

NOÇÃO INTUITIVA DE LIMITES

1) Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$ e usando uma calculadora determine:

a) f (1,8)	f) f (2,1)
------------	------------

b)
$$f(1,85)$$
 g) $f(2,01)$

c)
$$f(1,9)$$
 h) $f(2,001)$

d)
$$f(1,96)$$
 i) $f(2,0001)$

e)
$$f(2)$$
 j) $f(2)$

- 2) Observe os resultados encontrados na questão anterior e responda:
- a) Para quanto se "aproxima" o valor de f(x) quando x se "aproxima" de 2 e é menor do que 2?
- b) Para quanto se "aproxima" o valor de f(x) quando x se "aproxima" de 2 e é maior do que 2?
- 3) Dado o gráfico da função, responda:

- a) Para quanto se "aproxima" o valor de f(x) quando x se "aproxima" de 4 e x < 4?
- b) Para quanto se "aproxima" o valor de f(x) quando x se "aproxima" de 4 e x > 4?
- c) Qual é o valor de f(x) quando x = -4?
- d) Para quanto "tende" o valor de f (ou se "aproxima") quando x "tende" a 2 pela esquerda (ou tende a 2 e é menor do que 2)?

- e) Para quanto "tende" o valor de f quando x "tende" a 2 pela direita?
- f) Qual é o valor de f quando x = 2?
- g) Para quanto "tende" o valor de f quando x "tende" a 4 pela esquerda?
- h) Para quanto "tende" o valor de f quando x "tende" a 4 pela direita?
- i) Qual é o valor de f(4)?
- 4) Considere o gráfico de uma função dado abaixo e complete, corretamente, as sentenças seguintes:

a) Se x tende a a pela esquerda então f(x) tende a _____.

Simbolicamente:

Se
$$x \to a^-$$
 então $f(x) \to$ _____.

b) Se x tende a a pela direita então f(x) tende a _____.

Simbolicamente:

Se
$$x \to a^+$$
 então $f(x) \to$ _____.

c)
$$f(a) =$$
_____.

d) Se
$$x \to b^-$$
 então $f(x) \to$ _____.

e) Se
$$x \to b^+$$
 então $f(x) \to$ _____.

$$f(b) = ____.$$

g) Se
$$x \to c^-$$
 então $f(x) \to$ _____.

h) Se
$$x \to c^+$$
 então $f(x) \to$ _____.

i)
$$f(c) =$$
_____.

Prof^a: Me. Mylane dos Santos Barreto

Observações:

Dada uma função definida num intervalo aberto I, com $a \in I$.

Para descrever o fato de que se $x \to a^-$ então $f(x) \to b$ escrevemos:

$$\lim_{x \to a^{-}} f(x) = b$$

(lê-se: limite de f(x) quando x "tende" a a pela esquerda é igual a b)

Analogamente, para descrever que se $x \to a^+$ então $f(x) \to c$ escrevemos:

$$\lim_{x \to a^+} f(x) = c$$

(lê-se: limite de f(x) quando x "tende" a a pela direita é igual a c)

Tais limites são denominados **limites laterais esquerdo e direito**, respectivamente.

Quando os limites laterais são iguais a b dizemos que existe o limite de f(x) no ponto a e, então escrevemos:

$$\left[\lim_{x\to a} f(x) = b\right]$$

Assim, $\lim_{x\to a^-} f(x) = b$ se, e somente se $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = b$.

Comentários sobre o exercício 4:

1) Observe que, em f quando $x \to a^-$ (lê-se: x "tende" a a pela esquerda), f(x) "tende" a g. Para descrever este fato em linguagem simbólica escrevemos:

$$\lim_{x \to a^{-}} f(x) = g$$

(lê-se: limite de f(x) quando x "tende" a a pela esquerda é igual a g)

2) Observe que, em f quando $x \to a$ * (lê-se: x "tende" a a pela direita), f(x) "tende" a a. Para descrever este fato em linguagem simbólica escrevemos:

$$\lim_{x \to a^+} f(x) = h$$

(lê-se: limite de f(x) quando x "tende" a a pela direita é igual a h)

- 3) Observe que, em f quando $x \to b^-$ (lê-se: x "tende" a b pela esquerda), f(x) "tende" a
- d. Para descrever este fato em linguagem simbólica escrevemos:

$$\lim_{x \to b^{-}} f(x) = d$$

(lê-se: limite de f(x) quando x "tende" a b pela esquerda é igual a d)

4) Observe que, em f quando $x \to b$ * (lê-se: x "tende" a b pela direita), f(x) "tende" a d. Para descrever este fato em linguagem simbólica escrevemos:

$$\lim_{x \to b^+} f(x) = d$$

(lê-se: limite de f(x) quando x "tende" a b pela direita é igual a d)

- 5) Observe que f(b) = m (a imagem de b é igual a m) é diferente dos limites encontrados nos itens d e e.
- 6) Observe que, em f quando $x \to c^-$ (lê-se: x "tende" a c pela esquerda), f(x) "tende" a j. Para descrever este fato em linguagem simbólica escrevemos:

$$\lim_{x \to c^{-}} f(x) = j$$

(lê-se: limite de f(x) quando x "tende" a c pela esquerda é igual a j)

7) Observe que, em f quando $x \to c^+$ (lê-se: x "tende" a c pela direita), f(x) "tende" a f(x) "t

$$\lim_{x \to c^{+}} f(x) = j$$

(lê-se: limite de f(x) quando x "tende" a c pela direita é igual a j)

8) Observe que f(c) = j (a imagem de c é igual a j) é igual aos limites encontrados nos itens $g \in h$.

