# Introduction to R and Linear Regression

## Alexander McLain

January 26, 2016

## bioconductor.

First let's look at a data source from bioconductor. The following will install all core packages and update all installed packages:

```
# install.packages("BiocManager")
# BiocManager::install(c("ALL","limma"))
library("ALL")
data("ALL")
ALL
## ExpressionSet (storageMode: lockedEnvironment)
  assayData: 12625 features, 128 samples
##
     element names: exprs
## protocolData: none
## phenoData
##
     sampleNames: 01005 01010 ... LAL4 (128 total)
     varLabels: cod diagnosis ... date last seen (21 total)
##
     varMetadata: labelDescription
##
## featureData: none
  experimentData: use 'experimentData(object)'
     pubMedIds: 14684422 16243790
## Annotation: hgu95av2
```

We can looks at the results of molecular biology testing for the 128 samples:

#### ALL\$mol.biol

```
##
     [1] BCR/ABL
                            BCR/ABL
                                      ALL1/AF4 NEG
                                                         NEG
                                                                             NEG
                   NEG
                                                                   NEG
##
     [9] NEG
                   BCR/ABL
                            BCR/ABL
                                      NEG
                                                E2A/PBX1 NEG
                                                                   BCR/ABL
                                                                             NEG
                   BCR/ABL
                            BCR/ABL
##
                                      BCR/ABL
                                               NEG
                                                         BCR/ABL
                                                                   BCR/ABL
                                                                            NEG
    [17] BCR/ABL
##
    [25] ALL1/AF4 BCR/ABL
                            ALL1/AF4 NEG
                                                ALL1/AF4 BCR/ABL
                                                                   NEG
                                                                             BCR/ABL
##
    [33] NEG
                   BCR/ABL
                            BCR/ABL
                                      ALL1/AF4 NEG
                                                         BCR/ABL
                                                                   BCR/ABL
                                                                            BCR/ABL
    [41] NEG
                   E2A/PBX1 BCR/ABL
                                                NEG
                                                         NEG
                                      NEG
                                                                   BCR/ABL
                                                                            p15/p16
    [49] ALL1/AF4 BCR/ABL
                            BCR/ABL
                                      NEG
                                                E2A/PBX1 NEG
                                                                   NEG
                                                                             NEG
##
    [57] BCR/ABL
                   BCR/ABL
                            NEG
                                      NEG
                                                ALL1/AF4 NEG
                                                                   ALL1/AF4
                                                                            NEG
##
    [65] BCR/ABL
                                                                   BCR/ABL
##
                   NEG
                            NEG
                                      NEG
                                                NEG
                                                         NEG
                                                                            ALL1/AF4
##
    [73] BCR/ABL
                   NEG
                            E2A/PBX1 NEG
                                                BCR/ABL
                                                         BCR/ABL
                                                                   NEG
                                                                             NEG
    [81] NEG
                   NEG
                            BCR/ABL
                                                BCR/ABL
                                                         BCR/ABL
                                                                   BCR/ABL
##
                                      NEG
                                                                            ALL1/AF4
##
    [89] NEG
                   NEG
                            BCR/ABL
                                      NEG
                                                BCR/ABL
                                                         BCR/ABL
                                                                   E2A/PBX1 NEG
   [97] NUP-98
                   NEG
                            NEG
                                      NEG
                                                NEG
                                                         NEG
                                                                   NEG
                                                                             NEG
## [105] NEG
                   NEG
                            NEG
                                      NEG
                                                NEG
                                                         NEG
                                                                   NEG
                                                                            NEG
  [113]
         NEG
                   NEG
                            NEG
                                      NEG
                                                NEG
                                                         NEG
                                                                   NEG
                                                                             NEG
## [121] NEG
                   NEG
                            NEG
                                      NEG
                                                NEG
                                                         NEG
                                                                   NEG
                                                                             NEG
```

#### ## Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

For the purposes of this example, we are only interested in these two subgroups, so we will create a filtered version of the dataset using this as a selection criteria:

```
eset <- ALL[, ALL$mol.biol %in% c("BCR/ABL", "ALL1/AF4")]
```

The resulting variable, eset, contains just 47 samples - each with the full 12,625 gene expression levels.

heatmap(exprs(eset[1:100,]))



Below we're going to do some basic unadjusted variable selection and re-plot the heat map.

