

Курсы по машинному обучению

Тема 7. Ошибки классификации и метрические алгоритмы

Что делать если не можем создать матрицу признаков?

Задано:

- Графы
- Фотографии лиц
- Подписи
- Временные ряды
- Структуры белков

Что делать если не можем создать матрицу признаков?

Задано:

- Графы
- Фотографии лиц
- Подписи
- Временные ряды
- Структуры белков

Умеем сравнивать

объекты между собой

Что делать если не можем создать матрицу признаков?

Задано:

- Графы
- Фотографии лиц
- Подписи
- Временные ряды
- Структуры белков

Умеем сравнивать объекты между собой

Введем метрику сходства объектов

Неотрицательная функция называется метрикой, если:

1.
$$d(x,y)=0\Leftrightarrow x=y$$

2.
$$d(x,y)=d(y,x)$$

з.
$$d(x,z) \leq d(x,y) + d(y,z)$$

Неотрицательная функция называется метрикой, если:

1.
$$d(x,y)=0\Leftrightarrow x=y$$

2.
$$d(x,y)=d(y,x)$$

з.
$$d(x,z) \leq d(x,y) + d(y,z)$$

Примеры:

$$d(x,y) = |x-y|$$

$$-\left. y
ightert$$
 Числа

$$d(x,y) = \sqrt{\sum (x_i - y_i)^2}$$

$$d(f,g) = \sup |f(x) - g(x)|$$

Функции

Гипотеза компактности

Гипотеза компактности — в задачах классификации предположение о том, что схожие объекты гораздо чаще лежат в одном классе, чем в разных

Другими словами, что классы образуют компактно локализованные подмножества в пространстве объектов.

Это также означает, что граница между классами имеет достаточно простую форму.

* Компактные множества тут не при чем

Метод ближайшего соседа

Метод ближайшего соседа

Определяем самый ближний элемент и класс нашего объекта будет совпадать с ближайшим

Метод ближайшего соседа

Плюсы

- Простая реализация
- Интерпретируемость

Минусы

- Неустойчивость к выбросам
- Мало гиперпараметров
- Полная зависимость от метрики
- Низкое качество

Определяем k самых ближайших элементов и класс нашего объекта будет выбран с помощью голосования, аналогично голосованию в случайном лесу

- Выбор класса производится голосованием
- k=1 -> метод ближайшего соседа
- k=L-> метод константа (для всех объектов будет выбран преобладающий класс)
- Подбор параметра по критерию скользящего контроля с исключением объектов по одному (leave-one-out)
- Также можно сравнивать средние расстояния до объектов другого класса

Что делать если голосование не выявило лидирующий класс?

- Для двух классов брать нечетные k
- Использовать веса
- Выбирать случайно

Определяем k самых ближайших элементов и класс нашего объекта будет выбран с помощью голосования, но с учетом веса каждого элемента

Метод парзеновского окна

Метод парзеновского окна

- $ho(u, x_u^{(i)})$ функция расстояния до соседа
- Функция ядра K(z) не возрастает на $[0,\infty)$
- Постоянное ширина окна

$$a(u; X^l, h, K) = arg \max_{y \in Y} \sum_{i=1}^{l} \left[y_u^{(i)} = y \right] K\left(\frac{\rho(u, x_u^{(i)})}{h}\right)$$

• Переменная ширина окна (неравномерное распределение) k

$$a(u; X^{l}, k, K) = arg \max_{y \in Y} \sum_{i=1}^{K} \left[y_{u}^{(i)} = y \right] K \left(\frac{\rho(u, x_{u}^{(i)})}{\rho(u, x_{u}^{(k+1)})} \right)$$

Метод потенциальных функций

Проблемы метрических алгоритмов

- Выбор числа соседей k
- Отсев шума
- Большие выборки
- При погрешностях (в данных или метрике) снижается точность по границам классов

- Поиск ближайшего соседа
 = сравнение с каждым
 элементом выборки
- Проблема выбора метрики
- Проклятье размерности
- Малое число параметров

Проблемы метрических алгоритмов

• Отступ объекта $x_i \in X^i$ относительно алгоритма классификации, имеющего вид $a(u) = arg \max_{y \in Y} \Gamma_y(u)$, называется величина

$$M(x_i) = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus y_i} \Gamma_y(x_i)$$

Эталонные	M >> 0	По ним можно классифицировать
Неинформативные	M > 0	Не несут важной информации
Пограничные	M ~ 0	Чувствительны к изменениям
Ошибочные	M < 0	Ошибка в метрике
Шумовые (выбросы)	M << 0	Ошибка в данных

Проклятие размерности

- В n-мерном шаре весь объем сосредоточен на сфере
- Пример. Рассмотрим сферу в 20-мерном пространстве. Формула для объема шара в 20-мерном пространстве:

$$V = \frac{\pi^{10}\pi}{10!} R^{20}$$

Найдем отношение объема шара радиуса 1 и радиуса 0.9:

$$\frac{V_{0,9}}{V_1} = \frac{0.9^{20}}{1} = 0.12$$

• 88% точек лежит на сфере, а значит почти до всех ближайших соседей расстояние одинаковое

Проклятие размерности

- Также данные крайне разреженные
- Пример 1. Рассмотрим единичный интервал [0; 1]. 100
 равномерно разбросанных точек будет достаточно, чтобы покрыть этот интервал с частотой не менее 0.01
- Пример 2. Теперь рассмотрим 10-мерный куб. Для 10²⁰ достижения той же степени покрытия потребуется уже точек. То есть, по сравнению с одномерным пространством, требуется в 10¹⁸ раз больше точек.

Проклятие размерности

Решение - снижение размерности. Например, PCA - метод главных компонент

