

Lightweighting DL Models

June 04-11, 2021 Kyong-Ha Lee bart7449@gmail.com

I. DL process

- 대량의 Labeled data의 필요
 - 주로 지도 학습 기반으로 모델 훈련을 위해 대량의 정답 집합이 요구됨
- 반복적인 단계별 시행착오 과정의 연속

- 개발자가 요구하는 정확도에 도달할 때까지 여러 단계에서 사람이 개입하면서 trial-or-error 방식으로 반복적인 훈련, 테스트 과정을 수행
- *반복적인* Human-In-The-Loop 프로세스
- 학습과 추론에 높은 수준의 전산 자원 요구
 - 많은 계층, 많은 파라미터 개수, 그에 따른 연산 수 및 메모리 증가
 - 예) BERT Large 24 layers, 340M parameters, koBERT의 경우 V100 GPU x 32, horovod(w/InfiniBand)로 학습에 약 한달 소요
- 학습 과정은 Batch 과정으로 수행
 - 데이터 변화에 따른 모델 재훈련 필요

Challenge 1: Human-In-The-Loop Process

Challenge 2: Model Size Matters!

CNN-based image classifiers

Recent advances have shown that ever-larger DNN models lead to better task performance and past progress in visual recognition tasks has also shown a strong correlation between the model size and accuracy

^{*} An analysis of Deep Neural Network Models for Practical Applications, A. Canziani et al., April 2017 ** Benchmark analysis of representative deep neural network architecture, Blanco et al., Oct. 2018

Challenge 3: Time & Costs

Long training time limits ML researcher's productivity

Correlation btw. #layers and time

Model	Error rate	Training time
ResNet18	10.76%	2.5 days
ResNet50	7.02%	5 days
ResNet101	6.21%	1 week
ResNet150	6.16%	1.5 weeks

^{*} M40 GPU, fb.resnet.torch

- KoBERT (SKT, Oct. 2019)
 - 24 layers, 340M parameters
 - 1 month with 32 V100 GPUs interconnected with Horovod (w/infiniBand)

- XLNet (Yang, arXiv 19 Jun 2019)
 - 340 million parameters
 - Training: 2.5 days with 512 TPU v3 chips for 500k steps
 - 512 TPU x 2.5 days x \$8 = \$245,000
- Gpipe (Huang, NIPS Dec. 2019)
 - 556 million parameters
- NASNet (Barret, CVPR June 2018)
 - 800 GPU, 28 days training
- GPT-3 (OpenAl, 2020)
 - 175B parameters, required
 3.14E23 FLOPS for training
 - At theoretical 28 TFLOPS for V100, 355 GPU-years and cost \$4.6M for a single training run
 - 700GB memory to store it in FP32

Challenge 4: Energy Efficiency

- AlphaGo: 1,920 CPUs and 280 GPUs, \$3,000 electric bill per game
- "Training a single DL model can emit as much carbon as 5 cars in their lifetimes" MIT Tech. Review, 2019

Common carbon footprint benchmarks

In Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1 passenger) 1,984

Human life (avg. 1 year) 11,023

American life (avg. 1 year) 36,156

US car including fuel (avg. 1 lifetime) 126,000

Transformer (213M parameters) w/ neural architecture search 626,155

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

The estimated costs of training a model

	Date of original paper	Energy consumption (kWh)	Carbon footprint (lbs of CO2e)	Cloud compute cost (USD)
Transformer (65M parameters)	Jun, 2017	27	26	\$41-\$140
Transformer (213M parameters)	Jun, 2017	201	192	\$289-\$981
ELMo	Feb, 2018	275	262	\$433-\$1,472
BERT (110M parameters)	Oct, 2018	1,507	1,438	\$3,751-\$12,571
Transformer (213M parameters) w/ neural architecture search	Jan, 2019	656,347	626,155	\$942,973-\$3,201,722
GPT-2	Feb, 2019	-	,a	\$12,902-\$43,008

Note: Because of a lack of power draw data on GPT-2's training hardware, the researchers weren't able to calculate its carbon footprint.

