Name: Huize Shi - A92122910

Discussion: A04 Homework: 6

1. (a) Suppose p is a prime number. Prove that $x^p - x + 1$ has no zero in \mathbb{Z}_p . By Fermat's Little Theorem, $x^p \stackrel{p}{\equiv} x$. Hence the following is true:

$$x^p - x + 1 \stackrel{p}{=} 0$$
$$1 \stackrel{p}{\neq} 0$$

Ergo, $x^p - x + 1$ has no zero in \mathbb{Z}_p .

- (b) Prove that $x^3 x + 1$ is irreducible in $\mathbb{Z}_3[x]$.
- 2. (a) Prove that $f(x) = x^3 2$ is irreducible in $\mathbb{Q}[x]$. Since $2 \le deg \ f \le 3$, it is sufficient to show that f does not have a zero in $\mathbb{Q}[x]$. Suppose towards contrary $\exists b, c \in \mathbb{Z}, c > 0, \gcd(b, c) = 1, f(\frac{b}{c}) = 0$.

$$f\left(\frac{b}{c}\right) = 0 = \left(\frac{b}{c}\right)^3 - 2$$

$$b^3 = 2c^3$$

$$c \mid b^3, \ gcd(c, b) = 1 \Rightarrow c \mid 1$$

$$\Rightarrow c = 1$$

$$b \mid 2c^3, \ gcd(c, b) = 1 \Rightarrow b \mid 2$$

$$\Rightarrow b = \pm 1, \ b = \pm 2$$

This limits the possibility of zeros to $x = \pm 1$ and $x = \pm 2$.

$$f(1) = -1 \neq 0$$

$$f(-1) = -3 \neq 0$$

$$f(2) = 6 \neq 0$$

$$f(-2) = -10 \neq 0$$

Hence shown $f(x) = x^3 - 2$ is irreducible in $\mathbb{Q}[x]$.

- (b) Let $\phi_{\sqrt[3]{2}}: \mathbb{Q}[x] \to \mathbb{R}$ be the evaluation map $\phi_{\sqrt[3]{2}}(f(x)) = f(\sqrt[3]{2})$. We know that $\phi_{\sqrt[3]{2}}$ is a ring homomorphism.
 - (b-1) Prove that $ker \phi_{\sqrt[3]{2}} = \langle x^3 2 \rangle$

$$\phi_{\sqrt[3]{2}}(x^3 - 2) = (\sqrt[3]{2})^3 - 2$$
$$= 2 - 2 = 0$$

Hence shown $\langle x^3-2\rangle\subseteq \ker\phi_{\sqrt[3]{2}}$. By part **a**, we know x^3-2 is irreducible. This implies that $\langle x^3-2\rangle$ is maximal. Since $\ker\phi_{\sqrt[3]{2}}\neq\mathbb{Q}[x],\ \langle x^3-2\rangle\subseteq \ker\phi_{\sqrt[3]{2}}\Rightarrow\langle x^3-2\rangle=\ker\phi_{\sqrt[3]{2}}$.

(b-2) Prove that $Im \ \phi_{\sqrt[3]{2}} = \{a_0 + \sqrt[3]{2}a_1 + (\sqrt[3]{2})^2 a_2 \mid a_0, a_1, a_2 \in \mathbb{Q}\}$ $\forall f \in \mathbb{Q}[x], \ f(x) = q(x)(x^3 - 2) + r(x)$ $r(x) = a_0 + xa_1 + x^2a_2$

$$e \ Q[x], \ f(x) = q(x)(x^{2} - 2) + r(x)$$

$$r(x) = a_{0} + xa_{1} + x^{2}a_{2}$$

$$\phi(f) = q(\sqrt[3]{2})((\sqrt[3]{2})^{3} - 2) + r(\sqrt[3]{2})$$

$$= 0 + r(\sqrt[3]{2})$$

$$= a_{0} + \sqrt[3]{2}a_{1} + (\sqrt[3]{2})^{2}a_{2}$$

(b-3) Let $\mathbb{Q}[\sqrt[3]{2}] := \{a_0 + \sqrt[3]{2}a_1 + (\sqrt[3]{2})^2a_2 \mid a_0, a_1, a_2 \in \mathbb{Q}\}$. Prove that $\mathbb{Q}[x]_{(x^3-2)} \simeq \mathbb{Q}[\sqrt[3]{2}]$

In (b-2), we showed that ϕ is surjective. In (b-1) we showed that $\ker \phi_{\sqrt[3]{2}} = \langle x^3 - 2 \rangle$. The 1st isomorphism theorem gives that $\mathbb{Q}[x]/\langle x^3 - 2 \rangle \simeq \mathbb{Q}[\sqrt[3]{2}]$.

