# D001 Economic Analysis of Non-Standard Data Benjamin W. Arold

8. Embedding Sequences with Attention

### Outline

**Neural Nets** 

Neural Language Models

Transformer Models

#### Neural Nets: Basics

- ▶ Neural networks ↔ deep learning models
  - solve machine learning problems, just like logistic regression or gradient boosted machines
  - ▶ use tensorflow, torch, or huggingface, rather than sklearn or xgboost.

#### Neural Nets: Basics

- ► Neural networks ↔ deep learning models
  - solve machine learning problems, just like logistic regression or gradient boosted machines
  - ▶ use tensorflow, torch, or huggingface, rather than sklearn or xgboost.
- why use neural nets?
  - greatly outperform standard ML techniques on specialized problems, for example language modeling

#### Neural Nets: Basics

- ightharpoonup Neural networks  $\leftrightarrow$  deep learning models
  - solve machine learning problems, just like logistic regression or gradient boosted machines
  - use tensorflow, torch, or huggingface, rather than sklearn or xgboost.

#### why use neural nets?

greatly outperform standard ML techniques on specialized problems, for example language modeling

#### why not use neural nets?

- usually worse than standard ML on standard problems
- outputs are a black box and difficult to interpret
- models are often more challenging/labor-intensive to implement
- computational constraints: training requires specialized hardware

#### A "Neuron"



- applies dot product to vector of numerical inputs:
  - multiplies each input by a learned weight (parameter or coefficient)
  - sums these products
- applies a non-linear "activation function" to the sum
  - (e.g., the  $\int$  shape indicates a sigmoid transformation)
- passes the output.

### Logistic Regression ≈ "Neuron"

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \theta) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \theta)}$$



- applies dot product to vector of numerical inputs:
  - multiplies each input by a learned weight (parameter or coefficient)
  - sums these products
- applies a non-linear "activation function" (sigmoid) to the sum
- passes the output.

# Multi-Layer Perceptron (MLP)



- A multilayer perceptron (also called a feed-forward network or sequential model) stacks neurons horizontally and vertically.
- alternatively, think of it as a stacked ensemble of logistic regression models.
- this vertical stacking is the "deep" in "deep learning"!

# Activation functions $g(\mathbf{x} \cdot \theta)$



Previously we had

# Activation functions $g(\mathbf{x} \cdot \theta)$



Previously we had

$$g(\mathbf{x} \cdot \theta) = sigmoid(\mathbf{x} \cdot \theta) = \frac{1}{1 + exp(-\mathbf{x} \cdot \theta)}$$

But – it turns out that sigmoid does not work well in hidden layers, mainly because gradient is flat except around zero.

# Activation functions $g(x \cdot \theta)$



Previously we had

$$g(\mathbf{x} \cdot \theta) = sigmoid(\mathbf{x} \cdot \theta) = \frac{1}{1 + exp(-\mathbf{x} \cdot \theta)}$$

 $\mbox{But}-\mbox{it}$  turns out that sigmoid does not work well in hidden layers, mainly because gradient is flat except around zero.

#### ReLU (rectified linear unit) function:

 $g(\mathbf{x} \cdot \theta) = \text{ReLU}(\mathbf{x} \cdot \theta) = \max\{0, \mathbf{x} \cdot \theta\}$ 

### Equation Notation: Multi-Layer Perceptron

▶ An multi-layer perceptron (MLP) with two hidden layers is

$$oldsymbol{y} = oldsymbol{g}_2(oldsymbol{g}_1(oldsymbol{x} \cdot oldsymbol{\omega}_1) \cdot oldsymbol{\omega}_2) \cdot oldsymbol{\omega}_y \ oldsymbol{y} \in \{0,1\}^{n_y}, oldsymbol{x} \in \mathbb{R}^{n_x}, oldsymbol{\omega}_1 \in \mathbb{R}^{n_x \times n_1}, oldsymbol{\omega}_2 \in \mathbb{R}^{n_1 \times n_2}, oldsymbol{\omega}_y \in \mathbb{R}^{n_2 \times n_y}$$

