

Problem Overview

Find out what part of this LLM response is a hallucination.

When was "Animals" released?

"Animals" was released by Prince in 1977.

This span is hallucinated (false)

Models in use

- Fact-checking models
 - Retrieval-based methods to verify against external data
 - FEVER dataset, Google Fact Check
- Consistency Models
 - Looks for internal inconsistencies
 - T5 Google News summary
- Pre-trained Neural Nets
 - WordTune Spice fact providing writing assistant
 - Transformer-based LLM

Our architectures

- Unsupervised GPT Prompting
 Straight up asks GPT-4 for spans
- SVMs
- Supervised mBERT Sequence Classifier
 Trains NN on tokenized query-response pairs

Data at hand

- 499 rows
- 18 languages: Arabic, Finnish, French, Gernman, Hindi, Italian, Swedish, and Chinese

query	response	label
When was "Animals" released?	"Animals" was released by Prince in 1977.	[2,3]

Implementation Overview

Automate hallucination detection for multilingual data.

- Key Tools Used:
 - GPT-4o Mini for detection.
 - JSON format for structured outputs.

Zero-Shot GPT-40

Prompts:

- You are an assistant tasked with finding errors in responses.
- The question was "{input}", and the response was "{output}". Identify the parts of the answer that are incorrect or unsupported by the question. Answer with only the incorrect spans in the answer as a list of token ranges (start and end indices), like in this example: "[(0,3),(8,20)]".

- Very weak results
- Tokens often outside string range
- Spaces between words or punctuation returned

Summary and Future Work

Key Findings

- Challenges with GPT-40 Mini:
 - Results were unsatisfactory for hallucination detection.
 - High variability and inconsistent outputs across languages.
- **Outcome**: Current approach is not reliable for automatic annotation in multilingual data.

Why recall over precision?

Consider a lie detector ...

Brushing off a lie is worse than being a little too suspicious of the truth.

Data preparation for SVM sequence classification

CrossEntropy ignores labels of -100

Input features for mBERT

- Full response sequence (as opposed to single tokens)
- Query for context (is this a must?)
- Part-of-Speech tag
 - o Used by us:
 - UPOS Universal POS categories
 - XPOS Language-specific details

More ideas:

- Named entity recognition
 - Very similar task finding factual data that's potentially wrong
- Contextual features abrupt topic changes

Data preparation for sequence classification

- tokenize & lemmatize
- Hallucination spans to binary token-labels
- Concatenate input data (incl. Support tokens)
- Create "ignore labels"

CrossEntropy ignores labels of -100

[CLS] where banana? [SEP] table [-100, ..., -100, 1]

Pad the data to fixed length

[CLS] when is animal release? [SEP] animal is release by prince in 1977. [PAD] ... [PAD]

[CLS] where banana? [SEP] table [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] ... [PAD]

[-100, ..., -100, 0, 0, 1, 1, 0, 0, 0, -100, ..., -100]

[-100, ..., -100, **1**, -100, -100, -100, ..., -100]

Training a model with the prepared data

[CLS] when is animal release? [SEP] animal is release by prince in 1977. [PAD] ... [PAD]

[-100, ..., -100, 0, 0, 1, 1, 0, 0, 0, -100, ..., -100]

[CLS] where banana? [SEP] table [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] ... [PAD]

[-100, ..., -100, **1**, -100, -100, -100, ..., -100]

 Vectorize the data with bert-base-multilingual-cased

 $[{\color{red} 0} {\color{gray} 0} {\color{$

[-100, ..., -100, 0, 0, 1, 1, 0, 0, 0, -100, ..., -100]

[000000000000000000......0]

[-100, ..., -100, 1, -100, -100, -100, ..., -100]

BertForTokenClassificatio

Model application

Participating in the MUSHROOM Challenge?

Axes of experimentation

What we've tried

- In/exclude query
- In/exclude POS tokens
- Skip or truncate overflowing sequences
- Max length of encodings
- Training params:
 - Learning rate
 - Batch size
 - o Patience
 - Max epochs
 - o Different optimizer

More ideas to try out

- Different loss calculation (weighted?)
- Different tokenizers
- Data augmentation through translation
- Data balancing (?)
- More sources of knowledge
 e.g. taking votes of multiple classifiers
- Different pretrained models
 - Multilingual
 - o Separate models per language

Excluding the query?

Including POS tokens

UPOS: universal (NOUN, VERB, ADJ, ADV, PRON, ADP, CONJ)

XPOS: language-specific (e.g. in english NN is a noun and NNs is a plural noun)

[CLS] where banana? [SEP] on table

[CLS] where ADV WRB banana NOUN NN ? PUNCT . [SEP] on ADP IN table NOUN NN

[-100, ..., -100, 1]

[-100, ..., -100, **1**, -100, -100, **1**, -100, -100]

Optimizer ignores POS tokens

Supervised mBERT: what to do with overflows?

What if this is the max length??

[CLS] when is animal release? [SEP] animal is release by prince in 1977.

[-100, ..., -100, 0, 0, 1, 1, 0, 0, 0]

Options for handling overflow:

- Ignore and train anyway
 - → Encoder will truncate the data!
- Skip observation entirely

mBERT Results

False Negatives

- Out of 499 rows 479 have min 1 False Negative
- 40 of them include year numbers

False Negatives per language

fi = Finnish

vi = Vietnamese

hi = Hindi

so = Somali

ar = Arabic

	Language	False Negatives	Number of rows	False negatives per row
1	fi	1294	44	29.4
0	vi	1368	50	27.4
2	fr	1177	49	24.0
3	it	706	40	17.6
5	hi	652	48	13.6
11	so	38	3	12.7
6	ar	518	42	12.3
10	pt	61	5	12.2
4	de	656	55	11.9
7	sv	474	42	11.3
9	ca	320	41	7.8
8	en	439	62	7.1
14	ne	11	2	5.5
13	et	12	3	4.0
15	fa	4	1	4.0
12	es	29	9	3.2
16	pl	2	2	1.0
17	no	1	1	1.0

More findings

Speaking of punctuation ...

Out of **7762** false negative tokens **2158** are punctuation!

Finnish and Hindi texts on average had twice as many false negative punctuations.

What is this?

An image?
Not always prepended by "Quelle:"
appears in ~20 rows
only after German or French texts