ゼミノート #4.5

Fibered Categories, continued

七条彰紀

2019年1月4日

1 Cleavage

Cartesian lifting は普遍性 (Triangle Lifting) で特徴づけられている。なので同型を除いて一意であるが、厳密な意味で一意であるというものではない。どの Cartesian lifting を用いるか選んだものが Cleavage(分裂、劈開)。これは Fibered category :: $\mathfrak X$ の Cartesian arrow の class を成す。 Cleavage と fibration (resp. Fibered category) を併せたものを Cloven fibration (resp. Cloven fibered category) と呼ぶ。選択公理によって、我々は常に Fibration を Cloven fibration にできる。

1.1 Split Fibration

Cleavage は Cartesian arrow の class であると書いたが、この class が圏を成すと綺麗である。そのような Cleavage を選べる Fibration を Split fibration と呼ぶ.

定義 1.1 ([3])

 π : $\mathfrak{X} \to \mathbf{B}$:: fibered category とする. splitting of π とは、以下を満たす subcategory :: $\mathbf{S} \subset \mathfrak{X}$ のことである.

- 1. S は ℑ の任意の対象を持つ.
- 2. S の任意の射は cartesian.
- 3. 任意の **B** の射 $f: U \to V \$ と $V \$ 上の対象 $v \in \mathfrak{X}$ について, $f \$ 上の射 $u \to v$ がただ一つ存在する.(すなわち,cartesian lifting が一意に存在する.)

この時, 組 $(\mathfrak{X}, \mathbf{S})$ を split fibered category と呼ぶ.

任意の Fibration は Split fibration とは限らないが、Split fibration と圏同値である.

定理 1.2

 $\pi: \mathfrak{X} \to \mathbf{B}$:: fibered category とする. この時, split fibered category over \mathbf{B} :: $(\tilde{\mathfrak{X}}, \mathbf{S})$ が存在し、圏同値 $\tilde{\mathfrak{X}} \simeq \mathfrak{X}$ が成立する.

(証明). ここでは圏と部分圏 $(\tilde{\mathfrak{X}}, \mathbf{S})$ 及び関手 $\Phi: \tilde{\mathfrak{X}} \to \mathfrak{X}$ を構成するにとどめる. (TODO: これらがそれぞれ split fibered category over \mathbf{B} と equivalence であることはここでは確認しない.)

以下のように \tilde{X} を構成する.

Objects. object :: $U \in \mathbf{B}$ と morphism of fibered category :: $u : \mathbf{B}/U \to \mathfrak{X}$ の組 (U,u).

Arrows. 射 $(V,v) \to (U,u)$ は \mathbf{B} の射 $g\colon V \to U$ と base-preserving isomorphism $:: \alpha\colon v \to u \circ g$ の 組 (g,α) .

$$\mathbf{B}/V \xrightarrow{g} \mathbf{B}/U \xrightarrow{u} \mathfrak{X}$$

まず projection functor が以下のように定まる.

$$\tilde{\pi} : \quad \tilde{\mathfrak{X}} \quad \to \quad \mathbf{B}$$

$$(U, u) \quad \mapsto \quad U$$

この関手によって fibered category の構造が入る.

さらに次の関手によって equivalence が与えられる.

$$\Phi \colon \quad \tilde{\mathfrak{X}} \quad \to \quad \mathfrak{X}$$
$$(U, u) \quad \mapsto \quad u(\mathrm{id}_U)$$

これが equivalence であることは 2-Yoneda Lemma による.

最後に、splitting of $\tilde{\pi}$:: **S** が次で定められる.

Objects. $ilde{\mathfrak{X}}$ と同じ.

Arrows. $\tilde{\mathfrak{X}}$ の射で、 (g, id) と表されるもの。 すなわち、射 $(V, v) \to (U, u)$ は \mathbf{B} の射 $g \colon V \to U$ であって $v = u \circ g$ であるもの。

定義 1.3

圏 B に対し,

- Cloven fibration over B の圏を cFib(B),
- Split fibration over \mathbf{B} の圏を $\mathbf{sFib}(\mathbf{B})$

と書く. ぞれぞれ忘却関手 $\mathbf{sFib}(\mathbf{B}) \to \mathbf{cFib}(\mathbf{B}), \mathbf{cFib}(\mathbf{B}) \to \mathbf{Fib}(\mathbf{B})$ をもつ.

2 Grothendieck Construction

今, fibered category から fiber として psuedo-functor を構成した. 実はこの逆が出来る.

定義 2.1 (Grothendieck Construction, [3], [2])

psuedo-functor :: $P: \mathbf{B} \to \mathbf{Cat}/\mathbf{B}$ について、以下のように圏 $\int P$ を定義する.

Object. $b \in \mathbf{B} \ \succeq x \in P(b)$ の組 (b, x).

Arrow. $\phi: b \to b' \ \ \ \ \Phi: P(\phi)(x) \to x' \ \ \mathcal{O}$ 組 (ϕ, Φ) .

