Invariant information clustering

Anton Naumov,
Data analyst in ISP RAS
MAY 2021

Foreword

- We use invariant information clustering (IIC)
- Several SOTA results

Outline

- 1. Problem statements
- 2. Method overview
- 3. Mutual information loss
- 4. Couple of tricks
- 5. Results
- 6. Summary

Problem statements

girafe

Clustering

Semi-supervised classification

Unsupervised segmentation

Encoder training

Input image

Feature maps

Tasks to consider

- clustering
- semi-supervised classification
- unsupervised segmentation
- encoder training

Method overview

girafe

2 stage clustering

Train feature extractor (i.e. with autoencoder)

Train clusterisator

IIC approach

Mutual information loss

girafe

Mutual information

2 random variables A and B: values from 0 to N_c

Joint probability distribution:

$$p_{AB}(a,b)$$

The marginals:

$$p_A(a) = \sum_{b=0}^{N_C} p_{AB}(a,b) \qquad \quad p_B(b) = \sum_{a=0}^{N_C} p_{AB}(a,b)$$

Mutual information:

$$I(A,B) = \sum_{a=0}^{N_C} \sum_{b=0}^{N_C} p_{AB}(a,b) \log rac{p_{AB}(a,b)}{p_A(a)p_B(a)}$$

Mutual information

$$I(A,B) = \sum_{a=0}^{N_C} \sum_{b=0}^{N_C} p_{AB}(a,b) \log rac{p_{AB}(a,b)}{p_A(a)p_B(a)}$$

Properties:

- 1. Symmetry: I(A,B) = I(B,A)
- 2. I(A, B) = 0 if and on if A and B are independent
- 3. Non-negative: I(A,B)>0 for any A and B
- 4. In some sense maximized when A and B can be predicted from each other

What are these random variables?

Encoder function: $\Phi(\cdot)$

On original images:

$$\Phi(x_i) = \left(egin{array}{c} \Phi_0(x_i) \ \Phi_1(x_i) \ dots \ \Phi_{N_C}(x_i) \end{array}
ight)$$

On transformed images:

$$\Phi(gx_i) = \left(egin{array}{c} \Phi_0(gx_i) \ \Phi_1(gx_i) \ dots \ \Phi_{N_C}(gx_i) \end{array}
ight)$$

$$P_{orig}(a|i) = \Phi_a(x_i)$$

Interpretation:
$$P_{orig}(a|i) = \Phi_a(x_i)$$
 $P_{trans}(a|i) = \Phi_a(gx_i)$

Joint probabilities estimation

Joints:

$$P_{orig,trans}(a,b) = rac{1}{N_B} \sum_{i \in batch} \Phi_a(x_i) \Phi_b(gx_i)$$

Symmetrization:

$$P_{orig,trans}^{sym}(a,b) = rac{1}{2}(P_{orig,trans}(a,b) + P_{orig,trans}(b,a))$$

Mutual information:

$$I(orig, trans) = \sum_{a=0}^{N_C} \sum_{b=0}^{N_C} P_{orig, trans}(a, b) \log rac{P_{orig, trans}(a, b)}{P_{orig}(a) P_{trans}(b)}$$

Joint probabilities estimation

Joints:

$$P_{orig,trans}(a,b) = rac{1}{N_B} \sum_{i \in batch} \Phi_a(x_i) \Phi_b(gx_i)$$

Symmetrization:

$$P_{orig,trans}^{sym}(a,b) = rac{1}{2}(P_{orig,trans}(a,b) + P_{orig,trans}(b,a))$$

Model assumptions stuff

Mutual information:

$$I(orig, trans) = \sum_{a=0}^{N_C} \sum_{b=0}^{N_C} P_{orig, trans}(a, b) \log rac{P_{orig, trans}(a, b)}{P_{orig}(a) P_{trans}(b)}$$

Joint probabilities estimation

Note: it's sufficient to estimate joint probabilities

Couple of tricks

girafe

Common issues

Clustering degeneracy:

Noisy data:

dog

Distractors:

Auxiliary overclustering

Auxiliary overclustering

Entropy correction

Another form of mutual information:

$$I(A,B)=rac{1}{2}ig(H(A)+H(B)ig)-rac{1}{2}ig(H(A|B)+H(B|A)ig)$$

pushes towards spreading

Corrected mutual information:

$$I_{\lambda}(A,B) = I(A,B) + (\lambda-1)ig(H(A) + H(B)ig)$$

Segmentation

Segmentation

 $g \in G$ — number of transforms $u \in \Omega$ — pixel positions $t \in T$ — displacements n — number of images

C — number of classes

$$P_{cc'}^{t} = \frac{1}{n|G||\Omega|} \sum_{i=1}^{n} \sum_{g \in G} \sum_{u \in \Omega} P(z = c|x_u) P(z = c'|gx_{u+t})$$

$$I_t = \sum_{c,c'=1}^{C} P_{cc'}^t \ln \frac{P_{cc'}^t}{P_c^t P_{c'}^t}$$
$$I = \frac{1}{|T|} \sum_{c} I_t$$

Corrected mutual information:

Results

girafe ai

Semi-supervised classification

Accuracy

	STL10
Dosovitskiy 2015 [18]†	74.2
SWWAE 2015 [54]†	74.3
Dundar 2015 [19]	74.1
Cutout* 2017 [15]	87.3
Oyallon* 2017 [42]†	76.0
Oyallon* 2017 [42]	87.6
DeepCluster 2018 [7]	73.4*
ADC 2018 [24]	56.7×
DeepINFOMAX 2018 [27]	77.0
IIC plus finetune†	79.2
IIC plus finetune	88.8

Table 3: Fully and semi-supervised classification. Legend: *Fully supervised method. *Our experiments with authors' code. †Multi-fold evaluation.

