

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Μάθημα: Συστήματα Αναμονής

Ονοματεπώνυμο: Ειρήνη Δόντη

<u>A.M</u>: 03119839

5η Ομάδα Ασκήσεων

Δίκτυο με εναλλακτική δρομολόγηση

Θεωρούμε ένα απλό δίκτυο με δύο κόμβους που συνδέονται μεταξύ τους με δύο παράλληλους συνδέσμους (γραμμές), όπως φαίνεται στο ακόλουθο σχήμα. Ροή πακέτων με ρυθμό $\lambda = 10*10^3$ πακέτα/sec (10 Kpps) πρόκειται να δρομολογηθεί από τον κόμβο 1 στον κόμβο 2 (προς μία κατεύθυνση μόνο). Το μέσο μήκος πακέτου είναι 128 bytes. Οι χωρητικότητες των δύο παράλληλων συνδέσμων (γραμμών) είναι $C_1 = 15$ Mbps και $C_2 = 12$ Mbps, αντίστοιχα. Υποθέστε ότι το ποσοστό α των πακέτων δρομολογείται από τη γραμμή 1, και ποσοστό (1-α) δρομολογείται από τη γραμμή 2.

(1)

Οι απαραίτητες παραδοχές ώστε οι σύνδεσμοι να μπορούν να μοντελοποιηθούν σαν M/M/1 είναι οι παρακάτω:

- Η εισερχόμενη ροή πελατών που εισέρχονται είναι διαδικασία Poisson με παράμετρο λ. Η ροή αυτή διασπάται με τυχαίο τρόπο σε δύο διαδικασίες Poisson με ρυθμό αλ και (1-α)λ.
- Οι δύο γραμμές 1 και 2 μοντελοποιούνται σαν ουρές M/M/1 με μέσο ρυθμό αφίξεως λ₁ και λ₂ και μέσο ρυθμό εξυπηρέτησης μ₁ και μ₂.

Για τη Γραμμή 1:

Ο μέσος ρυθμός εξυπηρέτησης είναι
$$\mu_1=\frac{c_1}{128*8\ bits}=\frac{15*10^6\ bits/sec}{128*8\ bits}=14.65*10^3\ packets/sec$$

Ο μέσος ρυθμός αφίξεως είναι: $\lambda_1 = 10 \alpha \ Kpps$.

Για τη Γραμμή 2:

Ο μέσος ρυθμός εξυπηρέτησης είναι
$$\mu_2 = \frac{c_2}{_{128*8~bits}} = \frac{_{12*10^6~bits/sec}}{_{128*8~bits}} = 11.72*10^3~packets/sec$$

Ο μέσος ρυθμός αφίξεως είναι: $\lambda_2 = 10(1-\alpha)$ Kpps.

Οι ουρές είναι εργοδικές στην περίπτωση που:

$$\frac{\lambda_1}{\mu_1} < \frac{\lambda}{\mu_1} < 1 \, \text{ kat } \frac{\lambda_2}{\mu_2} < \frac{\lambda}{\mu_2} < 1$$

(2)

Χρησιμοποιούμε το Octave για τιμές του α=0.001:0.001:0.999 και εκτελούμε το διάγραμμα μέσου χρόνου καθυστέρησης E(T) ενός τυχαίου πακέτου στο σύστημα συναρτήσει του α. Στη συνέχεια, υπολογίζουμε με το Octave τη τιμή του α που ελαχιστοποιεί το E(T), καθώς και τον ελάχιστο χρόνο καθυστέρησης E(T).

Ο μέσος αριθμός πελατών είναι $E[n] = E[n_1] + E[n_2]$. Από το νόμο του Little ο μέσος χρόνος καθυστέρησης E[T] υπολογίζεται διαιρώντας το μέσο αριθμό με τις εξωτερικές ροές, δηλαδή με ρυθμό λ. Οπότε, $E[T] = \frac{E[n]}{\lambda}$.

