ТЕМА РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Систему нелинейных уравнений с п неизвестными можно записать в виде

$$\begin{array}{l}
\stackrel{1}{\downarrow} f_1(x_1, x_2, ..., x_n) = 0, \\
\stackrel{1}{\downarrow} f_2(x_1, x_2, ..., x_n) = 0, \\
\stackrel{1}{\uparrow} \\
\stackrel{1}{\uparrow} f_n(x_1, x_2, ..., x_n) = 0
\end{array} \tag{1}$$

или, более коротко, в векторной форме

$$f(\mathbf{r}) = 0, \tag{2}$$

где x - вектор неизвестных величин, f - вектор-функция

$$\mathbf{r} = \mathbf{\xi} \mathbf{x}_{1} \ddot{\mathbf{o}}$$

$$\mathbf{r} = \mathbf{\xi} \mathbf{f}_{1}(\mathbf{x}) \ddot{\mathbf{o}}$$

$$\mathbf{r} = \mathbf{\xi} \mathbf{f}_{2}(\mathbf{x}) \div$$

$$\mathbf{f} = \mathbf{\xi} \mathbf{f}_{2}(\mathbf{x}) \div$$

$$\mathbf{f} = \mathbf{\xi} \mathbf{f}_{n}(\mathbf{x}) \ddot{\mathbf{o}}$$

$$\mathbf{r} = \mathbf{\xi} \mathbf{0} \div$$

$$\mathbf{f} = \mathbf{\xi} \mathbf{0} \div$$

такой удается редких случаях ДЛЯ решения системы применить метод последовательного исключения неизвестных и свести решение исходной задачи к решению одного нелинейного уравнения с одним неизвестным. Значения других неизвестных величин находятся соответствующей подстановкой в конкретные выражения. Однако в подавляющем систем нелинейных уравнений большинстве случаев решения используются ДЛЯ итерационные методы.

1. Метод Ньютона

Если определено начальное приближение $\mathbf{r}^{(0)} = (\mathbf{x}_1^{(0)}, \mathbf{x}_2^{(0)}, ..., \mathbf{x}_n^{(0)})^T$, итерационный процесс нахождения решения системы (1) методом Ньютона можно представить в виде

$$\hat{x}_{1}^{(k+1)} = x_{1}^{(k)} + Dx_{1}^{(k)},$$

$$\hat{x}_{2}^{(k+1)} = x_{2}^{(k)} + Dx_{2}^{(k)},$$

$$\hat{x}_{n}^{(k+1)} = x_{n}^{(k)} + Dx_{n}^{(k)},$$

$$k = 0,1,2,...,$$
(3)

где значения приращений $\mathsf{D} x_1^{(k)}$, $\mathsf{D} x_2^{(k)}$,..., $\mathsf{D} x_n^{(k)}$ определяются из решения системы линейных алгебраических уравнений, все коэффициенты которой выражаются через известное предыдущее приближение $\mathbf{r}_{(k)}^{(k)} = (x_1^{(k)}, x_2^{(k)}, ..., x_n^{(k)})$

$$\begin{split} & \tilde{\hat{f}}_{1} f_{1}(x^{(k)}) + \frac{\P f_{1}(x^{(k)})}{\P x_{1}} Dx_{1}^{(k)} + \frac{\P f_{1}(x^{(k)})}{\P x_{2}} Dx_{2}^{(k)} + ... + \frac{\P f_{1}(x^{(k)})}{\P x_{n}} Dx_{n}^{(k)} = 0, \\ & \tilde{\hat{f}}_{2}(x^{(k)}) + \frac{\P f_{2}(x^{(k)})}{\P x_{1}} Dx_{1}^{(k)} + \frac{\P f_{2}(x^{(k)})}{\P x_{2}} Dx_{2}^{(k)} + ... + \frac{\P f_{2}(x^{(k)})}{\P x_{n}} Dx_{n}^{(k)} = 0, \\ & \tilde{\hat{f}}_{1} f_{1}(x^{(k)}) + \frac{\P f_{1}(x^{(k)})}{\P x_{1}} Dx_{1}^{(k)} + \frac{\P f_{1}(x^{(k)})}{\P x_{2}} Dx_{2}^{(k)} + ... + \frac{\P f_{n}(x^{(k)})}{\P x_{n}} Dx_{n}^{(k)} = 0. \end{split}$$

В векторно-матричной форме расчетные формулы имеют вид

$$\mathbf{X}^{\mathbf{\Gamma}(k+1)} = \mathbf{X}^{\mathbf{\Gamma}(k)} + \Delta \mathbf{X}^{\mathbf{\Gamma}(k)} \qquad k = 0, 1, 2, ...,$$
(5)

