# **ConvNets for Computer Vision**

HOML - chapter14

TAVE Research DL001 Changdae Oh

2021. 01. 24

- 1. Introduction to CNN
- 2. CNN Architectures (case study)
- 3. Classification & Localization
- 4. Object Detection
- 5. Semantic Segmentation

- 1. Introduction to CNN
- 2. CNN Architectures (case study)
- 3. Classification & Localization
- 4. Object Detection
- 5. Semantic Segmentation

#### Insights into the structure of the visual cortex

- 시각 피질 안의 많은 뉴런이 작은 국부 수용장(local receptive field)을 가짐.
- 뉴런들이 시야의 일부 범위(수용장) 안에 있는 시각 신호(패턴)에만 반응한다!
- 시각 신호가 연속적인 뇌 모듈을 통과하면서 뉴런들이 더 큰 수용장에 있는 더 복잡한 패턴에 반응한다.
  - → 고수준 뉴런이 이웃한 저수준 뉴런의 출력에 기반한다!



#### What is a convolution?

전형적으로 이미지로부터 특성을 추출하기위해 사용됨.

- 행렬에 적용되는 Sliding window 함수라고 생각하자.
- 이 sliding window 는 filter 혹은 kernel 이라고 불린다.
- N\*N 크기의 필터를 사용해 그것의 값들을 원본 행렬의 값들과 element-wise multiply하고 결과값들을 더한다.

#### < Various terms used on CNN >

- Channel
- Filter
- Kernel
- Stride
- Receptive field

- Padding
- Pooling
- Feature Map
- Activation Map

| 1,                     | <b>1</b> <sub>×0</sub> | 1,                     | 0 | 0 |
|------------------------|------------------------|------------------------|---|---|
| 0,0                    | 1,                     | <b>1</b> <sub>×0</sub> | 1 | 0 |
| <b>0</b> <sub>×1</sub> | 0,0                    | 1,                     | 1 | 1 |
| 0                      | 0                      | 1                      | 1 | 0 |
| 0                      | 1                      | 1                      | 0 | 0 |

| 4 |  |
|---|--|
|   |  |
|   |  |

**Image** 

Convolved Feature

http://deeplearning.stanford.edu/wiki/index.php/Feature extraction using convolution

### Convolutional layer



- 각 합성곱 층은 원본이미지 혹은 이전 합성곱 층 출력 map의 모든 pixel에 연결되는 것이 아니라 해당 합성곱 층 뉴런의 receptive field 안에 있는 pixel에만 연결된다.
- 하위 층에서는 저수준 특성에 집중하고 이후의 층들에서 고수준 특성으로 조합해나가는 계층적 구조

### Stride & Padding





### Channel / Filter / feature map





• Feature map은 필터를 가장 크게 활성화시키는 이미지의 영역을 강조한다.

#### 합성곱 층 뉴런의 출력

$$z_{i,j,k} = b_k + \sum_{u=0}^{f_h-1} \sum_{v=0}^{f_w-1} \sum_{k'=0}^{f_{w'}-1} x_{i',j',k'} \times w_{u,v,k',k} \qquad \text{odjiff} \begin{cases} i' = i \times s_h + u \\ j' = j \times s_w + v \end{cases}$$

### Pooling layer

자연계의 다양한 신호들은 Sparse 함.



- 2\*2 pooling kernel, stride = 2
- Local pooling
- 계산량과 메모리 사용량, 파라미터 수를 줄이는 효과
- 입력 데이터의 변화에 대해 일정수준의 불변성을 제공

#### Depthwise(깊이방향) max pooling



• 데이터의 회전, 두께, 밝기, 왜곡, 색상 변화 등 어떤 것에 대해서도 불변성을 학습할 수 있음

- 1. Introduction to CNN
- 2. CNN Architectures (case study)
- Classification & Localization
- 4. Object Detection
- 5. Semantic Segmentation

#### Traditional CNN architecture

Task: image classification



- '(Conv + ReLU) 몇 개 + Pooling' 반복
- 데이터 차원은 줄어들고 채널은 증가
- 최상위에 FC layer 몇 개를 추가 후 softmax 층을 거처 최종 예측 수행

#### < Note >

일반적으로 합성곱 층을 쌓을 때, 5\*5 커널 합성곱 층 하나 대신 3\*3 커널 합성곱 층 2개를 쌓는 것이 더 선호된다. 필요한 파라미터와 계산량이 적어지고 더 나은 성능을 내기 때문. (\*예외): 입력층 이후에 오는 첫 번째 합성곱 층에서는 비교적 큰 필터 사용.

