

单片具有热调节功能的微型线性电池管理芯片

■ 产品概述

XT4051 是一个完善的单片锂离子电池恒流/恒压线形电 源管理芯片。它薄的尺寸和小的外包装使它便于便携应用。 更值得一提的是, XT4051 专门设计适用于 USB 的供电规格。 得益于内部的 MOSFET 结构, 在应用上不需要外部电阻和 阻塞二极管。

充电电压被限定在 4.2V, 充电电流通过外部电阻调节。 在达到目标充电电压后, 当充电电流降低到设定值的 3/10 时, XT4051 就会自动结束充电过程。当输入端(插头或 USB 提供电源)拔掉后,XT4051 自动进入低电流状态,电池漏 电流将降到 1µA 以下。XT4051 还可被设置于停止工作状态, 使电源供电电流降到 25µA。

XT4051 采用独特的内部专利结构确保了电池接反时芯 片自动进入保护状态,确保IC 不被击穿导致电池自放电引起 事故。同时确保 XT4051 的 ESD 能力达到 6KV(HBM)。

其余特性包括: 充电电流监测,输入低电压闭锁,自动 重新充电和充电已满及开始充电的标志。

■ 用途

可穿戴设备 蓝牙应用

■ 产品特点

可编程使充电电流为 100mA 不需要 MOSFET, 传感电阻和阻塞二极管 小的尺寸实现对锂离子电池的完全线形充电管理 恒电流/恒电压运行 从 USB 接口管理单片锂离子电池 预设充电电压为 4.2V ±1% 充电电流输出监控 充电状态指示标志 3/10 充电电流终止 停止工作时提供 25µA 电流 2.9V 涓流充电阈值电压

软启动限制浪涌电流电流

电池反接保护

ESD(HBM)>6KV

封装

订购信息

XT4051 123456

标号	描述	标记	描述	标号	描述	标记	描述
	类型	К	有涓流充电	(5)	封装类型	K	SOT-553
1						М	SOT-23-5
						Р	SOT-89-5
23	调整器输出电压	42	4.2	6	现件主点	R	正面
4	调整器输出电压精度	1	±1%		器件方向	L	反面

■ 引脚分配

	引脚名称		
SOT-553	SOT-23-5L	SOT-89-5L	加州石柳
1	3	3	BAT
2	2	2	GND
3	1	1	CHRG
4	5	5	PROG
5	4	4	VCC

■ 引脚功能

CHRG:漏极开路充电状态输出。当充电时,CHRG端口被一个内置的 N 沟道 MOSFET 置于低电位。当充电完成时,CHRG 呈现高阻态。当 XT4051 检测到低电锁定条件时,CHRG 呈现高阻态。当在 BAT 引脚和地之间接一 1μF 的电容,就可以完成电池是否接好的指示,当没有电池时,LED 灯会快速闪烁。

GND: 接地端

<u>BAT</u>: 充电电流输出端。给电池提供充电电流并控制浮动电压最终达到 4.2V。一个内部精密电阻把这个引脚同停工时自动断电的浮动电压分开。电池接反时,内部保护电路保护 VBAT 的 ESD 二极管不被烧坏,同时 GND 与 BAT 之间形成大约 0.7mA 电路。

<u>VCC</u>: 提供正电压输入。为充电器供电。VCC 可以为 4.25V 到 6.5V 并且必须有至少 1μF 的旁路电容。如果 VCC 引脚端电压低于 BAT 引脚电压 100 mV 时,XT4051 进入停工状态,并使 BAT 电流降到 2μA 以下。

PROG: 充电电流编程,充电电流监控和关闭端。充电电流由一个精度为 1%的接到地的电阻控制。在恒定充电电流状态时,此端口提供 1V 的电压。在所有状态下,此端口电压都可以用下面的公式测算充电电流: IBAT = (VPROG/RPROG)×200。

PROG 端口也可用来关闭充电器。把编程电阻同地端分离可以通过上拉的 3μA 电流源拉高 PROG 端口电压。当达到 1.21V 的极限停工电压值时,充当器进入停止工作状态,充电结束,输入电流降至 25μA。此端口夹断电压大约 2.4V。给此端口提供超过夹断电压的电压,将获得 1.5 mA 的高电流。再使 PROG 和地端结合将使充电器回到正常状态。

Rev.1.1 — Dec. 19, 2015 2 www.silinktek.com

■ 打印信息

SOT-553

SOT-23-5L/SOT-89-5L

① 表示产品系列

打印符号	产品描述	
1	XT4051◆◆◆◆◆	

② 表示连续充电电压类型

标号	产品名称
K	XT4051K ♦♦♦ ♦

③ 表示输出电压调整器

符号	VBAT 电压	VBAT 精度
Α	4.2	±1%

④这一位由公司生产部规定,与 6 个点一起形成可追溯性质量跟踪信息。

■ 绝对最大额定值

参数	标号	最大額	最大额定值		
输入电压	V _{cc}	V _{SS} -0.3∼V _{SS} +7			
PROG 端电压	Vprog	V _{SS} -0.3~	~V _{cc} +0.3	V	
BAT 端电压	Vbat	Vbat Vss-0		V	
CHAG 端电压	Vchrg	V _{SS} -0.3	~V _{SS} +10		
		SOT-553	350		
容许功耗	P_D	SOT-23-5L	250	mW	
		SOT-89-5L	500		
BAT 端电流	lbat	200		mA	
PROG 端电流	Iprog	800		uA	
人体模式 ESD 能力	V _{ESD}	7000		V	
工作外围温度	Тора	-40∼+85		°C	
存储温度	Tstr	- 65~	+125	C	

