На прошлой лекции мы показали, что паросочетание максимально ⇔ для него не существует дополняющей цепи.

Поиск максимального паросочетания

Ориентируем ребра парсоча справа-налево, а остальные - слева-направо. Тогда каждой удлиняющей цепи соответствует путь из левой свободной вершины в правую свободную. Путь можно искать за линейное время, получаем ассимптотику поиска паросочетания за O(nm) (поиск пути можно делать не больше n раз, так как в парсоче не больше n ребер).

Алгоритм Куна

Пробежимся по вершинам левой доли и попробуем найти удлиняющую цепь из текущей вершины.

Проблема: Если из какой-то вершины мы не смогли найти удлиняющую цепь, то потом можем найти.

- 1. Пусть $r(A) = \max$ matching (A, R), где $A \subset L$. $A_{i+1} = A_i \cup \{v_i\}$, $A_0 = \{v_0\}$. Докажем, что если $r(A_{i-1})$ найден алгоритмом Куна корректно, то и $r(A_i)$ будет найден корректно. Понятно, что $r(A_{i-1}) \leq r(A_i) \leq r(A_{i-1}) + 1$.
 - (a) Если $r(A_{i-1}) = r(A_i)$, то $r(A_i)$ посчитается правильно
 - (b) Если $r(A_{i-1})+1=r(A_i)$. Пусть M_i для $r(A_i)$ и M_{i-1} парсоч для A_{i-1} . Тогда рассмотрим симметрическую разность M_i и M_{i-1} . Наш получившийся граф разбился на пути и циклы, так как $|M_i|>|M_{i-1}|$, то есть удлиняющая цепь для M_{i-1} . Если ее конец не в v_i , то можем увеличить M_{i-1} противоречие, значит есть удлиняющая цепь из v_i , а значит алгоритм Куна найдет ее и получит, что $r(A_i)=r(A_{i-1})+1$.
- 2. Если какая-то вершина стала покрыта в течение алгоритма куна, то она и останется покрытой.

Отсюда получем, что Кун находит лексикографически минимальный парсоч, то есть слева выбранные вершины будут лексикографически минимальными.

Теперь решим задачу: слева на вершинах есть неотрицательные веса, тогда хотим найти парсоч максимального веса (то есть максимизировать суммарный вес взятых вершин).

Переупорядочим вершины по весу, то есть туперь $w_1 \ge \ldots \ge w_n \ge 0$. Теперь запустим Куна на левой доли. Тогда получим оптимальный парсоч. Пусть $p_1 < \ldots < p_k$ - индексы 1 в этом числе, $p_1' < \ldots < p_k'$ - индексы взятых вершин в ответе, посчитанном Куном, p_i' - индексы взятых вершин в оптимальном ответе. Тогда $\exists i : p_i' < p_i$, но тогда $r(A_i)$ Кун посчитал неправильно.

Теперь добавим вершины и для правой доли. $a: L \to \mathbb{R}_+, b: R \to \mathbb{R}_+, w(uv) = a(u) + b(v)$.

Пусть M_1 - парсоч, построенный предыдущим алгоритмом для левой доли, M_2 - для правой доли. Рассмотрим $M_1 \cup M_2$ (в оригинале симметрическую разность, но в объединении просто будут циклы длины 2). Тогда граф разбился на четные циклы и четные пути (иначе можно было увеличить парсоч). В циклах берем чередующиеся ребра (в том числе и циклах длины 2), в путях мы должны выбрать один из 2 концов, выбираем больший. Несложно понять, что полученный парсоч будем весом $w(M_1) + w(M_2)$.

Теорема Кёнига Размер максимального паросочетания в двудольном графе равен минимального вершинного покрытию.

Любое вершинное покрытие всегда не меньше любого паросочетания - на каждом ребре из парсоча должна быть хотя бы 1 вершина из вершинного покрытия.

Теперь предъявим какой-то парсоч равный какому-то вершинному покрытию. Ориентируем ребра парсоча справаналево, а остальные - слева-направо. Запустим дфс из левой доли из вершин непокрытых паросочетанием $(L \setminus L(M))$, где L(M) - множество покрытых вершин левой доли.) Тогда L^+ - множество вершин левой доли, до которых мы дошли, L^- - вершины левой доли. до которых не дошли, R^+ - вершины правой доли, до которых дошли, R^- - вершины правой доли, до которых не дошли. Тогда между L^+ и R^- нету ребер, так как там не может быть ребер не из парсоча (иначе можем дойти до R^- - ребра не из парсоча слева-направо), также не может быть ребер из парсоча, так как тогда конец этого ребра лежит в L^+ и покрыт, а значит мы туда попали, пройдя по этому ребру (так как у нас в каждую вершину левой доли может вести только ребро парсоча). (КЕК, УДАЧИ РЕБЯТА)

Тогда $L^- \cup R^+$ - вершинное покрытие. Все вершины L^- покрыты, так как все непокрытые сразу же в L^+ , все вершины R^+ покрыты, так как иначе есть удлиняющая цепь, а парсоч макссимальный. Между L^- и R^+ не может быть ребер парсоча (справа налево), иначе можем дойти до L^- . Значит ребер парсоча хотя бы столько же, сколько

и вершин в вершинномм покрытии, то есть мы нашли парсоч, мощность которого равна мощности вершинного покрытия. Отюда получаем, чот $L^- \cup R^+$ - мин вершинное покрытие.

Отсюда $L^+ \cup R^-$ - максимальное независимое множество (как дополнение к мин вершинному покрытию).

Задача 1 Есть ДАГ (ориентированный ациклический граф). Надо покрыть все его вершины минимальным количеством вершинно-непересекающимися путями.

Рассмотрим выбранные ребра M, тогда путей будет n-|M|. Значит нам надо выбрать максимальное количество ребер так, чтобы исходящая степень каждой вершины была не больше 1, и входящая степень была не больше 1. Тогда построим двудольный граф: в левой и правой доли - по n вершин, тогда если в изначальном графе было ребро из i в j, то проведем ребро из i левой доли в j правой доли (неориентированное). Тогда парсоч и есть множество ребер M.

Задача 2 Теперь пути могут пересекаться. Рассмотрим транзитивное замыкание графа и решим предыдущую задачу. Тогда можно восстановить ответ из полученного (не успею немного дописать - там легко).