M2: Lecture 4 Dynamic Programming in Discrete Time (II)

Andreas Schaab

Outline of today's lecture

- 1. Example: growth model with labor supply
- 2. Stochastic dynamic programming
- 3. History notation
- 4. Stochastic growth model

1. Example: growth model with labor supply

- Time is discrete with t = 0, 1, ... and there is no uncertainty
- Representative household consumes (c_t) , saves and works (l_t)
- Preferences over consumption and work given by

$$V(k_0) = \max_{\{c_t, l_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t, l_t)$$

• We will use constant relative risk aversion (CRRA) preferences:

$$u(c,l) = \frac{1}{1-\gamma}c^{1-\gamma} - \frac{1}{1+\phi}l^{1+\phi}$$

• Budget constraint: household owns capital and rents it at rate r_t

$$k_{t+1} = (1 + r_t - \delta)k_t + w_t l_t - c_t$$

Definition (household problem): The representative household chooses sequences $\{c_t, l_t\}_{t=0}^{\infty}$ to maximize lifetime value $V(k_0)$ subject to the budget constraint, given initial capital k_0 and taking as given paths of prices $\{r_t, w_t\}_{t=0}^{\infty}$

Household problem in sequence form associated with Lagrangian:

$$L(k_0) = \sum_{t=0}^{\infty} \beta^t \left[u(c_t, l_t) + \lambda_t \left((1 + r_t - \delta)k_t + w_t l_t - c_t - k_{t+1} \right) \right]$$

• FOCs for c_t , l_t , and k_{t+1} :

$$0 = u_c(c_t, l_t) - \lambda_t$$

$$0 = u_l(c_t, l_t) + w_t \lambda_t$$

$$0 = -\lambda_t + \beta \lambda_{t+1} (1 + r_t - \delta)$$

- Euler equation for consumption: $u_c(c_t, l_t) = \beta(1 + r_t \delta)u_c(c_{t+1}, l_{t+1})$
- Optimal labor supply: $MRS = -\frac{u_l(c_t, l_t)}{u_c(c_t, l_t)} = w_t$

Recursive representation (show this):

$$V(k) = \max_{c,l} \left\{ u(c,l) + \beta V((1+r-\delta)k + wl - c) \right\}$$

• FOCs:

$$u_c = \beta V_k(k')$$

$$u_l = -\beta w V_k(k')$$

which again implies $-u_1/u_c = w$

- Use the envelope condition to derive the consumption Euler equation
- Plug in for CRRA utility and interpret Euler equation and optimal labor supply condition

2. Stochastic dynamic programming

- Follow Ljungqvist-Sargent notation, Chapter 3.2
- Under uncertainty, household problem takes the form

$$\max_{\{c_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to $k_{t+1} = g(k_t, c_t, \epsilon_{t+1})$ (first-order stochastic difference equation)

- $\{\epsilon_t\}_{t=0}^{\infty}$ is sequence of iid random variables (stochastic process)
- Initial condition x_0 given

- Dynamic programming approach: we again look for recursive representation on state space $k_t \in \mathcal{X}$
- The problem is to look for a *policy function* c(k) that solves

$$V(k) = \max_{c} \left\{ u(c) + \beta \mathbb{E} \left[V(g(k, c, \epsilon)) \mid k \right] \right\}$$

where $\mathbb{E}[V(\cdot) \mid k] = \int V(\cdot) dF(\epsilon)$

- • V(k) is the (lifetime) value that an agent obtains from solving this problem starting from k
- FOC that characterizes the consumption policy function c(k) is

$$0 = u'(c(k)) + \beta \mathbb{E} \left\{ \partial_k V \left(g(k, c(k), \epsilon) \right) \cdot \partial_c g(k, c(k), \epsilon) \mid k \right\} = 0$$

3. History notation

- A very popular approach to deal with uncertainty in macro is to use history notation (Ljungqvist-Sarget, e.g., chapters 8, 12)
- Economy populated by individuals, indexed by $i \in I$
- Time is discrete and indexed by t = 0, 1, ...
- At every t, there is a realization of a stochastic event $s_t \in \mathcal{S}$
- We denote the **history** of such events up to t by $s^t = \{s_0, s_1, \dots, s_t\}$
- The unconditional probability of history s^t is given by $\pi_t(s^t \mid s_0)$
- If Markov, $\pi_t(s^t | s_0) = \pi(s_t | s_{t-1})\pi(s_{t-1} | s_{t-2})\dots\pi(s_0)$
- Single consumption good (dollars) as numeraire

• The **lifetime value** of individual *i* is then defined as

$$V_i(s_0) = \sum_{t=0}^{T} \left(eta_i
ight)^t \sum_{s^t} \pi_t \Big(s^t \mid s_0\Big) u_i \Big(c_t^i \Big(s^t\Big), n_t^i \Big(s^t\Big)\Big)$$

- *Generalizations*: heterogeneous beliefs, general preferences (Epstein-Zin), recursive formulation, multiple commodities, intergenerational considerations
- Suppose $c_t^i(\cdot)$ and $l_t^i(\cdot)$ are functions of some primitive (policy) θ

• Consider policy experiment $d\theta$, then i's **private welfare assessment** is

$$\frac{dV_i(s_0)}{d\theta} = \sum_{t=0}^{T} \left(\beta_i\right)^t \sum_{s^t} \pi_t \left(s^t \mid s_0\right) \frac{\partial u_i(s^t)}{\partial c_t^i} \frac{du_{i|c}(s^t)}{d\theta}$$

