Отчёт по лабораторной работе №1

Установка и конфигурация операционной системы на виртуальную машину

Касакьянц Владислав Сергеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Контрольные вопросы	20
6	Выводы	23
Список литературы		24

Список иллюстраций

4.1	Имя и ос виртуальной машины	8
4.2	Объем памяти и количество процессоров	9
4.3	Размер диска	9
4.4	Итог	10
4.5	Меню загрузчика	10
4.6	Предложение установки	11
4.7	Выбор языка	11
4.8	Место установки	12
4.9	Изъятие ISO диска	12
4.10	Запуск системы	13
4.11	Установка обновлений	13
4.12	Установка mc и tmux	14
4.13	Отключение SELinux	14
4.14	Изменение имени хоста	15
4.15	Установка pandoc	16
	Установка texlive	17
4.17	Установка pandoc-crossref	17
4.18	Вывод команды dmesg	18
4.19	Вывод отдельной информации	19

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установить виртуальную машину;
- 2. Установить на неё дистрибутив Fedora Linux;
- 3. Настроить операционную систему для дальнейшей работы;
- 4. С помощью команды dmesg получить необходимую информацию: версию ядра Linux, частоту и модель процессора, объём доступной памяти, обнаруженный гипервизор, тип файловой системы корневого раздела, последовательность монтирования файловых систем.

3 Теоретическое введение

Операционная система — это комплекс взаимосвязанных программ, который действует как интерфейс между приложениями и пользователями с одной стороны и аппаратурой компьютера, с другой стороны.

VirtualBox – это специальное средство для виртуализации, позволяющее запускать операционную систему внутри другой. С помощью VirtualBox мы можем не только запускать ОС, но и настраивать сеть, обмениваться файлами и делать многое другое.

4 Выполнение лабораторной работы

Для начала создадим новую виртуальную машину: в программе VirtualBox нажимаем на кнопку «создать», в качестве имени указываем логин в дисплейном классе (vskasakjyanc) и выбираем образ операционной системы Linux (дистрибутив Fedora WorkStation) (рис. 4.1).

Рис. 4.1: Имя и ос виртуальной машины

Выставляем нужный объем основной памяти и количество процессоров (рис. 4.2). После указываем размер диска (рис. 4.3).

Рис. 4.2: Объем памяти и количество процессоров

Рис. 4.3: Размер диска

Итоговую, на данный момент, конфигурацию системы можно увидеть ниже (рис. 4.4)

Рис. 4.4: Итог

Запустим созданную ранее виртуальную машину. Нас встретит меню загрузчика GRUB. Из предложенных вариантов выберем первое (рис. 4.5)

Рис. 4.5: Меню загрузчика

После загрузки системы появится окно с предложением установки ОС Fedora, нажмем на кнопку Install Fedora (рис. 4.6).

Рис. 4.6: Предложение установки

Выбираем язык (рис. 4.7) и место установки (рис. 4.8), после кликаем на кноп-ку Начать установку.

Рис. 4.7: Выбор языка

Рис. 4.8: Место установки

После окончания установки ОС выключаем виртуальную машину и изымаем ISO диск из привода (рис. 4.9). Вновь запускаем систему (рис. 4.10) и настраиваем .

Рис. 4.9: Изъятие ISO диска

Рис. 4.10: Запуск системы

Далее в терминале переключаемся на роль супер-пользователя командой sudo -i и обновляем все пакеты с помощью dnf -y update (рис. 4.11).

Рис. 4.11: Установка обновлений

Для удобства работы устанавливаем MC (MidnightCommander) и tmux командой dnf install tmux mc (рис. 4.12).

Рис. 4.12: Установка тс и tmux

Также отключаем систему SELinux. Для этого переходим в mc, затем в файле /etc/selinux/config заменяем значение SELINUX=enforcing на значение SELINUX=permissive (рис. 4.13).

Рис. 4.13: Отключение SELinux

Далее установим имя хоста с помощью команды hostnamectl set-hostname

vskasakjyanc, затем проверяем, установлено ли имя хоста верно командой hostnamectl (рис. 4.14).

```
root@fedora:-# hostnamectl set-hostname vskasakjyanc
root@fedora:-# hostnamectl
Static hostname: vskasakjyanc

Icon name: computer-vm
Chassis: vm 
Machine ID: 6327375d51024e8b8ab72bdb6edc06ef
Boot ID: 39d9483fa28c458590869001b6825ced
Virtualization: oracle
Operating System: Fedora Linux 39 (Workstation Edition)
CPE OS Name: cpe:/o:fedoraproject:fedora:39
OS Support Emmaining: Smonth 4d
Kernel: Linux 6.8.11-200.fc39.x86_64
Architecture: x86-64
Hardware Vendor: innotek GmbH
Hardware Model: VirtualBox
Firmware Version: VirtualBox
Firmware Date: Fri 2006-12-01
Firmware Age: 17y Gmonth 1w
root@fedora:-#
```

Рис. 4.14: Изменение имени хоста

Также для дальнейшей работы нам необходимо установить pandoc и TexLive. Для этого в роли супер-пользователя вводим команды: dnf - y install pandoc (puc. 4.15) и dnf - y install texlive-scheme-full (puc. 4.16).

