El Problema del Viajante de Comercio: Algoritmos Heurísticos para la Optimización de Rutas

Lee Sang-cheol Carné: 2024801079

Estructuras de Datos y Algoritmos Prof. Victor Manuel Garro Abarca

Septiembre 2025

Agenda

- 1 Introducción al Problema
- Estructuras de Datos
- Algoritmos Voraces
- 4 Algoritmos Genéticos
- Recocido Simulado
- 6 Comparación y Resultados
- Conclusiones

¿Qué es el TSP?

Problema del Viajante de Comercio

- Visitar *n* ciudades exactamente una vez
- Regresar al origen
- Minimizar la distancia total
- Problema NP-Completo

Complejidad:

- (n-1)!/2 rutas posibles
- 20 ciudades = 6×10^{16} rutas

Tour: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow A$ Distancia: 25

Aplicaciones en el Mundo Real

Logística y Transporte

- Rutas de entrega (Amazon, UPS)
- Recolección de basura
- Transporte escolar

Manufactura

- Perforación de PCB
- Corte con láser
- Soldadura robotizada

Otros Campos

- Secuenciación de ADN
- Planificación de telescopios
- Diseño de microchips
- Videojuegos (pathfinding)

Impacto Económico

Una mejora del 1% en rutas de entrega puede ahorrar millones de dólares anuales

Estructuras de Datos para Grafos Ponderados

Matriz de Adyacencia

- Acceso O(1) a distancias
- Espacio $O(n^2)$
- Ideal para grafos densos (TSP)

	Α	В	C	D
Α	0	5	8	4
A B C D	0 5 8 4	0	3	7
C	8	3	0	2
D	4	7	2	0

Lista de Adyacencia

- Espacio O(|V| + |E|)
- Iteración eficiente sobre vecinos
- Mejor para grafos dispersos

Estrategia

- Comenzar en ciudad aleatoria
- Visitar la ciudad no visitada más cercana
- Repetir hasta visitar todas
- Regresar al origen

Características

- Complejidad: $O(n^2)$
- Solución: ∼25 % del óptimo
- Muy rápido
- Fácil de implementar

Paso a paso:

Implementación: Vecino Más Cercano

```
def vecino mas cercano(dist matrix. inicio=0):
    n = len(dist matrix)
    visitado = [False] * n
    tour = [inicio]
    visitado[inicio] = True
    ciudad actual = inicio
    costo total = 0
    # Vicitar n=1 cindadac
    for _ in range(n - 1):
        min dist = float('inf')
        ciudad mas cercana = -1
        # Encontrar la ciudad no visitada mas cercana
        for i in range(n):
            if not visitado[i] and dist_matrix[ciudad_actual][i] < min_dist:
                min_dist = dist_matrix[ciudad_actual][i]
                ciudad_mas_cercana = i
        # Agregar al tour
        tour.append(ciudad_mas_cercana)
        visitado[ciudad_mas_cercana] = True
        costo_total += min_dist
        ciudad_actual = ciudad_mas_cercana
    # Regresar al inicio
    costo total += dist matrix[ciudad actual][inicio]
    tour.append(inicio)
    return tour, costo total
```

Algoritmos Genéticos: Conceptos

Inspiración Biológica

- Población: Conjunto de soluciones
- Cromosoma: Tour = [A,C,B,D,A]
- **Fitness**: 1/distancia
- Selección: Torneos
- Cruce: Combinar padres
- Mutación: Cambios aleatorios

Ventajas

- Exploración global
- Paralelizable
- Evita óptimos locales

Operadores Genéticos para TSP

Order Crossover (OX)

Mutación 2-opt

Parámetros Clave

• Tamaño población: 100-200

• Generaciones: 1000-5000

Prob. cruce: 0.8-0.9

Prob. mutación: 0.01-0.05

Selección: Torneo (tamaño 3-7)

