0 110002211121110

Universidade Eduardo Mondlane

Faculdade de Ciências Departamento de Física

ELECTRÓNICA ANALÓGICA:

Trabalho Laboratorial N°7: Filtragem, Ceifadores e Limitadores de Sinal

Parte - I: Filtragem de Sinal

1 Objectivo

1. Verificar o efeito que um filtro capacitivo provoca sobre a tensão de saida de um retificador

2 Material Necessário

Alimentação: Transformador 220/12V <u>Instrumentos</u>: Osciloscópio e multímetro

Resistor: $10k\Omega$

<u>Capacitores</u>: 1μ F, 10μ F, 100μ F <u>Díodos</u>: 1N5892 (2 unidades)

<u>Diversos</u>: Ferro de soldar, painel, fios e estanho.

3 Procedimento

1. Monte o circuito da Fig.1 e preencha a tabela 1;

Tabela 1:

Forma de onda no R	V_{DC}		
	Medido	Calculado	

Figura 1:

2. Monte o circuito da Fig.2 e preencha a tabela 2, usando de cada vez, diferentes capacitores

11000221112111

Tabela 2:

$C(\mu F)$	Forma de onda no R	Ripple (Vpp)	$V_{DC}(V)$

Figura 2:

Parte - II: Circuitos Ceifador e Limitador

4 Material Necessário

Alimentação: Transformador 220/12V; fonte (0 - 30V); pilha (9V)

<u>Instrumentos</u>: Osciloscópio e multímetro

Resistor: 100Ω ; $1k\Omega$

 $\frac{\text{Capacitores:}}{\underline{\text{D\'{o}dos:}}} \quad 1\mu\text{F}, 10\mu\text{F}, 100\mu\text{F}$ $\underline{1\text{N}5892} \text{ (2 unidades)}$

<u>Diversos</u>: Ferro de soldar, painel, fios e estanho.

5 Procedimento

1. Monte o circuito da Fig.3.

Figura 3:

- 2. Meça a tensão de saida em S, nos seguintes casos:
 - Entre S e a terra;
 - \bullet Colocando uma resistência de 100Ω entre S e a terra e
 - Colocando uma resistência de $1k\Omega$ entre S e a terra.
- 3. Preencha a tabela 3.

Tabela 3:				
Entrada	Saida			
Vpp =	$R_L = \infty$	$R_L = 1k\Omega$	$R_L = 100\Omega$	
U(V) t(s)				

4. Monte o circuito da Fig.4. Use a pilha de 9V para estabelecer Vr.

Figura 4:

5. Preencha a tabela 4.

Tabela 4:					
Entrada	Saida				
Vpp =	Vr=1V	Vr=-1V	Vr=-3V	Vr=-4V	Vr=-5V
U(V) t(s)					

6. Monte o circuito da Fig.5.

Figura 5:

7. Preencha a tabela 5.

Tabela 5:				
Entrada	Saida			
Vpp =	$V_1 = 3V$	$V_2 = -3.5V$	$V_1 = 3V$	$V_2 = +3.5V$
U(V)				