Основные уравнения, алгоритмы, зависимости и ф-и –

▶ Параметры расчета –

▼ Исходные дан

Коэф. запаса: safety = 1.3

Горючее: Fuel = "Керосин" turbine = "ТНД"

Высота движения (м): $H_{11} = 0$

Массовый расход перед Т (кг/с):

Массовый расход утечек Т (кг/с):

Массовый расход на охл Т (кг/с):

$$\begin{pmatrix}
G_{\Gamma} \\
G_{leak} \\
G_{cooling}
\end{pmatrix} = \begin{pmatrix}
32.30 \\
106.96 \cdot 10^{-3} \\
3240.8 \cdot 10^{-3}
\end{pmatrix} \text{ if turbine} = "ТВД" = \begin{vmatrix}
1 \\
1 \\
35.43 \\
2 \\
0.04 \\
3 \\
0.81
\end{pmatrix}$$

$$\begin{pmatrix}
35.43 \\
35.65 \cdot 10^{-3} \\
810.2 \cdot 10^{-3}
\end{pmatrix} \text{ if turbine} = "ТНД"$$

 $N_T = 10^6 \cdot 14.893$ if turbine = "TBД" = $15.181 \cdot 10^6$ Мощность Т (Вт): 15.181 if turbine = "ТНД"

Полное давление перед Т (Па):

$$P^*_{\Gamma} = 10^3 \cdot \begin{vmatrix} 2731.8 & \text{if turbine} = "ТВД" = 927.5 \cdot 10^3 \\ 927.5 & \text{if turbine} = "ТНД" \end{vmatrix}$$

Полная температура перед Т (К):

$$T^*_{\Gamma} = \begin{bmatrix} 1773 & \text{if turbine} = "ТВД" = 1368.9 \\ 1368.9 & \text{if turbine} = "ТНД" \end{bmatrix}$$

Коэф. избытка воздуха в Т:

$$\alpha_{\rm ox} = \begin{vmatrix} 2.267 & \text{if turbine} = \text{"ТВД"} \\ 2.493 & \text{if turbine} = \text{"ТНД"} \end{vmatrix} = 2.493$$

Полное давление отбора охлаждающего воздуха (К):

$$P^*_{\text{cooling}} = 10^3 \cdot \begin{vmatrix} 2845.6 & \text{if turbine} = "ТВД" = 319.4 \cdot 10^3 \\ 319.4 & \text{if turbine} = "ТНД" \end{vmatrix}$$

Полная температура отбора охлаждающего воздуха (К):

$$T^*_{cooling} = \begin{vmatrix} 806.9 & \text{if turbine} = "ТВД" = 418.2 \\ 418.2 & \text{if turbine} = "ТНД" \end{vmatrix}$$

Коэф. сохранения полного давления охлаждения:

$$\sigma_{\text{cooling}} = 0.97$$

Подогрев охл. от КС [К]:

$$\Delta T_{\text{охл.подогрев}} = 40$$

Газовая постоянная (Дж/кг/К): $R_{\Gamma a3}(\alpha_{ox}, Fuel) = 288.5$

$$R_{\Gamma a3}(\alpha_{OX}, Fuel) = 288.5$$

Допустимая температура Л (К):

$$T_{\text{Л.доп}} = 1373$$

Абс. скорость перед Т (м/с):

Абс. скорость после Т (м/с):

[1, c.15]

$$80 \le c_{\rm T} \le 400 = 1$$

Лопаточный КПДТ: $\eta_{\Pi} = 88\%$

$$\eta_{\rm JI} = 88\%$$

$88\% \le \eta_{\rm JI} \le 95\% = 1$

Угол входа в Т: $\alpha_{\Gamma} = 90$. $^{\circ}$

$$\alpha_{\Gamma} = 90.^{\circ}$$

Окр. скорость Л последней ступени на ср. диаметре Т (м/с):

$$\begin{pmatrix} c_{\Gamma} \\ c_{T} \end{pmatrix} = \begin{pmatrix} 100 \\ 180 \end{pmatrix}$$
 if turbine = "ТВД" = $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 260 \end{pmatrix}$ $\begin{pmatrix} 180 \\ 260 \end{pmatrix}$ if turbine = "ТНД"

$$u_{\rm T} = \begin{vmatrix} 520 & \text{if turbine} = "ТВД" = 260.0 \\ 260 & \text{if turbine} = "ТНД" \end{vmatrix}$$

▲ Исходные данные

 $z = ORIGIN...N_r$

 $P^*_{\text{cooling}} = P^*_{\text{cooling}} \cdot \sigma_{\text{cooling}} = 309.8 \cdot 10^3$ Полное давление отбора охлаждающего воздуха (К):

 $T^*_{\text{cooling}} = T^*_{\text{cooling}} + \Delta T_{\text{охл.подогрев}} = 458.2$ Полная температура отбора охлаждающего воздуха (К):

 $G_{\Gamma} = G_{\Gamma} - G_{leak} = 35.4$ Массовый расход перед Т (кг/с):

 $G_{T} = G_{\Gamma} + G_{cooling} = 36.2$ Массовый расход после Т (кг/с):

Удельная работа Т (Дж/кг): $L^*_T = \frac{N_T}{\text{mean} \left(G_\Gamma, G_T\right)} = 424.1 \cdot 10^3$ Располагаемый теплоперепад в Т (Дж/кг): $H_T = \frac{L^*_T + 0.5c_T^{-2}}{\eta_{_{J\!\!\!\! I}}} = 520.3 \cdot 10^3$

$$\begin{pmatrix} \text{iteration} \\ k_{\Gamma} \\ P_{\Gamma} \\ T_{\Gamma} \end{pmatrix} = \begin{vmatrix} \text{iteration} = 0 \\ k_{\Gamma} = k_{a,\Pi} \Big(\text{Cp}_{\text{ra3}} \Big(\text{P*}_{\Gamma}, \text{T*}_{\Gamma}, \alpha_{\text{ox}}, \text{Fuel} \Big), R_{\text{ra3}} \Big(\alpha_{\text{ox}}, \text{Fuel} \Big) \Big) \\ = \begin{vmatrix} \frac{1}{1} & 1.0 \\ 2 & 1.3 \\ 3 & 890047.3 \\ 4 & 1356.0 \end{vmatrix}$$
 while $1 > 0$
$$\begin{vmatrix} \text{iteration} = \text{iteration} + 1 \\ \text{Cp}_{\Gamma} = \frac{k_{\Gamma}}{k_{\Gamma} - 1} \cdot R_{\text{ra3}} \Big(\alpha_{\text{ox}}, \text{Fuel} \Big) \\ T_{\Gamma} = T^*_{\Gamma} - \frac{c_{\Gamma}^2}{2 \cdot \text{Cp}_{\Gamma}} \\ k'_{\Gamma} = k_{a,\Pi} \Big(\text{Cp}_{\text{ra3}} \Big(P_{\Gamma}, T_{\Gamma}, \alpha_{\text{ox}}, \text{Fuel} \Big), R_{\text{ra3}} \Big(\alpha_{\text{ox}}, \text{Fuel} \Big) \\ k'_{\Gamma} = k_{a,\Pi} \Big(\text{Cp}_{\text{ra3}} \Big(P_{\Gamma}, T_{\Gamma}, \alpha_{\text{ox}}, \text{Fuel} \Big), R_{\text{ra3}} \Big(\alpha_{\text{ox}}, \text{Fuel} \Big) \Big) \\ \text{if } | \text{cps} \Big(\text{"rel"}, k_{\Gamma}, k'_{\Gamma} \Big) | \leq \text{cpsilon} \\ k_{\Gamma} = k'_{\Gamma} \\ \text{break} \\ k_{\Gamma} = k'_{\Gamma} \\ \text{(iteration } k_{\Gamma}, P_{\Gamma}, T_{\Gamma} \Big)^{T} \\ \end{vmatrix}$$

Количество итераций: iteration = 1

Показатель адиабаты перед Т: ${\bf k}_{\Gamma} = 1.298$

Статическое давление перед Т (Па): $P_{\Gamma} = 890 \cdot 10^{3}$

Статическая температура перед Т (K): $T_{\Gamma} = 1356$

Теплоем кость перед Т (Дж/кг/К): $Cp_{\Gamma} = Cp_{\Gamma a3}(P_{\Gamma}, T_{\Gamma}, \alpha_{oX}, Fuel) = 1256$

$$\begin{vmatrix} \text{iteration} \\ k_{\text{T}} \\ P_{\text{T}} \\ T_{\text{T}} \end{vmatrix} = \begin{vmatrix} \text{iteration} = 0 \\ k_{\text{T}} = k_{\text{T}} \\ \text{while } 1 > 0 \\ \\ \text{iteration} = \text{iteration} + 1 \\ k_{\text{Cp}} = \text{mean}(k_{\text{T}}, k_{\text{T}}) \\ \\ Cp = \frac{k_{\text{Cp}}}{k_{\text{Cp}} - 1} \cdot R_{\text{ra3}}(\alpha_{\text{OX}}, \text{Fuel}) \\ \\ P_{\text{T}} = P^*_{\Gamma} \cdot \left(1 - \frac{H_{\text{T}}}{C_{\text{p}} \cdot T^*_{\Gamma}}\right)^{\frac{k_{\text{Cp}}}{k_{\text{cp}} - 1}} \\ \\ T_{\text{T}} = T^*_{\Gamma} - \frac{H_{\text{T}} \cdot \eta_{\text{II}}}{C_{\text{p}}} \\ k'_{\text{T}} = k_{\text{a,I}} \left(C_{\text{Pra3}}(P_{\text{T}}, T_{\text{T}}, \alpha_{\text{OX}}, \text{Fuel}), R_{\text{Fa3}}(\alpha_{\text{OX}}, \text{Fuel})\right) \\ \text{if } \left| \text{eps} \left(\text{"rel"}, k_{\text{T}}, k'_{\text{T}}\right) \right| \leq \text{epsilon} \\ k_{\text{T}} = k'_{\text{T}} \\ \text{break} \\ k_{\text{T}} = k'_{\text{T}} \\ \left(\text{iteration } k_{\text{T}} \cdot P_{\text{T}} \cdot T_{\text{T}} \right)^{\text{T}} \end{aligned}$$

Количество итераций: iteration = 2

Показатель адиабаты после Т: $k_T = 1.320$

Статическое давление после Т (Па): $P_{T} = 191.5 \cdot 10^{3}$ $P_{T} \geq P_{ATM}(H_{U}) = 1$

Статическая температура после T (K): $T_T = 994.7$

Теплоем кость после T (Дж/кг/К): $Cp_T = Cp_{\Gamma a3}(P_T, T_T, \alpha_{ox}, Fuel) = 1190.6$

Ср. показатель адиабаты Т:
$$k = mean(k_T, k_T) = 1.309$$

Ср. теплоемкость Т (Дж/кг/К): Ср
$$= \frac{k}{k-1} \cdot R_{\Gamma a3} (\alpha_{ox}, \text{Fuel}) = 1222.3$$

Степень понижения давления:
$$\pi_T = \frac{P^*_{\ \Gamma}}{P_{_T}} = 4.84$$

Удельный объём перед Т (м³/кг):
$$\begin{pmatrix} v_{\Gamma} \\ v_{T} \end{pmatrix} = R_{\Gamma a 3} \Big(\alpha_{OX}, \text{Fuel} \Big) \cdot \begin{pmatrix} \frac{T_{\Gamma}}{P_{\Gamma}} \\ \frac{T_{T}}{P_{T}} \end{pmatrix} = \frac{1}{1 \quad 0.440}$$
 (С. 7):
$$\begin{pmatrix} C_{\Gamma} & V_{\Gamma} \\ \frac{T_{\Gamma}}{P_{\Gamma}} \end{pmatrix} = \frac{1}{1 \quad 0.440}$$

Площадь кольцевого сечения перед Т (м²):
$$\begin{pmatrix} F_{\Gamma} \\ F_{T} \end{pmatrix} = \begin{pmatrix} \frac{G_{\Gamma} \cdot v_{\Gamma}}{c_{\Gamma}} \\ \frac{G_{\Gamma} \cdot v_{T}}{c_{T}} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} & 86421 \\ \frac{1}{2} & 208684 \end{pmatrix} \cdot 10^{-6}$$

▲ Основне размеры Т

$$y_0 = 0.55$$

Коэф. использования скорости:

$$\mu_c = \text{mean}(0.7, 1) = 0.9$$

 $0.7 \le \mu_{\rm c} \le 1 = 1$

▼ Определение количества ступеней Т

$$\begin{pmatrix} Z_{recomend} \\ \alpha_{BO3B} \end{pmatrix} = \begin{vmatrix} c_{cp} = mean \left(c_{r}, c_{T} \right) \\ \alpha_{BO3B} = 0.025 \\ \text{while } 1 > 0 \end{vmatrix}$$

$$\begin{vmatrix} Z_{recomend} \\ Z_{recomend} \\ Z_{recomend} \end{vmatrix} = \begin{vmatrix} c_{cp} = mean \left(c_{r}, c_{T} \right) \\ \alpha_{BO3B} = 0.025 \\ \frac{2 \cdot H_{T} \cdot \frac{\left(1 + \alpha_{BO3B} \right)}{\left(\mu_{c} \cdot c_{cp} \right)^{2} - 1}}{\frac{u_{r}^{2}}{\left(\mu_{c} \cdot c_{cp} \right)^{2} \cdot y_{0}^{2}} - 1} \end{vmatrix}$$

$$\begin{vmatrix} b_{reak} & \text{if } \left| c_{ps} \right| \\ c_{ps} \left| \text{"rel"}, \alpha_{BO3B}, \frac{Z - 1}{2 \cdot Z} \cdot \left(\pi_{T} \frac{k - 1}{k} - 1 \right) \cdot \left(1 - \eta_{\Pi} \right) \right| < c_{psilon}$$

$$\begin{vmatrix} \alpha_{BO3B} = \frac{Z - 1}{2 \cdot Z} \cdot \left(\pi_{T} \frac{k - 1}{k} - 1 \right) \cdot \left(1 - \eta_{\Pi} \right) \right|$$

$$\begin{vmatrix} if \alpha_{BO3B} = 0 \\ C_{\alpha_{BO3B}} \right) = \begin{pmatrix} 1 \\ 0 \\ b_{reak} \end{pmatrix}$$

$$\begin{vmatrix} Z \\ \alpha_{BO3B} \end{vmatrix}$$

Рекомендуемое количество ступеней: $Z_{recomend} = 5$

Количество ступеней: $Z = \begin{bmatrix} 1 & \text{if turbine} = \text{"ТВД"} = 4 \\ 4 & \text{if turbine} = \text{"ТНД"} \end{bmatrix}$