- $ightharpoonup n_1, n_2 =$  dimensionality in first and second hidden layer.
- $m{\omega}_1, m{\omega}_2, m{\omega}_y = ext{set}$  of learnable weights for the first hidden, second hidden, and output layer
- $\mathbf{g}_1(\cdot), \mathbf{g}_2(\cdot) = \text{element-wise non-linear functions (typically ReLU) for first and second layer.}$

# Equation Notation: Multi-Layer Perceptron

▶ An multi-layer perceptron (MLP) with two hidden layers is

$$oldsymbol{y} = oldsymbol{g}_2(oldsymbol{g}_1(oldsymbol{x} \cdot oldsymbol{\omega}_1) \cdot oldsymbol{\omega}_2) \cdot oldsymbol{\omega}_y \ oldsymbol{y} \in \{0,1\}^{n_y}, oldsymbol{x} \in \mathbb{R}^{n_x}, oldsymbol{\omega}_1 \in \mathbb{R}^{n_x \times n_1}, oldsymbol{\omega}_2 \in \mathbb{R}^{n_1 \times n_2}, oldsymbol{\omega}_y \in \mathbb{R}^{n_2 \times n_y}$$

- $ightharpoonup n_1, n_2 =$  dimensionality in first and second hidden layer.
- $m{\omega}_1, m{\omega}_2, m{\omega}_y = ext{set}$  of learnable weights for the first hidden, second hidden, and output layer
- $\mathbf{g}_1(\cdot), \mathbf{g}_2(\cdot) = \text{element-wise non-linear functions (typically ReLU) for first and second layer.}$
- Can also be written in decomposed notation:

$$egin{aligned} oldsymbol{h}_1 &= oldsymbol{g}_1(oldsymbol{x}\cdotoldsymbol{\omega}_1) \ oldsymbol{h}_2 &= oldsymbol{g}_2(oldsymbol{h}_1\cdotoldsymbol{\omega}_2) \ oldsymbol{y} &= oldsymbol{h}_2\cdotoldsymbol{\omega}_y \end{aligned}$$

where  $h_l$  indicate hidden layers.



# Steps of NN Training (1/2)

- ▶ Initialize Parameters: Set weights and biases for all layers, typically randomly.
- ► Input Forward Propagation:
  - Pass input through (fully connected) layers. (For image analysis: CNNs with convolutional layers)
  - Apply activation functions (e.g., ReLU, Softmax).
- ► Loss Calculation: Compare predictions with true labels using a loss function (e.g., cross-entropy).

# Steps of NN Training (2/2)

#### Backward Propagation:

- Compute gradients of the loss with respect to weights and biases using backpropagation.
- Update weights through all layers via chain rule (from output to input).
- ► Weight Update: Adjust weights and biases using optimization algorithms (e.g., stochastic gradient descent).
- Repeat:
  - Iterate over the dataset for multiple epochs.
  - Evaluate on validation data to monitor performance and prevent overfitting.
- ▶ **Stop:** End training based on stopping criteria (e.g., convergence, maximum epochs).

### Neural nets come with many hyperparameters

- ► **Epochs/iterations:** Number of times the model trains over the full set of images (e.g., 100 epochs)
- ▶ **Learning rate:** How much weights/coefficients change in optimization (e.g., 0.01)
- ▶ **Dropout rate:** To avoid overfitting; share of weights set to 0 (e.g., 0.5)
- ► Train-validation ratio: Split of images into sets (e.g., 80-20 split)
- ▶ Loss function: Evaluates model accuracy (e.g., Mean Squared Error)
- Activation functions: Nonlinear transformations (e.g., ReLU)
- ► More hyperparameters can be set (batch size etc.)

