```
NEW FILE.
DATASET NAME DataSet6 WINDOW=FRONT.
PRESERVE.
SET DECIMAL DOT.
GET DATA /TYPE=TXT
  /FILE="E:\Data Science and Coding\Python\Projects\Final Year Project Analysi
s\eeg analysis\post field trip processing\right target P200.csv"
  /ENCODING='UTF8'
 /DELIMITERS=","
 /QUALIFIER='"'
 /ARRANGEMENT=DELIMITED
 /FIRSTCASE=2
 /DATATYPEMIN PERCENTAGE=95.0
 /VARIABLES=
 cueValid silence AUTO
 cueValid white AUTO
 cueValid lofi AUTO
 cueInvalid silence AUTO
 cueInvalid white AUTO
 cueInvalid lofi AUTO
 /MAP.
RESTORE.
CACHE.
EXECUTE.
Data written to the working file.
6 variables and 11 cases written.
Variable: cueValid silence Type: Number Format: F19.16
Variable: cueValid white Type: Number Format: F19.16
Variable: cueValid lofi Type: Number Format: F19.16
Variable: cueInvalid silence Type: Number Format: F19.16
Variable: cueInvalid white Type: Number Format: F18.16
Variable: cueInvalid lofi Type: Number Format: F19.16
DATASET NAME DataSet7 WINDOW=FRONT.
GLM cueValid silence cueValid white cueValid lofi cueInvalid silence cueInvali
d white
    cueInvalid lofi
  /WSFACTOR=cue validity 2 Polynomial sound condition 3 Polynomial
  /METHOD=SSTYPE (3)
```

```
/PLOT=PROFILE(sound_condition*cue_validity) TYPE=LINE ERRORBAR=NO MEANREFERE
NCE=NO YAXIS=AUTO
   /EMMEANS=TABLES(cue_validity)
   /EMMEANS=TABLES(sound_condition)
   /EMMEANS=TABLES(cue_validity*sound_condition)
   /PRINT=DESCRIPTIVE
   /CRITERIA=ALPHA(.05)
   /WSDESIGN=cue validity sound condition cue validity*sound condition.
```

### **General Linear Model**

[DataSet7]

#### Within-Subjects Factors

Measure: MEASURE\_1

| _cue_validity | sound_condition | Dependent<br>Variable  |
|---------------|-----------------|------------------------|
| 1             | 1               | cueValid_sile<br>nce   |
|               | 2               | cueValid_whit<br>e     |
|               | 3               | cueValid_lofi          |
| 2             | 1               | cueInvalid_sil<br>ence |
|               | 2               | cueInvalid_wh<br>ite   |
|               | 3               | cueInvalid_lofi        |

#### **Descriptive Statistics**

|                    | Mean        | Std. Deviation | N  |
|--------------------|-------------|----------------|----|
| cueValid_silence   | 4.611563464 | 3.642905512    | 11 |
| cueValid_white     | 4.898967784 | 2.678544803    | 11 |
| cueValid_lofi      | 5.349579318 | 4.155748575    | 11 |
| cueInvalid_silence | 3.797002217 | 2.530590989    | 11 |
| cueInvalid_white   | 4.008005799 | 4.340751228    | 11 |
| cueInvalid_lofi    | 4.177183773 | 4.190466439    | 11 |

# **Multivariate Tests**<sup>a</sup>

| Effect          |                    | Value | F                  | Hypothesis df | Error df |
|-----------------|--------------------|-------|--------------------|---------------|----------|
| cue_validity    | Pillai's Trace     | .264  | 3.587 <sup>b</sup> | 1.000         | 10.000   |
|                 | Wilks' Lambda      | .736  | 3.587 <sup>b</sup> | 1.000         | 10.000   |
|                 | Hotelling's Trace  | .359  | 3.587 <sup>b</sup> | 1.000         | 10.000   |
|                 | Roy's Largest Root | .359  | 3.587 <sup>b</sup> | 1.000         | 10.000   |
| sound_condition | Pillai's Trace     | .065  | .314 <sup>b</sup>  | 2.000         | 9.000    |
|                 | Wilks' Lambda      | .935  | .314 <sup>b</sup>  | 2.000         | 9.000    |
|                 | Hotelling's Trace  | .070  | .314 <sup>b</sup>  | 2.000         | 9.000    |
|                 | Roy's Largest Root | .070  | .314 <sup>b</sup>  | 2.000         | 9.000    |
| cue_validity *  | Pillai's Trace     | .019  | .087 <sup>b</sup>  | 2.000         | 9.000    |
| sound_condition | Wilks' Lambda      | .981  | .087 <sup>b</sup>  | 2.000         | 9.000    |
|                 | Hotelling's Trace  | .019  | .087 <sup>b</sup>  | 2.000         | 9.000    |
|                 | Roy's Largest Root | .019  | .087 <sup>b</sup>  | 2.000         | 9.000    |

