МИНОБРНАУКИ РОССИИ ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ М.Т. КАЛАШНИКОВА ФАКУЛЬТЕТ «МАТЕМАТИКА И ЕСТЕСТВЕННЫЕ НАУКИ» КАФЕДРА «ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

Разработка алгоритма восстановления начальных условий стрельбы по участку траектории

Руководитель д.т.н., профессор

С.А. Королев

Исполнитель студент гр.Б19-181-1

Г.В. Ренкез

Цель и состав задач

Цель работы: разработка математических моделей, вычислительных алгоритмов и программы для решения обратной задачи внешней баллистики по результатам анализа траекторных измерений.

Состав задач:

- Обзор способов обработки данных траекторных измерений.
- Анализ подходов к решению обратной задачи внешней баллистики.
- Разработка математической модели внешней баллистики с учетом баллистических и метеорологических факторов.
- Разработка алгоритма решения обратной задачи внешней баллистики на основе методов интеллектуального анализа данных: искусственные нейронные сетей, деревья решений, генетические алгоритмы.
- Решение задачи идентификации средств поражения по результатам анализа траекторных параметров.
- Реализация математических моделей и алгоритмов в виде расчетной программы решения обратной задачи внешней баллистики.
- Исследование устойчивости и точности решения обратной задачи в зависимости от объема зарегистрированных данных по траектории.

Общая постановка задачи

На сегодняшний день контрбатарейная борьба является одной из самых важных ситуаций на поле боя, ведь она позволяет подавлять огневые точки противника, в следствии чего повышается эффективность работы артиллерийских войск.

Рассматриваются две системы координат:

 $O_3 x_3$, y_3 , z_3 — земная система координат;

 $O_{\rm c}x_{\rm c},y_{\rm c},z_{\rm c}$ – стартовая система координат;

Зафиксируем участок траектории относительно O_3x_3,y_3,z_3 . По этому участку определяются траекторные параметры: $x_i,y_i,z_i,V_i,\theta_i,\psi_i$ и решается задача классификации снаряда.

Необходимо восстановить начальные условия стрельбы (V_0 , θ_0 , ψ_0) и найти координаты места выстрела (x_0 , y_0 , z_0) в системе координат O_3x_3 , y_3 , z_3 .

Рисунок 1. Земная и стартовые системы координат

Математическая постановка задачи

Координаты центра масс снаряда определяются из решения уравнений:

$$\frac{dx_c}{dt} = V\cos\theta\cos\psi,$$

$$\frac{dy_c}{dt} = V\cos\theta,$$

$$\frac{dz_c}{dt} = -V\cos\theta\cos\psi,$$
(1)

Параметры движения снаряда:

$$\frac{dV}{dt} = -g\sin\theta - \frac{C_x q S_M}{m};\tag{2}$$

$$\frac{d\theta}{dt} = -\frac{g\cos\theta}{V} - \frac{C_{y}S_{M}q}{mV}; \tag{3}$$

$$\frac{d\psi}{dt} = \frac{C_z q S_M}{m V \cos \theta};\tag{4}$$

Рисунок 2. Ориентация стартовой $(Ox_0y_0z_0)$ и траекторной $(Ox_ky_kz_k)$ систем координат

Алгоритм решения задачи

На зафиксированном участке траектории (рис. 3) найдем V_i , $\left(\frac{dV}{dt}\right)_i$, θ_i, ψ_i :

$$V_i = \frac{\sqrt{(y_{i+1} - y_{i-1})^2 + (x_{i+1} - x_{i-1})^2 + (z_{i+1} - z_{i-1})^2}}{\Delta t},$$
 (5)

$$\left(\frac{dV}{dt}\right)_{i} = \frac{V_{i+\frac{1}{2}}^{\Delta t} - V_{i-\frac{1}{2}}}{\Delta t},\tag{6}$$

$$\theta_i = arctg\left(\frac{y_{i+1} - y_i}{x_{i+1} - x_i}\right),\tag{7}$$

$$\psi_i = arctg\left(\frac{z_{i+1} - z_i}{x_{i+1} - x_i}\right). \tag{8}$$

Критерием подобия в баллистике является баллистический коэффициент:

$$C = \frac{i_x d^2}{m}.$$

На зафиксированном участке определим С из (2):

$$\frac{i_{x}d^{2}}{m} = \left(-\frac{dV_{i}}{dt} - g\sin\theta_{i}\right) * \frac{8}{\rho V^{2}\pi C_{x}(M)} = C_{i}. \tag{9}$$

Среднее значение баллистического коэффициента

$$C = \sum_{i=0}^{n} C_i,$$

n – количество точек на зафиксированном участке траектории.

Рисунок 3. Зафиксированный участок траектории

Классификация типов снарядов

Для определения типа снаряда будем использовать двухслойную нейронную сеть.

Входной параметр: баллистический коэффициент С.

Выходной параметр: вектор вероятностей, номер элемента с наибольшей вероятностью является номером снаряда (i — номер класса, n — количество классов).

Функции активации: ReLU, в выходном слое softmax.

Таблица 1. Снаряды и их параметры.

Номер класса	Имя	Калибр	i _x	Macca	C
0	ОФ29	152	1,02	46,00	0,512
1	ОФ-462	122	1,10	21,78	0,752
2	ОФ-506	125	1,50	36,00	0,651
3	БР-540Б	152	1,15	48,96	0,543
4	ПБ-35	152	1,10	51,07	0,498
5	Γ-545	152	1,10	56,00	0,454
6	O-530A	152	1,10	40,00	0,635

Рисунок 4. Архитектура нейронной сети

$$ReLU(x) = \max(0, x)$$

$$softmax(x)_i = \frac{e^{x_i}}{\sum_{i=1}^K e^{x_k}}$$

Результат обучения нейронной сети

Рисунок 5. Блок-схема обучения нейронной сети

В результате обучения нейронной сети удалось правильно классифицировать тип снаряда 3945 раза из 4000. Ошибка составила 1,38%.

