МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ КАФЕДРА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ И АНАЛИЗА ДАННЫХ

Отчет о прохождении преддипломной практики

Румянцева Андрея Кирилловича студента 4 курса, специальность "прикладная математика"

Руководитель практики: зав. кафедрой ММАД, канд. физ.-мат. наук, доцент Бодягин Игорь Александрович

1 Задание на практику

- Провести аналитический обзор литературы методов статанализа данных при наличии классифицированных данных с искажениями.
- Реализовать альтернативные встречаемые в литературе методы статистического анализа данных при наличии классифицированных данных с искажениями.
- Провести сравнительный анализ реализованного в ходе курсового проекта метода с альтернативными.
- Обобщить все реализованные методы с линейной на полиномиальную регрессию.
- Подготовить отчет по преддипломной практике.

Содержание

1	Зад	дание на практику	1	
\mathbf{B}	вед	ЕНИЕ	9	
2	2 Изучение материала			
3	Pea	лизация оценка	6	
4	Kon	ипьютерные эксперименты	7	
	4.1	Параметры модели и оценок	7	
	4.2	Сравнительный анализ построенной оценки с альтернативной.	7	
	4.3	Дополнительные эксперименты	8	
	4.4	Использование полиномиальной регрессии	C	

ВВЕДЕНИЕ

Целью преддипломной практики было продолжение исследования и улучшение оценок, построенных в курсовом проекте. Темой курсового проекта было "Статистическое оценивание параметров линейной регрессии с выбросами при наличии группирования наблюдений".

Оценки были построенны с помощью максимизирования функции правдоподобия:

$$l(\beta, \sigma^2, \nu_0, \dots, \nu_{k-1}) = \ln(\prod_{i=1}^n P(\mu_i = j)) =$$
 (1)

$$= \sum_{i=1}^{n} \ln(P(\mu_i = j)), \tag{2}$$

где:

$$P(\mu_i = j) = P(y_i \in \nu_{\mu_i}), \tag{3}$$

 y_i - значения функции регрессии, а ν_0, \dots, ν_{k-1} - номера полуинтервалов, разбивающих множество значений функции регрессии:

$$(-\infty, a_1] \bigcup (a_1, a_2] \bigcup \cdots \bigcup (a_{k-1}, +\infty) = \mathcal{R}$$
 (4)

 μ_i номер полуинтервала, в который он попал y_i .

$$\mu_i = j$$
, если y_i отнесли к полуинтервалу ν_j . (5)

Задача максимизирования решала с помощью решения нелинейной системы уравнений:

$$\frac{\delta l}{\delta \beta} = 0, \tag{6}$$

где

$$\frac{\delta l}{\delta \beta} = \frac{\delta \sum_{i=1}^{n} \ln(P(\mu_{i} = j))}{\delta \beta} = \frac{\delta \sum_{i=1}^{n} \ln P(y_{i} \in \nu_{\mu_{i}})}{\delta \beta} = \frac{\delta \sum_{i=1}^{n} \ln(\frac{1}{2}(\text{erf}(\frac{a_{\mu_{i}+1}-f(x_{i},\beta)}{\sqrt{2}\sigma}) - \text{erf}(\frac{a_{\mu_{i}}-f(x_{i},\beta)}{\sqrt{2}\sigma})))}{\delta \beta} = \frac{\delta \sum_{i=1}^{n} \ln(\frac{1}{2}(\text{erf}(\frac{a_{\mu_{i}+1}-f(x_{i},\beta)}{\sqrt{2}\sigma}) - \text{erf}(\frac{a_{\mu_{i}}-f(x_{i},\beta)}{\sqrt{2}\sigma})))}{\delta \beta} = \frac{\delta \sum_{i=1}^{n} \ln(\frac{1}{2}(\text{erf}(\frac{a_{\mu_{i}+1}-f(x_{i},\beta)}{\sqrt{2}\sigma}) - \text{erf}(\frac{a_{\mu_{i}}-f(x_{i},\beta)}{\sqrt{2}\sigma})))}{(\text{erf}(\frac{a_{\mu_{i}}-f(x_{i},\beta)}{\sqrt{2}\sigma}) - \text{erf}(\frac{a_{\mu_{i}}-f(x_{i},\beta)}{\sqrt{2}\sigma})))} + (\delta_{\mu_{i}0} + \delta_{\mu_{i}k-1}) \frac{\text{erf}(\frac{a_{\mu_{i}}-f(x_{i},\beta)}{\sqrt{2}\sigma})}{(1 + \text{erf}(\frac{a_{\mu_{i}}-f(x_{i},\beta)}{\sqrt{2}\sigma}))}) (-1) \frac{\delta f(x_{i},\beta)}{\delta \beta}) = (7)$$

$$= -\sum_{i=1}^{n} {1 \choose x_{i1}} \times \left((1 - (\delta_{\mu_{i}0} + \delta_{\mu_{i}k-1})) \frac{(\operatorname{erf}'(\frac{a_{\mu_{i}+1} - f(x_{i},\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}'(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))}{(\operatorname{erf}(\frac{a_{\mu_{i}+1} - f(x_{i},\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))} + (\delta_{\mu_{i}0} + \delta_{\mu_{i}k-1}) \frac{\operatorname{erf}'(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma})}{(1 + \operatorname{erf}(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))}\right).$$

2 Изучение материала

В ходе выполнения преддипломной практики были изучены следующие источники:

В источниках был встречен метод наименьших квадратов по центрам интервалов. Метод заключается в следующем: пусть имеется μ_i номер полуинтервала, в который попало очередное наблюдение y_i . Ему соответствует полуинтервал ν_{μ_i} (см(4)), т.е. полуинтервал:

$$(a_{\nu_{\mu_i}}, a_{\nu_{\mu_i}+1}],$$
 (8)

(считаем что $a_1 < y_i < a_{k-1}, i = \overline{1, n}$).

Найдем центральную точку этого интервала, т.е. точку

$$\check{y}_i = \frac{a_{\nu_{\mu_i}} + a_{\nu_{\mu_i} + 1}}{2} \tag{9}$$

Построим для всех значений функции регрессии y_i значения \check{y}_i . Будем использовать в качестве значений функции регрессии полученные значений, а в качестве регрессоров x_i и построим МНК оценки параметров β .

3 Реализация оценка

Описанные оценки были построены путем наследования от исходных оценок и переопределения соответствуюего метода fit().

4 Компьютерные эксперименты

4.1 Параметры модели и оценок

Параметры программы			
Переменная	значение		
Размер выборки <i>N</i>	1000		
Доля выбросов $\widetilde{arepsilon}$	0.8		
Параметры регрессии	(90,4)		
$\mid eta \mid$,		
Регрессоры x_i	$\sim U(-5,5)$		
$arepsilon_i$	$\sim N(0, 16)$		
η_i	$\sim N(100, 100)$		
Величина K из пункта	10		
2.3 курсового проекта			

4.2 Сравнительный анализ построенной оценки с альтернативной

Если сравнить вариации оценок построенныхх на рис.3 можно увидеть, что оценки, построенные по методу, предложенному на курсовом проекте, показывают лучшие результаты

Рис. 1: Сравнение вариаций оценок

4.3 Дополнительные эксперименты

Рис. 2: Зависимость от К, упомянотого в пункте 2.3 курсового проекта

Рис. 3: Сравнение вариаций оценок когда используется и не используется переклассификация

4.4 Использование полиномиальной регрессии

Несложно заметить, что построенные в курсовом проекте оценки никак не зависят от регрессоров, поэтому можно моделировать полиномиальную регрессию и применить к ней описанный метод.