zacharylaborde.com

Zachary Laborde

Self-motivated research scientist in Artificial Intelligence and Machine Learning with strong communication and teamwork skills in addition to problem-solving and analytical abilities looking to advance the field of machine learning and contribute to innovative solutions for complex problems.

Skills

Machine Learning Information Theory Quasistatic Approximation Neural Networks Simulated Annealing
Particle Swarm Optimization Boids Ant Colony Optimization K-means++ Evolutionary Algorithms
Recurrent Neural Networks Gradient Descent Theta Sparse Grouping Hierarchical Agglomerative Clustering
Graph Theory Graph Embedding Graph Clustering Dynamical System Analysis Cellular Automata
Hopfield Networks Convolutional Neural Networks Transformers Level Set Method Bootstrapping
Topological Data Analysis Computational Topology Lifetime Learning Backpropagation
Software
PyTorch TensorFlow NumPy SciPy MongoDB Hadoop Spark Matplotlib Plotly Git SQL Python Scikit-learn Pandas Jupyter ATEX

Publications & Conferences

Laborde, Z., & Izquierdo, E. J. (2023). Spatial embedding of edges in a synaptic generative model of C. elegans. ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference(26). https://doi.org/10.1162/isal_a_00611

Severino, G. J., Laborde, Z., & Barwich, A.-S. (2023). The degeneracy of control architectures in cell lineages: Implications for tissue homeostasis. *ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference*, *ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference*(23). https://doi.org/10.1162/isal_a_00608

Laborde, Z., Toler, W., Velhal, K., Farag, T., & Chakra, A. (2019). Method and system for implementing a holistic umbrella drone. https://priorart.ip.com/IPCOM/000257353

Laborde, Z., Stephenson, D., Reiss, A., Beaton, E., & Cohen, J. (2017). Anterior-posterior insular cortex bisection plugin for mango [Poster presentation]. *Cognitive Neuroscience Society*.

Laborde, Z., & Cohen, J. (2016). Nostalgia and the perception of time. *XULAnEXUS*, *14*(1). https://digitalcommons.xula.edu/xulanexus/vol14/iss1/1

Research Experience

Indiana University Bloomington

Aug 2021 - Present

Dr. Eduardo Izquierdo & Dr. Justin Wood

- Pioneered the evolution of optimal sensorimotor configurations in simulated agents utilizing Continuous Time Recurrent Neural Network (CTRNN) controllers achieving neural networks that were simultaneously smaller and more performant
- Modeled development of a C. elegans connectome leading to improved accuracy versus existing models and new perspectives on its structure
- Discovered a new biologically-realistic dynamic control system for cellular lineages with potential applications in synthetic biology and regenerative medicine
- Developed and launched an online application for the dynamical analysis of cellular differentiation in multi-compartment systems integrating multiple control mechanisms (see https://nanohub.org/resources/dynsysregen)
- Conceived and implemented a novel level set approximation algorithm for high-dimensional manifolds significantly reducing computational complexity and resource usage by 90%.

Education

Indiana University Bloomington
Neuroscience & Cognitive Science

Aug. 2021 - Present
Ph.D.*

Xavier University of Louisiana
Psychology

Aug. 2013 - May 2017
Bachelor of Science

Computer Science (minor)

Work Experience

IBM

July 2017 - Aug 2021

Software Engineer

 Developed features to automate event analytics analysis and prediction for operation engineers using machine learning

^{*} coursework complete