

PARISHRAM 2024

- FOR 12TH CLASS CBSE BOARD STUDENTS -

CHEMISTRY

ELECTROCHEMISTRY

By- Harsha Soni Ma'am

Physics Wallah

Lecture No.- 07

Today's argets

1 Conductance

CONDUCTANCE

Substances which allow electricity to pass through them are know as conductors. Substances which do not allow electricity to pass through them are called Insulators.

=> Conductors = allow electricity to pass.

Electronic

Eg. Metals, Graphite etc. Electrolytic
Conductors

Eg: Electodytes.

- Those which conducts electricity without undergoing any decomposition
- E.g. Metals, Graphite and certain minerals. Here the cause of conduction is due to flow of electrons.

ELECTROLTIC CONDUCTORS

- > Ekclodytes.
- Those which undergo decomposition when current is passed through them.
- E.g. Solution of acids, bases and salts in water, fused salts etc.
- Here the cause of conduction is due to flow of ions, hence also called ionic conductance.

STRONG ELECTROLYTES

 Electrolytes which dissociates completely in aqueous solution or in the molten state.

They conduct electricity to a large extent. — conduction of electricity that

g: Hcl — Ht+cl — depends on no of ions.

WEAK ELECTROLYTES

, incomplete dissociation.

These dissociates into ions in small extent. They do not conduct electricity to a large extent. (conduction & no-ofions)

Weak acids = CH_3COOH , HCN, H_2CO_3 , H_3PO_4 etc. E.g. Weak bases = NH_4OH , Li(OH), $Al(OH)_3$ etc.

DEGREE OF IONISATION

Dissociation complete (100/diss) fraction = 0.2

Fraction of total no. of molecules of electrolytes which ionizes in solution is

called degree of ionization represented by α .

- For Strong electrolytes $\alpha = 1$
- For Weak electrolytes α < 1

NON ELECTROLYTES

Substances like sugar, urea etc. which do not conduct electricity.

- 1) NATURE OF ELECTROLYTE
- NATURE OF SOLVENT
- 3) SIZE OF IONS IN WATER
- 4) TEMPERATURE
- 5) CONCENTRATION OF SOLUTION

Some solvent are highly viscous. of movement of ions is slow.

mobility of ions (movement)

Mobility & 1_ hydration

Eg: Lit, Nat, kt

Ags solution = ionic mobility?

Ans: 1 mobility = kt>Nat>Li+

Reason: Lit is most hydrated therefore its movement will be slowest.

- Solvation

i) Ionic Radii = kt > Not > Lit 2) Hydrated Radii = Lit > Not > kt

/ Hydration = (1) ex Ionic mobility = (1)

a) Electrolylic conductance.

movement of ions compare or conductance?

i) kc/(aq), Csc/(aq)

ii) lic1(eq), Bec/2(eq)

Ans: Conductance \times movement of ions

(i) charge k^{+} cs^{+} Uhs: $k^{+} \times s^{+}$ Radius t^{+} t^{+} t^{-} hydration

(t^{+} t^{-} t^{-}

Conductance = (sc/) Kc/

ii) Licl, Bech Lit Be+2

Change = $\frac{+1}{7}$ < $\frac{+2}{7}$ < $\frac{+2}{7}$ < $\frac{+2}{7}$ < $\frac{+2}{7}$ < $\frac{+2}{7}$ < $\frac{+2}{7}$

hydration: Bet2>Lit
ionic mobility= Pit>Bet2

Conductance= Lic1>Becl2

4) Temberature

temp & dissociation of Electrolyte & 810. If ions & Conductance

- 5) Concentration of Solution
- -> Strong electrobyte (x=1)

 complete dissociationi (100%)
- Weak Electrolyte (x<) -> x= kg
 incomplete diss. (less than 100%)

=)
$$X = \frac{Kn}{C}$$
 reconcet so the (i)
=) $X = \frac{1}{C}$ = $X = D$
=) $X = \frac{1}{C}$ = degree of diss(1)

(2) NH4OH, Compare Conductance
i) 0-2M NH4OH
ii) 2M NH4OH

-> Conductance < (C)
-> (C)

-> (C)

-> (C)

