1. Let $\beta > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \beta) = \frac{\beta^2 \ln x}{x^{\beta+1}},$$
 $x > 1,$ zero otherwise.

- a) Obtain the maximum likelihood estimator for β , $\hat{\beta}$.

 That is, find $\hat{\beta} = \arg\max L(\beta) = \arg\max \ln L(\beta)$, where $L(\beta) = \prod_{i=1}^{n} f(x_i; \beta)$.
 - ① Multiply: $L(\beta) = f(x_1; \beta) \cdot f(x_2; \beta) \cdot \dots \cdot f(x_n; \beta)$.
 - ② Simplify. "Hint": $a^b \cdot a^c = a^{b+c}$, $a^c \cdot b^c = (a \cdot b)^c$, $(a^b)^c = a^{b \cdot c}$.
 - 3 Take ln. "Hint": $\ln(a \cdot b) = \ln a + \ln b$, $\ln(a^b) = b \cdot \ln a$.
 - 4 Take the derivative with respect to β .
 - Set equal to zero. Solve for β . Add a hat.
- b) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2.0$, $x_4 = 3.0$, $x_5 = 5.0$. Obtain the maximum likelihood estimate for β , $\hat{\beta}$.
- c) Show that $W = \ln X$ has a Gamma distribution. What are its parameters α and θ ?
- d) Is the maximum likelihood estimator of β , $\hat{\beta}$, an unbiased estimator of β ? If $\hat{\beta}$ is not an unbiased estimator of β , construct an unbiased estimator of β based on $\hat{\beta}$.
- "Hint" 0: If U has a Gamma(α_1 , θ) distribution, V has a Gamma(α_2 , θ) distribution, U and V are independent, then U + V has a Gamma(α_1 + α_2 , θ) distribution.
- "Hint" 1: $E(a \odot) = a E(\odot)$. "Hint" 2: $\frac{1}{\bullet} = \blacktriangledown^{-1}$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

e) Find MSE($\hat{\beta}$) = (bias($\hat{\beta}$))² + Var($\hat{\beta}$).

"Hint" 1: bias $(\hat{\beta}) = E(\hat{\beta}) - \beta$. You have $E(\hat{\beta})$ from part (d).

"Hint" 2: $\operatorname{Var}(a \odot) = a^2 \operatorname{Var}(\odot)$. $\operatorname{Var}(\odot) = \operatorname{E}(\odot^2) - [\operatorname{E}(\odot)]^2$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

- f) Assume $\beta > 1$. (We need this for the expected value E(X) to exist.)

 Obtain a method of moments estimator for β , $\widetilde{\beta}$.

 That is, if $E(X) = h(\beta)$, solve $\overline{X} = h(\widetilde{\beta})$ for $\widetilde{\beta}$.
 - Tind E(X). It will depend on β , so it will be a function of β , say, $E(X) = h(\beta)$.
 - ② Replace E(X) with \overline{X} , so $\overline{X} = h(\beta)$.
 - 3 Solve $\overline{X} = h(\beta)$ for β . Add a tilde.
- g) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2.0$, $x_4 = 3.0$, $x_5 = 5.0$. Obtain a method of moments estimate for β , $\widetilde{\beta}$.
- h) Suppose $\beta > 1$. Is the method of moments estimator of β , $\widetilde{\beta}$, an unbiased estimator of β ? If $\widetilde{\beta}$ is not an unbiased estimator of β , does $\widetilde{\beta}$ underestimate or overestimate β (on average)?

Hint: $\widetilde{\beta} = g(\overline{X})$. Is g(x) a linear function? If it is not a linear function, does it curve up or down?

Answers:

1. Let $\beta > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \beta) = \frac{\beta^2 \ln x}{x^{\beta+1}},$$
 zero otherwise.

a) Obtain the maximum likelihood estimator for β , $\hat{\beta}$.

That is, find $\hat{\beta} = \arg \max L(\beta) = \arg \max \ln L(\beta)$, where $L(\beta) = \prod_{i=1}^{n} f(x_i; \beta)$.