Conclusões:

Nos itens 1 e 2, podemos concluir que quando os limites laterais são diferentes, isto caracteriza geometricamente uma descontinuidade do tipo "**salto**" no ponto onde x = b.

$$\lim_{x \to b^{-}} f(x) \neq \lim_{x \to b^{+}} f(x)$$

Nos itens 3, 4 e 5 podemos concluir que quando os limites laterais são iguais, mas é diferente da imagem no ponto de abscissa a, esse fato algébrico revela geometricamente uma descontinuidade do tipo "**furo**" em x = a.

Nos itens 6, 7 e 8 podemos concluir que quando os limites laterais, no ponto estudado, são iguais e igual a imagem do ponto, esse fato algébrico revela geometricamente que a função é **contínua** nesse ponto.

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = f(c)$$

FUNÇÃO CONTÍNUA: Para provar que f é contínua em x₁ precisamos mostrar que três condições são satisfeitas:

- i) $f(x_1)$ existe;
- ii) $\lim_{x \to x} f(x)$ existe;
- iii) $\lim_{x\to x_1} f(x) = f(x_1)$.

Exemplo: Verifique se $f(x) = \begin{cases} -2x & \text{se } x \le 1 \\ 3x - 5 & \text{se } x > 1 \end{cases}$ é contínua em $x_1 = 1$.

5) Dado o gráfico abaixo, determine, se existir:

- a) $\lim_{x \to 7^-} f(x)$
- b) $\lim_{x \to -7^+} f(x)$
- c) $\lim_{x \to -7} f(x)$
- d) f(-7)
- e) $\lim_{x \to 2^{-}} f(x)$
- f) $\lim_{x \to 2^+} f(x)$
- g) $\lim_{x \to -2} f(x)$
- h) f(-2)
- i) $\lim_{x \to 2^-} f(x)$
- $j) \lim_{x \to 2^+} f(x)$
- $k) \lim_{x \to 2} f(x)$

- 1) f(2)
- $m) \lim_{x \to 4^-} f(x)$
- n) $\lim_{x \to A^+} f(x)$
- o) $\lim_{x \to a} f(x)$
- p) f(4)
- q) $\lim_{x \to 6^-} f(x)$
- $r) \lim_{x \to 6^+} f(x)$
- s) $\lim_{x \to 6} f(x)$
- t) $\lim_{x \to 7} f(x)$
- u) f(6)
- v) f(7)

Universidade Estadual do Norte Fluminense Darcy Ribeiro

6) Considere a função $f(x) = x^2$ e seu gráfico dado. Calcule:

b)
$$\lim_{x \to -1} x^2$$

c)
$$\lim_{x \to -2} x^2$$

d)
$$\lim_{x \to 0} x^2$$

e)
$$\lim_{x \to 1} x^2$$

f)
$$\lim_{x \to 2} x^2$$

g)
$$\lim_{x \to 3} x^2$$

h)
$$\lim_{x \to -4} x^2$$

7) Calcule, se existir:

Para calcular o limite de uma função, primeiramente supomos que a função é contínua no ponto estudado, como no exemplo em x=1. Com isso podemos calcular a imagem neste ponto e igualar ao limite, pois em funções contínuas o limite do ponto é igual à imagem do ponto. Sempre que o $\lim_{x\to c} f(x) = f(c)$ dizemos que o limite pode ser calculado por **substituição direta**.

a)
$$\lim_{x \to 1} \frac{x^2 - 3}{1 + x} = f(1) = -1$$

b)
$$\lim_{x \to 1} \frac{x^2 - 1}{3x + 1}$$

c)
$$\lim_{t \to 1} \left(-t^3 + t^2 + 5t - 5 \right)$$

d)
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin^2 x + \cos^2 x}{\sin x}$$

