IN THE CLAIMS:

Please cancel claims 11, 14, 16, 25-29, 34-36, and 38.

Please amend claim 30 as follows;

In claim 30, in the penultimate line, please delete "and compare."

Please add new claims 39-50 as indicated below:

-39. A\peptide nucleic acid conjugate of the formula:

Sup

Q Cm Cm Cm C B D

EN

wherein:

m is an integer from 1 to about 50;

L and L_m independently are $R^{12}(R^{13})_a$ wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate; provided that at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring

nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³\is a conjugate; and a is 0 or 1;

C and C_m independently are $(CR^6R^7)_v$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 , SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

wherein R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl; and R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy,

alkylthio or amino;

D and D_m independently are $(CR^6R^{\uparrow})_z$;

each of y and z is zero or an integer from 1 to 10, wherein the sum y + z is greater than 2 but not more than 10;

 G_m is independently -NR³CO-, -NR³CS-\ -NR³SO-, or -NR³SO₂- in either orientation;

each pair of $A-A_m$ and $B-B_m$ are selected such that:

FZ

(a) A or A_m is a group of formula (IIa), (IIb) or (IIc) and B or B_m is N or R^3N^+ ; or

(b) A or A_m is a group of formula (IId) and B or A_m is CH;

/ Z where

IIc

IId

wherein:

X is O, S, Se, NR³, CH₂\or C(CH₃)₂;

Y is a single bond, O, or NR4;

each of p and q is zero or an integer from 1 to 5;

each of r and s is zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxysubstituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

I is -NR⁸R⁹ or -NR¹⁰C(O)R¹¹; wherein:

 R^8 , R^9 , R^{10} and R^{11} independently are hydrogen, alkyl, an

amino protecting group, a reporter ligand, an

intercalator, a chelator, a peptide, a protein, a carbohydrate, a lipid, a steroid, a nucleoside, a nucleotide, a nucleotide diphosphate, a nucleotide triphosphate, an oligonucleotide, an oligonucleoside, a soluble polymer, a non-soluble polymer or a conjugate; , -CO₂R⁸, -CO₂R⁹, -CONR⁸R⁹, -SO₃H, -SO₂NR¹⁰R¹¹ or an

Q is $-CO_2H$, $-CO_2R^8$, $-CO_2R^9$, $-CONR^8R^9$, $-SO_3H$, $-SO_2NR^{10}R^{11}$ or an activated derivative of $-CO_2H$ or $-SO_3H$; and

wherein:

at least one of Q and I comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A, A_m, L, and L_m comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and

wherein at least one of R^1 , R^2 or R^3 is a conjugate.

^{40.} A peptide nucleic acid conjugate of the formula:

wherein:

m is an integer from 1 to about 50;

L and L_m independently are $R^{12}(R^{13})_a$ wherein:

 R^{12} is hydrogen, hydroxy, (C_1-C_4) alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate; provided that at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and
a is 0 or 1;

C and C_m independently are $(CR^6R^7)_y$; whereix:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6)

alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6)

F. 2

alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 , SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

-7-

wherein R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl; and R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

D and D_m independently are $(CR^6R^7)_z$;

each of y and z is zero or an integer from 1 to 10, wherein the sum y + z is greater than 2 but not more than 10;

 G_m is independently -NR³CO-, -NR³CS-, -NR³SO-, or -NR³SO₂- in either orientation;

each pair of $A-A_m$ and $B-B_m$ are selected such that:

(a) A or A_m is a group of formula (IIa), (IIb) or (IIc) and B or B_m is N or R^3N^+ ; or

(b) A or A_m is a group of formula (IId) and B or B_m is CH;

wherein:

X is O, S, Se \setminus NR³, CH₂ or C(CH₃)₂;

Y is a single bond, O, S or NR4;

each of p and q is zero or an integer from 1 to 5; each of r and s is zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxysubstituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

I is -NR⁸R⁹ or -NR¹⁰C(O)R¹; wherein:

R⁸, R⁹, R¹⁰ and R¹¹ independently are hydrogen, alkyl, an amino protecting group, a reporter ligand, an intercalator, a chelator, a peptide, a protein, a carbohydrate, a lipid, a steroid, a nucleoside, a nucleotide, a nucleotide diphosphate, a nucleotide triphosphate, an oligonucleotide, an oligonucleoside, a soluble polymer, a non-soluble polymer or a conjugate;

Q is $-CO_2H$, $-CO_2R^8$, $-CO_2R^9$, $-CONR^8R^9$, $-SO_3H$ $-SO_2NR^{10}R^{11}$ or an

activated derivative of -CO2H or -SO3H; and

wherein:

FZ

at least one of Q and I comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A, A_m , L, and L_m comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety;

wherein at least one of R^8 , $R^{9} \nearrow R^{10}$ and R^{11} is a conjugate.