Рис. 4.15: Установка pandoc

```
€
                                                                                                  root@vskasakjyanc:~
                                                                                                                                                                                                               Q ≡
 oot@vskasakjyanc:~# dnf -y install texlive-scheme-full
оследняя проверка окончания срока действия метаданных: 0:46:11 назад, С6 08 июн 2024 14:26:02.
                                                                                               Архитектура
Версия
Пакет
/становка:
texlive-scheme-full
Установка зависимостей:
                                                                                                                                                                                                       fedora 1.6 M
fedora 129 k
updates 64 M
updates 107 k
fedora 58 k
fedora 1.4 M
fedora 518 k
fedora 127 k
fedora 5.0 M
fedora 292 k
updates 25 k
updates 3.1 M
updates 18 k
                                                                                       x86_64 1.3.40-3.fc39
x86_64 1.3.40-3.fc39
x86_64 4.3.3-2.fc39
noarch 0.22-1.fc39
noarch 0.10-5.fc39
noarch 1.43-2.fc39
 GraphicsMagick
GraphicsMagick-c++
                                                                                              noarch 1.43-2.fc39
x86_64 0.39-2.fc39
                                                                                               x86_64 2.3.5-4.fc39
x86_64 2.86-1.fc39
                                                                                               noarch 2.19-3.fc39
x86_64 3.4.2-1.fc39
                                                                                              x86_64 3.4.2-1.fc39
x86_64 3.4.2-1.fc39
                                                                                                                                                                                                          updates 3.1 M
updates 18 k
fedora 6.2 M
fedora 110 k
fedora 1.1 M
fedora 6.5 M
fedora 136 k
                                                                                              x86_64 20230101-8.fc39
x86_64 8.2.2-4.fc39
x86_64 2.7.1-5.fc39
                                                                                               x86_64 2.2.7-9.fc39
x86_64 1:0.10.1-29.fc39
                                                                                                x86_64 1.3.2-2.fc39
x86_64 1.3.2-2.fc39
noarch 4.85-1.fc39
                                                                                                                                                                                                          updates 17 M
updates 7.3 M
updates 454 k
                                                                                                                                                                                                           fedora 46
updates 203
                                                                                                                                                                                                                                  46 k
```

Рис. 4.16: Установка texlive

Установим пакет pandoc-crossref. Для этого узнаем установленную версию пакета pandoc, введя команду pandoc --version. Найдем подходящую версию pandoc в github репозитории и скачаем. Распакуем архив в директорию /usr/local/bin, добавим права на исполнение (рис. 4.17).

```
vskasakjyanc@vskasakjyanc:-$ pandoc --version
pandoc 3.1.3
Features: -server +tua
Scripting engine: Lua 5.4
User data directory: /home/vskasakjyanc/.local/share/pandoc
Copyright (C) 2006-2023 John MacFarlane. Web: https://pandoc.org
This is free software; see the source for copying conditions. There is no
warranty, not even for merchantability or fitness for a particular purpose.
vskasakjyanc@vskasakjyanc:-$ ls
pandoc-crossref-Linux.tar.xz
BNAGEN
Sarpyakh Nyawka 'PaGowhi cton'
vskasakjyanc@vskasakjyanc:-$ swdo tar -C /usr/local/bin -xf pandoc-crossref-Linux.tar.xz
(sudo) napons для vskasakjyanc:-$ rm pandoc-crossref-Linux.tar.xz
vskasakjyanc@vskasakjyanc:-$ rm pandoc-crossref-Linux.tar.xz
vskasakjyanc@vskasakjyanc:-$ swdo chmod a+x /usr/local/bin/pandoc-crossref
vskasakjyanc@vskasakjyanc:-$ pandoc-crossref --version
pandoc-types v1.23 and 6fe 9.0.2
vskasakjyanc@vskasakjyanc:-$
```

Рис. 4.17: Установка pandoc-crossref

В окне терминала проанализируем последовательность загрузки системы, вы-

полнив команду dmesg в роли супер-пользователя (рис. 4.18).

