

TEORI BILANGAN

(Slide Acknowledgment: Gatot Wahyudi, Adila A. Krisnadhi, Kurniawati Azizah)

Matematika Diskret 2
Fakultas Ilmu Komputer Universitas Indonesia

Agenda

- Pembagian Bilangan Bulat
- Aritmetika Modular
- Representasi Bilangan Bulat
- Bilangan Prima
- Greatest Common Divisor (GCD)
- Kongruensi Linear

Pengantar

- Aritmetika (ilmu hitung): cabang matematika yang mempelajari operasi dasar pada bilangan: penjumlahan, pengurangan, perkalian, dan pembagian
- Istilah aritmetika biasa dipakai dalam konteks bilangan bulat
 - ... meski operasi-operasi di atas berlaku untuk bilangan rasional, riil, dan kompleks.
- Teori bilangan: cabang matematika yang mempelajari bilangan bulat beserta segala sifat, operasi dan generalisasi yang dapat diturunkan darinya.
 - Aritmetika merupakan bagian dari teori bilangan.
- Aplikasi teori bilangan: kriptografi (penyamaran informasi), hashing (untuk akses informasi secara cepat), digit error checking

Notasi

- Himpunan seluruh bilangan **bulat**: Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}
- Himpunan seluruh bilangan bulat positif: Z⁺ = {1, 2, 3, ...}
- Himpunan seluruh bilangan bulat negatif: $Z^- = \{..., -3, -2, -1\}$
- Himpunan bilangan natural atau bilangan bulat nonnegatif:
 N = {0, 1, 2, 3, ...}

- Mengapa membahas pembagian?
 - Pembagian bilangan bulat mempunyai sifat yang berbeda daripada operasi dasar lainnya
 - Jika sebuah bilangan bulat dibagi dengan bilangan bulat yang tidak nol maka hasilnya belum tentu bilangan bulat
 - $27/3 = 9 \rightarrow$ hasil pembagian adalah bil. bulat
 - $3/2 = 1.5 \rightarrow$ hasil pembagian bukan bil. bulat
 - Bagaimana jika kita ingin melakukan operasi pembagian agar hasilnya juga bilangan bulat?

Keterbagian

Definisi

```
Misalkan a dan b adalah bilangan bulat dengan a \neq 0
Maka a dikatakan membagi b (ditulis a \mid b) jika ada sebuah bilangan bulat c sehingga b = ac
Jika a \mid b maka a adalah sebuah faktor dari b sedangkan b adalah sebuah kelipatan dari a
Jika a tidak membagi b maka dinotasikan a \nmid b
```

- Contoh
 - Apakah 5 | 100?
 - Ya, karena ada bilangan bulat 20 sehingga diperoleh 100 = 20 . 5
 - Apakah 33 | 166?
 - Tidak, karena bilangan bulat yang hasil perkaliannya paling mendekati 166 adalah 5 tetapi 166 ≠ 33.5

Teorema

Misalkan a, b, dan c adalah bilangan bulat:

- 1. Jika **a** | **b** dan **a** | **c** maka **a** | (**b** + **c**)
- 2. Jika a | b maka a | bc untuk semua bilangan bulat c
- 3. Jika *a* | *b* dan *b* | *c* maka *a* | *c*

Pembuktian

- Teorema bagian kedua
 - Jika a | b maka sesuai definisi ada sebuah bilangan bulat s sehingga b = as
 - Kalikan kedua ruas persamaan tersebut dengan sembarang bilangan bulat c, diperoleh
 bc = asc
 - Perhatikan bahwa bc = a(sc) dimana sc adalah juga merupakan bilangan bulat
 - Karena ada bilangan bulat sc sehingga bc habis dibagi dengan a maka a | bc

Teorema

Misalkan a, b, dan c bilangan bulat sehingga $a \mid b$ dan $a \mid c$, maka $a \mid mb + nc$ untuk setiap bilangan bulat m dan n

