

WELCOME

Intelligent Transportation Systems
Joint Program Office

Welcome

Shelley Row, P.E., PTOE
Director
ITS Joint Program Office
Shelley.Row@dot.gov

WWW.PCB.ITS.DOT.GOV

A101 Introduction to Acquiring Standards-based ITS Systems

Target Audience

- Procurement managers
- Procurement decision makers
- Project managers

Instructor

Ken Vaughn, P.E.
President
Trevilon Corporation
Herndon, VA, USA

Recommended Prerequisites

- I101: Using ITS Standards: An Overview
- Helpful to have knowledge of
 - Intelligent Transportation Systems (ITS)
 - Managing ITS deployment projects
 - Government procurement processes
 - Benefits of standards
 - Systems engineering process (SEP)

Curriculum Path (SEP)

Curriculum Path (Non-SEP)

Learning Objectives

- 1. Identify what managers should know
- 2. Articulate process for acquiring standards-compliant ITS systems
- 3. Differentiate between standards with and without SEP

A C T I V I T Y

Discuss

- What do you think of when someone mentions "ITS Standards"?
- Use the chat pod to answer

Types of ITS Standards

- Data Standards
 - Define domain-specific information
 - DMS, ESS, TMDD, etc.
- Communication Standards
 - Define low-level communications
 - TCP/IP, Ethernet, serial, etc. in ITS environment
- Both must be defined for a system interface

Additional Key Terms

- Management system
- Device

P O L L I N G

Multiple Choice Poll

- How do ITS standards assist in procurements?
 - They define all requirements
 - They define details, but need tailoring
 - Communication standards are precise, but data standards need to be tailored
 - Data standards define precise requirements, but communication standards need to be tailored

Benefits of ITS Standards

- Standards define technical details, but need tailoring
 - Standard provides a checklist of features to consider
 - Optional features (e.g., display of graphics)
 - Desired ranges (e.g., number of messages)

Other Benefits of ITS Standards

- Management Benefits
 - Addressed in Module I101
- Acquisition Benefits
 - Price competition among product vendors
 - Easier to switch from one vendor to another
 - Reduced integration costs for central system
 - Market synergies
 - Off-the-shelf testing tools

A C T I V I T Y

Discussion

- How do we determine the appropriate tailoring?
- Use the chat pod to answer

Systems Engineering Process (SEP)

Phase -1	Phase 0	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
Interfacing with Planning and the Regional Architecture	and	Project Planning and Concept of Operations Development	System Definition and Design	System Development and Implementation	Validation, Operations and Maintenance, Changes & Upgrades	System Retirement / Replacement

Benefits of SEP

- Helps define scope
 - Higher level of stakeholder participation
 - More likely that system meets user expectations
 - Better system documentation
- Reduced risk of cost and schedule overruns
 - Fewer defects in accepted product
 - More predictable outcomes

A C T I V I T Y

Discuss Roles

- Who are the key players that are involved in a typical systems procurement?
- Use the chat pod to answer

Roles

- Identify key players of the systems engineering process
 - System owner
 - Systems engineering assistant
 - Development team

Interaction Among Team

- Communication is critical
 - All three roles have distinct perspectives and skills
 - Each role provides value to the project
 - Issues should be identified and discussed early

P O L L I N G

Multiple Choice

- Where do the standards fit into the SEP "V" diagram?
 - At the top of the "V"
 - Concept of Operations, System Requirements, and High-Level Design
 - High-Level Design and Detailed Design
 - ITS standards address issues outside of the "V" diagram

ITS Standards and the SEP

Standards With SEP Content

- Define subsystem user needs
 - E.g., manage fonts for a message sign
- Define subsystem requirements
 - E.g., determine number of fonts
 - Traced to user needs
- Trace each requirement to a single design

Standards Without SEP Content

- Earlier ITS standards only document design
 - Content was derived by perceived needs
 - Context has to be inferred by user
 - Missing components need to be defined by user
 - User needs
 - Requirements
 - Some design details
 - Must map user requirements to remaining details

P O L L I N G

Multiple Choice

- How rigid are subsystem requirements?
- What type of contract do you use to acquire this subsystem?
 - Requirements are known, use fixed price
 - Requirements will be revised, use cost-plus
 - It depends

Combining SEP and Procurement

- Devices are largely off-the-shelf
 - Requirements are well-known
- Management systems often require software development
 - Requirements are refined during project life
- Different scope requires
 - different procurement vehicle
 - different interface within the SEP

