- 16. O Carlos, o João e o Manuel, suspeitos de um crime, fizeram os seguintes depoimentos, respetivamente:
 - O João é culpado, mas o Manuel é inocente.
 - Se o Carlos é culpado, o Manuel também o é.
 - Eu estou inocente, mas um dos outros dois é culpado.
 - a) Os três depoimentos serão consistentes? (Ou seja, poderão ser todos verdadeiros?)
 - b) Algum dos depoimentos é consequência dos outros dois?
 - c) Supondo os três réus inocentes, quem mentiu?
 - d) Supondo que todos disseram a verdade, quem é culpado?
 - e) Supondo que os inocentes disseram a verdade e que os culpados mentiram, quem é culpado?
- 17. Mostre que a soma de dois números ímpares é um número par.
- 18. Mostre que o produto de números ímpares é um número ímpar.
- 19. Sejam a, b e c três números reais tais que a > b. Mostre, por contraposição, que se $ac \le bc$ então $c \le 0$.
- 20. Prove que, para todo o natural n, n^2 é impar se e só se n é impar.
- 21. Prove que, se um natural n é tal que $n^2 > 25$, então n > 5.
- 22. Prove que todo o natural primo maior do que 2 é ímpar.
- 23. Mostre que os únicos inteiros positivos consecutivos a, b, c que satisfazem $a^2 + b^2 = c^2$ são 3, 4, 5.
- 24. Mostre que se a e b são números reais tais que a < b, então $\frac{a+b}{2} < b$.
- 25. Considere os seguinte predicados P(n) e Q(n) sobre os números inteiros: P(n): "n < 5" e Q(n): "n < 2". Para cada valor de n, indique se a proposição $P(n) \to Q(n)$ é verdadeira ou falsa.
- 26. Suponha que os possíveis valores de x são coelhos e considere os seguintes predicados na variável x: P(x): "x tem pelo branco"; Q(x): "x gosta de cenouras". Traduza as seguintes fórmulas com quantificadores por palavras:
 - a) $\forall_x P(x)$
 - b) $\exists_x Q(x)$
 - c) $\forall_x (P(x) \lor Q(x))$
 - d) $\exists_x (\sim P(x) \land Q(x))$
 - e) $\forall_x (P(x) \rightarrow Q(x))$
 - f) $\exists_x (Q(x) \leftrightarrow \sim P(x))$

- 27. Suponha que os possíveis valores de x são cães e sejam P(x): "x é preto"; Q(x): "x tem quatro anos"; R(x): "x tem manchas brancas". Traduza as seguintes frases para linguagem simbólica, usando quantificadores.
 - a) Existe um cão preto.
 - b) Todos os cães pretos têm quatro anos de idade.
 - c) Existe um cão preto com manchas brancas.
 - d) Todos os cães com quatro anos têm manchas brancas.
 - e) Existe um cão tal que se tem quatro anos então não tem manchas brancas.
 - f) Todos os cães são pretos se e só se não têm quatro anos.
 - g) Não existem cães pretos.
- 28. Exprima cada uma das seguintes afirmações em linguagem simbólica, com quantificadores.
 - a) A equação $x^3 = 28$ tem solução.
 - b) A equação $x^2 4 = 0$ tem uma solução positiva.
 - c) 1000000 não é o maior número natural.
 - d) A soma de quaisquer três números naturais consecutivos é um múltiplo de 3.
 - e) Entre cada dois números racionais distintos existe um outro número racional.
- 29. Prove que as proposições das alíneas b), c) e d) do exercício anterior são verdadeiras.
- 30. Escreva afirmações que sejam a negação das proposições que se seguem.
 - a) Todos os peixes nadam.
 - b) Alguns jornais exageram a realidade.
 - c) Existe um gato sem cauda.
 - d) Todas as peças de Shakespeare são comédias.
- 31. Considere a seguinte proposição: "todos os hobbits são criaturas pacíficas". Indique qual ou quais das seguintes proposições equivale à negação da proposição anterior.
 - a) "Todos os hobbits são criaturas conflituosas."
 - b) "Nem todos os hobbits são criaturas pacíficas."
 - c) "Existem hobbits que são criaturas conflituosas."
 - d) "Nem todos os hobbits são criaturas conflituosas."
- 32. Escreva a negação de cada uma das seguintes proposições sem aplicar a palavra "não" aos objetos quantificados.
 - a) "Todos os rapazes são simpáticos."
 - b) "Existem morcegos que pesam 50 ou mais quilogramas."
 - c) "A inequação $x^2 2x > 0$ verifica-se para todo o número real x."
 - d) "Existe um número inteiro n tal que n^2 é um número primo."
 - e) "Existe um número natural que é maior que todos os outros números naturais."