

Configuration File:

Astellas Infectivity Assay Report Test Article Report

Data File(s):

Approver Signature/Date

Data File(5).	comiguration rice.	Date.
INFECT-26AUG2024-01_INF2_P1_R1	INFECT-26AUG2024-01_INF2_R1_Configuration update	22Jan2025:13:23:54
INFECT-26AUG2024-01_INF2_P2_R1		
Total Number		
of Plate(s):		
2		
Assay Details		
Assay Details		
User Information		
User Name: harding		
Computer Name: DESKTOP-RFHI5SO		
Logon Server: \\DESKTOP-RFHI5SO		
User Domain: DESKTOP-RFHI5SO	2.4	
Astellas Infectivity PLA Script Version 3	3.1	
JMP Version 18.1.0		
Analyst Signature/Date		

Date:

RS-Pompe-DS000008 Reference Standard Data

	Sample			Std			Log10 MOI		Outlier	Externally Outlier
Group	Group	N Rows	Vg/mL	Dev(Vg/mL)	CV(%)	MOI (Vg/cell)	(Vg/cell)	Log10 Vg/mL	Jackknife z Within Group	Studentized Residuals Between Group
RS-Pompe-DS000008	1	2	2.245e+10	1787565942.8	7.9631412279	1e+3	3	10.351177654	3.086 Pass	0.615 Ok
RS-Pompe-DS000008	2	2	1.057e+10	650538238.69	6.1534074791	5e+2	2.6989700043	10.024157154	1.822 Pass	1.555 Ok
RS-Pompe-DS000008	3	2	3.480e+9	79195959.493	2.2757459624	2.5e+2	2.3979400087	9.5415792439	2.910 Pass	-0.299 Ok
RS-Pompe-DS000008	4	2	1.304e+9			1.25e+2	2.096910013	9.1152775914	1.274 Pass	-1.164 Ok
RS-Pompe-DS000008	5	2	7.992e+8			6.25e+1	1.7958800173	8.9026554752	1.398 Pass	2.039 Ok
RS-Pompe-DS000008	6	2	1.955e+10	1261478497.6	6.453235613	1e+3	3	10.29110233	0.180 Pass	-0.442 Ok
RS-Pompe-DS000008	7	2	1.002e+10	729734198.18	7.282776429	5e+2	2.6989700043	10.000867722	0.084 Pass	1.079 Ok
RS-Pompe-DS000008	8	2	3.198e+9	127844906.04	3.9981519276	2.5e+2	2.3979400087	9.5048241353	1.615 Pass	-0.925 Ok
RS-Pompe-DS000008	9	2	1.807e+9	125582164.34	6.9489909439	1.25e+2	2.096910013	9.2570062179	4.235 Outlier	1.291 Ok
RS-Pompe-DS000008	10	2	7.144e+8			6.25e+1	1.7958800173	8.8539414459	0.243 Pass	0.913 Ok
RS-Pompe-DS000008	11	2	1.782e+10	1538664355.9	8.6325423915	1e+3	3	10.251005173	1.548 Pass	-1.207 Ok
RS-Pompe-DS000008	12	2	9.320e+9	509116882.45	5.4626274941	5e+2	2.6989700043	9.9694159124	2.500 Pass	0.517 Ok
RS-Pompe-DS000008	13	2	3.308e+9	62225396.744	1.8810579427	2.5e+2	2.3979400087	9.5195655009	0.154 Pass	-0.666 Ok
RS-Pompe-DS000008	14	2	1.448e+9			1.25e+2	2.096910013	9.1607685619	0.302 Pass	-0.351 Ok
RS-Pompe-DS000008	15	2	5.408e+8			6.25e+1	1.7958800173	8.7330366829	3.602 Pass	-1.343 Ok

Outliers detected in Outlier Within Group column are Jackknife z greater than 4 and RLU outside of 95% analytical error Between Group Outliers are aboslute value of Externally Studentized Residuals greater than 4

