Matrix-chain Multiplication

- Suppose we have a sequence or chain A₁, A₂, ..., A_n of n matrices to be multiplied
 - That is, we want to compute the product $A_1A_2...A_n$
- There are many possible ways (parenthesizations) to compute the product

Matrix-chain Multiplication

...contd

- Example: consider the chain A₁, A₂, A₃,
 A₄ of 4 matrices
 - Let us compute the product A₁A₂A₃A₄
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

Matrix-chain Multiplication ...contd

- To compute the number of scalar multiplications necessary, we must know:
 - Algorithm to multiply two matrices
 - Matrix dimensions

 Can you write the algorithm to multiply two matrices?

Algorithm to Multiply 2 Matrices

Input: Matrices $A_{p\times q}$ and $B_{q\times r}$ (with dimensions $p\times q$ and $q\times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

```
MATRIX-MULTIPLY(A_{p\times q}, B_{q\times r})
```

```
1. for i \leftarrow 1 to p
```

2. **for** $j \leftarrow 1$ **to** r

 $C[i,j] \leftarrow 0$

4. **for** $k \leftarrow 1$ **to** q

5. $C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$

6. return C

Scalar multiplication in line 5 dominates time to compute CNumber of scalar multiplications = pqr

Matrix-chain Multiplication

...contd

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize
 - $((AB)C) = D_{10\times5} \cdot C_{5\times50}$
 - AB ⇒ 10·100·5=5,000 scalar multiplications \ Total:
 - DC \Rightarrow 10·5·50 =2,500 scalar multiplications \int 7,500
 - $(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$
 - BC \Rightarrow 100·5·50=25,000 scalar multiplications
 - AE \Rightarrow 10·100·50 =50,000 scalar multiplications

Total: 75,000

Matrix-chain Multiplication

...contd

- Matrix-chain multiplication problem
 - n matrices A₁, A₂, ..., A_n with size

$$p_0 \times p_1, p_1 \times p_2, p_2 \times p_3, ..., p_{n-1} \times p_n$$

- To determine the <u>multiplication order</u> such that of scalar multiplications is minimized.
- To compute A_i × A_{i+1}, we need p_{i-1}p_ip_{i+1} scalar multiplications

- The structure of an optimal solution
 - Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} ... A_j$
 - An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer k where $1 \le k < n$
 - First compute matrices $A_{1...k}$ and $A_{k+1...n}$; then multiply them to get the final matrix $A_{1...n}$

...contd

- **Key observation**: parenthesizations of the subchains $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$ must also be optimal if the parenthesization of the chain $A_1A_2...A_n$ is optimal (why?)

 That is, the optimal solution to the problem contains within it the optimal solution to subproblems

- Recursive definition of the value of an optimal solution
 - Let m[i, j] be the minimum number of scalar multiplications necessary to compute A_{i..i}
 - Minimum cost to compute $A_{1...n}$ is m[1, n]
 - Suppose the optimal parenthesization of $A_{i...j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$

...contd

- $A_{i..j} = (A_i A_{i+1} ... A_k) \cdot (A_{k+1} A_{k+2} ... A_j) = A_{i..k} \cdot A_{k+1..j}$
- Cost of computing $A_{i..j}$ = cost of computing $A_{i..k}$ + cost of computing $A_{k+1..j}$ + cost of multiplying $A_{i..k}$ and $A_{k+1..j}$
- Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_kp_j$
- $m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_k p_j$
for $i \le k < j$
- -m[i, i] = 0 for i=1,2,...,n

...contd

- But... optimal parenthesization occurs at one value of k among all possible i ≤ k < j
- Check all these and select the best one

```
m[i, j] = \begin{cases} 0 & \text{if } i=j \\ \min\{m[i, k] + m[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j & \text{otherwise} \end{cases}
```

- To keep track of how to construct an optimal solution, we use a table s
- $s[i, j] = value of k at which <math>A_i A_{i+1} ... A_j$ is split for optimal parenthesization
- Algorithm: next slide
 - First computes costs for chains of length l=1
 - Then for chains of length l=2,3, ... and so on
 - Computes the optimal cost bottom-up

