Física Nuclear y de Partículas Grado en Física UNED

Tema 3. Modelos nucleares

César Fernández Ramírez Departamento de Física Interdisciplinar Universidad Nacional de Educación a Distancia (UNED)

Contextualización dentro de la asignatura

- Bloque I. Estructura nuclear
 - Tema 1. Principales características del núcleo atómico
 - Tema 2. La interacción nuclear. El deuterón y la interacción nucleón-nucleón
 - Tema 3. Modelos nucleares
- Bloque II. Radioactividad y desintegraciones nucleares
 - Tema 4. Desintegración nuclear
 - Tema 5. Desintegración α , β y γ
- Bloque III. Reacciones nucleares e interacción radiación-materia
 - Tema 6. Reacciones nucleares
 - Tema 7. Interacción radiación-materia
- Bloque IV. Física subnuclear
 - Tema 8. El Modelo Estándar de partículas elementales
 - Tema 9. Quarks y hadrones

Cronograma

	L	М	Х	J	V	S	D
Octubre		1	2	3	4	5	6
	7	8	9	10	11	12	13
l J	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	31			
Noviembre					1	2	3
	4	5	6	7	8	9	10
	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29	30	
Diciembre							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31					
Enero			1	2	3	4	5
	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	31		

Bloque I	
	Tema 1
	Tema 2
	Tema 3
Bloque II	
	Tema 4
	Tema 5
Bloque III	
	Tema 6
	Tema 7
Bloque IV	
	Tema 8
	Tema 9

Apertura foros						
Apertura TE						
PEC						
Periodo vacacional						
Cierre foros						
Exámenes						
Cierre TE						

Material disponible

- Material disponible en el repositorio Github de la asignatura
 - https://github.com/cefera/FNyP
 - Esta presentación:
 - ./Presentaciones/Tema3.pdf
 - Código en Python asociado:
 - ./Notebooks/Tema3.ipynb

Esquema

- Introducción
- Modelo del gas de Fermi
- Modelo de la gota líquida. Fórmula Semiempírica de Masas
- · Modelo de partícula individual. Modelo de capas
- Modelo vibracional
- Modelo rotacional
- Modelo unificado

Objetivos específicos

- Entender la necesidad de establecer modelos que expliquen las distintas propiedades de los núcleos, basándose en determinadas aproximaciones.
- Estudiar el modelo del gas de Fermi y las principales conclusiones que se sacan de él.
- Establecer las bases del modelo de la gota líquida y obtener la fórmula semiempírica de la masa, basándose en este modelo.
- Describir, en primera aproximación, el modelo de capas y, a partir de este modelo, definir el estado fundamental y estados excitados del núcleo, predecir los momentos dipolar magnético y cuadrupolar eléctrico y su espín y paridad.
- Conocer los modelos colectivos rotacional y vibracional.

Introducción

- Hemos visto las propiedades generales de los núcleos
 - Núcleos compuestos por nucleones, radio nuclear, densidad de carga y materia. Masa y abundancia de los núcleos. Energía de ligadura. Estabilidad nuclear. Momentos nucleares, espín, isospín, paridad.
 - El sistema más simple de interacción nuclear: nucleón-nucleón. El estado nuclear ligado más simple: el deuterón. Propiedades de la interacción nucleón-nucleón.
- Vamos a estudiar
 - Modelos nucleares como el de gas de Fermi. El modelo de partícula independiente. Los números mágicos. Modelos colectivos.

