PU3 H2 Mathematics Paper 1 2012 Prelim II

1/:\	
1(i)	$\sqrt{(4p)^2 + (7p)^2 + (-4p)^2} = 1$
	$p^2 = \frac{1}{81}$
	$p = \frac{1}{9} (reject - ve)$
1(ii)	Length of projection of a on b.
1(iii)	$a \times b = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \times \begin{pmatrix} \frac{4}{9} \\ \frac{7}{9} \\ -\frac{4}{9} \end{pmatrix} = \begin{pmatrix} -\frac{34}{9} \\ 4 \\ \frac{29}{9} \end{pmatrix}$
2	$\frac{2x^2 + 2x + 1}{x^2 - 2x + 1} \ge 1$
	$\frac{2x^2+2x+1}{\left(x-1\right)^2} \ge 1$
	$x^2 + 4x \ge 0$
	$x \le -4$ and $x \ge 0$
	$x \neq 1$
	$2(\ln x)^2 + 2(\ln x) + 1$
	$\frac{2(\ln x)^2 + 2(\ln x) + 1}{(\ln x)^2 - 2(\ln x) + 1} \ge 1$
	$ \ln x \le -4, \ \ln x \ge 0 $
	$x \le e^{-4}, \ x \ge 1$
	$x \neq 1 \Rightarrow x \neq e$
3(i)	a-b+c=6
	1.21a + 1.1b + c = 0.12
	2.25a + 1.5b + c = 1 a = 2, b = -3, c = 1
- ()	
3(ii)	(0.75, -0.125)
	$f(x)$ is increasing for $x \ge 0.75$.

5(b)	a + 8d = 50
	$\frac{15}{2}(2a+14d) = 570$
	a = -46, d = 12
	$S_n > 500$
	$\frac{n}{2} \left[-92 + (n-1)12 \right] > 500$
	$12n^2 - 104n - 1000 > 0$
	n < -9.59 (rej) or $n > 9.59$
	∴ least n is 10.
6(i)	$x^2 - y^2 = 2xy - 1$
	$2x - 2y\left(\frac{dy}{dx}\right) = 2\left[y + x\left(\frac{dy}{dx}\right)\right]$
	$2x - 2y = 2x\left(\frac{dy}{dx}\right) + 2y\left(\frac{dy}{dx}\right)$
	$\frac{dy}{dx} = \frac{2x - 2y}{2x + 2y}$
	$\frac{dy}{dx} = \frac{x - y}{x + y}$
6(ii)	$\frac{x-y}{x+y} = 0$
	x = y
	$x^2 - x^2 = 2x^2 - 1$
	$x^2 = \frac{1}{2}$
	$x = \pm \sqrt{\frac{1}{2}}$
	$x = \frac{1}{\sqrt{2}}, y = \frac{1}{\sqrt{2}}$
	$x = -\frac{1}{\sqrt{2}}, y = -\frac{1}{\sqrt{2}}$
7	$\frac{dy}{dx} = \frac{1}{2}(x+y)^2$
	$ \frac{dx}{dy^2} = (x+y)\left(\frac{dy}{dx}+1\right) $
	()
	$\frac{d^3y}{dx^3} = \left(1 + \frac{dy}{dx}\right)^2 + \left(x + y\right)\left(\frac{d^2y}{dx^2}\right)$
	$\frac{d^3y}{dx^3} - \left(1 + \frac{dy}{dx}\right)^2 - \left(x + y\right)\left(\frac{d^2y}{dx^2}\right) = 0$

When
$$x = 0$$
, $y = 1$

$$\frac{dy}{dx} = \frac{1}{2}(0+1)^2 = \frac{1}{2}$$

$$\frac{d^2y}{dx^2} = (0+1)(\frac{1}{2}+1) = \frac{3}{2}$$

$$\frac{d^2y}{dx^2} = (1+\frac{1}{2})^2 + (0+1)(\frac{3}{2}) = \frac{15}{4}$$

$$y = 1+\frac{1}{2}x + \frac{3}{2}x^2 + \frac{14}{4}x^3 + \dots$$

$$y = 1+\frac{1}{2}x + \frac{3}{4}x^2 + \frac{5}{8}x^3 + \dots$$

$$x = \pi/2$$

$$x = \pi/2$$

$$y = \tan x$$

$$x = \pi/3$$

$$x = \sqrt{2}$$

$$y = \tan x - \pi/2$$

$$y = \tan x - \pi/2$$

$$= \pi \left[\tan x - x\right]_0^{1/2}$$

$$= \pi \left[\tan x - x\right]_0^{1/2}$$

$$= \pi \left[\sqrt{3} - \frac{\pi}{3}\right]$$

$$= \sqrt{3}\pi - \frac{\pi^2}{3} \text{ units}^3$$

$$9(a) \qquad \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)^5 \left(\cos \left(-\frac{\pi}{6}\right) + i \sin \left(-\frac{\pi}{6}\right)\right)^9$$

