CRITICAL CONSTANTS

ADDITIONAL REFERENCES

Other data and estimation techniques for the elements are contained in Gates and Thodos, Am. Inst. Chem. Eng. J., 6 (1960):50–54; and Ohse and von Tippelskirch, High Temperatures—High Pressures, 9 (1977):367–385. For inorganic substances see Mathews, Chem. Rev., 72 (1972):71–100; for organics see Kudchaker, Alani, and Zwolinski, Chem. Rev., 68 (1968):659–735; and for fluorocarbons see Advances in Fluorine Chemistry, App. B, Butterworth. Washington, 1963, pp. 173–175.

TABLE 2-164 Critical Constants and Acentric Factors of Inorganic and Organic Compounds									
Cmpd.	Name	Formula	CAS no.	Mol. wt.	T_c , K	$P_c \times 1$ E-06 Pa	V _c , m³/Kmol	Z_c	Acentric factor
1	Methane	CH ₄	74828	16.043	190.564	4.59	0.099	0.286	0.011
2	Ethane	C_2H_6	74840	30.070	305.32	4.85	0.146	0.279	0.098
3		C_3H_8	74986	44.097	369.83	4.21	0.200	0.273	0.149
	Propane	$C_3\Pi_8$							0.149
$\frac{4}{5}$	n-Butane	C_4H_{10}	106978	58.123	425.12	3.77	0.255	0.272	
5	n-Pentane	C_5H_{12}	109660	72.150	469.7	3.36	0.315	0.271	0.251
6	n-Hexane	$C_{6}H_{14}$	110543	86.177	507.6	3.04	0.373	0.269	0.304
7	n-Heptane	$C_{7}H_{16}$	142825	100.204	540.2	2.72	0.428	0.259	0.346
8	n-Octane	C_8H_{18}	111659	114.231	568.7	2.47	0.486	0.254	0.396
9	n-Nonane	C_9H_{20}	111842	128.258	594.6	2.31	0.540	0.252	0.446
10	n-Decane	$C_{10}H_{22}$	124185	142.285	617.7	2.09	0.601	0.245	0.488
11	n-Undecane	$C_{11}H_{24}$	1120214	156.312	639	1.95	0.658	0.242	0.530
12	n-Dodecane	$C_{12}H_{26}$	112403	170.338	658	1.82	0.718	0.239	0.577
13	n-Tridecane	$C_{13}H_{28}$	629505	184.365	675	1.68	0.779	0.233	0.617
14	n-Tetradecane	$C_{14}H_{30}$	629594	198.392	693	1.57	0.830	0.226	0.643
15	n-Pentadecane	$C_{15}H_{32}$	629629	212.419	708	1.47	0.888	0.222	0.685
16	n-Hexadecane	$C_{16}H_{34}$	544763	226.446	723	1.41	0.943	0.221	0.721
17	n-Heptadecane	$C_{17}H_{36}$	629787	240.473	736	1.34	0.998	0.219	0.771
18	n-Octadecane	$C_{18}H_{38}$	593453	254.500	747	1.26	1.059	0.214	0.806
19	n-Nonadecane	$C_{19}H_{40}$	629925	268.527	758	1.21	1.119	0.215	0.851
20	n-Eicosane	$C_{20}^{10}H_{42}^{40}$	112958	282.553	768	1.17	1.169	0.215	0.912
21	2-Methylpropane	$\mathrm{C_4H_{10}}$	75285	58.123	408.14	3.62	0.261	0.278	0.177
22	2-Methylbutane	C_5H_{12}	78784	72.150	460.43	3.37	0.304	0.268	0.226
$\frac{-2}{23}$	2,3-Dimethylbutane	C_6H_{14}	79298	86.177	499.98	3.13	0.358	0.269	0.246
24	2-Methylpentane	C_6H_{14}	107835	86.177	497.5	3.02	0.366	0.267	0.279
25	2,3-Dimethylpentane	$C_{7}H_{16}$	565593	100.204	537.35	2.88	0.396	0.255	0.292
26	2,3,3-Trimethylpentane	$C_{8}H_{18}$	560214	114.231	573.5	2.81	0.455	0.268	0.289
27	2,2,4-Trimethylpentane	C_8H_{18}	540841	114.231	543.96	2.56	0.465	0.264	0.301
28	Ethylene	C_2H_4	74851	28.054	282.34	5.03	0.132	0.283	0.086
29	Propylene	C_3H_4 C_3H_6	115071	42.081	365.57	4.63	0.188	0.286	0.137
30	1-Butene	C_4H_8	106989	56.108	419.95	4.04	0.241	0.279	0.190
