

음성 인식 정보를 사용한 감정 인식

Emotion Recognition using Speech Recognition Information

저자 김원구

(Authors)

출처 한국지능시스템학회 학술발표 논문집 18(1), 2008.4, 425-428 (4 pages)

(Source)

한국지능시스템학회 발행처

Korean Institute of Intelligent Systems (Publisher)

URL http://www.dbpia.co.kr/Article/NODE01086203

APA Style 김원구 (2008). 음성 인식 정보를 사용한 감정 인식. 한국지능시스템학회 학술발표 논문집, 18(1), 425-428.

금오공과대학교 202.31.143.*** 2019/03/07 13:46 (KST) 이용정보

(Accessed)

저작권 안내

DBpia에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 그리고 DBpia에서 제공되는 저작물은 DBpia와 구 독계약을 체결한 기관소속 이용자 혹은 해당 저작물의 개별 구매자가 비영리적으로만 이용할 수 있습니다. 그러므로 이에 위반하여 DBpia에서 제공되는 저작물을 복제, 전송 등의 방법으로 무단 이용하는 경우 관련 법령에 따라 민, 형사상의 책임을 질 수 있습니다.

Copyright Information

Copyright of all literary works provided by DBpia belongs to the copyright holder(s) and Nurimedia does not guarantee contents of the literary work or assume responsibility for the same. In addition, the literary works provided by DBpia may only be used by the users affiliated to the institutions which executed a subscription agreement with DBpia or the individual purchasers of the literary work(s) for non-commercial purposes. Therefore, any person who illegally uses the literary works provided by DBpia by means of reproduction or transmission shall assume civil and criminal responsibility according to applicable laws and regulations.

음성 인식 정보를 사용한 감정 인식

Emotion Recognition using Speech Recognition Information

김 원 구

전북 군산시 군산대학교 전자정보공학부 E-mail: wgkim@kunsan.ac.kr

요 약

본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다.

실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다좋은 성능을 나타내었다.

Key Words : 음성 신호, 음성 인식, 감정 인식, HMM, MFCC

1. 서 론

음성에는 화자의 감정뿐만 아니라 전달하고 자 하는 내용의 단어나 문법에서의 강세 부분, 지역적인 특성이 가미된 억양 등 감정이외의 것들이 많이 담겨져 있기 때문에, 음성에서 감 정만을 따로 떼어서 분석하는데 어려움이 있 다. 음성을 통한 감정 인식을 위해서는 각각의 감정이 음성에 어떠한 변화를 만들어내는가를 정확히 규명하여야 하는데, 이러한 음성과 감 정과의 상관관계에 대한 연구는 서구의 음향학 자들과 심리학자들에 의해 먼저 이루어졌다 [1-11].

감정인식은 지금까지 많이 연구되어 온 음성 인식에서 그 시발점을 찾을 수도 있으나, 특징 파라메터 추출 및 패턴 인식 알고리듬 선택에 있어서 차이가 있다. 특징 선택에 있어서 음성 인식의 경우 음소를 모델링하는 요소를 주로 이용하는 반면, 감정 인식에 있어서는 피치, 에 너지, 발음속도 등과 같은 운율적 요소를 활용 하여 모델링한다. 패턴 매칭 알고리듬에서도 음성 인식에서는 HMM(Hidden Markov Model) 기법이 가장 우수한 방법으로 알려져 있는데 반해, 감정 인식을 위한 패턴 매칭 기 법은 다양한 방법이 시도되고 있다. 이러한 시 도로 기존적인 패턴 인식 기법을 이외에 Oh-Wook Kwon 등은 SVM(Support Vector Machine), LDA(Linear Discriminant Analysis)와 QDA(Quadratic Discriminant Analysis)를 사용하였다[1]. Carnegie Mellon 대학의 Thomas Polzin은 기존 논문들이 운율적 정보만을 이용하여 감정 인식 시스템을 구성하였던 것과는 달리, HMM 구조를 변형하여 운율적 정보와 음향학적 정보를 결합시키는 모델을 연구하였다[8].

본 연구에서는 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감 정 인식 시스템에 관하여 연구하였다. 이를 위 하여 우선 다양한 감정이 포함된 음성 데이터 베이스를 사용하여 감정 변화가 음성 인식 시 스템의 성능에 미치는 영향에 관한 연구와 감 정 변화의 영향을 적게 받는 음성 인식 시스템 을 구현하였다. 감정 인식은 음성 인식의 결과 에 따라 입력 문장에 대한 착각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행하였다.

2. 감정 인식 시스템

본 연구에서는 기본 감정 인식 시스템의 성능 향상을 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템 구조에 관하여 연구하였다. 이러한 감정 인식 시스템의 구조는 그림 1과 같다.

