KPOCC-CEKЦИОННЫЙ LONG-ONLY MOMENTUM с таргетированием волатильности

Данные

Используемые ETF: SPY, QQQ, IWF, IWD, TLT, BIL, LQD, GLD, XLV, XLI, XLF, XLK

Бенчмарк: Buy&Hold статичного равновзвешенного портфеля аналогичных ETF, сформированный в стартовую дату OOS, без ребаланса с даты старта OOS

Модель валидируется walk-forward с помесячной ребалансировкой по первому рабочему дню США (us_bms) и с комиссиями cost_rate=5 bps на границе подпериодов.

Функция load_yf(...) скачивает данные Adjusted Close с Yahoofinance, строит лог-доходности, добавляет фиктивный CASH, а затем убирает пропуски данных NaN.

Календарь ребалансов— первый бизнес-день месяца с учётом US holidays. Важно для ЕТГ США и честного тестирования стратегии.

us_bms = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())

Исполнение и издерзжки

Функция allocate_by_capital(...) превращает целевые веса в реализованные с учетом целых лотов (int_shares=True), потолка доли на один актив и плеча (если бюджет > 1). Свободный кэш вычисляется автоматически. При использовании плеча CASH может быть отрицательным (если бюджет > 1), что приближает результат к реальной торговле ETF.

Комиссии моделируются на границе ребалансов, издержки не включены в оптимизатор (чтобы не дублировать), а учитываются только в бэктесте.

Стратегия

Сигнал: long-only momentum

mu_vec = returns[risk_cols].shift(skip_days).ewm(span=mom_lookback, adjust=False).mean().iloc[-1] mu_vec = np.maximum(mu_vec, 0.0) (убирает шорт-часть).

Таргетирование волатильности:

Масштабирование итоговых весов под целевую годовую σ (включено в тюнинг; затем применяется при исполнении на WF). В тюнере tune_hyperparams_optuna(...) при tune_target_vol=True выбирается target_vol (диапазон 10–50%) и масштабируются веса на train, соблюдая max_weights и budget. В backtest_walk_forward(...) на каждом ребалансе OOS берутся базовые веса w_base, считается их историческая волатильность на rolling_train, и веса масштабируются к target_vol, снова с учётом max_weights и budget.

Риск-модель:

Ковариационная матрица — это модель риска портфеля. Солверу она нужна, чтобы измерять риск портфеля и оптимизировать коэффициент «доход/риск». Доступны ковариации EWMA (c alpha = 2/(Lb+1)), LedoitWolf, OAS, Shrunk. Параметр выбора cov_kind тюнингуется.

Оптимизация весов

Оптимизация:

Используется оптимизатор максимизации отношения «ожидание/риск» (Sharpe-подобная цель) с ограничением long-only и бюджетом 200% (допускается плечо 100%).

MeanRisk(objective_function=MAXIMIZE_RATIO, risk_measure=STANDARD_DEVIATION, min_weights=0, budget=2, solver='ECOS')

IS (In-Sample):

IS дополнительно делится на train/validation для подбора гипер-параметров. На IS каждая итерация Optuna в функции tune_hyperparams_optuna(...) подбирает mom_lb, l1_coef, l2_coef, max_weights, cov_kind (+shrinkage) и, при включённой опции, target_vol. Целевая функция — высокий OOS-Sharpe + штраф за overfit через OverfitScore.

00S (Out-Of-Sample):

WalkForward(train_size=10 мес, test_size=1 мес, freq=us_bms). На каждом окне подбираем гиперпараметры и затем применяем их для OOS. Внутри OOS доступен ребаланс по us_bms. Склеиваем все OOS-кусочки в единую кривую equity. Фолбэки солвера: если ECOS падает на MAXIMIZE_RATIO, ловим исключение и переключаемся на SCS; в крайнем случае уходим в CASH. Это делает бэктест устойчивым.

Итог тестирования

	Sharpe	Ann ret	Vol
Strategy	0.839	0.181	0.215
B&H	0.833	0.120	0.144

Вывод: доходность у стратегии выше, но и риск выше.

Sharpe почти равен В&Н, но при большей доходности — за счёт плеча и динамической ребалансировки.

