Foundations of RL and Interactive Decision Making

Yuanhao ZHU Xiaoxian DING

Slides adapted from MIT course notes (chapters 5 & 6) by Dylan J. Foster and Alexander Rakhlin

https://doi.org/10.48550/arXiv.2312.16730

Outline

Ch 5. Reinforcement Learning: Basics

Ch 6. General Decision Making

Finite-Horizon Episodic MDP Formulation

A Markov Decision Process(MDP) M takes the form

$$M = \{S, A, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^n, d_1\}$$

where

- \triangleright S is the state space
- \triangleright \mathcal{A} is the action space
- ▶ $P_h^M: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ is the prob transition kernel at step h
- ▶ $R_h^M : S \times A \to \Delta(\mathbb{R})$ is the reward distribution at step h
- ▶ $d_1 \in \Delta(S)$ is the initial state distribution

Markov property refers

$$\mathbb{P}^{M}(s_{h+1}=s'|s_{h},a_{h})=\mathbb{P}^{M}(s_{h+1}=s'|s_{h},a_{h},s_{h-1},a_{h-1},\ldots,s_{1},a_{1}).$$

Finite-Horizon Episodic MDP Formulation

A Markov Decision Process(MDP) M takes the form

$$M = \{S, A, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^n, d_1\}$$

where

- \triangleright S is the state space
- \triangleright A is the action space
- ▶ $P_h^M: S \times A \to \Delta(S)$ is the prob transition kernel at step h
- ▶ $R_h^M : S \times A \to \Delta(\mathbb{R})$ is the reward distribution at step h
- ▶ $d_1 \in \Delta(S)$ is the initial state distribution

Markov property refers

$$\mathbb{P}^{M}(s_{h+1}=s'|s_{h},a_{h})=\mathbb{P}^{M}(s_{h+1}=s'|s_{h},a_{h},s_{h-1},a_{h-1},\ldots,s_{1},a_{1}).$$

MDP Episode Protocol

At the beginning of the episode, the learner selects

$$\pi = (\pi_1, \dots, \pi_H) \in \Pi_{\text{rns}}$$
 where $\pi_h : \mathcal{S} \to \Delta(\mathcal{A})$.

- 1. Begin from $s_1 \sim d_1$
- 2. For h = 1, ..., H:
 - ightharpoonup $a_h \sim \pi_h(s_h)$
 - $ightharpoonup r_h \sim R_h^M(s_h, a_h)$ and $s_{h+1} \sim P_h^M(s_h, a_h)$
- 3. Deterministic terminal state s_{H+1} for simplicity

MDP Episode Protocol

At the beginning of the episode, the learner selects

$$\pi = (\pi_1, \dots, \pi_H) \in \Pi_{\text{rns}}$$
 where $\pi_h : \mathcal{S} \to \Delta(\mathcal{A})$.

- 1. Begin from $s_1 \sim d_1$
- 2. For h = 1, ..., H:
 - $ightharpoonup a_h \sim \pi_h(s_h)$
 - $ightharpoonup r_h \sim R_h^M(s_h, a_h)$ and $s_{h+1} \sim P_h^M(s_h, a_h)$
- 3. Deterministic terminal state s_{H+1} for simplicity

MDP Episode Protocol

At the beginning of the episode, the learner selects

$$\pi = (\pi_1, \dots, \pi_H) \in \Pi_{\text{rns}}$$
 where $\pi_h : \mathcal{S} \to \Delta(\mathcal{A})$.

- 1. Begin from $s_1 \sim d_1$
- 2. For h = 1, ..., H:
 - $ightharpoonup a_h \sim \pi_h(s_h)$
 - $ightharpoonup r_h \sim R_h^M(s_h, a_h)$ and $s_{h+1} \sim P_h^M(s_h, a_h)$
- 3. Deterministic terminal state s_{H+1} for simplicity

► State-action value function:

$$Q_h^{M,\pi}(s,a) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^{H} r_{h'}|s_h = s, a_h = a]$$

- State value function: $V_h^{M,\pi}(s) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^H r_{h'}|s_h = s]$
- ▶ Optimal value functions: $Q_h^{M,*}(s,a) = \max_{\pi \in \Pi_{\text{rns}}} Q_h^{M,\pi}(s,a)$, $V_h^{M,*}(s) = \max_a Q_h^{M,*}(s,a)$
- ▶ Value for a policy π under M:

$$f^{M}(\pi) = \mathbb{E}^{M,\pi}\left[\sum_{h=1}^{H} r_{h}\right] = \mathbb{E}_{s \sim d_{1}, a \sim \pi_{1}(s)}\left[Q_{1}^{M,\pi}(s, a)\right] = \mathbb{E}_{s \sim d_{1}}\left[V_{1}^{M,\pi}(s)\right]$$

• Optimal policy: $\pi_M \in \arg \max_{\pi \in \Pi_{rns}} f^M(\pi)$

► State-action value function:

$$Q_h^{M,\pi}(s,a) = \mathbb{E}^{M,\pi} [\sum_{h'=h}^{H} r_{h'} | s_h = s, a_h = a]$$

- State value function: $V_h^{M,\pi}(s) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^H r_{h'}|s_h = s]$
- ▶ Optimal value functions: $Q_h^{M,*}(s,a) = \max_{\pi \in \Pi_{\text{rns}}} Q_h^{M,\pi}(s,a)$, $V_h^{M,*}(s) = \max_a Q_h^{M,*}(s,a)$
- ▶ Value for a policy π under M:

$$f^{M}(\pi) = \mathbb{E}^{M,\pi}\left[\sum_{h=1}^{H} r_{h}\right] = \mathbb{E}_{s \sim d_{1}, a \sim \pi_{1}(s)}\left[Q_{1}^{M,\pi}(s, a)\right] = \mathbb{E}_{s \sim d_{1}}\left[V_{1}^{M,\pi}(s)\right]$$

▶ Optimal policy: $\pi_M \in \arg \max_{\pi \in \Pi_{rns}} f^M(\pi)$

State-action value function:

$$Q_h^{M,\pi}(s,a) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^n r_{h'}|s_h = s, a_h = a]$$

- State value function: $V_h^{M,\pi}(s) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^H r_{h'}|s_h = s]$
- Optimal value functions: $Q_h^{M,\star}(s,a) = \max_{\pi \in \Pi_{\text{rns}}} Q_h^{M,\pi}(s,a)$, $V_h^{M,\star}(s) = \max_a Q_h^{M,\star}(s,a)$
- ▶ Value for a policy π under M:

$$f^{M}(\pi) = \mathbb{E}^{M,\pi} \left[\sum_{h=1}^{H} r_{h} \right] = \mathbb{E}_{s \sim d_{1}, a \sim \pi_{1}(s)} \left[Q_{1}^{M,\pi}(s, a) \right] = \mathbb{E}_{s \sim d_{1}} \left[V_{1}^{M,\pi}(s) \right]$$

▶ Optimal policy: $\pi_M \in \arg \max_{\pi \in \Pi_{rns}} f^M(\pi)$

State-action value function:

$$Q_h^{M,\pi}(s,a) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^H r_{h'}|s_h = s, a_h = a]$$

- State value function: $V_h^{M,\pi}(s) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^H r_{h'}|s_h = s]$
- Optimal value functions: $Q_h^{M,\star}(s,a) = \max_{\pi \in \Pi_{\text{rns}}} Q_h^{M,\pi}(s,a)$, $V_h^{M,\star}(s) = \max_a Q_h^{M,\star}(s,a)$
- ▶ Value for a policy π under M:

$$f^{M}(\pi) = \mathbb{E}^{M,\pi}[\sum_{h=1}^{H} r_{h}] = \mathbb{E}_{s \sim d_{1}, a \sim \pi_{1}(s)}[Q_{1}^{M,\pi}(s, a)] = \mathbb{E}_{s \sim d_{1}}[V_{1}^{M,\pi}(s)]$$

• Optimal policy: $\pi_M \in \arg \max_{\pi \in \Pi_{rns}} f^M(\pi)$

State-action value function:

$$Q_h^{M,\pi}(s,a) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^H r_{h'}|s_h = s, a_h = a]$$

- State value function: $V_h^{M,\pi}(s) = \mathbb{E}^{M,\pi}[\sum_{h'=h}^H r_{h'}|s_h = s]$
- ▶ Optimal value functions: $Q_h^{M,\star}(s,a) = \max_{\pi \in \Pi_{\text{rns}}} Q_h^{M,\pi}(s,a)$, $V_h^{M,\star}(s) = \max_a Q_h^{M,\star}(s,a)$
- ▶ Value for a policy π under M:

$$f^{M}(\pi) = \mathbb{E}^{M,\pi}[\sum_{h=1}^{H} r_{h}] = \mathbb{E}_{s \sim d_{1}, a \sim \pi_{1}(s)}[Q_{1}^{M,\pi}(s, a)] = \mathbb{E}_{s \sim d_{1}}[V_{1}^{M,\pi}(s)]$$

▶ Optimal policy: $\pi_M \in \arg \max_{\pi \in \Pi_{rns}} f^M(\pi)$

▶ Bellman Optimality, $V_{H+1}^{M,\pi_M}(s) := 0$ and for $h \in [H]$,

$$V_{h}^{M,\pi_{M}}(s) = \max_{a \in \mathcal{A}} \mathbb{E} \left[r_{h} + V_{h+1}^{M,\pi_{M}}(s_{h+1}) \mid s_{h} = s, \ a_{h} = a \right]$$

$$I_{m,\pi_{M}}(s,a) = \mathbb{E}^{M} \left[r_{h} + \max_{a' \in \mathcal{A}} Q_{h+1}^{M,\pi_{M}}(s_{h+1},a') \mid s_{h} = s, a_{h} = a \right]$$

► Value Iteration (VI) and Bellman Operators

$$[\mathcal{T}_h^M Q](s,a) = \mathbb{E}_{s_{h+1} \sim P_h^M(s,a), r_h \sim R_h^M(s,a)} [r_h(s,a) + \max_{a' \in \mathcal{A}} Q(s_{h+1},a')]$$
or equivalently

$$[\mathcal{T}_h^M Q](s,a) = \mathbb{E}^M \Big[r_h + \max_{a' \in \mathcal{A}} Q(s_{h+1},a') \mid s_h = s, \ a_h = a \Big]$$

► In the language of Bellman operators,

$$Q_h^{M,\pi_M} = \mathcal{T}_h^M \, Q_{h+1}^{M,\pi_M}$$

▶ Bellman Optimality, $V_{H+1}^{M,\pi_M}(s) := 0$ and for $h \in [H]$,

$$V_h^{M,\pi_M}(s) = \max_{a \in \mathcal{A}} \mathbb{E} [r_h + V_{h+1}^{M,\pi_M}(s_{h+1}) \mid s_h = s, \ a_h = a]$$

$$Q_{h}^{M,\pi_{M}}(s,a) = \mathbb{E}^{M} \left[r_{h} + \max_{a' \in \mathcal{A}} Q_{h+1}^{M,\pi_{M}}(s_{h+1},a') \mid s_{h} = s, a_{h} = a \right]$$

► Value Iteration (VI) and Bellman Operators

$$[\mathcal{T}_{h}^{M} Q](s, a) = \mathbb{E}_{s_{h+1} \sim P_{h}^{M}(s, a), r_{h} \sim R_{h}^{M}(s, a)} [r_{h}(s, a) + \max_{a' \in \mathcal{A}} Q(s_{h+1}, a')]$$

$$[\mathcal{T}_h^M Q](s, a) = \mathbb{E}^M \Big[r_h + \max_{a' \in \mathcal{A}} Q(s_{h+1}, a') \mid s_h = s, \ a_h = a \Big]$$