- Pembuktian (lanjutan)
 - Dengan menggunakan teorema-teorema sebelumnya
 - Diketahui *a* | *b* maka berlaku *a* | *mb* untuk setiap bulangan bulat *m*
 - Diketahui *a* | *c* maka berlaku *a* | *nc* untuk setiap bilangan bulat *n*
 - Karena kita mendapati *a* | *mb* dan *a* | *nc* maka dapat diperoleh *a* | *mb* + *nc*

Teorema Pembagian

Teorema

- Bilangan q disebut quotient (hasil bagi) dan ditulis q = a div d
- Bilangan r disebut remainder (sisa hasil bagi) dan ditulis $r = a \mod d$
- Catatan
 - Teorema di atas seringkali disebut algoritma pembagian meskipun sebenarnya bukan sebuah algoritma

Teorema Pembagian

Contoh

- Berapakah hasil bagi dan sisa hasil bagi bilangan bulat 212 dibagi 20?
 - Karena 212 = 20.10 + 12, maka
 - Hasil bagi 212 dibagi 20 adalah 212 **div** 20 = 10
 - Sisa hasil bagi 212 dibagi 20 adalah 212 **mod** 20 = 12
- Berapakah hasil bagi dan sisanya: -21 dibagi 4?
 - Ingat bahwa r tidak boleh negatif!
 - Karena -21 = 4.(-6) + 3 maka
 - Hasil bagi -21 dibagi 4 adalah -21 div 4 = -6
 - Sisa hasil bagi -21 dibagi 4 adalah -21 mod 4 = 3

Contoh

- Jika n dan d adalah bilangan bulat positif, maka berapa banyaknya bilangan bulat positif yang habis dibagi oleh d yang tidak boleh melebihi n?
 - Bilangan bulat positif yang habis dibagi d adalah semua bilangan dalam bentuk d.k di mana k adalah bilangan bulat positif juga
 - Selanjutnya bilangan bulat yang diminta tidak melebihi n maka harus memenuhi $0 < d.k \le n$ atau $0 < k \le n/d$
 - Dengan demikian terdapat $\lfloor n/d \rfloor$ bilangan bulat yang habis dibagi d dan nilainya tidak melebihi n
 - Atau dapat juga dikatakan jawabannya adalah n div d

Teorema Pembagian

• Teorema

Sebuah bilangan bulat a dikatakan habis dibagi bilangan bulat d jika dan hanya jika a mod d = 0

- Dalam kehidupan nyata, banyak ditemukan bahwa kita seringkali hanya peduli pada sisa hasil bagi saja:
 - Ujian Tengah Semester (UTS) akan tiba pada hari ke-60 perkuliahan. Jika hari pertama perkuliahan jatuh pada hari Senin, maka UTS akan jatuh pada hari?
 - 60 adalah hari ke-60
 - 7 adalah banyaknya jenis hari yang ada
 - Jawabannya: Kamis
 - Bagaimana jika hari pertama perkuliahan jatuh pada hari Kamis? Hari apa UTS akan dimulai?
 - Bagaimana jika hari ke-60 perkuliahan hanya dengan memperhitungkan hari kerja saja? Hari apa UTS akan dimulai?

- Dalam kehidupan nyata, banyak ditemukan bahwa kita seringkali hanya peduli pada sisa hasil bagi saja:
 - Seorang bayi perlu diimunisasi X pada hari ke-30 kehidupannya. Jika ia lahir pada tanggal 2 Februari 2016, maka ia perlu diimunisasi pada tanggal?
 - Cara 1: (30 + 1 dibagi 29 sisanya 2)
 - 30 adalah hari ke-30
 - 1 adalah banyaknya hari di bulan Februari sebelum hari kelahirannya
 - 29 adalah banyaknya hari di bulan Februari (tahun kabisat)
 - Cara 2: (30 dibagi 28 sisanya 2)
 - 30 adalah hari ke-30
 - 28 adalah banyaknya hari di bulan Februari terhitung sejak hari kelahirannya
 - Jawaban: 2 Maret 2016

Perhatikan!

