МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра АМ

ОТЧЕТ

по домашней работе №1

по дисциплине «Функциональный анализ»

Тема: Норма порожденная многогранником

Вариант 12

Студент гр. 8383	 Ларин А.
Преподаватель	Коточигов А.М

Санкт-Петербург 2021

Задание

Многогранник симметричен по координатным плоскостям. Заданы вершины в первом октанте (положительном)

Надо проверить неравенство треугольника для векторов (-4,8,-7) и (7,-8,-5)

Найти набольшее и наименьшее значение евклидовои нормы на векторах, имеющих норму 1 в норме, порожденной многогранником

Теоретические положения

- Определение нормы в линейном пространстве
 Нормой в линейном пространстве X называется любая функция,
 отображающая пространство X в множество вещественных
 неотрицательных чисел x → ||x|| такая, что
 - 1) Для любого $x \in X$ и для любого $k \in K$ выполнено равенство $||kx|| = |k| \cdot ||x||$;
 - 2) Для любых $x, y \in X$ справедливо неравенство $||x + y|| \le ||x|| + ||xy||$;
 - 3) Для любого $x \in X$ справедливо неравенство $||x|| \ge 0$, причем равенство ||x|| = 0 возможно только для x = 0.

Норма позволяет измерять расстояние $\|x-y\|$ между парой элементов линейного пространства $x,y\in X$. Следовательно, можно говорить о пределах последовательностей x $n\in X$: x $n\to x$ 0 , если $\|x$ n-x 0 $\|\to 0$.

2. Норма, заданная выпуклым пространством (метод вычисления) Пусть W — выпуклое множество и 0 является его внутренней точкой. Нормой Минковского, порожденной множеством W, называется ||x|| = x inf $\{\lambda : \in W, \lambda > 0\}$, $\{x \in W \rightarrow \neg x \in W$. Теорема Минковского. Если W — выпуклое ограниченное тело и 0

является его внутренней точкой, то выражение inf $\{\lambda: \frac{x}{\lambda} \in W, \lambda > 0\}$, ! $x \in W \to -x \in W$ задает норму в пространстве X.

- 3. Симметрии многогранника и модификация вычисления нормы Выпуклый, центрально симметричный многогранник W:
 - 1) $W_1 \rightarrow W_2(x, y, z) \rightarrow (x, -y, z)$
 - 2) $W_2 \to W_3$ (x, y, z) \to (-x, y, z) поверхность в полупространстве ((x, y, z): z > 0). 3)
 - 3) $W_3 \to W(x, y, z) \to (x, y, -z) замкнутая, симметричная относительно координатных плоскостей поверхность$

Симметрия фигуры такова, что $\|x, y, z\|$ $w = \||x|, |y|, |z|\|$, поэтому w норма, порожденная центрально симметричным многогранником одинакова для всех точек вида $(\pm x, \pm y, \pm z)$, поэтому достаточно дать описание базисов углов, находящихся в положительном октанте.

4. Конуса, определяющие норму и их базисы Для нахождения нормы многогранник разделяется на трехгранные углы, содержащие точку (0, 0, 0) и три точки многогранника, образующие его грань. Для конуса OABC базис OA, OB, OC и биортогональный базис OA', OB', OC', который строится следующим образом:

$$OA_{1} = OB \times OH$$
 , $OB_{1} = OA \times OH$, $OH_{1} = OA \times OB$
 $OA' = \frac{1}{(OA_{1}, OA)}OA_{1}$, $OB' = \frac{1}{(OB_{1}, OB)}OB_{1}$, $OH' = \frac{1}{(OH_{1}, OH)}OH_{1}$

- 5. Алгоритм вычисления нормы, цикл по конусам
 - 1) По многограннику формируем разбиение на трехгранные углы
 - 2) В каждом угле строим и фиксируем базис, порожденный многогранником и биортогональный базис
 - 3) Перебираем все углы и приводим разложение рассматриваемого вектора по базису $OP = k_1OA' + k_2OB' + k_3OC'$. Для угла к которому принадлежит точка получим k_1 , k_2 , $k_3 \ge 0$, $||P||_W = k_1 + k_2 + k_3$.
- 6. Определение эквивалентности норм

Нормы $\|P\|_1$, $\|P\|_2$ эквивалентны, если сходимость в них равносильна: $\forall \{x_n\}: x_n \rightarrow^{\|P\|_1} x \Leftrightarrow x_n \rightarrow^{\|P\|_2} x$

Утверждение: Нормы $\|P\|_1$, $\|P\|_2$ эквивалентны \iff существуют константы m, M > 0 такие что $\forall x: m\|x\|_2 \le \|x\|_1 \le M\|x\|_2$.