Дискретизация ступеней: i = 1..Z

Дискретизация сечений: $ii = 1...2 \cdot Z + 1$

▲ Определение количества ступеней Т

Плотность материала
$$J(\kappa r/m^3)$$
:
$$\rho_blade_i = 7938 \quad if \quad material_blade_i = "BKHA-1B"$$

$$8390 \quad if \quad material_blade_i = "BKM7"$$

$$8760 \quad if \quad material_blade_i = "KC-36"$$
 NaN otherwise

11

Коэф. формы: $k_n = 6.8$

Модуль Юнга I рода материала Л (Па): $E_{blade} = 210 \cdot 10^9$

Коэф. Пуассона материала Π (): μ steel = 0.3

Мах частота вращения ротора на входе (об/мин):

$$\frac{\sigma_{\text{blade_long}}}{\sigma_{\text{blade_long}}} = \begin{vmatrix}
1 & 1 & 12533 \\
2 & 12533 & 233 \\
8065 & 333 & 333
\end{vmatrix}$$

Мах частота вращения ротора на выходе (об/мин):

$$n_{\text{max}} = \sqrt{\frac{\sigma_{\text{blade_long}}}{1}} = \begin{vmatrix} 8065 \\ 065 \\ 1 & 7662 \end{vmatrix} = \frac{333}{33}$$

Рекомендукмая ном. частота вращения (об/мин):

$$n_{max} = \sqrt{\frac{\sigma_{blade_long}}{1}} = \frac{1}{1 - 7662}$$

$$n = n_{max} \cdot 0.95 = \frac{1}{2 - 7662}$$

$$\frac{3 - 7662}{4 - 7662}$$

Ном. частога вращения (рад/с):

$$\sigma = \frac{2 \cdot \pi \cdot n}{60} = 555.0$$

Ср. диаметр перед Т (м): Ср. диаметр после Т (м):

i):
$$\begin{pmatrix} D_{\Gamma,cp} \\ D_{T,cp} \end{pmatrix} = \frac{2}{\omega} \cdot \begin{pmatrix} u_T \\ u_T \end{pmatrix} = \frac{1}{1} \frac{1}{936.9} \cdot 10^{-3}$$
i): $\langle D_{T,cp} \rangle = \frac{2}{\omega} \cdot \langle u_T \rangle = \frac{1}{2} \frac{1}{936.9} \cdot 10^{-3}$

Длина Л первой ступени Т (м):

Длина Л последней ступени Т (м):

$\left(\begin{array}{c} F_{\Gamma} \end{array}\right)$				
$\begin{pmatrix} l_{\Gamma} \end{pmatrix}$ l $D_{\Gamma,0}$	ер 📗		1	– 3
$\begin{vmatrix} 1 & = - \\ 1 & = - \end{vmatrix}$	=	1	29.36	·10
$\begin{pmatrix} 1_{\mathrm{T}} \end{pmatrix} \qquad \begin{pmatrix} 1_{\mathrm{T}} \\ -1_{\mathrm{T}} \end{pmatrix}$	_	2	70.90	
$\bigcup_{T,G} D_{T,G}$	ep)			

$$\frac{l_{\rm T}}{D_{\rm T.cp}} = \frac{1}{13}$$

Диаметр периферии после
$$T(M)$$
:
$$\begin{pmatrix} D_{T.\Pi ep} \\ D_{T.Kop} \end{pmatrix} = \begin{pmatrix} D_{T.cp} + l_T \\ D_{T.cp} - l_T \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 866.0 \end{bmatrix} \cdot 10^{-3}$$

Частота вращения Т

Равномерное распределение мощности Т по ступеням (Вт):

$$N_{cT_i} = \frac{N_T}{Z}$$

Вид проточной части:

("const", "кор", "cp", "пер", "доля от предыдушего диаметра периферии")

▼ Определение проточной части О⁻

Линейное распределение кольцевых площадей по сечениям:

$$\begin{array}{ll} F_{\text{w}} = & \text{for } i \in 1..2Z + 1 \\ & F_{i} = \frac{F_{T} - F_{\Gamma}}{\text{st}(Z,3) - 1} \cdot i + \left(F_{\Gamma} - \frac{F_{T} - F_{\Gamma}}{\text{st}(Z,3) - 1}\right) \\ & \text{for } i \in 1..Z \\ & \text{for } a \in 2..3 \\ & F_{\text{st}(i,a)} = F_{\text{st}(i,a-1)} \quad \text{if } 3\Pi\Pi\Psi_{i,a-1} = \text{"const"} \\ F \end{array}$$

$F^{T} =$		1	2	3	4	5	6	7	8	9	.10-6
	1	86421	101704	116987	132270	147553	162836	178118	193401	208684	

$$\begin{array}{ll} D = & \text{ for } i \in 2Z+1 \\ & \text{ for } r \in 1..N_r \\ & D_{i,r} = & D_{r,cop} \quad \text{ if } r = 1 \\ & D_{r,cop} \quad \text{ if } r = av(N_r) \\ & D_{T,nep} \quad \text{ if } r = av(N_r) \\ & D_{T,nep} \quad \text{ if } r = N_r \\ & \text{ for } i \in Z..1 \\ & \text{ for } a \in 2..1 \\ & \text{ } D_{st(i,a),r} = & \text{ if } 3\Pi\Pi^t I_{i,a} = \text{"const"} \\ & D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{ if } r = 1 \\ & D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{ if } r = N_r \\ & \text{ if } 3\Pi\Pi^t I_{i,a} = \text{"kop"} \\ & D_{st(i,a+1),1} \quad \text{ if } r = 1 \\ & \frac{1}{2} \left[D_{st(i,a+1),1} + \sqrt{\left(D_{st(i,a+1),1}\right)^2 + \frac{4 \cdot F_{st(i,a)}}{\pi}} \right] \quad \text{ if } r = av(N_r) \\ & \sqrt{\left(D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \right)} \quad \text{ if } r = 1 \\ & D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{ if } r = 1 \\ & D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{ if } r = N_r \\ & \text{ if } 3\Pi\Pi^t I_{i,a} = \text{"ncp"} \\ & \sqrt{\left(D_{st(i,a+1),N_r}\right)^2 - \frac{4 \cdot F_{st(i,a)}}{\pi}} \quad \text{ if } r = 1 \\ & \frac{1}{2} \left[\sqrt{\left(D_{st(i,a+1),N_r}\right)^2 - \frac{4 \cdot F_{st(i,a)}}{\pi}}{\pi}} \quad \text{ if } r = 1 \\ & \frac{1}{2} \left[\sqrt{\left(D_{st(i,a+1),N_r}\right)^2 - \frac{4 \cdot F_{st(i,a)}}{\pi}}{\pi}} + D_{st(i,a+1),N_r} \right] \quad \text{ if } r = av(N_r) \\ \end{array}$$

$$R = \frac{D}{2}$$

$$\overline{d} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases}$$

$$\overline{d}_{st(i,a)} = \frac{D_{st(i,a),1}}{D_{st(i,a),N_r}}$$

$$\overline{d}$$

\overline{d}^T	=		1	2	3	4	5	6	7	8	9
		1	0.8819	0.8651	0.8602	0.8621	0.8659	0.8698	0.8709	0.8677	0.8593

$$\begin{array}{|c|c|} h = & \text{for } i \in 1..2Z + 1 \\ \\ h_i = \frac{F_i}{\pi \cdot D_{i, av(N_r)}} \\ \\ h \end{array}$$

$$\begin{split} & | \overset{D}{\text{st}(i,a+1)}, N_r \overset{H=1-1}{\text{r}} \\ & \text{if } \left(3\Pi\Pi \textbf{Y}_{i,a} \neq \text{"const"} \right) \wedge \left(3\Pi\Pi \textbf{Y}_{i,a} \neq \text{"kop"} \right) \wedge \left(3\Pi\Pi \textbf{Y}_{i,a} \neq \text{"cp"} \right) \wedge \left(3\Pi\Pi \textbf{Y}_{i,a} \neq \text{"nep"} \right) \\ & \sqrt{\left(\frac{D_{\text{st}(i,a+1)}, N_r}{\text{str2num} \left(3\Pi\Pi \textbf{Y}_{i,a} \right)} \right)^2 - \frac{4 \cdot F_{\text{st}(i,a)}}{\pi}} \quad \text{if } r = 1 \\ & \frac{1}{2} \cdot \left[\sqrt{\left(\frac{D_{\text{st}(i,a+1)}, N_r}{\text{str2num} \left(3\Pi\Pi \textbf{Y}_{i,a} \right)} \right)^2 - \frac{4 \cdot F_{\text{st}(i,a)}}{\pi}} + \frac{D_{\text{st}(i,a+1)}, N_r}{\text{str2num} \left(3\Pi\Pi \textbf{Y}_{i,a} \right)}} \right] \quad \text{if } r = \text{av} \left(N_r \right) \\ & \frac{D_{\text{st}(i,a+1)}, N_r}{\text{str2num} \left(3\Pi\Pi \textbf{Y}_{i,a} \right)} \quad \text{if } r = N_r \end{split}$$

D

for
$$i \in 1...2 \cdot Z + 1$$

for $r \in 1...N_r$

$$u_{i,r} = \frac{\pi \cdot D_{i,r} \cdot n}{60}$$

$$u$$

		1	2	3	4	5	6	7	8	9
$u^T =$	1	172.2	172.2	180.7	193.8	208.2	222.8	234.2	240.3	240.3
	2	183.8	185.7	195.4	209.3	224.4	239.4	251.6	258.7	260.0
	3	195.3	199.1	210.0	224.7	240.5	256.1	268.9	277.0	279.7

 $\overline{d}_{1} = 0.8819$ $\overline{d}_{1} \le 0.9 =$

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9
	1	0.8819	0.8651	0.8602	0.8621	0.8659	0.8698	0.8709	0.8677	0.8593

$$D^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 620.7 & 620.7 & 651.1 & 698.2 & 750.4 & 802.7 & 843.9 & 866.0 \\ 2 & 662.2 & 669.0 & 704.0 & 754.0 & 808.5 & 862.8 & 906.5 & 932.1 \\ 3 & 703.7 & 717.4 & 756.9 & 809.9 & 866.6 & 922.9 & 969.0 & ... \end{bmatrix} \cdot 10^{-3}$$

$h^T =$		1	2	3	4	5	6	7	8	9	1.10^{-3}
	1	41.54	48.39	52.90	55.84	58.09	60.07	62.55	66.05	70.90	

Осевая ширина Л СА и РК [1, с.183]:

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1..Z \\ \begin{pmatrix} B_{CA}_i \\ B_{PK}_i \end{pmatrix} = \begin{pmatrix} \frac{D_{st(i,2),av(N_r)} - 0.25 \cdot h_{st(i,2)}}{16.4} \\ \frac{D_{st(i,3),av(N_r)}}{24} \\ \end{pmatrix}$$

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix}$$

$$stack \left(B_{CA}^{T}, B_{PK}^{T}\right) = \begin{array}{|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline & 1 & 40.1 & 45.1 & 51.7 & 55.8 \\\hline & 2 & 29.3 & 33.7 & 37.8 & 39.0 \\\hline \end{array} \cdot 10^{-3}$$

Радиальный зазор (м):

Осевой зазор (м):

(Лучше выбирать большее значение)

$$\begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \\ \begin{vmatrix} \Delta_{r_{st(i,a)}} = 0.001 \cdot D_{st(i,a), N_r} \\ \Delta_{a_i} = 0.25 \cdot B_{CA_i} \\ \begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix}$$

$\gamma_{\Pi} \mathbf{u}^{\mathrm{T}} \leq 20 \cdot \circ =$		1	2	3	4	5	6	7	8
'119	1	1	1	1	1	1	1	1	1
_									
$\gamma_{\Pi U}^{T} \leq 25.^{\circ} =$		1	2	3	4	5	6	7	8

$\gamma_{\text{IJUKOP}} > -12^{\circ} =$		1	2	3	4	5	6	7	8
ПЧкор	1	1	1	1	1	1	1	1	1
$\gamma_{\text{TIII-van}}^{\text{T}} > -15^{\circ} =$		1	2	3	4	5	6	7	8
ПЧкор 🔨 Т	1	4	- 1	- 1	1	1	1	1	1

$$\begin{pmatrix} x_{\Pi H} \\ y_{\Pi H nep} \\ y_{\Pi H cop} \\ y_{J I nep} \end{pmatrix} = \begin{vmatrix} c = 1 \\ x_{\Pi H_c} = 0 \\ y_{\Pi H nep_c} = D_{st(c,1),N_r} \\ y_{J nep_c} = y_{\Pi H nep_c} - \Delta_r \\ y_{\Pi H cop_c} = D_{st(c,1),av(N_r)} \\ y_{\Pi H cop_c} = D_{st(c,1),1} \\ for \ i \in 1 ... Z \\ \begin{vmatrix} c = c + 1 \\ x_{\Pi H_c} = x_{\Pi H_{c-1}} + 0.5 \cdot \Delta_{a_1} + B_{CA_1} + 0.5 \cdot \Delta_{a_1} \\ y_{\Pi H nep_c} \\ y_{\Pi H cop_c} \end{vmatrix} = \begin{pmatrix} D_{st(i,2),N_r} \\ D_{st(i,2),1} \\ D_{st(i,2),1} \end{pmatrix} \\ y_{J nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ c = c + 1 \\ x_{\Pi H_c} = x_{\Pi H_{c-1}} + 0.5 \cdot \Delta_{a_1} + B_{PK_1} + 0.5 \cdot \Delta_{a_1} \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H nep_c} - \Delta_{r_i} \\ \begin{pmatrix} x_{\Pi H_c} \\ y_{\Pi H nep_c} \\ y_{\Pi H nep_c} \\ y_{\Pi H nep_c} \\ y_{\Pi H nep_c} - \Delta_{r_i} \\ \begin{pmatrix} x_{\Pi H_c} \\ y_{\Pi H nep_c} \end{pmatrix} \\ y_{\Pi H nep_c} \\ y_{\Pi H nep_c}$$

Length =
$$\sum_{i=1}^{Z} B_{CA_i} + \sum_{i=1}^{Z} \Delta_{a_i} + \sum_{i=1}^{Z} B_{PK_i} = 380.7 \cdot 10^{-3}$$

$$x = \min(x_{\Pi Y}), \min(x_{\Pi Y}) + \frac{\max(x_{\Pi Y}) - \min(x_{\Pi Y})}{N_{dis}} ... \max(x_{\Pi Y})$$

 $\begin{aligned} y_{\Pi \Pi nep}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi nep}, l\Big) & y_{\Pi \Pi cp}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi cp}, l\Big) & y_{\Pi \Pi kop}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi kop}, l\Big) \\ y_{\Pi nep}(l) &= interp\Big(cspline\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}\Big), x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}, l\Big) \end{aligned}$

