Sistemas Operacionais

Processos

Prof. Otávio Gomes

Processos *versus* Programas

Programa:

- Pode ter várias instâncias em execução (em diferentes processos).
- É um algoritmo codificado.
- Representa a forma como o programador vê a tarefa e ser executada.

• Processo:

- É único.
- Código acompanhado de dados e estado.
- Forma pela qual o Sistema Operacional vê um programa e possibilita sua execução.

- Processo em Primeiro Plano (foreground): Interage diretamente com o usuário.
- Processo em Segundo Plano (background daemon): possuem funções específicas que independem do usuário.

- Cada processo possui:
 - Conjunto de instruções (código executável);
 - Espaço de endereçamento (espaço reservado/exclusivo para que o processo possa ler e escrever);
 - Contexto de hardware (valores nos registradores: PC, Pilha, etc);
 - Contexto de software descritores de S.O.(atributos como lista de arquivos abertos, variáveis, segurança, estado do processo, etc.;

- Um sistema operacional executa uma variedade de programas:
 - Sistemas Batch (lote) Jobs (tarefas)
 - Sistemas de Tempo Compartilhado programas do usuário ou tarefas
- Processo um programa em execução sua execução deve progredir de forma sequencial
- Um processo possui:
 - Contador de programa
 - Pilha (stack)
 - Seção de dados

max

0

Processos Espaço de endereçamento

- Texto: código executável do(s) programa(s);
- Dados: as variáveis;
- Pilha de Execução:
 - Controla a execução do processo
 - Empilha as chamadas a procedimentos, seus parâmetros e variáveis locais, etc.

ProcessosGerenciamento

- Gerenciador por admissão: escolhe qual processo irá executar e quando, de acordo com sua prioridade. Geralmente utilizado em sistemas de tempo real;
- Gerenciador por tempo médio;
- **Gerenciador despachante:** define os processos a serem executados de acordo com os eventos ocorridos no sistema.

 Os gerenciadores possuem algoritmos para garantir a troca de processos de maneira correta e organizada. São exemplos de estratégias utilizadas: FIFO; *Pipes* unidirecionais (FIFO controlada pelo S.O.); Fila de mensagem; memória compartilhada.

Tabela de Controle de Processos (PCB)

• A tabela <u>não guarda o conteúdo</u> do espaço de endereçamento do processo.

Tabela de Controle de Processos (PCB)

• A tabela <u>não guarda o conteúdo</u> do espaço de endereçamento do processo.

Bloco de Controle de Processos (PCB)

- Contém informações de contexto de cada processo (ex. ponteiros de arquivos abertos, posição do primeiro byte a ser lido em cada arquivo, etc);
- Contém informações necessárias para trazer o processo de volta, caso o S.O. tenha que tirá-lo de execução;
- Contém os estados do processo em um determinado tempo Permite o rodízio de processos (*time-sharing*).

process state process number program counter registers memory limits list of open files

Bloco de Controle de Processos (PCB)

Gerenciamento de processos	Gerenciamento de memória	Gerenciamento de arquivos	
Registradores	Ponteiro para o segmento de código	Diretório-raiz	
Contador de programa	Ponteiro para o segmento de dados	Diretório de trabalho	
Palavra de estado do programa	Ponteiro para o segmento de pilha	Descritores de arquivos	
Ponteiro de pilha		Identificador (ID) do usuário	
Estado do processo		Identificador (ID) do grupo	
Prioridade			
Parâmetros de escalonamento			
Identificador (ID) do processo			
Processo pai			
Grupo do processo			
Sinais			1
Momento em que o processo iniciou			
Tempo usado da CPU			
Tempo de CPU do filho			
Momento do próximo alarme			

