

Repetição

Exemplo motivador (1/3)

A sensação térmica é influenciada por vários fatores climáticos, como a umidade e densidade do ar, mas principalmente pela velocidade do vento. A seguinte fórmula empírica calcula seu valor:

$$ST = 33 + (10\sqrt{v} + 10,45 - v) \cdot \frac{T - 33}{22}$$

onde T \acute{e} a temperatura em graus Celsius e v \acute{e} a velocidade do vento em $\mathit{Km/h}$

Por exemplo, para temperatura de 5ºC e ventos de 40km/h, a sensação térmica é em torno de -9.8ºC.

Faça um programa que pergunte a temperatura e a velocidade do vento ocorridas no início da manhã de um dia e mostre a sensação térmica equivalente.

Exemplo motivador (2/3)

A sensação térmica é influenciada por vários fatores climáticos, como a umidade e densidade do ar, mas principalmente pela velocidade do vento. A seguinte fórmula empírica calcula seu valor:

$$ST = 33 + (10\sqrt{v} + 10.45 - v) \cdot \frac{T - 33}{22}$$

onde T é a temperatura em graus Celsius e v é a velocidade do vento em Km/h

Por exemplo, para temperatura de 5ºC e ventos de 40km/h, a sensação térmica é em torno de -9.8ºC. Faça um programa que pergunte a temperatura e a velocidade do vento ocorridas no início da manhã de um dia e mostre a sensação térmica equivalente.

Dados necessários ? Respostas Exibidas ? Como Dados → Respostas ?

Exemplo motivador (3/3)

A sensação térmica é influenciada por vários fatores climáticos, como a umidade e densidade do ar, mas principalmente pela velocidade do vento. A seguinte fórmula empírica calcula seu valor:

$$ST = 33 + \left(10\sqrt{v} + 10,45 - v\right) \cdot \frac{T - 33}{22}$$

onde T é a temperatura em graus Celsius e v é a velocidade do vento em Km/h

Por exemplo, para temperatura de 5ºC e ventos de 40km/h, a sensação térmica é em torno de -9.8ºC. Faça um programa que pergunte a temperatura e a velocidade do vento ocorridas no início da manhã de um dia e mostre a sensação térmica equivalente.

Dados necessários? Temperatura e velocidade do vento Respostas Exibidas? Sensação térmica Como Dados → Respostas? Fórmula no enunciado

Uma Solução para 1 horário

```
def sensacaoTermica(temp,vel):
    st = 33+(10*vel**0.5+10.45-vel)* ((temp-33)/22)
    return st

temp = float(input('Temperatura? '))
vel = float (input('Velocidade do Vento? '))
st = sensacaoTermica(temp,vel)
print('Sensação térmica equivalente:',st)
```


Problema

```
def sensacaoTermica(temp,vel):
    st = 33+(10*vel**0.5+10.45-vel)* ((temp-33)/22)
    return st

temp = float(input('Temperatura? '))
vel = float (input('Velocidade do Vento? '))
st = sensacaoTermica(temp,vel)
print('Sensação térmica equivalente:',st)

O que deve ser
feito para
mostrar a
sensação térmica
também no início
da tarde?
```

```
def sensacaoTermica(temp,vel):
    st = 33+(10*vel**0.5+10.45-vel)* ((temp-33)/22)
    return st

temp = float(input('Temperatura? '))
    vel = float (input('Velocidade do Vento? '))
    st = sensacaoTermica(temp,vel)
    print('Sensação térmica equivalente:',st)

Copy/Paste
```



```
def sensacaoTermica(temp,vel):
    st = 33+(10*vel**0.5+10.45-vel)* ((temp-33)/22)
    return st

temp = float(input('Temperatura? '))
    vel = float (input('Velocidade do Vento? '))
    st = sensacaoTermica(temp,vel)
    print('Sensação térmica equivalente: ',st)

temp = float(input('Temperatura? '))
    vel = float(input('Temperatura? '))
    vel = float(input('Velocidade do Vento? '))
    st = sensacaoTermica(temp,vel)
    print('Sensação térmica equivalente: ',st)

E para mostrar a sensação
    térmica de vários horários do
    dia?
```


temp = float(input 'Temperatura? '))
vel = float(input('Velocidade do Vento? '))
st = sensacaoTermica(temp,vel)
print('Sensação térmica equivalente: ',st)

NECESSIDADE DE REPETIR UMA SEQÜÊNCIA DE INSTRUÇÕES!

Repetição para vários horários

temp = float(input 'Temperatura? '))
vel = float(input('Velocidade do Vento?
st = sensacaoTermica(temp,vel)
print('Sensação térmica equivalente: ',st

NECESSIDADE DE REPETIR UMA SEQÜÊNCIA DE INSTRUÇÕES!

Estruturas de Repetição

Permitem que um bloco de instruções seja executado *mais de uma vez* (também chamada de *loop* ou laço).

Problema: Como/quando parar o ciclo formado?

Controlando os tipos de repetição

Quanto a quantidade de ciclos, a repetição pode ser:

Determinada:

A quantidade de execuções é conhecida a priori.

- ✓ Nadar 50 piscinas
- Lotação de um elevador por número de pessoas

Quando parar o ciclo formado?

Ao atingir a meta determinada

Como controlar?

