SR-MPC: CAO-AZ MATHS DPT :: RELATIONS

1.	If $A = \{2x \mid x \in N \text{ and } x < 3\}, B = \{x \mid x^2 - 4x + 3 = 0 \text{ and } x > 1\}, \text{ then } A \times B = \{x \mid x \in N \text{ and } x < 3\}$								
	1) {(4,3),(2,3)}		2) {(2,4),(2,3)(4,3)}						
	3) {(1,4),(2,3),(2	2,2)}	4) $\{(1,2),(1,3)(2,3)\}$						
2.	If $A = \{1, 2, 3\}, B = \{x\}$, then $(A \times B) \cup (B \times A) =$								
	1) $\{(1,x),(2,x),(3,x)\}$	$\{3,x\}$	2) $\{(x,1),(x,2),(x,3),$	(x,3)					
	3) $\{(1,x),(2,x),(3,x)\}$	(3, x), (x, 1), (x, 2), (x, 3)	} 4) None						
3.	If $n(A \times B) = 15, n(A) = 3$, then $n(B) =$								
	1) 12	2) 5	3) 45	4) 3					
4.	If $n(A) = n$ then $n\{(x, y, z); x, y, z \in A, x \neq y, y \neq z, z \neq x\} =$								
	1) n^3	2) $n(n-1)^2$	3) $n^2(n-2)$	4) $n^3 - 3n^2 + 2n$					
5.	Let $X = \{1, 2, 3, 4, 5\}$. Then the number of different ordered pairs (Y, Z) that can be formed such that								
	$Y \subseteq X, Z \subseteq X$ an	d $Y \cap Z$ is empty is							
	1) 2 ⁵	2) 5 ³	3) 5 ²	4) 3 ⁵					
6.	Range of $\{(1, x), ($	Range of $\{(1,x),(1,y),(2,x),(2,y),(3,z)\}$ is							
	1) {1 <mark>,2,3</mark> }	$2) \left\{ x, y, z \right\}$	3) $\{1, x\}$	4) $\{1,2,3,x,y,z\}$					
7.	Let $R = \{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A = \{1,2,3,4\}$. The relation R is								
	1) a function	2) reflexive	3) not symmetric	4) transitive					
8.	Let $R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,12), (3,6), \}$ be a relation on the set $A = \{3,6,9,12\}$								
	The relation is								
	1) reflexive and t	ransitive only	2) reflexive only	,					
	3) an equivalence relation 4) reflexive and symmetric only								
9.	For, $n, m \in N, n \mid m$ means that n is a factor of m, the relation \mid is								
	1) reflexive and s	symmetric	2) transitive and	2) transitive and symmetric					
	3) reflexive, trans	sitive and symmetric	4) reflexive, trans	4) reflexive, transitive and not symmetric					
10.	Let $x, y \in Z$ and suppose that a relation R on Z is defined by $x R y$ if and only if $x \le y$ then								
	1) R is partial order								
	2) R is an equivalence relation								