- ① Multiply: $L(\beta) = f(x_1; \beta) \cdot f(x_2; \beta) \cdot \dots \cdot f(x_n; \beta)$.
- ② Simplify. "Hint": $a^b \cdot a^c = a^{b+c}$, $a^c \cdot b^c = (a \cdot b)^c$, $(a^b)^c = a^{b \cdot c}$.
- 3 Take ln. "Hint": $\ln(a \cdot b) = \ln a + \ln b$, $\ln(a^b) = b \cdot \ln a$.
- 4 Take the derivative with respect to β .
- \bigcirc Set equal to zero. Solve for β . Add a hat.

$$L(\beta) = \prod_{i=1}^{n} \frac{\beta^{2} \left(\ln x_{i} \right)}{x_{i}^{\beta+1}} = \beta^{2n} \cdot \left(\prod_{i=1}^{n} x_{i} \right)^{-\beta-1} \cdot \left(\prod_{i=1}^{n} \ln x_{i} \right).$$

$$\ln L(\beta) = 2n \ln \beta - (\beta+1) \cdot \sum_{i=1}^{n} \ln x_{i} + \sum_{i=1}^{n} \ln \ln x_{i}.$$

$$\frac{d}{d\beta}\ln L(\beta) = \frac{2n}{\beta} - \sum_{i=1}^{n} \ln x_i = 0. \qquad \Rightarrow \qquad \hat{\beta} = \frac{2n}{\sum_{i=1}^{n} \ln X_i}.$$

b) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2.0$, $x_4 = 3.0$, $x_5 = 5.0$. Obtain the maximum likelihood estimate for β , $\hat{\beta}$.

$$n = 5$$
, $\ln 1.3 + \ln 1.4 + \ln 2.0 + \ln 3.0 + \ln 5.0 \approx 4$.

$$\hat{\beta} \approx \frac{2 \cdot 5}{4} = 2.5.$$

c) Show that $W = \ln X$ has a Gamma distribution. What are its parameters α and θ ?

$$w = \ln x \qquad x = e^{w} \qquad \frac{dx}{dw} = e^{w}$$

$$\begin{split} f_{\mathbf{W}}(w) &= \frac{\beta^2 w}{\left(e^w\right)^{\beta+1}} \cdot e^w = \beta^2 w e^{-\beta w} \\ &= \frac{\beta^2}{\Gamma(2)} w^{2-1} e^{-\beta w}, \qquad w > 0. \end{split}$$

$$\Rightarrow$$
 W has a Gamma ($\alpha = 2$, $\theta = \frac{1}{\beta}$) distribution. ($\lambda = \beta$)

- d) Is the maximum likelihood estimator of β , $\hat{\beta}$, an unbiased estimator of β ? If $\hat{\beta}$ is not an unbiased estimator of β , construct an unbiased estimator of β based on $\hat{\beta}$.
- "Hint" 0: If U has a Gamma(α_1 , θ) distribution, V has a Gamma(α_2 , θ) distribution, U and V are independent, then U + V has a Gamma(α_1 + α_2 , θ) distribution.
- "Hint" 1: $E(a \odot) = a E(\odot)$. "Hint" 2: $\frac{1}{\bullet} = \bullet^{-1}$.
- "Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

$$Y = \sum_{i=1}^{n} W_i = \sum_{i=1}^{n} \ln X_i$$
 has a Gamma $(\alpha = 2n, \theta = \frac{1}{\beta})$ distribution. $(\lambda = \beta)$

$$\hat{\beta} = \frac{2n}{\sum_{i=1}^{n} \ln X_i} = \frac{2n}{Y}.$$

$$a = 2n, \quad \mathfrak{D} = \frac{1}{Y}, \quad \Psi = Y.$$

$$T_{\alpha} \sim Gamma(\alpha, \theta = \frac{1}{\lambda}),$$

$$\Rightarrow E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

$$\mathrm{E}\left(\frac{1}{\mathrm{Y}}\right) = \mathrm{E}(\mathrm{Y}^{-1}) = \frac{\Gamma\left(\alpha - 1\right)}{\lambda^{-1}\Gamma\left(\alpha\right)} = \frac{\lambda}{\alpha - 1} = \frac{\beta}{2n - 1}. \qquad \alpha = 2n, \quad m = -1.$$

$$\mathrm{E}(\,\hat{\boldsymbol{\beta}}\,) = \mathrm{E}\big(\frac{2n}{\mathrm{Y}}\big) = 2n\,\mathrm{E}\big(\frac{1}{\mathrm{Y}}\big) = 2n\cdot\frac{\beta}{2n-1} = \frac{2n}{2n-1}\cdot\boldsymbol{\beta} = \boldsymbol{\beta} + \frac{\beta}{2n-1} \neq \boldsymbol{\beta}.$$

$$\hat{\beta}$$
 is NOT an unbiased estimator of β . bias $(\hat{\beta}) = E(\hat{\beta}) - \beta = \frac{\beta}{2n-1}$.