► In the language of Bellman operators,

$$Q_h^{M,\pi_M} = \mathcal{T}_h^M \, Q_{h+1}^{M,\pi_M}$$

▶ Bellman Optimality, $V_{H+1}^{M,\pi_M}(s) := 0$ and for $h \in [H]$,

$$\begin{aligned} V_{h}^{M,\pi_{M}}(s) &= \max_{a \in \mathcal{A}} \mathbb{E} \big[r_{h} + V_{h+1}^{M,\pi_{M}}(s_{h+1}) \mid s_{h} = s, \ a_{h} = a \big] \\ Q_{h}^{M,\pi_{M}}(s,a) &= \mathbb{E}^{M} \big[r_{h} + \max_{a' \in \mathcal{A}} Q_{h+1}^{M,\pi_{M}}(s_{h+1},a') \mid s_{h} = s, a_{h} = a \big] \end{aligned}$$

Value Iteration (VI) and Bellman Operators

$$[\mathcal{T}_{h}^{M} Q](s, a) = \mathbb{E}_{s_{h+1} \sim P_{h}^{M}(s, a), r_{h} \sim R_{h}^{M}(s, a)} [r_{h}(s, a) + \max_{a' \in \mathcal{A}} Q(s_{h+1}, a')]$$

or equivalently

$$[\mathcal{T}_{h}^{M} Q](s, a) = \mathbb{E}^{M} \Big[r_{h} + \max_{a' \in \mathcal{A}} Q(s_{h+1}, a') \ \Big| \ s_{h} = s, \ a_{h} = a \Big]$$

► In the language of Bellman operators,

$$Q_h^{M,\pi_M} = \mathcal{T}_h^M Q_{h+1}^{M,\pi_M}$$

▶ Bellman Optimality, $V_{H+1}^{M,\pi_M}(s) := 0$ and for $h \in [H]$,

$$\begin{aligned} V_{h}^{M,\pi_{M}}(s) &= \max_{a \in \mathcal{A}} \mathbb{E} \big[r_{h} + V_{h+1}^{M,\pi_{M}}(s_{h+1}) \mid s_{h} = s, \ a_{h} = a \big] \\ Q_{h}^{M,\pi_{M}}(s,a) &= \mathbb{E}^{M} \big[r_{h} + \max_{a' \in \mathcal{A}} Q_{h+1}^{M,\pi_{M}}(s_{h+1},a') \mid s_{h} = s, a_{h} = a \big] \end{aligned}$$

Value Iteration (VI) and Bellman Operators

$$[\mathcal{T}_h^M Q](s,a) = \mathbb{E}_{s_{h+1} \sim P_h^M(s,a), r_h \sim R_h^M(s,a)} \left[r_h(s,a) + \max_{a' \in \mathcal{A}} Q(s_{h+1},a') \right]$$
 or equivalently

$$[\mathcal{T}_{h}^{M} Q](s, a) = \mathbb{E}^{M} \Big[r_{h} + \max_{a' \in A} Q(s_{h+1}, a') \mid s_{h} = s, \ a_{h} = a \Big]$$

In the language of Bellman operators,

$$Q_h^{M,\pi_M} = \mathcal{T}_h^M \ Q_{h+1}^{M,\pi_M}$$

Failure of Uniform Exploration

- ▶ Planning with a known MDP is straightforward, but minimizing regret in an unknown MDP requires exploration.
- \triangleright ε -Greedy:
 - Reasonable for bandits and contextual bandits (suboptimal rate: $T^{2/3}$ vs. \sqrt{T}).
 - But disastrous in reinforcement learning, e.g. Combination Lock MDP.

- ▶ Require selecting a_g for all the H time steps within the episode; otherwise, gain no info.
- ▶ Uniform exploration \Rightarrow prob. of the correct sequence is 2^{-H} \Rightarrow need $T = O(2^H)$ to achieve nontrivial regret.

Failure of Uniform Exploration

- Planning with a known MDP is straightforward, but minimizing regret in an unknown MDP requires exploration.
- \triangleright ε -Greedy:
 - Reasonable for bandits and contextual bandits (suboptimal rate: $T^{2/3}$ vs. \sqrt{T}).
 - But disastrous in reinforcement learning, e.g. Combination Lock MDP.

- ▶ Require selecting a_g for all the H time steps within the episode: otherwise, gain no info.
- ▶ Uniform exploration \Rightarrow prob. of the correct sequence is 2^{-H} \Rightarrow need $T = O(2^H)$ to achieve nontrivial regret.

Failure of Uniform Exploration

- Planning with a known MDP is straightforward, but minimizing regret in an unknown MDP requires exploration.
- \triangleright ε -Greedy:
 - Reasonable for bandits and contextual bandits (suboptimal rate: $T^{2/3}$ vs. \sqrt{T}).
 - But disastrous in reinforcement learning, e.g. Combination Lock MDP.

- ▶ Require selecting a_g for all the H time steps within the episode; otherwise, gain no info.
- ▶ Uniform exploration \Rightarrow prob. of the correct sequence is 2^{-H} \Rightarrow need $T = O(2^H)$ to achieve nontrivial regret.

- ► Other algorithmic principles?
- Optimism in the face of uncertainty succeeds, which implies that one should act as if the environment is as nice as plausibly possible.
- An analogue of UCB yields regret polynomial in |S|, |A|, and H.
- ▶ We will introduce standard MDP analysis tools to show this.

- Other algorithmic principles?
- Optimism in the face of uncertainty succeeds, which implies that one should act as if the environment is as nice as plausibly possible.
- An analogue of UCB yields regret polynomial in |S|, |A|, and H.
- ▶ We will introduce standard MDP analysis tools to show this.

- Other algorithmic principles?
- ▶ Optimism in the face of uncertainty succeeds, which implies that one should act as if the environment is as nice as plausibly possible.
- An analogue of UCB yields regret polynomial in |S|, |A|, and H.
- ▶ We will introduce standard MDP analysis tools to show this.

- ► Other algorithmic principles?
- ▶ Optimism in the face of uncertainty succeeds, which implies that one should act as if the environment is as nice as plausibly possible.
- An analogue of UCB yields regret polynomial in |S|, |A|, and H.
- ▶ We will introduce standard MDP analysis tools to show this.

- Other algorithmic principles?
- ▶ Optimism in the face of uncertainty succeeds, which implies that one should act as if the environment is as nice as plausibly possible.
- An analogue of UCB yields regret polynomial in |S|, |A|, and H.
- ▶ We will introduce standard MDP analysis tools to show this.

Some Standard MDP Analysis Tools

Lemma 1 (Performance Difference)

For any $s \in \mathcal{S}$ and $\pi, \pi' \in \Pi_{rms}$,

$$V_1^{M,\pi'}(s) - V_1^{M,\pi}(s) = \sum_{h=1}^{H} \mathbb{E}^{M,\pi} \Big[Q_h^{M,\pi'} \big(s_h, \, \pi'(s_h) \big) - Q_h^{M,\pi'} \big(s_h, \, a_h \big) \Big| s_1 = s \Big].$$

Key idea: The difference in values between π' and π in the same MDP can be expressed via the expected advantage of π' 's action over π 's under state distribution induced by π at each timestep.

Some Standard MDP Analysis Tools

Lemma 1 (Performance Difference)

For any $s \in \mathcal{S}$ and $\pi, \pi' \in \Pi_{rns}$,

$$V_1^{M,\pi'}(s) - V_1^{M,\pi}(s) = \sum_{h=1}^{H} \mathbb{E}^{M,\pi} \Big[Q_h^{M,\pi'} \big(s_h, \, \pi'(s_h) \big) - Q_h^{M,\pi'} \big(s_h, \, a_h \big) \Big| s_1 = s \Big].$$

Key idea: The difference in values between π' and π in the same MDP can be expressed via the expected advantage of π' 's action over π 's under state distribution induced by π at each timestep.

Lemma 2 (Bellman Residual Decomposition)

For any pair of MDPs $M = (P^M, R^M)$ and $\widehat{M} = (P^{\widehat{M}}, R^{\widehat{M}})$, any $s \in \mathcal{S}$, and policies $\pi \in \Pi_{rns}$,

$$V_1^{M,\pi}(s) - V_1^{\widehat{M},\pi}(s) = \sum_{h=1}^{H} \mathbb{E}^{\widehat{M},\pi} \left[Q_h^{M,\pi}(s_h, a_h) - r_h - V_{h+1}^{M,\pi}(s_{h+1}) \middle| s_1 = s \right]$$

In addition, for any M and $Q = (Q_1, ..., Q_H, 0)$ (need not to be a value function), letting $\pi_{Q,h}(s) = \arg\max_{a \in \mathcal{A}} Q_h(s,a)$, we have

$$\max_{a \in \mathcal{A}} Q_1(s, a) - V_1^{M, \pi_Q}(s)$$

$$= \sum_{h=1}^{H} \mathbb{E}^{M, \pi_Q} \left[Q_h(s_h, a_h) - [\mathcal{T}_h^M Q_{h+1}](s_h, a_h) | s_1 = s \right]$$

Key idea: The difference in initial value for the same policy under two MDPs decomposes into layer-wise errors.

Lemma 2 (Bellman Residual Decomposition)

For any pair of MDPs $M = (P^M, R^M)$ and $\widehat{M} = (P^{\widehat{M}}, R^{\widehat{M}})$, any $s \in \mathcal{S}$, and policies $\pi \in \Pi_{rns}$,

$$V_1^{M,\pi}(s) - V_1^{\widehat{M},\pi}(s) = \sum_{h=1}^{H} \mathbb{E}^{\widehat{M},\pi} \left[Q_h^{M,\pi}(s_h, a_h) - r_h - V_{h+1}^{M,\pi}(s_{h+1}) \middle| s_1 = s \right]$$

In addition, for any M and $Q=(Q_1,\ldots,Q_H,0)$ (need not to be a value function), letting $\pi_{Q,h}(s)=\arg\max_{a\in\mathcal{A}}Q_h(s,a)$, we have

$$egin{aligned} & \max_{a \in \mathcal{A}} Q_1(s, a) - V_1^{M, \pi_Q}(s) \ & = \sum_{h=1}^H \mathbb{E}^{M, \pi_Q} ig[Q_h(s_h, a_h) - [\mathcal{T}_h^M \, Q_{h+1}](s_h, a_h) | s_1 = s ig] \end{aligned}$$

Key idea: The difference in initial value for the same policy under two MDPs decomposes into layer-wise errors.

Lemma 2 (Bellman Residual Decomposition)

For any pair of MDPs $M = (P^M, R^M)$ and $\widehat{M} = (P^{\widehat{M}}, R^{\widehat{M}})$, any $s \in \mathcal{S}$, and policies $\pi \in \Pi_{rns}$,

$$V_1^{M,\pi}(s) - V_1^{\widehat{M},\pi}(s) = \sum_{h=1}^{H} \mathbb{E}^{\widehat{M},\pi} \left[Q_h^{M,\pi}(s_h, a_h) - r_h - V_{h+1}^{M,\pi}(s_{h+1}) \middle| s_1 = s \right]$$

In addition, for any M and $Q=(Q_1,\ldots,Q_H,0)$ (need not to be a value function), letting $\pi_{Q,h}(s)=\arg\max_{a\in\mathcal{A}}Q_h(s,a)$, we have

$$\begin{split} & \max_{a \in \mathcal{A}} Q_1(s, a) - V_1^{M, \pi_Q}(s) \\ & = \sum_{h=1}^H \mathbb{E}^{M, \pi_Q} \big[Q_h(s_h, a_h) - [\mathcal{T}_h^M Q_{h+1}](s_h, a_h) | s_1 = s \big] \end{split}$$

Key idea: The difference in initial value for the same policy under two MDPs decomposes into layer-wise errors.

