SEQUENCE LISTING

- <110> Le, Junming Vilcek, Jan Daddona, Peter Ghrayeb, John Knight, David Siegel, Scott
- <120> Anti-TNF Antibodies and Peptides of Human Tumor Necrosis Factor
- <130> 0975.1005-038
- <140>
- <141>
- <150> US 09/756,301
- <151> 2001-01-08
- <150> U.S. 09/133,119
- <151> 1998-08-12
- <150> U.S. 08/570,674
- <151> 1995-12-11
- <150> U.S. 08/324,799
- <151> 1994-10-18
- <150> U.S. 08/192,102
- <151> 1994-02-04
- <150> U.S. 08/192,861
- <151> 1994-02-04
- <150> U.S. 08/192,093
- <151> 1994-02-04
- <150> U.S. 08/010,406
- <151> 1993-01-29
- <150> U.S. 08/013,413
- <151> 1993-02-02
- <150> U.S. 07/943,852
- <151> 1992-09-11
- <150> U.S. 07/853,606
- <151> 1992-03-18
- <150> U.S. 07/670,827
- <151> 1991-03-18
- <160> 30

```
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 157
<212> PRT
<213> Homo sapiens
Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val
Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg
                                25
Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu
                            40
Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe
                        55
Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile
                    70
Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala
                85
                                    90
Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys
                                105
                                                    110
            100
Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys
                            120
                                                125
        115
Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe
                        135
                                            140
Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu
<210> 2
<211> 321
<212> DNA
<213> Mus Balb/c
<220>
<221> CDS
<222> (1)...(321)
<400> 2
gac atc ttg ctg act cag tct cca gcc atc ctg tct gtg agt cca gga
Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
gaa aga gtc agt ttc tcc tgc agg gcc agt cag ttc gtt ggc tca agc
                                                                   96
Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
atc cac tgg tat cag caa aga aca aat ggt tct cca agg ctt ctc ata
                                                                   144
Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
aag tat get tet gag tet atg tet ggg ate eet tee agg tit agt gge
                                                                   192
Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
agt gga tca ggg aca gat ttt act ctt agc atc aac act gtg gag tct
                                                                   240
```

Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Ser	Ile 75	Asn	Thr	Val	Glu	Ser 80	
gaa Glu	gat Asp	att Ile	gca Ala	gat Asp 85	tat Tyr	tac Tyr	tgt Cys	caa Gln	caa Gln 90	agt Ser	cat His	agc Ser	tgg Trp	cca Pro 95	ttc Phe	288
					aca Thr											321
<212	L> 10 2> PF	TS	alb/d	2												
<400 Asp		Leu	Leu	Thr 5	Gln	Ser	Pro	Ala	Ile 10	Leu	Ser	Val	Ser	Pro 15	Gly	
_	Arg	Val	Ser 20	Phe	Ser	Cys	Arg	Ala 25	Ser	Gln	Phe	Val	Gly 30	Ser	Ser	
Ile	His	Trp 35		Gln	Gln	Arg	Thr 40	_	Gly	Ser	Pro	Arg 45		Leu	Ile	
Lys	Tyr 50		Ser	Glu	Ser	Met 55		Gly	Ile	Pro	Ser 60		Phe	Ser	Gly	
Ser 65		Ser	Gly	Thr	Asp		Thr	Leu	Ser	Ile 75		Thr	Val	Glu	Ser 80	
	Asp	Ile	Ala	Asp 85	Tyr	Tyr	Cys	Gln	Gln 90	. –	His	Ser	Trp	Pro 95	-	
Thr	Phe	Gly	Ser 100		Thr	Asn	Leu	Glu 105		Lys				,,		
<210> 4 <211> 357 <212> DNA <213> Mus Balb/c																
<220> <221> CDS <222> (1)(357)																
_	gtg	_			gag Glu					_						48
	_				tgt Cys	_	_						_			96
	_			_	cgc Arg	_				_					_	144
gct	gaa	att	aga	tca	aaa	tct	att	aat	tct	gca	aca	cat	tat	gcg	gag	192

