ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Ένα Μη Κατευθυνόμενο Γράφημα G είναι μία διατεταγμένη δυάδα (V, E) όπου:

- V είναι το σύνολο των κορυφών (ή κόμβων): $V = \{v_1, v_2, ..., v_n\}$
- Ε είναι το σύνολο των ακμών (ή πλευρών ή τόξων): $E = \{e_1, e_2, ..., e_m\}$
 - Κάθε ακμή συνδέει δύο κορυφές, δηλαδή $e_k = [v_i, v_i]$ ή $e_k = \{v_i, v_j\}$ με $v_i, v_j \in V$ για κάθε k = 1, ..., m
 - Η ακμή θεωρείται μη διατεταγμένη (δηλαδή η ακμή $[v_i, v_i]$ είναι ίδια με την ακμή $[v_i, v_i]$), δεν υπάρχει κατεύθυνση).

Παράδειγμα: G = (V, E) όπου:

Παράδειγμα: G = (V, E) όπου:

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{[v_1, v_2], [v_1, v_4]\}$$

Ορισμός: Ένα Κατευθυνόμενο Γράφημα *G* είναι μία διατεταγμένη δυάδα (V, E) όπου:

- V είναι το σύνολο των κορυφών (ή κόμβων): $V = \{v_1, v_2, ..., v_n\}$
- Ε είναι το σύνολο των ακμών (ή πλευρών ή τόξων): $E = \{e_1, e_2, ..., e_m\}$
 - Κάθε ακμή συνδέει δύο κορυφές, δηλαδή $e_k = (v_i, v_j)$ ή $e_k = < v_i, v_j > \mu$ ε $v_i, v_i \in V$ για κάθε k = 1, ..., m
 - Η ακμή θεωρείται διατεταγμένη (δηλαδή η ακμή (v_i, v_i) είναι διαφορετική από την ακμή (v_i, v_i) , υπάρχει κατεύθυνση). Η κορυφή v_i καλείται αρχή τη ακμής και η κορυφή v_i λέγεται πέρας της ακμής.

<u>Παράδειγμα:</u> G = (V, E) όπου:

$$\begin{split} V &= \{v_1, v_2, v_3, v_4\} \\ E &= \{(v_1, v_2), (v_2, v_3), \\ &\quad (v_3, v_2), (v_4, v_4)\} \end{split}$$

Ορισμός:

Μονοπάτι P μήκους η από μία κορυφή v_0 σε μία κορυφή v_n είναι

- μια ακολουθία η ακμών (ακολουθώντας τις τυχόν κατευθύνσεις τους)
- (άρα n+1 κορυφών)

που ξεκινά από την κορυφή v_0 και καταλήγει στην v_n

Απλό μονοπάτι είναι ένα μονοπάτι χωρίς επαναλαμβανόμενες κορυφές (λέγεται και μονοκονδυλιά)

Παράδειγμα:

Μονοπάτι (που δεν είναι απλό):

$$v_1 - v_4 - v_5 - v_6 - v_4 - v_3$$

ΜΟΝΟΠΑΤΙΑ - ΚΥΚΛΟΙ

Μονοπάτι (που είναι απλό):

$$v_1 - v_7 - v_4 - v_5 - v_6$$

Ορισμός:

<u>Κύκλος</u> είναι ένα μονοπάτι χωρίς επαναλαμβανόμενες ακμές που αρχίζει και τελειώνει στην ίδια κορυφή

- Επιτρέπεται να περάσουμε από την ίδια κορυφή.
- Δεν επιτρέπεται να περάσουμε από την ίδια ακμή.

Απλός Κύκλος είναι ένας κύκλος χωρίς επαναλαμβανόμενες κορυφές

- Δεν επιτρέπεται να περάσουμε από την ίδια κορυφή
- Δεν επιτρέπεται να περάσουμε από την ίδια ακμή

Παράδειγμα:

Κύκλος (που δεν είναι απλός):

$$v_1 - v_7 - v_4 - v_5 - v_6 - v_4 - v_1$$

Κύκλος (που είναι απλός):

$$v_1 - v_7 - v_4 - v_1$$

Τυπικά:

ΠΛΗΡΕΣ ΓΡΑΦΗΜΑ (ή ΚΛΙΚΑ)

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Είναι απλό γράφημα G=(V,E) με η κορυφές που περιέχει όλες τις δυνατές ακμές.