- Sisa hasil bagi bilangan 10 dibagi 3 adalah 1
- Sisa hasil bagi bilangan 19 dibagi 3 adalah 1
- Meskipun dua bilangan tersebut berbeda:
 - Dalam penerapan operasi modulo 3 terhadap kedua bilangan tersebut hasilnya adalah sama yaitu 1
 - Dapat dikatakan bahwa 19 kongruen dengan 10 dalam modulo 3 atau bisa ditulis: $19 \equiv 10 \pmod{3}$ atau $10 \equiv 19 \pmod{3}$
 - Dua bangun dalam geometri disebut kongruen bila dua bangun memiliki bentuk dan ukuran yang sama
 - Dua bilangan dalam aritmetika disebut kongruen bila dua bilangan mempunyai sisa hasil bagi yang sama

Definisi

Misalkan \boldsymbol{a} dan \boldsymbol{b} adalah bilangan bulat dan \boldsymbol{m} adalah bilangan bulat positif, maka $\boldsymbol{a} \equiv \boldsymbol{b}$ (mod \boldsymbol{m}), jika dan hanya jika $\boldsymbol{m} \mid \boldsymbol{a} - \boldsymbol{b}$.

Notasi $\boldsymbol{a} \equiv \boldsymbol{b}$ (mod \boldsymbol{m}) dibaca " \boldsymbol{a} kongruen \boldsymbol{b} modulo \boldsymbol{m} "

- Notasi di atas disebut kongruensi dan m disebut sebagai modulus
- Jika a tidak kongruen b modulo m maka ditulis $a \not\equiv b \pmod{m}$
- Perhatikan bahwa notasi "mod" pada $a \equiv b \pmod{m}$ dan $a \mod m \equiv b$ mewakili dua hal yang berbeda, walaupun erat hubungannya.

Teorema

Misalkan a, b bilangan bulat dan m bilangan bulat positif, maka $a \equiv b \pmod{m}$ jika dan hanya jika $a \mod m = b \mod m$

D.k.l., $a \equiv b \pmod{m}$ jika dan hanya jika $a \pmod{b}$ memiliki sisa bagi yang sama ketika dibagi $a \pmod{m}$.

- Contoh
 - Apakah $27 \equiv 3 \pmod{8}$?
 - Ya, karena 8 | 27 3
 - Apakah $15 \equiv 33 \pmod{3}$?
 - Ya, karena 15 33 = -18 dan 3 | -18
 - Apakah $24 \equiv 14 \pmod{6}$?
 - Tidak, karena 24 -14 = 10 dan 10 tidak habis dibagi 6 (6 ∤ 10)

- Sifat-sifat kongruensi
 - Jika a, b, dan c bilangan bulat dan m bilangan bulat positif maka berlaku sifatsifat berikut:
 - Refleksif
 - Berlaku $a \equiv a \pmod{m}$ dan $b \equiv b \pmod{m}$
 - Simetris
 - Jika $a \equiv b \pmod{m}$ maka $b \equiv a \pmod{m}$
 - Transitif
 - Jika $a \equiv b \pmod{m} \& b \equiv c \pmod{m}$ maka $a \equiv c \pmod{m}$

Teorema

Misalkan m bilangan bulat positif, maka dapat dikatakan $a \equiv b \pmod{m}$ jika dan hanya jika terdapat sebuah bilangan bulat k sedemikian hingga a = b + km

Bukti

- Jika $a \equiv b \pmod{m}$ maka m | a b sehingga terdapat bilangan bulat k sehingga a b = km. Persamaan ini dapat ditulis juga a = b + km
- Sebaliknya jika terdapat bilangan bulat k sehingga a = b + km, maka a b = km dengan kata lain $a \equiv b \pmod{m}$

Catatan

 Himpunan semua bilangan bulat yang kongruen dengan bilangan bulat a modulo m disebut kelas kongruensi (congruence class) a modulo m

Definisi Congruence Class

Diberikan bilangan bulat α dan bilangan bulat positif m. Kelas kongruensi α modulo m, ditulis $[\alpha]_m$, adalah himpunan semua bilangan bulat yang kongruen dengan α modulo m.