35737 AC Sample Data

	Sample			Std			Log10 MOI			Outlier	Externally Outlier
Group	Group	N Rows	Vg/mL	Dev(Vg/mL)	CV(%)	MOI (Vg/cell)	(Vg/cell)	Log10 Vg/mL	Jackknife z	Within Group	Studentized Residuals Between Group
35737 AC	16	2	1.869e+10			1e+3	3	10.271562825	3.832	Pass	0.193 Ok
35737 AC	17	2	9.432e+9	758018469.43	8.0366674028	5e+2	2.6989700043	9.9746037921	2.094	Pass	0.739 Ok
35737 AC	18	2	2.899e+9	153866435.59	5.3072032142	2.5e+2	2.3979400087	9.462278176	1.138	Pass	-1.908 Ok
35737 AC	19	2	1.736e+9			1.25e+2	2.096910013	9.2395497208	0.566	Pass	-0.117 Ok
35737 AC	20	2	1.064e+9			6.25e+1	1.7958800173	9.026941628	3.619	Pass	1.987 Ok
35737 AC	21	2	1.738e+10	1408556708.1	8.1044689765	1e+3	3	10.240049772	0.266	Pass	-0.261 Ok
35737 AC	22	2	9.840e+9	1108743432.9	11.267717814	5e+2	2.6989700043	9.9929950984	0.007	Pass	1.018 Ok
35737 AC	23	2	2.978e+9	337148513.27	11.322827555	2.5e+2	2.3979400087	9.4738663558	0.377	Pass	-1.674 Ok
35737 AC	24	2	1.710e+9	105217489.04	6.1545091858	1.25e+2	2.096910013	9.2328945092	0.864	Pass	-0.208 Ok
35737 AC	25	2	7.312e+8			6.25e+1	1.7958800173	8.8640361827	1.394	Pass	-0.707 Ok
35737 AC	26	2	1.679e+10	571342279.2	3.4032778127	1e+3	3	10.224998961	1.347	Pass	-0.482 Ok
35737 AC	27	2	1.026e+10	429920922.96	4.1918966747	5e+2	2.6989700043	10.010978012	2.149	Pass	1.313 Ok
35737 AC	28	2	3.235e+9	63356767.594	1.9583570597	2.5e+2	2.3979400087	9.5099011339	5.354	Outlier	-1.048 Ok
35737 AC	29	2	1.974e+9	9050966.7992	0.4584160656	1.25e+2	2.096910013	9.2954351424	13.478	Outlier	0.677 Ok
35737 AC	30	2	8.400e+8			6.25e+1	1.7958800173	8.9242792861	0.245	Pass	0.188 Ok

Outliers detected in Outlier Within Group column are Jackknife z greater than 4 and RLU outside of 95% analytical error Between Group Outliers are aboslute value of Externally Studentized Residuals greater than 4

35737 Sample Data

	Sample			Std			Log10 MOI			Outlier	Externally	Outlier
Group	Group	N Rows	Vg/mL	Dev(Vg/mL)	CV(%)	MOI (Vg/cell)	(Vg/cell)	Log10 Vg/mL	Jackknife z	Within Group	Studentized Residuals	Between Group
35737	16	2	1.869e+10			1e+3	3	10.271562825	3.832	Pass	0.193	Ok
35737	17	2	9.432e+9	758018469.43	8.0366674028	5e+2	2.6989700043	9.9746037921	2.094	Pass	0.739	Ok
35737	18	2	2.899e+9	153866435.59	5.3072032142	2.5e+2	2.3979400087	9.462278176	1.138	Pass	-1.908	Ok
35737	19	2	1.736e+9			1.25e+2	2.096910013	9.2395497208	0.566	Pass	-0.117	Ok
35737	20	2	1.064e+9			6.25e+1	1.7958800173	9.026941628	3.619	Pass	1.987	Ok
35737	21	2	1.738e+10	1408556708.1	8.1044689765	1e+3	3	10.240049772	0.266	Pass	-0.261	Ok
35737	22	2	9.840e+9	1108743432.9	11.267717814	5e+2	2.6989700043	9.9929950984	0.007	Pass	1.018	Ok
35737	23	2	2.978e+9	337148513.27	11.322827555	2.5e+2	2.3979400087	9.4738663558	0.377	Pass	-1.674	Ok
35737	24	2	1.710e+9	105217489.04	6.1545091858	1.25e+2	2.096910013	9.2328945092	0.864	Pass	-0.208	Ok
35737	25	2	7.312e+8			6.25e+1	1.7958800173	8.8640361827	1.394	Pass	-0.707	Ok
35737	26	2	1.679e+10	571342279.2	3.4032778127	1e+3	3	10.224998961	1.347	Pass	-0.482	Ok
35737	27	2	1.026e+10	429920922.96	4.1918966747	5e+2	2.6989700043	10.010978012	2.149	Pass	1.313	Ok
35737	28	2	3.235e+9	63356767.594	1.9583570597	2.5e+2	2.3979400087	9.5099011339	5.354	Outlier	-1.048	Ok
35737	29	2	1.974e+9	9050966.7992	0.4584160656	1.25e+2	2.096910013	9.2954351424	13.478	Outlier	0.677	Ok
35737	30	2	8.400e+8			6.25e+1	1.7958800173	8.9242792861	0.245	Pass	0.188	Ok

Outliers detected in Outlier Within Group column are Jackknife z greater than 4 and RLU outside of 95% analytical error

Between Group Outliers are aboslute value of Externally Studentized Residuals greater than 4

Summary Statistics 35737 AC

				Std			Sample	Standard	Curve
MOI (Vg/cell)	Group	N Rows	Mean(Vg/mL)	Dev(Vg/mL)	CV(%)	CV Check	Size Check	Curve Depth	Depth Test
6.25e+1	RS-Pompe-DS000008	3	6.85e+8	1.32e+8	19.2	FIO	Pass	1.9e+10	Pass
1.25e+2	RS-Pompe-DS000008	2	1.38e+9	1.02e+8	7.4	FIO	Pass		
2.5e+2	RS-Pompe-DS000008	3	3.33e+9	1.42e+8	4.3	FIO	Pass		
5e+2	RS-Pompe-DS000008	3	9.97e+9	6.27e+8	6.3	FIO	Pass		
1e+3	RS-Pompe-DS000008	3	2e+10	2.34e+9	11.7	FIO	Pass		
6.25e+1	35737 AC	3	8.78e+8	1.7e+8	19.3	FIO	Pass		
1.25e+2	35737 AC	2	1.72e+9	1.87e+7	1.1	FIO	Pass		
2.5e+2	35737 AC	2	2.94e+9	5.54e+7	1.9	FIO	Pass		
5e+2	35737 AC	3	9.84e+9	4.12e+8	4.2	FIO	Pass		
1e+3	35737 AC	3	1.8e+10	9.72e+8	5.5	FIO	Pass		

Coefficient of Variation Alert Limit (≤): 20 Minimum Sample Size (≥): 2

Curve Depth Limit (≥): 1.0e+9

Model Selection 35737 AC

	Danellaliana	I in a suite .			Malialia.	
	Parallelism	Linearity			Validity	
Model	Slope Ratio	Ratio	R2	RMSE	Evaluation	Selected Model
Model 2, Low Standard and Test Doses Excluded	0.899	2.974	0.982	0.062	Parallel and Linear	Model 2, Low Standard and Test Doses Excluded
Model 1, All Doses	0.890	1.966	0.986	0.068	Parallel and Linear	
Model 3, High Standard and Test Doses Excluded	0.886	9.980	0.976	0.075	Parallel and Linear	
Model 6, Test Low Dose Only Excluded	0.938	0.649	0.986	0.066	Parallel and Linear	
Model 9, Standard High Dose and Test Low Dose Excluded	0.916	5.132	0.983	0.068	Parallel and Linear	
Model 7, Test High Dose Only Excluded	0.908	3.959	0.983	0.072	Parallel and Linear	
Model 8, Standard Low Dose and Test High Dose Excluded	0.870	4.009	0.981	0.070	Parallel and Linear	
Model 5, Standard High Dose Only Excluded	0.869	4.773	0.983	0.070	Parallel and Linear	
Model 4, Standard Low Dose Only Excluded	0.853	0.696	0.985	0.065	Parallel and Linear	

Graphs 35737 AC

Validity Report 35737 AC

	Validity	Validity		Overall
Validity Criteria	Limits	Results	Assay Validity	Validity
Reference Standard Curve Depth ≥	1e+9	19255200000	Pass Validity Criterion	Assay is Valid
Sample Size Per Dose ≥	2	2	Pass Validity Criterion	
Parallelism Slope Ratio Lower Limit ≥	0.5	0.9	Pass Validity Criterion	
Parallelism Slope Ratio Upper Limit ≤	1.5	0.9	Pass Validity Criterion	
Linearity Ratio ≤	20	2.97	Pass Validity Criterion	
R-squared ≥	0.8	0.98	Pass Validity Criterion	
Abs(Unconstrained - Constrained Relative Potency Delta) \leq	15	0	Pass Validity Criterion	
Dose Reponse Test ≤	0.05	0	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained LSL Vg/cell ≥	10	341	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained USL Vg/cell ≤	800	341	Pass Validity Criterion	

Relative Potency and Infectious Particle Ratio 35737 AC

EC50 Reference Standard		Relative Po	,	rence Standard orrection Factor		erence Standard orrection Factor	Relative Potency Reportable Result	Assay RP Upper 95%	Assay RP Lower 95%
395.073	398.8145		99.1	C		0	99.1	107.3	91.5
	Infectious Particl Ratio Lower Lim 0.	it Ratio Up							
Fitting	EC50 Reference	EC50 Test	Relative	Relative	Acceptance	RP Delta			
Method	Standard	Article	Potency %	Potency Delta	Criterion	Check			
Unconstrained	394.750	398.401	99.08	0	<= 15	Pass			
Constrained	395.073	398.814	99.06		<= 15				

