Numerical Methods and Optimization

Chapter 3: Systems of linear Equations - Iterative Methods

10.10.2022

Content

1 The Banach Fixed Point Theorem and its applications

Theorem (Banach fixed point theorem (BFT))

Let $\Phi \colon \mathcal{K} \to \mathcal{K}$ a contracting self-map (a contraction) of a closed subset $\mathcal{K} \subset \mathbb{R}^n$ with contraction factor q, i.e.

$$\|\Phi(x) - \Phi(y)\| \le q\|x - y\| \tag{1}$$

for some q < 1 and all $x, y \in \mathcal{K}$. Then the fixed point equation

$$x = \Phi(x) \tag{2}$$

has exactly one solution $\hat{x} \in \mathcal{K}$ (\hat{x} is called the fixed point of Φ), and the fixed point iteration

$$x^{(k+1)} := \Phi(x^{(k)}), \quad k = 0, 1, 2, \dots$$
 (3)

converges for each initial vector $x^{(0)} \in \mathcal{K}$ to \hat{x} when $k \to \infty$.

Furthermore, for $k \geq 1$, we have

$$||x^{(k)} - \hat{x}|| \le \frac{q^k}{1-q} ||x^{(1)} - x^{(0)}||$$
 (a priori estimate)

and

$$\|x^{(k)} - \hat{x}\| \le \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|.$$
 (a posteriori estimate)

PROOF: Choose an arbitrary $x^{(0)} \in \mathcal{K}$ an let $(x^{(k)})$ be defined as in (3).

Step 1: $x^{(k)}$ is a Cauchy sequence:

Due to the contraction property (1), for any $k \in \mathbb{N}$ it holds

$$||x^{(k+1)} - x^{(k)}|| = ||\Phi(x^{(k)}) - \Phi(x^{(k-1)})|| \le q||x^{(k)} - x^{(k-1)}||.$$

Therefore, we obtain by induction (over $p \in \mathbb{N}_0$) that for all $k \geq 1$ and $p \geq 0$

$$||x^{(k+p)} - x^{(k+p-1)}|| \le q^p ||x^{(k)} - x^{(k-1)}||.$$
(4)

From this one can deduce (using the triangle inequality for the telescoping sum)

$$||x^{(k+p)} - x^{(k)}|| \le ||x^{(k+p)} - x^{(k+p-1)}|| + \dots + ||x^{(k+1)} - x^{(k)}||$$

$$\stackrel{(4)}{\le} (q^p + q^{p-1} + \dots + q)||x^{(k)} - x^{(k-1)}||$$

$$\le \frac{q}{1-q}||x^{(k)} - x^{(k-1)}||$$

$$\le \frac{q^k}{1-q}||x^{(1)} - x^{(0)}||.$$

$$\begin{aligned} \|x^{(k+p)} - x^{(k)}\| &\leq \|x^{(k+p)} - x^{(k+p-1)}\| + \ldots + \|x^{(k+1)} - x^{(k)}\| \\ &\stackrel{(4)}{\leq} (q^p + q^{p-1} + \ldots + q) \|x^{(k)} - x^{(k-1)}\| \\ &\leq \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\| \\ &\leq \frac{q^k}{1-q} \|x^{(1)} - x^{(0)}\|. \end{aligned}$$

Since 0 < q < 1 we can conclude that for all k large enough with $m \coloneqq k + p$ it is

$$||x^{(m)} - x^{(k)}|| \le \frac{q^k}{1 - q} ||x^{(1)} - x^{(0)}|| < \varepsilon,$$

meaning that $(x^{(k)})$ is a Cauchy sequence. Letting \hat{x} denote the unique limit (it may depend on $x^{(0)}$), the closedness of \mathcal{K} then implies that $\hat{x} \in \mathcal{K}$.