Contoh:

- $[0]_3 = [3]_3 = [-3]_3 = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$
- $[1]_3 = [4]_3 = [-2]_3 = \{\ldots, -8, -5, -2, 1, 4, 7, 10, \ldots\}$
- $[2]_3 = [5]_3 = [-1]_3 = \{..., -7, -4, -1, 2, 5, 8, 11, ...\}$

• Teorema

```
Untuk m anggota bilangan bulat positif, jika a \equiv b \pmod{m} dan c \equiv d \pmod{m} maka a + c \equiv b + d \pmod{m} dan ac \equiv bd \pmod{m}
```

- Pembuktian
 - Karena $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$ maka terdapat bilangan bulat $s \pmod{t}$ sehingga $a = b + sm \det c = d + tm$

```
a + c = (b + sm) + (d + tm)
= (b + d) + (s + t) \text{ m} \Rightarrow \text{berbentuk } x = y + km
ac = (b + sm) (d + tm)
= bd + btm + dsm + stm^{2}
= bd + (bt + ds + stm)m \Rightarrow \text{berbentuk } x = y + km
```

Dengan demikian terbukti bahwa

```
a + c \equiv b + d \pmod{m} \operatorname{dan} ac \equiv bd \pmod{m}
```

Contoh

Karena $7 \equiv 2 \pmod{5}$ dan $11 \equiv 1 \pmod{5}$, maka:

$$7 + 11 \equiv 2 + 1 \pmod{5}$$

 $18 \equiv 3 \pmod{5}$

dan

$$7.11 \equiv 2.1 \pmod{5}$$

 $77 \equiv 2 \pmod{5}$

Mencari modulo dari penjumlahan dan perkalian

Corollary

```
Misalkan a dan b bilangan bulat dan m bilangan bulat positif maka:
(a + b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m
dan
ab \bmod m = ((a \bmod m) (b \bmod m)) \bmod m
```

Aritmetika Modular Hati-hati!

 Meskipun terdapat operasi penjumlahan dan perkalian yang berlaku dalam kongruensi modulo namun terdapat beberapa sifat lain yang tidak berlaku

Ketika $ac \equiv bc \pmod{m}$ maka belum tentu berlaku $a \equiv b \pmod{m}$.

```
    Contoh 1:
    0.2 ≡ 1.2 (mod 2), namun
    0 ≠ 1 (mod 2)
```

Contoh 2:

```
80 \equiv 14 \pmod{6}

40 \cdot 2 \equiv 7 \cdot 2 \pmod{6}, namun

40 \not\equiv 7 \pmod{6}
```

Jadi, tidak boleh mencoret pengali di kedua sisi kongruensi.

Aritmetika Modular Hati-hati!

Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$, maka apakah $a^c \equiv b^d \pmod{m}$ selalu berlaku?

• Belum tentu. Contohnya, $3 \equiv 8 \pmod{5}$ dan $6 \equiv 1 \pmod{5}$, tetapi $729 = 3^6 \not\equiv 8^1 = 8 \pmod{5}$.

Jadi, pasangan basis yang kongruen serta pasangan pangkat yang kongruen tidak menjadikan hasil pemangkatannya menjadi kongruen.

