Treasure Hunting

Zheng Zangwei*

April 19, 2018

Problem 1

1. Analyze the worst case W(n) and the best case B(n) time complexity of mergesort as accurately as possible.

Explore the relation between them and the binary representations of numbers.

Plot W(n) and B(n) and explain what you observe.

- 2. Analyze the average case A(n) time complexity of mergesort.
 - Plot A(n) and explain what you observe.
- 3. Prove that: The minimum number of comparisons needed to merge two sorted arrays of equal size m is 2m-1.

Algorithm 1

```
Subroutine \ \ Mergesort(A,p,r)
if \ \ (p < r)
q = [(p + r)/2];
Mergesort(A,p,q);
Mergesort(A,q + 1,r);
Merge(A,p,q,r);
```

1 Problem 1.1

We know from the algorithm, W(0) = 0, $W(\lfloor \frac{n}{2} \rfloor) + W(\lceil \frac{n}{2} \rceil) + n - 1$; We have following lemma which I omit the proof:

^{*}E-mail: zzw@smail.nju.edu.com Student ID: 171860658

Lemma 1

$$\lceil \frac{n}{2} \rceil = \lfloor \frac{n+1}{2} \rfloor$$

Lemma 2

If $T(n) = 1 + T(\lfloor \frac{n}{k} \rfloor)$ we have $T(n) = \lceil \log_k(n+1) \rceil$. This can be derived from k-base number.

Now consider W(n+1)-W(n), we have

$$W(n+1) - W(n) = W(\lfloor \frac{n}{2} \rfloor + 1) - W(\lfloor \frac{n}{2} \rfloor) + 1.$$

Let f(n) = W(n+1) - W(n) we have $f(n) = 1 + f(\lfloor \frac{n}{2} \rfloor)$ so that $W(n+1) - W(n) = f(n) = \lceil \log_k(n+1) \rceil$. By summation, $W(n) = \sum_{k=1}^n \lceil \log_2 k \rceil$.

This introduced an interesting property which I want but cannot find a intuitive proof to it.

Corollary 1

If n is even, W(n) denotes the number of bits in binary representations, then

$$\sum_{k=0}^{\frac{n}{2}-1} W(k) + n - 1 = \sum_{k=\frac{n}{2}+1}^{n} W(k)$$

Remark

This property is the same as the one has been discussed on class, which is illustrated in following picture.

1		1		1		1
10		10		10		10
11		11		11		11
100		100		100		100
101		101		101		101
110		110		110		110
111		111		111		111
1000	=	1000	+	1000	+	1000
1001		1001		1001		1001
1010		1010		1010		1010
1011		1011		1011		1011
1100		1100		1100		1100
1101		1101		1101		1101
1110		1110		1110		1110

Figure 1: Property

Then from the great *Concrete Mathematics* problem 3.34 we have the following calculation. Let $m = \lceil log_2 n \rceil$,

$$W(n) + (2^{m} - n)m = \sum_{k=1}^{2^{m}} \lceil \log_{2} k \rceil$$

$$= \sum_{j,k} j[j = \lceil \log_{2} k \rceil][1 \le k \le 2^{m}]$$

$$= \sum_{j,k} j[2^{j-1} < k \le 2^{j}][1 \le jm]$$

$$= \sum_{j=1}^{m} j * 2^{j-1} = 2^{m}(m-1) + 1$$

Thus $W(n) = n\lceil log_2 n \rceil - 2^{\lceil log_2 n \rceil} + 1$.

2 Problem 1.2

Still, we know $B(0) = 0, B(\lfloor \frac{n}{2} \rfloor) + B(\lceil \frac{n}{2} \rceil) + \lfloor \frac{n}{2} \rfloor$.

Definition 1

If $T(n) = [2 / n] + T(\lfloor \frac{n}{2} \rfloor)$ we define T(n) = Dn. Dn is the number of 1s in the binary representations.

Now consider B(n+1)-B(n), we have

$$B(n+1) - B(n) = B(\lfloor \frac{n}{2} \rfloor + 1) - B(\lfloor \frac{n}{2} \rfloor) + [2 / n].$$

B(n) is waiting to be counted.

3 Problem 1.3

Here is the plot of W(n) and B(n) along with A(n).

Figure 2: n=1000

Figure 3: n=100000000

From the plot, we know that W(n) and A(n) are close when n is large. A(n) remains small even when n is very large.

Figure 4: B(n)

For B(n), it is cool.

4 Problem 2

Definition 2

R is the number of elements left in the non-empty array by MERGE(A,B) on A of size a and B of size b.

Theorem 4.1

$$P(R \ge r) = \frac{C_{a+b-r}^a}{C_{a+b}^a} + \frac{C_{a+b-r}^b}{C_{a+b}^b}, \ E(R) = \sum_r P(R \ge r) = \frac{a}{b+1} + \frac{b}{a+1}$$

Proof

For the case R>=r, there are two possible situation. We consider that A is not empty. Since there are a+b number at all, then $B_b < A_r$ which means B_b is at most the (a+b-r)th most number. Thus there are C^a_{a+b-r} possible cases. There are C^a_{a+b} in all. Thus the first formula is generated.

$$E(R) = \sum_{r} r * P(r) = (1 * P(1) + 2 * P(2) + ...) + (2 * P(2) + 3 * P(3) + ...) + ... = \sum_{r} P(R \ge r).$$

Q:Is there a formal way to get this equation?

Then we have
$$A(n) = A(\lfloor \frac{n}{2} \rfloor) + A(\lceil \frac{n}{2} \rceil) + (n - E(R)) = A(\lfloor \frac{n}{2} \rfloor) + A(\lceil \frac{n}{2} \rceil) + (n - \lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{2} \rfloor + 1)$$
.

5 Problem 3

Theorem 5.1

Each of the 2m-1 comparisions $B_1: A_1, A_1: B_2, B_2: A_2, ..., Bm: A_m$ must be made for list $A:A1 < \cdot \cdot \cdot < Am \ B:B1 < \cdot \cdot \cdot < Bm$ subject to $B1 < A1 < B2 < A2 < \cdot \cdot \cdot < Bm$ < Am.

Proof

Suppose there are less than 2m-1 comparisions between A and B. Then at least two B_i is compared less than two time. Then at least one comparsion is not $B_1 < A_1$. Without loss of generality, we suppose the comparision is $B_i < A_j$. Thus $A_{j-2} < B_{i-1} < B_i < A_j$. Altough we may have the comparison $B_{i_1} < A_{j-1}$, we can exchange B_i with A_{j-1} and get another valid permutation. Thus we need at least 2m-1 comparisions.

Since there exists two array that must be compared 2m-1 times, thus the minimal comparison time is 2m-1.