LCM Specification

()Preliminary Specification(✓) Final Specification

PRODUCT TYPE: TFT MODULE

PRODUCT P/N: WTIMV101H-02

VERSION: VO

HXWY

Customer

DESIGNED BY	
CHECKED BY	
APPROVED BY	

INSPECTION RESULT	
TESTED BY	
APPROVED BY	

Revision Notice	Description	Page	Rev. Date
0.0	First revision (Tentative)		2017/06/02
0.0	(1011011)		

TABLE OF CONTENTS

No. Contents	PAGE
REVISION STATUS	2
TABLE OF CONTENTS	3
1. GENERAL DESCRIPTION	4
2. MECHANICAL SPECIFICATION	5
3. PIN DESCRIPTION	6
4. Absolute Max. Rating	
5. Signal timing diagramPower Sequence	8
7. Optical Specifications	17

1. GENERAL DESCRIPTION

1.1 DESCRIPTION

WTIMV101H-02 is a color active matrix thin film transistor (TFT) IPS liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. It is composed of a TFT LCD panel, Driver IC ,FPC and Backlight.

1.2 FEATURES:

No.	Item	Specification	Unit
1	Panel Size	10.1"	inch
2	Number of Pixels	1200x3(RGB) x 1920	pixels
3	Active Area	135.360(W)x216.576(H)	mm
4	Pixel Pitch	0. 1692 x 0.1692	mm
5	OutlineDimension	228.6(W) x 143(H) x2.30(D) mm	
6	Number of Colors	16.7M	-
7	Display Mode	Normally Black	-
8	ViewingDirection	IPS	
9	Pixel Arrangement	RGB vertical stripe	-
10	Luminance (cd/m^2)	260(TYP.)	nit
11	Contrast Ratio	800(TYP.)	
12	Surface Treatment	Anti-glare	-
13	Interface	MIPI	-
14	Backlight	White LED	-
15	Operation Temperature	-20~60	$^{\circ}$
16	Storage Temperature	-30~60	$^{\circ}$
17	Weight	TPD	g

3. PIN DESCRIPTION

PIN NO.	Symbol	Description
1	NC	No connection
2	VDD	Power Voltage for digital circuit 3.3V
3	VDD	Power Voltage for digital circuit 3.3V
4	GND	Ground
5	Reset	Global reset pin 3.3V
6	NC	No connection
7	GND	Ground
8	MIPI_0N	-MIPI differential data input
9	MIPI_0P	+MIPI differential data input
10	GND	Ground
11	MIPI_1N	-MIPI differential data input
12	MIPI_1P	+MIPI differential data input
13	GND	Ground
14	MIPI_CKN	-MIPI differential clock input
15	MIPI_CKP	+MIPI differential clock input
16	GND	Ground
17	MIPI_2N	-MIPI differential data input
18	MIPI_2P	+MIPI differential data input
19	GND	Ground
20	MIPI_3N	-MIPI differential data input
21	MIPI_3P	+MIPI differential data input
22	GND	Ground
23	NC	No connection
24	NC	No connection
25	GND	Ground
26	NC	No connection
27	PWMO	PWM control signal for LED driver(CABC)
28	NC	No connection
29	NC	No connection
30	GND	Ground

31	LED-	LED Cathode	
32	LED-	LED Cathode	
33	NC	No connection	
34	NC	No connection	
35	NC	No connection	
36	NC	No connection	
37	NC	No connection	
38	NC	No connection	
39	LED+	LED Anode	
40	LED+	LED Anode	

4. Absolute Max. Rating

Item	Symbol	Values		Unit	
item	Symbol	Min.	Max.	Offic	
Power Voltage	VCC	-0.3	+5.0	V	
Backlight forward current	ILED	0	25	mA(For each LED)	
Input Signal Voltage	VI	-0.3	VCC	V	
Operation Temperature	T _{OP}	-10	50	$^{\circ}\mathbb{C}$	
Storage Temperature	T _{ST}	-20	60	$^{\circ}$	

