Housing Case Study

Problem Statement:

Consider a real estate company that has a dataset containing the prices of properties in the Delhi region. It wishes to use the data to optimise the sale prices of the properties based on important factors such as area, bedrooms, parking, etc.

Essentially, the company wants —

- 1. To identify the variables affecting house prices, e.g. area, number of rooms, bathrooms, etc.
- 2. To create a linear model that quantitatively relates house prices with variables such as number of rooms, area, number of bathrooms, etc.
- 3. To know the accuracy of the model, i.e. how well these variables can predict house prices.

Steps:

- 1. Reading, understanding and visualizing the data
- 2. Preparing the data for modelling (train-test split, rescaling etc)
- 3. Training the data
- 4. Residual analysis
- 5. Predictions and evaluation on the test set

Visualising Categorical Variables

- 1. The location of the house on a main road is an important variable that affects the price, with houses on main roads generally having higher prices than those that are not.
- 2. There is not significant difference between furnished and unfurnished houses, the prompt does not provide enough information to make a clear summary. Additional information is needed to understand how furnishing affects the price of a house, such as the location of the house, the quality and quantity of furnishings, and local market conditions.

Conclusion: Air conditioning has impact on the pricing for every type of furnishing status

Conclusion: There is a significant correlation of **Price** on **Area, Stories, Bathroom and Air Conditioning**. Meaning the change in these variables will have affect on pricing

Visualize the data with a scatter plot and the fitted regression lin

Parameters of linear Regression

Const= 0.126894Area= 0.462192

Summary

OLS Regression Results

Dep. Variable: R-squared: 0.283 price OLS Model: Adj. R-squared: 0.281 Method: Least Squares F-statistic: 149.6 Mon, 02 Jan 2023 Prob (F-statistic): 3.15e-29 Date: Time: 18:19:27 Log-Likelihood: 227.23

No. Observations: 381 AIC: -450.5BIC: -442.6

Df Residuals: 379

Df Model:

Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975] const 0.1269 0.013 9.853 0.000 0.102 0.152

area 0.4622 0.038 12.232 0.000 0.388 0.536

Omnibus: 67.313 Durbin-Watson: 2.018 Prob(Omnibus): 0.000 Jarque-Bera (JB): 143.063

Skew: 0.925 Prob(JB): 8.59e-32

5.365 Cond. No. 5.99 Kurtosis:

The coefficient pvalue is 0 the result is statistically significance R square is 0.28 means about 28% of significance in price is explained by the variable area

Final Model- Parameters

		OLS Regress	sion Results				
=======================================						====	
Dep. Variable:		price		R-squared:		0.676	
Model:		OLS		Adj. R-squared:		0.667	
Method:	Leas	Least Squares		:	77.18		
Date:	Mon, 02	Mon, 02 Jan 2023		Prob (F-statistic):		3.13e-84	
Time:		18:19:28		ood:	378.51		
No. Observations:		381		AIC:		-735.0	
Df Residuals:		370		BIC:		-691.7	
Df Model:		10					
Covariance Type:	pe: nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
const	0.0428		2.958		0.014		
area	0.2335	0.030	7.772	0.000	0.174	0.293	
bathrooms	0.2019	0.021	9.397		0.160	0.244	
stories	0.1081	0.017	6.277	0.000	0.074	0.142	
mainroad	0.0497	0.014	3.468		0.022	0.078	
guestroom	0.0402	0.013	3.124		0.015		
hotwaterheating	0.0876	0.022	4.051	0.000	0.045	0.130	
airconditioning	0.0682	0.011	6.028	0.000	0.046	0.090	
parking	0.0629	0.018	3.482	0.001	0.027	0.098	
prefarea	0.0637	0.012	5.452	0.000	0.041	0.087	
unfurnished	-0.0337	0.010	-3.295	0.001	-0.054		
Omnibus:	=======		 Durbin-Wats			.099	
Prob(Omnibus):		0.000		Jarque-Bera (JB):		322.034	
Skew:				Prob(JB):		1.18e-70	
Kurtosis:		6.902		Cond. No.		10.3	
						====	

Error term is centered around zero and normally distributed.

The VIFs and p-values both are within an acceptable range. So we go ahead and make our predictions using this model only.

	Features	VIF
3	mainroad	4.55
0	area	4.54
2	stories	2.12
7	parking	2.10
6	airconditioning	1.75
1	bathrooms	1.58
8	prefarea	1.47
9	unfurnished	1.33
4	guestroom	1.30
5	hotwaterheating	1.12

y_test vs y_pred

We can see that the equation of our best fitted line is:

price=0.236×area+0.202×bathrooms+0.11×stories+0.05 ×mainroad+0.04×guestroom+0.0876×hotwaterheating+ 0.0682×airconditioning+0.0629×parking+0.0637×prefar ea-0.0337×unfurnished