

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 2 по дисциплине «Теория Систем и Системный Анализ»

Тема: «Исследование метода случайного поиска экстремума функции одного переменного»

Вариант №15

Выполнил: Петросян А.Р., студент группы ИУ8-32

Проверил: Коннова Н. С., доцент каф. ИУ8

г. Москва, 2020 г.

1. Цель работы

Изучение метода случайного поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

2. Постановка задачи

Унимодальная функция: $x^2 \cdot \sin(x)$

Отрезок поиска: [9, 12]

Вероятность попадания в окрестность экстремума P = 0.90, 0.91, ..., 0.99

Значения
$$\varepsilon = \frac{b-a}{q}$$
, $q = 0.005, 0.010, \dots, 0.1$.

При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом sin5x, т.е. мультимодальной функции f(x)sin5x.

3. Ход работы

Рисунок 1 демонстрирует график унимодальной функции.

Рисунок 1 – график функции f(x)

В данном методе P - это вероятность того, что найденная точка минимума находится в интервале неопределенности, а q - это вероятность попадания в интервал неопределенности для отдельно взятой точки. Тогда вероятность непопадания в интервал неопределенности за одно испытание будет равна l-q. Вероятность непопадания в интервал неопределенности за N испытаний будет равна $(1-q)^N$. Тогда вероятность $P=1-(1-q)^N$. Отсюда можем найти

$$N = \frac{\ln(1-P)}{\ln(1-q)}$$

Представим таблицу 1 зависимости N от P и q. В верхней строке записаны P, а в первом столбце - q. На пересечении - соответствующее значение N.

0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 0,90 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040 0.045 0,050 0.055 0,060 0,065 0,070 0,075 0,080 0,085 0,090 0,095 0,100

Табл. 1. Зависимость N от P и q.

Случайно выбираем N точек в заданном отрезке [a,b], определим значение унимодальной функции в этих точках и среди них найдем наименьшее значение. Результаты численного эксперимента для представим в виде таблицы 2 в зависимости от P и q.

Табл. 2. Результаты поиска экстремума f(x) в зависимости от P и q.

qp	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99
0,005	111.1732	111.1810	11,1714	111.1672	111.1753	111.1753	111.1624	111.1720	111.1726	11.1765
0,010	11,1654						11,1732			11,1726
0,015	11,1714	11,1696	11,1696							11,1693
0,020	11,1624	11,1735	11,1699	11,1843	11,1912	11,1699	11,1684	11,1390	11,1651	11,1660
0,025	11,1894	11,1816	11,1516	11,2173	11,1528	11,1891	11,1735	11,1732	11,2092	11,1690
0,030	11,1096	11,1177	11,1675							11,1297
0,035	11,1762		11,1849							11,1816
0,040			11,1246							11,1675
0,045		11,2083					11,1828			11,2086
0,050	11,1681		11,1828							
0,055	11,0931		11,2047							11,1837
0,060			11,2005				11,1546			11,1153
0,065			11,1897							11,1777
0,070	11,0850		11,2473							: 1
0,075			11,2314				11,1237			11,1519
0,080			11,2380				11,1171			11,3004
0,085		11,1234	11,1777							11,0295
0,090			11,2350							
0,095		11,1855	11,1219							11,2515
0,100	111,1540	111,3406	11,1093	11,2086	11,1042	11,2/3/	111,1/50	111,0400	111,0280	11,12/9

На рисунке 2 показан график зависимостей полученной погрешности от числа точек N в логарифмической шкале ординат. (Отклонение решения от точного значения точки минимума $x^* \approx 11.1727$)

Рисунок 2 – график погрешности

Аналогичные вычисления делаем для мультимодальной функции (см. рис. 2). Результаты приведены в табл. 3.

