General Conditions of Equilibrium of Coplonor Forces

किसी प्रकार के बल निकाय के अधीन दूर पिंड के संवुलन के लिए निम्न दो नियमें के अनुसार छीवेबंद्य आवश्यक हैं :-

संतुलन का जल नियम :- (force law of equilibrium) इस नियम के व्यवसार पिंड पर लाने 😝 नालें बलों के पीरामी का मान शून्य होना -चाहिए जिसके कारण चिंड में कीई साल रेखीय ग्री 媚 鹗 $R = \sigma$

Ey = 0

ΣF = n

Ex =0 Applied Mechanics by G.K.Kashyap

संतुलम का ध्राह्म नियम (Moment law of equilibrium):— इस नियम के ध्रमुखार पिंड पर छगने ताले सच्ची बलों के पृत्वी का योग शून्य होगा जिससे पिंड ध्यमि के संदर्ध में संतुलन में होगा ।

∑M =0

Cot Theorem

- 影響等。

(m+n) cot 0 = m cot d - n cot B

(m+n) cot B = n cot A - m cot B

प्र.1: W न्यूरन भार का एक गीता, एक चिकनी छर्छाधर दीवार से जीरी द्वारा बौधकर लटकाया गया है । यदि जीरी की लप्बर्ध गीते की बिज्या के बराबर हो ती जीरी तनाव, फर्डबीधर से उसका झकाव तथा दीवार की गीले पर प्रविक्रिया जात की जिसे ?

प्रस्तर :- दिया है - जीले का भार = ω $0R = 0C = \gamma$ $\gamma' = जीले की बिज्या (BC)$

: AC = OAX 2 = 28

A ABC में , (जो एक समकी का विभूज है)

 $\sin \theta = \frac{BC}{AC} = \frac{\gamma}{2\gamma}$ Applied Mechanics by G.K.Kashyap

· : 0 = 30°

आतः अरी का ऊह्वीधर से झुकाव = 30° विंदु ८ पर लॉमी का प्रमेय लगाने पर,

$$\frac{T}{sm 90'} = \frac{R}{sin (90+60)} = \frac{W}{sin (120)}$$

:.
$$T = W \times \frac{\sin 90}{\sin 120} = 1.154 W$$

$$R = W \times \frac{Sin150}{sin120} = 0.577W$$

2020-3-26 15

प. 2 - एक समान घरन म8 , जिसका भार 120 N है. का सिरा म काब्दी द्वारा एक फ़रवीधर दीनार में संलग्न हैं तथा दूसरा सिरा ८ एक डोरी द्वारा म के फ़रवीधरतः फ़पर दीनार में एक ऐसे षिंदु ट से बंधा है कि Δ ALC समाद मिथुज़ हैं। डोरी में तनाव च कब्जी पर जीतिक़िया सात करें।

Applied Mechanics by G.K.Kashyap

उत्तर

दिया हैं:-

$$\rightarrow$$
 AB स्क समान धरा का भार = 120 N
अतः AG = GB = $\frac{AB}{2}$

$$\Delta$$
 ABC में, Cot प्रमेश से

 $m = AG = AB/2$ $\theta = 60^{\circ}$
 $n = GB = AB/2$ $\beta = 60^{\circ}$ $d = 7$

Cot Theorem: —
$$(m+n) Got \theta = m Got \alpha - n Got \beta$$

$$\therefore 2 Got 60' = Got \lambda - Got 60'$$

$$\therefore Lot \lambda = 3 Got 60'$$

$$ton \lambda = \frac{ton 60'}{3}$$

$$\therefore \lambda = 30'$$
T

बिंदु ० पर लागी जमेश लगाने पर,

$$\frac{T}{\sin 150} = \frac{R}{\sin 120} = \frac{W}{\sin 90}$$

$$R = W \times \frac{\sin 120}{\sin 90}$$

$$T \sin 60' == R \sin 30'$$

$$\therefore T = 0.577 R$$

$$T \cos 60' + R \cos 30' = 120$$

Applied Mechanics ∴ T = 0.577 R
by G.K.Kashyap
T = 60 N

10 - एक भारयुक्त एक समान द्वड़ 108 का मिरा 10 कन्ने द्वारा दीवार रो 60' के अवनत है जनीक मिरा 8 पर एक क्षेतिज बल F लगा है। यह संपूर्व निकाय यदि साम्यावस्था में होते। क्षेतिज बल F तथा दीवार की जीवीक्रया जात करें।