### Example: NN for predicting outcomes (1/3)

► Show low-dimensional toy example predicting outcomes (vote shares) using county characteristics; can easily be adapted to high dimensional text case

| County    | White (%) | College<br>(%) | Median Income (per capita, in hundreds USD) | Vote<br>Share |
|-----------|-----------|----------------|---------------------------------------------|---------------|
| Lake      | 87.70     | 16.20          | 215.37                                      | 0.46          |
| Shasta    | 88.50     | 18.80          | 236.70                                      | 0.48          |
| Mendocino | 86.30     | 22.00          | 233.06                                      | 0.36          |
| Sonoma    | 87.40     | 32.20          | 328.35                                      | 0.51          |
| Sutter    | 74.00     | 18.70          | 236.02                                      | 0.55          |
| Amador    | 90.70     | 19.30          | 273.47                                      | 0.52          |
| Napa      | 84.80     | 31.30          | 347.95                                      | 0.60          |

Figure: Vote share for Hillary Clinton in the 2016 Democratic primaries in seven California counties (Webb Williams et al., 2020)

# Example: NN for predicting outcomes (2/3)

```
(Input Laver: 7 × 4)
                                                    (Hidden Layer 1 nontransformed: 7 × 2)
                             (Weights: 4 \times 2)
       16.2 215.37]
                                                                      -63.6019
             236.70
                                     -0.3303
             233.06
                                      0.1094
             328.35
                                                                      -109 9891
                                     -0.0567
             236.02
                                                                      -721398
                                     -0.3340
                                                                      -82.8577
                                                                     -109.0627
                                    (Hidden Layer 1 transformed)
                                                   0.0000
                     max(0, Z_0) =
                                                    0.0000
                                                    0.0000
                                                   0.0000
                                           7.5294 0.0000
```

Figure: An artificial neural network predicting Clintons vote share in the 2016 Democratic primaries in seven California counties  $(\hat{Y})$  as a function of percentage of white population  $(x_1)$ , people with college education  $(x_2)$ , the median income per capita  $(x_3)$ , and an intermediate representation  $(Z_1)$ : (1) using the input layer X to create a new hidden layer  $Z_0$ , (2) applying a nonlinear ReLu transformation to the hidden layer  $Z_0$ , ...

# Example: NN for predicting outcomes (3/3)

$$\begin{array}{c} \text{(Hidden Layer 1 transformed: } 7 \times 3) \\ \hline Z_1 \\ \hline 1 & 1.7436 & 0.0000 \\ 1 & 2.3684 & 0.0000 \\ 1 & 0.0775 & 0.0000 \\ 1 & 4.2065 & 0.0000 \\ 1 & 4.5243 & 0.0000 \\ 1 & 7.5294 & 0.0000 \\ \hline \end{array} \\ \times \begin{array}{c} \begin{bmatrix} -0.4142 \\ -0.1024 \end{bmatrix} = \\ -0.1024 \end{bmatrix} = \begin{bmatrix} -0.4088 \\ -0.0762 \\ 0.1084 \\ -0.1024 \end{bmatrix} = \\ \begin{bmatrix} 0.0762 \\ 0.2412 \\ 0.4019 \end{bmatrix} \\ \end{array}$$

Figure: ...(3) using the features in the hidden layer to generate a set of predictions ( $\hat{Y}_0$ ), and (4) applying a sigmoid transformation to these predictions to improve model fit ( $\hat{Y}_1$ ) (Webb Williams et al., 2020).

### Outline

Neural Nets

Neural Language Models

Transformer Models

#### The Classic Sentence Classification Problem



bag-of-words models won't capture the importance of "don't love" or "nothing I don't love", even with interactions / hidden layers.

Source: Graham Neubig slides.

▶ N-grams have a large feature space (especially with 4-grams) and don't share information across similar words/n-grams.

- ▶ The real break-through from deep learning for NLP:
  - moving from bag-of-X representations to sequence representations.
  - Rather than inputting counts over words x, take as input a sequence of tokens  $\{w_1,...,w_t,...w_n\}$ .