Algorithm to Compute Optimal Cost

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table *m* and split table *s*

MATRIX-CHAIN-ORDER(p[], n)

```
for i \leftarrow 1 to n
                                                         Takes O(n^3) time
                                                         Requires O(n^2) space
    m[i, i] \leftarrow 0
for l \leftarrow 2 to n
    for i \leftarrow 1 to n-l+1
                j \leftarrow i+l-1
                m[i,j] \leftarrow \infty
                for k \leftarrow i to j-1
                            q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
                            if q < m[i, j]
                                         m[i,j] \leftarrow q
                                         s[i, j] \leftarrow k
```

return *m* and *s*

Constructing Optimal Solution

- Our algorithm computes the minimumcost table m and the split table s
- The optimal solution can be constructed from the split table s
 - Each entry s[i, j]=k shows where to split the product $A_i A_{i+1} \dots A_j$ for the minimum cost

Example: A1-5×4 A=4×6 A3-6×2 A4-2×7

Here dimensions are $p_0=5, p_1=4, p_2=6, p_3=2, p_4=7$

For i = j M[i][j]=0 M[1][1]=0,M[2][2]=0,M[3][3]=0,M[4][4]=0

For i > j we does not calculate cost so M[i][j] will be blank for I > j

```
M[1][2], here i < j for i=1,j=2</p>
k=1 because i \le k \le j-1
Use M[i][j] = min(M[i][k] + M[k+1][j] + P_{[i-1]} * p_{[k]} * p_{[j]})
For k=1
M[1][2]=M[1][1]+M[2][2]+p_0*p_1*p_2
         = 0+0+5*4*6
         =120
Put value of minimum value of M[1][2] in table M[i][j]
and put value of k in table S[i][j].
```

	1	2	3	4
1	0			
2	-	0		
3			0	
4	-1	-		0

i][[j]=				
		1	2	3	4
	1	0			
	2	-	0		
	3	-1		0	
	4			-	0

	M[2][2] harri				-	U
1.	M[2][3], here i < j for i=1,j=2	٤	= 5	2	5 =	3
K=	2 herauco : - 1					The same of the sa

Use M[i][j] =min(M[i][k]+M[k+1][j]+P[i-1]*
$$p_{[k]}*p_{[j]}$$
)
For k=2

$$M[2][3]=M[2][2]+M[3][3]+p_1*p_2*p_3$$
=: 0+0+4*6*2
=48

Put value of minimum value of M[2][3] in table M[i][j] and put value of k in table S[i][j]

M[i]	[j]=				
	1	2	3	4	7
1	0	120			1
2	-	0	48		l
3	-	10 - US	0		l
4				0	

i di			ונו			
S	[i][j]=				
		1	2	3	4	1
	1	0	1			
	2		0	2		
ı	3			0		ı
	4	-		-	0	
	AND DESCRIPTION OF					٠.

M[1][3],	here i	< j fo	r i=1, j=3

$$k=1$$
 or 2 because $i \le k \le j-1$

Use
$$M[i][j] = min(M[i][k] + M[k+1][j] + P_{[i-1]} * p_{[k]} * p_{[j]})$$

For k=1

$$M[1][3]=M[1][1]+M[2][3]+p_0*p_1*p_3$$

= 0+48+5*4*2

$$M[1][3]=M[1][2]+M[3][3]+p_0*p_2*p_3$$

=120+0+5*6*2
=180

Put value of minimum value of M[1][3] in table

M[i][j]

And put value of k in table S[i][j]

	100000
Bernard S	IVI
and the same	The state of the s

	1	2	3	4
1	0	120		
2	-	0		
3		-12	0	
4				0

S[i][j]=

101				
	1	2	3	4
1	0	1		
2	7-1	0		
3	TEST.	-	0	
4		1	1-1	0

M[3][4], here i < j for i=3,j=4

k=3 because $i \le k \le j-1$

Use $M[i][j] = min(M[i][k]+M[k+1][j]+P_{[i-1]}*p_{[k]}*p_{[j]})$

For k=3

 $M[3][4]=M[3][3]+M[4][4]+p_2*p_3*p_4$

= 0+0+6*2*7

=84

Put value of minimum value of M[3][4] in table M[i][j] and put value of k in table S[i][i]

