CS1231S

AY20/21 Sem 1

01. PROOFS

sets of numbers

 \mathbb{N} : natural numbers ($\mathbb{Z}_{\geq 0}$)

 \mathbb{Z} : integers

① : rational numbers

R: real numbers

C: complex numbers

basic properties of integers

closure (under addition and multiplication) $x + y \in \mathbb{Z} \land xy \in \mathbb{Z}$ commutativity $a + b = b + a \wedge ab = ba$ associativity a + b + c = a + (b + c) = (a + b) + cabc = a(bc) = (ab)cdistributivity a(b+c) = ab + actrichotomy $(a < b) \lor (a > b) \lor (a = b)$ transitive law

 $(a < b) \land (b < c) \implies (a < c)$

definitions

even/odd n is even $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k$ $n \text{ is odd} \leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k + 1$ prime/composite n is prime $\leftrightarrow n > 1$ and $\forall r, s \in \mathbb{Z}^+, n = rs \to (r = rs)$ $n) \vee (r = s)$ n is composite $\leftrightarrow n > 1$ and $\exists r, s \in \mathbb{Z}^+ s.t.n =$ rs and 1 < r < n and 1 < s < ndivisibility (d divides n) $d \mid n \leftrightarrow \exists k \in \mathbb{Z} \mid n = kd$ rationality r is rational $\leftrightarrow \exists a, b \in \mathbb{Z} \mid r = \frac{a}{1}$ and $b \neq 0$ floor/ceiling |x|: largest integer y such that y < x $\lceil x \rceil$: smallest integer y such that y > x

rules of inference

	1
generalisation	elimination
$p, \therefore p \lor q$	$p \lor q; \sim q, : p$
specialisation	transitivity
$p \wedge q, \therefore p$	$p \to q; q \to r; : p \to$

04. METHODS OF PROOF

Proof by Exhaustion/Cases

- 1. list out possible cases 1.1. Case 1: n is odd OR If n = 9, ...
- 1.2. Case 2: n is even OR If n = 16....
- 2. therefore ...

Proof by Contradiction

1. Suppose that ...

1.1. <proof>

1.2. ... but this contradicts ...

2. Therefore the assumption that ... is false. Hence

Proof by Contraposition

1. Contrapositive statement: $\sim q \rightarrow \sim p$

2. let $\sim q$

2.1. <proof>

2.2. hence $\sim p$

3. $p \rightarrow q$

Proof by Construction

1. Let x = 3, y = 4, z = 5.

2. Then $x, y, z \in \mathbb{Z}_{\geq 1}$ and

 $x^{2} + y^{2} = 3^{2} + 4^{2} = 9 + 16 = 25 = 5^{2}$.

3. Thus $\exists x, y, z \in \mathbb{Z}_{>1}$ such that $x^2 + y^2 = z^2$.

Proof by Induction

- 1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition "..."
- 2. (base step) P(1) is true because <manual method>
- 3. (induction step)
 - 3.1. let $k \in \mathbb{Z}_{>1}$ s.t. P(k) is true
 - 3.2. Then ...
 - 3.3. proof that P(k+1) is true e.g. $P(k+1) = P(k) + term_{k+1}$
 - 3.4. So P(k + 1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} P(n)$ is true by MI.

Proofs for Sets

Equality of Sets (A=B)

 $1. (\Rightarrow)$

1.1. Take any $z \in A$.

1.2. . . .

1.3. $z \in B$.

2. (\(\phi\))

2.1. Take any $z \in B$.

2.2. . . .

2.3. $\therefore z \in A$.

Element Method

1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ (by def. of \cap) 2. = $\{x : x \in A \land (x \in B \land x \notin C)\}$ (by def. of \) 3. ...

4. = $(A \cap B) \setminus C$ (by def. of \)

Other Proofs

iff $(A \leftrightarrow B)$

1. (\Rightarrow) Suppose A.

1.1. ... <proof> ...

1.2. Hence $A \rightarrow B$

2. (\Leftarrow) Suppose B.

2.1. ... <proof> ...