- The real break-through from deep learning for NLP:
  - moving from bag-of-X representations to sequence representations.
  - Rather than inputting counts over words x, take as input a sequence of tokens  $\{w_1,...,w_t,...w_n\}$ .
  - ► Goal: Predict the next word in a sequence given all previous words (left) or given N-1 previous words (right):

$$P(w_t \mid w_1, ..., w_{t-1}) \approx P(w_t \mid w_{t-N+1}, ..., w_{t-1})$$

- The real break-through from deep learning for NLP:
  - moving from bag-of-X representations to sequence representations.
  - Rather than inputting counts over words x, take as input a sequence of tokens  $\{w_1,...,w_t,...w_n\}$ .
  - ► Goal: Predict the next word in a sequence given all previous words (left) or given N-1 previous words (right):

$$P(w_t \mid w_1, ..., w_{t-1}) \approx P(w_t \mid w_{t-N+1}, ..., w_{t-1})$$

Self-supervised ML with text (typically no pre-processing).

- The real break-through from deep learning for NLP:
  - moving from bag-of-X representations to sequence representations.
  - Rather than inputting counts over words x, take as input a sequence of tokens  $\{w_1,...,w_t,...w_n\}$ .
  - ► Goal: Predict the next word in a sequence given all previous words (left) or given N-1 previous words (right):

$$P(w_t \mid w_1, ..., w_{t-1}) \approx P(w_t \mid w_{t-N+1}, ..., w_{t-1})$$

- Self-supervised ML with text (typically no pre-processing).
- Use word embeddings instead of raw word identities.

# Feedforward Neural Language Model

- ▶ **Input:** One-hot encoded word vectors from a fixed-size context window.
- **Example:** Given a vocabulary size of |V|:

$$\begin{aligned} & \mathsf{dog} = [0, 0, 0, 0, 1, 0, ..., V] \\ & \mathsf{cat} = [0, 1, 0, 0, 0, 0, ..., V] \end{aligned}$$

### Feedforward Neural Language Model

- ▶ **Input:** One-hot encoded word vectors from a fixed-size context window.
- **Example:** Given a vocabulary size of |V|:

$$dog = [0,0,0,0,1,0,...,V]$$

$$cat = [0,1,0,0,0,0,...,V]$$

Embedding Vector: Converts one-hot vectors into dense embedding vectors.

$$\mathbf{v}_{\mathsf{dog}} = W_{\mathsf{embed}} \times [0, 0, 0, 0, 1, 0, \dots V]^{T}$$

$$\mathbf{d} \qquad \mathbf{E} \qquad \mathbf{V} \qquad \mathbf{E} \qquad \mathbf{$$

Figure: Selecting the embedding vector for word V5 by multiplying the embedding matrix E with a one-hot vector with a 1 in index 5. (Jurafsky and Martin, 2024)

### Feedforward Neural Language Model

- ► Embedding Layer: The m resulting embedding vectors are concatenated to produce e, the embedding layer (where m equals the context window)
- ▶ **Hidden Layer:** Uses activation functions (ReLU, tanh, etc.).
- ▶ Output Layer: Produces a probability distribution over possible next words using softmax.

# Feedforward Neural Language Model: Example



Figure: Forward inference in a feedforward neural language model. At each timestep t the network computes a d-dimensional embedding for each context word (by multiplying a one-hot vector by the embedding matrix E), and concatenates the 3 resulting embeddings to get the embedding layer e. The embedding vector e is multiplied by a weight matrix W and then an activation function is applied element-wise to produce the hidden layer h, which is then multiplied by another weight matrix U. Finally, a softmax output layer predicts at each node i the probability that the next word  $\{w_i\}$  will be vocabulary word  $\{V_i\}$ . (Jurafsky and Martin, 2024)

### Training the Neural Language Model

**Loss function:** Cross-entropy loss for classification:

$$L_{CE}(\hat{y}, y) = -\log \hat{y}_i = -\log p(w_t \mid w_{t-1}, \dots, w_{t-n+1}), \quad \text{(where } i \text{ is the correct class)}$$

where:

- $\triangleright$   $y_i$  is the true label (one-hot encoding).
- $\hat{y}_i$  is the predicted probability from the softmax layer.
- **Optimization:** Uses gradient descent and backpropagation to update parameters  $\theta$  (embedding matrix, weight matrices, and biases):

$$\theta_{s+1} = \theta_s - \eta \frac{\partial [-\log p(w_t \mid w_{t-1}, \dots, w_{t-n+1})]}{\partial \theta}$$

# Challenges of Feedforward Neural Language Models

#### ► Challenges:

- Computationally expensive to train and deploy.
- ► Requires large datasets to perform well.
- Limited context window (compared to RNNs, transformers).
- Limited performance

### Outline

Neural Nets

Neural Language Models

Transformer Models

### Extensions of Feedforward Neural Language Models

Neural language models have evolved to address limitations of feedforward networks:

- Recurrent Neural Networks (RNNs)
  - Introduce recurrence (hidden states) to handle sequential data
  - Capture long-range dependencies, but suffer from vanishing gradients.
  - More in lecture on audio data.

### Extensions of Feedforward Neural Language Models

Neural language models have evolved to address limitations of feedforward networks:

- Recurrent Neural Networks (RNNs)
  - Introduce recurrence (hidden states) to handle sequential data
  - Capture long-range dependencies, but suffer from vanishing gradients.
  - More in lecture on audio data.
- Convolutional Neural Networks (CNNs)
  - Use convolutional filters to extract local features.
  - ▶ Efficient due to parallel processing; struggles with long-range dependencies.
  - More in lecture on image data.

### Extensions of Feedforward Neural Language Models

Neural language models have evolved to address limitations of feedforward networks:

#### Recurrent Neural Networks (RNNs)

- Introduce recurrence (hidden states) to handle sequential data
- Capture long-range dependencies, but suffer from vanishing gradients.
- More in lecture on audio data.

#### Convolutional Neural Networks (CNNs)

- Use convolutional filters to extract local features.
- Efficient due to parallel processing; struggles with long-range dependencies.
- More in lecture on image data.

#### Transformer Models

- Use self-attention for global context.
- State-of-the-art in text data analysis
- Examples: BERT, GPT.

#### **Transformers**

➤ Since a 2017 paper (Vaswani et al 2017), deep learning for NLP has been transformed by a new class of models: **transformers.** 

#### **Transformers**

- ➤ Since a 2017 paper (Vaswani et al 2017), deep learning for NLP has been transformed by a new class of models: **transformers.**
- Standard approach:
  - represent documents as counts over words/phrases, shares over topics, or the average of word embeddings.

#### **Transformers**

- ➤ Since a 2017 paper (Vaswani et al 2017), deep learning for NLP has been transformed by a new class of models: **transformers.**
- Standard approach:
  - represent documents as counts over words/phrases, shares over topics, or the average of word embeddings.
- Recurrent neural nets can process whole documents word-by-word:
  - but they have to sweep through the whole document at each training epoch, so they learn too slowly.

#### **Transformers**

- ➤ Since a 2017 paper (Vaswani et al 2017), deep learning for NLP has been transformed by a new class of models: **transformers.**
- Standard approach:
  - represent documents as counts over words/phrases, shares over topics, or the average of word embeddings.
- Recurrent neural nets can process whole documents word-by-word:
  - but they have to sweep through the whole document at each training epoch, so they learn too slowly.
- ► Transformers overcome these limitations:
  - intuitively, they provide a way to efficiently read in an entire document and learn the meaning of all words and all interactions between words.

# Self-Attention – the fundamental computation underlying transformers

- ▶ Consider a sequence of tokens with fixed length  $n_L$ ,  $\{w_1, ..., w_i, ..., w_{n_l}\}$
- ▶ We have word embedding vectors  $x_i = E(w_i)$  with dimension  $n_E$ , producing a sequence of vectors

$$\{x_1,...,x_i,...,x_{n_L}\}$$

In previous models, the sequence  $x_{1:n_L}$  could be flattened to an  $n_L n_E$ -dimensional vector and piped to the hidden layers for use in the task, e.g. sentiment classification.

