[1]:	Ceiuntae Smit OSC 630 Pred 9 June 2022 #Load the neces import numpy as	h lictive Anal		9 = 10.							
	<pre>import pandas a import seaborn import matplotl import matplotl import matplotl from sklearn.pr from sklearn.me from sklearn.me from sklearn.cl import matplotl import matplotl from sklearn.de import warnings</pre>	as pd as sns ib.pyplot as ib.cm as cm ib.style as eprocessing trics import trics import uster import ib.pyplot as ib as mpl composition	style import Standar silhouette_sc silhouette_sa KMeans plt	ore							
[2]:	<pre># Load dataset df = pd.read_cs # View the data df.head(5)</pre>	v('als_data. frame									
1 2 3 4	ID Age_mean A 1 1 65 1 2 48 2 3 38 3 4 63 4 5 63 rows × 101 column	57.0 45.0 50.0 47.0 47.0	40.5 41.0 47.0 44.0 45.5	38.0 39.0 45.0 41.0 42.0	0.066202 0.010453 0.008929 0.012111 0.008292	-0.965608 -0.921717 -0.914787 -0.598361 -0.444039	30 37 24 30 32	28.0 33.0 14.0 29.0 27.5	22 21 10 24 20	143.0 136.0 140.0 138.0	0.017422 0.010453 0.008929 1 0.012469 2 0.008292 2
[3]: ((3]: ([4]: (#check the numb df.shape [2223, 101) #check the data df.dtypes	er of column	s and rows								
[4]: A A A A t t U U U L	TD Age_mean Albumin_max Albumin_median Albumin_min Trunk_min Trunk_range Jrine.Ph_max Jrine.Ph_median Jrine.Ph_min Length: 101, dty	int64 int64 float64 float64 int64 float64 float64 float64 float64 float64 cype: object									
n	ID count 2223.000000 mean 1214.874944 std 696.678300 min 1.000000 25% 614.500000 75% 1213.000000 75% 1815.500000 max 2424.000000 rows × 101 column	2223.000000 54.550157 11.396546 18.000000 47.000000 55.000000 63.000000 81.000000	Albumin_max Albu 2223.000000 47.011134 3.233980 37.000000 45.000000 47.000000 70.300000	2223.000000 43.952542 2.654804 34.500000 42.000000 44.000000 51.100000	Albumin_min 2223.000000 40.766347 3.193087 24.000000 39.000000 41.000000 43.000000 49.000000	Albumin_range A 2223.000000 0.013779 0.009567 0.000000 0.009042 0.012111 0.015873 0.243902	-0.728274 3: 0.622329 ! -4.345238 1: -1.086310 2! -0.620748 3: -0.283832 36	3.000000 22 1.692308 5.314228 1.000000 9.000000 3.000000		2223.000000 2 19.877193 8.583509 0.000000 14.000000 20.000000 27.000000	
[6]: ,	Remove any #delete columns df = df.drop(['	y data tha "ID" and "S ID', 'Subjec	ubjectID" due tID'], axis=1)	to irreleva	nnce	ent's ALS	condition.				
[7]:	Age_mean Album 65 48 2 38 63	57.0 45.0 50.0 47.0 47.0	40.5 41.0 47.0 44.0 45.5	38.0 39.0 45.0 41.0 42.0		-0.965608 -0.921717 -0.914787 -0.598361 -0.444039	30 37 24 30 32	70tal_median ALSFRS 28.0 33.0 14.0 29.0 27.5	22 21 10 24 20	0.021164 0.028725 0.025000 0.014963 0.020374	Sodium_median 145.5 138.0 143.0 139.0 140.0
[8]:	#create the sta scaler = Standa print(scaler) StandardScaler() scaler.scale_	ndard scaler rdScaler().f		uata.							
