

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт Информационных технологий

Кафедра Математического обеспечения и стандартизации информационных технологий

Отчет по выполнению индивидуального задания № 1

по дисциплине «Структуры и алгоритмы обработки данных»

Тема: «Эмпирический анализ алгоритмов сортировки»

Выполнил: Хан Анастасия Александровна

Студент группы ИКБО-29-20

Проверил: Копылова А.В.

СОДЕРЖАНИЕ

Отчет по заданию 1

Зависимость вычислительной сложности алгоритма сортировки массива от размера массива n

Алгоритм сортировки по методу варианта Алгоритм задания 1 на
случайно заполненном массиве
Процесс определения функции роста времени выполнения
сортировки методом Алгоритм задания 1 при увеличении объема массива
n5
Сводная таблица результатов выполнения сортировки по
указанным объемам по формату Таблица 1 на случайно заполненном
массиве для всех указанных объемов 6
Код алгоритма и основной программы, доказывающей
выполнение тестирования
График зависимости теоретической и практической
вычислительной сложности алгоритма
Анализ результатов
Отчет по заданию 2. Зависимость сложности алгоритма сортировки от упорядоченности массива (худший и лучший случаи)
Таблица результатов при применении метода к массиву, упорядоченному по возрастанию
Таблица результатов при применении метода к массиву, упорядоченному по
убыванию10
Код программы, которая выполняет тестирование алгоритма
График зависимости теоретической и практической вычислительной сложности
алгоритма для трех рассмотренных случаев: по Таблице 1, по Таблице 2, по
Таблице 3
Определить емкостную сложность алгоритма от п
Анализ результатов и выводы

Отчет по заданию 3. Оценка эффективности алгоритмов простых сортировок

Алгоритм сортировки по методу варианта Алгоритм задания 3	14
Процесс определения функции роста времени выполнения	
сортировки методом Алгоритм задания 3 при увеличении объема массива	
n	14
Сводная таблица результатов выполнения сортировки по	
указанным объемам по формату Таблица 4 на случайно заполненном	
массиве для всех указанных объемов.	15
Код алгоритма и основной программы, доказывающей	
выполнение тестирования	16
График зависимости теоретической и практической	
вычислительной сложности алгоритма	18
Определение эффективности алгоритма	18
Анализ результатов и определение более эффективного алгоритма	18
Выводы	18
Информационные источники	18

Отчет по заданию 1

Зависимость вычислительной сложности алгоритма сортировки массива от размера массива п

Персональный вариант: 29%3 + 1 = 3

1. Алгоритм сортировки по методу варианта Алгоритм задания 1 на случайно заполненном массиве.

```
void selection_sort(int* a, int n)
{
    int mini;
    int buff;
    for (int i = 0; i < n - 1; i++)
    {
        mini = i;
        for (int j = i + 1; j < n; j++)
        {
            if (a[j] < a[mini])
            {
                 mini = j;
            }
            if (mini != i)
            {
                     buff = a[i];
                 a[i] = a[mini];
                a[mini] = buff;
            }
        }
    }
}</pre>
```

Работа функции сортировки выбором на случайно заполненном массиве:

```
10
before sort
41 67 34 0 69 24 78 58 62 64
after sort
0 24 34 41 58 62 64 67 69 78
Process exited with return value 0
Press any key to continue . . . ____
```

2. Процесс определения функции роста времени выполнения сортировки методом Алгоритм задания 1 при увеличении объема массива п

Оператор	Время выполнения	Количество
	инструкции	выполнений оператора
int mini;	c_1	1
int buff;	c_2	1
for (int $i = 0$; $i < n - 1$; $i++$)	c ₃	n
{		
mini = I;	C ₄	n-1
for (int $j = i + 1$; $j < n$; $j++$)	C ₅	$\sum_{j=1+i}^{n} t_{j}$
{		
if (a[j] < a[mini])	c ₆	$\sum_{j=1+i}^{n} t_j - 1$
{		, and the second
mini = j;	c ₇	$\sum_{j=1+i}^{n} t_j - 1$
}		
}		
if (mini != i)	c ₈	n-1
{		
buff = a[i];	C 9	$\sum_{j=k}^{n-1} t_j,$
a[i] = a[mini];	C ₁₀	$\sum_{j=k}^{n-1} t_j,$
a[mini] = buff;	c ₁₁	$\sum_{j=k}^{n-1} t_j,$
}		
}		

((n-1)-k) – количество раз, когда условие mini != I выполнилось Время выполнения алгоритма: $T(n)=c_1+c_2+c_3*n+c_4*(n-1)+c_5*$ * $\sum_{j=1+i}^n t_j+c_6*(\sum_{j=1+i}^n t_j-1)+c_7*(\sum_{j=1+i}^n t_j-1)+c_8*(n-1)+c_9*(\sum_{j=k}^{n-1} t_j,)+c_{10}*(\sum_{j=k}^{n-1} t_j,)+c_{11}*(\sum_{j=k}^{n-1} t_j,)$

