M183 Applikationssicherheit Implementieren # 13

By Jürg Nietlispach

Recap # 12

?

Recap # 12

Data Access

- Databases
 - Types
 - How to store, read & modify Data (CRUD)
 - Attacks
- Data-Ressources (HTTP)
 - How to store, read & modify Data
 - Attacks

Data Access & Manipulation – what's next?

Data Integrity ...

"Data integrity is the maintenance of, and the assurance of the accuracy and consistency of, <u>data</u> over its entire <u>life-cycle</u>, and is a critical aspect to the design, implementation and usage of any system which stores, processes, or retrieves data"

Integrity Domains

- Physical (Storing & Accessing Physical Data)
 - Altered Traffic (Physical Layer, Network Layer)
 - Material fatigue (Hardware)
 - Corrosion (Hardware)
 - Electromechanical faults (Heisenbugs :-)
 - Environmental Hazards
 - ...
- Logical (Concerns: Correctness & Rationality)
 - Referential Integrity (Application Layer)
 - Entity Integrity (Application Layer)
 - Programm Assertions (Application Layer)
 - ..

How to achieve Integrity?

Physical Layer?

Logical Layer?

How to achieve Integrity?

Physical Layer

- Checksums
- Hash-Functions (Message verification)
- Error Correcting (Memory & Data Transport)
- **Encryption** (Prevent unwanted Data Alteration and Information gathering by third parties)
- ...

Logical Layer

- Entity Integrity (Primary Keys)
- Referential Integrity (Foreign-Keys)
- Check Constraints
- Application Rules / Business Logic
- ...

Encryption Domains

Data «in transit» - data being transferred via networks

Issues: Eavesdropping, Data Alteration (Planned & Unplanned) ...

Data «at rest» - Information stored on computers and storage devices

Issues: cryptography, brute-force, stolen cipher exts, attacks on encryption keys, data corruption, data destruction ...

Data Encryption - Overview

- Block Ciphers vs Stream Ciphers
- Substitution Ciphers vs Transposition Ciphers
- Monoalphabetic Substitution
- Polyalphabetic Substitution
- Symmetric Key Systems
- Public Key Systems

Block Cipers vs Stream Ciphers

An important distinction in (symmetric) cryptographic algorithms is between **stream** and **block ciphers**.

Stream ciphers convert one symbol of plaintext directly into a symbol of ciphertext.

Block ciphers encrypt a group of plaintext symbols as one **block**. Simple substitution is an example of a **stream cipher**

Block Cipers vs Stream Ciphers 2

Stream Ciphers

- + Speed of transformation: algorithms are linear in time and constant in space
- + Low error propogation: an error in encrypting one symbol likely will not affect subsequent symbols.
- Low diffusion: all information of a plaintext symbol is contained in a single ciphertext symbol
- No Immunity to tampering: easy to insert symbols without detection

Block Ciphers

- + High diffusion: information from one plaintext symbol is diffused into several ciphertext symbols
- + Immunity to tampering: difficult to insert symbols without detection
- Slowness of encryption: an entire block must be accumulated before encryption / decryption can begin
- Error Propagation: An error in one symbol may corrupt the entire block

Transposition vs Substitution Ciphers

In a **transposition cipher**, the units of the plaintext are rearranged in a different and usually quite complex order, but the units themselves are left unchanged.

By contrast, in a **substitution cipher**, the units of the plaintext are retained in the same sequence in the **ciphertext**, but the units themselves are altered.

Transposition Cipher – Rail Fence

Idea: In the rail fence cipher, the plaintext is written downwards on successive "rails" of an imaginary fence, then moving up when we get to the bottom

Example:

Plaintext -> Ciphertext

```
W . . . E . . C . . R . . L . . T . . E
. E . R . D . S . O . E . E . F . E . A . O . C .
. A . . I . . V . . D . D . . E . . N . .
```

WECRL TEERD SOEEF EAOCA IVDEN

Transposition Cipher – Route Cipher

Idea: the plaintext is first written out in a grid of given dimensions, then read off in a pattern given in the key

Example:

Plaintext -> Ciphertext.

