Introducing the Non-Volatile Device Layer and LightNVM (WIP)

Matias Bjørling, Jesper Madsen, Philippe Bonnet (IT University of Copenhagen) and Maximilian Werner Singh, G S Madhusudan (IIT Madras)

Solid State Drives

- Orders of magnitude faster than traditional hard drives
 - Thousands of IOs per second
 - Throughput measured in GB/s
 - Sub-millisecond access timings
- High-performance parallel architecture
 - Tens of chips wired in parallel
 - Fast CPU and additional offload processors

Solid State Drives

- Each vendor implement their own SSD
 - No behavior model
 - Depends on history of IO's, NAND state, etc.
 - No transparency
- Narrow Interface (Read & Write)
 - Hides the read/write/erase interface of flash
 - Unpredictability
- Research requires significant hardware investments

New Indirection Layers

- Block and byte-addressable Non-Volatile Devices (NVD) layer
- LightNVM, a host-side "FTL" for LightNVM compatible SSDs

A home for Non-Volatile Devices logic

Lightweight Non-Volatile Device Layer (NVD)

- Indirection
 - Host-based Flash SSD translation layer
 - Shingled Disk Drives (SMR) translation layer
 - NVDIMM durability
- Administration
 - Formatting, etc.
 - Namespaces
- Accounting
 - Layer specific

Lightweight Non-Volatile Device Layer (NVD)

- Share common functionality
- Single registration point
- Controlled by device drivers
- Let's use LightNVM as an example

LightNVM

- **User Process**
 - **VFS**
- File System
- **Device Mapper**
- Block Layer (blk-mq)
 - LightNVM
- SATA/SAS/PCI-e/SRIO
- LightNVM Compatible Device

- A pluggable host-side "FTL"
 - Open-source
 - Predictable
 - Transparent
- Initialized on top of device drivers
- Scalable
 - >800.000 IOPS
 - 2-5us round-trip overhead (future less than 1us)

Hybrid Storage Design

 FTL responsibilities is be shared between host and device. E.g. for flash controller

Responsibilities	Host	On-disk
Log. to Phy. Translation.	X	
Durability management. Disk maintain internal trans. mappings		X
Garbage collection of physical NV blocks	X	
Wear-leveling	X	X
Bad block management	X	X
Transaction/Atomic IO management	X	
Key-value IO	X	

LightNVM and Hardware

- Offload critical sections
 - Non-volatile memory ECC
 - On-board capacitors
 - NV controller, etc.
- Disk exposes drive information to host
 - Number of channels, throughput, page size, channel queue depth, etc.
 - NVM type (Flash, PCM, etc.)
 - Storage interfaces, offload capabilities, etc.
- Disk expose its NV as a linear address space.

Evaluation Methodology

- 2CPU, Intel E5-2643, 128GB, Linux kernel 3.13
- 4K IOs
- Fio
- LightNVM configured to page-based, cost-based, and lazy GC.
- Evaluate with respect to
 - Scalability
 - Overhead
 - Timing accuracy

LightNVM – Max Performance

4K, null_blk (mq), round-robin across 4 channels.

LightNVM: Overhead Comparison

- 1QD, 4K, Random Writes. Round-robin across channels, 8GB tmpfs
- 18-21% overhead compared to tmpfs

Conclusion

- A common layer for non-volatile device logic
- LightNVM: A pluggable FTL
 - Scalable
 - Modularity: FTL, GC, wear-leveling, etc.
 - Predictability and transparency
- Patches being prepared for upstream Linux kernel