

UiO **Matematisk institutt**

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2022 Chapter 6 (and 5)

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Last time

- Stochastic gradient decent
 - What it is
 - Minibatch is one type of randomness
 - Proof of convergence
- Stochastic gradient decent
 - Neural nets, back propagation

- Spatial model $\widehat{K}L(f_{\theta},g) = C - \frac{1}{\binom{n}{m}} \sum_{k=1}^{\binom{n}{m}} \log(f_{\theta}(y_k|s_k))$

(https://www.researchgate.net/publication/259527954_A_Resampling-Based_Stochastic_Approximation_Method_for_Analysis_of_Large_Geostatistical_Data)

- Feed back
 - Hard to get the lecture

STK 4051/9051

- Optimization ~ Maximum likelihood
 - Continuous space (Newton-like methods, SGD,++)
 - Discrete/combinatorial
 - Missing/hidden variables (EM)
- Integration ~ Decision making Bayesian inference
 - Direct methods low dimensions
 - Sequential Monte Carlo
 - Variance reduction methods
 - Markov chain Monte Carlo
- Additional topics for methods computation
 - Variational inference
 - STAN

Chapter 5, 1D integration

- Newton-Cotes Quadrature
 - Riemann rule
 - Trapezoidal rule
 - Simpsons rule
 - Random Sampling
 - Efficient in 1D

- $egin{aligned} \left| \int_a^b f(x) \, dx A_{ ext{right}}
 ight| & \leq rac{M_1(b-a)^2}{2n}, \ \left| \int_a^b f(x) \, dx A_{ ext{trap}}
 ight| & \leq rac{M_2(b-a)^3}{12n^2}, \ \left| \int_a^b f(x) \, dx A_{ ext{S}}
 ight| & \leq rac{M_4(b-a)^5}{180 \, n^4} \ \left| \int_a^b f(x) \, dx A_{ ext{T}}
 ight| & \leq rac{M(b-a)}{\sqrt{n}} \end{aligned}$
- Romberg integration (stable)
- Gauss quadrature (popular)
- Higher order approximations is often bounded by the maximum of the derivative of the corresponding order
- Software for exact integration
 - Mathematica & Maple

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Integration in Rd (Fubini-style)

$$\hat{I}(S) = \sum v_k \hat{I}(x_2^k) = \sum v_k (I(x_2^k) + E_1(x_2^k))$$

$$= I(S) + E_2 + \sum v_k E_1(x_2^k)$$

The error is bounded by the integration error in each direction, but the number of nodes along each direction is \sqrt{n}

$$I(S) = \iint_{S} f(x_1, x_2) dx_1 dx_2$$
$$= \int_{c}^{d} I(x_2) dx_2$$
$$I(x_2) = \int_{a}^{b} f(x_1, x_2) dx_1$$

Curse of dimension for Quadrature formulas:

1D integral has convergence order: 2(x-r)

$$O(n^{-r})$$

the Fubini integral in R^d has order:

$$O(n^{-r/d})$$

Descision making under uncertainty

In a project where the outcome is uncertain.
 How can we select the best solution?

- Quantify dominant uncertainty sources
- Propose different solutions «descisions»
- Simulate the outcome for all «solutions»
- Compare the distribution of outcomes for a quantity (e.g. NPV = net present value)

Buy or rent facilities for a project

- Buy and operate
 - CAPEX: 600 (50) MNOK
 - OPEX: 8 (4) MNOK/week
 - Revenue: 15 (5) MNOK/week in 2 years
- Rent
 - CAPEX: 0 MNOK
 - OPEX: 14 MNOK/week
 - Revenue: 15 (4) MNOK/week in 2 years

Total Value = \int revenue(t) - OPEX(t)dt - CAPEX

Net Present Value = $\int [revenue(t) - OPEX(t)]e^{-tv} dt - CAPEX$

- But income, CAPEX and OPEX are random variables
- How would you evaluate this?

Evaluation metrics?

