Functional Dependencies

SWEN304/SWEN439

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Definition of functional dependency
- Semantics of a functional dependency
- Closure of a set of functional dependencies
- Finding a "minimal" cover
- Functional dependencies and a relation schema key
- Readings from the textbook:
 - Chapter 15

Functional Dependency

- One of the most important constraints for the relational database design
- Let URS(U, C) be given, and $X, Y \subseteq U$
- The functional dependency (abbreviated FD) between attribute sets X and Y is an expression of the form

$$f: X \rightarrow Y_{\prime}$$

where f is an (optional) name, X is left-hand side LHS(f), and Y is right-hand side RHS(f)

 X functionally defines Y, and Y functionally depends on X

Semantics of a Functional Dependency

The meaning of the expression

$$f: X \rightarrow Y$$

is that with each particular X value there is always the same Y value associated

- A functional dependency is a semantic constraint that can be defined only by considering rules of behavior in the UoD
- A functional dependency X→Y is to be defined only when it is known that in the real world, each X value is associated with at most one Y value

Functional Dependency - Notations

An expression having semantically defined attributes:

$$\{StudId, CourId\} \rightarrow \{Grade, Year\}$$

will be considered as being equivalent to
 $StudId + CourId \rightarrow Grade + Year$

If the sets are singletons, then

 An expression having semantically undefined attributes

$$\{A, B\} \rightarrow \{C, D\}$$

will be considered as being equivalent to

$$AB \rightarrow CD$$
, or $A + B \rightarrow C + D$

FDs Satisfied by the Relation "Faculty"

StId	StName	NoPts	CourId	CoName	Grd	LecId	LeName
007	James	80	M114	Math	A+	777	Mark
131	Susan	18	C102	Java	B-	101	Ewan
007	James	80	C102	Java	Α	101	Ewan
555	Susan	18	M114	Math	B+	999	Vladimir
007	James	80	C103	Algorith	A+	99	Peter
131	Susan	18	M214	Math	ω	333	Peter
555	Susan	18	C201	C++	ω	222	Robert
007	James	80	C201	C++	A+	222	Robert
010	John	0	C101	Inet	ω	820	Ray

Defining Functional Dependencies

- UOD₁
 - Consider the set of attributes
 {StudId, CourId, Grade}
 - and the rule of behavior
 "A student can enroll a course at most once".
 - Then

StudId + CourId → Grade

Defining Functional Dependencies

- UOD₂
 - Consider the set of attributes { StudId, CourId, Term, Grade}, and the rule of behavior "A student can enroll a course more than once, but each time in a different term". Then

StudId + CourId + Term → Grade

 Consider the set of attributes {StudId, CourId, Term, AssigNo, Marks}, and the rule of behavior "A student can enroll a course more than once, but each time in a different term and each time can do each assignment only once". Then

StudId + CourId + Term + AssigNo → Marks

Recall: The Implication Operation from Logic

- Implication $p \Rightarrow q$ is a logic operation
 - q is a logical consequence of p
- $p \Rightarrow q$ is true if either the antecedent (p) is false or the consequent (q) is true
- Recall: The truth table of the implication operation

р	q	\Rightarrow
False	False	
False	True	
True	False	
True	True	

- We will use it several times in our lectures
 - For example, for the definition of functional dependency

Satisfaction of a Functional Dependency

 A particular relation r(U) satisfies the functional dependency X→Y if

$$(\forall u, v \in r(U)(u[X] = v[X] \Rightarrow u[Y] = v[Y])$$

- i.e., whenever two tuples agree on all attributes in X, they also agree on all attributes in Y
- Note: This statement considers only one particular relation
 - To claim that FD $X \rightarrow Y$ is generally valid, we would have to consider all relations over (U, C) that are plausible in the perceived UoD
 - The set of all FDs F that are valid in the UoD is a subset of C the set of relation schema constraints C

Some Questions

Department

LecId	LeName	CourId	CoName	<i>DptId</i>	DptName
12	Ewan	C102	Java	CS	Comp Sc
33	Pavle	C302	DB Sys	CS	Comp Sc

- Does this particular *Department* relation satisfy the functional dependency *LecId* → *CourId*?
- Is LecId → CourId valid in the UoD?
 - Can we conclude that in the CS Department each lecturer always teaches at most one paper?
- Does this particular *Department* relation satisfy the functional dependency *DptId* → *CourId*?
- Is $DptId \rightarrow CourId$ valid in the UoD?