Τυπικά:

Για κάθε $v_i, v_i \in V$ με $i \neq j$ η ακμή $[v_i, v_i] \in E$

Η κλίκα η κορυφών έχει n(n-1)/2 ακμές. (Είναι οι συνδυασμοί των η κορυφών ανά 2)

Οι 5 πρώτες κλίκες είναι οι εξής:

ΣΥΝΛΕΟΜΕΝΟ ΓΡΑΦΗΜΑ

Για κάθε v_i , v_i ∈ V με $i \neq j$ υπάρχει μονοπάτι από την v_i στην v_i

Ορισμός: Αν ένα γράφημα είναι μη συνδεόμενο:

Κάθε μεγιστοτικό (ως προς τις κορυφές) συνδεόμενο υπογράφημά του λέγεται συνεκτική συνιστώσα ή ασύνδετο τμήμα

Πρακτικά, συνεκτική συνιστώσα είναι ένα «κομμάτι» του γραφήματος που μπορούμε να μεταβούμε (μέσω μονοπατιού) από κάθε κορυφή σε κάθε άλλη.

Γενικά ένα γράφημα θα είναι:

- Είτε συνδεόμενο, οπότε θα αποτελείται από 1 συνεκτική συνιστώσα.
- Είτε μη συνδεόμενο (οπότε θα αποτελείται από τουλάχιστον 2 συνεκτικές συνιστώσες)
 - Αν σε μια εκφώνηση συναντήσουμε μη συνδεόμενο γράφημα στο θα πρέπει να οραματιζόμαστε τουλάχιστον 2 συνεκτικές συνιστώσες που η κάθε μία είναι ένα συνδεόμενο υπογράφημα του αρχικού γραφήματος:

Παραδείγματα μη συνδεόμενων γραφημάτων:

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Έστω συνδεόμενο γράφημα:

<u>Ορισμός:</u> Κάθε κορυφή, που αν αφαιρεθεί (μαζί με τις ακμές της) κάνει το γράφημα μη συνδεόμενο λέγεται σημείο κοπής ή σημείο άρθρωσης

Ορισμός: Κάθε ακμή, που αν αφαιρεθεί κάνει το γράφημα μη συνδεόμενο λέγεται <u>νέφυρα</u> ή <u>ακμή</u>

Παράδειγμα:

Σημεία Κοπής:

 v_3, v_5

Γέφυρα:

 $[v_3 - v_5]$

Ορισμός: Έστω ένα απλό γράφημα G = (V, E). Συμπλήρωμα του G, καλείτει το γράφημα $\overline{G} = (\overline{V}, \overline{E})$. που

- Έχει τις ίδιες κορυφές με το G
- Έχει ως ακμές αυτές που δεν περιέχονται στο G.

Iσχύει $\overline{V} = V$ και $e ∈ \overline{E}$ αν και μόνο αν e ∉ E

Σημαντικό:

 $|\mathbf{E}| + |\overline{\mathbf{E}}| = n(n-1)/2$

Παράδειγμα:

ΥΠΟΓΡΑΦΗΜΑ – ΕΠΑΓΟΜΕΝΟ ΥΠΟΓΡΑΦΗΜΑ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Έστω ένα γράφημα G = (V, E). **Υπογράφημα** του G, καλείτει το γράφημα G' = (V', E'). που

- Περιέχει κάποιες κορυφές του G (1...όλες)
- Περιέχει κάποιες ακμές του G που συνδέεουν αυτές τις κορυφές

Τυπικά:

Ισχύει $V'\subseteq V$ και $E'\subseteq E$ και για κάθε $[v_i,v_i]\in E'$ ισχύει ότι $v_i,v_i\in V'$

ΠΡΟΣΟΧΗ: Απαγορεύεται στο υπογράφημα να έχουμε ακμή που δεν ανήκει στο αρχικό γράφημα

Ορισμός: Έστω ένα γράφημα G = (V, E). Επαγόμενο Υπογράφημα του G, καλείτει το γράφημα G' = (V', E'):

- Περιέχει κάποιες κορυφές του G (1...όλες)
- Περιέχει ΟΛΕΣ τις ακμές του G που συνδέεουν αυτές τις κορυφές

Τυπικά:

Ισχύει $V' \subseteq V$ και $E' \subseteq E$ και για κάθε $[v_i, v_i] \in E$ με $v_i, v_i \in V'$ ισχύει $[v_i, v_i] \in E'$

ΠΡΟΣΟΧΗ: Απαγορεύεται στο επαγόμενο υπογράφημα να μην έχουμε όλες τις ακμές των κορυφών που έχουμε επιλέξει

ΒΑΘΜΟΙ ΚΟΡΥΦΩΝ

Ορισμός για μη Κατευθυνόμενα Γραφήματα:

Βαθμός της κορυφής v_i είναι το πλήθος των ακμών που προσπίπτουν σε αυτήν

Συμβολίζεται με $d(v_i)$

Ειδικά για μη απλά γραφήματα η ανακύκλωση μετράει κατά 2 στο βαθμό κορυφής.

