

CSCE 580: Introduction to Al

CSCE 581: Trusted Al

Lecture 12: Machine Learning

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 3RD OCT 2023

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

CSCE 580, 581 - FALL 2023

Organization of Lecture 12

- Introduction Segment
 - Recap of Lecture 11
- Main Segment
 - Problem Settings
 - Data preparation and feature engineering
 - Solving classification problems
- Concluding Segment
 - Course Project Discussion
 - About Next Lecture Lecture 13
 - Ask me anything

Introduction Section

Recap of Lecture 11

- Constraint Satisfaction Problem
- Optimization Problems

Intelligent Agent Model

Relationship Between Main Al Topics

CSCE 580, 581 - FALL 2023

Where We Are in the Course

CSCE 580/ 581 - In This Course

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 4-5: Search, Heuristics Decision Making
- Week 6: Constraints, Optimization Decision Making
- Week 7: Classical Machine Learning Decision Making, Explanation
- Week 8: Machine Learning Classification
- Week 9: Machine Learning Classification Trust Issues and

Mitigation Methods

- Topic 10: Learning neural network, deep learning, Adversarial attacks
- Week 11: Large Language Models Representation, Issues
- Topic 12: Markov Decision Processes, Hidden Markov models Decision making
- Topic 13: Planning, Reinforcement Learning Sequential decision making
- Week 14: Al for Real World: Tools, Emerging Standards and Laws;
 Safe Al/ Chatbots

CSCE 580, 581 - FALL 2023

Main Section

Credit: Retrieved from internet

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification (feedback from label), clustering, dimensionality reduction, anomaly detection, neural methods, reinforcement learning (feedback from hint/ reward)
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Nomenclature

Column, Attribute, Feature 1 PID OWN_OCCUPIED NUM_BEDROOMS NUM_BATH SQ_FT ST_NUM ST_NAME 3 PUTNAM Υ 1 1000 2 100001000 104 100002000 197 LEXINGTON 1.5 100003000 LEXINGTON Ν 1 850 n/a 5 100004000 201 BERKELEY 12 700 1 NaN Row, Item 203 BERKELEY Υ 3 2 1600 100006000 207 BERKELEY Υ NA 1 800 100007000 NA WASHINGTON 2 **HURLEY** 950 100008000 213 TREMONT Υ 1 1 2 10 100009000 215 TREMONT Υ 1800 na

Types of Attributes/ Columns

 Numeric: has number as value in computational sense; all mathematical functions are valid.

Example: SQ_FT

Categorical: has distinct values

Nominal: each value is incomparable with other

• Example: OWN_OCCUPIED, ST_NAME

Ordinal: the values can be ordered

• Example: ST_NUM, NUM_BEDS

• Comment:

• Q: what type is a binary variable?

• A: depends on the semantics – nominal (gender), ordinal (number basements).

1	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
2	100001000	104	PUTNAM	Υ	3	1	1000
3	100002000	197	LEXINGTON	N	3	1.5	
4	100003000		LEXINGTON	N	n/a	1	850
5	100004000	201	BERKELEY	12	1	NaN	700
6		203	BERKELEY	Υ	3	2	1600
7	100006000	207	BERKELEY	Υ	NA	1	800
8	100007000	NA	WASHINGTON		2	HURLEY	950
9	100008000	213	TREMONT	Υ	1	1	
10	100009000	215	TREMONT	Υ	na	2	1800

Why is Type of Variable Important

- Handling of missing values
- Distance between
 - Values
 - Data items
- Used for measuring accuracy, error
- Guiding the learning process
 - Selection of algorithms

Concepts

- Input data: data available
 - Training data: used for training a learning algorithm and get a model
 - [Optional] Validation data: used to tune parameters
 - Test data: used to test a learning model

Classification problem

- Separating data into classes (also called labels, categorical types)
- One of the attributes is the class label we are trying to learn
- Class label is the supervision

Clustering problem

- We are trying to learn grouping of data
- There is no attribute indicating membership in the groups (hence, unsupervised)

Prediction problem

Learning value of a <u>continuous variable</u>

Reference: https://machinelearningmastery.com/difference-test-validation-datasets/
https://www2.seas.gwu.edu/~bell/csci243/lectures/classification.pdf

Sample Learning Task

COVID-19 data

• Notebook: https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l6-l7-supervised-ml/Supervised-Regression.ipynb

Methods for Classification

Partitioning Based

Distance Based

Source: https://www2.seas.gwu.edu/~bell/csci243/lectures/classification.pdf

Metric Types

- Effectiveness: what the <u>user</u> of a system sees, primarily cares about
- Efficiency: what the executor in a system sees, primarily cares about

Efficiency Metrics

Example: Predicting COVID cases

- •Effectiveness: what the user of a system sees, primarily cares about
 - How accurate (high) is the prediction?
 - How low is the error?
- Efficiency: what the executor in a system sees, primarily cares about
 - How low is the error?
 - How fast was prediction made?
 - How stable is the prediction to change in data?

