Introducción a los modelos computacionales Práctica 3. Redes neuronales de funciones de base radial

Pedro Antonio Gutiérrez pagutierrez@uco.es

Asignatura "Introducción a los modelos computacionales"

4º Curso Grado en Ingeniería Informática
Especialidad Computación
Escuela Politécnica Superior
(Universidad de Córdoba)

29 de octubre de 2019

- Contenidos
- 2 Introducción
- 3 Arquitectura de una red RBF
- 4 Entrenamiento de una red RBF
 - Fase 1: clustering
 - Fase 2: ajuste de los radios
 - Fase 3: pesos de la capa de salida

Objetivos de la práctica

- Familiarizar al alumno con el concepto de red neuronal de funciones de base radial (RBF).
- Implementar una red de este tipo.
- Familiarizar al alumno con el uso de scikit-learn como entorno para la creación de modelos de aprendizaje automático.

Redes neuronales de funciones de base radial

- Redes Neuronales de Funciones de Base Radial (RBFNN): se basan en una aproximación local.
 - Las neuronas de capa oculta son funciones de base radial (RBF): funciones locales.
 - Al contrario que en las redes tipo perceptrón multicapa, donde las neuronas de capa oculta son tipo sigmoide: funciones de proyección.
- Funciones de proyección: valor alto, distinto de cero, sobre una región amplia del espacio de entrada.
- Funciones locales: valor alto, distinto de cero, sólo sobre una región localizada del espacio de entrada.

Funciones globales Vs locales

Unidades sigmoide

 Modelo aditivo de proyección.

Funciones de Base Radial

Modelo local.

Funciones globales Vs locales

Funciones RBF

- Una función se dice que es RBF si su salida depende de la distancia que hay entre el vector de entrada a la función y un vector almacenado en ella (centro).
- Cada RBF guarda un centro como referencia y, cada vez que se le presenta un patrón nuevo, se calcula la distancia a dicho centro.
 - Si la distancia es pequeña, la RBF se activa (su salida es 1).
 - Si la distancia es grande, la RBF no se activa (su salida es 0).
- ¿Qué consideramos como grande o pequeño? ⇒ Para eso incorporamos un elemento adicional: el radio.
 - Si el radio es pequeño, la activación solo se producirá cuando el patrón esté muy cerca del centro.
 - Si el radio es grande, la activación se producirá a más distancia.

Funciones RBF

- Hay muchas funciones que cumplen estas propiedades: RBF de Cauchy, inversa multicuadrática...
- Pero la más común es la función Gaussiana:

$$\varphi(\mathbf{x}, \mathbf{c}, \sigma) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{c}\|^2}{2(\sigma)^2}\right)$$

donde ${\bf c}$ es el centro de la RBF, σ es su ancho y ${\bf x}$ es el patrón que estamos evaluando.

 ||x - c|| es la norma del vector diferencia entre el centro y patrón, o lo que es lo mismo la distancia euclídea:

$$\|\mathbf{x} - \mathbf{c}\| = \sqrt{\sum_{i=1}^{n} (x_i - c_i)^2}$$

Funciones RBF

• Uniendo ambas expresiones y simplificando:

$$\varphi(\mathbf{x}, \mathbf{c}, \sigma) = \exp\left(-\frac{\left(\sqrt{\sum_{i=1}^{n}(x_i - c_i)^2}\right)^2}{2(\sigma)^2}\right)$$

$$\varphi(\mathbf{x}, \mathbf{c}, \sigma) = \exp\left(-\frac{\sum_{i=1}^{n} (x_i - c_i)^2}{2(\sigma)^2}\right)$$

Funciones RBF: efecto del centro y del radio

Red neuronal RBF

Suma de las RBF anteriores:

Red neuronal RBF

Ejemplo 2D:

Neural Network: Ordinary RBF Network with Equal Widths and Heights

2 Hidden Units: 8 Parameters

3 Hidden Units: 11 Parameters

Arquitectura de una RBFNN

- Tres capas:
 - Capa de entrada.
 - Capa oculta (funciones RBF).
 - Capa de salida:
 - Regresión: función lineal (suma ponderada de la salidas de las RBFs).
 - Clasificación: función tipo softmax.

