目 录

摘要		ii
Abstra	$\operatorname{\mathbf{ct}}$	iii
第一章	引言	1
第二章	PBPK 模型的建立	2
2.1	模型的实验与生理背景	2
2.2	模型的数学形式	3
2.3	PBPK 模型的求解	8
附录 A	代码	11
A.1	代码环境	11
附录 B	PBPK 模型物理量名称-含义对照表	12
参考文献	状	17
致谢		19

摘 要

这是我的中文摘要.

Abstract

This is my English abstract.

Keywords: 1; 2; 3 **CLC code:** O24

第一章 引言

双酚类物质 (Bisphenols,BPs) 是一种工业用化学物质,被大量用于生产聚碳酸酯及环氧树脂^[1].这两种可能会含有 BPs 的高分子物质又常被投入生产食品接触材料或其他日常使用材料,例如塑料杯,奶瓶,纸币,金属涂层等^[2].在日常生活中,BPs 通过皮肤渗透与口服摄入两种主要途径进入人体内环境,参与后续的分布与代谢.双酚 A(BPA),作为最早投入工业生产的 BPs,已被证实对人体具有毒性^[3].事实上,BPA 会对人体的多个系统 (如呼吸系统,神经系统,生殖系统)造成损害^[4].BPA 与双酚 S(BPS) 两种 BPs 经口服进入人体后,经消化系统来到小肠,并在此分别葡萄糖醛酸化为 BPA-g 与 BPS-g,葡萄糖醛酸化后的双酚物质会进入血液循环并最终随尿液排出体外;未葡萄糖醛酸化的 BPA 或 BPS 将会进入肝脏并在此被部分磷酸化为 BPA-s 或 BPS-s,部分 BPs 在肝脏仍会被葡萄糖醛酸化,这些衍生物与未发生反应的 BPs 都会直接进入血液循环并最终随尿液排出体外^[3,5].同时,在小肠或肝脏处进入血液循环的 BPs 会随血液进入人体的各个器官,如脑,生殖腺等.若 BPs 经由皮肤渗透进入人体,将会直接进入血液循环并跟随血液到达各个器官,其中进入小肠或肝脏的部分 BPs 将会根据所处位置被葡萄糖醛酸化或是被磷酸化.为了找寻比 BPA 更安全的替代品,研究 BPS 等双酚物质在人体中的代谢过程是有必要的^[6].

生理药代动力学模型 (Physiology-Based Pharmacokinetic Model, PBPK) 是药学中定量描述化学品在人体中吸收,分布,代谢,排泄过程的经典模型,常被用于化学品生态风险评价,人类健康风险评估以及药物开发 [7].PBPK 模型将包含血浆在内的对目标化学品特异性较强的靶点组织器官抽象为一个个"房室",以质量守恒定律和相关生化反应为基础定量计算目标化学品在各房室之间的交换与各房室之内的代谢过程 [8]. 当某些靶点组织器官的目标化学品含量难以实际测出时,PBTK 模型的结果能够提供一个良好的预测 [7]. 只需要确定 PBPK 模型中重要参数的数值,就能在脱离实际人体实验的情况下给出人体吸收目标化学品后靶点组织器官的化学品含量.

Yang 等人在 2015 年首次建立了使用人类参数的 BPA 在生物体内的 PBPK 模型,该模型基于口服摄入的吸收方式,共设置了 10 个仓室,分别为血浆,肝脏,脂肪,性腺,血流丰富组织,血流缓慢组织,大脑和皮肤,剩下两个仓室分别是 BPA-g 和 BPA-s 的反应仓室^[9]. Karrer 等人在 2018 年重新调整了此 PBPK 模型,提供了 BPA 的其他双酚类替代品的模型参数,并增加了通过皮肤渗透吸收 BPs 的情形^[10].Hu 等人在 2023 年对皮肤渗透模型进行了改进,在原本皮肤作为单独仓室的基础上将其分割成了五个小仓室,分别为表皮储仓,角质层,活性表皮,毛囊以及未参与渗透吸收的未暴露皮肤^[11]. 该文章设置了志愿者实验,利用 BPS 暴露后受试者尿液中 BPS 与 BPS-g 的含量来优化 PBPK 模型与皮肤仓室相关的三个参数,并使用敏感性与不确定性分析评估了修改后的 PBPK模型.

Hu 等人文章的参数优化部分中使用了传统的优化算法, 在计算机上运行的时间较久. 本文将在 其基础上利用神经网络模型对皮肤渗透吸收型 PBPK 模型内的三个目标参数做参数反演, 提升获 取最优参数的速度的同时提高参数的准确性; 并利用数值实验来评估神经网络模型的效果.

第二章 PBPK 模型的建立

Hu 等人^[11]在 github 中共享了论文中的数据以及部分代码^[12]. 共享中包含了 PBPK 模型和 参数优化所使用的受试者真实数据等,本章内容参照了这些工作. 该模型对多种双酚类物质都适用,本文后续只讨论双酚 S(BPS) 的情形,且只考虑皮肤暴露途径的外源 BPS 输入.

