THAMWAY PROT series hardware server software

TCP/IP port to be used

TCP/IP PORT:5025 It uses to communicate with the PG32 PULSER.

Delimiter of command

Please take always delimiter character in the command using the TCP/IP. Delimiter, 'CR', 'CR + LF', ';' is one of the three out of.

About numerical value to be used

Integer

If you put a "0x" at the beginning it is regarded as hexadecimal. If you put a "0" at the beginning it is regarded as octal.

If you put a "Ob" at the beginning it is regarded as binary.

Other than the above it will consider the decimal.

Example:
$$0x123 \rightarrow 291$$

 $0b1100 \rightarrow 12$
 $0123 \rightarrow 83$

Real

If you put a "u" in the back of the numeric value is regarded as 1e-6 (micro). If you put a "m" in the back of the numeric value is regarded as 1e-3 (milli). If you put a "k" in the back of the numeric value is regarded as 1e+3 (kilo). 例: $123k \rightarrow 123000$ $1.2u \rightarrow 0.0000012$

QPSK

At the same time I will output a QPSK pulse and transmitted pulse. There are two 'QPSK1' and 'QPSK2'.

TIME

Unit of time is sec.

FREQUENCY

Unit of frequency is Hertz(Hz).

VOLTAGE

Unit of voltage is volt.

About 'Lua' command

This software can also be operated using an internal Lua commands without using the TCP/IP connection. Operate and use the keyboard from the command line.

```
TCP / IP PORT: 5025 command, you can substitute call PG ("pulsercommand"). TCP / IP PORT: 5026 command, you can substitute call AD ("AD command"). TCP / IP PORT: 5027 command, you can substitute call RF ("AD command").
```

Example

```
callPG( "start 10" )
callAD( "startad 256, 1, 1, 0" )
callRF( "RFSWW1" )
callRF( "RFSWW0" )
```

PULSER Command List

The use the TCP / IP PORT: 5025 or callPG ()

Common commands (standard, extended mode Common)

View device information

[Format]

*idn?

[Description]

Make the display of the hardware and software of information connected.

[Result]

THAMWAY, N210-1026T PULSER, Version 2. 00, PG32U40 , 071024, CLK=40MHZ, BIT=32, RAM=262144,

Set the mode

[Format]

setmode <value>

[Description]

value 0:Standard mode

1:Extended mode

[Example]

setmode 1

Start the pulse sequence

[Format]

start <Repeat count>

[Description]

Execute the repetition number of times the pulse sequence.

Repeat count 0:Keep repeating

1..65535: Specified number of times repeatedly.

Stop the pulse sequence

[Format]

stop

[Description]

Stop the pulse sequence

Run the Lua script file.

```
[Format]
```

run_lua <file name>

[Description]

Run a lua script file on your PC.

[Example]

run_lua c:/myprograms/test1.lua

Write data to the I/O port

```
[Format]
```

 ${\color{red}\textbf{outb}}~ {\color{red} <} {\color{red} I/0} {\color{blue} address} {\color{blue} >}, {\color{blue} <} {\color{blue} byte}~ {\color{blue} data} ({\color{blue} 8bit}) {\color{blue} >}$

outw $\langle I/0address \rangle$, $\langle word data(16bit) \rangle$

[Description]

It is used when operating the register of each device directly.

Read data from the I/O port

[Format]

inb $\langle I/0 \text{ address} \rangle$

inw $\langle I/0 \text{ address} \rangle$

[Description]

It is used when operating the register of each device directly.

inb: read 8bit data. inw: read 16bit data.

Display PULSER memory

[Format]

dispmem <start address>, <length>

[Description]

It will make the display of the current PULSER memory.

start address: Please specify the memory address. Start address is 0.

length: Specifying the number of memory to be displayed.

STANDARD MODE COMMAND

Specifies the width of the first pulse

[Format]

fpw <length>

[Description]

Set the width of the 1'st PULSE.

Specifies the QPSK of the first pulse

[Format]

fpq <qpskvalue>

[Description]

Set the QPSK of the 1'st PULSE.

