1 Conservative formulation

Solve

$$T^{00}_{,0} = -T^{0i}_{,i} \tag{1}$$

$$T^{i0}_{,0} = -T^{ij}_{,j} \tag{2}$$

where

$$E \equiv T^{00} = \frac{4}{3}\rho\gamma^2 - \frac{1}{3}\rho = \frac{4}{3}\rho\gamma^2 \left(1 - 1/4\gamma^2\right) \quad (3$$

$$T^{ij} = \frac{4}{3}\rho\gamma^2 u_i u_j + \frac{1}{3}\rho\delta_{ij} \tag{4}$$

Define

$$S_i \equiv T^{0i} = T^{i0} = \frac{4}{3}\rho\gamma^2 u_i \tag{5}$$

So $\boldsymbol{u} = \epsilon_u \boldsymbol{S}$, where $\epsilon_u = 3/(4\rho\gamma^2) = (1 - 1/4\gamma^2)/E$. using $\boldsymbol{u}^2 = 1 - 1/\gamma^2$,

$$r \equiv (T^{i0}/T^{00})^2 = \frac{\gamma^4 - \gamma^2}{(\gamma^2 - 1/4)^2}$$
 (6)

so

$$\gamma^4 - \gamma^2 - (\gamma^4 - \gamma^2/2 + 1/16)r = 0 \tag{7}$$

$$\gamma^4(1-r) - \gamma^2(1-r/2) - r/16 = 0 \tag{8}$$

$$\gamma^4 - \gamma^2 (1 - r/2)/(1 - r) - r/[16(1 - r)] = 0 \quad (9)$$

Solution for γ^2 is

$$\gamma^2 = \frac{1 - r/2}{2(1 - r)} \pm \sqrt{\frac{(1 - r/2)^2}{4(1 - r)^2} + \frac{r}{16(1 - r)}} \quad (10)$$

$$\gamma^2 = \frac{1 - r/2}{2(1 - r)} \pm \sqrt{\frac{(1 - r/2)^2}{4(1 - r)^2} + \frac{r - r^2}{16(1 - r)^2}}$$
 (11)

$$\gamma^2 = \frac{1}{2(1-r)} \left[(1-r/2) \pm \sqrt{(1-r/2)^2 + \frac{r-r^2}{4}} \right]$$

$$\gamma^2 = \frac{1}{2(1-r)} \left[(1-r/2) \pm \sqrt{1-r+r^2/4 + \frac{r-r^2}{4}} \right]$$

$$\gamma^2 = \frac{1}{2(1-r)} \left[(1-r/2) \pm \sqrt{1-3r/4} \right] \tag{14}$$

2 Keep $c_{\rm s}^2$

$$r \equiv (T^{i0}/T^{00})^2 = \frac{\gamma^4 - \gamma^2}{[\gamma^2 - c_s^2/(1 + c_s^2)]^2}$$
 (15)

$$\gamma^4 - 2\gamma^2 \frac{\frac{1}{2} - r \frac{c_{\rm s}^2}{1 + c_{\rm s}^2}}{1 - r} - \frac{r}{1 - r} \left(\frac{c_{\rm s}^2}{1 + c_{\rm s}^2}\right)^2 = 0 \quad (16)$$

$$\gamma^{2} = \frac{\frac{1}{2} - r \frac{c_{s}^{2}}{1 + c_{s}^{2}}}{1 - r} + \sqrt{\left(\frac{\frac{1}{2} - r \frac{c_{s}^{2}}{1 + c_{s}^{2}}}{1 - r}\right)^{2} + \frac{r}{1 - r} \left(\frac{c_{s}^{2}}{1 + c_{s}^{2}}\right)^{2}}$$
(17)

$$\gamma^{2} = \frac{\frac{1}{2} - r \frac{c_{s}^{2}}{1 + c_{s}^{2}}}{1 - r} \left[1 + \sqrt{1 + \left(\frac{1 - r}{\frac{1}{2} - r \frac{c_{s}^{2}}{1 + c_{s}^{2}}}\right)^{2} \frac{r}{1 - r} \left(\frac{c_{s}^{2}}{1 + c_{s}^{2}}\right)^{2}} \right]$$

