目 录

日 求			
第一章	PLC 使	用说明	1
		见格	
1.2		也址	
		X 地址(机床→PLC)	
		Y 地址(PLC→机床)	
		F 地址(CNC→PLC)	
		G 地址(PLC→CNC)	
		内部继电器地址(R)	
		信息显示请求地址(A)	
	1.2.7	保持型继电器地址(K)	
	1.2.8	计数器地址(C)	
		计数器预置值地址(DC)	
	1.2.10	定时器地址(T)	
	1.2.11		
	1.2.12	300 V = - V	
	1.2.13		
		子程序号(P)	
1.3		基本指令	
		LD、LDI、OUT、OUTN	
		AND. ANI	
		OR、ORI	
		ORB	
		ANB MRR MRR	
1.4		MPS、MRD、MPP 力能指令	
1.4		SET(置位)	
		RST (复位)	
		CMP (二进制数据比较)	
		TMRB(定时器)	
		CTRC(二进制计数器)	
		MOVN (二进制数据传送)	
		DECB(二进制译码)	
		CODB(二进制代码转换)	
		JMPB(标号跳转)	
		LBL(标号)	
		CALL(调用子程序)	
		ROTB(二进制旋转控制)	
		PARI(奇偶校验)	

1.4.14	ADDB(二进制数据相加)	26
1.4.15	SUBB (二进制数据相减)	27
1.4.16	DIFU(上升沿置位)	28
1.4.17	DIFD(下降沿置位)	28
1.4.18	ALT(交替输出)	29
1.4.19	MOVE(逻辑乘)	29
1.4.20	WAND(二进制字节与)	30
1.4.21	WOR(二进制字节或)	31
1.4.22	WXOR(二进制字节异或)	31
1.4.23	WINV(二进制字节取反)	32
1.4.24	WSHL(二进制数据左移位)	33
1.4.25	WSHR(二进制数据右移位)	33
1.4.26	MULB(二进制数据乘法运算)	34
1.4.27	DIVB(二进制数据除法运算)	35
1.4.28	XMOV (二进制索引数据传输)	36
1.4.29	MOVBT(多位数据传输)	37
1.4.30	XCHG(数据交换)	37
1.4.31	DSCHB (二进制数据检索)	37
1.4.32	BMOV (数据块复制)	38
1.4.33	FMOV(寄存器数据块复制)	39
1.4.34	BON (位数据检测)	40
1.4.35	SFWR(移位写入)	41
1.4.36	SFRD(移位读出)	41
1.4.37	SOR(平方根开方运算)	42
1.4.38	MEAN(求平均数运算)	43
1.4.39	INC(加 1 运算)	43
1.4.40	DEC(减 1 运算)	43
1.4.41	BCD(二进制数据到 BCD 数据的转换)	44
1.4.42	BIN(BCD 数据到二进制数据的转换)	44
1.4.43	ZRST(批量复位)	44
1.4.44	AXCTL (PLC 轴控指令)	45
1.4	l.44.1 指令格式	45
	I.44.2 执行过程与相关信号	
1.4	I.44.3 PLC 轴控指令列表	48
1.4.45 l	MOVR(实数拷贝)	48
1.4.46	ADDR(实数加法)	49
1.4.47	SUBR(实数减法)	49
1.4.48 [MULR(实数乘法)	50
1.4.49 I	DIVR(实数除法)	50
1.4.50	CMPR(实数比较)	51
1 4 51	TMRC	51

	1.4.52 SQRT(平方根)	51
	1.4.53 SIN(正弦)	52
	1.4.54 COS(余弦)	52
	1.4.55 TAN(正切)	52
	1.4.56 ROUND(实数四舍五入转换为整数)	53
	1.4.57 DTR(整型数转换为实数)	53
	1.4.58 ZCP	54
	1.4.59 LN(自然对数)	54
	1.4.60 EXP(自然指数)	54
	1.4.61 PID(PID 计算)	
	PLC 信号说明	
2.1	J==1, 7, 1	
	2.1.1 轴移动状态	
	2.1.1.1 轴移动信号	
	2.1.1.2 轴移动方向信号	
	2.1.2 伺服就绪信号	
	2.1.3 进给轴同步控制	
	2.1.3.1 进给轴同步控制选择信号	
	2.1.3.2 进给轴同步控制手动进给选择信号	
	2.1.3.3 机械坐标一致状态输出信号	
	2.1.3.4 进给轴同步可进行同步调整信号	
	2.1.3.5 进给轴同步控制位置偏差量误差报警信号	
	2.1.3.6 进给轴同步控制中信号	
	2.1.4 位置开关	
	2.1.5 伺服关断	
	2.1.6 倾斜轴控制	
2.2	2.1.7 镜像	
2.2	运行准备	
	2.2.2 CNC 就绪信号	
	2.2.3 报警信号	
	2.2.4 方式选择	
	2.2.4 万式选择信号	
	2.2.4.2 工作方式检测信号	
	2.2.4.3 工作方式信号时序	
	2.2.5 状态输出	
	2.2.6 超程检测	
	2.2.6.1 超程信号	
	2.2.6.2 存储行程检测 1	
	2.2.6.3 存储行程检测 2,3	
	2.2.0.5 行間 7.4 型	65

	2.2.7.1 起动锁停信号	65
	2.2.7.2 所有轴互锁信号	66
	2.2.7.3 切削程序段开始互锁信号	67
	2.2.7.4 程序段开始互锁信号	67
	2.2.7.5 各轴互锁信号	67
	2.2.7.6 不同轴向的互锁信号	68
2.3	7,7,1,1	
	2.3.1 手动进给 / 增量进给	
	2.3.1.1 进给轴和方向选择信号	
	2.3.1.2 手动进给倍率信号	
	2.3.1.3 手动快速进给选择信号	
	2.3.2 手轮进给	
	2.3.2.1 手轮进给轴选择信号	_
	2.3.2.2 手控手轮进给移动量选择信号(增量进给信号)	
	2.3.3 手轮中断	
2.4	2.3.2.1 手轮中断轴选信号	
2.4	1 机械回零	
	2.4.1 机械回零	
	2.4.1.2 机械零点建立信号	
	2.4.1.3 机械回零信号时序	
	2.4.1.4 参考点返回用减速 G 信号	
2.5		
	2.5.1 循环启动 / 进给暂停	74
	2.5.1.1 循环启动信号	75
	2.5.1.2 进给暂停信号	75
	2.5.1.3 循环启动信号	75
	2.5.1.4 进给暂停信号	75
	2.5.2.5 启动运行时序	76
	2.5.1.5 自动运行信号	76
	2.5.2 复位/外部工件号检索	76
	2.5.2.1 外部复位信号	77
	2.5.2.2 复位信号	77
	2.5.2.3 复位&倒带信号	77
	2.5.2.4 外部工件号检索	
	2.5.2.6 基于 MDI 的复位确认信号	
	2.5.3 机床锁住	
	2.5.3.1 所有轴机床锁住信号	
	2.5.3.2 所有轴机床锁住检测信号	
	2.5.4 空运行	79
	2.5.4.1 空运行信号	79

	2.5.4.2 空运行检测信号	79
	2.5.5 单程序段	79
	2.5.5.1 单程序段信号	79
	2.5.5.2 单程序段检测信号	80
	2.5.6 跳过任选程序段	80
	2.5.6.1 跳过任选程序段信号	80
	2.5.6.2 跳过任选程序段检测信号	80
	2.5.7 手动绝对值	81
	2.5.7.1 手动绝对值信号	81
	2.5.7.2 手动绝对值检测信号	81
	2.5.8 程序再启动	81
	2.5.8.1 程序再启动信号	81
	2.5.8.2 程序再启动中信号	81
2.6	进给速度控制	82
	2.6.1 快速移动信号	82
	2.6.2 快速移动倍率	
	2.6.3 进给速度倍率	82
	2.6.4 倍率取消信号	
2.7	MST 功能	
	2.7.1 辅助功能(M 功能)	
	2.7.1.1 辅助功能代码信号和选通信号	
	2.7.1.2 M 译码信号	
	2.7.1.3 一个程序段中的多个 M 指令	
	2.7.2 主轴速度功能(S 功能)	
	2.7.3 刀具功能 (T 功能)	
	2.7.4 MST 功能结束	
	2.7.4.1 结束信号	
	2.7.4.2 M2,M3 结束信号	
	2.7.4.3 分配结束信号	
	2.7.5 辅助功能锁住	
	2.7.5.1 辅助功能锁住信号	
	2.7.5.2 辅助功能锁住检测信号	
	2.7.6 第 2 辅助功能(B 功能)	
	2.7.6.1 第 2 辅助功能功能代码和选通信号	
• •	2.7.6.2 第 2 辅助功能结束信号	
2.8	主轴控制功能	
	2.8.1 主轴速度控制	
	2.8.2 多主轴控制	
	2.8.3 主轴位置/速度切换	
	2.8.3.1 CS 轮廓控制	
	2.8.3.2 CS 轮廓控制轴坐标建立功能	100

2.8.4 主轴刚性攻丝	100
2.8.5 总线式主轴控制信号	102
2.8.6 多边形同步中信号(T系列)	108
2.8.7 Ⅱ型主轴同步控制功能	108
2.8.7.1 功能概述	108
2.8.7.2 信号详述	109
2.9 刀具功能	
2.10 其他功能	
2.10.1 公英制转换	
2.10.2 螺纹切削	
2.10.3 零件计数	
2.10.4 刀具寿命管理信号	
2.10.5 用户宏程序	
2.10.5.1 用户宏程序	
2.10.5.2 用户宏程序用中断信号	
2.10.6 程序开关信号2.11 PLC 轴控制功能	
2.11 PLC 抽控制功能	
2.11.2 基本步骤	
2.11.3 信号详述	
2.11.3.1 控制轴选择信号	
2.11.3.2 轴控制指令信号	
2.11.3.3 轴控制进给速度信号	
2.11.3.4 轴控制数据信号	
2.11.3.5 轴控制指令阅读信号	
2.11.3.6 轴控制指令阅读完成信号	
2.11.3.7 复位信号	
2.11.3.8 轴控制暂停信号	
2.11.3.9 程序段停止信号	
2.11.3.10 程序段停止无效信号	
2.11.3.11 辅助功能代码信号	
2.11.3.12 辅助功能选通信号	
2.11.3.13 辅助功能 2 选通信号	
2.11.3.14 辅助功能 3 选通信号	136
2.11.3.15 辅助功能完成信号	137
2.11.3.16 缓存无效信号	137
2.11.3.17 控制轴选择状态信号	138
2.11.3.18 到位信号	
2.11.3.19 跟踪误差零检查信号	
2.11.3.20 报警信号	
2.11.3.21 轴移动信号	

2.11.3.22 辅助功能执行信号	140
2.11.3.23 负向超程信号	141
2.11.3.24 正向超程信号	141
2.11.3.25 进给速度倍率信号	141
2.11.3.26 倍率取消信号	141
2.11.3.27 快速移动倍率信号	142
2.11.3.28 空运行信号	142
2.11.3.29 手动快速移动选择信号	142
2.11.3.30 倍率 0%信号	143
2.11.3.31 分配完成信号	143
2.11.3.32 缓冲区满信号	143
2.11.3.33 控制信号	143
2.11.3.34 PLC 轴扭矩控制方式中信号	143
2.12 2 路径控制(双通道功能)	144
2.12.1 2 路径控制	144
2.12.2 等待 M 代码功能	144
2.12.2.1 等待中信号	144
2.12.2.2 等待忽略信号	145
2.12.3 路径间干涉检查	145
2.12.4 同步控制及混合控制	145
2.12.5 重叠控制	147
2.12.6 路径间主轴控制	148
2.12.7 路径选择/任意路径名称显示	149
2.13 测量	150
2.13.1 跳过功能	150
2.13.1.1 跳过功能	150
2.13.1.2 多步跳过功能	150
2.13.2 偿量输入	151
2.13.2.1 刀具补偿量测量值直接输入(T系列)	151
2.13.2.2 刀具补偿量测量值直接输入 B(T系列)	
2.14 矩极控制功能	
2.14.1 各进给轴扭矩控制切换信号	154
2.14.2 各轴的扭矩控制状态信号	154
2.14.3 各轴的扭矩到达信号	154
2.14.4 设定扭矩控制轴信号	
第三章 程序的编制	
3.1 顺序的程序结构	
3.1.1 子程序	
3.1.2 子程序嵌套	
3.1.3 条件分支	
3.2 程序的执行过程	
321 程序的循环执行	156

	3.2.2 程序执行的优先次序	156
3.3	输入/输出信号的处理	157
	3.3.1 输入信号的处理	157
	3.3.2 输出信号的处理	158
	3.3.3 短脉冲信号的处理	158
	3.3.4 信号的互锁	158
3.4	程序的编制	159
	3.4.1 分配接口	159
	3.4.2 编制梯形图	159
	3.4.3 调试梯形图	
	GSKLadder 软件介绍	
4.1	界面介绍 主菜单命令	
4.2	4.2.1 文件菜单	
	4.2.2 编辑菜单	
	4.2.3 查看菜单	
	4.2.4 PLC 菜单	
	4.2.5 工具菜单	
4 3	主菜单命令	
	4.3.1 基本工具栏	
	4.3.2 梯形图编辑工具栏	
	4.3.3 梯形图视图工具栏	
4.4	软件的使用	
	4.4.1 视图的打开和切换	179
	4.4.2 梯形图	181
	4.4.2.1 子程序的创建、重命名和删除	181
	4.4.2.2 修改程序块信息	182
	4.4.2.3 添加网络注释	182
	4.4.3 符号表	184
	4.4.3.1 符号表的创建、重命名和删除	184
	4.4.3.2 符号表的编辑	185
	4.4.3.3 符号的使用	186
	4.4.4 数据设置表	186
	4.4.4.1 K 值设置	186
	4.4.4.2 数据设置表(D、DT、DC)的编辑	187
	4.4.4.3 数据设置表的创建、重命名和删除	188
	4.4.5 显示信息表	189
	4.4.6 引用索引表	190
	4.4.6.1 索引表	190
	4.4.6.2 位使用表	190
	4.4.6.3 字节使用表	191
	4.4.7 梯形图版本信息	192

目 录

附	录		193
	1,	、G 信号一览表	193
		、F 信号一览表	198

第一章 PLC使用说明

1.1 PLC 规格

PLC 系统版本	NP1		
编程语言	梯形图		
编程软件	GSKCC-Ladder		
程序级数	2		
第一级程序执行周期	8ms		
基本指令平均处理时间	<2 μ s		
程序最大步数	12000 步		
编程指令	基本指令 + 功能指令		

PLC 地址名称	PLC 地址范围	PLC 地址 数据长度	备注
内部继电器地址(R)	R0000~R0999	1字节	读/写
信息显示请求地址(A)	A0000~A0049	1字节	读/写
定时器地址(T)	T0000~T0199	4字节	只读
计数器地址(C)	C0000~C0199	4字节	只读
数据表地址(D)	D0000~D1999	4字节	读/写
保持型继电器地址(K)	K0000∼K0039	1字节	读/写
计数器预置值地址 (DC)	DC0000~DC0199	4字节	读/写
定时器预置值地址(DT)	DT0000~DT0199	4字节	读/写
子程序地址 (P)	P0000~P9999	/	不可访问
标记地址(L)	L0000~L9999	/	不可访问
机床→PLC 的地址(X)	X0000~X0511	1字节	只读
PLC→机床的地址 (Y)	Y0000~Y0511	1字节	读/写
CNC→PLC 的地址 (F)	F0000~F1999	1字节	只读
PLC→CNC 的地址 (G)	G0000~G1999	1字节	读/写

1.2 PLC 地址

本 PLC 对其地址读取数据分为两种类型:位取值和字节取值。其中字节取值又分为单字节取值,双字节取值和四字节取值。下面分别对这几种取值类型表述。

按位取值,用于读取 PLC 地址空间中某个位的状态。例如外部 IO 点的输入输出状态,或某个过程中的位状态。PLC 的位地址由地址类型、地址号和位号组成。

例如: X0001.3 表示 PLC 外部输入 X0001 的第3位的状态。

按字节取值,用于读取 PLC 地址空间中单个地址或连续地址所存储的数据。例如取得 PLC 数据参数 D 的值。PLC 的字节地址由地址类型和地址号组成。

例如: X0001 表示 PLC 外部输入 X0001 的地址(数据长度为 8 位)。

PLC 地址按字节取值有三种形式。下面以示例的方式对其说明。

● 单字节取值。

● 双字节取值。

例如:

注: 对于四字节地址(DT、DC、D、T、C),一个地址中其数据长度为 4 字节,按字节取值时在 PLC 指令中一般指定长度(SIZE)为 4,取出来的数据值为 32 位(二进制表示);如果指定的长度为 1 或 2,则取到截断后的数据。对于指定长度为 1 字节,则取该地址的 32 位数的低 8 位;如果指定长度为 2 字节,则取该地址的 32 位数的低 16 位。

1.2.1 X地址(机床→PLC)

988TD 的 X 地址分为两类:第一类地址(X0000.0~X0004.7)主要分配给 CNC 的 I /0 端口,包括固定地址(例如外部急停端口 X0.5)和可定义地址,用于外部机床信号的输入;第二类地址(X0018.0~X0029.7)分配给机床面板的输入键。X 地址为只读地址。 X 地址为单字节地址,数据长度为 8 位。

注:在 PLC 的 X 地址空间,只有 C NC 定义了的 X 地址才可以读,否则无意义。

1.2.2 Y地址 (PLC→机床)

CNC 的 Y 地址分为两类: 第一类地址 (Y0000. $0 \sim Y0003$. 7) 主要分配给 CNC 的 I/O 端口, 均为可定义地址; 第二类地址 (Y0018. $0 \sim Y00029$. 7) 分配给机床面板。Y 地址为单字节地址,数据长度为8位。

注:在PLC的Y地址空间,只有 CNC 定义了的Y地址才可以读写,否则无意义。

988TD 的通用机床输入输入口的 X、Y 地址定义如下所示。X、Y 地址详细功能定义见《GSK988TD 安装调试手册》。

^{支调试于册》。} 接口示意	CN61 引脚号	PLC 地址	接口示意	CN62 引脚号	PLC 地址
	1	X0.0		1	Y0.0
	2	X0.1		2	Y0.1
	3	X0.2		3	Y0.2
	4	X0.3		4	Y0.3
	5	X0.4		5	Y0.4
	6	X0.5		6	Y0.5
	7	X0.6		7	Y0.6
A CONTRACTOR OF THE PARTY OF TH	8	X0.7		8	Y0.7
	9	X1.0		9	Y1.0
1 + A + 1	10	X1.1	TV /	10	Y1.1
AEG A	11	X1.2	T← 1	11	Y1.2
3HI /\	12	X1.3	49II /\	12	Y1.3
ו אינוד ו	13	X1.4	HII/\	13	Y1.4
	14	X1.5	11287	14	Y1.5
NIDLE	15	X1.6		15	Y1.6
IIINPUT	16	X1.7		16	Y1.7
	29	X2.0	11.41-01	29	Y2.0
	30	X2.1		30	Y2.1
	31	X2.2	-	31	Y2.2
CN61 (孔)	32	X2.3	CN62 (针)	32	Y2.3
输入	33	X2.4	输出	33	Y2.4
	34	X2.5		34	Y2.5
	35	X2.6		35	Y2.6
	36	X2.7		36	Y2.7
	37	X3.0		37	Y3.0
	38	X3.1		38	Y3.1
	39	X3.2		39	Y3.2
	40	X3.3		40	Y3.3

41	X3.4	41	Y3.4
42	X3.5	42	Y3.5
43	X3.6	43	Y3.6
44	X3.7	44	Y3.7
17	X4.0	17~19, 26~28	0V
18	X4.1	20~25	+24V
19	X4.2		
20	X4.3		
25	X4.4		
26	X4.5		
27	X4.6		
28	X4.7		
21~24	0V		

1.2.3 F地址 (CNC→PLC)

F地址为只读地址, 其地址范围为 F0000~F0255, 为单字节地址, 数据长度为 8 位。

F地址详细功能定义见本说明书附录。

1.2.4 G地址 (PLC→CNC)

G地址范围为G0000~G0255,为单字节地址,数据长度为8位。

G地址详细功能定义见本说明书附录。

1.2.5 内部继电器地址(R)

地址范围为R0000~R0999,为单字节地址,数据长度为8位。此地址区域在CNC上电时被清零。

1.2.6 信息显示请求地址(A)

地址范围为 A0000~A0024,为单字节地址,数据长度为 8 位。此地址区域在 CNC 上电时被清零,用于 PLC 报警。

1.2.7 保持型继电器地址(K)

此地址区域用作保持型继电器和设定 PLC 参数,数据掉电保存,地址范围: K0000~K0039,为单字节地址,数据长度为 8 位。

6

1.2.8 计数器地址(C)

此地址区域用来存放计数器当前计数值,此区域数据掉电保存,地址范围 C0000~C0099。取值范围:0~21,4748,3647

1.2.9 计数器预置值地址 (DC)

此地址区域用来存放计数器预置值,数据掉电保存。地址范围 DC0000~DC0099,数据长度为 32 位,取值范围: $0\sim21,4748,3647$ 。

1.2.10 定时器地址(T)

此地址区域用来存放定时器当前数值,数据掉电保存。地址范围: $T0000\sim T0099$,数据长度为 32 位,取值范围: $0\sim 21,4748,3647$ 。

1.2.11 定时器预置值地址(DT)

此地址区域用来存放定时器预置值,数据掉电保存。地址范围: $DT0000 \sim DT0099$,数据长度为 32 位,取值范围: $0 \sim 21,4748,3647$ 。

1.2.12 数据表地址(D)

数据表地址数据掉电保存。地址范围: D0000~D0999, 数据长度为 32 位, 取值范围: 0~21,4748,3647。

1.2.13 标记地址(▮)

用来指定 JMPB 指令中的跳转目标标号和 LBL 指令的标号。 在 PLC 中禁止直接访问 L 地址。L 地址只能用于 PLC 功能指令 JMPL 和 LBL 中。L 地址范围:L0~L9999

1.2.14 子程序号(P)

用来指定 CALL 指令中调用的目标子程序号和 SP 指令的子程序号。 在 PLC 中禁止直接访问 P 地址。P 地址只能用于 PLC 功能指令 SP 和 CALL 中。 P 地址范围: P0~P9999

1.3 PLC 基本指令

基本指令是设计顺序程序时用的最多的指令,它们执行一位运算。本 CNC 具有的基本指令如下:

指令名	功能	可操作元件
LD	读取常开触点状态	X、Y、F、G、R、K、A
LDI	读取常闭触点状态	X、Y、F、G、R、K、A
OUT	驱动输出线圈	Y, G, R, K, A
OUTN	条件不满足时驱动输出线圈	Y, G, R, K, A
AND	常开触点串联	X、Y、F、G、R、K、A
ANI	常闭触点串联	X、Y、F、G、R、K、A
OR	常开触点并联	X、Y、F、G、R、K、A
ORI	常闭触点并联	X、Y、F、G、R、K、A
ORB	串联电路的并联	无
ANB	并联电路块的串联	无
MPS	逻辑结果进栈	无
MRD	读栈顶的逻辑结果	无
MPP	弹出栈顶的逻辑结果	无

1.3.1 LD, LDI, OUT, OUTN

● 助记符与功能

助记符	功能	梯形图符号
LD	读取常开触点状态	\rightarrow \vdash
LDI	读取常闭触点状态	—и—
OUT	驱动输出线圈	$\overline{}$
OUTN	输出非	_A

● 指令说明

- A: LD、LDI 指令用于将触点连接到母线上。其它用法与后述的 ANB 指令组合,在分支起点处也可使用。
- B: OUT 指令是驱动输出继电器、内部继电器线圈的指令。不能用于输入继电器。
- C: 并列的 OUT 命令能多次连续使用。
- D: OUTN 指令将驱动条件取反输出, 其它使用方法同 OUT。

● 编程举例

程序说明:

取 X0002.1 的状态, 若为1则输出 Y0003.7。 取 F0100.3 的状态, 若为0则输出 G0120.0。

1.3.2 AND, ANI

● 助记符与功能

助记符	功能	梯形图符号
AND	常开触点串联	→ ⊢ → ⊢
ANI	常闭触点串联	→⊢

●指令说明

用 AND、ANI 指令可串联连接 1 个触点。串联触点数量不受限制,该指令可多次使用。

● 编程举例

程序说明:

取 X0002.1 的状态,

取 F0100.3 的状态和 X0002.1 的状态串联

取 X0008.6 的状态与前两者串联

若 X0002.1 和 X0008.6 为 1, F0100.3 为 0 则输出 Y0003.7

1.3.3 OR, ORI

● 助记符与功能

助记符	功能	梯形图符号
OR	常开触点并联	
ORI	常闭触点并联	

●指令说明

- A: 用 OR、ORI 指令可并联连接 1 个触点。如果有两个以上的触点串联连接,并将这种串联回路块与其它 回路并联连接时,采用后述的 ORB 指令。
- B: OR、ORI 是指从该指令的步开始,与前述的 LD、LDI 指令步进行并联连接。

● 编程举例

程序说明:

取 X0002.1 的状态

取 F0100.3 的状态与 X0002.1 并联

X0002.1为1或F0100.3为0时,Y0003.7输出

1. 3. 4 ORB

● 助记符与功能

助记符	功能	梯形图符号
ORB	串联电路的并联	

● 指令说明

A: 由两个以上的触点串联连接的回路被称为串联回路块。将串联回路块并列连接时,分支开始用 LD、LDI 指令,分支结束用 ORB 指令。

B: ORB 指令是不带地址的独立指令。

● 编程举例

程序说明:

如图从左边母线至节点有三条支路 0002、0003、0004,支路 0002 和 0003 都为串联电路块,当母线至节点或节点与节点间有并联的串联电路块时,除第一个分支,在以后的分支结束使用 0RB 指令。支路 0004 不是串联电路块,用 0R 指令即可。

ORB 和 ANB 为无操作元件的指令,表示电路块间的或、与关系。

1. 3. 5 ANB

● 助记符与功能

助记符	功能	梯形图符号
ANB	并联电路的串联	

● 指令说明

- A: 当分支回路(并联回路块)与前面的回路串联连接时,使用 ANB 指令。分支的起点用 LD、LDI 指令,并联回路块结束后,使用 ANB 指令与前面的回路串联连接。
- B: ANB 指令是不带地址的独立指令。

● 编程举例

程序说明:

如上梯形图所示, ORB 可表示块 2 中的串联电路块并联, ANB 可表示电路块 1 与电路块 2 的串联。

1.3.6 MPS, MRD, MPP

配备 GSK988TD 的版本为 NP1 的 PLC 系统支持多级输出。

- (1) MPS(进栈指令) 将运算结果送入栈存储器的第一段,同时将先前送入的数据依次移到栈的下一段。
- (2) MRD(读栈指令) 将栈存储器的第一段数据(最后进栈的数据)读出且该数据继续保存在栈存储器的第一段,栈内的数据不发生移动。
- (3) MPP(出栈指令) 将栈存储器的第一段数据(最后进栈的数据)读出且该数据从栈中消失,同时将栈中其它数据依次上移。

进栈后的信息可无限使用,最后一次使用 MPP 指令弹出。如下图为 1 层栈:

```
X1.0
           X1.1
                       X1.2
                                  X1.3
                                              F1.0
                                                                                 R1.0
                                   X1.4
                                                                                 R1.1
                    MRD.
                                  X1.5
                                                                                 R1.2
                    MRD.
                                                                                 R1.3
                                  X1.6
                    MRD
                                  X1.7
                                                                                 R1.4
                    MPP
```

如下图为2层栈:

```
X1.0
           X1.1
                      X1.2
                                 X1.3
                                                                              R1.0
                                 1 / 1
                                 X1.4
                                                                              R1.1
                   (2) MPP
                      (2)
                      F1.0
                                 F1.1
                                            F1.2
                                                                              R1.2
        MPP
                                 1/1
        (1)
```

堆栈指令的使用说明:

- 1) 堆栈指令没有目标元件;
- 2) MPS 和 MPP 必须配对使用。

1.4 PLC 功能指令

在使用基本指令难于完成某些功能要求时,可使用功能指令来实现。PLC 具有以下功能指令:

序号	指令名	功能
1	SET	将逻辑运算结果与地址值逻辑或后输出
2	RST	将逻辑运算结果取反与地址值逻辑与后输出
3	CMP	比较置位
4	CTRC	计数器
5	TMRB	定时器
6	MOVN	数据复制
7	PARI	奇偶校验
8	ALT	交替输出
9	ROTB	二进制旋转控制
10	DECB	二进制译码
11	CODB	二进制代码转换
12	JMPB	程序跳转
13	LBL	程序跳转标号
14	CALL	子程序调用
15	DIFU	上升沿检测
16	DIFD	下降沿检测
17	MOVE	逻辑乘
18	ADDB	二进制加法
19	SUBB	二进制减法
20	MULB	二进制乘法
21	DIVB	二进制除法
22	WSHL	二进制数据左移
23	WSHR	二进制数据右移
24	WAND	二进制字节与
25	WOR	二进制数据或
26	WXOR	二进制数据异或
27	WINV	二进制数据取反

1.4.1 SET(置位)

- ●指令功能 给指定地址置 1。
- 梯形图格式

●控制条件

ACT =0: addr. b 的状态保持不变。 =1: addr. b 置 1。

●相关参数

addr.b:置位元件地址位,可以为触点、输出线圈,addr=Y、G、R、K、A。

● 程序示例:

说明: 当 X0002.1 为 1 时, R0002.0 被置 1; 当 X0002.1 为 0 时, R0002.0 状态保持不变。

1.4.2 RST(复位)

●指令功能 给指定地址置 0。

● 梯形图格式

●控制条件

ACT =0:addr.b 的状态保持不变。 =1:addr.b 置 0。

●相关参数

addr.b: 复位元件地址位,可以为触点、输出线圈, addr= Y、G、R、K、A。

● 程序示例:

说明: 当 X0002.1 为 0 时, R0020.0 状态保持不变; 当 X0002.1 为 1 时, R0020.0 被置 0。

1.4.3 CMP (二进制数据比较)

●指令功能

比较两个二进制数据的大小,输出比较结果。

●控制条件

假设 OUT 的地址以 addr. b 表示,则

ACT =0:addr.b 保持原值

=1:比较 IN1、IN2 的大小, 其输出结果如下:

	addr. (b+2)	addr. (b+1)	addr. (b+0)
IN1> IN2	0	0	1
IN1= IN2	0	1	0
IN1< IN2	1	0	0

●相关参数

Size: 指定比较数据长度,设置为 1、2、4 时,分别对应的数据长度为 1 字节、2 字节、4 字节 IN1、IN2: 比较源数据 1 和比较源数据 2 的内容,可为常数也可为地址号(不能为地址位,如 addr. b 非法)。地址号为 R、X、Y、Y、F、G、K、A、D、T、C、DC 以及 DT 等。

OUT: 为比较输出结果。可为R、Y、G、K以及A等。

● 程序示例:

说明: 当 X0002.1 为 0 时,不进行比较,R0300.0、R0300.1、R0300.2 状态保持不变;

当 X0002.1 为 1 时,进行比较,结果如下:

	R0300. 2	R0300. 1	R0300. 0
R0100>R0200	0	0	1
R0100=R0200	0	1	0
R0100 <r0200< td=""><td>1</td><td>0</td><td>0</td></r0200<>	1	0	0

1.4.4 TMRB (定时器)

●指令功能

延时导通定时器。定时单位为毫秒(ms)。

●梯形图格式

●控制条件

ACT =0: T与OUT复位。

=1: T 从 0 开始计时,当到达 PT 预置时间 (PT 的时间单位为毫秒)时 , 0UT=1。逻辑关系如下:

● 相关参数

T : 定时器编号, 范围位 T0000~T0099。

PT: 定时常数或以 DT 开头的数据寄存器。DT 设定范围: 0~21,4748,3647 (ms)

OUT: 定时器输出地址,可为R、Y、G、K以及A等。

● 程序示例:

说明:假设当前 DT0004 的设定值为 100。

当 X0002.1 为 0 时, T0000 和 R0300.0 均为 0;

当 X0002.1 为 1 时, T0000 开始计时, 到达 100 (DT0004 设定的时间) 毫秒后, R0300.0 被置 1。

1.4.5 CTRC (二进制计数器)

●指令功能

此计数器中的数据采用二进制,根据具体情况有下列功能。

- A: 预置型计数器: 对计数值进行预置,如果计数达到预置值则输出对应信号。
- B: 环形计数器: 计数器到达预置值时,输入计数信号,复位到初始值,并重新计数。
- C: 加、减计数器: 位可逆计数器, 既可用于加也可用于减。
- D: 初始值的选择: 初始值可为 0 或 1.

● 梯形图格式

●控制条件

ACT 为上升沿时:

加计数: C 从设定的初始值开始加计数,每来一次上升沿, C 加计数一次,到达预置计数值(N)时, OUT =1。而 C 小于 N 时,OUT =0,若再来上升沿, C 恢复初值开始计数,同时 OUT =0。

减计数: C 从设定的预置计数值 (N) 开始减计数,每来一次上升沿,C 减计数一次,到达设定的初始值时,0UT=1。而 C 大于 N 时,0UT=0;若再来上升沿,C 恢复到初始值重新开始计数,0UT=0。

ACT=0 时:

C与OUT保持原值

●相关参数

FMT: 数据格式

RST: 为1时, 无论 ACT 为何状态, C=CNO, OUT =0。RST 可为: X、Y、G、F、R、K以及A等。

C : 指定计数器编号, 以 Cxxx 表示, xxx 为数字(0~99)

N: 计数器预置值,可为常数,也可为以 DC 开头的数据寄存器。 若为常数,则其值范围为 $0\sim$ 21,4748,3647。

OUT: 到达计数值时输出位置1,OUT可为R、Y、G、K以及A等。

● 程序示例

说明: 当 R0100.0 为 1 时, C0001=0, R0500.0=0;

当 R0100.0 为 0 时, X0002.1 每来一次上升沿, C0001 加计数一次, 达到 10 时, R0500.0 置 1。X0002.1 再来一次上升沿, C0001 恢复到 0 重新开始计数, R0500.0 复位为 0。

1.4.6 MOVN (二进制数据传送)

●指令功能

往目的地址传送源地址的数据或指定的二进制数据(数据复制)。

● 梯形图格式

●控制条件

ACT =0: OUT 保持原值。

=1: 把 IN 中的值或常数复制到 OUT 中。

●相关参数

SIZE: 复制数据的长度(1,2,4字节)

IN: 源数据地址起始字节或常数, 地址号为R、X、Y、F、G、K、A、D、T、C、DC以及 DT等。

OUT: 目标地址起始字节, 地址号为R、Y、G、K、A、D、T、C、DC以及DT等。

● 程序示例:

说明: 当 X0002.1 为 1 时,将 R0100 的值(1字节)传送给 G0043。

1.4.7 DECB (二进制译码)

●指令功能

DECB 可对二进制代码数据译码,所指的 8 位连续数据之一与代码数据相同时,对应的输出数据位为 1;没有相同的数时,输出数据为 0。此指令用于 M 或 T 功能的数据译码。

● 梯形图格式

●控制条件

ACT = 0: OUT 的 8 个数据位全部复位。

=1: 把译码地址(IN)的内容值,与以BASE为开头的8个连续的数据相比较。若IN的内容值与8个数据中的任一个相等时,而此相等的数据在这8个数据中排在第几位,则输出地址(0UT)对应的第几位将被置1。

●相关参数

SIZE: 指定 IN1 地址的长度(1、2、4 字节)。

IN: 译码起始地址, 地址号为 R、X、Y、F、G、K、A、D、T、C、DC 以及 DT 等。

BASE: 比较常数的基值。

OUT : 比较结果输出,地址号为R、Y、G、K以及A等。

● 程序示例

1.4.8 CODB (二进制代码转换)

●指令功能

此指令用于二进制数据的转换。

●梯形图格式

●控制条件

ACT = 0: OUT 中的值保持不变。

=1: 以"转换输入数据地址(IN)"的值作为转换表的表号,从转换表中取出该表号对应的转换数据,输出给转换数据的输出地址(OUT)。

●相关参数

SIZE1:转换表中转换数据的二进制数据长度和转换数据的输出地址长度, 1-1 字节, 2-2 字节, 4-4 字节。 SIZE2:转换表长度, 长度和转换数据对应。

IN:转换数据的输入地址,此地址只需一个字节的数据。地址为 R、X、Y、G、F、A、K以及 D等。OUT:转换数据的输出地址,地址为 R、X、Y、G、F、K、A、D、DT 以及 DC等。

● 程序示例:

例

当 X0002.1=1 时,

X0002.1=1, R0100=0 时: R0200=1 X0002.1=1, R0100=1 时: R0200=2 X0002.1=1, R0100=2 时: R0200=3 X0002.1=1, R0100=3 时: R0200=4

转换数据表

序号	数值
000	1
001	2
002	3
003	4

1.4.9 JMPB (标号跳转)

●指令功能

立即将程序转移到标号设置的程序位置处执行,具有几下特点:多条跳转指令可使用同一标号;禁止跳出子程序:可向前跳转也可向下跳转。

● 梯形图格式

●控制条件

ACT =0: 不跳转, 执行 IMPB 后的下一条指令。

=1: 跳转到指定标号后,执行标号后的下一条指令。

●相关参数

Lx: 指定跳转的目的标号,标号数必须以 L 地址开头指定,可指定由 L1 至 L9999 的一个值。

● 程序示例

说明: 当 X0003.3 为 1 时,程序跳过 R100.0 行,从 R12.1 行开始顺序执行;若 X0003.3 为 0 则从 R100.0 行 开始顺序执行。

1.4.10 LBL(标号)

●指令功能

在梯形图中指定一标号,即 JMPB 指定跳转的目的位置,一个 Lx 标号,只能用 LBL 指定一次,否则。

● 梯形图格式

●指令参数

Lx: 指定跳转的目的标号,标号数必须以L地址开头指定,可指定由L1至L9999的一个值。

1.4.11 CALL (调用子程序)

●指令功能

调用指定子程序,具有以下特点:多条调用指令可调用同一子程序;调用指令可嵌套。

● 梯形图格式

●控制条件

ACT =0: 执行 CALL 后的下一条指令。

=1: 调用指定子程序号的子程序。

●相关参数

Px: 指定调用的子程序标号, 子程序标号数必须以 P地址开头指定, 可指定由 P1 至 P9999 的一个值。

1.4.12 ROTB (二进制旋转控制)

●指令功能

用于回转控制,如刀架、旋转工作台等。指令有如下功能:选择短路径的回转方向;计算由当前位置到目标位置的步数,或计算由当前位置的前一位置到目标位置的前一位置的步数;计算目标前一位置的位置号。

●梯形图格式

●控制条件

ACT =0: 不执行指令, OUTE 与 OUTO 保持原值。

=1: 执行指令, 结果输出至 OUTE 和 OUTO 中。

●相关参数

FMT: 数据格式:

CNT : 转台分度位置数。

SIZE: 指定 IN W, IN D 和 OUTE 地址长度, (1, 2, 4字节)。

IN W: 当前位置地址, 存放当前位置号。地址号为R、X、Y、F、G、K、A、D、DC以及DT等。

IN D: 目标位置地址,存放目标位置号。地址号为R、X、Y、F、G、K、A、D、DC以及DT等。

OUTE: 计算结果输出地址。地址号为R、Y、G、K、A、D、DC以及DT等。

OUTO: 旋转方向输出,使转台的位置号增加的方向为正方向(FOR); 若减少则为反方向(REV)。当 OUTO

=0 时,为正向旋转; OUTO=1 时,为反向旋转。地址号为 R、Y、G、K 以及 A 等。

●程序示例

例:有一转台刀架如下,当前位置处于1号刀位:

进行短路径旋转,计算目标位置的前一位置的位置号。当前位置号 R0007=1 ,转台分度位置数 CNT=12,则 X0003. 3=1 时:

F0026=10 目标位置为 A 时 , R0027=11, R0037.0=1

F0026=8 目标位置为B时, R0027=9, R0037.0=1

F0026=5 目标位置为C时, R0027=4, R0037.0=0

F0026=3 目标位置为 D 时 , R0027=2 , R0037.0=0

1.4.13 PARI (奇偶校验)

●指令功能

对输入数据进行奇偶校验,输入的数据为1个字节(8位)。

● 梯形图格式

●控制条件

当 ACT=1 时:对输入数据进行奇偶校验,若输入数据与 OE 的指定不符,则 OUT 为 1;否则 OUT 为 0。 ACT=0:不执行指令,OUT 不保持原值。

●相关参数

OE =0: 输入数据中的"1"的个数为偶数

=1: 输入数据中的"1"的个数为奇数

RST: 为1时, OUT 复位为0, 地址为 X、Y、G、R、F、A 以及 K等。

IN:输入数据地址,地址可为 X、Y、G、R、F、A、K 以及 D。

OUT: 校验结果输出地址,地址可为Y、G、R、A以及K等。

● 程序示例

说明: 当 X0003.3 为 1 时执行 PARI 指令,0E=0000,进行偶校验。当 R0010.0 为 1,R0030.0 复位为 0,不进行校验。当 R0010.0 为 0 时,进行校验,当 R0020 的数值中含偶数个 1 时,R0030.0 为 0,当 R0020 的数值中含奇数个 1 时,R0030.0 为 1。

1.4.14 ADDB (二进制数据相加)

●指令功能

二进制数据相加

● 梯形图格式

●控制条件

当 ACT=1 时: 执行 OUT=IN1+IN2。若运算出错 ERR 为 1; 否则 ERR 为 0。 ACT=0 时: 不执行指令, OUT 和 ERR 保持不变。

●相关参数

SIZE: 1-1 字节长, 2-2 字节长, 4-4 字节长。

IN1:被加数,可为常数或地址。地址号为R、X、Y、F、G、A、K、D、T、C、 DC 以及 DT 等。

IN2:加数,可为常数或地址。地址号为R、X、Y、F、G、A、K、D、T、C、DC以及DT等。

RST: 为1时, ERR 复位为零, OUT 不变。地址号为R、X、Y、F、G、A以及K等。

OUT: 运行结果输出数据地址。地址可为Y、G、R、A、K、DC、DT、D、C以及T等

ERR: 运算结果错误输出地址,地址可为Y、G、R、A以及K。

● 程序示例

说明: 当 X0003.3=1 时,执行 ADDB 指令。R0040=R0010+R0020,若运算出错,则 R0050.0 为 1,否则为 0。 当 R0030.0 为 1 时,R0040 状态不变,R0050.0 复位为 0。

1.4.15 SUBB (二进制数据相减)

●指令功能

二进制数据相减

● 梯形图格式

●控制条件

当 ACT=1 时: 执行 OUT= IN1-IN2。若运算出错 ERR 为 1; 否则 ERR 为 0。 ACT=0 时: 不执行指令, OUT 和 ERR 保持不变。

●相关参数

SIZE: 可为1、2、4,分别对应1字节长、2字节长、4字节长。

IN1:被减数,可为常数或地址。地址号R、X、Y、F、G、A、K、D、T、C、DC以及DT等。

IN2:减数,可为常数或地址。地址号R、X、Y、F、G、A、K、D、T、C、DC以及DT等。

RST: 为1时, ERR 复位。地址号为R、X、Y、F、G、A以及K等。

OUT: 运行结果输出数据地址。地址为Y、G、R、A、K、DC、DT、D、C以及T等。

ERR: 运算结果错误输出地址,地址为Y、G、R、A以及K等。

● 程序示例

说明: 当 X0003. 3=1 时,执行 SUBB 指令,R0040=R0010-R0020,若运算出错,则 R0050. 0 为 1,否则 R0050. 0 为 0;当 R0030. 0 为 1 时,R0040 状态不变,R0050. 0 复位为 0。

