & 1 & 0 \\ \frac{\varepsilon_{XZ}}{2} & 0 & 1 \end{pmatrix}$$

volume-conserving

S=(0,1,1)

HEXAGONAL (II) – point groups $\overline{6}$, $\overline{6}$

SG 168-174

WARNING: Current version doesn't calculate the magnetostriction coefficients for these point groups

TRIGONAL (I)

SG 149-167

Trigonal (I)

Elastic energy

$$E_{el}^{trig(I)} = \frac{\text{c11}\epsilon_{xx}^2}{2} + \frac{1}{4}(\text{c11} - \text{c12})\epsilon_{xy}^2 + \text{c12}\epsilon_{xx}\epsilon_{yy}$$
$$+ \frac{\text{c11}\epsilon_{yy}^2}{2} + \text{c14}(\epsilon_{xy}\epsilon_{xz} + \epsilon_{xx}\epsilon_{yz} - \epsilon_{yy}\epsilon_{yz})$$
$$+ \text{c44}\left(\frac{\epsilon_{xz}^2}{2} + \frac{\epsilon_{yz}^2}{2}\right) + \frac{\text{c33}\epsilon_{zz}^2}{2} + \text{c13}(\epsilon_{xx}\epsilon_{zz} + \epsilon_{yy}\epsilon_{zz})$$

Magnetoelastic energy

$$\begin{split} E_{\text{me}}|_{\text{trigonal}} &= b_{11}(\varepsilon_{xx} + \varepsilon_{yy}) + b_{12}\,\varepsilon_{zz} + \\ &+ b_{21}(\alpha_z^2 - \frac{1}{3})(\varepsilon_{xx} + \varepsilon_{yy}) + \\ &+ b_{22}(\alpha_z^2 - \frac{1}{3})\,\varepsilon_{zz} + \\ &+ \frac{1}{2}\,b_3\left[(\alpha_x^2 - \alpha_y^2)(\varepsilon_{xx} - \varepsilon_{yy}) + 2\,\alpha_x\,\alpha_y\,\varepsilon_{xy}\right] + \\ &+ b_4(\alpha_x\,\alpha_z\,\varepsilon_{xz} + \alpha_y\,\alpha_z\,\varepsilon_{yz}) + \\ b_{14} + b_{34}\left[\frac{1}{2}(\alpha_x^2 - \alpha_y^2)\,\varepsilon_{yz} + \alpha_x\,\alpha_y\,\varepsilon_{xz} + \\ &+ b_{34}\left[\frac{1}{2}(\alpha_x^2 - \alpha_y^2)\,\varepsilon_{yz} + \alpha_x\,\alpha_y\,\varepsilon_{xz} + \\ b_{34}\left[\frac{1}{2}(\alpha_x^2 - \varepsilon_{yy}) + \alpha_x\,\alpha_z\,\varepsilon_{xy}\right] + \\ \end{split}$$

Workflow

J. R. Cullen, A. E. Clark, and K. B. Hathaway, in Materials, Science and Technology (VCH Publishings, 1994), pp. 529 – 565.

$$\frac{\partial}{\partial \varepsilon_{ij}} (E_{el} + E_{me}) = 0$$

$$+ \lambda^{\gamma 1} \begin{bmatrix} \frac{1}{2} \\ + \lambda^{\gamma 2} \begin{bmatrix} \alpha \\ + \lambda_{12} \end{bmatrix} \end{bmatrix}^{\frac{1}{2}} + \lambda_{21} \begin{bmatrix} \frac{1}{2} \\ + \lambda_{21} \end{bmatrix}^{\frac{1}{2}} + \lambda_{21} \begin{bmatrix} \frac{1}{2} \\ - \lambda_{21} \end{bmatrix}^{\frac{1}{2}} + \lambda_{21} \end{bmatrix}^{$$

