Architettura degli Elaboratori (modulo I e A)

(Compito del 12 Gennaio 2011 - A)

Usare un foglio separato per risolvere i due esercizi che seguono, specificando nell'intestazione: **Titolo del** corso (Architettura degli Elaboratori – modulo I oppure Architettura degli Elaboratori A), **Data esame**, Cognome e Nome, Matricola

Esercizio 1 (modulo I e arch. A)

1. Tradurre in binario i seguenti numeri, usando una rappresentazione su 8 bit per numeri senza segno:

 $A = 250_{10}$ $B = 296_{10}$ $C = 017_8$ $D = F4_{16}$ $E = 12_5$ $F = 86_{16}$

Effettuare poi le seguenti somme in binario: A + C e D + E. Si è verificato overflow? Giustificare la risposta.

- 2. Interpretare i numeri binari ottenuti al punto precedente come numeri espressi in complemento a due. Effettuare quindi le seguenti operazioni: D A, C D, A + C e F + D. Si è verificato overflow? Giustificare la risposta. Tradurre A, C, D, E in decimale.
- 3. Tradurre il numero decimale $X=0.1946375*10^4$ in binario usando la rappresentazione per i numeri razionali IEEE754 in singola precisione.
- 4. Tradurre in decimale il seguente numero razionale espresso secondo lo standard IEEE754:

Soluzione

1. Traduzioni:

A = 111111010

B non rappresentabile su 8 bit perché maggiore di 2^8 -1 = $255\,$

C = 00001111

D = 11110100

E = 00000111

F = 10000110

Somme:

Overflow: il risultato della somma non è rappresentabile su 8 bit.

Non si è verificato overflow. Il risultato della somma è rappresentabile su 8 bit.

```
00000100
 D 11110100 +
-A 00000110 =
    11111010
Non si può verificare overflow: D e -A hanno segni discordi.
   00001100
 C 00001111 +
-D 00001100 =
    00011011
Ultimi due riporti concordi: non si è verificato overflow.
  11111110
A 11111010 +
C 00001111 =
  100001001
  10000100
F 10000110 +
D 11110100 =
  101111010
```

Non si può verificare overflow: A e C hanno segni discordi.

Ultimi due riporti discordi: overflow.

Traduzioni in decimale:

```
A = -6_{10}
C = 15_{10}
D = -12_{10}
E = 7_{10}
```

3. $0,1946375 * 10^4 = 1946,375_{10} = 11110011010,011_2 = 1,1110011010011 * 2^{10}$.

 $Segno_X: 0$

Esponente_X: $10+127 = 137_{10} = 10001001_2$

 $Mantissa_X$: 1110011010011

Quindi:

010001001111001101001100000000000

4. Segno $_Y = 1$ Esponente_Y = $10001000_2 = 136_{10} = 127 + 9$ Quindi Y = -1,10101 * 2^9 = -1101010000₂ = -848₁₀

Esercizio 2 (modulo I e arch. A)

Progettare un circuito sequenziale di Mealy con due ingressi I1, I2 e una uscita O definita come segue:

- O = 1 se I1 e I2 coincidono negli ultimi tre cicli di clock
- O = 0 altrimenti.

Per i primi due cicli di clock il circuito deve dare in uscita O=0. Devono essere considerate eventuali sequenze sovrapposte. Ad esempio:

I1: 01011110100...
I2: 11010010101...
D: 00010000110...

Definire l'automa a stati finiti, ricavare le tabelle di verità e le forme SP minime. Disegnare infine il circuito risultante.

Soluzione

L'automa a stati finiti è il seguente:

Codifica degli stati:

Stato	I	s1	s2
Iniz		0	0
1 ciclo uguale		0	1
2 cicli uguali		1	0

Si noti che s1 s2 = 11 non è una configurazione di stato possibile e quindi il valore restituito dalle funzioni Output e NextState in questo caso è don't care. Le tabelle relative a Output e NextState sono le seguenti:

s1	s2	I1	12	I	0	I	s1*	s2*
0	0	0	0		0	 	0	1
0	0	0	1	-	0	-	0	0
0	0	1	0	-	0	1	0	0
0	0	1	1		0		0	1
0	1	0	0		0		1	0
0	1	0	1		0		0	0
0	1	1	0		0		0	0
0	1	1	1		0		1	0
1	0	0	0		1		1	0
1	0	0	1		0		0	0
1	0	1	0		0		0	0
1	0	1	1		1		1	0
1	1	X	X	-	X	-	Х	X

Minimizzazione della funzione Output:

s1 s2	00	01	11	10
00				
01				
11	Х	Х	Х	х
10	1		1	

$$O=s1{\sim}I1{\sim}I2+s1$$
I1 I2

Minimizzazione della funzione NextState:

s1 s2	00	01	11	10
00				
01	1		1	
11	Х	х	Х	х
10	1		1	
			1*	

s1 s2	00	01	11	10
00	1		1	
01				
11	Х	х	Х	х
10				
s2*				

$$s1^* = s1\sim I1\sim I2 + s2\sim I1\sim I2 + s1$$
 I1 I2 + s2 I1 I2 $s2^* = \sim s1\sim s2\sim I1\sim I2 + \sim s1\sim s2$ I1 I2

Il circuito risultante si ricava facilmente dalle equazioni minime.