Summary Statistics 35737

				Std			Sample	Standard Curve
MOI (Vg/cell)	Group	N Rows	Mean(Vg/mL)	Dev(Vg/mL)	CV(%)	CV Check	Size Check	Curve Depth Depth Test
6.25e+1	RS-Pompe-DS000008	3	6.85e+8	1.32e+8	19.2	FIO	Pass	1.9e+10 Pass
1.25e+2	RS-Pompe-DS000008	2	1.38e+9	1.02e+8	7.4	FIO	Pass	
2.5e+2	RS-Pompe-DS000008	3	3.33e+9	1.42e+8	4.3	FIO	Pass	
5e+2	RS-Pompe-DS000008	3	9.97e+9	6.27e+8	6.3	FIO	Pass	
1e+3	RS-Pompe-DS000008	3	2e+10	2.34e+9	11.7	FIO	Pass	
6.25e+1	35737	3	8.78e+8	1.7e+8	19.3	FIO	Pass	
1.25e+2	35737	2	1.72e+9	1.87e+7	1.1	FIO	Pass	
2.5e+2	35737	2	2.94e+9	5.54e+7	1.9	FIO	Pass	
5e+2	35737	3	9.84e+9	4.12e+8	4.2	FIO	Pass	
1e+3	35737	3	1.8e+10	9.72e+8	5.5	FIO	Pass	

Coefficient of Variation Alert Limit (≤): 20 Minimum Sample Size (≥): 2 Curve Depth Limit (≥): 1.0e+9

Model Selection 35737

	Parallelism	Linearity			Validity	
Model	Slope Ratio	Ratio	R2	RMSE	Evaluation	Selected Model
Model 2, Low Standard and Test Doses Excluded	0.899	2.974	0.982	0.062	Parallel and Linear	Model 2, Low Standard and Test Doses Excluded
Model 1, All Doses	0.890	1.966	0.986	0.068	Parallel and Linear	
Model 3, High Standard and Test Doses Excluded	0.886	9.980	0.976	0.075	Parallel and Linear	
Model 6, Test Low Dose Only Excluded	0.938	0.649	0.986	0.066	Parallel and Linear	
Model 9, Standard High Dose and Test Low Dose Excluded	0.916	5.132	0.983	0.068	Parallel and Linear	
Model 7, Test High Dose Only Excluded	0.908	3.959	0.983	0.072	Parallel and Linear	
Model 8, Standard Low Dose and Test High Dose Excluded	0.870	4.009	0.981	0.070	Parallel and Linear	
Model 5, Standard High Dose Only Excluded	0.869	4.773	0.983	0.070	Parallel and Linear	
Model 4, Standard Low Dose Only Excluded	0.853	0.696	0.985	0.065	Parallel and Linear	

Graphs 35737

Validity Report 35737

	Validity	Validity		Overall
Validity Criteria	Limits	Results	Assay Validity	Validity
Reference Standard Curve Depth ≥	1e+9	19255200000	Pass Validity Criterion	Assay is Valid
Sample Size Per Dose ≥	2	2	Pass Validity Criterion	
Parallelism Slope Ratio Lower Limit ≥	0.5	0.9	Pass Validity Criterion	
Parallelism Slope Ratio Upper Limit ≤	1.5	0.9	Pass Validity Criterion	
Linearity Ratio ≤	20	2.97	Pass Validity Criterion	
R-squared ≥	0.8	0.98	Pass Validity Criterion	
Abs(Unconstrained - Constrained Relative Potency Delta) \leq	15	0	Pass Validity Criterion	
Dose Reponse Test ≤	0.05	0	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained LSL Vg/cell ≥	10	341	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained USL Vg/cell ≤	800	341	Pass Validity Criterion	

Relative Potency and Infectious Particle Ratio 35737

EC50 Referenc	e	Relative Po	tency Refe	erence Standard	Refe	rence Standard	Relative Potency	Assay RP	Assay RP
Standar	d EC50 Test	Uncorr	rected C	orrection Factor	Stability Co	rrection Factor	Reportable Result	Upper 95%	Lower 95%
395.07	3 398.8145		99.1	0		0	99.1	107.3	91.5
0.5	0.1	3	1.0						
0.5	0	3	1.0						
Fitting	EC50 Reference	EC50 Test	Relative	Relative	Acceptance	RP Delta			
	EC50 Reference Standard			Relative Potency Delta	•	RP Delta Check			
Fitting				Potency Delta	Criterion				

Relative Potency All Samples

	EC50 Reference				
Sample Name	Standard	EC50 Test	Reportable RP	RP Lower 95	RP Upper 95
35737 AC	395.07301355	398.81447301	99.1	91.5	107.3
35737	395.07301355	398.81447301	99.1	91.5	107.3
•	cation Limit: 70				

	Overall		
Sample Name	Validity	OOS	Reportable
35737 AC	Assay is Valid	Within Limits	Reportable
35737	Assay is Valid	Within Limits	Reportable

