Sorbonne Université

Cryptologie, cryptographie algébrique

4M035 - 2021/22 - Enseignement à distance

Alain Kraus

Correction du second devoir

- 1) Avec les notations de la définition 4.1, on a a = b = 1. On a $4a^3 + 27b^2 = 31$, qui n'est pas nul, donc E est une courbe elliptique définie sur \mathbb{F}_7 .
- 2) En notant O le point à l'infini, on vérifie que l'on a

$$E(\mathbb{F}_7) = \{O, (0,1), (0,6), (2,2), (2,5)\}.$$

3) Soit f le polynôme caractéristique de l'endomorphisme de Frobenius de E (voir le paragraphe 3 page 26). L'ordre de $E(\mathbb{F}_7)$ vaut 5, donc la trace du Frobenius de E vaut 3 et on a

$$f = X^2 - 3X + 7.$$

Notons désormais α et β les racines complexes de f.

4) Soit $|E(\mathbb{F}_{7^2})|$ l'ordre cherché. D'après le théorème 4.8, on a

$$|E(\mathbb{F}_{7^2})| = 7^2 + 1 - (\alpha^2 + \beta^2).$$

On a les égalités

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 3^2 - 14 = -5,$$

d'où $|E(\mathbb{F}_{7^2})| = 55$.

- 5) On a 55 = 5.11. D'après la question précédente et le théorème de structure des groupes abéliens finis, $E(\mathbb{F}_{49})$ est donc isomorphe à $\mathbb{Z}/55\mathbb{Z}$.
- 6) On a

$$|E(\mathbb{F}_{7^3})| = 7^3 + 1 - (\alpha^3 + \beta^3).$$

On a les égalités

$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -36,$$

d'où $|E(\mathbb{F}_{7^3})| = 380.$

- 7) Le polynôme considéré est de degré 3 et n'a pas de racines dans \mathbb{F}_7 . Il est donc irréductible dans $\mathbb{F}_7[X]$.
- 8) On a

$$E[2] = \{O, (u, 0), (v, 0), (w, 0)\},\$$

où u, v, w sont les racines du polynôme $X^3 + X + 1$ dans une clôture algébrique de \mathbb{F}_7 (lemme 4.5). Parce que $X^3 + X + 1$ est irréductible sur \mathbb{F}_7 , on a $\{v, w\} = \{u^7, u^{49}\}$. L'élément u est dans \mathbb{F}_{7^3} , il en est donc de même de v et w (on peut aussi évoquer le fait que l'extension $\mathbb{F}_{7^3}/\mathbb{F}_7$ est galoisienne), d'où le résultat.

9) On a $380 = 2^2.5.19$. On en déduit que $E(\mathbb{F}_{7^3})$ est isomorphe à l'un des groupes

$$\mathbb{Z}/380\mathbb{Z}$$
 et $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/190\mathbb{Z}$.

Le groupe E[2] étant contenu dans $E(\mathbb{F}_{7^3})$, il en résulte que $E(\mathbb{F}_{7^3})$ contient un sousgroupe isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Par suite, $E(\mathbb{F}_{7^3})$ est isomorphe à

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/190\mathbb{Z}$$
.

- 10) Posons $P_1 = (u,0)$ et $P_2 = (u^7,0)$. Alors, (P_1,P_2) est une base de E[2] sur \mathbb{F}_2 car $P_1 \neq P_2$. Soit $\phi_7 : E[2] \to E[2]$ l'endomorphisme de Frobenius de E restreint à E[2]. On a $\phi_7(P_1) = P_2$ et $\phi_7(P_2) = (u^{49},0)$ (formule (27) du cours). Parce que u^{49} est distinct de u et u^7 , on en déduit que $\phi_7(P_2) = P_1 + P_2$. La matrice de ϕ_7 dans la base (P_1, P_2) est donc $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.
- 11) D'après le lemme 4.6 on a

$$G = 3X^4 + 6X^2 + 5X - 1 \in \mathbb{F}_7[X].$$

12) On a dans $\mathbb{F}_7[X]$ l'égalité

$$5G = X^4 + 2X^2 + 4X + 2$$
.

