

The Mean Squares

Diabetes Risk Analysis

DATE

23rd February , 2018

Diabetes Risk Prediction and Fitness Recommendation Model

Objective :- We will be developing model(s) to predict the chances of a person getting Diabetes based on certain parameters like weight, bmi, habits etc. and then recommending the ideal BMI and few other parameters within their lifestyle segment to reduce the probability.

Data Source :- Health Survey Data Collected by Centre of Disease Control (CDC) United States

Data Volume: - Survey data from approx. 4 lakhs participants (Approx. 350 MB csv file)

Approach:-

- Determine the key parameters/metrics which are correlated to probability of having Diabetes in a person
- Develop User Segments based on health and behavior metrics
- Create look-alike process to provide recommendation specific to the segment a new user matches with based on the clustering parameters

SOLUTION APPROACH

Data Extraction and **Preparation**

- Converting SAS data set into R data frame
- Identifying variables of interest
- Data conversion, cleansing and missing value treatment

Logistic Regression For Finding Factors Driving Diabetes Probability

- Iterative model creation using Logistic
 Regression
- Develop confusion matrix for model confidence assessment
- Predict for test data set

Clustering Analysis For Recommendations

Normalize
 Clustering
 variables and
 determine
 number of
 Clusters needed

- Develop K means clustering model
- Profile Clustering Variables

Shiny App
Development For
Results

Used the Shiny
 package to
 develop
 interactive user
 interface for
 Regression Model
 and Clustering
 sepreately

Logistic Regression Output

Test Data Validation

Prediction / Actual	0	1
О	6936	2613
1	2660	7030

% False Positive :- 13.8%

% False Negatives :- 13.5 %

Model Accuracy :- ~75%

Genetics plays a very strong and important role in determining diabetic probability in a person. If we can include that data in the model, the accuracy will go up.

User Segmentation and Recommendations

 We have 6 different clusters based on Height, weight, age, sleeping hours and household income.

1	

Cluster	% Users
1	15 %
2	22 %
3	13 %
4	19 %
5	17 %
6	14 %

• We have used lifestyle variables like Smoking Habits, Alcohol Consumption, Sleeping Hours and BMI for recommendation for leading a healthy life within a user segment.

Working Prototype Demo

What Next?

- Integration of Probability Prediction and Recommendation Engine together in one interface to create a seamless experience.
- Include more data elements in the models such biometric data (haemoglobin, feet check, blood sugar etc), family history, lifestyle variables etc to improve the model's accuracy and robustness.
- Develop mobile/web apps for people to self monitor their diabetic risks based on these parameters continuously and take preventive actions or medical consultations as needed.
- Start ingesting data from connected fitness devices to improve the coverage of the model.
- Include some geographical and ethnic variables in the model to tailor it for different geography and targeted user base.

 Ex:- People living in Northern Climates have higher risk for Type 1 diabetes.