$$\begin{split} \frac{\Delta l}{l} \bigg|_{\text{trigonal}} &= \\ &= (\beta_{x}^{2} + \beta_{y}^{2}) \cdot [\lambda^{\alpha 1, 0} + \lambda^{\alpha 1, 2} (\alpha_{z}^{2} - \frac{1}{3})] + \\ &+ \beta_{z}^{2} [\lambda^{\alpha 2, 0} + \lambda^{\alpha 2, 2} (\alpha_{z}^{2} - \frac{1}{3})] + \\ &+ \lambda^{\gamma 1} \left[\frac{1}{2} (\alpha_{x}^{2} - \alpha_{y}^{2}) (\beta_{x}^{2} - \beta_{y}^{2}) + \sum \alpha_{x} \alpha_{y} \beta_{x} \beta_{y} \right] + \\ &+ \lambda^{\gamma 2} \left[\alpha_{x} \alpha_{z} \beta_{x} \beta_{z} + \alpha_{y} \alpha_{z} \beta_{y} \beta_{z} \right] + \\ &+ \lambda_{12} \left[\frac{1}{2} \alpha_{y} \alpha_{z} (\beta_{x}^{2} - \beta_{y}^{2}) + \alpha_{x} \alpha_{z} \beta_{x} \beta_{y} \right] + \\ &+ \lambda_{21} \left[\frac{1}{2} (\alpha_{x}^{2} - \alpha_{y}^{2}) \beta_{y} \beta_{z} + \alpha_{x} \alpha_{y} \beta_{x} \beta_{z} \right] \quad (16-40) \end{split}$$

$$\lambda^{\gamma 1} = (C_{14} b) (16-41 a)$$

$$\lambda^{\gamma 2} = \left(\frac{b_4}{2} (C_{11} - C_{12}) - b_{34} C_{14}\right) / D^{\gamma}$$

$$(16-41 b)$$

$$\lambda_{12} = (C_{14} b_4 - C_{44} b_{34}) / D^{\gamma}$$

$$(16-41 c)$$

$$\lambda_{12} = (C_{14} b_4 - C_{44} b_{34})/D^{\gamma}$$
 (16-41 c)

$$\lambda_{21} = \left(\frac{b_{14}}{2}(C_{11} - C_{12}) - C_{14}b_3\right) / D^{\gamma}$$
(16-41 d)

where

$$D^{\gamma} = \frac{C_{44}}{2} (C_{11} - C_{12}) - C_{14}^2 \tag{16-42}$$

TRIGONAL (II)

SG 143-148

WARNING: Current version doesn't calculate the magnetostriction coefficients for these space groups

TETRAGONAL (I)

SG 89-142

Tetragonal (I)

Elastic energy

$$E_{el}^{tet} = c12\epsilon_{xx}\epsilon_{yy} + c11\left(\frac{\epsilon_{xx}^2}{2} + \frac{\epsilon_{yy}^2}{2}\right) + c44\left(\frac{\epsilon_{xz}^2}{2} + \frac{\epsilon_{yz}^2}{2}\right) + \frac{c33\epsilon_{zz}^2}{2} + c13\left(\epsilon_{xx}\epsilon_{zz} + \epsilon_{yy}\epsilon_{zz}\right) + \frac{c66\epsilon_{xy}^2}{2}$$

$\frac{\Delta l}{l} = \sum_{i,j} \varepsilon_{i,j} \beta_i \beta_j$ $\frac{\partial}{\partial \varepsilon_{ij}} (E_{el} + E_{me}) = 0$

