TP2

Histogram manipulation

Histogram analysis and transformation

Exercise 1. Histogram analysis and export

We want to improve the images objects-dark.pgm and len_dark.pgm.

- 1. Go back to the code from TP1 to load a PGM image.
- 2. Build a small program that loads an image and that builds its normalized histogram. You will export this histogram into a text file containing a table whose first column is the intensity, and whose second column is [number of pixels which have this intensity] / [Total number of pixels].
- 3. Use gnuplot to generate the drawing of this histogram (cf Appendix). What do you observe in the histograms of the considered PGM pictures?

Exercise 2. Transformation

In the following, we suppose that the histogram intensities are mapped from [0, M] to [0, 1]. Implement the following histogram transformations:

- Histogram inversion
- Gamma-correction : $i' = i^{\frac{1}{\gamma}}$. Check its behavior for $\gamma = 2.2$ and $\gamma = \frac{1}{2.2}$
- Linear interpolation $[a, b] \subset [0, 1] \rightarrow [0, 1]$

Every times, you will illustrate the transformation by:

- A gnuplot drawing of the histogram transformation function ϕ .
- Two drawing (before/after) of the histograms.
- The modified PGM picture.

¹Hint: $a^i = pow(a,i)$, don't forget the #include<math.h>

Exercise 3. Equalization

As presented during the lesson, our aim is to build a transfer function ϕ between the picture histogram (seen as an empirical probabilistic distribution P(i)), toward a targeted distribution. Here, we want to maximize the entropy of the image by targeting a uniform distribution.

Given an histogram over the intensities of the interval [0, M], we want a distribution such that the probability of each gray level $i' = \phi(i)$ is $P'(i') = \frac{1}{M}$.

In the case of continuous variables and distributions and for an increasing transformation ϕ , we have:

$$P'(\phi(i)) = P(i)\frac{di}{di'} \tag{1}$$

Thus,

$$di' = M.P(i).di (2)$$

And,

$$\phi(i) = M \int_0^i P(\omega) d\omega \tag{3}$$

In the discrete case, the transformation ϕ is the following:

$$\phi(i) = M \frac{\sum_{j=0}^{i} hist(j)}{\sum_{j=0}^{M} hist(j)}$$

$$\tag{4}$$

Implement the histogram equalization transformation previously described and test this transformation over several pictures (with the corresponding gnuplot drawings of ϕ and their histograms before/after transformation).

Image segmentation by using the histogram

Exercise 1. Naive Threshold (fr: Seuillage naif)

• Build a small program that loads a picture, computes its histogram and threshold the initial image according to a given intensity.

Exercise 2. Variance minimization

We will focus on different techniques to automatize the search of a good threshold.

Fisher's method aims at minimizing the intra-class variance of the two classes (objects / background). More formally, let us consider a normalized histogram H whose intensities are in [0, M]. Let us consider a threshold t defining 2 classes (B=background, O=object) of values in the histogram. We want to minimize the functional:

$$\sigma_{intra}^2(t) = n_B(t)\sigma_B^2(t) + n_O(t)\sigma_O^2(t)$$
(5)

where

$$n_B(t) = \sum_{i=0}^{t-1} H(i) \tag{6}$$

$$n_O(t) = \sum_{i=t}^{M} H(i) \tag{7}$$

$$\mu_B(t) = \frac{1}{n_B(t)} \sum_{i=0}^{t-1} H(i).i \tag{8}$$

$$\mu_O(t) = \frac{1}{n_O(t)} \sum_{i=t}^{M} H(i).i$$
 (9)

$$\sigma_B^2(t) = \frac{1}{n_B(t)} \sum_{i=0}^{t-1} (i - \mu_B(t))^2 H(i)$$
(10)

$$\sigma_O^2(t) = \frac{1}{n_O(t)} \sum_{i=t}^M (i - \mu_O(t))^2 H(i)$$
(11)

Question 1 Write a function which computes $\sigma_{intra}^2(t)$. Then, for a given image, write down a program which computes $argmin_{t \in 0...M}(\sigma_{intra}^2(t))$, and use the corresponding threshold.

Otsu observed that minimizing the intra-class variance is equivalent to maximizing the variance between the classes defined by:

$$\sigma_{entre}^{2}(t) = n_{B}(t)n_{O}(t) (\mu_{B}(t) - \mu_{O}(t))^{2}$$
 (12)

Question 2 Similarly, write down a program that maximizes $\sigma_{entre}^2(t)$. You should not find another optimal threshold value, but you should compute it more effectively. To be effective, do not forget to update incrementally n_i et μ_i , for example by using the following identities:

$$n_B(t+1) = n_B(t) + H(t+1) \tag{13}$$

$$\mu_B(t+1) = \dots \tag{14}$$

Appendix - Crash-course Gnuplot

Given a text file with tabular data (several columns, separated by spaces or tabs..) toto.txt

• Display a graph where abscissa/ordinate are mapped to first/third column

```
plot "toto.txt" using 1:3 with points
```

• Same graph with lines and points between datum

```
plot "toto.txt" using 1:3 with linespoints
```

• Y-axis is the sum of the second and third column and we limit the x-axis range to [0, 10]

```
plot [0:10] "toto.txt" using 1:($3+$2) with linespoints
```

• Labels

```
set xlabel "Abscisse"
set ylabel "Ordonnee"
```

• The next "plot" command will output the graph in a PDF file (with enhanced and color properties)

```
set terminal pdf enhanced color
set output "glop.pdf"
```

• To use the X11 terminal (default one)

```
set terminal X11 unset output
```

• Need some help on the plot command

```
help plot
```