Analyse 1

TD 3
Correction des exercices 1 à 10

On considère la fonction $f:[0,3]\to\mathbb{R}$, définie par $f(x)=\begin{cases}2x & \mathrm{si} & 0\leq x\leq 1\\3-x & \mathrm{si} & 1< x\leq 3\end{cases}$ Tracer la courbe représentative de f. Déterminer $\int_0^3 f(x)\,dx$ par un simple calcul d'aire.

Exercice n°1 TD₃

On considère la fonction $f:[0,3] \to \mathbb{R}$, définie par $f(x) = \begin{cases} 2x & \text{si} \quad 0 \le x \le 1 \\ 3 - x & \text{si} \quad 1 < x \le 3 \end{cases}$.

Tracer la courbe représentative de f. Déterminer $\int_0^3 f(x) dx$ par un simple calcul d'aire.

Tracé de la courbe représentative de f :

On considère la fonction $f:[0,3] \to \mathbb{R}$, définie par $f(x) = \begin{cases} 2x & \text{si } 0 \le x \le 1 \\ 3 - x & \text{si } 1 < x \le 3 \end{cases}$.

Tracer la courbe représentative de f. Déterminer $\int_0^3 f(x) dx$ par un simple calcul d'aire.

Tracé de la courbe représentative de f :

On rappelle que l'intégrale d'une fonction positive est l'aire du domaine situé entre la courbe et l'axe des abscisses.

On considère la fonction $f:[0,3] \to \mathbb{R}$, définie par $f(x) = \begin{cases} 2x & \text{si } 0 \le x \le 1 \\ 3 - x & \text{si } 1 < x \le 3 \end{cases}$.

Tracer la courbe représentative de f. Déterminer $\int_0^3 f(x) dx$ par un simple calcul d'aire.

Tracé de la courbe représentative de f :

On rappelle que l'intégrale d'une fonction positive est l'aire du domaine situé entre la courbe et l'axe des abscisses.

Donc

$$\int_{0}^{3} f(x)dx = \operatorname{Aire}(T) = \frac{3 \times 2}{2} = 3.$$

Un train part d'une gare A au temps t=0 et arrive en gare B au temps t=30 (exprimé en minutes). On note v(t) la vitesse instantanée (exprimée en kilomètres par minute) du train à l'instant t. On a

$$v(t) = \begin{cases} \min(4, t) & \text{pour } 0 \le t \le 24\\ 28 - t & \text{pour } 24 \le t \le 26\\ 2 & \text{pour } 26 \le t \le 29\\ 60 - 2t & \text{pour } 29 \le t \le 30 \end{cases}$$

a) Déterminer la distance parcourue par le train entre les gares A et B.

Un train part d'une gare A au temps t=0 et arrive en gare B au temps t=30 (exprimé en minutes). On note v(t) la vitesse instantanée (exprimée en kilomètres par minute) du train à l'instant t. On a

$$v(t) = \begin{cases} \min(4, t) & \text{pour} & 0 \le t \le 24\\ 28 - t & \text{pour} & 24 \le t \le 26\\ 2 & \text{pour} & 26 \le t \le 29\\ 60 - 2t & \text{pour} & 29 \le t \le 30 \end{cases}$$

- a) Déterminer la distance parcourue par le train entre les gares A et B.
- a) La distance parcourue entre les instants t = 0 et t = 30 est

$$D = \int_0^{30} v(t)dt.$$

Un train part d'une gare A au temps t=0 et arrive en gare B au temps t=30 (exprimé en minutes). On note v(t) la vitesse instantanée (exprimée en kilomètres par minute) du train à l'instant t. On a

$$v(t) = \begin{cases} \min(4, t) & \text{pour } 0 \le t \le 24\\ 28 - t & \text{pour } 24 \le t \le 26\\ 2 & \text{pour } 26 \le t \le 29\\ 60 - 2t & \text{pour } 29 \le t \le 30 \end{cases}$$

- a) Déterminer la distance parcourue par le train entre les gares A et B.
- a) La distance parcourue entre les instants t=0 et t=30 est

$$D = \int_0^{30} v(t)dt.$$

Comme

$$\min(4, t) = \begin{cases} t & \text{pour} \quad t \leq 4\\ 4 & \text{pour} \quad t > 4 \end{cases}$$

Un train part d'une gare A au temps t=0 et arrive en gare B au temps t=30 (exprimé en minutes). On note v(t) la vitesse instantanée (exprimée en kilomètres par minute) du train à l'instant t. On a

$$v(t) = \begin{cases} \min(4, t) & \text{pour } 0 \le t \le 24\\ 28 - t & \text{pour } 24 \le t \le 26\\ 2 & \text{pour } 26 \le t \le 29\\ 60 - 2t & \text{pour } 29 \le t \le 30 \end{cases}$$

- a) Déterminer la distance parcourue par le train entre les gares A et B.
- a) La distance parcourue entre les instants t=0 et t=30 est

$$D = \int_0^{30} v(t)dt.$$

Comme

$$\min(4, t) = \begin{cases} t & \text{pour} \quad t \leq 4\\ 4 & \text{pour} \quad t > 4 \end{cases}$$

alors d'après la relation de Chasles

$$D = \int_0^4 t dt + \int_0^{24} 4 dt + \int_0^{26} (28 - t) dt + \int_0^{29} 2 dt + \int_0^{30} (60 - 2t) dt.$$

a) Déterminer la distance parcourue par le train entre les gares A et B.

a) Déterminer la distance parcourue par le train entre les gares A et B.

$$\int_0^4 t dt = \operatorname{Aire}(A_1) = \frac{4 \times 4}{2} = 8$$

a) Déterminer la distance parcourue par le train entre les gares A et B.

$$\int_0^4 t dt = \operatorname{Aire}(A_1) = \frac{4 \times 4}{2} = 8$$

$$\int_{4}^{24} 4dt = Aire(A_2) = (24 - 4) \times 4 = 80$$

a) Déterminer la distance parcourue par le train entre les gares A et B.

a) Déterminer la distance parcourue par le train entre les gares A et B.

$$\int_{24}^{26} (28 - t)dt = Aire(A_3) = \frac{(4+2)(26-24)}{2} = 6$$

a) Déterminer la distance parcourue par le train entre les gares A et B.

$$\int_{24}^{26} (28 - t)dt = Aire(A_3) = \frac{(4+2)(26-24)}{2} = 6$$

$$\int_{26}^{29} 2dt = Aire(A_4) = 2(29 - 26) = 6$$

a) Déterminer la distance parcourue par le train entre les gares A et B.

a) Déterminer la distance parcourue par le train entre les gares A et B.

$$\int_{29}^{30} (60 - 2t) dt = Aire(A_5) = \frac{2(30 - 29)}{2} = 1$$

a) Déterminer la distance parcourue par le train entre les gares A et B.

$$\int_{29}^{30} (60 - 2t) dt = Aire(A_5) = \frac{2(30 - 29)}{2} = 1$$

Donc

$$D = 8 + 80 + 6 + 6 + 1 = 101 \text{ km}.$$

TD 3

b) Donner la vitesse moyenne du train sur le parcours en $\rm km \cdot mn^{-1}$ puis en $\rm km \cdot h^{-1}$.

b) Donner la vitesse moyenne du train sur le parcours en ${\rm km\cdot mn^{-1}}$ puis en ${\rm km\cdot h^{-1}}$.

La vitesse moyenne du train en ${
m km}{\cdot}{
m mn}^{-1}$ entre t= 0 et t= 30 vaut

$$V = \frac{D}{30} = \frac{101}{30} \approx 3.36 \text{ km} \cdot \text{mn}^{-1}.$$

b) Donner la vitesse moyenne du train sur le parcours en $\rm km \cdot mn^{-1}$ puis en $\rm km \cdot h^{-1}$.

La vitesse moyenne du train en $\mathrm{km} \cdot \mathrm{mn}^{-1}$ entre t = 0 et t = 30 vaut

$$V = \frac{D}{30} = \frac{101}{30} \approx 3.36 \text{ km} \cdot \text{mn}^{-1}.$$

En $\mathrm{km} \cdot \mathrm{h}^{-1}$

$$V = \frac{D}{0.5} = \frac{101}{0.5} = 202 \text{ km} \cdot \text{h}^{-1}$$
 (30mn = 0.5h).

a) Déterminer la primitive sur $\mathbb R$ de la fonction $f:x\mapsto {\tt l}-{\tt 2}x+x^2$ qui s'annule en o, puis celle qui s'annule en 2.

a) Déterminer la primitive sur $\mathbb R$ de la fonction $f:x\mapsto {\tt l}-{\tt 2}x+x^2$ qui s'annule en 0, puis celle qui s'annule en 2.

On rappelle que si $n\in\mathbb{N}$

$$x\mapsto rac{x^{n+1}}{n+1}$$
 est une primitive sur $\mathbb R$ de $x\mapsto x^n$.

a) Déterminer la primitive sur $\mathbb R$ de la fonction $f:x\mapsto \mathbf 1-2x+x^2$ qui s'annule en o, puis celle qui s'annule en 2.

On rappelle que si $n \in \mathbb{N}$

$$x \mapsto \frac{x^{n+1}}{n+1}$$
 est une primitive sur \mathbb{R} de $x \mapsto x^n$.

Donc les primitives de $f: x \mapsto \mathbf{1} - \mathbf{2}x + x^2$ sont de la forme

$$x \mapsto x - 2\left(\frac{x^2}{2}\right) + \frac{x^3}{3} + C = x - x^2 + \frac{x^3}{3} + C, \ C \in \mathbb{R}.$$

a) Déterminer la primitive sur $\mathbb R$ de la fonction $f:x\mapsto \mathbf 1-2x+x^2$ qui s'annule en o, puis celle qui s'annule en 2.

On rappelle que si $n \in \mathbb{N}$

$$x \mapsto \frac{x^{n+1}}{n+1}$$
 est une primitive sur \mathbb{R} de $x \mapsto x^n$.

Donc les primitives de $f: x \mapsto \mathbf{1} - \mathbf{2}x + x^2$ sont de la forme

$$x \mapsto x - 2\left(\frac{x^2}{2}\right) + \frac{x^3}{3} + C = x - x^2 + \frac{x^3}{3} + C, \ C \in \mathbb{R}.$$

Notons F_0 (resp. F_2) la primitive de f qui s'annule en o (resp. en 2)

a) Déterminer la primitive sur $\mathbb R$ de la fonction $f:x\mapsto {\tt l}-2x+x^2$ qui s'annule en o, puis celle qui s'annule en 2.

On rappelle que si $n \in \mathbb{N}$

$$x \mapsto \frac{x^{n+1}}{n+1}$$
 est une primitive sur \mathbb{R} de $x \mapsto x^n$.

Donc les primitives de $f: x \mapsto \mathbf{1} - \mathbf{2}x + x^2$ sont de la forme

$$x \mapsto x - 2\left(\frac{x^2}{2}\right) + \frac{x^3}{3} + C = x - x^2 + \frac{x^3}{3} + C, \ C \in \mathbb{R}.$$

Notons F_0 (resp. F_2) la primitive de f qui s'annule en o (resp. en 2)

Comme $F_0(0) = C = 0$ alors

$$F_0(x) = x - x^2 + \frac{x^3}{3}$$
.

a) Déterminer la primitive sur $\mathbb R$ de la fonction $f:x\mapsto \mathbf 1-2x+x^2$ qui s'annule en 0, puis celle qui s'annule en 2.

On rappelle que si $n \in \mathbb{N}$

$$x \mapsto \frac{x^{n+1}}{n+1}$$
 est une primitive sur \mathbb{R} de $x \mapsto x^n$.

Donc les primitives de $f: x \mapsto \mathbf{1} - \mathbf{2}x + x^2$ sont de la forme

$$x \mapsto x - 2\left(\frac{x^2}{2}\right) + \frac{x^3}{3} + C = x - x^2 + \frac{x^3}{3} + C, \ C \in \mathbb{R}.$$

Notons F_0 (resp. F_2) la primitive de f qui s'annule en o (resp. en 2)

Comme $F_0(0) = C = 0$ alors

$$F_0(x) = x - x^2 + \frac{x^3}{3}.$$

Comme
$$F_2(2)=2-4+\frac{8}{3}+C=0$$
 alors $C=-2+4-\frac{8}{3}=-\frac{2}{3}$ et donc
$$F_2(x)=x-x^2+\frac{x^3}{3}-\frac{2}{3};$$

b) Soit $g:]0,+\infty[\to\mathbb{R}$, définie par $g(t)=\frac{2}{t}-t$. Déterminer la primitive de g qui s'annule en 1, puis celle qui vaut 3 en e.

b) Soit $g:]0,+\infty[\to\mathbb{R}$, définie par $g(t)=\frac{2}{t}-t$. Déterminer la primitive de g qui s'annule en 1, puis celle qui vaut 3 en e.

On rappelle que

$$t\mapsto \ln t$$
 est une primitive de $t\mapsto \frac{\mathbf{1}}{t}\sup]\mathbf{0},+\infty[.$

b) Soit $g:]0,+\infty[\to\mathbb{R}$, définie par $g(t)=\frac{2}{t}-t$. Déterminer la primitive de g qui s'annule en 1, puis celle qui vaut 3 en e.

On rappelle que

$$t\mapsto \ln t$$
 est une primitive de $t\mapsto \frac{\mathbf{1}}{t}\sup]\mathbf{0},+\infty[.$

Donc les primitives de $f:t\mapsto g(t)=rac{2}{t}-t$ sur $]{
m o},+\infty[$ sont de la forme

$$t\mapsto 2\ln t-\frac{t^2}{2}+C,\quad C\in\mathbb{R}.$$

b) Soit $g:]0,+\infty[\to\mathbb{R},$ définie par $g(t)=\frac{2}{t}-t.$ Déterminer la primitive de g qui s'annule en 1, puis celle qui vaut 3 en e.

On rappelle que

$$t\mapsto \ln t$$
 est une primitive de $t\mapsto \frac{1}{t}\sup]0,+\infty[.$

Donc les primitives de $f:t\mapsto g(t)=\frac{2}{t}-t$ sur $]0,+\infty[$ sont de la forme

$$t\mapsto 2\ln t-\frac{t^2}{2}+C,\quad C\in\mathbb{R}.$$

Notons G_1 (resp. G_3) la primitive de g qui s'annule en 1 (resp. qui vaut 3 en e).

b) Soit $g:]0,+\infty[\to\mathbb{R}$, définie par $g(t)=\frac{2}{t}-t$. Déterminer la primitive de g qui s'annule en 1, puis celle qui vaut 3 en e.

On rappelle que

$$t\mapsto \ln t$$
 est une primitive de $t\mapsto \frac{1}{t}\sup]0,+\infty[.$

Donc les primitives de $f: t\mapsto g(t)=\frac{2}{t}-t$ sur $]0,+\infty[$ sont de la forme

$$t\mapsto 2\ln t-rac{t^2}{2}+C,\quad C\in\mathbb{R}.$$

Notons G_1 (resp. G_3) la primitive de g qui s'annule en 1 (resp. qui vaut 3 en e).

Comme $G_1(1) = 2 \ln 1 - \frac{1}{2} + C = 0$ alors $C = \frac{1}{2}$ et donc

$$G_1(t) = 2 \ln t - \frac{t^2}{2} + \frac{1}{2}.$$

b) Soit $g:]0,+\infty[\to\mathbb{R}$, définie par $g(t)=\frac{2}{t}-t$. Déterminer la primitive de g qui s'annule en 1, puis celle qui vaut 3 en e.

On rappelle que

$$t\mapsto \ln t$$
 est une primitive de $t\mapsto \frac{\mathbf{1}}{t}\sup]\mathbf{0},+\infty[.$

Donc les primitives de $f: t \mapsto g(t) = \frac{2}{t} - t$ sur $]0, +\infty[$ sont de la forme

$$t\mapsto 2\ln t-\frac{t^2}{2}+C,\quad C\in\mathbb{R}.$$

Notons G_1 (resp. G_3) la primitive de g qui s'annule en 1 (resp. qui vaut 3 en e).

