- **Задача 1.** Школьник дал такое определение непрерывности функции f в точке a: «существует $\varepsilon > 0$, что для любого $\delta > 0$ и любого $x \in (a \delta, a + \delta)$ выполнено $|f(x) f(a)| \le \varepsilon$ ». **a)** Будет ли «непрерывной» при этом определении хоть в одной точке функция x^2 ? **6)** Какое свойство функции описано этим определением?
- **Задача 2.** Функция f монотонно возрастает на отрезке [a;b]. Известно, что для любого числа k из отрезка [f(a);f(b)] найдется такое число $c\in [a;b]$, что f(c)=k. Обязательно ли f непрерывна на отрезке [a;b]?
- **Задача 3.** Пусть $f \in C(\mathbb{R})$, f не константа. Докажите, что найдётся такое $r \notin \mathbb{Q}$, что $f(r) \notin \mathbb{Q}$.
- **Задача** 4^{\varnothing} . Пусть существует такая константа C>0, что на некотором интервале I выполнено неравенство $|f(x)-f(y)| \leq C|x-y|$. Докажите, что f непрерывна на этом интервале.
- **Задача 5.** Докажите, что **a)** $\sin x < x$ при x > 0; **б)** $x < \tan x$ при $0 < x < \pi/2$.
- **Задача 6.** Докажите непрерывность (на области определения): **a)** $\sin x$; **б)** $\cos x$; **в)** $\operatorname{tg} x$.
- Задача f^{\varnothing} . Пусть $f(x) = \frac{\sin x}{x}$ при $x \neq 0$ и f(0) = 1. Докажите, что f непрерывна на \mathbb{R} .
- **Задача 8.** Функции f и g непрерывны на \mathbb{R} . Верно ли, что $\max(f(x), g(x))$ непрерывна на \mathbb{R} ?
- Задача 9. (Теорема Л. Бра́уэра о неподвижной точке для отрезка). Пусть $f \in C([0;1])$ и все значения функции f содержатся в отрезке [0;1]. Докажите, что уравнение f(x)=x имеет корень.
- **Задача 10.** Пусть $f \in C(\mathbb{R})$ и уравнение f(x) = x не имеет корней. Имеет ли корни уравнение f(f(x)) = x?
- **Задача 11. а)** Уравнение $x^3 + ax + 1 = 0$ имеет три действительных корня. Докажите, что для некоторого $\varepsilon > 0$ уравнение $x^3 + bx + 1 = 0$ имеет три действительных корня при каждом $b \in (a \varepsilon; a + \varepsilon)$. **6)** Пусть $f(t) = \min\{x \mid x^3 + tx + 1 = 0\}$. Верно ли, что f непрерывна в некой окрестности a из пункта a)? А на \mathbb{R} ?
- **Задача 12.** Однажды утром (в 9^{00}) турист вышел из лагеря к вершине горы и добрался туда в 20^{00} . В 9^{00} следующего дня он начал спуск с вершины (по той же тропе, что и поднимался) и в 20^{00} вернулся в лагерь. Найдётся ли на тропе точка, которую турист проходил в одно и то же время в день подъёма и в день спуска?
- **Задача 13.** Пусть $f: \mathbb{R} \to \mathbb{R}$ непрерывная функция, (a;b) любая точка на координатной плоскости. Докажите, что среди всех точек графика функции f найдётся такая, расстояние от которой до точки (a,b) минимально (не больше, чем расстояние от любой другой точки графика f до (a;b)).
- **Задача 14.** Выпуклый многоугольник M, прямая l и точка A лежат в одной плоскости. Докажите, что найдётся прямая l', делящая M на две равновеликие части и **a)** параллельная l; **б)** проходящая через A.
- **Задача 15** Пусть S^1 окружность на плоскости. **a)** Дайте определение непрерывной функции $f: S^1 \to \mathbb{R}$. **6)** Пусть $f: S^1 \to \mathbb{R}$ непрерывна. Докажите, что у S^1 найдётся такой диаметр AB, что f(A) = f(B).
- Задача 16. (Теоремы о влинах). На сковороде лежат два блина (многоугольники). Докажите, что
- а) есть прямая, делящая каждый блин на две равновеликие части (часть может состоять из многих кусков);
- б) найдутся две перпендикулярные прямые, делящие первый блин на четыре равновеликие части.
- **Задача 17.** Верно ли, что каждая внутренняя точка любого выпуклого многогранника принадлежит какомуто отрезку, концы которого находятся на рёбрах этого многогранника?
- **Задача 18*.** Фигура ограничена и выпукла. Всегда ли **а)** вокруг неё можно описать квадрат; **б)** в неё можно вписать квадрат, если она центрально-симметрична; **в)** некая прямая делит пополам её площадь и периметр?
- **Определение 1.** Говорят, что у функции $f: M \to \mathbb{R}$ есть на графике *горизонтальная хорда длины* δ , если найдутся такие точки $x, y \in M$, что $|x y| = \delta$ и f(x) = f(y).
- **Задача 19.** Пусть f непрерывная периодическая функция на \mathbb{R} с периодом T. Докажите, что ее график имеет горизонтальную хорду длины T/2; T/3; l при любом $l \in \mathbb{R}$.
- **Задача 20.** Пусть $f \in C([0;1])$, f(0) = f(1). Для каких a у f обязательно есть горизонтальная хорда длины a?
- Задача 21*. Среди ровной степи стоит гора. На вершину ведут две тропы (считаем их графиками непрерывных функций), не опускающиеся ниже уровня степи. Два альпиниста одновременно начали подъём (по разным тропам), соблюдая условие: всё время быть на одинаковой высоте. Смогут ли они достичь вершины, двигаясь непрерывно, если а) тропы состоят из конечного числа подъёмов и спусков; б) в общем случае?
- **Задача 22*.** Из A в B ведут две дороги, не пересекающие друг друга и сами себя. Две машины, связанные верёвкой длины 15 м, проехали из A в B по разным дорогам, не порвав верёвки. Два круглых воза радиуса 8 м выезжают одновременно по разным дорогам, один из A в B, другой из B в A. Могут ли они разминуться?

1 a	1 б	2	?	3	4	5 a	5 6	6 a	6 6	6 B	7	8	9	10	11 a	11 ნ	12	13	14 a	14 б	15 a	15 б	16 a	16 б	17	18 a	18 б	18 B	19	20	21 a	21 б	22