### $\mu$ Notes

Василий Доммес, Сергей Кривошеин, Денис Поляков Куратор: Екатерина Тузова, JetBrains

18 декабря 2014 г.

# Цели работы

- Получение нотной записи музыкального трека
- В записи могут присутствовать чистые инструменты (фортепиано, акустическая гитара...)

# Предмет поиска

| Ноты      | Суббконтр-<br>октава | Контр-<br>октава | Большая | Малая  | Первая | Вторая | Третья  | Четвертая | Пятая   |
|-----------|----------------------|------------------|---------|--------|--------|--------|---------|-----------|---------|
| до        | 16,35                | 32,70            | 65,41   | 130,82 | 261,63 | 523,26 | 1046,52 | 2093,04   | 4186,08 |
| ДО диез   | 17,32                | 34,65            | 69,30   | 138,59 | 277,18 | 554,36 | 1108,72 | 2217,44   | 4434,88 |
| PE        | 18,35                | 36,71            | 73,42   | 146,83 | 293,66 | 587,32 | 1174,64 | 2349,28   | 4698,56 |
| РЕ диез   | 19,45                | 38,89            | 77,78   | 155,57 | 311,13 | 622,26 | 1244,52 | 2489,04   | 4978,08 |
| МИ        | 20,60                | 41,20            | 82,41   | 164,82 | 329,63 | 659,26 | 1318,52 | 2637,04   | 5274,08 |
| ФА        | 21,83                | 43,65            | 87,31   | 174,62 | 349,23 | 698,46 | 1396,92 | 2793,84   | 5587,68 |
| ФА диез   | 23,12                | 46,25            | 92,50   | 185,00 | 369,99 | 739,98 | 1479,96 | 2959,92   | 5919,84 |
| СОЛЬ      | 24,50                | 49,00            | 98,00   | 196,00 | 392,00 | 784,00 | 1568,00 | 3136,00   | 6272,00 |
| СОЛЬ диез | 25,96                | 51,91            | 103,83  | 207,65 | 415,30 | 830,60 | 1661,20 | 3322,40   | 6644,80 |
| ЛЯ        | 27,50                | 55,00            | 110,00  | 220,00 | 440,00 | 880,00 | 1760,00 | 3520,00   | 7040,00 |
| ЛЯ диез   | 29,14                | 58,27            | 116,54  | 233,08 | 466,16 | 932,32 | 1864,64 | 3729,28   | 7458,56 |
| СИ        | 30,87                | 61,74            | 123,47  | 246,94 | 493,88 | 987,76 | 1975,52 | 3951,04   | 7902,08 |

Частоты нот [Гц]

# Представление звукового сигнала.



Нота Ля

### Алгоритм построения нотной записи

- Построение динамического спектра исходного звукового сигнала с помощью STFT
- Построение вторичного спектра по первичному с помощью вейвлет-преобразования.
- Взаимный анализ двух получившихся спектров.
- Получение функции вероятности звучания ноты в каждый момент времени.

## Первичный спектр



Срез динамического спектра

### Свёртка первичного спектра

- В первичном спектре реального звука есть много шумов и артефактов (обертона).
- Проблема усугубляется при звучании множества нот одновременно, особенно, когда они отличаются на октаву.
- Решение свёртка первичного спектра с вейвлетом. При этом выделяется основной тон и исчезают обертона.

## Вторичный спектр



Срез вторичного вейвлет-спектра

# Фурье-преобразование



Базисная функция Фурье-преобразования (вещественная часть)

Преобразование Фурье 
$$\widehat{f}=\int\limits_{-\infty}^{\infty}f(t)e^{-i2\pi
u t}dt$$

### Периодограмма

В случае, когда сигнал представляется дискретным временным рядом, вместо спектра используется периодограмма

$$D(\nu) = \frac{1}{N^2} \left| \sum_{k=0}^{N-1} x_k e^{-i2\pi\nu t_k} \right|^2$$

В основе вычисления периодограммы стоит DFT.

При вычислении периодограммы на фундаментальной системе частот используется FFT

## Основные особенности периодограммы



Рис.: Периодограмма синусоидального сигнала

- Лучший инструмент для извлечения периодических компонент из сигнала.
- Чувствителен к полиномиальной составляющей (трендам).

### **STFT**

- Для получения динамического спектра необходимо применять процедуру FFT к «небольшим» участкам нашего спектра.
- В качестве инструмента рассмотрим свёртку с окном Блэкмана—Харриса

$$W(x) = 0.42 - 0.5\cos(2\pi x) + 0.08\cos(4\pi x)$$



Окно Блэкмана

### Вейвлет

Интегральное вейвлет-преобразование функции f(t)

$$W(a,b) = \frac{1}{|a|^2} \int_{-\infty}^{\infty} f(t)\psi(\frac{t-b}{a})dt,$$

a - масштаб, b - сдвиг,  $\psi(t)$  - базисный вейвлет

### Вейвлет Морле

Вейвлет Морле – плоская волна модулированная гауссианой.

$$\psi(t) = e^{-t^2/\alpha^2} \left[ e^{ik_0t} - e^{-k_0^2\alpha^2/4} \right]$$

Параметр lpha задаёт ширину гауссианы, параметр  $k_0$  — частоту плоской волны



Базисная функция вейвлета Морле при  $lpha^2=2, k_0=2\pi$ 



Интегральное вейвлет-преобразование синусоидального сигнала

### Основные особенности вейвлета

- Хорошая временная и частотная локализация.
- Чувствителен к полиномиальной составляющей (трендам).
- При неортогональном наборе базисных вейвлетов нет быстрого преобразования.

## Результаты

Аккорды, взятые на акустической гитаре.



## Результаты

### Rondo Alla Turca

Turkish March

### Итоги



#### Чему научились:

- Работа со звуковыми файлами
- Применение методов анализа временных рядов

#### Что дальше:

- Улучшение алгоритма
- Работа с микрофоном (real-time)
- Мобильное приложение

#### Ссылки

- https://github.com/cscenter/uNotes.git исходный код
- polyakovdmi93@gmail.com Денис Поляков
- vasdommes@gmail.com Василий Доммес
- c.b.k@bk.ru Сергей Кривошеин