12 Funktorielle Eigenschaften von $\Gamma(X)$

Satz 29. Für einen Morphismus $X \xrightarrow{f} Y$ affiner algebraischer Mengen definiert

$$\Gamma(f): \quad \Gamma(Y) \to \Gamma(X)$$

$$g \mapsto g \circ f$$

ein Homomorphismus von k-Algebren. Der so definierte kontravariante Funktor

 $\Gamma: \{affine\ algebraische\ Mengen\} \rightarrow \{reduzierte\ endl.\ erz.\ k-Algebren\}$

liefert eine Kategorienäquivalenz, welche durch Einschränkung eine Äquivalenz

 $\Gamma: \{irred. \ aff. \ alg. \ Mengem\} \rightarrow \{integre \ endl. \ erz. \ k-Algebren\}$

induziert.

Beweis. Sei $Y \xrightarrow{g} \mathbb{A}^{1}(k) \in \Gamma(Y)$ ein Morphismus. Es folgt:

$$g \circ f : X \xrightarrow{f} Y \xrightarrow{g} \mathbb{A}^{1}(k)$$

ist Morphismus, d.h. $g \circ f \in \Gamma(X)$. $\Gamma(f) : \Gamma(Y) \to \Gamma(X)$ ist ein k-Algebren-Homomorphismus mit $\Gamma(\mathrm{id}_X) = \mathrm{id}_{\Gamma(X)}$. Da ferner gilt, dass $\Gamma(f_1 \circ f_2) = \Gamma(f_2) \circ \Gamma(f_1)$ ist Γ ein kontravarianter Funktor. Behauptung. Γ ist volltreu, d.h.

$$\Gamma : \text{hom}(X, Y) \to \text{hom}_{k\text{-Alg}}(\Gamma(Y), \Gamma(X))$$

$$f \mapsto \Gamma(f)$$

ist bijektiv für alle affinen algebraischen Mengen X,Y.

Beweis. Wir konstruieren eine Umkehrabbildung wie folgt: Zu $\varphi : \Gamma(Y) \to \Gamma(X)$ für $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$ existiert ein Lift $\tilde{\varphi}$, s.d.

$$k[T'_1, \dots, T'_n] \xrightarrow{\tilde{\varphi}} k[T_1, \dots, T_m]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Gamma(Y) \xrightarrow{\varphi} \Gamma(X)$$

kommutiert; $\tilde{\varphi}(T_i') := f_i$ mit $f_i \in \pi^{-1}(\varphi(T_i')) \subseteq k[T_1, ..., T_n]$, wobei $\pi : k[\underline{T}] \to \Gamma(X)$ die kanonische

Projektion bezeichne. Definiere:

Beweis.

$$f: X \to Y$$

$$x = (x_1, \dots, x_n) \mapsto (\tilde{\varphi}(T_1')(x_1, \dots, x_n), \dots, \tilde{\varphi}(T_n')(x_1, \dots, x_n))$$

Behauptung. Γ ist essentiell surjektiv, d.h. zu jeder reduzierten endlich erzeugten k-Algebra A existiert eine affine algebraische Menge X mit $A \cong \Gamma(X)$.

Beweis. Da nach Voraussetzung $A \cong k[T]/\mathfrak{a}$ für ein Radikalideal \mathfrak{a} , können wir etwa $X := V(\mathfrak{a}) \subseteq \mathbb{A}^n(k)$ setzen. Der Rest folgt aus Satz 28.

Satz 30. Sei $f: X \to Y$ ein Morphismus affiner algebraischer Mengen und $\Gamma(f): \Gamma(Y) \to \Gamma(X)$ der zugehörige Homomorphismus der Koordinatenringe. Dann gilt $\forall x \in X: \Gamma(f)^{-1}(\mathfrak{m}_x) = \mathfrak{m}_{f(x)}$.

$$\Gamma(f)^{-1}(\mathfrak{m}_x) = \{ g \in \Gamma(Y) \mid g \circ f \in \mathfrak{m}_x \} = \{ g \in \Gamma(Y) \mid g(f(x)) = 0 \} = \mathfrak{m}_{f(x)},$$

da
$$\Gamma(f)(g) = g \circ f$$
.