Ejercicio 1. Algoritmo en MATLAB

Cree un m-archivo con el nombre lagrange que evalúe numéricamente el polinomio de interpolación utilizando la base de Lagrange.

Ejercicio 2. Estimación del Error de Interpolación

Considere $f(x) = \operatorname{senh}(x)$ para $x \in [-1, 1]$.

(a) Encuentre el menor grado posible para el polinomio de interpolación p_n de los puntos $\{(x_i, f(x_i))\}_{i=0}^n$, tal que se satisfaga la siguiente condicin:

$$\underbrace{|f(x) - p_n(x)|}_{\text{Error absoluto}} < 10^{-8},$$

sobre cualquier conjunto de nodos $\{x_0 < x_1 < \cdots < x_n\} \subset [-1, 1]$.

(b) Utilice puntos equidistantes para graficar la funcin y el polinomio de interpolacin en [-1,1]. Si es necesario utilice una escala logartmica en base 10 para representar errores. Adicionalmente grafique el error absoluto utilizando los nodos $x_i = -1 + \frac{2i}{n}$ para $i = 0, 1, \dots, n$.

Ejercicio 3. Fenómeno de Runge

Considere $g(x) = \frac{1}{1 + 25x^2}$ para $x \in [-1, 1]$, x_i definido en el ejercicio 2 y $w_i = \cos\left(\frac{(2(n-i)+1)\pi}{2(n+1)}\right)$ para $i = 0, 1, \dots, n$.

- (a) Grafique la función g, y los polinomios que interpolan los puntos $\{(x_i, g(x_i))\}_{i=0}^{10}$ y $\{(w_i, g(w_i))\}_{i=0}^{10}$, y el spline cúbico¹ de los puntos $\{(x_i, g(x_i))\}_{i=0}^{10}$.
- (b) Grafique el error en la norma $\|\cdot\|_{\infty}$ en la aproximación de g por el polinomio de interpolación de los puntos $\{(x_i, g(x_i))\}_{i=0}^n$ para n = 10, 20, 40, 80.
- (c) Grafique el error absoluto en la aproximación de g por el polinomio de interpolación de los puntos $\{(w_i, g(w_i))\}_{i=0}^n$ y el spline cúbico de los puntos $\{(x_i, g(x_i))\}_{i=0}^n$ para n = 10, 20, 40, 80.

Ejercicio 4. Fenómeno de Gibbs

Considere $h(x) = |\operatorname{senh}(x)|$ para $x \in [-1, 1]$ y los nodos x_i y w_i definidos en los ejercicios 2 y 3, respectivamente.

- (a) Grafique la función h, el polinomio de interpolación de los puntos $\{(w_i, h(w_i))\}_{i=0}^n$ y el spline cúbico de los puntos $\{(x_i, h(x_i))\}_{i=0}^n$ para n = 10, 20, 40, 80.
- (b) Grafique el error absoluto en la aproximación de h con los polinomios definidos en (a) para n = 10, 20, 40, 80.

¹Utilice la función "spline" de MATLAB para la evaluación numérica del respectivo polinomio cúbico.