Describing a Programming Language

- Syntax: what do programs look like?
- Semantics: what do programs mean?
 - o Operational semantics: how do programs execute step-by-step?

Syntax: What Programs Look Like

Programs are **expressions** e (also called λ **-terms**) of one of three kinds:

• Variable

$$\circ$$
 x, y, z

- Abstraction (aka nameless function definition)
 - ∘ (\x -> e)
 - ∘ x is the *formal* parameter, e is the *body*
 - o "for any x compute e"
- **Application** (aka function call)
 - o (e1 e2)
 - ∘ e1 is the function, e2 is the argument
 - ∘ in your favorite language: e1(e2)

(Here each of e, e1, e2 can itself be a variable, abstraction, or application)

• OO-lambda • iengb. • iengb. • 'cs 130 wi 21' • m-rf ~/. stark_wrk • = x, y, z, • (\ $x \rightarrow e$) • (e, e_z)

Examples

QUIZ

Which of the following terms are syntactically **incorrect**?

E. all of the above

Examples

 $(\x -> x)$ -- The identity function (id) that returns its input

 $(\x -> (\y -> y))$ -- A function that returns (id)

 $(\f -> (f (\x -> x))) -- A function that applies its argument to i$

How do I define a function with two arguments?

• e.g. a function that takes x and y and returns y?

func $(x,y) \in \text{return} \quad y$ $((x \rightarrow ((y \rightarrow y)))$ O

 $(\x -> (\y -> y))$ -- A function that returns the identity function

- -- OR: a function that takes two arguments
- -- and returns the second one!

How do I apply a function to two arguments?

• e.g. apply ($\x -> (\y -> y)$) to apple and banana?

$$\left(\left(\left(\left(\begin{matrix} X \rightarrow (1y \Rightarrow y) \right) & apple \end{matrix}\right) & banana \right)$$

$$\left(\left(\left(\begin{matrix} X \rightarrow (1y \Rightarrow y) \right) & apple \end{matrix}\right) & banana \right)$$

$$\left(\left(\begin{matrix} X \rightarrow (1x_2 \rightarrow (1x_3 \rightarrow e.)) \end{matrix}\right)$$

Syntactic Sugar

instead of	we write
\x -> (\y -> (\z -> e))	\x -> \y -> \z -> e
\x -> \y -> \z -> e	\x y z -> e
(((e1 e2) e3) e4)	e1 e2 e3 e4

\x y -> y -- A function that that takes two arguments -- and returns the second one...

 $(\x y -> y)$ apple banana -- ... applied to two arguments

Syntax "Cook like"
Semantic "mean"

Semantics: What Programs Mean

How do I "run" / "execute" a λ -term?

Think of middle-school algebra:

Execute = rewrite step-by-step

- Following simple rules
- until no more rules *apply*

Rewrite Rules of Lambda Calculus

14 of 69

1.
$$\beta$$
-step (aka function call)
2. α -step (aka renaming formals)

But first we have to talk about **scope**

But first we have to talk about scope

$$\begin{cases}
var x = "cat" \\
var x = "dos" \\
// x is "dog"
\end{cases}$$

Semantics: Scope of a Variable

The part of a program where a variable is visible

In the expression ($\backslash x \rightarrow e$)

- x is the newly introduced variable
- e is the scope of x
- any occurrence of x in (x -> e) is **bound** (by the **binder** (x))

For example, x is bound in:

An occurrence of x in e is free if it's not bound by an enclosing abstraction

For example, x is free in:

-- no binders at all!

 $((y \rightarrow (x y)) -- no (x binder)$ $(((x \rightarrow ((y \rightarrow y)) x) -- x is outside the scope of the (x binde)$

-- intuition: it's not "the same" x

Is x bound or free in the expression $((\langle x^2 - \rangle x)^2)$?

A. first occurrence is bound, second is bound

B. first occurrence is bound, second is free

- C. first occurrence is free, second is bound
- D. first occurrence is free, second is free

EXERCISE: Free Variables

An variable x is **free** in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

FV(x) =
$$227 \ \text{EZ}$$
 FV($\frac{\text{apple}}{\text{prople}}$) = $\frac{2}{3} \ \text{apple}$ FV($\frac{\text{apple}}{\text{rv}}$) = $\frac{2}{3} \ \text{exple}$ FV($\frac{\text{apple}}{\text{rv}}$) = $\frac{2}{3} \ \text{apple}$ FV($\frac{\text{apple}}{\text{rv}}$) = $\frac{2}{3} \ \text{apple}$ FV($\frac{\text{apple}}{\text{apple}}$) = $\frac{2}{3} \ \text$

$$FV(x) = \{x\}$$

$$FV(1x \rightarrow e) = FV(e) - x$$

$$FV(e, e_2) = FV(e_1) + FV(e_2)$$
fune

Closed Expressions

If e has no free variables it is said to be closed

• Closed expressions are also called **combinators**

What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1.
$$\beta$$
-step (aka function call)

2. α -step (aka renaming formals)

Semantics: Redex

A redex is a term of the form

$$((x -> e1) e2)$$

func ars

A function $(x -> e1)$

- x is the parameter
- e1 is the returned expression

Applied to an argument e2

• e2 is the argument

Semantics: β -Reduction

A redex b-steps to another term ...

$$(\x -> e1)$$
 e2 =b> e1[x := e2]

where e1[x := e2] means

" e1 with all *free* occurrences of \underline{x} replaced with e2"

Computation by search-and-replace:

If you see an abstraction applied to an argument,

- In the *body* of the abstraction
- Replace all free occurrences of the formal by that argument

We say that
$$(\langle x - \rangle e_1) e_2 = b$$
 e1[x := e2]
 $(\langle x \rightarrow e_1 \rangle e_2 = b)$ e1[x := e2]

Redex Examples

Is this right? Ask Elsa (https://goto.ucsd.edu/elsa/index.html)

QUIZ

A. apple

$$B. \ y \rightarrow apple$$

C.
$$\x -> apple$$

$$(\begin{cases} 1 \times \rightarrow e_1 \end{cases}) e_2$$

$$= b \times e_1 [x := e_2]$$

$$(\begin{cases} 1 \times \rightarrow y \end{cases}) [x := apple]$$

A. (((apple apple) apple) apple)

$$B.$$
 ((y apple) y) apple

QUIZ

23 of 69

$$((|x| -> (x (|x| -> x))) \text{ apple})$$

$$(|x| -> (x (|x| -> x))) e_1$$

A. (apple (
$$x -> x$$
)

C. (apple (
$$\xspace$$
 -> apple))

E.
$$(\x -> x)$$

def (binder)

$$func(x)$$
 \leq

use (occurrence)

return x+1

$$(1+2)+3$$

= 3+3
= 6

$$\begin{cases} \langle x \rightarrow e_1 \rangle & e_2 \end{cases}$$

EXERCISE

What is a λ -term fill_this_in such that

fill_this_in apple =b> banana

apple)

=6)

banana

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise (https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473 24432.lc)