1.4.16 DIFU(上升沿置位)

●指令功能

在输入信号上升沿的扫描周期将输出信号置为1。

● 梯形图格式

●控制条件

输入信号 ACT: 在 ACT 的上升沿处 (0->1),将输出信号设置为 1。

输出信号 Addr. b: 此功能指令执行时, Addr. b 在梯形图的一个扫描周期中保持为 1, 下一个扫描周期变为 0)

●相关参数

Addr. b:运算结果输出地址,地址可为Y、G、R、A以及K等。

● 程序示例

说明: 当 X0003.3 来上升沿时, R0044.0 输出 1。

1.4.17 DIFD (下降沿置位)

●指令功能

在输入信号下降沿的扫描周期将输出信号设置为1。

● 梯形图格式

●控制条件

输入信号 ACT: 在 ACT 的下降沿处 (1->0),将输出信号设置为 1。

输出信号 Addr. b: 此功能指令执行时, Addr. b 在梯形图的一个扫描周期中保持为 1, 下一个扫描周期变为 0)

●相关参数

Addr.b:运算结果输出地址,地址可为Y、G、R、A以及K等。

● 程序示例

说明: 当 X0003.3 来下降沿时, R0044.0 输出 1。

1.4.18 ALT(交替输出)

●指令功能

交替输出指令,在输入信号的每一次上升沿(0->1)变化时,输出信号反转输出。

● 梯形图格式

●控制条件

在输入信号 ACT 的每次 0->1 变化时,输出信号 Addr. b 反转输出。

●相关参数

Addr. b:输出信号,地址可为Y、G、R、A以及K等。

● 程序示例

说明:在 X0003.3 的每一次上升沿来时, R0033.0 状态翻转一次。

1.4.19 MOVE (逻辑乘)

●指令功能

将逻辑乘数与输入数据进行逻辑与运算,将结果输出至指定地址。

● 梯形图格式

●控制条件

当 ACT=1 时:将逻辑乘数(H、L)与输入数据(IN)进行逻辑与运算,将结果输出至指定地址(OUT)。可用来从指定地址中一个8位的信号中排除不需要的位数。

ACT=0 时: OUT 保持原值。

●相关参数

H: 高四位逻辑乘数

L: 低四位逻辑乘数

IN:输入数据地址,地址号为R、A、K、X、Y、F、G以及D等。

OUT: 输出数据地址,地址号为R、A、K、Y、G以及D等。

● 程序示例

说明: 当 X0003.3 为 1 时, R0010 和 01001110 进行与,将结果存放在 R0020 中。

1.4.20 WAND (二进制字节与)

●信号功能

WAND 将两个输入数据(1,2,4字节)进行字节按位与操作,计算结果输出到输出地址中。

● 梯形图格式

●控制条件

ACT=0: OUT 的值保持不变。

ACT=1: 把 IN1、IN2的内容值进行与操作,结果输出到 OUT 地址。

●相关参数

SIZE: 指定 IN1, IN2 地址的长度(1, 2, 4 字节)

IN1、IN2:输入数据的起始地址或常数。地址号为R,X,Y,F,G,K,A,D,T,C,DC,DT。

OUT: 结果输出地址,操作地址可为R,Y,G,K,A,D,T,C,DC,DT。

● 程序示例

说明: 当 X0003. 3=1 时,把 X0 中的数据(8 位数)与 15(即进二进制的 00001111)的相与,结果放入到 R10 中。例如,当 X0003. 3=1 且 X0 为 11000110 时,经过 WAND 指令后,R10 中的结果为 00000110。

1.4.21 WOR (二进制字节或)

●指令功能

WOR 将两个输入数据(1, 2, 4字节)进行字节按位或操作,计算结果输出到输出地址中。

● 梯形图格式

●控制条件

ACT=0, OUT 的值保持不变。

ACT=1,把 IN1, IN2的内容值进行或操作,结果输出到 OUT 地址。

●相关参数

SIZE: 指定 IN1, IN2 地址的长度(1, 2, 4 字节)

IN1、IN2:输入数据的起始地址或常数。地址可为R, X, Y, F, G, K, A, D, T, C, DC, DT。

OUT: 结果输出地址,操作地址可为R,Y,G,K,A,D,T,C,DC,DT。

● 程序示例

说明: 当 X0003.3=1 时,把 X0 中的数据(8 位数)与 15(即进二进制的 00001111)进行位的或运算,结果放入到 R10中。例如,当 X0003.3=1 且 X0为 11000110 时,经过 W0R 指令后,R10中的结果为 00001111。

1.4.22 WXOR (二进制字节异或)

●指令功能

WXOR 将两个输入数据(1, 2, 4字节)进行字节按位异或操作,计算结果输出到输出地址中。

● 梯形图格式

●控制条件

ACT=0, OUT 的值保持不变。

ACT=1,把 IN1, IN2的内容值进行异或操作,结果输出到 OUT 地址。

●相关参数

SIZE: 指定 IN1, IN2 地址的长度(1, 2, 4 字节)

IN1、IN2: 数据输入地址起始字节或常数。地址可为R, X, Y, F, G, K, A, D, T, C, DC, DT。

OUT: 结果输出地址,地址可为R,Y,G,K,A,D,T,C,DC,DT。

● 程序示例

```
X3.3

WXOR

1 SIZE OUT R10

X0 IN1

15 IN2
```

说明: 当 X0003. 3=1 时,把 X0 中的数据(8 位数)与 15(即进二进制的 00001111)进行位的异或运算,结果放入到 R10中。例如,当 X0003. 3=1 且 X0 为 11000110 时,经过 WXOR 指令后,R10 中的结果为 00001001。

1.4.23 WINV (二进制字节取反)

●功能

将输入地址的数据或常量取反保存到输出地址中。

● 梯形图格式

●控制条件

ACT=0, OUT 保持原值。

ACT=1,把 IN 的值取反保存到 OUT 地址。

●相关参数

SIZE: 数据的长度(1, 2, 4 字节)

IN: 数据输入地址起始字节或常数。输入地址可为R,X,Y,F,G,K,A,D,T,C,DC,DT。

OUT: 输出地址起始字节。地址可为R,Y,G,K,A,D,T,C,DC,DT。

● 程序示例

说明: 当 X0003. 3=1 时,把 X0 中的数据(8 位数)进行位的取反运算,结果放入到 R10 中。例如,当 X0003. 3=1 且 X0 为 11000110 时,经过 WINV 指令后,R10 中的结果为 00111001。

1.4.24 WSHL (二进制数据左移位)

● 指令功能

WSHL 将两个输入数据(1,2,4字节)按指定的位数进行左移位操作,结果输出到输出地址中。

● 梯形图格式

●控制条件

ACT=0, OUT 的值保持不变。

ACT=1,把 IN的值向左移 N位,结果输出到 OUT 地址。

●相关参数

SIZE: 指定 IN 的数据长度(1, 2, 4 字节)

N: 移位数地址或常数。地址可为R, X, Y, F, G, K, A, D, T, C, DC, DT;

IN : 数据输入地址起始字节或常数。地址可为 R, X, Y, F, G, K, A, D, T, C, DC, DT。

OUT: 结果输出地址,地址可为R,Y,G,K,A,D,T,C,DC,DT。

● 程序示例

说明: 当 X0003. 3=1 时,把 X0 中的数据(8 位数)进行位的左移 4 位的运算,结果放入到 R10 中。例如,当 X0003. 3=1 且 X0 为 11000110 时,经过 WSHL 指令后,R10 中的结果为 01100000。

1.4.25 WSHR (二进制数据右移位)

●指令功能

WSHR 将两个输入数据(1, 2, 4字节)按指定的位数进行右移位操作,结果输出到输出地址中。

●梯形图格式

●控制条件

ACT=0, OUT 的值保持不变。

ACT=1,把 IN 的值向右移 N 位,结果输出到 OUT 地址。

●相关参数

SIZE: 指定 IN 的数据长度(1, 2, 4 字节)

N: 移位数地址或常数。地址可为 R, X, Y, F, G, K, A, D, T, C, DC, DT;

IN: 数据输入地址起始字节或常数。地址可为R,X,Y,F,G,K,A,D,T,C,DC,DT。

OUT: 结果输出地址,地址可为R,Y,G,K,A,D,T,C,DC,DT。

● 程序示例

说明: 当 X0003. 3=1 时,把 X0 中的数据(8 位数)进行位的右移 4 位的运算,结果放入到 R10 中。例如,当 X0003. 3=1 且 X0 为 11000110 时,经过 WSHR 指令后,R10 中的结果为 00001100。

1.4.26 MULB(二进制数据乘法运算)

●指令功能

MUL 将两个输入数据(16位整数)相乘,产生一个32位乘积保存到输出地址(32位)中。

●梯形图格式

●控制条件

RST = 0: 保持 ERR 和 OUT 不变

RST = 1: 复位 ERR 和 OUT

ACT=0: OUT 的值保持不变。

ACT=1,把 IN1的值和 IN2的值相乘,结果输出到 OUT 地址。

●相关参数

IN1、IN2: 乘数输入地址起始字节或常数,地址可为 R, X, Y, F, G, K, A, D, T, C, DC, DT; 如使用 R, X, Y, F, G, K, A, D 单字节(8位)地址,指令将取连续2个字节作为乘数; 如使用 T,

C, DC, DT 双字(32位)地址,指令将取其低16位作为乘数;

OUT: 结果输出地址,地址可为R,Y,G,K,A,D,T,C,DC,DT。

RST: 指令复位信号输入地址(位地址)。

ERR: 运算错误输出地址(位地址),地址可为R,Y,G,K,A。

● 程序示例

说明: 当 X0003.3=1 时,把 R100,R101 组成的数据(16 位数,R101 占高 8 位,R100 为低 8 位)与常数 40000进行乘法运算,结果放入到以 R200 为起始地址的 4 字节(R200、R201、R202、R203,其中 R200 占用低 8 位)中。

1.4.27 DIVB (二进制数据除法运算)

●指令功能

DIV 将两个输入数据(16 位整数)相除,产生一个 32 位结果(包括 16 位余数(高位)和 16 位商(低位))保存到输出地址(32 位)中。

●梯形图格式

●指令格式

DIV	IN1	IN2	RST	OUT	ERR

●控制条件

RST =0: 保持 ERR 和 OUT 不变

RST =1: 复位 ERR 和 OUT

ACT=0: OUT 的值保持不变。

ACT=1: IN1 除以 IN2, 结果输出到 OUT 地址。

●相关参数

IN1、IN2:数据输入地址起始字节或常数,地址可为R, X, Y, F, G, K, A, D, T, C, DC, DT;如使用

R, X, Y, F, G, K, A, D单字节(8位)地址,指令将取连续2个字节作为除数;如使用T,

C, DC, DT 双字(32位)地址,指令将取其低16位作为除数;

OUT: 结果输出地址,地址可为R,Y,G,K,A,D,T,C,DC,DT

RST: 指令复位信号输入地址(位地址)。

ERR: 运算错误输出地址(位地址),地址可为R,Y,G,K,A。

● 程序示例

说明: 当 X0003. 3=1 时,把 R100, R101 组成的 16 位整数(R101 占高 8 位,R100 为低 8 位)作为被除数,常数 1000 为除数进行除法运算,结果中商数(16 位)放入到以 R200 为起始地址的 2 字节 (R200、R201,其中 R200 占低 8 位)中,结果中的余数(16 位)放入到以 R202 为起始地址的 2 字节(R202, R203, 其中 R202 占用低 8 位)中。

1.4.28 XMOV (二进制索引数据传输)

●指令功能

读取或更改数据表的内容。

●梯形图格式

●相关参数

参数	说明	地址类型
RW	读取/写入指定。	常数。
	RW=0: 从 DS 指定首地址的数据表中读取数据到以 DD 指定	
	首地址的数据表。	
	RW=1: 将 DD 指定首地址的数据表中的数据写入到以 DS 指	
E) (E	定首地址的数据表。	He O . He D MCM/
FMT	以 4 位常数进行指令形式指定。	指定格式常数。
	$0 \underline{n} \underline{n} \underline{x}$	
	只能在1,2,4中选择	
	索引数组的长度	
	02-99:连续进行nn次数据表读取或写入。	
DL	指定以 DS 为首地址的数据表长度。	常数或
	根据 FMT 中指定的字节长设定,对应可设定的值如下:	X,Y,F,G,R,K,A,D,C,T,DC,DT
	1字节长: 1-255	(字节地址)
	2 字节长: 1 - 16384	
	4 字节长: 1 - 16384	
DS	数据表首地址。	
	对进行读取、写入的数据表的首地址进行指定。需占用的寄	X,Y,F,G,R,K,A,D,C,T,DC,DT
	存器空间字节数为: (在 FMT 中指定的字节长)x(DL 指定的数	(字节地址)
DD	据表长度)	WORK A DOMBORT
DD	输入/输出数据存放地址。	Y,G,R,K,A,D,C,T,DC,DT (字节地址)
	读取时,表示存放读取结果的寄存器地址。	(十月地址)
DI	写入时,表示存放写入值的寄存器地址。 设定存放索引值的寄存器地址。数据占用 FMT 中指定的字节	Y,G,R,K,A,D,C,T,DC,DT
וטו	长度。	(字节地址)
ERR	指令执行错误输出。	Y,G,R,K,A
	ERR=0: 无错误。	(位地址)
	ERR=1: 执行出错。	
	* ***	

1.4.29 MOVBT (多位数据传输)

●指令功能:

将指定位置处连续的多个位传输到目标地址。

●指令格式

●参数说明

IN	传输源地址。	X,Y,F,G,R,K,A (字节地址)	
IB	传输源位。有效值为(0-7)。	常数。	
IBN	传输位数。(1-256)	常数。	
OUT	传输目标地址。	Y,G,R,K,A (字节地址)	
OB	传输目标位位置。有效值为(0-7)。	常数。	

1.4.30 XCHG (数据交换)

●指令功能:

将设定的两个地址间的数据交换。

●指令格式

●参数说明

SIZE	交换数据字节数(1,2,4)	常数。
IN1	被交换的数据地址。	Y,G,R,K,A,D,C,T,DC,DT
IN2		(字节地址)

1.4.31 DSCHB (二进制数据检索)

●指令功能:

对指定数据值是否存在于数据表内进行检索。若有则输出其位于从数据表开头开始的第几个,若无则输出无数据的信息。

●指令格式

```
ACT

DSCHB

SIZE DI

IN ERR

INL

DS
```

●参数说明

SIZE	数据长度指定(1,2,4)	常数。
IN	数据表首地址。	X,Y,F,G,R,K,
		A,D,DC,DT
		(字节地址)
INL	数据表内数据个数。	常数或
		X,Y,F,G,R,K,
		A,D,DC,DT
		(字节地址)
DS	检索数据,可为常数或地址。	常数或
		X,Y,F,G,R,K,
		A,D,DC,DT
		(字节地址)
DI	检索结果输出地址。	Y,G,R,K,
		A,D,DC,DT
		(字节地址)
ERR	ERR=0: 检索到数据。	Y,G,R,K ,A
	ERR=1: 未检索到数据。	(位地址)

1.4.32 BMOV (数据块复制)

●指令格式:

●指令功能:

数据块复制。将以 IN 指定的源地址开始的 N 个数据向以 OUT 指定的目标地址成批复制。其中 SIZE 指定源地址和目标地址寄存器的数据长度。

●参数说明:

SIZE	数据长度指定(1,2,4)	常数。	
N	复制的数据个数	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地	
		址)	
		取值范围为: 1~256	
IN	源地址开始寄存器	X,Y,F,G,R,K, A,D, C,T,DC,DT (字节地址)	
OUT	目标地址开始寄存器	Y,G,R,K, A,D, C,T,DC,DT(字节地址)	

●程序示例:

当 X0.0=ON 时, 从源地址 D100 开始的 10 个数据向 D200 开始的目标地址进行复制。数据长度为 4 字节。

●注意事项:

当源地址或目标地址超过地址编号范围时,在允许的范围内进行复制。

1.4.33 FMOV (寄存器数据块复制)

●指令格式:

●指令功能:

将 IN 指定的源数据向以 OUT 指定的目标地址开始的 N 个寄存器进行复制。

●参数说明:

SIZE	数据长度指定(1,2,4)	常数。
N	复制的数据个数	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地
		址)
		取值范围为: 1~256
IN	源数据	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT (字节地
		址)
OUT	目标地址开始寄存器	Y,G,R,K, A,D, C,T,DC,DT(字节地址)

●程序示例:

39

当 X0.0=ON 时,将以地址 D1 开始连续的 3 个寄存器进行数据复制。数据长度为 4 字节。

1.4.34 BON (位数据检测)

●指令格式:

●指令功能:

检测 IN 指定的寄存器中由 BIT 指定的位是否为 ON 状态,输出结果到 OUT 指定的位地址。

●参数说明:

BIT	指定输入寄存器的位	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT (字节地
		址)
IN	输入寄存器地址	X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地址)
OUT	输出结果位地址	Y,G,R,K,A(位地址)

●程序示例:

当 X0.0=ON 时, 执行位状态检测:

设 D0=41809, 其二进制数据如下:

其第 15 位 b15=1,输出 R0.0=ON。

●注意事项:

BIT 的取值范围根据 IN 指定的寄存器的地址类型决定,当寄存器地址为字节型地址(X,Y,F,G,R,K,A)时,取值范围为 $0\sim7$; 当寄存器地址为双字型(D,DC,DT)时,取值范围为 $0\sim31$ 。当 BIT 指定的值超出范围时,输出 OUT 为 OFF。

1.4.35 SFWR (移位写入)

●指令格式:

●指令功能:

移位写入。当 ACT 发生 OFF 到 ON 的状态变化时,将源数据 IN 写入以 DD 指定地址开始的长度为 N 的数据寄存器组中,每写入一次向地址增大的方向移动一个寄存器地址。

●参数说明:

N	以 DD 指定地址开始的寄存器组长	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地
	度	址)
		取值范围为 2~256
IN	输入寄存器地址	X,Y,F,G,R,K, A,D, C,T,DC,DT (字节地址)
DD	寄存器组开始地址	Y,G,R,K, A,D, C,T,DC,DT (字节地址)
ERR	指令执行错误位地址	Y,G,R,K,A(位地址),执行发生错误时为ON,
		正确为 OFF

●程序示例:

上述程序中, SFWR 指令指定以 DD 地址(D1)开始的长度为 N (10)的寄存器组,当 X0.0 发生从 OFF 到 ON 的状态变化时, D0 的内容被存入 D2, D1 的内容变为 1。当 X0.0 再次发生从 OFF 到 ON 的状态变化时, D0 的内容被存入 D3, D1 的内容变为 2。依此类推,每执行一次指令, D1 的值累加 1, D0 的内容被存入寄存器组中由 D1 值指示的对应寄存器中。

如上图,由参数 N 和 DD 指定的寄存器组为 D1~D10,其中 D1 作为写入数据个数的指示器,D2~D10 为数据写入区。

注意事项:

- •使用指令前将指示器(即 DD 参数指定地址的第一个寄存器)复位为 0,表示已写入数据个数为 0。
- •当已写入数据大于 N 设定值时,停止写入数据,ERR 输出为 ON。
- 当由 N 和 DD 指定的寄存器组超出地址范围时, ERR 输出为 ON。

1.4.36 SFRD (移位读出)

●指令格式:

●指令功能:

移位读出。当 ACT 发生 OFF 到 ON 的状态变化时,从以 DD 指定地址开始的长度为 N 的数据寄存器组中读出数据到 OUT。

●参数说明:

N	以 DD 指定地址开始的寄存器组长	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地
	度	址)
		取值范围为 2~256
DD	寄存器组开始地址	Y,G,R,K,A,D,C,T,DC,DT(字节地址)
OUT	读出寄存器地址	Y,G,R,K, A,D, C,T,DC,DT(字节地址)
ERR	指令执行错误位地址	Y,G,R,K,A(位地址),执行发生错误时为ON,
		正确为 OFF

●程序示例:

上述程序中,SFRD 指令指定以 DD 地址 (D1) 开始的长度为 N (10) 的寄存器组,当 X0.1 发生从 OFF 到 ON 的状态变化时,D2 的内容被读出到 D20,指示器 D1 的值减 1,左侧的数据逐个向右移动一个寄存器;依此类推,每执行一次指令,D1 的值减 1,D2 的内容被读出到 D20,左侧的数据逐个向右移动一个寄存器。当 D1 值为 0 时,指令不作处理,不改变 D20 的内容。

1.4.37 SOR(平方根开方运算)

●指令格式:

●指令功能:

平方根开方运算。运算结果舍去小数部分, 为整数。

SIZE	指定数据输入数据 IN 的长度	常数。(只能为 1,2,4)
IN	输入数据	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地
		址)
OUT	开方运算结果	Y,G,R,K, A,D, C,T,DC,DT(字节地址)

1.4.38 MEAN (求平均数运算)

●指令格式:

●指令功能:

计算从 IN 指定地址开始的 N 个寄存器值的平均值,输出到 OUT,舍去余数。

●参数说明:

N	寄存器个数	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地
		址)
IN	输入寄存器地址	X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地址)
OUT	平均值运算结果	Y,G,R,K,A,D,C,T,DC,DT(字节地址)

1.4.39 INC (加1运算)

●指令格式:

●指令功能:

将指定寄存器的值累加1,并保存到该寄存器中。

●参数说明:

	>= > - > - >	
SIZE	数据长度	常数。(只能为1,2,4)
IN	累加基值寄存器地址	Y,G,R,K, A,D, C,T,DC,DT (字节地址)

1.4.40 DEC (减1运算)

●指令格式:

●指令功能:

将指定寄存器的值递减1,并保存到该寄存器中。

●参数说明:

SIZE	数据长度	常数。(只能为1,2,4)
IN	累加基值寄存器地址	Y,G,R,K, A,D, C,T,DC,DT (字节地址)

1.4.41 BCD (二进制数据到 BCD 数据的转换)

●指令格式:

●指令功能:

实现二进制数据到 BCD 数据的转换。

●参数说明:

SIZE	数据长度	常数。(只能为1,2,4)
IN	输入二进制数据	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地址)
OUT	输出 BCD 数据	Y,G,R,K, A,D, C,T,DC,DT(字节地址)

当 SIZE=1 时, BCD 转换结果范围为 0~99;

当 SIZE=2 时, BCD 转换结果范围为 0~9999;

当 SIZE=4 时, BCD 转换结果范围为 0~99999999;

超出范围时,输出 OUT 的值不变化。

1.4.42 BIN (BCD 数据到二进制数据的转换)

●指令格式:

●指令功能:

实现 BCD 数据到二进制数据的转换。

●参数说明:

SIZE	数据长度	常数。(只能为1,2,4)
IN	输入 BCD 数据	常数或 X,Y,F,G,R,K, A,D, C,T,DC,DT(字节地址)
OUT	输出二进制数据	Y,G,R,K, A,D, C,T,DC,DT(字节地址)

当 SIZE=1 时, BCD 转换范围为 0~99;

当 SIZE=2 时, BCD 转换范围为 0~9999;

当 SIZE=4 时, BCD 转换范围为 0~99999999;

超出范围时,输出 OUT 的值不变化。

1.4.43 ZRST (批量复位)

●指令格式:

●指令功能:

批量复位。以 START 指定的寄存器开始,以 END 指定的寄存器结束的区域全部复位。 START 和 END 必须为同一地址类型的寄存器。否则指令不执行。

●参数说明:

START	复位开始寄存器	Y,G,R,K, A,D, C,T,DC,DT(字节地址)
END	复位结束寄存器	Y,G,R,K, A,D, C,T,DC,DT(字节地址)

●程序示例:

当 X0.1=ON 时,将 R100~R199 的 100 个字节全部复位为 0。 当 X0.1=OFF 时,指令不动作。

●指令分类

位输出	ZRST	整数数学运	SOR
	BON	算	MEAN
数据复制	BMOV		INC
	FMOV		DEC
旋转/移位	SFWR		BCD
	SFRD		BIN

1.4.44 AXCTL (PLC 轴控指令)

1.4.44.1 指令格式

●指令功能: 执行 PLC 轴控制指令。

●指令格式

ACT=0: 不执行 AXCTL 指令

ACT=1: 执行 AXCTL 指令, ACT 必须保持为 1 直到轴控指令执行结束。

为避免重复执行,在执行结束后(FIN=1)立即复位 ACT。

●参数说明

参数名	参数意义	数据类型
GRP	DI/DO 组号(1~8, 1~4:通道 1, 5~8:通道 2)。	常数或
	与 #8010 号参数相对应,如某个轴设置值与 GRP	X,Y,F,G,R,K,A,D,C,T,DC,DT
	相同,则该轴受控。	(字节地址)
CMD	控制指令。详看 PLC 轴控指令列表。	常数或
		X,Y,F,G,R,K,A,D,C,T,DC,DT (字节地址)
DT1	指令数据 1,与具体的控制指令有关。	常数或
		X,Y,F,G,R,K,A,D,C,T,DC,DT (字节地址)
DT2	指令数据 2, 与具体的控制指令有关。	常数或
		X,Y,F,G,R,K,A,D,C,T,DC,DT (字节地址)
RST	复位输入位	X,Y,F,G,R,K,A
	RST=1: 指令被清除,执行中止。	(位地址)
	CNC 报警或 CNC 复位时建议设置 RST	
FIN	结束信号输出位。	Y,G,R,K,A
	FIN=0: 未开始执行或正在执行	(位地址)
	FIN=1: 轴控指令执行完毕(包含正常结束和出错)	
	时。	
ERR	指令执行错误输出。	Y,G,R,K,A
	ERR=0: 无错误。	(位地址)
	ERR=1: 执行出错。	

1.4.44.2 执行过程与相关信号

为了使所述过程更加简洁明了,便于了解,本节中所涉及的参数和 PLC 信号只是简要说明,实际使用时请查看参数说明书和 PLC 信号说明文档,方可了解具体的细节的注意事项。

●参数设置

PLC 轴由那一 DI/DO 组控制由参数 #8010 设置,请按以下说明设置该参数。

8010	由 PLC 控制的每轴 DI/DO 组的选择

 [数据类型]
 字型

 [取值范围]
 0到4

每个 PLC 控制轴使用的 DI/DO 组,如下表

数值	说明
0	该轴不是由 PLC 控制
1	使用通道 1 的 A 组 DI/DO
2	使用通道 1 的 B组 DI/DO
3	使用通道 1 的 C 组 DI/DO
4	使用通道 1 的 D 组 DI/DO
5	使用通道 2 的 A 组 DI/DO
6	使用通道 2 的 B组 DI/DO
7	使用通道 2 的 C 组 DI/DO
8	使用通道 2 的 D 组 DI/DO

●信号使能

执行 AXCTL 指令前,必须将对应轴的控制轴选择信号(EX1-EX5)置1,该信号地址为G136,如下:

	#7	#6	#5	#4	#3	#2	#1	#0
G136				EAX5	EAX4	EAX3	EAX2	EAX1

[类型] 输入信号

[功能] 当信号设置为"1"时,相应的轴变成 PLC 控制。

当信号设置为"0"时,PLC 控制变为无效。

注意事项

在设置控制轴选择信号 EAX1 到 EAX5 为"1"之后,在 PLC 能发送命令到 CNC 之前,至 少要 8ms。

●AXCTL 执行过程

以下所述的 AXCTL 过程是在 AXCTL 内部执行的,无需在梯形图中编写该过程或读写相关的信号,此处说明只是为了使用者了解相关过程后,更易于调试诊断。

- 1) 当 ACT 从 0 变为 1, AXCTL 开始执行, 将执行以下动作:
 - a) CMD 填入轴控制指令寄存器(EC0g 到 EC6g)。
 - b) DT1 填入轴控制进给速度寄存器(EIF0g 到 EIF15g)。
 - c) DT2 填入轴控制数据寄存器(EID0g 到 EID15g)。
 - d) 反转轴控制阅读信号 EBUFg。

相关信息地址:

			\ 1: ->> 	ver 1 → ->>-	11 1
	DI/DO 指令寄存器		速度寄存器	数据寄存	轴控阅读信号
4	组	EC0g-EC6g	EIF0g-EIF15g	EID0g-EID15g	EBUFg
通道			G144 和 G145	G146~G149	G142.7
<u> </u>	2	G155.0-G155.6	G156 和 G157	G158 和 G161	G154.7
	3	G167.0-G167.6	G168 和 G169	G170 和 G173	G166.7
	4	G179.0-G179.6	G180 和 G181	G182 和 G185	G178.7
通道	1	G1143.0-G1143.6	G1144 和 G1145	G1146~G1149	G1142.7
=	2	G1155.0-G1155.6	G1156 和 G1157	G1158 和 G1161	G1154.7
	3	G1167.0-G1167.6	G1168 和 G1169	G1170 和 G1173	G1166.7
	4	G1179.0-G1179.6	G1180 和 G1181	G1182 和 G1185	G1178.7

- 2) 当 ACT 一直保持为 1 时, PLC 控制指令保持执行。AXCTL 每个 PLC 周期检查一次指 令的执行状态, 检查以下状态:
 - a) 查询到指令执行结束将 FIN 置为 1, 否则保持为 0。
 - b) 查询到执行出错或报警,将 ERR 置为 1,否则为 0。
 - c) 查询到 RST=1 时,将轴控复位信号 ECLRg 置 1,同时将 FIN 也置 1。
 - 3) 当 ACT 从 1 变为 0 时, AXCTL 被中止。不同状态下的处理如下:
 - a) 无论那种执行结果, FIN 和 ERR 都置为 0。
 - b) 如果当前轴控指令未完成,将程序停止信号 ESBKg 置 1。

相关信息地址:

	DI/DO 组	复位信号 ECLRg	停止信号 ESBKg	轴报警信号 EIALg
--	---------	------------	------------	-------------

通	1	G142.6	G142.3	F130.2
道	2	G154.6	G154.3	F133.2
_	3	G166.6	G166.3	F136.2
	4	G178.6	G178.3	F139.2
通	1	G1142.6	G1142.3	F1130.2
道	2	G1154.6	G1154.3	F1133.2
	3	G1166.6	G1166.3	F1136.2
	4	G1178.6	G1178.3	F1139.2

1.4.44.3 PLC 轴控指令列表

988D 目前支持的轴控指令如下表:

操作	指令码	指令数据 1	指令数据 2
	(CMD)	(DT1)	(DT2)
快速移动	0x00	进给速度	总行程
		参数#8002.0=0 时,不用设置该值。	
		速度由系统参数决定	
切削进给	0x01	进给速度	总行程
(每分进给)			
切削进给	0x02	进给速度	无
(每转进给)			
暂停	0x04	无	暂停时间
手动返回参考点	0x05	无	无
连续进给	0x06	进给速度	进给方向
返回第1参考点	0x07	进给速度	无
	0.00	参数#8002.0=0 时,不用设置该值。	
返回第2参考点	0x08	速度由系统参数决定	
返回第3参考点	0x09		
返回第4参考点	0x0A		
速度指令	0x10	进给速度	无
第1辅助功能	0x12		
第2辅助功能	0x14		
第3辅助功能	0x15		
机床坐标选择	0x20	进给速度	机床坐标位置
(G53)		参数#8002.0=0 时,不用设置该值。	(绝对值)
		速度由系统参数决定	

1.4.45 MOVR (实数拷贝)

●指令格式:

●指令功能:

将 IN 中的实数值或实数常数复制到 OUT 中。

ACT =0: OUT 保持原值。

=1: 将 IN 中的值或实数常数复制到 OUT 中。

●参数说明:

标示符	意义	参数地址
IN	输入源数据值	D或实数常数。
OUT	拷贝目标地址	D

1.4.46 ADDR (实数加法)

●指令格式

●指令功能:

将两个32位实数相加,并输出一个32位实数结果。

●参数说明:

标示符	意义	参数地址
IN1	被加数	D或常数。
IN2	加数	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.47 SUBR (实数减法)

●指令格式:

●指令功能:

将两个32位实数相减,并输出一个32位实数结果。

标示符	意义	参数地址
IN1	被减数	D或常数。
IN2	减数	D或常数。
OUT	结果输出地址。	D

RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.48 MULR (实数乘法)

●指令格式:

●指令功能:

将两个32位实数相乘,并输出一个32位实数结果。

●参数说明:

标示符	意义	参数地址
IN1	被乘数	D或常数。
IN2	乘数	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.49 DIVR (实数除法)

●指令格式:

●指令功能:

将两个32位实数相除,并输出一个32位实数结果。

标示符	意义	参数地址
IN1	被除数	D或常数。
IN2	除数	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.50 CMPR (实数比较)

●指令格式:

●指令功能:

对 IN1, IN2 中的 32 位实数进行比较,并将结果保存至 OUT 起始的位地址中。假设 OUT 的地址以 addr. b 表示,则

ACT = ON: addr. b 保持原值

=0FF:比较 IN1、IN2 的大小, 其输出结果如下:

	addr. (b+2)	addr. (b+1)	addr. (b+0)
IN1> IN2	0	0	1
IN1= IN2	0	1	0
IN1< IN2	1	0	0

●参数说明:

标示符	意义	参数地址
IN1	比较值1	D或实数常数。
IN2	比较值 2	D或实数常数。
OUT	结果输出起始地址位	Y, R, K (位地址)

1.4.51 TMRC

1.4.52 SQRT (平方根)

●指令格式:

●指令功能:

对 32 位实数取平方根,并产生一个 32 位实数结果。

标示符	意义	参数地址
IN	运算数值	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.53 SIN(正弦)

●指令格式:

●指令功能:

对角度值 IN 进行正弦三角运算,并将结果放置在 0UT 中。 输入角以弧度为单位。欲将输入角从角度转换成弧度,用角度乘以 1.745329E-2 (约等于 $\pi/180$)。

●参数说明:

标示符	意义	参数地址
IN	运算数值	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.54 COS(余弦)

●指令格式:

●指令功能:

对角度值 IN 进行余弦三角运算,并将结果放置在 0UT 中。 输入角以弧度为单位。欲将输入角从角度转换成弧度,用角度乘以 1.745329E-2 (约等于 π /180)。

●参数说明:

标示符	意义	参数地址
IN	运算数值	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.55 TAN(正切)

●指令格式:

●指令功能:

对角度值 IN 进行正切三角运算,并将结果放置在 0UT 中。 输入角以弧度为单位。欲将输入角从角度转换成弧度,用角度乘以 1.745329E-2(约等于 π/180)。

●参数说明:

标示符	意义	参数地址
IN	运算数值	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.56 ROUND (实数四舍五入转换为整数)

●指令格式:

●指令功能:

对 IN 中的 32 位实数进行四舍五入转换为 32 位整数,并将结果保存至 OUT 中。

●参数说明:

标示符	意义	参数地址
IN	运算数值	D或实数常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.57 DTR (整型数转换为实数)

●指令格式:

●指令功能:

对 IN 中的 32 位整数转换为 32 位实数,并将结果保存至 OUT 中。

标示符	意义	参数地址
IN	运算数值	D或整数常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.58 ZCP

1.4.59 LN(自然对数)

●指令格式:

●指令功能:

对 IN 中的数值进行自然对数计算,并将结果置于 OUT 中。欲从自然对数获得以 10 为底数的对数,用自然对数除以 2.302585 (约等于 10 的自然对数)。

●参数说明:

标示符	意义	参数地址
IN	运算数值	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.60 EXP (自然指数)

●指令格式:

●指令功能:

进行 e 的 IN 次方指数计算,并将结果置于 0UT 中。可同时使用自然指数和自然对数运算,将任意实数转换成另一个实数的若干次方,包括分数指数。即 X 等于 Y 的 EXP(Y*LNX)次方。

●参数说明:

标示符	意义	参数地址
IN	运算数值	D或常数。
OUT	结果输出地址。	D
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

1.4.61 PID (PID 计算)

●指令格式:

●指令功能:

提供 PID 循环指令 (成比例、整数、导出循环)进行 PID 计算。

TBL 表示循环表起始地址,

LOOP 表示循环号码 (0至 15的常量)。

如果两个或多个 PID 指令使用相同的循环号码(即使它们的表地址不同), PID 计算会互相干扰,结果难以预料。

循环表存储九个参数,用于控制和监控循环操作,包括过程变量、设定点、输出、增益、采样时间、积分时间、微分时间(速率)以及积分和(偏差)的当前值及先前值。

标示符	意义	参数地址
TBL	循环表起始地址,占用9个寄存器地址。	D
LOOP	循环号码	0 至 15 的常量
RST	错误复位输入地址	X, Y, R, K (位地址)
ERR	错误输出	Y, R, K (位地址)

第二章 PLC信号说明

2.1 控制轴

2.1.1 轴移动状态

NC 可将当前的轴移动状态传送给 PLC, PLC 然后根据轴移动状态动作。

2.1.1.1 轴移动信号

MV1~MV5 (F102.0~F102.4)

- ●信号类型: NC->PLC
- ●信号功能: MV1、MV2、MV3、MV4、MV5 分别对应 1、2、3、4、5 轴的移动信号,当轴移动时,对应的轴移动信号置 1,当轴处于停止状态时,对应的轴移动信号为 0。PLC 接收到 NC 传来的轴移动信号后,根据信号的状态动作。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F102				MV5	MV4	MV3	MV2	MV1

2.1.1.2 轴移动方向信号

MVD1~MVD5 (F106.0~F106.4)

- ●信号类型: NC->PLC
- ●信号功能: MVD1、MVD2、MVD3、MVD4、MVD5 分别对应 1、2、3、4、5 轴的移动方向信号,当某一轴朝负方向移动时,对应轴的移动方向信号为 1;当某一轴朝正方向移动时,对应的轴移动方向信号为 0;当轴停止时,对应轴的移动方向信号根据停止前的移动状态置 1 或 0,PLC 接收轴移动方向信号后进行下一步动作。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F106				MVD5	MVD4	MVD3	MVD2	MVD1

2.1.2 伺服就绪信号

SA (F0.6)

●信号类型: NC->PLC

●信号功能: 当 NC 接收到伺服系统的报警信号产生报警时,将 SA 信号置 0,通知 PLC 伺服未绪,不可移动轴;当报警取消后,SA 置 1,可移动轴。

	 #7	#6	#5	#4	#3	#2	#1	#0
F0		SA						

2.1.3 进给轴同步控制

2.1.3.1 进给轴同步控制选择信号

SYNC1~SYNC5 (G138.0~G138.4)

●信号类型: PLC->NC

●信号功能:自动运行以及 MDI 运行时,进行进给轴同步控制。 它是每个控制轴中的信号,信号名称的 末尾数字表示控制轴的编号。

 $SYNC \square \square :$

1 第 1 轴为进给轴同步控制的轴(从控轴) 2 第 2 轴为进给轴同步控制的轴(从控轴)

3 第 3 轴为进给轴同步控制的轴(从控轴)

: :

成为'1'时,控制装置按如下所示方式动作。

• 存储器运行以及 MDI 运行的情况下,将主控轴的移动指令赋予主控轴和进给轴同步控制的轴(从控轴)的 2 轴。

与哪个轴同步, 取决于参数设定。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G138				SYNC5	SYNC4	SYNC3	SYNC2	SYNC1

2.1.3.2 进给轴同步控制手动进给选择信号

SYNCJ1~SYNCJ5 (G140.0~G140.4)

●信号类型: PLC->NC

●信号功能: JOG、手轮、增量进给、手动参考点返回的情况下,进行进给轴同步控制。它是每个控制轴中的信号,信号名称的末尾数字表示控制轴的编号。

 $SYNCJ \square :$

1 第 1 轴为进给轴同步控制的轴(从控轴)

2 第 2 轴为进给轴同步控制的轴(从控轴)

3 第 3 轴为进给轴同步控制的轴(从控轴)

: :

成为'1'时,控制装置按如下所示方式动作。

• JOG、手轮、增量进给的情况下,将主控轴的移动指令赋予主控轴和进给轴同步控制的轴(从控轴)的2轴。

与哪个轴同步, 取决于参数设定。

●信号地址:

	#/	#0	#3	#4	#3	#Z	#1	#0
G140				SYNCJ5	SYNCJ4	SYNCJ3	SYNCJ2	SYNCJ1

2.1.3.3 机械坐标一致状态输出信号

SYNMT1~SYNMT5 (F210.0~F210.4)

●信号类型: NC->PLC

●信号功能:这是在设定了进给轴同步控制的主控轴和从控轴的组时,不管同步运行 ON/OFF 状态、伺服准备状态如何,为了向外部通知主控轴和从控轴的机械坐标值一致的信号。

本信号为'1'时,机械坐标值一致。从控轴的轴号按照从小到大的顺序输出,可以确认最

大5组机械坐标值的状态。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F210				SYNMT5	SYNMT4	SYNMT3	SYNMT2	SYNMT1

2.1.3.4 进给轴同步可进行同步调整信号

SYNOF1~SYNOF5 (F211.0~F211.4)

●信号类型: NC->PLC

●信号功能:这是在设定了进给轴同步控制的主控轴和从控轴的组时,不管同步运行 ON/OFF 状态、伺服准备状态如何,为了向外部通知主控轴和从控轴的位置偏差量之差是否在同步调整的最大补偿量以下的信号。

本信号为'1'时,主控轴和从控轴的位置偏差量之差在同步调整的最大补偿量以下。从控轴的轴号按照从小到大的顺序输出,针对最大 5 组可以确认是否处在可以确认同步调整的状态。本信号不是向每个轴输出的信号。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F211				SYNOF5	SYNOF4	SYNOF3	SYNOF2	SYNOF1

2.1.3.5 进给轴同步控制位置偏差量误差报警信号

SYNER (F403.0)

●信号类型: NC->PLC

●信号功能: 这是在使用进给轴同步控制位置偏差量检测功能时为向外部通知已经发生报警事实的信号。 在进给轴同步控制时,监视主控轴和从控轴的伺服的位置偏差量,当超过参数(No.8323)中 设定的极限值时,在发出报警(DS0001)的同时,输出进给轴同步控制位置偏差量误差报警 信号 SYNER<F403.0>成为'1'。

在因复位而清除报警时则成为'0'。本信号不是向每个轴输出的信号。

●信号地址:

. <u></u> .	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F403								SYNER

2.1.3.6 进给轴同步控制中信号

SYNO1~ SYNO5 (F532.0~F532.4)

- ●信号类型: NC->PLC
- ●信号功能:本信号通知处在进给轴同步控制中的事实。

下列情形下成为'1'。

• 对应的轴处在进给轴同步控制中时

下列情形下成为'0'。

• 对应的轴没有处在进给轴同步控制中时

注意:

是否处在进给轴同步控制中,并非始终与各选择信号/参数(进给轴同步控制选择信号、进给轴同步控制手动进给选择信号、参数 SCA(No.8304#5))一致。紧急停止中、伺服报警中、伺服关断中、轴拆除中,本信号成为'0'。

	#7	#6	#5	#4	#3	#2	#1	#0
F532				SYNO5	SYNO4	SYNO3	SYNO2	SYN01

2.1.4 位置开关

位置开关信号

PSW01 ~ PSW16 (F70 ~F71)

●信号类型: NC->PLC

●信号功能:该信号通知由参数(No.6910~No.6925)所指定的控制轴的机械坐标值处在由参数(No.6930~No.6945,No.6950~No.6965)所指定的范围内。 对应第 n 个位置开关功能的位置开关信号为 PSWn。(n: 1~16)。

下列情形下成为'1'。

• 控制轴的机械坐标值在所指定的范围内时。

下列情形下成为'0'。

• 控制轴的机械坐标值不在所指定的范围内时

●信号地址:

F70
F71

#7	#6	#5	#4	#3	#2	#1	#0
PSW08	PSW07	PSW06	PSW05	PSW04	PSW03	PSW02	PSW01
PSW16	PSW15	PSW14	PSW13	PSW12	PSW11	PSW10	PSW09

2.1.5 伺服关断

伺服关断信号 SVF1~SVF5 (G126.0~G126.4)

●信号类型: PLC->NC

●信号功能:该信号选择是否将各轴置于伺服关断状态。它是每个控制轴中的信号,信号名称的末尾数字表示控制轴的编号。

 $SVF \square \square$:

1 将第 1 轴置于伺服关断

2 将第 2 轴置于伺服关断

3 将第3轴置于伺服关断

: :

设定为'1'时将成为伺服关断(不使电流流向伺服电机)。 虽然这样操作不再能够进行位置控制,但是由于进行位置检测,不会导致位置丢失。

●信号地址:

G126

<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
			SVF 5	SVF 4	SVF 3	SVF 2	SVF 1

2.1.6 倾斜轴控制

交轴倾斜轴控制无效信号 NOZAGC (G63.5)

●信号类型: PLC->NC

●信号功能:将正交轴的倾斜轴控制设定为无效。

成为'1'时,控制装置按如下所示方式动作。

• 倾斜轴的移动指令可以变换成倾斜坐标,但是正交轴不受倾斜轴移动指令的影响

	_	#7	#6	#5	#4	#3	#2	#1	#0
G63				NOZAGC					

2.1.7 镜像

通过信号或者参数(允许设定输入)的设定,即可为每个轴应用镜像。 应用了镜像的轴,自动运行时的运动方向全都颠倒过来。

但是,下列场合下的运动方向不会颠倒过来。 • 手动运行的方向、自动参考点返回的从中间点到参考点的移动方向(M 系列 / T 系列共同) • 单向定位(G60)中的趋近方向、镗孔循环(G76,G87)中的偏移方向(仅限 M 系列) 此外,还可以通过镜像确认信号来了解各轴的镜像状态。

镜像信号 MI1~MI6 (G106.0~G106.5)

●信号类型: PLC->NC

●信号功能:该信号选择是否对各轴应用镜像。

成为'1'时,向对应的轴应用镜像。

它是每个控制轴中的信号,信号名称的末尾数字表示控制轴的编号。

 $MI \square \square$:

1 向第1轴应用镜像

2 向第 2 轴应用镜像

3 向第3轴应用镜像

: :

原则上能使镜像信号成为'1'的仅限于如下情形。

- (1) 偏置取消中
- (2) 处在自动运行停止状态,而非自动运行休止状态时。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G106			MI6	MI5	MI4	MI3	MI2	MI1

镜像确认信号 MMI1~MMI6 (F108.0~F108.5)

- ●信号类型: NC -> PLC
- ●信号功能:该信号通知各轴的镜像状态。

镜像除了可从机械侧(PMC)通过输入信号进行外,也可通过 CNC 的 MDI 面板进行设定,以两者的逻辑和来应用镜像。向 PMC 通知取该逻辑和后的镜像的状态。

它是每个控制轴中的信号,信号名称的末尾数字表示控制轴的编号。

 $MMI \square \square$:

1 向第 1 轴应用镜像

2 向第2轴应用镜像

3 向第3轴应用镜像

: :

下列情形下成为'1'。

- 对应轴的镜像信号 MIn 成为"1"时。
- 通过设定数据将对应轴的镜像置于 ON 时。

下列情形下成为'0'。

• 对应轴的镜像信号 MIn 为'0',且设定数据的镜像设定被置于 OFF 时。

	_	#7	#6	#5	#4	#3	#2	#1	#0	
F108				MMI6	MMI5	MMI4	MMI3	MMI2	MMI1	

2.2 运行准备

2.2.1 急停

急停信号 ESP (G8.4):

●信号类型: PLC->NC, 为 0 有效。

●信号功能: 当 G8.4 为 0 电平时, NC 检测到此信号产生急停报警。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G8				ESP				

2.2.2 CNC 就绪信号

MA (F1.7):

●信号类型: NC->PLC

●信号功能: CNC 就绪信号表明 CNC 已经就绪。

●输出条件: CNC 上电就绪后,该信号设为 1,通常通电后数秒内置为 1。如果出现 CNC 报警或执行急停操作,该信号则变为 0。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F1	MA							

2.2.3 报警信号

AL (F1.0):

●信号类型: NC->PLC

●信号功能: 当 CNC 报警时,报警将显示于屏幕上,AL 置 1,PLC 接收到此信号后,根据报警信号的状态进行控制,有三种报警显示:伺服报警,P/S 报警,超程报警。当 CNC 复位时,报警清除,AL 为 0。

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F1								AL

2.2.4 方式选择

方式选择信号包括 MD1、MD2、MD4、DNC1 和 ZRN,可选六种工作方式:编辑方式、自动方式、录入方式、手动方式、手轮方式/单步方式、机械回零以及程序回零。CNC 通过输出工作方式检测信号,通知 PLC 系统当前所处的工作方式。

2.2.4.1 方式选择信号

MD1、MD2、MD4(G43.0~G43.2) DNC1(G43.5) ZRN (G43.7):

●信号类型: PLC->NC

●信号功能:工作方式的编码如下表:

序号	编码信号 工作方式	ZRN	DNC1	MD4	MD2	MD1
1	编辑方式(EDIT)	0	0	0	1	1
2	自动方式(MEM)	0	0	0	0	1
3	录入方式(MDI)	0	0	0	0	0
4	手轮方式/单步方式(HANDLE/INC)	0	0	1	0	0
5	手动方式(JOG)	0	0	1	0	1
9	机械回零(REF)	1	0	1	0	1

PLC 接收到工作方式的输入信号后,给编码信号赋值,然后传给 NC, NC 根据编码信号确定 CNC 的工作方式。

●信号地址:

	<u>#1</u>	#6	#5	#4	#3	#2	#1	#0
G43	ZRN		DNCI			MD4	MD2	MD1

2.2.4.2 工作方式检测信号

MINC(F3.0), MH(F3.1), MJ(F3.2), MMDI(F3.3), MRMT (F3.4), MMEM(F3.5), MEDT(F3.6), MREF(F4.5)

- 信号类型: NC->PLC
- 信号功能: 当 CNC 处于某一工作方式时,对应的 F 信号置 1,然后将 F 信号传送给 PLC,PLC 根据工作方式检测信号进行下一步控制。

单步方式检测信号	MINC
手轮方式检测信号	MH
手动方式检测信号	MJ
录入方式检测信号	MMDI
DNC 方式检测信号	MRMT
自动方式检测信号	MMEM
编辑方式检测信号	MEDT
机械回零方式检测信号	MREF

●信号功能:

	_	#7	#6	#5	#4	#3	#2	#1	#0
F3			MEDT	MMEM	MRMT	MMDI	MJ	MH	MINC
F4				MREF					

2.2.4.3 工作方式信号时序

工作方式键输入(X20.0、1 X20. 1, X20. 2, X20. 3, X20.4, X20.5, X21.3) () -1 工作方式选 择信号G43 0 -工作方式检测信号(F3.0、 1 F3. 1, F3. 2, F3. 3, F3. 5, F3. 6, F4. 5, F4. 6) 0 . 工作方式指示灯(Y5.3、 Y5. 2, Y5. 5, Y5. 6, Y5. 7, Y5. 4, Y6. 2)

2.2.5 状态输出

快速进给信号

RPDO (F2.1):

●信号类型: NC->PLC

●信号功能: 当 CNC 处于手动快速进给方式时,执行轴移动操作,RPD0 置 1。

●注意事项: 当轴快速进给时, RPD0 为 1, 进给停止后, RPD0 状态保持不变, 依然为 1。选择非快速进给方式, 移动轴后 RPD0 信号复位为 0。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F2							PRDO	

削进给中信号

FDO (F2.6):

- ●信号类型: NC->PLC
- ●信号功能:此信号通知处在自动运行中的切线进给中的事实。

下列情形下成为'1'。

- 自动运行中的切削进给中时。(直线插补、圆弧插补、螺旋插补、螺纹切削、跳过切削、固定循环等的切削中)。
- ●注意事项: 进给保持状态下不予输出此信号。

进给速度倍率为 0%、或者即使在互锁中也输出此信号。当 CNC 处于手动快速进给方式时,执行轴移动操作,RPD0 置 1。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F2		FDO						

2.2.6 超程检测

2.2.6.1 超程信号

 $+L1 \sim +L5(G114.0 \sim G114.4)$ $\sim -L1 \sim -L5(G116.0 \sim G116.4)$

- ●信号类型: PLC->NC
- ●信号功能:表明控制轴已到达行程极限,每个控制轴的每个方向都具有该信号。信号

名的+,一表明方向,数字与控制轴对应。

「动作】 以上信号为"0"时,控制单元动作如下:

- *自动操作时,即便只有一个轴超程信号变为 0, 所用的轴都减速停止,产生报警且运行中断。
- *手动操作时,仅移动信号为0的轴减速停止,停止后的轴可向反方向移动。
- *一旦轴超程信号变为 0,其移动方向被存储。即便信号变为 1,报警清除前,该轴也不能沿该方向运动。

●信号地址:

G114
G116
GHU

#7	#6	#5	#4	#3	#2	#1	#0
			+L5	+L4	+L3	+L2	+L1
			-L5	-L4	-L3	-L2	-L1

2.2.6.2 存储行程检测 1

存储行程检测选择信号

EXLM (G7.6)

- ●信号类型: PLC->NC
- ●信号功能:该信号为1时,使用参数#1326和#1327来检测行程检测1;该信号为0时,使用参数#1320和#1321来检测行程检测1。
- ●信号地址:

	#1	#6	#5	#4	#3	#2	#1	#0
G 7		EXLM						

轴方向别存储行程检测 1 切换信号

+EXL1~+EXL5 (G104.0~G104.4), -EXL1~-EXL5 (G105.0~G105.4)

- ●信号类型: PLC->NC
- ●信号功能:沿着不同的轴方向上切换行程检测 1- I (参数(No.1320,No.1321))和行程检测 1- II (参数 (No.1326,No.1327))。

当信号成为'1'时, CNC 按照如下所示方式动作。

1. +EXL1, +EXL2, ...

行程检测 1 (+侧) 不使用参数(No.1320), 使用参数 (No.1326)。

2. -EXL1, -EXL2, ...

行程检测 1 (+侧) 不使用参数(No.1321), 使用参数 (No.1327)。

这个信号唯在参数 DLM(No.1301#0)为"1"时才有效。此时,存储行程极限切换信号 EXLM<G7.6>将成为无效。

#7	#6	#5	#4	#3	#2	#1	#0

G104			+EXL5	+EXL4	+EXL3	+EXL2	+EXL1
G105			-EXL5	-EXL4	-EXL3	-EXL2	-EXL1

2.2.6.3 存储行程检测 2,3

行程检测3解除信号

RLSOT3 (G7.4)

●信号类型: PLC->NC

●信号功能:选择是否执行存储行程检测 3。该信号为 1 时,不进行存储行程检测 3;该信号为 0,参数 #1300.5 和#1310.1 为 1 时,进行存储行程检测 3。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G 7				RLSOT3				

2.2.7 起动锁停 / 互锁

2.2.7.1 起动锁停信号

STLK (G7.1)

- ●信号类型: PLC->NC
- ●信号功能:禁止自动运行(存储器运行、DNC运行、或者 MDI运行)中的轴移动。

将信号 STLK 设定为'1'时,轴移动动作就减速停止。但是,在保持自动运行中的状态(信号 STL 为'1',信号 SPL 为'0')下停止。在没有轴移动指令而只有 M, S, T, B(第 2 辅助功能)指令的程序段继续移动的情况下,在来到轴移动指令所处的程序段之前,接连执行 M,S,T,B 功能。有轴移动指令和 M, S, T, B 功能时,只送出 M, S, T, B 功能,在自动运行中的状态下停止。将信号 STLK 设定为'0'时,重新开始动作。

只有轴移动指令时的互锁

有辅助功能的程序段时的互锁

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G7							STLK	

2.2.7.2 所有轴互锁信号

ITL (G8.0)

●信号类型: PLC->NC

●信号功能: 这是用来禁止机械的轴移动的信号, 与方式无关地有效。

将信号 IT 设定为'0'时,轴移动动作与方式无关地在减速后停止。但是,自动运行中的情况下,在保持自动运行中的状态(信号 STL 为'1',信号 SPL 为'0')下停止。 自动运行时,在没有轴移动指令而只有 M, S, T, B(第 2 辅助功能)指令的程序段继续移动的情况下,在来到轴移动指令所处的程序段之前,接连执行 M, S, T, B 功能。有轴移动指令和 M, S, T, B 功能时,只送出 M, S, T, B 功能,在自动运行中的状态下停止。将信号*IT 设定为'1'时,重新开始动作。

只有轴移动指令的情形(自动、手动运行共同)

有辅助功能的程序段时的情形(自动运行的情形)

	_	#7	#6	#5	#4	#3	#2	#1	#0
G8									ITL

2.2.7.3 切削程序段开始互锁信号

* <Gn008.1> [分类] 输入信号 [功能]

CSL (G8.1)

●信号类型: PLC->NC

●信号功能:在自动运行中禁止定位以外的移动指令的程序段开始。

设定为'0'期间,不会开始自动运行中的定位以外的移动指令的程序段的执行。已经开始执行的程序段,则不受任何影响地被执行到最后。这并不意味着自动运行休止。下一个程序段的指令作为有效的指令处在待机状态,所以在信号成为'1'的时刻立即重新开始执行。指令了主轴时,或者变更了主轴速度时,在主轴成为目标速度之前,通过将本信号事先设定为'0',即可以目标主轴速度来执行下一个切削程序段。

注释:

包括固定循环等在内部形成的循环动作的程序段在内,本信号对所有程序段都有效。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G8							CSL	

2.2.7.4 程序段开始互锁信号

BSL (G8.3)

- ●信号类型: PLC->NC
- ●信号功能:在自动运行中禁止下一个程序段开始。

设定为'0'期间,不会开始自动运行中的下一个程序段的执行。已经开始执行的程序段,则不受任何影响地被执行到最后。这并不意味着自动运行休止。下一个程序段的指令作为有效的指令处在待机状态,所以在信号成为'1'的时刻立即重新开始执行。这是用来禁止机械的轴移动的信号,与方式无关地有效。

注释:

固定循环等在内部形成的循环动作的程序段的情况下,通常只有最初的程序段被通过该信号互锁起来。中途的程序段,即使此信号成为'0',也被继续执行。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G8					BSL			

2.2.7.5 各轴互锁信号

$IT1 \sim IT5 (G130.0 \sim G130.5)$

●信号类型: PLC->NC

●信号功能:此信号禁止各轴独立地指令的轴的进给。 每个控制轴中有一个信号,信号名称中的末尾数字表示控制轴的编号。

 $IT \square \square :$

1 对于第 1 轴应用互锁。 2 对于第 2 轴应用互锁。

3 对于第 3 轴应用互锁。

: :

(a) 手动运行时

己应用互锁的轴禁止其移动,而其它的轴则可以移动。轴移动中应用互锁时,刀具在减速后停止,解除互锁时重新开始移动。

(b) 自动运行时

在指令了移动(包括刀具位置偏置在内移动量不是0)轴中应用互锁时,禁止所有轴

的进给。移动中,对移动中的轴应用互锁时,所有轴都减速停止,解除互锁时重新开始移动。 本功能在空运行中也有效。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G130				IT5	IT4	IT3	IT2	IT1

2.2.7.6 不同轴向的互锁信号

 $+MIT1 \sim +MIT5 \quad (G132.0 \sim G132.5)$

-MIT1 \sim -MIT5 (G134.0 \sim G134.5)

●信号类型: PLC->NC

●信号功能:可以对每个轴,应用不同轴向的互锁。

不同轴向的互锁信号成为'1'时,CNC 仅对所指令的轴向应用互锁。但是,自动运行中的情况下,则成为所有轴停止状态。 注释 T系列中,参数 DAU (No. 3003#4)="0"的情况下,只对手动运行应用不同轴向的互锁。希望对自动运行也运用不同轴向的互锁时,将参数 DAU (No. 3003#4) 设定为"1"。

	#7	#6	#5	#4	#3	#2	#1	#0
G132				+MIT5	+MIT4	+MIT3	+MIT2	+MIT1
G134				-MIT5	-MIT4	-MIT3	-MIT2	-MIT1

2.3 手动操作

2.3.1 手动进给/增量进给

手动进给: 在手动方式下,将机床操作面板上的进给轴和方向选择信号置为1,则机床在所选方向上沿所选轴连续移动。

增量进给:在单步方式下,将机床操作面板上的进给轴和方向选择信号置为1,则机床在所选方向上沿所选轴移动一步,机床移动最小距离为最小输入增量,每一步有0.001、0.010或0.100三种倍率值。

手动进给和增量进给的唯一不同是选择进给距离的方式。手动进给中,当+J1、-J1、+J2、-J2、+J3、-J3等进给轴和方向选择信号为1时,机床可以连续进给。增量进给下,机床为单步进给。

通过手动快速进给选择开关, 机床可按快速进给速度移动。增量进给的单步距离可通过 MP1、MP2 来选择。

2.3.1.1 进给轴和方向选择信号

$+J1\sim+J5$ (G100.0 \sim G100.4), $-J1\sim-J5$ (G102.0 \sim G102.4)

- ●信号类型: PLC ->NC
- ●信号功能:在手动进给或增量进给下选择所需的进给轴和方向,执行轴移动操作,则对应的轴和方向 选择信号置 1,PLC 接收到此信号后可进行下一步的控制。"+"、"一"表明进给方向,数字 与控制轴对应。

- ●注意事项: A: 手动进给中, CNC 使对应轴连续移动;增量进给中, CNC 使对应轴按信号 MP1、MP2 定义的步距进给。
 - B: 轴移动时,对应轴和方向选择信号为1,移动停止时,信号复位。

G100
G102

#7	#6	#5	#4	#3	#2	#1	#0
			+J5	+J4	+J3	+J2	+J1
			-J5	-J4	-J3	-J2	-J1

2.3.1.2 手动进给倍率信号

JV00~JV15 (G10, G11):

- ●信号类型: PLC ->NC
- ●信号功能:选择手动的移动速度,这些信号与手动进给速度的对应关系如下表,当 PLC 接收到外部的倍率输入信号后,给 G10、G11 赋值,然后传给 NC, CNC 显示相应的移动速率。

G11	G10	进给倍率(%)
0000 0000	0000 0000	0
0000 0000	0000 0001	10
0000 0000	0000 0010	20
0000 0000	0000 0011	30
0000 0000	0000 0100	40
0000 0000	0000 0101	50
0000 0000	0000 0110	60
0000 0000	0000 0111	70
0000 0000	0000 1000	80
0000 0000	0000 1001	90
0000 0000	0000 1010	100
0000 0000	0000 1011	110
0000 0000	0000 1100	120
0000 0000	0000 1101	130
0000 0000	0000 1110	140
0000 0000	0000 1111	150

●信号地址:

G10
G11

#7	#6	#5	#4	#3	#2	#1	#0
JV7	JV6	JV5	JV4	JV3	JV2	JV1	JV0
JV15	JV14	JV13	JV12	JV11	JV10	JV9	JV8

2.3.1.3 手动快速进给选择信号

RT (G19.7)

- ●信号类型: PLC ->NC
- ●信号功能:选择手动的快速进给速度。PLC 接收到手动快速进给输入信号后,将 RT 置 1,然后传给 NC。 手动快速进给期间,RT 由 1 切换为 0,或由 0 切换为 1 时,进给速度降低至 0,然后增加至规定值。加减速期间,进给轴和方向选择信号状态保持不变。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G19	RT							

2.3.2 手轮进给

手轮进给方式下,可旋转手轮使机床微量移动,通过手轮进给轴选择信号选择移动轴。

2.3.2.1 手轮进给轴选择信号

HS1A~HS1D (G18.0~G18.3), HS2A~HS2D (G18.4~G18.7)

- ●信号类型: PLC ->NC
- ●信号功能: 手轮进给轴选择信号, PLC 接收到手轮进给轴输入信号后,给 HSnA~HSnD 赋值, NC 根据 HSnA~HSnD 信号状态选择对应的轴进给。这些信号与手轮进给轴的对应关系如下表:

HSnD	HSnC	HSnB	HSnA	进给轴
0	0	0	0	无轴进给
0	0	0	1	1 轴进给
0	0	1	0	2 轴进给
0	0	1	1	3 轴进给
0	1	0	0	4 轴进给
0	1	0	1	5 轴进给

●信号地址:

 #7
 #6
 #5
 #4
 #3
 #2
 #1
 #0

 G18
 HS2D
 HS2C
 HS2B
 HS2A
 HS1D
 HS1C
 HS1B
 HS1A

2.3.2.2 手控手轮进给移动量选择信号(增量进给信号)

(M 系列)

MP1,MP2 (G19.4, G19.5)

MP21,MP22 (G87.0, G87.1)

MP31,MP32 (G87.3, G87.4)

(T 系列)

MP1,MP2 (G19.4, G19.5)

MP21,MP22 (G87.0, G87.1)

MP1(G19.4), MP2(G19.5):

●信号类型: PLC ->NC

●信号功能:该信号用于手轮进给期间,选择手摇脉冲发生器所产生每个脉冲对应的手轮进给量的放大倍率。PLC 接收到机床面板手轮档位按键(×1、×10、×100、×1000)输入信号后,给 MP1、MP2 赋值,然后传给 NC,选择对应的手轮进给倍率。MP1、MP2 与手轮倍率的对应关系如下表:

MP2	MP1	手轮倍率	移动量
0	0	1	最小输入单位 ×1
0	1	10	最小输入单位 ×10
1	0	由系统参数 NO. 7113 设置	最小输入单位 × NO.7113 参数值
1	1	由系统参数 NO. 7114 设置	最小输入单位 × NO. 7114 参数值

注:除手轮倍率外,系统参数 NO. 7103#2 HNT 还用于设定增量进给/手轮进给的移动量是否再放大 10 倍(HNT 设为为 1 时移动量放大 10 倍)。上表中移动量是按 HNT 设为 0 时(移动量不放大 10 倍)的计算的。

●信号地址:

	#/	#0	#5	#4	#3	#Z	#1	#U
G19			MP2	MP1				

MP21(G87.0), MP22(G87.1):

●信号类型: PLC ->NC

●信号功能:选择手控手轮进给以及手控手轮中断的手摇脉冲发生器每1脉冲的移动量。

此外,通过参数 MPX (No. 7100#5)的设定,每一台手摇脉冲发生器即可使用各自的手控手轮移动量选择信号。对各手摇脉冲发生器有效的手控手轮进给移动量选择信号和设定倍率的参数号的关系如下表所示。

参数 MPX	王摇脉冲发生哭	手摇脉冲发生器 有效的手控手轮进给移		的参数
(No.7100#5)的设定	于海冰什及土桶	动量选择信号	$\mathbf{m}_{\mathbf{x}}$	n_{z}
MPX="0"	第1台~第5台	MP1,MP2	No.7113	No.7114
MPX="1"	第1台	MP1,MP2	No.7113	No.7114
	第2台	MP21.MP22	No.7131	No.7132

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G87					MP32	MP31	MP22	MP21

2.3.3 手轮中断

在自动运行方式(手动数据输入、DNC 运行、存储器运行),以及存储器编辑方式中,通过旋转手摇脉冲发生器,即可重叠于基于自动运行的移动而进行手轮进给。进行手轮中断的轴,通过手控手轮中断轴选择信号予以选择。 每一刻度的移动量的最小单位就是最小设定单位。可以应用通过 MP1, MP2〈G019. 4, 5〉选择的 4类倍率。此外,可以通过参数 HIT (No. 7103#3) 使倍率再增加 10 倍。此手轮进给倍率,通过手控手轮进给移动量选择信号(见"手控手轮进给")予以选择。

2.3.2.1 手轮中断轴选信号

HS1IA~HS1ID (G41.0 ~ G40.3) HS2IA~HS2ID (G41.4 ~ G41.7) HS3IA~HS3ID (G42.0 ~ G42.3)

- ●信号类型: PLC ->NC
- ●信号功能:选择手控手轮中断中的中断轴。每一个手摇脉冲发生器(最大3台)各具有一组, 各组为由4个信号A,B,C,D组成的代码信号。信号名称中的数字表示相对第几台

手摇脉冲发生器的信号。

路径1 n=0 路径2 n=1 HS□IA

□:1..... 选择以第1 台手摇脉冲发生器进行中断的轴2..... 选择以第2 台手摇脉冲发生器进行中断的轴3..... 选择以第3 台手摇脉冲发生器进行中断的轴

A, B, C, D 的代码信号与所选的进给轴之间的对应,与手控手轮进给轴选择信号相同。请参照"手轮进给"。

手	控手轮进约	含轴选择信	手轮中断进给轴	
HSnD	HSnC	HSnB	HSnA	
'0'	'0'	'0'	'0'	无选择 (哪个轴都不进给)
'0'	'0'	'0'	'1'	第1 轴
'0'	'0'	'1'	'0'	第2 轴
'0'	'0'	'1'	'1'	第3 轴
'0'	'1'	'0'	'0'	第4 轴
'0'	'1'	'0'	'1'	第5 轴
'0'	'1'	'1'	'0'	第6 轴

	#7	#6	#5	#4	#3	#2	#1	#0
G41	HS1ID	HS1IC	HS1IB	HS1IA	HS1ID	HS1IC	HS1IB	HS1IA
G42					HS3ID	HS3IC	HS3IB	HS3IA

2.4 机械回零

2.4.1 机械回零

在机械回零方式下,通过将进给轴和方向选择信号置为1,使机床沿设定的方向移动,并返回机械零点。返回机械零点结束后,CNC会以数据参数1240~1243设定的值来建立工件坐标系。

2.4.1.1 机械回零结束信号

ZP1~ZP5(F94.0~F94.4) 、ZP21~ZP25(F96.0~F96.4) ZP31~ZP35(F98.0~F98.4) 、ZP41~ZP45(F100.0~F100.4)

●信号类型: NC->PLC

●信号功能: 当某一轴机械回零结束后,NC 将对应的 F 信号置 1,然后传给 PLC,PLC 根据信号状态进行逻辑控制。ZPn1、ZPn2、ZPn3、ZPn4、ZPn5 分别对应第 1、2、3、4、5 轴的机械回零结束信号。

●注意事项: 当机械回零(包括利用 G28 指令回零)已经结束,且当前位置位于设定区域时,机械回零结束信号变为1。

当机床从机械零点移出时、出现急停报警时或驱动器报警时,机械回零结束信号变为0。

●信号地址:

F94
F96
F98
F100

#7	#6	#5	#4	#3	#2	#1	#0
			ZP5	ZP4	ZP3	ZP2	ZP1
			ZP25	ZP24	ZP23	ZP22	ZP21
			ZP35	ZP34	ZP33	ZP32	ZP31
			ZP45	ZP44	ZP43	ZP42	ZP41

2.4.1.2 机械零点建立信号

ZRF1~ZRF5(F120.0~F120.4)

- ●信号类型: NC->PLC
- ●信号功能: CNC 机械回零结束,建立机械零点后,将对应的机械零点建立信号置 1,然后传给 PLC, PLC 根据机械零点建立信号的状态进行逻辑控制。ZRF1、ZRF2、ZRF3、ZRF4、ZRF5 分别对应第 1、2、3、4、5 轴的机械零点建立信号。
- ●信号地址:

		#6	πυ	#4	#3	π⊿	11 1	#0
F120				ZRF5	ZRF4	ZRF3	ZRF2	ZRF1
1120	1			Zixi	ZIXI	ZIXI'S		

2.4.1.3 机械回零信号时序

2.4.1.4 参考点返回用减速 G 信号

DEC1~DEC6(G196.0~G196.5)

- ●信号类型: PLC->NC
- ●信号功能: 使手动参考点返回的进给减速,以较慢的速度靠近参考点。每个轴都相互独立,末尾数字表示控制轴的编号。

 $DEC \square \square$:

1 …… 第 1 轴参考点返回减速信号

2 …… 第 2 轴参考点返回减速信号

3 …… 第3轴参考点返回减速信号

.

通过将参数 GDC (No. 3006#0) 设定为"1",即可使用输入信号 G196。

在将参数 XSG (No.3008#2)设定为"1"时, X 地址的参考点返回信号,通过参数(No.3013, No.3014)的设定来确定。

●信号地址:

G196

		DEC6	DEC5	DEC4	DEC3	DEC2	DEC1
#7	#6	#5	#4	#3	#2	#1	#0

2.5 自动运行

2.5.1 循环启动 / 进给暂停

● 循环启动(启动自动运行):

在自动方式或录入方式中,自动运行启动信号 ST 有效时,程序开始运行。

- 1、在下列情况下,信号 ST 被忽略:
 - A: 除自动方式或录入方式以外的方式
 - B: 进给暂停信号(SP)为0时
 - C: 急停信号 (ESP) 为 0 时
 - D: 外部复位信号 (ERS) 为1时
 - E: 按面板上的"复位键"
 - F: CNC 处于报警状态
 - G: 自动运行已启动
 - H: 程序重启信号 (SRN) 为1时
 - I: CNC 正在搜索一个顺序号
- 2、自动运行时,在下列状态下 CNC 进给暂停:
 - A: 进给暂停信号(SP)为0时
 - B: 切换为手动方式、手轮方式、单步方式、机械回零、程序回零时
 - C: 单程序段运行期间单程序段指令结束
 - D: 录入方式下运行已结束
 - E: CNC 出现报警
 - F: 切换为编辑方式后,单程序段指令已结束。
- 4、自动运行时,在下列状态下 CNC 进入复位状态,运行停止:
 - A: 急停信号 (ESP) 置为 0
 - B: 外部复位信号(ERS)为1时
 - C: 按面板上的"复位键"

● 进给暂停(自动运行中断):

自动运行期间进给暂停信号 SP 为 0 时,CNC 进入暂停状态且停止运行。同时循环启动灯信号 STL 置为 0. 进给暂停信号 SPL 置为 1,将 SP 信号再置为 1 也不会重新启动自动运行。将 SP 信号置 1, 然后使 ST 信号有效时,可重新启动自动运行。

在执行仅包含 M、S、T 功能指令的程序段时,SP 信号置为 0,STL 信号立即为 0,信号 SPL 为 1,且 CNC 进入进给暂停状态。当从 PLC 送来 FIN 信号时,CNC 继续执行被中断的程序段,此程序段结束后,SPL 信号置为 0

(STL 信号暂停为 0), CNC 进入自动运行停止状态。

2.5.1.1 循环启动信号

ST (G7.2):

●信号类型: PLC ->NC, 下降沿有效。

●信号功能:在自动方式或录入方式中,当 PLC 接收到启动脉冲输入信号后,将 G7.2 先置 1,后置 0, 传给 NC,启动自动运行。

●信号地址:

G7

#7	#6	#5	#4	#3	#2	#1	#0
					ST		

2.5.1.2 进给暂停信号

SP (G8.5)

●信号类型: PLC ->NC, 为 0 时有效。

●信号功能: PLC 接收到暂停信号后,将 G8.5 置 0,然后传给 NC,停止自动运行。SP 输入信号为 0 时,自动运行不能启动。

●信号地址:

G8	

 ‡ 7	#6	#5	# 4	#3	#2	#1	#0
		SP					

2.5.1.3 循环启动信号

STL (F0.5)

●信号类型: NC->PLC

●信号功能: CNC 自动运行时,将 STL 置为 1,然后传给 PLC,PLC 根据 STL 的状态进行逻辑控制。

●信号地址:

F0

#7	#6	#5	#4	#3	#2	#1	#0
		STL					

#1

#0

2.5.1.4 进给暂停信号

SPL (F0.4)

●信号类型: NC->PLC

●信号功能: 当 CNC 处于暂停状态时,将 SPL 置为 1,然后传给 PLC, PLC 根据 SPL 的状态进行逻辑控制。

	#7	#6	#5	#4	#3	#2
F0				SPL		

2.5.2.5 启动运行时序

2.5.1.5 自动运行信号

OP (F0.7)

●信号类型: NC->PLC

●信号功能: 当 CNC 自动运行时,将 OP 置 1,然后传给 PLC,PLC 根据 OP 的状态进行逻辑控制。

	循环启动灯信号 STL	进给暂停灯信号 SPL	自动运行信号 OP	
循环启动状态	1	0	1	
进给暂停状态	0	1	1	
自动运行停止状态	0	0	0	
复位状态	0	0	0	

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F0	OP							

2.5.2 复位/外部工件号检索

在下列情况下, CNC 进入复位状态:

- A: 急停信号 (ESP) 置为 0.
- B: 外部复位信号 (ERS) 为1时
- C: 按下面板上的"复位键"

在以上条件解除后,经过数据参数 NO. 071 设定的时间后,复位信号 RST 变为 0。

RST 时间= T_{reset} (复位处理时间)+数据参数 NO. 071 的设定值

自动运行期间,CNC 被复位时,自动运行停止,机床沿控制轴的运动方向减速停止。CNC 在执行 $M \times S \times T$ 指令期间被复位时,在 16ms 内 $MF \times SF \times TF$ 信号被置为 0。

2.5.2.1 外部复位信号

ERS (G8.7)

●信号类型: PLC ->NC

●信号功能: 当 PLC 接收到外部复位输入信号后,将 G8.7 置位,然后传给 NC,使 CNC 复位。CNC 复位时, RST 信号变为 1。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G8	ERS							

2.5.2.2 复位信号

RST (F1.1)

- ●信号类型: NC->PLC
- ●信号功能: 当 CNC 处于复位状态时,将 RST 置 1,然后传给 PLC,PLC 根据 RST 的状态进行逻辑控制。
- ●注意事项: 在下列情况, RST 被置 1:
 - A: 外部急停输入信号(ESP)置为 0.
 - B: 外部复位信号 (ERS) 为1时
 - C: 按面板上的"复位键"

当以上三种状态被解除后,数据参数 NO. 071 设定的时间已经结束时, RST 被置 0。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F1							RST	

2.5.2.3 复位&倒带信号

RRW (G8.6)

- ●信号类型: PLC ->NC
- ●信号功能: 当 PLC 接收到复位&倒带信号后,将 G8.6 置位,复位 CNC 的同时,进行所选的自动运行程序的倒带操作。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G8		RRW						

2.5.2.4 外部工件号检索

外部工件号检索信号

PN1, PN2, PN4, PN8, PN16 (G9. 0~G9. 4)

- ●信号类型: PLC ->NC
- ●信号功能:此信号指定存储器运行方式下执行的工件号。

它们是 5 个代码信号,与工件号对应,如下表所示。(2 进制代码)工件号检索信号

	, , , , , , , ,		* / / /	,,						
	工件号检索信号									
PN16	PN8	PN4	PN2	PN1	工件号					
0	0	0	0	0	00					
0	0	0	0		1 01					
0	0	0	1	0	02					

中间省略									
1	1	1	1	0	30				
1	1	1	1	1	31				

这些信号中,工件号 00 使用于"不进行检索"这一特殊的指定。因此,作为工件号可以指定 01~31 的范围

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G9				PN16	PN8	PN4	PN2	PN1

2.5.2.6 基于 MDI 的复位确认信号

基于 MDI 的复位确认信号 MDIRST 〈F0006.1〉

●信号类型: NC->PLC

●信号功能: 当 CNC 处于复位状态时,将 MDIRST 置 1,然后传给 PLC,PLC 根据 RST 的状态进行逻辑控制。

●注意事项: 按下面板上的"复位键", MDIRST 被置 1:

当状态被解除后,数据参数 NO. 071 设定的时间已经结束时,MDIRST 被置 0。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F6							MDIRST	

2.5.3 机床锁住

在加工前检查程序时,可打开机床锁功能,将所有轴的机床锁住信号 MLK 或各轴机床锁住信号 MLK1~MLK4 置为 1,在手动或自动运行中,停止向伺服电机输出脉冲,但 CNC 依然进行指令分配,绝对和相对坐标也被更新。通过监控坐标位置的变化可检查编制的程序是否正确。

2.5.3.1 所有轴机床锁住信号

MIK (G44.1)

●信号类型: PLC ->NC

●信号功能: PLC 接收到所有轴机床锁住信号后,将 MIK 置 1,然后传给 NC, CNC 控制所有轴置于机床锁住状态。

●注意事项: MIK 为 1 时,在手动或自动运行时,CNC 不向轴伺服电机输出脉冲,机床工作台不移动。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G44							MIK	

2.5.3.2 所有轴机床锁住检测信号

MMLK (F4.1)

●信号类型: NC->PLC

●信号功能: 当所有轴均处于锁住状态时, CNC 将所有轴锁住检测信号置 1, 然后传给 PLC。

	#7	#6	#5	#4	#3	#2	#1	#0
F4							MMLK	

2.5.4 空运行

空运行在自动运行方式下有效,此时机床以恒定进给速度运动而不执行程序中所定义的进给速度。此功能用来在机床不装工件的情况下检查机床的运动,运行速度取决于手动进给倍率信号(JV0~JV15)。

手动快速进给选择信号(RT)	空运行速度
1	手动快速进给速度
0	手动进给速度

2.5.4.1 空运行信号

DRN (G46.7):

- ●信号类型: PLC ->NC
- ●信号功能: 当 PLC 接收到空运行输入信号后,将 DRN 置 1。然后传给 NC,使 CNC 进入空运行状态。
- ●注意事项: A: DRN 为 1 时,机床以空运行设定的进给速度移动;为 0 时,机床正常移动。
 - B: 在机床运动期间 DRN 由 0 变为 1 或由 1 变为 0 时,机床运行速度先减速为 0,然后加速至指定的进给速度。
- ●信号地址:

. <u></u>	#7	#6	#5	#4	#3	#2	#1	#0
G46	DRN							

2.5.4.2 空运行检测信号

MDRN (F2.7):

- ●信号类型: NC->PLC
- ●信号功能: 当 CNC 处于空运行状态时,将 MDRN 置为 1,然后传给 PLC。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F2	MDRN							

2.5.5 单程序段

单程序段运行仅对自动运行有效,自动运行期间当单程序段信号(SBK)置为 1 时,执行完当前程序段后,CNC 进入进给暂停状态。当单程序段信号(SBK)设定为 0 时,程序重新运行。

2.5.5.1 单程序段信号

SBK (G46.1):

- ●信号类型: PLC ->NC
- ●信号功能: 当 PLC 接收到单程序段运行输入信号后,将 SBK 置 1,然后传给 NC,使 CNC 进入单程序段运行状态。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G46							SBK	

2.5.5.2 单程序段检测信号

MSBK (F4.3):

- ●信号类型: NC->PLC
- ●信号功能: 当 CNC 处于单程序段运行状态时,将 MSBK 置为 1,然后传给 PLC。
- ●注意事项: A: 螺纹切削时: 螺纹切削期间 SBK 信号变为 1 时,在执行了螺纹切削指令后第 1 个非螺纹切削程序段后运行停止。
 - B: 固定循环运行时: 固定循环运行期间, 当 SBK 信号置 1 时, 在每次定位逼近钻孔和退刀时都停止, 而不是在程序段末尾停止。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F4					MSBK			

2.5.6 跳过任选程序段

在自动运行中,当程序段的开头指定了一个斜杠,且跳过任选程序段信号 BDT 设定为 1 时,该程序段被忽略。

2.5.6.1 跳过任选程序段信号

BDT (G44.0):

- ●信号类型: PLC ->NC
- ●信号功能: 当 PLC 接收到跳过任选程序段输入信号后,将 BDT 置 1,然后传给 NC,使 CNC 进入跳过任 选程序段执行状态,在程序中,程序段前包含"/"的程序段将不被执行。
- ●信号地址:

	#/	#6	#5	#4	#3	#2	#1	#0
G44								BDT

2.5.6.2 跳过任选程序段检测信号

MBDT (F4.0):

- ●信号类型: NC->PLC
- ●信号功能: 当 CNC 处于跳过任选程序段执行状态时,将 MBDT 置为 1,然后传给 PLC,PLC 可根据 MBDT 的状态进行逻辑控制。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F4								MBDT

2.5.7 手动绝对值

手动运行(JOG 进给和手轮进给)中机床移动时,选择移动量是否加在工件坐标系的当前位置上,并输出一个检测信号来表明 CNC 中手动绝对值是开还是关。

2.5.7.1 手动绝对值信号

ABSM (G6.2)

●信号类型: PLC ->NC

●信号功能:设定手动绝对值信号为开或关。信号设定为1时,手动绝对值功能无效;信号设定为0时, 手动绝对值功能方效

手动绝对值功能有效。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G6						ABSM		

2.5.7.2 手动绝对值检测信号

MABSM (F4.2)

●信号类型: NC ->PLC

●信号功能:通知 PLC 手动绝对值信号的状态。ABSM (G6.2) 信号为 0 时,该信号为 1,手动绝对值功能有效;ABSM (G6.2) 信号为 1 时,该信号为 0,手动绝对值功能无效。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F4						MABSM		

2.5.8 程序再启动

2.5.8.1 程序再启动信号

SRN (G6.0)

●信号类型: PLC ->NC

●信号功能:选择程序再启动。

将程序再启动信号设定为'1',检索希望再启动的程序段的顺序号时,画面改变为程序再启动的画面。在这一状态下将程序再启动信号设定为'0',启动自动运行时,刀具按照由参数(No.7310)所设定的顺序逐个轴地、以空运行速度向重新开始加工的位置移动,然后重新开始加工。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G6								SRN

2.5.8.2 程序再启动中信号

SRNMV (F2.4)

●信号类型: NC ->PLC

●信号功能:此信号通知处在程序再启动中的事实。

	_	#7	#6	#5	#4	#3	#2	#1	#0
F2					SRNMV				

2.6 进给速度控制

2.6.1 快速移动信号

各轴的快速移动速度可通过数据参数 NO. 1420 控制,不需要通过编程设定。但可以通过调整快速移动倍率控制快速移动的速度。

RPD0 (F2.1):

- ●信号类型: NC->PLC
- ●信号功能: 当 CNC 以快速移动速度执行移动指令时,将 RPDO 置为 1,然后传给 PLC。
- ●注意事项: A: RPD0 为 1 表明在选择了快速移动后,某轴开始移动;为 0 表明选择了非快速移动速度后,某轴开始移动。
 - B: 自动运行中的快速移动包括所有的快速移动,如固定循环定位,机械回零等,而不仅仅对 000 移动指令。手动快速移动也包含了机械回零中的快速移动。
 - C: 一旦选择了快速移动,该信号保持位 1,包括在停止期间,直至选择了其它的进给速度且 开始移动。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F2							RPD0	

2.6.2 快速移动倍率

快速移动倍率可分为 F0、25%、50%、100%四级,其中 F0 定义的速度由数据参数 NO. 1421 设定。

在自动方式或手动方式中(包括机械回零、程序回零),实际移动速度是通过数据参数 NO. 1420 设定的值与倍率值相乘而得到的。

快速移动倍率信号

ROV1, ROV2 (G14.0, G14.1)