Comme $G_1(1) = 2 \ln 1 - \frac{1}{2} + C = 0$ alors $C = \frac{1}{2}$ et donc

$$G_1(t) = 2 \ln t - \frac{t^2}{2} + \frac{1}{2}.$$

Comme $G_3(e) = 2 \ln e - \frac{e^2}{2} + C = 3$ alors $C = \frac{e^2}{2} + 1$ et donc

$$G_3(t) = 2 \ln t - \frac{t^2}{2} + \frac{e^2}{2} + 1.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}$$
, $f(x) = (2x + 1)^3$;

a)
$$I=\mathbb{R}$$
, $f(x)=(2x+1)^3$; b) $I=\mathbb{R}$, $f(t)=e^{\lambda t}$ $(\lambda\in\mathbb{R}^*)$;

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

g)
$$I =]-1/3, +\infty[$$
 ou $I =]-\infty, -1/3[$, $f(t) = \frac{4}{3t+1}$.

Exercice nº4 TD₃

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}$$
, $f(x) = (2x + 1)^3$;

a)
$$I=\mathbb{R}$$
, $f(x)=(2x+1)^3$; b) $I=\mathbb{R}$, $f(t)=e^{\lambda t}$ $(\lambda\in\mathbb{R}^*)$;

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

f)
$$I = [3, +\infty[, f(x)] = \frac{1}{(x)}$$

g)
$$I =]-1/3, +\infty[$$
 ou $I =]-\infty, -1/3[,$ $f(t) = \frac{4}{3t+1}$.

Dans cet exercice nous utiliserons le résultat suivant :

TD₃ Exercice n°4

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}$$
, $f(x) = (2x + 1)^3$;

a)
$$I = \mathbb{R}$$
, $f(x) = (2x + 1)^3$; b) $I = \mathbb{R}$, $f(t) = e^{\lambda t} (\lambda \in \mathbb{R}^*)$;

c)
$$I = \mathbb{R}, f(x) = b^x (b \in \mathbb{R}_+^*);$$

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s}$$

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

g)
$$I =]-1/3, +\infty[$$
 ou $I =]-\infty, -1/3[$, $f(t) = \frac{4}{3t+1}$.

Dans cet exercice nous utiliserons le résultat suivant :

Si G est une primitive de g sur I, si $a, b \in \mathbb{R}$ avec $a \neq 0$ alors les primitives de $x \mapsto g(ax + b)$ sur $I' = \{x \in \mathbb{R} \mid ax + b \in I\}$ sont de la forme

$$x \mapsto \frac{G(ax+b)}{a} + C, \quad C \in \mathbb{R}$$

TD₃ Exercice n°4

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}, f(x) = (2x + 1)^3$$
;

a)
$$I=\mathbb{R}$$
, $f(x)=(2x+1)^3$; b) $I=\mathbb{R}$, $f(t)=e^{\lambda t}$ $(\lambda\in\mathbb{R}^*)$;

c)
$$I = \mathbb{R}, f(x) = b^{x} (b \in \mathbb{R}_{+}^{*});$$

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s}$$

e)
$$l =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $l =]3, +\infty[, f(x) = \frac{1}{(x-2)^n} (n \in \mathbb{N}^*);$

g)
$$I =]-1/3, +\infty[$$
 ou $I =]-\infty, -1/3[$, $f(t) = \frac{4}{3t+1}$.

Dans cet exercice nous utiliserons le résultat suivant :

Si G est une primitive de g sur I, si $a, b \in \mathbb{R}$ avec $a \neq 0$ alors les primitives de $x \mapsto g(ax + b)$ sur $I' = \{x \in \mathbb{R} \mid ax + b \in I\}$ sont de la forme

$$x \mapsto \frac{G(ax+b)}{a} + C, \quad C \in \mathbb{R}$$

Preuve: Si on note $G_{a,b}(x) := \frac{G(ax+b)}{a}$ alors

$$G'_{a,b}(x) = \frac{1}{2}G'(ax+b)(ax+b)' = G'(ax+b) = g(ax+b)$$

car G' = g vu que G est une primitive de g sur I.

TD₃ Exercice n°4

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}, f(x) = (2x + 1)^3$$
;

a)
$$I = \mathbb{R}$$
, $f(x) = (2x + 1)^3$; b) $I = \mathbb{R}$, $f(t) = e^{\lambda t} (\lambda \in \mathbb{R}^*)$;

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I=\mathbb{R},\ f(x)=(2x+1)^3\,;$$
 b) $I=\mathbb{R},\ f(t)=e^{\lambda t}\ (\lambda\in\mathbb{R}^*)\,;$

a)
$$f(x) = (2x+1)^3 = g(2x+1)$$
 où $g(X) = X^3$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}, f(x) = (2x + 1)^3$$
;

a)
$$I=\mathbb{R}$$
, $f(x)=(2x+1)^3$; b) $I=\mathbb{R}$, $f(t)=e^{\lambda t}$ $(\lambda\in\mathbb{R}^*)$;

a)
$$f(x) = (2x + 1)^3 = g(2x + 1)$$
 où $g(X) = X^3$.

$$X\mapsto \mathit{G}(X)=rac{X^4}{4}$$
 est une primitive de g sur $\mathbb R$

Exercice n°4 TD₃

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}$$
, $f(x) = (2x + 1)^3$; b) $I = \mathbb{R}$, $f(t) = e^{\lambda t} (\lambda \in \mathbb{R}^*)$;

a)
$$f(x) = (2x+1)^3 = g(2x+1)$$
 où $g(X) = X^3$.

$$X\mapsto G(X)=rac{X^4}{4}$$
 est une primitive de g sur $\mathbb R$

Donc les primitives de f sur $\mathbb R$ sont de la forme

$$x \mapsto \frac{G(2x+1)}{2} + C = \frac{(2x+1)^4}{8} + C.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}, f(x) = (2x+1)^3$$
;

a)
$$I=\mathbb{R},\ f(x)=(2x+1)^3$$
; b) $I=\mathbb{R},\ f(t)=e^{\lambda t}\ (\lambda\in\mathbb{R}^*)$;

a)
$$f(x) = (2x+1)^3 = g(2x+1)$$
 où $g(X) = X^3$.

$$X\mapsto G(X)=rac{X^4}{4}$$
 est une primitive de g sur $\mathbb R$

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x \mapsto \frac{G(2x+1)}{2} + C = \frac{(2x+1)^4}{8} + C.$$

b)
$$f(t) = e^{\lambda t} = g(\lambda t)$$
 où $g(X) = e^X$

TD₃ Exercice n°4

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}$$
, $f(x) = (2x+1)^3$;

a)
$$I=\mathbb{R},\ f(x)=(2x+1)^3$$
; b) $I=\mathbb{R},\ f(t)=e^{\lambda t}\ (\lambda\in\mathbb{R}^*)$;

a)
$$f(x) = (2x+1)^3 = g(2x+1)$$
 où $g(X) = X^3$.

$$X\mapsto G(X)=rac{X^4}{4}$$
 est une primitive de g sur $\mathbb R$

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x \mapsto \frac{G(2x+1)}{2} + C = \frac{(2x+1)^4}{8} + C.$$

b)
$$f(t) = e^{\lambda t} = g(\lambda t)$$
 où $g(X) = e^X$

$$X \mapsto G(X) = e^X$$
 est une primitive de g sur \mathbb{R}

Exercice n°4 TD₃

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

a)
$$I = \mathbb{R}, f(x) = (2x + 1)^3$$
;

a)
$$I=\mathbb{R}$$
, $f(x)=(2x+1)^3$; b) $I=\mathbb{R}$, $f(t)=e^{\lambda t}$ $(\lambda\in\mathbb{R}^*)$;

a)
$$f(x) = (2x + 1)^3 = g(2x + 1)$$
 où $g(X) = X^3$.

$$X\mapsto G(X)=rac{X^4}{4}$$
 est une primitive de g sur $\mathbb R$

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x \mapsto \frac{G(2x+1)}{2} + C = \frac{(2x+1)^4}{8} + C.$$

b)
$$f(t) = e^{\lambda t} = g(\lambda t)$$
 où $g(X) = e^X$

$$X \mapsto G(X) = e^X$$
 est une primitive de g sur \mathbb{R}

Donc les primitives de f sur \mathbb{R} sont de la forme

$$t\mapsto rac{G(\lambda t)}{\lambda}+C=rac{e^{\lambda t}}{\lambda}+C,\quad C\in\mathbb{R}.$$

Exercice n°4 TD₃

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}, \ \dot{f}(x) = b^{x} \ (b \in \mathbb{R}_{+}^{*});$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}$$
, $f(x) = b^x$ $(b \in \mathbb{R}_+^*)$; d) $I =]-1, +\infty[$, $f(x) = (x+1)^{\alpha}$ $(\alpha \in \mathbb{R})$;

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}$$
, $f(x) = b^x$ $(b \in \mathbb{R}_+^*)$; d) $I =]-1, +\infty[, f(x) = (x+1)^{\alpha} (\alpha \in \mathbb{R});$

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

$$X\mapsto \mathit{G}(X)=e^X$$
 est une primitive de g sur $\mathbb R$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}$$
, $f(x) = b^x$ $(b \in \mathbb{R}_+^*)$; d) $I =]-1, +\infty[, f(x) = (x+1)^{\alpha} (\alpha \in \mathbb{R});$

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

$$X\mapsto \mathit{G}(X)=\mathit{e}^X$$
 est une primitive de g sur $\mathbb R$

Donc les primitives de f sur $\mathbb R$ sont de la forme

$$x \mapsto \frac{G(x \ln b)}{\ln b} + C = \frac{e^{x \ln b}}{\ln b} + C = \frac{b^x}{\ln b} + C, \quad C \in \mathbb{R}.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

$$X \mapsto G(X) = e^X$$
 est une primitive de g sur \mathbb{R}

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x\mapsto \frac{G(x\ln b)}{\ln b}+C=\frac{e^{x\ln b}}{\ln b}+C=\frac{b^x}{\ln b}+C,\quad C\in\mathbb{R}.$$

d)
$$f(x) = (x + 1)^{\alpha} = g(x + 1)$$
 où $g(X) = X^{\alpha}$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

$$X \mapsto G(X) = e^X$$
 est une primitive de g sur \mathbb{R}

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x\mapsto \frac{G(x\ln b)}{\ln b}+C=\frac{e^{x\ln b}}{\ln b}+C=\frac{b^x}{\ln b}+C,\quad C\in\mathbb{R}.$$

d)
$$f(x) = (x + 1)^{\alpha} = g(x + 1)$$
 où $g(X) = X^{\alpha}$.

Si
$$\alpha \neq -1$$
, $X \mapsto G(X) = \frac{X^{\alpha+1}}{\alpha+1}$ est une primitive de g sur $]0, +\infty[$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}$$
, $f(x) = b^x$ $(b \in \mathbb{R}_+^*)$; d) $I =]-1, +\infty[$, $f(x) = (x+1)^{\alpha}$ $(\alpha \in \mathbb{R})$;

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

$$X \mapsto G(X) = e^X$$
 est une primitive de g sur \mathbb{R}

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x\mapsto \frac{G(x\ln b)}{\ln b}+C=\frac{e^{x\ln b}}{\ln b}+C=\frac{b^x}{\ln b}+C,\quad C\in\mathbb{R}.$$

d)
$$f(x) = (x + 1)^{\alpha} = g(x + 1)$$
 où $g(X) = X^{\alpha}$.

Si
$$\alpha \neq -1$$
, $X \mapsto G(X) = \frac{X^{\alpha+1}}{\alpha+1}$ est une primitive de g sur $]0, +\infty[$.

Donc, si $\alpha \neq -1$, les primitives de f sur $\{x \mid x+1>0\} =]-1, +\infty[$ sont de la forme

$$x \mapsto G(x+1) + C = \frac{(x+1)^{\alpha+1}}{\alpha+1} + C, \quad C \in \mathbb{R}.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}, f(x) = b^x (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, f(x) = (x+1)^{\alpha} (\alpha \in \mathbb{R});$

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

$$X \mapsto G(X) = e^X$$
 est une primitive de g sur \mathbb{R}

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x\mapsto \frac{G(x\ln b)}{\ln b}+C=\frac{e^{x\ln b}}{\ln b}+C=\frac{b^x}{\ln b}+C,\quad C\in\mathbb{R}.$$

d)
$$f(x) = (x + 1)^{\alpha} = g(x + 1)$$
 où $g(X) = X^{\alpha}$.

Si
$$\alpha \neq -1$$
, $X \mapsto G(X) = \frac{X^{\alpha+1}}{\alpha+1}$ est une primitive de g sur $]0, +\infty[$.

Donc, si $\alpha \neq -1$, les primitives de f sur $\{x \mid x+1>0\} =]-1, +\infty[$ sont de la forme

$$x \mapsto G(x+1) + C = \frac{(x+1)^{\alpha+1}}{\alpha+1} + C, \quad C \in \mathbb{R}.$$

Si
$$\alpha = -1$$
, $X \mapsto G(X) = \ln(X)$ est une primitive de g sur $]0, +\infty[$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

c)
$$I = \mathbb{R}, \ f(x) = b^x \ (b \in \mathbb{R}_+^*);$$
 d) $I =]-1, +\infty[, \ f(x) = (x+1)^{\alpha} \ (\alpha \in \mathbb{R});$

c)
$$f(x) = b^x = e^{x \ln b} = g(x \ln b)$$
 où $g(X) = e^X$

$$X \mapsto G(X) = e^X$$
 est une primitive de g sur \mathbb{R}

Donc les primitives de f sur \mathbb{R} sont de la forme

$$x\mapsto \frac{G(x\ln b)}{\ln b}+C=\frac{e^{x\ln b}}{\ln b}+C=\frac{b^x}{\ln b}+C,\quad C\in\mathbb{R}.$$

d)
$$f(x) = (x + 1)^{\alpha} = g(x + 1)$$
 où $g(X) = X^{\alpha}$.

Si
$$\alpha \neq -1$$
, $X \mapsto G(X) = \frac{X^{\alpha+1}}{\alpha+1}$ est une primitive de g sur $]0, +\infty[$.

Donc, si $\alpha \neq -1$, les primitives de f sur $\{x \mid x+1>0\} =]-1, +\infty[$ sont de la forme

$$x \mapsto G(x+1) + C = \frac{(x+1)^{\alpha+1}}{\alpha+1} + C, \quad C \in \mathbb{R}.$$

Si $\alpha = -1$, $X \mapsto G(X) = \ln(X)$ est une primitive de g sur $]0, +\infty[$.

Dans ce cas, les primitives de f sur $\{x \mid x+1>0\} =]-1, +\infty[$ sont de la forme

$$x \mapsto G(x+1) + C = \ln(x+1) + C, \quad C \in \mathbb{R}.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], \ f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, \ f(x) = \frac{1}{(x-3)^n} \ (n \in \mathbb{N}^*);$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

$$X\mapsto G(X)=\frac{2}{3}X^{\frac{3}{2}}$$
 est une primitive de g sur $[0,+\infty[$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

$$X \mapsto G(X) = \frac{2}{3}X^{\frac{3}{2}}$$
 est une primitive de g sur $[0, +\infty[$.

Donc les primitives de f sur $\{s \mid 3-s \ge 0\} =]-\infty,3]$ sont de la forme

$$s\mapsto -G(3-s)+C=-rac{2}{3}(3-s)^{rac{3}{2}}+C, \quad C\in\mathbb{R}.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

$$X \mapsto G(X) = \frac{2}{3}X^{\frac{3}{2}}$$
 est une primitive de g sur $[0, +\infty[$.

