PERMUTATION ANALYTICAL METHOD

Sahand Farshian

1. Concordance Matrix

The concordance matrix is a key component in multi-criteria decision-making methods, such as the ELECTRE family. It evaluates the level of agreement between pairs of alternatives based on the given criteria. The concordance matrix C is constructed as follows:

- 1.1. Construction of the Concordance Matrix. We start with the normalized decision matrix N, which is derived from the original decision matrix D using an appropriate normalization technique (e.g., max-min normalization). The concordance matrix C is then created based on N following these steps:
 - (1) Normalize the Decision Matrix: Compute the normalized matrix $N_{m\times n}$, where m is the number of alternatives and n is the number of criteria.
 - (2) **Assign Weights**: Assign weights w_j to each criterion j, ensuring that $\sum_{j=1}^n w_j = 1$.
 - (3) **Pairwise Comparisons**: For each pair of alternatives A_i and A_k :
 - (a) Identify the set of criteria S_{ik} for which A_i is at least as good as A_k :

$$S_{ik} = \{j \mid n_{ij} \ge n_{kj}, \ j = 1, 2, \dots, n\}.$$

(b) Compute the concordance index C_{ik} as the sum of the weights of the criteria in S_{ik} :

$$C_{ik} = \sum_{j \in S_{ik}} w_j.$$

1.2. Interpretation of the Concordance Matrix. Each row i of the concordance matrix C represents the degree to which alternative A_i dominates the other alternatives. Each column k represents how the corresponding alternative A_k is dominated by others.

$$C_{ik} = \begin{cases} C_{ik}, & \text{if } i \neq k, \\ 0, & \text{if } i = k. \end{cases}$$

1.3. Example Concordance Matrix and Calculations. Consider three alternatives (A_1, A_2, A_3) evaluated on two criteria (C_1, C_2) with equal weights $(w_1 = w_2 = 0.5)$. The normalized matrix N is:

$$N = \begin{bmatrix} 0.8 & 0.6 \\ 0.7 & 0.8 \\ 0.9 & 0.5 \end{bmatrix}.$$

The concordance matrix C is computed as follows:

$$C = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 1 \\ 1 & 0.5 & 0 \end{bmatrix}.$$

Here are the detailed calculations for three elements of C:

• C_{12} : Comparing A_1 with A_2 , for C_1 , $n_{11} > n_{21}$, and for C_2 , $n_{12} < n_{22}$. Thus:

$$S_{12} = \{C_1\}, \quad C_{12} = w_1 = 0.5.$$

• C_{23} : Comparing A_2 with A_3 , for C_1 , $n_{21} < n_{31}$, and for C_2 , $n_{22} > n_{32}$. Thus:

$$S_{23} = \{C_2\}, \quad C_{23} = w_2 = 0.5.$$

• C_{31} : Comparing A_3 with A_1 , for C_1 , $n_{31} > n_{11}$, and for C_2 , $n_{32} < n_{12}$. Thus:

$$S_{31} = \{C_1\}, \quad C_{31} = w_1 = 0.5.$$

- 1.4. Scoring Permutations and Determining the Winner. After constructing the concordance matrix C, we can evaluate the performance of each alternative across all pairwise comparisons. This process involves calculating a score for each permutation of alternatives and identifying the best-performing one.
- 1.5. Scoring Permutations and Determining the Winner. After constructing the concoordance matrix C, we can evaluate the performance of each alternative by scoring each permutation of alternatives. This process involves calculating a **net score** for each permutation and identifying the best-ranking one.
- 1.5.1. Scoring a Permutation. A permutation of the alternatives represents a ranking order. For example, $\pi = (A_1, A_2, A_3)$ implies A_1 is ranked higher than A_2 , which is ranked higher than A_3 . The scoring involves:
 - (1) For a given permutation π , consider the concordance indices C_{ik} where A_i precedes A_k in π .
 - (2) Compute the **upper triangle sum**:

$$S^+(\pi) = \sum_{i < k} C_{ik}$$
, where A_i precedes A_k in π .

(3) Compute the **lower triangle sum**:

$$S^{-}(\pi) = \sum_{i>k} C_{ik}$$
, where A_k precedes A_i in π .

(4) Calculate the **net score** for the permutation:

Net Score
$$(\pi) = S^+(\pi) - S^-(\pi)$$
.

1.5.2. Example of Scoring a Permutation. Consider the concordance matrix:

$$C = \begin{bmatrix} 0 & 0.6 & 0.8 \\ 0.4 & 0 & 0.7 \\ 0.2 & 0.3 & 0 \end{bmatrix}.$$

For the permutation $\pi = (A_1, A_2, A_3)$:

• Upper triangle sum:

$$S^{+}(\pi) = C_{12} + C_{13} + C_{23} = 0.6 + 0.8 + 0.7 = 2.1.$$

• Lower triangle sum:

$$S^{-}(\pi) = C_{21} + C_{31} + C_{32} = 0.4 + 0.2 + 0.3 = 0.9.$$

• Net score:

Net Score(
$$\pi$$
) = $S^+(\pi) - S^-(\pi) = 2.1 - 0.9 = 1.2$.

- 1.5.3. Determining the Winning Permutation. To find the best-ranking permutation:
 - (1) Calculate the **net score** for all possible permutations of alternatives.
 - (2) The permutation with the **highest net score** is selected as the best-ranking permutation.
- 1.6. **Applications of Permutation Scoring.** The permutation scoring method, particularly with net scoring, is applied in:
 - Ranking alternatives in multi-criteria decision-making problems.
 - Selecting the most consistent and preferred alternative when both positive and negative preferences are considered.
 - Supporting decision-making in areas like supplier evaluation, project prioritization, and resource allocation.