Рис. 4.18: Вывод команды dmesg

Получим следующую информацию:

- 1. Версия ядра Linux
- 2. Частота процессора
- 3. Модель процессора
- 4. Объем доступной оперативной памяти
- 5. Тип обнаруженного гипервизора
- 6. Тип файловой системы корневого раздела
- 7. Последовательность монтирования файловых систем (рис. 4.19).

```
root@vskasakjyanc:-# dmesg | grep -i "Linux version"
[ 0.000000] Linux version 6.8.11-200 fc39.x86_64 (mockbuild@538dflba59694851b947e1fab774e672) (gcc (GCC)
13.3.1 20240522 (Red Hat 13.3.1-1), GNU ld version 2.40-14.fc39) #1 SMP PREEMPT_DYNAMIC Sun May 26 20:05:41
UTC 2024
Voot@vskasakjyanc:-# dmesg | grep -i "Mhz processor"
[ 0.000006] tsc: Detected 2611.204 MHz processor
Voot@vskasakjyanc:-# dmesg | grep -i "Mhz processor"
[ 0.000006] tsc: Detected 2611.204 MHz processor
Voot@vskasakjyanc:-# dmesg | grep "CPU0"
[ 0.295101] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i5-11260H @ 2.60GHz (family: 0x6, model: 0x8d, step ping: 0x1)
Voot@vskasakjyanc:-# dmesg | grep "Memory: **available"
[ 0.15233] Memory: 386123xX/419348K available (20480K kernel code, 4236K rwdata, 14888K rodata, 4768K init, 5504K bss, 232356K reserved, 0K cma-reserved)
Voot@vskasakjyanc:-# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Mypervisor detected: KVN
Voot@vskasakjyanc:-# df -T | grep "A/."
Vdev/sda3 btrfs 25162752 10993204 13583356 45% /home
3040vskasakjyanc:-# dmesg | grep -i "mount"
[ 0.102879] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.102884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.102884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.102884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.102884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.12884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.12884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.12884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.12884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.12884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.12884] Buntproint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0.12884] Buntproint-cache has
```

Рис. 4.19: Вывод отдельной информации

5 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Информацию об учетных записях Linux хранит в файле /etc /passwd.

Он содержит следующее:

User ID - логин;

Password – наличие пароля;

UID - идентификатор пользователя;

GID - идентификатор группы по умолчанию;

User Info – вспомогательная информация о пользователе (полное имя, контакты и т.д.)

Home Dir - начальный (он же домашний) каталог;

Shell - регистрационная оболочка, или shell.

2. Укажите команды терминала и приведите примеры.

• для получения справки по команде;

Для получения справки по команде используется команда "man" (от "manual"). Например, man ls

• для перемещения по файловой системе;

Для перемещения по файловой системе используется команда "cd" (от "change directory"). Например, cd /home/user/documents

• для просмотра содержимого каталога;

Для просмотра содержимого каталога используется команда "**ls**" (от "list"). Например, ls /home/user/documents

• для определения объёма каталога;

Для определения объёма каталога используется команда "**du**" (от "disk usage"). Например, du -h /path/to/directory

• для создания / удаления каталогов / файлов;

Для создания каталогов используется команда "**mkdir**" (от "make directory"), для удаления - "rmdir" (для удаления пустого каталога) или "rm" (для удаления файлов). Например, mkdir new directory

• для задания определённых прав на файл / каталог;

Для задания определённых прав на файл / каталог используется команда "**chmod**" (от "change mode"). Например, chmod 755 file.txt

• для просмотра истории команд.

Для просмотра истории команд используется команда "history". Например, history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — это способ организации и хранения файлов на компьютере. Она определяет структуру файлов и директорий, права доступа к ним, их названия и другие свойства.

Примеры файловых систем в Linux:

ext4 - одна из наиболее распространенных файловых систем в Linux. Она обладает высокой производительностью и поддерживает большие объемы данных.

Btrfs - современная файловая система, которая поддерживает различные функции, такие как снимки, управление памятью и проверка целостности данных.

XFS - файловая система, разработанная для обработки больших объемов данных и высоких нагрузок. Она обладает хорошей производительностью и отказоустойчивостью.

ZFS - файловая система с мощными функциями управления данными, включая сжатие, шифрование и быструю проверку целостности данных.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

В Linux можно просмотреть список подмонтированных файловых систем с помощью команды **df** -h. Эта команда отобразит информацию о дисковом пространстве, включая подмонтированные файловые системы. Также можно использовать команду **mount**, которая отобразит список всех подмонтированных файловых систем и их параметры.

5. Как удалить зависший процесс?

Для удаления зависшего процесса в Linux можно воспользоваться командой **kill**. Сначала необходимо определить PID (идентификатор процесса) зависшего процесса с помощью команды **ps** -aux | **grep** [название процесса]. Затем используйте команду **kill** [PID] для завершения процесса. Если процесс попрежнему не завершается, можно попробовать использовать команду **kill** -9 [PID], которая немедленно прерывает процесс. Также можно воспользоваться командой **pkill** [название процесса] для завершения всех процессов с указанным именем.

6 Выводы

В данной работе мы приобрели практические навыки установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы