

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2004-256702
(43)Date of publication of application : 16.09.2004

(51)Int.Cl.

C09D201/00
C09D 5/00
C09D 5/24
C09D 7/12
C09D201/02
H01B 1/00
H01B 1/24

(21)Application number : 2003-049720

(71)Applicant : TOYOBO CO LTD

(22)Date of filing : 26.02.2003

(72)Inventor : AIKAWA YASUSHI
YAMAGUCHI HIROKI

(54) CONDUCTIVE COATING

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a conductive coating which can form a coating film with a significant reduction in surface resistance values even when a reduced amount of conductive fibrous fillers are mixed, thereby excellent in surface smoothness, transparency, economical efficiency and the like.

SOLUTION: The conductive coating is obtained by dissolving or dispersing a conductive resin composition in a solvent. The conductive resin composition comprises (A) a conductive fibrous filler, (B) a conductive resin, and (C) a non-conductive matrix, which is an organic polymer resin comprising at least one group selected from the group consisting of carboxylic acids, sulfonic acids, phosphonic acids, phosphinic acids and salts thereof, wherein (A) is contained in 0.1–30 wt%; (B) is contained in 0.05–89.9 wt%; (C) is contained in 10–99.85 wt%; and the weight ratio of (B)/(A) is 0.5–5.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2004-256702

(P2004-256702A)

(43) 公開日 平成16年9月16日(2004.9.16)

(51) Int.Cl.⁷
C09D 201/00
C09D 5/00
C09D 5/24
C09D 7/12
C09D 201/02

F 1
C09D 201/00
C09D 5/00
C09D 5/24
C09D 7/12
C09D 201/02

テーマコード (参考)
4 J 0 3 8
5 G 3 0 1

審査請求 未請求 請求項の数 7 O L (全 12 頁) 最終頁に続く

(21) 出願番号 特願2003-49720 (P2003-49720)
(22) 出願日 平成15年2月26日 (2003.2.26)

(71) 出願人 000003160
東洋紡績株式会社
大阪府大阪市北区堂島浜2丁目2番8号
(72) 発明者 相川 泰
滋賀県大津市堅田二丁目1番1号 東洋紡
績株式会社総合研究所内
(72) 発明者 山口 裕樹
滋賀県大津市堅田二丁目1番1号 東洋紡
績株式会社総合研究所内

最終頁に続く

(54) 【発明の名称】導電性塗料

(57) 【要約】

【課題】本発明は、導電性繊維状フィラー配合量を少なくしても表面抵抗値の低下が大きく、その効果により表面平滑性、透明性、経済性等に優れた、導電性塗料を提供することを目的とする。

【解決手段】(A) 導電性繊維状フィラー、(B) 導電性樹脂、および(C) カルボン酸、スルホン酸、ホスホン酸、ホスフィン酸、およびそれらの塩よりなる基の群から選ばれた少なくとも一種類の基を含有する有機高分子樹脂である非導電性マトリックスからなる下記組成を満足する導電性樹脂組成物を溶剤に溶解あるいは分散してなることを特徴としている。

(A) が 0.1 ~ 3.0 重量 %、
(B) が 0.05 ~ 8.9.9 重量 %、
(C) が 1.0 ~ 9.9.8 5 重量 %、
但し、(B) / (A) の重量比は 0.5 ~ 5 である。

【選択図】 なし

【特許請求の範囲】

【請求項1】

(A) 導電性繊維状フィラー、(B) 導電性樹脂、および(C) カルボン酸、スルホン酸、ホスホン酸、ホスフィン酸、およびそれらの塩よりなる基の群から選ばれた少なくとも一種類の基を含有する有機高分子樹脂である非導電性マトリックスからなる組成物であって、該組成物の組成が下記を満足する導電性樹脂組成物を溶剤に溶解あるいは分散してなることを特徴とする導電性塗料。

(A) が0.1～30重量%、

(B) が0.05～89.9重量%、

(C) が10～99.85重量%、

但し、(B)/(A)の重量比は0.5～5である。

10

【請求項2】

(A) 導電性繊維状フィラーが、直径が100nm以下かつアスペクト比が5以上のカーボンナノチューブである請求項1に記載の導電性塗料。

【請求項3】

請求項1に記載の導電性樹脂組成物が、厚さ0.1μmの塗膜にしたときの表面抵抗値が $1 \times 10^{-10} \Omega/\square$ 以下である請求項1または2に記載の導電性塗料。