그림 1에서 감정 인식 시스템은 학습과 인식의 두 단계로 나뉜다. 학습 과정에서에서 음성인식 시스템은 입력 음성을 인식하기 위한 HMM 기반의 모델을 학습시키고 감정 인식시스템은 GMM(Gaussian Mixture Model) 기반의 문장 종속의 감정 모델을 학습한다. 인식단계에서 음성인식 시스템은 특징 파라메터로변환되어진 입력 음성을 HMM 기반의 음성모델을 사용하여 인식한다. 이렇게 음성 인식된 결과는 감정 인식 단계에 전달되어 감정 인식에 사용될 감정 모델을 선택하고 문장 종속감정인식을 수행하게 된다.

이러한 구조의 감정 인식 시스템이 우수한 성능을 얻기 위해서는 우선 음성 인식 시스템이 감정 변화에 강인해야 한다. 입력 음성은 감정이 포함되어 있기 때문에 기존 음성 인식 시스템의 인식 성능은 상당히 저하될 수밖에 없다. 이러한 상황에서는 다음 단계의 감정 인식 시스템의 성능이 향상될 수 없는 것이다. 감정 변화에 강인한 음성 인식 시스템을 구현하는 방법은 감정 변화에 강인한 음성 파라메터를 사용하거나 감정 변화를 포함하는 음성모델을 사용하여 성능을 향상 수 있다.

음성 인식에 널리 사용되고 있는 특징 벡터 로는 오래 전부터 사용되어온 LPC 켑스트럼 계수와 멜(mel) 켑스트럼 계수가 주로 사용되 고 있으며 잡음에 강인한 특징 벡터로 루트 켑스트럼 계수. PLP(Perceptually Linear Prediction) 계수와 RASTA (RelAtive SpecTrAl) 처리를 한 특징 파라메터 특징 벡 터들이 있다[12-18]. 잡음에 강인한 거리 측정 방법으로는 가중 켑스트랄 거리 측정 방법 (weighted cepstral distance measure) 방법이 주로 사용되고 있다. 또한 음성에 포함된 편 의(bias)를 제거하는 방법으로 켑스트럼 평균 차감법(CMS : Cepstral Mean Subtraction)와 SBR (Signal Bias Removal) 방법을 등이 사 용되고 있다.

이러한 파라메터와 잡음 제거 방법들은 음성에 포함된 잡음이나 채널 왜곡 등의 제거하여음성 인식 시스템의 성능을 향상시킨다. 따라서 이러한 파라메터는 감정 변화에 따라 발생된 음성 변화에도 강인하다. 따라서 이러한 파라메터와 평의 제거 방법을 결합한 음성 인식시스템을 사용하여 감정 변화에 강인한 음성인식 시스템을 구현한다.

감정 인식 시스템은 음성 인식 결과를 이용하기 위하여 문장 종속 형태를 사용하였다. 즉다양한 감정이 포함된 학습 데이터를 사용하여각 문장별 감정 모델을 구현하였다. 이러한 것은 문장 종속 형태의 감정 인식 시스템이 문장독립 형태의 것보다 우수한 성능을 나타내기때문이다.

3. 실험 및 결과 고찰

3.1 데이터베이스

감정 인식 시스템의 성능을 평가하기 위해서는 다양한 감정이 포함된 음성 데이터베이스가 필요하다. 이러한 데이터베이스는 다음과 같은 과정으로 구성되었다.

본 연구에서는 인간의 주요 감정인 기쁨, 슬픔, 화남의 3가지 감정과 이들의 기준이 되는 평상 감정을 포함한 4가지 감정을 인식 대상 감정으로 결정하였다. 녹음작업은 조용한 사무실 환경에서 이루어졌고, DAT를 이용하여 녹음되었다. 각 화자는 45개의 문장을 4가지 감정으로 녹음하였고 녹음 동안에 감정 표현이미흡하다고 판단된 경우에는 다시 녹음을 하였다. 본 연구를 위하여 사용된 데이터의 규모는 5400(30명×4감정×45문장×1회)문장이다.

