CAD for VLSI

Scheduling

High Level Synthesis (HLS)

- ☐ A process of converting high-level description of a design to a netlist
 - Input:
 - High-level languages (ex: C)
 - Behavioral hardware description languages (ex: Verilog, VHDL)
 - Structural HDLs (ex: Verilog, VHDL)
 - State diagrams & logic networks
 - Tools:
 - Parser
 - Library of modules
 - Constraints:
 - Area constraints (ex: # modules of a certain type)
 - Delay constraints (ex: set of operations should finish in λ clock cycles)
 - Output:
 - Operation scheduling (time) and binding (resource)
 - Control generation and detailed interconnections

High-Level Synthesis Compilation Flow

Behavioral Optimization

- ☐ Techniques used in software compilation
 - Expression tree-height reduction
 - Constant and variable propagation
 - Common sub-expression elimination
 - Dead-code elimination
 - Operator strength reduction (ex: *4 → << 2)
- Typical Hardware transformations
 - Conditional expansion
 - If (c) then x=A else x=B
 - → compute A and B in parallel, x=(C)?A:B

 Instead of three iterations of a loop, replicate the loop body three times (unrolling)

Architectural Synthesis

- ☐ Deals with "computational" behavioral descriptions
 - Behavior as sequencing graph

 (aka dependency graph, or data flow graph DFG)
 - Hardware resources as library elements
 - Pipelined or non-pipelined
 - Resource performance in terms of execution delay
 - Constraints on operation timing
 - Constraints on hardware resource availability
 - Storage as registers, data transfer using wires
- Objective
 - Generate a synchronous, single-phase clock circuit
 - Might have multiple feasible solutions (explore tradeoff)
 - Satisfy constraints, minimize objective:
 - Maximize performance subject to area constraint
 - Minimize area subject to performance constraints

Synthesis in Temporal Domain

- Scheduling and binding can be done in different orders or together
- □ Scheduling:
 - Mapping of operations to time slots (cycles)
 - A scheduled sequencing graph is a labeled graph

Operation Types

- ☐ For each operation, define its type
- For each resource, define a resource type and its delay (in terms of # cycles)
- ☐ T is a relation that maps an operation to a resource type that can implement it
 - $T: V \rightarrow \{1, 2, ..., n_{res}\}.$
- More general case:
 - A resource type may implement more than one operation type (ex: ALU)
- □ Resource binding:
 - Map each operation to a resource with the same type
 - Might have multiple options (ex: DVFS)

Synthesis in Spatial Domain

- Resource sharing
 - More than one operation is bound to same resource
 - Operations have to be serialized

Can be represented using hyperedges (define vertex partition)

Scheduling and Binding

- ☐ Resource constraints:
 - Number of resource instances of each type $\{a_k : k=1, 2, ..., n_{res}\}$
- ☐ Scheduling:
 - Labeled vertices $\phi(v_3)=1$
- ☐ Binding:
 - Hyperedges (or vertex partitions) β (v_2)=adde r_1
- ☐ Cost:
 - Number of resources ≈ area Resource dominated
 - Registers, steering logic (mux, bus), wiring, control unit
- □ Delay:

Control dominated

- Start time of the "sink" node
- Might be affected by steering logic and scheduling (control logic) resource-dominated vs. control-dominated

Architectural Optimization

- Optimization in view of design space flexibility
- □ A multi-criteria optimization problem:
 - Determine schedule ϕ and binding β .
 - Under area A, latency λ , and cycle time τ objectives
- ☐ Find non-dominated points (Pareto optimality) in solution space
- □ Solution space tradeoff curves:
 - Non-linear, discontinuous
 - Area, latency, cycle time (more?)
- Evaluate (estimate) cost functions

- Min area: solve for minimum binding
- Min latency: solve for minimum λ scheduling

Scheduling and Binding

- \Box Cost λ and A determined by both ϕ and β
 - Also affected by floorplan and detailed routing
- \Box β affected by ϕ :
 - Resources cannot be shared among concurrent operations
- \Box ϕ affected by β :
 - Resources cannot be shared among concurrent operations
 - When register and steering logic delays added to execution delays, might violate cycle time
- □ Order?
 - Apply either one (scheduling, binding) first

How Is the Datapath Implemented?

