Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Linguagens Formais e Autómatos

exame de recurso (Ano Lectivo de 2007/8) 2 de Julho de 2008

NOTA: O exame tem 14 questões. Todas têm a mesma cotação.

Considere, sobre o alfabeto $T = \{ a b c \}$, a linguagem L_1 , o autómato M_2 e a expressão regular e_3 definidas abaixo e sejam L_2 e L_3 as linguagens associadas a M_2 e e_3 , respectivamente.

$$L_1 = \{ (ab)^n c^m \mid n \ge 0 \land m > n \}$$

$$e_3 = ((ab)*ac)*(b|c)$$

Considere, sobre o alfabeto $\{it, [j]\}$, a gramática G_4 definida a seguir e seja L_4 a linguagem por ela definida.

$$egin{array}{lll} S &
ightarrow & R \ {
m i} \ [\ P \] \\ R &
ightarrow & \lambda \ | \ {
m t} \\ P &
ightarrow & \lambda \ | \ L \\ L &
ightarrow & {
m t} \ I \ M \\ M &
ightarrow & \lambda \ | \ {
m i} \ L \\ I &
ightarrow & \lambda \ | \ {
m i} \end{array}$$

Considere ainda, sobre o alfabeto $\{ . d \}$, a gramática G_5 definida a seguir e seja L_5 a linguagem por ela definida.

1. Determine os elementos dos conjuntos

$$S_1 = \{ w \in L_1 \mid |w| \le 3 \}$$

$$S_2 = \{ w \in L_2 \mid |w| \le 3 \}$$

$$S_3 = \{ w \in L_3 \mid |w| \le 3 \}.$$

- 2. Construa um autómato de pilha que reconheça a linguagem L_1 .
- 3. Construa um autómato finito determinista equivalente ao autómato M_2 .
- 4. Derive uma expressão regular que represente a linguagem L_2 .

5. O teorema da repetição ou da bombagem (pumping lemma) diz que se L é uma linguagem regular, existe um número p > 0 tal que se u é uma palavra qualquer de L com $|u| \ge p$, então pode-se escrever u = xyz, satisfazendo as condições: |y| > 0; $|xy| \le p$; e $xy^iz \in L$, para qualquer i > 0.

Mostre, usando o teorema da repetição, que L_1 é uma linguagem não regular.

- 6. Mostre que a expressão regular (a(ba)*c)*(b|c) é equivalente à expressão regular e_3 .
- 7. Derive uma gramática que descreva a linguagem L_3 .
- 8. Determine os elementos dos conjuntos

$$S_4 = \{ w \in L_4 \mid |w| \le 4 \}$$

$$S_5 = \{ w \in L_5 \mid |w| \le 4 \}.$$

- 9. Relativamente à gramática G_4 , determine a árvore de derivação da palavra i[t,ti].
- 10. Obtenha uma gramática sem produções λ , isto é, sem produções do tipo $A \to \lambda$, que represente a linguagem L_4 .
- 11. Relativamente à gramática G_4 , calcule o conjunto first(R i [P])
- 12. Sabendo que, relativamente à gramática G_4 , o conjunto follow $(I) = \{$,] $\}$ construa a tabela de parsing de um reconhecedor descendente que reconheça a linguagem L_4 .
- 13. Relativamente à gramática G_5 , calcule o conjunto follow(I)
- 14. As palavras geradas pela gramática G_5 representam números, em que o terminal ${\tt d}$ representa os dígitos. Sabendo-se que ${\tt d}$ corresponde a um dígito na base 16 e que possui um atributo v que contém o valor desse dígito na base 10, construa uma gramática de atributos que associe ao símbolo não terminal V um atributo que contenha o seu valor na base 10.