KOSHA GUIDE

E - 112 - 2011

서지보호장치(SPD) 선정 및 설치에 관한 기술지침

2011. 12.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 제정자 : 한국산업안전보건공단 이형수

ㅇ 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

ㅇ 제정경과

- 2006년 11월 KOSHA Code 전기안전분야 제정위원회 심의
- 2006년 12월 KOSHA Code 총괄제정위원회 심의
- 2011년 12월 전기안전분야 제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
- IEC 60364-5-53: 2002. 6(Electrical installtions of buildings-Part 5: Selection and erection of electrical equipment -Section 534: Devices for protection against overvoltages)
- IEC 61643-12: 2002. 2(Low-vlotage surge protective devices-Part 12: Surge protective devices connected to low-voltage power distribution systems-Selection and application principles)
- KSC IEC 61643-12: 2005 저압서지보호장치-제12부: 저압배전계통에 접속한 서지보호 장치-선정 및 적용지침
- KSC IEC 60364-4-443: 건축전기설비-제4부:안전보호-제443절:대기현상 및 개폐에 기 인한 과전압 보호
- 관련법규·규칙·고시 등
- 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지)
- 내선규정 제9장 건축전기설비(IEC 60364 잠정규정): 904-4 과전압 보호-2. 대기현상 또는 개폐에 기인한 과전압 보호
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2011년 12월 29일

제 정 자 : 한국산업안전보건공단 이사장

서지보호장치(SPD) 선정 및 설치에 관한 기술지침

1. 목적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제2편 제3장(전기로 인한 위험방지)규정에 따라 낙뢰에 의해 배전계통으로 전파되는 과도과전압및 설비 내의 기기에서 발생하는 개폐과전압에 대해 전기설비를 보호하는 서지보호장치(이하 "SPD"라 한다) 선정 및 설치에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 교류 1,000 V 또는 직류 1,500 V 이하의 기기에 접속되는 서지보호장치의 선정과 설치에 대하여 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "서지보호장치(Surge Protective Device : SPD)"라 함은 과도적 과전압을 제한 하고 서지전류를 분류하는 것을 목적으로 하는 장치를 말한다.
 - (나) "보조장치(Auxiliary device)"라 함은 SPD 분리기 및 동작표시기를 말한다.
 - (다) "SPD 분리기"(SPD disconnector)"라 함은 SPD를 전원계통에서 분리하기 위해 필요한 장치를 말한다.
 - (라) "동작표시기(Status indicator)"라 함은 SPD의 동작상태를 표시하는 장치를 말한다.
 - (마) "최대연속사용전압 U_c (Maximum continuous operating voltage)"라 함은 SPD에 연속 적으로 인가할 수 있는 최대전압 실효값을 말하며 SPD의 정격전압과 같다.
 - (바) "전압 보호수준 $U_p(Voltage protection level)"라 함은 단자 사이에 걸리는 전압을 제한할 수 있는 SPD의 성능을 규정하는 값을 말한다.$

KOSHA GUIDE

E - 112 - 2011

- (사) "잔류전압 $U_{res}(Residual\ voltage)$ "라 함은 방전전류의 통과로 인해 SPD 단자 사이에 나타나는 전압의 피크 값을 말한다.
- (아) "순간 과전압 U_{TOV} (Temporary overvoltage)"이라 함은 규정된 시간 내에 보호 장치가 견딜 수 있는 일시적인 과전압을 말한다.
 - (자) "1.2/50 충격전압(1.2/50 Voltage impulse)"라 함은 전압시험 파형을 파두길이 1.2 μ s, 파미길이 50 μ s인 충격전압을 말한다.
- (차) "8/20 충격전류 (8/20 Current impulse)"라 함은 전류시험 파형으로 파두 8μs, 파미 20μs의 충격전류를 말한다.
- (카) "공칭 방전전류 I_n (Nominal discharge current)"라 함은 SPD에 흐르는 전류파형이 8/20인 파형을 말한다.
- (타) "충격전류 I_{imp} (Impulse current)"라 함은 SPD에 흐르는 전류파형이 10/350 μ s 파형으로 전류 피크 값이 규정된 충격 전류와 같다.
- (파) "조합파(Combination wave)"라 함은 개방회로 양단의 1.2/50 충격전압과 단락 회로에서의 8/20 충격전류를 인가하는 발생기에서 정해지며, 개방회로의 충격 전압은 U_{oc} 로 표시된다.
- (하) "속류 $I_f(Follow \ current)$ "라 함은 SPD가 방전된 후 SPD에 공급되는 전압에 의해 흐르는 전류를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. SPD 규격

4.1 SPD 형식

SPD 형식은 타입 I에서 타입 III까지 3가지로 분류한다. 각 타입에 대한 SPD는 <표 1>에 나타낸 항목의 시험에 합격하여야 한다.

