Търсене и извличане на информация. Приложение на дълбоко машинно обучение

Стоян Михов

Лекция 1: Търсене чрез булеви заявки от ключови думи. Обратен индекс.

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Логистика на курса

- Лектор: Стоян Михов
 ИИКТ-БАН, бл. 2, стая 322, мейл: <u>stoyan@lml.bas.bg</u>
 - Аудитория: ФзФ А207, сряда 8:15 10:00 часа
- Упражнения: Костадин Гаров
 - Аудитория: ФзФ А207, сряда 10:15 12:00 часа
- · Начин на провеждане: присъствено
 - Помощни материали слайдове, програми, домашни и др.: Moodle

Какво се надяваме да постигнем

Очаква се студентите да придобият:

- 1. Познаване на модерните методи за търсене и извличане на информация, както и тяхното реализиране чрез дълбоки невронни мрежи;
- 2. Начално запознаване с теоретичните основи на машинно обучение чрез дълбоки невронни мрежи;
- 3. Способности за имплементиране на модерни решения в тази област за реализация на реални системи.

Формиране на оценката

- 3 х домашни задания за имплементиране и описание на конкретни задачи: 30%
- Курсова работа имплементиране на проект за търсене / извличане на информация:
 50%
- Устен изпит:20%

Допълнителни учебни материали

- Introduction to Information Retrieval, by C. Manning, P. Raghavan, and H. Schütze (Cambridge University Press, 2008). https://nlp.stanford.edu/IR-book/
- Neural Network Methods in Natural Language Processing, by Yoav Goldberg and Graeme Hirst. 2017. Morgan & Claypool Publishers. https://innovate.ieee.org/wp-content/uploads/2020/03/MC-Neural-Network-Methods.pdf
- Deep Learning, by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press 2016. http://www.deeplearningbook.org

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Задача на търсенето и извличането на информация

- Търсене на информация (Information Retrieval) се състои в намирането в голяма колекция от неструктурирани текстови документи на документите, които удовлетворяват дадена информационна потребност.
- Извличането на информация (Information Extraction) се състои в извличане на структурирани елементи (имена, числови стойности, релации и др.) от неструктурирани текстови документи.
- В тази област влизат и множество свързани задачи като:
 - класифициране на информация (тематика, сантименталност, значимост),
 - съставяне на резюме,
 - отговор на въпрос,

•

Класически подход към търсенето на информация

- Предположения: голяма колекция от документи.
- Цел: намирането на документите в колекцията, които са релевантни по отношение на информационната потребност на ползвателя.
- Подход:

Оценяване на извлечените документи

- Прецизност: Процентният дял на релевантните по отношение на потребността документи спрямо всички извлечени.
- Обхват: Процентът на извлечените релевантни документи спрямо всички релевантни документи в колекцията.

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Примерна задача

- В кои шекспирови пиеси се срещат героите Цезар и Брут, но не се среща Калпурния?
- Наивен подход: да се използва grep за да се извадят пиесите с Цезар и Брут.
 След това да се премахнат тези, в които се среща Калпурния
- Проблеми:
 - бавно трябва да се претърси цялата колекция
 - операцията "НЕ Калпурния" е проблематична
 - трудно биха се реализирали операции като: намери *Римлянин* в близост до *Сънародник*
 - не позволява ранкирано търсене да се подредят документите по релевантност

Матрица на срещания

ключова дума / документ

	Антоний и Клеопатра		Бурята	Хамлет	Отело	Макбет
Антоний	1	1	0	0	0	1
Брут	1	1	0	1	0	0
Цезар	1	1	0	1	1	1
Калпурния	0	1	0	0	0	0
Клеопатра	1	0	0	0	0	0
милост	1	0	1	1	1	1
по-лош	1	0	1	1	1	0
•••						

1, ако пиесата съдържа съответната дума, 0 иначе.