210 dimensional integral
Integral over time and
209 random variables
(104 weeks revenue & OPEX+ CAPEX)

- Expected NPV ? (93 vs 99)
- Expected Total Value? (128 vs 104)
- The probability not earning the CAPEX? (5%,0.5%)

Full distribution of NPV

Accumulated profit cases

Bayesian approach

- Likelihood $f(\mathbf{y}|\theta)$
- Introduce a prior $p(\theta)$ describing knowledge about θ prior to data
- Bayes theorem:

$$f(\theta|\mathbf{y}) = \frac{f(\theta)f(\mathbf{y}|\theta)}{f(\mathbf{y})}$$
 $f(\mathbf{y}) = \int_{\theta} f(\theta)f(\mathbf{y}|\theta)d\theta$

- Bayesian paradigm: All relevant information about θ is contained in the posterior distribution $p(\theta|\mathbf{y})$
 - $\hat{\theta}_{post} = E[\theta|\mathbf{y}] = \int_{\theta} \theta p(\theta|\mathbf{y}) d\theta$
 - Credibility interval (one-dimensional): $\alpha = \Pr(a < \theta < b | \mathbf{y}) = \int_a^b p(\theta | \mathbf{y}) d\theta$
- Posterior: Updated knowledge based on both prior and data
- Numerical aspect: Bayesian approach change optimization to integration
- Many other integration problems both inside and outside statistics, will focus on

$$\mu = \int_{\mathbf{x}} h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

• In many problems: **x** is high-dimensional

Image analysis – spatial structure

- Expect some smoothness in class-structure
- Markov Random field/Potts model:

$$\Pr(\mathbf{C}) = \Pr(C_{11},, C_{n_1 n_2})$$

$$= \frac{1}{Z} e^{-\beta \sum_{||(i,j)-(i'j')||=1} I(C_{ij} \neq C_{i'j'})}$$

Now interested in

$$\Pr(\mathbf{C}|\mathbf{y}) = \frac{\Pr(\mathbf{C}) \prod_{ij} f(y_{ij}|C_{ij})}{\sum_{\mathbf{C}'} \Pr(\mathbf{C}') \prod_{ij} f(y_{ij}|C'_{ij})}$$

- The sum in the denominator contains Kⁿ terms,
 - K = number of class
 - n = number of pixels.
- Discrete type of "integration"

UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Monte Carlo method

• Aim (following notation from book):

$$\mu = E^{f(\mathbf{X})}[h(\mathbf{X})] = \begin{cases} \int_{\mathbf{X}} h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} & \mathbf{x} \text{ continuous} \\ \sum_{\mathbf{X}} h(\mathbf{x}) f(\mathbf{x}) & \mathbf{x} \text{ discrete} \end{cases}$$

- Monte Carlo:
 - \bigcirc Simulate $\mathbf{X}_i \sim f(\mathbf{x}), i = 1, ..., n$
 - 2 Approximate μ by

$$\hat{\mu}_{MC} = \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}_i)$$

- Properties:

 - Unbiased E[μ̂_{MC}] = μ
 If X₁, ..., X_n are independent

 - Variance: $\operatorname{var}[\hat{\mu}_{MC}] = \frac{1}{n}\operatorname{var}[h(\mathbf{X})]$ Consistent: $\hat{\mu}_{MC} \to \mu$ as $n \to \infty$ if $\operatorname{var}[h(\mathbf{X})] < \infty$
 - Estimate of variance:

$$\widehat{\text{var}}[\hat{\mu}_{MC}] = \frac{1}{n-1} \sum_{i=1}^{n} (h(\mathbf{x}_i) - \hat{\mu}_{MC})^2$$

• Main problem: How to simulate $\mathbf{X}_i \sim f(\cdot)$

The Fubini integral in Rd has order:

$$O(n^{-r/d})$$

Monte Carlo method in Rd has order:

$$O(n^{-1/2})$$

- 1) Independent of d
- 2) Does not depend on derivatives

Simulation techniques

- Exact methods
 - Inversion/transformation methods
 - Rejection sampling
- Approximate methods
 - Sampling importance resampling
 - Sequential Monte Carlo
 - Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
 - Importance sampling
 - Antithetic sampling
 - Control variates
 - Rao-blackwellization
 - Common random numbers