Typical Scope of Device Vendor

Typical Scope of System Integrator

ITS Standards

- Reduce work
 - Simplifies project specification
 - Allows reuse of design and implementation
 - Facilitates testing
- Reduce risk
- Reduce schedule

Four Procurement Scenarios

- Device procurement
 - Standard with SEP content
 - Standard without SEP content
- Management system procurement
 - Standard with SEP content
 - Standard without SEP content

Preparatory Steps

- Define system concept of operations
 - Inform public about current traffic-related events
- Define system requirements
 - System shall allow the user to define the message to convey to the public, which will automatically expire when the event ends

Preparatory Steps

- Define major subsystems
 - Management system
 - Message signs
- Define communications environment
- Identify services needed from external subsystems

Device: Standard With SEP Content

- Select services from defined user needs
 - Define a message
 - Activate and display a message
- Select subsystem requirements from standard
 - Support multi-page messages
- Mapping to design elements is standardized

Device: Standard Without SEP Content

- Define needed services
- Define subsystem requirements
- Map to standardized design elements
 - Define missing design elements (e.g., dialogs)

Management System: Standard With SEP Content

- Standard with SEP Content
 - Select user needs from standard
 - Select requirements from standard
 - Define scenarios when data exchange is required

When Do We Document Need for Standardized Features?

Management System: Standard Without SEP Content

- Standard Without SEP Content
 - Define detailed requirements for each exchange
 - Map exchanges to design details and enhance
 - Dialog
 - Messages
 - Data Elements
 - Define scenarios when data exchange is required

Management System: Real-World

- Most management systems will control multiple types of devices
 - Some based on standards with SEP content
 - Some based on standards without SEP content
 - Some not based on standards
- All projects should follow SEP
 - The SEP content within standards merely simplify this work

Follow-on Steps

- Select communication stacks and standards
- Define other requirements (e.g., hardware)
- Procure
- Implement
- Test

Testing with SEP

- Standards with SEP Content
 - Standardized test procedures (ESS and soon for DMS)
 - Facilitates testing and testing market
 - Others have reusable test procedures in industry
 - Requirements are standardized and stable
 - Once a test procedure is written for one deployment, it can be reused repeatedly
- Standards without SEP Content
 - Test development effort is more involved since tests must be based on system requirements

Testing the Final Product

- Testing is critical step
 - Verify subsystems meet standardized interface
 - Verify system integrates all components together
 - Validate system meets user needs
- Document all testing
 - Allows reproducible results
 - Documents what was done
- Budget and schedule for multiple rounds
 - Allows for problems identified during initial tests

A C T I V I T Y

Practical Impacts

- What are your concerns about applying the Systems Engineering Process, as we have described, to acquire standards-based ITS systems?
- Use the chat pod to answer

Practical Impacts

- How large is the resulting specification?
 - Specifications should be as detailed as necessary
- Is a feature important? If yes,
 - Identify in concept of operations
 - Define in requirements
 - Verify in a test procedure
 - Validate that it meets user needs
 - Budget for the effort

Understanding Cost Implications

- SEP requires
 - Time
 - Experienced personnel
 - Commitment
- Proven to lower risks and increase quality
- Requires investment

Benefits of SEP

Eric Honour, "Understanding the Value of Systems Engineering," 2004.

SEP Benefits vs. Type of Acquisition

- SEP reduces risks
- Even acquiring a DMS entails risks
- Risks are higher for standards without SEP content
- Risks are higher for custom development (e.g., central systems)
- Risks are higher when dealing with multiple standards (e.g., central systems)

Today's Objectives

- Identified key concepts that managers should know
- Described process for acquiring standards compliant ITS systems
- Differentiated between standards with and without SEP

What Did We Learn Today?

- All projects should follow the <u>Systems</u> <u>Engineering</u> Process.
- 2) The SEP assists in defining the <u>Scope</u> for a project and in meeting the project <u>Budget</u> and <u>Schedule</u>.
- 3) ITS Standards with SEP content reduce <u>Systems</u> <u>Engineering</u> effort on a project.
- ITS Standards without SEP content still <u>Assist</u> in projects using the SEP.
- All requirements should be fully <u>Tested</u> prior to acceptance.

Where to Learn More

- Module supplement
 - NTCIP Guide
 - TMDD Guide
 - IEEE 1512 Guide
 - Systems Engineering Guidebook for ITS
- Other ITS courses
 - A102: Next module for all standard curriculum paths
 - A201: Follows A102 for all paths
 - T101: For more information on testing

QUESTIONS?