Παράδειγμα:

$$d(v_1) = 2 d(v_2) = 1 d(v_3) = 2 d(v_4) = 2 d(v_5) = 3 d(v_6) = 2$$

$$v_1$$

Ορισμός:

Έσω Βαθμός της κορυφής v_i είναι το πλήθος των ακμών που εισέρχονται στην κορυφη v_i

Συμβολίζεται με $d^-(v_i)$

Έξω Βαθμός της κορυφής v_i είναι το πλήθος των ακμών που εξέρχονται από την κορυφη v_i

Συμβολίζεται με $d^+(v_i)$

Παράδειγμα:

Το άθροισμα των βαθμών των κορυφών σε κάθε μη κατευθυνόμενο γράφημα είναι ίσο με το διπλάσιο των ακμών

$$\sum_{i=1}^{n} \mathbf{d}(\mathbf{v}_i) = 2\mathbf{m}$$

Πόρισμα 1:

Το άθροισμα των βαθμών των κορυφών σε κάθε μη κατευθυνόμενο γράφημα είναι άρτιος αριθμός

Πόρισμα 2:

Σε κάθε μη κατευθυνόμενο γράφημα: Το πλήθος των κορυφών με περιττό βαθμό είναι άρτιος αριθμός.

- $d(v_1) = 2$ $d(v_2) = 1$
- $d(v_3) = 2$ $d(v_4) = 2$
- $d(v_5) = 3$ $d(v_6) = 2$

Άθροισμα Βαθμών Κορυφών: 12 (άρτιος) Πλήθος κορυφών με περιττό βαθμό: 2 (άρτιος)

Το θεώρημα χρησιμοποιείται (μεταξύ άλλων) για τον έλεγχο της ύπαρξης ενός γραφήματος όταν γνωρίζουμε πληροφορίες για τον βαθμό των κορυφών:

- Ελέγχουμε αν το πλήθος των κορυφών με περιττό βαθμό είναι άρτιος.
 - Αν δεν είναι άρτιος, τότε δεν υπάρχει τέτοιο γράφημα,
 - Αν είναι άρτιος, τότε πρέπει να ελέγξουμε κατασκευαστικά αν υπάρχει τέτοιο γράφημα

Ορισμός:

Ένα μη κατευθυνόμενο γράφημα θα λέγεται:

k-κανονικό, ανν όλες οι κορυφές έχουν βαθμό k.

Ενώ αν μας αναφέρεται ότι το γράφημα είναι κανονικό, αυτό σημαίνει ότι όλες οι κορυφές έχουν τον ίδιο βαθμό.

Πόρισμα

Το Κη είναι (η-1)-κανονικό γράφημα.

Ένα k-κανονικό γράφημα η κορυφών έχει nk/2 ακμές.

Παραδείγματα:

2-κανονικό

ΔΙΧΟΤΟΜΙΣΙΜΟ (ΔΙΜΕΡΕΣ) ΓΡΑΦΗΜΑ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός 1: Ένα μη κατευθυνόμενο γράφημα G = (V, E) είναι διχοτομίσιμο (ή διμερές) όταν οι κορυφές του μπορούν να διαμεριστούν (χωριστούν) σε δύο ξένα μεταξύ τους σύνολα V_1 και V_2 (δηλαδή $V_1 \cup V_2 = V$ και $V_1 \cap V_2 = \emptyset$), έτσι ώστε κάθε ακμή να έχει το ένα της άκρο σε κορυφή του V_1 και το άλλο της άκρο της V_2 .

<u>Ορισμός 2:</u> Ένα γράφημα καλείται διχοτομίσιμο αν και μόνο αν οι κορυφές του διαμερίζονται σε δύο σύνολα ανεξαρτησίας.