Вектори на срещанията

- На всяка ключова дума съпоставяме вектор от 0/1 с размер броя на документите, който отразява срещанията
- За да отговорим на заявката *Брут* и *Цезар* и не *Калпурния*, извършваме побитови операции със съответните вектори:
 - 110100 &
 - · 110111 &
 - · ~010000 =
 - · 100100

	Антоний и Клеопатра		Бурята	Хамлет	Отело	Макбет
Антоний	1	1	0	0	0	1
Брут	1	1	0	1	0	0
Цезар	1	1	0	1	1	1
Калпурния	0	1	0	0	0	0
Клеопатра	1	0	0	0	0	0
милост	1	0	1	1	1	1
по-лош	1	0	1	1	1	0

Представяне на матрицата на срещанията

- Нека предположим, че:
 - колекцията съдържа 1 милион документа;
 - средно по 1000 думи в документ;
 - броят на различните думи е 1 милион.
- Матрицата ще съдържа 1000 милиарда елемента по 1 бит получаваме 125ТВ.
- Броят на единиците е по-малък от 1 милиард матрицата е силно разредена
- Решение: Запаметяваме само позициите на единиците (по-нататък).

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Етапи на предварителната обработка на текста

- Разбиване текста на единици (Tokenization)
 - изрази като: 25-милиметров, полу-слято, 01.10.2020, г'син, ...
- Нормализация
 - главни / малки букви, съкращения, акроними: *TEKCT, др., С.У., ...*
- Преобразуване до основни форми (Stemming)
 - дунавски →дунав, вървейки →вървя, ...
- Премахване на **стоп** думи
 - съюзи, предлози, междуметия, кратки местоимения, спомагателни глаголи, които са много често срещани, но нямат собствено значение

Технологии и инструменти за предварителна обработка на текст

- Най-често базирани на експертни правила и речници
 - използване на регулярни изрази и релации
 - използване на речници за съкращения, акроними, ...
 - правила за преобразуване и замяна
 - използване на крайни автомати и преобразуватели
 - курс летен семестър: *Приложения на крайните автомати (ПКА)*

Реализация на речник

- Ефективно представяне на ключовите думи
 - Бързо търсене
 - Възможност за поддържане добавяне и триене
 - Сбито представяне
- Технологии
 - хешове, балансирани дървета, перфектни хешове, крайни автомати (ПКА)

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Създаване на списък дума / номер на документ

Антоний във Египет не ще напусне пиршества и спални за други битки. Цезар трупа злато, отблъсквайки сърца

Документ 2

Цезар заслужавал е смъртта си, Антоний ще обича Цезар мъртъв не толкоз силно, колкото Брут жив

Дума	Документ
антоний	1
египет	1
напусне	1
пиршества	1
спални	1
други	1
битки	1
цезар	1
трупа	1
злато	1
отблъсквайки	1
сърца	1
цезар	2
заслужавал	2
смъртта	2
антоний	2
обича	2
цезар	2
мъртъв	2
толкоз	2
силно	2
колкото	2
брут	2
жив	2

ПОКУМОНТ

Сортиране

- Сортираме списъка
 - първо по думите
 - после по документ

Дума	Документ
антоний	1
египет	1
напусне	1
пиршества	1
спални	1
други	1
битки	1
цезар	1
трупа	1
злато	1
отблъсквайки	1
сърца	1
цезар	2
заслужавал	2
смъртта	2
антоний	2
обича	2
цезар	2
мъртъв	2
толкоз	2
силно	2
колкото	2
брут	2
жив	2

Дума	Документ
антоний	1
антоний	2
битки	1
брут	2
други	1
египет	1
жив	2
заслужавал	2
злато	1
колкото	2
мъртъв	2
напусне	1
обича	2
отблъсквайки	1
пиршества	1
силно	2
смъртта	2
спални	1
сърца	1
толкоз	2
трупа	1
цезар	1
цезар	2
цезар	2

Създаване на обратен индекс

- Обединяваме повторенията
- Разделяме речника от срещанията
- Добавяме поле за честота на срещанията

Дума	Документ
антоний	1
антоний	2
битки	1
брут	2
други	1
египет	1
жив	2
заслужавал	2
злато	1
колкото	2
мъртъв	2
напусне	1
обича	2
отблъсквайки	1
пиршества	1
силно	2
смъртта	2
спални	1
сърца	1
толкоз	2
трупа	1
цезар	1
цезар	2
цезар	2

Резултат

- Време за построяване на обратен индекс?
- Памет за построяване на обратен индекс?