Contando número de execuções,

Indeterminada:

A quantidade de execuções é desconhecida

- Nadar até cansar
- Lotação de um elevador por peso máximo

Quando parar o ciclo formado?

a) Por determinação do usuário b) Por determinado contexto

Como controlar?

- a) Entrada de um valor finalizador
- b) Avaliação de valores das variáveis

Estrutura de repetição: while

Sintaxe:

while condição:

i₁

ia

. . .

in

Executa a sequência de instruções **enquanto** certa condição for verdadeira.

Quando a condição for falsa, "pula" o bloco de instruções interno e executa o resto do programa

While em Funcionamento (4/4)

- 1. Testa a condição.
- 2. Caso a condição seja falsa, sai do ciclo.
- Caso a condição seja verdadeira, executa todas as instruções da sequência interna.
- Depois de executar a última instrução da sequência interna ao while, retorna para o passo 1.

DEPARTAMENTO Usando *while* para vários horários

while condição:

```
temp = float(input 'Temperatura? '))
vel = float(input('Velocidade do Vento? '))
st = sensacaoTermica(temp,vel)
print('Sensação térmica equivalente: ',st)
```

```
while infinito?

p/interromper o ciclo,
    a condição deve se
    tornar falsa

while ???????:

temp = float(input 'Temperatura? '))
    vel = float(input('Velocidade do Vento? '))
    st = sensacaoTermica(temp,vel)
    print('Sensação térmica equivalente: ',st)
```


Repetição Determinada

Para repetir um número pré-determinado de vezes precisa-se:

CONTAR quantas vezes o bloco já foi executado

variável para armazenar a contagem de execuções realizadas (contador de execuções)

- Qual o valor inicial?
- Qual o valor final?
- Qual o incremento cada vez que a repetição é executada?

Repetição Determinada: contador de repetições

- 1. Valor inicial:
 - ✓ Atribuído ANTES do laço
- 2. Valor final (meta):
 - ✓ Utilizado na condição do laço. Uma condição mal construída leva a um loop infinito
- 3. Incremento:
 - ✓ Determina a variação do contador, do <u>valor inicial</u> até <u>o</u> valor final.

Uma Solução: 5 horários diários

Contador de repetições: jaFiz

- -Qual o valor inicial? 0
- Qual o valor final (meta)? 5
- Qual o incremento cada vez que a repetição é executada? +1

print('Sensação térmica equivalente: ',st)

jaFiz = jaFiz +1

"Chinês"

É uma simulação da execução de código, linha a linha, acompanhando os valores das variáveis. Útil para depurar e compreender o quê o código faz.

Para rastrear um programa deve-se:

- escrever os nomes das variáveis
- ✓ seguir uma a uma as instruções
- √ atualizar e observar as variáveis

	ioFin	.	vol	at.
	jaFiz	temp	vel	st
	0			
jaFiz = 0				
while jaFiz < 3:				
temp=float(input('Temp? '))				
vel=float(input('Vento?'))				
st=sensacaoTermica(temp,vel)				
print('Sensação térmica:',st)				
jaFiz = jaFiz +1				

	jaFiz	temp	vel	st
	0			
	0	5		
jaFiz = 0	0	5	30	
while jaFiz < 3:	0	5	30	-11.8
temp=float(input('Temp? '))	1	5	30	-11.8
<pre>vel=float(input('Vento?'))</pre>				
st=sensacaoTermica(temp,vel)				
print('Sensação térmica:',st)				
jaFiz = jaFiz +1				

	jaFiz	temp	vel	st
	0			
	0	5		
jaFiz = 0	0	5	30	
while jaFiz < 3:	0	5	30	-11.8
temp=float(input('Temp? '))	1	5	30	-11.8
vel=float(input('Vento?'))	1	3	30	-11.8
st=sensacaoTermica(temp,vel)				
print('Sensação térmica:',st)				
jaFiz = jaFiz +1				

	jaFiz	temp	vel	st
	0			
	0	5		
jaFiz = 0	0	5	30	
while jaFiz < 3:	0	5	30	-11.8
<pre>temp=float(input('Temp? '))</pre>	1	5	30	-11.8
<pre>vel=float(input('Vento?'))</pre>	1	3	30	-11.8
st=sensacaoTermica(temp,vel)	1	3	1	6.5
print('Sensação térmica:',st)				
jaFiz = jaFiz +1				

	jaFiz	temp	vel	st
	0			
	0	5		
jaFiz = 0	0	5	30	
while jaFiz < 3:	0	5	30	-11.8
temp=float(input('Temp? '))	1	5	30	-11.8
vel=float(input('Vento?'))	1	3	30	-11.8
st=sensacaoTermica(temp,vel)	1	3	1	6.5
print('Sensação térmica:',st)	2	3	1	6.5
jaFiz = jaFiz +1				

	jaFiz	temp	vel	st
	0			
	0	5		
jaFiz = 0	0	5	30	
while jaFiz < 3:	0	5	30	-11.8
temp=float(input('Temp? '))	1	5	30	-11.8
vel=float(input('Vento?'))	1	3	30	-11.8
st=sensacaoTermica(temp,vel)	1	3	1	6.5
print('Sensação térmica:',st)	2	3	1	6.5
jaFiz = jaFiz +1	2	40	1	6.5

	jaFiz	temp	vel	st
	0			
	0	5		
jaFiz = 0	0	5	30	
while jaFiz < 3:	0	5	30	-11.8
temp=float(input('Temp? '))	1	5	30	-11.8
vel=float(input('Vento?'))	1	3	30	-11.8
st=sensacaoTermica(temp,vel)	1	3	1	6.5
print('Sensação térmica:',st)	2	3	1	6.5
jaFiz = jaFiz +1	2	40	1	6.5
	2	40	20	6.5
	2	40	20	44.19