【請求項4】

(B) 導電性樹脂が、ポリアニリン、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリイミダゾール、ポリベンズイミダゾール、ポリチオフェン、ポリベンズチオフェン、ポリアセチレン、ポリピロールおよびこれらの骨格の1個以上の水素原子を置換基で置換したポリマーによる群から選ばれた、一種類もしくは二種類以上の混合物および/又は共重合物である請求項1～3いずれか1項に記載の導電性塗料。

20

【請求項5】

(B) 導電性樹脂が、-OH基、-NH₂基、>NH基、-SH基、-COOX基、-SO₃X基(Xは任意の構造の陽イオン性原子または原子団)、芳香族基(フェニル基、ナフチル基、ビフェニル基、環の炭素数が6以下の縮合環芳香族基)、および左記芳香族基の水素原子の1個以上がハロゲン原子、-OH基、-NH₂基、>NH基、-SH基、-NO₂基、フェニル基、ナフチル基、ビフェニル基よりなる群から選ばれた一種類もしくは二種類以上の置換基で置換された芳香族基、のいずれか一種類もしくは二種類以上の置換基を有することを特徴とする請求項1～4いずれか1項に記載の導電性塗料。

30

【請求項6】

(B) 導電性樹脂が、水溶性および/又は水分散性の樹脂である請求項1～5いずれか1項に記載の導電性塗料。

【請求項7】

電気絶縁性透明基材上に0.1μmの厚さで積層した導電性樹脂組成物の表面抵抗が $1 \times 10^7 \sim 1 \times 10^{10} \Omega/\square$ 、かつ全光線透過率が70%以上で、かつヘーズ値が10%以下であることを特徴とする請求項1～6のいずれか1項に記載の導電性塗料。

【発明の詳細な説明】

【0001】

40

【発明の属する技術分野】

本発明は導電性塗料に関する。より詳しくは、導電性繊維状フィラーと導電性樹脂を複合することにより導電性能において加成性以上の相乗効果を示す導電性樹脂組成物を溶剤に溶解あるいは分散してなる導電性塗料に関する。

【0002】

【従来の技術】

従来より静電気の発生は、日常生活、産業分野を問わず大きな問題であった。近年、コンピューターに代表されるエレクトロニクス産業の急激な進展に伴い、特にICやLSI、液晶表示装置等の半導体や集積回路等がますます高度化、微細化がすすむ中で、その製造工程、輸送工程あるいは実装工程等において、静電気に起因する塵埃吸着による不良品の

50

発生、放電による回路破壊等の問題がクローズアップしてきており、その対策に大きなエネルギーが注力されている。該対策方法の一つに、関連する装置、作業者の作業服、包装袋や容器、キャリアーテープ等の補助材料等の帶電を抑制するために前記した物体の表面に導電性樹脂組成物をその表面に塗布する等の方法で複合する方法が知られている。

【0003】

近年、上記した導電性樹脂組成物の成分として、導電性繊維状フィラー、特にカーボンナノチューブに代表される導電性ナノファイバーが注目されており、特許第3308358号公報、特開平9-115334号公報、特開2001-11344号公報、特開2002-67209号公報、特開2002-194624号公報、特開2002-206054号公報等で開示されている。

10

【0004】

しかしながら、上記した公知の方法はいずれもが、導電性繊維状フィラーと非導電性樹脂との組成物よりなっており、所望の表面抵抗値を得るには、多量の導電性繊維状フィラーを配合する必要があり、塗膜の透明性が低下し、かつ経済性の点でも不利であるという課題を有していた。

【0005】

本発明者等は、先に前記した課題を解決する方法として、導電性繊維状フィラー、導電性樹脂および／又は非導電性マトリックスからなる特定組成の導電性樹脂組成物を溶剤に溶解あるいは分散した塗料を特願2002-365488号公報において提案した。該方法は前記した従来技術に比べ改良されており実用性の高いものであったが、更なる改善の市場要求がある。本発明者らは、上記発明の改良について鋭意検討し非導電性マトリックスに特定の樹脂を用いることにより、導電性特性が大幅に向上することを見出して本発明を完成した。

