1.4. Matrix Notation and multiplication.
$2u + v + w = 5$ $4u - 6v = -2$ $-2u + 7v + 2w = 9$ $\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$
coefficient matrix.
$\Rightarrow \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \end{array} $ $\Rightarrow \begin{array}{c} 1 \\ 4 \\ 2 \end{array} $ $\Rightarrow \begin{array}{c} 1 \\ 1 \\ 1 \end{array} $ $\Rightarrow \begin{array}{c} 1 \\ 1 \\ 2 \end{array} $ $\Rightarrow \begin{array}{c} 1 \\ 2 \\ 1 \end{array} $ $\Rightarrow \begin{array}{c} 1 \\ 2 \\ 2 \end{array} $
Ax is a combination of the columns of A. The coefficients are the components of χ . $b_i = \sum_{j=1}^{n} \alpha_{ij} \alpha_{j} \implies s_{ij} \text{ motation.}$
Identity matrix. I : $Iz = x$. multiplication by columns: $AB = A[b, b, b, d, J] = [Ab, Ab, Ab, Ab, Ab, Ab, Ab, Ab, Ab, Ab, $
Aman Buxl. = $(AB)mxl$ (AB) o ij = $\frac{1}{k!}$ A ip b kj $(i=1,2,,m$ $j=1,2,,l$
(AB)C = A(BC) associative /aw. A(B+C) = AB+AC distributive /aw. $AB \Rightarrow BA$ usually
HW 1.4. 19, 20, 21, 21, 45, 55, 56,

NO	D
NO.	1

					NO &	
 Elementary	matri	x in	elimination s	teps.		
 V				/		
Ez, = [1 0	٥٦	l ₂₁	> la time	es of row 1	omd
					tion of re	
L	0 0 1	1/			0 0 7	
Ea1 = [J O	0 7)[1 = l2	1 0	
	0 1	0			0 1]	
 L.	-ly 0	1]				
		NG U	N//		1	
E32 = [1 0	0]				
	0/15	0	7		1 0 0	
L	0 -l32		<u> 25), je</u>	-32, = (0 1 0	
		193	89 (1)		l32 1 .	
 E21 A =	2 1					
	0 -8	P -2	Gayssi	om elimir	nation process	result
	L -2 /	1 2 .	by	la _I .		
	<u> </u>	\sim				
			//			
	ス I	U	I A			
	0 0)				
					,	
1			11 7 1 5	11 / >		

4(1) x (2) + 4 (2).

1.5 Triangular Fractors & Row Exchanges.

Step 1: row2-ls1. * row1 + row2. -> row2 step3: row3 - log · row1 -> row3'
step3: row3' - log · row2'

The result is a Upper triangular matrix. U,

by back-substitution from

For each elementary matrix, E=E21, F=E31, G=E32,

E32 E31 E21 A = U

from A to U

	140 70 .
	By inverses of matrix.
	general case isto.
	$A = E_{21}^{7} E_{31}^{7} E_{32} V, \qquad \begin{bmatrix} e_{01} & 0 \\ 0 & 1 \end{bmatrix}$
	laj laz J"
	2100010000=210=2.
	[[[[[[[[[[[[[[[[[[[
	A = LU
	=) the entries below the diagonal are the multipliers, ly, ly, ly
	> complete reard of elimination
@ Tre	orangular factorization; A=LO with no exchanges of row
	V CE25
	=) the diagonal entries of V are the pivots.
· .	1- C1 27 1- [107
<u> </u>	$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \Rightarrow 0 = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} L = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
	LU = A.
Ex . 4.	A=[1 0 0 7 Lower triangular case.
<u> </u>	
	[la la 1]
	⇒ ()= T A=L.

Ax = b, first Lc = b, then Ux = c. Fractor: from A, find L and U. 2) Solve: from Land U, find the solution a two triangular systems in $\frac{n^2}{2}$ steps each, right-side: n^2 lin 위기만 전쟁. 1 44/d, 413/d, · · · Remark 1 A=LV > LDV g: Dis a diagonal matrix of pivots. $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 2 & 3 \\ 3 & 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & -2 & 3 \end{bmatrix} = LDV.$ @ Remark 2. LDV factorization and LV factorization are uniquely determined by A. © Row Exchanges and Permutation Matrices . Zero in the pivot position $\begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} u \end{bmatrix} = \begin{bmatrix} b_1 \end{bmatrix} = \begin{bmatrix} 3 & u + 4v = b \\ b_2 \end{bmatrix} = \begin{bmatrix} b_1 \end{bmatrix}$ permutation $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $PA = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} = Pb = \begin{bmatrix} bz \\ bz \end{bmatrix}$