Instantaneous consumption-equivalent effect of policy $d\theta$ at date t, history s^t on individual i:

$$\frac{du_{i|c}(s^t)}{d\theta} \equiv \frac{\frac{du_i(c_t^i(s^t), n_t^i(s^t))}{d\theta}}{\frac{\partial u_i(s^t)}{\partial c_t^i}} = \underbrace{\frac{dc_t^i(s^t)}{d\theta} + \frac{\frac{\partial u_i(s^t)}{\partial n_t^i}}{\frac{\partial u_i(s^t)}{\partial c_t^i}} \frac{dn_t^i(s^t)}{d\theta}}_{\text{in consumption units}}$$

• Example: $d\theta$ gives i marginal dollar at s^t , then

$$\frac{dV_i(s_0)}{d\theta} = (\beta_i)^t \pi_t(s^t \mid s_0) \frac{\partial u_i(s^t)}{\partial c_t^i}$$

Conventional benchmarks:

- Policy $d\theta$ is Pareto improving if $\frac{dV_i(s_0)}{d\theta} \ge 0$ for all i, strictly for some i
- Welfarist planners: SWF given by $W(\{V_i(s_0)\}_{i \in I})$ Utilitarian, Isoelastic, Rawlsian, Nash, Dictator, ...
- Policy $d\theta$ is desirable for a welfarist planner if

$$\int \lambda_{i}\left(s_{0}\right) \frac{dV_{i}(s_{0})}{d\theta} di > 0, \qquad \text{where } \lambda_{i}\left(s_{0}\right) = \frac{\partial \mathcal{W}\left(\left\{V_{i}\left(s_{0}\right)\right\}_{i \in I}\right)}{\partial V_{i}}$$

Remarks:

- All welfarist planners agree when individuals ex-ante (s_0) homogeneous
- How to make welfare assessments with heterogeneous individuals?
- If you're interested, see Dávila-Schaab (2022)

4. Stochastic Growth Model

- Discrete time: $t \in \{0, 1, ..., T\}$, where $T \leq \infty$
- At t, event $s_t \in \mathcal{S}$ is realized; history $s^t = (s_0, \dots, s_t)$ has probability $\pi_t(s^t)$
- Representative household has preferences of paths of consumption $c_t(s^t)$ and labor $l_t(s^t)$

$$\sum_{t=0}^{\infty} \beta^t \sum_{s^t} \pi_t \left(s^t \right) u \left(c_t(s^t), l_t(s^t) \right)$$

- Inada conditions $\lim_{c\to 0} u_c(c,l) = \lim_{l\to 0} u_l(c,l) = \infty$
- At t = 0, household endowed with k_0

• Technology, capital accumulation, and budget / resource constraint:

$$c_t(s^t) + \iota_t(s^t) < A_t(s^t)F(k_t(s^{t-1}), l_t(s^t))$$

• $F(\cdot)$ is twice continuously differentiable and constant returns to scale

 $k_{t+1}(s^t) = (1-\delta)k_t(s^{t-1}) + \iota_t(s^t)$

- Source of uncertainty is stochastic process for TFP $A_t(s^t)$
- Standard regularity conditions on $F(\cdot)$ (see LS)

Lagrangian approach to sequence problem

• Form Lagrangian

$$L = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \pi_t(s^t) \left\{ u(c_t(s^t), l_t(s^t)) + \lambda_t(s^t) \left[A_t(s^t) F(k_t(s^{t-1}), l_t(s^t)) - c_t(s^t) + (1 - \delta) k_t(s^{t-1}) - k_{t+1}(s^t) \right] \right\}$$

• FOCs for $c_t(s^t)$, $l_t(s^t)$ and $k_{t+1}(s^t)$ are given by

$$u_c(s^t) = \lambda_t(s^t)$$

$$u_l(s^t) = u_c(s^t)A_t(s^t)F_n(s^t)$$

$$u_c(s^t)\pi_t(s^t) = \beta \sum_{s^{t+1}|s^t} u_c(s^{t+1})\pi_{t+1}(s^{t+1}) \left[A_{t+1}(s^{t+1})F_k(s^{t+1}) + (1-\delta) \right]$$

• Summation over $(s^{t+1} \mid s^t)$ is like conditional expectation (summing over histories that branch out from s^t)

Recursive representation: dynamic programming

• Assume time-homogeneous Markov process:

$$\mathbb{E}_t(A_{t+1}) = \mathbb{E}\left[A(s^{t+1}) \mid s^t\right] = \mathbb{E}\left[A(s_{t+1}) \mid s_t\right] = \sum_{s'} \pi(s' \mid s_t) A(s')$$

- Drop *t* subscripts: *s* is current state, *s'* denotes next period's draw
- Denote by X_t the *endogenous state* of the problem: for now, assume there is such a representation (Fabrice's part will be all about this)
- Intuitively: *s* is the exogenous state and *X* is the endogenous state
- Bellman equation can be written:

$$V(X,s) = \max_{c,l} \left\{ u(c,l) + \beta \sum_{s'} \pi(s' \mid s) V(X',s') \right\}$$

subject to
$$X' = g(X, c, l, s, s')$$