

Final Assessment Test (FAT) - June 2022

rogramme	B.Tech	Semester	Winter Semester 2021-22	
Title	ENGINEERING CHEMISTRY	Course Code	BCHY101L	
	Prof. Jayanta Parui	Slot	AI+TA1	
		Class Nbr	CH2021222300157	
	3 Hours	Max. Marks	100	

Section A (10 X 10 Marks) Answer any 10 questions

- 1. a.) Describe the reasons that enhance the entropy of a system which has temperature more than 0K. Also write the expression of entropy as a function of microstates of a system.
 b.) With the help of a reaction, define and write down the mathematical expressions of i. Rate law, ii. Rate constant, iii. Order of reaction and iv. Molecularity.
 - a.) Describe crystal field theory (CFT) explaining the loss of d orbital degeneracy for an octahedral complex.
 - b.) Write down the chemical aspects for the presence of Mg ion in chlorophyll.
 - 3. Write the factors that influence the stability of the reaction intermediate carbocation. Also write down the respective examples with proper structural formulas.
 - 4. a.) Describe the chemistry of Li ion rechargable battery with relevant chemical reactions. [10] Explain the intercalation of Li in an electrode for such battery.
 - b.) Explain with the drawing of the structure and bonding of Si where on increasing temperature conductivity of semiconductor increases.
 - 5. a.) Draw any of the crystal structure of a compound that belongs to AB type distinguishing the position of cations and anions in it.
 - b.) Differentiate nano and bulk materials. Describe a top down technique to produce nanoparticle with the related drawings.
 - 6. a.) Diagrammatically draw the maximum possibility of the electronic transitions in a molecule like aniline when interacts with the electromagnetic radiation ranging the wavelength in UV-Visible spectrum.
 - b.) Draw two different XRD patterns in terms of Intensity vs. 2θ so that they can be identified for crystalline and amorphous material. Also label them appropriately.
 - a.) Write down a working formula and technique that estimate the calorific value of a solid fuel made of hydrocarbon. Also write down at least three distinguishable features of NCV and GCV for such fuel.
 - b.) Describe a physical vapour deposition (PVD) method with drawings for metal coating on a substrate.
 - 8. a.) Draw the structural formulas of the following compounds:

$Fe(CO)_3(\eta^4 - C_4H_4) \& Co_2(\mu - CO)_2(CO)_6$

- b.) 3 mol of an ideal gas expands isothermally and reversibly at 50 °C from a volume of 15 dm³ to a volume of 30 dm³. Calculate the work done by the gas in Joules. Also, calculate the change in entropy for the process.
- 9. a.) Describe a solid oxide fuel cell. Also draw its construction along with related reactions.
 - b.) Arrange the intermediates

110

[10]

stability to lowest. Justify your answer.

- 10. a.) Describe water purification through zeolite along with related drawings and chemical [10] equations. Is this process suitable for the production of deionised water? Justify your answer. b.) What is OLED? Describe the process of light emission on application electricity across the pn junction. [10]
- 11. a.) Write down the differences between thermosetting and thermoplastic polymers. b.) Estimate the particle size in nm of the given nanomaterial using p-XRD data: Peak position $2\theta = 44.88$ degree, FWHM of sample = 3.1degree, k = 0.9 and $\lambda = 1.5406$ Å (degree to radian=Degree $\times \pi/180$).
- 12. a.) What is scanning electron microscopy (SEM)? Draw the stages of electron beam [10] b.) Write down the names of different carbon nanomaterials? Why is it important to disperse convergences in SEM. them in liquid phase?