Input Files - Configuration File and Plate File(s)

System Suitability and Limits		ı	imit			Column 3	ddPCR Dilution Factor Map - Hig	gh Column 5	1	2	3	4	5	6	7	8	9
Lower Specification Limit (≥)			70			Coldmin 5	dar en Bilation ractor map	A A				6400					
Upper Specification Limit (≤)			30					В				6400					
Reference Standard Curve Depth (≥)		2	000000000					C D				6400					
Sample Size Per Dose (≥) Unconstrained EC50 Standard Lower Li	imit (≥)		0					E				6400					
Unconstrained EC50 Standard Upper Li		8	300					F	1600	6400	1600	6400	1600	6400	1600	6400	
% Relative Potency Delta (Constrained	– Unconstra).8					G H	1600 1600			6400			1600 NTC		
R-Squared (≥) Within Group Jackknife z Outlier Limit ((<)	4						П	1600	0400	INIC	P	1600	0400	NIC	P	
Between Group Studentized Residuals							ddPCR Dilution Factor Map - Me	edium	1	2	3	4	5	6	7	8	9
Parallelism Slope Ratio Lower Limit (≥)).5					A				6400					
Parallelism Slope Ratio Upper Limit (\leq) Linearity Ratio (\leq))		1.5 20					В				6400					
Dose Response Test (≤)).05					D				6400					
CV Alert Limit (≤)			20					E	1600	6400	1600	6400	1600	6400	1600	6400	
Infectious Particles Ratio Lower Specific).3					F G				6400					
Infectious Particles Ratio Upper Specific	ication Limit	(≤) I						Н	1600			6400 P			NTC		
Report File Name		II.	NFECT-26A	UG2024	-01_INF2	ddPCR Dilution Factor Map (High, Medium, Lov	<i>(</i>)										
Reference Standard			RS-Pompe-E	OS00000	8	High	ddPCR Dilution Factor Map - Lov							-		8	9
Assay Control Sample 1			35737 AC 35737			High Medium		В				6400					
Sample 2			.5.5.			Medium		С				6400					
Sample 3						Low		D				6400					
Sample 4						Low		E				6400					
Total Number of Plates		2	2					G				6400					
								Н	1600	6400	NTC	Р	1600	6400	NTC	Р	
MOI Concentrations Serial Dilution 1			/g/mL 1000														
Serial Dilution 1			500														
Serial Dilution 3		2	250														
Serial Dilution 4 Serial Dilution 5			25 52.5														
octiai DiiutiOH o			,c.J														
						•	ppiesPer20uLWell TotalConfMax T	otalConfMin Po	oissonC	onfM	lax P	oisson(Confl	1in	Po	ositives	Negatives
A01 Absolute Quantification ABS A02 Absolute Quantification ABS	1.3 1.4	Unknowr		OK OK	2964 662	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										19818 9194	1736 12174
B01 Absolute Quantification ABS	2.3	Unknowr		OK	1379	ddPCR Supermix for Probes (no dUTP)										14623	6561
B02 Absolute Quantification ABS	2.4	Unknowr	1	ОК	316	ddPCR Supermix for Probes (no dUTP)										5136	16651
C01 Absolute Quantification ABS C02 Absolute Quantification ABS	3.3	Unknowr		OK OK	442 107	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										6653 1878	14573 19729
D01 Absolute Quantification ABS	4.3	Unknowr		OK	163	ddPCR Supermix for Probes (no dUTP)										2702	18153
D02 Absolute Quantification ABS	4.4	Unknowr			35.9	ddPCR Supermix for Probes (no dUTP)										660	21326
E01 Absolute Quantification ABS	5.3	Unknowr		OK	99.9	ddPCR Supermix for Probes (no dUTP)										1559	17594
E02 Absolute Quantification ABS F01 Absolute Quantification ABS	5.4 6.3	Unknowr		OK OK	22.4 2555	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										396 16984	20595 2184
F02 Absolute Quantification ABS	6.4	Unknowr		OK	583	ddPCR Supermix for Probes (no dUTP)										8395	13102
G01 Absolute Quantification ABS	7.3	Unknowr		OK	1317	ddPCR Supermix for Probes (no dUTP)										12949	6280
G02 Absolute Quantification ABS H01 Absolute Quantification ABS	7.4 8.3	Unknowr		OK OK	297 411	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										4687 6182	16298 14803
H02 Absolute Quantification ABS	8.4	Unknowr			97.1	ddPCR Supermix for Probes (no dUTP)										1708	19856
A03 Absolute Quantification ABS	9.3	Unknowr		OK	237	ddPCR Supermix for Probes (no dUTP)										3883	17399
A04 Absolute Quantification ABS	9.4	Unknown		OK	53.7	ddPCR Supermix for Probes (no dUTP)										1017	21792
B03 Absolute Quantification ABS B04 Absolute Quantification ABS	10.3	Unknowr		OK OK	89.3 19.1	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										1644 368	20845 22468
C03 Absolute Quantification ABS	11.3	Unknowr		ОК	2364	ddPCR Supermix for Probes (no dUTP)										19305	2988
CO4 Absolute Quantification ABS	11.4	Unknowr		OK	523	ddPCR Supermix for Probes (no dUTP)										7914	14151
