# ЛАБОРАТОРНАЯ РАБОТА 5. ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Теоретический материал к данной теме содержится в [1, глава 11].

**Отчет** по лабораторной работе должен содержать следующие материалы по каждой задаче:1) постановка задачи; 2) необходимый теоретический материал; 3) решение поставленной задачи; 4) анализ полученных результатов; 5) графический материал; 6)тексты программ.

Варианты заданий к задачам 5.1-5.9 даны в ПРИЛОЖЕНИИ 5.А.

Фрагмент решения задачи 5.1 дан в ПРИЛОЖЕНИИ 5.В.

Задача 5.1. Функция y=f(x) задана таблицей значений  $y_0,y_1,...y_n$  в точках  $x_0,x_1,...x_n$ . Используя метод наименьших квадратов (МНК), найти многочлен  $Pm(x)=a_0+a_1x+...+a_mx^m$  наилучшего среднеквадратичного приближения оптимальной степени  $m=m^*$ . За оптимальное значение m принять ту

степень многочлена, начиная с которой величина 
$$\sigma_m = \sqrt{\frac{1}{n-m}\sum_{k=0}^n (P_m(x_k) - y_k)^2}$$
 стабилизируется

или начинает возрастать.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать векторы х и у исходных данных.
- 2. Составить в явном виде нормальную систему метода наименьших квадратов и решить ее используя стандартные средства линейной алгебры (см. напр. *ПРИЛОЖЕНИЕ 5.В*), найти многочлены Pm, m=0,1,2,..., по методу наименьших квадратов. Вычислить соответствующие им значения  $\sigma_m$ .
- 3. Построить гистограмму зависимости  $\sigma_m$  от m, на основании которой выбрать оптимальную степень  $m^*$  многочлена наилучшего среднеквадратичного приближения.
- 4. На одном чертеже построить графики многочленов Pm, m=0,1,2,..., m\*, и точечный график исходной функции.
- 5. (\*) Решить задачу МНК используя QR или SVD разложение, не формируя матрицу левой части нормальной системы в явном виде. Использовать стандартные библиотечные средства линейной алгебры для матричных разложений. Сравнить результаты полученные с помошью решения нормальной системы МНК и матричных разложений.
- **Задача 5.2**. В таблице приведены результаты наблюдений за перемещением x материальной точки по оси Ox в моменты времени  $t \in [t_0, T]$ . Известно, что движение является равномерным и описывается линейной зависимостью x(t) = vt + b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t = 2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.
- **Задача 5.3.** Зависимость между величинами x и y описывается функцией y=f(x,a,b), где a и b неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов. УКАЗАНИЕ. Свести исходную задачу к линейной задаче МНК можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид  $y=e^{a+bx^2}$ , то прологарифмировав исходное равенство и введя новые переменные  $s=\ln y$  и  $t=x^2$ , получаем задачу об определении коэффициентов линейной зависимости s=a+b t.
- **Задача 5.4.** В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y). Известно, что движение осуществляется по кривой, описываемой многочленом  $y = kx^m + b$  (степень многочлена m задана в индивидуальном варианте).

Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение  $\frac{1}{x}$  координаты x, соответствующее значению  $\frac{1}{y}$  координаты y ( $\frac{1}{y}$  задано в индивидуальном варианте).

УКАЗАНИЕ. Для нахождения коэффициентов k и b составить нормальную систему МНК (базисные функции:

 $\chi^m$ , 1) и решить ее с помощью встроенной функции **lsolve** пакета MATHCAD.

**Задача 5.5.** Известно, что  $y=c1sin(a\pi x)+c2cos(b\pi x)$ , где коэффициенты c1 и c2 подлежат определению. Используя метод наименьших квадратов, определить c1 и c2.

УКАЗАНИЕ. Для нахождения коэффициентов c1 и c2 составить нормальную систему МНК (базисные функции:  $sin(a\pi x)$  и  $cos(b\pi x)$ ) и решить ее с помощью встроенной функции **Isolve** пакета MATHCAD.

**Задача 5.6.** Дана функция y=f(x). Приблизить f(x) на отрезке [a,b] интерполяционными многочленами Лагранжа 1, 2, 3 степеней. На одном чертеже построить графики приближающих многочленов и функции f(x). Для многочлена 3 степени сравнить качество приближения при различном выборе узлов интерполяции.

**Задача 5.7.** Дана кусочно-гладкая функция y=f(x). Сравнить качество приближения функции кусочно-линейной и глобальной интерполяциями.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Вычислить значения функции  $y_i = f(x_i)$  в произвольных точках  $x_i$ , i=0,1,...,k-1, отрезка [a,b], по которым будет осуществляться интерполяция функции.
- 2. Составить программу-функцию, вычисляющую значение интерполяционного многочлена 1-ой степени по точкам  $(x_i, y_i)$  и  $(x_{i+1}, y_{i+1})$  в произвольной точке отрезка  $[x_i, x_{i+1}]$ . С ее помощью вычислить приближенные значения функции f(x) при кусочно-линейной интерполяции в 3k точках исходного отрезка [a,b]. 3. Вычислить приближенные значения функции f(x) в тех же 3k точках отрезка при глобальной интерполяции. Для этого составить функцию, выполняющею построение интерполяционного многочлена в форме Ньютона (см. напр. функцию **inter**,  $\Pi P U J O \mathcal{K} E H U E 5.B$ ). На одном чертеже построить графики интерполирующих функций, график исходной функции f(x), а также отметить точки  $(x_i, y_i)$ , i=0,1,...,k-1, по которым осуществлялась интерполяция.
- 4. Вычислить практическую величину погрешностей  $\Delta_j$ , j=0,1,...,3k-1, приближения функции f(x) в 3k точках для кусочно-линейной и глобальной интерполяций. На одном чертеже построить графики погрешностей. Сравнить качество приближения.

