2.4 Personalised Treatment Effects

Alicia Curth

amc253@cam.ac.uk

Personalised therapeutics

- estimate effect of a treatment/intervention on an individual patient
- Tutorial goal:
 - Estimating the effect of a treatment on an individual
 - Will a given treatment work for an individual patient?
 - Age, weight, blood, pressure into observational data (offline)
 - Answering such questions from observational data is tricky
 - Missing counterfactual and confounding

Observational data

- Collected from actual clinical practice
 - Patient features X
 - o Treatment assignment W
 - o Outcome Y
- This is not randomised
 - Depends on clinical practice
 - Based on observable characteristics
 - Propensity function
- Potential outcomes framework (Neyman-Rubin)
 - X: Each patient i has features

0

- Two potential outcomes:
 - Treated outcome: treated
 - Control outcome: not treated
 - Will only observe factual outcomes not the counterfactual outcomes
- Conditional average treatment effect (CATE)/ Individualised treatment effect (ITE)
 - o http://www.personal.ceu.hu/staff/Robert Lieli/cate.pdf

Causal effect challenges

- No labels not supervised
- A solution:
 - Modelling potential outcome regressions
 - Data from treated
- Challenges:
 - Confounding -> covariate shift
 - Training distribution != testing distribution
 - Solutions:
 - Domain-adversarial training
 - Importance weighting
 - Not focus

- Unobserved labels: can target outcomes but not treatment effect
- Potential outcomes framework
 - Main assumptions:
 - no unmeasured confounders (ignorability)
 - E.g. smoking is not recorded but treatment was assigned based on smoking status
 - Common support
 - Some randomness across treatment and not treatment
 - Treatment can be deterministically assigned

How to model individualized treatment effects? - potential outcome regression

- https://arxiv.org/abs/2106.03765
- Indirect learners: PO regression for CATE estimation
 - o T-learner
 - Fit two separate regression surfaces using any ML method and only data of each treatment group, then use difference
- PO-sepcific regression heads
- T-learner
- TARnet
- Implicit inductive biases in existing indirect learners

0

CATE estimation

- Soft, Hard, and flexible approach
- Soft:
 - Generic indirect learner loss function > change regularization scheme

Evaluation

- Semi-synthetic simulation studies
- https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/2a79ea27c279e471f4d180b08d62b00a-Abstract-round2.html

Meta-learner

- Meta-learning != Meta-learner
- Two approaches
 - Indirect approach
 - For CATE: T-learner/ S-learner/ Hybrid S-learner
 - Direct approach

Key takeaways:

What's next?

Handling unobserved confounding?
https://proceedings.mlr.press/v119/bica20a.html
Survival outcomes

Treatment outcome: multiple and continuous Longitudinal data

Additional notes:

- Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
 - https://arxiv.org/abs/2101.10943
- On Inductive Biases for Heterogeneous Treatment Effect Estimation
 - https://arxiv.org/abs/2106.03765
- Metalearners for estimating heterogeneous treatment effects using machine learning
 - o https://www.pnas.org/doi/10.1073/pnas.1804597116
- Towards optimal doubly robust estimation of heterogeneous causal effects
 - https://arxiv.org/abs/2004.14497
- Estimating individual treatment effect: generalization bounds and algorithms
 - https://arxiv.org/abs/1606.03976?context=stat
- CATENets: https://github.com/AliciaCurth/CATENets
- Learn more:
 - https://www.vanderschaar-lab.com/individualized-treatment-effect-inference/