2020 Fall EECS205002 Linear Algebra

2021/01/13 Quiz 5

- 1. (50%) Multiple choice questions. Each question may have 0, 1, or more correct choices. For each question, you need to choose all the correct items to get the credit.
 - (a) For an $n \times n$ real matrix A is symmetric, which of the following statements are true?
 - A. If (λ, x) is an eigenpair of A, $\lambda = x^T A x$.
 - B. If λ is an eigenvalue of A, λ equals to its conjugate $\bar{\lambda}$.
 - C. The eigenvectors of A belonging to distinct eigenvalues are linearly independent.
 - D. There exists a set of n orthonormal eigenvectors of A.
 - E. Matrix A is always diagonalizable.
 - B, C, D, E
 - (b) For an Householder reflector $H = I 2uu^T$, where ||u|| = 1, which of the following statements are true?
 - A. H is symmetric.
 - B. ||Hx|| = ||x|| for any vector x that can be pre-multiplied by H.
 - C. $H^{-1} = H$.
 - D. The eigenvalue of H are either 1 or -1.
 - E. (-1, u) is an eigenpair of H.
 - A, B, C, D, E
 - (c) For an $m \times n$ matrix $A, m \ge n$, which of the following statements are true?
 - A. A can be factorized as $U\Sigma V^T$ uniquely, where U and V are orthogonal matrices, and Σ is a diagonal matrix.
 - B. If m = n and A has eigenvalue $\lambda_1, \ldots, \lambda_n$, the singular values of A are $|\lambda_1|, \ldots, |\lambda_n|$.
 - C. The row vectors in V are the eigenvectors of A^TA .
 - D. The column vectors in U are the eigenvectors of AA^T .
 - E. For singular values $\sigma_1, \ldots, \sigma_n$, $Au_i = \sigma_i v_i$ for $i = 1, 2, \ldots, n$.

D

- (d) If an $m \times n$ matrix A has rank r, and the SVD of A is $A = U \Sigma V^T$, where $U = [u_1, u_2, \ldots, u_m]$ and $V = [v_1, v_2, \ldots, v_n]$, which of the following statements are true?
 - A. The number zero singular values is m-r.
 - B. v_1, v_2, \ldots, v_r form an orthonormal basis for R(A).
 - C. $v_{r+1}, v_{r+2}, \ldots, v_n$ form an orthonormal basis for N(A).
 - D. u_1, u_2, \ldots, u_r form an orthonormal basis for $R(A^T)$.
 - E. $u_{r+1}, u_{r+2}, \ldots, u_m$ form an orthonormal basis for $N(A^T)$.
 - C, E
- (e) The Frobenius norm of an $m \times n$ matrix A is defined as

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$
, which of the following statements are true?

- A. If Q is an $m \times m$ orthogonal matrix, $||Q||_F = 1$.
- B. If Q is an $m \times m$ orthogonal matrix, $||QA||_F = ||A||_F$.
- C. If A has singular values $\sigma_1, \sigma_2, \ldots, \sigma_n$, $||A||_F = (\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2)^{1/2}$.
- D. If A has rank r, for 0 < k < r, the minimum of $||A X||_F$ for all possible matrices X of rank k is $(\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_k^2)^{1/2}$, where $\sigma_1, \ldots, \sigma_k$ are the k largest singular values of A.
- E. If A has rank r, for 0 < k < r, the matrix of rank k that makes $||A X||_F$ minimum has Forbenius norm $(\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_k^2)^{1/2}$, where $\sigma_1, \ldots, \sigma_k$ are the k largest singular values of A.
- B, C, E
- (f) Which operator L is a linear transformation?
 - A. $L([x_1, x_2]) = [x_2, 0, x_1 + x_2]$ where x_1, x_2 are scalars.
 - B. $L([x_1, x_2]) = \sqrt{x_1^2 + x_2^2}$ where x_1, x_2 are scalars.
 - C. $L([x_1, x_2]) = [x_1 + 1, x_2]$ where x_1, x_2 are scalars.
 - D. $L([x_1, x_2]) = [\cos(\theta)x_1 \sin(\theta)x_2, \sin(\theta)x_1 + \cos(\theta)x_2]$ where x_1, x_2 are scalars, and $\theta \in [0, 2\pi)$.
 - E. L(x) = Ax for an $m \times n$ matrix A and a vector $x \in \mathbb{R}^n$.
 - A, D, E
- (g) If L is a linear transformation mapping a vector space V into a vector space W, which of the following statements are true?
 - A. The kernel of L is $\{v \in V | L(v) = 0_W\}$.
 - B. If S is a subspace of V, the image of S is also a subspace in V.
 - C. The range of L is the image of V.
 - D. If L(x) = Ax for an $m \times n$ matrix A and a vector $x \in \mathbb{R}^n$, the kernel of L is the null space of A.