### <idea>

- Local receptive fields
- Shared weights
- Sub-sampling

#### LeNet-5



- 입력 제외 총 7개의 층 (conv, pool, conv, pool, fc, fc, output)
- Task 대상 이미지가 28\*28 pixel인데, 패딩을 통해 32\*32 pixel로 변경 (식별하고자하는 패턴을 centering하기위함.)
- 이외의 층에서는 패딩 사용안했음. -> 점진적으로 데이터 차원 감소
- < Average pooling >
  - \* 일반적으로 파라미터가 없는 Pooling층에 weight, bias 파라미터 추가
  - \* 이후 활성화함수 적용
- C3 합성곱 층에서 선택적 연결 수행. Network의 symmetry한 성질을 없애기 위함.

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15           |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|--------------|
| 0 | Х |   |   |   | Χ | Χ | Χ |   |   | Χ | Χ  | Χ  | Χ  |    | Χ  | Χ            |
| 1 | X | Χ |   |   |   | Χ | Χ | Χ |   |   | Χ  | Χ  | Χ  | Χ  |    | Χ            |
| 2 | X | Χ | Χ |   |   |   | Χ | Χ | Χ |   |    | Χ  |    | Χ  | Χ  | Χ            |
| 3 |   | Χ | Χ | Χ |   |   | Χ | Χ | Χ | Χ |    |    | Χ  |    | Χ  | $\mathbf{X}$ |
| 4 |   |   | Χ | Χ | Χ |   |   | Χ | Χ | Χ | Χ  |    | Χ  | Х  |    | $\mathbf{X}$ |
| 5 |   |   |   | Х | Χ | Х |   |   | Х | Х | Χ  | Χ  |    | Χ  | Χ  | Χ            |

TABLE I

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

#### **AlexNet**



- 최초로 합성곱 층 연속으로 쌓음 (conv, pool) -> (conv, conv)
- 규제
  - \* Dropout
  - \* Data augmentation
- 정규화: LRN (local response normalization)
  - \* 첫 번째, 두 번째 conv이후 적용
  - \* 아이디어는 좋으나 효용이 적음

$$b_{x,y}^i = a_{x,y}^i / \left( k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2 \right)^{\beta}$$

#### **VGGNet**



- Basic한 CNN구조. 이전보다 깊어진게 특징
- 사용하는 conv 필터 크기가 항상 3\*3
- 구성이 간단하여 다양하게 응용하기 좋다.

### GoogLeNet

< Inception module >



- '인셉션 모듈' 이라는 서브 네트워크 도입 (Network in Network)
- 1\*1 conv 사용
  - \* <channel 수 조절>, <연산량 감소>, <풍부한 비선형성 추가>
- 학습과정 중간 평가를 위한 부가적인 분류기 추가 포함 전체손실과 가중합 (아이디어만 좋았다..)
- Global Average Pooling 을 출력층 전에 두어 파라미터 효과적으로 감소
- LRN, drop out









- Shortcout 연결을 통해 Vanishing / Exploding gradients 문제 해소
- · BN을 모든 conv layer이후 사용

### **Xception**



Depthwise separable convolution layer

(깊이별 분리 합성곱 층)

Figure 4. An "extreme" version of our Inception module, with one spatial convolution per output channel of the 1x1 convolution.