M[i][j]=

	-			
	1	2	3	4
1	0	120		
2		0	48	
3			0	84
4	-		-	0

S[i][j]=

	1	2	3	4
1	0	1		
2	-	0	2	
3	-	-	0	3
4			F	0

M[2][4], here i < j for i=2,j=4

 $k=2 \text{ or } 3 \text{ because } i \leq k \leq j-1$

Use $M[i][j] = min(M[i][k]+M[k+1][j]+P_{[i-1]}*p_{[k]}*p_{[j]})$

For k=2

 $M[2][4]=M[2][2]+M[3][4]+p_1*p_2*p_4$

= 0+84+4*6*7

=252

For k=3

$$M[2][4]=M[2][3]+M[4][4]+p_1*p_3*p_4$$

= 48+0+4*2*7

=104

Put value of minimum value of M[1][3] in table M[i][j]

And put value of k in table S[i][j]

11-16

		1001=				T	S[i][i]=					M[i]	[1]-										
		1	2	3	4			1	2	3	4		[I]	1				S[i](j)=	-				1
	/1	10	120	88			1	0	1	1			1	0	120	3	4			1	2	3	4	
				00			2		0	2			2	-	0	88 48	101		1	0	1	1		
	2	-	0	48			3						3		-	0	104		2		0	2	3	
										0	3		4	-		-	0		3			0	3	
	3	-	- 1	0	84		4				0								4				0	
	4				0																			
					0																			
-	• M	11114], here	ileif	or i=1	-	A					4.		4.2										
			or 3 be			-							M[i][and the same of				S[i	10)-					
			i] =min					1+P	*	Don't	nea)	31		1	2	3	4			1	2	3	4	
	Fork						-213			b-TeS	PULL		1	0	120	88	158		1	0	1	1	3	
1	M[1]	[4]=N	A[1][1]	+M[2]][4]+p	0*1	p1*p	4				Ш	2		0	48	104		2		0	2	3	
			0+104+									11	3			0	84		3	-	-	0	3	
		=2	44									1	-				0		4	-		-	0	
F	or k=	=2									1	1				44					_	_		1
V	1[1][4]=M	1[1][2]+	-M[3]	[4]+pc	*p	2*p4					×	4	× - 2 7	x6 =			n	+ 1	9 2	-	3	A	, ,
		= 1	20+84	+5*6*	7						(3			×4 =			9.79		1XÇ	2 -	×Z		
		=41	14								(D	5×	7×		158		1			AzX	۵.		
F	or k=	3										1											Ø	1
M	1[1][4	1]=M	[1][3]+	M[4][4]+po	*p:	3*p4												1		7			1
		= 88	8+0+5*	2*7																1		+A	1	
		=15																	A	111	7	KA3	< 1	
		lue o	f minir	mum	value	of	M	1][3] in	ta	ble									5 K	1/4		1	
	(1)(1)																				1		As .	A
An	d put	t valu	ue of k	in tab	ele S[i]	101															AI	P3	13	1

Example

 Show how to multiply this matrix chain optimally

- Solution on the board
 - Minimum cost 15,125
 - Optimal parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$