Donc les primitives de f sur $\{s \mid 3-s \ge 0\} =]-\infty,3]$ sont de la forme

$$s\mapsto -G(3-s)+C=-\frac{2}{3}(3-s)^{\frac{3}{2}}+C,\quad C\in\mathbb{R}.$$

f)
$$f(x) = \frac{1}{(x-3)^n} = g(x-3)$$
 où $g(X) = \frac{1}{X^n}$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

$$X \mapsto G(X) = \frac{2}{3}X^{\frac{3}{2}}$$
 est une primitive de g sur $[0, +\infty[$.

Donc les primitives de f sur $\{s \mid 3-s \ge 0\} =]-\infty,3]$ sont de la forme

$$s\mapsto -G(3-s)+C=-\frac{2}{3}(3-s)^{\frac{3}{2}}+C,\quad C\in\mathbb{R}.$$

f)
$$f(x) = \frac{1}{(x-3)^n} = g(x-3)$$
 où $g(X) = \frac{1}{X^n}$.

Si
$$n>1$$
, $X\mapsto G(X)=-\frac{1}{(n-1)X^{n-1}}$ est une primitive de g sur $]0,+\infty[$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

$$X \mapsto G(X) = \frac{2}{3}X^{\frac{3}{2}}$$
 est une primitive de g sur $[0, +\infty[$.

Donc les primitives de f sur $\{s \mid 3 - s \ge 0\} =]-\infty, 3]$ sont de la forme

$$s\mapsto -G(3-s)+C=-\frac{2}{3}(3-s)^{\frac{3}{2}}+C,\quad C\in\mathbb{R}.$$

f)
$$f(x) = \frac{1}{(x-3)^n} = g(x-3)$$
 où $g(X) = \frac{1}{X^n}$.

Si
$$n > 1$$
, $X \mapsto G(X) = -\frac{1}{(n-1)X^{n-1}}$ est une primitive de g sur $]0, +\infty[$.

Donc, si n > 1, les primitives de f sur $\{x \mid x - 3 > 0\} =]3, +\infty[$ sont de la forme

$$x \mapsto G(x-3) + C = -\frac{1}{(n-1)(x-3)^{n-1}} + C, \quad C \in \mathbb{R}.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

$$X \mapsto G(X) = \frac{2}{3}X^{\frac{3}{2}}$$
 est une primitive de g sur $[0, +\infty[$.

Donc les primitives de f sur $\{s \mid 3 - s \ge 0\} =]-\infty, 3]$ sont de la forme

$$s\mapsto -G(3-s)+C=-\frac{2}{3}(3-s)^{\frac{3}{2}}+C,\quad C\in\mathbb{R}.$$

f)
$$f(x) = \frac{1}{(x-3)^n} = g(x-3)$$
 où $g(X) = \frac{1}{X^n}$.

Si
$$n > 1$$
, $X \mapsto G(X) = -\frac{1}{(n-1)X^{n-1}}$ est une primitive de g sur $]0, +\infty[$.

Donc, si n > 1, les primitives de f sur $\{x \mid x - 3 > 0\} =]3, +\infty[$ sont de la forme

$$x \mapsto G(x-3) + C = -\frac{1}{(n-1)(x-3)^{n-1}} + C, \quad C \in \mathbb{R}.$$

Si n = 1, $X \mapsto G(X) = \ln X$ est une primitive de g sur $]0, +\infty[$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

e)
$$I =]-\infty, 3], f(s) = \sqrt{3-s};$$
 f) $I =]3, +\infty[, f(x) = \frac{1}{(x-3)^n} (n \in \mathbb{N}^*);$

e)
$$f(s) = \sqrt{3-s} = g(3-s)$$
 où $g(X) = \sqrt{X}$.

$$X \mapsto G(X) = \frac{2}{3}X^{\frac{3}{2}}$$
 est une primitive de g sur $[0, +\infty[$.

Donc les primitives de f sur $\{s \mid 3 - s \ge 0\} =] - \infty, 3]$ sont de la forme

$$s\mapsto -G(3-s)+C=-rac{2}{3}(3-s)^{rac{3}{2}}+C, \quad C\in\mathbb{R}.$$

f)
$$f(x) = \frac{1}{(x-3)^n} = g(x-3)$$
 où $g(X) = \frac{1}{X^n}$.

Si
$$n > 1$$
, $X \mapsto G(X) = -\frac{1}{(n-1)X^{n-1}}$ est une primitive de g sur $]0, +\infty[$.

Donc, si n > 1, les primitives de f sur $\{x \mid x - 3 > 0\} =]3, +\infty[$ sont de la forme

$$x \mapsto G(x-3) + C = -\frac{1}{(n-1)(x-3)^{n-1}} + C, \quad C \in \mathbb{R}.$$

Si n = 1, $X \mapsto G(X) = \ln X$ est une primitive de g sur $]0, +\infty[$.

Dans ce cas, les primitives de f sur $\{x \mid x-3>0\}=]3,+\infty[$ sont de la forme

$$x \mapsto G(x-3) + C = \ln(x-3) + C, \quad C \in \mathbb{R}.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

g)
$$I =]-1/3, +\infty[$$
 où $I =]-\infty, -1/3[, f(t) = \frac{4}{3t+1}$.

g)
$$f(t) = \frac{4}{3t+1} = g(3t+1)$$
 où $g(X) = \frac{4}{X}$.

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

g)
$$I =]-1/3, +\infty[$$
 où $I =]-\infty, -1/3[, f(t) = \frac{4}{3t+1}$.

g)
$$f(t) = \frac{4}{3t+1} = g(3t+1)$$
 où $g(X) = \frac{4}{X}$.

$$x\mapsto \mathit{G}(X)=4\ln|X| \text{ est une primitive de } g \text{ sur }]-\infty, o[\text{ ou }]o,+\infty[.$$

Trouver les primitives sur I de la fonction f dans chacun des cas suivants.

g)
$$I =]-1/3, +\infty[$$
 où $I =]-\infty, -1/3[$, $f(t) = \frac{4}{3t+1}$.

g)
$$f(t) = \frac{4}{3t+1} = g(3t+1)$$
 où $g(X) = \frac{4}{X}$.

 $x\mapsto G(X)=4\ln |X|$ est une primitive de g sur $]-\infty,o[$ ou $]o,+\infty[$.

Donc les primitives de f sur $\{t \mid 3t+1 < 0\} =]-\infty, -\frac{1}{3}[$ ou

 $\{t\mid 3t+1>0\}=]-rac{1}{3},+\infty[$ sont de la forme

$$t \mapsto \frac{G(3t+1)}{3} + C = \frac{4 \ln |3t+1|}{3} + C, \quad C \in \mathbb{R}.$$

Soient a et b deux réels tels que a < b et soit $f: [a, b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a, b] \ m \le f(x) \le M$. Montrer que la valeur moyenne de f sur l'intervalle [a, b] est comprise entre m et M.

Soient a et b deux réels tels que a < b et soit $f : [a,b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a,b] \ m \le f(x) \le M$. Montrer que la valeur moyenne de f sur l'intervalle [a,b] est comprise entre m et M.

f est continue sur [a, b]. Sa valeur moyenne sur [a, b] est égale à

$$V_M(f;a,b):=\frac{1}{b-a}\int_a^b f(x)dx.$$

Soient a et b deux réels tels que a < b et soit $f : [a, b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a, b] \ m \le f(x) \le M$. Montrer que la valeur moyenne de f sur l'intervalle [a, b] est comprise entre m et M.

f est continue sur [a, b]. Sa valeur moyenne sur [a, b] est égale à

$$V_M(f;a,b):=\frac{1}{b-a}\int_a^b f(x)dx.$$

Etant donné que

$$m \le f(x) \le M$$
 pour tout $x \in [a, b]$

Soient a et b deux réels tels que a < b et soit $f : [a, b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a, b] \ m \le f(x) \le M$. Montrer que la valeur moyenne de f sur l'intervalle [a, b] est comprise entre m et M.

f est continue sur [a, b]. Sa valeur moyenne sur [a, b] est égale à

$$V_M(f;a,b):=\frac{1}{b-a}\int_a^b f(x)dx.$$

Etant donné que

$$m \le f(x) \le M$$
 pour tout $x \in [a, b]$

alors

$$\int_a^b m dx \le \int_a^b f(x) dx \le \int_a^b M dx.$$

Soient a et b deux réels tels que a < b et soit $f : [a, b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a, b] \ m \le f(x) \le M$. Montrer que la valeur moyenne de f sur l'intervalle [a, b] est comprise entre m et M.

f est continue sur [a, b]. Sa valeur moyenne sur [a, b] est égale à

$$V_M(f;a,b):=\frac{1}{b-a}\int_a^b f(x)dx.$$

Etant donné que

$$m \le f(x) \le M$$
 pour tout $x \in [a, b]$

alors

$$\int_{a}^{b} m dx \leq \int_{a}^{b} f(x) dx \leq \int_{a}^{b} M dx.$$

Comme
$$\int_a^b m dx = m(b-a)$$
 et $\int_a^b M dx = M(b-a)$

Exercice n°5

Soient a et b deux réels tels que a < b et soit $f : [a, b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a, b] \ m \le f(x) \le M$. Montrer que la valeur moyenne de f sur l'intervalle [a, b] est comprise entre m et M.

f est continue sur [a, b]. Sa valeur moyenne sur [a, b] est égale à

$$V_M(f;a,b):=\frac{1}{b-a}\int_a^b f(x)dx.$$

Etant donné que

$$m \le f(x) \le M$$
 pour tout $x \in [a, b]$

alors

$$\int_{a}^{b} m dx \leq \int_{a}^{b} f(x) dx \leq \int_{a}^{b} M dx.$$

Comme
$$\int_a^b m dx = m(b-a)$$
 et $\int_a^b M dx = M(b-a)$

alors

$$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a)$$

Soient a et b deux réels tels que a < b et soit $f: [a, b] \to \mathbb{R}$ continue. On suppose que $\forall x \in [a, b] \ m \le f(x) \le M$. Montrer que la valeur moyenne de f sur l'intervalle [a, b] est comprise entre m et M.

f est continue sur [a, b]. Sa valeur moyenne sur [a, b] est égale à

$$V_M(f;a,b) := \frac{1}{b-a} \int_a^b f(x) dx.$$

Etant donné que

$$m \le f(x) \le M$$
 pour tout $x \in [a, b]$

alors

$$\int^b m dx \le \int^b f(x) dx \le \int^b M dx.$$

Comme
$$\int_a^b m dx = m(b-a)$$
 et $\int_a^b M dx = M(b-a)$

alors

$$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a)$$

ce qui conduit en divisant par (b-a) à

$$m \leq V(f; a, b) \leq M$$
.

Calculer l'intégrale suivante.

a)
$$\int_{1}^{4} (x+2)^{2} dx$$

Calculer l'intégrale suivante.

a)
$$\int_{1}^{4} (x+2)^2 dx$$

On rappelle que si F est une primitive de f sur [a, b] alors

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Calculer l'intégrale suivante.

a)
$$\int_{1}^{4} (x+2)^2 dx$$

On rappelle que si F est une primitive de f sur [a,b] alors

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

a)
$$f(x) = (x + 2)^2 = g(x + 2)$$
 où $g(X) = X^2$

Calculer l'intégrale suivante.

a)
$$\int_{1}^{4} (x+2)^2 dx$$

On rappelle que si F est une primitive de f sur [a,b] alors

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

a)
$$f(x) = (x + 2)^2 = g(x + 2)$$
 où $g(X) = X^2$

$$X \mapsto \frac{X^3}{3}$$
 est une primitive de g sur \mathbb{R}

Calculer l'intégrale suivante.

a)
$$\int_{1}^{4} (x+2)^2 dx$$

On rappelle que si F est une primitive de f sur [a, b] alors

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

a)
$$f(x) = (x + 2)^2 = g(x + 2)$$
 où $g(X) = X^2$

$$X\mapsto rac{X^3}{3}$$
 est une primitive de g sur $\mathbb R$

$$X\mapsto rac{X^3}{3}$$
 est une primitive de g sur $\mathbb R$ Donc $x\mapsto rac{(x+2)^3}{3}$ est une primitive de f sur $\mathbb R$.

Calculer l'intégrale suivante.

a)
$$\int_{1}^{4} (x+2)^2 dx$$

On rappelle que si F est une primitive de f sur [a, b] alors

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

a)
$$f(x) = (x + 2)^2 = g(x + 2)$$
 où $g(X) = X^2$

$$X\mapsto rac{X^3}{3}$$
 est une primitive de g sur $\mathbb R$

$$0 \text{ Donc } x \mapsto \frac{(x+2)^3}{3} \text{ est une primitive de } f \text{ sur } \mathbb{R}.$$
 Par conséquent

$$\int_{1}^{4} f(x)dx = \left[\frac{(x+2)^{3}}{3}\right]_{1}^{4} = \frac{6^{3}}{3} - \frac{3^{3}}{3} = \frac{189}{3} = 63.$$

Exercice n°6 TD₃

Calculer les intégrales suivantes.

b)
$$\int_1^2 \frac{x^3 - 1}{x^2} dx$$
 c)
$$\int_a^{3a} \frac{ds}{s} (a \in \mathbb{R}^*)$$

b)
$$f(x) = \frac{x^3 - 1}{x^2} = x - \frac{1}{x^2}$$

Calculer les intégrales suivantes.

b)
$$\int_1^2 \frac{x^3 - 1}{x^2} dx \quad c) \int_a^{3a} \frac{ds}{s} (a \in \mathbb{R}^*)$$

b)
$$f(x) = \frac{x^3 - 1}{x^2} = x - \frac{1}{x^2}$$

$$x \mapsto \frac{x^2}{2}$$
 est une primitive de $x \mapsto x$ sur \mathbb{R}

Exercice n°6

Calculer les intégrales suivantes.

b)
$$\int_{1}^{2} \frac{x^{3} - 1}{x^{2}} dx$$
 c)
$$\int_{a}^{3a} \frac{ds}{s} \left(a \in \mathbb{R}^{*} \right)$$

b)
$$f(x) = \frac{x^3 - 1}{x^2} = x - \frac{1}{x^2}$$

$$x \mapsto \frac{x^2}{2}$$
 est une primitive de $x \mapsto x$ sur \mathbb{R}

et
$$x \mapsto \frac{1}{x}$$
 est une primitive de $x \mapsto -\frac{1}{x^2}$ sur $]0, +\infty[$

Calculer les intégrales suivantes.

b)
$$\int_1^2 \frac{x^3 - 1}{x^2} dx$$
 c)
$$\int_a^{3a} \frac{ds}{s} (a \in \mathbb{R}^*)$$

b)
$$f(x) = \frac{x^3 - 1}{x^2} = x - \frac{1}{x^2}$$

$$x \mapsto \frac{x^2}{2}$$
 est une primitive de $x \mapsto x$ sur \mathbb{R}

et
$$x \mapsto \frac{1}{x}$$
 est une primitive de $x \mapsto -\frac{1}{x^2}$ sur $]0, +\infty[$

Donc
$$x \mapsto \frac{x^2}{2} + \frac{1}{x}$$
 est une primitive de f sur $]0, +\infty[$.

Calculer les intégrales suivantes.

b)
$$\int_{1}^{2} \frac{x^{3}-1}{x^{2}} dx$$
 c)
$$\int_{a}^{3a} \frac{ds}{s} (a \in \mathbb{R}^{*})$$

b)
$$f(x) = \frac{x^3 - 1}{x^2} = x - \frac{1}{x^2}$$

 $x \mapsto \frac{x^2}{2}$ est une primitive de $x \mapsto x$ sur \mathbb{R}

et
$$x \mapsto \frac{1}{x}$$
 est une primitive de $x \mapsto -\frac{1}{x^2}$ sur]0, $+\infty$ [

Donc
$$x \mapsto \frac{x^2}{2} + \frac{1}{x}$$
 est une primitive de f sur $]0, +\infty[$.