उत्तर : —

दिया है:- → एक समान दड़ AB रि1

.. , ५ मध्य बिंद होगा ।

: AG = GB = AB/2

→ LNAB = 60' (दीवार से इ.उ. AB ध्यवनत हें)

: LBAM = 30°

" AM IT NB

!. LNBA = LBAM=30 (एकान्तर कीन)

→ । धातः △ ० म छ में ,

L NBA = 30'

: L GOB = 90' . LOGB = 60'

1. LAGO = 120'

A AOB
$$\overrightarrow{H}$$
 (of Theorem \overrightarrow{ennF}) \overrightarrow{ul} , $\overrightarrow{d} = 90^{\circ}$ $0 = 120^{\circ}$ $m - AG$ $n = GB$
 $B = 3$
 $(m+n)$ Got $0 = m$ Cot $A - n$ Cot B
 $2 \text{ Got } 120^{\circ} = (\text{Sof } 90 - \text{Cot } B)$
 $\therefore \text{ fan } B = -\frac{\text{fan } 120^{\circ}}{2} = 0.86G$
 $\therefore B = 40.89^{\circ} \approx 41^{\circ}$

ाले Method:— बिंदु ० पर, लामी प्रमेश ते

by G.K.Kashyap

$$\frac{F}{\sin 139^{\circ}} = \frac{R}{\sin 90^{\circ}} = \frac{W}{\sin 131^{\circ}}$$

$$F = W \times \frac{\sin 139}{\sin 131}$$

$$R. = W \times \frac{\sin 90}{\sin 131}$$

Ind Method: -

$$EH = 0$$
 $F = R \sin 41^{\circ}$
 $F = 0.656R --- ij$

$$RGR41^{61} = W$$

$$\therefore R = 1.325 W$$

$$F = 0.656R$$

$$F = 0.869 W$$

प्रतः - भित्त में पिशार भी। फाउली किन की तान (Tie) तथा मिन (Tib) में लगेने बाले भेल कि भगना करें।

उत्तर् विशा ते :-

$$\therefore \quad Sin \ p' - \frac{AC}{AB} = \frac{2}{4}$$

$$\frac{3 \text{ Cel·oc}}{4 \text{ cel·oc}} = \frac{64 \text{ co'}}{3 \text{ fan 60}}$$

$$000 = 79.10^{\circ}$$

Applied Mechanics by G.K.Kashyap

100.90 by G.K.Kashyap 6 km

$$\frac{T}{\sin 100.9^{\circ}} = \frac{R}{\sin 120} = \frac{6 \text{ kN}}{\sin 139.1^{\circ}}$$

$$T = 6 kN \times \frac{Sin100.9^{\circ}}{Sin 139.1^{\circ}}$$

$$T = 8.998 kN$$

$$R = 6 kN \times \frac{\sin 120'}{\sin 139.1}$$

$$R = 7.936 \text{ kN}$$

$$\Sigma H = 0$$
,
 $T \sin 60' = R \sin 79.1$
 $T = 1.133 R$

$$\Sigma V = 0$$

 $T \cos 60' + R\cos 79.1 = 6 kN$
 $0.755 R = 6 kN$
 $1. R = 7.94 kN$

$$T = 1.133 R$$
 $T = 8.996 kN$

 $R_{1} = 3W$ $EH = 0 R_{2} 9 \ln 30' = R_{1} 3 \ln 60'$ $R_{1} = 0.577 R_{2}$ $EV = 0 R_{1} \cos 30' = 6W$ $R_{2} = 5.196 W$ $R_{3} = 3W$

Scanned by CamScanner
Scanned With CamScan

प्र~ – निर्म में पिरवारी गरी गील पर दोने समसे द्वाय लागीय गई प्रीमिक्रेशर रात की ।

Applied Mechanics by G.K.Kashyap

उत्तरः -

Ist Method :-

$$\frac{R_{1}}{Sin 120} = \frac{R_{2}}{Sin 150'} = \frac{100}{Sin 90'}$$

$$R_{1} = 86.6 \text{ N}$$

$$R_{2} = 50 \text{ N}$$

I'md Method 1—

The Rest of the Rest of the Rest of the Rest of Rest o

$$R, \sin 30' = R_2 \sin 60'$$
 $R, = 1.732 R_2$
 $EV=0$
 $R, \cos 30' + R_2 \cos 60' = 100 N$
 $R_2 = 50.0 N$
 $R_3 = 1.732 R_2$
 $R_1 = 86.6 N$

ZH =0