7/3/24, 4:34 PM about:blank

Data Visualization with Python

Cheat Sheet: Maps, Waffles, WordCloud and Seaborn

Function	Description	Syntax	Example	Visual
Folium				
Мар	Create a map object with specified center coordinates and zoom level.	<pre>folium.Map(location=[lat, lon], zoom_start=n)</pre>	<pre>world_map = folium.Map() canada =folium.Map(location=[56.130, -106.35], zoom_start=4)</pre>	
Marker	Add a marker to the map with custom icon, popup, and tiles Tiles as Stamen Toner	<pre>folium.Marker(location=[lat , lon], popup='Marker Popup', tiles='Stamen Toner').add_to(map)</pre>	<pre>folium.Marker(location=[556.130, -106.35], tooltip='Marker', tiles='Stamen Toner').add_to(world_map)</pre>	
	Tiles as Stamen Terrain	<pre>folium.Marker(location=[lat , lon], popup='Marker Popup', tiles='Stamen Terrain').add_to(map)</pre>	<pre>folium.Marker(location=[556.130, -106.35], tooltip='Marker', tiles='Stamen Terrain').add_to(world_map)</pre>	
Circle	Add a circle to the map with specified radius, color, and fill opacity.	<pre>folium.features.CircleMarker(location=[lat, lon], radius=n, color='red', fill_opacity=n).add_to(map)</pre>	<pre>folium.features.CircleMarker(location= [56.130, -106.35], radius=1000, color='red', fill_opacity=0.5).add_to(world_map)</pre>	

about:blank

7/3/24, 4:34 PM about:blank

Function Description Syntax

Example

Visual

Chorpleth	create a choropleth map based on a GeoJSON file and a specified data column.	<pre>folium.Choropleth(geo_data='path/to/geojson_file data=df, columns=['region', 'value_column'], key_on='feature.properties.id', fill_color='YlGnBu', fill_opacity=0.7, line_opacity=0.2, legend_name='Legend').add_to(map)</pre>
-----------	--	---

world_map.choropleth(geo_data=world_geo,
'data=df_can, columns=['Country', 'Total'], key_on='feature.properties.name',
fill_color='YlOrRd', fill opacity=0.7, line opacity=0.2, legend name='Immigration to Canada')

PyWaffle

Waffle

```
plt.figure(FigureClass = Waffle,rows = 20, columns plt.figure(FigureClass = Waffle,rows = 20, columns = 30, values = values)
chart based on
                                                                         'tab20'.
values and
               waffle chart = waffle.Waffle(values=[value1,
               value2, ...],
categories.
               rows=n, columns=n)
```

values = df dsn['Total'], cmap name = legend = {'labels': label,'loc': 'lower left'. 'bbox to anchor':(0,-0.1),'ncol': 3})


```
Add a legend
                          waffle chart.legend(loc='upper left',
            to the waffle
Legend
                          bbox_to_anchor=(1, 1))
            chart.
            Add a title to
Title
            the waffle
                          waffle_chart.set_title('Waffle Chart Title')
            chart.
            Add labels to
                          waffle chart.set labels(['Label 1', 'Label 2',
            the waffle
Labels
                          ...])
            chart.
```

WordCloud

Function Description Syntax Visual **Example** alice wc = WordCloud(background_color='white', Create a word max words=2000, mask=alice mask, cloud object WordCloud wordcloud = WordCloud().generate(text data) stopwords=stopwords) based on text alice wc.generate(alice novel) data. plt.imshow(alice_wc, interpolation='bilinear') Generate the word cloud Generate wordcloud.generate(text data) based on the text data. Display the word cloud using **Display** plt.imshow(wordcloud, interpolation='bilinear') matplotlib or other plotting libraries. Set various options for the wordcloud = WordCloud(font_path='path/to/font_file',
background_color='white', word cloud, **Options** such as font, colormap='Blues', mask=mask_image, stopwords=stopwords).generate(text_data) colors, mask, and stopwords. Seaborn sns.barplot(x='Continent', y='Total', barplot sns.barplot(x='x variable', y='y variable', Create a bar data=dataframe) data=df can1) plot to visualize the relationship

between a categorical variable and a

sns.countplot(x='category', data=dataframe)

Function 1	Description	Syntax
I unetion i	o coci iption	$\sim j$

numeric variable.

Create a count plot to display the frequency

countplot of each

category in a categorical variable.

Create a scatter plot with a linear

regression line to visualize the to visualize the y='y_variable', data=dataframe)

relationship between two numeric variables. Example

Visual

sns.countplot(x='Continent',
data=df_can)

sns.regplot(x='year', y='total',
data=df_tot)

Author(s)

Dr. Pooja

Changelog

Date Version Changed by Change Description

2023-06-18 0.1 Dr. Pooja Initial version created