			Created with
Company Name	Dr BR Ambedkar Institute of Technology	Project Title	Fin Plate
Group/Team Name	Pre Launch W/Shop Team	Subtitle	
Designer	Jenson Daniel	Job Number	Ques-1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Conclusion Finplate	Pass
Finplate	1 433
Connection Properties	
Connection	
Connection Title	Single Finplate
Connection Type	Shear Connection
Connection Category	Offical Confidential
Connectivity	Column flange-Beam web
Beam Connection	Bolted
Column Connection	Welded
	vveided
Loading (Factored Load)	160
Shear Force (kN)	100
Components Column Section	ISSC 200
Material Room Section	Fe 410
Beam Section	ISMB 400
Material	Fe 410
Hole Plata Castian	STD
Plate Section	320X100X10
Thickness (mm)	10
Width (mm)	100
Depth (mm)	320
Hole	STD
Weld	
Туре	Double Fillet
Size (mm)	8
Bolts	
Туре	HSFG
Grade	8.8
Diameter (mm)	20
Bolt Numbers	3
Columns (Vertical Lines)	1
Bolts Per Column	3
Gauge (mm)	0
Pitch (mm)	120

End Distance (mm)	40	
Edge Distance (mm)	40	
Assembly		
Column-Beam Clearance (mm)	20	

***			Created with
Company Name	Dr BR Ambedkar Institute of Technology	Project Title	Fin Plate
Group/Team Name	Pre Launch W/Shop Team	Subtitle	
Designer	Jenson Daniel	Job Number	Ques-1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check			
Check	Required	Provided	Remark
Bolt shear capacity (kN)	hear capacity $V_{dsb} = (800*0.6126*20*20)/(\sqrt{3}*1.25*1000)$ 90.529 [cl. 10.3.3]		
Bolt bearing capacity (kN)		V_{dpb} = (2.5*0.508*20*8.9*410)/(1.25*1000) = 74.148 [cl. 10.3.4]	
Bolt capacity (kN)		Min (90.529, 74.148) = 74.148	
No. of bolts	160/74.148 = 2.2	3	Pass
No.of column(s)	≤ 2	1	
No. of bolts per column		3	
Bolt pitch (mm)	\geq 2.5* 20 = 50, \leq Min(32*8.9, 300) = 285 [cl. 10.2.2]	120	Pass
Bolt gauge (mm)	≥ 2.5*20 = 50, ≤ Min(32*8.9, 300) = 285 [cl. 10.2.2]	0	
Fno distance (mm)	≥ 1.7*22 = 37.4, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	40	Pass
Fune distance (mm)	\geq 1.7*22 = 37.4, \leq 12*8.9 = 106.8 [cl. 10.2.4]	40	Pass
Block shear capacity (kN)	≥ 160	V _{db} = 453	Pass
	(5*160*1000)/(320*250) = 10.0 [Owens and Cheal, 1989]	10	Pass
Plate height (mm)	≥ 0.6*400=240.0, ≤ 400-16-14- 10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	320	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	(2*90.529*120 ²)/(120*1000) = 14.485	$M_{\rm d}$ = (1.2*250*Z)/(1000*1.1) = 46.55 [cl. 8.2.1.2]	Pass
Effective weld length (mm)		320-2*8 = 304	
(kN/mm)	$\sqrt{[(14485*6)/(2*304^2)]^2}$ + $[160/(2*304)]^2$ = 0.539	$f_V = (0.7*8*410)/(\sqrt{3}*1.25)$ = 1.06 [cl. 10.5.7]	Pass

Weld thickness (mm)	Max((0.539*1000*√3* 1.25)/(0.7 * 410),10* 0.8) = 8.0 [cl. 10.5.7, Insdag Detailing Manual, 2002]	8	Pass
------------------------	--	---	------

			Created with
Company Name	Dr BR Ambedkar Institute of Technology	Project Title	Fin Plate
Group/Team Name	Pre Launch W/Shop Team	Subtitle	
Designer	Jenson Daniel	Job Number	Ques-1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Views 3 nos 20Ø holes for M20 bolts (grade 8.8) 40 mm Beam ISMB 400 20 mm PLT. 320x100x10 Column ISSC 200 z 8 mm Top view (Sec A-A) Beam ISMB 400 3 nos 20Ø holes for M 20 bolts (grade 8.8) Column ISSC 200 40 mm 3 nos 20Ø holes **₹**40 mm for M20 bolts (grade8.8) 33 mm 40 mm 2 @120mm c/c Beam ISMB 400 2 @120 mm c/c **★**40 mm z8 mm 40 mm PLT. 320x100x10 PLT. 320X100X10 Column ISSC 200 → ← 20 mm Side view (Sec B-B) Front view (Sec C-C)

**			Created with
Company Name	Dr BR Ambedkar Institute of Technology	Project Title	Fin Plate
Group/Team Name	Pre Launch W/Shop Team	Subtitle	
Designer	Jenson Daniel	Job Number	Ques-1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Additional Comments	