Refer to QPSK VALUE (Table1)

Set SINGLE PULSE MODE

[Format]

single

[Description]

Set to SINGLE PULSE MODE

Set DOUBLE PULSE MODE

[Format]

doub le

[Description]

Set to DOUBLE PULSE MODE

Use COMB PULSE

[Format]

usecomb <value>

[Description]

value 0:not use

1:use

Set the length of the COMB PULSE

[Format]

cpw <length>

[Description]

Set the length of the COMB PULSE

Specify the interval of COMB PULSE and COMB PULSE

[Format]

cpi <length>

[Description]

Specify the interval of COMB PULSE and COMB PULSE.

Specify the number of COMB PULSES.

[Format]

cpn <number>

[Description]

Specify the number of COMB PULSES.

Specifies the QPSK of the COMB PULSE.

[Format]

cpq <qpskvalue>

[Description]

Specifies the QPSK of the COMB PULSE.

Refer QPSK VALUE(Table1)

Specify the interval of up to 1st pulse from COMB PULSE.

[Format]

tj <length>

[Description]

Specify the interval of up to 1st pulse from COMB PULSE.

Specifies the width of the second pulse.

[Format]

spw <length>

[Description]

Specifies the width of the second pulse.

Specifies the QPSK of the second pulse.

[Format]

spq <qpskvalue>

[Description]

Set the QPSK of second pulse.

Refer to QPSK VALUE(Table1)

Specifies interval until the first pulse and second pulse

[Format]

t2 <time>

[Description]

Specify the interval of 1, st PULSE and 2'nd PULSE.

Specifies A/D trigger offset

[Format]

adoff <time>

[Description]

You set the relative time of the A / D converter for the trigger to be output from the AD. TRG terminal. Pulse width is $1\,\mu$ S fixed. You can set the value of both positive and negative. Please set so as not to be outside the range.

[Example]

adoff -1.3uS adoff 2uS

Setting of A/D trigger

[Format]

adtrg <value>

[Description]

Make the pulse setting of the output from the AD. TRG terminal.

Refer to figure1

value

O:Spin echo position

1:FreeInductionDecay position

Setting of TRG. OUT terminal

[Format]

trgout <value>

[Description]

You set the position of the output pulses from TRG. OUT.

The length of the pulse is 1us.

Table 1: TRG. OUT output

value	position			
0	Start of COMB PULSE			
1	End of COMB PULSE			
2	1'st pulse rise edge			
3	2'nd pulse raise edge			
4				
5	Same as A/D trigger pulse.			

Setting of external trigger

```
[Format]
```

exttrg <value>

[Description]

set use of 'PG. TRG. IN'.

value 0:not use 'PG. TRG. IN'.

1: use 'PG. TRG. IN'.

Setting the blanking time

[Format]

blank <time>

[Description]

The unit is seconds. Please set a positive value.

Setting of the kind of the blanking time

[Format]

wa i tmode

loopmode

[Description]

waitmode: The software uses 'blank' as time for interval.

loopmode: The software uses 'blank' as time for repetition.

Please usually use it in waitmode. When I measure the sample which is sensitive to temperature such as the cryogenic temperature, I use loopmode.

The follows are commands to coordinate to the characteristic of the transmitter.

Setting of the quantity of transmission gate delay

[Format]

[Description]

tx2predelay: This appoints the width for the front part of TX1. The initial value is 10uS. tx2postdelay: This appoints the width for the rear of TX1. The initial value is 0.

Attention: It becomes invalid with the extended mode.

QPSK ディレイ量設定

[Format]

qpskdelay <time>

[Description]

This sets quantity of delay for QPSK pulse and the TX pulse. And I depend on the QPSK modulator.

The initial value is 1.5uSec.

Attention: It becomes invalid with the extended mode.

EXTENDED MODE

The following commands are the commands that are effective in an expansion mode. Because it is a fixed form mode, at the time of the software start, the expansion mode, please using 'setmode'.

Clear memory

[Format]

memclr

[Description]

This command initializes the memory for the pulse making. Please carry it out by all means before making a pulse.

Append pulse

[Format]

makepulse <BitNumber>, <start time>, <pulse width>

[Description]

This command insert in a 1-bit wide pulse at a storage device.

BitNumber: It is a bit position. The range is 0-31. (Refer to Table4)

start time: This is time from the top. It is absolute value. Please input a positive value.

Pulse width: This is pulse output time. Please input a positive value.

Erase pulse

[Format]

erasepulse <BitNumber>, <start time>, <pulse width>

[Description]

This removes a 1-bit wide pulse.

