

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia de Computação e Telecomunicações Sistemas de Controle 3^a Avaliação com $MatLab^{\textcircled{C}}$ Prof a Adriana Castro

Danilo Souza - 10080000801 Hugo Santos - 10080000701

August 5, 2013

Contents

1	Questão 1	3
2	Questão 2	7
3	Questão 3	10
4	Questão 4	14
5	Questão 5	17

List of Figures

1.1	LGR do sistema não compensado	3
1.2	Ganho do sistema não compensado	4
1.3	Sistema não compensado	4
1.4	LGR do sistema compensado	5
1.5	Ganho do sistema compensado	5
1.6	Sistema compensado	5
1.7	Comparação entre os sistemas compensado e não compensado	6
2.1	Sistema compensado	7
2.2	LGR do sistema Compensado	8
2.3	Ganho do sistema compensado	8
2.4	Comparação entre os sistemas compensado e não compensado	9
3.1	LGR do sistema não compensado	
3.2	Ganho do sistema não compensado	11
3.3	Sistema não compensado	11
3.4	LGR do sistema compensado	
3.5	Ganho do sistema compensado	12
3.6	Sistema compensado	12
3.7	Comparação entre os sitemas não compensado (azul) e compensado (verde)	13
4.1	LGR do sistema não compensado	14
4.2	Sistema não compensado	14
4.3	LGR do sistema compensado	16
4.4	Sistema não compensado	16
4.5	Comparação da resposta do sistema não compensado em azul e do sistema compensado em verde	16
5.1	LGR e ganho do sistema não compensado	17
5.2	LGR e ganho do sistema com controlador PD	18
5.3	Comparação das saídas dos sistemas sem controlador (azul) e com con-	
	trolador PD (verde)	19
5.4	LGR e ganho do sistema com controlador PID	19
5.5	Comparação das saídas dos sistemas sem controlador (azul) e com con-	
	trolador PID (verde)	19

Questão 1

As Figuras 1.1 e 1.2 mostram, respectivamente, o LGR e o ganho do sistema não compensado para $\xi=0,174$.

Figure 1.1: LGR do sistema não compensado

Para o ganho de K = 161, temos que:

$$G(s) = \frac{161}{(s+1)(s+2)(s+10)}$$

Calculando K_p , utilizando a Equação 1.1:

$$K_p = \lim_{s \to 0} G(S) \tag{1.1}$$

Temos:

$$K_p = \frac{161}{(1)(2)(10)} = 8,05$$

Para o calcular o erro de regime utilizamos a Equação :

$$e(\infty) = \frac{1}{1 + K_p} \tag{1.2}$$

Temos:

$$e(\infty) = \frac{1}{1+8,05} = 0,1105$$

Figure 1.2: Ganho do sistema não compensado

Figure 1.3: Sistema não compensado

A Figura 1.3 mostra o sistema não compensado.

O valor do zero escolhido arbitrariamente para o compensador PI (ideal) foi $Z_c = -0, 2$, resultando na seguinte função de transferência para o compensador:

$$G_c(s) = \frac{K_c(s+0,2)}{s}$$

Onde K_c é o ganho do sistema compensado. As Figuras 1.4 e 1.5 mostram respectivamente o novo LGR e o novo ganho ($K_c = 149$) do sistema.

As Figuras 1.6 e mostram, respectivamente, o sistema compensado e o gráfico comparando âmbas as respostas, compensada (verde) e não compensada (azul). Note que 149 * 0, 2 = 29, 8.

Figure 1.4: LGR do sistema compensado

Figure 1.5: Ganho do sistema compensado

Figure 1.6: Sistema compensado

Figure 1.7: Comparação entre os sistemas compensado e não compensado

Questão 2

O sistema não compensado é o mesmo para a questão anterior, mostrado na Figura 1.3 assim como o valor de $K_p=8,05$ e o valor do erro $e(\infty)=0,1105$. O erro de regime do sistema compensado é:

$$e_c(\infty) = \frac{e(\infty)}{10} = 0,011$$

Calculando o valor de K_{pc} :

$$K_{pc} = \frac{1 - e_c(\infty)}{e_c(\infty)} = 89, 9$$

Temos que:

$$\frac{Z_c}{P_c} = \frac{K_{pc}}{K_p} = \frac{89.9}{8.05} = 11,1677$$

Escolhendo arbitrariamente $P_c = 0,05$, obtém-se $P_c = 11,1677*0,05 = 0,5584$. Com esses valores é possível montar a Função de transferência do compensador por atraso de fase, mostrada na Equação 2.1:

$$G_c(s) = \frac{K_c(s+0,5584)}{s+0,05}$$
(2.1)

As Figuras 2.1, 2.2 e 2.3 mostram, respectivamente, o sistema compensado, o LGR e o ganho ($K_c = 192$) do sistema compensado.