- ●信号类型: PLC ->NC
- ●信号功能: 当 PLC 接收到快速移动倍率输入信号后,给 ROV1、ROV2 赋值,然后传给 NC,确定快速移动的速度。ROV1、ROV2 对应的倍率值如下:

ROV2	ROV1	倍率值
0	0	100%
1	0	50%
0	1	25%
1	1	F0

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G14							ROV2	ROV1

2.6.3 讲给谏度倍率

进给速度可以通过进给速度倍率信号调整进给速度,可用于程序检测。例如,当在程序中指定的进给速度为100mm/min时,若调整进给速度倍率为50%,则机床以50mm/min的速度移动。

速度倍率信号

FV0~FV7 (G12.0~G12.7):

●信号类型: PLC ->NC

●信号功能: 当 PLC 接收到进给速度倍率输入信号后,给 FV0~FV7 赋值,然后传给 NC,确定进给的速度。FV0~FV7 二进制编码对应的倍率值如下:

FV7~FV0	(G012.7~G012.0)	切削进给倍率
	0000 0000	0%
	0000 0001	10%
	0000 0010	20%
	0000 0011	30%
	0000 0100	40%
	0000 0101	50%
	0000 0110	60%
	0000 0111	70%
	0000 1000	80%
	0000 1001	90%
	0000 1010	100%
	0000 1011	110%
	0000 1100	120%
	0000 1101	130v
	0000 1110	140%
	0000 1111	150%

●注意事项:在自动运行中,切削进给指定的速度与进给速度倍率信号的倍率值相乘得到实际进给速度。

●信号地址:

● 同 了地址:								
	#7	#6	#5	#4	#3	#2	#1	#0
G12	FV7	FV6	FV5	FV4	FV3	FV2	FV1	FV0

2.6.4 倍率取消信号

OVC (G6.4):

●信号类型: PLC ->NC

●信号功能: PLC 接收到倍率取消输入信号后,将 OVC 置 1,传给 NC,使进给速度倍率固定为 100%

●注意事项: OVC 为 1 时, CNC 操作如下:

A: 不管进给速度倍率信号如何,进给速度倍率固定为100%

B: 快速移动倍率和主轴速度倍率不受影响。

	_	#7	#6	#5	# 4	#3	#2	#1	#0
G6					OVC				

2.7 MST 功能

当指定了地址 M、S、T 后面的最大 8 位数字时,对应的代码信号和选通信号被送给 PLC, PLC 根据这些信号的状态进行相关逻辑控制。相关信号如下:

功能	程序	结束信号				
切肥	地址	代码信号	选通信号	分配结束信号	(PLC->NC)	
辅助功能	M	Mbit00 \sim	MF			
抽助切形		Mbit31				
主轴速度功能	S	Sbit0∼	SF	DEN	FIN	
土相还及切配		Sbit31		DEN	LIN	
刀具功能	T	Tbit00 \sim	TF			
刀共切化		Tbit31				

处理过程如下: (将 M 代码改为 S、T 代码,即为主轴速度功能、刀具功能处理过程)

- A: 假定在程序中指定 M XXX, 如果 CNC 没有设定,则产生报警。
- B: 代码信号 Mbit00~Mbit31 指定后,选通信号 MF 置 1,代码信号采用二进制形式表达程序指令值 XXX。如果移动暂停,主轴速度或其他功能与辅助功能被同时指令时,当辅助功能的代码信号送出后,开始执行其他功能。
- C: 当选通信号为1时,PLC读取代码信号并执行相应的操作。
- D: 在一个程序段中移动暂停或其他功能结束后,执行另一个操作时,需等待分配结束信号 DEN 变为 1。
- E: 操作结束时, PLC 将结束信号 FIN 置为 1。结束信号用于辅助功能、主轴速度、刀具功能。如果这些功能同时运行,必须等到所有功能结束后,结束信号 FIN 才被设 1。
- F: 结束信号 FIN 为 1 且必须持续一段时间, CNC 才将选通信号置 0, 并通知已收到结束信号。
- G: 当选通信号为 0 时, 在 PLC 中将 FIN 信号置 0。
- H: 当 FIN 信号为 0 时, CNC 将所有代码信号设定为 0, 并结束辅助功能的全部顺序操作。
- I: 当同一程序段中的指令执行完成, CNC 就执行下一个程序段。

控制时序如下:

当程序段中有一个辅助功能时:

当移动指令与辅助功能在同一个程序段中,不等移动指令结束便执行辅助功能:

当移动指令与辅助功能在同一个程序段中,移动指令结束后执行辅助功能:

2.7.1 辅助功能 (M 功能)

2.7.1.1 辅助功能代码信号和选通信号

辅助功能代码信号: Mbit00~Mbit31(F10~F13) 辅助功能选通信号: MF(F7.0)

●信号类型: NC->PLC

●信号功能: 当程序执行 M 代码后,将对应的 F 代码信号置 1 且 MF 也为 1,然后传给 PLC,进行逻辑控制。有关输出条件和执行过程,请参看以上执行过程的说明。M 指令与代码信号编码对应关系如下:

F13~F10	M指令
F13, F12, F11, 00000000	MOO
F13, F12, F11, 00000001	MO1
F13, F12, F11, 00000010	MO2
F13, F12, F11, 00000011	M03
F13, F12, F11, 00000100	M04
F13, F12, F11, 00000101	M05
F13, F12, F11, 00000110	M06
F13, F12, F11, 00000111	M07
F13, F12, F11, 00001000	M08
	•••

- ●注意事项: 1: 以下辅助功能指令在 CNC 程序中即使指令了也不能输出:
 - A: M98, M99, M198
 - B: 调用子程序的 M 代码
 - C: 调用用户宏程序的 M 代码
 - 2: 以下所列的辅助功能除代码信号和选通信号可被输出外,译码信号也能输出: M00、M01、M02、M30。
 - 3: M00~M31 以二进制编码的形式给出 M 代码。如 M5 与 00000000, 00000000, 00000000, 00000101 对应, 如上表。

●信号地址:

F10	
F11	
F12	
F13	
F7	

#7	#6	#5	#4	#3	#2	#1	#0
Mbit7	Mbit6	Mbit5	Mbit4	Mbit3	Mbit2	Mbit1	Mbit0
Mbit15	Mbit14	Mbit13	Mbit12	Mbit11	Mbit10	Mbit8	Mbit8
Mbit23	Mbit22	Mbit21	Mbit20	Mbit19	Mbit18	Mbit17	Mbit16
Mbit31	Mbit30	Mbit29	Mbit28	Mbit27	Mbit26	Mbit25	Mbit24
							MF

2.7.1.2 M 译码信号

DM00 (F9.7), DM01 (F9.6), DM02 (F9.5), DM30 (F9.4):

- ●信号类型: NC->PLC, 为1时有效。
- ●信号功能: 当 CNC 执行 MOO、MO1、MO2、M30 指令时,对应的译码信号 DMOO、DMO1、DMO2、DM30 置 1。

程序指令	输出信号
MOO	DMOO
MO1	DMO1
M02	DMO2
M30	DM30

●注意事项: 在以下条件下, M 译码信号为 1:

指定了对应的辅助功能,并且在同一程序段中完成了其它移动指令和暂停指令(如果移动指令和暂停指令结束前 NC 已经接收到 FIN 信号,则 M 译码信号不输出)。

在以下条件时, M 译码信号为 0:

FIN 信号为1或复位时。

	#7	#6	#5	#4	#3	#2	#1	#0
F9	DM00	DM01	DM02	DM30				

2.7.1.3 一个程序段中的多个 M 指令

CNC 允许一个程序段中指令最多 3 个 M 代码同时输出到机床。这意味着与一个程序段一个 M 代码的传统方法相比较能够实现较短的加工循环时间。

第 2、3M 功能代码信号: M2bit00~M2 bit 15 (F14~F15), M3 bit 00~M3 bit 15 (F16~F17) 第 2、3M 功能选通信号: MF2 (F8.4), MF3 (F8.5)

●信号类型: NC->PLC

●信号功能: 当程序执行第 2、3M 代码后,将对应的 F 代码信号置 1 且 MF2、MF3 也为 1,然后传给 PLC,进行逻辑控制。M 指令与代码信号编码对应关系如下:

F15~F14	2M 指令
F15, 00000000	M00
F15, 00000001	MO1
F15, 00000010	M02
F15, 00000011	M03
F15, 00000100	M04
F15, 00000101	M05
F15, 00000110	M06
F15, 00000111	M07
F15, 00001000	M08
	•

F17~F16	3M 指令
F17, 00000000	M00
F17, 00000001	MO1
F17, 00000010	M02
F17, 00000011	M03
F17, 00000100	M04
F17, 00000101	M05
F17, 00000110	M06
F17, 00000111	M07
F17, 00001000	M08
•	

- ●注意事项: 1. 由于受机械操作限制,某些 M 代码不能同时指定。关于在一个程序段中同时规定多个 M 代码的机械操作限制的详细资料,见每个机床制造商的说明书。
 - 2. M00, M01, M02 或 M30 与其它 M 代码在一起指令, 其它 M 代码会忽略不执行; M00, M01, M02 或 M30 在一起指令, 最先指令 M 代码有效, 其余 M 代码忽略不执行。

例如:

一个程序段中一个 M 指令

M03;

M10;

M12;

G01 X100 Z100;

.....

可以一个程序段中多个 M 指令

M03 M10 M12; G01 X100 Z100;

• • • • • •

●信号地址:

F14
F15
F16
F17
F8

#7	#6	#5	#4	#3	#2	#1	#0
M2bit7	M2bit6	M2bit5	M2bit4	M2bit3	M2bit2	M2bit1	M2bit0
M2bit15	M2bit14	M2bit13	M2bit12	M2bit11	M2bit10	M2bit8	M2bit8
M3bit7	M3bit6	M3bit5	M3bit4	M3bit3	M3bit2	M3bit1	M3bit0
M3bit15	M3bit14	M3bit13	M3bit12	M3bit11	M3bit10	M3bit8	M3bit8
		MF3	MF2				

2.7.2 主轴速度功能(S 功能)

主轴速度代码信号 S bit00~S bit31 (F22~F25)、主轴速度选通信号 SF (F7.2)

●信号类型: NC->PLC

●信号功能: 当执行 S 指令时,NC 将给对应的 S 代码信号置 1,且 SF 也为 1,然后传给 PLC 进行逻辑控制,有关输出条件和执行过程,请参看前面相关说明。S 指令与代码信号的二进制编码对应关系如下表:

F25~F22	S指令
F25, F24, F23, 00000000	S00
F25, F24, F23, 00000001	S01
F25, F24, F23, 00000010	S02
F25, F24, F23, 00000011	S03
F25, F24, F23, 00000100	S04
•	•
•	

●信号地址:

-	
	F22
	F23
	F24
	F25
	F7

	#7	#6	#5	#4	#3	#2	#1	#0
I	Sbit07	Sbit06	Sbit05	Sbit04	Sbit03	Sbit02	Sbit01	Sbit00
ſ	Sbit15	Sbit14	Sbit13	Sbit12	Sbit11	Sbit10	Sbit09	Sbit08
I	Sbit23	Sbit22	Sbit21	Sbit20	Sbit19	Sbit18	Sbit17	Sbit16
ſ	Sbit31	Sbit30	Sbit29	Sbit28	Sbit27	Sbit26	Sbit25	Sbit24
ĺ						SF		

2.7.3 刀具功能 (T功能)

刀具功能代码信号

Tbit00~Tbit31(F26~F29)、刀具功能选通信号 TF(F7.3)

- ●信号类型: NC->PLC
- ●信号功能: 当 NC 指令 T 指令时,将对应的 T 代码信号置 1,且 TF 也置 1,然后传给 PLC 进行逻辑控制。 有关输出条件和执行过程,参看前面的相关说明,T 指令与 T 代码信号的二进制编码对应 关系如下表:

F29~F26	T 指令
F29, F28, F27, 00000000	T00
F29, F28, F27, 00000001	T01
F29, F28, F27, 00000010	T02
F29, F28, F27, 00000011	T03
F29, F28, F27, 00000100	T04
•	•

●信号地址:

F26	
F27	
F28	
F29	
F7	

#7	#6	#5	#4	#3	#2	#1	#0
Tbit07	Tbit06	Tbit05	Tbit04	Tbit03	Tbit02	Tbit01	Tbit00
Tbit15	Tbit14	Tbit13	Tbit12	Tbit11	Tbit10	Tbit09	Tbit08
Tbit23	Tbit22	Tbit21	Tbit20	Tbit19	Tbit18	Tbit17	Tbit16
Tbit31	Tbit30	Tbit29	Tbit28	Tbit27	Tbit26	Tbit25	Tbit24
				TF			

2.7.4 MST 功能结束

2.7.4.1 结束信号

FIN (G4.3)

●信号类型: PLC - >NC

●信号功能: 当辅助功能、主轴速度功能、刀具功能执行结束后, PLC 将 FIN 置 1, 然后传给 NC。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	
G4					FIN			

MFIN (G5.0)

●信号类型: PLC - >NC

●信号功能: 当辅助功能执行结束后, PLC 将 MFIN 置 1, 然后传给 NC。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G5								MFIN

SFIN (G5.2)

●信号类型: PLC - >NC

●信号功能: 当主轴速度功能执行结束后, PLC 将 SFIN 置 1, 然后传给 NC。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G5						SFIN		

TFIN (G5.3)

●信号类型: PLC - >NC

●信号功能: 当刀具功能执行结束后, PLC 将 TFIN 置 1, 然后传给 NC。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G5					TFIN			

2.7.4.2 M2, M3 结束信号

MFIN2 (G4.4), MFIN3 (G4.5)

- ●信号类型: PLC ->NC
- ●信号功能: 当 M2、M3 功能执行结束后, PLC 将结束信号置 1, 然后传给 NC。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G4			MFIN3	MFIN2				

2.7.4.3 分配结束信号

DEN (F1.3)

- ●信号类型: NC->PLC
- ●信号功能: 当辅助功能、主轴速度功能、刀具功能与其它指令(如移动指令和暂停指令)共段时,其它指令执行结束后,NC 将 DEN 置 1,等待 PLC 传送的 FIN 信号。 程序段执行结束后,DEN 变为 0。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F1					DEN			

2.7.5 辅助功能锁住

2.7.5.1 辅助功能锁住信号

AFL (G5.6):

- ●信号类型: PLC ->NC
- ●信号功能: 当 PLC 接收到辅助功能锁住输入信号后,将 AFL 置 1,然后传给 NC,禁止 M、S、T 功能执行。
- ●注意事项: 当 AFL 信号为 1 时, CNC 作如下处理:
 - 1. 对于自动运行和录入方式下的运行,CNC 不执行指定的 M、S 和 T 功能,即代码信号和选通信号不输出。
 - 2. 若在代码信号输出后,AFL 置为1,则按正常方式执行直到执行结束(直到收到 FIN 信号,并且选通信号置为0)。
 - 3. AFL 为 1 时, M00、M01、M02 和 M30 指令可执行,对应的代码信号、选通信号、译码信号 按正常方式输出。
 - 4. AFL 为 1 时, 辅助功能 M98 和 M99 仍按正常方式执行, 但不输出执行结果。
 - 5. AFL 为 1 时, 主轴模拟量仍可以输出。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G5		AFL						

2.7.5.2 辅助功能锁住检测信号

MAFL (F4.4):

●信号类型: NC->PLC

●信号功能: 当 CNC 处于辅助功能锁住状态时, MAFL 置 1, 然后传给 PLC。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F4				MAFL				

2.7.6 第2辅助功能(B功能)

2.7.6.1 第 2 辅助功能功能代码和选通信号

辅助功能代码信号: Bbit00~Bbit31(F30~F33)

辅助功能选通信号: BF (F7.7)

●信号类型: NC->PLC

●信号功能: 当程序执行 B 代码后,将对应的 F 代码信号置 1 且 BF 也为 1,然后传给 PLC,进行逻辑控制。有关输出条件和执行过程,请参看以上执行过程的说明。B 指令与代码信号编码对应

关系如下:

→ •	
F33~F30	B指令
F33, F32, F31, 00000000	В00
F33, F32, F31, 00000001	B01
F33, F32, F31, 00000010	B02
F33, F32, F31, 00000011	B03
F33, F32, F31, 00000100	B04
F33, F32, F31, 00000101	B05
F33, F32, F31, 00000110	B06
F33, F32, F31, 00000111	B07
F33, F32, F31, 00001000	B08
	•••

●注意事项: B00~B31 以二进制编码的形式给出 B 代码。如 B5 与 00000000, 00000000, 00000000, 00000101 对应, 如上表。

●信号地址:

	F30
I	F31
I	F32
I	F33
	F7

#7	#6	#5	#4	#3	#2	#1	#0
Bbit7	Bbit6	Bbit5	Bbit4	Bbit3	Bbit2	Bbit1	Bbit0
Bbit15	Bbit14	Bbit13	Bbit12	Bbit11	Bbit10	Bbit8	Bbit8
Bbit23	Bbit22	Bbit21	Bbit20	Bbit19	Bbit18	Bbit17	Bbit16
Bbit31	Bbit30	Bbit29	Bbit28	Bbit27	Bbit26	Bbit25	Bbit24
BF							

2.7.6.2 第 2 辅助功能结束信号

BFIN (G5.7):

●信号类型: PLC - >NC

●信号功能: 当刀具功能执行结束后, PLC 将 BFIN 置 1, 然后传给 NC。

	#7	#6	#5	#4	#3	#2	#1	#0
G5	BFIN							

2.8 主轴控制功能

2.8.1 主轴速度控制

S 指令由加工程序输入,指定 CNC 控制的模拟主轴速度。对于恒线速切削(G96 方式),CNC 将指定的表面线速度转换为主轴转速。CNC 可将 S 指令值及 SF 选通指令输出给 PLC。

主轴停止信号

SSTP (G29.6):

- ●信号类型: PLC ->NC
- ●信号功能:中止主轴速度指令的输出。该信号设定 NC 中的 S 指令为 0。有关时序如下图所示:
- ●注意事项: 当主轴停止信号*SSTP 为 0 时,输出电压变为 0V。当此信号变为 1 时,模拟电压输出指令值。不使用此信号时,将该信号设定为 1,以使 CNC 执行主轴速度控制。

主轴速度倍率信号

S0V00~S0V07 (G30)

- ●信号类型: PLC ->NC
- ●信号功能: 当 PLC 接收到主轴速度倍率输入信号后,给 SOV00~SOV07 赋以相应的值,然后传给 NC,设置不同的主轴速度倍率。SOV00~SOV07 编码与倍率值的应关系如下:

S0V7~S0V0 (G30.7~G30.0)	主轴倍率
0000 0101	50%
0000 0110	60%
0000 0111	70%
0000 1000	80%
0000 1001	90%
0000 1010	100%
0000 1011	110%
0000 1100	120%

- ●注意事项: 在攻丝循环和螺纹切削下主轴倍率功能无效。
- ●信号地址:

 #7
 #6
 #5
 #4
 #3
 #2
 #1
 #0

 SOV07
 SOV06
 SOV05
 SOV04
 SOV03
 SOV02
 SOV01
 SOV00

主轴允许信号

ENB (F1.4)

- ●信号类型: NC->PLC
- ●信号功能:表示是否有主轴指令。
- ●注意事项: 当非零指令输出至主轴时, ENB 为 1; 如果指令为 0,则 ENB 信号变为逻辑 0。在模拟主轴中,即便输出到主轴的指令为 0 (即,模拟电压为 0V),由于变频器有漂移电压,将会导致主轴电机以低速旋转。在此情况下,ENB 信号可用于停止电机。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F1				ENB				

齿轮选择信号

GR1,GR2 (G28.1, G28.2)

- ●信号类型: PLC->CNC
- ●信号功能:该信号通知 CNC 当前所选的档位,具体动作见前面所述。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G28						GR2	GR1	

恒表面切削速度信号

CSS (F2.2)

- ●信号类型: PLC->CNC
- ●信号功能:该信号为1表明正在执行恒表面切削速度控制方式(G96),为0表示没有执行。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F2						CSS		

主轴速度到达信号 SAR (G29.4)

- ●信号类型: PLC->CNC
- ●信号功能:该信号通知 CNC 主轴已经达到指定主轴的速度。
- ●信号地址:

	_	#7	#6	#5	#4	#3	#2	#1	#0
G29					SAR				

主轴电机速度选择指令信号

SIND (G33.7)

●信号类型: PLC->CNC

●信号功能:该信号用于选择主轴电机的速度指令。

SIND 1: 根据由 PLC 发出的速度指令控制主轴电机。

0: 根据由 CNC 发出的速度指令控制主轴电机。即用 S 指令规定的主轴速度。

●信号地址:

G38 #7 #6 #5 #4 #3 #2 #1 #0

第1主轴 S12 位代码信号 R01O~R16O(F36#0~F37#7)

●信号类型: CNC->PLC

●信号功能:该信号将 CNC 计算出的主轴速度指令转化为 0~0xFFF 的代码信息。

●信号地址:

F36 F37

#7	#6	#5	#4	#3	#2	#1	#0
R08O	R07O	R06O	R05O	R04O	R03O	R02O	R01O
R16O	R015O	R140	R130	R12O	R110	R10O	R09O

PLC 输入第1主轴电机速度指令信号

R01I~R12I (G32#0~G33#3)

●信号类型: PLC->CNC

●信号功能:该信号表示由 PLC 发出的用于输入主轴电机速度指令。

●信号地址:

G32
G33

<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
				R12I	R11I	R10I	R09I

第1主轴实际主轴速度信号

AR00~AR15 (F40~F41)

●信号类型: CNC->PLC

●信号功能:将由安装在主轴上的位置编码器发出的反馈脉冲分度的主轴的实际旋转速度从 CNC 输出到 PLC

F40
F41

#7	#6	#5	#4	#3	#2	#1	#0
AR07	AR06	AR05	AR04	AR03	AR02	AR01	AR00
AR15	AR14	AR13	AR12	AR11	AR10	AR09	AR08

2.8.2 多主轴控制

主轴选择信号

SWS1 (G27.0)

SWS2 (G27.1)

SWS3 (G27.2)

●信号类型: PLC->NC

●信号功能: 多主轴工作方式控制 NC 的 S 指令是否输出给主轴。

SWS1 1: 输出速度指令到第1主轴

0: 不输出速度指令到第1主轴

SWS2 1: 输出速度指令到第2主轴

0: 不输出速度指令到第2主轴

SWS3 1: 输出速度指令到第3主轴

0: 不输出速度指令到第3主轴

●信号地址:

	_	#7	#6	#5	#4	#3	#2	#1	#0
G27							SWS3	SWS2	SWS1

各主轴停止信号

SSTP1 (G27.3)

SSTP2 (G27.4)

SSTP3 (G27.5)

- ●信号类型: PLC->NC
- ●信号功能: 仅对多主轴有效,各轴可由此信号停止。

SSTP1 1: 不输出 0 转/分到第 1 主轴

0: 输出 0 转/分到第 1 主轴

SSTP2 1: 不输出 0 转/分到第 2 主轴

0: 输出 0 转/分到第 2 主轴

SSTP3 1: 不输出 0 转/分到第 3 主轴

0: 输出 0 转/分到第 3 主轴

●信号地址:

	 <u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G27			SSTP3	SSTP2	SSTP1			

齿轮选择信号

齿轮选择信号 GR11 (G28.1),GR12 (G28.2),GR21 (G29.0),GR22 (G29.1),GR31 (G29.2),GR32 (G29.3)

- ●信号类型: PLC->NC
- ●信号功能: 这是带有多主轴的齿轮选择信号。通知当前选择中的齿轮级数(4级):

齿轮	GRsl	GRs2
齿轮1	0	0
齿轮 2	1	0
齿轮 3	0	1
齿轮 4	1	1

(s为1, 2)

如:

GR21

1: 选择第2齿轮档用于第2主轴

0: 选择第1齿轮档用于第2主轴

●信号地址:

G28
G29

#7	#6	#5	#4	#3	#2	#1	#0
					GR12	GR11	
				GR32	GR31	GR22	GR21

位置编码器选择信号

PC2SLC, PC3SLC (G28.7, G26.0)

●信号类型: PLC->NC

●信号功能:位置编码器的选择信号。

位置编码器选择	PC2SLC	PC3SLC
第1位置编码器	0	0
第2位置编码器	1	0
第3位置编码器	0	1

注:

- 1、如果 PC2SLC、PC3SLC 都设为"1",则第 2 位置编码器选择有效。
- 2、如果第2主轴、第3主轴没有选择有效时,始终第1位置编码器选择有效。

●信号地址:

	<u>#</u> 7	#6	#5	#4	#3	#2	#1	#0
G28	PC2SLC							
	#7	#6	#5	#4	#3	#2	#1	#0
G26								PC3SLC

主轴使能信号

ENB (F1.4), ENB2 (F38.2), ENB3 (F38.3)

- ●信号类型: NC->PLC
- ●信号功能: 通知 PLC 在多主轴控制中是否给第 n 主轴输出指令信号。该信号用作停止模拟主轴的条件。

ENB 当第1主轴控制单元的输出为0以外时设定为"1"

当第1主轴控制单元的输出为0时设定为"0"

ENB2 当第2主轴控制单元的输出为0以外时设定为"1"

当第2主轴控制单元的输出为0时设定为"0"

当第3主轴控制单元的输出为0以外时设定为"1"

当第3主轴控制单元的输出为0时设定为"0"

●信号地址:

ENB3

	#7	#6	#5	#4	#3	#2	#1	#0
F1				ENB				
	#7	#6	#5	#4	#3	#2	#1	#0
F38					ENB3	ENB2		

主轴电机速度选择指令信号

SIND (G33.7), SIND2 (G35.7, SIND3 (G37.7)

●信号类型: PLC->CNC

●信号功能:该信号用于选择第 n 主轴电机的速度指令。

SIND 1: 选择 CNC 侧的速度指令控制第 1 主轴电机

0: 选择 PLC 侧的速度指令控制第 1 主轴电机

SIND2 1: 选择 CNC 侧的速度指令控制第 2 主轴电机

0: 选择 PLC 侧的速度指令控制第 2 主轴电机

1: 选择 CNC 侧的速度指令控制第 3 主轴电机

0: 选择 PLC 侧的速度指令控制第 3 主轴电机

●信号地址:

SIND3

G33
G35
G37

#7	#6	#5	#4	#3	#2	#1	#0
SIND							
SIND2							
SIND3							

第 n 主轴 S16 位代码信号

R010~R16O (F36.0~F37.7), R0102~R16O2 (F200.0~F201.7), R01O3~R16O3 (F204.0~F205.7)

●信号类型: CNC->PLC

●信号功能:该信号将 CNC 计算出的主轴速度指令转化为 0~0xFFF 的代码信息。

●信号地址:

F36	_
F37	-

#7	#6	#5	#4	#3	#2	#1	#0
R08O	R07O	R06O	R05O	R04O	R03O	R02O	R010
R160	R150	R140	R130	R12O	R110	R10O	R09O

F200	
F201	

	#7	#6	#5	#4	#3	#2	#1	#0
I	R08O2	R07O2	R06O2	R05O2	R04O2	R03O2	R02O2	R01O2
ĺ	R16O2	R15O2	R14O2	R13O2	R12O2	R1102	R10O2	R09O2
L						_		

F204	
F205	

	#7	#6	#5	#4	#3	#2	#1	#0
	R08O3	R07O3	R06O3	R05O3	R04O3	R03O3	R02O3	R01O3
Г	R16O3	R15O3	R14O3	R13O3	R12O3	R1103	R10O3	R09O3

PLC 输入第 n 主轴电机速度指令信号

R01I~R12I (G32.0~G33.3), R01I2~R12I2 (G34.0~G35.3), R01I3~R12I3 (G36.0~G37.3)

●信号类型: PLC->CNn

●信号功能:该信号表示由 PLC 发出的用于输入第 n 主轴 电机速度指令。

●信号地址:

G32	
G33	

 #7	#6	#5	#4	#3	#2	#1	#0
R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
				R12I	R11I	R10I	R09I

G34	
G35	

	# /	#0	#3	#4	#3	#2	#1	#0
I	R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2
Ĭ					R12I2	R11I2	R10I2	R09I2

#0

G36	
G37	

<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
R08I3	R07I3	R06I3	R05I3	R04I3	R03I3	R02I3	R01I3
				R12I3	R11I3	R10I3	R09I3

第n主轴实际主轴速度信号

AR00~AR15 (F40, F41), AR002~AR152 (F202, F203), AR003~AR153 (F206, F207)

●信号类型: CNC->PLC

●信号功能:将由安装在主轴上的位置编码器发出的反馈脉冲分度的主轴的实际旋转速度从 CNC 输出到 PLC

●信号地址:

F40	
F41	

#7	#6	#5	#4	#3	#2	#1	#0
AR07	AR06	AR05	AR04	AR03	AR02	AR01	AR00
AR15	AR14	AR13	AR12	AR11	AR10	AR09	AR08

F202 F203

#7	#6	#5	#4	#3	#2	#1	#0
AR072	AR062	AR052	AR042	AR032	AR022	AR012	AR002
AR152	AR142	AR132	AR122	AR112	AR102	AR092	AR082

F206	
F207	

#7	#6	#5	#4	#3	#2	#1	#0
AR073	AR063	AR053	AR043	AR033	AR023	AR013	AR003
AR153	AR143	AR133	AR123	AR113	AR103	AR093	AR083

地址 P 信号

MSP00~MSP15 (F160.0~F161.7)

●信号类型: CNC->PLC

●信号功能:通过 S_P_;指令,输出最后指定的 P 值。

基于地址 P 的多主轴控制有效 (参数 MPP(No.3703#3) ="1") 时,输出由 $S_P_$; 指令指定的 P 值

通电后,一次也没有进行 $S_P_$; 指令时,输出参数 No.3775 中设定的 P 的初始值。

●信号地址:

F160
F161

	#7	#6	#5	#4	#3	#2	#1	#0
	MSP07	MSP06	MSP05	MSP04	MSP03	MSP02	MSP01	MSP00
1	MSP15	MSP14	MSP13	MSP12	MSP11	MSP10	MSP09	MSP08

地址 P 指令选择主轴功能有效信号

MPP (F162.0)

●信号类型: CNC->PLC

●信号功能: 通过 S_P_;指令,输出最后指定的 P 值。

基于地址 P 的多主轴控制有效 (参数 MPP(No.3703#3) ="1") 时, 输出 1; 指令指定的 P 值。通电后,一次也没有进行 $S_P_$; 指令时,输出参数 No.3775 中设定的 P 的初始值。

●信号地址:

F160

_	#7	#6	#5	#4	#3	#2	#1	#0
								MPP

2.8.3 主轴位置/速度切换

2.8.3.1 CS 轮廓控制

单主轴时轮廓控制切换信号

CON (G27.7)

- ●信号类型: PLC->NC
- ●信号功能:该信号指定 Cs 轮廓控制功能。使伺服主轴在主轴速度控制方式和 Cs 轮廓控制方式之间进行切换。当此信号为"1"时,主轴从速度控制方式切换至 Cs 轮廓控制方式。此信号变为"0"时,将 Cs 轮廓控制方式切换回速度控制方式。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G27	CON	·	·					

注: 当参数 SCS (№8133#2) 为 "1" 且参数 SCS2 (№3704#6) 和参数 SCS3 (№3704#7) 为 "0" 时, 该信号有效。

多主轴时主轴轮廓控制切换信号

CONS1 (G254.0), CONS2 (G254.1), CONS3 (G254.2)

- ●信号类型: PLC->NC
- ●信号功能:各主轴 Cs 轮廓控制切换信号。使各伺服主轴在主轴速度控制方式和 Cs 轮廓控制方式之间进行切换。当此信号为"1"时,主轴从速度控制方式切换至 Cs 轮廓控制方式。此信号变为"0"时,将 Cs 轮廓控制方式切换回速度控制方式。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G254						CONS3	CONS2	CONS1

注: 当参数 SCS (№8133#2) 为 "1" 且参数 SCS2 (№3704#6) 或参数 SCS3 (№3704#7) 为 "1" 时,该信号有效;

单主轴时轮廓控制切换结束信号

FSCSL (F44.1)

- ●信号类型: NC->PLC
- ●信号功能:该信号为"0"时,表明被控制轴在主轴速度控制方式下。该信号为"1"时,表明被控制轴在 Cs 轮廓控制方式下。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F44							FSCSL	

注: 当参数 SCS (№8133#2) 为 "1" 且参数 SCS2 (№3704#6) 和参数 SCS3 (№3704#7) 为 "0" 时,该信号有效。

多主轴时轮廓控制切换结束信号

FCSS1 (F254.0), FCSS2 (F254.1), FCSS3 (F254.2)

- ●信号类型: NC->PLC
- ●信号功能:该信号为"0"时,表明被控制轴在主轴速度控制方式下。该信号为"1"时,表明被控制轴在 Cs 轮廓控制方式下。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F254						FSCSL3	FSCSL2	FSCSL1

注: 当参数 SCS (№8133#2) 为 "1" 且参数 SCS2 (№3704#6) 或参数 SCS3 (№3704#7) 为 "1" 时, 该信号有效; 这种情况下, Cs 轮廓控制切换完成信号 FSCSL (F44.1) 无效。

2.8.3.2 CS 轮廓控制轴坐标建立功能

Cs 轴坐标建立请求信号

CSFI1~CSFI3 (G274.4~G274.6)

●信号类型: PLC->NC

●信号功能: 在 Cs 轮廓控制功能中, 执行 Cs 轴坐标建立。

此信号成为'1'时,控制装置按照如下方式动作。 Cs 轮廓控制方式中本信号为'1'时,基于

Cs 轴的机械位置建立绝对坐标、机械坐标。 此信号成为'0'时,控制装置按照如下方式动作。

将 Cs 轴坐标建立报警信号 CSFOx<F274.4~5>设定为'0'。

●信号地址:

	 #7	#6	#5	#4	#3	#2	#1	#0
G274		CSFI3	CSFI2	CSFI1				

Cs 轴坐标建立报警信号

CSFO1~CSFO3 (F274.4~F274.6)

●信号类型: NC->PLC

●信号功能:表示 Cs 轴坐标建立尚未正常完成。

下列情形下成为'1'。

- Cs 轴坐标建立尚未正常完成时。

下列情形下成为'0'。

- 已经解除了 Cs 轮廓控制方式时。

- 对应的 Cs 轴坐标建立请求信号 CSFIx<Gn274.4~5>成为'0'时。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F274		CSFO3	CSFO2	CSF01				

Cs 轴原点建立状态信号

CSPENA~CSPENC (F275.4~F275.6)

●信号类型: NC->PLC

●信号功能:表示可以进行 Cs 轴坐标建立功能。

下列情形下成为'1'。

• 在 Cs 轮廓控制方式下参考点返回动作正常完成时或 CS 轴坐标系建立完成时。

●信号地址:

F275 #7 #6 #5 #4 #3 #2 #1 #0
CSF03 CSF02 CSF01

2.8.4 主轴刚性攻丝

攻丝中信号

TAP (F1.5)

●信号类型: NC -> PLC

●信号功能:此信号通知处在攻丝方式中的事实。

下列情形下成为'1'。

•攻丝循环方式中 (G74, G84: M系列) (G84, G88: T系列)

• 攻丝方式中 G63 (M系列)

下列情形下成为'0'。

•系统既非处在攻丝循环方式又非处在攻丝方式时

•输入了复位或者紧急停止时该信号指定主轴刚性攻丝控制功能。

●信号地址:

F1 #7 #6 #5 #4 #3 #2 #1 #0

刚性攻丝信号

RGTAP (G61.0)

●信号类型: PLC->NC

●信号功能:该信号指定主轴刚性攻丝控制功能。

RGTAP1: PLC 已经处在刚性攻丝方式 0: PLC 尚未处在刚性攻丝方式

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G61								RGTAP

刚性攻丝方向信号

RGSPC (G61.2)

●信号类型: PLC->NC

●信号功能:该信号指定主轴刚性攻丝的方向。

0: 指定刚性攻丝为正向攻丝

1: 指定刚性攻丝为反向攻丝

●信号地址:

	 #7	#6	#5	#4	#3	#2	#1	#0
G61						RGSPC		

刚性攻丝方式中信号

RTAP (F76.3)

●信号类型: NC ->PLC

●信号功能:该信号通知 PLC 当前是否处于刚性攻丝方式中的信号

0: 非刚性攻丝方式中

1: 刚性攻丝方式中

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F76					RTAP			

刚性攻丝主轴选择信号

RGTSP1 (G61.4), RGTSP2 (G61.5), RGTSP3 (G61.6)

●信号类型: PLC->NC

●信号功能:主轴选择信号 SWS1、SWS2、SWS3 在使用多主轴控制时的主轴的指令传递中使用,但是在刚性攻丝中,共用该信号,可在进行刚性攻丝的主轴的选择中使用。

(参数 SRS(No.5200#7)为"0"时有效)

RGTSP1, RGTSP2 是与 SWS1, SWS2 信号独立进行将使用多主轴控制时的进行刚性攻丝的主轴选择信号。

参数 SRS(No.5200#7)为"0"时,系统根据 SWS1、 SWS2 、SWS3 信号的状态,选择刚性攻

丝主轴。

参数 SRS(No.5200#7)为"1"时,系统根据 RGTSP1、 RGTSP2、 RGTSP3 信号的状态 ,选择刚性攻丝的主轴

注意:

- 1、 这些信号请在指令刚性攻丝指令(M29 S···; G84 X···)前输入。此外,请勿在刚性攻丝结束之前进行切换。
- 2、 同时将 SWS1~SWS2 的信号设定为'1'时,按照 SWS1,2 的顺序检测信号,视为指令了相当于最早找到'1'的信号的主轴。
- 3、同样,同时将 RGTSP1~RGTSP2 的信号设定为'1'时,按照 RGTSP1, RGTSP2, RGTSP3 的顺序检测信号,视为指令了相当于最早找到'1'的信号的主轴。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G61		RGTSP3	RGTSP2	RGTSP1				

主轴旋转方向信号

RGSPM (F65.1), RGSPP (F65.0)

- ●信号类型: PLC->NC
- ●信号功能: 刚性攻丝执行中,通知 PMC 主轴在正转(CW)还是在反转(CCW)。

刚性攻丝中主轴

RGSPP '1': 正转中(CW)。

'0': 非正转中(CW)。

RGSPM '1': 反转中(CCW)。

'0': 非反转中(CCW)。

刚性攻丝中主轴动作时,输出信号。因此,即使在刚性攻丝方式中定位到孔位置的动作、和在孔底或者 R 点处的暂停中,也不输出信号。 当然,进给保持和单程序段停止中,不输出信号。 但是,因互锁而停止时,以及机床锁住、或者 Z 轴忽略中,则不视为停止而输出信号。

主轴旋转方向信号,只有在刚性攻丝方式中有效,在通常的主轴控制不输出信号。(RGSPP, RGSPM 均为'0')

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F65							RGSPM	RGSPP

2.8.5 总线式主轴控制信号

GSK988TD 系统支持总线式主轴,而总线式主轴 PLC 与主轴伺服之间的控制是通过 F、G 信号来完成。

主轴报警信号

ALMA (F45.0), ALMB (F49.0), ALMC (F53.0)

- ●信号类型: NC ->PLC
- ●信号功能:该信号通知 PLC 当前主轴是否报警的信号
 - 0: 当前伺服主轴正常无报警
 - 1: 当前伺服主轴处于报警状态

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F45								ALMA
	#7	#6	#5	#4	#3	#2	#1	#0
F49								ALMB

	#7	#6	#5	#4	#3	#2	#1	#0
F53								ALMC

主轴零速信号

SSTA (F45.1), SSTB (F49.1), SSTC (F53.1)

- ●信号类型: NC ->PLC
- ●信号功能:该信号通知 PLC 当前主轴处于零速状态
 - 0: 当前伺服主轴正在旋转,非零速状态
 - 1: 当前伺服主轴处于零速状态

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F45							SSTA	
			•			•		
	#7	#6	#5	#4	#3	#2	#1	#0
F49							SSTB	
	#7	#6	#5	#4	#3	#2	#1	#0
F53							SSTC	

主轴定向完成信号

ORARA (F45.2), ORARB (F49.2), ORARC (F53.2)

- ●信号类型: NC ->PLC
- ●信号功能:该信号通知 PLC 当前主轴定向已完成
 - 0: 当前伺服主轴定向未完成
 - 1: 当前伺服主轴定向完成

●信号地址:

F45	#7	#6	#5	#4	#3	#2 ORARA	#1	#0
		11.6		II A	"2	1	114	110
F49	#7	#6	#5	#4	#3	#2 ORARB	#1	#0
	#7	#6	#5	#4	#3	#2	#1	#0
F53						ORARC		

主轴扭矩到达信号

TLMA (F45.3), TLMB (F49.3), TLMC (F53.3)

- ●信号类型: NC ->PLC
- ●信号功能:该信号通知 PLC 当前主轴在扭矩控制方式时的扭矩已到达系统限制值。
 - 0: 当前伺服主轴扭矩未到达限制值
 - 1: 当前伺服主轴扭矩已到达限制值

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F45					TLMA			
	#7	#6	#5	#4	#3	#2	#1	#0
F49					TLMB			
	#7	#6	#5	#4	#3	#2	#1	#0
F53					TLMC			

主轴速度到达信号

SARA (F45.4), SARB (F49.4), SARC (F53.4)

- ●信号类型: NC ->PLC
- ●信号功能:该信号通知 PLC 当前主轴在速度控制方式时的主轴转速已到达系统指令值。
 - 0: 当前伺服主轴转速未到达系统指令值
 - 1: 当前伺服主轴转速已到达系统指令值
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F45				SARA				
	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F49				SARB				
	#7	#6	#5	#4	#3	#2	#1	#0
F53				SARC				

主轴位置到达信号

PSRA (F45.5), PSRB (F49.5), PSRC (F53.5)

- ●信号类型: NC ->PLC
- ●信号功能:该信号通知 PLC 当前主轴在位置控制方式时的实际位置已到达系统指令值。
 - 0: 当前伺服主轴实际位置未到达系统指令值
 - 1: 当前伺服主轴实际位置已到达系统指令值
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F45			PSRA					
	#7	#6	#5	#4	#3	#2	#1	#0
F49			PSRB					
	#7	#6	#5	#4	#3	#2	#1	#0
F53			PSRC		-			

主轴刚性攻丝中信号

RTAPA (F45.6), RTAPB (F49.6), RTAPC (F53.6)

- ●信号类型: NC ->PLC
- ●信号功能:该信号通知 PLC 当前主轴正在执行刚性攻丝动作。
 - 0: 当前伺服主轴未执行刚性攻丝动作
 - 1: 当前伺服主轴正在执行刚性攻丝工作
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F45		RTAPA						
	#7	#6	#5	#4	#3	#2	#1	#0
F49		RTAPB						
	#7	#6	#5	#4	#3	#2	#1	#0
F53		RTAPC						
		•	·					

主轴报警清除信号

ARSTA (G70.0), ARSTB (G74.0), ARSTC (G78.0)

●信号类型: PLC ->NC

- ●信号功能:该信号复位当前总线式伺服主轴的报警信息。
 - 0: 不复位当前伺服主轴的报警信息
 - 1: 复位当前伺服主轴的报警信息

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G70								ARSTA
	#7	#6	#5	#4	#3	#2	#1	#0
G74								ARSTB
	#7	#6	#5	#4	#3	#2	#1	#0
G78								ARSTC

主轴零速箝位信号

ZSLA (G70.1), ZSLB (G74.1), ZSLC (G78.1)

