1

EE5609: Matrix Theory Assignment 8

Lt Cdr Atul Mahajan MTech Artificial Intelligence AI20MTECH13001

Abstract—This document uses properties of vector spaces and subspaces.

Download the latex code from

https://github.com/Atul 191/EE5609/Assignment8

1 Problem

Let **V** be the (real) vector space of all functions f from **R** into **R**. Is f(-1) = 0 a subspace of **V**

2 THEOREM

A non-empty subset **W** of **V** is a subspace of **V** if and only if for each pair of vectors α β in **W** and each scalar c in \mathbb{R} the vector $c\alpha + \beta$ is again in **W**.

3 Solution

For each of the function to be a subspace, it must be closed with respect to addition and scalar multiplication in V defined as, for $f g \in W$ and $c \in \mathbb{R}$

Then,

$$(\mathbf{cf} + \mathbf{g})(-1) = \mathbf{cf}(-1) + \mathbf{g}(-1)$$
 (3.0.1)
= $\mathbf{c}(0) + 0$ (3.0.2)
= 0 (3.0.3)

Thus, $(\mathbf{cf} + \mathbf{g}(-1)) = 0$. Therefore, **W** is a subset of **V** and also a vector space. Therefore **W** is a subspace of **V**.

Hence, f(-1) = 0 is a subspace of **V**.