4. In figure 1 below, the biasing components have been omitted. The transistors are identical with β_o = 200. I_{C1} = 1 mA and I_{C2} = 5 mA. R_{C1} = 5 k Ω , R_{C2} = 1 k Ω ,

$$R_{E2} = 150 \Omega$$
, $R_S = 1 k\Omega$.

Calculate g_{m1} , g_{m2} , r_{be1} and r_{be2} .

Calculate R_i , R_o , $A_v = v_o/v_i$ and $A_{vs} = v_o/v_s$.

(Ans $R_i = 5 \text{ k}\Omega$, $R_o = 1 \text{ k}\Omega$, $A_v = +1111$, $A_{vs} = +926$).

Figure 1

Solution

$$g_{m1} = 40I_{C1} = 40mA/V$$

 $g_{m2} = 40I_{C2} = 200mA/V$

$$r_{be1} = \frac{\beta_0}{g_{m1}} = 5k\Omega$$
, $r_{be2} = \frac{\beta_0}{g_{m2}} = 1k\Omega$

CE (I stage), CE-ED (II stage)

$$R_{i1} = R_i (for \ CE) = r_{be1} = 5k\Omega$$

$$R_o = R_o (for \ CE - ED) = R_{C2} = 1k\Omega$$

$$A_V = \frac{v_{o2}}{v_{i1}} = \frac{v_{o2}}{v_{i2}} \frac{v_{o1}}{v_{i1}} = A_{V2} \times A_{V1}$$

$$A_{V2} = -\frac{g_{m2}R_{C2}}{1 + g_{m2}R_{E2}} = -\frac{200m \times 1k}{1 + 200m \times 150}$$

 $R_{i2} = r_{be2} + (1 + \beta_0)R_{E2} = 1k + 201 \times 150 = 31.15 \text{ k}$

$$A_{V1} = -g_{m1}(R_{C1} \parallel R_{i2}) = -40m \times 4.31k$$

$$A_{\rm V} \sim 1,111$$

$$A_{vs} = \frac{v_{o2}}{v_s} = \frac{v_{o2}}{v_{i1}} \frac{v_{i1}}{v_s} = A_V \cdot \frac{r_{be1}}{r_{be1} + R_S} = 926.5$$

 $A_{V2} = -6.45$

 $A_{V1} = 172.4$

5. In figure 2 the biasing components have been omitted. The transistors are identical with $\beta_o = 99$ and $r_{be} = 2 \text{ k}\Omega$, $R_C = 3 \text{ k}\Omega$, $R_E = 50 \Omega$ and $R_S = 600 \Omega$.

Calculate the trans-resistance gain V_o/i_s .

(Ans - $34.2 \times 10^3 \Omega$).

Figure 2

Solution

CE (I stage), CC (II stage)

$$g_{m2} = \frac{99}{2k} = 50mA/V$$

$$R_{M} = \frac{v_{o}}{i_{s}} = \frac{v_{o}}{v_{i2}} \frac{v_{i2}}{v_{i1}} \frac{v_{i1}}{i_{s}} \quad \text{or} \quad R_{M} = \frac{v_{o}}{i_{s}} = \frac{v_{o}}{v_{i2}} \frac{v_{o1}}{v_{i1}} \frac{v_{i1}}{i_{s}} = A_{V2} \times A_{V1} \times \frac{v_{i1}}{i_{s}}$$
and $i_{S} = \frac{v_{i1}}{R_{S} \parallel r_{be1}} \quad \text{so} \quad \frac{v_{i1}}{i_{s}} = \frac{R_{S} \times r_{be1}}{R_{S} + r_{be1}}$

$$SOR_{M} = A_{V2} \times A_{V1} \times \frac{R_{S} \times r_{bel}}{R_{S} + r_{bel}}$$

$$A_{V2} = \frac{g_{m2}R_{E}}{1 + g_{m2}R_{E}} = \frac{50m \times 50}{1 + 50m \times 50}$$

 $A_{V2} = 0.71$

$$A_{V1} = -g_{m1}(R_C \parallel R_{i2}) = 50m \times \frac{R_C \times R_{i2}}{R_C + R_{i2}}$$

$$R_{i2} = r_{be2} + (1 + \beta_0)R_E = 2k + 100 \times 50 = 7k\Omega$$

So
$$A_{V1} = -g_{m1}(R_C \parallel R_{i2}) = 50m \times \frac{3k \times 7k}{3k + 7} = 50m \times 2.1k$$

 $A_{V1} = -105$

$$\frac{R_S \times r_{bel}}{R_S + r_{bel}} = \frac{600 \times 2k}{600 + 2k} = \frac{1.2k}{2.6k} = 460 \ \Omega$$

$$R_M = 0.71 \times -105 \times 460 \approx -34k\Omega$$
.