▲ Определение проточной части ОТ

Относ. толщины ЛРК и СА:

$$\overline{c}_{stator.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, r \end{bmatrix} \text{ if } T_{JI.JOII} < T^*_{\Gamma}$$

$$\begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 11 \\ 11 \\ 11 \end{bmatrix}, \begin{bmatrix} 11 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 11 \\ 11 \\ 11 \end{bmatrix}, \begin{bmatrix} 11 \\ 11 \\ 11 \end{bmatrix}, r \end{bmatrix} \text{ otherwise}$$

$$\overline{c}_{rotor.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 17 \\ 15 \\ 11 \end{pmatrix}, \begin{pmatrix} 17 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 17 \\ 15 \\ 11 \end{pmatrix}, r \end{bmatrix} \text{ if } T_{JI.JOII} < T^*_{\Gamma}$$

$$\begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 13 \\ 11 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 13 \\ 11 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 13 \\ 11 \\ 7 \end{pmatrix}, r \end{bmatrix} \text{ otherwise}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 11.00 & 11.00 & 11.00 & 11.00 \\ 2 & 11.00 & 11.00 & 11.00 & 11.00 \\ \hline 3 & 11.00 & 11.00 & 11.00 & 11.00 \end{bmatrix} .\%$$

$$\frac{T}{c_{rotor}} = \begin{vmatrix}
 & 1 & 2 & 3 & 4 \\
1 & 13.00 & 13.00 & 13.00 & 13.00 \\
2 & 11.00 & 11.00 & 11.00 & 11.00 \\
3 & 7.00 & 7.00 & 7.00 & 7.00
\end{vmatrix}
\cdot \%$$

$$\frac{1}{r_{outlet}} = \begin{bmatrix}
 & 1 & 2 & 3 & 4 \\
1 & 2.200 & 2.200 & 2.200 & 2.200 \\
2 & 2.200 & 2.200 & 2.200 & 2.200 \\
3 & 2.200 & 2.200 & 2.200 & 2.200
\end{bmatrix}$$
.%

		1	2	3	4	
$\frac{1}{r_{inlet}}$ inlet $\frac{T}{r_{inlet}}$ =	1	3.900	3.900	3.900	3.900	.%
-morotor	2	3.300	3.300	3.300	3.300	, 0
	3	2.100	2.100	2.100	2.100	

$$\frac{T}{r_outlet_{rotor}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 1.300 & 1.300 & 1.300 & 1.300 \\ 2 & 1.100 & 1.100 & 1.100 & 1.100 \\ 3 & 0.700 & 0.700 & 0.700 & 0.700 \end{bmatrix} .\%$$

▲ Относ. толщины и радиусы профилей

▶ Вывод результатов поступенчатого расчета продольной геометрии ОТ в ЕХСЕL:

$$R_{L.cp} = \begin{pmatrix} 0.16 & \text{if turbine} = \text{"TBД"} & 0.15 & 0.18 & 0.185 & 0.5 & 0.5 \\ 0.13 & \text{otherwise} & 0.18 & 0.185 & 0.5 & 0.5 \end{pmatrix}^{T}$$

Поступенчатый расчет ОТ —

▼ Параметры турбины

$$\operatorname{stack} \left(\eta_{u1}^{}, \eta_{u2}^{} \right) = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 76.46 & 79.22 & 79.83 & 75.98 \\ \hline 2 & 76.16 & 79.02 & 79.67 & 75.79 \\ \hline \end{array} \; .\%$$

Теплоперепад по параметрам торможения (Дж/кг):
$$\begin{pmatrix} H^*_T \\ H_T \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^Z & H^*_{CT_i} \\ Z \\ \sum_{i=1}^Z & H_{CT_i} \end{pmatrix} = \frac{1}{1} \frac{476.4}{2 \cdot 567.0} \cdot 10^3$$

Мощность Т (Вт):
$$\sum_{i=1}^{Z} N_{cT_{i}} = 15.18 \cdot 10^{6}$$
 eps ("rel", N_{T} , $\sum_{i=1}^{Z} N_{cT_{i}}$) = 0.000 · %

Удельная поступенчатая рабога Т [Дж/кг]:
$$L_T = \sum_{i=1}^Z \frac{N_{cT_i}}{\text{mean}\big(G_{st(i,2)},G_{st(i,3)}\big)} = 428.9 \cdot 10^3$$

$$k_{T.cp} = k_{aJ} \left(Cp_{\Gamma a3.cp} \left(P_{st(1,1),av(N_r)}, P_{st(Z,3),av(N_r)}, T_{st(1,1),av(N_r)}, T_{st(Z,3),av(N_r)}, \alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right), R_{\Gamma a3.cp} \left(\alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right) \right) = 1.308$$

Адиабатный КПДТ:
$$\eta^*_T = \frac{L_T}{H^*_T} = 90.04 \cdot \%$$

Политропический КПДТ:
$$\eta^*_{T,\Pi} = \eta^*_{n} ($$
"расширение", $\eta^*_{T}, \pi^*_{T}, k_{T,cp}) = 88.42 \cdot \%$

$$\text{Мощностной КПДТ:} \qquad \eta_{\text{Тмощь}} = \frac{\displaystyle \sum_{i=1}^{Z} \frac{N_{\text{CT}_i}}{\text{mean} \big(G_{\text{st}(i,2)}, G_{\text{st}(i,3)} \big)}}{H_{\text{T}}} = 75.65 \cdot \%$$

$$L_{\text{CT}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 107.1 & 107.2 & 107.2 & 107.2 \end{bmatrix} \cdot 10^{\frac{3}{2}}$$

$Lu_{range} = \begin{bmatrix} T \\ T \end{bmatrix}$		1	2	3	4
- нагрузка –	1	3.0	2.3	1.8	1.6

$H_{om}^{T} =$		1	2	3	4	1.10^3
CT	1	144.4	139.2	138.3	145.1	

. (T T)		1	2	3	4	3
$\operatorname{stack}\left(\mathbf{H}_{\operatorname{stator}}^{1},\mathbf{H}_{\operatorname{rotor}}^{1}\right) =$	1	125.6	118.3	113.4	118.3	·10 ³
	2	18.8	21.0	25.0	27.0	

$$submatrix\left(R_L^T, av(N_r), av(N_r), 1, Z\right) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 \\\hline 1 & 0.1 & 0.2 & 0.2 & 0.2 \\\hline \end{array}$$

Γ =		1	2	3	4	5	6	7	8
	1	35.394	35.394	35.394	35.394	35.394	35.394	35.394	

$$\operatorname{stack} \left(\boldsymbol{\theta}_{CA}^{T}, \boldsymbol{\theta}_{PK}^{T} \right) = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & -0.005 & -0.112 & -0.246 & -0.420 \\ \hline 2 & -0.066 & -0.192 & -0.353 & -0.568 \\ \hline \end{array}$$

$$\operatorname{stack}\left(g_{\text{OX}\Pi\text{CA}}^{\text{T}},g_{\text{OX}\Pi\text{PK}}^{\text{T}}\right) = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 0.00 & 0.00 & 0.00 & 0.00 \\ & 2 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix} \cdot 10^{-3}$$

$$G_{OXJICA_{i}} = g_{OXJICA_{i}} \cdot G_{st(i,1)}$$

$$G_{\text{OXJPK}_{i}} = g_{\text{OXJPK}_{i}} \cdot G_{\text{st}(i,2)}$$

$$G_{cooling} = 0.8$$

$$\sum_{i=1}^{Z} G_{\text{oxnCA}_i} + \sum_{i=1}^{Z} G_{\text{oxnCA}_i} \leq G_{\text{cooling}} = 1$$

. (T T)		1	2	3	4
$\operatorname{stack}\left(\operatorname{iteration}_{\operatorname{CA}}^{\operatorname{T}}, \operatorname{iteration}_{\operatorname{PK}}^{\operatorname{T}}\right) =$	1	2	2	2	2
,	2	2	2	2	2

cuhme	atriv	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	ov(N)	ov(N)	1 27 + 1)_[1	2	3	4	5	6	7	8	9
Subilia	auix	$(a_{3B},$	$\operatorname{av}(\operatorname{Nr}),$	$av(N_r)$,	1,2Z + 1) - 1	712.6	691.5	688.5	669.8	666.1	646.3	641.3	619.4	613.6
											<u> </u>		<u> </u>		
suhms	atrix	$\int_{a^*} T$	av(N)	$av(N_r)$,	1 27 ± 1)_[1	2	3	4	5	6	7	8	9
Suoma	ши	(a c ,	av(¹\r),	av(1\r),	1,22 + 1		667.9	668.6	646.6	647.3	624.3	625.1	600.9	601.8	576.2
									•	•	'	•	1	•	
suhma	atrix	$\binom{a*}{T}$	av(N)	$, av(N_r)$	1 27 +	$1) = \begin{bmatrix} 1 \end{bmatrix}$	1	2	3	4	5	6	7	8	9
Биотт	AUI 171	(" w	, a ' (1 'r)	, a ' (' 'r)	, 1 , 22 1	1)	1 0.0	655.4	3 655.8	632.9	633.7	609.3	610.2	2 584.6	5 584.9
						_					•		•		
subma	atrix	$\begin{pmatrix} c^T \\ c \end{pmatrix}$ av	(N.). av	$(N_r), 1,$	2Z + 1	=	1	2	3	4	5	6	7	8	9
Bucin		,	(''r), "	('`r)', ',	2 2 · 1)	1	180.0	490.9	220.6	474.7	197.9	465.9	200.4	476.7	232.6
subma	atrix	$\left(\mathbf{c}, \mathbf{T}, \mathbf{a} \right)$	v(N).a	$v(N_r)$, 1	.2Z + 1) =	1	2	3	4	5	6	7	8	9
		(u , u	(- r) ,	(- r) , -	, ,	1	0.0	2 451.9	3 135.7	435.3	85.6	419.9	39.1	415.9	10.3
subma	atrix	$\left(c_{a}^{T}, a \right)$	v(N.,), a	$v(N_r), 1$.2Z + 1		1	2	3	4	5	6	7	8	9
		(a)	(1)	(1)	' /	1	180.0	191.7	173.9	189.4	178.5	202.0	196.6	232.9	232.4
subma	atrix	$\left(\mathbf{w}^{\mathrm{T}},\mathbf{a}\mathbf{v}\right)$	$v(N_n)$, ar	$v(N_r), 1$	(2Z+1)	=	1	2	3	4	5	6	7	8	9
		,	(1)	(1)	<i>'</i>	1	0.0	328.1	373.9	294.9	357.6	270.8	350.9	281.0	356.5
		,				_									
subma	atrix	$\left(\mathbf{w}_{1}^{\mathrm{T}},\mathbf{a}\right)$	$av(N_r)$	$av(N_r)$,	1,2Z+1		1	2	3	4	5	6	7	8	9
		(u ·	(1)	(1)	Ź	1	0.0	266.2	331.0	226.0	309.9	180.5	290.6	157.3	270.3
		. –				\									
subma	atrix	$(\mathbf{w}_{\mathbf{a}}^{\mathrm{T}}, \mathbf{a})$	$av(N_r)$,	$\operatorname{av}(N_r)$,	1,2Z+1		1	2	3	4	5	6	7	8	9
		a	(1)	(1)		1	0.0	191.7	173.9	189.4	178.5	202.0	196.6	232.9	232.4
		. –			_										
subma	atrix	$\left(\mathbf{c}_{\mathbf{a}\pi}^{\mathrm{T}}\right)$	$av(N_r)$,	$av(N_r)$,	(1,2Z) =							6	7	8	
		Сад	(1)	(1))	1	537.4 50	01.2 5	27.6 4	86.5 5	25.9 4	76.2	38.7	186.4	
		<i>(</i>				\ _									
subma	atrix	$\left(\mathbf{w}_{\mathbf{a}\pi}^{-1}\right)$	$\operatorname{av}(N_r)$	$, av(N_r)$, 1, 2Z +	$1) = \bot$	1	2	3	4	5	6	7	8	9
		(""	(1)	(1)			1 0.0	0.0	386.0	0.0	368.0	0.0	359.	5 0.0	365.5
		1	2	3	4	5	6	7	8	9					
$u^T =$	1	172.2	172.2	180.7	193.8	208.2		234.2	240.3	240.3					
u =	2	183.8	185.7	195.4	209.3	224.4	+	251.6	258.7	260.0					
	3	195.3	199.1	210.0	224.7	240.5	+	268.9	277.0	279.7					
				1							1				

 $submatrix \left(\lambda_{c}, 1, 2Z + 1, av \left(N_{r} \right), av \left(N_{r} \right) \right)^{T} = \boxed{ \begin{array}{c|cccc} 1 & 2 & 3 \\ \hline 1 & 0.2695 & 0.7342 & 0.3411 \\ \end{array} }$ 0.7334 0.3170 0.7454 0.3335 $submatrix \left(\lambda_{W}, 1, 2Z + 1, av \left(N_{r} \right), av \left(N_{r} \right) \right)^{T} = \boxed{ \begin{array}{c|cccc} 1 & 2 & 3 \\ \hline 1 & 0.0000 & 0.5006 & 0.5702 \\ \end{array} }$ 0.4660 0.5643 0.4445 0.5750 submatrix $(M_c, 1, 2Z + 1, av(N_r), av(N_r))^T = \begin{bmatrix} 1 & 2 \\ 1 & 0.2526 & 0.7099 \end{bmatrix}$ 3 0.3204 0.7088 0.2972 0.7209 0.3125 submatrix $(M_W, 1, 2Z + 1, av(N_r), av(N_r))^T = \begin{bmatrix} 1 & 2 \\ 1 & 0.0000 & 0.4744 \end{bmatrix}$ 7 8 0.5431 0.4403 0.5369 0.4190 0.5471

34

 $\operatorname{stack}\left(\upsilon_{\text{stator}}^{\text{T}},\upsilon_{\text{rotor}}^{\text{T}}\right) = \begin{array}{|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 43.08 & 63.04 & 58.94 & 53.66 \\ \hline 2 & 68.71 & 68.31 & 67.38 & 67.10 \\ \hline \end{array}.$

$$t_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 40.6 & 27.9 & 35.9 & 43.3 \\ 2 & 43.6 & 30.1 & 38.6 & 46.6 \\ 3 & 46.5 & 32.4 & 41.3 & 49.8 \end{bmatrix}$$

		1	2	3	4	
, T =	1	18.7	22.1	26.7	28.6	$\cdot 10^{-3}$
otor –	2	20.2	23.8	28.7	30.9	10
	3	21.6	25.6	30.6	33.2	

. (_ T _ T)		1	2	3	4
$\operatorname{stack}(Z_{\operatorname{stator}}, Z_{\operatorname{rotor}}) =$	1	48	76	68	62
	2	107	103	97	95

$$stack \left(\overline{t}_{O\Pi TCA}^{T}, \overline{t}_{O\Pi TPK}^{T} \right) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 0.762 & 0.603 & 0.644 & 0.686 \\\hline 2 & 0.651 & 0.669 & 0.704 & 0.731 \\\hline \end{array}$$