Table: MIT Technology Review - Source: Strubell et al. - Created with Datawrapper

Summary

DL development is naturally an Iterative HITL process

- Learning and test processes are performed in a batch job
- Usually developed in a trial-and-error fashion
- Massive labeled data are required for learning accurate DL models

Recent models become much larger

- Even a single model is composed of 175 billion parameters (i.e., GPT-3, ~652GBs)
- All the SIZE, TIME, and COST grow very fast beyond our resources
 - · Learning models tend to become harder with a limited budget and time

Expensive computational resources are required

Energy efficiency is also an issue

II. 모델 경량화: Overview

• 기술의 목적

- 기존 full-strength 모델로부터 정확도 손실을 최소화하면서 보다 고속의 추론이 가능하고 메모리, 에너지 면에서 효율적인 경량화된 모델의 생성
- 모바일 단말 등 저성능의 전산자원에서의 구동을 목적으로 함
- 모델 압축(model compression)이라고도 함

• 모델 경량화 기법의 분류

Approaches	Technique	Appraoch
Pruning	Remove weights or neurons under threshold	From pre-trained model
Weight sharing	Cluster weights and encode centroid of the weights	From pre-trained model
Quantization	Substitute weight, activations or gradients with lower bit-widths	From pre-trained modelFrom scratch
Distillation	Teacher-student model	From pre-trained model
Low-rank approximation	Tensor decomposition on convolutional tensor	From pre-trained model
Sparse regularization	Learn a structure-regularized version of CNN to achieve speed-up with little accuracy loss	From pre-trained model
Compact Network Design	Revise networks to be more computationally efficient	From scratch

[모바일 단말에의 이식 및 충론을 위한 초기 목적]

II. 모델 경량화: Pruning

- Pruning unimportant neurons in DNN
 - Motivated by how real brain learns
 - Remove weights which |weight| < threshold
 - Retrain after pruning weights
 - Learn effective connections by iterative pruning

Network	
•	
Evaluate importance of neurons	
•	
Remove the least important neuron	
•	
Fine-tuning	
•	Vos
Continue pruning?	yes
- no	
Stop pruning	

- Song Han, Compressing and regularizing deep neural networks, 2016
- Pavlo Molchanov et. al., "Pruning Convolutional Neural Networks for Resource Efficient Inference." ICLR 2017

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	$12\times$
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	$12\times$
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	9 imes
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	$13 \times$

II. 모델 경량화: Weight Sharing (1)

- Quantization and Weight Sharing
 - Cluster weights and use centroid of clustered weights in indexed array
 - Update centroid weights with **summation** of corresponding gradients
- Huffman Coding
 - Quantized weights are biased
 - Achieve additional compression via encoding weights

II. 모델 경량화: Weight Sharing (2)

Experiments

- About 40x without critical accuracy loss
- MNIST data with LeNet-300-100, LeNet-100
- ImageNet data with AlexNet, VGG-16

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	$40 \times$
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	=	44 KB	$39 \times$
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	$35 \times$
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49 imes

- Does pruning and quantization make synergy?
 - Result becomes much better when using two methods together
 - Model can be compressed up to 3% of original size

[기존 모델의 가공(클러스터링) 통한 모델 경량화]

II. 모델 경량화: Distillation (1)

- Transfer the generalization ability of the cumbersome model to a small model
 - Use the class probabilities produced by the cumbersome model as "soft targets" for training the small model
 - Use the same training set or separate "transfer set" for the transfer stage
- The Algorithm
 - 1. Feed teacher with data (T_1)
 - 2. Obtain soft targets from teacher (T_1)
 - 3. Train student on soft targets (T_1) with cross-entropy loss
 - 4. Use student with $T \langle T_1 \rangle$

II. 모델 경량화: Distillation (2)

- Model Compression via Distillation and Quantization [Polino et al., ICLR' 18]
 - Given trained deep neural network (DNN), called 'teachers', make a compressed 'student' model, with similar accuracy using quantization and distillation
 - Teacher = Original Deep Model
 - Student = Quantized Model