- ●信号类型: PLC ->NC
- ●信号功能: 当所控制的主轴驱动器在速度方式下,且要求指令转速不为"0"转,却要求电机停止时,可使用此信号来使伺服于锁定状态,此功能称为'零速箝位'功能。
 - 0: 电机属于正常状态
 - 1: 电机处于锁定状态

●信号地址:

G74 #7 #6 #5 #4 #3 #2 #1 #0 ZSLB #7 #6 #5 #4 #3 #2 #1 #0	G70	#7	#6	#5	#4	#3	#2	#1 ZSLA	#0
	G74	#7	#6	#5	#4	#3	#2		#0
1 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	G78	#7	#6	#5	#4	#3	#2	#1 ZSLC	#0

主轴定向启动信号

ORCMA (G70.2), ORCMB (G74.2), ORCMC (G78.2)

- ●信号类型: PLC ->NC
- ●信号功能: 对总线式主轴进行主轴定向信号
 - 0: 电机属于正常状态,不进行定向操作
 - 1: 启动电机定向功能

●信号地址:

	 #7	#6	#5	#4	#3	#2	#1	#0
G70						ORCMA		
	#7	#6	#5	#4	#3	#2	#1	#0
G74						ORCMB		
	#7	#6	#5	#4	#3	#2	#1	#0
G78						ORCMC		
G/6						OKCMC		

主轴刚性攻丝启动信号

TAPA (G70.3), TAPB (G74.3), TAPC (G78.3)

●信号类型: PLC ->NC

- ●信号功能:主轴在刚性攻丝时要求伺服单元具有较高的伺服刚性,对指令的响应要求很快,尽量减小位置跟随误差,所以要求伺服主轴要有更高的增益要求,从而导致了刚性攻丝时伺服参数和平时使用的参数回有所不同,而总线式主轴驱动器保存有专用于刚性攻丝的一组参数,当此信号为'ON'时调用此组参数。
 - 0: 主轴正常状态,使用的默认参数
 - 1: 主轴进入刚性攻丝状态,调用刚性攻丝专用参数

●信号地址:

	<u>#</u> 7	#6	#5	#4	#3	#2	#1	#0
G70					TAPA			
	#7	#6	#5	#4	#3	#2	#1	#0
G74					TAPB			
	#7	#6	#5	#4	#3	#2	#1	#0
G78					TAPC			

主轴反向旋转信号 SRV

SRVA (G70.4), SRVB (G74.4), SRVC (G78.4)

- ●信号类型: PLC ->NC
- ●信号功能: 此信号为'1'时,主轴反方向旋转,为'0'时,主轴停止反方向旋转

●信号地址:

#6	#5	#4	#3	#2	#1	#0
		SRVA				
	•					
#6	#5	#4	#3	#2	#1	#0
		SRVB				
*	<u>"</u>					
#6	#5	#4	#3	#2	#1	#0
		SRVC				
	#6	#6 #5	#6 #5 #4 SRVB #6 #5 #4	#6 #5 #4 #3 SRVB #6 #5 #4 #3	#6 #5 #4 #3 #2 SRVB #6 #5 #4 #3 #2	#6 #5 #4 #3 #2 #1 #6 #5 #4 #3 #2 #1 #6 #5 #4 #3 #2 #1

主轴正向旋转信号 SFR

SFRA (G70.5), SFRB (G74.5), SFRC (G78.5)

- ●信号类型: PLC ->NC
- ●信号功能: 此信号为'1'时,主轴正方向旋转,为'0'时,主轴停止正方向旋转

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G70			SFRA					
	#7	#6	#5	#4	#3	#2	#1	#0
G74			SFRB					
	#7	#6	#5	#4	#3	#2	#1	#0
G78	# /	#0	SFRC	# -1	#3	#4	#1	#0
G/0			SFKC					

主轴机械锁紧信号 BREF

BREFA (G70.6), BREFB (G74.6), BREFC (G78.6)

- ●信号类型: PLC ->NC
- ●信号功能:目前部分车床为了实现在工件的外圆面进行钻孔、攻牙等加工,在主轴上安装了机械夹紧

装置,依靠机械锁定主轴,确保了加工的精度及稳定度。为了解决机械夹紧装置的夹紧力与主轴电机力矩的 矛盾,在 CNC 系统控制机械夹紧装置夹紧主轴时,需要同时控制伺服单元降低电机的力矩。对于总线式主轴 伺服单元,通过控制主轴夹紧联锁信号(BREF)就可以实现降低电机力矩的功能。

- 0: 电机力矩保持正常状态
- 1: 降低电机力矩

下面是 CNC 控制主轴夹紧的时序:

主轴高低速切换信号 HLV

HLVA (G70.7), HLVB (G74.7), HLVC (G78.7)

- ●信号类型: PLC ->NC
- ●信号功能:目前部分车部分伺服主轴电机已支持双速控制,伺服驱动器为了实现对双速电机的控制,

配套了2套伺服参数,通过HLV信号来切换。

- 0: 主轴高速
- 1: 主轴低速
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G70	HLVA							
	#7	#6	#5	#4	#3	#2	#1	#0
G74	HLVB							
	#7	#6	#5	# 4	#3	#2	#1	#0
G78	HLVC							

主轴使能信号 SON SONA (G82.0)、SONB (G82.1)、SONC (G82.2)

- ●信号类型: PLC ->NC
- ●信号功能: 无论主轴速度控制、位置控制和定向控制都必须输出主轴使能信号, 否则主轴将无法旋转。
 - 0: 不输出主轴使能信号
 - 1: 输出主轴使能信号
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G82						SONC	SONB	SONA

2.8.6 多边形同步中信号(T系列)

PSYN (F63.7)

- ●信号类型: NC ->PLC
- ●信号功能:此信号向 PMC 通知 CNC 处在多边形加工中方式。 通过多边形加工方式指令(G51.2),此信号成为"1",多边形加工方式中维持"1"。 通过解除多边形加工方式(G50.2指令或复位等),此信号成为"0"。多边形加工方式中以 外时此信号维持"0"。
- ●信号地址:

	#7	#6	#5	# 4	#3	#2	#1	#0
F63.7	PSYN							

2.8.7 II 型主轴同步控制功能

2.8.7.1 功能概述

GSK988TD 目前已实现通过 PLC 信号实现对置主轴的同步控制,能对接回转体工件,但存在调试复杂,受主轴编码器线数、主轴机械安装结构以及主轴伺服参数、负载惯量等因素的影响较大,尤其是相位同步稳定性较差,同步转速低;另外也无法实现异形工件的对接。因此为解决上述存在的问题,一种通过参数设置同步控制方法,提高同步转速,实现相对准确的相位同步。为与前一种同步控制方法相区别,定义这种控制方法为 II 型主轴同步控制功能,以下不特别指出时,所有说明都是针对 II 型主轴同步控制。目前只考虑主轴传动比为 1: 1 的情况,建议主轴采用同步电机。

II 型主轴高速同步 COPY 控制分为 2 个主轴同步控制方式:

1、#4921.0 参数 S2GS = 0 时,上电后,指令旋转主控主轴时,建立 COPY 同步。

该功能主要应用于上电后,系统自动建立同步后,就不需要取消同步的应用场合。

#4921.1 参数 S2SP = 0,配置为主轴同步 COPY 速度同步控制时,上电后就处于速度同步状态,从控主轴跟随主控主轴旋转;

#4921.1 参数 S2SP = 1,配置为主轴同步 COPY 相位同步控制时,上电后,在指定主控主轴旋转(如 M3S500)时,从控主轴跟随主控主轴旋转。旋转 2 圈后获取到主控主轴与从控主轴编码器数据都找到编码器零点 Z 信号后,主控主轴停止旋转,从控主轴在主控主轴停止下,自动就近相位调整到与主控主轴相位同步状态后,然后从控主轴跟随主轴主轴启动旋转;

2、#4921.0 参数 S2GS = 1 时, COPY 同步可通过 PLC 的 G 信号控制同步状态。

使用 COPY 同步功能的主轴,需要设定为 II 型主轴控制的主轴,上电即为位置方式。即通过在位置方式下实现目前主轴在速度方式/位置方式下功能的控制。II 型主轴可配置为旋转轴 CS 轴,也可配置为

普通主轴来使用。

2.8.7.2 信号详述

COPY 主轴同步通断控制信号 SCGS(G290.0)

●信号类型: PLC->NC

●信号功能: 当信号设置为"1"时, COPY 主轴不建立主轴同步。

当信号设置为"0"时,COPY 主轴建立主轴同步有效。此时从控主轴将在旋转中建立与主

控主轴的同步关系。

●注意事项:该信号功能在系统参数#4921.0 S2GS 设置为1时,即通过G信号控制主轴同步通断时才有

效。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G290								SCGS

COPY 主轴同步,相位同步控制信号

CPSYC (G290.1)

●信号类型: PLC->NC

●信号功能: 当信号设置为 "0"时, COPY 主轴同步, 指定为速度同步方式。

当信号设置为"1"时, COPY 主轴同步,指定为相位同步方式。

●注意事项:该信号功能在系统参数#4921.2 S2GP 设置为 1 时,即通过 G 信号控制主轴同步方式有效。 切换同步方式前,需要先取消同步状态后才能够切换,即 G290.0 为 1 时,切换同步方式才

有效。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G290							CPSYC	

II 型主轴在执行复位时,不停主轴信号

RSSR (G290.7)

●信号类型: PLC->NC

●信号功能: 当信号设置为"0"时, 系统执行复位时, II 型主轴停止旋转。

当信号设置为"1"时, 系统执行复位时, II型主轴保持原来状态。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G290	RSSR							

II 型主轴回编码器零点启动信号

S2REF1~ S2REF3 (G291.0~G291.2)

●信号类型: PLC->NC

●信号功能: 当信号设置为"0"时, II 型主轴不返回编码器 0 点。

当信号设置为"1"时, Ⅱ型主轴启动返回编码器0点。

●注意事项:该信号功能在回参考点方式手动输入启动返回编码器 0 点 G 信号有效或在自动方式或 MDI 方式下,执行系统参数#4933 的 M 代码输入启动返回编码器 0 点 G 信号才有效。否则其他

方式下输入该G信号无效。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G290						S2REF3	S2REF2	S2REF1

第 1 通道 COPY 主轴速度同步完成信号 CPSYCSF(F290.0) ●信号类型: NC -> PLC

●信号功能: 当信号设置为 "0"时, COPY 主轴速度同步未建立完成。 当信号设置为 "1"时, COPY 主轴速度同步建立完成。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F290								CPSYCSF

第 1 通道 COPY 主轴相位同步完成信号 CPSYCPF(F290.1)

●信号类型: NC -> PLC

●信号功能: 当信号设置为 "0"时, COPY 主轴相位同步未建立完成。 当信号设置为 "1"时, COPY 主轴相位同步建立完成。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F290							CPSYCPF	

第1通道 COPY 主轴速度同步建立中信号 CPSYCSI(F290.2)

●信号类型: NC -> PLC

●信号功能: 当信号设置为 "0" 时, COPY 主轴未处于速度同步建立中。

当信号设置为"1"时, COPY 主轴速度同步正在建立中。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F290						CPSYCSI		

第1通道 COPY 主轴相位同步建立中信号 CPSYCPI (F290.3)

●信号类型: NC -> PLC

●信号功能: 当信号设置为 "0"时, COPY 主轴未处于相位同步建立中。 当信号设置为 "1"时, COPY 主轴相位同步正在建立中。

●信号地址:

	_	#7	#6	#5	#4	#3	#2	#1	#0
F290						CPSYCSI			

第 1 通道 COPY 主轴速度同步取消中信号 CPSYCSO(F290.4)

●信号类型: NC -> PLC

●信号功能: 当信号设置为 "0"时, COPY 主轴未处于速度同步取消中。 当信号设置为 "1"时, COPY 主轴速度同步正在取消中。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F290				CPSYCSO				

第 1 通道 COPY 主轴相位同步取消中信号 CPSYCPO(F290.5)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时, COPY 主轴未处于相位同步取消中。

当信号设置为"1"时, COPY 主轴相位同步正在取消中。

●信号地址:

#7 #6 #5 #4 #3 #2 #1 #0

F290 CPSYCPO

第1通道Ⅱ型主轴的 COPY 同步中,主控主轴信号 CPSYCM1~ CPSYCM6 (F291.0~F291.5)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,主轴非 COPY 主轴同步中的主控主轴。

当信号设置为"1"时,主轴为COPY主轴同步中的主控主轴。

CPSYCM 1~3: 第 1 通道 COPY 同步中, 主控主轴为第 1 通道第 1~3 主轴

CPSYCM 4~6: 第 1 通道 COPY 同步中,主控主轴为第 2 通道第 1~3 主轴

●注意事项: 主轴为 COPY 同步主控主轴时,信号为 1。主轴非 COPY 同步主控主轴时,信号为 0。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F291			CPSYCM6	CPSYCM5	CPSYCM4	CPSYCM3	CPSYCM2	CPSYCM1

第1通道 II 型主轴的 COPY 同步中,从控主轴信号 CPSYCS1~ CPSYCS6(F292.0~F292.5)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,主轴非 COPY 主轴同步中的从控主轴。

当信号设置为"1"时,主轴为 COPY 主轴同步中的从控主轴。

CPSYCS1~3: 第1通道 COPY 同步中,从控主轴为第1通道第1~3主轴

CPSYCS 4~6: 第1通道 COPY 同步中, 从控主轴为第2通道第1~3 主轴

●注意事项: 主轴为 COPY 同步从控主轴时,信号为 1。主轴非 COPY 同步从控主轴时,信号为 0。

●信号地址:

	_	#1	7 #6	#5	#4	#3	#2	#1	#0
F292				CPSYCS6	CPSYCS5	CPSYCS4	CPSYCS3	CPSYCS2	CPSYCS1

第 1 通道各 II 主轴的主轴正转信号 S2CW1~ S2CW3(F293.0~F293.2)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,主轴未正转。

当信号设置为"1"时,主轴处于正转中。

●注意事项: 主轴正转时,信号为1。主轴停止时,信号为0。

主轴处于同步中,PLC 需根据主控主轴正转信号来控制相关从控主轴旋转状态 G 信号与之匹配。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F293						S2CW3	S2CW2	S2CW1

第 1 通道各 II 主轴的主轴反转信号 S2CCW1~ S2CCW3 (F294.0~F294.2)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,主轴未反转。

当信号设置为"1"时,主轴处于反转中。

●注意事项: 主轴反转时, 信号为1。主轴停止时, 信号为0。

主轴处于同步中,PLC 需根据主控主轴反转信号来控制从控主轴旋转状态 G 信号与之匹配。

●信号地址:

#7 #6 #5 #4 #3 #2 #1 #0

F294				S2CCW3	S2CCW2	S2CCW1

第 1 通道各主轴回编码器零点中信号 S2CREF1~ S2CREF3 (F295.0~F295.2)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,主轴未处于返回编码器0点过程中。

当信号设置为"1"时,主轴处于返回编码器0点过程中。

●注意事项: 主轴返回编码器 0 点过程中,不能够指令主轴旋转、定位定向和 CS 切换。

●信号地址:

	#'	7 #6	#5	#4	#3	#2	#1	#0
F295						S2CREF3	S2CREF2	S2CREF1

第1通道各主轴回编码器零点完成

S2CREFD1 ~ S2CREFD3 (F296.0~F296.2)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,主轴未处于返回编码器0点完成。

当信号设置为"1"时,主轴返回编码器0点完成。

●注意事项: 主轴返回编码器 0 点完成后, 主轴使能保持。

●信号地址:

	#7	7 #6	#5	#4	#3	#2	#1	#0
F296						S2CREFD3	S2CREFD2	S2CREFD1

第 1 通道各主轴为 II 型主轴信号 SII1~ SII3 (F297.0~F297.2)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,主轴非 II 型主轴。

当信号设置为"1"时,主轴为Ⅱ型主轴。

●注意事项:实现主轴 COPY 同步功能,主轴必须设置为 II 型主轴。

●信号地址:

	#7	7 #6	#5	#4	#3	#2	#1	#0
F297						SII3	SII2	SII1

第1通道各主轴坐标系已建立信号

S2CSET1 ~ S2CSET3 (F298.0~F298.2)

●信号类型: NC -> PLC

●信号功能: 当信号设置为"0"时,II型主轴坐标系未建立。

当信号设置为"1"时, II 型主轴坐标系已建立完成。

●注意事项:在编码器数据有效后,主轴在主轴停止后将自动建立坐标系。或返回编码器 0 点时,自动建立坐标系。进行主轴同步时,如果该 II 型主轴尚未建立主轴坐标系,系统自动执行相应的动作,停止主轴后建立主轴坐标系完成后在建立同步。

●信号地址:

	#'	7 #6	#5	#4	#3	#2	#1	#0
F298						S2CSET3	S2CSET2	S2CSET1

第1通道各Ⅱ主轴不允许使用信号

SIIFBU1~ SIIFBU3 (F299.0~F299.2)

- ●信号类型: NC -> PLC
- ●信号功能: 当信号设置为"0"时,II 型主轴可以使用,PLC 可以控制该主轴动作。 当信号设置为"1"时,II 型主轴不能够被使用,PLC 不能够控制该主轴动作。
- ●注意事项: II 型主轴正在编码器回 0、CS 轴定位、定向过程中,不允许 plc 旋转控制主轴。主轴同步控制中,不允许 plc 旋转控制从控主轴。如主轴处于非同步状态,且 CS 轴处于位置方式,该信号为 1, PLC 不能够指令主轴旋转,但可以进行取消 CS 轴动作。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F299						SIIFBU3	SIIFBU2	SIIFBU1

2.9 刀具功能

当指定了T代码或HDT信号时,NC把所需刀具号与当前刀具号NOWT00~NOWT07相比,若刀号一致则不进行换刀;若不一致则产生所需刀具号的代码信号和选通信号,机床依据所产生的信号选择刀具。

本 CNC 可在自动和录入方式下通过 T 指令进行换刀,也可在手动方式下,通过 HDT 信号来顺序换刀。

T指令换刀

用户可在自动方式和录入方式下,指定 T 指令进行换刀,NC 解释 T 指令后,发出 T 指令指定的刀位号与选通信号,然后等待 PLC 的换刀完成。

当前刀具号信号

NOWT00~NOWT07 G201

- ●信号类型: PLC ->NC
- ●信号功能: PLC 检测到当前的刀位信号后,将 NOWT00~NOWT07 (G201) 置对应的值,然后传给 NC,通知 NC 当前的刀具号,这些信号以二进制编码表示刀具号。
- ●信号地址:

<u></u> .	#1	#6	#5	#4	#3	#2	#1	#0
G201	NOWT07	NOWT06	NOWT05	NOWT04	NOWT03	NOWT02	NOWT01	NOWT00

2.10 其他功能

2.10.1 公英制转换

英制输入信号 INCH (F2.0)

- ●信号类型: NC->PLC
- ●信号功能:该信号为1表示现在是英制输入方式(G20),0表示现在是公制输入方式(G21)。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F2								INCH

2.10.2 螺纹切削

螺纹切削信号 THRD (F2.3)

- ●信号类型: NC->PLC
- ●信号功能:该信号表明螺纹切削正在进行中。

以下情况该信号为1:

- 1. 螺纹切削方式中;
- 2. 螺纹切削中。

以下情况该信号为1:

不是螺纹切削方式, 也不进行螺纹切削。

●信号地址:

	_	#7	#6	#5	#4	#3	#2	#1	#0
F2						THRD			

2.10.3 零件计数

目标零件计数到达信号 PRTSF (F62.7)

- ●信号类型: NC->PLC
- ●信号功能: 当加工零件数到达参数#6713 设定的需要零件数时, PRTSF 信号输出给 PLC; #6713 设定 为 0 时, PRTSF 信号不输出。
- ●信号地址:

	<u>#</u> 7	#6	#5	#4	#3	#2	#1	#0
F62	PRTSF							

2.10.4 刀具寿命管理信号

换刀信号 TLCHB (F64.0)

- ●信号类型: NC->PLC
- ●信号功能:信号通知组的最后一把刀具的寿命已到尽头的事实。

下列情形下成为'1'。

每当刀具的寿命已到尽头时,依次选择该组的下一把刀具,在其中一个组的最后一把刀具的寿命已到尽头时。 下列情形下成为'0'。

寿命已到尽头的组一个也没有时。 在'1'的状态下,通过 PMC 侧发出的换刀复位信号 TLRST 或者 MDI 的操作,对于寿命已到尽头的所有组通知 CNC 换刀已经完成的事实,本信号就成为'0'。 注意:

换刀信号 TLCH,以次数来指定寿命的情况下,到达寿命后,通过 M02/M30 等,在 CNC 成为复位状态时、或者指令了刀具寿命计数再开 M 代码的时刻成为'1'。寿命计数类型属于时间指定的情况下,即使在加工执行中,在到达寿命的时刻本信号也会成为'1'。但是,加工继续进行,

一直持续到程序结束为止

●信号地址:

	#7_	#6	#5	#4	#3	#2	#1	#0
F64								TLCH

换刀复位信号

TLRST (G48.7)

- ●信号类型: PLC->NC
- ●信号功能:到刀具组用完重新设定或换刀完成时,通知 CNC 刀具组已就绪。
 - 0: 换刀进行中,或刀具组或就绪
 - 1: 换刀已完成,或刀具组已复位

刀寿命已到尽头的组的刀具全都更换为新的刀具之后,通过刀具组号选择信号(TL1~TL512)指定组号,输入本信号。通过将参数 GRS(No.6800#4)设定为"1",就可不输入刀具组号选择信号,相对已经登录的所有组执行清除操作。 此外,来自 MDI 的操作也可以进行清除。 [动作] 信号从'0'变为'1'时,控制装置按照如下方式进行动作。 • 如果由刀具组号选择信号(TL1~TL512)所指定的所有组的刀具已经到达寿命,则清除该信息。也就是说,而后通过程序指令来指令其组号时,再次从最初的一把刀具进行选择。如果在由刀具组号选择信号(TL1~TL512)所指定的组中哪怕是只有一把尚未到达寿命的刀具,则不会有任何动作。

注意:

换刀复位信号 TLRST,在控制装置不在复位中(RST信号为'1'),且处在如下状态时,由'0'变为'1'。

- 1)参数 TRS(No.6805#5)="0"的情形 处在复位状态(OP信号'0')时
- 2)参数 TRS(No.6805#5)="1"的情形
- ①处在复位状态(OP信号'0')时
- ②处在自动运行停止状态(STL 信号以及 SPL 信号为'0', OP 信号 为'1') 时
- ③自动运行休止状态(STL 信号为'0', SPL 信号为'1') 时 (但是,数据设定指令(G10L3)执行中的自动运行停止状态、自动运行休止状态以及自动运行启动状态(STL 信号为'1') 时无效。)
- ●信号地址:

	<u>#7</u>	#6	#5	# 4	#3	#2	#1	#0
G48	TLRST							

逐把刀具更换信号 TLCHI(F64.2)

- ●信号类型: NC->PLC
- ●信号功能:刀具寿命计数为时间指定的情况下,通知当前使用中的刀具寿命已到尽头的事实。通过该信号插入换刀程序,在更换刀具后可使程序再启动。

下列情形下成为'1'。

- 当前使用中的刀具寿命已到尽头时。
- 下列情形下成为'0'。
- 执行了逐把刀具更换复位操作时。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F64						TLCHI		

逐把刀具更换复位信号

TLRSTI (G48.6)

- ●信号类型: PLC->NC
- ●信号功能: 将逐把刀具更换信号 TLCHI 设定为'0'。

当信号成为'1'时,控制装置执行如下所示动作。

• 将逐把刀具更换信号设定为'0'。

注意:

- 1、 这些信号只有在寿命计数基于时间的寿命管理时有效。
- 2、 逐把刀具更换信号 TLCHI 不会因复位而被清除。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G48		TLRSTI						

刀具跳过信号

TLSKP (G48.5)

- ●信号类型: PLC->NC
- ●信号功能:可跳过寿命尚未到尽头的刀具,强制地选择下一把刀具。可以从下列 2 种方法中,通过参数 SIG(No.6800#3)来选择其中之一。
 - (i) 用刀具组号选择信号来指定组号的方法。(SIG='1') 通过刀具组号选择信号(TL1~TL512),指定该刀具所属的组号并将刀具跳过信号设定为'1'。通过这一操作,在以下次的 T 代码指令指定了跳过的组中,选择下一把刀具。
 - (ii) 不用刀具组号选择信号来指定组号的方法。(SIG='0') 不指定组号就将刀具跳过信号 TLSKP 设定为'1'。视为已经指定了此时选定的刀具所属的组。

通过这一操作,在以下次的 T 代码指令指定了跳过的组中,选择下一把刀具。 但是,相对最后一把刀具将刀具跳过信号 TLSKP 设定为'1'时,换刀信号 TLCH 成为'1'。

信号从'0'变为'1'时,控制装置按照如下方式进行动作。

· 在尚未到达应该跳过的组中的寿命的刀具中,在刀具寿命管理表中排列的数值最小的刀具号上标示#标记。在通过 T 代码指令再次指令该组时,跳过该刀具而选择下一把新的刀具。但是,相对最后一把刀具将刀具跳过信号 TLSKP 设定为'1'时,换刀信号 TLCH 成为'1'。

注意:

刀具跳过信号 TLSKP,即使在自动运行启动中(STL 信号为'1')的情况下也可以使用,但是基于 T 指令的组内的刀具选择,在缓冲时执行。因此,缓冲后,即使输入刀具跳过信号 TLSKP,也不会选择下一把刀具。所以,在自动运行启动中(STL 信号为'1')输入刀具跳过信号 TLSKP时,抑制缓冲,或在尚未选择刀具的状态将其从"0"设定为'1'。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G48			TLSKP					

新刀具选择信号 TLNW (F64.1)

- ●信号类型: NC->PLC
- ●信号功能:此信号通知 PMC 侧已经选择了组内的新刀具的事实。在选择了新刀具时,希望自动测量该刀具的刀具长度补偿量等时使用。

下列情形下成为'1'。

• 在通过 T 代码指令,指令了刀具组号的情况下,由于该组内此前使用的刀具的已到尽头而选择下一把新的刀具时。

在发送新刀具的代码信号后,在发送刀具功能选通脉冲信号 TF 的同时本信号成为'1'。 下列情形下成为'0'。

• 在本信号处在'1'的状态下,选通脉冲信号 TF 的完成信号 FIN 成为'1'时。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F64							TLNW	

刀具组号选择信号

TL1~TL128 (G47.0~G47.7)

●信号类型: PLC->NC

●信号功能:指定刀具组号。在输入换刀复位信号 TLRST 或者刀具跳过信号 TLSKP 之前,通过本信号

来指定相对哪个组执行换刀复位或者刀具跳过。 [动作] 下表列举了数例来说明了刀具组号与刀具组信号之间的对应关系。2 进制数表显示上累加 1 的数值就是刀具组号。选择所

指定号的组。

TL128	TL64	TL32	TL16	TL8	TL4	TL2	TLl	刀具组号
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
0	0	0	0	0	0	1	1	4
0	0	0	0	0	1	0	0	5
0	0	0	0	1	0	0	1	10
0	0	0	0	1	1	1	0	15
0	0	0	1	0	0	1	1	20
0	0	0	1	1	1	0	1	30
0	0	1	0	0	1	1	1	40
0	0	1	1	0	0	0	1	50
0	1	1	0	0	0	1	1	100
0	1	1	1	1	1	1	0	127
0	1	1	1	1	1	1	1	128
1	1	0	0	0	1	1	1	200
1	1	1	1	1	1	1	1	256

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G48	TL128	TL64	TL32	TL16	TL8	TL4	TL2	TL1

刀具寿命计数倍率信号

TLV0~TLV9 (G49.0~G50.1)

●信号类型: PLC->NC

●信号功能:寿命计数类型为时间指定时,通过将参数 LFV(No.6800#2)设定为"1",即可向寿命计数应用倍率。其属于10个2进制代码信号,与倍率值按照如下方式对应。

请在倍率值的范围内使用。 其中,*TLVi为'1'时,Vi=0

*TLVi 为'0'时, Vi=1 也即, 各信号具有如下权重。

信号	倍率
*TLV0	0.1 倍
*TLV1	0.2 倍
*TLV2	0.4 倍
*TLV3	0.8 倍
*TLV4	1.6 倍
*TLV5	3.2 倍
*TLV6	6.4 倍
*TLV7	12.8 倍
*TLV8	25.6 倍
*TLV9	51.2 倍

(例) *TLV7, *TLV6, *TLV3 为'0'时的倍率值按照如下式子计算:

12.8+6.4+0.8=20.0

因此,寿命计数为原先的 20 倍。 所有信号都为'1'时,倍率值成为 0 倍。请以每步 0.1 倍,在 0 倍~99.9 倍的范围内进行设定。 超过 99.9 倍的设定时,被钳制在 99.9 倍上。

在以基于时间的寿命计数实际进行切削的时间上,乘以由该信号选择的倍率值而得到的值,就是刀具寿命管理的计数时间。譬如,倍率值为 0.1 倍,将实际切削的时间设定为 1000 秒时,刀具寿命的计数时间就是 100 秒。

●信号地址:

	 #7	#6	#5	#4	#3	#2	#1	#0
G48	TL128	TL64	TL32	TL16	TL8	TL4	TL2	TL1

刀具寿命预告信号

TLCHB (F64.3)

- ●信号类型: NC->PLC
- ●信号功能:通过设定选择新刀具之前的重设计数值,利用寿命计数,在组的寿命的剩余量(寿命值一寿命计数值)与所设定的重设计数值"相同"、或再在其"以下"时,输出刀具寿命预告信号事先进行预告。

寿命计数为时间指定的情况下,寿命的剩余量和重设计数值的比较判定的单位,随寿命计数间隔(参数 FCO(No.6805#0))而变化。寿命计数间隔为 1 秒的情况下,以 1 分钟单位进行比较,0.1 秒的情况下,以 0.1 分单位进行比较。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F64					TLCHB			

<Gn048.2> [分类] 输入信号 [功能]

刀具寿命计数无效信号

LFCIV (G48.2)

- ●信号类型: PLC->NC
- ●信号功能: 使选择中刀具的寿命计数无效。

当信号成为'1'时,控制装置执行如下所示动作。

•对于选择中的刀具,不进行寿命计数。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G48						LFCIV		

刀具寿命计数无效中信号

LFCIF (F93.2)

- ●信号类型: NC->PLC
- ●信号功能:此信号通知选择中刀具的寿命计数无效的事实。

下列情形下成为'1'。

• 由于刀具寿命计数无效信号 LFCIV 被设定为'1'而寿命计数无效时。

下列情形下成为'0'。

• 由于刀具寿命计数无效信号 LFCIV 被设定为'0'而寿命计数有效时。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F93						LFCIF		

刀具剩余数量通知信号

TLAL (F154.0)

- ●信号类型: NC->PLC
- ●信号功能: 此信号通过 T 代码指令选择的组的刀具的剩余数量等于的设定值,或者在该设定值以下的事实。

下列情形下成为'1'。

• 通过 T 代码指令选择的组的刀具的剩余数量与参数(No.6846)中所设定的刀具的剩余数量相同,或者在其以下。

下列情形下成为'0'。

- 设定新数值输入值。
- 伴随 G10 指令引起的寿命管理数据的所有组擦除的登录。
- 通过 T 代码指令,选择刀具的剩余数量比设定值更多的组。
- 对于成为刀具剩余数量通知信号 TLAL 发生原因的组,执行如下操作
 - ① 在刀具寿命管理的一览画面上的执行数据的清除。
- ② 在刀具寿命管理的组编辑画面上的,刀具组的统一删除、刀具数据的追加、刀具数据清除的设定。
 - ③ 基于换刀复位信号(TLRST<G48.7>)的、执行数据的清除。
 - ④ 基于 G10 指令的寿命管理数据的变更、删除。

刀具剩余数量通知信号 TLAL 的时间图

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F154								TLAL

2.10.5 用户宏程序

2.10.5.1 用户宏程序

用户宏程序用输入信号 UI000~UI015 (G54,G55) UI016~UI031 (G56,G57)

UI100~UI131 (G276~G279)

- ●信号类型: PLC->NC
- ●信号功能:作为控制装置不具备任何功能。它是可通过用户宏程序作为系统变量的一类进行读取的信号,使用于用户宏程序和 PLC 间的接口。
- ●信号地址:

G54
G55
G56
G57
G276
G277
G278
G279

#7	#6	#5	#4	#3	#2	#1	#0
UI007	UI006	UI005	UI004	UI003	UI002	UI001	UI000
UI015	UI014	UI013	UI012	UI011	UI010	UI009	UI008
UI023	UI022	UI021	UI020	UI019	UI018	UI017	UI016
UI031	UI030	UI029	UI028	UI027	UI026	UI025	UI024
UI107	UI106	UI105	UI104	UI103	UI102	UI101	UI100
UI115	UI114	UI113	UI112	UI111	UI110	UI109	UI108
UI123	UI122	UI121	UI120	UI119	UI118	UI117	UI116
UI131	UI130	UI129	UI128	UI127	UI126	UI125	UI124

用户宏程序用输出信号

UO000~UO015 (F54,F55) UO016~UO031 (F56,F57) UO100~UO131 (F276~F279)

- ●信号类型: NC -> PLC
- ●信号功能:作为控制装置不具备任何功能。它是可通过用户宏程序作为系统变量的一类进行读写的信号,使用于用户宏程序和 PLC 间的接口。其系统变量之间具有如下对应关系。
- ●信号地址:

F54
F55
F56
F57
F276
F277
F278
F279

#7	#6	#5	#4	#3	#2	#1	#0
UO007	UO006	UO005	UO004	UO003	UO002	UO001	UO000
UO015	UO014	UO013	UO012	UO011	UO010	UO009	UO008
UO023	UO022	UO021	UO020	UO019	UO018	UO017	UO016
UO031	UO030	UO029	UO028	UO027	UO026	UO025	UO024
UO107	UO106	UO105	UO104	UO103	UO102	UO101	UO100
UO115	UO114	UO113	UO112	UO111	UO110	UO109	UO108
UO123	UO122	UO121	UO120	UO119	UO118	UO117	UO116
UO131	UO130	UO129	UO128	UO127	UO126	UO125	UO124

2.10.5.2 用户宏程序用中断信号

UINT (G53.3)

- ●信号类型: PLC->NC
- ●信号功能:调用并执行存储器中的程序。在此期间,自动运行中的程序被暂时中断。 为了能够受理该信号,需要在自动运行的指令程序中指令特定的辅助功能(由参数(No. 6003, No. 6033, No. 6034)设定)。此外,还必须处在自动运行启动中。
- ●信号地址:

ı	G53
ı	

 #7	#6	#5	#4	#3	#2	#1	#0
				UINT			

2.10.6 程序开关信号

KEY (G46.3)

- ●信号类型: PLC->NC
- ●信号功能:通知对程序能否进行编辑的事实。
 - 1:可编辑
 - 0:不可编辑。

●信号地址:

	#7	#6	#5	# 4	#3	#2	#1	#0
G53					KEY			

2.11 PLC 轴控制功能

2.11.1 功能概述

PLC 能够独立于 CNC 直接控制给定的轴,换言之,沿着不由 CNC 控制的轴移动刀具,而从 PLC 输入指令,例如,指令运动距离和进给速度是可能的。使用 PLC 控制坐标轴,能控制刀架、交换工作台、分度工作台和其它外围装置。

GSK988TD 系统的各通道最大可控轴数为 6 个,通过参数№1010 和№8010 决定系统的 CNC 和 PLC 控制轴数。用特定的轴控信号(EAX)决定一个轴是 CNC 还是 PLC 控制。PLC 能直接地控制下列操作:

- (1) 快速移动指令的距离;
- (2) 切削进给(每分进给),移动指令的距离;
- (3) 切削进给(每转进给),移动指令的距离;
- (4) 暂停;
- (5) 连续进给;
- (6) 手动参考点返回;
- (7) 第1参考点返回;
- (8) 第2参考点返回;
- (9) 第3参考点返回;
- (10) 第4参考点返回;
- (11) 进给速度控制;
- (12) 辅助功能,第2辅助功能,第3辅助功能;
- (13) 机床坐标系选择。

PLC 提供 4 个控制通道,使用输入和输出信号去控制这些操作。通过给 4 个通道发出指令,PLC 能同时控制 5 个独立轴。使用参数№8010 决定哪个通道控制哪个轴。指令可以通过 1 个通道发到 2 个或更多的轴,这样,允许 PLC 使用 1 个通道去控制多个轴。控制示意图如下所示:

在下面的叙述中,来自 4 个通道的输入/输出信号分别为 A 组(通道 1)、B 组(通道 2)、C 组(通道 3)、D 组(通道 4)。用于 PLC 轴控制的输入/输出信号的名字总是包含一个小写 "g",表示分别对应于这 4 组信号。

2.11.2 基本步骤

PLC 轴控制的基本步骤如下:

- (1) 在参数№8010 中,指定哪个 DI/DO 信号组(A、B、C 或 D)在 PLC 控制中控制哪个轴。 当使用一组同时控制 2 个或更多轴时,检查与进给速度(快速移动速度、加减速时间常数、直径 /半径、直线轴/旋转轴等等)有关的参数设置对每个被控制轴是相同的。
- (2) 为使 PLC 直接轴控有效,设定被控制轴的选择信号(EAX1 到 EAX5)为1。
- (3) 决定操作类型

轴控制命令信号(EC0g 到 EC6g)指令操作类型。轴控制进给速度信号(EIF0g 到 EIF15g)指令进给速度。轴控制数据信号(EID0g 到 EID31g)指令运动距离和其它数据。

这些信号和程序段停止禁止信号 EMSBKg 一起,决定一个完整的操作,相当于 CNC 控制的自动操作期间,执行一个程序段。这些信号可统称为轴控制程序段数据信号。 PLC 轴控制一个程序段内的控制信号表:

统称	信号名	符号	数据类型
	程序段停止禁止信号	EMSBKg	位
轴控制的程序段数据	轴控制指令信号	EC0g~EC6g	字节
信号	轴控制进给速度信号	EIF0g~EIF15g	字
	轴控制数据信号	EID0g~EID31g	双字

(4) 当管理一个完整操作(1个程序段)的数据确定后,反转轴控制命令阅读信号 EBUFg 的逻辑状态 (即从"0"到"1",或相反)。为此,轴控制命令阅读完成信号 EBSYg 必须与 EBUFg 的逻辑状态相同。

CNC 可以将 PLC 的轴控功能存储在它的缓冲区中,所以,可以顺序执行多个 PLC 控制的操作。如果缓冲区已经空,在执行另一个程序段期间,允许 CNC 接受来自 PLC 的新程序段指令。

CNC 的缓冲区有三个,分别是输入缓冲区、等待缓冲区和执行缓冲区,那么命令操作的时序图如下所示:

用从 PLC 输入的轴控制指令阅读信号 EBUFg 和从 CNC 输出的轴控制指令阅读完成信号 EBSYg 的异或能决定 CNC 缓冲区的状态。

EBUFg	EBSYg	异或(XOR)	CNC 缓冲区状态			
0	0		前一程序段已经读进 CNC 缓冲区,			
1	1	0	PLC 可以发出下个程序段。			
			前一程序段还没有读完,正在读或等			
0	1	1				待 CNC 缓冲区变为可用,不发出下
		1	个程序段,也不反转 EBUFg 的逻辑			
1	0		状态。反转 EBUFg 的状态,会使已			
			经发出的程序段无效。			

(5) 重复步骤(3)和(4)直到全部程序段发完。

当最后的程序段已经发出时,使控制轴选择信号 EAX1 到 EAX5 为 "0"。然而,在设置这些信号为 "0"之前,检查 CNC 存储中的输入,等待和执行缓冲区的程序段已经全部被执行。当一个程序段正在执行时,设置这个信号为 "0",或在这些缓冲区仍有指令段时,将导致 P/S 报警。这个报警中止当前程序段的执行并使储存在输入和等待缓冲区中的程序段无效。

为确保没有程序段正在执行,或在输入、等待缓冲区内没有保留程序段,检查控制轴选择状态信号*EAXSL 应设置为"0"。

对于一直是由 PLC 控制的那些轴,例如:控制刀架、交换工作台和 ATC 的那些轴,确保 EAX1 到 EAX5 信号总是设为"1"。在从 PLC 到 CNC 发出命令以后,不必设这些信号为"0"。当全部命令程序段已经执行时(没有要执行的剩余程序段),CNC 自动地停止执行。

(6) 当控制轴选择信号 EAX1 到 EAX5 从"1"到"0"时,控制返回到 CNC。

2.11.3 信号详述

2.11.3.1 控制轴选择信号

EAX1~EAX5 (G136.0~G136.4)

●信号类型: PLC->NC

●信号功能: 当信号设置为"1"时,相应的轴变成 PLC 控制。

当信号设置为"0"时,PLC 控制变为无效。改变控制轴选择信号的设置,仅当控制轴选择状态信号*EAXSL 设置为"0"时才有可能。当*EAXSL 设置为"1"时改变轴选择信号,导致 P/S 报警(N0139)。报警信号 EIALg 置为"1"。

当参数Ne8001 的第 5 位(NCC)设置为"0"时,同时,控制轴选择信号设置为"1",并且信号*EAXSL 设置为"0"时,执行从 CNC 发出的命令。当这个参数设置为"1"时,执行上述操作将导致 P/S 报警(Ne139)。注意,当在手动连续进给方式中,刀具正沿着轴移动时,这个命令无效。

当 CNC 现在正在执行一个命令的同时,如果控制轴选择信号设置为"1",产生 P/S 报警 (№139)。在手动连续进给方式中,设置这个信号为"1",中止命令的执行。当控制轴选择信号设置为"1",并产生 P/S 报警 (№139)时,同时,当*EAXSL 设置为"0"时,报警信号 EIALg 的状态不变到"1"。在这个情况下,即使 CNC 在报警状态下,轴仍能由 PLC 控制。

●注意事项:在设置控制轴选择信号 EAX1 到 EAX5 为"1"之后,在 PLC 能发送命令到 CNC 之前,至 少要 8ms。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G136				EAX5	EAX4	EAX3	EAX2	EAX1

2.11.3.2 轴控制指令信号

EC0g~EC6g (G143.0~6), (G155.0~6), (G167.0~6), (G179.0~6)

●信号类型: PLC->NC

●信号功能:通过每个通道指令下列操作。

轴控制指令	操作				
(十六进制代码)					
0.01	快速移动(直线加减速)				
00h	执行通常由 CNC 的 G00 一样的操作。				
0.11	每分切削进给(插补后的指数加减速)				
01h	执行通常由 CNC 的 G98G01 一样的操作。				
0.21	每转切削进给(插补后的指数加减速)				
02h	执行通常由 CNC 的 G99G01 一样的操作。				
0.41	暂停				
04h	执行通常由 CNC 的 G04 一样的操作。				
	参考点返回				
0.51	根据参数№1006 的第 5 位(ZMIx)设定的参考点返				
05h	回方向,以快速移动方式移动刀具,然后,执行通常				
	由 CNC 执行的手动参考点返回一样的操作。				

