NRSG 741 Homework 8.2

Tommy Flynn 4/11/2018

 $\label{lem:com_tom_myflynn_norm} The~\textit{GitHub~Repository~can~be~found~here~https://github.com/tommyflynn/N741_Homework/tree/master/Flynn_HW_08$

K-nearest neighbor Let's try a variation on the NHANES data set again.

Age	Gender	BMI	HHIncome	PhysActive	SleepTrouble
Min. :16.0 1st Qu.:30.0 Median :44.0 Mean :45.1 3rd Qu.:58.0	Min. :1.000 1st Qu.:1.000 Median :1.000 Mean :1.496 3rd Qu.:2.000	Min. :15.02 1st Qu.:23.90 Median :27.50 Mean :28.63 3rd Qu.:32.01	Min.: 1.000 1st Qu.: 6.000 Median: 8.000 Mean: 8.221 3rd Qu.:11.000	Min. :1.000 1st Qu.:1.000 Median :2.000 Mean :1.549 3rd Qu.:2.000	Min. :0.0000 1st Qu.:0.0000 Median :1.0000 Mean :0.7445 3rd Qu.:1.0000
Max. :80.0	Max. :2.000	Max. :81.25	Max. :12.000	Max. :2.000	Max. :1.0000

Create the NHANES dataset again, just like we did in class, only using sleep trouble (variable name = SleepTrouble) as the dependent variable, instead of SleepTrouble. (I'm assuming you meann instead of Diabetes?)

Problem 1

What is the marginal distribution of sleep trouble?

Freq
5066 14934

Problem 2

Apply the k-nearest neighbor procedure to predict SleepTrouble from the other covariates, as we did for SleepTrouble. Use k = 1, 3, 5, and 20.

```
# Apply knn procedure to predict SleepTrouble

# Let's try different values of k to see how that affects performance
knn.1 <- knn(train = people, test = people, cl = people$SleepTrouble, k = 1)
knn.3 <- knn(train = people, test = people, cl = people$SleepTrouble, k = 3)
knn.5 <- knn(train = people, test = people, cl = people$SleepTrouble, k = 5)
knn.20 <- knn(train = people, test = people, cl = people$SleepTrouble, k = 20)</pre>
```

Now let's see how well these classifiers work overall

Problem 3

```
# Calculate the percent predicted correctly
100*sum(people$SleepTrouble == knn.1)/length(knn.1)

## [1] 100

100*sum(people$SleepTrouble == knn.3)/length(knn.3)

## [1] 92.24101

100*sum(people$SleepTrouble == knn.5)/length(knn.5)

## [1] 88.6031

100*sum(people$SleepTrouble == knn.20)/length(knn.20)

## [1] 78.6841
```

Problem 4

What about success overall?

```
\# Another way to look at success rate against increasing k
table(knn.1, people$SleepTrouble)
##
## knn.1
         0
      0 1798
##
      1
           0 5239
table(knn.3, people$SleepTrouble)
##
## knn.3
           0
      0 1430 178
##
      1 368 5061
table(knn.5, people$SleepTrouble)
```