انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

اد ياچ V	میری پہلی کتاب
ماده تفرقی مساوات	1 درجهاول
نمونه کثی	1.1
0 کا جیو میٹریائی مطلب۔میدان کی سمت اور تر کیب پولر۔ 0 کا جیو میٹریائی مطلب۔میدان کی سمت اور تر کیب پولر۔	1.2
قابل عليحد گی ساده تفرقی مساوات	
قطعى ساده تفر تى مساوات اور جزو تكمل	1.4
خطی ساده تفرقی مساوات به نولی	
عمودي خطوط کی تسلیل	
رور رطن کی است. ابتدائی قیت تفرقی مساوات: حل کی وجودیت اور یکتائیت	1.7
	1.,
ماده تفرقی مساوات	2 درجه دوم
حتجانب خطی د ودر جی تفر قی مساوات	2.1
ستنقل عددی سروالے متجانس خطی سادہ تفرقی مساوات	2.2
تفرقی عال	
سپر نگ نے جڑی کمیت کی آزادانه ارتعاش	2.4
يولر كوشى مساوات	2.5
حل کی وجودیت اور یکتانی؛ ورونسکی	2.6
غير متجانس ساده تفرقی مساوات	
جبر کی ارتعاش لے گلگ ۔	
2.8.1 بر قرار حال حل کا حیطه به عملی گمک	
برقى ادوار كى نمونه كثى	2.9
متعین متغیرات برلنے کے طریقے سے غیر متجانس خطی سادہ تفر تی مساوات کاحل میں	2.10
	_
نظى ساده تفر قى مساوات	
متجانس خطی ساده تفرقی مساوات	3.1

ا اضافی ثبوت

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ستعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب3

بلند درجی خطی ساده تفرقی مساوات

دو درجی خطی سادہ تفرقی مساوات کو حل کرنے کے طریقے بلند درجی خطی سادہ ترفقی مساوات کے لئ بھی قابل استعال ہیں۔ہم دیکھیں گے کہ بلند درجی صورت میں مساوات زیادہ پیچیدہ ہوں گے، امتیازی مساوات کے جذر بھی تعداد میں زیادہ اور حصول میں نسبتاً مشکل ہوں گے اور ورونکی زیادہ اہم کردار ادا کرے گا۔

3.1 متجانس خطى ساده تفرقی مساوات

ررجی سادہ تفرقی مساوات سے مراد الیمی مساوات ہے جس میں نا معلوم متغیرہ $y^n = rac{\mathrm{d}^n y}{\mathrm{d} x^n}$ کا $y^n = y^n = y^n$ سب باند درجی تفرق ہو۔الیمی سادہ تفرقی مساوات کو

$$F(x,y,y',\cdots,y^{(n)})=0$$

کھا جا سکتا ہے جس میں y اور کم درجی تفرق موجود یا غیر موجود ہو سکتے ہیں۔ایسی مساوات کو خطبی کہتے ہیں اگر اس کو

(3.1)
$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = r(x)$$

n=2 کست ممکن ہو۔ صفحہ 82 پر دو در جی خطی سادہ تفرتی مساوات کی بات کی گئی۔ موجودہ مساوات میں $p_n(x)$ اور جری $p_0=q$ اور $p_0=q$ اور $p_0=q$ اور $p_0=q$ یہ $p_0=q$ یہ مساوات حاصل ہو گی۔ عدد کی سر $p_0=q$ تا $p_0=q$ اور جری مساوات فاعل $p_0=q$ نظاعل $p_0=q$ غیر تابع متغیرہ سے کوئی بھی نفاعل ہو سکتے ہیں جبکہ $p_0=q$ نا معلوم متغیرہ ہے۔ خطی مساوات کو معیاری صورت میں لکھا گیا ہے جہاں $p_0=q$ کا عدد کی سر اکائی $p_0=q$ ہے۔ تفرقی مساوات میں بیاری صورت میں پوری مساوات کو $p_0=q$ سے تقسیم کرتے ہوئے معیاری صورت عاصل کریں۔ جو تفرقی مساوات درج بالا صورت میں لکھنا ممکن نہ ہو غیر خطبی کہلاتی ہے۔

