

# ACSL TurtleBot3 e-Manual

June 2020

# Contents

| Abstract                  |                                         |   |  |  |  |  |  |  |  |  |  |
|---------------------------|-----------------------------------------|---|--|--|--|--|--|--|--|--|--|
| 1                         | Overview and Setup  1.1 Remote PC Setup | 4 |  |  |  |  |  |  |  |  |  |
| 2 Repository Introduction |                                         |   |  |  |  |  |  |  |  |  |  |
| 3                         | 3 Torque Control using Dynamixel        |   |  |  |  |  |  |  |  |  |  |
| 4                         | Bring up the Turtlebot                  |   |  |  |  |  |  |  |  |  |  |
| 5                         | Custom controller in Simulink           |   |  |  |  |  |  |  |  |  |  |

## Abstract

This guide documents the changes made to TurtleBot3 software to meet the requirements of ACSL research group. It contains instructions on setting up the robot and code documentation.

### 1 Overview and Setup

TurtleBot3 is a small ROS-based mobile robot. The TurtleBot3 can be customized by changing the source code and addition of new hardware. TurtleBot3 Waffle Pi is equipped with a Raspberry Pi Camera Module (v2), a 360-degree Laser Distance Sensor (LDS) and Dynamixel XM430 210-T motors.

TurtleBot3 architecture is described in the following image.



The four major components of TurtleBot3 are

- 1. Raspberry Pi 3B+ Single Board Computer (SBC).
- 2. OpenCR Embedded System Board.
- 3. LDS and Camera Sensors.
- 4. Dynamixel Actuators.

Raspberry Pi has a WiFi module built onto the board which connects to a computer, known as the Remote PC. Remote PC is used to send commands for SLAM and Navigation to TB3 and visualization of the sensor data is also performed on the remote PC.

There is a one time setup that needs to be performed on the Remote PC, Raspberry Pi and OpenCR board. Most of the software is located in the form of a binary file that is burnt to the EEPROM of the STM32F746 chip on the OpenCR board. As the software used for ACSL projects is custom, it is burnt using Arduino IDE.

#### 1.1 Remote PC Setup

To begin you will need to install the appropriate ROS version on your remote PC. The remote PC will be running ROS Melodic (EOL date: May 2023). The single board computer on Turtlebot3 will be running ROS Kinetic (EOL date: April 2021) for the ease of setup since ROS Melodic requires manual compilation when using Rasbian. No problem has yet been found by us on the communication between these 2 releases.

The following page from ros.org describes the process for adding and installing all necessary packages to your ROS Environment.

http://wiki.ros.org/melodic/Installation/Ubuntu

Note that please do not follow the Turtlebot3 guide to configure the ROS environment on the remote PC (Step 6.1.1-6.1.3). Instead, simply follow the instructions in the link above.

Then, install required dependencies

```
sudo apt install ros-melodic-joy ros-melodic-teleop-twist-joy ros-melodic-teleop-twist-keyboard ros-melodic-laser-proc ros-melodic-rgbd-launch ros-melodic-depthimage-to-laserscan ros-melodic-rosserial-arduino ros-melodic-rosserial-python ros-melodic-rosserial-server ros-melodic-rosserial-client ros-melodic-rosserial-msgs ros-melodic-amcl ros-melodic-map-server ros-melodic-move-base ros-melodic-urdf ros-melodic-xacro ros-melodic-compressed-image-transport ros-melodic-rqt-image-view ros-melodic-gmapping ros-melodic-navigation ros-melodic-interactive-markers
```

Warning! We have used other dependencies but we didn't keep documentation, we need to figure out all the deps that we have used.

The next step is to configure network settings for permanent use. The Remote PC will be controlling the turtlebot pc via wifi using SSH protocol. Steps for configuring the wifi on the remote pc can be found here.

https://emanual.robotis.com/docs/en/platform/turtlebot3/pc\_setup/#network-configuration

For this project we will use the Linksys Router on the **Linksys04294** network. It is helpful to write down the IP address of the remote pc, since you will need it later to setup the turtlebot pc network settings.

