PROJETO.....

Requisitos da disciplina Modelagem de Software e Arquitetura de Sistemas

INTEGRANTES DO PROJETO e RA's

Lucas Camargo Souza - 25027455

Daniel César Pereira dos Santos - 25027234

Gabriel Viera Pacheco da Silva - 25027826

Luan Fernandes da Silva - 25027831

1 INTRODUÇÃO

O avanço da automação residencial e da Internet das Coisas (IoT) tem impulsionado o

desenvolvimento de casas inteligentes, que integram dispositivos capazes de monitorar e controlar

funções como iluminação, segurança, climatização e consumo energético.

Este projeto tem como objetivo analisar uma casa inteligente com foco nas principais problemáticas

envolvidas, como o controle de temperatura, uso eficiente de energia e a interação entre sistemas

automatizados. Serão explorados os requisitos funcionais e não funcionais do sistema, além dos

desafios técnicos e de usabilidade.

A proposta é compreender as limitações e potencialidades dessas soluções, contribuindo para a

otimização do uso de tecnologias inteligentes no ambiente residencial.

Smart Cities/Smart House

Nome da Instituição: Flex Automation

Objetivo da Aplicação:

ADS1 O objetivo do desafio é gerar um dashboard de uma cidade/casa inteligente que permita o

controle de sensores e atuadores.

Este desafio busca, de forma modular, introduzir como uma cidade/casa inteligente pode ser

controlada, tratando seus dados de forma a aprimorar o sistema e otimizando a sustentabilidade.

Seu dashboard deverá receber e enviar sinais de/para um simulador de casa/cidade inteligente,

provenientes da rede/internet. O servidor será fornecido pelos professores.

Desafio:

O projeto da Flex Automation, assim como outras iniciativas, trabalha para poder criar cidades inteligentes buscando a sustentabilidade, o melhor uso dos recursos planetários e o menor impacto na natureza. Para que isso ocorra é necessário ter uma alta capacidade de mensuração e controle para a otimização da vida na cidade, desde recursos até o tráfego de pedestres. Também, a conscientização da população de como uma cidade inteligente funciona e/ou é controlada, de forma a instruir sobre as melhores maneiras para a cidade a ser sustentável.

Personas a Serem Atendidas:

-**Usuário final** do sistema, que deseja controlar sua casa de forma a gastar menos e otimizar os recursos da cidade. Considere que o usuário possui conhecimento básico para utilizar dispositivos mobile.

-Controlador da cidade, um funcionário da cidade que deve acompanhar um dashboard/mapa/painel informativo da cidade, tratando situações inesperadas, acompanhando os dados dos sensores e acionando os programas da cidade. Considere que ele tem um conhecimento médio para avançado de tecnologia.

Recursos:

https://store.steampowered.com/app/949230/Cities Skylines II/

https://store.steampowered.com/app/2741560/SimCity 3000 Unlimited/

https://planetsmartcity.com/ https://flexautomation.com.br

2. DOCUMENTO DE ABERTURA DO PROJETOS

2.1 - Project Charter

Prefácio

Este relatório é voltado a acadêmicos, entusiastas e profissionais que atuam na área de automação residencial e tecnologia aplicada ao cotidiano. Ele apresenta uma análise de um sistema voltado para residências inteligentes, com foco no gerenciamento térmico, consumo de energia e comunicação entre dispositivos.

Introdução

A busca por soluções tecnológicas que tornem os lares mais confortáveis, econômicos e sustentáveis tem impulsionado o uso de sistemas residenciais inteligentes. Este projeto propõe a implementação de um sistema capaz de monitorar e controlar aspectos ambientais da casa, como temperatura e uso de energia elétrica.

O sistema opera de forma integrada com sensores, plataformas móveis e assistentes virtuais, promovendo uma experiência automatizada e personalizada para os moradores. Além de atender às exigências funcionais, a solução está alinhada com tendências globais de inovação e eficiência no ambiente doméstico.

Glossário

Para facilitar a compreensão deste projeto, listamos a seguir os principais termos técnicos utilizados ao longo do documento. As definições foram escritas de forma clara e acessível, considerando que o leitor pode não ter familiaridade com todos os conceitos.

<u>Automação Residencial</u>: Conjunto de tecnologias que permitem controlar e automatizar funções dentro de uma casa, como luzes, temperatura, segurança e eletrodomésticos, trazendo mais conforto, segurança e economia para os moradores.

<u>Internet das Coisas</u> (IoT): Conceito que se refere à conexão de objetos do dia a dia à internet, permitindo que eles "conversem" entre si e com os usuários. No contexto deste projeto, isso inclui sensores e dispositivos conectados dentro de uma casa inteligente.

<u>Sensor</u>: Dispositivo que capta informações do ambiente, como temperatura, presença de pessoas ou consumo de energia, e envia esses dados para o sistema tomar decisões ou alertar o usuário.

<u>Atuador</u>: Componente que executa uma ação física com base nos comandos do sistema. Por exemplo, acionar um ventilador automaticamente quando a temperatura estiver alta.

<u>Dashboard</u>: Painel de visualização interativa onde o usuário pode acompanhar os dados da casa em tempo real, controlar dispositivos e tomar decisões de forma prática.

Requisitos Funcionais: São as funcionalidades que o sistema precisa oferecer para cumprir seu propósito, como ligar uma lâmpada, exibir a temperatura ou acionar um alarme.

Requisitos Não Funcionais: Dizem respeito a como o sistema deve funcionar, incluindo aspectos como facilidade de uso, velocidade de resposta, segurança e confiabilidade.

<u>Sustentabilidade</u>: Uso consciente e eficiente dos recursos naturais, buscando reduzir desperdícios e impactos ambientais — uma das premissas centrais em projetos de cidades e casas inteligentes.

<u>Flex Automation</u>: Nome da instituição fictícia que representa empresas que desenvolvem tecnologias voltadas para automação e controle inteligente de ambientes urbanos e residenciais.

Definição de requisitos de usuário

O que o sistema permitirá ao usuário fazer?]

O sistema proposto tem como objetivo facilitar a gestão de uma casa inteligente, permitindo ao usuário

Acompanhar em tempo real os dados captados pelos sensores (como temperatura, iluminação e consumo de energia)

Controlar dispositivos da casa por meio de um painel digital — por exemplo, ligar ou desligar luzes, ajustar o ar-condicionado ou abrir portões;

Receber alertas quando algo fora do normal for detectado, como aumento repentino na temperatura ou consumo elevado;

Visualizar relatórios e gráficos que ajudam a entender o uso de energia e como otimizá-lo;

Acessar todas essas funcionalidades de forma prática, por meio de dispositivos móveis ou computadores

Critérios de Qualidade do Sistema (Requisitos Não Funcionais)

Além de funcionar corretamente, o sistema precisa oferecer uma experiência de uso que seja prática, segura e eficiente. A seguir, estão os principais critérios de qualidade que o projeto deve atender:

<u>Interface amigável e acessível</u>: O painel de controle deve ser fácil de entender e utilizar, mesmo para pessoas com pouca familiaridade com tecnologia. Ícones claros, menus intuitivos e informações bem organizadas são fundamentais.

<u>Compatibilidade com dispositivos diversos</u>: O sistema deve funcionar bem tanto em celulares quanto em computadores, oferecendo uma boa experiência de uso em qualquer tipo de tela.

<u>Baixo consumo de recursos</u>: O sistema precisa ser leve, sem exigir muito processamento ou memória dos dispositivos onde será acessado, garantindo um bom desempenho mesmo em aparelhos mais simples.

Resposta rápida às ações do usuário: O tempo entre um comando (como acender uma luz) e a execução da ação deve ser quase imediato, transmitindo confiança e eficiência no uso diário.

<u>Conexão estável com os dispositivos da casa</u>: O sistema deve garantir uma comunicação contínua e confiável com sensores e atuadores, mesmo em condições normais de rede.

Arquitetura do sistema

O que o sistema faz?

O sistema permite que o usuário controle e acompanhe sua casa de forma prática, usando o celular ou computador. Ele se conecta com sensores e aparelhos (luzes, ar-condicionado, etc.) e mostra tudo em um painel simples.

Partes principais do sistema:

1. Painel de Controle (Dashboard)

O que é: Uma tela onde o usuário vê tudo que está acontecendo na casa.

Para que serve: Ver a temperatura, consumo de energia, ligar/desligar luzes, receber alertas.

Onde funciona: No navegador do celular, tablet ou computador.

2. Cérebro do Sistema (Servidor / Backend)

O que é: A parte que faz os cálculos e toma decisões.

Para que serve: Recebe dados dos sensores, envia comandos para os aparelhos, guarda informações.

Exemplo: Liga o ar-condicionado automaticamente se estiver quente.

3. Dispositivos da Casa (Sensores e Atuadores)

- O que são: Equipamentos inteligentes da casa.
- Sensores: Medem coisas como temperatura, luz e consumo.
- Atuadores: Fazem algo, como acender a luz ou abrir um portão.