. (- T - T)		1	2	3	4
$\operatorname{stack}(v_{\operatorname{stator}}, v_{\operatorname{rotor}}) =$	1	0.9793	0.9760	0.9785	0.9800
	2	0.9660	0.9695	0.9743	0.9735

▲ Параметры турбины

3.961

4.665

Вывод результатов поступенчатого расчета по ср. сечению ОТ в EXCEL:

▼ Выбор закона профилирования Л по высоте

$$\mathbf{m} = \begin{pmatrix} \boxed{\overline{v}_{stator_1} \cdot \cos(\alpha_{st(1,2),av(N_r)})^2} & \text{if } Z = 1 \\ -0.5 & \text{otherwise} \\ \\ 0 \\ 0.25 \\ \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \text{"α.2=const"} \\ \text{"$\Gamma=const"} \\ \text{"$m=const"} \\ \text{"$R=const"} \end{pmatrix} = \begin{pmatrix} \cos\left(\alpha_{st(i\,,2)\,,\,av\left(N_r\right)}\right)^2 \cdot \overline{\upsilon}_{stator_i} \\ 1 \cdot \overline{\upsilon}_{stator_i} \\ 0.2 \\ -1 \cdot \overline{\upsilon}_{stator_i} \end{pmatrix}$$

$\mathbf{m}^{\mathrm{T}} =$		1	2	3	4	5	6
	1	-0.5000	-0.2500	0.0000	0.2500	1.0000	1.0000

▲ Выбор закона профилирования Л по высоте

```
T*
      Τ
                                       ρ
                                   R_{L}
                                                                                 for i \in 1...Z
                                                                                        for a \in 2...3
                                                                                              for r \in 1..N_r
      c_{a}
                                                                            A_{st(i,a),r} = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,a),av(N_r)}\right)^{m_i+1}
B_{st(i,a),r} = \frac{Lu_{cT_i}}{2 \cdot \omega}
  \Delta c_a
       \alpha
      \lambda_{\rm c}
                                                                                       c_{u_{st(i,a),r}} = \begin{cases} if \ m_i = \overline{\upsilon}_{stator_i} \cdot cos(\alpha_{st(i,2),av(N_r)})^2 \\ \\ c_{u_{st(i,a),av(N_r)}} \cdot \left(\frac{R_{st(i,a),av(N_r)}}{R_{st(i,a),r}}\right)^{m_i} \ if \ (a = 2) \\ \\ \frac{u_{st(i,a-1),av(N_r)} \cdot c_{u_{st(i,a-1),av(N_r)}} + u_{st(i,a),av(N_r)} \cdot c_{u_{st(i,a),av(N_r)}} - u_{st(i,a-1),r} \cdot c_{u_{st(i,a-1),r}} \\ \\ \frac{u_{st(i,a-1),av(N_r)} \cdot c_{u_{st(i,a-1),av(N_r)}} + u_{st(i,a),av(N_r)} \cdot c_{u_{st(i,a),av(N_r)}} - u_{st(i,a-1),r} \cdot c_{u_{st(i,a-1),r}} \\ \\ u_{st(i,a),r} \end{cases} if \ (a = 1) \lor (a = 3)
\varepsilon_{
m stator}
                              ε<sub>rotor</sub>
                                                                                                                                                                          \begin{split} & \frac{A_{st(i,a),r}}{\left(R_{st(i,a),r}\right)^{m_i}} + \frac{B_{st(i,a),r}}{\left(R_{st(i,a),r}\right)} & \text{if } (a=2) \\ & - \frac{A_{st(i,a),r}}{\left(R_{st(i,a),r}\right)^{m_i}} + \frac{B_{st(i,a),r}}{\left(R_{st(i,a),r}\right)} & \text{if } (a=1) \lor (a=3) \end{split}
                                                                                                                                                                      \sqrt{ \left( c_{a_{st(i,a)},av(N_r)}^{} \right)^2 - 2 \cdot \left( A_{st(i,a)},r \right)^2 \cdot \left[ \left( R_{st(i,a)},r \right)^2 - \left( R_{st(i,a)},av(N_r) \right)^2 \right] - 4 \cdot A_{st(i,a)},r \cdot B_{st(i,a)},r \cdot \ln \left( \frac{R_{st(i,a)},r}{R_{st(i,a)},av(N_r)} \right) } \quad \text{if } (a=2)   \sqrt{ \left( c_{a_{st(i,a)},av(N_r)}^{} \right)^2 - 2 \cdot \left( A_{st(i,a)},r \right)^2 \cdot \left[ \left( R_{st(i,a)},r \right)^2 - \left( R_{st(i,a)},av(N_r) \right)^2 \right] + 4 \cdot A_{st(i,a)},r \cdot B_{st(i,a)},r \cdot \ln \left( \frac{R_{st(i,a)},r}{R_{st(i,a)},av(N_r)} \right) } \quad \text{if } (a=1) \lor (a=3)
```

$$\begin{aligned} & \text{if } m_i = 0 \\ & \text{if } m_i = 0 \end{aligned} \\ & \text{if$$

for $r \in 1..N_r$ $\begin{vmatrix} c_{u_{i,r}} \\ c_{a_{i,r}} \end{vmatrix} = c_{i,av(N_r)} \cdot \begin{pmatrix} cos(\alpha_{i,av(N_r)}) \\ sin(\alpha_{i,av(N_r)}) \end{pmatrix} \text{ if } (i = 1)$ $P^*_{i,r} = P^*_{i,av(N_r)}$ $T^*_{i,r} = T^*_{i,av(N_r)}$ $\rho^*_{i,r} = \frac{P^*_{i,r}}{R_{\Gamma a3}(\alpha_{oX_i}, \text{Fuel}) \cdot T^*_{i,r}}$ $k_{i,r} = k_{aJ} \left(Cp_{BO3JYX} \left(P^*_{i,r}, T^*_{i,r} \right), R_{\Gamma a3} \left(\alpha_{OX_i}, Fuel \right) \right)$ $a_{c_{i,r}}^* = \sqrt{\frac{2 \cdot k_{i,r}}{k_{i,r} + 1} \cdot R_{ra3} (\alpha_{ox_i}, Fuel) \cdot T_{i,r}^*}$ $\alpha_{i,r} = \text{triangle}(c_{a_{i,r}}, c_{u_{i,r}})$ $\lambda_{c_{i,r}} = \frac{c_{i,r}}{a_{c_{i,r}}^*}$ $\begin{pmatrix} T_{i,r} \\ P_{i,r} \\ \rho_{i,r} \end{pmatrix} = \begin{pmatrix} T^*_{i,r} \cdot \Gamma \square \Phi \Big(\text{"T"} \;, \lambda_{c_{i,r}}, k_{i,r} \Big) \\ P^*_{i,r} \cdot \Gamma \square \Phi \Big(\text{"P"} \;, \lambda_{c_{i,r}}, k_{i,r} \Big) \\ \rho^*_{i,r} \cdot \Gamma \square \Phi \Big(\text{"ρ"} \;, \lambda_{c_{i,r}}, k_{i,r} \Big) \end{pmatrix}$ $a_{3B_{\dot{1},r}} = \sqrt{k_{\dot{1},r} \cdot R_{\Gamma a3} \left(\alpha_{oX_{\dot{1}}}, Fuel\right) \cdot T_{\dot{1},r}}$ $M_{c_{i,r}} = \frac{c_{i,r}}{a_{3B_{i,r}}}$ $\beta_{i,r} = triangle(c_{a_{i,r}}, u_{i,r} - c_{u_{i,r}})$ = tria. $\begin{bmatrix} w_{i,r} = \frac{c_{a_{i,r}}}{\sin(\beta_{i,r})} \\ w_{u_{i,r}} \\ w_{a_{i,r}} \end{bmatrix} = w_{i,r} \cdot \begin{pmatrix} \cos(\beta_{i,r}) \\ \sin(\beta_{i,r}) \end{pmatrix}$ $(c_{i,r})^2 - (w_{i,r})^2$

$$m_i \cdot \left(m_i + 1\right) \cdot \left(R_{st(i,\,a)\,,\,r} \cdot R_{st(i,\,a)\,,\,av\left(N_r\right)}\right)^{2 \cdot m_i + 1}$$

43

$$\begin{split} & \mathbf{1}^*\mathbf{w}_{i,\,\mathbf{r}} = \mathbf{1}^*\mathbf{i}_{i,\,\mathbf{r}} - \frac{2\cdot\frac{k_{i,\,\mathbf{r}}}{k_{i,\,\mathbf{r}}-1}\cdot R_{\text{Fa3}}\left(\alpha_{oX_{i}}, \text{Fuel}\right)}{2\cdot\frac{k_{i,\,\mathbf{r}}}{k_{i,\,\mathbf{r}}-1}\cdot R_{\text{Fa3}}\left(\alpha_{oX_{i}}, \text{Fuel}\right)} \\ & \mathbf{a}^*\mathbf{w}_{i,\,\mathbf{r}} = \frac{\sqrt{2\cdot k_{i,\,\mathbf{r}}}}{k_{i,\,\mathbf{r}}+1}\cdot R_{\text{Fa3}}\left(\alpha_{oX_{i}}, \text{Fuel}\right)\cdot T^*\mathbf{w}_{i,\,\mathbf{r}}} \\ & \lambda_{\mathbf{w}_{i,\,\mathbf{r}}} = \frac{w_{i,\,\mathbf{r}}}{\mathbf{a}^*\mathbf{w}_{i,\,\mathbf{r}}} \\ & M_{\mathbf{w}_{i,\,\mathbf{r}}} = \frac{w_{i,\,\mathbf{r}}}{a_{3B_{i,\,\mathbf{r}}}} \\ & for \ i \in 1 \dots Z \\ & for \ \mathbf{r} \in 1 \dots N_{\mathbf{r}} \\ & \left(\frac{\Delta \mathbf{c}}{\mathbf{a}_{st(i,\,2)},\mathbf{r}}\right) = \left(\frac{\mathbf{c}}{\mathbf{a}_{st(i,\,2)},\mathbf{r}} - \mathbf{c}_{\mathbf{a}_{st(i,\,2)},\mathbf{r}}\right) \\ & R_{\mathbf{L}_{i,\,\mathbf{r}}} = 1 - \frac{\mathbf{c}_{\mathbf{u}_{st(i,\,2)},\mathbf{r}} - \mathbf{c}_{\mathbf{u}_{st(i,\,3)},\mathbf{r}}}{\mathbf{c}_{st(i,\,2)},\mathbf{r}} \\ & \kappa_{t(i,\,2)},\mathbf{r} - \omega_{st(i,\,3)},\mathbf{r} \\ & \varepsilon_{stator_{i,\,\mathbf{r}}} = \left(\frac{\alpha_{st(i,\,2)},\mathbf{r} - \alpha_{st(i,\,2)},\mathbf{r}}{\alpha_{st(i,\,2)},\mathbf{r}} \text{ otherwise} \right. \\ & \varepsilon_{rotor_{i,\,\mathbf{r}}} = \left(\frac{\beta_{st(i,\,3)},\mathbf{r} - \beta_{st(i,\,2)},\mathbf{r}}{\alpha_{st(i,\,3)},\mathbf{r}} \text{ otherwise} \right. \\ & \left(\frac{\mathbf{p}^*}{\mathbf{r}} + \mathbf{T}^* \quad \mathbf{r} \quad \mathbf{r} \quad \mathbf{k} \quad \mathbf{a}^*_{\mathbf{c}} \quad \mathbf{a}_{3B} \quad \mathbf{c} \quad \mathbf{c}_{\mathbf{u}} \quad \mathbf{c}_{\mathbf{a}} \quad \Delta \mathbf{c}_{\mathbf{a}} \quad \alpha \quad \lambda_{\mathbf{c}} \quad \lambda_{\mathbf{w}} \quad \varepsilon_{stator}}{\alpha_{\mathbf{s}}}\right)^{\mathbf{T}} \\ & \left(\mathbf{p}^* \quad \mathbf{T}^* \quad \mathbf{T} \quad \mathbf{p}^* \quad \mathbf{k} \quad \mathbf{a}^*_{\mathbf{c}} \quad \mathbf{a}_{3B} \quad \mathbf{c} \quad \mathbf{c}_{\mathbf{u}} \quad \mathbf{c}_{\mathbf{a}} \quad \Delta \mathbf{c}_{\mathbf{a}} \quad \alpha \quad \lambda_{\mathbf{c}} \quad \lambda_{\mathbf{w}} \quad \varepsilon_{stator}}{\alpha_{\mathbf{s}}}\right)^{\mathbf{T}} \\ & \left(\mathbf{p}^* \quad \mathbf{T}^* \quad \mathbf{T} \quad \mathbf{p}^* \quad \mathbf{k} \quad \mathbf{a}^*_{\mathbf{c}} \quad \mathbf{a}_{3B} \quad \mathbf{c} \quad \mathbf{c}_{\mathbf{u}} \quad \mathbf{c}_{\mathbf{a}} \quad \Delta \mathbf{c}_{\mathbf{a}} \quad \alpha \quad \lambda_{\mathbf{c}} \quad \lambda_{\mathbf{w}} \quad \varepsilon_{stator}}{\alpha_{\mathbf{s}}}\right)^{\mathbf{T}} \right)^{\mathbf{T}} \\ & \left(\mathbf{p}^* \quad \mathbf{T}^* \quad \mathbf{T} \quad \mathbf{p}^* \quad \mathbf{k} \quad \mathbf{a}^*_{\mathbf{c}} \quad \mathbf{a}_{3B} \quad \mathbf{c} \quad \mathbf{c}_{\mathbf{u}} \quad \mathbf{c}_{\mathbf{u}} \quad \Delta \mathbf{c}_{\mathbf{a}} \quad \alpha \quad \lambda_{\mathbf{c}} \quad \lambda_{\mathbf{w}} \quad \varepsilon_{stator}}\right)^{\mathbf{T}} \right)^{\mathbf{T}} \\ & \left(\mathbf{p}^* \quad \mathbf{T}^* \quad \mathbf{T} \quad \mathbf{p}^* \quad \mathbf{k} \quad \mathbf{a}^*_{\mathbf{u}} \quad \mathbf{a}_{3B} \quad \mathbf{w} \quad \mathbf{w}_{\mathbf{u}} \quad \mathbf{w}_{\mathbf{u}} \quad \Delta \mathbf{c}_{\mathbf{a}} \quad \Delta \mathbf{c}_{\mathbf{a}} \quad \lambda_{\mathbf{u}} \quad \kappa_{\mathbf{u}} \quad \varepsilon_{rotor}\right)^{\mathbf{T}} \right)^{\mathbf{T}} \\ & \left(\mathbf{p}^* \quad \mathbf{T}^* \quad \mathbf{T} \quad \mathbf{p}^* \quad \mathbf{k} \quad \mathbf{a}^*_{\mathbf{u}} \quad \mathbf{a}_{3B} \quad \mathbf{u} \quad \mathbf{u}_{\mathbf{u}} \quad \mathbf{u}_{\mathbf{u}} \quad \Delta \mathbf{c}_{\mathbf{u}} \quad \lambda_{\mathbf{u}} \quad \delta_{\mathbf{u}} \quad \delta_{\mathbf{u}}$$

