MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type:
J#:	Quiz	
Date: 2017 June 21		
Standard: This student is able to		Mark:
C05: MulivarCalc. Compute and apply the partial derivatives, gradient, and directional derivatives of a multivariable		
real-valued function. $3/4$ * rea	tempt due on:	

Find rate of change of $f(x, y, z) = 2yz - 3x^2z$ at the point $\langle 1, 0, 3 \rangle$ as the variables change in the direction of $\mathbf{u} = \langle \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \rangle$.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 June 21		
Standard: This student is able to C06: ChainRule. Apply the multivariable Chain Rule to compute derivatives and find normal vectors.		Mark:
1/4 * reat	tempt due on:	

Let $f(x,y) = x^3y + 2xy^2$ and $\mathbf{r}(t) = \langle 2t, t+1 \rangle$. First find $f(\mathbf{r}(t))$ in terms of t, and then take its derivative and let t = 0 to show that $\frac{df}{dt}(0) = 4$.

Now, verify the Chain Rule by showing that $\nabla f(\mathbf{r}(0)) \cdot \mathbf{r}'(0) = 4$ also.