フロー観点

2025年6月12日 23:39

品質戦略文書案:

目的:

計測を制御するARMと画像処理を実行するDSPのパイプライン化により導入された並列処理構造において、共有メモリを介したパラメータ・計測結果の受け渡しが品質リスク(競合、メモリアクセス違反、キャッシュ整合性破綻)を生む可能性がある。これらの問題を連続運転で論理的に検出して品質を確保する。

品質検証戦略:

【1. 検証観点】

- メモリアクセス範囲違反
 - → 演算結果・設定パラメータが共有領域外に書き込まれないか
- タスク間のメモリ競合
 - → 同一領域への読み込み・書き込みの同時アクセスが発生していないか (Read/Write、Write/Write)
- キャッシュコヒーレンシ問題
 - → 一方のタスクが更新したデータが他方に反映されていないケースが発生しないか

【2. 主な影響因子】

- 演算処理の実行時間(負荷)
- 演算設定や結果データのサイズ
- 並列キューの深さ(先行リクエスト数)
- CPUキャッシュ共有の有無(マルチコア配置)
- メモリ領域の割り当て方式(設定・動的)

【3. 検証手段】

観点	検証方法	備考
メモリアクセス	AddressSanitizer やカスタムメモリガード機構	境界外アクセスの即時
違反	を使用して、不正アクセス検知	検出
タスク間競合	アクセスログ・タイミングログによる競合検出 /並行アクセスの監視	OSのトレース機能やロ ギング導入
キャッシュ整合	キャッシュフラッシュ・同期命令の有無と再現	非同期結果の確認と周
性	テスト、クロスチェックログ	期的な検査
同期ズレ/デー	各段階でのメモリスナップショット比較、シグ	中間データ検証による
タ破損	ネチャ/ハッシュ導入	断面テスト

【4. パラメトリックテスト設計】

- 処理時間を意図的に変化させる (Sleep挿入、負荷演算追加)
- メモリサイズ・構造の組み合わせを網羅(小/大画像、設定サイズバリエーション)
- 並列処理数 (パイプラインの深さ) を段階的に変化
- マルチスレッド動作環境でCPU Affinityを操作しコア間の挙動を確認

成果目標:

- 不正メモリアクセス・破損の未然検出率100%(再現確認テストで検出ゼロ)
- 並列時の安定性確認(複数回・複数条件下での誤動作ゼロ)
- 自動テストフレームワークへの上記検証の組み込み完了