ML Overview

AI/ML/DL

Intro ML

- Prediction based on data:
 - How much does this house cost?
 - Disease identification.
 - Bitcoin price next week?
 - Is this image a dog or a cat?
 - Tomorrow's temperature?
 - Client will pay mortgage?
 - Are there any bird in the image?
 - 0 ..

Types of ML

- Supervised.
- Unsupervised.
- Reinforcement Learning.
- Semi supervised.
- Self supervised.

Supervised

• Learning from labeled data.

Supervised

Student	Test1 marks	Test2 Marks	Study hours	Final result	
1	30	35	4	Pass	
2	42	45	6	Pass	
3	20	17	1	Fail	
4	45	48	6	Pass	
5	25	22	2	Pass	
6	34	40	2	Pass	
7	49	47	6	Pass	
8	17	10	0	Fail	
9	25	20	1	Fail	
10	35	38	3	Pass	

X(Input)

Y(Output)

Supervised - Regression and Classification

Regression: Quantitative variable (numbers).

Supervised - Regression and Classification

- Regression: Quantitative variable (numbers).
- Classification: Qualitative variable.
 - Cannot be numerically measured.
 - Typically, there is no order.
 - o Expresses a condition, a quality or a characteristic.

Supervised - Regression and Classification

- Regression: Quantitative variable (numbers).
- Classification: Qualitative variable.
 - Cannot be numerically measured.
 - Typically, there is no order.
 - Expresses a condition, a quality or a characteristic.

?

- How much does this house cost?
- Disease identification.
- Bitcoin price next week?
- Is this image a dog or a cat?
- Tomorrow's temperature?
- Client will pay mortgage?
- Are there any bird in the image?

Supervised

X ₁	X ₂	X 3	Xp	Y
			,	↑

Here, the target variable Y can "supervise" how the algorithm builds the model

Supervised

Unsupervised (clustering)

In unsupervised learning, there *is* a set of input variables

But, there's no target variable, Y.

Unsupervised (clustering)

How many groups are in the chart?

Unsupervised (clustering)

Unsupervised

Unsupervised

- State.
- Actions.
- Learning by trial and error.

Types of ML – Summary

SupervisedClassification

Unsupervised

Humans also apply ML!

Data

X (features)

ML

 $\hat{y} = f(x1) = w0 + w1^*$ x1

x1 (m²)