Relative intensity is measured in decibels

Just as the frequency of a sound wave determines its pitch, the intensity of a wave approximately determines its perceived loudness. However, loudness is not directly proportional to intensity. The reason is that the sensation of loudness is approximately logarithmic in the human ear.

Relative intensity is the ratio of the intensity of a given sound wave to the intensity at the threshold of hearing. Because of the logarithmic dependence of perceived loudness on intensity, using a number equal to 10 times the logarithm of the relative intensity provides a good indicator for human perceptions of loudness. This measure of loudness is referred to as the *decibel level*. The decibel level is dimensionless because it is proportional to the logarithm of a ratio. A dimensionless unit called the **decibel** (dB) is used for values on this scale.

The conversion of intensity to decibel level is shown in **Table 2.** Notice in **Table 2** that when the intensity is multiplied by 10, 10 dB are added to the decibel level. A given difference in decibels corresponds to a fixed difference in perceived loudness. Although much more intensity (0.9 W/m^2) is added between 110 and 120 dB than between 10 and 20 dB $(9 \times 10^{-11} \text{ W/m}^2)$, in each case the perceived loudness increases by the same amount.

Table 2 Conversion of Intensity to Decibel Level

Intensity (W/m ²)	Decibel level (dB)	Examples
1.0×10^{-12}	0	threshold of hearing
1.0×10^{-11}	10	rustling leaves
1.0×10^{-10}	20	quiet whisper
1.0×10^{-9}	30	whisper
1.0×10^{-8}	40	mosquito buzzing
1.0×10^{-7}	50	normal conversation
1.0×10^{-6}	60	air conditioning at 6 m
1.0×10^{-5}	70	vacuum cleaner
1.0×10^{-4}	80	busy traffic, alarm clock
1.0×10^{-3}	90	lawn mower
1.0×10^{-2}	100	subway, power motor
1.0×10^{-1}	110	auto horn at 1 m
1.0×10^{0}	120	threshold of pain
1.0×10^{1}	130	thunderclap, machine gun
1.0×10^{3}	150	nearby jet airplane

decibel

a dimensionless unit that describes the ratio of two intensities of sound; the threshold of hearing is commonly used as the reference intensity

Did you know?

The original unit of decibel level is the *bel*, named in honor of Alexander Graham Bell, the inventor of the telephone. The decibel is equivalent to 0.1 bel.

extension

Integrating Health

Visit <u>go.hrw.com</u> for the activity "Why Your Ears Pop."

