On ELFs, Deterministic Encryption, and Correlated Input Security

Mark Zhandry
Princeton University

"mommy > daddy"

In reality...

c = Enc(pk,"mommy > daddy")

sk

Random Number Cortex:

r = 000000000......

Deterministic Public Key Encryption (DPKE)

Pros:

- No randomness needed
- Public equality test

Cons:

- Harder to construct
- Semantic security impossible
- Need unpredictable messages
- Multiple messages?

This Work

DPKE secure under

- Arbitrary computationally unpredictable sources
- Constant number of arbitrarily correlated sources
- Chosen ciphertext attacks

Computational assumption: exponential DDH

Computationally Unpredictable Sources

DPKE Experiment 0:

DPKE Experiment 1:

Step 1: **t=1**, No CCA queries

Extremely Lossy Functions (ELFs) [Z'16]

Injective Mode:

Lossy Mode:

| Img | = polynomial*

Thm [Z'16]: Exponential DDH \Rightarrow ELFs

PRGs for Comp. Unpred. Sources, **t=1**

Upgrading to DPKE

New Tool: Trapdoor ELFs

Injective Mode:

Constructing T-ELFs

Compression kills trapdoor

Constructing T-ELFs

In paper: instantiate parameters such that growth isn't too big

Upgrading to DPKE

Step 2: Constant **†**, No CCA queries

PRGs for Comp. Unpred. Sources, t=O(1)

Step 2: Constant **†**, No CCA queries

```
Thm: T-ELFs +
Pseudorandom ctxts +
PRG for CU O(1)-sources +
⇒ DPKE for CU O(1)-sources
```

PRG for CU **O(1)**-sources

Idea 1: each x_i gets it's own PRG for CU 1-sources

PRG for CU **O(1)**-sources

PRG for CU **O(1)**-sources

Idea 3: Break circularity using †-wise independence + ELFs

Step 3: CCA Security

See paper...

Difficulties arise:

- Need "branched" T-ELFs
- T-ELFs are much more delicate than LTDFs
 - ⇒ Generic approaches don't work
- Instead, modify construction directly

Now time for a nap ...