Key: "spiral inwards, clockwise, starting from the top right"

W R I O R F E O E E E S V E L A N J A D C E D E T C X

EJXCTEDECDAEWRIORFEONALEVSE

Encryption - Monoalphabetic Substitution

Idea: Every Letter in an Alphabet gets exactly one substitution letter!

Variants

- Cesar-Cipher: Shift (= Key) the Alphabet by n Elements
- Scramble the Alphabet: A -> B, B -> F, C -> Y, etc. (but 1:1)
- Use artificial Characters ...

Example

Ciphertext:

«Uryyb Jbeyq»

Decryption - Monoalphabetic Substitution

Example

Cesar Cipher (Shift = Key = 13 backwards using the same «Key»: NOP...)

Ciphertext:

«Uryyb Jbeyq»

Plaintext:

«Hello World»

Cryptoanalysis - Monoalphabetic Substitution - 1

Consider Character Frequencies in English / German Texts

What happens to these Frequencies when doing monoalphabetic substitutions?

Cryptoanalysis - Monoalphabetic Substitution - 2

Only the Letter – Label changes – not the Frequencies!

Instead of E, with a Shift of 13, R will be the most frequent character!

Lab – Monoalphabetic Substitution

- 1. Monoalphabetic Encryption Engine (Parameter: Shift)
- 2. Monoalphabetic Cryptoanalysis Engine (Frequency Analysis with Tables / BarChart)
- 3. Monoalphabetic Decryption Engine (Parameter: Back-Shift)

Encryption - Polyalphabetic Substitution

Idea

One single Character of an alphabet can be mapped to different Characters of the same alphabet.

Example

Vigenère Cipher: using a Key K for encryption of a plaintext

Plaintext: ATTACK ATDAWN
Key: LemonLemonLe
Ciphertext: LXF OPVE FRN HR

Letter A is Mapped to L, O, E and N

Decryption - Polyalphabetic Substitution

Example

Vigenère Cipher: using a Key K for decryption of a ciphertext

Ciphertext: LXF OPVE FRN HR

Key: LemonLemonLe

Plaintext: ATTACK ATDAWN

Cryptoanalysis - Polyalphabetic Substitution

Idea

The Fact that there are certain mappings of letters or words, that stay the same (a.k.a Repetitions)

Example 1

Vigenère Cipher: using a Key K for encryption of a plaintext

Plaintext: ATTACK ATDAWN
Key: LemonLemonLe
Ciphertext: LXF OPVE FRN HR

Cryptoanalysis - Polyalphabetic Substitution

Example 2

Vigenère Cipher: using a Key K for encryption of a plaintext

Key: ABCDABCDABCDABCDABCDABCD

Plaintext: CRYPTOISSHORTFORCRYPTOGRAPHY

Ciphertext: CSASTPKVSIQUTGQUCSASTPIUAQJB

Key-Length may be: 16 or every factor of 16: 8, 4, 2, 1

Cryptoanalysis - Polyalphabetic Substitution

When the Key Length L is known -> display Ciphertext in Columns of L

L1	L2	L3	L4	L5	L6
С	٧	J	Т	N	Α
F	Е	Z	M	С	D
M	K	В	X	F	S
Т	K	L3	Ξ	G	S
0	J	W	Н	0	F

Perform Frequency analysis within each Column and calculate the shift to the regular frequency of the language.

L1 corresponds to the letter of the shifted position.

Lab — Polyalphabetic Substitution

- 1. Polyalphabetic Encryption Engine (Parameter: Key as Character String)
- 2. Polyalphabetic Cryptoanalysis Engine (Frequency Analysis with Tables / BarChart)
- 3. Polyalphabetic Decryption Engine (Parameter: Key as Character String)
- 4. Perform Frequency Analysis per Key Column