Оптимизация методом Spider Wasp Optimizer (SWO)

Кривнюк Константин

гр. 9302

Аннотация

В данном реферате представлен алгоритм Spider Wasp Optimizer (SWO), вдохновленный охотничьим поведением пауков-ос. Рассматривается структура проекта, основные этапы алгоритма и его применение к оптимизационным задачам. Приведены псевдокод алгоритма, тестовые функции и результаты сходимости.

Содержание

1	Введение	2		
2	2 Структура проекта			
3	Описание алгоритма 3.1 Параметры алгоритма	4		
4	Тестовые функции 4.1 Примеры графиков функций	6		
5	Результаты 5.1 Графики сходимости			
6	Заключение	9		

1 Введение

Spider Wasp Optimizer (SWO) — это инновационный метаэвристический алгоритм, имитирующий охотничьи и спаривательные стратегии пауковос. Его ключевые преимущества — высокая эффективность в глобальной оптимизации и гибкость для широкого класса задач.

Цель данного проекта — разработать реализацию SWO, протестировать алгоритм на стандартных тестовых функциях и проанализировать его сходимость.

2 Структура проекта

Проект имеет следующую структуру:

```
report
  images
   report.pdf
  _report.tex
sw_optimizer
  ___init__.py
   sw_optimizer.py
test_functions
   __init__.py
  \_ackley.py
  bukin_function_n6.py
   eggholder_function.py
  _{-}himmelblau.py
  rastrigin.py
  rosenbrock.py
  schwefel_function.py
  sphere.py
utils
   __init__.py
   initialization.py
   levy_flight.py
  _{\mathtt{main.py}}
README.md
requirements.txt
```

3 Описание алгоритма

Spider Wasp Optimizer включает в себя две основные стратегии:

- Охота поведение пауков, направленное на исследование поискового пространства.
- **Спаривание** обмен информацией для улучшения текущих решений.

3.1 Параметры алгоритма

- Размер популяции (search_agents_no) количество особей в популяции.
- Количество итераций (Ттах) максимальное число итераций.
- Границы поиска (lb, ub) нижняя и верхняя границы пространства поиска.
- **Функция приспособленности** (**fobj**) целевая функция оптимизации.

3.2 Математическое описание алгоритма

Алгоритм SWO основан на математическом моделировании поведения пауков-ос. Основные уравнения, используемые в алгоритме, включают:

1. **Обновление параметров:**

$$a = 2 - 2\left(\frac{t}{Tmax}\right)$$

$$a2 = -1 - 1\left(\frac{t}{Tmax}\right)$$

$$k = 1 - \frac{t}{Tmax}$$

2. **Обновление позиций: **

$$C = a(2r1 - 1)$$

$$l = (a2 - 1) \cdot \text{rand} + 1$$

$$B = \frac{1}{1 + \exp(l)}$$

$$m1 = |\text{rn}1| \cdot r1$$
$$m2 = B \cdot \cos(l \cdot 2\pi)$$

3. **Обновление позиций агентов:**

Positions
$$(i, j)$$
 = Positions $(i, j)+m1$ ·(Positions $(JK(1), j)$ -Positions $(JK(2), j)$)

$$Positions(i, j) = Positions(JK(i), j) + m2 \cdot (lb(j) + rand \cdot (ub(j) - lb(j)))$$

$$\operatorname{Positions}(i,j) = \operatorname{Positions}(i,j) + C \cdot |2 \cdot \operatorname{rand} \cdot \operatorname{Positions}(JK(3),j) - \operatorname{Positions}(i,j)|$$

$$\operatorname{Positions}(i,j) = \operatorname{Positions}(i,j) \cdot vc(j)$$

4. **Обновление позиций при спаривании: **

$$SW_m(j) = \text{Positions}(i, j) + (\exp(l)) \cdot |\text{rn1}| \cdot v1(j) + (1 - \exp(l)) \cdot |\text{rn2}| \cdot v2(j)$$

3.3 Псевдокод

Основные шаги алгоритма SWO приведены в псевдокоде (см. Алгоритм 1).