Magnetoelastic energy

$$f_{\text{me}}^{\text{tet}} = b_{11} \left(\varepsilon_{xx} + \varepsilon_{yy} \right) + b_{12} \varepsilon_{zz}$$

$$+ b_{21} \left(\alpha_{z}^{2} - \frac{1}{3} \right) \left(\varepsilon_{xx} + \varepsilon_{yy} \right) + b_{22} \left(\alpha_{z}^{2} - \frac{1}{3} \right) \varepsilon_{zz}$$

$$+ \frac{1}{2} b_{3} \left(\alpha_{x}^{2} - \alpha_{y}^{2} \right) \left(\varepsilon_{xx} - \varepsilon_{yy} \right) + b_{3}^{'} \alpha_{x} \alpha_{y} \varepsilon_{xy}$$

$$+ b_{4} \left(\alpha_{x} \alpha_{z} \varepsilon_{xz} + \alpha_{y} \alpha_{z} \varepsilon_{yz} \right) ,$$

J. R. Cullen, A. E. Clark, and K. B. Hathaway, in Materials, Science and Technology (VCH Publishings, 1994), pp. 529 – 565.

$$\frac{\Delta l}{l} \Big|_{\text{tetragonal}} = \lambda^{\alpha 1, 0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2, 0} \beta_z^2 + \lambda^{\alpha 1, 2} (\alpha_z^2 - \frac{1}{3}) (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2, 2} (\alpha_z^2 - \frac{1}{3}) \beta_z^2 + \lambda^{\alpha 2, 2} (\alpha_z^2 - \frac{1}{3}) \beta_z^2 + \lambda^{\alpha 2, 2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + \lambda^{\alpha 2, 2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + \lambda^{\alpha 2, 2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + \lambda^{\alpha 2, 2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + \lambda^{\alpha 2, 0} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + \lambda^{\alpha 2, 0} (\beta_x^2 - \beta_y$$

$$\begin{array}{lll} \lambda^{\alpha 1,\, 0} & (b_{\,11}\,c_{\,33} + b_{\,12}\,c_{\,13})/D \\ \lambda^{\alpha 2,\, 0} & [2\,b_{\,11}\,c_{\,13} - b_{\,12}\,(c_{\,11} + c_{\,22})]/D \\ \lambda^{\alpha 1,\, 2} & (-\,b_{\,21}\,c_{\,33} + b_{\,22}\,c_{\,13})/D \\ \lambda^{\alpha 2,\, 2} & [2\,b_{\,21}\,c_{\,13} - b_{\,22}\,(c_{\,11} + c_{\,12})]/D \\ \lambda^{\gamma,\, 2} & -b_{\,3}/(c_{\,11} - c_{\,12}) \\ \lambda^{\varepsilon,\, 2} & -b_{\,4}/(2\,c_{\,44}) \end{array}$$

$$^{a} D \equiv c_{33} (c_{11} + c_{12}) - 2 c_{13}^{2}.$$

$$\lambda^{\delta, 2} = \frac{b'_{3}}{2 C_{66}}$$

Relation between different notations

Tetragonal (I)

Cullen

$$\frac{\Delta l}{l} \Big|_{\text{tetragonal}} = \lambda^{\alpha 1, 0} (\beta_x^2 + \beta_y^2) + \lambda^{\alpha 2, 0} \beta_z^2 + \\
+ \lambda^{\alpha 1, 2} (\alpha_z^2 - \frac{1}{3}) (\beta_x^2 + \beta_y^2) + \\
+ \lambda^{\alpha 2, 2} (\alpha_z^2 - \frac{1}{3}) \beta_z^2 + \\
+ \frac{1}{2} \lambda^{\gamma, 2} (\alpha_x^2 - \alpha_y^2) (\beta_x^2 - \beta_y^2) + \\
+ 2 \lambda^{\delta, 2} \alpha_x \alpha_y \beta_x \beta_y + \\
+ 2 \lambda^{\epsilon, 2} (\alpha_x \alpha_z \beta_x \beta_z + \alpha_y \alpha_z \beta_y \beta_z) \quad (16-34)$$

