

- 1. Citer, sans justifier, deux vecteurs égaux à :
 - (a) \overrightarrow{DC}

(c) \overrightarrow{JK}

(b) \overrightarrow{GJ}

- (d) \overrightarrow{OB}
- 2. Compléter avec un point de la figure :
 - (a) $\overrightarrow{HG} + \overrightarrow{\cdots J} = \overrightarrow{HJ}$
 - (b) $\overrightarrow{H\cdots} = \frac{1}{2}\overrightarrow{HB}$
 - (c) $\overrightarrow{EB} + \overrightarrow{\cdots J} = \overrightarrow{AK}$
- On reprend la figure de l'exercice précédent. Les triplets de vecteurs suivants sont-ils des triplets de vecteurs coplanaires?
 - 1. \overrightarrow{DC} , \overrightarrow{DB} et \overrightarrow{CB} .
 - 2. \overrightarrow{AB} , \overrightarrow{KC} et \overrightarrow{IJ} .
 - 3. \overrightarrow{HG} , \overrightarrow{FB} et \overrightarrow{EH} .
 - 4. \overrightarrow{OE} , \overrightarrow{OB} et \overrightarrow{OG} .
- ABCDEFGH est un cube, I est le milieu de [AB] et J celui de [CG] H

- 1. Quelle est la position relative des droites :
 - (a) (AD) e (FG)?
- (c) (EC) et (BH)?
- (b) (AD) e⁻ (BG)?
- (d) (EJ) et (AC)?
- 2. Quelle est l'intersection des plans :

- (a) (DBF) et (AEB)?
- (c) (ABJ) et (CDH)?
- (b) (ABG) et (CDH)?
- (d) (DFB) et (EAD)?
- On considère un cube ABCDEFGH donné cidessous. On note M le milieu du segment [EH], N celui de [FC] et P le point tel que

$$\overrightarrow{HP} = \frac{1}{4}\overrightarrow{HG}.$$

1. Justifier que les droites (MP) et (FG) sont sécantes en un point L.

Construire le point L

2. On admet que les droites (LN) et (CG) sont sécantes et on note T leur point d'intersection.

On admet que les droites (LN) et (BF) sont sécantes et on note Q leur point d'intersection.

- (a) Construire les points T et Q en laissant apparents les traits de construction.
- (b) Construire l'intersection des plans (MNP) et (ABF).
- 3. En déduire une construction de la section du cube par le plan (MNP).

La figure ci-contre représente un cube ABC-DEFGH.

Les trois points I, J, K sont définis par les conditions suivantes :

- I est le milieu du segment [AD];
- J est tel que $\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AE}$;
- K est le milieu du segment [FG].
- Sur la figure donnée ci-après, construire sans justifier le point d'intersection P du plan (IJK) et de la droite (EH). On laissera les traits de construction sur la figure.
- 2. En déduire, en justifiant, l'intersection du plan (IJK) et du plan (EFG).

- Tracer un repère $\left(O\;;\;\overrightarrow{i},\;\overrightarrow{j},\;\overrightarrow{k}\right)$ et placer les points suivants : $A(2\;;1\;;0), \quad B(0\;;2\;;10), \quad C(1\;;1\;;-3)$ et $D(-1\;;2\;;3).$
- Dans l'espace muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on considère les points A(2; 1; -3) et B(0; 2; 4).
 - 1. Calculer les coordonnées du point M milieu du segment [AB].
 - 2. Calculer les coordonnées du vecteur \overrightarrow{AB} .
 - 3. Soit le point C(1; -2; -1). Calculer les coordonnées du point D pour que le quadrilatère ABCD soit un parallélogramme.
- Tracer un repère $\left(O\;;\;\overrightarrow{i}\;,\;\overrightarrow{j}\;,\;\overrightarrow{k}\right)$ et placer les points suivants : $A(2\;;\;1\;;\;0), \quad B(0\;;\;2\;;\;10), \quad C(1\;;\;1\;;\;-3)$ et $D(-1\;;\;2\;;\;3).$
- Dans l'espace muni d'un repère $O(\vec{i}, \vec{j}, \vec{j}, \vec{k})$, on considère les points

A(1; 0,5; 2), B(0; 2; 0,5), C(3; 2,5; 7) et D(3; -2,5; 1).