**Задача 5.8**. Дана функция y = f(x). Приблизить f(x) методом глобальной интерполяции при равномерном и чебышевском распределениях узлов интерполяции. Сравнить качество приближения.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить программу-функцию построения интерполяционного многочлена при произвольном распределении узлов (количество узлов любое).
- 2. Используя составленную программу, вычислить приближенные значения функции f(x)в 3k точках исходного отрезка [a, b] по k узлам интерполяции, распределенным равномерно на отрезке. На одном чертеже построить графики интерполяционного многочлена и исходной функции.
- 3. Используя составленную программу, вычислить приближенные значения функции f(x) в тех же 3k точках исходного отрезка по k узлам интерполяции, имеющим чебышевское распределение. На одном чертеже построить графики интерполяционного многочлена и исходной функции.
- 4. Сравнить качество приближения функции f(x) при разном распределении узлов.
- 5. Выполнить п. 2-4, строя интерполяционный многочлен по 2k узлам интерполяции.
- 6. Сравнить результаты при разном числе узлов.

**Задача 5.9**. Дана функция y = f(x). Приблизить f(x) на отрезке [a, b] методом глобальной интерполяции и указанным в индивидуальном варианте сплайном. На одном чертеже построить графики приближающей функции и функции f(x). Сравнить качество приближения при разном количестве узлов интерполяции.

# **ПРИЛОЖЕНИЕ 5.А.**Схема вариантов лабораторной работе 5

| N | Выполняемые задачи         | N  | Выполняемые задачи           |
|---|----------------------------|----|------------------------------|
| 1 | 5.1.1, 5.2.1, 5.5.1, 5.8.1 | 16 | 5.1.16, 5.4.4, 5.7.8, 5.9.8  |
| 2 | 5.1.2, 5.3.1, 5.7.1, 5.9.1 | 17 | 5.1.17, 5.4.3, 5.5.9, 5.9.9  |
| 3 | 5.1.3, 5.4.1, 5.5.2, 5.9.2 | 18 | 5.1.18, 5.5.3, 5.7.9, 5.8.9  |
| 4 | 5.1.4, 5.5.1, 5.7.2, 5.8.2 | 19 | 5.1.19, 5.3.8, 5.5.10, 5.8.1 |
| 5 | 5.1.5, 5.3.2, 5.5.3, 5.8.3 | 20 | 5.1.20, 5.3.9, 5.7.1, 5.9.10 |
| 6 | 5.1.6, 5.3.3, 5.7.3, 5.9.3 | 21 | 5.1.21, 5.2.4, 5.5.11, 5.8.2 |

| 7        | 5.1.7, 5.3.4, 5.5.4, 5.9.4  | 22 | 5.1.22, 5.3.10, 5.7.2, 5.9.11 |
|----------|-----------------------------|----|-------------------------------|
| 8        | 5.1.8, 5.2.2, 5.7.4, 5.8.4  | 23 | 5.1.23, 5.5.4, 5.5.12, 5.8.3  |
| 9        | 5.1.9, 5.5.5, 5.5.5, 5.8.5  | 24 | 5.1.24, 5.2.5, 5.7.3, 5.9.12  |
|          | 5.1.10, 5.4.2, 5.7.5, 5.9.5 | 25 | 5.1.25, 5.4.5, 5.5.13, 5.8.4  |
| 11<br>12 | 5.1.11, 5.5.2, 5.5.6, 5.9.6 | 26 | 5.1.26, 5.2.6, 5.7.4, 5.9.13  |
| 12       | 5.1.12, 5.3.5, 5.7.6, 5.8.6 | 27 | 5.1.27, 5.4.6, 5.5.14, 5.8.5  |

| 13 | 5.1.13, 5.3.6, 5.5.7, 5.8.7 | 28 | 5.1.28, 5.5.6, 5.7.5, 5.9.14 |
|----|-----------------------------|----|------------------------------|
|    | 5.1.14, 5.3.7, 5.7.7, 5.9.7 | 29 | 5.1.29, 6.5.7, 5.6.15, 5.8.6 |
| 15 | 5.1.15, 5.2.3, 5.6.8, 5.8.8 | 30 | 5.1.30, 5.5.8, 5.7.6, 5.9.15 |

# ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 5 Таблица к задаче 5.1

|       |            |       |            | -     | 1 40       | лица к зад | u 10 J.1 |        |           |
|-------|------------|-------|------------|-------|------------|------------|----------|--------|-----------|
| x :   | y<br>5.1.1 | x 5   | y<br>5.1.2 | x 5   | y<br>5.1.3 | x 5.       | y<br>1.4 | x 5    | y<br>.1.5 |
| -1    | -2.25      | 0     | 4.568      | -1    | 3.614      | -0.5       | 0.72     | -2.1   | 14.1982   |
| -0.7  | -0.77      | 0.375 | 3.365      | -0.74 | 1.199      | -0.25      | 1.271    | -1.8   | 11.4452   |
| -0.43 | 0.21       | 0.563 | 2.810      | -0.48 | -0.125     | 0          | 1.2      | -1.5   | 9.1586    |
| -0.14 | 0.44       | 0.75  | 2.624      | -0.21 | -0.5838    | 0.25       | 0.7363   | -1.2   | 7.2426    |
| -0.14 | 0.64       | 1.125 | 0.674      | 0.05  | -0.538     | 0.5        | 0.24     | -0.9   | 6.3640    |
| 0.43  | 0.03       | 1.313 | 0.557      | 0.31  | -0.2855    | 0.75       | -0.175   | -0.6   | 4.8182    |
| 0.71  | -0.22      | 1.5   | 0.384      | 0.58  | 0.1111     | 1          | -0.36    | -0.3   | 6.1088    |
| 1     | -0.84      | 1.690 | -0.566     | 0.84  | 0.4529     | 1.25       | -0.328   | 0      | 3.9536    |
| 1.29  | -1.2       | 1.875 | -1.44      | 1.1   | 0.6711     | 1.5        | 0        | 0.3    | 4.6872    |
| 1.57  | -1.03      | 2.063 | -1.696     | 1.36  | 0.6625     | 1.75       | 0.3538   | 0.6    | 4.7601    |
| 1.86  | -0.37      | 2.25  | -1.91      | 1.63  | 0.4501     | 2          | 0.72     | 0.9    | 5.8511    |
| 2.14  | 0.61       | 2.438 | -2.819     | 1.89  | 0.157      | 2.25       | 0.6969   | 1.2    | 7.1010    |
| 2.43  | 2.67       | 2.625 | -3.625     | 2.15  | -0.1876    | 2.5        | 0        | 1.5    | 9.1792    |
| 2.71  | 5.04       | 2.813 | -3.941     | 2.41  | -0.542     | 2.75       | -1.792   | 1.8    | 11.421    |
| 3     | 8.90       | 3     | -4.367     | 2.95  | -0.1983    | 3          | -5.16    | 2.1    | 14.097    |
|       | 5.1.6      | 5     | .1.7       | 5     | 5.1.8      | 5.         | 1.9      | 5.     | 1.10      |
| 0     | -0.9       | -0.70 | -4.152     | 0     | 1.019      | 2.5        | 6.109    | -3.6   | -2.397    |
| 0.2   | -0.6482    | -0.41 | 1.244      | 0.3   | 1.4889     | 2.75       | 2.615    | -3.08  | -0.401    |
| 0.4   | -0.2436    | -0.12 | 3.182      | 0.6   | 2.2079     | 3          | -0.157   | -2.56  | -0.577    |
| 0.6   | -0.1       | 0.17  | 2.689      | 0.9   | 3.0548     | 3.25       | -2.010   | -2.04  | -1.268    |
| 0.8   | 0.0231     | 0.46  | 0.950      | 1.2   | 3.8648     | 3.5        | -2.697   | -1.52  | -0.933    |
| 1     | 0.0260     | 0.75  | -2.743     | 1.5   | 4.2161     | 3.75       | -3.615   | -1     | -0.359    |
| 1.2   | 0.0967     | 1.04  | -5.839     | 1.8   | 5.1180     | 4          | -3.478   | -0.48  | 1.107     |
| 1.4   | -0.2203    | 1.33  | -7.253     | 2.1   | 5.7661     | 4.25       | -2.250   | 0.04   | 1.300     |
| 1.6   | -0.3230    | 1.62  | -6.100     | 2.4   | 6.6720     | 4.5        | 0.193    | 0.56   | 1.703     |
| 1.8   | -0.6472    | 1.91  | -2.144     | 2.7   | 7.1960     | 4.75       | 2.086    | 1.08   | -0.299    |
| 2     | -0.7630    | 2.20  | 6.103      | 3     | 7.8551     | 5          | 5.882    | 1.6    | -1.417    |
| 5     | .1.11      | 5.    | .1.12      | 5     | .1.13      | 5.1        | .14      | 5.     | 1.15      |
| 0     | 2.25       | -1    | 0.192      | -0.7  | 1.04       | -3         | 0.262    | -0.7   | 3.822     |
| 0.17  | 1.106      | -0.75 | -0.054     | -0.5  | 1.08       | -2.55      | -1.032   | -0.375 | -1.498    |
| 0.33  | 0.3951     | -0.5  | -0.209     | -0.3  | 0.68       | -2.1       | -1.747   | -0.05  | -2.419    |
| 0.5   | -0.0334    | -0.25 | -0.429     | -0.1  | 0.38       | -1.65      | -1.981   | 0.275  | -1.292    |
| 0.67  | -0.20      | 0     | -0.413     | 0.1   | 0.07       | -1.2       | -0.564   | 0.6    | 0.828     |
| 0.83  | -0.1137    | 0.25  | -0.491     | 0.3   | -0.03      | -0.75      | 0.774    | 0.925  | 1.963     |
| 1     | 0.0294     | 0.5   | -0.357     | 0.5   | -0.38      | -0.3       | 2.400    | 1.25   | 2.401     |
| 1.17  | 0.1008     | 0.75  | -0.434     | 0.7   | -0.22      | 0.15       | 2.131    | 1.575  | 1.877     |
| 1.33  | 0.3        | 1     | -0.140     | 0.9   | -0.36      | 0.6        | 2.2      | 1.9    | 2.200     |
| 1.5   | -0.0021    | 1.25  | -0.130     | 1.1   | -0.33      | 1.05       | -0.393   | 2.25   | -1.378    |
| 1.67  | -0.3682    | 1.5   | 0.142      | 1.3   | -0.28      | 1.5        | -1.815   | 2.55   | -2.395    |
| 1.83  | -1.119     | 1.75  | 0.288      | 1.5   | -0.17      | 1.95       | -0.788   | 2.875  | -1.460    |
| 2     | -2.226     | 2     | 0.876      | 1.7   | 0.27       | 2.4        | 8.030    | 3.2    | 3.604     |