 $\mathbf{x}^{\mathbf{r}_{(k+1)}} = \mathbf{x}^{\mathbf{r}_{(k)}} + \Delta \mathbf{x}^{\mathbf{r}_{(k)}}$ k = 0,1,2,..., где вектор приращений $\Delta \mathbf{x}^{(k)} = \mathbf{c}^{\mathbf{r}_{(k)}} \mathbf{c}^{\mathbf{r}_{(k)}} \div$ находится из решения уравнения $\hat{\mathbf{f}}(\mathbf{x}^{(k)}) + \mathbf{J}(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = 0$

$$f(\mathbf{r}^{(k)}) + J(\mathbf{r}^{(k)})\Delta \mathbf{r}^{(k)} = 0$$
(6)

Здесь
$$J(x) = \hat{e} \frac{\Pf_1(x)}{\Px_1} = \frac{\Pf_1(x)}{\Px_2} \dots \frac{\Pf_1(x)}{\Px_n} \mathring{v}_{u}$$
 $\frac{\Pf_2(x)}{\Px_2} \dots \frac{\Pf_2(x)}{\Px_n} \mathring{v}_{u}$ — матрица Якоби первых производных вектор- $\hat{e} \frac{\Pf_1(x)}{\Px_1} \dots \frac{\Pf_n(x)}{\Px_2} \dots \frac{\Pf_n(x)}{\Px_n} \mathring{v}_{u}$

функции f(x).

Выражая из (6) вектор приращений $\Delta x^{(k)}$ и подставляя его в (5), тогда итерационный процесс нахождения решения можно записать в виде

$$\mathbf{r}_{(k+1)} = \mathbf{r}_{(k)} - \mathbf{J}^{-1}(\mathbf{r}_{(k)}) \mathbf{f}(\mathbf{r}_{(k)}) \qquad k = 0, 1, 2, ...,$$
(7)

где $J^{-1}(x)$ – матрица, обратная матрице Якоби.

Формула (7) есть обобщение формулы (3) на случай систем нелинейных уравнений.

При реализации алгоритма метода Ньютона в большинстве случаев предпочтительным является не вычисление обратной матрицы $J^{-1}(x^{(k)})$, а нахождение из системы (4) значений приращений $Dx_1^{(k)}$, $Dx_2^{(k)}$,..., $Dx_n^{(k)}$ и вычисление нового приближения по (3). Для решения линейных систем можно привлекать самые разные методы, как прямые, так и итерационные с

учетом размерности n решаемой задачи и специфики матриц Якоби J(x) (например, симметрии, разреженности и т.п.).

Использование метода Ньютона предполагает дифференцируемость функций $f_1(x)$, $f_2(x),...,\,f_n(x)$ и невырожденность матрицы Якоби (det $J(x^{(k)})^1$ 0). В случае, если начальное приближение выбрано в достаточно малой окрестности искомого корня, итерации сходятся к точному решению, причем сходимость квадратичная.

В практических вычислениях в качестве условия окончания итераций обычно используется критерий

где е - заданная точность.

Для системы двух уравнений расчетная формула (7) имеет вид

где

$$J^{(k)} = \begin{matrix} \mathbf{c} \\ \mathbf{$$

$$\begin{split} A_1^{(k)} = & \begin{matrix} \mathbf{\mathfrak{T}} \\ \mathbf{\mathfrak{T}}_1(x_1^{(k)}, x_2^{(k)}) \\ \mathbf{\mathfrak{T}} \\ \mathbf{\mathfrak{T}}_2 \\ \mathbf{\mathfrak{T}}_2(x_1^{(k)}, x_2^{(k)}) \end{matrix} & \begin{matrix} \mathbf{\mathfrak{T}} \\ \mathbf{\mathfrak{T}}_1(x_1^{(k)}, x_2^{(k)}) \\ \mathbf{\mathfrak{T}} \\ \mathbf{\mathfrak{T}}_2 \\ \vdots \\ \mathbf{\mathfrak{T}}_2(x_1^{(k)}, x_2^{(k)}) \\ \mathbf{\mathfrak{T}} \\ \mathbf{\mathfrak{T}}_2 \end{matrix} & \vdots \\ \vdots \\ \mathbf{\mathfrak{T}} \end{split}$$

$$A_{1}^{(k)} = \begin{matrix} & & & \\ & &$$

<u>Пример.</u> Методом Ньютона найти положительное решение системы нелинейных уравнений с точностью $e=10^{-4}$

$$\begin{cases}
f_1(x_1, x_2) = 0.1x_1^2 + x_1 + 0.2x_2^2 - 0.3 = 0, \\
f_2(x_1, x_2) = 0.2x_1^2 + x_2 - 0.1x_1x_2 - 0.7 = 0,
\end{cases}$$

