

CURSO 22/23. 1er Cuatrimestre

Optativa GII. Especialidad. Ingeniería de Computadores

Coordinación:

Jorge Azorín López

Teoría: A3/0003

Grupo1 (Martes 9:00; 11:00):

Andrés Fuster Guilló (AF)

Práctica: Laboratorio L25 (EPS I)

Grupo 1 (Martes 11:00;13:00):

Jorge Azorín López (JA)

Objetivos generales

- Ubicar el área domótica y los entornos inteligentes
- Introducir los conceptos generales: Domótica, IoT, AmI, CPS, Cloud, CoT...
- Estudiar la metodología general de diseño de los sistemas para entornos inteligentes
- Conocer los subsistemas domóticos y los dispositivos de percepción y actuación
- Estudiar los estándares actuales y las tecnologías de comunicación en edificación
- Diseñar un sistema domótico integral
- Plantear servicios avanzados para entornos inteligentes

Contenidos teóricos

- **Tema 1.** Ámbito de la domótica y los entornos inteligentes (5 sesiones)
- **Tema 2.** Sistemas y subsistemas para entornos inteligentes (2 sesiones)
- **Tema 3.** Redes domóticas (3 sesiones)
- Tema 4. Redes para entornos inteligentes e integración (4 sesiones)

Tema 1. Ámbito de la domótica y los entornos inteligentes

Objetivos

- Ubicar el área domótica y los entornos inteligentes
- Especificar los servicios de los sistemas domóticos y los entornos inteligentes

Contenidos

Ámbito de la domótica y los entornos inteligentes

Especificación funcional de un entorno inteligente (hogar, edificio, ciudad, AAL)

Tema 2. Sistemas y subsistemas para entornos inteligentes

Objetivos

- Realizar la especificación estructural de un hogar inteligente
- Estudiar los dispositivos y redes necesarios para la provisión de servicios
- Dispositivos IoT y CPS

Contenidos

Dispositivos para hogares inteligentes (IoT)

CPS (cyber-physical systems)

Tipos de redes del hogar (datos, multimedia, control)

Tema 3. Redes domóticas

Objetivos

- Estudiar los estándares de control en edificación
- Valorando las ventajas e inconvenientes de los diferentes protocolos y estándares

Contenidos

Tecnologías para redes de control

Protocolos de redes de control (KNX, Lonworks, Zigbee, Z-wave...)

Tema 4. Redes para entornos inteligentes e integración

Objetivos

- Tipos de redes
- Estudiar las tecnologías de comunicación e integración Middleware
- Valorar las ventajas e inconvenientes de los diferentes estándares

Contenidos

Redes de entornos inteligentes (datos, multimedia y control)

Integración de redes (Middleware, IoT, Cloud, ...)

Interfaces (visión, voz, ...)

Casos teóricos

Diseño de un sistema para entorno inteligente:

- Proceso de diseño:
 - Caso1: Especificación funcional ¿Qué?
 - Caso2: Especificación estructural ¿Como?
 - Caso3: Especificación Tecnológica ¿Con qué?
- Trabajo en grupos: (4-5 personas)
- Memoria Especificación
- Exposición

Casos teóricos

Diseño de un sistema para entorno inteligente:

- Entornos inteligentes ejemplo:
 - Hogar inteligente para cuidado de personas mayores
 - Habitación de hospital inteligente
 - Puerta Inteligente
 - Casa inteligente
 - Edificio Inteligente
 - Ciudad Inteligente
 - Aula inteligente

Contenidos prácticos

Práctica 1. Fundamentos de sistemas de visión y aprendizaje para dotar de inteligencia al entorno (5 sesiones)

Práctica 2. Desarrollo de un sistema de visión y aprendizaje para entorno inteligente (9 sesiones)

Práctica 1. Fundamentos de sistemas de visión y aprendizaje para dotar de inteligencia al entorno (5 sesiones)

Objetivos

• Estudiar y analizar los fundamentos de los sistemas de visión que permiten dotar de inteligencia a entornos de diferentes tipos.

