SYDE 556/750

Simulating Neurobiological Systems Lecture 7: Temporal Basis Functions

Chris Eliasmith

October 21, 2024

- ► Slide design: Andreas Stöckel
- ► Content: Terry Stewart, Andreas Stöckel, Chris Eliasmith

Representing Stimulus Histories

Representing Functions: Sampling

Nyquist Sampling

The Nyquist-Shannon Sampling Theorem

If f(t) contains no frequencies greater than B then it is *completely* determined by samples spaced $\Delta t = \frac{1}{2B}$ apart (N = 2BT equally spaced samples for a time-slice [0,T)). There is a *one-to-one mapping* between the samples ${\bf x}$ and the function f(t).

Representing Functions: Sampling <3Hz

Representing Functions: Fourier Basis

Representing Functions: Cosine Basis

Representing Functions: ReLU Basis

Representing Functions: Legendre Basis

Implementing the Delay Network

Delay Network: Step Function

Delay Network: Windowed Sine Function

Image sources

Title slide

Infrared Photograph of a Sundial Near the Einstein Tower in Potsdam, Germany Author: DrNRNowaczyk, 2007.

From Wikimedia.