Το διάγραμμα μέσου χρόνου καθυστέρησης Ε(Τ) ενός τυχαίου πακέτου στο σύστημα συναρτήσει του α, απεικονίζεται παρακάτω:

Ο χρόνος καθυστέρησης Ε(Τ) ελαχιστοποιείται για το α που φαίνεται στο παρακάτω αποτέλεσμα που προέκυψε από την εκτέλεση του προγράμματος:

```
Minimun value of E(T)
min_value = 0.00012118
for a = 0.60200
```

Ο κώδικας που δημιουργήθηκε για το συγκεκριμένο ερώτημα, είναι ο παρακάτω:

```
%Exercise 1 - Eirini Donti
% (a)
a = 0.001:0.001:0.999;
1=10000;
11=10000*a;
mu1=14650;
12=10000*(1-a);
mu2=11720;
[U1,R1,Q1,X1,P1] = qsmm1(l1,mu1);
[U2,R2,Q2,X2,P2] = qsmm1(12,mu2);
totClients = Q1 + Q2;
totTime = totClients/l;
figure;
plot(a, totTime);
xlabel("a parameter");
ylabel("Average response time");
[min value,min a] = min(min(totTime,[],1));
fprintf("Minimun value of E(T) \n");
min value
fprintf("for a = ");
display(0.001*(min a+1));
```

Ανοιχτό δίκτυο ουρών αναμονής

Το παρακάτω σχήμα αναπαριστά ένα ανοιχτό δίκτυο ουρών αναμονής. Όλες οι αφίξεις ακολουθούν την κατανομή Poisson με παραμέτρους λ_i , i=1,2 και οι εξυπηρετήσεις είναι εκθετικά κατανεμημένες με ρυθμούς μ_i , i=1,2,3,4,5.

Οι απαραίτητες παραδοχές ώστε το παραπάνω δίκτυο να μπορεί να μελετηθεί ως ένα ανοιχτό δίκτυο με το θεώρημα Jackson:

- Η εκάστοτε ουρά αναμονής Q_i, i = 1,2,3,4,5 αποτελεί έναν δικτυακό κόμβο εξυπηρέτησης κορμού με εκθετικούς ρυθμούς εξυπηρέτησης μ_i, i = 1,2,3,4,5.
- Για εσωτερικές αφίξεις πελατών που προέρχονται από εξωτερικές πηγές που είναι άμεσα συνδεδεμένες στους δικτυακούς κόμβους κορμού $Q_1, Q_2,$ προσανατολίζονται προς τους εξωτερικούς προορισμούς που είναι άμεσα συνδεδεμένοι στους δικτυακούς κόμβους κορμούς Q_4, Q_5 . Οι ροές μεταξύ των δικτυακών κόμβων είναι ανεξάρτητες ροές Poisson με μέσο ρυθμό γ_{ij} , i,j=1,2,3,4,5 και η συνολική εξωγενής ροή Poisson στην ουρά Q_i είναι ίση με $\gamma_i=\sum_{j=1, j\neq i}^5 y_{ij}$.
- Για τη δρομολόγηση πελατών μεταξύ δύο ουρών Q_i , Q_j έχουμε ότι θα γίνονται με τυχαίο τρόπο και με πιθανότητα που ισούται με γ_{ij} Συγκεκριμένα, $r_{12}=\frac{2}{7}$, $r_{13}=\frac{4}{7}$, $r_{14}=\frac{1}{7}$, $r_{35}=\frac{1}{2}$ και $r_{34}=\frac{1}{2}$.
- Οι ροές που διαπερνούν τον δικτυακό κόμβο Q_i , έχουν συνολικό μέσο $\rho \upsilon \theta \mu \delta \text{ iso } \mu \epsilon \ \lambda_i = \gamma_i + \sum_{j \, = \, 1, j \neq i}^5 r_{ij} * \lambda_i.$
- Οι χρόνοι εξυπηρέτησης πελατών στις ουρές έχουν την ιδιότητα της έλλειψης μνήμης (δε διατηρούν την τιμή τους) και η τιμή του χρόνου εξυπηρέτησης τους είναι εξαρτημένη από την κατανομή του κάθε εξυπηρετητή.