Contenidos

Dispositivos de visión RGBD

Entornos de desarrollo para métodos de visión por computador (Matlab & Python)

Entrega: Memoria y código de sistema de visión funcionalidad básica

Práctica 2. Desarrollo de un sistema de visión y aprendizaje para entorno inteligente (9 sesiones)

Ejemplos de sistemas

- Detección de caídas en el hogar y aviso a los servicios sanitarios
- Análisis del modo de andar para detectar problemas físicos / cognitivos
- Análisis de expresiones para detectar el estado de ánimo
- Análisis de gestos corporales para detectar problemas físicos / cognitivos
- Aprendizaje de las actividades cotidianas en el hogar/edificio/coche....
- ...
- Entrega: Implementación, experimentación y el análisis.

		Teoría	Prof	Práctica	Prof
1	13/9/2020	T1	Andrés	P1	Jorge
2	20/9/2020	T1	Andrés	P1	Jorge
3	27/9/2020	T1	Andrés	P1	Jorge
4	4/10/2020	T1	Andrés	P1	Jorge
5	11/10/2020	T1	Andrés	P1	Jorge
6	18/10/2020	Presentación C1	Andrés	Presentación P1	Jorge
7	25/10/2020	T2	Andrés	P2	Jorge
8	1/11/2020	T2	Andrés	P2	Jorge
9	8/11/2020	T2	Andrés	P2	Jorge
10	15/11/2020	Presentación C2	Andrés	P2	Jorge
11	22/11/2020	T3	Andrés	P2	Jorge
12	29/11/2020	T3	Andrés	P2	Jorge
	6/12/2020				
13	13/12/2020	T4	Andrés	P2	Jorge
14	20/12/2020	Presentación C3	Andrés	Presentación P2	Jorge

Evaluación Continua

Calificación mediante trabajos y prácticas de laboratorio

$$NF = 0.5 NT + 0.5 NP$$

NT = Promedio ponderado (Caso 1; Caso 2; Caso 3)

NP = Promedio ponderado (Práctica 1; Práctica 2)

Evaluación Teórica

Los casos teóricos se entregarán mediante controles del CV en los plazos establecidos. Se realizarán exposiciones de los resultados en el aula.

NT= Promedio ponderado (Caso1; Caso2; Caso 3)

NT = (1/3) NC1 + (1/3) NC2 + (1/3) NC3

Evaluación Práctica

Las prácticas se evaluarán en clase finalizada la realización de cada práctica. Se realizarán exposiciones de los resultados en el aula.

NP = Promedio ponderado (Práctica 1; Práctica 2)

NP = (6/15) NP1 + (9/15) NP2

Evaluación mediante examen final

Convocatorias febrero, julio

NF = 0.5 NT + 0.5 NP

NT: Calificación del examen final teórico

NP: Calificación mediante entrega y corrección de las prácticas del curso en la fecha del examen final

Bibliografía Básica

- *Mechatronic Futures*. Springer International Publishing Switzerland 2016. P. Hehenberger and D. Bradley (eds.), DOI 10.1007/978-3-319-32156-1_12.
 - Chapter 12. Pg. 179-200
 - Home Technologies, Smart Systems and eHealth
 - Jorge Azorin-Lopez, Andres Fuster-Guilló, Marcelo Saval-Calvo and David Bradley

Bibliografía Básica

- Research papers readings:
 - A review of Internet of Things for smart home:
 Challenges and solutions
 - Internet of Things (IoT): A Literature Review
 - A review on smart home present state and challenges: linked to context-awareness internet of things (IoT)
 - Major requirements for building Smart Homes in Smart
 Cities based on Internet of Things technologies
 - Home automation networks: A survey
 - IOT Devices for Control Applications: A Review
 - Voice Controlled Cyber-Physical System for Smart Home

Bibliografía

• Smart University. Hacia una universidad más abierta. 2016. Ed. Marcombo. Dr. Francisco Maciá Pérez, Dr. José Vicente Berna Martínez, José Manuel Sánchez Bernabéu, Dra. Irén Lorenzo Fonseca, Dr. Andrés Fuster Guilló

Bibliografía

• Ecosistema de datos abiertos de la Universidad de Alicante. 2016. Ed. Universidad de Alicante. Juan Manuel Aparicio, Andrés Fuster, Irene Garrigós, Francisco Maciá, Jose Norberto Mazón,

Llorenç Vaquer, Jose Jacobo Zubcoff.

TFG – PEM - Proyectos

Ofertas

- Trabajos fin de grado
- Prácticas en empresa
- Becas de colaboración

Proyectos

- Tech4d.dtic.ua.es
- Tech4diet Predict
- DeepFish.dtic.ua.es
- Europeos: REX, FELIX