- 0	
-	
22.	
-	
C.E.	
1	
~	
-	
Sec. 10	
1000	
-	
0	
~	
B-12	
-	
-	
nula	
-	
-	
200	
for	
728 m	
	o720
	o]a
	PIR
	ola .
	u]a
sin	u]a
	PIC
	PIO
	ola .
sin" x	ola .
sin" x	o14
sin" x	ola
sin" x	014
	-14
sin" x dx	ula
sin" x dx	ola
sin" x	ola
sin" x dx	ola
sin" x dx	ola
sin" x dx	ola .
sin" x dx	ola .
sin" x dx	ola .
sin" x dx	J 4
sin" x dx	ula .
sin" x dx	J 4
sin" x dx	- IA
sin" x dx	914
sin" x dx	-14
sin" x dx	919

Obtain a re

Find	Trac
the	race the curve
area	CUD
of the	e y
e cardio	$y^{2}(2a-x)=$
oid r=	-
Find the area of the cardioid $r = a(1 + \cos \theta)$	r3 (Cissoid).

07 06

2 2 2

01 01 01

2 5

Evaluate (i) $\int_{0}^{\infty} \cos^4 3x \sin^3 6x \, dx$ (ii) $\int_{0}^{\infty} x^2 (1-x^2)^{\frac{3}{2}} \, dx$.

10. a)

0 5

9 06

L3

5 5

2 2

07

12

5

Trace the curve $r^2 = a^2 \cos 2\theta$ (Lemniscate of Bernoulli). Find the volume of the spindle shaped solid generated by the revolution of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the x-axis.

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

a)	
Examilie the convergence of the series	n annual of the cario
33-1	$\sqrt{2-1}$
43-1	12-1 13-1 14-1
53-1	√4-1.
-	

b) Find the nature of the series
$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \cdots$$

c) Expand
$$e^{\sin x}$$
 using Maclaurin's series expansion upto the term containing x^4 .

a) Prove that the pair of curves
$$r=a(1+\cos\theta)$$
 , $r=b(1-\cos\theta)$ intersect each other orthogonally.

w

b) Find the radius of curvature at the point
$$(\frac{3a}{2}, \frac{3a}{2})$$
 of the folium of De-Cartes

a) With usual notation prove that
$$tan \phi = r \frac{d\theta}{dr}$$

If
$$\rho$$
 be the radius of curvature at any point ρ on the parabola y²=4ax and S be its facus, then show ρ^2 varies as (sp)³

c) Show that the constant
$$c$$
 of Cauchy's mean value theorem for the functions $\frac{1}{x^2}$ and $\frac{1}{x}$ in the interval (a, b) is the harmonic mean between a and $b(0 < a < b)$.

a) If
$$u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$$
 then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3\tan u$.

b) In estimating the cost of a pile of bricks measured as
$$2m \times 15m \times 1.2m$$
, the tape is stretched 1% beyond the standard length. If the count is 450 bricks to 1 cu.m and bricks cost Rs. 530 per 1000, find the approximate error in the cost.

Expand
$$e^x \log(1+y)$$
 in powers of x and y up to terms of third degree.

a) If
$$u = x^2 + y^2 + z^2$$
, $v = xy + yz + zx$ and $w = x + y + z$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$
b) If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.

b) If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.

c) If
$$x+y+z=a$$
, show that the maximum value of $x^m y^n z^p$ is

$$m^m n^n p^c \left(\frac{a}{m+n+p}\right)^{m+n+p}$$

	0
	9)
6p 2(0)	
10 52 x1 dx	Supplementary - September 2021

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome 00

Trace the curve $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$. Find the volume of the solid generated by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line.

7 6

a

the series	Using o
+ 12	ompariso
+	test
ω	for
+	conve
+ 3 + 4 + 8.	n test for convergence, test the
8	test
	the
	conve

ii)
$$\sum \frac{n^2+5}{4n^5+7}$$
 State the Cauchy's root test for convergence of an infinite series. Test the convergence of the series: $\sum {n+2 \choose n+3}^n x^n$; $x>0$.

c) State the Taylor's theorem for a function of a single variable. Obtain the Taylor's expansion of
$$\log x$$
 about $x = 1$ up to the fourth-degree terms.

