3. CONTEXT FREE GRAMMAR

Based on the Chomsky classification, context free grammar can be presented as (type 2)

$$A \rightarrow \beta$$
,

where
$$A \in V_N$$
, $\beta \in (V_N \cup V_T)^*$

The context free grammar is a real model for representation the program languages. The grammars are not always optimized that means the grammar may consist of some extra symbols (non-terminal, epsilon productions) and having the extra symbols, unnecessary increase the length of grammar. Simplification of grammar means reduction of grammar by removing useless symbols as: ϵ – productions, unit productions, inaccessible symbols, non-productive symbols.

One of the simplest and most useful simplified forms of context free grammar is called **Chomsky Normal Form**. Another normal form usually used in algebraic specifications is the **Greibach Normal Form**.

3.1Elimination of ε – productions

If a context free grammar include ε productions as

$$A \rightarrow \varepsilon$$
,

where $A \in V_N$.

In this case the context free grammar can be transformed to the equivalent grammar without ε productions.

Algorithm for determination the NE set:

Step I. $N\varepsilon = \{A|A \rightarrow \varepsilon\}$, productions from P.

Step II. For all productions $B \to \alpha$, for which $\alpha \in V_N$ and $\alpha \in N_{\varepsilon}^*$ we have $N_{\varepsilon} = N_{\varepsilon} \cup \{B\}$.

Step III. The 2^{nd} step is repeating until there are some changes in the set $N\varepsilon$.

Step IV. The algorithm is stopped.

Algorithm for removing the ε - productions

It is given context free grammar $G=(V_N, V_T, P, S)$:

Step I. It is determinate the set N_{ε}

$$P=\{A \mid A \to \varepsilon \in P\}$$

Step II. For all productions by type

 $A \rightarrow \alpha_1\beta_1 \ \alpha_2\beta_2 \dots \alpha_n\beta_n \in P$, where α_i is a some set, $\alpha_i \in ((V_N \cup V_T) \setminus N_\varepsilon)^*$, $\beta_i \in N_\varepsilon$ it is added to P' all productions that were obtained by the following way $A \rightarrow \alpha_1 x_1 \alpha_2 x_2 \dots \alpha_n x_n \in P$, where $x_i = \beta_i, x_i = \varepsilon$

Step III. It is obtained $G'=(V_N, V_T, P', S)$.

```
G = (V_N, V_T, S, P):
V_N = \{ S, A, B \};
V_T = \{ a, b \},
P = \{ S \rightarrow ACD
A \rightarrow a
B \rightarrow \varepsilon
```

Example:

 $C \to ED \mid \varepsilon$ $D \to BC \mid b$

 $E \rightarrow b$

According to the exposed algorithm:

$$N\varepsilon = \{B, C, D\}$$

Removing these productions there are obtained:

```
P' = \{ S \rightarrow ACD|AD|AC|A
A \rightarrow a
C \rightarrow ED|E
D \rightarrow BC \mid b|B|C
E \rightarrow b
\}
```

Remove the ε – productions for the given grammars:

```
1. G = (V_N, V_T, S, P):
     V_N = \{ S, A \};
     V_T = \{a, z\};
     P = \{ S \rightarrow AzA \}
            A \rightarrow a/\varepsilon }
2. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C \};
     V_T = \{0, 1\};
    P = \{ S \rightarrow S0 \}
              S \rightarrow 1
              S \rightarrow AB
             B \rightarrow AC1
             A \to \varepsilon
             C \rightarrow \varepsilon }
3. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C \};
     V_T = \{a, b, c\};
     P = \{ S \rightarrow ABAC \}
             A \rightarrow aA | \varepsilon
              B \to bB|\varepsilon
             C \rightarrow c
```

3.2 Elimination of the Unit Productions

Production in form of $A \rightarrow B$, where $A, B \in V_N$ is called unit - production.

Algorithm for removing unit productions:

Step I. For all productions $A \rightarrow B$, it is added the new production $A \rightarrow x$, where $B \rightarrow x$ and $x \in (V_N \cup V_T)$.

Step II. Production $A \rightarrow B$ is removed.

Step III. The 2nd step is repeated until all unit productions will be removed.

```
Example:
```

```
G = (V_N, V_T, S, P):
V_N = \{ S, A, B, C, D, E \};
V_T = \{ a, b \},
P = \{ S \rightarrow ACD/AD/AC/A A \rightarrow a
C \rightarrow ED/E
D \rightarrow BC / b/B/C
E \rightarrow b
B \rightarrow a
\}
```

Solution:

The unit productions from P are $S \rightarrow A$, $C \rightarrow E$, $D \rightarrow B$, $D \rightarrow C$. After elimination of this production therea are obtained:

```
P' = \{ S \rightarrow ACD/AD/AC/a \\ A \rightarrow a \\ C \rightarrow ED/b \\ D \rightarrow BC / b/a/ED/b \\ E \rightarrow b \\ B \rightarrow a
```

Practical Tasks

Remove the unit productions for the given grammars:

```
1. G = (V_N, V_T, S, P):

V_N = \{ S, A, B, C, D, E \};

V_T = \{ a, b \};

P = \{ S \rightarrow AB

A \rightarrow a
```

```
B \rightarrow C/b
           C \rightarrow D
           D \rightarrow E
           E \rightarrow a
2. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B \};
    V_T = \{a, b\};
    P = \{ S \rightarrow A/bb \}
            A \rightarrow B/b
            B \rightarrow S/a
3. G = (V_N, V_T, S, P):
     V_N = \{ S, T, F \};
     V_T = \{+, *, (, ), a\};
    P = \{ S \rightarrow S + T/T \}
             T \rightarrow T*F/F
             F \rightarrow (S)/a
```

3.3 Elimination of the Inaccessible Symbols

Symbol $x \in (V_N \cup V_T)$ is called inaccessible, if it doesn't exist $S \rightarrow \alpha_1 x \alpha_2$, namely x doesn't appear in any deviation from the start symbol.

