

Patent Office
Canberra

REC'D 06 JAN 2004
WIPO PCT

I, JONNE YABSLEY, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. 2002953223 for a patent by THE CORPORATION OF THE TRUSTEES OF THE ORDER OF THE SISTERS OF MERCY IN QUEENSLAND as filed on 06 December 2002.

WITNESS my hand this
Twenty-third day of December 2003

9

JONNE YABSLEY
TEAM LEADER EXAMINATION
SUPPORT AND SALES

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

The Corporation of the Trustees of the
Order of the Sisters of Mercy in Queensland

A U S T R A L I A
Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

"Novel Therapeutic Molecules and Uses Thereof"

The invention is described in the following statement:

- 1 -

NOVEL THERAPEUTIC MOLECULES AND USES THEREOF

FIELD OF THE INVENTION

- 5 The present invention relates generally to a novel lectin receptor and to derivatives, homologues, analogues, chemical equivalents and mimetics thereof and, more particularly, to novel splice variants of DEC-205. The present invention further relates to a novel lectin and to derivatives, homologues, analogues, chemical equivalents and mimetics thereof and, more particularly, to a novel type I C-type lectin, herein referred to as "DCL-1". The
10 present invention also contemplates genetic sequences encoding said novel molecules and derivatives, homologues and analogues thereof. The molecules of the present invention are useful in a range of therapeutic, prophylactic and diagnostic applications.

BACKGROUND OF THE INVENTION

15

Bibliographic details of the publications referred to numerically in this specification are collected at the end of the description.

- The reference to any prior art in this specification is not, and should not be taken as, an
20 acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia.

Hodgkin's disease accounts for 15% of all lymphomas, but less than 1% of all cancers. It is diagnosed in 7 per 100,000 people annually. Hodgkin's disease can occur at any age, but
25 is rare in children. It most commonly strikes young adults between the ages of 20-30 years and adults above the age of 50 years. Hodgkin's disease is more common in higher-socio-economic groups and more men are affected by the illness than women.

- Hodgkin's disease is characterised by the presence of Reed-Sternberg cells. These are
30 malignant morphologically distinct cells, the presence of which is used as a diagnostic criterion of Hodgkin's disease.

In nodular lymphocyte predominant Hodgkin's disease, Hodgkin and Reed-Sternberg cells occur amongst a background of polyclonal B and T cells. The proliferation of these lymphocytes is postulated to be mediated by malignant Hodgkin and Reed-Sternberg cells.

- 5 Hodgkin and Reed-Sternberg cells exhibit characteristics in common with antigen presenting cells such as activated B cells and dendritic cells. For example, Hodgkin and Reed-Sternberg cells lines, such as KM-H2, L428 and HDLM-2, express cell surface molecules required for costimulation/proliferation of B and T cells (MHC class II, CD40, CD80 and CD86), cell adhesion molecules involved in APC-T cell interactions (LFA-1, 10 CD11c, ICAM-1-3), and produce inflammatory cytokines (TNF- α and lymphotxin) and non-inflammatory cytokines (e.g. CSF-1, IL-5 and IL-13), all of which may contribute to the pathology of Hodgkin's disease.

In light of the unique distribution and characteristics of Reed-Sternberg cells, there is an 15 on-going need to investigate and define the phenotypic and functional characteristics of this population of cells.

In work leading up to the present invention, the inventors have studied the cell surface molecule expression of Reed-Sternberg cells with a view to identifying molecules which 20 may provide useful immunotherapeutic targets. In this regard, the inventors have surprisingly identified novel alternatively spliced DEC-205 mRNAs which encode the intact DEC-205 ectodomain plus a unique sequence encoding for an additional carbohydrate recognition domain (CRD), a transmembrane domain and a cytoplasmic domain derived from a newly identified type I C-type lectin termed DCL-1.

SUMMARY OF THE INVENTION

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will 5 be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common 10 general knowledge in Australia.

The subject specification contains nucleotide sequence information prepared using the programme PatentIn Version 3.1, presented herein after the bibliography. Each nucleotide sequence is identified in the sequence listing by the numeric indicator <201> followed by 15 the sequence identifier (eg. <210>1, <210>2, etc). The length, type of sequence (DNA, etc) and source organism for each nucleotide sequence is indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide sequences referred to in the specification are identified by the indicator SEQ ID NO: followed by the sequence identifier (eg. SEQ ID NO:1, SEQ ID NO:2, etc.). The 20 sequence identifier referred to in the specification correlates to the information provided in numeric indicator field <400> in the sequence listing, which is followed by the sequence identifier (eg. <400>1, <400>2, etc). That is SEQ ID NO:1 as detailed in the specification correlates to the sequence indicated as <400>1 in the sequence listing. A summary of the sequences detailed in this specification are provided immediately prior to the examples, in 25 Table 4.

One aspect of the present invention provides a novel nucleic acid molecule in isolated form wherein said nucleic acid molecule comprises a novel DEC-205 intergenic splice variant.

30 In another aspect there is provided a novel nucleic acid molecule in isolated form wherein said nucleic acid molecule comprises a DEC-205/DCL-1 intergenic splice variant.

Yet another aspect provides a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue or mimetic

- 5 thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21.

Still another aspect provides a novel nucleic acid molecule or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set

- 10 forth in SEQ ID NO:1 or SEQ ID NO:20 or a nucleotide sequence having at least about 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:1 or SEQ ID NO:20 under low stringency conditions at 42°C.

- 15 Yet still another aspect of the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative thereof or capable of hybridising to SEQ ID NO:1 or SEQ ID NO:20 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set
20 forth in SEQ ID NO:2 or SEQ ID NO:21 or a sequence having at least about 45% similarity to at least 10 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21.

Still yet another aspect of the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:1 or SEQ ID

- 25 NO:20.

A further aspect of the present invention provides a novel cDNA or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a nucleotide sequence

- 30 having at least about 50% similarity to all or part thereof or a nucleotide sequence capable

of hybridising to the sequence set forth in SEQ ID NO:1 or SEQ ID NO:20 under low stringency conditions at 42°C.

Another further aspect of the present invention provides a nucleic acid molecule or

5 derivative, homologue or analogue thereof comprising a nucleotide sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:5 or a derivative, homologue or mimetic thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in SEQ ID NO:5.

10 In another aspect there is provided a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:8 or a derivative, homologue or mimetic thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in SEQ ID NO:8.

15

In still another aspect there is provided a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:11 or a derivative, homologue or mimetic thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in

20 SEQ ID NO:11.

In yet another aspect, the present invention provides a novel nucleic acid molecule or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:4 or a nucleotide sequence having at

25 least about 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:4 under low stringency conditions at 42°C.

In still yet another aspect, the present invention provides a novel nucleic acid molecule or a
30 derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at

least about 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.

- 5 In still another aspect, the present invention provides a novel nucleic acid molecule or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:10 or a nucleotide sequence having at least about 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:10 under low stringency conditions at

10 42°C.

A further aspect of the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence substantially as set forth in SEQ ID NO:4 or a derivative thereof capable of hybridising to SEQ ID NO:4 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:5 or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:5.

- In another further aspect the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a derivative thereof capable of hybridising to SEQ ID NO:7 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:8 or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:8.

25 In still another further aspect the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence substantially as set forth in SEQ ID NO:10 or a derivative thereof capable of hybridising to SEQ ID NO:10 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:11 or a

30

sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:11.

Yet another further aspect of the present invention contemplates a nucleic acid molecule
5 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:4, SEQ ID NO:7 or SEQ ID NO:10.

Still another further aspect of the present invention is directed to a isolated protein selected from the list consisting of:

10

- (i) An isolated DEC-205 intergenic splice variant or a derivative, homologue, analogue, chemical equivalent or mimetic thereof.
- (ii) An isolated DEC-205/DCL-1 intergenic splice variant or a derivative, homologue, analogue, chemical equivalent or mimetic thereof.
- (iii) A protein having an amino acid sequence substantially as set forth in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue or mimetic thereof or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ 20 ID NO:2 or SEQ ID NO:21 or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.
- (iv) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative, homologue or analogue of said nucleotide sequence or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.
- (v) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative, homologue or analogue thereof or a sequence encoding an amino acid sequence having at least about 45% similarity to 30

at least 30 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.

- (vi) A protein encoded by a nucleic acid molecule capable of hybridising to the
5 nucleotide sequence set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative,
homologue or analogue thereof under low stringency conditions at 42°C or a
derivative, homologue, analogue, chemical equivalent or mimetic of said protein.

- (vii) A protein encoded by a nucleic acid molecule capable of hybridising to the
10 nucleotide sequence as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative,
homologue or analogue thereof under low stringency conditions at 42°C and which
encodes an amino acid sequence substantially as set forth in SEQ ID NO:2 or SEQ
ID NO:21 or a derivative, homologue or mimetic thereof or an amino acid
sequence having at least about 45% similarity to at least 30 contiguous amino acids
15 in SEQ ID NO:2 or SEQ ID NO:21.

- (viii) A protein having an amino acid sequence substantially as set forth in SEQ ID
NO:5, SEQ ID NO:8, or SEQ ID NO:11 or a derivative, homologue or mimetic
thereof or a sequence having at least about 45% similarity to at least 30 contiguous
20 amino acids in SEQ ID NO:5, SEQ ID NO:8, or SEQ ID NO:11 or a derivative,
homologue, analogue, chemical equivalent or mimetic of said protein.

- (ix) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID
NOs:4, 7 or 10 or a derivative, homologue or analogue of said nucleotide sequence
25 or a derivative, homologue, analogue, chemical equivalent or mimetic of said
protein.

- (x) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID
NOs:4, 7 of 10 or a derivative, homologue or analogue thereof or a sequence
30 encoding an amino acid sequence having at least about 45% similarity to at least 30

contiguous amino acids in SEQ ID NOS:5, 8 or 11 or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.

- (xi) A protein encoded by a nucleic acid molecule capable of hybridising to the
5 nucleotide sequence set forth in SEQ ID NOS:4, 7 or 10 or a derivative, homologue or analogue thereof under low stringency conditions at 42°C or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein
- (xii) A protein encoded by a nucleic acid molecule capable of hybridising to the
10 nucleotide sequence as set forth in SEQ ID NOS:4, 7 or 10 or a derivative, homologue or analogue thereof under low stringency conditions at 42°C and which encodes an amino acid sequence substantially as set forth in SEQ ID NOS:5, 8 or 11 or a derivative, homologue or mimetic thereof or an amino acid sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID
15 NOS:5, 8 or 11.
- (xiii) A protein as defined in any one of paragraphs (i) to (xii) in a homodimeric form.
- (xiv) A protein as defined in any one of paragraphs (i) to (xii) in a heterodimeric form.
20
- Another aspect of the present invention contemplates a method of modulating *DEC-205 SV* expression or *DEC-205 SV* functional activity in a mammal, said method comprising administering to said mammal an agent for a time and under conditions sufficient to up-regulate, down-regulate or otherwise modulate expression of *DEC-205 SV* or functioning
25 of *DEC-205 SV*.
- Yet another aspect of the present invention is directed to a method for modulating *DCL-1* expression or *DCL-1* functional activity in a mammal, said method comprising administering to said mammal an agent for a time and under conditions sufficient to up-regulate, down-regulate or otherwise modulate said expression or functioning.
30

- 10 -

Still another aspect of the present invention contemplates a method for regulating cellular activity in a subject said method comprising administering to said subject an effective amount of an agent for a time and under conditions sufficient to modulate *DEC-205 SV* expression of DEC-205 SV functional activity.

5

In yet another aspect there is contemplated a method of regulating cellular activity in a subject said method comprising administering to said subject an effective amount of an agent for a time and conditions sufficient to modulate *DCL-1* expression or DCL-1 functional activity.

10

In yet still another aspect there is provided a method for the treatment and/or prophylaxis of a condition characterised by aberrant, unwanted or otherwise inappropriate functioning of DEC-205 SV or DCL-1 in a subject, said method comprising administering to said subject an effective amount of an agent as hereinbefore defined for a time and under

15 conditions sufficient to modulate the expression of *DEC-205 SV or DCL-1* and/or functioning of DEC-205 SV or DCL-1.

In still yet another aspect there is provided a method for the treatment of Hodgkin's lymphoma in a mammal, said method comprising administering to said mammal an
20 effective amount of a cytolytic and/or cytotoxic agent which agent interacts or otherwise associates with DEC-205 SV, for a time and under conditions sufficient for said agent to lyse, apoptose or otherwise kill Hodgkin and Reed-Sternberg cells.

Single and three letter abbreviations used throughout the specification are defined in Table
25 1.

- 11 -

TABLE 1
Single and three letter amino acid abbreviations

	Amino Acid	Three-letter Abbreviation	One-letter Symbol
5	Alanine	Ala	A
	Arginine	Arg	R
10	Asparagine	Asn	N
	Aspartic acid	Asp	D
	Cysteine	Cys	C
	Glutamine	Gln	Q
	Glutamic acid	Glu	E
15	Glycine	Gly	G
	Histidine	His	H
	Isoleucine	Ile	I
	Leucine	Leu	L
	Lysine	Lys	K
20	Methionine	Met	M
	Phenylalanine	Phe	F
	Proline	Pro	P
	Serine	Ser	S
	Threonine	The	T
25	Tryptophan	Trp	W
	Tyrosine	Tyr	Y
	Valine	Val	V
	Any residue	Xaa	X

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Identification of the cDNA clone encoding DEC-205/DCL-1 fusion. (A) A schematic presentation of DEC-205 mRNA (top, partial structure) and two representative clones (pB30-3 and pB30-1) isolated from the DEC-205 3'-RACE product. The boxes in the DEC-205 mRNA indicate domain structures, including CRDs, a TM and CP. Wide black bars indicate the DNA sequence for DEC-205¹⁷ and wide shaded bars indicate the DNA sequence for the novel C-type lectin DCL-1 (KIAA0022).²² The broken line indicates the position of the junction between DEC-205 and DCL-1. (B) The DNA and corresponding amino acids sequence adjacent to the junction for DEC-205/DCL-1 fusion protein. Sequence of the pB30-3 and pB30-1 were aligned with DEC-205 (top) and DCL-1 (bottom) sequences. An arrow indicates the DEC-205/DCL-1 junction, apparent after gene analysis was performed to assign the exon-intron junction of DEC-205 and DCL-1 gene. SP, signal peptide; CRD, carbohydrate recognition domain; TM, transmembrane domain; CP, cytoplasmic domain.

Figure 2. The DEC-205/DCL-1 fusion mRNA encodes the entire DEC-205 ectodomain. The L428 cDNA was subjected to RT-PCR using either DEC-205 specific reverse primer (085) or DCL-1 specific reverse primer (086) in combination with various DEC-205 specific forward primers (078, 088, 090, 092 and 094), and fractionated with 0.8% (w/v) agarose gel electrophoresis. The positions of these gene specific primers are indicated as arrows in the schematic diagram (bottom). The doublets obtained with several sets of primer combinations correspond to alternatively spliced DEC-205 mRNA (see text). SP, signal peptide; CR, cysteine-rich domain; FN, fibronectin type II domain; CRD, carbohydrate recognition domain; TM, transmembrane domain; CP, cytoplasmic domain.

Figure 3. The DEC-205/DCL-1 fusion mRNA is predominantly expressed by HRS cell lines. Total RNA from hematopoietic cell lines were subjected to Northern blot analysis, probed sequentially with the DCL-1 (top panel) and DEC-205 (middle panel). The bottom panel shows methylene blue staining of 28S ribosomal RNA.

- 13 -

Figure 4. The DEC-205 and DCL-1 gene are juxtaposed in chromosome band 2q24.

A schematic drawing of DEC-205 (partial) and DCL-1 mRNA (top), DEC-205 (partial) and DCL-1 genes on chromosome 2q24 (middle) and DEC-205/DCL-1 fusion mRNA (bottom). In the top and bottom drawings, boxes indicate domain structures (please see

5 keys in Figure 2). In the middle panel, boxes indicate exons.

Figure 5. DEC-205/DCL-1 fusion mRNA is translated to the fusion protein. (A) The cell lysates from HRS cell lines (L428, HDLM-2 and KM-H2), HEL and Jurkat cells were immunoprecipitated with anti DEC-205 CP, anti DCL-1 CP peptide antisera or non

10 immune rabbit IgG, and the immune complexes were subjected to Western blot analysis using DEC-205 mAbs (M335 plus MMRI-7). The signals were detected by ECL on X-ray films. (B) The cell lysates as above were applied to a ELISA plate coated with DEC-205 mAbs, and bound DEC-205 or DEC-205/DCL-1 fusion protein was detected with anti

15 DEC-205 CP (for DEC-205) or anti DCL-1 CP (for DCL-1). The signals were detected with OPD at 492 nm.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is predicated, in part, on the identification of novel DEC-205 splice variants. More particularly, the inventors have identified RNA splice variants of DEC-205 which encode an intact DEC-205 ectodomain in addition to a novel carbohydrate recognition domain, transmembrane domain and cytoplasmic domain. Still further, the inventors have determined that the generation of these novel splice variants is likely the result of an intergenic splicing event which leads to the formation of a fusion mRNA comprising both partial DEC-205 mRNA and a novel carbohydrate recognition domain, transmembrane domain and cytoplasmic domain encoding mRNA sequence. In investigating these unique cistronic mRNAs, the inventors have yet further determined that the novel carbohydrate recognition domain, transmembrane and cytoplasmic domains, which are spliced together with a partial DEC-205 mRNA transcript in order to form the subject novel DEC-205 splice variants, corresponds to a novel type I C-type lectin, herein termed "DCL-1". The identification of these novel molecules now permits the identification and rational design of a range of products for use in prophylaxis, therapy, diagnosis and antibody generation including, for example, in the context of diagnosing and/or treating disease conditions characterised by the presence of Reed-Sternberg cells.

Accordingly, one aspect of the present invention provides a novel nucleic acid molecule in isolated form wherein said nucleic acid molecule comprises a novel DEC-205 intergenic splice variant.

Reference to "DEC-205 intergenic splice variant" should be understood as a reference to an RNA product of a splicing event which results in the introduction of non-DEC-205 nucleic acid material to DEC-205 nucleic acid material. This may occur at the level of either the primary RNA transcript or the mRNA. Preferably, the DEC-205 intergenic splice variant is an mRNA DEC-205 intergenic splice variant. In this regard, it should be understood that the subject splice variant may be a splice variant of any form of DEC-205 such as any allelic form of DEC-205. Still further it should be understood that the DEC-205 encoding portion of the splice variants of the present invention may not necessarily

correspond to the entire DEC-205 encoding mRNA. For example, the variants exemplified herein encode a molecule comprising the DEC-205 ectodomain (being the signal peptide, cysteine rich domain, fibronectin type II domain and carbohydrate recognition domains 1-10) followed by the DCL-1 carbohydrate recognition domain, transmembrane domain and 5 cytoplasmic domain. In a most preferred embodiment, the subject non-DEC-205 nucleic acid material corresponds to all or part of the DCL-1 gene or its transcribed RNA product. The fusion/splicing together of all or part of DEC-205 nucleic acid material with DCL-1 nucleic acid material to form a novel DEC-205 intergenic splice variant is herein referred to as a "DEC-205/DCL-1 intergenic splice variant".

10

According to this preferred embodiment there is provided a novel nucleic acid molecule in isolated form wherein said nucleic acid molecule comprises a DEC-205/DCL-1 intergenic splice variant.

15 Reference to "DEC-205" should be understood as a reference to a molecule of the family of type I transmembrane C-type lectin receptors that are, *inter alia*, expressed by dendritic cells. Reference to "DCL-1" is hereinafter defined.

The present invention still more particularly provides a nucleic acid molecule or derivative, 20 homologue or analogue thereof comprising a nucleotide sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue or mimetic thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21.

25 The term "similarity" as used herein includes exact identity between compared sequences at the nucleotide or amino acid levels. Where there is non-identity at the nucleotide level "similarity" includes differences between sequences which result in different amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. Where there is non-identity at the amino acid level, "similarity" 30 includes amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. The percentage similarity may be greater than

45% such as at least 50% or at least 55% or at least 60% or at least 65% or at least 70% or at least 75% or at least 80% or at least 85% or at least 90% or at least 95% or higher. To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences may be aligned for optimal comparison purposes (e.g., gaps can be introduced

5 in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions can then be compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that

10 position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e. % identity = # of identical positions/total # of overlapping positions x 100). Preferably, the two sequences are the same length. The determination of percent identity or homology between two sequences can be accomplished using a mathematical algorithm. A suitable, mathematical algorithm utilized

15 for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci. USA* 87:2264-2268, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA* 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, *et al.* (1990) *J. Mol. Biol.* 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength

20 = 12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to the protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.* (1997) *Nucleic Acids Res.* 25:3389-3402. When

25 utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See <http://www.ncbi.nlm.nih.gov>. Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment

30 software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty

of 4 can be used. The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted. Yet another example of a suitable algorithm is one such Gap which considers all possible alignment and gap positions and

- 5 creates an alignment with the largest number of matches bases and the fewest gaps. Gap uses the alignment method of Needleman and Wunsch. Gap reads a scoring matrix that contains values for ever possible GCG symbol match. GAP is available on ANGIS (Australian National Genomic Information Service) at website <http://mel1.angis.org.au>.

- 10 In another embodiment, the present invention provides a novel nucleic acid molecule or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a nucleotide sequence having at least about 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:1 or SEQ ID
15 NO:20 under low stringency conditions at 42°C.

Preferably, the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative thereof or capable of hybridising to

- 20 SEQ ID NO:1 or SEQ ID NO:20 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:21 or a sequence having at least about 45% similarity to at least 10 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21.

- 25 More particularly, the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20.

Reference herein to a low stringency includes and encompasses from at least about 0% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt

- 30 for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium

stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least 5 about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions. Stringency may be measured using a range of temperature such as from about 40°C to about 65°C. Particularly useful stringency conditions are at 42°C. In general, washing is carried out at $T_m = 69.3 + 0.41 (G + C) \%$ = -12°C. However, the T_m of a duplex DNA 10 decreases by 1°C with every increase of 1% in the number of mismatched based pairs (Bonner *et al* (1973) *J. Mol. Biol.*, 81:123).

The nucleic acid molecule according to this aspect of the present invention corresponds herein to "DEC-205 SV". Reference to the expression product appears in non-italicised 15 text. Without limiting the present invention to any one theory or mode of action, it has been determined that *DEC-205 SV* mRNA encodes the full ectodomain of DEC-205 together with the carbohydrate recognition domain, transmembrane and cytoplasmic domain of DCL-1. The ectodomain of DEC-205 comprises a signal peptide, cysteine rich domain, fibronectin type II domain and 10 lectin-like carbohydrate recognition domains. 20 The junction of DEC-205/DCL-1 mRNA is in frame, indicating that *DEC-205 SV* mRNA can be translated successfully. Both the DEC-205 and DCL-1 genes map to chromosome 2q24 and consist of 35 and 6 exons, respectively. These genes are separated by 5.4 kb. As detailed hereinbefore, the DCL-1 gene is a novel gene which has been identified by the inventors in respect of the present invention. More detailed discussion in relation to DCL- 25 1 is provided hereinafter.

In one embodiment a *DEC-205 SV* mRNA is thought to be generated by transcribing a cistronic mRNA containing DEC-205 and DCL-1 gene followed by splicing out of DEC-205 exon 35 and DCL exon 1 (herein referred to as the "DEC-205 SV34"). In another 30 embodiment, another *DEC-205 SV* mRNA is generated by transcribing a cistronic mRNA containing DEC-205 and DCL-1 gene followed by splicing out of DEC-205 exons 34 and

35, together with DCL-1 exon 1. Accordingly, there occurs fusion of the DEC-205 exon
33 to DCL-1 exon 2 (herein referred to as the "DEC-205 SV33"). The generation of DEC-
205 SV therefore involves an intergenic splicing event, being an extremely rare event. The
inventors have determined that the 5' proximal promoter regions for DEC-205 and DCL-1
5 show independent promoter activity, thereby confirming their status as independent genes.
This further confirms that the generation of DEC-205 SV clearly involves an intergenic
splicing event.

The human DEC-205 SV34 expression product is defined by the amino acid sequence set
10 forth in SEQ ID NO:2 while the DEC-205 SV33 expression product is defined by the
amino acid sequence set forth in SEQ ID NO:21. The cDNA nucleotide sequence for
human DEC-205 SV34 is set forth in SEQ ID NO:1 and the cDNA nucleotide sequence for
human DEC-205 SV33 is set forth in SEQ ID NO:20. The nucleic acid molecules
encoding the DEC-205 SV expression products are preferably a sequence of
15 deoxyribonucleic acids such as a cDNA sequence or a genomic sequence. A cDNA
sequence may optionally comprise all or some of the 5' or 3' untranslated regions while a
genomic sequence may also comprise introns. A genomic sequence may also include a
promoter region or other regulatory regions. It should also be understood that the subject
nucleic acid molecule may be a sequence of ribonucleic acids such as mRNA.

20
In a particularly preferred embodiment, the present invention provides a novel cDNA or a
derivative, homologue or analogue thereof in isolated form comprising a nucleotide
sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a nucleotide
sequence having at least about 50% similarity to all or part thereof or a nucleotide
25 sequence capable of hybridising to the sequence set forth in SEQ ID NO:1 or SEQ ID
NO:20 under low stringency conditions at 42°C.

As detailed hereinbefore, the present invention extends to nucleic acid molecules
complementary to *DEC-205 SV*. In this regard, two examples of such complementary
30 nucleic acid molecules are the nucleic acid molecules provided in SEQ ID NO:3 and SEQ
ID NO:22 which are complementary to SEQ ID NO:1 and SEQ ID NO:20, respectively.

In a related aspect, the inventors have determined that the DCL-1 gene with which the DEC-205 is intergenically spliced to create the novel splice variants of the present invention is, itself, a novel gene. Specifically, it has been determined that DCL-1

- 5 corresponds to a unique type I transmembrane C-type lectin, the ectodomain of which contains only one CRD, whereas other type I transmembrane C-type lectins contain more than one domain. The DCL-1 expression product contains several putative motifs including a Tyr-based internalisation, a cluster of acidic amino acids and Ser- and Tyr-phosphorylation motifs. Without limiting the present invention to any one theory or mode
10 of action, these features suggest that DCL-1 mediates not only endocytosis and late endosome targeting but also signalling.

Accordingly, another aspect of the present invention provides a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence encoding an
15 amino acid sequence substantially as set forth in SEQ ID NO:5 or a derivative, homologue or mimetic thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in SEQ ID NO:5.

In another aspect there is provided a nucleic acid molecule or derivative, homologue or
20 analogue thereof comprising a nucleotide sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:8 or a derivative, homologue or mimetic thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in SEQ ID NO:8.

25 In still another aspect there is provided a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO:11 or a derivative, homologue or mimetic thereof having at least about 45% or greater similarity to at least 30 contiguous amino acids in SEQ ID NO:11.

30

Reference to "similarity" should have the same meaning as hereinbefore provided.

In another embodiment, the present invention provides a novel nucleic acid molecule or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:4 or a nucleotide sequence having at

- 5 least about 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:4 under low stringency conditions at 42°C.

In yet another embodiment, the present invention provides a novel nucleic acid molecule

- 10 or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least about 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.

15

In still another embodiment, the present invention provides a novel nucleic acid molecule or a derivative, homologue or analogue thereof in isolated form comprising a nucleotide sequence substantially as set forth in SEQ ID NO:10 or a nucleotide sequence having at least about 50% similarity to all or part thereof or a nucleotide sequence capable of

- 20 hybridising to the sequence set forth in SEQ ID NO:10 under low stringency conditions at 42°C.

Preferably, the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence substantially as set forth in SEQ ID NO:4 or a derivative thereof capable of hybridising to SEQ ID NO:4 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:5 or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:5.

- 30 In another preferred embodiment, the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence

substantially as set forth in SEQ ID NO:7 or a derivative thereof capable of hybridising to SEQ ID NO:7 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:8 or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ
5 ID NO:8.

- In still another preferred embodiment, the present invention contemplates a nucleic acid molecule or derivative, homologue or analogue thereof comprising a nucleotide sequence substantially as set forth in SEQ ID NO:10 or a derivative thereof capable of hybridising to
10 SEQ ID NO:10 under low stringency conditions at 42°C and which encodes an amino acid sequence corresponding to an amino acid sequence set forth in SEQ ID NO:11 or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:11.
15 Most particularly, the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:4, SEQ ID NO:7 or SEQ ID NO:10.

Reference to "stringency" should have the same meaning as hereinbefore provided.

- 20 The nucleic acid molecule according to this aspect of the present invention corresponds herein to "*DCL-1*". This gene has been determined in accordance with the present invention to encode a novel type I transmembrane C-type lectin which encodes only one CRD. The product of the DCL-1 gene is referred to herein as "DCL-1" (non-italicised text). DCL-1 is a protein for which intergenic splice variants exist, thereby resulting in the expression of a variety of intergenic isoforms. These have been hereinbefore described and are encompassed by the scope of the present invention. Further, a number of homologues of DCL-1 have been identified and described herein. Human DCL-1 is defined by the amino acid sequence set forth in SEQ ID NO:5, murine DCL-1 is defined
25 by the amino acid sequence set forth in SEQ ID NO:8 and rat DCL-1 is defined by the amino acid sequence set forth in SEQ ID NO:11. The cDNA nucleotide sequences for
30

human DCL-1 are defined by the nucleotide sequence set forth in SEQ ID NO:4. Murine and rat cDNA DCL-1 sequences are defined by the nucleotide sequences set forth in SEQ ID NO:7 and 10, respectively. SEQ ID NO:13 discloses a partial sequence of bovine DCL-1. As detailed hereinbefore, the nucleic acid molecules encoding DCL-1 expression products are preferably a sequence of deoxyribonucleic acids such as cDNA sequences or a genomic sequence. A cDNA sequence may optionally comprise all or some of the 5' or 3' untranslated regions while a genomic sequence may also comprise introns. A genomic sequence may also include a promoter region or other regulatory regions. It should also be understood that the subject nucleic acid molecules may be a sequence of ribonucleic acids 10 such as mRNA.

The present invention extends to nucleic acid molecules complementary to DCL-1. In this regard, examples of such complementary nucleic acid molecules are the nucleic acid molecules provided in SEQ ID NOS:6, 9 and 12 which are complementary to SEQ ID 15 NOS:4, 7 and 10, respectively.