Random Number Generator (RNG) => uniform

- Physical methods (HRNG/TRNG) (Hardware-/True-)
 - based on microscopic phenomena,
 e.g. thermal noise, photoelectric effect
 - Still need to correct for bias/sequence correlation
- Computational methods, (PRNG, Pseudo-)
 - linear congruential generator
 - $X_{n+1} = (aX_n + b) \mod m$
 - Initialize
 - Set seed (reproducible randomness)
 - Using the computer's real time clock
 - Mersenne Twister (Mersenne prime 2¹⁹⁹³⁷–1)
 - Default many programs
 - Good enough for our use
 - Cryptographically secure approaches (CSPRNG)

The inversion and the transformation methods

• Assume continuous distribution, density f(x), CDF

$$F(x) = \int_{-\infty}^{x} f(u) du$$

- Assume *U* ∼ Unif[0, 1]
- Define $X = F^{-1}(U)$:

$$Pr(X \le x) = Pr(F^{-1}(U) \le x)$$
$$= Pr(U \le F(x)) = F(x)$$

showing that $X \sim f(x)$!

- Assumes possible to generate U (good routines available)
- Assumes $F^{-1}(U)$ available
- Only applicable for univariate distributions
- Special case of transformation methods: X = g(U)
- Table 6.1: List of how to simulate most common distributions.

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Table 6.1

TABLE 6.1 Some methods for generating a random variable *X* from familiar distributions.

Distribution	Method
Uniform	See [195, 227, 383, 538, 539, 557]. For $X \sim \text{Unif}(a, b)$; draw $U \sim \text{Unif}(0, 1)$; then let $X = a + (b - a)U$.
Normal(μ , σ^2) and Lognormal(μ , σ^2)	Draw U_1 , $U_2 \sim \text{i.i.d. Unif}(0, 1)$; then $X_1 = \mu + \sigma \sqrt{-2 \log U_1} \cos\{2\pi U_2\}$ and $X_2 = \mu + \sigma \sqrt{-2 \log U_1} \sin\{2\pi U_2\}$ are independent $N(\mu, \sigma^2)$. If $X \sim N(\mu, \sigma^2)$ then $\exp\{X\} \sim \text{Lognormal}(\mu, \sigma^2)$.
Multivariate $N(\mu, \Sigma)$	Generate standard multivariate normal vector, Y, coordinatewise; then $X = \Sigma^{-1/2}Y + \mu$.
Cauchy(α , β)	Draw $U \sim \text{Unif}(0, 1)$; then $X = \alpha + \beta \tan\{\pi(U - \frac{1}{2})\}$.
Exponential(λ)	Draw $U \sim \text{Unif}(0, 1)$; then $X = -(\log U)/\lambda$.
$Poisson(\lambda)$	Draw $U_1, U_2, \ldots \sim i.i.d$. Unif $(0, 1)$; then $X = j-1$, where j is the lowest index for which $\prod_{i=1}^{j} U_i < e^{-\lambda}$.
$Gamma(r, \lambda)$	See Example 6.1, references, or for integer r , $X = -(1/\lambda) \sum_{i=1}^{r} \log U_i$ for $U_1, \ldots, U_r \sim \text{i.i.d. Unif}(0, 1)$.
Chi-square ($df = k$)	Draw $Y_1,, Y_k \sim \text{i.i.d. } N(0, 1)$, then $X = \sum_{i=1}^k Y_i^2$; or draw $X \sim \text{Gamma}(k/2, \frac{1}{2})$.
Student's t (df = k) and $F_{k,m}$ distribution	Draw $Y \sim N(0, 1)$, $Z \sim \chi_k^2$, $W \sim \chi_m^2$ independently, then $X = Y/\sqrt{Z/k}$ has the t distribution and $F = (Z/k)/(W/m)$ has the F distribution.
Beta(a, b)	Draw $Y \sim \text{Gamma}(a, 1)$ and $Z \sim \text{Gamma}(b, 1)$ independently; then $X = Y/(Y + Z)$.
Bernoulli (p) and Binomial (n, p)	Draw $U \sim \text{Unif}(0, 1)$; then $X = 1_{\{U < p\}}$ is Bernoulli(p). The sum of n independent Bernoulli(p) draws has a Binomial(n, p) distribution.
Negative Binomial(r, p)	Draw $U_1, \ldots, U_r \sim \text{i.i.d. Unif}(0, 1)$; then $X = \sum_{i=1}^r \lfloor (\log U_i) / \log\{1 - p\} \rfloor$, and $\lfloor \cdot \rfloor$ means greatest integer.
Multinomial $(1, (p_1, \ldots, p_k))$	Partition [0, 1] into k segments so the i th segment has length p_i . Draw $U \sim \text{Unif}(0, 1)$; then let X equal the index of the segme into which U falls. Tally such draws for Multinomial $(n, (p_1, \ldots, p_k))$.
$Dirichlet(\alpha_1, \ldots, \alpha_k)$	Draw independent $Y_i \sim \text{Gamma}(\alpha_i, 1)$ for $i = 1,, k$; then $X^T = \left(Y_1 / \sum_{i=1}^k Y_i,, Y_k / \sum_{i=1}^k Y_i\right)$.

