ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 10 ABGABE: 9.1.2017

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. Sei (I, \leq) eine gerichtete Menge und $(A_{\mu}, \phi_{\mu\nu})$ ein gerichtetes System (6 Punkte) von Algebran A_{μ} und Algebramorphismen $\phi_{\mu\nu}: A_{\mu} \longrightarrow A_{\nu}$ für $\mu \leq \nu$, d.h.

$$\phi_{\mu\lambda} = \phi_{\nu\lambda} \circ \phi_{\mu\nu}, \quad \forall \mu \leqslant \nu \leqslant \lambda.$$

Zeigen Sie die folgenden Aussagen.

(1) Es existiert bis auf kanonischen Isomorphismus genau eine Algebra A (alternativ $\varinjlim_I A_\mu$), zusammen mit Algebramorphismen $j_\mu\colon A_\mu\longrightarrow A$ mit $j_\mu=j_\nu\circ\phi_{\mu\nu}$ für alle $\mu\leqslant\nu$, mit der folgenden Eigenschaft: Für jede Algebra B und jede Familie von Algebramorphismen $f_\mu\colon A_\mu\longrightarrow B$ mit der Eigenschaft $f_\mu=f_\nu\circ\phi_{\mu\nu}$ für alle $\mu\leqslant\nu$ existiert genau ein Algebramorphismus $f\colon A\longrightarrow B$ mit $f\circ j_\mu=f_\mu$ für alle μ . In diesem Fall heißt A der (algebraische) induktive Limes der A_μ .

Hinweis: Man definiere eine geeignete Äquivalenzrelation $(\mu, a_{\mu}) \sim (\nu, a_{\nu})$ auf der disjunkten Vereinigung $\bigcup_{\mu \in I} A_{\mu}$.

(2) Seien nun A_{μ} Banachalgebren und $\phi_{\mu\nu}$, wobei

$$\limsup_{\nu \geqslant \mu} \|\phi_{\mu\nu}(a)\|_{A_{\nu}} < \infty$$

für alle $\mu \in I$ und alle $a \in A_{\mu}$ gelte. Dann existiert bis auf kanonischen Isomorphismus genau eine Banachalgebra A (alternativ $\varinjlim_I A_{\mu}$), zusammen mit Morphismen von Banachalgebren (d.h. beschränkten Algebramorphismen) $j_{\mu} \colon A_{\mu} \longrightarrow A$ mit $j_{\mu} = j_{\nu} \circ \phi_{\mu\nu}$ für alle $\mu \leqslant \nu$, mit der folgenden Eigenschaft: Für jede Banachalgebra B und jede Familie von Morphismen $f_{\mu} \colon A_{\mu} \longrightarrow B$ mit der Eigenschaft $f_{\mu} = f_{\nu} \circ \phi_{\mu\nu}$ für alle $\mu \leqslant \nu$ und $||f_{\mu}|| \le C$ für eine Konstante $C \ge 0$ und alle μ existiert genau ein Banachalgebramorphismus $f \colon A \longrightarrow B$ mit $f \circ j_{\mu} = f_{\mu}$ für alle μ .

In diesem Fall heißt A der Banachalgebra-induktive Limes der A_{μ} .

Hinweis: Man benutze, dass $\limsup_{\nu \geqslant \mu} ||\phi_{\mu\nu}(a)||_{A_{\nu}}$ auf dem algebraischen induktiven Limes eine Halbnorm $\|\cdot\|'_A$ induziert.

- (3) Sind die A_{μ} in (2) C*-Algebra und sind die $\phi_{\mu\nu}$ *-Morphismen, so ist die Banachalgebra A aus (2) eine C*-Algebra.
- (4) Sind alle Morphismen $\phi_{\mu\nu}$ in (2) Isometrien, so ist die Halbnorm $\|\cdot\|'_A$ aus (2) eine Norm und der Banachalgebra-induktive Limes ist die Vervollständigung des algebraischen induktives Limes aus (1) bezüglich dieser Norm.

Aufgabe 2. Sei (A_{ℓ}, ϕ_{ℓ}) eine Folge von C*-Algebren A_{ℓ} zusammen mit *-Morphismen $\phi_{\ell}: A_{\ell} \longrightarrow A_{\ell+1}$. Zeigen Sie, dass eine Folge (B_m, ψ_m) von C*-Algebren B_m und injektiven *-Morphismen $\psi_m: B_m \longrightarrow B_{m+1}$ existiert, so dass

$$\underline{\lim}_{\mathbb{N}} A_{\ell} \cong \underline{\lim}_{\mathbb{N}} B_{\ell}.$$

(6 Punkte)

Aufgabe 3. Eine Derivation auf einer C*-Algebra A ist eine beschränkte lineare Abbildung $\delta: A \longrightarrow A$ mit der Eigenschaft

$$\delta(ab) = \delta(a)b + a\delta(b), \quad \forall a, b \in A.$$

Eine Derivation heißt innere Derivation, wenn ein $x \in A$ existiert, so dass

$$\delta(a) = \delta_x(a) := [x, a] = xa - ax, \quad \forall a \in A$$

gilt. Eine Derivation, die der punktweise Limes innerer Derivationen ist, wird fast-innere Derivation genannt. Zeigen Sie folgende Aussagen.

(1) Jede Derivation auf einer endlich-dimensionalen C*-Algebra ist eine innere Derivation.

Hinweis: Betrachten Sie eine endliche Gruppe von unitären Elementen aus A, die zusammen A aufspannen.

(2) Jede Derivation auf einer AF-Algebra A ist eine fast-innere Derivation.

(3) Ist \mathcal{H} ein Hilbertraum, so ist jede Derivation auf $\mathcal{K}(\mathcal{H})$ der Form δ_x für ein $x \in \mathcal{L}(\mathcal{H})$.

(5 Punkte)

Aufgabe 4.

(1) Zeigen Sie, dass $\mathcal{C}(\mathbb{S}^1)$ *-isomorph zu der durch den Erzeuger x und die Relationen

$$x^*x = 1, \quad xx^* = 1$$

definierten C^* -Algebra ist.

(2) Zeigen Sie, dass $\mathfrak{C}_0((0,1])$ *-isomorph zu der durch den Erzeuger x und die Relationen

$$x = x^*, \quad ||x|| \le 1, \quad ||1 - x|| \le 1$$

definierten C*-Algebra ist.

(3) Zeigen Sie, dass $\mathfrak{C}([0,1])$ *-isomorph zu der durch die Erzeuger 1,x und die Relationen

$$x = x^*$$
, $||x|| \le 1$, $||1 - x|| \le 1$, $x1 = 1x = x$, $1 = 1^* = 1^2$

definierten C*-Algebra ist.

Wir wünschen Ihnen ein schönes Weihnachtsfest und ein gutes neues Jahr 2017!