QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

arXiv:1806.10293, Kalashnikov et al, 2018.

Sumamrized by Hyecheol (Jerry) Jang

Department of Computer Sciences University of Wisconsin–Madison

RL Paper Study, Jun. 29. 2020

Table of Contents

Motivation

2 Goal

• Usually, Robots are good at repetitive tasks (e.g. Assembly Line)

- Usually, Robots are good at repetitive tasks (e.g. Assembly Line)
- Want to make Robots that identifies surroundings and behave accordingly, but it is difficult

- Usually, Robots are good at repetitive tasks (e.g. Assembly Line)
- Want to make Robots that identifies surroundings and behave accordingly, but it is difficult
 - Deep Learning
 Provide ability to handling real-world scenarios
 - Reinforcement Learning
 Provide ability to make decision in long-term, using previous experiences in complex and robust scenarios

- Usually, Robots are good at **repetitive tasks** (e.g. Assembly Line)
- Want to make Robots that identifies surroundings and behave accordingly, but it is difficult
 - Deep Learning
 Provide ability to handling real-world scenarios
 - Reinforcement Learning
 Provide ability to make decision in long-term, using previous experiences in complex and robust scenarios
- Combining two techniques
 - Able to learn policy continuously from their experience
 - No need for manual engineering, use data they collects

• Varience in visual and physical property of objects

- Varience in visual and physical property of objects
 - Hardness of object (Soft or Hard)
 - Surface Characteristics (Slippery, Sticky, ...)
 - Color Variation
 - Shape Variation
 - . . .

- Varience in visual and physical property of objects
 - Hardness of object (Soft or Hard)
 - Surface Characteristics (Slippery, Sticky, ...)
 - Color Variation
 - Shape Variation
 - . . .
- Noise of sensors

- Varience in visual and physical property of objects
 - Hardness of object (Soft or Hard)
 - Surface Characteristics (Slippery, Sticky, ...)
 - Color Variation
 - Shape Variation
 - . . .
- **Noise** of sensors
 - ⇒ Still hard to handle though we have sufficiently large training set
 - → Collecting those training set is expensive (real experiments)

- Varience in visual and physical property of objects
 - Hardness of object (Soft or Hard)
 - Surface Characteristics (Slippery, Sticky, . . .)
 - Color Variation
 - Shape Variation
 - . . .
- **Noise** of sensors
 - ⇒ Still hard to handle though we have sufficiently large training set
 - ⇒ Collecting those training set is expensive (real experiments)
 - ⇒ Lots of researchers focused on reusing pervious experiences

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - \Rightarrow Use **Grasping** to achieve *generalization*

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - ⇒ Use Grasping to achieve generalization
- Approached the grasping task as predicting a grasp pose
 - **1** Observe the scene (*Normally, using a depth camera*)
 - 2 Choose best location to grasp
 - Reach the location (open-loop setting)

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - ⇒ Use Grasping to achieve generalization
- Approached the grasping task as predicting a grasp pose
 - **1** Observe the scene (*Normally, using a depth camera*)
 - 2 Choose best location to grasp
 - 3 Reach the location (open-loop setting)
 - Different with how humans and animals behave
 - Grasp is a dynamical process that sence and control at each stage

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - ⇒ Use Grasping to achieve generalization
- Approached the grasping task as predicting a grasp pose
 - **1** Observe the scene (*Normally, using a depth camera*)
 - 2 Choose best location to grasp
 - 3 Reach the location (open-loop setting)
 - Different with how humans and animals behave
 - Grasp is a dynamical process that sence and control at each stage
 - ⇒ Where this researches start!!

Table of Contents

Motivation

2 Goal

Use Reinforcement Learning with Deep Neural Network to perform pre-grasp manipulation, response to dynamic disturbances, and learn grasping in a generic framework that makes minimal assumptions about the task

Goal: Constraint/Condition + Literature Review

- Closed-loop condition (With feedback, Morrison, et al.)
 - For the other papers work on closed-loop grasping, they deals with servoing problems.
 - This paper focuses on making generalized RL algorithm
 - In practice, it makes Kalashnikov et al.'s method (this method) to autonomously acquire complicated grasping strategy

Goal: Constraint/Condition + Literature Review

- Closed-loop condition (With feedback, Morrison, et al.)
 - For the other papers work on closed-loop grasping, they deals with servoing problems.
 - This paper focuses on making generalized RL algorithm
 - In practice, it makes Kalashnikov et al.'s method (this method) to autonomously acquire complicated grasping strategy
- Self-supervised learning task
 - Compare to prevoius work(by Zeng et al.), Kalashnikov et al. utilize more general action space
 - Actions consist of end-effector Cartesian motion and gripper opening/closing

Goal: Constraint/Condition + Literature Review

- Closed-loop condition (With feedback, Morrison, et al.)
 - For the other papers work on closed-loop grasping, they deals with servoing problems.
 - This paper focuses on making generalized RL algorithm
 - In practice, it makes Kalashnikov et al.'s method (this method) to autonomously acquire complicated grasping strategy
- **Self-supervised** learning task
 - Compare to prevoius work(by Zeng et al.), Kalashnikov et al. utilize more general action space
 - Actions consist of end-effector Cartesian motion and gripper opening/closing
- Observation comes from a single RGB camera over the sholder
 - Many current grasping system utilizes depth sensing
 - Using wrist-mounted cameras

References

- Kalashnikov, Dmitry, et al. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. 28 Nov. 2018, arxiv.org/abs/1806.10293.
- Irpan, Alex, and Peter Pastor. Scalable Deep Reinforcement Learning for Robotic Manipulation. 28 June 2018, ai.googleblog.com/2018/06/scalable-deep-reinforcementlearning.html.
- Morrison, Douglas, et al. "Closing the Loop for Robotic Grasping: A Real-Time, Generative Grasp Synthesis Approach." Robotics: Science and Systems XIV, 2018, doi:10.15607/rss.2018.xiv.021.