4. Banco de Dados

O que é: Um local onde tudo fica salvo.

Para que serve: Guarda as leituras dos sensores, ações do usuário, alertas e relatórios.]

Partes que podem ser usadas em outros projetos:

- O painel pode ser adaptado para outras casas ou cidades.
- Os sensores e atuadores são compatíveis com outras redes Wi-Fi
- O servidor e o banco de dados podem ser reaproveitados em outros sistemas de automação.

Especificação de requisitos do sistema

Requisitos Funcionais

O sistema de casa inteligente permitirá aos usuários finais:

- Visualizar dados de sensores em tempo real (temperatura, consumo de energia, iluminação, etc.).
- Controlar dispositivos conectados (luzes, ar-condicionado, portas, etc.) remotamente via dashboard.
- Receber notificações e alertas em situações anômalas (ex.: consumo elevado ou temperaturas extremas).
- Acessar relatórios e gráficos com o histórico de uso e sugestões de otimização de consumo.
- Configurar preferências e perfis personalizados para automações (ex.: modo noturno, economia, etc.).
- Gerenciar permissões e dados pessoais, como exclusão de conexões Wi-Fi e sincronização com Alexa.
- Suporte à troca de idioma e acessibilidade.

Requisitos Não Funcionais

- Usabilidade: Interface intuitiva, com ícones e organização visual clara.
- Desempenho: Resposta quase imediata aos comandos (latência < 1 segundo).
- Portabilidade: Compatível com navegadores modernos, smartphones Android/iOS e PCs.
- Escalabilidade: Suporte ao aumento de dispositivos conectados sem comprometer o desempenho.
- Segurança: Comunicação criptografada, autenticação por senha, e controle de privacidade.
- Confiabilidade: Alta disponibilidade dos dados, mesmo com conexões instáveis.
- Sustentabilidade: Consumo otimizado de energia em segundo plano.

Modelos do sistema (arquitetura interna)

- 1. Frontend (mobile/web)
- 2. Interface gráfica (dashboard)
- 3. Login e gerenciamento de perfil
- 4. Backend
- 5. Módulo de controle de dispositivos
- 6. Módulo de coleta de dados
- 7. Módulo de alertas e notificações
- 8. Módulo de relatórios e analytics
- 9. Banco de Dados
- 10. Armazena histórico de sensores, logs de comandos, preferências do usuário
- 11. Dispositivos IoT
- 12. Sensores (temperatura, luminosidade, consumo)
- 13. Atuadores (interruptores, climatizadores, fechaduras)

Evolução do sistema

O sistema de automação residencial proposto baseia-se em p fundamentais que norteiam sua concepção, implementação e manutenção. Esses pressupostos consideram tanto o estado atual da tecnologia quanto as tendências de evolução no setor de IoT, automação e infraestrutura de conectividade.

"Hipóteses" fundamentais

- A residência inteligente será equipada com sensores e atuadores compatíveis com redes sem fio.
- A conectividade de internet estará disponível de forma constante, permitindo comunicação em tempo real com o servidor.
- O usuário final possui ao menos um dispositivo móvel para acessar o sistema.
- A aplicação será utilizada em ambientes com acesso moderado à tecnologia, exigindo uma interface simples e responsiva.

Evoluções Previstas:

- Integração com novos dispositivos IoT:
- O sistema será continuamente atualizado para suportar novos modelos de sensores e atuadores, como medidores de qualidade do ar, detectores de fumaça inteligentes e eletrodomésticos conectados.
- Avanços em Inteligência Artificial:
- A previsão é incorporar modelos de IA e aprendizado de máquina para automatizar decisões com base em padrões de uso.

Mudanças nas necessidades do usuário:

 A demanda por maior personalização e foco em acessibilidade (modo escuro por exemplo) poderá levar a atualizações significativas na interface do usuário. A conscientização crescente sobre privacidade exigirá mecanismos mais robustos de controle de dados, consentimento e auditoria.

