

A Smarter Chair Customizable Personal Environments

Michael Chen, Sam Kumar, Leonard Truong

Goals

- Learn about user behavior with respect to thermal environments
 - Log this information on server-side
 - Adjust building/personal environments to maximize energy savings
- Provide adjustable personal environments
 - Users can turn on fans and heaters on the chair from their own smartphones
 - Chair detects when the user occupies the chair, and can remotely actuate devices accordingly
 - Chair remembers users' last settings and restores them upon return

Architecture

Reliable Delivery, Communication and Logging

User Interaction

- Users control the chair via phone apps, which connects to the chair via both Bluetooth and Wifi
 - Both Android and iOS implementations
 - Webapp version too
- Intuitive, slider elements for controlling chair
 - User can control fans and heaters on the back and bottom of the chair independently
- (Some) voice command functionality (Android only)
- Application can notify user of sitting in chair for extended periods of time to promote activity

Data Flow

- Chair periodically logs current state (occupancy, fan state, heater state, temperature)
 - Chair stores this in flash (persistent storage) for recovery in case of failure
 - State in flash is flushed to remote servers
- Chair sends logged data to sMAP over 15.4 via a Firestorm Proxy implementing a reliable network queue
- Phone app also relays data should a link in the Wifi connection fail
- Phone app relays current time to chair for maintaining timestamps for logging in flash storage
- There are two physical paths for data to get from the chair to sMAP for reliable delivery should a link fail

Initialization/Setup

- User scans QR code or taps NFC tag (NFC on Android only)
- User reaches appropriate location for app download
- In app, user scans QR code again or taps NFC tag
- App automatically configures chair communication over Bluetooth and communication with the server

Automatically adjust chair based on surrounding environments	✓
Display name	
Men in 0x000000	
Notifications	
Notify for extensive sitting	
Phone will notify user after sitting in the	✓
chair for extensive periods of time. Encourage periodic activity.	
Ringtone	
Vibrate	✓
Data & sync	
Sync frequency	
3 hours	
Clear all Data	

Future Work

- Learn user preferences and adapt personal environments accordingly
- Algorithmically minimize energy usage through adjusting microclimates as well as building HVACs
- Use occupancy to set indicators to let others know if user is in office
- Track total sedentary activity and provide relevant health information
- Automatically set up desk equipment when user sits down (turning on computer, desk lamp, etc.)
- Integrate tightly with building, so building can minimize energy savings when it notices that no chairs are occupied (such as turning off heaters and lights)