Improving the Algorithm with Gradient Descent

Paolo Perrotta
FREELANCE DEVELOPER

@nusco

Trial and Error

Changing w might increase the loss caused by b, and the other way around.

Trying Every Combination of Parameters

Trying Every Combination of Parameters

Parameters	Combinations
2	9
3	27
4	64
1000	1 billion
1 million	1000000000000000

The Gradient

Gradient Descent

Limitations of Gradient Descent

Limitations of Gradient Descent

The Loss Curve in Three Dimensions

Gradient Descent in Three Dimensions

Gradient Descent in Three Dimensions

Calculating the Gradient

The Loss and Its Gradient

$$L = \frac{1}{m} \sum ((wx + b) - y)^{2}$$

$$\frac{\partial L}{\partial w} = \frac{1}{m} \sum 2x((wx + b) - y)$$

$$\frac{\partial L}{\partial b} = \frac{1}{m} \sum 2((wx + b) - y)$$

Summary

We learned the limitations of our training algorithm

We replaced it with gradient descent

- Start with random parameters
- Calculate the gradient of the loss
- Take a step in the opposite direction
- Repeat for a while

Gradient descent works well for our model and loss