Par conséquent

$$\int_{1}^{3} f(x)dx = \left[\frac{x^{2}}{2} + \frac{1}{x}\right]_{1}^{3} = \left(\frac{9}{2} + \frac{1}{3}\right) - \left(\frac{1}{2} + 1\right) = \frac{20}{6} = \frac{10}{3}.$$

Calculer les intégrales suivantes.

b)
$$\int_{1}^{2} \frac{x^{3}-1}{x^{2}} dx$$
 c)
$$\int_{a}^{3a} \frac{ds}{s} (a \in \mathbb{R}^{*})$$

b)
$$f(x) = \frac{x^3 - 1}{x^2} = x - \frac{1}{x^2}$$

 $x \mapsto \frac{x^2}{2}$ est une primitive de $x \mapsto x$ sur \mathbb{R}

et $x \mapsto \frac{1}{x}$ est une primitive de $x \mapsto -\frac{1}{x^2}$ sur]0, $+\infty$ [

Donc $x \mapsto \frac{x^2}{2} + \frac{1}{x}$ est une primitive de f sur]0, $+\infty$ [.

Par conséquent

$$\int_{1}^{3} f(x)dx = \left[\frac{x^{2}}{2} + \frac{1}{x}\right]_{1}^{3} = \left(\frac{9}{2} + \frac{1}{3}\right) - \left(\frac{1}{2} + 1\right) = \frac{20}{6} = \frac{10}{3}.$$

c) $s \mapsto \ln |s|$ est une primitive de $s \mapsto \frac{1}{s} \sup]-\infty, o[$ ou $]o, +\infty[$

Calculer les intégrales suivantes.

b)
$$\int_{1}^{2} \frac{x^{3}-1}{x^{2}} dx$$
 c)
$$\int_{a}^{3a} \frac{ds}{s} (a \in \mathbb{R}^{*})$$

b)
$$f(x) = \frac{x^3 - 1}{x^2} = x - \frac{1}{x^2}$$

 $x \mapsto \frac{x^2}{2}$ est une primitive de $x \mapsto x$ sur \mathbb{R}

et $x \mapsto \frac{1}{x}$ est une primitive de $x \mapsto -\frac{1}{x^2}$ sur]0, $+\infty$ [

Donc $x \mapsto \frac{x^2}{2} + \frac{1}{x}$ est une primitive de f sur $]0, +\infty[$.

Par conséquent

$$\int_{1}^{3} f(x)dx = \left[\frac{x^{2}}{2} + \frac{1}{x}\right]_{1}^{3} = \left(\frac{9}{2} + \frac{1}{3}\right) - \left(\frac{1}{2} + 1\right) = \frac{20}{6} = \frac{10}{3}.$$

c) $s\mapsto \ln |s|$ est une primitive de $s\mapsto \frac{1}{s}$ sur $]-\infty, o[$ ou $]o,+\infty[$

Donc

$$\int_{a}^{3a} \frac{ds}{s} = [\ln |s|]_{a}^{3a} = \ln |3a| - \ln |a| = \ln \frac{|3a|}{|a|} = \ln 3$$

Calculer les intégrales suivantes.

d)
$$\int_{1}^{8} x^{1/3} dx$$
 e) $\int_{0}^{1} e^{3t} - e^{-t} dt$

d)
$$x\mapsto \frac{x^{(1+1/3)}}{1+1/3}=\frac{3}{4}x^{4/3}$$
 est une primitive de $x\mapsto x^{1/3}$ sur $\mathbb{R}.$

Calculer les intégrales suivantes.

d)
$$\int_{1}^{8} x^{1/3} dx$$
 e) $\int_{0}^{1} e^{3t} - e^{-t} dt$

d)
$$x\mapsto \frac{x^{(1+1/3)}}{1+1/3}=\frac{3}{4}x^{4/3}$$
 est une primitive de $x\mapsto x^{1/3}$ sur $\mathbb{R}.$

Donc

$$\int_{1}^{8} x^{1/3} dx = \left[\frac{3}{4} x^{4/3} \right]_{1}^{8} = \frac{3}{4} (8^{4/3} - 1) = \frac{3(16 - 1)}{4} = \frac{45}{4}.$$

Calculer les intégrales suivantes.

d)
$$\int_{1}^{8} x^{1/3} dx$$
 e) $\int_{0}^{1} e^{3t} - e^{-t} dt$

d)
$$x \mapsto \frac{x^{(1+1/3)}}{1+1/3} = \frac{3}{4}x^{4/3}$$
 est une primitive de $x \mapsto x^{1/3}$ sur \mathbb{R} .

Donc

$$\int_{1}^{8} x^{1/3} dx = \left[\frac{3}{4} x^{4/3} \right]_{1}^{8} = \frac{3}{4} (8^{4/3} - 1) = \frac{3(16 - 1)}{4} = \frac{45}{4}.$$

e) $t \mapsto \frac{e^{3t}}{3}$ est une primitive de e^{3t} sur \mathbb{R}

Calculer les intégrales suivantes.

d)
$$\int_{1}^{8} x^{1/3} dx$$
 e) $\int_{0}^{1} e^{3t} - e^{-t} dt$

d)
$$x \mapsto \frac{x^{(1+1/3)}}{1+1/3} = \frac{3}{4}x^{4/3}$$
 est une primitive de $x \mapsto x^{1/3}$ sur \mathbb{R} .

Donc

$$\int_{1}^{8} x^{1/3} dx = \left[\frac{3}{4} x^{4/3} \right]_{1}^{8} = \frac{3}{4} (8^{4/3} - 1) = \frac{3(16 - 1)}{4} = \frac{45}{4}.$$

e) $t\mapsto \frac{e^{3t}}{3}$ est une primitive de e^{3t} sur $\mathbb R$

et $t\mapsto -e^{-t}$ est une primitive de e^{-t} sur \mathbb{R} .

Calculer les intégrales suivantes.

d)
$$\int_{1}^{8} x^{1/3} dx$$
 e) $\int_{0}^{1} e^{3t} - e^{-t} dt$

d)
$$x \mapsto \frac{x^{(1+1/3)}}{1+1/3} = \frac{3}{4}x^{4/3}$$
 est une primitive de $x \mapsto x^{1/3}$ sur \mathbb{R} .

Donc

$$\int_{1}^{8} x^{1/3} dx = \left[\frac{3}{4} x^{4/3} \right]_{1}^{8} = \frac{3}{4} (8^{4/3} - 1) = \frac{3(16 - 1)}{4} = \frac{45}{4}.$$

e) $t\mapsto \frac{e^{3t}}{3}$ est une primitive de e^{3t} sur $\mathbb R$

et $t\mapsto -e^{-t}$ est une primitive de e^{-t} sur \mathbb{R} .

Donc $t\mapsto rac{e^{3t}}{3}+e^{-t}$ est une primitive de $t\mapsto e^{3t}-e^{-t}$ sur [0,1]

Exercice n°6

Calculer les intégrales suivantes.

d)
$$\int_{1}^{8} x^{1/3} dx$$
 e) $\int_{0}^{1} e^{3t} - e^{-t} dt$

d)
$$x \mapsto \frac{x^{(1+1/3)}}{1+1/3} = \frac{3}{4}x^{4/3}$$
 est une primitive de $x \mapsto x^{1/3}$ sur \mathbb{R} .

Donc

$$\int_{1}^{8} x^{1/3} dx = \left[\frac{3}{4} x^{4/3} \right]_{1}^{8} = \frac{3}{4} (8^{4/3} - 1) = \frac{3(16 - 1)}{4} = \frac{45}{4}.$$

e) $t\mapsto \frac{e^{3t}}{3}$ est une primitive de e^{3t} sur $\mathbb R$

et $t \mapsto -e^{-t}$ est une primitive de e^{-t} sur \mathbb{R} .

Donc $t\mapsto \frac{e^{3t}}{3}+e^{-t}$ est une primitive de $t\mapsto e^{3t}-e^{-t}$ sur [0,1]

Par conséquent

$$\int_0^1 (e^{3t} - e^{-t}) dt = \left[\frac{e^{3t}}{3} + e^{-t} \right]_0^1 = \left(\frac{e^3}{3} + e^{-1} \right) - \left(\frac{e^0}{3} + e^0 \right) = \frac{e^3 - 4}{3} + \frac{1}{e}.$$

Calculer les intégrales suivantes.

f)
$$\int_0^{\pi/4} \cos(3s) ds$$
 g) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$

Calculer les intégrales suivantes.

f)
$$\int_0^{\pi/4} \cos(3s) ds$$
 g) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$

f)
$$f(s) = \cos(3s) = g(3s)$$
 où $g(X) = \cos X$

Calculer les intégrales suivantes.

f)
$$\int_0^{\pi/4} \cos(3s) ds$$
 g) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$

f)
$$f(s) = \cos(3s) = g(3s)$$
 où $g(X) = \cos X$

 $X\mapsto \sin X$ est une primitive de g sur $\mathbb R$

Calculer les intégrales suivantes.

f)
$$\int_0^{\pi/4} \cos(3s) ds$$
 g) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$

f)
$$f(s) = \cos(3s) = g(3s)$$
 où $g(X) = \cos X$

 $X\mapsto \sin X$ est une primitive de g sur $\mathbb R$

Donc $x \mapsto \frac{\sin 3s}{3}$ est une primitive de f sur \mathbb{R} .

Calculer les intégrales suivantes.

f)
$$\int_0^{\pi/4} \cos(3s) \, ds$$
 g) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$

f)
$$f(s) = \cos(3s) = g(3s)$$
 où $g(X) = \cos X$

 $X \mapsto \sin X$ est une primitive de g sur \mathbb{R}

Donc $x \mapsto \frac{\sin 3s}{3}$ est une primitive de f sur \mathbb{R} .

Par conséquent

$$\int_0^{\frac{\pi}{4}} \cos(3s) ds = \left[\frac{\sin 3s}{3}\right]_0^{\frac{\pi}{4}} = \frac{\sin \frac{3\pi}{4}}{3} - \frac{\sin 0}{3} = \frac{\sqrt{2}/2}{3} = \frac{\sqrt{2}}{6}.$$

Calculer les intégrales suivantes.

f)
$$\int_0^{\pi/4} \cos(3s) \, ds$$
 g) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$

f)
$$f(s) = \cos(3s) = g(3s)$$
 où $g(X) = \cos X$

 $X\mapsto \sin X$ est une primitive de g sur $\mathbb R$

Donc $x \mapsto \frac{\sin 3s}{3}$ est une primitive de f sur \mathbb{R} .

Par conséquent

$$\int_{0}^{\frac{\pi}{4}} \cos(3s) ds = \left[\frac{\sin 3s}{3} \right]_{0}^{\frac{\pi}{4}} = \frac{\sin \frac{3\pi}{4}}{3} - \frac{\sin 0}{3} = \frac{\sqrt{2}/2}{3} = \frac{\sqrt{2}}{6}.$$

g) $x \mapsto \arcsin x$ est une primitive de $x \mapsto \frac{1}{\sqrt{1-x^2}} \operatorname{sur}] - 1, 1[$.

Exercice n°6

Calculer les intégrales suivantes.

f)
$$\int_0^{\pi/4} \cos(3s) \, ds$$
 g) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$

f)
$$f(s) = \cos(3s) = g(3s)$$
 où $g(X) = \cos X$

 $X \mapsto \sin X$ est une primitive de g sur \mathbb{R}

Donc $x \mapsto \frac{\sin 3s}{3}$ est une primitive de f sur \mathbb{R} .

Par conséquent

$$\int_0^{\frac{\pi}{4}} \cos(3s) ds = \left[\frac{\sin 3s}{3}\right]_0^{\frac{\pi}{4}} = \frac{\sin \frac{3\pi}{4}}{3} - \frac{\sin 0}{3} = \frac{\sqrt{2}/2}{3} = \frac{\sqrt{2}}{6}.$$

g)
$$x \mapsto \arcsin x$$
 est une primitive de $x \mapsto \frac{1}{\sqrt{1-x^2}}$ sur $]-1,1[$.

Par conséquent,

$$\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx = \left[\arcsin x\right]_{0}^{\frac{1}{2}} = \arcsin \frac{1}{2} - \arcsin 0 = \frac{\pi}{6}.$$

a) En utilisant l'identité
$$x^2-4x+5=(x-2)^2+1$$
, trouver une primitive de la fonction $x\mapsto \frac{1}{x^2-4x+5}$. Calculer $\int_1^3 \frac{dx}{x^2-4x+5}$.

Exercice n°7 TD₃

a) En utilisant l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, trouver une primitive de la

fonction
$$x \mapsto \frac{1}{x^2 - 4x + 5}$$
. Calculer $\int_{1}^{3} \frac{dx}{x^2 - 4x + 5}$.

a) Notons $f: x \mapsto \frac{1}{x^2 - 4x + 5}$. De l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, on déduit

$$f(x) = \frac{1}{1 + (x-2)^2}.$$

a) En utilisant l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, trouver une primitive de la

function
$$x \mapsto \frac{1}{x^2 - 4x + 5}$$
. Calculer $\int_1^3 \frac{dx}{x^2 - 4x + 5}$.

a) Notons $f: x \mapsto \frac{1}{x^2 - 4x + 5}$. De l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, on déduit

$$f(x) = \frac{1}{1 + (x - 2)^2}.$$

On note que f(x) = g(x-2) où $g: X \mapsto \frac{1}{1+X^2}$

a) En utilisant l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, trouver une primitive de la $\int_0^3 dx$

function
$$x \mapsto \frac{1}{x^2 - 4x + 5}$$
. Calculer $\int_1^3 \frac{dx}{x^2 - 4x + 5}$.

a) Notons $f: x \mapsto \frac{1}{x^2 - 4x + 5}$. De l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, on déduit

$$f(x) = \frac{1}{1 + (x - 2)^2}.$$

On note que f(x) = g(x-2) où $g: X \mapsto \frac{1}{1+X^2}$

On sait que $X \mapsto \arctan X$ est une primitive sur \mathbb{R} de g.

a) En utilisant l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, trouver une primitive de la

fonction
$$x \mapsto \frac{1}{x^2 - 4x + 5}$$
. Calculer $\int_1^3 \frac{dx}{x^2 - 4x + 5}$.

a) Notons $f: x \mapsto \frac{1}{x^2 - 4x + 5}$. De l'identité $x^2 - 4x + 5 = (x - 2)^2 + 1$, on déduit

$$f(x) = \frac{1}{1 + (x - 2)^2}.$$

On note que f(x) = g(x-2) où $g: X \mapsto \frac{1}{1+X^2}$

On sait que $X \mapsto \arctan X$ est une primitive sur \mathbb{R} de g.

Donc $x \mapsto \arctan(x-2)$ est une primitive de f sur R.

Par conséquent,

$$\int_{1}^{3} \frac{1}{x^{2} - 4x + 5} dx = \left[\arctan(x - 2)\right]_{1}^{3} = \arctan 1 - \arctan(-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}.$$

Exercice n°7

b) Soit a un réel strictement positif. Donner une primitive de la fonction $x\mapsto \frac{1}{1+(x/a)^2}$. En déduire une primitive de la fonction $x\mapsto \frac{1}{a^2+x^2}$.

- b) Soit a un réel strictement positif. Donner une primitive de la fonction $x\mapsto \frac{1}{1+(x/a)^2}$. En déduire une primitive de la fonction $x\mapsto \frac{1}{a^2+x^2}$.
- b) Notons $f: x \mapsto \frac{1}{1 + (x/a)^2}$.

- b) Soit a un réel strictement positif. Donner une primitive de la fonction $x\mapsto \frac{1}{1+(x/a)^2}$. En déduire une primitive de la fonction $x\mapsto \frac{1}{a^2+x^2}$.
- b) Notons $f: x \mapsto \frac{1}{1 + (x/a)^2}$.