2.1 模型的实验与生理背景

 $\operatorname{Hu}^{[11]}$ 等人通过使用含有氘代 BPS(BPS-d8) 的热敏纸摩擦手指的方式令受试者暴露于 BPS. 受试者接触热敏纸共 $\frac{1}{6}h$, 脱离热敏纸后再等待 2h, $\frac{13}{6}h$ 时彻底清洗皮肤, 清空表皮储仓内的 BPS. 在接触实验开始的 72h, 受试者被要求每 4.3h 左右提供一次尿液样本, 以检测尿液中的 BPS 与 BPS-g 的含量 (不检测 BPS-s 的尿液含量, 因为缺少相应的检测试剂). 在另一个 BPS 人体接触实验中, Khmiri 等人[13] 同时监测了受试者的血液与尿液. 接触 BPS 起的前 2h 内每 0.25h 取样一次血液, 第 2 小时至第 8 小时内每 1h 取样一次血液, 之后分别在 10h, 24h, 48h 时取样一次血液. 尿液的取样节点不是固定的, 而是将接触 BPS 后 48h 分成了 11 个时段. 受试者在单个时段内的所有排尿都会被收集, 作为该时段标签下的一个整体取样.

根据 Hu 等人的文章^[11],从受试者与热敏纸接触时起,热敏纸内的 BPS 通过手指表皮储存进入毛囊和角质层,接着扩散进入活性表皮层,再通过毛囊和活性表皮层与内环境的交换进入体循环,平行分层皮肤仓室内的物质交换情况的图片形式如图2.1. 血浆携带 BPS 通过血液交换将其送入肝脏,脑,脂肪,性腺等组织器官. 部分 BPS 在肝脏反应为 BPS-g 或 BPS-s. 体内的 BPS-g 与 BPS-s不会再反应为其他物质,这两种物质会像始终未发生反应的 BPS 一样,最终随血液进入肾脏,通过尿液排出. 在只有皮肤暴露途径吸收外源 BPS 的情况下,不考虑 BPS 的肝肠循环过程,认为胃肠部不存在 BPS,且小肠不发生 BPS 葡萄苷酸化为 BPS-g 的反应. 整个 PBPK 模型的仓室间 BPS,BPS-g,BPS-s 的交换情况如图2.2所示.

图 2.1: 平行分层皮肤仓室的简化图解 (箭头代表 BPS 的可能运输方向)

2.2 模型的数学形式 3

图 2.2: BPS 人体内 PBPK 模型的简化图解 (箭头代表 BPS 的可能运输方向)

2.2 模型的数学形式

本文中的 PBPK 模型共有个 14 仓室,包括:暴露皮肤 {皮肤表皮储仓,角质层,毛囊,活性表皮层},胃,小肠,未暴露于化学品的皮肤,血浆,脂肪,性腺,肝脏,脑,血流丰富组织,血流缓慢组织.其中暴露的含义为"在实验中与 BPS 接触".根据各仓室之间的关系以及 BPS 在各仓室内的生化反应,得到 19 个解关于时间 t 变化的常微分方程与 1 个偏微分方程.这些微分方程共同构成了 BPS的带平行分层皮肤仓室的 PBPK 模型.

角质层内 BPS 的浓度 $\varphi(x,t)$

如 (2.1), 其中的偏微分方程本质上是一个扩散对流方程, 其解 φ 代表角质层 (Stratum Corneum) 中 BPs 含量, 自变量 x 代表角质层的深度, 自变量 t 代表时间, DSC 代表 BPS 在角质层中的有效扩散系数 (cm^2/h) , u_1 代表 BPS 随脱屑向皮肤表面转移的速度 (cm/min), T_{SC} 代表角质层的深度 (um), HSC_{well} 代表角质层和皮肤表皮储仓之间的分配系数, $C_{well}(t)$ 代表皮肤表皮储仓在 t 时刻的 BPS 浓度 $(nmol/cm^3)$, HSC_{VE} 代表角质层和活性表皮之间的分配系数, $C_{VE}(t)$ 代表活性表皮在 t 时刻的 BPS 浓度 $(nmol/cm^2)$.

$$\begin{cases}
\frac{\partial \varphi(x,t)}{\partial t^{2}} = DSC \frac{\partial^{2} \varphi(x,t)}{\partial x^{2}} + u_{1} \frac{\partial \varphi(x,t)}{\partial t}, & 0 \leq x \geq T_{SC}, \quad t \geq 0 \\
\varphi(0,t) = HSC_{well} \times C_{well}(t), & t \geq 0 \\
\varphi(T_{SC},t) = HSC_{VE} \times C_{VE}(t), & t \geq 0 \\
\varphi(x,0) = 0, & 0 \leq x \geq T_{SC}
\end{cases}$$
(2.1)

使用空间离散化的办法,将角质层视作一个长度为 T_{SC} 的线段,将该线段等距分为 10 段,共 11 个 节点 $\{x_i\}_{0\leq i\leq 10}$. 其中第一个节点 x_0 视作皮肤表皮储仓,最后一个节点 x_{10} 视作活性表皮. x_1 至 x_9

九个节点处 BPS 浓度的一阶与二阶空间导数值通过中心差分法近似表示:

$$\begin{cases}
\frac{\partial^2}{\partial x^2} \varphi(x_j, t) \approx \frac{\varphi_{j+1}(t) - 2\varphi_j(t) + \varphi_{j-1}(t)}{(\Delta x)^2} \\
\frac{\partial}{\partial x} \varphi(x_j, t) \approx \frac{\varphi_{j+1}(t) - \varphi_{j-1}(t)}{2\Delta x}
\end{cases}$$
(2.2)

整理后得到这九个节点处 BPS 浓度关于时间的一阶导数值如 (2.3), $i=2,3,\ldots,8$ 与 (2.4),(2.5). 其中 $SCDX=\frac{T_{SC}}{10}$, V_{well} 为暴露皮肤表面储仓沉积体积 (cm^3) , $A_{well}(t)$ 为皮肤表皮储仓在 t 时刻的 BPS 含量 (nmol), V_{TVE} 为暴露皮肤活性表皮层体积 (cm^3) , $A_{VE}(t)$ 为活性表皮在 t 时刻的 BPS 含量 (nmol). 节点 x_1 和 x_9 处的时间导数值与其他节点不同的原因是: 与它们相邻的部分涉及到皮肤的不同层室,需要利用 BPS 在不同层室组织间的分配系数来确定两个不同层室间 BPS 的转移情况.

