Brief Introduction to Bayesian Inference

Byron J. Smith BMI 206 2020-11-19

Slides: https://bit.ly/36GJRrE

Code: https://bit.ly/36M3YVl

With help from XKCD

Byron J. Smith BMI 206 2020-11-19

Slides: https://bit.ly/36GJRrE

Code: https://bit.ly/36M3YVl

- Learn discrete facts about the world.
 - "COVID-19 is caused by SARS-CoV-2."
 - Karl Popper
 - "Strong Inference": Rule out all other plausibilities

- Learn discrete facts about the world.
 - "COVID-19 is caused by SARS-CoV-2."
 - Karl Popper
 - "Strong Inference": Rule out all other plausibilities
- Measure (continuous) parameters
 - "Wearing a mask decreases your risk of becoming infected with SARS-CoV-2 by 55.2%."

- Learn discrete facts about the world.
 - "COVID-19 is caused by SARS-CoV-2."
 - Karl Popper
 - "Strong Inference": Rule out all other plausibilities
- Measure (continuous) parameters
 - "Wearing a mask decreases your risk of becoming infected with SARS-CoV-2 by 55.2%."
- ...But what about questions somewhere in between these two extremes?
 - "Does wearing a mask affect your risk of becoming infected?"

"Traditional": Null hypothesis statistical testing

"Does wearing a mask affect your risk of becoming infected?"

- Run an (e.g.) t-test
 - \circ Implies a null hypothesis: H_0 : $\mu_{
 m mask} = \overline{\mu_{
 m not}}$
- Calculate p-value
- If p < 0.05 : we "reject the null hypothesis"
 - Conclude that wearing a mask does affect your infection risk
- Else p > 0.05 : we cannot reject

"Traditional": Null hypothesis statistical testing

"Does wearing a mask affect your risk of becoming infected?"

- Run an (e.g.) t-test
 - \circ -Implies a null hypothesis: H_0 : $\mu_{
 m mask} = \overline{\mu_{
 m not}}$
- Calculate p-value
- If p < 0.05 : we "reject the null hypothesis"
 - Conclude that wearing a mask does affect your infection risk
- Else p > 0.05 : we cannot reject

What does the p-value represent?

What does the p-value represent?

- Probability of seeing a test statistic as extreme as the one we observed in a world where the null hypothesis is true.
 - NOT: The probability of the null hypothesis being true.

What does the p-value represent?

- Probability of seeing a test statistic as extreme as the one we observed in a world where the null hypothesis is true.
 - NOT: The probability of the null hypothesis being true.

Shortcomings:

- Misleading when:
 - Intuition/reality does not match test assumptions (E.g. small sample size)
 - When our null hypothesis is trivially wrong
- Ignores prior information
- Ignores effect size

Shortcomings:

- Misleading when:
 - Intuition/reality does not match test assumptions (E.g. small sample size)
 - When our null hypothesis is trivially wrong
- Ignores prior information
- Ignores effect size

Shortcomings:

- Misleading when:
 - Intuition/reality does not match test assumptions (E.g. small sample size)
 - When our null hypothesis is trivially wrong
- Ignores prior information
- Ignores effect size

Odds Are, It's Wrong

STATISTICS

Measurement error and the replication crisis

The assumption that measurement error always reduces effect sizes is false

By Eric Loken¹ and Andrew Gelman²

reliable measurement. In epidemiology, it

Shortcomings:

- Misleading when:
 - Intuition/reality does not match test assumptions (E.g. small sample size)
 - When our null hypothesis is trivially wrong
- Ignores prior information
- Ignores effect size

Shortcomings:

- Misleading when:
 - Intuition/reality does not match test assumptions (E.g. small sample size)
 - When our null hypothesis is trivially wrong
- Ignores prior information
- Ignores effect size

What we would prefer:

"How does wearing a mask affect the risk of becoming infected?"

There is a 95% probability that wearing a mask decreases your risk of becoming infected by 50% or more

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Parameters

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Data
$$P(\theta|X) = \frac{P(X|\theta) \, P(\theta)}{P(X)}$$

"Posterior"

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Have you seen this before?