Рассмотрим худший случай, когда все элементы стоят по убыванию, чтобы определить O(n):

Тогда $\sum_{j=1+i}^n t_j - 1$ превращается в формулу для суммы членов арифметической прогрессии, $\sum_{j=1+i}^n t_j - 1 = (1+2+\ldots+n)-1 = (1+n)*n/2-1;$ а (n-1-k)=0 в формуле $\sum_{j=k}^{n-1} t_j$, что значит, что все элементы переставляются и $\sum_{j=0}^{n-1} t_j = n-1$

Подставим полученное выражение в формулуТ(n):

3. Сводная таблица результатов выполнения сортировки по указанным объемам по формату Таблица 1 на случайно заполненном массиве для всех указанных объемов

Таблица1

n	T(n)	$\mathbf{T}_{\mathrm{T}} = \mathbf{f}(\mathbf{C} + \mathbf{M})$	$\mathbf{T}_{\pi} = \mathbf{C}_{\phi} + \mathbf{M}_{\phi}$
100	0	10000	5046
1000	0,003	1000000	500491
10000	0,221	100000000	50004990
100000	21,6	1000000000	5000049986

4. Код алгоритма и основной программы, доказывающей выполнение тестирования

```
= n: 100 ===
 ime sort: 0 nanos
+ M = 5046
  == n: 1000 ===
 ime sort: 2002000 nanos
+ M = 500491
  = n: 10000 ===
 ime sort: 221149000 nanos
+ M = 50004990
  == n: 100000 ===
 ime sort: 21543222000 nanos
+ M = 5000049986
 rocess exited with return value Oress any key to continue . . .
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <chrono>
using namespace std;
using namespace chrono;
void input(int* a, int n)
{
      for (int i = 0; i < n; i++)
              a[i] = rand()\% 1000;
}
void output(int* a, int n)
      cout << endl;
      for (int i = 0; i < n; i++)
             cout << a[i] << ' ';
      }
}
unsigned long long selection_sort(int* a, int n)
      int buff, mini;
      unsigned long long operSum = 0;
      for (int i = 0; i < n - 1; i++)
```

```
{
           mini = i;
           for (int j = i + 1; j < n; j++)
                 operSum++;
                 if (a[j] < a[mini])
                        operSum++;
                        mini = j;
           if (mini != i)
                 operSum++;
                 buff = a[i];
                 a[i] = a[mini];
                 a[mini] = buff;
}
     return operSum;
}
int main()
     srand(time(0));
    int a[100000], n;
    unsigned long long operSum;
     n = 100;
     while (n < 1000000)
     cout << "=== n: " << n << " ===" << endl;
     input(a, n);
     auto begin = high_resolution_clock::now();
    operSum = selection_sort(a, n);
    auto end = high_resolution_clock::now();
    auto dur = duration_cast<nanoseconds>(end - begin);
    cout << "time sort: " << dur.count() << " nanos" << endl;</pre>
    cout << "C + M = " << operSum << endl;
     n*=10;
}
```

5. Представить график зависимости теоретической и практической вычислительной сложности алгоритма

6. Анализ результатов

Посмотрев практические данные и теоретические, можно сказать, что время выполнения алгоритма квадратично зависит от количества элементов и теоретическая оценка, сопоставленная с практическими данными, носит приблизительный, оценочный характер.

Отчет по заданию 2. Зависимость сложности алгоритма сортировки от упорядоченности массива (худший и лучший случаи)

1. Таблица результатов при применении метода к массиву, упорядоченному по возрастанию

Таблина 2

n	T(n)	$T_{\rm T} = f(C + M)$	$T_{\pi} = C_{\phi} + M_{\phi}$
100	0	10000	4950
1000	0,003	1000000	499500
10000	0,221	100000000	49995000
100000	21,667	10000000000	4999950000

2. Таблица результатов при применении метода к массиву, упорядоченному по убыванию

Таблица 3

n	T(n)	$\mathbf{T}_{\mathrm{T}} = \mathbf{f}(\mathbf{C} + \mathbf{M})$	$T_{\pi} = C_{\varphi} + M_{\varphi}$
100	0	10000	5000
1000	0,003	1000000	500000
10000	0,241	100000000	50000000
100000	22,911	1000000000	5000000000