$$\frac{dC_{SCi}(t)}{dt} = \left(\frac{DSC}{SCDX^2} - \frac{u_1}{2 \times SCDX}\right)C_{SCi-1}(t) - \frac{2 \times DSC}{SCDX^2}C_{SCi}(t) + \left(\frac{DSC}{SCDX^2} + \frac{u_1}{2 \times SCDX}\right)C_{SCi+1}(t). \tag{2.3}$$

$$\frac{dC_{SC1}(t)}{dt} = \left(\frac{DSC \times HSC_{well}}{V_{well} \times SCDX^2} - \frac{u_1 \times HSC_{well}}{V_{well} \times 2 \times SCDX}\right) A_{well}(t) - \frac{2 \times DSC}{SCDX^2} C_{SC1}(t) + \left(\frac{DSC}{SCDX^2} + \frac{u_1}{2 \times SCDX}\right) C_{SC2}(t). \quad (2.4)$$

$$\frac{dC_{SC9}(t)}{dt} = \left(\frac{DSC}{SCDX^2} - \frac{u_1}{2 \times SCDX}\right) C_{SC8}(t) - \frac{2 \times DSC}{SCDX^2} C_{SC9}(t) + \left(\frac{DSC \times HSC_{VE}}{V_{TVE} \times SCDX^2} - \frac{u_1 \times HSC_{VE}}{V_{TVE} \times 2 \times SCDX}\right) A_{VE}(t). \quad (2.5)$$

接下来介绍模型中余下的 19 个解关于时间 t 变化的常微分方程, 此部分内方程中出现的变量与常量的含义详情见附录B.

毛囊内 BPS 的含量 $A_{Fo}(t)$

见 (2.6), 方程等式两端为 $A_{Fo}(t)$ 的一阶导数. 在该 PBPK 模型中, 毛囊与皮肤表皮储仓和血液之间有着直接的物质交换, 故毛囊内 BPS 含量的增减与表皮储仓或血浆中 BPS 的含量有关, BPS 在宏观上遵循着顺浓度梯度运输的规则在不同组织内交换. 同时, 毛囊内 BPS 含量的增减会受到自身的限制, 当毛囊内 BPS 浓度高于血浆或表皮储仓中 BPS 浓度时, BPS 会顺浓度梯度进入浓度小的组织.

$$\begin{split} \frac{dA_{Fo}(t)}{dt} &= -\left(\frac{Pfo \times AEXP \times FEXP}{V_{TFo} \times HFo_{well}} + \frac{Qskin \times AEXP \times 0.25}{BSA \times V_{TFo} \times pskin}\right) A_{Fo}(t) \\ &+ \frac{Pfo \times AEXP \times FEXP}{V_{well}} A_{well}(t) + \frac{Qskin \times AEXP \times 0.25}{BSA \times V_{plasma}} A_{plasma}(t). \end{split} \tag{2.6}$$

皮肤表皮储仓内 BPS 的含量 $A_{well}(t)$

见 (2.7), 方程等式两端为 $A_{well}(t)$ 的一阶导数. 类似 (2.6), 等式右端表现出了表皮储仓与节点 x_1 处的角质层和毛囊之间的顺浓度梯度物质交换关系. 同时, 皮肤表皮储存作为在实验中

2.2 模型的数学形式 5

直接和外源 BPS 接触的部位,它要接受一个剂量为 $f_1(t)$ (单位:nmol) 的持续的外源 BPS 输入. 当 $t > Time_{add} = \frac{1}{6}h$ 时,皮肤停止接触外源 BPS, $f_1(t) = 0$. 等式右端有一个因数 ON(t), 当 $t \leq Time_{expose} = \frac{13}{6}h$ 时, ON(t) = 1,皮肤处于 BPS 暴露状态; 当 $t > Time_{expose}$ 时, ON(t) = 0,暴露过 BPS 的皮肤被彻底清洗,表皮储仓清空,后续 $A_{well}(t)$ 的值与一阶导数值都为 0.

$$\frac{dA_{well}(t)}{dt} = \left(\frac{DSC \times AEXP \times (1 - FEXP)}{SCDX}C_{SC1}(t) - \frac{Pfo \times AEXP \times FEXP}{V_{TFo} \times HFo_{well}}A_{Fo}(t) - \left(\left(\frac{DSC \times HSC_{well}}{V_{well} \times SCDX} - \frac{u_1 \times HSC_{well}}{V_{well}}\right) \times AEXP \times (1 - FEXP) - \frac{Pfo \times AEXP \times FEXP}{V_{well}}A_{well}(t) + f_1(t) \times ON(t). \quad (2.7)$$

活性表皮层内 BPS 的含量 $A_{VE}(t)$

见 (2.8), 方程等式两端为 $A_{VE}(t)$ 的一阶导数. 类似 (2.6), 等式右端表现出了活性表皮层与节点 x_9 处的角质层, 毛囊和血浆之间的顺浓度梯度物质交换关系.

