Problems

chapter 5

1. consider the following set of processes that arrive at lesse 0, with the length of the CPU burst given in muccs. If the processes arrive in the order P, P2, P3 & P4.

Pacocess	Bust tême
P,	3
Pa	6
P3	4
P4	એ

Draw Gant chart for FCFS. Obtain walking teme, turnaround time of each processes and aug turn around time.

soln:

(i) Gantt chart

P	P ₂	Рз	194	
0 3	9		3	15

in waiting time

Prous	wash	eng	kw	u
Р.	0			
Pa	3			
Pa	9		• :	
· P4 ·	.13			

(iti) Ang walting teme

And walt time = walking terms of all processes

= · 6 · 25 · msecs

(v) notal PAT (Turon Asound Pine)

$$= \frac{3+9+13+15}{4}$$

$$= 10 \text{ miecs}$$

Sudhamani. m.T Dept of CSE, RNSII

(iv) Turnasound Pene:

It is obtained by subtracting the time the prouse entered the system from the terminated. Entered time is 'O' for all prouser

Proces	T. A tems (Busttern + washing time)
ρ,	3+0 =3
P2	6+3=9
P3	4+9-13
13 P4	Q+ 13=15

and the state of t	en msecs:	Busil Lone 10 (i) 1 2 [ii]	order P, P2, P3, F Braw ganterarl processor. Dustr processor. D	Hat Ellustrates of FCPs elling terms of each		
	(i) Gantt chart PI O Civ Avg walk	P ₂ P ₃ P ₄	PS	Process W. Proces	1	
	= 0+10+ = 9.6 m	8 sect	······································			
	Pleas P, P2 P3 P4 P5	TAT (B.T+W.T) 10+0 =10 1+10 = 11 2+11 = 13 1+13 = 14 5+14 = 19	Aoerae	Fe TAT = 10+11+15	3+14+19 = 13.4 m.see	

3) We he felterstry orange calculate average TAT and any waltery time.

Assent But	Busit Tobe
0	B .
	4
2.	9
3	6'
	0 1 2

ii) Gamil charl:

Lo	STATE OF THE PERSON NAMED IN	P.	Pa	Pu
Pi			21	26
0	U	1.	1	

(i) walking none;

(lit) Awarage walking time

Proton | Ralling Teme]

$$P_1$$
 | $O-0=0$ (Altoled - Associal)

 P_2 | $B-1=7$
 P_3 | P_4 | P_4 | P_4 | P_4 | P_5 | P_6 | P_6

(in Turn Around Teme (PAT) Burst teme + walking teme

Process	TAT
P	8-1-0 =8
PR	4+7=11
Pa	9+ 10=19
Pu	€2 +10 =-53

(1) Average TAT:

4) the following process arise for ever at times indicated below; (July/hug 200/1) Brow Gost dost and calculate overage working time. (USE FCFS)

Places	Asserbly Time	Bust time
f,	0	1.5
Fa	1.5	3
F ₃	3 .	ı
fy	3	7.5

Gart charl

Γ	PI	Pa	P3	P4	
0	1.5		1.5 5	5	13

Accrage walting tene:

For the following problem, find out average wall time using SRTF P2 P3 9

Gantt chart:	P4	P2	P4	P,		f3
	6	1	В	10	17	&6

Prous P, is started at time D, since it is the only process in the Q.

Prous P2 arelies at time 1. The remaining time for process P; (7 ms) is
larger than the time required by process P2 (4 ms). So process P, is precupted
and proons pa is scheduled.

: Average wasting time: (10-1)+(1-1)+(17-2)+(5-3) = 6-5 mucos

(ATAT = 13 micu)

Non preemptive scheduling: (same problem as above)

Gart chart:

wast teme:

Average wait time

TAT:

Process	TAT (B. F+ 10.F)
Pı	8+0 =8
P2	4+7 = 11
P3 P4	9+15 724 9+9=14

Average man 15 16 TAT

8\$11+24+14 4 - 25 msecs (6) Consider the following set of processes with the length of the CPU built, time given in moseci (Jan1Feb-2005, 10m)

Process 1	Arrival Deme	Buset time
Pı	0 .	7
Pa	З.	2
Pg	4	3
P4	4	1
P ₅	5	3

(E) Draw Gantt chart Ellostraling SRTF (Shortest Remarking Time Forst).

