Exploring the Scope of Multiband Detection with Next-Generation Gravitational Wave Detectors

1. Introduction

Understanding Gravitational Waves

- Ripples in space-time caused by accelerating massive objects
- Have two polarizations--- "plus" and "cross"
- Primary sources:
 - Binary systems
 - Supernovae
 - Continuous gravitational waves
 - Stochastic gravitational wave background

Fig. 1.1: Effect of a passing gravitational wave on test particles.

Source Parameters

Fig. 1.2: Illustration of source parameters and definitions

Detecting Gravitational Waves

Fig. 1.3: Simple design of a LIGO interferometer.

Fig. 1.4: Time series data for LIGO Hanford around GW190521

Post-Merger Data Analysis

Fig. 1.4: Time series data for LIGO Hanford around GW190521

Signal $(s|h)(t)=4\mathrm{Re}\int_{f_{\mathrm{low}}}^{f_{\mathrm{high}}}\underbrace{\tilde{s}(f)\tilde{h}^{*}(f)}_{S_{n}(f)}e^{2\pi ift}\,\mathrm{d}f.$ Power spectral density (PSD)

Matched filtering is our end goal!

Fig. 1.5: Time and frequency domain signals for IMRPhenomD

Fig. 1.6: Noise budget evaluated using GWINC

Present Status

Fig. 1.7: To illustrate the frequency bands of active and future detectors. Made using GWPlotter

Objective

- To understand the detection capability of a proposed deci-hertz detector
- Multiband detection of heavier-mass black holes

Fig. 1.8: To illustrate the placement of a deci-hertz detector

2. Framework

Salpeter Mass Distribution

- Power law function with index (α) = -2.35
- Gives relation between number of stars with mass m in mass range dm

$$N(m)\mathrm{d}m \propto m^{-\alpha}$$

Fig. 2.1: Salpeter mass distribution. Plotted in log scale.

Optimal SNR (σ)

- σ² is defined as the inner product of a signal with itself
- Quantifies loudness of the noise of a detector
- We use it to quantify the loudness of the signal
- For a signal h,

$$\sigma^2 = (h|h) \implies \sigma = \sqrt{(h|h)}$$

$$\sigma^2 = 2 \int_{-\infty}^{\infty} df \frac{\tilde{h_c}^*(f)\tilde{h_c}(f)}{S_h(|f|)}$$

3. Methodology

Generating a BBH Population

- Population size = 1000
- Salpeter mass distribution for primary mass
- Uniform priors placed on other parameters

Fig. 3.1: Mass distribution for generated BBH population.

Generating a BBH Population

Fig. 3.2: Distribution of parameters for generated population

Generating PSDs

- PSDs of HLV obtained from LIGO DCC
- PSD for the proposed deci-hertz observatory empirically determined
- Sampling rate chosen to be 4096Hz
- Lower bounds on HLV at 10Hz, deci-hertz at 0.05Hz

$$S_n^{deci} = (10^{-25} f_{deci}^{-2} + 10^{-24} f_{deci}^1 + 10^{-23} f_{deci}^0)^2$$
(3.1)

Generating PSDs

Fig. 3.3: Theoretical PSDs for proposed deci-hertz observatory and HLV

Generating Signals

- IMRPhenomD used to create frequency domain signals for 1000 systems
- Antenna pattern functions for HLV and deci-hertz observatory taken into account
- High frequency cutoff placed at f_{high} , where

$$f_{high} = \frac{0.1}{M_T m_1 (1+q)}$$
(3.2)

 M_T = Solar mass in seconds, m_1 = Primary mass, q = Mass ratio

Fig. 3.4 (a): Sample of generated signals for deci-hertz

Fig. 3.4 (b): Sample of generated signals for H1

Calculation of σ

- Evaluation of σ for 1000 samples
- Signal classified as detectable for σ>8
- Example events:
 - Stellar-mass binary merger (A)

$$\mathbf{m}_{1} = 15 \,\mathrm{M}_{\odot}, \, \mathrm{m}_{2} = 12 \,\mathrm{M}_{\odot}, \, \mathrm{D}_{L} = 3000 \,\mathrm{MPc}$$

- Intermediate mass binary merger (B)
 - $m_1 = 150 M_{\odot}, m_2 = 120 M_{\odot},$ $D_1 = 2500 MPc$

	LIGO Hanford	Deci-hertz
σ	14	200

Table 3.1: σ of stellar-mass binary merger.

