(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. Oktober 2003 (23.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/087294 A2

- (51) Internationale Patentklassifikation:
- ____
- (21) Internationales Aktenzeichen:

PCT/EP03/03638

(22) Internationales Anmeldedatum:

8. April 2003 (08.04.2003)

(25) Einreichungssprache:

Deutsch

C12N

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 16 800.8

15. April 2002 (15.04.2002) DE

102 22 513.3

17. Mai 2002 (17.05.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): UNIVERSITÄTSKLINIKUM HAMBURG-EP-PENDORF [DE/DE]; Martinistrasse 52, 20246 Hamburg (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BLOCK, Andreas [DE/DE]; Lokstedter Steindamm 80, 22529 Hamburg (DE).
- (74) Anwälte: WEBER-QUITZAU, Martin usw.; Uexküll & Stolberg, Beselerstrasse 4, 22607 Hamburg (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: RECOMBINING VIRAL VECTORS FOR THE TETRACYCLINE-REGULATED EXPRESSION OF GENES
- (54) Bezeichnung: REKOMBINANTE VIRALE VEKTOREN ZUR TETRACYCLINREGULIERBAREN GENEXPRESSION

Tet-OFF system

(57) Abstract: The invention relates to recombining viral vectors which can be suppressed in a highly efficient manner by means of tetracycline or tetracycline derivatives, and the use thereof for expressing genes in eukaryotic cells, particularly within the framework of gene therapy.

(57) Zusammenfassung: Die Erfindung betrifft rekombinante virale Vektoren, die durch Tetracyclin oder Tetracyclin-Derivate, wie z.B. Doxycyclin, hocheffiezient supprimiert werden können, sowie deren Verwendung zur Durchführung einer Genexpression in Eukaryontenzellen, insbesondere im Rahmen einer Gentherapie.

BEST AVAILABLE COPY

70 03/087294 A2

Rekombinante virale Vektoren zur Tetracyclinregulierbaren Genexpression

Die Erfindung betrifft rekombinante virale Vektoren, die durch Tetracyclin oder Tetracyclin-Derivate, wie z.B. Doxycyclin, hocheffizient supprimiert werden können, sowie deren Verwendung zur Durchführung einer Genexpression in Eukaryontenzellen, insbesondere im Rahmen einer Gentherapie.

Bösartige Erkrankungen sind eine der häufigsten Todesursachen fortgeschrittenen und metastasierten Menschen. Bei des sind die therapeutischen Tumorerkrankungen soliden limitiert und das Möglichkeiten immer noch sehr Jahresüberleben vieler dieser Karzinomerkrankungen beträgt als 10%. Daher stellt die metastasierte weniger

Karzinomerkrankung eine der größten Herausforderungen in der experimentellen Medizin dar. Durch Einschleusen therapeutischer Gene in Tumorzellen eröffneten gentherapeutische Ansätze neue Perspektiven in der Therapie dieser Erkrankungen.

Adenoviren ermöglichen den effizienten Transfer und die Expression therapeutischer Gene in verschiedene Gewebe und Zelllinien. Insbesondere die Weiterentwicklung rekombinanter adenoviraler Vektoren hat die experimentellen Ansätze in der adenoviralen Gentherapie maligner Erkrankungen ermöglicht (K. Kozarsky, Curr Opin Genet Dev 3 (1993) 499-503).

Mit der hohen Effizienz des Gentransfers sind gentherapeutische Ansätze heute häufig durch die Toxizität infolge unkontrollierter Transgenexpression limitiert. Insbesondere bei der adenoviral vermittelten Expression von Zytokinen wie Interleukin-2, Interleukin-12, Interleukin-18 oder Nekrose Faktor α kann es auch bei intratumoraler Gabe der unerwarteten erheblichen Adenoviren zu rekombinanten systemischen Nebenwirkungen kommen. Eine den konstitutiven (Cytomegalovirus-Promotor) vergleichbare Promotoren Infektion erfolgter adenoviraler nach Genexpression bislang nicht effizient konnte rekombinanten Vektoren kontrolliert werden.

Gegenwärtig stellt das von M. Gossen et al. entwickelte Tet-System eines der am meisten geeigneten Mittel zur Kontrolle der Genexpression dar (M. Gossen et al., PNAS USA 89 (1992) 5547-5551; M. Gossen et al. Science 268 (1995) 1766-1769). Das Tet-System basiert auf zwei Elementen des E. coli Tet-Operons. Das Tetracyclin-induzierbare Repressorprotein (tetR) wird mit der transkriptionellen Aktivierungsdomäne des Herpes simplex Virus VP16 fusioniert. Dieses tTA Fusionsprotein interagiert mit der heptamerisierten tetO Operatorsequenz, was in der transkriptionellen Aktivierung der flankierenden minimalen Promotoren resultiert. Die Bindung von Tetracyclin und dessen Derivaten an die TetR-Domäne von tTA inhibiert die mit dessen Fusionsproteins des Wechselwirkung Operatorsequenzen, was zur Herunterregulierung der Transgen-Expression führt.

ursprünglichen tet-regulierten des Die Verwendung Genexpressionssystems in rekombinanten adenoviralen Vektoren (TC Harding et al. J. Neurochem. 69 (1997) 2620-2623; TC Harding et al. Nat. Biotechnol. 16 (1998) 553-555) brachte sich. zwei wesentliche Hindernisse mit Die limitierte unzureichender resultierte in Verpackungskapazität Promotors minimalen des CMV Aktivierung Verstärkungsinterferenz (S. Rubinchic et al. Gene Therapy 8 (2000) 875-885), und die konstitutionelle Transaktivator-Expression hatte eine mit VP16 zusammenhängende Toxizität zur Folge.

Aufgabe der vorliegenden Erfindung ist es daher, ein für die Tumorerkrankungen geeignetes Gentherapie von Genexpressionssystem bereitzustellen, das die aus dem Stand der Technik bekannten Nachteile nicht aufweist. Insbesondere (adeno-) virale Vektoren mit einem hohen Maß sollen Transgen-Expression bereitgestellt werden, die ferner im Fall Expression bieten, dass diese Möglichkeit der Nebenwirkungen, die aus schwerwiegender Transgenexpression resultieren, effizient herunterreguliert

werden kann. Ferner sollen die Vektoren ein hohes Maß an Sicherheit bei der Anwendung aufweisen, insbesondere soll die aus dem Stand der Technik bekannte, mit VP16 zusammenhängende Toxizität vermieden werden.

Die Aufgabe wird erfindungsgemäß durch einen rekombinanten viralen, insbesondere adenoviralen Vektor gelöst, der ein Insert enthält, das die allgemeine Struktur

tTA - Intron¹ - TK⁺ - TetO₇ - CMV⁺ - Intron² - Transgen aufweist, wobei

der heptamerisierte Tetracylin-Operator ist, TetO, der minimale Thymidin Kinase-Promotor ist, TK^{+} die für eine Nukleinsäuresequenz ist, tTA durch Tetracyclin aus dem Fusionsprotein der und induzierbaren Repressorprotein des Aktivierungsdomäne transkriptionellen Herpes simplex Virus VP16 kodiert,

CMV der minimale Cytomegalievirus-Promotor ist und Transgen eine für ein nicht-virales Protein kodierende Nukleinsäuresequenz ist,

Intron¹ eine beliebige nicht-kodierende

Nukleinsäuresequenz mit einer Länge von 0 bis

etwa 1000 bp ist und

Intron² eine beliebige nicht-kodierende Nukleinsäuresequenz mit einer Länge von 0 bis etwa 1000 bp ist.

die Konstruktion der erfindungsgemäßen rekombinanten Adenoviren wurde das Tetracyclin induzierbare Repressor-Protein (tetR) mit der transkriptionellen Aktivierungsdomäne des Herpes simplex Virus VP16 fusioniert. Im Vordergrund steht dabei nicht mehr die Inhibition durch Bindung des tetR Positionierung des VP16 die Operon, sondern das an Transaktivators. Entsprechend wurde für die vorliegende Erfindung auch ein heptamerisiertes TetO Operon mit zwei flankierenden Minimalpromotoren verwendet. Dieses (Fig. 1) führt zur autoregulierten Transaktivator-Expression im Sinne eines positiven Feedback-Mechanismus über einen der Minimalpromotoren. Gleichzeitig wird ein therapeutisches Transgen über den anderen flankierenden Minimalpromoter exprimiert. Doxycyclin und Tetracyclin binden an die tetR-Komponente und eine Änderung der sterischen Konformation führt zu einem Verlust der Bindung des tetR an den Operator. Die Dissoziation des Transaktivators von den promotoren hat dann eine Reduktion der Genexpression zur Folge.

erfindungsgemäßen Vektoren wurde erstmals ein den replikationsdefizientes adenovirales System auf Basis eines bei eine charakterisiert, dem erzeugt und autoregulierte Transaktivator-Expression erfolgt. Dieses System ermöglicht eine sehr strenge Kontrolle der Transgen-Expression durch Zugabe von Doxycyclin in nicht-toxischen Konzentrationen. Die hohe Suppression der Genexpression wurde über einen weiten m.o.i.-Bereich (multiplicity of infection) und in verschiedenen Karzinomzellinien erreicht.

Der Anteil der Suppression hängt von der verwendeten Konzentration des Antibiotikums ab. Da eine maximale

Suppression der Transgenexpression bereits bei Doxycyclin-Konzentrationen von 2 μ g/ml erzielt wurden, sind die erfindungsgemäßen Vektoren bestens zur klinischen Anwendung geeignet.

Gemäß einer weiteren Ausführungsform betrifft die Erfindung einen genannten Vektor, bei dem das Insert in umgekehrter Orientierung in das virale Vektorgenom inseriert ist, d.h. in der Form

5'-Transgen-Intron²-CMV⁺-TetO₇-TK⁺-Intron¹-tTA-3'.

Ebenso ist es möglich, daß ausschließlich oder zusätzlich die Positionen von tTA und Transgen im Insert vertauscht sind.

Soweit die Sequenzelemente 'Intron' und/oder 'Intron' vorhanden sind (d.h. > 0 bp), kann deren Länge im Bereich bis zu etwa 1000 bp unabhängig voneinander variieren und z.B. jeweils bis etwa 750, bis etwa 500 oder bis etwa 250 bp betragen. In diesem Fall werden die Promotoren üblicherweise innerhalb der jeweiligen Intronsequenz liegen.

Gemäß einer weiteren Alternative kann das Insert zwischen 'CMV' und 'Intron' oder zwischen 'Intron' und 'Transgen' zusätzlich einen lac-Repressor (lacR) enthalten, wodurch eine weitere Regulationsmöglichkeit geschaffen wird.

Das verwendete Transgen ist eine für ein Fluoreszenzprotein, für Luciferase, Interleukin-12 (IL-12), Interleukin-18 (IL-18), Interleukin-2 (IL-2), Tumor Nekrose Faktor α (TNF- α) oder Interferon- γ (IFN- γ) kodierende Nukleinsäuresequenz, vorzugsweise single-chain Interleukin-12. Die Erfindung

betrifft ferner Vektoren, bei dem einer der flankierenden Promotoren zur Expression eines Genes zur Apoptose-Induktion, zur Expression des BAX Genes, zur Expression des FAS-L Genes, eines Suizid-Genes, wie Thymidin-Kinase-oder Cytosin-Deaminase-Gen, oder eines ß-Galaktosidase-Genes verwendet wird.

Hinsichtlich des verwendeten Virusrückgrats eignet sich insbesondere ein Adenovirus, ein Adenoassoziiertes Adenovirus (AAV), ein Retrovirus, insbesondere ein Humanes Immundefizienzvirus (HIV), ein Herpes Simplex Virus, ein Hepatitis-B Virus oder ein Hepatitis C-Virus, wobei Adenoviren besonders bevorzugt sind.

Bei dem erfindungsgemäßen Vektor ist das Insert in die El-Region eines rekombinanten Adenovirus einkloniert, alternativ eignen sich auch die E3- und/oder die E4-Region.

Gemäß einer besonderen Ausführungsform betrifft die Erfindung einen Vektor, der zum Beispiel durch homologe Rekombination eines viralen, insbesondere eines adenoviralen Plasmids und eines Expressionsplasmids mit der in SEQ ID NO:1, SEQ ID NO:2 oder SEQ ID NO:3 dargestellten Nukleinsäuresequenz erhältlich ist. In diesem Zusammenhang steht "SEQ ID NO:" für die gemäß WIPO-Standard ST.25 verwendete Kennziffer <400>.

Gegenstand der Erfindung ist ferner ein Expressionsplasmid mit der in SEQ ID NO:4 oder SEQ ID NO:5 dargestellten Nukleinsäuresequenz sowie dessen Verwendung zur Herstellung eines oben genannten, erfindungsgemäßen Vektors.

Wie bereits erwähnt eignen sich die Vektoren zur in vitro-Genexpression in eukaryoten Zelllinien oder, wenn 'Transgen' für ein therapeutisch wirksames Protein kodiert, Verwendung in der Gentherapie. Beispielsweise kann 'Transgen' wodurch sich der Vektor IL-18 sein. oder IL-12 Gentherapie maligner Erkrankungen eignet. Bei den malignen Erkrankungen handelt es sich insbesondere um einen soliden Tumor.

Bei den zuvor genannten Verwendungen wird die Genexpression mit Tetracyclin oder Tetracyclin-Derivaten, insbesondere mit Doxycyclin, Oxytetracyclin, Chlortetracyclin, Demeclocyclin, Methacyclin oder Minocyclin, reguliert. Soweit vorliegend Doxycyclin erwähnt ist, wird der Fachmann die Übertragbarkeit des erfindungsgemäßen Prinzips auf die oben genannten Tetracyclin-Derivate erkennen.

Weitere Vorteile der Erfindung:

Im Vergleich zu einer durch den im Stand der Technik stark verwendeten konstitutiven humanen Zytomegalivirus (HCMV) immediate-early Promotor getriebenen Expression des IL-12-Erfindung der im Rahmen Heterodimers wird bei den großen Zahl von einer Konstrukten in entwickelten Krebszellinien eine bis zu 4000-fach höhere Zytokin-Sekretion auf das Effekt wird Dieser unerwartete beobachtet. Zusammenspiel aus der Wahl der Promotors und der Verwendung hoch-sekretorischem, und erzeugtem von genetisch einzelkettigem IL-12 zurückgeführt. Die IL-12-Expression in Abwesenheit von Doxycyclin war überraschenderweise ebenfalls den zuvor bereits veröffentlichten adenoviral infizierten murinen Tumorzellen unter Verwendung des CMV-Promotors zu

Expression des heterodimeren oder der Regulierung einzelkettigen mIL-12 überlegen. Da die Transduktion humaner Tumorzellen im Vergleich zu zuvor berichteten Werten aus den Versuchen bei klinischen präklinischen oder erfindungsgemäßen Konstrukten ebenfalls signifikant höher ein weiterer, somit vorliegend wird ist, vorteilhafter Effekt erzielt. Durch die Möglichkeit, die der erfindungsgemäßen Vektoren Dosis adenovirale nämlich Vektor-spezifische sich lassen reduzieren, Nebeneffekte vermindern, was zu einer höheren Sicherheit in der klinischen Anwendung führt.

Im Hinblick auf die gemäß einer besonderen Ausführungsform genutzte Interleukin-12-Expression (siehe unten) haben die erfindungsgemäßen adenoviralen Vektoren ferner den Vorteil, erfolgreichen Voraussetzungen zur alle gentherapeutischen Krebsbehandlung erfüllen. So wird durch Expression des einzelkettigen Interleukin-12, das, verglichen allgemein verwendeten heterodimeren Form, eine der die Bildung von aufweist, Bioaktivität ähnliche inhibitorischen p40-Homodimeren vermindert, und durch die schnelle Regulation der Genexpression im erfindungsgemäßen 3r-System durch effiziente Sekretion des einzelkettigen äußerst effiziente, sichergestellt. Die Interleukin-12 Expression des der Doxycyclin-vermittelte Suppression bioaktiven, einzelkettigen Interleukin-12 trägt somit Sicherheit bei der gentherapeutischen Krebsbehandlung bei.

Das erfindungsgemäße System zeichnet sich ferner dadurch aus, daß eine westliche Standardernährung das sensitive tet-OFF-System nicht beeinflußt wird, so daß mögliche Belastungen der

Nahrung mit Spuren an Tetracyclin oder dessen Derivaten im klinischen Umfeld kein Problem darstellen.

Durch die Verwendung der erfindungsgemäßen Vektoren ist die Anwesenheit von Transaktivatoren vor der Infektion mit den Vektoren nicht erforderlich, wodurch die Toxizität infolge der konstitutiven Expression des Transaktivators sowie eine gegenseitige Beeinflussung oder Störung der Transkription durch Doxycyclin-abhängige, autoregulative Genexpression vermieden wird. Demzufolge stellen die adenoviralen Vektoren der vorliegenden Erfindung ein wesentlich vielseitigeres und unaufwendigeres Hilfsmittel im Vergleich zu den im Stand der Technik bekannten Modellen der konstitutiven Transaktivator-Expression dar.

ist von Vorteil, daß die Doxycyclin-regulierte nach adenoviraler Infektion einer Genexpression Vielzahl nativer Säugerzelllinien oder Gewebe erfolgen kann. Die Autoregulation bewirkt ferner eine Beschränkung der durch Transgen-Expression Transaktivator-Expression bei Suppression durch Doxycyclin. Gegenüber den im Stand der Technik beschriebenen Ansätzen bieten die erfindungsgemäßen Vektoren den Vorteil, daß in Abwesenheit von Doxycyclin eine sehr hohe Transgen-Expression Suppression der Transgendie während erreicht wird. Zugabe dieses Antibiotikums die durch beeinträchtigt wird, und bis zu 6000-fache Suppressions-Level erzielt werden.

Die erfindungsgemäßen Konstrukte lassen sich somit in vorteilhafter Weise zu Expression therapeutischer Transgene von bis zu 4,8 kB, einschließlich Apoptose-induzierender Gene, verwenden und stellen damit ein wichtiges Mittel zur molekularen Therapie maligner Erkrankungen dar.

wurde ferner der vorliegenden Erfindung Rahmen Ιm überraschenderweise festgestellt, daß die erfindungsgemäßen Sensitivität 40-fach höhere mindestens Vektoren eine gegenüber Tetracyclin aufweisen als die Detektionsgrenze in Standard-HPLC-Verfahren. Das erfindungsgemäße System eignet sich somit ferner als sensitiveres Hilfsmittel zum Nachweis geringer Tetracyclinkonzentrationen in biologischen, lebensmittelchemischen oder ähnlichen Proben und ist somit human-Einsatz in der beispielsweise zum veterinärmedizinischen Diagnostik geeignet (vgl. N. Schultze et al. Nat. Biotechnol. 14 (1996) 499-503). Das Transgen kodiert in diesem Fall für ein Reporterprotein, wie z.B. Luciferase oder ähnliches. Gegenstand der Erfindung ist somit ferner die Verwendung der erfindungsgemäßen Vektoren, bei denen 'Transgen' für ein Reporterprotein kodiert, zum Nachweis von Tetracyclin oder einem Derivat desselben, wie in biologischen, lebensmittelchemischen oder Doxycyclin, ähnlichen Proben.

Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert.

<u>Beispiele</u>

Zellinien

HeLa und 293 humane embryonale Nierenzellen wurden in HGDMEM kultiviert. Humane RT-4 Rockville, MD) (Gibco, Blasenkrebszellen und humane Colon Adenokarzinomzellen HT29 wurden in McCoy-Medium (Gibco) gehalten. MCF-7 und BT-20 humane Brustkrebszellen sowie humane Colon (Colo 205 und SkCO-1) und pankreatische Adenokarzinom- (Aspc-1) Zellinien in RPMI-Medium (Gibco) wachsen. HepG2 hepatozelluläre Karzinomzellen wurden in MEM-Medium (Gibco) kultiviert und Zellen wurden Standardvorschriften aufgeteilt. Alle Medien waren mit 10% fötalem Rinderserum (FBS), 1% Penicillin/Streptomycin (Gibco) supplementiert. Die Glutamin (Gibco) Myelomzellinie U266 ließ man in RPMI-Medium wachsen, das mit 15% FBS (Clontech) und 1% Penicillin/Streptomycin (Gibco) supplementiert war.