$$\frac{\Delta l^{111}}{l_{100}} - \frac{\Delta l^{110}}{l_{100}} = \frac{1}{3} \lambda^{\alpha 1, 2} = -\frac{1}{6} \lambda_1 - \frac{1}{6} \lambda_5 \qquad \lambda_1 = -\lambda^{\alpha 1, 2} + \frac{1}{2} \lambda^{\gamma, 2} \\
\frac{\Delta l^{100}}{l_{100}} - \frac{\Delta l^{100}}{l_{100}} = \lambda^{\gamma, 2} = \lambda_1 - \lambda_5 \qquad \lambda_5 = -\lambda^{\alpha 1, 2} - \frac{1}{2} \lambda^{\gamma, 2}$$

$$\frac{\Delta l^{100}}{l_{100}} - \frac{\Delta l^{100}}{l_{100}} = \lambda^{\alpha 2, 2} = -\lambda_4 \qquad \lambda_4 = -\lambda^{\alpha 2, 2}$$

$$\frac{\Delta l^{101}}{l_{101}} - \frac{\Delta l^{-101}}{l_{101}} = \lambda^{\epsilon, 2} = 2\lambda_2 - \frac{1}{2} \lambda_4 \qquad \lambda_2 = \frac{1}{2} \left[\lambda^{\epsilon, 2} - \frac{1}{2} \lambda^{\alpha 2, 2} \right]$$

$$\frac{\Delta l^{110}}{l_{110}} - \frac{\Delta l^{-110}}{l_{110}} = \lambda^{\delta, 2} = -\lambda_1 + 2\lambda_3 - \lambda_5 \qquad \lambda_3 = \frac{1}{2} \lambda^{\delta, 2} - \lambda^{\alpha 1, 2}$$

Mason

$$\lambda = \frac{1}{2}\lambda_{1} \left[(\alpha_{1}\beta_{1} - \alpha_{2}\beta_{2})^{2} - (\alpha_{1}\beta_{2} + \alpha_{2}\beta_{1})^{2} + (1 - \beta_{3}^{2})(1 - \alpha_{3}^{2}) - 2\alpha_{3}\beta_{3}(\alpha_{1}\beta_{1} + \alpha_{2}\beta_{2}) \right] + 4\lambda_{2}\alpha_{3}\beta_{3}(\alpha_{1}\beta_{1} + \alpha_{2}\beta_{2}) + 4\lambda_{3}\alpha_{1}\alpha_{2}\beta_{1}\beta_{2} + \lambda_{4} \left[\beta_{3}^{2}(1 - \alpha_{3}^{2}) - a_{3}\beta_{3}(\alpha_{1}\beta_{1} + \alpha_{2}\beta_{2}) \right] + \frac{1}{2}\lambda_{5} \left[(\alpha_{1}\beta_{2} - \alpha_{2}\beta_{1})^{2} - (\alpha_{1}\beta_{1} + \alpha_{2}\beta_{2})^{2} + (1 - \beta_{3}^{2})(1 - \alpha_{3}^{2}) \right], \quad (74)$$

$$\lambda_{1} = \lambda(\alpha_{1} = 1, \beta_{1} = 1); \quad \lambda_{2} = \lambda(\alpha_{1} = \beta_{1} = \alpha_{3} = \beta_{3} = 1/\sqrt{2});$$

$$\lambda_{3} = \lambda(\alpha_{1} = \alpha_{2} = \beta_{1} = \beta_{2} = 1/\sqrt{2});$$

$$\lambda_{4} = \lambda(\alpha_{1} = 1, \beta_{3} = 1); \quad \lambda_{5} = \lambda(\alpha_{1} = 1, \beta_{2} = 1)$$

TETRAGONAL (II)

SG 75-88

WARNING: Current version doesn't calculate the magnetostriction coefficients for these space groups

