FORMALE SPRACHEN UND AUTOMATEN

MTV: Modelle und Theorie Verteilter Systeme

16.05.2022 - 22.05.2022

Tutorium 4

Aufgabe 1: Wörter

Seien $\Sigma \triangleq \{ a, b, c \}$ und $\Sigma' \triangleq \{ aa, bb \}$. 1.a) Sind Σ und Σ' jeweils Alphabete? Lösung | Ja, denn Σ und Σ' sind beides endliche nicht-leere Mengen. /Lösung 1.b) Gib an: |abbac|, $|\epsilon|$, $(accba)_4$, $\#(\Sigma^*)$, $((abc) \cdot (bb)) \cdot (ac)$ für das Alphabet Σ ----- Lösung ----- $|abbac| = 5, |\varepsilon| = 0, (accba)_4 = b, \#(\Sigma^*) = \infty, ((abc) \cdot (bb)) \cdot (ac) = abcbbac$ /Lösung 1.c) Gib an: |aaaa| für das Alphabet Σ' Lösung |aaaa| = 2/Lösung *Gib* die Menge aller Präfixe von acbb $\in \Sigma^*$ *an*. Lösung) $\{ \varepsilon, a, ac, acb, acbb \}$ /Lösung

Aufgabe 2: Sprachen

Sei A eine Sprache über einem beliebigem Alphabet.

Annahme (A1): $\forall v \in A \cdot |v| \mod 2 = 0$.

Zu Zeigen (Z1): $\forall w \in A^2$. $|w| \mod 2 = 0$

Sei $w \in A^2$ (beliebig aber fest).

 $Zu \ Zeigen \ (Z2): |w| \ \text{mod} \ 2 = 0$

Mit der Definition der Komposition folgt aus $w \in A^2$:

Annahme (A2): $\exists x, y \in A . w = xy$.

Seien $x, y \in A$ (beliebig aber fest).

Annahme (A3): w = xy.

Wähle $v \triangleq x$ in A1.

Annahme (A4): $|x| \mod 2 = 0$.

Wähle $v \triangleq y$ in A1.

Annahme (A5): $|y| \mod 2 = 0$.

Wir zeigen Z2:

|w| mod
$$2 \stackrel{A3}{=} |xy| \mod 2 \stackrel{H}{=} ((|x| \mod 2) + (|y| \mod 2)) \mod 2$$

 $\stackrel{A4}{=} (0 + (|y| \mod 2)) \mod 2 \stackrel{A5}{=} (0 + 0) \mod 2 = 0$

/Lösung

Aufgabe 3: Reguläre Ausdrücke

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b, c \}$ und die Sprache $A_1 \triangleq \{ w \in \Sigma^* \mid (|w|_a + |w|_b) \mod 2 = 0 \}$. 3.a) *Gib an:* Welche Sprachen beschreiben die regulären Ausdrücke $\mathbf{0}, \mathbf{\epsilon}, \mathbf{0}$ ab, $(a + ab)(a + ab)^*$, $(b + \mathbf{\epsilon})^*$ und $\mathbf{0}$ a + aba? $L(\mathbf{0}) = \emptyset$ $L(\mathbf{c}) = \{\ \epsilon\ \}$ $L(\mathbf{0}ab) = \emptyset$

$$\begin{split} L\big((\alpha+\alpha b)\,(\alpha+\alpha b)^*\big) &= \big\{\; w \in \{\; \alpha,\; b\;\}^+ \mid \text{direkt vor jedem b steht mindestens ein a}\; \big\} \\ L\big((b+\varepsilon)^*\big) &= \{\; b\;\}^* = \{\; b^n \mid n \in \mathbb{N}\;\} \\ L(\mathbf{0}\alpha+\alpha b\alpha) &= L(\alpha b\alpha) = \{\; \alpha b\alpha\;\} \end{split}$$

/Lösung

3.b) *Gib* je einen regulären Ausdruck *an*, der die Sprachen { ab } und Σ^* beschreibt.

 $\{ \ ab \ \} = L(ab) \text{, also beschreibt } e_1 = ab \ die \ Sprache \ \{ \ ab \ \} \text{, und } \Sigma^* = L\big((a+b+c)^*\big) \text{, also beschreibt } e_2 = (a+b+c)^* \ die \ Sprache \ \Sigma^*.$

/Lösung

3.c) Gib einen regulären Ausdruck e_1 so an, dass $L(e_1) = A_1$.

Aufgabe 4: Induktion über Wörter

Gegeben sei ein Alphabet Σ. Beweise per Induktion: $\forall w \in \Sigma^*$. $|w| = \sum_{\alpha \in \Sigma} |w|_{\alpha}$.

Lösung

Sei

$$P(w) \triangleq \left(|w| = \sum_{\alpha \in \Sigma} |w|_{\alpha} \right)$$

Wir verwenden das Induktionsschema:

$$\left(\underbrace{\underbrace{P(\epsilon)}_{IA} \wedge \underbrace{(\forall w \in \Sigma^* \ . \ P(w) \to \forall x \in \Sigma \ . \ P(wx))}_{IS}}\right) \to (\forall \nu \in \Sigma^* \ . \ P(\nu))$$

IA ($P(\varepsilon)$):

$$|\epsilon| \stackrel{\text{Def.} |\cdot|}{=} 0 \stackrel{\text{Def.} |\cdot|}{=} \sum_{\alpha \in \Sigma} |\epsilon|_{\alpha}$$

Sei $w \in \Sigma^*$.

IV (P(w)):
$$|w| = \sum_{\alpha \in \Sigma} |w|_{\alpha}$$

Sei $x \in \Sigma$.

IS (P(wx)): Zu Zeigen: $|wx| = \sum_{\alpha \in \Sigma} |wx|_{\alpha}$

$$\sum_{\alpha \in \Sigma} |wx|_{\alpha} \stackrel{x \in \Sigma}{=} |wx|_{x} + \sum_{\alpha \in \Sigma \setminus \{x\}} |wx|_{\alpha} \stackrel{\text{Def.} |\cdot|}{=} |w|_{x} + 1 + \sum_{\alpha \in \Sigma \setminus \{x\}} |w|_{\alpha}$$

$$\stackrel{x \in \Sigma}{=} 1 + \sum_{\alpha \in \Sigma} |w|_{\alpha} \stackrel{\text{IV}}{=} 1 + |w| \stackrel{\text{Def.} |\cdot|}{=} |wx|$$

/Lösung

Aufgabe 5: Ordnen von Wörtern