Input: search_agents_no, Tmax, ub, lb, dim, fobj, tol, max_stall
Output: Best_score, Best_position, Convergence_curve
begin

Инициализация параметров;

Создать начальную популяцию и вычислить значения функции приспособленности;

for $t = 1 \partial o Tmax do$

Обновить параметры алгоритма (скорость, направление);

Применить стратегии охоты и спаривания для обновления позиций;

Обновить лучшее решение и значение функции;

Если критерий остановки выполнен — выйти из цикла;

end

Вернуть лучшее найденное решение.

end

Algorithm 1: Spider Wasp Optimizer (SWO)

4 Тестовые функции

Для тестирования SWO использовались следующие функции:

• Ackley: многомерная функция с большим числом локальных минимумов. Иллюстрация представлена на Рисунке 1.

$$f(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + \exp(1)$$

• Bukin Function N.6: функция с узким желобом, усложняющим поиск минимума. Иллюстрация на Рисунке 2.

$$f(x) = 100\sqrt{|x_2 - 0.01x_1^2|} + 0.01|x_1 + 10|$$

• Eggholder: сложная поверхность с глубокими ямами. См. Рисунок 3.

$$f(x) = -(x_2 + 47)\sin\left(\sqrt{|x_2 + \frac{x_1}{2} + 47|}\right) - x_1\sin\left(\sqrt{|x_1 - (x_2 + 47)|}\right)$$

• **Himmelblau**: двухмерная функция с несколькими минимумами. Рисунок 4.

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

• Rastrigin: функция с периодическими локальными минимумами. Рисунок ??.

$$f(x) = 10n + \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i))$$

• Rosenbrock: узкая долина, содержащая глобальный минимум. Рисунок ??.

$$f(x) = \sum_{i=1}^{n/2} \left[100(x_{2i} - x_{2i-1}^2)^2 + (x_{2i-1} - 1)^2 \right]$$

• Schwefel Function: функция с глубокими глобальными минимумами. Рисунок ??.

$$f(x) = 418.9829n - \sum_{i=1}^{n} x_i \sin(\sqrt{|x_i|})$$

• Sphere: простая функция с параболической формой. Рисунок ??.

$$f(x) = \sum_{i=1}^{n} x_i^2$$

4.1 Примеры графиков функций

Рис. 1: Ackley function visualizations.

Рис. 2: Bukin Function N.6.

Рис. 3: Eggholder function.

Рис. 4: Himmelblau function visualizations.

5 Результаты

5.1 Графики сходимости

Графики сходимости SWO на различных тестовых функциях представлены на Рисунке 5.

5.2 Результаты оптимизации

Результаты оптимизации для различных тестовых функций представлены в таблице 1.

Рис. 5: Сходимость SWO на тестовых функциях.

Функция	Оптимальное значение (fmin)	Оптимальное решение (xmin)	Общее количес
Sphere	1.70×10^{-59}	$[-3.69 \times 10^{-30}, 1.85 \times 10^{-30}]$	9225
Ackley	-4.44×10^{-16}	$[-3.68 \times 10^{-18}, -1.71 \times 10^{-16}]$	13585
Bukin N.6	1.00×10^{-1}	$[2.34 \times 10^{-19}, 4.83 \times 10^{-25}]$	17145
Eggholder	-894.58	[-465.69, 385.72]	12445
Himmelblau	4.93×10^{-17}	[-2.81, 3.13]	18145
Rastrigin	0.0	$[7.67 \times 10^{-10}, -4.84 \times 10^{-10}]$	10925
Rosenbrock	0.0	[1.0, 1.0]	16805
Schwefel	2.55×10^{-5}	[420.97, 420.97]	13085

Таблица 1: Результаты оптимизации для различных тестовых функций.

6 Заключение

Spider Wasp Optimizer демонстрирует высокую эффективность при решении задач оптимизации. Алгоритм успешно протестирован на различных тестовых функциях. Будущие работы направлены на улучшение адаптивности алгоритма, а также его применение в реальных задачах.