

Effects of Dietary Chitosan for Mitigating **Enteric Methane Emissions from** Ruminants: A Meta-Analysis of In Vitro Experiments

Rakhmad P. Harahap, Duta Setiawan, Sri Suharti, Nahrowi, Anuraga Jayanegara

AFENUE (Animal Feed and Nutrition Modelling Research Group)

Penentuan Topik

- Meta-analysis is one method of research synthesis.
- Research synthesis may be defined as review of primary research on a given topic with purpose of integrating the findings (e.g., for creating generalizations or resolving conflicts)
- Penentuan topik meta-analisis:
 - Update publikasi terkini (browsing internet)
 - Publikasi yang sedang trend
 - Penentuan X (independent var.) dan Y (dependent var.)
 - X : Kitosan; Y : Metanogenesis dan profil fermentasi rumen

Pengumpulan Data

- Kriteria artikel yang dimasukkan dalam data base:
 - Artikel tersebut diterbitkan dalam Bahasa Inggris
 - Dosis kitosan dalam ransum dan emisi metan (CH₄)
 - Percobaan dilakukan dengan menggunakan sistem in vitro batch dengan sapi atau domba sebagai donor cairan rumen
- Terdapat 41 studi dari 12 artikel

Input Data Base

Insoluble chitosan							
pH	6.43	6.44	6.43	6.46	0.013	NS	L*, Q [†]
NH ₃ -N (mg L ⁻¹)	18.1	10.8	11.7	18.7	3.87	NS	\mathbf{Q}^{\dagger}
Total VFAs (mmol L ⁻¹)	78.7	79.9	80.0	81.2	1.63	NS	NS
VFAs (mmol mol ⁻¹)							
Acetate	693	695	691	693	3.83	NS	NS
Propionate	109	146	146	147	2.66	NS	NS
Butyrate	125	122	126	123	2.81	NS	NS
BCVFA	21.9	21.4	21.8	21.7	0.58	NS	NS
Asymptotic GP (mL)	139	132	136	135	3.73	NS	NS
GP rate (μ L h ⁻¹)	46.9	45.5	45.0	45.0	1.85	NS	NS
FOM (mg)	347	351	353	357	7.17	NS	NS
Methane (mL L ⁻¹)	145	146	145	144	3.00	NS	NS
Methane (mL d ⁻¹)	13.6	12.8	13	12.6	0.52	NS	NS
Methane (mL g FOM ⁻¹)	39.2	36.4	36.7	35.4	1.53	NS	L*,Q†
Soluble chitosan							
pH	6.43	6.45	6.46	6.44	0.016	NS	NS
NH ₃ -N (mg L ⁻¹)	18.1	12.1	18.6	14.7	4.56	NS	NS
Total VFAs (mmol L ⁻¹)	78.7	77.6	76.6	75.2	1.77	NS	L*
VFAs (mmol mol ⁻¹)							
Acetate	693	692	691	687	4.40	NS ***	NS
Propionate	145 ^b	151 ^b	154 ^b	186 ^a	4.73		L*,**Q***
Butyrate	125 ^a	120 ^a	118 ^a	94.7 ^b	3.58	***	L**** Q****
BCVFA	21.9	21.3	21.4	19.9	0.78	NS	L*, Q†
Asymptotic GP (mL)	139	132	129	125	6.39	NS	L*, Q†
GP rate (μ L h ⁻¹)	46.9	45.0	43.2	45.7	1.85	NS	NS
FOM (mg)	347 ^a	340 ^a	336 ^{ab}	324 ^b	7.28		L*,* Q*
Methane (mL L ⁻¹)	145 ^a	139 ^a	134 ^{ab}	122 ^b	6.00	-	L*,** Q***
Methane (mL d ⁻¹)	13.6 ^a	11.9 ^{ab}	10.8 ^{bc}	9.67°	0.95		L*,** Q**
Methane (mL g FOM ⁻¹)	39.2 ^a	35.1 ^{ab}	32.3 ^b	30.0 ^b	3.07	-	L*,* Q*

