

Pour une fonction f positive sur l'intervalle [a;b], on appelle intégrale de f sur [a;b] l'aire du domaine composé des points M(x;y) suivants :

$$\Rightarrow a \le x \le b$$

$$0 \le y \le f(x)$$

On notera cette intégrale $\int_a^b f(x) dx$.

Exemple 1 Exprimer l'aire noircie au moyen d'une intégrale :

TG 2022-2023

On va essayer de déterminer la valeur de $\int_a^b x^2 dx$:

Dans un premier temps, on va encadrer ce domaine entre deux domaines dont on connaît l'aire.

1. Exprimer l'aire du domaine formé par les rectangles, on l'appelle I_{10} . Comparer I_{10} et $\int_a^b x^2 dx$.

TG **2022-2023**

TG 2022-2023

2. Exprimer l'aire du domaine formé par les rectangles, on l'appelle S_{10} . Comparer I_{10} et $\int_a^b x^2 dx$.

- **3.** Que va-t-il se passer si on recommence l'encadrement précédent en utilisant un plus grand nombre de rectangles?
- **4.** On réprend le découpage en rectangles effectué plus haut mais en passant de 10 à n rectangles. On appelle I_n l'aire de la somme des rectangles " sous la courbe " et S_n celle de ceux " au dessus de la courbe ".

Comparer I_n , S_n et $\int_a^b x^2 dx$.

- **5.** Donner l'expression de I_n et S_n en fonction d'une somme et de n.
- **6.** Montrer par récurrence sur $n \in \mathbb{N}$ que :

$$\sum_{0}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

- **7.** En déduire une simplification de I_n et S_n .
- **8.** En déduire $\int_a^b x^2 dx$
- **9.** Comparer cette valeur avec F(1) F(0) où F est une primitive de $f(x) = x^2$.