E. If L(x) = Ax for an $m \times n$ matrix A and a vector $x \in \mathbb{R}^n$, the range of L is the row space of A.

A, C, D

- (h) If L is a linear transformation from V into W, where V and W are vector spaces, which of the following statements are true?
 - A. L is **one-to-one** if $L(v_1) \neq L(v_2)$ implies $v_1 \neq v_2$.
 - B. L is **one-to-one** if and only if $ker(L) = \{0_V\}$.
 - C. L maps V **onto** W if for each $w \in W$ there exists at most one $v \in V$ that L(v) = w.
 - D. L maps V onto W if the image of V is W.
 - E. If L(x) = Ax is **one-to-one** and maps V **onto** W, A is nonsingular.
 - B, D, E
- (i) The following figure illustrates the matrix representation theorem. Which explanations about the figure are correct?

- A. L is a linear transformation mapping \mathbb{R}^n into \mathbb{R}^m .
- B. $E = [e_1, e_2, \dots, e_n]$ is an ordered basis of V; $F = [f_1, f_2, \dots, f_m]$ is an ordered basis of W.
- C. $x = [v]_E$ means $x = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$, $v = x_1 e_1 + \dots + x_n e_n$; $y = [w]_F$ means $y = [y_1, y_2, \dots, y_m]^T \in \mathbb{R}^m$, $w = y_1 f_1 + \dots + y_m f_m$.
- D. A is the matrix representing L with respect to \mathbb{R}^n and \mathbb{R}^m .
- E. L maps v into w if and only if y = Ax.
- B, C, E
- (j) If L is a linear transformation mapping a vector space V into a vector space W, which of the following statements are true?
 - A. If $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$, L can be represented as L(x) = Ax for $x \in \mathbb{R}^3$ and a 2×3 matrix A.
 - B. If $L([x_1, x_2, x_3]^T) = [x_1 + x_2, x_2 + x_3]^T$ for $x_1, x_2, x_3 \in \mathbb{R}$, then

$$L\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = x_1 L\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\right) + x_2 L\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\right) + x_3 L\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\right).$$

- C. If V has an ordered basis $E = [v_1, v_2]$, and W has an ordered basis F, for a vector v in V, we can represent L as $[L(v)]_F = A[v]_E$, where $A = [[L(v_1)]_E, [L(v_2)]_E]$.
- D. If L is linear transformation that rotates an \mathbb{R}^2 vector \vec{x} by degree θ , L can be represented as $L(\vec{x}) = A\vec{x}$, where $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
- E. If L is a differential operator for polynomial of degree 2, L can be represented as $L(ax^2 + bx + c) = A\begin{bmatrix} a & b & c \end{bmatrix}^T$, where A is a 2×3 matrix with column vector $L(x^2), L(x), L(1)$.

В

2. (10%) If an $n \times n$ matrix A has an eigenvector $e_1 = [1, 0, \dots, 0]^T$, what kind of structure of A should be? Justify your answer.

A should be in the form of $\begin{bmatrix} \lambda & v^T \\ 0 & B \end{bmatrix}$. Since $Ae_1 = a_1 = \lambda e_1$, we know the first column vector $a_1 = \lambda e_1$.

3. (10%) If A is an $n \times n$ matrix which has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and singular values $\sigma_1, \sigma_2, \ldots, \sigma_n$, show that $|\lambda_1 \lambda_2 \cdots \lambda_n| = \sigma_1 \sigma_2 \cdots \sigma_n$.

We know that $\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$. The SVD of A gives $A = U \Sigma V^T$, so $\det(A) = \det(U) \det(\Sigma) \det(V^T)$. Since U and V are orthogonal matrix, $|\det(U)| = |\det(V^T)| = 1$. Also, since Σ is a diagonal matrix, $\det(\Sigma) = \sigma_1 \sigma_2 \cdots \sigma_n$. In addition, all the singular values are nonnegative, so $|\det(\Sigma)| = |\sigma_1 \sigma_2 \cdots \sigma_n| = \sigma_1 \sigma_2 \cdots \sigma_n$. Putting them together, we have

$$|\det(A)| = |\lambda_1 \lambda_2 \cdots \lambda_n| = |\det(U)| |\det(\Sigma)| |\det(V^T)| = \sigma_1 \sigma_2 \cdots \sigma_n.$$

- 4. (10%) Let $L(x) = [x_1 + x_3, x_3 x_2]$ for $x = [x_1, x_2, x_3]^T \in \mathbb{R}^3$.
 - (a) What is the kernel of L?

$$L(x) = Ax = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} x.$$

The kernel of L is equal to the null space of A, which is span([-1, 1, 1]).

(b) For $S = \text{span}([1, 1, 0]^T)$, what is the image of S? $L([\alpha, \alpha, 0]^T) = [\alpha, -\alpha]$. So $L(S) = \text{span}([1, -1]^T)$.