2.2. Hence $B \rightarrow A$

02. COMPOUND STATEMENTS

operations

 $1 \sim$: negation (not)

2 ∧ : conjunction (and)

2 \vee : disjunction (or) - coequal to \wedge

 $3 \rightarrow : if-then$

logical equivalence

- · identical truth values in truth table
- definitions
- · to show non-equivalence:
 - truth table method (only needs 1 row)
 - · counter-example method

conditional statements

hypothesis → conclusion

 $antecedent \rightarrow consequent$

· vacuously true : hypothesis is false

• implication law : $p \to q \equiv \sim p \lor q$

· common if/then statements:

• if p then q: $p \rightarrow q$

• p if q: $q \rightarrow p$

• p only if q: $p \rightarrow q$

 $\bullet \text{ p iff q: } p \leftrightarrow q$

ullet contrapositive : $\sim \! q
ightarrow \sim \! p$ converse ≡ inverse • inverse : $\sim p \rightarrow \sim q$ statement = contra-

• converse : $q \rightarrow p$

positive

• r is a **necessary** condition for s: $\sim r \rightarrow \sim s$ and $s \rightarrow r$

• r is a **sufficient** condition for s: $r \rightarrow s$

necessary & sufficient : ↔

valid arguments

- determining validity: construct truth table
 - valid \leftrightarrow conclusion is true when premises are true
- syllogism: (argument form) 2 premises, 1 conclusion
- modus ponens : $p \rightarrow q$; p; $\therefore q$
- modus tollens : $p \to q$; $\sim q$; $\therefore \sim p$
- · sound argument : is valid & all premises are true

fallacies

converse error	inverse error
p o q	p o q
q	$\sim p$
$\therefore p$	$\therefore \sim q$

03. QUANTIFIED STATEMENTS

- truth set of $P(x) = \{x \in D \mid P(x)\}$
- $P(x) \Rightarrow Q(x) : \forall x (P(x) \rightarrow Q(x))$
- $P(x) \Leftrightarrow Q(x) : \forall x (P(x) \leftrightarrow Q(x))$ relation between $\forall . \exists . \land . \lor$

• $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \cdots \land Q(x_n)$ • $\exists x \in D \mid Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

05. SETS

notation

```
• set roster notation [1]: \{x_1, x_2, \ldots, x_n\}
• set roster notation [2]: \{x_1, x_2, x_3, \dots\}
```

• set-builder notation: $\{x \in \mathbb{U} : P(x)\}$

definitions

```
• equal sets : A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)
```

•
$$A = B \leftrightarrow (A \subseteq B) \land (A \supset B)$$

empty set, ∅ : ∅ ⊂ all sets

• subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$

• proper subset : $A \subseteq B \leftrightarrow (A \subseteq B) \land (A \neq B)$

• power set of A : $\mathcal{P}(A) = \{X \mid X \subseteq A\}$

• $|\mathcal{P}(A)| = 2^{|A|}$, given that A is a finite set • cardinality of a set, |A|: number of distinct elements

• singleton : sets of size 1

• disjoint : $A \cap B = \emptyset$

methods of proof for sets

- · direct proof
- · element method
- truth table

boolean operations

```
• union: A \cup B = \{x : x \in A \lor x \in B\}
```

• intersection: $A \cap B = \{x : x \in A \land x \in B\}$

• complement (of B in A): $A \setminus B = \{x : x \in A \land x \notin B\}$

• complement (of B): \bar{B} or $B^c = U \backslash B$

• set difference law: $A \backslash B = A \cap \bar{B}$

ordered pairs and cartesian products

• ordered pair : (x, y)

• $(x,y) = (x',y') \leftrightarrow x = x'$ and y = y'

· Cartesian product :

 $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$

• $|A \times B| = |A| \times |B|$ • ordered tuples : expression of the form (x_1, x_2, \dots, x_n)

06. FUNCTIONS

definitions

• function/map from A to B: assignment of each element of A to exactly one element of B.

• $f:A\to B$: "f is a function from A to B"

• $f: x \rightarrow y$: "f maps x to y"

• domain of f = A

• codomain of f = B

• range/image of f = $\{f(x) : x \in A\}$ $= \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$

• identity function on A, $id_A : A \rightarrow A$

- $id_A: x \to x$
- range = domain = codomain = A
- well-defined function : every element in the domain is assigned to exactly one element in the codomain

equality of functions

- · same codomain and domain
- for all $x \in \text{codomain}$, same output

function composition

- $(g \circ f)(x) = g(f(x))$
- for $(g\circ f)$ to be well defined, codomain of f must be equal to the domain of g
- × commutative
- ✓ associative

image & pre-image

for $f:A\to B$

• if $X \subseteq A$, image of X.

