

Meta Learning For Feature Grid Based INRs

Andrew Tianbao Zhong, Darshit Miteshkumar Desai, Hitesh Kyatham, Jayasuriya K Suresh, Vinay Krishna Bukka

Introduction of the Implicit Neural Representation

INRs are typically multilayer perceptrons organized to learn a scalar or vector field. They take a coordinate as input and predict a continuous signal value as output(such as pixel).

Picture credit: Adversarial Generation of Continuous Images.

Introduction of the Meta Learning Model

A Transformer hypernetwork to infer the whole weights in an INR (Implicit Neural Representation)

Picture credit: Transformers as Meta Learners for Neural Representations

Introduction of the Feature Grid Based INR

Feature grids are a type of input encoding for neural networks that store trainable features in a grid structure, which are passed as input to INR.

Pipeline (for each epoch)

Model Architecture Description

Transformer with GELU + Feature Grid INR (Trans INR) (SHACIRA)

Experimental Details and Figures

Learning Rate	Latent	Color Decoder	Loss	PSNR
& Batch Size	Quantization	MLP		
Lr: 0.05	Enabled	Enabled	0.0708	11.8
Batch Size: 9				
Lr: 0.1	Disabled	Disabled	0.0668	12.078
Batch Size: 6				

Table: Hyperp	arameter	variation

Codebook Size	Loss	PSNR		
47737	0.0708	11.806		
26704	0.0668	12.07		
4096	0.0714	11.737		
Table: Codebook Size Variation				

N	Number of Enochs:60k	SHACIRA Standalone ~ 10 mins	0.001	40.6
N.	Number of Epochs:30 Batch size: 16	HypoShacira ~ 8 hrs (TransINR+ Shacira)	0.1	1

Network Model

Hyperparameters

Table: Network Model Variations

Results / Findings so far

- Implementation and study of existing works trans inr and SHACIRA.
- Current results of feature grid based in with meta learned

Ground Truth Predicted

Fig: TransShacira results of Reconstructed Images with Color Fig: Standalone Shacira result Decoder+Codebook enabled

Training loss and PSNR Graphs

Why the loss saturates after some steps?

We haven't found the cause, but while debugging it was observed that the transformer predicts the weight values which are almost the same (at step 20 and at step 20000), we have debugged end to end to check why this is happening but haven't found a concrete cause.

Conclusions

PSNR

LOSS

- With implementation of the proposed methodology, the reconstruction has not been successful so far.
- To improve the results through hyperparameter tuning of transformer network is planned and explore alternate methods.

Applications

Higher quality image and video compression with faster training times