208489732 3/c3 /DIE : <u>NIOJEN</u> 208271197 JIGIN INIX 316385962 KJD 'DIE

Natural Language Processing - Exercise 2

Due: 11.2.2024 23:59

Please submit a single zip file. The zip file should contain your code files, a README txt file and a single pdf file for the answers to the questions

1. (10 pts) Consider this (toy) biological setup:

A cell can be in one of two states - H, for high GC-content, and L for low GC. On each time step the cell produces one nucleotide, A,C,T or G, and might also change its state. The probability of changing from state H to L is 0.5, and from state L to H is 0.4.

In state H the probabilities for producing nucleotides are 0.2 for A, 0.3 for C, 0.3 for G and 0.2 for T. In L the probabilities are 0.3 for A, 0.2 for C, 0.2 for G and 0.3 for T.

Consider the nucleotide sequence S = ACCGTGCA. Use the Viterbi algorithm to find the best state-sequence and calculate the probability of S given this state-sequence. Assume the previous state before S was H.

2. (10 pts) In class we saw the trigram HMM model and the corresponding Viterbi algorithm. We will now make two main changes. First, we will consider a four-gram tagger, where p takes the form:

$$p(x_1 \cdots x_n, y_1 \cdots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-3}, y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i | y_i)$$
(1)

We assume in this definition that $y_0 = y_{-1} = y_{-2} = *$, where * is the START symbol, $y_{n+1} = STOP$, and $y_i \in \mathcal{K}$ for $i = 1 \cdots n$, where \mathcal{K} is the set of possible tags in the HMM.

Second, we consider a version of the Viterbi algorithm that takes as input an integer n (and not a sentence $x_1 \cdots x_n$ as we saw in class) and finds

$$\max_{y_1\cdots y_{n+1},x_1\cdots x_n} p(x_1\cdots x_n,y_1\cdots y_{n+1})$$

for a four-gram tagger, as defined in Equation 1. $x_1 \cdots x_n$ may range over the values of some fixed vocabulary \mathcal{V} . Complete the following pseudo-code of this version of the Viterbi algorithm for this model. The pseudo-code must be efficient.

Input: An integer n, parameters q(w|t, u, v) and e(x|s).

Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-2} = \mathcal{K}_{-1} = \mathcal{K}_0 = \{*\}$, and $\mathcal{K}_k = \mathcal{K}$ for $k = 1 \cdots n$. Define \mathcal{V} to be the set of possible words.

Initialization: ...
Algorithm: ...
Return: ...

3. (80 pts) In this programming exercise with Python, we will implement several versions of an HMM POS tagger.

Note: For all the below sections, unknown words are words that appear in the test set but did not appear in the training set.

(a) Use the NLTK toolkit for importing the Brown corpus. This corpus contains text from 500 sources, and the sources have been categorized by genre. Here we will use a portion of the corpus: the "news" category. Load the tagged sentences for this portion of the corpus. Then, divide the obtained corpus into training set and test set such that the test set is formed by the last 10% of the sentences.

(b) Implementation of the most likely tag baseline

- i. Using the training set, compute for each word the tag that maximizes p(tag|word), based on the maximum likelihood estimation. Assume that the most likely tag of all the unknown words is "NN". (Unknown words are words that appear in the test set but not in the training set.)
- ii. Using the test set, compute the error rate (i.e., 1-accuracy) for known words and for unknown words, as well as the total error rate.

(c) Implementation of a bigram HMM tagger

- i. Training phase: Compute the transition and emission probabilities of a bigram HMM tagger directly on the training set using maximum likelihood estimation.
- ii. Implement the Viterbi algorithm corresponding to the bigram HMM model. (Choose an arbitrary tag for unknown words.)
- iii. Run the algorithm from c)ii) on the test set. Compute the error rates and compare to the results from b)ii).

(d) Using Add-one smoothing

- i. Training phase: Compute the emission probabilities of a bigram HMM tagger directly on the training set using (Laplace) Add-one smoothing.
- ii. Using the new probabilities, run the algorithm from c)ii) on the test set. Compute the error rates and compare to the results from b)ii) and c)iii).

(e) Using pseudo-words

- i. Design a set of pseudo-words for unknown words in the test set and low-frequency words in the training set.
- ii. Using the pseudo-words as well as maximum likelihood estimation (as in c)i)), run the Viterbi algorithm on the test set. Compute the error rates and compare to the results from b)ii), c)iii) and d)ii).
- iii. Using the pseudo-words as well as Add-One smoothing (as in d)i)), run the Viterbi algorithm on the test set. Compute the error rates and compare to the results from b)ii), c)iii), d)ii) and e)ii). For the results obtained using both pseudo-words and Add-One smoothing, build a confusion matrix and investigate the most frequent errors. A confusion matrix is an $|\mathcal{K}|$ over $|\mathcal{K}|$ matrix, where the (i,j) entry corresponds to the number of tokens which have a true tag i and a predicted tag j.

Note: NLTK is a Python package for NLP. Please see here http://www.nltk.org/ for downloading and documentation. You can download the Brown corpus using nltk.download('brown') and traverse its sentences using the tagged_sents() method. Please refer to the NLTK documentation for further information. Please use NLTK just for loading and reading the corpus.

A given word w may be annotated with a complex tag t, containing the symbols '+' and/or '-'. When encountering such a complex tag t, consider only the prefix of t that comes before the first occurrence of '+' or '-' in t as the POS tag of w.

