Generic ε-Removal Algorithm for Weighted Transducers Mehryar Mohri

報告人:陳柏含

指導教授:陳嘉平

Introduction

• It present a new generic ε -removal algorithm for weighted automata and transducers.

• It is preferable to remove empty strings in general they introduce a delay in using composition algorithm or other algorithms.

• This algorithm is often mixed with other optimization algorithm such as determinization.

Composition

Definition of WFSA

- Weighted finite-state automaton $A=(\Sigma,Q,I,F,E,\lambda,\rho)$ over the semiring \mathbb{K}
 - Σ : input alphabet
 - -Q: a finite set of states
 - I: a set of initial state, $I \subseteq Q$
 - F: a set of final state, $F \subseteq Q$
 - E: a finite set of transitions, $E \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times \mathbb{K} \times Q$
 - $-\lambda$: initial state weight function $\lambda: I \to \mathbb{K}$
 - $-\rho$: final state weight function $\rho: F \to \mathbb{K}$

- $A=(\Sigma, Q, I, F, E, \lambda, \rho)$ is a weighted automaton over semiring \mathbb{K} with ε -transitions.
- A transition of a transducer is an ε -transition when both input and output label are ε .

ε -Transitions Automaton

Preliminary

• For p, q in Q, the ε -distance from p to q in the automaton A is denoted by d[p,q]:

$$d[p,q] = \bigoplus_{\pi \in P(p,q), \ i[\pi] = \varepsilon} w[\pi]$$

- P(p,q): set of paths from p to q
- π : path $\pi = e_1 e_2 ... e_k, e_i \in E, i = 1...k$
- $w[\pi]$: weight of path π

$$w[\pi] = \bigotimes_{i=1}^{\infty} w[e_i]$$

- $i[e_i]$: input label of e_i
- $i[\pi]=i[e_1]\cdots i[e_k]$

ε -Removal Algorithm

The algorithm works on two steps.

• The first step consists of computing for state p of the input automaton A its ε -closure denoted by C[p]

$$C[p] = \{(q, w) : q \in \mathcal{E}[p], d[p, q] = w \in \mathbb{K} - \{\overline{0}\}\}$$

 $-\varepsilon[p]$: the set of states reachable from p via a path labeled with ε

ε -Removal Algorithm(cont.)

- The second step consists of modifying the outgoing transitions of each state *p* :
 - remove the outgoing transitions labeled with ε
 - add to E[p] non- ε -transitions leaving each state q which belongs to $\varepsilon[p]$
 - E[p]: the set of transitions leaving p

Pseudocode of the Second Step

```
\begin{array}{lll} \epsilon\text{-removal}(A) & 1 & \textbf{for} \ \operatorname{each}\ p \in Q \\ 2 & \textbf{do} \ E[p] \leftarrow \{e \in E[p] : i[e] \neq \epsilon\} \\ 3 & \textbf{for} \ \operatorname{each}\ (q,w) \in C[p] \\ 4 & \operatorname{do}\ E[p] \leftarrow E[p] \cup \{(p,a,w \otimes w',r) : (q,a,w',r) \in E[q], a \neq \epsilon\} \\ 5 & \textbf{if} \ q \in F \\ 6 & \textbf{then} \ \ \textbf{if} \ \ p \not\in F \\ 7 & \textbf{then} \ \ F \leftarrow F \cup \{p\} \\ 8 & \rho[p] \leftarrow \rho[p] \oplus (w \otimes \rho[q]) \end{array}
```

State p is a final state if some state $q \in \epsilon[p]$ is final and the final weight $\rho[p]$ is then:

$$\rho[p] = \bigoplus_{q \in \epsilon[p] \cap F} d[p, q] \otimes \rho[q]$$

Post-processing

- After removing ε 's at each state p, some states may become inaccessible if they could be reached by ε -transitions originally.
 - those states can be removed by depth-first search of the automaton

Example of ε -Removal Algorithm

Analysis of Resulting Automaton

- The size of resulting automaton is affected by two factors:
 - the number of states in the original automaton whose incoming transitions are all labeled with the empty string
 - the total number of non- ε -transitions of the states that can be reached from each state q