Unsupervised segmentation

COCO-Stuff-3 and Postdam-3

Figure 7: Example segmentation results (un- and semi-supervised). Left: COCO-Stuff-3 (non-stuff pixels in black), right: Potsdam-3. Input images, IIC (fully unsupervised segmentation) and IIC* (semi-supervised overclustering) results are shown, together with the ground truth segmentation (GT).

Per-pixel accuracy

	COCO-Stuff-	3 COCO-Stuff	Potsdam-3	Potsdam
Random CNN	37.3	19.4	38.2	28.3
K-means [44]†	52.2	14.1	45.7	35.3
SIFT [39]‡	38.1	20.2	38.2	28.5
Doersch 2015 [17]‡	47.5	23.1	49.6	37.2
Isola 2016 [30]‡	54.0	24.3	63.9	44.9
DeepCluster 2018 [7]† ‡	41.6	19.9	41.7	29.2
IIC	72.3	27.7	65.1	45.4

Table 4: **Unsupervised segmentation.** IIC experiments use a single subhead. Legend: †Method based on k-means. ‡Method that does not directly learn a clustering function and requires further application of k-means to be used for image clustering.

Clustering

Accuracy

	STL10	CIFAR10	CFR100-20	MNIST
Random network	13.5	13.1	5.93	26.1
K-means [53]†	19.2	22.9	13.0	57.2
Spectral clustering [49]	15.9	24.7	13.6	69.6
Triplets [46]‡	24.4	20.5	9.94	52.5
AE [5]‡	30.3	31.4	16.5	81.2
Sparse AE [40]‡	32.0	29.7	15.7	82.7
Denoising AE [48]‡	30.2	29.7	15.1	83.2
Variational Bayes AE [34]‡	28.2	29.1	15.2	83.2
SWWAE 2015 [54]‡	27.0	28.4	14.7	82.5
GAN 2015 [45]‡	29.8	31.5	15.1	82.8
JULE 2016 [52]	27.7	27.2	13.7	96.4
DEC 2016 [51]†	35.9	30.1	18.5	84.3
DAC 2017 [8]	47.0	52.2	23.8	97.8
DeepCluster 2018 [7]† ‡	33.4★	37.4×	18.9★	65.6 *
ADC 2018 [24]	53.0	32.5	16.0∗	99.2
IIC (lowest loss sub-head)	59.6	61.7	25.7	99.2
IIC (avg sub-head \pm STD)	59.8	57.6	25.5	98.4
	± 0.844	± 5.01	± 0.462	± 0.652

Table 1: **Unsupervised image clustering.** Legend: †Method based on k-means. ‡Method that does not directly learn a clustering function and requires further application of k-means to be used for image clustering. *Results obtained using our experiments with authors' original code.

STL10 dataset

Overall results

TASK	DATASET	MODEL	METRIC NAME	METRIC VALUE	GLOBAL RANK	RESULT	BENCHMARK
Unsupervised Image Classification	CIFAR-10	IIC	Accuracy	61.7	# 3	Ð	Compare
Unsupervised Image Classification	CIFAR-20	IIC	Accuracy	25.7	# 4	Ð	Compare
Unsupervised Semantic Segmentation	COCO-Stuff-15	IIC	Accuracy	27.7	# 1	Ð	Compare
Unsupervised Semantic Segmentation	COCO-Stuff-3	IIC	Accuracy	72.3	# 1	Ð	Compare
Unsupervised MNIST	MNIST	IIC	Accuracy	99.3	# 1	Ð	Compare
Unsupervised Image Classification	MNIST	IIC	Accuracy	99.3	# 1	Ð	Compare
Unsupervised Semantic Segmentation	Potsdam	IIC	Accuracy	65.1	# 1	Ð	Compare
Unsupervised Semantic Segmentation	Potsdam-3	IIC	Accuracy	45.4	# 1	Ð	Compare
Unsupervised Image Classification	STL-10	IIC	Accuracy	61.00	#3	Ð	Compare
Image Classification	STL-10	IIC	Percentage correct	88.8	# 37	Ð	Compare
Semi-Supervised Image Classification	STL-10	IIC	Accuracy	88.8	# 2	Ð	Compare

paperswithcode.com

Summary

- 1. simple method with several SOTA results
- 2. multiple problems
- 3. can be used as encoder trainer
- 4. data type agnostic (theoretically)

Links

- . Authors git: https://github.com/xu-ji/IIC
- My tutorial (with colab version): https://github.com/vandedok/IIC_tutorial

Thanks for attention!

Questions? Additions? Welcome!

girafe