On peut écrire
$$f(x)=g\left(\frac{x}{a}\right)$$
 où $g:X\mapsto \frac{1}{1+X^2}.$

b) Soit a un réel strictement positif. Donner une primitive de la fonction $x\mapsto \frac{1}{1+(x/a)^2}$. En déduire une primitive de la fonction $x\mapsto \frac{1}{a^2+x^2}$.

b) Notons
$$f: x \mapsto \frac{1}{1 + (x/a)^2}$$
.

On peut écrire
$$f(x) = g\left(\frac{x}{a}\right)$$
 où $g: X \mapsto \frac{1}{1+X^2}$.

On sait que $G: X \mapsto \arctan X$ est une primitive sur \mathbb{R} de g.

b) Soit a un réel strictement positif. Donner une primitive de la fonction $x\mapsto \frac{1}{1+(x/a)^2}$. En déduire une primitive de la fonction $x\mapsto \frac{1}{a^2+x^2}$.

b) Notons
$$f: x \mapsto \frac{1}{1 + (x/a)^2}$$
.

On peut écrire
$$f(x) = g\left(\frac{x}{a}\right)$$
 où $g: X \mapsto \frac{1}{1+X^2}$.

On sait que $G: X \mapsto \arctan X$ est une primitive sur \mathbb{R} de g.

Donc
$$x \mapsto \frac{G\left(\frac{x}{a}\right)}{1/a} = aG\left(\frac{x}{a}\right) = a \arctan\left(\frac{x}{a}\right)$$
 est une primitive de f sur R .

b) Soit a un réel strictement positif. Donner une primitive de la fonction $x\mapsto \frac{1}{1+(x/a)^2}$. En déduire une primitive de la fonction $x\mapsto \frac{1}{a^2+x^2}$.

b) Notons
$$f: x \mapsto \frac{1}{1 + (x/a)^2}$$
.

On peut écrire
$$f(x) = g\left(\frac{x}{a}\right)$$
 où $g: X \mapsto \frac{1}{1+X^2}$.

On sait que $G: X \mapsto \arctan X$ est une primitive sur \mathbb{R} de g.

Donc
$$x \mapsto \frac{G\left(\frac{x}{a}\right)}{1/a} = aG\left(\frac{x}{a}\right) = a \arctan\left(\frac{x}{a}\right)$$
 est une primitive de f sur R .

Comme

$$\frac{1}{a^2 + x^2} = \frac{1}{a^2} \cdot \frac{1}{(1 + (x/a)^2)},$$

b) Soit a un réel strictement positif. Donner une primitive de la fonction $x\mapsto \frac{1}{1+(x/a)^2}$. En déduire une primitive de la fonction $x\mapsto \frac{1}{a^2+x^2}$.

b) Notons
$$f: x \mapsto \frac{1}{1 + (x/a)^2}$$
.

On peut écrire
$$f(x) = g\left(\frac{x}{a}\right)$$
 où $g: X \mapsto \frac{1}{1+X^2}$.

On sait que $G: X \mapsto \arctan X$ est une primitive sur \mathbb{R} de g.

Donc
$$x \mapsto \frac{G\left(\frac{x}{a}\right)}{1/a} = aG\left(\frac{x}{a}\right) = a \arctan\left(\frac{x}{a}\right)$$
 est une primitive de f sur R .

Comme

$$\frac{1}{a^2 + x^2} = \frac{1}{a^2} \cdot \frac{1}{(1 + (x/a)^2)},$$

on en déduit qu'une primitive de $x \mapsto \frac{1}{a^2 + x^2}$ sur \mathbb{R} est donnée par

$$x \mapsto \frac{1}{a^2} a \arctan\left(\frac{x}{a}\right) = \frac{1}{a} \arctan\left(\frac{x}{a}\right).$$

b) Application : calculer l'intégrale $\int_0^b \frac{dx}{3+x^2}$ et déterminer sa limite lorsque b tend vers $+\infty$.

b) Application : calculer l'intégrale $\int_0^b \frac{dx}{3+x^2}$ et déterminer sa limite lorsque b tend vers $+\infty$.

Application : D'après la question précédente

$$x\mapsto \frac{1}{\sqrt{3}}\arctan\left(\frac{x}{\sqrt{3}}\right)$$
 est une primitive de $x\mapsto \frac{1}{(\sqrt{3})^2+x^2}=\frac{1}{3+x^2}\sup\mathbb{R}$

b) Application : calculer l'intégrale $\int_0^b \frac{dx}{3+x^2}$ et déterminer sa limite lorsque b tend vers $+\infty$.

Application : D'après la question précédente

$$x\mapsto \frac{1}{\sqrt{3}}\arctan\left(\frac{x}{\sqrt{3}}\right)$$
 est une primitive de $x\mapsto \frac{1}{(\sqrt{3})^2+x^2}=\frac{1}{3+x^2}\sup\mathbb{R}$

Par conséquent

$$\int_{0}^{b} \frac{1}{3+x^{2}} dx = \left[\frac{1}{\sqrt{3}} \arctan\left(\frac{x}{\sqrt{3}}\right) \right]_{0}^{b}$$

$$= \frac{1}{\sqrt{3}} \arctan\left(\frac{b}{\sqrt{3}}\right) - \frac{1}{\sqrt{3}} \arctan\left(\frac{o}{\sqrt{3}}\right) = \frac{1}{\sqrt{3}} \arctan\left(\frac{b}{\sqrt{3}}\right)$$

b) Application : calculer l'intégrale $\int_0^b \frac{dx}{3+x^2}$ et déterminer sa limite lorsque b tend vers $+\infty$.

Application : D'après la question précédente

$$x\mapsto \frac{1}{\sqrt{3}}\arctan\left(\frac{x}{\sqrt{3}}\right)$$
 est une primitive de $x\mapsto \frac{1}{(\sqrt{3})^2+x^2}=\frac{1}{3+x^2}\sup\mathbb{R}$

Par conséquent

$$\int_{0}^{b} \frac{1}{3+x^{2}} dx = \left[\frac{1}{\sqrt{3}} \arctan\left(\frac{x}{\sqrt{3}}\right) \right]_{0}^{b}$$

$$= \frac{1}{\sqrt{3}} \arctan\left(\frac{b}{\sqrt{3}}\right) - \frac{1}{\sqrt{3}} \arctan\left(\frac{0}{\sqrt{3}}\right) = \frac{1}{\sqrt{3}} \arctan\left(\frac{b}{\sqrt{3}}\right)$$

Etant donné que $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$, alors

$$\lim_{b\to +\infty} \int_0^b \frac{\mathbf{1}}{3+x^2} dx = \lim_{b\to +\infty} \frac{\mathbf{1}}{\sqrt{3}} \arctan\left(\frac{b}{\sqrt{3}}\right) = \frac{\pi}{2\sqrt{3}}.$$

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

De l'identité

$$cos(a+b) = cos a cos b - sin a sin b$$
, pour tout $a, b \in \mathbb{R}$

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

De l'identité

$$cos(a+b) = cos a cos b - sin a sin b$$
, pour tout $a, b \in \mathbb{R}$

on déduit que

$$cos(2x) = cos^2(x) - sin^2(x)$$
 pour tout $x \in \mathbb{R}$.

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

De l'identité

$$cos(a+b) = cos a cos b - sin a sin b$$
, pour tout $a, b \in \mathbb{R}$

on déduit que

$$cos(2x) = cos^2(x) - sin^2(x)$$
 pour tout $x \in \mathbb{R}$.

D'autre part, comme $\cos^2(x) + \sin^2(x) = 1$ pour tout $x \in \mathbb{R}$

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

De l'identité

$$cos(a+b) = cos a cos b - sin a sin b$$
, pour tout $a, b \in \mathbb{R}$

on déduit que

$$cos(2x) = cos^2(x) - sin^2(x)$$
 pour tout $x \in \mathbb{R}$.

D'autre part, comme $\cos^2(x) + \sin^2(x) = \mathbf{1}$ pour tout $x \in \mathbb{R}$

alors

$$\cos 2x = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$
.

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

De l'identité

$$cos(a+b) = cos a cos b - sin a sin b$$
, pour tout $a, b \in \mathbb{R}$

on déduit que

$$cos(2x) = cos^2(x) - sin^2(x)$$
 pour tout $x \in \mathbb{R}$.

D'autre part, comme $\cos^2(x) + \sin^2(x) = 1$ pour tout $x \in \mathbb{R}$

alors

$$\cos 2x = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$
.

Par conséquent,

$$\cos^2(x) = \frac{\cos 2x + 1}{2}$$
 et $\sin^2(x) = \frac{1 - \cos 2x}{2}$

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

 $X \mapsto \sin X$ est une primitive de $X \mapsto \cos X$.

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

$$X \mapsto \sin X$$
 est une primitive de $X \mapsto \cos X$.
Donc $x \mapsto \frac{\sin(2x)}{2}$ est une primitive de $x \mapsto \cos(2x)$

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

 $X \mapsto \sin X$ est une primitive de $X \mapsto \cos X$.

Donc
$$x \mapsto \frac{\sin(2x)}{2}$$
 est une primitive de $x \mapsto \cos(2x)$

Par conséquent,
$$x \mapsto \frac{1}{2} \left(x + \frac{\sin(2x)}{2} \right)$$
 est une primitive de $x \mapsto \frac{1}{2} (1 + \cos(2x))$

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

 $X \mapsto \sin X$ est une primitive de $X \mapsto \cos X$.

Donc
$$x \mapsto \frac{\sin(2x)}{2}$$
 est une primitive de $x \mapsto \cos(2x)$

Par conséquent,
$$x \mapsto \frac{1}{2} \left(x + \frac{\sin(2x)}{2} \right)$$
 est une primitive de $x \mapsto \frac{1}{2} (1 + \cos(2x))$

et
$$x \mapsto \frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right)$$
 est une primitive de $x \mapsto \frac{1}{2} (1 - \cos(2x))$

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

 $X \mapsto \sin X$ est une primitive de $X \mapsto \cos X$.

Donc
$$x \mapsto \frac{\sin(2x)}{2}$$
 est une primitive de $x \mapsto \cos(2x)$

Par conséquent,
$$x \mapsto \frac{1}{2} \left(x + \frac{\sin(2x)}{2} \right)$$
 est une primitive de $x \mapsto \frac{1}{2} (1 + \cos(2x))$

et
$$x \mapsto \frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right)$$
 est une primitive de $x \mapsto \frac{1}{2} (1 - \cos(2x))$

En conclusion
$$x \mapsto \frac{2x + \sin(2x)}{4}$$
 est une primitive de $x \mapsto \cos^2(x)$ sur \mathbb{R}

a) Exprimer $\cos(2x)$ en fonction de $\cos^2 x$, puis en fonction de $\sin^2 x$. En déduire une primitive de \cos^2 et une primitive de \sin^2 sur \mathbb{R} .

 $X \mapsto \sin X$ est une primitive de $X \mapsto \cos X$.

Donc
$$x \mapsto \frac{\sin(2x)}{2}$$
 est une primitive de $x \mapsto \cos(2x)$

Par conséquent,
$$x \mapsto \frac{1}{2} \left(x + \frac{\sin(2x)}{2} \right)$$
 est une primitive de $x \mapsto \frac{1}{2} (1 + \cos(2x))$

et
$$x \mapsto \frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right)$$
 est une primitive de $x \mapsto \frac{1}{2} (1 - \cos(2x))$

En conclusion
$$x \mapsto \frac{2x + \sin(2x)}{4}$$
 est une primitive de $x \mapsto \cos^2(x)$ sur \mathbb{R}

et
$$x \mapsto \frac{2x - \sin(2x)}{4}$$
 est une primitive de $x \mapsto \sin^2(x)$ sur \mathbb{R}

b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .

b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .

b) Si on note $u(x) = \sin x$ alors $u'(x) = \cos x$

b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .

b) Si on note $u(x) = \sin x$ alors $u'(x) = \cos x$

et donc

$$\cos x(\sin x)^n = u'(x)u(x)^n = \frac{1}{n+1}(n+1)u(x)^n u'(x)$$

b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .

b) Si on note $u(x) = \sin x$ alors $u'(x) = \cos x$

et donc

$$\cos x(\sin x)^n = u'(x)u(x)^n = \frac{1}{n+1}(n+1)u(x)^n u'(x)$$

Or $x \mapsto (n+1)u(x)^n u'(x)$ est la dérivée de $x \mapsto u(x)^{n+1}$

- b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .
- b) Si on note $u(x) = \sin x$ alors $u'(x) = \cos x$

et donc

$$\cos x(\sin x)^n = u'(x)u(x)^n = \frac{1}{n+1}(n+1)u(x)^n u'(x)$$

Or $x \mapsto (n+1)u(x)^n u'(x)$ est la dérivée de $x \mapsto u(x)^{n+1}$

Donc
$$x \mapsto \frac{u(x)^{n+1}}{n+1} = \frac{(\sin x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \cos x(\sin x)^n$ sur \mathbb{R} .

b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .

b) Si on note $u(x) = \sin x$ alors $u'(x) = \cos x$

et donc

$$\cos x(\sin x)^n = u'(x)u(x)^n = \frac{1}{n+1}(n+1)u(x)^n u'(x)$$

Or $x \mapsto (n+1)u(x)^n u'(x)$ est la dérivée de $x \mapsto u(x)^{n+1}$

Donc
$$x \mapsto \frac{u(x)^{n+1}}{n+1} = \frac{(\sin x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \cos x(\sin x)^n$ sur \mathbb{R} .

Ecrivons

$$\cos^3 x = \cos x \cos^2 x = \cos x (1 - \sin^2 x) = \cos x - \cos x \sin^2 x.$$

b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .

b) Si on note $u(x) = \sin x$ alors $u'(x) = \cos x$

et donc

$$\cos x(\sin x)^n = u'(x)u(x)^n = \frac{1}{n+1}(n+1)u(x)^n u'(x)$$

Or $x \mapsto (n+1)u(x)^n u'(x)$ est la dérivée de $x \mapsto u(x)^{n+1}$

Donc
$$x \mapsto \frac{u(x)^{n+1}}{n+1} = \frac{(\sin x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \cos x(\sin x)^n$ sur \mathbb{R} .

Ecrivons

$$\cos^3 x = \cos x \cos^2 x = \cos x (1 - \sin^2 x) = \cos x - \cos x \sin^2 x.$$

 $x \mapsto \sin x$ est une primitive de $x \mapsto \cos x$ et $x \mapsto \frac{\sin^3 x}{3}$ est une primitive de $x \mapsto \cos x \sin^2 x$ sur \mathbb{R}

- b) Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \cos x(\sin x)^n$. En déduire une primitive de la fonction \cos^3 .
- b) Si on note $u(x) = \sin x$ alors $u'(x) = \cos x$

et donc

$$\cos x(\sin x)^n = u'(x)u(x)^n = \frac{1}{n+1}(n+1)u(x)^n u'(x)$$

Or $x \mapsto (n+1)u(x)^n u'(x)$ est la dérivée de $x \mapsto u(x)^{n+1}$

Donc
$$x \mapsto \frac{u(x)^{n+1}}{n+1} = \frac{(\sin x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \cos x(\sin x)^n$ sur \mathbb{R} .