射の合成は $(\psi, \Psi) \circ (\phi, \Phi) = (\psi \circ \phi, \Phi \circ P(\psi)(\Phi))$ で与えられる.

この圏によって以下の関手が定まる.

$$\int : \left\{ \begin{array}{ccc} \text{psuedo-functor} \\ \mathbf{B} \to \mathbf{Cat} \end{array} \right\} & \to & \mathbf{sFib}(\mathbf{B}) \\ P & \mapsto & \int P \\$$

例 2.2

scheme :: S について, representable functor :: S は Sch/S に対応する.

例 2.3

presheaf of set :: $F \colon \mathbf{C} \to \mathbf{Sets}$ は $\bigsqcup_{c \in \mathbf{C}} F(c)$ に対応する.

注意 2.4

David I. Spivak "Category theory for scientists" によると、Grothendieck Construction を最初に構成したのは Grothendieck ではない。例えば MacLane が以前から扱っている。

定義 2.5 (weak/strict 2-equivalence)

関手 $F: \mathbf{C} \to \mathbf{D}$ が weak 2-equivalence であるとは、以下が成り立つこと: 逆向きの関手 $\mathbf{C} \leftarrow \mathbf{D}: G$ と二つの自然変換 $\alpha: GF \to \mathrm{id}_{\mathbf{C}}, \beta: FG \to \mathrm{id}_{\mathbf{D}}$ が存在し、

- 各 $c \in \mathbb{C}$, $d \in \mathbb{D}$ について α_c , β_d は同型であり,
- 射 $\phi \in Arr(\mathbf{C}), \psi \in Arr(\mathbf{D})$ について $\alpha_{\phi}, \beta_{\psi}$ も同型.

 $\alpha_{\phi}, \beta_{\psi}$ が恒等射であるときは strict 2-equivalence という.

定理 2.6 (Grothendieck Construction give Category Equivalence)

Grothendieck Construction

$$\int \colon \left\{ \begin{matrix} \text{psuedo-functor} \\ \mathbf{B} \to \mathbf{Cat} \end{matrix} \right\} \to \mathbf{cFib}(\mathbf{B})$$

は strict 2-equivalence である. また、このあとに忘却関手 $\mathbf{cFib}(\mathbf{B}) \to \mathbf{Fib}(\mathbf{B})$ を続けると、weak 2-equivalence となる.

(証明). [5] §3.1.3 に詳しい証明がある. あるいは、P. T. Johnstone "Sketches of an Elephant: A Topos Theory Compendium vol.1 (Oxford Logic Guides 43)" に証明がある. ■

注意 2.7

 ${f Fib}({f B})$ と "anafunctor"の圏が strict 2-equivalence である,という述べ方もあるようだが, "anafunctor"を 用いる理由が特に無いので,このノートでは導入しない.

注意 2.8

この定理から、psuedo-functor の理論と fibered category の理論は殆ど同じ、と言える. また、今後現れる stack などは psuedo-functor に対して定義され、一見、fibered category の理論は扱う必要性がなくなる.

しかし実際には、fibered category の方が psuedo-functor より構成しやすい、あるいは全体の性質を理解

しやすいという面がある。また技術的な有利としては、fibered category は cleavage(例えば pullback, fiber product 等)を選択する必要がなく、例えば、pullback の貼り合わせ(貼り合わせの際には同型での変形が必要に成る)を自然に扱うことが出来る $^{\dagger 1}$.

また,直観としては, fibered category は family である. ここから得られる fiber は正に fiber of family である. そのため fibered category は大域的, psuedo-functor は局所的だと考えられる.

(TODO: あとで分かったらもっと追記する.)

3 Category Fibered in Groupoids/Sets

3.1 Motivation

Category Fibered in Groupoids は「綺麗すぎる」fibered category であるが、我々が研究する範囲では珍しいものではない。

3.2 Definition

定義 3.1 (Groupoid)

任意の射が同型射である圏を groupoid と呼ぶ.

注意 3.2

群は対象がただ一つで任意の射が同型であるものとみなせるため、groupoid にはこの名前がある.

群以外の極めて単純な groupoid として、集合を射が恒等射しかない圏(離散圏)とみなしたものがある. そのため、逆に恒等射しか無い圏も set と呼ぶ.

定義 3.3 (Category fibered in groupoids/sets)

 π : $\mathfrak{X} \to \mathbf{B}$ を fibered category とする. 任意の $b \in \mathbf{B}$ について、 π の b における fiber $\mathfrak{X}(b)$ が groupoid (set) であるとき、 \mathfrak{X} を category fibered in groupoids (sets) と呼ぶ.

category fibered in groupoids は次のように定義しても同値である.

定義 3.4 (Category fibered in groupoid (Another Definition))

任意の射が cartesian である fibered category を category fibered in groupoids と呼ぶ. すなわち、以下の 2 条件が成立する圏 $\mathfrak X$ と関手 $\pi\colon \mathfrak X\to \mathbf B$ を category fibered in groupoids と呼ぶ.

