Programmazione I

Il Linguaggio C

Esercizi

Daniel Riccio

Università di Napoli, Federico II

17 dicembre 2021

Risultato della competizione

Posizione	Matricola	Esito	Tempo
1	N86004029	Correctness Test passed	0.002296
2	N86004428	Correctness Test passed	0.002800
3	N86004052	Correctness Test passed	0.002996
4	N86004057	Correctness Test passed	0.003262
5	N86004117	Correctness Test passed	0.010180
6	N86004077	Correctness Test passed	0.663828
7	N86004389	Correctness Test passed	0.676110
8	N86004283	Correctness Test passed	1.171358

Quesito 1-a

Qs. 1 (a) – (5 punti): si risponda alle seguenti domande riportando su un foglio bianco il numero della domanda e al lato di ciascuna numero una V se si considera la risposta vera o una F se si ritiene che la risposta sia falsa.

N.	Domanda	V/F
1	Una variabile di tipo char ammette valori nell'intervallo [0,255]	F
2	La funzione strncat(a,b) confronta i primi n caratteri delle due stringhe a e b	
3	if(N=0){} non esegue mai le istruzioni nelle parentesi graffe	
4	Un record è una collezione eterogenea di variabili	V
5	La definizione di un record non può contenere altri record annidati	F
6	Nell'aritmetica dei puntatori il prodotto e la divisione sono operazioni non ammesse	
7	Una stringa è una sequenza di caratteri terminata da un '\0'	
8	Il nodo sentinella termina una lista doppiamente concatenata	
9	I puntatori hanno sempre la dimensione di una parola macchina	
10	Uno stack è una struttura ricorsiva di tipo FIFO	
11	Il ciclo do{}while(1); è un ciclo infinito	
12	Il Bubble Sort ha complessità O(n) nel caso medio e O(n²) nel caso peggiore	
13	Per i dati signed, shift logico e aritmetico non è equivalente	
14	Il tipo long int occupa 8 byte su una macchina a 32 bit	
15	La ricorsione con stack esplicito è meno efficiente di quella basata sullo stack di sistema	
16	La ricerca binaria non può essere applicata su una stringa di caratteri anche se ordinata	
17	La sequenza di fibonacci si calcola come $f(n)=f(n-1)-f(n-2)$, con $f(1)=1$ e $f(0)=1$	F
18	La funzione malloc() restituisce un puntatore a intero	F
19	L'inserimento di un nodo in una lista single-linked richiede due puntatori nella ricerca della posizione	V
20	Il nome di un vettore è un puntatore costante	V

Quesito 1-b

Qs. 1 (b) - (3 punti): sia dato il vettore V={81, 1, 21, 11, 25, 40}. Si mostri lo stato del vettore ad ogni passo dell'algoritmo Insertion Sort.

Iterazione	V[0]	V[1]	V[2]	V[3]	V[4]	V[5]
1	81	1	21	11	25	40
2	1	81	21	11	25	40
3	1	21	81	11	25	40
4	1	11	21	81	25	40
5	1	11	21	25	81	40
6	1	11	21	25	40	81
7						
8						
9						
10						

Quesito 2

Qs. 2 – (5 punti): si indichi l'output del seguente programma.

```
#include <stdio.h>
int V[5]={1,2,3};
int main(){
 int *p=V;
 int i;
 for(i=0; *p>0; p++);
 p[i] = *(p-1) + *(p-2);
 printf("%ld %d %d\n", sizeof(p), *p, V[i]);
 return 0;
```

Output:

4 5 1

Quesito 3

Qs. 3 – (5 punti): si indichino gli errori, qualora presenti, nelle seguenti istruzioni.

#include "stdio.h";		
int main()		
int c=32;		
char *pc=&c		
pc=pc*1;		
for((i=0); (i<5), (i++))		
c = *pc + i;		
<pre>printf(%d\n, *pc);</pre>		
return &i		
<u> </u>		

```
punto e virgola
Manca la parentesi graffa
corretto
Tipi incompatibili
corretto
virgola
corretto
Mancano i doppi apici
int * non è un intero
Manca la parentesi graffa
```

Quesito 4

Qs. 5 – (12 punti): Si implementi in linguaggio C il seguente programma

Scrivere un programma C che:

- 1) Prende da linea di comando una 10 numeri e li inserisce in un vettore V. Inoltre, chiede in input un numero x mediante una scanf()
- 2) Implementa la funzione ricorsiva int Cerca_Valore (int V[], int n, int x) che restituisce 1 se x compare nel vettore e 0 altrimenti.