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Реализиране на конюнкция: сливане на срещанията

- Разглеждаме заявката *Брут И Цезар*
- Извличаме от речника списъците от срещания за Брут и Цезар
- "Сливаме" двата списъка като направим тяхното сечение
- Обхождаме синхронно двата списъка за време линейно спрямо сумата от дължините им
- Ако дължините на списъците са съответно x и y, то сливането отнема време O(x+y)
- ВАЖНО: Списъците трябва да са сортирани по номер на документ

Брут
$$2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64 \rightarrow 128$$

Цезар $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 13 \rightarrow 21 \rightarrow 34$

Алгоритъм за сечение на два списъка от срещания (сливане на списъци)

```
Intersect(p1,p2)
1 answer <- <>
2 while p1 != NIL and p2 != NIL do
    if docID(p1) == docID(p2) then
4
       Add(answer,docID(p1))
5
       p1 <- next(p1)
       p2 <- next(p2)
7 else if docID(p1) < docID(p2) then
       p1 <- next(p1)
9
    else
10
      p2 <- next(p2)
11 return answer
```

Алгоритми за сливане на списъци за други булеви заявки

- Дизюнкция: Х или Ү
- Конюнкция с отрицание: Хине Ү
- Дизюнкция с отрицание: Х или не У
- Сложност на на съответните алгоритми.
- Може ли винаги да сливаме за време *О(х+у)*? Какво можем да постигнем?

Алгоритъм за произволни булеви заявки

- Разбиваме сложен израз на подизрази: *(Брут или Цезар) и (Антоний или не Клеопатра)*
- Сливаме всеки от подизразите и получаваме списък от срещания, след което сливаме получените списъци до получаването на срещанията за цялата заявка:

Брут или Цезар -> A Антоний или не Клеопатра -> B A и B -> C

Оптимизация на изпълнението на заявката

- Нека е дадена заявка, която е конюнкция на *п* терма
- За всеки от термовете получаваме списъка от срещанията и съответните им дължини
- В какъв ред да ги слеем?
- Отговор:
 - започваме с най-късите списъци и сливаме в нарастващ ред.

По-обща оптимизация

- За единичните термове речникът ни дава броя на срещанията им
- Оценяваме броя на срещанията на конюнкцията с минимума на броя на срещанията на съответните списъци на конюнктите
- Оценяваме броя на срещанията на дизюнкцията със сумата на броя на срещанията на съответните списъци на дизюнктите
- Извършваме сливанията в нарастващ ред
- Задача: Каква сложност може да постигнем в най-общия случай при наличие на отрицания.

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Съставни имена, фрази и изрази

- Примери: Иван Иванов, Стара Загора, операционна система, така нататък
- Първо решение добавяне на двойки от думи към речника
 - Огромно нарастване на речника и списъците от срещания
 - При нужда от намиране на тройки или четворки е необходимо разбиване на двойки и проверка дали са последователни
 - Има смисъл само за често срещани съставни имена и изрази

Алтернативно решение: използване на позиционен индекс

- Към списъка от срещания за всяко срещане на терм в документ добавяме списък от позициите в документа на съответните срещания
- Пример: да бъде или да не бъде

```
да: бъде: 
2 -> 1,17,74,222,551; 1 -> 17,19; 
4 -> 8,16,190,429,433; 4 -> 17,191,291,430,434; 
7 -> 13,23,191; 5 -> 14,19,101; 
...
```

Търсене с помощта на позиционен индекс

- Позволява в булевата заявка да се добави ограничение за разстоянието между термовете:
 - да и/1 бъде
 - компютърна и/3 мрежа
- Изисква съществено допълване на алгоритмите за сливане
- Изисква между 2 и 4 пъти повече памет за представяне на индексите.

Алгоритъм за позиционно сечение на два списъка от срещания

```
PositionalIntersection(p1, p2, k)
    answer <- <>
2
    while p1 != NIL and p2 != NIL do
         if docID(p1) == docID(p2) then
3
             1 <- <>
5
             pp1 <- positions(p1)</pre>
             pp2 <- positions(p2)
             while pp1 != NIL do
8
                  while pp2 != NIL do
9
                       if |pos(pp1) - pos(pp2)| \le k then
10
                           ADD(1, pos(pp2))
11
                       else if pos(pp2) > pos(pp1) then
                           break
12
13
                       pp2 <- next(pp2)
14
                  while 1 != <>  and |1[0] - pos(pp1)| > k  do
15
                       DELETE(1[0])
                  for each ps in 1 do
16
                       ADD(answer, <docID(p1), pos(pp1), ps>)
17
18
                  pp1 <- next(pp1)</pre>
             p1 <- next(p1)
19
20
             p2 <- next(p2)
         else if docID(p1) < docID(p2) then</pre>
21
22
             p1 <- next(p1)
23
         else
24
             p2 <- next(p2)
25
    return answer
```