Then, clone and build the git repository.

git clone https://github.com/hanyiabc/ASCL\_turtlebot3.git

#### 1.2 Rasberry Pi SBC Setup

Now it is time to look at the turtlebot SBC. For the turtlebot 3 Waffle Pi model, the on board PC is a raspberry PI. This step requires a micro SD card with adapter, a monitor with an HDMI input, a USB keyboard and mouse, and a power source for the turtlebot. ROBOTIS provides a prebuilt desktop environment for the turtlebot with ROS kinetic. Instructions for flashing this distribution can be found here (**Step 6.2.1.2 Install Linux Based on Raspbian, Do not use the other two methods.**).

https://emanual.robotis.com/docs/en/platform/turtlebot3/raspberry\_pi\_3\_setup/#raspberry-pi-3-setup To use the Raspberry PI without a physical access, use SSH. Example SSH command:

ssh pi@YOUR\_RASPBERRY\_PI\_IP

For the ease of use, VNC configuration is recommended. This provide remote desktop funtionality. In case of Debian Stretch (the version that the manual will use), install Real VNC by running this command on the Raspberry PI:

sudo apt update
sudo apt install realvnc-vnc-server realvnc-vnc-viewer

THen enable VNC server by

sudo raspi-config

Then navigate to Interfacing Options. Scroll down and select VNC - Yes.

Ubuntu Desktop 18.04 comes with VNC client Remmina. On Windows, use VNC viewer https://www.realvnc.com/en/connect/download/viewer/

#### 1.3 OpenCR Setup

The original source code for TurtleBot3 used the inbuilt PID controller of the Dynamixel XM430 210-T actuators. However, to benchmark the performance of the controllers, the control is shifted from the motors to higher level software such as Simulink or a custom ROS node.

The source code for OpenCR can be downloaded by cloning the following repository.

https://github.com/hanyiabc/ASCL\_turtlebot3.git

Arduino IDE can be used to burn the turtlebot3\_core.ino file located in ACSL\_turtlebot3/src/turtlebot3\_core directory. Instructions for setting up the Arduino IDE for TurtleBot3 can be found in the following link.

https://emanual.robotis.com/docs/en/parts/controller/opencr10/#arduino-ide

### 2 Repository Introduction

The repository is a catkin workspace. A catkin workspace has a src folder that contains multiple packages. The worth-mentioning packages are:

- hls\_lfcd\_lds\_driver
- raspicam\_node
- ros\_control
- simulink
- turtlebot3
  - turtlebot3\_bringup
  - turtlebot3\_navigation
  - turtlebot3\_slam
  - turtlebot3\_teleop
- turtlebot3\_core
- turtlebot3\_setup\_motor
- turtlebot3\_simulations

Not all packages are catkin package. **simulink**, **turtlebot3\_core turtlebot3\_setup\_motor** are all just directories. All the rests are properly configured as catkin packages, meaning all the nodes defined under the package will be compiled when running the **catkain\_make** command.

hls\_lfcd\_lds\_driver and raspicam\_node are drivers for the PI Camera and lidar. These will be running in the single board computer.

ros\_control contains all the configuration and nodes necessary to control the robot. It contains the PID controller configurationl, PID gains, etc. Two launch files are included for controlling the robot in either the simulations or in the physical world. They are:

- turtlebot3\_control.launch
- turtlebot3\_control\_simulation.launch

These launch file are not ran directly, instead they are inleuded by other launch file that we will introduce later. The PID gains can be tuned by either changing the parameters in the launch file or use a ros package called rqt\_reconfiture to adjust parameters with sliders at runtime. There are 2 nodes under the ros\_control package. They are differential\_driver.py and ros\_control\_node. The differential\_driver.py is a Python ros node that split the incoming /cmd\_vel messages into left and right velocity for the differential drive robot based on vehicle geometry. The cmd\_vel is the standard topic that ROS nav stack used to output the velocity command. It commands the robot in terms of translational velocity and orientation. The ros\_control\_node is a C++ ros node compiled from the soruce file: message\_redirect.cpp. This node simply takes the left and right wheel angular velocities feedbacks from joint\_states converts them to linear velocities and publish them into 2 Float64 messages for the PID controller to read.

The directory  $\mathbf{simulink}$  contains all the MATLAB scrips and Simulink models for controlling the robot with MATLAB

turtlebot3\_bringup contains all the launch file for bringing up the Turtlebot in the SBC and the remote PC. turtlebot3\_physical\_nav\_control.launch was added to the bringup package to provide a convinient one-file launch that will handles everything. This launch file brings up the turtlebot on the remote PC, runs the velocity control and the navigation stack with SLAM. A simulation version will be provided in the future.

turtlebot3\_description contains the URDF and Gazebo descripion of the turtlebot for both simulation and physical robot.

