

U.C Sistemas Digitais

Relatório do Projeto da Máquina de Secar

Docente:

Pedro Salgueiro

Discentes:

Gonçalo Barradas 48402

Pedro Figueirinha 48332

Introdução

Este trabalho, tem como objetivo desenvolver um sistema de controlo de uma máquina de secar roupa. A máquina tem que ser composta por três módulos diferentes. Um módulo de controlo da máquina (MCMA), um módulo de controlo do motor (MCMO) e um módulo de controlo da temperatura (MCT).

O módulo de controlo da temperatura, consiste na ativação e funcionamento de um elemento de aquecimento do ar, que é gerido por um sensor de temperatura. Quando este está ativo, o elemento de aquecimento do ar começa a funcionar.

O módulo de controlo do motor, serve para fazer rodar o tambor da máquina, cada ciclo de rotação é dependente de uma condição. Condição esta, que não sendo verdade, desliga o módulo.

O módulo de controlo da máquina serve para gerir o MCMO e o MCT.

Este projeto consistiu no desenvolvimento de duas versões de circuitos. Na primeira versão, cada módulo tinha mais que um input para condicionar o seu funcionamento. Para podermos explicar melhor, utilizemos o MCMO como referência. Inicialmente, este módulo tinha como entradas: "OK" (que era o estado proveniente do MCMA que, quando ativo, iniciava o funcionamento do MCMO e do MCT) e "SSBi" (sensor de porta aberta, sensor de roupa seca e botão de início).

O facto de, estas duas entradas, não estarem concatenadas em apenas uma, levou à existência de um erro. O funcionamento do modelo era o seguinte:

- 1. O MCMO encontra-se no estado inicial, ou seja, está desligado;
- 2. O MCMO começa a funcionar se o input "OK" tiver o valor 1, se for 0 continua desligado;
- 3. Imediatamente ao motor ser ligado, é executada uma rotação para a direita.
- 4. Após a primeira rotação para a direita, vai ser avaliada a condição SSBi.
- 5. No caso de SSBi ser igual a um, o motor executa uma segunda rotação para a direita.
- 6. Após a segunda rotação para a direita, a condição SSBi é novamente avaliada.
- 7. No caso de SSBi igual a um, o motor executa a primeira rotação para a esquerda.
- 8. Após a primeira rotação para a esquerda, a condição SSBi é novamente avaliada.
- 9. Igual ao ponto 7, no entanto o motor executa a segunda rotação para a esquerda.

- 10. Após a segunda rotação para a esquerda o motor volta ao estado inicial.
- A continuação do funcionamento do motor está agora dependente do valor de OK.

Depois de desenvolvido o circuito correspondente a esta lógica, conseguimos identificar que o erro consistia na ausência de uma avaliação constante da condição OK. A condição OK é a condição que permite que o módulo esteja a funcionar. Após desenvolvermos o circuito reparámos que durante a fase de testes, quando o motor ja estivesse a funcionar e a executar rotações, que poderíamos alterar o valor da entrada OK para zero e o MCMO continuava a funcionar, o que não poderia ser.

Outro problema relacionado com o número de entradas foi quando juntámos os módulos uns aos outros, uma representação gráfica do circuito é apresentada a baixo.

Figura 1 - MCMA versão 1.

Neste circuito é criada alguma confusão pelo facto de as entradas do MCMA serem o Botão inicial(Bi), os Sensores de porta aberta e de roupa seca (SPA+SRS) e ainda existirem as duas entradas para o MCMO e para o MCT. A segunda estrada para o MCMO é exatamente o Bi e o SPA+SRS, que juntos são labelados como SSBi. Ainda para o MCT, a segunda entrada é o SSBi juntamente com o sensor de temperatura. A repetição das mesmas variáveis em entradas diferentes, torna o circuito pouco pragmático e nada autónomo.

De forma a resolver este problema, começámos a testar no logisgim a concatenação dos inputs e juntamente com a utilização de portas lógicas atingimos um funcionamento eficiente do circuito.

Esta informação permitiu percebermos que era possível simplificar o circuito e tornálo mais autónomo.

Ao longo deste relatório vamos explicar o funcionamento desta versão mais simples mais eficiente e que julgamos que não se afastou das diretrizes dadas pelo professor.

Vamos, no entanto, de forma a mostrar o nosso processo, anexar, os modelos ASM, as tabelas de transição de estados, os mapas de karnaugh e os circuitos da primeira versão.

Índice

	1.1. Modelo ASM.	6
	1.2. Funcionamento do Módulo de controlo da máquina	6
	1.3. Tabela de Verdade.	7
	1.4. Mapas de Karnaugh com Flip-Flops JK	8
	1.5. Logisim do circuito.	8
2.	Módulo de controlo Temperatura	8
	2.1. Modelo ASM.	8
	2.2. Funcionamento do Módulo de controlo de temperatura	9
	2.3. Tabela de Verdade.	9
	2.4. Mapas de Karnaugh com Flip-Flops JK.	10
	2.5 Logisim do circuito.	10
3.	Módulo de controlo Motor	11
	3.1 Modelo ASM.	11
	3.2 Funcionamento do Módulo de controlo do motor	12
	3.3 Tabela de Verdade	13
	3.4. Mapas de Karnaugh com Flip-Flops JK.	14
	3.5 Logisim do circuito.	15
4.	Circuito controlo do MCMA	16
5.	Balanço Final	17
A	NEXOS	18
	ANEXO I. Modelo ASM do MCMA	19
	ANEXO II. Tabela de transição de estados do MCMA	19
	ANEXO III. Mapas de karnaugh do MCMA	19
	ANEXO IV. Circuito do MCMA	20
	ANEXO V. Modelo ASM do MCMO	20
	ANEXO VI. Tabela de transição de estados do MCMO	20
	ANEXO VII. Mapas de karnaugh MCMO	21
	ANEXO VIII. Circuito do MCMO	21
	ANEXO IX. ASM do MCT	21
	ANEXO X. Tabela de transição de estados MCT	22
	ANEXO XI. Mapas de karnaugh MCT	22
	ANEXO XII. Circuito do MCT	22

1. Módulo controlo máquina.

1.1. Modelo ASM.

1.2. Funcionamento do Módulo de controlo da máquina.

Inputs:

• Sensor de porta aberta, sensor de roupa seca e botão de início(SSBi)+Sensor de temperatura(ST);

Outputs:

• Módulos controlo temperatura e controlo motor são ativados [OK];

Funcionamento:

O módulo de controlo da máquina é responsável por coordenar o funcionamento da máquina, por outra palavras, este módulo é responsável por analisar se estão reunidas as condições para o normal funcionamento da máquina, e caso estas condições se reúnam este módulo também é responsável por ativar e coordenar os restantes módulos que fazem com que a máquina funcione.

Este módulo inicia no estado [a],ou seja é, a maquina esta desligada, a maquina vai permanecer neste estado ate que se verifique que a condição SSBi + ST seja =1,apos que se verifique a veracidade desta condição a maquina transita para o estado [b], o que significa que estão reunidas todas as condições para a máquina começar a funcionar, logo vão ser ativados os módulos de controlo de temperatura e o módulo de controlo do motor, a maquina vai permanecer no estado [b] enquanto a condição SSBi + ST seja igual a 1, quando esta condição se modifique, ou seja quando for igual a 0 a máquina volta ao estado inicial [a].

1.3. Tabela de Verdade.

Inputs	Inputs Estados		On	Qn+1	FLIP	Outputs	
SSBi + ST	act	prox	Qn	QIITI	J	K	OK
0	a a		0	0	0	X	0
0	b a		1	0	X	1	1
1	a b		0	1	1	X	0
1	b	b	1	1	X	0	1

1.4. Mapas de Karnaugh com Flip-Flops JK.

J		
SSBi+ST	>	〈
COBITOT	0	1
0	0	Х
1	1	X
I - (SSE); CT)	

J = (SSBi + ST)

ŀ	≺		
	SSBi+ST	>	(
	00201	0	1
	0	X	1
	1	Х	0
	(GGD	- CITE)	

 $K = \overline{(SSB1 + ST)}$

1.5. Logisim do circuito.

2. Módulo de controlo Temperatura

2.1. Modelo ASM.

2.2. Funcionamento do Módulo de controlo de temperatura.

Inputs:

• (OK + ST+ SSBi) -> Condição "OK" proveniente do estado [OK] do módulo de controlo da máquina + Sensor temperatura + Sensor de porta aberta e sensor de roupa seca e Botão de inicio. Estas condições são concatenadas visto que todas implicam o funcionamento ou o não funcionamento do módulo.

Outputs:

• EA ->Elemento aquecimento do ar.

Funcionamento:

Este modulo é ativado quando o estado OK é ativado no módulo de controlo da máquina.

No inicio o modulo encontra-se no estado [a], ou seja, encontra-se desligado, ate que sejam reunidas as condições necessárias para passar para o próximo estado [b]. Para transitar do estado [a] para o estado [b] é necessário que a condição OK+ ST+ SSBi seja igual a 1, caso a condição OK+ ST+ SSBi seja igual a 0 o elemento de aquecimento do ar mantem-se no estado [a]. Apos verificada a condição OK+ ST+ SSBi igual a 1 o elemento de aquecimento do ar vai transitar do esto [a] para o estado [b], onde é ativado o elemento de aquecimento, o elemento de aquecimento do ar permanece neste estado enquanto a condição OK+ ST+ SSBi for igual a 1, caso esta condição se altere, o que quer dizer que a condição OK+ ST+ SSBi é igual a 0 o elemento de aquecimento do ar regressa ao estado inicial, estado[a].

2.3. Tabela de Verdade.

Inputs	Esta	idos			FLIP	Outputs	
SSBi + ST	act	prox	Qn	Qn+1	J	К	EA
0	a a		0	0	0	X	0
0	b a		1	0	X	1	1
1	a b		0	1	1	X	0
1	b	b	1	1	X	0	1

2.4. Mapas de Karnaugh com Flip-Flops JK.

SSBi +)	<
ST	0	1
0	0	Х
1	1	X
	1 (0	CD: CT

SSBi+

ST

Χ

1

1

0

0

2.5 Logisim do circuito.

3. Módulo de controlo Motor

3.1 Modelo ASM.

3.2 Funcionamento do Módulo de controlo do motor.

Inputs:

(OK+SSBi) -> Condição "OK" proveniente do estado [OK] do módulo de controlo da máquina + Sensor de porta aberta, sensor de roupa seca e Botão de inicio. Estas condições são concatenadas visto que todas implicam o funcionamento ou o não funcionamento do módulo.

Outputs:

Motor roda para a direita (RD);

Motor roda para a esquerda (RE);

Funcionamento:

Este módulo é iniciado quando o estado OK é ativado no MCMA.

O módulo encontra-se no estado inicial [a], ou seja, encontra-se desligado, até que a condição OK+SSBi seja igual a 1. Se este for igual a 1, o motor passa para o estado [b] e o tambor executa uma rotação para a direita. Após a primeira rotação para a direita, é analisada novamente a condição OK+SSBi, se esta segurar valor igual a 0 o circuito volta ao estado inicial, caso segure o valor 1, o tambor executa uma segunda rotação para a direita, estado [c]; Após a segunda rotação para a direita, a condição OK+SSBi é novamente avaliada; No caso de OK+SSBi igual a um, o motor executa a primeira rotação para a esquerda, estado [d]; Após a primeira rotação para a esquerda, a condição OK+SSBi é novamente avaliada; Se esta for igual a 1, no entanto o motor executa a segunda rotação para a esquerda; Após a segunda rotação para a esquerda o motor volta ao estado inicial; A continuação do funcionamento do motor está agora dependente do valor de OK+SSBi.

3.3 Tabela de Verdade.

Inputs	Esta	idos		Qn			Qn+1	
OK + SSBi	act	prox	X2	X1	X0	X2	X1	X0
0	а	а	0	0	0	0	0	0
0	b	a	0	0	1	0	0	0
0	С	а	0	1	0	0	0	0
0	d	a	0	1	1	0	0	0
0	e	a	1	0	0	0	0	0
x	X	X	X	X	X	X	X	X
x	X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X	X
1	а	b	0	0	0	0	0	1
1	b	С	0	0	1	0	1	0
1	С	d	0	1	0	0	1	1
1	d	е	0	1	1	1	0	0
1	е	а	1	0	0	0	0	0
x	X	X	X	X	X	X	X	Х
x	X	X	X	X	X	Х	х	х
X	X	X	X	X	X	х	x	X

FLIP F	LOP A	FLIP F	LOP B	FLIP F	LOP C	Outp	outs
JA	KA	JB	KB	JC	KC	RD	RE
0	X	0	X	0	X	0	0
0	X	0	X	X	1	1	0
0	X	X	1	0	X	1	0
0	X	X	1	X	1	0	1
X	1	0	X	0	X	0	1
X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X
0	X	0	X	1	X	0	0
0	X	1	X	X	1	1	0
0	X	X	0	1	X	1	0
1	X	Х	1	Х	1	0	1
X	1	0	X	0	X	0	1
X	X	X	X	X	X	X	X
X	X	Х	х	Х	X	X	X
X	X	х	х	х	X	X	X

ΚB

JC

3.4. Mapas de Karnaugh com Flip-Flops JK.

	OK+SSBi/X2		X1,	/X0	
	UN+33BI/AZ	00	01	11	10
	00	0	0	0	0
JA	01	X	X	X	Х
	11	Х	X	X	Х
	10	0	0	1	0

JA = (OK + SSBi)X1X0

X1/X0 OK+SSBi/X2 00 01 11 10 00 Χ Χ Χ Χ KA 01 1 Χ Χ Χ 1 11 Χ Χ Χ 10 Χ Χ Χ

KA = '

