DTVGM 模型系统使用说明

王纲胜

2005年7月29日

DTVGM 模型采用 C++ Builder 6.0 与 PowerBuilder 联合开发。

I. DTVGM_mon: 月尺度模型

- ❖ DTVGM_mon 主要采用 C++ Builder 6.0 开发。
- ❖ Database (e.g., DB\DHM_CBH) 采用 Microsoft Access。
- ❖ DTVGM_mon/mdiapp.exe 可直接运行。

Fig. 1 DTVGM 月模型系统主界面

DTVGM_mon 主要包括以下功能模块:

- (1)【DataBase】: 数据处理模块
- ——【Query】 数据库查询,可以选择条件简单查询,也可以在"SQL Edit"里面输入 SQL 语句运行查询。
- ——【Filter】 数据过滤,与查询的区别在于,数据过滤后显示的数据,可以进行各种编辑,查询则不能修改编辑数据。
- ——【GaugeRain】【DayToMonth】 由雨量站日雨量数据【dailyrain0】,生成月雨量数据
- ——【GridRain】【Interpolation】 各种空间插值方法插值计算子流域月雨量
- ——【Discharge】【DayToMonth】 流量数据处理(同时包括潜在蒸散发、气温等等),由日流量生成月流量

(2)【GIS】: 调用 GIS 软件模块

——【Run ArcView】 调用 ArcView 处理数据,必须安装 ArcView。

基于 ArcView 建立了 DTVGM 空间数据库,结合 Arc/Info 中的 Grid 模块实现以下功能: 1) GIS/RS 及水文气象数据管理,如 DEM、土地利用图、水文气象站点属性、水文气象数据等;2) 地形及植被信息信息提取,如流域边界、河网、坡度坡向、水流方向、子流域划分、子流域土地利用类型等等;3) 模拟计算结果的可视化表达,如模拟结果中水文要素的空间分布。

Fig. 2 ArcView 管理界面

- (3)【ModelMonth】: 系统月模型部分
- ——【DTVGM_Month】 月模型
- ——【HydroGraph】 月模型运行结束后,数据及图形显示
- ——【SCE-UA】 SCE-UA 优化算法,优化参数
- ——【Genetic Algorithm】 遗传算法,优化参数
- ——【MultiParaSA】 运行模型产生数据,用于多参数灵敏度及不确定性分析
- (4)【Uncertainty】根据模型运行结果绘制图形,进行多参数灵敏度及不确定性分析

II. DTVGM_day: 日尺度模型

- ❖ DTVGM_day 模型主要采用 PowerBuilder 开发。
- ❖ 绘图模块 (DtvgmGraph) 采用 C++ Builder 6.0 开发。
- ❖ 运行 DTVGM_day/DTVGMSetup.exe 安装程序到本地文件夹。
- 1. 运行程序 DTVGM.exe, 出现两个窗口界面, 上面的窗口界面是"DEM参数及有关目录文件设置"(以下简称"设置界面")。点击右下角【确定】, 关闭该窗口, 进入模型"计算界面"。
- 2. "计算界面"下部是一个【数据窗口】,进行有关数据的操作。在【数据窗口】上右击鼠标,出现【弹出式菜单】,可进行如下操作(注意,所有针对数据库的操作只有在点击【Save】之后才有效):

菜单项	功能
【Insert】	在当前位置插入一条记录
[Append]	在表的最后增加一条记录
【Delete】	删除当前记录
【Delete All】	删除表中所有记录
[Save]	将数据保存到"数据库"或保存为"文本文件"
【Import】	将文本数据导入数据窗口中

3. 菜单【Data】中包含的数据准备过程:

ID	菜单项(数据)	说明	属性
1	DemInfo	"设置界面"中"DEM 参数及有关目录文件设置"	初始数据
2	DEM	栅格 DEM(X,Y,Elev)	初始数据
3	TopIndex	根据 DEM 计算出的地形指数(X,Y,TopIndex)	初始数据
4	Dem-TopIndex	DEM 与地形指数联合显示	
5	LandClass	土地利用分类,已经设置好	初始数据
6	Grid Land Use	栅格土地利用数据(X, Y, Landuse),以固定	初始数据,
		文本文件名形式存储: 目录 DB->gridlanduse.txt	txt
7	Grid Slope	栅格坡度(X, Y, Slope),Slope 指正切值,以	初始数据,
		固定文本文件名形式存储:目录	txt
		DB->gridslope.txt	
8	Grid Soil	显示某一天的栅格土壤适度	
	Moisture		
9	Flow Direction	栅格流向(X, Y, Direction), 不固定文件名:	初始数据,
		目录 DB->*.txt	txt
10	Flow Relation	栅格流向关系,由 FlowDirection 生成	初始数据,
			txt
11	GridClassify	分级栅格,由 FlowRelation 生成	初始数据,
			txt
12	GridlyClass	每个栅格的汇流等级,由 GridClassify 生成	初始数据,
			txt
13	CalendarForm	打开日历格式的日数据: 首行为 12 个月, 首列	
		为31日	
14	Parameter	模型参数	
15	Ep-Tmp(DB)	导入或显示每日的实测流量 Qobs、流域平均降	初始数据
		水 Pmean、潜在蒸散发 Ep。从文本导入数据,	
		也可根据【日期设置】的开始及结束日期显示数	
		据	
16	ETa(DB)	上下层实际蒸散发、下层土壤湿度等,只需要包	初始数据
		括 Station 及 Dt 两列数据,其它数据由计算生成	
17	Ep-Tmp-ETa(DB)	根据【日期设置】的开始及结束日期同时显示以	
		上两表的数据	
18	Events:Parameters	模型运行日志,保存每次运行的参数值及结果保	
		存文件	

