# **FCC RF TEST REPORT**

47 CFR FCC Part 15 Subpart C § 15.249

**EQUIPMENT**: Electronic Drive Train

BRAND NAME : FSA

MODEL NAME : SF-ED-8400

FCC ID : 2ALMLSFED8400

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

1190

### **Table of Contents**

Report No. : FR760823B

: i of i

Issued Date : May 18, 2018

| 1. SU  | MMARY OF THE TEST RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. GE  | NERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 2.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3  |
| 2.2    | Manufacturer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3  |
| 2.3    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 2.4    | Modification of EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3  |
| 2.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3  |
| 2.6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |
| 2.7    | Connection Diagram of Test System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4  |
| 3. TE  | ST RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  |
| 3.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  |
| 3.2    | There of engines and an end and an end of the end of th | 8  |
| 3.3    | Antenna Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 |
| 4. LIS | ST OF MEASURING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13 |
| APPE   | ENDIX A. RADIATED SPURIOUS EMISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| APPE   | ENDIX B. RADIATED SPURIOUS EMISSION PLOTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| APPE   | ENDIX C. DUTY CYCLE PLOTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| APPE   | ENDIX D. SETUP PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

### **REVISION HISTORY**

Report No.: FR760823B

| REPORT NO. | VERSION | DESCRIPTION             | ISSUED DATE  |
|------------|---------|-------------------------|--------------|
| FR760823B  | Rev. 01 | Initial issue of report | May 18, 2018 |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |
|            |         |                         |              |

 SPORTON INTERNATIONAL INC.
 Page Number
 : 1 of 13

 TEL: 886-3-327-3456
 Report Issued Date
 : May 18, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

#### 1. SUMMARY OF THE TEST RESULT

| Applied Standard: 47 CFR FCC Part 15 Subpart C § 15.249                                |              |                               |          |              |
|----------------------------------------------------------------------------------------|--------------|-------------------------------|----------|--------------|
| Part                                                                                   | FCC Rule     | Description of Test           | Result   | Remark       |
| 3.1                                                                                    | 15.207       | AC Power Line Conducted       | Not      |              |
| 3.1                                                                                    | 15.207       | Emissions                     | Required | -            |
| 3.2                                                                                    | 2.1049       | 20dB & 99% Occupied Bandwidth | Complies | -            |
|                                                                                        |              |                               |          | Max level    |
| 3.3                                                                                    | 15.249(a)    | Field Strength of Fundamental | Complies | 81.09 dBµV/m |
|                                                                                        |              | Emissions                     | Compiles | at 2402.000  |
|                                                                                        |              |                               |          | MHz          |
|                                                                                        |              |                               |          | Under limit  |
| 3.3                                                                                    | 15.249(a)(d) | Radiated Spurious Emissions   | Complies | 1.43 dB at   |
|                                                                                        |              |                               |          | 4884.000MHz  |
| 3.4                                                                                    | 15.203       | Antenna Requirements          | Complies | -            |
| Remark: Not required means after assessing, test items are not necessary to carry out. |              |                               |          |              |

Report No.: FR760823B

#### **Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)**

| Measuring Uncertainty for a Level of Confidence | 5.20 |
|-------------------------------------------------|------|
| of 95% (U = 2Uc(y))                             | 5.20 |

#### Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

| Measuring Uncertainty for a Level of Confidence | F F0 |
|-------------------------------------------------|------|
| of 95% (U = 2Uc(y))                             | 5.50 |
| 0195% (0 = 200(y))                              |      |

#### Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.20 |
|-------------------------------------------------|------|
| of 95% (U = 2Uc(y))                             | 3.20 |

 SPORTON INTERNATIONAL INC.
 Page Number
 : 2 of 13

 TEL: 886-3-327-3456
 Report Issued Date
 : May 18, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

#### 2. GENERAL INFORMATION

#### 2.1 Applicant

#### Tien Hsin industries Co., LTD

No.6, Wugong 8th Rd., Wufeng Dist., Taichung City 41353, Taiwan (R.O.C.)

#### 2.2 Manufacturer

#### Tien Hsin industries Co., LTD

No.6, Wugong 8th Rd., Wufeng Dist., Taichung City 41353, Taiwan (R.O.C.)

#### 2.3 Product Feature of Equipment Under Test

#### Bluetooth and ANT+

| Product Specification subjective to this standard |                                            |  |
|---------------------------------------------------|--------------------------------------------|--|
| Antenna Type                                      | Bluetooth: Chip Antenna ANT+: Chip Antenna |  |

Report No.: FR760823B

#### 2.4 Modification of EUT

No modifications are made to the EUT during all test items.