D03 Absolute Quantification ABS D04 Absolute Quantification ABS	12.3 12.4	Unknowr		OK OK	1210 280	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										13575 4831	7559 18007
E03 Absolute Quantification ABS	13.3	Unknowr		ОК	419	ddPCR Supermix for Probes (no dUTP)										6079	14227
E04 Absolute Quantification ABS	13.4	Unknowr		OK	102	ddPCR Supermix for Probes (no dUTP)										1682	18520
F03 Absolute Quantification ABS F04 Absolute Quantification ABS	14.3 14.4	Unknowr		OK OK	181 38.8	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										2951 720	17732 21452
G03 Absolute Quantification ABS	15.3	Unknowr		OK	67.6	ddPCR Supermix for Probes (no dUTP)										1169	19757
G04 Absolute Quantification ABS	15.4	Unknowr		OK	18.5	ddPCR Supermix for Probes (no dUTP)										339	21432
A05 Absolute Quantification ABS A06 Absolute Quantification ABS	16.3 16.4	Unknowr		OK	No Call 584	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										0 8343	0 12981
B05 Absolute Quantification ABS	17.3	Unknown		OK	1246	ddPCR Supermix for Probes (no dUTP)										14542	7722
B06 Absolute Quantification ABS	17.4	Unknowr		OK	278	ddPCR Supermix for Probes (no dUTP)										4861	18228
C05 Absolute Quantification ABS C06 Absolute Quantification ABS	18.3 18.4	Unknowr		OK OK	376 87.2	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										5760 1473	15302 19138
D05 Absolute Quantification ABS	19.3	Unknown		OK	217	ddPCR Supermix for Probes (no dUTP)										3703	18317
D06 Absolute Quantification ABS	19.4	Unknowr	1	ОК	49.8	ddPCR Supermix for Probes (no dUTP)										859	19870
E05 Absolute Quantification ABS	20.3	Unknown		OK	133	ddPCR Supermix for Probes (no dUTP)										2190	18358
E06 Absolute Quantification ABS F05 Absolute Quantification ABS	20.4	Unknowr		OK OK	29.3 2297	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										532 18958	21108 3136
F06 Absolute Quantification ABS	21.4	Unknown		OK	512	ddPCR Supermix for Probes (no dUTP)										7080	12981
G05 Absolute Quantification ABS	22.3	Unknowr		OK	1328	ddPCR Supermix for Probes (no dUTP)										14799	7077
G06 Absolute Quantification ABS H05 Absolute Quantification ABS	22.4 23.3	Unknowr		OK OK	283 402	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										4655 5853	17122 14382
H06 Absolute Quantification ABS	23.4	Unknown		OK	85.6	ddPCR Supermix for Probes (no dUTP)										1393	18458
A07 Absolute Quantification ABS	24.3	Unknowr	1	ОК	223	ddPCR Supermix for Probes (no dUTP)										3994	19163
A08 Absolute Quantification ABS	24.4	Unknown			51.1	ddPCR Supermix for Probes (no dUTP)										988	22270
B07 Absolute Quantification ABS B08 Absolute Quantification ABS	25.3 25.4	Unknowr			91.4 22	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										1678 411	20760 21759
C07 Absolute Quantification ABS	26.3	Unknowr	1	ОК	2149	ddPCR Supermix for Probes (no dUTP)										17588	3373
C08 Absolute Quantification ABS	26.4	Unknowr		OK	512	ddPCR Supermix for Probes (no dUTP)										7998	14657
D07 Absolute Quantification ABS D08 Absolute Quantification ABS	27.3 27.4	Unknowr			1320 311	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										15506 5328	7485 17604
E07 Absolute Quantification ABS	28.3	Unknowr			410	ddPCR Supermix for Probes (no dUTP)										6579	15778
E08 Absolute Quantification ABS	28.4	Unknowr	1	ОК	99.7	ddPCR Supermix for Probes (no dUTP)										1711	19352
F07 Absolute Quantification ABS	29.3	Unknowr			246	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										4055	17417
F08 Absolute Quantification ABS G07 Absolute Quantification ABS	29.4 30.3	Unknowr			61.9 105	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										1134 1920	20988 20494
G08 Absolute Quantification ABS	30.4	Unknown	1	ОК	25.1	ddPCR Supermix for Probes (no dUTP)										437	20301
H03 Absolute Quantification ABS	NTC	Unknowr			No Call	ddPCR Supermix for Probes (no dUTP)										0	20639
H07 Absolute Quantification ABS H11 Absolute Quantification ABS	NTC NTC	Unknowr			No Call	ddPCR Supermix for Probes (no dUTP) ddPCR Supermix for Probes (no dUTP)										0	21844 21503
H04 Absolute Quantification ABS	P	Unknowr		OK	1869	ddPCR Supermix for Probes (no dUTP)										18188	4665
H08 Absolute Quantification ABS	Р	Unknowr	1	ОК	2011	ddPCR Supermix for Probes (no dUTP)										17406	3847
H12 Absolute Quantification ABS	Р	Unknowr	1	OK	1948	ddPCR Supermix for Probes (no dUTP)										16521	3897