$$(18)$$

$$\gamma^{2} = \frac{\frac{1}{2} - r \frac{c_{s}^{2}}{1 + c_{s}^{2}}}{1 - r} \left[1 + \sqrt{1 + \frac{(1 - r)r}{\left(\frac{1}{2} - r \frac{c_{s}^{2}}{1 + c_{s}^{2}}\right)^{2}} \left(\frac{c_{s}^{2}}{1 + c_{s}^{2}}\right)^{2}} \right]$$
(19)

$$\gamma^{2} = \frac{1}{1 - r} \left[\frac{1}{2} - r \frac{c_{\rm s}^{2}}{1 + c_{\rm s}^{2}} + \sqrt{\left(\frac{1}{2} - r \frac{c_{\rm s}^{2}}{1 + c_{\rm s}^{2}}\right)^{2} + (1 - r)r \left(\frac{c_{\rm s}^{2}}{1 + c_{\rm s}^{2}}\right)^{2}} \right]$$
(20)

(7)
$$\gamma^2 = \frac{1}{1-r} \left(\frac{1}{2} - r \frac{c_s^2}{1+c_s^2} + \sqrt{\frac{1}{4} - r \frac{c_s^2}{(1+c_s^2)^2}} \right)$$
(8)

which agrees with Eq. (14) for $c_{\rm s}^2=1/3$ and $\gamma^2=1/(1-r)$ for $c_{\rm s}^2=0$. Here, r plays the role of the square of a pseudo-velocity, so we could rename $r\to r=v^2$, so then

$$\gamma^2 = \frac{1}{1 - v^2} \left(\frac{1}{2} - v^2 \frac{c_s^2}{1 + c_s^2} + \sqrt{\frac{1}{4} - v^2 \frac{c_s^2}{(1 + c_s^2)^2}} \right)$$
(22)

Figure 1: γ versus r. Solid line for $c_{\rm s}^2=1/3$ and dashed-dotted line for $c_{\rm s}=0$.

Figure 2: Shock tube tests for (a)–(c) the relativistic case, (d)–(f) the nonrelativistic case with isothermal equation of state, and (g)–(i) the nonrelativistic case with ultrarelativistic equation of state.

Figure 3: 2-D decaying turbulence for Runs A, B, and D.

3 Computation of T^{ij}

To compute T^{ij} , we use T^{0i} and T^{00} . We use Eq. (4) and $\rho/3=T^{00}/(4\gamma^2-1)$ to write

$$T^{ij} = \left(1 - \frac{1}{4\gamma^2}\right) \frac{T^{0i}T^{0j}}{T^{00}} + \frac{T^{00}}{4\gamma^2 - 1} \delta_{ij} \qquad (23)$$

4 Magnetic runs

In the momentum equation, the Reynolds/Maxwell tensor is

$$T^{ij} = \frac{4}{3}\rho\gamma^2 u_i u_j + \frac{1}{3}\rho\delta_{ij} - B_i B_j + \frac{1}{2}\mathbf{B}^2\delta_{ij} \quad (24)$$

We set $E = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J}$ and neglect term of $O(E^2) \ll O(B^2)$. Furthermore, the divergence of the magnetic part of T^{ij} is just $\mathbf{J} \times \mathbf{B}$. It is therefore convenient to solve

$$T^{00}_{,0} = -T^{0i}_{,i} \tag{25}$$

$$T^{i0}_{,0} = -{}^{\mathrm{H}}T^{ij}_{,j} \tag{26}$$

where ${}^{\rm H}T^{ij}$ is the hydro stress given by Eq. (4). The other components of the stress, T^{00} and T^{i0} , however, do contain the magnetic field. In particular, we have

$$T^{00} = \frac{4}{3}\rho\gamma^2 - \frac{1}{3}\rho + \frac{1}{2}\mathbf{B}^2 \tag{27}$$

and

$$T^{0j} = \frac{4}{3}\rho\gamma^2 u_j + (\mathbf{E} \times \mathbf{B})_j \tag{28}$$

Table 1: Parameters used for the 1-D shock tube tests.