#### 2.5 Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items                              | Mode |
|-----------------------------------------|------|
| AC Power Line Conducted Emissions       | CTX  |
| Field Strength of Fundamental Emissions | CTX  |
| Bandwidth                               | СТХ  |
| Radiated Emissions                      | CTX  |

#### Note:

- 1. CTX=continuously transmitting.
- 2. The programmed RF utility, "QRCT Tool" installed in the notebook to make the EUT get into the engineering modes to continuously transmit.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 3 of 13

 TEL: 886-3-327-3456
 Report Issued Date
 : May 18, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

#### 2.6 Table for Testing Locations

| Test Site          | SPORTON INTERNATIONAL INC.                                  |  |
|--------------------|-------------------------------------------------------------|--|
|                    | No. 52, Hwa Ya 1 <sup>st</sup> Rd., Hwa Ya Technology Park, |  |
| Test Site Location | Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.           |  |
| rest Site Location | TEL: +886-3-327-3456                                        |  |
|                    | FAX: +886-3-328-4978                                        |  |
| Took Cita No       | Sporton Site No.                                            |  |
| Test Site No.      | TH05-HY                                                     |  |

Report No.: FR760823B

Note: The test site complies with ANSI C63.4 2014 requirement.

| Test Site          | SPORTON INTERNATIONAL INC.                            |  |
|--------------------|-------------------------------------------------------|--|
|                    | No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist, |  |
| Test Site Location | Taoyuan City, Taiwan (R.O.C.)                         |  |
| rest Site Location | TEL: +886-3-327-0868                                  |  |
|                    | FAX: +886-3-327-0855                                  |  |
| Took Site No       | Sporton Site No.                                      |  |
| Test Site No.      | 03CH11-HY                                             |  |

Note: The test site complies with ANSI C63.4 2014 requirement.

### 2.7 Connection Diagram of Test System



 SPORTON INTERNATIONAL INC.
 Page Number
 : 4 of 13

 TEL: 886-3-327-3456
 Report Issued Date
 : May 18, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

#### 3. TEST RESULT

#### 3.1 20dB and & 99% Occupied Bandwidth

#### 3.1.1 Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band.

#### 3.1.2 Measuring Instruments

Please refer to section 4 of equipment list in this report.

#### 3.1.3 Test Procedures

- 1. The transmitter output port was connected to the spectrum analyzer.
- 2. Measured the spectrum width with highest power setting.

#### 3.1.4 Test Setup Layout



#### 3.1.5 Test Deviation

There is no deviation with the original standard.

#### 3.1.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 5 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

Report No.: FR760823B

#### 3.1.7 Test Result of 20dB Spectrum Bandwidth

| Final Test Date | Apr. 07. 2018              | Test Site No. | TH05-HY |
|-----------------|----------------------------|---------------|---------|
| Temperature     | 21~25°C                    | Humidity      | 51~54 % |
| Test Engineer   | Shiming Liu and Rebecca Li |               |         |

| Francos   | 20dB BW | 99% OBW |
|-----------|---------|---------|
| Frequency | (MHz)   | (MHz)   |
| 2402MHz   | 1.160   | 0.928   |
| 2442MHz   | 1.156   | 0.928   |
| 2480MHz   | 1.176   | 0.932   |

#### 20 dB Bandwidth Plot on 2402MHz

#### 99% Bandwidth Plot on 2402MHz

Report No.: FR760823B





Date: 6.APR.2018 09:39:18 Date

Date: 7.APR.2018 07:20:46

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 6 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

#### 20 dB Bandwidth Plot on 2442MHz



#### 99% Bandwidth Plot on 2442MHz

Report No.: FR760823B



Date: 6.APR.2018 09:48:07 Date: 7.APR.2018 07:21:45

#### 20 dB Bandwidth Plot on 2480MHz



#### 99% Bandwidth Plot on 2480MHz



Date: 6.APR.2018 09:55:45 Date: 7.APR.2018 07:22:40

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 7 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

#### 3.2 Field Strength of Fundamental Emissions and Radiated Spurious Emissions

#### 3.2.1 Limit

The field strength measured at 3 meters shall not exceed the limits in the following table:

| Fundamental      | Field Strength | n(millivolts/m) |
|------------------|----------------|-----------------|
| Frequencies(MHz) | Fundamental    | Harmonics       |
| 902~928          | 50             | 0.5             |
| 2400~2483.5      | 50             | 0.5             |
| 5725~5875        | 50             | 0.5             |

**Note:** The limits shown in the above table are based on measurements using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using a CISPR quasi-peak detector.

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general field strength limits listed in 15.209 as below, whichever is less stringent.

| Frequency     | Field Strength     | Measurement Distance |
|---------------|--------------------|----------------------|
| (MHz)         | (microvolts/meter) | (meters)             |
| 0.009 - 0.490 | 2400/F(kHz)        | 300                  |
| 0.490 – 1.705 | 24000/F(kHz)       | 30                   |
| 1.705 – 30.0  | 30                 | 30                   |
| 30 – 88       | 100                | 3                    |
| 88 – 216      | 150                | 3                    |
| 216 - 960     | 200                | 3                    |
| Above 960     | 500                | 3                    |

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 8 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

Report No.: FR760823B

#### 3.2.2 Measuring Instruments

Please refer to section 4 of equipment list in this report.

#### 3.2.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.

#### Remark:

- 1. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 2. For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = N1\*L1+N2\*L2+...+Nn-1\*LNn-1+Nn\*Ln

Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20\*log(Duty cycle)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 9 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

Report No.: FR760823B

C TEST REPORT Report No. : FR760823B

#### 3.2.4 Test Setup Layout

#### For radiated emissions below 30MHz



#### For radiated emissions from 30MHz to 1GHz



SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 10 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

#### For radiated emissions above 1GHz



#### 3.2.5 Test Deviation

There is no deviation with the original standard.

#### 3.2.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

#### 3.2.7 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

#### 3.2.8 Duty cycle correction factor for average measurement

Please refer to Appendix C.

