Greedy Algorithms

Fractional Knapsack

The Knapsack Problem

Capacity of knapsack: K = 4

Fractional Knapsack Problem:

Can take a fraction of an item.

0-1 Knapsack Problem: Can only take or leave item. You can't take a fraction.

Solution:

2 pd A	2 pd	
\$100	\$80	

Solution:

Formal Definition

Given a knapsack of capacity K and n items of weights W and value/profit V, we have to give a solution of the form:

$$X = \{x1, x2, x3, , , , xn\}$$

$$0 \le xi \le 1$$

weight	w ₁	<i>W</i> ₂	 Wn
value	<i>v</i> ₁	<i>V</i> 2	 Vn

Find: $0 \le x_i \le 1$, i = 1, 2, ..., n such that

$$\sum_{i=1}^n x_i w_i \le K$$

and the following is maximized:

$$\sum_{i=1}^{n} x_i v_i$$

What should be the greedy choice?

1. Take the highest value item first.

- 2. Take the smallest weight item first.
 - So that you can carry more items. If you carry more items, you'll get more value/profit(?)

Greedy Solution

Greedy Solution

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.
- Sort the items by decreasing ρ_i . Let the sorted item sequence be $1, 2, \ldots, i, \ldots n$, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K).
 In each iteration, we choose item i from the head of the unselected list.
 - If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
 - If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates.

Running time: $O(n \log n)$.

Greedy Solution

• Observe that the algorithm may take a fraction of an item. This can only be the last selected item.

 We claim that the total value for this set of items is the optimal value.

Dry Run

ltem i	1	2	3	4	5
Value v	6	10	18	15	7
Weight w	1	2	4	5	7
v/w	6	5	4.5	3	1

THE ITEMS ARE SORTED BY THEIR v/w values. (if its not already sorted, you have to do the sorting)

Let capacity K = 10

- 1. Add 1^{st} item. x1 = 1. Remaining capacity = 9
- 2. Add 2^{nd} item. x2 = 1. Remaining capacity = 7
- 3. Add 3^{rd} item. x3 = 1. Remaining capacity = 3
- 4. Add 4th item. But you can't add the complete 4th item. We need 3/5 of the 4th item. Note that in this fraction, numerator is the remaining capacity and denominator is the total weight of the 4th item.

So, Solution set is:

$$X = \{1, 1, 1, 3/5, 0\}$$

Proof of Correctness

- Given a set of *n* items {1, 2, ..., *n*}.
- Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.
- Let the greedy solution be $G = (x_1, x_2, ..., x_n)$
 - x_i indicates fraction of item i taken.
- Consider any optimal solution $O = (y_1, y_2, ..., y_n)$
- y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O:

$$\sum_{i=1}^{n} x_{i} w_{i} = \sum_{i=1}^{n} y_{i} w_{i} = K.$$

Consider the first item i where the two selections differ.
 By definition, solution G takes a greater amount of item i than solution O (because the greedy solution always takes as much as it can). Let x = xi - yi.

Proof of Correctness

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y_i' = x_i$.
- In O, remove items of total weight xw_i from items i+1 to n, resetting the y'_i appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

- The total value of solution O' is greater than or equal to the total value of solution O (why?)
- Since O is largest possible solution and value of O' cannot be smaller than that of O, O and O' must be equal.
- Thus solution O' is also optimal.

By repeating this process, we will eventually convert O into G, without changing the total value of the selection.

Therefore G is also optimal!

Greedy solution for 0-1 Knapsack Problem?

The 0-1 Knapsack Problem does not have a greedy solution!

K = 4. Solution is item B + item C

Question

Suppose we tried to prove the greedy algorithm for 0-1 knapsack problem **does** construct an optimal solution. If we follow exactly the same argument as in the fractional knapsack problem where does the proof fail?

Slide Credits

COMP 3711H Design and Analysis of Algorithms
 Fall 2014