3) R is reflexive and symmetric4) R is symmetric and transitive

11.	A and B are two sets having 3 and 4 elements respectively and having 2 elements in common number of relations which can be defined from A to B is						
	1) 2 ⁵	2) $2^{10}-1$	3) $2^{12}-1$	4) none of these			
12.	Let $R = \{(x, y) : x, y \in A\}$	A, x + y = 5 are whe	re $A = \{1, 2, 3, 4, 5\}$ ther	1			
	1) R is not reflexive, symmetric and not transitive						
	2) R is an equivalence relation						
	3) R is reflexive, symmetric but not transitive						
	4) R is not reflexive, not symmetric but transitive						
13.	For $x, y \in R$, define a relation R by $x R y$ if and only if $x - y + \sqrt{2}$ is an irrational number. Then R is						
	1) an equivalence rela	ation	2) R is symmetric				
	3) R is transitive		4) none of these				
14.	If R and S are two symmetric relations then						
	1) RoS is a symmetry	ic relation	2) SoR is a symmetr	ic relation			
	3) RoS^{-1} is symmetric relation 4) RoS is a symmetric relation if and only if						
	RoS = SoR						
15.	f is a relation on the set R of real numbers defined as $(a,b) \in f \Rightarrow 1+ab > 0$. Then f is						
	1) transitive, reflexive but not symmetric						
	2) reflexive, symmetric but not transitive						
	3) ref <mark>lex</mark> ive, symmetric, transitive						
	4) not reflexive, not symmetric, not transitive						
16.	If $A = \{1, 2, 3\}$, the number of symmetric relation in A is						
	1) 3	2) 8	3) 328	4) 63			
17.	Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a,b)R(c,d)$						
	if $ad(b+c) = bc(a+c)$						
		2) reflexive only		4) an equivalence relation			
18.	Let $P = \{(x, y) / x^2 + y^2 = 1, x, y \in r\}$ Then P is						
	1) reflexive	2) symmetric	3) transitive	4) anti-symmetric			
19.	Let R ne an equivalence relation on a finite set A having n elements Then the number of ordered						
	pairs in R is 1) Less than n 2) greater than or equal to n						
	1) Less than n 2) greater than or equal to n 3) less than or equal to n 4) None of these						
20.	Which one of the following relation on R is an equivalence relation						
20.	1) $aR_1b \Leftrightarrow a = b $ 2) $aR_2b \Leftrightarrow a \geq b$						
	3) $aR_3b \Leftrightarrow a \text{ divides } b$ 4) $aR_4b \Leftrightarrow a < b$						
21	let R be a relation on a set A such that $R = R^{-1}$ then R is						
21.				1) None of these			
22	1) reflexive	2) symmetric	3) transitive	4) None of these			
22.	Let R be a relation on the set N be defined by $\{(x, y) \mid x, y, \in \mathbb{N}, 2x + y = 41\}$ then R is						
	1) reflexive	2) symmetric	3) transitive	4) None of these			

- 23. The void relation an a set A is 1) reflexive 2) symmetric and transitive 3) reflexive and symmetric 4) reflexive and transitive 24. Let R be a relation on the set N of natural numbers denoted by $nRm \Leftrightarrow n$ is a factor of $m(i.e \ n/m)$ Then R is 1) reflexive and symmetric 2) transitive and symmetric 3) equivalence 4) reflexive, transitive but not symmetric Which of the following is not correct for relation R on the set of real numbers 25. 1) $(x, y) \in R \Leftrightarrow 0 < |x| - |y| \le 1$ is neither transitive not symmetric 2) $(x, y) \in R \Leftrightarrow 0 < |x - y| \le 1$ is symmetric and transitive 3) $(x, y) \in R \Leftrightarrow |x| - |y| \le 1$ is reflexive but not symmetric 4) $(x, y) \in R \Leftrightarrow |x - y| \le 1$ is reflexive and symmetric Two points P and Q in a plane are related if OP = OQ where O is a fixed point this relation is 26. 1) reflexive but not symmetric 2) symmetric but not transitive 3) an equivalence relation 4) None of these The relation R defined in $A = \{1, 2, 3\}$ by aRb if $|a^2 - b^2| \le 5$ which of the following is false 27. 1) $R = \{(1,1)(2,2)(3,3)(2,1)(1,2)(2,3)(3,2)\}$ 2) $R^{-1} = R$ 3) Domain of $R = \{1,2,3\}$ 4) Range of $R = \{5\}$ Let a relation R is the Set N of natural numbers be defined as $(x, y) \in R$ if and only if 28. $x^2 - 4xy + 3y^2 = 0$ for all $x, y \in \mathbb{N}$. The relation R is 2) Symmetric 3) transitive 4) An equivalence relation 1) Reflexive Given the relation $R = \{(1,2)(2,3)\}$ on the set $A = \{1,2,3\}$. The minimum number of ordered pairs 29.
- which when added to R make it an equivalence relation is
 - 1)5 2)6 3)7 4)8
- Let X b e a family of sets and R be a relation on X defined by A is disjoint from B then R is 30. 2) Symmetric 3) anti symmetric 1) Reflexive 4) Transitive

