

Introducción a Scala

Índice

- Introducción
- Características de Orientación a Objetos
- Características de Programación Funcional
- Azúcar Sintáctico
- Características de Programación Genérica
- Implícitos
- Conclusiones

Curso de Introducción a Scala

1. Introducción

Introducción

Temario

- Audiencia
 - Programadores OO con curiosidad por Scala
- Objetivos
 - Tener nociones básicas de las características principales de Scala para los diversos paradigmas
 - Mejorar las habilidades del alumno para comprender código fuente y documentación en Scala
- Temario
 - Orientación a Objetos
 - Programación Funcional
 - + Azúcar Sintáctico
 - Programación Genérica
- Organización
 - Demostraciones "en vivo" siempre que sea posible
 - Ejercicios al finalizar cada módulo
 - Punteros a contenido más avanzado

Introducción Sobre Scala

- Creado por Martin Odersky
- Aparece en 2003
- EPFL / Lightbend
- Lenguaje multi-paradigma
- Tipado: estático / fuerte
- JVM + Javascript
- Ecosistema de moda (spark, akka...)
- *Todo* es un objeto

Introducción Hello World!


```
object HolaMundo extends App {
  println("Hola Mundo!")
}
```


Introducción Ejercicios

- Si no lo has hecho aún, haz fork del repo de este curso en tu cuenta de github y clona ese nuevo repo en tu máquina. Sigue las instrucciones en InstruccionesGithub.com
- 2. Arranca SBT mediante `sbt` o `sbt.bat` (Windows). Después, compila los fuentes mediante la tarea `compile`. Finalmente, ejecuta el "Hola Mundo" usando la tarea `run`.
- 3. Ejecuta la tarea `~ run`. Después, modifica el texto que se imprime por pantalla (por "Hola Mundo 2") y guarda el fichero. ¿Qué ha pasado en la consola de SBT?
- 4. Abre la REPL de Scala utilizando la tarea `console`. Evalua la expresión `2 + 2`. Se creará un valor `res0` de tipo `Int`. Imprime dicho valor utilizando `println`.

Curso de Introducción a Scala

2. Características de Orientación a Objetos

Características de OO Objetivos

- Poder aplicar los aspectos fundamentales del paradigma OO en Scala: clases, atributos, métodos...
- Identificar otros conceptos que Scala introduce para lidiar con este paradigma: objetos, traits...
- Aprender a declarar herencia múltiple muy básica

Características de OO Guión

- Clases, Atributos y Constructores
- Métodos
- Herencia simple
- (Singleton & Companion) Objects
- Traits

Clases, Atributos y Constructores (1/4)


```
class Bicicleta(
    _cadencia: Int,
    _marcha: Int,
    _velocidad: Int) {
 var cadencia: Int = _cadencia
  var marcha: Int = _marcha
 var velocidad: Int = _velocidad
```


Clases, Atributos y Constructores (2/4)


```
class Bicicleta(
    _cadencia: Int,
    _marcha: Int,
    _velocidad: Int) {
 val cadencia: Int = _cadencia
  val marcha: Int = _marcha
  val velocidad: Int = _velocidad
```


Clases, Atributos y Constructores (3/4)


```
class Bicicleta(
  val cadencia: Int,
  val marcha: Int,
  val velocidad: Int)
```


Clases, Atributos y Constructores (4/4)

```
class Bicicleta(
   val cadencia: Int,
   val marcha: Int,
    val velocidad: Int) {
 def this(_cadencia: Int, _marcha: Int) = {
   this(_cadencia, _marcha, 1)
```


Métodos

```
class Bicicleta(
    val cadencia: Int,
    val marcha: Int,
    val velocidad: Int) {
  def frenar(decremento: Int): Bicicleta = {
    new Bicicleta(
      cadencia,
      marcha,
      velocidad - decremento)
                                     tema0-scalaintro/oo/Bicicleta.scala
```

Características de OO Singleton Objects

```
object FabricaDeBicicletas {
 val cadenciaInicial = 0
 val marchaInicial = 1
 val velocidadInicial = 0
 def crear: Bicicleta = {
    new Bicicleta(
      cadenciaInicial,
      marchaInicial,
      velocidadInicial)
```


Características de OO Companion Objects


```
object Bicicleta {
  def crear(
      cadencia: Int,
      marcha: Int,
      velocidad: Int): Bicicleta = {
    new Bicicleta(cadencia, marcha, velocidad)
```