#### 3.2.9 Test Result of Field Strength of Fundamental Emissions and Spurious Emissions

Please refer to Appendix A and B.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 11 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

Report No.: FR760823B

#### 3.3 Antenna Requirements

#### 3.3.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

#### 3.3.2 Antenna Connector Construction

Enbedded in Antenna.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2ALMLSFED8400 Page Number : 12 of 13
Report Issued Date : May 18, 2018
Report Version : Rev. 01

Report No.: FR760823B

### 4. LIST OF MEASURING EQUIPMENT

| Instrument              | Manufacturer                        | Model No.                           | Serial No.                      | Characteristics                     | Calibration<br>Date | Test Date                       | Due Date      | Remark                   |
|-------------------------|-------------------------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------|---------------------------------|---------------|--------------------------|
| Power Meter             | Agilent                             | E4416A                              | GB41292344                      | N/A                                 | Dec. 20, 2017       | Mar. 27, 2018~<br>Apr. 07, 2018 | Dec. 19, 2018 | Conducted<br>(TH05-HY)   |
| Power Sensor            | Agilent                             | E9327A                              | US40441548                      | 50MHz~18GHz                         | Dec. 20, 2017       | Mar. 27, 2018~<br>Apr. 07, 2018 | Dec. 19, 2018 | Conducted<br>(TH05-HY)   |
| Spectrum Analyzer       | Rohde &<br>Schwarz                  | FSP40                               | 100055                          | 9kHz~40GHz                          | Jun. 20, 2017       | Mar. 27, 2018~<br>Apr. 07, 2018 | Jun. 19, 2018 | Conducted<br>(TH05-HY)   |
| Amplifier               | MITEQ                               | TTA1840-35-<br>HG                   | 1871923                         | 18GHz~40GHz,<br>VSWR : 2.5:1<br>max | Jul. 18, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Jul. 17, 2018 | Radiation<br>(03CH11-HY) |
| Amplifier               | SONOMA                              | 310N                                | 187312                          | 9kHz~1GHz                           | Nov. 10, 2016       | Jan. 22, 2018~<br>Mar. 14, 2018 | Nov. 09, 2018 | Radiation<br>(03CH11-HY) |
| Bilog Antenna           | TESEQ                               | CBL<br>6111D&N-6-<br>06             | 35414&AT-N0<br>602              | 30MHz~1GHz                          | Oct. 14, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Oct. 13, 2018 | Radiation<br>(03CH11-HY) |
| Horn Antenna            | SCHWARZBE<br>CK                     | BBHA 9120<br>D                      | 9120D-1326                      | 1GHz ~ 18GHz                        | Oct. 16, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Oct. 15, 2018 | Radiation<br>(03CH11-HY) |
| Loop Antenna            | Rohde &<br>Schwarz                  | HFH2-Z2                             | 100488                          | 9 kHz~30 MHz                        | Nov. 23, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Nov. 22, 2019 | Radiation<br>(03CH11-HY) |
| Preamplifier            | Keysight                            | 83017A                              | MY53270080                      | 1GHz~26.5GHz                        | Nov. 10, 2016       | Jan. 22, 2018~<br>Mar. 14, 2018 | Nov. 09, 2018 | Radiation<br>(03CH11-HY) |
| Spectrum Analyzer       | Keysight                            | N9010A                              | MY54200486                      | 10Hz ~ 44GHz                        | Oct. 19, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Oct. 18, 2018 | Radiation<br>(03CH11-HY) |
| Antenna Mast            | EMEC                                | AM-BS-4500<br>-B                    | N/A                             | 1~4m                                | N/A                 | Jan. 22, 2018~<br>Mar. 14, 2018 | N/A           | Radiation<br>(03CH11-HY) |
| Turn Table              | EMEC                                | TT 2000                             | N/A                             | 0~360 Degree                        | N/A                 | Jan. 22, 2018~<br>Mar. 14, 2018 | N/A           | Radiation<br>(03CH11-HY) |
| EMI Test Receiver       | Agilent                             | N9038A(MX<br>E)                     | MY53290053                      | 20Hz to 26.5GHz                     | Jan. 16, 2018       | Jan. 22, 2018~<br>Mar. 14, 2018 | Jan. 15, 2019 | Radiation<br>(03CH11-HY) |
| SHF-EHF Horn<br>Antenna | SCHWARZBE<br>CK                     | BBHA 9170                           | BBHA917058<br>4                 | 18GHz- 40GHz                        | Nov. 27, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Nov. 26, 2018 | Radiation<br>(03CH11-HY) |
| Software                | Audix                               | E3 6.2009-8<br>-24                  | RK-001042                       | NA                                  | N/A                 | Jan. 22, 2018~<br>Mar. 14, 2018 | N/A           | Radiation<br>(03CH11-HY) |
| RF Cable                | HUBER+SUH<br>NER/MTJCoop<br>eration | MT18A-600/<br>SUCOFLEX<br>104       | D1124,<br>MY249694,<br>MY286544 | 25MHz~1GHz                          | Oct. 12, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Oct. 11, 2018 | Radiation<br>(03CH11-HY) |
| RF Cable                | HUBER +<br>SUHNER                   | SUCOFLEX<br>104                     | MY249684,M<br>Y249694           | 1GHz~26GHz                          | Oct. 12, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Oct. 11, 2018 | Radiation<br>(03CH11-HY) |
| Filter                  | Wainwright                          | WHKX12-27<br>00-3000-180<br>00-60ST | SN2                             | 3 GHz High pass                     | Jul. 17, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Jul. 16, 2018 | Radiation<br>(03CH11-HY) |
| Filter                  | Wainwright                          | WLKS1200-<br>12SS                   | SN2                             | 1.2G Low Pass                       | Mar. 24, 2017       | Jan. 22, 2018~<br>Mar. 14, 2018 | Mar. 23, 2018 | Radiation<br>(03CH11-HY) |

