Schematic overview

Interactions

- No antibiotics
- E. coli excludes ST Co-existence
- ST protects E. coli

- *E. coli* protects *ST*
 - E. coli excludes ST

Interactions

- ST protects E. coli
- E. coli protects ST
- Both species go extinct

No antibiotics – Exclusion of ST

- Mechanism of exclusion unknown
- Fran created growth curves across CFA gradient for all strains
 - All curves look very similar
- Modeling interactions as resource competition not suitable

Growth model

$$\frac{dN}{dt} = \mu N$$

$$\frac{dN}{dt} = r(1 - \frac{N}{K})N$$

 μ : Per capita growth rate

N:Species

r : *Maximum growth rate*

K: Carrying capacity

	E. coli	St
r [1/h]	0.9	0.7
K [OD]	1.1	1.1

One-sided protection

- Opposing signs:
 - E. coli relies on partner species for protection

- Matching signs:
 - Even if *E. coli* fully detoxifies the environment the negative interaction causes extinction of *ST*

One-sided protection - opposing signs

$$\frac{dN}{dt} = \left(\mu - \frac{JCf}{Cf + IC5}\right)N$$

N : *Abundance E* . *coli*

 μ : Per capita growth rate

J : *Maximum death rate*

Cf : *Cefotaxime*

IC 50 : *Half* – *maximal inhibitory concentration*

- Co-existence observed
- Cefotaxime is bactericidal
- Fran did dose response curves to measure the IC50
- Also did a kill curve to measure the maximum death rate J

ST is resistant against Cefotaxime, E. coli susceptible

IC50 for E. coli

- IC50: How much drug is needed to inhibit half of a biological process
- Fitted sigmoid model
- IC50: 0.03 μg/mL
- MIC: 0.0625 μg/mL

$$\frac{dN}{dt} = \left(\mu - \frac{JCf}{Cf + IC5}\right)N$$

Maximum death rate

- 4x MIC of Cefotaxime was added after 2 hours
- Variety in repeats
 - In some repeats population manages to resist
- Standing variation:
 - Mutations that are present during treatment

Maximum death rate

- Maximum death rate J = -1.57
 1/h for repeats that are killed by Cefotaxime
- Populations that don't go extinct could be important for coexistence
 - Only little detoxification needed

Variation affects netto growth rate

netto growth rate

$$\frac{dN}{dt} = \left(\mu - \frac{JCf}{Cf + IC\,50}\right)N$$

N: Abundance E. coli

 μ : Per capita growth rate

J : *Maximum death rate*

Cf : *Cefotaxime*

IC 50: *Half* – *maximal inhibitory concentration*

Variation affects netto growth rate

netto growth rate

$$\frac{dN}{dt} = \left(\mu - \frac{JCf}{Cf + IC\,5}\right)N$$

N : *Abundance E* . *coli*

 μ : Per capita growth rate

J : *Maximum death rate*

Cf : *Cefotaxime*

IC 50: *Half* – *maximal inhibitory concentration*

Chloramphenicol

IC50 Chloramphenicol

- IC50 for Chloramphenicol: 0.32 μg/mL
- MIC: 4 μg/mL
- Chloramphenicol is still effective at 0.025x MIC

Chloramphenicol is very effective

netto growth rate

$$\frac{dN}{dt} = \mu \frac{1}{1 + \frac{Cm}{IC.50}} N$$

N : *Abundance of ST*

 μ : Per capita growth rate

Cm: Chloramphenicol concentration

What does that mean for cross-protection

- *ST* is effectively getting killed by Chloramphenicol
- E. coli looses its partner species
- *E. coli* goes extinct in absence of the partner
- In every transfer experiment Chloramphenicol susceptible strains go extinct