20

【0006】

【特許文献1】

特許第3308358号公報

【特許文献2】

特開平9-115334号公報

【特許文献3】

特開2001-11344号公報

【特許文献4】

特開2002-67209号公報

【特許文献5】

特開2002-194624号公報

【特許文献6】

特開2002-206054号公報

【特許文献7】

特願2002-365488号公報

【0007】

【発明が解決しようとする課題】

本発明は、上記した従来技術の課題を解決し、導電性繊維状フィラー配合量を少なくしても表面抵抗値の低下が大きく、その効果により表面平滑性、透明性、経済性等に優れた塗膜がえられる導電性塗料を提供することを目的とする。

30

【0008】

【課題を解決するための手段】

本発明の導電性塗料は、(A)導電性繊維状フィラー、(B)導電性樹脂、および(C)カルボン酸、スルホン酸、ホスホン酸、ホスフィン酸、およびそれらの酸の塩よりなる基の群から選ばれた少なくとも一種類の基を含有する有機高分子樹脂である非導電性マトリックスからなる組成物であって、該組成物の組成が下記を満足する導電性樹脂組成物層を溶剤に溶解あるいは分散してなることを特徴としている。

40

50

- (A) が 0. 1 ~ 3 0 重量 %、
 (B) が 0. 0 5 ~ 8 9. 9 重量 %、
 (C) が 1 0 ~ 9 9. 8 5 重量 %、

但し、(B) / (A) の重量比は 0. 5 ~ 5 である。

好ましい実施態様は、(A) 導電性纖維状フィラーが、直径が 1 0 0 n m 以下かつアスペクト比が 5 以上のカーボンナノチューブである。また、好ましい実施態様は、上記導電性樹脂組成物を厚さ 0. 1 μ m の塗膜にしたときの表面抵抗値が $1 \times 1 0^{10} \Omega / \square$ 以下である、また、更に好ましい実施態様は、電気絶縁性透明基材上に 0. 1 μ m の厚さに積層したときの上記導電性樹脂組成物の表面抵抗が $1 \times 1 0^7 \sim 1 \times 1 0^{10} \Omega / \square$ で、かつ全光線透過率が 70 % 以上、かつヘーズ値が 10 % 以下であるような導電性樹脂組成物を溶剤に溶解あるいは分散してなる導電性塗料である。
 10

【0009】

【発明の実施の形態】

本発明において (A) の導電性纖維状フィラーとしては、炭素纖維、金属纖維、(B) 成分または (C) 成分に溶解しない導電性高分子纖維、導電性物質でコーティングされた非導電性纖維等が挙げられ、特に限定されないが、請求項 2 に記載のごとく直径が 1 0 0 n m 以下かつアスペクト比が 5 以上のカーボンナノチューブを用いるのが好ましい実施態様である。該カーボンナノチューブは、製法は特に限定しないが、化学的蒸気堆積法、触媒相成長法、アーク放電法、レーザー蒸発法などにより得られる、直径が 1 0 0 n m 以下かつアスペクト比が 5 以上である多層もしくは単層中空炭素纖維である。
 20

【0010】

単層カーボンナノチューブは一般に多層カーボンナノチューブより細く、均一に分散すれば単位体積当たりの導電経路数をより多く確保できると期待される反面、製法によっては半導体性のナノチューブが多くできる場合があり、その場合には導電性のものを選択的に製造するか選別する必要が生じる。多層カーボンナノチューブは一般に導電性を示すが、層数が多すぎると単位重量当たりの導電経路数が低下するので、直径 1 0 0 n m 以下、好ましくは 8 0 n m 以下、より好ましくは 5 0 n m 以下のカーボンナノチューブが使用される。

【0011】

また、本発明で用いる導電性纖維状フィラーは、直径が可視域の最少波長より小さい場合、例えば直径が 1 0 0 n m 以下の場合、可視光線が吸収もしくは散乱されずに透過するので、2 μ m 以下という薄い膜厚で使用すればこの導電性纖維状フィラーの配合が膜の透明性を実質的に阻害しないので好適である。カーボンナノチューブの一般的な不純物として、触媒残査や触媒担持体およびまたは非晶質炭素などが直径 4 0 0 n m 以上の粒状不純物として含まれる場合があるが、これらの存在は上記の理由から膜の透明性を損なう原因となる。本発明で使用されるカーボンナノチューブは前記粒状不純物の含有量が 2 0 体積 % 以下、好ましくは 1 0 体積 % 以下、より好ましくは 5 体積 % 以下である。
 30