El núcleo

- Es un sistema cuántico de gran complejidad formado por A nucleones interaccionando entre si.
- En la forma del potencial intervienen interacciones a 2, 3, ... cuerpos. La resolución es inviable
- Se construyen modelos teniendo en cuenta ciertos grados de libertad concretos
- Modelos microscópicos (partículas individual)
 - Los grados de libertad dependen de los nucleones constituyentes
 - Se utiliza un potencial fenomenológico
 - · La resolución de la ecuación de Schrödinger correspondiente es muy compleja
- Modelos macroscópicos o colectivos
 - · La interacción depende de grados de libertad colectivso del núcleo
 - · Pueden relacionarse, en principio, con las coordenadas microscópicas

Modelo del gas de Fermi

Modelo del gas de Fermi

- Explica propiedades globales de los nucleones sin tener en cuenta la forma global del potencial
- Se basa en un gas cuántico fermiónico confinado en un pozo de paredes infinitas
- Se cumple la estadística de Fermi-Dirac
- Los nucleones van ocupando estados hasta el de mayor energía (energía de Fermi)
- Los protones y los neutrones ocupan dos pozos separados pero, tienen la misma energía de Fermi

Contando el número de estados

- . Tomamos un pozo en 3D con $L_{\rm x}=L_{\rm y}=L_{\rm z}=L$
- $E_{n_x,n_y,n_z} = \frac{\pi^2 \hbar^2}{2mL^2} \left(n_x^2 + n_y^2 + n_z^2 \right), E_F = \frac{p_F^2}{2m}$
- · El número de estados ocupados hasta un momento de Fermi ha de cumplir

$$p_x^2 + p_y^2 + p_z^2 < p_F^2 \Rightarrow \frac{\pi^2 \hbar^2}{L^2} \left(n_x^2 + n_y^2 + n_z^2 \right) < p_F^2 \Rightarrow n_x^2 + n_y^2 + n_z^2 < \frac{p_F^2 L^2}{\pi^2 \hbar^2}$$

- . Para cada combinación $\left(n_{x},n_{y},n_{z}\right)$ tenemos un único estado por unidad de volumen
- . La esfera de radio R es definida por $n_x^2+n_y^2+n_z^2<\frac{p_F^2L^2}{\pi^2\hbar^2}=R^2\Rightarrow R=\frac{p_FL}{\pi\hbar}$
- · El volumen de la esfera es el número de estados hasta el momento de Fermi
- Como $n_{x}, n_{y}, n_{z} > 0$ tenemos que tomar un octante de la esfera
- · Como los nucleones tienen espín, podemos poner dos nucleones por punto de volumen

$$n = 2\frac{1}{8} \frac{4}{3} \pi R^3 = \frac{\pi}{3} \left(\frac{p_F L}{\pi \hbar} \right)^3$$

Momento de Fermi

- . El momento de Fermi en función de la densidad queda $p_F = \hbar \sqrt[3]{3\pi^2} \sqrt[3]{\frac{n}{V}}$
- . Si tomamos el caso n=Z y el volumen $V=\frac{4}{3}\pi(r_0A^{1/3})^3=\frac{4}{3}\pi r_0^3A$ lo que implica

$$p_F = \frac{\hbar}{r_0} \sqrt[3]{\frac{9\pi}{4}} \sqrt[3]{\frac{Z}{A}} \text{ para los protones}$$

- . Para los neutrones $p_F = \frac{\hbar}{r_0} \sqrt[3]{\frac{9\pi}{4}} \sqrt[3]{\frac{A-Z}{A}}$
- . Si tomamos el caso $r_0=1,2$ fm y $\frac{\dot{Z}}{A}\sim\frac{1}{2}$, $p_F\approx250$ MeV/c que se corresponde con

$$\beta = \frac{v_F}{c} \approx \frac{p_F c}{m_p c^2} \approx 0.27$$

Energía de Fermi

· La energía de Fermi se puede estimar a partir del momento de Fermi

Protones
$$E_F = \frac{\hbar c^2}{2r_0^2 m_p c^2} \left(\frac{9\pi}{4}\right)^{\frac{2}{3}} \left(\frac{Z}{A}\right)^{\frac{2}{3}}$$
Neutrones $E_F = \frac{\hbar c^2}{2r_0^2 m_p c^2} \left(\frac{9\pi}{4}\right)^{\frac{2}{3}} \left(\frac{A-Z}{A}\right)^{\frac{2}{3}}$

- Si $Z/A \approx (A-Z)/A \approx 1/2$ y $r_0=1,2$ fm la energía de Fermi es $E_F \sim 33$ MeV
- La energía de Fermi nos dice aproximadamente la diferencia de energía entre el fondo del potencial y el estado más energético
- Ergo, la profundidad del potencial es 33+8=41 MeV
- Si tomamos un pozo para protones y otro para neutrones, las profundidades de los pozos son diferentes
- Pregunta: ¿Qué ocurriría si la energía del último nivel fuera diferente para protones y neutrones?

