Problemas de interpolación. Diferencias divididas. Interpolación de Hermite. Splines cúbicos.

- (1) Usando el método de las diferencias divididas, halla el polinomio de interpolación de la función $f(x) = \sin(\pi x) x^2$ en los nodos $x_0 = -2, x_1 = -1, x_2 = \frac{1}{2}, x_3 = 1, x_4 = 2$. Usar el polinomio anterior para hallar una aproximación de $\sin(\frac{\pi}{8})$. Calcular una cota del error cometido al aproximar f(x) por el polinomio de interpolación para x en el intervalo [-2, 2].
- (2) La tabla siguiente corresponde a los valores de un polinomio de grado desconocido:

Determina el coeficiente de x^2 en la expresión de P(x) sabiendo que todas las diferencias divididas hacia adelante de tercer orden valen 1.

(3) Un polinomio de grado 4 satisface lo siguiente:

$$\Delta^4 P(0) = 24$$
, $\Delta^3 P(0) = 6$, $\Delta^2 P(0) = 0$,

donde $\Delta P(x) = P(x+1) - P(x)$. Calcular $\Delta^2 P(10)$.

(4) Sea i_0, i_1, \ldots, i_n una permutación de la sucesión de enteros $0, 1, \ldots, n$. Demostrar que:

$$f[x_{i_0}, x_{i_1}, \dots, x_{i_n}] = f[x_0, x_1, \dots, x_n].$$

Indicación: Considerar el coeficiente de grado mayor del *n*-ésimo polinomio interpolador para los datos $\{x_0, x_1, \ldots, x_n\} = \{x_{i_0}, x_{i_1}, \ldots, x_{i_n}\}.$

- (5) Usando el método de las diferencias divididas generalizadas, halla el polinomio de interpolación de Hermite de la función $f(x) = \sin(\pi x) x^2$ en los nodos $x_0 = -2, x_1 = -1, x_2 = \frac{1}{2}, x_3 = 1, x_4 = 2$. Usar el polinomio anterior para hallar una aproximación de $\sin(\frac{\pi}{8})$.
- (6) Halla el spline cúbico natural que interpola la función $f(x) = \sin(\pi x) x^2$ en los nodos $x_0 = -2, x_1 = -1, x_2 = \frac{1}{2}, x_3 = 1, x_4 = 2$. Usar el polinomio anterior para hallar una aproximación de $\sin(\frac{\pi}{8})$.
- (7) Repetir el ejercicio anterior pero ahora considerando un spline cúbico de frontera fija.
- (8) Demostrar que si f(x) es un polinomio de grado 3 y $S_c(x)$ es el spline cúbico de frontera fija interpolador de f en unos ciertos nodos x_i , i = 0, ..., n, para un cierto n, entonces $f(x) = S_c(x)$ para todo valor de x. ¿Es cierta la condición anterior si en lugar de considerar el spline cúbico de frontera fija, consideramos el spline cúbico natural?