$$\frac{dA_{VE}(t)}{dt} = \frac{DSC \times AEXP \times (1 - FEXP)}{SCDX} C_{SC9}(t) + \left(\left(\frac{-DSC \times HSC_{VE}}{V_{TVE} \times SCDX} - \frac{u_1 \times HSC_{VE}}{V_{TVE}} \right) \times AEXP \times (1 - FEXP) - \frac{Qskin \times AEXP \times 0.75}{BSA \times V_{TVE} \times pskin} \right) A_{VE}(t) + \frac{Qskin \times AEXP \times 0.75}{BSA \times V_{plasma}} A_{plasma}(t).$$

$$(2.8)$$

胃部 BPS 的含量 $A_{ST}(t)$

见 (2.9), 方程等式两端为 $A_{ST}(t)$ 的一阶导数. 等式右端的第一个加数代表胃部 BPS 向肝脏和小肠转移的过程, 第二个加数是剂量为 $f_2(t)$ (单位:nmol) 的通过口服吸收的外源 BPS. 但由于本文不考虑口服吸收 BPS 的情形, $f_2(t) \equiv 0$, 可认为胃部内始终不含有 BPS 或它的衍生物.

$$\frac{dA_{ST}(t)}{dt} = -(k_0 + ge)A_{ST}(t) + f_2(t). \tag{2.9}$$

未暴露于 BPS 的皮肤, 脂肪, 性腺, 脑部, 血流丰富组织, 血流缓慢组织的 BPS 的含量

见 (2.10) 至 (2.15), 各方程的等式两端为小标题中组织器官内 BPS 含量的一阶导数. 这些等式的右端一致地代表了对应组织器官与血浆之间的顺浓度梯度物质交换关系.

$$\frac{dA_{skin}(t)}{dt} = \frac{-Qskin \times (1 - \frac{AEXP}{BSA})}{(V_{skin} - V_{TSC} - V_{TVE} - V_{TFo}) \times pskin} A_{skin}(t) + \frac{Qskin \times (1 - \frac{AEXP}{BSA})}{V_{plasma}} A_{plasma}(t).$$
(2.10)

$$\frac{dA_{fat}(t)}{dt} = \frac{-Qfat}{V_{fat} \times pfat} A_{fat}(t) + \frac{Qfat}{V_{plasma}} A_{plasma}(t). \tag{2.11}$$

$$\frac{dA_{gonad}(t)}{dt} = \frac{-Qgonad}{V_{gonad} \times pgonad} A_{gonad}(t) + \frac{Qgonad}{V_{plasma}} A_{plasma}(t). \tag{2.12}$$

$$\frac{dA_{brain}(t)}{dt} = \frac{-Qbrain}{V_{brain} \times pbrain} A_{brain}(t) + \frac{Qbrain}{V_{plasma}} A_{plasma}(t). \tag{2.13}$$

$$\frac{dA_{rich}(t)}{dt} = \frac{-Qrich}{V_{rich} \times prich} A_{rich}(t) + \frac{Qrich}{V_{plasma}} A_{plasma}(t). \tag{2.14}$$

$$\frac{dA_{slow}(t)}{dt} = \frac{-Qslow}{V_{slow} \times pslow} A_{slow}(t) + \frac{Qslow}{V_{plasma}} A_{plasma}(t). \tag{2.15}$$

血浆内的 BPS 的含量

见 (2.16), 方程等式两端为血浆内 BPS 含量的一阶导数. 血浆是体循环的重要组成部分, 该 PBPK 模型内的各仓室由血浆连接起来, 几乎每个仓室都与血浆有直接的物质交换, BPS 从组织器 官内进入血浆, 血浆又携带着 BPS 进入各个组织器官. 等式的右端代表了血浆与毛囊, 活性表皮层, 未直接暴露于 BPS 的皮肤组织, 脂肪, 性腺, 脑部, 血流丰富组织, 血流缓慢组织, 肝脏之间的顺浓 度梯度物质交换关系. 等式右端除了 $A_{plasma}(t)$ 项外每一项都有因数 Qc-Kurinebps, 其中 Qc 是心脏血流速度 (L/h), Kurinebps 是 BPS 的尿液排泄参数 (L/h), 它们相减代表了每轮血液循环净剩的携带了 BPS 的血浆量.

$$\frac{dA_{plasma}(t)}{dt} = \frac{(Qc - Kurinebps) \times Qskin \times \frac{AEXP}{BSA} \times 0.25}{Qc \times V_{TFo} \times pskin} A_{Fo}(t)$$

$$+ \frac{(Qc - Kurinebps) \times Qskin \times \frac{AEXP}{BSA} \times 0.75}{Qc \times V_{TVE} \times pskin} A_{VE}(t)$$

$$+ \frac{(Qc - Kurinebps) \times Qskin \times (1 - \frac{AEXP}{BSA})}{Qc \times (V_{skin} - V_{TSC} - V_{TVE} - V_{TFo}) \times pskin} A_{skin}(t)$$

$$+ \frac{(Qc - Kurinebps) \times Qfat}{Qc \times V_{fat} \times pfat} A_{fat}(t) + \frac{(Qc - Kurinebps) \times Qgonad}{Qc \times V_{gonad} \times pgonad} A_{gonad}(t)$$

$$- \frac{Qc}{V_{plasma}} A_{plasma}(t) + \frac{(Qc - Kurinebps) \times Qbrain}{Qc \times V_{brain} \times pbrain} A_{brain}(t)$$

$$+ \frac{(Qc - Kurinebps) \times Qrich}{Qc \times V_{rich} \times prich} A_{rich}(t) + \frac{(Qc - Kurinebps) \times Qslow}{Qc \times V_{slow} \times pslow} A_{slow}(t)$$

$$+ \frac{(Qc - Kurinebps) \times Qliver}{Qc \times V_{liver} \times pliver} A_{liver}(t). \quad (2.16)$$

