# Particle Swarm Optimization Applications in Parameterization of Classifiers

James Blondin

jblondin@gmail.com

**Armstrong Atlantic State University** 

#### Outline

- Introduction
- Canonical PSO Algorithm
- PSO Algorithm Example
- Classifier Optimization
- Conclusion

#### **Particle Swarm Optimization**

Particle Swarm Optimization (PSO) is a

- swarm-intelligence-based
- approximate
- nondeterministic

optimization technique.

## **Optimization Techniques**

Optimization techniques find the parameters that provide the maximum (or minimum) value of a target function.



## Uses of Optimization

In the field of machine learning, optimization techniques can be used to find the parameters for classification algorithms such as:

- Artificial Neural Networks
- Support Vector Machines

These classification algorithms often require the user to supply certain coefficients, which often have to be found by trial and error or exhaustive search.

# Canonical PSO Algorithm

- Introduction
- Canonical PSO Algorithm
- PSO Algorithm Example
- Classifier Optimization
- Conclusion

## **Origins of PSO**

PSO was first described by James Kennedy and Russell Eberhart in 1995.

Derived from two concepts:

- The observation of swarming habits of animals such as birds or fish
- The field of evolutionary computation (such as genetic algorithms)

## **PSO Concepts**

- The PSO algorithm maintains multiple potential solutions at one time
- During each iteration of the algorithm, each solution is evaluated by an objective function to determine its fitness
- Each solution is represented by a particle in the fitness landscape (search space)
- The particles "fly" or "swarm" through the search space to find the maximum value returned by the objective function

# Fitness Landscape



#### **Maintained Information**

Each particle maintains:

- Position in the search space (solution and fitness)
- Velocity
- Individual best position

In addition, the swarm maintains its global best position.

#### Canonical PSO Algorithm

The PSO algorithm consists of just three steps:

- 1. Evaluate fitness of each particle
- 2. Update individual and global bests
- 3. Update velocity and position of each particle

These steps are repeated until some stopping condition is met.

## **Velocity Update**

Each particle's velocity is updated using this equation:

$$v_i(t+1) = wv_i(t) + c_1r_1[\hat{x}_i(t) - x_i(t)] + c_2r_2[g(t) - x_i(t)]$$

- i is the particle index
- w is the inertial coefficient Hệ số quán tính để lao về phía trước
- $c_1, c_2$  are acceleration coefficients, Các hệ số gia tốc  $0 \le c_1, c_2 \le 2$
- $r_1, r_2$  are random values  $(0 \le r_1, r_2 \le 1)$  regenerated every velocity update

#### **Velocity Update**

Each particle's velocity is updated using this equation:

$$v_i(t+1) = wv_i(t) + c_1r_1[\hat{x}_i(t) - x_i(t)] + c_2r_2[g(t) - x_i(t)]$$

- $v_i(t)$  is the particle's velocity at time t
- $x_i(t)$  is the particle's position at time t
- $\hat{x}_i(t)$  is the particle's individual best solution as of time t
- g(t) is the swarm's best solution as of time t

## **Velocity Update – Inertia Component**

$$v_i(t+1) = \mathbf{w}\mathbf{v_i}(\mathbf{t}) + c_1r_1[\hat{x}_i(t) - x_i(t)] + c_2r_2[g(t) - x_i(t)]$$

- Keeps the particle moving in the same direction it was originally heading
- Inertia coefficient w usually between 0.8 and
   1.2
- Lower values speed up convergence, higher values encourage exploring the search space

# Velocity Update – Cognitive Component

$$v_i(t+1) = wv_i(t) + \mathbf{c_1}\mathbf{r_1}[\hat{\mathbf{x}_i}(\mathbf{t}) - \mathbf{x_i}(\mathbf{t})] + c_2r_2[g(t) - x_i(t)]$$

- Acts as the particle's memory, causing it to return to its individual best regions of the search space
- Cognitive coefficient  $c_1$  usually close to 2
- Coefficient limits the size of the step the particle takes toward its individual best  $\hat{x}_i$

## **Velocity Update – Social Component**

$$v_i(t+1) = wv_i(t) + c_1r_1[\hat{x}_i(t) - x_i(t)] + \mathbf{c_2r_2}[\mathbf{g}(\mathbf{t}) - \mathbf{x_i}(\mathbf{t})]$$

