# ОБРАБОТКА И РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ

Леонид Моисеевич Местецкий профессор

кафедра математических методов прогнозирования ВМК МГУ

кафедра интеллектуальных систем МФТИ

# Поиск и прослеживание границ объектов на изображениях

Граничное представление формы объектов, отслеживание и аппроксимация границ цифрового изображения

# Генерация признаков формы на основе анализа границ

- Исходное описание образа в виде бинарного изображения
- Выделение границ образа
- Построение признакового описания на основе анализа границ

#### Форма объекта

Термин форма обычно используется для обозначения внешности объекта или его внешней границы (контур, внешняя поверхность), в отличие от других свойств, таких как цвет, текстура, состав материала.

# Распознавание формы



### Распознавание формы



#### Распознавание формы



# Пример управления компьютером жестами на основе анализа формы



**GestureDemo-2** 

### Бинарные изображения ладони



#### Проблема построения границ объекта



Что считается границей объекта на цифровом изображении?

Demo - Tracer

# Построение границы на основе трассировки границ объекта



Трассировка границы объекта может быть представлено как прогулка вокруг лужи.

#### Поиск начальной пары разноцветных пикселей



#### Обход методом ползущего жука



В чёрных точках поворот направо, в белых - налево 52 шага = 28 налево + 24 направо

# Обход катящимся треугольником (симлекс-прослеживание)



На каждом шаге – переворот треугольника 51 шаг

### Симплексное прослеживание



Прослеживание катящимся треугольником (симплексом)

#### Начальный треугольник

- Входными данными для начала прослеживания является горизонтальная пара разноцветных точек: L=(L.x,L.y) левая точка (чёрная), а R=(R.x,R.y) правая точка (белая). Чёрные точки лежат слева, а белые справа по ходу прослеживания.
- Третья вершина T = (T.x, T.y) начального треугольника выбирается так, чтобы вершины треугольника L, R, T образовали правую тройку, т.е. располагались против часовой стрелки.







Антидиагональное направление

Для диагонального направления: T.x = R.x, T.y = R.y + (R.x - L.x), для антидиагонального: T.x = L.x, T.y = L.y + (R.x - L.x).

### Переворот треугольника

- Переворот выполняется через сторону треугольника RT или LT, причём через ту из них, у которой концевые точки имеют разные цвета (через разноцветную сторону).
- Новый треугольник является центрально симметричным старому относительно центра стороны, через которую выполняется переворот.

$$N = \begin{cases} T + (L - R) & \text{если } T \text{ чёрная} \\ T + (R - L) & \text{если } T \text{ белая} \end{cases}$$

### Новое положение треугольника

 $(L_m, R_m, T_m)$  - треугольник на шаге m,  $(L_{m+1}, R_{m+1}, T_{m+1})$  - треугольник на шаге m+1,

$$L_{m+1} = \begin{cases} L_m, & \text{если } T_m \text{ белая} \\ T_m, & \text{если } T_m \text{ черная} \end{cases}$$
 
$$R_{m+1} = \begin{cases} T_m, & \text{если } T_m \text{ белая} \\ R_m, & \text{если } T_m \text{ черная} \end{cases}$$
 
$$T_{m+1} = N_m$$





### Условие завершения обхода

Условие завершение процесса прослеживания: совпадение вновь образованного треугольника  $(L_{m+1}, R_{m+1}, T_{m+1})$  с начальным треугольником  $(L_0, R_0, T_0)$ , r.e.  $L_{m+1} = L_0$ ,  $R_{m+1} = R_0$ ,  $T_{m+1} = T_0$ . 0000000

#### Обход подвижным мостом



Каждая итерация — сначала шаг правой ногой, а затем, возможно, шаг левой ногой 55 шагов

#### Получение граничного коридора



Белая и черная границы коридора могут рассматриваться как граница объекта

#### Аппроксимация границы многоугольником



- аппроксимация внутренней (b) или внешней (c) стенок граничного коридора
- аппроксимация средней линией граничного коридора (d)

### Кратчайший путь в коридоре



Кратчайший путь — резиновая замкнутая нить, лежащая внутри коридора, обозначенного черными и белыми гвоздями

#### Аппроксимация многоугольником минимального периметра



Геодезический маршрут внутри граничного коридора

#### Угловые точки и секторы обзора



# Положение точки относительно сектора обзора



Точка лежит внутри, слева или справа относительно сектора обзора

#### Правило коррекции сектора обзора

Изменение границ сектора





Новая угловая точка





Нет коррекции и новой угловой точки





#### Алгоритм вытягивания нити



и т.д.