Рисунок 6. График обучения нейронной сети

Структура программы

Рисунок 7. Блок-схема работы программы

Рисунок 8. Блок-схема метода Рунге-Кутты 4 – ого порядка

Ренкез Г.В. «Разработка алгоритма восстановления начальных условий стрельбы по участку траектории» 8/16

Программный комплекс

Рисунок 9. Окно программы, вкладка восстановления начальных условий стрельбы

Ренкез Г.В. «Разработка алгоритма восстановления начальных условий стрельбы по участку траектории» 9/16

Исследование будем проводить на снаряде ОФ29 со следующими начальными условиями: координаты места выстрела (0; 0; 0), начальная скорость $V_0 = 945$ $^{\rm M}/_{\rm c}$, $\psi_0 = 0^{\circ}$ и $\theta_0 = 29^{\circ}$. Фиксировать траекторию будем в разных условиях: без погрешностей, с погрешностью до 3, 5 и 10 метров. Также рассмотрим как изменяется результат работы алгоритма при различной длине зафиксированной траектории.

Рисунок 10. Интерполированный участок траектории 1 — интерполированный участок траектории, 2 - зафиксированная траектория

Рисунок 11. Зафиксированный участок траектории с погрешностью 3 м

Рисунок 12. Траектория полета снаряда в плоскости ХҮ

Рисунок 13. Участок траектории в месте выстрела 1 — исходная траектория, 2 — восстановленная траектория

Рисунок 14. Траектории полета снаряда в плоскости XZ

Рисунок 15. Участок траектории в месте выстрела 1 – исходная траектория, 2 – восстановленная траектория

Рисунок 16. Результаты работы алгоритма при зафиксированных траекториях с разными погрешностями

Рисунок 17. Сравнение участков траектории с разной погрешностью в плоскости

Таблица 2. Усреднённые результаты работы алгоритма по 20 итерациям при разных погрешностях.

Погрешность	Х, м	<i>Y</i> , м	<i>Z</i> , м	V , $^{\rm M}/_{\rm C}$	ψ , град.	heta, град.
Исходные данные	0	0	0	945	0	29
Без погрешностей	3.584	0	0.375	944.754	0.08	29.126
	(0.01%)	(0%)	(0.033%)	(0.025%)	(8.477%)	(0.436%)
3 метра	18.551	0	6.855	945.272	0.079	29.127
	(0.09%)	(0%)	(0.622%)	(0.127%)	(7.644%)	(0.438%)
5 метров	22.454 (0	20.371	945.045	0.081	29.129
	0.111%)	(0%)	(1.796%)	(0.176%)	(8.8%)	(0.446%)
10 метров	52.144	0	49.748	944.279	0.077	29.139
	(0.258%)	(0%)	(4.25%)	(0.378%)	(6.765%)	(0.481%)

Рисунок 18. Сравнение участков траектории с разной погрешностью 1 — исходная траектория, 2 — без погрешностей, 3 - погрешность 3 метра, 4 — погрешность 5 метров, 5 — погрешность 10 метров

Рисунок 19. Зафиксированный участок траектории при 500 точках.

Рисунок 20. Зафиксированный участок траектории при 200 точках.

Рисунок 21. Зафиксированный участок траектории при 100 точках.

Таблица 3 Усреднённые результаты работы алгоритма по 20 итерациям при 1000, 800, 500, 200 и 100 точках, (в процентах)

Параметр	<i>x</i> ₃₀	y_{30}	Z_{30}	V_0	ψ_0	$ heta_0$
Начальное значение	0	0	0	945	0.0	29
Восстановленное значение при 1000 точках	18.551	0	6.855	945.272	0.079	29.127
	(0.091%)	(0%)	(0.622%)	(0.127%)	(8.644%)	(0.438%)
Восстановленное значение при 800 точках	51.247	0	100.821	941.633	0.076	29.149
	(0.254%)	(0%)	(20.388%)	(0.356%)	(7.241%)	(0.514%)
Восстановленное значение при 500 точках	125.793	0	143.711	937.040	0.077	29.184
	(0.623%)	(0%)	(28.990%)	(0.842%)	(7.477%)	(0.636%)
Восстановленное значение при 200 точках	180.146	0	155.257	935.896	0.074	29.196
	(0.892%)	(0%)	(31.319%)	(1.276%)	(6.874%)	(0.764%)
Восстановленное значение при 100 точках	489.719	0	337.005	927.692	0.074	29.324
	(2.427%)	(0%)	(67.982%)	(3.476%)	(6.874%)	(2.016%)

Ренкез Г.В. «Разработка алгоритма восстановления начальных условий стрельбы по участку траектории» 15/16

Заключение

Произведен обзор способов обработки данных траекторных измерений, проанализированы подходы к решению обратной задачи внешней баллистики и предоставлена математическая модель внешней баллистики с учетом баллистических факторов.

Разработан и реализован метод обратного интегрирования, алгоритм вычисления траекторных параметров и алгоритм для вычисления координат места выстрела. Реализован алгоритм вычисления баллистического коэффициента и реализована нейронная сеть для определения типа снаряда.

Реализован программный комплекс, включающий в себя математическую модель внешней баллистики и метод обратного интегрирования.

Проведены исследования и было выявлено, что наилучший результат можно получить, если фиксировать траекторию с погрешностью, не превышающую 3 метра. При этом, объем траекторных данных должен быть не меньше 100 точек. В этом случае начальное значение X будет равно 18.551 м, что составляет 0.091% от дальности полета снаряда -20 км.