ORTHORHOMBIC

SG 16-74

Orthorhombic

Workflow

Elastic energy

$$E_{el}^{ortho} = \frac{\text{c11}\epsilon_{xx}^2}{2} + \frac{\text{c66}\epsilon_{xy}^2}{2} + \frac{\text{c55}\epsilon_{xz}^2}{2} + \frac{\text{c44}\epsilon_{yz}^2}{2} + \frac{\text{c12}\epsilon_{xx}\epsilon_{yy} + \frac{\text{c22}\epsilon_{yy}^2}{2} + \frac{\text{c44}\epsilon_{yz}^2}{2}}{2} + \text{c13}\epsilon_{xx}\epsilon_{zz} + \text{c23}\epsilon_{yy}\epsilon_{zz} + \frac{\text{c33}\epsilon_{zz}^2}{2}$$

Magnetoelastic energy

$$\begin{split} E_{me}^{ortho} &= \left(\alpha_x^2 b_1 + \alpha_y^2 b_2\right) \epsilon_{xx} + \left(\alpha_x^2 b_3 + \alpha_y^2 b_4\right) \epsilon_{yy} + \left(\alpha_x^2 b_5 + \alpha_y^2 b_6\right) \epsilon_{zz} \\ &+ \alpha_y \alpha_z b_7 \epsilon_{yz} + \alpha_x \alpha_z b_8 \epsilon_{xz} + \alpha_x \alpha_y b_9 \epsilon_{xy} \end{split}$$

PHYSICAL REVIEW VOLUME 96, NUMBER 2 OCTOBER 15, 1954

$$\begin{split} \lambda = & \lambda_{1} \left[\alpha_{1}^{2} \beta_{1}^{2} - \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - \alpha_{1} \alpha_{3} \beta_{1} \beta_{3} \right] \\ & + \lambda_{2} \left[\alpha_{2}^{2} \beta_{1}^{2} - \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} \right] + \lambda_{3} \left[\alpha_{1}^{2} \beta_{3}^{2} - \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} \right] \\ & + \lambda_{4} \left[\alpha_{2}^{2} \beta_{2}^{2} - \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - \alpha_{2} \alpha_{3} \beta_{2} \beta_{3} \right] + \lambda_{5} \left[\alpha_{1}^{2} \beta_{3}^{2} \right. \\ & \left. - \alpha_{1} \alpha_{3} \beta_{1} \beta_{3} \right] + \lambda_{6} \left[\alpha_{2}^{2} \beta_{3}^{2} - \alpha_{2} \alpha_{3} \beta_{2} \beta_{3} \right] + 4 \lambda_{7} (\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}) \\ & + 4 \lambda_{8} \alpha_{1} \alpha_{3} \beta_{1} \beta_{3} + 4 \lambda_{9} \alpha_{2} \alpha_{3} \beta_{2} \beta_{3}, \end{split}$$

$$\begin{aligned} b_1 &= -\text{c}11 \ \lambda_1 - \text{c}12 \ \lambda_3 - \text{c}13 \ \lambda_5 \\ b_2 &= -\text{c}11 \ \lambda_2 - \text{c}12 \ \lambda_4 - \text{c}13 \ \lambda_6 \\ b_3 &= -\text{c}12 \ \lambda_1 - \text{c}22 \ \lambda_3 - \text{c}23 \ \lambda_5 \\ b_4 &= -\text{c}12 \ \lambda_2 - \text{c}22 \ \lambda_4 - \text{c}23 \ \lambda_6 \\ b_5 &= -\text{c}13 \ \lambda_1 - \text{c}23 \ \lambda_3 - \text{c}33 \ \lambda_5 \\ b_6 &= -\text{c}13 \ \lambda_2 - \text{c}23 \ \lambda_4 - \text{c}33 \ \lambda_6 \\ b_7 &= \text{c}44 \ (\lambda_4 + \lambda_6 - 4 \ \lambda_9) \\ b_8 &= \text{c}55 \ (\lambda_1 + \lambda_5 - 4 \ \lambda_8) \\ b_9 &= \text{c}66 \ (\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 - 4 \ \lambda_7) \end{aligned}$$