## library(limma)

##

## Attaching package: 'limma'

```
## The following object is masked from 'package:BiocGenerics':
##
## plotMA

f <- factor(as.character(eset$mol.biol))
design <- model.matrix(~f)
fit <- eBayes(lmFit(eset,design))

selected <- p.adjust(fit$p.value[, 2]) <0.05
esetSel <- eset [selected, ]

heatmap(exprs(esetSel))</pre>
```



Some other good packages to be familar with are: plyr, ggthemes, ggplot2, data.table, dplyr, Biobase, GEOmetadb.

## Body fat example

This example will use the bodyfat data from the textbook. First we will read in the data, then look at some summaries.

```
bf_dat <- read.csv("bodyfat2.csv")
bf_df <- data.frame(bf_dat)
head(bf_df)</pre>
```

| density | bodyfat | age | weight | height | neck | chest | abdome | en hip | thigh | knee | ankle | biceps | forearm | wrist |
|---------|---------|-----|--------|--------|------|-------|--------|--------|-------|------|-------|--------|---------|-------|
| 1.0708  | 12.3    | 23  | 154.25 | 67.75  | 36.2 | 93.1  | 85.2   | 94.5   | 59.0  | 37.3 | 21.9  | 32.0   | 27.4    | 17.1  |
| 1.0853  | 6.1     | 22  | 173.25 | 72.25  | 38.5 | 93.6  | 83.0   | 98.7   | 58.7  | 37.3 | 23.4  | 30.5   | 28.9    | 18.2  |
| 1.0414  | 25.3    | 22  | 154.00 | 66.25  | 34.0 | 95.8  | 87.9   | 99.2   | 59.6  | 38.9 | 24.0  | 28.8   | 25.2    | 16.6  |
| 1.0751  | 10.4    | 26  | 184.75 | 72.25  | 37.4 | 101.8 | 86.4   | 101.2  | 60.1  | 37.3 | 22.8  | 32.4   | 29.4    | 18.2  |
| 1.0340  | 28.7    | 24  | 184.25 | 71.25  | 34.4 | 97.3  | 100.0  | 101.9  | 63.2  | 42.2 | 24.0  | 32.2   | 27.7    | 17.7  |
| 1.0502  | 20.9    | 24  | 210.25 | 74.75  | 39.0 | 104.5 | 94.4   | 107.8  | 66.0  | 42.0 | 25.6  | 35.7   | 30.6    | 18.8  |

Second, we'll look at the correlation matrix of the data:

```
round(cor(bf_df),2)
```