- Assuming the following scheduling and binding
 - Wires between modules?
 - Input selection?
 - How do binding and scheduling affect congestion?
 - How do binding and scheduling affect steering logic?

Operation Scheduling

- ☐ Input:
 - Sequencing graph G(V, E), with n vertices
 - Operation delays $D = \{d_i: i=0..n\}$
 - Cycle time τ
 - Multi-cycle operation when $d_i > \tau$
- ☐ Output:
 - Schedule ϕ determines start time t_i of operation v_i
 - Latency $\lambda = t_n t_0$
- Goal: determine area & latency tradeoff
- ☐ Issues:
 - Non-hierarchical and unconstrained
 - Latency constrained
 - Resource constrained
 - Hierarchical

Min Latency Unconstrained Scheduling

- ☐ Simplest case: no constraints, find minimum latency
- ☐ Given set of vertices V, delays D, and partial order \succ on operations E, find an integer labeling of operations ϕ : $V \rightarrow Z^+$, such that:

$$-t_i = \phi(v_i)$$

$$-t_i \geq t_i + d_i \quad \forall (v_i, v_i) \in E$$

$$-\lambda = t_0 - t_0$$
 is minimum

- ☐ Solvable in polynomial time
- Lower bounds on latency for resource constrained problems
- □ ASAP algorithm used: topological order

ASAP Scheduling

Schedule v_0 at $t_0=0$

While (v_n not scheduled)

Select v_i with all scheduled predecessors

Schedule v_i at $t_i = max \{t_j+d_j\}$, v_j being a predecessor of v_i

ALAP Scheduling (Latency Constrained)

Schedule v_n at $t_n = \overline{\lambda} + 1$

While (v₀ not scheduled)

Select v_i with all scheduled successors

Schedule v_i at $t_i = min \{t_j-d_i\}$, v_j being a successor of v_i

Related Terminologies

- ☐ ASAP, ALAP
 - Slack, mobility
 - Critical node, critical path
 - Criticality
- Static timing analysis
 - Arrival time
 - Required time
- Statistical static timing analysis
 - Advanced process technology: 45nm, 32nm, ...

Timing Analysis

Netlist with gate delay

Arrival time (ASAP)

Timing Analysis

Required time (ALAP)

Arrival time/Required time P12

Timing Analysis

Arrival time/Required time PI2 —

Slack (餘裕) = Required time – Arrival time

Constrained Scheduling

- Constrained scheduling
 - General case NP-complete
 - Minimize latency given constraints on area or the resources (ML-RCS)
 - Minimize resources subject to bound on latency (MR-LCS)
- Exact solution methods
 - ILP: Integer Linear Programming
 - Hu's heuristic algorithm for identical processors (operations)
- Heuristics
 - List scheduling
 - Force-directed scheduling

Precedence-constrained Multiprocessor Scheduling

Hu's Algorithm

- ☐ Simple case of the scheduling problem
 - Operations (and resources) of the same type
 - Operations of unit delay
- ☐ Hu's algorithm
 - Greedy
 - Polynomial & optimal
 - Compute lower bound on number of resources for a given latency (MR-LCS)
 -OR-

Compute lower bound on latency subject to resource constraints (ML-RCS)

- □ Basic idea:
 - Label operations based on their distances from the sink
 - Try to schedule nodes with higher labels first (i.e., most "critical" operations have highest priority)

Hu's Algorithm

```
HU (G(V,E), a) {
  Label the vertices
                         // label = length of longest path
                            passing through the vertex
  l = 1
  repeat {
      U = unscheduled vertices in V whose
       predecessors have been scheduled
           (or have no predecessors) → "ready state"
      Select S \subset U such that |S| \le a and labels in S
       are maximal
      Schedule the S operations at step l by setting
       t_i = l, i: v_i \in S
       1 = 1 + 1
  } until v_n is scheduled
```