 $f(X) = \{ y \in B : y = f(x) \text{ for some } x \in X \}$

• if $Y \subseteq B$, pre-image of Y,

 $f^{-1}(Y) = \{x \in A : y = f(x) \text{ for some } y \in Y\}$

injection & surjection

- surjective (onto) : codomain = range
 - $\forall y \in B, \exists x \in A (y = f(x))$
 - surjective test: $\forall Y\subseteq B,Y\subseteq f(f^{-1}(Y))$
- injective : one-to-one
 - $\forall x, x' \in A(f(x) = f(x') \Rightarrow x = x')$
- injective test: $\forall X \subseteq A, X \subseteq f^{-1}(f(X))$
- bijective : both surjective & injective
 - has an inverse

inverse

• $\forall x \in A, \forall y \in B(f(x) = y \Leftrightarrow g(y) = x)$

07. INDUCTION

mathematical induction

to prove that $\forall n \in \mathbb{Z}_{\geq m}(P(n))$ is true,

- base step: show that P(m) is true
- induction step: show that $\forall k \in \mathbb{Z}_{\geq m}(P(k) \Rightarrow P(k+1))$ is true.
 - induction hypothesis: assumption that P(k) is true

strong MI

to prove that $\forall n \in \mathbb{Z}_{\geq 0}(P(n))$ is true,

- base step: show that P(0), P(1) are true
- induction step: show that

 $\forall k \in \mathbb{Z}_{\geq 0}(P(0) \cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true. justification:

- $P(0) \wedge P(1)$ by base case
- $P(0) \wedge P(1) \rightarrow P(2)$ by induction with k=0
- $P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)$ by induction with k=1
- we deduce that $P(0), P(1), \ldots$ are all true by a series of modus ponens

well-ordering principle

- every nonempty subset of $\mathbb{Z}_{\geq 0}$ has a smallest element.
- · application: recursion has a base case

RECURSION

a sequence is **recursively defined** if the definition of a_n involves $a_0, a_1, \ldots, a_{n-1}$ for all but finitely many $n \in \mathbb{Z}_{>0}$.

recursive definitions

e.g. recursive definition for \mathbb{Z}

- 1. (base clause) $0 \in \mathbb{Z}_{\geq 0}$
- 2. (recursion clause) If $x \in \mathbb{Z}_{\geq 0}$, then $x + 1 \in \mathbb{Z}_{\geq 0}$
- 3. (minimality clause) Membership for $\mathbb{Z}_{\geq 0}$ can be demonstrated by (finitely many) successive applications of

recursion vs induction

- recursion to define the set
- induction to show things about the set

well-formed formulas (WFF)

in propositional logic

define the set of WFF(Σ) as follows

- 1. (base clause) every element ρ of Σ is in WFF(Σ)
- 2. (recursion clause) if x,y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ)
- (minimality clause) Membership for WFF(Σ) can be demonstrated by (finitely many) successive applications of the clauses above

08. NUMBER THEORY divisibility

• $n \mod d$ is always non-negative.

transitivity of divisibility If $a \mid b$ and $b \mid c$, then $a \mid c$.

closure lemma (non-standard name)

Let $a,b,d,m,n\in\mathbb{Z}.$ If $d\mid m$ and $d\mid n$, then $d\mid am+bn.$

 $\begin{aligned} & \text{division theorem} \\ \forall n \in \mathbb{Z} \text{ and } d \in \mathbb{Z}^+, \exists !q, r \in \mathbb{Z} \text{ s.t.} \\ & n = dq + r \text{ and } 0 \leq r < d \end{aligned}$

 $q = n \operatorname{div} d = \lfloor n/d \rfloor$ $r = n \operatorname{mod} d = n - dq$

base-b representation

of positive integer n is $(a_\ell a_{\ell-1}\dots a_0)_b$ where $\ell\in\mathbb{Z}_{\geq 0}$ and $a_0,a_1,\dots,a_\ell\in\{0,1,\dots,b-1\}$ s.t. $n=a_\ell b^\ell+a_{\ell-1}b^{\ell-1}+\dots+a_0b^0$ and $a_\ell\neq 0$

greatest common divisor

- $\cdot m \mod n$
- if $m \neq 0$ and $n \neq 0$, then gcd(m, n) exists and is positive.
- Euclidean Algorithm for finding gcd