Beispiel 1

Plasmidkonstruktion

DNA-Fragmente wurden durch Agarose-Gelelektrophorese getrennt und aus der Agarose mit dem Gel extraction Kit (Qiagen, Valencia, CA) eluiert. DH5alpha-Zellen wurden zur Plasmidvermehrung eingesetzt. Plasmid-DNA wurde unter Verwendung eines modifizierten Protokolls für eine alkalische Lyse, gefolgt von einer Reinigung über eine kommerziell

erhältliche Ionenaustauschsäule nach Angaben des Herstellers Transfektion wurden LPS-(Qiagen), präpariert. Vor der Verunreinigungen in den Plasmid-DNA-Präparationen durch eine Triton X-117 Extraktionsmethode (M. Cotton et al., therapy 1 (1994) 239-246) reduziert. Das Plasmid pBIG 3r, das Expressionssystem enthält, autoregulierte tTA das vorbeschrieben (C.A. Strathdee, Gene 229 (1999) 21-29). Die Luciferase cDNA wurde aus dem Plasmid pGL3basic (Promega, Madison, WI) durch BglII- und XbaI-Verdau erhalten und in pBIG 3r inseriert, das mit SpeI und BamHI gespalten wurde, was zur Erzeugung von pBIG 3r luc führte. Die adenovirale Plasmid pAd.CMV-Expressionskassette wurde durch Verdau mit XbaI und SalI nach Auffüllen mit T4 DNA-Polymerase entfernt. PBIG 3r luc wurde mit PvuII und SalI verdaut, und die Expressionskassette bicistronische die die Fragmente, enthielten, wurden in das Rückgrat von pAd.CMV-pA ligiert. Das resultierende adenovirale Plasmid pAd3r-luc enthielt die bidirektionale Expressionskassette, die an ihrem 5'-Ende durch die 1-456 bp des AD5-Genoms einschließlich Linker ITR und Verpackungssignale flankiert ist und die an ihrem 3'-Ende durch 3346-5865 bp des AD5-Genoms flankiert ist. Die von minimalen TK-Promotor getriebene Expression des antiparallel, und die durch den minimalen CMV-Promotor getriebene Expression des Luciferase-Gens war parallel zur adenoviralen El-Transkription. Das Luciferase-Gen wurde aus pGL3-basic durch Verdau mit KpnI/SalI freigesetzt und in das adenovirale Expressionsplasmid pAd.CMV-pA ligiert, pAd.CMV-luc führte. Die cDNA des einzelkettigen Interleukin-12 wurde aus pSFG.IL-12.p40.L.p35 (G.J. Lieschke et al. Nat. Biotechnol. 15 (1997) 35-40) nach Verdau mit NcoI und EcoRV erhalten. Dieses Fragement wurde in den NheI/SalI-Ort von pAd.3r-luc subkloniert und ersetzte das LuciferaseGen. Das nachfolgend verwendete Plasmid pAd.CMV.p40.IRES.p35 enthält die zwei murinen IL-12 Untereinheiten, die durch eine Internal Ribosome Entry Site (IRES) des Enzephalomyocarditis-Virus getrennt sind. Die Expression dieses Konstrukts steht Zytomegalovirus (CMV) des humanen der Kontrolle unter relativ bis -14 zum -601 Promotor-Elements von Transkriptionsstart.

Beispiel 2

Erzeugung und Amplifikation rekombinanter adenoviraler Vektoren

Rekombinate E1- und E3-deletierte Adenoviren wurden erhalten Kalziumphosphat-vermittelter Plaque-gereinigt nach und Cotransfektion von pAd.3r-luc, pAd.CMV-luc, pAd.3r-scIL-12 oder pAd.CMV.p40.IRES.p35 mit pBHG10 (AJ Bett et al., PNAS 8802-8806). Die El- und E3-deletierten (1994) Adenoviren wurden in 293-Zellen repliziert und durch CsCl-Zentrifugation wie zuvor beschrieben (FL Graham, Virology 54 536-539) gereinigt. Die Titration der gereinigten (1973) Plaque-Assay durchgeführt. Die mittels wurde resultierenden Titer für Ad.3r-luc, Ad.CMV-luc, Ad.3r-scIL12 und Ad.CMV-p40.IRES.p35 waren 1,0 x 10^{10} p.f.u./ml (plaque forming units pro ml), 7,5 x 10° p.f.u./ml, 6,7 x 10° p.f.u./ml und 8,0 x 10° p.f.u./ml. Virale DNA wurde erhalten (Qiagen DANN Blood Kit) zur Sequenzanalyse, um die Insertion, die Orientierung zu und Transaktivator-Sequenz bestätigen.

Beispiel 3

In vitro adenovirale Transfektion

HT29, Colo205, SkCO-1, AsPc-1, HepG2, MCF-7, BT-20, HeLa, RT4 und U266 Zellen wurden in Platten mit sechs und zwölf (U266) Kavitäten bei einer Konzentration von 1 x 106 Zellen pro Kapität 6 Stunden vor der Transfektion gesät. Die größeren HeLa-, RT-4- und 293-Zellen wurden bei einer Konzentration von 5 x 10⁵ Zellen pro Kapität gesät. U266-Myelomzellen wurden in Suspensionskultur wachsen gelassen und infiziert. in Medien virale Partikel wurden Gereinigte Supplementierung verdünnt, und die Zellen wurden 500 μ l der Virusverdünnung pro Kapität für geeigneten ausgesetzt. Nach Entfernung des infektiösen Überstands wurden mit unterschiedlichen die Medien, vollständige supplementiert Doxycyclin Konzentrationen von zugefügt. Die Medien wurden alle 24 Stunden gewechselt.

Beispiel 4

Quantifizierung der Transgen-Expression

Stunden nach Infektion mit Ad.CMV-luc oder Ad.3r-luc wurden die Zellen mit 150 μ l Zellkultur-Lysisreagens nach den Angaben des Herstellers (Promega) geerntet. Die Luciferase-Aktivität in 20 μ l Zell-Lysat wurde unter Verwendung eines Bertold LB9507 Luminometers und Luciferase-Assaysubstrat (Promega) gemessen. Die Standardkurven wurden unter Verwendung von rekombinanter Leuchtkäfer-Luciferase (Promega), das mit CCLR auf Konzentrationen von 1 pg/ml bis

16

300 ng/ml verdünnt war, erzeugt. Da die rlu bei höheren Konzentrationen ein Sättigungsprofil zeigen, wurde ein 2-Phasen exponentielles Assoziations-Kurvenfitting unter Verwendung des Prism Software-Pakets (GraphPad Software, Inc, San Diego, CA) durchgeführt. Die Proteinkonzentration wurde unter Verwendung des DC-Protein-Assaykits (BioRad, Hercules, CA) bestimmt.

Die Quantifizierung des einzelkettigen und heterodimeren mIL12 in zellfreiem Überstand nach adenoviraler Infektion von Tumorzellen wurde durch einen IL12 p70 ELISA Pharmingen) durchgeführt, wobei gleiche Immunreaktivität und angenommen beide Formen Molekulargewicht für Splenozyten wurden mit Hilfe von Standardverfahren isoliert. Gehirnzellen wurden dann für drei Tage mit RPMI kultiviert, das mit 10% FBS, 1% Penicillin/Streptomycin und anti-Maus CD3-beschichteten Kolben in Gegenwart von anti-human CD28 (5 μ g/ml) kultiviert, um T-Zellen anzureichern und die mIL-2-Sekretion zu stimulieren. Die Bioaktivität wurde nach Zugabe von 50-fach verdünntem konditionierten Überstand aus Ad.3r-scIL12 (+/- Doxycyclin), Ad.CMV-p40.IRES.p35 und mock-infizierten HT29-Zellen zu 4 x 10 4 murinen Splenozyten in einem finalen Volumen von 125 μ l für 24 Stunden bestimmt. Murines IFN- γ wurde in Splenozytenfreiem Überstand unter Verwendung eines IFN- γ ELISA (OptEIA $^{\text{m}}$, Pharmingen) quantifiziert. Um die spezifische Bioaktivität zu Verdünnungen halblogarithmische wurden konditioniertem Überstand von beiden Formen des adenoviral exprimierten mIL-12 und Baculovirus-exprimiertem, gereinigtem mIL12 (R&D systems) auf mIL-12-Immunreaktivität (p70 ELISA) und IFN- γ -Induktion in Splenozyten wie beschrieben getestet. Die Bioaktivität von adenoviral exprimiertem heterodimerem IL-12 kann durch die Bildung inhibitorischer p40-Homodimerer wie anderweitig beschrieben reduziert werden. Es wurde vorliegend kein Capture-Bioassay verwendet, um potentiell niedrigere Bioaktivität in vivo zu reflektieren.

Beispiel 5

Alternative Klonierungsstrategie

Klonierung von adenoviralen Expressionsplasmiden für die Virussynthese mittels AdEasy System

Als Alternative zu der beschriebenen Virussynthese wurden entwickelt, die Expressionsplasmide adenovirale AdEasy®-System (Stratagene) mittels Virusgeneration ermöglichen. Dazu wurde der pShuttle Vektor (Stratagene) mit KpnI verdaut, gebluntet, und nachfolgend mit SalI verdaut. Das 3r-Insert wurde aus pBIG3r mittels Verdau mit PvuII und SalI isoliert und in den pShuttle ligiert. Das resultierende einfache Generation die Plasmid pShuttle3r ermöglicht Doxyzyklinadenoviraler Vektoren zur verschiedener humane Single-Chain Das supprimierbaren Genexpression. Interleukin-12 kann nachfolgend mittels XhoI in die multiple cloning site des pShuttle3r kloniert werden und resultiert in pShuttle3r-hscIL12 (siehe Abbildung).

Die Virusgeneration erfolgt dann durch homologe Rekombination mit pAdEasy-1® in BJS183 E. coli-Zellen und Selektion für Kanamyzin. Nach Transfektion von 293 Zellen mit dem Rekombinationsprodukt entstehen in diesem System replikative rekombinante adenovirale Vektoren (T He, S Zhou et al. Proc Natl Acad Sci USA 95 (5): 2509-14).

Die Virusproduktion erfolgt dann wie vorbeschrieben in 293-Zellen.

Beispiel 6

Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-Page) und Immunblotting

Nach Infektion von HT29-Colon Krebszellen wurden Lysate auf 15% Acrylamid SDS-Gele nach Kochen in Laemmli-Probenpuffern qeladen. Bedingungen reduzierenden unter elekrophoretischer Auftrennung wurden die Proteine auf 0,45 μm Immobilon-P (Millipore, Bedford, MA) transferiert und mit TBS-enthaltender 5% nicht-fetter Trockenmilch für 1 Stunde geblockt. Actin und das Fusionsprotein tTA wurden unter Verwendung eines Kaninchen anti-Actin Affinitäts-isolierten Antigen-spezifischen Antikörpers (#A2066, Sigma, St. Louis, MS) und eines Maus anti-TetR monoklonalen Antikörpers (M. Gossen et al., PNAS USA 89 (1992) 5547-5551) (#8632-1, Clontech) nachgewiesen. Nach Inkubation für 1 Stunde wurden die Blots mit TBS-enthaltendem 0,1% Tween-20, pH 7,5, gewaschen und mit anti-Kaninchen und anti-Maus Peroxidaseverknüpften sekundären Antikörpern (Dianova, Deutschland) für 1 Stunde bei Raumtemperatur inkubiert. schließlich nach Waschen wurden Proteine Chemolumineszenz-Nachweis (SA Nesbitt et al. Anal. Biochem. 206 (1992) 267-272) (ECL, Amersham, Buckinghamshire, UK) nach Vorschrift des Herstellers visualisiert.

Beispiel 7

Tetracyclin-Screening von Blutspender-Seren

Eine Frau und sieben Männer im Alter zwischen 23 und 35 Jahren wurden als Probanden ausgewählt. Sie hatten für

keine antiinfektiöse Behandlung Monat mindestens einen Alle waren gesund und unter einer westlichen erhalten. ml periphären venösen Bluts wurden Standardernährung. 50 wurde nach Standardverfahren entnommen, und das Serum erhalten. Die Seren unterliefen einem Gefrier-Auftau-Zyklus, bevor die Zellkultur-Experimente und Tetracyclin-Bestimmungen durchgeführt wurden. Humane Seren wurden anstelle von FBS den Zellkulturmedien zugegeben. Tetracyclin-HCl wurde von Fluca RP-18 Germany) gekauft. Bakerbond (Fluca, Chemicals Festphasenextraktions (SPE)-Säulen wurden von Mallinckrodt Baker (Phillipsburg, NJ) erhalten, Lösungsmittel in HPLC-Qualität und andere Chemikalien wurden von Merck (Whitehouse Station, NJ) gekauft. HPLC wurde an Constametric 3500 MS und RP-18 HyPURITY ADVANCE-Säulen von ThermoQuest (Deutschland) durchgeführt. Die Datenanalyse erfolgte unter Verwendung von (Deutschland) Agilent von Chemstation Software Vorkonditionierung der RP-18-Säulen mit 2 x 1 ml Methanol, gefolgt von 2 x 1 ml Wasser, wurden 3 ml Serum, das 0,1 mol/l Citratpuffer (pH 6,8) und 0,1 mol/l EDTA enthielt, bei einer Fließgeschwindigkeit von 1 ml/min. zugegeben. Die Säulen wurden dann mit 10 ml Wasser und 1 ml Methanol gewaschen. ml Methanol, das 0,1% mit 4 wurde Tetracyclin Trifluoressigsäure enthielt, eluiert (ME Sheridan et al. J. wurde Das Eluat Chromatography 434 (1988) 253-258). μ l 0,01% Oxalsäure in in 100 und getrocknet Wasser/Acetonitril (98/2 v/v) bei einem mit HCl eingestellten pH-Wert von 2,0 rekonstituiert. Die Chromatographie wurde bei Raumtemperatur und einer Fließgeschwindigkeit von 0,9 ml/min. durchgeführt. Die Fluoreszenz bei 416 nm (Anregung) und 515 nm (Emission) wurde durch Komplexierung des Tetracyclins mit 0.2 (w/v) Zirkonium(IV) chlorid erreicht (K. De Wasch et al. Analyst 123 (1998) 2737-2741). Die Kalibrierung wurde mit

wässrigen Lösungen von Tetracyclin HCl von 2 bis 100 ng/ml mit Variationskoeffizienten von 6,3% (während eines Tages) und 8,5% (von einem Tag auf den anderen) für 10 ng/ml durchgeführt.

Resultate

Konstruktion von Doxycyclin-supprimierbaren, auto-regulierten adenoviralen Vektoren

Adenovirale Expressionsplasmide, die das Luciferase- und des Tetracyclinunter Kontrolle scIL-12-Gen supprimierbaren autoregulierten Systems enthielten, pAd.3rluc und pAd.3r-scIL-12 wurden erzeugt. Nach einem gleichen Verfahren wurden Plasmide erzeugt, die das Luciferase-Gen und die cDNA, die für murines p40 und p35, das durch einen Internal Ribosome Entry Site (IRES), jeweils unter Kontrolle des Zytomegalivirus (CMV)-Promotors, enthalten. Rekombinate E1/E3-deletierte Adenoviren Ad.3r-luc, Ad.3r-scIL12, Ad.CMV-Ad.CMV-p40.IRES.p35 (Figur wurden durch 2) Cotransfektion adenoviraler Expressionsplasmide mit pBHG10 erzeugt. Die Plaque-Reinigung und Amplifizierung wurde in 293-Zellen durchgeführt. Adenovirale Titer wurden durch Standard-Plaque-Assay-Techniken quantifiziert. Isolierung, Amplifikation und Plaque-Assay von Ad.3r-scIL12 Gegenwart von 2 μ g/ml Doxycyclin bis zu 87-fach höher, was auf die Toxizität nicht supprimierter scIL12-Expression in Im Gegensatz dazu hatte 293-Zellen hinweist (Figur 3). Doxycyclin keinen Einfluß auf die Titrierung von Ad.3r-luc.

Dosis-abhängige Doxycyclin-regulierte Luciferase- und Transaktivator-Genexpression

Humane Colon-Krebszellen HT29 sind gegenüber adenoveraler Transduktion äußerst empfänglich, wie bereits zuvor gezeigt (A. Block et al. Cancer Gene Therapy 7 (2000) 438-445). Diese Zellen wurden mit Ad.3r-luc bei einer m.o.i. (multiplicity of infection) von 30 nach Inkubation mit Doxycyclin bei verschiedenen Konzentrationen für 24 Stunden infiziert. Die Luciferase-Aktivität wurde in Zelllysaten entsprechend dem gelösten Zellprotein bestimmt. Bereits geringe Doxycyclin-Konzentrationen wie 100 pg/ml führen zu einer signifikanten Die Genexpression Genexpression. Reduktion der schließlich mit Doxycylcin-Konzentrationen von bis zu 3 μ g/ml maximal supprimiert (Figur 4). Diese Doxycyclin-Konzentration wird üblicherweise in der klinischen Behandlung bakterieller Infektionen verwendet. Im vorliegenden experimentellen Ansatz lag eine bis zu 2400-fache Doxycyclin-vermittelte Suppression der Transgen-Expression vor.

Die dosis-abhängige, Doxycyclin-regulierte Supression der positiven Feedback-Schleife (Figur 1) wurde durch Nachweis der tTA Fusionsproteine mit Tet-R monoklonalen (M. Gossen et al., PNAS U.S.A. 89 (1992) 5547-5551) und VP16 polyklonalen Antikörpern (PE Pellett et al. PNAS U.S.A. 82 (1985) 5870-5874) in Western Blot-Analysen illustriert (Figur 5). Steigende Doxycyclin-Konzentrationen führten zu einer Herunterregulierung der intrazellulären tTA-Anteile, was mit einer verminderten Luciferase-Genexpression korreliert.

M.O.I.-abhängige, supprimierbare Luciferase-Expression

HT29-Zellen wurden mit Ad.3r-luc bei einer m.o.i. im Bereich von 0,1 bis 100 nach Inkubation in Gegenwart oder Abwesenheit von Doxycyclin bei 2 μ g/ml für 24 Stunden infiziert. Die Suppression der Luciferase-Gen-Expression in Lysaten von Ad.3r-luc-infizierten HT29-Zellen bewegte sich 470 (m.o.i.: 0,3) bis 2400-fach (m.o.i.: 10 - 100) (Figur 6). Das Ausmaß der Suppression blieb bei hohen m.o.i. konstant, was Transgen-Expression mit der ausreichende, für eine Toxizitätskontrolle entscheidend zusammenhängende Doxycyclinkonzentrationen von 2 μ g/ml störten die adenovirale Verwendung des HT29-Zellen unter Genexpression in konstitutiven CMV-Promotors nicht. Um die Effizienz Ad.3r-luc-vermittelten transgenen-Expression in Abwesenheit von Doxycyclin zu untersuchen, wurde die Expression mit der Expression in HT29-Zellen verglichen, die mit Ad.CMV-luc infiziert waren (Figur 7). In HT29 zeigte Ad.3r-luc eine höhere Genexpression als Ad.CMV-luc über alle getesteten (1 - 100), wobei der Faktor zwischen (m.o.i.:100) und 240-fach (m.o.i.:1) lag.

