Chapter 1: Introduction

Chapter 1: Introduction

- What Operating Systems Do
- Computer-System Organization
- Computer-System Architecture
- Operating-System Structure
- Operating-System Operations
- Process Management
- Memory Management
- Storage Management
- Protection and Security
- Distributed Systems
- Special-Purpose Systems
- Computing Environments
- Open-Source Operating Systems

Objectives

- To provide a grand tour of the major operating systems components
- To provide coverage of basic computer system organization

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Computer System Structure

- Computer system can be divided into four components:
 - Hardware provides basic computing resources
 - ▶ CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates use of hardware among various applications and users
 - Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, video games
 - Users
 - People, machines, other computers

Four Components of a Computer System

What Operating Systems Do

- Depends on the point of view
- Users want convenience, ease of use
 - Don't care about resource utilization
- But shared computer such as mainframe or minicomputer must keep all users happy
- Users of dedicate systems such as workstations have dedicated resources but frequently use shared resources from servers
- Handheld computers are resource poor, optimized for usability and battery life
- Some computers have little or no user interface, such as embedded computers in devices and automobiles

Operating System Definition

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Operating System Definition (Cont.)

- No universally accepted definition
- "Everything a vendor ships when you order an operating system" is good approximation
 - But varies wildly
- "The one program running at all times on the computer" is the kernel. Everything else is either a system program (ships with the operating system) or an application program.

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines
- Interrupt architecture must save the address of the interrupted instruction
- Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt
- A trap is a software-generated interrupt caused either by an error or a user request
- An operating system is interrupt driven

Mainframe Systems

- Reduce setup time by batching similar jobs
- Automatic job sequencing automatically transfers control from one job to another. First rudimentary operating system.
- Resident monitor
 - initial control in monitor
 - control transfers to job
 - when job completes control transfers back to monitor

Memory Layout for a Simple Batch System

operating system

user program area

Multiprogrammed Batch Systems

Several jobs are kept in main memory at the same time, and the

CPU is multiplexed among them.

- The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
- A job swapped in and out of memory to the disk.
- On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next "control statement" from the user's keyboard.

Types of OS Structure

- Multiprogramming needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run at a time
 - When it has to wait (for I/O for example), OS switches to another job
- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second
 - Each user has at least one program executing in memory ⇒process
 - If several jobs ready to run at the same time ⇒ CPU scheduling
 - If processes don't fit in memory, swapping moves them in and out to run

Migration of Operating-System Concepts and Features

Multiprocessor System

- Multiprocessor systems with more than on CPU in close communication also called as tightly coupled system.
- Tightly coupled system processors share memory and a clock;
 communication usually takes place through the shared memory.

Symmetric Multiprocessing Architecture

Diagram: Symmetric multiprocessing architecture with shared memory

Multiprocessing Architecture

- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include:

1. Increased throughput

- More work done in less time.
- For N multiprocessor- Speedup ratio is not N, less than N, due to overhead in connecting the shared memory

2. Economy of scale

- Share peripherals, mass storage and power supplies
- Saves money compared to multiple single processor systems

3. Increased reliability - graceful degradation or fault tolerance

 Failure of one processor will not fail the system. However, it will degrade the performance of the system

Multiprocessor Systems (Cont.)

- Symmetric multiprocessing (SMP)
 - Each processor runs and identical copy of the operating system.
 - Many processes can run at once without performance deterioration.
 - Most modern operating systems support SMP

Example- Windows, Linux

Must be Careful in I/O sending data to appropriate processor, Load distribution must be equal: No overload on a particular processor.

- Asymmetric multiprocessing
 - Each processor is assigned a specific task; master processor schedules and allocate work to slave processors.
 - More common in extremely large systems

Example- SunOS- Version 4

A Dual-Core Design

- Multiple Computing Cores on a single chip
 - On single chip communication is easier than multiple chips with different CPUs.
 - Uses less power being on a single chip.
 - Specially suited for web servers and databases.

Real-Time OS

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems,
 Space Shuttle, Satellite control, and some display systems (automobile, robotic applications, etc)
- Process must be complete within a well-defined fixed-time constraints or the system fails.
- Real-Time systems may be either *hard* or *soft* real-time.