Herencia Simple

```
class BicicletaDeMontaña(
   val alturaSillin: Int,
   cadencia: Int,
   marcha: Int,
   velocidad: Int)
extends Bicicleta(cadencia, marcha, velocidad)
```


Características de OO Traits

val revoluciones = 2500

```
trait Motor {
 val revoluciones: Int
 val cilindrada: Int = 55
class Motocicleta(
    cadencia: Int,
    marcha: Int,
    velocidad: Int)
```

extends Bicicleta(cadencia, marcha, velocidad) with Motor {

Características OO Ejercicios

Los ejercicios para este módulo se encuentran en:

tema0-scalaintro/oo/Ejercicios.scala

Características de OO Takeaways y cómo seguir

- Takeaways
 - Scala as a better Java
 - La existencia de *objects* elimina la necesidad de utilizar el modificador *static* para crear miembros de clase
 - Se permite la herencia múltiple con traits
- ¿Por dónde seguir?
 - Resolución de herencia múltiple <u>Linearization</u>
 - Inyección de dependencias <u>Cake Pattern</u>

Curso de Introducción a Scala

3. Características de Programación Funcional

Características de PF Objetivos

- Adquirir unas nociones básicas sobre qué es la programación funcional
- Aprender técnicas fundamentales para el trabajo con el paradigma funcional: inmutabilidad, pattern matching, etc.
- Descubrir las lambdas, funciones que se tratan como valores (first-class citizens)

Características de PF ¿Qué es la PF? (1/2)

Programar con Funciones Puras

Una Función Pura es aquella que realiza únicamente lo que declara su signatura. Es decir, transforma unos valores de entrada en unos valores de salida, sin llevar a cabo ningún efecto de lado adicional que sea observable desde el exterior

¿Qué es la PF? (2/2)

```
def pure(a: Int, b: Int): Int = a + b
var res: Int = 0
def impure(a: Int, b: Int): Int = {
 res = a + b
 a + b
```


Características de PF Guión

- Inmutabilidad
- Case Classes
- Pattern Matching
- Lambdas

Inmutabilidad (1/2)

$$val x = 0$$

$$x = 1$$


```
Inmutabilidad (2/2)
```

```
sealed trait Lista {
  def insertar(elemento: Int): Lista = {
    new Cons(elemento, this)
class Cons(
  val cabeza: Int,
  val resto: Lista) extends Lista
class Nada() extends Lista
                                       tema0-scalaintro/funcional/Lista.scala
```


Características de PF Case Classes

```
case class Bicicleta(
  cadencia: Int,
  marcha: Int,
  velocidad: Int)
val bici = Bicicleta(1,2,3) // apply
val bicirapida = bici.copy(velocidad=100)
val Bicicleta(c,m,v) = bici // unapply
```


Pattern Matching

Características de PF Case Classes & Pattern Matching


```
sealed trait Lista {
  def suma: Int = this match { // Aplica unapply
    case Cons(cabeza, resto) => cabeza + resto.suma
    case Nada() => 0
case class Cons(cabeza: Int, resto: Lista) extends Lista
case class Nada() extends Lista
```


Lambdas (1/2)


```
(x: Int) => x + 1
```

$$(x: Int, y: Int) => "(" + x + ", " + y + ")"$$

Características de PF Lambdas (2/2)

```
sealed trait Lista {
  def map(f: Int => Int): Lista = this match {
    case Cons(cabeza, resto) => {
      Cons(f(cabeza), resto.map(f))
    case Nada() => Nada()
case class Cons(cabeza: Int, resto: Lista) extends Lista
case class Nada() extends Lista
```


Características de PF Ejercicios

Los ejercicios para este módulo se encuentran en:

tema0-scalaintro/funcional/Ejercicios.scala

Características de PF Takeaways y cómo seguir

- Takeaways
 - La Programación Funcional se basa en el uso de Funciones
 Puras
 - Inmutabilidad, pattern matching y lambdas son patrones de diseño habituales para trabajar en el paradigma de PF
 - Hemos visto la punta (de la punta) del iceberg
 - Es un paradigma complejo, pero merece la pena
- ¿Por dónde seguir?
 - "El libro rojo" <u>Functional Programming in Scala</u>
 - Librerías: <u>scalaz</u>, <u>cats</u>, etc.
 - Haskell
 - Category Theory