Mac, Linux e Win

top - 19:00:06 up 7:47, 1 user, load average: 0.65, 0.57, 0.51 Tasks: 198 total, 2 running, 196 sleeping, 0 stopped, 0 zombie %Cpu(s): 12.6 us, 0.6 sy, 0.0 ni, 86.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st MiB Mem : 11894.0 total, 1511.5 free, 5763.0 used, 4619.4 buff/cache MiB Swap: 0.0 total, 0.0 free, 0.0 used. 5706.3 avail Mem											f/cache
PID	USER	PR	NI	VIRT	RES	SHR	s	%CPU	%MEM	TIME+	COMMAND
2844	root	20	0	4169800	1.9g	152908	R	46.8	16.4	126:45.88	Web Content
2758	root	20	ө	2560304	462792	162424	s	5.6	3.8	49:01.37	firefox-esr
1383	root	20	Θ	521120	113500	82664	s	Θ.3	0.9	12:35.23	Xorg
2494	root	20	0	6347740	1.6g	37592	s	Θ.3	13.7	31:22.93	java
3030	root	20	0	625936	50372	31888	s	Θ.3	0.4	0:34.02	gnome-terminal-
11209	root	-51	8	17868	3504	3028	R	0.3	0.0	0:00.03	top
1	root	20	0	202592	8988	6760	s	0.0	0.1	0:17.10	systemd
2	root	20	Θ	Θ	Θ	Θ	s	Θ.Θ	Θ.Θ		kthreadd
3	root	Θ	-20	Θ	Θ	Θ	1	0.0	0.0	0:00.00	rcu gp
5	root	θ	-20	Θ	Θ	Θ	1	0.0	0.0	0:00.48	kworker/0:0H
7	root	θ	-20	Θ	Θ	Θ	1	0.0	0.0	0:00.00	mm percpu wq
8	root	20	0	θ	Θ	Θ	s	0.0	0.0	0:00.35	ksoftirqd/0

				Activity Mor	nitor (All P	rocesses			
8 6	₩~		CPU	Memory	Energy	Disk	Network		Q Search
Process Nam	e		Bytes Written	Bytes Read	Kind	PID	User		
kerne	_task		108.9 MB	22.1 ME	3 64 bit	C) root		
iTune:	3		9.6 MB	608.3 M	3 64 bit	630) John		
Activi	ty Monitor		60 KB	1.5 M	3 64 bit	577	7 John		
corea	udiod		324 KB	3.4 ME	3 64 bit	243	3 _coreaudiod		
Wind	wServer		0 bytes	20.8 ME	3 64 bit	101	_windowserver		
sysm	ond		0 bytes	48 K			root		
launc	nd		122.2 MB	29.2 ME			root		
airpoi	td		1.2 MB	1.2 ME			root		
Syste	mUIServer		0 bytes	3.5 M			John		
🛂 Finde	r		344 KB	25.0 ME			2 John		
powe	rd		132 KB	2.1 ME	3 64 bit	28	3 root		
cored	uetd		5.2 MB	5.5 M	3 64 bit	43	3 root		
notify	d		0 bytes	56 K	3 64 bit	73	3 root		
cfpre	sd		2.8 MB	2.5 M	3 64 bit	218	3 John		
cfpre	sd		2.2 MB	516 K	3 64 bit	78	3 root		
config	d		12 KB	3.6 M	3 64 bit	27	7 root		
opend	directoryd		32 KB	9.0 M	3 64 bit	47	7 root		
mds			9.0 MB	63.2 M	3 64 bit	34	root		
UserE	ventAgent		60 KB	456 K	3 64 bit	214	1 John		
launc	nservicesd		0 bytes	756 K	3 64 bit	52	2 root		
mds_	stores		43.6 MB	128.6 ME	3 64 bit	144	1 root		
		Reads in:	93,387		10 ≎		Data read:	2.82 GB	
		Writes out:	34,076		1		Data written:	731.7 MB	
		Reads in/sec:	0	-			Data read/sec:	0 bytes	
		Writes out/sec	: 0				Data written/sec:	0 bytes	

File Opti	ons View									
Processes	Performance	App history	Startup	Users	Details	Services				
	^					1%	30%	1%	0%	
Name			Sta	atus		CPU	Memory	Disk	Network	
Apps (8)									
▷ 🙆 Ir	nternet Explore	r (10)				0.7%	778.9 MB	0.1 MB/s	0 Mbps	
D XII N	dicrosoft Excel	(32 bit) (2)				0%	44.1 MB	0 MB/s	0 Mbps	
D LON	licrosoft Lync (32 bit)				0%	85.4 MB	0 MB/s	0 Mbps	
D DY N	licrosoft Outloo	ok (32 bit) (7)				0.3%	189.6 MB	0 MB/s	0 Mbps	
⊳ will N	licrosoft Word	(32 bit) (2)				0%	40.9 MB	0 MB/s	0 Mbps	
D and N	lotepad					0%	0.8 MB	0 MB/s	0 Mbps	
▷ 🙀 T	ask Manager					0.1%	13.0 MB	0 MB/s	0 Mbps	
⊳ 🚞 v	Vindows Explor	er (2)				0%	79.8 MB	0 MB/s	0 Mbps	
Backgr	ound proce	esses (37)								
M A	AM Updates N	otifier Applica	ati			0%	0.7 MB	0 MB/s	0 Mbps	
▷ ■ A	ntimalware Ser	vice Executab	ole			0%	98.2 MB	0 MB/s	0 Mbps	
ॐ C	atalyst Control	Center: Host	ар			0%	17.3 MB	0 MB/s	0 Mbps	- 1
(A) Fewe	er details								End task	