DEPARTAMENTO				
PUCIFIC Chines: 3 hor	arios	diái	rios	(20/22
	jaFiz	temp	vel	st
	0			
	0	5		
jaFiz = 0	0	5	30	
while jaFiz < 3:	0	5	30	-11.8
temp=float(input('Temp? '))	1	5	30	-11.8
vel=float(input('Vento?'))	1	3	30	-11.8
st=sensacaoTermica(temp,vel)	1	3	1	6.5
print('Sensação térmica:',st)	2	3	1	6.5
jaFiz = jaFiz +1	2	40	1	6.5
	2	40	20	6.5
	2	40	20	44.19
	3	40	20	44.19

DEPARTAMENTO DE INFORMÁTICA PUE RIO Chinês so	luçã	o #2	(9/10)	
	jaFiz	temp	vel	st
	0			
	0	5	30	-11.8
jaFiz = 0	0	5	30	-11.8
while jaFiz < 3:	0	3	1	6.5
temp=float(input('Temp? '))	0	3	1	6.5
vel=float(input('Vento?'))	0	40	20	44.19
st=sensacaoTermica(temp,vel)	0	40	20	44.19
print('Sensação térmica:',st)	0	25	30	20.19


```
JaFiz = 0
while jaFiz < 3:
temp=float(input('Temp? '))
vel=float(input('Vento?'))
st=sensacaoTermica(temp,vel)
print('Sensação térmica:',st)
jaFiz = jaFiz - 1
```


DE RICOMATICA PUC RIO Chinês s	soluça	0 #3	(8/14)	
	jaFiz	temp	vel	st
	0			
	0	5	30	-11.8
jaFiz = 0	-1	5	30	-11.8
while jaFiz < 3:	-1	3	1	6.5
temp=float(input('Temp? '))	-2	3	1	6.5
vel=float(input('Vento?'))				
st=sensacaoTermica(temp,vel)				
print('Sensação térmica:',st)				
jaFiz = jaFiz - 1				

DEPARTAMENTO DE INFORMATICA Chinês s	oluçã	0 #3	(10/14	.)
	jaFiz	temp	vel	st
	0			
	0	5	30	-11.8
jaFiz = 0	-1	5	30	-11.8
while jaFiz < 3:	-1	3	1	6.5
temp=float(input('Temp? '))	-2	3	1	6.5
vel=float(input('Vento?'))	-2	40	20	44.19
st=sensacaoTermica(temp,vel)	-3	40	20	44.19
print('Sensação térmica:',st)				
jaFiz = jaFiz - 1				

DEPARTAMENTO Chinês so	olução	5 #3	(12/14))
	_			
	jaFiz	temp	vel	st
	0			
	0	5	30	-11.8
jaFiz = 0	-1	5	30	-11.8
while jaFiz < 3:	-1	3	1	6.5
temp=float(input('Temp? '))	-2	3	1	6.5
vel=float(input('Vento?'))	-2	40	20	44.19
st=sensacaoTermica(temp,vel)	-3	40	20	44.19
print('Sensação térmica:',st)	-3	25	30	20.19
jaFiz = jaFiz - 1				

Repetição Determinada Constante

```
jaFiz = 0
while jaFiz < 24:

   temp = float(input 'Temperatura? '))
   vel = float(input('Velocidade do Vento? '))
   st = sensacaoTermica(temp, vel)
   print('Sensação térmica equivalente: ',st)
   jaFiz = jaFiz +1</pre>
```


jaFiz = 0

Repetição Determinada não constante

Valor variável fornecido pelo usuário

```
while jaFiz < (n):

   temp = float(input 'Temperatura? '))
   vel = float(input('Velocidade do Vento? '))
   st = sensacaoTermica(temp,vel)
   print('Sensação térmica equivalente: ',st)
   jaFiz = jaFiz +1</pre>
```


Uma Solução para *n* (informado) medições

```
n = int(input('quantas medições foram realizadas?'))
jaFiz = 0
while jaFiz < n:
    temp = float(input 'Temperatura? '))
    vel = float(input('Velocidade do Vento? '))
    st = sensacaoTermica(temp, vel)
    print('Sensação térmica equivalente: ',st)
    jaFiz = jaFiz +1</pre>
```


Mãos na massa: doses de água!

Um professor, sabendo que a dose diária de água é individual, resolveu calcular a quantidade mínima de litros de água que deve ser ingerida por cada um dos seus n (lido) alunos de uma turma. Esta medida é calculada por:

litros de água/dia = 35ml de água * peso corporal/1000 Faça um programa que inicialmente obtenha a quantidade de alunos da turma (n). A seguir, para cada um dos alunos, obtenha o peso e mostre a quantidade mínima de litros que o aluno deve consumir.