ری کھے وقفے r = 0 مکمل صفوr = 0 ہونے کی صورت میں ماوات r = 0 مکمل صفوr = 0 مکمل صفو

r(x) کے گئے وقفے پر p(x) کے مکمل صفر ہونے سے مراد سے ہے کہ اس وقفے پر p(x) کے گئے متجانس کی قیمت صفر کے برابر ہے۔ دو در جی تفرق مساوات کی طرح اگر p(x) مکمل صفر نہ ہو تب مساوات غیر متجانس کہلائے گی۔

کھے وقفہ y=h(x) سے مراد ایسا تفاعل ہے مراد ایسا تفاعل ہے جو y=h(x) معین ہو، کھلے وقفہ یہ اور اس کے تفرق موجود ہو اور تفرقی مساوات میں y اور اس کے تفرقات کی جگہ y اور اس کے تفرقات کی جگہ y اور اس کے تفرقات یہ کرنے سے مساوات کے دونوں اطراف بالکل کیساں حاصل ہوں۔

متجانس خطی ساده تفرقی مساوات: خطی میل اور عمومی حل

خطی میل یا اصول خطیت جس کا ذکر صفحہ 84 مسلہ 2.1 میں کیا گیا بلند درجی خطی متجانس سادہ تفرقی مساوات کے لئے بھی درست ہے۔

مسکلہ 3.1: بنیادی مسکلہ برائے متجانس خطی سادہ بلند درجی تفرقی مساوات کا حل ہو کھلے وقفہ I پر مساوات کا حل ہو کھلے وقفہ I پر متجانس خطی بلند درجی تفرق مساوات کا حل کا خطی میل بھی I پر اس مساوات کا حل ہو گا۔ بالخصوص ان حل کو مستقل مقدار سے ضرب دینے سے بھی مساوات کے حل حاصل ہوتے ہیں۔ (یہ اصول غیر خطی اور غیر متحانس مساوات پر لاگو نہیں ہوتا۔)

اس کا ثبوت گزشتہ باب میں دئے گئے ثبوت کی طرح ہے جس کو یہاں پیش نہیں کیا جائے گا۔

ہماری بقایا گفتگو ہو بہو دو در جی تفرقی مساوات کی طرح ہو گی للذا یہاں بلند درجی خطی متجانس مساوات کی عمومی حل کی بات کرتے ہیں۔ کی بات کرتے ہیں۔ ایسا کرنے کی خاطر n عدد نفاعل کی خطبی طور غیر تابع ہونے کی تصور کو وسعت دیتے ہیں۔

تعریف: عمومی حل، اساس اور مخصوص حل کطے وقف I پر مساوات 3.2 کا عمومی حل

(3.3)
$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

 y_n ت y_1 تا y_1 تا y_2 اختیاری مستقل ہیں۔ یوں $y_n(x)$ تا y_1 تا y_2 اختیاری مستقل ہیں۔ یوں y_1 تا y_2 کھلے وقفے پر خطی طور غیر تابع ہیں۔

عمومی حل کے متعل کی قیتیں مقرر کرنے سے مخصوص حل حاصل ہو گا۔

تعریف: خطی طور تابع تفاعل اور خطی طور غیر تابع تفاعل تعریف: معین ہیں۔ تصور کریں کہ کھلے وقفے I پر n عدد تفاعل $y_1(x)$ تا $y_2(x)$ معین ہیں۔

وقفہ I پر معین y_n تا y_n ہاں وقفے پر اس صورت خطی طور غیر تابع y_n ہیں جب پورے وقفے پر y_n وقفہ $k_1y_1(x)+k_2y_2(x)+\cdots+k_ny_n(x)=0$