#### Алгоритм вытягивания нити - результат



#### Как построить все контура границы?



# Последовательный поиск и прослеживание контуров границы



- При трассировке контура необходимо пометить все горизонтальные разноцветные граничные пары
- Поиск нового контура это поиск разноцветной пары, в которой хотя бы один пиксель не помечен

# Основные свойства минимальных разделяющих многоугольников

- Математическая корректность
- Возможность настройки на заданные требования по точности аппроксимации
- Высокая вычислительная эффективность

#### Преимущества метода

- В результате отслеживания мы получаем последовательность граничных точек, которые перечислены в порядке обхода
- Полученная последовательность точек может быть аппроксимирована многоугольником
- Аппроксимация границы разделяющими многоугольниками минимального периметра гарантирует отсутствие пересечений и самопересечений многоугольников

**Demo - Tracer** 

# Генерация признаков формы по многоугольной границе

- —Длина границы (периметр)
- –Площадь фигуры
- -Округлость фигуры
- –Энергия изгиба
- -Количество углов
- -Количество отверстий
- –Дескриптор Фурье

### Геометрические признаки

 $V_{_0},V_{_1},\ldots,V_{_n}$  - вершины многоугольника,  $V_{_0}=V_{_n},$   $V_{_i}=(x_{_i},y_{_i}),\quad i=0,\ldots,n$  - координаты вершин,

**Периметр:** 
$$P = \sum_{i=1}^{n} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$$

Площадь: 
$$S = \frac{1}{2} \cdot \sum_{i=1}^{n-1} [(V_i - V_0) \times (V_{i+1} - V_0)],$$

где  $[a \cdot b] = a_x \cdot b_y - a_y \cdot b_x$  - векторное произведение векторов  $a = (a_x, a_y)$  и  $b = (b_x, b_y)$ .

**Округлость:** 
$$\gamma = \frac{P^2}{4\pi \cdot S}$$

Энергия изгиба: 
$$E(n) = \frac{1}{P} \sum_{i=0}^{n-1} \left| k_i \right|^2, \ k_i = \theta_{i+1} - \theta_i.$$

# Дескриптор Фурье

Рассмотрим последовательность комплексных чисел  $u_k = x_k + i \cdot y_k$ .

Для n точек  $u_k$  определим ДФП:

$$f_l = \sum_{k=0}^{N-1} u_k \exp\left(-i \cdot \frac{2\pi}{N} \cdot l \cdot k\right), \ l = 0, 1, ..., N-1.$$

Получим  $f_l$  – Фурье-описание границы.

# Свойства дескриптора Фурье

Рассмотрим, как изменяется  $f_l$  при сдвиге, повороте, масштабировании и сдвиге начальной точки.

**Сдвиг** описывается следующим образом:  $x_k' = x_k + \Delta x, \ y_k' = y_k + \Delta y$  и  $u_k' = u_k + \Delta u'$ . Тогда

$$f_l' = f_l + \Delta u \delta(l)$$
, где  $\delta = \begin{cases} 1$ , при  $l = 0 \\ 0$ , при  $l \neq 0 \end{cases}$ . При  $l = 0$   $f_0' \neq f_0$ , т.к.  $f_0' = f_0 + \Delta u \delta(0) = f_0 + \Delta u \neq f_0$ . При  $l \neq 0$   $f_l' = f_l$ , т.к.  $f_l' = f_l + \Delta u \delta(l) = f_l + \Delta u \cdot 0 = f_l$ 

# Свойства дескриптора Фурье

**Поворот** описывается следующим соотношением:  $u'_k = u_k \cdot \exp(j\theta)$ .

Следовательно,  $f_l' = f_l \cdot \exp(j\theta)$ , т.е. поворот не меняет модулей, а именно  $|f_l'| = |f_l|$ .

Масштабирование описывается следующим соотношением:

 $u'_k = a \cdot u_k$ . Следовательно,  $f'_l = a \cdot f_l$ . Т.к.

$$\frac{f_i'}{f_i} = a \text{ и } \frac{f_j'}{f_j} = a,$$

то масштабирование не меняет соотношения

$$\frac{f_i'}{f_i'} = \frac{f_i}{f_i}.$$

**Сдвиг начальной точки** определяется следующим образом:  $u'_k = u_{k-k}$ .

Следовательно 
$$f_l' = f_l \cdot \exp\left(-j \cdot \frac{2\pi}{N} \cdot k_0 \cdot l\right)$$
,

т.е. сдвиг начальной точки сохраняет модули:  $|f_l| = |f_l|$ .

# Восстановление границы по дескриптору Фурье



- Слева исходное изображение
- Справа результат восстановления границы по дескриптору Фурье
- В окошке количество использованных коэффициентов Фурье

# Зависимость точности восстановления от количества коэффициентов Фурье