Modelo de la gota líquida

- Supone que el núcleo es un fuido incompresible
 - → Fórmula Semiempírica de Masas o Fórmula de Bethe-Weizsäcker
- Estima la energía de ligadura para un núcleo a partir de N y Z

$$E_B(Z, N) = \left[Z \mathcal{M}(^1 H) + N m_n - \mathcal{M}(Z, N) \right] c^2$$

Modelo de la gota líquida

$$E_B/A = a_V - a_S/A^{1/3} - a_C Z^2/A^{4/3} - a_A (A - 2Z)^2/A^2 + \delta/A^{3/2}$$

$$\delta = \begin{bmatrix} +a_p & \text{si par-par} \\ 0 & \text{si A impar} \\ -a_p & \text{si impar-impar} \end{bmatrix}$$

$$a_V = 15,75 \; ; \; a_S = 17,8 \; ; \; a_C = 0,711 \; ; \; a_A = 23,7 \; ; \; a_p = 11,18$$

- Tiene 5 parámetros
- · La dependencia funcional está determinada por el modelo de la gota líquida
- Los coeficientes se determinan ajustando las energías de ligadura o masas de los núcleos. Parámetros de J.W. Rohlf, Modern Physics from α to Z_0 (1994)

Origen de los términos de la Fórmula Semiempírica de Masas

- Término es de volumen: $a_V A$ El volumen nuclear es directamente proporcional a la masa y hay saturación
- Término de superficie: $-a_SA^{2/3}$ Análogo a la tensión superficial de un fluido. Consecuencia de que los nucleones en la superficie tienen menos interacciones con los otros nucleones
- Término de Coulomb: $-a_C Z^2/A^{1/3}$ Energía electroestática $\propto Z^2/R$
- Término de asimetría: $-a_A(A-2Z)^2/A=-a_A(N-Z)^2/A$ Tiene en cuenta que se favorecen núcleos que no tengan el mismo número de protones que de neutrones
- Término de Pairing:
 Asociado al hecho de que los núcleos par-par son favorecidos y los núcleos impar-impar desfavorecidos

Otras predicciones de la Fórmula Semiempírica de Masas

- Si Z_{\min} es el número atómico del núcleo más estable con A nucleones la FSM predice: $Z_{\min} \approx \frac{A}{2 + \frac{a_C}{2a_A} A^{2/3}}$ que es muy próximo a la realidad
- El modelo de la gota líquida explica el radio nuclear $R=r_0A^{\,1/3}$ en base a la incompresibilidad del fluido

Energías de ligadura

 Recordemos la energía de ligadura por nucleón de los estados fundamentales de la carta nuclear

Energías de ligadura

- Recordemos la energía de ligadura por nucleón de los estados fundamentales de la carta nuclear
- Energías de ligadura por nucleón en función de A

Energías de ligadura

- Recordemos la energía de ligadura por nucleón de los estados fundamentales de la carta nuclear
- Energías de ligadura por nucleón en función de A
- Envolvente energías de ligadura por nucleón en función de A. Núcleos más ligados dado un A

Comparación entre la Fórmula Semiempírica de Masas y los datos

La Fórmula Semiempírica de Masas y los números mágicos

La Fórmula Semiempírica de Masas y los números mágicos

120 0.20 100 0.15 Número de protones (Z) 80 N = Z0.10 0.05 40 0.00 20 -0.0525 75 50 100 125 150 175 Número de neutrones (N)

