IMO 1998/3

March 30, 2025

Problem. Determine all positive integers k such that

$$\frac{d(n^2)}{d(n)} = k$$

for some $n \in \mathbb{N}$.

Solution. Note that $d(n^2)$ is odd so k can never be even. We claim that all odd numbers are possible.

Let set $S:=\{\frac{d(n^2)}{d(n)}:n\in\mathbb{N}\}$. Then let prime factorization of n be $\prod_{i=1}^{i=k}p_i^{a_i}$ where $a_i\in\mathbb{N}_0$. Then $\frac{d(n^2)}{d(n)}=\prod_{i=1}^{i=k}(2-\frac{1}{a_i+1})$. Of course all numbers in S are of form $\prod_{i=1}^{i=k}(2-\frac{1}{a_i})$ where $a_i\in\mathbb{N}$, note that any number of form $\prod_{i=1}^{i=k}(2-\frac{1}{a_i})$ is also in S by choosing appropriate prime factors. So we only have to consider rationals of these forms.

First of all note that $1 \in S$ by choosing n=1 (or choosing $k=1,a_1=1$). Now if $a \in S$ and $b \in S$, then $ab \in S$. Now note that $\forall n,t \in \mathbb{N}$ we have $\frac{2^t(n-1)+1}{n} \in S$. This can be proved by induction on t. For t=1 consider the sequence $k=1,a_1=n$. Now if for t=m, if we have $\frac{2^m(n-1)+1}{n} \in S$, then note that by choosing the sequence $k=1,a_1=(2^m(n-1)+1)$ we get $\frac{2^{m+1}(n-1)+1}{2^m(n-1)+1} \in S$. Hence their product $\frac{2^m(n-1)+1}{n} \cdot \frac{2^{m+1}(n-1)+1}{2^m(n-1)+1} \in S$. This completes the induction step. As we have $\frac{2^t(n-1)+1}{n} = 2^t - \frac{2^t-1}{n} \in S$. Letting $n=a \cdot (2^t-1)$ we get $2^t - \frac{1}{a} \in S$ for all $a \in \mathbb{N}$.

Now let's prove any number of form $2t-1\in S$ where $t\in \mathbb{N}$. For t=1, it is already established that $1\in S$. Now let's suppose for the sake of induction that the given relation holds for all t< m where t>1. Then note that $2m-1=2^k\cdot q-1$ for some positive k where q is an odd number. Note that q<(2m-1) hence $q\in S$. Now as establised earlier that $2^k-\frac{1}{q}\in S$. We get $(2^k-\frac{1}{q})\cdot q=2^k\cdot q-1=2m-1\in S$. This finishes the induction step. Hence all odd numbers k satisfy the given equation for some $n\in \mathbb{N}$.

Exploration. Basically same as solution but with lots of messing around. using a computer and looking at construction of 7 helped to realised the $2^k - (2^k - 1)/n$ property

Tags. NT, Algebra