4.1 Typical Operation Conditions

Item	Symbol		Unit			
пеш	Symbol	Min.	Тур.	Max.	Offic	
Power Voltage	VCC	2.7	3.3	3.6	V	
Current	Ivcc	-		TBD	mA	
Consumption	ILED		200		mA	

4.2 LED Back Light Specifi cation (21 White Chips)

Item	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage	Vf	lf=200mA	9	-	11	V
Uniformity (with L/G)	ΔB _p	lf=200mA	70	75	-	%
Luminance for LCM	/	lf=200mA		260	-	cd/m ²

LED circuit:

5. Signal timing diagramPower Sequence

5.1 Power on

Note 1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note 2: This power-on sequence is based on adding schottky diode on VGLX pin to ground.

Note 3: Reset signal H to L to H (#1) is better than only L to H (#2).

	Value			Unit	
Symbol	Min.	Тур.	Max.	7 """	Remark
ton1					
		No limit		ms	
ton2		0(Note)		ms	
ton3		No limit	-	ms	1
ton4		No limit	-	ms]
12			150	μs	
tru1			150	μ5	
tru2			150	μs	
tru3			150	μs	
tru4			150	μs	
t4	40	-	-	ms	
t5	120			ms	
t6	0			ms	
t7	10			μs	
t8	8			VS	Keep data more than 8 frames (VS)

5.2 Power off

		Value		Unit	
Symbol	Min.	Тур.	Max.	Unit	Remark
t9	150			μs	
	130				
tof1		No limit		ms	
tof2		0(Note)	-	ms	
tof3		No limit	-	ms	
tof4		No limit		ms	
trd1	150			μs	
trd2	150			μs	
trd3	150			μs	
trd4	150			μs	
t12	0		-	ms	
t13	0			ms	
T14	0			ms	
T15	10			ms	

5.3 MIPI Timing characteristics 5.4 MIPI Lane Configuration

	MCU (Master) Display Module (Slave)				
	Unidirectional Lane				
Clock Lane+/-	■ Clock Only				
	■ Escape Mode(ULPS Only)				
	Bi-directional Lane				
Data Lane0+/-	■ Forward High-Speed				
Data Laneu+/-	■ Bi-directional Escape Mode				
	■ Bi-directional LPDT				
Data Lane1+/-	Unidirectional				
Data Lane 1+/-	■ Forward High speed				
Data Lane2+/-	Unidirectional				
Data Lanez+/-	■ Forward High speed				
Data Lane3+/-	Unidirectional				
Data Laffes+/-	■ Forward High speed				

The connection between host device and display module is as reference.

6. MIPI AC Electrical characteristics

6.1High Speed Transmission

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
			4	-	8	ns	4 Lane (Note 2)
DSI-CLK+/-	2xUIINST	Double UI instantaneous	3	-	8	ns	3 Lane (Note 2)
			2.352	-	8	ns	2 Lane (Note 3)
	Ulinsta Ulinstb	UI instantaneous halfs	2	-	4	ns	4 Lane (Note 2)
DSI-CLK+/-		(UI = Ulinsta = Ulinstb)	1.5	-	4	ns	3 Lane (Note 2)
			1.176	-	4	ns	2 Lane (Note 3)
DSI-Dn+/-	tos	Data to clock setup time	0.15xUI	-	-	ps	
DSI-Dn+/-	tьн	Data to clock hold time	0.15xUI	-	-	ps	
DSI-CLK+/-	tortclk	Differential rise time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	tortdata	Differential rise time for data	150	-	0.3xUI	ps	
DSI-CLK+/-	tortclk	Differential fall time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	tdftdata	Differential fall time for data	150	-	0.3xUI	ps	

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Maximum total bit rate is 2Gbps for 24-bit data format, 1.5Gbps for 18-bit data format and 1.33Gbps for 16-bit data format in 3 lanes or 4 lanes application which support to 800RGBx 1280 resolution.

Note 3) Maximum total bit rate is 1.7Gbps for 24-bit data format, 1.275Gbps for 18-bit data format and 1.13Gbps for 16-bit data format in 2 lanes application which support to 720RGBx1280 resolution.