31	cis-2-Butene	C_4H_8 C_4H_8	590181	56.108	435.58	4.24	0.233	0.273	0.204
32	trans-2-Butene	C_4H_8 C_4H_8	624646	56.108	428.63	4.08	0.237	0.273	0.204
33	1-Pentene		109671	70.134	464.78	3.56	0.295	0.272	0.216
		C_5H_{10}							
34 35	1-Hexene	C_6H_{12}	592416	84.161	504.03	3.14	0.354	0.265	0.280
ან	1-Heptene	$ m C_7H_{14}$	592767	98.188	537.29	2.82	0.413	0.261	0.330
36	1-Octene	C_8H_{16}	111660	112.215	566.65	2.57	0.460	0.251	0.377
37	1-Nonene	C_9H_{18}	124118	126.242	593.25	2.33	0.528	0.249	0.417
38	1-Decene	$C_{10}H_{20}$	872059	140.269	616.4	2.21	0.584	0.252	0.478
39	2-Methylpropene	C_4H_8	115117	56.108	417.9	3.98	0.238	0.272	0.192
40	2-Methyl-1-butene	$\mathrm{C_5H_{10}}$	563462	70.134	465	3.45	0.292	0.261	0.237
41	2-Methyl-2-butene	C_5H_{10}	513359	70.134	471	3.38	0.292	0.252	0.272
42	1,2-Butadiene	C_4H_6	590192	54.092	452	4.36	0.220	0.255	0.166
43	1,3-Butadiene	C_4H_6	106990	54.092	425.17	4.30	0.220	0.268	0.192
44	2-Methyl-1,3-butadiene	C_5H_8	78795	68.119	484	3.85	0.277	0.265	0.158
45	Acetylene	$\mathrm{C_2H_2}$	74862	26.038	308.32	6.15	0.113	0.271	0.188
46	Methylacetylene	C_3H_4	74997	40.065	402.39	5.62	0.164	0.276	0.216
47	Dimethylacetylene	C_4H_6	503173	54.092	473.2	4.87	0.221	0.274	0.239
48	3-Methyl-1-butyne	C_5H_8	598232	68.119	463.2	4.20	0.275	0.300	0.308
49	1-Pentyne		627190	68.119	481.2	4.17	0.277	0.300	0.303
50	2-Pentyne	C_5H_8 C_5H_8	627214	68.119	519	4.02	0.276	0.259	0.290
51	1-Hexyne	C_6H_{10}	693027	82.145	516.2	3.64	0.322	0.273	0.335
52	2-Hexyne	C_6H_{10}	764352	82.145	549	3.53	0.322	0.276	0.333
53	3-Hexyne	$C_{6}H_{10}$	928494	82.145	544	3.54	0.334	0.250	0.221
53 54			628717	96.172	559	3.13	0.386	0.261	0.219
	1-Heptyne	C_7H_{12}							0.272
55 56	1-Octyne	C_8H_{14}	629050	110.199	585	2.82	0.441	0.256	
- 00	Vinylacetylene	C_4H_4	689974	52.076	454	4.89	0.205	0.265	0.109

TABLE 2-164 Critical Constants and Acentric Factors of Inorganic and Organic Compounds (Continued)

Cample	IADLL Z	104 Criffical Collisiants a	ila Acciliile i	aciors or more	janne ana or	game com	poorius (comme	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Methylevschopenname		Name	Formula	CAS no.	Mol. wt.	T_c , K		V _c , m³/Kmol	Z_c	
Cyclobeanic	58	Methylcyclopentane	C_6H_{12}	96377	84.161	532.79	3.78	0.319	0.272	0.230
63 Ethyleyscholeniane C4H, 14229 68.119 507 4.81 0.430 0.238 0.241 66 1. Methyleyschopenture C4H, 14229 88.119 507 4.81 0.240 0.250 0.250 0.196 66 Cyclobracure C4H, 112883 82.148 542 4.13 0.036 0.237 0.239 0.236 0.260 0.26	60 61	Cyclohexane Methylcyclohexane	$C_{6}H_{12} \\ C_{7}H_{14}$	110827 108872	84.161 98.188	553.58 572.19	4.10 3.48	0.308 0.368	0.274 0.269	0.212 0.236
66 Cyclobescene	63 64	Ethylcyclohexane Cyclopentene	C_8H_{16} C_5H_8	1678917 142290	112.215 68.119	609.15 507	3.04 4.81	0.430 0.245	0.258 0.279	0.246 0.196
68 Tolucue	66	Cyclohexene	C_6H_{10}	110838	82.145	560.4	4.39	0.291	0.274	0.216