(b-4) Prove that $\mathbb{Q}[\sqrt[3]{2}]$ is a field.

Since we know that x^3-2 is irreducible, $\langle x^3-2\rangle$ is therefore a maximal ideal. This means that $\mathbb{Q}[x]/\langle x^3-2\rangle$ is a field. By isomorphic relationship shown in (b-3) $\mathbb{Q}[\sqrt[3]{2}]$ is a field.

3. (a) Prove that $\sqrt{-21}$ is irreducible in $\mathbb{Z}[\sqrt{-21}]$ $\sqrt{-21} \neq 0$, $\sqrt{-21}$ is not a zero divisor since $\mathbb{Z}[\sqrt{-21}]$ is a subring of \mathbb{C} .

$$\sqrt{-21}(a+b\sqrt{-21}) = 1$$

$$\sqrt{-21}a - 21b = 1$$

$$a = 0$$

$$b = \frac{1}{-21}$$

This is impossible since $\frac{1}{-21} \notin \mathbb{Z}$. Hence $\sqrt{-21} \notin \mathcal{U}(\mathbb{Z}[\sqrt{-21}])$.

$$\sqrt{-21} = (a + b\sqrt{-21})(c + d\sqrt{-21})$$

$$21 = (a^2 + 21b^2)(c^2 + 21d^2)$$

$$a^2 + 21b^2 = 3 \Rightarrow b = 0 \Rightarrow a^2 = 3$$

$$a^2 + 21b^2 = 7 \Rightarrow b = 0 \Rightarrow a^2 = 7$$

Since $a \in \mathbb{Z}$, this is impossible since 3, 7 are not perfect squares. This means either $(a^2 + 21b^2) = 1$ or $(c^2 + 21d^2) = 1$. This means Either $(a^2 + 21b^2)$ or $(c^2 + 21d^2)$ must be a unit hence become 1 under absolute norm (multiplied by conjugate). Hence shown $\sqrt{-21}$ is irreducible in $\mathbb{Z}[\sqrt{-21}]$.

(b) Prove that $\langle \sqrt{-21} \rangle$ is not a prime ideal of $\mathbb{Z}[\sqrt{-21}]$

$$3 \cdot (-7) = -21 = \sqrt{-21}\sqrt{-21} \in \langle \sqrt{-21} \rangle$$

Claim $3, -7 \notin \langle \sqrt{-21} \rangle$. Assume to the contrary that $3 \in \langle \sqrt{-21} \rangle$:

$$3 = \sqrt{-21}(a + b\sqrt{-21})$$

$$3 = \sqrt{-21}a - 21b$$

$$a = 0$$

$$b = \frac{-3}{21} = \frac{-1}{7}$$

This is impossible since $b \in \mathbb{Z}$.

$$-7 = \sqrt{-21}(a + b\sqrt{-21})$$

$$-7 = \sqrt{-21}a - 21b$$

$$a = 0$$

$$b = \frac{7}{21} = \frac{1}{3}$$

This is impossible since $b \in \mathbb{Z}$. Hence we have shown $3, -7 \notin \langle \sqrt{-21} \rangle$, $3 \cdot (-7) = -21 \in \langle \sqrt{-21} \rangle$. Ergo, $\langle \sqrt{-21} \rangle$ is not a prime ideal of $\mathbb{Z}[\sqrt{-21}]$.

- (c) Prove that $\mathbb{Z}[\sqrt{-21}]$ is not a PID. Assume towards contrary that $\mathbb{Z}[\sqrt{-21}]$ is a PID. Since $\sqrt{-21}$ is irreducible in $\mathbb{Z}[\sqrt{-21}]$, $\langle \sqrt{-21} \rangle$ is a maximal ideal of $\mathbb{Z}[\sqrt{-21}]$. This means that $\langle \sqrt{-21} \rangle$ is also a prime ideal. This is a contradiction by the result of part **b**. Hence $\mathbb{Z}[\sqrt{-21}]$ is not a PID.
- 4. let $\omega := \frac{-1+\sqrt{3}}{2}$. $\omega^2 + \omega + 1 = 0$; $\omega + \bar{\omega} = -1$ and $\omega \bar{\omega} = 1$ where $\bar{\omega}$ is the complex conjugate of ω . Let $\mathbb{Z}[\omega] := \{a + b\omega \mid a, b \in \mathbb{Z}\}$. We know that $\mathbb{Z}[\omega]$ is a subring of \mathbb{C} . Let $\mathbb{Q}[\omega] := \{a + b\omega \mid a, b \in \mathbb{Q}\}$.
 - (a) Prove that $\mathbb{Q}[x]/\langle x^2 + x + 1 \rangle \simeq \mathbb{Q}[\omega]$ and $\mathbb{Q}[\omega]$ is a field. The evaluation map $\phi_{\omega} : \mathbb{Q}[x] \mapsto \mathbb{Q}[\omega]$ by $\phi_{\omega}(f(x)) = f(\omega)$ is a ring homomorphism. $Im \mathbb{Q}[\omega] = \mathbb{Q}[\omega]$ by definition of evaluation map.

