

93102

Scholarship 2006 Chemistry

2.00 pm Saturday 25 November 2006 Time allowed: Three hours Total Marks: 48

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

A Periodic Table is printed on page 2 of this booklet.

Answer ALL questions.

Write all your answers in this booklet.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–26 in the correct order.

You are advised to spend approximately 30 minutes on each question.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

PERIODIC TABLE OF THE ELEMENTS

18	2 He	16 17 4.0	9 10	O F Ne	16.0 19.0 20.2	16 17 18	Image: contract of the contract	32.1 35.5 40.0	35	Se Br Kr	79.9	53	_	- -	128 127 131	127	85 88 0 At
		15	7 8	Z		15 16	Ь	31.0	33 34		74.9	52	25			8	22 38 84
		14	9	C	12.0	14	Si	28.1	32	Ge	72.6	50	S.	2	119	119	9.11 82 Pb
		13	5	В	10.8	13	A	27.0	31	Ga	69.7	49	Ţ		115	115	115 81 TI
								12	30	Zn	65.4	48	Cq		112	112	112 80 Hg
								II	29	Cn	63.6	47	Ag		108	108	108 79 Au
		nol ⁻¹						0I	28	Z	58.7	46	Pd	100	100	78	78 Pt
		Molar Mass / g mol ⁻¹						6	27	Co	58.9	45	Rh	103		7	7
		Molar !	1					8	26	Fe	55.9	44	Ru	101		92	92 Os
	1 H	1.0						_	25	Mn	54.9	43	Тс	6.86		75	75 Re
	Atomic Number							9	24	Cr	52.0	42	\mathbf{Mo}	95.9		74	77 W
	Atomic							5	23	>	50.9	41	Sp	92.9		73	73 Ta
								4	22	Ξ	47.9	40	Zr	91.2		72	$\frac{72}{\mathbf{Hf}}$
						Г		3	21	Sc	45.0	39	Y	88.9	-	57–71	57–71 Lanthanide
		7	4	Be	9.0	12	Mg	24.3	20	Ca	40.1	38	Sr	87.6	26	00	Ba
		I	3	Ľ	6.9	11	Na	23.0	19	K	39.1	37	Rb	85.5	55	,	Cs

	57	58	59	09	61	62	63	64	65	99	29	89	69	70	71
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	В	$\mathbf{T}\mathbf{b}$	Dy	Ho	Er	Tm	ΧÞ	Lu
	139	140	141	144	145	150	152	157	159	163	165	167	169	173	175
	68	06	91	92	93	94	95	96	26	86	66	100	101	102	103
Actinide Series	Ac	\mathbf{Th}	Pa	Ω	Np	Pu	Am	Cm	Bk	$\mathbf{C}\mathbf{f}$	Es	Fm	Md	No	Lr
	227	232	231	238	237	244	243	247	247	251	252	257	258	259	262

QUESTION ONE (8 marks)

Assessor's use only

(a) Discuss reasons for the variation in the observed $\Delta_{\text{fus}}H^{\text{o}}$ and $\Delta_{\text{vap}}H^{\text{o}}$ of the substances in the table below.

	$\Delta_{ m fus} H^{ m o}/{ m kJ~mol^{-1}}$	$\Delta_{ m vap} H^{ m o}/{ m kJ~mol^{-1}}$
Chlorine (Cl ₂)	3.2	10.2
Sodium chloride (NaCl)	28	205

Boardin chioride (14aCi)	20	203	

(b) The lattice enthalpy of an ionic solid is the enthalpy change on converting the solid into its ions in the gas phase. For sodium chloride this is represented by the equation:

Assessor's use only

$$NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)$$

Lattice enthalpies may be estimated by combining known enthalpy changes including the ionisation energy of a metal and the electron affinity of a non-metal. Electron affinity is the enthalpy change for removing an electron from a negative ion in the gas phase. For chlorine this is represented by the equation:

$$Cl^-(g) \rightarrow Cl(g) + e^-$$

Some useful enthalpy changes are given in the table below.

	Enthalpy change/kJ mol ⁻¹
$\Delta_{\rm f} H^{\rm o}({\rm NaCl}, s)$	-411
$\Delta_{\text{vap}}H^{o}(\text{Na})$	104
$\Delta_{\text{fus}}H^{\circ}(\text{Na})$	2.6
First ionisation energy (Na)	502
Bond enthalpy (Cl ₂)	242
First electron affinity (Cl)	355

(i) A student claims that the major driving force for the formation of sodium chloride from elemental sodium and chlorine is the spontaneous transfer of electrons from sodium to chlorine atoms.

ie for the reaction
$$Na(g) + Cl(g) \rightarrow Na^{+}(g) + Cl^{-}(g)$$

Calculate the claim.	e enthalpy chan	ge for this rea	ction and dis	cuss the validi	ty of the stud	ent's

The first ionisation enthalpy is the enthalpy change in the process (a)

 $E(g) \rightarrow E^{+}(g) + e^{-}(g)$

The second ionisation enthalpy is the enthalpy change in the process

$$E^{+}(g) \rightarrow E^{2+}(g) + e^{-}(g)$$

Each successive ionisation enthalpy is defined in a similar way.

Successive ionisation enthalpies (in kJ mol⁻¹) for sodium and magnesium are given in the table and the graph below.

Mass No	Element	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
11	Na	502	4569	6919	9550	13 356	16616	20 121	25 497	28941	141 373	159806	
12	Mg	744	1457	7739	10547	13 636	18001	21710	25 663	31 650	35 469	170 003	189379

Successive ionisation enthalpies for Na and Mg

ccount for the trends e similarities and diff ements, sodium and r	in the successive ferences in the tre magnesium.	ionisation enthands for the succ	alpies of magnes essive ionisation	ium. Comment on energies of the two
	S			

Deduce as many no	ossibilities as vou c	can for the identi	ty of the structure	es of Compounds A	
and \mathbf{B} , and explain	how these structur	res are consisten	t with the observa	tions above.	
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_
					_

This page has been deliberately left blank.

QUESTION THREE (8 marks)

Assessor's use only

The steroid derivative Z is to be derived from the starting material X.

Starting material X

Steroid derivative Z

Devise a multi-step reaction scheme for this synthesis.

Include in your answer:

- the functional group transformation occurring at each step
- the reagents that would be used for each transformation
- an explanation for the order in which the reactions need to take place

•	comments on any by-products that may be formed at any stage in the reaction scheme proposed.

Assessor's
use only

QUESTION FOUR (8 marks)

Assessor's use only

The following three aqueous solutions are available.

Solution **A**: $0.100 \text{ mol } L^{-1} \text{ CH}_3 \text{NH}_2$

Solution **B**: $0.100 \text{ mol } L^{-1} \text{ CH}_3 \text{NH}_3 \text{Cl}$

Solution \mathbb{C} : 0.100 mol L^{-1} in both CH_3NH_3Cl and CH_3NH_2

 $pK_a(CH_3NH_3^+) = 10.6$

1	e pH of each solu ons in your answ	 	

$15.0 \mathrm{mL}$ of $0.100 \mathrm{mol} \mathrm{L}^{-1}$ hydrochloric acid is added to $25.0 \mathrm{mL}$ of Solution A $10.100 \mathrm{mol} \mathrm{L}^{-1} \mathrm{CH_3NH_2}$.	
Calculate the pH of the solution after mixing.	

Explain why the sparingly soluble base $Cu(OH)_2$ dissolves in both Solution A 0.100 mol L ⁻¹ CH_3NH_2) and Solution B (0.100 mol L ⁻¹ CH_3NH_3Cl).	

(d)	Calculate the minimum mass of CH_3NH_3Cl that must be added to 1.00 L of a solution that contains $0.100 \text{ mol } Mg(NO_3)_2$ and $0.100 \text{ mol } CH_3NH_2$ in order to prevent precipitation of $Mg(OH)_2$.	Assessor's use only				
	$K_{\rm s}({\rm Mg(OH)}_2) = 1.50 \times 10^{-11}$ p $K_{\rm a}({\rm CH}_3{\rm NH}_3^+) = 10.6$					
	$M(CH_3NH_3Cl) = 67.5 \text{ g mol}^{-1}$					

QUESTION FIVE (8 marks)

Assessor's use only

(a) Electrolysis cells have two electrodes immersed in the same solution. The electrodes are connected to a battery. Flow of current through the solution causes a redox reaction to occur. Commonly the strongest oxidant in the solution reacts at one electrode, and the strongest reductant in the solution reacts at the other electrode.

