Logistics

- HW3 (Reading/questions) extended
 - My fault: various deadlines & personal events
 - HW3 Due Sun 2/26, 10pm, online after class
- UDP Programming assignment online
 - Due 3/2
- Today:
 - Finish transport layer

Review: stop-and-wait operation

Review: Pipelined protocols

pipelining: sender allows multiple, "in-flight", yetto-be-acknowledged pkts

- range of sequence numbers must be increased
- buffering at sender and/or receiver

(a) a stop-and-wait protocol in operation

(b) a pipelined protocol in operation

Review: TCP RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size

full duplex data:

- bi-directional data flow in same connection
- MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) inits sender, receiver state before data exchange
- flow controlled:
 - sender will not overwhelm receiver

Review: TCP header

32 bits URG: urgent data counting dest port # source port # (generally not used) by bytes sequence number of data ACK: ACK # (not segments!) acknowledgement number valid head not receive window PSH: push data now len lused # bytes (generally not used) cheeksum Urg data pointer rcvr willing to accept RST, SYN, FIN: options (variable length) connection estab (setup, teardown commands) application data Internet (variable length) checksum^{*} (as in UDP)

Review: seq. numbers

sequence numbers:

byte stream "number" of first byte in segment's data

acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK
- Q: how receiver handles out-of-order segments
 - A: TCP spec doesn't say,
 - up to implementor

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- longer than RTT
 - but RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- * typical value: $\alpha = 0.125$

TCP round trip time, timeout

- * timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- estimate SampleRTT deviation from EstimatedRTT:

```
DevRTT = (1-\beta)*DevRTT + \beta*|SampleRTT-EstimatedRTT| (typically, \beta = 0.25)
```

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP reliable data transfer

- TCP creates rdt service on top of IP's unreliable service
 - pipelined segments
 - cumulative acks
 - single retransmission timer
- retransmissions triggered by:
 - timeout events
 - duplicate acks

let's initially consider simplified TCP sender:

- ignore duplicate acks
- ignore flow control, congestion control

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for oldest unacked segment
 - expiration interval:
 TimeOutInterval

timeout:

- retransmit segment that caused timeout
- restart timer

ack rcvd:

- if ack acknowledges previously unacked segments
 - update what is known to be ACKed
 - start timer if there are still unacked segments

TCP: retransmission scenarios

TCP: retransmission scenarios

cumulative ACK

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending lost packet
- detect lost segments via duplicate ACKs.
 - sender often sends many segments backto-back
 - if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3
ACKs for same data
("triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

 likely that unACKed segment lost, so don't wait for timeout

TCP fast retransmit

TCP flow control

application may remove data from TCP socket buffers

... slower than TCP receiver is delivering (sender is sending)

application process application OS TCP socket receiver buffers **TCP** code ΙP code from sender

receiver protocol stack

flow control

receiver controls sender, so sender won't overflow receiver's buffer by transmitting too much, too fast

TCP flow control

- receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segments
 - RcvBuffer size set via socket options (typical default is 4096 bytes)
 - many operating systems autoadjust RcvBuffer
- sender limits amount of unacked ("in-flight") data to receiver's rwnd value
- guarantees receive buffer will not overflow

receiver-side buffering

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters


```
Socket clientSocket =
  newSocket("hostname","port
  number");
```

```
application

connection state: ESTAB
connection Variables:
  seq # client-to-server
      server-to-client
  rcvBuffer size
  at server,client

network
```

```
Socket connectionSocket =
  welcomeSocket.accept();
```

Agreeing to establish a connection

2-way handshake:

- Q: will 2-way handshake always work in network?
- variable delays
- retransmitted messages (e.g. req_conn(x)) due to message loss
- message reordering
- can't "see" other side

Agreeing to establish a connection

2-way handshake failure scenarios:

TCP 3-way handshake

TCP: closing a connection

- client, server each close their side of connection
 - send TCP segment with FIN bit = I
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

TCP: closing a connection

Principles of congestion control

congestion:

- informally: "too many sources sending too much data too fast for network to handle"
- different from flow control!
- manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- a top-10 problem!

