```
In [1]: import pandas as pd
   import seaborn as sns
   import numpy as np
   import matplotlib.pyplot as plt
   sns.set_theme(color_codes=True)
```

```
In [2]: df = pd.read_csv('Sport car price.csv')
df.head()
```

Out[2]:

	Car Make	Car Model	Year	Engine Size (L)	Horsepower	Torque (lb-ft)	0-60 MPH Time (seconds)	Price (in USD)
0	Porsche	911	2022	3	379	331	4	101,200
1	Lamborghini	Huracan	2021	5.2	630	443	2.8	274,390
2	Ferrari	488 GTB	2022	3.9	661	561	3	333,750
3	Audi	R8	2022	5.2	562	406	3.2	142,700
4	McLaren	720S	2021	4	710	568	2.7	298,000

Data Preprocessing Part 1

Remove Comma from Price (in USD)

```
In [4]: # remove commas from the Price column
    df['Price (in USD)'] = df['Price (in USD)'].str.replace(',', '')
    # convert the Price column to integer
    df['Price (in USD)'] = df['Price (in USD)'].astype(int)
    df['Price (in USD)'].dtypes
Out[4]: dtype('int32')
```

Out[5]:

In [5]: df.head()

	Car Make	Car Model	Year	Engine Size (L)	Horsepower	Torque (lb-ft)	0-60 MPH Time (seconds)	Price (in USD)
0	Porsche	911	2022	3	379	331	4	101200
1	Lamborghini	Huracan	2021	5.2	630	443	2.8	274390
2	Ferrari	488 GTB	2022	3.9	661	561	3	333750
3	Audi	R8	2022	5.2	562	406	3.2	142700
4	McLaren	720S	2021	4	710	568	2.7	298000

Change numerical data into integer

```
In [6]: # remove commas from 0-60 MPH Time (seconds) column
        df['0-60 MPH Time (seconds)'] = df['0-60 MPH Time (seconds)'].str.replace(',', '')
        # check if the Horsepower column contains string values
        if df['Horsepower'].dtype == 'object':
            # remove strings from the Column A column
            df['Horsepower'] = df['Horsepower'].str.replace('[^0-9]+', '', regex=True)
            # convert the remaining values to integers and fill empty strings with 0
            df['Horsepower'] = df['Horsepower'].apply(lambda x: int(x) if x != '' else 0)
            # do something else if the Column A column does not contain string values
            pass
        # check if the Horsepower column contains string values
        if df['Torque (lb-ft)'].dtype == 'object':
            # remove strings from the Column A column
            df['Torque (lb-ft)'] = df['Torque (lb-ft)'].str.replace('[^0-9]+', '', regex=True)
            # convert the remaining values to integers and fill empty strings with 0
            df['Torque (lb-ft)'] = df['Torque (lb-ft)'].fillna(0)
            df['Torque (lb-ft)'] = df['Torque (lb-ft)'].apply(lambda x: int(x) if x != '' else 0)
            # do something else if the Column A column does not contain string values
            pass
        # check if the Horsepower column contains string values
        if df['0-60 MPH Time (seconds)'].dtype == 'object':
            # remove strings from the Column A column
            df['0-60 MPH Time (seconds)'] = df['0-60 MPH Time (seconds)'].str.replace('[^0-9]+', '', r
            # convert the remaining values to integers and fill empty strings with 0
            df['0-60 MPH Time (seconds)'] = df['0-60 MPH Time (seconds)'].apply(lambda x: int(x) if x
        else:
            # do something else if the Column A column does not contain string values
            pass
        # Change numerical data into integer
        df['Horsepower'] = df['Horsepower'].astype(int)
        df['Torque (lb-ft)'] = df['Torque (lb-ft)'].astype(int)
        df['0-60 MPH Time (seconds)'] = df['0-60 MPH Time (seconds)'].astype(float)
        # convert the remaining values to integers and fill empty strings with 	heta
        \#df['Torque(lb-ft)'] = df['Torque(lb-ft)'].apply(lambda x: int(x) if x != '' else 0)
        df.dtypes
Out[6]: Car Make
                                    object
        Car Model
                                    object
        Year
                                     int64
        Engine Size (L)
                                    object
        Horsepower
                                     int32
        Torque (lb-ft)
                                     int32
                                float64
        0-60 MPH Time (seconds)
                                     int32
        Price (in USD)
        dtype: object
```