For Waffle Pi, turtlebot3\_waffle\_pi.gazebo.xacro and turtlebot3\_waffle\_pi.urdf.xacro are provided by the turtlebot package, however, for effort control, we added 2 more files. They are: turtle-bot3\_waffle\_pi\_effort\_controller.gazebo.xacro and turtlebot3\_waffle\_pi\_effort\_controller.urdf.xacro These files are derived from the original descriptions and added ability to control effort in both the simulation and the physical robot.

turtlebot3\_navigation contains the default configuration for running the ROS navigation stack with the Turtlebot. A new launch file turtlebot3\_navigation\_no\_map.launch was created. This launch file derived from the original navigation launch file, but the difference is that this configuration doesn't need a SLAM map for localizatin. The localizatin is provide by SLAM instaed of Adaptive Monte Carlo Localizatin. The default launch file turtlebot3\_navigation.launch will run navigation assuming that a SLAM map has been drawn by running SLAM before. In this configuration, localizatin is provided by AMCL.

## 3 Torque Control using Dynamixel

Dynamixel is a microcontroller based actuator with in-built PID controller. OpenCR communicates with Dynamixel using packet communication via TTL/RS45 ports.

Hardware level abstraction is achieved via Dynamixel SDK library available in several programming languages. (CPP used in our case.) Dynamixel register addresses and byte sizes for both RAM and EEPROM memory provided in control table. RAM is most frequently used memory for robot applications, while startup settings are stored on EEPROM.

The Control Table is a structure that consists of multiple Data fields to store status or to control the device. Users can check current status of the device by reading a specific Data from the Control Table with Read Instruction Packets. WRITE Instruction Packets enable users to control the device by changing specific Data in the Control Table. Packet sizes range from 1-4 bytes.

Following is a snapshot of the Dynamixel EEPROM Control Table. Each data in the Control Table is restored to initial values when the device is turned on. Default values in the EEPROM area (addresses 0-63) are initial values of the device (factory default settings). If any values in the EEPROM area are modified by a user, modified values will be restored as initial values when the device is turned on. Initial Values in the RAM area are restored when the device is turned on.

| Address | Size<br>(Byte) | Data Name            | Access | Default<br>Value | Range                     | Unit            |
|---------|----------------|----------------------|--------|------------------|---------------------------|-----------------|
| 0       | 2              | Model Number         | R      | 1,030            | -                         | -               |
| 2       | 4              | Model Information    | R      | -                | -                         | -               |
| 6       | 1              | Firmware Version     | R      | -                | -                         | -               |
| 7       | 1              | ID                   | RW     | 1                | 0 ~ 253                   | -               |
| 8       | 1              | Baud Rate            | RW     | 1                | 0 ~ 7                     | -               |
| 9       | 1              | Return Delay Time    | RW     | 250              | 0 ~ 254                   | 2 [µsec]        |
| 10      | 1              | Drive Mode           | RW     | 0                | 0 ~ 1                     | -               |
| 11      | 1              | Operating Mode       | RW     | 3                | 0 ~ 16                    | -               |
| 12      | 1              | Secondary(Shadow) ID | RW     | 255              | 0 ~ 252                   | -               |
| 13      | 1              | Protocol Type        | RW     | 2                | 1 ~ 2                     | -               |
| 20      | 4              | Homing Offset        | RW     | 0                | -1,044,479 ~<br>1,044,479 | 1 [pulse]       |
| 24      | 4              | Moving Threshold     | RW     | 10               | 0 ~ 1,023                 | 0.229 [rev/min] |
| 31      | 1              | Temperature Limit    | RW     | 80               | 0 ~ 100                   | 1 [°C]          |
| 32      | 2              | Max Voltage Limit    | RW     | 160              | 95 ~ 160                  | 0.1 [V]         |
| 34      | 2              | Min Voltage Limit    | RW     | 95               | 95 ~ 160                  | 0.1 [V]         |
| 36      | 2              | PWM Limit            | RW     | 885              | 0 ~ 885                   | 0.113 [%]       |
| 38      | 2              | Current Limit        | RW     | 1,193            | 0 ~ 1,193                 | 2.69 [mA]       |
| 44      | 4              | Velocity Limit       | RW     | 330              | 0 ~ 1,023                 | 0.229 [rev/min] |

