

Design of Breeding Programs

Decisions in breeding programs

Where to go?

breeding objective (which traits)

Who and what to measure?

performance, DNA test

genetic evaluation

Who to select and mate?

reproductive technol.

gains vs inbreeding

Animal Breeding in a nutshell

Basic Components of a Successful Breeding Program/Strategy

Why do we need a design?

- Genetic Improvement:
 - Which animals to measure?
 - Where to select them?
 - Mating strategy
 - Reproductive and Genomic Technologies?
- Dissemination of Genetic Superiority
- Inbreeding

Basic Principle of making genetic progress

Mate the "best" to the "best"

and do that as quickly as possible

Genetic Gain/yr =

Genetic Superiority of parents

Generation Interval

One-tier breeding program

One-tier breeding program

genetic improvement

measurement

Two-tier breeding program

Genetic merit of Nucleus versus Commercial

3-tier breeding program

3-tier breeding program

Multiplication in Broiler Breeding Programs

Adapted from: Poultry Breeding and Genetics, Crawford (ed). Elsevier, 1990

From pure line with 200-500 females and 50--100 males

Structure of Swine (Poultry) Breeding Programs

Two-tier breeding program

What defines the nucleus?

Nucleus: could be defined as "the mothers and fathers of the future bulls" 4 pathways: dairy selection of sires for sires top Al sires bull dams dams for sires Elite matings **Nucleus Commercial** producers sires for cows average Al sires Normal matings dams for cows normal cows

Two-tier breeding program (can compare with 4 pathways)

Dispersed Nucleus

Nucleus: could be defined as

"the mothers and fathers of the future bulls"

Local 'nucleus' can in fact be multiplier

Examples: Angus Australia breeding program

Holstein Australia Breeding program

Nucleus Breeding Schemes

Closed Nucleus

Replacement animals for nucleus only from nucleus

Selection only permanently effective in nucleus.

Nucleus objectives impact on whole scheme.

Common in pigs and poultry

Nucleus Breeding Schemes

Open Nucleus

Replacement animals for nucleus but also some from base

Selecting from base requires measurement in base

More genetic improvement than closed scheme (~15%)

Common in dairy

Genetic merit of Nucleus versus Commercial

In reality, tiers might be quite blurry in beef, sheep (dairy)

Open nucleus systems

- Select the best animals from lower tiers to compete for being nucleus parents
- degree of 'openness depends on
 - difference between nucleus and commercial
 - spread of their breeding values
- Open to nuclei

Open Nucleus

Difference in genetic mean between nucleus and base (~ 2 generations)

Selection of females for elite matings (e.g. 80% from nucleus 20% from base

Open Nucleus: effect of more information in base

Contributions of pathways

2 pathways

- Selection of siresi r2 .5-.8
- Selection of dams 0.5-1 .5-.6
- \rightarrow S_{sires}: S_{dams} at least vares from 2:1 to 5:1
- Sire selection contribute more than 70%-95% to dG

Contributions of pathways

4 pathways in dairy

	l 	1 1 C
contri	nution	
COLLUL	Dation	to au

•	Selection	of sires	for sires	39%
_				

•	Selectio	n of sires for cows	38%
			00,0

- Selection of dams for sires
- Selection of dams for dams 1%

Why need a design?

Genetic improvement

Need decisions on

- which animals to measure or genotype nucleus males (females)
- where to select them nucleus/base
- mating strategy best to best → elite matings
- Dissemination of genetic superiority
 - Often a challenge when setting up a new program,
 esp in developing countries.
 - How to sell/give improved seedstock to local farmers
- Inbreeding

Crossbreeding

Reasons

- 1. Sire-Dam complementation
 - Paternal: large, fast growth, good carcass
 - Maternal: small mature size, good fertility

.....to increase the efficiency of the whole production system

- 2. Heterosis
 - Direct heterosis
 - Maternal heterosis
- 3. Averaging of breed effects, Use of widest possible resources
- 4. Other

Crossbreeding Examples

Rotational Cross

Patterns of use of crossbreeding

Industry	Fecundity	Typical crossing systems
Poultry	highest	4-breedcrosses
Pigs		3-breed crosses;back crosses
Meat sheep		3-breedcrosses
Wool Sheep		purebred*
Dairy		purebred*
Temperate Beef	↓	rotations; composites
Tropical Beef	lowest	composites

^{*}Wool sheep and dairy industries are exceptions due to availability of an outstanding pure breed in each.

Crossbreeding:

Specialized lines and crossbreeding or dual purpose breeds?

			relative performance		
	price		meat breed	wool breed	
wool		0.7	60	100	
meat		1	100	60	

Income from each system

					X-ing	dual
		rel nr.	meat breed	wool breed	system	purpose
wool income	females	1	42	70	70	56
meat income	males	0.5	100	60	80	80
		profit	92	100	110	96

A crossbreeding system is more profitable, it exploits sire-line and dam-line complementation

Predicting Crossbred Performance

- Additive direct breed effects
- Additive maternal breed effects
 - Proportional to breed proportion of animal / dam
- Direct heterosis
- Maternal heterosis
 - Proportional to heterozygosity of animal / dam

Importance of Selection vs. Mating/Crossbreeding

Importance of selection vs using between breed variation

Reproductive technologies

- Reproductive boosting
 - Artificial insemination, Al
 - Multiple Ovulation and Embryo Transfer, MOET
 - Oocyte Pickup
 - Juvenile In Vitro Embryo Transfer, JIVET
- Sexing of semen and embryos
- Cloning
- Whizzy Genetics breeding in a test-tube

Making genetic progress is about

Keeping generation intervals short

Reproductive rates affect all of the above!

Reproductive technologies

Increases selection intensities

Increases accuracy of EBVs

Decreases generation intervals

Increases inbreeding

Adult dairy MOET scheme

More offspring of top cow after testing it

Juvenile dairy MOET scheme

More offspring of top cow *before* testing it Select base on parent average

Basic steps in the design of breeding programs

(Harris, 1984. Anim. Breeding Abstracts)

- 1) Describe the production system(s)
- 2) Formulate the objective of the system
- 3) Choose a breeding system and breeds
- 4) Estimate selection parameters and (discounted) economic values
- 5) Design an animal evaluation system
- 6) Develop selection criteria
- 7) Design matings for selected animals
- 8) Design a system for expansion dissemination of genetic superiority
- 9) Compare alternative programs

Developing and Optimizing Breeding Strategies

1 Identify the product and the product goal

- maximize genetic gain
- maximize profit from genetic improvement at farm level
 - supply high quality genetics at lowest cost
- maximize profit from sale of genetic material (dissemination)
 - appropriate with competitive market for breeding stock

2 Identify constraints

- test resources
- facilities
- market
- finances

Developing and Optimizing Breeding Strategies (cont'd)

- 3 Identify factors that affect the goal of the breeding program and which of those are under your control.
- 4 Determine how the factors that are under your control can be manipulated in order to maximize the goal.

Development of Breeding Strategies Summary

- Integration of the components of a breeding program into a structured system for genetic improvement, with the aim to maximize an overall objective (genetic gain, market share).
- Evaluate opportunities for improving upon current strategies.
- Evaluate the potential of new technologies.
 - How can they best be incorporated into current strategies?
 - Can their benefits best be capitalized on in a redesigned breeding structure?

Breeding Strategies - Summary

What tools are necessary to develop optimal strategies?

- Quantitative genetics theory
 - Predicting response to selection, selection index, inbreeding, etc.
- Systems analysis
 - Predicting and optimizing response in overall objective
- Common sense

An open mind