DEVOIR SURVEILLÉ 2

Calculatrice autorisée Jeudi 30 novembre 2023

EXERCICE 1 (5 POINTS)

Soient f et g définies sur \mathbf{R} par $f(x) = 4x^2 - 64$ et g(x) = 7x - 17.

- 1. Donner l'image de 0 par f.
- **2.** Donner tous les éventuels antécédents de 0 par f.
- ${f 3.}\,$ Résoudre dans ${f R}$ les équations suivantes.

a.
$$g(x) = 8$$

b.
$$\frac{x-1}{g(x)} = 0$$

EXERCICE 2 (4 POINTS)

On considère le graphique suivant.

- 1. Dresser le tableau de signe de g.
- **2.** Donner l'intervalle sur lequel $f(x) \ge g(x)$.

EXERCICE 3 (6 POINTS)

On considère une fonction f définie sur [-2;5] dont on donne ci-dessous le tableau de valeurs et le tableau de variations.

х	-2	-1	0	1	2	3	4	5
f(x)	4	1	-3	0	1	4	5,5	0

Parmi les affirmations suivantes, lesquelles sont correctes? Expliquer le raisonnement.

- **1.** Le maximum de f sur [-2;5] est 5,5, atteint en 4.
- **2.** $f(1,5) \leq f(2,5)$.
- **3.** L'équation f(x) = 4 admet exactement deux solutions.
- **4.** L'équation f(x) = 1 admet trois solutions ou plus.
- **5.** Le minimum de f sur [-2;5] est -3, atteint en 0.
- **6.** $f(x) \leq 10$ si, et seulement si, $x \in [-2; 5]$.

EXERCICE 4 (5 POINTS)

- 1. Dresser le tableau de variations d'une fonction f sachant que :
 - f est définie sur [-2;5];
 - f est décroissante sur [-2;0];
 - *f* est croissante sur [0;2];
 - f est décroissante sur [2;5];
 - l'image de 0 est -3 et l'image de 2 est 2;
 - f(-2) = 0, f(1) = 0, et f(5) = 0.
- **2.** Tracer une courbe pouvant représenter f.
- **3.** Donner un intervalle sur lequel $f(x) \le 0$.