Measuring Assortativity for Ordinal Attributes

- A common measure for analyzing the relationship between *ordinal* values is *covariance*
- It describes how two variables change together
- In our case, we have a network
 - We are interested in how values assigned to nodes that are connected (via edges) are correlated

Covariance Variables

- The value assigned to node v_i is x_i
- We construct two variables X_L and X_R
- For any edge (v_i, v_j) , we **assume** that x_i is observed from variable X_L and x_j is observed from variable X_R
- X_L represents the ordinal values associated with the left-node (the first node) of the edges
- X_R represents the values associated with the right-node (the second node) of the edges
- We need to compute the covariance between variables X_L and X_R

Covariance Variables: Example

- X_L : (18, 21, 21, 20)
 - X_R : (21, 18, 20, 21)

$$\mathbf{E}(X_L) = \mathbf{E}(X_R)$$
$$\sigma(X_L) = \sigma(X_R)$$

Covariance

For two given column variables X_L and X_R , the covariance is

$$\sigma(X_L, X_R) = \mathbf{E}[(X_L - \mathbf{E}[X_L])(X_R - \mathbf{E}[X_R])]
= \mathbf{E}[X_L X_R - X_L \mathbf{E}[X_R] - \mathbf{E}[X_L] X_R + \mathbf{E}[X_L] \mathbf{E}[X_R]]
= \mathbf{E}[X_L X_R] - \mathbf{E}[X_L] \mathbf{E}[X_R] - \mathbf{E}[X_L] \mathbf{E}[X_R] + \mathbf{E}[X_L] \mathbf{E}[X_R]
= \mathbf{E}[X_L X_R] - \mathbf{E}[X_L] \mathbf{E}[X_R]$$

 $E(X_L)$ is the mean of the variable and $E(X_LX_R)$ is the mean of the multiplication X_L and X_R

$$E(X_L) = E(X_R) = \frac{\sum_{i} (X_L)_i}{2m} = \frac{\sum_{i} d_i x_i}{2m}$$
$$E(X_L X_R) = \frac{1}{2m} \sum_{i} (X_L)_i (X_R)_i = \frac{\sum_{ij} A_{ij} x_i x_j}{2m}$$

Covariance

$$\sigma(X_L, X_R) = \mathbf{E}[X_L X_R] - \mathbf{E}[X_L] \mathbf{E}[X_R]$$

$$= \frac{\sum_{ij} A_{ij} x_i x_j}{2m} - \frac{\sum_{ij} d_i d_j x_i x_j}{(2m)^2}$$

$$= \frac{1}{2m} \sum_{ij} (A_{ij} - \frac{d_i d_j}{2m}) x_i x_j$$

Normalizing Covariance

Pearson correlation $\rho(X,Y)$ is the normalized version of covariance $\rho(X_L,X_R) = \frac{\sigma(X_L,X_R)}{\sigma(X_L)\sigma(X_R)}$.

In our case: $\sigma(X_L) = \sigma(X_R)$

$$\rho(X_L, X_R) = \frac{\sigma(X_L, X_R)}{\sigma(X_L)^2},
= \frac{\frac{1}{2m} \sum_{ij} (A_{ij} - \frac{d_i d_j}{2m}) x_i x_j}{\mathbf{E}[(X_L)^2] - (\mathbf{E}[X_L])^2}
= \frac{\frac{1}{2m} \sum_{ij} (A_{ij} - \frac{d_i d_j}{2m}) x_i x_j}{\frac{1}{2m} \sum_{ij} A_{ij} x_i^2 - \frac{1}{2m} \sum_{ij} \frac{d_i d_j}{2m} x_i x_j}$$

Correlation Example

$$X_{L} = \begin{bmatrix} 18 \\ 21 \\ 21 \\ 20 \end{bmatrix} \qquad X_{R} = \begin{bmatrix} 21 \\ 18 \\ 20 \\ 21 \end{bmatrix}$$

$$\rho(X_L, X_R) = -0.67$$

Influence

- Measuring Influence
- Modeling Influence

Influence: Definition

Influence

The act or power of producing an effect without apparent exertion of force or direct exercise of command