سے مراد

$$k_1 = k_2 = \cdots = k_n = 0$$

ہو۔ k_1 تا k_n تا ہیں کم از کم ایک کی قیت صفر نہ ہونے کی صورت میں مساوات 3.4 پر پورا اترتے ہوئے حل v_n تا v_n خطی طور تابع کہلاتے ہیں۔

linearly independent¹ linearly dependent²

ہے جب y_n تا y_n میں (کم از کم ایک) تفاعل کو اس صورت بقایا تفاعل کے خطبی میں کے طرز پر کھا جا سکتا ہے جب اس وقفے پر y_n تا y_n تا y_n خطبی طور تابع ہوں۔ یوں اگر y_n ہو تب ہم مساوات 3.4 کو y_n تا ہوئے ہوئے ہوئے

$$y_1 = -\frac{1}{k_1}(k_2y_2 + k_3y_3 + \dots + k_ny_n)$$

کھ سکتے ہیں جو تناسی رشتہ ہے۔ یہ مساوات کہتی ہے کہ y_1 کو بقایا تفاعل کے خطی میل کی صورت میں کھا جا سکتا ہے۔ اس کو خطی طور تابع کہتے ہیں۔ آپ دیکھ سکتے ہیں کہ n=2 کی صورت میں ہمیں حصہ 2.6 میں بیان کئے گئے تصورات ملتے ہیں۔

مثال 3.1: خطی طور تابع $y_4=4\cos x$ اور $y_3=5\cos x+\sin x$ ، $y_2=1.5x^2$ ، $y_1=2\sin x$ اور $y_3=5\cos x+\sin x$ کسی مجھی کھلے وقنے پر خطی طور تابع ہیں۔

عل: تم y_4 تا y_4 تا $y_3=rac{1}{2}y_1+0$ تا تفاعل ہیں۔ $y_3=rac{1}{2}y_1+0$ تفاعل ہیں۔

مثال 3.2: خطی طور غیر تابع ثابت کریں کہ $y_1=x$ ، $y_2=x^3$ ، $y_1=x$ کسی بھی کھلے وقفے پر خطی طور غیر تابع ہیں۔

 k_3 تا k_1 تا x کی قیمتیں پر کرتے ہوئے $k_1y_1+k_2y_2+k_3y_3=0$ تا k_3 دریافت کرتے ہیں۔ کھلے وقفے پر نقطہ x=1 ، x=1 اور x=1 پینے ہوئے درج ذیل ہمزاد مساوات مطلع ہیں۔

$$k_1 + k_2 + k_3 = 0$$
$$-k_1 - k_2 + k_3 = 0$$
$$2k_1 + 8k_2 + 16k_3 = 0$$

ان جمزاد مساوات کو حل کرتے ہوئے $k_1=0$ ، $k_1=0$ ، اور $k_3=0$ ماتا ہے جو خطی طور غیر تابع ہونے کا ثبوت ہے۔

مثال 3.3: اساس-عمومی حل مثال 3.3: اساس-عمومی حل تین درجی ساده تفرقی مساوات $y^{(3)}-y'=0$ کا عمومی حل تلاش کریں۔ $y^{(3)}-y'=0$ سے مراد $y^{(3)}-y'=0$ حل: حصہ 2.2 کی طرح ہم اس متجانس مساوات کا حل $y=e^{\lambda x}$ تصور کرتے ہوئے امتیازی مساوات کا حل $\lambda^3-\lambda=0$

 $\lambda=0$ اور $\lambda=0$ ملتے ہیں جن سے اساس کرتے ہیں۔اس کو $\lambda=0$ اور $\lambda=0$ کی کھتے ہوئے $\lambda=0$ اور $\lambda=0$

$$y = c_1 + c_2 e^x + c_3 e^{-x}$$

ہو گا۔

ابتدائی قیمت مسکله ـ وجودیت اوریکتائی

رماوات 3.2 پر بنی ابتدائی قیمت مسکلہ مساوات 3.2 اور درج ذیل n ابتدائی شوائط پر مشتمل ہوگا $y(x_0)=K_0,y'(x_0)=K_1,\cdots,y^{(n-1)}(x_0)=K_{n-1}$ (3.5) $y(x_0)=K_0,y'(x_0)=K_1,\cdots,y^{(n-1)}(x_0)=K_{n-1}$ جہال x_0 کھلے وقفے x_0 برایک نقطہ اور x_0 تا x_0 اس نقطے پر دیے گئے مقدار ہیں۔ صفحہ 141 پر مسکلہ 2.2 کو وسعت دیتے ہیں جس سے درج ذیل ملتا ہے۔