M.O.I.-abhängige regulierte Expression des einzelkettigen murinen Interleukin-12

HT29-Zellen wurden mit Ad.3r-scIL-12 bei einer m.o.i. im Bereich von 1 bis 100 infiziert und in Gegenwart oder Abwesenheit von 2 μ g/ml Doxycyclin für 24 Stunden inkubiert. Die Genexpression von ScIL-12 wurde um mehr als 1400-fach bei einer m.o.i. von 100 in Gegenwart von Doxycyclin suprimiert (Figur 8). Die Western Blot-Analyse zeigte eine mit der IL-12 Expression korellierende Transaktivator (tTA)-Expression

Nicht-supprimierte 3r-vermittelte IL-12 9). (Figur bis 375-fach (m.o.i.:1) Genexpression 11-fach war (m.o.i.:100) höher als unter Verwendung des konstitutiven CMV-Promotors, wobei von gleicher Immunreaktivität des p70-ELISA gegenüber dem einzelkettigen Interleukin-12 und der Expression eines p40/p35-Heterorotrimers CMV-gesteuerten ausgegangen wurde. Die Bioaktivität beider Formen wurde durch 50-fach verdünnten Inkubation muriner Splenocyten mit konditionierten Medien nach Infektion von HT29 mit IL-12 exprimierenden Adenoviren quantifiziert (Figur 10). Es wurde eine hohe Interferon- γ (IFN- γ)-Sekretion der Splenocyten durch Inkubation mit konditionierten Medien nach Infektion von HT29 Diese IFN-γ-Induktion Ad.3r-sc-IL-12 erhalten. mit verglichen mit der Infektion von HT29 mit dem gewöhnlich verwendeten Ad.CMV-p40.IRES.p35 signifikant höher. Die Zugabe von Doxycyclin resultierte in einer Suppression von IFN- γ auf spezifische wurde die Hintergrund-Level. Ferner einen Bioaktivität adenoviral exprimierter Formen von IL-12 Vergleich zu rekombinant gereinigten p40/p35-Heterodimeren mit Murine Splenocyten wurden analysiert (Figur 11). rekombinant Verdünnungen von halblogarithmischen heterodimerem IL-12 oder konditionierte Medien enthaltendem Die IFN-y-Induktion beschrieben inkubiert. IL-12 wie korellierte mit der Immunreaktivität von IL-12 in den Medien, wie durch p70-ELISA nachgewiesen wurde. Die basale Induktion wurde durch Präinkubation von Splenocyten mit Anti-humanen CD28-Antikörpern verursacht, was zur IL-2-Expression und nachfolgenden IFN-y-Induktion führte (CH June et al., Immunol. 143 (1989) 153-161). Die Bioaktivität des murinen einzelkettigen IL-12 Fusionsproteins war mit dem gereinigten, vergleichbar. Die rekombinanten p40/p35-Heterodimer

reduzierte Bioaktivität von IL-12, das nach Infektion mit dem gewöhnlich verwendeten Ad.CMV-p40.HRES.p35 exprimiert wurde, erklärt sich durch inhibitorische p40-Homodimere (P. Ling et al J. Immunol. 154 (1995) 116-127; S. Gillesen et al. European J. Immunol. 25 (1995) 200-206; F. Mattner et al. European J. Immunol. 23 (1993) 2202-2208).

Regulierte Interleukin-12 Genexpression in vitro

Verschiedene Zellinien des humanen Colon Karzinom (HT29, und Colo205), pankreatischen Karzinom Blasen-Karzinom (RT4), Cervix-Karzinom (HeLa), Brust-Karzinom (MCF-7 und BT-20) sowie Myolom (U266) und hepatozelluläres Karzinom (HepG2) wurden entweder mit Ad. CMV.p40.IRES.p35 infiziert und oder Gegenwart Ad.3r-scIL-12 in oder Abwesenheit von Doxycyclin inkubiert. Die Expression des rekombinanten Interleukin-12 wurde unter Verwendung eines p70-ELISA wie zuvor beschrieben bestimmt (Figur 12). Die Interleukin-12-Doxycyclin-vermittelte Suppression der Expression trat in allen Zelllinien auf. In Abwesenheit von Doxycyclin erwies sich der 3r-Promotor gegenüber dem CMV-Zelllinien mit Ausnahme der in allen Mylomzellinie als überragend. Die Interleukin-12-Expression in Mock-transfizierten Zellinien wurde nicht nachgewiesen. Die Suppression des IL-12 war 3,9-fach in U266 und bewegte sich von 167 (HepG2) bis 6000-fach (Aspc-1). Mit Ausnahme von U266, wo eine gegenüber der CMV-vermittelten IL-12-Expression signifikant geringere 3r-vermittelte IL-12 Expression vorlag, führte der 3r-Promotor in allen anderen Krebszelllinien zu (Colo205) höherer 4254-fach (SkCo-1) bis 17-fach Genexpression in Abwesenheit von Doxycyclin.

Regulierte Genexpression nach Inkubation mit Humanserum

In Abetracht der geringen Doxycyclin- und Tetracyclin (tet)-Konzentrationen, die zur Suppression der Transgen-Expression erforderlich sind, wurde die Regulation in humanen Colon-Krebszellen in Gegenwart von humanem Serum untersucht, um die Anwendbarkeit dieses Ansatzes in einem möglichen klinischen Umfeld zu prüfen. Serumproben von gesunden Probanden, die sich einer westlichen Standardernährung unterzogen, wurden unter Verwendung eines Standard HPLC-Verfahrens mit einer maximalen Sensitivität von 2 ng/ml auf Tetracyclin getestet, da Tetracyclin in der Nutztierhaltung breite Anwendung findet und eine Kontamination von Nahrungsmitteln anzunehmen ist. signifikanten Tetracyclinkeine HPLC zeigte Die in allen getesteten Proben. HT29-Colon-Konzentrationen Karzinomzellen, die nach Inkubation mit diesen humanen Seren mit Ad.3r-luc (m.o.i.: 30) infiziert wurden, zeigten keinen signifikanten Unterschied hinsichtlich der Transgenexpression zertifiziertem, Tetracyclin-freiem verglichen mit spiegelt Diese Beobachtung Rinderserum (Figur 13). Serumproben Tetracyclin-Konzentrationen in humanen weniger als 10 pg/ml wieder. Wie erwartet, führte die Supplementierung dieser Humanseren mit Doxycyclin (2 μ g/ml) zu einer äußerst effizienten Suppression der Transgen-Expression.

Beschreibung der Figuren

einer autoregulierten, Tetracyclin-Prinzip Figur abhängigen Transaktivator-Expression. Der bidirektional tetresponsive Promotor kontrolliert sowohl das Transgen als auch die Transaktivator-Expression. Bindung des Transaktivators in Abwesenheit von Tetracyclin oder Doxycyclin resultiert in einer Amplifikation der Transaktivator-Expression durch eine positive Feedback-Schleife, ebenso wie in einer Induktion der Tet-Repressor und VP16 tTA, Transgen-Expression. Fusionsproteine; TKmin, minimaler Thymidin-Kinase-Promotor; Zytomegalovirus-Promotor; CMVmin. minimaler heptamerisierter Tet-Operator.

Die autorequlierte Adenovirale Vektorkarten. Figur 2. Tetracyclin-Expressionskassette ist in die Δ E1-Region des adenoviralen Genoms inseriert. Zur Vermeidung von kryptischem Splicing und um RNA-Stabilität zu erhalten (Ad.3r-luc und Ad.3r-scIL12) wurde ein Intron aufwärts vom Aktivator und dem Luciferase- oder Interleukin-12-Gen aus der Maus eingefügt. Zusätzlich wurden rekombinate adenovirale Vektoren für die Luciferaseoder des heterodimeren des Expression Interleukin-12-Gens der Maus unter der Kontrolle des CMV-Promotors konstruiert (Ad.CMV-luc und Ad.CMV-p40.IRES.p35). El und E3, Early regions des adenoviralen Genoms; IRES, Ribosomen-Eintrittsstelle; CMV, Zytomegalievirusinterne Promotor; TK, Thymidin-Kinase-Promotor.

Figur 3. Plaque-Assay von Ad.3r-scIL12 in An- und Abwesenheit von Doxycyclin in einer Konzentration von 2 μ g/ml. Titration von Ad.3r-scIL12 in 293-Zellen resultiert in einer erheblich

höheren Ausbeute, wenn die Expression des Transgens durch Zugabe von Doxycyclin unterdrückt wird. Dox, Doxycyclin.

- Figur 4. Dosisabhängige Luciferase-Expression nach Infektion von HT29 Dickdarmkrebszellen mit Ad.3r-luc gefolgt von verschiedenen Konzentrationen des Tetracyclin-Derivats Doxycyclin.
- Figur 5. Westernblot-Analysen des Transaktivators zeigen die positive Rückkoppelungsschleife nach adenoviraler Infektion von HT29-Zellen unter Inkubation mit unterschiedlichen Mengen von Doxycyclin. Die Figur zeigt die Unterdrückung der Expression des tTA Fusionsproteins in Anwesenheit von Doxycyclin. dox, Doxycyclin.
- Figur 6. Unterdrückung der Luciferase-Genexpression nach Infektion von HT29-Zellen mit verschiedenen Multiplizitäten der Infektion (multiplicities of infection, m.o.i.). Doxycyclin-regulierte Genexpression wird in einem großen Infektionsbereich von wenigstens 0,1 bis 100 m.o.i. erzielt, die in einer 470- bis 2400-fachen Unterdrückung der Luciferase-Expression resultiert.
- Figur 7. Vergleich der 3r-vermittelten Transgen-Expression bei Verwendung des konstitutiven Zytomegalievirus-Promotors. HT29-Zellen wurden mit Ad.3r-luc oder Ad.CMV-luc in verschiedenen m.o.i. infiziert, gefolgt von einer Inkubation in Doxycyclin-freiem Medium.
- Figur 8. Interleukin-12-Expression in HT29-Zellen nach Infektion mit Ad.3r-scIL12 in An- oder Abwesenheit von Doxycyclin (2 μ g/ml) oder Ad.CMV-mIL12 bei verschiedenen

- Luciferase-exprimierenden adenoviralen mit Wie m.o.i. Vektoren gezeigt wurde, befindet sich in HT29 eine erheblich Interleukin-12-Expression, wenn der 3r-Promotor höhere Zugabe von Doxycyclin führt zu wird. verwendet Unterdrückung der Transgen-Expression unter das Niveau, das mit Ad.CMV-p40.IRES.p35 bei der selben m.o.i. erzielt wird.
- Westernblot-Analyse der tTA Transaktivator-Figur 9. Genexpression in An- oder Abweseneheit von Doxycyclin nach Infektion mit Ad.3r-scIL12 bei verschiedenen m.o.i.. Beide Domänen des tTA Fusionsproteins wurden mit den TetT- und VP16-Antikörpern nachgewiesen. Die Expression des tTA Fusionsproteins korreliert mit der eingesetzten m.o.i.. Zugabe von Doxycyclin in einer Konzentration von 2 $\mu g/ml$ resultiert in einer Unterdrückung der tTA Expression. TetR, simplex Virus Tetracyclin-Repressor; VP16, Herpes transkriptionale Aktivierungsdomäne.
- der Interferon-y-Expression Induzierung 10. Inkubation von Splenozyten mit konditioniertem Überstand von infizierten HT29-Zellen. 106 HT29-Zellen wurden mit Ad3rscIL12 (+/- Dox) oder Ad.CMV-p40.IRES.p35 bei einer m.o.i. von 30 für 24h infiziert. Infektion von HT29 mit Ad.3r-scIL12 Interferon-y-Induktion in einer starken resultiert Vergleich zu einer Infektion mit Ad.CMV-p40.IRES.p35. Zugabe von Doxycyclin resultiert in einer Abnahme des Interferon-γ auf Hintergrundniveau in diesem Versuchsansatz.
- Figur 11. Vergleich der Interferon-γ-Induktion durch adenoviral-exprimiertes Einzelketten- (single-chain), bzw. heterodimeres Interleukin-12, sowie durch aufgereinigtes rekombinantes Interleukin-12. Interleukin-12 im

konditionierten Überstand von infizierten HT29-Zellen wurde durch p70-mIL12 ELISA bestimmt. Mäuse-Splenozyten wurden dann entweder adenoviral seriellen Verdünnungen von mit exprimierten oder rekombinanten Interleukinen inkubiert und Interferon-y wurde mit mIFN-γ **ELISA** induzierte das Bioaktivität-Immunoreaktivität von quantifiziert. Die Einzelketten-Interleukin-12 war vergleichbar zu rekombinantem aufgereinigtem heterodimerem Interleukin-12. Die spezifische heterodimerem adenoviral produziertem Bioaktivität von Interleukin-12 (Ad.CMV-p40.IRES.p35) scheint niedriger sein, wahrscheinlich durch inhibitorische p40 Homodimere.

Figur 12. Interleukin-12-Expression in verschiedenen Zellinien nach Infektion mit entweder Ad.CMV-p40.IRES.p35 oder Ad.3r-scIL12 in An- oder Abwesenheit von Doxycyclin. Unterschiedliche Stärken der Transgenexpression beruhen z.T. auf Unterschieden in der Transduktionseffizienz. Mit Ausnahme der U266 Myelomzellinie war die 3r-vermittelte Genexpression deutlich höher als die CMV-vermittelte Expression.

Ad.3r-luc infizierten HT29 Inkubation von 13. Figur menschlichen Seren Dickdarmkarzinomzellen mit zertifiziertem Tetracyclin-freien fötalem Rinderserum. Es gab signifikanten Unterschiede bei der Verwendung von menschlichem Serum von Probanden mit einer standardisierten zertifiziertem mit im Vergleich westlichen Ernährung Tetracyclin-freiem fötalem Kälberserum. Diese Daten legen eine Tetracyclin-Konzentration bei den menschlichen Probanden von unter 50 pg/ml nahe. Die Ergänzung der menschlichen Sera mit Doxycyclin (2 μ g/ml) resultiert in einer Unterdrückung der Transgen-Expression wie vorgehend gezeigt. FCS, fötales Kälberserum.

Patentansprüche

 Rekombinanter viraler Vektor, der ein Insert enthält, das die allgemeine Struktur

 $tTA - Intron^1 - TK^+ - TetO_7 - CMV^+ - Intron^2 - Transgen$ aufweist, wobei

der heptamerisierte Tetracylin-Operator ist, TetO, der minimale Thymidin Kinase-Promotor ist, TK^{+} ist, die für eine Nukleinsäuresequenz tTA aus dem durch Tetracyclin Fusionsprotein Repressorprotein der und induzierbaren Aktivierungsdomäne des transkriptionellen Herpes simplex Virus VP16 kodiert,

CMV der minimale Cytomegalievirus-Promotor ist und Transgen eine für ein nicht-virales Protein kodierende Nukleinsäuresequenz ist,

Intron¹ eine beliebige nicht-kodierende

Nukleinsäuresequenz mit einer Länge von 0 bis

etwa 1000 bp ist und

Intron² eine beliebige nicht-kodierende Nukleinsäuresequenz mit einer Länge von 0 bis etwa 1000 bp ist.

 Vektor nach Anspruch 1, dadurch gekennzeichnet, daß das Insert in umgekehrter Orientierung in das virale Vektorgenom inseriert ist.

- 3. Vektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Positionen von tTA und Transgen im Insert vertauscht sind.
- 3, dadurch Vektor nach den Ansprüchen 1 bis 4. Insert zwischen 'CMV'' gekennzeichnet, das daß 'Intron' und 'Transgen' zwischen 'Intron' oder zusätzlich einen lac-Repressor (lacR) enthält.
- Ansprüchen dadurch bis 4, 5. Vektor den 1 nach eine für ein gekennzeichnet, daß das Transgen Fluoreszenzprotein, für Luciferase, Interleukin-12 (IL-12), Interleukin-18 (IL-18), Interleukin-2 (IL-2), Tumor α (TNF- α) oder Interferon- γ (IFN- γ) Faktor Nekrose kodierende Nukleinsäuresequenz ist.
- 6. Vektor nach Anspruch 5, dadurch gekennzeichnet, daß IL-12 ein single-chain Interleukin-12 ist.
- 6, dadurch bis Ansprüchen 1 Vektor nach den Adenovirus, gekennzeichnet, daß das Virus ein Adenoassoziiertes Adenovirus (AAV), ein insbesondere ein Humanes Immundefizienzvirus (HIV), ein Herpes Simplex Virus, ein Hepatitis-B Virus oder ein Hepatitis C-Virus ist.
- 8. Vektor nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass das Insert in die E1- und/oder die E3-Region eines rekombinanten Adenovirus einkloniert ist.
- 9. Vektor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß er durch homologe Rekombination eines

viralen Plasmids und eines Expressionsplasmids mit der in SEQ ID NO:1, SEQ ID NO:2 oder SEQ ID NO:3 dargestellten Nukleinsäuresequenz erhältlich ist.

WO 03/087294

- 10. Expressionsplasmid mit der in SEQ ID NO:4 oder SEQ ID NO:5 dargestellten Nukleinsäuresequenz.
- 11. Verwendung eines Plasmids nach Anspruch 10 zur Herstellung eines Vektors nach den Ansprüchen 1 bis 9.
- 12. Verwendung der Vektoren nach den Ansprüchen 1 bis 9 zur in vitro-Genexpression in eukaryoten Zelllinien.
- 13. Verwendung der Vektoren nach den Ansprüchen 1 bis 9, bei denen 'Transgen' für ein therapeutisch wirksames Protein kodiert, in der Gentherapie.
- 14. Verwendung nach Anspruch 13, bei dem das Transgen IL-2, IL-12, IL-18, TNF- α oder IFN- γ ist, zur Gentherapie maligner Erkrankungen.
- 15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, daß die maligne Erkrankung ein solider Tumor ist.
- 16. Verwendung nach den Ansprüchen 12 bis 15, dadurch gekennzeichnet, dass man die Genexpression mit Doxycyclin, Tetracyclin, Oxytetracyclin, Chlortetracyclin, Demeclocyclin, Methacyclin oder Minocyclin, reguliert.
- 17. Verwendung der Vektoren nach den Ansprüchen 1 bis 9, bei denen 'Transgen' für ein Reporterprotein kodiert, zum Nachweis von Tetracyclin oder einem Derivat desselben in

biologischen, lebensmittelchemischen oder ähnlichen Proben.

18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, dass das Derivat Doxycyclin ist.