| 5.1.16 |        | 5.1.17 |        | 5.    | .1.18  | 5.    | 1.19    | 5.     | 1.20    |
|--------|--------|--------|--------|-------|--------|-------|---------|--------|---------|
| -3.2   | -0.173 | -0.7   | 4.166  | 2     | 1.108  | 6     | 7.079   | -0.7   | -12.917 |
| -2.66  | -0.574 | -0.31  | -2.278 | 2.4   | 1.832  | 6.4   | -1.509  | -0.41  | 3.619   |
| -2.12  | -1.811 | 0.08   | -3.172 | 2.8   | 2.413  | 6.8   | -7.654  | -0.2   | 9.586   |
| -1.58  | -1.849 | 0.47   | -0.506 | 3.2   | 3.656  | 7.2   | -12.211 | 0.17   | 7.949   |
| -1.04  | 0.123  | 0.86   | 2.748  | 3.6   | 5.126  | 7.6   | -13.941 | 0.46   | 1.543   |
| -0.5   | 1.462  | 1.25   | 2.665  | 4     | 5.552  | 8     | -15.117 | 0.75   | -8.057  |
| 0.04   | 2.399  | 1.64   | 1.353  | 4.4   | 6.024  | 8.4   | -13.720 | 1.04   | -16.150 |
| 0.58   | 1.300  | 2.03   | -0.294 | 4.8   | 7.202  | 8.8   | -10.702 | 1.33   | -20.562 |
| 1.12   | 1.703  | 2.42   | -1.613 | 5.2   | 8.590  | 9.2   | -4.696  | 1.62   | -17.720 |
| 1.66   | -2.045 | 2.81   | -2.223 | 5.6   | 8.953  | 9.6   | 3.501   | 1.91   | -6.200  |
| 2.2    | 2.817  | 3.2    | 4.04   | 6     | 10.046 | 10    | 10.572  | 2.2    | 18.115  |
| 5.     | 1.21   |        | 1.22   | 5.    | .1.23  |       | 1.24    | 5.     | 1.25    |
| 0      | -2.815 | -2     | -4.596 | -0.5  | 0.061  | 5.5   | 1.542   | -1     | -5.265  |
| 0.25   | -2.18  | -1.67  | -4.216 | -0.42 | 4.185  | 5.75  | 0.652   | -0.708 | -1.994  |
| 0.5    | -0.225 | -1.33  | -3.162 | -0.33 | 7.271  | 6     | -0.008  | -0.417 | 0.224   |
| 0.75   | 1.722  | -1     | -2.459 | -0.25 | 9.683  | 6.25  | -0.620  | -0.125 | 1.146   |
| 1      | 3.492  | -0.67  | -1.558 | -0.17 | 11.319 | 6.5   | -0.751  | 0.167  | 1.552   |
| 1.25   | 3.31   | -0.33  | -0.876 | -0.08 | 11.469 | 6.75  | -1.183  | 0.458  | -0.148  |
| 1.5    | 2.945  | 0      | -0.168 | 0     | 11.324 | 7     | -1.229  | 0.75   | -1.233  |
| 1.75   | 1.449  | 0.33   | 0.44   | 0.08  | 10.495 | 7.25  | -1.139  | 1.042  | -2.297  |
| 2      | 0.334  | 0.67   | 1.715  | 0.17  | 9.659  | 7.5   | -0.770  | 1.333  | -2.4    |
| 2.25   | -1.906 | 1      | 2.106  | 0.25  | 7.345  | 7.75  | -0.586  | 1.625  | -2.317  |
| 2.5    | -3.430 | 1.33   | 2.845  | 0.33  | 5.132  | 8     | -0.066  | 2.917  | -1.223  |
| 2.75   | -2.983 | 1.67   | 3.83   | 0.42  | 2.619  | 8.25  | 0.633   | 2.208  | 2.257   |
| 3      | 0.087  | 2      | 4.634  | 0.5   | 0.069  | 8.5   | 1.542   | 2.5    | 7.806   |
| 5.     | 1.26   | 5.     | 1.27   |       | .1.28  | 5.    | 1.29    |        | 1.30    |
| -1     | -5.317 | -0.4   | 0.918  | -1.3  | -1.762 | 0     | 5.241   | -0.8   | 3.503   |
| -0.56  | -0.581 | -0.05  | 1.258  | -0.85 | 0.955  | 0.288 | 4.892   | -0.475 | -0.55   |
| -0.13  | 1.137  | 0.3    | 0.685  | -0.4  | 3.614  | 0.575 | 3.521   | -0.15  | -1.681  |
| 0.313  | 0.478  | 0.65   | -1.314 | 0.05  | 4.707  | 0.863 | 1.121   | 0.175  | -1.263  |
| 0.75   | -0.790 | 1      | -1.709 | 0.5   | 3.721  | 1.15  | -1.357  | 0.5    | 0.421   |
| 1.188  | -2.502 | 1.35   | -3.446 | 0.95  | 0.402  | 1.438 | -3.5    | 0.825  | 1.301   |
| 1.625  | -2.482 | 1.7    | -2.473 | 1.4   | -3.101 | 1.725 | -3.528  | 1.15   | 2.551   |
| 2.063  | 0.554  | 2.05   | 0.084  | 1.85  | -2.489 | 2.013 | 0.257   | 1.475  | 2.937   |
| 2.5    | 7.904  | 2.4    | 6.031  | 2.3   | 9.868  | 2.3   | 10.515  | 1.8    | 2.097   |