$$= \left(\cos \frac{5\pi}{2} + i \sin \frac{\pi}{2}\right)^5 \left(\cos \left(-\frac{\pi}{6}\right) + i \sin \left(-\frac{\pi}{6}\right)\right)$$

$$= \left(e^{i\frac{\pi}{2}}\right) \left(e^{-i\frac{\pi}{2}}\right) \left(e^{-i\frac{\pi}{2}}\right)$$

$$= \left(e^{i\frac{\pi}{2}}\right) \left(e^{-i\frac{\pi}{2}}\right) \left(e^{-i\frac{\pi}{2}}\right)$$

 $=e^{i\pi}$ =-1

9(b)	$z^3 = 27e^{i\frac{\pi}{2}}$
	$z^{3} = 27e^{i\left(\frac{\pi}{2} + 2k\pi\right)}$
	$z = 3e^{i\left(\frac{\pi}{6}, \frac{2k\pi}{3}\right)}, k = -1, 0, 1$
	$z_1 = 3(0-i) = -3i$
	$z_2 = 3\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \frac{3\sqrt{3}}{2} + \frac{3}{2}i$
	$z_3 = 3\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -\frac{3\sqrt{3}}{2} + \frac{3}{2}i$
10(i)	GC:
	$\alpha = 1.052$
	$\beta = 5.505$
10(ii)	$x_{n+1} = \ln(x_n - 1) + 4$
	If a sequence converges, as $n \to \infty$, $x_n \to L$ and $x_{n+1} \to L$.
	$L = \ln(L-1) + 4$
	$\ln(L-1)-L+4=0$
	Hence, $L = \alpha$ or $L = \beta$.
10(iii)	Maximum point: (2,2)
	$x_{n+1} = \ln\left(x_n - 1\right) + 4$
	$x_{n+1} - x_n = \ln(x_n - 1) - x_n + 4$
	Since $\ln(x-1) - x + 4 \le 2$,
	$x_{n+1} - x_n \le 2$
	$x_{n+1} \le x_n + 2$
11	$\frac{dx}{dt} = m - px$
	When $x = 0.5, \frac{dx}{dt} = 0$
	0 = m - p(0.5)
	m = 0.5 p
	$\frac{dx}{dt} = (0.5 p) - px$
	$=-\frac{1}{2}p(2x-1)$
	=-k(2x-1) where $k>0$.

13(ii)
$$\overrightarrow{BA} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$\overrightarrow{CB} = \begin{pmatrix} 2 \\ -8 \\ 4 \end{pmatrix}$$

$$\overrightarrow{BA} \times \overrightarrow{CB} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \times \begin{pmatrix} 2 \\ -8 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 5 \\ 9 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ -2 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 5 \\ 9 \end{pmatrix} = 0 - 10 + 9 = -1$$

$$\therefore p : r \cdot \begin{pmatrix} 2 \\ 5 \\ 9 \end{pmatrix} = -1$$
13(iii)
$$l_1 : r = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$$

$$l_2 : r = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$$

$$-4 + \lambda = 1 + 2\mu$$

$$-1 + 4\lambda = -1 + 3\mu$$

$$\lambda = -3, \quad \mu = -4$$

$$1 + 2(-3) = 0 + k(-4)$$

$$k = \frac{5}{4}$$
13(iii)
$$\begin{pmatrix} 2 \\ 1 \\ 1 \\ 5 \\ 9 \end{pmatrix} = 45 \neq 0$$
Since l_1 not perpendicular to plane's normal, l_1 does not lie in the plane.

13(iv)	$\begin{bmatrix} 1 \\ -4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} = -1$ $45\lambda = 26$ $\lambda = \frac{26}{45}$ $r = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} + \begin{pmatrix} \frac{26}{45} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{97}{45} \\ -\frac{154}{45} \\ \frac{59}{45} \end{pmatrix}$
13(v)	$\cos \theta = \frac{\frac{5}{2} + 10 + 27}{\left(\sqrt{\frac{233}{16}}\right)\left(\sqrt{110}\right)}$ $\theta = 0.16191 rad$ $\Box = \frac{\pi}{2} - 0.16191 = 1.41 rad (80.7^{\circ})$