|          | densit | y bodyfa    | at age         | weigh | t height | neck        | chest       | abdon       | nemlip | thigh | knee | ankle | biceps      | forearr     | nwrist |
|----------|--------|-------------|----------------|-------|----------|-------------|-------------|-------------|--------|-------|------|-------|-------------|-------------|--------|
| density  | 1.00   | -1.00       | -              | -     | 0.02     | -           | -           | -0.81       | -      | -     | -    | -     | -           | -0.36       |        |
|          |        |             | 0.29           | 0.61  |          | 0.49        | 0.70        |             | 0.62   | 0.56  | 0.51 | 0.27  | 0.49        |             | 0.35   |
| bodyfa   | t-1.00 | 1.00        | 0.29           | 0.61  | -        | 0.49        | 0.70        | 0.81        | 0.63   | 0.56  | 0.51 | 0.27  | 0.49        | 0.36        | 0.35   |
|          |        |             |                |       | 0.03     |             |             |             |        |       |      |       |             |             |        |
| age      | -0.29  | 0.29        | 1.00           | -     | -        | 0.11        | 0.18        | 0.23        | -      | -     | 0.02 | -     | -           | -0.09       | 0.21   |
|          |        |             |                | 0.01  | 0.25     |             |             |             | 0.05   | 0.20  |      | 0.11  | 0.04        |             |        |
| weight   | -0.61  | 0.61        | -              | 1.00  | 0.49     | 0.83        | 0.89        | 0.89        | 0.94   | 0.87  | 0.85 | 0.61  | 0.80        | 0.63        | 0.73   |
|          |        |             | 0.01           |       |          |             |             |             |        |       |      |       |             |             |        |
| height   | 0.02   | -0.03       | -              | 0.49  | 1.00     | 0.32        | 0.23        | 0.19        | 0.37   | 0.34  | 0.50 | 0.39  | 0.32        | 0.32        | 0.40   |
|          |        |             | 0.25           |       |          |             |             |             |        |       |      |       |             |             |        |
| neck     | -0.49  | 0.49        | 0.11           | 0.83  | 0.32     | 1.00        | 0.78        | 0.75        | 0.73   | 0.70  | 0.67 | 0.48  | 0.73        | 0.62        | 0.74   |
| chest    | -0.70  | 0.70        | 0.18           | 0.89  | 0.23     | 0.78        | 1.00        | 0.92        | 0.83   | 0.73  | 0.72 | 0.48  | 0.73        | 0.58        | 0.66   |
| abdom    |        | 0.81        | 0.23           | 0.89  | 0.19     | 0.75        | 0.92        | 1.00        | 0.87   | 0.77  | 0.74 | 0.45  | 0.68        | 0.50        | 0.62   |
| hip      | -0.62  | 0.63        | -              | 0.94  | 0.37     | 0.73        | 0.83        | 0.87        | 1.00   | 0.90  | 0.82 | 0.56  | 0.74        | 0.55        | 0.63   |
| 41.:l.   | 0.56   | 0.56        | 0.05           | 0.07  | 0.24     | 0.70        | 0.72        | 0.77        | 0.00   | 1.00  | 0.00 | 0.54  | 0.76        | 0.57        | 0.56   |
| thigh    | -0.56  | 0.56        | - 0.20         | 0.87  | 0.34     | 0.70        | 0.73        | 0.77        | 0.90   | 1.00  | 0.80 | 0.54  | 0.76        | 0.57        | 0.56   |
| knee     | -0.51  | 0.51        | $0.20 \\ 0.02$ | 0.85  | 0.50     | 0.67        | 0.72        | 0.74        | 0.82   | 0.80  | 1.00 | 0.61  | 0.68        | 0.56        | 0.66   |
| ankle    | -0.31  | 0.31 $0.27$ | 0.02           | 0.60  | 0.30     | 0.67 $0.48$ | 0.72 $0.48$ | 0.74 $0.45$ | 0.52   | 0.50  | 0.61 | 1.00  | 0.08 $0.48$ | 0.30 $0.42$ | 0.50   |
| ankie    | -0.27  | 0.27        | 0.11           | 0.01  | 0.39     | 0.40        | 0.40        | 0.49        | 0.50   | 0.54  | 0.01 | 1.00  | 0.40        | 0.42        | 0.57   |
| biceps   | -0.49  | 0.49        | 0.11           | 0.80  | 0.32     | 0.73        | 0.73        | 0.68        | 0.74   | 0.76  | 0.68 | 0.48  | 1.00        | 0.68        | 0.63   |
| ыссра    | -0.43  | 0.40        | 0.04           | 0.00  | 0.52     | 0.15        | 0.15        | 0.00        | 0.14   | 0.70  | 0.00 | 0.40  | 1.00        | 0.00        | 0.00   |
| forearn  | n-0 36 | 0.36        | 0.04           | 0.63  | 0.32     | 0.62        | 0.58        | 0.50        | 0.55   | 0.57  | 0.56 | 0.42  | 0.68        | 1.00        | 0.59   |
| 10100111 | 0.00   | 0.00        | 0.09           | 0.09  | 0.02     | 5.02        | 3.30        | 0.00        | 0.00   | 0.01  | 5.50 | 0.12  | 3.00        | 1.00        | 0.00   |
| wrist    | -0.35  | 0.35        | 0.21           | 0.73  | 0.40     | 0.74        | 0.66        | 0.62        | 0.63   | 0.56  | 0.66 | 0.57  | 0.63        | 0.59        | 1.00   |

