Week 7: Statistical tests involving two variables (part I)

Phase 3

Key concepts

- Sometimes we want to make inferences that may involve two variables in our dataset.
- > For example, testing differences in means between two or more populations.
- Remember: a population is just a group that you want to draw conclusions about.
- Different data types and ASSUMPTIONS → a particular statistical test.
- Here (and in all phase III), we are going to concentrate on parametric tests, which assume an underlying distribution to compute the p-values.

Inferences based on the relation between two variables

gender	education	1	age	ACT	SATV	SATQ
2	2	3	19	24	500	500
2)	3	23	35	600	500
2	2	3	20	21	480	470
1	l •8	4	27	26	550	520
1		2	33	31	600	550
1	38	5	26	28	640	640
2	2	5	30	36	610	500
1	} ¥8	3	19	22	520	560
2	2	4	23	22	400	600
2)	5	40	35	730	800

Inferences based on the relation between two variables

e.g. are there differences in ACT scores between men and women?

gende	er (education		age A	C.	Т	SATV	SATQ
	2		3	19		24	500	500
	2		3	23		35	600	500
	2		3	20		21	480	470
	1	0	4	27		26	550	520
	1	-	2	33	•	31	600	550
	1		5	26		28	640	640
	2		5	30		36	610	500
	1		3	19		22	520	560
	2	10	4	23		22	400	600
	2		5	40		35	730	800

Inferences based on the relation between two variables

e.g. do men and women taking ACT exams exhibit differences in their education levels?

Inferences based on the relation between two variables

e.g. do people of
greater ages tend to
score ACT exams
better?

gender educa	ation a	ge /	ACT S	SATV S	SATQ
2	3	19	24	500	500
2	3	23	35	600	500
2	3	20	21	480	470
1	4	27	26	550	520
1	2	33	31	600	550
1	5	26	28	640	640
2	5	30	36	610	500
1	3	19	22	520	560
2	4	23	22	400	600
2	5	40	35	730	800

Continuous vs categorical variable

- Here you'll probably want to test whether estimations in the continuous variable (e.g. means) differ across levels of the categorical variable.
- <u>Key concept:</u> Each level in the categorical variable represents a different population (e.g. healthy and disease, education levels, etc)
- The most famous tests in this scenario are the two sample t-test (two categories) and the one-way analysis of variance (ANOVA) test (>= two categories).

gende	er e	ducation	age	AC	T	SATV	SATQ
0.000	2	3	3 1	9	24	500	500
	2	3	3 2	3	35	600	500
	2	3	3 2	0	21	480	470
	1	4	2	7	26	550	520
	1	2	2 3	3	31	600	550
	1	5	5 2	6	28	640	640
	2	5	3	0	36	610	500
	1	3	3 1	9	22	520	560
	2	4	2	3	22	400	600
	2	5	5 4	0	35	730	800

gender	edu	cation	age	ACT	SATV	SATQ	
	2	3	19	24	500	500	
	2	3	23	35	600	500	
	2	3	20	21	480	470	→ X
1	1	4	27	26	550	520	1
	1	2	33	31	600	550	
S	1	5	26	28	640	640	
	2	5	30	36	610	500	
3	1	3	19	22	520	560	
	2	4	23	22	400	600	
	2	5	40	35	730	800	

gender	education	ı aç	je AC	T SA	TV SA	TQ
2	A \$:	3	19	24	500	500
2	A: EI	3	23	35	600	500
2		3	20	21	480	470
1		4	27	26	550	520
1		2	33	31	600	550
_1	<u>s</u>	5	26	28	640	640 X
2		5	30	36	610	500
1		3	19	22	520	560
2		4	23	22	400	600
2		5	40	35	730	800

gende	er e	ducation	ag	e AC	т 9	SATV S	SATQ	
Ŭ	2	10		19	24	500	500	
	2	3	3	23	35	600	500	
	2	3	3	20	21	480	470	X
	1	4	1	27	26	550	520	1
	1	2	2	33	31	600	550	
	1	į	5	26	28	640	640	X_2
	2	į	5	30	36	610	500	
	1	3	3	19	22	520	560	
	2	4	1	23	22	400	600	
	2	į	5	40	35	730	800	

- Categorical variable: only two levels → Two subsets (two samples!) of the continuous variable, X₁ and X₂.
- It tests μ_1 μ_2 , the **difference between the means** of populations with respect to a hypothesized value Δ_0 .

$$\begin{aligned} \mathbf{H_0} &: \ \mu_1 - \mu_2 = \Delta_0 \\ \mathbf{H_A} &: \ \mu_1 - \mu_2 > \text{or} < \Delta_0 \text{ (one-sided)} \\ \mu_1 - \mu_2 \neq \Delta_0 \text{ (two-sided)} \end{aligned}$$

- Categorical variable: only two levels → Two subsets (two samples!) of the continuous variable, X₁ and X₂.
- It tests μ_1 μ_2 , the **difference between the means** of populations with respect to a hypothesized value Δ_0 .
- <u>Example</u>: "For the insula, is its average activation for healthy people different from its average activation in Autistic subjects?"
- There exists a less general version, the Student's t-test (see next slides).

Assumptions:

- 1. <u>Independence</u>: Observations are not correlated with each other (e.g. in *cross-sectional* studies), both **within and between** samples X_1 and X_2 .
- 2. Normality. Both values in X_1 and X_2 follow a gaussian distribution, or their sample sizes are big enough (thanks, Central Limit Theorem!)

Assumptions:

- 1. <u>Independence</u>: Observations are not correlated with each other (e.g. in *cross-sectional* studies), both **within and between** samples X₁ and X₂.
- Normality. Both values in X₁ and X₂ follow a gaussian distribution, or their sample sizes are big enough (thanks, Central Limit Theorem!)
- 3. (Extra assumption) Variances in X_1 and X_2 , are different i.e. $\sigma_1 \neq \sigma_2$.

Assumptions:

- 1. <u>Independence</u>: Observations are not correlated with each other (e.g. in *cross-sectional* studies), both **within and between** samples X_1 and X_2 .
- Normality. Both values in X₁ and X₂ follow a gaussian distribution, or their sample sizes are big enough (thanks, Central Limit Theorem!)
- 3. (Extra assumption) The opposite, i.e. $\sigma_1 = \sigma_2$, corresponds to the **Student's t-test.**

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 \mu_2 = \Delta_0$
- $> \quad \text{Test statistic:} \quad t = \frac{(< X_1 > < X_2 >) \Delta_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}}$
- Alternative Hypothesis $\mathbf{H_A}$ $\mu_1 \mu_2 > \Delta_0 \text{ (one-sided right tail)}$ $\mu_1 \mu_2 < \Delta_0 \text{ (one-sided left tail)}$
 - $\mu_1 \mu_2 \neq \Delta_0$ (two-sided)

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 - \mu_2 = \Delta_0$

> Test statistic:
$$t=\frac{(< X_1> - < X_2>) - \Delta_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}}$$
 ~ Student's t (df)

Alternative Hypothesis $\mathbf{H_A}$ $\mu_1 - \mu_2 > \Delta_0 \text{ (one-sided right tail)}$ $\mu_1 - \mu_2 < \Delta_0 \text{ (one-sided left tail)}$

$$\mu_1 - \mu_2 \neq \Delta_0$$
 (two-sided)

$$\rightarrow$$
 Null Hypothesis $\mathbf{H_0}$: $\mu_1 - \mu_2 = \Delta_0$

> Test statistic:
$$t=\frac{(< X_1> - < X_2>) - \Delta_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}} \quad \text{~~Student's t (df)}$$

$$\frac{(\hat{\sigma}_1^2/N_1 + \hat{\sigma}_2^2/N_2)^2}{(\hat{\sigma}_1^2/N_1)^2/(N_1 - 1) + (\hat{\sigma}_2^2/N_2)^2/(N_2 - 1)}$$
~ Student's t (df)

Alternative Hypothesis
$$\mathbf{H_A}$$

$$\mu_1 - \mu_2 > \Delta_0 \text{ (one-sided right tail)}$$

$$\mu_1 - \mu_2 < \Delta_0 \text{ (one-sided left tail)}$$

$$\mu_1 - \mu_2 \neq \Delta_0 \text{ (two-sided)}$$

$$ightharpoonup$$
 Null Hypothesis $\mathbf{H_0}$: $\mu_1 - \mu_2 = \Delta_0$

$$\frac{(\hat{\sigma}_1^2/N_1 + \hat{\sigma}_2^2/N_2)^2}{(\hat{\sigma}_1^2/N_1)^2/(N_1-1) + (\hat{\sigma}_2^2/N_2)^2/(N_2-1)}$$
 ~ Student's t (df)

> Test statistic:
$$t = \frac{(< X_1 > - < X_2 >) - \Delta_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}} \quad \text{~~Student's t (df)}$$

Alternative Hypothesis H_A Rejection region for α

$$\mu_1 - \mu_2 > \Delta_0$$
 (one-sided right tail) $t \ge t_{\alpha,df}$

$$\mu_1 - \mu_2 < \Delta_0$$
 (one-sided left tail) $t \le t_{\alpha,df}$

$$\mu_1 - \mu_2 \neq \Delta_0$$
 (two-sided) $|t| \ge |t_{\alpha/2,df}|$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 - \mu_2 = \Delta_0$

$$t.test(X_1, X_2 mu = \Delta_0,$$

alternative="greater")

- > Test statistic: $t=\frac{(< X_1> < X_2>) \Delta_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}}$ ~ Student's t (df)
- \succ Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ Rejection region for α (in P-VALUES)

$$\mu_1 - \mu_2 > \Delta_0$$
 (one-sided right tail) $P(T \ge t \mid H_0) \le \alpha$
 $\mu_1 - \mu_2 < \Delta_0$ (one-sided left tail) $t \le t_{\alpha,df}$

$$\mu_1 - \mu_2 \neq \Delta_0$$
 (two-sided) $|t| \geq |t_{\alpha/2,df}|$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 - \mu_2 = \Delta_0$

$$t.test(X_1, X_2 mu = \Delta_0,$$

alternative="less")

- > Test statistic: $t=\frac{(< X_1> < X_2>) \Delta_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}}$ ~ Student's t (df)
- \succ Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ Rejection region for α (in P-VALUES)

$$\mu_1 - \mu_2 > \Delta_0$$
 (one-sided right tail) $t \ge t_{\alpha,df}$
 $\mu_1 - \mu_2 < \Delta_0$ (one-sided left tail) $P(T \le t \mid H_0) \le \alpha$
 $\mu_1 - \mu_2 \ne \Delta_0$ (two-sided) $|t| \ge |t_{\alpha/2,df}|$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 - \mu_2 = \Delta_0$

$$t.test(X_1, X_2 mu = \Delta_0,$$
alternative="two.sided")

$$> \quad \text{Test statistic:} \quad t = \frac{(< X_1 > - < X_2 >) - \Delta_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}} \quad \text{\sim Student's t (df)}$$

 \succ Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ Rejection region for α (in P-VALUES)

$$\mu_1 - \mu_2 > \Delta_0$$
 (one-sided right tail) $t \ge t_{\alpha,df}$
 $\mu_1 - \mu_2 < \Delta_0$ (one-sided left tail) $t \le t_{\alpha,df}$
 $\mu_1 - \mu_2 \ne \Delta_0$ (two-sided) $t \le t_{\alpha,df}$
 $t \le t_{\alpha,df}$

Brief note: Student's t-test

- As we said, there exists a less general version of this test, the Student's t-test, that assumes equal variances.
- $> \quad \text{In this case: } t = \frac{(< X_1 > < X_2 >) \Delta_0}{\hat{\sigma}_P \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}} \sim \text{Student's t (df)}$