Det matematisk-naturvitenskapelige fakultet

Rejection sampling

Common «set up»

- Difficult to simulate from f(x) directly
- Easy to simulate from $g(x) \approx f(x)$.
- Assume $\exists \alpha \leq 1$ such that for all x: $f(x) \leq g(x)/\alpha \equiv e(x)$ (the envelope)
- Algorithm:
 - **1** Sample $Y \sim g(\cdot)$.
 - 2 Sample $U \sim \text{Unif}(0, 1)$.
 - If $U \le f(Y)/e(Y)$, put X = Y, otherwise return to step 1
- Distribution of X:

$$\Pr(X \le x) = \Pr(Y \le x | U \le \frac{f(Y)}{e(Y)}) = \frac{\Pr(Y \le x, U \le \frac{f(Y)}{e(Y)})}{\Pr(U \le \frac{f(Y)}{e(Y)})}$$

$$= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)/e(y)} dug(y)dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y)/e(y)} dug(y)dy} = \frac{\int_{-\infty}^{x} \frac{f(y)}{e(y)}g(y)dy}{\int_{-\infty}^{\infty} \frac{f(y)}{e(y)}g(y)dy}$$

$$= \int_{-\infty}^{x} f(y)dy = F(x)$$

- $\alpha = \Pr(U \leq \frac{f(Y)}{e(Y)})$ is the probability for acceptance
- α^{-1} is the expected number of iterations.

Rejection sampling using an envelope

- U ~ Unif(0, 1) and accept if $U \le f(Y)/e(Y)$ is equivalent to
- ② $U \sim \text{Unif}(0, e(Y))$ and accept if $U \leq f(Y)$

1 U~Unif(0, 1) and accept if $U \le \alpha f(Y)/g(Y)$

Example rejection sampling

Aim: Simulate from Beta distribution:

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

- 2 arg max_x $f(x) = \frac{\alpha 1}{\alpha + \beta 2} = x^*$
- **3** Define g(x) = 1; 0 < x < 1. Then $g(x) \ge f(x)/f(x^*)$

- Accept if $U \leq f(x)/f(x^*)$
- beta_rej.R

What if the normalizing constant is unknown

- Assume $f(x) = c \cdot q(x)$, c unknown
- If we can find, $\tilde{\alpha}$ such that:

$$- g(x) \ge \tilde{\alpha}q(x) = \frac{\tilde{\alpha}}{c}f(x) = \alpha f(x) \qquad \alpha = \frac{\tilde{\alpha}}{c}$$

Then:

$$U \le \frac{\alpha f(Y)}{g(Y)} \iff U \le \frac{\tilde{\alpha}q(Y)}{g(Y)}$$

- We need not know c!
- True acceptance rate is unknown: $\frac{\tilde{\alpha}}{c}$
- If we can estimate acceptance rate, we can estimate c