Block et al. 2002

luciferase luciferase **CMV**min **CMV**min TetO, NAMEGRAPH PROPERTY OF THE PROP **TK**min **TK**min + doxycycline - doxycycline **tT**A

Figure 1 Tet-OFF system

Block et al. 2002

Figure 2

- -

-- -- -- --- ---

Figure 3

Figure 4

Figure 5

Figure 7

Figure 8

Figure 9

Ad.3r-sclL12

Figure 10

Figure 12

SEQUENZPROTOKOLL

```
<110> Universitätsklinikum Hamburg-Eppendorf
<120> Rekombinante virale Vektoren zur Tetracyclin-regulierbaren
      Genexpression
<130> P 63006
<160> 5
<170> PatentIn version 3.1
<210> 1
<211> 11569
<212> DNA
<213> Artificial Sequence
<220>
<223> Adenovirales Expressionsplasmid pAd.3r.hscIL-12 zur regulierten
       Expression des humanen IL-12
<220>
<221> gene
      (327)..(713)
<222>
<223> VP16
<220>
<221> gene
<222> (714)..(1352)
<223> TetR
<220>
<221> Intron
<222> (1353)..(1912)
<223>
<220>
<221> promoter
<222> (1864)..(1902)
<223> TK-min
<220>
<221> protein_bind
<222> (1913)..(2212)
<223> TetO7
<220>
<221> misc_feature
<222> (2213)..(2709)
<223> CMV-min + Intron
<220>
<221> promoter
<222> (2226)..(2264)
<223> CMV-min
```

<220>

```
gene
<221>
       (2710)..(4308)
<222>
      Humanes single-chain IL-12
<223>
<220>
<221>
      mutation
<222>
      (4020)..(4023)
      T/C, A/T, G/C, T/G
<400>
                                                                      60
ctgctggttc tttccgcctc agaagccata gagcccaccg catccccagc atgcctgcta
                                                                    120
ttgtcttccc aatcctcccc cttgctgtcc tgccccaccc cacccccag, aatagaatga
cacctactca gacaatgcga tgcaatttcc tcattttatt aggaaaggac agtgggagtg
                                                                    180
                                                                    240
gcaccttcca gggtcaagga aggcacgggg gaggggcaaa caacagatgg ctggcaacta
                                                                    300
gaaggcacag tcgaggctga tcagcgagct ctagcattta ggtgacacta tagaataggg
                                                                    360
ccctctagga tcgatcctcg cgcccctac ccaccgtact cgtcaattcc aagggcatcg
                                                                     420
gtaaacatct gctcaaactc gaagtcggcc atatccagag cgccgtaggg ggcggagtcg
tggggggtaa atcccggacc cggggaatcc ccgtccccca acatgtccag atcgaaatcg
                                                                     480
                                                                     540
tctagcgcgt cggcatgcgc catcgccacg tcctcgccgt ctaagtggag ctcgtcccc
                                                                     600
aggetgacat eggteggggg ggeegtggae agtetgegeg tgtgteeege ggggagaaag
gacaggcgcg gagccgccag ccccgcctct tcgggggcgt cgtcgtccgg gagatcgagc
                                                                     660
                                                                     720
aggccctcga tggtagaccc gtaattgttt ttcgtacgcg cgcggctgta cgcggaccca
                                                                     780
ctttcacatt taagttgttt ttctaatccg catatgatca attcaaggcc gaataagaag
                                                                     840
gctggctctg caccttggtg atcaaataat tcgatagctt gtcgtaataa tggcggcata
ctatcagtag taggtgtttc cctttcttct ttagcgactt gatgctcttg atcttccaat
                                                                     900
acgcaaccta aagtaaaatg ccccacagcg ctgagtgcat ataatgcatt ctctagtgaa
                                                                     960
aaaccttgtt ggcataaaaa ggctaattga ttttcgagag tttcatactg tttttctgta
                                                                    1020
ggccgtgtac ctaaatgtac ttttgctcca tcgcgatgac ttagtaaagc acatctaaaa
                                                                    1080
cttttagcgt tattacgtaa aaaatcttgc cagctttccc cttctaaagg gcaaaagtga
                                                                    1140
gtatggtgcc tatctaacat ctcaatggct aaggcgtcga gcaaagcccg cttattttt
                                                                    1200
acatgccaat acaatgtagg ctgctctaca cctagcttct gggcgagttt acgggttgtt
                                                                    1260
aaaccttcga ttccgacctc attaagcagc tctaatgcgc tgttaatcac tttactttta
                                                                    1320
tctaatctag agggtctggg tctctttggc atggtcgaat taattcgcgt cgagccggcc
                                                                    1380
                                                                    1440
gcgggtacaa ttccggttgg acctgggagt ggacacctgt ggagagaaag gcaaagtgga
tgtcattgtc actcaagtgt atggccagat ctcaagcctg ccacacctca agcttgacaa
                                                                    1500
caaaaagatt gtcttttctg accagatgga cgcggccacc ctcaaaggca tcaccgcggg
                                                                    1560
                                                                    1620
ccaggtgaat atcaaatcct cctcgttttt ggaaactgac aatcttagcg cagaagtcat
gcccgctttt gagagggagt actcacccca acagtcgaga ggttttccga tccggtcgat
                                                                    1680
                                                                    1740
geggactege teaggteect eggtggegga gtacegtteg gaggeegaeg ggttteegat
                                                                    1800
ccaagagtac tggaaagacc gcgaagagtt tgtcctcaac cgcgagccca acaggcgtcg
                                                                    1860
aagettgatg ggtegetegg tgttegagge cacaegegte acettaatat gegaagtgga
                                                                    1920
cctcggaccg cgccgccccg actgcatctg cgtgttcgaa ttgcccggcg agctcgactt
tcacttttct ctatcactga tagggagtgg taaactcgac tttcactttt ctctatcact
                                                                    1980
                                                                    2040
gatagggagt ggtaaactcg actttcactt ttctctatca ctgataggga gtggtaaact
                                                                    2100
cgactttcac ttttctctat cactgatagg gagtggtaaa ctcgactttc acttttctct
                                                                    2160
atcactgata gggagtggta aactcgactt tcacttttct ctatcactga tagggagtgg
                                                                    2220
taaactcgac tttcactttt ctctatcact gatagggagt ggtaaactcg acggtcgagg
                                                                    2280
gtcgagtagg cgtgtacggt gggaggccta tataagcaga gctcgtttag tgaaccgtca
gatcgcctgg agacgccatc cacgctgttt tgacctccat agaagacacc gggaccgatë
                                                                    2340
                                                                    2400
cagceteege ggeecegaat tgegaagett tattgeggta gtttateaca gttaaattge
taacgcagtc agtgcttctg acacaacagt ctcgaactta agctgcagaa gttggtcgtg
                                                                    2460
aggcactggg caggtaagta tcaaggttac aagacaggtt taaggagacc aatagaaact
                                                                    2520
gggcttgtcg agacagagaa gactcttgcg tttctgatag gcacctattg gtcttactga
                                                                    2580
                                                                    2640
catccacttt gcctttctct ccacaggtgt ccactcccag ttcaattaca gctcttaagg
                                                                    2700
ctagagtact taatacgact cactataggc tagcctcgag aattcacgcg tggtaccgag
                                                                    2760
ctcggatcca tgggtcacca gcagttggtc atctcttggt tttccctggt ttttctggca
                                                                    2820
2880
tatccggatg cccctggaga aatggtggtc ctcacctgtg acacccctga agaagatggt
atcacctgga ccttggacca gagcagtgag gtcttaggct ctggcaaaac cctgaccatc
                                                                    2940
                                                                    3000
caagtcaaag agtttggaga tgctggccag tacacctgtc acaaaggagg cgaggttcta
```

						2060
agccattcgc	tcctgctgct	tcacaaaaag	gaagatggaa	tttggtccac	tgatatttta	3060
aagga ccága	aagaacccaa	aaataaqacc	tttctaagat	gcgaggccaa	gaactattet	3120
ggacgtttca	cctactaata	gctgacgaca	atcagtactg	atttgacatt	cagigicaaa	3180
Daggaggagg	gctcttctga	ccccaaggg	gtgacgtgcg	gagetgetae	acteretgea	3240
gagagagtca	gaggggacaa	caaggagtat	gagtactcag	tggagtgcca	ggaggacagc	3300
acctacccag	ctactaaaaa	gagtctgccc	attgaggtca	rggrggarge	cgtttataag	3360
ctcaagtatg	aaaactacac	cagcagcttc	ttcatcaggg	acatcatcaa	accigaccca	3420
cccaagaact	tocaoctoaa	gccattaaag	aattctcggc	aggcggaggc	cagergggag	3480
taccctgaca	cctggagtac	tccacattcc	tacttctccc	tgacattetg	Cyccayycc	3540
caggggaaga	gcaagagaga	aaaqaaaqat	agagtettea	cggacaagac	eccagecacg	3600
gtcatctgcc	gcaaaaatgc	cagcattage	gtgcgggccc	aggaccgcta	ctatagetea	3660
tettagageg	aatgggcatc	tataccctgc	agtggtggcg	grggcggcgg	acctagaaac	3720
ctccccatag	ccactccaga	cccaggaatg	ttcccatgcc	ttcaccactc	Ccaaaacccg	3780
ctgagggcg	tcagcaacat	gctccagaag	gccagacaaa	ctctagaatt	Etaccettge	3840
acttctgaag	agattgatca	tqaagatatc	acaaaagata	aaaccagcac	agrggaggcc	3900
totttaccat	tqqaattaac	caagaatgag	agttgcctaa	attecayaya	gaccccccc	3960
ataactaatg	ggagttgcct	ggcctccaga	aagacctctt	ttatgatggc	eetgtgeete	4020
togagtattt	atgaagactc	qaaqatgtac	caggtggagt	tcaagaccat	gaatgcaaag	4080
cttctgatgg	atcctaagag	gcagatettt	ctagatcaaa	acatgetgge	agitatigat	4140
gagetgatge	aggecetgaa	tttcaacaqt	gagactgtgc	cacaaaaatc	Ciccitigaa	4200
gaaccggatt	tttataaaac	taaaatcaaq	ctctgcatac	ttcttcatge	CCCagaacc	4260
caaacaataa	ctattgatag	agtgatgagc	tatctgaatg	CCCCCtaaaa	agegaggeeg	4320
atccggatta	gtccaatttg	ttaaagacag	gatatcagtg	gtccaggctc	Lagittigat	4380
tcaacaatat	caccaqctqa	agcctataga	gtacgagcca	tagataaaat	aaaayatttt	4440
atttagtctc	cagaaaaagg	qqqgaatgaa	agaccccacc	tgtaggtttg	gcaagctagt	4500
aacggccgcc	agtgtgctgg	aattctgcag	atatccatca	cactggcggc	egetegagea	4560
tgcatctaga	gggccctatt	ctatagtgtc	acctaaatgc	tagagetege	tgateageet	4620
cgactgtgcc	ttctaqttqc	cagccatctg	ttgtttgccc	creceegrg	ecclectiga	4680
ccctggaagg	toccactccc	actgtccttt	cctaataaaa	tgaggaaatt	geategeatt	4740
gtctgagtag	gtgtcattct	attctqqqqq	gtggggtggg	gcaggacagc	aagggggagg	4800
attoggaaga	caataqcaqq	catgctgggg	atgcggtggg	ctctatggct	tetgaggegg	4860
aaagaaccag	tegacatega	tactagagta	gaaggtgctg	aggtacgatg	agacccgcac	4920
caggtgcaga	ccctgcgagt	gtggcggtaa	acatattagg	aaccagcctg	tgatgetgga	4980
tataaccaaa	gagetgagge	ccgatcactt	ggtgctggcc	tgcacccgcg	ctgagtttgg	5040
ctctagcgat	gaagatacag	attqaqqtac	tgaaatgtgt	gggcgtggct	taagggtggg	5100
aaagaatata	taaggtgggg	gtcttatgta	gttttgtatc	tgttttgcag	cageegeege	5160
coccatgage	accaactcqt	ttgatggaag	cattgtgagc	tcatattiga	Caacycycac	5220
accccatag	accaaaatac	gtcagaatgt	gatgggctcc	agcallgalg	gregeeege	5280
cctacccaca	aactctacta	ccttgaccta	cgagaccgtg	tetggaaege	cgilggagac	5340
tacaacetee	accaccactt	caqccqctqc	agccaccgcc	cgcgggatty	Lyactyactt	5400
tactttccta	agcccgcttg	caagcagtgc	agetteeegt	teateegeee	gcgacgacaa	5460
attaacaact	cttttggcac	aattqqattc	tttgacccgg	gaacttaatg	tegillicia	5520
gcagctgttg	gatctgcgcc	aqcaqgtttc	tgccctgaag	getteetee	eteccaatge	5580
ggtttaaaac	ataaataaaa	aaccaqactc	tgtttggatt	tggatcaagc	aagtgtttg	5640
ctgtctttat	ttaggggttt	tacacacaca	gtaggcccgg	gaccagcggt	eccegica	5700
gagggtcctg	tatattttt	ccaqqacgtg	gtaaaggtga	ctctggatgt	Cagacacac	5760
gggcataagg	ccatctctaa	qqtqqaggta	gcaccactgc	agagetteat	gergeggge	5820
ggtgttgtag	atgatccagt	cqtagcagga	gegetgggeg	tggtgcctaa	aaacgccccc	5880
cagtagcaag	ctgattgcca	qqqqcagqcc	: cttggtgtaa	gtgtttacaa	ageggetaag	5940
ctaggataga	tacatacata	r qqqatatqag	atgcatcttg	gactgtattt	ttaggttggt	6000
tatottccca	gccatatccc	: tccqqqqatt	: catgttgtgc	agaaccacca	gcacagugua	6060
tecaatacac	: ttgggaaatt	. tgtcatgtag	, cttagaagga	. aatgcgtgga	agaacttgga	6120
gacgcctte	tgacctccaa	gattttccat	gcattcgtcc	ataatgatgg	caatgggccc	6180
acadacaaca	geetagaega	agatatttct	gggatcacta	acgtcatagt	tgtgttccag	6240
gatgagatCo	r tcataggcca	ı tttttacaaa	. gcgcgggcgg	agggtgccag	, acceeggtat	6300
aatggttcca	teeggeeea	gggcgtagtt	acceteacag	atttgcattt	cccacgcttt	6360
gagttcagat	gggggatca	tgtctacctc	cggggcgatg	aagaaaacgg	tttccggggt	6420
aggggagato	: agctgggaag	r aaagcaggtt	: cctgagcagc	tgcgacttac	: egeageeggt	6480
addeceats:	atcacaccha	ttaccaaata	caactggtag	ttaagagag	tgcagctgcc	6540
grante	agcaggggg	ccacttcatt	aagcatgtcc	ctgactcgca	tgttttcct	6600
raccaaatco	. accadaadd	gctcaccaca	cagcgatago	agttcttgca	a aggaagcaaa	6660
gaccadacce			J-J J-			

WO 03/08/294			4/00		PC 1/EP03/0	J3638
			4/20			
gtttttcaac	ggtttgagac	cgtccgccgt	aggcatgctt	ttgagcgttt	gaccaagcag	6720
ttccaqqcqq	tcccacagct	cggtcacctg	ctctacggca	tctcgatcca	gcatatctcc	6780
tcätttcaca	ggttggggcg	gctttcgctg	tacggcagta	gtcggtgctc	gtccagacgg	6840
accaggatca	tgtctttcca	cgggcgcagg	gtcctcgtca	gcgtagtctg	ggtcacggtg	6900
aaggggtgcg	ctccgggctg	cgcgctggcc	agggtgcgct	tgaggctggt	cctgctggtg	6960
ctgaagcgct	gccggtcttc	gccctgcgcg	tcggccaggt	agcatttgac	catggtgtca	7020
tagtccagcc	cctccqcqqc	gtggcccttg	gcgcgcagct	tgcccttgga	ggaggcgccg	7080
cacqaqqqqc	agtgcagact	tttgagggcg	tagagettgg	gcgcgagaaa	taccgattcc	7140
ggggagtagg	catccgcgcc	gcaggccccg	cagacggtct	cgcattccac	gagccaggtg	7200
agctctggcc	gttcggggtc	aaaaaccagg	tttcccccat	gctttttgat	gcgtttctta	7260
cctctqqttt	ccatgagccg	gtgtccacgc	tcggtgacga	aaaggctgtc	cgtgtccccg	7320
tatacagact	tgagaggcct	gtcctcgacc	gatgcccttg	agagccttca	acccagtcag	7380
ctccttccqq	tgggcgcggg	gcatgactat	cgtcgccgca	cttatgactg	tcttctttat	7440
catqcaactc	gtaggacagg	tgccggcagc	gctctgggtc	attttcggcg	aggaccgctt	7500
tcqctqqaqc	gcgacgatga	tcggcctgtc	gcttgcggta	ttcggaatct	tgcacgccct	7560
cqctcaaqcc	ttcgtcactg	gtcccgccac	caaacgtttc	ggcgagaagc	aggccattat	7620
cqccqqcatq	gcggccgacg	cgctgggcta	cgtcttgctg	gcgttcgcga	cgcgaggctg	7680
gatggccttc	cccattatga	ttcttctcgc	ttccggcggc	atcgggatgc	ccgcgttgca	7740
ggccatgctg	tccaggcagg	tagatgacga	ccatcaggga	cagcttcaag	gatcgctcgc	7800
ggctcttacc	agcctaactt	cgatcactgg	accgctgatc	gtcacggcga	tttatgccgc	7860
ctcqqcqaqc	acatggaacg	ggttggcatg	gattgtaggc	gccgccctat	accttgtctg	7920
cctccccgcg	ttgcgtcgcg	gtgcatggag	ccgggccacc	tcgacctgaa	tggaagccgg	7980
cggcacctcg	ctaacggatt	caccactcca	agaattggag	ccaatcaatt	cttgcggaga	8040
actgtgaatg	cgcaaaccaa	cccttggcag	aacatatcca	tegegteege	catctccagc	8100
agccgcacgc	ggcgcatctc	gggcagcgtt	gggtcctggc	cacgggtgcg	catgategtg	8160
ctcctgtcgt	tgaggacccg	gctaggctgg	cggggttgcc	ttactggtta	gcagaatgaa	8220
tcaccgatac	gcgagcgaac	gtgaagcgac	tgctgctgca	aaacgtctgc	gacctgagca	8280 8340
acaacatgaa	tggtcttcgg	tttccgtgtt	tcgtaaagtc	tggaaacgcg	gaagtcagcg	8400
ccctgcacca	ttatgttccg	gatctgcatc	gcaggatgct	getggetace	ctgtggaaca	8460
cctacatctg	tattaacgaa	gcgctggcat	tgaccctgag	tgatttttt	etggteeege	8520
cgcatccata	ccgccagttg	tttaccctca	caacgttcca	gtaaccgggc	atgtttatta	8580
tcagtaaccc	gtatcgtgag	catcctctct	cgtttcatcg	graceattae	gggttaaga	8640
agaaattccc	ccttacacgg	aggcatcaag	tgaccaaaca	ggaaaaaacc	gecettaaca	8700
tggcccgctt	tatcagaagc	cagacattaa	egettetgga	gaaactcaac	ctttaccaca	8760
cggatgaaca	ggcagacatc	tgtgaatege	ccacgacca	acacatacaa	ctccccgca	8820
gctgcctcgc	gcgtttcggt	gatgatggtg	aaaacccccg	acacacgcag	accacatcaa	8880
cggtcacagc	ttgtctgtaa	geggatgeeg	taaccaacta	agecegeeag	agcggagtgt	8940
cgggtgttgg	cgggtgtcgg	ggegeageea	gattetacte	agagtgcacc	atatocooto	9000
atactggctt	aactatgcgg	tangagea	ataccccatc	agagegetett	ccacttcctc	9060
tgaaataccg	cacagatgcg tcgctgcgct	caayyayaaa	actacagacaa	gcggtatcag	ctcactcaaa	9120
geteaetgae	cggttatcca	cagaatcag	geegeggega	ggaaagaaca	totoagcaaa	9180
ggcggcaaca	aaggccagga	accetasasa	ggacacagtta	ctagcatttt	tccataggct	9240
aggeeageaa	gacgagcatc	accycaaaaa	acoctcaaot	cagaggtggc	gaaacccgac	9300
aggetteta	agataccagg	catttcccc	tagaagetee	ctcatacact	ctcctgttcc	9360
aggactacaa	cttaccggat	acctatccac	ctttctccct	tcgggaagcg	tggcgctttc	9420
teasteetes	cgctgtaggt	atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	9480
tatacacaaa	cccccgttc	agcccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	9540
atccaaccca	gtaagacacg	acttatcgcc	actogcagca	gccactggta	acaggattag	9600
cadadcdadd	tatgtaggcg	gtgctacaga	qttcttgaag	tggtggccta	actacggcta	9660
cagagegagg	acagtatttg	gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	9720
agttggtagg	tcttgatccg	gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	9780
caagcagcag	attacgcgca	gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	9840
gaggtctgac	gctcagtgga	acqaaaactc	acgttaaggg	attttggtca	tgagattatc	9900
aaaaaqqatc	ttcacctaga	tccttttaaa	ttaaaaatga	agttttaaat	caatctaaag	9960
tatatatgag	taaacttggt	ctgacagtta	. ccaatgctta	atcagtgagg	cacctatete	10020
agcgatctgt	ctatttcgtt	catccatagt	tgcctgactc	cccgtcgtgt	agataactac	10080
gatacgggag	ggcttaccat	ctggccccag	tgctgcaatg	ataccgcgag	acccacgctc	10140
accoactcca	gatttatcag	caataaacca	gccagccgga	agggccgagc	gcagaagtgg	10200
tcctqcaact	ttatccgcct	ccatccagtc	: tattaattgt	tgccgggaag	ctagagtaag	10260
tagttcgcca	gttaatagtt	tgcgcaacgt	tgttgccatt	gctgcaggca	tcgtggtgtc	10320
J J J	_		- -		•	

acgctcgtcg tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatecece atgttgtgca aaaaageggt tageteette ggteeteega tegttgteag aagtaagttg geegeagtgt tateacteat ggttatggea geactgeata attetettae tgtcatgcca tccgtaagat gcttttctgt gactggtgag tactcaacca agtcattctg 10560 agaatagtgt atgeggegae egagttgete ttgeeeggeg teaacaeggg ataataeege 10620 gccacatagc agaactttaa aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ctcaaggate ttacegetgt tgagatecag ttegatgtaa eccaetegtg caeceaactg 10740 atottcagca tottttactt toaccagogt ttotgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac tottootttt 10800 10860 tcaatattat tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg 10920 10980 tatttagaaa aataaacaaa taggggttcc gcgcacattt ccccgaaaag tgccacctga 11040 cgtctaagaa accattatta tcatgacatt aacctataaa aataggcgta tcacgaggcc ctttcgtctt caagaattct tatcatgaca ttaacctata aaaataggcg tatcacgagg 11100 ccctttcgtc atcatcaata atatacctta ttttggattg aagccaatat gataatgagg 11160 gggtggagtt tgtgacgtgg cgcggggcgt gggaacgggg cgggtgacgt agtagtgtgg 11220 cggaagtgtg atgttgcaag tgtggcggaa cacatgtaag cgccggatgt ggtaaaagtg 11280 acgtttttgg tgtgcgccgg tgtatacggg aagtgacaat tttcgcgcgg ttttaggcgg 11340 atgttgtagt aaatttgggc gtaaccaagt aatgtttggc cattttcgcg ggaaaactga 11400 ataagaggaa gtgaaatctg aataattctg tgttactcat agcgcgtaat atttgtctag 11460 ggccgcgggg actttgaccg tttacgtgga gactcgccca ggtgtttttc tcaggtgttt 11520 tccgcgttcc gggtcaaagt tggcgtttta ttattatagt cagctctag 11569

```
<210> 2
<211> 11458
<212> DNA
<213> Artificial Sequence
<220>
      Adenovirales Expressionsplasmid pAd.3r.mscIL-12 zur regulierten
<223>
      Expression des murinen IL-12
<220>
<221> gene
<222>
      (327)..(713)
<223> VP16
<220>
<221> gene
<222>
      (714)..(1352)
<223> TetR
<220>
<221>
      Intron
<222>
      (1353)..(1912)
<223>
<220>
<221> promoter
<222>
      (1864)..(1902)
<223> TK-min
<220>
<221> protein_bind
      (1913)..(2212)
<222>
<223> Tet07
```