Measuring Influence

Measuring Influence

- Measuring influence
 - Assigning a number

 (or a set of numbers)
 to each node that
 represents the
 influential power of
 that node

- The influence can be measured based on
 - Prediction or
 - Observation

Prediction-based Measurement

We assume that

- an individual's attribute, or
- the way the user is situated in the network can **predict** how influential the user **will** be
- Example 1
 - The number of *friends* of an individual is correlated with how influential she is
 - It is natural to use any of the centrality measures discussed (Chapter 3) for prediction-based influence measurements
 - How strong are these friendships?
- Example 2
 - On Twitter, in-degree (number of followers) is a benchmark for measuring influence

117K

42.7K

214K

Observation-based Measurement

We quantify influence of an individual by measuring the amount of influence *attributed* to the individual

I. When an individual is the role model

Influence measure: size of the audience that has been influenced

II. When an individual spreads information

 Influence measure: the size of the cascade, the population affected, the rate at which the population gets influenced

III. When an individual increases values

- Influence measure: the increase (or rate of increase) in the value of an item or action
 - The second person who bought the fax machine increased its value dramatically

Case Studies for Measuring Influence in Social Media

Measuring Influence on Twitter

Measuring Social Influence on Twitter

- In Twitter, users have an option of following individuals, which allows users to receive tweets from the person being followed
- Intuitively, one can think of the number of followers as a measure of influence (in-degree centrality)

Measuring Social Influence on Twitter: Measures

In-degree

- The number of users following a person on Twitter
- Indegree denotes the "audience size" of an individual.

Number of Mentions

- The number of times an individual is mentioned in a tweet, by including @username in a tweet.
- The number of mentions suggests the "ability in engaging others in conversation"

Number of Retweets

- Twitter users have the opportunity to forward tweets to a broader audience via the retweet capability.
- The number of retweets indicates individual's ability in generating content that is worth being passed on.

Measuring Social Influence on Twitter: Measures

- Each one of these measures by itself can be used to identify influential users in Twitter.
 - We utilizing the measure for each individual and then rank users based on their measured influence value.
- Observation: contrary to public belief, number of followers is considered an *inaccurate* measure compared to the other two.
- We can rank individuals on Twitter independently based on these three measures.
- To see if they are correlated or redundant, we can compare ranks of individuals across three measures using rank correlation measures.

Comparing Ranks across Three Measures

To compare ranks across more than one measure (say, in-degree and mentions), we can use **Spearman's Rank Correlation** Coefficient

$$\rho = 1 - \frac{6\sum (m_1^i - m_2^i)^2}{n^3 - n}$$

 m_1^i and m_2^i are ranks of individual i based on measures m_1 and m_2 , and n is the total number of usernames.

In-degrees do not carry much information

- Spearman's rank correlation is the Pearson correlation coefficient for ordinal variables that represent ranks
 - i.e., input range [1...n]
 - Output value is in range [-1,1]
- Popular users (users with high in-degree) do not necessarily have high ranks in terms of number of retweets or mentions.

Measures	Correlation Value
In-degree vs. retweets	0.122
In-degree vs. mentions	0.286
Retweets vs. mentions	0.638

Influence Modeling

Influence Modeling

• At time t_1 , node v is activated and node u is not

• Node u becomes activated at time t_2 due to influence

- Each node is started as active or inactive
- A node, once activated, will activate its neighbors
- An activated node cannot be deactivated

Influence Modeling: Assumptions

- The influence process takes place in a network
- Sometimes this network is observable (an explicit network) and sometimes not (an implicit network).
- Observable network: we can use threshold models, e.g., linear threshold model
- Implicit Network: we can use methods that take the number of individuals who get influenced at different times as input, e.g., the number of buyers per week
 - Linear Influence Model (LIM)