Exemplo:

Entrada Saída

Quantos alunos?3

Peso do aluno 1: 75 Aluno 1 - Peso: 75.00 - Litros de água: 2.62 Peso do aluno 2: 50 Aluno 2 - Peso: 50.00 - Litros de água: 1.75 Peso do aluno 3: 90 Aluno 3 - Peso: 90.00 - Litros de água: 3.15

Desenvolvendo "doses de água"

Um professor, sabendo que a dose diária de água é individual, resolveu calcular a quantidade mínima de litros de água que deve ser ingerida por cada um dos seus n (lido) alunos de uma turma. Esta medida é calculada por:

litros de água/dia = 35ml de água * peso corporal/1000 Faça um programa que inicialmente obtenha a quantidade de alunos da turma (n). A seguir, para cada um dos alunos, obtenha o peso e mostre a quantidade mínima de litros que o aluno deve consumir.

Dados: nº de alunos (n)

n vezes Dados _{1aluno}: peso Respostas _{1aluno}: litros de água

Doses de água: uma Solução

Questionamentos possíveis

- 1. Quantos alunos devem ingerir mais de 2l ou menos de 2l ou exatamente 2l?
- 2. Qual a quantidade total de litros de água será consumida pela turma?
- 3. Qual a média consumida por aluno?
- 4. Qual a maior/menor quantidade consumida individualmente? De qual aluno ou quantos alunos a consomem?

Questionamento 1

Quantos alunos devem consumir mais que 21?

Contador de alunos com quantidade superior a 21: qtSup2l

- Qual o valor inicial?
- Qual o valor final?
- Incremento?
- Quando incrementar o contador?
- Quando exibir?

Solução do questionamento 1

Quantos alunos devem consumir mais que 21?

Contador de alunos com quantidade superior a 21: qtSup2l

- Qual o valor inicial? 0
- Qual o valor final? Calculado pelo programa
- Incremento? +1
- Quando incrementar o contador? Quando litros calculados > 2
- Quando exibir? Após processar toda a turma

Questionamento 2

Total de litros consumidos pela turma?

Total de litros consumidos pela turma = ∑ litros de cada aluno

Variável para armazenar ∑ de litros de cada aluno

Acumulador de litros: totLit

- Qual o valor inicial?
- Qual o valor final?
- Valor a somar?
- Quando atualizar o acumulador?
- Quando exibir?

Solução do questionamento 2

Total de litros consumidos pela turma?

Total de litros consumidos pela turma = ∑ litros de cada aluno

Variável para armazenar ∑ de litros de cada aluno

Acumulador de litros: totLit

- Qual o valor inicial? 0
- Qual o valor final? Calculado pelo programa
- Valor a somar? +litros do aluno
- Quando atualizar o acumulador? Em cada repetição
- Quando exibir? Após processar toda a turma

Questionamento 2: Python

```
def AguaIndiv(peso):
    return peso*35/1000
n=int(input("Quantos alunos?"))
qtSup21=0
totLit=0
jaFiz=0
while jaFiz < n:</pre>
   peso = float(input("Peso do aluno " + str(jaFiz+1)))
   lAgua = AguaIndiv(peso)
    if lAqua>2:
        qtSup21=qtSup21+1
    totLit+=lAgua
    print('Aluno %d-Peso: %6.2f-Litros de água: %6.2f'
          %(jaFiz+1,peso,lAgua))
    jaFiz=jaFiz+1
print(qtSup21, 'alunos devem ingerir diariamente mais de 21')
print('Consumo total da turma: ',totLit)
```


Questionamento 3

Qual o consumo médio por aluno?

Consumo médio = ∑ litros por aluno / nº de alunos

- Quando calcular e exibir?

Solução do questionamento 3

Qual o consumo médio por aluno?

Consumo médio = ∑ litros por aluno / nº de alunos

- Quando calcular e exibir? Após processar toda a turma

```
Questionamento 3: Python
def AquaIndiv(peso):
   return peso*35/1000
n=int(input("Quantos alunos?"))
qtSup21=0
totLit=0
jaFiz=0
while jaFiz < n:</pre>
   peso = float(input("Peso do aluno " + str(jaFiz+1)))
   lAqua = AquaIndiv(peso)
   if lAqua>2:
       qtSup21=qtSup21+1
   totLit+=lAgua
   print('Aluno %d-Peso:%6.2f-Litros de água:%6.2f'
          %(jaFiz+1,peso,lAgua))
   jaFiz=jaFiz+1
print(qtSup21,'alunos devem ingerir diariamente mais de 21')
print('Consumo total da turma: ',totLit)
print('Consumo médio por aluno: ',totLit/n)
```



```
1 turma com M alunos!
               h=int(input("Quantos alunos?"))
               qtSup21=0
               totLit=0
               jaFiz=0
              maiorQt = -1
               while jaFiz < n:</pre>
                  peso = float(input("Peso aluno " + str(jaFiz+1)))
                  lAgua = AguaIndiv(peso)
                  if lAqua>2:
                                                  1 turma
                      qtSup2l=qtSup2l+1
5
                  if lAgua>maiorQT:
X
                      maiorQt=lAgua
                  totLit+=lAgua
                  print('Aluno %d-Peso:%6.2f-Litros de
                        água:%6.2f' %(jaFiz+1,peso,lAgua))
                  jaFiz=jaFiz+1
               print(qtSup21,'alunos devem ingerir + de 21/dia')
              print('Consumo total da turma: ',totLit)
               print('Consumo médio por aluno: ',totLit/n)
               print('Maior consumo individual', maiorQt)
```


Ideia: N turmas com M alunos

Processando 5 turmas

Contador de repetições de turmas: nTurmas

- Qual o valor inicial?
- Qual o valor final (meta)?
- Qual o incremento cada vez que a repetição é executada?