- Construct optimistic value functions $\overline{Q}_1, \dots, \overline{Q}_H$ over-estimating $Q^{M,*}$.
- Use Bellman residuals to measure the self-consistency of these optimistic estimates.
- ► Lemma 3:
 - ► Closeness of \overline{Q}_h to $\mathcal{T}_h^M \overline{Q}_{h+1} \implies$ closeness of $\widehat{\pi}$ to π^M in value.
 - On-policy nature: distribution of states s_h is induced by executing $\widehat{\pi}$ in model M (roll-in distribution) instead of π^M .
- ► Errors do not accumulate exponentially; they remain controlled by *H*.

- ► Construct *optimistic value functions* $\overline{Q}_1, \dots, \overline{Q}_H$ over-estimating $Q^{M,*}$.
- ► Use *Bellman residuals* to measure the self-consistency of these optimistic estimates.
- ► Lemma 3:
 - Closeness of \overline{Q}_h to $\mathcal{T}_h^M \overline{Q}_{h+1} \implies$ closeness of $\widehat{\pi}$ to π^M in value.
 - On-policy nature: distribution of states s_h is induced by executing $\widehat{\pi}$ in model M (roll-in distribution) instead of π^M .
- Errors do not accumulate exponentially; they remain controlled by H.

- ► Construct optimistic value functions $\overline{Q}_1, \dots, \overline{Q}_H$ over-estimating $Q^{M,*}$.
- Use Bellman residuals to measure the self-consistency of these optimistic estimates.
- ► Lemma 3:
 - Closeness of \overline{Q}_h to $\mathcal{T}_h^M \overline{Q}_{h+1} \implies$ closeness of $\widehat{\pi}$ to π^M in value.
 - On-policy nature: distribution of states s_h is induced by executing $\widehat{\pi}$ in model M (roll-in distribution) instead of π^M .
- Errors do not accumulate exponentially; they remain controlled by H.

- ► Construct optimistic value functions $\overline{Q}_1, \dots, \overline{Q}_H$ over-estimating $Q^{M,\star}$.
- Use Bellman residuals to measure the self-consistency of these optimistic estimates.
- ► Lemma 3:
 - ► Closeness of \overline{Q}_h to $\mathcal{T}_h^M \overline{Q}_{h+1} \implies$ closeness of $\widehat{\pi}$ to π^M in value.
 - On-policy nature: distribution of states s_h is induced by executing $\widehat{\pi}$ in model M (roll-in distribution) instead of π^M .
- Errors do not accumulate exponentially; they remain controlled by H.

- ► Construct optimistic value functions $\overline{Q}_1, \dots, \overline{Q}_H$ over-estimating $Q^{M,\star}$.
- Use Bellman residuals to measure the self-consistency of these optimistic estimates.
- ► Lemma 3:
 - ► Closeness of \overline{Q}_h to $\mathcal{T}_h^M \overline{Q}_{h+1} \implies$ closeness of $\widehat{\pi}$ to π^M in value.
 - On-policy nature: distribution of states s_h is induced by executing $\widehat{\pi}$ in model M (roll-in distribution) instead of π^M .
- Errors do not accumulate exponentially; they remain controlled by H.

Error Decomposition for Optimistic Policies

Lemma 3

Let $\{\overline{Q}_h\}_{h=1}^H$ be a sequence of optimistic value functions where $Q_h^{M,\star}(s,a) \leq \overline{Q}_h(s,a)$, $\overline{Q}_{H+1} \equiv 0$, and $\widehat{\pi} = (\widehat{\pi}_1, \dots \widehat{\pi}_H)$ where $\widehat{\pi}_h = \arg\max_a \overline{Q}_h(s,a)$, then

$$V_1^{M,\star}(s) - V_1^{M,\widehat{\pi}}(s) \leq \sum_{h=1}^H \mathbb{E}^{M,\widehat{\pi}} \Big[\overline{Q}_h - \big(\mathcal{T}_h^M \, \overline{Q}_{h+1} \big)(s_h, \widehat{\pi}(s_h)) | s_1 = s \Big]$$

- ▶ If $\overline{Q}_h = Q_h^{M,*}$, then $Q_h^{M,*} = \mathcal{T}_h^M Q_{h+1}^{M,*}$, then the right-hand side is 0.
- ► Hence, exact Bellman consistency implies no sub-optimality gap.

Error Decomposition for Optimistic Policies

Lemma 3

Let $\{\overline{Q}_h\}_{h=1}^H$ be a sequence of optimistic value functions where $Q_h^{M,\star}(s,a) \leq \overline{Q}_h(s,a)$, $\overline{Q}_{H+1} \equiv 0$, and $\widehat{\pi} = (\widehat{\pi}_1, \dots \widehat{\pi}_H)$ where $\widehat{\pi}_h = \arg\max_a \overline{Q}_h(s,a)$, then

$$V_1^{M,\star}(s) - V_1^{M,\widehat{\pi}}(s) \leq \sum_{h=1}^H \mathbb{E}^{M,\widehat{\pi}} \Big[\overline{Q}_h - \big(\mathcal{T}_h^M \, \overline{Q}_{h+1} \big)(s_h, \widehat{\pi}(s_h)) | s_1 = s \Big]$$

- ▶ If $\overline{Q}_h = Q_h^{M,\star}$, then $Q_h^{M,\star} = \mathcal{T}_h^M Q_{h+1}^{M,\star}$, then the right-hand side is 0.
- ► Hence, exact Bellman consistency implies no sub-optimality gap.

UCB-VI for Tabular MDPs: Setup

Assumptions 1.1

- ▶ State and action spaces are small, with S = |S| and A = |A|
- ► For simplicity, $R_h^M(s, a) = \delta_{r_h}(s, a)$ for some known $r_h : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ are known, $V_1^{M, \star}(s) \in [0, 1]$ for any $s \in \mathcal{S}$;
- ▶ Only transition probabilities P^{M} are unknown.

Empirical counts:

$$n_h^t(s,a) = \sum_{i=1}^{t-1} \mathbb{I}\{(s_h^i, a_h^i) = (s,a)\},\$$

$$n_h^t(s, a, s') = \sum_{i=1}^{t-1} \mathbb{I}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}.$$

Estimated transitions prob:
$$\widehat{P}_h^t(s' \mid s, a) = \frac{n_h^t(s, a, s')}{n_h^t(s, a)}$$
.

UCB-VI for Tabular MDPs: Setup

Assumptions 1.1

- ▶ State and action spaces are small, with S = |S| and A = |A|
- ► For simplicity, $R_h^M(s, a) = \delta_{r_h}(s, a)$ for some known $r_h : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ are known, $V_1^{M, \star}(s) \in [0, 1]$ for any $s \in \mathcal{S}$;
- ▶ Only transition probabilities P^{M} are unknown.

Empirical counts:

$$n_h^t(s,a) = \sum_{i=1}^{t-1} \mathbb{I}\{(s_h^i, a_h^i) = (s,a)\},$$

$$n_h^t(s, a, s') = \sum_{i=1}^{t-1} \mathbb{I}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}.$$

Estimated transitions prob:
$$\widehat{P}_h^t(s' \mid s, a) = \frac{n_h^t(s, a, s')}{n_h^t(s, a)}$$
.

UCB-VI for Tabular MDPs: Setup

Assumptions 1.1

- ▶ State and action spaces are small, with S = |S| and A = |A|
- ► For simplicity, $R_h^M(s, a) = \delta_{r_h}(s, a)$ for some known $r_h : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ are known, $V_1^{M, \star}(s) \in [0, 1]$ for any $s \in \mathcal{S}$;
- ▶ Only transition probabilities P^{M} are unknown.

Empirical counts:

$$n_h^t(s,a) = \sum_{i=1}^{t-1} \mathbb{I}\{(s_h^i, a_h^i) = (s, a)\},$$

$$n_h^t(s, a, s') = \sum_{i=1}^{t-1} \mathbb{I}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}.$$

Estimated transitions prob: $\widehat{P}_h^t(s' \mid s, a) = \frac{n_h^t(s, a, s')}{n_h^t(s, a)}$.

UCB-VI Algorithm

Algorithm: UCB-VI

```
\begin{array}{l} \textbf{for } t = 1 \textbf{ to } T \textbf{ do} \\ \hline \overline{V}_{H+1}^t \leftarrow 0; \\ \textbf{ for } h = H \textbf{ to } 0 \textbf{ do} \\ \hline & Update \ n_t^h(s,a), n_t^h(s,a,s') \ \text{and} \ b_{h,\delta}^t(s,a) (\text{defined later}); \\ \hline \overline{Q}_h^t(s,a) \leftarrow \left(r_h(s,a) + \mathbb{E}_{s' \sim \widehat{P}_t^h(\cdot|s,a)} \left[\overline{V}_{h+1}^t(s')\right] + b_{h,\delta}^t(s,a)\right) \wedge 1; \\ \hline V_h^t(s) \leftarrow \max_{a \in A} Q_h^t(s,a), \ \text{and} \ \pi_h^b(s) \leftarrow \arg\max_{a \in A} Q_h^t(s,a); \\ \textbf{end} \\ \hline \text{Collect trajectory} \ (s_1^t, a_1^t, r_1^t), \dots, (s_H^t, a_H^t, r_H^t); \\ \\ \textbf{end} \\ \end{array}
```

Kev ideas

- Optimism: Augment rewards with a bonus to ensure high-probability over-estimation.
- Surrogate Bellman operator: Use empirical \widehat{P}_t^h in place of the unknown P^M .

UCB-VI Algorithm

Algorithm: UCB-VI

```
\begin{array}{l} \textbf{for } t = 1 \textbf{ to } T \textbf{ do} \\ \hline \overline{V}_{H+1}^t \leftarrow 0; \\ \textbf{ for } h = H \textbf{ to } 0 \textbf{ do} \\ \hline & | & \text{Update } n_t^h(s,a), n_t^h(s,a,s') \text{ and } \frac{b_{h,\delta}^t(s,a)}{b_{h,\delta}^t(s,a)} (\text{defined later}); \\ \hline & \overline{Q}_h^t(s,a) \leftarrow \left(r_h(s,a) + \mathbb{E}_{s' \sim \widehat{P}_t^h(\cdot|s,a)} \left[\overline{V}_{h+1}^t(s')\right] + b_{h,\delta}^t(s,a)\right) \wedge 1; \\ \hline & V_h^t(s) \leftarrow \max_{a \in A} Q_h^t(s,a), \text{ and } \pi_h^b(s) \leftarrow \arg\max_{a \in A} Q_h^t(s,a); \\ \textbf{end} \\ \hline & \text{Collect trajectory } (s_1^t, a_1^t, r_1^t), \dots, (s_H^t, a_H^t, r_H^t); \\ \hline \textbf{end} \\ \hline \end{array}
```

Key ideas:

- Optimism: Augment rewards with a bonus to ensure high-probability over-estimation.
- Surrogate Bellman operator: Use empirical \widehat{P}_t^h in place of the unknown P^M .

Design Goals for \overline{Q}_h **in UCB-VI**

1. Optimism:

With high probability, we require

$$\overline{Q}_h(s,a) \geq Q_h^{M,\star}(s,a)$$

Achieved by adding a bonus $b_{h,\delta}^t(s,a)$ to $r_h(s,a)$ (analogous to widening a confidence interval).

Self-Consistency:

 \overline{Q}_h should be approximately consistent with the Bellman backup:

$$\overline{Q}_h(s,a) pprox ig[{\cal T}_h^M \, \overline{Q}_{h+1}ig](s,a) \quad ext{(lemma 3)}.$$

▶ This minimizes the accumulation of errors across stages.