胃肠部的 BPS-g 的含量 $A_{GIBPSa}(t)$ 与胃肠部的 BPS-s 的含量 $A_{GIBPSs}(t)$

见 (2.17), 方程等式两端为胃肠部的 BPS-g 的含量的一阶导数. 等式右端的第二个加数代表了小肠内的 BPS 葡萄苷酸化为 BPS-g 的过程, 第一个加数代表了 BPS-g 从胃肠部进入血液的过程. 在本文中, 没有口服吸收途径, 认为胃肠部不存在 BPS-g 或 BPS-s. 对于 (2.18) 有类似的说明, 不同在于小肠内几乎不发生 BPS 硫酸盐化为 BPS-s 的反应.

$$\frac{dA_{GIBPSg}(t)}{dt} = -kGIing \times A_{GIBPSg}(t) + \frac{V maxgutg \times A_{SI}(t)}{enterocytes \times K mgutg + A_{SI}(t) + \frac{A_{SI}(t)^2}{enterocytes \times K sigutg}}.$$
(2.17)

$$\frac{dA_{GIBPSs}(t)}{dt} = -kGIins \times A_{GIBPSs}(t) + \frac{Vmaxguts \times A_{SI}(t)}{enterocytes \times Kmguts + A_{SI}(t)}.$$
 (2.18)

2.2 模型的数学形式 7

小肠的 BPS 的含量 $A_{SI}(t)$

见 (2.19), 方程等式两端为小肠的 BPS 的含量的一阶导数. 等式右端的第一个加数代表了口服 BPS 时胃部 BPS 进入小肠的过程, 第二个加数代表了小肠内部分 BPS 进入肝脏的过程, 后两个加数代表了部分 BPS 在小肠内葡萄苷酸化为 BPS-g 与硫酸盐化为 BPS-s 的反应过程 (小肠内几乎不发生 BPS 磷酸盐化反应, 此处对应的最大反应速率 *Vmaxguts* 非常小). 在本文中, 没有口服吸收 BPS 的途径, 认为小肠内不存在 BPS 及其衍生物.

$$\frac{dA_{SI}(t)}{dt} = ge \times A_{ST}(t) - k1 \times A_{SI}(t) - \frac{V maxgutg \times A_{SI}(t)}{enterocytes \times K mgutg + A_{SI}(t) + \frac{A_{SI}(t)^2}{enterocytes \times K sigutg}} - \frac{V maxguts \times A_{SI}(t)}{enterocytes \times K mguts + A_{SI}(t)}. \quad (2.19)$$

肝脏的 **BPS** 的含量 $A_{liver}(t)$

见 (2.20), 方程等式两端为肝脏的 BPS 的含量的一阶导数. 等式右端的前两个加数分别代表了口服 BPS 时胃部和小肠内 BPS 进入肝脏的过程, 第三第四个加数代表了肝脏与血浆之间的顺浓度梯度物质交换关系, 第五第六个加数代表了 BPS-g 与 BPS-s 引起肝脏内部分 BPS 发生肝肠循环的过程, 后两个加数代表了部分 BPS 在肝脏内葡萄苷酸化为 BPS-g 与硫酸盐化为 BPS-s 的反应过程.

$$\frac{dA_{liver}(t)}{dt} = k0 \times A_{ST}(t) + k1 \times A_{SI}(t) + \frac{Qliver}{V_{plasma}} A_{plasma}(t) - \frac{Qliver}{V_{liver} \times pliver} A_{liver}(t)$$

$$+ kenterobpsg \times A_{BPSg_delay}(t) + kenterobpss \times A_{BPSs_delay}(t)$$

$$- \frac{V maxliverg \times A_{liver}(t)}{V_{liver} \times pliver \times Kmliverg + A_{liver}(t)} - \frac{V maxlivers \times A_{liver}(t)}{V_{liver} \times pliver \times Kmlivers + A_{liver}(t)}. \quad (2.20)$$

发生肝肠循环/小肠内的 BPS-g/BPS-s 的量 $A_{BPSq-delay}(t)/A_{BPSs-delay}(t)$

见 (2.21), 方程等式两端为发生肝肠循环的 BPS-g 的量的一阶导数. 等式右端的第一个加数代表了胃肠部 BPS-g 进入血浆后再进入肝肠循环的过程, 第二个加数代表了肝肠循环中的 BPS-g 进入血液循环的过程, 最后一个加数代表了肝脏中 BPS 新转化成的 BPS-g 进入肝肠循环的过程. 对于发生肝肠循环的 BPS-s 的量的方程 (2.22), 有着完全一致的描述.

$$\frac{dA_{BPSg_delay}(t)}{dt} = met2g \times kGIing \times A_{GIBPSg}(t) - (kentero + k4_{IV} + kenterobpsg) \times A_{BPSg_delay}(t) + \frac{met2g \times V maxliverg \times A_{liver}(t)}{V_{liver} \times pliver \times Kmliverg + A_{liver}(t)}. \quad (2.21)$$

$$\frac{dA_{BPSs_delay}(t)}{dt} = met2s \times kGIins \times A_{GIBPSs}(t) - (kentero + k4_{IV} + kenterobpss) \times A_{BPSs_delay}(t) + \frac{met2s \times V maxlivers \times A_{liver}(t)}{V_{liver} \times pliver \times Kmlivers + A_{liver}(t)}. \quad (2.22)$$

人体内 BPS-g/BPS-s 的总含量 $A_{BPSg}(t)/A_{BPSs}(t)$

见 (2.23), 方程等式两端为人体内 BPS-g 的总含量的一阶导数. 等式右端的第一个加数代表了口服摄入 BPS 时, 胃肠部产生的 BPS-g 进入血液后未进入肝肠循环的部分 BPS-g, 第二个加数代