Brief note: Student's t-test

As we said, there exists a less general version of this test, the Student's t-test, that assumes equal variances.

$$\Rightarrow \quad \text{In this case: } t = \frac{(< X_1 > - < X_2 >) - \Delta_0}{\hat{\sigma}_P \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}} \text{ \sim Student's t (df)}$$
 estimated pooled standard deviation

Brief note: Student's t-test

As we said, there exists a less general version of this test, the Student's t-test, that assumes equal variances.

$$\text{In this case: } t = \frac{(< X_1 > - < X_2 >) - \Delta_0}{\hat{\sigma}_P \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}} \sim \text{Student's t (df)}$$
 estimated pooled standard deviation

$$t.test(X_1, X_2 mu = \Delta_0, var.equal = TRUE, alternative = "greater")$$
 $t.test(X_1, X_2 mu = \Delta_0, var.equal = TRUE, alternative = "less")$
 $t.test(X_1, X_2 mu = \Delta_0, var.equal = TRUE, alternative = "two.sided")$

What if our data is longitudinal?

- What if our two samples include the same subjects? This is a typical situation in longitudinal studies.
- Example: "Does physical exercise affect brain activity?"
- Here, we can't apply the usual two sample t-test, since this assumes that observations are independent.
- Instead, we can run a paired sample t-test.
- This test is just a **one sample t-test** applied to the **difference** between the two samples, $D_i = X_{i1} X_{i2}$.

Reminder: One sample t-test

- > Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$
- > Test statistic: $t = \frac{< X > -\mu_0}{\hat{\sigma}/\sqrt{N}}$
- Alternative Hypothesis $\mathbf{H_A}$ $\mu > \mu_0 \text{ (one-sided right tail)}$ $\mu < \mu_0 \text{ (one-sided left tail)}$ $\mu \neq \mu_0 \text{ (two-sided)}$

Paired sample t-test ≡ One sample t-test on differences

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_D = \mu_{D0}$
- > Test statistic: $t = \frac{< D > -\mu_{D0}}{\hat{\sigma}_D/\sqrt{N}}$
- Alternative Hypothesis $\mathbf{H_A}$ $\mu_D > \mu_{D0} \text{ (one-sided right tail)}$ $\mu_D < \mu_{D0} \text{ (one-sided left tail)}$ $\mu_D \neq \mu_{D0} \text{ (two-sided)}$

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_D = \mu_{D0}$
- > Test statistic: $t = \frac{< D> -\mu_{D0}}{\hat{\sigma}_D/\sqrt{N}}$ ~ Student's t (df=N-1)
- Alternative Hypothesis $\mathbf{H_A}$ $\mu_D > \mu_{D0} \text{ (one-sided right tail)}$ $\mu_D < \mu_{D0} \text{ (one-sided left tail)}$ $\mu_D \neq \mu_{D0} \text{ (two-sided)}$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_D = \mu_{D0}$

> Test statistic:
$$t=\frac{< D> -\mu_{D0}}{\hat{\sigma}_D/\sqrt{N}}$$
 ~ Student's t (df=N-1)

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_D = \mu_{D0}$
- > Test statistic: $t=\frac{< D> -\mu_{D0}}{\hat{\sigma}_D/\sqrt{N}}$

 $t.test(X_1, X_2, mu = \mu_{D0},$ **paired = TRUE**, alternative="two.sided")

Alternative Hypothesis H_A

$$\mu_D > \mu_{D0}$$
 (one-sided right tail)

$$\mu_D < \mu_{D0}$$
 (one-sided left tail)

$$\mu_D \neq \mu_{D0}$$
 (two-sided)

Rejection region for α (in P-VALUES)

$$P(T \ge t \mid H_0) \le \alpha$$

$$t \le t_{\alpha,N-1}$$

$$|t| \ge |t_{\alpha/2.N-1}|$$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_D = \mu_{D0}$

