Midterm Exam

Math 51 Spring 2021 – Tufts University

2022-02-14

There are 6 problems on the exam.

You may not use *calculators*, *books* or *notes* during the exam. All electronic devices (including your phones) must be *silenced* and *put away* for the duration of the exam.

After finishing your exam, you will submit this exam booklet. We will scan your submission and upload it to *Gradescope* for marking (you do *not* need to take images of your exam). You should write your name at the top of each page, as indicated (*especially* if you remove the staples from your exam booklet).

For the partial credit problems, always *show your work*. Try to fit this work in the *available space* if possible. There is a blank page at the back of your exam for use as scratch paper. If you need more space for a solution, please write clearly *in the indicated space* that your solution continues later.

*******************	* * * * * * *
Please print your name, and sign your exam. With your signatury you have neither given nor received assistance on this exam.	e, you pledge that
Name (printed):	
Signature:	

- 20 points) Short-answer questions. Each question is worth two points.
 No work needs to be shown, as only the answer will be graded. Write your answers in the indicated boxes.
 - (a) Consider the differential equation

$$(t-3)^2x'' + \frac{1}{t-2}x' + 2x = 0.$$

Find the largest open interval containing t = 0 on which this o.d.e. is normal.

(b) The order of the differential equation $t^3(x'')^3 + 3x' + tx^4 = 0$ is

(c) True or False. Let h_1,h_2,h_3 be solutions of a normal third-order linear differential equation on $(-\infty,\infty)$. If the Wronskian satisfies $W[h_1,h_2,h_3](t_0)=0$ at one real number t_0 then it satisfies $W[h_1,h_2,h_3](t)=0$ for every real number t.

(d) True or False. Let h_1, h_2, h_3 be solutions of a normal, **fourth**-order linear differentiable equation on $(-\infty, \infty)$. If the Wronskian satisfies $W[h_1, h_2, h_3](0) = 1$, then the general solution is given by

$$x(t) = c_1 h_1(t) + c_2 h_2(t) + c_3 h_3(t).$$

(e) True or False. The linear differential equation $t^3x'' + 3x' + x + t = 0$ is homogeneous.

(f) True or False. If $h_1(t), h_2(t)$ are solutions of the differential equation

$$x'' + x + 1 = 0$$

on an interval I, then the general solution is given by

$$x(t) = c_1 h_1(t) + c_2 h_2(t). \\$$

(g) Answer Yes or No. Suppose $h_1(t)$ and $h_2(t)$ are any two solutions of the differential equation $t^3x'' + tx' + (t^2 - 1)x = 1$. Is $h_1(t) + h_2(t)$ a solution of this differential equation?

(h) Answer Yes or No. Suppose $h_1(t)$ and $h_2(t)$ are two any solutions of the differential equation $t^3x'' + tx' + (t^2 - 1)x = 0$. Is $h_1(t) + h_2(t)$ a solution of this differential equation?

(i) True or False. If x = h(t) is a solution of the differential equation $(D-3)^2x = 0$, then it is necessarily a solution of the differential equation $(D-3)^2(D+1)x = 0$.

- (j) Multiple-Choice. Suppose $h_1(t), h_2(t), h_3(t)$ are solutions of x''' 3x' + x = 0 on $(-\infty, \infty)$ and that the Wronskian satisfies $W[h_1, h_2, h_3](1) \neq 0$. Which of the following statements is true?
 - I. $h_1(t), h_2(t), h_3(t)$ generate the general solution of L(x) = 0 on $(-\infty, \infty)$.
 - II. $h_1(t), h_2(t), h_3(t)$ are linearly independent on $(-\infty, \infty)$.

Write one of A, B, C, D, or E in the box.

- A. Only I is true.
- B. Only II is true.
- C. Both I and II are true.
- D. Neither I nor II is true.
- E. It is not possible to determine if the statements are true or false from the given information.

Name: _____

2. (15 points)

(a) Calculate det $\begin{bmatrix} 3 & 0 & 2 \\ 5 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$.

(b) The functions $f_1(t)=e^t$, $f_2(t)=te^t$, and $f_3(t)=1$ are solutions to the differential equation $x'''-2x''+x'=(D-1)^2Dx=0.$

Use the Wronskian test to confirm that these functions generate the general solution to this ODE.

(c) Decide whether the functions $g_1(t)=\frac{t^2}{2}, \quad g_2(t)=-t^2$ are linearly independent.

Name:		

3. (15 points) Write the general solution for each differential equation below.

(a)
$$D(D^2 - 2D - 1)x = 0$$
.

(b) $(D^2 - 3)^2 x = 0$.

Name:		

4. (15 points) Use the method of variation of parameters to find the general solution of

$$\frac{dx}{dt} + 2x = e^{-2t}\sqrt{t^3}.$$

5. (15 points) A drug is absorbed from the bloodstream into the body at a rate proportional to the amount of the drug present in the bloodstream after t hours. If there are x(t) mg of the drug present in the bloodstream at time t, assume that the drug is absorbed at a rate of 0.5x(t) mg/hour.

Also assume that the drug is administered intravenously into a patients bloodstream at a constant rate of 3 mg/hour.

(a) x(t) is a solution to a differential equation of the form $\frac{dx}{dt} = \lambda x + r$. Indicate the values of λ and r, and give the differential equation to which x(t) is a solution.

(b) Find the general solution to the differential equation you found in (a).

(c) If the patient has 0 mg of the drug in their bloodstream at time t=0, how much is present after 2 hours?

Name:

6. (20 points)

(a) Solve the initial value problem

$$(D^2 - 16)x = 0$$
, $x(0) = 0$, $x'(0) = 4$.

(b) Solve the initial value problem

$$t^2 \frac{dx}{dt} = x, \quad t > 0, \quad x(1) = 1.$$