10	11	12
10	11	12
10	11	12

Ch1+Ch2+	Ch1+Ch2-	Ch1-Ch2+	Ch1-Ch2-	Linkage	AcceptedDroplets CNV	TotalCNVMax	TotalCNVMin	PoissonCNVMax	PoissonCNVMin	ReferenceCopies	UnknownCopies	Ratio	TotalRatioMax	TotalRatioMin	PoissonRatioMax	PoissonRatioMi
					21554											
					21368											
					21184											
					21787											
					21226											
					21607											
					20855											
					21986											
					19153											
					20991											
					19168											
					21497											
					19229											
					20985											
					20985											
					21564											
					21282											
					22809											
					22489											
					22836											
					22293											
					22065											
					21134											
					22838											
					20306											
					20202											
					20683											
					22172											
					20926											
					21771											
					0											
					21324											
					22264											
					23089											
					21062											
					20611											
					22020											
					20729											
					20548											
					21640											
					22094											
					20061											
					21876											
					21777											
					20235											
					19851											
					23157											
					23258											
					22438											
					22438											
					20961											
					22655											
					22991											
					22932											
					22357											
					21063											
					21472											
					22122											
					22414											
					20738											
					20639											
					21844											
					21503											
					21503											
					22853											
					21253											
					20418											

FractionalAbundance	TotalFractionalAbundanceMax	TotalFractionalAbundanceMin	PoissonFractionalAbundanceMax	PoissonFractionalAbundanceMin	ReferenceAssayNumber	TargetAssayNumber	Threshold	MeanAmplitudeofPositives
					1	1		,
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1	1		
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1			
					1	1		
					1	1		
					1			
					1			
					1			
					1			
					1	1		
						1		
					1	1		
						1		
						1		
					1			
						1		
					1	1		
					1			
						1		
					1			
					1			
					<u>'</u>	· '		

MeanAmplitudeofNegatives	MeanAmplitudeTotal	ExperimentComments	MergedWells	TotalConfMax68	TotalConfMin68	PoissonConfMax68	PoissonConfMin68	TotalCNVMax68	TotalCNVMin68	PoissonCNVMax68	PoissonCNVMin68	TotalRatioMax68

TotalRatioMin68	PoissonRatioMax68	PoissonRatioMin68	TotalFractionalAbundanceMax68	TotalFractionalAbundanceMin68	PoissonFractionalAbundanceMax68	PoissonFractionalAbundanceMin68