- Cross-channel conv : depthwise conv (3\*3)
- Spatial conv : pointwise conv (1\*1)
- 기존의 conv layer에서 n\*n 필터를 여러 개 사용하여 공간기준, 채널기준 패턴을 한 번에 학습하려 했다면, Xception은 공간, 채널 패턴을 따로따로 고려
- 파라미터/메모리사용/계산량 측면에서 효율적이며, 일반 합성곱 층보다 성능이 잘 나오는 경향이 있음.

#### **SENet**

(squeeze-and-excitation network)

- 인셉션, ResNet 같은 기존 구조를 확장하여 성능향상
- SE block이라는 작은 신경망 추가
- Conv를 통해 추출된 각 채널 별 특성들을 SE block에서 구한 채널당 중요도를 고려하여 재보정(recalibration)





#### < Note >

SE block은 어떤 특성이 일반적으로 동시에 가장 크게 활성화되는지를 학습한다.

#### **SENet**

(squeeze-and-excitation network)

- Squeeze 과정: Global Avg Pooling 등 무난한 압축함수 적용
- Excitation 과정: 병목층을 거쳐 특성 조합에 대한 일반적인 representation 학습 (은닉층 뉴런 개수를 입력층보다 매우 작게 설정)







- 1. Introduction to CNN
- 2. CNN Architectures (case study)
- 3. Classification & Localization
- 4. Object Detection
- 5. Semantic Segmentation

# Classification & Localization

#### **Computer Vision Tasks**



### Classification & Localization

### Localization as regression

- Object의 위치를 추정하는 것
  - = **Bounding box**의 좌표(x,y)와 높이(h),너비(w)를 예측하는 것
  - = 4개의 output을 주는 다중회귀 문제



- 1. Train classification model (AlexNet, VGG, GoogLeNet, etc…)
- 2. Attach new fully-connected "regression head" to the network
- 3. Train the regression hear only with SGD, L2 loss
- 4. At test time, use both heads

#### < Intersection over Union >



- 1. Introduction to CNN
- 2. CNN Architectures (case study)
- Classification & Localization
- 4. Object Detection
- 5. Semantic Segmentation

# **Object Detection**

- 하나의 이미지에 여러 개의 Object가 있어 그것들의 class를 분류하고 위치를 추정해야 하는 task를 객체 탐지라고 함.

### Sliding window method



#### < non-max suppression, NMS >





After non-max suppression



간단하지만 cost 큼 (각 window에 대해 cnn을 여러 번 실행해야 함.)

# **Object Detection**

### Fully Convolutional Nework (FCN)

기존 cnn의 최상위층 FC layer들을 conv layer로 바꾸자!





- 파라미터 공유를 통한 계산량 감소
- 입력 이미지 크기가 자유로워짐

# **Object Detection**

### YOLO (you only look once)

- Detection as regression
- 입력 이미지를 그리드로 나누고, 각 그리드별로 bbox 찾기 + 분류 수행.
   (각 셀에서 B개의 bounding box와 box에 대한 confidence score, conditional class probabilities를 예측)
- NMS를 통해 최종 bbox와 class label 추출



**Figure 2:** The Model. Our system models detection as a regression problem. It divides the image into an  $S \times S$  grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an  $S \times S \times (B*5+C)$  tensor.

 $Pr(Object) * IOU_{pred}^{truth}$ 

 $C(conditional\ class\ probabilities) = \Pr(Class_i|Object)$ 



 $class\ specific\ confidence\ score$ 

- =  $Pr(Class_i|Object) * Pr(Object) * IOU_{pred}^{truth}$
- =  $Pr(Class_i) * IOU_{pred}^{truth}$

- 1. Introduction to CNN
- 2. CNN Architectures (case study)
- Classification & Localization
- 4. Object Detection
- 5. Semantic Segmentation

# **Semantic Segmentation**

### FCN & upsampling

FCN으로 위치정보 보존! 근데 해상도는..?



#### Convolution



Filter: 3x3 Stride:2

#### **Transposed convolution**



Filter: 3x3 Stride:2



# **Semantic Segmentation**

### Skip connection



# Reference