AE 4453 Outline

This is a *tentative* outline of the material that will be covered. Helpful readings from the supplementary texts are also indicated (HP = Hill and Peterson, F= Farokhi, DH=Dixon and Hall, L=Lefebvre, e.g. HP7 means Hill and Peterson, Chapter 7).

	# H	lours	Readings
I. Syllabus and Aircraft Propulsion Review		1.5	
A. Engine architectures	1/2		
B. Performance characteristics and single-point cycle design	3/4		
C. Component design and unconventional architectures	1/4		
II. Turbomachinery Design and Analysis		15.5	
A. Axial turbomachines, Euler equations and cascade nomenclature	2		
B. Mean line design of compressors and compressor performance			HP7, F7, DH3,5
1. Cascade flow angles and velocity triangles	1		
2. <u>Single-stage compressor characteristics</u>	2		
3. Blade design considerations and cascade performance	3		
4. Multistage compressors	1		
C. Mean line design of turbines and turbine performance			HP8, F9,DH3,4
1. Overview, Euler equations and turbine characteristics (maps)	$1\frac{1}{2}$		
2. <u>Degree of reaction</u>	1		
3. <u>Nozzle design considerations</u>	1		
4. <u>p_o losses and optimum solidity</u>	1		
5. <u>Blade and disk stresses</u> , and vibrations	1		
D. Compressor and turbine design process	1		
III. Engine Off-Design Performance		3.5	HP8.7,F10
A. Gas turbine matching requirements and map scaling	1/2		
B. Gas generator off-design performance	$1\frac{1}{2}$		
1. Overview			
2. <u>Unchoked operation and matching procedure</u>			
3. <u>Choked turbine matching analysis</u>			
4. Operating lines and pumping characteristics			
C. Engine off-design performance	1		
D. Engine transient response	1/2		
IV. Combustor Design		9	HP6,F6,L1-6
A. Overview: requirements and rationale for typical features	$1\frac{1}{2}$		
B. <u>Diffuser sizing & losses, combustor length</u>	2		
C. <u>Aerodynamics and swirl</u>	$1\frac{1}{2}$		
D. <u>Fuel injection and atomization</u>	$1\frac{1}{2}$		
E. <u>Ignition</u>	1		
F. Heat transfer and liner cooling	$1\frac{1}{2}$		
V. Advanced Propulsion Architectures		7.5	
A. Scramjets	2		
B. Pressure gain combustion approaches	2		
C. Electric and hybrid electric propulsion	3.5		
Reviews, Project Discussions and Exams		5	