Zusammenfassung Vektoranalysis im \mathbb{R}^3

Alle Abbildungen seien so oft wie nötig stetig differenzierbar.

Notation:

Ortsvektor	Skalarfeld	Vektorfeld	Nabla	
$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$	f(x)	$K(x) = \begin{pmatrix} K_1(x) \\ K_2(x) \\ K_3(x) \end{pmatrix}$	$\nabla = \begin{pmatrix} \partial_1 \\ \partial_2 \\ \partial_3 \end{pmatrix} \text{ mit } \partial_i = \frac{\partial}{\partial x_i}$	

Differentialoperatoren: (alles in Spaltenvektoren)

Gradient	$\operatorname{grad} f := \nabla f = \begin{pmatrix} \partial_1 f \\ \partial_2 f \\ \partial_3 f \end{pmatrix}$	Richtung und Betrag des grössten Anstiegs von f
Rotation	$\operatorname{rot} K := \nabla \times K = \begin{pmatrix} \partial_2 K_3 - \partial_3 K_2 \\ \partial_3 K_1 - \partial_1 K_3 \\ \partial_1 K_2 - \partial_2 K_1 \end{pmatrix}$	lokale Zirkulationsrate von K
Divergenz	$\operatorname{div} K := \nabla \cdot K = \partial_1 K_1 + \partial_2 K_2 + \partial_3 K_3$	lokale Produktionsrate von K
Laplace	$\Delta f := \operatorname{div} \operatorname{grad} f = \partial_1^2 f + \partial_2^2 f + \partial_3^2 f$	lokale Diffusions rate von \boldsymbol{f}

Lokale Eigenschaften:

(Skalarfeld) grad			
$\operatorname{rot}\operatorname{grad} f=0$		$\operatorname{div}\operatorname{rot}K=0$	
$\operatorname{grad} f = 0 \iff$	f lokal konstant		
$rot K = 0 \iff$	${\cal K}$ zirkulationsfrei	\iff	lokal $\exists f \text{ mit } \operatorname{grad} f = K$
$\operatorname{div} K = 0 \iff$	K divergenzfrei	\iff	lokal $\exists L$ mit rot $L = K$
$\Delta f = 0 \iff$	f harmonisch		

Globale Eigenschaften:

Die folgenden Eigenschaften eines Vektorfelds K sind äquivalent:

- K besitzt ein Potential, das heisst, ein Skalarfeld f mit grad f = K.
- \bullet Das Integral von K über jeden Weg hängt nur von Anfangs- und Endpunkt ab.
- \bullet Das Integral von K über jeden geschlossenen Weg ist Null.
- K heisst konservativ.

Weg- oder Kurvenintegral: (von der Parametrisierung unabhängig)

Ein Weg oder eine Kurve ist das Bild einer Parametrisierung $\gamma \colon [a,b] \to \mathbb{R}^3, \ t \mapsto \gamma(t)$.		
Die Bildkurve C wird in Richtung des wachsenden t orientiert.		
Der Weg heisst Feldlinie von K , falls gilt $\gamma'(t) = K(\gamma(t))$.		
skalares Kurvenintegral	$\int_C f(x) dx := \int_a^b f(\gamma(x)) \gamma'(t) dt$	Für $f \equiv 1$ erhält man die Kurvenlänge
vektorielles Kurvenintegral	$\int_C K(x) \cdot dx := \int_a^b K(\gamma(x)) \cdot \gamma'(t) dt$	Arbeit oder Zirkulation von K entlang C

Flächenintegral: (von der Parametrisierung unabhängig)

Eine Fläche ist das Bild einer Parametrisierung $\varphi \colon B \to \mathbb{R}^3$, $\binom{u}{v} \mapsto \varphi \binom{u}{v}$ für $B \subset \mathbb{R}^2$.

Die Bildfläche F wird durch den Einheitsnormalenvektor $n:=\frac{\varphi_u\times\varphi_v}{|\varphi_u\times\varphi_v|}$ orientiert.

Die Randkurve ∂F wird so orientiert, dass ein Beobachter, der sie mit dem Kopf in Richtung n entlang geht, die Fläche stets zu seiner linken Seite hat.

Die Oberfläche eines Körpers im \mathbb{R}^3 wird stets nach aussen orientiert.

skalares Flächenintegral	$\int_{F} f(x) d\omega := \int_{B} f(\varphi(u)) \varphi_{u} \times \varphi_{v} du dv$	Für $f \equiv 1$ erhält man den Flächeninhalt
vektorielles Flächenintegral	$\int_{F} K(x) \cdot d\omega := \int_{B} K(\varphi(v)) \cdot (\varphi_{u} \times \varphi_{v}) du dv$	Fluss von K durch F in Richtung n

Integralsätze: (alle Spezialfälle eines einzigen grossen Satzes im \mathbb{R}^n)

Hauptsatz für Kurvenintegrale	$\int_C \operatorname{grad} f(x) \cdot dx = f(q) - f(p)$	C Weg von p nach q
Satz von Stokes (im \mathbb{R}^2 : von Green)	$\int_{\partial F} K \cdot dx = \int_{F} \operatorname{rot} K \cdot d\omega$	F orientierte Fläche mit orientiertem Rand ∂F
Satz von Gauss = Divergenzsatz	$\int_{\partial B} K \cdot d\omega = \int_{B} \operatorname{div} K d\mu(x)$	B dreidimensional mit nach aussen orientiertem Rand ∂B