Hu's Algorithm: Example

Lecture03

CAD

Slide 25

List Scheduling

- ☐ Greedy algorithm for ML-RCS and MR-LCS
 - Does NOT guarantee optimum solution
- ☐ Similar to Hu's algorithm
 - Operation selection decided by criticality
 - O(n) time complexity
- More general input
 - Resource constraints on different resource types

List Scheduling Algorithm: ML-RCS

```
LIST_L (G(V,E), a) {
   I=1
   repeat {
       for each resource type k {
              U_{l,k} = available vertices in V \rightarrow "ready state"
              T_{l,k} = operations in progress \rightarrow "ongoing state"
              Select S_k \subseteq U_{l,k} such that |S_k| + |T_{l,k}| \le a_k
              Schedule the S_k operations at step I
        I = I + 1
   } until v_n is scheduled
```

List Scheduling Example

□ OP *: delay = 2, number: 3

OP +: delay = 1, number 1

List Scheduling Algorithm: MR-LCS

```
LIST_R (G(V,E), \lambda') {
   a = 1, / = 1
   Compute the ALAP times t<sup>L</sup>
   if t_0^L < 0
        return (not feasible)
   repeat {
        for each resource type k {
               U_{l,k} = available vertices in V \rightarrow "ready state"
               Compute the slacks \{s_i = t_i^L - I, \forall v_i \in U_{l,k}\}
               Schedule operations with zero slack, update a
               Schedule additional S_k \subseteq U_{l,k} under a constraints
        I = I + 1
   } until v_n is scheduled
```

Force-Directed Scheduling

- □ Similar to list scheduling
 - Can handle ML-RCS and MR-LCS
 - For ML-RCS, schedules step-by-step
 - BUT, selection of the operations tries to find the *globally* best set of operations
- ☐ Idea time frame:
 - Find the mobility $\mu_i = t_i^L t_i^S$ of operations
 - Look at the operation type probability distributions
 - Try to flatten the operation type distributions
- Definition: operation probability density
 - $-p_i(I) = Pr \{v_i \text{ starts at step } I\}$
 - Assume uniform distribution:

$$p_i(l) = \frac{1}{u_i + 1} \quad for \ l \in [t_i^S, t_i^L]$$

Force-Directed Scheduling: Definitions

Operation-type distribution (NOT normalized to 1)

$$- q_k(l) = \sum_{i: T(v_i)=k} p_i(l)$$

Operation probabilities over control steps:

$$- p_i = \{p_i(0), p_i(1), ..., p_i(n)\}\$$

☐ Distribution graph of type *k* over all steps:

-
$$\{q_k(0), q_k(1), \dots, q_k(n)\}$$

 $-q_k(l)$ can be thought of as *expected* operator cost for implementing operations of type k at step l.

Example

$$q_{mult}(1) = 1 + 1 + \frac{1}{2} + \frac{1}{3} = 2.83$$

$$q_{mult}(2) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = 2.33$$

$$q_{mult}(3) = \frac{1}{2} + \frac{1}{3} = 0.83$$

$$q_{mult}(2) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = 2.33$$

$$q_{mult}(3) = \frac{1}{2} + \frac{1}{3} = 0.83$$

$$q_{mult}(4) = 0$$

$$q_{add}(1) = \frac{1}{3} = 0.33$$

$$q_{add}(2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

$$q_{add}(1) = \frac{1}{3} = 0.33$$

$$q_{add}(2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

$$q_{add}(3) = 1 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 2$$

$$q_{add}(4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66$$

$$q_{add}(4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66$$

2.33

.83

1.66

Force

- Used as *priority* function
- ☐ Force is related to concurrency:
 - Sort operations for least force
- ☐ Mechanical analogy:
- \Box Force = constant \times displacement
 - Constant = operation-type distribution, $q_k(l)$
 - Displacement = change in probability