$$\phi(x^2 + x + 1) = \omega^2 + \omega + 1 = 0$$

This shows that $\langle x^2 + x + 1 \rangle \subseteq \ker \phi$.

Show that $x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$:

Since we know that $\mathbb{Q}[x]$ is a integral domain, $x^2 + x + 1$ is not a zero divisor.

 $x^2+x+1\neq 0$. Assume x^2+x+1 has a zero in $\mathbb{Q}[x], \frac{a}{b}, \gcd(a,b)=1, b>0$.

$$\left(\frac{a}{b}\right)^{2} + \frac{a}{b} + 1 = 0$$

$$a^{2} + ab + b^{2} = 0$$

$$a^{2} = b(-a - b)$$

$$b \mid a^{2}, \ gcd(a, b) = 1 \Rightarrow b \mid 1 \Rightarrow b = 1$$

$$b^{2} = a(-a - b)$$

$$a \mid b^{2}, \ gcd(a, b) = 1 \Rightarrow a \mid 1 \Rightarrow a = \pm 1$$

$$1^{2} + 1 + 1 = 3 \neq 0$$

$$(-1)^{2} - 1 + 1 = 1 \neq 0$$

Since the degree is between 2 and 3, this means x^2+x+1 is irreducible. Hence $\langle x^2+x+1\rangle$ is maximal, $\langle x^2+x+1\rangle\subseteq \ker\phi\Rightarrow\langle x^2+x+1\rangle=\ker\phi$. By 1^{st} isomorphism theorem, we have $\mathbb{Q}[x]/\langle x^2+x+1\rangle\simeq\mathbb{Q}[\omega]$. Since $\langle x^2+x+1\rangle$ is maximal, we know $\mathbb{Q}[x]/\langle x^2+x+1\rangle$ is a field, and by isomorphism $\mathbb{Q}[\omega]$ is also a field.

(b) Prove that for any $z \in \mathbb{Q}[\omega]$ there is $u \in \mathbb{Z}[\omega]$ such that $|z - u| \leq \frac{\sqrt{3}}{3}$. As the image suggests, any z chosen on the plain of $\mathbb{Q}[\omega]$ plain, there exist a $u \in \mathbb{Z}[w]$ such that z fall within the regular hexagon centered around u. Hence the maximum distance would be the distance between a vertex and the center of the hexagon.

$$|z - u| \le \frac{1}{2} \cdot \cos\left(\frac{\pi}{6}\right)^{-1}$$
$$|z - u| \le \frac{1}{2} \cdot \frac{2}{\sqrt{3}}$$
$$|z - u| \le \frac{\sqrt{3}}{3}$$

(c) Prove that for any $a \in \mathbb{Z}[\omega]$ and $b \in \mathbb{Z}[\omega] \setminus \{0\}$, there are $q, r \in \mathbb{Z}[\omega]$ such that

$$a = bq + r$$

$$r = a - bq$$

$$r = b(\frac{a}{b} - q)$$

$$|r| \le \frac{\sqrt{3}}{3}|b|$$

Consider $\frac{a}{b} \in \mathbb{Q}[\omega]$, by part **b** we know $\exists q \in \mathbb{Z}[\omega]$ such that $|\frac{a}{b} - q| \leq \frac{\sqrt{3}}{3}$.

$$\left| \frac{a}{b} - q \right| \le \frac{\sqrt{3}}{3}$$

$$\left| b \left(\frac{a}{b} - q \right) \right| \le \frac{\sqrt{3}}{3} |b|$$

$$|r| \le \frac{\sqrt{3}}{3} |b|$$

(d) Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain

$$\mathcal{N}(a) = |a|^2$$

$$|a|^2 = 0 \Rightarrow a = 0$$

$$|r| \le \frac{\sqrt{3}}{3}|b| \Rightarrow |r|^2 \le \left|\frac{\sqrt{3}}{3}b\right|^2$$

$$\Rightarrow \mathcal{N}(r) \le \mathcal{N}\left(\frac{\sqrt{3}}{3}b\right)$$

$$\left|\frac{\sqrt{3}}{3}\right|^2 > 1 \Rightarrow \mathcal{N}(r) < \mathcal{N}(b)$$

Hence shown $\mathbb{Z}[\omega]$ is a Euclidean domain.