	array([1.1393982 9.5646647 8.5815784 1.1228694 7.3936396 2.4079771 1.3539513 8.4417625 1.1192519 1.7274852 3.4450706 1.8444166 1.2435185 2.4595406 1.2118014 1.1600236 2.2802677 2.7712269 4.1923974 1.3251146 1.1102367 2.9844875 2.3326326 1.7472667	78e-03, 6.221 11e+00, 1.615 16e+01, 1.108 12e+00, 8.408 1.8e+00, 1.127 13e+00, 5.069 13e+01, 3.310 12e+01, 3.310 12e+01, 3.765 13e+00, 1.168 13e+00, 1.168 13e+00, 2.607 14e+01, 1.155 13e+00, 2.124 14e+01, 1.155 17e-01, 7.015 17e-01, 7.015 17e+01, 8.435 17e+01, 8.435 17e+01, 8.435 17e+01, 1.789 17e+00, 2.145	25265e+00, 2.6 89364e-01, 5.3 22631e-02, 4.4 63795e-01, 3.5 14304e-02, 3.1 72038e-02, 2.3 34886e-03, 8.7 59052e-02, 1.5 129799e-02, 1.8 15277e-04, 2.6 15277e-04, 2.6 15277e-04, 2.6 152386e-02, 1.9 163386e-02, 1.9 171742e-02, 4.8 171742e-01, 4.8 172626e+01, 3.5 172626e+01, 3.5	31303232e+06 38194928e+01 52807627e+01 52807627e+01 52807627e+06 531901582e+06 57505042e+01 50204995e-01 50373369e-03 52516472e-02 51263151e-02 512646222e-03 52691009e-01 76169923e+06 71463607e+06	0, 6.6321504; 1, 1.5598415; 1, 9.5917532; 2, 1983297; 1, 1.3349359; 1, 1.2158202; 1, 8.8398002; 1, 3350130; 1, 1.7356446; 1, 2.5332961; 1, 2738261; 2, 1.2718261; 2, 2.2441457; 3, 1.8970741; 1, 4.9310142; 1, 4.9310142; 1, 2.8974911; 2, 2.4765429; 0, 9.2806141; 0, 4.5018341;	8e+00, 6e+01, 4e+00, 1e+00, 4e+00, 3e+00, 7e+01, 1e-02, 4e+00, 1e+01, 6e+00, 6e+00, 0e+01, 3e+01, 1e+00, 1e+00, 2e+02, 9e+01, 3e-03, 3e-03, 5e-03,					
10]: a	#apply the scal scaler.transfor 0.46305 [-0.57487 -1.13726 [-1.45253 -1.13726 , [-0.66264 0.46305 [-1.54036 -1.13726	er to the da m(df) 3698, 3.0894 3355, 1.8685 7867, -0.6220 0768, -0.4191 3494, 0.9244 0768, -0.4191 0057, 0.6151 0768, -0.4191 7867, 0.3058 0768, -0.4191	ta 1722, -1.30078 3157], 1561, -1.11246 5124], 1474, 1.14816 5124], 2954, 0.01788 5124], 2867, 0.01788 5124], 426, 0.39464	3105,, - 0084,, 3173,, - 3044,,	0.88037551, 0.1926645, 0.88037551, 2.33874452, 0.88037551,						
[12]:	df_scaled = sca print(df_scaled [[0.91713698 3 1.86853157] [-0.57487867 -6 -0.41915124] [-1.45253494 6 -0.41915124] [-0.6626443 -6 -0.41915124] [-1.54030057 6 -0.41915124] [-0.57487867 6 -0.41915124]]	3.08941722 -1 0.62201561 -1 0.92441474 1 0.31272954 0		0.1926645 -0.88037551 2.33874452 -0.88037551	-1.1372076 1 -1.1372076 2 0.4630535 1 -1.1372076	8 8 5 8					
[# check the mea print(df_scaled 7.67117663e-17 0.000000000e+06 2.06961953e-16 4.54677032e-16 1.24656620e-16 7.43145236e-17 1.03880517e-16 -9.26933843e-17 1.28731933e-15 1.44793459e-15 1.19862135e-16 1.51825371e-16 -3.52794217e-16 -4.63466922e-17 1.61014801e-16 -2.28537137e-16 -2.39724270e-17 -1.91779416e-17 -2.71687506e-16 -1.24656620e-16 -5.01383310e-15 -1.15067650e-16 1.01643090e-15	.mean(axis=0 6 -4.29905524 7 -4.15522068 1.43834562 4.15522068 6 -5.59356630 6 -1.67806989 7 -3.51595596 1.51825371 7 -1.74199636 6 -7.75108472 6 -5.43375012 6 6.39264720 6 -1.40638238 6 -7.67117663 7 .28761780 6 .71227956 9 .42915461 7 .2.20546328 2 .02646916 7 .2.20546328 2 .02646916 7 .7.04789353 6 -3.45202949 6 -1.00060910 1.24257080 1.15067650	e-16 -5.369823 e-17 -2.077616 e-17 -8.869797 e-17 -7.431452 e-18 3.899514 e-16 -3.931478 e-16 6.073014 e-16 -4.199176 e-17 4.548368 e-16 -4.199176 e-17 -1.182639 e-18 2.209458 e-16 6.073014 e-17 -7.031911 e-16 3.995404 e-16 3.995404 e-17 5.833296 e-17 7.990808 e-16 9.828695 e-16 -3.739698 e-16 -3.739698 e-16 -3.739698 e-16 -3.739698 e-16 -1.933775	034e-16 -1.2 798e-17 8.2 236e-17 3.6 179e-16 -6.7 303e-16 4.1 364e-16 1.6 184e-16 -1.5 348e-15 1.4 173e-16 -4.2 369e-16 6.7 184e-17 7.3 191e-17 3.4 150e-17 5.3 157e-17 -1.9 1606e-17 1.9 1606e-17 1.9 1606e-17 1.9 1638e-16 -1.9 173e-16 -2.5 173e-16 -2.5 173e-16 -1.9	22259378e-16 23053326e-17 3650742e-17 76821522e-16 18718391e-16 36208827e-16 99474083e-15 52464636e-15 46311713e-15 25111038e-16 71227956e-17 85154427e-17 94975739e-16 98675002e-16 99770225e-17 39264720e-18 91779416e-16 21744950e-16						
[14]:	# Creating an esilhouette_df_d # Calculating s for k in range(kmeans_mode	mpty datafra f = pd.DataF ilhouette sc 2, 20):	me for number rame(columns=[ore for n clus _clusters=k, r	of clusters 'Clusters',	s vs silhouet 'Silhouette	tte score. e Score']) aframe.	mber of cluster	s in a K-mea	ns cluster.		