Resolvendo com 5 turmas

Processando 5 turmas

Contador de repetições de turmas: nTurmas

- Qual o valor inicial? 0
- Qual o valor final (meta)? 5
- Qual o incremento cada vez que a repetição é executada? +1

```
DEPARTAMENTO
DE INFORMÁTICA
PUC-RIO
```

Uma Solução para 1 turma

```
def procTurma(n):
    qtSup21=0
    totLit=0
    jaFiz=0
    while jaFiz < n:</pre>
        peso = float(input("Peso do aluno " + str(jaFiz+1)))
        lAgua = AguaIndiv(peso)
        if lAgua>2:
            qtSup2l=qtSup2l+1
         totLit+=lAgua
         print('Aluno %d-Peso:%6.2f-Litros de água:%6.2f'
                %(jaFiz+1,peso,lAgua))
        jaFiz=jaFiz+1
    print(qtSup21, 'alunos devem ingerir + de 21/dia')
    print('Consumo total da turma: ',totLit)
    print('Consumo médio por aluno: ',totLit/n)
    return
```


Uma Solução para 5 turmas

```
nTurmas = 0
while(nTurmas<5):
    print('\nTurma ',nTurmas+1)
    n=int(input("Quantos alunos?"))
    procTurma(n)
    nTurmas=nTurmas+1</pre>
```

DESAFIO: Exibir no final o total de litros consumido pelas 5 turmas

Qual a maior quantidade consumida individualmente?

Há problemas que solicitam como saída o melhor, o maior, o mais, o menor, o pior, o menor, o menos...

A solução deve "separar" o valor calculado mais adequado de acordo com um critério

Variável para armazenar a maior quantidade consumida

- Qual o valor inicial?
- Qual o valor final?
- Quando atualizar o acumulador?
- Quando exibir?

Uma Solução em Python

```
def procTurma(n):
gtSup21=0
totLit=0
jaFiz=0
maiorQt = -1
while jaFiz < n:</pre>
    peso = float(input("Peso do aluno " + str(jaFiz+1)))
    lAgua = AguaIndiv(peso)
     if lAgua>2:
         qtSup21=qtSup21+1
     if lAgua>maiorQT:
         maiorQt=lAgua
     totLit+=lAgua
     print('Aluno %d-Peso:%6.2f-Litros de água:%6.2f'
         %(jaFiz+1,peso,lAgua))
     jaFiz=jaFiz+1
print(qtSup21,'alunos devem ingerir + de 21/dia')
print('Consumo total da turma: ',totLit)
print('Consumo médio por aluno: ',totLit/n)
print('Maior consumo individual', maiorQt)
```


Exercício da Tabuada

 Crie a função **Tabuada** que recebe um número e exibe a tabuada deste número de 1 a 10

```
Exemplo: numero recebido – 5:

1 x 5 = 5

2 x 5 = 10

3 x 5 = 15

4 x 5 = 20

5 x 5 = 25

6 x 5 = 30

7 x 5 = 35

8 x 5 = 40

9 x 5 = 45

10 x 5 = 50
```

2. Faça um programa que mostra na tela as tabuadas de todos os números entre 1 a 10.

Tabuada: uma Solução

```
def tabuada(n):
    mult=1
    while mult<=10:
        print('\t%2d x %2d = %d'%(mult,n,mult*n))
        mult=mult+1
    return

num=1
While num<=10:
    print('\n Tabuada do ',num)
    tabuada(num)
    num=num+1</pre>
```

```
Tabuada: números do usuário?
def tabuada(n):
    mult=1
    while mult <= 10:
        print('\t%2d x %2d = %d'%(mult,n,mult*n))
        mult=mult+1
    return
                                       Como modificar
num=1
                                      o programa para
while num<=10:</pre>
                                      exibir a tabuada
    print('\n Tabuada do ', num)
                                        de números
                                       escolhidos pelo
    tabuada(num)
                                         usuário?
    num=num+1
```

```
Repetição indeterminada

Como exibir a tabuada de números escolhidos pelo usuário?

while o usuário quiser:

num = int(input('Número? ')

print('\n Tabuada do ',num)

tabuada(num)

COMO PARAR?
```


PEPATRAMENTO PLE INFORMÁTICA Repetição indeterminada: parada?

O usuário deve "dizer" ao programa quando parar!!!

Como?

✓ introduzindo um valor (via entrada de dados)

Qual valor?

√ um valor pré-estabelecido, reconhecido pelo código do programa como sinalizador do fim (flag)

Faça um programa que mostra na tela a tabuada de números fornecidos pelo usuário. O término da entrada de dados ocorre quando o usuário digitar 0 como valor do número

Ideia da Solução

Faça um programa que mostra na tela a tabuada de números fornecidos pelo usuário. O término da entrada de dados ocorre quando o usuário digitar O como valor do número

num != 0
while o usuário quiser:

print('\Bloco deum)
tabuadComandos

Solução em Python: números?