Figure 2.1: Sistema compensado

A Figura mostra a comparação entre os sistemas não compensado (azul) e compensado (verde). O valor de erro de regime simulado foi $e_{simulado}(\infty) = 0,0097$, menor do que o valor calculado $e_c(\infty) = 0,0011$.

Figure 2.2: LGR do sistema Compensado

Figure 2.3: Ganho do sistema compensado

Figure 2.4: Comparação entre os sistemas compensado e não compensado

Questão 3

Utilizando o valor de $M_p = 0, 1$ podemos encontrar o valor de ξ e descobrir através do LGR quais são os pólos dominantes para esse sistema, além do ganho K do sistema.

$$M_p = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}} \to \ln(0,1) = \frac{-\xi\pi}{\sqrt{1-\xi^2}} \to$$

$$\to 2,3026 = \frac{-\xi\pi}{\sqrt{1-\xi^2}} \to (\sqrt{1-\xi^2})^2 = (\frac{\xi\pi}{2,3026})^2$$

$$\to 1 - \xi^2 = 1,8615\xi^2 \to 2,8615\xi^2 = 1 \to$$

$$\to \xi = \sqrt{\frac{1}{2,8615}} \to \xi = 0,5912$$

As Figuras 3.1 e 3.2 mostram, respectivamente, o LGR e o ganho do sistema não compensado. O sistema não compensado é mostrado na Figura 3.3, com K=45,4. O pólo dominantes deste sistema é -2,02+2,76j

Figure 3.1: LGR do sistema não compensado

Escolhendo arbitrariamente $K_{pc}=100$ e $P_c=0,0001$, obtemos:

$$\frac{Z_c}{P_c} = \frac{K_{pc}}{K_p} = \frac{100}{20} = 5 \rightarrow Z_c = 5 * 0,0001 = 0,0005$$

O LGR, o ganho e o diagrama de blocos do sistema compensado são mostrados, respectivamente, nas Figura 3.4, 3.5 e 3.6. A Figura 3.7 mostra o gráfico com a comparação das

Figure 3.2: Ganho do sistema não compensado

Figure 3.3: Sistema não compensado

saídas dos sistemas não compensado (azul) e compensado (verde). Analisando a figura 3.5, percebe-se que o pólo dominante do sistema compensado permanece inalterado em -2,02+2,76j. A função do compensador por atraso de fase é:

$$G_c(s) = \frac{45, 5(s+0,0005)}{(s+0,0001)}$$

Figure 3.4: LGR do sistema compensado

Figure 3.5: Ganho do sistema compensado

Figure 3.6: Sistema compensado

Figure 3.7: Comparação entre os sitemas não compensado (azul) e compensado (verde)

Questão 4

A Figura 5.1 mostra o LGR e o ganho para o sistema não compensado. A partir do Gráfico, foi obtido os valores que seguem na tabela 4.1. O sistema não compensado está na Figura 4.4.

Figure 4.1: LGR do sistema não compensado

Figure 4.2: Sistema não compensado

Usando o valor original do T_s encontrado na simulação, encontra-se um novo $T_{s_{2\%}}$ por:

$$T_s = \frac{4,454}{2} = 2,227 \rightarrow T_s = \frac{4}{\sigma} \rightarrow \sigma = \frac{4}{2,227} = 1,7961$$

A partir do σ , tem-se a parte real do novo polo dominante e deve-se calcular a parte imaginária por:

Variável	Não compensado	Compensado
ξ	0,707	0,707
Ganho	16,6	19,2
Polo Dominante	-1,04 + 1,04i	-2,12 + 2,12i
W_n	1,47	3
V_r	0,3156	0,517
T_p	0,3531	0,5437
T_s	2,737	4,454

Table 4.1: Valores extraídos dos LGRs e das respostas do sistemas compensados e não compensados na simulação

$$\sigma = \xi W_n \to W_n = \frac{\sigma}{\xi} = \frac{1,7961}{0,707} = 2,5404$$