Electrolysis of an aqueous sodium iodide solution containing a drop of phenolphthalein is carried out.

Predict the observations at the two electrodes. Explain your answer.

$$E^{o}(O_{2}/H_{2}O) = +0.82 \text{ V (at pH 7)}$$

 $E^{o}(I_{2}/I^{-}) = +0.62 \text{ V}$
 $E^{o}(H_{2}O/H_{2}) = -0.42 \text{ V (at pH 7)}$
 $E^{o}(Na^{+}/Na) = -2.71 \text{ V}$

(b)	Autooxidation-reduction reactions or disproportionation reactions are oxidation-reduction reactions in which an atom in a particular oxidation state acts as both the oxidant and the reductant.
	Identify the species from the standard electrode potentials given below that are most likely to undergo autooxidation-reduction in basic conditions. Justify your answer and write a balanced equation for any reactions that occur.
	The standard electrode potentials given are for basic conditions.
	$E^{0}(H_{3}IO_{6}^{2-}/IO_{3}^{-}) = +0.70 \text{ V}$
	$E^{0}(IO_{3}^{-}/IO^{-}) = +0.14 \text{ V}$
	$E^{0}(IO^{-}/I_{2}) = +0.45 \text{ V}$
	$E^{0}(I_{2}/I^{-}) = +0.54 \text{ V}$

QUESTION SIX (8 marks)

Assessor's use only

Vitamin C can be oxidised by bromine or iodine. The equation for oxidation by bromine is shown below. The reaction for iodine is similar, with the product being I^- .

HO HO OH
$$+$$
 Br₂ $+$ 2Br⁻ + 2H⁺

This reaction is used in a variety of different methods for the quantitative determination of vitamin C in fruit juices. The bromine or iodine used in the titration is generated by adding an excess amount of KBr or KI to an acidified solution of bromate or iodate according to the following reactions:

$$BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$$

 $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$

Two methods are discussed in the following parts (a) and (b).

(a) Method 1

An excess of standard potassium iodate solution is added to the juice sample along with excess potassium iodide and sulfuric acid. The resulting mixture is titrated against standard thiosulfate solution using a starch indicator.

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

Iodine is only slightly soluble in water and is volatile at room temperature. Iodide is oxidised by atmospheric oxygen.

Explain how the accuracy of the experimental value for the vitamin C concentration would be affected by:

- vigorous swirling of the solution during the titration
- allowing the solutions to stand before being titrated
- excess iodide ion in the solution which reacts with iodine to produce I₃⁻.

$$I_2 + I^- \longrightarrow I_3^-$$

Note that Question Six continues on the next page.

(b) Method 2

Assessor's use only

A standard potassium bromate solution was prepared by dissolving 1.33 g of potassium bromate in sufficient water to make 500.0 mL of solution. This solution was diluted by taking 100.0 mL and diluting it to 500.0 mL.

 $50.00\,\mathrm{mL}$ of fruit juice was mixed with $5\,\mathrm{g}$ of KBr and $20\,\mathrm{mL}$ of $0.5\,\mathrm{mol}$ L⁻¹ sulfuric acid. The resulting mixture was titrated against the diluted standard potassium bromate solution until a faint yellow colour indicated the presence of bromine. At this point, $14.04\,\mathrm{mL}$ of potassium bromate had been added.

3 g of potassium iodide and starch indicator were then added, and the iodine produced required $2.36\,\mathrm{mL}$ of $0.00238\,\mathrm{mol}\ L^{-1}\ \mathrm{Na_2S_2O_3}$ solution to reach the end point.

Calculate the percentage of Vitamin C in mg in the fruit juice and comment on the validity of the results.

$M(KBrO_3) = 167 \text{ g mol}^{-1}$	$M(Vitamin C) = 176 \text{ g mol}^{-1}$	

Extra paper for continuation of answers if required. Clearly number the question.

Question number	

Extra paper for continuation of answers if required. Clearly number the question.

Asse	ssor's
use	only

Question number	

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's
use only

Question number	

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's
use only

Question number	

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's
use only

Question number	

For Assessor's Use Only			
Question Number	Marks		
Q1	(8)		
Q2	(8)		
Q3	(8)		
Q4	(8)		
Q5	(8)		
Q6	(8)		
TOTAL	(48)		

For Assessor's Use Only.

Keep Flap Folded In.