MONOCLINIC

SG 3-15

WARNING: Current version doesn't calculate the magnetostriction coefficients for these point groups

TRICLINIC

SG 1-2

WARNING: Current version doesn't calculate the magnetostriction coefficients for these point groups

Cubic systems: Itenerant magnets

R.Q. Wu et al. | Journal of Magnetism and Magnetic Materials 177-181 (1998) 1216-1219

	a (a.u.)	σ	$M_s(\mu_B)$	$M_L(\mu_B)$	$\lambda_{001}(10^{-6})$
bcc Fe					
LDA	5.20	-0.409	2.05	0.048	52
GGA	5.37	-0.486	2.17	0.045	29
EXP	5.41	-0.368	2.22	0.08	21
fcc Co					
LDA	6.48	-0.374	1.59	0.076	92
GGA	6.67	-0.396	1.66	0.073	56
EXP	6.70		1.72	0.12	79
fcc Ni					
LDA	6.46	-0.332	0.62	0.049	-63
GGA	6.64	-0.3376	0.66	0.050	-56
EXP	6.66	-0.376	0.57	0.05	-49

	$T = 4.2 \mathrm{K}$		Room Temperature		
	$\lambda_{100}(\lambda^{\gamma,2})$	$\lambda_{111}(\lambda^{\epsilon,2})$	$\lambda_{100}(\lambda^{\gamma,2})$	$\lambda_{111}(\lambda^{\epsilon,2})$	Polycrystal λ_s
		3d Metal:	s		
BCC-Fe	26	-30	21	-21	-7
HCP-Co"	(-150)	(45)	(-140)	(50)	(-62)
FCC-Ni	-60	-35	-46	-24	-34
BCC-FeCo			140	30	
$a-Fe_{80}B_{20}$	48 (isotropic)		_	_	+32
a-Fe ₄₀ Ni ₄₀ B ₂₀	+20	_	_	_	+14
a-Cos ₈₀ B ₂₀	-4	_			-4

Cubic systems: Itenerant magnets

Cubic systems: Rare-Earth magnets

Modern Trends in Magnetostriction Study and Application

C15 cubic Laves phase

	Theory	Experiment
λ ₀₀₁ (GdCo ₂)	-407	-1200
λ_{111} (GdCo ₂)	19	< 10
λ_{001} (SmCo ₂)	-290	
λ_{001} (ErCo ₂)	-516	-1000
λ_{001} (GdFe ₂)	44	39

Table 16-10. Low-temperature magnetostriction constants for RCo₂ crystals [from Levitin and Markosyan (1990) unless otherwise noted].

R in RCo_2	$10^6\lambda_{111}$	$10^6~\lambda_{100}$	$T_{\rm c}\left({ m K}\right)^{\rm a}$
Gd	< 10-5	-1200	409
Tb	4500	-1200 b	256
Dy	5000 в, с	-2000 d	159
		-1300°	
Но	300, 600°	-2000	85
Er	-2500	-1000	36
Tm	−4100 b	750°	18

Table 1.6. Magnetostriction of Cubic Laves Phase Compounds with Rare Earths at T=0

Compound	$\lambda_{111}(10^{-6})$	$\lambda_{100}(10^{-6})$	T _c (K
NdAl ₂	_	- 700	61
TbAl ₂	- 3000	_	114
DyAl ₂	-	- 1700	68
TbMn ₂	- 3000	-	40
TbFe ₂	4000, 4500	_	711
DyFe ₂	_	- 70	635
HoFe ₂		- 750	612
TmFe ₂	-3500, -2600	_	610
TbCo ₂	4400	_	256
DyCo ₂	_	- 2000	159
HoCo ₂	_	- 2200	85
ErCo ₂	- 2500	_	36
TbNi ₂	1500	_	45
DyNi ₂	_	- 1300	30
HoNi ₂	_	- 1000	22

Table 1.7. Magnitudes of Single-Crystal Magnetostriction in Rare Earth-Fe₂ Compounds