Complejidad

• Tiempo: $O(g \cdot p \cdot n^2)$

• Espacio: $O(p \cdot n)$

donde g=generaciones, p=población

Recocido Simulado: Fundamentos

Analogía Metalúrgica

- Calentar metal (alta temperatura)
- Enfriar lentamente
- Átomos encuentran configuración óptima

Probabilidad de Aceptación

$$P = egin{cases} 1 & ext{si } \Delta < 0 \ e^{-\Delta/T} & ext{si } \Delta \geq 0 \end{cases}$$

Esquema de Enfriamiento

$$T_{k+1} = \alpha \cdot T_k$$

donde $\alpha \in (0,9,0,999)$

Exploración \rightarrow Explotación

Ventaja Clave

Acepta soluciones peores probabilísticamente para escapar de óptimos locales

Implementación: Recocido Simulado

```
def recocido simulado (dist matrix, temp inicial=1000, alpha=0.995):
    n = len(dist matrix)
    # Solucion inicial aleatoria
    tour_actual = list(range(n))
    random.shuffle(tour actual)
    costo actual = calcular costo(tour actual, dist matrix)
    mejor tour = tour actual[:]
    mejor_costo = costo_actual
    temperatura = temp_inicial
    while temperatura > 0.1:
        # Generar vecino (intercambio 2-opt)
        i, j = sorted(random.sample(range(n), 2))
        tour vecino = tour actual[:]
        tour_vecino[i:j+1] = tour_vecino[i:j+1][::-1]
        costo_vecino = calcular_costo(tour_vecino. dist_matrix)
        # Decidir si aceptar
        delta = costo_vecino - costo_actual
        if delta < 0 or random.random() < math.exp(-delta/temperatura):
            tour_actual = tour_vecino
            costo_actual = costo_vecino
            if costo_actual < mejor_costo:</pre>
                mejor_tour = tour_actual[:]
                mejor_costo = costo_actual
        # Enfriar
        temperatura *= alpha
                                                                                                                 11 / 22
```

Comparación de Rendimiento

Calidad de Solución (Gap %)

Tiempo de Ejecución

Conclusión

- Voraz: Muy rápido pero calidad baja
- GA: Buena calidad, paralelizable
- **SA**: Mejor balance calidad/tiempo

Caso de Estudio: Optimización de Entregas

Empresa de Logística - San José

- 50 puntos de entrega diarios
- Implementación: SA + 2-opt
- Tiempo de cálculo: 5 segundos

Resultados Obtenidos

- ↓ 22 % distancia total
- \downarrow \$3,500/mes combustible
- \downarrow 2 horas \rightarrow 5 min planificación
- † 15 % entregas/día

Antes vs Después

Ruta Manual

Ruta Optimizada

ROI

Retorno de inversión en 2 meses

Caso Real: Optimización de Rutas en Costa Rica

Datos GPS Reales

- 27 ciudades de Costa Rica
- Coordenadas GPS precisas
- Distancias reales (Haversine)

Resultados Valle Central

- 8 ciudades principales
- 25.5 % reducción
- 72.7 km ahorrados

Recomendaciones por Escenario

Escenario	Algoritmo	Razón	
Tiempo real (¡1s)	Vecino Cercano $O(n^2)$, muy rápido		
Calidad media	Inserción + 2-opt	Balance calidad/tiempo	
Alta calidad	Híbrido GA+SA	Exploración + explotación	
n ¡ 20 ciudades	Branch & Bound	Solución exacta posible	
n ¿ 500 ciudades	SA paralelo	Mejor escalabilidad	
Múltiples objetivos	GA multiobjetivo	Pareto optimal	

	n ¿ 500 ciudades	SA paralelo	Mejor escalabilidad
	Múltiples objetivos	GA multiobjetivo	Pareto optimal
Para Implementación			
Para Impl	ementación	Opt	imización Avanzada

- Aplicar mejora 2-opt
- Si necesario, usar SA o GA
- Considerar hibridación

- Estructuras de datos eficientes
- Cache de distancias
- GPU computing para GA

Análisis de Rendimiento: Benchmark

Trade-off Tiempo vs Calidad:

- Greedy: Rápido pero subóptimo
- GA: Mejor calidad, más tiempo
- SA: Balance óptimo

Conclusiones

Puntos Clave

- TSP es NP-Completo pero tiene soluciones prácticas
- No existe "mejor.algoritmo universal
- La elección depende del contexto:
 - Tamaño del problema
 - Tiempo disponible
 - Calidad requerida

Tendencias Futuras

- Machine Learning para TSP
- Computación Cuántica
- TSP dinámico y en tiempo real
- Optimización multi-objetivo

Proceso de Decisión

¿Preguntas?