【0012】

本発明の導電性樹脂組成物においては、(A) 導電性纖維状フィラーの量は導電性樹脂組成物の全重量に対して 0. 1 ~ 3 0 重量 % であり、かつ (B) 導電性樹脂は導電性樹脂組成物の全重量に対して 0. 0 5 ~ 8 9. 9 重量 % であり、かつ導電性樹脂と導電性纖維状フィラーの重量比 (B) / (A) は 0. 5 ~ 5 倍の範囲で配合する。また、導電性樹脂と導電性纖維状フィラーの合計量は 0. 1 5 重量 % 以上が好ましく、0. 1 5 重量 % 未満であると導電性樹脂組成物から形成される膜の表面導電性が不十分となる。
 40

【0013】

導電性樹脂組成物は、厚さ 0. 1 μ m の塗膜の表面抵抗値が $1 \times 1 0^{10} \Omega / \square$ 以下であることが好ましく、更に好ましくは $1 \times 1 0^9 \Omega / \square$ 以下である。導電性樹脂組成物の厚さ 0. 1 μ m の塗膜の表面抵抗値を $1 \times 1 0^{10} \Omega / \square$ 以下にすることによって、より経済的に表面抵抗の低い成形物を得ることができる。

【0014】

10

20

30

40

50

導電性繊維状フィラーのより好ましい配合割合は0.5～10重量%で特に好ましくは1～5重量%である。導電性樹脂のより好ましい配合割合は0.5～50重量%、特に好ましくは1～30重量%である。導電性繊維状フィラーおよび導電性樹脂の割合が多すぎると塗膜にしたときの透明性が損なわれたり、極端に薄い塗膜にする必要が生じて膜の品位や均一性、連続生産性の低下を招きやすくなるといった問題が生じる。導電性繊維状フィラーに対して導電性樹脂の配合割合が多すぎると導電性繊維状フィラーの添加効果が薄れ、高い導電性が得られなくなり、少なすぎると導電性繊維状フィラーの分散不良となり透明性、表面平滑性、導電性の面で問題が生じる。

【0015】

本発明で(B)の導電性樹脂としては、ポリアニリン、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリイミダゾール、ポリベンゾイミダゾール、ポリチオフェン、ポリベンズチオフェン、ポリアセチレン、ポリピロールおよびこれらの骨格に置換基を導入したポリマーよりなる群から選ばれた、一種類もしくは二種類以上の混合物および/または共重合物である。導入される置換基としては、請求項5に記載のごとく-OH基、-NH₂基、>NH基、-SH基、-COOX基、-SO₃X基(Xは任意の構造の陽イオン性原子または原子団)、芳香族基(フェニル基、ナフチル基、ビフェニル基、環の数が6以下の縮合環芳香族基)、および左記芳香族基の水素原子の1個以上がハロゲン原子、-OH基、-NH₂基、>NH基、-SH基、-NO₂基、フェニル基、ナフチル基、ビフェニル基よりなる群から選ばれた一種類もしくは二種類以上の置換基で置換された芳香族基、のいずれか一種類もしくは二種類以上の置換基である。ここに示した導電性樹脂はいずれも導電性を示し、極性およびまたは芳香族性の置換基はカーボンナノチューブの分散能力を高める。特に-SO₃X基(Xは任意の構造の陽イオン性原子または原子団)を持つ水溶性ポリアニリンを用いると透明性が高く、かつ表面抵抗の低い導電性樹脂組成物が得られ、かつ水性の塗料が得られる。