II. 모델 경량화: Distillation (3)

- Quantization Process
 - Map each data point to the nearest quantization point.
 - Given quantization function \hat{Q} (),

$$Q(v) = \alpha \hat{Q}\left(\frac{v - \beta}{\alpha}\right) + \beta.$$

where $\alpha = max_iv_i - min_iv_i$, and $\beta = min_iv_i$

- The range of $\hat{Q}()$ function is [0, 1]
 - Example: if we quantize v in [10, 50] into 5 quantization points, each v is mapped to the nearest point between [10, 20, 30, 40, 50]
 - Uniform vs non-uniform quantization
 - Quantization points can be learned from data

II. 모델 경량화: Distillation (4)

Quantized Distillation

Algorithm 1 Quantized Distillation

- 1: procedure QUANTIZED DISTILLATION
- 2: Let w be the network weights
- 3: loop
- 4: $w^q \leftarrow \text{quant_function}(w, s)$
- 5: Run forward pass and compute distillation loss $l(w^q)$
- 6: Run backward pass and compute $\frac{\partial l(w^q)}{\partial w^q}$
- 7: Update original weights using SGD in full precision $w = w \nu \cdot \frac{\partial l(w^q)}{\partial w^q}$
- 8: Finally quantize the weights before returning: $w^q \leftarrow \text{quant_function}(w, s)$
- 9: return w^q

II. 모델 경량화: Distillation (5)

CIFAR10 accuracy

		2 bits	4 bits	8 bits
Student model 1	PM Quant.(No bucket)	9.30 %	67.99 %	88.91 %
	PM Quant. (with bucket)	10.53 %	87.18 %	88.80 %
1M param - 4 MB	Quantized Distill.	82.4 %	88.00 %	88.82 %
84.5% - 88.8% X5.2	Differentiable Quant.	80.43%	88.31 %	3
Student model 2	PM Quant. (No bucket)	10.15 %	68.05 %	84.38 %
0.3M param - 1.27 MB	PM Quant. (with bucket)	11.89 %	81.96 %	84.38 %
90.207 94.207	Quantized Distill.	74.22 %	83.92 %	84.22 %
80.3% - 84.3% X16	.5 Differentiable Quant.	72.79 %	83.49 %	
Student model 3	PM Quant. (No bucket)	10.15 %	61.30 %	78.04 %
0.1M param - 0.45 MB	PM Quant. (with bucket)	10.38 %	72.44 %	78.10 %
71 (0) 70 00	Quantized Distill.	67.02 %	77.75 %	77.92 %
X46.0	66 Differentiable Quant.	57.84 %	77.36 %	

Teacher model: 5.3M param., 21MB, accuracy 89.71%

OpenNMT dataset Bleu score and perplexity (ppl)

		2 bits	4 bits
Student model 1	PM Quant.(No bucket)	$0.00 - 2 \cdot 10^{17} \text{ ppl}$	$0.24 - 2 \cdot 10^6 \text{ ppl}$
81.6M param - 326 MB	PM Quant. (with bucket)	4.12 - 125.1 ppl	16.29 - 26.2 ppl
14.97 - 16.13 BLEU	Quantized Distill.	0.00 - 6645 ppl	15.73 - 25.43 ppl
14.97 - 10.13 BLEU	Differentiable Quant.	0.7 - 249 ppl	15.01 - 28.8 ppl
Student model 2	PM Quant. (No bucket)	$0.00 - 5 \cdot 10^8 \text{ ppl}$	6.65 - 71.78 ppl
64.8M param - 249 MB	PM Quant. (with bucket)	1.72 - 286.98 ppl	15.19 - 28.95 ppl
14.22 - 15.48 BLEU	Quantized Distill.	0.00 - 4035 ppl	15.26 - 29.1 ppl
14.22 - 13.46 BLEU	Differentiable Quant.	0.28 - 306 ppl	13.86 - 31.33 ppl
Student model 3	PM Quant. (No bucket)	$0.00 - 3 \cdot 10^8 \text{ ppl}$	5.47 - 106.5 ppl
57.2M param - 228 MB	PM Quant. (with bucket)	0.24 - 1984 ppl	12.64 - 36.56 ppl
12.45 - 13.8 BLEU	Quantized Distill.	0.14 - 731 ppl	12 - 37 ppl
12.43 - 13.8 BLEU	Differentiable Quant.	0.26 - 306 ppl	12.06 - 38.44 ppl

