Definite Integral using Monte-Carlo Method

Febrie Ahmad Azizi - 20912008 Ridlo Wahyudi W. - 20912009

Integral Fungsi Sembarang - 1D

Analitik:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \longrightarrow \text{Luas S}$$

Numerik:

Riemann Integral

Banyak metode, antara lain:

- Newton-Cotes Formulae → Rectange rule, Trapezoid rule, Simpson's 1/3, Simpson's 3/8
- Romberg Integration (Extrapolation), dengan h berbeda.
- Gaussian Quadrature, dll

Penerapan metode ini untuk integrasi dimensi tinggi (multiple integral) terbatas

Monte Carlo Method

Monte Carlo methods (or Monte Carlo experiments) are a class of computational algorithms that rely on repeated random sampling to compute their results.

Approximate PI

Algorithm:

```
FOR i=1, Ntot
generateRandom (0 <= r1 <= 1; 0
<= r2 <= 1)
IF (r1*r1 + r2*r2 <= 1)
   N += 1
ENDFOR</pre>
```

Result PI =
$$N/Ntot * 4$$

Monte-Carlo untuk integral fungsi sembarang 1D

Sama dengan kasus mencari PI

Algorithm:

- 1. Cari maksimum/minimum dari fungsi f(x) pada selang A dan $B \rightarrow C$ (A dan $B \rightarrow$ batas integrasi)
- 2. Lakukan hingga **Ntotal**:
- random titik untuk X dengan batas A sampai B
- periksa apakah nilai f(X) positif atau negatifJika f(X) positif :
 - + random untuk Y dengan batas 0 sampai C
 - + periksa apakah Y berada di bawah kurva f(x), jika iya N = N+1 Jika f(X) negatif:
 - + random untuk Y dengan batas 0 sampai -C
 - + periksa apakah Y berada di atas kurva f(x), jika iya N = N-1
- 3. Hasil = N/Ntot*c*(b-a)

Code:

```
//mencari maximum fungsi dengan cara monte-carlo
for (i=0;i<Ntot;i++){
    x = a + (b-a)*unirand();
    if (fabs(f(x)) > c) \{c = fabs(f(x));\}
}
//mencari integral fungsi dengan cara monte-carlo
for (i=0;i<Ntot;i++){
    x = a + (b-a)*unirand();
    if (f(x) > 0.){
        y = c*unirand();
         if (y \le f(x)) \{ N++; \}
    else {
         y = -c*unirand();
         if (y >= f(x)) \{ N--; \}
}
res = (double)N / (double)Ntot * c*(b-a);
```

Result:

Untuk kurva berkelakuan baik pada batas integrasi, hasilnya cukup baik

Integral untuk dimensi yang lebih tinggi dengan Monte-Carlo

→ di tambah parameter random sesuai jumlah parameter di dalam fungsi

Gnuplot (window id: 0)

Contoh untuk 2D / orde 2:

$$\int_{-1}^{2} \int_{-2}^{1} (xy + yx^{2}) dxdy$$

Exact Solution: 11.25

Monte-Carlo Result:

N total	10000	100000	1000000
run_1	11.498472	11.349053	11.257513
run_2	11.309235	11.169831	11.220483
run_3	11.220745	11.253155	11.252168
average	11.342817	11.257346	11.243388
stdev	0.1418763	0.0896844	0.0200155

Orde 3

$$\int_{1}^{4} \int_{0}^{2} \int_{1}^{3} (xyz^{2} + x^{2}yz + xy^{2}z^{2}) dxdydz$$

Exact Solution: 522

Monte-Carlo Result:

N total	10000	100000	1000000
run_1	517.770038	518.891995	521.515282
run_2	529.565725	523.920987	522.052511
run_3	527.928108	520.128073	521.862817
average	525.087957	520.980351	521.810203
stdev	6.39018006	2.62058663	0.27245164

Simpulan

- 1. Metode Monte Carlo mudah diterapkan untuk kasus integral lipat banyak (multiple integral).
- 2. Semakin banyak jumlah titik random, maka semakin akurat hasil yang diperoleh.
- 2. Untuk permasalahan kompleks dapat dilakukan pembagian part integrasi dan melakukan perhitungan dengan menggunakan banyak komputer sekaligus (parallel computing).
- 3. Pelopor metode heuristic untuk memecahkan kasus-kasus lain.

