Data Exploration And Multiple Linear Regression Using SAS

Kevin Ovendorf

DSBA 6201

1. Generate box-plots of the savings (Mean Savings in \$) and poverty (% in poverty) attributes and identify/removethe cutoff values for outliers.

Savings Outlier: Q3 + 1.5 IQR \rightarrow 103658.5 + 1.5(41300) = 165608.5

Poverty Outlier: Q3 + 1.5 IQR \rightarrow 19.75 + 1.5(8.55) = 32.575

2. Try to fit an MLR to this dataset, with VOTES as thedependent variable. INCOME has somewhat longish tail, so we will take a log transform, (use LINCOME = log(INCOME)) and then use LINCOME as one of predictor. Keep the first 500 records as a training set (call it VOTETRAIN) which you will use to fit the model; the remaining 232 will be used as a test set (VOTETEST). Use only the following variables in your model:

VOTES =LINCOME + SAVINGS + FEMALE +DENSITY +POVERTY + VETERANS

Sele	ection Method	Sequentia	l Random Samplir		
		Wi	ith Equal Probability		
	Input Data Se	et	VOTES_ALT		
	Random Num	ber Seed	412407001		
	Sample Size		500		
	Selection Pro	bability	1		
	Sampling We	1			
	Output Data S	VOTETRAIN			

Sele	ection Method	Sequentia	I Random Samp	ling
		Wi	th Equal Probab	ility
	I4 D-4- C-		VOTES ALT	
	Input Data Se	E	VOTES_ALT	
	Random Num	ber Seed	412688000	
	Sample Size		232	
	Selection Pro	bability	1	
	Sampling We	ight	1	
	Output Data S	Set	VOTETEST	

(a) Report the coefficients obtained by your model. Would you drop any of the variables used in your model (based on the t-scores or p-values)?

All of the coefficients obtained are within the parameter estimate. Based on Pr > |t| of a value greater than 0.05 we can drop savings and Lincome because they have a confidence interval of less than 95%. So of course the model is ran again and here are the following results below:

The REG Procedure Model: MODEL2 Dependent Variable: votes votes

Number of Observations Read 500 Number of Observations Used 500

Analysis of Variance										
Source	DF	Mean Square	F Value	Pr > F						
Model	4	28672	7167.90349	98.42	<.0001					
Error	495	36052	72.83233							
Corrected Total	499	64724								

Root MSE	8.53419	R-Square	0.4430
Dependent Mean	42.55342	Adj R-Sq	0.4385
Coeff Var	20.05523		

	Parameter Estimates										
Variable Label DF		Parameter Standard Estimate Error		t Value	Pr > t	Tolerance	Variance Inflation				
Intercept	Intercept	1	-53.30075	11.05736	-4.82	<.0001		0			
female	female	1	1.42003	0.21745	6.53	<.0001	0.88605	1.12860			
density	density	1	0.00263	0.00042544	6.19	<.0001	0.96425	1.03708			
poverty	poverty	1	0.91191	0.06090	14.97	<.0001	0.84416	1.18462			
veterans	veterans	1	0.60507	0.17554	3.45	0.0006	0.93182	1.07317			

Collinearity Diagnostics												
		Condition	Proportion of Variation									
Number	Eigenvalue	Index	Intercept	female	density	poverty	veterans					
1	3.92999	1.00000	0.00007612	0.00007553	0.00525	0.00611	0.00268					
2	0.93436	2.05087	0.00000620	0.00000551	0.95248	0.00149	0.00011650					
3	0.11095	5.95160	0.00030634	0.00019657	0.02052	0.64250	0.10272					
4	0.02410	12.76975	0.01078	0.01096	0.00009375	0.29350	0.87835					
5	0.00059935	80.97583	0.98883	0.98876	0.02166	0.05640	0.01614					

(b) Report the MSE obtained on VOTETRAIN. How much does this increase when you score your model on VOTETEST?

Obs	Selected	County_Name	votes	age	savings	income	poverty	veterans	female	density	crime	LINCOME	y_hat	predicted_error
1 232		Crawford, IL Lyon, IA			150203 124328			14.79 11.23			165 2ช		36.2132 34.7783	
														47.7987

VOTETRAIN MSE: 72.8254 VOTETEST MSE: 47.7987

So there is a decrease in the MSE of 25.0267

(c) (Bonus 2 points). Do you think your MLR model is reasonable for this problem? You may look at the distribution of residuals to provide an informed answer.

Based upon the residual plot I believe this MLR is reasonable for this problem, there is an ever so slight trend on the upper right hand of the graph but overall it is uneven and cloud like and random. Also another valid reason for this being a reasonable MLR is that the adjusted R-squared: 0.4385, only has a difference of .0045 from the R squared value: 0.4430.

Not sure if I am supposed to also share my code through this assignment as it is not stated but I am doing so nonetheless just in case.

```
/* Import excel sheet which contains the data necessary for this analysis */
□ PROC IMPORT datafile='\\apporto.com\dfs\UNCC\Users\kovendor uncc\Desktop\BA Assignments\Assignment 1\Votes.xls'
     dbms=xls
     out=votes replace;
 RUN;
PROC PRINT data=votes;
 RUN:
 /* Q1. generate box plots for savings and property */
□ PROC UNIVARIATE data=votes normal plot;
     var savings poverty;
 /* Q2. Add another predictor by taking the log of income because of its "longish tail" */
∃DATA votes alt; set votes;
 LINCOME=log(income);
 /* select the first 500 records as a training set which will be used to train the model */
□ PROC SURVEYSELECT data=votes alt (obs=500) n=500
 Out=VOTETRAIN
 /* Using sequential selection in order to select specifically the first 500 records */
 outall method = seq;
□ PROC PRINT data=VOTETRAIN;
 RUN:
 /* select the remaining 232 records and allocate them into a test set */
□ PROC SURVEYSELECT data=votes alt (firstobs=501 obs=732) n=232
 out=VOTETEST
 outall method = seq;
□ PROC PRINT data=VOTETEST;
 RUN:
 /st Run a regresson on the training set now to begin forming a model st/
□ PROC REG data=VOTETRAIN;
 /*Q2.(a) testing for collionearity, variance, and tolerance using only the specified variables in the model */
 model votes = LINCOME savings female density poverty veterans / tol vif collin;
 plot predicted.*residual.;
 RUN:
 /* remove LINCOME and savings and run the model again because their Pr > |t| is greater than 0.05 */
 model votes = female density poverty veterans / tol vif collin;
 plot predicted.*residual.;
 RUN;
 /* Q2. (b) calculate the MSE for VOTETRAIN */
∃DATA VOTETEST alt; set VOTETEST;
 y \text{ hat} = (-53.30075) + (1.42003 \text{ female}) + (0.00263 \text{ density}) + (0.91191 \text{ poverty}) + (0.60507 \text{ vecterans});
 predicted error = ((votes - y hat)**2/232);
□ PROC PRINT data=VOTETEST alt;
 sum predicted error;
☐ PROC PRINT sum predicted_error;
 RUN;
```