# Siste finpuss

Etter tentamen

### Når vertikal snakker med horisontal på UHF/VHF



- Når det er tale om kommunikasjon i siktlinje og polarisasjonen har en forskjell på 90 grader, kan dempningen bli mer enn 20 dB.
- Er forskjellen 45 grader, kan dempningen bli ca 5 dB

Er det den elektriske eller magnetiske feltvektoren som bestemmer hvilken polarisasjon en antennehar?

#### Største effekt med RG 58

- Du har en tranceiver som du benytter til HF, VHF og UHF. Til antennene dine benytter du coax-kabeler av typen RG 58. Hvilke av svarene er riktig for den maksimale effekt du kan tilføre kablene til antennene når SWR forholdet til systemet er 1:1?
- 600W på HF og 130W på UHF
- Kommentar: Svaret er hentet fra læreboka. I praksis er det forskjell på maksimal effekt innenfor HF-båndene (1,8 og 28 MHz) og innenfor UHF-området (432 og 2300 MHz)

#### Forsterkere

- Du har et har en transistor du skal benytte i en forsterker. Den er satt opp som en felles emitterkrets. Hvilket utsagn beskriver dette best?
  - Transistoren har et utgangssignal som er fasevendt (invertert) utgang
  - <u>Transistoren har lav inngangsimpedans, middels utgangsimpedans, fasevendt signal</u>
  - Transistoren har lav inngangsimpedans, høy utgangsimpedans, ingen fasevending. kun spenningsforsterkning
  - Transistoren har høy inngangsimpedans, lav utgangsimpedans, ingen fasevending, kun strømforsterkning

### Forsterkere



Effektiviteten i en C-klasse forsterker?

|          | Zi                      | Zu            | Fase        | Forsterkning                |
|----------|-------------------------|---------------|-------------|-----------------------------|
| Felles E | 1 kohm<br>(middels/lav) | 5 kohm        | Invertert   | Spenning og strøm (middels) |
| Felles B | 50 ohm (lav)            | 50 kohm (høy) | Lik innfase | Spenning                    |
| Celles C | 50 kohm – 2Mohm         | Svært lav     | Lik innfase | Strøm                       |

### Speilfrekvens



Speilfrekvensen ligger enten to mellomfrekvenser over eller under ønsket frekvens.

Hvis LO-frekvensen ligger under ønsket frekvens, ligger speilfrekvensen to mellomfrekvenser under ønsket frekvens.

Hvis LO-frekvensen ligger **over** ønsket frekvens, ligger speilfrekvensen **to mellomfrekvenser over** ønsket frekvens.

### Største endring i en avstemt krets

 Induktansen (L) og kapasitansen (C) til en avstemt krets påvirkes av temperatur. Siden alle sendere varmes opp, når vil endringen være størst?

# Lavest absorpsjon i D-laget

- På dagtid i sommerhalvåret
- På dagtid i vinterhalvåret
- Om natten sommerhalvåret
- Om natten i vinterhalvåret



- Høyest absorpsjon på dagtid
- Høyere om sommeren enn om vinteren

# Hvem tildeler contest-kallesignal?

Hvem tildeler formelt – og hvem utfører arbeidet?

# LSB og 3799 kHz



#### Hvor måler vi effekten?



Forskriftens §7: Effekten skal måles der antennen er tilkoblet **senderens siste trinn** 

### Finne frekvens for en halvbølgeantenne

- Antennelengde: 10,2m
- Koaks
- Hastighetsfaktor i antennen: 0,95
- Hastighetsfaktor i koaksen: 0,67
- Antennelengden er ca en halv bølgelengde.
- Da er bølgelengden ca 20,4 meter.
- Frekvensen er da **ca** 300: 20,4 = 14,7 MHz
- Men du husker vel at 20 meter svarer til 14 MHz?

# Mest vanlig benevnelse på feltstyrke

- V/m
- W/m<sup>2</sup>

# Aldring av krystall

- Nøyaktighet 5 ppm
- Aldring første år: 15 ppm
- Krystallfrekvens 10 MHz
- Avvik etter første år?

## Identifisere RF-forsterker i en super



# Filter



# Spenningsdeler



- U<sub>inn</sub>= 48V
- R1= 100 ohm
- R2= 50 ohm
- U<sub>ut</sub>=

#### Blandetrinn i sender



#### Forskrift

- Hva skal effekten reduseres til ved forstyrrelser?
- Når skal kallesignal sendes?

# Størrelser og enheter

• 10<sup>-3</sup>A>1mA?

#### Resonansfrekvens i LC-krets



$$f = \frac{1}{2\pi\sqrt{LC}}$$

Figur 2-24 Reaktanser for L og C

#### LCR i serie – Q-verdien?

•  $Q = \frac{X}{R}$ , altså forholdet mellom reaktansen og resistansen.

Kan også uttrykkes

• 
$$Q = \frac{X_L}{R} = \frac{2\pi f L}{R}$$

Lav spolemotstand gir høy Q

### Resonans kapasitiv/induktiv – hva betyr det?



Kapasitiv = når kapasitansen er størst

Induktiv = når induktansen er størst

Figur 2-24 Reaktanser for L og C

#### dB-forhold mellom to effekter

- 3dB
- 6dB
- 10dB
- 20dB

# Å produsere USB eller LSB med ringmodulator



Figur 4-14 Balansert modulator med diodering

- Prinsippet:
- Bærebølgen balanseres ut.
- Uønsket sidebånd filtreres bort.
- Etter dette kan signalet bare blandes, ikke multipluseres

# Forskjellen på skipsone og skipdistanse



Figur 9-3 Refraksjon av radiobølger i ioniserte lag i ionosfæren

ser. Dette kalle

### Reglene for salg av amatørsendere

- § 8 i forskriften:
- ..Utstyr som omfattes av første ledd kan ikke overdras til andre enn de som har radioamatørlistens eller er registrert radioforhandler.

Hva betyr CQ DX på HF?

# Hva er øvre båndkant på HF-båndene?

- 160m
- 80m
- 60m
- 40m
- 30m
- 20m
- 17m

- 15m
- 12m
- 10m