2, 8, 20, 28, 50, 82, 126, 184

Núcleos con números mágicos

- Números mágicos: 2, 8, 20, 28, 50, 82, 126, 184, ...
- Energías de ligadura elevadas
- Energías de separación mayores que sus núcleos vecinos
- Momentos cuadrupolares eléctricos próximos a cero
- Los doblemente mágicos son estables y abundantes: ⁴He, ¹⁶O, ⁴⁰Ca, ⁹⁰Zr, ²⁰⁸Pb

Núcleos con números mágicos

- Números mágicos: 2, 8, 20, 28, 50, 82, 126, 184, ...
- Energías de ligadura elevadas
- Energías de separación mayores que sus núcleos vecinos
- Momentos cuadrupolares eléctricos próximos a cero
- Los doblemente mágicos son estables y abundantes: ⁴He, ¹⁶O, ⁴⁰Ca, ⁹⁰Zr, ²⁰⁸Pb

Núcleos con números mágicos

- Números mágicos: 2, 8, 20, 28, 50, 82, 126, 184, ...
- Energías de ligadura elevadas
- Energías de separación mayores que sus núcleos vecinos
- Momentos cuadrupolares eléctricos próximos a cero
- Los doblemente mágicos son estables y abundantes: ⁴He, ¹⁶O, ⁴⁰Ca, ⁹⁰Zr, ²⁰⁸Pb

Modelos de partícula individual

- Hipótesis básica: La interacción de cada nucleón se describe en base a un potencial efectivo creado por la totalidad del núcleo. La interacción nucleónnucleón se expresa mediante un potencial promedio y el problema se reduce a la interacción del nucleón con el potencial efectivo
- Hay varios tipos de potencial que se puede elegir
 - Pozo esférico infinito
 - Oscilador armónico
 - Potencial de Woods-Saxon → Se resuelve la parte radial numéricamente

Pozo esférico infinito

El potencial es

$$V(r) = \begin{cases} -V_0 & 0 \le r \le R \\ \infty & r > R \end{cases} \qquad -\frac{\hbar^2}{2\mu} \frac{d^2u}{dr^2} + \left[\frac{l(l+l)\hbar^2}{2\mu r^2} + V(r) \right] u(r) = Eu(r)$$

$$\psi_{nlm}(\vec{r}) = R_{nl}(r)Y_{lm}(\theta, \phi) \qquad u_{nlm}(K_{nl}r) = \sqrt{\frac{2}{R^3}} \frac{j_l(K_{nl}r)}{j_{l+1}(K_{nl}r)} Y_{lm}$$

$$R_{nl}(r) = u_{nl}(r)/r \qquad E_{nl} = \frac{\hbar^2}{2\mu} K_{nl}^2 = \frac{\hbar^2}{2\mu} \frac{X_{nl}^2}{R^2}$$

- . en donde X_{nl}^2 son los ceros de la función de Bessel $j_l(KR)$ con $K=\sqrt{2\mu E/\hbar^2}$.
- La ocupación de cada nivel es 2(2l+1) dando lugar a una estructura de capas (2, 8, 20, 40, 92) que no se corresponde con la de los números mágicos

Oscilador armónico

$$\begin{split} V(r) &= \frac{1}{2}\mu\omega_0^2 r^2 \qquad \psi_{nlm}(\vec{r}) = R_{nl}(r)Y_{lm}(\theta,\phi) \qquad \rho = r/\sqrt{\hbar/\mu\omega_0} \\ R_{nl} &= \left[\frac{2^{nl+2}}{n!(2n+2l+1)!!\sqrt{\pi}} \left(\mu\omega/\hbar\right)^{3/2} \right] \rho^l \mathrm{e}^{-\rho^2/2} L_{n-1}^{l+1/2}(\rho^2) \qquad \qquad E_N = \hbar\omega_0 \left(N + \frac{3}{2}\right) \\ \hbar\omega_0 &\approx 41/\sqrt[3]{A} \; \mathrm{MeV} \end{split}$$