(i) 以下の図式 (1) において、上の箱と下の箱が π で対応し、下の箱にある図式が可換であるとする.この時、図式 (2) のように上の箱にある図式を可換にし、 π での対応を保つ射 $z \to x$ がただ一つ存在する.

^{†1} もう少し具体的な例としては、trivial family の貼り合わせで出来る locally trivial family も扱える. 詳しい例は私の Deformation Theory に関するノートを読んで欲しい.

(ii) $y \in \mathfrak{X}, u \to \pi(y) \in \mathbf{B}$ に対し、以下の図式を満たす $^{\dagger 2}x \in \mathfrak{X}$ と射 $x \to y \in \mathfrak{X}$ が存在する.

(証明). [4] $003V^{\dagger 3}$.

4 Equivalence of Fibered Categories

Fibered category の一般論の最後に、この直後に扱うことと成る Equivalence を扱う. この節では fibered categories :: π : $\mathfrak{X} \to \mathbf{B}, \pi'$: $\mathfrak{X}' \to \mathbf{B}$ と、これらの間の射 g: $\mathfrak{X} \to \mathfrak{X}'$ を考える.

4.1 Definition

定義 4.1 (Equivalence)

g が equivalence of fibered categories であるとは、別の射 $h\colon \mathfrak{X}'\to\mathfrak{X}$ が存在し、 $g\circ h, h\circ g$ がそれぞれ恒等 関手と base-preserving isomorphic であるということである.

この時, $\mathfrak{X} \simeq \mathfrak{X}'$ と書き, h は psuedo-inverse of g と呼ばれる.

注意 4.2

比較すれば分かるとおり、equivalence of fibered categories は、通常の圏同値の定義に"base-preserving"と

 $^{^{\}dagger 2}$ すなわち, $\pi(x)=u,\pi(x\to y)=u\to\pi(y)$ を満たす.

^{†3} https://stacks.math.columbia.edu/tag/003V

いう条件が追加されただけである.

4.2 Propositions

命題 4.3

fibered とは限らない圏 \mathbf{C}, \mathbf{D} とその間の関手 $F: \mathbf{C} \to \mathbf{D}$ について,F が圏同値であることは以下の 2 条件 が同時に成立することと同値.

Fully Faithfulness.

任意の $c, c' \in \mathbb{C}$ について,

関手 F が与える class の対応 $\operatorname{Hom}_{\mathbf{C}}(c,c') \to \operatorname{Hom}_{\mathbf{D}}(F(c),F(c'))$ は全単射である.

Essential Surjectivity.

任意の $d \in \mathbf{D}$ について、 $F(c) \cong d$ となる対象 $c \in \mathbf{C}$ が存在する.

(証明). [1] Prop7.26 を参照せよ.

命題 4.4 ([3] Prop3.1.18, 3.1.10)

 $b \in \mathbf{B}$ について, g を $\mathfrak{X}(b)$ に制限して得られる関手を $g_b \colon \mathfrak{X}(b) \to \mathfrak{X}'(b)$ とする.

- (a) g :: fully faithful \iff 任意の $b \in \mathbf{B}$ について, g_b :: fully faithful.
- (b) g :: equivalence \iff 任意の $b \in \mathbf{B}$ について, g_b :: equivalence $^{\dagger 4}$.

(証明). いずれも \Longrightarrow は自明なので \Longleftarrow を示す.

(i) の証明の概略は以下の通り、まず $\operatorname{Hom}_{\mathbf{C}}(c,c'),\operatorname{Hom}_{\mathbf{D}}(F(c),F(c'))$ を

$$\operatorname{Hom}_{\mathbf{C}}(c,c') = \bigsqcup_{h \in \operatorname{Hom}_{\mathbf{B}}(\pi(c),\pi(c'))} \left\{ \begin{matrix} \operatorname{morphisms} \ c \to c', \\ \operatorname{over} \ h \end{matrix} \right\},$$

$$\operatorname{Hom}_{\mathbf{D}}(F(c),F(c')) = \bigsqcup_{h \in \operatorname{Hom}_{\mathbf{B}}(\pi(c),\pi(c'))} \left\{ \begin{matrix} \operatorname{morphisms} \ F(c) \to F(c'), \\ \operatorname{over} \ h \end{matrix} \right\}$$

と分解する. そして各 h について session 4 の命題 4.2 (射は cartesian arrow e id に写る射の合成に分解できる) を用いる. すると各成分について全単射を構成できる.

参考文献

- [1] Steve Awodey. Category Theory (Oxford Logic Guides). Oxford University Press, U.S.A., 2 edition, 8 2010.
- [2] Behrang Noohi. A quick introduction to fibered categories and topological stacks. http://www.maths.qmul.ac.uk/~noohi/papers/quick.pdf.
- [3] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.

^{†4} こちらは通常の圏同値

- [4] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
- [5] Angelo Vistoli. Notes on grothendieck topologies, fibered categories and descent theory (version of october 2, 2008). http://homepage.sns.it/vistoli/descent.pdf.