Séptima Práctica Dirigida Grupo N°3

Análisis y Modelamiento Numérico I CM4F1 B

Profesor Ángel Enrique Ramírez Gutiérrez.

Aldo Luna Bueno Alejandro Escobar Mejia Carlos Aznarán Laos

Brian Huaman Garcia Khalid Izquierdo Ayllon Carlos Malvaceda Canales

Facultad de Ciencias

Universidad Nacional de Ingeniería

4 de julio del 2023

Lista de N° de pregunta / estudiante

Khalid Zaid Izquierdo Ayllón

Pregunta N°5

Pregunta N°9

Alejandro Escobar Mejia Pregunta N°17 Brian Alberto Huamán Garcia

Pregunta N°23 Carlos Alonso Aznarán Laos

Aldo Luna Bueno

Pregunta N°28

Pregunta N°29

Carlos Daniel Malvaceda Canales

5. El pentóxido de dinitrógeno gaseoso puro $N_2\,O_{5\,\mathrm{(g)}}$ reacciona en un reactor intermitente según la reacción estequiométrica

 $N_2O_5 \Longrightarrow 2N_2O_4 + O_2$

Calculamos la concentración de pentóxido de dinitrógeno existente en ciertos instantes, obteniendo los siguientes datos:

Tiempo (s)	0	200	400	650	1100	1900	2300
Concentración (mm)	5.5	5.04	4.36	3.45	2.37	1.32	0.71

Si lo tenemos en el reactor un tiempo máximo de 35 minutos (2100 segundos), determine la concentración de pentóxido de dinitrógeno que queda sin reaccionar, usando el polinomio de Taylor, Lagrange y Newton por diferencias divididas implementado.

Solución

9. Dada la tabla de valores

x_i	-1	0	1
y_i	13	7	9

- a) Determine el spline cúbico natural que interpola estos datos, imponiendo las condiciones requeridas y resolviendo el sistema.
- b) Dibujar el spline completo que interpola los datos, suponiendo que las derivadas primeras del spline en los nodos inicial y final son -5 y 5, respectivamente.

Solución

ı) .

- 17. Sea $f(x) = \exp(x)$ para $0 \le x \le 2$.
 - a) Aproxime f(0.25) mediante la interpolación lineal con $x_0 = 0$ y $x_1 = 0.5$. b) Aproxime f(0.75) mediante interpolación lineal con $x_0 = 0.5$ y $x_1 = 1$.
 - c) Aproxime f(0.25) y f(0.75) mediante el segundo polinomio de Lagrange con $x_0 = 0$, $x_1 = 1$ y $x_2 = 2$.

Solución

Polinomio de interpolación

 $\text{Sean } n+1 \text{ puntos distintos } \{(x_k,y_k)\}_{k=0}^n \subset [a,b] \times \mathbb{R} \text{ y } f \colon [a,b] \to \mathbb{R} \text{ una función de modo que } y_k = f(x_k) \text{ para } 0 \leq k \leq n.$

Definición (Polinomio de interpolación en la forma de Lagrange)

$$\Pi_{n}f\left(x\right):=\sum_{k=0}^{n}y_{k}\ell_{k}\left(x\right),$$

 $\mathrm{donde}\ \ell_{k}\left(x\right)\ \mathrm{son}\ \log\ polinomios\ caracter\'(sticos\ \mathrm{dados}\ \mathrm{por}\ \ell_{k}\left(x\right):=\prod_{\substack{j=0\\j\neq k}}^{n}\frac{x-x_{j}}{x_{k}-x_{j}}\ \mathrm{para}\ 0\leq k\leq n.$

Definición (Polinomio de interpolación en la forma de Newton)

$$\Pi_{n}f\left(x\right) := \sum_{k=0}^{n} a_{k}\omega_{k}\left(x\right),$$

donde

$$lacksquare$$
 $a_k := f[x_0, \dots, x_k]$ es la k -ésima diferencia dividida de Newton, y

$$\blacktriangleright \ \omega_k\left(x\right)\coloneqq\prod_{i=0}^{k-1}\left(x-x_i\right)$$
 es el polinomio nodal de grado k .

23. Using the functions ℓ_i defined in Section 6.1 (p. 312) and based on nodes x_0, x_1, \ldots, x_n , show that for any f

 $\sum_{k=0}^{n} f(x_k) \ell_k(x) = \sum_{k=0}^{n} f[x_0, x_1, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j).$

(Continuation) Prove this formula:

$$f[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f(x_k) \prod_{\substack{j=0 \ j = 0}}^n (x_k - x_j)^{-1}.$$

Solución

$\textit{Sean } n+1 \textit{ puntos distintos } \{(x_k,y_k)\}_{k=0}^n \subset [a,b] \times \mathbb{R} \textit{ y } f \colon [a,b] \to \mathbb{R} \textit{ una función de modo que } y_k = f\left(x_k\right) \textit{ para } 0 \leq k \leq n.$

 $\sum_{k=0}^{n} f(x_k) \ell_k(x) = \sum_{k=0}^{n} y_k \prod_{\substack{j=0 \ k \neq k}}^{n} \frac{x - x_j}{x_k - x_j}.$

28. Encuentre la aproximación del polinomio lineal de cuadrados a $f\left(x\right)=x^{2}+3x+2$ en el intervalo $[0,1].$	
Solución	

29. Utilio	e los ceros de T_3 para \circ	construir un polinomio inte	erpolador de grado :	$2 \text{ para } f(x) = \exp(x)$	en el intervalo $[-1,1]$.
Solución					

Referencias

- Libros
- Artículos científicos
- Sitios web