Notre rapport

Description de projet:

Semaine 9: Séance 1:

Etude de l'architecture du PIC16F877

• De combien de PORTS se compose le pic16F877?

Le PIC16F877 a 33 entrées/sorties numériques configurables individuellement, disposés en 5 ports à savoir PORTA, PORTB, PORTC, PORTD et PORTE. Chaque port est un registre d'E/S bidirectionnel de 8 bits, ce qui signifie qu'il peut être utilisé pour lire les entrées et commander les sorties.

Il a 15 sources d'interruption.

• Quels sont les différents composants du pic16F877? quel est le rôle de chacun?

Les différents composants clés du PIC16F877 sont les suivants :

- a) **Unité centrale de traitement (UCP):** C'est l'unité qui exécute les instructions et les opérations du microcontrôleur.
- b) **Mémoire programme (Program Memory)**: C'est la mémoire dans laquelle sont stockées les instructions du programme. Le PIC16F877 dispose d'une mémoire programme de 8 192 mots de 14 bits chacun.
- c) **Mémoire de données (Data Memory):** C'est la mémoire utilisée pour stocker les données temporaires en cours de traitement. Le PIC16F877 dispose d'une mémoire de données de 368 octets.
- d) **Registres spéciaux** : Le PIC16F877 comprend plusieurs registres spéciaux qui sont utilisés pour effectuer diverses opérations et configurations, tels que le

registre d'option, le registre de configuration, le registre de statut, etc.

- e) **Timer:** Le microcontrôleur est équipé d'un ou plusieurs timers qui peuvent être utilisés pour mesurer des intervalles de temps ou générer des retards.
- f) **Convertisseur analogique-numérique (CAN):** Le PIC16F877 dispose d'un module CAN intégré qui permet de convertir les signaux analogiques en signaux numériques.
- g) **Interfaces de communication:** Le microcontrôleur prend en charge différentes interfaces de communication, telles que l'I2C, l'UART (USART) et le SPI:

I2C (Inter-Integrated Circuit): L'I2C est utilisé lorsque vous avez besoin de connecter plusieurs périphériques à un microcontrôleur en utilisant seulement deux fils pour la communication.

UART (Universal Asynchronous Receiver-Transmitter): L'UART est utilisé pour la communication série entre deux périphériques.

SPI (Serial Peripheral Interface): Il s'agit également d'une interface de communication série synchrone qui permet à un microcontrôleur de communiquer avec plusieurs périphériques.

h)**Processeur**: RISC (Reduced Instruction Set Computer) avec une architecture Harvard.

• Quels sont les sources d'interruptions du pic16F877?

Le microcontrôleur 16F877 possède 15 sources d'interruptions :

- 1. Timer 0
- 2. Timer 1
- 3. Timer 2
- 4. RBO du port B
- 5. Changement d'état du port B
- 6. Port parallèle (lecture/écriture)
- 7. Convertisseur ADC
- 8. Transmission sur UART
- 9. Réception sur UART
- 10. Synchronisation du port série
- 11. CCP1 (Capture, Compare, PWM)
- 12. CCP2 (Capture, Compare, PWM)
- 13. Comparateur

- 14. Opération d'écriture dans la mémoire EEPROM
- 15. Collusion de bus
- a) **Interruptions externes:** Les interruptions externes peuvent être déclenchées par des changements d'état sur les broches spécifiées.
- b) **Interruptions par périphériques :** Certains périphériques internes, tels que les timers, les modules CAN, les modules de communication, peuvent générer des interruptions.
- c) **Interruptions par échange d'instructions** : Ces interruptions sont déclenchées par certains événements causés par les instructions elles-mêmes, tels que les interruptions de dépassement ou de division.
- d) **Interruptions par horloge :** Le PIC16F877 dispose d'une source d'interruption par horloge interne qui peut générer des interruptions à intervalles de temps réguliers.
- Faites un tableau comparatif entre le pic16F844 et le pic16F877:

Caractéristiques	PIC16F84 PIC16F877			
Architecture	Les deux microcontrôleurs, utilisent l'architecture Harvard			
Mémoire programme	Le PIC16F84 dispose d'une mémoire programme de 1024 mots de 14 bits chacun, ce qui correspond à un total de 2 048 octets de mémoire.	Le PIC16F877, quant à lui, offre une mémoire programme beaucoup plus grande, avec 8 192 mots de 14 bits, soit un total de 16 384 octets de mémoire. Cela permet de stocker des programmes plus complexes et plus volumineux.		
Mémoire de données	Le PIC16F84 dispose de 68 octets de mémoire de données, ce qui est relativement limité.	le PIC16F877 offre une mémoire de données plus généreuse, avec 368 octets. Cela permet de stocker davantage de variables et de données temporaires lors de l'exécution du programme.		
Ports E/S	 dispose de deux ports E/S (PORTA, PORTB). Chaque port est un registre d'E/S bidirectionnel de 8 bits. 	 dispose de cinq ports E/S (PORTA, PORTB, PORTC, PORTD et PORTE). Chaque port est un registre d'E/S bidirectionnel de 8 bits. 		