En écrivant que l'on a $5G = (X^2 + aX + b)(X^2 + cX + d)$ avec $a, b, c, d \in \mathbb{F}_7$, on obtient

$$a + c = 0$$
, $ac + b + d = 2$, $ad + bc = 4$, $bd = 2$.

On a donc $b+d=2+a^2$. On a $a \neq 0$, sinon c=0 ce qui contredit l'égalité ad+bc=4. On en déduit que l'on a $b+d \in \{3,4,6\}$. On a $b \neq d$, sinon, b(a+c)=4 or a+c=0. Il en résulte que b et d sont racines de l'un des polynômes X^2-3X+2 et X^2-4X+2 (on a $b+d \neq 6$ car $X^2-6X+2=(X+4)^2$ auquel cas b=d). Dans le premier cas, on a $\{b,d\}=\{1,2\}$ et dans le second, on a $\{b,d\}=\{-1,-2\}$.

Supposons $\{b,d\} = \{1,2\}$. On a a+c=0 et ad+bc=4 d'où ac=-2. Par ailleurs, on a ac+b+d=2, ce qui conduit à une contradiction.

Par suite, on a $\{b,d\} = \{-1,-2\}$. Ainsi, $a^2 = 2$, d'où $a = \pm 3$. Quitte à échanger a et c on peut supposer que a = 3 et c = -3. Avec l'égalité ad + bc = 4, on en déduit alors que b = -1 et d = -2, d'où

$$5G = (X^2 + 3X - 1)(X^2 - 3X - 2),$$

qui est la décomposition cherchée.

- 13) D'après la question précédente, les abscisses des points non nuls de E[3] appartiennent à \mathbb{F}_{7^2} et ne sont pas dans \mathbb{F}_7 . Par ailleurs, on a $|E(\mathbb{F}_{7^2})| = 55$, donc E n'a pas de points d'ordre 3 rationnels sur \mathbb{F}_{7^2} . Si (x,y) est un point non nul de E[3], on a $y^2 = x^3 + x + 1$. Il en résulte que les ordonnées des points de E[3] appartiennent à \mathbb{F}_{7^4} . On a donc n = 4.
- 14) On a

$$|E(\mathbb{F}_{7^4})| = 7^4 + 1 - (\alpha^4 + \beta^4).$$

On écrit que l'on a $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$, d'où

$$\alpha^4 + \beta^4 = 25 - 98 = -73,$$

puis $|E(\mathbb{F}_{7^4})| = 2475$.

15) On a 2475 = $3^2.5^2.11$. Le groupe E[3] est contenu dans $E(\mathbb{F}_{7^4})$ (question 13). On en déduit que $E(\mathbb{F}_{7^4})$ est isomorphe à l'un des groupes

$$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/825\mathbb{Z}$$
 et $\mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/165\mathbb{Z}$.

Soit E[5] le groupe des points de 5-torsion de E. D'après le fait admis, il existe un point $P = (x_0, y_0) \in E[5]$ tel que x_0 appartienne à \mathbb{F}_{7^2} et que x_0 ne soit pas dans \mathbb{F}_7 . Le point P est donc rationnel sur \mathbb{F}_{7^4} (en fait P n'est pas rationnel sur \mathbb{F}_{7^2} car $|E(\mathbb{F}_7)| = 5$ et $|E(\mathbb{F}_{7^2})| = 55$, mais peu importe ici). Le point P n'appartenant pas à $E(\mathbb{F}_7)$, le couple ((0,1),P) est une base de E[5] sur $\mathbb{Z}/5\mathbb{Z}$ (question 1). Par suite E[5], qui est isomorphe à $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$, est contenu dans $E(\mathbb{F}_{7^4})$. Il en résulte que $E(\mathbb{F}_{7^4})$ est isomorphe à

$$\mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/165\mathbb{Z}$$
.