

AMS Proceedings Series Sample

Author One and Author Two

This paper is dedicated to our advisors.

ABSTRACT. This paper is a sample prepared to illustrate the use of the American Mathematical Society's L^AT_EX document class `amsproc` and publication-specific variants of that class for AMS-L^AT_EX version 1.2.

This is an unnumbered first-level section head

This is an example of an unnumbered first-level heading.

THIS IS A SPECIAL SECTION HEAD

This is an example of a special section head¹.

1. This is a numbered first-level section head

This is an example of a numbered first-level heading.

1.1. This is a numbered second-level section head. This is an example of a numbered second-level heading.

This is an unnumbered second-level section head. This is an example of an unnumbered second-level heading.

1.1.1. *This is a numbered third-level section head.* This is an example of a numbered third-level heading.

1991 *Mathematics Subject Classification.* Primary 54C40, 14E20; Secondary 46E25, 20C20.

Key words and phrases. Differential geometry, algebraic geometry.

The first author was supported in part by NSF Grant #000000.

Support information for the second author.

¹Here is an example of a footnote. Notice that this footnote text is running on so that it can stand as an example of how a footnote with separate paragraphs should be written.

And here is the beginning of the second paragraph.

This is an unnumbered third-level section head. This is an example of an unnumbered third-level heading.

LEMMA 1.1. *Let $f, g \in A(X)$ and let E, F be cozero sets in X .*

- (1) *If f is E -regular and $F \subseteq E$, then f is F -regular.*
- (2) *If f is E -regular and F -regular, then f is $E \cup F$ -regular.*
- (3) *If $f(x) \geq c > 0$ for all $x \in E$, then f is E -regular.*

The following is an example of a proof.

PROOF. Set $j(\nu) = \max(I \setminus a(\nu)) - 1$. Then we have

$$\sum_{i \notin a(\nu)} t_i \sim t_{j(\nu)+1} = \prod_{j=0}^{j(\nu)} (t_{j+1}/t_j).$$

Hence we have

$$(1.1) \quad \begin{aligned} \prod_{\nu} \left(\sum_{i \notin a(\nu)} t_i \right)^{|a(\nu-1)| - |a(\nu)|} &\sim \prod_{\nu} \prod_{j=0}^{j(\nu)} (t_{j+1}/t_j)^{|a(\nu-1)| - |a(\nu)|} \\ &= \prod_{j \geq 0} (t_{j+1}/t_j)^{\sum_{j(\nu) \geq j} (|a(\nu-1)| - |a(\nu)|)}. \end{aligned}$$

By definition, we have $a(\nu(j)) \supset c(j)$. Hence, $|c(j)| = n - j$ implies (5.4). If $c(j) \notin a, a(\nu(j))c(j)$ and hence we have (5.5). \square

This is an example of an ‘extract’. The magnetization M_0 of the Ising model is related to the local state probability $P(a) : M_0 = P(1) - P(-1)$. The equivalences are shown in Table 1.

TABLE 1.

	$-\infty$	$+\infty$
$f_+(x, k)$	$e^{\sqrt{-1}kx} + s_{12}(k)e^{-\sqrt{-1}kx}$	$s_{11}(k)e^{\sqrt{-1}kx}$
$f_-(x, k)$	$s_{22}(k)e^{-\sqrt{-1}kx}$	$e^{-\sqrt{-1}kx} + s_{21}(k)e^{\sqrt{-1}kx}$

DEFINITION 1.2. This is an example of a ‘definition’ element. For $f \in A(X)$, we define

$$(1.2) \quad \mathcal{Z}(f) = \{E \in Z[X] : f \text{ is } E^c\text{-regular}\}.$$

REMARK 1.3. This is an example of a ‘remark’ element. For $f \in A(X)$, we define

$$(1.3) \quad \mathcal{Z}(f) = \{E \in Z[X] : f \text{ is } E^c\text{-regular}\}.$$

EXAMPLE 1.4. This is an example of an ‘example’ element. For $f \in A(X)$, we define

$$(1.4) \quad \mathcal{Z}(f) = \{E \in Z[X] : f \text{ is } E^c\text{-regular}\}.$$

EXERCISE 1.5. This is an example of the **xca** environment. This environment is used for exercises which occur within a section.

FIGURE 1. This is an example of a figure caption with text.

FIGURE 2.

The following is an example of a numbered list.

- (1) First item. In the case where in G there is a sequence of subgroups

$$G = G_0, G_1, G_2, \dots, G_k = e$$

such that each is an invariant subgroup of G_i .

- (2) Second item. Its action on an arbitrary element $X = \lambda^\alpha X_\alpha$ has the form

$$(1.5) \quad [e^\alpha X_\alpha, X] = e^\alpha \lambda^\beta [X_\alpha X_\beta] = e^\alpha c_{\alpha\beta}^\gamma \lambda^\beta X_\gamma,$$

- (a) First subitem.

$$-2\psi_2(e) = c_{\alpha\gamma}^\delta c_{\beta\delta}^\gamma e^\alpha e^\beta.$$

- (b) Second subitem.

- (i) First subsubitem. In the case where in G there is a sequence of subgroups

$$G = G_0, G_1, G_2, \dots, G_k = e$$

such that each subgroup G_{i+1} is an invariant subgroup of G_i and each quotient group G_{i+1}/G_i is abelian, the group G is called *solvable*.

- (ii) Second subsubitem.

- (c) Third subitem.

- (3) Third item.

Here is an example of a cite. See [A].

THEOREM 1.6. *This is an example of a theorem.*

THEOREM 1.7 (Marcus Theorem). *This is an example of a theorem with a parenthetical note in the heading.*

2. Some more list types

This is an example of a bulleted list.

- \mathcal{J}_g of dimension $3g - 3$;
- $\mathcal{E}_g^2 = \{\text{Pryms of double covers of } C = \square \text{ with normalization of } C \text{ hyperelliptic of genus } g - 1\}$ of dimension $2g$;

- $\mathcal{E}_{1,g-1}^2 = \{\text{Pryms of double covers of } C = \square_{P^1}^H \text{ with } H \text{ hyperelliptic of genus } g-2\}$ of dimension $2g-1$;
- $\mathcal{P}_{t,g-t}^2$ for $2 \leq t \leq g/2 = \{\text{Pryms of double covers of } C = \square_{C''}^{C'} \text{ with } g(C') = t-1 \text{ and } g(C'') = g-t-1\}$ of dimension $3g-4$.

This is an example of a ‘description’ list.

Zero case: $\rho(\Phi) = \{0\}$.

Rational case: $\rho(\Phi) \neq \{0\}$ and $\rho(\Phi)$ is contained in a line through 0 with rational slope.

Irrational case: $\rho(\Phi) \neq \{0\}$ and $\rho(\Phi)$ is contained in a line through 0 with irrational slope.

References

- [A] T. Aoki, *Calcul exponentiel des opérateurs microdifferentiels d’ordre infini*. I, Ann. Inst. Fourier (Grenoble) **33** (1983), 227–250.
- [B] R. Brown, *On a conjecture of Dirichlet*, Amer. Math. Soc., Providence, RI, 1993.
- [D] R. A. DeVore, *Approximation of functions*, Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 34–56.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803

Current address: Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 43403

E-mail address: xyz@math.university.edu

MATHEMATICAL RESEARCH SECTION, SCHOOL OF MATHEMATICAL SCIENCES, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA ACT 2601, AUSTRALIA

E-mail address: two@maths.univ.edu.au