Faça um programa que mostra na tela a tabuada de números fornecidos pelo usuário. O término da entrada de dados ocorre quando o usuário digitar 0 como valor do número

Números fora e dentro da repetição

Faça um programa que mostra na tela a tabuada de números fornecidos pelo usuário. O término da entrada de dados ocorre quando o usuário digitar 0 como valor do número

```
num = int(input('Número? ')#obtém 1º número
while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número?') #obtém próx
```

```
num = int(input('Número? ') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número? ') #próximos
```



```
num = int(input('Número? ') #1°

while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número? ') #próximos
```

```
num = int(input('Número?') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número?') #próximos
```

```
num = int(input('Número? ') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número? ') #próximos
```

```
num = int(input('Número?') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número?') #próximps
```

```
num = int(input('Número? ') #1°

while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número? ') #próximos
```



```
num = int(input('Número? ') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada (num)
    num = int(input('Número? ') #próximos
```



```
num = int(input('Número? ') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada(num)
    num = int(input('Número? ') #próximos
```



```
While num != 0:

print('\n Tabuada do ', num)
tabuada (num)
num = int(input('Número? ') #próximos

NameError: name 'num' is not defined
```



```
Tabuada: erros possíveis (3/12)

num = int(input('Número? ') #1°

while num != 0:
    print('\n Tabuada do ', num)
    tabuada (num)
```



```
Tabuada: erros possíveis (5/12)

num = int(input('Número? ') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada (num)
```



```
Tabuada: erros possíveis (7/12)

num = int(input('Número? ') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada (num)
```



```
Tabuada: erros possíveis (9/12)

num = int(input('Número? ') #1°

while num != 0:
    print('\n Tabuada do ', num)
    tabuada (num)
```



```
num = int(input('Número? ') #1°
while num != 0:
    print('\n Tabuada do ', num)
    tabuada (num)
```


Mão na massa: Frascos de essência

Um artesão deseja dividir aproximadamente ao meio o que sobrou de um frasco de essência com uma pipeta de 10ml. Cada vez que ele transfere do frasco original (frasco1) para o novo frasco (frasco 2), 0.35% da essência do frasco original evapora enquanto a evaporação do novo frasco é de 0.12%.

Faça uma função que receba a quantidade inicial do frasco de essência (40<=qt <230) e mostre a quantidade final em cada um dos frascos

114366	J.						
Qt Orig	Qt Novo	Orig antes Evap	Novo antes Evap	Evap Orig	Evap Novo	Nova Qt Orig	Nova Qt Novo
200.00	0.00	190.00	10.00	6.65	0.12	183.35	9.88
183.35	9.88	173.35	19.88	6.07	0.24	167.28	19.64
167.28	19.64	157.28	29.64	5.50	0.36	151.78	29.29
151.78	29.29	141.78	39.29	4.96	0.47	136.82	38.81
136.82	38.81	126.82	48.81	4.44	0.59	122.38	48.23
122.38	48.23	112.38	58.23	3.93	0.70	108.44	57.53
108.44	57.53	98.44	67.53	3.45	0.81	95.00	66.72
95.00	66.72	85.00	76.72	2.97	0.92	82.02	75.80

Frascos de essência: ideia

Um artesão deseja dividir aproximadamente ao meio o que sobrou de um frasco de essência com uma pipeta de 10ml. Cada vez que ele transfere do frasco original (frasco1) para o novo frasco (frasco 2), 0.35% da essência do frasco original evapora enquanto a evaporação do novo frasco é de 0.12%.

Faça uma função que receba a quantidade inicial do frasco de essência (40<=qt <230) e mostre a quantidade final em cada um dos frascos.

Dados necessários ? Respostas Exibidas ? Como Dados → Respostas ?

Frascos de essência: solução

Um artesão deseja dividir aproximadamente ao meio o que sobrou de um frasco de essência com uma pipeta de 10ml. Cada vez que ele transfere do frasco original (frasco1) para o novo frasco (frasco 2), 0.35% da essência do frasco original evapora enquanto a evaporação do novo frasco é de 0.12%.

Faça uma função que receba a quantidade inicial do frasco de essência (40<=qt <230) e mostre a quantidade final em cada um dos frascos.

Dados necessários ? Quantidade inicial do frasco1 Respostas Exibidas ? Quantidade final do frasco1 Quantidade inicial do frasco2

Como Dados → Respostas ? Transferir frasco1 → frasco 2 de 10 em 10 ml

Frascos: Desenvolvendo a Solução

Tira 10 ml do frasco 1

Coloca 10 ml no frasco 2

Atualiza as quantidades em função da evaporação

QUANDO PARAR?


```
Frascos: código Python
def transfere(frasco1):
   print("%15s %15s %15s %15s %15s %15s %15s %15s"%
        ("Qt Orig", "Qt Novo", "Orig antes Evap", "Novo antes
        Evap", "Evap Orig", "Evap Novo", "Nova Qt Orig", "Nova Qt
        Novo"))
    frasco2=0
   while (frasco1-frasco2>10):
          print("%15.2f %15.2f"%(frasco1, frasco2), end=' ')
          frasco2+=10
          frasco1-=10
          print("%15.2f %15.2f"%(frasco1, frasco2), end=' ')
          evaf1=frasco1*0.035
          evaf2=frasco2*0.012
          frasco1-=evaf1
          frasco2-=evaf2
          print("%15.2f %15.2f %15.2f %15.2f"
                 % (evaf1, evaf2, frasco1, frasco2))
    return
```


Frascos: função Transfere

Chamada da função transfere

frasco1 = float(input("Ml no frasco original?"))
transfere(frasco1)

Faça uma função que receba a quantidade inicial do frasco de essência (40<=qt <230)

Transfere: validando dados

Chamada da função transfere

Qualquer valor digitado pode ser aceito como quantidade?