表了正在进行肝肠循环的 BPS-g, 第三个加数代表了 BPS-g 随尿液排出人体的过程, 最后一个加数代表了 BPS 通过肝脏转化成的 BPS-g 进入血液后未进入肝肠循环的部分 BPS-g.(2.24) 与之相似.

$$\frac{dA_{BPSg}(t)}{dt} = met1g \times kGIing \times A_{GIBPSg}(t) + kentero \times A_{BPSg_delay}(t) - \frac{Kurinebpsg}{Vbodyg + 10^{-34}} A_{BPSg}(t) + \frac{met1g \times Vmaxliverg \times A_{liver}(t)}{V_{liver} \times pliver \times Kmliverg + A_{liver}(t)}. \quad (2.23)$$

$$\begin{split} \frac{dA_{BPSs}(t)}{dt} &= met1s \times kGIins \times A_{GIBPSs}(t) + kentero \times A_{BPSs_delay}(t) - \frac{Kurinebpss}{Vbodys + 10^{-34}} A_{BPSs}(t) \\ &+ \frac{met1s \times Vmaxlivers \times A_{liver}(t)}{V_{liver} \times pliver \times Kmlivers + A_{liver}(t)}. \end{split} \tag{2.24}$$

综上,本文的 PBPK 模型的数学形式的主要部分为一个由 28 个常微分方程构成的微分方程组,其中每个方程的解关于时间 t 变化,且每个解的初值都是 0.除此之外,根据实验过程,还需计算尿液中的 BPS 与 BPS-g 的在 t 时刻的含量 $A_{urinebps}(t)$ 与 $A_{urinebps}(t)$, (2.25)与 (2.26)给出了它们的一阶导数值.这两个等式都不是常微分方程.

$$\frac{dA_{urinebps}(t)}{dt} = Kurinebps \times \left(\frac{Qskin \times \frac{AEXP}{BSA} \times 0.25}{Qc \times V_{TFo} \times pskin} A_{Fo}(t) + \frac{Qskin \times \frac{AEXP}{BSA} \times 0.75}{Qc \times V_{TVE} \times pskin} A_{VE}(t) \right)$$

$$+ \frac{Qskin \times (1 - \frac{AEXP}{BSA})}{Qc \times (V_{skin} - V_{TSC} - V_{TVE} - V_{TFo}) \times pskin} A_{skin}(t)$$

$$+ \frac{Qfat}{Qc \times V_{fat} \times pfat} A_{fat}(t) + \frac{Qgonad}{Qc \times V_{gonad} \times pgonad} A_{gonad}(t)$$

$$+ \frac{Qbrain}{Qc \times V_{brain} \times pbrain} A_{brain}(t) + \frac{Qrich}{Qc \times V_{rich} \times prich} A_{rich}(t)$$

$$+ \frac{Qslow}{Qc \times V_{slow} \times pslow} A_{slow}(t) + \frac{Qliver}{Qc \times V_{liver} \times pliver} A_{liver}(t) \right). \quad (2.25)$$

$$\frac{dA_{urinebpsg}(t)}{dt} = \frac{Kurinebpsg}{Vbodug + 10^{-34}} A_{BPSg}(t). \tag{2.26}$$

2.3 PBPK **模型的求解**

确定模型的数学形式后,将 Hu 等人 $^{[12]}$ 提供的数据相对应地代入至方程的各个参数,使用 Python 中的第三方库函数 scipy.integrate.odeint() 对微分方程组求解,该函数默认使用 LSODA 数值格式. 根据 Hu 等人 $^{[11]}$ 的实验,每个解的初值都设置为 0,时间网格设置为 range(0,75,0.005),时间步长为 0.005h,共 15000 个时间节点.每个方程的解都对应了一条人体某组织器官内 BPS(或 BPS-g, BPS-s) 的含量 (mmol) 或浓度 (mmol/L) 随时间变化的曲线.

图 2.3: 与前人 PBPK 模型计算出的结果的相对误差

图2.3展示了本文的模型数值求解结果与参考代码 $^{[12]}$ 中结果中 $A_{plasma}(t)$ 与 $A_{urinebps}(t)$ 的相对误差,可以看到第一个绝对误差曲线的最大值在 0.01% 附近,第二个绝对误差曲线的最大值在 0.002% 附近,说明对 Hu 等人 $^{[11]}$ 提出的模型的求解复现效果较好.分别运行 150 次前人模型求解代码与本文复现的模型求解代码,取单次运行的平均,得到本文的模型求解单次平均运行时间为 0.1086s,前人的单词平均运行时间为 18.1621s,本文复现代码的运行速度约为前人速度的 167 倍.

