Configuració	Esquema	L'	C'	<u> </u>
B		(autoinducció per unitat de longitud)	(capacitat per unitat de	$Z_C = \sqrt{\frac{L'}{C'}}$
			longitud)	impedància característica
Espai lliure (buit)	ona EM propagant-se pel buit sense noses	$= 4 \cdot \pi \cdot 10^{-7} \text{ H/m}$	$ \begin{array}{l} \varepsilon_0 \\ = 8.8542 \cdot \\ \cdot 10^{-12} \text{ F/m} \end{array} $	$\sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \Omega$
Dos conductors coaxials	R ₂	$\frac{\mu_0}{2\pi} \ln \left(\frac{R_2}{R_1} \right)$	$\frac{2\pi\varepsilon_0\varepsilon_r}{\ln\!\left(\frac{R_2}{R_1}\right)}$	$\frac{1}{2\pi} \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{1}{\sqrt{\varepsilon_r}} \ln\left(\frac{R_2}{R_1}\right)$ $\approx \frac{60 \Omega}{\sqrt{\varepsilon_r}} \cdot \ln\left(\frac{R_2}{R_1}\right)$
Parell de cables paral·lels	d Er	$\frac{\mu_0}{\pi} \ln \left(\frac{R+d}{R} \right)$	$\frac{\pi\varepsilon_0\varepsilon_r}{\ln\left(\frac{R+d}{R}\right)}$	$\frac{1}{\pi} \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{1}{\sqrt{\varepsilon_r}} ln\left(\frac{R+d}{R}\right)$ $\approx \frac{120 \Omega}{\sqrt{\varepsilon_r}} \cdot ln\left(\frac{R+d}{R}\right)$
Parell de pistes paral·leles (una sobre l'altra)	d	si $a>>d>>t$: $\mu_0 \frac{d}{a}$	si a>>d>>t: $\varepsilon_0 \varepsilon_r \frac{a}{d}$	$\sqrt{\frac{\varepsilon_0}{\varepsilon_0}} \frac{1}{\sqrt{\varepsilon_r}} \frac{\omega}{a}$ $\approx \frac{377 \Omega}{\sqrt{\varepsilon_r}} \cdot \frac{d}{a}$
Cable sobre pla de massa	d ε _r	$\frac{\mu_0}{\pi} \ln \left(\frac{2d+R}{R} \right)$	$\frac{n\varepsilon_0\varepsilon_r}{\ln\left(\frac{2d+R}{R}\right)}$	$\frac{1}{\pi} \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{1}{\sqrt{\varepsilon_r}} ln\left(\frac{2d+R}{R}\right)$ $\approx \frac{120 \Omega}{\sqrt{\varepsilon_r}} \cdot ln\left(\frac{2d+R}{R}\right)$
Pista sobre pla de massa	d Er	si a>>d: $\mu_0 \frac{d}{a}$	si a>>d: $\varepsilon_0 \varepsilon_r \frac{a}{d}$	$\sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{1}{\sqrt{\varepsilon_r}} \frac{d}{a}$ $\approx \frac{377 \Omega}{\sqrt{\varepsilon_r}} \cdot \frac{d}{a}$
Parell de pistes paralel·les (una al costat de l'altra)	a εr	si $a>>d>>t$: $\frac{\mu_0}{\pi}\beta$	$\frac{\kappa \varepsilon_0 \varepsilon_r}{\beta}$	$\frac{1}{\pi} \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{1}{\sqrt{\varepsilon_r}} \beta$ $\approx \frac{120 \Omega}{\sqrt{\varepsilon_r}} \cdot \beta$
,		on: $\beta \equiv$	$\frac{d}{a}\ln\!\left(\frac{d}{d-a}\right) +$	$\ln\!\left(\frac{d-a}{a}\right)$