KEY SHEET-2

<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>
1	3	2	4	4	2	3	1	4	1
<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>
4	1	4	4	2	4	4	2	2	1
<u>21</u>	<u>22</u>	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>
2	4	2	4	2	3	4	1	3	2

HINTS

- 1. $A = \{2x : x \in \mathbb{N}, x < 3\} = \{2, 4\}, B = \{x : x^2 4x + 2 = 0, x > 1\} = \{3\} \dots A \times B = \{(2, 3), (4, 3)\}$
- 2. $A \times B = \{(1, x), (2, x), (3, x), B \times A = \{(x, 1), (x, 2), (x, 3)\}$
- 3. $n(A \times B) = n(A)n(B) \Rightarrow 15 = 3n(B) = 5$.
- 4. There are n choice for the first coordinate, n-1 choices for second coordinate and n-2 choice for the third coordinate, hence $n(\lbrace x, y, z \in A, x \neq y \neq z \rbrace) = n(n-1)(n-2) = n^3 3n^2 + 2n$
- 5. If $a \in X$ then one of the following 4 cases hold $a \notin Y, a \notin Z$ $Y \cap Z\phi \Rightarrow \text{ only 3 cases hold} \qquad \therefore \text{ The number of required pairs}$ $= 3^5$
- 6. Range = $\{x, y, z\}$
- 7. $(2,4),(2,3) \in R \Rightarrow 2$ has two image \Rightarrow R is not a function $(1,1) \notin R = R$ is not reflexive; $(2,3) \in R,(3,2) \notin R \Rightarrow R$ is not symmetric
- 8. $A = \{3,6,9,12\}$ and $(3,3),(6,6),(9,9),(12,12) \in R \Rightarrow R$ is reflexive $(6,12) \in R$ but $(12,6) \ni R \Rightarrow R$ (12,6) $\ni R \Rightarrow R$ is not symmetric $(3,6) \in R, (6,12) \in R \Rightarrow (3,12) \in R$ $\therefore R$ is transitive
- 9. Since n is a factor of n, so the relation is reflexive. If, however, n is a factor m, m is not necessarily a factor of n, so the relation is not symmetric. On the hand $n \mid m$ and $m \mid l$ imply $n \mid l$, so the relation is transitive
- 10. Since $x \le x$ for all $x \in Z$ so R is reflexive but is not symmetric as $(1,2) \in R$ and $(2,1) \notin R$. Also R is transitive as $x \le y, y \le z \Rightarrow x \le z$. R is antisymmetric for if $x \le y$ and $y \le x$ then x = y. Hence R is partial order
- 11. Conceptional
- 12. $R = \{(1,4),(4,1),(2,3),(3,2)\}$, so R is not reflexive as $(1,1) \in R$. Also R is symmetric by definition and R is not transitive as $(1,4) \in R$, $(4,1) \in R$ but $(1,1) \notin R$
- 13. Since $x-x+\sqrt{2}=\sqrt{2}$ which is an irrational number so $x \ R \ x$ for all $x \in R$. Hence R is reflexive. R is not symmetric as $(\sqrt{2},1) \in R$ but $(1,\sqrt{2}) \notin R$. Again R is not transitive since $(\sqrt{2},1) \in R$ and $(1,2\sqrt{2}) \in R$ but $(\sqrt{2},2\sqrt{2}) \notin R$
- 14. Since R and S are symmetric relation so $R^{-1} = R$ and $S^{-1} = S$ But $(R_o S)^{-1}$ $(R_o S)^{-1} = S^{-1} o R^{-1} = S_o R$ Thus $R_o S$ is symmetric if and only if $R_o S = S_o R$
- 15. For $(a,b) \in f$, $1+ab > 0 \Rightarrow 1+ba > 0 \Rightarrow (b,a) \in f \Rightarrow f$ is symmetric
- 16. The number of symmetric relation = $2^{3(3+1)/2} 1 = 2^6 1 = 63$
 - For (a, b), $(c, d) \in N \times N$; $(a, b) R (c, d) \Rightarrow ad (b + c) = bc (a + d)$ Reflexive: Since $ab (b + a) = ba(a + b) \forall ab \in N$. $\therefore (a, b) R (a, b)$. $\therefore R$ is reflexive. Symmetric: For (a, b), $(c, d) \in N \times N$, let (a, b) R (c, d). $\therefore ad (b + c) = bc (a + d) \Rightarrow bc (a + d) = ad (b + c) \Rightarrow cb (d + a) = da (c + b) \Rightarrow (c, d) R (a, b)$. $\therefore R$ is symmetric. Transitive: For (a, b), (c, d), $(e, f) \in N \times N$, let (a, b) R (c, d), (c, d) R (e, f) $\therefore ad (b + c) = bc (a + d)$, cf (d + e) = de (c + f) $\Rightarrow adb + adc = bca + bcd \rightarrow (1)$ and $cfd + cfe = dec + def \rightarrow (2)$
 - $\Rightarrow adb + adc = bca + bcd \rightarrow (1) \text{ and } cfd + cfe = dec + def \rightarrow (2)$ $(1) ef + (2) ab \Rightarrow adbef + adcef + cfdab + cfeab = bcaef + bcdef + decab + defab$ $\Rightarrow adcf (b + e) = bcde (a + f) \Rightarrow af (b + e) = be (a + f) \Rightarrow (a, b) R (e, f).$
 - \therefore R is transitive. Hence R is an equivalence relation.