3. Код программы, которая выполняет тестирование алгоритма

```
Массив заполнен по возрастанию
     time sort: 0 nanos
C + M = 4950
      == n: 100 ===
     Массив заполнен по убыванию
     time sort: 0 nanos
C + M = 5000
      == n: 1000 ===
    Maccив заполнен по возрастанию
time sort: 3002000 nanos
C + M = 499500
      == n: 1000 ===
    Maccив заполнен по убыванию
time sort: 3004000 nanos
C + M = 500000
      === n: 10000 ===
     Массив заполнен по возрастанию
time sort: 220147000 nanos
C + M = 49995000
      === n: 10000 ===
    Maccив заполнен по убыванию
time sort: 238847000 nanos
C + M = 50000000
      === n: 100000 ===
     Массив заполнен по возрастанию
time sort: 21564723000 nanos
C + M = 4999950000
      === n: 100000 ===
    Maccив заполнен по убыванию
time sort: 22911345000 nanos
C + M = 5000000000
     Process exited with return value O
     Press any key to continue . . .
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <chrono>
using namespace std;
using namespace chrono;
void input(int* a, int n, bool flag)
       if (flag == true)
                 for (int i = 0; i < n; i++)
                           a[i] = i;
                 }
        }
       else
```

=== n: 100 ===

```
{
            for (int i = 0; i < n; i++)
                  a[i] = n - i;
            }
     }
}
void output(int* a, int n)
     cout << endl;</pre>
     for (int i = 0; i < n; i++)
            cout << a[i] << ' ';
     }
}
unsigned long long selection_sort(int* a, int n)
     int buff, mini;
     unsigned long long operSum = 0;
     for (int i = 0; i < n - 1; i++)
            mini = i;
            for (int j = i + 1; j < n; j++)
                   operSum++;
                  if (a[j] < a[mini])
                         operSum++;
                         mini = j;
                   }
            buff = a[i];
            a[i] = a[mini];
            a[mini] = buff;
     return operSum;
}
int main()
     setlocale(LC_ALL, "Russian");
     srand(time(0));
```

```
int a[100000], n;
    unsigned long long operSum;
    n = 100;
    bool flag = true;
    while (n < 1000000)
           input(a, n, flag);
           auto begin = high_resolution_clock::now();
           operSum = selection_sort(a, n);
           auto end = high_resolution_clock::now();
           auto dur = duration_cast<nanoseconds>(end - begin);
           cout << endl << "=== n: " << n << " ===" << endl;
           if (flag == true)
           {
                 cout << "Массив заполнен по возрастанию";
                 flag = false;
           }
           else
           {
                 cout << "Массив заполнен по убыванию";
                 flag = true;
                 n*=10;
           cout << endl << "time sort: " << dur.count() << " nanos" << endl;</pre>
           cout \ll "C + M = " \ll operSum \ll endl;
     }
}
```

4. График зависимости теоретической и практической вычислительной сложности алгоритма для трех рассмотренных случаев: по Таблице 1, по Таблице 2, по Таблице 3

5. Определить емкостную сложность алгоритма от п

Для сортировки не требуется дополнительного массива, следовательно, ёмкостная сложность равна n.

6. Анализ результатов и выводы

По полученным практическим данным, по графикам можно судить, что алгоритм сортировки выбором выполняется в худшем и в лучшем случае с незначительной разницей в количестве операций и времени.

Отчет по заданию 3. Оценка эффективности алгоритмов простых сортировок

Персональный вариант: 29%3 + 1 = 3

1. Алгоритм сортировки по методу варианта Алгоритм задания 3

2. Процесс определения функции роста времени выполнения сортировки методом Алгоритм задания 3 при увеличении объема массива n

Оператор	Время выполнения	Количество
	инструкции	выполнений оператора
int buff;	c_1	1
int buff;	c_2	1
for (int $i = 0$; $i < n - 1$; $i++$)	c ₃	n
{		
for (int $j = i + 1$; $j < n$; $j++$)	C4	$\sum_{j=1+i}^{n} t_{j}$
{		
if (a[i] < a[j])	C ₅	$\sum_{j=1+i}^{n} t_j - 1$
{		

buff = a[i];	C ₆	$\sum_{j=k}^{n} t_j - 1$
a[i] = a[mini];	c ₇	$\sum_{j=k}^{n} t_j - 1$
a[mini] = buff;	C ₈	$\sum_{j=k}^{n} t_j - 1$
}		
}		
}		

n-k – количество раз, когда условие a[i] < a[j] выполнилось

Время выполнения алгоритма:
$$T(n) = c_1 + c_2 + c_3*n + c_4*(\sum_{j=1+i}^n t_j) + c_5*(\sum_{j=1+i}^n t_j - 1) + c_6*(\sum_{j=k}^n t_j - 1) + c_7*(\sum_{j=k}^n t_j - 1) + c_8*(\sum_{j=k}^n t_j - 1)$$

Рассмотрим худший случай, когда все элементы стоят по убыванию, чтобы определить O(n):

Тогда $\sum_{j=1+i}^n t_j - 1$ превращается в формулу для суммы членов арифметической прогрессии, $\sum_{j=1+i}^n t_j - 1 = (1+2+\ldots+n)-1 = (1+n)*n/2-1$ $= n^2/2 + n/2 - 1$; $\sum_{j=1+i}^n t_j = n^2/2 + n/2$; по мере сортировки n-k=n-1; $n-2\ldots 1$, тогда $\sum_{j=k}^n t_j - 1 = (1+n-1)/2*(n-1)-1 = n^2/2-n/2-1$.