Change Engine Size into integer

```
In [7]: df['Engine Size (L)'].unique()
Out[7]: array(['3', '5.2', '3.9', '4', '4.4', '6.2', '3.8', '8', '5', '3.5',
                '4.7', '2', '2.9', '6', 'Electric', '6.5', '3.7', 'Electric Motor',
                '2.5', '1.5 + Electric', '6.8', '8.4', nan, '6.6', '7', '1.7',
               '3.3', '-', '6.7', '1.8', 'Electric (tri-motor)', '5.5',
                'Electric (93 kWh)', 'Electric (100 kWh)', 'Hybrid (4.0)', '4.6',
                '3.6', '1.5', 'Hybrid', '5.7', '2.0 (Electric)', '4.0 (Hybrid)',
                '0', '6.4', '6.3', '2.3'], dtype=object)
In [8]: def segment engine size(engine size):
            if engine_size in ['Electric', 'Hybrid']:
                return 'Electric/Hybrid'
            elif engine_size in ['Electric Motor', 'Electric (tri-motor)', 'Electric (93 kWh)', 'Elect
                return 'Electric'
            elif engine_size == '1.5 + Electric':
                return '1.5 Hybrid'
            elif engine_size in ['Hybrid (4.0)', '4.0 (Hybrid)']:
                return '4.0 Hybrid'
            elif engine_size == '0':
                return 'Unknown'
            elif engine_size == '-':
                return 'Unknown'
            elif float(engine_size) < 2:</pre>
                return 'Small'
            elif float(engine_size) < 3:</pre>
                return 'Medium'
                return 'Large'
        df['Engine Size (L)'] = df['Engine Size (L)'].apply(segment_engine_size)
In [9]: | df['Engine Size (L)'].unique()
Out[9]: array(['Large', 'Medium', 'Electric/Hybrid', 'Electric', '1.5 Hybrid',
```

```
'Small', 'Unknown', '4.0 Hybrid'], dtype=object)
```

```
In [10]: plt.figure(figsize=(10,5))
df['Engine Size (L)'].value_counts().plot(kind='bar')
```

Out[10]: <AxesSubplot:>

Remove Car Model because its irrelevant and have alot of unique value

```
In [11]: df.drop(columns='Car Model', inplace=True)
    df.head()
```

Out[11]:

	Car Make	Year	Engine Size (L)	Horsepower	Torque (lb-ft)	0-60 MPH Time (seconds)	Price (in USD)
0	Porsche	2022	Large	379	331	4.0	101200
1	Lamborghini	2021	Large	630	443	28.0	274390
2	Ferrari	2022	Large	661	561	3.0	333750
3	Audi	2022	Large	562	406	32.0	142700
4	McLaren	2021	Large	710	568	27.0	298000

Segment Car Make

```
In [13]: # define a function to segment the values
def segment_car_make(value):
    if value in ['Porsche', 'Lamborghini', 'Ferrari', 'McLaren', 'Aston Martin', 'Bugatti', 'Kon return 'Luxury'
    elif value in ['Audi', 'BMW', 'Mercedes-Benz', 'Chevrolet', 'Ford', 'Nissan', 'Dodge', 'Jan return 'Mainstream'
    elif value in ['Ariel', 'W Motors', 'Shelby', 'TVR', 'Subaru', 'Alpine', 'Ultima']:
        return 'Specialty'
    else:
        return 'Other'

# apply the function to the Car Make column
df['Car Make'] = df['Car Make'].apply(segment_car_make)
```

```
In [14]: plt.figure(figsize=(10,5))
df['Car Make'].value_counts().plot(kind='bar')
```

Out[14]: <AxesSubplot:>

In [15]:	df.head()

Out[15]:

	Car Make	Year	Engine Size (L)	Horsepower	Torque (Ib-ft)	0-60 MPH Time (seconds)	Price (in USD)
0	Luxury	2022	Large	379	331	4.0	101200
1	Luxury	2021	Large	630	443	28.0	274390
2	Luxury	2022	Large	661	561	3.0	333750
3	Mainstream	2022	Large	562	406	32.0	142700
4	Luxury	2021	Large	710	568	27.0	298000

Exploratory Data Analysis

```
In [16]: # list of categorical variables to plot
    cat_vars = ['Car Make', 'Engine Size (L)']

# create figure with subplots
    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(20, 10))
    axs = axs.flatten()

# create barplot for each categorical variable
    for i, var in enumerate(cat_vars):
        sns.barplot(x=var, y='Price (in USD)', data=df, ax=axs[i])
        axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=90)

# adjust spacing between subplots
    fig.tight_layout()

# show plot
    plt.show()
```



```
In [18]: num_vars = ['Horsepower', 'Torque (lb-ft)', '0-60 MPH Time (seconds)']
    fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 10))
    axs = axs.flatten()
    for i, var in enumerate(num_vars):
        sns.violinplot(x=var, data=df, ax=axs[i])
    fig.tight_layout()
    plt.show()
```



```
In [19]: num_vars = ['Horsepower', 'Torque (lb-ft)', '0-60 MPH Time (seconds)']
    fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 10))
    axs = axs.flatten()

for i, var in enumerate(num_vars):
    sns.histplot(x=var, data=df, ax=axs[i])

fig.tight_layout()

plt.show()
```



```
In [20]: num_vars = ['Horsepower', 'Torque (lb-ft)', '0-60 MPH Time (seconds)']
    fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 10))
    axs = axs.flatten()
    for i, var in enumerate(num_vars):
        sns.scatterplot(x=var, y='Price (in USD)', hue='Car Make', data=df, ax=axs[i])
    fig.tight_layout()
    plt.show()
```



```
In [21]: sns.set_style("darkgrid")
sns.set_palette("Set2")

sns.lineplot(x='Year', y='Price (in USD)', hue='Car Make', data=df, ci=None, estimator='mean',

plt.title("Price by Year Sold and Car Type")
plt.xlabel("Year")
plt.ylabel("Price")

plt.show()
```


Data Preprocessing Part 2

In [22]: df.head()

Out[22]:

Car Make	Year	Engine Size (L)	Horsepower	Torque (lb-ft)	0-60 MPH Time (seconds)	Price (in USD)
Luxury	2022	Large	379	331	4.0	101200
Luxury	2021	Large	630	443	28.0	274390
Luxury	2022	Large	661	561	3.0	333750
Mainstream	2022	Large	562	406	32.0	142700
Luxury	2021	Large	710	568	27.0	298000
	Luxury Luxury Luxury Mainstream	Luxury 2022 Luxury 2021 Luxury 2022 Mainstream 2022	Luxury 2022 Large Luxury 2021 Large Luxury 2022 Large Mainstream 2022 Large	Luxury 2022 Large 379 Luxury 2021 Large 630 Luxury 2022 Large 661 Mainstream 2022 Large 562	Luxury 2022 Large 379 331 Luxury 2021 Large 630 443 Luxury 2022 Large 661 561 Mainstream 2022 Large 562 406	Luxury 2021 Large 630 443 28.0 Luxury 2022 Large 661 561 3.0 Mainstream 2022 Large 562 406 32.0

```
In [23]: #Check missing value
  check_missing = df.isnull().sum() * 100 / df.shape[0]
  check_missing[check_missing > 0].sort_values(ascending=False)
```

Out[23]: Series([], dtype: float64)

Label Encoding for Object datatype

```
In [24]: # Loop over each column in the DataFrame where dtype is 'object'
         for col in df.select_dtypes(include=['object']).columns:
             # Print the column name and the unique values
             print(f"{col}: {df[col].unique()}")
         Car Make: ['Luxury' 'Mainstream' 'Specialty' 'Other']
         Engine Size (L): ['Large' 'Medium' 'Electric/Hybrid' 'Electric' '1.5 Hybrid' 'Small'
          'Unknown' '4.0 Hybrid']
In [25]: from sklearn import preprocessing
         # Loop over each column in the DataFrame where dtype is 'object'
         for col in df.select_dtypes(include=['object']).columns:
             # Initialize a LabelEncoder object
             label_encoder = preprocessing.LabelEncoder()
             # Fit the encoder to the unique values in the column
             label_encoder.fit(df[col].unique())
             # Transform the column using the encoder
             df[col] = label encoder.transform(df[col])
             # Print the column name and the unique encoded values
             print(f"{col}: {df[col].unique()}")
         Car Make: [0 1 3 2]
```

