

planetmath.org

Math for the people, by the people.

commutativity relation in an orthocomplemented lattice

 ${\bf Canonical\ name} \quad {\bf Commutativity Relation In An Orthocomplemented Lattice}$

Date of creation 2013-03-22 16:43:22 Last modified on 2013-03-22 16:43:22

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 06C15
Classification msc 03G12
Defines dually commute

Defines orthogonally commute

Let L be an orthocomplemented lattice with $a, b \in L$. We say that a commutes with b if $a = (a \wedge b) \vee (a \wedge b^{\perp})$. When a commutes with b, we write $a \cap b$. Dualize everything, we have that a dually commutes with b, written $a \cap b$, if $a = (a \vee b) \wedge (a \vee b^{\perp})$.

Some properties. Below are some properties of the commutativity relations C and D.

- 1. C is reflexive.
- 2. a C b iff $a C b^{\perp}$.
- 3. a C b iff $a^{\perp} D b^{\perp}$.
- 4. if $a \leq b$ or $a \leq b^{\perp}$, then $a \subset b$.
- 5. a is said to orthogonally commute with b if $a \, C \, b$ and $b \, C \, a$. In this case, we write $a \, M \, b$. The terminology comes from the following fact: $a \, M \, b$ iff there are $x, y, z, t \in L$, with:
 - (a) $x \perp y$ (x is orthogonal to y, or $x \leq y^{\perp}$),
 - (b) $z \perp t$,
 - (c) $x \perp z$,
 - (d) $a = x \vee y$, and
 - (e) $b = z \vee t$.
- 6. C is symmetric iff D = C(= M) iff L is an orthomodular lattice.
- 7. C is an equivalence relation iff $C = L \times L$ iff L is a Boolean algebra.

Remark. More generally, one can define commutativity C on an orthomodular poset P: for $a, b \in P$, $a \subset b$ iff $a \wedge b$, $a \wedge b^{\perp}$, and $(a \wedge b) \vee (a \wedge b^{\perp})$ exist, and $(a \wedge b) \vee (a \wedge b^{\perp}) = a$. Dual commutativity and mutual commutativity in an orthomodular poset are defined similarly (with the provision that the binary operations on the pair of elements are meaningful).

References

[1] L. Beran, Orthomodular Lattices, Algebraic Approach, Mathematics and Its Applications (East European Series), D. Reidel Publishing Company, Dordrecht, Holland (1985).