# Self-Attention – the fundamental computation underlying transformers

- ▶ Consider a sequence of tokens with fixed length  $n_L$ ,  $\{w_1,...,w_i,...,w_{n_L}\}$
- ▶ We have word embedding vectors  $x_i = E(w_i)$  with dimension  $n_E$ , producing a sequence of vectors

$$\{x_1,...,x_i,...,x_{n_i}\}$$

- In previous models, the sequence  $x_{1:n_L}$  could be flattened to an  $n_L n_E$ -dimensional vector and piped to the hidden layers for use in the task, e.g. sentiment classification.
- ightharpoonup A self-attention layer transforms  $x_{1:n_t}$  into a second sequence  $h_{1:n_t}$ , where

$$h_i = \sum_{i=1}^{n_L} a(x_i, x_j) x_j$$

- where  $a(\cdot)$  is an attention function such that  $a(\cdot) \ge 0$ ,  $\sum a(\cdot) = 1$ .
- $\rightarrow$  each  $h_i$  becomes a weighted average of the whole sequence.
- $ightharpoonup h_{1:n_i}$  is flattened and piped to the network's hidden layers, rather than  $x_{1:n_i}$ .

## **Basic** Self-Attention

#### Setup:

- 1. Sequence of tokens  $\{w_1, ..., w_i, ..., w_{n_l}\}$
- 2. Sequence of (trainable) embedding vectors  $\{x_1,...,x_i,...,x_{n_L}\}$
- 3. Sequence of attention-transformed vectors  $\{h_1,...,h_i,...,h_{n_i}\}$  with

$$h_i = \sum_{j=1}^{n_L} a(x_i, x_j) x_j$$

## **Basic** Self-Attention

#### Setup:

- 1. Sequence of tokens  $\{w_1, ..., w_i, ..., w_{n_L}\}$
- 2. Sequence of (trainable) embedding vectors  $\{x_1,...,x_i,...,x_{n_L}\}$
- 3. Sequence of attention-transformed vectors  $\{h_1,...,h_i,...,h_{n_i}\}$  with

$$h_i = \sum_{j=1}^{n_L} a(x_i, x_j) x_j$$

Basic self-attention specifies

$$a(x_i, x_j) = \frac{\exp(x_i \cdot x_j)}{\sum_{k=1}^{n_L} \exp(x_i \cdot x_k)}$$

▶ the dot-product  $x_i \cdot x_j$ , normalized with softmax such that  $\sum_i a(\cdot) = 1$ .

## **Basic** Self-Attention

#### Setup:

- 1. Sequence of tokens  $\{w_1, ..., w_i, ..., w_{n_L}\}$
- 2. Sequence of (trainable) embedding vectors  $\{x_1,...,x_i,...,x_{n_L}\}$
- 3. Sequence of attention-transformed vectors  $\{h_1,...,h_i,...,h_{n_l}\}$  with

$$h_i = \sum_{i=1}^{n_L} a(x_i, x_j) x_j$$

Basic self-attention specifies

$$a(x_i, x_j) = \frac{\exp(x_i \cdot x_j)}{\sum_{k=1}^{n_L} \exp(x_i \cdot x_k)}$$

- ▶ the dot-product  $x_i \cdot x_i$ , normalized with softmax such that  $\sum_i a(\cdot) = 1$ .
- Putting it together:

$$h_i = \sum_{j=1}^{n_L} \frac{\exp(x_i \cdot x_j)}{\sum_{k=1}^{n_L} \exp(x_i \cdot x_k)} x_j$$

► The basic self-attention transformation

$$h_i = \sum_{j=1}^{n_L} \frac{\exp(x_i \cdot x_j)}{\sum_{k=1}^{n_L} \exp(x_i \cdot x_k)} x_j$$

is the foundational ingredient of transformers.

► The basic self-attention transformation

$$h_i = \sum_{j=1}^{n_L} \frac{\exp(x_i \cdot x_j)}{\sum_{k=1}^{n_L} \exp(x_i \cdot x_k)} x_j$$

is the foundational ingredient of transformers.