Engine Size (L): [4 5 3 2 0 6 7 1]

Train Test Split

```
In [26]: from sklearn.model selection import train test split
         X = df.drop('Price (in USD)', axis=1)
         y = df['Price (in USD)']
         # split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```

Remove Outlier from Train data using IQR

```
In [27]: # calculate the interquartile range for each feature
          q1 = np.percentile(X_train, 25, axis=0)
          q3 = np.percentile(X_train, 75, axis=0)
          iqr = q3 - q1
          # identify outliers using the IQR method
          lower\_bound = q1 - 1.5 * iqr
          upper_bound = q3 + 1.5 * iqr
          outliers = np.logical_or(X_train < lower_bound, X_train > upper_bound)
          # remove the outliers from the training set
          X train = X train[~np.any(outliers, axis=1)]
          y_train = y_train[~np.any(outliers, axis=1)]
In [28]: X_train.shape
Out[28]: (560, 6)
In [29]: y_train.shape
Out[29]: (560,)
In [30]: X_train.head()
Out[30]:
               Car Make Year Engine Size (L) Horsepower Torque (lb-ft) 0-60 MPH Time (seconds)
                        2022
          767
                                        4
                                                  444
                                                             406
                                                                                  38.0
                     1
          764
                     0 2021
                                                  612
                                                             561
                                                                                  34.0
          529
                     1 2021
                                                 720
                                                             590
                                                                                  31.0
          252
                     0 2021
                                                  592
                                                             457
                                                                                  28.0
          451
                     0 2021
                                                 626
                                                             664
                                                                                  33.0
In [31]: y_train.head()
Out[31]: 767
                  84595
          764
                 235000
          529
                 325000
          252
                 256500
          451
                 220000
          Name: Price (in USD), dtype: int32
```

Correlation heatmap

```
In [32]: # concatenate X_train and y_train
train_data = pd.concat([X_train, y_train], axis=1)

#Correlation Heatmap
plt.figure(figsize=(20, 16))
sns.heatmap(train_data.corr(), fmt='.2g', annot=True)
```

Out[32]: <AxesSubplot:>

In [33]: # Remove Engine Size (L) because it has 0 correlation
X_train.drop(columns='Engine Size (L)', inplace=True)
X_train.head()

Out[33]:

	Car Make	Year	Horsepower	Torque (Ib-ft)	0-60 MPH Time (seconds)
767	1	2022	444	406	38.0
764	0	2021	612	561	34.0
529	1	2021	720	590	31.0
252	0	2021	592	457	28.0
451	0	2021	626	664	33.0

```
In [34]: # Remove Engine Size (L) because it has 0 correlation
X_test.drop(columns='Engine Size (L)', inplace=True)
X_test.head()
```

Out[34]:

	Car Make	Year	Horsepower	Torque (lb-ft)	0-60 MPH Time (seconds)
799	0	2021	503	505	35.0
311	1	2021	650	650	35.0
85	0	2022	1500	1180	24.0
435	0	2021	1262	1106	25.0
204	0	2022	325	332	53.0