План на лекцията

- 1. За курса (10 мин)
- 2. Подходи към проблема за търсене на информация (15 мин)
- 3. Въведение в булевото търсене (10 мин)
- 4. Предварителна обработка на текстовете (10 мин)
- 5. Построяване и на обратен индекс (10 мин)
- 6. Булево търсене чрез обратен индекс (10 мин)
- 7. Позиционен обратен индекс (10 мин)
- 8. Толериране на близки ключови думи (15 мин)

Стриктно търсене по зададени ключови думи

Пропускане на релевантни документи поради това, че:

- Не се обхващат различни форми на ключовата дума: компютрите, вятърните, вдървяването, ...
- Не се толерират правописни грешки: невроната, ябалка, инжинер, ...
- Различие в изписването, както в заявката, така и в документа.

<u>Решение</u>: Толериране на близки по изписване ключови думи

Толериране на форми на дадена дума

- Чрез използване на stemming:
 - позиционен -> позиция, дунавската -> дунав, ...
 - втори речник върху "основите" на думите, за всяка основа се посочва списък от ключови думи със съответната основа
- Води до повече резултати, в някои случай нерелевантни:
 - хлебарка -> хляб, националистически -> национален -> национал, ...
- Не се толерират грешки в изписването

Използване на шаблони (wildcard)

- Използване на * за означаване на произволен подниз в ключовата дума: **позиц*, компют*, по*ните, *ход***
- Реализация на * в края на заявката чрез обхождане на поддървото (подавтомата) на речник, представен с дърво или автомат, от върха, който се достига с дадения префикс
- Реализация на * в средата на заявката чрез обхождане на поддървото (подавтомата) на речник, представящ пермутациите на думите

ма*на -> ма*на\$ -> на\$ма*

машина\$

ашина\$м

шина\$ма

ина\$маш

на\$маши

а\$машин

Разстояние на корекция (Edit distance) Разстояние на Левенщайн

- Минималния брой елементарни корекции (изтриване, вмъкване и заменяне на единични символи), необходими за преобразуване на един низ до друг.
- Индуктивна схема:

$$\begin{aligned} d_L(\varepsilon, W) &= |W| \\ d_L(P, \varepsilon) &= |P| \\ d_L(Pa, Wb) &= \begin{cases} d_L(P, W) & \text{if } a = b \\ 1 + \min(d_L(P, W), d_L(Pa, W), d_L(P, Wb)) & \text{if } a \neq b \end{cases} \end{aligned}$$

 Модификации на разстоянието на корекция: добавяне на транспозиция, сливане и разбиване на символи, тегла на корекциите

Алгоритъм за намиране на Левенщайн разстояние между два низа

```
EditDistance(s1, s2)
1 int m[i, j]=0
2 for i <- 1 to |s1| do
  m[i, 0]=i
  for j <- 1 to |s2| do
5
  m[0, j]=j
  for i <- 1 to |s1| do
     for j <- 1 to |s2| do
7
8
        m[i, j] = min\{m[i - 1, j - 1] +
                         if s1[i] == s2[j] then 0 else 1,
10
                      m[i - 1, j] + 1,
                      m[i, j-1] + 1
11
12 return m[|s1|,|s2|]
```

Интегриране на толерантно търсене в общата схема на булевото търсене

- За всяка от ключовите думи/шаблони от заявката се намира съответен списък от "близки" думи, срещани в документите.
- Списъците от срещания за дадена ключова дума от заявката се обединяват.
- Резултатът се формира като се извършат останалите булеви операции с така обединените списъци на срещания на термовете.

Заключение

- Модерните системи за търсене на информация използват техники базирани на обратни индекси с цел ефективност.
- Много от професионалистите търсещи информация в специализирани бази (например в юридически или научни документи) предпочитат използването на разширено булево търсене.
- В масовите потребителски системи напоследък се предпочита търсене по "смисъл" и ранкиране на резултатите (ще бъде разгледано в следващите лекции).