Bezout's Lemma:

For all $m,n\in\mathbb{Z}$ with $n\neq 0$, there exist $s,t\in\mathbb{Z}$ such that $\gcd(m,n)=ms+nt.$

Euclid's Lemma:

Let $m, n \in \mathbb{Z}^+$. If p is prime and $p \mid mn$, then $p \mid m$ or $p \mid n$.

prime factorization

- Fundamental Theorem of Arithmetic: Every integer $n \ge 2$ has a unique prime factorization in which the prime factors are arranged in nondecreasing order.
 - · aka Prime Factorisation Theorem

modular arithmetic

Let
$$a,b,c\in\mathbb{Z}$$
 and $n\in\mathbb{Z}^+$. congruence
$$a\equiv b\ (\bmod\ n)\Leftrightarrow a\ \bmod\ n=b\ \bmod\ n$$
 Then $\exists k\in\mathbb{Z}\mid a=nk+b\ \text{and}\ n\mid (a-b)$ reflexivity
$$a\equiv a\ (\bmod\ n)$$
 symmetry
$$a\equiv b\ (\bmod\ n)\to b\equiv a\ (\bmod\ n)$$
 transitivity

 $a \equiv b \pmod{n} \land b \equiv c \pmod{n} \rightarrow a \equiv c \pmod{n}$

additive inverse

b is an additive inverse of $a \mod n \Leftrightarrow a+b \equiv 0 \pmod n$. b is an additive inverse of $a \mod n \Leftrightarrow b \equiv -a \pmod n$.

multiplicative inverse

b is a multiplicative inverse of $a \mod n \Leftrightarrow ab \equiv 1 \pmod n$.

- If b, b' are multiplicative inverses of a, then $b \equiv b' \pmod{n}$.
- exists $\Leftrightarrow \gcd(a, n) = 1$.
 - ullet a,n are coprime
- to find multiplicative inverse: Euclidean Algorithm

09. EQUIVALENCE RELATIONS

relations

Let R be a relation from A to B and $(x,y) \in A \times B$. Then: xRy for $(x,y) \in R$ and xRy for $(x,y) \notin R$

- A relation from A to B is a subset of $A \times B$.
- A (binary) relation on set A is a relation from A to A.
 - subset of A^2

reflexivity, symmetry, transitivity

Let A be a set and R be a relation on A.

$$\label{eq:continuous_continuous_continuous} \begin{split} \text{reflexive} & \forall x \in A \ (xRx) \\ & \text{symmetric} \\ \forall x,y \in A \ (xRy \Rightarrow yRx) \\ & \text{transitive} \\ \forall x,y,z \in A \ (xRy \land yRz \Rightarrow xRz) \end{split}$$

- equivalence relation: a relation that is reflexive, symmetric and transitive
- equivalence class: the set of all things equivalent to x

equivalence classes

Let A be a set and R be an equivalence relation on A.

- $[x]_R$: **equivalence class** of x with respect to R $\forall x \in A, [x]_R = \{y \in A : xRy\}$
- A/R : The set of all equivalent classes

 $A/R = \{[x]_R : x \in A\}$ $xRy \Rightarrow [x] = [y] \Rightarrow [x] \cap [y] \neq \emptyset$

partitions

• a **partition** of a set A is a set $\mathscr C$ of non-empty subsets of A such that

 $\begin{array}{l} (\geq 1) \ \forall x \in A, \ \exists S \in \mathscr{C}(x \in S) \\ (\leq 1) \ \forall x \in A, \ \forall S, S' \in \mathscr{C}(x \in S \land x \in S' \Rightarrow S = S') \end{array}$

- components : elements of a partition
- · every partition comes from an equivalence relation

partial orders

Let A be a set and R be a relation on A.