Algorithm for removing inaccessible symbols

Step I. It is given A_c set of accessible symbols. From start

$$A_c = \{S\}.$$

Step II. For all non-terminal symbols $\beta \in A_c$ and all productions $\beta \rightarrow x_1, x_2, x_3 \dots x_n$ the set A_c is changed

$$A_c = \{A_c \cup \{x_1, x_2, x_3...x_n\}\}$$

Step III. If at the 2^{nd} step was some changes in A_c when the 2^{nd} step is repeating, otherwise move to step IV.

Step IV. It is build the set of inaccessible symbols $I=(V_N \cup V_T) \setminus A_c$.

From productions *P*, there are removed all productions that contain at least one inaccessible symbol.

```
Example:
 G = (V_N, V_T, S, P):
   V_N = \{ S, A, B, C, D, E \};
   V_T = \{a, b\},\
 P = \{ S \rightarrow AC \}
                                                    A \rightarrow a
                                                      B \rightarrow b
                                                 C \rightarrow Ea
                                                D \rightarrow BC/b
                                                E \rightarrow b
   Solution:
                                                              Step I. A_c = \{S\}.
                                                               Step II. A_c = A_c \cup \{A, C, D\} = \{S, A, C\}.
                                                               Step III. A_c = A_c \cup \{a, b, C, E\} = \{S, A, C, E, a, b\}.
                                                              Step IV. I=(V_N \cup V_T) \setminus A_c = (\{S, A, B, C, D, E\} \cup \{a, b\}) \setminus \{a, b\} \setminus \{
                                                                                                                                               \{ S, A, C, E, a, b \} = \{ D \}.
                                                   In this case the inaccesible symbol is D and after elimination
   of this production therea are obtained:
                                                               V_N = \{ S, A, B, C, E \}, V_T = \{a, b\},
   P'' = \{ S \rightarrow AC \}
                                                      A \rightarrow a
                                                       B \rightarrow b
                                                 C \rightarrow Ea
                                                 E \rightarrow b
```

Practical Tasks

Remove the inaccessible symbols for the given grammars:

```
V_N = \{ S, A, B, C \};
     V_T = \{a, b\};
    P = \{ S \rightarrow A/bb \}
             A \rightarrow B/b
              B \rightarrow S/a
              C \rightarrow a/b
2. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C, D, E \};
     V_T = \{a, b\};
    P = \{ S \rightarrow AB \}
            A \rightarrow a
            B \rightarrow C/b
           C \rightarrow ab
           D \rightarrow E
           E \rightarrow a
  }
```

1. $G = (V_N, V_T, S, P)$:

3.3 Elimination of the Non-Productive Symbols

Non-terminal symbols $A \in V_N$ are called non-productive, if it doesn't exist $A \to y$, $y \in V_T^*$.

Algorithm for removing non-productive sysmbols

Step I. From start $P_r = \emptyset$. **Step II.**

a) For all productions $A \rightarrow \alpha$, where $\alpha \in V_T^*$ we change the set P_T :

$$P_r = P_r \cup \{A\}$$

b) For all productions $B \to \beta$, where $\beta \in (V_T \cup P_r)$, we change P_r : $P_r = P_r \cup \{B\}$

Step II. For all time there are some changes in the set P_r 2nd step is repeating.

```
Example:

G = (V_N, V_T, S, P):

V_N = \{S, A, B\};

V_T = \{a, b\},

P = \{S \rightarrow ACD

A \rightarrow a

C \rightarrow ED

D \rightarrow BC / b

E \rightarrow b

}

Step I. Pr = \{\emptyset\}.

Step II. Pr = P_r \cup \{A, E, D\} = \{A, E, D\}.

Step III. Pr = P_r \cup \{C, S\} = \{A, E, D, C, S\}.
```

In this case there are no non-productive symbols.