e)
$$\lim_{x \to 5} 1$$

g)
$$\lim_{\alpha \to \frac{\pi}{2}} \cos \alpha$$

h)
$$\lim_{a \to 10} (a+1)^2$$

i)
$$\lim_{x \to 1} \frac{\left(5x^2 - 3x + 2\right)^3}{\sqrt{x + 15}}$$

j)
$$\lim_{x \to 2} \log (x^2 + 6)^2$$

k)
$$\lim_{x \to 64} \left(\sqrt{x} - \sqrt[3]{x} \right)$$

1)
$$\lim_{x \to 1} (x^2 - 3x + 5)$$

m)
$$\lim_{x \to \frac{1}{2}} \frac{1}{x}$$

n)
$$\lim_{x \to -2} \frac{x^2 - x}{1 - x}$$

o)
$$\lim_{x\to 0} 2^x$$

p)
$$\lim_{x \to -3} \frac{\sqrt{x^2 - 5}}{1 - x}$$

q)
$$\lim_{x \to 4} \frac{2x - 7}{x}$$

r)
$$\lim_{x \to -2} \left[\log_3 \left(\frac{x^2 - 3x}{8 - x} \right) \right]$$

s)
$$\lim_{x \to -2} (3^x + 2^x)$$

Para os itens a seguir considere
$$f(x) = \begin{cases} \frac{1}{x}, & \text{se } x \leq -1 \\ 1 - x, & \text{se } -1 < x < 0 \\ e^x, & \text{se } x \geq 0 \end{cases}$$

t)
$$\lim_{x \to -1} f(x)$$

v)
$$\lim_{x \to 0} f(x)$$

t)
$$\lim_{x \to -1} f(x)$$

u) $\lim_{x \to 2} f(x)$

v)
$$\lim_{x \to 0} f(x)$$

x) $\lim_{x \to -\frac{1}{2}} f(x)$

8) Considere as funções reais de variável real, e estude a continuidade no ponto pedido:

a)
$$f(x) = \begin{cases} x^2 - 3x + 2, \text{ se } x < 3 \\ x^2 - 5x + 8, \text{ se } x \ge 3 \end{cases}$$
, para $x = 3$

Solução:

$$f(3) = 3^2 - 5 \cdot 3 + 8 = 2$$

$$\lim_{x \to 3^{-}} f(x) = 2$$

$$\lim_{x \to 3^{+}} f(x) = 2$$

$$\exists \lim_{x \to 3^{+}} f(x) = 2$$

Como $\lim_{x \to 3} f(x) = f(3)$ então a função f é contínua no ponto x = 3.

b)
$$f(x) = \begin{cases} \frac{1}{3}x - 2, \text{ se } x \le 3\\ -2x + 5, \text{ se } x > 3 \end{cases}$$
, para $x = 3$

c)
$$f(x) = \begin{cases} \frac{1}{x}, & \text{se } 0 < x < 2 \\ 1 - \frac{x}{4}, & \text{se } x \ge 2 \end{cases}$$
, para $x = 2$

9) Considere a função $E(x) = \left(1 + \frac{1}{x}\right)^x$ e calcule:

a) <i>E</i> (1)	g) E(50)
b) E(2)	h) E(100)

Observações:

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to +\infty} \left(1 + \frac{\alpha}{x} \right)^x = e^{\alpha}$$

10) Calcule, se existir:

a)
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \frac{(-1)^2 - 1}{-1 + 1} = \frac{0}{0}$$
 (Indeterminação)

Para calcular este limite vamos analisar o gráfico da função $f(x) = \frac{x^2 - 1}{x + 1}$.

Manipulando algebricamente a equação da função f obtemos uma nova lei:

$$y = \frac{x^2 - 1}{x + 1} = \frac{(x - 1) \cdot (x + 1)}{x + 1} = x - 1$$
, desde que $x \neq -1$

Podemos escrever a função f da seguinte maneira: como o numerador é a diferença dos quadrados de dois números, pode ser escrito como o produto da soma pela diferença desses números. Simplificando o numerador pelo denominador chegamos a h(x) = x - 1. Lembre-se que -1, não está definido para ambas as funções, ou seja, $D(f) = D(h) = \mathbb{R} - \{-1\}$.

Observe que o gráfico das funções f e h.

$$f(x) = \frac{x^2 - 1}{x + 1}$$

$$h(x) = x - 1$$

Podemos observar que o gráfico da função f(x) é idêntico ao gráfico de h(x), com exceção do ponto (-1, -2), que não está definido em f(x), pois x = -1 é o valor que anula o denominador da função, logo não está definido no domínio da função.

O limite não é o estudo no ponto, e sim, o estudo da vizinhança de um ponto. Desta forma utilizamos esta "nova" lei para calcular o limite da função f(x) quando x tende a -1, pois os valores de f e h possuem o mesmo comportamento na vizinhança de x = -1. Compare o limite das duas funções, com a ajuda dos gráficos.