Matrix	Dimension
A ₁	30×35
A_2	35×15
A_3	15×5
A ₄	5×10
A ₅	10×20
A ₆	20×25

- **Example:** 1 The initial set of dimensions are 5, 4, 6, 2, 7 meaning that we are multiplying A1 (5×4) times A2 (4×6) times A3 (6×2) times A4 (2×7) .
- Here P0=5, P1=4, P2=6, P3=2, P4=7.
- For all i, m[i,i] = 0, m[1,1] = 0, m[2,2] = 0, m[3,3] = 0, m[4,4] = 0.
- Now we will fill up the table horizontally from left to right, assuming $i \le k \le j-1$
- let i=1, j=2, k=1 \Rightarrow m[1,2] = m[i, k] + m[k + 1, j] + pi-1pkpj = m[1,1] + m[2,2] +P0P1P2 = 0+0+5*4*6 m[1,2]=120
- let i=2, j=3, k=2 \rightarrow m[2,3] = m[2,2] + m[3,3] +P1P2P3 = 0+0+4*6*2 m[2,3]=48

Same as for m[3,4]=84Let i=1, j=3, k=1, or k=2 $m[1,3] = min\{(m[1,1]+m[2,3]+P0P1P3), (m[1,2]+m[3,3]+P0P2P3)\}$ $= min\{88,180\}$ m[1,3] = 88Same as... m[2,4] = min(252,104)=104

Answer: The optimal sequence is ((A1(A2A3))A4).

m[1,4] = min(244,414,158)=158

Matrix Chain Multiplication

- n matrices $A_1, A_2, ..., A_n$ with size $p_0 \times p_1, p_1 \times p_2, p_2 \times p_3, ..., p_{n-1} \times p_n$ To determine the <u>multiplication order</u> such that of scalar multiplications is minimized.
- To compute $A_i \times A_{i+1}$, we need $p_{i-1}p_ip_{i+1}$ scalar multiplications

$$m(i, j) = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \left\{ m(i, k) + m(k + 1, j) + p_{i-1}p_kp_j \right\} & \text{if } i < j \end{cases}$$
• E.g. A1:15*20, A2:20*5, A3:5*10

- P0=15, p1=20, p2=5, p3=10

Cont...

- m[1,2]=m[1,1]+m[2,2]+P0P1P2=0+0+15*20*5 =1500
- m[2,3]=m[2,2]+m[3,3]+P1P2P3=0+0+20*5*10 =1000
- m[1,3]=m[1,2]+m[3,3]+P0P2P3 =1500+0+15*5*10 =2250

For k

Longest Common Subsequence (LCS)

- A subsequence of a sequence/string S is obtained by deleting zero or more symbols from S. For example, the following are some subsequences of "president": pred, sdn, predent. In other words, the letters of a subsequence of S appear in order in S, but they are not required to be consecutive.
- The longest common subsequence problem is to find a maximum length common subsequence between two sequences.

LCS

For instance,

Sequence 1: president

Sequence 2: providence

Its LCS is priden.

LCS

Another example:

Sequence 1: algorithm

Sequence 2: alignment

One of its LCS is algm.

How to compute LCS?

- Let $A = a_1 a_2 ... a_m$ and $B = b_1 b_2 ... b_n$.
- len(i, j): the length of an LCS between
 a₁a₂...a_i and b₁b₂...b_i
- With proper initializations, len(i, j) can be computed as follows.

$$len(i, j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ len(i-1, j-1) + 1 & \text{if } i, j > 0 \text{ and } a_i = b_j, \\ \max(len(i, j-1), len(i-1, j)) & \text{if } i, j > 0 \text{ and } a_i \neq b_j. \end{cases}$$

procedure LCS-Length(A, B)

- **for** $i \leftarrow 0$ **to** m **do** len(i,0) = 0
- for $j \leftarrow 1$ to n do len(0,j) = 0
- for $i \leftarrow 1$ to m do
- for $j \leftarrow 1$ to n do

- 6.
- 7.
- 8.
- **return** *len* and *prev*

Running time and memory: O(mn) and O(mn).

The backtracing algorithm

```
procedure Output-LCS(A, prev, i, j)

1 if i = 0 or j = 0 then return

2 if prev(i, j) = " \times "then \begin{bmatrix} Output - LCS(A, prev, i-1, j-1) \\ print \quad a_i \end{bmatrix}

3 else if prev(i, j) = " \times "then Output-LCS(A, prev, i-1, j)

4 else Output-LCS(A, prev, i, j-1)
```


Output: priden