MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ARKUSZ I

Numer zadania	Etapy rozwiązania zadania	Liczba punktów
1	Stwierdzenie, że $-3^2 = -9$, zdanie p jest fałszywe.	1
	Stwierdzenie, że $\sqrt{81+64} = \sqrt{145} \neq 17$, zdanie q jest fałsze.	1
	Stwierdzenie, że $\sqrt[3]{27^4} = 3^4 = \left(\frac{1}{9}\right)^{-2}$, zdanie r jest prawdziwe.	1
	Prawidłowa ocena wartości logicznej zdania $(p \land q) \Rightarrow r$ Odp. Np. Zdanie $(p \land q) \Rightarrow r$ jest prawdziwe, gdyż koniunkcja $p \land q$ jest fałszywa, a implikacja o fałszywym poprzedniku jest prawdziwa l punkt przyznajemy za prawidłową odpowiedź, l punkt za uzasadnienie na podstawie własności koniunkcji i implikacji (punkty przyznajemy także, gdy zdający źle ocenił wartość logiczną zdań p , q lub r i konsekwentnie ocenia wartość logiczną zdania $(p \land q) \Rightarrow r$)	2
	Wyznaczenie pierwiastków trójmianu kwadratowego: $x_1 = -1, x_2 = 3$	1
2	Rozwiązanie nierówności kwadratowej i wyznaczenie zbioru A: $A = \langle -1,3 \rangle$	1
	Wyznaczenie pierwiastków mianownika wyrażenia $\frac{x^2-9}{4x-x^2}$: $x_1=0, x_2=4$	1
	Wyznaczenie dziedziny funkcji wymiernej: B = R\{0;4}	1
	Wyznaczenie różnicy zbiorów: $A \setminus B = \{0\}$	1
3	Zapisanie zależności opisujących koszty wycieczek organizowanych przez firmy "Alfa" i "Beta": $K_A = 3000 + 245n$ i $K_B = 4400 + 206n$, gdzie n jest liczbą uczestników	1
	Zapisanie nierówności wynikającej z treści zadania: 3000 + 245n < 4400 + 206n	1
	Rozwiązanie nierówności wraz z podaniem właściwej odpowiedzi a): $n < 35\frac{35}{39}$, czyli oferta firmy "Alfa" jest korzystniejsza dla grup liczących co najwyżej 35 osób.	1
	Obliczenie kosztów przypadających na jednego uczestnika (1 punkt przyznajemy za prawidłową metodę, 1 punkt za prawidłowe obliczenia i zaokrąglenie wyniku): 322 zł	2
4	Wyznaczenie wartości współczynnika c (wykorzystanie informacji o punkcie (0,0) leżącym na paraboli): c = 0	1
	Obliczenie współczynnika b (1 punkt przyznajemy za wyznaczenie $f(1)$ i $f(5)$, 1 punkt za rozwiązanie równania $f(1)=f(5)$): $b=3$	2
	Obliczenie wielkości koniecznych do naszkicowania wykresu funkcji f	
	Naszkicowanie wykresu funkcji f	1

Próbny egzamin maturalny z matematyki Arkusz I

	Zastosowanie prawidłowego algorytmu dla wyznaczenia kwoty spłaty	1
5	kredytu w przypadku oferty banku A: $K \cdot (1,06)^8$	1
	Zastosowanie prawidłowego algorytmu dla wyznaczenia kwoty spłaty kredytu wraz z odsetkami w przypadku oferty banku B: $K \cdot (1,11)^4 + 0.04K$	1
	Ustalenie przybliżonych wartości spłat w ofertach banków A i B: A – 1,59K, B – 1,56K	1
	Wybranie korzystniejszej oferty: oferta banku B	1
6	Wyznaczenie współczynnika kierunkowego prostej l : $a = 1$	1
	Wyznaczenie równania prostej l : $y = x + 4$	1
	Wyznaczenie współczynnika kierunkowego prostej k : $a_1 = -1$	1
	Wyznaczenie równania prostej k : $y = -x - 3$	1
	Obliczenie długości najdłuższego boku trójkąta, z uzasadnieniem, że bok zawarty w osi y jest najdłuższy: długość równa 7 (jeśli uczeń tylko poda długość to otrzymuje 1 punkt; uzasadnieniem może być również szkic w układzie współrzędnych)	2
	Określenie metody obliczenia pola danego czworokąta	1
7	Obliczenie pól poszczególnych trójkątów (1 pkt. za metodę obliczenia pola trójkąta, 1 punkt za prawidłowo określone wartości funkcji trygonometrycznych, 1 punkt za prawidłowe obliczenia,nawet gdy wynik podany będzie bez jednostki): $P_1 = P_2 = 9cm^2$, $P_3 = P_4 = 9\sqrt{2}cm^2$	3
	Obliczenie pola czworokąta : $P = 18(1 + \sqrt{2})cm^2$ (nie przyznajemy punktu jeśli wynik podany będzie bez jednostki)	1
8	Wykonanie działań na wielomianach (1 pkt. za prawidłowe zapisanie działań, 1 punkt za prawidłową redukcję wyrazów podobnych): $Q(x)-2P(x)=x^4-12x^3+40x^2-38x-3$	2
	Porównanie odpowiednich współczynników wielomianów: m-4=-12, $-(2n+6)=40(punkt przyznajemy jeśli brak komentarza o równości stopniwielomianów)$	1
	Wyznaczenie wartości m i n: $m = -8$, $n = -23$	1
9	Zapisanie równania dla wyznaczenia długości wysokości warstwy środkowej: $\pi r_3^2 h_3 = 3200\pi$	1
	Obliczenie długości wysokości warstwy środkowej (jednocześnie pozostałych warstw): $h_3 = 8$ cm	1
	Obliczenie długości promieni kolejnych walców: $r_1 = 30cm, r_2 = 25cm, r_4 = 15cm, r_5 = 10cm$	1
	Obliczenie sumy objętości wszystkich walców (1 pkt. w przypadku błędów rachunkowych przy wyznaczaniu objętości poszczególnych walców): V = 18000 πcm ³	2
	Obliczenie masy mąki: m = 1,35 kg . (1 punkt przyznajemy za metodę i 1 punkt za obliczenia)	2

Próbny egzamin maturalny z matematyki Arkusz I

10	Wykorzystanie danych z diagramu kołowego i obliczenie średniej s_3 ;	
	$s_3 = 4,38$ (1 punkt przyznajemy za metodę i 1 punkt za obliczenia)	2
	Wykorzystanie prawidłowego algorytmu do obliczenia średniej ważonej $s = \frac{5 \cdot 2,42 + 3 \cdot 4,32 + 2 \cdot 4,38}{10}$	1
	Obliczenie średniej ważonej i podanie odpowiedzi: s = 3,382	1
	Nowa kawa będzie sprzedawana w tym sklepie.	