# **Multivariate Tests**<sup>a</sup>

| Effect          |                            | Sig. |  |  |
|-----------------|----------------------------|------|--|--|
| cue_validity    | ue_validity Pillai's Trace |      |  |  |
|                 | Wilks' Lambda              | .088 |  |  |
|                 | Hotelling's Trace          | .088 |  |  |
|                 | Roy's Largest Root         | .088 |  |  |
| sound_condition | Pillai's Trace             | .738 |  |  |
|                 | Wilks' Lambda              | .738 |  |  |
|                 | Hotelling's Trace          | .738 |  |  |
|                 | Roy's Largest Root         | .738 |  |  |
| cue_validity *  | Pillai's Trace             | .917 |  |  |
| sound_condition | Wilks' Lambda              | .917 |  |  |
|                 | Hotelling's Trace          | .917 |  |  |
|                 | Roy's Largest Root         | .917 |  |  |

a. Design: Intercept

Within Subjects Design: cue\_validity + sound\_condition + cue\_validity \* sound\_condition

b. Exact statistic

# Mauchly's Test of Sphericity<sup>a</sup>

Measure: MEASURE\_1

|                                |             |                        |    |      | Epsilon <sup>b</sup>   |
|--------------------------------|-------------|------------------------|----|------|------------------------|
| Within Subjects Effect         | Mauchly's W | Approx. Chi-<br>Square | df | Sig. | Greenhouse-<br>Geisser |
| cue_validity                   | 1.000       | .000                   | 0  |      | 1.000                  |
| sound_condition                | .824        | 1.740                  | 2  | .419 | .850                   |
| cue_validity * sound_condition | .664        | 3.691                  | 2  | .158 | .748                   |

# Mauchly's Test of Sphericity<sup>a</sup>

Measure: MEASURE\_1

Epsilon<sup>b</sup>

| Within Subjects Effect         | Huynh-Feldt | Lower-bound |
|--------------------------------|-------------|-------------|
| cue_validity                   | 1.000       | 1.000       |
| sound_condition                | 1.000       | .500        |
| cue_validity * sound_condition | .850        | .500        |

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

- a. Design: Intercept
  Within Subjects Design: cue\_validity + sound\_condition + cue\_validity \* sound\_condition
- b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

# **Tests of Within-Subjects Effects**

Measure: MEASURE\_1

| _                               |                    | Type III Sum of |        |             |       |
|---------------------------------|--------------------|-----------------|--------|-------------|-------|
| Source                          |                    | Squares         | df     | Mean Square | F     |
| cue_validity                    | Sphericity Assumed | 15.184          | 1      | 15.184      | 3.587 |
|                                 | Greenhouse-Geisser | 15.184          | 1.000  | 15.184      | 3.587 |
|                                 | Huynh-Feldt        | 15.184          | 1.000  | 15.184      | 3.587 |
|                                 | Lower-bound        | 15.184          | 1.000  | 15.184      | 3.587 |
| Error(cue_validity)             | Sphericity Assumed | 42.337          | 10     | 4.234       |       |
|                                 | Greenhouse-Geisser | 42.337          | 10.000 | 4.234       |       |
|                                 | Huynh-Feldt        | 42.337          | 10.000 | 4.234       |       |
|                                 | Lower-bound        | 42.337          | 10.000 | 4.234       |       |
| sound_condition                 | Sphericity Assumed | 3.452           | 2      | 1.726       | .422  |
|                                 | Greenhouse-Geisser | 3.452           | 1.701  | 2.029       | .422  |
|                                 | Huynh-Feldt        | 3.452           | 2.000  | 1.726       | .422  |
|                                 | Lower-bound        | 3.452           | 1.000  | 3.452       | .422  |
| Error(sound_condition)          | Sphericity Assumed | 81.736          | 20     | 4.087       |       |
|                                 | Greenhouse-Geisser | 81.736          | 17.010 | 4.805       |       |
|                                 | Huynh-Feldt        | 81.736          | 20.000 | 4.087       |       |
|                                 | Lower-bound        | 81.736          | 10.000 | 8.174       |       |
| cue_validity *                  | Sphericity Assumed | .391            | 2      | .195        | .041  |
| sound_condition                 | Greenhouse-Geisser | .391            | 1.497  | .261        | .041  |
|                                 | Huynh-Feldt        | .391            | 1.701  | .230        | .041  |
|                                 | Lower-bound        | .391            | 1.000  | .391        | .041  |
| Error                           | Sphericity Assumed | 95.889          | 20     | 4.794       |       |
| (cue_validity*sound_conditi on) | Greenhouse-Geisser | 95.889          | 14.965 | 6.407       |       |
| 011/                            | Huynh-Feldt        | 95.889          | 17.007 | 5.638       |       |
|                                 | Lower-bound        | 95.889          | 10.000 | 9.589       |       |