The nucleic acid molecule of the present invention is preferably in isolated form or ligated to a vector, such as an expression vector. By "isolated" is meant a nucleic acid molecule having undergone at least one purification step and this is conveniently defined, for 20 example, by a composition comprising at least about 10% subject nucleic acid molecule, preferably at least about 20%, more preferably at least about 30%, still more preferably at least about 40-50%, even still more preferably at least about 60-70%, yet even still more preferably 80-90% or greater of subject nucleic acid molecule relative to other components as determined by molecular weight, encoding activity, nucleotide sequence, base 25 composition or other convenient means. The nucleic acid molecule of the present invention may also be considered, in a preferred embodiment, to be biologically pure.

The nucleic acid molecule may be ligated to an expression vector capable of expression in a prokaryotic cell (e.g. *E.coli*) or a eukaryotic cell (e.g. yeast cells, fungal cells, insect 30 cells, mammalian cells or plant cells). The nucleic acid molecule may be ligated or fused or otherwise associated with a nucleic acid molecule encoding another entity such as, for

- 24 -

- example, a signal peptide. It may also comprise additional nucleotide sequence information fused, linked or otherwise associated with it either at the 3' or 5' terminal portions or at both the 3' and 5' terminal portions. The nucleic acid molecule may also be part of a vector, such as an expression vector. The latter embodiment facilitates production
- 5 of recombinant forms of DEC-205 SV or DCL-1 which forms are encompassed by the present invention.

- The expression product of the splice variant disclosed herein is a novel DEC-205 intergenic splice variant having an amino acid sequence set forth in SEQ ID NO:2 or SEQ
- 10 ID NO:21 or is a derivative, homologue, analogue, chemical equivalent or mimetic thereof or is a molecule having an amino acid sequence of at least about 45% similarity to at least 30 contiguous amino acids in the amino acid sequence as set forth in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue, analogue, chemical equivalent or mimetic thereof.
- 15 The expression product of the novel lectin molecule disclosed herein is a novel DCL-1 molecule having an amino acid sequence set forth in SEQ ID NOs:5, 8 or 11 or is a derivative, homologue, analogue, chemical equivalent or mimetic thereof or is a molecule having an amino acid sequence of at least about 45% similarity to at least 30 contiguous amino acids in the amino acid sequence set forth in SEQ ID NO:5, 8 or 11, respectively or
- 20 a derivative, homologue, analogue, chemical equivalent or mimetic thereof.

Accordingly, another aspect of the present invention is directed to a isolated protein selected from the list consisting of:

- 25 (ii) An isolated DEC-205 intergenic splice variant or a derivative, homologue, analogue, chemical equivalent or mimetic thereof.
- (ii) An isolated DEC-205/DCL-1 intergenic splice variant or a derivative, homologue, analogue, chemical equivalent or mimetic thereof.

(xv) A protein having an amino acid sequence substantially as set forth in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue or mimetic thereof or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.

5

(xvi) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative, homologue or analogue of said nucleotide sequence or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.

10

(xvii) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative, homologue or analogue thereof or a sequence encoding an amino acid sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.

15

(xviii) A protein encoded by a nucleic acid molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative, homologue or analogue thereof under low stringency conditions at 42°C or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.

20

(xix) A protein encoded by a nucleic acid molecule capable of hybridising to the nucleotide sequence as set forth in SEQ ID NO:1 or SEQ ID NO:20 or a derivative, homologue or analogue thereof under low stringency conditions at 42°C and which encodes an amino acid sequence substantially as set forth in SEQ ID NO:2 or SEQ ID NO:21 or a derivative, homologue or mimetic thereof or an amino acid sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:2 or SEQ ID NO:21.

25
30

- (xx) A protein having an amino acid sequence substantially as set forth in SEQ ID NO:5, SEQ ID NO:8, or SEQ ID NO:11 or a derivative, homologue or mimetic thereof or a sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NO:5, SEQ ID NO:8, or SEQ ID NO:11 or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.
- 5
- (xxi) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID NOS:4, 7 or 10 or a derivative, homologue or analogue of said nucleotide sequence or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.
- 10
- (xxii) A protein encoded by a nucleotide sequence substantially as set forth in SEQ ID NOS:4, 7 of 10 or a derivative, homologue or analogue thereof or a sequence encoding an amino acid sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NOS:5, 8 or 11 or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein.
- 15
- (xxiii) A protein encoded by a nucleic acid molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NOS:4, 7 or 10 or a derivative, homologue or analogue thereof under low stringency conditions at 42°C or a derivative, homologue, analogue, chemical equivalent or mimetic of said protein
- 20
- (xxiv) A protein encoded by a nucleic acid molecule capable of hybridising to the nucleotide sequence as set forth in SEQ ID NOS:4, 7 or 10 or a derivative, homologue or analogue thereof under low stringency conditions at 42°C and which encodes an amino acid sequence substantially as set forth in SEQ ID NOS:5, 8 or 11 or a derivative, homologue or mimetic thereof or an amino acid sequence having at least about 45% similarity to at least 30 contiguous amino acids in SEQ ID NOS:5, 8 or 11.
- 25
- 30
- (xxv) A protein as defined in any one of paragraphs (i) to (xii) in a homodimeric form.

(xxvi) A protein as defined in any one of paragraphs (i) to (xii) in a heterodimeric form.

The term "protein" should be understood to encompass peptides, polypeptides and

- 5 proteins. The protein may be glycosylated or unglycosylated and/or may contain a range
of other molecules fused, linked, bound or otherwise associated to the protein such as
amino acids, lipids, carbohydrates or other peptides, polypeptides or proteins. Reference
hereinafter to a "protein" includes a protein comprising a sequence of amino acids as well
as a protein associated with other molecules such as amino acids, lipids, carbohydrates or
10 other peptides, polypeptides or proteins.

The protein of the present invention is preferably in isolated form. By "isolated" is meant
a protein having undergone at least one purification step and this is conveniently defined,
for example, by a composition comprising at least about 10% subject protein, preferably at

- 15 least about 20%, more preferably at least about 30%, still more preferably at least about
40-50%, even still more preferably at least about 60-70%, yet even still more preferably
80-90% or greater of subject protein relative to other components as determined by
molecular weight, amino acid sequence or other convenient means. The protein of the
present invention may also be considered, in a preferred embodiment, to be biologically
20 pure.

The DEC-205 SV or DCL-1 of the present invention may be in multimeric form meaning
that two or more molecules are associated together. Where the same DEC-205 SV or

- 25 DCL-1 molecules are associated together, the complex is a homomultimer. An example of
a homomultimer is a homodimer. Where at least one DEC-205 SV or DCL-1 is associated
with at least one non-DEC-205 SV or DCL-1 molecule, then the complex is a
heteromultimer such as a heterodimer.

The ability to produce recombinant DEC-205 SV or DCL-1 permits the large scale

- 30 production of these molecules for commercial use. The DEC-205 SV or DCL-1 may need
to be produced as part of a large peptide, polypeptide or protein which may be used as is or

may first need to be processed in order to remove the extraneous proteinaceous sequences. Such processing includes digestion with proteases, peptidases and amidases or a range of chemical, electrochemical, sonic or mechanical disruption techniques.

- 5 Notwithstanding that the present invention encompasses recombinant proteins, chemical synthetic techniques are also preferred in synthesis of DEC-205 SV or DCL-1.

DEC-205 SV or DCL-1 according to the present invention is conveniently synthesised based on molecules isolated from a mammal. Isolation of these molecules may be

- 10 accomplished by any suitable means such as by chromatographic separation, for example using CM-cellulose ion exchange chromatography followed by Sephadex (e.g. G-50 column) filtration. Many other techniques are available including HPLC, PAGE amongst others.

- 15 DEC-205 SV or DCL-1 may be synthesised by solid phase synthesis using F-moc chemistry as described by Carpino *et al.* (1991). DEC-205 SV and fragments thereof may also be synthesised by alternative chemistries including, but not limited to, t-Boc chemistry as described in Stewart *et al.* (1985) or by classical methods of liquid phase peptide synthesis.

- 20 The protein and/or gene is preferably from a human, primate, livestock animal (e.g. sheep, pig, cow, horse, donkey), laboratory test animal (e.g. mouse, rabbit, rat, guinea pig), companion animal (e.g. dog, cat), captive wild animal (e.g. fox, kangaroo, deer), aves (e.g. chicken, geese, duck, emu, ostrich), reptile or fish. Most preferably, the gene is of human
25 or primate origin.

- Without limiting the present invention to any one theory or mode of action, genes encoding DEC-205 and DCL-1 are juxtaposed within chromosome band 2q24 and are separated by only approximately 5.4kb. These two genes are independent genes because both DEC-205
30 and DCL-1 mRNA are expressed independently in haematopoietic cell lines. Further, luciferase reporter assay studies show that both the 5'- proximal promoters of DEC-205

and DCL-1 have independent promoter activities. Still without limiting the invention in any way, all Hodgkin and Reed-Sternberg cells express the 9.5kb DEC-205 SV mRNA indicating that expression of this mRNA is highly regulated. Accordingly, it is thought that mechanisms which transcriptionally control expression of this splice variant molecule

5 may be involved in the pathogenesis of Hodgkin's disease. Still further, the presence of this molecule in classical Hodgkin's lymphoma provides a target for antibody or T-cell mediated immunotherapy for this disease condition.

- The present invention therefore contemplates a method of modulating *DEC-205 SV* expression or *DEC-205 SV* functional activity in a mammal, said method comprising administering to said mammal an agent for a time and under conditions sufficient to up-regulate, down-regulate or otherwise modulate expression of *DEC-205 SV* or functioning of *DEC-205 SV*.
- 10
- 15 For example, *DEC-205 SV* antisense sequences such as oligonucleotides may be introduced into a cell to down-regulate the expression of *DEC-205/DCL-1*. Conversely, a nucleic acid molecule encoding *DEC-205/DCL-1* or a derivative thereof may be introduced to enhance the functioning of *DEC-205 SV* in any cell expressing the endogenous *DEC-205 SV* gene. Although the preferred method is to down-regulate the
- 20 expression of this molecule as a means for therapeutically or prophylactically treating Hodgkin's lymphoma, it should be understood that the present invention also extends to up-regulation of the expression of this molecule which may be desired in certain circumstances, such as for the purpose of creating cell lines for further studies.
- 25 Reference to "*DEC-205 SV*" should be understood as a reference to all splice variant forms of this molecule including, for example, the *DEC-205 SV34* and *DEC-205 SV33* forms of this splice variant.

In accordance with the other aspect of the present invention, and without limiting this aspect of the present invention in any way, as detailed hereinbefore DCL-1 is a unique type I transmembrane C-type lectin which expresses an ectodomain containing only one CRD.

Most other type I transmembrane C-type lectins contain more than one domain. It is thought that since DCL-1 comprises putative motifs including a Tyr based internalisation, a cluster of acidic amino acids and Ser- and Tyr-phosphorylation motifs, that DCL-1 mediates not only endocytosis and late endosome targeting but also signalling. Further, it

5 has been found that this molecule is expressed in myeloid and B cells.

Accordingly, another aspect of the present invention is directed to a method for modulating *DCL-1* expression or *DCL-1* functional activity in a mammal, said method comprising administering to said mammal an agent for a time and under conditions sufficient to up-

10 regulate, down-regulate or otherwise modulate said expression or functioning.

The cloning and sequencing of these molecules and their expression products now provides a mechanism for both the development of diagnosis/prognosis methodology and the prophylactic and therapeutic treatment of conditions such as Hodgkin's lymphoma.

- 15 Accordingly, the present invention contemplates therapeutic, prophylactic, diagnostic and prognostic uses of DEC-205 SV amino acid and nucleic acid molecules, DCL-1 amino acid and nucleic acid molecules and agonistic and antagonistic agents thereto, for the regulation of cell functional activity.
- 20 The present invention contemplates, therefore, a method for regulating cellular activity in a subject said method comprising administering to said subject an effective amount of an agent for a time and under conditions sufficient to modulate *DEC-205 SV* expression of DEC-205 SV functional activity.
- 25 In yet another aspect there is contemplated a method of regulating cellular activity in a subject said method comprising administering to said subject an effective amount of an agent for a time and conditions sufficient to modulate *DCL-1* expression or *DCL-1* functional activity.
- 30 Reference to "cellular activity" should be understood as a reference to one or more of the functional activities which are directly or indirectly regulated via the DEC-205 SV or

DCL-1 expression products. This includes, but is not limited to, cellular endocytosis, late endosome targeting, signalling (in respect of the DCL-1 molecule) and Hodgkin and Reed-Sternberg cell functioning (in respect of the DEC-205 SV molecule).

5 In terms of achieving the up or down-regulation of DEC-205 SV or DCL-1 expression or functioning, means for achieving this objective would be well known to the person of skill in the art and include, but are not limited to:

(i) Introducing into a cell a nucleic acid molecule encoding DEC-205 SV or DCL-1 or
10 functional equivalent, derivative or analogue thereof in order to up-regulate the capacity of said cell to express DEC-205 SV or DCL-1, respectively.

(ii) Introducing into a cell a proteinaceous or non-proteinaceous molecule which modulates transcriptional and/or translational regulation of a gene, wherein this
15 gene may be *DEC-205 SV* or *DCL-1* or functional portion thereof or some other gene which directly or indirectly modulates the expression of *DEC-205 SV* or *DCL-1*.

(iii) Introducing a proteinaceous or non-proteinaceous molecule which functions as an
20 antagonist to the DEC-205 SV or DCL-1 expression product.

(iv) Introducing a proteinaceous or non-proteinaceous molecule which functions as an agonist of the DEC-205 SV or DCL-1 expression product.

25 The proteinaceous molecules described above may be derived from any suitable source such as natural, recombinant or synthetic sources and includes fusion proteins or molecules which have been identified following, for example, natural product screening. The reference to non-proteinaceous molecules may be, for example, a reference to a nucleic acid molecule or it may be a molecule derived from natural sources, such as for example
30 natural product screening, or may be a chemically synthesised molecule. The present invention contemplates analogues of the DEC-205 SV or DCL-1 expression product or

small molecules capable of acting as agonists or antagonists. Chemical agonists may not necessarily be derived from the DEC-205 SV or DCL-1 expression product but may share certain conformational similarities. Alternatively, chemical agonists may be specifically designed to meet certain physiochemical properties. Antagonists may be any compound

- 5 capable of blocking, inhibiting or otherwise preventing DEC-205 SV or DCL-1 from carrying out its normal biological function. Antagonists include monoclonal antibodies and antisense nucleic acids which prevent transcription or translation of *DEC-205 SV* or *DCL-1* genes or mRNA in mammalian cells. Modulation of expression may also be achieved utilising antigens, RNA, ribosomes, DNAzymes, RNA aptamers, antibodies or
10 molecules suitable for use in cosuppression. The proteinaceous and non-proteinaceous molecules referred to in points (i)-(iv), above, are herein collectively referred to as "modulatory agents".

Screening for the modulatory agents hereinbefore defined can be achieved by any one of

- 15 several suitable methods including, but in no way limited to, contacting a cell comprising the *DEC-205 SV* or *DCL-1* gene or functional equivalent or derivative thereof with an agent and screening for the modulation of DEC-205 SV or DCL-1 protein production or functional activity, modulation of the expression of a nucleic acid molecule encoding DEC-205 SV or DCL-1 or modulation of the activity or expression of a downstream
20 functional activity. Detecting such modulation can be achieved utilising techniques such as Western blotting, electrophoretic mobility shift assays and/or the readout of reporter genes

It should be understood that the *DEC-205 SV* or *DCL-1* gene or functional equivalent or
25 derivative thereof may be naturally occurring in the cell which is the subject of testing or it may have been transfected into a host cell for the purpose of testing. Further, the naturally occurring or transfected gene may be constitutively expressed - thereby providing a model useful for, inter alia, screening for agents which down regulate DEC-205 SV or DCL-1 activity, at either the nucleic acid or expression product levels, or the gene may require
30 activation - thereby providing a model useful for, inter alia, screening for agents which up regulate *DEC-205 SV* or *DCL-1* expression. Further, to the extent that a *DEC-205 SV* or

DCL-1 nucleic acid molecule is transfected into a cell, that molecule may comprise the entire *DEC-205 SV or DCL-1* gene or it may merely comprise a portion of the gene such as the portion which regulates expression of the *DEC-205 SV or DCL-1* product. For example, the *DEC-205 SV or DCL-1* promoter region may be transfected into the cell
5 which is the subject of testing. In this regard, where only the promoter is utilised, detecting modulation of the activity of the promoter can be achieved, for example, by ligating the promoter to a reporter gene. For example, the promoter may be ligated to luciferase or a CAT reporter, the modulation of expression of which gene can be detected via modulation of fluorescence intensity or CAT reporter activity, respectively.

10

In another example, the subject of detection could be a downstream *DEC-205 SV or DCL-1* regulatory target, rather than *DEC-205 SV or DCL-1* itself. Yet another example includes *DEC-205 SV or DCL-1* binding sites ligated to a minimal reporter. For example, modulation of *DEC-205 SV or DCL-1* activity can be detected by screening for the
15 modulation of the functional activity in a Hodgkin and Reed-Sternberg cell or other suitable cell. This is an example of an indirect system where modulation of *DEC-205 SV or DCL-1* expression, *per se*, is not the subject of detection.

These methods provide a mechanism for performing high throughput screening of putative
20 modulatory agents such as the proteinaceous or non-proteinaceous agents comprising synthetic, combinatorial, chemical and natural libraries. These methods will also facilitate the detection of agents which bind either the *DEC-205 SV or DCL-1* nucleic acid molecule or expression product itself or which modulate the expression of an upstream molecule, which upstream molecule subsequently modulates *DEC-205 SV or DCL-1* expression or
25 expression product activity. Accordingly, these methods provide a mechanism for detecting agents which either directly or indirectly modulate *DEC-205 SV or DCL-1* expression and/or activity.

The agents which are utilised in accordance with the method of the present invention may
30 take any suitable form. For example, proteinaceous agents may be glycosylated or unglycosylated, phosphorylated or dephosphorylated to various degrees and/or may

contain a range of other molecules used, linked, bound or otherwise associated with the proteins such as amino acids, lipid, carbohydrates or other peptides, polypeptides or proteins. Similarly, the subject non-proteinaceous molecules may also take any suitable form. Both the proteinaceous and non-proteinaceous agents herein described may be
5 linked, bound otherwise associated with any other proteinaceous or non-proteinaceous molecules. For example, in one embodiment of the present invention, said agent is associated with a molecule which permits its targeting to a localised region.

The subject proteinaceous or non-proteinaceous molecule may act either directly or
10 indirectly to modulate the expression of *DEC-205 SV* or *DCL-1* or the activity of the *DEC-205 SV* or *DCL-1* expression product. Said molecule acts directly if it associates with the *DEC-205 SV* or *DCL-1* nucleic acid molecule or expression product to modulate expression or activity, respectively. Said molecule acts indirectly if it associates with a molecule other than the *DEC-205 SV* or *DCL-1* nucleic acid molecule or expression
15 product which other molecule either directly or indirectly modulates the expression or activity of the *DEC-205 SV* or *DCL-1* nucleic acid molecule or expression product, respectively. Accordingly, the method of the present invention encompasses the regulation of *DEC-205 SV* or *DCL-1* nucleic acid molecule expression or expression product activity via the induction of a cascade of regulatory steps.

20

The term "expression" in this context refers to the transcription and translation of a nucleic acid molecule. Reference to "expression product" is a reference to the product produced from the transcription and translation of a nucleic acid molecule.

25 "Derivatives" of the molecules herein described (for example *DEC-205 SV* or *DCL-1* or other proteinaceous or non-proteinaceous agents) include fragments, parts, portions or variants from either natural or non-natural sources. Non-natural sources include, for example, recombinant or synthetic sources. By "recombinant sources" is meant that the cellular source from which the subject molecule is harvested has been genetically altered.
30 This may occur, for example, in order to increase or otherwise enhance the rate and volume of production by that particular cellular source. Parts or fragments include, for

example, active regions of the molecule. Derivatives may be derived from insertion, deletion or substitution of amino acids. Amino acid insertional derivatives include amino and/or carboxylic terminal fusions as well as intrasequence insertions of single or multiple amino acids. Insertional amino acid sequence variants are those in which one or more

- 5 amino acid residues are introduced into a predetermined site in the protein although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterised by the removal of one or more amino acids from the sequence. Substitutional amino acid variants are those in which at least one residue in a sequence has been removed and a different residue inserted in its place. Additions to
10 amino acid sequences include fusions with other peptides, polypeptides or proteins, as detailed above.

Derivatives also include fragments having particular epitopes or parts of the entire protein fused to peptides, polypeptides or other proteinaceous or non-proteinaceous molecules.

- 15 For example, DEC-205 SV or DCL-1 or derivative thereof may be fused to a molecule to facilitate its homing to a cell. Analogues of the molecules contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the
20 proteinaceous molecules or their analogues.

Derivatives of nucleic acid sequences which may be utilised in accordance with the method of the present invention may similarly be derived from single or multiple nucleotide substitutions, deletions and/or additions including fusion with other nucleic acid

- 25 molecules. The derivatives of the nucleic acid molecules utilised in the present invention include oligonucleotides, PCR primers, antisense molecules, molecules suitable for use in cosuppression and fusion of nucleic acid molecules. Derivatives of nucleic acid sequences also include degenerate variants.

- 30 A "variant" of DEC-205 SV or DCL-1 should be understood to mean molecules which exhibit at least some of the functional activity of the form of DEC-205 SV or DCL-1 of

which it is a variant. A variation may take any form and may be naturally or non-naturally occurring. A mutant molecule is one which exhibits modified functional activity.

By "homologue" is meant a molecule derived from a species other than human.

5

Chemical and functional equivalents should be understood as molecules exhibiting any one or more of the functional activities of the subject molecule, which functional equivalents may be derived from any source such as being chemically synthesised or identified via screening processes such as natural product screening. For example chemical or functional equivalents can be designed and/or identified utilising well known methods such as combinatorial chemistry or high throughput screening of recombinant libraries or following natural product screening.

For example, libraries containing small organic molecules may be screened, wherein

- 15 organic molecules having a large number of specific parent group substitutions are used. A general synthetic scheme may follow published methods (eg., Bunin BA, *et al.* (1994) *Proc. Natl. Acad. Sci. USA*, 91:4708-4712; DeWitt SH, *et al.* (1993) *Proc. Natl. Acad. Sci. USA*, 90:6909-6913). Briefly, at each successive synthetic step, one of a plurality of different selected substituents is added to each of a selected subset of tubes in an array,
- 20 with the selection of tube subsets being such as to generate all possible permutation of the different substituents employed in producing the library. One suitable permutation strategy is outlined in US. Patent No. 5,763,263.

There is currently widespread interest in using combinational libraries of random organic molecules to search for biologically active compounds (see for example U.S. Patent No. 5,763,263). Ligands discovered by screening libraries of this type may be useful in mimicking or blocking natural ligands or interfering with the naturally occurring ligands of a biological target. In the present context, for example, they may be used as a starting point for developing analogues which exhibit properties such as more potent pharmacological effects. DEC-205 SV or DCL-1 or a functional part thereof may according to the present invention be used in combination libraries formed by various

solid-phase or solution-phase synthetic methods (see for example U.S. Patent No. 5,763,263 and references cited therein). By use of techniques, such as that disclosed in U.S. Patent No. 5,753,187, millions of new chemical and/or biological compounds may be routinely screened in less than a few weeks. Of the large number of compounds identified,
5 only those exhibiting appropriate biological activity are further analysed.

With respect to high throughput library screening methods, oligomeric or small-molecule library compounds capable of interacting specifically with a selected biological agent, such as a biomolecule, a macromolecule complex, or cell, are screened utilising a combinatorial
10 library device which is easily chosen by the person of skill in the art from the range of well-known methods, such as those described above. In such a method, each member of the library is screened for its ability to interact specifically with the selected agent. In practising the method, a biological agent is drawn into compound-containing tubes and allowed to interact with the individual library compound in each tube. The interaction is
15 designed to produce a detectable signal that can be used to monitor the presence of the desired interaction. Preferably, the biological agent is present in an aqueous solution and further conditions are adapted depending on the desired interaction. Detection may be performed for example by any well-known functional or non-functional based method for the detection of substances.

20 In addition to screening for molecules which mimic the activity of DEC-205 SV or DCL-1, it may also be desirable to identify and utilise molecules which function agonistically or antagonistically to DEC-205 SV or DCL-1 in order to up or down-regulate the functional activity of DEC-205 SV or DCL-1 in relation to modulating cell functioning. The use of
25 such molecules is described in more detail below. To the extent that the subject molecule is proteinaceous, it may be derived, for example, from natural or recombinant sources including fusion proteins or following, for example, the screening methods described above. The non-proteinaceous molecule may be, for example, a chemical or synthetic molecule which has also been identified or generated in accordance with the methodology
30 identified above. Accordingly, the present invention contemplates the use of chemical analogues of DEC-205 SV or DCL-1 capable of acting as agonists or antagonists.

Chemical agonists may not necessarily be derived from DEC-205 SV or DCL-1 but may share certain conformational similarities. Alternatively, chemical agonists may be specifically designed to mimic certain physiochemical properties of DEC-205 SV or DCL-

1. Antagonists may be any compound capable of blocking, inhibiting or otherwise

5 preventing DEC-205 SV or DCL-1 from carrying out its normal biological functions.

Antagonists include monoclonal antibodies specific for DEC-205 SV or DCL-1 or parts of DEC-205 SV or DCL-1.

Analogues of DEC-205 SV or DCL-1 or of DEC-205 SV or DCL-1 agonistic or

10 antagonistic agents contemplated herein include, but are not limited to, modifications to side chains, incorporating unnatural amino acids and/or derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the analogues. The specific form which such modifications can take will depend on whether the subject molecule is proteinaceous or
15 non-proteinaceous. The nature and/or suitability of a particular modification can be routinely determined by the person of skill in the art.

For example, examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an

20 aldehyde followed by reduction with NaBH₄; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylolation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH₄.

25

The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

30 The carboxyl group may be modified by carbodiimide activation *via* O-acylisourea formation followed by subsequent derivatisation, for example, to a corresponding amide.

Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride

- 5 or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

- 10 Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetrannitromethane to form a 3-nitrotyrosine derivative.

- 15 Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carboethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during protein synthesis.

- 20 include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids. A list of unnatural amino acids contemplated herein is shown in Table 2.

TABLE 2

	Non-conventional amino acid	Code	Non-conventional amino acid	Code
5	α -aminobutyric acid	Abu	L-N-methylalanine	Nmala
	α -amino- α -methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
	aminocyclopropane- carboxylate	Cpro	L-N-methyleasparagine	Nmasn
	aminoisobutyric acid	Aib	L-N-methyleaspartic acid	Nmasp
10	aminonorbornyl- carboxylate	Norb	L-N-methylcysteine	Nmcys
	cyclohexylalanine	Chexa	L-N-methylglutamine	Nmgln
	cyclopentylalanine	Cpen	L-N-methylglutamic acid	Nmglu
	D-alanine	Dal	L-N-methylhistidine	Nmhis
15	D-arginine	Darg	L-N-methyllysine	Nmlys
	D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
	D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
	D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
	D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
20	D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
	D-isoleucine	Dile	L-N-methylproline	Nmpro
	D-leucine	Dleu	L-N-methylserine	Nmser
	D-lysine	Dlys	L-N-methylthreonine	Nmthr
	D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
25	D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
	D-phenylalanine	Dphe	L-N-methylvaline	Nmval
	D-proline	Dpro	L-N-methylethylglycine	Nmetg
	D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbug
	D-threonine	Dthr	L-norleucine	Nle
30	D-tryptophan	Dtrp	L-norvaline	Nva
	D-tyrosine	Dtyr	α -methyl-aminoisobutyrate	Maib
	D-valine	Dval	α -methyl- -aminobutyrate	Mgabu

	D- α -methylalanine	Dmala	α -methylcyclohexylalanine	Mhexa
	D- α -methylarginine	Dmarg	α -methylcyclopentylalanine	Mcpen
	D- α -methylasparagine	Dmasn	α -methyl- α -naphthylalanine	Manap
	D- α -methylaspartate	Dmasp	α -methylpenicillamine	Mpen
5	D- α -methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D- α -methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
	D- α -methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
	D- α -methylisoleucine	Dmile	N-amino- α -methylbutyrate	Nmaabu
	D- α -methylleucine	Dmleu	α -naphthylalanine	Anap
10	D- α -methyllysine	Dmlys	N-benzylglycine	Nphe
	D- α -methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
	D- α -methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
	D- α -methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
	D- α -methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
15	D- α -methylserine	Dmser	N-cyclobutylglycine	Ncbut
	D- α -methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
	D- α -methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
	D- α -methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
	D- α -methylvaline	Dmval	N-cyclododecylglycine	Ncdod
20	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpo
	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycine	Nbhm
	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glycine	Nbhe
25	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycine	Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl)glycine	Nser
	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl)glycine	Nhis
	D-N-methylleucine	Dnmleu	N-(3-indolylethyl)glycine	Nhtrp
30	D-N-methyllysine	Dnmlys	N-methyl- γ -aminobutyrate	Nmgabu
	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
	N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe

	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
	N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
	D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
5	D-N-methyltyrosine	Dnmtyr	N-methyl-a-naphthalalanine	Nmanap
	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	γ -aminobutyric acid	Gabu	N-(<i>p</i> -hydroxyphenyl)glycine	Nhtyr
	L- <i>t</i> -butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
	L-ethylglycine	Etg	penicillamine	Pen
10	L-homophenylalanine	Hphe	L- α -methylalanine	Mala
	L- α -methylarginine	Marg	L- α -methylasparagine	Masn
	L- α -methylaspartate	Masp	L- α -methyl- <i>t</i> -butylglycine	Mtbug
	L- α -methylcysteine	Mcys	L-methylethylglycine	Metg
	L- α -methylglutamine	Mgln	L- α -methylglutamate	Mglu
15	L- α -methylhistidine	Mhis	L- α -methylhomophenylalanine	Mhphe
	L- α -methylisoleucine	Mile	N-(2-methylthioethyl)glycine	Nmet
	L- α -methyleucine	Mleu	L- α -methyllysine	Mlys
	L- α -methylmethionine	Mmet	L- α -methylnorleucine	Mnle
	L- α -methylnorvaline	Mnva	L- α -methylornithine	Morn
20	L- α -methylphenylalanine	Mphe	L- α -methylproline	Mpro
	L- α -methylserine	Mser	L- α -methylthreonine	Mthr
	L- α -methyltryptophan	Mtrp	L- α -methyltyrosine	Mtyr
	L- α -methylvaline	Mval	L-N-methylhomophenylalanine	Nmhphe
	N-(N-(2,2-diphenylethyl)	Nnbhm	N-(N-(3,3-diphenylpropyl)	Nnbhe
25	carbamylmethyl)glycine		carbamylmethyl)glycine	
	1-carboxy-1-(2,2-diphenyl-Nmbc			
	ethylamino)cyclopropane			

- 30 Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-
bifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer

groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety.