Решение. Для выбора начального приближения применяем графический способ. Построив на плоскости (x_1, x_2) в интересующей нас области кривые $f_1(x_1, x_2) = 0$ и $f_2(x_1, x_2) = 0$ (рис.), определяем, что положительное решение системы уравнений находится в квадрате $0 < x_1 < 0.5$, $0.5 < x_2 < 1.0$.

Рис.

За начальное приближение примем $x_1^{(0)} = 0.25$, $x_2^{(0)} = 0.75$.

В рассматриваемом примере:

$$f_1(x_1^{(k)}, x_2^{(k)}) = 0.1(x_1^{(k)})^2 + x_1^{(k)} + 0.2(x_2^{(k)})^2 - 0.3,$$

$$f_2(x_1^{(k)}, x_2^{(k)}) = 0.2(x_1^{(k)})^2 + x_2^{(k)} - 0.1x_1^{(k)}x_2^{(k)} - 0.7,$$

$$\frac{\P f_1(x_1^{(k)}, x_2^{(k)})}{\P x_1} = 0.2x_1^{(k)} + 1, \qquad \frac{\P f_1(x_1^{(k)}, x_2^{(k)})}{\P x_2} = 0.4x_2^{(k)}$$

$$\frac{\P f_2(x_1^{(k)}, x_2^{(k)})}{\P x_1} = 0.4x_1^{(k)} - 0.1x_2^{(k)}, \qquad \frac{\P f_2(x_1^{(k)}, x_2^{(k)})}{\P x_2} = 1 - 0.1x_1^{(k)}.$$

Подставляя в правые части соотношений (9) выбранные значения $x_1^{(0)}, x_2^{(0)},$ получим приближение $x_1^{(1)}, x_2^{(1)},$ используемое, в свою очередь, для нахождения $x_1^{(2)}, x_2^{(2)}$ и т.д. Итерации продолжаются до выполнения условия (8).

Результаты вычислений содержатся в таблице

Ī	k	$\mathbf{X}_{1}^{(\mathbf{k})}$	$ f_1(x_1^{(k)}, x_2^{(k)}) f_2(x_1^{(k)}, x_2^{(k)}) $	<u> </u>	$\frac{\P f_1(x_1^{(k)}, x_2^{(k)})}{\P x_2}$	$\det \mathbf{A}_1^{(k)}$	$\det \mathbf{A}_2^{(k)}$	$\det \mathbf{J}^{(k)}$
		$\mathbf{X}_{2}^{(k)}$	2 1 2 7	$\boxed{\Pf_2(x_1^{(k)}, x_2^{(k)})}$	$\Pf_2(x_1^{(k)}, x_2^{(k)})$			
				$\P \mathbf{x}_1$	$\P x_2$			
	0	0.25000	0.06875	1.01250	0.30000	0.05391	0.04258	0.97969
		0.75000	0.04375	0.02500	0.97500			
	1	0.19498	-0.00138	1.00760	0.28262	-0.00146	0.00038	0.98588
		0.70654	0.00037	0.00734	0.98050			
	2	0.19646	0.00005	1.00772	0.28246	0.00005	0.000001	0.98567
		0.70615	0.00000	0.00797	0.98035			
	3	0.19641			ı	1	1	1

0.19641 0.70615 $x_1^{(*)} > 0.1964, \quad x_2^{(*)} > 0.7062.$

Исходеая система

$$\begin{cases} f_1(x_1, x_2) = 0.1x_1^2 + x_1 + 0.2x_2^2 - 0.3 = 0, \\ f_2(x_1, x_2) = 0.2x_1^2 + x_2 - 0.1x_1x_2 - 0.7 = 0, \end{cases}$$

Приближенное решение

$$x1 := 0.1964$$
 $x2 := 0.706$

Проверка

$$fl(x1,x2) := 0.1 \cdot x1^2 + x1 + 0.2 \cdot x2^2 - 0.3$$

$$f2(x1,x2) := 0.2 \cdot x1^2 + x2 - 0.1 \cdot x2 \cdot x1 - 0.7$$

$$f1(x1,x2) = -0.0000555$$

$$f2(x1,x2) = -0.00015125$$