1.	Under $model.AIC$, what is the mean predicted price in the testing data set ($ames_test$).	1/1 point
	\$12.02	
	\$166,721.30	
	\$172,994.50	
	\$177,220.30	
	Correct This question refers to the following learning objective(s):	
	Extrapolate a model to out-of sample data.	
2.	Which of the following statements is true concerning the RMSE of $model.full$ and $model.AIC$?	1 / 1 point
	When predicting to $ames_t rain$, the RMSE for $model.full$ is higher than the RMSE for $model.AIC$. However, when predicting to $ames_test$, the RMSE for $model.AIC$ is higher.	
	When predicting to $ames_t rain$, the RMSE for $model.AIC$ is higher than the RMSE for $model.full$. However, when predicting to $ames_test$, the RMSE for $model.full$ is higher.	
	O The RMSE for $model.full$ is higher than the RMSE for $model.AIC$, regardless of whether $ames_train$ or $ames_test$ is used for prediction.	
	O The RMSE for $model.AIC$ is higher than the RMSE for $model.full$, regardless of whether $ames_train$ or $ames_test$ is used for prediction.	
	 Correct This question refers to the following learning objective(s): 	
	Extrapolate a model to out-of sample data.	
	Compare the performance of multiple models.	

3.	True or False: In general, the RMSE for predictions on a training data set will be higher than that for predictions on a testing data set.	1 / 1 point
	○ True	
	False	
	 Correct This question refers to the following learning objective(s): Extrapolate a model to out-of sample data. 	
4.	Create a new model entitled $model.BIC$ that uses BIC to select the covariates from $model.full$. What is the out-of-sample coverage for $model.BIC$?	1 / 1 point
	0.948	
	0.950	
	0.952	
	0.961	
	 Correct This question refers to the following learning objective(s): Check the assumptions of a linear model. Extrapolate a model to out-of sample data. 	
5.	Which of the following prediction methods has the smallest out-of-sample RMSE?	1 / 1 point
	● HPM	
	○ BPM	
	○ BMA	
	✓ Correct	

This question refers to the following learning objective(s):

- Extrapolate a model to out-of sample data.
- Implement Bayesian model averaging for both prediction and variable selection.

6.	Using the median probability model to generate out-of-sample predictions and a 95% prediction interval, what proportion of observations (rows) in $ames_test$ have sales prices that fall outside the prediction intervals?	1 / 1 point
	0.048	
	0.049	
	0.050	
	0.051	
	 Correct This question refers to the following learning objective(s): • Extrapolate a model to out-of sample data. • Implement Bayesian model averaging for both prediction and variable selection. 	
7.	True or False: The median probability model has a tendency to over-predict prices for the most expensive houses.	1 / 1 point
	○ True	
	False	

Correct

This question refers to the following learning objective(s):

Extrapolate a model to out-of sample data.