3.2 특징 파라메터 추출

음성 신호의 특징 파라메터 추출 과정은 다 음과 같다. 전처리를 통하여 16kHz, 16비트로 샘플링하고, 고주파 성분을 보강한다. 이렇게 샘플링된 신호는 음성 구간과 묵음 구간을 구 별하기 위하여 음성 구간 검출을 수행하고 특 구한다. 검출된 음성 벡터를 신호는 20ms(320샘플)의 길이를 갖는 해밍창을 사용 하여 10ms씩 이동하면서 특징 파라메터를 구 한다. 본 연구에서는 음성의 특징 파라메터로 LPC 켑스트럼 계수, 멜 켑스트럼 계수, 루트 켑스트럼 계수, PLP 계수와 RASTA 처리를 한 멜 켑스트럼 계수와 음성의 에너지를 사용 하였다. 또한 특징 파라메터의 시간적인 변화 에 대한 정보를 포함하는 델타 켑스트럼과 델 타 에너지를 사용하였다. 실험에 사용된 켑스 트럼 계수는 12차를 사용하였고 PLP 계수는 5 차를 사용하였다. 또한 음성에 포함된 편의를 제거하는 방법으로 CMS와 SBR 방법을 사용하였다.

3.3 음성 인식 시스템의 구성

본 연구에서는 우선 감정 변화에 강인한 음성 인식 시스템 개발을 위하여 우선 반연속 HMM을 기본으로 하는 화자 독립 단독음 인식 시스템을 구현하였다. 반연속 HMM 모델은 256개의 코드을 갖는 코드북을 사용하였고 반연속 HMM은 상태 당 4개의 가우시간 결합분포를 사용하였다. 또한 각 모델의 상태 수는학습에 사용된 문장의 평균길이에 비례하게 할당하였다. 모델의 학습에는 20명(남성 10명과여성 10명)의 음성이 사용되었고 인식에는 학습에 참여하지 않은 10명(남성 5명과 여성5명)을 사용하였다.

3.4 실험 결과

본 실험에서는 우선 감정이 포함되지 않은 음성으로 학습한 인식 시스템을 대상으로 테스 트 음성에 4가지 감정이 포함된 음성을 사용하 여 각각의 감정 변화에 따른 시스템의 성능 변 화를 관찰하였다. 그림 2는 각 음성 파라메터 와 감정별 인식 성능을 나타낸다. 여기서 음성 인식 시스템은 평상의 감정만 포함된 데이터로 학습되었기 때문에 인식 데이터가 평상인 경우 에 가장 성능이 우수하고 감정이 포함되면 인 식 성능이 급격히 저하된다. 그림은 4가지 감 정에 대한 평균 인식률을 나타낸다. 실험에 사 용된 4가지(멜 켑스트럼, 루트 켑스트럼. RASTA 멜 켑스트럼, PLP 계수)의 음성 파라 메터 중에서는 RASTA 멜 켑스트럼이 89.6% 로 가장 우수한 성능을 나타내었다. 이러한 것 은 RASTA 처리 과정이 음성의 감정 변화에 따른 스펙트럼의 변화를 보상해 주는 효과가 있다고 볼 수 있다. 또한 음성 파라메터로 델 타 켑스트럼을 추가하여 사용했을 때의 성능 평가 실험을 수행하였다. 여기서 멜 켑스트럼 의 경우에는 델타 켑스트럼과 결합하여 사용한 경우에 평균 인식률이 1.5%정도 감소하였으나 RASTA 멜 켑스트럼과 멜 켑스트럼을 결합하 여 사용한 경우에는 인식률이 91.4%로 약 1.8% 정도 성능이 향상되었다.

MEL : 멜 켑스트럼 계수, ROOT_MEL : 루트 켑스트럼 계수

RASTA_MEL: RASTA 처리를 한 멜 켑스트럼 계수

PLP : PLP 계수

CMS

 DMEL
 : 델타 켑스트럼 계수

 SBR
 : 신호 편의 제거 방법(SBR)

: 신호 편의 제거 방법(CMS)

그림 2. 음성 파라메터에 따른 음성 인식 시스템 성능 평가

다음은 신호 편의 제거 방법에 따른 인식 성능 평가를 수행하였다. 편의 제거 방법으로는 ML 방 법을 사용한 SBR과 CMS 방법을 사용하였다. 여 기에서도 음성 인식 시스템은 감정이 포함되지 않 은 음성(평상)으로 학습되었다. 그림 3에서 알 수 있듯이 편의 제거를 수행하면 인식 성능이 향상되 는 것을 알 수 있다. 특히 CMS가 SBR에 비하 여 우수한 성능을 나타내어서 RASTA 멜 켑스 트럼과 델타 켑스트럼을 사용하고 신호편의 제 거 방법으로 CMS를 사용한 경우에 94.0%로 가장 우수한 성능을 나타내었다. 이러한 것은 감정의 변화에 따라 음성에 편의가 발생한다는 것 을 의미하고 편의 제거 과정을 통하여 이러한 변 화를 정도 보상해 주는 효과가 있다고 볼 수 있 다. 이러한 것은 멜 켑스트럼을 사용한 경우의 인식 성능 85.3%를 기준 시스템으로 할 때 8.7%의 인식률 향상을 나타내고 오차의 감소 율로 계산하면 약 59%정도 오차가 감소된다고 볼 수 있다.