$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2$$

Lembre-se que quando calculamos o limite de uma função e encontramos o sinal de indeterminação $\frac{0}{0}$, podemos, em muitos casos, calcular este limite pelo limite de outra função cujo gráfico é igual (possui a mesma vizinhança do ponto estudado) ao gráfico da função desejada.

b)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

d)
$$\lim_{x \to 0} \frac{|x|}{x}$$

f)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4}$$

h)
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$$

$$j) \lim_{x \to 0} \frac{x^2 + 5x}{x}$$

1)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

n)
$$\lim_{x \to 2} \frac{|x - 2|}{x - 2}$$

p)
$$\lim_{t \to 1} \frac{t^3 + t^2 - 5t + 3}{t^2 - 3t + 2}$$

r)
$$\lim_{r \to 0} \frac{r}{3r^2 - 6r}$$

t)
$$\lim_{x \to 4} \frac{4 - x}{x^2 - 2x - 8}$$

c)
$$\lim_{x \to 0} \frac{x^2 + 3x + x}{x^2 + 2x}$$

e)
$$\lim_{x \to 0} \frac{x^2 - x}{x}$$

g)
$$\lim_{x \to 1} \frac{x-1}{x^2-1}$$

i)
$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$$

k)
$$\lim_{x \to 5} \frac{x^2 - 7x + 10}{x - 5}$$

$$m) \lim_{x \to \pi} \frac{\cos x}{x}$$

o)
$$\lim_{x \to 0} \log (x^2 - 4x + 1)$$

$$q) \lim_{x \to 3} \sqrt{2^x + 1}$$

s)
$$\lim_{s \to 2} \frac{s^2 - 4s + 4}{s^2 + s - 6}$$

u)
$$\lim_{x \to 0} \frac{x^3 + 3x^2 + x}{x^2 + 2x}$$

v)
$$\lim_{x \to -3} \frac{\sqrt{x^2 - 5}}{1 - x}$$

y)
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 3x + 2}$$

a.1)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

c.1)
$$\lim_{x \to 1} \frac{x^2 - 3x + 4}{1 + x + x^2}$$

e.1)
$$\lim_{x \to 0} \frac{x^2 + 4x}{x + 5}$$

g.1)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 + 2x - 1}{x - 1}$$

i.1)
$$\lim_{x \to 2} \frac{3}{(x-2)^2}$$

x)
$$\lim_{y \to -2} \frac{y^3 + 8}{y^2 + 7y + 10}$$

z)
$$\lim_{x \to 2} \frac{2x^2 - 5x + 2}{x - 2}$$

b.1)
$$\lim_{x \to 0} \frac{\tan x}{x}$$

d.1)
$$\lim_{x \to \frac{3}{2}} \frac{x-1}{x}$$

f.1)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 3x + 2}$$

h.1)
$$\lim_{x \to 1} 7$$

Solução:

$$\lim_{x \to 2} \frac{3}{(x-2)^2} = \frac{3}{0}$$
 (Impossível)

$$x = 1.9 \rightarrow \frac{3}{(x-2)^2} = 300 (+)$$

Teste:
$$(x-2)$$

 $x = 2,1 \rightarrow \frac{3}{(x-2)^2} = 300 (+)$

então
$$\lim_{x\to 2} \frac{3}{(x-2)^2} = +\infty$$
.

j.1)
$$\lim_{x \to 2} - \frac{3}{(x-2)^2}$$

1.1)
$$\lim_{x \to 0} \frac{1}{x}$$

n.1)
$$\lim_{x \to 4} \frac{1}{|x-4|}$$

p.1)
$$\lim_{x \to 2^{+}} \frac{x+2}{2-x}$$

r.1)
$$\lim_{x \to 2^+} (x^2 + 3)$$

t.1)
$$\lim_{x \to 0^{-}} \frac{1}{|x|}$$

k.1)
$$\lim_{x \to 1} \frac{2x}{x-1}$$

m.1)
$$\lim_{x \to 2} \frac{1}{x-2}$$

o.1)
$$\lim_{x \to 0} -\frac{1}{x^2}$$

q.1)
$$\lim_{x \to 0^{-}} \frac{3-x}{x^2}$$

s.1)
$$\lim_{x \to 4^{-}} \frac{x+1}{x+5}$$

LIMITES INFINITOS E ASSÍNTOTAS VERTICAIS

Observe o gráfico cartesiano da função $f(x) = \frac{1}{x}$ e responda:

- $i) \lim_{x \to 0^{-}} f(x) =$
- $ii) \lim_{x \to 0^+} f(x) =$
- iii) $\lim_{x \to 0} f(x) =$
- iv) f(0) =

Observe o gráfico cartesiano da função $f(x) = \frac{1}{x^2}$ e responda:

- $i) \lim_{x \to 0^{-}} f(x) =$
- $ii) \lim_{x \to 0^+} f(x) =$
- iii) $\lim_{x \to 0} f(x) =$
- iv) f(0) =

Observe o gráfico cartesiano da função $f(x) = -\frac{1}{x}$ e responda:

- $i) \lim_{x \to 0^{-}} f(x) =$
- $ii) \lim_{x \to 0^+} f(x) =$
- iii) $\lim_{x \to 0} f(x) =$
- iv) f(0) =

Observe o gráfico cartesiano da função $f(x) = -\frac{1}{x^2}$ e responda:

- $i) \lim_{x \to 0^{-}} f(x) =$
- $ii) \lim_{x \to 0^+} f(x) =$
- iii) $\lim_{x \to 0} f(x) =$
- iv) f(0) =

Se o valor de f(x) cresce indefinidamente quando x "tende" a a, pela esquerda ou pela direita, então podemos escrever

$$\lim_{x \to a^{-}} f(x) = +\infty \qquad \text{ou} \qquad \lim_{x \to a^{+}} f(x) = +\infty$$

conforme for apropriado, e dizemos que f(x) cresce sem limitação quando x "tende" a a pela esquerda $(x \to a^-)$ ou x "tende" a a pela direita $(x \to a^+)$.