7. Норма W и l_3^2 – вычисление констант

Максимум расстояний до вершин (оценка сверху), минимум расстояний до граней (оценка снизу):

Находим расстояния от центра системы координат до каждой вершины многогранника, выбираем максимальное/ минимальное значение и строим сферу с найденным радиусом.

Вариант 12.

A(5, 6, 0)

B(3, 0, 3)

H(0, 7, 6)

AA(5, 0, 0)

BB(0, 4, 0)

HH(0, 0, 6)

Выполнение

1. Проверим многогранник на выпуклость. Изначальный вид представлен на рис. 1

Рисунок 1 – Многогранник в первом октанте

1) Рассмотри треугольники ВААА, НВНН, АНВВ и проверим, что они являются выпуклыми

$$BAAA: egin{align*} &B(3,0,3) \\ &A(5,6,0) \\ &A(5,6,0) \\ &AA(5,0,0) \\ &AHBB: egin{align*} &A(5,6,0) \\ &H(0,7,6) \\ &H(0,7,6) \\ &BB(0,4,0) \\ &BBHH: egin{align*} &H(0,7,6) \\ &B(0,7,6) \\ &B(0,7,6) \\ &H(0,4,0) \\$$

2) Найдем точки пересечения слоскости ABH с осями: $(x^*,0,0),(0,y^*,0),(0,0,z^*)$

Плоскость имеет вид 39x+3y+32z-213=0

$$x^* = 5.46$$
; $x^* > x_{AA}$
 $y^* = 71$; $y^* > y_{BB}$

$$z^* = 6.66$$
; $z^* > z_{HH}$

Можно заключить, что многогранник выпуклый

Рисунок 2 — Выпуклый многогранник в первом октанте Т.к. фигура симметрична (т. е. $\|x,y,z\|_{w}=\|x|,|y|,|z||$) перенесем вектора в первый октант и рассмотрим все трехгранные углы НВНН, АВН, АВАА, АВВН. Вектора приведены на рис. 3

Рисунок 3 – Вектора Р1, Р2

Рассмотрим трёхгранный угол АВН

Построим биортогональный базис ОА', ОВ', ОН'

Найдем следующие вектора:

$$OA_1 = OB \times OH$$
 , $OB_1 = OA \times OH$, $OH_1 = OA \times OB$
 $OA' = \frac{1}{(OA_1 OA)}OA_1$, $OB' = \frac{1}{(OB_1 OB)}OB_1$, $OH' = \frac{1}{(OH_1 OH)}OH_1$

$$OA_1 \! = \! (-21,\! -18,\! 21)$$
 , $OB_1 \! = \! (36,\! -30,\! 35)$, $OH_1 \! = \! (18,\! -15,\! -18)$ $OA' \! = \! (0.0986,0.0845,\! -0.0986)$, $OB' \! = \! (0.1690,\! -0.1408,0.1643)$, $OH' \! = \! (-0.0845,0.0704,0.0845)$

Найдем коэффициенты разложения для Р1

 $k_1 = (OP1, OA') = 0.3803$

 $k_2 = (OP1, OB') = 0.6995$

 $k_3 = (OP1, OH') = 0.8169$

Все коэффициенты положительные, след. P1 лежит внутри трехгранного угла ABH

Норма $||P_1||_w = k_1 + k_2 + k_3 = 1.8967$

Для Р2:

 $(k_1, k_2, k_3) = (0.8732, 0.8779, 0.3944)$

Вектор Р2 также лежит в углу АВН

 $||P_2||_{w}^{1} = k_1 + k_2 + k_3 = 2.1455$

Для $P_3 = P_1 + P_2$

 $(k_1, k_2, k_3) = (1.2535, 1.5775, 1.2113)$

Проверим неравенство треугольника

 $||P_1 + P_2|| \le ||P_1|| + ||P_2||$

 $4.0423 \le 1.8967 + 2.1455 = 4.0423$

Неравенство треугольника выполнено

Найдем наибольшее и наименьшее значение евклидовой нормы на векторах, имеющих норму 1 в норме, порожденной многогранником.

Наименьшую евклидову норму имеет точка, лежащая на перпендикуляре плоскости ВААА, проходящем через точку координат — 6.16 Наибольшую евклидову норму имеет точка Н — 9.22 Сферы представлены на рис.4

Рисунок 4 — Наибольшее и наименьшее значение евклидовой нормы **Выводы.**

Был построен многогранник, приведен к выпуклому виду.

Для заданный векторов были вычисленны нормы и проверено неравенство треугольника. было найдено наибольшее и наименьшее значение евклидовой нормы для точек на границе множества(на поверхности многогранника). По ним построены две сферы, которые касаются поверхности в конечном числе точек.