- R is antisymmetric if $\forall x,y \in A \ (xRy \wedge yRx \to x = y)$
- includes vacuously true cases (e.g. $xRy \Leftrightarrow x < y$) • x and y are **comparable** if $\forall x, y \in A (xRy \lor yRx)$
- R is a (non-strict) partial order if R is reflexive, antisymmetric and transitive.
 - \preccurlyeq partial order
- $x \prec y \Leftrightarrow x \preccurlyeq y \land x \neq y$ (NOT a partial order)
- Hasse diagram
- R is a **(non-strict) total order** if R is a partial order and x and y are comparable

min and max

Let \leq be a partial order on a set A, and $c \in A$.

- c is a minimal element if $\forall x \in A \ (x \preccurlyeq c \Rightarrow c = x)$
 - nothing is strictly below it
- c is a maximal element if $\forall x \in A \ (c \preccurlyeq x \Rightarrow c = x)$
 - nothing is strictly above it
- c is the smallest element or minimum element if $\forall x \in a \ (c \leq x)$.
- c is the largest element or maximum element if $\forall x \in a \ (x \preccurlyeq c).$

linearization

Let A be a set and \preccurlyeq be a partial order on A. Then there exists a total order \preccurlyeq^* on A such that $\forall x,y \in A \ (x \preccurlyeq y \Rightarrow x \preccurlyeq^* y)$

10. COUNTING & PROBABILITY

permutations

$$P(n,r) = \frac{n!}{(n-r)!}$$
 (also ${}_nP_r, P_r^n$)

- multiplication/product rule: An operation of k steps can be performed in $n_1 \times n_2 \times \cdots \times n_k$ ways.
- addition/sum rule: Suppose a finite set A equals the union of k distinct mutually disjoint subsets A_1,A_2,\ldots,A_k . Then $|A|=|A_1|+|A_2|+\cdots+|A_k|$
- difference rule: if A is a finite set and $B\subseteq A$, then $|A\backslash B|=|A|=|B|$
- complement: $P(\bar{A}) = 1 P(A)$
- inclusion/exclusion rule: $|A \cup B \cup C| =$

$|A|+|B|+|C|-|A\cap B|-|B\cap C|-|C\cap A|+|A\cap B\cap C|$

permutations with indistinguishable objects

For n objects with n_k of type k indistinguishable from each other, the total number of distinguishable permutations $= \frac{n!}{n_1!n_2!...n_k!}$

pigeonhole principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if $k<\frac{n}{m}$, then there is some $y\in Y$ such that y is the image of at least k+1 distinct elements of X.

• A function from a finite set to a smaller finite set cannot be injective.

combinations

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$
 (also $C(n,r)$, ${}_nC_r$, $C_{n,r}$, nC_r)

r-combinations from a set of n elements with **repetition** $=\binom{r+n-1}{r}$

LOGICAL EQUIVALENCES	
$p \wedge q \equiv q \wedge p$	
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Į į
$p \wedge true \equiv p$	
$p \wedge p \equiv p$	
$p \lor true \equiv true$	
$p \lor \sim p \equiv true$	
$\sim (\sim p) \equiv p$	
$p \lor (p \land q) \equiv p$	
$\sim (p \lor q) \equiv \sim p \land \sim q$	
	$\begin{array}{c} p \wedge q \equiv q \wedge p \\ (p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \\ p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \\ p \wedge true \equiv p \\ p \wedge p \equiv p \\ p \vee true \equiv true \\ p \vee \sim p \equiv true \\ \sim (\sim p) \equiv p \\ p \vee (p \wedge q) \equiv p \end{array}$

_	commutative laws
	associative laws
	distributive laws
	identity laws
	idempotent laws
	universal bound laws
	complement laws
	complement laws double complement law
	•
	double complement law

SET IDENTITIES	
$A \cap B = B \cap A$	$A \cup B = B \cup A$
$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
$A \cap U = A$	$A \cup \emptyset = A$
$A \cap A = A$	$A \cup A = A$
$A \cap \emptyset = \emptyset$	$A \cup U = U$
$A \cap \overline{A} = \emptyset$	$A \cup \overline{A} = U$
$\overline{(\overline{A})} = A$	_
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

proven:

- L1E1 the product of 2 consecutive odd numbers is always odd.
- L1E5 the difference between 2 consecutive squares is always odd
- L4E4 the sum of any 2 even integers is even
- L4T4.6.1 there is no greatest integer
- L4T4.3.1 for all positive integers a and b, if a|b, then $a \le b$.
- L1P4.6.4 for all integers n, if n^2 is even then n is even
- L4T4.2.1 all integers are rational numbers
- L4T4.2.2 the sum of any 2 rational numbers is rational
- L1E7 there exist irrational numbers p and q such that p^q is rational
- L4T4.7.1 $\sqrt{2}$ is irrational.
- L4T4.3.2 the only divisors of 1 are 1 and -1.
- L4T4.3.3 transitivity of divisibility
 - if a|b and b|c, then a|c.
- · L3T3.2.1 negation of a universal statement:
 - $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \mid \sim P(x)$
- L3T3.2.2 negation of an existential statement:
 - $\sim (\exists x \in D \mid P(x)) \equiv \forall x \in D, \sim P(x)$
- L5T5.1.14 there exists a unique set with no element. It is denoted by ∅.
- L5E5.3.7 for all $A, B: (A \cap B) \cup (A \setminus B) = A$
- L5T5.3.11(1) let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$
- L5T5.3.11(2) let A_1, A_2, \ldots, A_n be pairwise disjoint finite sets. Then
- $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$
- L5T5.3.12 Inclusion-Exclusion Principle:
 - for all finite sets A and B, $|A \cup B| = |A| + |B| |A \cap B|$
- L6T6.1.26 associativity of function composition:
 - $f \circ (g \circ h) = (f \circ g) \circ h$
- L6P2.6.16 uniqueness of inverses:
 - If q, q' are inverses of $f: A \to B$, then q = q'.
- E6.1.24 $f \circ id_A = f$ and $id_A \circ f = f$
- T6.2.18 bijective ⇔ has an inverse
- L7.3.19 If $x\in {\sf WFF}^+(\Sigma)$, then assigning false to all elements of Σ makes x evaluate to false.
- T7.3.20 $\sim (\forall x \in \mathsf{WFF}(\Sigma), \exists y \in \mathsf{WFF}^+(\Sigma) \ y \equiv x) \equiv$
- $\exists x \in \mathsf{WFF}(\Sigma) \ \, \forall y \in \mathsf{WFF}^+(\Sigma) \ \, y \not\equiv x \text{ aka} \sim \text{(not) must be included in the definition of WFF.}$
- L8.1.5 Let $d, n \in \mathbb{Z}$ with $d \neq 0$. Then $d \mid n \Leftrightarrow n/d \in \mathbb{Z}$
- L8.1.9 Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $-d \mid n$ and $d \mid -n$ and $-d \mid -n$
- L8.1.10 Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $d \neq 0$, then $|d| \leq |n|$
- L8.2.5 Prime Divisor Lemma (non-standard name):
 - Let $n \in \mathbb{Z}_{\geq 2}$. Then n has a prime divisor.
- P8.2.6 sizes of prime divisors:
 - Let n be a composite positive integer. Then n has a prime divisor $p < \sqrt{n}$.
- T8.2.8 there are infinitely many prime numbers
- T8.3.13 $\forall n \in \mathbb{Z}^+, \exists ! \ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that <the definition of base-b representation> holds.

- L8.4.11 If $x, y, r \in \mathbb{Z}$ such that $x \bmod y = r$, then $\gcd(x, y) = \gcd(y, r)$.
- Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ s.t. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.
 - P8.6.6 **addition:** Then $a + c \equiv b + d \pmod{n}$
 - P8.6.13 **multiplication:** Then $ac \equiv bd \pmod{n}$
- T9.3.4 Let R be an equivalence relation on a set A. Then A/R is a partition of A.
- T9.3.5 If $\mathscr C$ is a partition of A, then there is an equivalence relation of R on A such that $A/R=\mathscr C$.
- L9.5.5 Consider a partial order \leq on set A.
 - · A smallest element is minimal.

 $p \lor q \equiv q \lor p$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

$$\begin{split} p \lor (q \land r) &\equiv (p \lor q) \land (p \lor r) \\ p \lor false &\equiv p \\ p \lor p &\equiv p \\ p \land false &\equiv false \\ p \land \sim p &\equiv false \\ &- \\ p \land (p \lor q) &\equiv p \end{split}$$

 $\sim (p \land q) \equiv \sim p \lor \sim q$

· There is at most one smallest element.

abbreviations

- L lemma
- E example
- P proposition
- T theorem