BitNumber: It is a bit position. The range is 0-31. (Refer to Table4)

start time: This is time from the top. It is absolute value. Please input a positive value.

Pulse width This is width of the pulses to remove. Please input a positive value.

Write board control command

[Format]

makecommand <write position>, <command>, <data>

[Description]

write position: This appoints the note position of the command in time from the top. (positive value)

command: appoint a jump command and a stop command during a sequence.

data: Appoint necessary numerical value. In the case of the command that numerical value is unnecessary, please appoint 0.

[Example]

This example writes in jump at the position of 1.35 seconds from the top. makecommand 1.35, 0xff200000, 0

Table 2: Board control command

Name	Command	Data	Meaning	
GOTO	0xFF200000+ <memory address=""></memory>	Unnecessa ry(0)	jump to memory address. use for looping.	
ST0P	0xFF400000	Unnecessa ry(0)	Stop a pulse sequence.	
TRG	0xFF800000	Unnecessa ry (0)	Wait for trigger.	

Example of Lua script in STANDARD MODE

The following text perform the pulse output in Lua.

```
function wait_pulser()
    repeat until "STOP" == callPG("ISRUN?")
end

print("START PULSER")
    callPG("stop")
    callPG("setmode 0")
    callPG("loopmode")
    callPG("double")
    callPG("t2 35u")
    callPG("blank 1m")
    callPG("fpw 10u")
    callPG("spw 20u")
    callPG("start 1000")
    wait_pulser()
    print("END")

Text 1: Example of Lua script in STANDARD MODE
```

figure 1: STANDARD MODE pulse output

Example of Lua script in EXTENDED MODE

The following text perform the pulse output in Lua.

Table 3: QPSK VALUE

qpskvalue	TX phase	QPSK2 output level	QPSK1 output level
0	+X(0 degree)	LOW	LOW
1	+Y(90 degree)	LOW	HIGH
2	-X(180 degree)	HIGH	LOW
3	-Y(270 degree)	HIGH	HIGH

Table 4: PULSER BIT NUMBER

BitNumber	Name	Remarks		
0	TX1	TX gate signal		
1	TX2	TX biasgate signal		
2	AUX1	RX gate signal		
3	QPSK1	QPSK LSB		
4	QPSK2	QPSK MSB		
5	AUX2			
6	TRG. OUT	Trigger for		
		Oscilloscope		
7	METER	Trigger for PowerMeter		
8	METER. RESET/AUX9	Reset for PowerMeter		
9	AD. TRG	Trigger for A/D		
10	AUX3			
11	COMB/DA. TRG	COMB PULSE		
12	1'st PULSE/AUX6	1'st PULSE		
13	2' nd PULSE/AUX7	2' nd PULSE		
14	AUX4			
15	AUX10			

Table 5: I/O PORT (low address)

address map (low-address 8bit)	port name		
0x00-0x1f	PULSER BOARD		
0x20-0x3f	AD BOARD		
0x40-0x5f	reserved		
0x60-0x7f	reserved		
0x80-0x9f			
0xa0-0xbf	RF LOW LEVEL		
0xc0-0xcf			
0xe0-0xff			

Table 6: I/O port (high address)

RANGE	DIP SWITCH			
MINUL	3	2	2	1
0x0000-0x00ff	ON	ON	ON	ON
0x0100-0x01ff	ON	ON	ON	0FF
0x0200-0x02ff	ON	ON	0FF	ON
0x0300-0x03ff	ON	ON	0FF	0FF
0x0400-0x04ff	ON	0FF	ON	ON
0x0500-0x05ff	ON	0FF	ON	0FF
0x0600-0x06ff	ON	0FF	0FF	ON
0x0700-0x07ff	ON	0FF	0FF	0FF
0x0800-0x08ff	0FF	ON	ON	ON
0x0900-0x09ff	0FF	ON	ON	0FF
0x0a00-0x0aff	0FF	ON	0FF	ON
0x0b00-0x0bff	0FF	ON	0FF	0FF
0x0c00-0x0cff	0FF	0FF	ON	ON
0x0d00-0x0dff	0FF	0FF	ON	0FF
0x0e00-0x0eff	0FF	0FF	0FF	ON
0x0f00-0x0fff	0FF	0FF	0FF	0FF