Compound	$\frac{3}{2}\lambda_{111} \ (10^{-6})$ (calculated at 0 K)	$\frac{3}{2}\lambda_{111}~(10^{-6})$ (measured at room temperature)	$T_{\rm e}$
SmFe ₂	- 4800	- 3150	676
TbFe ₂	6600	3690	697, 711
DyFe ₂	6300	1890	635
HoFe ₂	2400	288	606
ErFe ₂	- 2250	- 450	590, 597
TmFe ₂	- 5550	-315	560

TABLE 6
Magnetostriction coefficients at zero Kelvin in units of 10⁻³

Hexagonal
Rare-Earth

Element	λ ^{α,2}	$\lambda_{2}^{\alpha,2}$	λ γ,2	λ *.2	$\lambda_{1}^{\alpha,0} - \frac{1}{3}\lambda_{1}^{\alpha,2}$	$\lambda_2^{\alpha,0} - \frac{1}{3}\lambda_2^{\alpha,2}$	λ γ,4
Gadolinium ^{a)}	0.14	-0.13	0.11	0.02	<u></u>	_	_
Terbium ^{b)}	-2.6°)	9.0°)	8.7	15.0°)	- 0.8	4.3	-2.1
Dysprosium ^{b)}	_	_	9.4	5.5	-2.0	7.3	1.5
Holmium ^{b)}			2.5°)		-3.9	7.1	_
Erbium ^{b)}	_	-	-5.1°)	_	+0.3	6.2	_

a) After Mishima et al. (1976).

		T = 4.2 K		Room Temperature		ature
		$\lambda_{100}(\lambda^{\gamma,2})$	$\lambda_{111}(\lambda^{\varepsilon,2})$	$\lambda_{100}(\lambda^{\gamma,2})$	$\lambda_{111}(\lambda^{\varepsilon,2})$	Polycrystal λ_s
		,	Spinel Ferrit	es		-
	Fe ₃ O ₄	0	50	-15	56	+40
Oxide magnets	$MnFe_2O_4^u$		_	(-54)	(10)	
	CoFe ₂ O ₄	_	_	-670	120	-110
			Garnets			
	YIG	-0.6	-2.5	-1.4	-1.6	-2

b) After Rhyne (1972).

c) Extrapolated from paramagnetic range using single-ion theory.

MAELAS TESTS: Fe bcc

PHYSICAL REVIEW B 69, 104426 (2004)

MAELAS (kp=185)
$$\lambda_{001} = 13 \cdot 10^{-6}$$
 Exp. $\lambda_{001} = 26 \cdot 10^{-6}$

MAELAS TESTS: Co hcp

Magnetocrystalline anisotropy energy ratio for the relaxed structure: K1 exp. / K1 theory = 0.7 / 0.13 = 5.38

Journal of Applied Physics 35, 1752 (1964)

Experiments

MAELAS TESTS: Gd hcp

	Experiment (x 10 ⁻⁶)	MAELAS (x 10 ⁻⁶)
λΑ	-110	-262
λВ	-215	-305
λC	85	521
λD	22	22

LDAUU=6.7 LDAUJ=0.7 kpoints 22x22x11

MAELAS TESTS: L1₀ FePd

Experiment

Magnetocrystalline anisotropy energy ratio for the relaxed structure: K1 exp. / K1 theory = 2.5 / 1.2 = 2.1

Bibliography

- J. R. Cullen, A. E. Clark, and K. B. Hathaway, in Materials, Science and Technology (VCH Publishings, 1994), pp. 529 565.
- R.Q. Wu et al. Journal of Magnetism and Magnetic Materials 177-181 (1998) 1216-1219.
- M.R.J.Gibbs, Modern Trends in Magnetostriction, Springer Netherlands (2001).
- Göran Engdahl, Isaak D. Mayergoyz, Handbook of Giant Magnetostrictive Materials, Academic Press (1999).