CSE 417T Introduction to Machine Learning

Lecture 8

Instructor: Chien-Ju (CJ) Ho

Logistics: Homework 1

- Please follow the (long) instructions
 - Make sure your submissions are **readable** (especially for scanned submissions)
 - Double check whether you correctly specify pages for each problem
 - You won't get points if they are not correctly specified

Gradescope

- Check whether you can get access to Gradescope
- Reserve time for submissions
 - Generally won't grant extensions for technical reasons

Logistics: Homework 2

- Homework 2 will be announced on Friday (tomorrow)
 - One implementation question (in Matlab)
 - Several math questions
- Planned due date: Feb 24, Monday

- Remember that March 3 is the date of the first exam
 - Considering the two late days, we can talk about HW2 the lecture before the exam if needed

Recap

Linear Models

This is why it's called linear models

• H contains hypothesis $h(\vec{x})$ as some function of $\vec{w}^T\vec{x}$

	Domain	Model
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}\$

- Algorithm:
 - Focus on $g = argmin_{h \in H} E_{in}(h)$

Linear Classification

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = sign(\vec{w}^T\vec{x})\}$
 - Error measure: binary error $e(h(\vec{x}), y) = \mathbb{I}[h(\vec{x}) \neq y]$
- Data is linearly separable
 - Run PLA => $E_{in} = 0$ => Low E_{out}
- Data is not linearly separable
 - Engineering the features to make data closer to be separable
 - Pocket algorithm

Linear Regression

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
 - Squared error $e(h(\vec{x}), y) = (h(\vec{x}) y)^2$
- Given dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - $E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (\vec{w}^T \vec{x}_n y_n)^2$
- Goal: find $\overrightarrow{w}_{lin} = argmin_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$

Linear Regression Algorithm

• Given $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$

• Construct
$$X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_N^T \end{bmatrix} = \begin{bmatrix} x_{1,0} & x_{1,1} & \cdots & x_{1,d} \\ x_{2,0} & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{2,0} & x_{N,1} & \cdots & x_{N,d} \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Output $\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$ (Assume $X^T X$ is invertible)
- Done

Brief Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Logistic Regression

Logistic Regression

• Hypothesis set $H = \{h(\vec{x}) = \theta(\vec{w}^T\vec{x})\}$

•
$$\theta(s) = \frac{e^s}{1+e^s} = \frac{1}{1+e^{-s}}$$

A sigmoid function ("S"-shaped function)

•
$$\theta(s) = \begin{cases} 1 & \text{when } s \to \infty \\ 0.5 & \text{when } s = 0 \\ 0 & \text{when } s \to -\infty \end{cases}$$

Useful property

•
$$1 - \theta(s) = \frac{1 + e^s}{1 + e^s} - \frac{e^s}{1 + e^s} = \frac{1}{1 + e^s} = \theta(-s)$$

Logistic Regression: Predicting a Probability

Will this patient have a heart attack within the next year?

age	62 years
gender	male
blood sugar	120 mg/dL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"

Classification: Yes/No

Logistic regression: Probability of Yes

- A hypothesis $h(\vec{x})$ output a value in [0,1]
 - Interpreting it as the probability of yes

What kind of Dataset do We Get?

• Dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$

- What are the values of y_n ?
 - Ideally, we want to have y_n to be the probability value
 - In practice, we cannot measure a probability
 - We can only see the occurrence of an event and infer the probability
- Need to address the case when $y_n \in \{-1, +1\}$ in the given dataset D

How to Quantify $g \approx f$

• Target function $f(\vec{x}) = \Pr(y = +1|\vec{x})$

•
$$\Pr(y|\vec{x}) = \begin{cases} f(\vec{x}) & \text{for } y = +1\\ 1 - f(\vec{x}) & \text{for } y = -1 \end{cases}$$

- How do define the error measure to quantify $g \approx f$
 - Ideally, we want it to be meaningful
 - Binary error for classification: tell us the number of mistakes we make
 - Squared error for regression: the error minimizer is the "mean (average)"
 - We also want it to be easy to optimize

Cross Entropy Error

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

- It looks complicated, but
 - It has nice interpretations (min error => max likelihood)
 - It is easy to optimize (continuous, differentiable, convex)

Likelihood

- How are $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$ generated?
 - $(\vec{x}_1, ..., \vec{x}_N)$ are i.i.d. drawn from a distribution
 - $(y_1, ..., y_N)$ are labeled according to target function $f(\vec{x})$
- UNKNOWN TARGET DISTRIBUTION (target function f plus noise) $P(y \mid \mathbf{x})$ UNKNOWN INPUT DISTRIBUTION $P(\mathbf{x})$ TRAINING EXAMPLES $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$ ERRORMEASURE A INPUT DISTRIBUTION $P(\mathbf{x})$ \mathbf{ERROR} MEASURE $\mathbf{MEASURE}$ $\mathbf{MEASURE}$ $\mathbf{HYPOTHESIS}$ \mathbf{G} $\mathbf{HYPOTHESIS}$ \mathbf{G} $\mathbf{HYPOTHESIS}$ \mathbf{G}

- Likelihood Pr(D|h)
 - The probability of seeing dataset D if we believe y is generated according to h

•
$$\Pr(D|h) = \Pr((\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N)|h)$$

 $= \Pr(\vec{x}_1, \dots, \vec{x}_N) \Pr((y_1, \dots, y_N)|(\vec{x}_1, \dots, \vec{x}_N), h)$
 $= \prod_{n=1}^N \Pr(\vec{x}_n) \prod_{n=1}^N \Pr(y_n|\vec{x}_n, h)$
Assumption of independent data