Ecrivons

$$\cos^3 x = \cos x \cos^2 x = \cos x (1 - \sin^2 x) = \cos x - \cos x \sin^2 x.$$

 $x\mapsto \sin x$ est une primitive de $x\mapsto \cos x$ et $x\mapsto \frac{\sin^3 x}{3}$ est une primitive de $x\mapsto \cos x\sin^2 x$ sur $\mathbb R$ Par conséquent,

$$x\mapsto \sin x-\frac{\sin^3 x}{3}$$
 est une primitive de $x\mapsto \cos^3 x \operatorname{sur}\mathbb{R}$

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x (\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x(\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

c) Si on note $v(x) = \cos x$ alors $v'(x) = -\sin x$

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x(\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

c) Si on note $v(x) = \cos x$ alors $v'(x) = -\sin x$

et donc

$$\sin x (\cos x)^n = -v'(x)v(x)^n = -\frac{1}{n+1}(n+1)v(x)^n v'(x)$$

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x(\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

c) Si on note $v(x) = \cos x$ alors $v'(x) = -\sin x$

et donc

$$\sin x(\cos x)^n = -v'(x)v(x)^n = -\frac{1}{n+1}(n+1)v(x)^nv'(x)$$

Or $x \mapsto (n+1)v(x)^n v'(x)$ est la dérivée de $x \mapsto v(x)^{n+1}$

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x(\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

c) Si on note $v(x) = \cos x$ alors $v'(x) = -\sin x$

et donc

$$\sin x(\cos x)^n = -v'(x)v(x)^n = -\frac{1}{n+1}(n+1)v(x)^n v'(x)$$

Or $x \mapsto (n+1)v(x)^n v'(x)$ est la dérivée de $x \mapsto v(x)^{n+1}$

Donc
$$x \mapsto -\frac{v(x)^{n+1}}{n+1} = -\frac{(\cos x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \sin x(\cos x)^n$ sur \mathbb{R} .

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x(\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

c) Si on note $v(x) = \cos x$ alors $v'(x) = -\sin x$

et donc

$$\sin x(\cos x)^n = -v'(x)v(x)^n = -\frac{1}{n+1}(n+1)v(x)^n v'(x)$$

Or $x \mapsto (n+1)v(x)^n v'(x)$ est la dérivée de $x \mapsto v(x)^{n+1}$

Donc
$$x \mapsto -\frac{v(x)^{n+1}}{n+1} = -\frac{(\cos x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \sin x(\cos x)^n$ sur \mathbb{R} .

Ecrivons

$$\sin^3 x = \sin x \sin^2 x = \sin x (1 - \cos^2 x) = \sin x - \sin x \cos^2 x.$$

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x(\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

c) Si on note $v(x) = \cos x$ alors $v'(x) = -\sin x$

et donc

$$\sin x(\cos x)^n = -v'(x)v(x)^n = -\frac{1}{n+1}(n+1)v(x)^n v'(x)$$

Or $x \mapsto (n+1)v(x)^n v'(x)$ est la dérivée de $x \mapsto v(x)^{n+1}$

Donc
$$x \mapsto -\frac{v(x)^{n+1}}{n+1} = -\frac{(\cos x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \sin x(\cos x)^n$ sur \mathbb{R} .

Ecrivons

$$\sin^3 x = \sin x \sin^2 x = \sin x (1 - \cos^2 x) = \sin x - \sin x \cos^2 x.$$

 $x\mapsto -\cos x$ est une primitive de $x\mapsto \sin x$ et $x\mapsto -\frac{\cos^3 x}{3}$ est une primitive de $x\mapsto \sin x\cos^2 x$ sur $\mathbb R$

Pour $n \in \mathbb{N}$, donner une primitive sur \mathbb{R} de la fonction $x \mapsto \sin x(\cos x)^n$. En déduire une primitive de la fonction \sin^3 .

c) Si on note $v(x) = \cos x$ alors $v'(x) = -\sin x$

et donc

$$\sin x(\cos x)^n = -v'(x)v(x)^n = -\frac{1}{n+1}(n+1)v(x)^nv'(x)$$

Or $x \mapsto (n+1)v(x)^n v'(x)$ est la dérivée de $x \mapsto v(x)^{n+1}$

Donc
$$x \mapsto -\frac{v(x)^{n+1}}{n+1} = -\frac{(\cos x)^{n+1}}{n+1}$$
 est une primitive de $x \mapsto \sin x(\cos x)^n$ sur \mathbb{R} .

Ecrivons

$$\sin^3 x = \sin x \sin^2 x = \sin x (1 - \cos^2 x) = \sin x - \sin x \cos^2 x.$$

 $x\mapsto -\cos x$ est une primitive de $x\mapsto \sin x$ et $x\mapsto -\frac{\cos^3 x}{3}$ est une primitive de $x\mapsto \sin x\cos^2 x$ sur $\mathbb R$ Par conséguent.

$$x \mapsto -\cos x + \frac{\cos^3 x}{3}$$
 est une primitive de $x \mapsto \sin^3 x \operatorname{sur} \mathbb{R}$

Exercice 8:
d) Calculer $\int_0^{\pi/2} (\sin t)^2 - (\cos t)^3 dt.$

d) Calculer
$$\int_{0}^{\pi/2} (\sin t)^2 - (\cos t)^3 dt$$
.

Des questions a) et b), on déduit que

$$t\mapsto \frac{2t-\sin 2t}{4}-\sin t+\frac{\sin^3 t}{3}$$

est une primitive de $t\mapsto \sin^2 t - \cos^3 t$ sur \mathbb{R} .

d) Calculer
$$\int_{0}^{\pi/2} (\sin t)^2 - (\cos t)^3 dt$$
.

Des questions a) et b), on déduit que

$$t\mapsto \frac{2t-\sin 2t}{4}-\sin t+\frac{\sin^3 t}{3}$$

est une primitive de $t\mapsto \sin^2 t - \cos^3 t \operatorname{sur} \mathbb{R}$.

Par conséquent,

$$\int_{0}^{\frac{\pi}{2}} \sin^{2} t - \cos^{3} t dt = \left[\frac{2t - \sin 2t}{4} - \sin t + \frac{\sin^{3} t}{3} \right]_{0}^{\frac{\pi}{2}} = \frac{\pi - \sin \pi}{4} - \sin \frac{\pi}{2} + \frac{\sin^{3}(\pi/2)}{3}$$
$$= \frac{\pi}{4} - 1 + \frac{1}{3} = \frac{\pi}{4} - \frac{2}{3}$$

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x\mapsto cf(u(x))u'(x)$ (c constante réelle).

a)
$$\int_1^x \frac{\cos\sqrt{t}}{2\sqrt{t}} dt \ (x \in \mathbb{R}_+^*)$$

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x\mapsto cf(u(x))u'(x)$ (c constante réelle).

a)
$$\int_1^x \frac{\cos\sqrt{t}}{2\sqrt{t}} dt \ (x \in \mathbb{R}_+^*)$$

Rappel : Si F est une primitive de f sur I et $u: J \to I$ est dérivable sur J alors $F \circ u$ est une primitive de $x \mapsto f(u(x))u'(x)$ sur J.

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

a)
$$\int_1^x \frac{\cos\sqrt{t}}{2\sqrt{t}} dt \ (x \in \mathbb{R}_+^*)$$

Rappel: Si F est une primitive de f sur I et $u: J \to I$ est dérivable sur J alors $F \circ u$ est une primitive de $x \mapsto f(u(x))u'(x)$ sur J.

a) On note que si t > 0,

$$\frac{\cos(\sqrt{t})}{2\sqrt{t}} = \cos(u(t))u'(t) \quad \text{où} \quad u: t \mapsto \sqrt{t}$$

est dérivable sur $]0, +\infty[$.

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

a)
$$\int_1^x \frac{\cos\sqrt{t}}{2\sqrt{t}} dt \ (x \in \mathbb{R}_+^*)$$

Rappel: Si F est une primitive de f sur I et $u: J \to I$ est dérivable sur J alors $F \circ u$ est une primitive de $x \mapsto f(u(x))u'(x)$ sur J.

a) On note que si t > 0,

$$\frac{\cos(\sqrt{t})}{2\sqrt{t}} = \cos(u(t))u'(t) \quad \text{où} \quad u: t \mapsto \sqrt{t}$$

est dérivable sur $]0,+\infty[.$

 $X\mapsto\sin X$ est une primitive de $X\mapsto\cos X$ sur $\mathbb R$

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

a)
$$\int_1^x \frac{\cos\sqrt{t}}{2\sqrt{t}} dt \ (x \in \mathbb{R}_+^*)$$

Rappel : Si F est une primitive de f sur I et $u: J \to I$ est dérivable sur J alors $F \circ u$ est une primitive de $x \mapsto f(u(x))u'(x)$ sur J.

a) On note que si t > 0,

$$\frac{\cos(\sqrt{t})}{2\sqrt{t}} = \cos(u(t))u'(t)$$
 où $u: t \mapsto \sqrt{t}$

est dérivable sur $]0, +\infty[$.

 $X\mapsto \sin X$ est une primitive de $X\mapsto \cos X$ sur $\mathbb R$

Donc $t\mapsto \sin(\sqrt{t})$ est une primitive de $t\mapsto \frac{\cos(\sqrt{t})}{2\sqrt{t}}$ sur $]0,+\infty[$.

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x\mapsto cf(u(x))u'(x)$ (c constante réelle).

a)
$$\int_1^x \frac{\cos\sqrt{t}}{2\sqrt{t}} dt \ (x \in \mathbb{R}_+^*)$$

Rappel: Si F est une primitive de f sur I et $u: J \to I$ est dérivable sur J alors $F \circ u$ est une primitive de $x \mapsto f(u(x))u'(x)$ sur J.

a) On note que si t > 0,

$$\frac{\cos(\sqrt{t})}{2\sqrt{t}} = \cos(u(t))u'(t)$$
 où $u: t \mapsto \sqrt{t}$

est dérivable sur $]0, +\infty[$.

 $X \mapsto \sin X$ est une primitive de $X \mapsto \cos X$ sur \mathbb{R}

Donc $t \mapsto \sin(\sqrt{t})$ est une primitive de $t \mapsto \frac{\cos(\sqrt{t})}{2\sqrt{t}}$ sur $]0, +\infty[$.

Par conséquent,

$$\int_{t}^{x} \frac{\cos(\sqrt{t})}{2\sqrt{t}} dt = \left[\sin(\sqrt{t})\right]_{1}^{x} = \sin(\sqrt{x}) - \sin 1.$$

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x\mapsto cf(u(x))u'(x)$ (c constante réelle).

b)
$$\int_{a}^{\pi/4} \tan x \, dx$$

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

b)
$$\int_0^{\pi/4} \tan x \, dx$$

b) Ecrivons

$$\tan x = \frac{\sin x}{\cos x} = -\frac{-\sin x}{\cos x} = -\frac{u'(x)}{u(x)} = -\frac{1}{u(x)}u'(x) = f(u(x))u'(x)$$

où
$$f: X \mapsto -\frac{1}{X}$$
 et $u: x \mapsto \cos x$.

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

b)
$$\int_0^{\pi/4} \tan x \, dx$$

b) Ecrivons

$$\tan x = \frac{\sin x}{\cos x} = -\frac{-\sin x}{\cos x} = -\frac{u'(x)}{u(x)} = -\frac{1}{u(x)}u'(x) = f(u(x))u'(x)$$

où
$$f: X \mapsto -\frac{1}{X}$$
 et $u: x \mapsto \cos x$.

 $X \mapsto -\ln X$ est une primitive de f sur $]0, +\infty[$.

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

b)
$$\int_0^{\pi/4} \tan x \, dx$$

b) Ecrivons

$$\tan x = \frac{\sin x}{\cos x} = -\frac{-\sin x}{\cos x} = -\frac{u'(x)}{u(x)} = -\frac{1}{u(x)}u'(x) = f(u(x))u'(x)$$

où $f: X \mapsto -\frac{1}{X}$ et $u: x \mapsto \cos x$.

 $X \mapsto -\ln X$ est une primitive de f sur $]0, +\infty[$.

Comme $u(x) = \cos x > 0$ pour tout $x \in [0, \frac{\pi}{4}]$ alors

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

b)
$$\int_0^{\pi/4} \tan x \, dx$$

b) Ecrivons

$$\tan x = \frac{\sin x}{\cos x} = -\frac{-\sin x}{\cos x} = -\frac{u'(x)}{u(x)} = -\frac{1}{u(x)}u'(x) = f(u(x))u'(x)$$

où
$$f: X \mapsto -\frac{1}{X}$$
 et $u: x \mapsto \cos x$.

 $X \mapsto -\ln X$ est une primitive de f sur $]0, +\infty[$.

Comme $u(x) = \cos x > 0$ pour tout $x \in [0, \frac{\pi}{4}]$ alors

 $x \mapsto -\ln(\cos x)$ est une primitive de $x \mapsto \tan x$ sur $[0, \frac{\pi}{4}]$

Exercice n°9

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

b)
$$\int_0^{\pi/4} \tan x \, dx$$

b) Ecrivons

$$\tan x = \frac{\sin x}{\cos x} = -\frac{-\sin x}{\cos x} = -\frac{u'(x)}{u(x)} = -\frac{1}{u(x)}u'(x) = f(u(x))u'(x)$$

où
$$f: X \mapsto -\frac{1}{X}$$
 et $u: x \mapsto \cos x$.

 $X \mapsto -\ln X$ est une primitive de f sur $]0, +\infty[$.

Comme
$$u(x) = \cos x > 0$$
 pour tout $x \in [0, \frac{\pi}{4}]$ alors

$$x \mapsto -\ln(\cos x)$$
 est une primitive de $x \mapsto \tan x$ sur $[0, \frac{\pi}{4}]$

Par conséquent,

$$\int_{0}^{\frac{\pi}{4}} \tan x dx = \left[-\ln(\cos x)\right]_{0}^{\frac{\pi}{4}} = -\ln(\cos(\pi/4)) + \ln(\cos 0) = -\ln(1/\sqrt{2}) = \frac{\ln 2}{2}.$$

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x\mapsto cf(u(x))u'(x)$ (c constante réelle).

$$c) \int_1^2 \frac{e^{\frac{1}{t}}}{t^2} dt$$

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

$$c) \int_1^2 \frac{e^{\frac{1}{t}}}{t^2} dt$$

c) On peut écrire

$$\frac{e^{1/t}}{t^2} = -e^{1/t} \left(-\frac{1}{t^2} \right) = f(u(t))u'(t)$$

où
$$f:X\mapsto -e^X$$
 et $u:t\mapsto \frac{1}{t}\left(u'(t)=-\frac{1}{t^2}\right)$.

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

$$c) \int_1^2 \frac{e^{\frac{1}{t}}}{t^2} dt$$

c) On peut écrire

$$\frac{e^{1/t}}{t^2} = -e^{1/t} \left(-\frac{1}{t^2} \right) = f(u(t))u'(t)$$

où
$$f: X \mapsto -e^X$$
 et $u: t \mapsto \frac{1}{t} \left(u'(t) = -\frac{1}{t^2} \right)$.

 $X \mapsto -e^X$ est une primitive de f sur \mathbb{R} .

Calculer les intégrales suivantes. On remarquera que la fonction intégrée peut être écrite sous la forme $x \mapsto cf(u(x))u'(x)$ (c constante réelle).

$$c) \int_1^2 \frac{e^{\frac{1}{t}}}{t^2} dt$$

c) On peut écrire

$$\frac{e^{1/t}}{t^2} = -e^{1/t} \left(-\frac{1}{t^2} \right) = f(u(t))u'(t)$$

où
$$f: X \mapsto -e^X$$
 et $u: t \mapsto \frac{1}{t} \left(u'(t) = -\frac{1}{t^2} \right)$.

 $X \mapsto -e^X$ est une primitive de f sur \mathbb{R} .

Donc
$$t\mapsto -\mathrm{e}^{u(t)}=-\mathrm{e}^{1/t}$$
 est une primitive de $t\mapsto \dfrac{\mathrm{e}^{1/t}}{t^2}$ sur $\mathbb{R}.$

Par conséquent,

$$\int_{1}^{2} \frac{e^{1/t}}{t^{2}} dt = \left[-e^{1/t} \right]_{1}^{2} = -e^{\frac{1}{2}} + e^{1} = e - \sqrt{e}.$$

a) En utilisant l'identité $x^3 = x(x^2 + 1) - x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.