	1	 	
Timers	• Le PIC16F84 dispose d'un seul timer intégré.	• Le PIC16F877 est équipé de trois(0,1,2) timers intégrés. Les timers peuvent être utilisés pour mesurer des intervalles de temps, générer des retards ou effectuer des opérations de synchronisation.	
Convertisseur A/N	Le PIC16F84 ne dispose pas d'un module CAN intégré. Par conséquent, il ne peut pas effectuer de conversions analogique- numérique directement.	Le PIC16F877 est équipé d'un module CAN intégré, ce qui permet de convertir des signaux analogiques en données numériques.	
Interfaces de communication:	 Les deux microcontrôleurs prennent en charge plusieurs interfaces de communication, notamment l'I2C (Inter-Integrated Circuit), le SPI (Serial Peripheral Interface) et l'UART (Universal Asynchronous Receiver-Transmitter). Ces interfaces permettent la communication avec d'autres périphériques, tels que des capteurs, des afficheurs, des modules de communication sans fil, etc. 		
		• Le PIC16F877 dispose d'une fonctionnalité supplémentaire	

		appelée CCP	
		(Capture/Compare/	
Ressources supplémentaires	Le PIC16F84 n'inclut pas cette ressource supplémentaire.	PWM). Cela permet d'effectuer des opérations de capture de signaux, de comparaison de signaux et de modulation de largeur d'impulsion (PWM (Modulation de Largeur d'Impulsion)) pour le	
		contrôle de la vitesse	
		des moteurs, l'éclairage	
		graduel. etc.	

2. Utilisation d'un Ecran LCD avec le PIC16F877

Pour chacune des entrées identifiées, de quel type de capteur aurezvous besoin, analogique ou logique ? Justifiez vos choix.

Bouton "Arrêter" (RB0):	Ce bouton est un capteur logique car il n'a que deux états possibles : appuyé (1) ou relâché (0).		
Bouton "Consulter" (RA4):	ce bouton est également un capteur logique car il indique simplement s'il est appuyé (1) ou non (0).		
Capteur de présence(RB1):	il s'agit aussi d'un capteur logique : Comme il n'y a que deux états possibles (présence marquée = 1, présence non marquée = 0).		
Capteur de gaz MQ2 (RB7):	il est également un capteur logique : Ce capteur détecte la présence de gaz nocifs. Étant donné qu'il a seulement deux états (gaz présent = 1, pas de gaz = 0).		
Capteur de température LM35:(RB4)	il s'agit d'un capteur analogique : Ce capteur mesure la température en fournissant une sortie analogique proportionnelle à la température.		
Potentiomètre:(RA1)	c'est un capteur analogique : Il est utilisé pour contrôler la vitesse du moteur et fournit une sortie analogique correspondant à la position du curseur.		

Choisissez les broches sur lesquelles vous brancherez vos différentes entrées et sorties.

Ports Logiques:

- PORTA
- PORTB: Broches RBO à RB7.
- PORTC: Broches RC0 à RC7.
- PORTD: Broches RDO à RD7.
- PORTE: Broches REO à RE2.

Ports Analogiques:

- PORTA: Broches RAO à RA5 (ANO à AN5 en mode analogique).
- PORTB: Broches RBO à RB3 (AN12 à AN15 en mode analogique)

• LED Rouge (Rouge): RCO

• LED Verte (Verte): RC1

• LED Bleue (Bleue): RC2

• Écran LCD: PORTD

Buzzer:REO

• moteur (chauffage central): RD6

• moteur (porte): RD7

Semaine 10: Séance 2:

· Quels sont les sources d'interruptions utilisées dans votre système?

- Interruption externe : pour gérer les interruptions provenant des boutons "arrêter".
- Temporisation: pour gérer le temps d'ouverture automatique des portes de secours en cas d'incendie.
- Capteurs : pour gérer les interruptions liées à la détection de gaz nocifs et au dépassement de seuil de température.

l'organigramme du fonctionnement du système.