X1/X0 OK+SSBi/X2 11 00 01 10 00 0 0 Χ Χ JB 01 0 Χ Х Χ 11 0 Χ Χ Χ 10 1 0 Χ

JB = (OK + SSBi)X0

X1/X0 OK+SSBi/X2 11 10 00 01 1 00 Χ Χ 1 01 Χ Χ Χ Χ 11 Χ Χ Χ 10 Χ 0 Χ

 $KB = \overline{(OK + SSBi)} + X0$

X1/X0 OK+SSBi/X2 00 11 01 10 00 0 0 Χ Χ 01 0 Χ Χ Χ 11 0 Χ Χ Χ 10

 $JC = (OK + SSBi)\overline{X2}$

X1/X0 OK+SSBi/X2 KC 00 01 11 10 00 1 1 Χ Χ 01 Χ Χ Χ Χ 11 Χ Χ Χ Χ 10 1 Χ KC = 1

3.5 Logisim do circuito.

4. Circuito controlo do MCMA

Este circuito serve de controlo ao MCMA. Este circuito é composto por quatro entradas. O botão de inicio, o sensor de porta aberta, o sensor de roupa seca e o sensor de temperatura.

Aqui, procedemos apenas à nossa lógica. Quando o botão de inicio está ligado, a porta nao está aberta ou a roupa nao está seca e o sensor de temperatura não está na temperatura ideal, a máquina está a funcionar.

5. Balanço Final

Ao concluir este trabalho, foi possivel atingir o objetivo pretendido, desenvolver o sistema de controlo de uma máquina de secar roupa. Os três módulos constituíntes, foram, não só, desenvolvidos e testados autonomamente, como também, combinados entre si.

Através de testes feitos no logisim, é possivel concluir que o sistema se encontra a funcionar.

Como foi mencionado na introdução, foi feita uma abordagem inicial ao problema, que após o seu desenvolvimento, foi possivel constatar que o circuito era pragmático. Foi, portanto, com o intuito de resolver este problema, que decidimos reformular a nossa estratégia e re-analizar o problema. Com isto, procedemos ao desenvolvimento de um circuito mais simples e mais eficiente.

Consideramos que apesar de termos chegado ao resultado pretendido, o facto de só nos termos apercebido que o circuito não estava eficiente depois de o termos desenvolvido, fez com que dispensasse-mos tempo considerável em refazer tudo novamente.

Consequentemente, consideramos que foi um processo essencial, expectável e enriquecedor. Não só percebemos que é natural existirem este tipo de erros, como de futuro, passaremos a estar atentos a erros semelhantes.

ANEXOS

ANEXO I. Modelo ASM do MCMA

ANEXO II. Tabela de transição de estados do MCMA

Inp	outs	Esta	idos)n	Qı	1+1	FLIP F	LOP A	FLIP F	LOP B	Outputs
Bi	SPA+SRS	act	prox	X1	X0	X1	X0	JA	KA	JB	KB	OK
0	0	а	а	0	0	0	0	0	X	0	X	0
0	0	b	С	0	1	1	0	1	X	X	1	0
0	0	С	С	1	0	1	0	X	0	0	X	1
x	X	x	X	x	X	X	X	X	X	X	X	X
0	1	а	а	0	0	0	0	0	X	0	X	0
0	1	b	b	0	1	0	1	0	X	X	0	0
0	1	С	a	1	0	0	0	X	1	0	X	1
x	X	X	X	x	X	X	X	X	X	X	X	X
1	0	а	b	0	0	0	1	0	X	1	X	0
1	0	b	С	0	1	1	0	1	X	X	1	0
1	0	С	С	1	0	1	0	x	0	0	X	1
X	X	X	X	X	X	X	X	X	X	X	X	X
1	1	а	b	0	0	0	1	0	X	1	X	0
1	1	b	b	0	1	0	1	0	X	X	0	0
1	1	С	а	1	0	0	0	x	1	0	X	1
x	x	x	X	x	X	X	X	X	X	X	X	X

ANEXO III. Mapas de karnaugh do MCMA

JA= ~(SPA			Ινιαμ				JB = Bi~X1					
IA= (SPA	+5K5JXU						JR = RI XI					
				X1/X0								
			00	01	11	10				X1/X0		
	Bi / SPA+SRS	00	0	1	x	X	10		00	01	11	10
	SPA-	01	0	0	х	X	3i / SPA+SRS	00	0	X	X	0
	, E	11	0	0	х	X	SPA.	01	0	X	x	0
	_	10	0	1	x	X	3/18	11	1	X	x	0
							_	10	1	X	x	0
(A = SPA+	SRS						KB = ~(SPA	+SRS)				
				X1/X0						X1/X0		
	w		00	01	11	10	v .		00	01	11	10
	Bi / SPA+SRS	00	х	x	х	0	3i / SPA+SRS	00	x	1	x	x
	A A	01	x	x	x	1	SPA	01	X	0	x	x
	, iii	11	x	X	x	1	, E	11	X	0	x	X
		10	x	x	x	0	_	10	x	1	x	x
DK = X1~X	(0											

ANEXO IV. Circuito do MCMA

ANEXO V. Modelo ASM do MCMO

ANEXO VI. Tabela de transição de estados do MCMO

					Qn			Qn+1		FLIPE	LOP A	FLIP F	LOP B	FLIP	LOP C	Out	outs
ОК	SSBi	act	prox	X2	X1	X0	X2	X1	X0	JA	KA	JB	КВ	JC	KC	RD	RE
0	0	а	a	0	0	0	0	0	0	0	x	0	x	0	x	0	0
0	0	b	a	0	0	1	0	0	0	0	х	0	x	х	1	1	0
0	0	С	a	0	1	0	0	0	0	0	x	x	1	0	x	1	0
0	0	d	а	0	1	1	0	0	0	0	x	x	1	x	1	0	1
0	0	e	а	1	0	0	0	0	0	х	1	0	x	0	x	0	1
X	x	x	x	x	x	x	X	х	x	x	x	x	x	х	x	x	x
X	x	x	x	x	x	x	x	х	x	x	x	x	x	х	x	x	х
X	x	x	x	x	x	x	x	х	x	x	x	x	x	х	x	x	х
0	1	а	a	0	0	0	0	0	0	0	x	0	x	0	x	0	0
0	1	b	С	0	0	1	0	1	0	0	x	1	x	х	1	1	0
0	1	С	d	0	1	0	0	1	1	0	x	x	0	1	x	1	0
0	1	d	e	0	1	1	1	0	0	1	x	x	1	х	1	0	1
0	1	e	a	1	0	0	0	0	0	x	1	0	x	0	x	0	1
x	x	x	x	x	x	x	x	х	x	x	x	x	x	х	x	x	х
х	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
X	x	x	x	X	x	x	X	x	x	X	X	X	x	x	X	x	x
1	0	а	b	0	0	0	0	0	1	0	X	0	X	1	X	0	0
1	0	b	a	0	0	1	0	0	0	0	X	0	X	х	1	1	0
1	0	С	a	0	1	0	0	0	0	0	X	X	1	0	X	1	0
1	0	d	a	0	1	1	0	0	0	0	x	x	1	x	1	0	1
1	0	e	а	1	0	0	0	0	0	x	1	0	x	0	X	0	1
X	x	x	x	X	x	x	X	x	X	X	X	X	X	x	X	x	x
X	x	x	X	X	x	x	X	х	X	X	X	X	X	х	X	X	х
Х	x	x	X	X	X	x	X	х	X	X	X	X	X	x	X	x	x
1	1	а	b	0	0	0	0	0	1	0	X	0	X	1	X	0	0
1	1	b	С	0	0	1	0	1	0	0	X	1	x	x	1	1	0
1	1	С	d	0	1	0	0	1	1	0	x	х	0	1	x	1	0
1	1	d	e	0	1	1	1	0	0	1	X	X	1	х	1	0	1
1	1	e	a	1	0	0	0	0	0	X	1	0	X	0	X	0	1
х	x	x	x	X	x	x	X	х	X	x	X	X	X	х	X	x	x
х	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
x	x	x	x	x	x	x	x	х	x	x	x	x	x	х	x	x	x

ANEXO VII. Mapas de karnaugh MCMO

ANEXO VIII. Circuito do MCMO

ANEXO IX. ASM do MCT

ANEXO X. Tabela de transição de estados MCT

				Qn	Qn+1	FLIP FLOP		Outputs
ОКВі	ST+SSBi	act	prox	X0	X0	J	К	EA
0	0	a	a	0	0	0	х	0
0	0	b	b	1	1	X	0	1
0	1	а	а	0	0	0	X	0
0	1	b	а	1	0	X	1	1
1	0	а	b	0	1	1	X	0
1	0	b	b	1	1	X	0	1
1	1	a	b	0	1	1	X	0
1	1	b	а	1	0	х	1	1

ANEXO XI. Mapas de karnaugh MCT

ANEXO XII. Circuito do MCT