	LIGO Hanford	Deci-hertz
σ	84	1436

Table 3.2: σ of intermediate-mass binary merger.

4. Results

Detectable Events

σ >8 events	LIGO Hanford	Deci-hertz
Out of 1000 events	607	1000

Table 4.1: Number of events with σ >8 out of 1000.

Distribution of SNR (σ)

Fig. 4.1: Distribution of σ for decihertz and LIGO Hanford (H1).

SNR (σ) v/s Luminosity Distance

Fig. 4.2: σ vs luminosity distance for same mass systems for deci-hertz observatory and H1.

SNR (σ) v/s Chirp Mass

Fig. 4.3: σ vs chirp mass for different distances for deci-hertz observatory (left) and H1 (right).

SNR (σ) v/s Mass Ratio

Fig. 4.4: σ vs mass ratio for different distances for deci-hertz observatory (left) and H1 (right).

Conclusions

- Proposed deci-hertz observatory has a 100% detection rate
- Consistently outperforms the current hecto-hertz detectors
- Negative relationship between SNR (σ) and luminosity distance verified
- SNR (σ) increases with chirp mass but trend dominated by luminosity distance

Future Directions

- Bigger population of BBHs should be used
- Conduct signal injections with actual noise and evaluate matched filter SNR
- Analysis for IMRIs limited by IMRPhenomD
- Data should not be downsampled

Thank you.

Fig.: Rainer Weiss (American physicist)

Follow-up

Discussion

More on Source Parameters

- Phase: Position of BHs in orbit around each other
- Spin vector azimuthal angle: Angle made by spins with direction perpendicular to orbital plane
- Precession angle: Angle between total angular momentum and direction of wave propagation, determines the polarization of GWs
- Tilt: Angle between the total angular momentum and the LoS from the observer to the binary system

Innermost Stable Circular Orbit (ISCO)

- Smallest possible stable orbit that two black holes can have around each other
- $f_{\rm ISCO}$ determined by the properties of black holes
 - \circ More massive black holes have a lower f_{ISCO}
- Why f_{ISCO} as f_{high} ?
 - Final frequency as BHs start to merge
 - More massive BH formed has weak GW signal
 - \circ Dominated by noise above $f_{\rm ISCO}$

$$f_{high} = \frac{0.1}{M_T m_1 (1+q)}$$

Empirical Form of Deci-Hertz PSD

- Based on current observations from LIGO noise curve
- 10⁻²⁴ dominated by flat noise
- Downward slope corresponding to 10⁻²⁵
- 10⁻²³ corresponds to shot and quantum noise

$$S_n^{deci} = (10^{-25} f_{deci}^{-2} + 10^{-24} f_{deci}^1 + 10^{-23} f_{deci}^0)^2$$
(3.1)

Why this sampling rate?

- Sampling rate of a digital signal evaluated by Nyquist sampling theorem
- $f_s > 2f_{max}$ where f_{max} is the highest frequency present in the signal
- 16384Hz captures content upto 8192Hz
- Why 16384 and not 16000?
 - To make it a multiple of the resonant frequencies of the interferometer
 - Resonant frequency determined by arm length
 - Resonant frequency $\neq f_s$ produces beat notes

Threshold at SNR>8

- Corresponds to a statistical significance of 5σ (σ =standard deviation)
- General accepted value for statistical significance for claiming a discovery
- Probability of a false positive detection due to random noise fluctuations extremely low (<1/3.5 million)
- Good compromise between sensitivity and computational cost

Why IMRPhenomD?

- Most recent model from the IMRPhenom family
 - Newer than IMRPhenomA/B/C
- Takes into account precession of orbits, and finite sizes
- Has Post-Newtonian correction terms upto 3.5 orders
 - What is PN?
 - Extends Newtonian gravity to include higher order of velocity terms
 - Includes relativistic effects (time dilation and space-time curvature)