▲ Расчет Л по высоте

▼ Результаты расчета Л по высот

		1	2	3	4	5	6	7	8	9	
$P^{*T} =$	1	927.5	914.5	676.5	665.4	483.0	475.7	337.5	332.0	228.6	$\cdot 10^3$
-	2	927.5	914.5	676.5	665.4	483.0	475.7	337.5	332.0	228.6	
	3	927.5	914.5	676.5	665.4	483.0	475.7	337.5	332.0	228.6	

		1	2	3	4	5	6	7	8	9
$T^{*T} =$	1	1369	1370	1281	1282	1192	1193	1102	1104	1011
_	2	1369	1370	1281	1282	1192	1193	1102	1104	1011
	3	1369	1370	1281	1282	1192	1193	1102	1104	1011

		1	2	3	4	5	6	7	8
T* T =	1	1381.3	1313.8	1273.3	1222.9	1197.1	1130.2	1120.2	1036.6
1 _W –	2	1383.0	1313.1	1278.7	1222.6	1203.3	1130.7	1126.9	1038.0
	3	1384.8	1312.5	1284.4	1222.5	1209.8	1131.5	1133.9	

		1	2	3	4	5	6	7	8	9
$o^{*T} =$	1	2.349	2.314	1.830	1.799	1.404	1.382	1.061	1.043	0.784
۲	2	2.349	2.314	1.830	1.799	1.404	1.382	1.061	1.043	0.784
	3	2.349	2.314	1.830	1.799	1.404	1.382	1.061	1.043	0.784

		1	2	3	4	5	6	7	8	9	
$\mathbf{P}^{\mathrm{T}} =$	1	890.0	631.4	635.8	459.5	458.6	325.0	317.3	215.2	208.2	$\cdot 10^{3}$
-	2	890.0	660.5	638.1	481.1	459.0	339.4	317.3	225.8	208.2	10
	3	890.0	686.7	639.3	500.3	459.2	352.3	317.3	235.2	208.2	

		1	2	3	4	5	6	7	8	9
$T^{T} =$	1	1355	1253	1262	1172	1177	1087	1086	991	988
-	2	1355	1267	1263	1185	1178	1098	1086	1003	988
	3	1355	1278	1264	1196	1178	1108	1086	1013	988

		1	2	3	4	5	6	7	8	9
$o^{T} =$	1	2.276	1.747	1.747	1.360	1.350	1.037	1.013	0.753	0.731
P	2	2.276	1.808	1.751	1.408	1.351	1.071	1.013	0.781	0.731
	3	2.276	1.862	1.754	1.450	1.352	1.102	1.013	0.805	0.731

		1	2	3	4	5	6	7	8	9
$\mathbf{k}^{\mathrm{T}} =$	1	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338
	2	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338
	3	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338

		1	2	3	4
$R_{\tau}^{T} =$	1	0.0536	0.0511	0.0925	0.1037
'`L	2	0.0913	0.1091	0.1574	0.1829
	3	0.1251	0.1592	0.2136	0.2505

		1	2	3	4	
$R_{\tau}^{T} > 0.05 =$	1	1	1	1	1	
TL = 3335	2	1	1	1	1	
	3	1	1	1	1	

		1	2	3	4	5	6	7	8	9
$a^*_{a}^T =$	1	670.1	670.3	648.6	648.9	626.2	626.5	602.7	603.0	577.9
a c –	2	670.1	670.3	648.6	648.9	626.2	626.5	602.7	603.0	577.9
	3	670.1	670.3	648.6	648.9	626.2	626.5	602.7	603.0	577.9

		1	2	3	4	5	6	7	8	9
$u^T =$	1	172.2	172.2	180.7	193.8	208.2	222.8	234.2	240.3	240.3
	2	183.8	185.7	195.4	209.3	224.4	239.4	251.6	258.7	260.0
	3	195.3	199.1	210.0	224.7	240.5	256.1	268.9	277.0	279.7

$$\mathbf{c_a}^{\mathrm{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 231.2 & 159.0 & 226.1 & 171.8 & 230.5 & 195.0 & 253.8 & 232.0 \\ 2 & 180.0 & 191.7 & 173.9 & 189.4 & 178.5 & 202.0 & 196.6 & 232.9 & 232.4 \\ 3 & 180.0 & 145.6 & 184.4 & 148.3 & 182.6 & 172.4 & 197.0 & 212.9 & 232.1 \end{bmatrix}$$

		1	2	3	4	5	6	7	8	9
a^* $T =$	1	673.1	656.4	646.6	633.7	627.5	609.7	607.5	584.4	584.3
a w	2	673.5	656.3	648.0	633.7	629.1	609.8	609.4	584.8	586.3
	3	674.0	656.1	649.5	633.6	630.8	610.0	611.2	585.3	588.3

		1	2	3	4	5	6	7	8	9
$\mathbf{a}_{}^{\mathrm{T}} = \mathbf{a}_{-}$	1	717.7	690.0	693.6	668.3	671.1	644.7	645.8	616.9	617.4
$a_{3B} = $	2	717.7	693.8	693.9	672.0	671.1	648.2	645.8	620.6	617.4
	3	717.7	697.0	694.0	675.2	671.2	651.1	645.8	623.7	617.5

		1	2	3	4	5	6	7	8	9
$\mathbf{w}^{\mathrm{T}} =$	1	249.1	381.8	163.6	348.6	215.8	319.5	282.8	325.5	324.6
	2	257.2	333.7	192.6	299.6	246.0	275.5	309.0	285.6	348.6
	3	265.6	285.4	221.9	250.3	274.7	232.3	334.2	249.1	371.9

		1	2	3	4	5	6	7	8
$\mathbf{w}_{\mathbf{u}}^{T} =$	1	172.2	-303.8	38.6	-265.3	130.6	-221.3	204.8	-203.8
·· u	2	183.8	-273.2	82.8	-232.1	169.3	-187.4	238.5	-165.3
	3	195.3	-245.4	123.5	-201.7	205.2	-155.7	270.0	

		1	2	3	4	5	6	7	8	9
$\mathbf{w_a}^T =$	1	180.0	231.2	159.0	226.1	171.8	230.5	195.0	253.8	232.0
'' a	2	180.0	191.7	173.9	189.4	178.5	202.0	196.6	232.9	232.4
	3	180.0	145.6	184.4	148.3	182.6	172.4	197.0	212.9	232.1

		1	2	3	4	5	6	7	8	9	
$\alpha^{T} =$	1	90.00	25.90	48.23	26.23	65.69	27.43	81.44	29.75	86.72	.0
	2	90.00	22.68	57.09	23.23	72.85	25.32	86.19	28.78	89.96	
	3	90.00	18.14	64.85	19.18	79.08	22.71	90.31	27.66	92.70	

		1	2	3	4	5	6	7	8	9
$80.^{\circ} < \alpha^{\mathrm{T}} =$	1	1	0	0	0	0	0	1	0	1
	2	1	0	0	0	0	0	1	0	1
	3	1	0	0	0	0	0	1	0	1

[1, c.78]

Угол поворота потока:

		1	2	3	4	
$\varepsilon_{\mathrm{stator}}^{\mathrm{T}} =$	1	64.10	22.00	38.26	51.69	
stator	2	67.32	33.86	47.53	57.40	
	3	71.86	45.67	56.37	62.65	

		1	2	3	4	5	6	7	8	
$\beta^{T} =$	1	46.26	142.73	76.34	139.56	52.76	133.84	43.59	128.76	
Ρ	2	44.41	144.94	64.54	140.78	46.51	132.86	39.50	125.36	
	3	42.67	149.32	56.19	143.67	41.67	132.10	36.12		

		1	2	3	4	
$\varepsilon_{\text{rotor}}^{\text{T}} =$	1	66.39	86.80	90.25	83.14	
rotor	2	80.39	94.27	93.36	83.56	
	3	93.13	102.01	95.98	82.65	

		1	2	3	4	5	6	7	8	9
$\lambda^T =$	1	0.269	0.790	0.329	0.789	0.301	0.799	0.327	0.848	0.402
· c	2	0.269	0.742	0.319	0.740	0.298	0.754	0.327	0.802	0.402
	3	0.269	0.698	0.314	0.696	0.297	0.713	0.327	0.761	0.402

		1	2	3	4	5	6	7	8	9
$M^T =$	1	0.251	0.767	0.307	0.766	0.281	0.776	0.305	0.829	0.376
···c	2	0.251	0.717	0.299	0.715	0.278	0.728	0.305	0.779	0.376
	3	0.251	0.671	0.293	0.669	0.277	0.686	0.305	0.735	0.376

		1	2	3	4	5	6	7	8	9
$\lambda_{-}^{T} =$	1	0.370	0.582	0.253	0.550	0.344	0.524	0.465	0.557	0.556
$\gamma_{ m W}$ –	2	0.382	0.509	0.297	0.473	0.391	0.452	0.507	0.488	0.595
	3	0.394	0.435	0.342	0.395	0.436	0.381	0.547	0.426	0.632

		1	2	3	4	5	6	7	8	9
$M_{}^T =$	1	0.3		0.2						
W	2	0.4	0.5	0.3	0.4	0.4	0.4	0.5	0.5	0.6
	3	0.4	0.4	0.3	0.4	0.4	0.4	0.5	0.4	0.6

▶ Результаты расчета Л по высоте

Вывод результатов расчета параметров потока по высоте Л

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) \geq 0 \right) \wedge \left(- \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \right) \\ \Delta_W(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) \geq 0 \right) \wedge \left(- \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \leq v \leq 0 \right) \wedge \left(j \neq 1 \right) \\ & -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \right) \wedge \left(j \neq 1 \right) \\ \Delta_U(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} & \text{if } \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right) \wedge \left(j \neq 1 \right) \\ & \text{NaN otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2} \right) \cdot 10^2 = 600.0$$

$$v = -max(c, w, u), -max(c, w, u) + \frac{max(c, w, u)}{3000} ... max(c, w, u)$$

▲ Построение треугольников скоростей в 3х сечениях

$$\begin{pmatrix} \text{sail}_{\text{stator}} \\ \text{sail}_{\text{rotor}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0.85 \end{pmatrix}$$

▼ Расчет хорд Л по парусности

$$\begin{pmatrix} \text{chord}_{\text{fattor}} \\ \text{chord}_{\text{rotor}} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \\ \text{sail} = \frac{R_{\text{st}(1,2),N_{\text{F}}} - R_{\text{st}(i,2),1}}{R_{\text{st}(1,2),\text{av}}(N_{\text{F}}) - R_{\text{st}(i,2),1}} \\ \text{for } r \in 1...N_{\text{F}} \end{cases} \\ \text{for } i \in 1...X_{\text{f}} \\ \text{for } r \in 1...N_{\text{f}} \\ \text{hord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \end{pmatrix} = \frac{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}}{\text{sail}} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}} \\ \text{hoperator}_{\text{bpKnep}} \end{pmatrix} = \begin{pmatrix} \text{hord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{bpKnep}} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}} \\ \text{hoperator}_{\text{bpKnep}} \end{pmatrix} - \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}} \\ \text{hoperator}_{\text{bpKnep}} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \\ \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \text{hoperator}_{\text{chord}_{\text{stator}_{1,\text{av}}(N_{\text{F}})}$$

Длины хорд РК и СА (м):

Ср. линия профиля:

0.5 - дуга окружности 0.45 - парабола

$$\overline{x}_f = 0.45$$

▼ Расчет параметров решетки

$$\begin{bmatrix} \frac{1}{\text{stator}} & \frac{1}{\text{rotor}} \\ r_{-} \text{inlet}_{\text{stator}} & r_{-} \text{inlet}_{\text{rotor}} \\ r_{-} \text{outlet}_{\text{stator}} & r_{-} \text{outlet}_{\text{rotor}} \\ v_{\text{stator}} & v_{\text{rotor}} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1... \text{N}_{\text{r}} \\ \frac{1}{\text{stator}_{i,r}} \\ v_{\text{stator}} \end{bmatrix} = \pi \cdot \frac{\frac{\text{mean}\left(D_{\text{st}(i,1),r}, D_{\text{st}(i,2),r}\right)}{Z_{\text{stator}_{i,r}}} \\ \frac{1}{Z_{\text{stator}_{i,r}}} \\ \frac{1}{Z_{\text{stator}_{i,r}}} = \pi \cdot \frac{\frac{\text{mean}\left(D_{\text{st}(i,1),r}, D_{\text{st}(i,2),r}\right)}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} = \pi \cdot \frac{\pi_{-} \text{outlet}_{\text{stator}_{i,r}}}{\pi_{-} \text{outlet}_{\text{stator}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} = \frac{\pi_{-} \text{outlet}_{\text{stator}_{i,r}}}{\pi_{-} \text{outlet}_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} = \frac{\pi_{-} \text{outlet}_{\text{stator}_{i,r}}}{\pi_{-} \text{outlet}_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} = \frac{\pi_{-} \text{outlet}_{\text{stator}_{i,r}}}{\pi_{-} \text{outlet}_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} = \frac{\pi_{-} \text{outlet}_{\text{rotor}_{i,r}}}{\pi_{-} \text{outlet}_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i$$

$$\begin{pmatrix} v_{\text{установки}}(\alpha_{\text{st(i,1),r}},\alpha_{\text{st(i,2),r}}) \\ v_{\text{установки}}(\beta_{\text{st(i,2),r}},\beta_{\text{st(i,3),r}}) \end{pmatrix}$$

 $\frac{\pi}{2}$ добавляется в виду поворота рисунка на 90 град

Относительные радиусы профилей ():

$$\overline{r}_{inlet_{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 4.400 & 4.400 & 4.400 & 4.400 \\ & 2 & 4.400 & 4.400 & 4.400 & 4.400 \\ & 3 & 4.400 & 4.400 & 4.400 & 4.400 \\ \end{bmatrix} .$$

$$\overline{r}_{inlet} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 3.900 & 3.900 & 3.900 & 3.900 \\ 2 & 3.300 & 3.300 & 3.300 & 3.300 \\ 3 & 2.100 & 2.100 & 2.100 & 2.100 \end{bmatrix} .\%$$

$$\frac{1}{\text{r_outlet}} \frac{1}{\text{stator}} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 2.200 & 2.200 & 2.200 & 2.200 \\ \hline 2 & 2.200 & 2.200 & 2.200 & 2.200 \\ \hline 3 & 2.200 & 2.200 & 2.200 & 2.200 \\ \hline \end{array} .\%$$