Report No.: FR760823B

 SPORTON INTERNATIONAL INC.
 Page Number
 : 13 of 13

 TEL: 886-3-327-3456
 Report Issued Date
 : May 18, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

# Appendix A. Radiated Spurious Emission

| Toot Engineer   | Has Hay and Kan Wey | Temperature :       | 23~26°C |
|-----------------|---------------------|---------------------|---------|
| Test Engineer : | Hao Hsu and Ken Wu  | Relative Humidity : | 53~58%  |

Report No.: FR760823B

: A1 of A9

<For Right>

#### 2.4GHz 2400~2483.5MHz

#### ANT+ (Band Edge @ 3m)

| ANT+            | Note | Frequency | Level      | Over          | Limit              | Read            | Antenna         | Cable        | Preamp      | Ant         |             | Peak          |   |
|-----------------|------|-----------|------------|---------------|--------------------|-----------------|-----------------|--------------|-------------|-------------|-------------|---------------|---|
|                 |      | (MHz)     | ( dBµV/m ) | Limit<br>(dB) | Line<br>( dBµV/m ) | Level<br>(dBµV) | Factor ( dB/m ) | Loss<br>(dB) | Factor (dB) | Pos<br>(cm) | Pos ( deg ) | Avg.<br>(P/A) |   |
|                 |      | 2388.04   | 51.89      | -22.11        | 74                 | 42.07           | 27.13           | 16.29        | 33.6        | 150         | 31          | Р             | Н |
|                 | *    | 2442.04   | 77.61      | -36.39        | 114                | 67.61           | 27.27           | 16.31        | 33.58       | 150         | 31          | Р             | Н |
|                 |      | 2486.44   | 52.97      | -21.03        | 74                 | 42.87           | 27.36           | 16.32        | 33.58       | 150         | 31          | Р             | Н |
|                 |      | 2382.52   | 41.76      | -12.24        | 54                 | 31.98           | 27.09           | 16.29        | 33.6        | 150         | 31          | Α             | Н |
| ANT+            | *    | 2442.04   | 77.07      | -16.93        | 94                 | 67.07           | 27.27           | 16.31        | 33.58       | 150         | 31          | Α             | Н |
|                 |      | 2487.64   | 42.07      | -11.93        | 54                 | 31.93           | 27.4            | 16.32        | 33.58       | 150         | 31          | Α             | Н |
| CH 42<br>442MHz |      | 2381.32   | 51.44      | -22.56        | 74                 | 41.66           | 27.09           | 16.29        | 33.6        | 104         | 111         | Р             | V |
| 44ZIVI MZ       | *    | 2442.16   | 77.69      | -36.31        | 114                | 67.69           | 27.27           | 16.31        | 33.58       | 104         | 111         | Р             | V |
|                 |      | 2483.8    | 51.74      | -22.26        | 74                 | 41.65           | 27.36           | 16.31        | 33.58       | 104         | 111         | Р             | V |
|                 |      | 2396.44   | 41.96      | -12.04        | 54                 | 32.13           | 27.13           | 16.29        | 33.59       | 104         | 111         | Α             | V |
|                 | *    | 2442.04   | 77.18      | -16.82        | 94                 | 67.18           | 27.27           | 16.31        | 33.58       | 104         | 111         | Α             | V |
|                 |      | 2490.4    | 42.15      | -11.85        | 54                 | 32.01           | 27.4            | 16.32        | 33.58       | 104         | 111         | Α             | V |

SPORTON INTERNATIONAL INC. Page Number

<sup>2.</sup> All results are PASS against Peak and Average limit line.

