Indian Institute of Technology Kharagpur Mid-Semester Examination: Autumn 2022

Date of Examination: 30/09/2022 (FN)

Subject. No: MA51109/MA60049

Department: Mathematics

Specific Chart, graph paper log book etc. required:

Duration: 2 Hrs

Subject Name: Computational Statistics

TOTAL MARKS: 30

Special Instruction: None

ANSWER ALL THE QUESTIONS

- 1. State whether the following statements are TRUE or FALSE. Justify your answer with a proof or a counter example. No marks will be awarded without justification. [8 marks]
 - (a) Let X_1, X_2, \ldots, X_n be iid with the pdf f(x). Then the variance of $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is smaller than the variance of X_1 .
 - (b) Let $X_1 \sim \exp(\lambda_1)$ and $X_2 \sim \exp(\lambda_2)$ be independent random variables. Then $\min\{X_1, X_2\} \sim \exp(\lambda_1 + \lambda_2)$.
 - (c) Let $X \sim N(0,1)$. Then $E(X^4) = 3$.
 - (d) Let X_1, X_2, \ldots, X_n be iid exponential random variables with mean λ . Then $\sum_{i=1}^n X_i$ is a Gamma random variable with mean $n\lambda$.
- 2. Let $X \sim N(0,1)$ and define $Y = e^X$.
 - (a) Determine the pdf of Y.

[3 marks]

(b) Determine E(Y), if it exists.

[2 marks]

3. Let $\{X_n, n \in \mathbb{N}\}$ be a Markov chain with the state space $\{0, 1, 2\}$ and the transition matrix given by

$$P = \begin{bmatrix} 0.3 & 0.1 & 0.6 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.7 & 0.2 \end{bmatrix},$$

and the initial distribution $\pi = \begin{bmatrix} 0.2 & 0.5 & 0.3 \end{bmatrix}$. (Assume all the notations discussed in the class.) Calculate the following.

(a) $P(X_1 = 2)$ [1 mark]

(b) $P(X_3 = 2 \mid X_0 = 0)$ [2 marks]

(c) $P(X_1 = 1, X_3 = 1)$ [2 marks]

- 4. Let $Y \sim \exp(\lambda)$ where λ is chosen such that $1 p = e^{-\lambda}$ for some $p \in (0,1)$.
 - (a) Prove that $Z = \lfloor Y \rfloor + 1 \sim \text{geometric}(p)$. Here the notation $\lfloor \alpha \rfloor$ denotes the integer part of α .
 - (b) Given a random sample from U(0,1), device an algorithm to obtain a random sample from geometric(p) using the result proved in the above question (4a). [4 marks]
- 5. Describe (with proving the necessary results) the inverse transform method to generate a random sample of the Laplace random variable with the following pdf. [4 marks]

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x-\theta|}, \quad -\infty < x < \infty, \quad (\theta \in \mathbb{R}, \ \lambda > 0)$$

6. Explain the accept/reject method of sampling from a density f(x). [2 marks]