Faça uma função que receba a quantidade inicial do frasco de essência (40<=qt <230)

DEPARTAMENTO DE INFORMÁTICA PUC-RIO

Frascos: entrada de dados validada

```
Chamada da função transfere

def qtValida():
    qt = float(input("Quantidade no frasco
    original? "))
    while(qt<40 or qt >=230): # Enqto não digitar valor correto
        print('Qt inválida.Digite um valor entre 40 e 230')
        qt = float(input("Quantidade frasco original?"))
    return qt

frascol = qtValida()
    transfere(frascol)
```


Exercício: média de uma turma

Faça um programa que obtenha a matrícula, a nota da prova e a média dos trabalhos dos alunos de <u>uma turma</u>, mostrando a média final de cada um.

O término da entrada de dados ocorre quando for introduzido 0 como número de matrícula.

A média de um aluno é calculada da seguinte forma:

0.85*nota da prova+ 0.15*média dos trabalhos

Média: ideias

Faça um programa que obtenha a matrícula, a nota da prova e a média dos trabalhos dos alunos de uma turma, mostrando a média final de cada um.

O término da entrada de dados ocorre quando for introduzido O como número de matrícula.

A média de um aluno é calculada da seguinte forma: 0.85*nota da prova+ 0.15*média dos trabalhos

Média: uma solução

```
def mediaPond( nPr, mTr):
    return nPr*0.85 + mTr*0.15

matr = int(input("\tMatricula? 0 finaliza "))
while matr !=0:
    nPr = float(input('\t\tNota da Prova?'))
    mTr = float(input('\t\tMédia de Trabalhos?'))
    med = mediaPond(nPr, mTr)
    print("Matricula: %d - Media: %.1f"%(matr, med))
    matr = int(input("\tMatricula? 0 finaliza "))
```

```
Média: valor da nota!

def mediaPond Qualquer valor digitado pode ser aceito como nota?

matr = int(input("\tMatricula? 0 finaliza "))
while matr !=0:

nPr = float(input('\t\tNota da Prova?'))
mTr = float(input('\t\tMédia de Trabalhos?'))
med = mediaPond(nPr,mTr)
print("Matricula: %d - Media: %.1f"%(matr,med))
matr = int(input("\tMatricula? 0 finaliza "))
```

```
DEPARTAMENTO Média: ler somente notas válidas
def mediaPond( nPr, mTr):
    return nPr*0.85 + mTr*0.15
def NotaValida(mensTipoNota):
   nota = float(input('\t\t' + mensTipoNota))
    while (nota<0 or nota > 10): #Enqto não digitar valor correto
       print('Nota inválida.Digite valor entre 0 e 10')
       nota = float(input('\t\t' + mensTipoNota))
    return nota
matr = int(input("\tMatricula? 0 finaliza "))
while matr !=0:
   nPr = NotaValida('Nota da Prova?')
   mTr = NotaValida('Média de Trabalhos?')
   med = mediaPond(nPr,mTr)
   print("Matricula: %d - Media: %.1f"%(matr,med))
    matr = int(input("\tMatricula? 0 finaliza "))
```


Média: modificações

```
def mediaPond( nPr, mTr):
                                   CALCULAR A
                                                   OUAL FOLA
                                                   MAIOR MÉDIA
    return nPr*0.85 + mTr*0.15
                                   MÉDIA DA
                                   TURMA!
                                                  DA TURMA?
def NotaValida(mensTipoNota):
    nota = float(input('\t\t' + mensTipoNota))
    while(nota<0 or nota > 10): # Enqto não digitar valor correto
        print('Nota inválida.Digite um valor entre 0 e 10')
        nota = float(input('\t\t' + mensTipoNota))
    return nota
matr = int(input("\tMatricula? 0 finaliza "))
while matr !=0:
    nPr = NotaValida('Nota da Prova?')
    mTr = NotaValida('Média de Trabalhos?')
    med = mediaPond(nPr,mTr)
    print("Matricula: %d - Media: %.1f"%(matr,med))
    matr = int(input("\tMatricula? 0 finaliza "))
```


Jogo do "par ou ímpar"

Construa um programa para o usuário jogar par ou ímpar com o computador.

Inicialmente o programa deve perguntar ao usuário a quantidade de partidas. Para cada partida devem ser mostrados os números escolhidos e quem venceu.

No final, o programa deve mostrar quantas partidas o usuário venceu, quantas partidas o computador venceu e quem venceu o jogo.

Obs: O usuário sempre será par e deve-se usar as funções abaixo

função **chuteJog()**: pergunta ao usuário um número, retornando-o. Só aceita números entre 0 e10

função **vencPartida(nJog,nComp)**: recebe os números da partida, verifica e exibe quem venceu, retornando 1 se o jogador venceu ou 0 caso contrário.

função **vencJogo(vJog,vComp)**: recebe a quantidade de vitórias do jogador e do computador, exibindo quem venceu o jogo ou deu empate.