- (e) Show that $\mathbb{Z}[\omega]$ is a PID. By theorem, a Euclidean domain is a PID. Hence shown that $\mathbb{Z}[\omega]$ is a PID by part **d**.
- 5. Suppose $a, b \in \mathbb{Z}$ and $a^2 + ab + b^2 = p$ is a prime number > 3.
 - (a) Prove that $a b\omega$ is irreducible in $\mathbb{Z}[\omega]$. $a b\omega \neq 0$, since $\mathbb{Z}[\omega]$ is a integral domain, $a b\omega$ is not a zero divisor. Assume $a b\omega$ is a unit:

$$(a - b\omega)(c + d\omega) = 1$$

$$|(a - b\omega)(c + d\omega)|^{2} = |1|^{2}$$

$$(a - b\omega)(a - b\bar{\omega})(c + d\omega)(c + d\bar{\omega}) = 1$$

$$(a^{2} - ab\bar{\omega} - ab\bar{\omega} + b^{2}\omega\bar{\omega})(c^{2} + cd\bar{\omega} + cd\bar{\omega} + d^{2}\omega\bar{\omega}) = 1$$

$$(a^{2} - ab(\bar{\omega} + \bar{\omega}) + b^{2}\omega\bar{\omega})(c^{2} + cd(\bar{\omega} + \bar{\omega}) + d^{2}\omega\bar{\omega}) = 1$$

$$(a^{2} + ab + b^{2})(c^{2} - cd + d^{2}) = 1$$

$$p(c^{2} - cd + d^{2}) = 1$$

$$c^{2} - cd + d^{2} = \frac{1}{p}$$

This is impossible since $c^2 - cd + d^2 \in \mathbb{Z}$. Hence $a - b\omega$ is not a unit.

$$a - b\omega = (c + d\omega)(e + f\omega)$$
$$|a - b\omega|^2 = |(c + d\omega)(e + f\omega)|^2$$
$$a^2 + ab + b^2 = (c^2 - cd + d^2)(e^2 - ef + f^2) = p$$

Since this is set to equal a prime, $c^2 - cd + d^2$ or $e^2 - ef + f^2$ must be 1. Since absolute norm is just multiplication by conjugate, we know that either $c + d\omega$ or $e + f\omega$ is in $\mathcal{U}(\mathbb{Z}[\omega])$.

Ergo $a - b\omega$ is irreducible in $\mathbb{Z}[\omega]$.

(b) Prove that $\exists \alpha \in \mathbb{Z}_p$ such that

(b-1)
$$\alpha^2 + \alpha + 1 = 0$$
 in \mathbb{Z}_p
$$a^2 + ab + b^2 = p$$

Wants to show $b \neq 0$. Assume b = 0:

$$p \mid b \Rightarrow p \mid ab \Rightarrow p \mid a^{2}$$

$$p^{2} \mid b^{2} \Rightarrow p^{2} \mid ab \Rightarrow p^{2} \mid a^{2}$$

$$p^{2} \mid a^{2} + ab + b^{2}$$

 $a^2 + ab + b^2 \stackrel{p}{=} 0$

This is a contradiction. Hence $b \neq 0$.

$$a^{2} + ab + b^{2} \stackrel{p}{\equiv} 0$$
$$\left(\frac{a}{b}\right)^{2} + \frac{a}{b} + 1 \stackrel{p}{\equiv} 0$$

Since \mathbb{Z}_p is a field, $b \neq 0$, $\frac{a}{b} \in \mathbb{Z}_p$. Let $\alpha := \frac{a}{b}$. We have $\alpha^2 + \alpha + 1 \stackrel{p}{\equiv} 0$ as specified.

(b-2)
$$a - b\alpha = 0$$
 in \mathbb{Z}_p

$$\alpha := \frac{a}{b}$$

$$a - b\alpha = a - b\frac{a}{b}$$

$$= a - a = 0$$

 $\alpha := \frac{a}{b}$ satisfies both conditions.