## 15) Weight Inits

Weight Matrix

Weight Matrix

- Given 
$$Y = XW^T$$
, where  $W = \begin{bmatrix} -W_1^T - \\ -W_2^T - \end{bmatrix}$  reach row  $W_i$  = weights for node  $i$  this layer output input weight  $i$  weight  $i$  ager  $i$  and  $i$  and  $i$  are  $i$  and  $i$  and  $i$  and  $i$  and  $i$  are  $i$  and  $i$  and  $i$  are  $i$  and  $i$  and  $i$  and  $i$  are  $i$  and  $i$  and  $i$  and  $i$  are  $i$  and  $i$  are  $i$  and  $i$  and  $i$  are  $i$  and  $i$  are  $i$  and  $i$  and  $i$  are  $i$  and  $i$  are  $i$  and  $i$  are  $i$  and  $i$  and  $i$  are  $i$  and  $i$  are  $i$  and  $i$  are  $i$  and  $i$  are  $i$  and  $i$  and  $i$  are  $i$  and  $i$  and  $i$  are  $i$  and  $i$ 



## Weight Initialization

- Weight Symmetry: issue where model has same params (~0 gradients)
- · <u>Solution</u>: Random Weights provides model the variability & direction to learn so draw weight values from 1 Normal N (2 Uniform U)
- ① Kaming: draw  $W \in \mathcal{U}(-G, G)$  with  $G^2 = \frac{1+\alpha^2}{N_{in}} \in Slope$  of activation (negative part)
- ② Xaiver: draw  $W \in \mathcal{N}(0, \mathbb{S}^2)$  with  $\mathbb{S}^2 = \frac{2}{N_{in} + N_{out}} = \#$  input & output features

## Freezing Weights

- Deactivate gradient descent in a layer (for transfer learning)
- · How?: set requires\_grad = False for that layer

## Quantify Weight Changes

- Weight matrix changes over time (its distribution widens)
- <u>metrics</u>:

  The epoch of learning  $d = \int_{i=1}^{\infty} \sum_{j=1}^{\infty} (W_{i,j}^{(t)} W_{i,j}^{(t+1)})^2 dt$  large d = large change in weights  $d = \int_{i=1}^{\infty} \sum_{j=1}^{\infty} (W_{i,j}^{(t)} W_{i,j}^{(t+1)})^2 dt$   $= \alpha$  lot of learning
- 2) Condition number  $K = \frac{G_{max}}{G_{min}}$  | large  $K = S_{parse}$  weight matrix = layer learned specific features