DEPARTAMENTO DE INFORMÁTICA PUC-RIO

Par ou ímpar: uma Solução

```
import random
def chuteJog():
    num = int(input('\t\t Jogador, escolha um número inteiro: '))
    while(num<0 or num > 10):
        print('Número inválido. Valor deve estar entre 0 e 10')
        num = int(input('\t\tJogador, escolha um número: '))
    return num
def vencPartida(nJog,nComp):
    tot = nJog+nComp
    print('Jogador: %d x Computador: %d'%(nJog,nComp))
    if tot%2 == 0: # par?
        print('\t\t Par - Jogador venceu')
        return 1
    else:
       print('\t\t Impar - Computador venceu')
        return 0
```


Par ou ímpar: continuação

```
def vencJogo(vJog, vComp):
    print('Vitórias Jogador: %d x Vitórias Computador: %d'
           % (vJog, vComp))
    if vJog >vComp:
        print('\t\t Jogador venceu o jogo')
    elif vJog <vComp:</pre>
        print('\t\t Computador venceu o jogo')
    else:
        print('\t\t Empate')
nPart = int(input('\t\tJogador,quantas partidas?'))
cont=0
vJog=0
while(cont< nPart):</pre>
   nJog = chuteJog()
    nComp = random.randint(0,10)
    vJog += vencPartida(nJog,nComp)
    cont = cont+1
vencJogo(vJog, nPart-vJog)
```

```
DE INFORMATICA Par ou ímpar:
                                            Sempre deve-se
def vencJogo(vJog,vComp):
                                            jogar n partidas?
    print('Vitórias Jogador: %d x Vit
           %(vJog,vComp))
    if vJoq >vComp:
        print('\t\t Jogador venceu o jogo')
    elif vJog <vComp:</pre>
       print('\t\t Computador venceu o jogo')
       print('\t\t Empate')
    return
nPart = int(input('\t\tJogador,quantas partidas?'))
cont=0
vJog=0
while(cont< nPart):</pre>
    nJog = chuteJog()
    nComp = random.randint(0,10)
    vJog += vencPartida(nJog,nComp)
    cont = cont+1
vencJogo(vJog,nPart-vJog)
```


Finalizando loops com break

Em algumas situações, é útil forçar a interrupção da iteração.

A instrução **break** força a saída do while sem testar a condição de controle do loop.

Par ou ímpar: com break

```
nPart = int(input('\t\tJogador,quantas partidas?'))
cont=0
vJog=0
meio =nPart//2
while cont< nPart :
    cont = cont+1
    nJog = chuteJog()
    nComp = random.randint(0,10)
    vJog += vencPartida(nJog,nComp)
    if vJog > meio or cont-vJog > meio: #sealguém venceu
        break #interrompe o jogo

vencJogo(vJog, cont-vJog)
```


Exercícios diversos: repetição

 O vencedor do sorteio de um carro do dia por um supermercado será o primeiro consumidor cujo número de itens comprados seja múltiplo de 93. Caso não haja vencedor neste dia, o carro será doado ao estado.

Faça um programa que leia o número de itens dos participantes e verifique se houve um vencedor.

Término da entrada de dados: nº de itens ==0

- Escreva uma função que receba strings x e s e devolva o índice da posição a partir da qual x ocorre em s ou False se não ocorrer
- Faça uma função que exiba os números gerados pela função randint(), até que um número múltiplo de 13 seja gerado, considerando que:
 - Múltiplos de 3 e 5, pares, não são somados e quando ocorrerem, um novo número deve ser gerado. Caso este seja múltiplo de 3 ou 5 o ciclo deve ser interrompido, senão é utilizado pelo programa.

Obs: No final, seu programa deve exibir a soma dos números gerados

Duas Soluções Possíveis Ex. 1

```
nItens = int(input('Qtos itens? '))
while nItens > 0 :
    if nItens *93 == 0:
        print("\nUAU!!0 carro é seu")
        break
else:
        print("\nNão foi desta vez!!!!!")
        nItens = int(input('Qtos itens?'))
if nItens <=0:
    print( "\nCarro doado ao estado")</pre>
```

```
nItens = int(input('Qtos itens?'))
while nItens > 0 and nItens%93 != 0 :
    print("\nNāo foi desta vez!!!!!")
    nItens = int(input('Qtos itens?'))
if nItens <=0:
    print( "\nCarro doado ao estado")
else:
    print("\nUAU!!!O carro é seu")</pre>
```

```
DEPARTAMENTO
PUCRO

Uma Solução Ex. 2

def mostra(x,s):
    tam=len(s)
    ult=len(x)-tam+1 #+1 para incluir a última fatia
    i=0
    while i<ult:
        if x[i:i+tam]==s:
            return i
        i=i+1
    return False

print(mostra('abacate','ate'))
print(mostra('abacate','cot'))</pre>
```

```
DEPARTAMENTO
DE INFORMÁTICA
                        Uma Solução Ex. 3
import random
def soma():
    tot=0
    num=random.randint(1,300)
    while (num%13)!=0:
        if (num%3==0) and (num%5==0) and (num%2==0):
            print(num,' desconsiderado')
            num=random.randint(1,300)
             if (num%3==0) or (num%5==0):
     print(num)
     \verb"tot+=num"
     num=random.randint(1,300)
    print(num)
    return tot
print(soma())
```


Exercício: jogo do dominó

Crie uma função para mostrar os valores das 28 peças do jogo de dominó:

- 0-0 0-6 0-1 1-1 0-2 1-2 0-3 ... 0-4 5-6
- 0-5 6-6

Dominó: uma solução em python def exibe(m1,iniciom2): while (iniciom2 <= 6): print(m1,"-",iniciom2) iniciom2 += 1 return # Controla la. metade do dominó while (m1 <= 6): exibe(m1,m1) m1 = m1 + 1