Third, we'll fit a simple linear model to the data

```
##
## Call:
## lm(formula = bodyfat ~ age + weight + height + neck + chest +
      abdomen + hip + thigh + knee + ankle + biceps + forearm +
##
      wrist, data = bf_df)
##
## Residuals:
##
       Min
                 1Q
                    Median
                                  3Q
## -11.1966 -2.8824 -0.1111 3.1901
                                       9.9979
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                          22.18616 -0.962 0.33680
## (Intercept) -21.35323
## age
               0.06457
                           0.03219
                                   2.006 0.04601 *
## weight
               -0.09638
                           0.06185 -1.558 0.12047
## height
               -0.04394
                          0.17870 -0.246 0.80599
                          0.23557 -2.018 0.04467 *
## neck
               -0.47547
                          0.10322 -0.166 0.86792
## chest
               -0.01718
## abdomen
                          0.09016 10.592 < 2e-16 ***
               0.95500
                          0.14479 -1.302 0.19401
## hip
               -0.18859
## thigh
              0.24835
                          0.14617 1.699 0.09061 .
## knee
                0.01395
                          0.24775 0.056 0.95516
## ankle
                0.17788
                           0.22262 0.799 0.42505
## biceps
                0.18230
                          0.17250 1.057 0.29166
## forearm
                0.45574
                           0.19930
                                  2.287 0.02309 *
## wrist
               -1.65450
                          0.53316 -3.103 0.00215 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.309 on 238 degrees of freedom
## Multiple R-squared: 0.7486, Adjusted R-squared: 0.7348
## F-statistic: 54.5 on 13 and 238 DF, p-value: < 2.2e-16
t_vals <- data.frame(t_val = bf_mod$coefficients/(coef(summary(bf_mod))[,2]),</pre>
                    coef = names(bf_mod$coefficients))
Plot the resulting T-values:
```

ggplot(data=t\_vals,aes(x=coef,y=t\_val)) +geom\_point() + geom\_hline(yintercept=c(-1.96,1.96))

summary(bf\_mod)



```
RSS_n <- mean(bf_mod$residuals^2)
RSS_n_p <- sum(bf_mod$residuals^2)/(
    nrow(bf_df) - length(bf_mod$coefficients))</pre>
```

Here

$$RSS_n = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n}$$

while

$$RSS_n_p = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n - p}$$

Let see how that compares to the CV estimate. To do this we will:

- create a function that will do K-fold CV sampling of the data (K = 2, 3, ..., n).
- execute a linear model for each of the K-fold samples

• estimate the prediction error for each of the K-fold samples

Here is the function to do the K-fold sampling:

```
CV_sampl <- function(data,K){
    n <- length(data[,1])
    L <- n/K
    if(is.integer(L)){
        cv_ids <- rep(1:K,each=L)
        }
    if(!is.integer(L)){
        cv_ids <- rep(1:(K-1),each=ceiling(L))
        cv_ids <- c(cv_ids,rep(K,n-(K-1)*ceiling(L)))
        }
    ids <- sample(cv_ids,n)
    Y <- list(data=data,ids=ids)
    return(Y)
}</pre>
```