Threshold Models

- Simple, yet effective methods for modeling influence in **explicit** networks
- Nodes make decision based on the influence coming from of their already activated neighborhood
- Using a threshold model, Schelling demonstrated that minor preferences in having neighbors of the same color leads to complete racial segregation

http://www.youtube.com/watch?v=dnfflS2EJ30

Linear Threshold Model (LTM)

A node i would become active if incoming influence $(w_{i,i})$ from friends exceeds a certain threshold

$$\sum_{v_j \in N_{\rm in}(v_i)} w_{j,i} \le 1$$

- Each node i chooses a threshold θ_i randomly from a uniform distribution in an interval between 0 and 1
- At time t, all nodes that were active in the previous steps $[0 \dots t-1]$ remain active, but only nodes activated at time t-1 get the chance to activate
- Nodes satisfying the following condition will be activated

$$\sum_{v_i \in N_{\text{in}}(v_i), v_i \in A_{t-1}} w_{j,i} \ge \theta_i$$

LTM Algorithm

Algorithm 1 Linear Threshold Model (LTM)

```
Require: Graph G(V, E), set of initial activated nodes A_0
 1: return Final set of activated nodes A_{\infty}
 2: i=0;
 3: Uniformly assign random thresholds \theta_v from the interval [0, 1];
 4: while i = 0 or (A_{i-1} \neq A_i, i \geq 1) do
      A_{i+1} = A_i
 5:
      inactive = V - A_i;
       for all v \in \text{inactive do}
 7:
          if \sum_{j \text{ connected to } v, j \in A_i} w_{j,v} \geq \theta_v. then
 8:
             activate v;
 9:
            A_{i+1} = A_{i+1} \cup \{v\};
10:
          end if
11:
      end for
12:
     i = i + 1;
13:
14: end while
15: A_{\infty} = A_i;
16: Return A_{\infty};
```

Linear Threshold Model (LTM) - An Example

Thresholds are on top of nodes

Homophily

"Birds of a feather flock together"

Definition

Homophily: the tendency of individuals to associate and bond with similar others

- i.e., love of the same
- People interact more often with people who are "like them" than with people who are dissimilar

What leads to Homophily?

 Race and ethnicity, Sex and Gender, Age, Religion, Education, Occupation and social class, Network positions, Behavior, Attitudes, Abilities, Beliefs, and Aspirations

Measuring Homophily

- We can measure how the assortativity of the network changes over time
 - Consider two snapshots of a network $G_t(V, E)$ and $G_{t'}(V, E')$ at times t and t', respectively, where t' > t
 - V: fixed, E: edges are added/removed over time.

Nominal attributes. The Homophily index is defined as

$$H = Q_{normalized}^{t'} - Q_{normalized}^{t}$$

Ordinal attributes. The Homophily index is defined as the change in Pearson correlation

$$H = \rho^{t'} - \rho^t$$

Modeling Homophily

Homophily can be modeled using a variation of ICM

- At each time step, a single node gets activated
 - A node once activated will remain activated
- $P_{v|w}$ in the ICM model is replaced with the **similarity** between nodes v and w, sim(v, w)
- When a node v is activated, we generate a random tolerance value θ_v for the node, between 0 and 1
 - The tolerance value is the minimum similarity, node \emph{v} requires for being connected to other nodes
- For any edge (v,u) that is still not in the edge set, if the similarity $sim(v,w) > \theta_v$, then edge (v,w) is added
- This continues until all vertices are visited

Homophily Model

Algorithm 1 Homophily Model

```
Require: Graph G(V, E), E = \emptyset, similarities sim(v, u)

1: return Set of edges E

2: for all v \in V do

3: \theta_v = \text{generate a random number in } [0,1];

4: for all (v, u) \notin E do

5: if \theta_v < sim(v, u) then

6: E = E \cup (v, u);

7: end if

8: end for

9: end for

10: Return E;
```