Design Goals for \overline{Q}_h in UCB-VI

1. Optimism:

With high probability, we require

$$\overline{Q}_h(s,a) \ge Q_h^{M,\star}(s,a)$$

Achieved by adding a bonus $b_{h,\delta}^t(s,a)$ to $r_h(s,a)$ (analogous to widening a confidence interval).

2. Self-Consistency:

 \overline{Q}_h should be approximately consistent with the Bellman backup:

$$\overline{Q}_h(s,a) \approx \left[\mathcal{T}_h^M \overline{Q}_{h+1}\right](s,a)$$
 (lemma 3).

▶ This minimizes the accumulation of errors across stages.

Theorem 4: Regret Bound for UCB-VI

Theorem 4

For any $\delta > 0$, UCB-VI with

$$b_{h,\delta}^t(s,a) = 2\sqrt{rac{\log(2SAHT/\delta)}{n_h^t(s,a)}}$$

guarantees that with probability at least $1 - \delta$,

$$Reg \lesssim HS\sqrt{AT \log(SAHT/\delta)}$$
.

Remarks

- ▶ A slight variation (using Freedman's inequality) yields an improved rate of $O(H\sqrt{SAT} + poly(H, S, A) \log T)$.
- ► The optimal rate is $\Theta(\sqrt{HSAT})$, achievable via a more refined bonus choice and analysis.

Theorem 4: Regret Bound for UCB-VI

Theorem 4

For any $\delta > 0$, UCB-VI with

$$b_{h,\delta}^t(s,a) = 2\sqrt{rac{\log(2SAHT/\delta)}{n_h^t(s,a)}}$$

guarantees that with probability at least $1 - \delta$,

$$Reg \lesssim HS\sqrt{AT\,\log\big(SAHT/\delta\big)}.$$

Remarks

- ▶ A slight variation (using Freedman's inequality) yields an improved rate of $O(H\sqrt{SAT} + poly(H, S, A) \log T)$.
- ► The optimal rate is $\Theta(\sqrt{HSAT})$, achievable via a more refined bonus choice and analysis.

Analysis for a Single Episode

We aim to bound Reg = $\sum_{t=1}^{T} \left[f^{M}(\pi_{M^{\star}}) - f^{M}(\pi_{t}) \right]$ for UCB-VI. Fix episode t and omit the superscript t for notational simplicity. Define the estimated MDP

$$\widehat{M} = \left\{\mathcal{S}, \mathcal{A}, \{\widehat{P}_h\}_{h=1}^H, \{R_h^M\}_{h=1}^H, d_1\right\},$$

with Bellman operator

$$\mathcal{T}_h^{\widehat{M}} \, Q(s,a) = r_h(s,a) + \mathbb{E}_{s' \sim \widehat{P}_h(\cdot \mid s,a)} \left[\max_a Q(s',a) \right].$$

Consider $\overline{Q}_{H+1} \equiv 0$, $\overline{Q}_h(s,a) = \left\{ [\mathcal{T}_h^{\widehat{M}} \, \overline{Q}_{h+1}](s,a) + b_{h,\delta}(s,a) \right\} \wedge 1$ and $\overline{V}_h(s) = \max_a \overline{Q}_h(s,a)$.

Lemma 5

Suppose for all $s \in S$, $a \in A$,

$$\left|\sum_{s'}\widehat{P}_h(s'\mid s,a)V_h^{M,\star}(s') - \sum_{s'}P_h^M(s'\mid s,a)V_h^{M,\star}(s')\right| \leq b_{h,\delta}(s,a),$$

then $\overline{Q}_h \geq Q_h^{M,\star}$ and $\overline{V}_h \geq V_h^{M,\star}$.

i.e., sufficiently large $b_{h,\delta}$ bounding transition error ensures \overline{Q}_h optimism.

Lemma 6 Suppose

$$\max_{V \in \{0,1\}^S} \left| \sum_{s'} \widehat{P}_h(s' \mid s, a) V(s') - \sum_{s'} P_h^M(s' \mid s, a) V(s') \right| \leq b'_{h, \delta}(s, a),$$

then
$$\overline{Q}_h - \mathcal{T}_h^M \overline{Q}_{h+1} \leq (b_{h,\delta} + b'_{h,\delta}) \wedge 1$$
.

Lemma 5

Suppose for all $s \in S$, $a \in A$,

$$\left|\sum_{s'}\widehat{P}_h(s'\mid s,a)V_h^{M,\star}(s') - \sum_{s'}P_h^M(s'\mid s,a)V_h^{M,\star}(s')\right| \leq b_{h,\delta}(s,a),$$

then $\overline{Q}_h \geq Q_h^{M,\star}$ and $\overline{V}_h \geq V_h^{M,\star}$.

i.e., sufficiently large $b_{h,\delta}$ bounding transition error ensures \overline{Q}_h optimism.

Lemma 6

Suppose

$$\max_{V \in \{0,1\}^S} \left| \sum_{s'} \widehat{P}_h(s' \mid s, a) V(s') - \sum_{s'} P_h^M(s' \mid s, a) V(s') \right| \le b'_{h, \delta}(s, a),$$

then
$$\overline{Q}_h - \mathcal{T}_h^M \overline{Q}_{h+1} \leq (b_{h,\delta} + b'_{h,\delta}) \wedge 1$$
.

Overall Regret Analysis

Bring back time index *t*.

Lemma 7

With probability at least $1 - \delta$, the functions

$$b_{h,\delta}^t(s,a) = 2\sqrt{rac{\log(2SAHT/\delta)}{n_h^t(s,a)}}, \ and \ b_{h,\delta}'^t(s,a) = 8\sqrt{rac{S\log\Big(2SAHT/\delta\Big)}{n_h^t(s,a)}}$$

satisfy the assumptions of Lemmas 5 and 6 for all s, a, h, t.

Now put everything together. Under the event in Lemma 7, the optimism of \overline{Q}_h^t satisfies the conditions of Lemma 3 thereby guaranteeing the instantaneous regret on round t,

$$\sum_{h=1}^{H} \mathbb{E}^{M,\widehat{\pi}^t} \left[\underbrace{\left(\overline{Q}_h^t - \mathcal{T}_h^M \, \overline{Q}_{h+1}^t \right)}_{\leq (b_{h,\delta} + b_{h,\delta}') \wedge 1} (s_h^t, \widehat{\pi}^t(s_h^t)) | s_1 = s \right]$$

Summing over t and applying Azuma-Hoeffding gives

$$\operatorname{Reg} \lesssim \sum_{t=1}^{T} \sum_{h=1}^{H} \left(b_{h,\delta} \left(s_h^t, \widehat{\pi}^t(s_h^t) \right) + b_{h,\delta}' \left(s_h^t, \widehat{\pi}^t(s_h^t) \right) \right) \wedge 1 + \sqrt{HT \log(1/\delta)}.$$

Substituting the bonus term and summation bounds (details omitted), the regret is ultimately controlled by $O(H\sqrt{SAT})$.

Now put everything together. Under the event in Lemma 7, the optimism of \overline{Q}_h^t satisfies the conditions of Lemma 3 thereby guaranteeing the instantaneous regret on round t,

$$\sum_{h=1}^{H} \mathbb{E}^{M,\widehat{\pi}^t} \left[\underbrace{\left(\overline{Q}_h^t - \mathcal{T}_h^M \, \overline{Q}_{h+1}^t\right)}_{\leq (b_{h,\delta} + b_{h,\delta}') \wedge 1} (s_h^t, \widehat{\pi}^t(s_h^t)) | s_1 = s \right]$$

Summing over t and applying Azuma-Hoeffding gives

$$\operatorname{Reg} \lesssim \sum_{t=1}^{T} \sum_{h=1}^{H} \left(b_{h,\delta} \left(s_h^t, \widehat{\pi}^t(s_h^t) \right) + b_{h,\delta}' \left(s_h^t, \widehat{\pi}^t(s_h^t) \right) \right) \wedge 1 + \sqrt{HT \log(1/\delta)}.$$

Substituting the bonus term and summation bounds (details omitted), the regret is ultimately controlled by $O(H\sqrt{SAT})$.

Now put everything together. Under the event in Lemma 7, the optimism of \overline{Q}_h^t satisfies the conditions of Lemma 3 thereby guaranteeing the instantaneous regret on round t,

$$\sum_{h=1}^{H} \mathbb{E}^{M,\widehat{\pi}^t} \left[\underbrace{\left(\overline{Q}_h^t - \mathcal{T}_h^M \, \overline{Q}_{h+1}^t\right)}_{\leq (b_{h,\delta} + b_{h,\delta}') \wedge 1} (s_h^t, \widehat{\pi}^t(s_h^t)) | s_1 = s \right]$$

Summing over t and applying Azuma-Hoeffding gives

$$\operatorname{Reg} \lesssim \sum_{t=1}^{T} \sum_{h=1}^{H} \left(b_{h,\delta} \left(s_h^t, \widehat{\pi}^t(s_h^t) \right) + b_{h,\delta}' \left(s_h^t, \widehat{\pi}^t(s_h^t) \right) \right) \wedge 1 + \sqrt{HT \log(1/\delta)}.$$

Substituting the bonus term and summation bounds (details omitted), the regret is ultimately controlled by $O(H\sqrt{SAT})$.

Outline

Ch 5. Reinforcement Learning: Basics

Ch 6. General Decision Making

Setting: Decision Making with Structured Observations

The protocol runs for T rounds. For t = 1, ..., T:

- 1. The learner picks a decision $\pi^t \in \Pi$.
- 2. Nature chooses a *reward* $r^t \in \mathcal{R} \subseteq \mathbb{R}$ and an *observation* $o_t \in \mathcal{O}$ based on π^t with \mathcal{R} . Both the reward and observation are then observed by the learner.

Consider a stochastic variant.

Assumptions 2.1 (Stochastic Rewards and Observations)

Rewards and observations are generated independently via

$$(r^t, o^t) \sim M^*(\cdot \mid \pi^t)$$

where $M^\star:\Pi o\Delta(\mathcal{R} imes\mathcal{O})$ is the underlying model.

Setting: Decision Making with Structured Observations

The protocol runs for *T* rounds. For t = 1, ..., T:

- 1. The learner picks a decision $\pi^t \in \Pi$.
- 2. Nature chooses a *reward* $r^t \in \mathcal{R} \subseteq \mathbb{R}$ and an *observation* $o_t \in \mathcal{O}$ based on π^t with \mathcal{R} . Both the reward and observation are then observed by the learner.

Consider a stochastic variant.

Assumptions 2.1 (Stochastic Rewards and Observations)

Rewards and observations are generated independently via

$$(r^t, o^t) \sim M^{\star}(\cdot \mid \pi^t)$$

where $M^*: \Pi \to \Delta(\mathcal{R} \times \mathcal{O})$ is the underlying model.

To facilitate learning and function approximation, the learner has access to a *model class* \mathcal{M} that contains M^* .

Assumptions 2.2 (Realizability)

 \mathcal{M} contains the true model M^* .

For any $M \in \mathcal{M}$, define the *mean reward function*

$$f^M(\pi) := \mathbb{E}^{M,\pi}[r]$$

where $\mathbb{E}^{M,\pi}[\cdot]$ denotes the expectation under $r,o\sim M(\pi)$, and let

$$\pi_M := \underset{\pi \in \Pi}{\arg \max} f^M(\pi)$$

be the optimal decision. Finally, define the induced class

$$\mathcal{F}_{\mathcal{M}} := \{ f^M \mid M \in \mathcal{M} \}$$

To facilitate learning and function approximation, the learner has access to a *model class* \mathcal{M} that contains M^* .