Practical Tasks

I. Remove the non-productive symbols for the given grammars:

1.
$$G = (V_N, V_T, S, P)$$
:
 $V_N = \{ S, A, B, D \}$;
 $V_T = \{ a, b, d \}$;
 $P = \{ S \rightarrow AB$
 $A \rightarrow a$
 $B \rightarrow b$

```
A \rightarrow ABD
       D\rightarrow d
2. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D \};
     V_T = \{a, b\};
P = \{ S \rightarrow AB \}
        A \rightarrow a
       B \rightarrow b
       A \rightarrow ABD
      D \rightarrow aBD
3. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D \};
    V_T = \{a, b\};
 P = \{ S \rightarrow AB \}
          A \rightarrow a
         B \rightarrow b
         A \rightarrow ABD
        D \rightarrow BA
4. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D, E \};
    V_T = \{a, b\};
 P = \{ S \rightarrow AB \}
          A \rightarrow a
          B \rightarrow b
         A \rightarrow ABD
         D \rightarrow BDA
         E \rightarrow A
```

II. For the given Grammar remove the inacesible symbols and non-productive symbols:

```
G = (V_N, V_T, S, P):

V_N = \{ S, A, B, H \};

V_T = \{ 0, 1 \};

P = \{ S \rightarrow 0S1 | 0SH/0 | 1B0 \}

B \rightarrow 1H0 | SH \}

H \rightarrow 1AB \}

A \rightarrow SB \}
```

3.4 Chomsky Normal Form

The Context free grammar G is said to be in **Chomsky** normal form if it doesn't contain:

- 1. ε productions.
- 2. Unit productions.
- 3. Inaccessible Symbols.
- 4. Non-productive symbols.

And all of its productions rule are of the following form:

$$A \to BC$$
, or $A \to a$, or $S \to \varepsilon$.

Algorithm to convert Context Free Grammar into Chomsky Normal Form

Step 1 – If the start symbol S occurs on some right side, it is created a new start symbol S' and is added a new production

$$S' \rightarrow S$$
.

- **Step 2** It shoul be removed ε productions.
- **Step 3** It shoul be removed the unit productions.
- **Step 4** It shoul be removed the inaccessible symbols.
- **Step 5** It shoul be removed the non-productive symbols.

Step 6 – The each production $A \rightarrow B_1...B_n$ is replaced with $A \rightarrow B_1C$ where $C \rightarrow B_2...B_n$.

This step is repeated for all productions that having two or more symbols in the right side.

Step 7– If the right side of any production is in the form $A \rightarrow aB$, where a is a terminal and A, B are non-terminal, then the production is replaced by $A \rightarrow XB$ and $X \rightarrow a$.

This step is repeated for every production which is in the form $A \rightarrow aB$.

```
Example:
```

```
G = (V_N, V_T, S, P):
V_N = \{ S, A, B, C, D \};
V_T = \{ a, b \},
P = \{ S \rightarrow aBbAC/AB
A \rightarrow a/ABBa
B \rightarrow \varepsilon/a
C \rightarrow aA
D \rightarrow ab
\}
```

Solution:

1. Removing ε productions:

```
a) N\varepsilon = \emptyset.
```

b) For the production
$$B \rightarrow \varepsilon$$
, $N\varepsilon = \emptyset \cup \{B\}$, $N\varepsilon = \{B\}$.

Removing this production there are obtained:

$$P'=\{S \rightarrow aBbAC/abAC/AB/A \\ A \rightarrow a/ABBa/ABa/Aa \\ B \rightarrow a \\ C \rightarrow aA$$

```
D \rightarrow ab
```

}

2. Removing of the unit productions:

The unit production from P' is $S \rightarrow A$.

After elimination of this production therea are obtained:

```
P''={ S \rightarrow aBbAC/abAC/AB/a/ABBa/ABa/Aa

A \rightarrow a/ABBa/ABa/Aa

B \rightarrow a

C \rightarrow aA

D \rightarrow ab

}
```

3. Elimination of nonproductive symbols.

```
Step I. Pr = \{\emptyset\}.
Step II. Pr = P_r \cup \{S, A, B\} = \{S, A, B\}.
Step III. Pr = P_r \cup \{C, D\} = \{S, A, B, C, D\}.
```

4. Elimination of the inaccesibile symbols.

```
Step I. A_c = \{S\}.

Step II. A_c = A_c \cup \{A, B, C, a\} = \{S, A, B, C, a\}.

Step III. A_c = \{S, A, B, C, a\}.

Step IV. I = (V_N \cup V_T) \setminus A_c = (\{S, A, B, C, D\} \cup \{a, b\}) \setminus \{S, A, B, C, a\} = \{D\}.
```

In this case the inaccesible symbol is D and after elimination of this production therea are obtained:

$$V_N = \{ S, A, B, C \}, V_T = \{a, b\},$$

$$P^{"} = \{ S \rightarrow aBbAC/abAC/AB/a/ABBa/ABa/Aa$$

$$A \rightarrow a/ABBa/ABa/Aa$$

$$B \rightarrow a$$

$$C \rightarrow aA$$

$$\}$$

5. The Chomsky Normal Form

```
P^{IV} = \{ S \rightarrow X_4 X_7 | X_8 X_9 | AB | a | X_2 X_3 | A X_3 | A X_1 \\ A \rightarrow a | X_2 X_3 | X_2 X_1 | A X_1 \\ B \rightarrow a \\ C \rightarrow X_1 A \\ X_1 \rightarrow a \\ X_2 \rightarrow AB \\ X_3 \rightarrow BX_1 \\ X_4 \rightarrow X_1 B \\ X_5 \rightarrow AC \\ X_6 \rightarrow b \\ X_7 \rightarrow X_6 X_5 \\ X_8 \rightarrow X_1 X_6 \\ X_9 \rightarrow AC \\ \} \\ V_T = \{a, b\}, \\ V_N = \{ S, A, B, C, X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9 \}.
```