Self Force

- ☐ Sum of forces to feasible schedule steps
- \square Self-force for operation v_i in step l

$$\operatorname{self-force}(i,l) = \sum_{m=t_i^S}^{t_i^L} q_k(m) (\delta_{lm} - p_i(m))$$

$$= q_k(l) - \frac{1}{\mu_i + 1} \sum_{m=t_i^S}^{t_i^L} q_k(m)$$

$$\delta_{lm} = \begin{cases} 1, & \text{if } l = m \\ 0, & \text{if } l \neq m \end{cases}$$

$$p_i(m) = \frac{1}{\mu_i + 1}$$

Predecessor/successor Force

- ☐ Related to the predecessors/successors
 - Fixing an operation timeframe restricts timeframe of predecessors/successors
 - Ex: Delaying an operation implies delaying its successors

$$ps - force(i, l) = \frac{1}{\tilde{\mu}_i + 1} \sum_{m = \tilde{t}_i^S}^{\tilde{t}_i^L} q_k(m) - \frac{1}{\mu_i + 1} \sum_{m = t_i^S}^{t_i^L} q_k(m)$$

Self Force Example

$$q_{mult}(1) = 1 + 1 + \frac{1}{2} + \frac{1}{3} = 2.83$$

$$q_{mult}(2) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = 2.33$$

$$q_{mult}(3) = \frac{1}{2} + \frac{1}{3} = 0.83$$

$$q_{mult}(3) = \frac{1}{2} + \frac{1}{2} = 0.83$$

$$q_{mult}(4) = 0$$

$$q_{add}(1) = \frac{1}{3} = 0.33$$

$$q_{add}(2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

$$q_{add}(1) = \frac{1}{3} = 0.33$$

$$q_{add}(2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

$$q_{add}(3) = 1 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 2$$

$$q_{add}(4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66$$

$$q_{add}(4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66$$

Self Force Example: v_6

- \Box Op v_6 can be scheduled in the first two steps
 - p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0
 - Distribution: q(1) = 2.8; q(2) = 2.3
- \square Assign v_6 to step 1:
 - variation in probability 1 0.5 = 0.5 for step 1
 - variation in probability 0 0.5 = -0.5 for step 2
 - Self-force: 2.8 * 0.5 2.3 * 0.5 = + 0.25
 - No successor force
- \square Assign v_6 to step 2:
 - variation in probability 0 0.5 = -0.5 for step 1
 - variation in probability 1 0.5 = 0.5 for step 2
 - Self-force: -2.8 * 0.5 + 2.3 * 0.5 = -0.25
 - Successor-force:
 - Successor (v_7) force is 2.3 * (0-0.5) + 0.8 * (1-0.5) = -0.75
 - Total force = -1

$$1 * 0.8 - 0.5 * (2.3 + 0.8) = -0.75$$

 \Box Hence, assign v_6 to step 2

P/S Force Example

$$q_{mult}(1) = 1 + 1 + \frac{1}{2} + \frac{1}{3} = 2.83$$

$$q_{mult}(2) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = 2.33$$

$$q_{mult}(3) = \frac{1}{2} + \frac{1}{3} = 0.83$$

$$q_{mult}(2) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = 2.33$$

$$q_{mult}(3) = \frac{1}{2} + \frac{1}{3} = 0.83$$

$$q_{mult}(4) = 0$$

$$q_{add}(1) = \frac{1}{3} = 0.33$$

$$q_{add}(2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

$$q_{add}(1) = \frac{1}{3} = 0.33$$

$$q_{add}(2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

$$q_{add}(3) = 1 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 2$$

$$q_{add}(4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66$$

$$q_{add}(4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66$$

2.33

.83

P/S Force Example: $v_7 \& v_9$

- \Box Type 1 (v_7) distribution:
 - q(1) = 2.8; q(2) = 2.3; q(3) = 0.8; q(4) = 0
- \square Assign v_6 to step 2:
 - Time frame of v₇ is reduced
 - -1*(0.8) 0.5*(2.3 + 0.8) = -0.75
- \Box Type 2 (v_9) distribution:
 - q(1) = 0.3; q(2) = 1; q(3) = 2; q(4) = 1.6
- \square Assign v_8 to step 2:
 - Time frame of v₉ is reduced
 - -0.5*(2+1.6)-0.3*(1+2+1.6)=0.3