Assumptions 2.2 (Realizability)

 \mathcal{M} contains the true model M^* .

For any $M \in \mathcal{M}$, define the *mean reward function*

$$f^M(\pi) := \mathbb{E}^{M,\pi}[r]$$

where $\mathbb{E}^{M,\pi}[\cdot]$ denotes the expectation under $r,o \sim M(\pi)$, and let

$$\pi_M := \operatorname*{arg\,max} f^M(\pi)$$

be the optimal decision. Finally, define the induced class

$$\mathcal{F}_{\mathcal{M}} := \{ f^M \mid M \in \mathcal{M} \}$$

Performance Measure: Regret

We evaluate the learner's performance in terms of regret to optimal decision for M^* :

$$extsf{Reg} := \sum_{t=1}^T \mathbb{E}_{\pi^t \sim p^t} \Big[f^{M^\star}(\pi_{M^\star}) - f^{M^\star}(\pi^t) \Big]$$

where $p^t \in \Delta(\Pi)$ is the learner's distribution over decisions at round t.

Abbreviate $f^* = f^{M^*}$ and $\pi^* = \pi_{M^*}$ for brevity.

- **Structured Bandits**: $\mathcal{O} = \{\emptyset\}$.
- Contextual Bandits:

Select
$$\pi^t : \mathcal{X} \to [A]$$
 and then observe x^t \iff first observe x^t and then select $\pi^t(x^t) \in [A]$

$$\mathcal{O} = \mathcal{X}, \ \Pi = \mathcal{X} \to [A], \ x \sim \mathcal{D}^M, \ r \sim \mathcal{R}^M(\cdot | x, \pi(x)).$$

- ▶ Online Reinforcement Learning: $\Pi = \Pi_{\text{rns}}$, $r^t = \sum_{h=1}^{H} r_h^t$, and $o_t = \tau_t$.
- Other Examples:
 - Partially Observed Markov Decision Processes (POMDPs)
 - ▶ Bandits with graph-structured feedback
 - Partial monitoring

- **Structured Bandits**: $\mathcal{O} = \{\emptyset\}$.
- ► Contextual Bandits:

Select
$$\pi^t : \mathcal{X} \to [A]$$
 and then observe $x^t \iff$ first observe x^t and then select $\pi^t(x^t) \in [A]$

$$\mathcal{O} = \mathcal{X}, \Pi = \mathcal{X} \to [A], x \sim \mathcal{D}^M, r \sim \mathcal{R}^M(\cdot | x, \pi(x)).$$

- ▶ Online Reinforcement Learning: $\Pi = \Pi_{\text{rns}}$, $r^t = \sum_{h=1}^{H} r_h^t$, and $o_t = \tau_t$.
- Other Examples:
 - ▶ Partially Observed Markov Decision Processes (POMDPs)
 - ▶ Bandits with graph-structured feedback
 - Partial monitoring

- **Structured Bandits**: $\mathcal{O} = \{\emptyset\}$.
- Contextual Bandits:

Select
$$\pi^t : \mathcal{X} \to [A]$$
 and then observe x^t \iff first observe x^t and then select $\pi^t(x^t) \in [A]$

$$\mathcal{O} = \mathcal{X}, \Pi = \mathcal{X} \to [A], x \sim \mathcal{D}^M, r \sim \mathcal{R}^M(\cdot | x, \pi(x)).$$

- ▶ Online Reinforcement Learning: $\Pi = \Pi_{\text{rns}}$, $r^t = \sum_{h=1}^{H} r_h^t$, and $o_t = \tau_t$.
- Other Examples:
 - Partially Observed Markov Decision Processes (POMDPs)
 - ► Bandits with graph-structured feedback
 - Partial monitoring

- **Structured Bandits**: $\mathcal{O} = \{\emptyset\}$.
- Contextual Bandits:

Select
$$\pi^t : \mathcal{X} \to [A]$$
 and then observe $x^t \iff$ first observe x^t and then select $\pi^t(x^t) \in [A]$

$$\mathcal{O} = \mathcal{X}, \Pi = \mathcal{X} \to [A], x \sim \mathcal{D}^M, r \sim \mathcal{R}^M(\cdot | x, \pi(x)).$$

- ▶ Online Reinforcement Learning: $\Pi = \Pi_{\text{rns}}$, $r^t = \sum_{h=1}^{H} r_h^t$, and $o_t = \tau_t$.
- Other Examples:
 - Partially Observed Markov Decision Processes (POMDPs)
 - ▶ Bandits with graph-structured feedback
 - Partial monitoring

- **Structured Bandits**: $\mathcal{O} = \{\emptyset\}$.
- Contextual Bandits:

Select
$$\pi^t : \mathcal{X} \to [A]$$
 and then observe x^t \iff first observe x^t and then select $\pi^t(x^t) \in [A]$

$$\mathcal{O} = \mathcal{X}, \Pi = \mathcal{X} \to [A], x \sim \mathcal{D}^M, r \sim \mathcal{R}^M(\cdot | x, \pi(x)).$$

- ▶ Online Reinforcement Learning: $\Pi = \Pi_{\text{rns}}$, $r^t = \sum_{h=1}^{H} r_h^t$, and $o_t = \tau_t$.
- Other Examples:
 - Partially Observed Markov Decision Processes (POMDPs)
 - Bandits with graph-structured feedback
 - Partial monitoring

► Total Variation: $f(t) = \frac{1}{2}|t-1|$

$$D_{\text{TV}}(\mathbb{P}, \mathbb{Q}) = \frac{1}{2} \int \left| \frac{d\mathbb{P}}{d\nu} - \frac{d\mathbb{Q}}{d\nu} \right| d\nu = \sup_{A \in \mathcal{F}} |\mathbb{P}(A) - \mathbb{Q}(A)|.$$

Squared Hellinger: $f(t) = (1 - \sqrt{t})^2$

$$D^2_{
m H}(\mathbb{P},\mathbb{Q}) = \int \Bigl(\sqrt{rac{d\mathbb{P}}{d
u}} - \sqrt{rac{d\mathbb{Q}}{d
u}}\Bigr)^2 d
u.$$

► Kullback-Leibler: $f(t) = t \log t$

$$D_{\mathrm{KL}}(\mathbb{P}||\mathbb{Q}) = \int \log \frac{d\mathbb{P}}{d\mathbb{Q}} d\mathbb{P} \quad \text{if } \mathbb{P} \ll \mathbb{Q} \text{ else } + \infty$$

▶ Total Variation: $f(t) = \frac{1}{2}|t-1|$

$$D_{\mathrm{TV}}(\mathbb{P},\mathbb{Q}) = \frac{1}{2} \int \Bigl| \frac{d\mathbb{P}}{d\nu} - \frac{d\mathbb{Q}}{d\nu} \Bigr| d\nu = \sup_{A \in \mathcal{F}} |\mathbb{P}(A) - \mathbb{Q}(A)|.$$

Squared Hellinger: $f(t) = (1 - \sqrt{t})^2$

$$D^2_{
m H}(\mathbb{P},\mathbb{Q}) = \int \Bigl(\sqrt{rac{d\mathbb{P}}{d
u}} - \sqrt{rac{d\mathbb{Q}}{d
u}}\Bigr)^2 d
u.$$

Kullback-Leibler: $f(t) = t \log t$

$$D_{\mathrm{KL}}(\mathbb{P}\|\mathbb{Q}) = \int \log \frac{d\mathbb{P}}{d\mathbb{Q}} d\mathbb{P} \quad \text{if } \mathbb{P} \ll \mathbb{Q} \text{ else } + \infty$$

▶ Total Variation: $f(t) = \frac{1}{2}|t-1|$

$$D_{\mathrm{TV}}(\mathbb{P},\mathbb{Q}) = \frac{1}{2} \int \Big| \frac{d\mathbb{P}}{d\nu} - \frac{d\mathbb{Q}}{d\nu} \Big| d\nu = \sup_{A \in \mathcal{F}} |\mathbb{P}(A) - \mathbb{Q}(A)|.$$

▶ Squared Hellinger: $f(t) = (1 - \sqrt{t})^2$

$$D^2_{
m H}(\mathbb{P},\mathbb{Q}) = \int \Bigl(\sqrt{rac{d\mathbb{P}}{d
u}} - \sqrt{rac{d\mathbb{Q}}{d
u}}\Bigr)^2 d
u.$$

Kullback-Leibler: $f(t) = t \log t$

$$D_{\mathrm{KL}}(\mathbb{P}\|\mathbb{Q}) = \int \log \frac{d\mathbb{P}}{d\mathbb{Q}} d\mathbb{P} \quad \text{if } \mathbb{P} \ll \mathbb{Q} \text{ else } + \infty$$

▶ Total Variation: $f(t) = \frac{1}{2}|t-1|$

$$D_{\mathrm{TV}}(\mathbb{P},\mathbb{Q}) = \frac{1}{2} \int \Bigl| \frac{d\mathbb{P}}{d\nu} - \frac{d\mathbb{Q}}{d\nu} \Bigr| d\nu = \sup_{A \in \mathcal{F}} |\mathbb{P}(A) - \mathbb{Q}(A)|.$$

▶ Squared Hellinger: $f(t) = (1 - \sqrt{t})^2$

$$D^2_{
m H}(\mathbb{P},\mathbb{Q}) = \int \Bigl(\sqrt{rac{d\mathbb{P}}{d
u}} - \sqrt{rac{d\mathbb{Q}}{d
u}}\Bigr)^2 d
u.$$

Kullback-Leibler: $f(t) = t \log t$

$$D_{\mathrm{KL}}(\mathbb{P}\|\mathbb{Q}) = \int \log \frac{d\mathbb{P}}{d\mathbb{Q}} d\mathbb{P} \quad \text{if } \mathbb{P} \ll \mathbb{Q} \text{ else } +\infty.$$

Lemma 8

For all distributions \mathbb{P} and \mathbb{Q} ,

$$D^2_{\mathrm{TV}}(\mathbb{P}, \mathbb{Q}) \le D^2_{\mathrm{H}}(\mathbb{P}, \mathbb{Q}) \le D_{\mathrm{KL}}(\mathbb{P} \parallel \mathbb{Q})$$

Lemma 9
If $\sup_{F \in \mathcal{F}} \frac{\mathbb{P}(F)}{\mathbb{Q}(F)} \leq V$,

$$D_{\mathrm{KL}}(\mathbb{P} \parallel \mathbb{Q}) \le \Big(2 + \log(V)\Big)D_{\mathrm{H}}^2(\mathbb{P}, \mathbb{Q})$$

Lemma 8

For all distributions \mathbb{P} and \mathbb{Q} ,

$$D^2_{\mathrm{TV}}(\mathbb{P}, \mathbb{Q}) \le D^2_{\mathrm{H}}(\mathbb{P}, \mathbb{Q}) \le D_{\mathrm{KL}}(\mathbb{P} \parallel \mathbb{Q})$$

Lemma 9

If
$$\sup_{F\in\mathcal{F}}\frac{\mathbb{P}(F)}{\mathbb{Q}(F)}\leq V$$
,

$$D_{\mathrm{KL}}(\mathbb{P} \, \| \, \mathbb{Q}) \leq \Big(2 + \log(V)\Big)D_{\mathrm{H}}^2(\mathbb{P}, \mathbb{Q})$$

(Offset) Decision-Estimation Coefficient

How to optimally explore/make decisions connects to statistical complexity (e.g. minimax regret for \mathcal{M}), requires coverage of

- simple problems (e.g., mean rewards suffice), and
- complex problems (e.g., structured observations provide extra information).