```
In [35]: X_train.shape
Out[35]: (560, 5)
```

Decision Tree Regressor

```
In [36]: from sklearn.tree import DecisionTreeRegressor
         from sklearn.model_selection import GridSearchCV
         from sklearn.datasets import load_boston
         # Create a DecisionTreeRegressor object
         dtree = DecisionTreeRegressor()
         # Define the hyperparameters to tune and their values
         param grid = {
              'max depth': [2, 4, 6, 8],
              'min samples split': [2, 4, 6, 8],
              'min_samples_leaf': [1, 2, 3, 4],
              'max_features': ['auto', 'sqrt', 'log2'],
              'random state':[0, 42]
         }
         # Create a GridSearchCV object
         grid search = GridSearchCV(dtree, param grid, cv=5, scoring='neg mean squared error')
         # Fit the GridSearchCV object to the data
         grid_search.fit(X_train, y_train)
         # Print the best hyperparameters
         print(grid_search.best_params_)
         {'max_depth': 8, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 6, 'rand
         om state': 0}
In [37]: from sklearn.tree import DecisionTreeRegressor
         dtree = DecisionTreeRegressor(random state=0, max depth=8, max features='auto', min samples le
         dtree.fit(X train, y train)
Out[37]: DecisionTreeRegressor(max_depth=8, max_features='auto', min_samples_split=6,
                                random_state=0)
```

```
In [38]: from sklearn import metrics
    from sklearn.metrics import mean_absolute_percentage_error
    import math
    y_pred = dtree.predict(X_test)
    mae = metrics.mean_absolute_error(y_test, y_pred)
    mape = mean_absolute_percentage_error(y_test, y_pred)
    mse = metrics.mean_squared_error(y_test, y_pred)
    r2 = metrics.r2_score(y_test, y_pred)
    rmse = math.sqrt(mse)

    print('MAE is {}'.format(mae))
    print('MAPE is {}'.format(mape))
    print('MSE is {}'.format(mse))
    print('R2 score is {}'.format(r2))
    print('RMSE score is {}'.format(rmse))
```

MAE is 236035.63646431145 MAPE is 0.8031919449888023 MSE is 446587710382.5396 R2 score is 0.24660092968005953 RMSE score is 668272.1828585563

```
In [39]: imp_df = pd.DataFrame({
    "Feature Name": X_train.columns,
    "Importance": dtree.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False)

fi2 = fi.head(10)
plt.figure(figsize=(10,8))
sns.barplot(data=fi2, x='Importance', y='Feature Name')
plt.title('Feature Importance Each Attributes (Decision Tree Regressor)', fontsize=18)
plt.xlabel ('Importance', fontsize=16)
plt.ylabel ('Feature Name', fontsize=16)
plt.show()
```



```
In [40]: import shap
    explainer = shap.TreeExplainer(dtree)
    shap_values = explainer.shap_values(X_test)
    shap.summary_plot(shap_values, X_test)
```



```
In [41]: explainer = shap.Explainer(dtree, X_test)
    shap_values = explainer(X_test)
    shap.plots.waterfall(shap_values[0])
```


Random Forest Regressor

```
In [42]: from sklearn.ensemble import RandomForestRegressor
         from sklearn.model_selection import GridSearchCV
         # Create a Random Forest Regressor object
         rf = RandomForestRegressor()
         # Define the hyperparameter grid
         param_grid = {
              'max_depth': [3, 5, 7, 9],
              'min_samples_split': [2, 5, 10],
              'min samples leaf': [1, 2, 4],
              'max features': ['auto', 'sqrt'],
              'random_state': [0, 42]
         # Create a GridSearchCV object
         grid search = GridSearchCV(rf, param grid, cv=5, scoring='r2')
         # Fit the GridSearchCV object to the training data
         grid_search.fit(X_train, y_train)
         # Print the best hyperparameters
         print("Best hyperparameters: ", grid_search.best_params_)
         Best hyperparameters: {'max depth': 9, 'max features': 'sqrt', 'min samples leaf': 2, 'min s
         amples_split': 2, 'random_state': 0}
In [43]: | from sklearn.ensemble import RandomForestRegressor
         rf = RandomForestRegressor(random_state=0, max_depth=9, min_samples_split=2, min_samples_leaf=
                                     max features='sqrt')
         rf.fit(X train, y train)
Out[43]: RandomForestRegressor(max_depth=9, max_features='sqrt', min_samples_leaf=2,
                                random state=0)
In [44]: from sklearn import metrics
         from sklearn.metrics import mean_absolute_percentage_error
         import math
         y_pred = rf.predict(X_test)
         mae = metrics.mean_absolute_error(y_test, y_pred)
         mape = mean_absolute_percentage_error(y_test, y_pred)
         mse = metrics.mean_squared_error(y_test, y_pred)
         r2 = metrics.r2_score(y_test, y_pred)
         rmse = math.sqrt(mse)
         print('MAE is {}'.format(mae))
         print('MAPE is {}'.format(mape))
         print('MSE is {}'.format(mse))
         print('R2 score is {}'.format(r2))
         print('RMSE score is {}'.format(rmse))
         MAE is 179245.95197674824
         MAPE is 0.6496436466127951
         MSE is 232902640718.41104
         R2 score is 0.6070903231035927
         RMSE score is 482599.87641773286
```