17.

18.
$$x^2 + y^2 = 1 \Rightarrow (x, y) \in R$$

 $y^2 + x^2 = 1 \Rightarrow (y, x) \in R$

:. symmetric

19.
$$n(A) = n \Rightarrow (A \times A) = n^2$$

 $\Rightarrow n^2 \ge n$

20.
$$(a,b) \in R_1 \Rightarrow |a| = |a| \Rightarrow |a| = |b|$$

$$|a| = |a| \Rightarrow (a, a) \in R_1$$
 (Syme)

$$|ii||a| = |b| \Rightarrow |b| = |a| \Rightarrow (b, a) \in R_1$$
 (Tr)

$$|iii\rangle|a| = |b|\varepsilon|b| = |c| \Rightarrow |a| = |c| \Rightarrow (a,c) \in R_1$$
 (Tr)

21.
$$R = R^{-1} \Rightarrow RoR^{-1} = 1 \Rightarrow I$$
 is symmetric relation

22.
$$(x, y) \in R \Rightarrow 2x + y = 41$$

$$i)(x,x) \in R \Rightarrow 2x + x = 41 \Rightarrow x = \frac{41}{3} \notin N(x)$$

$$(ii)(x, y) \in R \Rightarrow 2x + y = 41; But 2x + x \neq 41 \Rightarrow (y, x) \notin R(x)$$

$$iii)(x, y) \in R \Rightarrow 2x + y = 41\varepsilon(y, z) \in R2y + z = 41 \Rightarrow 2x + z \neq 41(x)$$

- 23. Void relation is Null set As then is no elements if can't be reflexive
- 24. $(n,m) \in R \Rightarrow n$ is a factor of m Z is a factor of $6 \Rightarrow (6,2) \notin R$ Not symmetric