Possible	68 69	Toluene <i>o-</i> Xylene	C_7H_8 C_8H_{10}	108883 95476	92.141 106.167	591.8 630.33	4.10 3.74	0.314 0.374	0.262 0.267	0.262 0.311
The propose CaH ₀ 100414 106167 3.60 0.375 0.3963 0.391	70 71									
1.24-Trimethylbenzene	72	Ethylbenzene	C_8H_{10}	100414	106.167	617.2	3.60	0.375	0.263	0.301
75 Isoprophikemzene C _a H ₁ 95828 120,194 631.1 3.18 0.429 0.296 0.322 76 1.3.5 Timethylbenzene C _a H ₁ 90578 134,221 653.15 2.80 0.497 0.256 0.386 77 p-Isoprophichene C _a H ₄ 90578 134,221 653.15 2.80 0.497 0.256 0.366 78 Naphihalene C _a H ₄ 90578 134,221 653.15 3.99 0.413 0.265 0.296 79 Biphenyl C _a H ₄ 92524 134,211 789,26 3.86 0.502 0.254 0.225 80 Syrene C _a H ₄ 9208 230.309 924.85 3.33 0.552 0.254 0.225 81 m-Terphenyl C _a H ₄ 9208 230.309 924.85 3.33 0.552 0.554 0.255 82 Methanol C _a H ₀ 64175 46.069 513.92 6.12 0.168 0.240 0.643 83 Erhanol C _a H ₀ 71238 60.966 536.78 5.12 0.220 0.252 0.617 84 1-Propanol C _a H ₀ 71238 60.966 536.78 5.12 0.220 0.252 0.554 85 1-Butanol C _a H ₀ 71238 60.966 536.78 5.12 0.220 0.256 0.555 85 2-Butanol C _a H ₀ 71863 74.123 569.05 4.34 0.276 0.256 0.555 85 2-Propanol C _a H ₀ 75569 774.123 560.05 4.34 0.276 0.256 0.555 85 2-Propanol C _a H ₀ 75569 774.123 506.21 3.99 0.276 0.256 0.555 87 2-Propanol C _a H ₀ 75569 774.123 506.21 3.99 0.276 0.266 0.559 91 3-Methyl-1-butanol C _a H ₀ 75569 774.123 506.21 3.99 0.276 0.260 0.613 92 1-Hexanol C _a H ₀ 75569 774.123 506.21 3.99 0.276 0.266 0.586 93 3-Methyl-1-butanol C _a H ₀ 75569 774.23 506.65 3.87 0.327 0.260 0.579 94 C _a Cheberanol C _a H ₀ 75569 774.23 506.65 3.87 0.327 0.260 0.579 95 1-Pentanol C _a H ₀ 75569 774.23 506.65 3.87 0.327 0.260 0.576 95 1-Pentanol C _a H ₀ 75569 774.23 506.65 3.87 0.327 0.260 0.576 95 1-Pentanol C _a H ₀ 75569 774.23 777.23 3.90 0.276 0.266 0.586 95 1-Pentanol C _a H ₀ 75569 774.23 777.24 3.90 0.277										
To 1.3.5-Timedrybenzue C ₀ H ₁₁ 108678 120.194 837.36 3.11 0.433 0.254 0.307	74 75		C_9H_{12} C_0H_{12}	98828						
78	76	1,3,5-Trimethylbenzene	C_9H_{12}	108678	120.194	637.36	3.11	0.433	0.254	0.397
The property Cathon Styrene Cathon Styrene Cathon Ca	77	p-Isopropyltoluene	$C_{10}H_{14}$							
80 Styrené CaHs 100425 104152 636 3.82 0.352 0.234 0.295 81 m-Terphenyl CaHs 92068 230.309 924.55 3.53 0.768 0.332 0.561 82 Methanol CJH,O 64175 46.069 513.92 6.12 0.168 0.240 0.643 84 1-Propanol CJH,O 71363 74.123 560.05 5.12 0.220 0.252 0.617 85 1-Butanol CJH,O 71363 74.123 553.05 4.34 0.276 0.254 0.555 86 2-Butanol CJH,O 67690 60.096 508.3 4.79 0.221 0.250 0.670 88 2-Methyl-1-butanol CJH,O 71410 88.150 586.15 3.87 0.327 0.260 0.592 90 2-Methyl-1-butanol CJH,O 71410 88.150 586.15 3.87 0.327 0.260 0.582 9	79	Biphenyl	$C_{10}H_{10}$							