- Los estados están caracterizados por dos números cuánticos:
 - N=0, 1, 2, ...: Número cuántico del oscilador que caracteriza la capa
 - I=N, N-2, ..., 1 ó 0: el momento angular permitido
- N=(2n-2)+1
- . La degeneración es $D_N=2\,\sum\,(2l+1)=(N+1)(N+2)$
- · Con capas llenas 2, 8, 20, 40, 70, 112, 168

Interacción espín-órbita

 Dado que la interacción nucleón-nucleón depende del espín (Tema 2), se introduce la corrección espín-órbita y uno de desplazamiento debido al momento angular orbital

$$h(r_i) = h_c(r_i) + a\vec{s} \cdot \overrightarrow{\ell} + b\overrightarrow{\ell}^2$$

· La interacción espín órbita genera el desdoble

$$E_{N\ell j} = E_N \left\{ \begin{array}{cc} +\frac{a}{2}l & j = l + \frac{1}{2} \\ -\frac{a}{2}(l+1) & j = l - \frac{1}{2} \end{array} \right.$$

• Se verifica aproximadamente: $E_{j-} - E_{j+} \simeq 10(2l+1)A^{-2/3}\,\mathrm{MeV}$

Niveles modelo de capas

 Se obtiene la siguiente estructura de niveles que corresponde con los números mágicos

 El potencial de Woods-Saxon proporciona una mejor descripción de los datos experimentales, pero la parte radial ha de ser resuelta numéricamente

Espín y paridad de los núcleos par-impar

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 13C: Z=6, N=7

Espín y paridad de los núcleos par-impar

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 13C: Z=6, N=7

Neutrones

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 13 C: Z=6, N=7 $J^{P}=1/2^{-}$

Protones

Neutrones

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 12C: Z=6, N=6

Neutrones

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 12C: Z=6, N=6 JP=0+

Todos los nucleones están apareados

- Hipótesis de core inerte
- · Ejemplos de llenado de capas:
 - 13 C: Z=6, N=7 $JP = 1/2^{-1}$
 - 170: Z=8, N=9

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 13 C: Z=6, N=7 $JP=1/2^{-}$
 - 170: Z=8, N=9

- Hipótesis de core inerte
- · Ejemplos de llenado de capas:
 - 13 C: Z=6, N=7 $JP = 1/2^{-}$
 - 170: Z=8, N=9JP = 5/2 +
 - 130: Z=8, N=5

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 13 C: Z=6, N=7 $JP=1/2^{-}$
 - 170: Z=8, N=9JP=5/2+
 - 130: Z=8, N=5

Estados excitados

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 13 C: Z=6, N=7 $J^{p}=1/2^{-}$
 - 170: Z=8, N=9JP=5/2+
 - 130: Z=8, N=5

$$JP = 3/2 -$$

Estados excitados

- Hipótesis de core inerte
- Ejemplos de llenado de capas:
 - 13 C: Z=6, N=7 $J^{p}=1/2^{-}$
 - 170: Z=8, N=9JP=5/2+
 - 130: Z=8, N=5

$$JP = 3/2 -$$

Ejemplo de estados excitados: Carbono-12

- Reglas de Nordheim
- . Número de Nordheim $\mathcal{N}=j_p-l_p+j_n-l_n$

• si
$$\mathcal{N} = 0 \Rightarrow J = |j_n - j_p|$$

• si
$$\mathcal{N} = \pm 1 \Rightarrow J = |j_n \mp j_p|$$

- ¿Paridad?
- Ejemplo: ³⁴P, *A*=*34*, *Z*=*15*, *N*=*19*. Los 15 neutrones llenan hasta la capa 1d_{5/2} quedando un protón en la capa siguiente 2s_{1/2}. Los 15 protones llenan hasta la capa 1d_{5/2} completa quedando un protón en la capa siguiente 2s_{1/2}. Los 19 neutrones llenan hasta la capa 2s_{1/2} completa quedando tres neutrones en la capa siguiente 1d_{3/2}, es decir, un hueco aislado. Estamos, por tanto, ante un núcleo impar-impar.

$$\mathcal{N} = j_p - l_p + j_n - l_n = 1/2 - 0 + 3/2 - 2 = 0$$
, luego $J = |j_n - j_p| = 1$.

