# Решение алгебраической проблемы собственных значений итерационными методами

Метод обратных итераций со сдвигом

Шерухин Кирилл

5030102/30001 СПБПУ 2024

# Содержание

| 1 | Формулировка задачи и ее формализация                                                            | 2           |
|---|--------------------------------------------------------------------------------------------------|-------------|
| 2 | Алгоритм и условия его применимости         2.1 МОИ со сдвигом          2.2 Условия применимости | 2<br>2<br>2 |
| 3 | Предварительный анализ задачи                                                                    | 3           |
| 4 | Тестовый пример                                                                                  | 3           |
| 5 | Подготовка контрольных тестов                                                                    | 4           |
| 6 | Модульная структура программы                                                                    | 4           |
| 7 | Исследование метода                                                                              | 5           |
| 8 | Визуальные приложения                                                                            | 6           |
| 9 | Выволы                                                                                           | 7           |

## 1 Формулировка задачи и ее формализация

Дано:

- ullet Невырожденная произвольная матрица с различными собственными числами  $A\in\mathbb{R}^{n imes n}.$
- ullet Приближенное значение одного из собственных чисел  $ilde{\lambda}$
- Число  $\epsilon > 0$ , означающее допустимую ошибку собственного числа.

Цель: Уточнить значение  $\tilde{\lambda}$  до значения соответствующего ему собственного числа с максимальной ошибкой  $\epsilon$ 

План выполнения: Используя метод обратных итераций со сдвигом уточнить собственное число до необходимой погрешности.

# 2 Алгоритм и условия его применимости

#### 2.1 МОИ со сдвигом

Используемые формулы:

$$(A - \tilde{\lambda}E)y^{(k)} = \bar{y}^{(k-1)}$$
$$\bar{y}^{(k)} = \frac{y^{(k)}}{||y^{(k)}||_{\infty}}$$
$$\lambda^{(k)} = \tilde{\lambda} + \left\langle \frac{\bar{y}^{(k-1)}}{y^{(k)}} \right\rangle$$

$$x^{(k)} \neq \mathbb{O}$$

$$|\lambda^* - \lambda^{(k)}| \leq \frac{||Ax^{(k)} - \lambda^{(k)}x^{(k)}||_2}{||x^{(k)}||_2}$$

#### 2.2 Условия применимости

Если  $\tilde{\lambda}$  точно совпадает с собственным числом, то перед применением метода его надо огрубить. Матрица A должна быть матрицей простой структуры.

#### 3 Предварительный анализ задачи

Несмотря на то, что для сходимости метода A достаточно быть матрицей простой структуры, для удобства исследования предпочтём генерировать матрицы, все собственные числа которых различны. Это можно сделать по формуле:

$$A := Q * \operatorname{diag}(\lambda_0, \cdots, \lambda_n) * Q^T$$

Где Q — ортогональная матрица полученная из произвольной матрицы  $n \times n$  QR разложением. Зная собственные числа матрицы, можно легко запускать итерационный процесс, огрубляя любое из них.

#### 4 Тестовый пример

### 5 Подготовка контрольных тестов

Исследовать алгоритм будем по следующим характеристикам:

- 1. Зависимость относительной погрешности решения от числа итераций для матриц с разной разделимостью собственных чисел.
  - Аналог разделимости собственных чисел для МОИ со сдвигом введём как  $\mu \coloneqq \left|\frac{\tilde{\lambda}_i \lambda_i}{\tilde{\lambda}_i \lambda_{i_0}}\right|$ , где  $\lambda_{i_0}$  такое что  $i_0 \neq i$  &  $min(|\tilde{\lambda}_i \lambda_{i_0}|)$
  - Тестируется на 6 случайных матрицах  $10 \times 10$  с разделимостями 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 до точности  $\epsilon = 10^{-13}$ .
  - Ожидается, что матрицам с меньшими  $\mu$  потребуется меньше итераций для достижения ошибки  $\epsilon.$
- 2. Зависимость фактической ошибки решения от заданного  $\epsilon$ .
  - Тестируем для  $\epsilon = 10^{-i}, i = 0..12$  на матрице с  $\mu = 0.5$ .
  - Ожидается достижимость заданной точности.

#### 6 Модульная структура программы

Программный код оформим на языке С, он будет состоять из:

Самого алгоритма МОИ со сдвигом, принимающего матрицу коэффициентов, первое приближение X, первое приближение  $\lambda$ , заданную погрешность  $\epsilon$ , параметры для логирования и как выходные параметры — собственное число:

```
double IIM(Matrix_t eq, double* X0, double lambda, double eps, FILE* f, char to_log);
```

Метода решающего задачу для матрицы записанной в бинарном файле filename и логирующего процесс решения в csv файл resName:

```
void Sol(char* filename, char* resName, double eps);
```

Метода, тестирующего достижимость заданной погрешности и логирующего результаты в csv файл resName:

```
void Conv(char* filename, char* resName);
```

# 7 Исследование метода

Из рис. 1 видно, что для всех матриц итерационный метод уточняет  $\tilde{\lambda}$  до необходимой погрешности. Как и ожидалось матрицы с большим  $\mu$  сходятся дольше, это стоило ожидать из теоретической ассимптотики приближений:

$$x^{(k)} = \alpha_i w^{(i)} \left[ 1 + \mathcal{O}\left( \left| \frac{\tilde{\lambda}_i - \lambda_i}{\tilde{\lambda}_i - \lambda_{i_0}} \right|^k \right) \right]$$

Из рис. 2 видим, что заданная точность достигается для всех  $\epsilon$ . Это необходимое условие для того, чтобы метод был применим в практичеких задачах

# 8 Визуальные приложения



Рис. 1: Зависимость ошибки от итерации для различных  $\mu$ 



Рис. 2: Достижимость заданной ошибки  $\epsilon$ 

## 9 Выводы

Метод обратных итераций со сдвигом — хороший метод для решения частичной АПСЧ, он позволяет не только найти собственный вектор, но и соответствующее ему собственное значение. Скорость его сходимости превосходит скорость степенного метода, а так же зависит от близости  $\tilde{\lambda}$  к точному значению. Стоит заметить, что плохое первое приближение собственного вектора может замедлить алгоритм.

Разделимость корней влияет на скорость сходимости только в том плане, что  $\tilde{\lambda}$  должно находиться ближе к искомому собственному числу, чем к какому-либо другому, иначе метод сойдётся не туда. Оценивать стоит не разделимостью, а значением  $\mu$ , которое мы ввели. Благодаря LU разложению, применяемому в алгоритме, МОИ со сдвигом идеально подходит для АПСЧ треугольных матриц.