Mathematics for Computer Science
Logic and Discrete Structures

Daniel Paulusma

Department of Computing Science

Fundamentals of Propositional Logic

The rudiments of propositional logic

- Propositional logic
 - the most fundamental logic, lying at the heart of many other logics
 - formalises day-to-day, common-sense reasoning.
- Key to propositional logic are propositions
 - declarative sentences that can be either true or false (but not both).
- Propositions are represented by propositional variables (Boolean variables, atoms)
 - usually letters such as x, Y, a, ... or subscripted letters such as x_2 , Y_0 , a_1 , ...
 - which can take a truth value T (*true*) or F (*false*).
- Syntax
 - new propositions called formulae or Boolean formulae or propositional formulae or compound propositions are formed from propositional variables and formulae by repeated use of the logical operators
 - conjunction (and)
 - v disjunction (or)
 - negation (not)
 - → implies
 - → if and only if (iff).

Some formulae

Construction

- the operators \wedge , \vee , \Rightarrow , and \Leftrightarrow take two propositional formulae ϕ and ψ and yield a new one
 - $\phi \wedge \psi$ $\phi \vee \psi$ $\phi \Rightarrow \psi$ $\phi \Leftrightarrow \psi$
- the operator ¬ takes one propositional formula φ and yields a new one
 ¬φ.

Use of parentheses

- $-(\phi \wedge \psi) \vee \chi$ means first build $\phi \wedge \psi$ and then build $(\phi \wedge \psi) \vee \chi$
- $-\varphi \wedge (\psi \vee \chi)$ means first build $(\psi \vee \chi)$ and then build $\varphi \wedge (\psi \vee \chi)$.
- Some typical well-formed formulae (where a, b, c and d are propositional variables)
 - $\neg \neg ((\neg b \land a) \Rightarrow (c \lor \neg d))$
 - $-((a \land \neg a) \lor ((b \lor c) \lor d)) \Leftrightarrow d$
 - $-(((a \Rightarrow b) \Rightarrow c) \Rightarrow d).$

Semantics of propositional logic

- Semantics: all propositional variables take the value T (true) or F (false)
 - the value of a formula under some truth assignment is ascertained by using the truth tables for the above logical connectives.
- The truth tables for our logical connectives are as follows

p	q	$p \wedge q$	$p \vee q$	$\neg p$	$p \Rightarrow q$	$p \Leftrightarrow q$	
Т	Т	Т	Т	F	Т	Т)
T	F	F	Т	F	F	F	definitions
F	Т	F	Т	Т	Т	F	definitions
F	F	F	F	Т	Т	Т	J

- In order to build the truth table of a formula
 - we decompose the formula into sub-formulae, e.g.,

p	q	$((p \land \neg q) \lor p) \land \neg (p \lor \neg q)$
Т	Т	TEFTIT FFTTFT
Т	F	TTTFTT F FTTTF
F	Т	FFFTFF F TFFFT
F	F	FFTFFF F FFTTF

Semantics of propositional logic

- Semantics: all propositional variables take the value T (true) or F (false)
 - the value of a formula under some truth assignment is ascertained by using the truth tables for the above logical connectives.
- The truth tables for our logical connectives are as follows

p	q	$p \wedge q$	$p \vee q$	$\neg p$	$p \Rightarrow q$	$p \Leftrightarrow q$	
Т	Т	Т	Т	F	Т	Т)
T	F	F	Т	F	F	F	definitions
F	Т	F	Т	Т	Т	F	definitions
F	F	F	F	Т	Т	Т	J

- In order to build the truth table of a formula
 - we decompose the formula into sub-formulae, e.g.,

p	q	$((p \land \neg q) \lor p) \land \neg (p \lor \neg q)$
Т	Т	TF FT TT F FT TFT
Т	F	TTTFTT F FTTTF
F	Т	FFFTFF F TFFFT
F	F	FFTFFF F FFTTF

the parse tree can be viewed as a "circuit" and the truth values as the "inputs"

this is what the formula evaluates to

Some basic notation

- If we have a propositional formula $\varphi(x_1, x_2, ..., x_n)$ then
 - we call an assignment f of either T or F to each $x_1, x_2, ..., x_n$, i.e., a function $f: \{x_1, x_2, ..., x_n\} \rightarrow \{T, F\}$

a truth assignment (interpretation, valuation) for φ

- We say that φ evaluates to T (resp. F) under f
 - if the row of the truth table for φ corresponding to f evaluates to T (resp. F).
- If f evaluates φ to T then
 - f satisfies φ or is a satisfying truth assignment of φ or a model of φ .
- If φ evaluates to T for every f then φ is a tautology.
- If φ evaluates to Γ for every f then φ is a contradiction.
- A literal is either a propositional variable, say x, or the negation of a propositional variable, say ¬x.

Logical equivalence

 Steps in a mathematical proof are often just the replacement of one statement by another (equivalent) statement (which says the same thing), e.g.

"If I don't explain this clearly then the students won't understand."

is the same thing "Either I explain this clearly or the students won't understand".