Example: Detecting Spam in Email

- •Effectiveness: what the user of a system sees, primarily cares about
 - How many spams identified?
 - How many spams missed?
- Efficiency: what the executor in a system sees, primarily cares about
 - How fast were spams detected?
 - How much memory was used per million emails processed?

Comparing Classification Methods

- Predictive accuracy
- Interpretability: providing insight
- Robustness: handling noisy data
- Speed
- Scalability: large volume of data

Source: Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber

Linear Regression

Notebook: https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l6-l7-supervised-ml/Supervised-Regression.ipynb

Metrics: Accuracy, Precision, Recall

	Predicted class		
		Class = Yes	Class = No
Actual Class	Class = Yes	True Positive	False Negative
	Class = No	False Positive	True Negative

Accuracy = (TP+TN)/ (TP+FP+FN+TN)

Reference and Demo

- Data: UCI Datasets https://archive.ics.uci.edu/ml/datasets.php
- Tools:
 - Weka https://www.cs.waikato.ac.nz/ml/weka/

Exercise: German Credit

E 580, 581 - FALL 2023 23

Exercise and Code

- Linear Programming Methods
 - Link https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l16-optimal/Optimization.ipynb

Course Project

Project Discussion: What Problem Fascinates You?

- Data
 - Water
 - Finance
 - •
- Analytics
 - Search, Optimization, Learning, Planning, ...
- Application
 - Building chatbot
- Users
 - Diverse demographics
 - Diverse abilities
 - Multiple human languages

Project execution in sprints

- Sprint 1: (Sep 12 Oct 5)
 - Solving: Choose a decision problem, identify data, work on solution methods
 - Human interaction: Develop a basic chatbot (no AI), no problem focus
- Sprint 2: (Oct 10 Nov 9)
 - Solving: Evaluate your solution on problem
 - Human interaction: Integrated your choice of chatbot (rule-based or learning-based) and methods
- Sprint 3: (Nov 14 30)
 - Evaluation: Comparison of your solver chatbot with an LLMbased alternative, like ChatGPT

CSCE 580, 581 - FALL 2023 2

Project Discussion: Dates and Deliverables

Project execution in sprints

- Sprint 1: (Sep 12 Oct 5)
 - Solving: Choose a decision problem, identify data, work on solution methods
 - Human interaction: Develop a basic chatbot (no AI), no problem focus
- Sprint 2: (Oct 10 Nov 9)
 - Solving: Evaluate your solution on problem
 - Human interaction: Integrated your choice of chatbot (rule-based or learning-based) and methods
- Sprint 3: (Nov 14 30)
 - Evaluation: Comparison of your solver chatbot with an LLMbased alternative, like ChatGPT

- Oct 12, 2023
 - Project checkpoint
 - In-class presentation
- Nov 30, 2023
 - Project report due
- Dec 5 / 7, 2023
- In-class presentation

CSCE 580, 581 - FALL 2023 2

Skeleton: A Basic Chatbot

- Run in an infinite loop until the user wants to quit
- Handle any user response
 - User can quit by typing "Quit" or "quit" or just "q"
 - User can enter any other text and the program has to handle it. The program should write back what the user entered and say – "I do not know this information".
- Handle known user query types // Depends on your project
 - "Tell me about N-queens", "What is N?"
 - "Solve for N=4?"
 - "Why is this a solution?"
- Handle <u>chitchat</u> // Support at least 5, extensible from a file
 - "Hi" => "Hello"
 - ...
- Store session details in a file

Illustrative Project

- **1. Title**: Solve and explain solving of n-queens puzzle
- **2. Key idea**: Show students how a course project will look like
- 3. Who will care when done: students of the course, prospective Al students and teachers
- **4. Data need**: n: the size of game; interaction
- **5. Methods**: search
- **6. Evaluation**: correctness of solution, quality of explanation, appropriateness of chat
- **7. Users**: with and without Al background; with and without chess background
- 8. Trust issue: user may not believe in the solution, may find interaction offensive (why queens, not kings? ...)