5. (10%) Let $L([x_1, x_2, x_3]) = [x_1 + x_2, x_3 - x_1]^T$, $E = [u_1, u_2, u_3]$ be an ordered basis for \mathbb{R}^3 and $F = [b_1, b_2]$ be an ordered basis for \mathbb{R}^2 , where

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, u_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, b_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, b_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

Find the matrix representation A of L with respect to E and F.

Using the formula of Theorem 4.2.2,

$$A = [[L(u_1)]_F, [L(u_2)]_F, [L(u_3)]_F],$$

where

$$L(u_i) = x_i b_1 + y_i b_2 = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} [L(u_i)]_F.$$

So

$$[L(u_i)]_F = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}^{-1} L(u_i) = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} L(u_i),$$

for i = 1, 2, 3.

$$A = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} [L(u_1), L(u_2), L(u_3)] = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ -2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -3 & -4 \\ -1 & 3 & 2 \end{bmatrix}$$

6. (10%) Matrix polynomial is a polynomial with square matrices as variables. For example, we can put an $n \times n$ matrix A into a polynomial $q(x) = 2x^2 + 3x + 4$, and get a matrix polynomial $q(A) = 2A^2 + 3A + 4I$. Let A be a symmetric matrix, and $p(x) = \det(A - xI)$ be A's characteristic polynomial. Show that p(A) = O, a zero matrix.

Since A is symmetric, A can be diagonalized by an orthogonal matrix U, $A = U\Lambda U^T$. The characteristic polynomial $p(x) = \det(A - xI)$ can be expressed as $p(x) = \sum_{i=0}^{n} a_i x^i$.

$$p(A) = \sum_{i=0}^{n} a_i A^i = \sum_{i=0}^{n} a_i (U \Lambda U^T)^i = \sum_{i=0}^{n} a_i U \Lambda^i U^T = U \left(\sum_{i=0}^{n} a_i \Lambda^i\right) U^T.$$

$$\sum_{i=0}^{n} a_i \Lambda^i = \sum_{i=0}^{n} a_i \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}^i = \sum_{i=0}^{n} \begin{bmatrix} a_i \lambda_1^i & & & \\ & a_i \lambda_2^i & & \\ & & & \ddots & \\ & & & a_i \lambda_n^i \end{bmatrix} =$$

$$\begin{bmatrix} \sum_{i=0}^{n} a_i \lambda_1^i & & & \\ & \sum_{i=0}^{n} a_i \lambda_2^i & & & \\ & & \ddots & & \\ & & & \sum_{i=0}^{n} a_i \lambda_n^i \end{bmatrix} = \begin{bmatrix} p(\lambda_1) & & & \\ & p(\lambda_2) & & \\ & & \ddots & \\ & & p(\lambda_n) \end{bmatrix}$$

Since $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the roots of $p(x), p(\lambda_i) = 0$ for $i = 1, 2, \ldots, n$, which means $\sum_{i=0}^{n} a_i \Lambda^i = O$. Therefore,

$$p(A) = U\left(\sum_{i=0}^{n} a_i \Lambda^i\right) U^T = UOU^T = O.$$

This result is called Cayley–Hamilton theorem, which holds for all kinds of square matrices, not only for symmetric matrices. The proof given here can also work for diagonalizable matrices.

PS: some of you use the following proof: since $p(x) = \det(A - xI)$, $p(A) = \det(A - AI) = 0$. This is not correct, because p(A) is a matrix, but $\det(A - AI) = 0$ is a scalar. This is only true when A is an 1×1 matrix. So only partial credit (2pt) will be given.

- 7. (20%) There are four subspaces in an $m \times n$ matrix A, row space, column space, null space, and null space of A^T . Write down all the facts you have learned about those four subspaces.
 - (a) The column space and row space have equal dimension r, which is the rank of the matrix.
 - (b) The nullspace N(A) has dimension n-r; the nullspace $N(A^T)$ has dimension m-r.
 - (c) The orthogonal complement of the row space is N(A); The orthogonal complement of the row space is $N(A^T)$.
 - (d) Let $A = U\Sigma V^T$ be the SVD of A, where $U = [u_1, u_2, \ldots, u_m]$ is an $m \times m$ orthogonal matrix; $V = [v_1, v_2, \ldots, v_n]$ is an $n \times n$ orthogonal matrix; and Σ is an $m \times n$ diagonal matrix whose diagonal elements, $\sigma_1, \sigma_2, \ldots, \sigma_n$, are the singular values of A.
 - A. The rank of A equals to the number of nonzero singular values.
 - B. v_1, v_2, \ldots, v_r form an orthonormal basis for the row space.
 - C. $v_{r+1}, v_{r+2}, \ldots, v_n$ form an orthonormal basis for N(A).
 - D. u_1, u_2, \ldots, u_r form an orthonormal basis for column space.
 - E. $u_{r+1}, u_{r+2}, \ldots, u_m$ form an orthonormal basis for $N(A^T)$.

You may reference the note, "The Four Fundamental Subspaces: 4 Lines" written by Gilbert Strang.

https://web.mit.edu/18.06/www/Essays/newpaper_ver3.pdf