Tabelas de Controle do Sistema Operacional

Operações em processos

- Executando: realmente utilizando a CPU naquele momento.
- Bloqueado: incapaz de executar enquanto um evento externo não ocorrer.
- **Pronto**: em memória, pronto para executar (ou para continuar sua execução), apenas aguardando a disponibilidade do processador.

Processos Estados

Estados de um processo:

- Muda seu estado de "EM EXECUÇÃO" para "EM ESPERA"
- Muda seu estado de "EM EXECUÇÃO" para "PRONTO"
- Muda seu estado de "EM ESPERA" para "PRONTO"
- TERMINA

Processos Criação

- Processos Pai criam Processos Filhos, que por sua vez, criam outros processos, formando uma árvore de processos
- Geralmente, um processo é identificado e gerenciado via um identificador de processo (pid)
- Opções de Compartilhamento de Recursos
 - Pais e Filhos compartilham todos os recursos
 - Filhos compartilham um subconjunto dos recursos dos pais
 - Pais e filhos não compartilham recursos
- Execução
 - Pais e filhos executam concorrentemente (ex.: multi-threading)
 - Pais aguardam o término de execução dos filhos

Árvore de processos no Linux

Figure 3.8 A tree of processes on a typical Linux system.

Processos Criação

- Espaço de endereçamento
 - Filho duplica o endereço do pai
 - Filho possui um programa carregado nele
- Exemplo no UNIX
 - Chamadas de sistema fork criam novos processos
 - Chamada de sistema exec usada após um fork para substituir o espaço de memória do processo com um novo programa

Programa em C (fork/wait)

```
int main() {
          pid_t pid;
          pid = fork(); /* forquilha o processo, criando um processo filho */
          if (pid < 0) { /* erro encontrado */
                    fprintf(stderr, "Falha na criação do processo filho");
                    exit(-1);
         }/* OBS (pid >= 0) indica sucesso no fork */
          /* OBS (pid == 0) indica o processo filho */
          else if (pid == 0) { /* processo filho criado e alocado */
                    execlp("/bin/ls", "ls", NULL);
          /* OBS (pid > 0) indica o processo pai */
          else { /*processo pai */
                    /* pai aguardará o filho completar */
                    wait(NULL);
                    printf("Filho completo");
                    exit(0);
```


Processos Término

- Um processo executa sua última instrução e solicita ao sistema operacional a sua remoção (*exit*) da fila de processos
 - Mas antes coleta a saída de dados do filho para o pai (via wait)
 - Os recursos do processo são desalocados pelo S.O.

- O processo pai pode terminar a execução dos processos filhos (abort)
 - Processo filho excedeu os recursos alocados
 - Tarefa associada ao filho não é mais necessária
 - Se o processo pai está terminando
 - 🛪 Alguns sistemas operacionais não permitem o processo filho continuar se o processo pai terminar
 - -Todos os filhos são terminados **terminação em cascata**

Escalonamento de processos

Troca de Processos pela CPU

Filas para escalonamento de processos

- Fila de processos conjunto de todos os processos do sistema
- Fila de prontos- conjunto dos processos residindo na memória principal, prontos e aguardando para execução (estado ready)
- Filas de dispositivos conjunto de processos esperando por um dispositivo de E/S (estado waiting)
- Observe que os processos migram entre as várias filas, de acordo com seu estado

Fila de prontos e Fila de Dispositivos de E/S

Representação do escalonamento de processos

Possui diversos processos que competem pelo uso da CPU.

- Despachante (Dispatcher): módulo que realiza o armazenamento e recuperação dos contextos dos processos e atualiza os PCBs.
- **Escalonador** (*Scheduler*): módulo que controla a mudança de estado dos processos, definindo o próximo processo a ser executado.

