### Tree-based ML and Feature Selection

#### This week, your assignment is:

- use our prepared churn data from week 2
- break our data into features and targets, and train and test sets
- use sklearn to fit a decision tree to the training data
  - plot the decision tree
  - change the max\_depth of the decision tree to improve the model if needed (or tune
    it with a hyperparameter search)
- plot the correlations between features and targets
- use sklearn to fit a random forest model to predict churn from our dataset
  - plot the feature importances from the random forest
- choose some of the less-important features to remove from the model using feature importances and correlations and fit the random forest model to the new data
  - examine the feature importances after removing less important features
- write a short analysis of the results of your work

#### \*Optional\* advanced tasks:

- use H2O to fit a random forest to our original, unmodified data (missing values and all)
  - you can decide if you want to break the data into train and test sets or not, but remember it's best to evaluate performance on a test or validation dataset
  - plot the H2O random forest's feature importances
- tune the random forest hyperparameters for the sklearn and/or H2O models
- use forward and/or backward selection with feature importances from a random forest model
- use recursive feature selection
- compare the various feature selection methods you tried and write a short summary

### **Decision trees**

```
In [1]: #import pandas as pd
#from sklearn.tree import DecisionTreeClassifier, plot_tree
#from sklearn.model_selection import train_test_split
#import matplotlib.pyplot as plt
In [2]: df = pd.read_csv('../Week2/prepped_churn_data.csv', index_col='customerID')
```

| Out[2]: |                                                                                                                                                                            | tenure   | PhoneService | Contract | PaymentMethod | MonthlyCharges | TotalCharg  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|---------------|----------------|-------------|
|         | customerID                                                                                                                                                                 |          |              |          |               |                |             |
|         | 7590-<br>VHVEG                                                                                                                                                             | 1        | 0            | 0        | 0             | 29.85          | 29.         |
|         | 5575-<br>GNVDE                                                                                                                                                             | 34       | 1            | 1        | 1             | 56.95          | 1889.       |
|         | 3668-<br>QPYBK                                                                                                                                                             | 2        | 1            | 0        | 1             | 53.85          | 108.        |
|         | 7795-<br>CFOCW                                                                                                                                                             | 45       | 0            | 1        | 2             | 42.30          | 1840.       |
|         | 9237-<br>HQITU                                                                                                                                                             | 2        | 1            | 0        | 0             | 70.70          | 151.        |
|         | •••                                                                                                                                                                        |          |              |          |               |                |             |
|         | 6840-<br>RESVB                                                                                                                                                             | 24       | 1            | 1        | 1             | 84.80          | 1990.       |
|         | 2234-<br>XADUH                                                                                                                                                             | 72       | 1            | 1        | 3             | 103.20         | 7362.       |
|         | 4801-<br>JZAZL                                                                                                                                                             | 11       | 0            | 0        | 0             | 29.60          | 346.        |
|         | 8361-<br>LTMKD                                                                                                                                                             | 4        | 1            | 0        | 1             | 74.40          | 306.        |
|         | 3186-AJIEK                                                                                                                                                                 | 66       | 1            | 2        | 2             | 105.65         | 6844.       |
|         | 7043 rows × 8                                                                                                                                                              | 8 column | S            |          |               |                |             |
|         | 4                                                                                                                                                                          |          |              |          |               |                | <b>&gt;</b> |
| In [3]: | <pre>[3]: features = df.drop('Churn', axis=1)     targets = df['Churn']     x_train, x_test, y_train, y_test = train_test_split(features, targets, stratify=targets)</pre> |          |              |          |               |                |             |
|         |                                                                                                                                                                            |          |              |          |               |                |             |
| In [4]: | <pre>dt = DecisionTreeClassifier() dt.fit(x_train, y_train)</pre>                                                                                                          |          |              |          |               |                |             |
|         | <pre>print(dt.score(x_train, y_train)) print(dt.score(x_test, y_test))</pre>                                                                                               |          |              |          |               |                |             |

0.993563044301401

0.7234525837592277

Accuracy on the train set is almost perfect at 99.4% The test score is much lower at 72.3%. -Classic sign of overfitting

Let's see how deep the tree is and plot:

```
In [5]: dt.get_depth()
Out[5]: 32
In [31]: f = plt.figure(figsize=(15, 15))
    _ = plot_tree(dt, fontsize=6, feature_names=features.columns, filled=True)
```



Seeing the overwhelming number of samples in the leaf nodes is evidence of overfitting. We will use max\_depth to restrict the number of levels.

After trying various max\_depth values, 20 looks to nearly equal the train/test scores and seems to eliminate the overfitting.

```
In [34]: dt = DecisionTreeClassifier(max_depth=4)
    dt.fit(x_train, y_train)
    print(dt.score(x_train, y_train))
    print(dt.score(x_test, y_test))
```

0.7921241953805377

0.7773992049971608

```
In [35]: f = plt.figure(figsize=(12, 12))
    _ = plot_tree(dt, fontsize=8, feature_names=features.columns, filled=True)
```



### **Random Forests**

```
Out[37]: 2.6457513110645907

In [43]: from sklearn.ensemble import RandomForestClassifier
    rfc = RandomForestClassifier(max_depth=5, max_features=10, random_state=42)
    rfc.fit(x_train, y_train)
    print(rfc.score(x_train, y_train))
    print(rfc.score(x_test, y_test))

0.8091631957591822
```

## **Feature Selection**

0.7932992617830777



In [56]: from scikitplot.estimators import plot\_feature\_importances
 plot\_feature\_importances(rfc, feature\_names=features.columns, x\_tick\_rotation=90)

Out[56]: <Axes: title={'center': 'Feature Importance'}>

#### Feature Importance



Out[70]: <Axes: title={'center': 'Feature Importance'}>



# **Summary**

Performance didn't change much, but our feature importances did. The contract measurement seems to be very important for predicting churn.