Force-Directed Scheduling: Algorithm

```
FDS (G(V, E), \overline{\lambda}) {
   repeat {
       Compute/update the time-frames
       Compute the operation and type probabilities
       Compute the self-force, ps-force and total force
       Schedule the op. with least force
   until (all operations are scheduled)
   return (t)
```

Force-Directed Scheduling: Algorithm

- ☐ Very similar to LIST_L(G(V,E), a)
 - Compute mobility of operations using ASAP and ALAP
 - Select and schedule operations
 - Go to next control step
- Difference with list scheduling in selecting operations
 - Compute operation probabilities and type distributions
 - Select operations with least force
 - Update operation probabilities and type distributions
 - Consider the effect on the type distribution
 - Consider the effect on p/s nodes and their type distributions
 - Complexity: O(n³)

Resource Constraint Scheduling

- Constrained scheduling
 - General case NP-complete
 - Minimize latency given constraints on area or the resources (ML-RCS)
 - Minimize resources subject to bound on latency (MR-LCS)
- Exact solution methods
 - ILP: Integer Linear Programming
 - Hu's heuristic algorithm for identical processors (operations)
- Heuristics
 - List scheduling
 - Force-directed scheduling

Linear Programming Example

Mixed Integer Linear Programming

- ☐ A mathematical programming such that:
 - The objective is a linear function
 - All constraints are linear functions
 - Some variables are real numbers and some are integers, i.e., "mixed integer"
- It is almost like a linear programming, except that some variables are integers

NP-C problem

ILP Scheduling

☐ How to construct a mathematical model?

ILP Formulation of ML-RCS

- Use binary decision variables
 - -i=0,1,...,n
 - $-l=1, 2, ..., \lambda'+1$ λ' : given upper-bound on latency
 - $-x_{i,l}=1$ if operation *i* starts at step *l*, 0 otherwise.
- Set of linear inequalities (constraints), and an objective function (min latency)
- Observations
 - $x_{i,l} = 0$ for $l < t_i^S$ and $l > t_i^L$ start time feasibility $(t_i^S = ASAP(v_i), t_i^L = ALAP(v_i))$
 - $t_i = \sum_{l} l \cdot x_{i,l} \qquad t_i = \text{start time of op } i$
 - $-\sum_{m=l-d_i+1}^{i} x_{i,m} = 1 \quad \text{If op } v_i \text{ takes } d_i \text{ steps,}$ is op v_i (still) executing at step l?

Start Time vs. Execution Time

- \square For each operation v_i , only one start time
- \Box If $d_i=1$, then the following questions are the same:
 - Does operation v_i start at step l?
 - Is operation v_i running at step l?
- ☐ But if $d_i > 1$, then the two questions should be formulated as:
 - Does operation v_i start at step l?
 - Does $x_{ij} = 1$ hold?
 - Is operation v_i running at step l?
 - Does $\sum_{m=l-d_i+1}^{\infty} x_{i,m} = 1 \text{ hold?}$

Operation v_i Still Running at Step /?

 \square Assume that v_q takes 3 steps, is v_q running at step 6?

- Is
$$x_{9,6} + x_{9,5} + x_{9,4} = 1$$
?

4 _____

5

$$x_{9.6} = 1$$

$$x_{9,5} = 1$$

$$x_{9.4} = 1$$

- Note:
 - Only one (if any) of the above three cases can happen
 - To meet resource constraints, we have to ask the same question for ALL steps, and ALL operations of that type

Operation v_i Still Running at Step /?

 \square Is v_i running at step l?

- Is
$$x_{i,l} + x_{i,l-1} + \dots + x_{i,l-d_i+1} = 1$$
?

$$x_{i,l}=1$$

$$x_{i,l-1}=1$$

$$x_{i,l-d_i+1}=1$$

ILP Formulation of ML-RCS (Cont.)