41. A peptide nucleic acid conjugate of the formula:

wherein:

 E_{2} and

m is an integer from 1 to about 50;

L and L_m independently are $R^{12}(R^{13})_a$ wherein:

naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate; provided that at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and a is 0 or 1;

C and C_m independently are $(CR^6R^7)_v$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio a conjugate, NR^3R^4 , SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

wherein R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl; and

R³ and R⁴ independently are hydrogen, a conjugate,

 (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-

F- Z

substituted (C₁-C₄)alkyl, hydroxy, alkoxy, alkylthio or amino;

D and D_m independently are (CR⁶R⁷)_z;

each of y and z is zero or an integer from 1 to 10, wherein the sum y + z is greater than 2 but not more than 10;

 G_m is independently -NR^3CO-, -NR^3CS-, -NR^3SO-, or -NR^3SO_2- in either orientation;

each pair of $A-A_m$ and $B-B_m$ are selected such that:

- (a) A or A_m is a group of formula (IIa), (IIb) or (IIc) and B or B_m is N or R^3N^+ ; or
 - (b) A or A_m is a group of formula (IId) and B or B_m is CH;

GN

IIc

wherein:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR4;

each of p and q is zero or an integer from 1 to 5;

IId

each of r and s is zero or an integer from 1 to 5; $R^1 \text{ and } R^2 \text{ independently are hydrogen, } (C_1-C_4) \text{ alkyl, hydroxysubstituted } (C_1-C_4) \text{ alkyl, alkoxy-substituted } (C_1-C_4) \text{ alkyl, alkoxy, alkylthio, alkylthio, amino, halogen or a conjugate;}$

I is $-NR^8R^9$ or $\sqrt{-NR^{10}C(0)R^{11}}$; wherein:

R⁸, R⁹, R¹⁰ and R¹¹ independently are hydrogen, alkyl, an amino protecting group, a reporter ligand, an intercalator a chelator, a peptide, a protein, a carbohydrate, a lipid, a steroid, a nucleoside, a nucleotide, a nucleotide diphosphate, a nucleotide triphosphate, an oligonucleotide, an oligonucleoside, a soluble polymer, a non-soluble polymer or a conjugate;

Q is $-CO_2H$, $-CO_2R^8$, $-CO_2R^9$, $-CO_2R^9$, $-SO_3H$, $-SO_2NR^{10}R^{11}$ or an activated derivative of $-CO_2H$ or $-SO_3H$; and

wherein:

at least one of Q and I comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A, A_m , L, and L_m comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving

complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and

wherein at least one of R^3 R^4 , R^5 , R^6 and R^7 is a conjugate.

42. A peptide nucleic acid conjugate of formula:

wherein:

L is $R^{12}(R^{13})_a$; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and

a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or $\mathbb{R}^3\mathbb{N}^+$; or
 - (b) A is a group of formula (IId) and B is CH;

IIc

 Πd

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR4;

p and q independently are zero or an integer from 1 to 5;

r and s independently are zerd or an integer from 1 to 5;

 $R^1 \ and \ R^2 \ independently \ are \ hydrogen, \ (C_1-C_4) \ alkyl, \ hydroxysubstituted \ (C_1-C_4) \ alkyl, \ alkoxy-substituted \ (C_1-C_4) \ alkyl, \ alkylthio-substituted \ (C_1-C_4) \ alkyl, \ hydroxy, \ alkoxy, \ alkylthio,$

amino, halogen or a conjugate;

C is $(CR^6R^7)_y$;

D is $(CR(R^7)_z)$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, analkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereofy

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a

Er

phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and wherein said conjugate optionally includes a linking moiety;

and

wherein at least one group R3 is a conjugate.

43. A peptide nucletc acid conjugate of formula:

62

wherein:

L is $R^{12}(R^{13})_a$; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

 R^{13} is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R^3N^+ ; or
 - (b) A is a group of formula (IId) and B is CH;

 $\begin{bmatrix} -C \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}$

Πb

IId

60

IIc

\

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴

p and q independently are zero of an integer from 1 to 5;

r and s independently are zero or \an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-

substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl,

alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)^{1/3}$;

D is $(CR^6R^7)_{2}$ wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO2OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an

62

alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and wherein said conjugate optionally includes a linking moiety;

and

wherein at least one of said groups A or said groups B include a conjugate.

EN

44. A peptide nucleic adid conjugate of formula:

wherein:

L is $R^{12}(R^{13})_a$; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄) alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a

reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R^3N^+ ; or
 - (b) A is a group of\formula (IId) and B is CH;

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR4;

p and q independently are zero or an integet from 1 to 5;

r and s independently are zero or an integer from 1 to 5; R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxysubstituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_{v}$;

D is $(CR^6R^7)_z$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio-substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO2OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or

62

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and wherein said conjugate optionally includes a linking moiety;

and

wherein at least one of group R¹ or group R² is a conjugate.