مسکلہ 3.2: مسکلہ وجودیت اور بکتائی برائے ابتدائی قیمت بلند درجی تفرقی مساوات کے عددی سر p_0 تا p_{n-1} استمراری ہونے کی صورت میں اگر x_0 کھلے وقفے پر مساوات 3.2 کے عددی سر y(x) تا y(x) استمراری ہونے کی صورت میں اگر موجود ہے۔ پر پایا جاتا ہو تب مساوات 3.2 اور مساوات 3.5 پر مبنی ابتدائی قیمت مسئلے کا y(x) موجود ہے۔

حل کی موجود گی اور یکتائی کا ثبوت اس کتاب میں نہیں دیا جائے گا۔

مثال 3.4: تین درجی یولر کوشی مساوات کا ابتدائی قیت مسئله درج ذیل ابتدائی قیت مسئله کو حل کریں۔

 $x^{3}y''' - 5x^{2}y'' + 12xy' - 12y = 0$, y(1) = 1, y'(1) = -1, y''(1) = 0

حل: ہم تفرقی مساوات میں آزمائثی تفاعل $y=x^m$ پر کرتے ہوئے امتیازی مساوات

$$m^3 - 8m^2 + 19m - 12 = 0$$

حاصل کرتے ہیں جس کے جذر m=1 ، m=3 ، m=1 اور m=4 ہیں۔ جذر کو مختلف طریقوں سے حاصل کیا جاتا ہے البتہ یہاں جذر حاصل کرنے پر بحث نہیں کی جائے گی۔ یوں حل کی اساس $y_1=x^3$ ، $y_1=x^3$ اور $y_3=x^4$ ہیں جنہیں مثال 3.2 میں خطی طور غیر تابع ثابت کیا گیا۔ اس طرح عمومی حل $y_3=x^4$

$$y = c_1 x + c_2 x^3 + c_3 x^4$$

ہو گا۔ دیے گئے تفر تی مساوات کو x^3 سے تقسیم کرتے ہوئے y''' کا عددی سر اکائی حاصل کرتے ہوئے تفر تی مساوات کی معیاری صورت حاصل ہوتی ہے۔ معیاری صورت میں مساوات کے دیگر عددی سر x=0 پر غیر مساوات کی معیاری صورت جالا عمومی حل تمام x بشمول x=0 کے لئے درست ہے۔

عومی حل اور اس کے تفرقات $y'=c_1+3c_2x^2+4c_3x^3$ اور $y''=6c_2x+12c_3x^2$ میں ابتدائی معلومات پر کرتے ہوئے درج ذیل جمزاد مساوات ملتے ہیں

$$c_1 + c_2 + c_3 = 1$$

$$c_1 + 3c_2 + 4c_3 = -1$$

$$6c_2 + 12c_3 = 0$$

جن کا طل
$$c_1=3$$
 اور $c_2=-4$ اور $c_3=2$ اور $c_3=2$ اور $c_2=-4$ ہوگا۔ $y=3x-4x^3+2x^4$

خطی طور غیر تابع حل _ور ونسکی

عمومی حل کے حصول کے لئے ضروری ہے کہ حل خطی طور غیر تابع ہوں۔ اگرچہ عموماً حل کو دیکھ کر ہی اندازہ ہو جاتا ہے کہ وہ خطی طور غیر تابع ہیں یا نہیں ہیں، البتہ ایسا معلوم کرنے کا منظم طریقہ زیادہ بہتر ہو گا۔صفحہ 142 پر مسئلہ 2.3 دو درجی و گا۔ سند درجی مساوات کی مساوات کی صورت میں ورونسکی درج ذیل ہو گی۔

(3.6)
$$W(y_1, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & & & & \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

مسئله 3.3: خطى طور تابع اور غير تابع حل

ثبوت :