AZÚCAR MORENO desde el principio

Curso de Introducción a Scala

4. Azúcar Sintáctico

Azúcar Sintáctico Objetivos

- Mejorar las habilidades del alumno para comprender código fuente en Scala
- Conocer diversas alternativas para declarar una misma instrucción
- Adquirir nociones básicas sobre qué estilo es preferible para según qué tarea

Azúcar Sintáctico *Guión*

- Invocación de Métodos
- Parámetros por Defecto
- Métodos Variadic
- El método apply
- Placeholder Lambdas

Azúcar Sintáctico Invocación de Métodos (1/3)

```
class Azucar {
  def f1(a: Int): Int = a
scala> val azucar = new Azucar // Sin paréntesis
azucar: Azucar = ...
scala> azucar.f1(1)
res0: Int = 1
scala> azucar.f1 { 1 } // similar a azucar.f1({1})
res1: Int = 1
scala> azucar f1 1
res2: Int = 1
                                             tema0-scalaintro/azucar/Azucar.scala
```


Azúcar Sintáctico Invocación de Métodos (2/3)

```
class Azucar {
  def f2(a: Boolean, b: String, c: String): String =
    if (a) b else c
scala> azucar.f2(true, "then", "else")
res3: String = then
scala> azucar f2 (true, "then", "else")
res4: String = then
scala> azucar.f2(a=true, b="then", c="else")
res5: String = then
scala> azucar.f2(b="then", c="else", a=true)
res6: String = then
                                                 tema0-scalaintro/azucar/Azucar.scala
```


Azúcar Sintáctico Invocación de Métodos (3/3)

SC

```
ala> val lista1 = Cons(1, Cons(2, Nada()))
lista1: Cons = Cons(1,Cons(2,Nada()))

scala> lista1 contiene 2
res0: Boolean = true

scala> lista1 ++ lista1
res1:Lista = Cons(1,Cons(2,Cons(1,Cons(2,Nada()))))
scala> (metodo :: para insercion)
```


Azúcar Sintáctico Parámetros por Defecto (1/2)

```
class Azucar {
  def f3(
      a: Boolean,
      b: String = "then",
      c: String = "else"): String = {
    if (a) b else c
scala> azucar.f3(true, "txt1", "txt2")
res0: String = txt1
scala> azucar.f3(true)
res1: String = then
                                            tema0-scalaintro/azucar/Azucar.scala
```


Azúcar Sintáctico Parámetros por Defecto (2/2)


```
// parámetros por defecto también se aplican en
constructores
case class Cons(
  cabeza: Int,
  resto: Lista = Nada()) extends Lista

scala> Cons(1, Cons(2))
res0: org.hablapps.curso.azucar.Cons = Cons(1,Cons(2,Nada()))
```


Azúcar Sintáctico Métodos Variadic (1/2)

```
class Azucar {
  def f4(a: Int*): Int = a.reduce { (a1, a2) =>
    a1 + a2
scala> azucar.f4(1)
res0: Int = 1
scala> azucar.f4(1, 2, 3, 4, 5)
res1: Int = 15
```


Azúcar Sintáctico Métodos Variadic (2/2)

```
object Lista {
  def crear(es: Int*): Lista = {
    if (es.isEmpty)
      Nada()
    else
      Cons(es.head, crear(es.tail: _*))
scala> Lista.crear(1,2,3)
res0:Lista = Cons(1,Cons(2,Cons(3,Nada())))
```


Azúcar Sintáctico Método apply (1/2)


```
class Azucar {
  def apply(a: Int): Int = a
scala> azucar.apply(1)
res0: Int = 1
scala> azucar(1)
res1: Int = 1
```


Azúcar Sintáctico Método apply (2/2)

```
object Lista {
  def apply(es: Int*): Lista = {
    if (es.isEmpty)
      Nada()
    else
      Cons(es.head, apply(es.tail: _*))
scala> Lista(1,2,3)
res0: Lista = Cons(1,Cons(2,Cons(3,Nada())))
```


Azúcar Sintáctico Placeholder Lambdas (1/2)


```
class Azucar {
 def f5(i: Int, f: Int => String): String = f(i)
scala> azucar.f5((x: Int) => x.toString)
scala> azucar.f5(x => x.toString)
scala> azucar.f5(_.toString)
```


