Introduction to Statistics

The Five-number Summary, the IQR, the Midhinge and the Trimean

www.Stats-Lab.com

Twitter: @StatsLabDublin

The Five-number Summary

The five-number summary is a descriptive statistic that provides information about a set of observations.

It consists of the five most important sample percentiles:

- the sample minimum (smallest observation)
- the lower quartile or first quartile (Q_1)
- the median (middle value)
- ▶ the upper quartile or third quartile (Q₃)
- the sample maximum (largest observation)

The Five-number Summary: Sample Data

Suppose a sample has the following five-number summary:

- ▶ the sample minimum = 11
- the lower quartile $Q_1 = 25$
- ▶ the median = 27
- the upper quartile $Q_3 = 31$
- ▶ the sample maximum = 38

We will use these values for later examples.

Interquartile Range

The interquartile range (IQR) is a measure of statistical dispersion, being equal to the difference between the first and third quartiles,

$$IQR = Q_3 - Q_1$$
.

For our sample data, the interquartile range is

$$IQR = 31 - 25 = 6$$

(The median is the corresponding measure of location or central tendency.)

Interquartile Range and Outliers

The interquartile range is often used to find outliers in data.

Using this approach, outliers are observations that fall below the **lower fence**

Lower fence =
$$Q1 - (1.5 \times IQR)$$

or above the **upper fence**

Upper fence =
$$Q3 + (1.5 \times IQR)$$

.

Interquartile Range and Outliers

Lower Fence

- ▶ Lower fence = $Q1 (1.5 \times IQR)$
- ▶ Lower fence = $25 (1.5 \times 6) = 25 9 = 16$

Any value less than 16 (for example, the minimum value 11) is considered an outlier.

Interquartile Range and Outliers

Upper Fence

- ▶ Upper fence= $Q3 + (1.5 \times IQR)$
- Upper fence= $31 + (1.5 \times 6) = 31 + 9 = 40$

Any value greater than 40 would considered an outlier. However, as the maximum value is 38, there is no high-value outliers

Midhinge

The midhinge is a measure of central location, determined as the average of the first and third quartiles.

$$\mathsf{midhinge} = \frac{Q_1 + Q_3}{2}$$

For the sample data, the midhinge is computed as

midhinge =
$$\frac{25+31}{2} = \frac{56}{2} = 28$$

Trimean

The **trimean** (TM) is a measure of central location defined as a weighted average of the distribution's median and its two quartiles:

$$TM = rac{Q_1 + 2Q_2 + Q_3}{4}$$

This is equivalent to the average of the median and the midhinge:

$$TM=rac{1}{2}\left(Q_2+rac{Q_1+Q_3}{2}
ight)$$

Trimean

$$TM = rac{Q_1 + 2Q_2 + Q_3}{4}$$

For the sample data, the trimean is computed as

$$TM = \frac{25 + (2 \times 27) + 31}{4} = \frac{110}{4} = 27.5$$