- These types of modifications may be important to stabilise the molecule if administered to
5 an individual or for use as a diagnostic reagent.

The present invention further contemplates analogues capable of acting as antagonists or agonists of the native amino acid or nucleic acid molecules or which can act as functional analogues of the native molecules (herein referred to as an "antagonist" or an "agonist").

- 10 Analogues, antagonists and agonists may not necessarily be derived from the subject molecules but may share certain conformational similarities. Alternatively, analogues, antagonists and agonists may be specifically designed to mimic certain physiochemical properties of the molecules. Analogues, antagonists and agonists may be chemically synthesised or may be detected following, for example, natural product screening.

- 15 Derivatives also extend to fragments having particular epitopes or parts of the entire molecule fused to peptides, polypeptides or other proteins. The derivatives of the nucleic acid molecules of the present invention include oligonucleotides, PCR primers, antisense molecules, molecules suitable for use in cosuppression and fusion of nucleic acid
20 molecules.

- An "effective amount" means an amount necessary at least partly to attain the desired immune response, or to delay the onset or inhibit progression or halt altogether, the onset or progression of a particular condition being treated. The amount varies depending upon
25 the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated, the degree of protection desired, the formulation of the composition, the assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

It should be understood that the target cell which is treated according to the method of the present invention may be located *ex vivo* or *in vivo*. By "*ex vivo*" is meant that the cell has been removed from the body of a subject wherein the modulation of its activity will be achieved *in vitro*. In accordance with the preferred aspect of the present invention, the cell

5 may be a neoplastic cell, such as a Hodgkin and Reed-Sternberg cell, located *in vivo* and the down-regulation of its growth will be achieved by applying the method of the present invention *in vivo*.

It should be understood that the reference to a "cell" in the context of the present invention

10 is a reference to any form or type of cell, irrespective of its origin. For example, the cell may be a naturally occurring normal or abnormal cell or it may be manipulated, modified or otherwise treated either *in vitro* or *in vivo* such as a cell which has been freeze/thawed or genetically, biochemically or otherwise modified either *in vitro* or *in vivo* (including, for example, cells which are the result of the fusion of two distinct cell types).

15 A further aspect of the present invention relates to the use of the invention in relation to the treatment and/or prophylaxis of disease conditions characterised by aberrant, unwanted or inappropriate functioning of DEC-205 SV or DCL-1. Still further, the present invention is particularly useful, but in no way limited to, use in the treatment of Hodgkin's lymphoma

20 which is characterised by the Hodgkin and Reed-Sternberg cells which express DEC-205 SV.

The present invention therefore contemplates a method for the treatment and/or prophylaxis of a condition characterised by aberrant, unwanted or otherwise inappropriate

25 functioning of DEC-205 SV or DCL-1 in a subject, said method comprising administering to said subject an effective amount of an agent as hereinbefore defined for a time and under conditions sufficient to modulate the expression of *DEC-205 SV or DCL-1* and/or functioning of DEC-205 SV or DCL-1.

Reference to "aberrant, unwanted or otherwise inappropriate" activity should be understood as a reference to overactivity, underactivity or to physiologically normal activity which is inappropriate in that it is unwanted.

- 5 In yet another aspect, the present invention provides a means of targeting a therapeutic treatment method to Hodgkin's lymphoma cells on the basis of their unique expression of the DEC-205 SV expression product. In particular, the unique expression of this molecule by the Hodgkin and Reed-Sternberg malignant cells provides a means for targeting therapeutic means such as immunological cytolytic means (eg. cytotoxic T cell or
 - 10 antibody) or cytotoxic means such as those characterised by the use of chemotherapeutic agents.
- According to this aspect of the present invention there is provided a method for the treatment of Hodgkin's lymphoma in a mammal, said method comprising administering to
- 15 said mammal an effective amount of a cytolytic and/or cytotoxic agent which agent interacts or otherwise associates with DEC-205 SV, for a time and under conditions sufficient for said agent to lyse, apoptose or otherwise kill Hodgkin and Reed-Sternberg cells.
- 20 The subject of the treatment or prophylaxis is generally a mammal such as but not limited to human, primate, livestock animal (e.g. sheep, cow, horse, donkey, pig), companion animal (e.g. dog, cat), laboratory test animal (e.g. mouse, rabbit, rat, guinea pig, hamster), captive wild animal (e.g. fox, deer). Preferably the mammal is a human or primate. Most preferably the mammal is a human. Although the present invention is exemplified using a
 - 25 murine model, this is not intended as a limitation on the application of the present invention to other species, in particular, human.

- Reference herein to "treatment" and "prophylaxis" is to be considered in its broadest context. The term "treatment" does not necessarily imply that a subject is treated until total
- 30 recovery. Similarly, "prophylaxis" does not necessarily mean that the subject will not eventually contract a disease condition. Accordingly, treatment and prophylaxis include

amelioration of the symptoms of a particular condition or preventing or otherwise reducing the risk of developing a particular condition. The term "prophylaxis" may be considered as reducing the severity or onset of a particular condition. "Treatment" may also reduce the severity of an existing condition.

5

Administration of the agent in the form of a pharmaceutical composition, may be performed by any convenient means. The modulatory agent of the pharmaceutical composition is contemplated to exhibit therapeutic activity when administered in an amount which depends on the particular case. The variation depends, for example, on the

- 10 human or animal and the modulatory agent chosen. A broad range of doses may be applicable. Considering a patient, for example, from about 0.1 mg to about 1 mg of modulatory agent may be administered per kilogram of body weight per day. Dosage regimes may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily, weekly, monthly or other suitable time
15 intervals or the dose may be proportionally reduced as indicated by the exigencies of the situation.

The modulatory agent may be administered in a convenient manner such as by the oral, intravenous (where water soluble), intraperitoneal, intramuscular, subcutaneous,

- 20 intradermal or suppository routes or implanting (e.g. using slow release molecules). The modulatory agent may be administered in the form of pharmaceutically acceptable nontoxic salts, such as acid addition salts or metal complexes, e.g. with zinc, iron or the like (which are considered as salts for purposes of this application). Illustrative of such acid addition salts are hydrochloride, hydrobromide, sulphate, phosphate, maleate, acetate,
25 citrate, benzoate, succinate, malate, ascorbate, tartrate and the like. If the active ingredient is to be administered in tablet form, the tablet may contain a binder such as tragacanth, corn starch or gelatin; a disintegrating agent, such as alginic acid; and a lubricant, such as magnesium stearate.
30 In accordance with these methods, the agent defined in accordance with the present invention may be coadministered with one or more other compounds or molecules. By

"coadministered" is meant simultaneous administration in the same formulation or in two different formulations via the same or different routes or sequential administration by the same or different routes. By "sequential" administration is meant a time difference of from seconds, minutes, hours or days between the administration of the two types of molecules.

- 5 These molecules may be administered in any order.

In another aspect, the present invention contemplates a pharmaceutical composition comprising a modulatory agent as hereinbefore defined and one or more pharmaceutically acceptable carriers and/or diluents. Said modulatory agents are referred to as the active ingredients.

- 10 The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion or may be in the form of a cream or other form suitable for topical application. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- 20
- 25
- 30 Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients

enumerated above, as required, followed by filtered sterilisation. Generally, dispersions are prepared by incorporating the various sterilised active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable
5 solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

When the active ingredients are suitably protected they may be orally administered, for
10 example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
15 Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or preparations according to the
20 present invention are prepared so that an oral dosage unit form contains between about 0.1 µg and 2000 mg of active compound.

The tablets, troches, pills, capsules and the like may also contain the components as listed hereafter: a binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium
25 phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be
30 present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or

elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active

5 compound(s) may be incorporated into sustained-release preparations and formulations.

The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting target cells where the vector carries a nucleic acid molecule encoding a modulatory agent. The vector may, for example, be a viral vector.

10

Yet another aspect of the present invention relates to modulatory agents, as hereinbefore defined, when used in the method of the present invention.

Still another aspect of the present invention is directed to antibodies to DEC-205 SV or DCL-1 including catalytic antibodies. Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to DEC-205 SV or DCL-1 or may be specifically raised to DEC-205 SV or DCL-1. In the case of the latter, DEC-205 SV or DCL-1 may first need to be associated with a carrier molecule. The antibodies and/or recombinant DEC-205 SV or DCL-1 of the present invention are particularly useful as

15 therapeutic or diagnostic agents. Alternatively, fragments of antibodies may be used such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies. The antibodies of this aspect of the present invention are particularly useful for immunotherapy and may also be used as a diagnostic

20 tool for assessing apoptosis or monitoring the program of a therapeutic regime. For example, DEC-205 SV or DCL-1 can be used to screen for naturally occurring antibodies to DEC-205 SV .

25

In another example, specific antibodies can be used to screen for DEC-205 SV or DCL-1 proteins. The latter would be important, for example, as a means for screening for levels of DEC-205 SV or DCL-1 in a cell extract or other biological fluid or purifying DEC-205

30

SV or DCL-1 made by recombinant means from culture supernatant fluid. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays, ELISA and flow cytometry.

- 5 Both polyclonal and monoclonal antibodies are obtainable by immunization with the protein or peptide derivatives and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable laboratory animal with an effective amount of DEC-205 SV or DCL-1, or antigenic parts thereof, collecting serum
- 10 from the animal, and isolating specific sera by any of the known immunoabsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.
- 15 The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art. (See, for
- 20 example Douillard and Hoffman, *Basic Facts about Hybridomas*, in *Compendium of Immunology* Vol II, ed. by Schwartz, 1981; Kohler and Milstein, *Nature* 256: 495-499, 1975; *European Journal of Immunology* 6: 511-519, 1976).

- 25 In another aspect, the molecules of the present invention are also useful as screening targets for use in applications such as the diagnosis of disorders characterised by the expression of DEC-205 SV or DCL-1. For example, screening for the levels of DEC-205 SV protein or *DEC-205 SV* mRNA transcripts in tissues as an indicator of a predisposition to, or the development of, Hodgkin's lymphoma. More specifically, there is now provided a means for screening individuals for the presence of DEC-205 SV encoding nucleic acid
- 30 molecules or expression product or the specific forms of DEC-205 SV which are transcribed and/or translated by a given population of cells. The screening methodology

may be directed to qualitative and/or quantitative DEC-205 SV analysis.

Accordingly, yet another aspect of the present invention contemplates a method of monitoring a disease condition in a mammal, which disease condition is characterised by

- 5 DEC-205 SV cellular expression, said method comprising screening for DEC-205 SV and/or *DEC-205 SV* in a biological sample isolated from said mammal.

Screening for DEC-205 SV or *DEC-205 SV* (or DCL-1 to the extent that it may prove to be a useful diagnostic marker) in a biological sample can be performed by any one of a

- 10 number of suitable methods which are well known to those skilled in the art. Examples of suitable methods include, but are not limited to, *in situ* hybridisation of biopsy sections to detect mRNA transcript or DNA, Northern blotting, RT-PCR of specimens isolated from tissue biopsies or antibody screening of tissue sections.

- 15 To the extent that antibody based methods of diagnosis are used, the presence of *DEC-205 SV* or DEC-205 SV may be determined in a number of ways such as by Western blotting, ELISA or flow cytometry procedures. These, of course, include both single-site and two-site or "sandwich" assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled
20 antibody to a target.

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical

- 25 forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time
30 sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by

observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody

- 5 are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In accordance with the present invention the sample is one which might contain DEC-205 SV including cell extract, tissue biopsy or possibly serum, saliva, mucosal secretions, lymph, tissue fluid and respiratory fluid. The sample is, therefore, generally a biological sample
10 comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture.

In the typical forward sandwich assay, a first antibody having specificity for the DEC-205 SV or antigenic parts thereof, is either covalently or passively bound to a solid surface.

- 15 The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing,
20 the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes) and under suitable conditions (e.g. 25°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody
25 specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

- An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be
30 labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the

antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

5.

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores
10 or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily

15 available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to

20 employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the

25 second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

30 Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by

illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic color visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-
5 hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescence and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or
10 bioluminescent molecules, may also be employed.

Further features of the present invention are more fully described in the following non-limiting examples.

TABLE 4

SEQ ID NO	SEQUENCE DESCRIPTION
<400>1	Human DEC205/DCL-1 splice variant (exon 34 fusion): cDNA sequence
<400>2	Human DEC205/DCL-1 splice variant (exon 34 fusion): amino acid sequence
<400>3	Human DEC205/DCL-1 splice variant (exon 34 fusion): complementary DNA strand
<400>4	Human DCL-1 cDNA sequence
<400>5	Human DCL-1 amino acid sequence
<400>6	Human DCL-1 complementary DNA sequence
<400>7	Murine DCL-1 cDNA sequence
<400>8	Murine DCL-1 amino acid sequence
<400>9	Murine DCL-1 complementary DNA sequence
<400>10	Rat DCL-1 cDNA sequence
<400>11	Rat DCL-1 amino acid sequence
<400>12	Rat DCL-1 complementary DNA sequence
<400>13	Bovine DCL-1 EST sequence
<400>14	Figure 4 sequence
<400>15	Figure 4 sequence
<400>16	Figure 4 sequence
<400>17	Figure 4 sequence
<400>18	Figure 4 sequence
<400>19	Figure 4 sequence
<400>20	Human DEC-205/DCL-1 cDNA (exon 33 fusion) sequence
<400>21	Human DEC-205/DCL-1 amino acid (exon 33 fusion) sequence
<400>22	Human DEC-205/DCL-1 (exon 33 fusion) complementary DNA strand sequence
<400>23	Primer 62
<400>24	Primer 63

- 56 -

<400>25	Primer 78
<400>26	Primer 85
<400>27	Primer 86
<400>28	Primer 88
<400>29	Primer 90
<400>30	Primer 92
<400>31	Primer 94

EXAMPLE 1

**HODGKIN'S LYMPHOMA CELL LINES EXPRESS A FUSION
PROTEIN ENCODED BY INTERGENICALLY SPLICE mRNA FOR THE
MULTILECTIN RECEPTOR DEC-205 (CD205) AND A NOVEL C-TYPE
LECTIN RECEPTOR DCL-1**

5

Cell lines

The human hematopoietic cell lines, HEL, KG-1, K562, THP-1, U937, Mann, Daudi, Raji,
 10 WT49, Mann, Molt-4, Jurkat and HSB-2 were obtained from the American Type Culture
 Collection (Rockville, MD). L428 cells were provided by V. Diehl (Klinik fur Innere
 Medizin, Cologne, Germany).²³ HDLM-2²⁴ and KM-H2 cells²⁵ were obtained from the
 German Collection of Microorganism and Cell Culture (Braunschweig, Germany). Mono
 Mac 6 cells²⁶ were provided by E. M. Schneider (Dusseldorf, Germacy). All cell lines
 15 were maintained in RPMI 1640 (Invitrogen, Melbourne, VIC, Australia), 10 % fetal calf
 serum (FCS, Invitrogen), 100 U/ml penicillin, and 100 µg/ml streptomycin, except for
 HDLM-2 cells, which were maintained in 20% FCS. These cells were subjected to RNA
 preparation using TRIzol (Invitrogen) for RT-PCR and Northern blot analysis.

20 *Antibodies and other reagents*

The mAb MMRI-7 against human DEC-205 was produced in house.²⁷ MMRI-7 binds to
 an epitope within DEC-205 CRD 1 and 2. The other anti human DEC-205 mAb, M335
 was provided through the 7th International Workshop on Human Leukocyte Differentiation
 25 Antigens. M335 binds to an epitope within DEC-205 cysteine-rich domain (CR).²⁷

Goat anti mouse IgG was purchased from Dako (Botany, NSW, Australia). Horse radish
 peroxidase (HRP)-conjugated goat anti mouse IgG-Fc specific and protein A-conjugated
 agarose beads were from Sigma (Sydney, NSW, Australia). HRP-conjugated sheep anti
 30 rabbit IgG was from Silenus (Melbourne, VIC, Australia). ELISA plates (Maxsorb) were
 from Nalge Nunc International (Rochester, NY). Prestained protein standards (Benchmark

Prestained Protein Ladder) and DNA ladder (1 kb ladder) were from Invitrogen. Molecular biological enzymes (e.g. restriction enzymes, polymerases and ligase) were obtained from Invitrogen, Promega (Sydney, NSW, Australia) or Roche Applied Science (Castle Hill, NSW, Australia). Unless specified, general chemicals were obtained from 5 Sigma (Castle Hill, NSW, Australia) or BDH (Poole, England).

Rabbit polyclonal peptide antisera against the DEC-205 CP domain and the DCL-1 CP were produced by immunizing New Zealand White rabbits with diphtheria toxoid-conjugated synthetic peptide CEDEIMLPSFHD and CGEEENEYPYQFD (Minotopes, 10 Clayton, VIC, Australia), respectively, using a conventional schedule with Freund adjuvant at the Herston Medical Research Institute (Herston, QLD, Australia). To assess the titer of the antibodies against CP peptides, an ELISA plate was coated with streptavidin (Sigma) and biotinylated peptides for DEC-205 CP (biotin-SGSGEDEIMLPSFHD) and DCL-1 CP (biotin-SGSGEENEYPYQFD) captured. The plate was blocked with 1% (w/v) sodium 15 caseinate (Sigma) in PBS and 0.1% (w/v) Tween 20 (PBS/Tw), and incubated with serially diluted antisera. After washing the plate with PBS/Tw, bound antibody was detected with HRP-sheep anti rabbit IgG and *o*-phenylenediamine hydrochloride, and quantitated with 492 nm using an ELISA reader. There was no cross-reactivity detected between these two rabbit CP antibodies at the dilutions used in the experiments described (data not shown). 20

3'-Rapid amplification of cDNA ends (3'-RACE)

The 3'-end of DEC-205 mRNA was obtained by 3'-RACE was performed as described previously.¹⁷ Briefly, L428 mRNA was reverse transcribed with an oligo dT adaptor 25 primer. The obtained L428 cDNA pool was subjected to PCR using DEC-205 specific forward primer and an adaptor primer, and cloned into pBlueScript SKII (Stratagene, La Jolla, CA). The clones analyzed by restriction enzyme mapping and sequencing using a BigDye Terminator kit on a ABI Prism 377 automated sequencer (PE Applied Biosystems, Scoresby, VIC, Australia) by Australian Genome Research Facility (University of 30 Queensland, St. Lucia, QLD, Australia).

- 59 -

RT-PCR analysis

PCR was performed on the L428 cDNA pool using DEC-205 specific forward primers (078, 088, 090, 092 and 094, nested within various parts of DEC-205 ectodomain) in combination with either DEC-205 specific reverse primer (085, nested within DEC-205 CP) or DCL-1 specific reverse primer (086, nested within DCL-1 ectodomain) with an Expand Long Template PCR system (Roche)(Table 3). The PCR reactions were fractionated in 0.8% agarose in Tris-acetate buffer (40 mM Tris-acetate, 1 mM EDTA, pH 7.6) and visualized with ethidium bromide. The PCR products obtained by the primer combination 078/085 and 078/086 were cloned into pGEM-T Easy vector (Promega) and sequenced.

Northern blot analysis

Approximately 10 µg of total RNA from cultured cell lines was fractionated in formaldehyde-denatured 1% agarose gel, and transferred to Hybond N⁺ cationic nylon membrane (Amersham Biosciences, Sydney, NSW, Australia). The 864 bp DEC-205 cDNA probe nested within DEC-205 CRD1 and 2 was PCR amplified using primers 094 and 095 on the DEC-205 cDNA clone pCRD1/2-Ig²⁷ and Taq polymerase (Roche). The 1617 bp DCL-1 cDNA probe was PCR amplified using DCL-1 specific primers 062 and 063 on the pBS30-1 (Fig 1). These probes were purified using QIAquick PCR Purification kit (Qiagen, Clifton Hill, VIC, Australia) and labeled with [α -³²P]dATP (Amersham Biosciences) using Strip-EZ DNA StipAble DNA probe Synthesis and Removal kit (Ambion, Austin, TX). The membrane was hybridized sequentially with these probes and exposed to a Kodak BioMax MS X-ray film at -70°C using an intensifying screen (Amersham Biosciences). The final wash was 0.1 X SSC (1 X SSC is 0.15 M NaCl, 15 mM Na-citrate, pH7.0) and 0.5% SDS at 68°C. After each probing, the membrane was chemically stripped according to the manufacture's instruction, and used for hybridization with the other probes.

- 60 -

Preparation of cell lysate

- Approximately 10^7 cells were lysed with 1 ml of 0.15 M NaCl, 25 mM Tris-HCl, pH 7.4, 1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS and a cocktail of protease inhibitors (Complete, EDTA-free, Roche Applied Science) and incubated on ice for 10 min with occasional vortexing. After centrifugation at 12,000 x g for 20 min at 4°C, the supernatant was collected and used directly for immunoprecipitation/Western blot or sandwich ELISA analysis described below.
- 5 of protease inhibitors (Complete, EDTA-free, Roche Applied Science) and incubated on ice for 10 min with occasional vortexing. After centrifugation at 12,000 x g for 20 min at 4°C, the supernatant was collected and used directly for immunoprecipitation/Western blot or sandwich ELISA analysis described below.

10 *Immunoprecipitation/Western blot analysis*

- The cell extract was precleared with a non-immune rabbit serum and protein A Sepharose (Sigma) for 1 h at 4°C, and subjected to immunoprecipitation using the rabbit peptide antisera against DEC-205 CP or DCL-1 CP with protein A Sepharose overnight at 4°C.
- 15 The beads were washed with a wash buffer (0.15 M NaCl, 25 mM Tris-HCl, pH7.5, 0.2% (v/v) Triton X-100 and 0.5% (w/v) sodium deoxycholate), and eluted with SDS-PAGE sample buffer (2 % (w/v) SDS, 62.5 mM Tris-HCl, pH6.8, 0.01% (w/v) bromophenol blue and 10% (v/v) glycerol) by heating at 95°C for 5 min. The samples were subjected to Laemmli discontinuous SDS-PAGE with 10 % (v/v) polyacrylamide separating gel²⁸ in the non-reducing condition, and transferred to a polyvinylidene fluoride membrane (PVDF-Plus, Osmonics, Westborough, MA). The membrane was blocked with 5% (w/v) non-fat dry milk in PBS/Tw (BLOTTO), incubated with a mixture of DEC-205 mAbs (MMRI-7 and M335, 5 µg/ml each) overnight at 4°C, and washed with PBS/Tw. The membrane was incubated with HRP-anti goat mouse IgG, and the bound enzyme was detected with enhanced chemiluminescence (SuperSignal West Pico, Pierce, Rockford, IL) on a Kodak X-Omat XB-1 X-ray film.
- 20 non-reducing condition, and transferred to a polyvinylidene fluoride membrane (PVDF-Plus, Osmonics, Westborough, MA). The membrane was blocked with 5% (w/v) non-fat dry milk in PBS/Tw (BLOTTO), incubated with a mixture of DEC-205 mAbs (MMRI-7 and M335, 5 µg/ml each) overnight at 4°C, and washed with PBS/Tw. The membrane was incubated with HRP-anti goat mouse IgG, and the bound enzyme was detected with enhanced chemiluminescence (SuperSignal West Pico, Pierce, Rockford, IL) on a Kodak X-Omat XB-1 X-ray film.
- 25 enhanced chemiluminescence (SuperSignal West Pico, Pierce, Rockford, IL) on a Kodak X-Omat XB-1 X-ray film.

Sandwich ELISA

- 30 An ELISA plate was coated with 10 µg/ml goat anti mouse IgG in PBS, washed with PBS/Tw and blocked with BLOTTO. To the plate a mixture of DEC-205 mAb (MMRI-7

and M335, 2 µg/ml each) was added and incubated for 1 h at room temperature. The plate was washed and incubated with the serially diluted cell extracts overnight at 4°C. The plate was washed with PBS/Tw and incubated with either rabbit peptide antibodies against DEC-205 CP or DCL-1 CP (1:1000 dilution in PBS/Tw) or non immune rabbit serum for 1

- 5 h at room temperature and after washing with PBS/Tw, the plate was incubated with HRP-conjugated goat anti rabbit IgG in 5% mouse serum and PBS/TW. The plate was developed with o-phenylenediamine dihydrochloride and quantitated at 492 nm.

EXAMPLE 2

10 IDENTIFICATION OF THE cDNA CLONE ENCODING DEC-205/DCL-1 FUSION

To obtain the 3'-end of human DEC-205 mRNA, we performed 3'-RACE.¹⁷ This resulted in amplification of an ~ 3 kb PCR product (data not shown). When we cloned the PCR product and analyzed several clones by restriction enzyme analysis, however, we realized

- 15 that there were two distinct sequences within the PCR product. The clone pB30-3 contained the authentic DEC-205 sequence encoding the DEC-205 CRD 8-10, TM and CP¹⁷. The other clone pB30-1, however, encoded DEC-205 CRD 8-10 followed by a unique sequence distinct from the DEC-205 TM and CP sequence (Figure 1A). The junction of the DEC-205 and unique sequence was located within the connecting region
20 (spacer 11) between the DEC-205 CRD10 and TM. A BLAST search identified the unique sequence as a part of the cDNA, KIAA0022 derived from KG-1 cell cDNA library²². Our further analysis showed that the KIAA0022 contained a partial cDNA encoding a novel type I transmembrane C-type lectin receptor, and we termed it, DCL-1 (DEC-205-associated C-type Lectin-1). The complete DCL-1 coding region encodes a signal peptide
25 (SP), one CRD, one TM and one CP. DCL-1 was recently mapped to chromosome band 2q24. More details of DCL-1 will be published elsewhere (in preparation).

The sequence analysis showed that fusion junction occurred within the codon G/GC (/ indicates the junction) for Gly in the DEC-205 spacer 11, connected to the codon G/AC for

Asp in the junction between the DCL-1 SP and CRD. The fusion junction was in-frame, connecting the DEC-205 CRD 10 to the DCL-1 CRD, TM and CP, suggesting that the DEC-205/DCL-1 fusion mRNA is translated. Further, analysis of the DEC-205 and DCL-1 genes indicated that the junction is formed by splicing and fusing DEC-205 exon 34 to 5 DCL-1 exon 2 (described below).

EXAMPLE 3

THE DEC-205/DCL-1 FUSION mRNA APPEARS TO ENCODE THE ENTIRE DEC-205 ECTODOMAIN

10 We examined L428 cDNA containing the DEC-205/DCL-1 junction by RT-PCR to see whether it included the entire DEC-205 ectodomain (Figure 2). The combination of the DEC-205 CP-specific reverse primer 085 with DEC-205-specific forward primers, nested to various parts of DEC-205 ectodomain, yielded major PCR products of the sizes 15 predicted in accordance with the primer combinations used. We also detected slightly smaller (by 168 bp) minor PCR products, which were most apparent in the primer combinations of 078/085 and 088/085. When the DCL-1-specific reverse primer 086 was used in combination with the same DEC-205-specific forward primers, we detected doublet bands (~200 bp apart). The larger band of which was the predicted size. Sequence 20 analysis indicated that the smaller RT-PCR fragments from DEC-205 itself or the DEC-205/DCL-1 fusion mRNA were amplified from alternatively spliced RNA, lacking DEC-205 exon 34 (described below). Thus, the DEC-205/DCL-1 fusion mRNA encodes the entire DEC-205 ectodomain, but may also lack DEC-205 exon 34 in an alternatively spliced variant.

25

EXAMPLE 4

THE DEC-205/DCL-1 FUSION mRNA IS PREDOMINANTLY EXPRESSED BY HRS CELL LINES

30 To assess DEC-205/DCL-1 fusion mRNA expression, we performed Northern blot analysis in several hematopoietic cell lines (Figure 3). The DCL-1-specific probe nested within the DCL-1 ectodomain detected a single 4.2 kb DCL-1 mRNA band in myeloid cell

lines (HEL, HL60, U937 and Monomac 6), but there were no band detected in the B or T cell lines tested. We detected a single 9.5 kb DEC-205/DCL-1mRNA band in HRS cell lines (HDLM-2, L428 and KM-H2),, however, we did not detect the 4.2 kb DCL-1 mRNA band observed in the myeloid cell lines. The U937 appear to express a small amount of the 5 9.5 kb DEC-205/DCL-1 mRNA in addition to the 4.2 kb DCL-1 mRNA band. When DEC-205-specific probe nested within the CR was used to hybridize the same blot after the DCL-1 probe was stripped, a 7.5 kb DEC-205 mRNA band was detected in myeloid cell lines (HEL and U937), B cell lines (Daudi and Mann) and all HRS cell lines. In addition, we detected a 9.5 kb DEC-205/DCL-1 mRNA band in all HRS cell lines and the U937 as 10 described previously.¹⁷ Thus, it appears that DEC-205/DCL-1 fusion mRNA is predominated in HRS cell lines.

EXAMPLE 5

THE DEC-205 AND DCL-1 GENE ARE JUXTAPOSED IN CHROMOSOME 15 BAND 2Q24

We mapped the DEC-205 gene previously to the chromosome band 2q24.¹⁷ The KIAA0022/DCL-1 gene was previously located to chromosome 2²² and further mapped recently to the identical chromosomal band in the NCBI UniGene database. Using the 20 NCBI Genome BLAST, we identified the human genomic contig NT 005151 containing both DEC-205 and the DCL-1 gene. Our sequence analysis showed that DEC-205 and DCL-1 genes consist of 35 and 6 exons, respectively, and the DEC-205 gene is localized ~5.4 kb upstream of the DCL-1 gene (Figure 4). Therefore, the DEC-205 and DCL-1 fusion mRNA appears to be generated by cotranscription of both DEC-205 and DCL-1 25 genes followed by intergenic splicing to remove the DEC-205 exon 35 (or exon 34/35) and DCL-1 exon 1.

