

1. A method of stimulating osteoblastic-mediated growth of new bone in a mammal comprising administering to a mammal in need thereof a therapeutically effective amount of a compound having the formula:

where Y_1 and Y_2 , which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, where R_{11} and R_{12} are each hydrogen or taken together are a methylene group, where R_6 and R_7 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl, fluoroalkyl, hydroxy and alkoxy, with the proviso that R_6 and R_7 cannot both be hydrogen, or R_6 and R_7 when taken together may represent the group $-(CH_2)_x$ —where X is an integer from 2 to 5, or R_6 and R_7 when taken together may represent the group $-(CR_3R_9)$ where R_8 and R_9 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl, fluoroalkyl, hydroxy and alkoxy, or when taken together R_8 and R_9 may represent the group $-(CH_2)_x$ —where X is an integer from 2 to 5, and where the group R represents

- 34 -

BEST AVAILABLE COPY

where the stereochemical center (corresponding to C-20 in steroid numbering) may have the \underline{R} or \underline{S} configuration, (i.e. either the natural configuration about carbon 20 or the 20-epi configuration), and where Z is selected from Y, -OY, -CH₂OY, -C \equiv CY and -CH=CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$-(CH_2)_m$$
 $\stackrel{R^1}{-}C$ $\stackrel{R^2}{-}(CH_2)_n$ $-C$ $\stackrel{R^3}{-}$ $\stackrel{R^4}{-}$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, $=CR^2R^3$, or the group $-(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group $-(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups $-CH(CH_3)$ -, $-(CH_2)_m$ -, $-CR_1R_2$ - or $-(CH_2)_n$ - at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

2. The method of claim 1 wherein the compound is administered orally.

- 3. The method of claim 1 wherein the compounds is administered parenterally.
- The method of claim 1 wherein the compound is administered 4. transdermally.
- 5. The method of claim 1 wherein the compound is administered topically.
- 6. The method of claim 1 wherein the compound is administered in an immobilized form at a site where growth of new bone is desired.
- 7. The method of claim 1 wherein the compound is administered in a slow release form at a site where growth of new bone is desired.
- 8. The method of claim 1 wherein the compound is administered in a dosage of from 0.01µg to 50µg per day.
 - 9. The method of claim 1 wherein the mammal is a human.
- 10. The method of claim 1 wherein the compound administered is 2methylene-19-nor-20(S)- 1α ,25-dihydroxyvitamin D_3 having the formula:

11. The method of claim 1 wherein the compound administered is an acylated derivative having the formula:

$$\begin{array}{c|c} & & & \\ & & & \\$$

where Y^1 and Y^2 independently represent hydrogen or an acyl group, and with the proviso that R^5 is -OY₃ and Y₃ is selected from the group consisting of acyl or a hydrocarbyloxycarbonyl.

- 12. The method of claim 11 wherein the compound is a triacetate such that Y_1 , Y_2 and Y_3 and each CH_3CO -.
- 13. The method of claim 11 wherein the compound as a trihexanoate such that Y_1 , Y_2 and Y_3 are each $CH_3(CH_2)_4CO$ -.
- 14. The method of claim 11 wherein the compound is a trinonanoate such that Y_1 , Y_2 and Y_3 are each $CH_3(CH_2)_7CO$ -.
- 15. The method of claim 11 wherein the compound is a 25-acetate such that Y_1 and Y_2 are both hydrogen and Y_3 is CH_3CO -.
- 16. The method of claim 11 wherein the compound is 2-methylene-19-nor- $1\alpha.25(OH)_2$ -D₃-1,3,25-triacetate.
- 17. The method of claim 11 wherein the compound is 2-methylene-19-nor- $1\alpha.25(OII)_2$ -D₃-1,3,25-trihexanoate.
- 18. The method of claim 11 wherein the compound is 2-methylene-19-nor- $1\alpha.25(OII)_2$ - D_3 -1.3.25-trinonanoate.
- 19. The method of claim 11 wherein the compound is 2-methylene-19-nor- $1\alpha,25(OH)_2$ -D₃-25-acetate.

20. The method of claim 1 wherein the compound administered is selected from the group consisting of:

where Y_1 , Y_2 , R_{11} , R_{12} and R are as defined in claim 1 and R_8 and R_9 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group -(CH₂)_X-where X is an integer from 2 to 5.

21. The method of claim 1 wherein the compound administered is selected from the group consisting of:

$$Y_2OW^{R_{10}}$$
 R_{10}
 R_{11}
 R_{12}
 OY_1

where Y_1 , Y_2 , R_{11} and R_{12} and R are as defined in claim 1 and R_{10} is selected from the group consisting of alkyl, hydroxyalkyl and fluoroalkyl.

22. The method of claim 1 wherein the compound administered is selected from the group consisting of:

$$Y_{2}O_{1}$$

$$R_{6}$$

$$R_{7}$$

$$R_{11}$$

$$R_{12}$$

$$OY_{1}$$

where Y_1 , Y_2 , R_{11} , R_{12} , R_6 , R_7 and R are as defined in claim 1 with the proviso that R^5 is $-OY_3$ and Y_3 is selected from the group consisting of an acyl or a hydrocarbyloxycarbonyl.

- 23. The method of claim 1 wherein the compound is administered to stimulate healing of a bone fracture.
- 24. The method of claim 1 wherein the compound is administered to stimulate healing of a bone transplant.
- 25. The method of claim 1 wherein the compound is administered to stimulate solidification of an implant in bone.
- 26. The method of claim 1 wherein the compound is administered to stimulate osseointegration of a dental implant.
- 27. The method of claim 1 wherein the compound is administered to stimulate periodontal bone.

28. The method of claim 1 wherein the compound is administered following a distraction osteogenesis procedure.