Obtido o valor de W_n , a parte imaginária é calculada por:

$$W_d = W_n \sqrt{1 - \xi} = 2,5404 \sqrt{1 - 0,707} = 1,7961$$

Dado o novo polo dominante em -1,7961+1,7961i, deve ser achar o ângulo que o novo zero a ser inserido fará com o eixo real. Para isto, o cálculo deste ângulo é feito por:

$$\theta_1 - \theta_2 - \theta_3 - \theta_4 - \theta_5 = (2k+1)180$$

Onde:

$$\theta_2 = tg^{-1} \frac{1,7961}{-1,7961+1} = 113,9$$

$$\theta_3 = tg^{-1} \frac{1,7961}{-1,7961+2} = 83,52$$

$$\theta_4 = tg^{-1} \frac{1,7961}{-1,7961+3} = 56,16$$

$$\theta_5 = tg^{-1} \frac{1,7961}{-1,7961+6} = 23,13$$

$$\theta_1 = 96,71$$

Para achar o ponto onde o zero deve ser inserido, deve-se achar a sua distância em relação ao eixo imaginário com a equação:

$$\frac{1,7961}{1,7961 - \sigma_c} = tg(180 - 96,71) \rightarrow 8,4997\sigma_c - 15,2663 = 1,7961 \rightarrow \sigma_c = 2,007$$

O zero deve ser colocado no ponto 2,007. O novo LGR formado se encontra na 4.3. Mantendo-se o mesmo ξ , os valores da variáveis encontradas no LGR estão na tabela 4.1. O sistema compensado ficou como na Figura 4.4. A resposta do sistema está na Figura 4.5 com o sistema não compensado em azul e o compensado em verde.

Figure 4.3: LGR do sistema compensado

Figure 4.4: Sistema não compensado

Figure 4.5: Comparação da resposta do sistema não compensado em azul e do sistema compensado em verde

Questão 5

A Figura mostra o LGR e o ganho para o sistema não compensado.

Figure 5.1: LGR e ganho do sistema não compensado

Usando o valor de T_p para calcular ω_d (parte imaginária do pólo):

$$T_p = \frac{\pi}{\omega_d} \rightarrow \omega_d = \frac{\pi}{1,047} = 3,0006 \cong 3$$

A partir de ω_d encontra-se o valor de ω_n :

$$\omega_d = \omega_n \sqrt{1 - \xi^2} \to \omega_n = \frac{3}{\sqrt{1 - 0.8^2}} \to \omega_n = 5$$

Encontrando a parte real do pólo:

$$\sigma = \omega_n \xi = 5 * 0, 8 = 4$$

Usando a Equação 5.1 para encontrar o pólo dominante desejado:

$$s = -\omega_n \xi \pm \omega_d j$$

$$s = -4 \pm 3j$$
(5.1)

Os ângulos dos pólos do sistema estão representados no Apeêndice B. Abaixo será mostrado o cálculo do ângulo θ_1 e do zero do controlador, Z_c .

$$\theta_1 - \theta_2 - \theta_3 - \theta_4 = 180$$

$$\theta_2 = tan^{-1}(\frac{3}{3}) = tan^{-1}(1) = 45^o$$

$$\theta_3 = \theta_4 = 90^{\circ}$$

$$\theta_1 - 45 - 90 - 90 = 180 \to \theta_1 = 405^{\circ} = 45^{\circ}$$

Calculando o valor de Z_c :

$$tan(45^{\circ}) = \frac{3}{Z_c - 4} \to Z_c = 7$$

A função de transferência do controlador PD é:

$$G_{PD}(s) = (s+7)$$

A função de transferência parcial do sitema com controlador PD é:

$$G(s) = \frac{2.99(s+7)}{(s+1)(s+4)}$$

As Figuras mostras, respectivamente, o LGR e o ganho do sistema com o controlador PD, e a comparação das saídas do do sistema sem controlador (azul) e com controlador PD (verde). O tempo de pico do sistema com controlador PD foi $T_p = 0,8785$, bem próximo do valor desejado ($T_p = 1,047$).

Figure 5.2: LGR e ganho do sistema com controlador PD

Para o controlador PI foi escolhido um zero em -0,1, a função de transferência do controlador PI é:

 $G_{PI}(s) = \frac{(s+0,1)}{s}$

O tempo de pico permacene o mesmo $(T_p=0,8785)$, uma vez que a instrodução do controlador PI não altera a resposta transitória e o erro de regime foi a zero. As Figuras 5.4 e 5.5 mostram, respectivamente, o LGR/ganho do sistema com o controlador PID e a comparação entre as respostas do sistema sem controlador (azul) e com controlador PID (verde). A função de transferência para o sistema com os controladores PD e PI fica da seguinte forma:

 $G(s) = \frac{3(s+7)(s+0,1)}{s(s+1)(s+4)}$

Figure 5.3: Comparação das saídas dos sistemas sem controlador (azul) e com controlador PD (verde)

Figure 5.4: LGR e ganho do sistema com controlador PID

Figure 5.5: Comparação das saídas dos sistemas sem controlador (azul) e com controlador PID (verde)