|       |   |       |       |       |      |       | инде и ос | , ,   |       |        |      |
|-------|---|-------|-------|-------|------|-------|-----------|-------|-------|--------|------|
| 5.2.1 | t | 1     | 1.4   | 1.8   | 2.6  | 3     | 3.4       | 3.8   | 4.2   | 4.6    | 5    |
|       | х | 10.60 | 18.01 | 25.85 | 44   | 50.64 | 60.2      | 68.27 | 77.77 | 84.50  | 93.4 |
| 5.2.2 | t | 1     | 1.625 | 2.25  | 2.88 | 3.5   | 4.13      | 4.75  | 5.375 | 6      |      |
|       |   |       |       |       |      |       |           |       |       |        |      |
|       | x | 14.86 | 27.15 | 41.19 | 54   | 69.03 | 81.6      | 96.11 | 109.4 | 124.03 |      |
| 5.2.3 | t | 0     | 0.5   | 1     | 1.5  | 2     | 2.5       | 3     | 3.5   | 4      |      |
|       | x | 3.732 | 9.378 | 15.53 | 22   | 29.52 | 35.2      | 42.35 | 48.61 | 55.51  |      |
| 5.2.4 | t | 0     | 0.6   | 1.2   | 1.8  | 2.4   | 3         | 4.2   | 4.8   | 5.4    | 6    |
|       | x | 6.449 | 19.97 | 33.91 | 48.2 | 64.15 | 76.9      | 106.2 | 122.2 | 135.6  | 149  |
| 5.2.5 | t | 2     | 3.2   | 4.4   | 5    | 5.6   | 6.8       | 7.4   | 8     |        |      |
|       | x | 18.50 | 35.73 | 54.65 | 62.4 | 71.74 | 90.5      | 98.10 | 107.6 |        |      |
| 5.2.6 | t | 5     | 5.5   | 6     | 6.5  | 7     | 7.5       | 8     | 8.5   | 9      |      |
|       | x | 13.85 | 14.30 | 15.84 | 16.9 | 18.89 | 19.7      | 21.03 | 22.08 | 23.95  |      |

Таблица к задаче 5.3

|          |   | -             |   |          |   |     |        |               |      |
|----------|---|---------------|---|----------|---|-----|--------|---------------|------|
| N        |   |               | N | 1        | 1 |     | N      | N             |      |
| f(x,a,b) |   | f(x,a,b)      |   | f(x,a,b) |   | f(x | c,a,b) | f(x, a)       | a,b) |
| x        | y | $\parallel x$ | y | X        | y | x   | y      | $\parallel x$ | y    |

|       | 5.3.1      | :            | 5.3.2          | 5               | .3.3       |                | 5.3.4             |             | 5.3.5      |
|-------|------------|--------------|----------------|-----------------|------------|----------------|-------------------|-------------|------------|
| ae    | $e^{bx^2}$ | <i>a</i> +   | $-\frac{b}{x}$ | a+blı           | 1 <i>x</i> | $\sqrt{a+b}$   | $\overline{bx^2}$ | $ae^{b x }$ |            |
| -2.5  | 0.876      | 0.1          | 5.53           | 0.1             | 0.479      | -2.0           | 1.649             | -1.5        | 0.0829     |
| -2    | 0.29523    | 0.3          | 2.7967         | 0.2             | 0.7562     | -1.6           | 1.942             | -1.2        | 0.2192     |
| -1.5  | 0.75958    | 0.5          | 2.25           | 0.3             | 0.9184     | -1.2           | 2.142             | -0.9        | 0.5794     |
| -1    | 1.49184    | 0.7          | 2.0157         | 0.4             | 1.0335     | -0.8           | 2.274             | -0.6        | 1.5315     |
| -0.5  | 2.23671    | 0.9          | 1.8856         | 0.5             | 1.1227     | -0.4           | 2.35              | -0.3        | 4.0481     |
| 0     | 2.56000    | 1.1          | 1.8027         | 0.6             | 1.1957     | 0              | 2.375             | 0           | 10.7       |
| 0.5   | 2.23671    | 1.3          | 1.7454         | 0.7             | 1.2573     | 0.4            | 2.35              | 0.3         | 4.0481     |
| 1     | 1.49184    | 1.5          | 1.7033         | 0.8             | 1.3107     | 0.8            | 2.274             | 0.6         | 1.5315     |
| 1.5   | 0.75958    | 1.7          | 1.6712         | 0.9             | 1.3579     | 1.2            | 2.142             | 0.9         | 0.5794     |
| 2     | 0.29523    | 1.9          | 1.6458         | 1.0             | 1.4        | 1.6            | 1.942             | 1.2         | 0.2192     |
| 2.5   | 0.0876     | 2.1          | 1.6252         | 1.1             | 1.4381     | 2.0            | 1.649             | 1.5         | 0.0829     |
|       | 5.3.6      | 5.3.7        |                | 5.3.8           |            |                | 5.3.9             |             | 5.3.10     |
| $e^a$ | +b x       | $a+b(x+2)^3$ |                | $\sqrt{a+bx}+2$ |            | $(ax+b)\sin x$ |                   | (ax +       | $b)\cos x$ |
| -2    | 8.16617    | -4           | -6.47          | 1               | 4.0199     | 0.5            | 1.7499            | -1.0        | 0.756      |
| -1.6  | 5.92986    | -3.2         | -3.2086        | 1.7             | 3.9404     | 0.75           | 2.5732            | -0.8        | 1.0033     |
| -1.2  | 4.30596    | -2.4         | -2.3433        | 2.4             | 3.8574     | 1              | 3.2817            | -0.6        | 1.2215     |
| -0.8  | 3.12677    | -1.6         | -2.2767        | 3.1             | 3.7706     | 1.25           | 3.8197            | -0.4        | 1.4        |
| -0.4  | 2.27050    | -0.8         | -1.4114        | 3.8             | 3.6793     | 1.5            | 4.1396            | -0.2        | 1.5289     |
| 0     | 1.64872    | 0            | 1.85           | 4.5             | 3.5827     | 1.75           | 4.2065            | 0           | 1.6        |
| 0.4   | 2.27050    | 0.8          | 9.105          | 5.2             | 3.4799     | 2.0            | 3.5208            | 0.2         | 1.6073     |
| 0.8   | 3.12677    | 1.6          | 21.951         | 5.9             | 3.3693     | 2.25           | 2.7829            | 0.4         | 1.5474     |
| 1.2   | 4.30596    | 2.4          | 41.986         | 6.6             | 3.249      | 2.5            | 1.8224            | 0.6         | 1.4196     |
| 1.6   | 5.92986    | 3.2          | 70.806         | 7.3             | 3.1158     | 2.75           | 0.6915            | 0.8         | 1.2262     |
| 2     | 8.16617    | 4            | 110.01         | 8               | 2.9644     | 3              | 0.6915            | 1.0         | 0.9725     |

