Variance of the stationary distribution for a first-order vector autoregressive model

Mark Scheuerell, NOAA Northwest Fisheries Science Center, Seattle, WA USA

Background

There is growing interest in the use of first-order vector autoregressive, or VAR(1), models in ecology where they are often referred to as multivariate autoregressive, or MAR(1), models (e.g., Ives et al. 2003 Ecological Monographs 73:301–330).

Assume a MAR(1) model of the general form

$$\mathbf{x}_t = \mathbf{a} + \mathbf{B}(\mathbf{x}_{t-1} - \mathbf{a}) + \mathbf{w}_t$$

where \mathbf{x}_t is an $n \times 1$ vector of states at time t, \mathbf{a} is an $n \times 1$ vector of underlying levels (means) for each of the states, \mathbf{B} is an $n \times n$ interaction matrix, and \mathbf{w}_t is an $n \times 1$ vector of multivariate normal process errors; $\mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$.

I note here that MAR(1) models are often used for zero-mean processes, in which case $\mathbf{a} = \mathbf{0}$. Alternatively, MAR(1) models may be embedded within a state-space framework, which adds an observation model to account for noisy and/or missing data. In those so-called MARSS(1) models, any non-zero mean vector \mathbf{a} is typically incorporated into the model for the observed data \mathbf{y}_t , such that

$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{w}_t$$

$$\mathbf{y}_t = \mathbf{a} + \mathbf{x}_t + \mathbf{v}_t,$$

and the observation errors, \mathbf{v}_t , are distributed as a multivariate normal with mean $\mathbf{0}$ and variance-covariance matrix \mathbf{R} .

Variance of the stationary distribution

Regardless of the specific form, the discussion here is restricted to stationary process models wherein all of the eigenvalues of **B** lie within the unit circle. One of the many appeals of stationary MAR(1) models is that the variance-covariance matrix of the stationary distribution for \mathbf{x}_t as $t \to \infty$ gives an indication of the relative stability of the system.

Recognizing that t = t - 1 as $t \to \infty$, we can write

$$\mathbf{x}_{\infty} = \mathbf{a} + \mathbf{B}(\mathbf{x}_{\infty} - \mathbf{a}) + \mathbf{w}_{\infty},$$

where

$$\mathrm{Var}(\mathbf{x}_{\infty}) = \mathrm{Var}(\mathbf{a}) + \mathbf{B} \big(\mathrm{Var}(\mathbf{x}_{\infty}) - \mathrm{Var}(\mathbf{a}) \big) \mathbf{B}^{\top} + \mathrm{Var}(\mathbf{w}_{\infty}).$$

If we define $\Omega = \operatorname{Var}(\mathbf{x}_{\infty})$, then

$$\begin{split} \boldsymbol{\Omega} &= \mathbf{0} + \mathbf{B} \left(\boldsymbol{\Omega} - \mathbf{0} \right) \mathbf{B}^\top + \mathbf{Q} \\ &= \mathbf{B} \boldsymbol{\Omega} \mathbf{B}^\top + \mathbf{Q}. \end{split}$$

Unfortunately, however, there is no closed-form solution for Ω when written in this form.

The vec operator

It turns out that we can use the *vec* operator to derive an explicit solution for Ω . The *vec* operator converts an $i \times j$ matrix into an $(ij) \times 1$ column vector. For example, if

$$\mathbf{M} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix},$$

then

$$vec(\mathbf{M}) = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}.$$

Solution

Thus, if **I** is an $n \times n$ identity matrix, and we define $\mathcal{I} = (\mathbf{I} \otimes \mathbf{I})$ and $\mathcal{B} = (\mathbf{B} \otimes \mathbf{B})$, then

$$vec(\mathbf{\Omega}) = (\mathcal{I} - \mathcal{B})^{-1} vec(\mathbf{Q}).$$