DESIGN OF ULTRA WIDE BAND ANTENNA

A PROJECT REPORT

Submitted by

DIVYA SOUNDHARYA. N (211714106026)

LEKHA PRIYADHARSHINI. S (211714106069)

NIVETHITHA. P (211714106085)

in partial fulfilment for the award of the degree

of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

RAJALAKSHMI INSTITUTE OF TECHNOLOGY CHENNAI

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2018

BONAFIDE CERTIFICATE

Certified that this project report "DESIGN OF ULTRA WIDE BAND ANTENNA" is the bonafide work of "DIVYA SOUNDHARYA. N (211714106026), LEKHA PRIYADHARSHINI. S (211714106069) and NIVETHITHA. P (211714106085)" who carried out the project work under my supervision.

SIGNATURE SIGNATURE

Dr. G.R. SURESH, M.E., Ph.D. Mr. L. FRANKLIN TELFER, M.E., (Ph.D.)

HEAD OF THE DEPARTMENT SUPERVISOR

Professor Assistant Professor

Department of Electronics and Department of Electronics and

Communication Engineering Communication Engineering

Rajalakshmi Institute of Technology Rajalakshmi Institute of Technology

Chennai- 600 124 Chennai- 600 124

CERTIFICATE OF EVALUATION

College Name : 2117- Rajalakshmi Institute of Technology

Branch & Semester: Electronics and Communication Engg. VIII Semester

Subject : EC6811 PROJECT WORK

TITLE OF THE PROJECT:

DESIGN OF ULTRA WIDE BAND ANTENNA

NAME OF THE STUDENTS:

DIVYA SOUNDHARYA. N 211714106026

LEKHA PRIYADHARSHINI. S 211714106069

NIVETHITHA. P 211714106085

The report on the project work submitted by the above students in partial fulfilment for the award of the degree of Bachelor of Engineering in ELECTRONICS AND COMMUNICATION ENGINEERING of Anna University, reported the work done by the above students and then evaluated.

The University	Viva-voce was	held on	
----------------	---------------	---------	--

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We wish to express our hearty and sincere gratitude to our chairman **Dr.S.MEGANATHAN**, **B.E.**, **F.I.E.**, for his sincere endeavour in educating us in his premier institution.

We wish to express our deep gratitude to our beloved chairperson **Dr.(Mrs.)THANGAM MEGANATHAN, M.A., M.Phil., Ph.D.,** for her enthusiastic motivation which helped us a lot in completing the project.

We express our thankfulness to **Dr.M.VELAN M.E., Ph.D.,** Principal, Rajalakshmi Institute of Technology for their kind support and the facilities provided to complete our work in time.

With profound sense and regards, we acknowledge with great pleasure **Dr.G.R.SURESH, M.E., Ph.D,** Head of the Department, Department of Electronics and Communication Engineering for his valuable suggestions and guidance for the development and completion of our project.

We express our sincere thanks to our guide **Mr.L.FRANKLIN TELFER, M.E., (Ph.D),** Professor, Department of Electronics and Communication Engineering, for leading us on the project.

We extend our gratitude to **Mr.K.SIVAKUMAR**, Assistant Professor (SS), project Coordinator for their timely organization of reviews and their support throughout the project work.

We also thank our review committee members **Dr.R.RAJESWARI**, professor, **Dr.G.NIRMALA**, professor, Department of Electronics and Communication Engineering for his valuable suggestions and guidance for the development and completion of our project.

Finally, we express our deep sense of gratitude to our parents, all our faculty members, technical staff and all our friends for their constant encouragement and moral support.

ABSTRACT

In this paper we propose an Ultra wide band antenna which operates on UWB range (3.1 to 10.6GHz). We use micro strip line feeding and rectangular shape as a base shape for patch. FR4 is used as a substrate material with thickness 1.57mm with copper cladding for a ground and patch as 0.035mm. Rectangular patch and defected ground structure is used to attain UWB range. The design is carried out using Computer Simulation Technology (CST) microwave studio 2014. The optimization is achieved by varying the length and width parameters. Simulation results show that the antenna works well in the UWB region and satisfies premier antenna parameters such as return loss, VSWR and radiation pattern. Finally, the proposed UWB antenna structure is fabricated and verified. The measurement shows a good agreement with the simulated results. Mainly used in the application like military, satellite, cognitive radio etc.

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	V
	LIST OF TABLES	viii
	LIST OF FIGURES	ix
	LIST OF ABBREVATIONS	X
1	INTRODUCTION	1
	1.1 Antenna basics	1
	1.2 Antenna parameters	1
	1.2.1 Return loss	1
	1.2.2 Gain	2
	1.2.3 Directivity	2
	1.2.4 Resonant frequency	3
	1.2.5 Impedance	3
	1.2.6 Bandwidth	3
	1.2.7 Radiation pattern	3
	1.2.8 VSWR	4
	1.2.9 Polarization	4
	1.3 History of UWB	4
2	LITERATURE REVIEW	9
3	METHODOLOGY	16
	3.1 Existing model	16
	3.2 Proposed model	16
	3.2.1 Design of ground	17
	3.2.2 Design of substrate	18
	3.2.3 Design of patch	20

	3.2.4 Design of feed	20
	3.3 Design equation	21
	3.4 Values of calculated specifications	23
4	EXPERIMENTAL RESULTS	24
	4.1 Antenna simulation	24
	4.2 Return loss	24
	4.3 VSWR	25
	4.4 Radiation pattern	26
	4.4.1 Directivity	26
	4.4.2 Gain	26
	4.5 Output frequencies	27
	4.6 Fabricated Antenna	33
5	CONCLUSION	34
	5.1 Future scope	34
	REFERENCES	36

LIST OF TABLES

TABLE NO	TABLE DESCRIPTION	PAGE NO
3.2.1	Specification of ground plane	18
3.2.2	Specification of substrate	19
3.2.3	Specification of patch	20
3.4	Variable values of proposed UWB antenna	23

LIST OF FIGURES

FIGURE NO	FIGURE DESCRIPTION	PAGE NO
1.1	Equivalence of a pulse based waveform	5
1.2	Mask of an UWB communications system.	6
1.3	Impulse and frequency modulation	7
3.1	Geometry of proposed UWB antenna	17
3.2	Design of ground in CST	18
3.3	Design of substrate in CST	19
3.4	Design of patch in CST	20
3.5	Design of feed in CST	21
4.1	Simulation in CST	24
4.2	Return loss	25
4.3	VSWR	25
4.4	Far field gain at 4.917GHz	27
4.5	Far field directivity at 4.917GHz	28
4.6	Far field gain at 4.917GHz in 3Dimension	28
4.7	Far field gain at 6.1009GHz	29
4.8	Far field directivity at 6.1009GHz	29
4.9	Far field gain at 6.1009GHz in 3Dimension	30
4.10	Far field gain at 10.407GHz	31
4.11	Far field directivity at 10.407GHz	32
4.12	Far field gain at 10.407GHz in 3Dimension	32
4.13	Far field gain at 13.476GHz	32
4.14	Far field directivity at 13.476GHz	33
4.15	Far field gain at 13.476GHz in 3Dimension	34
4.16	Fabricated Antenna of proposed model	34

LIST OF ABBREVIATIONS

UWB Ultra Wide Band

CST Computer Simulation Technology

VSWR Voltage Standing Wave Ratio

FR-4 Flame Retardant

dBi Decibel over Isotropic

dBd Dipole over Dipole

IEEE Institute of Electrical & Electronics Engineering

RF Radio Frequency