EXAMPLE 6**DEC-205/DCL-1 FUSION mRNA IS TRANSLATED TO THE FUSION PROTEIN**

We sought to establish whether the DEC-205/DCL-1 fusion mRNA is translated into a fusion protein. We prepared cell lysates from three HRS cell lines (DEC-205 mRNA⁺, DEC-205/DCL-1 fusion mRNA⁺), HEL (DEC-205 mRNA⁺, DEC-205/DCL-1 fusion mRNA) and Jurkat cell line (DEC-205 mRNA⁻, DEC-205/DCL-1 fusion mRNA⁻) (see Figure 3), and subjected them to immunoprecipitation with the DEC-205 CP or DCL-1 CP peptide antisera. The immunoprecipitated samples were further analyzed by Western blot with DEC-205 mAbs to detect DEC-205 and DEC-205/DCL-1 fusion protein in non-reducing conditions (Figure 5A). The DEC-205 CP antiserum precipitated a broad but single ~180 kDa DEC-205 protein band specifically from the three HRS cell lines (L428, HDLM-2 and KM-H2) and HEL cells. There was no detectable signal in Jurkat cells.

When the DCL-1 CP antiserum was used for the initial immunoprecipitation, we detected low levels of ~180 kDa DEC-205/DCL-1 fusion protein band in the three HRS cell lines, but not in HEL or Jurkat cells. The presence of this DEC-205/DCL-1 fusion protein band in these HRS cell extracts was not due to cross-reactivity of DCL-1 CP antiserum with DEC-205 CP because (i) there was no cross-reactivity in the DCL-1 CP antiserum with DEC-205 CP peptide assessed by ELISA analysis (data not shown), (ii) 60 times longer exposure of HEL sample did not produce any band (Figure 5A) and (iii) the DCL-1 CP antiserum detected the weakest signal in KM-H2 extracts, which contained most DEC-205 protein (Figure 5A and described below).

To determine the relative abundance of the DEC-205/DCL-1 fusion protein to DEC-205, we developed a sandwich ELISA using the DEC-205 mAbs for capturing and the CP antisera for detection (Figure 5B). The HRS cell lines express most DEC-205 protein (KM-H2 > L428 > HDLM-2), followed by HEL cells. We detected relatively small amounts of the DEC-205/DCL-1 fusion protein in L428 and HDLM-2 cells, approximately 30-50 times less than the amount of DEC-205. No fusion protein was detected in the KM-H2 cells, probably because the amount of KM-H2 derived fusion protein is below the detection limit. The negative control, Jurkat, did not show any signal. The relative

- 65 -

abundance of both DEC-205 and DEC-205/DCL-1 fusion protein by the ELISA correlated with the immunoprecipitation/Western blot data (Figure 5A).

- Those skilled in the art will appreciate that the invention described herein is susceptible
- 5 to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

Table 3. The DNA sequences of oligonucleotides primers used in this study

Primer	Sequence (5'>3')
062	GACCATGGAGCGGACATGATA <400>23
063	GGCTCTACCATCTGGGTTTGT <400>24
078	CCGCCATGTCGCGCGCCT <400>25
085	ACCAAATCAGTCCGCCATGAGAA <400>26
086	ATCATGTCCGCTCCATGGTCAGTA <400>27
088	TATTCAGAAGTTAAAAGCAGA <400>28
090	CCAAAAGGCCGTACTCCAAAA <400>29
092	GGAGGAAAAGTGAATGACGCA <400>30
094	GAAAACGGTTGTGAAGATAAT <400>31

BIBLIOGRAPHY:

1. Marafioti T, Hummel M, Foss HD, et al.: Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. *Blood.* 2000;95:1443-1450.
2. Skinnider BF, Mak TW: The role of cytokines in classical Hodgkin lymphoma. *Blood.* 2002;99:4283-4297.
3. Kuppers R, Rajewsky K: The origin of Hodgkin and Reed/Sternberg cells in Hodgkin's disease. *Annu. Rev. Immunol.* 1998;16:471-493.
4. Sorg UR, Morse TM, Patton WN, et al.: Hodgkin's cells express CD83, a dendritic cell lineage associated antigen. *Pathology.* 1997;29:294-299.
5. Delabie J, Ceuppens JL, Vandenberghe P, et al.: The B7/BB1 antigen is expressed by Reed-Sternberg cells of Hodgkin's disease and contributes to the stimulating capacity of Hodgkin's disease-derived cell lines. *Blood.* 1993;82:2845-2852.
6. Uehira K, Amakawa R, Ito T, et al.: A Hodgkin's disease cell line, KM-H2, shows biphenotypic features of dendritic cells and B cells. *Int. J. Hematol.* 2001;73:236-244.
7. Gruss HJ, Hirschstein D, Wright B, et al.: Expression and function of CD40 on Hodgkin and Reed-Sternberg cells and the possible relevance for Hodgkin's disease. *Blood.* 1994;84:2305-2314.
8. Ellis PA, Hart DN, Colls BM, et al.: Hodgkin's cells express a novel pattern of adhesion molecules. *Clin. Exp. Immunol.* 1992;90:117-123.

9. McKenzie JL, Egner W, Calder VL, Hart DN: Hodgkin's disease cell lines: a model for interleukin-1-independent accessory cell function. *Immunology*. 1992;77:345-353.
10. Hock BD, Kato M, McKenzie JL, Hart DN: A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. *Int. Immunol.* 2001;13:959-967.
11. Kretschmer C, Jones DB, Morrison K, et al.: Tumor necrosis factor alpha and lymphotoxin production in Hodgkin's disease. *Am. J. Pathol.* 1990;137:341-351.
12. Paietta E, Racevskis J, Stanley ER, et al.: Expression of the macrophage growth factor, CSF-1 and its receptor c-fms by a Hodgkin's disease-derived cell line and its variants. *Cancer Res.* 1990;50:2049-2055.
13. Kapp U, Yeh WC, Patterson B, et al.: Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. *J. Exp. Med.* 1999;189:1939-1946.
14. van den Berg A, Visser L, Poppema S: High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltrate in Hodgkin's lymphoma. *Am J Pathol.* 1999;154:1685-1691.
15. Hock BD, Starling GC, Daniel PB, Hart DN: Characterization of CMRF-44, a novel monoclonal antibody to an activation antigen expressed by the allostimulatory cells within peripheral blood, including dendritic cells. *Immunology*. 1994;83:573-581.
16. Hock BD, Fearnley DB, Boyce A, et al.: Human dendritic cells express a 95 kDa activation/differentiation antigen defined by CMRF-56. *Tissue Antigens*. 1999;53:320-334.

- 69 -

17. Kato M, Neil TK, Clark GJ, et al.: cDNA cloning of human DEC-205, a putative antigen-uptake receptor on dendritic cells. *Immunogenetics*. 1998;47:442-450.
18. Dekker JW, Budhia S, Clark GJ, Hart DNJ, Kato M: Identification of a S-Adenosylhomocysteine Hydrolase-Like Transcript Induced During Dendritic Cell Differentiation. *Immunogenetics*. 2002;53:993-1001
19. Falini B, Pileri S, Pizzolo G, et al.: CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. *Blood*. 1995;85:1-14.
20. Strauchen JA: Interleukin receptors in lymphoid lesions. Relevance to diagnosis, biology, and therapy. *Pathol. Annu.* 1989;24 Pt 2:149-165.
21. Keilholz U, Szelenyi H, Siehl J, et al.: Rapid regression of chemotherapy refractory lymphocyte predominant Hodgkin's disease after administration of rituximab (anti CD 20 mono- clonal antibody) and interleukin-2. *Leuk. Lymphoma*. 1999;35:641-642.
22. Nomura N, Miyajima N, Sazuka T, et al.: Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. *DNA Res.* 1994;1:27-35
23. Schaadt M, Diehl V, Stein H, Fonatsch C, Kirchner HH: Two neoplastic cell lines with unique features derived from Hodgkin's disease. *Int. J. Cancer*. 1980;26:723-731

- 70 -

24. Diehl V, Pfreundschuh M, Fonatsch C, et al.: Phenotypic and genotypic analysis of Hodgkin's disease derived cell lines: histopathological and clinical implications. *Cancer Surv.* 1985;4:399-419
25. Kamesaki H, Fukuura S, Tatsumi E, et al.: Cytochemical, immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived from Hodgkin's disease. *Blood.* 1986;68:285-292
26. Ziegler-Heitbrock HW, Thiel E, Futterer A, et al.: Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. *Int. J. Cancer.* 1988;41:456-461.
27. Kato M, MacDonald K, Munster D, Clark G, Hart DNJ: DEC 205 workshop panel report, in Mason D (ed): *Leucocyte Typing VII.* Oxford, Oxford University Press, 2002, p 298-300
28. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature.* 1970;227:680-685.
29. Fears S, Mathieu C, Zeleznik-Le N, et al.: Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. *Proc. Natl. Acad. Sci. U S A.* 1996;93:1642-1647.
30. Magrangeas F, Pitiot G, Dubois S, et al.: Cotranscription and intergenic splicing of human galactose-1-phosphate uridylyltransferase and interleukin-11 receptor alpha-chain genes generate a fusion mRNA in normal cells. Implication for the production of multidomain proteins during evolution. *J. Biol. Chem.* 1998;273:16005-16010.

31. Moore RC, Lee IY, Silverman GL, et al.: Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. *J Mol Biol.* 1999;292:797-817.
32. Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems JM: Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. *J. Biol. Chem.* 2001;276:16561-16566.
33. Jiang W, Swiggard WJ, Heufler C, et al.: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. *Nature.* 1995;375:151-155.
34. Steinman RM, Nussenzweig MC: Dendritic cells: features and functions. *Immunol. Rev.* 1980;53:127-147.
35. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. *Nature.* 1998;392:245-252.
36. Hart DN: Dendritic cells: unique leukocyte populations which control the primary immune response. *Blood.* 1997;90:3245-3287.
37. Nestle FO, Banchereau J, Hart D: Dendritic cells: On the move from bench to bedside. *Nat. Med.* 2001;7:761-765.
38. Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K: Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. *J. Biol. Chem.* 1990;265:12156-12162.
39. Ezekowitz RA, Sastry K, Bailly P, Warner A: Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate

recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 1990;172:1785-1794.

40. Ancian P, Lambeau G, Mattei MG, Lazdunski M: The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. *J. Biol. Chem.* 1995;270:8963-8970.

41. Ishizaki J, Hanasaki K, Higashino K, et al.: Molecular cloning of pancreatic group I phospholipase A2 receptor. *J. Biol. Chem.* 1994;269:5897-5904.

42. Sheikh H, Yarwood H, Ashworth A, Isacke CM: Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. *J. Cell. Sci.* 2000;113:1021-1032.

43. Wu K, Yuan J, Lasky LA: Characterization of a novel member of the macrophage mannose receptor type C lectin family. *J. Biol. Chem.* 1996;271:21323-21330

44. Zvaritch E, Lambeau G, Lazdunski M: Endocytic properties of the M-type 180-kDa receptor for secretory phospholipases A2. *J. Biol. Chem.* 1996;271:250-257

45. Mahnke K, Guo M, Lee S, et al.: The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. *J. Cell. Biol.* 2000;151:673-684.

- 73 -

46. Schweizer A, Stahl PD, Rohrer J: A di-aromatic motif in the cytosolic tail of the mannose receptor mediates endosomal sorting. *J. Biol. Chem.* 2000;275:29694-29700.

47. Howard MJ, Isacke CM: The C-type Lectin Receptor Endo180 Displays Internalization and Recycling Properties Distinct from Other Members of the Mannose Receptor Family. *J. Biol. Chem.* 2002;277:32320-32331.

DATED this 6th day of December, 2002

THE CORPORATION OF THE TRUSTEES OF THE ORDER OF THE SISTERS OF MERCY IN QUEENSLAND

By its Patent Attorneys

DAVIES COLLISON CAVE

- 1 -

SEQUENCE LISTING

<110> The Corporation of the Trustees of the Order of the Sisters of Mercy in Queensland

<120> Novel Therapeutic Molecules and Uses Thereof

<130> 2597759/tbo

<160> 31

<170> PatentIn version 3.1

<210> 1

<211> : 5622

<212> DNA

<213> mammal: an

220

<221> CDS

<222> (1) .. (5619)

223

<400> 1

atg agg aca ggc tgg gcg acc cct cgc cgc ccg gcg ggg ctc ctc atg
Met Arg Thr Gly Trp Ala Thr Pro Arg Arg Pro Ala Gly Leu Leu Met
1 5

48

ctg ctc ttc tgg ttc ttc gat ctc gcg gag ccc tct ggc cgcc gca gct
 Leu Leu Phe Trp Phe Phe Asp Leu Ala Glu Pro Ser Gly Arg Ala Ala
 20 25 30

96

aat gac ccc ttc acc atc gtc cat gga aat acg ggc aag tgc atc aag
 Asn Asp Pro Phe Thr Ile Val His Gly Asn Thr Gly Lys Cys Ile Lys
 35 40 45

144

cca gtg tat ggc tgg ata gta gca gac gac tgt gat gaa act gag gag

192

- 2 -

Pro Val Tyr Gly Trp Ile Val Ala Asp Asp Cys Asp Glu Thr Glu Asp			
50	55	60	
aag tta tgg aag tgg gtg tcc cag cat cgg ctc ttt cat ttg cac tcc			240
Lys Leu Trp Lys Trp Val Ser Gln His Arg Leu Phe His Leu His Ser			
65	70	75	80
caa aag tgc ctt ggc ctc gat att acc aaa tcg gta aat gag ctg aga			288
Gln Lys Cys Leu Gly Leu Asp Ile Thr Lys Ser Val Asn Glu Leu Arg			
85	90	95	
atg ttc agc tgt gac tcc agt gcc atg ctg tgg tgg aaa tgt gag cac			336
Met Phe Ser Cys Asp Ser Ser Ala Met Leu Trp Trp Lys Cys Glu His			
100	105	110	
cac tct ctg tac gga gct gcc cgg tac cgg ctg gct ctg aag gat gga			384
His Ser Leu Tyr Gly Ala Ala Arg Tyr Arg Leu Ala Leu Lys Asp Gly			
115	120	125	
cat ggc aca gca atc tca aat gca tct gat gtc tgg aag aaa gga ggc			432
His Gly Thr Ala Ile Ser Asn Ala Ser Asp Val Trp Lys Lys Gly Gly			
130	135	140	
tca gag gaa agc ctt tgt gac cag cct tat cat gag atc tat acc aga			480
Ser Glu Glu Ser Leu Cys Asp Gln Pro Tyr His Glu Ile Tyr Thr Arg			
145	150	155	160
gat ggg aac tct tat ggg aga cct tgt gaa ttt cca ttc tta att gat			528
Asp Gly Asn Ser Tyr Gly Arg Pro Cys Glu Phe Pro Phe Leu Ile Asp			
165	170	175	
ggg acc tgg cat cat gat tgc att ctt gat gaa gat cat agt ggg cca			576
Gly Thr Trp His His Asp Cys Ile Leu Asp Glu Asp His Ser Gly Pro			
180	185	190	
tgg tgt gcc acc acc tta aat tat gaa tat gac cga aag tgg ggc atc			624
Trp Cys Ala Thr Thr Leu Asn Tyr Glu Tyr Asp Arg Lys Trp Gly Ile			
195	200	205	

- 3 -

tgc tta aag cct gaa aac ggt tgt gaa gat aat tgg gaa aag aac gag			672
Cys Leu Lys Pro Glu Asn Gly Cys Glu Asp Asn Trp Glu Lys Asn Glu			
210	215	220	
cag ttt gga agt tgc tac caa ttt aat act cag acg gct ctt tct tgg			720
Gln Phe Gly Ser Cys Tyr Gln Phe Asn Thr Gln Thr Ala Leu Ser Trp			
225	230	235	240
aaa gaa gct tat gtt tca tgt cag aat caa gga gct gat tta ctg agc			768
Lys Glu Ala Tyr Val Ser Cys Gln Asn Gln Gly Ala Asp Leu Leu Ser			
245	250	255	
atc aac agt gct gct gaa tta act tac ctt aaa gaa aaa gaa ggc att			816
Ile Asn Ser Ala Ala Glu Leu Thr Tyr Leu Lys Glu Lys Glu Gly Ile			
260	265	270	
gct aag att ttc tgg att ggt tta aat cag cta tac tct gct aga ggc			864
Ala Lys Ile Phe Trp Ile Gly Leu Asn Gln Leu Tyr Ser Ala Arg Gly			
275	280	285	
tgg gaa tgg tca gac cac aaa cca tta aac ttt ctc aac tgg gat cca			912
Trp Glu Trp Ser Asp His Lys Pro Leu Asn Phe Leu Asn Trp Asp Pro			
290	295	300	
gac agg ccc agt gca cct act ata ggt ggc tcc agc tgt gca aga atg			960
Asp Arg Pro Ser Ala Pro Thr Ile Gly Gly Ser Ser Cys Ala Arg Met			
305	310	315	320
gat gct gag tct ggt ctg tgg cag agc ttt tcc tgt gaa gct caa ctg			1008
Asp Ala Glu Ser Gly Leu Trp Gln Ser Phe Ser Cys Glu Ala Gln Leu			
325	330	335	
ccc tat gtc tgc agg aaa cca tta aat aat aca gtg gag tta aca gat			1056
Pro Tyr Val Cys Arg Lys Pro Leu Asn Asn Thr Val Glu Leu Thr Asp			
340	345	350	
gtc tgg aca tac tca gat acc cgc tgt gat gca ggc tgg ctg cca aat			1104

-4-

Val Trp Thr Tyr Ser Asp Thr Arg Cys Asp Ala Gly Trp .Leu Pro Asn				
355	360	365		
aat gga ttt tgc tat ctg ctg gta aat gaa agt aat tcc tgg gat aag				1152
Asn Gly Phe Cys Tyr Leu Leu Val Asn Glu Ser Asn Ser Trp Asp Lys				
370	375	380		
gca cat gcg aaa tgc aaa gcc ttc agt agt gac cta atc agc att cat				1200
Ala His Ala Lys Cys Lys Ala Phe Ser Ser Asp Leu Ile Ser Ile His				
385	390	395	400	
tct cta gca gat gtg gag gtg gtt gtc aca aaa ctc cat aat gag gat				1248
Ser Leu Ala Asp Val Glu Val Val Val Thr Lys Leu His Asn Glu Asp				
405	410	415		
atc aaa gaa gaa gtg tgg ata ggc ctt aag aac ata aac ata cca act				1296
Ile Lys Glu Glu Val Trp Ile Gly Leu Lys Asn Ile Asn Ile Pro Thr				
420	425	430		
tta ttt cag tgg tca gat ggt act gaa gtt act cta aca tat tgg gat				1344
Leu Phe Gln Trp Ser Asp Gly Thr Glu Val Thr Leu Thr Tyr Trp Asp				
435	440	445		
gag aat gag cca aat gtt ccc tac aat aag acg ccc aac tgt gtt tcc				1392
Glu Asn Glu Pro Asn Val Pro Tyr Asn Lys Thr Pro Asn Cys Val Ser				
450	455	460		
tac tta gga gag cta ggt cag tgg aaa gtc caa tca tgt gag gag aaa				1440
Tyr Leu Gly Glu Leu Gly Gln Trp Lys Val Gln Ser Cys Glu Glu Lys				
465	470	475	480	
cta aaa tat gta tgc aag aga aag gga gaa aaa ctg aat gac gca agt				1488
Leu Lys Tyr Val Cys Lys Arg Lys Gly Glu Lys Leu Asn Asp Ala Ser				
485	490	495		
tct gat aag atg tgt cct cca gat gag ggc tgg aag aga cat gga gaa				1536
Ser Asp Lys Met Cys Pro Pro Asp Glu Gly Trp Lys Arg His Gly Glu				
500	505	510		

- 5 -

acc tgt tac aag att tat gag gat gag gtc cct ttt gga aca aac tgc Thr Cys Tyr Lys Ile Tyr Glu Asp Glu Val Pro Phe Gly Thr Asn Cys	1584
515 520 525	
aat ctg act atc act agc aga ttt gag caa gaa tac cta aat gat ttg Asn Leu Thr Ile Thr Ser Arg Phe Glu Gln Glu Tyr Leu Asn Asp Leu	1632
530 535 540	
atg aaa aag tat gat aaa tct cta aga aaa tac ttc tgg act ggc ctg Met Lys Lys Tyr Asp Lys Ser Leu Arg Lys Tyr Phe Trp Thr Gly Leu	1680
545 550 555 560	
aga gat gta gat tct tgt gga gag tat aac tgg gca act gtt ggt gga Arg Asp Val Asp Ser Cys Gly Glu Tyr Asn Trp Ala Thr Val Gly Gly	1728
565 570 575	
aga agg cgg gct gta acc ttt tcc aac tgg aat ttt ctt gag cca gct Arg Arg Arg Ala Val Thr Phe Ser Asn Trp Asn Phe Leu Glu Pro Ala	1776
580 585 590	
tcc ccg ggc ggc tgc gtg gct atg tct act gga aag tct gtt gga aag Ser Pro Gly Gly Cys Val Ala Met Ser Thr Gly Lys Ser Val Gly Lys	1824
595 600 605	
tgg gag gtg aag gac tgc aga agc ttc aaa gca ctt tca att tgc aag Trp Glu Val Lys Asp Cys Arg Ser Phe Lys Ala Leu Ser Ile Cys Lys	1872
610 615 620	
aaa atg agt gga ccc ctt ggg cct gaa gaa gca tcc cct aag cct gat Lys Met Ser Gly Pro Leu Gly Pro Glu Glu Ala Ser Pro Lys Pro Asp	1920
625 630 635 640	
gac ccc tgt cct gaa ggc tgg cag agt ttc ccc gca agt ctt tct tgt Asp Pro Cys Pro Glu Gly Trp Gln Ser Phe Pro Ala Ser Leu Ser Cys	1968
645 650 655	
tat aag gta ttc cat gca gaa aga att gta aga aag agg aac tgg gaa	2016

- 6 -

Tyr Lys Val Phe His Ala Glu Arg Ile Val Arg Lys Arg Asn Trp Glu			
660	665	670	
gaa gct gaa cga ttc tgc caa gcc ctt gga gca cac ctt tct agc ttc			2064
Glu Ala Glu Arg Phe Cys Gln Ala Leu Gly Ala His Leu Ser Ser Phe			
675	680	685	
agc cat gtg gat gaa ata aag gaa ttt ctt cac ttt tta acg gac cag			2112
Ser His Val Asp Glu Ile Lys Glu Phe Leu His Phe Leu Thr Asp Gln			
690	695	700	
ttc agt ggc cag cat tgg ctg tgg att ggt ttg aat aaa agg agc cca			2160
Phe Ser Gly Gln His Trp Leu Trp Ile Gly Leu Asn Lys Arg Ser Pro			
705	710	715	720
gat tta caa gga tcc tgg caa tgg agt gat cgt aca cca gtg tct act			2208
Asp Leu Gln Gly Ser Trp Gln Trp Ser Asp Arg Thr Pro Val Ser Thr			
725	730	735	
att atc atg cca aat gag ttt cag cag gat tat gac atc aga gac tgt			2256
Ile Ile Met Pro Asn Glu Phe Gln Gln Asp Tyr Asp Ile Arg Asp Cys			
740	745	750	
gct gct gtc aag gta ttt cat agg cca tgg cga aga ggc tgg cat ttc			2304
Ala Ala Val Lys Val Phe His Arg Pro Trp Arg Arg Gly Trp His Phe			
755	760	765	
tat gat gat aga gaa ttt att tat ttg agg cct ttt gct tgt gat aca			2352
Tyr Asp Asp Arg Glu Phe Ile Tyr Leu Arg Pro Phe Ala Cys Asp Thr			
770	775	780	
aaa ctt gaa tgg gtg tgc caa att cca aaa ggc cgt act cca aaa aca			2400
Lys Leu Glu Trp Val Cys Gln Ile Pro Lys Gly Arg Thr Pro Lys Thr			
785	790	795	800
cca gac tgg tac aat cca gac cgt gct gga att cat gga cct cca ctt			2448
Pro Asp Trp Tyr Asn Pro Asp Arg Ala Gly Ile His Gly Pro Pro Leu			
805	810	815	

- 8 -

Lys Cys Phe Leu Lys Ile Lys Pro Val Ser Leu Thr Phe Ser Gln Ala			
965	970	975	
 agc gat acc tgt cac tcc tat ggt ggc acc ctt cct tca gtg ttg agc Ser Asp Thr Cys His Ser Tyr Gly Gly Thr Leu Pro Ser Val Leu Ser			2976
980	985	990	
 cag att gaa caa gac ttt att aca tcc ttg ctt ccg gat atg gaa gct Gln Ile Glu Gln Asp Phe Ile Thr Ser Leu Leu Pro Asp Met Glu Ala			3024
995	1000	1005	
 act tta tgg att ggt ttg cgc tgg act gcc tat gaa aag ata aac Thr Leu Trp Ile Gly Leu Arg Trp Thr Ala Tyr Glu Lys Ile Asn			3069
1010	1015	1020	
 aaa tgg aca gat aac aga gag ctg acg tac agt aac ttt cac cca Lys Trp Thr Asp Asn Arg Glu Leu Thr Tyr Ser Asn Phe His Pro			3114
1025	1030	1035	
 tta ttg gtt agt ggg agg ctg aga ata cca gaa aat ttt ttt gag Leu Leu Val Ser Gly Arg Leu Arg Ile Pro Glu Asn Phe Phe Glu			3159
1040	1045	1050	
 gaa gag tct cgc tac cac tgt gcc ctá ata ctc aac ctc caa aaa Glu Glu Ser Arg Tyr His Cys Ala Leu Ile Leu Asn Leu Gln Lys			3204
1055	1060	1065	
 tca ccg ttt act ggg acg tgg aat ttt aca tcc tgc agt gaa cgc Ser Pro Phe Thr Gly Thr Trp Asn Phe Thr Ser Cys Ser Glu Arg			3249
1070	1075	1080	
 cac ttt gtg tct ctc tgt cag aaa tat tca gaa gtt aaa agc aga His Phe Val Ser Leu Cys Gln Lys Tyr Ser Glu Val Lys Ser Arg			3294
1085	1090	1095	
 cag acg ttg cag aat gct tca gaa act gta aag tat cta aat aat Gln Thr Leu Gln Asn Ala Ser Glu Thr Val Lys Tyr Leu Asn Asn			3339
1100	1105	1110	

-9-

ctg tac aaa ata atc cca aag act ctg act tgg cac agt gct aaa		3384
Leu Tyr Lys Ile Ile Pro Lys Thr Leu Thr Trp His Ser Ala Lys		
1115 1120 1125		
agg gag tgt ctg aaa agt aac atg cag ctg gtg agc atc acg gac		3429
Arg Glu Cys Leu Lys Ser Asn Met Gln Leu Val Ser Ile Thr Asp		
1130 1135 1140		
cct tac cag cag gca ttc ctc agt gtg cag gcg ctc ctt cac aac		3474
Pro Tyr Gln Gln Ala Phe Leu Ser Val Gln Alà Leu Leu His Asn		
1145 1150 1155		
tct tcc tta tgg atc gga ctc ttc agt caa gat gat gaa ctc aac		3519
Ser Ser Leu Trp Ile Gly Leu Phe Ser Gln Asp Asp Glu Leu Asn		
1160 1165 1170		
ttt ggt tgg tca gat ggg aaa cgt ctt cat ttt agt cgc tgg gct		3564
Phe Gly Trp Ser Asp Gly Lys Arg Leu His Phe Ser Arg Trp Ala		
1175 1180 1185		
gaa act aat ggg caa ctc gaa gac tgt gta gta tta gac act gat		3609
Glu Thr Asn Gly Gln Leu Glu Asp Cys Val Val Leu Asp Thr Asp		
1190 1195 1200		
gga ttc tgg aaa aca gtt gat tgc aat gac aat caa cca ggt gct		3654
Gly Phe Trp Lys Thr Val Asp Cys Asn Asp Asn Gln Pro Gly Ala		
1205 1210 1215		
att tgc tac tat tca gga aat gag act gaa aaa gag gtc aaa cca		3699
Ile Cys Tyr Tyr Ser Gly Asn Glu Thr Glu Lys Glu Val Lys Pro		
1220 1225 1230		
gtt gac agt gtt aaa tgt cca tct cct gtt cta aat act ccg tgg		3744
Val Asp Ser Val Lys Cys Pro Ser Pro Val Leu Asn Thr Pro Trp		
1235 1240 1245		
ata cca ttt cag aac tgt tgc tac aat ttc ata ata aca aag aat		3789

- 10 -

Ile Pro Phe Gln Asn Cys Cys Tyr Asn Phe Ile Ile Thr Lys Asn			
1250	1255	1260	
agg cat atg gca aca aca cag gat gaa gtt cat act aaa tgc cag			3834
Arg His Met Ala Thr Thr Gln Asp Glu Val His Thr Lys Cys Gln			
1265	1270	1275	
aaa ctg aat cca aaa tca cat att ctg agt att cga gat gaa aag			3879
Lys Leu Asn Pro Lys Ser His Ile Leu Ser Ile Arg Asp Glu Lys			
1280	1285	1290	
gag aat aac ttt gtt ctt gag caa ctg ctg tac ttc aat tat atg			3924
Glu Asn Asn Phe Val Leu Glu Gln Leu Leu Tyr Phe Asn Tyr Met			
1295	1300	1305	
gct tca tgg gtc atg tta gga ata act tat aga aat aat tct ctt			3969
Ala Ser Trp Val Met Leu Gly Ile Thr Tyr Arg Asn Asn Ser Leu			
1310	1315	1320	
atg tgg ttt gat aag acc cca ctg tca tat aca cat tgg aga gca			4014
Met Trp Phe Asp Lys Thr Pro Leu Ser Tyr Thr His Trp Arg Ala			
1325	1330	1335	
gga aga cca act ata aaa aat gag aag ttt ttg gct ggt tta agt			4059
Gly Arg Pro Thr Ile Lys Asn Glu Lys Phe Leu Ala Gly Leu Ser			
1340	1345	1350	
act gac ggc ttc tgg gat att caa acc ttt aaa gtt att gaa gaa			4104
Thr Asp Gly Phe Trp Asp Ile Gln Thr Phe Lys Val Ile Glu Glu			
1355	1360	1365	
gca gtt tat ttt cac cag cac agc att ctt gct tgt aaa att gaa			4149
Ala Val Tyr Phe His Gln His Ser Ile Leu Ala Cys Lys Ile Glu			
1370	1375	1380	
atg gtt gac tac aaa gaa gaa cat aat act aca ctg cca cag ttt			4194
Met Val Asp Tyr Lys Glu Glu His Asn Thr Thr Leu Pro Gln Phe			
1385	1390	1395	