> Test statistic:
$$t = \frac{< D> -\mu_{D0}}{\hat{\sigma}_D/\sqrt{N}}$$

 $t.test(X_1, X_2, mu = \mu_{D0}, paired = TRUE,$ alternative="less")

Alternative Hypothesis
$$\mathbf{H_A}$$

$$\mu_D > \mu_{D0} \text{ (one-sided right tail)}$$

$$\mu_D < \mu_{D0} \text{ (one-sided left tail)}$$

$$\mu_D \neq \mu_{D0}$$
 (two-sided)

Rejection region for α (in P-VALUES)

$$t \ge t_{\alpha, N-1}$$

$$P(T \le t \mid H_0) \le \alpha$$

$$|t| \ge |t_{\alpha/2, N-1}|$$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_D = \mu_{D0}$

> Test statistic:
$$t = \frac{< D > -\mu_{D0}}{\hat{\sigma}_D/\sqrt{N}}$$

 $t.test(X_1, X_2, mu = \mu_{D0},$ **paired = TRUE**, alternative="two.sided")

➤ Alternative Hypothesis H_A

 $\mu_D > \mu_{D0}$ (one-sided right tail)

 $\mu_D < \mu_{D0}$ (one-sided left tail)

 $\mu_D \neq \mu_{D0}$ (two-sided)

Rejection region for α (in P-VALUES)

$$t \ge t_{\alpha,N-1}$$

$$t \le t_{\alpha,N-1}$$

$$P(T \ge |\mathbf{t}| | \mathbf{H}_0) \le \alpha$$

one way ANOVA test

- **Categorical variable**: j levels (>= 2) \rightarrow j subsets of the **continuous** variable
- Why one-way? Only one categorical variable (More? in a future lesson...)
- It tests whether the **means** of the *j* populations, μ_i , differ.

 $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_j$ $\mathbf{H_A}$: at least two of the μ_j 's are different

<u>Example</u>: "Is the average activation of the insula different across healthy, Autistic and Alzheimer subjects?"

Several levels in your categorical variable

Inferences based on the relation between two variables

	gender	education	n a	age /	ACT	SATV	SATQ
	2	A E	3	19	24	500	500
	2	A:	3	23	35	600	500
Research question:	2		3	20	21	480	470
Are there	1	8	4	27	26	550	520
differences in ACT	1	8	2	33	31	600	550
scores between	1	8	5	26	28	640	640
education levels?	2		5	30	36	610	500
	1	8	3	19	22	520	560
	2		4	23	22	400	600
	2	8 8	5	40	35	730	800

Inferences based on the relation between two variables

	gender	education	age	ACT	SATV	SATQ	
	2	3	19	24	500	500	X
	2	3	23	35	600	500	11
Research question:	2	3	20	21	480	470	
Are there	1	_ 4	27	26	550	520	
differences in ACT	1	2	33	31	600	550	
scores between	1	5	26	28	640	640	
education levels?	2	5	30	36	610	500	
	1	3	19	22	520	560	
	2	4	23	22	400	600	
	2	5	40	35	730	800	

Inferences based on the relation between two variables

500 500	
500 500	
480 470	X
550 520	
550	
640 640	
500	
520 560	
400 600	
6 4 5 6 6 5	500 500 180 470 150 520 500 550 640 640 510 500 520 560

gender education age ACT SATV SATQ

35

730

Inferences based on the relation between two variables

	gender	education	age	ACT	SATV	SATQ	
	2	: 3	19	24	500	500	
	2	: 3	3 23	35	600	500	
Research question:	2	. 3	20	21	480	470	
Are there	1	. 4	1 27	26	550	520	
differences in ACT	1	. 2	33	31	600	550	
scores between	1	. 5	26	28	640	640	> X ₂
education levels?	2	. 5	30	36	610	500	3
	1	. 3	19	22	520	560	
	2	. 4	23	3 22	400	600	
	2	. 5	40	35	730	800	