Belanche et al. 2016

Input Data Base

$$Mol = \frac{massa (gr)}{Mr} = \frac{volume}{22,4 L(STP)} = \frac{jumlah molekul}{6,02 \times 10^{23}}$$
$$\frac{Mol_1}{Volume_1} = \frac{Mol_2}{Volume_2}$$

					day		mg	ml	g/kg dm	mmol/l	mmol/ d	mmol/g dom
no	paper	study	year	repl	period	system	sampel incubation (DM)	rumen+buffer	chi	ch4v	ch4d	ch4dom/ dmd
1	belanche	1	2016	4	1	batch	500	50	0,00	6,473	0,607	1,750
2	belanche	1	2016	4	1	batch	500	50	0,50	6,518	0,571	1,625
3	belanche	1	2016	4	1	batch	500	50	1,00	6,473	0,580	1,638
4	belanche	1	2016	4	1	batch	500	50	2,00	6,429	0,563	1,580
5	belanche	2	2016	4	1	batch	500	50	0,00	6,473	0,607	1,750
6	belanche	2	2016	4	1	batch	500	50	0,50	6,205	0,531	1,567
7	belanche	2	2016	4	1	batch	500	50	1,00	5,982	0,482	1,442
8	belanche	2	2016	4	1	batch	500	50	2,00	5,446	0,432	1,339

AFENUE (Animal Feed and Nutrition Modelling Research Group)

Model Meta-analisis (PROC. MIXED)

Menurut St-Pierre (2001):

$$Y_{ij} = B_0 + B_1 X_{ij} + s_i + e_{ij}$$

- Keterangan:
 - Y_{ii} = variabel dependen
 - B_0 = keseluruhan intercept di semua eksperimen (efek tetap)
 - **B**₁ = koefisien regresi linier Y pada X (efek tetap)
 - $-X_{ii}$ = nilai variabel prediktor kontinu (level penambahan kitosan)
 - $\mathbf{s_i}$ = efek acak percobaan i
 - e_{ii} = kesalahan residual yang tidak dapat dijelaskan
- Disajikan dengan p-value dan root mean square error (RMSE).
- Analisis statistik dilakukan dengan perangkat lunak SAS versi 9.1 (SAS Institute Inc., Cary, NC, USA)

Penyajian Data

Table 1. Effects of chitosan addition (in g/kg DM) on gas production and enteric methane (CH₄) emission of *in vitro* batch culture study

			Parameter	estimates	Model statistics			
Response	Unit	n	Intercept	SE	Slope	SE slope	p-	RMSE
parameter				intercept			Value	
Gas	ml/g DM	42	199.1	15.2	-0.657	0.695	<.001	28.9
production								
CH ₄	mmol/d	65	1.03	0.13	-0.072	0.017	<.001	0.17
CH ₄	mmol/g	47	3.58	0.41	-0.050	0.055	<.001	1.76
	DOM							
H ₂ S	µmol/d/	6	5.55	3.72	0.121	0.046	0.376	0.79
	g DM							

Note: DM=dry matter, DOM=digested organic matter; n=number of treatment, RMSE=root mean square error, SE=standard error.

Penyajian Data

Table 2. Effects of chitosan addition (in g/kg DM) on rumen fermentation, microbial population, and enzyme CMCase activity in the *in vitro* batch culture study

			Parameter estim	nates		Model statistics		
Response parameter	Unit	n	Intercept	SE intercept	Slope	SE slope	p-Value	RMSE
рН		82	6.40	0.05	0.002	0.004	<.001	0.12
NH ₃	mg/dL	82	25.2	1.43	-0.044	0.243	<.001	8.24
Total VFA	mmol/l	89	67.8	3.19	-0.228	0.366	<.001	7.49
C ₂	%	92	62.7	0.98	-0.024	0.071	<.001	2.29
C ₃	%	92	20.4	0.68	0.304	0.155	<.001	5.42
C ₄	%	94	11.5	0.47	-0.199	0.086	<.001	2.97
iso-C ₄	%	25	0.95	0.16	0.001	0.004	<.001	0.07
C ₅	%	27	2.13	0.17	0.016	0.009	<.001	0.17
iso-C ₅	%	25	1.86	0.33	0.003	0.011	<.001	0.20
C ₆	%	6	0.20	0.22	0.004	0.002	0.527	0.04
C ₂ :C ₃		92	3.23	0.14	-0.041	0.024	<.001	0.81
BCVFA		25	3.39	0.44	-0.314	0.082	<.001	0.87
TVFA:TDS	mmol/g DM	36	8.75	0.53	1.80	0.227	<.001	1.33
Bacteria	×10 ¹⁰ /g	12	0.98	0.06	0.018	0.050	0.004	0.13
Methanogen	×10 ³ /g	12	3.86	1.12	-2.76	1.475	0.075	3.81
Fibrobacter	×10 ³ /g	12	2.26	1.50	6.20	1.849	0.272	4.77
succinogenes								
Anaerobic fungi	×10 ³ /g	12	1.86	0.84	0.014	0.303	0.158	0.78
Protozoa	×10 ² /g	12	4.96	0.87	-0.636	0.821	0.030	2.12
CMCase	U/mL	12	0.56	0.10	-0.107	0.033	0.030	0.09