Ala	Glu 50	Ile	Arg	Ser	Lys	Ser 55	Ile	Asn	Ser	Ala	Thr 60	His	Tyr	Ala	Glu	
						acc Thr										240
						gac Asp										288
						tac Tyr										336
			ctc Leu													357
<210> 5 <211> 119 <212> PRT <213> Mus Balb/c																
		Lys	Leu	_	Glu	Ser	Gly	Gly		Leu	Val	Gln	Pro	_	Gly	
1 Ser	Met	Lys	Leu 20	5 Ser	Cys	Val	Ala	Ser 25	10 Gly	Phe	Ile	Phe	Ser 30	15 Asn	His	
Trp	Met	Asn 35		Val	Arg	Gln	Ser 40		Glu	Lys	Gly	Leu 45		Trp	Val	
Ala	Glu 50		Arg	Ser	Lys	Ser 55	Ile	Asn	Ser	Ala	Thr 60	His	Tyr	Ala	Glu	
Ser 65		Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Ser	Ala 80	
Val	Tyr	Leu	Gln	Met 85	Thr	Asp	Leu	Arg	Thr 90	Glu	Asp	Thr	Gly	Val 95	Tyr	
Tyr	Cys	Ser	Arg 100	Asn	Tyr	Tyr	Gly	Ser 105	Thr	Tyr	Asp	Tyr	Trp 110	Gly	Gln	
Gly	Thr	Thr 115	Leu	Thr	Val	Ser										
<210> 6 <211> 8 <212> PRT <213> Homo sapiens <400> 6																
		Leu	Val	Thr 5	Val	Ser	Ser									
<213	0> 7 L> 7 2> PI	?T														

<213> Homo sapiens	
<400> 7 Gly Thr Lys Leu Glu Ile Lys 1 5	
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR oligonucleotides	
<400> 8 cctggatacc tgtgaaaaga	20
<210> 9 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> PCR oligonucleotides	
<400> 9 cctggtacct tagtcaccgt ctcctca	27
<210> 10 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> PCR oligonucleotides	
<400> 10 aatagatato toottoaaca ootgoaa	27
<210> 11 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> PCR oligonucleotides	
<400> 11 atcgggacaa agttggaaat a	21
<210> 12 <211> 16	

<212> D <213> A	DNA Artificial Sequence	
<220> <223> F	PCR oligonucleotides	
<400> 1 ggcggtc		16
<210> 1 <211> 1 <212> D <213> A	19	
<220> <223> F	PCR oligonucleotides	
<400> 1 gtcaaca		19
<210> 1 <211> 2 <212> D <213> A	23	
<220> <223> P	PCR oligonucleotides	
<400> 1 cacaggt	l4 cgtg tccccaagga aaa	23
<210> 1 <211> 1 <212> E <213> A	18	
<220> <223> F	PCR oligonucleotides	
<400> 1 aatctgg	15 gggt aggcacaa	18
<210> 1 <211> 1 <212> E <213> A	1 7	
<220>	PCR oligonucleotides	

<400> 16 agtgtgtgtc cccaagg	17
<210> 17 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR oligonucleotides	
<400> 17 cacagetgee egeceaggtg geat	24
<210> 18 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> PCR oligonucleotides	
<400> 18 gtcgccagtg ctccctt	17
<210> 19 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR oligonucleotides	
<400> 19 atcggacgtg gacgtgcaga	20
<210> 20 <211> 11 <212> PRT <213> Artificial Sequence	
<220> <223> Partial sequence of pHC707	
<400> 20 Ile Glu Pro Gly Thr Leu Val Thr Val Ser Ser 1 5 10	
<210> 21 <211> 46	

```
<212> DNA
<213> Artificial Sequence
<223> Partial sequence of pHC707
<400> 21
cacaggtatc caggcctggt accttagtca ccgtctcctc aggtaa
                                                                   46
<210> 22
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Partial sequence of pHC707
<400> 22
cacaggtatc caggca
                                                                   16
<210> 23
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Partial sequence of pHC707
<400> 23
Pro Gly Thr Leu Val Thr Val Ser Ser
<210> 24
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Partial sequence of pHC707
<400> 24
                                                                   32
cctggtacct tagtcaccgt ctcctcaggt aa
<210> 25
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Partial sequence of pLC871
<400> 25
Val Glu Gly Asp Ile Gly Thr Lys Leu Glu Ile Lys
```

```
<210> 26
<211> 52
<212> DNA
<213> Artificial Sequence
<223> Partial sequence of pLC871
<400> 26
tttgcaggtg ttgaaggaga tatcgggaca aagttggaaa taaaacgtaa gt
                                                                    52
<210> 27
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Partial sequence of pLC671
<400> 27
Val Glu Gly Asp
<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Partial sequence of pLC671
<400> 28
                                                                    21
tttgcaggtg ttgaaggaga t
<210> 29
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Partial sequence of pLC671
<400> 29
Ile Gly Thr Lys Leu Glu Ile Lys
<210> 30
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Partial sequence of pLC671
<400> 30
atcgggacaa agttggaaat aaaacgtaag t
                                                                    31
```