- a) En utilisant l'identité $x^3 = x(x^2 + 1) x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.
- a) De l'identité $x^3 = x(1 + x^2) x$ on déduit

$$\frac{x^3}{1+x^2} = \frac{x(1+x^2)-x}{1+x^2} = x - \frac{x}{1+x^2}.$$

- a) En utilisant l'identité $x^3 = x(x^2 + 1) x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.
- a) De l'identité $x^3 = x(1 + x^2) x$ on déduit

$$\frac{x^3}{1+x^2} = \frac{x(1+x^2)-x}{1+x^2} = x - \frac{x}{1+x^2}.$$

 $x \mapsto \frac{x^2}{2}$ est une primitive de $x \mapsto x$ sur \mathbb{R} . Déterminons une primitive de $x \mapsto \frac{x}{1+x^2}$.

- a) En utilisant l'identité $x^3 = x(x^2 + 1) x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.
- a) De l'identité $x^3 = x(1 + x^2) x$ on déduit

$$\frac{x^3}{1+x^2} = \frac{x(1+x^2)-x}{1+x^2} = x - \frac{x}{1+x^2}.$$

 $x\mapsto \frac{x^2}{2}$ est une primitive de $x\mapsto x$ sur $\mathbb R$. Déterminons une primitive de $x\mapsto \frac{x}{1+x^2}$. On peut écrire

$$\frac{x}{1+x^2} = \frac{1}{2} \left(\frac{2x}{1+x^2} \right) = \frac{1}{2} \frac{u'(x)}{u(x)}$$

où $u: x \mapsto \mathbf{1} + x^2$.

a) En utilisant l'identité $x^3 = x(x^2 + 1) - x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.

a) De l'identité $x^3 = x(1 + x^2) - x$ on déduit

$$\frac{x^3}{1+x^2} = \frac{x(1+x^2)-x}{1+x^2} = x - \frac{x}{1+x^2}.$$

 $x\mapsto \frac{x^2}{2}$ est une primitive de $x\mapsto x$ sur $\mathbb R$. Déterminons une primitive de $x\mapsto \frac{x}{1+x^2}$. On peut écrire

$$\frac{x}{1+x^2} = \frac{1}{2} \left(\frac{2x}{1+x^2} \right) = \frac{1}{2} \frac{u'(x)}{u(x)}$$

où $u: x \mapsto 1 + x^2$.

Comme u(x) > 0 pour tout $x \in \mathbb{R}$, $x \mapsto \ln(u(x))$ est une primitive de $\frac{u'}{u}$ sur \mathbb{R} .

a) En utilisant l'identité $x^3 = x(x^2 + 1) - x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.

a) De l'identité $x^3 = x(1 + x^2) - x$ on déduit

$$\frac{x^3}{1+x^2} = \frac{x(1+x^2)-x}{1+x^2} = x - \frac{x}{1+x^2}.$$

 $x\mapsto \frac{x^2}{2}$ est une primitive de $x\mapsto x$ sur $\mathbb R$. Déterminons une primitive de $x\mapsto \frac{x}{1+x^2}$. On peut écrire

$$\frac{x}{1+x^2} = \frac{1}{2} \left(\frac{2x}{1+x^2} \right) = \frac{1}{2} \frac{u'(x)}{u(x)}$$

où $u: x \mapsto \mathbf{1} + x^2$.

Comme u(x) > 0 pour tout $x \in \mathbb{R}$, $x \mapsto \ln(u(x))$ est une primitive de $\frac{u'}{u}$ sur \mathbb{R} .

Par conséquent $x \mapsto \frac{1}{2} \ln(1+x^2)$ est une primitive de $x \mapsto \frac{x}{1+x^2}$ sur \mathbb{R}

a) En utilisant l'identité $x^3 = x(x^2 + 1) - x$, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.

a) De l'identité $x^3 = x(1 + x^2) - x$ on déduit

$$\frac{x^3}{1+x^2} = \frac{x(1+x^2)-x}{1+x^2} = x - \frac{x}{1+x^2}.$$

 $x\mapsto \frac{x^2}{2}$ est une primitive de $x\mapsto x$ sur $\mathbb R$. Déterminons une primitive de $x\mapsto \frac{x}{1+x^2}$. On peut écrire

$$\frac{x}{1+x^2} = \frac{1}{2} \left(\frac{2x}{1+x^2} \right) = \frac{1}{2} \frac{u'(x)}{u(x)}$$

où $u: x \mapsto \mathbf{1} + x^2$.

Comme u(x) > 0 pour tout $x \in \mathbb{R}$, $x \mapsto \ln(u(x))$ est une primitive de $\frac{u'}{u}$ sur \mathbb{R} .

Par conséquent $x\mapsto \frac{1}{2}\ln(1+x^2)$ est une primitive de $x\mapsto \frac{x}{1+x^2}$ sur $\mathbb R$

et donc $x \mapsto \frac{x^2}{2} - \frac{\ln(1+x^2)}{2}$ est une primitive de $x \mapsto \frac{x^3}{1+x^2}$ sur \mathbb{R}

a) En utilisant l'identité
$$x^3 = x(x^2 + 1) - x$$
, calculer $\int_0^2 \frac{x^3}{1 + x^2} dx$.

a) De l'identité $x^3 = x(1 + x^2) - x$ on déduit

$$\frac{x^3}{1+x^2} = \frac{x(1+x^2)-x}{1+x^2} = x - \frac{x}{1+x^2}.$$

 $x\mapsto \frac{x^2}{2}$ est une primitive de $x\mapsto x$ sur $\mathbb R$. Déterminons une primitive de $x\mapsto \frac{x}{1+x^2}$. On peut écrire

$$\frac{x}{1+x^2} = \frac{1}{2} \left(\frac{2x}{1+x^2} \right) = \frac{1}{2} \frac{u'(x)}{u(x)}$$

où $u: x \mapsto 1 + x^2$.

Comme u(x) > 0 pour tout $x \in \mathbb{R}$, $x \mapsto \ln(u(x))$ est une primitive de $\frac{u'}{u}$ sur \mathbb{R} .

Par conséquent $x \mapsto \frac{1}{2} \ln(1+x^2)$ est une primitive de $x \mapsto \frac{x}{1+x^2}$ sur \mathbb{R}

et donc
$$x \mapsto \frac{x^2}{2} - \frac{\ln(1+x^2)}{2}$$
 est une primitive de $x \mapsto \frac{x^3}{1+x^2}$ sur \mathbb{R}

D'où

$$\int_{1}^{2} \frac{x^{3}}{1+x^{2}} dx = \left[\frac{x^{2}}{2} - \frac{\ln(1+x^{2})}{2} \right]_{0}^{2} = \frac{4 - \ln 5}{2}.$$

b) Calculer $\int_0^2 \frac{x^4}{1+x^2} dx$ par une méthode analogue.

- b) Calculer $\int_0^2 \frac{x^4}{1+x^2} dx$ par une méthode analogue.
- b) De l'identité remarquable $x^4-{\tt l}=(x^2-{\tt l})(x^2+{\tt l})$ on déduit $x^4=(x^2-{\tt l})({\tt l}+x^2)+{\tt l}$

b) Calculer $\int_{0}^{2} \frac{x^4}{1+x^2} dx$ par une méthode analogue.

b) De l'identité remarquable
$$x^4 - 1 = (x^2 - 1)(x^2 + 1)$$
 on déduit $x^4 = (x^2 - 1)(1 + x^2) + 1$

et donc

$$\frac{x^4}{1+x^2} = \frac{(x^2-1)(1+x^2)+1}{1+x^2} = x^2 - 1 + \frac{1}{1+x^2}.$$

b) Calculer $\int_0^2 \frac{x^4}{1+x^2} dx$ par une méthode analogue.

b) De l'identité remarquable
$$x^4 - 1 = (x^2 - 1)(x^2 + 1)$$
 on déduit $x^4 = (x^2 - 1)(1 + x^2) + 1$

et donc

$$\frac{x^4}{1+x^2} = \frac{(x^2-1)(1+x^2)+1}{1+x^2} = x^2 - 1 + \frac{1}{1+x^2}.$$

$$x \mapsto \frac{x^3}{3} - x$$
 est une primitive de $x \mapsto x^2 - 1$ sur \mathbb{R} .

b) Calculer $\int_0^2 \frac{x^4}{1+x^2} dx$ par une méthode analogue.

b) De l'identité remarquable
$$x^4 - 1 = (x^2 - 1)(x^2 + 1)$$
 on déduit $x^4 = (x^2 - 1)(1 + x^2) + 1$

et donc

$$\frac{x^4}{1+x^2} = \frac{\left(x^2-1\right)\left(1+x^2\right)+1}{1+x^2} = x^2-1+\frac{1}{1+x^2}.$$

 $x \mapsto \frac{x^3}{3} - x$ est une primitive de $x \mapsto x^2 - 1$ sur \mathbb{R} .

De plus $x \mapsto \arctan x$ est une primitive de $x \mapsto \frac{1}{1 + x^2}$ sur \mathbb{R} .

b) Calculer $\int_0^2 \frac{x^4}{1+x^2} dx$ par une méthode analogue.

b) De l'identité remarquable
$$x^4 - 1 = (x^2 - 1)(x^2 + 1)$$
 on déduit $x^4 = (x^2 - 1)(1 + x^2) + 1$

et donc

$$\frac{x^4}{1+x^2} = \frac{\left(x^2-1\right)\left(1+x^2\right)+1}{1+x^2} = x^2-1+\frac{1}{1+x^2}.$$

 $x\mapsto \frac{x^3}{3}-x$ est une primitive de $x\mapsto x^2-1$ sur $\mathbb R$.

De plus $x \mapsto \arctan x$ est une primitive de $x \mapsto \frac{1}{1 + x^2}$ sur \mathbb{R} .

Par conséquent $x \mapsto \frac{x^3}{3} - x + \arctan x$ est une primitive de $x \mapsto \frac{x^4}{1 + x^2}$ sur \mathbb{R} .

b) Calculer $\int_{0}^{2} \frac{x^4}{1+x^2} dx$ par une méthode analogue.

b) De l'identité remarquable $x^4-1=(x^2-1)(x^2+1)$ on déduit $x^4=(x^2-1)(1+x^2)+1$

et donc

$$\frac{x^4}{1+x^2} = \frac{(x^2-1)(1+x^2)+1}{1+x^2} = x^2 - 1 + \frac{1}{1+x^2}.$$

 $x \mapsto \frac{x^3}{3} - x$ est une primitive de $x \mapsto x^2 - 1$ sur \mathbb{R} .

De plus $x \mapsto \arctan x$ est une primitive de $x \mapsto \frac{1}{1+x^2}$ sur \mathbb{R} .

Par conséquent $x \mapsto \frac{x^3}{3} - x + \arctan x$ est une primitive de $x \mapsto \frac{x^4}{1 + x^2}$ sur \mathbb{R} .

D'où

$$\int_{0}^{2} \frac{x^{4}}{1+x^{2}} dx = \left[\frac{x^{3}}{3} - x + \arctan x \right]_{0}^{2} = \frac{8}{3} - 2 + \arctan 2 = \frac{2}{3} + \arctan 2.$$

Cours d'Analyse 1

TD n°3

Corrigés des exercices n°11 à 19

D est l'ensemble des réels x pour lesquels $x^2 - x - 2$ ne s'annule pas. Les racines de ce trinôme sont 2 et -1. Donc $D = \mathbb{R} \setminus \{2, -1\}$.

(b) Trouver deux constantes réelles a et b telles que

$$\forall x \in D$$
, $f(x) = \frac{a}{x+1} + \frac{b}{x-2}$.

Pour que l'égalité soit vraie, il suffit, en réduisant au même dénominateur, que, pour tout $x \in D$.

$$f(x) = \frac{1}{x^2 - x - 2} = \frac{a(x - 2) + b(x + 1)}{x^2 - x - 2}$$
 ou $1 = (a + b)x + b - 2a$

ou encore
$$a=-b$$
 et $3b=1$. Donc il suffit de fixer $b=\frac{1}{3}$ et $a=-\frac{1}{3}$ pour obtenir $\forall x\in D, \qquad f(x)=\frac{1}{x^2-x-2}=\frac{1}{3}\left[\frac{1}{x-2}-\frac{1}{x+1}\right].$

(c) Calculer $\int f(x)dx$.

$$\int_{0}^{1} f(x)dx = -\frac{1}{3} \int_{0}^{1} \frac{1}{x+1} + \frac{1}{2-x} dx = -\frac{1}{3} \left[\ln(1+x) - \ln(2-x) \right]_{0}^{1}$$
$$= -\frac{1}{3} \left[\ln\left(\frac{1+x}{2-x}\right) \right]_{0}^{1} = -\frac{1}{3} \left[\ln(2) - \ln\left(\frac{1}{2}\right) \right] = -\frac{2}{3} \ln(2).$$

Calculer $\int_{0}^{\pi} |\cos(t)| dt$. Indications : étudier le signe de la fonction cos sur $[0,\pi]$ et utiliser la relation de Chasles.

Soit I un intervalle de \mathbb{R} et soit $f: I \to \mathbb{R}$ continue. Pour tous $a, b, c \in I$,

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

Si $t \in [0, \pi/2]$, $\cos(t) \ge 0$ et $|\cos(t)| = \cos(t)$.

Si $t \in [\pi/2, \pi]$, $\cos(t) < 0$ et $|\cos(t)| = -\cos(t)$.

On peut écrire :

$$\int_{0}^{\pi} |\cos(t)| dt = \int_{0}^{\pi/2} |\cos(t)| dt + \int_{\pi/2}^{\pi} |\cos(t)| dt = \int_{0}^{\pi/2} \cos(t) dt - \int_{\pi/2}^{\pi} \cos(t) dt.$$

Donc

$$\int_{0}^{\pi} |\cos(t)| dt = \left[\sin(t)\right]_{0}^{\pi/2} - \left[\sin(t)\right]_{\pi/2}^{\pi} = \sin\left(\frac{\pi}{2}\right) - \sin(0) - \left[\sin(\pi) - \sin\left(\frac{\pi}{2}\right)\right] = 2.$$

Calculer les intégrales suivantes en utilisant un changement de variable.

(a)
$$\int_{2}^{e} \frac{(\ln(x))^{3}}{x} dx.$$

4.2 Changement de variable

a) Soient I, J, deux intervalles de \mathbb{R} , $\varphi:I\to J$ une fonction de classe C^1 et $f: J \to \mathbb{R}$ une fonction continue. Alors, pour tous $a, b \in I$, on a la formule de changement de variable

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$
 (2)

Si on pose, pour x > 0.

$$\varphi(x) = \ln(x)$$
 (ou $y = \ln(x)$),

$$\varphi'(x) = \frac{1}{x}$$
 (ou $dy = (\ln(x))'dx = \frac{1}{x}dx$),

$$\varphi(e) = \ln(e) = 1$$
, $\varphi(2) = \ln(2)$ (ou $y = \ln(e) = 1$ pour $x = 1$, $y = \ln(2)$ pour $x = 2$),

$$\int_{2}^{e} (\ln(x))^{3} \frac{1}{x} dx = \int_{2}^{e} (\varphi(x))^{3} \varphi'(x) dx = \int_{\frac{1}{2}(2) - \ln(2)}^{\frac{1}{2}(e) - \ln(2)} y^{3} dy = \left[\frac{y^{4}}{4} \right]_{\ln(2)}^{1} = \frac{1}{4} \left[1 - \ln^{4}(2) \right].$$

Calculer les intégrales suivantes en utilisant un changement de variable.

(b)
$$\int_0^3 x^2 \sqrt{1+x} dx$$
 (poser $y = \sqrt{1+x}$).