Let's see it work.

```
CV_ids <- CV_sampl(bf_df,10)
CV_ids$ids[1:20]</pre>
```

```
## [1] 4 3 2 4 9 7 9 10 1 10 6 7 4 1 9 3 5 1 2 2
```

Now to do the CV for each model:

```
#How many folds:
CV \leftarrow c(3,5,10,20,length(bf_df[,1]))
#Set the seed so we can replicate
set.seed(4)
PE_est <- c(RSS_n,RSS_n_p)</pre>
for(k in CV){
  #Get which group each subject is in.
  ids <- CV_sampl(bf_df,k)$ids</pre>
  t_PE_est <- NULL
  for(j in 1:k){
    #Get jth leaning and test datasets, and estimate LM
    learning_data <- bf_df[ids!=j,]</pre>
    test_data <- bf_df[ids==j,]</pre>
    bf mod CV <- lm(bodyfat~age + weight + height + neck + chest +
                        abdomen + hip + thigh + knee + ankle + biceps +
                        forearm + wrist,data = learning_data)
    #Predict Y_hat for the new data.
    new_Yhat <- predict(bf_mod_CV,test_data)</pre>
    #Get the squared errors.
    new_RSS_n <- (test_data$bodyfat - new_Yhat)^2</pre>
    t_PE_est <- c(t_PE_est,new_RSS_n)</pre>
  PE_est <- c(PE_est,mean(t_PE_est))</pre>
PE_est <- t(matrix(PE_est))</pre>
```

Now let's see all of the results:

|          | RSS_n   | RSS_n_p | PE_CV 3 | PE_CV 5 | PE_CV 10 | PE_CV 20 | PE_CV 252 |
|----------|---------|---------|---------|---------|----------|----------|-----------|
| Estimate | 17.5399 | 18.5717 | 21.3079 | 19.7441 | 20.8561  | 20.6022  | 20.2948   |

## Testing Speed

In this portion we are going to test the speed of R in doing a simple linear regression by column.

First, let's read in the data:

```
Ex_dat <- read.csv("Example_data.csv")

Y <- Ex_dat[,1]
Z <- as.matrix(Ex_dat[,-1])
M <- dim(Z)[2]
dim(Z)</pre>
```

```
## [1] 400 10000
```

Now we're going to regress Y as a function of each  $Z_j$  while adjusting for the sum over all  $Z_k$ 's. That is, we going to fit the model

$$Y_i = \beta_0 + \beta_{1j} Z_{ij} + \beta_2 (\sum_{k=1}^{10000} Z_{ik}) + \epsilon_i$$

This requires running 10,000 separate models.

```
coef_mat <- NULL
StdErr <- NULL
Sigma2 <- NULL
Xp <- apply(Z,1,mean)

system.time(for(i in 1:M){
   t1 <- lm(Y~Z[,i]+Xp)
   coef_mat <- rbind(coef_mat,coef(t1))
   StdErr <- rbind(StdErr, sqrt(diag(vcov(t1))))
   Sigma2 <- c(Sigma2, sigma(t1)^2)
})</pre>
```

```
## user system elapsed
## 12.132 0.422 12.667
```

##

0.249

0.020

Now, we're going to run this again using a package called RcppArmadillo. The function  $LM_by_col.cpp$  is available on the course website. This function does the same basic operation as the code above, but is coded in c++.

First, we have to compile the LM\_by\_col.cpp function so it is available.

```
library(Rcpp)
library(RcppArmadillo)
sourceCpp("LM_by_col.cpp")
```

Now we'll run all the models and compare the computation time.

0.270

```
system.time(LRcpp <- LM_by_col(Y, Z))
## user system elapsed</pre>
```

```
table(round(LRcpp$Coefficients,7) == round(coef_mat,7) )

TRUE
30000

table(round(LRcpp$StdErr,7) == round(StdErr,7) )

TRUE
30000
```