- To see this, denote the sub-statement "I don't explain this clearly" as X and denote the sub-statement "the students won't understand" as Y.
- The former statement is thus X ⇒ Y and the latter

X	Y	$X \Rightarrow Y$	$\neg X \lor Y$
Т	Т	T T T	FT T T
Т	F	T F F	FT F F
F	Т	FTT	T F T T
F	F	F T F	TF T F

- We say that two propositional formulae are (logically) equivalent if they have identical truth tables
 - if φ and ψ are equivalent then we write $\varphi = \psi$

A spot of practice

- The exclusive-OR, written X ⊕ Y, is true iff exactly one of X and Y is true.
- Prove that $X \oplus Y$ is logically equivalent to both $(X \land \neg Y) \lor (\neg X \land Y)$ and $\neg (X \Leftrightarrow Y)$.

X	Y	$X \oplus Y$	$(X \land \neg Y) \lor (\neg X \land Y)$	$\neg (X \Leftrightarrow Y)$
Т	Т	TFT	TEET F ETET	FTTT
T F	F T	T T F	TTTF T FT F F	TTFF
F	F	F T T	FFFT T TFTT	TFFT
		F F F	FFTF F TFFF	FETE

De Morgan's Laws

- There are two extremely useful logical equivalences known as De Morgan's Laws.
- De Morgan's Laws are

$$\neg (X \land Y) \equiv \neg X \lor \neg Y$$

$$\neg (X \lor Y) \equiv \neg X \land \neg Y$$

These formulae are indeed equivalences

X	Y	$\neg (X \land Y)$	$\neg X \lor \neg Y$	$\neg (X \lor Y)$	$\neg X \land \neg Y$
Т	Т	FTTT	FT F FT	FTTT	FT F FT
T F	F T	TTFF	FT T TF	FTTF	FT F TF
F	F	TFFT	TF T FT	FFTT	TF F FT
		TEEE	TF TTF	TEEE	TF T TF

- De Morgan's Laws can be applied not just to variables but to formulae φ and ψ .
- De Morgan's Laws are often used to simplify formulae with regard to negations.

Applying De Morgan's Laws

- In fact, not only can De Morgan's Laws be applied to formulae
 - they can be applied to *sub-formulae* within a formula.
- Consider the propositional formula $\neg (p \lor \neg (q \land \neg p)) \land \neg (p \Rightarrow q)$
 - take the sub-formula $\neg (q \land \neg p)$.
- By De Morgan's Laws

$$\neg (q \land \neg p) \equiv \neg q \lor \neg \neg p \equiv \neg q \lor p.$$

So

- Indeed, we can always replace any sub-formula of some propositional formula
 - with an equivalent formula without affecting the truth (table) of the original.

A spot of practice

- Consider $\neg (p \lor \neg (q \land \neg p)) \land \neg (p \Rightarrow q)$.
- Can we manipulate it so as to simplify it?

```
\neg (p \lor \neg (q \land \neg p)) \land \neg (p \Rightarrow q)
\equiv \neg (p \lor (\neg q \lor \neg \neg p)) \land \neg (p \Rightarrow q)
\equiv \neg (p \lor (\neg q \lor p)) \land \neg (p \Rightarrow q)
\equiv (\neg p \land \neg (\neg q \lor p)) \land \neg (p \Rightarrow q)
\equiv (\neg p \land (\neg \neg q \land \neg p)) \land \neg (p \Rightarrow q)
\equiv (\neg p \land (q \land \neg p)) \land \neg (p \Rightarrow q)
\equiv (\neg p \land (q \land \neg p)) \land \neg (\neg p \lor q)
\equiv (\neg p \land (q \land \neg p)) \land (\neg \neg p \land \neg q)
\equiv (\neg p \land (q \land \neg p)) \land (p \land \neg q)
\equiv (\neg p \land q \land \neg p) \land (p \land \neg q)
\equiv \neg p \land q \land \neg p \land p \land \neg q
\equiv \neg p \land \neg p \land p \land q \land \neg q
\equiv \neg p \wedge F \wedge q \wedge \neg q
= F
```

```
apply De Morgan's Laws
remove double-negation
apply De Morgan's Laws
apply De Morgan's Laws
remove double-negation
⇒ using v, ¬
apply De Morgan's Laws
remove double-negation
associativity of A
associativity of A
commutativity of A
X \wedge \neg X \equiv F
F \wedge \varphi = F
```

Generalised De Morgan's Laws

- We can actually generalise De Morgan's Laws so that
 - negations can be "pushed inside" conjunctions/disjunctions of more than two literals (or formulae).
- To do this
 - we apply De Morgan's Laws to sub-formulae of a formula.
- Consider ¬(X v Y v Z)
 - Rewrite this formula as $\neg (X \lor (Y \lor Z))$ and denote $Y \lor Z$ by φ .
 - Applying De Morgan's Laws to ¬(X ∨ φ) yields an equivalent formula ¬X ∧ ¬φ
 i.e., the formula ¬X ∧ ¬(Y ∨ Z).
 - Applying De Morgan's Laws again yields the equivalent formula $\neg X \land \neg Y \land \neg Z$.
- Similar arguments yield the generalised De Morgan's Laws

$$\neg (X_1 \lor X_2 \lor \dots \lor X_n) \equiv \neg X_1 \land \neg X_2 \land \dots \land \neg X_n$$

$$\neg (X_1 \land X_2 \land \dots \land X_n) \equiv \neg X_1 \lor \neg X_2 \lor \dots \lor \neg X_n$$