Arquitectura de una RBFNN

- Siguiendo la notación que utilizamos para el MLP:
 - Neuronas de tipo RBF:

•
$$net_j^h = \sum_{i=1}^{n_{h-1}} \left(w_{ji}^h - out_i^{h-1} \right)^2$$

•
$$out_j^h = \exp\left(-\frac{net_j^h}{2\left(w_{j0}^h\right)^2}\right)$$

• Neuronas de tipo lineal (en nuestro caso, h = H):

•
$$out_{j}^{H} = net_{j}^{H} = w_{j0}^{h} + \sum_{i=1}^{n_{H-1}} w_{ji}^{h} out_{i}^{H-1}$$

• Neuronas de tipo *softmax* (en nuestro caso, h = H):

•
$$net_j^H = w_{j0} + \sum_{i=1}^{m_{H-1}} w_{ji} out_i^{H-1}$$

•
$$out_j^H = \frac{\exp(net_j^H)}{\sum_{i=1}^{n_H} \exp(net_i^H)}$$

Arquitectura de una RBFNN (Regresión)

Entrenamiento de una red tipo RBF

- ¿Cómo ajustamos los parámetros?
 - Las funciones RBF son derivables → Aplicar el algoritmo de retropropagación (entrenamiento totalmente supervisado).
 - Habría que calcular las derivadas con respecto al radio y a los centros.
 - Son complejas y tiene un coste computacional algo mayor que para el perceptrón multicapa.
 - Entrenamiento híbrido: parte no supervisada (clustering) y parte supervisada (regresión logística o inversión de una matriz).
 - Las propiedades locales de las redes RBF se aprovechan mejor.
 - El coste computacional es, en general, menor que con un algoritmo de retropropagación.

Entrenamiento de una red tipo RBF

- Tenemos que obtener tres cosas:
 - ① Coordenadas de los centros de las RBF: $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{n_1}$.
 - Pesos de capa de entrada a capa oculta:

$$\begin{aligned} \mathbf{c}_1 &= \{w_{11}^1, w_{12}^1, \dots, w_{1n}^1\} \\ \mathbf{c}_2 &= \{w_{21}^1, w_{22}^1, \dots, w_{2n}^1\} \\ \dots \\ \mathbf{c}_{n_1} &= \{w_{n_1}^1, w_{n_12}^1, \dots, w_{n_1n}^1\}. \end{aligned}$$

- **2** Ancho de las RBF: $\sigma_1, \sigma_2, \ldots, \sigma_{n_1}$.
 - Usaremos el hueco del sesgo: $\sigma_1 = w_{10}^1, \sigma_2 = w_{20}^1, \dots, \sigma_{n_1} = w_{n_10}^1$
- **9** Pesos de capa oculta a capa de salida (con sesgo): $w_{10}^2, w_{11}^2, w_{12}^2, \dots, w_{1n_1}^2, w_{20}^2, w_{21}^2, w_{22}^2, \dots, w_{2n}^2$

$$w_{k0}^2, w_{k1}^2, w_{k2}^2, \dots, w_{kn_1}^2$$

Fase 1: clustering
Fase 2: ajuste de los radios
Fase 3: pesos de la capa de salic

Entrenamiento de una red tipo RBF: fase 1 (clustering)

- El ajuste de los centros de la red puede hacerse mediante un procedimiento de clustering.
- La idea es detectar los grupos de patrones (o *clusters*) en el espacio de entrada y poner una RBF en cada *cluster*.
- Para este proceso vamos a utilizar el algoritmo de clustering más popular, el K-medias.
- Las coordenadas de los centroides de cada cluster serán las coordenadas de los centros de las RBF.

Fase 1: clustering

Entrenamiento de una red tipo RBF: fase 1 (clustering)

Fase 1: clustering
Fase 2: ajuste de los radios
Fase 3: pesos de la capa de salio

Entrenamiento de una red tipo RBF: fase 1 (clustering)

- K-medias: algoritmo de agrupamiento por particiones.
 - Hay que decirle el número de clusters, en nuestro caso será el número de neuronas de la RBF.
 - Cada cluster tiene asociado un centroide (centro geométrico del cluster).
 - Los puntos se asignan al cluster cuyo centroide esté más cerca (utilizando cualquier métrica de distancia).
 - Iterativamente, se van actualizando los centroides en función de las asignaciones de puntos a *clusters*, hasta que los centroides dejen de cambiar.
 - Los resultados dependen de la inicialización de los centroides:
 - En clasificación, escogemos aleatoriamente, y de forma estratificada, n₁ patrones.
 - En regresión, escogemos aleatoriamente n_1 patrones.

Entrenamiento de una red tipo RBF: fase 2 (ajuste de los radios)

- Se pueden utilizar procedimientos más complejos (estimación de densidades) para ajustar bien los radios de las RBF.
- Sin embargo, nosotros ajustaremos los radios de una forma muy simple, tomaremos la mitad (por ser un radio y no un diámetro) de la distancia media al resto de centroides.
- Es decir, el radio de la neurona j será:

$$\sigma_j = w_{j0}^1 = \frac{1}{2 \cdot (n_1 - 1)} \sum_{i \neq j} \|c_j - c_i\| =$$
 (1)

$$= \frac{1}{2 \cdot (n_1 - 1)} \sum_{i \neq j} \sqrt{\sum_{d=1}^{n} (c_{jd} - c_{id})^2}$$
 (2)

Fase 1: clustering
Fase 2: ajuste de los radios
Fase 3: pesos de la capa de salida

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 1 clasificación)

- Los pesos de la capa de salida los ajustaremos de dos formas, dependiendo de si estamos ante un problema de clasificación o de regresión.
 - Si el problema es de clasificación, los pesos se ajustarán utilizando regresión logística.
 - Si el problema es de regresión, los pesos se ajustarán utilizando la pseudo-inversa.