De forma análoga, se o valor de f(x) decresce indefinidamente quando x "tende" a a, pela esquerda ou pela direita, então escrevemos

$$\lim_{x \to a^{-}} f(x) = -\infty \qquad \text{ou} \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

conforme for apropriado, e dizemos que f(x) decresce sem limitação quando x "tende" a a pela esquerda $(x \to a^-)$ ou x "tende" a a pela direita $(x \to a^+)$.

Da mesma forma, se ambos os limites laterais forem $+\infty$, então escrevemos

$$\lim_{x \to a} f(x) = +\infty$$

e se ambos os limites laterais são iguais a -∞, então escrevemos

$$\lim_{x \to a} f(x) = -\infty$$

Conclusão:

Considere o $\lim_{x\to a} \frac{h(x)}{g(x)}$. Se o limite do denominador for zero, porém não o do numerador, então há três possibilidades para o limite da função racional quando $x\to a$:

- i) O limite poderá ser $+\infty$;
- ii) O limite poderá ser -∞;
- iii) O limite poderá ser $+\infty$ de um lado e $-\infty$ do outro.

Assíntota Vertical

Uma reta x=a é chamada de **assíntota vertical** do gráfico de uma função f se f(x) "tende" a - ∞ ou + ∞ , quando x "tende" a a pela esquerda ou pela direita.

×

Todas as funções, cujos gráficos estão anteriormente, têm uma assíntota vertical em x = a, a qual está indicada pela reta tracejada.

11) Calcule os limites, se existirem:

Solução:

$$f(2) = \frac{2^2 + 4}{2 - 2} = \frac{8}{0}$$
 (Impossível)

$$\lim_{x \to 2^{-}} \frac{x^2 + 4}{x - 2} = -\infty$$

x	f(x)
1,9	- 76,1
1,99	- 796,01
1,999	- 7996,001
1,9999	- 79996,0001

Podemos concluir que quando x "tende" a 2 pela esquerda a função f decresce sem limitação, ou seja, "tende" a - ∞ .

Para calcular o limite desta função, devemos calcular os limites laterais. Comparamos seus valores. Se forem iguais, existe o limite no ponto e este tem o mesmo valor dos limites laterais. Se forem diferentes, não existe o limite no ponto.

$$\lim_{x \to 2^{+}} \frac{x^{2} + 4}{x - 2} = +\infty$$

x	f(x)
2,1	84,1
2,01	804,01
2,001	8004,001
2,0001	80004,0001

Podemos concluir que quando x "tende" a 2 pela direita a função f cresce sem limitação, ou seja, "tende" a $+\infty$

Observação:

Acrescente mais valores na tabela, se julgar necessário, para ajudar a chegar às conclusões.

Se
$$\lim_{x \to 2^{-}} \frac{x^2 + 4}{x - 2} \neq \lim_{x \to 2^{+}} \frac{x^2 + 4}{x - 2}$$
 então não existe o limite.

$$\exists \lim_{x \to 2} \frac{x^2 + 4}{x - 2}$$

b)
$$\lim_{x \to 1} \frac{x - 2}{x^2 - 2x + 1} =$$

Solução:

$$f(1) = \frac{1-2}{1^2-2\cdot 1+1} = \frac{-1}{0}$$
 (Impossível)

$$\lim_{x \to 1^{-}} \frac{x - 2}{x^2 - 2x + 1} = -\infty$$

x	f(x)
0,9	- 110
0,99	- 10100
0,999	- 1001000
0,9999	- 100010000

Podemos concluir que quando x "tende" a 1 pela esquerda a função f decresce sem limitação, ou seja, "tende" a $-\infty$.

Para calcular o limite desta função, devemos calcular os limites laterais. Comparamos seus valores. Se forem iguais, existe o limite no ponto e este tem o mesmo valor dos limites laterais. Se forem diferentes, não existe o limite no ponto.

$$\lim_{x \to 1^{+}} \frac{x - 2}{x^{2} - 2x + 1} = -\infty$$

х	f(x)
1,1	- 90
1,01	- 9900
1,001	- 999000
1,0001	- 99990000

Podemos concluir que quando x "tende" a 1 pela direita a função f decresce sem limitação, ou seja, "tende" a $-\infty$.

