CSCI235 Database Systems Introduction to Transaction Processing (1)

Dr Janusz R. Getta

School of Computing and Information Technology - University of Wollongong

1 of 20 27/3/22, 9:08 pm

Outline

An interesting experiment

Where is a problem?

Principles of transaction processing

Update synchronisation

ACID properties

Protocols

TOP Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

2/20

An interesting experiment

Use SQLcl to create two simultaneous connections to the same user account

Obviously, the results are the same

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022 3/20

TOP

An interesting experiment

Now, INSERT a row into a relational table SKILLS through one of the connections

```
SQL> INSERT INTO SKILL VALUES('singing');

1 row created.

And now repeat the same SELECT statements

SQL> SELECT COUNT(*) FROM SKILL;

COUNT(*)

-------
20

SQL> SELECT COUNT(*) FROM SKILL;

COUNT(*)

COUNT(*)

19
```

Surprise, surprise, the results are different! Why?

TOP Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022 4/20

4 of 20 27/3/22, 9:08 pm

Outline

An interesting experiment

Where is a problem?

Principles of transaction processing

Update synchronisation

ACID properties

Protocols

TOP

5 of 20

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

Where is a problem?

Why a modification performed by the first user is not visible to the second user?

Is it correct that the second user must see all modifications performed by the first user?

What if a modification performed by the first user is immediately visible to the second user and after that the first user rolls back the modification?

Then, the second user is left with incorrect data!

Hence, only committed data can be revealed to the other users

Is such conclusion always true?

Problem statement

- Given a multiuser database system
- Find the most efficient synchronisation method for a set of concurrent processes accessing the shared database resources

6/20

Outline

An interesting experiment

Where is a problem?

Principles of transaction processing

Update synchronisation

ACID properties

Protocols

7/20

Principles of transaction processing

A partially ordered set of read, write operations on the database items is called as a transaction

Users interact with a database by executing programs

Execution of a program is equivalent to execution of a partially ordered set of read, write operations

A database is visible to transactions as a collection of data items

Concurrently running transactions interleave their operations

Transactions have no impact on execution of their operations

Each transaction terminates by either commit or abort operation

Each transaction arrives at a consistent database state and must leave a database in a consistent state as well

8/20

Principles of transaction processing

A sample concurrent processing of database transcations

		Concurrent processing of database transactions		
T1	T2	x: \$100		
a=read(x)		x: \$100 a: \$100		
	b=read(x)	x: \$100 b: \$100		
write(x,a- <mark>10</mark>)		x: \$90 a: \$100		
	write(x,b+ <mark>20</mark>)	x: \$120 b: \$100		
	commit	x: \$120		
commit		x: \$120		

If a state of a bank account is \$100 then withdrawal of \$10 and deposit of \$20 cannot change a state of bank account to \$120

Uncontrolled concurrent processing of database transactions may corrupt a database

9/20

Outline

An interesting experiment

Where is a problem?

Principles of transaction processing

Update synchronisation

ACID properties

Protocols

TOP

10 of 20

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

Update synchronisation

Database transaction can perform update in two different ways:

- A transaction immediately writes uncommitted values into a database update-in-place
- A transaction does not modify a database until the time it commits itself deferred-update

In the last example the transactions applied update-in-place to modify a database

A way how the transactions perform an update has no impact on the final outcomes, e.g. when deferred-update is applied a database maybe still corrupted (see the next example)

11 of 20 27/3/22, 9:08 pm

Principles of transaction processing

A sample concurrent processing of database transactions when deferred-update is applied

		Concurrent processing of database transactions
T1	T2	x: \$100
a=read(x)		x: \$100 a: \$100
	b=read(x)	x: \$100 b: \$100
write(x , a- <mark>10</mark>)		x: \$100 log T1:\$90
	write(x,b+ <mark>20</mark>)	x: \$100 log T2:\$120
	commit	x: \$120
commit		x: \$90

If a state of a bank account is \$100 then withdrawal of \$10 and deposit of \$20 cannot change a state of bank account to \$90

Deferred-update does not solve the problem

12/20

Outline

An interesting experiment

Where is a problem?

Principles of transaction processing

Update synchronisation

ACID properties

Protocols

TOP

13 of 20

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

ACID properties

Processing of database transactions must satisfy ACID properties

Atomicity

- Each database operation is treated as a single unit (all-or-nothing)

Consistency

- A transaction takes a database from one consistent state to another

Isolation

- Transactions do not directly communicate one with each other and they do not read the intermediate results of the other transactions

Durability

- The results of committed transactions must be permanent in a database in spite of failures

14/20

Outline

An interesting experiment

Where is a problem?

Principles of transaction processing

Update synchronisation

ACID properties

Protocols

TOP

An execution atomicity protocol ensures Consistency property

A failure atomicity protocol ensures Atomicity, Isolation and Durability properties

A sample incorrect execution atomicity protocol

		Concurrent processing of database transactions				
T1	T2	x: \$100				
a=read(x)		x: \$100 a: \$100				
	b=read(x)	x: \$100 b: \$100				
write(x , a- <mark>10</mark>)		x: \$90 a: \$100				
	write(x,b+ <mark>20</mark>)	x: \$120 b: \$100				
	commit	x: \$120				
commit		x: \$120				

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

16 of 20

16/20

A sample incorrect failure atomicity protocol

		Concurrent processing of database transactions		
T1	T2	x: \$100		
a=read(x)		x: \$100 a: \$100		
write(x,a- <mark>10</mark>)		x: \$90 a: \$100		
	b=read(x)	x: \$90 b: \$90		
	write(x,b+ <mark>20</mark>) x: \$110 b: \$90		
	commit	x: \$110		
abort		x: \$100		

If a state of a bank account is \$100 then withdrawal of \$10 and deposit of \$20 cannot change a state of bank account to \$100

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

27/3/22, 9:08 pm

Execution atomicity protocol = Concurrency control protocol Failure atomicity protocol = Recovery protocol

Lost update problem

		Concurrent processing of database transactions		
T1	T2	x: \$100		
a=read(x)		x: \$100 a: \$100		
	b=read(x)	x: \$100 b: \$100		
write(x , a- <mark>10</mark>)		x: \$90 a: \$100		
	write(x,b+ <mark>20</mark>)	x: \$120 b: \$100		
	commit	x: \$120		
commit		x: \$120		

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

18/20

TOP

Inconsistent retrieval problem

		Concurrent processing of database transactions				tions
T1	T2	X	У	a	b	С
a=read(x)		100	50	100		
	b=read(y)	100	50	100	50	
write(x , a- <mark>10</mark>)		90	50	100	50	
	c=read(x)	90	50	100	50	90
write(y , a- <mark>30</mark>)		90	70	100	50	90
	print(b+c)140	90	70	100	50	90

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

19/20

References

T. Connoly, C. Begg, Database Systems, A Practical Approach to Design, Implementation, and Management, Chapter 22.1 Transaction Support, Chapter 22.2 Concurrency Control, Pearson Education Ltd, 2015

Created by Janusz R. Getta, CSCI235 Database Systems, Autumn 2022

20/20

TOP