Definition 10

For a model class \mathcal{M} , reference model $\widehat{M} \in \mathcal{M}$, and scale parameter $\gamma > 0$, the DEC is defined via

$$\frac{\operatorname{dec}_{\gamma}(\mathcal{M}, \widehat{M}) = \inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{f^{M}(\pi_{M}) - f^{M}(\pi)}_{\text{reg of decision}} - \gamma \underbrace{D^{2}_{H}(M(\pi), \widehat{M}(\pi))}_{\text{info gain for obs}} \right]$$

and

$$\operatorname{\mathsf{dec}}_\gamma(\mathcal{M}) := \sup_{\widehat{M} \in \operatorname{\mathsf{co}}(\mathcal{M})} \operatorname{\mathsf{dec}}_\gamma(\mathcal{M}, \widehat{M})$$

(Offset) Decision-Estimation Coefficient

How to optimally explore/make decisions connects to statistical complexity (e.g. minimax regret for \mathcal{M}), requires coverage of

- simple problems (e.g., mean rewards suffice), and
- complex problems (e.g., structured observations provide extra information).

Definition 10

For a model class \mathcal{M} , reference model $\widehat{M} \in \mathcal{M}$, and scale parameter $\gamma > 0$, the DEC is defined via

$$\frac{\operatorname{dec}_{\gamma}(\mathcal{M}, \widehat{M})}{\operatorname{dec}_{\gamma}(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{f^{M}(\pi_{M}) - f^{M}(\pi)}_{\text{reg of decision}} - \gamma \underbrace{\frac{\mathbf{D}_{H}^{2}\big(M(\pi), \widehat{M}(\pi)\big)}_{\text{info gain for obs}} \right]$$

and

$$\operatorname{dec}_{\gamma}(\mathcal{M}) := \sup_{\widehat{M} \in \operatorname{co}(\mathcal{M})} \operatorname{dec}_{\gamma}(\mathcal{M}, \widehat{M})$$

E2D for General Decision Making

Algorithm: Estimation to Decision-Making (E2D) for General Decision Making

parameters: Exploration parameter $\gamma > 0$;

for t = 1 to T do

Obtain \widehat{M}^t from the online estimation oracle with

$$\mathcal{H}^{t-1} = \{(\pi^1, r^1, o^1), \dots, (\pi^{t-1}, r^{t-1}, o^{t-1})\};$$

Compute

$$\boldsymbol{p}^t \leftarrow \underset{\boldsymbol{p} \in \Delta(\Pi)}{\operatorname{arg\,min}} \ \underset{\boldsymbol{M} \in \mathcal{M}}{\sup} \ \mathbb{E}_{\boldsymbol{\pi} \sim \boldsymbol{p}} \left[\boldsymbol{f}^{\boldsymbol{M}}(\boldsymbol{\pi}_{\boldsymbol{M}}) - \boldsymbol{f}^{\boldsymbol{M}}(\boldsymbol{\pi}) - \gamma \, D_H^2 \big(\boldsymbol{M}(\boldsymbol{\pi}), \widehat{\boldsymbol{M}}^t(\boldsymbol{\pi}) \big) \right];$$

Sample decision $\pi^t \sim p^t$ and update estimation algorithm with (π^t, r^t, o^t) ;

end

Regret Bound for E2D

Estimation error for the estimation oracle is defined via

$$\mathbf{Est}_{\mathrm{H}} := \sum_{t=1}^{T} \mathbb{E}_{\pi^t \sim p^t} \Big[D^2_{\mathrm{H}} ig(M^\star(\pi^t), \widehat{M}^t(\pi^t) ig) \Big]$$

Proposition 2.1

E2D with exploration parameter $\gamma>0$ guarantees that, almost surely,

$$\mathbf{Reg} \leq \sup_{\widehat{M} \in \widehat{\mathcal{M}}} \mathsf{dec}_{\gamma}(\mathcal{M}, \widehat{M}) \cdot T + \gamma \cdot \mathbf{Est}_{\mathsf{H}}$$

For any finite class, it is possible to achieve

$$\mathbf{Reg} \le \mathrm{dec}_{\gamma}(\mathcal{M}) \cdot T + \gamma \cdot \log(|\mathcal{M}|/\delta)$$

with probability at least $1 - \delta$

Regret Bound for E2D

Estimation error for the estimation oracle is defined via

$$\mathbf{Est}_{\mathrm{H}} := \sum_{t=1}^{T} \mathbb{E}_{\pi^t \sim p^t} \Big[D^2_{\mathrm{H}} ig(M^\star(\pi^t), \widehat{M}^t(\pi^t) ig) \Big]$$

Proposition 2.1

E2D with exploration parameter $\gamma > 0$ guarantees that, almost surely,

$$\textbf{Reg} \leq \sup_{\widehat{M} \in \widehat{\mathcal{M}}} \, \text{dec}_{\gamma}(\mathcal{M}, \widehat{M}) \cdot T \,\, + \,\, \gamma \cdot \textbf{Est}_{H}$$

For any finite class, it is possible to achieve

$$\mathbf{Reg} \leq \mathrm{dec}_{\gamma}(\mathcal{M}) \cdot T + \gamma \cdot \log(|\mathcal{M}|/\delta)$$

with probability at least $1 - \delta$.

Notions of Optimality

Optimality notions vary; here we focus on minimax optimality.

Definition 11 (Minimax Regret)

$$\mathfrak{M}(\mathcal{M},T) = \inf_{p_1,\dots,p_T} \sup_{M^{\star} \in \mathcal{M}} \mathbb{E}^{M^{\star},p}[\mathbf{Reg}(T)]$$

where
$$p^t = p^t(\cdot|\mathcal{H}^{t-1})$$

Remarks

We will say that an algorithm is minimax optimal if it achieves minimax regret up to absolute constants that do not depend on \mathcal{M} or T.

Notions of Optimality

Optimality notions vary; here we focus on minimax optimality.

Definition 11 (Minimax Regret)

$$\mathfrak{M}(\mathcal{M},T) = \inf_{p_1,\dots,p_T} \sup_{M^{\star} \in \mathcal{M}} \mathbb{E}^{M^{\star},p}[\mathbf{Reg}(T)]$$

where $p^t = p^t(\cdot | \mathcal{H}^{t-1})$

Remarks

We will say that an algorithm is minimax optimal if it achieves minimax regret up to absolute constants that do not depend on \mathcal{M} or T.

Constrained DEC Definition 12 (Constrained DEC)

For $\varepsilon > 0$, $\operatorname{dec}_{\varepsilon}^{c}(\mathcal{M}, \widehat{M})$ is defined as

$$\inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \left\{ \mathbb{E}_{\pi \sim p} \left[f^M(\pi_M) - f^M(\pi) \right] \middle| \mathbb{E}_{\pi \sim p} \left[D_{\mathrm{H}}^2 \left(M(\pi), \widehat{M}(\pi) \right) \right] \leq \varepsilon^2 \right\},\,$$

with

$$\operatorname{dec}^{\operatorname{c}}_{\varepsilon}(\mathcal{M}) := \sup_{\widehat{M} \in \operatorname{co}(\mathcal{M})} \operatorname{dec}^{\operatorname{c}}_{\varepsilon} \Big(\mathcal{M} \cup \{\widehat{M}\}, \widehat{M} \Big).$$

Proposition 2.2

Define the localized subclass

$$\mathcal{M}_{\alpha}(\widehat{M}) = \{ M \in \mathcal{M} : f^{\widehat{M}}(\pi_{\widehat{M}}) \ge f^{M}(\pi_{M}) - \alpha \},$$

then for all $\varepsilon > 0$ and $\gamma \geq c_1 \varepsilon^{-1}$

$$\mathrm{dec}_\varepsilon^c(\mathcal{M}) \leq c_3 \cdot \sup_{\gamma \geq c_1 \, \varepsilon^{-1}} \sup_{\widehat{M} \in \mathrm{co}(\mathcal{M})} \mathrm{dec}_\gamma \big(\underbrace{\mathcal{M}_{\alpha(\varepsilon,\gamma)}(\widehat{M}), \widehat{M}}_{\bullet \, \square \, \bullet \, \bullet \, \square \, \bullet \, \bullet} \big)$$

Constrained DEC Definition 12 (Constrained DEC)

For $\varepsilon > 0$, $\operatorname{dec}_{\varepsilon}^{c}(\mathcal{M}, \widehat{M})$ is defined as

$$\inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \left\{ \mathbb{E}_{\pi \sim p} \left[f^M(\pi_M) - f^M(\pi) \right] \middle| \mathbb{E}_{\pi \sim p} \left[D_{\mathrm{H}}^2 \left(M(\pi), \widehat{M}(\pi) \right) \right] \leq \varepsilon^2 \right\},\,$$

with

$$\operatorname{dec}^{\operatorname{c}}_{\varepsilon}(\mathcal{M}) := \sup_{\widehat{M} \in \operatorname{co}(\mathcal{M})} \operatorname{dec}^{\operatorname{c}}_{\varepsilon} \Big(\mathcal{M} \cup \{\widehat{M}\}, \widehat{M} \Big).$$

Proposition 2.2

Define the localized subclass

$$\mathcal{M}_{\alpha}(\widehat{M}) = \{ M \in \mathcal{M} : f^{\widehat{M}}(\pi_{\widehat{M}}) \ge f^{M}(\pi_{M}) - \alpha \},$$

then for all $\varepsilon > 0$ and $\gamma > c_1 \varepsilon^{-1}$,

$$\operatorname{dec}^c_\varepsilon(\mathcal{M}) \leq c_3 \cdot \sup_{\gamma \geq c_1 \, \varepsilon^{-1}} \sup_{\widehat{M} \in \operatorname{co}(\mathcal{M})} \operatorname{dec}_\gamma \big(\mathcal{M}_{\alpha(\varepsilon,\gamma)}(\widehat{M}), \widehat{M} \big)$$

DEC is Necessary and Sufficient

Proposition 2.3 (DEC Lower Bound)

Let $\underline{\varepsilon}_T := \frac{1}{\sqrt{T}}$ for some sufficiently small constant c > 0. If $\operatorname{dec}_{\underline{\varepsilon}_T}^c(\mathcal{M}) \geq 10 \, \underline{\varepsilon}_T$ for all T, then $\exists M \in \mathcal{M}$ for which

$$\mathbb{E}[\mathbf{Reg}(T)] \gtrsim dec_{\underline{\varepsilon}_T}^c(\mathcal{M}) \cdot T$$

Proposition 2.4 (Upper bound for constrained DEC)

For a finite \mathcal{M} and set $\overline{\varepsilon}_T := c \sqrt{\frac{\log(|\mathcal{M}|/\delta)}{T}}$ for some sufficiently large constant c. Under some conditions, there exists an algorithm achieving

$$\mathbb{E}[\mathbf{Reg}(T)] \lesssim dec_{\overline{\varepsilon}_T}^c(\mathcal{M}) \cdot T$$

with prob. at least $1 - \delta$.

DEC is Necessary and Sufficient

Proposition 2.3 (DEC Lower Bound)

Let $\underline{\varepsilon}_T := \frac{1}{\sqrt{T}}$ for some sufficiently small constant c > 0. If $\operatorname{dec}_{\underline{\varepsilon}_T}^c(\mathcal{M}) \geq 10 \, \underline{\varepsilon}_T$ for all T, then $\exists M \in \mathcal{M}$ for which

$$\mathbb{E}[\mathbf{Reg}(T)] \gtrsim dec_{\underline{\varepsilon}_T}^c(\mathcal{M}) \cdot T$$

Proposition 2.4 (Upper bound for constrained DEC)

For a finite \mathcal{M} and set $\overline{\varepsilon}_T := c\sqrt{\frac{\log(|\mathcal{M}|/\delta)}{T}}$ for some sufficiently large constant c. Under some conditions, there exists an algorithm achieving

$$\mathbb{E}[\mathbf{Reg}(T)] \lesssim dec_{\overline{\varepsilon}_T}^c(\mathcal{M}) \cdot T$$

with prob. at least $1 - \delta$.

ightharpoonup Model Class \mathcal{M} : All non-stationary MDPs

$$M = \{S, A, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^n, d_1\}$$

with state space S = [S], action space A = [A], horizon H and normalized rewards (i.e. $\sum_{h=1}^{H} r_h \in [0, 1]$ a.s.).