Momento cuadrupolar nuclear

En el momento

$$\langle Q_{20} \rangle = \sqrt{\frac{16\pi}{5}} \langle jm \, | \, r^2 Y_{20} \, | jm \rangle = \frac{j(j+1) - 3m^2}{2j(j+1)} \langle r^2 \rangle$$

en donde $\langle r^2 \rangle = Q_0$ es el momento cuadrupolar intrínseco

• Si se trata de un núcleo con un protón aislado. Fijando j=m:

$$Q_{sp} = -\frac{2j-1}{2(j+1)} \langle r^2 \rangle \text{ y como se puede aproximar } \langle r^2 \rangle \simeq \frac{3}{5} R^2 \Rightarrow Q \sim A^{2/3},$$

prediciéndose valores comprendidos entre 0,015 b (A=10) y 0,5 b (A=220) que son entre 2 y 3 veces más pequeños que las medidas experimentales (con mayor diferencia para lantánidos y actínidos)

· Con un neutrón aislado se espera $\mathcal{Q}=0$ ya que el neutrón no tiene carga, sin embargo eso no es lo que ocurre

Modelo vibracional

Modos de vibración nuclear

- Al igual que en las moléculas hay modos vibracionales, también los hay en los núcleos
- · El modelo vibracional está inspirado en el de la gota líquida
- Se supone que en equilibrio el núcleo es esférico con radio R₀
- El núcleo es un fluido homogéneo y su forma queda descrita por las coordenadas de superficie $a_{\lambda\mu}$:

$$R(\theta, \phi) = R_0 \left[1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu}(t) Y_{\lambda\mu}(\theta, \phi) \right]$$

• Cada modo de vibración viene dado por λ y queda descrito por $2\lambda+1$ parámetros ligados por la invariancia rotacional. Dichos estados tienen $J=\lambda\hbar$ y paridad $\mathscr{P}=(-1)^{\lambda}$

Modos monopolar, dipolar y cuadrupolar

- Modo monopolar ($\lambda = 0$): excitación radial \rightarrow modo respiratorio
- Modo dipolar ($\lambda = 1$): existe cambio de forma en el núcleo
 - Isoscalar (I=0): desplazamiento del centro de masas
 - · Isovectorial (I=0): resonancia dipolar gigante ($J^P=1^-$). Oscilación los protones y neutrones en oposición
- Modo cuadrupolar ($\lambda=2$): Es el modo fundamental del modelo vibracional y da lugar a oscilaciones de formas no esféricas del núcleo. El núcleo oscila entre el estado prolato (Q>0) y el estado oblato (Q<0)
- Hay modos $\lambda > 2$

Modelo rotacional

Modelo rotacional

· Los núcleos con capas cerradas son esféricos

Modelo rotacional

- Los núcleos con capas cerradas son esféricos
- Los núcleos "alejados" de los mágicos se encuentran deformados por la acción de: 1) la fuerza nuclear de corto alcance, 2) la interacción coulombiana y 3) la fuerza centrífuga
- . La energía rotacional se define (con $J=I\omega$): $E_J=\frac{1}{2}I\omega^2=\frac{1}{2I}J^2$
- El hamiltoniano: $H = \sum_{i=1}^{3} \frac{1}{2I_i} J_i^2$
- . Si hay simetría axial ($I_1=I_2=I$): $H=\frac{1}{2I}\left(\vec{J}^2-\vec{J}_3^2\right)+\frac{1}{2I_3}\vec{J}_3^2$

