ICI 4242 - Autómatas y compiladores

Expresiones regulares

Rodrigo Olivares Mg. en Ingeniería Informática rodrigo.olivares@uv.cl

1er Semestre

Definición

Objetivo

El objetivo de las expresiones regulares es representar todos los posibles lenguajes definidos sobre un alfabeto Σ , en base a una serie de lenguajes primitivos, y operadores de composición.

Definición

Lenguajes primitivos

- El lenguaje vacío.
- El lenguaje formado por la palabra vacía.
- Los lenguajes correspondientes a los distintos símbolos del alfabeto.

Operadores de composición

- La unión
- La concatenación.
- La clausura o cierre.

Ejemplo

Definición

1.- Lenguaje formado por las cadenas que terminan en 01:

$$\{0,1\}^*.\{01\} =$$
 $= (\{0\} \cup \{1\})^*.\{01\}$
 $= (0+1)^*01 \; \textit{Expresion regular}$

2.- Lenguaje formado por palabras de longitud par sobre a's y b's:

$$\{aa, ab, ba, bb\}^* =$$

$$= (\{aa\} \cup \{ab\} \cup \{ba\} \cup \{bb\})^*$$

$$= (aa + ab + ba + bb)^* Expresión regular$$

Definición

Definición

Dado un alfabeto Σ , las expresiones regulares sobre Σ se definen de forma recursiva por las siguientes reglas:

- 1.- Las siguientes expresiones son expresiones primitivas:
 - Ø
 - λ
 - σ , siendo $\sigma \in \Sigma$
- 2.- Sean α y β expresiones regulares, entonces son expresiones regulares derivadas:
 - $\alpha + \beta$ (unión)
 - $\alpha.\beta$ (o simplemente $\alpha\beta$) (concatenación)
 - α^* (cierre)
 - (α)

No hay más expresiones regulares sobre Σ que las construidas mediante estas reglas.

Definición

Precedencia de operadores

- 1.- ()
- 2.- * (cierre)
- 3.- . (concatenación)
- 4.- + (unión)

Algunos ejemplos de expresiones regulares

- -(0+1)*01
- $(aa + ab + ba + bb)^*$
- $a^*(a+b)$
- (aa)*(bb)*b

Lenguaje descrito

Lenguaje descrito - Definición

Sea **r** una expresión regular sobre σ . El **lenguaje descrito por r**, L(r), se define recursivamente de la siguiente forma:

1.- Si
$$\mathbf{r} = \emptyset$$
 \Rightarrow $L(\emptyset)$ $=$ \emptyset
2.- Si $\mathbf{r} = \lambda$ \Rightarrow $L(\lambda)$ $=$ $\{\lambda\}$
3.- Si $\mathbf{r} = a$, $a \in \Sigma$ \Rightarrow $L(a)$ $=$ $\{a\}$
4.- Si $\mathbf{r} = \alpha + \beta$ \Rightarrow $L(\alpha + \beta)$ $=$ $L(\alpha) \cup L(\beta)$
5.- Si $\mathbf{r} = \alpha \cdot \beta$ \Rightarrow $L(\alpha \cdot \beta)$ $=$ $L(\alpha) \cdot L(\beta)$
6.- Si $\mathbf{r} = \alpha^*$ \Rightarrow $L(\alpha^*)$ $=$ $L(\alpha)^*$
7.- Si $\mathbf{r} = (\alpha)$ \Rightarrow $L(\alpha)$

donde α y β son expresiones regulares.

Lenguaje descrito

Ejemplo

Mostrar el lenguaje descrito por una ER mediante notación por comprensión (conjuntista):

$$L(a^*(a+b)) = L(a^*)L((a+b))$$

$$= L(a)^*L(a+b)$$

$$= L(a)^*(L(a) \cup L(b))$$

$$= \{a\}^*(\{a\} \cup \{b\})$$

$$= \{\lambda, a, aa, aaa, ...\} \{a, b\}$$

$$= \{a, aa, aaa, ..., b, ab, aab, aaab, ...\}$$

$$= \{a^n \mid n \ge 1\} \cup \{a^nb \mid n \ge 0\}$$

Lenguaje descrito

Ejercicios

Mostrar el lenguaje descrito por una ER mediante notación por comprensión (conjuntista):

1.-
$$L((aa)^*(bb)^*b) \ \xi = ? \{a^{2n}b^{2m+1} \mid n, m \ge 0\}.$$

2.- Si
$$\Sigma = \{a, b, c\} \Rightarrow L((a+b+c)^*) \ \xi = ? \ \Sigma^*$$
.