- **Decision Space** Π : $\Pi = \Pi_{rns}$ the set of all randomized, non-stationary Markov policies.
- Occupancy Measures:

$$d_h^{M,\pi}(s) = \mathbb{P}^{M,\pi}(s_h = s), \quad d_h^{M,\pi}(s,a) = \mathbb{P}^{M,\pi}(s_h = s, a_h = a)$$

▶ **Model Class** \mathcal{M} : All non-stationary MDPs

$$M = \{S, A, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^n, d_1\}$$

with state space S = [S], action space A = [A], horizon H and normalized rewards (i.e. $\sum_{h=1}^{H} r_h \in [0, 1]$ a.s.).

- **Decision Space** Π : $\Pi = \Pi_{rns}$ the set of all randomized, non-stationary Markov policies.
- Occupancy Measures:

$$d_h^{M,\pi}(s) = \mathbb{P}^{M,\pi}(s_h = s), \quad d_h^{M,\pi}(s,a) = \mathbb{P}^{M,\pi}(s_h = s, a_h = a).$$

▶ **Model Class** \mathcal{M} : All non-stationary MDPs

$$M = \{S, A, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^n, d_1\}$$

with state space S = [S], action space A = [A], horizon H and normalized rewards (i.e. $\sum_{h=1}^{H} r_h \in [0, 1]$ a.s.).

- **Decision Space** Π : $\Pi = \Pi_{rns}$ the set of all randomized, non-stationary Markov policies.
- Occupancy Measures:

$$d_h^{M,\pi}(s) = \mathbb{P}^{M,\pi}(s_h = s), \quad d_h^{M,\pi}(s,a) = \mathbb{P}^{M,\pi}(s_h = s, a_h = a).$$

 \blacktriangleright Model Class \mathcal{M} : All non-stationary MDPs

$$M = \{S, A, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^n, d_1\}$$

with state space S = [S], action space A = [A], horizon H and normalized rewards (i.e. $\sum_{h=1}^{H} r_h \in [0, 1]$ a.s.).

- **Decision Space** Π : $\Pi = \Pi_{rns}$ the set of all randomized, non-stationary Markov policies.
- Occupancy Measures:

$$d_h^{M,\pi}(s) = \mathbb{P}^{M,\pi}(s_h = s), \quad d_h^{M,\pi}(s,a) = \mathbb{P}^{M,\pi}(s_h = s, a_h = a).$$

PC-IGW

Algorithm: Policy Cover Inverse Gap Weighting (PC-IGW)

parameters: Estimated model \widehat{M} , Exploration parameter $\eta > 0$; Define *inverse gap weighted policy cover* $\Psi = \{\pi_{h,s,a}\}_{h \in [H], s \in [S], a \in [A]}$ via

$$\pi_{h,s,a} \leftarrow \operatorname*{arg\,max}_{\pi \in \Pi_{\mathrm{rms}}} \ \frac{d_h^{\widehat{M},\pi}(s,a)}{2HSA + \eta \left(f^{\widehat{M}}(\pi_{\widehat{M}}) - f^{\widehat{M}}(\pi)\right)};$$

For each $\pi \in \Psi \cup \{\pi_{\widehat{M}}\}$, define $p(\pi) = \frac{1}{\lambda + \eta \left(f^{\widehat{M}}(\pi_{\widehat{M}}) - f^{\widehat{M}}(\pi)\right)}$ with $\lambda \in [1, 2HSA]$ chosen s.t. $\sum_{\pi} p(\pi) = 1$;

return p

Proposition 2.5

For tabular RL setting, PC-IGW with $\eta = \frac{\gamma}{21H^2}$ and $\widehat{M} \in \mathcal{M}$ ensures $\sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f^M(\pi_M) - f^M(\pi) - \gamma D_{\mathrm{H}}^2(M(\pi), \widehat{M}(\pi)) \right] \lesssim \frac{H^3 SA}{\gamma}$ and consequently $\operatorname{dec}_{\gamma}(\mathcal{M}, \widehat{M}) \lesssim \frac{H^3 SA}{\gamma}$.

PC-IGW

Algorithm: Policy Cover Inverse Gap Weighting (PC-IGW)

parameters: Estimated model \widehat{M} , Exploration parameter $\eta > 0$; Define *inverse gap weighted policy cover* $\Psi = \{\pi_{h,s,a}\}_{h \in [H], s \in [S], a \in [A]}$ via

$$\pi_{h,s,a} \leftarrow \mathop{\arg\max}_{\pi \in \Pi_{\text{rns}}} \ \frac{d_h^{\widehat{M},\pi}(s,a)}{2HSA + \eta \left(f^{\widehat{M}}(\pi_{\widehat{M}}) - f^{\widehat{M}}(\pi)\right)};$$

For each $\pi\in\Psi\cup\{\pi_{\widehat{M}}\}$, define $p(\pi)=\frac{1}{\lambda+\eta\left(f^{\widehat{M}}(\pi_{\widehat{M}})-f^{\widehat{M}}(\pi)\right)}$ with $\lambda\in[1,2HSA]$ chosen s.t. $\sum_{\pi}p(\pi)=1$; return p

Proposition 2.5

For tabular RL setting, PC-IGW with $\eta = \frac{\gamma}{21H^2}$ and $\widehat{M} \in \mathcal{M}$ ensures $\sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f^M(\pi_M) - f^M(\pi) - \gamma D_{\mathrm{H}}^2 \big(M(\pi), \widehat{M}(\pi) \big) \right] \lesssim \frac{H^3 SA}{\gamma}$ and consequently $\operatorname{dec}_{\gamma}(\mathcal{M}, \widehat{M}) \lesssim \frac{H^3 SA}{\gamma}$.

Lower Bound on DEC

- ▶ Obtain proper estimator $\widehat{M} \in \mathcal{M}$ instead of $co(\mathcal{M})$:
 - At each t, given $\{(\pi^i, r^i, o^i)_{i=1}^{t-1}\}$, use layerwise estimator $\mathbf{Alg}_{\mathrm{Est};h}$ to get an estimator \widehat{P}_h^t for $P_h^{M^\star}$
 - ► Measure performance via layer-wise Hellinger error

$$\mathbf{Est}_{\mathrm{H};h} := \sum_{t=1}^T \mathbb{E}_{\pi^t \sim p^t} \mathbb{E}^{M^\star,\pi^t} \Big[D^2_{\mathrm{H}} ig(P_h^{M^\star}(s_h,a_h), \widehat{P}_h^t(s_h,a_h) ig) \Big]$$

- Obtain an estimator for the full model by taking \(\hat{M}^t \) with \(\hat{P}^t_h \)
- ► The estimator above has $\mathbf{Est}_{H} \leq O(\log(H)) \sum_{h=1}^{H} \mathbf{Est}_{H;h}$ and $\widehat{M}^{t} \in \mathcal{M}$.

Proposition 2.6

For tabular MDPs with $S \ge 2$, $A \ge 2$, and $H \ge 2 \log_2(S/2)$,

$$dec_{\varepsilon}^{c}(\mathcal{M}) \gtrsim \varepsilon \sqrt{HSA}$$
 and hence $\mathbb{E}[\mathbf{Reg}] \gtrsim \sqrt{HSAT}$.

Lower Bound on DEC

- ▶ Obtain proper estimator $\widehat{M} \in \mathcal{M}$ instead of $co(\mathcal{M})$:
 - At each t, given $\{(\pi^i, r^i, o^i)_{i=1}^{t-1}\}$, use layerwise estimator $\mathbf{Alg}_{\mathrm{Est};h}$ to get an estimator \widehat{P}_h^t for $P_h^{M^\star}$
 - Measure performance via layer-wise Hellinger error

$$\mathbf{Est}_{\mathrm{H};h} := \sum_{t=1}^T \mathbb{E}_{\pi^t \sim p^t} \mathbb{E}^{M^\star,\pi^t} \Big[D_{\mathrm{H}}^2 ig(P_h^{M^\star}(s_h,a_h), \widehat{P}_h^t(s_h,a_h) ig) \Big]$$

- ▶ Obtain an estimator for the full model by taking \widehat{M}^t with \widehat{P}_h^t
- ► The estimator above has $\mathbf{Est}_{H} \leq O(\log(H)) \sum_{h=1}^{H} \mathbf{Est}_{H;h}$ and $\widehat{M}^{t} \in \mathcal{M}$.

Proposition 2.6

For tabular MDPs with $S \ge 2$, $A \ge 2$, and $H \ge 2 \log_2(S/2)$,

$$dec_{\varepsilon}^{c}(\mathcal{M}) \gtrsim \varepsilon \sqrt{HSA}$$
 and hence $\mathbb{E}[\mathbf{Reg}] \gtrsim \sqrt{HSAT}$.

Guarantees Based on Decision Space Complexity

Key Idea: Low estimation complexity (small bound on \mathbf{Est}_H or $\log |\mathcal{M}|$) is not needed everywhere; focusing on regions critical for distinguishing decision quality suffices.

Proposition 2.7

There exists an algorithm s.t. $\forall \delta > 0$, with prob. at least $1 - \delta$,

$$\mathbf{Reg} \lesssim \inf_{\gamma > 0} \left\{ \mathsf{dec}_{\gamma} \big(\mathsf{co}(\mathcal{M}) \big) \cdot T + \gamma \cdot \mathsf{log} \big(\frac{|\Pi|}{\delta} \big) \right\}$$

Remarks

- ► Replace $\log |\mathcal{M}|$ with smaller $\log |\Pi|$, $\operatorname{dec}_{\gamma}(\mathcal{M})$ with the potentially larger $\operatorname{dec}_{\gamma}(\operatorname{co}(\mathcal{M}))$
- ► For convex M (e.g., multi-armed, linear, convex bandits), this provides strict improvement.
- ► For non-convex ones (e.g., tabular MDPs), the trade-off differs.

Guarantees Based on Decision Space Complexity

Key Idea: Low estimation complexity (small bound on \mathbf{Est}_H or $\log |\mathcal{M}|$) is not needed everywhere; focusing on regions critical for distinguishing decision quality suffices.

Proposition 2.7

There exists an algorithm s.t. $\forall \delta > 0$, with prob. at least $1 - \delta$,

$$\mathbf{Reg} \lesssim \inf_{\gamma > 0} \Big\{ \mathrm{dec}_{\gamma} \big(\mathrm{co}(\mathcal{M}) \big) \cdot T + \gamma \cdot \log \big(\frac{|\Pi|}{\delta} \big) \Big\}.$$

Remarks

- ► Replace $\log |\mathcal{M}|$ with smaller $\log |\Pi|$, $\operatorname{dec}_{\gamma}(\mathcal{M})$ with the potentially larger $\operatorname{dec}_{\gamma}(\operatorname{co}(\mathcal{M}))$
- ► For convex M (e.g., multi-armed, linear, convex bandits), this provides strict improvement.
- ► For non-convex ones (e.g., tabular MDPs), the trade-off differs.

Guarantees Based on Decision Space Complexity

Key Idea: Low estimation complexity (small bound on \mathbf{Est}_H or $\log |\mathcal{M}|$) is not needed everywhere; focusing on regions critical for distinguishing decision quality suffices.

