Analiza danych - filmy Tarantino

Konrad Maciejewski

2023-06-03

Opis zbioru

Dane są pobrane z repozytorium na GitHubie https://github.com/fivethirtyeight/data/tree/master/tarantino. Są to dane z obserwacji i dotyczą ilości poszczególnych przekleństw oraz śmierci w wybranych filmach reżyserowanych przez Quentina Tarantino.

Analiza eksploracyjna

Dwa przedstawione poniżej wykresy pokazują czas i ilość występowania śmierci bohaterów oraz przekleństw w poszczególnych filmach:

Trzeba zauważyć, że z wykresami są jednak problemy – jeżeli wiele bohaterów umiera w bardzo krótkim czasie, albo jeśli ktoś puści wiązankę, na wykresie widać tylko jeden punkt. Dla przykładu, z wykresu wynika, że w filmie "Kill Bill: Vol. 2" umierają tylko trzy osoby, kiedy w rzeczywistości ginie jedenaście.

Kolejnym problemem są różne czasy trwania filmów. Patrząc na wykres, można by (niepoprawnie) wywnioskować, że w filmie "Reservoir Dogs" około setnej minuty bohaterzy przechodzą przemianę i przestają przeklinać. Oczywiście nie dzieje się tak, tylko kończy się film. Poniższa tabela opisuje dokładne wartości danych w celu sprawniejszej interpretacji:

##	Film	Przekleństwa	Czas trwania	. Częstotliwość
##	Reservoir Dogs	421	95.40	4.4129979
##	Pulp Fiction	469	148.15	3.1657104
##	Jackie Brown	368	143.13	2.5710892
##	Django Unchained	262	160.45	1.6329074
##	Kill Bill: Vol. 2	69	121.12	0.5696830
##	Kill Bill: Vol. 1	57	100.10	0.5694306
##	Inglorious Basterds	58	148.73	0.3899684
##	Średnia ilość przekle	eństw: 243.428	36	
##	Odchylenie standardow	ve ilości prze	ekleństw: 181	.5864
##	Film	Śmierci Czas	trwania Częs	stotliwość
##	Kill Bill: Vol. 1	63	100.10	.62937063
##	Inglorious Basterds	48	148.73	.32273247
##	Django Unchained	47	160.45	.29292615
##	Reservoir Dogs	10	95.40	10482180
##	Kill Bill: Vol. 2	11	121.12	0.09081902
##	Pulp Fiction	7	148.15	0.04724941

Jackie Brown 4 143.13 0.02794662

Średnia ilość śmierci: 27.14286

Odchylenie standardowe ilości śmierci: 24.53181

W tabeli kolumna "Czas trwania" nie jest rzeczywistym czasem trwania filmu, tylko ostatnim wystąpieniem przekleństwa/śmierci. Nie stanowi to jednak istotnej różnicy w przypadku większości filmów. Tarantino lubi kończyć swoje filmy czyjąś śmiercią, a bohaterzy przeklinają nieustannie. Największą różnicą pomiędzy rzeczywistym czasem trwania, a tym z tabelki jest 11 minut dla filmu "Kill Bill: Vol. 1". Nie zmienia to jednak kolejności po posortowaniu. Kolumna "Częstotliwość" jest wynikiem podzielenia drugiej kolumny przez trzecią.

Poniższe wykresy zostały przeskalowane według kolumny "Czas trwania" do skali (0-1: od początku do końca filmu) na osi X:

Warto zauważyć, że analizując te wykresy można wyodrębnić poszczególne akty filmów.

Dodatkowo, kolejny wykres przedswaia ile razy padło każde przekleństwo:

Hipoteza 1: "Im więcej przekleństw w filmie, tym więcej śmierci."

Poniżej przedstawiona tabela pokazuje ilości przekleństw i śmierci w filmach:

##	Film	Przekleństwa	Śmierci
##	Django Unchained	262	47
##	Inglorious Basterds	58	48
##	Jackie Brown	368	4
##	Kill Bill: Vol. 1	57	63
##	Kill Bill: Vol. 2	69	11
##	Pulp Fiction	469	7
##	Reservoir Dogs	421	10

Na podstawie tabeli można obliczyć współczynnik korelacji:

Trzeba też wykonać test sprawdzajączy, czy zmienne sa skorelowane:

Hipoteza zerowa: $\rho = 0$

Hipoteza alternatywna: $\rho \neq 0$

Używamy statystyki t z pięcioma stopniami swobody:

$$T_{n-2} = \frac{r_{xy}}{\sqrt{1 - r_{xy}^2}} \sqrt{n - 2}$$

czego wynikiem jest:

```
##
## Pearson's product-moment correlation
##
## data: death_counts$type and word_counts$type
## t = -2.004, df = 5, p-value = 0.1014
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9453410 0.1721916
## sample estimates:
## cor
## -0.6674097
```

Według testu nie ma statystycznie istotnej podstawy do odrzucenia hipotezy zerowej. Istnieje jednak jakaś nieistotna korelacja wskazująca, że im więcej przekleństw, tym mniej śmierci. Można ją zobaczyc na wykresie:

Hipoteza 2: "W drugim akcie występuje najmniej przekleństw."

Poniższa tabela pokazuje ilość przekleństw w każdym akcie filmów:

```
## # A tibble: 7 x 4
                             `1`
                                   `2`
                                         `3`
##
     movie
     <chr>>
##
                          <int> <int> <int>
## 1 Django Unchained
                             56
                                    85
                                         121
## 2 Inglorious Basterds
                              18
                                    13
                                          27
## 3 Jackie Brown
                            153
                                    84
                                         131
## 4 Kill Bill: Vol. 1
                              39
                                    15
                                           3
```

```
## 5 Kill Bill: Vol. 2 31 9 29
## 6 Pulp Fiction 135 99 235
## 7 Reservoir Dogs 144 125 152
```

W celu sprawdzenia hipotezy trzeba wykonać dwa testy.

Test pierwszy:

Hipoteza zerowa: "Ilość przekleństw w pierwszym akcie jest równa lub mniejsza, niż w akcie drugim." Hipoteza alternatywna: "Ilość przekleństw w pierwszym akcie jest większa, niż w akcie drugim."

Poziom istotności: $\alpha = 0.05$ Test t dla dwóch próbek:

Podsumowując, na podstawie wyników testu t, nie mamy wystarczających dowodów, aby stwierdzić, że istnieje statystycznie istotna różnica między średnimi ilości przekleństw w pierwszym akcie a drugim akcie.

Test drugi:

Hipoteza zerowa: "Ilość przekleństw w trzecim akcie jest równa lub mniejsza, niż w akcie drugim."

Hipoteza alternatywna: "Ilość przekleństw w trzecim akcie jest większa, niż w akcie drugim."

Poziom istotności: $\alpha = 0.05$ Test t dla dwóch próbek:

Podsumowując, na podstawie wyników testu t, nie mamy wystarczających dowodów, aby stwierdzić, że istnieje statystycznie istotna różnica między średnimi ilości przekleństw w akcie 3 a akcie 2.

Na podstawie obu testów nie można potwierdzić postawionej hipotezy.

Na koniec można spojrzeć na wykres, wyraźnie widać na nim podział na akty:

