

Institut für Theoretische Physik (Universität Innsbruck)

Principles and Applications of Quantum Information

Motivation

Can a quantum computer solve NP-hard problems faster than a classical computer?

Secure communication Key exchange

How can we use quantum particles to exchange a key between Alice & Bob?

Classical Light Source

red 100%

blue 100%

Quantum Light Source

red

50%

blue 50%

red

50%

blue

50%

Entanglement

red

100%

Definition of a quantum bit

$$|1\rangle = \bigcirc = "1"$$
 bit

Quantum bit - qubit:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

 α ~ probability that we find 0 (red)

 β ~ probability that we find 1 (blue)

red

50%

blue 50%

Deutsch-Josza Algorithm (1)

Task: determine if function f is constant or balanced

Boolean function: $f:\{0,1\} \mapsto \{0,1\}$

Quantum strategy:

$$f(0) \oplus f(1) = 0$$
 constant $f(0) \oplus f(1) = 1$ balanced

Classical strategy:

2 steps

1 step

Deutsch-Josza Algorithm (2)

Generalization to m bit function: $f: \{0,1\}^m \mapsto \{0,1\}$

Promise: $f(x) = const. \forall x \in \{0,1\}^m$ constant

Quantum strategy:

$$f(x) = \begin{cases} 0, & \forall x \in M_0 \\ 1, & \forall x \in M_1 \end{cases} \text{ with } \begin{cases} M_0 \cup M_1 = \{0,1\}^m \\ M_0 \cap M_1 = 0 \\ |M_0| = |M_1| = 2^{m-1} \end{cases}$$

Classical strategy:

 $|0000\rangle$ constant

Something else, e.g.:

 $|0010\rangle$ balanced

1 step

2^{m-1}+1 steps/repetitions

(in the worst case to be 100% sure about it)

Other Algorithms

Grover's Algorithm: $f: \{0,1\}^m \mapsto \{0,1\}$

$$f(x) = \begin{cases} 1, & x = k \\ 0, & x \neq k \end{cases} \quad N = 2^m \text{ Numbers/}$$
Bit patterns

Classically: $\mathcal{O}(N)$

Quantum: $\mathcal{O}(\sqrt{N})$ times we apply G

with probability $p=1-1/\sqrt{N}$

Shor's Algorithm:

Prime number factorization

$$N = p \cdot q$$
 N is a m bit number

Task: find p and q

Classical: $\mathcal{O}(\sqrt{N})$ Exponential in N

Quantum:

$$\mathcal{O}((\log N)^2) \rightarrow \mathcal{O}(m^2)$$

Exponential in number of bits m

Quantum Key Distribution

= 101011101001 (random sequence of 0, 1)

Alice

Repeat that many times

Eavesdropper detection

Bob

Teleportation

Alice has a qubit in the state: $|\Psi\rangle$

Task: get Bob the state

Alice and Bob share an entangled state

Gets outcome i out of four

 $U_i^{\dagger}U_i|\Psi\rangle = |\Psi\rangle$

Bob applies the inverse to his qubit