Consider
$$\hat{\hat{\beta}} = \frac{2n-1}{2n} \cdot \hat{\beta} = \frac{2n-1}{Y} = \frac{2n-1}{\sum_{i=1}^{n} \ln X_i}.$$

Then
$$E(\hat{\beta}) = \frac{2n-1}{2n} \cdot E(\hat{\beta}) = \beta.$$

e) Find MSE(
$$\hat{\beta}$$
) = (bias($\hat{\beta}$))² + Var($\hat{\beta}$).

"Hint" 1: bias
$$(\hat{\beta}) = E(\hat{\beta}) - \beta$$
. You have $E(\hat{\beta})$ from part (d).

"Hint" 2:
$$\operatorname{Var}(a \odot) = a^2 \operatorname{Var}(\odot)$$
. $\operatorname{Var}(\odot) = \operatorname{E}(\odot^2) - [\operatorname{E}(\odot)]^2$.

"Hint" 3: If
$$T_{\alpha}$$
 has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

bias
$$(\hat{\beta}) = E(\hat{\beta}) - \beta = \frac{\beta}{2n-1}$$
.

$$E\left(\frac{1}{Y^{2}}\right) = E\left(Y^{-2}\right) = \frac{\Gamma\left(\alpha-2\right)}{\lambda^{-2}\Gamma\left(\alpha\right)} = \frac{\lambda^{2}}{\left(\alpha-1\right)\left(\alpha-2\right)} = \frac{\beta^{2}}{\left(2n-1\right)\left(2n-2\right)}.$$

$$\alpha = 2n, \quad m = -2.$$

$$\operatorname{Var}(\hat{\beta}) = \operatorname{Var}(\frac{2n}{Y}) = 4n^{2} \operatorname{Var}(\frac{1}{Y}) = 4n^{2} \left[\operatorname{E}\left(\frac{1}{Y^{2}}\right) - \left(\operatorname{E}\left(\frac{1}{Y}\right)\right)^{2} \right]$$
$$= 4n^{2} \left[\frac{\beta^{2}}{(2n-1)(2n-2)} - \left(\frac{\beta}{2n-1}\right)^{2} \right] = \frac{4n^{2} \beta^{2}}{(2n-1)^{2}(2n-2)}.$$

MSE(
$$\hat{\beta}$$
) = (bias($\hat{\beta}$))² + Var($\hat{\beta}$) = $\left(\frac{\beta}{2n-1}\right)^2$ + $\frac{4n^2\beta^2}{(2n-1)^2(2n-2)}$
= $\frac{\left(4n^2+2n-2\right)\beta^2}{(2n-1)^2(2n-2)}$ = $\frac{(2n+2)\beta^2}{(2n-1)(2n-2)}$.

- f) Assume $\beta > 1$. (We need this for the expected value E(X) to exist.)

 Obtain a method of moments estimator for β , $\widetilde{\beta}$.

 That is, if $E(X) = h(\beta)$, solve $\overline{X} = h(\widetilde{\beta})$ for $\widetilde{\beta}$.
 - ① Find E(X). It will depend on β , so it will be a function of β , say, $E(X) = h(\beta)$.
 - ② Replace E(X) with \overline{X} , so $\overline{X} = h(\beta)$.
 - 3 Solve $\overline{X} = h(\beta)$ for β . Add a tilde.

$$E(X) = \int_{1}^{\infty} x \cdot \frac{\beta^{2} \ln x}{x^{\beta+1}} dx = \beta^{2} \cdot \int_{1}^{\infty} \ln x \cdot \frac{1}{x^{\beta}} dx \qquad \text{by parts}$$

$$= \beta^{2} \cdot \left[\ln x \cdot \left(-\frac{1}{(\beta-1)x^{\beta-1}} \right) \middle| \frac{\alpha}{1} - \int_{1}^{\infty} \frac{1}{x} \cdot \left(-\frac{1}{(\beta-1)x^{\beta-1}} \right) dx \right]$$

$$= \beta^{2} \cdot \left[\frac{1}{(\beta-1)} \cdot \int_{1}^{\infty} \frac{1}{x^{\beta}} dx \right] = \beta^{2} \cdot \left[\frac{1}{(\beta-1)} \cdot \left(-\frac{1}{(\beta-1)x^{\beta-1}} \right) \middle| \frac{\alpha}{1} \right]$$

$$= \frac{\beta^{2}}{(\beta-1)^{2}}.$$

Since
$$f(x; \beta) = \frac{\beta^2 \ln x}{x^{\beta+1}}$$
, $x > 1$, $\beta > 0$, is a probability density function,

$$\int_{1}^{\infty} \frac{\beta^{2} \ln x}{x^{\beta+1}} dx = 1, \quad \text{and} \quad \int_{1}^{\infty} \frac{\ln x}{x^{\beta+1}} dx = \frac{1}{\beta^{2}}, \quad \beta > 0.$$