Case	δx	δt	ν	μ	$\gamma_{\rm max}$	$u_{\rm max}$
Relativistic	1.5×10^{-3}	2×10^{-4}	2×10^{-4}	1×10^{-4}	1.13	0.47
	1.5×10^{-3}	2×10^{-4}	2×10^{-4}	1×10^{-4}	1.60	0.78
	1.5×10^{-3}	2×10^{-4}	2×10^{-4}	1×10^{-4}	2.63	0.92
Non-relativ.	1.5×10^{-3}	2×10^{-4}	5×10^{-4}	1×10^{-4}	1.37	0.69
	1.6×10^{-3}	2×10^{-4}	5×10^{-4}	2×10^{-4}	_	1.49
	2.2×10^{-3}				_	2.38
Relativ. EoS	1.5×10^{-3}				1.20	0.55
	2.7×10^{-3}				_	1.47
	2.7×10^{-3}	1×10^{-4}	2×10^{-3}	1×10^{-3}	_	3.28

Table 2: Parameters used for 2-D turbulence tests. $q_{\rm irro} = 1$ (irrotational case).

Run	A	$u_{ m rms}$
A	1.5	4.2771E-01
В	1.2	3.6165E-01
$^{\mathrm{C}}$	1.0	3.1199E-01
D	0.9	2.8539E-01

Here, ignoring the resistive term $\eta \mathbf{J} \times \mathbf{B}$ for now, the Poynting flux can also be written as

$$\mathbf{E} \times \mathbf{B} = (\mathbf{B}^2 \delta_{ij} - B_i B_j) u_j \tag{29}$$

Therefore

$$T^{0i} = \left[\left(\frac{4}{3} \rho \gamma^2 + \mathbf{B}^2 \right) \delta_{ij} - B_i B_j \right] u_j \tag{30}$$

$$(T^{0i})^2 = D^2 \mathbf{u}^2 - (2D - \mathbf{B}^2) (\mathbf{u} \cdot \mathbf{B})^2$$
 (31)

where $D = \frac{4}{3}\rho\gamma^2 + B^2$. To calculate $r = v^2$, we use iteration:

$$v^{2} = \frac{(T^{0i})^{2} + (2D - B^{2}) (u \cdot B)^{2}}{(T^{00} - \frac{1}{2}B^{2})^{2}}$$
(32)

or

$$v^{2} = \frac{\left(T^{0i}\right)^{2} + \left(\frac{8}{3}\rho\gamma^{2} + B^{2}\right)(\boldsymbol{u} \cdot \boldsymbol{B})^{2}}{\left(T^{00} - \frac{1}{2}B^{2}\right)^{2}}$$
(33)

Assume for now $\boldsymbol{u} \cdot \boldsymbol{B} = 0$, so

$$v^{2} = \frac{\left(T^{0i}\right)^{2}}{\left(T^{00} - \frac{1}{2}B^{2}\right)^{2}} = \frac{D^{2}u^{2}}{\left(T^{00} - \frac{1}{2}B^{2}\right)^{2}}$$
(34)

Thus, replacing $T^{00} - \frac{1}{2}B^2 = \frac{4}{3}\rho\gamma^2(1 - 1/4\gamma^2)$,

$$v^{2} = \frac{(\frac{4}{3}\rho\gamma^{2} + \mathbf{B}^{2})^{2}(1 - 1/\gamma^{2})}{(\frac{4}{3}\rho\gamma^{2})^{2}(1 - 1/4\gamma^{2})^{2}}$$
(35)

