Задача 1.

Нека p и q са прости числа. Нека n е естествно число, такова че $n\geqslant 2.$

- (5т) Докажете, че $\phi(pq) \geqslant |p-q|;$
- (5т) Докажете, че $\phi(p^n) \leqslant (2p)^n$;
- (5т) Докажете, че ако $p \neq 2$, то $\phi(p^n) \geqslant np$;
- (5т) Намерете решенията на уравнението $\varphi(p^sq^k) = \varphi(q^l)$;
- (5т) Намерете решенията на уравнението $\varphi(\varphi(\mathfrak{n})) = \mathfrak{p}$.

Задача 2.

Нека G е непразно множество и нека, то образува група относно бинарна операция *. Нека f е функция от G в G, която е хомоморфизъм на групата образувана от G относно * в себе си.

Нека $K = \{(x, y) \in G \times G \mid (\exists g \in G)(y = f(g))\}.$

Въвеждаме бинарна операция \otimes в K по правилото

$$(x,y)\otimes(z,t)=(x*z,y*t).$$

- (5т) Докажете, че **K** образува група относно операцията \otimes ;
- (5т) Докажете, че групата, която K образува относно \otimes има подгрупа, която е изоморфна на групата образувана от G относно *;
- (5т) Докажете, че групата, която K образува относно ⊗ има подгрупа, която е изоморфна на подгрупата образувана от Ker(f) на групата образувана от G относно *;
- (5т) Докажете, че групата, която K образува относно ⊗ има подгрупа, която е изоморфна на подгрупата образувана от Im(f) на групата образувана от G относно *;
- (5т) Нека $h: G \times G \to G$, която действа по правилото h(a, b) = f(a) * b. Докажете, че h задава действие на групата, образувана от G относно *, върху множеството G.

Задача 3.

Нека R е непразно множество, което образува пръстен. Нека този пръстен означим с \mathcal{R} . Нека $Root: \mathcal{P}(R) \to \mathcal{P}(R)$ е функция, действаща по правилото $Root(K) = \{x \in R \mid (\exists n \in \mathbb{N}_+)(x^n \in K)\}$. Нека $f: R \to R$ и f е хомоморфизъм на \mathcal{R} в \mathcal{R} .

Нека $Image: \mathcal{P}(R) \to \mathcal{P}(R)$ е функция, действаща по правилото $Image(K) = \{y \in R \mid (\exists x \in K)(y = f(x))\}.$

Нека $PreImage: \mathcal{P}(R) \to \mathcal{P}(R)$ е функция, действаща по правилото $PreImage(K) = \{x \in R \mid (\exists y \in K)(y = f(x))\}.$

Нека $I \in \mathcal{P}(R) \setminus \{\emptyset\}$ и I образува идеал на \mathcal{R} .

- (5т) Докажете, че $Image(Root(I)) \subseteq Root(Image(I))$;
- (10T) Root(PreImage(I)) = PreImage(Root(I));
- (10т) Ако Img(f) = R и $Ker(f) \subseteq I$, то Image(Root(I)) = Root(Image(I)).

Забележка: $\mathcal{P}(R)$ е означение за степенното множество на R, тоест множеството от всички подмножества на R.

Задача 4. (4T + 4T + 4T)

Нека ${\bf p}$ е просто число. Нека ${\bf f},\ {\bf g}$ и ${\bf h}$ са полиноми с комплексни коефициенти, такива че

$$f(x) = x^{3} - 2x - p$$

$$g(x) = x^{3} + 5x + 3$$

$$h(x) = x^{3} + \alpha x^{2} + bx + c.$$

Нека x_1 , x_2 и x_3 са корените на f. Определете коефициентите \mathfrak{a} , b и c, така че $g(x_1)$, $g(x_2)$ и $g(x_3)$ да са корените на h.