<표 1> SPD 형식

SPD 형식	SPD에 실시하는 시험 종류	클래스 시험항목 (KS IEC 61312-1 :뇌충격 보호에 따름)
타입 I	클래스 I 시험	I _{imp} , I _n
타입 II	클래스 II 시험	I _{imp} , I _n
타입 III	클래스 III 시험	$ m U_{oc}$

4.2 SPD 기능

SPD는 그 기능에 따라 다음 3종류가 있다.

(1) 전압스위칭형 SPD

서지가 인가되지 않은 경우 높은 임피던스 상태이고, 전압서지가 있을 때는 급격하게 임피던스가 낮아지는 기능을 가진 SPD이다. 이에 사용되는 소자의 예로, 에어갭, 가스방전관, 사이리스터, 트라이액 등이 있다.

(2) 전압제한형 SPD

서지가 인가되지 않은 경우 높은 임피던스 상태이고, 서지전류와 전압이 상승하면 임피던스가 연속적으로 감소하는 기능을 가진 SPD이다. 전압제한형 SPD에 사용 되는 소자의 예로, 배리스터, 억제다이오드 등이 있다.

(3) 조합형 SPD

전압스위칭형 소자와 전압제한형 소자를 갖는 SPD이다. 인가전압의 특성에 따라 전압스위칭, 전압제한 또는 전압스위칭과 전압제한의 두 가지 동작을 하는 것으로 가스방전관과 배리스터를 조합한 SPD가 있다.

4.3 SPD 구조

(1) SPD에는 회로의 접속단자 형태로 1포트 SPD와 2포트 SPD가 있다. 각각의 특징 및 표시 예는 <표 2>와 같다.

<표 2> SPD의 구성

구조 구분	특 징	표시 예
1포트 SPD	1단자 또는 2단자를 갖는 SPD로 보호하는 기 기에 대하여 서지를 분류하도록 접속한다.	SPD
2포트 SPD	2단자 또는 4단자를 갖는 SPD로 입력단자와 출 력단자 사이에 직렬 임피던스가 삽입되어 있다.	SPD -0

(2) 1포트 SPD는 전압 스위칭형, 전압제한형 또는 복합형의 기능을 갖는 SPD이고, 2포트 SPD는 복합형의 기능을 가지고 있다.

4.4 SPD 명세

(1) SPD 명세는 타입별로 <표 3>과 같이 충격전류, 공칭 방전전류, 공칭 방전전압, 개방회로 전압, 최대연속사용전압 및 전압보호수준의 값을 정한다.

<표 3> SPD 명세

SPD 형식 	충격전류	공칭방전전류	개방회로 전압	최대연속 사용전압	전압보호수준
	$ m I_{imp}$	8/20	조합	50/60 Hz	$1.2/50\mu s$
	I _{peak} (kA)	In(kA)	Uoc (kV)	Uc (V)	Up(kV)
타입 I	5, 10, 20	5, 10, 20	_		4, 2.5
타입 II	_	1, 2, 5, 10, 20	_	110,130,230,240, 420,440	2.5, 1.5
타입 III	_	_	2, 4, 10, 20		1.5

KOSHA GUIDE

E - 112 - 2011

(2) 일반적으로 타입 I은 뇌충격전류가 부분적으로 전파되는 낙뢰 피해가 큰 장소 (예를 들면 피뢰보호계통(LPS)에 의해 보호되고 있는 건축물에 대한 공급선 인입구)에 시설하고, 타입 II와 타입 III은 낙뢰피해가 낮은 장소에 시설한다.