25.
$$(x, y) \in R \Rightarrow o \le |x - y| \le 1$$

$$i)|x-x|=0 \Rightarrow (x,x) \notin R$$
 not ref

$$ii)(x, y) \in R \Longrightarrow 0 \le |x - y| \le 1$$

$$0 \le |y - x| \le 1 \Rightarrow (y, x) \in R$$
 (symmetric)

$$iii)(x, y) \in R\varepsilon(y, z) \in R \Rightarrow o < |x - y| \le 1\varepsilon o \le |y - z| \le 1$$

$$\Rightarrow |x-z| = |x-y+(y-z)|$$

$$|x-z| \le |x-y| + |y-z|$$

26.
$$(P,Q) \in R \Rightarrow OP = OQ$$

$$i) OP = OP \Longrightarrow (P, P) \in R$$

$$ii) OP = OQ \Rightarrow OQ = OP \Rightarrow (Q, P) \in R$$

$$ii) OP = OQ \Rightarrow OQ = OP \Rightarrow (Q, P) \in R$$
$$iii) (P,Q) \in R\varepsilon(Q,R) \in R \Rightarrow OP = OQ\varepsilon OQ = OR \Rightarrow (P,R) \in R$$

27.
$$A = \{1, 2, 3\}$$
 and $(a, b) \in R \Rightarrow |a^2 - b^2| \le 5$
 $a = 1\varepsilon b = 1 \Rightarrow |a^2 - b^2| = 0$
 $a = 1\varepsilon b = 2 \Rightarrow |a^2 - b^2| = (1 - 4) = 3$
 $= \{0, 3, 8, ---\} \ne \{5\}$
 $a = 1\varepsilon b = 3 \Rightarrow |a^2 - b^2| = \pi |1 - 9| = 8$

$$x^{2} - 4xy + 3y^{2} = 0 \Rightarrow x^{2} - xy - 3xy + 3y^{2} = 0$$
$$x(x - y) - 3y(x - y) = 0 \Rightarrow (x - y)(x - 3y) = 0$$

$$x = y \text{ or } x = 3y$$

- i) Ref $(x, x) \in R \Rightarrow x^2 4x + x^2 = 0$
- ii) Sym of $(x, y) \in R \Rightarrow (x y)(x 3y) = 0$
- $\Rightarrow (y-x)(By-3x)$ need not be zero \Rightarrow Not Sym
- $(3,1) \in R$ but $(1,3) \notin R$
- iii) Trans let $(x, y) \in R\eta(y, \eta \in R$ cleanly $(9,3) \in R\varepsilon(3,1) \in R$

$$9^2 - 4(9)3 + 3(3)^2 = 0\varepsilon 3^2 - 4(3)1 + 3(1)^2 = 0$$

But
$$(9,1) \notin R(: 9^2 - 4(9) + 3 = 81 - 36 + 3 \neq 0)$$

29.
$$A = \{1, 2, 3\}$$

$$R = \{(1,2)(2,3)\}$$

To male it reflexive odd (1,1) (2,2) (3,3)

Now to make it symmetric we must add (2,1)(3,2)

$$\Rightarrow R = \{(1,2)(2,3)(1,1)(2,2)(3,3)\}$$

$$\Rightarrow R = \{(1,2)(2,3)(2,1)(3,2)(1,3)(3,1)(1,1)(2,2)(3,3)\}$$

: minimum no of elements to be ass is 7

30
$$(A, B) \in R \Rightarrow A \cap B = \phi$$

- i) $A \cap A \neq \phi(A, A) \notin R \Rightarrow \text{not Ref}$
- ii) $A \cap B \neq \phi \Rightarrow B \cap A = \phi \Rightarrow$ symmetric
- iii) $A \cap B = \phi \varepsilon B \cap C = \phi \Rightarrow A \cap C$ need not be empty

Ex: =
$$\{1, 2, 3\}$$
 B = $\{4, 5, 6\}$ $\varepsilon C = \{1, 3, 7\}$

$$A \cap B = \phi$$
 $B \cap C = \phi$

But
$$A \cap C = \{1,3\} \neq \emptyset$$

THE NARAYANA GROUP