Gracias por su atención

Lee Sang-cheol Carné: 2024801079 s.lee.1@estudiantec.cr

Referencias

- Applegate, D. L., et al. (2006). The Traveling Salesman Problem: A Computational Study. Princeton University Press.
- Qualified Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
- Science, 220(4598), 671-680.
 Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). "optimization by Simulated Annealing".
- 4 Helsgaun, K. (2000). .^n effective implementation of the Lin-Kernighan traveling salesman heuristic". European Journal of Operational Research, 126(1), 106-130.
- 5 Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. *IEEE Transactions on Evolutionary Computation*, 1(1), 53-66.
- TSPLIB: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Código fuente disponible en:

https://github.com/usuario/tsp-heuristics

[Backup] Análisis de Complejidad Detallado

Algoritmo	Mejor	Promedio	Peor
Fuerza Bruta	O(n!)	O(n!)	O(n!)
Vecino Cercano	$O(n^2)$	$O(n^2)$	$O(n^2)$
Inserción	$O(n^2)$	$O(n^2)$	$O(n^3)$
2-opt	$O(n^2)$	$O(n^3)$	$O(n^3)$
GA (g generaciones)	$O(g \cdot p \cdot n)$	$O(g \cdot p \cdot n^2)$	$O(g \cdot p \cdot n^2)$
SA (k iteraciones)	$O(k \cdot n)$	$O(k \cdot n)$	$O(k \cdot n)$

Espacio

• Matriz de distancias: $O(n^2)$

• Tour: *O*(*n*)

• GA población: $O(p \cdot n)$

[Backup] Pseudocódigo Completo - Algoritmo Genético

```
ALGORITMO GENETICO TSP:
    ENTRADA: matriz_distancias, tam_poblacion, num_generaciones
    SALIDA: mejor_tour, mejor_distancia
    poblacion = GENERAR POBLACION INICIAL (tam poblacion)
    mejor_tour = NULL
    meior fitness = 0
    PARA gen = 1 HASTA num_generaciones:
        fitness = EVALUAR POBLACION(poblacion)
        SI max(fitness) > mejor_fitness:
            mejor_fitness = max(fitness)
            mejor tour = tour con mejor fitness
        nueva_poblacion = []
        MIENTRAS tam(nueva poblacion) < tam poblacion:
            padre1 = SELECCION_TORNEO(poblacion)
            padre2 = SELECCION_TORNEO(poblacion)
            hijo = CRUCE OX(padre1, padre2)
            hijo = MUTACION_20PT(hijo, prob_mutacion)
            nueva_poblacion.agregar(hijo)
        poblacion = nueva_poblacion
    RETORNAR mejor_tour. 1/mejor_fitness
```

[Backup] Variantes del Problema TSP

TSP Simétrico vs Asimétrico

- Simétrico: d(i,j) = d(j,i)
- Asimétrico: $d(i,j) \neq d(j,i)$
- Ejemplo: calles de un solo sentido

TSP con Ventanas de Tiempo

- Cada ciudad tiene horario
- Penalización por llegar tarde/temprano
- Aplicación: entregas programadas

Multiple TSP (mTSP)

- Múltiples viajantes
- Minimizar distancia total
- Balancear cargas de trabajo

TSP Dinámico

- Ciudades aparecen/desaparecen
- Distancias cambian (tráfico)
- Requiere reoptimización online

Nota

Cada variante requiere adaptaciones específicas de los algoritmos base