그림 3. 신호 편의 제거 방법에 따른 음성 인 식 시스템 성능 평가

마지막으로 감정 변화에 강인한 음성인식 시스템과 감정 인식 시스템을 결합한 감정 인식 실험을 수행하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모 델을 비교하여 입력 음성에 대한 최종 감정 인 식을 수행하였다. 따라서 감정 모델은 각 단어 또는 문장에 대하여 4가지 감정별로 학습이 되 어있는 모델을 가지고 인식을 다시 수행하여 최고의 확률 값을 갖는 모델의 감정을 입력 음성의 감정으로 결정하였다. 그림 4는 실험 결과를 나타낸다. 이때 감정 인식만 사용한 시스템(A)은 음성 파라메터로 멜 켑스트럼, 델타멜 켑스트럼, 델타에너지, 델타 델타에너지를 사용하고 GMM기반의 감정 모델을 사용했을 때 가장 우수한 성능으로 73.8%를 나타내었다. 한편 특징 파라메터로 RASTA 멜 켑스트럼, 델타 켑스트럼과편의 제거 방법으로 CMS를 사용한 감정 변화에 강인한 시스템과 결합한 감정 인식 시스템의 경우에는 1.5% 정도의 감정 인식 성능 향상을 나타내었다.

그림 4. 제안된 시스템의 성능평가 (A: 감정 인식만 사용, B: 음성인식과 결합한 감정 인식 사용)

4. 결 론

본 연구에서는 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감 정 인식 시스템에 관하여 연구하였다. 이를 위 하여 우선 다양한 감정이 포함된 음성 데이터 베이스를 사용하여 감정 변화가 음성 인식 시 스템의 성능에 미치는 영향에 관한 연구와 감 정 변화의 영향을 적게 받는 음성 인식 시스템 을 구현하였다. 감정 인식은 음성 인식의 결과 에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행하였다. 실험 결과에서 감정 변화에 강인 한 음성 파라메터로는 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 편의 제거 방법으로 CMS를 사용한 경우에 가장 우수한 성능을 보 였다. 또한 감정 변화에 강인한 음성인식 시스 템과 감정 인식 시스템을 결합한 경우에 1.5% 정도의 감정 인식 오차를 감소시킬 수 있었다.

감사의 글

이 논문은 2007년도 정부(과학기술부)의 재원으로 한국과학재단의 지원을 받아 수행된 연구임(R01-2007-000-20989-0(2007))

참 고 문 헌

- [1] Oh-Wook Kwon, etc "Emotion Recognition by Speech Signal", Proceedings of Eurospeech '2003, Vol. 1, pp. 125-128, Geneva, 2003
- [2] K. R. Scherer, "Adding the Affective dimension: A New Look in Speech Analysis and Synthesis", Proceedings of ICSLP, 2002
- [3] Noam Amir,"Classifying Emotions in Speech: a Comparison of Methods", Proceedings of Eurospeech '2001, Vol. 1, pp. 127–130, Aalborg, Denmark, 2001
- [4] A. Nogueiras, etc,"Speech Emotion Recognition using Hidden Markov Models", *Proceedings of Eurospeech* '2001, Vol. 4, pp. 2679–2682, Aalborg, Denmark, 2001
- [5] Rosalind W. Picard, Affective Computing, The MIT Press 1997.
- [6] Janet E. Cahn, "The Generation of Affect in Synthesized Speech", Journal of the American Voice I/O Society, Vol. 8, pp. 1-19, July 1990.
- [8] Iain R. Murray and John L. Arnott, "Toward the Simulation of Emotion in Synthetic Speech: A review of the literature on human vocal emotion", Journal of Accoustal Society of America., pp. 1097–1108, Feb. 1993.
- [9] Frank Dellaert, Thomas Polzin, Alex Waibel, "Recognizing Emotion in Speech", Proceedings of the ICSLP 96, Philadelphia, USA, Oct. 1996
- [10] Jun Sato, and Shigeo Morishima, "Emotion Modeling in Speech Production using Emotion Space", Proceedings of the IEEE International Workshop 1996, pp. 472-477, IEEE, Piscataway, NJ, USA., 1996.
- [11] Thomas S. Huang, Lawrence S. Chen and Hai Tao, "Bimodal Emotion Recognition by Man and Machine", ATRWorkshop Virtual on Communication Environments-Bridges over Art/Kansei and VR Technologies, Kyoto, Japan, April 1998.