S2 Methanol CH _Q O 67561 32.042 512.64 8.14 0.117 0.224 0.566 83 Ethanol C ₃ H _Q O 64175 46.069 513.92 6.12 0.168 0.240 0.643 84 1-Propanol C ₃ H _Q O 71363 74.123 563.05 4.34 0.276 0.256 0.555 85 2-Battanol C ₃ H _Q O 67690 60.006 508.3 4.79 0.227 0.254 0.575 87 2-Propanol C ₃ H _Q O 67690 60.006 508.3 4.79 0.221 0.250 0.670 88 2-Methyl-1-butanol C ₃ H _Q O 71410 88.150 565.13 3.87 0.327 0.260 0.592 90 2-Methyl-1-butanol C ₄ H _Q O 17326 88.150 565.13 3.87 0.327 0.260 0.592 91 3-Methyl-1-butanol C ₄ H _Q O 112373 88.150 565.13 3.87 0.327 0.260 0.	80	Styrene	C_8H_8	100425	104.152	636	3.82	0.352	0.254	0.295
83 Ethanol C _i H ₁ O 64175 46.069 513.92 6.12 0.168 0.240 0.643 84 11-Propanol C _i H ₁ O 71238 60.096 536.78 5.12 0.220 0.252 0.617 85 1.Butunol C _i H ₁ O 71363 74.123 563.05 4.34 0.276 0.256 0.555 86 2.Butunol C _i H ₁ O 67630 60.096 508.3 4.79 0.221 0.250 0.670 87 2.Propanol C _i H ₂ O 67630 60.096 508.3 4.79 0.221 0.250 0.670 88 2.Methyl-2-propanol C _i H ₂ O 75650 74.123 566.21 3.99 0.276 0.262 0.613 89 1.Pentanol C _i H ₁ O 71410 88.150 566.13 3.87 0.327 0.260 0.632 90 2.Methyl-1-butanol C _i H ₂ O 137326 88.150 566.5 3.87 0.327 0.266 0.586 91 3.Methyl-1-butanol C _i H ₂ O 123513 88.150 567.2 3.90 0.327 0.266 0.586 92 1.Hexanol C _i H ₂ O 111273 102.177 611.35 3.46 0.381 0.259 0.579 93 1.Heythanol C _i H ₂ O 111706 116.203 631.9 3.18 0.435 0.263 0.579 94 Cyclohexanol C _i H ₂ O 108030 100.161 650 4.25 0.322 0.253 0.371 95 Ethylene glycol C _i H ₄ O, 107211 62.068 719.7 7.71 0.191 0.246 0.487 1.2-Propplene glycol C _i H ₄ O, 108930 100.161 650 4.25 0.322 0.253 0.371 97 Phenol C _i H ₄ O 108930 100.161 650 4.25 0.322 0.253 0.371 98 α-Cresol C _i H ₄ O 108934 108.140 705.85 4.52 0.312 0.246 0.488 99 α-Cresol C _i H ₄ O 108934 108.140 705.85 4.52 0.312 0.246 0.489 101 Dimethyl ether C _i H ₄ O 10834 108.140 705.85 4.52 0.312 0.240 0.448 100 α-Cresol C _i H ₄ O 10834 108.140 705.85 4.52 0.312 0.240 0.448 100 α-Cresol C _i H ₄ O 10834 108.140 705.85 4.52 0.312 0.240 0.448 100 α-Cresol C _i H ₄ O 10839 108.140 705.85 4.52 0.312 0.240 0.449 101 Dimethyl ether C _i H ₄ O 557175 741.23 476.3 3.77 0.276 0.253 0.259 102 Methyl ethyl ether C _i H ₄ O 59052 84.13 461.5 3.37 0.276 0.259 0.246 0.439 102 Methyl ethyl ether C _i H ₄ O 59053 74.12 476.3 3.77 0.276 0.259 0.259 105 Methyl ethyl ether C _i H ₄ O 62524 88.150 510 3.31 0.329 0.277 0.244 0.507 101 Dimethyl ether C _i H ₄ O 62524 88.150 510 3.31 0.329 0.277 0.235 0.259 105 Methyl ethyl ether C _i H ₄ O 62524 88.150 500 3.3 3.7 0.366 0.278 0.351 107 Methyl ethyl ether C _i H ₄ O 62524 88.150 500 3.3 3.7 0.366 0.278 0.351 110 Ethyl phenyl ether C _i H ₄ O 62529 88.150 500 3.3 3.1 0.329 0.276										
Section Sec			CH ₄ O C ₂ H ₆ O							
$\begin{array}{c} 85 \\ 86 \\ 2 \\ - \text{Butanol} \\ \text{C}_{1} \\ \text{H}_{10} \\ \text{O} \\ \text{799} \\ 2 \\ - \text{Potpanol} \\ \text{C}_{3} \\ \text{H}_{40} \\ \text{O} \\ \text{76} \\ \text{76} \\ 2 \\ - \text{Propanol} \\ \text{C}_{3} \\ \text{H}_{40} \\ \text{O} \\ \text{67630} \\ \text{60} \\ \text{76} \\ \text{60} \\ \text{70} \\ 70$				71238	60.096				0.252	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1-Butanol		71363						