附录 A 代码

1.1 代码环境

附录 B PBPK 模型物理量名称-含义对照表

模型中待求解变量

$C_{SCi}(t)$	暴露皮肤组织的深度为 $i \times \frac{T_{SC}}{10}$ 的角质层在 t 时刻的 BPS 浓度 $(nmol/cm^3)$
$A_{Fo}(t)$	暴露皮肤组织的毛囊在 t 时刻的 BPS 含量 $(nmol)$
$A_{well}(t)$	暴露皮肤组织的表皮储仓在 t 时刻的 BPS 含量 $(nmol)$
$A_{VE}(t)$	暴露皮肤组织的活性表皮在 t 时刻的 BPS 含量 $(nmol)$
$A_{ST}(t)$	胃部在 t 时刻的 BPS 含量 $(nmol)$
$A_{skin}(t)$	未暴露皮肤组织在 t 时刻的 BPS 含量 $(nmol)$
$A_{fat}(t)$	脂肪组织在 t 时刻的 BPS 含量 $(nmol)$
$A_{gonad}(t)$	性腺在 t 时刻的 BPS 含量 $(nmol)$
$A_{plasma}(t)$	血浆在 t 时刻的 BPS 含量 $(nmol)$
$A_{brain}(t)$	脑部在 t 时刻的 BPS 含量 $(nmol)$
$A_{rich}(t)$	血流丰富组织在 t 时刻的 BPS 含量 $(nmol)$
$A_{slow}(t)$	血流缓慢组织在 t 时刻的 BPS 含量 $(nmol)$
$A_{GIBPSg}(t)$	胃肠部在 t 时刻的 BPS-g 含量 $(nmol)$
$A_{GIBPSs}(t)$	胃肠部在 t 时刻的 BPS-s 含量 $(nmol)$
$A_{SI}(t)$	小肠在 t 时刻的 BPS 含量 $(nmol)$
$A_{liver}(t)$	肝脏在 t 时刻的 BPS 含量 $(nmol)$
$A_{BPSg_delay}(t)$	发生了肝肠循环的 BPS-g 的量/小肠在 t 时刻的 BPS-g 含量 $(nmol)$
$A_{BPSs_delay}(t)$	发生了肝肠循环的 BPS-s 的量/小肠在 t 时刻的 BPS-s 含量 $(nmol)$
$A_{BPSg}(t)$	整个机体在 t 时刻的 BPS-g 含量 $(nmol)$
$A_{BPSs}(t)$	整个机体在 t 时刻的 BPS-s 含量 $(nmol)$
$A_{urinebps}(t)$	人体排出的尿液在 t 时刻累计的 BPS 含量 $(nmol)$
$A_{urinebpsg}(t)$	人体排出的尿液在 t 时刻累计的 BPS-g 含量 $(nmol)$

其他变量

$\varphi(x,t)$	暴露皮肤组织的角质层深度 x 处在 t 时刻的 BPS 浓度 $(nmol/cm^3)$,
$f_1(t)$	皮肤接触外源 BPS 的量 $(nmol)$, 当 $t > Time_{add}$ 时, $f_1(t) = 0$
ON(t)	布尔值, 当 $t \leq Time_{expose}$ 时, $ON(t) = 1$, 皮肤处于 BPS 暴露状态;
	当 $t > Time_{expose}$ 时, $ON(t) = 0$, 皮肤处于未暴露状态
$f_2(t)$	口服外源 BPS 的量 $(nmol)$, 本文中不考虑口服情况, $f_2(t) = 0$

待反演的参数

理化数据中的常量

 T_{SC} 角质层的深度 (um) SCDX角质层的深度的 $\frac{1}{10}(um)$ 角质层和皮肤表皮储仓之间的分配系数 HSC_{well} V_{well} 暴露皮肤组织的表面储仓体积 (L) 角质层和活性表皮之间的分配系数 HSC_{VE} 暴露皮肤组织的活性表皮层体积 (L) V_{TVE} AEXP暴露皮肤组织面积 (dm²) FEXP暴露皮肤组织中毛囊的面积分数 HFo_{well} 毛囊和皮肤表皮储仓之间的分配系数 暴露皮肤组织的毛囊体积 (L) V_{TFo} Qskin皮肤血液流速 (L/h)pskin皮肤-血浆分配系数 BSA人体皮肤表面积 (dm²) 血浆体积 (L) V_{plasma} k0口服给药时 BPS 从胃进入肝脏的系数 (h^{-1}) 口服给药时 BPS 从小肠进入肝脏的系数 (h^{-1}) k1口服给药时 BPS 由胃转移至小肠的系数 (h^{-1}) ge V_{TSC} 暴露皮肤组织的角质层体积 (L) 皮肤组织的体积 (L) V_{skin} Qfat脂肪组织血液流速 (L/h)脂肪组织的体积 (L) V_{fat} 脂肪-血浆分配系数 pfatQgonad性腺血液流速 (L/h)性腺的体积 (L) V_{gonad} 性腺-血浆分配系数 pgonadKurinebpsBPS 尿液排泄参数 (L/h)心脏血液流速 (L/h)Qc脑部血液流速 (L/h)Qbrain V_{brain} 脑部的体积 (L)脑部-血浆分配系数 pbrainQrich血流丰富组织血液流速 (L/h)血流丰富组织的体积 (L) V_{rich}

血流丰富组织-血浆分配系数 prich血流缓慢组织血液流速 (L/h)Qslow V_{slow} 血流缓慢组织的体积 (L)血流缓慢组织-血浆分配系数 pslowQliver肝脏血液流速 (L/h)肝脏的体积 (L) V_{liver} pliver肝脏-血浆分配系数 kGIing口服给药 BPS-g 从肠到血中的系数 (h^{-1}) 口服给药 BPS-s 从肠到血中的系数 (h^{-1}) kGIins肠道中 BPS 葡萄苷酸化的最大反应速度 (nmol/h) Vmaxqutq肠道中 BPS 硫酸盐化的最大反应速度 (nmol/h) V max guts小肠体积 (L)enterocytesKmgutg肠道中 BPS 葡萄苷酸化的米氏常数 (nmol) 肠道中 BPS 硫酸盐化的米氏常数 (nmol) KmgutsKsigutg肠道中葡萄苷酸化结合底物抑制常数 (nmol) kenterobpsqBPS-g 肝肠循环使得 BPS 发生循环的速率 (h^{-1}) BPS-s 肝肠循环使得 BPS 发生循环的速率 (h^{-1}) kenterobpss肝脏中 BPS 葡萄苷酸化的米氏常数 (nmol) KmliverqVmaxliverg肠道中 BPS 葡萄苷酸化的最大反应速度 (nmol/h) 肝脏中 BPS 硫酸盐化的米氏常数 (nmol) KmliversVmax livers肠道中 BPS 硫酸盐化的最大反应速度 (nmol/h) 肝脏中 BPS-g 进入血液中的比例 met1q肝脏中 BPS-s 进入血液中的比例 met1s肝脏中 BPS-g 进入肝肠循环的比例 met2q = 1 - met1qmet2s = 1 - met1s肝脏中 BPS-s 进入肝肠循环的比例 BPS-g 肝肠循环的速率 (h^{-1}) kenteroBPS-g 在肝肠循环中的粪便消除系数 (h^{-1}) $k4_{IV}$ KurinebpsgBPS-g 的尿液排泄参数 (L/h)Vbodyg参与 BPS-g 分布的组织体积 (L)KurinebpssBPS-s 的尿液排泄参数 (L/h)参与 BPS-s 分布的组织体积 (L) Vbodys

