

Osciloscópio baseado em FPGA

IISE - Projeto 4

Diogo Miguel Cunha Fernandes, PG47150 José Tomás Lima de Abreu, PG47386

Orientação:

Professor Doutor Jorge Cabral Professor Doutor Rui Machado Professora Sofia Paiva

Projeto Integrador em Eletrónica Industrial e Computadores
Universidade do Minho 2021/2022

Índice	01	Problema e contexto
	02	Estado da arte
	03	Proposta de solução
	04	Plano de implementação
	05	Plano de testes
	06	Calendário de tarefas
	07	Tarefas realizadas
	08	Referências bibliográficas

Problema e contexto

)1 Problema e contexto

)2 Cenários de aplicação

Objetivos e resultados esperados

04 Requisitos e restrições

Problema e contexto

- Aumento da complexidade dos sistemas digitais [2]:
 - Maior dificuldade no desenho de hardware;
 - Maior tempo de desenvolvimento.
- Algoritmos de processamento digital de sinal (PDS):
 - Complexos;
 - Difíceis de implementar em *hardware*.

Cenários de aplicação

- Criptografia baseada em hardware;
- Acelerador de unidade de processamento de visão por computador;
- Controlo e atuação de um braço robótico;
- Aplicações que exijam processamento digital de sinal:
 - Aplicações de interface com sensor Ex: Filtragem de sinal;
 - Cancelamento de eco acústico;

Osciloscópio digital:

- Aquisição de sinal;
- Filtragem digital de sinal;
- Suporte gráfico.

Objetivos e resultados esperados

- Explorar técnicas de PDS recorrendo a High Level Synthesis (HLS);
- Comparação do desenvolvimento de hardware recorrendo a HLS com o desenvolvimento utilizando Hardware Description Languages (HDL): [4]
 - Qualidade do hardware gerado;
 - Tempo de desenvolvimento;
- Osciloscópio básico capaz de:
 - Amostrar sinais e aplicar filtros digitais;
 - Apresentação dos sinais num display;

Requisitos e restrições

Requisitos:

- Aquisição de sinal;
- Implementação de filtros digitais;
- Apresentação do sinal filtrado num display.

Restrições:

- Usar FPGA-SoC Zybo Z7-10;
- Usar HLS;
- Equipa de 2 membros;
- Entrega de projeto no final do semestre.

Figura 1 – Zybo Z7-10, da Digilent.

Estado	da
arte	

Algoritmo de desenho de FPGA

HLS - High Level Synthesis

Amostragem

03

Filtros digitais

Aritmética de Fixed Point

Algoritmo de desenho de FPGA

- 1. Criar os **ficheiros HDL**;
- 2. Para cada módulo deve ser **verificado o RTL** (*Register Transfer Level*) gerado;
- 3. Criação de **ficheiros** *testbench* para testar e validar as fases do desenho;
- 4. Simulação comportamental do sistema;
- 5. Síntese mapeamento do RTL para uma tecnologia específica;
- 6. Implementação definir onde colocar a lógica definida;
- 7. Geração do bitstream configurar a lógica FPGA;
- 8. Verificação das **regras de** *design*;
- 9. Programação da FPGA;

Figura 2 – Algoritmo de desenho de FPGA.

HLS - High Level Synthesis

Processo de desenho em alto nível:

- Elevado nível de abstração;
- Automatiza processos que seriam realizados manualmente por um designer de RTL;
- Utilização de linguagens de especificação de alto nível como C, C++;

Figura 3 – Função do HLS no processo de desenho de *hardware*.

Amostragem

Figura 4 - Processo da amostragem: a) Conversor tempo contínuo - tempo discreto.

b) Sinal contínuo à esquerda e respetivo sinal discreto à direita.

(adaptado do livro [1] página 142)

Amostragem - Aliasing

Teorema de Nyquist:

$$f_s \geq 2.f_M$$

Aliasing: Resultado do sinal ter sido sub-amostrado;

Figura 5 - Efeito do aliasing no domínio das frequências. Em cima: Espetro do sinal amostrado com fs > 2.fM

Em baixo: espetro do sinal amostrado com fs < 2.fM (adaptado do livro [1] página 144)

Filtros digitais

Equação de diferenças de um filtro digital:

$$y[n] = a_1y[n-1] + \dots + a_Ny[n-N] + b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$$

- Filtros Infinite Impulse Response (IIR):
 - Saída calculada com base nos x[n-k] e em y[n-k]
 - Saída instável;
 - Desenho a partir de filtros analógicos.