Section China Ch										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-Methyl-2-propanol								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			C ₅ H ₁₂ O							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						577.2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1-Hexanol	$C_6H_{14}O$	111273	102.177	611.35	3.46	0.381		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_7H_{16}O$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Methyl etnyl ether Methyl n-propyl ether								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	Methyl n-butyl ether	$C_5H_{12}O$	628284	88.150	510	3.31	0.329	0.257	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Methyl isobutyl ether	$C_5H_{12}O$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ethyl propyl ether	C ₅ H ₁₂ O							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ethyl isopropyl ether	$C_5H_{12}O$	625547	88.150	489	3.41		0.276	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	116	1-Butanal	C_4H_8O	123728	72.107	537.2	4.32	0.258	0.250	0.278
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$C_5H_{10}O$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$C_6H_{12}O$							
121 1-Nonanal $C_9H_{18}O$ 124196 142.241 658 2.74 0.527 0.264 0.514										
122 1-Decanal $C_{10}H_{20}O$ 112312 156.268 674.2 2.60 0.580 0.269 0.582	121	1-Nonanal	$C_9H_{18}O$	124196	142.241	658	2.74	0.527	0.264	0.514
	122	1-Decanal	$C_{10}H_{20}O$	112312	156.268	674.2	2.60	0.580	0.269	0.582

TABLE 2-164 Critical Constants and Acentric Factors of Inorganic and Organic Compounds (Continued)

TABLE 2-164 Critical Constants and Acentric Factors of Inorganic and Organic Compounds (Continued)									
Cmpd. no.	Name	Formula	CAS no.	Mol. wt.	T_c , K	$P_c \times 1\text{E-06}$ Pa	V _c , m³∕Kmol	Z_c	Acentric factor
123 124	Acetone Methyl ethyl ketone	C ₃ H ₆ O C ₄ H ₈ O	67641 78933	58.080 72.107	508.2 535.5	4.71 4.12	0.210 0.267	0.234 0.247	0.307 0.320
125	2-Pentanone	$C_5H_{10}O$	107879	86.134	561.08	3.71	0.301	0.239	0.345
126	Methyl isopropyl ketone	$C_5H_{10}O$	563804	86.134	553	3.84	0.313	0.261	0.349
127	2-Hexanone	$C_6H_{12}O$	591786	100.161	587.05	3.31	0.369	0.250	0.395
128	Methyl isobutyl ketone	$C_{6}H_{12}O$	108101	100.161	571.4	3.27	0.369	0.254	0.389
129	2 Mathal 2 mantages		565617			3.32	0.309	0.259	0.386
	3-Methyl-2-pentanone	$C_6H_{12}O$		100.161	573				
130	3-Pentanone	$C_5H_{10}O$	96220	86.134	560.95	3.70	0.336	0.267	0.340
131	Ethyl isopropyl ketone	$C_6H_{12}O$	565695	100.161	567	3.34	0.369	0.262	0.394
132	Diisopropyl ketone	$C_7H_{14}O$	565800	114.188	576	3.06	0.416	0.266	0.411
133	Cyclohexanone	$C_6H_{10}O$	108941	98.145	653	4.01	0.311	0.230	0.308
134	Methyl phenyl ketone	C_8H_8O	98862	120.151	709.5	3.85	0.386	0.252	0.365
135	Formic acid	$\mathrm{CH_2O_2}$	64186	46.026	588	5.81	0.125	0.148	0.317