【0016】

本発明に用いる導電性樹脂組成物は上記導電性樹脂と導電性繊維状フィラーの他に(C)のカルボン酸、スルホン酸、ホスホン酸、ホスフィン酸、およびそれらの塩よりなる基の群から選ばれた少なくとも一種類の基を含有する有機高分子樹脂である非導電性マトリックス(以下非導電性のバインダーともいう)を併用する必要がある。非導電性のバインダーの配合割合は皮膜全体の重量に対して10～99.85重量%、好ましくは20～80重量%、より好ましくは40～80重量%の量で、少なすぎると皮膜形成性に問題を生じたり、必要な透明性を得るために皮膜厚みが薄くなりすぎて製膜工程上の不安定要因となったり、経済的に不利となる場合がある。多すぎると必要な導電性が得られない場合が生じる。

【0017】

本発明における(C)の非導電性のバインダーは前記した構成を満足すれば限定無く任意であるが、例えば、ポリエステル系、ポリアミド系、ポリウレタン系、ポリアクリル系、ポリビニル系樹脂が挙げられる。また、該バインダー樹脂中のイオン性基の含有量も任意であるが、0.1～50モル%、好ましくは0.2～30モル%、より好ましくは0.5～15モル%であり、少なすぎると本発明の導電性組成物の導電性能が発現せず、多すぎるとバインダー樹脂の造膜性や耐熱性が低下したり経済的に不利になる。ポリエステルフィルムとの接着性が良好な点では、ポリエステル系樹脂、ポリウレタン系樹脂が好ましい。特にスルホン酸ナトリウム基を含有した水分散性のポリエステル樹脂が好ましい。

【0018】

本発明においては、上記した(C)の非導電性のバインダーは熱可塑性、熱硬化性、或いは紫外線、電子線などの放射線硬化性のいずれでもよい。また、ビニル系樹脂(ポリ塩化ビニル、ポリ酢酸ビニル、ポリアクリル酸、ポリビニルアクリレート、ポリメタクリレート、ポリメチルメタクリレート、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレン-ビニルアルコール共重合体等)、ポリエステル、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート、メラミン樹脂、ポリブチラール、ポリアミド、ポリイミ

10

20

30

40

50

ド、ポリスルホン、ポリフェニレンオキサイド、セルロース系ポリマー（酢酸セルロース等）、シリコーン系ポリマーなどの有機ポリマー、ならびにこれらのポリマーの誘導体、共重合体、ブレンドおよび前駆物（モノマー、オリゴマー）を併用しても構わない。

【0019】

本発明においては、必要に応じシリカ、酸化錫、酸化アルミニウム、酸化ジルコニア等の金属酸化物のゾル、或いは無機ポリマーの前駆体となる加水分解性または熱分解性の有機燐化合物および有機ボロン化合物、ならびに有機シラン化合物、有機チタン化合物、有機ジルコニア化合物、有機鉛化合物、有機アルカリ土類金属化合物などの有機金属化合物等の無機のバインダーを併用することもできる。

【0020】

本発明に用いる導電性樹脂組成物を溶解あるいは分散する溶剤としては、一般的なトルエン、メチルエチルケトンなどの極性が小さい有機溶剤を用いても構わないが、極性溶剤および水が挙げられる。極性溶剤としては、アルコール系、エステル系、ケトン系、アミド系などの溶剤を挙げることができる。また、極性溶剤の代わりにアルキルベンゼンスルホン酸ソーダ、アルキルナフタレンスルホン酸ソーダ、アルキルスルホン酸ソーダ、アルキルエーテルスルホン酸ソーダなどの界面活性剤を配合した水を用いることもできる。有機溶剤のみに溶解あるいは分散してもかまわないが、(B) 導電性樹脂および(C) 非導電性マトリックスとして水溶性または水分散性の樹脂を用いて水性の塗料にするのが好ましい。本実施態様により作業安全性、対環境性、廃棄物の処理性・安全性などが確保できる。

10

【0021】

本発明に用いる導電性樹脂組成物は、必要に応じて、無機粒子、有機粒子、着色剤、接着性改善剤、濡れ性向上剤または濡れ性抑制剤、レベリング剤、滑剤、耐候性向上剤、耐光性向上剤、耐酸化性向上剤、分散剤（界面活性剤、カップリング剤）、架橋剤、安定剤、沈降防止剤、電荷調整剤、等の添加剤を配合することができ、それらの種類、量については特に制限はない。