	连续进给(指数加减速)
06h	以 JOG 进给方式在指定的方向上移动刀具。执行与
	CNC 的 JOG 进给一样的操作。
	第1参考点返回
07h	执行与 CNC 的 G28 指定的经中间点将刀具定位到参
	考点时一样的操作。
	第2参考点返回
08h	执行与 CNC 的 G30P2 指定经中间点定位到参考点时
	一样的操作。
	第3参考点返回
09h	执行与 CNC 的 G30P3 指定经中间点定位到参考点时
	一样的操作。
	第 4 参考点返回
0Ah	执行与 CNC 的 G30P4 指定经中间点定位到参考点时
	一样的操作。
101	速度指令(直线加减速)
10h	以指定的速度执行连续进给。
101	辅助功能
12h	执行与 CNC 使用的辅助功能 (M 功能)一样的功能。
1.41	第 2 辅助功能
14h	执行与 CNC 使用的辅助功能 (M 功能)一样的功能。
1.51	第3辅助功能
15h	执行与 CNC 使用的辅助功能 (M 功能)一样的功能。
201	机床坐标系选择
20h	执行与 CNC 使用的 G53 功能相同的操作。

快速移动速度

当使用快速移动指令(EC0g 到 EC6g: 00h)时,进给速度可与 CNC 使用的(№1420)相同速度或用 PLC 轴进给速度信号 EIF0g 到 EIF15g 指定。这可用参数№8002 的第 0 位(RPD)设定。

不用挡块的参考位置返回

参考位置返回指令(EC0g 到 EC6g: 05h)实现下列操作:参数№1002 的第 1 位(DLZ)设定所有被控轴不用挡块返回参考点;参数№1005 的第 1 位(DLZx)设定一个轴不用挡块返回参考点。当上述之一设定后,切开机后各轴尚未返回过参考点时,当发出返回参考点指令(EC0g 到 EC6g: 05h)后,则使刀具沿参数№1006 的第 5 位(ZMIx)设定的参考点返回方向移动,不用减速信号回到参考位置(将刀具定位到距当前位置的最近的栅格点处)。

在参考位置已经建立以后,发出参考位置返回指令(EC0g 到 EC6g: 05h)能以高速执行参考位置的返回,而不管由参数Ne1006 的第 5 位(ZMIx)设定的参考位置返回方向。

不用挡块的第1参考位置返回

当使用第 1 参考位置返回指令(EC0g 到 EC6g: 07h)时,如果参数№1002 的第 1 位(DLZ)指令所有轴不用挡块的参考位置返回或参数№1005 的第 1 位(DLZx)指令一个轴不实用挡块的参考位置返回是有效时,并且,自通电以来,刀具没有返回过参考位置的话,发出第 1 参考位置返回指令(EC0g到 EC6g: 07h)时,会引起 P/S 报警(№090)。

第1到第4参考位置返回

当使用第 1 到第 4 参考位置返回指令 (EC0g 到 EC6g: 07h 到 0Ah) 时,进给速度可使用参数№8002 的第 0 位 (RPD) 指定,与使用快速移动指令 (EC0g 到 EC6g: 00h) 时,方法相同。

注意,在第 1 参考位置返回的情况下,如果在电源接通后,刀具没有用手动返回过参考位置的话,就使用由参数**№**1424 规定的进给速度。

速度指令

当使用速度指令(EC0g 到 EC6g: 10h)时,以参数№1006的第0位(ROTx)指定的被控轴为回转轴。

当用连续进给指令(EC0g 到 EC6g: 06h)正在执行位置控制时,速度指令(EC0g 到 EC6g: 10h)对伺服电机实行速度控制,这样,在连续进给期间,允许速度动态变化。这使得这个指令适合用伺服电机驱动旋转刀具。

使用参数№8028,能对每个轴设定直线加减速时间常数。

注意,当用速度指令正在执行 JOG 进给时,坐标值不变化。这将导致刀具位置丢失。因此,在连续进给已经完成之后,执行运动指令之前,总是把刀具返回到参考位置。

机床坐标系选择

机床坐标系选择指令(EC0g到 EC6g: 20h)执行绝对定位,以快移速度移动刀具到机床坐标系的指定位置。该指令用于移动刀具到机床的特定位置。例如:刀具交换位置。

对旋转轴,可指令短路径旋转。当使用这个指令时,应取消刀具偏置和刀尖半径补偿。

在使用这个指令之前,必须先设定机床坐标系。在接通电源之后,用手动或用 G28,把刀具返回到参考位置。当用绝对位置检测器时,不需要把刀具返回到参考位置,因为刀具位置将储存在存储器中。

下表表示在轴控制指令和它们的数据之间的对应关系:

指令程序段						
操作	轴控制代码信号	指令数据				
	EC0g 到 EC6g					
		总的移动距离 EID0g 到 EID31g				
ht 1束 4夕 ah	001-	快速移动速度 EIF0g 到 EIF15g				
快速移动	00h	当参数№8002 的第 0 位 (RPD)				
		设为"1"时,快速移动速度有效。				
复八洲 ₩	011-	总的移动距离 EID0g 到 EID31g				
每分进给	01h	进给速度 EIF0g 到 EIF15g				
<i>复</i> 牡洪必	021	总的移动距离 EID0g 到 EID31g				
每转进给	02h	每转进给量 EIF0g 到 EIF15g				
暂停	04h	暂停时间 EID0g 到 EID31g				
参考位置返回	05h	无				
JOG 进给	0.61	进给方向 EID31g				
JOG 进结	06h	JOG 进给速度 EIF0g 到 EIF15g				
第1参考位置返回	07h	快速移动速度 EIF0g 到 EIF15g				
第2参考位置返回	08h	当参数№8002 的第 0 位 (RPD)				
第3参考位置返回	09h	设为"1"时,快速移动速度有效。				
第4参考位置返回	0Ah					
速度指令	10h	连续进给速度 EIF0g 到 EIF15g				
辅助功能	12h					
第2辅助功能	14h	辅助功能代码 EID0g 到 EID15g				
第3辅助功能	15h					
		机床坐标系设置(绝对值)EID0g				
		到 EID31g				
机床坐标系设置	20h	快速移动速度 EIF0g 到 EIF15g				
		当参数№8002 的第 0 位 (RPD)				
		设为"1"时,快速移动速度有效。				

● 信号地址:

C1.42
G143
G155
G167
G179

<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
	EC6A	EC5A	EC4A	EC3A	EC2A	EC1A	EC0A
	EC6B	EC5B	EC4B	EC3B	EC2B	EC1B	EC0B
	EC6C	EC5C	EC4C	EC3C	EC2C	EC1C	EC0C
	EC6D	EC5D	EC4D	EC3D	EC2D	EC1D	EC0D

2.11.3.3 轴控制进给速度信号

EIF0g~EIF15g (G144,G145), (G156,G157), (G168,G169), (G180,G181)

●信号类型: PLC->NC

●信号功能:指令 PLC 轴的进给速度值。

快速移动 (EC0g 到 EC6g: 00h)

第 1 参考位置返回(EC0g 到 EC6g: 07h)

第 2 参考位置返回(EC0g 到 EC6g: 08h)

第3参考位置返回(EC0g到EC6g: 09h)

第 4 参考位置返回 (EC0g 到 EC6g: 0Ah)

对这些指令,当参数 $N \ge 8002$ 的第 0 位(RPD)设置为"1"时,该信号以二进制形式指令快速移动速度。然而,对第 1 参考位置返回,在电源接通之后,如果没有执行过手动参考位置返回的话,使用参数 $N \ge 1424$ 设定的快速移动速度。

数据单位如下表

		数据	* 17-	
		IS-B	IS-C	单位
+ 15 41	公制机床	1	mm/min	
直线轴	英制机床	0.1		inch/min
旋转轴		1		deg/min

有效的数据范围如下表

		数据	* 1.	
		IS-B	IS-C	单位
-t- \\\ \	公制机床	30~15000	30~12000	mm/min
直线轴	英制机床	30~6000	30~4800	inch/min
旋转轴		30~15000	30~12000	deg/min

每分切削进给(EC0g 到 EC6g: 01h)

对于这个指令,信号以二进制指令沿一个轴的进给速度。指令的数据能用参数№8002的第3位(F10)设定乘以10。

数据单位如下表

当参数№8002 的第 3 位 (F10) 设置为 "0" 时:

		数据	34 th	
		IS-B	IS-C	单位
± 40.41.	公制机床	1	0.1	mm/min
直线轴	英制机床	0.01	0.001	inch/min
旋转轴		1	0.1	deg/min

当参数№8002 的第 3 位 (F10) 设置为 "1" 时:

		数据	单位	34 ().
		IS-B	IS-C	单位
± 40.41	公制机床	10	1	mm/min
直线轴	英制机床	0.1	0.01	inch/min
旋转轴		10	1	deg/min

有效的数据范围如下表

		数据	* 12-	
		IS-B IS-C		单位
-t- / b -t- l	公制机床	1~100000	0.1~12000.0	mm/min
直线轴	英制机床	0.01~4000.00	0.001~480.000	inch/min
旋转轴		1~100000	0.1~12000.0	deg/min

每转切削进给(EC0g 到 EC6g: 02h)

对这个指令,信号用于指定由主轴每转的刀具的移动量。

数据增量单位取决于参数№8002 的第 6 位(FR1)和第 7 位(FR2)的设定,列表如下

参	数	公制输入	英制输入	旋转轴	
FR2	FR1	(mm/rev)	(inch/rev)	(deg/rev)	
1	1				
0	0	0.0001	0.000001	0.0001	
0	1	0.001	0.00001	0.001	
1	0	0.01	0.0001	0.01	

有效的数据范围如下表

		数据	36.03	
		IS-B	IS-C	─ 单位
± 40.41.	公制机床	0.0001~500.0000		mm/rev
直线轴	英制机床	0.000001~9.999999		inch/rev
旋转轴		0.0001~500.0000		deg/rev

连续进给(EC0g 到 EC6g: 06h)

象每分切削进给(EC0g 到 EC6g: 01h)一样设定进给速度。在连续进给期间,进给速度可以改变。用信号 EIF0g 到 EIF15g 指令进给速度。在连续进给期间,反转轴控制指令阅读信号 EBUFg 后,刀具以新的进给速度移动。

由于 JOG 进给指令没被缓冲,故通常不必检查轴控制指令阅读完成信号 EBUFg。指定的进给速度能用设定参数№8002 的第 3 位 (F10) 乘以 10 和用参数№8004 的第 2 位 (JFM) 乘以 200。

速度指令 (EC0g 到 EC6g: 10h)

对这个指令,信号以二进制指定伺服电机的速度。

正值指令正方向旋转。负值指令反方向旋转。

当新的伺服电机速度被指令时,轴控制指令阅读信号 EBUFg 的逻辑变反,使伺服电机加速或减速直到达到新的速度值。

●注意事项: 当设定为"0"时, CNC 继续执行缓冲, 而不移动刀具。在这种情况下, 用输入复位信号 ECLRg 释放缓冲。切削速度箝制无效。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G144	EIF7A	EIF6A	EIF5A	EIF4A	EIF3A	EIF2A	EIF1A	EIF0A
G145	EIF15A	EIF14A	EIF13A	EIF12A	EIF11A	EIF10A	EIF9A	EIF8A
	#7	#6	#5	#4	#3	#2	#1	#0
G156	EIF7B	EIF6B	EIF5B	EIF4B	EIF3B	EIF2B	EIF1B	EIF0B
G157	EIF15B	EIF14B	EIF13B	EIF12B	EIF11B	EIF10B	EIF9B	EIF8B
	#7	#6	#5	#4	#3	#2	#1	#0
G168	EIF7C	EIF6C	EIF5C	EIF4C	EIF3C	EIF2C	EIF1C	EIF0C
G169	EIF15C	EIF14C	EIF13C	EIF12C	EIF11C	EIF10C	EIF9C	EIF8C
	#7	#6	#5	#4	#3	#2	#1	#0
G180	EIF7D	EIF6D	EIF5D	EIF4D	EIF3D	EIF2D	EIF1D	EIF0D
G181	EIF15D	EIF14D	EIF13D	EIF12D	EIF11D	EIF10D	EIF9D	EIF8D

2.11.3.4 轴控制数据信号

EID0g~EID31g

(G146,G147,G148,G149), (G158,G159,G160,G161) (G170,G171,G172,G173), (G182,G183,G184,G185)

●信号类型: PLC->NC

●信号功能:指令 PLC 轴控制的数据。

数据单位如下表

		数据	单位	34 /2.
		IS-B	IS-C	单位
-t- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	公制输入	0.001	0.0001	mm
直线轴	英制输入	0.0001	0.00001	inch
旋转轴		0.001	0.00001	deg

快速移动 (EC0g 到 EC6g: 00h) 每分切削进给 (EC0g 到 EC6g: 01h) 每转切削进给 (EC0g 到 EC6g: 02h)

对于这些指令,根据用于轴的输入增量,使用信号 EID0g 到 EID31g,以二进制指定增量移动距离。

有效数据范围如下表

		数据	单位	
		IS-B		
+ 40.41	公制输入	±99999.999	±9999.9999	mm
直线轴	英制输入	±9999.9999	±999.99999	inch
旋转轴		±99999.999	±9999.9999	deg

当用参数№1006 的第 3 位(DIAx)设定直径编程时,参数№8005 的第 1 位(CDI)用于设定在指令中是使用半径还是直径。

暂停(EC0g到EC6g: 04h)

对这个指令,信号以二进制用于指令暂停时间。

数据范围	单位
1~9999999	ms

连续进给(EC0g 到 EC6g: 06h)

对这个指令,信号 EID31g 用于指令连续进给的方向,如下:

- 0: 正方向
- 1: 负方向

信号 EID0g 到 EID30g 未定义。

辅助功能 (EC0g 到 EC6g: 12h)

第 2 辅助功能 (EC0g 到 EC6g: 14h)

第3辅助功能(EC0g到EC6g: 15h)

对这个指令,信号以二进制指令送 PLC 到 CNC 的辅助功能代码。辅助功能代码根据参数№8001 的第6位(AUX)的设定,可用信号 EID0g 到 EID15g 中的 1 个或 2 个字节。

机床坐标系选择(EC0g 到 EC6g: 20h)

对这个指令,根据轴使用的增量系统,信号以二进制指令绝对坐标系。

●注意事项: 当使用 IS-C 增量系统时,根据参数№8002 的第 1 位(DWE)的设定,暂停时间的最小输入增量为 0.1ms。

●信号地址:

G146
G147
G148
G149

#7	#6	#5	#4	#3	#2	#1	#0
EID7A	EID6A	EID5A	EID4A	EID3A	EID2A	EID1A	EID0A
EID15A	EID14A	EID13A	EID12A	EID11A	EID10A	EID9A	EID8A
EID23A	EID22A	EID21A	EID20A	EID19A	EID18A	EID17A	EID16A
EID31A	EID30A	EID29A	EID28A	EID27A	EID26A	EID25A	EID24A

G158
G159
G160
G161

#7	#6	#5	#4	#3	#2	#1	#0
EID7B	EID6B	EID5B	EID4B	EID3B	EID2B	EID1B	EID0B
EID15B	EID14B	EID13B	EID12B	EID11B	EID10B	EID9B	EID8B
EID23B	EID22B	EID21B	EID20B	EID19B	EID18B	EID17B	EID16B
EID31B	EID30B	EID29B	EID28B	EID27B	EID26B	EID25B	EID24B

G170
G171
G172
G173

#7	#6	#5	#4	#3	#2	#1	#0
EID7C	EID6C	EID5C	EID4C	EID3C	EID2C	EID1C	EID0C
EID15C	EID14C	EID13C	EID12C	EID11C	EID10C	EID9C	EID8C
EID23C	EID22C	EID21C	EID20C	EID19C	EID18C	EID17C	EID16C
EID31C	EID30C	EID29C	EID28C	EID27C	EID26C	EID25C	EID24C

G182	
G183	
G184	
G185	

#7	#6	#5	#4	#3	#2	#1	#0
EID7D	EID6D	EID5D	EID4D	EID3D	EID2D	EID1D	EID0D
EID15D	EID14D	EID13D	EID12D	EID11D	EID10D	EID9D	EID8D
EID23D	EID22D	EID21D	EID20D	EID19D	EID18D	EID17D	EID16D
EID31D	EID30D	EID29D	EID28D	EID27D	EID26D	EID25D	EID24D

2.11.3.5 轴控制指令阅读信号

EBUFg (G142.7), (G154.7), (G166.7), (G178.7)

●信号类型: PLC->NC

●信号功能: 指令 CNC 阅读用于 PLC 轴控制的指令数据程序段。该信号从"0"变为"1"或从"1"变为"0"时,其详细运行情况见"基本步骤"。

●信号地址:

G142
G154
G166
G178

#7	#6	#5	#4	#3	#2	#1	#0
EBUFA							
EBUFB							
EBUFC							
EBUFD							

2.11.3.6 轴控制指令阅读完成信号

EBSYg (F130.7), (F133.7), (F136.7), (F139.7)

●信号类型: NC->PLC

●信号功能:通知系统, CNC 已经阅读了 PLC 轴控制的一个指令数据程序段,并已经存储在输入缓冲区。对输出条件和步骤的详细情况,看"基本步骤"。

●信号地址:

F130
F133
F136
F139

#7	#6	#5	#4	#3	#2	#1	#0
EBSYA							
EBSYB							
EBSYC							
EBSYD							

2.11.3.7 复位信号

ECLRg (G142.6) (, G154.6), (G166.6), (G178.6)

●信号类型: PLC->NC

●信号功能:复位相应的 PLC 控制轴。

当这个信号为"1"时,执行下述的操作:

- (1) 当刀具正沿轴运动时:减速并停止刀具。
- (2) 当刀具正在暂停时:停止操作。
- (3) 当辅助功能正在执行时:停止操作。

同时,所有缓冲的指令都被清除。当这个信号设置为"1"时,忽略任何控制指令。

连续进给指令(EC0g 到 EC06g: 06h)能用设置复位信号 ECLRg 到"1"结束执行。当这些指令被结束时,伺服电机减速并停止,轴运动信号 EGENg 设置为"0",并且控制轴选择状态信号*EAXSL 变为"0"。直到控制轴选择状态信号*EAXSL 变为"0"之前,不要使复位信号 ECLRg 为"0"。

速度指令(EC0g 到 EC6g: 10h)也能用设置复位信号为"1"来结束。当这个指令被结束时,伺服电机减速并停止,并且轴正在移动信号 EGENg 设置为"0"。在发出下个指令之前,应确认轴正在移动信号 EGENg 已经为"0"。直到轴正在移动信号 EGENg 为"0"之前,不要设定复位信号 ECLRg 为"0"。

●信号地址:

G142
G154
G166
G178

#7	#6	#5	#4	#3	#2	#1	#0
	ECLRA						
	ECLRB						
	ECLRC						
	ECLRD						

2.11.3.8 轴控制暂停信号

ESTPg (G142.5), (G154.5), (G166.5), (G178.5)

- ●信号类型: PLC->NC
- ●信号功能: 当这个信号设置为"1"时,执行如下操作:
 - (1) 当刀具正在沿轴运动时,减速并停止刀具。
 - (2) 当刀具正在暂停时:停止操作。
 - (3) 当辅助功能正在执行时: 当辅助功能完成信号 EFINg 输入时,停止操作。设定这个信号到"0",被停止的操作能重新开始。
- ●信号地址:

G142
G154
G166
G178

#	7 #6	#5	#4	#3	#2	#1	#0
		ESTPA					
		ESTPB					
		ESTPC					
		ESTPD					

2.11.3.9 程序段停止信号

ESBKg (G142.3), (G154.3), (G166.3), (G178.3)

- ●信号类型: PLC->NC
- ●信号功能:在 PLC 发出的指令的执行期间,当程序段停止信号 ESBKg 设为"1"时,正在执行的程序段完成之后,轴控制停止。当这个信号设为"0"时,执行被缓存的指令。指令操作的时序图表示如下:

●信号地址:

G142
G154
G166
G178

#7	#6	#5	#4	#3	#2	#1	#0
				ESBKA			
				ESBKB			
				ESBKC			
				ESBKD			

2.11.3.10 程序段停止无效信号

EMSBKg(G143.7), (G155.7), (G167.7), (G179.7)

●信号类型: PLC->NC

●信号功能: 当程序段停止无效信号 EMSBKg 在该程序段设置为"1"时,程序段停止信号 ESBKg 无效。

●信号地址:

G143
G155
G167
G179

#7	#6	#5	#4	#3	#2	#1	#0
EMSBKA							
EMSBKB							
EMSBKC							
EMSBKD							

2.11.3.11 辅助功能代码信号

EM11g~EM48g (F132, F142), (F135, F145), (F138, F148), (F141, F151)

●信号类型: NC->PLC

●信号功能: 当辅助功能指令(EC0g 到 EC6g: 12h)、第 2 辅助功能指令(EC0g 到 EC6g: 14h) 或第 3 辅助功能指令(EC0g 到 EC6g: 15h)由 PLC 发出时,辅助功能代码以 1 字节 (使用信号 EID0g 到 EID7g)或 2 字节(使用信号 EID0g 到 EID15g)发出指令,这取决于参数№8001的第 6 位(AUX)的设定。

●信号地址:

F132 F142

#7	#6	#5	#4	#3	#2	#1	#0
EM28A	EM24A	EM22A	EM21A	EM18A	EM14A	EM12A	EM11A
EM48A	EM44A	EM42A	EM41A	EM38A	EM34A	EM32A	EM31A

	#7	#6	#5	#4	#3	#2	#1	#0
F135	EM28B	EM24B	EM22B	EM21B	EM18B	EM14B	EM12B	EM11B
F145	EM48B	EM44B	EM42B	EM41B	EM38B	EM34B	EM32B	EM31B
	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F138	EM28C	EM24C	EM22C	EM21C	EM18C	EM14C	EM12C	EM11C
F148	EM48C	EM44C	EM42C	EM41C	EM38C	EM34C	EM32C	EM31C
	#7	#6	#5	#4	#3	#2	#1	#0
F141	EM28D	EM24D	EM22D	EM21D	EM18D	EM14D	EM12D	EM11D
F151	EM48D	EM44D	EM42D	EM41D	EM38D	EM34D	EM32D	EM31D

2.11.3.12 辅助功能选通信号

EMFg (F131.0), (F134.0), (F137.0), (F140.0)

●信号类型: NC->PLC

●信号功能: 在辅助功能指令(EC0g 到 EC6g: 12h)时,当辅助功能的代码指令送出后,将该

信号置为"1"。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F131								EMFA
F134								EMFB
F137								EMFC
F140								EMFD

2.11.3.13 辅助功能 2 选通信号

EMF2g (F131.2), (F134.2), (F137.2), (F140.2)

●信号类型: NC->PLC

●信号功能: 在第 2 辅助功能指令(EC0g 到 EC6g: 14h)时,当辅助功能的代码指令送出后,将该信号置为"1"。

●信号地址:

F131	
F134	
F137	
F140	

_	#7	#6	#5	#4	#3	#2	#1	#0
						EMF2A		
						EMF2B		
						EMF2C		
ſ						EMF2D		

2.11.3.14 辅助功能 3 选通信号

EMF3g (F141.3), (F151.3), (F161.3), (F171.3)

●信号类型: NC->PLC

●信号功能: 在第 3 辅助功能指令(EC0g 到 EC6g: 15h)时,当辅助功能的代码指令送出后, 将该信号置为"1"。 ●信号地址:

F131
F134
F137
F140

#	7 #6	#5	#4	#3	#2	#1	#0
				EMF3A			
				EMF3B			
				EMF3C			
				EMF3D			

2.11.3.15 辅助功能完成信号

EFINg (G142.0), (G154.0), (G166.0), (G178.0)

●信号类型: PLC->NC

●信号功能: CNC 把辅助功能代码送到辅助功能代码信号 EM11g 到 EM28g 和 EM31g 到 EM48g 中,并等待辅助功能完成信号 EFINg。当辅助功能完成信号 EFINg 返回时,CNC 开始

执行下个程序段。

●信号地址:

G142
G154
G166
G178

#7	#6	#5	#4	#3	#2	#1	#0
							EFINA
							EFINB
							EFINC
							EFIND

2.11.3.16 缓存无效信号

EMBUFg (G142.2), (G154.2), (G166.2), (G178.2)

●信号类型: PLC->NC

●信号功能:在这个信号为"1",且正在执行、等待或输入缓冲区包含一个程序段时,不读来自 PLC 的指令。如果这个信号为"1",当这些缓冲区的任一个包含一个程序段时,程序 段被执行,但仅当所有缓冲区都空时,才读顺序指令。

为了判别缓存无效状态,仅当所有缓冲区是空而读指令时,CNC 输出轴控制指令阅读完成信号 EBSYg。

对于下列指令,无论缓冲无效信号 EMBUFg 状态如何,缓冲均无效:

- (1) 参考位置返回(EC0g 到 EC6g: 05h)
- (2) 第1参考位置返回(EC0g到EC6g: 07h)
- (3) 第2参考位置返回(EC0g 到 EC6g: 08h)
- (4) 第3参考位置返回(EC0g到EC6g: 09h)
- (5) 第4参考位置返回(EC0g到EC6g: 0Ah)
- (6) 机床坐标系选择(EC0g 到 EC6g: 20h)

下面的指令,用复位信号 ECLRg 结束。缓存操作无效时执行。即,后续的程序段不执行而是取消。

- (1) 连续进给(EC0g 到 EC6g: 06h)
- (2) 连续指令(EC0g 到 EC6g: 10h)

指令操作的时序图表示如下:

●信号地址:

G142
G154
G166
G178

_	#7	#6	#5	#4	#3	#2	#1	#0
I						EMBUFA		
ſ						EMBUFB		
ſ						EMBUFC		
ſ						EMBUFD		

2.11.3.17 控制轴选择状态信号

*EAXSL (F129.7)

- ●信号类型: NC->PLC
- ●信号功能: 当信号设置为"0"时,控制轴选择信号 EAX1 到 EAX5 能改变。 在下列情况下这个信号为"1":
 - (1) 当刀具正沿着 PLC 控制轴移动;
 - (2) 当一个程序段正在读进缓冲区时;

当这个信号为"1"时,控制轴选择信号 EAX1 到 EAX5 不能改变。任何企图改变这些信号都导致输出 P/S 报警№139。

●信号地址:

F129

<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
*EAXSL							

2.11.3.18 到位信号

EINPg (F130.0), (F133.0), (F136.0), (F139.0)

- ●信号类型: NC->PLC
- ●信号功能: 当相应的 PLC 控制轴处于在位状态时,这个信号设为"1"。 当刀具减速时,执行到位检查,直到刀具进入在位区才执行下一段指令。然而,使用 参数№8004 的第 6 位(NCI)可跳过到位检查,以减少循环时间。
- ●信号地址:

F130 F133 F136 F139

#7	#6	#5	#4	#3	#2	#1	#0
							EINPA
							EINPB
							EINPC
							EINPD

2.11.3.19 跟踪误差零检查信号

ECKZg (F130.1), (F133.1), (F136.1), (F139.1)

●信号类型: NC->PLC

●信号功能: 当 PLC 的控制轴正在执行跟踪误差零检查或到位检查时,这个信号为"1"。

●信号地址:

F130
F133
F136
F139

#7	#6	#5	#4	#3	#2	#1	#0
						ECKZA	
						ECKZB	
						ECKZC	
						ECKZD	

2.11.3.20 报警信号

EIALg (F140.2), (F150.2), (F160.2), (F170.2)

●信号类型: NC->PLC

●信号功能: 当 PLC 控制轴出现伺服报警、超程报警或 P/S 报警№130 和№139 时,这个信号为 "1"。在报警解除后,当复位信号 ECLRg 为"1"时,这个信号为"0"。如下所述。

伺服报警

消除报警原因,然后复位 CNC。

超程报警

刀具移动到存储行程极限以内的区域,然后复位 CNC。

在超程报警期间,下面的指令能用于把刀具移入存储行程极限以内的区域:

(1) 快速移动 (EC0g 到 EC6g: 00h)

- (2) 每分切削进给(EC0g 到 EC6g: 01h)
- (3) 每转切削进给(EC0g 到 EC6g: 02h)
- (4) 连续进给(EC0g 到 EC6g: 06h)

P/S 报警

复位 CNC。

在上述情况下,复位信号 ECLRg 不能复位 CNC,使用在面板上设置的复位按钮。

●信号地址:

F130
F133
F136
F139

	#7	#6	#5	#4	#3	#2	#1	#0
I						EIALA		
ſ						EIALB		
ſ						EIALC		
ſ						EIALD		

2.11.3.21 轴移动信号

EGENg (F130.4), (F133.4), (F136.4), (F139.4)

●信号类型: NC->PLC

●信号功能: 当刀具根据指令,例如,快速移动(EC0g 到 EC6g: 00h) 和切削进给(EC0g 到 EC6g: 01h) 正沿着 PLC 控制轴运动时,这个信号为"1"。

●注意事项: 当轴的分配完成时,这个信号设置为"0"。在减速期间,这个信号设为"0"。

●信号地址:

F130
F133
F136
F139

#7	#6	#5	#4	#3	#2	#1	#0
			EGENA				
			EGENB				
			EGENC				
			EGEND				

2.11.3.22 辅助功能执行信号

EDENg (F130.3), (F133.3), (F136.3), (F139.3)

●信号类型: NC->PLC

●信号功能: 当由 PLC 指令辅助功能时(EC0g 到 EC6g: 12h),辅助功能代码 EID0g 到 EID15g 被送到辅助功能代码信号 EM11g 到 EM48g,直到辅助功能完成信号 EFINg 返回期间,这个信号为"1"。

指令操作的时序图表示如下:

●信号地址:

ſ	F130
I	F133
I	F136
ľ	F139

#7	#6	#5	#4	#3	#2	#1	#0
				EDENA			
				EDENB			
				EDENC			
				EDEND			

2.11.3.23 负向超程信号

EOTNg (F130.6), (F133.6), (F136.6), (F139.6)

●信号类型: NC->PLC

●信号功能: 当超出负向行程极限时,信号 EOTNg 为"1"。同时,报警信号 EIALg 为"1"。 当超程报警被解除并且复位信号 ECLRg 为"1"时,这些信号为"0"。

●信号地址:

F130
F133
F136
F139

#7	#6	#5	#4	#3	#2	#1	#0
	EOTNA						
	EOTNB						
	EOTNC						
	EOTND						

2.11.3.24 正向超程信号

EOTPg (F130.5), (F133.5), (F136.5), (F139.5)

●信号类型: NC->PLC

●信号功能: 当超出正向行程极限时,信号 EOTPg 为"1"。同时,报警信号 EIALg 为"1"。

当超程报警被解除并且复位信号 ECLRg 为"1"时,这些信号为"0"。

●信号地址:

F130
F133
F136
F139

#7	#6	#5	#4	#3	#2	#1	#0
		EOTPA					
		EOTPB					
		EOTPC					
		EOTPD					

2.11.3.25 进给速度倍率信号

*FV0E~*FV7E (G151)

●信号类型: PLC->NC

●信号功能:像 CNC 进给速度倍率信号*FV0 到*FV7 一样,这些信号用于选择切削进给速度的

倍率。使用参数№8001 的第 2 位 (OVE),设定 PLC 控制轴的倍率与 CNC 无关。 倍率计算方法同 CNC 的一样。当所有信号设为"0"时,倍率被当作是 0%,当全部信

号是"1"也是一样。

●信号地址:

G151

ı	#7	#6	#5	#4	#3	#2	#1	#0
	*FV7E	*FV6E	*FV5E	*FV4E	*FV3E	*FV2E	*FV1E	*FV0E

2.11.3.26 倍率取消信号

OVCE (G150.5)

●信号类型: PLC->NC

●信号功能:参数№8001 的第 2 位(OVE)为"1"时,PLC 的进给倍率与 CNC 无关。设定这

个信号到"1",切削进给倍率固定为100%。这个信号不影响快速移动倍率。

●信号地址:

#7 #6 #5 #4 #3 #2 #1 #0
G150 OVCE

2.11.3.27 快速移动倍率信号

ROV1E, ROV2E (G150.0, G150.1)

●信号类型: PLC->NC

●信号功能:这些信号用于快速移动速度的倍率,设置参数№8001 的第 2 位 (OVE),使 PLC 的快移倍率与 CNC 无关。

快速移动	ि के कि		
ROV2E	ROV1E	倍率值	
0	0	100%	
0	1	50%	
1	0	25%	
1	1	F0	

F0 是用参数№1421 设定的低速度。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G150							ROV2E	ROV1E

2.11.3.28 空运行信号

DRNE (G150.7)

●信号类型: PLC->NC

●信号功能:设置参数№8001 的第 2 位 (OVE),这个信号用于执行空运行与 CNC 无关。

当空运行信号 DRNE 设置为"1"时,指定的快速移动速度和切削进给速度都被忽略,刀具以空运行速度(在参数№1410 中设定)乘以指定的倍率移动。参数№8001 的第 3 位(RDE)用于设定空运行对快速移动有效还是无效。

T-1 H-1+14-1-14 IV P-1	来自 PLC 的指令					
手动快速移动选择信号 	快速移动	切削进给				
1	快速移动速度	最大切削进给速度				
	空运行进给速度×FV 或	空运行进给速度×FV				
0	 快速移动速度					

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G150	DRNE							

2.11.3.29 手动快速移动选择信号

RTE (G150.6)

●信号类型: PLC->NC

●信号功能:在空运行期间,当手动快速移动选择信号 RTE 置为"1"时,刀具以快速移动速度 作快速移动,并且切削进给以最大切削进给速度运动。当信号置为"0"时,刀具以空

运行速度移动。当空运行信号 DRNE 为"0"时,指定的快速移动速度或切削速度被恢复。

●信号地址:

G150

#7	#6	#5	#4	#3	#2	#1	#0
	RTE						

2.11.3.30 倍率 0%信号

EOV0 (F129.5)

- ●信号类型: NC->PLC
- ●信号功能: 当进给倍率是 0%时,这个信号为"1"。
- ●信号地址:

F129

_	#7	#6	#5	#4	#3	#2	#1	#0
ĺ			EOV0					

2.11.3.31 分配完成信号

EADEN1~EADEN5 (F112.0~F112.4)

- ●信号类型: NC->PLC
- ●信号功能: 当刀具用 PLC 指令正在运动时,这些信号设为"0"。除了在运动指令执行期间,由轴控制暂停信号 ESPg 使轴运动暂停,其他情况下刀具不动时,这些信号置为"1"。
- ●信号地址:

F112

#7	#6	#5	#4	#3	#2	#1	#0
			EADEN5	EADEN4	EADEN3	EADEN2	EADEN1

2.11.3.32 缓冲区满信号

EABUFg (F131.1), (F134.1), (F137.1), (F140.1)

- ●信号类型: NC->PLC
- ●信号功能: 当输入缓冲区包含一个指令程序段时,这个信号为"1"。
- ●信号地址:

F131
F134
F137
F140

#7	#6	#5	#4	#3	#2	#1	#0
						EABUFA	
						EABUFB	
						EABUFC	
						EABUFD	

2.11.3.33 控制信号

EACNT1~EACNT5 (F182.0~F182.4)

- ●信号类型: NC->PLC
- ●信号功能: 当控制轴选择状态信号*EAXSL 设置为"1"时,相应被控制轴的信号 EACNTn 置为"1"。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F182				EACNT5	EACNT4	EACNT3	EACNT2	EACNT1

2.11.3.34 PLC 轴扭矩控制方式中信号

TRQM1~TRQM 5 (F190.0~F190.4)

- ●信号类型: NC->PLC
- ●信号功能:表示扭矩控制方式中的轴.

本信号为'1'时,在基于 PMC 轴控制的扭矩控制指令(ECOg~EC6g:11h)中,哪个轴处在扭矩控制方式。

●信号地址:

#7 #6 #5 #4 #3 #2 #1 #0 F190 TRQM5 TRQM4 TRQM3 TRQM2 TRQM1

2.12 2 路径控制(双通道功能)

2.12.1 2 路径控制

功能概述

2路径控制功能,是以同时独立进行最多2项加工为目的一种功能。

在 2 路径同时加工中,要将各自的加工程序事先登录到程序存储器内的每个路径的文件夹里。在进行自动运行时,从登录在各自的文件夹的程序中选择利用路径 1 进行加工的程序和利用路径 2 进行加工的程序,通过启动各路径,同时独立地执行所选的各自的刀架的程序。

当在加工的过程中希望使刀架1和刀架2等待时,使用等待功能。

作为其他 2 路径控制特有的功能,也可以使用路径间干涉检测、均衡切削、同步混合控制、路径间的主轴控制、路径间公共存储器等功能。

对于所有路径而言,LCD/MDI 均只准备一套,对哪一个路径进行 LCD/MDI 的操作和显示要通过路径选择信号来进行切换。

2.12.2 等待 M 代码功能

2.12.2.1 等待中信号

WATO (F63.6)

- ●信号类型: NC->PLC
- ●信号功能: 当程序执行 B 代码后,将对应的 F 代码信号置 1 且 BF 也为 1,然后传给 PLC,进行逻辑控制。有关输出条件和执行过程,请参看以上执行过程的说明。B 指令与代码信号编码对应关系如下:

F33~F30	B指令
F33, F32, F31, 00000000	B00
F33, F32, F31, 00000001	B01
F33, F32, F31, 00000010	B02
F33, F32, F31, 00000011	B03
F33, F32, F31, 00000100	B04
F33, F32, F31, 00000101	B05
F33, F32, F31, 00000110	B06
F33, F32, F31, 00000111	B07
F33, F32, F31, 00001000	B08
•••	•••

●注意事项: B00~B31 以二进制编码的形式给出 B 代码。如 B5 与 00000000, 00000000, 00000000, 00000101 对应, 如上表。

●信号地址:

F30	ı
F31	
F32	

#7	#6	#5	#4	#3	#2	#1	#0
Bbit7	Bbit6	Bbit5	Bbit4	Bbit3	Bbit2	Bbit1	Bbit0
Bbit15	Bbit14	Bbit13	Bbit12	Bbit11	Bbit10	Bbit8	Bbit8
Bbit23	Bbit22	Bbit21	Bbit20	Bbit19	Bbit18	Bbit17	Bbit16

F33	
F7	

Bbit31	Bbit30	Bbit29	Bbit28	Bbit27	Bbit26	Bbit25	Bbit24
BF							

#0

NOWT

2.12.2.2 等待忽略信号

路径公共信号接口 NOWT (G63.1)

- ●信号类型: PLC >NC
- ●信号功能: M 代码等待过程中,当 PLC 将 NOWT 置 1,然后传给 NC,NC 则结束等待状态。该信号为多路 径共用信号。
 - ●信号地址:

	#7	#6	#5	#4	#
G63					

路径单独信号接口 NMWT (G63.7)

- ●信号类型: PLC >NC
- ●信号功能: M 代码等待过程中,当 PLC 将 NMWT 置 1,然后传给 NC,NC 则结束当前通道等待状态。该信号为路径单独信号。
 - ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G63	NMWT							

2.12.3 路径间干涉检查

路径间干涉检测中信号 TICHK (F64.6)

- ●信号类型: NC->PLC
- ●信号功能:信号通知是否在进行路径间干涉检测。

下列情形下成为'1'。

- 在第1路径的刀架和第2路径的刀架上为进行路径间干涉检测的所需条件全都具备时。下列情形下成为'0'。
- 在第1路径的刀架和第2路径的刀架上为进行路径间干涉检测的所需条件一个也没有具备时。。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F64		TICHK						

路径间干涉报警信号 TIALM(F64.7)

- ●信号类型: NC->PLC
- ●信号功能: 当加工零件数到达参数#6713 设定的需要零件数时, PRTSF 信号输出给 PLC; #6713 设定 为 0 时, PRTSF 信号不输出。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F64	TIALM							

2.12.4 同步控制及混合控制

同步控制轴选择信号 SYNC1~SYNC5 (G138.0~G138.4)

- ●信号类型: PLC >NC
- ●信号功能:进行同步控制。

当信号成为'1'时,控制装置执行如下所示动作。对应的轴开始作为从控轴的同步控制。与哪个轴同步,取决于参数(No. 8180)的设定。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0	
G138				SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	

驻留信号 PK1~PK5(G122.0~G122.4)

●信号类型: PLC - >NC

●信号功能:将各轴置于驻留状态。

当信号成为'1'时,控制装置执行如下所示动作。

•将对应的轴设为驻留状态。 若处在同步控制中,则不管是否处在轴移动中而立即有效。

不进行同步控制,即使只将驻留信号设定为'1'也会被忽略。进行同步控制。

当信号成为'1'时,控制装置执行如下所示动作。 对应的轴开始作为从控轴的同步控制。

与哪个轴同步,取决于参数(No. 8180)的设定。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G122				PK5	PK4	PK3	PK2	PK1

混合控制轴移动选择信号 MIX1~ MIX5 (G128.0~G128.4)

●信号类型: PLC - >NC

●信号功能:进行混合控制。

当信号成为'1'时,控制装置执行如下所示动作。

•开始对应轴的混合控制。 与哪个轴混合, 取决于参数(No. 8183)的设定。

注意:

若是参数 MIX (No. 8166#1), 本信号只是路径 1 侧的信号。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G128				MIX5	MIX4	MIX3	MIX2	MIX1

同步/混合/重叠控制中信号 SYN1O~SYN5O (F118.0~F118.4)

●信号类型: NC->PLC

●信号功能:此信号通知各轴处在同步/混合/重叠控制中的事实。

下列情形下成为'1'。

•对应的轴处在同步控制中、混合控制中时

下列情形下成为'0'。

•对应的轴没有处在同步控制中、混合控制中时。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F118				SYN50	SYN40	SYN3O	SYN2O	SYN10

同步主控轴确认信号 SYCM1~SYCM5 (F341.0~F341.4)

●信号类型: NC->PLC

●信号功能:此信号通知各轴为同步主控轴的事实。

下列情形下成为'1'。

•对应的轴是同步主控轴时。

下列情形下成为'0'。

•对应的轴被从同步控制解除时。

●信号地址:

	#7	#6	#5	# 4	#3	#2	#1	#0
F341	TIALM			SYCM5	SYCM4	SYCM3	SYCM2	SYCM1

同步从控轴确认信号 SYCS1~SYCS5(F342.0~F342.4)

●信号类型: NC->PLC

●信号功能:此信号通知各轴为同步从控轴的事实。

下列情形下成为'1'。

•对应的轴是同步从控轴时。

下列情形下成为'0'。

•对应的轴被从同步控制解除时。

●信号地址:

F342 #7 #6 #5 #4 #3 #2 #1 #0
SYCS5 SYCS4 SYCS3 SYCS2 SYCS1

混合轴确认信号 MIXO1~MIXO5(F343.0~F343.4)

●信号类型: NC->PLC

●信号功能:该信号通知各轴是混合轴的事实。

下列情形下成为'1'。

•对应的轴为混合轴时。

下列情形下成为'0'。

•对应的轴被从混合控制解除时。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F343	TIALM			MIXO5	MIXO4	MIXO3	MIXO2	MIXO1

驻留轴确认信号 SMPK1~SMPK5 (F346.0~F346.4)

●信号类型: NC->PLC

●信号功能:此信号通知各轴为同步控制的驻留轴的事实。

下列情形下成为'1'。

•对应的轴是同步控制的驻留轴时。

下列情形下成为'0'。

•对应的轴被从同步控制中解除时,或者驻留被解除时。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F346	TIALM			SMPK5	SMPK4	SMPK3	SMPK2	SMPK1

2.12.5 重叠控制

重叠控制轴选择信号 OVLS1~OVLS5 (G190.0~G190.4)

●信号类型: PLC - >NC

●信号功能: 行重叠控制。

当信号成为'1'时,控制装置执行如下所示动作。

• 对应的轴开始作为从控轴的重叠控制。 将哪个轴作为主控轴,取决于参数(No. 8186)的设定。

●信号地址:

同步/混合/重叠控制中信号 SYN1O~SYN5O(G118.0~G118.4)

●信号类型: PLC - >NC

●信号功能:信号通知各轴处在同步/混合/重叠控制中的事实。

下列情形下成为'1'。

• 对应的轴处在重叠控制中时。

下列情形下成为'0'。

• 对应的轴处在非重叠控制中时。

●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G118				SYN50	SYN40	SYN3O	SYN2O	SYN10

重叠主控轴确认信号 OVMO1~OVMO5 (G344.0~G344.4)

- ●信号类型: PLC >NC
- ●信号功能:此信号通知各轴为重叠主控轴的事实。

下列情形下成为'1'。

•对应的轴是重叠主控轴时。

下列情形下成为'0'。

•对应的轴被从重叠控制解除时。

●信号地址:

G344 #7 #6 #5 #4 #3 #2 #1 #0
| OVMO5 OVMO4 OVMO3 OVMO2 OVMO1

重叠从控轴确认信号 OVSO1~OVSO5 (G345.0~G345.4)

- ●信号类型: PLC >NC
- ●信号功能:此信号通知各轴为重叠从控轴的事实。

下列情形下成为'1'。

•对应的轴是重叠从控轴时。

下列情形下成为'0'。

•对应的轴被从重叠控制解除时。

●信号地址:

G345 #7 #6 #5 #4 #3 #2 #1 #0

OVSO5 OVSO4 OVSO3 OVSO2 OVSO1

2.12.6 路径间主轴控制

路径间主轴指令选择信号 SLSPA (G63.2), SLSPB (G63.3)

●信号类型: PLC - >NC

●信号功能: 定对属于路径1的主轴有效的程序指令的路径。

信号输入	属于有效的路径1的向主轴的
SLSPA <g0063.2></g0063.2>	程序指令
'0'	路径1的主轴指令
'1'	路径2的主轴指令

信号输入	属于有效的路径2的向主轴的
SLSPB <g0063.3></g0063.3>	程序指令
'0'	路径2的主轴指令
'1'	路径1的主轴指令

●信号地址:

路径间主轴反馈选择信号 SLPCA (G64.2), SLPCB (G64.3)

●信号类型: PLC ->NC

●信号功能: 定对属于路径 1/2 的主轴有效的程序指令的路径。

信号输入	在路径1中位置编码器反馈脉
SLPCA <g0064.2></g0064.2>	冲有效的主轴所属的路径
'0'	路径 1 的主轴 PC
'1'	路径 2 的主轴 PC

信号输入 SLPCB <g0064.3></g0064.3>	在路径2中位置编码器反馈脉 冲有效的主轴所属的路径
'0'	路径 2 的主轴 PC
'1'	路径 1 的主轴 PC

●信号地址:

G64

 #7	#6	#5	#4	#3	#2	#1	#0
				SLPCB	SLPCA		

路径间主轴指令确认信号 COSP(F64.5) COSP1(F63.3) COSP2(F63.4)

- ●信号类型: NC->PLC
- ●信号功能:信号通知最后所指令的主轴指令是在哪个路径中的指令的指令。

下列情况下成为'1'。

• 在路径 2 侧发出了主轴指令时。

下列情况下成为'0'。

• 在路径 1 侧发出了主轴指令时。或者,尚未从任一路径发出主轴指令时。

属于路径 1 的轴,在路径 1 和路径 2 的主轴指令有效的状态下,可以判断最后指令的主轴指令是来自哪个路径的指令。

注意:

所谓主轴指令,是指 S 代码指令、最高转速指令 (G50S)、M03/M04/M05、以及周速恒定控制用的指令 (G96,G97)。

●信号地址:

F63
F64

#7	#6	#5	#4	#3	#2	#1	#0
			COSP2	COSP1			
		COSP					

2.12.7 路径选择/任意路径名称显示

路径选择信号 HEAD (G63.0)

●信号类型: PLC - >NC

●信号功能:择将 MDI 面板作为第几个路径用。

基于 MDI 面板的操作,成为通过 HEAD 所指定的相对路径的操作。路径选择信号和所选的路径之间的关系如下所示

路径选择信号	选定的路径
HEAD <g063.0></g063.0>	AGAC HOPETILL.
'0'	路径1
'1'	路径 2

●信号地址:

G63	

#7	#6	#5	#4	#3	#2	#1	#0
							HEAD

2.13 测量

2.13.1 跳过功能

2.13.1.1 跳过功能

跳转信号 SKIPP (G6.6)

SKIP: X0.4 (第 1 路径) / X0.2 (第 2 路径) (X0.2 信号仅在双路径系统时有效)

●信号类型: PLC -> NC

●信号功能:信号使跳过切削结束。也即,指令程序上,

在由 G31 指令的程序段中,将信号成为'1'这一瞬间的位置存储在用户宏程序的变量中,同时结束该程序段的移动指令。

当信号成为'1'时,控制装置执行如下所示动作。

•若是跳过切削 G31 的程序段,读取并存储该时刻的指令轴的当前位置。而且,控制单元使 刀具在该位置停止运动,并取消该程序段的剩余移动量。

●信号地址:

	_	#7	#6	#5	#4	#3	#2	#1	#0
X00					SKIP1		SKIP2		
G06			SKIPP						

2.13.1.2 多步跳过功能

跳转信号 SKIPP (G6.6)

SKIP: X0.4 (第 1 路径) / X0.2 (第 2 路径) (X0.2 信号仅在双路径系统时有效)

- ●信号类型: PLC -> NC
- ●信号功能:此信号使跳过切削结束。也即,指令程序上,

由 G31P1 (即使是 G31 也相同)、G31P2、G31P3、G31P4

任一个指令的程序段中,将信号成为'1'这一瞬间的位置存储在用户宏程序的变量中,同时结束该程序段的移动指令。此外,

在由 GO4、GO4Q1、GO4Q2、GO4Q3、GO4Q4

所指令的程序段中,结束该程序的暂停指令。

上述任一情况下,刀具都在等待相同程序段的其它指令(辅助功能等)完成后进入下一个程序段。 跳过信号中,哪个信号有效,可通过参数(No. 6202~6205)来选择。它们之间并不限于1对1的对应关系,可以以一个跳过信号对多个指令有效的方式进行设定,也可以相反地以多个跳过信号对一个指令有效的方式进行设定。

当信号成为'1'时,控制装置执行如下所示动作。

- 通过在跳过切削(G31, G31P1~G31P4)的程序段设定以及参数选择而设定为对该指令有效时,读取并存储该时刻的指令轴的当前位置。而且,控制单元使刀具在该位置停止运动,并取消该程序段的剩余移动量。
- 通过在暂停(G04, G04P1~G04P4)的程序段设定以及参数选择而设定为对该指令有效时,控制单元在该位置中止暂停,取消剩余的暂停时间。

注意:

- 1、 跳过信号的信号宽幅需要 10msec 以上。
- 2、 跳过信号检测的迟延或偏差,除了 PMC 侧外,只有 CNC 侧为 0~2msec。因此,测量误差为在此 2msec 上加上 PMC 侧的跳过信号传递的迟延或偏差(也包含接收器的迟延或偏差)后,乘以该时刻的进给速度后的值。
- 3、 在检测跳过信号后,使进给停止之前的迟延或偏差为 0~8msec。要计算越程量,还需要考虑加/减速的迟延、伺服的迟延、PMC 侧的迟延。
- 4、 跳过切削 G31P1、G31P2、G31P3、G31P4,相互间只是与跳过信号的对应不同,其他的都完全相同。G31 等同于 G31P1。
- 5、 跳过信号的监视,不是监视其上升沿,而只作为状态进行监视,因此,如果保持"1", 在指令下一个对应的跳过切削或者暂停时,立即将其视为跳过条件已成立。
 - 6、 在参数 XSG (No. 3008#2) 被设定为"1"时,可以对参数(No. 3012) 和参数(No. 3019) 中所

设定的 X 地址任意地分配地址 X004。

●信号地址:

	. <u>-</u>
X00	
G06	

#7	#6	#5	#4	#3	#2	#1	#0
			SKIP1		SKIP2		
	SKIPP						

2.13.2 偿量输入

2.13.2.1 刀具补偿量测量值直接输入(T系列)

这是以手动方式尝试切削工件,通过测量所切削的工件的直径,并将该值原样从 MDI 键盘输入而设定偏置量的一种功能。 首先,以手动方式切削工件的长边方向或者端面。切削结束后,将位置记录信号设定为'1'(机械侧操作面板上设有按钮)时,此时的 X 轴(3 个基本轴的 X 轴)以及 Z 轴(3 个基本轴的 Z 轴)的工件坐标值即被记录在 CNC 内。 而后,退刀,停止主轴,若是长边方向则测量直径,而若是端面则测量离开基准面的长度。(将基准面假设为 Z=0) 在偏置量的显示画面输入此测量值时,CNC 就将输入的值与 CNC 中记录的坐标值之差作为偏置量设定到规定的偏置号处。 另外,退出刀具时,不使设定偏置量的轴移动,而通过只向另外的轴方向退刀,还可以不使用位置记录信号就设定偏置量。 也可使用偏置量设定用的测量值直接输入来使工件坐标系偏移。这在编程时设想的工件坐标系与实际设定的坐标偏离时使用。其方法与偏置量设定用的测量值直接输入相同,但是其差别在于,使用成为基准的刀具切削并进行测量,在工件偏移画面上输入该测量值。

位置记录信号

PRC (G40.6)

- ●信号类型: PLC->NC
- ●信号功能:这是刀具补偿量测量值直接输入时使用的信号。

通过本信号将尝试切削工件时的位置存储在控制装置内部,通过规定的操作,输入测量实际的工件尺寸的值,将其差分作为规定的刀具补偿量予以存储。

当信号成为'1'时,控制装置执行如下所示动作。 捕捉本信号的上升沿,存储该瞬间的 X 轴以及 Z 轴的当前位置。

- 0: 不记录当前位置信号
- 1: 记录当前的位置信号,用于刀具补偿量测量值直接输入

注意:

使用本信号时,请将参数 PRC (No. 5005#2)设定为"1"。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G40		PRC						

2.13.2.2 刀具补偿量测量值直接输入 B(T系列)

只要装设触摸传感器,在手动运行下使刀具接触到触摸传感器,就可以自动地在刀具补偿存储器中设定 刀具补偿量。此外,还可以自动进行工件坐标系偏移量的设定。

刀具补偿量写入方式选择信号

GOQSM (G39.7)

- ●信号类型: PLC->NC
- ●信号功能:选择刀具补偿量的写入方式。

当信号设置为"1"时,在以下条件都满足时,手动刀具测量方式有效。

- 1) 当前工作方式为手动方式或手轮方式;
- 2) 当前工作状态为复位或停止;
- 3) 无急停, 超程, 伺服报警:

当信号设置为"0"时,手动刀具测量无效。清除相关的轴移互锁。

●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
G39	GOQSM							

刀具补偿量写入信号

- (1 路经) +MIT1, +MIT2, -MIT1, -MIT2 (X0.6) +MIT1~+MIT2 (G132.0~G132.1), -MIT1~-MIT2(G134.0~134.1)
- (2 路经) +MIT1, +MIT2, -MIT1, -MIT2 (X0.0) +MIT1~+MIT2 (G1132.0~G1132.1), -MIT1~-MIT2(G1134.0~1134.1)
 - ●信号类型: PLC->NC
 - ●信号功能:禁止与手动运行对应的轴向进给。刀具补偿量写入方式选择信号 GOQSM 为'1'时,在与禁止 手动运行所对应的轴向进给的同时,自动计算对应的轴的刀具形状补偿量,将其设定在刀 具补偿量存储器中。

当系统参数 5004#3 TS4 设置为1时,接触检测信号(刀偏值写入信号)为4点输入。

- +MIT1: 对应 X 轴正方向的手动进给互锁及刀具偏置值写入。
- -MIT1:对应 X 轴负方向的手动进给互锁及刀具偏置值写入。
- +MIT2: 对应 Z 轴正方向的手动进给互锁及刀具偏置值写入。
- -MIT2:对应 Z 轴负方向的手动进给互锁及刀具偏置值写入。

当系统参数 5004#3 TS4 设置为 0 时,接触检测信号(刀偏值写入信号)为 1 点输入。

+MIT1: 自动判断轴进给互锁及刀具偏置值写入。

-MIT1: 未使用。

+MIT2: 未使用。

-MIT2: 未使用。

1 参数 5004#3 TS4=1

手动刀具测量功能有效时,接触检测信号 0:通过4个输入点进行。

由于 988TD 快速输入口不够用,没有 2 个路径对刀仪的 8 个输入口。故只能使用 PMC 的 G 信号进行输入。

参数 5004#3 TS4=1 时, 必须设置参数 5009#0 GSC 为"1"时,选择刀具补偿量写入信号由 PMC 一侧(即 G 信号) 4 个输入信号。

X 轴 Z 轴

+MIT1 (G132.0) +MIT2 (G132.1)

-MIT1 (G134.0) -MIT2 (G134.1)

注意:

参数设置第1轴为X轴,第2轴为Z轴,第3轴为Y轴。

由于与通用轴向互锁功能相关,这样设置才能满足手动对刀的信号要求。

X 轴信号 +MIT1(G132.0) -MIT1(G134.0)

Z轴信号 +MIT2 (G132.1) -MIT2 (G134.1)

Y 轴信号 +MIT3 (G132.2) -MIT3 (G134.2)

2 参数 5004#3 TS4 = 0

手动刀具测量功能有效时,接触检测信号 1:通过 1 个输入点进行。 (默认值 0)

2.1 当参数 5009#0 GSC 设置为 "1"时,选择刀具补偿量写入信号由 PMC 一侧(即 G 信号)1 个输入信号。

X 轴 Z 轴

+MIT1 (G132.0) +MIT2 (G132.0)

-MIT1 (G132.0) -MIT2 (G132.0)

2.2 当参数 5009#0 GSC 设置为 "0"时,选择刀具补偿量写入信号由机床一侧(即 X 信号)输入。这时由于采用快速输入端口,在 1ms 内可以检查到输入信号,收到信号后可立即记录机床坐标,并停止其轴向的移动。 故测量精度较高,并能保护对刀仪。

路径1:

X 轴 Z 轴

+MIT1 (X0.6) +MIT2 (X0.6)

-MIT1 (X0.6) -MIT2 (X0.6)

路径2:

X 轴 Z 轴

+MIT1 (X0.0) +MIT2 (X0.0)

-MIT1 (X0.0) -MIT2 (X0.0)

●信号地址:

路径1:

	X0
Ì	G132
1	G134

#7	#6	#5	#4	#3	#2	#1	#0
	+MIT1						
	-MIT1						
	+MIT2						
	-MIT2						
						+MIT2	+MIT1
						-MIT2	-MIT1

路径 2:

	X0
	G1132
1	G1134

_	#7	#6	#5	#4	#3	#2	#1	#0
I								+MIT1
								-MIT1
								+MIT2
I								-MIT2
							+MIT2	+MIT1
							-MIT2	-MIT1

2.14 矩极控制功能

2.14.1 各进给轴扭矩控制切换信号

TORC1~TORC6 (G191.0~G191.5)

- ●信号类型: PLC -> NC
- ●信号功能:控制各轴切换到扭矩控制状态。此信号被置"1",该轴切换到扭矩控制状态。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
G191			TORC6	TORC5	TORC4	TORC3	TORC2	TORC1

2.14.2 各轴的扭矩控制状态信号

TOR1~TOR6 (F191.0~F191.5)

- ●信号类型: NC->PLC
- ●信号功能:设定各轴是否处于扭矩控制状态,当轴处于扭矩控制状态时,此信号被置"1"。
- ●信号地址:

	<u>#7</u>	#6	#5	#4	#3	#2	#1	#0
F191			TOR6	TOR5	TOR4	TOR3	TOR2	TOR1

2.14.3 各轴的扭矩到达信号

TRQ1~TRQ6 (F192.0~F192.5)

- ●信号类型: NC->PLC
- ●信号功能:设定轴处于扭矩到达状态。由总线伺服输入,该轴处于扭矩到达状态时,此信号被置"1"。
- ●信号地址:

	#7	#6	#5	#4	#3	#2	#1	#0
F192			TRQ6	TRQ5	TRQ4	TRQ3	TRQ2	TRQ1

2.14.4 设定扭矩控制轴信号

TRQA1~TRQA6 (F193.0~F193.5)

- ●信号类型: NC->PLC
- ●信号功能:设定该轴处于扭矩控制状态。该轴处于扭矩控制状态时,此信号被置"1"。
- ●信号地址:

	_	#7	#6	#5	#4	#3	#2	#1	#0
F193				TRQA6	TRQA5	TRQA4	TRQA3	TRQA2	TRQA1

第三章 程序的编制

3.1 顺序的程序结构

顺序程序是指对机床及相关设备进行逻辑控制的程序,程序按照梯形图的顺序逐步执行。在传统的 PLC 中,梯形图顺序编制。而 GSK988TD 的 PLC 集成了传统 PLC 和现代结构化编程的思想,采用结构化编程的方法,编程中可以使用子程序、子程序嵌套和条件分支等方法,相对传统的 PLC 具有明显的优点。

3.1.1 子程序

在 PLC 程序中,可以根据编程的需要执行调用子程序命令,调用特定的子程序。如下图所示,在主程序中,当触点 RO. 0 闭合时,调用子程序 P32 和 P36。

```
    网络 4

    机床面板按键输入信号转存到R

    R0.0
    P32

    一個
    CALL

    网络 5
    手动换刀信号处理

    R0.0
    P36

    CALL
```

3.1.2 子程序嵌套

GSK988TD 的 PLC 程序可实现 20 级子程序嵌套,如下图所示,主程序中触点 R0.0 闭合时,调用子程序 P13;在子程序 P13 中,触点 R20.3 或 R20.4 闭合时,调用子程序 P14。

```
      网络 17

      手动轴移动处理

      R0.0
      P13

      CALL

      网络 18

      手动回零处理
      P15

      CALL
```

```
网络 1
5个轴移动信号读入
R20.3: 增量/手轮/手动工作方式
R20.4: 机械回零工作方式
R20.3
P14
R20.4
```

3.1.3 条件分支

主程序循环执行时,判断设定条件是否满足,满足则执行相应的子程序,否则顺序执行。

3.2 程序的执行过程

编制好的程序(梯形图程序)通过串口或 U 盘下载到 CNC 中,CNC 再次上电后,读入此梯形图,将其转换成 CNC 可以识别的某种格式,CPU 即对其进行译码和运算处理,然后执行。

由于 PLC 顺序控制由软件来实现, 所以和一般的继电器电路的工作原理有所区别, 因此在设计 PLC 顺序程序时应充分理解顺序控制的原理。

在一般的继电器控制电路中,各继电器在时间上完全可以同时动作。如下图所示,当条件满足时,Y0.3 和 Y0.4 可同时输出;在 PLC 顺序控制中,各输出依次动作,当 R0.1 闭合,且 R2.5 和 R2.6 均闭合时, Y0.3 先输出,然后延迟很短的时间后,Y0.4 输出,即各输出按梯形图中的顺序(编辑次序)依次动作。

3.2.1 程序的循环执行

PLC 从梯形图的开头执行直至梯形图的结尾,运行结束之后,再次从梯形图的开头重新执行,这被称作顺序程序的循环执行。

从梯形图的开头执行直至结尾的执行时间称为循环处理周期。处理周期越短,信号的响应能力就越强。

3.2.2 程序执行的优先次序

GSK988TD 系列 PLC 程序分为两部分:第一级程序和第二级程序,第一级程序执行必须小于 600 步。它们的执行周期不一致。第一级程序每 8(ms)执行一次,处理响应快的短脉冲信号;第二级程序每 8n(ms)执行一次,n 为第二级程序的分割数。在开始执行第二级程序时,PLC 会根据执行程序所需要的时间自动把二级程序分割成 n 块,每个 8(ms) 只执行其中一块。

第二级程序的分割是为了执行第一级程序,当分割数为 n 时,程序的执行过程如下图所示;其中 T11、T12、T1n 分别为第 n 次循环执行时,每 8ms 中执行第一级程序所需要的时间。T21、T22、T2n 为 1 次循环执行时,执行第二级程序的第 1 块、第 2 块、第 n 块分割部分所需要的时间。Tc1、Tc2、Tcn 分别为 1 次循环执行时,每 8ms 中被 CNC 占用的时间。

当第二级程序被分割的最后一部分被执行完毕后,程序返回开头重新执行,第一级程序每 8ms 执行一次,第二级程序的第 n 块每 8n (ms) 执行一次,一个循环的执行时间需要 8n (ms)。

3.3 输入/输出信号的处理

输入输出信号的处理如下图所示,机床 I/O 端 X 信号和 NC 的 F 信号分别输入到 PLC 的机床侧输入存储器和 NC 侧输入存储器,直接被第一级程序采用;同时又分别输入到机床侧同步输入存储器和 NC 侧同步输入存储器,被第二级程序采用。第一级程序和第二级程序的输出信号分别输出到 NC 侧输出存储器和机床侧输出存储器中,然后分别输出到 NC 和机床的 I/O 端。

NC 侧输入存储器、NC 侧输出存储器、机床侧输入存储器和机床侧输出存储器的信号状态由诊断界面显示。

3.3.1 输入信号的处理

A: 第一级程序中采用的输入信号:

NC 侧输入存储器每隔 8ms 扫描并存储来自 NC 的 F 信号, 执行一级程序时, 直接引用这些信号的状态。 机床侧输入存储器每隔 8ms 扫描并存储来自机床侧的输入信号 X, 执行一级程序时直接引用这些信号。

B: 第二级程序中采用的输入信号:

PLC 第二级程序中的输入信号是经过锁存的第一级程序中的输入信号,第一级程序直接采用 F 信号和 X 信号,故第二级程序中的输入信号比第一级程序中的输入信号滞后,最长可滞后一个二级程序的执行周期。

C: 第一级程序和第二级程序中输入信号状态的区别:

在 PLC 读输入信号的过程中,即使是同一个输入信号,在第一级程序和第二级程序中的状态也有可能不同,因为 PLC 在执行时,第一级程序读 NC 侧输入存储器和机床侧输入存储器,而第二级程序读 NC 侧同步输入存储器和机床侧同步输入存储器,在第二级程序中的输入信号比第一级程序中的输入信号滞后,最长可以滞后 8nms(一个二级程序的执行周期),在编制程序时需要注意这点。

3.3.2 输出信号的处理

A: 输出到 NC 的信号

PLC 每隔 8ms 将输出信号传送至 NC 侧输出存储器中, NC 侧输出存储器直接将信号输出给 NC。

B: 输出到机床的信号

PLC 直接将输出信号传送到机床侧输出存储器中,机床侧输出存储器每隔 2ms 将信号输出给机床。

3.3.3 短脉冲信号的处理

一级程序仅用来处理短脉冲信号,但是当短脉冲信号的变化小于 8ms 时,即在执行一级程序时,输入信号状态有可能发生变化,有可能使程序错误执行。

解决的是方法是在读入该信号时,用内部继电器 R 保存,在接下去的该周期 PLC 程序扫描中,使用缓存的 R 信号作为短脉冲信号的状态。这样可以保证 PLC 在单个扫描周期内外部信号的逻辑状态一致。

3.3.4 信号的互锁

在顺序控制中,从安全方面考虑,必须采取必要的软互锁。同时在机床侧强电柜的继电器控制电路中也 应该采取必要的硬互锁。这是因为即使在顺序程序中逻辑上采取了互锁,但在执行顺序程序的硬件发生故障 时,互锁会失效。因此,在机床侧强电柜中采取互锁可保障操作者的安全并防止机床的损坏。

3.4 程序的编制

程序的编制从编辑梯形图开始,梯形图由继电器触点、符号和功能指令代码构成,梯形图中所表示的逻辑关系构成顺序程序,编辑顺序程序的方法有两种,一种输入方法是使用编程指令,另一种方法是使用继电器符号,通过相应的继电器触点、符号和功能指令符号编辑顺序程序。在使用继电器符号方法时,可以使用梯形图格式而不用理解助记符语言。

在实际的程序编辑过程中,在理解了功能要求后,可以使用梯形图编程方法进行编程,来实现逻辑控制。 梯形图编程时一般分以下几个步骤来完成。

3.4.1 分配接口

在确定了控制对象并计算出对应的输入/输出信号的点数后,即可分配接口。在分配接口时,请参考 GSK988TD 系列相关说明书的输入/输出接口信号表。

3.4.2 编制梯形图

通过梯形图编辑软件 GSKL adder,用梯形图将机床所需的控制动作表示出来。编辑完成的梯形图通过串口或 U 盘下载到 CNC 中,以便 CNC 的读入与执行。

3.4.3 调试梯形图

将编制好的梯形图下载到 CNC 后,可用下列方法调试梯形图程序:

A: 用仿真器调试

用一个仿真器(有灯和开关组成)替代机床。用开关的开和闭表示机床的输入信号状态,用灯的亮和灭来表示输出信号的状态。执行 CNC 功能,观察仿真器上各种灯的状态是否正确。

B: 利用 CNC 诊断调试

执行 CNC 的不同功能,观察各信号的诊断状态是否和功能要求的一致。依次分别检查每一个功能,可检验梯形图是否正确。

C: 通过实际运行调试

在实际机床上调试,由于可能会发生意想不到的情况,因此在调试前应做好防范措施。

第四章 GSKLadder软件介绍

4.1 界面介绍

•主菜单

所有软件操作命令

•基本工具条 常用操作命令

•梯形图编辑工具条 梯形图编辑时的操作命令 •梯形图视图工具条 用于设置梯形图的显示风格

•视图切换标签 方便用户在不同的视图框架窗口之间切换•工程管理窗 在此窗口实现对工程内各种配置的管理•信息输出窗 输出梯形图编译信息及查找内容信息等

•用户编辑区 在此区域根据用户的选择显示不同类型的视图,使用户可以执行各种操作,如梯

形图编程,符号和初始化数据编辑等

•状态栏 显示工具提示信息、键盘状态和当前光标位置等

4.2 主菜单命令

4.2.1 文件菜单

[新建]

执行新建命令后,会生成一个名称为"GSKLad#"('#'为数字)的工程,在用户进行保存之前该工程并没有储存于硬盘中,所以新建后用户需要按"保存"将其保存到硬盘中,这时会弹出与执行[另存为]命令时类似的对话框,设置好名称和路径后点击确定保存。

[打开工程]

打开一个存储在硬盘上的工程。可用快捷键[Ctrl+O]或鼠标点击基本工具栏上的 ☑ 。执行该命令后,弹出打开文件对话框,选择好工程文件*.ld2 后,点击[打开]按钮可以打开工程。

[关闭工程]

关闭当前打开的工程。如未保存当前工程,程序会提示用户是否在退出前保存当前工程。

[保存工程]

保存当前打开的工程。可使用快捷键[Ctrl+S]或点击基本工具栏上的。

[工程另存为]

将当前工程保存为另一个备份,并将另存的工程设置为打开。执行该命令时,会弹出保存文件对话框,设置好名称和路径后点击"保存"保存文件。

[打印]

打印当前文件。可使用快捷键[Ctrl+P]或点击基本工具栏上的 3。执行该命令将弹出打印设置窗口,除了设置打印机外,用户还可以选择打印哪些内容,如果单独选中"梯形图",还可以在右边的列表中选择打印哪些程序块。

[打印预览]

不进行打印,先在屏幕上预览打印效果。在不同的视图下预览的内容是不同的,比如在梯形图视图中预览的是梯形图,而在符号表视图中预览则只有符号。如果预览的是梯形图,则预览的梯形图显示风格跟当前视图中的风格是一样。

[最近打开文件列表]

即[打印设置]菜单下面列出文件名的选项。可列出4个最近打开的工程,直接单击文件名可打开对应工程。

[退出]

退出当前应用程序。如未保存当前工程,程序会提示用户是否在退出前保存当前工程。

4.2.2 编辑菜单

需要注意的是,"编辑"菜单的最后三项"插入/删除"、"基本元件"和"功能指令"只有当前是梯形图 视图时才会出现。

[撤消]

撤消最近的修改,最多可撤消最近二十次的修改。可用快捷键[Ctrl+Z]或单击基本工具条中的。

[重做]

重做最近被撤消的操作,当撤消后用户又进行了新的修改,则不能重做。可用快捷键[Ctrl+Y]或单击基本工具条中的。

[剪切]

删除选择的内容,并将其复制到剪贴板中。可用快捷键[Ctrl+X]或单击基本工具条中的。

[复制]

将选择的内容复制到剪贴板中。可用快捷键[Ctrl+C]或单击基本工具条中的。

[粘贴]

将剪贴板中的内容粘贴到选择位置。可用快捷键[Ctrl+V]或单击基本工具条中的。

[查找]

在当前视图中查找字符串和地址等内容。可用快捷键[Ctrl+F]或单击基本工具条中的。在梯形图视图和 在其他视图中执行该命令所弹出的窗口有点区别,在梯形图视图中弹出的窗口可以选择查找类型,而在其他 视图弹出的查找窗口没有此选项,只能以默认的字符串的方式进行查找。

在编辑框中输入查找内容,然后设定查找条件,执行[查找下一个],如果找到则光标被定位在查找到的位置;如果执行[查找全部],则查找结果在信息输出窗口中显示,双击输出窗口中的文本可以跳转到相应的查找位置。如下图。

在梯形图视图中查找,会根据输入的字符串判断查找的参数类型(常数、地址或符号),然后只查找这一类的参数。"完全匹配"和"区分大小写"等查找选项只有当查找符号或者查找功能指令时才起作用,如果输入是地址,则"区分大小写"这一选项无效;如果输入的是常数,则"完全匹配"和"区分大小写"这两项都无效。查找地址时,像"x0.1"和"X0000.1"这两种地址的写法虽然不同,但其表示的地址是一样的,所以其查找结果是一样的。

如果在表格视图中查找,则无论输入什么内容都以字符串处理。

[替换]

在当前视图中用新的内容替换指定条件的内容。可用快捷键[Ctrl+H]。执行该命令将弹出如下图的替换对话框。

替换		? 🛛
查找内容(M):	XO. 1	查找下一个 (2)
替换为 (g):	X1.0	替换 (R)
厂 全字匹配 (v)	全部替换(A)
厂 区分大小写		取消

替换对话框中的查找功能跟[查找]中所介绍的方法中一样的。只有目标位置的内容符号查找条件,且用于替换的内容代入目标位置后是合法的,才能成功替换。例如不能用地址去替换常数,或者用位地址去替换字节地址,反之亦然。

[转到]

跳转到当前视图指定的位置。可用快捷键[Ctrl+G]或单击基本工具条中的□。执行该命令将弹出转到对话框,而在梯形图弹出的对话框和在其他视图中弹出的对话框是不一样,如下面两图:

在梯形图视图下的对话框可以选择(或输入)网络位置和行位置。行位置除了可以网络中的某一行以外,还可以是网络标题,默认情况下是网络标题。选择好跳转位置后,按[确定]光标就可以滚动到指定的位置。

在表格视图下的对话框只能选择跳转到表格的哪一行。选择好行号以后按[确定],表格滚动到目标位置。

[插入/删除]

执行梯形图中的插入和删除操作,弹出菜单如下图:

----[删除元件]

删除光标位置上的梯形图元件。可用快捷键[Delete]或单击梯形图编辑工具条中的╬。。

----[删除竖线]

删除光标位置左边的竖线。可单击梯形图编辑工具条中的┷→。

----[插入行(上)]

在当前光标位置的上方插入一行。可用快捷键[Ctrl+T]。

----[插入行(下)]

在当前光标位置的下面插入一行。可用快捷键[Ctrl+R]。

----[插入网络(上)]

在当前光标位置所处网络上方插入网络。可用快捷键[Ctrl+U]。

----[插入网络(下)]

在当前光标位置所处网络下面插入网络。可用快捷键[Ctrl+I]。

----[删除行]

删除当前光标位置所在行,如果当前网络只有一行,则删除后会自动插入一空行。

----[删除区域]

删除当前选择区域,可用快捷键[Delete]。如果删除后当前程序块为空则会自动插入一网络。

----[删除当前网络]

删除当前光标位置所处网络。

[基本元件]

梯形图中添加基本元件,弹出菜单如下图:

----[触点]

在选中位置添加触点(常开/常闭)。可用快捷键[F1]或单击梯形图编辑工具条中的¹. 执行操作命令会在屏幕中央弹出对话框,设置触点类型及地址或符号。

----[线圈]

在选中位置添加输出线圈。可用快捷键[F2]或单击主梯形图编辑工具条中的◆。执行操作命令会在屏幕中央弹出对话框,设置线圈类型及地址或符号。

----[横线]

在选中位置添加横线。可用快捷键[F4]或单击主梯形图编辑工具条中的→。

----[竖线]

在选中位置的左边添加下拉的竖线。可用快捷键[F5]或单击梯形图编辑工具条中的↓。

----[并联触点]

在选中位置添加触点并在其左右两端上拉竖线,使其与上一行的元件并联。可用快捷键[F6]或单击梯形图编辑工具条中的↓。

----[功能指令]

在梯形图中添加功能指令,弹出菜单如下图:

----[分类子菜单]

有[位输出]、[标号/跳转]、[定时/计数]、[旋转/移位]、[整数数学运算]五个分类子菜单,每个子菜单下面都包含多个功能指令,当选择某个指令时将弹出该功能指令的编辑窗口,填写完整以后按[确定] 完成编辑,则该指令被添加到目标位置上。以 SET 指令为例,选择: [编辑]—[功能指令]—[位输出] —[SET],将弹出如下图的辑窗口。窗口的左边是参数列表,在表格的第二列中输入参数值,当参数值设置有误时将用红色显示该参数: 窗口的右边是参数注释,当在左边的列表中选中某个参数时,将在此处显示参数的注释。

----[所有功能指令]

在选中位置添加功能指令。可单击主梯形图编辑梯形图编辑工具条的**□**。执行该命令将弹出如下图的功能指令选择窗口:

可在对话框左边的列表中选择功能指令,也可以直接在编辑框中输入功能指令的名称。双击列表框中的选项或者按[确定]弹出功能指令的编辑窗口,其效果跟执行分类子菜单中的命令是一样的。

4.2.3 查看菜单

该菜单中的最后一项[梯形图]只有当前视图是梯形图时才会出现。

[工程管理器]

显示/不显示工程管理器窗口。

[信息输出窗]

显示/不显示信息输出窗口。

[工具栏]

显示/不显示工具栏。弹出菜单如下:

----[基本工具栏]

显示/不显示基本工具栏。

----[梯形图视图工具栏]

显示/不显示梯形图视图工具栏。

----[梯形图编辑工具栏]

显示/不显示梯形图编辑工具栏。

[状态栏]

显示/不显示主窗口框架下面的状态栏。

[梯形图]

有关梯形图查看的一些设置。弹出菜单如下:

----[显示地址类型]

设置梯形图中的参数的显示方式,有"地址"、"符号"、"地址:符号"三种方式。也可以通过梯形图视图工具栏的组合框进行设置。选择地址时,所有可以以地址显示的参数都以地址显示,如果某个参数是符号且该符号找不到对应的地址,则仍然以符号显示该参数,否则转化为地址后以蓝色显示;选择符号时,所有

属于符号类型的参数都以符号显示,而其他不能以符号显示的参数就根据其参数类型显示,即地址参数显示为地址,常数则显示为数字。

地址显示方式如下图:

符号显示方式如下图:

```
网络 1
xxx zzz X1.0
yyy
SET
```

地址: 符号显示方式如下图:

----[缩放比例]

设置梯形图的显示缩放比例,有 75%、100%、125%、150%、175%五种缩放比例。也可以通过梯形图视图工具栏的组合框进行设置。

----[网络标题]

显示/不显示网络标题。可按梯形图视图工具栏的__。

----[网络注释]

显示/不显示网络注释。可按梯形图视图工具栏的≦。

4.2.4 PLC 菜单

[编译]

编译当前的梯形图程序。可用快捷键 F9 或者按基本工具栏的。编译后的信息将在信息输出窗口中输出,双击输出窗口中的错误或警告信息将跳转到发生该错误的地方。

4.2.5 工具菜单

[传送至 CNC]

将当前工程中的文件传送到 CNC 储存。

[从 CNC 读入]

将 CNC 上的 PLC 文件传送到 PC 机。

[通讯设置]

设置串口的参数,包括选择串口号,及通讯的波特率。

4.3 主菜单命令

4.3.1 基本工具栏

- 复制选中区域
- **造**在选中区域粘贴
- **划**撤消最后一步步操作
- 重新执行先前已撤消的操作
- **运** 跳转到当前视图指定的位置
- **着**查找指定的正文
- 梯形图编译
- 传送当前工程至 CNC
- 从 CNC 读入 PLC 文件
- ₹ 显示程序信息、版本号和版权

4.3.2 梯形图编辑工具栏

- → 在光标处添加触点(快捷键 F1)
- 在光标处添加并联触点
- ← 在光标处添加输出线圈 (快捷键 F2)

4.3.3 梯形图视图工具栏

显示地址类型选择组合框:

用于设置梯形图中的参数的显示方式,有"地址"、"符号"、"地址:符号"三种方式。选择地址时,所有可以以地址显示的参数都以地址显示,如果某个参数是符号且该符号找不到对应的地址,则仍然以符号显示该参数,否则转化为地址后以蓝色显示;选择符号时,所有属于符号类型的参数都以符号显示,而其他不能以符号显示的参数就根据其参数类型显示,即地址参数显示为地址,常数则显示为数字。

缩放比例选择组合框:

设置梯形图的显示缩放比例,有75%、100%、125%、150%、175%五种缩放比例。

4.4 软件的使用

工程管理器是树状结构,其根节点是工程名称,根节点下有六个一级树节点[梯形图]、[符号表]、[数据设置表]、[显示信息表]、[引用索引表]、[梯形图版本信息]。

[梯形图]

下面由[一级程序]、[二级程序]和[子程序]组成,而[子程序]下面的节点个数不定,可以通过增删子程序来添加和删除节点。

[符号表]

下面由[程序块符号]和一些用户自定义的符号表节点组成。其中[程序块符号]节点是固定的,自定义的符号表节点个数跟符号表的个数有关系。

[数据设置表]

下面由[K 值设置]和一些用户自定义的数据表节点组成。其中[K 值设置]节点是固定的,自定义的数据表节点个数跟数据表的个数有关系。

[显示信息表]

没有分支树节点,不能向其添加子节点,也就是说显示信息表只有唯一的一个。

[引用索引表]

有三个子节点:[索引]、[位使用]、[字节使用],这三个节点是固定的,不能删除和编辑,而且不能向引用索引表新增子节点。

[梯形图版本信息]

也是一个固定的节点,没有子节点。

4.4.1 视图的打开和切换

有三种方式可以实现视图之间的切换:双击工程管理器的树节点、执行工程管理器树节点的[打开]菜单、点击用户编辑区顶端的视图框架切换标签和底端的子视图切换标签。

视图框架切换标签

子视图切换标签

通过打开菜单切换视图

4.4.2 梯形图

打开工程后,当前视图将是梯形图程序的一级程序(Level1),可以按照上一节介绍的方法在不同的程序块之间切换或者切换到其他视图框架。各项菜单及工具栏的操作请参照前两章的说明。下面只介绍子程序的创建、重命名、删除、程序块信息的编辑以及添加网络注释。

4.4.2.1 子程序的创建、重命名和删除

创建子程序

在[子程序]节点上右击弹出[插入子程序]菜单,执行该命令则生成一个新的子程序,并在该节点下面添加一个节点和在梯形图视图框架中添加一个子视图。

重命名子程序

展开[子程序]节点,在子节点上右击弹出菜单并执行[重命名],或者在已经获得焦点的子节点上用左键点击一下,则该节点的字符串变为可编辑,修改该字符串,按[Enter]键结束编辑。注意子程序名不能和其他程序块重名,包括一级程序和二级程序。

删除子程序

执行 [删除] 菜单弹出对话框询问是否删除,按确定则获得焦点的节点对应的子程序被删除。

4.4.2.2 修改程序块信息

执行上图的[程序块块信息]菜单则弹出该对话框。编辑完成后按[确定]使修改生效,不想进行修改则按[取消]退出。

4.4.2.3 添加网络注释

在梯形图视图双击网络标题则弹出以下对话框,在编辑框中修改网络注释,编辑完成后按[确定]使修改生效,不想进行修改则按[取消]退出。

4.4.3 符号表

单击[符号表]标签切换到符号表视图框架,利用子视图标签在不同的符号表之间切换。

符号表的主要作用是实现符号和地址的映射,有了这种映射关系用户在编辑梯形图时就可以用符号代替地址。符号表是可以增删的,但"程序块符号"这个表是固定且不可编辑的,它主要是给用户提供子程序名和子程序地址的映射关系,因此子程序名也可以作为一个符号使用(在 CALL 指令中调用)。除了"程序块符号"这个表,用户自己定义其他符号表,下面介绍怎么创建和删除符号表等

4.4.3.1 符号表的创建、重命名和删除

创建符号表

在[符号表]节点上右击弹出[插入符号表]菜单,执行该命令则生成一个新的符号表,并在该节点下面添加一个节点和在符号表视图框架中添加一个子视图。

重命名符号表

展开[符号表]节点,在子节点上右击弹出菜单并执行[重命名],或者在已经获得焦点的子节点上用左键点击一下,则该节点的字符串变为可编辑,修改该字符串,按[Enter]键结束编辑。注意符号表不能和其他符号表重名,包括"程序块符号"表。

删除符号表

执行[删除]菜单弹出对话框询问是否删除,按确定后则获得焦点的节点对应的符号表被删除。

4.4.3.2 符号表的编辑

行的编辑:右键单击符号表的行标题,弹出如下的行编辑菜单。执行[清除该行]则清除被选择的这一行的内容,但不删除这一行;执行[插入一行(上)]则在当前位置的上面插入一行;执行[插入一行(下)]则在当前位置的下面插入一行;执行[删除一行]则删除被选择的这一行。

	符号	1	也 址	注彩
63	DITW	X000	0.6	(DITW)尾座控制输入信号
61	700 2±8025/= 260	vooc	0.5	(ESP)急停輸入信号
6.0	清除该行(C) 插入一行(上)	i (tr.)	0.4	(SAGT)防护门关闭输入信号
66	插入一行(下)	1	0.3	(DECX)X轴减速输入信号
6"	删除一行(0)	<u> </u>	0.2	(BDT)外接跳段输入信号
68	PRES	XUUU	0.1	(PRES)压力低报警信号
69	TCP	X000	0.0	(TCP)刀架锁紧信号

符号输入

符号有格式限制,输入的字符必须是字母、数字、下划线和汉字,而符号的首字符不能是数字,长度不能超过32个字符。符号不允许相同,如果相同即使格式正确也是无效的。如果有相同的符号则提示符号已存在。

地址输入

地址有格式限制,字节地址是:类型(字母)+地址号(数字),位地址是:类型(字母)+地址号(数字)+'.'+位号(数字)。允许输入的类型为: A、X、Y、R、K、F、C、T、D、DT、DC。地址不允许相同,相同的地址以绿色标识。