Относительная толщина профиля ():

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 11.00 & 11.00 & 11.00 & 11.00 \\ 2 & 11.00 & 11.00 & 11.00 & 11.00 \\ 3 & 11.00 & 11.00 & 11.00 & 11.00 \end{bmatrix} .$$

Относительный шаг решетки ():

$$\left(\frac{t_{stator}}{chord_{stator}} \right)^T = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 0.6926 & 0.5508 & 0.5945 & 0.6251 \\ \hline 2 & 0.7428 & 0.5952 & 0.6398 & 0.6721 \\ \hline 3 & 0.7930 & 0.6396 & 0.6850 & 0.7192 \\ \hline \end{array}$$

Относительная густота решетки ():

$$\left(\frac{\text{chord}_{\text{stator}}}{t_{\text{stator}}} \right)^{\text{T}} = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.444 & 1.815 & 1.682 & 1.600 \\ \hline 2 & 1.346 & 1.680 & 1.563 & 1.488 \\ \hline 3 & 1.261 & 1.563 & 1.460 & 1.391 \\ \hline \end{array}$$

$$\left(\frac{\text{chord}_{\text{rotor}}}{t_{\text{rotor}}} \right)^{\text{T}} = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline & 1 & 1.737 & 1.650 & 1.574 & 1.600 \\ \hline & 2 & 1.470 & 1.401 & 1.344 & 1.363 \\ \hline & 3 & 1.168 & 1.092 & 1.077 & 1.152 \\ \hline \end{array}$$

Длина хорды профиля [м]:

		1	2	3	4				1	2	3	4	
$chord_{stator}^{T} =$	1	58.6	50.6	60.3	69.3	$\cdot 10^{-3}$	$chord_{rotor}^{T} =$	1	32.4	36.4	42.0	45.8	$\cdot 10^{-3}$
stator	2	58.6	50.6	60.3	69.3		rotor	2	29.6	33.4	38.5	42.1	10
	3	58.6	50.6	60.3	69.3			3	25.3	27.9	33.0	38.2	

Радиусы профилей:

		1	2	3	4				1	2	3	4	
$r_{inlet_{stator}}^{T} =$	1	2.58	2.23	2.66	3.05	$\cdot 10^{-3}$	$r_{inlet} \frac{T}{rotor} =$	1	1.26	1.42	1.64	1.79	$\cdot 10^{-3}$
stator	2	2.58	2.23	2.66	3.05	10	rotor	2	0.98	1.10	1.27	1.39	10
	3	2.58	2.23	2.66	3.05			3	0.53	0.59	0.69	0.80	
·												<u>,</u>	
		1	2	3	4				1	2	3	4	
$r_{outlet} \frac{T}{stator} =$	1	1.29	1.11	1.33	1.52	10^{-3}	r_outlet _{rotor} =	. 1	0.42	0.47	0.55	0.60	$\left[10^{-3}\right]$
stator	2	1.29	1.11	1.33	1.52		- rotor	2	0.33	0.37	0.42	0.46	
	3	1.29	1.11	1.33	1.52			3	0.18	0.20	0.23	0.27	

Толщина профиля [м]:

		1 2 3 4		1	2	3	4	
	c T	$1 \mid 6.45 \mid 5.57 \mid 6.64 \mid 7.62 \mid .10^{-3}$	1	4.22	4.74	5.45	5.96	$\cdot 10^{-3}$
2 0.45 5.57 0.04 7.02 2 3.20 3.07 4.24 4.03	stator	0 6.45 5.57 6.64 7.63 10101	1)	3.26	3.67	4.24	4.63	
3 6.45 5.57 6.64 7.62 3 1.77 1.96 2.31 2.67		3 6.45 5.57 6.64 7.62	3		1.96	2.31	2.67	

Шаг решетки [м]:

		1	2	3	4				1	2	3	4	
t , T =	1	40.6	27.9	35.9	43.3	$\cdot 10^{-3}$	$t \cdot T = $	1	18.7	22.1	26.7	28.6	$\cdot 10^{-3}$
t _{stator} =	2	43.6	30.1	38.6	46.6	10	rotor –	2	20.2	23.8	28.7	30.9	
	3	46.5	32.4	41.3	49.8			3	21.6	25.6	30.6	33.2	

			1	2	3	4				1	2	3	4		i
Угол поворота потока:	$\varepsilon_{\mathrm{stator}}^{\mathrm{T}} =$	1	64.10	22.00	38.26	51.69	·° ε	$_{rotor}^{T} =$	1	66.39	86.80	90.2	25 83	3.14	
· · · · · · · · · · · · · · · · · · ·	stator	2	67.32	33.86	47.53	57.40		rotor	2	80.39	94.27	93.3	86 83	3.56	
		3	71.86	45.67	56.37	62.65			3	93.13	102.01	95.9	82	2.65	
								•							
			1	2	3	4				1	2	3	4		
Угол установки профиля:	$v_{\mathrm{stator}}^{\mathrm{T}} =$	1	134.2	124.4	130.1	136.5	17	$_{rotor}^{T} =$	1	142.1	136.0	134.8	138.3	.0	
• 1 012 J • 1 m11 0 2 1 m1 1 4 0 4 1 m 2 1 .	stator	2	129.9	123.9	129.5	136.7	9	rotor	2	136.5	132.6	133.1	137.6		
		3	123.2	120.9	127.8	136.3			3	130.3	128.8	131.3	137.1		

			1	2	3	4				1	2	3	4	
Угол изгиба профиля:	$\pi - \varepsilon_{staton} = \begin{bmatrix} T \\ - \end{bmatrix}$	1	115.9	158.0	141.7	128.3	.0	$\pi - \varepsilon_{-} = 0$	1	113.6	93.2	89.8	96.9	.0
	" Stator =	2	112.7	146.1	132.5	122.6		rotor –	2	99.6	85.7	86.6	96.4	
		3	108.1	134.3	123.6	117.4			3	86.9	78.0	84.0	97.3	

Результаты расчета параметров решеток

▼ Подключение симметричного профиля

$$\begin{pmatrix} X_{U} & Y_{U} \\ X_{L} & Y_{L} \end{pmatrix} = NACA(0, 0, 100\%, 1)$$

Относ. координаты профиля РК и СА:

$$\begin{split} \text{AIRFOIL}_0 \Big(x, \text{line}, \overline{f}, \overline{x}_f, \overline{c} \Big) &= & \text{if } 0 \leq x \leq 1 \\ & & \text{linterp} \Big(X_U, Y_U, x \Big) \text{ if line} = "+" \\ & \frac{\text{linterp} \Big(X_U, Y_U, x \Big) + \text{linterp} \Big(X_L, Y_L, x \Big)}{2} \text{ if line} = "0" \\ & & x = 0, 0.005...1 \\ & \text{linterp} \Big(X_L, Y_L, x \Big) \text{ if line} = "-" \\ & \text{NaN otherwise} \end{split}$$

$$\begin{split} \text{AIRFOIL}(x,\text{line},\overline{c}^-,\theta) &= \begin{vmatrix} \text{linterp}\big(X_U,y/b_{cp.\Pi}\big(X_U,\theta\big) + Y_U\cdot\overline{c}^-,x\big) & \text{if line} = "+" \\ \frac{\text{linterp}\big(X_U,y/b_{cp.\Pi}\big(X_U,\theta\big) + Y_U\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "0" \\ \frac{\text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "-" \\ \text{NaN otherwise} & \end{aligned}$$

▲ Подключение симметричного профиля

▶ Определение относительных геометрических характеристик сечений Л

Результат расчета абсолютных геометрических характеристик сечений Л

▶ Определение абсолютных геометрических характеристик сечений Л —

▼ Результат расчета абсолютных геометрических характеристик сечений Л

		1	2	3	4	
$1_{upper_{stator}}^{T} =$	1	64.56	52.34	63.63	74.60	$\cdot 10^{-3}$
-sprestator	2	64.97	53.07	64.52	75.34	10
	3	65.58	53.97	65.48	76.07	

$$\frac{1}{1} = \frac{1}{1} = \frac{2}{1} = \frac{3}{1} = \frac{4}{1} = \frac{1}{1} = \frac{1$$

$$area_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 258.72 & 192.80 & 273.90 & 361.23 \\ 2 & 258.72 & 192.80 & 273.90 & 361.23 \\ 3 & 258.72 & 192.80 & 273.90 & 361.23 \end{vmatrix} \cdot 10^{-6}$$

$$Sx_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1665.7 & 355.1 & 1055.4 & 2185.0 \\ 2 & 1756.8 & 549.9 & 1321.3 & 2441.5 \\ 3 & 1887.1 & 748.6 & 1581.0 & 2681.1 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 6389.6 & 4110.4 & 6960.2 & 10541.9 \\ 2 & 6389.6 & 4110.4 & 6960.2 & 10541.9 \\ 3 & 6389.6 & 4110.4 & 6960.2 & 10541.9 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 24.7 & 21.3 & 25.4 & 29.2 \\ 2 & 24.7 & 21.3 & 25.4 & 29.2 \\ 3 & 24.7 & 21.3 & 25.4 & 29.2 \end{bmatrix} \cdot 10^{-3}$$

$$y0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 6.4 & 1.8 & 3.9 & 6.0 \\ 2 & 6.8 & 2.9 & 4.8 & 6.8 \\ 3 & 7.3 & 3.9 & 5.8 & 7.4 \end{bmatrix} \cdot 10^{-3}$$

$$1_upper_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 36.19 & 42.56 & 49.41 & 53.03 \\ 2 & 33.76 & 39.33 & 45.25 & 48.34 \\ 3 & 29.12 & 32.92 & 38.27 & 42.93 \end{bmatrix} \cdot 10^{-3}$$

$$1_lower_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 33.41 & 38.53 & 44.61 & 48.17 \\ 2 & 31.13 & 35.90 & 41.33 & 44.46 \\ 3 & 27.43 & 30.92 & 36.02 & 40.64 \end{bmatrix} \cdot 10^{-3}$$

$$Sx_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 345.7 & 662.1 & 1057.2 & 1251.8 \\ 2 & 276.0 & 474.3 & 719.3 & 828.2 \\ 3 & 129.1 & 194.3 & 297.4 & 388.4 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 1276.4 & 1812.0 & 2765.3 & 3599.6 \\ & 2 & 824.6 & 1178.8 & 1808.3 & 2367.8 \\ & 3 & 325.4 & 439.2 & 723.4 & 1124.3 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 13.7 & 15.3 & 17.7 & 19.3 \\ 2 & 12.5 & 14.1 & 16.2 & 17.7 \\ 3 & 10.6 & 11.8 & 13.9 & 16.1 \end{bmatrix} \cdot 10^{-3}$$

$$y0_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3.7 & 5.6 & 6.8 & 6.7 \\ 2 & 4.2 & 5.7 & 6.5 & 6.2 \\ 3 & 4.2 & 5.2 & 5.7 & 5.6 \end{bmatrix} \cdot 10^{-3}$$

$$Jx_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 12406 & 1067 & 5183 & 15768 \\ 2 & 13721 & 2076 & 7721 & 19367 \\ 3 & 15720 & 3549 & 10739 & 23084 \end{bmatrix} \cdot 10^{-12}$$

$$Jy_{\text{stator}}^{\text{T}} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 206780 & 114833 & 231764 & 403124 \\ 2 & 206780 & 114833 & 231764 & 403124 \\ 3 & 206780 & 114833 & 231764 & 403124 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 43693 & 8055 & 28524 & 67776 \\ 2 & 46072 & 12470 & 35696 & 75706 \\ 3 & 49471 & 16968 & 42691 & 83109 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1681 & 413 & 1116 & 2551 \\ 2 & 1791 & 508 & 1347 & 2866 \\ 3 & 1955 & 642 & 1613 & 3185 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2554 & 485 & 1704 & 4010 \\ 2 & 2683 & 747 & 2119 & 4456 \\ 3 & 2865 & 1009 & 2515 & 4866 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 5013 & 10772 & 19795 & 25610 \\ 2 & 3654 & 7064 & 12356 & 15579 \\ 3 & 1455 & 2419 & 4374 & 6627 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 221 & 496 & 921 & 1168 \\ 2 & 150 & 306 & 534 & 646 \\ \hline 3 & 55 & 96 & 168 & 231 \end{vmatrix} \cdot 10^{-12}$$

$$Jy0_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 5410 & 8631 & 15164 & 21553 \\ 2 & 3194 & 5143 & 9100 & 13036 \\ 3 & 1075 & 1603 & 3118 & 5614 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy0_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 292 & 610 & 1115 & 1460 \\ 2 & 209 & 395 & 692 & 887 \\ \hline 3 & 82 & 133 & 244 & 378 \end{vmatrix} \cdot 10^{-12}$$

$$\alpha_{major_{rotor}}^{T} = \begin{array}{|c|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 3.2 & 4.3 & 4.4 & 4.1 \\ \hline 2 & 3.9 & 4.6 & 4.6 & 4.1 \\ \hline 3 & 4.5 & 5.0 & 4.7 & 4.0 \\ \hline \end{array}$$

$$Jv_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 49113.3 & 27206.9 & 54947.2 & 95652.3 \\ 2 & 49127.8 & 27219.0 & 54977.0 & 95693.5 \\ 3 & 49149.7 & 27236.4 & 55011.7 & 95735.4 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 50657 & 27611 & 56010 & 98030 \\ 2 & 50767 & 27706 & 56240 & 98346 \\ 3 & 50931 & 27841 & 56507 & 98664 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 1465.9 & 940.2 & 1593.7 & 2416.2 \\ 2 & 1466.3 & 940.9 & 1594.8 & 2417.3 \\ 3 & 1466.7 & 941.7 & 1595.9 & 2418.3 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2479.0 & 1376.7 & 2778.6 & 4832.9 \\ 2 & 2479.0 & 1376.7 & 2778.6 & 4832.9 \\ 3 & 2479.0 & 1376.7 & 2778.6 & 4832.9 \end{vmatrix} \cdot 10^{-12}$$

$$Jv_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 5426 & 8676 & 15251 & 21657 \\ 2 & 3208 & 5175 & 9155 & 13099 \\ \hline 3 & 1081 & 1615 & 3138 & 5641 \end{bmatrix} \cdot 10^{-12}$$

$$Juv_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & -0 & 0 & 0 & -0 \\ 2 & -0 & 0 & 0 & -0 \\ 3 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 5631 & 9127 & 16085 & 22721 \\ 2 & 3343 & 5450 & 9634 & 13682 \\ 3 & 1130 & 1699 & 3286 & 5846 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 294.3 & 418.1 & 638.0 & 830.5 \\ 2 & 189.3 & 270.6 & 415.2 & 543.7 \\ 3 & 74.2 & 100.1 & 164.9 & 256.3 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 382.4 & 610.2 & 1072.1 & 1523.7 \\ 2 & 161.7 & 260.3 & 460.6 & 659.9 \\ 3 & 22.0 & 32.9 & 63.9 & 115.1 \end{bmatrix} \cdot 10^{-12}$$