Se
$$\lim_{x \to 1^-} \frac{x-2}{x^2-2x+1} = \lim_{x \to 1^+} \frac{x-2}{x^2-2x+1}$$
 então existe o limite.

$$\exists \lim_{x \to 1} \frac{x-2}{x^2 - 2x + 1} = -\infty$$

c)
$$\lim_{x \to -2} \frac{x^3 - 1}{x^2 - 4}$$

d)
$$\lim_{x \to -1} \frac{x}{(x+1)^2}$$

e)
$$\lim_{x \to 1} \frac{x}{1-x}$$

f)
$$\lim_{x \to 2} \frac{3}{x - 2}$$

12) Verifique se o gráfico das funções reais abaixo possui assíntota vertical. Em caso afirmativo estabeleça sua equação. Verifique suas respostas utilizando um *software* que possua recursos gráficos.

$$a) f(x) = \frac{x}{x^2 - 4}$$

b)
$$f(x) = \frac{x^4 - 1}{x^2 + 1}$$

c)
$$f(x) = \frac{x^2 + 3x + 2}{x + 2}$$

d)
$$f(x) = \frac{x^3 - 1}{(x - 4)^4}$$

e)
$$f(y) = \frac{y-3}{9-y^2}$$

$$f) f(x) = \log(x - 3)$$

$$g) f(x) = \frac{1}{\sqrt{x}}$$

$$h) f(x) = \frac{4x}{\sqrt[3]{x}}$$

$$i) f(x) = \frac{x+2}{\sqrt{x-4}}$$

$$j) f(x) = 5\log_2(3x + 2)$$

13) Deposita-se a quantia de \$1000 em uma conta, a juro composto trimestralmente à taxa anual r (em forma decimal). O saldo A após 10 anos é

$$A = 1000 \left(1 + \frac{r}{4} \right)^{40}.$$

Existe o limite de *A* quando a taxa de juros tende para 6%? Em caso afirmativo, qual é o limite?

LIMITES INFINITOS E ASSÍNTOTAS HORIZONTAIS

Observe o gráfico da função $f(x) = \frac{1}{x}$ e responda:

Para quanto "tende" f(x) à medida que x cresce sem limitação?

Simbolicamente, escrevemos

$$\lim_{x \to +\infty} f(x) = \underline{\qquad}.$$

Para quanto "tende" f(x) à medida que x decresce sem limitação?

Simbolicamente, escrevemos $\lim_{x \to -\infty} f(x) = \underline{\qquad}.$

Observe a tabela abaixo:

	x decrescendo sem limitação								x cresce	endo sem	limitação		
х	10000 -1000 -100 -10 -1							1	10	100	1.000	10.000	
f(x)		-0,0001	-0,001	-0,01	-0,1	-1		1	0,1	0,01	0,001	0,0001	•••
f(x) tendendo a zero								f	f(x) tende	ndo a zero)		

Os valores que completam a tabela comprovam o que pode ser observado no gráfico acima.

Observe o gráfico da função $g(x) = \frac{2x+1}{x}$ e responda:

Para quanto "tende" g(x) à medida que x cresce sem limitação?

_____•

Simbolicamente, escrevemos

$$\lim_{x \to +\infty} g(x) = \underline{\qquad}.$$

Para quanto "tende" g(x) à $\overline{}$ medida que x decresce sem limitação?

Simbolicamente, escrevemos

$$\lim_{x \to -\infty} g(x) = \underline{\qquad}.$$

Observe a tabela abaixo:

X decrescendo sem limitação								د -	cresce	ndo sem l	limitação		
х		-10000	-1000	-100	-10	-1		1	10	100	1.000	10.000	
g(x)		1,9999	1,999	1,99	1,9	1		3	2,1	2,01	2,001	2,0001	
	g(x) tendendo a dois								8	g(x) tende	ndo a dois	5	

Os valores que completam a tabela comprovam o que pode ser observado no gráfico acima.

Observe o gráfico da função $h(x) = x^3$.

Quando x cresce sem limitação h(x) também cresce sem limitação.

Simbolicamente, escrevemos

$$\lim_{x \to +\infty} h(x) = +\infty.$$

Quando x decresce sem limitação h(x) também decresce sem limitação.

Simbolicamente, escrevemos

$$\lim_{x \to +\infty} h(x) = -\infty.$$

Como se pode observar a curva h não possui assíntota horizontal.

	x decrescendo sem limitação)	cresce	ndo sem 1	imitação		_
x		-10000	-1000	-100	-10	-1		1	10	100	1.000	10.000	
h(x)		-1012	-10º	-106	-10 ³	1		1	10³	10 ⁶	10º	1012	
	h(x) decrescendo sem limitação								h(x)	crescend	o sem limi	itação	

Observe os exemplos a seguir:

a)
$$\lim_{x \to +\infty} f(x) = 3$$
 e $\lim_{x \to -\infty} f(x) = 3$

b) $\lim_{x \to +\infty} x^5 = +\infty$ e $\lim_{x \to -\infty} x^5 = -\infty$

limitação a função também cresce sem limitação e quando *x* decresce sem limitação a função também decresce sem limitação.

c) $\lim_{x \to +\infty} x^6 = +\infty$ e $\lim_{x \to -\infty} x^6 = +\infty$

Ao lado temos o gráfico da função polinomial $f(x) = x^6$, como podemos observar, quando x cresce sem limitação a função também cresce sem limitação e quando x decresce sem limitação a função também cresce sem limitação.