### 2.4GHz 2400~2483.5MHz

### ANT+ (Harmonic @ 3m)

| BLE              | Note   | Frequency        | Level         | Over     | Limit         | Read     | Antenna  | Cable | Preamp | Ant    | Table   | Peak  | Pol.  |
|------------------|--------|------------------|---------------|----------|---------------|----------|----------|-------|--------|--------|---------|-------|-------|
|                  |        |                  |               | Limit    | Line          | Level    | Factor   | Loss  | Factor | Pos    | Pos     | Avg.  |       |
|                  |        | (MHz)            | (dBµV/m)      | (dB)     | ( dBµV/m )    | (dBµV)   | ( dB/m ) | (dB)  | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
|                  |        | 4884             | 46.01         | -27.99   | 74            | 69.34    | 31.38    | 9.99  | 64.7   | 100    | 0       | Р     | Н     |
|                  |        | 7326             | 43.4          | -30.6    | 74            | 60.16    | 36.32    | 11.75 | 64.83  | 100    | 0       | Р     | Н     |
| 4117             |        |                  |               |          |               |          |          |       |        |        |         |       | Н     |
| ANT+             |        |                  |               |          |               |          |          |       |        |        |         |       | Н     |
| CH 42<br>2442MHz |        | 4884             | 54.36         | -19.64   | 74            | 77.69    | 31.38    | 9.99  | 64.7   | 100    | 23      | Р     | V     |
| 2442IVITI2       |        | 4884             | 52.57         | -1.43    | 54            | 75.9     | 31.38    | 9.99  | 64.7   | 100    | 23      | Α     | V     |
|                  |        | 7326             | 42.42         | -31.58   | 74            | 59.18    | 36.32    | 11.75 | 64.83  | 100    | 0       | Р     | V     |
|                  |        |                  |               |          |               |          |          |       |        |        |         |       | V     |
|                  | 1 N/   | o other equipou  | found         |          | ı             | 1        | 1        |       | 1      | 1      | 1       |       |       |
| Remark           | I. INC | o other spuriou  | s iourid.     |          |               |          |          |       |        |        |         |       |       |
|                  | 2. Al  | I results are PA | .SS against F | Peak and | l Average lim | it line. |          |       |        |        |         |       |       |

TEL: 886-3-327-3456 FAX: 886-3-328-4978

# **Emission below 1GHz**

### 2.4GHz ANT+ (LF)

| BLE        | Note | Frequency | Level      | Over   | Limit      | Read   | Antenna  | Cable  | Preamp | Ant    | Table   | Peak  | Pol. |
|------------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|---------|-------|------|
|            |      |           |            | Limit  | Line       | Level  | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |      |
|            |      | (MHz)     | ( dBµV/m ) | (dB)   | ( dBµV/m ) | (dBµV) | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V |
|            |      | 48.09     | 24.92      | -15.08 | 40         | 41.48  | 14.9     | 1.03   | 32.49  | -      | -       | Р     | Н    |
|            |      | 130.98    | 18.34      | -25.16 | 43.5       | 31.91  | 17.32    | 1.56   | 32.45  | -      | -       | Р     | Н    |
|            |      | 254.64    | 19.9       | -26.1  | 46         | 31     | 19.12    | 2.16   | 32.38  | -      | -       | Р     | Н    |
|            |      | 467.3     | 25.67      | -20.33 | 46         | 31.96  | 23.26    | 2.81   | 32.36  | -      | -       | Р     | Н    |
|            |      | 720       | 40.66      | -5.34  | 46         | 42.68  | 26.86    | 3.53   | 32.41  | 100    | 0       | Р     | Н    |
|            |      | 832       | 36.62      | -9.38  | 46         | 36.64  | 28.24    | 3.75   | 32.01  | -      | -       | Р     | Н    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | Н    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | Н    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | Н    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | Н    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | Н    |
| 2.4GHz     |      |           |            |        |            |        |          |        |        |        |         |       | Н    |
| ANT+<br>LF |      | 30.81     | 36.69      | -3.31  | 40         | 44.64  | 23.7     | 0.84   | 32.49  | 100    | 0       | Р     | V    |
| LF         |      | 48.9      | 33.86      | -6.14  | 40         | 50.42  | 14.9     | 1.03   | 32.49  | -      | -       | Р     | V    |
|            |      | 98.31     | 22.37      | -21.13 | 43.5       | 37.89  | 15.55    | 1.41   | 32.48  | -      | -       | Р     | V    |
|            |      | 456.1     | 24.52      | -21.48 | 46         | 31.06  | 23.08    | 2.74   | 32.36  | -      | -       | Р     | V    |
|            |      | 736.1     | 32.65      | -13.35 | 46         | 33.93  | 27.56    | 3.53   | 32.37  | -      | -       | Р     | V    |
|            |      | 939.8     | 32.79      | -13.21 | 46         | 30.04  | 30.05    | 3.99   | 31.29  | -      | -       | Р     | V    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | V    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | V    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | V    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | V    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | V    |
|            |      |           |            |        |            |        |          |        |        |        |         |       | V    |