Step 2: \hat{x} is a unique fixed point of Φ :

First, Φ is lipschitz continuous (and therefore continuous) on \mathcal{K} . Hence we can pass to the limit in the iteration equation $x^{(k+1)} = \Phi(x^{(k)})$ to show that \hat{x} is a fixed point of Φ :

$$\hat{x} = \lim_{k \to \infty} x^{(k+1)} = \lim_{k \to \infty} \Phi(x^{(k)}) = \Phi(\lim_{k \to \infty} x^{(k)}) = \Phi(\hat{x}).$$

Uniqueness now follows again with inequality (1): Suppose there are two fixed points \hat{x} and \tilde{x} . Then

$$\|\hat{x} - \tilde{x}\| = \|\Phi(\hat{x}) - \Phi(\tilde{x})\| \le q\|\hat{x} - \tilde{x}\|$$

follows and because of q < 1 this can only hold if $\hat{x} = \tilde{x}$.

$$||x^{(k+p)} - x^{(k)}|| \le ||x^{(k+p)} - x^{(k+p-1)}|| + \dots + ||x^{(k+1)} - x^{(k)}||$$

$$\stackrel{(4)}{\le} (q^p + q^{p-1} + \dots + q)||x^{(k)} - x^{(k-1)}||$$

$$\stackrel{(5)}{\le} \frac{q}{1-q}||x^{(k)} - x^{(0)}||.$$
(6)

Step 3: Proof of the a priori/a posteriori estimates:

Letting $p \to \infty$ in (6) and (5) the a priori and a posteriori estimates follow.

Examples:

• The Newton method (in 1d) for determining a zero of a differentiable function $f: \mathbb{R} \to \mathbb{R}$ is given by the iteration formula

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

with given initial guess $x^{(0)} \in \mathbb{R}$.

For the function $f(x) = x^2 - 2$, this results in the iteration formula

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{2}{x_k} \right).$$

This defines the fixed point iteration

$$x_{k+1} = \Phi(x_k)$$

for the approximation of $\sqrt{2}$, where

$$\Phi(x) := \frac{1}{2} \left(x + \frac{2}{x} \right).$$

For $I\coloneqq [1;3]$ we have that $\Phi\colon I\to I$ is a contraction with contraction factor $q=\frac{1}{2}$ and thus the BFT is applicable. That is, there is exactly one fixed point and Newton's iteration converges to this.

2) alternative fixed point iterations to determine a zero of a function: Consider

$$f(x) \coloneqq x^4 - x + \frac{1}{4}$$

in the intervall $D = [0; \frac{1}{2}]$, rewrite problem in fixed point form:

$$x = \Phi(x),$$

where $\Phi(x) = x^4 + \frac{1}{4}$ describes a contraction on D so that the BFT is applicable:

• Φ is contracting: For $x, y \in D$ we have

$$|\Phi(x) - \Phi(y)| \le \max_{\xi \in D} |\Phi'(\xi)| |x - y|,$$

and therefore Φ is contracting with contraction factor $\frac{1}{2}$.

ullet Φ is a self-map: For $x \in D$ it follows that

$$0 \le \Phi(x) \le \frac{1}{16} + \frac{1}{4} = \frac{5}{16} \le \frac{1}{2}$$
.

Hence, using the iteration

$$x_{k+1} = \Phi(x_k),$$

one can find the unique zero of f in D for all initial data $x^{(0)} \in D$.

- The BFT also reveals an interesting property of maps/city plans:
 - X: urban area of Rosenheim
 - put the city map on the floor (not on the boundary of the city area!).
 - obtain mapping $\Phi \colon X \to X$ as follows:
 - ullet each $x \in X$ is uniquely assigned to a point y on the city map.
 - pierce with a needle through this point
 - needle tip meets point $\Phi(x)$ in the urban area!
 - Φ is a self map:
 ✓
 - Φ is contracting (i.e. Lischitz with L < 1): Since the map scale is 1: M > 1 it follows that

$$|\Phi(x) - \Phi(y)| = \frac{1}{M}|x - y|.$$

• BFT implies: $\exists ! x \in X \text{ with } \Phi(x) = x.$

//.

- For given $A \in \mathrm{Gl}(n)$ and $b \in \mathbb{R}^n$, the BFT can be used to construct convergent iteration methods for the numerical solution of SLE Ax = b.
- choose decomposition A = M N, where $M \in Gl(n)$.
- transform Ax = b into a fixed point form:

$$Ax = b \Leftrightarrow Mx = Nx + b$$

$$\Leftrightarrow x = M^{-1}Nx + M^{-1}b$$

or

$$x = Tx + c$$

where
$$T = M^{-1}N$$
 and $c = M^{-1}b$.

• \rightsquigarrow fixed point operator is an affine function

$$\Phi(x) := Tx + c$$
.