注意: 绝对最大额定值是指在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

■ 电学特性参数

参数	标号	条件	最低	典型	最高	UNIT
输入电压	Vcc		4.25		6.5	V
		Charge mode,Rprog=10K		300	2000	μΑ
输入电流	Icc	Standby mode		200	500	μΑ
110/\C-17/L	100	Shutdown mode(Rprog not connected,Vcc <vbat or="" td="" vcc<vuv)<=""><td></td><td>25</td><td>50</td><td>μA</td></vbat>		25	50	μA
输出控制电压	Vfloat	0℃ <ta<85℃, ibat="40mA</td"><td>4.158</td><td>4.2</td><td>4.342</td><td>V</td></ta<85℃,>	4.158	4.2	4.342	V
		Rprog=10k,Current mode	18	20	22	mA
		Rprog=2k,Current mode	93	100	107	mA
BAT端电流	lhot	Standby mode,Vbat=4.2V	0	-2.5	-6	μΑ
DAT响电流	lbat	Shutdown mode		1	2	μΑ
		Battery reverse mode, VBAT=-4V		0.7		mA
		Sleep mode,Vcc=0V		1	2	μΑ
涓流充电电流	Itrikl	Vbat <vtrikl,rprog=2k< td=""><td>18</td><td>20</td><td>22</td><td>mA</td></vtrikl,rprog=2k<>	18	20	22	mA
涓流充电极限电压	Vtrikl	Rprog=10K, Vbat Rising	2.8	2.9	3.0	V
涓流充电迟滞电压	Vtrhys	Rporg=10k	50	75	100	mV
电源低电闭锁阈值电压	Vuv	From Vcc low to high	3.7	3.8	3.93	V
电源低电阈值电压迟滞电压	Vuvhys		80	115	150	mV
手动关闭阈值电压	\/ma.a.d	PROG pin rising	1.15	1.21	1.30	V
十 列大	Vmsd	PROG pin falling	0.9	1.0	1.1	V
Va·Vb··································	\/l	Vcc from low to high	140	220	300	mV
Vcc-Vbat停止工作阈值电压	Vasd	Vcc from high to low	80	120	160	mV
C/40 纳沙国庆山济	lt a mas	Rprog=10k	0.255	0.30	0.345	mA/mA
C/10 终端阈值电流	Iterm	Rprog=2k	0.255	0.30	0.345	mA/mA
PROG端电压	Vprog	Rprog=10k, Current mode	0.93	1.0	1.07	V
CHRG端弱下拉电流	Ichrg	Vchrg=5V	8	20	35	μΑ
CHRG端最小输出电压	Vchrg	Ichrg=5mA		0.35	0.6	V
电池再充电迟滞电压	∆ Vrecg	VFLOAT - VRECHRG		140	200	mV

■ 功能框图

■ 典型应用电路

基本电路

Single Cell Li-Ion Charger

● 典型电路

USB/Wall Adapter Power Li-Ion Charger

Li-Ion Charger with External Power Dissipation

Full Featured Single Cell Li-Ion Charger

Basic Li-Ion Charger with Reverse Polarity Input Protection

■ 特性曲线

PROG Pin Voltage vs Temperature

Charge Current vs PROG Pin Voltage

PROG Pin Pull-Up Current vs Temperature and Supply Voltage

PROG Pin Current vs PROG Pin Voltage (Pull-Up Current)

PROG Pin Current vs PROG Pin Voltage (Clamp Current)

Regulated Output (Float) Voltage vs Charge Current

Regulated Output (Float) Voltage

Regulated Output (Float) Voltage vs Supply Voltage

■ 封装信息

SOT-553

Symbol	Dimensions	n Millimeters	Dimensions in inches	
Symbol	Min.	Max.	MIn.	Max.
A	0. 525	0.600	0.021	0. 024
A1	0.000	0.050	0.000	0.002
е	0. 450	0. 550	0.018	0. 022
С	0. 090	0. 160	0.004	0. 006
D	1. 500	1. 700	0.059	0.067
b	0. 170	0. 270	0.007	0.011
E1	1. 100	1. 300	0.043	0.051
Е	1. 500	1. 700	0.059	0. 067
L	0. 100	0.300	0.004	0. 012
θ	7 °REF.		7 ⁰ R	EF.

SOT-23-5L

Symbol	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-89-5L

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
Syllibol	Min.	Max.	Min.	Max.
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.360	0.560	0.014	0.022
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.400	1.800	0.055	0.071
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
e	1.500	TYP.	0.060	TYP.
e1	2.900	3.100	0.114	0.122
L	0.900	1.100	0.035	0.043