Filtros digitais

Equação de diferenças de um filtro digital:

$$y[n] = a_1y[n-1] + \dots + a_Ny[n-N] + b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$$

Filtros Finite Impulse Response (FIR):

- Coeficientes a_k são nulos;
- Saída calculada com base nos x[n-k]
- Saída estável;
- Resposta em frequência com fase linear;
- Maior tempo de cálculo; [5]

Figura 6 - Resposta em frequência típica de um filtro passa baixo, em que wc é a frequência de corte do filtro. (adaptado do livro [1] página 473)

Filtros digitais - Método das Janelas

Gerar uma janela de comprimento M+1

• Filtro é obtido pela multiplicação da janela pela resposta impulsional de um LPF ideal, limitando o seu comprimento e forma [1]

Figura 7 - Convolução da janela, W, com a resposta impulsional do LPF ideal, Hd. (adaptado do livro [1] página 467)

Figura 8 - Aproximação do resultado da aplicação de uma janela a uma resposta impulsional ideal. (adaptado do livro [1] página 467)

Janela de Kaiser: flexível e evita procedimentos de tentativa e erro;

Aritmética de Fixed Point

Forma de representar um número real através de um número inteiro:

- Número fixo de dígitos para a parte decimal;
- Perda de precisão;
- Menos complexa e custosa em termos de desempenho (na ausência de uma FPU);

Figura 9 – Aritmética de fixed-point para um número real de 4-bits de parte fixa e 3-bits para parte fracionária [6].

Proposta de solução

Diagrama de blocos do sistema

Figura 10 – Diagrama de blocos geral do sistema.

Proposta de solução

Diagrama de blocos do sistema

- PS Processing System: para debug e interface de configuração para o utilizador;
- AXI_S slave AXI: interface entre a PS e a PL (Programming Logic), recorrendo ao protocolo AXI (Advanced eXtensible Interface);
- ADC IP: amostragem de um sinal analógico;
- Filters IP: aplicação do filtro digital escolhido pelo utilizador ao sinal de entrada;
- HDMI IP: apresentação do sinal filtrado numa interface HDMI;

Proposta de solução

Diagrama de blocos do Filters IP

Filters IP: aplicação do filtro digital escolhido pelo utilizador ao sinal de entrada;

Figura 11 – Diagrama de blocos do Filters IP.

Plano de implementação

- 1. Estudo dos filtros digitais e dos seus coeficientes;
- 2. Implementação de filtros digitais na STM32 (filtro passa-baixo, passa-alto e passa-banda);
- 3. Desenvolvimento de aplicação *bare metal* na Zybo para interface com o utilizador;
- 4. Estudo e desenvolvimento de uma interface HDMI na Zybo;
- 5. Implementação da amostragem e filtros digitais recorrendo a HLS;
- 6. Integração e verificação do sistema;
- 7. Análise do *hardware* gerado recorrendo a HLS;

Plano de testes

- 1. Testes dos filtros digitais (na STM32);
- 2. Teste da interface HDMI;
- 3. Teste do ADC;
- 4. Teste da amostragem e filtragem digital (na Zybo);
- 5. Teste da aplicação de interface com o utilizador;

Calendário de tarefas

Diagrama de Gantt

Estudo do número de coeficientes de um Filtro FIR

Figura 12 - Resposta em frequência de um LPF para diferentes ordens.

Desenho e cálculo de um filtro FIR

Figura 13 - Algoritmo para Desenho de um LPF em Matlab.

Figura 14 - Algoritmo de um filtro FIR.

Resposta em frequência de um filtro FIR passa-baixo

- Frequência de corte do filtro 50 Hz;
- Saída do filtro (a azul) para sinais de entrada (a amarelo) de frequência:

Figura 15 – Aplicação de um filtro passa-baixo a um sinal de entrada sinusoidal (a amarelo) com frequência:

(a) 20 Hz; (b) 40 Hz; (c) 100 Hz.

Resposta em frequência de um filtro FIR passa-alto

- Frequência de corte do filtro 50 Hz;
- Saída do filtro (a azul) para sinais de entrada (a amarelo) de frequência:

Figura 16 – Aplicação de um filtro passa-alto a um sinal de entrada sinusoidal (a amarelo) com frequência:

(a) 30 Hz; (b) 60 Hz; (c) 100 Hz.

OBRIGADO!

QUESTÕES?

Referências bibliográficas

- 1. Alan V. Oppenheim, Ronald W.Schafer, John R. Buck, Discrete-Time Signal Processings, 2nd ed. New Jersey: Prentice Hall, 1999
- 2. D. H. Sarah L. Harris, Digital Design and computer architecture: RISC-V edition. Morgan Kaufmann, 2021, ch. 4
- 3. Digilent, "Zybo Z7," acedido em 16 abril 2022. [Online]. Disponível em: https://digilent.com/reference/programmable-logic/zybo-z7/start
- 4. Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer, "Parallel programming for fpgas," 2018, acedido em 1 março 2022. [Online]. Available: https://kastner.ucsd.edu/wp-content/uploads/2018/03/admin/pp4fpgas.pdf
- 5. R. Oshana, DSP For Embedded And Real-Time Systems. Elsevier, 2012, ch. 1
- 6. Dr. Yifeng Zhu, Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C, 3rd ed.: E-Man Press LLC, 2017