| 5.4.1 | m=2                | Х | 2.3  | 2.6  | 2.8  | 3    | 3.3  | 3.6  | 3.8  |       |       |      |
|-------|--------------------|---|------|------|------|------|------|------|------|-------|-------|------|
|       | $\overline{y} = 7$ | у | 16   | 19   | 22   | 26   | 28   | 33   | 37   |       |       |      |
| 5.4.2 | m=2                | X | 1.5  | 2.1  | 2.7  | 3.3  | 3.9  | 4.5  | 5.1  |       |       |      |
|       | $\overline{y} = 8$ | у | 11.1 | 10.3 | 9.08 | 7.64 | 5.92 | 3.90 | 1.60 |       |       |      |
| 5.4.3 | m=2                | X | 2.5  | 2.8  | 3.1  | 3.4  | 3.7  | 4    | 4.3  | 4.6   |       |      |
|       | $\overline{y} = 6$ | у | 21   | 18.5 | 15.6 | 12.5 | 9.10 | 5.40 | 1.42 | 2.14  |       |      |
| 5.4.4 | m=3                | Х | 0.5  | 0.75 | 1    | 1.25 | 1.5  | 1.75 | 2    | 2.25  | 2.5   |      |
|       | $\overline{y} = 5$ | у | 3.69 | 3.90 | 4.3  | 4.97 | 5.96 | 7.35 | 9.2  | 11.57 | 14.54 |      |
| 5.4.5 | m=3                | Х | 1    | 1.4  | 1.8  | 2.2  | 2.6  | 3    | 3.4  | 3.8   | 4.2   | 4.6  |
|       | $\overline{y} = 8$ | у | 2.1  | 2.45 | 3.07 | 4.03 | 5.42 | 7.3  | 9.76 | 12.87 | 16.72 | 21.4 |
| 5.4.6 | m=3                | Х | 1.7  | 1.9  | 2.1  | 2.3  | 2.5  | 2.7  | 2.9  | 3.1   |       |      |
|       | $\overline{y} = 7$ | у | 50.6 | 48.1 | 45.0 | 41.2 | 36.7 | 31.4 | 25.3 | 18.3  |       |      |

Таблица к задаче 5.5

Значения  $x_k = -1 + 0.1k$ , k = 0,1,...,20

| 5.5.1 | 5.5.2 | 5.5.3 | 5.5.4 | 5.5.5 | 5.5.6 | 5.5.7 | 5.5.8 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| a=4   | a=3   | a=3   | a=3   | a=4   | a=2   | a=1   | a=2   |

| b=2     | <i>b</i> =1 | b=2     | b=4     | b=0    | b=3     | b=4     | <i>b</i> =1 |
|---------|-------------|---------|---------|--------|---------|---------|-------------|
| $y_k$   | $y_k$       | $y_k$   | $y_k$   | $y_k$  | $y_k$   | $y_k$   | $y_k$       |
| -0.3156 | -1.0044     | -1.3111 | 0.1931  | 0.8984 | 2.002   | 3.053   | -2.32       |
| -1.193  | -0.4724     | -2.8426 | 1.242   | 1.0916 | 1.7937  | 0.945   | -0.9861     |
| -0.6763 | -0.2432     | -2.4981 | 1.7388  | 1.0262 | 0.39    | -2.45   | 0.0841      |
| 0.6968  | -0.4119     | -0.2912 | 1.7317  | 0.802  | -0.9052 | -2.4651 | 0.583       |
| 1.2     | -0.6785     | 2.3164  | 1.2585  | 0.7105 | -1.0023 | 0.4665  | 0.4912      |
| 0.2828  | -0.5996     | 3.5128  | 0.1876  | 0.9056 | 0.0001  | 3.052   | 0.002       |
| -0.7221 | -0.0449     | 2.3528  | -1.1307 | 1.0958 | 1.0025  | 0.9463  | -0.4925     |
| -0.4711 | 0.7788      | -0.2767 | -2.0600 | 1.0365 | 0.9054  | -2.4652 | -0.593      |
| 0.5024  | 1.4016      | -2.5041 | -2.0782 | 0.7972 | -0.37   | -2.467  | -0.0841     |
| 0.7083  | 1.4446      | -2.8408 | -1.1179 | 0.6868 | -1.7940 | 0.940   | 0.9852      |
| -0.3085 | 1.0099      | -1.3088 | 0.2087  | 0.9066 | -2.003  | 3.053   | 2.315       |
| -1.204  | 0.4743      | 0.7309  | 1.2317  | 1.0858 | -0.5597 | 0.9417  | 3.3891      |
| -0.6968 | 0.2475      | 1.6866  | 1.7312  | 1.0128 | 1.6174  | -2.4703 | 3.8051      |
| 0.67    | 0.4091      | 1.0946  | 1.7316  | 0.7833 | 2.9025  | -2.4712 | 3.2961      |
| 1.2049  | 0.6512      | -0.2552 | 1.2483  | 0.7028 | 2.2468  | 0.938   | 1.9129      |
| 0.3095  | 0.6007      | -0.8962 | 0.1898  | 0.9035 | 0.001   | 3.042   | -0.003      |
| -0.7008 | 0.0361      | -0.2370 | -1.1263 | 1.0815 | -2.2365 | 0.933   | -1.913      |
| -0.5057 | -0.7662     | 1.0992  | -2.0577 | 1.0366 | -2.902  | -2.472  | -3.2963     |
| 0.491   | -1.3814     | 1.6841  | -2.0713 | 0.7552 | 1.6172  | -2.471  | -3.8051     |
| 0.7244  | -1.4429     | 0.7336  | -1.1084 | 0.7185 | 0.5593  | 0.942   | -3.3892     |
| -0.3    | -1.0072     | -1.2845 | 0.2066  | 0.9218 | 2.0004  | 3.052   | -2.285      |

