SC223 - Linear Algebra

Aditya Tatu

Lecture 29

October 17, 2023

- Let $T \in \mathcal{L}(U, V)$.
- ullet We have seen how to compute $[T]_{\beta_U}^{\beta_V}$, the matrix representation of T w.r.t the basis β_U and β_V .
- What happens if we choose a different basis, say α_U and α_V . Are $[T]_{\beta_U}^{\beta_V}$ and $[T]_{\alpha_U}^{\alpha_V}$ different?
- How are they related?

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- ullet Now, $U \stackrel{\sim}{\cong} \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- ullet Now, $U \stackrel{\circ}{\cong} \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- ullet Let $N_{eta_U}\in \mathcal{L}(U,\mathbb{F}^n)$ be defined as $N_{eta_U}(u_1)=ec{e}_1^n,\dots,N_{eta_U}(u_n)=e_n^n$,

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- ullet Now, $U \cong \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- Let $N_{\beta_{II}} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\beta_{II}}(u_1) = e_1^n, \dots, N_{\beta_{II}}(u_n) = e_n^n$ and $M_{eta_V}\in \mathcal{L}(V,\mathbb{F}^m)$ be defined as $M_{eta_V}(v_1)=e_1^m,\ldots,M_{eta_V}(v_n)=e_n^m$.

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- ullet Now, $U \cong \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- Let $N_{\beta_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\beta_U}(u_1) = e_1^n, \dots, N_{\beta_U}(u_n) = e_n^n$, and $M_{\beta_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\beta_V}(v_1) = e_1^m, \dots, M_{\beta_V}(v_n) = e_n^m$.
- \bullet $x \in U, N_{\beta_U}(x) = [x]_{\beta_U}$, and $y \in V, M_{\beta_V}(y) = [y]_{\beta_V}$.

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- ullet Now, $U \cong \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- Let $N_{\beta_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\beta_U}(u_1) = e_1^n, \dots, N_{\beta_U}(u_n) = e_n^n$, and $M_{\beta_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\beta_V}(v_1) = e_1^m, \dots, M_{\beta_V}(v_n) = e_n^m$.
- \bullet $x \in U, N_{\beta_U}(x) = [x]_{\beta_U}$, and $y \in V, M_{\beta_V}(y) = [y]_{\beta_V}$.
- Let $\alpha_U = \{p_1, \dots, p_n\}, \alpha_V = \{q_1, \dots, q_m\}, U \cong \mathbb{F}^n$, be different set of basis vector for U and V resp.

$$N_{\alpha_{i}}(\mathbf{p}_{i}) = e_{i}^{n}$$

$$i = 1, -1, n$$

$$V_{xy}(x) = [x]_{yy}$$

$$\mathcal{M}_{\alpha_{V}}(q_{i}) = e_{i}^{m}, i=1,-,m.$$

$$M_{\alpha_{V}}(y) = [Y]_{\alpha_{V}}$$

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- $lackbox{ Now, } U \cong \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- Let $N_{\beta_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\beta_U}(u_1) = e_1^n, \dots, N_{\beta_U}(u_n) = e_n^n$, and $M_{\beta_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\beta_V}(v_1) = e_1^m, \dots, M_{\beta_V}(v_n) = e_n^m$.
- \bullet $x \in U, N_{\beta_U}(x) = [x]_{\beta_U}$, and $y \in V, M_{\beta_V}(y) = [y]_{\beta_V}$.
- Let $\alpha_U = \{p_1, \dots, p_n\}, \alpha_V = \{q_1, \dots, q_m\}, \ U \cong \mathbb{F}^n$, be different set of basis vector for U and V resp. Let $N_{\alpha_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\alpha_U}(p_1) = e_1^n, \dots, N_{\alpha_U}(p_n) = e_n^n$

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- $lackbox{ Now, } U \stackrel{\sim}{\cong} \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- Let $N_{\beta_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\beta_U}(u_1) = e_1^n, \dots, N_{\beta_U}(u_n) = e_n^n$, and $M_{\beta_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\beta_V}(v_1) = e_1^m, \dots, M_{\beta_V}(v_n) = e_n^m$.
- \bullet $x \in U, N_{\beta_U}(x) = [x]_{\beta_U}$, and $y \in V, M_{\beta_V}(y) = [y]_{\beta_V}$.
- Let $\alpha_U = \{p_1, \dots, p_n\}, \alpha_V = \{q_1, \dots, q_m\}, \ U \cong \mathbb{F}^n$, be different set of basis vector for U and V resp. Let $N_{\alpha_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\alpha_U}(p_1) = e_1^n, \dots, N_{\alpha_U}(p_n) = e_n^n$ and $M_{\alpha_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\alpha_V}(q_1) = e_1^m, \dots, M_{\alpha_V}(q_n) = e_n^m$.