Ορισμός 3: Ένα γράφημα είναι διχοτομίσιμο αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους

Παρατηρήσεις:

- Τα σύνολα V_1 , V_2 καλούνται μερίδια κορυφών
- Το διμερές γράφημα συμβολίζεται και $G = (V_1, V_2, E)$

<u>Παράδειγμα:</u> Ο G_1 είναι διχοτομίσιμος με την διαμέριση: $V_1 = \{v_1, v_3, v_6\}$ και $V_2 = \{v_2, v_4, v_5\}$. Ο G_2 δεν είναι διχοτομίσιμος

ΠΛΗΡΕΣ ΔΙΧΟΤΟΜΙΣΙΜΟ (ΠΛΗΡΕΣ ΔΙΜΕΡΕΣ) ΓΡΑΦΗΜΑ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Ένα μη κατευθυνόμενο γράφημα G = (V, E) είναι **πλήρες διχοτομίσιμο** (ή πλήρες διμερές) αν είναι διχοτομίσιμο και περιέχει όλες τις δυνατές ακμές που μπορούν να συνδέουν τις κορυφές του V_1 με τις κορυφές του V_2

Παρατηρήσεις:

- Συμβολίζεται με $\mathbf{K}_{m,n}$ όπου $\mathbf{m} = |\mathbf{V}_1|$, $\mathbf{n} = |\mathbf{V}_2|$ και
- Ισχύει ότι:
 - Exet |V| = m + n κορυφές
 - Exet $|E| = m \cdot n$ akmés

<u>Παράδειγμα:</u> Ο G_1 είναι το $K_{3,3}$. Ο G_2 είναι το $K_{2,4}$

συνδέονται με ακμή

<u>Ορισμός: Σύνολο Ανεξαρτησίας</u> ενός γραφήματος είναι ένα υποσύνολο των κορυφών του γραφήματος που δεν

Τυπικά:

• Το σύνολο $V' \subseteq V$ είναι ένα σύνολο ανεξαρτησίας του γραφήματος G = (V, E) αν και μόνο αν για κάθε ζεύγος $v_i, v_i \in V'$ με $v_i \neq v_i$ ισχύει ότι $[v_i, v_i] \notin E'$

Ορισμός: Ένα σύνολο ανεξαρτησίας που δεν μπορεί να επαυξηθεί περαιτέρω (προσθέτοντας του ακόμη μία κορυφή) λέγεται μεγιστοτικό σύνολο ανεξαρτησίας.

Ορισμός: Το μεγαλύτερο (σε πληθάριθμο) μεγιστοτικό σύνολο ανεξαρτησίας καλείται μέγιστο σύνολο ανεξαρτησίας.

Παράδειγμα:

<u>Ορισμός:</u> Ένα γράφημα G = (V, E) είναι \mathbf{k} -χρωματίσιμο αν οι κορυφές του μπορούν να χρωματιστούν με \mathbf{k} χρώματα ώστε δύο γειτονικές κορυφές να μην έχουν το ίδιο χρώμα.

- Ή ισοδύναμα αν μπορούμε να διαμερίσουμε τις κορυφές σε k σύνολα ανεξαρτησίας (με κάθε σύνολο να χρωματίζεται με ένα χρώμα)
- Ένα k-χρωματίσιμο γράφημα θα λέγεται και k-μερές (σε αναλογία το 2-χρωματίσιμο γράφημα έχει 2 σύνολα ανεξαρτησίας, καλείται διμερές)

Σημαντικό:

- Ένας έγκυρος χρωματισμός δεν απαιτεί τον χρωματισμό των κορυφών με το ελάχιστο δυνατό πλήθος χρωματών.
- Έτσι αν ένα γράφημα είναι π.χ. 2-χρωματίσιμο, τότε θα είναι και 3-χρωματίσιμο, ... και η-χρωματίσιμο

ΧΡΩΜΑΤΙΚΟΣ ΑΡΙΘΜΟΣ

το οποίο ο γράφος είναι k-χρωματίσιμος.

γραφήματος – το πρόβλημα είναι NP-Complete).

Συμβολίζεται με $\chi(G)$

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Ένας **κύκλος Euler** σε έναν γράφο G = (V, E) είναι ένας κύκλος που:

- Περιέχει όλες τις κορυφές του γραφήματος
- Περνάει από κάθε ακμή ΑΚΡΙΒΩΣ μία φορά

Αν ένας γράφος έχει κύκλο Euler τότε καλείται Ευληριανός Γράφος ή Γράφος Euler.