[16]:	12 14.0 13 15.0 14 16.0 15 17.0 16 18.0	f	re dataframe								
	ax.set_xlabel('ax.set_ylabel('ax.set_title('K)plt.show()) ([0, 0, 1, 1 ouette_df_df Clusters') Silhouette S -means Clust]) ['Clusters'], core')	silhouette_ ette Score')	_df_df[' <mark>Silh</mark> o	ouette Score'],	color='green')				
	0.04 - 2.5 Use the plot	5.0 7.5	10.0 12.5 Clusters		17.5	number o	f clusters for K	-means. Jus	tify your ch	noice.	
[18]: ,	ased on the silhoue it a K-mea ## Fit K-means kmeans = KMeans kmeans.fit(df_s	ns model model to the (init="rando	to the dat	a with th	ne optima	al number	of clusters cho	sen in part (4	4).		
[19]: K	Means(init='range) Fit a PCA transport #Pass the number pca_als = PCA(note) pca_als.fit(df_	ansforma or of components=	ntion with t	wo featu			ata.				
[20]: P	# transform the pca_als.transfo array([[-1.42674	PCA orm(df_scaled 126 , -2.3190 1117, -4.8714 1358, -0.4286	1808], 9062], 1302],								
[23]:	[-0.43296 [-0.33079	pca_als.tran dataframe wi cat([df.rese	nents scores f sform(df_scale th the origina t_index(drop=T	d) 1 features rue), pd.Da	and add the	PCA scores	axis=1)				
[24]: 	<pre>pca_df['Segment # Add the names pca_df['Segment # display the h pca_df.head()</pre>	of the segm	ents to the la 'Segment K-mea	bels	up({0: 'firs t	',1:'second', 2	2:'third', 3:'fourth	3)			
[26]:	0 65 L 48 2 38 B 63	57.0 45.0 50.0 47.0 47.0	40.5 41.0 47.0 44.0 45.5	38.0 39.0 45.0 41.0 42.0	0.066202 0.010453 0.008929 0.012111 0.008292	-0.965608 -0.921717 -0.914787 -0.598361 -0.444039	30 37 24 30 32	28.0 33.0 14.0 29.0 27.5	22 21 10 24 20	0.021164 0.028725 0.025000 0.014963 0.020374	7.0 7.0 0.0 5.0
[26]: 2 2 2 2		50.0 47.0 46.0 49.0 48.0	49.0 45.0 44.0 44.0 45.0	45.0 42.0 41.0 39.0 40.0	0.008772 0.009074 0.012111 0.017857 0.018476	-0.239501 -0.388711 -0.108631 -0.855880 -2.050562	SFRS_Total_max ALSFR 35 31 26 34 37	32.5 26.0 23.0 29.5 34.0	FRS_Total_min AL 30 17 20 21 11	0.009107 0.025408 0.010949 0.023214 0.059908	5.0 4.0 4.0
	rows × 103 column // ake a scat # Plot scatterp x_axis = pca_df y_axis = pca_df plt.figure(figs)	lot of PCA t ['PC_2'] ['PC_1'] ize =(10,8))	the PCA	transforr a identifyi	med data	a coloring e	each point by it			о.оэ9908	0.8
[27]:	<pre>plt.figure(figs sns.scatterplot plt.title('Clus plt.show()</pre>	(y_axis,x_ax ters by PCA	Components') conda3/lib/pyt	hon3.9/site	e-packages/s	eaborn/_decora	ed']) tors.py:36: FutureWa er arguments without				
[27]:			Clusters by PC	CA Component	s	Segment • first					