20

【0022】

本発明に用いる導電性樹脂組成物は、上記成分を慣用の混合分散機（例えばボールミル、サンドミル、ロールミル、アトライター、デゾルバー、ペイントシェーカー、押出混合機、ホモジナイザー、超音波分散機等）を用いて混合することにより製造できる。

30

【0023】

本発明の導電性塗料を塗布する対象の基材は特に制限されないが、ガラス、透明プラスチックのように絶縁性で透明なものが好ましい。塗布後、必要により加熱して塗膜の乾燥ないしは焼付（硬化）を行うが、加熱条件は、バインダー種に応じて適当に設定する。バインダーが光または放射線硬化性の場合には、加熱硬化ではなく、塗布後直ちに塗膜に光または放射線を照射することにより塗膜を硬化させてもよく、放射線としては電子線、紫外線、X線、ガンマ線等などのイオン化性放射線が使用でき、照射線量はバインダー種と要求特性に応じて決定する。

【0024】

本発明の導電性塗料から得られる導電性膜の膜厚は特に制限されないが、通常は0.01～2μm、好ましくは0.02～1.5μm、より好ましくは0.05～1μmである。

40

【0025】

請求項7に記載のごとく、電気絶縁性透明基材上に0.1μmの厚さに積層した本発明に用いる導電性樹脂組成物は、表面抵抗が $1 \times 10^7 \sim 1 \times 10^{10} \Omega/\square$ 、かつ全光線透過率が70%以上、かつヘーズ値が10%以下であることが好ましい実施態様のひとつである。より好ましくは、表面抵抗が $1 \times 10^7 \sim 1 \times 10^9 \Omega/\square$ 、全光線透過率が80%以上であり、ヘーズ値は5%以下である。この範囲にすることによって、透明性と帯電防止性の両特性について厳しい要求がある包装袋や容器、キャリアーテープ等の補助材料へ好適に使用することができる。

【0026】

50

上記の値は、電気絶縁性透明基材として厚さ $188 \mu\text{m}$ のポリエチレンテレフタレート（P E T）フィルム（東洋紡績（株）製 A 4100）を使用し、易接着面に本発明の導電性塗料を塗布、乾燥した後、 17°C 、 55% R H の環境下で 24 時間放置後、測定した値である。上記基材のみで測定した値は、表面抵抗が $1 \times 10^{13} \Omega/\square$ 以上（測定装置上限）、全光線透過率 92%、ヘーズ値は 0.9% である。

【0027】

本発明の導電性塗料を塗布乾燥した透明導電膜は、導電性繊維状フィラー同士の物理的接觸を必要とせず、導電性樹脂を用いて電気伝導経路を確保しつつ導電性繊維状フィラーの均一分散を実現する相乗効果により、低い表面抵抗値（即ち、高い導電性）を示す。例えば、固形分で $0.1 \mu\text{m}$ の厚さの膜の場合、 $1 \times 10^{10} \Omega/\square$ 以下である。

10

【0028】

【実施例】

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。

導電性塗料の性能は、導電性塗料を厚さ $188 \mu\text{m}$ のポリエチレンテレフタレート（P E T）フィルム（東洋紡績（株）製 A 4100）に塗布、乾燥した後、 17°C 、 55% R H の環境下で 24 時間放置後、測定し評価した。上記基材のみで測定した値は、表面抵抗が $1 \times 10^{13} \Omega/\square$ 以上（測定装置上限）、全光線透過率 92%、ヘーズ値は 0.9% である。

【0029】

20

(1) 表面抵抗値

表面抵抗値は三菱油化製 H i r e s t a 表面抵抗測定器 Model HT-210（二点式）で印加電圧 500 V、 17°C 、 55% R H の条件下で測定した。

(2) 全光線透過率およびヘーズ値（曇度）

全光線透過率およびヘーズ値（曇度）は、日本電色社 Haze Meter N D H 2000 を用い、コーティングフィルムの塗布面側から光を入射させて測定した異なる二カ所の測定値の平均値とした。