# **Tests of Within-Subjects Effects**

Measure: MEASURE\_1

| _                               |                    |      |
|---------------------------------|--------------------|------|
| Source                          |                    | Sig. |
| cue_validity                    | Sphericity Assumed | .088 |
|                                 | Greenhouse-Geisser | .088 |
|                                 | Huynh-Feldt        | .088 |
|                                 | Lower-bound        | .088 |
| Error(cue_validity)             | Sphericity Assumed |      |
|                                 | Greenhouse-Geisser |      |
|                                 | Huynh-Feldt        |      |
|                                 | Lower-bound        |      |
| sound_condition                 | Sphericity Assumed | .661 |
|                                 | Greenhouse-Geisser | .630 |
|                                 | Huynh-Feldt        | .661 |
|                                 | Lower-bound        | .530 |
| Error(sound_condition)          | Sphericity Assumed |      |
|                                 | Greenhouse-Geisser |      |
|                                 | Huynh-Feldt        |      |
|                                 | Lower-bound        |      |
| cue_validity *                  | Sphericity Assumed | .960 |
| sound_condition                 | Greenhouse-Geisser | .922 |
|                                 | Huynh-Feldt        | .941 |
|                                 | Lower-bound        | .844 |
| Error                           | Sphericity Assumed |      |
| (cue_validity*sound_conditi on) | Greenhouse-Geisser |      |
| 5.1,                            | Huynh-Feldt        |      |
|                                 | Lower-bound        |      |

### **Tests of Within-Subjects Contrasts**

Measure: MEASURE\_1

| Source                         | cue_validity | sound_condition | Type III Sum of<br>Squares | df | Mean Square |
|--------------------------------|--------------|-----------------|----------------------------|----|-------------|
| cue_validity                   | Linear       |                 | 15.184                     | 1  | 15.184      |
| Error(cue_validity)            | Linear       |                 | 42.337                     | 10 | 4.234       |
| sound_condition                |              | Linear          | 3.439                      | 1  | 3.439       |
|                                |              | Quadratic       | .014                       | 1  | .014        |
| Error(sound_condition)         |              | Linear          | 55.163                     | 10 | 5.516       |
|                                |              | Quadratic       | 26.573                     | 10 | 2.657       |
| cue_validity *                 | Linear       | Linear          | .352                       | 1  | .352        |
| sound_condition                |              | Quadratic       | .039                       | 1  | .039        |
| Error                          | Linear       | Linear          | 27.209                     | 10 | 2.721       |
| (cue_validity*sound_condition) |              | Quadratic       | 68.680                     | 10 | 6.868       |

### **Tests of Within-Subjects Contrasts**

Measure: MEASURE\_1

| Source                         | cue_validity | sound_condition | F     | Sig. |
|--------------------------------|--------------|-----------------|-------|------|
| cue_validity                   | Linear       |                 | 3.587 | .088 |
| Error(cue_validity)            | Linear       |                 |       |      |
| sound_condition                |              | Linear          | .623  | .448 |
|                                |              | Quadratic       | .005  | .945 |
| Error(sound_condition)         |              | Linear          |       |      |
|                                |              | Quadratic       |       |      |
| cue_validity *                 | Linear       | Linear          | .129  | .727 |
| sound_condition                |              | Quadratic       | .006  | .942 |
| Error                          | Linear       | Linear          |       |      |
| (cue_validity*sound_condition) |              | Quadratic       |       |      |

### **Tests of Between-Subjects Effects**

Measure: MEASURE\_1

Transformed Variable: Average

| Source    | Type III Sum of<br>Squares | df | Mean Square | F      | Sig. |
|-----------|----------------------------|----|-------------|--------|------|
| Intercept | 1320.934                   | 1  | 1320.934    | 22.570 | .001 |
| Error     | 585.255                    | 10 | 58.525      |        |      |

# **Estimated Marginal Means**

### 1. cue\_validity

Measure: MEASURE\_1

|              |       |            | 95% Confidence Interval |             |  |
|--------------|-------|------------|-------------------------|-------------|--|
| cue_validity | Mean  | Std. Error | Lower Bound             | Upper Bound |  |
| 1            | 4.953 | .974       | 2.782                   | 7.125       |  |
| 2            | 3.994 | .976       | 1.820                   | 6.168       |  |

#### 2. sound\_condition

Measure: MEASURE\_1

|                 |       |            | 95% Confidence Interval |             |  |
|-----------------|-------|------------|-------------------------|-------------|--|
| sound_condition | Mean  | Std. Error | Lower Bound             | Upper Bound |  |
| 1               | 4.204 | .788       | 2.448                   | 5.961       |  |
| 2               | 4.453 | .999       | 2.228                   | 6.679       |  |
| 3               | 4.763 | 1.189      | 2.115                   | 7.412       |  |

### 3. cue\_validity \* sound\_condition

Measure: MEASURE\_1

|              |                 |       |            | 95% Confidence Interval |             |
|--------------|-----------------|-------|------------|-------------------------|-------------|
| cue_validity | sound_condition | Mean  | Std. Error | Lower Bound             | Upper Bound |
| 1            | 1               | 4.612 | 1.098      | 2.164                   | 7.059       |
|              | 2               | 4.899 | .808       | 3.099                   | 6.698       |
|              | 3               | 5.350 | 1.253      | 2.558                   | 8.141       |
| 2            | 1               | 3.797 | .763       | 2.097                   | 5.497       |
|              | 2               | 4.008 | 1.309      | 1.092                   | 6.924       |
|              | 3               | 4.177 | 1.263      | 1.362                   | 6.992       |

#### **Profile Plots**

