Exam 3: April 28.

Longest Common Subsequence.

Input: Two Seprens X, Y

 $\times : \langle \chi_1, \chi_2, \ldots, \chi_m \rangle$

Y: <Y,, y2, ..., yn>

Objective: To find LCS(X,Y).

X: AAATACTAGATCC
Y: TTATCTCGCAATA

Subproblems &

[[i,j]: length of the longest common Subsequence of X[1...i] and Y[1...j].

Our solution: L [m,n]

Recurrence: &

	D	1			J		1	
ð	0	O	ပ		0	0	6	
1	G							
	C			:	4			-
ì	G			2				
	6			•				
m ¹	P							1

0 (mn).

LLCS
$$(x, Y)$$

for $i \in 0$ to $m do$
 $L[i,0] \in 0$
 $f_{m} j \in 1$ to $n do$
 $L[0,j] \in 0$
 $f_{m} i \in 1$ to $m do$
 $f_{m} j \in 1$ to $m do$

return L (m,n)

LCS(L, X, Y)

$$S \leftarrow \{ j \}$$
 $i \leftarrow m$, $j \leftarrow n$

while $i > 0$ and $j > 0$ do

 $i \leftarrow i = y_j$ then

add πi at the beginning $\{ S \in i \in i-1, j-1 \}$

else if $L[i,j] > L[i-1,j]$ then

 $j \leftarrow j-1$

else

 $i \leftarrow i-1$

return S

Edit Distance

Input: Two Strips X [1..m] 4 7= [1..n]

Objective: To find the edit distance of X&Y, i.e., # Insuts, # Ideletis & # swaps to Convert Stry X mb Stry Y.

Rohan

Soham

Subpodelens

E[i,j]: edit distanu Q X[I..i] & Y[I..j].

Om 80h : E[m,n]

Remorane: