

MM54HC4017/MM74HC4017 Decade Counter/Divider with 10 Decoded Outputs

General Description

The MM54HC4017/MM74HC4017 is a 5-stage Johnson counter with 10 decoded outputs that utilizes advanced silicon-gate CMOS technology. Each of the decoded outputs is normally low and sequentially goes high on the low to high transition of the clock input. Each output stays high for one clock period of the 10 clock period cycle. The CARRY output transitions low to high after OUTPUT 9 goes low, and can be used in conjunction with the CLOCK ENABLE to cascade several stages. The CLOCK ENABLE input disables counting when in the high state. A RESET input is also provided which when taken high sets all the decoded outputs low except output 0.

The MM54HC4017/MM74HC4017 is functionally and pinout equivalent to the CD4017BM/CD4017BC. It can drive

up to 10 low power Schottky equivalent loads. All inputs are protected from damage due to static discharge by diodes from $V_{\rm CC}$ and ground.

Features

- Wide power supply range: 2-6V
- Typical operating frequency: 30 MHz
- Fanout of 10 LS-TTL loads
- Low quiescent current: 80 µA (74HC Series)
- Low input current: 1.0 μA

Connection Diagram

Dual-In-Line and Flat Package

TL/F/5351-1

Order Number MM54HC4017 or MM74HC4017

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0 V _{CC}		V
Operating Temp. Range (T _A) MM74HC MM54HC	-40 -55	+85 +125	°C
$ \begin{array}{ll} \text{Input Rise or Fall Times} \\ (t_r, t_f) & V_{CC} = 2.0V \\ V_{CC} = 4.5V \\ V_{CC} = 6.0V \end{array} $		1000 500 400	ns ns ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V.,	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $\rm\,v_{CC}=5V,\,T_A=25^{\circ}C,\,C_L=15\,pF,\,t_r=t_f=6\,ns$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Clock Frequency	Measured with respect to carry line	50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Enable to Carry-Out Line		26	44	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Enable Decode-Out Lines		27	44	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Reset or Clock to Decode Out		23	40	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Reset or Clock to Carry Out		23	40	ns
t _S	Minimum Clock Inhibit to Clock Set-Up Time		12	20	ns
t _W	Minimum Clock or Reset Pulse Width		8	16	ns
t _{REM}	Minimum Reset Removal Time		20	10	ns

$\textbf{AC Electrical Characteristics} \ \ v_{CC} = 2.0 - 6.0 \text{V}, \ C_L = 50 \text{ pF}, \ t_f = t_f = 6 \text{ ns (unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
f _{MAX}	Maximum Clock Frequency	Measured with respect to carry line	2.0V 4.5V 6.0V		6 30 35	5 24 28	4 20 24	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Enable to Carry-Out Line		2.0V 4.5V 6.0V	89 25 20	250 50 43	312 63 54	375 75 65	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Enable to Decode Out Line		2.0V 4.5V 6.0V	90 25 20	250 50 43	312 63 54	375 75 65	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Reset or Clock to Decode Out		2.0V 4.5V 6.0V	82 22 18	230 46 39	288 58 49	345 69 59	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Reset or Clock to Carry Out		2.0V 4.5V 6.0V	82 22 18	230 46 39	288 58 49	345 69 59	ns ns ns
t _W	Minimum Reset, Clock, or Clock Enable Pulse Width		2.0V 4.5V 6.0V	30 9 8	80 16 14	100 20 18	120 24 21	ns ns ns
t _{REM}	Minimum Reset Removal Time		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 25	ns ns ns
t _S , t _H	Minimum Clock Inhibit to Clock Set-Up or Hold Time		2.0V 4.5V 6.0V		50 10 9	63 13 11	75 15 13	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
t _r , t _f	Minimum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)						pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Physical Dimensions inches (millimeters) 0.220-0.310 [5.59-7.87] ¥ 0.005-0.020 TYP 0.037 ± 0.005 [0.94 ± 0.13] TYP 0.005 [0.13] MIN TYP 0.290-0.320 0.055 ± 0.005 [1.40 ± 0.13] TYP GLASS SEALANT 0.020-0.060 TYP [0.51-1.52] 0.200 0.180 MAX [4.57] 0.010 ± 0.002 [0.25 ± 0.05] TYP 0.150 MIN TYP 0.125-0.200 TYP — [3.18-5.08] TYP — 0.080 [2.03] MAX BOTH ENDS 90° ± 4° TYP 95°±5° **√** TYP

Dual-In-Line and Flat Package Order Number MM54HC4017J or MM74HC4017J,N NS Package Number J16A

0.018 ± 0.003 [0.46 ± 0.08] TYP

Dual-In-Line and Flat Package Order Number MM74HC4017N NS Package Number N16E

LIFE SUPPORT POLICY

0.100 ± 0.010 [2.54 ± 0.25] TYP

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0.310-0.410

J16A (REV L)

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408