4.5 보조장치

- (1) 서지가 예상한 최대에너지 및 방전전류용량 보다 큰 경우 SPD가 고장 나거나 파괴되는 경우가 있다. 이 때 SPD의 고장모드는 개방모드 또는 단락모드가 된다.
- (2) SPD가 고장 난 경우에 안전성을 확보하기 위해 각 모드에 다음과 같은 장치를 설치하는 것이 좋다.
 - (가) 개방모드에서는 SPD가 고장 났을 때 다음에 침입하는 서지에 대해 기기를 보호할 수 없기 때문에 고장 난 SPD를 교환하기 위해 SPD의 상태를 표시하는 동작표시기를 설치한다.
 - (나) 단락모드에서는 고장 난 SPD에 의해 배전계통이 단락에 가까운 상태가 되기 때문에 단락전류로 인해 화재 등이 발생하지 않도록 SPD를 분리기를 설치한다.

5. 내충격 범주 분류

(1) 건축물에 설치하는 기기에 필요한 정격 충격전압은 기기의 설치장소 및 공칭전압에 따라 <표 4>에 표시한 충격전압 보다 높아야 한다.

<표 4> 기기의 정격 충격 내전압

공칭	전압*	필요한 충격 내전압 (kV)					
3상계통	단상계통	설비의 인입구 기기(내충격 범주 IV)	간선 및 분기회로 기기 (내충격범주 III)	부하기기 (내충격 범주 II)	특별히 보호되는 기기 (내충격 범주 I)		
_	120-240	4	2.5	1.5	0.8		
230/440 277/480	_	6	4	2.5	1.5		
400/690	_	8	6	4	2.5		
1000	_	기술자가 지정하는 값					
* IEC 60038(표준전압)에 따른다.							

- (2) 과전압 카테고리별 설치기기는 다음과 같다.
- (가) 과전압범주 IV 기기는 건축전기설비의 인입구 또는 배전반·분전반의 전원측 에 사용하기 위한 것이다. 예로서 인입용전선, 전력량계, 전류제한기, 누전차단 기 등을 들 수 있다.
- (나) 과전압범주 III 기기는 고정전기설비의 일부인 기기 및 기타 기기로 사용등급이 보다 높다고 예상되는 기기이다. 예로서, 고정전기설비 내의 분전반, 차단기, 콘 센트, 케이블 또는 산업용 기기 고정설비에 상시 접속하는 전동기 등을 들 수 있다.
- (다) 과전압범주 II 기기는 건축물의 고정설비에 접속하는 기기이다. 예로서 가전기 기, 이동형기기 등을 들 수 있다.
- (라) 과전압범주 I 기기는 과도과전압을 일정수준까지 제한하기 위해 기기(고정설비

KOSHA GUIDE

E - 112 - 2011

또는 고정설비와 해당기기 사이)의 외부에 설치한다. 예로서, 전자기기, 기기내 부 등을 들 수 있다.

6. 과전압 방지장치

건축물 내 설비에는 다음의 것을 제외하고는 과전압 범주 II의 보호수준을 갖는 SPD를 설치한다.

- (1) 전력이 지중계통으로 공급되는 경우
- (가) 가공선이 없는 저압 지중계통으로 공급되고 사용기기의 충격 내전압이 <표 4>에 적합한 경우
- (나) 변압기 2차측이 접지된 금속차폐를 갖는 절연케이블인 경우에는 가공으로 인입되더라도 저압 지중계통으로 공급되는 것으로 간주한다. 또, 지중계통으로 인입되더라도 건축물에 외부 피뢰시스템이 있는 경우 과전압방지 조치가 필요하다.
- (2) 전력이 가공계통으로 공급되는 경우

전력이 가공계통으로 공급되고 연간 뇌우일수(IKL)가 AQ1(≤25일/연)인 경우에는 낙뢰에 의한 과전압방지 조치를 필요로 하지 않는다. 단, 설비에 높은 신뢰성이 요구되는 경우에는 뇌과전압 방지를 하는 것이 바람직하다.

(3) 낙뢰방지 여부의 판정에 대한 흐름도는 <그림 1>과 같다.

<그림 1> 낙뢰방지 여부 판정흐름도

7. SPD 설치

7.1 SPD 설치장소와 설치방법

건축물 내에 SPD를 설치하는 경우에는 다음과 같이 접속한다^(주 1).

