IT WI GN

KAPITEL 4:

TRANSPORTSCHICHT: TCP/UDP

Kapitel 4: Transportschicht - TCP/UDP

Lerninhalte:

- Verständnis prinzipieller Eigenschaften von Diensten der Transportschicht:
 - Multiplexing/ Demultiplexing
 - Segmentierung
 - Zuverlässiger Transport von Daten
 - Vermeidung/Verringerung von Paketverlusten durch Überlast im Netz
- Praktische Realisierung
 - UDP: verbindungslose Übertragung von Datagrammen
 - TCP: gesicherte Datenübertragung über TCP-Verbindungen
 - verschiedene TCP Varianten

Kapitel 4: Transportschicht: TCP/UDP

4.1 Multiplexing

- 4.2 UDP
- 4.3 TCP
- 4.4 Zusammenfassung

Dienste und Protokolle der Transportschicht

- Bieten logische Kommunikation zwischen Anwendungsprozessen auf verschiedenen Hosts
- Transportprotokolle laufen auf Endsystemen und nicht im Netz
 - Sender: teilt Nachrichten in Segmente, gibt Segmente an Netzwerkschicht weiter
 - Empfänger: setzt Segmente von der Netzwerkschicht wieder zu Nachrichten zusammen
- Protokolle der Transportschicht
 - Internet: TCP und UDP
 - weitere:
 - SCTP (Stream Control Transmission Protocol)

Wiederholung: Transport-Dienste im Internet

TCP-Dienste:

- Zuverlässiger Transport von Daten zwischen Sender und Empfänger
 - alle Daten ohne Verlust in gleicher Reihenfolge
- Flusskontrolle: Sender überflutet
 Empfänger nicht mit Daten
- Überlastkontrolle: Drosseln des Senders bei Überlast im Netz
- Keinerlei Garantien für Qualität der Übertragung (Dauer, Durchsatz, Sicherheit)
- Verbindungsorientierung: Herstellen einer Verbindung zwischen Client und Server

UDP-Dienste:

- Unzuverlässiger Transport von Daten zwischen Sender und Empfänger
 - Verlust und Änderung der Reihenfolge möglich
- Keine Verbindungsorientierung,
 Zuverlässigkeit, Flusskontrolle,
 Überlastkontrolle, Garantien für
 Qualität der Übertragung

Wo steht das Ziel in einem Paket?

Transportschicht: Multiplex

- Multiplex/De-Multiplex: Zusammenführen/Trennen mehrerer Datenströme auf einen Datenstrom
- Viele Datenströme zwischen Anwendungen und Transportprotokoll, ein Datenstrom zwischen Transportprotokoll und IP

Multiplex am Sender:

Abfertigung von Daten vieler Sockets, Hinzufügen des Transport-Header (horizontale Kommunikation, De-Multiplex)

Transportschicht: De-Multiplex

- Multiplex/De-Multiplex: Zusammenführen/Trennen mehrerer Datenströme auf einen Datenstrom
- Viele Datenströme zwischen Anwendung und Transportprotokoll, ein Datenstrom zwischen Transportprotokoll und IP

Wie De-Multiplex funktioniert

- Transport-Protokoll identifiziert richtiges Socket über IP Adressen und Ports
- Host empfängt IP Datagramm
 - im IP Header stehen Source und Destination IP Adresse
 - jedes Datagramm enthält ein
 Segment der Transportschicht
 - im Transport-Header jedes
 Segments stehen Source und
 Destination Port
- im Host werden Segmente über IP Adressen und Port Nummern an das richtige Socket (den richtigen Prozess) übergeben

TCP/UDP Segment Format

HT WI GN

UDP - Demux

- UDP identifiziert Socket NUR über Destination Port
- Pakete mit gleichem Destination Port aber unterschiedlichen IP-Adressen/Source Ports gehen an gleiches Socket

DatagramSocket mySocket1 = new DatagramSocket (5775);

UDP - Demux

- UDP identifiziert Socket NUR über Destination Port
- Pakete mit gleichem Destination Port aber unterschiedlichen IP-Adressen/Source Ports gehen an gleiches Socket

UDP - Demux

- UDP identifiziert Socket NUR über Destination Port
- Pakete mit gleichem Destination Port aber unterschiedlichen IP-Adressen/Source Ports gehen an gleiches Socket

TCP Demux

three segments, all destined to IP address: B, dest port: 80 are demultiplexed to *different* sockets

Kapitel 4: Transportschicht: TCP/UDP

- 4.1 Multiplexing
- **4.2 UDP**
- 4.3 TCP
- 4.4 Zusammenfassung

UDP (User Datagram Protocol): Paketformat und Protokoll

UDP segment format

length: Länge in Bytes inkl. Header
16 Bit → maximale Paketgröße 65536 Bytes checksum: ermöglicht Erkennung von Bit-Fehler

Minimales Transportprotokoll

- zustandslos
- kein Handshake zum Verbindungsaufbau
- jedes UDP-Segment wird unabhängig von allen anderen behandelt
- UDP-Sender hat "Aufgabe erledigt", sobald Nachricht übertragen ist
- Verbindungsloser "Best-Effort"-Dienst, UDP-Segmente können:
 - verloren gehen
 - in falschen Reihenfolge an die Anwendung ausgeliefert werden
- einige UDP-Anwendungen
 - DNS, IP-Telefonie (Sprache, Video), IP-Multicast/Broadcast, SNMP