<220>

<221> misc_feature

```
(2213)..(2687)
<222>
<223>
      CMV-min + Intron
<220>
<221> promoter
      (2226)..(2264)
<222>
<223>
      CMV-min
<220>
<221>
      gene
       (2688) . . (4325)
<222>
      Murines single-chain IL-12
<223>
<400>
ctgctggttc tttccgcctc agaagccata gagcccaccg catecccagc atgcctgcta
                                                                       60
ttgtcttccc aatcctcccc cttgctgtcc tgccccaccc caccccccag aatagaatga
                                                                      120
cacctactca gacaatgcga tgcaatttcc tcattttatt aggaaaggac agtgggagtg
                                                                      180
                                                                      240
gcaccttcca gggtcaagga aggcacgggg gaggggcaaa caacagatgg ctggcaacta
gaaggcacag tcgaggctga tcagcgagct ctagcattta ggtgacacta tagaataggg
                                                                      300
                                                                      360
ccctctagga tcgatcctcg cgcccctac ccaccgtact cgtcaattcc aagggcatcg
                                                                      420
gtaaacatct gctcaaactc gaagtcggcc atatccagag cgccgtaggg ggcggagtcg
tggggggtaa atcccggacc cggggaatcc ccgtccccca acatgtccag atcgaaatcg
                                                                      480
                                                                      540
totagogogt oggoatgogo catogocacg tootogoogt otaagtggag otogtococo
                                                                      600
aggctgacat cggtcggggg ggccgtggac agtctgcgcg tgtgtcccgc ggggagaaag
gacaggegeg gageegecag eccegeetet tegggggegt egtegteegg gagategage
                                                                      660
aggccctcga tggtagaccc gtaattgttt ttcgtacgcg cgcggctgta cgcggaccca
                                                                      720
ctttcacatt taagttgttt ttctaatccg catatgatca attcaaggcc gaataagaag
                                                                      780
gctggctctg caccttggtg atcaaataat tcgatagctt gtcgtaataa tggcggcata
                                                                      840
                                                                      900
ctatcagtag taggtgtttc cctttcttct ttagcgactt gatgctcttg atcttccaat
                                                                      960
acgcaaccta aagtaaaatg ccccacagcg ctgagtgcat ataatgcatt ctctagtgaa
aaaccttgtt ggcataaaaa ggctaattga ttttcgagag tttcatactg tttttctgta
                                                                     1020
ggccgtgtac ctaaatgtac ttttgctcca tcgcgatgac ttagtaaagc acatctaaaa
                                                                     1080
cttttagcgt tattacgtaa aaaatcttgc cagctttccc cttctaaagg gcaaaagtga
                                                                     1140
gtatggtgcc tatctaacat ctcaatggct aaggcgtcga gcaaagcccg cttattttt
                                                                     1200
                                                                     1260
acatgccaat acaatgtagg ctgctctaca cctagcttct gggcgagttt acgggttgtt
aaaccttcga ttccgacctc attaagcagc tctaatgcgc tgttaatcac tttactttta
                                                                     1320
tctaatctag agggtctggg tctctttggc atggtcgaat taattcgcgt cgagccggcc
                                                                     1380
                                                                     1440
gcgggtacaa ttccggttgg acctgggagt ggacacctgt ggagagaaag gcaaagtgga
tgtcattgtc actcaagtgt atggccagat ctcaagcctg ccacacctca agcttgacaa
                                                                     1500
caaaaagatt gtcttttctg accagatgga cgcggccacc ctcaaaggca tcaccgcggg
                                                                     1560
ccaggtgaat atcaaatcct cctcgttttt ggaaactgac aatcttagcg cagaagtcat
                                                                     1620
gcccgctttt gagagggagt actcacccca acagtcgaga ggttttccga tccggtcgat
                                                                     1680
                                                                     1740
geggaetege teaggteet eggtggegga gtacegtteg gaggeegaeg ggttteegat
                                                                     1800
ccaagagtac tggaaagacc gcgaagagtt tgtcctcaac cgcgagccca acaggcgtcg
aagettgatg ggtegetegg tgttegagge cacaegegte acettaatat gegaagtgga
                                                                     1860
cctcggaccg cgccgccccg actgcatctg cgtgttcgaa ttgcccggcg agctcgactt
                                                                     1920
tcacttttct ctatcactga tagggagtgg taaactcgac tttcactttt ctctatcact
                                                                     1980
gatagggagt ggtaaactcg actttcactt ttctctatca ctgataggga gtggtaaact
                                                                     2040
                                                                     2100
cgactttcac ttttctctat cactgatagg gagtggtaaa ctcgactttc acttttctct
atcactgata gggagtggta aactcgactt tcacttttct ctatcactga tagggagtgg
                                                                     2160
taaactcgac tttcactttt ctctatcact gatagggagt ggtaaactcg acggtcgagg
                                                                     2220
                                                                     2280
gtcgagtagg cgtgtacggt gggaggccta tataagcaga gctcgtttag tgaaccgtca
                                                                     2340
gatcgcctgg agacgccatc cacgctgttt tgacctccat agaagacacc gggaccgatc
cagceteege ggeecegaat tgegaagett tattgeggta gtttateaea gttaaattge
                                                                     2400
taacgcagtc agtgcttctg acacaacagt ctcgaactta agctgcagaa gttggtcgtg
                                                                     2460
aggcactggg caggtaagta tcaaggttac aagacaggtt taaggagacc aatagaaact
                                                                     2520
gggcttgtcg agacagagaa gactcttgcg tttctgatag gcacctattg gtcttactga
                                                                     2580
                                                                      2640
catccacttt gcctttctct ccacaggtgt ccactcccag ttcaattaca gctcttaagg
                                                                      2700
ctagagtact taatacgact cactataggc tagcctcgag aattcgaatg gccatgggtc
ctcagaagct aaccatctcc tggtttgcca tcgttttgct ggtgtctcca ctcatggcca
                                                                      2760
                                                                     2820
tgtgggagct ggagaaagac gtttatgttg tagaggtgga ctggactccc gatgcccctg
```

			//20			
gagaaacagt	gaacctcacc	tgtgacacgc	ctgaagaaga	tgacatcacc	tggacctcag	2880
accagagaca	tggagtcata	ggctctggaa	agaccctgac	catcactgtc	aaagaġtttc	2940
tagatgctgg	ccagtacacc	tgccacaaag	gaggcgagac	tctgagccac	tcacatctgc	3000
toctccacaa	gaaggaaaat	ggaatttggt	ccactgaaat	tttaaaaaat	ttcaaaaaca	3060
agactttcct	gaagtgtgaa	gcaccaaatt	actccggacg	gttcacgtgc	tcatggctgg	3120
tqcaaaqaaa	catggacttg	aagttcaaca	tcaagagcag	tagcagttcc	cctgactctc	3180
gggcagtgac	atgtggaatg	gcgtctctgt	ctgcagagaa	ggtcacactg	gaccaaaggg	3240
actatgagaa	gtattcagtg	tcctgccagg	aggatgtcac	ctgcccaact	gccgaggaga	3300
ccctqcccat	tgaactggcg	ttggaagcac	ggcagcagaa	taaatatgag	aactacagca	3360
ccagcttctt	catcagggac	atcatcaaac	cagacccgcc	caagaacttg	cagatgaagc	3420
ctttqaaqaa	ctcacaggtg	gaggtcagct	gggagtaccc	tgactcctgg	agcactcccc	3480
attcctactt	ctccctcaag	ttctttgttc	gaatccagcg	caagaaagaa	aagatgaagg	3540
agacagagga	ggggtgtaac	cagaaaggtg	cgttcctcgt	agagaagaca	tctaccgaag	3600
tccaatgcaa	aggcgggaat	gtctgcgtgc	aagctcagga	tcgctattac	aattcctcat	3660
gcagcaagtg	ggcatgtgtt	ccctgcaggg	tccgatccgg	tggcggtggc	tcgggcggtg	3720
atagatcaga	tggcggcgga	tctagggtca	ttccagtctc	tggacctgcc	aggtgtctta	3780
gccagtcccg	aaacctgctg	aagaccacag	atgacatggt	gaagacggcc	agagaaaaac	3840
tgaaacatta	ttcctgcact	gctgaagaca	tcgatcatga	agacatcaca	cgggaccaaa	3900
ccagcacatt	gaagacctgt	ttaccactgg	aactacacaa	gaacgagagt	tgcctggcta	3960
ctagagagac	ttcttccaca	acaagaggga	getgeetgee	cccacagaag	acgtctttga	4020
tgatgaccct	gtgccttggt	agcatctatg	aggacttgaa	gatgtaccag	acagagttcc	4080
aggccatcaa	cgcagcactt	cagaatcaca	accatcagca	gatcattcta	gacaagggca	4140
tgctggtggc	catcgatgag	ctgatgcagt	ctctgaatca	taatggcgag	actetgegee	4200 4260
agaaacctcc	tgtgggagaa	gcagaccctt	acagagtgaa	aatgaagete	tgeatectge	4320
ttcacgcctt	cagcacccgc	gtcgtgacca	tcaacagggt	gatgggctat	tatatata	4380
cctgagaatt	gatccggatt	agtccaattt	gttaaagaca	ggatgggeee	catacatgga	4440
tccactagta	acggccgcca	gtgtgctgga	attetgeaga	tatccatcac	actggtggtt	4500
gctcgagcat	gcatctagag	ggccctattc	tatagtgtca	tetttaggg	tagagetegee	4560
gatcagcctc	gactgtgcct	tctagttgcc	agecatetge	ctaataaaat	gaggaaattg	4620
cttccttgac	cctggaaggt	gccactccca	ttataaaaa	taggatagga	cargacagea	4680
catcgcattg	tctgagtagg	tgtcattcta	atactacas	tacaataaac	tctatggctt	4740
agggggagga	ttgggaagac	aatagcaggc	acgecgggga	aaggtgggg	ggtacgatga	4800
ctgaggcgga	aagaaccagt	cgacatcgat	tagagegg	catattagga	ggtacgatga	4860
gacccgcacc	aggtgcagac	cetgegagtg	castcactta	gtgctggct	acacccacac	4920
gatgetggat	gtgaccgagg	agetgaggee	ttgaccacccg	gagatgata	gacataactt	4980
tgagtttggc	tctagcgatg aagaatatat	aayatacaga	tettatetae	ttttgtatct	gttttgcagc	5040
aagggtggga	gccatgagca	ccaactcatt	tgatggaage	attotgaget	catatttqac	5100
ageegeegee	ccccatagea	ccaaaataca	tcagaatgtg	atgggctcca	gcattgatgg	5160
tagagagata	ctaccacaga	actotactac	cttgacctac	gagaccgtgt	ctggaacgcc	5220
attageact	acaacctcca	ccaccacttc	agccgctgca	gccaccgccc	gcgggattgt	5280
geeggagace	gctttcctga	acceasttac	aagcagtgca	gcttcccqtt	catccgcccg	5340
cataacaaa	ttgacggctc	ttttggcaca	attggattct	ttgacccggg	aacttaatgt	5400
cattteteag	cagctgttgg	atctqcqcca	gcaggtttct	gccctgaagg	cttcctccc	5460
tcccaatgcg	gtttaaaaca	taaataaaaa	accagactct	gtttggattt	ggatcaagca	5520
agtgtcttgc	totctttatt	taggggtttt	gegegegegg	taggcccggg	accagcggtc	5580
tcaatcatta	agggtcctgt	gtatttttc	caggacgtgg	taaaggtgac	tctggatgtt	5640
cagatacatg	ggcataagcc	cgtctctggg	gtggaggtag	caccactgca	gagetteatg	5700
ctacaaaata	gtgttgtaga	tgatccagtc	gtagcaggag	cgctgggcgt	ggtgcctaaa	5760
aatotctttc	agtagcaagc	tgattgccag	gggcaggccc	ttggtgtaag	tgtttacaaa	5820
gcggttaagc	tgggatgggt	gcatacgtgg	ggatatgaga	tgcatcttgg	actgtatttt	5880
taggttggct	atgttcccag	ccatatccct	ccggggattc	atgttgtgca	gaaccaccag	5940
cacagtgtat	ccqqtqcact	tgggaaattt	gtcatgtagc	ttagaaggaa	atgegtggaa	6000
gaacttggag	acgcccttgt	gacctccaag	attttccatg	cattcgtcca	taatgatggc	6060
aatgggccca	cgggcggcgg	cctgggcgaa	gatatttctg	ggatcactaa	cgtcatagtt	6120
gtgttccagg	atgagatcgt	cataggccat	tttacaaag	cgcgggcgga	gggtgccaga	6180
ctgcggtata	atggttccat	ccggcccagg	ggcgtagtta g	. ccctcacaga	tttgcatttc	6240
ccacqctttg	agttcagatg	gggggatcat	gtctacctgc	ggggcgatga	agaaaacggt	6300
ttccqqqqta	ggggagatca	gctgggaaga	aagcaggttc	ctgagcagct	gcgacttacc	6360
acaaccaata	ggcccgtaaa	tcacacctat	taccgggtgc	aactggtagt	taagagagct	6420
gcagctgccg	tcatccctga	gcagggggg	cacttcgtta	agcatgtccc	tgactcgcat	6480

			8/20			
attttccctq	accaaatccg	ccagaaggcg	ctcgccgccc	agcgatagca	gttcttgcaa	6540
ggaagcaaag	tttttcaacq	gtttgagacc	gtccgccgta	ggcatgcttt	tgagcgtttg	6600
accaagcagt	tccaqqcqqt	cccacagctc	ggtcacctgc	tctacggcat	ctcgatccag	6660
catateteet	catttcacaa	gttggggcgg	ctttcgctgt	acggcagtag	teggtgeteg	6720
tccagacggg	ccagggtcat	gtctttccac	gggcgcaggg	tcctcgtcag	cgtagtctgg	6780
gt.cacggtga	aggggtgcgc	tccgggctgc	gcgctggcca	gggtgcgctt	gaggctggtc	6840
ctactagtac	tgaagcgctg	ccggtcttcg	ccctgcgcgt	cggccaggta	gcatttgacc	6900
atgotgtcat	agtccagccc	ctccgcggcg	tggcccttgg	cgcgcagctt	gcccttggag	6960
gaggcgccgc	acgaggggca	gtgcagactt	ttgagggcgt	agagcttggg	cgcgagaaat	7020
accoattcco	gggagtaggc	atccgcgccg	caggccccgc	agacggtctc	gcattccacg	7080
agccaggtga	actctaacca	ttcggggtca	aaaaccaggt	ttcccccatg	ctttttgatg	7140
cotttcttac	ctctqqtttc	catgagccgg	tgtccacgct	cggtgacgaa	aaggctgtcc	7200
atatececat	atacagactt	gagaggcctg	tcctcgaccg	atgcccttga	gagccttcaa	7260
cccaqtcaqc	tecttecggt	gggcgcgggg	catgactatc	gtcgccgcac	ttatgactgt	7320
cttctttatc	atgcaactcg	taggacaggt	gccggcagcg	ctctgggtca	ttttcggcga	7380
ggaccgcttt	cactagaaca	cgacgatgat	cggcctgtcg	cttgcggtat	tcggaatctt	7440
gcacgccctc	gctcaagcct	tcgtcactgg	tcccgccacc	aaacgtttcg	gcgagaagca	7500
ggccattatc	gccggcatgg	cggccgacgc	gctgggctac	gtcttgctgg	cgttcgcgac	7560
acaaaactaa	atggccttcc	ccattatgat	tcttctcgct	tccggcggca	tcgggatgcc	7620
cacattacaa	gccatgctgt	ccaggcaggt	agatgacgac	catcagggac	agcttcaagg	7680
atcoctcoco	gctcttacca	gcctaacttc	gatcactgga	ccgctgatcg	tcacggcgat	7740
ttatgccgcc	tcggcgagca	catggaacgg	gttggcatgg	attgtaggcg	ccgccctata	7800
ccttgtctgc	ctccccqcqt	tgcgtcgcgg	tgcatggagc	cgggccacct	cgacctgaat	7860
adaaaccaac	ggcacctcgc	taacggattc	accactccaa	gaattggagc	caatcaattc	7920
ttgcggagaa	ctgtgaatgc	gcaaaccaac	ccttggcaga	acatatccat	cgcgtccgcc	7980
atctccagca	gccgcacgcg	gcgcatctcg	ggcagcgttg	ggtcctggcc	acgggtgcgc	8040
atgatcgtgc	tcctatcatt	gaggacccgg	ctaggctggc	ggggttgcct	tactggttag	8100
cagaatgaat	caccgatacg	cgagcgaacg	tgaagcgact	gctgctgcaa	aacgtctgcg	8160
acctgagcaa	caacatgaat	ggtcttcggt	ttccgtgttt	cgtaaagtct	ggaaacgcgg	8220
aagtcagcgc	cctgcaccat	tatgttccgg	atctgcatcg	caggatgctg	ctggctaccc	8280
tgtggaacac	ctacatctgt	attaacgaag	cgctggcatt	gaccctgagt	gattttttctc	8340
taatcccacc	gcatccatac	cgccagttgt	ttaccctcac	aacgttccag	taaccgggca	8400
tottcatcat	cagtaacccg	tatcgtgagc	atcctctctc	gtttcatcgg	tatcattacc	8460
cccatgaaca	gaaattcccc	cttacacgga	ggcatcaagt	gaccaaacag	gaaaaaaccg	8520
cccttaacat	ggcccgcttt	atcagaagcc	agacattaac	gcttctggag	aaactcaacg	8580
agctggacgc	ggatgaacag	gcagacatct	gtgaatcgct	tcacgaccac	gctgatgagc	8640
tttaccqcaq	ctgcctcgcg	cgtttcggtg	atgacggtga	aaacctctga	cacatgcagc	8700
tcccqqaqac	ggtcacagct	tgtctgtaag	cggatgccgg	gagcagacaa	gcccgtcagg	8760
gcgcgtcagc	gggtgttggc	gggtgtcggg	gcgcagccat	gacccagtca	cgtagcgata	8820
acagagtata	tactggctta	actatgcggc	atcagagcag	attgtactga	gagtgcacca	8880
tatacaatat	gaaataccgc	acagatgcgt	aaggagaaaa	taccgcatca	ggcgctcttc	8940
cacttcctca	ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	9000
tcactcaaag	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	9060
gtgagcaaaa	ggccagcaaa	aggccaggaa	ccgtaaaaag	gccgcgttgc	tggcgttttt	9120
ccataggctc	cqcccccctg	acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	9180
aaacccgaca	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	tegtgegete	9240
tectatteca	accetqccqc	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	9300
agcactttct	caatqctcac	gctgtaggta	tctcagttcg	gtgtaggtcg	ttcgctccaa	9360
actagactat	gtgcacgaac	cccccgttca	gcccgaccgc	tgcgccttat	ccggtaacta	9420
tcqtcttqaq	tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	ccactggtaa	9480
caggattage	agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	ggtggcctaa	9540
ctacqqctac	actagaagga	cagtatttgg	tatctgcgct	ctgctgaagc	cagttacctt	9600
cqqaaaaaqa	gttggtagct	cttgatccgg	caaacaaacc	accgctggta	gcggtggttt	9660
ttttatttac	aaqcaqcaqa	ttacgcgcag	aaaaaaagga	tctcaagaag	atcctttgat	9720
cttttctacq	gggtctgacg	ctcagtggaa	cgaaaactca	cgttaaggga	ttttggtcat	9780
gagattatca	aaaaggatct	tcacctagat	ccttttaaat	taaaaatgaa	gttttaaatc	9840
aatctaaagt	atatatgagt	aaacttggtc	tgacagttac	caatgcttaa	tcagtgaggc	9900
acctatctca	gcgatctgtc	tatttcgttc	atccatagtt	gcctgactcc	ccgtcgtgta	9960
gataactacg	atacgggagg	gcttaccatc	tggccccagt	gctgcaatga	taccgcgaga	10020
cccacqctca	ccggctccag	atttatcago	aataaaccag	ccagccggaa	gggccgagcg	10080
cagaagtggt	cctgcaactt	tatccgcctc	catccagtct	attaattgtt	gccgggaagc	10140

tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctgcaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag gegagttaca tgatececca tgttgtgcaa aaaageggtt ageteetteg gteeteegat 10320 cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa tictcttact gicatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa 10440 gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caacacggga taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tetteageat ettttaettt caccagegtt tetgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgac gtctaagaaa ccattattat catgacatta acctataaaa ataggcgtat 10920 cacgaggece tttegtette aagaattett ateatgacat taacetataa aaataggegt 10980 atcacgaggc cctttcgtca tcatcaataa tataccttat tttggattga agccaatatg ataatgaggg ggtggagttt gtgacgtggc gcggggcgtg ggaacggggc gggtgacgta 11100 gtagtgtggc ggaagtgtga tgttgcaagt gtggcggaac acatgtaagc gccggatgtg 11160 gtaaaagtga cgtttttggt gtgcgccggt gtatacggga agtgacaatt ttcgcgcggt 11220 tttaggcgga tgttgtagta aatttgggcg taaccaagta atgtttggcc attttcgcgg 11280 gaaaactgaa taagaggaag tgaaatctga ataattctgt gttactcata gcgcgtaata 11340 tttgtctagg gccgcgggga ctttgaccgt ttacgtggag actcgcccag gtgtttttct 11400 caggigtitt cogcgitcog ggicaaagit ggogtittat tattatagic agcictag 11458

```
<210> 3
<211> 11453
<212> DNA
<213> Artificial Sequence
<220>
      Adenovirales Expressionsplasmid pShuttle.3r.hscIL-12 zur
<223>
       reguliertenExpression des humanen IL-12 nach Virusgeneration
       mittels AdEasy
<220>
<221> gene
<222> (327)..(713)
<223> VP16
<220>
<221> gene
<222> (714)..(1352)
<223> TetR
<220>
<221> Intron
<222> (1353)..(1912)
<223>
<220>
<221> promoter
<222> (1864)..(1902)
<223> TK-min
<220>
```

<221> protein_bind
<222> (1913)..(2212)

<221> misc_feature

<223> Tet07

<220>

10/20 (2213)..(2709) <222> CMV-min + Intron <223> <220> <221> promoter <222> (2226)..(2264) <223> CMV-min <220> <221> gene <222> (2710) . . (4308) <223> Humanes singe-chain IL-12 <220> <221> mutation (4020) . . (4023) <222> T/C, A/T, G/C, T/G <400> 60 ctgctggttc tttccgcctc agaagccata gagcccaccg catccccagc atgcctgcta ttgtcttccc aatcctcccc cttgctgtcc tgccccaccc cacccccag aatagaatga 120 cacctactca gacaatgcga tgcaatttcc tcattttatt aggaaaggac agtgggagtg 180 gcaccttcca gggtcaagga aggcacgggg gaggggcaaa caacagatgg ctggcaacta 240 300 gaaggcacag tcgaggctga tcagcgagct ctagcattta ggtgacacta tagaataggg 360 ccctctagga tcgatcctcg cgccccctac ccaccgtact cgtcaattcc aagggcatcg 420 qtaaacatct gctcaaactc gaagtcggcc atatccagag cgccgtaggg ggcggagtcg 480 tggggggtaa atcccggacc cggggaatcc ccgtccccca acatgtccag atcgaaatcg 540 totagogogt oggoatgogo catogocacg tootogoogt otaagtggag otogtococo 600 aggctgacat cggtcggggg ggccgtggac agtctgcgcg tgtgtcccgc ggggagaaag 660 gacaggegeg gageegeeag eccegeetet tegggggegt egtegteegg gagategage 720 aggccctcga tggtagaccc gtaattgttt ttcgtacgcg cgcggctgta cgcggaccca ctttcacatt taagttgttt ttctaatccg catatgatca attcaaggcc gaataagaag 780 gctggctctg caccttggtg atcaaataat tcgatagctt gtcgtaataa tggcggcata 840 ctatcagtag taggtgtttc cctttcttct ttagcgactt gatgctcttg atcttccaat 900 acgcaaccta aagtaaaatg ccccacagcg ctgagtgcat ataatgcatt ctctagtgaa 960 aaaccttgtt ggcataaaaa ggctaattga ttttcgagag tttcatactg tttttctgta 1020 ggccgtgtac ctaaatgtac ttttgctcca tcgcgatgac ttagtaaagc acatctaaaa 1080 cttttagcgt tattacgtaa aaaatcttgc cagctttccc cttctaaagg gcaaaagtga 1140 gtatggtgcc tatctaacat ctcaatggct aaggcgtcga gcaaagcccg cttattttt 1200 acatgccaat acaatgtagg ctgctctaca cctagcttct gggcgagttt acgggttgtt 1260 aaaccttcga ttccgacctc attaagcagc tctaatgcgc tgttaatcac tttactttta 1320 tctaatctag agggtctggg tctctttggc atggtcgaat taattcgcgt cgagccggcc 1380 1440 gcgggtacaa ttccggttgg acctgggagt ggacacctgt ggagagaaag gcaaagtgga 1500 tgtcattgtc actcaagtgt atggccagat ctcaagcctg ccacacctca agcttgacaa caaaaagatt gtcttttctg accagatgga cgcggccacc ctcaaaggca tcaccgcggg 1560 1620 ccaggtgaat atcaaatcct cctcgttttt ggaaactgac aatcttagcg cagaagtcat gcccgctttt gagagggagt actcacccca acagtcgaga ggttttccga tccggtcgat 1680 1740 gcggactcgc tcaggtccct cggtggcgga gtaccgttcg gaggccgacg ggtttccgat 1800 ccaagagtac tggaaagacc gcgaagagtt tgtcctcaac cgcgagccca acaggcgtcg aagettgatg ggtegetegg tgttegagge cacaegegte acettaatat gegaagtgga 1860 ceteggaceg egeegeeeeg actgeatetg egtgttegaa ttgeeeggeg agetegaett 1920 tcacttttct ctatcactga tagggagtgg taaactcgac tttcactttt ctctatcact 1980 gatagggagt ggtaaactcg actttcactt ttctctatca ctgataggga gtggtaaact 2040 cgactttcac ttttctctat cactgatagg gagtggtaaa ctcgactttc acttttctct 2100 atcactgata gggagtggta aactcgactt tcacttttct ctatcactga tagggagtgg 2160 2220 taaactcgac tttcactttt ctctatcact gatagggagt ggtaaactcg acggtcgagg gtcgagtagg cgtgtacggt gggaggccta tataagcaga gctcgtttag tgaaccgtca 2280 gatcgcctgg agacgccatc cacgctgttt tgacctccat agaagacacc gggaccgatc 2340 2400 cagceteege ggeecegaat tgegaagett tattgeggta gtttateaca gttaaattge taacgcagtc agtgcttctg acacaacagt ctcgaactta agctgcagaa gttggtcgtg 2460 aggcactggg caggtaagta tcaaggttac aagacaggtt taaggagacc aatagaaact 2520 2580

gggcttgtcg agacagagaa gactcttgcg tttctgatag gcacctattg gtcttactga

]	11/20			
catccacttt	gcctttctct	ccacaggtgt	ccactcccag	ttcaattaca	gctcttaagg	2640
ctagagtact	taatacqact	cactataggc	tagcctcgag	aattcacgcg	tggtaccgag	2700
ctcggatcca	tagatcacca	gcagttggtc	atctcttggt	tttccctggt	ttttctggcä	2760
teteceeted	tggccatatg	ggaactgaag	aaagatgttt	atgtcġtaġa	attģgattģģ	2820
tatccggatg	cccctggaga	aatggtggtc	ctcacctgtg	acacccctga	agaägatggt	2880
atcacctoga	ccttqqacca	gagcagtgag	gtcttaggct	ctggcaaaac	cctgaccatc	2940
caagtcaaag	agtttggaga	tgctggccag	tacacctgtc	acaaaggagg	cgaggttcta	3000
agccattcgc	tectactact	tcacaaaaag	gaagatggaa	tttggtccac	tgatatttta	3060
aaggaccaga	aaqaacccaa	aaataagacc	tttctaagat	gcgaggccaa	gaattattct	3120
ggacgtttca	cctgctggtg	gctgacgaca	atcagtactg	atttgacatt	cagtgtcaaa	3180
agcagcagag	gctcttctga	ccccaaggg	gtgacgtgcg	gagctgctac	actctctgca	3240
gagagagtca	gaggggacaa	caaggagtat	gagtactcag	tggagtgcca	ggaggacagt	3300
gcctgcccag	ctqctgagga	gagtctgccc	attgaggtca	tggtggatgc	cgttcacaag	3360
ctcaaqtatq	aaaactacac	cagcagcttc	ttcatcaggg	acatcatcaa	acctgaccca	3420
cccaacaact	tgcagctgaa	gccattaaag	aattctcggc	aggtggaggt	cagctgggag	3480
taccctgaca	cctggagtac	tccacattcc	tacttctccc	tgacattctg	cgttcaggtc	3540
cagggcaaga	gcaagagaga	aaagaaagat	agagtcttca	cggacaagac	ctcagccacg	3600
gtcatctgcc	gcaaaaatgc	cagcattagc	gtgcgggccc	aggaccgcta	ctatagetea	3660
tcttqqaqcg	aatgggcatc	tgtgccctgc	agtggtggcg	gtggcggcgg	atctagaaac	3720
ctccccgtgg	ccactccaga	cccaggaatg	ttcccatgcc	ttcaccactc	ccaaaacctg	3780
ctgagggccg	tcagcaacat	gctccagaag	gccagacaaa	ctctagaatt	ttacccttgc	3840
acttctgaag	agattgatca	tgaagatatc	acaaaagata	aaaccagcac	agtggaggcc	3900
totttaccat	tggaattaac	caagaatgag	agttgcctaa	attccagaga	gacctctttc	3960
ataactaatq	ggagttgcct	ggcctccaga	aagacctctt	ttatgatggc	cctgtgcctc	4020
tcgagtattt	atgaagactc	gaagatgtac	caggtggagt	tcaagaccat	gaatgcaaag	4080
cttctgatgg	atcctaagag	gcagatcttt	ctagatcaaa	acatgctggc	agttattgat	4140
gagctgatgc	aggccctgaa	tttcaacagt	gagactgtgc	cacaaaaatc	ctcccttgaa	4200
gaaccggatt	tttataaaac	taaaatcaag	ctctgcatac	ttcttcatgc	tttcagaatt	4260
cgggcagtga	ctattgatag	agtgatgagc	tatctgaatg	cttcctaaaa	agegaggteg	4320 4380
atccggatta	gtccaatttg	ttaaagacag	gatatcagtg	gtccaggctc	cagttttgac	4440
tcaacaatat	caccagctga	agcctataga	gtacgagcca	tagataaaat	adadactict	4500
atttagtctc	cagaaaaagg	ggggaatgaa	agaccccacc	tgtaggtttg	gcaagctagt	4560
aacggccgcc	agtgtgctgg	aattctgcag	atatccatca	cactggegge	testeseest	4620
tgcatctaga	gggccctatt	ctatagtgtc	acctaaatgc	tagagetege	cattactta	4680
cgactgtgcc	ttctagttgc	cagecatetg	ttgtttgccc	tenegranatt	ggatgggatt	4740
ccctggaagg	tgccactccc	actgtccttt	cctaataaaa	rgaggaaacc	aagggggagg	4800
gtctgagtag	gtgtcattct	actetggggg	gtggggtggg	ctctateget	tetgagggg	4860
attgggaaga	caatagcagg	catgotgggg	atgcggtggg	taggaaaaaa	tatataaggt	4920
aaagaaccag	tegaetegaa	gatetgggeg	tggttaaggg	ccaccaccat	gagcaccaac	4980
gggggtctta	cgtagttttg	gagetestat	gcagcagccg	gratgreece	atgggccggg	5040
tegtttgatg	gaagcattgt	gageteatat	ttgacaacgc gatggtcgcc	ccatcctacc	cocaaactct	5100
grgcgreaga	acgegacggg	catatetaa	acgccgttgg	agactgcagc	ctccaccacc	5160
actacettya	ctacgagac	cacccacaa	attotoacto	actttqcttt	cctgagcccg	5220
cttgcaageg	gtgcagctac	ccattcatce	acccacata	acaagttgac	ggctcttttg	5280
gcacaattgg	attetttgae	ccgggaactt	aatqtcqttt	ctcagcagct	gttggatctg	5340
caccaaccaa	tttctaccct	gaaggettee	tccctccca	atqcqgttta	aaacataaat	5400
aaaaaaccac	actotattta	gatttggatc	aagcaagtgt	cttqctgtct	ttatttaggg	5460
attttacaca	cacaataaac	ccadaaccad	cggtctcggt	cqttgagggt	cctgtgtatt	5520
ttttccagga	cotootaaag	gtgactctgg	atgttcagat	acatgggcat	aagcccgtct	5580
ctggggtgga	ggtagcacca	ctgcagagct	tcatgctgcg	gggtggtgtt	gtagatgatc	5640
cagtcgtage	aggagcgctg	gacatagtac	ctaaaaatgt	ctttcagtag	caagctgatt	5700
accadadaca	aaccettaat	gtaagtgttt	acaaagcggt	taagctggga	tgggtgcata	5760
catagggata	tgagatgcat	cttggactgt	atttttaggt	tggctatgtt	cccagccata	5820
tccctccqqq	gattcatgtt	gtgcagaacc	accagcacag	tgtatccggt	gcacttggga	5880
aatttqtcat	qtaqcttaga	aggaaatgcg	tggaagaact	tggagacgcc	cttgtgacct	5940
ccaagatttt	ccatqcattc	gtccataatg	atggcaatgg	gcccacgggc	ggcggcctgg	6000
gcgaagatat	ttctqqqatc	actaacgtca	tagttgtgtt	ccaggatgag	ategreatag	6060
gccattttta	caaagcgcgg	gcggagggtg	ccagactgcg	gtataatggt	tccatccggc	6120
ccaggggggt	agttaccctc	acagatttgc	atttcccacg	ctttgagttc	agargggggg	6180
atcatgtcta	cctgcggggc	gatgaagaaa	acggtttccg	gggtagggga	gatcagctgg	6240

		:	12/20			
даадааадса	ggttcctgag	cagetgegae	ttaccgcagc	cggtgggccc	gtaaátcaca	6300
cctattaccq	ggtgcaactg	gtagttaaga	gagctgcagc	tgccgtcatc	cctgagcagg	6360
ggaggagtt	cottaagcat	gtccctgact	cgcatgtttt	ccctgaccaa	atcccccaca	6420
aggggcactcac	cacccaacaa	tagcagttct	tgcaaggaag	caaaqttttt	câacggtttq	6480
aggegetege	ccgtaggcat	acttttgage	gtttgaccaa	gcagttccag	gcggtcccac	6540
agaccgccg	cctgctctac	ggcatctcga	tccagcatat	ctcctcqttt	cacaaattaa	6600
ageceggeea	actatacaac	agtagtcggt	gctcgtccag	acqqqccaqq	gtcatgtctt	6660
tccacaaca	cagggtcctc	atcagcatag	tctgggtcac	ggtgaaggg	tacactccaa	6720
actacacact	aaccaaaata	cacttaaaac	tggtcctgct	ggtgctgaag	cactaccaat	6780
cttcaccta	cacatcaacc	aggtagcatt	tgaccatggt	gtcatagtcc	agcccctccg	6840
caacataacc	cttaacacac	agettgeect	tggaggaggc	gccgcacgag	gggcagtgca	6900
gacttttgag	ggcgtagagc	ttgggcgcga	gaaataccga	ttccggggag	taggcatccg	6960
caccacadac	cccqcaqacq	gtctcgcatt	ccacgagcca	ggtgagctct	ggccgttcgg	7020
ggtcaaaaac	caggtttccc	ccatgctttt	tgatgcgttt	cttacctctg	gtttccatga	7080
accaatatcc	acqctcqqtq	acgaaaaggc	tgtccgtgtc	cccgtataca	gacttgagag	7140
ggagtttaaa	cqaattcaat	agcttgttgc	atgggcggcg	atataaaatg	caaggtgctg	7200
ctcaaaaaat	caggcaaagc	ctcqcqcaaa	aaagaaagca	catcgtagtc	atgctcatgc	7260
agataaaggc	aggtaagctc	cqqaaccacc	acagaaaaag	acaccatttt	tctctcaaac	7320
atqtctqcqq	gtttctgcat	aaacacaaaa	taaaataaca	aaaaaacatt	taaacattag	7380
aagcctgtct	tacaacagga	aaaacaaccc	ttataagcat	aagacggact	acggccatgc	7440
cggcgtgacc	qtaaaaaaac	tggtcaccgt	gattaaaaag	caccaccgac	agctcctcgg	7500
tcatqtccqq	agtcataatg	taagactcgg	taaacacatc	aggttgattc	atcggtcagt	7560
gctaaaaagc	qaccgaaata	gcccggggga	atacataccc	gcaggcgtag	agacaacatt	7620
acaqccccca	taggaggtat	aacaaaatta	ataggagaga	aaaacacata	aacacctgaa	7680
aaaccctcct	gcctaggcaa	aatagcaccc	tecegeteca	gaacaacata	cagcgcttca	7740
cagcggcagc	ctaacagtca	gccttaccag	taaaaaagaa	aacctattaa	aaaaacacca	7800
ctcgacacgg	caccagctca	atcagtcaca	gtgtaaaaaa	gggccaagtg	cagagcgagt	7860
atatatagga	ctaaaaaatg	acgtaacggt	taaagtccac	aaaaaacacc	cagaaaaccg	7920
cacgcgaacc	tacgcccaga	aacgaaagcc	aaaaaaccca	caacttcctc	aaatcgtcac	7980
ttccgttttc	ccacgttacg	taacttccca	ttttaagaaa	actacaattc	ccaacacata	8040
caagttactc	cgccctaaaa	cctacgtcac	ccgccccgtt	cccacgcccc	gcgccacgtc	8100
acaaactcca	cccctcatt	atcatattgg	cttcaatcca	aaataaggta	tattattgat	8160
gatgttaatt	aacatgcatg	gatccatatg	cggtgtgaaa	taccgcacag	atgcgtaagg	8220
agaaaatacc	gcatcaggcg	ctcttccgct	tcctcgctca	ctgactcgct	gcgctcggtc	8280
gttcggctgc	ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	8340
tcaggggata	acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	8400
aaaaaggccg	cgttgctggc	gtttttccat	aggctccgcc	cccctgacga	gcatcacaaa	8460
aatcgacgct	caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	8520
ccccctggaa	gctccctcgt	gcgctctcct	gttccgaccc	tgccgcttac	cggatacctg	8580
tccgcctttc	tcccttcggg	aagcgtggcg	ctttctcata	gctcacgctg	taggtatete	8640
agttcggtgt	aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	8700
gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	acacgactta	8760 8820
tegecactgg	cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggeggtget	8880
acagagttct	tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatt	8940
tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	gtagetettg	atccggcaaa	9000
caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaage	ageagattae	gcgcagaaaa	9060
aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	etgaegetea	gtggaacgaa	9120
aactcacgtt	aagggatttt	ggtcatgaga	ttatcaaaaa	ggatetteae	ttagateett	9180
ttaaattaaa	aatgaagttt	taaatcaatc	taaagtatat	atgagtaaae	teggtetgae	9240
agttaccaat	gcttaatcag	tgaggcacct	atctcagcga	cetgtetatt	agatetage	9300
atagttgcct	gactccccgt	egtgtagata	actacgatac	gggagggctt	atcaccegge	9360
cccagtgctg	caatgatacc	gcgagaccca	egeteacegg	gasettata	atcagcaata	9420
aaccagccag	ccggaagggc	cgagcgcaga	agtggtcctg	caacttate	tagtttggg	9480
cagtctatta	attgttgccg	ggaagctaga	gtaagtagtt	ggatettese	ctagateett	9540
aacgttgttg	ccattgctgc	agccatgaga	ttatcaaaaa	ggattteetede	carctacter	9600
ccacgtaga	aagccagtcc	gcagaaacgg	angagagagag	agategatyt	cagctactgg	9660
gctatctgga	caagggaaaa	cycaagcyca	aagagaaagc	aggragereg	attoccaact	9720
acatggcgat	agetagaetg	taaaaaaaa	tggacagcaa	actoratora	tttctcacca	9780
ggggcgccct	ccggcaaggt	rgggaageee	totostosso	acacaccatc	tttctcgccg	9840
ccaaggatet	gatggcgcag	gggatcaagc	gatteteeag	ccacttagg	aggatcgttt	9900
cycatgattg	aacaayatyg	accycacyca	ggcccccgg	2030009990	ggagaggeta	

