Introduction to Linear Algebra

Haoran Li

2025 - 06 - 14

$\boldsymbol{\cap}$		L
	onto	${f ents}$
\sim	σ	

1.	Lecture 1 - System of linear equations	. 2
	1.1. Linear systems	. 2

1. Lecture 1 - System of linear equations

1.1. Linear systems

Throughout this course, we adopt the following notations:

- Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- Integers: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Rational numbers: $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \right\}$ is the set of fractions. Here \in means belong to.
- Real numbers: \mathbb{R} is the set of numbers on the whole real number line. It includes:
 - irrational numbers (like $\sqrt{2}$, $\sqrt[3]{3}$)
 - transcendental numbers (like π, e)
- Complex numbers: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}, i = \sqrt{-1}$ is the imaginary number such that $i^2 = -1$.
- $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$
- $\mathbb{R}^n=\{(r_1,r_2,r_3,...,r_n)\mid r_1,r_2,...,r_n\in\mathbb{R}\}$ is the set of all n-tuples of real numbers. Geometrically:
 - $\mathbb{R}^1 = \mathbb{R}$ is a line.
 - \mathbb{R}^2 is a plane.
 - \mathbb{R}^3 is our usual physical space.

Definition 1.1.1: A linear equation in the variables $x_1, x_2, x_3, c..., x_n$ is an equation that can be written in the form

$$a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n = b \tag{1}$$

where the coefficients $a_1, a_2, a_3, ..., a_n$ and b are real or complex numbers, usually known in advance.

Example:

- $x_1 + \frac{1}{2}x_2 = 2, \checkmark$
- $\pi(x_1 + x_2) 9.9x_3 = e$, \checkmark . Because if we expand it, we got $\pi x_1 + \pi x_2 9.9x_3 = e$ in which case $a_1 = \pi$, $a_2 = \pi$, $a_3 = -9.9$, b = e as in the form of (1)
- $|x_2|-1=0, x$
- $x_1 + x_2^2 = 9, \mathbf{x}$
- $\sqrt{x_1} + \sqrt{x_2} = 1, x$

Definition 1.1.2: A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables, say $x_1, x_2, x_3, ..., x_n$.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m \end{cases}$$
 (2)

Example: For n = m = 2, (2) is just

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$
 (3)