Input e Output

Input: 10 1 23 5 8 12 7 11 33 9

Output:

Inserisci il carattere da cercare: 8

Il carattere 8 compare nel vettore

```
int main(int argc, char *argv[])
         int i;
         int x = 0;
         int posizione = 0;
         int V[10];
        for (i = 0; i < 10; i++)
                 V[i] = atoi(argv[i]);
         printf("Inserisci il valore da cercare: ");
         scanf("%d", &x);
         posizione = cerca_valore(V, 10, x);
         if (posizione > 0)
                  printf("Il valore %d compare nel vettore\n", x);
         else
                  printf("Il valore %d non compare nel vettore\n", x);
         return 0;
```

Traccia

Traccia 012

Scrivere un programma C che:

- 1) Prende dalla linea di comando un numero generico di interi (es.: 2 3 7 10)
- 2) Inserisce i valori in un vettore di interi allocato dinamicamente
- 3) Implementa la funzione ricorsiva <u>int SommaPari(int</u> *v, <u>int</u> n) che somma solo i valori pari all'interno dell'array

Input e Output

Input: 2 3 7 10

La somma degli elementi nel vettore è: 12

```
int SommaPari(int *A, int n) {
     if (n == 0)
           if ((A[0] \% 2 == 0))
                 return A[0];
            else
                 return 0;
     else if (A[n] \% 2 == 0)
           return Somma(A, n - 1) + A[n];
     else return Somma(A, n - 1);
```

```
int main(int argc, char *argv[])
        int *V;
        int i = 0;
        int somma = 0;
        V = (int *)malloc((argc - 1) * sizeof(int));
        for (i = 1; i < argc; i++)
                 V[i - 1] = atoi(argv[i]);
        somma = SommaPari(V, argc - 2);
        printf("La somma degli elementi nel vettore è: %d", somma);
        free(V);
        return 0;
```

Traccia

Traccia 008

Scrivere un programma C che:

- 1) Definisce un nuovo tipo di variabile Polinomio come record (grado n, n+1 coefficienti float).
- 2) Scrivere una funzione float polydev(Polinomio p, Polinomio *pdev) che inserisce in pdev la derivata prima di p.

Input e Output

Inserisci il grado del polinomio: 3

Inserisci il coefficiente per x^0: 2

Inserisci il coefficiente per x^1: 1.8

Inserisci il coefficiente per x^2: 2.6

Inserisci il coefficiente per x^3: 4.5

Il polinomio di grado 3 è: 4.5x^3 +2.6x^2 +1.8x^1 +2

Il polinomio derivato è di grado 2 ed è: 13.5x^2 +5.2x^1 +1.8

```
#include <stdio.h>
#include <stdlib.h>

typedef struct Polinomio {
    int grado;
    float c[64];
}Polinomio;

void polydev(Polinomio p, Polinomio *pdev);
```

```
int main(int argc, char* argv[])
          int i = 0;
          Polinomio p, pdev;
          printf("Inserisci il grado del polinomio: ");
          scanf("%d", &(p.grado));
          for (i = 0; i < p.grado + 1; i++) {
                     printf("Inserisci il coefficiente per x^%d:", i);
                     scanf("%f", &(p.c[i]));
          printf("Il polinomio di grado %d è: ", p.grado);
          for (i = p.grado; i > 0; i--)
                     printf("%gx^%d +", p.c[i], i);
          printf("%g\n", p.c[0]);
          polydev(p, &pdev);
          printf("Il polinomio derivato è di grado %d ed è: ", pdev.grado);
          for (i = pdev.grado; i > 0; i--)
                     printf("%gx^%d +", pdev.c[i], i);
          printf("%g\n", pdev.c[0]);
          return 0;
```

```
void polydev(Polinomio p, Polinomio *pdev) {
     int i = 0;
      pdev->grado = p.grado - 1;
     for (i = p.grado; i > 0; i--)
            pdev - c[i - 1] = i * p.c[i];
      return;
```