| N                     |           | N                                 |                                  | N                  |                                |  |
|-----------------------|-----------|-----------------------------------|----------------------------------|--------------------|--------------------------------|--|
| f(x)                  | [a,b]     | f(x)                              | [a,b]                            | f(x)               | [a,b]                          |  |
| 5.6.1                 |           | 5.6.                              | 2                                | 5.6                | .3                             |  |
| sh(x)                 | [-3,3]    | $tg(x+\sqrt{x})$                  | [-0,0.4]                         | arccos(x)          | [-1,1]                         |  |
| 5.6.4                 |           | 5.6.                              | 5                                | 5.6                | .6                             |  |
| $\ln(\sin(\sqrt{x}))$ | [2.5,3.5] | $4^{\cos(x)}$                     | [0.5,1.5]                        | $x^3\cos(x^2)$     | [0,3]                          |  |
| 5.6.7                 | 1         | 5.6.                              | 8                                | 5.6                | .9                             |  |
| $x + e^{-x^2}$        | [0,2]     | th(x)                             | [-2,2]                           | $x \ln \sqrt{x-2}$ | [3,5]                          |  |
| 5.6.1                 | 0         | 5.6.1                             | 1                                | 5.6.12             |                                |  |
| arcsin(x)             | [-1,1]    | $\int_{0}^{\infty} x^{2} \cos(x)$ | $\left[\frac{\pi}{2},\pi\right]$ | $x\sin(x^2)$       | $\left[0,\frac{\pi}{2}\right]$ |  |
| 5.6.1                 | 3         | 5.6.1                             | 4                                | 5.6.               | 15                             |  |
| $(x-0.5)^3 \ln(x)$    | [0.3,0.8] | $0.4^{x\sin(x)}$                  | [1,1.4]                          | $x^{-3}e^x$        | [0.5,1.5]                      |  |

Таблица к задаче 5.7

| N     |                         | N     |                         | N     |                         |
|-------|-------------------------|-------|-------------------------|-------|-------------------------|
| f(x)  | [ <i>a</i> , <i>b</i> ] | f(x)  | [ <i>a</i> , <i>b</i> ] | f(x)  | [ <i>a</i> , <i>b</i> ] |
| 5.7.1 |                         | 5.7.2 |                         | 5.7.3 |                         |

| $ \sin x $          | $[-\pi,\pi]$ | $\left x^2+x\right $                                | [-2,2] | $\frac{1}{1+2\cdot x }$     | [-2,2]    |
|---------------------|--------------|-----------------------------------------------------|--------|-----------------------------|-----------|
| 5.7.4               |              | 5.7.5                                               |        | 5.7.6                       |           |
| $ x-3 \cdot(x^2+1)$ | [0,4]        | $ x-1 e^x$                                          | [0,2]  | $ \cos x $                  | $[0,\pi]$ |
| 5.7.7               |              | 5.7.8                                               |        | 5.7.9                       |           |
| x( x -4)            | [-5,5]       | $\left  (x+1) \cdot \left  x^2 - 2 \right  \right $ | [0,2]  | $e^{\left \sin(2x)\right }$ | [0.8,2.3] |

|                | тиолици к эиди ю э.о |                |           |                |              |  |
|----------------|----------------------|----------------|-----------|----------------|--------------|--|
| N              |                      | N              |           | N              |              |  |
| f(x)           | [a,b]                | f(x)           | [a,b]     | f(x)           | [a,b]        |  |
| 5.8.1          |                      | 5.8.2          |           | 5.8.3          |              |  |
| $\cos x^2$     | $[-\pi,\pi]$         | $e^x \sin(5x)$ | [1.5,3.5] | $\sin x^2$     | $[-\pi,\pi]$ |  |
| 5.8.4          |                      | 5.8.5          |           | 5.8.6          |              |  |
| $e^{\cos(3x)}$ | $[0,\pi]$            | $\cos(e^x)$    | [1.4,2.4] | $e^{-x^2}$     | [-1,1]       |  |
| 5.8.7          |                      | 5.8.8          |           | 5.8.9          |              |  |
| $\sin(e^x)$    | [0.4, 2.4]           | 1              | [-1,1]    | $e^{\sin(2x)}$ | $[-\pi,\pi]$ |  |
|                |                      | $1 + 25x^2$    |           |                |              |  |
| T. C. C.O.     |                      |                |           |                |              |  |