Inferences based on the relation between two variables

	gender	education	age	ACT	SATV	SATQ	
	2	! 3	3 19	24	500	500	
	2	: 3	3 23	35	600	500	
Research question:	2	. 3	3 20) 21	480	470	
Are there	1	. 4	27	26	550	520	
differences in ACT	1	. 2	2 33	31	600	550	
scores between	1	. 5	26	28	640	640	
education levels?	2	. 5	30	36	610	500	
	1	. 3	3 19	22	520	560	
	2	. 4	23	3 22	400	600	* X
	2	. 5	40	35	730	800	- 4

Inferences based on the relation between two variables

Research question:
Are there
differences in ACT
scores between
education levels?

	127			CATY CA	T-0
gender educatio	n a	age AC	. 1	SAIV SA	TQ
2	3	19	24	500	500 X
2	3	23	35	600	500
2	3	20	21	480	470 X
1	4	27	26	550	520 2
1	2	33	31	600	550
1	5	26	28	640	640 X ₃
2	5	30	36	610	500
1	3	19	22	520	560
2	4	23	22	400	600 X
2	5	40	35	730	800

Inferences based on the relation between two variables

Change of notation:

- X_{ij} = observation *i* in category *j*
- n_j = number of observations in category j
- N = total number of observations

- It is based on separating the total variance, V_{tot}, in the continuous variable into two terms: the between-group variance, V_B, and the within groups variances, V_w, i.e. V_{tot} = V_b + V_w
- It quantifies changes in between-group variation with respect the within-group variation.
- Our statistic will be ~ between-group variance/within-group variance

Between-group variance

- It measures how separated each category level is.
- It is calculated as the differences of the means in each category $j < X_j > with$ respect to the total (also known as grand) mean < X >.

Between-group variation (i.e., differences among group means)

$$V_b = \sum_{j=1}^k N_j (\langle X_j \rangle - \langle X \rangle)^2$$

Within-group variance

- > It measures the spread of the data within each category level.
- It is just the summation of the variances in each category level.

$$V_w = \sum_{j=1}^k \sum_{i=1}^{N_j} (X_{ij} - \langle X_j \rangle)^2$$

Between-group variation (i.e., differences among group means)

Assumptions:

- Independence: Observations are not correlated with each other (e.g. in cross-sectional studies), both within and between samples X_{ii}.
- 2. Normality. Values in X_{ij} follow a gaussian distribution, or their sample sizes are big enough (thanks, Central Limit Theorem!)
- 3. Homoscedasticity. The variance of data across X_{ij} should be the same.

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_1$

> Test statistic:
$$F = \frac{\text{between-group variance/df}_b}{\text{within-group variance/df}_w}$$

ightharpoonup Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the $\mu_{\mathbf{i}}$'s are different

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

> Test statistic:
$$F = \frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$$

ightharpoonup Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the $\mu_{\mathbf{i}}$'s are different

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

> Test statistic: F =
$$\frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$$
 ~ F-distribution (df_b, df_w)

 \rightarrow Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the $\mu_{\mathbf{i}}$'s are different

Reminder: F-distribution

- It is related to the χ^2 distribution; specifically as the **ratio** between two χ^2 statistics. $\theta_i = \{df_1, df_2\}$
- It usually arises as the ratio between variances. This ratio is common in testing mean differences across groups (ANOVA test).

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

> Test statistic: F =
$$\frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$$
 ~ F-distribution (df_b, df_w)

 \rightarrow Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the $\mu_{\mathbf{i}}$'s are different

ightharpoonup Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = \dots = \mu_j$

$$\text{Test statistic: F} = \frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w} \text{ } \text{F-distribution (df}_b, df}_w) \\ \frac{\text{Degrees of freedom}}{\text{df}_w = \text{k-1}} \\ \text{df}_b = \text{N-k}$$

Alternative Hypothesis H_A
 at least two of the μ_i's are different

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

ightharpoonup Test statistic: F = $\frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$

 \rightarrow Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the $\mu_{\mathbf{j}}$'s are different