- 11 -

atg cca tat gaa gat ggt att tac agt gtt att caa aaa aag gta		4239
Met Pro Tyr Glu Asp Gly Ile Tyr Ser Val Ile Gln Lys Lys Val		
1400 1405 1410		
aca tgg tat gaa gca tta aac atg tgt tct caa agt gga ggt cac		4284
Thr Trp Tyr Glu Ala Leu Asn Met Cys Ser Gln Ser Gly Gly His		
1415 1420 1425		
ttg gca agc gtt cac aac caa aat ggc cag ctc ttt ctg gaa gat		4329
Leu Ala Ser Val His Asn Gln Asn Gly Gln Leu Phe Leu Glu Asp		
1430 1435 1440		
att gta aaa cgt gat gga ttt cca cta tgg gtt ggg ctc tca agt		4374
Ile Val Lys Arg Asp Gly Phe Pro Leu Trp Val Gly Leu Ser Ser		
1445 1450 1455		
cat gat gga agt gaa tca agt ttt gaà tgg tct gat ggt agt aca		4419
His Asp Gly Ser Glu Ser Ser Phe Glu Trp Ser Asp Gly Ser Thr		
1460 1465 1470		
ttt gac tat atc cca tgg aaa ggc caà aca tct cct gga aat tgt		4464
Phe Asp Tyr Ile Pro Trp Lys Gly Gln Thr Ser Pro Gly Asn Cys		
1475 1480 1485		
gtt ctc ttg gat cca aaa gga act tgg aaa cat gaa aaa tgc aac		4509
Val Leu Leu Asp Pro Lys Gly Thr Trp Lys His Glu Lys Cys Asn		
1490 1495 1500		
tct gtt aag gat ggt gct att tgt tat aaa cct aca aaa tct aaa		4554
Ser Val Lys Asp Gly Ala Ile Cys Tyr Lys Pro Thr Lys Ser Lys		
1505 1510 1515		
aag ctg tcc cgt ctt aca tat tca tca aga tgt cca gca gca aaa		4599
Lys Leu Ser Arg Leu Thr Tyr Ser Ser Arg Cys Pro Ala Ala Lys		
1520 1525 1530		
gag aat ggg tca cgg tgg atc cag tac aag ggt cac tgt tac aag		4644

- 12 -

Glu Asn Gly Ser Arg Trp Ile Gln Tyr Lys Gly His Cys Tyr Lys			
1535	1540	1545	
tct gat cag gca ttg cac agt ttt tca gag gcc aaa aaa ttg tgt 4689			
Ser Asp Gln Ala Leu His Ser Phe Ser Glu Ala Lys Lys Leu Cys			
1550	1555	1560	
tca aaa cat gat cac tct gca act atc gtt tcc ata aaa gat gaa 4734			
Ser Lys His Asp His Ser Ala Thr Ile Val Ser Ile Lys Asp Glu			
1565	1570	1575	
gat gag aat aaa ttt gtg agc aga ctg atg agg gaa aat aat aac 4779			
Asp Glu Asn Lys Phe Val Ser Arg Leu Met Arg Glu Asn Asn Asn			
1580	1585	1590	
att acc atg aga gtt tgg ctt gga tta tct caa cat tct gtt gac 4824			
Ile Thr Met Arg Val Trp Leu Gly Leu Ser Gln His Ser Val Asp			
1595	1600	1605	
cag tct tgg agt tgg tta gat gga tca gaa gtg aca ttt gtc aaa 4869			
Gln Ser Trp Ser Trp Leu Asp Gly Ser Glu Val Thr Phe Val Lys			
1610	1615	1620	
tgg gaa aat aaa agt aag agt ggt gtt gga aga tgt agc atg ttg 4914			
Trp Glu Asn Lys Ser Lys Ser Gly Val Gly Arg Cys Ser Met Leu			
1625	1630	1635	
ata gct tca aat gaa act tgg aaa aaa gtt gaa tgt gaa cat ggt 4959			
Ile Ala Ser Asn Glu Thr Trp Lys Lys Val Glu Cys Glu His Gly			
1640	1645	1650	
ttt gga aga gtt gtc tgc aaa gtg cct ctg gac tgt cct tca tct 5004			
Phe Gly Arg Val Val Cys Lys Val Pro Leu Asp Cys Pro Ser Ser			
1655	1660	1665	
act tgg att cag ttc caa gac agt tgt tac att ttt ctc caa gaa 5049			
Thr Trp Ile Gln Phe Gln Asp Ser Cys Tyr Ile Phe Leu Gln Glu			
1670	1675	1680	

- 13 -

gcc atc	aaa gta gaa agc ata	gag gat gtc aga aat	cag tgt act	5094
Ala Ile	Lys Val Glu Ser Ile	Glu Asp Val Arg Asn	Gln Cys Thr	
1685	1690	1695		
gac cat	gga gcg gac atg ata	agc ata cat aat gaa	gaa gaa aat	5139
Asp His	Gly Ala Asp Met Ile	Ser Ile His Asn Glu	Glu Glu Asn	
1700	1705	1710		
gct ttt	ata ctg gat act ttg	aaa aag caa tgg aaa	ggc cca gat	5184
Ala Phe	Ile Leu Asp Thr Leu	Lys Lys Gln Trp Lys	Gly Pro Asp	
1715	1720	1725		
gat atc	cta cta ggc atg ttt	tat gac aca gat gat	gcg agt ttc	5229
Asp Ile	Leu Leu Gly Met Phe	Tyr Asp Thr Asp Asp	Ala Ser Phe	
1730	1735	1740		
aag tgg	ttt gat aat tca aat	atg aca ttt gat aag	tgg aca gac	5274
Lys Trp	Phe Asp Asn Ser Asn	Met Thr Phe Asp Lys	Trp Thr Asp	
1745	1750	1755		
caa gat	gat gat gag gat tta	gtt gac acc tgt gct	ttt ctg cac	5319
Gln Asp	Asp Asp Glu Asp Leu	Val Asp Thr Cys Ala	Phe Leu His	
1760	1765	1770		
atc aag	aca ggt gaa tgg aaa	aaa gga aat tgt gaa	gtt tct tct	5364
Ile Lys	Thr Gly Glu Trp Lys	Lys Gly Asn Cys Glu	Val Ser Ser	
1775	1780	1785		
gtg gaa	gga aca cta tgc aaa	aca gct atc cca tac	aaa agg aaa	5409
Val Glu	Gly Thr Leu Cys Lys	Thr Ala Ile Pro Tyr	Lys Arg Lys	
1790	1795	1800		
tat tta	tca gat aac cac att	tta ata tca gca ttg	gtg att gct	5454
Tyr Leu	Ser Asp Asn His Ile	Leu Ile Ser Ala Leu	Val Ile Ala	
1805	1810	1815		
agc acg	gta att ttg aca gtt	ttg gga gca atc att	tgg ttc ctg	5499

- 14 -

- 15 -

Lys Leu Trp Lys Trp Val Ser Gln His Arg Leu Phe His Leu His Ser
65 70 75 80

Gln Lys Cys Leu Gly Leu Asp Ile Thr Lys Ser Val Asn Glu Leu Arg
85 90 95

Met Phe Ser Cys Asp Ser Ser Ala Met Leu Trp Trp Lys Cys Glu His
100 105 110

His Ser Leu Tyr Gly Ala Ala Arg Tyr Arg Leu Ala Leu Lys Asp Gly
115 120 125

His Gly Thr Ala Ile Ser Asn Ala Ser Asp Val Trp Lys Lys Gly Gly
130 135 140

Ser Glu Glu Ser Leu Cys Asp Gln Pro Tyr His Glu Ile Tyr Thr Arg
145 150 155 160

Asp Gly Asn Ser Tyr Gly Arg Pro Cys Glu Phe Pro Phe Leu Ile Asp
165 170 175

Gly Thr Trp His His Asp Cys Ile Leu Asp Glu Asp His Ser Gly Pro
180 185 190

Trp Cys Ala Thr Thr Leu Asn Tyr Glu Tyr Asp Arg Lys Trp Gly Ile
195 200 205

Cys Leu Lys Pro Glu Asn Gly Cys Glu Asp Asn Trp Glu Lys Asn Glu

- 16 -

210

215

220

Gln Phe Gly Ser Cys Tyr Gln Phe Asn Thr Gln Thr Ala Leu Ser Trp
225 230 235 240

Lys Glu Ala Tyr Val Ser Cys Gln Asn Gln Gly Ala Asp Leu Leu Ser
245 250 255

Ile Asn Ser Ala Ala Glu Leu Thr Tyr Leu Lys Glu Lys Glu Gly Ile
260 265 270

Ala Lys Ile Phe Trp Ile Gly Leu Asn Gln Leu Tyr Ser Ala Arg Gly
275 280 285

Trp Glu Trp Ser Asp His Lys Pro Leu Asn Phe Leu Asn Trp Asp Pro
290 295 300

Asp Arg Pro Ser Ala Pro Thr Ile Gly Gly Ser Ser Cys Ala Arg Met
305 310 315 320

Asp Ala Glu Ser Gly Leu Trp Gln Ser Phe Ser Cys Glu Ala Gln Leu
325 330 335

Pro Tyr Val Cys Arg Lys Pro Leu Asn Asn Thr Val Glu Leu Thr Asp
340 345 350

Val Trp Thr Tyr Ser Asp Thr Arg Cys Asp Ala Gly Trp Leu Pro Asn
355 360 365

- 17 -

Asn Gly Phe Cys Tyr Leu Leu Val Asn Glu Ser Asn Ser Trp Asp Lys
370 375 380

Ala His Ala Lys Cys Lys Ala Phe Ser Ser Asp Leu Ile Ser Ile His
385 390 395 400

Ser Leu Ala Asp Val Glu Val Val Val Thr Lys Leu His Asn Glu Asp
405 410 415

Ile Lys Glu Glu Val Trp Ile Gly Leu Lys Asn Ile Asn Ile Pro Thr
420 425 430

Leu Phe Gln Trp Ser Asp Gly Thr Glu Val Thr Leu Thr Tyr Trp Asp
435 440 445

Glu Asn Glu Pro Asn Val Pro Tyr Asn Lys Thr Pro Asn Cys Val Ser
450 455 460

Tyr Leu Gly Glu Leu Gly Gln Trp Lys Val Gln Ser Cys Glu Glu Lys
465 470 475 480

Leu Lys Tyr Val Cys Lys Arg Lys Gly Glu Lys Leu Asn Asp Ala Ser
485 490 495

Ser Asp Lys Met Cys Pro Pro Asp Glu Gly Trp Lys Arg His Gly Glu
500 505 510

Thr Cys Tyr Lys Ile Tyr Glu Asp Glu Val Pro Phe Gly Thr Asn Cys

- 18 -

515

520

525

Asn Leu Thr Ile Thr Ser Arg Phe Glu Gln Glu Tyr Leu Asn Asp Leu
530 535 540

Met Lys Lys Tyr Asp Lys Ser Leu Arg Lys Tyr Phe Trp Thr Gly Leu
545 550 555 560

Arg Asp Val Asp Ser Cys Gly Glu Tyr Asn Trp Ala Thr Val Gly Gly
565 570 575

Arg Arg Arg Ala Val Thr Phe Ser Asn Trp Asn Phe Leu Glu Pro Ala
580 585 590

Ser Pro Gly Gly Cys Val Ala Met Ser Thr Gly Lys Ser Val Gly Lys
595 600 605

Trp Glu Val Lys Asp Cys Arg Ser Phe Lys Ala Leu Ser Ile Cys Lys
610 615 620

Lys Met Ser Gly Pro Leu Gly Pro Glu Glu Ala Ser Pro Lys Pro Asp
625 630 635 640

Asp Pro Cys Pro Glu Gly Trp Gln Ser Phe Pro Ala Ser Leu Ser Cys
645 650 655

Tyr Lys Val Phe His Ala Glu Arg Ile Val Arg Lys Arg Asn Trp Glu
660 665 670

- 19 -

Glu Ala Glu Arg Phe Cys Gln Ala Leu Gly Ala His Leu Ser Ser Phe
675 680 685

Ser His Val Asp Glu Ile Lys Glu Phe Leu His Phe Leu Thr Asp Gln
690 695 700

Phe Ser Gly Gln His Trp Leu Trp Ile Gly Leu Asn Lys Arg Ser Pro
705 710 715 720

Asp Leu Gln Gly Ser Trp Gln Trp Ser Asp Arg Thr Pro Val Ser Thr
725 730 735

Ile Ile Met Pro Asn Glu Phe Gln Gln Asp Tyr Asp Ile Arg Asp Cys
740 745 750

Ala Ala Val Lys Val Phe His Arg Pro Trp Arg Arg Gly Trp His Phe
755 760 765

Tyr Asp Asp Arg Glu Phe Ile Tyr Leu Arg Pro Phe Ala Cys Asp Thr
770 775 780

Lys Leu Glu Trp Val Cys Gln Ile Pro Lys Gly Arg Thr Pro Lys Thr
785 790 795 800

Pro Asp Trp Tyr Asn Pro Asp Arg Ala Gly Ile His Gly Pro Pro Leu
805 810 815

Ile Ile Glu Gly Ser Glu Tyr Trp Phe Val Ala Asp Leu His Leu Asn

- 20 -

820

825

830

Tyr Glu Glu Ala Val Leu Tyr Cys Ala Ser Asn His Ser Phe Leu Ala
835 840 845

Thr Ile Thr Ser Phe Val Gly Leu Lys Ala Ile Lys Asn Lys Ile Ala
850 855 860

Asn Ile Ser Gly Asp Gly Gln Lys Trp Trp Ile Arg Ile Ser Glu Trp
865 870 875 880

Pro Ile Asp Asp His Phe Thr Tyr Ser Arg Tyr Pro Trp His Arg Phe
885 890 895

Pro Val Thr Phe Gly Glu Glu Cys Leu Tyr Met Ser Ala Lys Thr Trp
900 905 910

Leu Ile Asp Leu Gly Lys Pro Thr Asp Cys Ser Thr Lys Leu Pro Phe
915 920 925

Ile Cys Glu Lys Tyr Asn Val Ser Ser Leu Glu Lys Tyr Ser Pro Asp
930 935 940

Ser Ala Ala Lys Val Gln Cys Ser Glu Gln Trp Ile Pro Phe Gln Asn
945 950 955 960

Lys Cys Phe Leu Lys Ile Lys Pro Val Ser Leu Thr Phe Ser Gln Ala
965 970 975

- 21 -

Ser Asp Thr Cys His Ser Tyr Gly Gly Thr Leu Pro Ser Val Leu Ser
980 985 990

Gln Ile Glu Gln Asp Phe Ile Thr Ser Leu Leu Pro Asp Met Glu Ala
995 1000 1005

Thr Leu Trp Ile Gly Leu Arg Trp Thr Ala Tyr Glu Lys Ile Asn
1010 1015 1020

Lys Trp Thr Asp Asn Arg Glu Leu Thr Tyr Ser Asn Phe His Pro
1025 1030 1035

Leu Leu Val Ser Gly Arg Leu Arg Ile Pro Glu Asn Phe Phe Glu
1040 1045 1050

Glu Glu Ser Arg Tyr His Cys Ala Leu Ile Leu Asn Leu Gln Lys
1055 1060 1065

Ser Pro Phe Thr Gly Thr Trp Asn Phe Thr Ser Cys Ser Glu Arg
1070 1075 1080

His Phe Val Ser Leu Cys Gln Lys Tyr Ser Glu Val Lys Ser Arg
1085 1090 1095

Gln Thr Leu Gln Asn Ala Ser Glu Thr Val Lys Tyr Leu Asn Asn
1100 1105 1110

Leu Tyr Lys Ile Ile Pro Lys Thr Leu Thr Trp His Ser Ala Lys

- 22 -

1115

1120

1125

Arg Glu Cys Leu Lys Ser Asn Met Gln Leu Val Ser Ile Thr Asp
1130 1135 1140

Pro Tyr Gln Gln Ala Phe Leu Ser Val Gln Ala Leu Leu His Asn
1145 1150 1155

Ser Ser Leu Trp Ile Gly Leu Phe Ser Gln Asp Asp Glu Leu Asn
1160 1165 1170

Phe Gly Trp Ser Asp Gly Lys Arg Leu His Phe Ser Arg Trp Ala
1175 1180 1185

Glu Thr Asn Gly Gln Leu Glu Asp Cys Val Val Leu Asp Thr Asp
1190 1195 1200

Gly Phe Trp Lys Thr Val Asp Cys Asn Asp Asn Gln Pro Gly Ala
1205 1210 1215

Ile Cys Tyr Tyr Ser Gly Asn Glu Thr Glu Lys Glu Val Lys Pro
1220 1225 1230

Val Asp Ser Val Lys Cys Pro Ser Pro Val Leu Asn Thr Pro Trp
1235 1240 1245

Ile Pro Phe Gln Asn Cys Cys Tyr Asn Phe Ile Ile Thr Lys Asn
1250 1255 1260

- 23 -

Arg His Met Ala Thr Thr Gln Asp Glu Val His Thr Lys Cys Gln
1265 1270 1275

Lys Leu Asn Pro Lys Ser His Ile Leu Ser Ile Arg Asp Glu Lys
1280 1285 1290

Glu Asn Asn Phe Val Leu Glu Gln Leu Leu Tyr Phe Asn Tyr Met
1295 1300 1305

Ala Ser Trp Val Met Leu Gly Ile Thr Tyr Arg Asn Asn Ser Leu
1310 1315 1320

Met Trp Phe Asp Lys Thr Pro Leu Ser Tyr Thr His Trp Arg Ala
1325 1330 1335

Gly Arg Pro Thr Ile Lys Asn Glu Lys Phe Leu Ala Gly Leu Ser
1340 1345 1350

Thr Asp Gly Phe Trp Asp Ile Gln Thr Phe Lys Val Ile Glu Glu
1355 1360 1365

Ala Val Tyr Phe His Gln His Ser Ile Leu Ala Cys Lys Ile Glu
1370 1375 1380

Met Val Asp Tyr Lys Glu Glu His Asn Thr Thr Leu Pro Gln Phe
1385 1390 1395

Met Pro Tyr Glu Asp Gly Ile Tyr Ser Val Ile Gln Lys Lys Val

- 24 -

1400

1405

1410

Thr Trp Tyr Glu Ala Leu Asn Met Cys Ser Gln Ser Gly Gly His
1415 1420 1425

Leu Ala Ser Val His Asn Gln Asn Gly Gln Leu Phe Leu Glu Asp
1430 1435 1440

Ile Val Lys Arg Asp Gly Phe Pro Leu Trp Val Gly Leu Ser Ser
1445 1450 1455

His Asp Gly Ser Glu Ser Ser Phe Glu Trp Ser Asp Gly Ser Thr
1460 1465 1470

Phe Asp Tyr Ile Pro Trp Lys Gly Gln Thr Ser Pro Gly Asn Cys
1475 1480 1485

Val Leu Leu Asp Pro Lys Gly Thr Trp Lys His Glu Lys Cys Asn
1490 1495 1500

Ser Val Lys Asp Gly Ala Ile Cys Tyr Lys Pro Thr Lys Ser Lys
1505 1510 1515

Lys Leu Ser Arg Leu Thr Tyr Ser Ser Arg Cys Pro Ala Ala Lys
1520 1525 1530

Glu Asn Gly Ser Arg Trp Ile Gln Tyr Lys Gly His Cys Tyr Lys
1535 1540 1545

- 25 -

Ser Asp Gln Ala Leu His Ser Phe Ser Glu Ala Lys Lys Leu Cys
1550 1555 1560

Ser Lys His Asp His Ser Ala Thr Ile Val Ser Ile Lys Asp Glu
1565 1570 1575

Asp Glu Asn Lys Phe Val Ser Arg Leu Met Arg Glu Asn Asn Asn
1580 1585 1590

Ile Thr Met Arg Val Trp Leu Gly Leu Ser Gln His Ser Val Asp
1595 1600 1605

Gln Ser Trp Ser Trp Leu Asp Gly Ser Glu Val Thr Phe Val Lys
1610 1615 1620

Trp Glu Asn Lys Ser Lys Ser Gly Val Gly Arg Cys Ser Met Leu
1625 1630 1635

Ile Ala Ser Asn Glu Thr Trp Lys Lys Val Glu Cys Glu His Gly
1640 1645 1650

Phe Gly Arg Val Val Cys Lys Val Pro Leu Asp Cys Pro Ser Ser
1655 1660 1665

Thr Trp Ile Gln Phe Gln Asp Ser Cys Tyr Ile Phe Leu Gln Glu
1670 1675 1680

Ala Ile Lys Val Glu Ser Ile Glu Asp Val Arg Asn Gln Cys Thr

- 26 -

1685

1690

1695

Asp His Gly Ala Asp Met Ile Ser Ile His Asn Glu Glu Glu Asn
1700 1705 1710

Ala Phe Ile Leu Asp Thr Leu Lys Lys Gln Trp Lys Gly Pro Asp
1715 1720 1725

Asp Ile Leu Leu Gly Met Phe Tyr Asp Thr Asp Asp Ala Ser Phe
1730 1735 1740

Lys Trp Phe Asp Asn Ser Asn Met Thr Phe Asp Lys Trp Thr Asp
1745 1750 1755

Gln Asp Asp Asp Glu Asp Leu Val Asp Thr Cys Ala Phe Leu His
1760 1765 1770

Ile Lys Thr Gly Glu Trp Lys Lys Gly Asn Cys Glu Val Ser Ser
1775 1780 1785

Val Glu Gly Thr Leu Cys Lys Thr Ala Ile Pro Tyr Lys Arg Lys
1790 1795 1800

Tyr Leu Ser Asp Asn His Ile Leu Ile Ser Ala Leu Val Ile Ala
1805 1810 1815

Ser Thr Val Ile Leu Thr Val Leu Gly Ala Ile Ile Trp Phe Leu
1820 1825 1830

- 27 -

Tyr Lys Lys His Ser Asp Ser Arg Phe Thr Thr Val Phe Ser Thr
 1835 1840 1845

Ala Pro Gln Ser Pro Tyr Asn Glu Asp Cys Val Leu Val Val Gly
 1850 1855 1860

Glu Glu Asn Glu Tyr Pro Val Gln Phe Asp
 1865 1870

<210> 3
 <211> 5622
 <212> DNA
 <213> mammalian

<220>
 <221> misc_feature
 <223> Complementary DNA strand displayed in the 3' to 5' direction

<400> 3
 tactcctgtc cgacccgctg gggagcggcg ggcgcgcggaggagatcga cgagaagacc 60
 aagaagctag agcgccctcg gtagaccggcg cgtcgattac tggggaaatgt gtatcgaggta 120
 cctttatgcc cgttcacgtt gttcggtcac atacgcacct atcatcgatc gctgacacta 180
 ctttgactcc tttcaataac cttcacccac agggtcgtag ccgagaaatgt aaacgtgagg 240
 gttttcacgg aaccggagct ataatggttt agccatattac tcgactctta caagtcgaca 300
 ctgagggtcac ggtacgacac caccttaca ctcgtggta gagacatgcc tcgacggcc 360
 atggccgacc gagacttcct acctgtaccg tgcgtttaga gtttacgttag actacagacc 420

- 28 -

ttctttcctc cgagtctcct ttcgaaaca ctggcgaa tagtactcta gatatggct	480
ctacccttga gaataccctc tgAACACTT aaaggtaaga attaactacc ctggaccgt	540
gtactaacgt aagaactact tctagtatca cccgtacca cacggggtg gaatttaata	600
cTTATACTGG CTTTCACCCG GTAGACGAAT TTCGGACTTT TGCCAACACT TCTATTAAACC	660
cttttcttgc tcgtcaaacc ttcaacgatg gttaaattat gagtctgccg agaaagaacc	720
tttcttcgaa tacaaagtac agtcttagtt cctcgactaa atgactcgta gttgtcacga	780
cgacttaatt gaatggaatt tcttttctt ccgtAACGAT TCTAAAAGAC CTAACCAAAT	840
ttagtcgata tgagacgatc tccgaccctt accagtctgg tgTTTGGTAA TTTGAAAGAG	900
ttgaccctag gtctgtccgg gtcacgtgga tgaatccac cgaggtcgac acgttcttac	960
ctacgactca gaccagacac cgtctcgaaa aggacacttc gagttgacgg gatacagacg	1020
tcctttggta atttattatg tcacctaat tgcgtacaga cctgtatgag tctatggcg	1080
acactacgtc cgaccgacgg tttattacct aaaacgatag acgaccattt actttcatta	1140
aggaccctat tccgtgtacg ctttacgttt cggaaagtcat cactggatta gtcgtaaagta	1200
agagatcgac tacacctcca ccaacagtgt tttgaggtat tactcctata gtttcttctt	1260
cacacctatc cggaattctt gtatttgtat ggTTGAAATA aagtcaccag tctaccatga	1320
cttcaatgag attgtataac cctactctta ctgggttac aaggatgtt attctgcggg	1380
ttgacacaaa ggatgaatcc tctcgatcca gtcaccttc aggttagtac actcctcttt	1440
gattttatac atacgttctc tttcccttctt tttgacttac tgcgttcaag actattctac	1500
acaggaggtc tactcccgac cttctctgta cctctttgga caatgttcta aataactccta	1560

- 29 -

ctccaggaa aacttgtt gacgtagac tgatagtat cgtctaaact cgttcttatg 1620
gatttactaa actactttt catactattt agagattttt ttatgaagac ctgaccggac 1680
tctctacatc taagaacacc tctcatattt acccggtgac aaccacccatc ttccgcccga 1740
cattggaaaa ggttgacctt aaaagaactc ggtcgaaggg gccccccgac gcaccgatac 1800
agatgacctt tcagacaacc tttcacccctc cacttcctga cgtttcgaa gtttcgtgaa 1860
agttaaacgt tcttttactc acctggggaa cccggacttc ttctgtggg attcggacta 1920
ctggggacag gacttccgac cgtctcaaag gggcggtcag aaagaacaat attccataag 1980
gtacgtcttt ctaacattc tttctccttg acccttcttc gacttgctaa gacgggtcgg 2040
gaacctcggt tgaaaagatc gaagtcggta cacctacttt atttccttaa agaagtgaaa 2100
aattgcctgg tcaagtcacc ggtcgtaacc gacacctaac caaacttatt ttccctcggt 2160
ctaaatgttc ctaggaccgt tacctcacta gcatgtggc acagatgata atagtaggt 2220
ttactcaaag tcgtcctaattt actgttagtct ctgacacgac gacagttcca taaagtatcc 2280
ggtaccgctt ctccgaccgt aaagatacta ctatctctta aataaataaa ctccggaaaa 2340
cgaacactat gtttgaact tacccacacg gtttaagggtt ttccggcatg aggttttgt 2400
ggtctgacca tgtaggtct ggcacgacccct taagtacctg gaggtgaata ttaacttcct 2460
tcacttataa ccaaacaacg actagaagtg gatttgatac ttcttcggca ggacatgaca 2520
cggtcgttag tgtcgaaaga acgctgatatac tgtagaaaaac accctgattt tcggtagtt 2580
ttgttttatac gtttatatac accactacccgtt ccattctta atcgctcacc 2640
ggttatctac tagaaaaatg tatgagtgct ataggtacccg tggcgaaagg acactgtaaa 2700

- 30 -

ccttcctta cgaacatgta cagacggttc tgaaccgaat agctgaatcc atttgggtgt	2760
ctgacatcat gtttcaacgg gaagttagaca cttttatata tacaaagaag caatctttt	2820
atgtcggtc taagacgtcg atttcacgtt acaagactcg ttacctaagg aaaagtctta	2880
ttcacaaaag atttcttagtt tggcacaga gagtgtaaaa gagttcggtc gctatggaca	2940
gtgaggatac caccgtggga aggaagtcac aactcggtct aacttgttct gaaataatgt	3000
aggaacgaag gcctataacct tcgatgaaat acctaaccaa acgcgacctg acggataactt	3060
ttctatttgt ttacctgtct attgtctctc gactgcatgt cattgaaagt gggtaataac	3120
caatcacccct ccgactctta tggtcttttta aaaaaactcc ttctcagagc gatggtgaca	3180
cgggattatg agttggaggt ttttagtggc aaatgaccct gcaccttaaa atgtaggacg	3240
tcacttgcgg tgaaacacag agagacagtc tttataagtc ttcaattttc gtctgtctgc	3300
aacgtcttac gaagtcttttgc acatttcata gatttattag acatgtttta ttagggtttc	3360
tgagactgaa ccgtgtcacg attttccctc acaagactttt cattgtacgt cgaccactcg	3420
tagtgcctgg gaatggtcgt ccgttaaggag tcaacacgtcc gcgaggaagt gttgagaagg	3480
aataccttagc ctgagaagtc agttctacta cttgagttga aaccaaccag tctacccttt	3540
gcagaagtaa aatcagcgac ccgactttga ttacccgttg agcttctgac acatcataat	3600
ctgtgactac ctaagacctt ttgtcaacta acgttactgt tagttggtcc acgataaacg	3660
atgataagtc ctttactctg actttttctc cagtttggtc aactgtcaca atttacaggt	3720
agaggacaag atttatgagg cacctatggt aaagtcttga caacgatgtt aaagtattat	3780
tgtttcttat ccgtataaccg ttgttggtc ctacttcaag tatgatttac ggtctttgac	3840