Azúcar Sintáctico Placeholder Lambdas (2/2)


```
scala> val l = List(1, 2, 3)
l: List[Int] = List(1, 2, 3)

scala> l.map(_ + 1)
res0: List[Int] = List(2, 3, 4)
```


Azúcar Sintáctico Ejercicios (1/2)

1. El fichero de configuración de un proyecto SBT (build.sbt) es en sí mismo un fichero Scala. ¿Qué crees que está ocurriendo cuando se define la siguiente propiedad?

```
name := "scalaintrocourse"
```

2. El siguiente fragmento pertenece a la <u>sección de routing</u> del tutorial oficial del framework Play. ¿Qué elementos podrías identificar?

```
def show(id: Long) = Action{
   Client.findById(id).map { client =>
      Ok(views.html.Clients.display(client))
   }.getOrElse(NotFound)
}
```


Azúcar Sintáctico Ejercicios (2/2)

3. ¿Qué comprueba este test extraído del <u>Quick Start de</u> <u>ScalaTest</u>?

```
val emptyStack = new Stack[Int]
a [NoSuchElementException] should be thrownBy {
  emptyStack.pop()
}
```


Azúcar Sintáctico *Takeaways y cómo seguir*

Takeaways

- Scala despliega una gran variedad de azúcar sintáctico, lo que lo convierte en un lenguaje muy flexible
- Es importante tener unas nociones básicas sobre estas técnicas para poder comprender código escrito por terceros
- Controlar estas técnicas permite adecuar nuestro estilo de programación al posible lector (incluso no expertos)
- ¿Por dónde seguir?
 - <u>Programming in Scala</u> (obsoleto): **Implicits**, **for- comprehensions**, Lambdas, Currying, etc.
 - String Interpolation
 - Scala Style Guide
 - DSLs in Action (ScalaTest, Spray, Embedded BASIC, etc.)
- $\triangleleft_{\triangleright}$

Curso de Introducción a Scala

5. Implícitos

Implícitos Objetivos

- Conocer los tipos de implícitos que existen en Scala
 - Argumentos
 - Conversiones
- Ver la sintaxis asociada y todas las posibilidades que ofrecen
- Averiguar para qué son útiles cada uno de ellos

Implicitos *Guión*

- Parámetros implícitos
- Conversiones implícitas

Implicitos

Parámetros implícitos

```
def post(data: Array[Byte])
    (implicit uri: String, port: Int) =
  s"Posting to $uri on port $port"
post(myData)("215.15.46.26", 9000)
// res0: String = Posting to 215.15.46.26 on port 9000
implicit val URI: String = "192.168.0.1"
implicit val PORT: Int = 8080
post(myData)
// res1: String = Posting to 192.168.0.1 on port 8080
post(myData)(implicitly, 9000)
// res2: String = Posting to 192.168.0.1 on port 9000
```


Implícitos

Conversiones implícitas (1/3)


```
import scala.language.implicitConversions
implicit def doubleToInt(d: Double): Int = d.toInt

val myNumber: Int = 243.53
// res0: Int = 243

// ;Cuidado! Este comportamiento puede ser peligroso
```


Implicitos

Conversiones implícitas (2/3)

```
class RichInt(i: Int) {
  def factorial: Int = ???
  def squared: Int = math.pow(i, 2)
  def exp(e: Int): Int = math.pow(i, e)
implicit def intToRichInt(i: Int): RichInt =
  new RichInt(i)
5. factorial
// res0: Int = 120
5.squared
// res1: Int = 25
2 exp 10
 // res2: Int = 1024
                                       tema0-scalaintro/implicitos/Implicitos.scala
```


Implícitos

Conversiones implícitas (3/3)

```
implicit class RichInt(i: Int) {
  def factorial: Int = ???
  def squared: Int = math.pow(i, 2)
  def exp(e: Int): Int = math.pow(i, e)
5. factorial
// res0: Int = 120
5.squared
// res1: Int = 25
2 exp 10
 '/ res2: Int = 1024
                                        tema0-scalaintro/implicitos/Implicitos.scala
```


Implícitos Takeaways y cómo seguir

- Takeaways
 - El mecanismo de implícitos es una herramienta muy poderosa que nos permite ahorrar mucho código:
 - No poniendo parámetros
 - Wrapping automático
 - Hay que tener cuidado con las conversiones implícitas maliciosas
- ¿Por dónde seguir?
 - Patrón de type classes
 - Mecanismo de resolución de implícitos