Coordenadas intrínsecas vs. laboratorio

- Intrínsecas (1, 2, 3): $J_3 | JMK \rangle = \hbar K | JMK \rangle$ donde K es la proyección de J en el eje de simetría del núcleo
- · Laboratorio (x, y, z): $\vec{J}^2 | JMK \rangle = J(J+1)\hbar^2 | JMK \rangle y$

$$J_z | JMK \rangle = M\hbar | JMK \rangle$$

 Para cada estado intrínseco del núcleo se obtiene una banda rotacional:

$$E_J = \frac{\hbar^2}{2I}J(J+1) + E_K$$

Espectro rotacional

- La banda rotacional está determinada por el estado base K^P de la banda rotacional
- Si $K^P = 0^+$ entonces J = 0,2,4,... y P = +
- Si $K^P = 0^-$ entonces J = 1,3,5,... y P = -
- Si K > 0 y $P = \pm$ entonces $J = K, K + 1, K + 2, \dots$ y $P = \pm$

	KeV
5 ⁻ 10 ⁺	827 776
1-	732 680
8+	518
6+	307
4 +	148
2+ 0+ 238[]	45 0

Modelo de capas en núcleos deformados

- La existencia de deformación en los núcleos genera hace que el modelo de capas esférico precise ser mejorado
- Sea un núcleo deformado axialmente. El hamiltoniano es:

$$H = h_c + h_\beta + a \overrightarrow{\ell} \cdot \overrightarrow{s} + b \overrightarrow{\ell}^2$$

 \cdot con h_c conteniendo la parte cinemática y un potencial de oscilador armónico y

$$h_{\beta} = -\mu \omega_0^2 r^2 \beta Y_{20}$$

- representa la deformación debida a un campo cuadrupolar.
- · Los estados propios de este hamiltoniano son los orbitales de Nilsson

Orbitales de Nilsson

- El momento angular j ya no es un buen número cuántico
- · Se denomina Ω a la proyección del momento angular según el eje de simetría y m_j a la proyecciónde \vec{J} sobre el eje del laboratorio, que sigue siendo un buen número de cuántico Los estados de Nilsson se obtienen al desarrollar $|N\Omega\rangle = \sum_{\ell j} C_{N\ell j} |N\ell j\Omega\rangle$.
- donde los coeficientes $C_{N\ell j}$ dependen de la deformación nuclear eta
- · Para identificar un estado hacen falta 2 números cuánticos más
 - n_3 : $N = n_3 + n_1$, donde n_3 es la proyección de N según el eje de simetría
 - · λ : La proyección de $\overrightarrow{\ell}$ en el eje de simetría: $\lambda = \pm n_{\perp}, \pm (n_{\perp} 2), \ldots, \pm 1$ ó 0

. La energía es:
$$E_{Nn_3\Omega}=\sum_{i=1}^3 (n_i+1/2)\hbar\omega_i=(n_3+1/2)\hbar\omega_3+((N-n_3+1)\hbar\omega_\perp)$$

Núcleo medio

Respuestas

- Pregunta: ¿Qué ocurriría si la energía del último nivel fuera diferente para protones y neutrones en el modelo de Fermi? Decaimientos beta hasta que se igualaran
- Pregunta: ¿Paridad en las reglas de Nordheim? La paridad es un número cuántico multiplicativo, por lo que $\mathscr{P}=(-1)^{l_p}(-1)^{l_n}$ En el ejemplo del ³⁴P $\mathscr{P}=\mathscr{P}_p\mathscr{P}_n=(-1)^{l_p}(-1)^{l_n}=(-1)^0(-1)^2=+$

Resumen

- Números mágicos
- Modelos nucleares
 - Modelos microscópicos
 - Modelos de partícula independientes
 - Modelo de capas
 - Modelos colectivos
 - · Gas de Fermi
 - Modelo de la gota líquida
 - Modelo rotacional
 - Modelo vibracional
 - Modelo unificado