Teacher model: 84.8M param., 340MB, 26.1 ppl 15.88 BLUE

[기존 모델에의 quantization과 Distillation을 통한 모델 경량화]

II. 모델 경량화: Distillation (6)

Knowledge Distillation

[Kill-The-Bits'20]

- **Product Quantization**
 - Was utilized to quantize the weights of convolutional and fullyconnected layer

$$||y - \hat{y}||_2^2 = ||x(W - q(W))||_2^2$$

Objective function of quantization for minimizing reconstruction error

$$\|\mathbf{W} - \widehat{\mathbf{W}}\|_2^2 = \sum \|\mathbf{w}_j - \mathbf{q}(\mathbf{w}_j)\|_2^2$$

II. 모델 경량화: Distillation (7)

Figure 3: Compression results for ResNet-18 and ResNet-50 architectures. We explore two compression regimes as defined in Section 4.1: small block sizes (block sizes of d=4 and 9) and large block sizes (block sizes d=8 and 18). The results of our method for k=256 centroids are of practical interest as they correspond to a byte-compatible compression scheme.

Table 1: Results for vanilla ResNet-18 and ResNet-50 architectures for k=256 centroids.

Model (original top-1)	Compression	Size ratio	Model size	Top-1 (%)
ResNet-18 (69.76%)	Small blocks Large blocks	29x 43x	1.54 MB 1.03 MB	65.81 ± 0.04 61.10 ± 0.03
ResNet-50 (76.15%)	Small blocks Large blocks	19x 31x	5.09 MB 3.19 MB	73.79 ± 0.05 68.21 ± 0.04

III. Quantization: Overview

Main idea

 Quantize FP32 typed weights, activations, or gradients to values with lower bit-widths

Challenges

- Quantization errors severely affect the precisions of DL models
- Quantization makes hard to converge values of parameters
 - Specifically, values nearby boundaries of each quantization interval may be changed frequently
- Quantization functions are nondifferentiable
 - Use of alternative differentiable functions (e.g., STE)
 - Gradient mismatch problem

1.12	3.42	-1.5	-12	1	1	-1	-1
32	-1	-5	15	1	-1	-1	1
24	0.55	-54	0.24	 1	1	-1	1
-0.1	0.1	-0.2	2	-1	1	-1	1

III. Quantization: Classification

- Methods
 - Quantization during training
 - BinaryConnect, Binary-weight, XNOR-Net, DoReFA-Net, LQ-Net, ...
 - Quantization after training
- * For more details, please refer to our survey paper, E. Kim et al., Communications of the KIISE 38(8):18-29, Aug., 2020

Codebook

Approaches	Types	codebooks	Representative work
Fixed codebook	 Binarization Scaled Binarization Ternarization Scaled Ternarization Powers of two K-bits 	• $\{-1,1\}$ • $\{-a, b\}$ • $\{-1, 0, 1\}$ • $\{-a, 0, b\}$ • $\{0, \pm 1, \pm 2^{-1},, \pm 2^{-L}\}$ • $\{\pm v1, \{\pm v1 \pm v2\},\}$	 BinaryConnect, Binary-weight XNOR-Net Ternary Net TTQ [Tang and Kwan'94] DoReFa-Net, LQ-Net
Adaptive codebook	Soft QuantizationHard Quantization	Learned from dataLearned from data	Variational Network QuantizationVector quantization, [Choi'2016]

Targets for quantization

Components	Benefits	Challenges
Weights	Smaller model sizeFaster forward training &inferenceLess energy	 Hard to converge with quantized weights Require approximate gradients Accuracy degradation
Activations	 Smaller memory foot print during training Allows replacement of dot-products by bitwise operations Less energy 	Gradient mismatch problem
Gradients	Communication & memory savings	Convergence requirement

III. Quantization: Binarization (1)

Main idea

Train DNNs with binary weights, while retraining precision of the stored weights in which gradients are accumulated to regularize all the parameters

Binarization

Deterministic

•
$$w_b = \begin{cases} +1 & \text{if } w \ge 0, \\ -1 & \text{otherwise.} \end{cases}$$

1.12	3.42	-1.5	-12
32	-1	-5	15
24	0.55	-54	0.24
-0.1	0.1	-0.2	2

1	1	-1	-1
1	-1	-1	1
1	1	-1	1
-1	1	-1	1

Binarization example

Stochastic

$$w_b = \begin{cases} +1 & \text{with probability } p = \sigma(w), \\ -1 & \text{with probability } 1 - p. \end{cases}$$

where $\sigma(x) = \text{clip}(\frac{x+1}{2}, 0, 1) = \max(0, \min(1, \frac{x+1}{2}))$ is a hard sigmoid function which is used to limit p into [0, 1].