实验设置的常量

 $Time_{add} = \frac{1}{6}h$ 手指皮肤触摸热敏纸 (外源 BPS) 的时间 (h) $Time_{expose} = \frac{13}{6}h$ 手指皮肤表皮储仓内 BPS 含量大于 0 的时间 (h)

参考文献

- [1] VANDENBERG L N, HAUSER R, MARCUS M, et al. Human exposure to bisphenol a (bpa)[J/OL]. Reproductive Toxicology, 2007, 24(2): 139-177. https://www.sciencedirect.com/science/article/pii/S0890623807002377. DOI: https://doi.org/10.1016/j.reprotox.2007.07.010.
- [2] RUBIN B S. Bisphenol a: An endocrine disruptor with widespread exposure and multiple effects[J/OL]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(1): 27-34. https://www.sciencedirect.com/science/article/pii/S0960076011001063. DOI: https://doi.org/10.1016/j.jsbmb.2011.05.002.
- [3] 张益宁周颖. 双酚 A 的生理毒代动力学 (PBTK) 模型构建研究 [J]. 食品与营养科学, 2021.
- [4] CORBEL T, GAYRARD V, PUEL S, et al. Bidirectional placental transfer of bisphenol a and its main metabolite, bisphenol a-glucuronide, in the isolated perfused human placenta[J/OL]. Reproductive Toxicology, 2014, 47: 51-58. https://www.sciencedirect.com/science/article/pii/S0890623814001026. DOI: https://doi.org/10.1016/j.reprotox.2014.06.001.
- [5] 赫淑铭刘娴 傅建捷张爱茜 江桂斌. 双酚类化合物的生物代谢机理研究进展 [J/OL]. 环境化学, 2024, 43: 711. http://hjhx.rcees.ac.cn/article/id/648a6a10c59bc3243d453c96. DOI: 10.7524/j.issn.0254-6108.2023041401.
- [6] PELCH K, WIGNALL J A, GOLDSTONE A E, et al. A scoping review of the health and tox-icological activity of bisphenol a (bpa) structural analogues and functional alternatives[J/OL]. Toxicology, 2019, 424: 152235. https://www.sciencedirect.com/science/article/pii/S0300483 X18306668. DOI: https://doi.org/10.1016/j.tox.2019.06.006.
- [7] SHUYING ZHANG J C, ZhongYu WANG. Application of physiologically based toxicokinetics models in risk assessment of chemicals[J/OL]. Chinese Science Bulletin, 2017, 62(35): 4139-4150. http://www.sciengine.com/publisher/ScienceChinaPress/journal/ChineseScienceBulletin/62/35/10.1360/N972017-00886. DOI: https://doi.org/10.1360/N972017-00886.
- [8] 孙晋都. 纳米银体内外动力学研究及生理毒物动力学模型 (PBTK) 构建 [D]. 南京, 江苏: 东南大学, 2017.
- [9] YANG X, DOERGE D R, TEEGUARDEN J G, et al. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol a[J/OL]. Toxicology and Applied Pharmacology, 2015, 289(3): 442-456. https://www.sciencedirect.com/science/article/pii/S0041008X15301198. DOI: https://doi.org/10.1016/j.taap.2015.10.016.
- [10] KARRER C, ROISS T, VON GOETZ N, et al. Physiologically based pharmacokinetic (pbpk) modeling of the bisphenols bpa, bps, bpf, and bpaf with new experimental metabolic param-

参考文献 17

eters: Comparing the pharmacokinetic behavior of bpa with its substitutes[J/OL]. Environmental Health Perspectives, 2018, 126(7): 077002. https://ehp.niehs.nih.gov/doi/abs/10.1289/EHP2739.

- [11] HU M, ZHANG Z, ZHANG Y, et al. Development of human dermal pbpk models for the bisphenols bpa, bps, bpf, and bpaf with parallel-layered skin compartment: Basing on dermal administration studies in humans[J/OL]. Science of The Total Environment, 2023, 868: 161639. https://www.sciencedirect.com/science/article/pii/S0048969723002541. DOI: https://doi.org/10.1016/j.scitotenv.2023.161639.
- [12] YINGZHOU8. Pbk[EB/OL]. 2022. https://github.com/YingZhou8/PBK.
- [13] KHMIRI I, CôTé J, MANTHA M, et al. Toxicokinetics of bisphenol-s and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data[J/OL]. Environment International, 2020, 138: 105644. https://www.sciencedirect.com/science/article/pii/S0160412019349967. DOI: https://doi.org/10.1016/j.envint.2020.105644.

致 谢

致谢