Schwartz—Zippel lemma による hash の解析

noshi91

2023年12月3日

1 概要

Schwartz—Zippel lemma に基づく様々な hash や乱択アルゴリズムの解析を行う。

2 Schwartz–Zippel lemma

Schwartz—Zippel lemma を用いると、多項式にランダムな値を代入したときに 0 になる確率を上から押さえることが出来る。

定理 1. (Schwartz—Zippel lemma) F を体, Q を 0 でない F 上の d 次の多変数多項式、S を F の有限部分集合とする。Q の各変数に S から一様ランダムかつ独立に選んだ値を代入すると、それが 0 になる確率は d/|S| 以下である。

特に競技プログラミングで頻出の状況に限定するならば、以下のようになる。

系 2. p を素数, Q を 0 でない \mathbb{F}_p 上の d 次の多変数多項式とする。Q の各変数に \mathbb{F}_p から一様ランダムかつ 独立に選んだ値を代入すると、それが 0 になる確率は d/p 以下である。

3 rolling hash

rolling hash は素数 p, 基数 b, 数列 S に対して以下のように定義される。

$$\operatorname{hash}(S) \coloneqq \left(\sum_{0 \le i < |S|} S_i b^i\right) \bmod p$$

ただしS の各要素は[1,p) に含まれる整数とする。

この hash が衝突する、すなわち相異なる数列 S,T について hash(S)= hash(T) となる確率を考える。利便のため、 $n:=\max\{|S|,|T|\}$ とする。着目することは、hash(S) が \mathbb{F}_p 上の |S|-1 次の 1 変数多項式に b を代入した形になっている事である。すなわち、多項式

$$R(x) \coloneqq \sum_{0 \le i < n} (S_i - T_i) x^i$$

を考えると $R(b) = 0 \Leftrightarrow \text{hash}(S) = \text{hash}(T)$ 。また、 $S \neq T$ ならばある i が存在して $S_i \neq T_i$ であるから、R

は 0 でない。よって系 2 を適用することで、b を一様ランダムに選んだ時衝突の確率が n/p 以下になることが言える。

4 一般化

前節の議論を一般化し、集合 S の元に対する hash を設計することを考える。 $Q: S \to \mathbb{F}_p[x_0, x_1, \ldots]$ を用いて hash: $S \to \mathbb{F}_p$ を hash $(s) \coloneqq Q(s)(b_0, b_1, \ldots)$ と定義すると、系 2 の適用の為には $s, t \in S$ について $s \neq t \implies Q(s) - Q(t) \neq 0$ が満たされている必要がある。これは Q が単射であれば十分である。 まとめると以下のようになる。

定理 3. 素数 p, 一様ランダムかつ独立な \mathbb{F}_p の値 b_0, b_1, \ldots , 単射 $Q: S \to \mathbb{F}_p[x_0, x_1, \ldots]$ について、hash: $S \to \mathbb{F}_p$ を hash $(s) \coloneqq Q(s)(b_0, b_1, \ldots)$ と定めると

$$\forall s,t \in S, s \neq t \implies \Pr[\mathsf{hash}(s) = \mathsf{hash}(t)] \leq \frac{\max\{\deg(Q(s)), \deg(Q(t))\}}{p}$$

Q は $Q(s)b_0, b_1, \ldots$ が効率的に計算可能かつ $\deg(Q(s))$ が小さくなるように選択することが望ましい。

5 多重集合に対する hash

台集合 S と重複度 $m\colon S\to \mathbb{F}_p$ の組に対する hash を考える。 $Q(S,m):=\sum_{s\in S}m(s)x_s$ と定義すれば定理 3 を適用して hash 関数が得られ、衝突の確率は 1/p 以下。この hash は hash(S)+ hash(T)= hash(S+T) が成り立つため、集合同士の重複度込みの和の hash が効率的に計算できるという特徴がある。

6 集合に対する hash

本節は zobrist hashing [1] と同様の手法で集合に対する hash を定義する。

 $Q(S)\coloneqq\sum_{s\in S}x_s$ と定義し、これを \mathbb{F}_{2^w} 上で考える。 2^w は素数ではないが \mathbb{F}_{2^w} は体であるから定理 3 と同様の事実が成り立ち、得られる hash 関数の衝突の確率は 2^{-w} 以下であると分かる。 \mathbb{F}_{2^w} 上の加法は整数の xor と同型であるから、効率的に計算できる。この hash は $\mathrm{hash}(S)+\mathrm{hash}(T)=\mathrm{hash}(S\bigtriangleup T)$ が成り立つ ため、集合同士の対称差の hash が効率的に計算できるという特徴がある。

7 2D rolling hash

rolling hash と同様にして、2次元のデータに対する hash も作成することが出来る。

$$Q(A) \coloneqq \sum_{0 \le i < n} \sum_{0 \le j < m} A_{i,j} x^i y^j$$

と定義し、定理3を適用すればよい。衝突の確率は(n+m)/p以下である。

8 行列積の検算

本節は Freivalds' algorithm [2] と類似したアルゴリズムを説明する。

 \mathbb{F}_p 上の $n \times n$ 行列 A,B,C があり、AB=C かどうかを判定する問題を考える。結論から言えば、ランダムな n 次元ベクトル v を用いて ABv=Cv を判定すればよい。等しくない場合確実に $AB \neq C$ であり、等しければ高い確率で AB=C であることが期待される。

 $D\coloneqq AB-C$ とすると $ABv=Cv\Leftrightarrow Dv=\mathbf{0}$ 。v の各要素 v_i を変数と見ると、もし $D\neq O$ ならばある i が存在して $(Dv)_i\neq 0$ である。そこで 1 次の n 変数多項式となる $(Dv)_i$ に対して系 2 を適用することで、誤って True と判定する確率は 1/p 以下という結果を得る。

9 順序無し根付き木の hash

本節は[3]の内容と概ね同一である。

まず、根付き木から多項式への写像 Q を以下のように定める。

$$Q(t) = \prod_i (x_d + Q(t_i)) \quad (d$$
 は t の深さ, t_i は t の子)

補題 $\mathbf{4.}\ Q$ は単射である

証明. Q(t) から t が一意に定まることを示す。

- (i) Q(t) が変数を含まない場合 Q(t)=1 であり t は単一のノードからなる。
- (ii) Q(t) が変数を含む場合

d を x_d が Q(t) に含まれるような最大の d とする。t は深さ d の木であり、 t_i を t の根の子とすれば $Q(t) = \prod_i (x_d + Q(t_i))$ と表現できる。この因数分解は一意であるから、各 $Q(t_i)$ に再帰的に補題 4 を 適用する。

よって定理 3 から hash 関数を得る。衝突の確率は n/p 以下である (n は t の頂点数)。

参考文献

- [1] Zobrist hashing Wikipedia
- [2] Freivalds' algorithm Wikipedia
- [3] 根付き木のハッシュ あなたは嘘つきですかと聞かれたら「YES」と答えるブログ

3