(11) compute washing teme, AWT, TAT and ATAT.

	Pı	Pa	P ₄	P3 .	Pg	PI
0	3	3	5	6	9 12	16

Dalkerg	teme	
Pacocess	10.7	3*
8	12-3 =9	
f		
P2	3-3=0	
. P3	6-4 = 2	•••••

ROLLES	TAT
: P ₁	7+9 = 16
P2	2+0=2.
P3	3-12 = 5
P4	1+1 = 2
Pg	3+4 = 7

$$A \omega T = \frac{9+0+2+1+4}{5}$$

$$= \frac{16}{5}$$

$$= \frac{3.2 \text{ mseas.}}{5}$$

9-5 = A

$$ATAT = .16 + 2 + 5 + 2 + 7$$

$$= 6.4 \text{ movin}$$

F) For the following set of processes and the average walking time and that using Bank chart (SJF)

Proces 1	Buestterne
Pi	10
P2	1
' P3	2
P4	. 1
Ps	5

Pa	P4	P3	Ps	p.
0	1 2	4	. 9	

Walf	time
_	

P	9
Pa	0
Pa Pa	2
P _H PS	1
Ps	4

Following processes assive for ever at times indicated:

proces | 1.5

Doaw Gantt chart and	calculate HW
for SRTF echedolog.	© .
·	**

Gant chart:

P.	Pa.	· P3	Pa	P4.	
	1 80	1 1	.50	5	_

wast teme!

proces	Del	
P,	O.	((1.5-1.5)+(4-3))
P2	4-30 = 20	((1.5-1.5)+(4~5))
P3	3-3=0	•
P4	5.5 - 3= 2.5	

Nonpreemptire scheduling:

Gart elast:

Pı	Pa	P3	Py
----	----	----	----

ANT =
$$(0-0) + (1.5-1.5) + (4.5-3) + (5.5-3) = \frac{0+0+1.5+2.5}{4} = 1 \text{ mseup}$$

9. consider the following set of processes well condust time in macus

broite	Ascreval Tene (mi)	Busst 12me
Po	, O.	6
P,	Ļ	3
P ₂	2	t
P3	3	4

(i) Draw the Gartt chart Mostrahing the even of above processes using SRTF and non-preemphere SJF.

(ii) Find the TAT for each processes for SRIF 4 SIF, hence show that SRTF es faster than

[Jan/Feb - 2008 , 10M] .

(i) SRIF (Shortest Remaining Time First):

Gart chart:

1	_1_	1	2	d,		
Po	Pı	P ₂	ρ,	P3	Po	
. 1	2	į 3	5	9		4

twall teme: [(0-0)+(9-1)]+(3-2)+

AWT.

Po ⇒6+8 = 14 TAT :

P1 => 3+1 =4

Pa = 1+0 = 1

P3 => 4+2 = 6

ATAT = 25/2 = 6.25 msec

tes won-preeriptive SJF

Gartt chart:

	Po	P2.	Pı	TF	3
0		6 7	<u> </u>	10	

walf tene: 900 Po >> 0

P, =>7-1 =6

Pa => 6-2 = 4

P3 => 10-3 =7

TAT: Fo ⇒ 6+0 = 6.

P1 => 3+6 = 9

P2 => 1+4 =5

P3 => 4+7 = 11

ATAT = 6+9+5+11 = 7.75mg/

Above calculations show, SRTF & faster than SJF

Gartt chart, find wait time and TAT, USEng priority schodoling.

prouss	Busttone	Prench
P.	3	2
P ₂	6	4
Pa	4	1
P4	ء ا	3

(los value - hegh privity)

(i) Gantt clast:

Pa	۴,	P4	Pa
,	4:	7 9	

(1) wall time

۴,	4	_	_
P2.	9		7
P3 P4	0	• •	8
P4	7		

(ii) Two around rine

Consider the following set of processes with the length of the con buset time gaver in meecs.

(i) Onew Garlt charle Ellustraling

Process 1	Arrival Ten	1 B.T	Priority
P.	0	7	3
B	3	2	೩
P3	4	3	1
Pu	E &	11	1.
P3	8	э	3

- (i) One Gant charts Ellustrating precuptive priority and RR (Rme sleet Ims)
- (ii) compute walt time di TAT
- (tii) Gend out the time of which there are man no of processes on the Ready of in the above scenario.