Curso de Introducción a Scala

6. Características de Programación Genérica

Características de PG Objetivos

- Conocer los parámetros tipo, para poder construir código genérico
- Tener nociones sobre varianza y su implicación en la documentación de apis
- Empezar a trastear con la api de colecciones

Características de PG Guión

- Clases Genéricas
- Métodos Polimórficos
- Varianza
- API de Colecciones

Características de PG

Clases Genéricas (1/2)


```
sealed trait Lista
case class Cons(
  cabeza: Int,
  resto: Lista = Nada()) extends Lista
case class Nada() extends Lista
```


Características de PG

Clases Genéricas (2/2)


```
sealed trait Lista[A]

case class Cons[A](
  cabeza: A,
  resto: Lista[A] = Nada[A]()) extends Lista[A]

case class Nada[A]() extends Lista[A]
```


Características de PG *Métodos Polimórficos (1/2)*


```
object Lista {
  def apply(is: Int*): Lista = {
    if (is.isEmpty)
      Nada()
    else
      Cons(is.head, apply(is.tail: _*))
```


Características de PG Métodos Polimórficos (2/2)


```
object Lista {
 def apply[A](as: A*): Lista[A] = { //
genericidad a nivel de metodo
    if (as.isEmpty)
      Nada()
    else
      Cons(as.head, apply(as.tail: _*))
```


Características de PG Varianza (1/4)

- <u>In</u>varianza (por defecto)
 - o class Lista[A]
 - Las relaciones de herencia del parámetro tipo no afectan a las relaciones de herencia de la clase genérica
- Covarianza
 - o class Lista[+A]
 - O Si A >:> B entonces Lista[A] >:> Lista[B]
 - o Lista[Fruit] >:> Lista[Apple]
- Contravarianza
 - class Lista[-A]
 - O Si A >:> B entonces Lista[A] <:< Lista[B]</pre>
 - o Lista[Fruit] <:< Lista[Apple]</pre>

Características de PG Varianza (2/4)


```
trait Funcion[?A, ?B] {
  def apply(a: A): B
}
```


Características de PG Varianza (2/4)


```
trait Funcion[-A, +B] {
  def apply(a: A): B
}
```


Características de PG Varianza (3/4)


```
sealed trait Lista[+A] {
  def contains(a1: A): Boolean = // ...
}
```

"covariant type A occurs in contravariant position in type A of value a1"

Características de PG

Varianza (4/4)

```
sealed trait Lista[+A] {
  def contains[A1 >: A](a1: A1): Boolean = // ...
}
```


Características de PG Immutable List API (1/2)


```
def reduce[A1 >: A](op: (A1, A1) \Rightarrow A1): A1
```

Reduces the elements of this traversable or iterator using the specified associative binary operator.

Características de PG Immutable List API (2/2)

Características de PG

API de Colecciones

Características de PG Ejercicios

Los ejercicios para este módulo se encuentran en:

tema0-scalaintro/genericidad/Ejercicios.scala

Características de PG Takeaways y cómo seguir

Takeaways

- La genericidad en Scala es muy potente, sólo hemos visto pinceladas de su uso
- Es muy recomendable identificar comportamientos recurrentes en nuestro código para generar abstracciones de alto nivel, procurando no reinventar la rueda
- Scala promueve un estilo de interfaces con multitud de métodos de tamaño muy reducido
- ¿Por dónde seguir?
 - ¿Qué colección debería elegir? mutable, immutable, etc.
 - Estudiar otras colecciones: Option, Map, Set, etc.
 - Estudiar aspectos más avanzados sobre tipos en Scala: Type Alias, Type Constructors, Type Bounds, etc.
- $\triangleleft_{\triangleright}$

Curso de Introducción a Scala

7. Conclusiones

Conclusiones

- Scala as a better Java
- Pero la verdadera ganancia de utilizar Scala no reside en el paradigma OO
- Scala contiene multitud de features, lo que lo convierte en un lenguaje complejo, pero muy flexible (escala con las necesidades de los usuarios)
- La genericidad y las técnicas propias del paradigma funcional dotan al programador de superpoderes
- El elevado coste asociado al aprendizaje de este lenguaje merece la pena

Habla Computing info@hablapps.com @hablapps

Scala Programming @ Madrid @madridscala