【0030】

(3) フィルム厚さ

フィルム膜厚測定はピーコックデジタルゲージ（O k a z a k i M F G 社製モデル D-10）を用いて 5 点平均法で求めた。

(4) コート膜厚

コート膜厚はコート液の固形分濃度とバーコーターの公称 wet 塗布量から塗布層の比重を 1.0 g/cm^3 として計算により求めた。

【0031】

材料は以下のものを用いた。

(1) 導電性繊維状フィラー

カーボンナノチューブは平均直径が 80 nm 、内部の中空部分の内径が平均 20 nm 、平均層数が約 10 層、長さ分布の中心値が $1 \mu\text{m}$ 以上の多層カーボンナノチューブを使用した。直径 400 nm 以上の粒状不純物の含有量は 15 体積 % であった。

40

【0032】

直径 400 nm 以上の粒状不純物の含有量 (V) はカーボンナノチューブサンプルの走査型電子顕微鏡（日立製作所製 S-2500 型 SEM）の一万倍の写真から繊維状物の太さ ($2r$) と写っている面積 (S_t) および直径 400 nm 以上の粒状物の直径 ($2R$) を読みとり、それぞれ円柱状および球状であるとして体積に換算し (V_t 、 V_s)、次式にて求めた。

$$\text{粒状不純物の含有量 } V = V_s / (V_t + V_s)$$

$V_t = \sum [\pi r^2 \times (S_t / 2r)]$ 写っている繊維状物全てについて総和をとる。

$V_s = \sum [4 \pi R^3 / 3]$ 写っている粒状物全てについて総和をとる。

【0033】

50

(2) (B) 導電性樹脂

以下の実施例で導電性樹脂として用いたポリアニリンとは一般式(化1)で表わされるものである。

【化1】

10

(式(1)中、R1、R2およびR3は水素原子または炭素数1~4のアルキル基、xは50~2000、好ましくは100~1500の整数を示す。)

【0034】

一般式(化1)で表わされる化合物は、J. Am. Chem. Soc., 1991, 113, 2665~2666に記載の方法に従い製造することができる。本発明が適応しうる化合物は、スルホン酸基が芳香環に対して1/10~4/5の割合、好ましくは2/5~3/5の割合で導入させたものである。以下の実施例では、芳香環に対してスルホン酸基が1/2の割合で導入されたx=400のポリアニリンの5重量%水溶液(三菱レーヨン製「アクアパス(R)」)を使用した。

20

【0035】

(3) (C) 非導電性のバインダー

温度計、攪拌機を備えたオートクレーブ中に、

ジメチルテレフタレート	9.1重量部、
ジメチルイソフタレート	8.9重量部、
5-ナトリウムスルホイソフタル酸ジメチル	2.1重量部、
エチレングリコール	8.9重量部、
ネオペンチルグリコール	8.0重量部、
テトラブトキシチタネット	0.1重量部、
酢酸ナトリウム	0.3重量部、

30

を仕込み180~230℃で120分間加熱してエステル交換反応を行った。ついで反応系を250℃まで昇温し、系の圧力1~10mmHgとして60分間反応を続けた結果、共重合ポリエステル樹脂(C1)を得た。得られた共重合ポリエステル樹脂(C1)はガラス転移温度62℃、組成はNMR分析の結果、

40

酸成分として、

テレフタル酸	4.7mol%
イソフタル酸	4.6mol%
5-ナトリウムスルホイソフタル酸	7mol%

40

アルコール成分として、

エチレングリコール	5.0mol%
ネオペンチルグリコール	5.0mol%

40

であり、スルホン酸ナトリウム塩基を含有する共重合ポリエステル(C1)を得た。この共重合ポリエステル樹脂(C1)300重量部とn-ブチルセロソルブ150重量部とを加熱攪拌して粘ちような溶液とし、更に攪拌しつつ水550重量部を徐々に加えて、固形分30重量%の均一な淡白色の水分散液(C)を得た。

50

【0036】

(4) 塗布用基材

コーティング基材には易接着アンカーコート剤が塗布された厚さ $188\mu\text{m}$ のポリエチレンテレフタレート(PET)フィルム(東洋紡績(株)製A4100)を使用し、易接着面に積層した。

【0037】

導電性塗料の調製は以下の条件で行った。

(超音波分散処理)

超音波分散処理は、日本精機製作所製の超音波分散機US-300Tを用い、OUTPU
T ADJ. = 9、TUNING = 3, $300 \pm 20\mu\text{A}$ の条件で、分散液の容器の周囲
を氷冷しながら2時間処理した。カーボンナノチューブの分散能力が十分な樹脂を用いる
と、数日～数週間経過しても沈降物や層分離の見られない均一な分散液が得られた。
10

