

2º Teste Prático

Física Computacional — 2013/2014

22 de março de 2014 — Sala 11.2.8

Turma P2 — Duração: 2 horas

Universidade de Aveiro Departamento de Física

Justifique as suas respostas às perguntas.

Note que os símbolos a **negrito** representam vetores.

Deve ser criada uma pasta no desktop contendo os ficheiros .m e eventuais figuras.

1. A equação diferencial ordinária

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + [2\mathrm{sech}^2(x) - \lambda^2]y = 0,$$

tem soluções localizadas em torno de x=0 tais que $y\to 0$ quando $x\to \pm\infty$. Numericamente é suficiente considerar o intervalo desde x=-10 a x=10. As condições iniciais são $y(-10)=10^{-4}$ e $y'(-10)=\lambda\times 10^{-4}$.

- a) Encontre a solução da equação quando $\lambda = 0.5$ usando a rotina do Matlab ode45. Faça o gráfico da solução.
- b) Use um método de shooting para encontrar o λ perto de 1.2 que permite uma solução localizada tal que $y(10) = 10^{-4}$. Para as estimativas inicias do λ , use valores maiores ou iguais a 1.2. Faça o gráfico da solução.
- c) Altere o shooting de forma a conseguir uma precisão para o λ de 1e-5.
- d) Determine a transformada de Fourier da solução encontrada e faça o respetivo gráfico.