- 31 -

ttaggtttta	gtgtataaga	ctcataagct	ctactttcc	tcttattgaa	acaagaactc	3900
gttgacgaca	tgaagttaat	ataccgaagt	acccagtaca	atccttattg	aatatctta	3960
ttaagagaat	acaccaaact	attctgggt	gacagtataat	gtgtaacctc	tcgtccttct	4020
ggttgatatt	tttactctt	caaaaaccga	ccaattcat	gactgccgaa	gaccctataa	4080
gtttggaaat	ttcaataact	tctcgtcaa	ataaaagtgg	tcgtgtcgta	agaacgaaca	4140
tttaacttt	accaactgat	gtttcttctt	gtattatgat	gtgacggtgt	caaataacggt	4200
atacttctac	cataaatgtc	acaataagtt	ttttccatt	gtaccatact	tcgttaattg	4260
tacacaagag	ttcacctcc	agtgaaccgt	tcgcaagtgt	tggtttacc	ggtcgagaaa	4320
gaccttctat	aacattttgc	actacctaata	ggtgataaccc	aacccgagag	ttcagtaacta	4380
ccttcactta	gttcaaaact	taccagacta	ccatcatgta	aactgatata	ggtacctt	4440
ccggtttcta	gaggaccttt	aacacaagag	aacgttaggtt	ttccttgaac	ctttgtactt	4500
tttacgttga	gacaattcct	accacgataa	acaatatttg	gatgttttag	atttttcgac	4560
agggcagaat	gtataagtag	ttctacaggt	cgtcgtttc	tcttacccag	tgccacctag	4620
gtcatgttcc	cagtgacaat	gttcagacta	gtccgttaacg	tgtcaaaaag	tctccggttt	4680
ttaacacaaa	gtttgtact	agtgagacgt	tgttagcaaa	ggtattttct	acttctactc	4740
ttattnaaac	actcgtctga	ctactccctt	ttattattgt	aatggtaactc	tcaaaccgaa	4800
cctaatacgttgc	ttgttaagaca	actggtcaga	accaacca	atctacctag	tcttcactgt	4860
aaacagttta	cccttttatt	ttcattctca	ccacaacctt	ctacatcgta	caactatcga	4920
agtttacttt	gaaccttttt	tcaacttaca	cttgtaaccaa	aaccttctca	acagacgttt	4980

- 32 -

cacggagacc tgacaggaag tagatgaacc taagtcaagg ttctgtcaac aatgtaaaaa	5040
gagggttcttc ggtagttca tcttcgtat ctcctacagt ctttagtcac atgactggta	5100
cctcgccctgt actattcgta tgtattactt cttctttac gaaaatatga cctatgaaac	5160
ttttcgtta cctttccggg tctactatacg gatgatccgt aaaaaatact gtgtctacta	5220
cgctcaaagt tcaccaaact attaagttta tactgtaaac tattcacctg tctggttcta	5280
ctactactcc taaatcaact gtggacacga aaagacgtgt agttctgtcc acttaccttt	5340
tttccttaa cacttcaaag aagacacctt ccttgtata cgttttgtcg atagggtatg	5400
tttccttaa taaatagtct attggtgtaa aattatagtc gtaaccacta acgatcgtgc	5460
cattaaaact gtcaaaaccc tcgttagtaa accaggaca tgtttttgt aagactaaga	5520
gcaaagtgggt gtcaaaaaag ttggcgtggg gtttagtgaa tattacttct gacacaaaac	5580
catcaacctc ttctttact tataggacaa gttaaactga tt	5622

<210> 4
<211> 3740
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (45) . . . (740)
<223>

- 33 -

gct ctg ccc gct ctc ctg ctg ccg ttg ctg ggc ctc gcc gct gct gcc Ala Leu Pro Ala Leu Leu Leu Pro Leu Leu Gly Leu Ala Ala Ala Ala	104
5 10 : 15 20	
 gtc gct gac tgt cct tca tct act tgg att cag ttc caa gac agt tgt Val Ala Asp Cys Pro Ser Ser Thr Trp Ile Gln Phe Gln Asp Ser Cys	152
25 30 35	
 tac att ttt ctc caa gaa gcc atc aaa gta gaa agc ata gag gat gtc Tyr Ile Phe Leu Gln Glu Ala Ile Lys Val Glu Ser Ile Glu Asp Val	200
40 45 50	
 aga aat cag tgt act gac cat gga gct gac atg ata agc ata cat aat Arg Asn Gln Cys Thr Asp His Gly Ala Asp Met Ile Ser Ile His Asn	248
55 60 65	
 gaa gaa gaa aat gct ttt ata ctg gat act ttg aaa aag caa tgg aaa Glu Glu Glu Asn Ala Phe Ile Leu Asp Thr Leu Lys Lys Gln Trp Lys	296
70 75 80	
 ggc cca gat gat atc cta cta ggc atg ttt tat gac aca gat gat gct Gly Pro Asp Asp Ile Leu Leu Gly Met Phe Tyr Asp Thr Asp Asp Ala	344
85 90 95 100	
 agt ttc aag tgg ttt gat aat tca aat atg aca ttt gat aag tgg aca Ser Phe Lys Trp Phe Asp Asn Ser Asn Met Thr Phe Asp Lys Trp Thr	392
105 110 115	
 gac caa gat gat gag gat tta gtt gac acc tgt gct ttt ctg cac Asp Gln Asp Asp Glu Asp Leu Val Asp Thr Cys Ala Phe Leu His	440
120 125 130	
 atc aag aca ggt gaa tgg aaa aag gta aat tgt gaa gtt tct tct gtg Ile Lys Thr Gly Glu Trp Lys Lys Gly Asn Cys Glu Val Ser Ser Val	488
135 140 145	
 gaa gga aca cta tgc aaa aca gct atc cca tac aaa agg aaa tat tta	536

tagtttcatt acttttacac acaccatttt atcacaaatg actcaagttt taatgaatgt 1320
 ttataaatta tttgaaaacaa aatatgatcg ctgtgtccag gatggcatag agaaagctgg 1380
 caatttaggtt aacacttaca tattatagtg ccccttaag gatttctctc ttgccaccat 1440
 acctttgtt ctttccccta tacaagatgt atctcattct cctcaagcat ttataaattt 1500
 ttcccttcaat gacatgaaaaa ctgtgcaagc aaaaaccgaa gaaaaacact taagtacaac 1560
 tgttagtgaca gtgatcaaag ttttcaagtgc atttattgtt catttaaga aaaaggtaaa 1620
 aatcatttgg ggagtaaaaa aatgaaaaaag ctgaaacgag taatttcct caccatcaat 1680
 aaaccaaaaa cagggaaagat aaagaatgta taaatttcac gtaaatttgt cacgtatcac 1740
 ttatcaatgg ggatacgttc taagaaatgc atagtttaggg aatcttgtgt gaaaatcagc 1800
 ttgtatttac acaaaccagg atggtagagc ctatttgtc ccaaacctac acagcatgtt 1860
 actgtgctga atactgcaga caattgtaac acaatatttg tgtatctaaa tatagaaaaag 1920
 gtacagtaaa aatatggtct actaaggaaa cactgttcta tatgtggtcc attactgact 1980
 gaagtataact gtctagaagt ctgaggctca aagaaaaagta atccctttc tgaatccaca 2040
 ccccatcaat tatcttactt tcttctgggg agatagatag atataactatc tcactagtt 2100
 gactaatggc aacaaaggttc cagcttgtgt agtcttttattgaccac atgaatcgaa 2160
 aacactcatc acaattaatg gcactatcat taatgagaca tgagtaacta aaaagtgata 2220
 gaaaactatt acagtgcggc tacatggtac tggaaatgca ggcattacac cagctgttac 2280
 acaagcacaa gcatgctctg taagagctt acatttctga gatTTTGTAT agtgattgag 2340
 atgtctattt tattattgtat agactattac taatgtcaat attgaacact accctggaat 2400

- 36 -

tcctgcctgg ttttcctacc caaattgtac cactccttga agaactacag gcacagtaaa	2460
aaaatatggc gtattatgtg aactaaaaga gttctaaagg agttcttaaa ggagtggtag	2520
aatttggta ggaaagtgtat taagtccaac ttaaaaccaa cagtcctaaa cgtctacaac	2580
tacaatgtcc aatgagccac tagccacatg aggctattta agtaaattta gtttaaaatc	2640
cagtttcga attacattag ccacattgtc aagtgttcaa atcacaggtg gtttagtgct	2700
actgtactgg gcaacataca ttatagaaca ttttcattat aggaagttt attggcagt	2760
gctgcttta aatcctacct tccactcaac tcccatacaa ctttctttt tacatttga	2820
tactttctac ctaatggcag ctcttccaaa atagctgctt taaactctga tttttttc	2880
aatattttgtt ttcatttttc aacaggccaa gagggcctctg gtaatgaagt gctatata	2940
tatatatatg acggagtctc actgtgctgc ccaggctaca gtgcagtggc tcgatcttgg	3000
ctctctccaa tctccgcctt gcaggtttc aagcaattct cctgcctcag cctccttagt	3060
agctgggacc acagacatct gtcaccacac ccagctaact tttgttattt ttggtagaga	3120
ccccgtttcg ccataattgac tgggctggtc tcaactcct gacctaagt gatccaccca	3180
ccttggtctc ccaaagtgtctt gggattacat gctgagccca ccacacttgg cctacattt	3240
ttctttat accagaacat ctataacagg cacattatct actcatttagt gaagagataa	3300
ttggattaca caggcaggct tgtttactac atccagaatg tagaaactgc tttcttcaac	3360
atcttggttc tagctagtaa taacaatata attctttggc agatattcag aataacattt	3420
taaactacat ttcttagaa aattgcattc ttgttagtgag cagtgatgg tctttttgt	3480
tcagaattta aaactgataa ccaatgaaag cctttctct tattcctcta ccgtcattta	3540

- 37 -

catgataatc tgaagctaat atgacaatat ttaaatacta agtggtacta gggactaca	3600
agaataactgt aaagcttaag ccattgttat cactgtcatt tagcattaa taacaaaact	3660
atacagaatt atgtgcatac caatgaatgt tttgtaccat ctagttaat tttttaata	3720
aagtttatg ggtaaggcag	3740

<210> 5
<211> 232
<212> PRT
<213> mammalian

<400> 5

Met Leu Arg Ala Ala Leu Pro Ala Leu Leu Leu Pro Leu Leu Gly Leu			
1	5	10	15

Ala Ala Ala Ala Val Ala Asp Cys Pro Ser Ser Thr Trp Ile Gln Phe			
20	25	30	

Gln Asp Ser Cys Tyr Ile Phe Leu Gln Glu Ala Ile Lys Val Glu Ser			
35	40	45	

Ile Glu Asp Val Arg Asn Gln Cys Thr Asp His Gly Ala Asp Met Ile			
50	55	60	

Ser Ile His Asn Glu Glu Asn Ala Phe Ile Leu Asp Thr Leu Lys			
65	70	75	80

Lys Gln Trp Lys Gly Pro Asp Asp Ile Leu Leu Gly Met Phe Tyr Asp

- 38 -

85

90

95

Thr Asp Asp Ala Ser Phe Lys Trp Phe Asp Asn Ser Asn Met Thr Phe
100 105 110

Asp Lys Trp Thr Asp Gln Asp Asp Asp Glu Asp Leu Val Asp Thr Cys
115 120 125

Ala Phe Leu His Ile Lys Thr Gly Glu Trp Lys Lys Gly Asn Cys Glu
130 135 140

Val Ser Ser Val Glu Gly Thr Leu Cys Lys Thr Ala Ile Pro Tyr Lys
145 150 155 160

Arg Lys Tyr Leu Ser Asp Asn His Ile Leu Ile Ser Ala Leu Val Ile
165 170 175

Ala Ser Thr Val Ile Leu Thr Val Leu Gly Ala Ile Ile Trp Phe Leu
180 185 190

Tyr Lys Lys His Ser Asp Ser Arg Phe Thr Thr Val Phe Ser Thr Ala
195 200 205

Pro Gln Ser Pro Tyr Asn Glu Asp Cys Val Leu Val Val Gly Glu Glu
210 215 220

Asn Glu Tyr Pro Val Gln Phe Asp
225 230

- 39 -

<210> 6
<211> 3740
<212> DNA
<213> mammalian

<220>
<221> misc_feature
<223> Complementary DNA strand displayed in the 3' to 5' direction

<400> 6
gagaggccgg cgcgtcggcg acggcgggtg ggcgtggcg gcagtacgag gcccgccg 60
acgggcgcga ggacgcacggc aacgaccgg agcggcgacg acggcagcgc ctgacaggaa 120
gttagatgaac ctaagtcaag gttctgtcaa caatgtaaaaa agaggttctt cggttagttc 180
atctttcgta tctcctacag tctttagtca catgactggt acctcgctg tactattcgt 240
atgttattact tcttctttta cgaaaatatg acctatgaaa cttttcgtt acctttccgg 300
gtctactata ggatgatecg tacaaaatac tgtgtctact acgctcaaag ttcaccaaac 360
tattaagttt atactgtaaa ctattcacct gtctggttct actactactc ctaaatcaac 420
tgtggacacg aaaagacgtg tagttctgtc cacttacctt ttttccttta acacttcaaa 480
gaagacacct tccttgat acgtttgtc gatagggtat gttttcctt ataaatagtc 540
tattggtgta aaattatagt cgtaaccact aacgatcgtg ccattaaaac tgtcaaaacc 600
ctcgtagta aaccaaggac atgttttttg taagactaag agcaaagtgg tgtcaaaaaa 660
gttggcgtgg ggttagtgga atattacttc tgacacaaaaa ccatcaacct ctttttac 720
ttataggaca agttaaactg attcaaaaac cattagaacg tgattctgta gttgtttacg 780

- 40 -

ggaccgtctc tattgaaccc tttctaaaat tatattttga actgtaacct ataatctcg	840
aattaccata aggaataagg tcattgtaaa aatacatgag tagacgacac ttttcagaaa	900
tccaagtaat tttttgtcc aaaatctta ctagaatcta gattatatca ctaaaattcg	960
tagggcagtt tccgtcttag acagtgaact tacttcctt cgaatttcgg gttcgtctat	1020
ttttatttc gggtcggata aacagaacgg acgacataga aggataaaat caactgggtg	1080
aaatcaaata tacaaataat catttgtact ttacccctta ttcactaaaa ttcatgttagg	1140
gtatgtaaat ttatagaaac tattaacaat aaaaaaaccg tctattaagg agatcttaca	1200
catagaaaaa tactaaatct acttcttta aaatgtgaa aattgtgggg tgtggtaaa	1260
atcaaagtaa tgaaaatgtg tgtggtaaaa tagtgtttac tgagttcaaa attacttaca	1320
aatatttaat aaactttgtt ttatactagc gacacaggtc ctaccgtatc tcttcgacc	1380
gttaatccaa ttgtgaatgt ataatatcac gggaaattc ctaaagagag aacggtggt	1440
tggaaaacat gaaaggggat atgttctaca tagagtaaa ggagttcgta aatatttaaa	1500
aaggaagtta ctgtactttt gacacgttcg ttttggctt cttttgtga attcatgttg	1560
acatcactgt cactagttc aaaagtcacg taaataacat gtaaaattct tttccactt	1620
ttagtaaacc cctcattttt ttacttttc gactttgctc attaaaagga gtggtagtta	1680
tttggttttt gtcctttcta tttcttacat attaaaagtg catttaatca gtgcatacg	1740
aatagttacc cctatgcaag attcttacg tatcaatccc tttagaacaca ctttttagtcg	1800
aacataaaatg tgtttgggtc taccatctcg gataaaacag ggtttggatg tgctgtacaa	1860
tgacacgact tatgacgtct gttaacattg tgttataaac acatagattt atatctttc	1920

- 41 -

catgtcattt ttataccaga tgattccttt gtgacaagat atacaccagg taatgactga	1980
cttcatatga cagatcttca gactccgagt ttctttcat tagggagaag acttaggtgt	2040
ggggtagtta atagaatgaa agaagacccc tctatctatc tatatgatag agtgatcgaa	2100
ctgattaccg ttgtttcaag gtcgaacaca tcagagaaaa ataactggtg tacttagctt	2160
ttgtgagtag tgttaattac cgtgatagta attactctgt actcattgtat ttttcactat	2220
cttttgataa tgcacgccc atgtaccatg actttacgt ccgtaatgtg gtcgacaatg	2280
tgttcgtgtt cgtacgagac attctcgaaa tgtaaagact ctaaaacata tcactaactc	2340
tacagataaa ataataacta tctgataatg attacagtta taacttgtga tgggacotta	2400
aggacggacc aaaaggatgg gtttaacatg gtgaggaact tcttgatgtc cgtgtcattt	2460
ttttataccg cataatacac ttgattttct caagatttcc tcaagaattt cctcaccatc	2520
ttaaaccat ctttcacta attcaggttg aattttgggt gtcagagttt gcagatgtt	2580
atgttacagg ttactcggtg atcggtgtac tccgataaat tcatttaaat caaatttttag	2640
gtcaaaagct taatgttaatc ggtgtaacag ttcacaaagt tagtgtccac caatcacccga	2700
tgacatgacc cgttgtatgt aatatcttgt aaaagtaata tccttcaaaa taaccgtca	2760
cgacgagaat ttaggatgga aggtgagttg agggatgtt gaaagaaaac atgtaaaact	2820
atgaaagatg gattaccgtc gagaaggttt tatcgacgaa atttgagact aaattaaaag	2880
ttataaacca aagtaaaaag ttgtccgggtt ctccggagac cattacttca cgatataat	2940
atatatatac tgccctcagag tgacacgacg ggtccgatgt cacgtcaccg agctagaacc	3000
gagagaggtt agaggcggaa cgtccaaaag ttcgttaaga ggacggagtc ggaggaatca	3060

- 42 -

tcgaccctgg tgtctgtaga cagtggtgtg ggtcgattga aaaacataaa aaccatctct	3120
gcccccaaagg ggtataactg acccgaccag agttttaggaa ctggagttca ctaggtgggt	3180
ggaaccagag ggtttacgca ccctaattgtc cgcaactcggt ggtgtgaacc ggatgtaaaa	3240
aagaaatata tggtcttgcgtata gatattgtcc gtggaaataga tgagtaatca cttctctatt	3300
aacctaattgt gtccgtccga acaaattgtatg taggtcttac atctttgacg aaagaagttg	3360
tagaaccaag atcgatcatt attgttatata taagaaaccg tctataagtc ttattgtaaa	3420
atttgatgtaa aagaatctt ttaacgttaag aacatcactc gtcacatacc agagaaaaca	3480
agtcttaaat tttgactatt ggtaactttc ggaaaagaga ataaggagat ggcagtaat	3540
gtactatttag acttcgatta tactgttata aattttatgtat tcaccatgtat cccttgcgt	3600
tcttatgaca tttcgaattc ggtaacaata gtgacagtaa atcgtaaattt attgtttgt	3660
tatgtcttaa tacacgtatg gttacttaca aaacatggta gatcaattta aaaaattttat	3720
ttcaaaatac ccaattcgtc	3740

<210> 7
<211> 1122
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (364)..(1047)
<223>

<400> 7
aatgccacaa gtgctatgga ttagtcaaca gtgctccacc aatgctctgt cctggttcct

60

- 43 -

atccttgcac tgatgttatg taagatgcta acatttggag aagctgccgc aaggattacg	120
ggaagttctta ttatatttttca acacatttttca gaaagtctga gattacttca gttcaaata	180
gaagtttatac tttaacgaag agaagttgga gtctgcggtg tgtccgcgt tggggatctg	240
agcgtccccag cagtgcgacc ctgggctcca ctccccccgc tcgagtgaaa ggcgtcgaa	300
ctgagctggg agctgcgcac ccgacaagca ccgcgggggg cccgctctcg ggcggcgca	360
gtc atg ccc cac gca gcg ctg tcc tca ctc gtg ctg ctg agc ctc gcc Met Pro His Ala Ala Leu Ser Ser Leu Val Leu Leu Ser Leu Ala	408
1 5 10 15	
act gcc atc gtc gcc gac tgt cct tca tct acc tgg gtc cag ttc caa Thr Ala Ile Val Ala Asp Cys Pro Ser Ser Thr Trp Val Gln Phe Gln	456
20 25 30	
ggc agc tgt tat gct ttt ctt caa gta acc atc aat gtg gaa aac ata Gly Ser Cys Tyr Ala Phe Leu Gln Val Thr Ile Asn Val Glu Asn Ile	504
35 40 45	
gag gat gtc aga aaa cag tgc act gac eac ggg gca gac atg gta agc Glu Asp Val Arg Lys Gln Cys Thr Asp His Gly Ala Asp Met Val Ser	552
50 55 60	
ata cac aat gaa gag gaa aac gcg ttt ata ctg gac act ttg caa aag Ile His Asn Glu Glu Asn Ala Phe Ile Leu Asp Thr Leu Gln Lys	600
65 70 75	
cga tgg aag ggt cca gat gat ctc ctg cta ggc atg ttc tat gac act Arg Trp Lys Gly Pro Asp Asp Leu Leu Leu Gly Met Phe Tyr Asp Thr	648
80 85 90 95	
gat gat gca act ttc aag tgg tat gat cat tca aat atg aca ttc gac Asp Asp Ala Thr Phe Lys Trp Tyr Asp His Ser Asn Met Thr Phe Asp	696
100 105 110	

- 44 -

aag tgg gca gat caa gat ggt gag gac cta gtt gat acc tgt ggt ttt			744
Lys Trp Ala Asp Gln Asp Gly Glu Asp Leu Val Asp Thr Cys Gly Phe			
115	120	125	
ctg tac acc aag aca ggt gaa tgg aga aaa ggg gat tgt gaa atc tct			792
Leu Tyr Thr Lys Thr Gly Glu Trp Arg Lys Gly Asp Cys Glu Ile Ser			
130	135	140	
tct gtg gag gga aca ctt tgc aaa gca gca atc cca tat gac aag aag			840
Ser Val Glu Gly Thr Leu Cys Lys Ala Ala Ile Pro Tyr Asp Lys Lys			
145	150	155	
tat tta tca gat aac cac att tta ata tcg act ctg gtg atc gct agc			888
Tyr Leu Ser Asp Asn His Ile Leu Ile Ser Thr Leu Val Ile Ala Ser			
160	165	170	175
aca gta act ctg gca gtt ttg gga gcg atc att tgg ttc ctc tat aga			936
Thr Val Thr Leu Ala Val Leu Gly Ala Ile Ile Trp Phe Leu Tyr Arg			
180	185	190	
aga aac gcg cgc tct ggc ttc acc tct ttt tca cct gca cca ctg tca			984
Arg Asn Ala Arg Ser Gly Phe Thr Ser Phe Ser Pro Ala Pro Leu Ser			
195	200	205	
cct tac agt gat ggc tgt gcc ctg gta gtt gca gaa gaa gat gaa tat			1032
Pro Tyr Ser Asp Gly Cys Ala Leu Val Val Ala Glu Glu Asp Glu Tyr			
210	215	220	
gct gtt cag ctg gac taagagtttg gtaatatcg gccagcatat tgartccatt			1087
Ala Val Gln Leu Asp			
225			
gacaawaatt tcctgtgcaa ggtttcata taaaa			1122

<210> 8
<211> 228

- 45 -

<212> PRT

<213> mammalian

<400> 8

Met Pro His Ala Ala Leu Ser Ser Leu Val Leu Leu Ser Leu Ala Thr
1 5 10 15

Ala Ile Val Ala Asp Cys Pro Ser Ser Thr Trp Val Gln Phe Gln Gly
20 25 30

Ser Cys Tyr Ala Phe Leu Gln Val Thr Ile Asn Val Glu Asn Ile Glu
35 40 45

Asp Val Arg Lys Gln Cys Thr Asp His Gly Ala Asp Met Val Ser Ile
50 55 60

His Asn Glu Glu Glu Asn Ala Phe Ile Leu Asp Thr Leu Gln Lys Arg
65 70 75 80

Trp Lys Gly Pro Asp Asp Leu Leu Leu Gly Met Phe Tyr Asp Thr Asp
85 90 95

Asp Ala Thr Phe Lys Trp Tyr Asp His Ser Asn Met Thr Phe Asp Lys
100 105 110

Trp Ala Asp Gln Asp Gly Glu Asp Leu Val Asp Thr Cys Gly Phe Leu
115 120 125

Tyr Thr Lys Thr Gly Glu Trp Arg Lys Gly Asp Cys Glu Ile Ser Ser

- 46 -

130

135

140

Val Glu Gly Thr Leu Cys Lys Ala Ala Ile Pro Tyr Asp Lys Lys Tyr
145 150 155 160

Leu Ser Asp Asn His Ile Leu Ile Ser Thr Leu Val Ile Ala Ser Thr
165 170 175

Val Thr Leu Ala Val Leu Gly Ala Ile Ile Trp Phe Leu Tyr Arg Arg
180 185 190

Asn Ala Arg Ser Gly Phe Thr Ser Phe Ser Pro Ala Pro Leu Ser Pro
195 200 205

Tyr Ser Asp Gly Cys Ala Leu Val Val Ala Glu Glu Asp Glu Tyr Ala
210 215 220

Val Gln Leu Asp
225

<210> 9
<211> 1122
<212> DNA
<213> mammalian

<220>
<221> misc_feature
<223> Complementary DNA strand displayed in the 3' to 5' direction

<400> 9

- 47 -

ttacgggttt cacgataacct aatcagttgt cacgagggtgg ttacgagaca ggaccaagga	60
taggaacgtg actacaatac attctacgtat tgtaaaccc tcgcacggcg ttcctaattgc	120
ccttcaagat aaataaaaaac gttgtaaaat ctttcagact ctaatgaagt caagtttact	180
cttcaaatacg aaatttgcttc tcttcaacct cagacgccac acaggcgcgac accccctagac	240
tcgcagggtc gtcacgctgg gaccggaggt gaggggggcg agctcaccct ccgcagcggtt	300
gactcgaccc tcgacgcgtg ggctgttcgt ggccccccccc gggcgagagc cgccgcgcgt	360
cagtagcccc tcgtcgcgac caggagcgag cacgacgact cggagcggtg acggtagcag	420
cggtgcacacg gaagtagatg gaccagggtc aagggttcgt cgacaatacg aaaagaagtt	480
cattggtagt tacacctttt gtatctccta cagtcttttgc tcacgtgact ggtgccccgt	540
ctgtaccatt cgtatgtgtt acttctcctt ttgcgcaaat atgacctgtg aaacgttttc	600
gctaccttcc caggtctact agaggacgt ccgtacaaga tactgtgact actacgttga	660
aagttcacca tactagtaag tttatactgt aaggtgttca cccgtcttagt tctaccactc	720
ctggatcaac tatggacacc aaaagacatg tggttctgtc cacttacctc tttccctta	780
acactttaga gaagacaccc cccttggaa acgtttcggtc gtttagggat actgttcttc	840
ataaaatagtc tattgggtgtt aaattatacg tgagaccact agcgatcggt tcattgagac	900
cgtcaaaacc ctcgcttagta aaccaaggag atatcttctt tgcgcgcgag accgaagtgg	960
agaaaaaaatg gacgtgggtga cagtgaaatg tcaactaccga cacgggacca tcaacgtttt	1020
cttctactta tacgacaagt cgacctgatt ctcaaaaccat tatagtccgg tcgtataact	1080
yaggtaactg ttwttaaagg acacgttcca aaagtatatt tt	1122

- 48 -

<210> 10
<211> 979
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (1)..(672)
<223>

<p><400> 10</p> <p>cac gag gcc tcg cts gtg ctg ctg agc cta gcc act gyc atc ttc gct His Glu Ala Ser Xaa Val Leu Leu Ser Leu Ala Thr Xaa Ile Phe Ala</p>	48		
1 5 10 15			
<p>gac tgt cct tcg tcc atc tgg gtt cag ttc caa ggc agc tgt tac act Asp Cys Pro Ser Ser Ile Trp Val Gln Phe Gln Gly Ser Cys Tyr Thr</p>	96		
20 25 30			
<p>ttt ctt caa gta acc atc aat gtg gaa aac ata gag gat gtc aga aag Phe Leu Gln Val Thr Ile Asn Val Glu Asn Ile Glu Asp Val Arg Lys</p>	144		
35 40 45			
<p>cag tgt act gat cac ggg gca gac ctg gta agt ata cac aat gaa gaa Gln Cys Thr Asp His Gly Ala Asp Leu Val Ser Ile His Asn Glu Glu</p>	192		
50 55 60			
<p>gaa aac gca ttt ata ctg gac act tta caa aag cga tgg aaa ggc ccg Glu Asn Ala Phe Ile Leu Asp Thr Leu Gln Lys Arg Trp Lys Gly Pro</p>	240		
65 70 75 80			
<p>gat gat ctt ctg cta ggc atg ttt tat gac act gat gat gca agt ttc Asp Asp Leu Leu Leu Gly Met Phe Tyr Asp Thr Asp Asp Ala Ser Phe</p>	288		
85 90 95			
<p>aag tgg ttt gat cag tca aat atg aca ttc gac aag tgg gca gat gag</p>	336		

- 49 -

Lys Trp Phe Asp Gln Ser Asn Met Thr Phe Asp Lys Trp Ala Asp Glu			
100	105	110	
 gat ggt gag gac cta gtt gac acc tgt ggt ttt ctg tat gcc aag aca			
Asp Gly Glu Asp Leu Val Asp Thr Cys Gly Phe Leu Tyr Ala Lys Thr			
115	120	125	384
 ggt gaa tgg aga aaa gga aat tgt gaa atg tct tct gtg acr gga aca			
Gly Glu Trp Arg Lys Gly Asn Cys Glu Met Ser Ser Val Xaa Gly Thr			
130	135	140	432
 ctt tgc aaa aca gca atc cca tat gac aag aag tat tta tca gat aac			
Leu Cys Lys Thr Ala Ile Pro Tyr Asp Lys Lys Tyr Leu Ser Asp Asn			
145	150	155	160
 cac att tta ata tcg act ctg gtg atc gct agc aca gtg act ctg gca			
His Ile Leu Ile Ser Thr Leu Val Ile Ala Ser Thr Val Thr Leu Ala			
165	170	175	528
 gtt ttg gga gcg gtc att tgg ttc ctc tat aga agg agc gca cgc tct			
Val Leu Gly Ala Val Ile Trp Phe Leu Tyr Arg Arg Ser Ala Arg Ser			
180	185	190	576
 ggc ttc acc tct ttc tct cct gca cca caa tca cct tac agt gat ggc			
Gly Phe Thr Ser Phe Ser Pro Ala Pro Gln Ser Pro Tyr Ser Asp Gly			
195	200	205	624
 tgt gct ctg gta gtt gcg gaa gaa gat gaa tac tct gtt cag ctg gac			
Cys Ala Leu Val Val Ala Glu Glu Asp Glu Tyr Ser Val Gln Leu Asp			
210	215	220	672
 tgagagtttg ggaacatcag acgagcacac tgaacacacctt gacaagaaaat aatttccttat			
732			
 gcaagattgt catgtaaaat ttgccacgga aaactgaacc ttttatggta ttcccttattc			
792			
 ttctaacaat attttcatgt attcaatgtg acaaaacata aaccttctga ttaaaaaggaa			
852			
 aaaaagttagg tttcagaaaa ggaacttagca cagagctaac ttacaggttt tcttaagttag			
912			

- 50 -

ttttcatttg agtaaatgaa agctacagta caataaagct ggtaaaacgc aaaaaaaaaa 972

aaaaaaaaa 979

<210> 11
 <211> 224
 <212> PRT
 <213> mammalian

<220>
 <221> misc_feature
 <222> (5)..(5)
 <223> The 'Xaa' at location 5 stands for Leu.