45. A peptide nucleic acid\conjugate of formula:

wherein:

L is R¹²(R¹³)_a; wherein:

 R^{12} is hydrogen, hydroxy, (C_1-C_4) alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R12 is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and a is 0 or 1;

A and B are selected such that:

A is a group of formula (IIa), (IIb) or (IIc) and B is N or R^3N^+ ; or

(b) A is a group of formula (IId) and B is CH;

where:

X is \setminus 0, S, Se, NR³, CH₂ or C(CH₃)₂;

Y is a single bond, O, S or NR4;

p and q\independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxysubstituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

C is (CR⁶R⁷)_v;

D is $(CR^6R^7)_z$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio-substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and wherein said conjugate optionally includes a linking moiety;

and

wherein at least one of R^3 , R^4 , R^5 , R^6 , and R^7 is a conjugate.

46. A peptide nucleic acid conjugate of formula:

wherein:

L is $R^{12}(R^{13})_a$; wherein:

 R^{12} is hydrogen, hydroxy, (C_1-C_4) alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R^3N^{\dagger} ; or
 - (b) A is a group of formula (IId) and B is CH;

62

IId

where:

FR

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR4;

p and q independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxysubstituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_y$;

D is $(CR^6R^7)_z$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6)

C₆) alkylthio, a conjugate, NR³R⁴ and SR⁵ or R⁶ and R⁷ taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR^3 or $\backslash NPgR^3$, where Pg is an amino protecting group; or

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected

from polymeric amines, polymeric glycols and polyethers; and
 wherein said conjugate optionally includes a linking
moiety; and

wherein at least one of said groups C or said groups D include a conjugate.

47. A peptide nucleic acid conjugate comprising a plurality of PNA monomers wherein at least one of said PNA monomers has the formula:

145 /

or formula:
$$\begin{array}{c} L \\ CH_2)_1 \\ O \\ NR^3 \\$$

L is R¹²(R¹³)_a; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and a is 0 or 1;

K is $(CR^6R^7)_z$;

J is $(CR^6R^7)_y$; wherein:

 R^6 and R^7 are independently hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum

y + z being greater than 2 but not more than 10

R2

1 is an integer from 1 to 5; and

at least one of L and R3 comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate\optionally includes a linking moiety; and

wherein at least one of $R^3 \setminus R^4$, R^5 , R^6 , and R^7 is a conjugate.

A peptide nucleic acid conjugate comprising a plurality of PNA monomers wherein at least one of said PNA monomers has the formula:

(L)

-33-

ОН

or formula:

62

or formula:

CH₂) I

L is $R^{12}(R^{13})_{av}$ wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄) alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; \and

a is 0 or 1;

K is $(CR^6R^7)_z$;

J is $(CR^6R^7)_v$; wherein:

E2

 R^6 and R^7 are independently hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio-substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

1 is an integer from 1 to 5; and

at least one of L and R3 comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and

EZ

wherein at least one of said group K or said group J includes a conjugate.

INS 7

49. A peptide nucleic acid conjugate comprising a plurality of PNA monomers wherein at least one of said PNA monomers has the formula:

ОН

OH

CH₂) _I

(CH₂) _I

NR3

H₂N

NR³

or formula:

or formula:

wherein:

L is R¹²(R¹³)_a; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and a is 0 or 1;

K is $(CR^6R^7)_z$;

J is $(CR^6R^7)_v$; wherein:

 R^6 and R^7 are independently hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum

y + z being greater than 2 but not more than 10;

KZ

1 is an integer from 1 to 5; and

at least one of L and R3 comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell
receptor binding molecule, a crosslinking agent, a water soluble
vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a
metal chelator, a porphyrin, an alkylator, or a polymeric
compound selected from polymeric amines, polymeric glycols and
polyethers;

wherein said conjugate optionally includes a linking moiety; and

wherein said group \mathbb{R}^3 is a conjugate.

50. A compound having one of the following formulas:

wherein:

L is R¹²(R¹³)_a; wherein:

 R^{12} is hydrogen, hydroxy, (C_1-C_4) alkanoxl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a

reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

R¹³ is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R^3N^{\dagger} ; or
 - (b) A is a group of formula (IId) and B is CH;

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_8)_2$;

Y is a single bond, O, S or NR4

p and q independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5; R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxysubstituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_{y}$;

D is $(CR^6R^7)_{2}$; wherein:

 R^6 and R^6 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio-substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino

E2

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a crosslinking agent, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a crosslinking agent a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and wherein said conjugate optionally includes a linking moiety.--

EZ

Remarks

Claims 1, 5, 8-16, 18-20, and 22-38 are pending in the application. Claims 1, 5, 8-16, 18-20, and 22-38 have been indicated to be allowable. Claims 11, 14, 16, 25-29, 34-36, and 38 have been canceled. Claim 30 has been amended, and new claims 39-50 have been added. No new matter has been added.

After entry of the proposed amendment, claims 1, 5, 8-16, 18-20, 22-37, and 39-50 will be pending.