Assíntota horizontal

Uma reta y = L é chamada de **assíntota horizontal** do gráfico de uma função f se $f(x) \to L$, quando $x \to -\infty$ ou $x \to +\infty$.

Quando $\lim_{x \to +\infty} f(x) = L_1$ e $\lim_{x \to -\infty} f(x) = L_2$, as retas $y = L_1$ e $y = L_2$ são assíntotas horizontais do gráfico de f. Algumas funções têm duas assíntotas horizontais: uma à direita e outra à esquerda, como por exemplo:

Vimos nos exercícios 9 e 10 que
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e \ e \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$
.

Mostraremos a seguir que $\lim_{x \to +\infty} \frac{2x}{\sqrt{x^2 + 1}} = 2$ e que $\lim_{x \to -\infty} \frac{2x}{\sqrt{x^2 + 1}} = -2$. Portanto

o gráfico da função $f(x) = \frac{2x}{\sqrt{x^2 + 1}}$ possui duas assíntotas horizontais.

Demonstração:

$$\lim_{x \to +\infty} \frac{2x}{\sqrt{x^2 + 1}} = \lim_{x \to +\infty} \frac{\frac{2x}{|x|}}{\frac{\sqrt{x^2 + 1}}{|x|}} = \lim_{x \to +\infty} \frac{\frac{2x}{|x|}}{\sqrt{\frac{x^2 + 1}{x^2}}} = \lim_{x \to +\infty} \frac{2}{\sqrt{1 + \frac{1}{x^2}}} = 2$$

$$\lim_{x \to -\infty} \frac{2x}{\sqrt{x^2 + 1}} = \lim_{x \to -\infty} \frac{\frac{2x}{|x|}}{\frac{\sqrt{x^2 + 1}}{|x|}} = \lim_{x \to -\infty} \frac{\frac{2x}{|x|}}{\sqrt{\frac{x^2 + 1}{x^2}}} = \lim_{x \to -\infty} \frac{-2}{\sqrt{1 + \frac{1}{x^2}}} = -2$$

Note que o gráfico de uma função pode cortar suas assíntotas horizontais.

Profa Me. Myjane uos santos baneto

Exemplos:

1) Ache o limite: $\lim_{x \to +\infty} \left(5 - \frac{2}{x^2} \right)$.

Pode-se verificar este limite traçando o gráfico de $f(x) = 5 - \frac{2}{x^2}$:

Note que o gráfico tem y=5 como assíntota horizontal à direita. Calculando o limite de f(x) quando $x\to -\infty$, vê-se que esta reta também é assíntota horizontal à esquerda.

2) Ache as assíntotas horizontais dos gráficos das funções:

a)
$$y = \frac{-2x+3}{3x^2+1}$$

b)
$$y = \frac{-2x^2 + 3}{3x^2 + 1}$$

c)
$$y = \frac{-2x^3 + 3}{3x^2 + 1}$$

3) A população y de uma cultura de bactérias segue o modelo da função logística

$$y = \frac{925}{1 + e^{-0.3 t}}$$

onde t é o tempo em dias. A população tem um limite quando t cresce ilimitadamente?

4) A aprendizagem P(t) ao longo de t anos de trabalho de um operário é dada por P(t) = 60 - 20. e^{-0,2t}.

O que ocorre com a aprendizagem depois de vários anos de trabalho?

EXERCÍCIOS

14) Ache as assíntotas horizontais e verticais:

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$
 b) $f(x) = \frac{4}{(x-2)^3}$ c) $f(x) = \frac{x^2 - 2}{x^2 - x - 2}$ d) $f(x) = \frac{2 + x}{1 - x}$

d)
$$f(x) = \frac{2+x}{1-x}$$

- e) $f(x) = \frac{x^3}{x^2 1}$ f) $f(x) = \frac{-4x}{x^2 + 4}$ g) $f(x) = \frac{x^2 1}{2x^2 8}$ h) $f(x) = \frac{x^2 + 1}{x^3 8}$

Universidade Estadual do Norte Fluminense Darcy Ribeiro

15) Associe cada função ao seu gráfico. Recorra às assíntotas horizontais como auxílio.

i)
$$f(x) = \frac{3x^2}{x^2 + 2}$$

$$ii) f(x) = \frac{2x}{\sqrt{x^2 + 2}}$$

iii)
$$f(x) = \frac{x}{x^2 + 2}$$

iv)
$$f(x) = 2 + \frac{x^2}{x^4 + 1}$$

$$V) f(x) = 5 - \frac{1}{x^2 + 1}$$

vi)
$$f(x) = \frac{2x^2 - 3x + 5}{x^2 + 1}$$

16) Determine, se existirem, as equações das assíntotas horizontais dos gráficos das funções reais abaixo: (Verifique suas respostas utilizando um *software* que possua recursos gráficos.)