Real-Time Systems (Cont.)

Hard real-time:

- Guarantees that the critical tasks to be completed on time. (Applications: Satellite launch, Fighter jets, Missiles, industrial control and industrial robots)
- Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)
- Conflicts with time-sharing systems, two features cannot be mixed, virtual memory is almost never found on RTOS

Soft real-time

- Critical tasks gets priority over other tasks.
- Limited utility/usability in industrial control of robotics
- Useful in applications (multimedia, virtual reality, undersea exploration, planetary rovers). Requires advanced operating-system features.

Storage Structure

- Main memory only storage media that the CPU can access directly
 - Random access (re-writable)- semiconductor technology
 - Typically volatile, usually too small to store all the programs and data permanently
 - EEPROM- Cannot be changed frequently, For example- Factory installed programs in smartphones
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Magnetic disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into faster storage system; main memory can be viewed as a cache for secondary storage

Storage-Device Hierarchy

The basic unit of computer storage is the **bit**. A bit can contain one of two values, 0 and 1. All other storage in a computer is based on collections of bits. Given enough bits, it is amazing how many things a computer can represent: numbers, letters, images, movies, sounds, documents, and programs, to name a few. A **byte** is 8 bits, and on most computers it is the smallest convenient chunk of storage. For example, most computers don't have an instruction to move a bit but do have one to move a byte. A less common term is **word**, which is a given computer architecture's native unit of data. A word is made up of one or more bytes. For example, a computer that has 64-bit registers and 64-bit memory addressing typically has 64-bit (8-byte) words. A computer executes many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured and manipulated in bytes and collections of bytes. A **kilobyte**, or KB , is 1,024 bytes; a **megabyte**, or **MB**, is 1,024² bytes; a **gigabyte**, or **GB**, is 1,024³ bytes; a **terabyte**, or **TB**, is 1,024⁴ bytes; and a **petabyte**, or **PB**, is 1,024⁵ bytes. Computer manufacturers often round off these numbers and say that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking measurements are an exception to this general rule; they are given in bits (because networks move data a bit at a time).

Memory Management

- All data in memory before and after processing
- All instructions in memory in order to execute
- Memory management determines what is in memory when
 - Optimizing CPU utilization and computer response to users
- Memory management activities done by OS
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof) and data to move into and out of memory
 - Allocating and deallocating memory space as needed

Storage Management

- OS provides uniform, logical view of information storage
 - Abstracts physical properties to logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, datatransfer rate, access method (sequential or random)
- File-System management
 - Files usually organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and dirs
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

Mass-Storage Management

- Usually disks used to store data that does not fit in main memory or data that must be kept for a "long" period of time
- Proper management is of central importance
- Entire speed of computer operation hinges on disk subsystem and its algorithms
- OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Selection of cache size and its replacement policy can greatly improve the performance of the system.

Can cache size be equal to main memory?

Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 - 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

Migration of Integer A from Disk to Register

- Multitasking environments must be careful to use most recent value, if several processes trying to access integer A
 - Most recent value must be given/ available to each process.

- Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache.
- **cache coherency-** Update to the value of one cache contents, must be immediately reflected/copied in all the other caches.
- Distributed environment situation even more complex
 - Several copies of the same files are placed on different machines

Process Management

- A process is a program in execution. It is a unit of work within the system. Program is a passive entity, process is an active entity.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files
 - Initialization of data (input)
- Process termination requires reclaim of any reusable resources
 - Ex: Monitor, Printer
- Single-threaded process has one program counter specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
- Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes.

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Operating-System Modes (Operations)

- OS is interrupt driven by hardware
- Software error or request creates **exception** or **trap**
 - Division by zero, request for operating system service
- Other process problems include infinite loop, processes modifying each other or the operating system
- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

- Timer to prevent infinite loop / process hogging resources
 - Set interrupt after specific period
 - Operating system decrements counter
 - When counter zero generate an interrupt
 - Timer is set up before scheduling process to regain control or terminate program that exceeds allotted time

How a Modern Computer Works