For the purpose of torque control, the operating mode of the dynamixel motor needs to be set to **MODE** 0. This can be done using the motor setup code in the git repository. To change the operating mode to **MODE** 0, flash the turtlebot3\_setup\_motor firmware to the OpenCR board while the motors are connected to the board. Open up a serial terminal with Arduino or Terraterm, under the serial terminal, you will see the following options:

```
1. setup left motor
2. setup right motor
3. test left motor
4. test right motor
5. setup left motor for current control
6. setup right motor for current control
7. test left motor for current control
8. test right motor for current control
>>
```

The first 4 options comes with the OpenCR Arduino library. The last 4 options are added based on the first 4 options and they configure the left and right motors for torque control. For now, the current is limited to half of the highest value to avoid damage to the hardware. If changes are needed, the source code needs to be modified and the motors has to be setup again. To setup the left motor, simply put 5 in the termianl and press enter. Wait until it says it's finished. Then use option 6 for the right motor. After the setup is done, use option 7 and 8 to test the motor. The test option apply a small torque to the motor for one second and stops for one second. Make sure both motors are tested then, flash the turtlebot3\_core firmware back. Once the operating mode is set. The OpenCR code is changed to write torque values to the Dynamixel RAM addresses, when the robot is live. The addresses that are useful for this purpose are given in the image

below.

| 102 | 2 | Goal Current         | RW | - | -Current Limit(38) ~<br>Current Limit(38)          | 2.69 [mA]                                 |
|-----|---|----------------------|----|---|----------------------------------------------------|-------------------------------------------|
| 104 | 4 | Goal Velocity        | RW | - | -Velocity Limit(44) ~<br>Velocity Limit(44)        | 0.229 [rev/min]                           |
| 108 | 4 | Profile Acceleration | RW | 0 | 0 ~ 32,767<br>0 ~ 32,737                           | 214.577 [rev/min <sup>2</sup> ]<br>1 [ms] |
| 112 | 4 | Profile Velocity     | RW | 0 | 0 ~ 32,767                                         | 0.229 [rev/min]                           |
| 116 | 4 | Goal Position        | RW | - | Min Position Limit(52) ~<br>Max Position Limit(48) | 1 [pulse]                                 |
| 120 | 2 | Realtime Tick        | R  | - | 0 ~ 32,767                                         | 1 [msec]                                  |
| 122 | 1 | Moving               | R  | 0 | 0 ~ 1                                              | -                                         |
| 123 | 1 | Moving Status        | R  | 0 | -                                                  | -                                         |
| 124 | 2 | Present PWM          | R  | - | -                                                  | -                                         |
| 126 | 2 | Present Current      | R  | - | -                                                  | 2.69 [mA]                                 |
| 128 | 4 | Present Velocity     | R  | _ | -                                                  | 0.229 [rev/min]                           |
| 132 | 4 | Present Position     | R  | - | -                                                  | 1 [pulse]                                 |
|     |   |                      |    |   |                                                    |                                           |

The code that change the operating mode of the motor is below.

```
bool setupMotorLeftCurrentControl(void)
 CMD_SERIAL.println("Setup Motor Left for current control...");
 if (tb3_id < 0)</pre>
   CMD_SERIAL.println(" no dxl motors");
 }
 else
   write(portHandler, packetHandler2, tb3_id, 64, 1, 0);
   write(portHandler, packetHandler2, tb3_id, 7, 1, 1);
   tb3_id = 1;
   write(portHandler, packetHandler2, tb3_id, 8, 1, 3);
   portHandler->setBaudRate(1000000);
   write(portHandler, packetHandler2, tb3_id, 10, 1, 0);
   write(portHandler, packetHandler2, tb3_id, 11, 1, 0);
   // this set the limit to half
   write(portHandler, packetHandler2, tb3_id, 38, 2, 596);
   CMD_SERIAL.println(" Warning: Current limit is set to half to protect the motor!");
   CMD_SERIAL.println(" ok");
```

```
}
bool setupMotorRightCurrentControl(void)
 CMD_SERIAL.println("Setup Motor Right for current control...");
 if (tb3_id < 0)</pre>
   CMD_SERIAL.println(" no dxl motors");
 }
 else
   write(portHandler, packetHandler2, tb3_id, 64, 1, 0);
   write(portHandler, packetHandler2, tb3_id, 7, 1, 2);
   tb3_id = 2;
   write(portHandler, packetHandler2, tb3_id, 8, 1, 3);
   portHandler->setBaudRate(1000000);
   write(portHandler, packetHandler2, tb3_id, 10, 1, 1);
   write(portHandler, packetHandler2, tb3_id, 11, 1, 0);
    // this set the limit to half
   write(portHandler, packetHandler2, tb3_id, 38, 2, 596);
   CMD_SERIAL.println(" Warning: Current limit is set to half to protect the motor!");
   CMD_SERIAL.println(" ok");
 }
}
```