ProcessosDespachante

- Quando a CPU realiza a troca para um outro processo, o sistema deve fazer uma troca de contexto (mínima latência *versus quantum*), que consiste em:
 - •Salvar o estado do processo antigo (atualizar o PCB na RAM)
 - •Carregar (na CPU) o estado salvo (na RAM) do novo processo

Escalonador de tarefas

Processos Escalonamento

- Pode ser classificado em:
 - •Escalonador de Longo Prazo (ou escalonador de jobs):
 - •Seleciona quais processos devem ser carregados em memória e trazidos para a fila de prontos.
 - •É chamado com menos frequência (segundos, minutos).
 - •Escalonador de Curto Prazo (ou escalonador da CPU):
 - •Seleciona qual processo (daqueles prontos) deve ser executado em sequência e faz a alocação da CPU.
 - •É chamado frequentemente (~100ms) e deve ser rápido na escolha do processo.

- Pode ser classificado em:
 - •Escalonador de Longo Prazo (ou escalonador de jobs);
 - •Escalonador de Curto Prazo (ou escalonador da CPU).

Processos Escalonamento

• Com relação ao escalonamento da CPU, pode ser classificado em:

•Não-preemptivo:

- •Implementação mais simples do escalonador.
- •O processo libera a CPU nas seguintes condições:
 - •Término da execução; ou
 - •Solicitação de operação de E/S (voluntário).

•Preemptivo:

- Escalonador mais complexo.
- •Compartilhamento da CPU é garantido.
- •Periodicamente o escalonador interrompe o processo em execução e muda-o para o estado "pronto".

Processos Escalonamento

- Deve possuir um algoritmo que se preocupe com 5 regras:
 - Justiça Todos processos devem ter acesso a CPU (tempo de espera)
 - Eficiência buscar a máxima utilização da CPU
 - Minimizar o Tempo de Resposta
 - **Turnaround** Minimiza os usuários *batch*. Tempo para conclusão do processo (alocação + fila + execução CPU + execução E/S)
 - **Throughput** Maximizar o número de *jobs* processados

A partir da finalização da execução de um processo ou de sua parcela de tempo (*quantum*), qual será o novo processo a ser executado?

Um novo processo criado? Um processo que criou outro processo (filho)? Um processo que está pronto há mais tempo?

Como esta escolha pode ser feita?

Podem ser descritos como:

- *I/O-bound*: Gastam mais tempo fazendo E/S do que computação.
- CPU-bound:

Gastam mais tempo com computação.

Processos load store add store CPU burst read from file I/O burst wait for I/O store increment CPU burst index. write to file I/O burst. wait for I/O load store add store CPU burst read from file I/O burst wait for I/O Fig. 4 - Utilização da CPU

- Podem ser descritos como:
 - •I/O-bound: gastam mais tempo fazendo E/S do que computação.
 - •CPU-bound: Gastam mais tempo com computação.
- Podemos classificá-los por:
 - •<u>Uso de recursos:</u> temos os processos **convencionais** e os de **tempo real** (de sistema).
 - •No Linux, os processos de tempo real recebem prioridade entre 1 e 99, enquanto os processos convencionais recebem prioridade entre 100 e 139 (padrão 120).
 - •Tipo de execução: temos os interativos, em série ou tempo real.

top - 19:00:06 up 7:47, 1 user, load average: 0.65, 0.57, 0.51 2 running, 196 sleeping, Tasks: **198** total, ø stopped, 0 zombie 0.6 sy, 0.0 ni, 86.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st %Cpu(s): **12.6** us, MiB Mem : **11894.0** total, 1511.5 free, 5763.0 used, 4619.4 buff/cache MiB Swap: 0.0 total, 0.0 free, 0.0 used. 5706.3 avail Mem

