Routing

G54ACC – IP and Up Lecture 2

Recap

- "The Internet" consists of connected routers
- Routers store'n'forward packets toward destinations
- Decisions are based on IP destination address and contents of routing tables

- Overview
- Link-state routing
- Distance-vector routing
- Inter-network routing
- Alternatives & Summary

- Overview
 - What is routing?
 - IP routing
- Link-state routing
- Distance-vector routing
- Inter-network routing
- Alternatives & Summary

What is Routing?

- The process of building up information to enable forwarding
 - How does a router figure out the correct port on which to forward a packet?
 - Implicit: "correct" means "most efficient"
 - ...subject to other constraints
- Why is it a problem?
 - Scalability: networks may become large
 - Dynamics: need to handle host and link failures

IP Routing

- Two basic techniques for wireline IP:
 - Link-state routing
 - vs. Distance-vector routing
- Both equivalent but make different tradeoffs
- Both require some degree of coordination
- Many other techniques in general
 - Particularly in ad-hoc wireless and other networks
 - Geographical and map-based are common
 - What information is reliably available?

- Overview
- Link-state routing
 - Determining link-states
 - Propagating link-states
 - Computing shortest paths
- Distance-vector routing
- Inter-network routing
- Alternatives & Summary

Link-state Routing

- Two common implementations
 - Open Shortest Path First, OSPF, RFC2328
 - Intermediate-System Intermediate-System, IS-IS, RFC1142, RFC1195
- Three phases:
 - Determine link states (HELLO)
 - Broadcast link states (UPDATE)
 - Compute and install shortest paths

Determining Link States

- Use a three-way handshake across each link
 - "Is anyone there?"
 - "I can see you; can you see me?"
 - "I can see you."
- Runs periodically to ensure link remains alive
 - Sometimes shortcut to alert "link down"
- Result?
 - Each router knows to whom it's connected

Broadcast Link States

- Each router summarises and forwards
 - Each prefix represented as a link
- Simple? In principle, but in practice...
 - Versioning in case of delay, reordering
 - Summarization to make reliable
 - Number space wrapping for long uptimes
 - Flapping, convergence, loop detection, &c
- Result?
 - Each router eventually knows to whom others are connected, approximately

Compute & Install Shortest Paths

- Each router now has a representation of the network's current state
 - < originating-at, connected-to, metric >
- Can run a standard shortest-path computation
 - Typically some form of Dijkstra's algorithm
 - Possibly optimize to minimize recomputation
 - Generates best next hop for each prefix
 - Mapped to specific interface

- Overview
- Link-state routing
- Distance-vector routing
 - Comparison
- Inter-network routing
- Alternatives & Summary

Distance-vector Routing

- Alternate is distance-vector
 - Routers co-operate in the computation itself
 - Should (eventually) converge
 - …if network is stable!
- Protocol
 - Broadcast lowest cost to all known destinations
 - Forward using port via which best advert heard
- Common implementations:
 - Routing Information Protocol v2, RIP, RFC1723

Comparison

- Implementation issues
 - Timer and timeout management
- Centralized vs. Distributed computation
- State scales with #links vs. #nodes (dests)
- Behaviour under link/router failure
 - DV, count-to-infinity
- Management, configuration overheads
 - Easier to see what's happening with LS
 - Need to explicitly configure link weights
 - Example default: proportional to bandwidth and latency

- Overview
- Link-state routing
- Distance-vector routing
- Inter-network routing
 - BGP v4 it's the only choice!
 - Route distribution and selection
 - Operations
 - Network interconnection
- Alternatives & Summary

Inter-network Routing

- An important distinction: local vs. global
 - Interior vs. Exterior Gateway Protocol (IGP, EGP)
 - Why is this important? Two reasons:
- Dynamics
 - Need to scope information propagation
- Protection (Information hiding)
 - Competition: your goals are not your neighbours'

There Can Be Only One

- <u>B</u>order <u>G</u>ateway <u>P</u>rotocol, v4 (BGPv4)
 - Essentially distance-vector with knobs on
 - Another layer: the <u>Autonomous System</u> (AS)
 - Purely administrative: not relevant to data-plane
- Distance is defined as the ASPATH
 - So-called path vector
 - But there are many other attributes to consider
- Purpose is to enable policy to be applied
 - No universal (trusted) metric available

BGPv4

- Protocol for exchanging prefixes with attributes
 - Uses TCP as transport (for recursion, see recursion?)
 - OPEN, UPDATE, KEEPALIVE, (NOTIFICATION)
- OPEN sets up sessions between peers
 - Perform simple capability negotiation
 - iBGP vs. eBGP: do src and dst ASNs differ?
- UPDATEs indicate
 - Withdrawn routes
 - (Shared) attributes
 - Advertised routes (<u>Network Layer Reachability Information</u>)

Tables, Tables

- BGP speaker typically has many sessions
 - **10? 20? 400?**
- Logically maintains Adj-RIB-In, -Out for each
 - Advertisements received and to be sent
- Selection process generates Loc-RIB
 - Based on reachability, attributes (local-pref, aspath)
 - Resolved into per-port forwarding tables

Operations

- Scalability is a vital consideration
 - 300,000 prefixes, x2 per session
 - Bind to lo0 to avoid dropping all tables
 - Default-free: every router can handle every prefix
- Distribute internally via iBGP rather than IGP
 - Can control the dynamics much better
 - But a large network has 100s of routers!
- Route reflectors, AS confederations
 - Tweak route selection rules somewhat
- Anycast (1:1-of-N)
 - Advertise same prefix in many places. Carefully.

Network Interconnection

- How does this all fit together?
 - Roughly hierarchical (this is changing)
 - Tier-1/core/backbone vs. the rest
- Multi-homing is often desirable
 - Note that this is all *logical* though: physical diversity
- Networks interconnect via eBGP sessions
 - Points-of-Presence (Sprint, AT&T, ... customers)
 - Internet eXchanges (mutual peering)
- As ever, business and politics
 - E.g., Level3 vs. Cogent depeering

- Overview
- Link-state routing
- Distance-vector routing
- Inter-network routing
- Alternatives & Summary

Alternatives

- Source routing
 - But how does the host know the topology?
 - How can the network trust the host?
- Location-based routing
 - Extensive use of information embedded in environment
 - E.g., lat-long and Euclidean distance
- Map-based
 - Alternative aggregation technique for LS
- Alternative, more complex, metrics
 - Cf. QoS, later

Summary

- Routing is the process of building up information to enable efficient forwarding
- Networks are dynamic which makes it hard
- The two main approaches are link-state and distance-vector
- Another distinction is interior vs. exterior
- BGP v4 is the only inter-domain routing protocol that counts