Squeezed rejection sampling

- Assume
 - $\exists \alpha \leq 1$ and $g(\cdot)$ such that for all x: $f(x) \leq g(x)/\alpha \equiv e(x)$
 - $\exists s(x) \leq f(x)$ which is easy to evaluate
- Note: $U \le s(Y)/e(Y)$ imply $U \le f(Y)/e(Y)$

- Algorithm:
 - **1** Sample $Y \sim g(\cdot)$.
 - 2 Sample $U \sim \text{Unif}(0, 1)$.
 - If $U \leq s(Y)/e(Y)$, accept X = Y
 - 4 If U > s(Y)/e(Y), but $U \le f(Y)/e(Y)$, accept X = Y
 - If U > f(Y)/e(Y), go to step 1

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Adaptive rejection sampling

- Main challenge: Construct suitable envelope
- Assume now $I(x) = \log f(x)$ is concave and differentiable
- Choose initial points $x_1, x_2, ..., x_k$ such that $l'(x_1) > 0, l'(x_k) < 0$
- $e_k^*(x)$: Piecewise linear upper hull of I(x)

concave:

- 1) Never above the tangent in any point (super-gradient)
- 2) Never below the line connecting two points

Proposal distribution:

$$g(x) = c \exp\{\ell(x_i) + \ell'(x_i)(x - x_i)\}$$
 for $x \in [z_{i-1}, z_i]$

$$z_i = \frac{\ell(x_{i+1}) - \ell(x_i) - x_{i+1}\ell'(x_{i+1}) + x_i\ell'(x_i)}{\ell'(x_i) - \ell'(x_{i+1})}$$

Possible to calculate c and also easily find G(x) and $G^{-1}(x)$

Also possible to define squeezing function

$$s_k^*(x) = \frac{(x_{i+1} - x)\ell(x_i) + (x - x_i)\ell(x_{i+1})}{x_{i+1} - x_i}$$

22

Adaptive rejection sampling

- Start with $x_1, ..., x_k$ and calculate $e_k(x), s_k(x), g_k(x)$
- ② Generate $x \sim g(x)$
- If $U \leq s_k(Y)/e_k(Y)$, accept X = Y, goto step 6
- - \bullet accept X = Y
 - 2 Add X to $\{x_1, ..., x_k\}$ and update to $e_{k+1}(x)$, $s_{k+1}(x)$, $g_{k+1}(x)$ and go to step 6
- If U > f(Y)/e(Y), reject and go to step 2
- If not enough samples, return to step 2

Example: ars.R

library(ars)

Importance sampling (approximate)

Rewriting

$$\mu = \int h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x} = \frac{\int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x}}{\int \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x}}$$

- Assume $X_1, ..., X_n$ iid from $g(\mathbf{x})$. (We know how to sample from $g(\mathbf{x})$)
- Two alternative estimates

$$\hat{\mu}_{IS}^* = \frac{1}{n} \sum_{i=1}^n h(\mathbf{X}_i) w^*(\mathbf{X}_i), \quad w^*(X_i) = \frac{f(\mathbf{X}_i)}{g(\mathbf{X}_i)}$$

$$\hat{\mu}_{IS} = \sum_{i=1}^{n} h(\mathbf{X}_i) w(\mathbf{X}_i), \quad w(\mathbf{X}_i) = \frac{w^*(\mathbf{X}_i)}{\sum_{j=1}^{n} w^*(\mathbf{X}_j)}$$

- $w^*(\mathbf{X}_i)$ called importance weights
- $w(X_i)$ called the normalized importance weights

What can go wrong???

- Monte Carlo integration:
 - $-E_f(h(X)) < \infty$ (this is the number we want)
 - $E_f(h(X)^2)$ < ∞ (this is additional requirement)
- Importance sampling:

$$-E_g(h(X)w^*(X)) = E_f(h(X)) < \infty \text{ (ok } \odot)$$

$$- E_g((h(X)w^*(X))^2) = E_f(h(X)^2w^*(X)) < \infty \ (??)$$

 $w^*(X) = \frac{f(X)}{g(X)}$ in rejection sampling this is bounded by α^{-1}

Importance sampling version 1

$$\hat{\mu}_{IS}^* = \frac{1}{n} \sum_{i=1}^n h(\mathbf{X}_i) w(\mathbf{X}_i), \quad w^*(\mathbf{X}_i) = \frac{f(\mathbf{X}_i)}{g(\mathbf{X}_i)}$$