Rising and fall time on clock and data channel

6.2 LP Transmission

Parameter	Symbol				Unit	Remark
rafametei	Symbol	Min.	ı. Typ. M		Onit	Remark
DSI CLK frequency(LP)	F _{DSICLK_LP}			10	MHz	
DSI CLK Cycle Time(LP)	t _{CLKC_LP}	100			ns	
DSI Data Transfer Rate(LP)	t _{DSIR_LP}			10	Mbps	
15%-85% rise time and fall time	T _{RLP} / T _{FLP}	-	-	35	ns	
30%-85% rise time(from HS to LP)	T _{REOT}	-	-	35	ns	
Pulse width of the LP exclusive-OR clock	t _{LP-PULSE-TX}	50	65	-	ns	
Period of the LP exclusive-OR clock	t _{LP-PRE-TX}	100	130	-	ns	

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-D0+/-	Тьрхм	Length of LP-00, LP-01, LP-10 or LP-11 periods MPU → Display Module	50	1	75	ns	Input
DSI-D0+/-	TLPXD	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module → MPU	50	-	75	ns	Output
DSI-D0+/-	TTA-SURED	Time-out before the MPU start driving	TLPXD	,	2xTlpxd	ns	Output
DSI-D0+/-	TTA-GETD	Time to drive LP-00 by display module	5xTlpxd	,	-	ns	Input
DSI-D0+/-	TTA-GOD	Time to drive LP-00 after turnaround request - MPU	4xTLPXD	1	-	ns	Output

Bus Turnaround (BAT) from MPU to display module Timing

Bus Turnaround (BAT) from display module to MPU Timing

6.3 DSI Bursts

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
		Low Power Mode to High	Speed Mode	Timing			
DSI-Dn+/-	TLPX	Length of any low power state period	50		-	ns	Input
DSI-Dn+/-	THS-PREPARE	Time to drive LP-00 to prepare for HS transmission	40+4xUI	-	85+6xUI	ns	Input
DSI-Dn+/-	Ths-term-en	Time to enable data receiver line termination measured from when Dn crosses VILMAX	-	-	35+4xUI	ns	Input
		High Speed Mode to Low	Power Mode	Timing			
DSI-Dn+/-	Тнз-ѕкір	Time-out at display module to ignore transition period of EoT	40	-	55+4xUI	ns	Input
DSI-Dn+/-	Тнѕ-єхіт	Time to drive LP-11 after HS burst	100	-	-	ns	Input
DSI-Dn+/-	Ths-trail	Time to drive flipped differential state after last payload data bit of a HS transmission burst	tate after last payload data bit 60+4xUI		-	ns	Input
		High Speed Mode to/from Lo	w Power Mo	de Timir	ng		
DSI-CLK+/-	Tclk-pos	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+52xUI	-	-	ns	Input
DSI-CLK+/-	Tclk-trail	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	-	ns	Input
DSI-CLK+/-	Ths-exit	Time to drive LP-11 after HS burst	100	-	-	ns	Input
DSI-CLK+/-	TCLK-PREPARE	Time to drive LP-00 to prepare for HS transmission	38	-	95	ns	Input
DSI-CLK+/-	Tolk-term-en	Time-out at clock lane display module to enable HS transmission	-	-	38	ns	Input

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Two HS transmission can be sent with a break as short as THS-EXIT from each other in continuous clock mode. In discontinuous mode, the break is longer which account TCLK-POS, TCLK-TRAIL and THS-EXIT, before activity in clock and data lanes again.

Data lanes-Low Power Mode to/from High Speed Mode Timing

6.4 Reset Input Timing

Reset input timing (VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70°C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
RESX	tresw	Reset "L" pulse width (Note 1)	10	-	-	μs	
	trest	Reset complete time (Note 2)	_	_	5	me	When reset applied
							during Sleep In Mode
			-	-	120	ms	When reset applied during Sleep Out Mode and Note 5

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 10µs	Reset
Between 5µs and 10µs	Reset Start

Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out -mode. The display remains the blank state in Sleep In-mode) and then return to Default condition for H/W reset.

Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (t_{REST}) within 5ms after a rising edge of RESX.

Note 4) Spike Rejection also applies during a valid reset pulse as shown below:

Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec

6.5 Deep Standby Mode Timing

(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70°C)

Signa I	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
	tdischarge	Sleep in into DSTB delay time	,	,	100	ms	
RESX	trstlow	Reset low pulse	3	-	-	ms	
	tinitial	Reset high to initial setting delay time	-	-	120	ms	

Note 1) t_discharge suggested delay time over 100ms.

Note 2) t initial suggested delay time over 120ms..

6.6 DC Characteristics for DSI HS Mode

Parameter	Symbol	Conditions	S	pecificatio	n	UNIT
Parameter	Syllibol	Conditions	MIN	TYP	MAX	UNII
Input voltage common mode range	VCMCLK VCMDATA	DSI-CLK+/-, DSI-Dn+/- (Note2, 3)	70	-	330	mV
Input voltage common mode variation (≤ 450MHz)	VCMRCLKL VCMRDATAL	DSI-CLK+/-, DSI-Dn+/- (Note 4)	-50	-	50	mV
Input voltage common mode variation (≥ 450MHz)	VCMRCLKM VCMRDATAM	DSI-CLK+/-, DSI-Dn+/-	-	-	100	mV
Low-level differential input voltage threshold	VTHLCLK VTHLDATA	DSI-CLK+/-, DSI-Dn+/-	-70	-	-	mV
High-level differential input voltage threshold	VTHHCLK VTHHDATA	DSI-CLK+/-, DSI-Dn+/-	-	-	70	mV
Single-ended input low voltage	VILHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-40	1	,	mV
Single-ended input high voltage	VIHHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-	-	460	mV

Differential input termination resistor	RTERM	DSI-CLK+/-, DSI-Dn+/-	80	100	125	Ω
Single-ended threshold voltage for termination enable	VTERM-EN	DSI-CLK+/-, DSI-Dn+/-	1	1	450	mV
Termination capacitor	CTERM	DSI-CLK+/-, DSI-Dn+/-	ı	-	14	pF

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage).

Note 2) Includes 50mV (-50mV to 50mV) ground difference.

Note 3) Without VCMRCLKM / VCMRDATAM .

Note 4) Without 50mV (-50mV to 50mV) ground difference.

Note 5) Dn=D0, D1, D2 and D3.

Differential voltage range, termination resistor and Common mode voltage

7. Optical Specifications

otical Specifications											
Item	Symbol	Condition		Values		Unit	Remark				
пеш	Syllibol	Condition	Min.	Тур.	Max.	Offic	Remark				
	θ_{L}	Ф=180° (9 o'clock)	1	80	-						
Viowing angle	θ_{R}	Φ=0°(3 o'clock)		80	-	doaro	Niete 1				
Viewing angle (CR≥ 10)	θ_{T}	Ф=90° (12 o'clock)	ı	80	1	degre e	Note 1				
	θ_{B}	Ф=270° (6 o'clock)	1	80	ı						
Response time Rise+Fall	T_{RT}		ı	20	30	msec	Note 3				
Contrast ratio	CR		600	800	-	-	Note 4				
Color	W_X	Normal	0.272	0.302	0.332	-	Note 2				
chromaticity	W_{Y}	θ=Φ=0°	0.291	0.321	0.351	-	Note 5 Note 6				
Luminance	L		200	230	-	-	Note 6				
Luminance uniformity	Yu		70	75	1	%	Note 6,7				

Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm ,Response time is measured by Photo detector TOPCON BM-5A, other items are measured by BM-7A/Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo

detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_{LED}=140mA.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) = $\frac{B_{min}}{B_{max}}$ L------Active area length

L/6

L/3

L/3

E/M

Fig. 4-4 Definition of measuring points

 B_{max} : The measured maximum luminance of all measurement position. B_{min} : The measured minimum luminance of all measurement position.