注释输入

注释有长度限制(127字节),但内容和格式不限,也可以不输入。

有一种特殊情况,只输入地址和注释而不输入符号,这是允许的,这时看作是对地址的一种注释;但相反,如果只输入了符号而不输入地址则是不正确的,这时该符号是无效的。

4.4.3.3 符号的使用

符号的使用很简单,在编辑元件的时候,将符号直接作为参数输入就可以了。符号不一定要定义了才可以使用,也可以先使用未定义的符号,然后才定义该符号。

被输入符号的参数在"地址"视图方式下显示时以蓝色显示该符号所映射的地址,如果该符号无效或未定义则用红色显示该符号。而在"符号"视图方式或"地址:符号"视图方式下显示该符号,参数正确时显示为黑色;符号所映射的地址的类型不是参数所要求的类型则显示为橙色;符号不正确或未定义时显示为红色。

```
网络 1
xxx
yyy
SET
```

4.4.4 数据设置表

单击[数据设置表]标签切换到数据设置表视图框架。数据设置表视图框架有两种不同的编辑界面:参数页和表格。参数页用于 K 值的设置,而表格用于输入 D、DT 和 DC 地址的初始化数据。如果是第一次切换到数据设置表视图则打开的是"K 值设置"视图(图 1-17),"K 值设置"是固定的视图,不能移除。除了"K 值设置"以外,其他的视图皆使用数据设置表格(图 1-18),而且可以自由添加和删除。

4.4.4.1 K 值设置

进行 K 值设置的参数页由多个按列排序的多个参数项组成,每个参数项由序号和数据组成。由于视图区域可能容纳不下全部的参数项,所以参数有可能被分成多页显示,页数和每页的参数项个数根据视图区域的大小而定。使用参数页右下角的旋转按钮或快捷键[PageUp]和[PageDown]进行翻页。在参数页的下面有两行绿色的注释,第一行是位的注释,第二行是在参数项的注释。这些注释并不是被固化在软件中的,而是由用户自行添加的,用户可以在符号表中添加和编辑这些注释。

K 值设置采用位编辑方式,要修改某一位直接用鼠标双击要修改的位,或者将光标移到这一位上再按 [Enter]键。

4.4.4.2 数据设置表(D、DT、DC)的编辑

	地址	数值	最小值	最大值
	DT0000	1000	0	60000
2	DT0001	1000	0	60000
1	清除该行 (C)	3000	0	60000
が插入一行(上)(L) 插入一行(下)(M) 删除一行(D)		1000	100	5000
		5000	1000	60000
		500	100	5000
Ī	DT0006	500	100	5000

行的编辑

右键单击数据设置表的行标题,弹出如下的行编辑菜单。执行[清除该行]则清除被选择的这一行的内容,但不删除这一行;执行[插入一行(上)]则在当前位置上面插入一行;执行[插入一行(下)]则在当前位置下面插入一行;执行[删除一行]则删除被选择的这一行;

地址输入

地址输入和符号表中地址的输入是类似的,不过数据设置表只支持 D、DC、DT 三类地址。

数值输入

如果没有输入最小值和最大值则可以输入从-2147483647 到 2147483647 之间的整数;如果已经输入了最小值和最大值,则输入的数值范围被限定在最小值到最大值之间,小于最小值则赋予最小值,大于最大值则赋予最大值。

最小值输入

如果没有输入最大值则可以输入从-2147483647 到 2147483647 之间的整数;如果已经输入了最大值,则输入的数值范围被限定在-2147483647 到最大值之间,小于-2147483647 则赋予-2147483647,大于最大值则赋予最大值。如果修改最小值以后使得"数值"小于最小值,则将最小值赋予"数值"。

最大值输入

如果没有输入最小值则可以输入从-2147483647 到 2147483647 之间的整数;如果已经输入了最小值,则输入的数值范围被限定在最小值到 2147483647 之间,大于 2147483647 则赋予 2147483647,小于最小值则赋予最小值。如果修改最大值以后使得"数值"大于最大值,则将最大值赋予"数值"。

4.4.4.3 数据设置表的创建、重命名和删除

创建数据设置表

在[数据设置表]节点上右击弹出[插入数据设置]菜单,执行该命令则生成一个新的数据设置表,并在该节点下面添加一个节点和在数据设置表视图框架中添加一个子视图。

重命名数据设置表

展开[数据设置表]节点,在子节点上右击弹出菜单并执行[重命名],或者在已经获得焦点的子节点上用左键点击一下,则该节点的字符串变为可编辑,修改该字符串,按[Enter]键结束编辑。注意不能和其他数据表重名,包括"K值设置"表。

删除数据设置表

执行[删除]菜单弹出对话框询问是否删除,按确定后则获得焦点的节点对应的数据设置表被删除。

4.4.5 显示信息表

单击[显示信息表]标签切换到显示信息表视图。显示信息表只有一个,用户不能增删,且显示信息表只有固定的 200 行,地址从 A0000.0 到 A0024.7,用户不能增加或删除行。报警号的范围从 1000 到 2999 且不可以相同。报警号和显示内容不能只输入一个而不输入另一个,否则在编译预处理时会有警告。

注:报警号 1000 到 1999 为 PLC 报警, 2000 到 2999 为 PLC 提示

4.4.6 引用索引表

单击[引用索引表]标签切换到引用索引表视图。引用索引表是用于统计梯形图中地址的使用和分配情况,它包括"索引"、"位使用"和"字节使用"三个表。这三个表是不可以编辑的,且一般情况下是空的,只有在编译以后才生成相关的信息,而且一旦工程发生任何修改,这三个表的内容就会被清空。

4.4.6.1 索引表

索引表用于显示引用地址的上下文,方便用户查找引用的位置。索引表有五列(图 1-21): 行号、地址、块、位置、上下文。如果双击"地址"或"上下文"列的单元格则跳转到引用该地址的元件位置;如果双击"块"这一列的单元格则跳转到引用地址的程序块;如果双击"位置"这一列的单元格则跳转到引用地址的网络位置。

4.4.6.2 位使用表

位使用表用于指出位地址在梯形图的引用情况。位使用表的行标题指明了位地址的字节部分,后面八列指明了该字节各位的使用情况。如果某一列被用'X'标识,说明该列对应的位地址已经被使用,如"A0000._"这一行的最后一列,即标题为"0"的这一列被用'X'标识,表示位地址 A0000.0 已经被使用。需说明的是,该表格并不列出所有的位地址,只有某一字节至少有一位被引用了才列出,也就是说如果某一个位地址没有被列出,说明该位地址没有被引用。

位	7	6	5	4	3	2	1	0
A0000	Х	X	Х	X	Х	X	X	X
A0001		X	Х	X	Х	X	Х	X
A0002	X	X	X	X	X			X
F0000		X	X	X				
F0001			X		X		X	X
F0002	Х				X			1
F0003		X	X		X	X	Х	X

4.4.6.3 字节使用表

字节使用表用于指出字节地址在梯形图中的引用情况。为了减少表格的长度和方便查找,字节使用表的每一行列出了十个字节地址。行标题指出地址号中除个位数以外的部分,其他十列则是指出地址号的个位数,如"C000_"这一行中列标题为"9"的这一格表示的是地址 C0009。如果某一单元格被用'X'标识,说明该单元格所对应的地址已经被使用。需说明的是,并不是所有的地址都会被列出,如果某个地址没有被列出说明该地址没有被使用。

字节	0	1	2	3	4	5	6	7	8	9
C000_					X					
F001_	X									
F002_			Х				Х			
F020_								X		
F021_						X				
G001_	X		X							
G003_	X		Х							
G004_				X						

4.4.7 梯形图版本信息

双击工程管理的树节点"梯形图版本信息"或用执行右键菜单"打开"则弹出如图 1-25 的程序版本信息编辑对话框。在"梯形图设计"、"梯形图版本"和"备注"三个编辑框分别填入作者、版本和注释等信息,输入没有格式限制但有字数限制,"梯形图设计"不多于个 63 个字符,"梯形图版本"不多于 19 个字符,"备注"不多于个 511 个字符。"梯形图校验"是指整个梯形图文件的 32 位 CRC 检验和,只有当工程没有被修改或者保存修改以后才可以看到该检验和。

附 录

1、G 信号一览表

地址	信号名称	符号	章 节
G4. 3	结束信号	FIN	2. 7. 4. 1
G4. 4	第 2M 功能结束信号	MFIN2	2. 7. 4. 2
G4. 5	第 3M 功能结束信号	MFIN3	2. 7. 4. 2
G5. 0	辅助功能结束信号	MFIN	2. 7. 4. 1
G5. 2	主轴功能结束信号	SFIN	2. 7. 4. 1
G5. 3	刀具功能结束信号	TFIN	2. 7. 4. 1
G5. 6	辅助功能锁住信号	AFL	2. 7. 5. 1
G5. 7	第2辅助功能结束信号	BFIN	2. 7. 6. 2
G6. 0	程序再启动信号	SRN	2. 5. 8. 1
G6. 2	手动绝对值信号	ABSM	2. 5. 7. 1
G6. 4	倍率取消信号	OVC	2. 6. 4
G6. 6	跳转信号	SKIPP	2. 13. 1
G7. 1	起动锁停信号	STLK	2. 2. 7. 1
G7. 2	循环启动信号	ST	2. 5. 1. 1
G7. 4	行程检测3解除信号	RLSOT3	2. 2. 6. 3
G7. 6	存储行程极限选择信号	EXLM	2. 2. 6. 2
G8. 0	所有轴互锁信号	ITL	2. 2. 7. 2
G8. 1	切削程序段开始互锁信号	CSL	2. 2. 7. 3
G8. 3	程序段开始互锁信号	BSL	2. 2. 7. 4
G8. 4	急停信号	ESP	2. 2. 1
G8. 5	进给暂停信号	SP	2. 5. 1. 2
G8.6	复位倒带信号	RRW	2. 5. 2. 3
G8. 7	外部复位信号	ERS	2. 5. 2. 1
G9. 0			
G9. 1		PN1, PN2, PN4, PN8	
G9. 2		, PN16	2. 5. 2. 4
G9. 3			
G9. 4			
G10, G11	手动移动速度倍率信号	JV0~JV15	2. 3. 1. 2
G12	进给速度倍率信号	FV0~FV7	2. 6. 3
G14. 0, G14. 1	快速进给速度倍率信号	ROV1、ROV2	2. 6. 2
G18. 0∼G18. 3	手轮 1 进给轴选择信号	HS1A∼HS1D	2. 3. 2. 1
G18. 4~G18. 7	手轮 2 进给轴选择信号	HS2A∼HS2D	2. 3. 2. 1
G19. 4, G19. 5	手轮 / 单步倍率选择信号	MP1、MP2	2. 3. 2. 2
G19. 7	手动快速进给选择信号	RT	2. 3. 1. 3
G26. 0	第3位置编码器选择信号	PC3SLC	2. 8. 2
G27. 0	第一主轴选择信号	SWS1	2. 8. 2
G27. 1	第二主轴选择信号	SWS2	2. 8. 2
G27. 2	第三主轴选择信号	SWS3	2. 8. 2
G27. 3	第一主轴停止信号	SSTP1	2. 8. 2
G27. 4	第二主轴停止信号	SSTP2	2. 8. 2
G27. 5	第三主轴停止信号	SSTP3	2. 8. 2
G27. 7	主轴轮廓控制切换信号	CON	2. 8. 3. 1

地 址	信号名称		 符 号	章 节
G28. 1, G28. 2	齿轮选择信号		GR1, GR2	2. 8. 1
G28. 7	第2位置编码器选择		PC2SLC	2. 8. 2
G29. 0, G29. 1	第2主轴齿轮选择信号		GR21, GR22	2. 8. 2
G29. 2, G29. 3	第3主轴齿轮选择信号		GR31, GR32	2. 8. 2
G29. 4	主轴速度到达信号		SAR	2. 8. 1
G29. 6	主轴停止信号		SSTP	2. 8. 1
G30	主轴倍率信号		SOVO~SOV7	2. 8. 1
G32. 0∼G33. 3	PLC 输入主轴电机速度指令	令信号	R01I~R12I	2.8.1, 2.8.2
G33. 7	主轴电机速度指令选择信		SIND	2. 8. 2
G34. 0~G35. 3	PLC 输入第2主轴电机速度	度指令信号	R01I2~R12I2	2. 8. 2
G35. 7	第2主轴电机速度选择指令	令信号	SIND2	2. 8. 2
G36. 0∼G37. 3	PLC 输入第3主轴电机速度	度指令信号	R01I3~R12I3	2. 8. 2
G37. 7	第3主轴电机速度选择指率	令信号	SIND3	2. 8. 2
G39. 7	刀具补偿量测试方式选择位	信号	GOQSM	2. 13. 2. 2
G40. 6	位置记录信号		PRC	2. 13. 2. 1
G41. 0 ~ G41. 3	第1手轮中断轴选信号		HS1IA~HS1ID	2. 3. 3
G41. 4 ~ G41. 7	第2手轮中断轴选信号		HS2IA~HS2ID	2. 3. 3
G42. 0 ~ G42. 3	第3手轮中断轴选信号		HS3IA~HS3ID	2. 3. 3
$G43.0 \sim G43.2$			MD1, MD2, MD4,	2. 2. 4. 1
G43. 5、G43. 7	方式选择信号		DNC1、ZRN	
G44. 0	跳过任选程序段信号		BDT1	2. 5. 6. 1
G44. 1	所有轴机床锁住信号		M1K	2. 5. 3. 1
G46. 1	单程序段信号		SBK	2. 5. 5. 1
G46. 3	程序开关信号		KEY	2. 10. 6
G46. 7	空运行信号		DRN	2. 5. 4. 1
G47	刀具组号选择信号		TL01~TL128	2. 10. 4
G48. 2	刀具寿命计数无效信号		LFCIV	2. 10. 4
G48. 5	刀具跳过信号		TLSKP	2. 10. 4
G48. 6	把刀具更换复位信号		TLRSTI	2. 10. 4
G48. 7	换刀复位信号		TLRST	2. 10. 4
G49. 0~G50. 1	刀具寿命计数倍率信号		TLV0~TLV9	2. 10. 4
G54~G57	用户宏程序用输入信号		UI000~UI031	2. 10. 5. 1
G53. 3	用户宏程序用中断信号		UINT	2. 10. 5
G61. 0	主轴刚性攻丝信号		RGTAP	2. 8. 4
G61. 2	主轴刚性攻丝反向信号		RGSPC	2. 8. 4
G61. 4~G61. 6	刚性攻丝主轴选择信号		RGTSP1 ∼ RGTSP3	2. 8. 4
G63. 0	路径选择信号		HEAD	2. 12. 7
G63. 1	等待忽略信号(路径公共位	信号接口)	NOWT	2. 12. 2. 2
G63. 2 、G63. 3	路径间主轴指令选择信号	10 3321-7	SLSPA, SLSPB	2. 12. 6
G63. 5	正交轴倾斜轴控制无效信	묵	NOZAGC	2. 1. 6
G63. 7	等待忽略信号(路径单独位		NMWT	2. 12. 2. 2
G64. 2、G64. 3	路径间主轴反馈选择信号	II 71X II /	SLPCA、SLPCB	2. 12. 6
G70. 0	报警清除信号		ARSTA	2. 12. 0
G70. 1	零速钳位信号		ZSLA	
G70. 1	定向启动信号	}	ORCMA	
G70. 3	刚性收约自动信号	总线式主轴	TAPA	
G70. 3	反向旋转信号	控制信号	SRVA	2. 8. 5
G70. 4 G70. 5	正向旋转信号 (第1主轴)	SFRA	
G70. 5	机械锁紧信号	}	BREFA	
G70. 6		-	HLVA	
	高低速切换信号	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		205
G74. 0	报警清除信号	总线式主轴	ARSTB	2. 8. 5

地址	信号名称	ζ	符号	章 节
G74. 1	零速钳位信号	控制信号	ZSLB	
G74. 2	定向启动信号	(第2主轴)	ORCMB	
G74. 3	刚性攻丝启动信号		TAPB	
G74. 4	反向旋转信号		SRVB	
G74. 5	正向旋转信号		SFRB	
G74. 6	机械锁紧信号		BREFB	
G74. 7	高低速切换信号		HLVB	
G78. 0	报警清除信号		ARSTC	
G78. 1	零速钳位信号		ZSLC	
G78. 2	定向启动信号	¥	ORCMC	
G78. 3	刚性攻丝启动信号	总线式主轴	TAPC	0.0.5
G78. 4	反向旋转信号	控制信号	SRVC	2. 8. 5
G78. 5	正向旋转信号	(第3主轴)	SFRC	
G78. 6	机械锁紧信号		BREFC	
G78. 7	高低速切换信号		HLVC	
G82. 0∼G82. 2		总线式主轴	SONA~SONC	2. 8. 5
		控制信号		
G87.0、G87.1	第 2 手控手轮进给移动	」量选择信号	MP21、MP22	2. 3. 2. 2
	(增量进给信号)			
G87. 3、 G87. 4	第 3 手控手轮进给移动 (增量进给信号)]量选择信号	MP31、MP32	2. 3. 2. 2
G100.0~G100.4			+J1~+J5	2. 3. 1. 1
G102.0~G102.4	进给轴和方向选择信号		-J1∼-J5	2. 3. 1. 1
G104.0~G104.4	41		+EXL1 ~ +EXL5	2. 2. 6. 2
G105. 0~G105. 4	轴方向别存储行程检测	l 切换信号	−EXL1 ~ −EXL5	2. 2. 6. 2
G106. 0∼ G106. 5	镜像信号		MI1~MI6	2. 1. 7
G114.0~G114.4			+L1~+L5	2. 2. 6. 1
G116.0~G116.4	超程信号		-L1∼-L5	2. 2. 6. 1
G118.0~G118.4	同步/混合/重叠控制中信		SYN10~SYN50	2. 12. 5
G122.0~G122.4	驻留信号		PK1∼PK5	2. 12. 4
G126. 0~G126. 4	伺服关断信号		SVF1 [~] SVF5	2. 1. 5
G128. 0~G128. 4	混合控制轴移动选择信号	-	MIX1~ MIX5	2. 12. 4
G130. 0 ~ G130. 4	各轴互锁信号		IT1 ~ IT5	2. 2. 7. 5
G132. 0 ~ G132. 4	不同私力处于炒 户口		+MIT1 ∼ +MIT5	2. 2. 7. 6, 2. 13. 2. 2
G134. 0 ~ G134. 4	不同轴向的互锁信号		-MIT1 ∼ -MIT5	
G136.0~G136.4	PLC 控制轴选择信号		EAX1~EAX5	1. 4. 44、 2. 13. 3. 1
G138.0~G138.4	同步控制轴选择信号		SYNC1~SYNC5	2. 1. 3. 1 、 2. 12. 4
G140.0~G140.4	进给轴同步控制手动进纸	合选择信号	SYNCJ1~SYNCJ5	2. 1. 3. 2
G142. 0	PLC 第1组轴辅助功能完	E成信号	EFINA	1. 4. 44、2. 11. 3. 15
G142. 2	PLC 第 1 组轴缓存无效信		EMBUFA	1. 4. 44、2. 11. 3. 16
G142.3	PLC 第1组程序段结束信		ESBKA	1. 4. 44、2. 11. 3. 9
G142. 5	PLC 第1组轴控制暂停信		ESTPA	1. 4. 44、2. 11. 3. 8
G142. 6	PLC 第1组复位信号		ECLRA	1. 4. 44、2. 11. 3. 7
G142. 7	PLC 第1组控制指令阅读	信号	EBUFA	1. 4. 44、2. 11. 3. 5
G143.0~G143.6	PLC 第 1 组轴控制信号		ECOA~EC6A	1. 4. 44、2. 11. 3. 2
G143. 7	PLC 第1组程序段停止无	效信号	EMSBKA	1. 4. 44、2. 11. 3. 10
G144、G145	PLC 第 1 组轴控制进给速	度信号	EIF0A~EIF15A	1. 4. 44、2. 11. 3. 3
G146~G149	PLC 第1组轴控制数据信	号	EIDOA~EID31A	1. 4. 44、2. 11. 3. 4
G150.0、G150.1	PLC 轴快速移动倍率信号		ROV1E、ROV2E	1. 4. 44、2. 11. 3. 27
G150. 5	PLC 轴倍率取消信号		OVCE	1. 4. 44、2. 11. 3. 26
G150. 6	PLC 轴手动快速移动选择	信号	RTE	1. 4. 44、2. 11. 3. 29

地址	信号名称	符号	章 节
G150. 7	PLC 轴空运行信号	DRNE	1. 4. 44、2. 11. 3. 28
G151	PLC 轴进给速度倍率信号	FV0E∼FV7E	1. 4. 44、2. 11. 3. 25
G154. 0	PLC 第2组轴辅助功能完成信号	EFINB	1. 4. 44、2. 11. 3. 15
G154. 2	PLC 第2组轴缓存无效信号	EMBUFB	1. 4. 44、2. 11. 3. 16
G154. 3	PLC 第2组程序段结束信号	ESBKB	1. 4. 44、2. 11. 3. 9
G154. 5	PLC 第2组轴控制暂停信号	ESTPB	1. 4. 44、2. 11. 3. 8
G154. 6	PLC 第2组复位信号	ECLRB	1. 4. 44、2. 11. 3. 7
G154. 7	PLC 第2组控制指令阅读信号	EBUFB	1. 4. 44、2. 11. 3. 5
G155. 0∼G155. 6	PLC 第2组轴控制信号	ECOB~EC6B	1. 4. 44、2. 11. 3. 2
G155. 7	PLC 第2组程序段停止无效信号	EMSBKB	1. 4. 44、2. 11. 3. 10
G156、G157	PLC 第 2 组轴控制进给速度信号	EIF0B~EIF15B	1. 4. 44、2. 11. 3. 3
G158~G161	PLC 第2组轴控制数据信号	EIDOB~EID31B	1. 4. 44、2. 11. 3. 4
G166. 0	PLC 第 3 组轴辅助功能完成信号	EFINC	1. 4. 44、2. 11. 3. 15
G166. 2	PLC 第 3 组轴缓存无效信号	EMBUFC	1. 4. 44、2. 11. 3. 16
G166. 3	PLC 第 3 组程序段结束信号	ESBKC	1. 4. 44、2. 11. 3. 9
G166. 5	PLC 第 3 组轴控制暂停信号	ESTPC	1. 4. 44、2. 11. 3. 8
G166. 6	PLC 第 3 组复位信号	ECLRC	1. 4. 44、2. 11. 3. 7
G166. 7	PLC 第 3 组控制指令阅读信号	EBUFC	1. 4. 44、2. 11. 3. 5
G167. 0∼G167. 6	PLC 第 3 组轴控制信号	ECOC~EC6C	1. 4. 44、2. 11. 3. 2
G167. 7	PLC 第 3 组程序段停止无效信号	EMSBKC	1. 4. 44、2. 11. 3. 10
G168、G169	PLC 第 3 组轴控制进给速度信号	EIF0C~EIF15C	1. 4. 44、2. 11. 3. 3
G170~G173	PLC 第 3 组轴控制数据信号	EIDOC~EID31C	1. 4. 44、2. 11. 3. 4
G178. 0	PLC 第 4 组轴辅助功能完成信号	EFIND	1. 4. 44、2. 11. 3. 15
G178. 2	PLC 第 4 组轴缓存无效信号	EMBUFD	1. 4. 44、2. 11. 3. 16
G178. 3	PLC 第 4 组程序段结束信号	ESBKD	1. 4. 44、2. 11. 3. 9
G178. 5	PLC 第 4 组轴控制暂停信号	ESTPD	1. 4. 44、2. 11. 3. 8
G178. 6	PLC 第 4 组复位信号	ECLRD	1. 4. 44、2. 11. 3. 7
G178. 7	PLC 第 4 组控制指令阅读信号	EBUFD	1. 4. 44、2. 11. 3. 5
G179.0∼G179.6	PLC 第 4 轴控制信号	ECOD~EC6D	1. 4. 44、2. 11. 3. 2
G179. 7	PLC 第 4 组程序段停止无效信号	EMSBKD	1. 4. 44、2. 11. 3. 10
G180、G181	PLC 第 4 组轴控制进给速度信号	EIFOD~EIF15D	1. 4. 44、2. 11. 3. 3
G182~G185	PLC 第 4 组轴控制数据信号	EIDOD~EID31D	1. 4. 44、2. 11. 3. 4
G190.0∼G190.4	重叠控制轴选择信号	0VLS1~0VLS5	2. 12. 5
G191.0~G191.5	各进给轴扭矩控制切换信号	TORC1 [~] TORC6	2. 14. 1
G196.0∼G196.5	参考点返回用减速 G 信号	DEC1~DEC6	2. 4. 1. 4
G201	当前刀位信号	NOWT00~NOWT07	2. 9
G254.0~G254.2	主轴轮廓控制切换信号	CONS1~CONS3	2. 8. 3. 1
G274.4~G274.6	Cs 轴坐标建立请求信号	CSFI1~CSFI3	2. 8. 3. 2
G276~G279	用户宏程序输入信号	UI100~UI131	2. 10. 5. 1
G290. 0	II 型主轴的 COPY 主轴同步通断控制信号	SCGS	2. 8. 7. 2
G290. 1	II 型 COPY 主轴同步中,相位同步控制信号	CPSYC	2. 8. 7. 2
G290. 7	II 型主轴在执行复位时,不停主轴信号	RSSR	2. 8. 7. 2
G291. 0~G291. 2	II 型主轴回编码器零点启动信号	S2REF1∼ S2REF3	2. 8. 7. 2

2、F 信号一览表

地址	信号名称	符号	章节
F0. 4	进给暂停信号	SPL	2. 5. 1. 4
F0. 5	循环启动信号	STL	2. 5. 1. 3
F0. 6	伺服准备就绪信号	SA	2. 1. 2
F0. 7	自动运行信号	OP	2. 5. 1. 5
F1. 0	报警信号	AL	2. 2. 3
F1. 1	复位信号	RST	2. 5. 2. 2
F1. 3	分配结束信号	DEN	2. 7. 4. 3
F1. 4	主轴允许信号	ENB	2.8.1
F1. 5	攻丝中信号	TAP	2.8.4
F1. 7	CNC 就绪信号	MA	2. 2. 2
F2. 0	英制输入信号	INCH	2. 10
F2. 1	快速进给信号	RPD0	2. 6. 1
F2. 2	恒线速切削信号	CSS	2. 8. 1
F2. 3	螺纹切削	THRD	2. 10. 2
F2. 4	程序再启动中信号	SRNMV	2. 5. 8. 2
F2. 6	切削进给信号	FD0	2. 2. 5
F2. 7	空运行检测信号	MDRN	2. 5. 4. 2
F3. 0	单步方式检测信号	MINC	2. 2. 4. 2
F3. 1	手轮方式检测信号	MH	2. 2. 4. 2
F3. 2	手动方式检测信号	мЈ	2. 2. 4. 2
F3. 3	录入方式检测信号	MMDI	2. 2. 4. 2
F3. 4	DNC 方式检测信号	MRMT	2. 2. 4. 2
F3. 5	自动方式检测信号	MMEM	2. 2. 4. 2
F3. 6	编辑方式检测信号	MEDT	2. 2. 4. 2
F4. 0	跳过任选程序段检测信号	MBDT1	2. 5. 6. 2
F4. 1	所有轴机床锁住检测信号	MMLK	2. 5. 3. 2
F4. 2	手动绝对值检测信号	MABSM	2. 5. 7. 2
F4. 3	单程序段检测信号	MSBK	2. 5. 5. 2
F4. 4	辅助功能锁住检测信号	MAFL	2. 7. 5. 2
F4. 5	机床回零方式检测信号	MREF	2. 2. 4. 2
F6. 1	基于 MDI 的复位确认信号	MDIRST	2. 5. 2. 6
F7. 0	辅助功能选通信号	MF	2. 7. 1. 1
F7. 2	主轴速度功能选通信号	SF	2. 7. 2
F7. 3	刀具功能选通信号	TF	2. 7. 3
F7. 7	第2辅助功能选通信号	BF	2. 7. 6
F8. 4	第 2M 辅助功能选通信号	MF2	2. 7. 1. 3
F8. 5	第 3M 辅助功能选通信号	MF3	2. 7. 1. 3
F9. 4		DM30	2. 7. 1. 2
F9. 5	── 	DM02	2.7.1.2
F9. 6	M 任刑口 ユ	DMO1	2.7.1.2
F9. 7		DM00	2. 7. 1. 2
F10~F13	辅助功能代码信号	M00∼M99	2. 7. 1. 1
F14~F15	第 2M 辅助功能代码信号	M200~M299	2.7.1.3
F16~F17	第 3M 辅助功能代码信号	M300~M399	2.7.1.3
F22~F25	主轴速度代码信号	S00~S31	2.7.2
F26~F29	刀具功能代码信号	T00~T31	2. 7. 3
F30~F33	第2辅助功能代码信号	B00∼B31	2. 7. 6

地址	信号名称	₹	符号	章 节
F36.0~F37.3	第1主轴 S12 位信号		R010~R120	2. 8. 1
F38. 2	第2主轴使能信号		ENB2	2.8.2
F38. 3	第3主轴使能信号		ENB3	2. 8. 2
F40~F41	第1主轴实际速度信号		AR00~AR15	2. 8. 1
F44. 1	主轴轮廓控制切换结束值	言号	FSCSL	2. 8. 3. 1
F45. 0	主轴报警信号		ALMA	2. 8. 5
F45. 1	主轴零速输出信号		SSTA	
F45. 2	定向完成信号	总线式主	ORARA	
F45. 3	扭矩到达信号	轴控制信	TLMA]
F45. 4	速度到达信号	号(主轴1)	SARA]
F45. 5	位置到达信号		PSRA]
F45. 6	刚性攻丝中信号		RTAPA]
F49. 0	主轴报警信号		ALMB	2. 8. 5
F49. 1	主轴零速输出信号		SSTB	
F49. 2	定向完成信号	总线式主	ORARB	
F49. 3	扭矩到达信号	轴控制信	TLMB	
F49. 4	速度到达信号	号(主轴 2)	SARB	
F49. 5	位置到达信号		PSRB	
F49. 6	刚性攻丝中信号		RTAPB	
F53. 0	主轴报警信号		ALMC	2. 8. 5
F53. 1	主轴零速输出信号		SSTC	
F53. 2	定向完成信号	总线式主	ORARC	
F53. 3	扭矩到达信号	轴控制信	TLMC]
F53. 4	速度到达信号	号(主轴3)	SARC	
F53. 5	位置到达信号		PSRC	
F53. 6	刚性攻丝中信号		RTAPC	
F54 ~F57	用户宏程序用输出信号		U0000 ~ U0031	2. 10. 5. 1
F62. 7	目标零件计数到达信号		PRTSF	2. 10. 3
F63. 3			COSP1	2. 12. 6
F63. 4	路径间主轴指令确认信号		COSP2	2. 12. 6
F63. 6	等待中信号		WATO	2. 12. 2. 1
F63. 7	多边形同步中信号		PSYN	2. 8. 6
F64. 0	换刀信号		TLCH	2. 10. 4
F64. 1	新刀具选择信号		TLNW	2. 10. 4
F64. 2	逐把刀具更换信号		TLCHI	2. 10. 4
F64. 3	刀具寿命预告信号		TLCHB	2. 10. 4
F64. 5	路径间主轴指令确认信号	<u>コ</u> プ	COSP	2. 12. 6
F64. 6	径间干涉检测中信号		TICHK	2. 12. 3
F64. 7	径间干涉报警信号		TIALM	2. 12. 3
G65. 0	刚性攻丝中主轴正转信号	<u>コ</u> プ	RGSPP	2. 8. 4
F65. 1	刚性攻丝中主轴反转信号	크 -	RGSPM	2. 8. 4
F70、F71	位置开关信号		PSW01∼ PSW16	2. 1. 4
F76. 3	刚性攻丝方式中信号		RTAP	2. 8. 4
F93. 2	刀具寿命计数无效中信号	<u></u> J	LFCIF	2. 10. 4
F94.0∼ F94.5	机床回零结束信号		ZP1~ZP6	2. 4. 1. 1
F96.0∼ F96.5	第2参考点机床回零结页		ZP21~ZP26	2. 4. 1. 1
F98. 0∼ F98. 5	第3参考点机床回零结页		ZP31~ZP36	2. 4. 1. 1
F100.0∼ F100.5	第4参考点机床回零结页		ZP41~ZP46	2. 4. 1. 1
F102.0∼ F102.5	轴移动信号		MV1~MV6	2. 1. 1. 1
F106.0∼ F106.5	轴运动方向信号		MVD1∼MVD6	2. 1. 1. 2
F108. 0 ~ F108. 5	镜像确认信号		MMI1 ~ MMI6	2. 1. 7

地址	信号名称	符号	章 节
F112.0∼ F112.5	PLC 分配完成信号	EADEN1~EADEN6	2. 11. 3. 31
F118.0~F118.4	同步/混合/重叠控制中信号	SYN10~SYN50	2. 12. 4
F120.0∼ F120.5	参考点建立信号	ZRF1~ZRF6	2. 4. 1. 2
F129. 5	PLC 轴倍率 0%信号	EOV0	2. 11. 3. 30
F129. 7	PLC 控制轴选择状态信号	EAXSL	2. 11. 3. 17
F130. 0	PLC 轴到位信号	EINPA	2. 11. 3. 18
F130. 1	PLC 轴跟踪误差零检查信号	ECKZA	2. 11. 3. 19
F130. 2	PLC 轴报警信号	EIALA	2. 11. 3. 20
F130. 3	PLC 辅助功能执行信号	EDENA	2. 11. 3. 22
F130. 4	PLC 轴移动信号	EGENA	2. 11. 3. 21
F130. 5	PLC 轴正向超程信号	EOTPA	2. 11. 3. 24
F130. 6	PLC 轴负向超程信号	EOTNA	2. 11. 3. 23
F130. 7	PLC 第 1 组轴控制指令阅读完成信号	EBSYA	2. 11. 3. 6
F131. 0	PLC 辅助功能选通信号	EMFA	2. 11. 3. 12
F131. 1	PLC 缓冲区满信号	EABUFA	2. 11. 3. 32
F131. 2	PLC 辅助功能 2 选通信号	EMF2A	2. 11. 3. 13
F131. 3	PLC 辅助功能 3 选通信号	EMF3A	2. 11. 3. 14
F132、F142	PLC 辅助功能代码信号	EM11A~EM48A	2. 11. 3. 11
F133. 0	PLC 轴到位信号	EINPB	2. 11. 3. 18
F133. 1	PLC 轴跟踪误差零检查信号	ECKZB	2. 11. 3. 19
F133. 2	PLC 轴报警信号	EIALB	2. 11. 3. 20
F133. 3	PLC 辅助功能执行信号	EDENB	2. 11. 3. 22
F133. 4	PLC 轴移动信号	EGENB	2. 11. 3. 21
F133. 5	PLC 轴正向超程信号	EOTPB	2. 11. 3. 24
F133. 6	PLC 轴负向超程信号	EOTNB	2. 11. 3. 21
F133. 7	PLC 第 2 组轴控制指令阅读完成信号	EBSYB	2. 11. 3. 6
F134. 0	PLC 辅助功能选通信号	EMFB	2. 11. 3. 12
F134. 1	PLC 缓冲区满信号	EABUFB	2. 11. 3. 32
F134. 2	PLC 辅助功能 2 选通信号	EMF2B	2. 11. 3. 13
F134. 3	PLC 辅助功能 3 选通信号	EMF3B	2. 11. 3. 14
F135、F145	PLC 辅助功能代码信号	EM11B~EM48B	2. 11. 3. 11
F136. 0	PLC 轴到位信号	EINPC	2. 11. 3. 18
F136. 1	PLC 轴跟踪误差零检查信号	ECKZC	2. 11. 3. 19
F136. 2	PLC 轴报警信号	EIALC	2. 11. 3. 20
F136. 3	PLC 辅助功能执行信号	EDENC	2. 11. 3. 22
F136. 4	PLC 轴移动信号	EGENC	2. 11. 3. 21
F136. 5	PLC 轴正向超程信号	EOTPC	2. 11. 3. 24
F136. 6	PLC 轴负向超程信号	EOTNC	2. 11. 3. 23
F136. 7	PLC 第3组轴控制指令阅读完成信号	EBSYC	2. 11. 3. 6
F137. 0	PLC 辅助功能选通信号	EMFC	2. 11. 3. 12
F137. 1	PLC 缓冲区满信号	EABUFC	2. 11. 3. 32
F137. 2	PLC 辅助功能 2 选通信号	EMF2C	2. 11. 3. 32
F137. 3	PLC 辅助功能 3 选通信号	EMF3C	2. 11. 3. 13
F137. 5	PLC 辅助功能代码信号	EM11C~EM48C	2. 11. 3. 14
F139. 0	PLC 轴到位信号	EINPD	2. 11. 3. 11
F139. 1	PLC 轴跟踪误差零检查信号	ECKZD	2. 11. 3. 16
F139. 1	PLC 轴报警信号	EIALD	2. 11. 3. 19
F139. 2	PLC 辅助功能执行信号	EDEND	2. 11. 3. 20
F139. 3	PLC 辅助功能执行信号	EGEND	2. 11. 3. 22
F139. 4 F139. 5	PLC 轴正向超程信号	EOTPD	2. 11. 3. 21
F139. 6	PLC 轴负向超程信号	EOTND	2. 11. 3. 23

地址	信号名称	符号	章 节
F139. 7	PLC 第 4 组轴控制指令阅读完成信号	EBSYD	2.11.3.6
F140. 0	PLC 辅助功能选通信号	EMFD	2. 11. 3. 12
F140. 1	PLC 缓冲区满信号	EABUFD	2. 11. 3. 32
F140. 2	PLC 辅助功能 2 选通信号	EMF2D	2. 11. 3. 13
F140. 3	PLC 辅助功能 3 选通信号	EMF3D	2. 11. 3. 14
F141、F151	PLC 辅助功能代码信号	EM11D~EM48D	2. 11. 3. 11
F154. 0	刀具剩余数量通知信号	TLAL	2. 10. 4
F160. 0~F161. 7	地址P信号	MSP00~MSP15	2. 8. 2
F162. 0	地址P指令选择主轴功能有效信号	MPP	2. 8. 2
F182. 0~F182. 4	PLC 控制信号	EACNT1~EACNT5	2. 11. 3. 33
F190. 0~F190. 4	PLC 轴扭矩控制方式中信号	ETRQM1~ETRQM5	2. 11. 3. 34
F191. 0~F191. 5	各轴的扭矩控制状态信号	TOR1~TOR6	2. 14. 2
F192. 0~F192. 5	各轴的扭矩到达信号	TRQ1~ TRQ6	2. 14. 3
F193. 0~F193. 5	设定扭矩控制轴信号	TRQA1~ TRQA6	2. 14. 4
F200. 0~F201. 7	第 2 主轴 S16 位信号	R0102~R1602	2. 8. 2
F202~F203	第2主轴实际速度信号	AR002~AR152	2. 8. 2
F204、F205	第 3 主轴 S16 位信号	R0103~R1603	2. 8. 2
F206、F207	第3主轴实际速度信号	AR003~AR153	2. 8. 2
F210. 0~F210. 4	机械坐标一致状态输出信号	SYNMT1~SYNMT5	2. 1. 3. 3
F211. 0~F211. 4	进给轴同步可进行同步调整信号	SYN0F1~SYN0F5	2. 1. 3. 4
F254. 0~F254. 2	各主轴轮廓控制切换结束信号	FCSS1~FCSS3	2. 8. 3. 1
F274. 4~F274. 6	Cs 轴坐标建立报警信号	CSF01~CSF03	2. 8. 3. 2
F275. 4~F275. 6	Cs 轴原点建立状态信号	CSPENA~CSPENC	2. 8. 3. 2
F276~F279	用户宏程序输出信号	U0100~U0131	2. 10. 5. 1
F290. 0	第 1 通道 COPY 主轴速度同步完成信	CPSYCSF	2. 8. 7. 2
	号		
F290. 1	第 1 通道 COPY 主轴相位同步完成信	CPSYCPF	2. 8. 7. 2
	号		
F290. 2	第 1 通道 COPY 主轴速度同步建立中	CPSYCSI	2. 8. 7. 2
	信号		
F290. 3	第 1 通道 COPY 主轴相位同步建立中	CPSYCPI	2. 8. 7. 2
	信号		
F290. 4	第 1 通道 COPY 主轴速度同步取消中	CPSYCS0	2. 8. 7. 2
	信号		
F290. 5	第 1 通道 COPY 主轴相位同步取消中	CPSYCP0	2. 8. 7. 2
7001 0 7001 0	信号	anavava anavava	2.2.5.2
F291. 0~F291. 2	第1通道 COPY 同步中,主控主轴为	CPSYCM1~CPSYCM3	2. 8. 7. 2
P001 0 P001 5	第1通道第1~3 主轴	anavarr anavarr	0.07.0
F291. 3~F291. 5	第1通道 COPY 同步中,主控主轴为	CPSYCM4~CPSYCM6	2. 8. 7. 2
E000 0 E000 0	第 2 通道第 1~3 主轴	CDCVCC1 CDCVCC0	0.07.0
F292. 0~F292. 2	第 1 通道 COPY 同步中,从控主轴为 第 1 通道第 1~3 主轴	CPSYCS1~CPSYCS3	2. 8. 7. 2
F292. 3~F292. 5	第1週週第13土細 第1通道 COPY 同步中,从控主轴为	CPSYCS4~CPSYCS6	2. 8. 7. 2
r∠9∠. 5~r∠9∠. 5	第 1	CF31C34~CF31C30	4.0.1.4
F293. 0~F293. 2	泉 2 週	S2CW1∼ S2CW3	2. 8. 7. 2
F293. 0~F293. 2 F294. 0~F294. 2	第 1 通過各 II 主轴的主轴丘转信号 第 1 通道各 II 主轴的主轴反转信号	S2CW1∼ S2CW3 S2CCW1∼ S2CCW3	2. 8. 7. 2
F294. 0~F294. 2 F295. 0~F295. 2	第1通道各主轴回编码器零点中信号	S2CCW17 S2CCW3 S2CREF1~S2CREF3	2. 8. 7. 2
F295. 0~F295. 2 F296. 0~F296. 2	第1通道各主轴回编码器零点完成信	S2CREF1~S2CREF3	2. 8. 7. 2
17430.01 - 17430.4	另	S2CREFD1 S2CREFD3	4.0.1.4
F297. 0~F297. 2	5 第1通道各主轴为 II 主轴信号	SII1 ~SII3	2. 8. 7. 2
F298. 0~F298. 2	第1通道各主轴已回编码器零点,坐	S2CSET1~S2CSET3	2. 8. 7. 2
1200.0 1200.2	尔 远远行王相已固编时福令点,王	0200011 0200010	2.0.1.2
	14:27 日 2	l .	1

地 址	信号名称	符号	章 节
F299. 0~F299. 2	第1通道各 II 主轴不允许使用信号	SIIFBU1~SIIFBU3	2. 8. 7. 2
F341.0~F341.4	同步主控轴确认信号	SYCM1~SYCM5	2. 12. 4
F342. 0~F342. 4	同步从控轴确认信号	SYCS1~SYCS5	2. 12. 4
F343.0~F343.4	混合轴确认信号	MIX01~MIX05	2. 12. 4
F344. 0~F344. 4	重叠主控轴确认信号	0VM01~0VM05	2. 12. 5
F345. 0~F345. 4	重叠从控轴确认信号	0VS01~0VS05	2. 12. 5
F346. 0~F346. 4	驻留轴确认信号	SMPK1~SMPK5	2. 12. 4
F403. 0	进给轴同步控制位置偏差量误差报	SYNER	2. 1. 3. 5
	警信号		
F532. 0~F532. 4	进给轴同步控制中信号	SYN01~SYN05	2. 1. 3. 6