Simulador de Codificação de Canal

Dênis Ivan Lenz, Éwerton Piccinini Spezia e Felipe Augusto Hertzer

Comunicação de Dados - Ciências da Computação e Engenharia da Computação Universidade de Santa Cruz do Sul (UNISC)

96815-900 - Santa Cruz do Sul - RS - Brasil

d.denis.il@gmail.com, ewertonspezia@mx2.unisc.br, felipeaugustohertzer@gmail.com

Introdução. Este artigo descreve todo o conceito de funcionamento de um Simulador de Codificação de Canal. É estudado os conceitos da camada física do MR-OSI e aplicado e demonstrado técnicas de codificações como, NRZ-L, NRZI, BIPOLAR-AMI, PSEUDOTERNARY, MANCHESTER e DIFERENTIAL MANCHESTER, apresentando suas vantagens e desvantagens com ilustrações e relatos sobre trechos de códigos implementados.

Para o desenvolvimento do Simulador foi utilizado para gerar códigos a partir do número binário a linguagem de programação php e no processo de montagem e demonstração dos gráficos foi utilizada a biblioteca de gráficos ChartJs de javacript.

1.1 NRZ-L (Non return to zero level)

- Usa dois níveis de sinal para representar 0 e 1 (codificação absoluta).
- O Nível do sinal permanece constante durante o intervalo de um bit.

1.2 Vantagens

- Fácil de implementar.
- Boa eficiência espectral.

1.3 Desvantagens

- Não é possível fazer acoplamento.
- Não permite auto-sincronização.

1.4 Ilustração do exemplo 100110

1.5 Trecho de código

Função que recebe uma sequência binária e faz uma verificação bit a bit para gera o sinal codificado NRZ-L.

2.1 NRZI (Non return to zero inverted)

- Inverte o sinal na presença de bit com valor 1.
- Sinal codificado pela comparação com pulsos adjacentes.
- Na presença de ruído, é mais fácil detectar uma transição do que comparar um valor absoluto com limiar (definira se é 0 ou 1).

2.2 Vantagens

- É simples.

- Utiliza eficientemente a largura de banda.
- Grande parte da energia está concentrada nas componentes centrais.

2.3 Desvantagens

- Falta de mecanismo de sincronização.
- Não detecta erros, pois é um valor absoluto.

2.4 Ilustração do exemplo 100110

2.5 Trecho de código

Função que recebe uma sequência binária e faz uma verificação bit a bit para gera o sinal codificado NRZI.

3.1 BIPOLAR-AMI (Alternate Mark Inversion)

0 é representado pela ausência de sinal.

- 1 é representado por pulso positivo ou negativo (alternados).
- AMI RZ usado no sistema T1 americano (1.544 Mbit/s).

3.2 Vantagens

- Imune a inversão de polaridade.
- Boa eficiência espectral.
- Não perdera sincronização se uma sequência longa de 1s ocorrer.

3.3 Desvantagens.

- Sequência de 0s é um problema.
- Requer aproximadamente 3 dB mais potência de sinal do que um sinal de dois níveis para a mesma probabilidade de erro.

3.4 Ilustração do exemplo 100110

3.5 Trecho de código

Função que recebe uma sequência binária e faz uma verificação bit a bit para gera o sinal codificado BIPOLAR-AMI.

4.1 PSEUDOTERNARY

- 1 é representado pela ausência de sinal.
- 0 é representado por pulso positivo ou negativo (alternados).
- Usado no acesso básico RDIS (equipamento terminal).

4.2 Vantagens

- Imune a inversão de polaridade.
- Boa eficiência espectral.
- Não perdera sincronização se uma sequência longa de 0s ocorrer.

4.3 Desvantagens.

- Sequência de 1s é um problema.
- Requer aproximadamente 3 dB mais potência de sinal do que um sinal de dois níveis para a mesma probabilidade de erro.

4.4 Ilustração do exemplo 100110

4.5 Trecho de código

Função que recebe uma sequência binária e faz uma verificação bit a bit para gera o sinal codificado PSEUDOTERNARY.

5.1 MANCHESTER

- Transição no meio de cada bit.
- Bit 1 transição ascendente.
- Bit 0 transição descendente.
- Utilizado no padrão de rede IEEE 802.3 (Ethernet).

5.2 Vantagens

- Propriedade de auto-sincronização.
- Ausência de componentes espectrais de baixa frequência.

5.3 Desvantagens

- O baud rate é duplo do bit rate.
- Reque maior largura de banda do que o NRZ.

5.4 Ilustração do exemplo 100110

5.5 Trecho de código

```
private function manchester($array_binary) {
    $clock = 0;
    $array_returno = array();
    foreach($array_binary_as_$bit) {
        $clock = $clock + 10;
        if($bit == 0) {
            $array_returno[$clock] = 1;
            $array_returno[$clock+5] = -1;
        } else {
            $array_returno[$clock] = -1;
            $array_returno[$clock+5] = 1;
        }
    }
}
sarray_returno[$clock+10] = $array_returno[$clock+5];
return $array_returno;
}
```

Função que recebe uma sequência binária e faz uma verificação bit a bit para gera o sinal codificado MANCHESTER.

6.1 DIFERENTIAL MANCHESTER

- Transição no meio de cada bit.
- Bit 0 transição no inicio do bit.
- Bit 1 ausência de transição no início do bit.
- Usado na LAN IEEE 802.5 (Token Ring).

6.2 Vantagens

Propriedade de auto-sincronização.

- Ausência de componentes espectrais de baixa frequência.

6.3 Desvantagens

- O baud rate é duplo do bit rate.
- Reque maior largura de banda do que o NRZ.

6.4 Ilustração do exemplo 100110

6.5 Trecho de código

```
private function diferential manchester($array_binary) {
    $clock = 0;
    $sync = false;
    $array_returno = array();
    foreach($array_binary_as_$bit) {
        $clock = $clock + 10;
        $sync = ($bit == 1 ? $sync ? false : true : $sync);
        if($sync) {
            $array_returno[$clock] = 1;
            $array_returno[$clock + 5] = -1;
        } else {
            $array_returno[$clock] = -1;
            $array_returno[$clock + 5] = 1;
        }
    }
    $array_returno[$clock + 5] = 1;
    }
}
```

Função que recebe uma sequência binária e faz uma verificação bit a bit para gera o sinal codificado DIFERENTIAL MANCHESTER.

7. Trechos de Códigos Complementares.

Função que determina qual das funções de codificações chamar para gerar o gráfico e logo no começo previne a entrada de somente números binários.

Código php que gera a página do simulador na web.

8.1 Testes e Resultados Analisados.

Nos testes realizados para o exemplo 11001110 podemos observar uma grande diferença no sinal produzido para os Binários NRZ (NRZ-L e NRZI), Binários Multinível (BIPOLAR-AMI e PSEUDOTERNARY) e Bifásicos (MANCHESTER e DIFERENTIAL MANCHESTER), devido a sua implementação, quanto a sua capacidade de encontrar erros e também evitar erros.

8.2 Resultados

9. Referências Bibliográficas

https://web.fe.up.pt/~mricardo/02_03/cdrc1/teoricas/codificacao_v5.pdf

Simulador: http://comunicacao.16mb.com/

PDF Aula 5