Подставим полученное выражение в формулуT(n):

$$T(n) = c_1 + c_2 + c_3*n + c_4*(n^2/2 + n/2) + c_5*(n^2/2 + n/2 - 1) + c_6*(n^2/2 - n/2 - 1) + c_7*(n^2/2 - n/2 - 1) + c_8*(n^2/2 - n/2 - 1) = n^2*(c_4 + c_5 + c_6 + c_7 + c_8) + n*(c_3 + c_4/2 + c_5/2 - c_6/2 - c_7/2 - c_8/2) + (c_1 + c_2 + c_3 - c_5 - c_6 - c_7 - c_8) = n^2 + n => O(n) = n^2$$

3. Сводная таблица результатов выполнения сортировки по указанным объемам по формату Таблица 4 на случайно заполненном массиве для всех указанных объемов

Таблица4

n	T(n)	$\mathbf{T}_{\mathrm{T}} = \mathbf{f}(\mathbf{C} + \mathbf{M})$	$\mathbf{T}_{\pi} = \mathbf{C}_{\phi} + \mathbf{M}_{\phi}$
100	0	10000	7292
1000	0,006	1000000	699533
10000	0,353	100000000	50490873
100000	23,02	1000000000	5087561425

4. Код алгоритма и основной программы, доказывающей выполнение тестирования

```
== n: 100 ===
time sort: 0 nanos
C + M = 7292
 == n: 1000 ===
time sort: 6002000 nanos
C + M = 699533
 === n: 10000 ===
time sort: 353234000 nanos
C + M = 56647984
=== n: 100000 ===
time sort: 23020616000 nanos
C + M = 5087561425
 Process exited with return value O
Press any key to continue . . .
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <chrono>
using namespace std;
using namespace chrono;
void input(int* a, int n)
{
      for (int i = 0; i < n; i++)
              a[i] = rand()\%100 + rand()\%1000 - rand()\%800;
}
void output(int* a, int n)
      cout << endl;
      for (int i = 0; i < n; i++)
              cout << a[i] << ' ';
}
unsigned long long bubble_sort(int* a, int n)
```

```
int buff;
     unsigned long long operSum = 0;
     for (int i = 0; i < n - 1; i++)
           for (int j = i + 1; j < n; j++)
                 operSum++;
                 if (a[i] > a[j])
                        operSum++;
                        buff = a[i];
                        a[i] = a[j];
                        a[j] = buff;
                  }
           }
     return operSum;
}
int main()
     setlocale(LC_ALL, "Russian");
     srand(time(0));
     int a[100000], n;
     unsigned long long operSum;
     n = 100;
     bool flag = true;
     while (n < 1000000)
     {
           input(a, n);
           auto begin = high_resolution_clock::now();
           operSum = bubble_sort(a, n);
           auto end = high_resolution_clock::now();
           auto dur = duration_cast<nanoseconds>(end - begin);
           cout << endl << "=== n: " << n << " ===" << endl;
           cout << endl << "time sort: " << dur.count() << " nanos" << endl;</pre>
           cout << "C + M = " << operSum << endl;
           n*=10;
}
```

5. Представить график зависимости теоретической и практической вычислительной сложности алгоритма

6. Определение эффективности алгоритма

Для сравнения алгоритмов принято использовать обобщенную характеристику, называемую эффективностью. Говорят, что алгоритм A1, эффективнее алгоритма A2, если алгоритм A1, выполняется за меньшее время и (или) требует меньше компьютерных ресурсов (оперативной памяти, дискового пространства, сетевого трафика и т.п.).

7. Анализ результатов и определение более эффективного алгоритма

Посмотрев практические данные и теоретические, сравнив графики, можно сказать, что двух алгоритмов сортировки — выбором и пузырьковой — эффективнее выбором, потому что она выполняется за меньшее время.

Выводы

В ходе практической работы я получила знания и практические навыки определения теоретической и практической сложности алгоритмов, научилась определять эффективности алгоритмов.

Информационные источники

- 1) Лекции по Структурам и алгоритмам обработки данных Скворцова Л. А. МИРЭА Российский технологический университет 2021 год
- 2) Искусство программирования Т. 1 / Д. Кнут М.: Вильямс, 2014. 712 с.
- 3) https://pro-prof.com/archives/4275