1. (10 pts) Consider this (toy) biological setup: A cell can be in one of two states - H, for high GC-content, and L for low GC. On each time step the cell produces one nucleotide, A,C,T or G, and might also change its state. The probability of changing from state H to L is 0.5, and from state L to H is 0.4. In state H the probabilities for producing nucleotides are 0.2 for A, 0.3 for C, 0.3 for G and 0.2 for T. In L the probabilities are 0.3 for A, 0.2 for C, 0.2 for G and 0.3 for T. Consider the nucleotide sequence S = ACCGTGCA. Use the Viterbi algorithm to find the best state-sequence and calculate the probability of S given this state-sequence. Assume the previous state before S was H.
Mulaika piasa no No kisho (no (nosa nora) Viterbi 'Eba CNA)
אפ <i>(המנועה: הסח</i> בר" / את המאבו הן :
P(H H) = 0.5, P(L(H) = 0.5
O(1) = 8, $ O(1) = 0$
P(L/L) = 0.6 P(H/L) = 0.4 : PIND
1P(A H) = 0.2 1P(C H) = 0.3 P(G H) = 0.2
IP(A L) = 0.3 IP(C L) = 0.2 IP(G L) = 0.2
7(N)

73NN NE CES KN/(D DO 10K), NEN NOORD ESTEN NEW 1867 / NEW 1867 / NEW 19:-1 : NIB, MEN / NEW 19MM :

tt (L	
1	0	S
10 14	3 20 H	1 A
9 800 L	9 500 L	2 (
27 10 K H	27 12,600 L	3 c
81 81	243 100 H	4 G & × 100 6
# 2000 H 121 100k L	100 x P	S T (00,000 -
1 78. РСЛ	87.48 L	3 C X 100,000
10.936 H	16.4025 H	8 4

צ'ב תאה הל נותן אישות כי הרל האוסיאלי הינו: (לאחר ה- א ההתחלתי)

LHHHLHHL

2. (10 pts) In class we saw the trigram HMM model and the corresponding Viterbi algorithm. We will now make two main changes. First, we will consider a four-gram tagger, where p takes the form:

$$p(x_1 \cdots x_n, y_1 \cdots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-3}, y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i|y_i)$$
(1)

We assume in this definition that $y_0 = y_{-1} = y_{-2} = *$, where * is the START symbol, $y_{n+1} = STOP$, and $y_i \in \mathcal{K}$ for $i = 1 \cdots n$, where \mathcal{K} is the set of possible tags in the HMM.

Second, we consider a version of the Viterbi algorithm that takes as input an integer n (and not a sentence $x_1 \cdots x_n$ as we saw in class) and finds

$$\max_{y_1\cdots y_{n+1},x_1\cdots x_n} p(x_1\cdots x_n,y_1\cdots y_{n+1})$$

for a four-gram tagger, as defined in Equation 1. $x_1 \cdots x_n$ may range over the values of some fixed vocabulary \mathcal{V} . Complete the following pseudo-code of this version of the Viterbi algorithm for this model. The pseudo-code must be efficient.

Input: An integer n, parameters q(w|t, u, v) and e(x|s).

Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-2} = \mathcal{K}_{-1} = \mathcal{K}_0 = \{*\}$, and $\mathcal{K}_k = \mathcal{K}$ for $k = 1 \cdots n$. Define \mathcal{V} to be the set of possible words.

Initialization: · · · Algorithm: · · · Return: · · ·

input: integer N , parameters $q(s V_1,V_2,V_3)$ and $e(x s)$
initialization: Set $\pi(0,*,*,*)=1$
Definition: $S-2 = S-1 = So = \{*\}, Sk = S \text{ for } k \text{ in } [1h].$
Algorithm =
O
For k=1n,
For Vie Sk-2, Vie Sk-1, Ve Sk:
,
$\pi(k, V_2, V_1, V) = \max(\pi(k-1, V_3, V_1, V_1) \times q(V V_3, V_1, V_1) \times e(x V))$ $v_3 \in S_{k-3}$
V3 e S x - 3
XEV
Return max $(\pi(n, v_2, v_1, v) \times q(STOP v_2, v_1, v))$
Vi & Sn-i
V1 & Sn-1
ve Sn
O(lab wil)
O(n s 4.1VI) non pos Ese
LINE CEINE DE DIE JOSE JOSE DE SORE DE SORE LA CORRE LA CORRECTIONA LA CORR
Michell Mc ~0000

תנצאות לייור החלק הפרהלי אתפנותי

b ii

Error rate for the baseline model for known words is: 0.07044634806131655

Error rate for the baseline model for unknown words is: 0.75

Error rate for the baseline model at total: 0.14806309904153359

c iii

Error rate for the hmm model for known words is: 0.13134776087422328

Error rate for the hmm model for unknown words is: 0.5342465753424658

Error rate for the hmm model at total: 0.1904936014625228

d ii

Error rate for the hmm ade-one model for known words is: 0.12084851082065562

Error rate for the hmm ade-one model for unknown words is: 0.5342465753424658

Error rate for the hmm ade-one model at total: 0.18153564899451557

e iii

hmm with pseudo

Error rate for the hmm with pseudo words model for known words is: 0.20025917065390753

Error rate for the hmm with pseudo words model for unknown words is: 0.3799559471365639

Error rate for the hmm with pseudo words model at total: 0.21517367458866543

hmm with pseudo and add one

Error rate for the hmm with pseudo and add one for known words is: 0.18959330143540665 Error rate for the hmm with pseudo and add one for unknown words is: 0.3799559471365639 Error rate for the hmm with pseudo and add one at total: 0.2053930530164534 confusion_matrix for hmm with pseudo and add one:

צימן לבואנת כי לממ) (הלנסון הטלי מרבית הממיצה היצה האפסים , אהשוכר בהלמ ≠ היצה הלרה (המיצים מיקאים "אהא מקברות"