Redundant Functional Dependencies

 A given set of functional dependencies can contain some redundant ones

 Redundant functional dependencies are those that are a logical consequence of some other ones, or that are trivial

- FD on URS is said to be trivial if it is satisfied by all relations over (U, C)
 - an FD X → Y on URS is trivial if and only if Y ⊆ X holds

Redundant Functional Dependency Examples

- Suppose the following set of FDS is given
 F = {StdId → StName, CourId → CoName, LecId → LecName, LecId → CourId}
- Redundant FDs:
 - StName → StName (trivial),
 - CourId +StdId → CoName
 (redundant consequence of CourId → CoName),
 - LecId + LecName → CourID
 (redundant consequence of LecId → CourId),
 - LecId → CoName

(transitive – consequence of $LecId \rightarrow CourId$ and $CourId \rightarrow CoName$)

Redundant Functional Dependencies

 Functional dependencies are constraints that, as all other constraints, when once defined, should be satisfied in a database

 Redundant functional dependencies are satisfied when the basic ones are satisfied

 Accordingly, redundant FDs are noxious, because their satisfaction checking is just using precious computer resources in vain

Covers of a Set of FDs

- The goal is to replace a given, potentially redundant, set of FDs F with another one E that contains only functional dependencies that are necessary and sufficient to describe perceived rules of UoD behavior
- That replacement may be done only if each FD in F is either contained in E or represents a logical consequence of E
- A set of functional dependencies E is said to cover another set of functional dependencies F if every FD in F is also in E+
- Fand E are said to be equivalent, or to have equal closures (F+ = E+), also it is said that they cover each other

Closure of a Set of FDs

 The closure of F (denoted F+) contains all FDs in F and all consequences of F

 It is computed by an exhaustive application of inference rules on a given set F of FDs

Inference Rules

- Given U, F, and X, Y, Z, $W \subseteq U$
- 1. (Reflexivity) $Y \subseteq X \models X \rightarrow Y$ (trivial FD)
- 2. (Augmentation) $X \rightarrow Y \land W \subseteq Z \models XZ \rightarrow YW$ (partial FD)
- 3. (Transitivity) $X \rightarrow Y \land Y \rightarrow Z \models X \rightarrow Z$ (transitive FD)
- 4. (Decomposition) $X \rightarrow YZ \models X \rightarrow Y \land X \rightarrow Z$
- 5. (Union) $X \rightarrow Y \land X \rightarrow Z \models X \rightarrow YZ$
- 6. (Pseudo transitivity) $X \rightarrow Y \land WY \rightarrow Z \models WX \rightarrow Z$ (if $W = \emptyset$, pseudo transitivity turns into transitivity)
- Inference rules 1, 2 and 3 are known as Armstrong's inference rules

Computing Closures

- One way to check whether one set of FDs can be replaced by another, is to check whether they have equal closures
- But computing the closure of a set F of FDs is very complex
- $|F^+| \ge 2^{|U|}$ (*U* is the universal set)
- Instead of comparing many sets of FDs and computing their closures, we look for a minimal cover of F directly
- This is done using the closure of a set of attributes

Closure of a Set of Attributes

- Given *U*, *F* and *X*⊆ *U*
- Closure of X with regard to F is defined as

$$X_F^+ = \{A \in U \mid X \rightarrow A \in F^+\}$$

and is used in finding the minimal cover of F

Computing Closure of X (set of attributes)

```
X^{+} = X;
                       // according to reflexivity
oldX^+ = \emptyset
while (oldX^+ \subset X^+) {
         oldX^+ = X^+
       for (each FD Y \rightarrow Z \in F) {
                if (Y \subset X^+) {
               X^+ = X^+ \cup Z; //according to
                           // augmentation & transitivity
```

```
X^{+=}X; \qquad // \text{ according to reflexivity} oldX^{+} = \emptyset \text{while } (oldX^{+} \subset X^{+}) \ \{ oldX^{+} = X^{+} \text{for } (\text{each FD } Y \to Z \in F) \ \{ \text{if } (Y \subseteq X^{+}) \ \{ X^{+} = X^{+} \cup Z; \text{ // according to} // augmentation & transitivity \} \}
```

- $F = \{B \rightarrow C, A \rightarrow B\}$
- A+ =

Minimal Cover

- A set of FDs G is a minimal cover of the set F if Each FD in G has a single attribute on its right hand side
 - f is left reduced (no one FD in G has any superfluous attribute on its left hand side, (a left reduced FD = total FD, a not reduced FD = partial FD))

$$(\forall X \rightarrow A \in G)(\forall B \in X)((X - B) \rightarrow A \notin G^+)$$