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: A3 of A9

<For Left>

### 2.4GHz 2400~2483.5MHz ANT+ (Band Edge @ 3m)

| ANT+           | Note | Frequency | Level      | Over   | Limit      | Read   | Antenna  | Cable  | Preamp | Ant    | Table   | Peak  | Pol.  |
|----------------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|---------|-------|-------|
|                |      |           |            | Limit  | Line       | Level  | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
|                |      | (MHz)     | ( dBµV/m ) | (dB)   | ( dBµV/m ) | (dBµV) | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
|                |      | 2399.08   | 51.57      | -22.43 | 74         | 41.74  | 27.13    | 6.36   | 33.59  | 100    | 91      | Р     | Н     |
|                | *    | 2402      | 81.09      | -32.91 | 114        | 71.26  | 27.13    | 6.36   | 33.59  | 100    | 91      | Р     | Н     |
|                |      | 2399.32   | 41.83      | -12.17 | 54         | 32     | 27.13    | 6.36   | 33.59  | 100    | 91      | Α     | Н     |
|                | *    | 2402      | 80.73      | -13.27 | 94         | 70.9   | 27.13    | 6.36   | 33.59  | 100    | 91      | Α     | Н     |
| ANT+           |      |           |            |        |            |        |          |        |        |        |         |       | Н     |
| CH 02          |      |           |            |        |            |        |          |        |        |        |         |       | Н     |
| 2402MHz        |      | 2399.56   | 53.69      | -20.31 | 74         | 43.86  | 27.13    | 6.36   | 33.59  | 206    | 301     | Р     | V     |
| 2402111112     | *    | 2402      | 80.48      | -33.52 | 114        | 70.65  | 27.13    | 6.36   | 33.59  | 206    | 301     | Р     | V     |
|                |      | 2391.52   | 41.83      | -12.17 | 54         | 32     | 27.13    | 6.36   | 33.59  | 206    | 301     | Α     | V     |
|                | *    | 2402      | 80.05      | -13.95 | 94         | 70.22  | 27.13    | 6.36   | 33.59  | 206    | 301     | Α     | V     |
|                |      |           |            |        |            |        |          |        |        |        |         |       | V     |
|                |      |           |            |        |            |        |          |        |        |        |         |       | V     |
|                |      | 2385.52   | 51.65      | -22.35 | 74         | 41.83  | 27.13    | 6.36   | 33.6   | 111    | 92      | Р     | Н     |
|                | *    | 2442      | 76.7       | -37.3  | 114        | 66.7   | 27.27    | 6.38   | 33.58  | 111    | 92      | Р     | Н     |
|                |      | 2485      | 51.61      | -22.39 | 74         | 41.51  | 27.36    | 6.39   | 33.58  | 111    | 92      | Р     | Н     |
|                |      | 2399.8    | 41.84      | -12.16 | 54         | 32.01  | 27.13    | 6.36   | 33.59  | 111    | 92      | Α     | Н     |
| ANIT           | *    | 2442      | 76.05      | -17.95 | 94         | 66.05  | 27.27    | 6.38   | 33.58  | 111    | 92      | Α     | Н     |
| ANT+<br>CH 42  |      | 2485.48   | 42.07      | -11.93 | 54         | 31.97  | 27.36    | 6.39   | 33.58  | 111    | 92      | Α     | Н     |
| 2442MHz        |      | 2384.56   | 52.1       | -21.9  | 74         | 42.32  | 27.09    | 6.36   | 33.6   | 135    | 300     | Р     | V     |
| 2-7-72 IVII IZ | *    | 2442      | 77.13      | -36.87 | 114        | 67.13  | 27.27    | 6.38   | 33.58  | 135    | 300     | Р     | ٧     |
|                |      | 2498.8    | 52.06      | -21.94 | 74         | 41.91  | 27.4     | 6.39   | 33.57  | 135    | 300     | Р     | ٧     |
|                |      | 2398.48   | 41.76      | -12.24 | 54         | 31.93  | 27.13    | 6.36   | 33.59  | 135    | 300     | Α     | ٧     |
|                | *    | 2442      | 76.68      | -17.32 | 94         | 66.68  | 27.27    | 6.38   | 33.58  | 135    | 300     | Α     | V     |
|                |      | 2491.12   | 42.2       | -11.8  | 54         | 32.06  | 27.4     | 6.39   | 33.58  | 135    | 300     | Α     | V     |

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978



### FCC RF Test Report

|                | * | 2480    | 76.6  | -37.4  | 114 | 66.51 | 27.36 | 6.38 | 33.58 | 112 | 92  | Р | Н |
|----------------|---|---------|-------|--------|-----|-------|-------|------|-------|-----|-----|---|---|
|                |   | 2489.68 | 52.37 | -21.63 | 74  | 42.23 | 27.4  | 6.39 | 33.58 | 112 | 92  | Р | Н |
|                | * | 2480    | 76.14 | -17.86 | 94  | 66.05 | 27.36 | 6.38 | 33.58 | 112 | 92  | Α | Н |
|                |   | 2490.4  | 42.15 | -11.85 | 54  | 32.01 | 27.4  | 6.39 | 33.58 | 112 | 92  | Α | Н |
|                |   |         |       |        |     |       |       |      |       |     |     |   | Н |
| ANT+           |   |         |       |        |     |       |       |      |       |     |     |   | Н |
| CH 80<br>80MHz | * | 2480    | 77.57 | -36.43 | 114 | 67.48 | 27.36 | 6.38 | 33.58 | 133 | 299 | Р | V |
| OUMITIZ        |   | 2487.04 | 52.49 | -21.51 | 74  | 42.39 | 27.36 | 6.39 | 33.58 | 133 | 299 | Р | V |
|                | * | 2480    | 77.1  | -16.9  | 94  | 67.01 | 27.36 | 6.38 | 33.58 | 133 | 299 | Α | V |
|                |   | 2496.16 | 42.16 | -11.84 | 54  | 32.01 | 27.4  | 6.39 | 33.57 | 133 | 299 | Α | V |
|                |   |         |       |        |     |       |       |      |       |     |     |   | V |
|                |   |         |       |        |     |       |       |      |       |     |     |   | ٧ |

