BandTec Digital School Computacional

Nome: Luiz Gustavo da Silva

RA: 01202086

Nome: Gustavo Cassimiro de Oliveira

RA: 01202016 **Turma:** 1° ADSB

Exercícios Suplementares

			8	4	2	1
HEX	DEC	ОСТ	2 ³	2 ²	2 ¹	2°
0	0	0	0	0	0	0
1	1	1	0	0	0	1
2	2	2	0	0	1	0
3	3	3	0	0	1	1
4	4	4	0	1	0	0
5	5	5	0	1	0	1
6	6	6	0	1	1	0
7	7	7	0	1	1	1
8	8	10	1	0	0	0
9	9	11	1	0	0	1
Α	10	12	1	0	1	0
В	11	13	1	0	1	1
С	12	14	1	1	0	0
D	13	15	1	1	0	1
E	14	16	1	1	1	0
F	15	17	1	1	1	1

Exercício 1 - Converta Apresentando os Cálculos	Octal	Decimal	Hexadecimal
10001100	10/001/100 = 214	10001100 = 128 + 8 + 4 = 140	1000/1100 = 8C
10011110	10/011/110 = 236	10011110 = 128 + 16 + 8 + 4 + 2 = 158	1001/1110 = 9E
1101010	1/101/010 = 152	1101010 = 64 + 32 + 8 + 2 = 106	110/1010 = 6A
1010001	1/010/001 = 121	1010001 = 64 + 16 + 1 = 81	101/0001 = 51
1111000	1/111/000 = 170	1111000 = 64 + 32 + 16 + 8 = 120	111/1000 = 78

Exercício 2 - Para as afirmações a seguir, marque as respostas verdadeiras e falsas da seguinte maneira:	Resposta
A. Verdadeiro; B. Falso;	
I. Os números binários são importantes na computação porque um número binário pode ser convertido em todas as outras bases.	A
II. Números binários podem ser convertidos em hexadecimal, mas não em octal.	В
III. A partir da esquerda para a direita, cada Agrupamento de quatro dígitos binários pode ser lido como um dígito hexadecimal.	A
IV. Um byte é composto de seis dígitos binários.	В
V. Dois dígitos hexadecimais podem ser armazenados em um byte.	A

Exercício 3 - Se 891 (base 10) é um número em cada uma das seguintes bases, quantos 1(s) existem?	1101111011 = 512 + 256 + 64 +32 + 16 + 8 + 2 +1 (Existem 8 1(s))
a. Base de dados 8 (1573 = 11000100101 = 1024 + 512 + 32 + 4 + 1)	Existem 5 1(s)
b. Base de dados 16 (37B = 3711 = 111001111111 = 2048 + 1024 + 512 + 64 + 32 + 16 + 8 + 4 + 2 + 1)	Existem 10 1(s)

Exercício 4 - Expresse 891 como um polinômio em cada uma das bases no exercício 3.	Resultado
a. Base de dados 8, seu Polinômio é:	1*10 ³ + 5*10 ² + 7*10 ¹ + 3*10 ⁰ = 1573
b. Base de dados 16, seu Polinômio é:	$3*10^3 + 7*10^2 + 1*10^1 + 1*10^0 = 3711$

BandTec Digital School Computacional

Exercício 5 - Converta os seguintes números da base apresentada para a base 10.	Binário	Resultado na base 10
a. 111 (base 2)	111	4 + 2 + 1 = 7
b. 777 (base 8)	111111111	256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 511
c. FEC (base 16)	1111/1110/ 1100	2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 8 + 4 = 4076
d. 777 (base 16)	0111/0111/ 0111	1024 + 512 + 256 + 64 + 32 + 16 + 4 + 2 + 1 = 1911
e. 111 (base 8)	001/001/00 1	64 + 8 + 1 = 73

Exercício 6 - Explique como a base 2 e a base 8 estão relacionadas.

A base 2 (ou base binária) é responsável para a comunicação com a máquina, onde cada comando ou cada Caractere tem uma sequência de binários (que na prática seriam impulsos elétricos) .que fazem com que o sistema tome uma ação.

Já a base 8 servia para ser uma alternativa mais compacta ao binário na programação em linguagem de máquina.

Para fazer a conversão da base 2 para a base 8 é necessário separa 0 código binário da direita para esquerda de 3 em 3, onde cada conjunto de binário tem um número correspondente em octal.

Para fazer a conversão da base 8 para a 2, tem-se que isolar cada número e converter cada um deles para o binário.

Exercício 7 - Explique como a base 8 e a base 16 estão relacionadas

A base 8 servia para ser uma alternativa mais compacta ao binário na programação em linguagem de máquina.

A base 16 é mais utilizada em grande escala para a programação de microprocessadores para equipamentos e máquinas

Para fazer a conversão de base 8 para 16 deve-se passar ao binário antes, e depois separar de 4 em 4 o código binário da direita para a esquerda, onde cada sequência de números terá um algarismo correspondente

Já para fazer de base 16 a 8 deve-se seguir o mesmo processo, mas separar de 3 em 3

Exercício 8 - Converta os seguintes números binários em octal.	Resultado
111110110	111/110/110 = 766
1000001	1/000/001 = 101
10000010	10/000/010 = 202
1100010	1/100/010 = 142

Exercício 9 - Converta os seguintes números binários em hexadecimal.	Resultado
10101001	1010/1001 = A9
11100111	1110/0111 = E7
1101110	110/1110 = 6E
1121111	112/1111 = -F

Exercício 10 - Converta os seguintes números hexadecimais para octal.	Binário	Resultado em Octal
A9	10/101/001	251
E7	11/100/111	347
6E	1/101/110	156