Project Discussion: Illustration

- Create a private Github repository called "CSCE58x-Fall2023-<studentname>-Repo". Share with Instructor (biplav-s) and TA (kausik-l)
- Create Google folder called "CSCE58x-Fall2023-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (lakkarajukausik90@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by next class (Sep 5, 2023)

- 1. Title: Solve and explain solving of n-queens puzzle
- 2. Key idea: Show students how a course project will look like
- **3.** Who will care when done: students of the course, prospective AI students and teachers
- **4. Data need**: n: the size of game; interaction
- 5. Methods: search
- **6. Evaluation**: correctness of solution, quality of explanation, appropriateness of chat
- **7. Users**: with and without AI background; with and without chess background
- **8. Trust issue**: user may not believe in the solution, may find interaction offensive (why queens, not kings? ...)

CSCE 580, 581 - FALL 2023 2

Project Illustration: N-Queens

- •Sprint 1: (Sep 12 Oct 5)
 - Solving: Choose a decision problem, identify data, work on solution methods
 - Method 1: Random solution
 - Method 2: Search BFS
 - Method 3: Search ...
 - Human interaction: Develop a basic chatbot (no AI) as outlined
 - Deliverable
 - Code structure in Github
 - ./data
 - ./code
 - ./docs
 - ./test
 - Presentation: Make sprint presentation on Oct 12, 2023

Reference: Project Rubric

- Project results 60%
 - Working system ? 30%
 - Evaluation with results superior to baseline? 20%
 - Considered related work? 10%
- Project efforts 40%
 - Project report 20%
 - Project presentation (updates, final) 20%
- Bonus
 - Challenge level of problem 10%
 - Instructor discretion 10%
- Penalty
 - Lack of timeliness as per announced policy (right) up to 30%

Milestones and Penalties

- •Oct 12, 2023
 - Project checkpoint
 - In-class presentation
 - Penalty: presentation not ready by Oct 10, 2023 [-10%]
- Nov 30, 2023
 - Project report due
 - Project report not ready by date [-10%]
- Dec 5 / 7, 2023
 - In-class presentation
- Project presentations not ready by Dec 4, 2023 [-10%]

Review: Regular Expression

Metacharacter	Explanation
Λ	Matches the starting position within the string
H	Matches any single character
[]	Matches a single character that is contained within the brackets
[^]	Matches a single character that is not contained within the brackets.
\$	Matches the ending position of the string
*	Matches the preceding element zero or more times
+	Matches the preceding element one or more times
1	Separates choices

Regex	Matches any string that
hello	contains {hello}
gray grey	contains {gray, grey}
gr(a e)y	contains {gray, grey}
gr[ae]y	contains {gray, grey}
b[aeiou]bble	contains {babble, bebble, bibble, bobble, bubble}
[b-chm-pP]at ot	<pre>contains {bat, cat, hat, mat, nat, oat, pat, Pat, ot}</pre>
colou?r	contains {color, colour}
rege(x(es)? xps?)	contains {regex, regexes, regexp, regexps}
go*gle	contains {ggle, gogle, google, gooogle, gooogle,}
go+gle	contains {gogle, google, gooogle, goooogle,}
g(oog)+le	contains {google, googoogle, googoogoogle, googoogoogoogle,}
z{3}	contains {zzz}
z{3,6}	contains {zzz, zzzz, zzzzz, zzzzzz}
z{3,}	contains {zzz, zzzz, zzzzz,}

Example Source: https://cs.lmu.edu/~ray/notes/regex/

Implementation: Finding Words in Python

- Python has extended Regex specifications for convenience
- Useful for
 - Matching patterns
 - Information extraction
 - Content manipulation (e.g., substitution)
 - Error (e.g., spelling) correction

```
['Th', 'ta', 'ty', 'th']
```

Details: https://docs.python.org/3/library/re.html

Regex Python Code Examples

- More regular expression examples
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l20-text-overview/WordLesson-Examples.ipynb

Lecture 12: Summary

- We talked about
 - Problem Settings
 - Data preparation and feature engineering
 - Solving classification problems

Concluding Section

About Next Lecture – Lecture 13

E 580, 581 - FALL 2023 37

Lecture 13: Machine Learning

- Structured Data: Supervised Methods
 - Decision trees/ random forest
 - The variety of methods
 - Choosing a method that works
- Reading material:
 - "Which ML to Use" with title: Data-driven advice for applying machine learning to bioinformatics problems https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890912/
 - "10 tips with title": Ten quick tips for machine learning in computational biology https://biodatamining.biomedcentral.com/articles/10.1186/s13040-017-0155-3