$$E[w^*(\mathbf{X}_i)] = \int \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x} = \int f(\mathbf{x}) d\mathbf{x} = 1$$

$$E[\hat{\mu}_{IS}^*] = \int h(\mathbf{x}) \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x} = \int h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \mu$$

$$\operatorname{Var}[\hat{\mu}_{IS}^*] = \frac{1}{n} \operatorname{Var}^g[h(\mathbf{X}) w^*(\mathbf{X})]$$

- Can be unstable if $g(\mathbf{x})$ small when $f(\mathbf{x})$ large
- $g(\mathbf{x})$ should have heavier tails than $f(\mathbf{x})$.
- If only one h(X) of interest, should choose

$$g(\mathbf{x}) \propto |h(\mathbf{x})| f(\mathbf{x})$$

• Often interested in many functions, focus on making variability of $w^*(\mathbf{X})$ small

Importance sampling version 2

$$\hat{\mu}_{IS} = \sum_{i=1}^{n} h(\mathbf{X}_i) w(\mathbf{X}_i), \quad w(\mathbf{X}_i) = \frac{w^*(\mathbf{X}_i)}{\sum_{j=1}^{n} w^*(\mathbf{X}_j)}$$

Based on

$$\mu = \frac{\int \frac{h(\mathbf{x})f(\mathbf{x})}{g(\mathbf{x})}g(\mathbf{x})d\mathbf{x}}{\int \frac{f(\mathbf{x})}{g(\mathbf{x})}g(\mathbf{x})d\mathbf{x}} = \frac{\mu}{1} \approx \frac{\hat{\mu}_{IS}^*}{\hat{\mathbf{1}}_{IS}^*} = \hat{\mu}_{IS}$$

$$\hat{\mu}_{IS}^* = \bar{\mathbf{t}}, \quad t_i = t(\mathbf{X}_i) = h(\mathbf{X}_i)w^*(\mathbf{X}_i)$$

$$\hat{\mathbf{1}}_{IS}^* = \bar{\mathbf{w}}^*$$

- Why also estimate denominator?
 - What would be best if h(x) = c (constant)?
 - Correlations between nominator and denominator

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Impact of normalization

• Taylor approximation of $1/\bar{w}^*$ around 1:

$$rac{\hat{\mu}_{IS}^*}{\hat{\mathbf{1}}_{IS}^*} = \hat{\mu}_{IS}$$
 $\hat{\mathbf{1}}_{IS}^* = \bar{w}^*$

$$\frac{1}{\bar{W}^*} \approx 1 - (\bar{W}^* - 1) + (\bar{W}^* - 1)^2$$

giving

$$\hat{\mu}_{IS} \approx \overline{t} \left[1 - (\overline{w}^* - 1) + (\overline{w}^* - 1)^2 \right] = \overline{t} - (\overline{t} - \mu)(\overline{w}^* - 1) - \mu(\overline{w}^* - 1) + \overline{t} (\overline{w}^* - 1)^2$$

$$E[\hat{\mu}_{IS}] = E\{\overline{t} - (\overline{t} - \mu)(\overline{w}^* - 1) - \mu(\overline{w}^* - 1) + \overline{t}(\overline{w}^* - 1)^2\} + \mathcal{O}(n^{-2})$$

$$= \mu - \frac{1}{n}\text{cov}[t(X), w(X)] - 0 + \frac{\mu}{n}\text{var}(w(X)) + \mathcal{O}(n^{-2})$$

$$\operatorname{var}[\hat{\mu}_{IS}] = E\left\{ \left((\overline{t} - \mu) - \mu(\overline{w}^* - 1) \right)^2 \right\} + \mathcal{O}(n^{-2})$$

$$= \frac{1}{n} \left[\operatorname{var}(t(\boldsymbol{X})) + \mu^2 \operatorname{var}(w^*(\boldsymbol{X})) - 2\mu \cdot \operatorname{cov}[t(\boldsymbol{X}), w^*(\boldsymbol{X})] \right] + \mathcal{O}(n^{-2})$$

$$\mathsf{MSE}[\hat{\mu}_{lS}] - \mathsf{MSE}[\hat{\mu}_{lS}^*] = \frac{1}{n} \left(\mu^2 \mathsf{var}[\mathbf{w}^*(\mathbf{X})] - 2\mu \mathsf{cov}[t(\mathbf{X}), \mathbf{w}^*(\mathbf{X})] \right) + \mathcal{O}(n^{-2})$$