Таблица к задаче 5.9

| N                               |          | N                       |          | N                              |          |
|---------------------------------|----------|-------------------------|----------|--------------------------------|----------|
| f(x)                            | [a,b]    | f(x)                    | [a,b]    | f(x)                           | [a,b]    |
| 5.9.1                           |          | 5.9.2                   |          | 5.9.3                          |          |
| $5 \cdot \sin(x^2)$             | [0,4]    | $3 \cdot \sin(x^3)$     | [1,2.5]  | $7 \cdot e^x \cdot \sin(x^2)$  | [0,4]    |
| фундаментальный                 |          | с отсутствием узла      |          | естественный                   |          |
| 5.9.4                           |          | 5.9.5                   |          | 5.9.6                          |          |
| $6\frac{\sin(x)}{x}$            | [5,15]   | $10\frac{\cos(x^3)}{x}$ | [1,2.75] | $11 \cdot \frac{\sin(x^3)}{x}$ | [1,2.75] |
| локальный                       |          | кубический дефекта 1    |          | кубический дефекта2            |          |
| 5.9.7                           |          | 5.9.8                   |          | 5.9.9                          |          |
| $8 \cdot e^x \cdot \cos(x^2)$   | [1,3.75] | $12 \cdot \sin(e^x)$    | [1,1.28] | $40 \cdot \cos(x^3)$           | [3,3.5]  |
| с отсутствием узла              |          | квадратичный            |          | локальный                      |          |
| 5.9.10                          |          | 5.9.11                  |          | 5.9.12                         |          |
| $110 \cdot \frac{\sin(x^3)}{x}$ | [3,3.5]  | $x^2 \cos(x)$           | [0,5]    | $10 \cdot \frac{\cos(x)}{x}$   | [3,5]    |
| фундаментальный                 |          | естественный            |          | кубический дефекта 1           |          |
| 5.9.13                          |          | 5.9.14                  |          | 5.9.15                         |          |
| $9 \cdot \cos(e^x)$             | [1,1.28] | $e^{\cos(3x)}$          | [0,4]    | $x\sin(x^2)$                   | [0,5]    |
| с отсутствием узла              |          | квадратичный            |          | локальный                      |          |

#### ПРИЛОЖЕНИЕ 5.В.

# Фрагмент решения задач 5.1.0 и 5.7.0

Векторы исходных данных:

$$\mathbf{x} := \begin{bmatrix} -2.75 \\ -2 \\ -1 \\ 0.5 \\ 1 \end{bmatrix} \qquad \mathbf{y} := \begin{bmatrix} -0.2 \\ -1.1 \\ -2.3 \\ 0.1 \\ 1.1 \end{bmatrix}$$

Функция **mnk**, строящая многочлен степени m по методу наименьших квадратов, возвращает вектор а коэффициентов многочлена:



#### Входные параметры:

х, у - векторы исходных данных; n+1 - размерность х,у. Вычисление коэффициентов многочленов степени 0,1,2,3 по методу наименьших квадратов:

a0 := mnk(x y n 0) a0 =0.48 a1 
$$\begin{bmatrix} -0.133 \\ 0.408 \end{bmatrix}$$
  
a1 := mnk(x y n 1) a2 := mnk(x y n 2) a3 = mnk(x y n 3) a3  $\begin{bmatrix} -1.102 \\ 1.598 \\ 0.717 \end{bmatrix}$  a3  $\begin{bmatrix} -1.164 \\ 1.591 \\ 0.792 \\ 0.026 \end{bmatrix}$ 

Функция Р возвращает значение многочлена степени m в точке t;многочлен задается с помощью вектора коэффициентов а:

$$P(a m t) = \sum_{j=0}^{m} a_j t^{j}$$

Функция в 0 возвращает значение среднеквадратичного уклонения многочлена P(a,m,t):

$$0(a m) = 
\begin{bmatrix}
1 & \sum_{k=0}^{n} \frac{(P(a-m x_k) y_k)^2}{y_k}
\end{bmatrix}$$

Вычисление значений  $^{\mathfrak{g}}$  m, m=0,1,2,3:

$$_{0} := 0(a0 \ 0)$$
  $_{1} := 0(a1 \ 1) - _{2} := 0(a2 \ 2) = _{3} := 0(a3 \ 3)$ 

# Гистограмма



<u>Вывод</u>: оптимальная степень  $m^*=2$ ; многочлен наилучшего среднеквадратичного приближения:  $P2(x)=-1.102+1.598x+0.717\chi^2$ 

Графики многочленов степени 0,1,2 и точечный график исходной функции:

$$t \coloneqq \mathbf{x}_0 \ \mathbf{x}_0 + 0.05 \ \mathbf{x}_n = \mathbf{i} \coloneqq \mathbf{0} \ \mathbf{n}$$



Функция inter возвращает значение <u>интерполяционного многочлена в форме Ньютона</u> (с разделенными разностями) в точке t:



Вычисление значений интерполяционного многочлена в точках  $\mathbf{t}_{k}$ :

$$\mathbf{k} \coloneqq 0 \quad 40$$

$$\mathbf{t_k} \coloneqq \mathbf{x_0} + \frac{\left(\mathbf{x_n} - \mathbf{x_0}\right) \mathbf{k}}{40} \qquad \mathbf{q_k} \coloneqq \mathbf{inter}\left(\mathbf{x} \ \mathbf{y} \ \mathbf{n} \ \mathbf{t_k}\right)$$

Графики интерполяционного многочлена, многочлена наилучшего приближения P2 и точечный график исходной функции:



# ЛИТЕРАТУРА

**1.** Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.