2. G is non-redundant (doesn't contain any trivial or pseudo transitive FD)

$$(\forall X \rightarrow A \in G)((G - \{X \rightarrow A\})^+ \subset G^+),$$

3. $F^+ = G^+$

Finding a Minimal Cover

- 1. Set G = F
- 2. Replace each FD $X \rightarrow \{A_1, A_2, ..., A_n\}$ in G with the following n FDs $X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n$
- 3. Do left reduction

for each FD $X \rightarrow A$ in G do

for each B in X do

if
$$A \in (X - B)^+_G$$
 then

$$G = (G - \{X \rightarrow A\}) \cup \{(X - B) \rightarrow A\}$$

4. Eliminate redundant FDs

for each FD $X \rightarrow A$ in G do

if
$$A \in (X)^+_{G - \{X \rightarrow A\}}$$
 then $G = G - \{X \rightarrow A\}$

Finding a Minimal Cover – Step 2

$$F = \{A \rightarrow B, B \rightarrow C, A \rightarrow CD, AB \rightarrow C\}$$

Apply the Decomposition Inference Rule

$$G = \{A \rightarrow B, B \rightarrow C, A \rightarrow CD, AB \rightarrow C\}$$

 The Decomposition Inference Rule should be applied only onto functional dependencies having more than one attribute on their RHS

$$G_1 = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, A \rightarrow D, AB \rightarrow C\}$$

Finding a Minimal Cover – Step 3

- Do Left Reduction
 - Only the functional dependencies having more than one attribute on their LHS may be reduced

$$G_1 = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, A \rightarrow D, AB \rightarrow C\}$$

 To test whether there is a superfluous attribute on the *LHS*, we try to remove each of the *LHS* attributes and apply attribute closure algorithm to see if the *RHS* still functionally depends on the remainder of the *LHS*

$$(AB - A)^{+} = B^{+} = B \Rightarrow C \notin (AB - A)^{+}$$

 $(AB - B)^{+} = A^{+} = ABCD \Rightarrow C \in (AB - B)^{+} \Rightarrow$
 $G_{2} = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, A \rightarrow D, A \rightarrow C\}$
 $(G_{2} \text{ should contain only one } A \rightarrow C)$

Finding a Minimal Cover – Step 4

- Eliminate Redundant FDs
 - In principle, this step should be applied on each
 FD, but we shall consider only the highlighted one

$$H = \{A \rightarrow B, B \rightarrow C, A \rightarrow D, A \rightarrow C\}$$

- To check whether a FD is redundant, we compute the attribute closure of its LHS with regard to the given set of FDs without the FD considered
- If the RHS is in the attribute closure, then the FD is redundant

$$A^{+}_{H^{-}\{A \to C\}} = ABCD \implies C \in A^{+}_{H^{-}\{A \to C\}}$$
$$\Rightarrow H_{1} = \{A \to B, B \to C, A \to D\}$$

FDs and a Relation Schema Key

- Each relation schema key is the consequence of a functional dependency from F+
- Let R (A₁,...., A_n) be a relation schema and F the set of functional dependencies in R
- Set of attributes $X \subseteq R$ is a relation schema **key** if

```
1° X \rightarrow R \in F^+
2° (\forall Y \subset X)(Y \rightarrow R \notin F^+)
```

- Not null condition still applies to X
- A prime attribute is a relation schema attribute that belongs to any of the keys
- Primary key is still just one of the keys

A Key Finding Algorithm

```
X := R (*X is initialized as a super key*)
for each A in X do
if R \subseteq (X - A)^+_F then
X := X - A
```

Example.

• Given:
$$R = \{A, B, C\}$$
, $F = \{A \rightarrow B, B \rightarrow C\}$
• $X = ABC$ (ABC is a superkey)
• $(X - A)^+_F = BC$ (*So, our superkey is still $X = ABC^*$)
• $(X - B)^+_F = ABC$ (* B is not needed, so $X = AC^*$)
• $(X - C)^+_F = ABC$ (* C is not needed, so $X = A$ *)

• K(R) = A

Summary

- The functional dependency is a semantic constraint that mirrors certain type of UoD rules of behavior
- Functional dependencies are important relational constraints
- Removing harmful redundant functional dependencies is done by finding a 'minimal' cover
- A minimal cover is found using the cover of a set of attributes as a tool
- A relation schema key is a consequence of a functional dependency
- Each attribute of a relational schema is functionally dependent on each of the keys