4. 菜单【Process】中包含的数据处理过程:

ID	菜单项	说明	属性
1	Data Conversion	将"日历格式"的日数据转为"列表格式":第	
	-> CalendarForm	一列为日期,第二列为每日的数据	
	to Daily		
2	Flow Relation	栅格流向关系,由 FlowDirection 生成,读取	初始数据,
		FlowDirection 文件,找出每个栅格的"流入栅格"	txt
		及"流出栅格","流出栅格"只有1个或者0个	
		(流域出口),"流入栅格"可能有多个,以"栅	
		格编号"连成字符串保存(每5位数字表示一个	
		栅格)	
3	RiverNet	分级栅格,由 FlowRelation 生成,读取 Flow	初始数据,
	Classify	Relation 文件,输出每一个汇流等级(汇流带)	txt
		所包含的栅格,以"栅格编号"连成字符串保存	
		(每5位数字表示一个栅格)	
4	Gridly Class	每个栅格所属汇流等级,由 RiverNet Classify 生	
		成,读取 RiverNet Classify 文件,以(X,Y,Class)	
		的格式输出每个栅格的汇流等级,用于 ArcGIS	
		作图	

5. 菜单【Rainfall】中包含的数据准备及处理过程:

ID	菜单项	说明	属性
1	Rain Gauge	雨量站信息	初始数据
2	Grid Rain	显示【开始日期】的栅格雨量	
3	Create Table Dailyrain0	根据 Rain Gauge 创建各站日雨量存	初始数据
		储表,字段依次为: DT,雨量站 1,	
		雨量站 2,雨量站排列按照 Rain	
		Gauge 表中 Gauge 字母排序	
4	ExceltoDailyRain0&DailyQ	将 Excel 格式的测站雨量、出口流	初始数据
		量、流域平均潜在蒸散发数据导入	
		DailyRain0 表及 Ep-Tmp 表中,	
		Excel 数据格式为"日历格式"	
5	ExceltoDailyRain0&DailyQ-2	将 Excel 格式的测站雨量、出口流	初始数据
		量、流域平均潜在蒸散发数据导入	
		DailyRain0 表及 Ep-Tmp 表中,	
		Excel 数据中的"流量"为"列表格	
		式"	
6	Open Table DailyRain0	可以从这里直接导入雨量站日数	初始数据
		据;也可以显示 DailyRain0 中的雨	
		量站日数据,根据【日期设置】的	
		开始及结束日期过滤数据;	

6. 雨量空间插值过程(采用 GRDS 方法,进入目录"gridrain",应用程序 GRDS.exe)

ID	文本文件	说明	属性
1	Raingauge.txt	【Rainfall】->【Rain Gauge】存为文	初始数据
		本数据	
2	Raindata.txt	【Rainfall】->【DailyRain0】存为文	初始数据
		本数据,第一列为日期,格式严格	
		采用"YYYY-MM-DD"	
3	Grid.txt	【Data】->【DEM】存为文本数据	初始数据
4	GRDS.exe	准备好上述 3 个文本数据,运行插	
		值程序,每日的栅格雨量数据存为	
		一个文本文件	

7. 菜单【HydrMeteo】中包含的数据准备及处理过程:

ID	菜单项	说明	属性
1	HydrMeteoStation	水文气象站信息,最后一个字段	初始数据
		Class 说明测站类型,重点设置 3 类:	
		basicgauge 降水基准站,meteo 气象	
		基准站,outlet 流域出口站	
	Grads of Rain&Temperature	降水及气温的梯度变化率,一般用	初始数据
		不到,但是该表必须存在数据,第	
		一 个 字 段 Meteostation 指	
		HydrMeteoStation 中的 meteo 气象基	
		准站站名	

8. 菜单【PEvaporation】中包含的数据准备及处理过程:

ID	菜单项	说明	属性
1	Hargreaves Method	Hargreaves 方法计算潜在蒸散发	试验程序

9. 菜单【Calculate】中包含处理过程:

ID	菜单项	说明	属性
1	Parameter Test	参数试验,采用固定步长枚举方法确定单	
		个参数的取值	
2	Calculate Q	模型运行,与"计算界面"中的按钮【计	
		算】功能一致	
3	DailyQ & EP	模型结果显示,与"计算界面"中的按钮	
		【结果显示】功能一致,模型运行结果以	
		文本文件存储于文件夹 "result"之中	

10. 模型运行操作过程:

ID	过程	说明	属性
1	初始数据准备	对以上标有"初始数据"的步骤,	//4/14
1	1013413X 101 E H	逐一准备好初始数据	
	李光 【Pit 】 、【g wi 】		
2	菜单【File】->【Settings】,	选择所用 DEM,并设置相应目录和	
	出现"设置界面",设置好	文件;【汇流方法】选择【Nonlinear	
	以后,点击【确定】按钮	Kinematic Wave 】;设置【汇流滞时】,	
		一般为1天或2天;可选择是否【输	
		出数据】,模型调试阶段不要输出,	
		模型参数调试好以后,可以输出栅	
		格数据及分级流量	
3	设置【参数值】	目前版本中, 雨强阈值不起作用,	
		传播时间固定为 24 小时	
4	设置【结果存储文件前缀】	限 3 个字符以内	
5	【日期设置】	设置模型的"开始日期"和"结束	
		日期"	
6	点击【计算】按钮	运行模型	
7	点击【结果显示】按钮	选择结果文件,显示结果数据及图	
		形	
8	【日期过滤】	根据新的【日期设置】过滤数据,	
		显示该时间段的数据及图形	