When is normalization better?

$$\mathsf{MSE}[\hat{\mu}_{IS}] - \mathsf{MSE}[\hat{\mu}_{IS}^*] = \frac{1}{n} \left(\mu^2 \mathsf{var}[w^*(\mathbf{X})] - 2\mu \mathsf{cov}[t(\mathbf{X}), w^*(\mathbf{X})] \right) + \mathcal{O}(n^{-2})$$

Gain if

$$\operatorname{cov}[t(\mathbf{X}), w^{*}(\mathbf{X})] > \frac{\mu \operatorname{var}[w^{*}(\mathbf{X})]}{2}$$

$$\Leftrightarrow \operatorname{cor}[t(\mathbf{X}), w^{*}(\mathbf{X})] > \frac{\sqrt{\operatorname{var}[w^{*}(\mathbf{X})]}}{2\sqrt{\operatorname{var}[t(\mathbf{X})]}/\mu} = \frac{\operatorname{cv}[w^{*}(\mathbf{X})]}{2\operatorname{cv}[t(\mathbf{X})]}$$

• Example: imp_samp_beta.R

Coefficient of variation: cv(X)=std(X)/E(X)

Det matematisk-naturvitenskapelige fakultet

Effective sample size

- Assume $w_i = w(\mathbf{X}_i)$, i = 1, ..., n are normalized weights
- Define effective sample size by

$$\widehat{N}_{eff} = \frac{1}{\sum_{i=1}^{n} w_i^2}$$

Ex 1: if
$$w_i = \frac{1}{n}$$
 for all i $\widehat{N}_{eff} = n$

Ex 2: if $w_i = 0$, $i \le z$, $w_i = \frac{1}{n-z}$, $i > z$ $\widehat{N}_{eff} = n - z$

Ex 3: if $w_i = 0$, $i \ne j$, $w_j = 1$ $\widehat{N}_{eff} = 1$

Sampling importance resampling

- Assume now we want to sample from $f(\mathbf{x})$, difficult
- Easy to sample from $g(\mathbf{x})$.
- Sampling importance resampling
 - \bigcirc Sample $Y_1, ..., Y_m$ iid from g
 - Calculate standardized importance weights

$$w(\mathbf{Y}_i) = \frac{f(\mathbf{Y}_i)/g(\mathbf{Y}_i)}{\sum_{j=1}^m f(\mathbf{Y}_j)/g(\mathbf{Y}_j)}, i = 1, ..., m$$

- **3** Resample $X_1, ..., X_n$ from $\{Y_1, ..., Y_m\}$ with probabilities $w(Y_1), ..., w(Y_m)$
- Properties: As $m \to \infty$
 - X_i converges in distribution to $f(\mathbf{x})$
 - Correlations between X_i 's decreases to zero
- For finite *m*: Correlation between samples

Sampling importance resampling

- Assume
 - $Y_1, ..., Y_m$ iid from g
 - $X_1, ..., X_n$ resampled from $\{Y_1, ..., Y_m\}, w(Y_i) = \frac{f(Y_i)}{g(Y_i)}$
- Two possible estimates of $\mu = E^f[X]$:

$$\hat{\mu}_{SIR} = \frac{1}{m} \sum_{i=1}^{m} X_i$$

$$\hat{\mu}_{IS} = \sum_{i=1}^{m} w(Y_i) Y_i$$

$$Can show$$

$$E[(\hat{\mu}_{IS} - \mu)^2] \le E[(\hat{\mu}_{SIR} - \mu)^2]$$

Why consider SIR?

