M 328K: Lecture 7

Katherine Ho

September 17, 2024

1 Last Time

- 1. $ax \equiv b \pmod{n}$ If $d = \gcd(a, n)$, then
 - (a) If $d \nmid b$, then no solutions
 - (b) If $d \mid b$, then there are exsactly d distinct solutions mod n
 - (c) If gcd(a, n) = 1, there is a unique solution mod n.
- 2. $9x \equiv 21 \pmod{30}$

 $d = \gcd(9, 30) = 3$

First divide by d to solve congruence

$$3x \equiv 7 \pmod{10}$$

This applies to point 1(c) and has a unique solution mod 10.

Euclidean Algorithm: x = -21 is a solution. There are infinitely many solutions adding multiples of 10 to the solution.

$$-21 + 10k$$
 is also a solution

They are all congruent to each other mod 10. Infinitely many integer solutions to $3x \equiv 7 \pmod{10}$ are

$$\ldots$$
, -21 , -11 , -1 , 9 , 19 , 29 , 39 , \ldots

This list also includes all solutions to original congruence, but not all the same mod 30.

2 Today

Consider $ax \equiv 1 \pmod{n}$. This has a (unique) solution iff gcd(a, n) = 1.

A solution is called a multiplicative inverse of a modulo n. We will write it as $x \equiv a^{-1} \pmod{n}$ so $aa^{-1} \equiv 1 \pmod{n}$. Note that $a^{-1} \neq \frac{1}{a}$.

Recall. $4x \equiv 3 \pmod{19}$.

Note.

$$4^{-1} \equiv 3 \pmod{19}$$
 Since $4 \cdot 5 \equiv 20 \equiv 1 \pmod{19}$

Multiply $4x \equiv 3 \pmod{19}$ by $4^{-1} \pmod{19}$ to get

$$5 \cdot 4x \equiv 5 \cdot 3 \pmod{19}$$
$$x \equiv 15 \pmod{19}$$

Example 2.0.1. Find $7^{-1} \pmod{17}$. Solve $7x \equiv 1 \pmod{17} \Leftrightarrow 7x - 17y = 1$. *EA*:

$$17 = 7 \cdot 2 + 3$$

$$7 = 3 \cdot 2 + 1$$

$$1 = 7 - 3 \cdot 2$$

$$1 = 7 - (17 - 7 \cdot 2)$$

$$= 17(-2) + 7 \cdot 5$$

$$\boxed{x = 5}$$

3 Stuff

 $a^k \pmod{5}$

 $a^k \pmod{7}$

3.1 Fermat's Little Theorem

Theorem 3.1. Let p be prime and $a \in \mathbb{Z}$ such that $p \nmid a$. Then

$$a^{p-1} \equiv 1 \pmod{p}$$

ie.

$$p \mid (a^{p-1} - 1)$$

Proof (Idea). p = 5

$$0, 1, 2, 3, 4, 5 \pmod{5}$$

 $0, 2, 4, 1, 3 \pmod{5}$
 $0, 3, 1, 4, 2$

<u>Claim</u>: The integers $0, a, 2a, \ldots, (p-1)a \pmod{p}$ are the same as the integers $0, 1, 2, \ldots, (p-1)$ but maybe in a different order.

Proof of Claim. If claim is false, then $ia \equiv ja \pmod{p}$ for some i, j. Then $p \mid a(i-j)$.

Now Consider

$$a(2a)(3a) \dots ((p-1)(a))$$

= $a^{p-1}(1)(2)(3) \dots (p-1)$
= $a^{p-1}(p-1)!$

On the other hand, by the claim,

$$a(2a)(3a)\dots((p-1)a) \equiv (1)(2)(3)\dots(p-1) \pmod{p}$$

 $a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$

By HW,

$$\gcd((p-1)!, p) = 1$$

So we can cancel:

$$a^{p-1} \equiv 1 \pmod{p}$$

3.2 Example

$$p=23.\ 6^{22}=1\ (\mathrm{mod}\ 23).$$
ie.

$$23|(6^{22}-1)$$

3.3 Primality Test

$$n = 10^{100} + 37$$
Compute

$$2^{n-1} = 2^{10^{100} + 36} \not\equiv 1 \pmod{n}$$

 $\equiv 367 \dots 396 \pmod{n}$

3

So n is not prime.

Note: This will never show n is prime. It can be true that $a^{n-1} \equiv 1 \pmod{n}$ even if n is composite. Test 117 with a = 2.

$$2^{116} = 2^{64} \cdot 2^{32} \cdot 2^{16} \cdot 2^4$$

$$\equiv 16 \cdot 22 \cdot 16 \cdot 16$$

$$\equiv 22$$

$$\not\equiv 1 \pmod{117}$$

So 117 is composite.