

Forelesning i Fysikk 11.

Kondenserte stoffer Dioder og transistorer.

Hans Jakob Rivertz IDI-avdeling-kalvskinnet 31. januar 2018

Plan

Kondenserte stoffer

Halvledere

Dioden

Transistoren

Innhold

Kondenserte stoffer

Halvledere

Dioden

Transistorer

Kondenserte stoffer

 Kondenserte stoffer en samlebetegnelse på stoffer der enkeltatomer er bundet til hverandre og former væske eller faste stoffer.

Molekylære bindinger

Atomer kan binde seg til hverandre på forskjellige måter:

- Ioniske bindinger: atomer med forskjellig ladning vil tiltrekkes av hverandre. Eksempel: Cl⁻ og Na⁺ danner bordsalt.
- Kovalente bindinger. Atomer som ligger svært nære hverandre at et elektron ytterste skall fra hvert atom danner par. De frastøtende kreftene mellom elektronene overvinnes av tiltrekningen mellom kjernene og elektronparet.
- Van der Waals bindinger. Vanlig i vann.
- \bullet Hydrogen-bindinger. To a tomer bindes sammen av et ${\rm H}^+\mbox{-}{\rm ion}.$

Vi kommer kun til å se på stoffer med kovalente bindinger

Krystaller

Krystaller er stoffer der atomene har en streng struktur og symmetri. Eksempler:

- Diamant
- Silisium
- Metaller

Energi bånd

- Energinivåene i enkeltatomer er skarpe linjer.
- I krystaller flyttes og splittes energinivåene blant annet fordi atomene er svært nære hverandre.

Ledere

Isolatorer

I isolatorer er valensbåndet fullt. Mellom lederbåndet og valensbåndet er det et stort energigap. Ingen elektroner kan ha energier i det gapet. Og termisk energiE=kT er mye mindre enn energigapet.

Innhold

Kondenserte stoffer

Halvledere

Dioden

Transistorer

Halvledere

En halvleder har tomt lederbånd men kort avstand mellom velensbåndet og lederbåndet.

Periodisk tabell (GNU lisens)

*Lanthanide series

* * Actinide series

	lanharum 57	certum 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadetrium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	yttertium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
П	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium 89	frodum 90	protactinium 91	92	neptunium 93	plutonium 94	americium 95	96	berkellum 97	calfornium 98	einsteinium 99	100	nendetevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
- 1	12271	232.04	231.04	239.03	123.71	12.441	12431	12471	12471	12511	12521	12571	12581	1259

Energigap for Silisium og Germanium

	Atomnr.	Valens-elektroner	Energigap
Silisium	14	4	1.1 eV
Germanium	32	4	$0.7~{ m eV}$

Doping n-leder

Forurensing endrer leder evnen

	Atomnr.	Valens-elektroner
Gallium	31	3
Arsen	33	5

• <i>Si</i> •	\mathfrak{I}	\mathfrak{I}	<i>51</i> •	<i>51</i> •	\mathfrak{I}
••	• •	••	••	••	••
• Si •	Si:	Si:	Si :	Si:	Si
••	••	••	••	• •	••
\$ Si \$	Si :	As :	Si:	Si:	Si
••	••	•••	••	••	••
• Si •	Si :	Si :	Si :	Si :	Si

Doping p-leder

Forurensing endrer leder evnen

	Atomnr.	Valens-elektroner
Gallium	31	3
Arsen	33	5

1	:	Si	•	Si	:	Si	:	Si	:	Si	:	Si
	:	Si										
8/4/4/6/6/6/	:	Si	:	Si	:	Ga	•	Si	:	Si	:	Si
	:	Si	•	Si	:	Si	:	Si	:	Si	:	Si

Innhold

Kondenserte stoffer

Halvledere

Dioden

Transistorer

Diode

- · Symbol går styrn i utning
- En diode leder strøm kun i en retning, (pilens retning).

p-dopet	n-dopet
0000000000000	
0000000000000	
0000000000000	
0000000000000	
0000000000000	
0000000000000	

1/+ + + + + + + + + + / / / Nollie baro

Diode i likevekt

I en diode i likevekt vil elektroner i leder båndet på n-siden bevege seg over og fylle hullene i p-siden på grunn av energiforskjellen.

p-dopet	n-dopet
000000000	
000000000	
ooooooo ← -q -	- +a
000000000	- ` 1
0000000000	
000000000	

Det fører til netto positiv ladning på n-siden og netto negativ ladning på p-siden og derfor et elektrisk felt.

Feltet forskyver energi nivåene i dioden

Spenning mot lederetningen

Hvis spenningen over en diode går imot lederetningen går det lite strøm.

p-dopet	n-dopet
0000000	
0000000	
o o o o o o o o o o o o o o o o o o o	+q
00000000	- ` ^
0000000	
00000000	

Feltet forskyver energi nivåene i dioden mer. Det går ingen strøm fordi feltet motvirker

Formel for strøm gjennom en diode

Innhold

Kondenserte stoffer

Halvledere

Dioden

Transistoren

Transistor

Det finnes to hovedtyper trasnistorer npn og pnp. Basen er tynn og svakt dopet.

Vi setter inn kollektor strøm

Symboler for transistorer:

Virkemåte npn

Strøm $i_k = \alpha i_e$. $0.9 \le \alpha \le 0.98$

Virkemåte npn

Eksempel spenningsforsterker

Eksempel logisk not and