Рисунок 3 – график функции $f(x) \cdot \sin 5x$

Табл. 3. Результаты поиска экстремума $f(x) \cdot \sin 5x$ в зависимости от Р и q.

q p	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99
0,005	l 9 5955	11,7429	111 5911	10,3587	110 9287	111 5245	9,0648	11,6202	111 3322	111 1153
0,010	10,5678	10,0566	9,4509	11,8749		11,1204	10,2861	9,2286		10,6785
0,015	11,5704	11,9340	11,1090	10,0731	11,4270	10,6752	10,2081	11,6748		10,8657
0,020	10,1982	10,4850	10,5441	11,4753	11,2203	11,3142	9,3009	11,8695		10,2945
0,025	11,2308	11,6055	10,2489		11,1822	9,9954	10,3854	9,4446		10,3986
0,030	10,2744	11,0865	11,6955	10,2567		10,2339	10,9605	9,0774		10,9644
0,035	11,5932	9,5013	9,5130	10,6914	11,2821	11,0217	11,9943	9,3729	11,3976	9,1572
0,040	11,2041	11,5965	11,5818			11,5788	9,2172	9,1587	11,7021	9,1971
0,045	10,5510	11,9454	10,0797	9,5541	11,5269	11,4027	11,5236	9,9738	10,3905	11,8584
0,050	9,6231	9,9507	10,2099	11,3874	10,7436	10,5273	11,5281	10,4709	10,4811	11,7036
0,055	10,8177	10,2837	11,6421	11,6667	11,1825	11,6394	10,3740	10,3560	11,6247	11,4906
0,060	11,3634	11,0916	9,4032	9,1893	11,4753	11,3667	11,5701	9,1266	11,8572	11,8425
0,065	11,6163	10,6230	10,0095	9,6993	10,5948	11,7993	10,4043	10,4427	9,0933	10,8708
0,070	10,7394	9,6258	10,8813	10,0845	11,9298	10,7031	11,7582	11,8701	11,8107	10,3821
0,075	11,4681	11,7663	11,8383	11,5557	9,5031	11,7675	11,1738	11,3901	11,1231	10,6341
0,080	10,6965	11,5878	11,5356	11,5716	10,1955	11,6640	11,7345	11,6352	11,1759	10,1457
0,085	10,0839	10,2648	10,3950	10,1811	10,5819	9,8253	10,5276	11,5872	11,6478	11,6034
0,090	11,5680	9,9180	11,6535	11,6523	10,7565	10,5876	11,3355	11,6391	11,4678	11,5713
0,095	11,9739	11,1198	11,3925	10,8684		11,5767	9,7128	10,5426	11,4495	11,4924
0,100	10,0233	9,9717	9,3378	10,8864	9,9753	10,3875	11,8359	11,8359	10,9290	10,4298
December 10 (0.0)										
Process returned 0 (0x0) execution time : 0.467 s										
Press any key to continue.										

Контрольные вопросы

1. В чем состоит сущность метода случайного поиска? Какова область применимости данного метода?

Ответ:

Сущность метода заключается в случайном генерировании независимых N точек в предполагаемой области нахождения минимума с последующем выбором той из них, в которой достигается минимум функции. Данный метод применим к задаче поиска глобального минимума как унимодальной, так и мультимодальной функции.

2. Поясните принцип разбиения интервала при случайном поиске.

Ответ:

При случайном поиске мы должны сгенерировать N случайных точек. При этом координаты каждой из них распределены по равномерному непрерывному закону на данном интервале.

3. Что такое интервал неопределенности? Приведите выражения для оценки интервала неопределенности для метода случайного поиска.

Ответ: интервалом неопределённости называют некоторую окрестность точки минимума x_{min} , в которую мы попадаем в результате реализации алгоритма случайного поиска с некоторой вероятность P. При использовании числа разбиений $N \geq \frac{\ln(1-P)}{\ln(1-q)}$ и $\varepsilon = \frac{b-a}{q}$ мы должны с вероятностью не менее P попасть в интервал $(x_{min} - \varepsilon; x_{min} + \varepsilon)$.