Practical Tasks

Convert the given context free grammar into Greibach normal form:

```
1. G = (V_N, V_T, S, P):

V_N = \{ S, A, C, D, E \};

V_T = \{ a, b \};

P = \{ S \rightarrow aAa

A \rightarrow Sb/bCC/DaA/\epsilon

C \rightarrow abb/DD/\epsilon

E \rightarrow aC

D \rightarrow aDa

\}

2. G = (V_N, V_T, S, P):
```

```
V_N = \{ S, A, B, C \};
    V_T = \{0, 1\};
 P = \{ S \rightarrow S0 | 1 | AB \}
          B \rightarrow AC
          A \rightarrow \varepsilon
          C \rightarrow \varepsilon
3. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C, D \};
     V_T = \{a, b\};
 P = \{ S \rightarrow aB/bA/A \}
          B \rightarrow b/bS/aD/\epsilon
          A \rightarrow B/AS/bBAB/b
          C \rightarrow Ba
          D \rightarrow AA
4. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C \};
     V_T = \{a, b\};
 P = \{ S \rightarrow aABC \}
          A \rightarrow AB/\epsilon
          B \rightarrow CA/a
          C \rightarrow AA/b
5. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D \};
    V_T = \{a, b\};
 P = \{ S \rightarrow aB/DA \}
          A \rightarrow a/BD/bDAB
          B \rightarrow b/BA
          D \rightarrow BA/\epsilon
6. G = (V_N, V_T, S, P):
```

```
V_N = \{ S, A, B, D \};
     V_T = \{a, b\};
    P = \{ S \rightarrow aB/AC \}
          A \rightarrow a/ASC/BC
         B \rightarrow b/bS
          C \rightarrow BA/\epsilon
7. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D \};
     V_T = \{a, b\};
    P = \{ S \rightarrow aASAb/aB/b \}
          A \rightarrow B
          B \rightarrow b/\epsilon
8. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C, D \};
    V_T = \{a, b\};
    P = \{ S \rightarrow aBbAC/aAB/abAC/aA \}
          A \rightarrow B/ABBa/a/\epsilon
          B \rightarrow a
          C \rightarrow aA
          D \rightarrow ab
9. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C \};
    V_T = \{0, 1\};
    P = \{ S \rightarrow S0 \}
             S \rightarrow 1
             S \rightarrow AB
            B \rightarrow AC1
           A \to \varepsilon
```

```
C \rightarrow \varepsilon }
10. G = (V_N, V_T, S, P):
V_N = \{ S, A, B, C \};
V_T = \{ a, b, c \};
P = \{ S \rightarrow ABAC
A \rightarrow aA | \varepsilon
B \rightarrow bB | \varepsilon
C \rightarrow c }
```

3.5 Left recursion

Direct recursion

Let *G* be a context-free grammar and a production of *G* is said **left recursion**, if it has the form

```
A \rightarrow A\alpha_1\alpha_2 \dots \alpha_n, where A \in V_N, \alpha_i \in (V_N \cup V_T)^*.
```

```
Example:
```

```
G = (V_N, V_T, S, P):
V_N = \{ S, A, B \};
V_T = \{ a, b \},
P = \{ S \rightarrow ACD
A \rightarrow a
C \rightarrow ED
D \rightarrow DC / b
E \rightarrow b
```

In this case the left recursion is given by the production $D \rightarrow DC$.

Algorithm for removing the left recursion

It is supposed given the context free grammar that contains the following productions:

- 1) $A \rightarrow A\alpha_1, A \rightarrow A\alpha_2, \dots, A \rightarrow A\alpha_n$
- 2) $A \rightarrow \beta_1$, $A \rightarrow \beta_2$,..., $A \rightarrow \beta_m$. where $\alpha_i, \beta_i \in (V_N \cup V_T)^*$, $i = \overline{1, m}$, $j = \overline{1, m}$.

There are two methods for removing the left recutrsion:

1st Method

In this case it is introduced the new non-terminal symbol *Y* and there are obtained the following productions:

$$\begin{split} &I \quad A \rightarrow \beta_1 Y, A \rightarrow \beta_2 Y, ..., A \rightarrow \beta_m Y \\ &II \quad Y \rightarrow \alpha_1; \ Y \rightarrow \alpha_2; ... Y \rightarrow \alpha_n; \\ &III \ Y \rightarrow \alpha_1 Y; \ Y \rightarrow \alpha_2 Y; ... \ Y \rightarrow \alpha_n Y; \\ &IV \ A \rightarrow \beta_1 \ ; ...; A \rightarrow \beta_m \ . \end{split}$$

Example:

$$G=(V_N, V_T, S, P) V_N=\{E, T\} V_T=\{a,+\}$$

 $P=\{E \rightarrow E+T/T$
 $T \rightarrow a\}$

In this case the left recursion is given by the production $E \rightarrow E+T$.

Solution:

Applying the 1st method there are obtained:

```
V_N = \{E, E', T\} \ V_T = \{a, +\}
P = \{E \rightarrow TE'
E \rightarrow T
E' \rightarrow +TE'
E' \rightarrow +T
T \rightarrow a
```

2nd Method:

The productions (1) and (2) can be presented:

1.
$$A \rightarrow \beta_1 Y \dots A \rightarrow \beta_m Y$$
;

- 2. $Y \rightarrow \alpha_1 Y$ $Y \rightarrow \alpha_n Y$;
- 3. $Y \rightarrow \varepsilon$.