Propagations & Updates

- w is binarized during forward and backward propagation
- Full-precision w is used during parameter update

^{*} Binarized Neural Networks: Training deep neural networks with weights and activations constrained to +1 or -1, [Courbariaux et al., 2016]

III. Quantization: Binarization (2)

Forward & Backward propagation

- The derivative of the sign function is zero almost everywhere -> Gradient Vanishing
- How to back-propagate gradient through?
 - "straight-through estimator (STE)", previously introduced by Hinton (2012)

Procedure

III. Quantization: XNOR-NET (1)

 Goal: Simple but efficient approximations to CNN by binarizing the weights and intermediate representations in CNN

 Convolutions can be estimated by only addition and subtraction (X2 speedup)

		Network Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
	ndard olution	Real-Value Inputs 0.11 -0.210.340.25 0.61 0.52 Real-Value Weights 0.12 -1.2 -0.410.2 0.5 -0.68	+,-,×	1x	1x	%56.7
Weight w h h h h h h h h h h h h h h h h h h	y Weight	Real-Value Inputs 0.11 -0.210.340.25 0.61 0.52	+,-	~32x	~2x	%56.8
E	yWeight ry Input DR-Net)	Binary Inputs 1 -11 -1 1 1	XNOR, bitcount	~32x	~58x	%44.2

III. Quantization: XNOR-NET (2)

[기존 연산의 bitwise 연산자로 치환 가능성,Backward Prop.를 위한 Real weight 유지 필요]

III. Quantization: DoReFa-Net

- Goal: Forward/backward passes operate on low bitwidth weights, activations and gradients
 - Gradients are stochastically quantized before being propagated to convolutions
- Multi-bit quantization

An STE we will use extensively in this work is **quantize**_k that quantizes a real number input $r_i \in [0, 1]$ to a k-bit number output $r_o \in [0, 1]$. This STE is defined as below:

Forward:
$$r_o = \frac{1}{2^k - 1} \operatorname{round}((2^k - 1)r_i)$$
 (5)

Backward:
$$\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o}$$
. (6)

^{*} DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients, S. Zhou et al., arXiv:1606.06160

Learnable Quantizer (1/2)

[LQ-Nets'18]

- Existing methods often use simple, hand-crafted quantizers
 - e.g., uniform or logarithmic quantization
- Learnable quantizer
 - Optimal quantizer should yield minimal quantization error for the input data distribution

$$Q^*(x) = \operatorname*{arg\,min}_{Q} \int p(x)(Q(x) - x)^2 dx,$$

Distributions can be complex and different at different layers

Fig. 1: Distributions of weights (left two columns) and activations (right two columns) at different layers of the ResNet-20 network trained on CIFAR-10. All the test-set images are used to get the activation statistics.

Learnable Quantizer (2/2)

- Bitwise operator compatibility
 - Training quantizers to optimize the quantization level $\{q_i\}$ hampers bitwise operation compatibility
 - Solution is to separate mappings between floating-point basis and bits and learn the basis

Confine quantizations into subspaces compatible with bitwise

operations

An integer q represented by a K-bit binary encoding is the inner product btw. A basis vector and the binary coding vector b

$$q = \left(\begin{bmatrix} 1 \\ 2 \\ \vdots \\ 2^{K-1} \end{bmatrix}, \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{bmatrix} \right), \ \boldsymbol{b} = [b_1, b_2, \dots, b_K]^T \text{ where } b_i \in \{0, 1\}$$

