

Suppose $X_n \backsim Poisson(n)$, Show that $\sqrt{X_n} - \sqrt{n} \Rightarrow N(0, 1/4)$

an edit has been made to this post; click to load

Suppose $X_n \backsim Poisson(n)$, Show that $\sqrt{X_n} - \sqrt{n} \Rightarrow N(0, 1/4)$.

I already know that $(X_n-n)/\sqrt{n} \Rightarrow N(0,1)$. How to do next to go through the proof?

(probability) (probability-theory) (probability-distributions)

asked 37 mins ago

2 Answers

Set
$$Y_n = rac{X_n}{n}$$
, then you already know $\sqrt{n}(Y_n-1) o \mathcal{N}(0,1)$.

Setting $g(x) = \sqrt{n}$, the delta method yields

$$\sqrt{n}(g(Y_n)-g(1)) o \mathcal{N}(0,g'(1)^2).$$

Now note that $g'(x) = \frac{1}{2\sqrt{x}}$, i.e. $g'(1)^2 = \frac{1}{4}$ and

$$\sqrt{n}(g(Y_n)-g(1))=\sqrt{n}\left(\sqrt{rac{\overline{X_n}}{n}}-1
ight)=\sqrt{\overline{X_n}}-\sqrt{n}\,.$$

answered 28 mins ago

Dominik

Hint: Apply the Delta method with $\frac{\sqrt{n}}{2}$ or

$$g(x) = \sqrt{x}$$
, on

$$(X_n-n)/\sqrt{n}=\sqrt{n}\left(rac{X_n}{n}-1
ight)\stackrel{d}{
ightarrow}\mathcal{N}(0,1)$$

answered 30 mins ago