Where *Y* is new non-terminal symbol.

Example:

```
G=(V_N, V_T, S, P) V_N=\{E, T\} V_T=\{a,+\}

P=\{E \rightarrow E+T/T

T \rightarrow a\}
```

In this case the left recursion is given by the production $E \rightarrow E + T$.

Solution:

Applying the 2nd method there are obtained:

```
V_N = \{E, E', T\} V_T = \{a, +\}

P = \{E \rightarrow TE'

E' \rightarrow + TE'

E' \rightarrow \epsilon
```

Indirect recursion

A grammar is said to posess indirect left recursion if it is possible, starting from any symbol of the grammar, to derive a string whose head is that symbol.

Example:

```
G = (V_N, V_T, S, P):
V_N = \{ S, A, B, C \};
V_T = \{ e, f \},
S = \{ A \},
P = \{ A \rightarrow Cd
B \rightarrow Ce
C \rightarrow A \mid B \mid f
```

}

 $C \rightarrow A \rightarrow Cd \implies$ in this case we obtain the derivation $C \rightarrow Cd$, that represents the indirect recursion.

 $C \rightarrow B \rightarrow Ce \implies$ in this case we obtain the derivation $C \rightarrow Ce$, that represents the indirect recursion.

In this way the contect free grammar can be rewrited in the following way:

```
P' = \{ A \rightarrow Cd \\ B \rightarrow Ce \\ C \rightarrow Cd \mid Ce \mid f \}
```

In this case it is given the direct left recursion that can be removed in the following way:

```
P'' = \{ A \rightarrow Cd \\ B \rightarrow Ce \\ C \rightarrow fC' \\ C' \rightarrow dC' | eC' | \epsilon \\ \}
```

Removing indirect left recursion

Let any ordering of the nonterminals of the given context free grammar be

$$A_1,...,A_m$$

It will be removed the indirect left recursion by constructing an equivalant grammar G' such that

If $A_i \rightarrow A_i$ a is any production of G', then i < j.

Example:

```
G = (V_N, V_T, S, P):

V_N = \{ S, A, B, C \};

V_T = \{ a, b \},

S = \{ A \},
```

```
P = \{ A \rightarrow BC \}
       B \rightarrow CA/b
       C \rightarrow AA / a
}
There are introduced the notation:
A_1 = A
A_2 = B
A_3 = C
Ant the equivalent grammar can be rewrited:
P'=\{A_1 \rightarrow A_2 A_3\}
        A_2 \rightarrow A_3 A_1 \mid b
       A_3 \rightarrow A_1 A_1 | a
It is replaced A_3 \rightarrow A_1 A_1 by A_3 \rightarrow A_2 A_3 A_1 and then replace this
by
             A_3 \rightarrow A_3 A_1 A_3 A_1 and A_3 \rightarrow b A_3 A_1
Eliminating direct left recursion in the above,
gives: A_3 \rightarrow a / b A_3 A_1 | aA_3' / b A_3 A_1 A_3'
          A_3' \to A_1 A_3 A_1 | A_1 A_3 A_1 A_3'
The resulting grammar is then:
P''=\{A_1 \rightarrow A_2 A_3\}
        A_2 \rightarrow A_3 A_1 \mid b
        A_3 \rightarrow a / b A_3 A_1 | aA_3' / b A_3 A_1 A_3'
       A_3' \rightarrow A A_3 A \mid A_1 A_3 A_1 A_3'
Or
P''=\{A \rightarrow B C
        B \rightarrow C A \mid b
        C \rightarrow a / b CA | aA_3' / b CA A_3'
        A_3' \rightarrow A C A | A C A A_3'
```

Practical Tasks

Remove left recursion for the given grammars and use the both methods:

```
1. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D \};
     V_T = \{a, b, d\};
    P = \{ S \rightarrow AB \}
       A \rightarrow a
       B \rightarrow b
       A \rightarrow ABD
       D \rightarrow d
2. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D \};
     V_T = \{a, b\};
P = \{ S \rightarrow AB \}
       A \rightarrow a
       B \rightarrow b
       A \rightarrow AB/AD/A
      D \rightarrow aBD
3. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, D \};
     V_T = \{a, b\};
 P = \{ S \rightarrow AB \}
         A \rightarrow a/b/D
         B \rightarrow b
         A \rightarrow ABD
        D \rightarrow BA
4. G = (V_N, V_T, S, P):
```

```
V_N = \{ S, A, B, D, E \};
    V_T = \{a, b\};
 P = \{ S \rightarrow AB \}
          A \rightarrow a
          B \rightarrow b
         A \rightarrow ABD
         D \rightarrow DA
         D \rightarrow a
5. G = (V_N, V_T, S, P):
     V_N = \{ S, A \};
    V_T = \{a, b\};
 P = \{ S \rightarrow Aa/b \}
          A \rightarrow Sb
6. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C \};
    V_T = \{a, b\};
 P = \{ S \rightarrow BC \}
          B \rightarrow CA
          C \rightarrow S/a
         A \rightarrow b
7. G = (V_N, V_T, S, P):
    V_N = \{ S, A, B, X \};
     V_T = \{a, b\};
 P = \{ S \rightarrow XA/BB \}
         B \rightarrow b/SB
          X \rightarrow b
         A \rightarrow a
}
```

```
8. G = (V_N, V_T, S, P):
     V_N = \{ S, L, R, N \};
    V_T = \{+, i, p\};
 P = \{ S \rightarrow L \}
          L \rightarrow N/NRL
          R \rightarrow +/bR/Rb
         N \rightarrow i/p/+
9. G = (V_N, V_T, S, P):
    V_N = \{ S, X \};
    V_T = \{a\};
 P = \{ S \rightarrow SX/SSb \backslash XS/a \}
          X \rightarrow Sa/Xb/b
10. G = (V_N, V_T, S, P):
     V_N = \{ S, B, C \};
     V_T = \{a, b\};
 P = \{ S \rightarrow AB \}
         B \rightarrow c
         C \rightarrow aA/bB
        C \rightarrow b/SC
11. G = (V_N, V_T, S, P):
     V_N = \{ S, A, B, C \};
     V_T = \{a, b\};
 P = \{ S \rightarrow BC \}
          B \rightarrow CA
         C \rightarrow S/a
        A \rightarrow b
```