<220>
 <221> misc_feature
 <222> (13)..(13)
 <223> The 'Xaa' at location 13 stands for Ala, Val, Asp or Gly.

<220>
 <221> misc_feature
 <222> (142)..(142)
 <223> The 'Xaa' at location 142 stands for Thr.

<400> 11

His Glu Ala Ser Xaa Val Leu Leu Ser Leu Ala Thr Xaa Ile Phe Ala
 1 5 10 15

Asp Cys Pro Ser Ser Ile Trp Val Gln Phe Gln Gly Ser Cys Tyr Thr
 20 25 30

Phe Leu Gln Val Thr Ile Asn Val Glu Asn Ile Glu Asp Val Arg Lys
 35 40 45

- 51 -

Gln Cys Thr Asp His Gly Ala Asp Leu Val Ser Ile His Asn Glu Glu
50 55 60

Glu Asn Ala Phe Ile Leu Asp Thr Leu Gln Lys Arg Trp Lys Gly Pro
65 70 75 80

Asp Asp Leu Leu Leu Gly Met Phe Tyr Asp Thr Asp Asp Ala Ser Phe
85 90 95

Lys Trp Phe Asp Gln Ser Asn Met Thr Phe Asp Lys Trp Ala Asp Glu
100 105 110

Asp Gly Glu Asp Leu Val Asp Thr Cys Gly Phe Leu Tyr Ala Lys Thr
115 120 125

Gly Glu Trp Arg Lys Gly Asn Cys Glu Met Ser Ser Val Xaa Gly Thr
130 135 140

Leu Cys Lys Thr Ala Ile Pro Tyr Asp Lys Lys Tyr Leu Ser Asp Asn
145 150 155 160

His Ile Leu Ile Ser Thr Leu Val Ile Ala Ser Thr Val Thr Leu Ala
165 170 175

Val Leu Gly Ala Val Ile Trp Phe Leu Tyr Arg Arg Ser Ala Arg Ser
180 185 190

- 52 -

Gly Phe Thr Ser Phe Ser Pro Ala Pro Gln Ser Pro Tyr Ser Asp Gly
 195 200 205

Cys Ala Leu Val Val Ala Glu Glu Asp Glu Tyr Ser Val Gln Leu Asp
 210 215 220

<210> 12

<211> 979

<212> DNA

<213> mammalian

<220>

<221> misc_feature

<223> Complementary DNA strand displayed in the 3' to 5' direction

<400> 12

gtgctccgga gcgascacga cgactcggat cggtgacrgt agaagcgact gacaggaagc 60

aggtagaccc aagtcaagg tccgtcgaca atgtgaaaag aagttcattg gtagttacac 120

cttttgtatc tcctacagtc ttgcgtcaca tgacttagtgc cccgtctgga ccattcatat 180

gtgttacttc ttctttgcg taaatatgac ctgtgaaatg tttcgctac cttccggc 240

ctactagaag acgatccgta caaaatactg tgaactactac gttcaaagtt caccaaacta 300

gtcagtttat actgtaagct gttcacccgt ctactcctac cactcctgga tcaactgtgg 360

acaccaaaaag acatacggtt ctgtccactt acccttttc cttaacact ttacagaaga 420

cactgycott gtgaaacgtt ttgtcgtag ggtatactgt tcttcataaa tagtctattg 480

gtgtaaaatt atagctgaga ccactagega tcgtgtcact gagaccgtca aaaccctcgc 540

cagtaaacca aggagatatc ttccctcggt gcgagaccga agtggagaaa gagaggacgt 600

- 53 -

- 54 -

agaggaaaac gaatatgata ttcaatttaa ctaagatttt ggaaatatac gactaagaca 360

aatacccttc agtgattcct ctgtaagatt tcaatataaa acctgataat gaaaatttagt 420

ttttatgata tattacctta ttccagtaac attcattact cttatgtaaa atcactgatc 480

atg 483

<210> 14

<211> 27

<212> DNA

<213> mammalian

<220>

<221> CDS

<222> (1)..(27)

<223>

<400> 14

aaa gtg cct ctg ggc cct gat tac aca :

Lys Val Pro Leu Gly Pro Asp Tyr Thr

1

5

27

<210> 15

<211> 9

<212> PRT

<213> mammalian

<400> 15

Lys Val Pro Leu Gly Pro Asp Tyr Thr

1

5

<210> 16

- 55 -

<211> 42
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (1)..(42)
<223>

<400> 16
aaa gtg cct ctg gac tgt cct tca tct act tgg att cag ttc
Lys Val Pro Leu Asp Cys Pro Ser Ser Thr Trp Ile Gln Phe
1 5 10

42

<210> 17
<211> 14
<212> PRT
<213> mammalian

<400> 17

Lys Val Pro Leu Asp Cys Pro Ser Ser Thr Trp Ile Gln Phe
1 5 10

<210> 18
<211> 42
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (1)..(42)
<223>

- 56 -

<400> 18

```
gct gcc gtc gcg gac tgt cct tca tct act tgg att cag ttc  
Ala Ala Val Ala Asp Cys Pro Ser Ser Thr Trp Ile Gln Phe  
1 5 10
```

42

<210> 19

<211> 14

<212> PRT

<213> mammalian

<400> 19

<210> 20

<211> 5454

<212> DNA

<213> mammalian

<220>

<221> CDS

<222> (1) ., (5451)

<223>

<400> 20

```

atg agg aca ggc tgg gcg acc cct cgc cgc ccg gcg ggg ctc ctc atg
Met Arg Thr Gly Trp Ala Thr Pro Arg Arg Pro Ala Gly Leu Leu Met
1           5           10          15

```

48

96

aat gac ccc ttc acc atc gtc cat gga aat acg ggc aag tgc atc aag

144

- 57 -

Asn Asp Pro Phe Thr Ile Val His Gly Asn Thr Gly Lys Cys Ile Lys 35 40 45	
cca gtg tat ggc tgg ata gta gca gac gac tgt gat gaa act gag gac Pro Val Tyr Gly Trp Ile Val Ala Asp Asp Cys Asp Glu Thr Glu Asp 50 55 60	192
aag tta tgg aag tgg gtg tcc cag cat cgg ctc ttt cat ttg cac tcc Lys Leu Trp Lys Trp Val Ser Gln His Arg Leu Phe His Leu His Ser 65 70 75 80	240
caa aag tgc ctt ggc ctc gat att acc aaa tcg gta aat gag ctg aga Gln Lys Cys Leu Gly Leu Asp Ile Thr Lys Ser Val Asn Glu Leu Arg 85 90 95	288
atg ttc agc tgt gac tcc agt gcc atg ctg tgg tgg aaa tgt gag cac Met Phe Ser Cys Asp Ser Ser Ala Met Leu Trp Trp Lys Cys Glu His 100 105 110	336
cac tct ctg tac gga gct gcc cgg tac cgg ctg gct ctg aag gat gga His Ser Leu Tyr Gly Ala Ala Arg Tyr Arg Leu Ala Leu Lys Asp Gly 115 120 125	384
cat ggc aca gca atc tca aat gca tct gat gtc tgg aag aaa gga ggc His Gly Thr Ala Ile Ser Asn Ala Ser Asp Val Trp Lys Lys Gly Gly 130 135 140	432
tca gag gaa agc ctt tgt gac cag cct tat cat gag atc tat acc aga Ser Glu Glu Ser Leu Cys Asp Gln Pro Tyr His Glu Ile Tyr Thr Arg 145 150 155 160	480
gat ggg aac tct tat ggg aga cct tgt gaa ttt cca ttc tta att gat Asp Gly Asn Ser Tyr Gly Arg Pro Cys Glu Phe Pro Phe Leu Ile Asp 165 170 175	528
ggg acc tgg cat cat gat tgc att ctt gat gaa gat cat agt ggg cca Gly Thr Trp His His Asp Cys Ile Leu Asp Glu Asp His Ser Gly Pro 180 185 190	576

- 58 -

tgg tgt gcc acc acc tta aat tat gaa tat gac cga aag tgg ggc atc			624
Trp Cys Ala Thr Thr Leu Asn Tyr Glu Tyr Asp Arg Lys Trp Gly Ile			
195	200	205	
 tgc tta aag cct gaa aac ggt tgt gaa gat aat tgg gaa aag aac gag			672
Cys Leu Lys Pro Glu Asn Gly Cys Glu Asp Asn Trp Glu Lys Asn Glu			
210	215	220	
 cag ttt gga agt tgc tac caa ttt aat act cag acg gct ctt tct tgg			720
Gln Phe Gly Ser Cys Tyr Gln Phe Asn Thr Gln Thr Ala Leu Ser Trp			
225	230	235	240
 aaa gaa gct tat gtt tca tgt cag aat caa gga gct gat tta ctg agc			768
Lys Glu Ala Tyr Val Ser Cys Gln Asn Gln Gly Ala Asp Leu Leu Ser			
245	250	255	
 atc aac agt gct gaa tta act tac ctt aaa gaa aaa gaa ggc att			816
Ile Asn Ser Ala Ala Glu Leu Thr Tyr Leu Lys Glu Lys Glu Gly Ile			
260	265	270	
 gct aag att ttc tgg att ggt tta aat cag cta tac tct gct aga ggc			864
Ala Lys Ile Phe Trp Ile Gly Leu Asn Gln Leu Tyr Ser Ala Arg Gly			
275	280	285	
 tgg gaa tgg tca gac cac aaa cca tta aac ttt ctc aac tgg gat cca			912
Trp Glu Trp Ser Asp His Lys Pro Leu Asn Phe Leu Asn Trp Asp Pro			
290	295	300	
 gac agg ccc agt gca cct act ata ggt ggc tcc agc tgt gca aga atg			960
Asp Arg Pro Ser Ala Pro Thr Ile Gly Gly Ser Ser Cys Ala Arg Met			
305	310	315	320
 gat gct gag tct ggt ctg tgg cag agc ttt tcc tgt gaa gct caa ctg			1008
Asp Ala Glu Ser Gly Leu Trp Gln Ser Phe Ser Cys Glu Ala Gln Leu			
325	330	335	
 ccc tat gtc tgc agg aaa cca tta aat aat aca gtg gag tta aca gat			1056

- 59 -

Pro Tyr Val Cys Arg Lys Pro Leu Asn Asn Thr Val Glu Leu Thr Asp			
340	345	350	
gtc tgg aca tac tca gat acc cgc tgt gat gca ggc tgg ctg cca aat			1104
Val Trp Thr Tyr Ser Asp Thr Arg Cys Asp Ala Gly Trp Leu Pro Asn			
355	360	365	
aat gga ttt tgc tat ctg ctg gta aat gaa agt aat tcc tgg gat aag			1152
Asn Gly Phe Cys Tyr Leu Leu Val Asn Glu Ser Asn Ser Trp Asp Lys			
370	375	380	
gca cat gcg aaa tgc aaa gcc ttc agt agt gac cta atc agc att cat			1200
Ala His Ala Lys Cys Lys Ala Phe Ser Ser Asp Leu Ile Ser Ile His			
385	390	395	400
tct cta gca gat gtg gag gtg gtt gtc aca aaa ctc cat aat gag gat			1248
Ser Leu Ala Asp Val Glu Val Val Thr Lys Leu His Asn Glu Asp			
405	410	415	
atc aaa gaa gaa gtg tgg ata ggc ctt aag aac ata aac ata cca act			1296
Ile Lys Glu Glu Val Trp Ile Gly Leu Lys Asn Ile Asn Ile Pro Thr			
420	425	430	
tta ttt cag tgg tca gat ggt act gaa gtt act cta aca tat tgg gat			1344
Leu Phe Gln Trp Ser Asp Gly Thr Glu Val Thr Leu Thr Tyr Trp Asp			
435	440	445	
gag aat gag cca aat gtt ccc tac aat aag acg ccc aac tgc gtt tcc			1392
Glu Asn Glu Pro Asn Val Pro Tyr Asn Lys Thr Pro Asn Cys Val Ser			
450	455	460	
tac tta gga gag cta ggt cag tgg aaa gtc caa tca tgc gag gag aaa			1440
Tyr Leu Gly Glu Leu Gly Gln Trp Lys Val Gln Ser Cys Glu Glu Lys			
465	470	475	480
cta aaa tat gta tgc aag aga aag gga gaa aaa ctg aat gac gca agt			1488
Leu Lys Tyr Val Cys Lys Arg Lys Gly Glu Lys Leu Asn Asp Ala Ser			
485	490	495	

- 60 -

tct gat aag atg tgt cct cca gat gag ggc tgg aag aga cat gga gaa			1536
Ser Asp Lys Met Cys Pro Pro Asp Glu Gly Trp Lys Arg His Gly Glu			
500	505	510	
acc tgt tac aag att tat gag gag gtc cct ttt gga aca aac tgc			1584
Thr Cys Tyr Lys Ile Tyr Glu Asp Glu Val Pro Phe Gly Thr Asn Cys			
515	520	525	
aat ctg act atc act agc aga ttt gag caa gaa tac cta aat gat ttg			1632
Asn Leu Thr Ile Thr Ser Arg Phe Glu Gln Glu Tyr Leu Asn Asp Leu			
530	535	540	
atg aaa aag tat gat aaa tct cta aga aaa tac ttc tgg act ggc ctg			1680
Met Lys Lys Tyr Asp Lys Ser Leu Arg Lys Tyr Phe Trp Thr Gly Leu			
545	550	555	560
aga gat gta gat tct tgt gga gag tat aac tgg gca act gtt ggt gga			1728
Arg Asp Val Asp Ser Cys Gly Glu Tyr Asn Trp Ala Thr Val Gly Gly			
565	570	575	
aga agg cgg gct gta acc ttt tcc aac tgg aat ttt ctt gag cca gct			1776
Arg Arg Arg Ala Val Thr Phe Ser Asn Trp Asn Phe Leu Glu Pro Ala			
580	585	590	
tcc ccg ggc ggc tgc gtg gct atg tct act gga aag tct gtt gga aag			1824
Ser Pro Gly Gly Cys Val Ala Met Ser Thr Gly Lys Ser Val Gly Lys			
595	600	605	
tgg gag gtg aag gac tgc aga agc ttc aaa gca ctt tca att tgc aag			1872
Trp Glu Val Lys Asp Cys Arg Ser Phe Lys Ala Leu Ser Ile Cys Lys			
610	615	620	
aaa atg agt gga ccc ctt ggg cct gaa gaa gca tcc cct aag cct gat			1920
Lys Met Ser Gly Pro Leu Gly Pro Glu Glu Ala Ser Pro Lys Pro Asp			
625	630	635	640
gac ccc tgt cct gaa ggc tgg cag agt ttc ccc gca agt ctt tct tgt			1968

- 61 -

Asp Pro Cys Pro Glu Gly Trp Gln Ser Phe Pro Ala Ser Leu Ser Cys
645 .650 .655

tat aag gta ttc cat gca gaa aga att gta aga aag agg aac tgg gaa 2016
 Tyr Lys Val Phe His Ala Glu Arg Ile Val Arg Lys Arg Asn Trp Glu
 660 665 : 670

gaa gct gaa cga ttc tgc caa gcc ctt gga gca cac ctt tct agc ttc 2064
 Glu Ala Glu Arg Phe Cys Gln Ala Leu Gly Ala His Leu Ser Ser Phe
 675 680 685

agc cat gtg gat gaa ata aag gaa ttt ctt cac ttt tta acg gac cag 2112
 Ser His Val Asp Glu Ile Lys Glu Phe Leu His Phe Leu Thr Asp Gln
 690 . 695 . 700

ttc agt ggc cag cat tgg ctg tgg att ggt ttg aat aaa agg agc cca :
 Phe Ser Gly Gln His Trp Leu Trp Ile Gly Leu Asn Lys Arg Ser Pro 2160
 705 710 715 720

gat tta caa gga tcc tgg caa tgg agt gat cgt aca cca gtg tct act 2208
Asp Leu Gln Gly Ser Trp Gln Trp Ser Asp Arg Thr Pro Val Ser Thr
725 730 735

att atc atg cca aat gag ttt cag cag gat tat gac atc aga gac tgt 2256
 Ile Ile Met Pro Asn Glu Phe Gln Gln Asp Tyr Asp Ile Arg Asp Cys
 740 745 750

gct gct gtc aag gta ttt cat agg cca tgg cga aga ggc tgg cat ttc 2304
 Ala Ala Val Lys Val Phe His Arg Pro Trp Arg Arg Gly Trp His Phe
 755 760 765

tat gat gat aga gaa ttt att tat ttg agg cct ttt gct tgt gat aca 2352
 Tyr Asp Asp Arg Glu Phe Ile Tyr Leu Arg Pro Phe Ala Cys Asp Thr
 770 . . . 775 . . . 780

aaa ctt gaa tgg gtg tgc caa att cca aaa ggc cgt act cca aaa aca 2400
 Lys Leu Glu Trp Val Cys Gln Ile Pro Lys Gly Arg Thr Pro Lys Thr
 785 790 795 800

cca gac tgg tac aat cca gac cgt gct gga att cat gga cct cca ctt			2448
Pro Asp Trp Tyr Asn Pro Asp Arg Ala Gly Ile His Gly Pro Pro Leu			
805	810	815	
ata att gaa gga agt gaa tat tgg ttt gtt gct gat ctt cac cta aac			2496
Ile Ile Glu Gly Ser Glu Tyr Trp Phe Val Ala Asp Leu His Leu Asn			
820	825	830	
tat gaa gaa gcc gtc ctg tac tgt gcc agc aat cac agc ttt ctt gcg			2544
Tyr Glu Glu Ala Val Leu Tyr Cys Ala Ser Asn His Ser Phe Leu Ala			
835	840	845	
act ata aca tct ttt gtg gga cta aaa gcc atc aaa aac aaa ata gca			2592
Thr Ile Thr Ser Phe Val Gly Leu Lys Ala Ile Lys Asn Lys Ile Ala			
850	855	860	
aat ata tct ggt gat gga cag aag tgg tgg ata aga att agc gag tgg			2640
Asn Ile Ser Gly Asp Gly Gln Lys Trp Trp Ile Arg Ile Ser Glu Trp			
865	870	875	880
cca ata gat gat cat ttt aca tac tca cga tat cca tgg cac cgc ttt			2688
Pro Ile Asp Asp His Phe Thr Tyr Ser Arg Tyr Pro Trp His Arg Phe			
885	890	895	
cct gtg aca ttt gga gag gaa tgc ttg tac atg tct gcc aag act tgg			2736
Pro Val Thr Phe Gly Glu Glu Cys Leu Tyr Met Ser Ala Lys Thr Trp			
900	905	910	
ctt atc gac tta ggt aaa cca aca gac tgt agt acc aag ttg ccc ttc			2784
Leu Ile Asp Leu Gly Lys Pro Thr Asp Cys Ser Thr Lys Leu Pro Phe			
915	920	925	
atc tgt gaa aaa tat aat gtt tct tcg tta gag aaa tac agc cca gat			2832
Ile Cys Glu Lys Tyr Asn Val Ser Ser Leu Glu Lys Tyr Ser Pro Asp			
930	935	940	
tct gca gct aaa gtg caa tgt tct gag caa tgg att cct ttt cag aat			2880

- 63 -

Ser Ala Ala Lys Val Gln Cys Ser Glu Gln Trp Ile Pro Phe Gln Asn			
945	950	955	960
aag tgt ttt cta aag atc aaa ccc gtg tct ctc aca ttt tct caa gca			2928
Lys Cys Phe Leu Lys Ile Lys Pro Val Ser Leu Thr Phe Ser Gln Ala			
965	970	975	
agc gat acc tgt cac tcc tat ggt ggc acc ctt cct tca gtg ttg agc			2976
Ser Asp Thr Cys His Ser Tyr Gly Thr Leu Pro Ser Val Leu Ser			
980	985	990	
cag att gaa caa gac ttt att aca tcc ttg ctt ccg gat atg gaa gct			3024
Gln Ile Glu Gln Asp Phe Ile Thr Ser Leu Leu Pro Asp Met Glu Ala			
995	1000	1005	
act tta tgg att ggt ttg cgc tgg act gcc tat gaa aag ata aac			3069
Thr Leu Trp Ile Gly Leu Arg Trp Thr Ala Tyr Glu Lys Ile Asn			
1010	1015	1020	
aaa tgg aca gat aac aga gag ctg acg tac agt aac ttt cac cca			3114
Lys Trp Thr Asp Asn Arg Glu Leu Thr Tyr Ser Asn Phe His Pro			
1025	1030	1035	
tta ttg gtt agt ggg agg ctg aga atā cca gaa aat ttt ttt gag			3159
Leu Leu Val Ser Gly Arg Leu Arg Ilé Pro Glu Asn Phe Phe Glu			
1040	1045	1050	
gaa gag tct cgc tac cac tgt gcc cta ata ctc aac ctc caa aaa			3204
Glu Glu Ser Arg Tyr His Cys Ala Leū Ile Leu Asn Leu Gln Lys			
1055	1060	1065	
tca ccg ttt act ggg acg tgg aat tt̄ aca tcc tgc agt gaa cgc			3249
Ser Pro Phe Thr Gly Thr Trp Asn Phe Thr Ser Cys Ser Glu Arg			
1070	1075	1080	
cac ttt gtg tct ctc tgt cag aaa tat tca gaa gtt aaa agc aga			3294
His Phe Val Ser Leu Cys Gln Lys Tyr Ser Glu Val Lys Ser Arg			
1085	1090	1095	

- 64 -

cag acg ttg cag aat gct tca	gaa act gta aag tat	cta aat aat	3339
Gln Thr Leu Gln Asn Ala Ser	Glu Thr Val Lys Tyr	Leu Asn Asn	
1100	1105	1110	
ctg tac aaa ata atc cca aag	act ctg act tgg cac	agt gct aaa	3384
Leu Tyr Lys Ile Ile Pro Lys	Thr Leu Thr Trp His	Ser Ala Lys	
1115	1120	1125	
agg gag tgt ctg aaa agt aac	atg cag ctg gtg agc	atc acg gac	3429
Arg Glu Cys Leu Lys Ser Asn	Met Gln Leu Val Ser	Ile Thr Asp	
1130	1135	1140	
cct tac cag cag gca ttc ctc	agt gtg cag gcg ctc	ctt cac aac	3474
Pro Tyr Gln Gln Ala Phe Leu	Ser Val Gln Ala Leu	Leu His Asn	
1145	1150	1155	
tct tcc tta tgg atc gga ctc	ttc agt caa gat gat	gaa ctc aac	3519
Ser Ser Leu Trp Ile Gly Leu	Phe Ser Gln Asp Asp	Glu Leu Asn	
1160	1165	1170	
ttt ggt tgg tca gat ggg aaa	cgt ctt cat ttt agt	cgc tgg gct	3564
Phe Gly Trp Ser Asp Gly Lys	Arg Leu His Phe Ser	Arg Trp Ala	
1175	1180	1185	
gaa act aat ggg caa ctc gaa	gac tgt gta gta tta	gac act gat	3609
Glu Thr Asn Gly Gln Leu Glu	Asp Cys Val Val Leu	Asp Thr Asp	
1190	1195	1200	
gga ttc tgg aaa aca gtt gat	tgc aat gac aat caa	cca ggt gct	3654
Gly Phe Trp Lys Thr Val Asp	Cys Asn Asp Asn Gln	Pro Gly Ala	
1205	1210	1215	
att tgc tac tat tca gga aat	gag act gaa aaa gag	gtc aaa cca	3699
Ile Cys Tyr Tyr Ser Gly Asn	Glu Thr Glu Lys Glu	Val Lys Pro	
1220	1225	1230	
gtt gac agt gtt aaa tgt cca	tct cct gtt cta aat	act ccg tgg	3744

- 65 -

Val Asp Ser Val Lys Cys Pro	Ser Pro Val Leu Asn	Thr Pro Trp	
1235	1240	1245	
 ata cca ttt cag aac tgt tgc tac aat ttc ata ata aca aag aat Ile Pro Phe Gln Asn Cys Cys Tyr Asn Phe Ile Ile Thr Lys Asn			3789
1250	1255	1260	
 agg cat atg gca aca aca cag gat gaa gtt cat act aaa tgc cag Arg His Met Ala Thr Thr Gln Asp Glu Val His Thr Lys Cys Gln			3834
1265	1270	1275	
 aaa ctg aat cca aaa tca cat att ctg agt att cga gat gaa aag Lys Leu Asn Pro Lys Ser His Ile Leu Ser Ile Arg Asp Glu Lys			3879
1280	1285	1290	
 gag aat aac ttt gtt ctt gag caa ctg ctg tac ttc aat tat atg Glu Asn Asn Phe Val Leu Glu Gln Leu Leu Tyr Phe Asn Tyr Met			3924
1295	1300	1305	
 gct tca tgg gtc atg tta gga ata act tat aga aat aat tct ctt Ala Ser Trp Val Met Leu Gly Ile Thr Tyr Arg Asn Asn Ser Leu			3969
1310	1315	1320	
 atg tgg ttt gat aag acc cca ctg tca tat aca cat tgg aga gca Met Trp Phe Asp Lys Thr Pro Leu Ser Tyr Thr His Trp Arg Ala			4014
1325	1330	1335	
 gga aga cca act ata aaa aat gag aag ttt ttg gct ggt tta agt Gly Arg Pro Thr Ile Lys Asn Glu Lys Phe Leu Ala Gly Leu Ser			4059
1340	1345	1350	
 act gac ggc ttc tgg gat att caa acc ttt aaa gtt att gaa gaa Thr Asp Gly Phe Trp Asp Ile Gln Thr Phe Lys Val Ile Glu Glu			4104
1355	1360	1365	
 gca gtt tat ttt cac cag cac agc att ctt gct tgt aaa att gaa Ala Val Tyr Phe His Gln His Ser Ile Leu Ala Cys Lys Ile Glu			4149
1370	1375	1380	

- 66 -

atg gtt gac tac aaa gaa gaa	cat aat act aca ctg	cca cag ttt	4194
Met Val Asp Tyr Lys Glu Glu	His Asn Thr Thr Leu	Pro Gln Phe	
1385	1390	1395	
atg cca tat gaa gat ggt att	tac agt gtt att caa	aaa aag gta	4239
Met Pro Tyr Glu Asp Gly Ile	Tyr Ser Val Ile Gln	Lys Lys Val	
1400	1405	1410	
aca tgg tat gaa gca tta aac	atg tgt tct caa agt	gga ggt cac	4284
Thr Trp Tyr Glu Ala Leu Asn	Met Cys Ser Gln Ser	Gly Gly His	
1415	1420	1425	
ttg gca agc gtt cac aac caa	aat ggc cag ctc ttt	ctg gaa gat	4329
Leu Ala Ser Val His Asn Gln	Asn Gly Gln Leu Phe	Leu Glu Asp	
1430	1435	1440	
att gta aaa cgt gat gga ttt	cca cta tgg gtt ggg	ctc tca agt	4374
Ile Val Lys Arg Asp Gly Phe	Pro Leu Trp Val Gly	Leu Ser Ser	
1445	1450	1455	
cat gat gga agt gaa tca agt	ttt gaa tgg tct gat	ggt agt aca	4419
His Asp Gly Ser Glu Ser Ser	Phe Glu Trp Ser Asp	Gly Ser Thr	
1460	1465	1470	
ttt gac tat atc cca tgg aaa	ggc caa aca tct cct	gga aat tgt	4464
Phe Asp Tyr Ile Pro Trp Lys	Gly Gln Thr Ser Pro	Gly Asn Cys	
1475	1480	1485	
gtt ctc ttg gat cca aaa gga	act tgg aaa cat gaa	aaa tgc aac	4509
Val Leu Leu Asp Pro Lys Gly	Thr Trp Lys His Glu	Lys Cys Asn	
1490	1495	1500	
tct gtt aag gat ggt gct att	tgt tat aaa cct aca	aaa tct aaa	4554
Ser Val Lys Asp Gly Ala Ile	Cys Tyr Lys Pro Thr	Lys Ser Lys	
1505	1510	1515	
aag ctg tcc cgt ctt aca tat	tca tca aga tgt cca	gca gca aaa	4599

- 67 -

Lys	Leu	Ser	Arg	Leu	Thr	Tyr	Ser	Ser	Arg	Cys	Pro	Ala	Ala	Lys	
1520							1525					1530			
														4644	
gag	aat	ggg	tca	cgg	tgg	atc	cag	tac	aag	ggt	cac	tgt	tac	aag	
Glu	Asn	Gly	Ser	Arg	Trp	Ile	Gln	Tyr	Lys	Gly	His	Cys	Tyr	Lys	
1535							1540					1545			
														4689	
tct	gat	cag	gca	ttg	cac	agt	ttt	tca	gag	gcc	aaa	aaa	ttg	tgt	
Ser	Asp	Gln	Ala	Leu	His	Ser	Phe	Ser	Glu	Ala	Lys	Lys	Leu	Cys	
1550							1555					1560			
														4734	
tca	aaa	cat	gat	cac	tct	gca	act	atc	gtt	tcc	ata	aaa	gat	gaa	
Ser	Lys	His	Asp	His	Ser	Ala	Thr	Ile	Val	Ser	Ile	Lys	Asp	Glu	
1565							1570					1575			
														4779	
gat	gag	aat	aaa	ttt	gtg	agc	aga	ctg	atg	agg	gaa	aat	aat	aac	
Asp	Glu	Asn	Lys	Phe	Val	Ser	Arg	Leu	Met	Arg	Glu	Asn	Asn	Asn	
1580							1585					1590			
														4824	
att	acc	atg	aga	gtt	tgg	ctt	gga	ttt	tct	caa	cat	tct	gtt	gac	
Ile	Thr	Met	Arg	Val	Trp	Leu	Gly	Leu	Ser	Gln	His	Ser	Val	Asp	
1595							1600					1605			
														4869	
tgt	cct	tca	tct	act	tgg	att	cag	ttt	caa	gac	agt	tgt	tac	att	
Cys	Pro	Ser	Ser	Thr	Trp	Ile	Gln	Ph	Gln	Asp	Ser	Cys	Tyr	Ile	
1610							1615					1620			
														4914	
ttt	ctc	caa	gaa	gcc	atc	aaa	gta	gaa	agc	ata	gag	gat	gtc	aga	
Phe	Leu	Gln	Glu	Ala	Ile	Lys	Val	Glu	Ser	Ile	Glu	Asp	Val	Arg	
1625							1630					1635			
														4959	
aat	cag	tgt	act	gac	cat	gga	gcg	gac	atg	ata	agc	ata	cat	aat	
Asn	Gln	Cys	Thr	Asp	His	Gly	Ala	Asp	Met	Ile	Ser	Ile	His	Asn	
1640							1645					1650			
														5004	
gaa	gaa	gaa	aat	gtt	ttt	ata	ctg	gat	act	ttg	aaa	aag	caa	tgg	
Glu	Glu	Glu	Asn	Ala	Phe	Ile	Leu	Asp	Thr	Leu	Lys	Lys	Gln	Trp	
1655							1660					1665			