ttcggctatg actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg ggcgcccggt tcttttgtc aagaccgacc tgtccggtgc cctgaatgaa 10020 ctgcaagacg aggcagcgcg gctatcgtgg ctggccacga cgggcgttcc ttgcgcagct gtgctcgacg ttgtcactga agcgggaagg gactggctgc tattgggcga agtgccgggg 10140 caggatetee tgteatetea cettgeteet geegagaaag tateeateat ggetgatgea 10200 atgoggoggo tgoatacgot tgatcoggot acctgoccat togaccacca agogádacat 10260 cgcatcgage gagcacgtae teggatggaa geeggtettg tegatcagga tgatetggae gaagagcatc aggggctcgc gccagccgaa ctgttcgcca ggctcaaggc gagcatgccc gacggcgagg atctcgtcgt gacccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgctatcag gacatagegt tggctacceg tgatattgct gaagagettg geggegaatg ggctgacege 10560 ttcctcgtgc tttacggtat cgccgctccc gattcgcagc gcatcgcctt ctatcgcctt cttgacgagt tcttctgaat tttgttaaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaca tcccttataa atcaaaagaa tagaccgcga tagggttgag 10740 tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca acgtcaaagg gegaaaaace gtetateagg gegatggeee actaegtgaa ceateaceea aateaagttt tttgcggtcg aggtgccgta aagctctaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca cacccgcgcg 11040 cttaatgcgc cgctacaggg cgcgtccatt cgccattcag gatcgaatta attcttaagt 11100 ttttbtaaca tcatcaataa tataccttat tttggattga agccaatatg ataatgaggg 11160 ggtggagttt gtgacgtggc gcggggcgtg ggaacggggc gggtgacgta gtagtgtggc 11220 ggaagtgtga tgttgcaagt gtggcggaac acatgtaagc gacggatgtg gcaaaagtga 11280 cgtttttggt gtgcgccggt gtacacagga agtgacaatt ttcgcgcggt tttaggcgga 11340 tgttgtagta aatttggcg taaccgagta agatttggcc attttcgcgg gaaaactgaa 11400 taagaggaag tgaaatctga ataattttgt gttactcata gcgcgtaata ctg

```
<210> 4
<211> 9784
<212> DNA
<213> Artificial
<220>
<223> Adenovirales Expressionsplasmid pAd.3r zur regulierten
      Expression
<220>
<221> gene
<222> (327)..(713)
<223> VP16
<220>
<221> gene
<222> (714)..(1352)
<223> TetR
<220>
<221> Intron
<222> (1353)..(1912)
<223>
<220>
<221> promoter
<222> (1864)..(1902)
<223> TK-min
```

<220>

<221> protein_bind
<222> (1913)..(2212)

14/20

```
Tet07
<223>
<220>
      misc_feature
<221>
<222>
       (2213)..(2709)
      CMV-min + Intron
<223>
<220>
<221> promoter
<222>
       (2226)..(2264)
       CMV-min
<220>
      multiple cloning site
<221>
       (2669)..(2770)
<222>
       NheI, XhoI, KpnI, BamHI, SpeI, EcoRV, NotI, XhoI
<400>
ctgctggttc tttccgcctc agaagccata gagcccaccg catccccagc atgcctgcta
                                                                       60
ttgtcttccc aatcctcccc cttgctgtcc tgccccaccc cacccccag aatagaatga
                                                                      120
cacctactca gacaatgcga tgcaatttcc tcattttatt aggaaaggac agtgggagtg
                                                                      180
gcaccttcca gggtcaagga aggcacgggg gaggggcaaa caacagatgg ctggcaacta
                                                                      240
gaaggcacag tcgaggctga tcagcgagct ctagcattta ggtgacacta tagaataggg
                                                                      300
ccctctagga tcgatcctcg cgcccctac ccaccgtact cgtcaattcc aagggcatcg
                                                                      360
gtaaacatct gctcaaactc gaagtcggcc atatccagag cgccgtaggg ggcggagtcg
                                                                      420
                                                                      480
tggggggtaa atcccggacc cggggaatcc ccgtccccca acatgtccag atcgaaatcg
                                                                      540
totagogot oggoatgogo catogocacg toctogoogt ctaagtggag ctogtocco
                                                                      600
aggotgacat cggtcggggg ggccgtggac agtctgcgcg tgtgtcccgc ggggagaaag
                                                                      660
gacaggcgcg gagccgccag ccccgcctct tcgggggcgt cgtcgtccgg gagatcgagc
                                                                      720
aggccctcga tggtagaccc gtaattgttt ttcgtacgcg cgcggctgta cgcggaccca
                                                                      780
ctttcacatt taagttgttt ttctaatccg catatgatca attcaaggcc gaataagaag
gctggctctg caccttggtg atcaaataat tcgatagctt gtcgtaataa tggcggcata
                                                                      840
                                                                      900
ctatcagtag taggtgtttc cctttcttct ttagcgactt gatgctcttg atcttccaat
acgcaaccta aagtaaaatg ccccacagcg ctgagtgcat ataatgcatt ctctagtgaa
                                                                      960
aaaccttgtt ggcataaaaa ggctaattga ttttcgagag tttcatactg tttttctgta
                                                                     1020
ggccgtgtac ctaaatgtac ttttgctcca tcgcgatgac ttagtaaagc acatctaaaa
                                                                     1080
cttttagcgt tattacgtaa aaaatcttgc cagetttccc cttctaaagg gcaaaagtga
                                                                     1140
gtatggtgcc tatctaacat ctcaatggct aaggcgtcga gcaaagcccg cttattttt
                                                                     1200
                                                                     1260
acatgccaat acaatgtagg ctgctctaca cctagcttct gggcgagttt acgggttgtt
aaaccttcga ttccgacctc attaagcagc tctaatgcgc tgttaatcac tttactttta
                                                                     1320
tctaatctag agggtctggg tctctttggc atggtcgaat taattcgcgt cgagccggcc
                                                                     1380
gcgggtacaa ttccggttgg acctgggagt ggacacctgt ggagagaaag gcaaagtgga
                                                                     1440
tgtcattgtc actcaagtgt atggccagat ctcaagcctg ccacacctca agcttgacaa
                                                                     1500
caaaaagatt gtcttttctg accagatgga cgcggccacc ctcaaaggca tcaccgcggg
                                                                     1560
ccaggtgaat atcaaatcct cctcgttttt ggaaactgac aatcttagcg cagaagtcat
                                                                     1620
gcccgctttt gagagggagt actcacccca acagtcgaga ggttttccga tccggtcgat
                                                                     1680
geggactege teaggteect eggtggegga gtacegtteg gaggeegacg ggtttcegat
                                                                     1740
ccaagagtac tggaaagacc gcgaagagtt tgtcctcaac cgcgagccca acaggcgtcg
                                                                     1800
aagettgatg ggtegetegg tgttegagge cacaegegte acettaatat gegaagtgga
                                                                     1860
cctcggaccg cgccgccccg actgcatctg cgtgttcgaa ttgcccggcg ägctcgactt
                                                                     1920
tcacttttct ctatcactga tagggagtgg taaactcgac tttcactttt ctctatcact
                                                                     1980
                                                                     2040
gatagggagt ggtaaactcg actttcactt ttctctatca ctgataggga gtggtaaact
cgactttcac ttttctctat cactgatagg gagtggtaaa ctcgactttc acttttctct
                                                                     2100
                                                                     2160
atcactgata gggagtggta aactcgactt tcacttttct ctatcactga tagggagtgg
taaactcgac tttcactttt ctctatcact gatagggagt ggtaaactcg acggtcgagg
                                                                     2220
gtcgagtagg cgtgtacggt gggaggccta tataagcaga gctcgtttag tgaaccgtca
                                                                     2280
                                                                     2340
gatcgcctgg agacgccatc cacgctgttt tgacctccat agaagacacc gggaccgatc
cagecteege ggeecegaat tgegaagett tattgeggta gtttateaea gttaaattge
                                                                      2400
                                                                      2460
taacgcagtc agtgcttctg acacaacagt ctcgaactta agctgcagaa gttggtcgtg
aggcactggg caggtaagta tcaaggttac aagacaggtt taaggagacc aatagaaact
                                                                      2520
gggcttgtcg agacagagaa gactcttgcg tttctgatag gcacctattg gtcttactga
                                                                      2580
```

catccacttt gcctttctct ccacaggtgt ccactcccag ttcaattaca gctcttaagg 2640 ctagagtact taatacgact cactatagge tageetegag aatteaegeg tggtaeegag 2700 ctoggatoca ctagtaacgg ccgccagtgt gotggaatto tgcagatato catcacactg 2760 géggccgctc gagcatgcat ctagagggcc ctattctata gtgtcaccta aatgctagag 2820 ctcgctgatc agectcgact gtgccttcta gttgccagcc atctgttgtt tgcccctccc 2880 2940 ccgtgccttc cttgaccctg gaaggtgcca ctcccactgt cctttcctaa taaaatgagg 3000 3060 acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgcg gtgggctcta 3120 tggcttctga ggcggaaaga accagtcgac atcgatgcta gagtggaagg tgctgaggta 3180 cgatgagacc cgcaccaggt gcagaccctg cgagtgtggc ggtaaacata ttaggaacca 3240 gcctgtgatg ctggatgtga ccgaggagct gaggcccgat cacttggtgc tggcctgcac ccgcgctgag tttggctcta gcgatgaaga tacagattga ggtactgaaa tgtgtgggcg 3300 tggcttaagg gtgggaaaga atatataagg tgggggtctt atgtagtttt gtatctgttt 3360 tgcagcagcc gccgccgcca tgagcaccaa ctcgtttgat ggaagcattg tgagctcata 3420 3480 tttgacaacg cgcatgcccc catgggccgg ggtgcgtcag aatgtgatgg gctccagcat tgatggtcgc cccgtcctgc ccgcaaactc tactaccttg acctacgaga ccgtgtctgg 3540 3600 aacgccgttg gagactgcag cctccgccgc cgcttcagcc gctgcagcca ccgcccgcgg 3660 gattgtgact gactttgctt tcctgagccc gcttgcaagc agtgcagctt cccgttcatc 3720 cgcccgcgat gacaagttga cggctctttt ggcacaattg gattctttga cccgggaact 3780 taatgtcgtt tctcagcagc tgttggatct gcgccagcag gtttctgccc tgaaggcttc ctcccctccc aatgcggttt aaaacataaa taaaaaacca gactctgttt ggatttggat 3840 3900 caagcaagtg tottgotgto tttatttagg ggttttgcgc gcgcggtagg cccgggacca gcggtctcgg tcgttgaggg tcctgtgtat tttttccagg acgtggtaaa ggtgactctg 3960 4020 gatgttcaga tacatgggca taagcccgtc tctggggtgg aggtagcacc actgcagagc 4080 ttcatgctgc ggggtggtgt tgtagatgat ccagtcgtag caggagcgct gggcgtggtg cctaaaaatg tctttcagta gcaagctgat tgccaggggc aggcccttgg tgtaagtgtt 4140 tacaaagcgg ttaagctggg atgggtgcat acgtggggat atgagatgca tcttggactg 4200 tatttttagg ttggctatgt tcccagccat atccctccgg ggattcatgt tgtgcagaac 4260 caccagcaca gtgtatccgg tgcacttggg aaatttgtca tgtagcttag aaggaaatgc 4320 gtggaagaac ttggagacgc ccttgtgacc tccaagattt tccatgcatt cgtccataat 4380 4440 gatggcaatg ggcccacggg cggcggcctg ggcgaagata tttctgggat cactaacgtc atagttgtgt tccaggatga gatcgtcata ggccattttt acaaagcgcg ggcggagggt 4500 4560 gccagactgc ggtataatgg ttccatccgg cccaggggcg tagttaccct cacagatttg 4620 catttcccac gctttgagtt cagatggggg gatcatgtct acctgcgggg cgatgaagaa 4680 aacggtttcc ggggtagggg agatcagctg ggaagaaagc aggttcctga gcagctgcga 4740 cttaccgcag ccggtgggcc cgtaaatcac acctattacc gggtgcaact ggtagttaag agagetgeag etgeegteat ecetgageag gggggeeact tegttaagea tgteeetgae 4800 4860 tegeatgttt teectgacea aateegeeag aaggegeteg eegeecageg atageagtte 4920 ttgcaaggaa gcaaagtttt tcaacggttt gagaccgtcc gccgtaggca tgcttttgag 4980 cgtttgacca agcagttcca ggcggtccca cagctcggtc acctgctcta cggcatctcg 5040 atccagcata totoctogtt togogggttg gggcggcttt cgctgtacgg cagtagtcgg tgctcgtcca gacgggccag ggtcatgtct ttccacgggc gcagggtcct cgtcagcgta 5100 5160 gtctgggtca cggtgaaggg gtgcgctccg ggctgcgcgc tggccagggt gcgcttgagg ctggtcctgc tggtgctgaa gcgctgccgg tcttcgccct gcgcgtcggc caggtagcat 5220 5280 ttgaccatgg tgtcatagtc cagccctcc gcggcgtggc ccttggcgcg cagcttgccc ttggaggagg cgccgcacga ggggcagtgc agacttttga gggcgtagag cttgggcgcg 5340 5400 agaaataccg attccgggga gtaggcatcc gcgccgcagg ccccgcagac ggtctcgcat 5460 tccacgagcc aggtgagctc tggccgttcg gggtcaaaaa ccaggtttcc cccatgcttt 5520 ttgatgcgtt tcttacctct ggtttccatg agccggtgtc cacgctcggt gacgaaaagg 5580 ctgtccgtgt ccccgtatac agacttgaga ggcctgtcct cgaccgatgc ccttgagagc 5640 cttcaaccca gtcagctcct tccggtgggc gcggggcatg actatcgtcg ccgcacttat 5700 gactgtcttc tttatcatgc aactcgtagg acaggtgccg gcagcgctct gggtcatttt 5760 cggcgaggac cgctttcgct ggagcgcgac gatgatcggc ctgtcgcttg cggtattcgg 5820 aatettgeae geeetegete aageettegt eactggteee geeaecaaae gttteggega 5880 gaagcaggcc attatcgccg gcatggcggc cgacgcgctg ggctacgtct tgctggcgtt cgcgacgcga ggctggatgg ccttccccat tatgattctt ctcgcttccg gcggcatcgg 5940 6000 gatgcccgcg ttgcaggcca tgctgtccag gcaggtagat gacgaccatc agggacagct tcaaggatcg ctcgcggctc ttaccagcct aacttcgatc actggaccgc tgatcgtcac 6060 ggcgatttat gccgcctcgg cgagcacatg gaacgggttg gcatggattg taggcgccgc 6120 cetatacett gtetgeetee eegegttgeg tegeggtgea tggageeggg ceacetegae 6180 ctgaatggaa gccggcggca cctcgctaac ggattcacca ctccaagaat tggagccaat 6240 caattettge ggagaactgt gaatgegeaa accaaccett ggeagaacat atceategeg 6300 tecgccatct ccagcagccg cacgcggcgc atctcgggca gcgttgggtc ctggccacgg 6360 gtgcgcatga tcgtgctcct gtcgttgagg acccggctag gctggcgggg ttgccttact 6420 ggttagcaga atgaatcacc gatacgcgag cgaacgtgaa gcgactgctg ctgcaaaacg 6480 6540 tetgegacet gageaacaac atgaatggte tteggtttee gtgtttegta aagtetggaa 6600 acgcggaagt cagcgccctg caccattatg ttccggatct gcatcgcagg atgctgctgg 6660 ctaccctgtg gaacacctac atctgtatta acgaagcgct ggcattgacc ctgagtgatt 6720 tttctctggt cccgccgcat ccataccgcc agttgtttac cctcacaacg ttccagtaac 6780 egggeatgtt cateateagt aaccegtate gtgageatee tetetegttt categgtate attaccccca tgaacagaaa ttccccctta cacggaggca tcaagtgacc aaacaggaaa 6840 6900 aaaccgccct taacatggcc cgctttatca gaagccagac attaacgctt ctggagaaac 6960 tcaacgaget ggacgeggat gaacaggeag acatetgtga ategetteae gaecaegetg 7020 atgagettta eegeagetge etegegegtt teggtgatga eggtgaaaac etetgacaca 7080 tgcagctccc ggagacggtc acagcttgtc tgtaagcgga tgccgggagc agacaagccc gtcagggcgc gtcagcgggt gttggcgggt gtcggggcgc agccatgacc cagtcacgta 7140 7200 gcgatagcgg agtgtatact ggcttaacta tgcggcatca gagcagattg tactgagagt 7260 gcaccatatg cggtgtgaaa taccgcacag atgcgtaagg agaaaatacc gcatcaggcg 7320 ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc ggcgagcggt 7380 atcageteae teaaaggegg taataeggtt atceaeagaa teaggggata aegeaggaaa 7440 gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc 7500 gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa gctccctcgt 7560 7620 gegeteteet gtteegacee tgeegettae eggatacetg teegeettte teeetteggg aagcgtggcg ctttctcaat gctcacgctg taggtatctc agttcggtgt aggtcgttcg 7680 ctccaagetg ggctgtgtgc acgaaccccc cgttcagecc gaccgctgcg cettatccgg 7740 taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg cagcagccac 7800 tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct tgaagtggtg 7860 gectaactac ggctacacta gaaggacagt atttggtate tgcgctctgc tgaagccagt 7920 taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg ctggtagcgg 7980 tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc aagaagatcc 8040 8100 tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt 8160 8220 taaatcaatc taaagtatat atgagtaaac ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga tctgtctatt tcgttcatcc atagttgcct gactccccgt 8280 cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg caatgatacc 8340 gegagaceca egeteacegg etecagattt ateageaata aaceagecag eeggaaggge 8400 cgagcgcaga agtggtcctg caactttatc cgcctccatc cagtctatta attgttgccg 8460 8520 ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg ccattgctgc 8580 aggeategtg gtgtcacget egtegtttgg tatggettea tteageteeg gttcecaacg 8640 atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc tecgategtt gteagaagta agttggeege agtgttatea eteatggtta tggeageaet 8700 gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc 8760 aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaac 8820 acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc 8880 8940 ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac 9000 tegtgcacce aactgatett cagcatettt tactttcacc agegtttctg ggtgagcaaa 9060 aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact 9120 catactette ettttcaat attattgaag catttateag ggttattgte teatgagegg 9180 atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg 9240 aaaagtgcca cctgacgtct aagaaaccat tattatcatg acattaacct ataaaaatag gcgtatcacg aggccctttc gtcttcaaga attcttatca tgacattaac ctataaaaat 9300 9360 aggogtatca cgaggccctt tcgtcatcat caataatata ccttattttg gattgaagcc 9420 aatatgataa tgagggggtg gagtttgtga cgtggcgcgg ggcgtgggaa cggggcgggt 9480 gacgtagtag tgtggcggaa gtgtgatgtt gcaagtgtgg cggaacacat gtaagcgccg 9540 gatgtggtaa aagtgacgtt tttggtgtgc gccggtgtat acgggaagtg acaattttcg cgcggtttta ggcggatgtt gtagtaaatt tgggcgtaac caagtaatgt ttggccattt 9600 tcgcgggaaa actgaataag aggaagtgaa atctgaataa ttctgtgtta ctcatagcgc 9660 gtaatatttg totagggccg cggggacttt gaccgtttac gtggagactc gcccaggtgt 9720 ttttctcagg tgttttccgc gttccgggtc aaagttggcg ttttattatt atagtcagct 9780 9784 ctag

```
<210> 5
<211> 9668
<212> DNA
<213> Artificial
<220>
<223> Expressionsplasmid pShuttle.3r zur regulierten
       Expression nach Virusgeneration mittels AdEasy
<220>
<221> gene
<222>
      (327)..(713)
<223> VP16
<220>
<221> gene
      (714)..(1352)
<222>
<223> TetR
<220>
<221> Intron
<222> (1353)..(1912)
<223>
<220>
<221> promoter
       (1864)..(1902)
<222>
<223> TK-min
<220>
<221> protein_bind
<222> (1913)..(2213)
       (1913)..(2212)
<223> Tet07
<220>
<221> misc_feature
<222> (2213)..(2709)
<223> CMV-min + Intron
<220>
<221> promoter
<222> (2226)..(2264)
<223> CMV-min
<220>
<221> multiple cloning site
       (2669)..(2770)
<223> NheI, XhoI, KpnI, SpeI, EcoRV, NotI, XhoI
<400>
ctgctggttc tttccgcctc agaagccata gagcccaccg catccccagc atgcctgcta
                                                                          60
ttgtcttccc aatcctcccc cttgctgtcc tgccccaccc caccccccag aatagaatga
                                                                         120
cacctactca gacaatgcga tgcaatttcc tcattttatt aggaaaggac agtgggagtg
                                                                         180
gcaccttcca gggtcaagga aggcacgggg gaggggcaaa caacagatgg ctggcaacta
                                                                         240
                                                                         300
gaaggcacag tcgaggctga tcagcgagct ctagcattta ggtgacacta tagaataggg
ccctctagga tcgatcctcg cgcccctac ccaccgtact cgtcaattcc aagggcatcg
                                                                         360
gtaaacatct gctcaaactc gaagtcggcc atatccagag cgccgtaggg ggcggagtcg
                                                                         420
                                                                         480
tggggggtaa atcccggacc cggggaatcc ccgtccccca acatgtccag atcgaaatcg
                                                                          540
tctagcgcgt cggcatgcgc catcgccacg tcctcgccgt ctaagtggag ctcgtccccc
aggetgacat eggteggggg ggeegtegat agtetgegeg tgtgteeege ggggagaaag
                                                                          600
```