3.6 Greibach Normal Form

The context free grammar is in Greibach normal form (GNF) if all production have the form:

$$A \rightarrow a\alpha$$
, where $A \in V_N$, $a \in V_T$, $\alpha \in V_N^*$.

There are two way of conversion the CFG into Greibach Normal Formal:

I Algorithm

- **Step 1.** CFG is converted the grammar into Chomsky Normal Form.
- **Step 2.** It is eliminated the left recursion from grammar if it exists.
- **Step 3.** It is converted the production rules into Greibach Normal Form form.

```
Example:

G = (V_N, V_T, S, P):

V_N = \{ S, A \};

V_T = \{ a, b \},

P = \{ S \rightarrow Ab

A \rightarrow aS/Ab/a

}

Step 1. Conversion into Chomsky Normal Form.

V_N = \{ S, A, X, Y \};

V_T = \{ a, b \},

P' = \{ S \rightarrow AY

A \rightarrow XS/AY/a

X \rightarrow a

Y \rightarrow b

}
```

Step 2. Removing of the left recursion from grammar.

In this case we have the left recursion that should be removed for productions $A \rightarrow XS/AY/a$ and there are obtained the following productions:

```
V_N = \{ S, A, A', X, Y \};

V_T = \{ a, b \},

P' = \{ S \rightarrow AY

A \rightarrow XSA'/XS|aA'|a

A' \rightarrow YA'|b

X \rightarrow a

Y \rightarrow b

}

Step 3. Conversion into Greibach Normal Form form.

P' = \{ S \rightarrow aSA'Y/aSY|aA'Y/aY

A \rightarrow aSA'|aS|aA'|a

A' \rightarrow bA'|b

X \rightarrow a

Y \rightarrow b

}
```

II Algorithm

- **Step 1.** CFG is converted the grammar into Chomsky Normal Form.
- **Step 2.** All non-terminal symbols are renamed in $A_1, A_2,...A_n$.
- Step 3. It should be modified the rule productions so that

$$A_i \rightarrow A_j \alpha$$
, then $j > i$.

Step 4. If $A_i \rightarrow A_j \alpha$ and j < i, it is generated a new set of productions with substitution A_j and is obtained

$$A_k \rightarrow A_p \alpha$$
, then $p \ge k$.

Step 5. It is eliminated the left recursion from grammar if it exists.

Step 6. It is converted the production rules into Greibach Normal Form form.

```
Example:
G = (V_N, V_T, S, P):
V_N = \{ S, A \};
V_T = \{a, b\},\
P = \{ S \rightarrow Aa \}
       A \rightarrow aS/a
Step 1. Conversion into Chomsky Normal Form.
V_N = \{ S, A, X \};
V_T = \{a, b\},\
P' = \{ S \rightarrow AX \}
       A \rightarrow XS/a
       X \rightarrow a
Step 2. All non-terminal symbols are renamed in A_1, A_2,...A_n.
A_1=S:
A_2 = A;
A_3=X.
P'' = \{A_1 \rightarrow A_2 A_3\}
         A_2 \rightarrow A_3 A_1/a
          A_3 \rightarrow a
Step 3. It is verified all indexes and there are 1<2, 2<3 and there
is no left recursion. In this case the CFG can be converted in
Greibach Normal form.
P^{"} = \{ A_1 \rightarrow a A_1 A_3 / a A_3 \}
          A_2 \rightarrow a A_1/a
          A_3 \rightarrow a
     }
P^{IV} = \{ S \rightarrow a \ S \ X/a \ X \}
```

```
A \to a S/aX \to a
```

Practical Tasks

Convert the given context free grammar into Greibach normal form:

```
1. G = (V_N, V_T, S, P):

V_N = \{ S, A, B, C \};

V_T = \{ a, b \};

P = \{ S \rightarrow BC

B \rightarrow CA

C \rightarrow S/a

A \rightarrow b

\}

2. G = (V_N, V_T, S, P):

V_N = \{ E, Y, T, F, Z \};

V_T = \{ +, *, (,), a \};

P = \{ E \rightarrow T/TY/+TY

Y \rightarrow +T

T \rightarrow F/FZ/*FZ

Z \rightarrow *F

F \rightarrow a/(E)

\}
```

3.7 Pushdown Automata

A pushdown automaton (PDA) is a is a finite automata with extra memory which is called stack, that permits to recognize a context-free language in a similar way, as DFA or NFA recognize a regular language. A DFA can remember a finite amount of information, but a PDA can remember an infinite amount of information and consists of –

"Finite state machine" + "a stack".