- (1) 설비의 인입구 또는 그 부근에서 중성선이 보호도체(PE)에 연결되어 있거나 중 성선이 없는 경우에는 상도체와 주접지단자 사이 또는 상도체와 보호도체 사이
- (2) 설비의 인입구 또는 그 부근에서 중성선과 보호도체가 직접 연결되어 있지 않으면 다음 중 하나를 선택한다.
- (가) 상도체와 주접지단자 또는 보호도체 사이 및 중성선과 주접지단자 사이 또는 보호도체 사이

> (나) SPD를 누전차단기 전원측에 설치하는 경우, SPD를 상도체와 중성선 사이 및 중성선과 주접지단자 또는 보호도체 사이

(주 1) SPD 설치위치와 계통

	SPD 설치위치의 계통							
SPD 설치위치	TT		TNIC	TN-S		IT (중성선 있음)		IT
	CT ₁	CT_2	TN-C	CT ₁	CT_2	CT ₁	CT ₂	(중성선 없음)
상 - 중성선	Δ	0	-	Δ	0	Δ	0	_
상 - PE	0	_	-	0	_	0	_	0
중성선 - PE	0	0	_	0	0	0	0	_
상 - PEN	_	_	0	-	_	_	_	-
상 - 상	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ
비고) ○: 적용, △: 적용해도 좋음, -: 적용 불가								

CT₁: 부하측에 설치하는 경우, CT₂: 전원측에 설치하는 경우

- (3) SPD의 연결도체 길이가 길어지면 뇌서지 회로의 임피던스가 증가하여 과전압 보호의 효율성이 떨어지므로 가급적이면 짧게 한다. SPD 연결도체의 길이는 <그림 2>와 같이 0.5 m를 초과하지 않게 한다.
- (4) SPD 연결도체는 단면적 10 mm 이상의 동선과 이와 동등 이상이어야 한다. 단, 건축물에 피뢰설비가 없는 경우는 단면적 4 mm 이상도 가능하다.

<그림 2> 설비 인입구나 그 부근에서 SPD 설치 예

7.2 SPD 추가 보호

보호대상 기기에 인접한 추가 보호는 다음과 같은 특수한 경우에 필요하다.

- (1) 과전압에 민감한 기기(전자기기, 컴퓨터)가 있는 곳
- (2) 인입구에 설치된 SPD와 보호대상 기기 간의 거리가 상당히 먼 경우
- (3) 뇌방전과 내부 교란원(Source)에 의해 구조물 내부에 자계가 생성되는 경우

7.3 SPD와 누전차단기의 설치

SPD를 설치할 때 <그림 3>에서 <그림 8>과 같이 누전차단기와의 위치를 고려한다. SPD가 누전차단기의 부하 측에 설치되는 경우 누전차단기는 시간지연장치 유무에 관계없이 최소 3 kA, $8/20~\mu$ S의 서지전류에 대한 내성을 가져야 한다.

<그림 6> TT계통(ELCB 전원측)에서 서지보호장치 설치 예

<그림 7> TT계통(ELCB 부하측)에서 서지보호장치 설치 예

- 1 설비 인입구
- 2 분전반
- 3 주접지단자(바)
- 4 SPD
- 4a SPD 또는 방전갭

- 5 누전차단기
- 6 피보호기기
- F SPD 제조자가 지정한 보호장치 (퓨즈, 차단기, ELCB 등)
- R_A 설비의 접지극(접지저항)
- Rg 전원계통 접지극(접지저항)

<그림 8> TT계통(ELCB 부하측)에서 서지보호장치 설치 예

8. SPD 선정

과전압에 대한 보호장치에 따라 건축물 내에 설치하는 SPD는 설치되는 장소와 전력계통의 종류, 건축물의 피뢰보호계통(LPS)의 유무 등을 고려하여 적절한 규격을 선정한다.

8.1 SPD 타입과 전압보호수준 Up

- (1) 설비 인입구 부근 또는 주배전반 등에 설치하는 SPD는 LPS가 있는 건축물은 내충격 범주 I, LPS가 없는 건축물은 내충격 범주 Ⅱ 이어야 한다.
- (2) 기기에 근접하여 설치하는 SPD는 내충격 범주 II 또는 III 이어야 한다.