Θεώρημα Euler για την ύπαρξη του κύκλου Euler:

Ένα μη κατευθυνόμενο γράφημα έχει κύκλο Euler αν και μόνο αν:

- Είναι συνδεόμενο και
- Όλες οι κορυφές έχουν άρτιο βαθμό

Παράδειγμα:

Ορισμός: Χρωματικός Αριθμός ενός γραφήματος G = (V, E) καλείται το ελάχιστο k, για

Το πρόβλημα της εύρεσης του χρωματικού αριθμού ενός γραφήματος είναι υπολογιστικά δύσκολο πρόβλημα (δεν υπάρχει αποδοτικός τρόπος για να βρίσκουμε γρήγορα τον χρωματικό αριθμό ενός

Παράδειγμα:

ΚΥΚΛΟΣ EULER

Ο κύκλος Euler είναι:

$$v_1 - v_2 - v_3 - v_4 - v_5 - v_4 - v_2 - v_5 - v_3 - v_1$$
 (και βεβαίως όλες οι κορυφές έχουν άρτιο βαθμό)

Δεν έχει κύκλο Euler (Η κορυφή ν2 έχει περιττό βαθμό)

ΚΥΚΛΟΣ HAMILTON

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Ένας **κύκλος Hamilton** σε έναν γράφο G = (V, E) είναι ένας κύκλος που:

- Περιέχει όλες τις κορυφές του γραφήματος
- Περνάει από κάθε κορυφή ΑΚΡΙΒΩΣ μία φορά

Αν ένας γράφος έχει κύκλο Hamilton τότε καλείται Αμιλτονιακός Γράφος ή Γράφος Hamilton. ΔΙΑΙΣΘΗΣΗ: Αν ξέρω ότι ένα γράφημα έχει κύκλο Hamilton, τότε θα πρέπει να σκέφτομαι ότι το γράφημα μπορεί να απεικονισθεί στο επίπεδο ως εξής:

Δηλαδή είναι καθαρός κύκλος που περιλαμβάνει όλες τις κορυφές του γραφήματος

- Ο κύκλος αποτελείται από η ακμές.
- Το γράφημα μπορεί να έχει και οσεσδήποτε επιπλέον ακμές
- Κάθε κορυφή έχει βαθμό τουλάχιστον 2

Για να δείξω ότι ένα γράφημα **έχει κύκλο Hamilton** έχω 3 τρόπους:

- Καταγράφοντας τον στο γράφημα (δηλαδή καταγράφω την ακολουθία κορυφών που συνδέονται με διαδοχικές ακμές και δημιουργούν τον κύκλο Hamilton
- 2. Δείχνοντας ότι ισχύει το **θεώρημα Dirac**:
 - «Αν κάθε κορυφή έχει βαθμ ό ≥ n/2 τότε το γράφημα έχει κύκλο Hamilton» (όπου n>3 είναι το πλήθος των κορυφών του γραφήματος)
- 3. <u>Δείχνοντας ότι ισχύει το **θεώρημα Ore**:</u>
 - «Αν κάθε ζεύγος κορυφών έχει άθροισμα βαθμών ≥ η τότε το γράφημα έχει κύκλο Hamilton» (όπου n>3 είναι το πλήθος των κορυφών του γραφήματος)

Για να δείξω ότι ένα γράφημα ΔΕΝ έχει κύκλο Hamilton έχω 4

- πολύ απλά και προφανή κριτήρια. 1. Το γράφημα **δεν είναι συνδεόμενο**
- 2. Το γράφημα περιέχει σημείο κοπής
- 3. Το γραφημα περιέχει **γέφυρα**
- 4. Έστω μία κορυφή έχει βαθμό 1
- 5. <u>Δείχνοντας κατασκευαστικά ότι το γράφημα δεν έχει κύκλο</u> <u>Hamilton</u>
 - 1. Σε έναν κύκλο Hamilton όλες οι κορυφές έχουν βαθμό 2
 - Αφαιρούμε διαδοχικά ακμές από κάθε κορυφή με βαθμό > 2 μέχρι να αποκτήσει βαθμό 2 με όλους τους δυνατούς τρόπους
 - 3. Θα πρέπει σε κάθε περίπτωση αφαίρεσης ακμών να οδηγούμαστε ότι το γράφημα δεν έχει κύκλο Hamilton.

