Overlapping confidence intervals are not a statistical test

Daniel Smith
Environmental Health Investigations Branch
California Department of Health Services

26th Annual Institute on Research and Statistics March, 2005

Some examples...

Figure 3: 1996 S.F. Asthma Hospitalization Rates by Zip Code (65 Years and Older)

EHIB study of fish consumption...

Mean consumption rate (grams per day*) by ethnicity

Anglers with recent fish consumption only

Are the results of the overlap test consistent with the equivalent traditional test?

Example 1: Mortality rates among elderly

from Kleinbaum, Kupper, and Morgenstern, 1982, p.287.

	Obese	Non-obese
Deaths	30	36
Person-years	699	1399

$$\chi^2 = 4.38$$
P value = 0.036

RR=1.67

95% CL: 1.03-2.71

Example 2: Big Numbers

	Exposed	Non-Exposed
Cases	200	150
Person-years	100,000	100,000

 $\chi^2 = 7.14$ *P* value = 0.0075

RR=1.33

95% CL: 1.08-1.65

The problem is...

- Confidence intervals are too wide
- Confidence intervals are calculated only using the data in each rate
- Confidence interval around one rate is not a comparative measure between two rates

ANOVA has the concept of Least Significant Difference (LSD), based on the confidence interval for the difference of two means

Daniel Smith
California Dept of Health Services

LSD = Least significant difference

Uses a *pooled standard error*, so can compare means across all groups

Example from Sokal and Rohlf (1995)

How to do this for epidemiologic measures? First, consider Poisson rates...

Poisson rate:
$$\frac{\text{cases}}{\text{person - years}} = \frac{a}{N}$$

Variance of
$$\sqrt{a} = \frac{1}{4}$$

Variance of difference
$$\sqrt{a_1} - \sqrt{a_2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$SE = \sqrt{Var} = \sqrt{\frac{1}{2}}$$

An LSD-style interval for Poisson rate can be constructed

$$LSD = Z\sqrt{\frac{1}{2}}$$

Each arm of "LSD Interval" =
$$\frac{Z\sqrt{\frac{1}{2}}}{2}$$

For Z = 1.96, arm = 0.693

$$95\% LSD limits = \frac{\left(\sqrt{a} \pm 0.693\right)^2}{N}$$

Example 1 again

	Obese	Non-obese
Deaths	30	36
Person-years	699	1399

 $\chi^2 = 4.38$ *P* value = 0.036

RR=1.67

95% CL: 1.03-2.71

95% confidence intervals overlap

Example 1 again

Daniel Smith

	Obese	Non-obese
Deaths	30	36
Person-years	699	1399

$$\chi^2 = 4.38$$
P value = 0.036

RR=1.67

95% LSD-type intervals don't overlap (Consistent with χ^2 test)

Three or more rates...

All three confidence limits overlap!

Three or more rates with LSD-style intervals

Now, overlaps agree with tests

Try to adapt this to binomial case: Three or more proportions...

All three confidence intervals overlap!

Three or more proportions with LSD-style intervals

Construct LSD-type intervals based on standard error of a test of two proportions: LSD Interval: P±

Daniel Smith

California Dept of Health Services

This is OK... Comparing rates to a hypothetical value

Figure 4: Age-Adjusted® Asthma Hospital Discharge Rates for Hispanics by County, 1995-1997, with 95% Confidence Intervals.

This is also OK...

Confidence limits for a *comparative* measure, versus the null hypothesis value

But it is *not* OK to use intervals to compare OR₁ to OR₂...

Confidence interval around *one* OR is not a comparative measure between *two* ORs

So what to do?

- Be careful about use of overlap criterion:
 - –Overlap of 1- α % intervals means p could still be < α
 - -Intervals can overlap as much as 29% and rates can still be different at the 0.05 level (van Belle, 2001)
 - –Non-overlap of 1- α % confidence intervals means that $p << \alpha$
- Show confidence intervals, but don't use them for testing between two groups
- Show LSD-type intervals, but don't call them confidence intervals

Epilogue

What to do for *adjusted* or *standardized* rates? (Previous examples have been crude rates)

- It has yet to be worked out how to construct the LSD intervals for weighted averages...
- But provisionally, you might try this approach:
 - Note that, for crude rates, the LSD-type interval is narrower than the standard confidence interval by the factor of $\sqrt{1/2}$
 - Can create an LSD-type interval by multiplying standard CI by √1/2 :

Width of interval = \pm - Z*SE*($\sqrt{1/2}$), where SE is the standard error of the standardized rate.

Example of stratified data with confounding

	Group 1	Group 2	RR _{stratum}	
Stratum 1	20/15,000	5/6,000	1.60	
Stratum 2	100/35,000	5/4,000	2.29	Crude χ^2
Crude totals	120/50,000	10/10,000	2.40	p=0.006

Confidence intervals don't overlap, but rates are confounded (crude RR is greater than either stratum RRs)

Daniel Smith
California Dept of Health Services

Standardized rates

("direct adjustment," using weights)

	Group 1	Group 2	Weight
Stratum 1	20/15,000	5/6,000	0.5
Stratum 2	100/35,000	5/4,000	0.5
Standardized rate	21.0/10,00	10.4/10,000	_
	O Standardized RR = 2.01 (95% CL 1.02 – 4.24) Mantel-Haenszel χ^2 p-value = 0.039		

Daniel Smith
California Dept of Health Services

As expected, the 95% confidence intervals for the standardized rates inappropriately EHIB overlap

Try the correction factor...

Calculate intervals using Z * SE_(standardized rate) * √1/2

- Error bars don't overlap
- •Now they're consistent with Mantel-Haenszel χ^2 test controlling for stratum

References

- LSD Intervals for ANOVA
 - Andrews HP, Snee RD, Sarner MH. Graphical display of means.
 American Statistician 1980;34:195-199
 - Snedecor G, Cochran G. Statistical Methods, 8th Ed. Ames: Iowa State University Press, 1989; 235-236
 - Sokal RR, Rohlf FJ. Biometry, 3rd Ed. New York: WH Freeman, 1995; 243-246
- Poisson properties
 - Armitage P, Berry G. Statistical Methods in Medical Research, 2nd
 Ed. Oxford: Blackwell, 1987; 362-363
- Overlap issues in general
 - Schenker N, Gentleman JF. On judging the significance of differences by examining the overlap between confidence intervals.
 American Statistician 2001; 55(3):182-186
 - van Belle G. Statistical Rules of Thumb. New York: Wiley, 2002; 39-40