Factorization systems

Ivan Kobe

January 19, 2025

Definitions and basic properties

Definition 1. A factorization system in a category \mathcal{C} consists of two classes of morphisms (L, R), such that both L and R contain isomorphisms and are closed under composition, and every morphism $f: C \to D$ in \mathcal{C} admits a factorization into a morphism $l \in L$ followed by a morphism $r \in R$, which is unique up to unique isomorphism among such factorizations.

Definition 2. If W is a class of morphisms in a category \mathcal{C} and X is an object in \mathcal{C} , we define a class of morphisms W/X in \mathcal{C}/X , given by $f \in W/X$ iff $Uf \in W$, where $U : \mathcal{C}/X \to \mathcal{C}$ is the forgetful functor.

Lemma 3. If (L,R) is a factorization system in a category \mathcal{C} and X is an object in \mathcal{C} , then (L/X, R/X) is a factorization system in \mathcal{C}/X .

Lemma 4. If (L,R) is a factorization system in a category \mathcal{C} , then the intersection of L and R is precisely the class of isomorphisms in \mathcal{C} .

Lemma 5. If (L, R) is a factorization system in a category \mathcal{C} , then R has the left cancellation property and L has the right cancellation property.

Lemma 6. (Epi, Mono) is a factorization system in Set.