Note the following simplifications:

- basic self-attention has no learnable parameters.
  - self-attention works indirectly through allowing the word embeddings to interact with each other
- basic self-attention ignores word order.

► The basic self-attention transformation

$$h_i = \sum_{j=1}^{n_L} \frac{\exp(x_i \cdot x_j)}{\sum_{k=1}^{n_L} \exp(x_i \cdot x_k)} x_j$$

is the foundational ingredient of transformers.

Note the following simplifications:

- basic self-attention has no learnable parameters.
  - self-attention works indirectly through allowing the word embeddings to interact with each other
- basic self-attention ignores word order.

The big initial gain from transformers, relative to RNNs, came from basic self-attention.

▶ The successful models (e.g. BERT, GPT) do add parameters and word order information to  $a(\cdot)$ 

## Self-attention allows words to interact with each other

Consider a sentence

with embeddings

$$\mathbf{\textit{X}}_{\mathsf{the}}, \mathbf{\textit{X}}_{\mathsf{cat}}, \mathbf{\textit{X}}_{\mathsf{walks}}, \mathbf{\textit{X}}_{\mathsf{on}}, \mathbf{\textit{X}}_{\mathsf{the}}, \mathbf{\textit{X}}_{\mathsf{street}}$$

▶ Feeding this sentence into the self-attention layer produces

$$m{h}_{\mathsf{the}}, m{h}_{\mathsf{cat}}, m{h}_{\mathsf{walks}}, m{h}_{\mathsf{on}}, m{h}_{\mathsf{the}}, m{h}_{\mathsf{street}}$$

where 
$$\boldsymbol{h}_i = \sum_{j=1}^n \frac{\exp(\boldsymbol{x}_i \cdot \boldsymbol{x}_j)}{\sum_k \exp(\boldsymbol{x}_i \cdot \boldsymbol{x}_k)} \cdot \boldsymbol{x}_j$$
.

## Self-attention allows words to interact with each other

Consider a sentence

the, cat, walks, on, the, street

with embeddings

$$\mathbf{X}_{\mathsf{the}}, \mathbf{X}_{\mathsf{cat}}, \mathbf{X}_{\mathsf{walks}}, \mathbf{X}_{\mathsf{on}}, \mathbf{X}_{\mathsf{the}}, \mathbf{X}_{\mathsf{street}}$$

► Feeding this sentence into the self-attention layer produces

$$m{h}_{\mathsf{the}}, m{h}_{\mathsf{cat}}, m{h}_{\mathsf{walks}}, m{h}_{\mathsf{on}}, m{h}_{\mathsf{the}}, m{h}_{\mathsf{street}}$$

where 
$$\boldsymbol{h}_i = \sum_{j=1}^n \frac{\exp(\boldsymbol{x}_i \cdot \boldsymbol{x}_j)}{\sum_{k} \exp(\boldsymbol{x}_i \cdot \boldsymbol{x}_k)} \cdot \boldsymbol{x}_j$$
.

Embedding layer will learn vectors x that tend to have **attention dot products** that contribute to the task at hand.

- ► For example, most transformers are pre-trained on a language modeling task (predicting a left-out word or sentence)
- in this task, stopwords like "the" will not be helpful.
  - ightharpoonup the learned embedding  $x_{
    m the}$  will tend to have a low or negative dot product with more informative words.

## Autoregressive vs Autoencoding Language Models

#### Autoregressive models:

- e.g. GPT = "Generative Pre-Trained Transformer":
- pretrained on classic language modeling task: guess the next token having read all the previous ones.
- during training, attention heads only view previous tokens, not subsequent tokens.
- ideal for text generation.

### Autoencoding models

- e.g. BERT = "Bidirectional Encoder Representations from Transformers"
- pretrained by dropping/shuffling input tokens and trying to reconstruct the original sequence.
- usually build bidirectional representations and get access to the full sequence.
- can be fine-tuned and achieve great results on many tasks, e.g. text classification.