Design of Isolation Transformer

Power output, Po = 1W

Required Specifications are:

2 Primary & 2 Secondary Windings

Input Voltage V_{in} = 24V; Output Voltage V_o = 20V

Efficiency, $\eta = 0.8$

Winding factor, $K_w = 0.2$ (Multiple secondary)

Max Flux density, $B_m = (Ferrite core)$

Current density, $J = 3A/mm^2$ (Copper)

Switching frequency $f_s = 10kHz$

Using Area product method for Design:

Area Product

$$A_p = A_c. A_w = rac{P_0 imes (1 + rac{1}{\eta})}{\sqrt{2} imes J imes K_w imes f_S imes B_m}$$
 , A_c = Core Area , A_w = Window Area

Substituting values we get:

 $A_p = 13.258 \times 10^4 \text{ mm}^2$

We have selected EE42/21/15 based on area product from the standard core table and availability in market.

Specifications of EE42/21/15 are:

 $A_{\rm C} = 182 \text{ mm}^2$

No. of Turns ,

$$V_{\text{in}} = 24V$$
 ; $V_{\text{o}} = 20V$

$$V_{in} = 2.N_p.A_c.B_m.f_s$$

$$V_o = 2.N_s.A_c.B_m.f_s$$

Substituting values we get :

$$N_p = 32.96 \approx 33 \text{ turns}$$

$$N_s = 27.47 \approx 28 \text{ turns}$$

Gauge of Wire ,

Primary Gauge , $\alpha_p = \frac{I_p}{J} = \frac{0.735}{3} = 0.245 \text{ mm}^2$

SWG based on value of 0.245 mm² is SWG 24

Secondary Gauge , $\alpha_s = \frac{I_s}{J} = \frac{0.333}{3} = 0.111 \text{ mm}^2$

SWG based on value of 0.245 \mbox{mm}^2 is SWG 28