The code used to test the torque control after setup is below.

```
void testMotorCurrentControl(uint8_t id)
{
 uint32_t pre_time;
 uint8_t toggle = 0;
 if (id == 1)
   CMD_SERIAL.printf("Test Motor Left...");
 }
 else
   CMD_SERIAL.printf("Test Motor Right...");
 }
 // We run at 1000000
 portHandler->setBaudRate(1000000);
 uint16_t model_number;
 int dxl_comm_result = packetHandler2->ping(portHandler, id, &model_number);
  if (dxl_comm_result == COMM_SUCCESS)
   CMD_SERIAL.printf(" found type: %d\n", model_number);
   write(portHandler, packetHandler2, id, 64, 1, 1);
   toggle = 0;
   pre_time = millis();
   write(portHandler, packetHandler2, id, 102, 2, 100);
   while (1)
   {
```

```
if (CMD_SERIAL.available())
       flushCmd();
       break;
     if (millis() - pre_time > 1000)
       pre_time = millis();
       toggle ^= 1;
       if (toggle)
         write(portHandler, packetHandler2, id, 102, 2, 0);
       }
       else
       {
         write(portHandler, packetHandler2, id, 102, 2, 100);
       }
     }
   }
   write(portHandler, packetHandler2, id, 102, 2, 0);
 }
 else
 {
   CMD_SERIAL.printf(" dxl motor ID:%d not found\n", id);
 }
}
```

The following method is added to the TurtleBot3MotorDriver class, which takes in input torque value and converts it into appropriate register values for writing to the appropriate addresses.

CURRENT\_TO\_OUTPUT and TORQUE\_TO\_CURRENT are macro functions that does the conversions from torque to current and current to a 2 byte value that the microcontroller undertand. All the necessary macros are defined as

```
#define MAX_CURRENT_11V1 2.1
#define MAX_TORQUE_11V1 2.7

#define CURRENT_GOAL_UNIT 2.69 //in miliamps
#define TORQUE_TO_CURRENT(t) t * (MAX_CURRENT_11V1 / MAX_TORQUE_11V1)
// convert torque to current in amp
#define CURRENT_TO_OUTPUT(a) (uint16_t)(a * 1000 / CURRENT_GOAL_UNIT)
#define CURRENT_TO_TORQUE(t) t / (MAX_CURRENT_11V1 / MAX_TORQUE_11V1)
// convert current in amp to torque in N-m
#define OUTPUT_TO_CURRENT(a) a / 1000 * CURRENT_GOAL_UNIT
```

This conversion is based on a linear approximation of the actuator performance graph.



This function below takes the converted value and write to both motors using the Dynamixel SDK APIs.

```
bool TurtleBot3MotorTorqueDriver::writeTorque(int16_t left_value, int16_t right_value)
{
   bool dxl_addparam_result;
   int8_t dxl_comm_result;
```

Subscribers are added to subscribe to the topics left\_torque right\_torque. The following use the function defined above and write the correspounding values to the correct memory location of the Dynamixel motor controller when new message comes in. When there is no new message, it will timeout and write zeros to both motors.

```
if ((t-tTime[0]) >= (1000 / CONTROL_MOTOR_TORQUE_FREQUENCY))
{
    updateGoalTorque();
    //this timeout will stop the motor if no message comes in
    if ((t-tTime[6]) > CONTROL_MOTOR_TIMEOUT)
    {
        motor_driver.controlMotor(zero_torque);
    }
    else {
        motor_driver.controlMotor(torque);
    }
    tTime[0] = t;
}
```

## 4 Bring up the Turtlebot

Once the remote PC and Raspberry PI are setup according to the instructions provided in the previous sections, Follow the instructions below to bring up turtlebot.

On Remote PC

roscore

On SBC

roslaunch turtlebot3\_bringup turtlebot3\_robot.launch

On Remote PC

Clone the

5 Custom controller in Simulink