Rejection region for α

$$F \ge F_{\alpha, \{dfb, dfw\}}$$

ightharpoonup Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

ightharpoonup Test statistic: F = $\frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$

 $qf(\alpha, df_b, df_w)$

Alternative Hypothesis H_A
 at least two of the μ's are different

Rejection region for α

$$F \ge F_{\alpha,\{dfb,dfw\}}$$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

> Test statistic:
$$F = \frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$$

pf(F, df_b, df, lower.tail =
FALSE)

 \rightarrow Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the μ_i 's are different

Rejection region for α (in P-VALUES)

$$P(f > F \mid H_0)$$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

> Test statistic:
$$F = \frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$$

aov(formula, data)

 \rightarrow Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the μ_i 's are different

Rejection region for α (in P-VALUES)

$$P(f > F \mid H_0)$$

 \rightarrow Null Hypothesis $\mathbf{H_0}$: $\mu_1 = \mu_2 = ... = \mu_i$

> Test statistic:
$$F = \frac{V_b/\mathrm{df}_b}{V_w/\mathrm{df}_w}$$

ightharpoonup Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$ at least two of the μ_i 's are different

Rejection region for α (in P-VALUES) P(f > F | H₀)

- When testing if the means differences in **two categories** are different from zero (Δ_0 =0), an **ANOVA** is similar to the Student t-test.
- \rightarrow In this case: $F = t^2$
- In the end, the statistic is almost similar to a ratio between variances as well.

$$t = \frac{(\langle X_1 \rangle - \langle X_2 \rangle) - \lambda_0}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}}$$

- When testing if the means differences in **two categories** are different from zero (Δ_0 =0), an **ANOVA** is similar to the Student t-test.
- \rightarrow In this case: $F = t^2$
- In the end, the statistic is almost similar to a ratio between variances as well.

- When testing if the means differences in **two categories** are different from zero (Δ_0 =0), an **ANOVA** is similar to the Student t-test.
- \rightarrow In this case: $F = t^2$
- In the end, the statistic is almost similar to a ratio between variances as well.

$$t = \underbrace{\frac{(-)-\cancel{\lambda_0}}{\sqrt{\frac{\hat{\sigma}_1^2}{N_1}+\frac{\hat{\sigma}_2^2}{N_2}}}}_{\text{Within-group}}$$

- When testing if the means differences in **two categories** are different from zero (Δ_0 =0), an **ANOVA** is similar to the Student t-test.
- ➤ In this case: F = t²
- In the end, the statistic is almost similar to a ratio between variances as well.

We run our ANOVA test

Which ones?

ANOVA rejects the null: Post-hoc testing

- Post hoc ("after this") testing involves performing new statistical analyses after the data have already been seen.
- Typical in one-way ANOVA to test which pairs of means are significant.
- A lot of care needs to be taken → Multiple testing inflates Type I error α

ANOVA rejects the null: Post-hoc testing

- Post hoc ("after this") testing involves performing new statistical analyses after the data have already been seen.
- Typical in one-way ANOVA to test which pairs of means are significant.
- A lot of care needs to be taken → Multiple testing inflates Type I error α (remember when we adjusted α when testing both tails?)

ANOVA rejects the null: Post-hoc testing

One very simple recipe:

First, **pairwise** two sample (Student's) t-tests; then, **Bonferroni** procedure that keeps Type I error under control (We'll come back to this in the future).

```
pairwise.t.test(x=Our continuous variable,
g=Our categorical variable,
p.adjust.method="bonf")
```

Recap

- A categorical variable usually encodes subpopulations we may want to draw conclusions about.
- If talking about a continuous estimation (e.g. the mean), we may use a two-sample t-test (2 populations) or a one-way ANOVA (>= 2 populations).
- If more than 2 populations, we may need to run post-hoc analyses followed by a procedure to keep Type I error, α, under control.
- In the next lectures, we will cover the relationship between pairs of categorical variables and pairs of continuous variables.