		1	2	3	4	
$CPx \longrightarrow T =$	1	20.527	17.720	21.121	24.255	$\cdot 10^{-3}$
Stator –	2	20.527	17.720	21.121	24.255	10
	3	20.527	17.720	21.121	24.255	

		1	2	3	4	
$CPy_{stator}^{T} =$	1	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
stator	2	0.0000	0.0000	0.0000	0.0000	10
	3	0.0000	0.0000	0.0000	0.0000	

		1	2	3	4	
$CPx_{rotor}^{T} =$	1	11.350	12.756	14.686	16.035	1.10^{-3}
rotor	2	10.373	11.685	13.477	14.744	10
	3	8.846	9.776	11.545	13.373	

		1	2	3	4	
$CPy_{rotor}^{T} =$	1	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
rotor	2	0.0000	0.0000	0.0000	0.0000	10
	3	0.0000	0.0000	0.0000	0.0000	

Результат расчета абсолютных геометрических характеристик сечений Л

Вывод результатов расчета геометрических хар-к сечений Л

▼ Профилирование решеток

Абс. координаты профиля:

Airfoil(type,x,line,i,r) =	$AIRFOIL(x, line, c_{stator_{i,r}}, \varepsilon_{stator_{i,r}})$ if	type = "stator"
	$AIRFOIL(x, line, \overline{c}_{rotor_{i,r}}, \varepsilon_{rotor_{i,r}})$ if ty	xype = "rotor"

▲ Профилирование решеток

Рассматриваемая ступень:
$$j = 1$$

$$j = 1$$
 = 1
$$j = 1$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$

$$j \text{ otherwise}$$

▼ Построение профилей Л РК и НА

$$\begin{aligned} \text{AXLEO(type}, \textbf{x}, \textbf{i}, \textbf{r}) &= \frac{y0_{rotor_{\hat{i}, r}}}{\text{chord}_{rotor_{\hat{i}, r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{\hat{i}, r}}\right) \cdot \left(x - \frac{x0_{rotor_{\hat{i}, r}}}{\text{chord}_{rotor_{\hat{i}, r}}}\right) & \text{if type} = \text{"rotor"} \\ &\frac{y0_{stator_{\hat{i}, r}}}{\text{chord}_{stator_{\hat{i}, r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{\hat{i}, r}}\right) \cdot \left(x - \frac{x0_{stator_{\hat{i}, r}}}{\text{chord}_{stator_{\hat{i}, r}}}\right) & \text{if type} = \text{"stator"} \\ &\text{NaN otherwise} \end{aligned}$$

$$\text{AXLE90(type}, \textbf{x}, \textbf{i}, \textbf{r}) &= \frac{y0_{rotor_{\hat{i}, r}}}{\text{chord}_{rotor_{\hat{i}, r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{\hat{i}, r}} + \frac{\pi}{2}\right) \cdot \left(x - \frac{x0_{rotor_{\hat{i}, r}}}{\text{chord}_{rotor_{\hat{i}, r}}}\right) & \text{if (type} = \text{"rotor"} \end{aligned}$$

$$\begin{aligned} \text{AXLE90(type}, x, i, r) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}} + \frac{\pi}{2}\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if (type = "rotor")} \land \left|\alpha_{-}\text{major}_{rotor_{i,r}}\right| \ge 1 \cdot \circ \\ &\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}} + \frac{\pi}{2}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if (type = "stator")} \land \left|\alpha_{-}\text{major}_{stator_{i,r}}\right| \ge 1 \cdot \circ \\ &\text{NaN otherwise} \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 60.0 \cdot 10^{-3}$$

$r = av(N_r)$

■ Построение профилей Л РК и НА

Вывод координат для построения профиля Л

Рассматриваемая ступень:
$$j = 1$$
 $j = 1$ j

$$b_{\text{line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 60.0 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л на треугольниках скоростей

▲ Построение плоских решеток профилей Л на треугольниках скоростей

Bывод данных по построению профиля Л rotor и stator на треугольниках скоростей

$$j_{w} = \begin{cases} j = 1 \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{dis}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{rotor} = 1 ... Z_{rotor_{j}}$$

$$\mathbf{i}_{stator} = 1 ... Z_{stator_{j}}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} ... 2 \cdot \pi$$

$$\Pi_{HA}(r,j) = \begin{bmatrix} \frac{2 \cdot \pi}{Z_{stator_{j}}} & \text{if } D_{st(j,2),1} < r < D_{st(j,2),N_{r}} \\ NaN & \text{otherwise} \end{bmatrix}$$

