Assignment 8

December 5, 2022

- 1. Discuss the differentiability of $f(x,y) = x^2 + \sin y + y^2 e^x$ at (0,0).
- 2. Let f(x,y) = |xy| for all $(x,y) \in \mathbb{R}^2$, then
 - (a) f is differentiable at (0,0).
 - (b) $f_x(0, y_0)$ does not exist if $y_0 \neq 0$.
- 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = (x-y)^2 \sin \frac{1}{(x-y)^2}$ if $x \neq y$ and f(x, x) = 0. Show that
 - (a) f_x and f_y exist at all points of \mathbb{R}^2 .
 - (b) f is differentiable at (0,0).
 - (c) f_x and f_y are not continuous on the line y = x.
- 4. Let z = f(x, y), $x = r \cos \theta$ and $y = r \sin \theta$. (a) Show that $\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$ and $\frac{1}{r} \frac{\partial z}{\partial \theta} = -\frac{\partial f}{\partial x} \sin \theta + \frac{\partial f}{\partial y} \cos \theta$. (b) If $f(x, y) = x^2 + 2xy$, show that $\frac{\partial z}{\partial \theta} = 2(x^2 xy y^2)$.
- 5. An ice block of rectangular shap is melting. Suppose that at a given instant, the block has a height of 5 ft, a length of 10 ft and a width of 12 ft. If each of the dimension is decreasing at a rate of 5 ft per hour, at what rate is the volume of the block decreasing at the given instant
- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Suppose f(1,2) = f(3,4) = 0. Show that there exists a point (x_1, y_1) lying in the line segment joining (1, 1)and (3,4) such that $f_x(x_1,y_1) = -f_y(x_1,y_1)$.
- 7. What is the t-derivative of z = f(x(t), y(t)) at t = 1 if x(1) = 2, y(1) = 3, x'(1) = -4, y'(1) = 5, $f_x(2,3) = -6$ and $f_y(2,3) = 7$?
- 8. Find all local maxima and minima of $f(x,y) = (x-2)^4 + (x-2y)^2$