3.-
$$L(a^*.(b+c))$$
.

4.-
$$L(0^*,1,0^*)$$
.

5.-
$$L((a+b+c+\cdots+z)^*.(a+b)^*).$$

Concepto Propiedades

Definición - Equivalencia

Dos expresiones regulares r_1 y r_2 se dicen equivalentes, $r_1 = r_2$, si describen el mismo lenguaje, esto es, si $L(r_1) = L(r_2)$. En base a esta definición se pueden establecer las siguientes equivalencias y propiedades:

Propiedades

Definición - Equivalencia

Respecto a las operaciones + (unión) y . (concatenación):

1.- Son asociativas:

$$\rightarrow \alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma = \alpha + \beta + \gamma$$
$$\rightarrow \alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot \beta \cdot \gamma$$

2.- + es conmutativa e idempotente:

3.- Distributividad:

$$\rightarrow \alpha.(\beta + \gamma) = \alpha.\beta + \alpha.\gamma$$

$$\rightarrow (\alpha + \beta).\gamma = \alpha.\gamma + \beta.\gamma$$

Propiedades

Definición - Equivalencia

Respecto a las operaciones + (unión) y . (concatenación):

4.- Elemento neutro:

$$\rightarrow \alpha.\lambda = \lambda.\alpha = \alpha$$

$$\rightarrow \alpha + \emptyset = \emptyset + \alpha = \alpha$$

5.- Lenguaje Vacío:

$$\rightarrow \emptyset.\alpha = \alpha.\emptyset = \emptyset$$

- 6.- Unión vacía:
 - \rightarrow Si $\lambda \in L(\alpha)$, entonces $\alpha + \lambda = \alpha$

Concepto Propiedades

Definición - Equivalencia

Respecto a la operación * (cierre o clausura):

7.-
$$\alpha^* = \lambda + \alpha \cdot \alpha^*$$

8.-
$$\lambda^* = \lambda$$

9.-
$$Q^* = \lambda$$

10.-
$$\alpha^* \cdot \alpha^* = \alpha^*$$

11.-
$$\alpha.\alpha^* = \alpha^*.\alpha$$

12.-
$$(\alpha^*)^* = \alpha^*$$

12.-
$$(\alpha^*)^* = \alpha^*$$

13.-
$$(\alpha^* + \beta^*)^* = (\alpha^* \cdot \beta^*)^* = (\alpha + \beta)^* = (\alpha^* \cdot \beta)^* \cdot \alpha^*$$

14.-
$$(\alpha.\beta)^* \cdot \alpha = \alpha \cdot (\beta.\alpha)^*$$

Propiedades

Ejemplos

Para comprobar si dos expresiones son equivalentes se puede intentar transformarlos mediante estas reglas en una misma expresión.

$$\Sigma = \{a, b, c\}$$

Propiedades

Ejemplos

Para comprobar si dos expresiones son equivalentes se puede intentar transformarlos mediante estas reglas en una misma expresión.

$$\Sigma = \{a, b, c\}$$

$$c + c^* \ i = ? \ c^*$$
 $c + c^* = c + \lambda + c.c^* \quad (por 7)$
 $= \lambda + c + c.c^* \quad (por 2)$
 $= \lambda + c.\lambda + c.c^* \quad (por 4)$
 $= \lambda + c.(\lambda + c^*) \quad (por 3)$
 $= \lambda + c.c^* \quad (por 6)$
 $= c^* \quad (por 7)$

Propiedades

Ejercicios

- 1.- $((c+b.a)^*.a^*)^* \ \ \ \ \ = ? ((c+b.a)+a)^*$
- 2.- Dado dos expresiones regulares $r = b.c + a.c^*.a.c + a.c^*.c + a$ y $s = (b + a.c^*a).c + a.c^*$. ¿Representan r y s el mismo lenguaje?
- 3.- Sea $r = (a^* \cdot (b+c)^* + b^*)^*$ y $s = (a+b+c)^*$,, demuestre $r \not = ? s$.

Preguntas

Preguntas?