Apêndices

1. Requisitos de Hardware

Esses são os equipamentos que você vai precisar para rodar o sistema com tranquilidade:

Para o servidor (onde o sistema roda):

Processador: Intel i3 ou melhor

Memória RAM: 8 GB

• Armazenamento: SSD - NVme de 256 GB (mais rápido)

• Sistema Operacional: Linux ou Windows Server

• Internet: Conexão estável (com Wi-Fi ou cabo)

Backup: Sistema automático para salvar dados (local ou em nuvem)

2. Requisitos de Banco de Dados

O banco de dados é onde todas as informações da casa ficam guardadas. Aqui está uma visão simples de como ele funciona:

O que vai ser armazenado:

- Usuários: Nome, login e preferências de cada pessoa
- Dispositivos: Sensores e atuadores registrados na casa
- Leituras dos sensores: Temperatura, luz, etc., com data e hora
- Comandos: Tudo o que o usuário fez (ex: acendeu a luz)
- Notificações: Alertas do sistema (ex: consumo alto)
- Relatórios: Resumo de uso e dicas de economia

Como os dados se conectam:

- Um usuário pode controlar vários dispositivos
- Cada dispositivo envia várias leituras
- As ações são salvas com o nome de quem fez
- Os alertas mostram quando algo fora do normal acontece

Para os dispositivos da casa:

- 1. Sensores (temperatura, luz, movimento, energia)
- 2. Atuadores (luzes, climatizadores, fechaduras, portões)
- 3. Compatíveis com redes sem fio (como Wi-Fi)

2.2 - Histórias do Usuário

Alguns detalhes sobre a casa inteligente que cujos dados estão no arquivo anexo:

- -2 Pessoas vivem nesta casa
- -A casa possuí 2 quartos, 1 sala, 1 cozinha e 1 piscina e são identificados respectivamente pelos sensores de ID: 1, 2, 3, 4, 5.
- -O gasto energético médio para deixar cada local ligado é:

Quartos (ID 1 e 2) – 1,5KWatts/Hora (Considerando 1 TV,1 lâmpada e um ar-condicionado)

Sala (ID 3) – 50Watts/Hora (Considerando 1 TV e 5 lâmpadas)

Cozinha (ID 4) – 3KWatts/Hora (Considerando 1 Micro-ondas, 1 máquina de lavar louça e 3 lâmpadas)

Piscina (ID 5) – 7KWatts/Hora (Bomba + Aquecedor)

Você tem a possibilidade de adicionar comandos separados para controlar cada um dos elementos descritos acima.

EXEMPLO DA BASE DOS SENSORES

TimeStamp	ID_Sensor	Temperatura	Umidade	Movimento
28/4/25 0:18	3	39	71	0
22/5/25 4:43	4	19	82	0
20/4/25 20:38	3	24	71	0
12/2/25 0:03	1	22	22	0
14/4/25 1:33	2	19	46	1
27/1/25 14:21	2	37	27	0
30/5/25 7:19	1	10	87	0
21/7/25 6:17	1	34	88	0
21/1/25 9:20	3	39	28	0
2/2/25 23:55	4	28	33	0
22/6/25 14:15	3	17	32	0
24/6/25 15:22	2	38	29	0
30/4/25 0:32	2	18	88	1
26/6/25 2:00	2	26	63	0
26/6/25 10:09	2	21	50	0
1/3/25 7:15	5	40	30	1
27/6/25 7:02	3	15	28	1

3. DESIGN SPRINT – Ideação e prototipação do desafio

3.1 Desafio

O principal desafio era desenvolver uma plataforma de controle residencial inteligente, fácil de usar, segura e com componentes reaproveitáveis para outros produtos da Flex Automation (como o painel da cidade).

Além disso, era necessário garantir:

- Segurança e privacidade dos dados do usuário.
- Integração com dispositivos físicos da casa (via IoT).

Modularidade para futuras expansões da aplicação.

3.2 Entender Mapear

Para entender o cenário, mapeamos os principais requisitos e funcionalidades desejadas:

- Login seguro (Autenticação)
- Controle dos dispositivos da casa (temperatura, luzes, etc.)
- Personalização do sistema conforme o perfil do usuário
- Gestão de dados sensíveis e históricos de uso

A partir disso, definimos os módulos principais do sistema.

- Autenticação
- · Controle da Casa
- Configurações
- Privacidade
- Perfil

3.3 Ideação - desenho da solução (trilha do usuário)

Com os módulos definidos, desenhamos a trilha do usuário dentro da plataforma:

- Login via Módulo de Autenticação.
- Acesso ao Painel de Controle da Casa, com dados e botões de controle.
- Personalização da experiência no Módulo de Configurações.
- Visualização e edição de informações pessoais no Módulo de Perfil.
- Gestão da segurança e privacidade no Módulo de Privacidade.