```
In [45]: imp_df = pd.DataFrame({
    "Feature Name": X_train.columns,
    "Importance": dtree.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False)

fi2 = fi.head(10)
plt.figure(figsize=(10,8))
sns.barplot(data=fi2, x='Importance', y='Feature Name')
plt.title('Feature Importance Each Attributes (Random Forest Regressor)', fontsize=18)
plt.xlabel ('Importance', fontsize=16)
plt.ylabel ('Feature Name', fontsize=16)
plt.show()
```



```
In [46]: import shap
    explainer = shap.TreeExplainer(rf)
    shap_values = explainer.shap_values(X_test)
    shap.summary_plot(shap_values, X_test)
```



```
In [47]: explainer = shap.Explainer(rf, X_test, check_additivity=False)
    shap_values = explainer(X_test, check_additivity=False)
    shap.plots.waterfall(shap_values[0])
```


AdaBoost Regressor

```
In [48]:
         from sklearn.ensemble import AdaBoostRegressor
         from sklearn.model_selection import GridSearchCV
         # Define AdaBoostRegressor model
         abr = AdaBoostRegressor()
         # Define hyperparameters and possible values
         params = {'n_estimators': [50, 100, 150],
                    'learning_rate': [0.01, 0.1, 1, 10],
                    'random_state': [0, 42]
                  }
         # Perform GridSearchCV with 5-fold cross validation
         grid_search = GridSearchCV(abr, param_grid=params, cv=5, scoring='neg_mean_squared_error')
         grid_search.fit(X_train, y_train)
         # Print best hyperparameters and corresponding score
         print("Best hyperparameters: ", grid_search.best_params_)
         Best hyperparameters: {'learning_rate': 0.1, 'n_estimators': 50, 'random_state': 0}
In [49]: from sklearn.ensemble import RandomForestRegressor
         abr = AdaBoostRegressor(random_state=0, learning_rate=0.1, n_estimators=50)
         abr.fit(X_train, y_train)
Out[49]: AdaBoostRegressor(learning rate=0.1, random state=0)
In [50]: from sklearn import metrics
         from sklearn.metrics import mean_absolute_percentage_error
         import math
         y_pred = abr.predict(X_test)
         mae = metrics.mean_absolute_error(y_test, y_pred)
         mape = mean_absolute_percentage_error(y_test, y_pred)
         mse = metrics.mean_squared_error(y_test, y_pred)
         r2 = metrics.r2_score(y_test, y_pred)
         rmse = math.sqrt(mse)
         print('MAE is {}'.format(mae))
         print('MAPE is {}'.format(mape))
         print('MSE is {}'.format(mse))
         print('R2 score is {}'.format(r2))
         print('RMSE score is {}'.format(rmse))
         MAE is 246415.8167423268
         MAPE is 0.8351811509347421
         MSE is 408285348756.478
         R2 score is 0.31121749428595646
         RMSE score is 638972.1032693665
```

```
In [51]: imp_df = pd.DataFrame({
    "Feature Name": X_train.columns,
    "Importance": abr.feature_importances_
})
fi = imp_df.sort_values(by="Importance", ascending=False)

fi2 = fi.head(10)
plt.figure(figsize=(10,8))
sns.barplot(data=fi2, x='Importance', y='Feature Name')
plt.title('Feature Importance Each Attributes (AdaBoost Regressor)', fontsize=18)
plt.xlabel ('Importance', fontsize=16)
plt.ylabel ('Feature Name', fontsize=16)
plt.show()
```