Η ένταση φορτίου είναι ο λόγος $\rho=\frac{\lambda}{\mu}$. Για να υπολογίσουμε τις εντάσεις φορτίων, θα χρησιμοποιήσουμε το θεώρημα Burke, το οποίο αναφέρει ότι η έξοδος πελατών από ουρά M/M/1 ακολουθεί κατανομή Poisson και ο ρυθμός της είναι ο ρυθμός εισόδου λ . Επομένως, για την κάθε ουρά εξυπηρέτησης, θα έχουμε τα εξής:

$$\rho_{1} = \frac{\lambda_{1}}{\mu_{1}}$$

$$\rho_{2} = \frac{\lambda_{2} + r_{12}\lambda_{1}}{\mu_{2}} = \frac{\lambda_{2} + \frac{2}{7}\lambda_{1}}{\mu_{2}}$$

$$\rho_{3} = \frac{r_{13}\lambda_{1}}{\mu_{3}} = \frac{\frac{4}{7}\lambda_{1}}{\mu_{3}}$$

$$\rho_{4} = \frac{r_{34}r_{13}\lambda_{1} + r_{14}\lambda_{1}}{\mu_{4}} = \frac{\frac{1}{2}\frac{4}{7}\lambda_{1} + \frac{1}{7}\lambda_{1}}{\mu_{4}} = \frac{\frac{3}{7}\lambda_{1}}{\mu_{4}}$$

$$\rho_{5} = \frac{r_{35}r_{13}\lambda_{1} + \lambda_{2} + r_{12}\lambda_{1}}{\mu_{5}} = \frac{\frac{1}{2}\frac{4}{7}\lambda_{1} + \lambda_{2} + \frac{2}{7}\lambda_{1}}{\mu_{5}} = \frac{\frac{4}{7}\lambda_{1} + \lambda_{2}}{\mu_{5}}$$

Υλοποιούμε σε Octave τη συνάρτηση intensities, η οποία παίρνει ως ορίσματα τις παραμέτρους λ_i με i=1,2 και μ_i με i=1,2,3,4,5 και επιστρέφει την τιμή 1 αν το σύστημα είναι εργοδικό ή την τιμή 0 αν δεν είναι εργοδικό το σύστημα.

Ο κώδικας που χρησιμοποιείται για τη δημιουργία της παραπάνω συνάρτησης, είναι ο παρακάτω:

```
% Exercise 2 - Eirini Donti
function [r1,r2,r3,r4,r5,ret] = intensities(la1,la2,mu1,mu2,mu3,mu4,mu5)
 r1=(la1/mu1);
  r2=((la2+(2/7)*la1)/mu2);
 r3=((4/7)*la1/mu3);
 r4=((3/7)*la1/mu4);
  r5=(((4/7)*la1+la2)/mu5);
  if ((r1<1) && (r2<1) && (r3<1) && (r4<1) && (r5<1))
     ret=1;
  else
     ret=0;
  endif
    r1
    fprintf("\n");
    fprintf("\n");
    r3
    fprintf("\n");
    r4
    fprintf("\n");
    fprintf("\n");
    ret.
endfunction
```

(3)

Με τη βοήθεια της συνάρτησης του προηγούμενου ερωτήματος , εκτελούμε μέσω Octave, τη συνάρτηση mean_clients, η οποία θα δέχεται ως ορίσματα τις παραμέτρους τις λ_i με i=1,2 και μ_i με i=1,2,3 ,4 ,5 και θα επιστρέφεται ένα διάνυσμα d με μέσους αριθμούς πελατών των Q_i , i=1,2,3,4,5, όπως φαίνεται παρακάτω.

```
function [Q1,Q2,Q3,Q4,Q5] = mean_clients(la1,la2,mu1,mu2,mu3,mu4,mu5)
  [r1,r2,r3,r4,r5,ret] = intensities(la1,la2,mu1,mu2,mu3,mu4,mu5);
  Q1 = r1/(1-r1);
  Q2 = r2/(1-r2);
  Q3 = r3/(1-r3);
  Q4 = r4/(1-r4);
  Q5 = r5/(1-r5);
  d = [Q1, Q2, Q3, Q4, Q5]
endfunction
```

