Power Method

Matrix Algebra 4 Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

Power Method

About the Power Method

One of the basic procedures following a successive approximation approach for the dominant eigenvector is precisely the Power Method.

In its simplest form, the Power Method (PM) allows us to find **the largest** eigenvector and its corresponding eigenvalue.

About the Power Method

Choose an arbitrary vector $\mathbf{w_0}$ to which we will apply the symmetric matrix \mathbf{S} repeatedly to form the following sequence:

$$\begin{split} w_1 &= Sw_0 \\ w_2 &= Sw_1 = S^2w_0 \\ w_3 &= Sw_2 = S^3w_0 \\ &\vdots \\ w_k &= Sw_{k-1} = S^kw_0 \end{split}$$

Power Method: Example

Consider a matrix S

$$\mathbf{S} = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

and an initial vector \mathbf{w}_0

$$\mathbf{w_0} = \begin{bmatrix} -0.4\\1.3 \end{bmatrix}$$

About the Power Method

- ▶ In practice, we must rescale the obtained vector $\mathbf{w_k}$ at each step.
- ► The rescaling will allows us to judge whether the sequence is converging.
- \blacktriangleright After some iterations, the vector w_{k-1} and w_k will be very similar
- ▶ Assuming a reasonable scaling strategy, the sequence will usually converge to the dominant eigenvector of S.

Dominant Eigenvalue

The obtained vector is the dominant eigenvector. To get the corresponding eigenvalue we calculate the so-called **Rayleigh quotient** given by:

$$\lambda = \frac{\mathbf{w}_k^\mathsf{T} \mathbf{S} \mathbf{w}_k}{\mathbf{w}_k^\mathsf{T} \mathbf{w}_k}$$

Remarks

Conditions for the power method to be succesfully used:

- ▶ The matrix must have a *dominant* eigenvalue.
- ▶ The starting vector $\mathbf{w_0}$ must be nonzero.
- We need to scale each of the vectors w_k otherwise the algorithm will "explode"

PM Pseudocode

Let's consider a more detailed version of the PM algorithm:

- 1. Start with an arbitraty initial vector w
- 2. Obtain product $\tilde{\mathbf{w}} = \mathbf{S}\mathbf{w}$
- 3. Normalize $\tilde{\mathbf{w}}$

e.g.
$$\mathbf{w} = \frac{\tilde{\mathbf{w}}}{\|\tilde{\mathbf{w}}\|_{p=2}}$$

- 4. Compare w with its previous version
- 5. Repeat steps 2 till 4 until convergence

Assume that the matrix S has p eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$, and that they are ordered in decreasing way $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_p|$.

Note that the first eigenvalue is strictly greater than the second one. This is a very important assumption.

In the same way, we'll assume that the matrix S has p linearly independent vectors $\mathbf{u_1}, \ldots, \mathbf{u_p}$ ordered in such a way that $\mathbf{u_j}$ corresponds to λ_j .

The initial vector $\mathbf{w_0}$ may be expressed as a linear combination of $\mathbf{u_1}, \dots, \mathbf{u_p}$

$$\mathbf{w_0} = a_1 \mathbf{u_1} + \dots + a_p \mathbf{u_p}$$

At every step of the iterative process the vector $\mathbf{w}_{\mathbf{k}}$ is given by:

$$\mathbf{w_k} = a_1 \lambda_1^k \mathbf{u_1} + \dots + a_p \lambda_p^k \mathbf{u_p}$$

Since λ_1 is the dominant eigenvalue, the component in the direction of $\mathbf{u_1}$ becomes relatively greater than the other components as k increases. If we knew λ_1 in advance, we could rescale at each step by dividing by it to get:

$$\left(\frac{1}{\lambda_1^k}\right)\mathbf{w_k} = a_1\mathbf{u_1} + \dots + a_p\left(\frac{\lambda_p^k}{\lambda_1^k}\right)\mathbf{u_p}$$

which converges to the eigenvector $a_1\mathbf{u_1}$, provided that a_1 is nonzero.

Of course, in real life this scaling strategy is not possible—we don't know λ_1 . Consequently, the eigenvector is determined only up to a constant multiple, which is not a concern since the really important thing is the *direction* not the length of the vector.

The speed of the convergence depends on how bigger λ_1 is respect with to λ_2 , and on the choice of the initial vector $\mathbf{w_0}$. If λ_1 is not much larger than λ_2 , then the convergence will be slow.

More Remarks

- ▶ The power method is a sequential method.
- \blacktriangleright We can obtain w_1, w_2 , and so on, step by step.
- ▶ If we only need the first *k* vectors, we can stop the procedure at the desired stage.

Obtaining more eigenvectors?

For **symmetric** matrices, once we've obtained the first eigenvector $\mathbf{w_1}$ and eigenvalue λ_1 , we can compute the second eigenvector by reducing the matrix \mathbf{S} by the amount explained by the first eigenvector.

This operation of reduction is called **deflation** and the residual matrix is obtained as:

$$\mathbf{S}_1 = \mathbf{S} - \lambda_1 \mathbf{w}_1 \mathbf{w}_1^\mathsf{T}$$

To get the second eigenvalue and its corresponding eigenvector, we operate on S_1 in the same way as the operations on S.

Bibliography

- ► Multivariate Analysis by Maurice Tatsuoka (1988). *Chapter 5: More Matrix Algebra*. Macmillan Publishing.
- ▶ Mathematical Tools for Applied Multivariate Analysis by J.D. Carroll, P.E. Green, and A. Chaturvedi (1997). Chapter 5:

 Decomposition of Matrix Transformations: Eigenstructures and Quadratic Forms. Academic Press.
- ► Hands-on Matrix Algebra using R by Hrishikesh Vinod (2011). Chapter 9: Eigenvalues and Eigenvectors. World Scientific.