- 1. (a) Les points A, B et C sont-ils alignés?
 - (b) Le point A appartient-il à la droite (BD)?
- 2. On considère les points E(1; 0, 5; 4) et F(-3; -2; 1).
 - (a) Les points A, B, D et E sont-ils coplanaires?
 - (b) Le point F appartient-il au plan (ABD)?
- Dans l'espace muni d'un repère $\left(O\;;\;\overrightarrow{i}\;,\;\overrightarrow{j}\;,\;\overrightarrow{k}\right)$, on considère les vecteurs $\overrightarrow{u}\left(\begin{array}{c}1\\4\\-3\end{array}\right),\;\overrightarrow{v}\left(\begin{array}{c}1\\2\\-1\end{array}\right)$ et $\overrightarrow{w}\left(\begin{array}{c}2\\5\\-3\end{array}\right)$.
 - 1. Calculer les coordonnées du vecteur $\overrightarrow{u} + 3\overrightarrow{v} 2\overrightarrow{w}$.
 - 2. Les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont-ils coplanaires?
- Dans l'espace muni d'un repère $\left(O\;;\;\overrightarrow{i}\;,\;\overrightarrow{j}\;,\;\overrightarrow{k}\right)$, on considère les vecteurs $\overrightarrow{u}\left(\begin{array}{c}1\\2\\-1\end{array}\right),\;\overrightarrow{v}\left(\begin{array}{c}1\\-2\\1\end{array}\right)$ et $\overrightarrow{w}\left(\begin{array}{c}0\\-6\\3\end{array}\right)$.
 - 1. Justifier que le vecteur \overrightarrow{w} n'est pas colinéaire au vecteur $\overrightarrow{v} \overrightarrow{u}$.
 - 2. Donner un vecteur colinéaire au vecteur \overrightarrow{w} .
 - 3. Calculer les coordonnées du vecteur $3\overrightarrow{u} 3\overrightarrow{v} + 2\overrightarrow{w}$.
 - 4. Que peut-on en déduire pour les trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} ?
 - 5. Donner les coordonnées d'un vecteur \overrightarrow{t} non colinéaire à \overrightarrow{v} et coplanaire à \overrightarrow{u} et \overrightarrow{w} .
 - 6. Déterminer les coordonnées d'un vecteur \overrightarrow{h} de cote nulle et coplanaire à \overrightarrow{u} et \overrightarrow{v} .
 - 7. Justifier que les vecteurs \overrightarrow{h} et \overrightarrow{i} sont colinéaires.
- Soit A, B et C trois points de l'espace non alignés. On considère les points M et N tels que $\overrightarrow{AM} = 2\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ et $\overrightarrow{BN} = 3\overrightarrow{AB}$.
 - 1. Faire une conjecture. Quelle conjecture peuton émettre pour les points $M,\,N$ et C.
 - 2. Démontrer cette conjecture.
- ABCDEFGH est un cuve. Soit U et V les points tels que $\overrightarrow{UF} = \frac{1}{4}\overrightarrow{GF}$ et $\overrightarrow{BV} = \frac{1}{4}\overrightarrow{BA}$. Montrer que les vecteurs \overrightarrow{FB} , \overrightarrow{UV} et \overrightarrow{GA} sont coplanaires.

On considère le cube ABCDEFGH ci-contre. Pour tout nombre réel m, on définit le point G_m tel que :

$$\overrightarrow{G_mE} + (1-m)\overrightarrow{G_mB} + (2m-1)\overrightarrow{G_mG} + (1-m)\overrightarrow{G_mD} = \overrightarrow{0}.$$

- 1. Préciser la position du point G_1 .
- 2. Vérifier que $G_0 = A$. En déduire que les points A, I et G sont alignés.
- 3. Démontrer que pour tout réel m, $\overrightarrow{AG_m} = m\overrightarrow{AG_1}$. En déduire l'ensemble des points G_m lorsque m parcourt l'ensemble des nombres réels.
- 4. On note I le centre du carré ABCD. Montrer que les points A, G_m, E et I sont coplanaires.

La figure ci-contre représente un cube ABC-DEFGH d'arête 1. On désigne par I et J les milieux respectifs des F arêtes [BC] et [CD]. Soit M un point quelconque du segment [CE]. tout l'exercice, Dans place dans le on se repère orthonormal $(A ; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}).$ В

- 1. (a) Donner, sans justification, les coordonnées des points C, E, I et J.
 - (b) Justifier l'existence d'un réel t appartenant à l'intervalle [0; 1], tel que les coordonnées du point M soient (1-t; 1-t; t).
- 2. (a) Démontrer que les points C et E appartiennent au plan médiateur du segment [IJ].
 - (b) En déduire que le triangle $M{\rm IJ}$ est un triangle isocèle en M.
 - (c) Exprimer IM^2 en fonction de t.
- 3. Le but de cette question est de déterminer la position du point M sur le segment [CE] pour laquelle la mesure de l'angle $\widehat{\mathrm{IMJ}}$ est maximale.

On désigne par θ la mesure en radian de l'angle $\widehat{\mathrm{IMJ}}$.

- (a) En admettant que la mesure θ appartient à l'intervalle $[0 ; \pi]$, démontrer que la mesure θ est maximale lorsque $\sin\left(\frac{\theta}{2}\right)$ est maximal.
- (b) En déduire que la mesure est maximale lorsque la longueur IM est minimale.
- (c) Étudier les variations de la fonction f définie sur l'intervalle [0; 1] par :

$$f(t) = 3t^2 - t + \frac{1}{4}.$$

(d) En déduire qu'il existe une unique position M_0 du point M sur le segment [EC] telle que la mesure de l'angle $\widehat{\text{IMJ}}$ soit maximale.