4. Выводы

В данной лабораторной работе был найден минимум унимодальной и мультимодальной функций с помощью метода случайного поиска экстремума. Как видно из полученных результатов, применимость метода случайного поиска не зависит от того, является ли функция унимодальной или мультимодальной. Для увеличения вероятности попадания в заданный интервал или для уменьшения интервала неопределенности необходимо увеличивать число случайных точек.

Приложение 1. Исходный код программы

```
#include <stdio.h>
#include <fstream>
#include <conio.h>
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <locale>
using namespace std;
double fun(double x)
      return x*x*sin(x);
double funsin(double x)
      return fun(x)*sin(5*x);
int main()
  double P[10], q[20], XX[20][10];
  int N[20][10];
  double a,b,Xmin,Fmin,R;
  setlocale(LC ALL, "russian");
  a=9; b=12;
  for (int j=0; j < 20; j++)
  {
    q[j]=(j+1)*0.005;
  for (int i=0; i < 10; i++)
    P[i]=0.9+i*0.01;
  for (int i=0; i < 20; i++)
     for (int j=0; j < 10; j++)
       N[i][j]=(int)(log(1-P[j])/log(1-q[i])+1);
```

```
}
  //печать таблицы
  printf("q p t");
  for (int i=0; i < 10; i++) printf("%3.2f\t|",P[i]);
  printf("\n");
  printf("-----\n");
  for (int j=0; j < 20; j++)
    printf("%4.3f\t|",q[j]);
    for (int i=0; i < 10; i++) printf("%d\t|",N[j][i]);
    printf("\n");
  printf("\n'");
  srand(time(NULL));//это чтоб при каждом запуске были разные случайные числа
  //если нужно всегда одинаковая последовательность, просто удалить эту строку
  printf("q p t");
  for (int i=0; i < 10; i++) printf("%3.2f |",P[i]);
  printf("\n");
  printf("-----
--\n'');
  for (int j=0; j < 20; j++)
    printf("%4.3f\t|",q[j]);
    for (int i=0; i < 10; i++)
      R = (double)(rand()\%10000)/10000; // случайное число от 0 до 1
      R = a + (b-a)*R; //случайное число от а до b;
      Xmin = R; Fmin = fun(R);
      XX[j][i]=Xmin;
      for (int k=1; k < N[j][i]; k++)
        R = (double)(rand()\%10000)/10000; // случайное число от 0 до 1
        R = a + (b-a)*R; //случайное число от а до b;
        if (fun(R)<Fmin)
         {
          Xmin = R; Fmin = fun(R);
          XX[j][i]=Xmin;
      printf("%6.4f |",Xmin);
    printf("\n");
  printf("\n');
```

```
printf("q p|t|");
  for (int i=0; i < 10; i++) printf("%3.2f |",P[i]);
  printf("\n");
  printf("-----
--\n");
  for (int j=0; j < 20; j++)
    printf("%4.3f\t|",q[j]);
    for (int i=0; i < 10; i++)
       R = (double)(rand()\%10000)/10000; // случайное число от 0 до 1
       R = a + (b-a)*R; //случайное число от а до b;
       Xmin = R; Fmin = funsin(R);
       for (int k=1; k < N[j][i]; k++)
          R = (double)(rand()\%10000)/10000; // случайное число от 0 до 1
          R = a + (b-a)*R; //случайное число от а до b;
          if (fun(R)<Fmin)
            Xmin = R; Fmin = funsin(R);
       printf("%7.4f |",Xmin);
    printf("\n");
  printf("\n'");
  //построения графика N от погрешности
  ofstream out("N.txt");
  ofstream out1("X.txt");
  for (int j=0; j < 20; j++)
  {
    for (int i=0; i < 10; i++)
       out \leq N[j][i] \leqendl;
       out 1 \le abs(XX[j][i]-11.1727) \le endl;
  out.close();
  out1.close();
  return 0;
```