 (Far/Feb-2005, 1019)

P-5.

(1) Preemptere Parochy:

Gart	clark
------	-------

P.	ė,	Pa	PA	P2	PS	Ps
0	3	4	7 8	3	1	13 1

was Teme : 4 TAT

Process	D.T.	T-A-T
P,	9-3-6	7+6 = 13
P ₂	8-4-4	2+4=6
P ₃	4-4=0	3+0=3
P4	90=3	2+1=3.
P5	13-5-8	11 = 8+6

(ii) Round Roben Scheduling:

Gantt charts

Walt Time & TAT:

Proux | W. r | Pra.r' P1 | 9 | 9+7 = 16 P2 | 4 | 4+2 = 6 P3 | 6 | 6+3 = 9 P4 | 5 | 5+1 = 6 P5 | 5 | 5+3 = 8

would temes calculation:

(13)

Solve usery RR scheduling

time slice = 1 ms

Proces	B.7
Pı	10
P2	1
P3	2
	1 5
PS PS	5

(i) Gantt chart:

$P_{i_{\downarrow}}$	P ₂	P3	P.4	P 5'	PI	P3.	Ps	PI	Ps	Pi	P5	Pı	Ps	P,	Pi	P,	Pi	F
	,	3			5 6	5	7 8	-	9 1	0	1 1	2	13 1	4 1	<u></u>	16	7 /	-

(ii) walt Time:

$$P_1 = 0 + i(14-13) + (12-11) + (10-9) + (8-6) + (5-1) = 9$$

$$(12-11)+(10-9)+(8-6)+(5-1)=9$$

AWT

(4) Solve the following using preemptive priority algon. (Higher value specific

	Proces	A-T .	в.Т	Predely
•	P	0.0	6	#
	P2	3.0	5	2
	P3	3.0	3	6
	P4	5.0	3	3

P,	P3	Pı	P4	Pa	\neg
0	3 6	, ,	7 1	4	-1

(12)

Prous	A.T	B.7
Ρ,	0	8
P2	1	4.
P3	2	9.
P4	3	5

(i) Barti craet

				•	2								_	1	1 .	-	Ta	1
	p	п	D	p.	D	0_	Pa	Pu	P.	Pa	Pa	Pu	P,	P2	13	Py	14	ľ
		r ₂	3	3.4	1,	12	1/3	7 8		9 ,	-	-	2	13	14 . 1.	5 1	P ₁	7
- (1	2	• 5	3	-	, ,	,	, ,		, ,								

, i		-	_	0	10-	ρ.	Pa	Pa	
Pa	P4	9 5	P3	-1 2	12 ;	23 2	24 - 2	B	217

walt time

A TAT = 24 +13 +24+16

19.25 mes.

Solve	userg	preach	Schedoling
	-	-0-	

Proum	B.T	Priorly
P,	10	3
P2	1	1
P3	2	3
Py	1	4
Py Ps-	5	2

Fartt chart:

P2	Ps	PI	193	fq	The
0 1		6	16	8 1	9

	1 6.7	TAT.
P_{j}	6	16
· P2	0	1
··· P3	16	18
· · · Py	18	19
Ps	1	6

> continuation of problem 14

realf tene for each processes:

$$P_1 = (0-0) + (6-3) \Rightarrow 3$$

$$B = 14.3 \Rightarrow 11$$

$$B_3 = 3.3 \Rightarrow 0$$

Tuen around Teme & APAT

$$P_1 \Rightarrow 6+3=9$$

۱
١
1

Solve using Preachy scheduling

Process	B.9	Preorety
Ρ,	10	3
P2_	1	1
-	2	4
P3 P4	1	5
ρ5	5	Æ

Gart Chart:

P	Ps	P ₁ .		Pa	Py	
6 3		6	16	5 1	8	19

$$\frac{6+0+16+19+1}{5} = \frac{41}{5} = 8.2 \text{ mg}$$

Solve the following problem using SRTF Schedoling algon: calculate WT

Prous	A-T	BIT
P,	0	8
P ₂	1	4
P3	2	9
P4	3	· 5

۴,	P2	PH	PI		Рэ
0 1		5	10.	17	જે(

back teme:

TCAA

Sudhamani mJ Sept. of CSE, RNSIT