Technische Universität Berlin

Selected Sections of Adjustment Calculation
Summer Term 2019

Chair of Geodesy and Adjustment Theory

Prof. Dr.-Ing. Frank Neitzel, M.Sc. Anastasia Pasioti

	Exercise 2	: Hypothesis Testing						
	- Type I and	II errors, statistical tests -						
Group:	Surname, Given Name:	Matriculation number:	Signature*:					
	* With my signature I declare that	at I was involved in the elaboration o	f this exercise.					
Deadline: 10.05.2019								
est Certificate	•							
Received on:								
	Date	Grade	Signature					

Objective

This exercise deals with hypothesis testing of a population mean, population variance and the ratio of two population variances.

"KEEP YOUR EYE ON THAT GUY, TOM. HES NOT, YOU KNOW...NORMAL!"

Figure 1: source: http://pip.ucalgary.ca/psyc-312/introduction-to-hypothesis-testing/the-normal-distribution/properties.html

Task 1:

The zero correction of an Electronic Distance Meter (EDM) is given by the manufacturer as E(x)=0 mm. The calibration of this EDM by students of TU Berlin yields $\bar{x}=3.5$ mm for the zero correction, determined with a standard deviation of $s_{\bar{x}}=1.7$ mm and a degree of freedom f=9. Is the resulting zero correction $\bar{x}=3.5$ mm significant different from zero (larger) or is the deviation with respect to E(x) random?

Task 2:

The manufacturer of an EDM gives the value $\sigma_d=2.0~\mathrm{mm}$ for distances up to $20~\mathrm{m}$. To check the instrument a distance was measured $10~\mathrm{times}$ and the resulting standard deviation is $s_d=2.2~\mathrm{mm}$. Is the deviation between the obtained and given standard deviation significant different?

Task 3:

A baseline is observed repeatedly over a period of time using an EDM instrument. Each day, 10 observations were taken and averaged. The variances of the observations are listed below. At a significance level of 95%, are the results of day 2 significantly larger from those of day 5?

Day	1	2	3	4	5
s^2	50.0	61.0	51.0	53.0	54.0

Task 4 (Homework):

Student claims he studied at least 6 hours a week. A sample of 16 weeks shows that the average number of hours he studied was 5.5, with a standard deviation of 1.0. Is his claim true?

Task 5 (Homework):

A mean value $\bar{x}=10.0$ with a variance of $s^2=0.07$ is obtained after 12 observations. Is the deviation between the obtained and given variance of $\sigma^2=0.10$ significant different, with an error level of 5%?

Task 6 (Homework):

The diameter of steel rods manufactured on two different extrusion machines is being investigated. Two random samples of sizes $n_1=15$ and $n_2=17$ are selected, and the sample means and sample variances are $\bar{x}_1=8.73$, $s_1^2=0.35$, $\bar{x}_2=8.68$ and $s_2^2=0.40$, respectively. Assume that $\sigma_1^2=\sigma_2^2$ and that the data are drawn from a normal distribution.

• Is there evidence to support the claim that the two machines produce rods with different mean diameters with an error level of 5%?