Table 4: Impact of bit-width on our LQ-Nets

ResNet-20		VGG-Small		ResNet-18	
(CIFAR-10)		(CIFAR-10)		(ImageNet)	
Bit-width	Acc.	Bit-widtl	Acc.	Bit-width	Acc.
(W/A)	(%)	(W/A)	(%)	(W/A)	(%)
32/32	92.1	32/32	93.8	32/32	70.3
1/32	90.1	1/32	93.5	2/32	68.0
2/32	91.8	2/32	93.8	3/32	69.3
3/32	92.0	3/32	93.8	4/32	70.0
1/2	88.4	1/2	93.4	1/2	62.6
2/2	90.2	2/2	93.5	2/2	64.9
2/3	91.1	2/3	93.8	3/3	68.2
3/3	91.6	3/3	93.8	4/4	69.3

III. Quantization: SketchML (1)

 Goal: Build a compression method that can efficiently handle a <u>sparse & nonuniform gradients consisting of key-</u> value pairs in distributed ML

- Distributed ML
 - Data-parallelism
 - Data split over multiple machines
 - Model replicas train over different parts of data & communicate model information periodically
 - Averaging gradients from workers
 - Model-parallelism
 - Models split over multiple machines
 - A single training iteration spans multiple machines

Parameter server [OSDI'14]

Reducing the size of gradients to be communicated is a major challenge

^{*} SketchML: Accelerating distributed machine learning with data sketches J. Jiang et al., SIGMOD 2018

III. Quantization: SketchML (2)

Appendix: Sketch algorithm overview

Idea:

- Summarize your data with a probabilistic data structure
- Heavy hitters problem
 - focuses on the retrieval of all elements appearing at least x% times in a given data stream
- We can also classify the use of Count-min sketch in the following input element categories of queries:
 - Point query: retrieves the estimated number of occurrences for one particular event
 - Inner product query: computes the inner product of 2 vectors.; useful to estimate the join size in relational query processing
 - Range query: counts the sum of elements between 2 range values

IV. Compact Network Design (1)

- Problem #1: Extensive cost
 - With more channels, we can learn more filters
 - However, # of parameters increases as we have more channels.
- Problem #2 : Dead channels
 - Some channels do not affects the outputs at all.
- Problem #3: Low correlation btw. Channels

IV. Compact Network Design (1)

Standard Convolution

- # of Parameters
 - *K*: filter size, *C*: #of Input channels, M:# of output channels
 - One filter size : K^2C
 - Total # of parameters : K^2CM
- Computational cost
 - Input size : $H \times W$, output size : $H \times W$
 - K^2CMHW

IV. Compact Network Design (2)

- Design optimized neural network architecture
 - Grouped Convolution: AlexNet'12, ShuffleNet'17
 - Residual connection, Bottleneck: Inception'¹⁵, ResNet'¹⁶
 - Depth-wise Conv., Point-wise conv.: Inception' 15, Mobile Net' 17
 - Dilated Convolution: DeepLab' 18, ShiftNet' 17~' 19
 - Shift Convolution: ShiftNet' 17~ '19

^{*} Khan, Asifullah, et al. "A survey of the recent architectures of deep convolutional neural networks." *Artificial Intelligence Review* (2020): 1-62.

- 34 -

Grouped Convolution

- Group filters to separate channel information and learn (benefit to parallel processing)
- Sparse by learning highly correlated information for each filter group (fewer parameters)
- # of Parameters
 - $-(K^2CM)/g$; g: # of groups
- Computational cost
 - $-(K^2CMHW)/g$

- (Top) Shading-originated kernel learning group
- (Bottom) Kernel learning group focused on colors & patterns

Depthwise Convolution

- Channel-independent convolution
 - Standard conv. Is impossible to spatial features for each channel
 - Each filter works for each channel
- # of parameters
 - $-K^2C$
- Computational cost
 - $-K^2CMW$

Point-wise convolution

- Effects of dimensional reduction by reducing # of channels
- Use of 1x1 convolutional filter
- # of parameters
 - -CM since K=1
- Computational cost
 - *CMHW* since K = 1

DepthWise Separable PointWise Conv.