136	Acetic acid	$C_2H_4O_2$	64197	60.053	591.95	5.74	0.179	0.208	0.463
137	Propionic acid	$C_3H_6O_2$	79094	74.079	600.81	4.61	0.232	0.214	0.574
138	n-Butyric acid	$C_4H_8O_2$	107926	88.106	615.7	4.07	0.291	0.231	0.682
139	Isobutyric acid	$C_4H_8O_2$	79312	88.106	605	3.68	0.291	0.213	0.612
140	Benzoic acid	$C_7H_6O_2$	65850	122.123	751	4.47	0.347	0.248	0.603
141	Acetic anhydride	$C_4H_6O_3$	108247	102.090	606	3.97	0.290	0.229	0.450
142	Methyl formate	$C_2H_4O_2$	107313	60.053	487.2	5.98	0.173	0.255	0.254
143	Methyl acetate	$C_3H_6O_2$	79209	74.079	506.55	4.69	0.229	0.256	0.326
144	Methyl propionate	$C_4H_8O_2$	554121	88.106	530.6	4.03	0.284	0.259	0.349
145	Mothyl p butanete		623427	102.133	554.5	3.48	0.340	0.257	0.349
	Methyl n-butyrate	$C_5H_{10}O_2$							
146	Ethyl formate	$C_3H_6O_2$	109944	74.079	508.4	4.71	0.231	0.257	0.282
147	Ethyl acetate	$C_4H_8O_2$	141786	88.106	523.3	3.85	0.287	0.254	0.363
148	Ethyl propionate	$C_5H_{10}O_2$	105373	102.133	546	3.34	0.345	0.254	0.391
149	Ethyl n-butyrate	$C_6H_{12}O_2$	105544	116.160	571	2.94	0.403	0.249	0.399
150	<i>n</i> -Propyl formate	$C_{4}H_{8}O_{2}$	110747	88.106	538	4.03	0.286	0.257	0.310
	n-1 topyi tormate								
151	n-Propyl acetate	$C_5H_{10}O_2$	109604	102.133	549.73	3.37	0.349	0.257	0.390
152	n-Butyl acetate	$C_6H_{12}O_2$	123864	116.160	579.15	3.11	0.389	0.251	0.410
153	Methyl benzoate	$C_8H_8O_2$	93583	136.150	693	3.59	0.436	0.272	0.421
154	Ethyl benzoate	$C_9H_{10}O_2$	93890	150.177	698	3.22	0.489	0.271	0.477
155	Vinyl acetate	$C_4H_6O_2$	108054	86.090	519.13	3.93	0.270	0.246	0.348
156	Methylamine	CH ₅ N	74895	31.057	430.05	7.41	0.154	0.319	0.279
157	Dimethylamine	C_2H_7N	124403	45.084	437.2	5.26	0.180	0.260	0.293
158		C II N							0.233
	Trimethylamine	C ₃ H ₉ N	75503	59.111	433.25	4.10	0.254	0.289	
159	Ethylamine	C_2H_7N	75047	45.084	456.15	5.59	0.202	0.298	0.283
160	Diethylamine	$C_4H_{11}N$	109897	73.138	496.6	3.67	0.301	0.268	0.300
161	Triethylamine	$C_6H_{15}N$	121448	101.192	535.15	3.04	0.389	0.266	0.316
162	n-Propylamine	C ₃ H ₉ N	107108	59.111	496.95	4.74	0.260	0.298	0.280
163	di- <i>n</i> -Propylamine	$C_6H_{15}N$	142847	101.192	550	3.11	0.401	0.273	0.446
164	Isopropylamine	C_3H_9N	75310	59.111	471.85	4.54	0.221	0.256	0.276
165	Diisopropylamine	$C_6H_{15}N$	108189	101.192	523.1	3.20	0.417	0.307	0.388
166	Aniline	C_6H_7N	62533	93.128	699	5.35	0.270	0.248	0.381
167	N-Methylaniline	C_7H_9N	100618	107.155	701.55	5.19	0.373	0.332	0.480
168	N,N-Dimethylaniline	$C_8H_{11}N$	121697	121.182	687.15	3.63	0.465	0.332	0.403
169	Ethylene oxide	C_2H_4O	75218	44.053	469.15	7.26	0.142	0.264	0.201
									0.201
170	Furan	C_4H_4O	110009	68.075	490.15	5.55	0.218	0.297	
171	Thiophene	C_4H_4S	110021	84.142	579.35	5.71	0.219	0.260	0.195
172	Pyridine	C_5H_5N	110861	79.101	619.95	5.64	0.254	0.278	0.239
173	Formamide	CH ₃ NO	75127	45.041	771	7.75	0.163	0.197	0.410
