

## TABLE OF CONTENTS









**Preliminary Results** 



**Next steps** 



## Introduction

Our goal is to develop a machine learning model to identify occupied and empty parking lots, as well as count available spaces



#### **Significance**

Parking is a struggle for students and staff at KSU. Searching for parking spots without any technology leads to frustration, wasted time, and traffic congestion.



#### Input & Output:

- Input: Drone footage of parking lots at various times, CarTopView Dataset, survey data from students.
  - Output: Data analysis, sentiment analysis, detected occupancies, and empty spots count.

## **Dataset**

- Conducted a survey targeting students who use gate3 and received II5 responses.
- The survey has 18 questions, 15 aimed to understand the attendance patterns throughout the week.
- The responses were all nominal, except the satisfaction rate with the parking which is ordinal, and times of arrival/departure which are interval

#### I- Survey

- 0 Do you drive yourself or use a driver?
- 1 Do you attend on Sunday?
- When you arrive to the campus on Sunday?
- 3 When you leave the campus on Sunday?
- 4 Do you attend on Monday?
- When you arrive to the campus on Monday?
- 6 When you leave the campus on Monday?
- 7 Do you attend on Tuesday?
- 8 When you arrive to the campus on Tuesday?
- 9 When you leave the campus on Tuesday?
- 10 Parking Challenge Time
- 11 How satisfied are you with the availability of parking spaces on campus?
- 12 Provide any additional comments if you wish
- 13 Do you attend on Wednesday?
- 14 When you arrive to the campus on Wednesday?
- 15 When you leave the campus on Wednesday?
- 16 Do you attend on Thursday?
- 17 When you arrive to the campus on Thursday?
- 18 When you leave the campus on Thursday?

| When you arrive to the |                          | When you leave the campus |                          | When you arrive to the | Do you drive yourself or use |
|------------------------|--------------------------|---------------------------|--------------------------|------------------------|------------------------------|
| campus on Monday?      | Do you attend on Monday? | on Sunday?                | Do you attend on Sunday? | campus on Sunday?      | driver?                      |
| 8:00 AM                | Yes.                     | 2:00 PM                   | Yes.                     | 7:30 AM                | Driver.                      |
| 7:00 AM                | Yes.                     | 12:00 PM                  | Yes.                     | 7:00 AM                | Drive yourself.              |
| 12:00 PM               | Yes.                     | 12:00 PM                  | Yes.                     | 7:00 AM                | Drive yourself.              |
| 7:00 AM                | Yes.                     |                           | No.                      |                        | Drive yourself.              |
| 8:00 AM                | Yes.                     | 12:00 PM                  | Yes.                     | 8:00 AM                | Drive yourself.              |
| 7:30 AM                | Yes.                     | 12:00 PM                  | Yes.                     | 7:30 AM                | Driver.                      |
| 7:00 AM                | Yes.                     | 4:00 PM                   | Yes.                     | 9:30 AM                | Driver.                      |
|                        | No.                      | 2:30 PM                   | Yes.                     | 8:00 AM                | Driver.                      |
| 9:00 AM                | Yes.                     | 2:00 PM                   | Yes.                     | 7:00 AM                | Driver.                      |
| 8:30 AM                | Yes.                     | 4:00 PM                   | Yes.                     | 8:30 AM                | Drive yourself.              |
|                        | No.                      | 10:00 AM                  | Yes.                     | 8:00 AM                | Drive yourself.              |
| 9:30 AM                | Yes.                     | 2:00 PM                   | Yes.                     | 7:00 AM                | Both.                        |



## **Dataset**

#### 2- Gate3 parking lot videos

I-Manually collected 2 videos of the parking lot using a drone, with 19 minutes and 48 seconds total duration, 35,580 total frames



I- CarTopView Dataset:
Roboflow dataset with 257I Total Images
(24I2 Train, IO9 Validation, 56 Test).
It has 3 classes; Car, Empty, and Disabled.







# **Methods**

#### **Exploring the problem through the survey**

We performed Sentiment Analysis on the comment's column using a pre-trained model from Hugging Face called "bhadresh-savani/distilbert-base-uncased-emotion".

This model can pick up on a range of emotions, including joy, sadness, anger, fear, and more.







# **Methods**

### Gate3 parking lot videos

# I- Pretrained Single Shot Multibox Detector (SSD):

- resized frames to fit model requirements
- Detect and draw bounding boxes on the detected objects for visual feedback.

Evaluated by using average precision, average recall, approximate FI score performance metrics

#### 2- YOLOIIn:

- pretrained (COCO) model
- Trained on CarTopView Dataset with Gridearch to find the best learning rate and epoch









## 1

# **Preliminary Results**

## **Exploring the problem through the survey**

#### Satisfaction with Parking Space Availability











# **Preliminary Results**

#### **Gate3 parking lot videos**

The SSD pretrained model was not even close to detecting the cars and empty spaces in our dataset



Evaluating SSD For the CarTopView Dataset:
Average Precision: 0.0314.
Average Recall: 0.1352.

Approximate FI Score: 0.0510









# **Preliminary Results**

#### Gate3 parking lot videos

YOLOIIv showed more promise,
 but detected that the cars were
 cellphones from a top-view



- However, it had no problem detecting cars from a front-view





# **Preliminary Results**

#### **CarTopView Dataset**

After training YOLO on CarTopView dataset the best results from grid search: IrO=0.001 and epochs=50

**Confidence = 0.5:** 

Average Precision: 0.992

Average Recall: 0.961

mAP50: 0.98

mAP50-95: 0.879



# **Next Steps**



After deploying the model, we plan to implement a counting system to show the number of empty and occupied parking lots





# Thank you for listening!

#### Prepared by

Rana Alsayyari 443200565

Bashair Alsadhan # 443200668

Rama Alshebel ## 443200929

Reema Aljalajel 🚓 443201121

Najla Aldakhil 🚕 442200142