- 68 -

aaa ggc cca gat gat atc cta cta ggc atg ttt tat gac aca gat		5049
Lys Gly Pro Asp Asp Ile Leu Leu Gly Met Phe Tyr Asp Thr Asp		
1670 1675 1680		
gat gcg agt ttc aag tgg ttt gat aat tca aat atg aca ttt gat		5094
Asp Ala Ser Phe Lys Trp Phe Asp Asn Ser Asn Met Thr Phe Asp		
1685 1690 1695		
aag tgg aca gac caa gat gat gat gag gat tta gtt gac acc tgt		5139
Lys Trp Thr Asp Gln Asp Asp Asp Glu Asp Leu Val Asp Thr Cys		
1700 1705 1710		
gct ttt ctg cac atc aag aca ggt gaa tgg aaa aaa gga aat tgt		5184
Ala Phe Leu His Ile Lys Thr Gly Glu Trp Lys Lys Gly Asn Cys		
1715 1720 1725		
gaa gtt tct tct gtg gaa gga aca cta tgc aaa aca gct atc cca		5229
Glu Val Ser Ser Val Glu Gly Thr Leu Cys Lys Thr Ala Ile Pro		
1730 1735 1740		
tac aaa agg aaa tat tta tca gat aac cac att tta ata tca gca		5274
Tyr Lys Arg Lys Tyr Leu Ser Asp Asn His Ile Leu Ile Ser Ala		
1745 1750 1755		
ttg gtg att gct agc acg gta att ttg aca gtt ttg gga gca atc		5319
Leu Val Ile Ala Ser Thr Val Ile Leu Thr Val Leu Gly Ala Ile		
1760 1765 1770		
att tgg ttc ctg tac aaa aaa cat tct gat tct cgt ttc acc aca		5364
Ile Trp Phe Leu Tyr Lys Lys His Ser Asp Ser Arg Phe Thr Thr		
1775 1780 1785		
gtt ttt tca acc gca ccc caa tca cct tat aat gaa gac tgt gtt		5409
Val Phe Ser Thr Ala Pro Gln Ser Pro Tyr Asn Glu Asp Cys Val		
1790 1795 1800		
ttg gta gtt gga gaa aat gaa tat cct gtt caa ttt gac taa		5454

- 69 -

Leu Val Val Gly Glu Glu Asn Glu Tyr Pro Val Gln Phe Asp
1805 1810 1815

<210> 21
<211> 1817
<212> PRT
<213> mammalian

<400> 21

Met Arg Thr Gly Trp Ala Thr Pro Arg Arg Pro Ala Gly Leu Leu Met
1 5 10 15

Leu Leu Phe Trp Phe Phe Asp Leu Ala Glu Pro Ser Gly Arg Ala Ala
20 25 30

Asn Asp Pro Phe Thr Ile Val His Gly Asn Thr Gly Lys Cys Ile Lys
35 40 45

Pro Val Tyr Gly Trp Ile Val Ala Asp Asp Cys Asp Glu Thr Glu Asp
50 55 60

Lys Leu Trp Lys Trp Val Ser Gln His Arg Leu Phe His Leu His Ser
65 70 75 80

Gln Lys Cys Leu Gly Leu Asp Ile Thr Lys Ser Val Asn Glu Leu Arg
85 90 95

Met Phe Ser Cys Asp Ser Ser Ala Met Leu Trp Trp Lys Cys Glu His
100 105 110

- 70 -

His Ser Leu Tyr Gly Ala Ala Arg Tyr Arg Leu Ala Leu Lys Asp Gly
115 120 125

His Gly Thr Ala Ile Ser Asn Ala Ser Asp Val Trp Lys Lys Gly Gly
130 135 140

Ser Glu Glu Ser Leu Cys Asp Gln Pro Tyr His Glu Ile Tyr Thr Arg
145 150 155 160

Asp Gly Asn Ser Tyr Gly Arg Pro Cys Glu Phe Pro Phe Leu Ile Asp
165 170 175

Gly Thr Trp His His Asp Cys Ile Leu Asp Glu Asp His Ser Gly Pro
180 185 190

Trp Cys Ala Thr Thr Leu Asn Tyr Glu Tyr Asp Arg Lys Trp Gly Ile
195 200 205

Cys Leu Lys Pro Glu Asn Gly Cys Glu Asp Asn Trp Glu Lys Asn Glu
210 215 220

Gln Phe Gly Ser Cys Tyr Gln Phe Asn Thr Gln Thr Ala Leu Ser Trp
225 230 235 240

Lys Glu Ala Tyr Val Ser Cys Gln Asn Gln Gly Ala Asp Leu Leu Ser
245 250 255

Ile Asn Ser Ala Ala Glu Leu Thr Tyr Leu Lys Glu Lys Glu Gly Ile

- 71 -

260

265

270

Ala Lys Ile Phe Trp Ile Gly Leu Asn Gln Leu Tyr Ser Ala Arg Gly
275 280 . 285

Trp Glu Trp Ser Asp His Lys Pro Leu Asn Phe Leu Asn Trp Asp Pro
290 295 300

Asp Arg Pro Ser Ala Pro Thr Ile Gly Gly Ser Ser Cys Ala Arg Met
305 310 315 320

Asp Ala Glu Ser Gly Leu Trp Gln Ser Phe Ser Cys Glu Ala Gln Leu
325 330 335

Val Trp Thr Tyr Ser Asp Thr Arg Cys Asp Ala Gly Trp Leu Pro Asn
355 360 365

Asn Gly Phe Cys Tyr Leu Leu Val Asn Glu Ser Asn Ser Trp Asp Lys
 370 375 380

Ala His Ala Lys Cys Lys Ala Phe Ser Ser Asp Leu Ile Ser Ile His
385 390 395 400

Ser Leu Ala Asp Val Glu Val Val Val Thr Lys Leu His Asn Glu Asp
405 410 415

- 72 -

Ile Lys Glu Glu Val Trp Ile Gly Leu Lys Asn Ile Asn Ile Pro Thr
420 425 430

Leu Phe Gln Trp Ser Asp Gly Thr Glu Val Thr Leu Thr Tyr Trp Asp
435 440 445

Glu Asn Glu Pro Asn Val Pro Tyr Asn Lys Thr Pro Asn Cys Val Ser
450 455 460

Tyr Leu Gly Glu Leu Gly Gln Trp Lys Val Gln Ser Cys Glu Glu Lys
465 470 475 480

Leu Lys Tyr Val Cys Lys Arg Lys Gly Glu Lys Leu Asn Asp Ala Ser
485 490 495

Ser Asp Lys Met Cys Pro Pro Asp Glu Gly Trp Lys Arg His Gly Glu
500 505 510

Thr Cys Tyr Lys Ile Tyr Glu Asp Glu Val Pro Phe Gly Thr Asn Cys
515 520 525

Asn Leu Thr Ile Thr Ser Arg Phe Glu Gln Glu Tyr Leu Asn Asp Leu
530 535 540

Met Lys Lys Tyr Asp Lys Ser Leu Arg Lys Tyr Phe Trp Thr Gly Leu
545 550 555 560

Arg Asp Val Asp Ser Cys Gly Glu Tyr Asn Trp Ala Thr Val Gly Gly

- 73 -

565

570

575

Arg Arg Arg Ala Val Thr Phe Ser Asn Trp Asn Phe Leu Glu Pro Ala
580 585 . 590

Ser Pro Gly Gly Cys Val Ala Met Ser Thr Gly Lys Ser Val Gly Lys
595 600 605

Trp Glu Val Lys Asp Cys Arg Ser Phe Lys Ala Leu Ser Ile Cys Lys
610 615 620

Lys Met Ser Gly Pro Leu Gly Pro Glu Glu Ala Ser Pro Lys Pro Asp
625 630 : 635 640

Asp Pro Cys Pro Glu Gly Trp Gln Ser Phe Pro Ala Ser Leu Ser Cys
645 650 655

Tyr Lys Val Phe His Ala Glu Arg Ile Val Arg Lys Arg Asn Trp Glu
 660 665 670

Glu Ala Glu Arg Phe Cys Gln Ala Leu Gly Ala His Leu Ser Ser Phe
675 680 . 685

Ser His Val Asp Glu Ile Lys Glu Phe Leu His Phe Leu Thr Asp Gln
690 695 700

Phe Ser Gly Gln His Trp Leu Trp Ile Gly Leu Asn Lys Arg Ser Pro
 705 710 715 720

- 74 -

Asp Leu Gln Gly Ser Trp Gln Trp Ser Asp Arg Thr Pro Val Ser Thr
725 730 735

Ile Ile Met Pro Asn Glu Phe Gln Gln Asp Tyr Asp Ile Arg Asp Cys
740 745 750

Ala Ala Val Lys Val Phe His Arg Pro Trp Arg Arg Gly Trp His Phe
755 760 765

Tyr Asp Asp Arg Glu Phe Ile Tyr Leu Arg Pro Phe Ala Cys Asp Thr
770 775 780

Lys Leu Glu Trp Val Cys Gln Ile Pro Lys Gly Arg Thr Pro Lys Thr
785 790 795 800

Pro Asp Trp Tyr Asn Pro Asp Arg Ala Gly Ile His Gly Pro Pro Leu
805 810 815

Ile Ile Glu Gly Ser Glu Tyr Trp Phe Val Ala Asp Leu His Leu Asn
820 825 830

Tyr Glu Glu Ala Val Leu Tyr Cys Ala Ser Asn His Ser Phe Leu Ala
835 840 845

Thr Ile Thr Ser Phe Val Gly Leu Lys Ala Ile Lys Asn Lys Ile Ala
850 855 860

Asn Ile Ser Gly Asp Gly Gln Lys Trp Trp Ile Arg Ile Ser Glu Trp

- 75 -

865 870 875 880

Pro Ile Asp Asp His Phe Thr Tyr Ser Arg Tyr Pro Trp His Arg Phe
885 890 895

Pro Val Thr Phe Gly Glu Glu Cys Leu Tyr Met Ser Ala Lys Thr Trp
900 905 910

Leu Ile Asp Leu Gly Lys Pro Thr Asp Cys Ser Thr Lys Leu Pro Phe
915 920 925

Ile Cys Glu Lys Tyr Asn Val Ser Ser Leu Glu Lys Tyr Ser Pro Asp
930 935 940

Ser Ala Ala Lys Val Gln Cys Ser Glu Gln Trp Ile Pro Phe Gln Asn
945 950 955 960

Lys Cys Phe Leu Lys Ile Lys Pro Val Ser Leu Thr Phe Ser Gln Ala
965 970 975

Ser Asp Thr Cys His Ser Tyr Gly Gly Thr Leu Pro Ser Val Leu Ser
980 985 990

Gln Ile Glu Gln Asp Phe Ile Thr Ser Leu Leu Pro Asp Met Glu Ala
995 1000 1005

Thr Leu Trp Ile Gly Leu Arg Trp Thr Ala Tyr Glu Lys Ile Asn
1010 1015 1020

- 76 -

Lys Trp Thr Asp Asn Arg Glu Leu Thr Tyr Ser Asn Phe His Pro
1025 1030 1035

Leu Leu Val Ser Gly Arg Leu Arg Ile Pro Glu Asn Phe Phe Glu
1040 1045 1050

Glu Glu Ser Arg Tyr His Cys Ala Leu Ile Leu Asn Leu Gln Lys
1055 1060 1065

Ser Pro Phe Thr Gly Thr Trp Asn Phe Thr Ser Cys Ser Glu Arg
1070 1075 1080

His Phe Val Ser Leu Cys Gln Lys Tyr Ser Glu Val Lys Ser Arg
1085 1090 1095

Gln Thr Leu Gln Asn Ala Ser Glu Thr Val Lys Tyr Leu Asn Asn
1100 1105 1110

Leu Tyr Lys Ile Ile Pro Lys Thr Leu Thr Trp His Ser Ala Lys
1115 1120 1125

Arg Glu Cys Leu Lys Ser Asn Met Gln Leu Val Ser Ile Thr Asp
1130 1135 1140

Pro Tyr Gln Gln Ala Phe Leu Ser Val Gln Ala Leu Leu His Asn
1145 1150 1155

Ser Ser Leu Trp Ile Gly Leu Phe Ser Gln Asp Asp Glu Leu Asn

- 77 -

1160

1165

1170

Phe Gly Trp Ser Asp Gly Lys Arg Leu His Phe Ser Arg Trp Ala
1175 1180 1185

Glu Thr Asn Gly Gln Leu Glu Asp Cys Val Val Leu Asp Thr Asp
1190 1195 1200

Gly Phe Trp Lys Thr Val Asp Cys Asn Asp Asn Gln Pro Gly Ala
1205 1210 1215

Ile Cys Tyr Tyr Ser Gly Asn Glu Thr Glu Lys Glu Val Lys Pro
1220 1225 1230

Val Asp Ser Val Lys Cys Pro Ser Pro Val Leu Asn Thr Pro Trp
1235 1240 1245

Ile Pro Phe Gln Asn Cys Cys Tyr Asn Phe Ile Ile Thr Lys Asn
1250 1255 1260

Arg His Met Ala Thr Thr Gln Asp Glu Val His Thr Lys Cys Gln
1265 1270 1275

Lys Leu Asn Pro Lys Ser His Ile Leu Ser Ile Arg Asp Glu Lys
1280 1285 1290

Glu Asn Asn Phe Val Leu Glu Gln Leu Leu Tyr Phe Asn Tyr Met
1295 1300 1305

- 78 -

Ala Ser Trp Val Met Leu Gly Ile Thr Tyr Arg Asn Asn Ser Leu
1310 1315 1320

Met Trp Phe Asp Lys Thr Pro Leu Ser Tyr Thr His Trp Arg Ala
1325 1330 1335

Gly Arg Pro Thr Ile Lys Asn Glu Lys Phe Leu Ala Gly Leu Ser
1340 1345 1350

Thr Asp Gly Phe Trp Asp Ile Gln Thr Phe Lys Val Ile Glu Glu
1355 1360 1365

Ala Val Tyr Phe His Gln His Ser Ile Leu Ala Cys Lys Ile Glu
1370 1375 1380

Met Val Asp Tyr Lys Glu Glu His Asn Thr Thr Leu Pro Gln Phe
1385 1390 1395

Met Pro Tyr Glu Asp Gly Ile Tyr Ser Val Ile Gln Lys Lys Val
1400 1405 1410

Thr Trp Tyr Glu Ala Leu Asn Met Cys Ser Gln Ser Gly Gly His
1415 1420 1425

Leu Ala Ser Val His Asn Gln Asn Gly Gln Leu Phe Leu Glu Asp
1430 1435 1440

Ile Val Lys Arg Asp Gly Phe Pro Leu Trp Val Gly Leu Ser Ser

- 79 -

1445

1450

1455

His Asp Gly Ser Glu Ser Ser Phe Glu Trp Ser Asp Gly Ser Thr
1460 1465 1470

Phe Asp Tyr Ile Pro Trp Lys Gly Gln Thr Ser Pro Gly Asn Cys
1475 1480 1485

Val Leu Leu Asp Pro Lys Gly Thr Trp Lys His Glu Lys Cys Asn
1490 1495 1500

Ser Val Lys Asp Gly Ala Ile Cys Tyr Lys Pro Thr Lys Ser Lys
1505 1510 1515

Lys Leu Ser Arg Leu Thr Tyr Ser Ser Arg Cys Pro Ala Ala Lys
1520 1525 1530

Glu Asn Gly Ser Arg Trp Ile Gln Tyr Lys Gly His Cys Tyr Lys
1535 1540 1545

Ser Asp Gln Ala Leu His Ser Phe Ser Glu Ala Lys Lys Leu Cys
1550 1555 1560

Ser Lys His Asp His Ser Ala Thr Ile Val Ser Ile Lys Asp Glu
1565 1570 1575

Asp Glu Asn Lys Phe Val Ser Arg Leu Met Arg Glu Asn Asn Asn
1580 1585 1590

- 80 -

Ile Thr Met Arg Val Trp Leu Gly L^eu Ser Gln His Ser Val Asp
1595 1600 1605

Cys Pro Ser Ser Thr Trp Ile Gln Phe Gln Asp Ser Cys Tyr Ile
1610 1615 1620

Phe Leu Gln Glu Ala Ile Lys Val Glu Ser Ile Glu Asp Val Arg
1625 1630 1635

Asn Gln Cys Thr Asp His Gly Ala Asp Met Ile Ser Ile His Asn
1640 1645 1650

Glu Glu Glu Asn Ala Phe Ile Leu Asp Thr Leu Lys Lys Gln Trp
1655 1660 1665

Lys Gly Pro Asp Asp Ile Leu Leu Gly Met Phe Tyr Asp Thr Asp
1670 1675 1680

Asp Ala Ser Phe Lys Trp Phe Asp Asn Ser Asn Met Thr Phe Asp
1685 1690 1695

Lys Trp Thr Asp Gln Asp Asp Asp Glu Asp Leu Val Asp Thr Cys
1700 1705 1710

Ala Phe Leu His Ile Lys Thr Gly Glu Trp Lys Lys Gly Asn Cys
1715 1720 1725

Glu Val Ser Ser Val Glu Gly Thr Leu Cys Lys Thr Ala Ile Pro

- 81 -

1730

1735

1740

Tyr Lys Arg Lys Tyr Leu Ser Asp Asn His Ile Leu Ile Ser Ala
 1745 1750 1755

Leu Val Ile Ala Ser Thr Val Ile Leu Thr Val Leu Gly Ala Ile
 1760 1765 1770

Ile Trp Phe Leu Tyr Lys Lys His Ser Asp Ser Arg Phe Thr Thr
 1775 1780 1785

Val Phe Ser Thr Ala Pro Gln Ser Pro Tyr Asn Glu Asp Cys Val
 1790 1795 1800

Leu Val Val Gly Glu Glu Asn Glu Tyr Pro Val Gln Phe Asp
 1805 1810 1815

<210> 22

<211> 5454

<212> DNA

<213> mammalian

<220>

<221> misc_feature

<223> Complementary DNA strand displayed in the 3' to 5' direction

<400> 22

tactcctgtc cgacccgctg gggagcggcg ggccgcggccg aggagtacga cgagaagacc 60

aagaagctag agccgcctcg gtagaccggcg cgtcgattac tggggaaatgt gtacgaggta 120

- 82 -

cctttatgcc	cgttcacgta	gttcggcac	ataccgacct	atcatcgct	gctgacacta	180
ctttgactcc	tgttcaatac	cttcacccac	agggtcgtag	ccgagaaaagt	aaacgtgagg	240
gttttacgg	aaccggagct	ataatggttt	agccatttac	tcgactctta	caagtcgaca	300
ctgaggtcac	ggtacgacac	cacctttaca	ctcgtggtga	gagacatgcc	tcgacgggcc	360
atggccgacc	gagacttcct	acctgtaccg	tgtcgtaga	gttacgtag	actacagacc	420
ttctttcctc	cgagtctcct	ttcggaaaca	ctggtcggaa	tagtactcta	gatatggct	480
ctacccttga	gaataccctc	tggaacactt	aaaggtaaga	attaactacc	ctggaccgta	540
gtactaacgt	aagaactact	tctagtatca	cccggtacca	cacgggtggtg	gaatttaata	600
cttatactgg	ctttcacccc	gtagacgaat	ttcggacttt	tgccaacact	tctattaacc	660
cttttcttgc	tcgtcaaacc	ttcaacgatg	gttaaattat	gagtctgccc	agaaagaacc	720
tttcttcgaa	tacaaagtac	agtcttagtt	cctcgactaa	atgactcgta	gttgtcacga	780
cgacttaatt	gaatggaaatt	tcttttctt	ccgtaacgat	tctaaaagac	ctaaccaaatt	840
ttagtcgata	tgagacgatc	tccgaccctt	accagtctgg	tgtttggtaa	tttggaaagag	900
ttgaccctag	gtctgtccgg	gtcacgtgga	tgatatccac	cgaggtcgac	acgttcttac	960
ctacgactca	gaccagacac	cgtctcgaaa	aggacacttc	gagttgacgg	gatacagacg	1020
tcctttggta	attattatg	tcacctcaat	tgtctacaga	cctgtatgag	tctatggcg	1080
acactacgtc	cgaccgacgg	tttattacct	aaaacgatag	acgaccattt	actttcatta	1140
aggaccctat	tccgtgtacg	ctttacgttt	cggaagtcat	caactggatta	gtcgtaagta	1200
agagatcgtc	tacacctcca	ccaacagtgt	tttgaggtat	tactcctata	gtttcttctt	1260

- 83 -

cacacctatc cgaaattctt gtatggat ggttgaata aagtcaccag tctaccatga 1320
cttcaatgag attgtataac cctactctta ctgcgtttac aaggatgtt attctgcggg 1380
ttgacacaaa ggatgaatcc tctcgatcca gtcacccccc aggttagtac actcctctt 1440
gatttatac atacgttctc tttccctttt tttgacttac tgcggtcaag actattctac 1500
acaggaggc tactccgac cttctctgta cctcttgga caatgttcta aatactccta 1560
ctccaggaa aaccttgttt gacgttagac tgatagtgtat cgtctaaact cggtcttatg 1620
gatttactaa actactttt catactattt agagattttt ttatgaagac ctgaccggac 1680
tctctacatc taagaacacc tctcatattt acccggttgc aaccacccctt tcggcccgaa 1740
cattggaaaa ggttgcaccc aaaagaactc ggtcgaaagg gccccccgac gcaccgatac 1800
agatgaccc ttccacccctc cacttcctgta cgtttcgaa gtttcgtgaa 1860
agttaaacgt tctttactc acctggggaa cccggacttc ttctgtttttt attcggacta 1920
ctggggacag gacttccgac cgtctcaaag gggcggttgc aaagaacaat attccataag 1980
gtacgtcttt cttaacattt tttctcttgc acccttcttc gacttgctaa gacgggttgc 2040
gaacctcgtg tgaaagatc gaagtcggta cacctacttt atttccttaa agaagtgaaa 2100
aattgcctgg tcaagtcacc ggtcgtaacc gacacctaac caaacttattt ttccctgggt 2160
ctaaatgttc ctaggaccgt tacctacta gcatgtggtc acagatgata atagatcggt 2220
ttactcaaaag tcgtcctaact actgttagtct ctgacacgac gacagttcca taaagtatcc 2280
ggtaccgctt ctccgaccgt aaagataacta ctatcttta aataaataaa ctccggaaaa 2340
cgaacactat gtttgaact tacccacacg gtttaagggtt ttccggcatg aggttttgt 2400

ggtctgacca tggtaggtct ggcacgaccc taagtacctg gaggtgaata ttaacttcct	2460
tcacttataa ccaaacaacg actagaagtg gatttgatac ttcttcggca ggacatgaca	2520
cggtcgttag tgtcgaaaga acgctgatat tgtagaaaac accctgattt tcggtagttt	2580
ttgttttatac gtttatatacg accactaccc gtcgtcacca cctattctta atcgctcacc	2640
ggttatctac tagaaaaatg tatgagtgcg ataggatccg tggcgaaagg acactgtaaa	2700
cctctccctta cgaacatgta cagacggttc tgaacccgaat agctgaatcc atttggttgt	2760
ctgacatcat ggtcaacgg gaagtagaca ctttttatatac tacaagaag caatctctt	2820
atgtcgggtc taagacgtcg atttcacgtt acaagactcg ttacctaagg aaaagtctta	2880
ttcacaaaaag atttctagtt tgggcacaga gagtgtaaaa gagttcggtc gctatggaca	2940
gtgaggatac caccgtggga aggaagtcac aactcggtct aacttggttct gaaataatgt	3000
aggaacgaag gcctataccct tcgatgaaat acctaaccgg acgcgacccg acggataactt	3060
ttctatttgc ttacctgtct attgtctctc gactgtcatgt cattgaaagt gggtaataac	3120
caatcacccct ccgactctta tggctttta aaaaaactcc ttctcagagc gatggtgaca	3180
cgggattatg agttggaggt ttttagtggc aaatgaccct gcaccttaaa atgttaggacg	3240
tcacttgcgg tgaaacacag agagacagtc ttataagtc ttcaattttc gtctgtctgc	3300
aacgtcttac gaagtctttg acatttcata gatttatttag acatgttttta ttagggtttc	3360
tgagactgaa ccgtgtcacg atttcccttc acagactttt cattgtacgt cgaccactcg	3420
tagtgcctgg gaatggtcgt ccgttaaggag tcaacgtcc gcgaggaagt gttgagaagg	3480
aataccttagc ctgagaagtc agttctacta cttgagttga aaccaaccag tctacccttt	3540

- 85 -

gcagaagtaa aatcagcgac ccgactttga ttaccggtg agcttctgac acatcataat 3600
ctgtgactac ctaagacctt ttgtcaacta acgttactgt tagttggtcc acgataaacg 3660
atgataagtc cttaactctg acttttctc cagttggtc aactgtcaca atttacaggt 3720
agaggacaag atttatgagg cacctatggt aaagtcttga caacgatgtt aaagtattat 3780
tgtttcttat ccgtataaccg ttgttgtgtc ctacttcaag tatgattac ggtcttgac 3840
tttagtttta gtgtataaga ctcataagct ctactttcc tcttattgaa acaagaactc 3900
gttgacgaca tgaagttaat ataccgaagt acccagtaca atccttattg aatatctta 3960
ttaagagaat acaccaaact attctgggt gacagtataat gtgtAACCTC tcgtccttct 4020
ggttgatatt tttactctt caaaaaccga cc̄aaattcat gactgccgaa gaccctataa 4080
gtttggaaat ttcaataact tcttcgtcaa ataaaaagtgg tcgtgtcgta agaacgaaca 4140
tttaacttt accaactgat gtttcttctt gtattatgat gtgacggtgt caaatacgg 4200
atacttctac cataaatgtc acaataagtt ttttccatt gtaccatact tcgttaattt 4260
tacacaagag ttccacctcc agtgaaccgt tcgcaagtgt tggtttacc ggtegagaaa 4320
gaccttctat aacatTTTgc actacctaataa ggtgataaccc aacccgagag ttcagtacta 4380
ccttcactta gttcaaaact taccagacta ccatcatgt aactgatata gggtaacctt 4440
ccggTTTgtA gaggaccttt aacacaagag aaccttaggtt ttccttgaac ctttgtactt 4500
tttacgttga gacaattcct accacgataa acaatatttg gatgttttag attttcgac 4560
agggcagaat gtataagtag ttctacaggt cgTCGTTTC tcttacccag tgccacctag 4620
gtcatgttcc cagtgacaat gttcagacta gtccgtaaacg tgtcaaaaag tctccggttt 4680

- 86 -

ttaacacaa gtttgtact agtgagacgt tgatagcaaa ggtatttct acttctactc	4740
ttattnaac actcgctctga ctactccctt ttattattgt aatggtactc tcaaaccgaa	4800
cctaatacag ttgtaagaca actgacagga agtagatgaa cctaagtcaa ggttctgtca	4860
acaatgtaaa aagagggtct tcggtagttt catcttcgt atctcctaca gtcttagtc	4920
acatgactgg tacctcgccct gtactattcg tatgtattac ttcttctttt acgaaaatat	4980
gacctatgaa acttttcgt taccttccg ggtctactat aggatgatcc gtacaaaata	5040
ctgtgtctac tacgctaaa gttcacccaa ctattaagtt tatactgtaa actattcacc	5100
tgtctggttc tactactact cctaaatcaa ctgtggacac gaaaagacgt gtatgtctgt	5160
ccacttacct ttttcctt aacacttcaa agaagacacc ttccttgta tacgttttgt	5220
cgataggta tgtttcctt tataaatagt ctattggtgt aaaattatag tcgtaaccac	5280
taacgatcgt gccattaaaa ctgtcaaaac cctcgtagt aaaccaagga catgttttt	5340
gtaagactaa gagcaaagtg gtgtcaaaaa agttggcgtg gggtagtgg aatattactt	5400
ctgacacacaaa accatcaacc tcttctttt cttataggac aagttaaact gatt	5454

<210> 23
<211> 21
<212> DNA
<213> synthetic

<400> 23
gaccatggag cggacatgat a

21

<210> 24
<211> 21

- 87 -

<212> DNA

<213> synthetic

<400> 24

ggctctacca tctgggttg t

21

<210> 25

<211> 19

<212> DNA

<213> synthetic

<400> 25

ccgccccatgtc gcgccgcct

19

<210> 26

<211> 24

<212> DNA

<213> synthetic

<400> 26

accaaatacag tccggcccatg agaa

24

<210> 27

<211> 24

<212> DNA

<213> synthetic

<400> 27

atcatgtccg ctccatggtc agta

24

<210> 28

<211> 21

<212> DNA

<213> synthetic

- 88 -

<400> 28
tattcagaag ttaaaaggcag a

21

<210> 29
<211> 21
<212> DNA
<213> synthetic

<400> 29
ccaaaaggcc gtactccaaa a

21

<210> 30
<211> 21
<212> DNA
<213> synthetic

<400> 30
ggagggaaaaac tgaatgacgc a

21

<210> 31
<211> 21
<212> DNA
<213> synthetic

<400> 31
gaaaaacggtt gtgaagataa t

21

Figure 1

Figure 2

Figure 3**Figure 4**

Figure 5

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.