Proposition 2.7

There exists an algorithm s.t. $\forall \delta > 0$, with prob. at least $1 - \delta$,

$$\mathbf{Reg} \lesssim \inf_{\gamma > 0} \Big\{ \mathrm{dec}_{\gamma} \big(\mathrm{co}(\mathcal{M}) \big) \cdot T + \gamma \cdot \log \big(\frac{|\Pi|}{\delta} \big) \Big\}.$$

Remarks

- ► Replace $\log |\mathcal{M}|$ with smaller $\log |\Pi|$, $\operatorname{dec}_{\gamma}(\mathcal{M})$ with the potentially larger $\operatorname{dec}_{\gamma}(\operatorname{co}(\mathcal{M}))$
- ► For convex M (e.g., multi-armed, linear, convex bandits), this provides strict improvement.
- For non-convex ones (e.g., tabular MDPs), the trade-off differs.

General Divergences and Randomized Estimators

Algorithm: E2D for General Divergences and Randomized Estimators

parameters: Exploration parameter $\gamma > 0$, divergence $D(\cdot || \cdot)$;

for t = 1 to T do

Obtain randomized estimate $\nu^t \in \Delta(\mathcal{M})$ from estimation oracle with $\{(\pi^i, r^i, o^i)\}_{i < t}$;

Compute

$$p^t \leftarrow \underset{p \in \Delta(\Pi)}{\operatorname{arg\,min}} \ \underset{M \in \mathcal{M}}{\sup} \ \mathbb{E}_{\pi \sim p} \left[f^M(\pi_M) - f^M(\pi) - \gamma \, \mathbb{E}_{\widehat{M} \sim \nu^t} \big[D^\pi \big(M(\pi) \| \widehat{M}^t(\pi) \big) \big] \right];$$

Sample decision $\pi^t \sim p^t$ and update estimation algorithm with (π^t, r^t, o^t) ;

end

► Motivation:

- ▶ **Generalized distance**: Beyond squared Hellinger distance, use a general divergence $D_{\pi}(\cdot||\cdot)$.
 - ▶ $\exists \Psi$ and $\psi : \mathcal{M} \to \Psi$, s.t. $D^{\pi}(M|M') = D^{\pi}(\psi(M)|M')$, $f^{M}(\pi) = f^{\psi(M)}(\pi)$ and $\pi_{M} = \pi_{\psi(M)}$ for all M, M'.
 - Can derive bounds on Est scaling with $\log |\Psi|$ instead of $\log |\mathcal{M}|$.
- ▶ Generalized DEC $\overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}, \nu)$:

$$\inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \Big[f_M(\pi_M) - f_M(\pi) - \gamma \cdot \mathbb{E}_{\widehat{M} \sim \nu} \Big[D_{\pi}(\widehat{M} || M) \Big] \Big].$$

Randomized Estimators: Instead of a point estimate, produce a distribution $\nu^t \in \Delta(\mathcal{M})$.

Define
$$\mathbf{Est}_{\mathrm{D}} := \sum_{t=1}^{T} \mathbb{E}_{\pi^t \sim p^t, \widehat{M} \sim \nu^t} D^{\pi^t}(\widehat{M} \| M^\star)$$
, we have

$$\mathbf{Reg} \leq \overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}) \cdot T + \gamma \cdot \mathbf{Est}_{D}$$

Motivation:

- ▶ **Generalized distance**: Beyond squared Hellinger distance, use a general divergence $D_{\pi}(\cdot||\cdot)$.
 - ▶ $\exists \Psi$ and $\psi : \mathcal{M} \to \Psi$, s.t. $D^{\pi}(M|M') = D^{\pi}(\psi(M)|M')$, $f^{M}(\pi) = f^{\psi(M)}(\pi)$ and $\pi_{M} = \pi_{\psi(M)}$ for all M, M'.
 - ► Can derive bounds on **Est** scaling with $\log |\Psi|$ instead of $\log |\mathcal{M}|$.
- ► Generalized DEC $\overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}, \nu)$:

$$\inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f_M(\pi_M) - f_M(\pi) - \gamma \cdot \mathbb{E}_{\widehat{M} \sim \nu} \left[D_{\pi}(\widehat{M} | M) \right] \right]$$

▶ Randomized Estimators: Instead of a point estimate, produce a distribution $\nu^t \in \Delta(\mathcal{M})$.

Define
$$\mathbf{Est}_{\mathrm{D}} := \sum_{t=1}^{T} \mathbb{E}_{\pi^{t} \sim p^{t} |\widehat{M} \sim \nu^{t}} D^{\pi^{t}}(\widehat{M} \| M^{\star})$$
, we have

$$\mathbf{Reg} \leq \overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}) \cdot T + \gamma \cdot \mathbf{Est}_{D}$$

Motivation:

- ▶ **Generalized distance**: Beyond squared Hellinger distance, use a general divergence $D_{\pi}(\cdot||\cdot)$.
 - ▶ $\exists \Psi$ and $\psi : \mathcal{M} \to \Psi$, s.t. $D^{\pi}(M|M') = D^{\pi}(\psi(M)|M')$, $f^{M}(\pi) = f^{\psi(M)}(\pi)$ and $\pi_{M} = \pi_{\psi(M)}$ for all M, M'.
 - Can derive bounds on **Est** scaling with $\log |\Psi|$ instead of $\log |\mathcal{M}|$.
- ► Generalized DEC $\overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}, \nu)$:

$$\inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f_M(\pi_M) - f_M(\pi) - \gamma \cdot \mathbb{E}_{\widehat{M} \sim \nu} \left[D_{\pi}(\widehat{M} \| M) \right] \right].$$

▶ **Randomized Estimators**: Instead of a point estimate, produce a distribution $\nu^t \in \Delta(\mathcal{M})$.

Define
$$\mathbf{Est}_D := \sum_{t=1}^T \mathbb{E}_{\pi^t \sim p^t, \widehat{M} \sim \nu^t} D^{\pi^t}(\widehat{M} \| M^\star)$$
, we have

$$\mathbf{Reg} \leq \overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}) \cdot T + \gamma \cdot \mathbf{Est}_{D}$$

► Motivation:

- ▶ **Generalized distance**: Beyond squared Hellinger distance, use a general divergence $D_{\pi}(\cdot||\cdot)$.
 - ▶ $\exists \Psi$ and $\psi : \mathcal{M} \to \Psi$, s.t. $D^{\pi}(M|M') = D^{\pi}(\psi(M)|M')$, $f^{M}(\pi) = f^{\psi(M)}(\pi)$ and $\pi_{M} = \pi_{\psi(M)}$ for all M, M'.
 - Can derive bounds on **Est** scaling with $\log |\Psi|$ instead of $\log |\mathcal{M}|$.
- ► Generalized DEC $\overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}, \nu)$:

$$\inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f_M(\pi_M) - f_M(\pi) - \gamma \cdot \mathbb{E}_{\widehat{M} \sim \nu} \left[D_{\pi}(\widehat{M} \| M) \right] \right].$$

▶ **Randomized Estimators**: Instead of a point estimate, produce a distribution $\nu^t \in \Delta(\mathcal{M})$.

Define
$$\mathbf{Est}_D := \sum_{t=1}^T \mathbb{E}_{\pi^t \sim p^t, \widehat{M} \sim \nu^t} D^{\pi^t}(\widehat{M} \| M^\star)$$
, we have

$$\mathbf{Reg} \leq \overline{\operatorname{dec}}^{\mathrm{D}}_{\gamma}(\mathcal{M}) \cdot T + \gamma \cdot \mathbf{Est}_{\mathrm{D}}$$

► Motivation:

- ▶ **Generalized distance**: Beyond squared Hellinger distance, use a general divergence $D_{\pi}(\cdot||\cdot)$.
 - ▶ $\exists \Psi$ and $\psi : \mathcal{M} \to \Psi$, s.t. $D^{\pi}(M|M') = D^{\pi}(\psi(M)|M')$, $f^{M}(\pi) = f^{\psi(M)}(\pi)$ and $\pi_{M} = \pi_{\psi(M)}$ for all M, M'.
 - Can derive bounds on **Est** scaling with $\log |\Psi|$ instead of $\log |\mathcal{M}|$.
- ► Generalized DEC $\overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}, \nu)$:

$$\inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f_M(\pi_M) - f_M(\pi) - \gamma \cdot \mathbb{E}_{\widehat{M} \sim \nu} \left[D_{\pi}(\widehat{M} \| M) \right] \right].$$

▶ **Randomized Estimators**: Instead of a point estimate, produce a distribution $\nu^t \in \Delta(\mathcal{M})$.

Define
$$\mathbf{Est}_{\mathrm{D}} := \sum_{t=1}^{T} \mathbb{E}_{\pi^{t} \sim p^{t} | \widehat{M} \sim \nu^{t}} D^{\pi^{t}}(\widehat{M} || M^{\star})$$
, we have

$$\mathbf{Reg} \leq \overline{\operatorname{dec}}_{\gamma}^{D}(\mathcal{M}) \cdot T + \gamma \cdot \mathbf{Est}_{D}.$$

Optimistic Estimation and E2D.Opt

- ▶ Incorporates a bonus to encourage over-estimate $f^{M^*}(\pi_{M^*})$.
- **▶** Optimistic Estimation Error:

$$\mathbf{OptEst}_{\gamma}^{D} = \sum_{t=1}^{T} \mathbb{E}_{\pi^{t} \sim p^{t}, \, \widehat{M}^{t} \sim \nu^{t}} \left[D^{\pi_{t}}(\widehat{M}^{t} \| M^{\star}) + \gamma^{-1} \Big(f^{M^{\star}}(\pi_{M^{\star}}) - f^{\widehat{M}^{t}}(\pi_{\widehat{M}^{t}}) \Big) \right]$$

▶ Optimistic DEC:

$$\operatorname{o-dec}^{D}_{\gamma}(\mathcal{M}, \nu) = \inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p, \widehat{M} \sim \nu} \left[f^{\widehat{M}}(\pi_{\widehat{M}}) - f_{M}(\pi) - \gamma D^{\pi}(\widehat{M} \| M) \right].$$

Proposition 2.9

E2D.Opt ensures that

$$\mathbf{Reg} \leq \mathrm{o\text{-}dec}_{\gamma}^{D}(\mathcal{M}) \cdot T + \gamma \cdot \mathbf{OptEst}_{\gamma}^{D}$$

almost surely

Optimistic Estimation and E2D.Opt

- ▶ Incorporates a bonus to encourage over-estimate $f^{M^*}(\pi_{M^*})$.
- Optimistic Estimation Error:

$$\mathbf{OptEst}_{\gamma}^D = \sum_{t=1}^T \mathbb{E}_{\pi^t \sim p^t, \, \widehat{M}^t \sim
u^t} \left[D^{\pi_t}(\widehat{M}^t \| M^\star) + \gamma^{-1} \Big(f^{M^\star}(\pi_{M^\star}) - f^{\widehat{M}^t}(\pi_{\widehat{M}^t}) \Big) \right]$$

Optimistic DEC:

$$\operatorname{o-dec}^{D}_{\gamma}(\mathcal{M}, \nu) = \inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p, \widehat{M} \sim \nu} \left[f^{\widehat{M}}(\pi_{\widehat{M}}) - f_{M}(\pi) - \gamma D^{\pi}(\widehat{M} \| M) \right].$$

Proposition 2.9

E2D.**Opt** *ensures that*

$$\mathbf{Reg} \leq \mathrm{o\text{-}dec}_{\gamma}^D(\mathcal{M}) \cdot T + \gamma \cdot \mathbf{OptEst}_{\gamma}^D$$

almost surely.