Well	ExptType	Experiment	Sample	TargetType	Target Star	us Concentra	ion Supermix	CopiesPer20uLWell	TotalConfMax	TotalConfMin	${\sf PoissonConfMax}$	PoissonConfMin	Positives	Negatives
A01	Absolute Quantification	ABS	16.3	Unknown	CHI	CK No Call	ddPCR Supermix for Probes (no dUTP)						0	0
A02	Absolute Quantification	ABS	16.4	Unknown	OK	584	ddPCR Supermix for Probes (no dUTP)						8343	12981
B01	Absolute Quantification	ABS	17.3	Unknown	OK	1246	ddPCR Supermix for Probes (no dUTP)						14542	7722
B02	Absolute Quantification	ABS	17.4	Unknown	OK	278	ddPCR Supermix for Probes (no dUTP)						4861	18228
C01	Absolute Quantification	ABS	18.3	Unknown	OK	376	ddPCR Supermix for Probes (no dUTP)						5760	15302
C02	Absolute Quantification	ABS	18.4	Unknown	OK	87.2	ddPCR Supermix for Probes (no dUTP))					1473	19138
D01	Absolute Quantification	ABS	19.3	Unknown	OK	217	ddPCR Supermix for Probes (no dUTP)						3703	18317
D02	Absolute Quantification	ABS	19.4	Unknown	OK	49.8	ddPCR Supermix for Probes (no dUTP))					859	19870
E01	Absolute Quantification	ABS	20.3	Unknown	OK	133	ddPCR Supermix for Probes (no dUTP)						2190	18358
E02	Absolute Quantification	ABS	20.4	Unknown	OK	29.3	ddPCR Supermix for Probes (no dUTP)						532	21108
F01	Absolute Quantification	ABS	21.3	Unknown	OK	2297	ddPCR Supermix for Probes (no dUTP)						18958	3136
F02	Absolute Quantification	ABS	21.4	Unknown	OK	512	ddPCR Supermix for Probes (no dUTP)						7080	12981
G01	Absolute Quantification	ABS	22.3	Unknown	OK	1328	ddPCR Supermix for Probes (no dUTP)						14799	7077
G02	Absolute Quantification	ABS	22.4	Unknown	OK	283	ddPCR Supermix for Probes (no dUTP))					4655	17122
H01	Absolute Quantification	ABS	23.3	Unknown	OK	402	ddPCR Supermix for Probes (no dUTP))					5853	14382
H02	Absolute Quantification	ABS	23.4	Unknown	OK	85.6	ddPCR Supermix for Probes (no dUTP)						1393	18458
A03	Absolute Quantification	ABS	24.3	Unknown	OK	223	ddPCR Supermix for Probes (no dUTP))					3994	19163
A04	Absolute Quantification	ABS	24.4	Unknown	OK	51.1	ddPCR Supermix for Probes (no dUTP)						988	22270
B03	Absolute Quantification	ABS	25.3	Unknown	OK	91.4	ddPCR Supermix for Probes (no dUTP))					1678	20760
B04	Absolute Quantification	ABS	25.4	Unknown	OK	22	ddPCR Supermix for Probes (no dUTP))					411	21759
C03	Absolute Quantification	ABS	26.3	Unknown	OK	2149	ddPCR Supermix for Probes (no dUTP)						17588	3373
C04	Absolute Quantification	ABS	26.4	Unknown	OK	512	ddPCR Supermix for Probes (no dUTP))					7998	14657
D03	Absolute Quantification	ABS	27.3	Unknown	OK	1320	ddPCR Supermix for Probes (no dUTP)						15506	7485
D04	Absolute Quantification	ABS	27.4	Unknown	OK	311	ddPCR Supermix for Probes (no dUTP)						5328	17604
E03	Absolute Quantification	ABS	28.3	Unknown	OK	410	ddPCR Supermix for Probes (no dUTP)						6579	15778
E04	Absolute Quantification	ABS	28.4	Unknown	OK	99.7	ddPCR Supermix for Probes (no dUTP)						1711	19352
F03	Absolute Quantification	ABS	29.3	Unknown	OK	246	ddPCR Supermix for Probes (no dUTP)						4055	17417
F04	Absolute Quantification	ABS	29.4	Unknown	OK	61.9	ddPCR Supermix for Probes (no dUTP)						1134	20988
G03	Absolute Quantification	ABS	30.3	Unknown	OK	105	ddPCR Supermix for Probes (no dUTP)						1920	20494
G04	Absolute Quantification	ABS	30.4	Unknown	OK	25.1	ddPCR Supermix for Probes (no dUTP))					437	20301

1+Ch2+	Ch1+Ch2-	Ch1-Ch2+	Ch1-Ch2-	Linkage	AcceptedDroplets CNV	TotalCNVMax	TotalCNVMin	PoissonCNVMax	PoissonCNVMin	ReferenceCopies	UnknownCopies	Ratio	TotalRatioMax	TotalRatioMin	PoissonRatioMax	PoissonRatioM
					0											
					21324											
					22264											
					23089											
					21062											
					20611											
					22020											
					20729											
					20548											
					21640											
					22094											
					20061											
					21876											
					21777											
					20235											
					19851											
					23157											
					23258											
					22438											
					22170											
					20961											
					22655											
					22991											
					22932											
					22357											
					21063											
					21472											
					22122											
					22414											
					20738											

FractionalAbundance	TotalFractionalAbundanceMax	TotalFractionalAbundanceMin	Poisson Fractional Abundance Max	Poisson Fractional Abundance Min	ReferenceAssayNumber	TargetAssayNumber Threshold	MeanAmplitudeofPositives
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	

Mean Amplitude of Negatives	MeanAmplitudeTotal	ExperimentComments	MergedWells	TotalConfMax68	TotalConfMin68	PoissonConfMax68	PoissonConfMin68	TotalCNVMax68	TotalCNVMin68	PoissonCNVMax68	PoissonCNVMin68	TotalRatioMax68

TotalRatioMin68	PoissonRatioMax68	PoissonRatioMin68	TotalFractionalAbundanceMax68	TotalFractionalAbundanceMin68	PoissonFractionalAbundanceMax68	PoissonFractionalAbundanceMin68