- M should be simple concerning calc. of M^{-1} and that the fixed point iteration converges
- the following theorems provide conditions for the convergence

Proposition

Let $\|\cdot\|_*$ be a Norm in $\mathbb{R}^{n\times n}$ that is compatible with a vector norm $\|\cdot\|$. Suppose A=M-N with $A,M\in\mathrm{Gl}(n)$. Further let $T=M^{-1}N$ with

$$||T||_* = ||M^{-1}N||_* < 1.$$

Then the fixed point iteration with fixed point operator $\Phi(x)=Tx+c$ and $c=M^{-1}b$ converges according to the iteration

$$x^{(k+1)} = \Phi(x^{(k)}) = Tx^{(k)} + c \tag{7}$$

for each initial guess $x^{(0)}$ to the solution \hat{x} of Ax = b, i.e. $y = A^{-1}b$.

Proof:

- For $\Phi(x) = Tx + c$ we have $\Phi \colon \mathcal{K} \to \mathcal{K}$, where $\mathcal{K} \colon = \mathbb{R}^n$ is complete. Thus Φ is a self map \checkmark
- ullet Φ is a contraction: By compatibility of the norms:

$$\|\Phi(x) - \Phi(y)\| = \|T(x - y)\| \le \|T\|_* \|x - y\|$$

and because

$$||T||_* = ||M^{-1}N||_* < 1.$$

• The BFT implies: $(x^{(k)})$ defined by $x^{(k+1)} := \Phi(x^{(k)})$ converges for all $x^{(0)} \in \mathcal{K} = \mathbb{R}^n$ to the unique fixed point \hat{x} with

$$\hat{x} = T\hat{x} + c.$$

• We have shown that there exists a unique $x = \hat{x}$ s.t. $x = Tx + c \iff Ax = b$.

There is another convergence criterion for iterative methods of the form discussed:

Proposition

Let A be regular and $T=M^{-1}N$ be as above. Then the method $x^{(k+1)}=Tx^{(k)}+c$ converges for every $x^{(0)}$ to $\hat{x}=A^{-1}b$ if and only if for the spectral radius of T it holds

$$\rho(T) < 1.$$

Furthermore.

$$\max_{x^{(0)}} \limsup_{k \to \infty} \|x^{(k)} - \hat{x}\|^{\frac{1}{k}} = \rho(T).$$

In the case of convergence, i.e. $\rho(T) < 1$, for every $\varepsilon > 0$ and every initial guess $x^{(0)}$ there exists an index $K \in \mathbb{N}$, such that

$$||x^{(k)} - \hat{x}|| \le (\rho(T) + \varepsilon)^k \quad \forall k \ge K.$$

That is, the asymptotic convergence speed is $\rho(T)^k$.

Example (shows that speed of convergence really only applies asymptotically): Consider the invertible matrix

$$A = \begin{pmatrix} 1 & -1 & 0 & \cdots & & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots$$

Letting M := E, we obtain from A = M - N that

$$T = M^{-1}N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}.$$

• T: "shift matrix" because

$$x = (x_1, \dots, x_n)^T \Rightarrow Tx = (x_2, \dots, x_n, 0)^T$$

- Clearly: $\sigma(T) = \{0\} \Rightarrow \rho(T) = 0$
- one would expect a very fast convergence: $\|x^{(k)} \hat{x}\| \leq \left(\underbrace{\rho(T)} + \varepsilon\right)^k$
- But:

• Let $x^{(0)} \coloneqq \hat{x} + e_n$, where \hat{x} is unique solution of

$$Ax = b \Leftrightarrow \Phi(x) = x$$
, where $\Phi(x) = Tx + c$.

Then

$$||x^{(k)} - \hat{x}|| = ||\Phi(x^{(k-1)}) - \Phi(\hat{x})||$$

$$= ||T(x^{(k-1)} - \hat{x})||$$

$$= ||T^k(x^{(0)} - \hat{x})||$$

$$= ||T^k e_n||$$

$$= ||e_{n-k}||$$

$$= 1$$

$$= ||x^{(0)} - \hat{x}||.$$

- Therefore: in the first n-1 steps: no error reduction at all!
- ullet \rightarrow convergence rate in

$$||x^{(k)} - \hat{x}|| \le (\rho(T) + \varepsilon)^k$$

is asymptotic in nature