(الف) تصور کریں کہ کھلے وقفہ y_1 پر y_1 تا y_n مساوات 3.2 کے حل ہیں۔یوں خطی طور غیر تابع کی تحریف سے

$$(3.7) k_1 y_1 + k_2 y_2 + \dots + k_n y_n = 0$$

کھا جا سکتا ہے۔ I پر اس مساوات کی n-1 تفر قات لیتے ہیں۔

(3.8)
$$k_1 y_1' + k_2 y_2' + \dots + k_n y_n' = 0$$
$$k_1 y_1'' + k_2 y_2'' + \dots + k_n y_n'' = 0$$
$$\vdots$$
$$k_1 y_1^{(n-1)} + k_2 y_2^{(n-1)} + \dots + k_n y_n^{(n-1)} = 0$$

W=0 مسئلہ کر پر کو استعال کرتے ہوئے ہم یوں بھی کہہ سکتے ہیں کہ W=0 کی صورت میں مساوات 3.7 اور مساوات 3.8 خطی متجانس ہمزاد الجبرائی مساوات کے نظام کا X=0 پر غیر صفر حل X=0 ہتا ہا ہا ہا ہا ہا ہا ہا ہا ہوں ہمزاد الجبرائی مساوات 2.3 کا عمومی حل X=0 ہوئی حل ستعال کرتے ہوئے، X=0 ہساوات 3.2 کا عمومی حل X=0 ہستعال کرتے ہوئے، X=0 ہساوات X=0 ہوئی ہر انگراز ہوئے ہوئے، X=0 ہوئی ہرا اثرتا ہے۔ مساوات 3.4 ور مساوات 3.5 کے تحت X=0 ہوئی شرائط پر حل X=0 ہوئی ہساوات ہوئی شرائط پر حل X=0 ہوگرا اثرتا ہے اور یوں مسئلہ 3.2 کے تحت، چونکہ مساوات X=0 ہوگرا اثرتا ہے۔ انہیں ابتدائی شرائط پر حل X=0 ہوگرا ہوگرا ہوگر کے عمومی ہوگا ہیں ابتدائی شرائط پر حل X=0 ہوگرا ہیں خطی طور تابع ہیں۔ X=0 ہوگا ہیں کا مطلب ہے کہ X=0 ہوگرا تا X=0 خطی طور تابع ہیں۔

(y) اگر W کی قیمت x_0 پر صفر ہو جہاں x_0 کطے وقفہ I پر پایا جاتا ہو، تب ثبوت (y) کے تحت x_0 خطی طور تابع ہونا ثابت ہوتا ہے اور یوں ثبوت (الف) کے تحت W تا W ہو گا۔اس طرح اگر I پر نقطہ W مفر نہ ہو تب W تا W کطے وقفہ W پر خطی طور غیر تابع ہوں گے۔

non trivial solution⁵ Cramer's theorem⁶ مثال 3.5: اساس۔ ورونسکی مثال 3.5 میں حاصل کردہ حل $y_1=c$ ہو $y_2=e^x$ ، $y_1=c$ خطی طور غیر تابع $y_3=e^{-x}$ اور $y_3=e^{-x}$ اور $y_3=e^{-x}$ بیں۔

حل: مساوات 3.6 کے طرز پر ورونسکی لکھ ک

$$W = \begin{vmatrix} c & e^{x} & e^{-x} \\ 0 & e^{x} & -e^{-x} \\ 0 & e^{x} & e^{x} \end{vmatrix} = ce^{x}e^{-x} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = c \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2c$$

 e^{-x} اور تیسری قطار سے e^{x} اور تیسری قطار سے e^{x} اور تا کی باہر نکال کر قالب کی سادہ صورت حاصل کی گئی اور اس کے بعد پہلی قطار سے قالب کو پھیلا کر اس کی حتی قیمت حاصل کی گئی ہے۔چونکہ کی کئی تھی قیمت کے لئے v_{1} کی کئی ہے۔ پونکہ کی کی کی قیمت کے لئے v_{2} کے لئے v_{3} کے لئے v_{4} کی کی کی کی کی کھی وقتے پر v_{3} تا v_{4} خطی طور غیر تابع ہیں۔

مساوات2. 3 کے عمومی حل میں تمام حل شامل ہیں