8.2 SPD의 최대연속동작전압 Uc

SPD의 최대연속동작전압 U_c 는 설치되는 전력계통의 종류와 이에 접속되는 장소에 따라 <표 5>의 값 이상이어야 한다.

<표 5> 공급계통별 SPD의 최대연속사용전압 요구사항

접지점 사이	배전 공급계통						
	TT	TN-C TN-S		IT (중성선 있음)	IT (중성선 없음)		
상도체-중성선	1.45U ₀ (2U ₀)	-	1.45U ₀	1.45U ₀	_		
상도체-PE	$\sqrt{3}(U_0)$	-	1.45U ₀	$\sqrt{3}(U_0)$	$\sqrt{3}\mathrm{U}_0$		
중성선-PE	U_0	-	U_0	U_0	_		
상도체-PEN	_	1.45U ₀	-	_	_		

비고) U₀ : 상전압

8.3 SPD의 순간 과전압 U_{TOV}

- (1) SPD는 저압계통 내의 사고(중성선 단선 사고는 제외)로 인한 순간 과전압(U_{TOV}) 에 견뎌야 한다.
- (2) 고압계통 내의 지락사고로 인한 순간 과전압에 대해 기기를 보호하기 위하여 상 도체 또는 중성선과 보호도체 사이에 접속되는 주 SPD는 관력 규격의 시험에 합격한 것이어야 한다.

8.4 SPD의 공칭방전전류 In

- (1) SPD의 공칭방전전류 I_n는 5 kA 8/20 μs 이상이어야 한다.
- (2) 중성선과 보호도체 사이에 연결된 SPD에 대한 공칭방전전류 값은 3상 계통에서 20 kA 8/20, 단상 계통은 10 kA 8/20 μ s 이상이어야 한다.

8.5 SPD의 뇌충격 전류 I_{imp}

- (1) SPD의 뇌충격 전류 I_{imp} 는 KS C IEC 61312-1(뇌 전자충격 보호)에 따라 산출된 뇌충격 전류(파형 10/350 μs) 값 이상이어야 한다. 단, 뇌충격 전류의 값을 구할 수 없을 경우에는 12.5 kA 이상으로 한다.
- (2) 중성선과 보호도체 사이에 연결된 SPD에 대한 뇌충격 전류의 값은 (1)의 규정에 따라 계산한다. 단, I_{imp} 의 값을 구할 수 없는 경우, 3상 계통은 50 kA 이상, 단상 계통은 25 kA 이상으로 한다.

8.6 SPD 간 협조

같은 전력계통에 설치된 SPD가 여럿인 경우에는 SPD 간 필요한 에너지 협조를 고려하여 <그림 9>와 같은 순서대로 설치해야 한다.

9. SPD 보호장치

SPD의 보호장치를 회로에 설치하는 경우에는 다음 사항을 고려하여 <그림 10>에서 나타낸 예시와 같이 설치한다.

- (1) 전력공급이 우선 되어야 하는 경우 보호장치는 SPD가 설치되어 있는 회로 내에 설치한다.
- (2) 전력공급 보다 기기를 과전압으로부터 보호하는 것이 우선되어야 하는 경우 보호장치는 SPD가 설치되어 있는 회로의 전원 측에 설치한다.
- (3) 위 (1)과 (2)의 경우 사용목적을 동시에 확보하려면 SPD를 병렬로 설치하고 각 각의 보호장치를 설치한다.

10. 기타 조건

10.1 간접접촉 예방

간접접촉에 대한 감전방지는 SPD가 고장이 났을 때도 보장되어야 한다.

- (1) TN계통에서 자동 전원차단은 일반적으로 SPD의 전원측 과전류보호장치로 행한다.
- (2) TT계통에서 자동 전원차단은 누전차단기의 부하 측에 SPD를 설치하여 행한다.

10.2 절연저항 측정

설비의 절연저항을 측정할 때 SPD가 설비의 인입구 부근 또는 배전반에 설치되어 있고 정격전압이 절연측정 전압과 맞지 않는 경우에는 SPD를 분리할 수 있다.

10.3 SPD 고장표시

SPD가 과전압을 보호하지 못하는 경우에는 SPD의 동작표시기 등으로 표시되어야 한다.