<sup>4.</sup> All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

### 2.4GHz 2400~2483.5MHz

### ANT+ (Harmonic @ 3m)

|           |      | Line<br>dBµV/m) | Level           | Factor                | Loss                        | Factor                                                | Pos                                                             | Doo                                                                     |                                                                               |                                                 |
|-----------|------|-----------------|-----------------|-----------------------|-----------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|
|           |      | dBuV/m)         | 1               |                       |                             | . actor                                               | F 03                                                            | Pos                                                                     | Avg.                                                                          |                                                 |
| 45.62 -28 | 20   |                 | (dBµV)          | ( dB/m )              | ( dB )                      | (dB)                                                  | ( cm )                                                          | (deg)                                                                   | (P/A)                                                                         | (H/V)                                           |
|           | 0.30 | 74              | 69.08           | 31.26                 | 9.6                         | 64.75                                                 | 100                                                             | 0                                                                       | Р                                                                             | Н                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | Н                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | Н                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | Н                                               |
| 53.65 -20 | 0.35 | 74              | 77.11           | 31.26                 | 9.6                         | 64.75                                                 | 108                                                             | 15                                                                      | Р                                                                             | V                                               |
| 51.46 -2. | .54  | 54              | 74.92           | 31.26                 | 9.6                         | 64.75                                                 | 108                                                             | 15                                                                      | Α                                                                             | V                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | V                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | V                                               |
| 45.95 -28 | 3.05 | 74              | 69.28           | 31.38                 | 9.56                        | 64.7                                                  | 100                                                             | 0                                                                       | Р                                                                             | Н                                               |
| 42.32 -31 | 1.68 | 74              | 59.08           | 36.32                 | 11.31                       | 64.83                                                 | 100                                                             | 0                                                                       | Р                                                                             | Н                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | Н                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | Н                                               |
| 54.54 -19 | 9.46 | 74              | 77.87           | 31.38                 | 9.56                        | 64.7                                                  | 110                                                             | 15                                                                      | Р                                                                             | V                                               |
| 52.37 -1. | .63  | 54              | 75.7            | 31.38                 | 9.56                        | 64.7                                                  | 110                                                             | 15                                                                      | Α                                                                             | V                                               |
| 42.79 -31 | 1.21 | 74              | 59.55           | 36.32                 | 11.31                       | 64.83                                                 | 100                                                             | 0                                                                       | Р                                                                             | V                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | V                                               |
| 46.4 -27  | 7.6  | 74              | 69.52           | 31.54                 | 9.53                        | 64.63                                                 | 100                                                             | 0                                                                       | Р                                                                             | Н                                               |
| 42.4 -31  | 1.6  | 74              | 58.97           | 36.59                 | 11.34                       | 64.88                                                 | 100                                                             | 0                                                                       | Р                                                                             | Н                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | Н                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | Н                                               |
| 54.13 -19 | 9.87 | 74              | 77.25           | 31.54                 | 9.53                        | 64.63                                                 | 104                                                             | 13                                                                      | Р                                                                             | V                                               |
| 51.73 -2. | .27  | 54              | 74.85           | 31.54                 | 9.53                        | 64.63                                                 | 104                                                             | 13                                                                      | Α                                                                             | V                                               |
| 41.61 -32 | 2.39 | 74              | 58.18           | 36.59                 | 11.34                       | 64.88                                                 | 100                                                             | 0                                                                       | Р                                                                             | V                                               |
|           |      |                 |                 |                       |                             |                                                       |                                                                 |                                                                         |                                                                               | V                                               |
| 4         |      | 41.61 -32.39    | 41.61 -32.39 74 | 11.61 -32.39 74 58.18 | 11.61 -32.39 74 58.18 36.59 | 41.61     -32.39     74     58.18     36.59     11.34 | 41.61     -32.39     74     58.18     36.59     11.34     64.88 | 41.61     -32.39     74     58.18     36.59     11.34     64.88     100 | 41.61     -32.39     74     58.18     36.59     11.34     64.88     100     0 | 41.61 -32.39 74 58.18 36.59 11.34 64.88 100 0 P |

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

## Emission below 1GHz

### 2.4GHz ANT+ (LF)

| BLE            | Note | Frequency | Level      | Over       | Limit              | Read            | Antenna         | Cable        | Preamp      | Ant      | Table        | Peak          | Pol. |
|----------------|------|-----------|------------|------------|--------------------|-----------------|-----------------|--------------|-------------|----------|--------------|---------------|------|
|                |      | ( MHz )   | ( dBµV/m ) | Limit (dB) | Line<br>( dBµV/m ) | Level<br>(dBµV) | Factor ( dB/m ) | Loss<br>(dB) | Factor (dB) | Pos (cm) | Pos<br>(deg) | Avg.<br>(P/A) | (H/V |
|                |      | 48.9      | 24.42      | -15.58     | 40                 | 40.98           | 14.9            | 1.02         | 32.49       | -        | -            | Р             | Н    |
|                |      | 119.91    | 17.99      | -25.51     | 43.5               | 31.69           | 17.33           | 1.39         | 32.46       | -        | -            | Р             | Н    |
|                |      | 224.13    | 17.95      | -28.05     | 46                 | 33.09           | 15.47           | 1.72         | 32.39       | -        | -            | Р             | Н    |
|                |      | 458.2     | 23.71      | -22.29     | 46                 | 30.22           | 23.11           | 2.7          | 32.36       | -        | -            | Р             | Н    |
|                |      | 703.9     | 34.98      | -11.02     | 46                 | 37.46           | 26.5            | 3.35         | 32.46       | 100      | 0            | Р             | Н    |
|                |      | 880.3     | 34.79      | -11.21     | 46                 | 33.56           | 29.1            | 3.73         | 31.76       | -        | -            | Р             | Н    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | Н    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | Н    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | Н    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | Н    |
| 2.404-         |      |           |            |            |                    |                 |                 |              |             |          |              |               | Н    |
| 2.4GHz<br>ANT+ |      |           |            |            |                    |                 |                 |              |             |          |              |               | Н    |
| LF             |      | 48.09     | 36.85      | -3.15      | 40                 | 53.41           | 14.9            | 1.02         | 32.49       | 100      | 0            | Р             | V    |
| _,             |      | 122.88    | 21.46      | -22.04     | 43.5               | 35.11           | 17.26           | 1.51         | 32.46       | -        | -            | Р             | V    |
|                |      | 262.74    | 19.15      | -26.85     | 46                 | 29.73           | 19.63           | 2.09         | 32.38       | -        | -            | Р             | V    |
|                |      | 395.9     | 21.44      | -24.56     | 46                 | 29.63           | 21.52           | 2.56         | 32.33       | -        | -            | Р             | V    |
|                |      | 561.8     | 26.9       | -19.1      | 46                 | 30.25           | 26.01           | 2.98         | 32.43       | -        | -            | Р             | V    |
|                |      | 868.4     | 32.21      | -13.79     | 46                 | 31.15           | 29.07           | 3.67         | 31.83       | -        | -            | Р             | V    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | V    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | V    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | V    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | V    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | V    |
|                |      |           |            |            |                    |                 |                 |              |             |          |              |               | V    |