Aritmetika modulo *m*

• Untuk setiap bilangan bulat positif m, kita dapat definisikan himpunan Z_m yang merupakan subset Z berisi semua bilangan bulat nonnegatif yang nilainya kurang dari m.

```
• Z_m = \{0, 1, ..., m-1\}.
```

- Mirip dengan himpunan bilangan bulat, kita dapat definisikan operasi penjumlahan dan perkalian pada Z_m .
- Di SD/SMP/SMA, aritmetika ini sering disebut aritmetika jam khususnya jika m = 12 atau m = 24.
- Bagaimana jika m = 2?

Aritmetika modulo *m*

Definisi

Diberikan suatu bilangan bulat positif m. Maka, pada himpunan Z_m dapat didefinisikan:

- Penjumlahan + $_m$, yakni $a + _m b = (a + b) \mod m$
- Perkalian \cdot_m , yakni $a \cdot_m = (a \cdot b) \mod m$.

Contoh: Pada himpunan Z₁₁ dapat dihitung bahwa:

- $7 + _{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$.
- $7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$.

Sifat-sifat operasi +_m dan ⋅_m I

- **Tertutup (Closure)**. Jika $a, b \in Z_m$, maka $(a +_m b) \in Z_m$ dan $(a \cdot_m b) \in Z_m$.
- Asosiatif. Jika $a, b, c \in Z_m$, maka $(a +_m b) +_m c = a +_m (b +_m c)$ dan $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$.
- Komutatif. Jika $a, b \in Z_m$, maka $a +_m b = b +_m a$ dan $a \cdot_m b = b \cdot_m a$.
- Memiliki elemen identitas.
 - Terdapat suatu $c \in Z_m$ sehingga $a +_m c = c +_m a = a$ untuk setiap $a \in Z_m$. Biasanya bilangan c di sini dinamakan nol (zero) dengan simbol 0.
 - Terdapat suatu $c \in Z_m$ sehingga $a \cdot_m c = c \cdot_m a = a$ untuk setiap $a \in Z_m$. Biasanya bilangan c di sini dinamai dengan simbol 1.

Aritmetika Modular

Sifat-sifat operasi +_m dan ⋅_m l

- Invers penjumlahan. Jika $a \neq 0$ elemen dari Z_m , maka m-a adalah invers penjumlahan dari a modulo m, yakni a + m (m-a) = 0. Lalu berlaku bahwa 0 adalah invers penjumlahan dari dirinya sendiri, yakni 0 + m 0 = 0.
- **Distributif**. Jika $a, b, c \in \mathbb{Z}_m$, maka $a \cdot_m (b +_m c) = (a \cdot_m b) + (a \cdot_m c)$ dan $(a +_m b) \cdot_m c = (a \cdot_m c) + (b \cdot_m c)$.

Aritmetika Modular

- Aplikasi kongruensi
 - Fungsi hashing
 - Untuk *load balancing* penyimpanan data, *load balancing* beban *request* ke beberapa server, dll.
 - Pembangkitan bilangan pseudorandom
 - Untuk membangkitkan bilangan random oleh komputer
 - Kriptologi
 - Sandi Caesar yang legendaris menggunakan kongruensi modulo misalnya f(p) = (p + 1) mod 26
 - J MPWF ZPT
 - Bagaimana mengetahui pesan aslinya?
 - Gunakan fungsi $f(p) = (p-1) \mod 26$

- Representasi bilangan bulat tergantung basis yang dipilih.
- Setiap bilangan bulat positif b > 1 dapat digunakan sebagai basis.
- Representasi dalam basis b ditulis dengan menggunakan b buah simbol yang berbeda.
- Basis yang banyak dipakai/dikenal:
 - basis 10 (desimal) ~ 10 simbol: 0-9
 - basis 2 (biner) ~ 2 simbol: 0-1
 - basis 8 (oktal) ~ 8 simbol: 0-7
 - basis 16 (heksadesimal) \sim 16 simbol: 0-9, A-F.