RES

SHF S %CPU %MEM

TIME+ COMMAND

2844	root	20	0	4169800	1.9g	152908	R.	46.8	16.4	126:45.88	Web Content
2758	root	20	0	2560304	462792	162424	S	5.6	3.8	49:01.37	firefox-esr
1383	root	28	Θ		113500	82664	S	0.3	0.9	12:35.23	_
2494	root	20	0	6347740	1.6g	37592	S	ө.з	13.7	31:22.93	java
3030	root	20	Θ	625936	50372	31888	S	0.3	0.4		gnome-terminal-
11209	root	-51	0	17868	3504	3028	R	0.3	0.0	0:00.03	
1	root	20	0	202592	8988	6760	S	8.0	Θ.1		systemd
2	root	28	Θ	Θ	Θ	€	S	Θ.Θ	0.0		kthreadd
3	root	0	-20	θ	Θ	•	I	0.0	0.0	0:00.00	rcu_gp
5	root	0	-20	θ	Θ	€	I	0.0	0.8	0:00.48	kworker/0:0H
7	root	Θ	-20	Θ	Θ	€	I	0.0	0.0		mm_percpu_wq
8	root	20	0	θ	0	•	S	8.0	0.8		ksoftirqd/0
9	root	20	0	Θ	Θ	€	I	0.0	0.0		rcu_sched
10	root	20	Θ	θ	Θ	€	I	0.0	0.0	0:00.00	
11	root	rt	0	Θ	Θ	€	S	Θ.Θ	0.8	0:00.01	migration/0
12	root	rt	Θ	Θ	Θ	€	S	0.0	0.0	0:00.08	watchdog/0
13	root	20	0	ө	Θ	•	S	0.0	0.0	0:00.00	cpuhp/0
14	root	20	0	Θ	Θ	€	S	0.0	0.8		cpuhp/1
15	root	rt	Θ	θ	Θ	€	S	0.0	0.0	0:00.09	watchdog/1
16	root	rt	0	9	0	•	S	0.0	0.0		migration/1
17	root	20	Θ	Θ	Θ	€	S	0.0	0.0	0:00.71	ksoftirqd/1
19	root	Θ	-20	θ	Θ	€	I	0.0	0.0		kworker/1:0H
20	root	20	0	Θ	Θ	€	S	0.0	0.8		cpuhp/2
21	root	rt	Θ	θ	Θ	€	S	0.0	0.0		watchdog/2
22	root	rt	0	ө	6	•	S	0.0	0.0		migration/2
23	root	20	Θ	Θ	Θ	€	5	0.0	0.0		ksoftirqd/2
25	root	8	-20	Θ	Θ	€	I	0.0	0.0	0:00.00	kworker/2:0H
26	root	20	0	ө	Θ	•	S	0.0	0.6		cpuhp/3
27	root	rt	8	Θ	Θ	€	S	0.0	0.0		watchdog/3
28	root	rt	0	ө	Θ	(S	0.0	0.0		migration/3
29	root	26	8	Θ	Θ	6	S	0.0	0.0	0:00.31	ksoftirqd/3
31	root	8	-20	Θ	Θ	6	I	0.0	0.0	0:00.00	kworker/3:0H

S - Em sérieI - InterativosR - Tempo real

PID USER

PR NI

VIRT

Escalonador de médio prazo (Swapping)

- OBS.: alguns sistemas de tempo compartilhado não possuem Escalonador de Longo Prazo, como o Unix e o MS Windows
 - Simplesmente coloca cada novo processo na memória para o Escalonador de Curto Prazo
 - A estabilidade depende de limitações físicas (terminais ou RAM) ou da adaptabilidade dos usuários humanos (Alt+F4)

ProcessosTroca de contexto

- Quando a CPU realiza a troca para um outro processo, o sistema deve fazer uma troca de contexto:
 - salvar o estado do processo antigo (atualizar o PCB na RAM)
 - carregar (na CPU) o estado salvo (na RAM) do novo processo

- O contexto de um processo é representado no PCB
 - O tempo de troca de contexto gera overhead (sobrecarga)
 - O sistema não trabalha de forma útil durante a troca
 - Tempo dependente do suporte de hardware

Bibliografia

biblioteca virtual.

 TANENBAUM, Andrew S; BOS, Herbert. Sistemas operacionais modernos. 4a ed. São Paulo: Pearson Education do Brasil, 2016.
 Capítulo 2.

https://plataforma.bvirtual.com.br/Acervo/Publicacao/1233

• DEITEL, H.M; DEITEL, P.J; CHOFFNES, D.R. Sistemas Operacionais. 3a ed. São Paulo: Pearson Prentice Hall, 2005. **Capítulo 3.**

https://plataforma.bvirtual.com.br/Acervo/Publicacao/315

Sistemas Operacionais

Prof. Otávio Gomes

otavio.gomes@unifei.edu.br

