

PHYSICS Chapter 5

Fuerza de Rozamiento

@ SACO OLIVEROS

MOTIVATING

STRATEGY

LAS SUPERFICIES
SON NECESARIOS
PARA PODER
CAMINAR

EN ALGUNOS CASOS NO LO NECESITAMOS MINAR

¿QUÉ ES LA FUERZA DE ROCE O DE ROZAMIENTO?

Se define el rozamiento como la oposición que esta presente en el deslizamiento o posible deslizamiento de un cuerpo respecto a otro cuando dos materiales o medios están en contacto.

ROZAMIENTO ESTÁTICO

Surge cuando un cuerpo trata de deslizar sobre otro cuerpo.

El vector que representa a la fuerza de rozamiento estático se grafica de manera tangente a las superficies en contacto y en dirección opuesta hacia donde el cuerpo trata de resbalar.

HELICO THEORY ROZAMIENTO ESTÁTICO

El módulo del rozamiento estático, es variable; va desde cero hasta un máximo; el cual se manifiesta cuando el cuerpo esta a punto de deslizar.

Consideremos el caso, en que la persona jala la cuerda para arrastrar al bloque, pero no logra hacerlo, ¿Por qué ocurre esto?

HELICO THEORY ROZAMIENTO ESTÁTICO

Esto ocurre a que la fuerza con la cual la persona jala a la cuerda, se compensa con la fuerza de rozamiento estático.

Como el bloque esta en reposo:

$$\Sigma F(\rightarrow) = \Sigma F(\leftarrow)$$

$$T = f_s$$

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$F_g = F_N$$

PHYSICS

HELICO THEORY ROZAMIENTO ESTÁTICO

Cuando el cuerpo esta a punto de ((deslizar, surge la fuerza de rozamiento estático máximo y su módulo se obtiene con:

F_N. Módulo de la fuerza de reacción normal.

Coeficiente de rozamiento estático μ_{s} : entre las superficies en contacto.

HELICO THEORY ROZAMIENTO CINÉTICO

Surge cuando un cuerpo desliza sobre otro

El veretoro.que representa a la fuerza de rozamiento cinético se gráfica de manera tangente a las superficies en contacto y en dirección opuesta hacia donde el cuerpo esta deslizando. f_k

HELICO THEORY ROZAMIENTO ESTÁTICO

ROZAMIENTO CINÉTICO

El rozamiento cinético, se da cuando un cuerpo se encuentra deslizando sobre otro.

Cuando el cuerpo se desliza uno respecto a otro, el módulo de la fricción cinética se determina.

Resolución # 1:

HELICO PRACTICE

Si el bloque mostrado se encuentra en reposo, determine el módulo de la fuerza de rozamiento.

$$\therefore f_s = 90 \text{ N}$$

HELICO PRACTICE

Si el bloque de 4 kg se mantiene en reposo, determine el módulo de la reacción del piso sobre el bloque. (g=10 m/s2)

Realizando D.C.L. del bloque

$$\Sigma F(\rightarrow) = \Sigma F(\leftarrow)$$

$$30 N = f_s$$

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$F_{N} = 40 \text{ N}$$

R: Reacción de la superficie sobre el bloque

$$R = \sqrt{(30 \text{ N})^2 + (40 \text{ N})^2}$$

$$\therefore R = 50 N$$

Si el bloque de 8 kg se desliza a velocidad constante. determine el módulo de la reacción del piso sobre dicho bloque.

$$∴ R = 100 N$$

Resolución # 4:

HELICO PRACTICE

Si el bloque de 6 kg está en reposo. Determine el módulo de la fuerza de reacción del piso. (g=10 m/s2)

$$\Sigma F(\rightarrow) = \Sigma F(\leftarrow)$$

$$35 N = f_r$$

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$F_{N} = 15 N$$

PITAGORAS

$$R = \sqrt{(35 \text{ N})^2 + (15 \text{ N})^2}$$

$$\therefore R = 5\sqrt{58} N$$

25 N

Resolución # 5:

HELICO PRACTICE

El bloque de 6 kg está a punto de resbalar. Determine el coeficiente de rozamiento (μ_s). (g = 10,m/s²)

$$30 N = \mu_s 60 N$$

$$\mu_{s} = 0.5$$

Resolución # 6:

g

HELICO PRACTICE

Si el bloque de 1 kg se encuentra apoyado en una pared vertical áspera (μ_s = 0,5), determine el módulo de la fuerza F, manteniendo el bloque a punto de bajar. (g = 10 m/s²)

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$fs + 3K = 10N$$

$$\mu_s F_N + 3K = 10N$$

$$\Sigma F(\rightarrow) = \Sigma F(\leftarrow)$$

$$F_N = 4K$$

$$0,5x4K + 3K = 10N$$

$$5K = 10N$$

Calculo de F

F= 10 N

HELICO PRACTICE

El bloque de 3 kg está en reposo. Determine el coeficiente de rozamiento (μ_s) . $(g = 10 \text{ m/s}_2)$

$$\Sigma F(Y \uparrow) = \Sigma F(Y \downarrow)$$

$$F_N = 24N$$

$$\Sigma F(x \rightarrow) = \Sigma F(x \leftarrow)$$

$$f_s = 12 N$$

<u>sabemos</u>

$$f_s = \mu F_N$$

$$12N = \mu.24N$$

$$\mu = 0.5$$

El módulo de la fuerza de rozamiento estático, adquiere su máximo valor 2 kg cuando el cuerpo está a punto de resbalar, y se obtiene dicho módulo con $fs_{máx} = \mu s \cdot F_N$. Si el bloque mostrado está a punto de deslizar cuando el balde contiene 800 g de arena. Determine μ_s . $(g = 10 \text{ m/s}^2)$