3.4 Prototipagem

A ideia da prototipagem seria isto abaixo:

- Login e autenticação com verificação segura
- Tela principal com os controles da casa (ex: ligar luz, ajustar temperatura)
- Tela de configurações com opções organizadas em categorias
- Área de perfil com edição de nome, foto e idioma
- Painel de privacidade com histórico de acessos e opções de exclusão de dados

4.REQUISITOS DE SISTEMA

4.1 REQUISITOS FUNCIONAIS DE SOFTWARE

Necessários 6 requisitos

RFS01		
Função	Login de usuário	
	Permitir que o usuário acesse o sistema inserindo login e	
Descrição	senha.	
Entradas	Usuário, senha	
Fonte	Interface de login	
Saídas	Acesso ao painel inicial	
Ação	Validar as informações e redirecionar o usuário para a página inicial após login.	
	RFS02	
Função	Exibir dispositivos conectados	
	Mostrar ao usuário todos os dispositivos conectados na	
Descrição	casa selecionada.	
Entradas	Propriedade/casa selecionada	
Fonte	Base de dados do usuário	
Saídas	Lista de dispositivos organizados por categoria	
Ação	Carregar dados dos dispositivos ao acessar a home.	

RFS03		
Função	Ajustar temperatura de dispositivos	
	Permitir ao usuário alterar a temperatura do ar-	
Descrição	condicionado.	
Entradas	Comando do usuário	
Fonte	Tela principal do app	

Saídas	Temperatura ajustada no dispositivo
Ação	Enviar comando para o dispositivo conectado.
	RFS04
Função	Configurar funcionalidades do app
Descrição	Acessar e alterar configurações do sistema (notificações)
Entradas	Toques nas opções do menu
Fonte	Menu lateral
Saídas	Preferências salvas
Ação	Aplicar configurações e armazená-las localmente.
	RFS05
Função	Alterar configurações de privacidade
Descrição	Editar dados de Wi-Fi, remover dispositivos
Entradas	Toques no menu de privacidade
Fonte	Tela de privacidade
Saídas	Preferências alteradas
Ação	Atualizar as permissões e dados da conta.
	RFS06
Função	Escolher idioma da interface
Descrição	Permitir que o usuário selecione o idioma (pt-BR).
Entradas	Seleção na tela de login
Fonte	Interface
Saídas	Texto traduzido
Ação	Atualizar interface com o idioma escolhido.

4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE

Necessários 6 requisitos

RFS01		
Função	Desempenho	
•	Garantir que o app responda às interações do usuário	
Descrição	em até 2 segundos.	
Entradas	Toques, comandos de voz, ações do app	
Fonte	Usuário	
Saídas	Respostas do sistema	
Ação	Otimizar o tempo de resposta das telas e comandos, principalmente controle de dispositivos.	
	RFS02	
Função	Proteção de informações	
•	Assegurar que os dados dos usuários estejam	
Descrição	criptografados durante armazenamento e transmissão.	
Entradas	Dados sensíveis do usuário (login, dispositivos, histórico)	
Fonte	Banco de dados, app	
Saídas	Dados criptografados e protegidos	
Ação	Implementar criptografia e autenticação segura e HTTPS.	
	RFS03	
Função	Acesso multiplataforma	
	O aplicativo deve funcionar em dispositivos Android e	
Descrição	iOS	
Entradas	Sistema operacional e versão	
Fonte	Dispositivo móvel	

Saídas	Execução do aplicativo	
Ação	Garantir compatibilidade por meio de frameworks responsivos e testes em múltiplos dispositivos.	
	RFS04	
Função	Usabilidade	
Descrição	O layout deve ser simples, com ícones e navegação acessível ao usuário comum.	
Entradas	Navegação do usuário	
Fonte	Interface gráfica	
Saídas	Navegação fluida e compreensível	
Ação	Aplicar princípios de design UX/UI com foco em clareza e simplicidade.	
	RFS05	
Função	Internacionalização	
Descrição	Suportar múltiplos idiomas, incluindo Português-BR e Inglês.	
Entradas	Seleção de idioma	
Fonte	Configurações do usuário	
Saídas	Interface traduzida	
Ação	Usar sistema de tradução baseado em banco de dados.	
	RFS06	
Função	Estabilidade e velocidade do sistema	
Descrição	O app deve estar disponível e funcional em pelo menos 99% do tempo. Portanto, tem que estar velos no máximo 3 segundo de atraso.	
Entradas	Solicitações e conexões dos usuários	
Fonte	Servidor backend e app	
Saídas	Respostas consistentes e velozes	
Ação		

5. CASOS DE USO

Apresentar 3 casos de uso do sistema

- 6. DIAGRAMA DE CLASSE
- 7. ARQUITETURA DO SISTEMA
- 8. REFERÊNCIAS BIBLIOGRÁFICAS

SOMMERVILLE, I. Engenharia de Software. 11ª Edição. São Paulo: Pearson Addison-Wesley, 2017.