Ç

$$f(x) = \sin x$$
, $g(x) = \cos x$ in $\left[0, \frac{\pi}{2}\right]$.
b) Prove that the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 - \cos \theta}$ intersect each

w

other orthogonally.

c) With usual notation prove that
$$\tan \phi = r \frac{d\theta}{dr}$$

6. a) Find the angle between radius vector and the tangent for the curve: i)
$$r^2\cos 2\theta = a^2$$
 ii) $r = a e^{\theta \cot \alpha}$

L3

w

N

b) Show that the radius of curvature at any point of the cardioid
$$r = a(1 - \cos \theta)$$
 varies as \sqrt{r} .

7. a) If u is a homogeneous function of degree n in x and y, then prove that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$
.

that
$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$
.
Using this result show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2u\log u$ where $\log u = \frac{x^3 + y^3}{3x + 4y}$.

b) If
$$x = r\cos\theta$$
 and $y = r\sin\theta$, find $J = \frac{\partial(x, y)}{\partial(r, \theta)}$ and $J' = \frac{\partial(r, \theta)}{\partial(x, y)}$. Hence prove that $JJ' = 1$.

c) Find the extreme value of the function
$$2xy - 5x^2 - 2y^2 + 4x + 4y - 6$$
.

8. a) Expand the function
$$f(x,y) = e^{2x} \cos 3y$$
 as a Maclaurin's series up to second degree terms.

b) If
$$u = f(y - z, z - x, x - y)$$
, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

c) Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

integer. Hence evaluate
$$\int_0^x \sin^n x \ dx$$
.
c) Trace the polar curve $r^2 = a^2 \cos 2\theta$.

7 6

5 5

Semester B.E. (Credit System) Degree Examinations (An Autonomous Institution affiliated to VTU, Belagavi) Supplementary Examinations - September 2021

20MA101 - ENGINEERING MATHEMATICS - I

pration: 3 Hours

AND THAT

Max. Marks: 100

Note: Answer any Five full questions.

Find the matrix of linear transformation that transforms (x_1, x_2, x_3) to $(x_1 + 2x_2 + 2x_3, 2x_1 + x_2 + 2x_3, 2x_1 + 2x_2 + 2x_3, 2x_1 + 2x_2 + 2x_3, 2x_1 + 2x_2 + x_3)$

9 Is this transformation orthogonal? Check whether this linear transformation is regular.

3 What is the necessary condition for a system of linear equation Check for given by AX = B to be consistent? equations consistency and hence solve the system of Gauss

3x - 2y - 2z = 1x + 2y + 2z = 32x - y + z = 5elimination method:

Using Gauss - Seidel method solve the given system of linear 12x + 3y - 5z = 1 [x] [1]equations:

0

approximation and carry out three iterations 3x + 7y + 13z = 76x+5y+3z=28, Take y = 1 as an initial

(B) corresponding Eigen vector of the matrix 2 Using the power method, find the dominant Eigen value and starting

9 Find the Eigen values and its corresponding Eigen vectors of the with an initial approximation to the Eigen value as [1 Perform 5 iterations. 0 0]T.

0 canonical form. matrix Reduce the 10 quadratic form $2x^2 + 2y^2 + z^2 - 8xy$ into

a) i) Prove that if $\sum_{n=1}^{\infty} u_n$ is convergent then $\lim_{n\to\infty} u_n = 0$.

5 State the D 'Alembert's ratio test for convergence of an infinite series. Test the convergence of the series: ii) Is the converse true? Justify your answer with an example. $\left(\frac{1}{3}\right)^2 + \left(\frac{112}{3.5}\right)^2$

0 Obtain the Maclaurin's Series expansion of the function $e^x \cos x$. Expand up to four non vanishing terms.

Marks BT* CO* PO*

6 L.2

N

12 L3 N

6 1

13 12

-

12