Math 107 Lecture 19

Determinants Continued and Intro to Eigenvalues/Eigenvectors

by Dr. Kurianski on November 4, 2024

» Announcements

Announcements

- * Skill Check 5 is next Wed (11/6, 110 mins)
- Solutions to Homeworks 1-9 available in Canvas Modules
- Skill Check 4 solution video available
- No class on Monday 11/11 (Veterans Day)
- Pre-Notes due before start of next lecture
- * Assignments Due Friday (11/1):
 - * HW10 Handwritten Questions
 - * HW10 Coding Problems
 - * HW10 MATLAB File Upload
- * SOQs

» Student Opinion Questionnaires

What are SOQs?

- Anonymous surveys that are used by the department and university to evaluate instructor performance.
- Share your experience in this course with the department and university.
- Access SOQs in your CSUF Student Portal (https://my.fullerton.edu/).
- * Available from Nov. 9 until Friday, Nov. 29, 2024.
- * More info on Canvas

» Objectives

Objectives

- Use the Invertible Matrix Theorem to determine whether given matrices are invertible
- * Define and compute the determinant of $n \times n$ matrices using cofactor expansion
- Introduce eigenvalues and eigenvectors

Determinants of $n \times n$ **Matrices**

» Minor of A

Definition

Definition: Let A be an $n \times n$ matrix. The ij-minor of A, denoted A_{ij} , is the determinant of the $(n-1) \times (n-1)$ matrix formed by deleting the ith row and jth column of A.

Example: Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -3 \\ 0 & 4 & -4 \end{bmatrix}$$
. Compute A_{11} , A_{23} , and

 A_{32} .

» Cofactor

Definition

Definition: Let A be an $n \times n$ matrix. The ij-cofactor of A, denoted C_{ij} is the number

$$C_{ij}=(-1)^{i+j}A_{ij}.$$

Example:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -3 \\ 0 & 4 & -4 \end{bmatrix}$$
. Compute C_{23} and C_{11} .

» Cofactor Expansion

Definition

Definition: Let A be an $n \times n$ matrix. The **cofactor expansion of** A **along the** *i***th row** is the sum

$$a_{i1}C_{i1}+a_{i2}C_{i2}+\cdots+a_{in}C_{in}$$

The **cofactor expansion of** A **down the** jth **column** is the sum

$$a_{1j}C_{1j}+a_{2j}C_{2j}+\cdots+a_{nj}C_{nj}$$

Example: $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -3 \\ 0 & 4 & -4 \end{bmatrix}$. Find the cofactor expansion along the 2nd column.

Example: Find the cofactor expansion along the 3rd row.

» Determinant of an $n \times n$ Matrix

Definition

Definition: The determinant of an $n \times n$ matrix A is a number given by the following:

- * if A is 1×1 , then A = [a] and det(A) = a
- * if A is 2 imes 2, then $A = egin{bmatrix} a & b \ c & d \end{bmatrix}$ and $\det(A) = ad bc$
- * if A is $n \times n$ with n > 2, then

det(A) = cofactor exapansion along any row or column

» Determinant of an $n \times n$ Matrix

Example 1

Example: Find the determinant of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -3 & 0 \\ 7 & 2 & 3 \end{bmatrix}$$

» Determinant of an $n \times n$ Matrix

Example 2

Example: Find the determinant of

$$\mathbf{A} = \begin{bmatrix} 4 & -3 & 1 \\ 0 & -2 & 0 \\ 5 & -7 & -1 \end{bmatrix}$$

Properties of Determinants

» Properties of Determinants

Theorems

Theorem: Let A and B be $n \times n$ matrices and let k be a scalar. The following are true:

- 1. $\det(kA) = k^n \det(A)$
- $2. \det(A^T) = \det(A)$
- 3. det(AB) = det(A) det(B)
- 4. If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.

Theorem: A matrix *A* is invertible if and only if $det(A) \neq 0$.

» Properties of Determinants

Exercise

Example: Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 0 \\ -1 & 5 \end{bmatrix}$.

- (a) Compute det(A) and det(B).
- (b) Use your answers from part (a) to compute $\det(AB)$, $\det(A^TB)$, and $\det(A^{-1}B^{-1})$.

» Invertible Matrix Theorem (revisited)

Theorem: Let A be an $n \times n$ matrix. The following statements are equivalent.

- * A is invertible.
- * The reduced row echelon form of A is I.
- * The equation $A\vec{x} = \vec{b}$ has exactly one solution for every n imes 1 vector \vec{b} .
- * The equation $A\vec{x} = \vec{0}$ has exactly one solution (namely, $\vec{x} = \vec{0}$).
- * $det(A) \neq 0$

» Shortcut for 3×3 matrices

(Reference: Pgs 259-261 of Main Textbook)

Example: Find the determinant of
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -3 \\ 0 & 4 & -4 \end{bmatrix}$$

Example: Find the determinant of
$$\mathbf{B} = \begin{bmatrix} 3 & -1 & 1 \\ -3 & 0 & -4 \\ 0 & -1 & -4 \end{bmatrix}$$

Question: (True or False?) The matrix *B* above is invertible.