- Sometimes beneficial to have equally weighted samples
- May be beneficial at a later stage of analysis process
- If we want to evaluate E(h(x)) where h(x) is hard to evaluate
- Usually n < m

Example: slash distribution

- Controlled example (we know the truth)
- Y has slash distribution when $Y = \frac{X}{U}$ $X \sim N(0,1), U \sim \text{Unif}(0,1)$

$$f(y) = \begin{cases} \frac{1 - \exp\{-y^2/2\}}{y^2 \sqrt{2\pi}}, & y \neq 0, \\ \frac{1}{2\sqrt{2\pi}}, & y = 0. \end{cases}$$

- Sampling Experiments
 - 1. X from Y
 - 2. *Y* from *X*
- Methods
 - 1. Rejection sampling
 - 2. Importance sampling
 - 3. Sampling importance resampling

Two test functions

• Ex1: x

• Ex2: $h(x) = \sin(x) + 0.2\cos(2*pi*x)$

Ratios:

UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

- Ex1: x
- Ex2: $h(x) = \sin(x) + 0.2\cos(2*pi*x)$

```
> m = 1000
                                                               > m = 1000
> x=rnorm(m)
                                                               > x=rnorm(m)
> v =rnorm(m)/runif(m)
                                                              > y =rnorm(m)/runif(m)
> show(c(mean(x), mean(h(x)))
                             , mean(y), mean(h(y))))
                                                               > show(c(sd(x), sd(h(x)), sd(y), sd(h(y))))
[1] -0.04743281 -0.02314847
                             -0.71528509
                                          0.01710263
                                                                  0.9951861 0.6712401 65.3199546 0.001361
                                                               > m = 100000
> m = 100000
                                                               > x=rnorm(m)
> x=rnorm(m)
                                                              > y =rnorm(m)/runif(m)
> y =rnorm(m)/runif(m)
                                                               > show(c(sd(x), sd(h(x)), sd(y), sd(h(y))))
> show(c(mean(x), mean(h(x))
                              mean(y), mean(h(y)))
                                                                                   0.672 304 1328.0501683
                                                                     0.9956829
                                                                                                              0.7122169
     0.001369078 0.001019647
                                0.542154961
                                             0.004230678
                                                               > m = 100000000
> m = 100000000
                                                               > x=rnorm(m)
> x=rnorm(m)
                                                              > y =rnorm(m)/runif(m)
> y =rnorm(m)/runif(m)
                                                              > show(c(sd(x), sd(h(x)), sd(y), sd(h(y))))
> show(c(mean(x), mean(h(x)), mean(y), mean(h(y))))
                                                               [1] 9.997296e-01 6.724661e-01 1.110357e+04 7.138005e-01
     3.115531e-05 4.417861e-05 8.361942e-01 -2.532640e-05
```

Slash distribution does not have a mean => The average does not converge

Slash distribution does not have a variance => The sd(y) increase with sample size

Rejection sampling

- Normal from slash bounded by 2
- Slash from Normal unbounded (no rejection sampling possibel)


```
> y =rnorm(m)/runif(m)
> U=runif(m)
> accept = dnorm(y)/(s(y)*2)
> sample = y[U<accept]
>
> length(sample)
[1] 49979
> max(accept)
[1] 1
> min(accept)
```

[1] 0

Observed acceptance rate: 0.49979 Theoretical acceptance rate: 0.50000

f(x)/g(x)

2.5

Sample from slash, estimate propeties of normal distribution

Histogram of w1


```
Histogram of t

Out of the second of the sec
```

```
> t=h(y)*w1
> mean(t)
[1] -0.0007471106
```

SIR normal from slash

Sample from Approximate sample from f(x)


```
n = 1000
x = sample(y,n,replace=T,prob=wn1)
par(mfrow=c(1,2))
hist(y,1000000,xlim=c(-5,5))
hist(x,40,xlim=c(-5,5))
```

Sample from normal, estimate in slash

SIR slash from normal

Approximate sample from $f(x)^{Histogram of x}$

50

40

30

20

10

0 -

Frequency

SIR: normal from slash and slash from normal