174	N,N-Dimethylformamide	C ₃ H ₇ NO	68122	73.095	649.6	4.37	0.262	0.212	0.312
175	Acetamide	C_3H_5NO	60355	59.068	761	6.57	0.215	0.212	0.312
					710				
176	N-Methylacetamide	C ₃ H ₇ NO	79163	73.095	718	5.00	0.267	0.224	0.437
177	Acetonitrile	C_2H_3N	75058	41.053	545.5	4.85	0.173	0.185	0.340
178	Propionitrile	C_3H_5N	107120	55.079	564.4	4.19	0.229	0.205	0.325
179	n-Butyronitrile	C_4H_7N	109740	69.106	582.25	3.79	0.278	0.217	0.371
180	Benzonitrile	C_7H_5N	100470	103.123	699.35	4.21	0.339	0.245	0.352
181	Methyl mercaptan	CH ₄ S	74931	48.109	469.95	7.23	0.145	0.268	0.158
182	Ethyl mercaptan	C_2H_6S	75081	62.136	499.15	5.49	0.206	0.273	0.188
183	n-Propyl mercaptan	C_3H_8S	107039	76.163	536.6	4.63	0.254	0.263	0.133
	n-1 ropyr mercaptan	C II C							0.202
184	n-Butyl mercaptan	$C_4H_{10}S$	109795	90.189	570.1	3.97	0.307	0.257	0.272
185	Isobutyl mercaptan	$C_4H_{10}S$	513440	90.189	559	4.06	0.307	0.268	0.253
186	sec-Butyl mercaptan	$C_4H_{10}S$	513531	90.189	554	4.06	0.307	0.271	0.251
187	Dimethyl sulfide	C_2H_6S	75183	62.136	503.04	5.53	0.200	0.264	0.194
188	Methyl ethyl sulfide	C_3H_8S	624895	76.163	533	4.26	0.254	0.244	0.209
189	Diethyl sulfide	$C_4H_{10}S$	352932	90.189	557.15	3.96	0.320	0.273	0.294
	· · · · · · · · · · · · · · · · · · ·	1 2	I	1	1	1	i	I.	'

Cmpd. no.	Name	Formula	CAS no.	Mol. wt.	T_c , K	$P_c \times 1\text{E-06}$ Pa	V _c , m³/Kmol	Z_c	Acentric factor
190	Fluoromethane	CH₃F	593533	34.033	317.42	5.88	0.113	0.252	0.198
191	Chloromethane	CH ₃ Cl	74873	50.488	416.25	6.69	0.113	0.232	0.154
192	Trichloromethane	CHCl ₃	67663	119.377	536.4	5.55	0.142	0.213	0.134
193	Tetrachloromethane	$CHCl_3$ CCl_4	56235	153.822	556.35	4.54	0.238	0.290	0.223
193	Bromomethane	CH_3Br	74839	94.939	467	8.00	0.274	0.270	0.191
194	Fluoroethane	$C_{1}H_{5}F$			375.31				0.192
			353366	48.060		5.01	0.164	0.263	
196	Chloroethane	C ₂ H ₅ Cl	75003	64.514	460.35	5.46	0.155	0.221	0.206
197	Bromoethane	C_2H_5Br	74964	108.966	503.8	6.29	0.215	0.323	0.259
198	1-Chloropropane	C ₃ H ₇ Cl	540545	78.541	503.15	4.58	0.247	0.270	0.228
199	2-Chloropropane	C ₃ H ₇ Cl	75296	78.541	489	4.51	0.247	0.274	0.196
200	1,1-Dichloropropane	$C_3H_6Cl_2$	78999	112.986	560	4.24	0.292	0.266	0.253
201	1,2-Dichloropropane	$C_3H_6Cl_2$	78875	112.986	572	4.23	0.291	0.259	0.256
202	Vinyl chloride	C ₂ H ₃ Cl	75014	62.499	432	5.75	0.179	0.287	0.106
203	Fluorobenzene	C_6H_5F	462066	96.104	560.09	4.54	0.269	0.262	0.247
204	Chlorobenzene	C_6H_5Cl	108907	112.558	632.35	4.53	0.308	0.265	0.251
205	Bromobenzene	C_6H_5Br	108861	157.010	670.15	4.52	0.324	0.263	0.251
		0-1-1,5-1							
206	Air		132259100	28.951	132.45	3.79	0.092	0.318	0.000
207	Hydrogen	H_2	1333740	2.016	33.19	1.32	0.064	0.307	-0.215
208	Helium-4	He	7440597	4.003	5.2	0.23	0.058	0.305	-0.388
209	Neon	Ne	7440019	20.180	44.4	2.67	0.042	0.300	-0.038
210	Argon	Ar	7440371	39.948	150.86	4.90	0.075	0.292	0.000
211	Fluorine	F_2	7782414	37.997	144.12	5.17	0.067	0.287	0.053