Fase 1: clustering
Fase 2: ajuste de los radios
Fase 3: pesos de la capa de salida

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 1 clasificación)

• En ambos casos, necesitaremos la matriz de salidas de las RBF, que llamaremos **R**:

$$\mathbf{R} = \begin{pmatrix} out_{1}^{1}(\mathbf{x}_{1}) & out_{2}^{1}(\mathbf{x}_{1}) & \dots & out_{n_{1}}^{1}(\mathbf{x}_{1}) & 1\\ out_{1}^{1}(\mathbf{x}_{2}) & out_{2}^{1}(\mathbf{x}_{2}) & \dots & out_{n_{1}}^{1}(\mathbf{x}_{2}) & 1\\ \dots & \dots & \dots & \dots & \dots\\ out_{1}^{1}(\mathbf{x}_{N}) & out_{2}^{1}(\mathbf{x}_{N}) & \dots & out_{n_{1}}^{1}(\mathbf{x}_{N}) & 1 \end{pmatrix}$$
(3)

donde $out_j^1(\mathbf{x}_i)$ es la salida de la j-ésima neurona RBF cuando alimentamos las entradas con el patrón de entrenamiento \mathbf{x}_i . Para simular el sesgo hemos incluido una columna constante e igual a 1.

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 1 clasificación)

- Una vez construida la matriz, para el caso de clasificación, aplicaremos regresión logística.
 - Utilizaremos una función a la que le pasaremos la matriz R como si fuese la matriz de entradas de mi base de datos.
 - La regresión logística es un modelo lineal de clasificación, que aproxima la probabilidad de pertenencia a una clase de la siguiente forma (función softmax):

$$P(\mathbf{x} \in C_j) = o_j = \frac{\exp(\beta_{j0} + \sum_{i=1}^n \beta_{ji} x_i)}{\sum_{l=1}^k \exp(\beta_{l0} + \sum_{i=1}^n \beta_{li} x_i)}$$
(4)

• El objetivo de la regresión logística es obtener los valores de β_{ii} que maximizan la entropía cruzada:

$$L = \frac{1}{N} \sum_{p=1}^{N} \left(\frac{1}{k} \sum_{o=1}^{k} d_j \ln(o_j) \right)$$
 (5)

Fase 3: pesos de la capa de salida

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 1 clasificación)

- …aplicaremos regresión logística.
 - La regresión logística puede incluir regularización, que es un mecanismo para lograr que el máximo número de parámetros β_{ii} tiendan a valores muy pequeños (o casi cero).
 - Regularización L2:

$$L = \left(\frac{1}{N} \sum_{p=1}^{N} \left(\frac{1}{k} \sum_{o=1}^{k} d_j \ln(o_j)\right)\right) - \eta \left(\sum_{j=1}^{k} \sum_{i=0}^{n} \beta_{ji}^2\right)$$
(6)

Regularización L1:

$$L = \left(\frac{1}{N} \sum_{p=1}^{N} \left(\frac{1}{k} \sum_{o=1}^{k} d_j \ln(o_j)\right)\right) - \eta \left(\sum_{j=1}^{k} \sum_{i=0}^{n} |\beta_{ji}|\right)$$
(7)

• El parámetro η lo debe fijar el usuario y establece la importancia que se le da a la regularización.

Fase 1: clustering
Fase 2: ajuste de los radios
Fase 3: pesos de la capa de salida

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 1 clasificación)

- ...aplicaremos regresión logística.
 - La regularización proporciona modelos más simples y que tienden menos a sobre-entrenar.
 - Diferencia entre L2 y L1:
 - La regularización L2 tiende a proporcionar pesos más pequeños (aunque no necesariamente iguales a cero).
 - La regularización L1 tiende a podar más variables, haciendo que muchos pesos sean iguales a cero (aunque los que no son cero no tienen porque ser pequeños en valor absoluto).