(4)

Για τις δοσμένες τιμές παραμέτρων υπολογίζουμε, με τη χρήση των προηγούμενων συναρτήσεων, (α) την ένταση του φορτίου που δέχεται η

κάθε ουρά και (β) το μέσο χρόνο καθυστέρησης ενός πελάτη από άκρο σε άκρο του δικτύου.

Γράφουμε στο Command Window την εντολή:

```
>> mean clients (4,1,6,5,8,7,6)
```

Λαμβάνουμε τα παρακάτω αποτελέσματα:

```
(\alpha)
```

```
r1 = 0.66667

r2 = 0.42857

r3 = 0.28571

r4 = 0.24490

r5 = 0.54762

ret = 1

d =

2.00000 0.75000 0.40000 0.32432 1.21053
```

(β)

Υπολογίζουμε τη μέση καθυστέρηση ενός πελάτη από άκρο σε άκρο με τον τύπο του Little E[T] = $\frac{E[n]}{\gamma}$ με $E[n]=Q_1+Q_2+Q_3+Q_4+Q_5$ και $\gamma=\lambda_1+\lambda_2$

Τροποποιούμε το πρόγραμμα, όπως φαίνεται παρακάτω:

```
function [Q1,Q2,Q3,Q4,Q5] = mean_clients(la1,la2,mu1,mu2,mu3,mu4,mu5)
[r1,r2,r3,r4,r5,ret] = intensities(la1,la2,mu1,mu2,mu3,mu4,mu5);
Q1 = r1/(1-r1);
Q2 = r2/(1-r2);
Q3 = r3/(1-r3);
Q4 = r4/(1-r4);
Q5 = r5/(1-r5);
d = [Q1, Q2, Q3, Q4, Q5]
fprintf("E(T) = ");
display((Q1+Q2+Q3+Q4+Q5)/(la1+la2));
endfunction
```

Οπότε, από την εκτέλεση του κώδικα, συμπεραίνουμε ότι η μέση καθυστέρηση ενός πελάτη από άκρο σε άκρο είναι:

$$E(T) = 0.93697$$

(5)

Στενωπός του δικτύου (πόρος με τον υψηλότερο βαθμό χρησιμοποίησης) είναι η 1^η ουρά, αφού εκείνη έχει τη μεγαλύτερη ροή φορτίου. Η τιμή της παραμέτρου λ_1 γίνεται μέγιστη, όταν $\rho_1=\frac{\lambda_1}{\mu_1}=1$ ή $\lambda_1=\mu_1=6$ πελάτες/sec.

(6)

Για τιμές τις παραμέτρου $\lambda_1 = [0.1*6, 0.99*6]$, κατασκευάζουμε το διάγραμμα του μέσου χρόνου καθυστέρησης ενός πελάτη από άκρο σε άκρο δικτύου, όπως φαίνεται παρακάτω:

Ο κώδικας που δημιουργήθηκε για τη δημιουργία του παραπάνω διαγράμματος είναι ο παρακάτω:

```
% EXERCISE 2 (6) - Eirini Donti
lal_max = 6;
for i = 1:1:90
    lal = (0.1*lal_max) + (i-1)*0.01*lal_max;
    [Q1, Q2, Q3, Q4, Q5] = mean_clients(lal, la2=1, mu1=6, mu2=5, mu3=8, mu4=7, mu5=6);
    E(i) = (Q1 + Q2 + Q3 + Q4 + Q5)/(la1 + la2);
endfor

lal = (0.1*lal_max):(0.01*lal_max):(0.99*lal_max);
figure;
plot(lal, E, "r");
title("E(T) Diagram")
xlabel("Lambda 1");
ylabel("E(T)");
```