Communication Based Rail Traffic Control with Cab Signaling

Team Name: Team Cygnus

Team Members: Aminul Haque Chowdhury

Sriman Bidhan Baray

Shahamat Mustavi Tasin

More or less 100 train accidents occur in Bangladesh each year

72% of these accidents are caused by human error

Technical failures also contribute to this problem

Our Solution

Microcontroller based system Signalling using programmable RF module Introducing IoT Robotics based Emergency Braking System

Our solution is comprised of 2 levels

Level 1: Basic cab signaling system

Level 2: Modified form of CBTC

Station System Design(Level-1)

On board System Block Design for Loco Master(Level-1)

Error Check:

Braking Curve is updated at specific intervals

Detection of connection failure

Alarming the Loco Master, Guard and Station Master

Manual Overwrite

Detection of Connection failure

Detection of Connection Failure

What if the signal is overlooked?

On board System Block Design for Guard(Level-1)

Automatic Braking System

Introducing robotics

Upgrade from Level-1 to Level-2

Introducing IoT

Smart On-board System

The Central Control System

- Wireless communication between train and control system reducing setup cost and difficulties
- Dividing rail network into regions to reduce server complexity and increasing speed
- Safe maximum speed for each train increasing overall efficiency of rail system
- Optimized decision to stations and safety check of rail switches

Budget

Estimated Cost up to Level-1 per Station and Locomotive

Estimated for Level-2

Thank You

Appendix

Central Control System flowchart

Budget defined

Name	Specs	Cost
Server PC	Intel Xeon 4114 Deca-core (10 Core) 2.20 GHz Processor (\$1,084.34) 2x 500GB SSD (130\$) 64GB RAM (\$213)	(1427\$) 121104.02 BDT
Rail Road modifications(per 10km)) Optional	Inductive proximity sensor x4 , Solar panel(100W 12V)x 4, Railroad insulation, Power	83200 BDT
Control room in station	pi, Network module(2G/3G), Switching connection, signalling connection, Track circuit connection	150000 BDT
Device on Locomotive	GPS, Network module, MCU, Servo motor LCD screen, LED panel, buzzer,	10000 BDT