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 2 regresión)

- Una vez construida la matriz, para el caso de regresión, aplicaremos la pseudo-inversa.
 - Desde el punto de vista del álgebra lineal, la salida de la red se puede escribir como:

$$\mathbf{R}_{(N\times(n_1+1))}\times\boldsymbol{\beta}_{((n_1+1)\times k)}^{\mathrm{T}}=\hat{\mathbf{Y}}_{(N\times k)}$$
(8)

dónde **R** es la matriz que contiene las salidas de las neuronas RBF, β es una matriz conteniendo un vector de parámetros por cada salida a predecir e $\hat{\mathbf{Y}}$ es una matriz con todas las salidas estimadas.

$$\begin{pmatrix} out_{11}^{1} & \dots & out_{n_{1}1}^{1} & 1 \\ out_{12}^{1} & \dots & out_{n_{1}2}^{1} & 1 \\ \dots & \dots & \dots & \dots \\ out_{1N}^{1} & \dots & out_{n_{1}N}^{1} & 1 \end{pmatrix} \begin{pmatrix} \beta_{11} & \beta_{21} & \dots & \beta_{k1} \\ \dots & \dots & \dots & \dots \\ \beta_{1n_{1}} & \beta_{2n_{1}} & \dots & \beta_{kn_{1}} \\ \beta_{10} & \beta_{20} & \dots & \beta_{k0} \end{pmatrix}$$

$$(9)$$

Fase 1: clustering
Fase 2: ajuste de los radios
Fase 3: pesos de la capa de salida

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 2 regresión)

- ...aplicaremos la pseudo-inversa.
 - Si queremos obtener los mejores valores posibles para los parámetros, planteamos la siguiente ecuación:

$$\mathbf{R}_{(N\times(n_1+1))}\times\boldsymbol{\beta}_{((n_1+1)\times k)}^{\mathrm{T}}=\mathbf{Y}_{(N\times k)}$$
(10)

dónde Y es la matriz de salidas deseadas, es decir:

$$\mathbf{Y} = \begin{pmatrix} d_{11} & \dots & d_{1k} \\ d_{21} & \dots & d_{2k} \\ \dots & \dots & \dots \\ d_{N1} & \dots & d_{Nk} \end{pmatrix}$$
 (11)

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 2 regresión)

- ...aplicaremos la pseudo-inversa.
 - Si **R** fuese cuadrada ($N = (n_1 + 1)$), entonces **R** tiene inversa y podemos despejar directamente:

$$\boldsymbol{\beta}_{((n_1+1)\times k)}^{\mathrm{T}} = \left(\mathbf{R}_{(N\times N)}\right)^{-1} \mathbf{Y}_{(N\times k)} \tag{12}$$

- Si $(n_1 + 1) > N$, entonces existen muchas soluciones y hay que usar algún tipo de algoritmo de reducción de características para bajar el valor de n_1 .
- Si $(n_1 + 1) < N$ (el caso más común), existe una solución única, pero como \mathbf{R} no es cuadrada, tenemos que usar la pseudo-inversa de Moore Penrose.

Entrenamiento de una red tipo RBF: fase 3 (pesos de la capa de salida, caso 2 regresión)

- ...aplicaremos la pseudo-inversa.
 - Pseudo-inversa de Moore Penrose:

$$\beta_{((n_1+1)\times N)}^{\mathrm{T}} = (\mathbf{R}^+)_{((n_1+1)\times N)} \mathbf{Y}_{(N\times k)}$$
(13)
$$(\mathbf{R}^+)_{((n_1+1)\times N)} = (\mathbf{R}_{((n_1+1)\times N)}^{\mathrm{T}} \times \mathbf{R}_{(N\times (n_1+1))})^{-1} \mathbf{R}_{((n_1+1)\times N)}^{\mathrm{T}}$$
(14)

• Utilizaremos una librería matricial para hacer estas operaciones y obtener $\beta_{((n_1+1)\times k)}^T$.

Algoritmo de entrenamiento RBF off-line

Inicio

- centroidesIniciales \leftarrow aleatoriamente n_1 patrones (regresión) o n_1/k patrones por clase (clasificación).
- ② centroides ← K-medias(X,n₁,centroidesIniciales) // X es el conjunto de entradas para todos los patrones
- **③** σ_i ← (media de las distancias al resto de centroides)/2.
- Construir la matriz $\mathbf{R}_{(N\times(n_1+1))}$, donde $\mathbf{R}_{ij}=out_j^1(\mathbf{x}_i)$ para $j\neq(n_1+1)$, y $\mathbf{R}_{ij}=1$ para $j=(n_1+1)$.
- Si clasificación
 - \bullet pesosSalida \leftarrow aplicarRegresionLogistica(\mathbf{R} , eta)
- Si regresión
 - pesosSalida ← calcularPseudoInversa(R)

Fin

Fase 1: clustering
Fase 2: ajuste de los radios
Fase 3: pesos de la capa de salida

Introducción a los modelos computacionales Práctica 3. Redes neuronales de funciones de base radial

Pedro Antonio Gutiérrez pagutierrez@uco.es

Asignatura "Introducción a los modelos computacionales"

4º Curso Grado en Ingeniería Informática
Especialidad Computación
Escuela Politécnica Superior
(Universidad de Córdoba)

29 de octubre de 2019

