

Impacto de ataques de evasão e eficácia da defesa baseada em treinamento adversário em detectores de malware

Gabriel H. N. E. da Silva, Gilberto Fernandes Junior, Bruno Bogaz Zarpelão

Departamento de Computação -Universidade Estadual de Londrina

Motivação

- Detecção de malware utilizando aprendizado de máquina supervisionado já é uma realidade.
- Algoritmos de aprendizado de máquina podem ser vulneráveis a exemplos adversários.

Objetivo

- Qual a severidade dos ataques FGSM, BGA, BCA e Grosse, considerando que eles seguem estretégias distintas?
- 2. Quão eficaz é o treinamento adversário?
- 3. A topologia da rede neural influencia a robustez do modelo alvo e a efetividade do modelo adversário?
- 4. Qual é o desempenho da Random Forest, como alvo, quando comparada a uma rede neural?

Conjunto de dados

- Público e disponível na Web: fornecido pelo projeto Drebin.
- Só inclui aplicações Android.
- Extração de atributos: análise estática, considerando manifesto e códigos dex.
- Cerca de 25500 atributos binários.

Modelos de aprendizado

- Treinamento com amostras benignas e maliciosas balanceadas: 2000 amostras de cada classe.
- Inferência respeita a proporção de 24:1: 2400 benignas e
 100 maliciosas.
- Dois algoritmos: rede neural MLP e Random Forest.

Amostras adversárias

- FGSM: gera uma perturbação a ser adicionada à amostra com base no gradiente do modelo treinado.
 - rFGSM e dFGSM: variações do FGSM original visando modificação de atributos binários.
- BGA: utiliza o gradiente para identificar os atributos que mais afetam o erro da saída.
- BCA: testa modificações em diferentes atributos para identificar qual mais afeta a saída.
- Grosse: modifica atributos que mais afetam a saída com base em uma matriz
 Jacobiana.

Treinamento adversário

- Adição de amostras maliciosas ao treinamento do modelo alvo.
- Geramos amostras adversárias para 200 amostras de malware: total de 1000 amostras, considerando os 5 ataques.
- Treinamos novamente os modelos alvo adicionando as 1000 amostras adversárias e 1000 amostras benignas (total final de 6000 amostras).

Resultados

- Foram selecionados 5 modelos de redes neurais com os melhores f1-score.
 - Nesta parte do experimento, a topologia das redes foi variada, aumentado a quantidade de camadas e a quantidade de neurônios por camada.

Resultados - ataques contra a MLP (sem defesa)

Ataques contra modelos sem defesa							
	M_1	M_2	M_3	M_4	M_5		
M_1 - M_5 x dFGSM	$0,8498 \pm 0,0021$	$1,0000 \pm 0,0000$	$0,9463 \pm 0,0008$	$1,0000 \pm 0,0000$	$1,0000 \pm 0,0000$		
M_1 - M_5 x rFGSM	$0,8498 \pm 0,0021$	$1,0000 \pm 0,0000$	$0,9463 \pm 0,0008$	$1,0000 \pm 0,0000$	$1,0000 \pm 0,0000$		
M_1 - M_5 x BGA	$1,0000 \pm 0.0000$	$1,0000 \pm 0,0000$	$1,0000 \pm 0,0000$	$1,0000 \pm 0,0000$	$1,0000 \pm 0,0000$		
M_1 - M_5 x BCA	$0,6028 \pm 0,0236$	$0,6480 \pm 0,0133$	$0,9439 \pm 0,0108$	$0,5879 \pm 0,0236$	$0,7146 \pm 0,0052$		
M ₁ -M ₅ x Grosse	$0,9743 \pm 0,0193$	$0,9699 \pm 0,0191$	$0,9699 \pm 0,0049$	$0,9786 \pm 0,0168$	$0,9592 \pm 0,0275$		

Tabela 2. Severidade média dos ataques contra os 5 modelos sem defesa. As linhas representam a média e o desvio padrão da severidade do ataque contra os 5 modelos e as colunas mostram qual a topologia utilizada pelo atacante.

Resultados – ataques contra a MLP (com treinamento adversário)

Ataques contra modelos com defesa								
	M_1	M_2	M_3	M_4	M_5			
M_1 - M_5 x dFGSM	0.8453 ± 0.0043	$1,0000 \pm 0,0000$	$0,9439 \pm 0,0014$	$1,0000 \pm 0,0000$	$0,8000 \pm 0,4472$			
M_1 - M_5 x rFGSM	0.8453 ± 0.0043	$1,0000 \pm 0,0000$	$0,9439 \pm 0,0014$	$1,0000 \pm 0,0000$	$0,8000 \pm 0,4472$			
M_1 - M_5 x BGA	$0,9682 \pm 0,0711$	$1,0000 \pm 0,0000$	$0,9886 \pm 0,0254$	$1,0000 \pm 0,0000$	$1,0000 \pm 0.0000$			
M_1 - M_5 x BCA	0.3157 ± 0.1360	$0,5416 \pm 0,1289$	$0,2870 \pm 0,0855$	$0,4251 \pm 0,1258$	$0,2610 \pm 0,2675$			
M ₁ -M ₅ x Grosse	$0,0222 \pm 0,0281$	$0,2181 \pm 0,1496$	$0,0666 \pm 0,0662$	$0,1304 \pm 0,0889$	0.0273 ± 0.0499			

Tabela 3. Severidade média dos ataques contra os 5 modelos com defesas. As linhas representam a média e o desvio padrão da severidade do ataque contra os 5 modelos e as colunas mostram qual a topologia utilizada pelo atacante.

Resultados - ataques contra a Random Forest (sem defesa)

Ataques contra Random Forest sem defesa								
ľ	M1	M2	M3	M4	M5			
RF x dFGSM	0,848	1,000	0,946	1,000	0,870			
RF x rFGSM	0,761	0,891	0,870	0,902	0,511			
RF x BGA	0,989	1,000	0,978	1,000	0,957			
RF x BCA	0,000	0,000	0,000	0,000	0,000			
RF x Grosse	0,000	0,000	0,000	0,000	0,000			

Tabela 4. Severidade dos ataques contra a Random Forest. As linhas representam a severidade do ataque contra a Random Forest e as colunas mostram qual a topologia utilizada pelo atacante.

Considerações finais

- Ataques menos intensos como BCA e Grosse causam, como esperado, menor impacto.
- Ataques mais intensos, como FGSM e BGA, causam mais impacto.
- O treinamento adversário não foi eficaz.
- Modelo baseado em Random Forest sofreu menos impacto.
- Mudanças nas topologias das redes neurais não tiveram influência nos resultados.

Obrigado!

- Bruno B. Zarpelão
- brunozarpelao@uel.br

Patrocinadores do SBSeg 2024!

nicht egibt Google 🦓 Tempest