☐ Constraints:

- Unique start times:
$$\sum_{l} x_{i,l} = 1$$
, $i = 0,1,...,n$

Sequencing (dependency) relations must be satisfied

$$t_i \ge t_j + d_j \ \forall (v_j, v_i) \in E \ \Rightarrow \ \sum_l l \cdot x_{i,l} \ge \sum_l l \cdot x_{j,l} + d_j$$

Resource constraints

$$\sum_{i:T(v_i)=k} \sum_{m=l-d_i+1}^{l} x_{i,m} \le a_k, \quad k=1,\ldots,n_{res}, \quad l=1,\ldots,\bar{\lambda}+1$$

- \Box Objective: min c^Tt .
 - t = start times vector, c = cost weight (ex: [0 0 ... 1])

- When
$$c = [0 \ 0 \ ... \ 1], c^T t = \sum_{l} l \cdot x_{n,l}$$

ILP Example

- \Box Assume $\overline{\lambda} = 4$
- ☐ First, perform ASAP and ALAP
 - (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will simplify the inequalities)

ILP Example: Unique Start Times Constraint

■ Without using ASAP and ALAP values:

$$x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} = 1$$

 $x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 1$
...

 $x_{11.1} + x_{11.2} + x_{11.3} + x_{11.4} = 1$

$$x_{1,1} = 1$$

 $x_{2,1} = 1$
 $x_{3,2} = 1$
 $x_{4,3} = 1$
 $x_{5,4} = 1$
 $x_{6,1} + x_{6,2} = 1$
 $x_{7,2} + x_{7,3} = 1$
 $x_{8,1} + x_{8,2} + x_{8,3} = 1$
 $x_{9,2} + x_{9,3} + x_{9,4} = 1$

ILP Example: Dependency Constraints

Using ASAP and ALAP, the non-trivial inequalities are: (assuming unit delay for + and *)

$$2 \cdot x_{7,2} + 3 \cdot x_{7,3} - 1 \cdot x_{6,1} - 2 \cdot x_{6,2} - 1 \ge 0$$

$$2 \cdot x_{9,2} + 3 \cdot x_{9,3} + 4 \cdot x_{9,4} - 1 \cdot x_{8,1} - 2 \cdot x_{8,2} - 3 \cdot x_{8,3} - 1 \ge 0$$

$$2 \cdot x_{11,2} + 3 \cdot x_{11,3} + 4 \cdot x_{11,4} - 1 \cdot x_{10,1} - 2 \cdot x_{10,2} - 3 \cdot x_{10,3} - 1 \ge 0$$

$$4 \cdot x_{5,4} - 2 \cdot x_{7,2} - 3 \cdot x_{7,3} - 1 \ge 0$$

$$5 \cdot x_{7,5} - 2 \cdot x_{9,2} - 3 \cdot x_{9,3} - 4 \cdot x_{9,4} - 1 \ge 0$$

$$5 \cdot x_{7,5} - 2 \cdot x_{11,2} - 3 \cdot x_{11,3} - 4 \cdot x_{11,4} - 1 \ge 0$$

ILP Example: Resource Constraints

□ Resource constraints (assuming 2 adders and 2 multipliers)

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$

$$x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \le 2$$

$$x_{7,3} + x_{8,3} \le 2$$

$$x_{10,1} \le 2$$

$$x_{9,2} + x_{10,2} + x_{11,2} \le 2$$

$$x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \le 2$$

$$x_{5,4} + x_{9,4} + x_{11,4} \le 2$$

- □ Objective:
 - Since λ =4 and sink has no mobility, any feasible solution is optimum, but we can use the following anyway: $Min \ 1 \cdot x_{n,1} + 2 \cdot x_{n,2} + 3 \cdot x_{n,3} + 4 \cdot x_{n,4} + 5 \cdot x_{n,5}$

ILP Formulation of MR-LCS

- Dual problem to ML-RCS
- □ Objective:
 - Goal is to optimize total resource usage, a.
 - Objective function is c^Ta , where entries in c are respective area costs of resources
- □ Constraints:
 - Same as ML-RCS constraints, plus:
 - Latency constraint added:

$$\sum_{l} l \cdot x_{n,l} \le \bar{\lambda} + 1$$

Note: unknown a_k appears in constraints.

Further Study

- Linear programming
 - http://www.cs.sunysb.edu/~algorith/files/linearprogramming.shtml
- ☐ Linear programming tools
 - https://en.wikipedia.org/wiki/List_of_optimization_software