$$\Rightarrow E(X) = \int_{1}^{\infty} x \cdot \frac{\beta^{2} \ln x}{x^{\beta+1}} dx = \beta^{2} \cdot \int_{1}^{\infty} \frac{\ln x}{x^{(\beta-1)+1}} dx = \frac{\beta^{2}}{(\beta-1)^{2}}.$$

$$\begin{array}{ll} \overline{X} \; = \; \frac{\beta^{\,2}}{\left(\,\beta - 1\,\right)^{\,2}} \, . & \qquad \Rightarrow \qquad \qquad \sqrt{\overline{X}} \; = \; \frac{\beta}{\beta - 1} \, . \\ \\ \Rightarrow \qquad \qquad \widetilde{\beta} \; = \; \frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} \, - 1} \; = \; 1 + \frac{1}{\sqrt{\overline{X}} \, - 1} \, . \end{array}$$

OR

$$\overline{X} = \frac{\beta^2}{(\beta-1)^2}.$$
 \Rightarrow $(\overline{X}-1)\beta^2-2\overline{X}\beta+\overline{X}=0.$

$$\widetilde{\beta} = \frac{2\,\overline{X} \pm \sqrt{4\,\overline{X}^{\,2} - 4\,\overline{X}\,\left(\,\overline{X} - 1\right)}}{2\,\left(\,\overline{X} - 1\right)} = \frac{\overline{X} \pm \sqrt{\overline{X}}}{\overline{X} - 1} = \frac{\overline{X}\left(\sqrt{\overline{X}} \pm 1\right)}{\left(\sqrt{\overline{X}} - 1\right)\left(\sqrt{\overline{X}} + 1\right)}$$
$$= \frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} - 1} \text{ or } \frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} + 1}.$$

However, $\beta \ge 1$, and $\frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} + 1} \le 1$.

$$\Rightarrow \qquad \widetilde{\beta} = \frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} - 1} = 1 + \frac{1}{\sqrt{\overline{X}} - 1}.$$

g) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2.0$, $x_4 = 3.0$, $x_5 = 5.0$. Obtain a method of moments estimate for β , $\widetilde{\beta}$.

$$n = 5$$
, $1.3 + 1.4 + 2.0 + 3.0 + 5.0 = 12.7$.

$$\overline{x} = \frac{12.7}{5} = 2.54.$$
 $\widetilde{\beta} = \frac{\sqrt{2.54}}{\sqrt{2.54} - 1} = 1 + \frac{1}{\sqrt{2.54} - 1} \approx 2.684.$

h) Suppose $\beta > 1$. Is the method of moments estimator of β , $\widetilde{\beta}$, an unbiased estimator of β ? If $\widetilde{\beta}$ is not an unbiased estimator of β , does $\widetilde{\beta}$ underestimate or overestimate

If β is not an unbiased estimator of β , does β underestimate or overestimate β (on average)?

Hint: $\widetilde{\beta} = g(\overline{X})$. Is g(x) a linear function?

If it is not a linear function, does it curve up or down?

$$\widetilde{\beta} = \frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} - 1} = 1 + \frac{1}{\sqrt{\overline{X}} - 1}.$$
 Consider $g(x) = 1 + \frac{1}{\sqrt{x} - 1}.$

Then
$$g(\overline{X}) = \widetilde{\beta}$$
.

$$g'(x) = -\frac{1}{\left(\sqrt{x}-1\right)^2} \cdot \frac{1}{2\sqrt{x}}.$$

$$g''(x) = \frac{1}{\left(\sqrt{x} - 1\right)^3} \cdot \frac{1}{2x} + \frac{1}{\left(\sqrt{x} - 1\right)^2} \cdot \frac{1}{4x^{3/2}} > 0 \quad \text{for } x > 1.$$

Since $g(x) = 1 + \frac{1}{\sqrt{x} - 1}$, x > 1, is strictly convex (that is, it curves up),

and \overline{X} is not a constant random variable, by Jensen's Inequality (Theorem 1.10.5),

$$E(\widetilde{\beta}) = E(g(\overline{X})) > g(E(\overline{X})) = g(\mu).$$

$$g(\mu) = g(\frac{\beta^2}{(\beta-1)^2}) = 1 + \frac{1}{\frac{\beta}{\beta-1} - 1} = \beta.$$

$$\Rightarrow$$
 E($\widetilde{\beta}$) > β .

 $\widetilde{\beta} \;\; \text{is NOT an unbiased estimator for } \; \beta.$

On average, $\widetilde{\beta}$ overestimates β .