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: A7 of A9

### Note symbol

Report No.: FR760823B

| *   | Fundamental Frequency which can be ignored. However, the level of any       |
|-----|-----------------------------------------------------------------------------|
|     | unwanted emissions shall not exceed the level of the fundamental frequency. |
| !   | Test result is <b>over limit</b> line.                                      |
| P/A | Peak or Average                                                             |
| H/V | Horizontal or Vertical                                                      |

SPORTON INTERNATIONAL INC. Page Number : A8 of A9

#### A calculation example for radiated spurious emission is shown as below:

Report No.: FR760823B

| WIFI    | Note | Frequency | Level      | Over   | Limit    | Read   | Antenna  | Cable  | Preamp | Ant    | Table | Peak  | Pol.  |
|---------|------|-----------|------------|--------|----------|--------|----------|--------|--------|--------|-------|-------|-------|
| Ant.    |      |           |            | Limit  | Line     | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
| 1+2     |      | (MHz)     | ( dBµV/m ) | (dB)   | (dBµV/m) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
| 802.11b |      | 2390      | 55.45      | -18.55 | 74       | 54.51  | 32.22    | 4.58   | 35.86  | 103    | 308   | Р     | Н     |
| CH 01   |      |           |            |        |          |        |          |        |        |        |       |       |       |
| 2412MHz |      | 2390      | 43.54      | -10.46 | 54       | 42.6   | 32.22    | 4.58   | 35.86  | 103    | 308   | Α     | Н     |

1. Level( $dB\mu V/m$ ) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB $\mu$ V/m) – Limit Line(dB $\mu$ V/m)

#### For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

#### For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $=43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC. Page Number : A9 of A9

# Appendix B. Radiated Spurious Emission Plots

| Took Fundinger  |                    | Temperature :       | 23~26°C |  |
|-----------------|--------------------|---------------------|---------|--|
| Test Engineer : | Hao Hsu and Ken Wu | Relative Humidity : | 53~58%  |  |

Report No.: FR760823B

## Note symbol

| -L | Low channel location  |
|----|-----------------------|
| -R | High channel location |

SPORTON INTERNATIONAL INC. Page Number : B1 of B11

### <For Right>

#### 2.4GHz 2400~2483.5MHz

### ANT+ (Band Edge @ 3m)



TEL: 886-3-327-3456 FAX: 886-3-328-4978

### 2.4GHz 2400~2483.5MHz ANT+ (Harmonic @ 3m)



TEL: 886-3-327-3456 FAX: 886-3-328-4978

### Emission below 1GHz 2.4GHz ANT+ (LF)



TEL: 886-3-327-3456 FAX: 886-3-328-4978

<For Left>

#### 2.4GHz 2400~2483.5MHz

### ANT+ (Band Edge @ 3m)



TEL: 886-3-327-3456 FAX: 886-3-328-4978



TEL: 886-3-327-3456 FAX: 886-3-328-4978



TEL: 886-3-327-3456 FAX: 886-3-328-4978

### 2.4GHz 2400~2483.5MHz ANT+ (Harmonic @ 3m)



TEL: 886-3-327-3456 FAX: 886-3-328-4978



TEL: 886-3-327-3456 FAX: 886-3-328-4978



TEL: 886-3-327-3456 FAX: 886-3-328-4978

### Emission below 1GHz 2.4GHz ANT+ (LF)



TEL: 886-3-327-3456 FAX: 886-3-328-4978



Appendix C. Duty Cycle Plots

| Band          | Duty<br>Cycle(%) | T(us) | 1/T(kHz) | VBW Setting | Duty<br>Factor(dB) |
|---------------|------------------|-------|----------|-------------|--------------------|
| Bluetooth -LE | 94.96            | 2112  | 0.47     | 1kHz        | 0.22               |

#### ANT+



Date: 19.MAR.2018 05:12:43

Page Number