A pushdown automaton has three components –

- an input tape;
- a control unit;
- a stack with infinite size.

Accept/reject of the string

The stack head scans the top symbol of the stack.

A stack does two operations -

- **Push** a new symbol is added at the top.
- **Pop** the top symbol is read and removed.

•

A pushdown automaton is $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where:

- Q is a finite set of states;
- Σ is the input alphabet;
- Γ is the stack alphabet
- q_0 in Q is the initial state;
- $F \subseteq Q$ is a set of final states;
- δ is the transition function

$$\delta \!\!:\! \mathcal{Q} \!\times\! (\Sigma \cup \{\epsilon\}) \!\times\! (\Gamma \cup \{\epsilon\}) \to \text{subsets of } \mathcal{Q} \!\times\! (\Gamma \cup \{\epsilon\}).$$

A PDA is nondeterministic and the language of a PDA is the set of all strings in Σ^* that can lead the PDA to an accepting state.

Instantaneous Description

The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s) where

- q is the state;
- w is input string;
- s is the stack contents.

The Transition Function

This function takes three arguments:

- 1. A state, in Q.
- 2. An input, which is either a symbol in Σ or ε .
- 3. A stack symbol in Γ .

$$\delta(p,a,X) = \{(q,Y)\}$$

This describes the trasnition from p state to q state, reading the input symbol a, where the pop symbol from stack is X and the push symbol in stack is Y.

The following diagram shows a transition in a PDA from a state p to state q.

Turnstile Notation

The "turnstile" notation is used for connecting pairs of ID's that represent one or many moves of a PDA. The process of transition is denoted by the turnstile symbol "\(\dagger".

Consider a given PDA, a transition can be mathematically represented by the following turnstile notation

$$(p, wa, \beta) \vdash (q, a, \alpha)$$

This implies that while taking a transition from state p to state q, the input symbol w is consumed, and the top of the stack β is replaced by a new string α .

There are three forms of representation oft he PDA:

- Table representation.
- Analytical form.
- Graphical representation.

Acceptance of the string

There are two different ways to define PDA acceptability:

1. Final State Acceptability

For the given PDA P, the language accepted by P, is denoted by L(P) by *final state*, is:

$$\{w \mid (q_0, w, Z_0) \vdash (q, \varepsilon, \varepsilon) \}$$
, s.t., $q \in F$

2. Empty Stack Acceptability

For a PDA P, the language accepted by P, denoted by N(P) by *empty stack*, is:

$$\{w \mid (q_0, w, Z_0) \vdash (q, \varepsilon, \varepsilon) \}$$
, for any $q \in Q$.

Example:

For the given PDA in the analytical form:

- present table and graph representation.
- analyze the word *aaaa*.

$$\begin{split} M &= (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \\ Q &= \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{a, b, A, B\}, q_0 = \{q_0\}, Z_0 = \{\lambda\}, F = \{q_1\} \\ \delta(q_0, a, \varepsilon) &= \{(q_0, A)\} \\ \delta(q_0, b, \varepsilon) &= \{(q_0, B)\} \\ \delta(q_0, \varepsilon, \varepsilon) &= \{(q_1, \varepsilon)\} \\ \delta(q_1, a, A) &= \{(q_1, \varepsilon)\} \\ \delta(q_1, b, B) &= \{(q_1, \varepsilon)\} \end{split}$$

Solution:

- Tabel representation

δ	а	b	3
$\rightarrow q_0$	<i>q</i> ₀ ε Α	<i>q</i> ₀ ε Β	<i>q</i> ₁ ε ε
* q1	<i>q</i> ₀ Α ε	<i>q</i> ₀ Β ε	-

- Graphical representation

Curent state	Input	Pop string	Push String	New state
q0	3	3	3	q1
q0	a	ε	A	q0
q0	3	3	3	q1
q1	a	A	3	q1
q1	a	A	ε	q1

 $[q_0, aaaa, \varepsilon]$ \vdash $[q_0, aaa, A]$ \vdash $[q_1, aa, AA]$ \vdash $[q_1, aa, AA]$ \vdash $[q_1, aa, AA]$ \vdash $[q_1, e, e]$

Convertion a Context free grammar into a PDA

Every CFG can be converted to an equivalent PDA. The constructed PDA will perform a leftmost derivation of any string accepted by the CFG.