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- $lackbox{ Now, } U \overset{\sim}{\cong} \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- Let $N_{\beta_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\beta_U}(u_1) = e_1^n, \dots, N_{\beta_U}(u_n) = e_n^n$, and $M_{\beta_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\beta_V}(v_1) = e_1^m, \dots, M_{\beta_V}(v_n) = e_n^m$.
- \bullet $x \in U, N_{\beta_U}(x) = [x]_{\beta_U}$, and $y \in V, M_{\beta_V}(y) = [y]_{\beta_V}$.
- Let $\alpha_U = \{p_1, \dots, p_n\}, \alpha_V = \{q_1, \dots, q_m\}, \ U \cong \mathbb{F}^n$, be different set of basis vector for U and V resp. Let $N_{\alpha_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\alpha_U}(p_1) = e_1^n, \dots, N_{\alpha_U}(p_n) = e_n^n$ and $M_{\alpha_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\alpha_V}(q_1) = e_1^m, \dots, M_{\alpha_V}(q_n) = e_n^m$.
- \bullet $x \in U, N_{\alpha_U}(x) = [x]_{\alpha_U}$, and $y \in V, M_{\alpha_V}(y) = [y]_{\alpha_V}$.

- Let $T \in \mathcal{L}(U, V)$.
- Let $\beta_U = \{u_1, \dots, u_n\}$ and $\beta_V = \{v_1, \dots, v_m\}$ be basis of U and V, and let $[T]_{\beta_U}^{\beta_V}$ denote the matrix representation of T w.r.t β_U and β_V .
- ullet Now, $U \cong \mathbb{F}^n$, and $V \cong \mathbb{F}^m$.
- Let $N_{\beta_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\beta_U}(u_1) = e_1^n, \dots, N_{\beta_U}(u_n) = e_n^n$, and $M_{\beta_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\beta_V}(v_1) = e_1^m, \dots, M_{\beta_V}(v_n) = e_n^m$.
- \bullet $x \in U, N_{\beta_U}(x) = [x]_{\beta_U}$, and $y \in V, M_{\beta_V}(y) = [y]_{\beta_V}$.
- Let $\alpha_U = \{p_1, \dots, p_n\}, \alpha_V = \{q_1, \dots, q_m\}, \ U \cong \mathbb{F}^n$, be different set of basis vector for U and V resp. Let $N_{\alpha_U} \in \mathcal{L}(U, \mathbb{F}^n)$ be defined as $N_{\alpha_U}(p_1) = e_1^n, \dots, N_{\alpha_U}(p_n) = e_n^n$ and $M_{\alpha_V} \in \mathcal{L}(V, \mathbb{F}^m)$ be defined as $M_{\alpha_V}(q_1) = e_1^m, \dots, M_{\alpha_V}(q_n) = e_n^m$.
- ullet $x \in U, N_{\alpha_U}(x) = [x]_{\alpha_U}$, and $y \in V, M_{\alpha_V}(y) = [y]_{\alpha_V}$.
- Given $[T]_{\beta_U}^{\beta_V}$, how to compute $[T]_{\alpha_U}^{\alpha_V}$?