Teorema

Diberikan bilangan bulat positif b > 1 sebagai basis, maka setiap bilangan positif n dapat dinyatakan secara unik dalam bentuk

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

yang mana k bilangan bulat nonnegatif, a_0 , a_1 , . . . , a_k bilangan bulat nonnegatif yang lebih kecil dari b, serta $a_k \neq 0$

- Bilangan bulat positif b menjadi basis bilangan
- Representasi bilangan n dalam basis b disebut ekpansi basis b dari n.
- Ekspansi n dalam basis b dinotasikan dengan: $(a_k a_{k-1} ... a_1 a_0)_b$
 - Contoh: $(175)_8 = 1.8^2 + 7.8^1 + 5.8^0$

• Ekspansi bilangan bilangan bulat yang sering digunakan

Basis	Nama Ekspansi	Digit yang digunakan
10	DESIMAL	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
8	OKTAL	0, 1, 2, 3, 4, 5, 6, 7
2	BINER	0, 1
16	HEKSADESIMAL	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Ekspansi Basis b ke Ekspansi Desimal

• Carilah ekspansi desimal dari (101101)₂

```
(101101)_2 = 1.2^5 + 0.2^4 + 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0
= 32 + 0 + 8 + 4 + 1
= (45)<sub>10</sub>
```

Carilah ekspansi desimal dari (B15A)₁₆

$$(B15A)_{16} = 11.16^3 + 1.16^2 + 5.16^1 + 10.16^0$$

= $(45402)_{10}$

Carilah ekspansi desimal dari (234)₈

$$(234)_8 = 2.8^2 + 3.8^1 + 4.8^0$$

= $(156)_{10}$

Ekspansi Desimal ke Ekspansi Basis b

- Carilah ekspansi oktal dari (1705)₁₀!
 - Perhatikan:

```
    \begin{array}{r}
      1705 & = 8 \cdot 213 + 1 \\
      213 & = 8 \cdot 26 + 5 \\
      26 & = 8 \cdot 3 + 2 \\
      3 & = 8 \cdot 0 + 3
    \end{array}
```

- Jadi, $(1705)_{10} = (3251)_8$
- Carilah ekspansi biner dari (9009)₁₀!
- Carilah ekspansi heksadesimal dari (331771)₁₀!

Ekspansi Desimal ke Ekspansi Basis b

Carilah expansi heksadesimal dari $(331771)_{10}$.

$$331771 = 16 \cdot 20735 + 11$$

$$20735 = 16 \cdot 1295 + 15$$

$$1295 = 16 \cdot 80 + 15$$

$$80 = 16 \cdot 5 + 0$$

$$5 = 16 \cdot 0 + 5$$

Hasilnya $(50FFB)_{16}$ karena B dan F masing-masing adalah heksadesimal digit untuk 11 dan 15.

Konversi antara ekspansi biner, oktal, dan heksadesimal

- Konversi bilangan antar dua basis non-desimal b_1 dan b_2
 - $oldsymbol{0}$ ubah ekspansi basis b_1 ke basis desimal.
 - ② ubah hasilnya menjadi ekspansi basis b_{2} .
- Konversi antar ekspansi biner, oktal, dan heksadesimal (metode cepat):
 - 3 digit biner untuk 1 digit oktal dan 4 digit biner untuk 1 digit heksadesimal
 - diproses dari kanan.

$$(11111010111100)_{2} = \underbrace{01111110101111100}_{3_{8}} = \underbrace{(37274)_{8}}_{3_{8}}$$

$$= \underbrace{00111110101111100}_{3_{16}} = \underbrace{(3EBC)_{16}}_{3_{16}}$$

$$(567)_{8} = \underbrace{(1011101111)_{2}}_{(D8A)_{16}}$$

$$(D8A)_{16} = \underbrace{(110110001010)_{2}}$$

Fungsi *floor* dan *ceiling*

- Fungsi *floor*:
 - [x] = bilangan bulat terbesar yang kurang dari atau sama dengan x.
- Fungsi *ceiling*:

[x] = bilangan bulat terkecil yang lebih dari atau sama dengan x.