It is given a CFG and let V_T and V_N be its sets of terminal and non-terminal symbols respectively. Let S be the start symbol. Then the steps for the obtaining the PDA are the following:

- The input alphabet of the PDA is V_{T} .
- There are only three states, that are denoted with q_1 , q_2 , q_3 , where q_1 is the start state, q_3 is the only one final state, in this way $Q = \{q_1, q_2, q_3\}$, $S = \{q_1\}$, $F = \{q_3\}$.
- The stack alphabet is $\Gamma = V_T \cup V_N$.
- There are add the transitions as follows:
 - $\circ \quad \delta(q_1, \, \varepsilon, \, \varepsilon) = \{(q_2, \, \$S)\}$
 - ∘ For each grammar rule of the form A→α, there is a $\delta(q_2, \varepsilon, A) = \{(q_2, \alpha)\}$
 - where $\alpha \in (V_T \cup V_N)^*$.
 - For each terminal symbol a from V_T , it add the transition

$$\delta(q_2, a, a) = \{(q_2, \varepsilon)\}$$

In final it is add the transition

$$\delta(q_2, \$, \varepsilon) = \{(q_3, \varepsilon)\}$$

where \$ is a marker, which means end and start of the string.

Example:

It is given the context free grammar and it is necessary to convert this grammar to the PDA.

```
G = (V_N, V_T, S, P):

V_N = \{A, B\};

V_T = \{0,1,\#\};

S = \{A\}.

P = \{A \rightarrow 0A1

A \rightarrow B

B \rightarrow \#
```

Solution:

$$\begin{split} M &= (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \\ Q &= \{q_0, q_1, q_2\}, \Sigma = \{0, 1, \#\}, \Gamma = \{0, 1, \#, A, B\}, q_0 = \{q_0\}, Z_0 = \{\lambda\}, F &= \{q_2\} \\ \delta(q_0, \varepsilon, \varepsilon) &= \{(q_0, \$A)\} \\ \delta(q_1, \varepsilon, A) &= \{(q_1, 1A0)\} \\ \delta(q_1, \varepsilon, A) &= \{(q_1, \#)\} \\ \delta(q_1, \varepsilon, B) &= \{(q_1, \#)\} \\ \delta(q_1, 0, 0) &= \{(q_1, \varepsilon)\} \\ \delta(q_1, 1, 1) &= \{(q_1, \varepsilon)\} \\ \delta(q_1, \#, \#) &= \{(q_1, \varepsilon)\} \\ \delta(q_1, \varepsilon, \$) &= \{(q_2, \varepsilon)\} \end{split}$$

Practical Tasks

- 1. Construct pushdown automata and present the analysis of the word for the following languages:
 - a) $L=\{a^ncb^n|n\in\mathbb{N}, a, b, c\in\Sigma\}$
 - b) $L=\{a^ncb^m/n, m \in \mathbb{N}, a, b, c \in \Sigma\}$
 - c) $L=\{ac^mb/n, m \in \mathbb{N}, a, b, c \in \Sigma\}$
 - d) $L=\{a^ncb^{n+1}|n\in\mathbb{N}, a, b, c\in\Sigma\}$
 - e) $L=\{a^{n-1}c^nb/n\in\mathbb{N}, a, b, c\in\Sigma\}$
 - f) $L = \{a^{n+1}cb^{n+1} | n \in \mathbb{N}, a, b, c \in \Sigma\}$
 - g) $L=\{a^nc^{n+1}b/n\in\mathbb{N}, a, b, c\in\Sigma\}$
 - h) $L=\{a^mc^nb^{n+1}/n\in\mathbb{N}, a, b, c\in\Sigma\}$

- i) $L=\{da^ncb^{n+1}d/n\in\mathbb{N}, a, b, c, d\in\Sigma\}$
- j) $L=\{a^nc^mb/n\in\mathbb{N}, a, b, c\in\Sigma\}$
- 2. For the given Push Down Automaton $M=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$,

$$Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, \Gamma = \{a, b, A, B\}, q_0 = \{q_0\}, Z_0 = \{\epsilon\}, F = \{q_2\} \}$$

$$\delta(q_0, a, \epsilon) = \{(q_1, A)\} \qquad \delta(q_1, b, \epsilon) = \{(q_1, B)\} \}$$

$$\delta(q_1, \epsilon, \epsilon) = \{(q_2, \epsilon)\} \qquad \delta(q_2, a, A) = \{(q_2, \epsilon)\} \}$$

$$\delta(q_2, b, B) = \{(q_2, \epsilon)\} \qquad \delta(q_2, a, \epsilon) = \{(q_2, \epsilon)\} \}$$

- a) Present the PDA in the graph form. Present the PDA in the graph form.
- b) Present the PDA in the table form.
- c) Analyze the word: abbabba.
- 3. Convert the given CFG tp PDA
 - a) $G = (V_N, V_T, S, P), V_N = \{S, B, C\}, V_T = \{a, b\}, P = \{S \rightarrow aSBC; BC \rightarrow B; C \rightarrow a; B \rightarrow b\}.$
 - b) $G = (V_N, V_T, S, P), V_N = \{S, C, D\}, V_T = \{0,1\},$ $P = \{S \rightarrow CD; C \rightarrow 0C | 0; D \rightarrow 1D | 1\}.$
 - c) $G = (V_N, V_T, S, P), V_N = \{S, B, C\}, V_T = \{a, b\},$ $P = \{S \rightarrow aSBC; BC \rightarrow Bab; C \rightarrow a; B \rightarrow b | \epsilon \}.$