- two senders, two receivers
- one router, infinite buffers
- output link capacity: R
- no retransmission

maximum per-connection throughput: R/2

 large delays as arrival rate, λ_{in}, approaches capacity

- one router, finite buffers
- sender retransmission of timed-out packet
 - application-layer input = app-layer output: $\lambda_{in} = \lambda_{out}$
 - transport-layer input includes retransmissions : $\lambda_{\text{in}} \geq \lambda_{\text{in}}$

idealization: perfect knowledge

 sender sends only when router buffers available

Idealization: known loss

packets can be lost, dropped at router due to full buffers

sender only resends if packet known to be lost

Idealization: known loss packets can be lost, dropped at router due to full buffers

 sender only resends if packet known to be lost

Realistic: duplicates

- packets can be lost, dropped at router due to full buffers
- sender times out prematurely, sending two copies, both of which are delivered

Realistic: duplicates

- packets can be lost, dropped at router due to full buffers
- sender times out prematurely, sending two copies, both of which are delivered

"costs" of congestion:

- more work (retrans) for given "throughput"
- unneeded retransmissions: link carries multiple copies of pkt
 - decreasing throughput

- four senders
- multihop paths
- timeout/retransmit

Q: what happens as λ_{in} and λ_{in} increase ?

A: as red λ_{in} increases, all arriving blue pkts at upper queue are dropped, blue throughput $\rightarrow 0$

another "cost" of congestion:

when packet dropped, any upstream transmission capacity used for that packet was wasted!

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion control:

- no explicit feedback from network
- congestion inferred from end-system observed loss, delay
- approach taken by TCP

network-assisted congestion control:

- routers provide feedback to end systems
 - single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - explicit rate for sender to send at

TCP congestion control: additive increase multiplicative decrease

- * approach: sender increases transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by I MSS every RTT until loss detected
 - multiplicative decrease: cut cwnd in half after loss

AIMD saw tooth behavior: probing for bandwidth

cwnd: TCP sender

TCP Congestion Control: details

sender limits transmission:

$${\tt LastByteSent-} \leq {\tt cwnd} \ {\tt LastByteAcked}$$

 cwnd is dynamic, function of perceived network congestion

TCP sending rate:

 roughly: send cwnd bytes, wait RTT for ACKS, then send more bytes

rate
$$\approx \frac{\text{cwnd}}{\text{RTT}}$$
 bytes/sec

TCP Slow Start

- when connection begins, increase rate exponentially until first loss event:
 - initially cwnd = I MSS
 - double cwnd every RTT
 - done by incrementing cwnd for every ACK received
- summary: initial rate is slow but ramps up exponentially fast

TCP: detecting, reacting to loss

- loss indicated by timeout:
 - cwnd set to I MSS;
 - window then grows exponentially (as in slow start) to threshold, then grows linearly
- loss indicated by 3 duplicate ACKs: TCP RENO
 - dup ACKs indicate network capable of delivering some segments
 - cwnd is cut in half window then grows linearly
- TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

TCP: switching from slow start to CA

Q: when should the exponential increase switch to linear?

A: when **cwnd** gets to 1/2 of its value before timeout.

Implementation:

- variable ssthresh
- on loss event, ssthresh is set to 1/2 of cwnd just before loss event

TCP throughput

- avg. TCP thruput as function of window size, RTT?
 - ignore slow start, assume always data to send
- W: window size (measured in bytes) where loss occurs
 - avg. window size (# in-flight bytes) is ³/₄ W
 - avg. throuput is 3/4W per RTT

avg TCP thruput =
$$\frac{3}{4} \frac{W}{RTT}$$
 bytes/sec

TCP Futures: TCP over "long, fat pipes"

- example: I500 byte segments, I00ms RTT, want
 I0 Gbps throughput
- requires W = 83,333 in-flight segments
- throughput in terms of segment loss probability, L [Mathis 1997]:

TCP throughput =
$$\frac{1.22 \cdot MSS}{RTT \sqrt{L}}$$

- → to achieve 10 Gbps throughput, need a loss rate of L = $2 \cdot 10^{-10}$ a very small loss rate!
- new versions of TCP for high-speed

TCP Fairness

fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

Why is TCP fair?

two competing sessions:

- additive increase gives slope of I, as throughout increases
- multiplicative decrease decreases throughput proportionally

Fairness (more)

Fairness and UDP

- multimedia apps often do not use TCP
 - do not want rate throttled by congestion control
- instead use UDP:
 - send audio/video at constant rate, tolerate packet loss

Fairness, parallel TCP connections

- application can open multiple parallel connections between two hosts
- web browsers do this
- e.g., link of rate R with 9 existing connections:
 - new app asks for I TCP, gets rate R/I0
 - new app asks for 11 TCPs, gets R/2