SC

$$v^{2} = \left(1 + \frac{\mathbf{B}^{2}}{\frac{4}{2}\rho\gamma^{2}}\right)^{2} \frac{(1 - 1/\gamma^{2})}{(1 - 1/4\gamma^{2})^{2}}$$
(36)

or

$$v^{2} = \left(1 + \frac{\mathbf{B}^{2}}{\frac{4}{2}\rho\gamma^{2}}\right)^{2} \frac{\gamma^{2}(\gamma^{2} - 1)}{(\gamma^{2} - 1/4)^{2}}$$
(37)

so in the magnetic case, where v^2 is given by Eq. (33), we have to replace in Eq. (22)

$$v^2 \to v^2/[1 + (v_A^{\text{nrel}})^2]^2$$
. (38)

where $(v_{\rm A}^{\rm nrel})^2 = B^2/(\frac{4}{3}\rho\gamma^2)$ is the pseudo Alfvén speed. (It is also not a non-relativistic one, because it contains γ .)

5 Calculation of u_i and hydro stress for T^{ij}

Once we have γ^2 , we can compute \boldsymbol{u} (here for, for Alfvén waves, we have $\boldsymbol{u} \cdot \boldsymbol{B} = 0$) using Eq. (30),

$$u_i = \frac{T^{0i}}{\frac{4}{3}\rho\gamma^2 + \mathbf{B}^2} \tag{39}$$

or, in terms of T^{00} , using

$$\frac{4}{3}\rho\gamma^2 = \frac{T^{00} - \frac{1}{2}B^2}{1 - \frac{1}{4\gamma^2}},\tag{40}$$

we have

$$u_i = \frac{T^{0i}}{\frac{T^{00} - \frac{1}{2}B^2}{1 - 1/4\gamma^2} + B^2}$$
(41)

which is the expression used currently in the code. By expanding it, it can also be written as

$$u_i = \frac{T^{0i}(1 - 1/4\gamma^2)}{T^{00} - \frac{1}{2}B^2 + (1 - 1/4\gamma^2)B^2}$$
(42)

to get

$$u_i = \frac{T^{0i}(1 - 1/4\gamma^2)}{T^{00} + (1 - 1/2\gamma^2)B^2/2}$$
(43)

To compute ${}^{\rm H}T^{ij}$, we again use T^{0i} and T^{00} . We use Eq. (4) and $\rho/3=(T^{00}-\frac{1}{2}B^2)/(4\gamma^2-1)$ to write

$$T^{ij} = \frac{T^{0i}T^{0j}}{(T^{00} - \frac{1}{2}\mathbf{B}^2)/(1 - 1/4\gamma^2) + \mathbf{B}^2} + \frac{T^{00} - \frac{1}{2}\mathbf{B}^2}{4\gamma^2 - 1}\delta_{ij}$$
(44)

where

$$\frac{4}{3}\rho\gamma^2 = \frac{T^{00} - \frac{1}{2}B^2}{1 - 1/4\gamma^2} \tag{45}$$

and

$$\frac{1}{3}\rho = \frac{T^{00} - \frac{1}{2}B^2}{4\gamma^2 - 1} \tag{46}$$

and therefore more compactly

$$T^{ij} = \frac{T^{0i}T^{0j}}{\frac{4}{2}\rho\gamma^2 + \mathbf{B}^2} + \frac{1}{3}\rho\delta_{ij}$$
 (47)

In terms of $c_{\rm s}$ etc, we have

$$\rho = \frac{T^{00} - \frac{1}{2}\mathbf{B}^2}{(1 + c_s^2)\gamma^2 - c_s^2} \tag{48}$$

and

$$\frac{1}{1 - 1/4\gamma^2} \to \frac{1}{1 - c_{\rm s}^2/[\gamma^2(1 + c_{\rm s}^2)]}$$
 (49)

or

$$\frac{1}{1 - 1/4\gamma^2} \to \frac{(1 + c_s^2)\gamma^2}{(1 + c_s^2)\gamma^2 - c_s^2}$$
 (50)