▼ Расчет собственных частот колебаний Л

```
\nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                   \nu 0_{\rm M3\Gamma,rotor}
                                                 \nu 0_{
m yr.n.stator}
                                                                                                                                                                                                                                                                                                   \nu_{\rm VII.rotor}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         for r \in av(N_r)
(
u^0угл.stator_bondage 
u^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for mode \in 1..6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}\hat{0}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,1)}\,, h_{\text{st}(\hat{1},\,2)} \Big) \,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\substack{\text{stator}_{\hat{1},\,\text{r}} \\ \hat{1},\,\text{r}}} \,, \\ Ju_{\substack{\text{stator}_{\hat{1},\,\text{r}} \\ \hat{1},\,\text{r}}}} \,, \\ \\ Ju_{\substack{\text{stator}_{\hat{1},\,\text{r}} \\ \hat{1},\,\text{r}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \nu 0_{\text{yrn.stator}_{i,\,\text{mode}}} = \nu 0_{\text{yrn}} \left( \text{mode}\,, 0\,, \text{mean} \left( h_{\text{st}(i,\,1)}\,, h_{\text{st}(i,\,2)} \right), \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade})\,, \rho\_\text{blade}_i\,, \text{stiffness}_{\text{stator}_{i,\,r}}\,, \text{Jp}_{\text{stator}_{i,\,r}} \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{y_{\Gamma JI}.rotor_{\hat{1}},\,mode} = \nu 0_{y_{\Gamma JI}} \left(mode,0,mean\left(h_{st(\hat{1},2)},h_{st(\hat{1},3)}\right),Jung(2,\mu\_steel,E\_blade),\rho\_blade_{\hat{1}},stiffness_{rotor_{\hat{1},r}},Jp_{rotor_{\hat{1},r}}\right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{YFJI.stator\_bondage}_{i, \, mode}} = \nu 0_{\text{YFJI}} \left( \text{mode} , 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{YFJI.rotor\_bondage}_{i,\,mode}} = \nu 0_{\text{YFJ}} \left( \text{mode}\,,1\,,\text{mean} \left( h_{st(i\,,2)}\,,h_{st(i\,,3)} \right), \\ \text{Jung}(2\,,\mu\_\text{steel}\,,E\_\text{blade})\,,\rho\_\text{blade}_i\,,\text{stiffness}_{rotor_{i\,,\,r}}, \\ \text{Jp}_{rotor_{i\,,\,r}} \right) \left( \text{mode}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{stiffness}_{rotor_{i\,,\,r}}, \\ \text{Jp}_{rotor_{i\,,\,r}} \right) \left( \text{mode}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{stiffness}_{rotor_{i\,,\,r}}, \\ \text{Jp}_{rotor_{i\,,\,r}} \right) \left( \text{mode}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{stiffness}_{rotor_{i\,,\,r}}, \\ \text{Jp}_{rotor_{i\,,\,r}} \right) \left( \text{mode}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{steel}\,,\mu\_\text{
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ν0<sub>угл.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \nu 0_{y_{\Gamma JI}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \nu^0угл.stator bondage \nu^0угл.rotor bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

$$\operatorname{stack} \left(\nu 0_{\text{M3}\Gamma.\text{stator}}, \nu 0_{\text{M3}\Gamma.\text{rotor}}\right)^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3485 & 1505 & 1722 & 1835 & 1562 & 1561 & 1543 & 1248 \\ 2 & 21843 & 9432 & 10793 & 11499 & 9787 & 9782 & 9669 & 7819 \\ 3 & 61166 & 26413 & 30223 & 32200 & 27406 & 27392 & 27076 & 21896 \\ 4 & 119951 & 51798 & 59268 & 63146 & 53745 & 53718 & 53097 & 42939 \\ 5 & 198206 & 85591 & 97935 & 104342 & 88808 & 88764 & 87737 & 70952 \\ 6 & 296010 & 127826 & 146260 & 155829 & 132630 & 132564 & 131031 & 105963 \end{bmatrix}$$

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

		1	2	3	4	5	6	7	8
$stack \left(\nu \theta_{yrn.stator}, \nu \theta_{yrn.rotor}\right)^T =$	1	3812	3180	2918	2674	3368	2976	2766	2488
, <i>(</i>	2	11436	9541	8754	8023	10104	8928	8299	7463
$\operatorname{stack}(\nu 0_{\text{угл.stator}}, \nu 0_{\text{угл.rotor}})^{T} =$	3	19060	15902	14591	13372	16841	14881	13832	12439
,	4	26685	22263	20427	18721	23577	20833	19365	17414
	5	34309	28624	26263	24069	30313	26785	24898	22390
	6	41933	34985	32099	29418	37050	32738	30431	27365

		1	2	3	4	5	6	7	8
$stack (\nu 0_{yгл.stator_bondage}, \nu 0_{yгл.rotor_bondage})^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	1	7624	6361	5836	5349	6736	5952	5533	4975
	2	15248	12722	11672	10697	13473	11905	11066	9951
	3	22873	19083	17509	16046	20209	17857	16599	14926
	4	30497	25444	23345	21395	26945	23809	22132	19902
	5	38121	31805	29181	26744	33682	29762	27665	24877
	6	45745	38166	35017	32092	40418	35714	33197	29853

▲ Расчет собственных частот колебаний Л

Вывод результатов расчета собственных частот колебаний Л

Pасчетный узел: type = "turbine"

Объем бандажной полки (M^3): $V_{\overline{0}\Pi} = 0$

Радиус положения ЦМ бандажной полки (м): $R_{\delta\Pi} = 0$

▶ Расчет Л на прочность —

$$\begin{aligned} \text{neutral_line(type}, x, i, r) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \text{tan} \Big(\Big(\alpha_{major_{rotor_{i,r}}} + \varphi_{neutral}_{rotor} \Big(i, R_{st(i,2),r} \Big) \Big) \Big) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} \right) \end{aligned} \right. \\ &= \left| \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \text{tan} \Big(\Big(\alpha_{major_{stator_{i,r}}} + \varphi_{neutral}_{stator} \Big(i, R_{st(i,2),r} \Big) \Big) \right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) \end{aligned} \right. \\ &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \text{tan} \Big(\Big(\alpha_{major_{stator_{i,r}}} + \varphi_{neutral}_{stator} \Big(i, R_{st(i,2),r} \Big) - \frac{\pi}{4} \right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} \right) \end{aligned} \right. \\ &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan} \Big(\alpha_{major_{rotor_{i,r}}} + \varphi_{neutral}_{rotor} \Big(i, R_{st(i,2),r} \Big) - \frac{\pi}{4} \right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) \end{aligned} \right. \\ &= \left| \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan} \Big(\alpha_{major_{stator_{i,r}}} + \varphi_{neutral}_{stator} \Big(i, R_{st(i,2),r} \Big) - \frac{\pi}{4} \right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) \end{aligned} \\ &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan} \Big(\alpha_{major_{stator_{i,r}}} + \varphi_{neutral}_{stator} \Big(i, R_{st(i,2),r} \Big) - \frac{\pi}{4} \right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) \end{aligned} \\ &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan} \Big(\alpha_{major_{stator_{i,r}}} + \varphi_{neutral}_{stator} \Big(i, R_{st(i,2),r} \Big) - \frac{\pi}{4} \right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) \end{aligned} \\ &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan} \Big(\alpha_{major_{stator_{i,r}}} + \varphi_{neutral}_{stator} \Big(i, R_{st(i,2),r} \Big) - \frac{\pi}{4} \right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) \end{aligned} \\ &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \varphi_{neutral}_{stator_{i,r}} + \varphi_{neutral}_{stator_{i,r}} \Big) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) \end{aligned} \\ &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r$$

▶ Определение координат точек профиля Л, наиболее удаленных от НЛ

Наиболее удаленные точки от НЛ (мм):

$$u_{-l_{rotor}}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 18.423 & 18.198 & 18.139 & 18.190 \\ 2 & 16.738 & 16.589 & 16.580 & 16.658 \\ 3 & 14.203 & 14.117 & 14.152 & 14.251 \end{vmatrix} \cdot 10^{-3}$$

$$u_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & -5.101 & 26.620 & 19.884 & 16.746 \\ 2 & 13.579 & 27.702 & 31.315 & 19.244 \\ 3 & -9.445 & -16.428 & -13.947 & 27.195 \end{bmatrix} \cdot 10^{-3}$$

$$u_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & -8.197 & -21.916 & -21.919 & -21.412 \\ 2 & 1.424 & -15.550 & -17.773 & -20.198 \\ 3 & 29.069 & 29.084 & 6.733 & -16.908 \end{vmatrix} \cdot 10^{-3}$$

		1	2	3	4	
$\mathbf{v} \cdot \mathbf{u} = \mathbf{T}$	1	3.038	3.324	3.372	3.279	$\cdot 10^{-3}$
v_u _{rotor} =	2	2.669	2.844	2.834	2.713	
	3	1.934	2.027	1.964	1.819	

$$v_{-1}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -5.143 & -6.725 & -7.040 & -6.584 \\ 2 & -5.576 & -6.572 & -6.555 & -5.938 \\ 3 & -5.408 & -5.963 & -5.647 & -4.892 \end{bmatrix} \cdot 10^{-3}$$

$$v_{u_{stator}}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 25.008 & 6.901 & 7.009 & 7.208 \\ 2 & 31.802 & 19.883 & 13.873 & 8.592 \\ 3 & 6.651 & 7.953 & 21.140 & 12.770 \end{vmatrix} \cdot 10^{-3}$$

$$v_{-}l_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & -33.559 & -9.119 & -10.986 & -12.486 \\ 2 & -25.574 & -18.863 & -17.146 & -14.602 \\ 3 & -18.963 & -18.084 & -33.741 & -18.499 \end{vmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-nrotor} \\ \sigma_{-pstator} & \sigma_{-nstator} \end{pmatrix} = \begin{pmatrix} \text{for } i \in 1 \dots Z \\ \text{for } r \in 1 \dots N_r \end{pmatrix} \\ \begin{pmatrix} \sigma_{-Protor_{i,r}} & \sigma_{-nrotor_{i,r}} \\ \sigma_{-pstator_{i,r}} & \sigma_{-nstator_{i,r}} \end{pmatrix} = \begin{pmatrix} \frac{Mu_{rotor}(i,R_{st(i,2),r})}{Ju_{rotor_{i,r}}} \cdot v_{-urotor_{i,r}} - \frac{Mv_{rotor}(i,R_{st(i,2),r})}{Jv_{rotor_{i,r}}} \cdot v_{-urotor_{i,r}} - \frac{Mu_{rotor}(i,R_{st(i,2),r})}{Jv_{rotor_{i,r}}} \cdot v_{-urotor_{i,r}} - \frac{Mv_{rotor}(i,R_{st(i,2),r})}{Jv_{rotor_{i,r}}} \cdot v_{-urotor_{i,r}} - \frac{Mv_{rotor}(i,R_{st(i,2),r})}{Jv_{stator_{i,r}}} \cdot v_{-urotor_{i,r}} - \frac{Mv_{rotor_{i,r}}}{Jv_{stator_{i,r}}} \cdot v_{-urotor_{i,r}} - \frac{Mv_{rotor_{i,r}}}{Jv_{rotor_{i,r}}} \cdot v_{-$$

$$\begin{pmatrix} \sigma_p_{rotor.} & \sigma_p_{stator.} \\ \sigma_n_{rotor.} & \sigma_n_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1...Z \\ \\ \sigma_p_{rotor.}(i,z) = \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_p_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,$$

$$\sigma_{protor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & -47.11 & -36.12 & -23.18 & -14.88 \\ & 2 & -22.35 & -18.72 & -11.72 & -6.22 \\ & 3 & -3.87 & -4.94 & -2.06 & -0.06 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4
$\sigma p_{rotor} \leq 70.10^6 =$	1	1	1	1	1
$\sigma_{\text{rotor}} \leq 70.10^{\circ} =$	2	1	1	1	1
	3	1	1	1	1

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 85.83 & 77.66 & 51.55 & 32.33 \\ 2 & 49.10 & 45.13 & 28.47 & 14.57 \\ 3 & 11.15 & 14.91 & 6.14 & 0.16 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4
$\sigma_{\text{ntor}}^{\text{T}} \le 70 \cdot 10^6 =$	1	0	0	1	1
-irotor = / 0 10	2	1	1	1	1
	3	1	1	1	1

		1	2	3	4	
$\sigma p_{-1} = T$	1	0.00	0.70	0.36	0.03	$\cdot 10^{6}$
$\sigma_p_{stator} =$	2	1.39	7.96	5.00	1.63	
	3	-9.13	-17.30	-6.49	6.71	

		1	2	3	4	
$\sigma_{p_{stator}}^{T} \le 70 \cdot 10^{6} =$	1	1	1	1	1	
Stator = 70 To	2	1	1	1	1	
	3	1	1	1	1	

$$\sigma_{-} n_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 0.00 & -0.74 & -0.48 & -0.05 \\ 2 & -0.20 & -5.82 & -4.17 & -2.24 \\ 3 & 26.68 & 35.35 & 5.99 & -6.41 \end{bmatrix} \cdot 10^{6}$$

$\sigma_{\text{nstator}}^{\text{T}} \le 70 \cdot 10^6 =$		1	2	3	4
	1	1	1	1	1
	2	1	1	1	1
	3	1	1	1	1

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \text{for } r \in 1...N_r \end{cases}$$

$$\begin{vmatrix} \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{-}z_{rotor}(i,R_{st(i,2),r}) + \max\left(\sigma_{-}p_{rotor_{i,r}},\sigma_{-}n_{rotor_{i,r}}\right)\right)^2 + \tau_{rotor}(i,R_{st(i,2),r})^2}$$

$$\begin{vmatrix} \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{-}p_{stator_{i,r}},\sigma_{-}n_{stator_{i,r}}\right)\right)^2 + \tau_{stator}(i,R_{st(i,2),r})^2} \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, z \Big) \\ \\ \sigma_{stator.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator}, i, i, 1, N_r \Big)^T, z \Big) \\ \\ \begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix}$$

$$\sigma_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 116.67 & 117.88 & 101.19 & 89.04 \\ 2 & 68.23 & 69.97 & 59.02 & 47.69 \\ 3 & 17.89 & 24.36 & 16.54 & 3.18 \end{bmatrix} \cdot 10^{6}$$

$$\sigma_{\text{stator}}^{\text{T}} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0.00 & 0.73 & 0.44 & 0.10 \\ 2 & 2.14 & 8.01 & 5.08 & 1.77 \\ 3 & 26.89 & 35.40 & 6.22 & 6.85 \end{vmatrix} \cdot 10^{6}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} for \ i \in 1...Z \\ for \ r \in 1...N_r \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ \vdots, r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{rotor}} & if \ \sigma_{rotor} \\ \vdots, r \end{vmatrix} \neq 0$$

$$safety_{stator} \\ safety_{stator} \\ \vdots, r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{stator}} & if \ \sigma_{stator} \\ \vdots, r \end{vmatrix} \neq 0$$

$$safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

$$content in the state of th$$

$$safety_{rotor}^{T} = \begin{array}{|c|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.03 & 1.02 & 1.19 & 1.35 \\ \hline 2 & 1.76 & 1.71 & 2.03 & 2.52 \\ \hline 3 & 6.71 & 4.93 & 7.26 & 37.69 \\ \hline \end{array}$$

		1	2	3	4
$safety_{rotor}^{T} \ge safety =$	1	0	0	0	1
	2	1	1	1	1
	3	1	1	1	1

		1	2			1	2	3	4
$safety_{stator} = $	1	000000000000000000000000000000000000000		T safety _{stotor} \geq safety =	1	1	1	1	1
saletystator	2	56.01		stator = surety =	2	1	1	1	1
	3	4.46			3	1	1	1	1

Рассматриваемая ступень:
$$j=1$$
 if type = "compressor" = 4 Z if type = "turbine" $J=1$ if typ

$$b_{\text{line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 422.0 & 453.2 & 484.5 \\ 2 & 433.0 & 466.0 & 499.1 \\ 3 & 433.0 & 468.5 & 503.9 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = \min(Rj), \min(Rj) + \frac{\max(Rj) - \min(Rj)}{100} ... \max(Rj)$$

$$z_{rotor} = \begin{bmatrix} mean\big(Rj_{1,1},Rj_{2,1}\big), mean\big(Rj_{1,1},Rj_{2,1}\big) + \frac{mean\big(Rj_{1,N_r},Rj_{2,N_r}\big) - mean\big(Rj_{1,1},Rj_{2,1}\big)}{100} ... mean\big(Rj_{1,N_r},Rj_{2,N_r}\big) & \text{if type = "compressor"} \\ mean\big(Rj_{2,1},Rj_{3,1}\big), mean\big(Rj_{2,1},Rj_{3,1}\big) + \frac{mean\big(Rj_{2,N_r},Rj_{3,N_r}\big) - mean\big(Rj_{2,1},Rj_{3,1}\big)}{100} ... mean\big(Rj_{2,N_r},Rj_{3,N_r}\big) & \text{if type = "turbine"} \\ \end{bmatrix}$$

$$z_{stator} = \begin{bmatrix} mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) & \text{if type} = "compressor" \\ mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) & \text{if type} = "turbine" \\ \end{bmatrix}$$

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "rotor" \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} v_{-}p \\ v_{-}n \end{pmatrix} = \begin{pmatrix} v_{-}u_{rotor_{j},r} \\ v_{-}l_{rotor_{j},r} \\ v_{-}l_{stator_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{pmatrix} x_{0} \\ \frac{1}{1} & \frac{2.713}{2.713} \\ \frac{1}{2} & \frac{2.713}{2.5.938} \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\$$

chord =
$$\begin{vmatrix} \text{chord}_{\text{rotor}_{j,r}} & \text{if blade} = \text{"rotor"} \\ \text{chord}_{\text{stator}_{j,r}} & \text{if blade} = \text{"stator"} \end{vmatrix}$$

Наиболее удаленные точки от НЛ (мм):

$$\begin{pmatrix} u_rotor_{j}, r & v_rotor_{j}, r \\ u_rotor_{j}, r & v_rotor_{j}, r \\ u_u_{stator_{j}, r} & v_u_{stator_{j}, r} \\ u_l_{stator_{j}, r} & v_l_{stator_{j}, r} \\ v_l_{stator_{j}, r} & v_l_{stator_{j}, r} \end{pmatrix} = \begin{pmatrix} u_rotor_{j}, r & v_l_{rotor_{j}, r} \\ 1 & -0.36 & 2.71 \\ 2 & 16.66 & -5.94 \\ 3 & 19.24 & 8.59 \\ 4 & -20.20 & -14.60 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} \sigma_rotor_{j}, r & \sigma_rotor_{j}, r \\ \sigma_n_{rotor_{j}, r} & \sigma_n_{stator_{j}, r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -6.2 & 1.6 \\ 2 & 14.6 & -2.2 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_stator_{j}, r \\ \sigma_rotor_{j}, r \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1.8 \\ 1 & 1.8 & 2 & 1.6 \\ 2 & 14.6 & -2.2 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_stator_{j}, r \\ \sigma_rotor_{j}, r \end{pmatrix} = \begin{pmatrix} \sigma_stator_{j}, r$$

▲ Результаты расчета на прочность Л

Вывод результатов расчета Л на прочность

▼ Выбор материала Д

Запас по температуре (К): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: material_disk_i = "ВЖ175" if turbine = "ТВД" "ЭП742" if turbine = "ТНД"

Плотность материала Д (кг/м^3):

$\begin{array}{lll} \rho_{disk}_i = & 8266 & if \; material_{disk}_i = "B\%175" \\ & 8320 & if \; material_{disk}_i = "3\Pi742" \\ & 8393 & if \; material_{disk}_i = "\%C-6K" \\ & 7900 & if \; material_{disk}_i = "BT41" \\ & 4500 & if \; material_{disk}_i = "BT25" \\ & 4570 & if \; material_{disk}_i = "BT23" \\ & 4510 & if \; material_{disk}_i = "BT9" \\ & 4430 & if \; material_{disk}_i = "BT6" \\ & NaN & otherwise \\ \end{array}$

Предел длительной прочности Д (Па):

$$\sigma_{disk_long_i} = 10^6 \cdot \begin{vmatrix} 620 & \text{if material_disk}_i = \text{"B}\%175\text{"} \\ 680 & \text{if material_disk}_i = \text{"}\%\text{C-}6\text{K"} \\ 125 & \text{if material_disk}_i = \text{"}\%\text{C-}6\text{K"} \\ 123 & \text{if material_disk}_i = \text{"}B\text{T41"} \\ 150 & \text{if material_disk}_i = \text{"}B\text{T25"} \\ 230 & \text{if material_disk}_i = \text{"}B\text{T23"} \\ 200 & \text{if material_disk}_i = \text{"}B\text{T9"} \\ 210 & \text{if material_disk}_i = \text{"}B\text{T6"} \\ \text{NaN otherwise} \end{vmatrix}$$

material_disk
$$^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & "ЭП742" & "ЭП742" & "ЭП742" & "ЭП742" \end{bmatrix}$$

$$\sigma_{\text{disk_long}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 680 & 680 & 680 & 680 \end{bmatrix} \cdot 10^{6}$$

▲ Выбор материала Д

Рассматриваемая ступень:
$$j = Z$$
 = $j = Z$ = "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{pmatrix} chord_{rotor_{i},ORIGIN} \cdot sin \Big(\upsilon_{rotor_{i},ORIGIN}\Big) \Big) \cdot e^{\frac{\rho_{-}disk_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-}z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \Big[\big(R_{st(i,2),ORIGIN}\big)^{2} - z^{2} \big]} \\ \text{if } z \leq R_{st(i,2),ORIGIN} \end{pmatrix}$$

$$NaN \quad otherwise$$

$$z = 0, \frac{R_{st(j,2),ORIGIN}}{N_{dis}} .. R_{st(j,2),ORIGIN}$$

▲ Профилирование равнопрочного Д без центрального отв

Рассматриваемая ступень: j = j = 1

$$j = 1$$
 = 1 $j = 1$ = 1 $j = 1$ Taкой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

Приведенная скорость по профилю Л –

Общие параметры охлаждения —

ГКонвективное охлаждение —

ГКонвективно-пленочное охлаждение —

▶ Результат конвективно-пленочного охлажден

Вывод результатов охлаждения

		1	2	3	4	5	6	7	8	9	
$D^{T} =$	1	650.0	650.0	617.2							·10 ⁻³
_	2	678.5	678.5	662.1							
	3	707.0	707.0	707.0							

$$R = \frac{D}{2}$$

$$\overline{d} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases}$$

$$\overline{d}_{st(i,a)} = \frac{D_{st(i,a),1}}{D_{st(i,a),N_r}}$$

$$\overline{d}$$

$\overline{\mathbf{d}}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9
	1	0.9194	0.9194	0.8730						

$$\overline{d}^{T} \le 0.9 = \begin{array}{c|cccc} & 1 & 2 & 3 \\ \hline 1 & 0 & 0 & 1 \end{array}$$

$$\mathbf{h} = \begin{cases} \text{for } i \in 1..2Z + 1 \\ h_i = \frac{F_i}{\pi \cdot D_{i, av(N_r)}} \end{cases}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 197.2 \\ 511.5 \\ 232.4 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 195.0 \\ 253.8 \\ 232.0 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 282.8 \\ 325.5 \\ 324.6 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 81.44 \\ 29.75 \\ 86.72 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 234.2 \\ 240.3 \\ 240.3 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 43.59 \\ 128.76 \\ 45.62 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\mathrm{stator}_{\mathrm{j},\mathrm{r}}} = 51.69^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 83.14^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 197.0 \\ 483.7 \\ 232.4 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 196.6 \\ 232.9 \\ 232.4 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 309.0 \\ 285.6 \\ 348.6 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 86.19 \\ 28.78 \\ 89.96 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 251.6 \\ 258.7 \\ 260.0 \end{pmatrix}$$

$$\begin{pmatrix}
\beta_{st(j,1),r} \\
\beta_{st(j,2),r} \\
\beta_{st(j,3),r}
\end{pmatrix} = \begin{pmatrix}
39.50 \\
125.36 \\
41.81
\end{pmatrix}$$

$$\varepsilon_{\mathrm{stator}_{j,r}} = 57.4^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 83.56^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 197.0 \\ 458.7 \\ 232.4 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 197.0 \\ 212.9 \\ 232.1 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 334.2 \\ 249.1 \\ 371.9 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90.31 \\ 27.66 \\ 92.70 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 268.9 \\ 277.0 \\ 279.7 \end{pmatrix}$$

$$\begin{pmatrix}
\beta_{st(j,1),r} \\
\beta_{st(j,2),r} \\
\beta_{st(j,3),r}
\end{pmatrix} = \begin{pmatrix}
36.12 \\
121.27 \\
38.62
\end{pmatrix}$$

$$\varepsilon_{\mathrm{stator}_{j,r}} = 62.65^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 82.65^{\circ}$$