(攪拌)

塗料の攪拌は、キーエンス社製Hybrid Mixer HM-500を用い、室温下
で攪拌2分、脱泡20秒の条件で行った。

【0038】

(実施例1)

カーボンナノチューブ0.5重量部をポリアニリンの5重量%水溶液32重量部に室温で
加え、超音波分散処理し、共重合ポリエステル樹脂の30重量%分散液(C)26.3
重量部と水940重量部を加えて攪拌し、実施例1の導電性塗料を得た。この液をバーコ
ーターWB#5(公称wet塗布量=10g/m²)で易接着アンカーコート剤が塗布さ
れた厚さ $188\mu\text{m}$ のポリエチレンテレフタレート(PET)フィルム(東洋紡績(株)
製A4100)の易接着面に塗布し、120℃で2分間熱風乾燥機で乾燥してコートフィ
ルムを得た。得られたフィルムの評価結果を表1に示した。
20

【0039】

(実施例2)

実施例1の方法において導電性樹脂組成物の組成を表1に示すように変更する以外は、実
施例1と同様の方法にて実施例2のコートフィルムを得た。得られたフィルムの評価結果
を表1に示した。
30

【0040】

(比較例1)

カーボンナノチューブを添加しない以外は、実施例1と同様にして比較例1のコートフィ
ルムを得た。得られたコートフィルムの評価結果を表1に示した。

(比較例2)

実施例1の方法において、共重合ポリエステル樹脂に替えPVA樹脂を用いる以外は、実
施例1と同様にして比較例2のコートフィルムを得た。得られたコートフィルムの評価結
果を表1に示した。
40

【0041】

(比較例3)

実施例1の方法において、共重合ポリエステル樹脂の配合を取り止める以外は、実施例1
と同様にして比較例3のコートフィルムを得た。得られたコートフィルムの評価結果を表
1に示した。

【0042】

(比較例4、5)

実施例1の方法において導電性樹脂組成物の組成を表1に示すように変更する以外は、実
施例1と同様の方法にて比較例4、5のコートフィルムを得た。得られたコートフィルム
の評価結果を表1に示した。

【0043】

【表1】

	塗料中の導電性組成物組成(重量%)			(B) / (A) 組成比 (-)	表面抵抗 (Ω/□)	全光線 透過率 (%)	ベース 値 (%)	コート 膜厚 (μm)
	(A)	(B)	(C)					
カーボン ナノ チュー ブ	ポリ アニリン	スルホン酸Na基 含有 ポリイミド	PVA					
実施例1	5	16	79	0	3.2	3×10 ⁸	90	1.8
実施例2	9	30	61	0	3.3	5×10 ⁷	80	4.2
比較例1	0	16	84	0	∞	2×10 ⁹	91	1.6
比較例2	5	16	0	79	3.2	2×10 ¹¹	90	1.2
比較例3	5	16	0	0	3.2	ハジキでコート不可		0.1
比較例4	0.05	0.05	99.9	0	1.0	1×10 ¹³ 以上	92	0.9
比較例5	25	70	5	0	2.8	8×10 ⁶	20	30

【発明の効果】

以上のとおり、本発明は特許請求項の範囲に記載のとおりの構成を採用することにより、本発明の導電性塗料からは導電性および透明性の優れた塗膜を得ることができる。本発明の導電性塗料を非導電性の成形物の表面に薄膜として塗布することにより、表面抵抗値が低く、かつ透明性の高い物品を提供できる。

フロントページの続き

(51)Int.C1.⁷

F I

テーマコード(参考)

H O 1 B 1/00
H O 1 B 1/24

H O 1 B 1/00
H O 1 B 1/24

H
A

F ターム(参考) 4J038 CD001 CD002 CF021 CF022 CG001 CG002 CN001 CN002 DC011 DC012
DD001 DD002 DG001 DG002 DH001 DH002 DJ001 DJ002 DJ011 DJ012
DK001 DK002 GA01 GA03 GA09 GA13 HA036 KA08 KA12 MA08
MA10 NA20
5G301 DA01 DA18 DA28 DA42 DD02