- Causes the particle to move to the best regions the swarm has found so far
- Social coefficient  $c_2$  usually close to 2
- Coefficient limits the size of the step the particle takes toward the global best *g*

#### **Position Update**

Each particle's position is updated using this equation:

$$x_i(t+1) = x_i(t) + v_i(t+1)$$

## **PSO** Algorithm Example

- Introduction
- Canonical PSO Algorithm
- PSO Algorithm Example
- Classifier Optimization
- Conclusion

#### **PSO** Algorithm Redux

Repeat until stopping condition is met:

- 1. Evaluate fitness of each particle
- 2. Update individual and global bests
- 3. Update velocity and position of each particle

# Fitness Evaluation (t=1)



#### **Update Individual / Global Bests (t=1)**



## **Update Velocity and Position (t=1)**

$$v_i(t+1) = wv_i(t) + c_1r_1[\hat{x}_i(t) - x_i(t)] + c_2r_2[g(t) - x_i(t)]$$



# Fitness Evaluation (t=2)



#### **Update Individual / Global Bests (t=2)**



#### **Update Velocity and Position (t=2)**

$$v_i(t+1) = wv_i(t) + c_1r_1[\hat{x}_i(t) - x_i(t)] + c_2r_2[g(t) - x_i(t)]$$



## **Classifier Optimization**

- Introduction
- Canonical PSO Algorithm
- PSO Algorithm Example
- Classifier Optimization
- Conclusion

#### **Support Vector Machines**

Support Vector Machines (SVMs) are a group of machine learning techniques used to classify data.

- Effective at classifying even non-linear datasets
- Slow to train
- When being trained, they require the specification of parameters which can greatly enhance or impede the SVM's effectiveness

#### **Support Vector Machine Parameters**

One specific type of SVM, a Cost-based Support Vector Classifier (C-SVC), requires two parameters:

- Cost parameter (C), which is typically anywhere between  $2^{-5}$  and  $2^{20}$
- Gamma parameter  $(\gamma)$ , which is typically anywhere between  $2^{-20}$  and  $2^3$

#### Supper Vector Machine Parameters

For different datasets, the optimal values for these parameters can be very different, even on the same type of C-SVC.

To find the optimal parameters, two approaches are often used:

- Random selection
- Grid search

#### **Financial Data**



# DNA Splicing Data



#### **Grid Search Problems**

While effective, grid search has some problems:

- Computationally intensive
  - Financial Data 144 SVM training runs, approximately 9 minutes
  - DNA Splicing Data 110 SVM training runs, approximately 48 minutes
- Only as exact as the spacing of the grid (coarseness of search), although once a peak has been identified, it can be searched more closely

## Applying PSO to SVM Parameters

Alternatively, PSO can be used to parameterize SVMs, using the SVM training run as the objective function.

#### Implementation considerations:

- Finding maximum among two dimensions (as opposed to just one, as in the example)
- Parameters less than zero are invalid, so position updates should not move parameter below zero

#### **PSO Parameters**

#### Parameters used for PSO algorithm:

- Number of particles: 8
- Inertia coefficient (w): .75
- Cognitive coefficient( $c_1$ ): 1.8
- Social coefficient( $c_2$ ): 2
- Number of iterations: 10 (or no improvement for 4 consecutive iterations)

# Preliminary Results

|                    | Dataset      |           |
|--------------------|--------------|-----------|
|                    | DNA Splicing | Financial |
| Grid search        |              |           |
| Num. Training Runs | 110          | 144       |
| Max. Accuracy      | 95.7%        | 77.8%     |
| PSO                |              |           |
| Num. Training Runs | 56           | 72        |
| Max. Accuracy      | 96.1%        | 77.7%     |

#### **Analysis of Results**

- Results are still preliminary, but encouraging
- Due to randomized aspects of PSO algorithm, the optimization process would need to be run several times to determine if results are consistent
- Alternative PSO parameters can be attempted, and their effectiveness measured

#### Conclusion

- Introduction
- Canonical PSO Algorithm
- PSO Algorithm Example
- Classifier Optimization
- Conclusion

#### **Conclusions and Future Work**

#### **Conclusions:**

- Significant speedup using PSO over exhaustive search
- Additional testing needed

#### **Future Work:**

- Other PSO variants can be tried
- Need to find optimal parameters for PSO itself

# Questions

# Questions?