$$a)f(x) = \frac{2x - 3}{x - 2}$$

$$b) f(x) = \sqrt{x^2 + 4}$$

c)
$$f(x) = \frac{3x^2 + 6x - 9}{x^2 + x - 6}$$

d)
$$f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$$

e)
$$f(x) = \frac{x^2}{1 + x + 2x^2}$$

17) Determine os limites, se existir:

a)
$$\lim_{x \to +\infty} \frac{4x - 3}{2x + 5}$$

Solução:

$$\lim_{x \to +\infty} \frac{4x - 3}{2x + 5} = \frac{\lim_{x \to +\infty} (4x - 3) \div x}{\lim_{x \to +\infty} (2x + 5) \div x} = \frac{\lim_{x \to +\infty} 4 - \lim_{x \to +\infty} \frac{3}{x}}{\lim_{x \to +\infty} 2 + \lim_{x \to +\infty} \frac{5}{x}} = \frac{4 - 3 \cdot \lim_{x \to +\infty} \frac{1}{x}}{2 + 5 \cdot \lim_{x \to +\infty} \frac{1}{x}} = \frac{4}{2} = 2$$

b)
$$\lim_{x \to +\infty} \frac{4x + 2x^2}{-7 + 3x^3}$$

d)
$$\lim_{x \to -\infty} (x^2 + 5)$$

f)
$$\lim_{x \to +\infty} (3-x)$$

h)
$$\lim_{x \to +\infty} (x^3 - x^2 - x + 1)$$

j)
$$\lim_{x \to +\infty} \frac{x+1}{x^2+1}$$

1)
$$\lim_{x \to +\infty} \frac{1 - x + x^2 + 5x^3}{4 + x^3}$$

n)
$$\lim_{x \to +\infty} \left(10 + e^{-x}\right)$$

p)
$$\lim_{x \to +\infty} \frac{2x^3 - 5x^2 + 3}{x^2 + 4x - 1}$$

r)
$$\lim_{x \to 0} f(x)$$
 onde $f(x) = \begin{cases} x^2, & x \le 0 \\ 1 + x^2, & x > 0 \end{cases}$

t)
$$\lim_{x \to 0} e^x$$

c)
$$\lim_{x \to -\infty} \frac{2x^2 - x + 5}{4x^3 - 1}$$

e)
$$\lim_{x \to +\infty} (x^3 + 1365)$$

g)
$$\lim_{x \to +\infty} (x^2 - x)$$

i)
$$\lim_{x \to +\infty} \left(-x^4 + 7x^3 - x^2 + x + 1 \right)$$

k)
$$\lim_{x \to -\infty} \frac{x^2 - 5x + 8}{x + 3}$$

m)
$$\lim_{x \to -\infty} \frac{1 - 4x^3}{5x^3 - 8}$$

o)
$$\lim_{x \to +\infty} \left[\ln (x+1) \right]$$

q)
$$\lim_{x \to 2} f(x)$$
 onde $f(x) = \begin{cases} x^2 - 1, & x \le 2 \\ x + 1, & x > 2 \end{cases}$

s)
$$\lim_{x \to 1} f(x)$$
 onde $f(x) = \begin{cases} 3x + 1, & x \neq 1 \\ 0, & x = 1 \end{cases}$

u)
$$\lim_{x \to 0} \left[\ln \left(1 + x - x^2 \right) \right]$$

Propriedades:

Se existem $L_1 = \lim_{x \to a} f(x)$ e $L_2 = \lim_{x \to a} g(x)$, então,

(1)
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L_1 + L_2$$

O limite da soma é a soma dos limites.

$$(2)\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x) = L_1 - L_2$$

O limite da diferença é a diferença dos limites.

(3)
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L_1 \cdot L_2$$

O limite do produto é o produto dos limites.

$$(4) \lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L_1}{L_2}, \text{ se } L_2 \neq 0$$

O limite do quociente é o quociente dos limites desde que o limite do denominador não seja zero.

$$(5)\lim_{x\to a} (f(x))^n = \left(\lim_{x\to a} f(x)\right)^n = (L_1)^n$$

O limite da potência é a potência do limite.

(6)
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)} = \sqrt[n]{L_1}$$
, desde que $L_1 \ge 0$ se n for par.

O limite da raiz n-ésima é a raiz n-ésima do limite.

(7)
$$\lim_{x \to a} b^{(f(x))} = b^{\lim_{x \to a} f(x)} = b^{L_1}, \ 0 < b \neq 1.$$

O limite da exponencial é a exponencial do limite.

(8)
$$\lim_{x \to a} [\log_b f(x)] = \log_b [\lim_{x \to a} f(x)] = \log_b L_1$$
, desde que $L_1 \ge 0$ e $0 < b \ne 1$

O limite do logaritmo é o logaritmo do limite.