Statystyka dla Inżynierów Laboratorium 3 Rozkłady Dyskretne

Korzystamy z funkcji

dpois (x,λ) – p'stwo punktowe P(X=x) dla rozkładu Poissona

ppois (x,λ) – p'stwo skumulowane $P(X \le x)$ dla rozkładu Poissona

dbinom(x,n,p) – p'stwo punktowe P(X=x) dla rozkładu dwumianowego

pbinom(x,n,p) – p'stwo skumulowane $P(X \le x)$ dla rozkładu dwumianowego

Należy zrobić pierwsze 3 zadania zarówno "na papierze/tablicy" jak i na komputerze

Uwaga: Gdy X przyjmuje wartości całkowite oraz k_1 i k_2 są liczbami całkowitymi takimi, że $k_1 \le k_2$ $P\big(k_1 \le X \le k_2\big) = P\big(X \le k_2\big) - P(X \le k_1 - 1)$

- 1. Rzucono monetą 6 razy. Niech X będzie liczbą reszek. Wyznaczyć
 - i) P(X = 5)
 - ii) $P(X \ge 3)$
 - iii) $P(2 \le X \le 4)$
 - iv) (Tylko na komputerze) Narysować wykres rozkładu zmiennej *X* (funkcja: plot, type="h").
- 2. Pewien salon średnio sprzedaje trzy samochody tygodniowo. Niech *X* będzie liczbą samochodów sprzedanych w ciągu 2 tygodni. Zakładając, iż liczba samochodów sprzedanych przez firmę w dowolnym przedziale czasu ma rozkład Poissona, wyznaczyć
 - i) P(X = 5)
 - ii) $P(X \ge 4)$
 - iii) $P(3 \le X \le 5)$
 - iv) (Tylko na komputerze) Narysować wykres rozkładu zmiennej X dla $0 \le x \le 30$.
- 3. Zmienna *X* ma rozkład

х	1	2	3	4
P(X=x)	0,2	0,4	0,3	0,1

Wyznaczyć E(X) oraz Var(X).

Uwaga: W R należy wyznaczyć E(X) oraz E(X²) za pomoca odpowiednich iloczynów wektorowych.

- 4. Rzucono kostką 180 razy. Niech X będzie liczbą jedynek. Wyznaczyć
 - i) P(X = 27)
 - ii) $P(X \ge 32)$
 - iii) P(X < 29)
 - iv) $P(25 \le X \le 33)$
- 5. Telefony przychodzą do pewnej centrali losowo z stałą intensywnością 3,5 na minutę. Niech *X* będzie liczbą telefonów w ciągu 5 minut. Wyznaczyć
 - i) P(X = 16)
 - ii) $P(X \ge 20)$
 - iii) P(X < 12)
 - iv) $P(14 \le X < 22)$
- 6. a) Niech $X \sim Binom(100; 0.02)$. Narysować wykres rozkładu zmiennej X.

Uwaga:

dla

 $x > 10, P(X = x) \approx 0$, więc wystarczy rozważać $\{P(X = x) \ dl \ a \ 0 \le 0 \le x \le 10\}$...

b) Niech $Y \sim Poisson(2)$. Nałożyć wykres rozkładu zmiennej Y na wykres rozkładu zmiennej X (funkcja: lines, col="red")