IMIĘ I NAZWISKO Mariusz Dajczak

NR INDEKSU 200403

TERMIN czwartek 10:00-12:35

DATA 27.03.2014

PROJEKTOWANIE ALGORYTMOW I METODY SZTUCZNEJ INTELIGENCJI

SPRAWOZDANIE Z LABORATORIUM

Quicksort - wpływ metody wyboru piwotu na czas sortowania

0.1. Wstęp

Algorytm sortowania szybkiego jest uważany za najszybszy jesli chodzi o dane losowe. Oparty jest na metodzie dziel i zwyciężaj. Polega to na tym, że zbiór danych zostaje podzielony na dwa podzbiory i każdy z nich jest sortowany niezależnie. W średnim przypadku jego złożoność obliczeniowa wynosi nlogn, natomiast w najgorszym n^2 .

Quicksort w podstawowej wersji za piwot obiera pierwszy lub ostatni element zbioru. Taki sposób działania jest poprawny i powszechnie stosowany, jednak aby zminimalizować prawdopodobieństwo przypadku pesymistycznego można losowwo wybierać piwot. Dzięki temu trickowi szansa na wystąpienie najgorszego scenariusza jest statystycznie znacznie mniejsza.

Celem tego ćwiczenia jest zbadanie jak zmieni się czas wykonania sortowania obydwoma rodzajami sortowania szybkiego w przypadku średnim oraz pesymistycznym.

0.2. Wyniki symulacji

CZASY SORTOWANIA W PESYMISTYCZNYM PRZYPADKU

Zwykły quicksort

Rozmiar	Powtórzenia	Czas
10	5	30.4
100	5	305
1000	5	3820.2.2
10000	5	36122.6
100000	5	594501
1000000	5	5.82638e+006
10000000	5	6.80988e+007

Losowy piwot

Rozmiar	Powtórzenia	Czas
10	5	29.4
100	5	244.2
1000	5	2007
10000	5	26304.6
100000	5	279041
1000000	5	3.83514e+006
10000000	5	4.11167e+007

CZASY SORTOWANIA W ŚREDNIM PRZYPADKU

Zwykły quicksort

Rozmiar	Powtórzenia	Czas
10	10	38.8
100	10	571.2
1000	10	6624.1
10000	10	77038.7
100000	10	564664
1000000	10	8.1971e+006
10000000	10	7.36563e+007

Losowy piwot

Rozmiar	Powtórzenia	Czas
10	5	51.4
100	5	459.6
1000	5	5304.2
10000	5	24957.6
100000	5	286556
1000000	5	3.79507e+006
10000000	5	4.14374e+007

0.3. Wykresy

0.4. Wnioski

Po przeprowadzeniu symulacji da się zauważyć pewną różnicę między czasem wykonania obu metod. W przypadku pesymistycznym losowe wybieranie piwotu jest szybsze dla kazdego rozmiaru problemu. Wynik jest zgodny z oczekiwaniami.

W średnim przypadku losowanie piwotu również sprawia, że czas wykonania jest krótszy. Wynika to z faktu, że losowe wybieranie piwotu sprawia, iż statystycznie rzecz biorąc mamy większe szanse na uzyskanie przypadku korzystniejszego dla sortowania szybkiego.

Zastosowanie tej metody wyboru piwotu usprawnia działanie sortowania szybkiego i sprawia, że jest ono jeszcze bardziej użyteczne.