Note: C_2 =acetate, C_3 =propionate, C_4 =butyrate, C_5 =valerate, C_6 =caproate, NH_3 =ammonia, DM=dry matter, n=number of treatment,

BCVFA=branch-chain volatile fatty acids, TVAS:TDS= total VFA-to-truly degraded substrate ratio, RMSE=root mean square error, SE=standard error.

AFENUE (Animal Feed and Nutrition Modelling Research Group) error.

Penyajian Data

Table 3. Effects of chitosan addition (in g/kg DM) on in vitro batch culture digestibility study

			Parame	ter estimo	Model statistics			
Response	Unit	n	Interce	SE	Slope	SE slope	p-	RMSE
parameter			pt	interce			Value	
				pt				
DMD	g/kg	51	651	24.2	0.966	0.971	<.001	71.6
CPD	g/kg	10	503	95.2	3.60	2.999	0.006	98.7
NDFD	g/kg	15	601	15.0	1.98	0.955	<.001	73.9

Note: DMD=dry matter digestibility, OMD= organic matter digestibility, CPD=crude protein digestibility, NDFD=neutral detergent fiber digestibility, n= number of treatment, SE= standard error, RMSE= root mean square error.

Penyajian Data

Table 4. Effects of chitosan addition (in g/kg DM) on rumen fatty acid profile in the in vitro batch culture study

			Parameter e	estimates	Model statistics			
Response	Unit	n	Intercept	SE intercept	Slope	SE slope	p-Value	RMSE
parameter								
C _{14:0}	%	18	2.26	0.34	-2.01	1.68	<.001	1.13
C _{15:0}	%	18	2.49	0.32	-2.70	1.38	<.001	0.93
C _{16:0}	%	18	22.7	2.51	-18.1	8.38	<.001	5.62
C _{17:0}	%	18	1.45	0.27	-0.858	0.702	<.001	0.47
C _{18:0}	%	18	36.4	1.67	-39.9	21.1	<.001	14.2
C _{18:2n6}	%	18	3.34	1.43	3.15	3.74	0.048	2.51
CLA	%	18	0.74	0.22	0.471	1.03	0.009	0.69
C _{18:3n3}	%	18	0.74	0.31	2.39	1.78	0.043	1.19
SFA	%	18	75.4	5.33	-28.1	27.3	<.001	18.3
MUFA	%	18	19.2	4.38	23.1	24.3	0.002	16.3
PUFA	%	18	5.53	1.57	4.11	6.38	0.008	4.28

Note: CLA=cis9, trans11 C_{18:2}, SFA=saturated fatty acid, MUFA=monounsaturated fatty acid, PUFA=polyunsaturated fatty acid, n=number of treatment, RMSF=root mean square error.

PUFA=polyunsaturated fatty acid, n=number of treatment, RMSE=root mean square error, SE=standard error.

AFENUE (Animal Feed and Nutrition Modelling Research Group)

Simpulan

- Chitosan seems to be suitable for use as a feed additive in ruminant diets.
- Chitosan addition is able to mitigate enteric methane emission, alters rumen fermentation profiles toward a favourable direction, and improves nutrient digestibility.
- Further, chitosan plays a role in inhibiting biohydrogenation of fatty acids in the rumen as indicated by the increase of PUFA and the decrease of SFA.

Terimakasih

AFENUE (Animal Feed and Nutrition Modelling Research Group)