Thus,

$$[y]_{\alpha_V} = M_{\beta_V}^{\alpha_V} [T]_{\beta_U}^{\beta_V} N_{\alpha_U}^{\beta_U} [x]_{\alpha_U}, \forall x \in U$$

Thus,

$$[y]_{\alpha_V} = M_{\beta_V}^{\alpha_V} [T]_{\beta_U}^{\beta_V} N_{\alpha_U}^{\beta_U} [x]_{\alpha_U}, \forall x \in U$$

$$[T]_{\alpha_U}^{\alpha_V} = M_{\beta_V}^{\alpha_V} [T]_{\beta_U}^{\beta_V} N_{\alpha_U}^{\beta_U}$$

 $\bullet \ [T]_{\alpha_{U}}^{\alpha_{V}} = M_{\beta_{V}}^{\alpha_{V}} [T]_{\beta_{U}}^{\beta_{V}} N_{\alpha_{U}}^{\beta_{U}}$

- $\bullet \ [T]_{\alpha_{U}}^{\alpha_{V}} = M_{\beta_{V}}^{\alpha_{V}} [T]_{\beta_{U}}^{\beta_{V}} N_{\alpha_{U}}^{\beta_{U}}$
- For a linear operator $T: U \to U$, assume $\beta_U = \beta_V = \beta$ and $\alpha_U = \alpha_V = \alpha$.

- $\bullet \ [T]_{\alpha_{U}}^{\alpha_{V}} = M_{\beta_{V}}^{\alpha_{V}} [T]_{\beta_{U}}^{\beta_{V}} N_{\alpha_{U}}^{\beta_{U}}$
- For a linear operator $T: U \to U$, assume $\beta_U = \beta_V = \beta$ and $\alpha_U = \alpha_V = \alpha$.
- In this case, $[T]^{\alpha}_{\alpha} = M^{\alpha}_{\beta}[T]^{\beta}_{\beta}N^{\beta}_{\alpha}$.

- $\bullet \ [T]_{\alpha_{U}}^{\alpha_{V}} = M_{\beta_{V}}^{\alpha_{V}} [T]_{\beta_{U}}^{\beta_{V}} N_{\alpha_{U}}^{\beta_{U}}$
- For a linear operator $T: U \to U$, assume $\beta_U = \beta_V = \beta$ and $\alpha_U = \alpha_V = \alpha$.
- In this case, $[T]^{\alpha}_{\alpha} = M^{\alpha}_{\beta}[T]^{\beta}_{\beta}N^{\beta}_{\alpha}$.
- ullet Note that $M^lpha_eta = \left(N^eta_lpha
 ight)^{-1}$.

- $\bullet \ [T]_{\alpha_U}^{\alpha_V} = M_{\beta_V}^{\alpha_V} [T]_{\beta_U}^{\beta_V} N_{\alpha_U}^{\beta_U}$
- For a linear operator $T: U \to U$, assume $\beta_U = \beta_V = \beta$ and $\alpha_U = \alpha_V = \alpha$.
- In this case, $[T]^{\alpha}_{\alpha} = M^{\alpha}_{\beta}[T]^{\beta}_{\beta}N^{\beta}_{\alpha}$.
- Note that $M^{\alpha}_{\beta} = (N^{\beta}_{\alpha})^{-1}$. Denote M^{α}_{β} by S, which gives us $[T]^{\alpha}_{\alpha} = S[T]^{\beta}_{\beta}S^{-1}$.

 $\bullet \ [T]_{\alpha_{\mathcal{U}}}^{\alpha_{\mathcal{V}}} = M_{\beta_{\mathcal{V}}}^{\alpha_{\mathcal{V}}} [T]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} N_{\alpha_{\mathcal{U}}}^{\beta_{\mathcal{U}}}$

• For a linear operator $T: U \to U$, assume $\beta_U = \beta_V = \beta$ and $\alpha_U = \alpha_V = \alpha$.

• In this case, $[T]^{\alpha}_{\alpha} = M^{\alpha}_{\beta}[T]^{\beta}_{\beta}N^{\beta}_{\alpha}$.

• Note that $M_{\beta}^{\alpha} = (N_{\alpha}^{\beta})^{-1}$. Denote M_{β}^{α} by S, which gives us $[T]_{\alpha}^{\alpha} = S[T]_{\beta}^{\beta}S^{-1}$.

• Similar matrices and similarity transformation. We say two matrices A and B are similar if there exists an invertible matrix, say S such that $B = SAS^{-1}$. The transformation $A \mapsto SAS^{-1}$ is said to be a similarity transformation of A by S.

[7] = (Now)[7] frequence

[7] = (Now)[7] frequence

T: U > U

Bis a basis of U.

[7] B > [7] K