B Given
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 at $\forall y \in \mathbb{R}, y > x$, $f(y) = f(x)$
 $g: \mathbb{R} \rightarrow \mathbb{R}$, $x^* = \arg\max_{x \in \mathbb{R}} g(x) \iff \forall x \in \mathbb{R}: g(x^*) \ge g(x)$
 $x \in \mathbb{R}$
 $\forall x \in \mathbb{R}: f(g(x^*)) \ge f(g(x)).$
 $\downarrow f(y) < f(x) \implies x^* = \arg\min_{x \in \mathbb{R}} f(g(x)).$
 $\downarrow f(y) < f(x) \implies x^* = \arg\min_{x \in \mathbb{R}} f(g(x)).$
 $\downarrow f(y) < f(x) \implies x^* = \arg\min_{x \in \mathbb{R}} f(g(x)).$
 $\downarrow f(y) < f(x) \implies x \in \mathbb{R}$
 $\downarrow f(y) < f(x) \implies x \in \mathbb{R}$