Taux d'évolution

2nd Générale Probabilités et statistiques - Cours

1. Taux d'évolution et coefficient multiplicateur

Définitions :

- La variation absolue d'une évolution est la différence entre la valeur d'arrivée et la valeur de départ :
- $\Delta V = V_A V_D.$ Le taux d'évolution ou variation relative est le quotient entre la variation absolue par la valeur de départ : $t = \frac{V_A V_D}{V_D}$.
- ullet On appelle coefficient multiplicateur de l'évolution le nombre $CM=rac{V_A}{V_D}$.

Propriété:

Pour toute évolution de taux t et de coefficient multiplicateur CM, on a CM = 1 + t.

Démonstration :

$$\frac{V_A-V_D}{V_D}=\frac{V_A}{V_D}-\frac{V_D}{V_D}=\frac{V_A}{V_D}-1=CM-1 \text{ d'où } CM=1+t.$$

Remarques:

- Lors d'une augmentation, le taux t est positif et le coefficient multiplicateur est supérieur à 1.
- Lors d'une diminution, le taux t est négatif et le coefficient multiplicateur est inférieur à 1.

II. Évolution successives

1. Cas général

Propriété:

Lorsqu'une quantité subit n évolutions, successives de taux t_1, t_2, \ldots, t_n , alors le coefficient multiplicateur correspondant à l'évolution global est égal au produit des coefficients multiplicateurs CM_1, CM_2, \ldots, CM_n associés respectivements aux évolutions de taux t_1, t_2, \ldots, t_n .

2. Évolution réciproques

Définition :

Une quantité non nulle V_D subit une évolution de taux t pour devenir égal à V_A . Le taux réciproque de test le taux permettant de passer de la valeur V_A à la valeur V_D .

Propriété:

Pour que deux évolutions soient réciproques, il faut que leurs coefficients multiplicateurs soient inverses l'un de l'autre. Le taux