- Xception*, MobileNet**
 - CNN 계산량 및 매개변수 수를 줄임으로써 Neural Network 경량화
 - C 채널수, (X,Y) 입력 영상 크기, K 커널 필터 크기, M 필터 출력 채널 수

	Spatial Convolution	Depthwise Separable Conv.
operation 수	MCK^2	$C(K^2+M)$
Parameter수	CHW K ² M	$CHWK^2 + CHWM$ $= CHW(K^2 + M)$

^{*} Francois Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," CVPR 2017

^{**} Andrew G. Howard et al., "MobileNets: Efficient Convolutional Nedral Networks for Mobile Vision Applications," CVPR 2017

Reinterpretation of Convolutions

[MobileNet, Inception]

Depth-Wise Separable Point-wise Convolution

Dilated Convolution

Overview

[DeepLab, ShiftNet]

- Receptive filed area is widened, but by maintaining the kernel size
- # of convolution operations is maintained while obtaining a pooling effect to improve accuracy

r : dilation rate, the spacing between kernels

Residual Connection, Bottleneck, & DenseNet (한국과학기술정보연구원 (Virtual Institute of Science and Technology Information

[ResNet, DenseNet]

Residual Connection

 With the same number of parameters, there is little additional computation other than addition, so deep networks are well optimized.

Dense Net

 While collecting feature maps as concatenation, compression at the transition layer ensures better performance with fewer

(a)plain net

 x_{l-1}

 $3 \times 3,64$

 $3 \times 3,64$

64-d

F(x)

x identity

$$x_l = F_l([x_0 x_1, ..., x_{l-1}])$$

(d) DenseNet

Dense Convolution

- Dense Convolution (DenseNet*)
 - 기존의 feature map을 additive형태가 아닌 concat 형태로 취합
 - feature-maps 압축으로 적은 parameter로 더 나은 성능 확인

* G. Huang et al., "Densely Connected Convolutional Networks," CVPR 2017

Shift Convolution

- Shift (ShiftNet*, **)
 - Spatial convolution을 shift operation으로 대체하여 연산을 줄임

Figure 2: Illustration of (a) spatial convolutions, (b) depth-wise convolutions and (c) shift. In (c), the 3x3 grids denote a shift matrix with a kernel size of 3. The lighted cell denotes a 1 at that position and white cells denote 0s.

Figure 1: Illustration of a shift operation followed by a 1x1 convolution. The shift operation adjusts data spatially and the 1x1 convolution mixes information across channels.

* B. Wu et al., "Shift: A zero FLOP, Zero Parameter Alternative to Spatial Convolutions," CVPR 2017 ** W. Chen et al., "All You Need is a Few Shifts: Designing Efficient Convolutional Neural Networks for Image Classification," CVPR 2019

Compound Scaling

- Compound Scaling (EfficientNet*)
 - CNN model의 3요소 (Depth α , Width β , Resolution γ)의 Efficient한 Scaling 방법에 대한 연구
 - mNasNet**의 결과 모델을 base model로 찾음
 - 최종적으로 $\alpha=1.2$, $\beta=1.1$, $\gamma=1.15$ 를 고정한 채, ϕ 를 늘려 $B_1\sim B_7$ 모델 탐색

- * Mingxing Tan, Quoc V. Le, "Efficient Net: Rethinking Model Scaling for Convolutional Neural Networks," ICML 2019
- ** Mingxing Tan et. al., "MnasNet: Platform-Aware Neural Architecture Search for Mobile," CVPR 2018

Compound Scaling (EfficientNet)

- 타모델 대비 Efficient Net은 parameter수를 8~9배 줄이면서 정확도 향상
- Inference 속도 성능은 6배 정도 향상

Table 4. Inference Latency Comparison

	Acc. @ Latency
ResNet-152	77.8% @ 0.554s
EfficientNet-B1	78.8% @ 0.098s
Speedup	5.7x

	Acc. & Latency
GPipe	84.3% @ 19.0s
EfficientNet-B7	84.4% @ 3.1s
Speedup	6.1x

Figure 1. Model Size vs. ImageNet Accuracy. All numbers are Figure 5. FLOPS vs. ImageNet Accuracy - Similar to Figure 1

* Mingxing Tan, Quoc V. Le, "Efficient Net: Rethinking Model Scaling for Convolutional Neural Networks," ICML 2019