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

"Likelihood"

$$P(\theta|X) = \frac{\mathcal{L}(\theta|X)P(\theta)}{P(X)}$$

"Prior"

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

"Normalizing Constant"

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

YOU CAN PROBABLY HEAR THE OCEAN.

Rephrase: What is the relative risk to wearers vs. non-wearers?

heta Odds ratio of COVID-19 among wearers and non-wearers

$$P(X|\theta)$$

$$P(\theta)$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Rephrase: What is the relative risk to wearers vs. non-wearers?

heta Odds ratio of COVID-19 among wearers and non-wearers

X Observed individuals and cases among both groups

$$P(X|\theta)$$

$$P(\theta)$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Rephrase: What is the relative risk to wearers vs. non-wearers?

heta Odds ratio of COVID-19 among wearers and non-wearers

X Observed individuals and cases among both groups

P(X| heta) Probability of the observed numbers, given the odds ratio

$$P(\theta)$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Rephrase: What is the relative risk to wearers vs. non-wearers?

heta Odds ratio of COVID-19 among wearers and non-wearers

X Observed individuals and cases among both groups

P(X| heta) Probability of the observed numbers, given the odds ratio

P(heta) - Prior probability of the given odds ratio

P(X) $P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$

Rephrase: What is the relative risk to wearers vs. non-wearers?

heta Odds ratio of COVID-19 among wearers and non-wearers

X Observed individuals and cases among both groups

P(X| heta) Probability of the observed numbers, given the odds ratio

P(heta) Prior probability of the given odds ratio

(X) Marginal probability of this observation

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

Hard

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{\int_{\Theta} P(X|\theta') P(\theta') d\theta'}$$

- Hard
- Easier: Sampling from the posterior

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{\int_{\Theta} P(X|\theta') P(\theta') d\theta'} \propto P(X|\theta) P(\theta)$$

- Hard
- Easier: Sampling from the posterior
- Markov-Chain Monte Carlo (Metropolis-Hastings algorithm)

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{\int_{\Theta} P(X|\theta') P(\theta') d\theta'} \propto P(X|\theta) P(\theta)$$

Sampling heta from the posterior

Markov-Chain Monte Carlo (Metropolis-Hastings algorithm)

$$\theta_1, \theta_2, \theta_3, ..., \theta_n$$

Sampling heta from the posterior

- Markov-Chain Monte Carlo (Metropolis-Hastings algorithm)
- Use samples from the posterior to calculate
 - Expectations
 - Credible intervals

Why doesn't everyone do it this way?

Computation

- Scales unfavorably with number of parameters, size of data
- May require many samples due to "poor mixing"

The Prior

- "Introduces bias"
- Subject to criticism

Alternatives

Maximum likelihood

Why doesn't everyone do it this way?

Computation

- Scales unfavorably with number of parameters, size of data
- May require many samples due to "poor mixing"

The Prior

- "Introduces bias"
- Subject to criticism

Alternatives

Maximum likelihood

Computation

- Huge progress in last 20 years.
- HMC, Variational Inference

The Prior

- Useful for incorporating expert knowledge, constraints, intuition.
- Makes assumptions explicit

Alternatives

Challenging to assess
 uncertainty from point estimates

Logistic Regression

$$y_i \sim \text{Bernoulli}(p_i)$$

 $\log \text{it}(p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK}$
 $\beta_k \sim \text{Normal}(0, 1)$

Try it out!

https://bit.ly/36M3YVl

Logistic Regression

$$y_i \sim \text{Bernoulli}(p_i)$$

 $\log \text{it}(p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK}$
 $\beta_k \sim \text{Normal}(0, 10)$

Logistic Regression

$$y_i \sim \text{Bernoulli}(p_i)$$

 $\log \text{it}(p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK}$
 $\beta_k \sim \text{Laplace}(1)$

Democratized statistical modeling

- Emphasizes parameter estimates and uncertainty over p-values
- "Inference Button": flexible, well built software to sample from and interpret models
 - STAN, PyMC3, Pyro, Turing.jl
- Only scratched the surface in this session

Every Statistics XKCD (44 and counting): https://bit.ly/32YH4Jc