Maximum Likelihood

Choosing the hypothesis that maximizes the likelihood

```
• g = argmax_{h \in H} \Pr(D|h)

= argmax_{h \in H} \prod_{n=1}^{N} \Pr(\vec{x}_n) \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)

= argmax_{h \in H} \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)
```

 $\prod_{n=1}^N \Pr(\vec{x}_n)$ doesn't depend on h

• We interpret $h(\vec{x})$ as the probability

•
$$\Pr(y|\vec{x},h) = \begin{cases} h(\vec{x}) = \theta(\vec{w}^T\vec{x}) & \text{for } y = +1\\ 1 - h(\vec{x}) = 1 - \theta(\vec{w}^T\vec{x}) & \text{for } y = -1 \end{cases}$$

• Since $1 - \theta(s) = \theta(-s)$, we have $\Pr(y|\vec{x}, h) = \theta(y \vec{w}^T \vec{x})$

Maximum Likelihood

Choosing the hypothesis that maximizes the likelihood

```
• g = argmax_{h \in H} \Pr(D|h)
= argmax_{h \in H} \prod_{n=1}^{N} \Pr(y_n | \vec{x}_n, h)
```

•
$$\overrightarrow{w}^* = argmax_{\overrightarrow{w}} \prod_{n=1}^N \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)$$

$$= argmax_{\overrightarrow{w}} \ln(\prod_{n=1}^N \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmax_{\overrightarrow{w}} \sum_{n=1}^N \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmin_{\overrightarrow{w}} - \sum_{n=1}^N \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^N \ln \frac{1}{\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)}$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^N \ln \frac{1}{\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)}$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^N \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

Cross Entropy Error

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

- Minimizing $E_{in}(\vec{w})$ is the same as maximizing likelihood
- Next question: How to solve $\vec{w}^* = argmin_{\vec{w}} E_{in}(\vec{w})$
 - Answer: Solve for $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = 0$
 - No single-step solution like we have in linear regression

Gradient Descent

A general optimization technique

Gradient Descent

An technique for optimizing functions that gradients exist everywhere.

- An iterative method that converges to local optimum.
- Converge to global optimum if the function is convex (since there is only one local optimum).

Gradient Descent: Optimizing $E_{in}(\vec{w})$

An iterative method of the form:

$$\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$$

- \vec{v}_t : an unit vector, determining the direction of the update
- η_t : an scalar, determining how much to update
- How to choose \vec{v}_t and η_t ?

Choosing
$$\vec{v}_t$$
 in $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

- Choose \vec{v}_t that moves towards the "steepest" direction
 - Approaching the minimum faster

 η_t is usually small, so ignoring this term

• Taylor's approximation:

•
$$E_{in}(\vec{w}(t) + \eta_t \vec{v}_t) = E_{in}(\vec{w}(t)) + \eta_t \nabla_{\vec{w}} E_{in}(\vec{w}(t))^T \vec{v}_t + O(\eta_t^2)$$

•
$$E_{in}(\vec{w}(t+1)) - E_{in}(\vec{w}(t)) \approx \eta_t \nabla_{\vec{w}} E_{in}(\vec{w}(t))^T \vec{v}_t$$

- Choose unit vector \vec{v}_t that minimizes $\nabla_{\vec{w}} E_{in} (\vec{w}(t))^T \vec{v}_t$
 - \vec{v}_t should be in the opposite direction of $\nabla_{\vec{w}} E_{in}(\vec{w}(t))$

•
$$\vec{v}_t = \frac{-\nabla_{\vec{w}} E_{in}(\vec{w}(t))}{\|\nabla_{\vec{w}} E_{in}(\vec{w}(t))\|}$$

Choosing η_t in $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

 η too small

 η too large

variable η_t – just right

Choosing
$$\eta_t$$
 in $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

- Intuition (for convex E_{in})
 - When E_{in} is closer to the minimum,
 - $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))$ is smaller
 - We should set η_t smaller
- Therefore, set $\eta_t = \eta \|\nabla_{\vec{w}} E_{in}(\vec{w}(t))\|$

Putting Them Together

• Iterative update rule: $\vec{w}(t+1) \leftarrow \vec{w}(t) + \eta_t \vec{v}_t$

•
$$\vec{v}_t = \frac{-\nabla_{\vec{w}} E_{in}(\vec{w}(t))}{\|\nabla_{\vec{w}} E_{in}(\vec{w}(t))\|}$$

•
$$\eta_t = \eta \| \nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t)) \|$$

Gradient calculations

•
$$E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

•
$$\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = \frac{1}{N} \sum_{n=1}^{N} \frac{-y_n \overrightarrow{x} e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n}}{1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \overrightarrow{x}_n}{1 + e^{y_n \overrightarrow{w}^T \overrightarrow{x}_n}}$$

Gradient Descent for Logistic Regression

- Initialize $\vec{w}(0)$
- For t = 0, ...
 - Compute $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t)) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \overrightarrow{x}_n}{1 + e^{y_n \overrightarrow{w}(t)} \overrightarrow{T} \overrightarrow{x}_n}$
 - $\overrightarrow{w}(t+1) \leftarrow \overrightarrow{w}(t) \eta \nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))$
 - Terminate if the stop conditions are met
- Return the final weights

 η : learning rate.

A parameter the learner can choose.

Gradient Descent for Logistic Regression

- Initialization
 - Random initialization is a good idea and common approach
- Stop conditions (a mix of the following criteria)
 - When the number of iteration exceeds the pre-set threshold
 - When the improvement on E_{in} (e.g., check $\nabla_{\overrightarrow{w}}E_{in}$) is too small
 - When E_{in} is small enough