Teorema

Untuk bilangan bulat a dan bilangan bulat d > 1, berlaku:

- $a \operatorname{div} d = \left[\frac{a}{d}\right]$
- $a \mod d = a d \left\lfloor \frac{a}{d} \right\rfloor$

Bukti: (latihan)

- Permasalahan umum dalam cryptography
 - Menemukan solusi untuk bⁿ mod m sangat penting
 - Kondisinya **b**, **n**, dan **m** adalah bilangan bulat yang besar
 - Cobalah hitung:
 - 3⁶⁴⁴ mod 645 = ?
 - Jika kita menghitung 3⁶⁴⁴ terlebih dahulu tentu akan sangat tidak efisien
 - Daripada menggunakan cara dasar yang tidak efisien tersebut, kita dapat menggunakan algoritma ekspansi biner dari eksponen n yang ada dalam bⁿ mod m

- Ide Dasar
 - Kita akan menggunakan ekspansi biner dari *n* untuk menghitung *b*ⁿ
 - Ingat bahwa ekspansi biner *n* berbentuk:

$$n = (a_{k-1}...a_1a_0)_2 = a_{k-1}2^{k-1} + ... + a_12^1 + a_0$$

Dengan demikian bentuk bⁿ menjadi:

$$b^n = b^{a_{k-1}.2^{k-1}+\cdots+a_1.2^1+a_0}$$

 $b^n = b^{a_{k-1}.2^{k-1}}\cdots b^{a_1.2^1}b^{a_0}$

• Contoh:

- Misalkan untuk bilangan 3¹¹
- Perhatikan bahwa nilai n = 11, ekspansi biner dari $11 = (1011)_2$
- Dengan demikian bentuk 3¹¹ menjadi:

```
3^{11} = 3^{1.2^3+0.2^2+1.2^1+1.2^0}
3^{11} = 3^{1.2^3} \cdot 3^{0.2^2} \cdot 3^{1.2^1} \cdot 3^{1.2^0}
3^{11} = 3^8 \cdot 3^0 \cdot 3^2 \cdot 3^1
```

```
procedure: modexp(b: integer, m: positive integer, n =
(a_{k-1}a_{k-2}...a_1a_0)_2)
x := 1
power := b mod m
for i := 0 to k-1
   if a_i = 1 then x := (x \cdot power) \mod m
   power := (power . power) mod m
return x\{x equals b^n \mod m\}
```

- Contoh
 - Berapakah 3⁶⁴⁴ mod 645?
- Solusi
 - Diketahui b = 3, n = 644, m = 645
 - Ekspansi biner dari *n* adalah sebagai berikut:
 - $644 = (1010000100)_2$
 - Selanjutnya kita gunakan algoritma *modular exponentiation* untuk mencari jawabannya

i	a _i	X	calculate power	power
0	0	1	$3^2 \mod 645 = 9 \mod 645 = 9$	9
1	0	1	9 ² mod 645 = 81 mod 645 = 81	81
2	1	1 . 81 mod 645 = 81	81 ² mod 645 = 6,561 mod 645 = 111	111
3	0	81	111 ² mod 645 = 12,321 mod 645 = 66	66
4	0	81	66 ² mod 645 = 4,356 mod 645 = 486	486
5	0	81	486 ² mod 645 = 236,196 mod 645 = 126	126
6	0	81	126 ² mod 645 = 15,876 mod 645 = 396	396
7	1	81 . 396 mod 645 = 471	396 ² mod 645 = 156,816 mod 645 = 81	81
8	0	471	81 ² mod 645 = 6561 mod 645 = 111	111
9	1	471 . 111 mod 645 = 36	STOP	STOP

Jadi, $3^{644} \mod 645 = 36$