212	Chlorine	$\overline{\mathrm{Cl}_2}$	7782505	70.905	417.15	7.79	0.124	0.279	0.073
213	Bromine	Br_2	7726956	159.808	584.15	10.28	0.135	0.286	0.128
214	Oxygen	O_2	7782447	31.999	154.58	5.02	0.074	0.287	0.020
215	Nitrogen	N_2	7727379	28.014	126.2	3.39	0.089	0.288	0.037
216	Ammonia	NH_3	7664417	17.031	405.65	11.30	0.072	0.241	0.253
217	Hydrazine	N_2H_4	302012	32.045	653.15	14.73	0.158	0.429	0.315
218	Nitrous oxide	N_2O	10024972	44.013	309.57	7.28	0.098	0.277	0.143
210	Mr. c 1.	NO	10100420	20,000	100.15	6.50	0.050	0.050	0.505
219	Nitric oxide		10102439	30.006	180.15	6.52	0.058	0.252	0.585
220	Cyanogen	C_2N_2	460195	52.036	400.15	5.94	0.195	0.348	0.276
221	Carbon monoxide	CO	630080	28.010	132.92	3.49	0.095	0.300	0.048
222	Carbon dioxide	CO_2	124389	44.010	304.21	7.39	0.095	0.277	0.224
223	Carbon disulfide	CS_2	75150	76.143	552	8.04	0.160	0.280	0.118
224	Hydrogen fluoride	HF	7664393	20.006	461.15	6.49	0.069	0.117	0.383
225	Hydrogen chloride	HCl	7647010	36.461	324.65	8.36	0.082	0.253	0.134
226	Hydrogen bromide	HBr	10035106	80.912	363.15	8.46	0.100	0.280	0.069
227	Hydrogen cyanide	HCN	74908	27.026	456.65	5.35	0.139	0.195	0.407
228	Hydrogen sulfide	H_2S	7783064	34.082	373.53	9.00	0.099	0.287	0.096
229	Sulfur dioxide	SO_2	7446095	64.065	430.75	7.86	0.123	0.269	0.244
230	Sulfur trioxide	SO_3	7446119	80.064	490.85	8.19	0.127	0.255	0.423
231	Water	H_2O	7732185	18.015	647.13	21.94	0.056	0.228	0.343

All substances are listed in alphabetical order in Table 2-6a.

Compiled from Daubert, T. E., R. P. Danner, H. M. Sibul, and C. C. Stebbins, DIPPR Data Compilation of Pure Compound Properties, Project 801 Sponsor Release, July, 1993, Design Institute for Physical Property Data, AIChE, New York, NY; and from Ambrose, D. "Vapour-Liquid Critical Properties", Report Chem 107, National Physical Laboratory, Teddington, UK, October, 1979.

In order to ensure thermodynamic consistency, in almost all cases these properties are calculated from T_c and the vapor pressure and liquid density correlation coefficients listed in those tables. This means that there will be slight differences between the values listed here and those in the DIPPR tables. Most of the differences are less than 1%, and almost all the rest are less than the estimated accuracy of the quantity in question.

The atomic weights used, taken from *J. Phys. Chem. Ref. Data* **22**(6), 1993, are C = 12.011, H = 1.00794, O = 15.9994, N = 14.00674, S = 32.066, F = 18.9984, Cl = 35.4527, Br = 79.904, and I = 126.90447.

The value of the gas constant, R, used here is 8314.51 J/(kmol·K), as given by E. R. Cohen and B. N. Taylor in J. Phys. Chem. Ref. Data 17, 1988. K - 273.15 = °C; $1.8 \times K - 459.67 =$ °F; $Pa \times 9.869233E - 06 = atm$; $Pa \times 1.450377E - 04 = psia j$; $m^3/kmol \times (1E + 03/mol. wt.) = cm^3/g$; $m^3/kmol \times (1.601846E + 01/mol wt) = ft^3/lb$.