gacaggegeg gageegecag eccegeetet tegggggegt egtegteegg gagategage 660 aggecetega tggtagaece gtaattgttt ttegtaegeg egeggetgta egeggaecea 720 ctttcacatt taagttgttt ttctaatccg catatgatca attcaaggcc gaataagaag 780 gctggctctg caccttggtg atcaaataat tcgatagctt gtcgtaataa tggcggcata 840 900 ctatcagtag taggtgtttc cctttcttct ttagcgactt gatgctcttg atcttccaat 960 acgcaaccta aagtaaaatg ccccacagcg ctgagtgcat ataacgcgtt ctctagtgaa 1020 aaaccttgtt ggcataaaaa ggctaattga ttttcgagag tttcatactg tttttctgta 1080 ggccgtgtat ctgaatgtac ttttgctcca ttgcgatgac ttagtaaagc acatctaaaa 1140 cttttagcgt tattgcgtaa aaaatcttgc cagctttccc cttttaaagg gcaaaagtga gtatggtgcc tatctaacat ctcaatggct aaggcgtcga gcaaagcccg cttattttt 1200 1260 acatgccaat acagtgtagg ctgctctaca ccaagcttct gggcgagttt acgggttgtt aaaccttcga ttccgacctc attaagcagc tctaatgcgc tgttaatcac tttactttta 1320 tctaatctag agggtctggg tctctttggc atggtcgaat taattcgcgt cgagccggcc 1380 1440 gcgggtacaa ttccggttgg acctgggagt ggacacctgt ggagagaaag gcaaagtgga 1500 tgtcattgtc actcaagtgt atggccagat ctcaagcctg ccacacctca agcttgacaa 1560 caaaaagatt gtcttttctg accagatgga cgcggccacc ctcaaaggca tcaccgcggg 1620 ccaggtgaat atcaaatcct cctcgttttt ggaaactgac aatcttagcg cagaagtcat 1680 gcccgctttt gagagggagt actcacccca acagtcgaga ggttttccga tccggtcgat 1740 geggaetege teaggteect eggtggegga gtacegtteg gaggeegaeg ggttteegat 1800 ccaagagtac tggaaagacc gcgaagagtt tgtcctcaac cgcgagccca acaggcgtcg 1860 aagettgatg ggtegetegg tgttegagge caeacgegte acettaatat gegaagtgga cctcggaccg cgccgccccg actgcatctg cgtgttcgaa ttgcccggcg agctcgactt 1920 tcacttttct ctatcactga tagggagtgg taaactcgac tttcactttt ctctatcact 1980 2040 gatagggagt ggtaaactcg actttcactt ttctctatca ctgataggga gtggtaaact 2100 cgactttcac ttttctctat cactgatagg gagtggtaaa ctcgactttc acttttctct 2160 atcactgata gggagtggta aactcgactt tcacttttct ctatcactga tagggagtgg taaactcgac tttcactttt ctctatcact gatagggagt ggtaaactcg acggtcgagg 2220 2280 gtcgagtagg cgtgtacggt gggaggccta tataagcaga gctcgtttag tgaaccgtca gatcgcctgg agacgccatc cacgctgttt tgacctccat agaagacacc gggaccgatc 2340 cagceteege ggeecegaat tgegaagett tattgeggta gtttateaea gttaaattge 2400 taacgcagtc agtgcttctg acacaacagt ctcgaactta agctgcagaa gttggtcgtg 2460 aggcactggg caggtaagta tcaaggttac aagacaggtt taaggagacc aatagaaact 2520 gggcttgtcg agacagagaa gactcttgcg tttctgatag gcacctattg gtcttactga 2580 catccacttt gcctttctct ccacaggtgt ccactcccag ttcaattaca gctcttaagg 2640 ctagagtact taatacgact cactataggc tagcctcgag aattcacgcg tggtaccgag 2700 ctcggatcca ctagtaacgg ccgccagtgt gctggaattc tgcagatatc catcacactg 2760 2820 geggeegete gageatgeat etagagggee etattetata gtgteaceta aatgetagag 2880 ctcgctgatc agcctcgact gtgccttcta gttgccagcc atctgttgtt tgcccctccc 2940 ccgtgccttc cttgaccctg gaaggtgcca ctcccactgt cctttcctaa taaaatgagg 3000 3060 acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgcg gtgggctcta tggcttctga ggcggaaaga accagtcgac tcgaagatct gggcgtggtt aagggtggga 3120 3180 aagaatatat aaggtggggg tettatgtag ttttgtatet gttttgcage ageegeegee gccatgagca ccaactcgtt tgatggaagc attgtgagct catatttgac aacgcgcatg 3240 3300 cccccatggg ccggggtgcg tcagaatgtg atgggctcca gcattgatgg tcgccccgtc ctgcccgcaa actctactac cttgacctac gagaccgtgt ctggaacgcc gttggagact 3360 geagecteeg eegeegette ageegetgea gecaeegeee gegggattgt gaetgaettt 3420 gettteetga gecegettge aageagtgea getteeegtt cateegeeeg egatgacaag 3480 ttgacggctc ttttggcaca attggattct ttgacccggg aacttaatgt cgtttctcag 3540 3600 cagctgttgg atctgcgcca gcaggtttct gccctgaagg cttcctcccc tcccaatgcg 3660 gtttaaaaca taaataaaaa accagactct gtttggattt ggatcaagca agtgtcttgc 3720 tgtctttatt taggggtttt gcgcgcgcgg taggcccggg accagcggtc tcggtcgttg 3780 agggtcctgt gtattttttc caggacgtgg taaaggtgac tctggatgtt cagatacatg ggcataagcc cgtctctggg gtggaggtag caccactgca gagcttcatg ctgcggggtg 3840 3900 gtgttgtaga tgatccagtc gtagcaggag cgctgggcgt ggtgcctaaa aatgtctttc 3960 agtagcaagc tgattgccag gggcaggccc ttggtgtaag tgtttacaaa gcggttaagc 4020 tgggatgggt gcatacgtgg ggatatgaga tgcatcttgg actgtatttt taggttggct 4080 atgttcccag ccatatccct ccggggattc atgttgtgca gaaccaccag cacagtgtat ccggtgcact tgggaaattt gtcatgtagc ttagaaggaa atgcgtggaa gaacttggag 4140 acgcccttgt gacctccaag attttccatg cattcgtcca taatgatggc aatgggccca 4200 cgggcggcgg cctgggcgaa gatatttctg ggatcactaa cgtcatagtt gtgttccagg 4260

		1	19/20			
atgagatcgt	cataggccat	ttttacaaag	cgcgggcgga	gggtgccaga	ctgcggtata	4320
atgagaccgt	ccaacccaaa	ggcgtagtta	ccctcacaga	tttgcatttc	ccacgetttg	4380
acttcadato	gaggatcat	atctacctac	ggggcgatga	agaaaacggt	ttccggggta	4440
ageceagacs	gctgggaaga	aagcaggttc	ctgagcagct	gcgacttacc	gcagccggtg	4500
gggggggeee	tcacacctat	taccoggtgc	aactggtagt	taagagagct	gcagctgccg	4560
tratroctga	acaaaaaaac	cacttcgtta	agcatgtccc	tgactcgcat	gttttccctg	4620
accasatccq	ccadaaddca	ctcaccaccc	agcgatagca	gttcttgcaa	ggaagcaaag	4680
tttttcaacq	gtttgagacc	atccaccata	ggcatgcttt	tgagcgtttg	accaagcagt	4740
treaggrage	cccacagete	gatcacctac	tctacggcat	ctcgatccag	catatctcct	4800
catttcacaa	attagagaga	ctttcactat	acggcagtag	teggtgeteg	tccagacggg	4860
ccadagtcat	gtctttccac	agacacaaga	tectegteag	cgtagtctgg	gtcacggtga	4920
aggggcac	tecagaetae	gcgctggcca	gggtgcgctt	gaggctggtc	ctgctggtgc	4980
tgaagcgctg	ccaatcttca	ccctqcqcqt	cggccaggta	gcatttgacc	atggtgtcat	5040
agtccagccc	ctccacaaca	tagcccttag	cgcgcagctt	gcccttggag	gaggcgccgc	5100
acgaggggaa	gtgcagactt	ttgagggggt	agagettggg	cgcgagaaat	accgattccg	5160
gggagtaggc	atccgcgccg	caggccccgc	agacggtctc	gcattccacg	agccaggtga	5220
actictaacca	ttcggggtca	aaaaccaggt	ttcccccatg	ctttttgatg	cgtttcttac	5280
ctctggtttc	catgageegg	tatccacact	cggtgacgaa	aaggctgtcc	gtgtccccgt	5340
atacagactt	gagaggagt	ttaaacgaat	tcaatagctt	gttgcatggg	cggcgatata	5400
aaatgcaagg	toctoctcaa	aaaatcaqqc	aaagcctcgc	gcaaaaaaga	aagcacatcg	5460
tagtcatgct	catgcagata	aaggcaggta	agctccggaa	ccaccacaga	aaaagacacc	5520
atttttctct	caaacatoto	tacagatttc	tgcataaaca	caaaataaaa	taacaaaaaa	5580
acatttaaac	attagaagcc	tgtcttacaa	caggaaaaac	aacccttata	agcataagac	5640
ggactacggc	cataccaaca	tgaccgtaaa	aaaactggtc	accgtgatta	aaaagcacca	5700
ccaacaactc	ctcggtcatg	tccqqaqtca	taatgtaaga	ctcggtaaac	acatcaggtt	5760
gattcatcgg	tcagtgctaa	aaagcgaccg	aaatagcccg	ggggaataca	tacccgcagg	5820
catagagaca	acattacage	ccccatagga	ggtataacaa	aattaatagg	agagaaaaac	5880
acataaacac	ctgaaaaacc	ctcctqccta	ggcaaaatag	caccctcccg	ctccagaaca	5940
acatacageg	cttcacagcg	gcagcctaac	agtcagcctt	accagtaaaa	aagaaaacct	6000
attaaaaaaa	caccactcga	cacqqcacca	gctcaatcag	tcacagtgta	aaaaagggcc	6060
aagtgcagag	cgagtatata	taggactaaa	aaatgacgta	acggttaaag	tccacaaaaa	6120
acacccagaa	aaccgcacgc	gaacctacqc	ccagaaacga	aagccaaaaa	acccacaact	6180
tecteaaate	gtcacttccg	ttttcccacg	ttacgtaact	tcccatttta	agaaaactac	6240
aattcccaac	acatacaaqt	tactccgccc	taaaacctac	gtcacccgcc	ccgttcccac	6300
accccacacc	acotcacaaa	ctccaccccc	tcattatcat	attggcttca	atccaaaata	6360
aggtatatta	ttgatgatgt	taattaacat	gcatggatcc	atatgcggtg	tgaaataccg	6420
cacagatgcg	taaqqaqaaa	ataccgcatc	aggcgctctt	ccgcttcctc	gctcactgac	6480
tcactacact	caatcattca	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	6540
cogttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	6600
aaggccagga	accotaaaaa	agccacatta	ctggcgtttt	tccataggct	ccgcccccc	6660
gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	6720
agataccagg	catttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaeeetgeeg	6780
cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	6840
cactatagat	atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	6900
cccccattc	agcccgaccg	ctqcgcctta	tccggtaact	atcgtcttga	gtccaacccg	6960
gtaagacacg	acttatcqcc	actggcagca	gccactggta	acaggattag	cagagcgagg	7020
tatgtaggcg	gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	7080
acagtatttg	gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtage	7140
tcttgatccg	gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	7200
attacgcgca	gaaaaaaaqg	atctcaagaa	. gatcctttga	tetttetae	ggggtetgae	7260
gctcagtgga	acgaaaactc	acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	7320
ttcacctaga	tccttttaaa	ttaaaaatga	. agttttaaat	caatctaaag	tatatatgag	7380
taaacttqqt	ctgacagtta	ccaatgctta	. atcagtgagg	cacctatctc	agcgatctgt	7440
ctatttcqtt	catccatagt	tgcctgactc	: cccgtcgtgt	agataactac	gatacgggag	7500
ggcttaccat	ctggccccag	tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	7560
gatttatcag	caataaacca	gccagccgga	agggccgagc	gcagaagtgg	teetgeaact	7620
ttatccqcct	. ccatccagtc	tattaattgt	tgccgggaag	ctagagtaag	tagttegeea	7680
gttaatagtt	tgcgcaacgt	tgttgccatt	: gctgcagcca	tgagattato	aaaaaggate	7740
ttcacctaga	tccttttcac	gtagaaagco	: agtccgcaga	aacggtgctg	accccggatg	7800
aatgtcagct	actgggctat	ctggacaagg	gaaaacgcaa	gcgcaaagag	aaagcaggta	7860
gcttgcagtg	ggcttacatg	gcgatagcta	gactgggcgg	tttatggac	agcaagcgaa	7920

ccggaattgc	cagctggggc	gccctctggt	aaggttggga	agccctgcaa	agtaaactgg	7980
atggctttct	cgccgccaag	gatctgatgg	cgcaggggat	caagctctga	tcaagagaca	8040
qqatgaggat	cgtttcgcat	gattgaacaa	gatggattgc	acgcaggttc	tccggccgct	8100
tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	caatcggctg	ctctgatgcc	8160
accetettcc	ggctgtcagc	gcaggggcgc	ccggttcttt	ttgtcaagac	cgacctgtcc	8220
ggtgccctga	atgaactgca	agacgaggca	gcgcggctat	cgtggctggc	cacgacgggc	8280
attecttaca	cagctgtgct	cgacgttgtc	actgaagcgg	gaagggactg	gctgctattg	8340
ggcgaagtgc	cqqqqcagga	tctcctgtca	tctcaccttg	ctcctgccga	gaaagtatcc	8400
atcatqqctq	atqcaatqcq	gcggctgcat	acgcttgatc	cggctacctg	cccattcgac	8460
caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	tggaagccgg	tcttgtcgat	8520
caggatgatc	tggacgaaga	gcatcagggg	ctcgcgccag	ccgaactgtt	cgccaggctc	8580
aaqqcqaqca	tgcccgacgg	cgaggatctc	gtcgtgaccc	atggcgatgc	ctgcttgccg	8640
aatatcatqq	tqqaaaatgg	ccgcttttct	ggattcatcg	actgtggccg	gctgggtgtg	8700
gcggaccgct	atcaggacat	agcgttggct	acccgtgata	ttgctgaaga	gcttggcggc	8760
gaatgggctg	accgcttcct	cgtgctttac	ggtatcgccg	ctcccgattc	gcagcgcatc	8820
gccttctatc	gccttcttga	cgagttcttc	tgaattttgt	taaaattttt	gttaaatcag	8880
ctcatttttt	aaccaatagg	ccgaaatcgg	caacatccct	tataaatcaa	aagaatagac	8940
cgcgataggg	ttgagtgttg	ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	9000
ctccaacqtc	aaagggcgaa	aaaccgtcta	tcagggcgat	ggcccactac	gtgaaccatc	9060
acccaaatca	agttttttgc	ggtcgaggtg	ccgtaaagct	ctaaatcgga	accctaaagg	9120
gagcccccga	tttagagctt	gacggggaaa	gccggcgaac	gtggcgagaa	aggaagggaa	9180
gaaagcgaaa	ggagcgggcg	ctagggcgct	ggcaagtgta	gcggtcacgc	tgcgcgtaac	9240
caccacaccc	gcgcgcttaa	tgcgccgcta	cagggcgcgt	ccattcgcca	ttcaggatcg	9300
aattaattct	taagttttb	taacatcatc	aataatatac	cttattttgg	attgaagcca	9360
atatgataat	gaggggtgg	agtttgtgac	gtggcgcggg	gcgtgggaac	ggggcgggtg	9420
acqtaqtaqt	qtqqcqgaag	tgtgatgttg	caagtgtggc	ggaacacatg	taagcgacgg	9480
atgtggcaaa	agtgacgttt	ttggtgtgcg	ccggtgtaca	caggaagtga	caattttcgc	9540
gcggttttag	gcggatgttg	tagtaaattt	gggcgtaacc	gagtaagatt	tggccatttt	9600
cgcgggaaaa	ctgaataaga	ggaagtgaaa	tctgaataat	tttgtgttac	tcatagcgcg	9660
taatactg						9668
•						

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ GRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT
 □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
 □ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.