

Optimization Assignment-2

G.Kumar kumargandhamaneni20016@gmail.com IITH - Future Wireless Communication (FWC)

Problem Statement - Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is $6\sqrt{3}r$.

we have to attain the maximum value of f(x). This can be seen in Figure f(x). Using gradient descent method we can find its minima value.

$$x_{n+1} = x_n - \alpha \nabla f(x_n) \tag{7}$$

$$\implies x_{n+1} = x_n + \alpha (2r[-cosec^2\frac{x}{2} + \sec^2 x])$$
 (8)

Taking $x_0=0.5, \alpha=0.001$ and precision = 0.00000001, values obtained using python are:

Minima =
$$10.3923r$$
 (9)

$$\implies$$
 Minima = $6\sqrt{3}r$ (10)

$$|\mathsf{Minima\ Point} = 1.0471| \tag{11}$$

∴ Hence Proved

Solution

Figure 1: Graph of f(x)

Let x be the length of each of the two equal sides, y be the length of the third side of the $\triangle ABC$ and $\angle B=\angle C.$ Then,

$$x = r \cot \frac{C}{2} + r \cot \frac{A}{2}$$
 and $y = 2r \cot \frac{C}{2}$ (1)

Now, perimeter of $\triangle ABC$ is,

$$P = 2x + y \tag{2}$$

$$\implies P = 2r[2\cot\frac{C}{2} + \cot\frac{A}{2}] \tag{3}$$

Since, $\frac{A}{2} = \frac{\pi}{2} - C$,

$$\implies P = 2r[2\cot\frac{C}{2} + \tan C] \tag{4}$$

Gradient descent

$$f(x) = 2r[2\cot\frac{x}{2} + \tan x] \tag{5}$$

$$f'(x) = 2r[-cosec^2 \frac{x}{2} + sec^2 x]$$
 (6)