Teist ja kolmandat järku determinandi geomeetriline tõlgendus

Teist järku determinandi geomeetriline tõlgendus

Teoreem

Teist järku determinandi absoluutväärtus on võrdne tema reavektoritele ehitatud rööpküliku pindalaga.

Kolmandat järku determinandi geomeetriline tõlgendus

Teoreem

Kolmandat järku determinandi absoluutväärtus on võrdne tema reavektoritele ehitatud rööptahuka ruumalaga.

Näide

Uurime, kas neli punkti koordinaatidega P(0; 0; 1), Q(1; 1; 0), R(1; 0; 0) ja S(1; 1; 1) asetsevad ühel tasandil.

Lahendus

Punktid asetsevad ühel tasandil parajasti siis, kui nende punktide abil moodustatud vektoritele ehitatud rööptahuka ruumala on null.

Moodustame vektorid

$$PQ = (1-0;1-0;0-1) = (1;1;-1);$$

 $\overrightarrow{PR} = (1-0;0-0;0-1) = (1;0;-1);$
 $\overrightarrow{PS} = (1-0;1-0;1-1) = (1;1;0)$

Leiame determinandi:
$$D = \begin{vmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{vmatrix} = -1 \neq 0.$$

Seega ei asetse need punktid ühel tasandil.

Vektorkorrutis

Definitsioon

Kahe vektori $\alpha = (a_1; a_2; a_3)$ ja $\beta = (b_1; b_2; b_3)$ vektorkorrutiseks nimetatakse vektorit

$$\alpha \times \beta = \begin{pmatrix} |a_2 & a_3| \\ |b_3 & b_3| \end{pmatrix}; - \begin{vmatrix} |a_1 & a_3| \\ |b_1 & b_3| \end{pmatrix}; \begin{vmatrix} |a_1 & a_2| \\ |b_1 & b_2| \end{pmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ |a_1 & a_2 & a_3| \\ |b_1 & b_2 & b_3| \end{vmatrix}.$$

Vektorkorrutis on risti mõlema teguriga ning tema pikkus on võrdne nendele vektoritele ehitatud rööpküliku pindalaga.

Vektorkorrutise suund

Vektorkorrutise suund määratakse *parema käe kruvi reegli* abil: rakendades vektorkorrutise teguriteks olevad vektorid ühte punkti ja pöörates esimeseks teguriks oleva vektori vähima pöördenurga abil teise teguri suunale, näitab kujuteldava parema käe kruvi liikumissuund sealjuures korrutiseks oleva vektori suunda.

Sirge kahe tasandi lõikejoonena.

Kolmemõõtmelises ruumis võime sirge määrata ka kui kahe mitteparalleelse tasandi lõikejoone, st võrrandisüsteemiga kujul

$$\begin{cases}
 a_1 x + b_1 y + c_1 z + d_1 = 0, \\
 a_2 x + b_2 y + c_2 z + d_2 = 0
\end{cases}$$
(1)

Nii määratud sirge sihivektor on risti kummagi tasandi normaalvektoriga. Seetõttu kõlbab lõikesirge sihivektoriks tasandite normaalvektorite vektorkorrutis:

$$\vec{s} = \vec{m}_1 \times \vec{m}_2 = \begin{pmatrix} \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}, -\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}, \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \end{pmatrix}$$

Sirgele kuuluva punkti leidmiseks tuleb leida võrrandisüsteemi (1) mingi erilahend.

Kolme vektori segakorrutis

Kolmemõõtmelise eukleidilise ruumi vektorite α , β ja γ *segakorrutiseks* nimetatakse nimetatakse vektorite α ja β vektorkorrutise ($\alpha \times \beta$) skalaarkorrutist vektoriga γ , st arvu ($\alpha \times \beta$) · γ .

Kolme vektori α , β ja γ segakorrutise absoluutväärtus on võrdne neile vektoritele ehitatud rööptahuka ruumalaga.

Vektorite $\alpha = (a_1, a_2, a_3), \beta = (b_1, b_2, b_3)$ ja $\gamma = (g_1, g_2, g_3)$ segakorrutise võib leida kolmandat järku determinandi abil:

$$(\alpha \times \beta) \cdot \gamma = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ g_1 & g_2 & g_3 \end{vmatrix}.$$