Final Project

Submit Assignment

Due May 7 by 11:59pm **Points** 60 **Submitting** a file upload **Available** Apr 6 at 12am - May 8 at 11:59pm about 1 month

DUE May 7, 2020

Please read very carefully

For this project, we will work on the data set collected from a study of breast cancer:

breast cancer train.csv

The original dataset contains expression levels of 24,187 genes for 97 patients, 46 relapse ("status" is 1) and 51 non-relapse ("status" is 0). 78 cases were used as the training set (34 relapse and 44 non-relapse) and 19 (12 relapse and 7 non-relapse) as the test set. The dataset has been preprocessed. We normalized the expressions levels and filtered the genes by a p-value criterion. After this step, 4918 genes remain. For this project, I only upload the training set, which contains 78 cases, with 4918 predictors and a binary response.

Task:

- 1. Choose an appropriate method we discussed this semester and build a model to predict the patient's statue (relapse or non-relapse).
- 2. Evaluate the model performance by cross-validation.
- 3. Wrap your model in a function, which takes gene expression levels as input, and return the prediction of patients' status.

Important dates:

- May 7 project report (Required: a zipped folder with an r markdown notebook, and supporting files such as data files.)
 - Report format: should avoid too much output. Please refer to <u>knitr documentation</u>
 (http://yihui.name/knitr/options/) for how to turn off output and messages.

Grading

- Correctness of implementation (30 points)
- Performance of the method (10 points)
- Report (20 points)

1 of 2 4/7/2020, 1:15 PM

Some Rubric		
Criteria	Ratings	Points
Correctness of implementation		
Appropriate analysis tools. Correct interpretation of results.		30.0 pts
There should a function that can be directly used for prediction.		
Performance of the method		
We will test your method on an unreleased test data set.		10.0 pts
A test error lower than 40% can get all 10 points.		
Report		20.0 mts
Writing, presentation and organization. Be concise.		20.0 pts
	Total Po	oints: 60.0

2 of 2