Si on pose, pour x > 0, $y = \sqrt{1+x} \text{ ou } x^2 = (y^2 - 1)^2,$ $dy = \frac{1}{2\sqrt{1+x}} dx \text{ ou } 2ydy = dx,$

$$y = 1 \text{ pour } x = 1, y = \sqrt{4} = 2 \text{ pour } x = 3$$
),

$$\int_{0}^{3} x^{2} \sqrt{1+x} dx = \int_{1}^{2} (y^{2}-1)^{2} \cdot y \cdot (2y) dy,$$

$$= 2 \int_{1}^{2} (y^{2}-1)^{2} y^{2} dy = 2 \int_{1}^{2} (y^{3}-y)^{2} dy,$$

$$= 2 \int_{1}^{2} y^{6} - 2y^{4} + y^{2} dy = 2 \left[\frac{y^{7}}{7} - 2 \frac{y^{5}}{5} + \frac{y^{3}}{3} \right]_{1}^{2},$$

$$= 2 \left[y^{3} \left(\frac{y^{4}}{7} - 2 \frac{y^{2}}{5} + \frac{1}{3} \right) \right]_{1}^{2} = 2 \left[8 \left(\frac{16}{7} - \frac{8}{5} + \frac{1}{3} \right) - \left(\frac{1}{7} - \frac{2}{5} + \frac{1}{3} \right) \right],$$

$$= 16 \left(\frac{107 - 1}{105} \right) = \frac{1696}{105}.$$

En utilisant le changement de variable $x = e^t$, calculer les intégrales suivantes.

En utilisant le change (a)
$$\int_{-1}^{1} \frac{e^{t}}{1 + e^{2t}} dt.$$

Si on pose, pour $t \in \mathbb{R}$.

$$x = e^{t}$$
, $dx = e^{t}dt$, $x = \frac{1}{2}$ pour $t = -1$, $x = e$ pour $t = 1$,

$$\int_{-1}^{1} \frac{e^{t}}{1 + e^{2t}} dt = \int_{-1}^{1} \frac{e^{t}}{1 + (e^{t})^{2}} dt = \int_{1/e}^{e} \frac{1}{1 + x^{2}} dx$$

$$= \left[\operatorname{arctan}(x) \right]_{e}^{e} = \operatorname{arctan}(e) - \operatorname{arctan}\left(\frac{1}{e}\right).$$

(b)
$$\int_{0}^{2} \frac{dt}{1 + e^{-t}}$$
.

Si on pose, pour $t \in \mathbb{R}$,

$$x = e^t$$
, $dx = e^t dt$ ou $dt = \frac{1}{x} dx$, $x = e^2$ pour $t = 2$, $x = 1$ pour $t = 0$,

$$\int_{0}^{2} \frac{1}{1+e^{-t}} dt = \int_{1}^{e^{2}} \frac{1}{1+\frac{1}{x}} \frac{1}{x} dx = \int_{1}^{e^{2}} \frac{1}{1+x} dx$$
$$= \left[\ln(1+x) \right]_{1}^{e^{2}} = \ln(1+e^{2}) - \ln(2) = \ln\left(\frac{1+e^{2}}{2}\right).$$

(a) Montrer, en utilisant un changement de variable, que $\int_a^b f(x)dx = \int_{a+T}^{b+T} f(x)dx$.

On fait le changement de variable y=x+T. Alors dy=(x+T)'dx=dx, y=a+T quand x=a, y=b+T quand x=b, d'où , comme f est T-périodique, pour $x\in\mathbb{R}$, f(x)=f(x+T), et

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x+T) dx = \int_{a+T}^{b+T} f(y) dy = \int_{a+T}^{b+T} f(x) dx.$$

(b) En déduire $\int_{a}^{a+T} f(x)dx = \int_{b}^{b+T} f(x)dx$ (utiliser la relation de Chasles).

$$\int_{a}^{a+T} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{b+T} f(x)dx + \int_{b+T}^{a+T} f(x)dx$$
$$= \int_{a}^{b} f(x)dx + \int_{b}^{b+T} f(x)dx - \int_{a}^{b} f(x)dx = \int_{b}^{b+T} f(x)dx,$$

car, d'après la question précédente, $\int_{b+T}^{a+T} f(x)dx = -\int_{a+T}^{b+T} f(x)dx = -\int_{a}^{b} f(x)dx.$

Calculer à l'aide d'une (ou plusieurs) intégration(s) par parties les intégrales suivantes.

(a) $\int_{0}^{2} xe^{x-1} dx$.

(a)
$$\int_{0}^{2} x e^{x-1} dx$$
.

Théorème (formule d'intégration par parties). Soit I un intervalle de $\mathbb R$ et soient $u, v: I \to \mathbb{R}$ deux fonctions de classe C^1 . Alors, pour tous $a, b \in I$,

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$$

On intègre par parties en choisissant

$$\begin{cases} u(x) = x \\ v'(x) = e^{x-1} \end{cases} \quad \text{d'où} \quad \begin{cases} u'(x) = 1 \\ v(x) = e^{x-1} \end{cases}$$

On en déduit

$$\int_{0}^{2} x e^{x-1} dx = \left[x e^{x-1} \right]_{0}^{2} - \int_{0}^{2} e^{x-1} dx,$$
$$= 2e - \left[e^{x-1} \right]_{0}^{2} = 2e - e + \frac{1}{e} = e + \frac{1}{e}.$$

(b)
$$\int_0^{2\pi} (x+1) \sin(x) dx$$
.

On intègre par parties en choisissant

$$\begin{cases} u(x) = x + 1 \\ v'(x) = \sin(x) \end{cases} \quad \text{d'où} \quad \begin{cases} u'(x) = 1 \\ v(x) = -\cos(x) \end{cases}$$

On en déduit

$$\int_{0}^{2\pi} (x+1)\sin(x)dx = \left[-(x+1)\cos(x) \right]_{0}^{2\pi} + \int_{0}^{2\pi} \cos(x)dx,$$

$$= -(2\pi+1)\cos(2\pi) + \cos(0) + \left[\sin(x) \right]_{0}^{2\pi},$$

$$= -2\pi + \sin(2\pi) - \sin(0) = -2\pi.$$

On intègre par parties en choisissant $\begin{cases} u(x) = x^2 \\ v'(x) = e^{-2x} \end{cases}$ d'où $\begin{cases} u'(x) = 2x \\ v(x) = -\frac{e^{-2x}}{2x} \end{cases}$. On en déduit

$$\int_0^1 x^2 e^{-2x} dx = \left[-x^2 \frac{e^{-2x}}{2} \right]_0^1 + \int_0^1 x e^{-2x} dx = -\frac{1}{2e^2} + \int_0^1 x e^{-2x} dx.$$

On intègre à nouveau par parties avec $\begin{cases} u(x) = x \\ v'(x) = e^{-2x} \end{cases}$ d'où $\begin{cases} u'(x) = 1 \\ v(x) = -\frac{e^{-2x}}{2} \end{cases}$,

et

$$\int_{0}^{1} xe^{-2x} dx = \left[-x \frac{e^{-2x}}{2} \right]_{0}^{1} + \frac{1}{2} \int_{0}^{1} e^{-2x} dx = -\frac{1}{2e^{2}} + \frac{1}{2} \left[-\frac{1}{2} e^{-2x} \right]_{0}^{1}$$
$$= -\frac{1}{2e^{2}} - \frac{1}{4e^{2}} + \frac{1}{4} = \frac{1}{4} \left[1 - \frac{3}{e^{2}} \right].$$

Puis

$$\int_0^1 x^2 e^{-2x} dx = -\frac{1}{2e^2} + \frac{1}{4} \left[1 - \frac{3}{e^2} \right] = \frac{1}{4} \left[1 - \frac{5}{e^2} \right].$$

En utilisant u= arctan et v(x)=x pour une intégration par parties, donner toutes les primitives sur $\mathbb R$ de la fonction arctan.

Soit I un intervalle de \mathbb{R} , x_0 un point de I et soit f une fonction définie et continue sur I. Alors la fonction \mathcal{K} définie sur I par $\mathcal{K}(x) = \int_{x_0}^x f(t) \, dt$ est une primitive de f. Plus précisément, \mathcal{K} est l'unique primitive de f qui s'annule en x_0 .

$$x \to \int_0^x \arctan(t)dt$$
 est donc une primitive de arctan.

On intègre par parties en choisissant

$$\begin{cases} u(t) = \arctan(t) & \text{d'où} & \begin{cases} u'(t) = \frac{1}{1+t^2} \\ v'(t) = 1 \end{cases} \end{cases}$$

On en déduit

$$\int_{0}^{x} \arctan(t)dt = \left[t\arctan(t)\right]_{0}^{x} - \int_{0}^{x} \frac{t}{1+t^{2}}dt = x\arctan(x) - \frac{1}{2}\int_{0}^{x} \frac{2t}{1+t^{2}}dt,$$

$$= x\arctan(x) - \left[\frac{1}{2}\ln(1+t^{2})\right]_{0}^{x} = x\arctan(x) - \frac{1}{2}\ln(1+x^{2}).$$

Comme $\mathbb R$ est un intervalle, toutes les primitives de arctan sont de la forme $x\arctan(x)-\frac{1}{-}\ln(1+x^2)+C,\quad C\in\mathbb R.$

On intègre par parties en choisissant $\begin{cases} u(t) = \sin(t) \\ v'(t) = e^t \end{cases}$ d'où $\begin{cases} u'(t) = \cos(t) \\ v(t) = e^t \end{cases}$ On en déduit

$$\int_0^x e^t \sin(t) dt = \left[e^t \sin(t) \right]_0^x - \int_0^x e^t \cos(t) dt = e^x \sin(x) - \int_0^x e^t \cos(t) dt.$$

On intègre à nouveau par parties avec $\begin{cases} u(t) = \cos(t) \\ v'(t) = e^t \end{cases} \text{ d'où } \begin{cases} u'(t) = -\sin(t) \\ v(t) = e^t \end{cases} ,$ et

$$\int_0^x e^t \cos(t) dt = \left[e^t \cos(t) \right]_0^x + \int_0^x e^t \sin(t) dt = e^x \cos(x) - \mathbf{1} + \int_0^x e^t \sin(t) dt.$$

Puis

$$\int_0^x e^t \sin(t)dt = e^x \sin(x) - \left[e^x \cos(x) - 1 + \int_0^x e^t \sin(t)dt\right],$$

et enfin

$$\int_0^x e^t \sin(t) dt = \frac{1}{2} \left[1 + e^x \left(\sin(x) - \cos(x) \right) \right].$$

Calculer
$$\int_{1}^{3} \frac{\ln(t)}{t^{2}} dt.$$

^_ -

$$\int^3 \frac{\ln(t)}{t^2} dt = \int^3 \ln(t) \cdot \frac{1}{t^2} dt.$$

On intègre par parties en choisissant

$$\begin{cases} u(t) = \ln(t) \\ v'(t) = \frac{1}{t^2} \end{cases} \quad \text{d'où} \quad \begin{cases} u'(t) = \frac{1}{t} \\ v(t) = -\frac{1}{t} \end{cases}$$

On en déduit

$$\int_{1}^{3} \frac{\ln(t)}{t^{2}} dt = \left[-\frac{\ln(t)}{t} \right]_{1}^{3} + \int_{1}^{3} \frac{1}{t^{2}} dt,$$
$$= -\frac{\ln(3)}{3} + \left[-\frac{1}{t} \right]_{1}^{3},$$
$$\ln(3) \qquad 1 \qquad 1 \qquad 1$$

$$= -\frac{\ln(3)}{3} + 1 - \frac{1}{3} = \frac{1}{3} \left[2 - \ln(3) \right].$$

TD3. Corrigé des exercices complémentaires.

L1S1 Portails Math-Info & Math-Physique Analyse 1

2020-21

Exercice 20. a) Justifier que la fonction $f: t \mapsto \frac{e^t}{t}$ admet une primitive F sur l'intervalle $]0, +\infty[$. On ne cherchera pas à calculer F(t).

On a f = u/v, où les fonctions u et v sont définies sur $I =]0, +\infty[$ par $u(t) = e^t$ et v(t) = t; u et v sont continues sur I, v ne s'annule pas sur I donc f est continue sur I. Toute fonction continue sur un intervalle admet une primitive sur cet intervalle, donc f admet une primitive F sur I.

b) On considère la fonction $h:]0, +\infty[\to \mathbb{R}$ définie par $h(x) = \int_1^{x^-} \frac{e^t}{t} \, dt$. Donner une expression de h(x) qui utilise la fonction F. En déduire que h est dérivable sur $]0, +\infty[$ et calculer h'(x).

Soit $x \in I$; 1 et x^2 appartiennent à I donc, comme F est une primitive de f sur I,

$$h(x) = \int_{1}^{x^{2}} f(t) dt = \left[F(t) \right]_{t=1}^{t=x^{2}} = F(x^{2}) - F(1).$$

 $x^2 \in I$ pour tout $x \in I$, et F est dérivable sur I, donc h est dérivable sur I et

$$h'(x) = F'(x^2) \cdot 2x = 2xf(x^2) = 2x\frac{e^{x^2}}{x^2} = \frac{2e^{x^2}}{x^2}.$$

Exercice 21. On définit une fonction $h:]-\pi/2, 3\pi/2[\to \mathbb{R}$ en posant

$$h(x)=rac{\cos x}{1+\sin x}$$
. Calculer la dérivée de h . Utiliser le résultat obtenu pour calculer $\int_0^{\pi/2}rac{1}{1+\sin x}\,dx$ et $\int_0^{\pi/3}rac{1}{1+\sin x}\,dx$.

On a

$$h'(x) = \frac{\cos'(x)(1+\sin x) - \cos x \sin'(x)}{(1+\sin x)^2} = \frac{-\sin x(1+\sin x) - (\cos x)^2}{(1+\sin x)^2}$$
$$= \frac{-\sin x - 1}{(1+\sin x)^2} = -\frac{1}{1+\sin x}.$$

Ainsi, la fonction -h est une primitive sur] $-\pi/2, 3\pi/2$ [de la fonction $x \mapsto \frac{1}{1+\sin x}$. On a donc

$$\int_{0}^{\pi/2} \frac{1}{1+\sin x} dx = -h(\pi/2) + h(0) = 0 + 1 = 1;$$

$$\int_0^{\pi/3} \frac{1}{1+\sin x} \, dx = -h(\pi/3) + h(0) = -\frac{1/2}{1+(\sqrt{3}/2)} + 1 = -\frac{1}{2+\sqrt{3}} + 1 = \frac{1+\sqrt{3}}{2+\sqrt{3}}.$$

Exercice 22. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/4} (\tan t)^n dt$.

- a) Calculer I_0 et I_1 .
- b) Pour n quelconque, calculer $I_n + I_{n+2}$ (Indication : mettre (tan t)ⁿ en facteur dans l'intégrale à calculer).

a)
$$I_0 = \int_0^{\pi/4} dt = \frac{\pi}{4}$$
 et

$$I_1 = \int_0^{\pi/4} \tan t \, dt = \int_0^{\pi/4} \frac{\sin t}{\cos t} \, dt$$

$$= \left[-\ln(\cos t) \right]_0^{\pi/4} = -\ln(1/\sqrt{2}) + \ln(1) = \ln(\sqrt{2}) = \frac{\ln(2)}{2} \, .$$

b) On a

$$I_n + I_{n+2} = \int_0^{\pi/4} (\tan t)^n + (\tan t)^{n+2} dt = \int_0^{\pi/4} (\tan t)^n (1 + (\tan t)^2) dt$$

$$= \int_0^{\pi/4} (\tan t)^n \tan'(t) dt = \left[\frac{(\tan t)^{n+1}}{n+1} \right]_0^{\pi/4} = \frac{1}{n+1}.$$

c) En déduire I_2 , I_3 , I_4 , I_5 .

On a vu en a):
$$I_0 = \frac{\pi}{4}$$
, $I_1 = \frac{\ln(2)}{2}$
et en b): $I_n + I_{n+2} = \frac{1}{n+1}$.

On en déduit :

On en deduit:
$$l_0 + l_2 = 1, \text{ donc } l_2 = 1 - \frac{\pi}{4};$$

$$l_1 + l_3 = \frac{1}{2}, \text{ donc } l_3 = \frac{1}{2} - \frac{\ln 2}{2};$$

$$l_2 + l_4 = \frac{1}{3}, \text{ donc } l_4 = \frac{1}{3} - (1 - \frac{\pi}{4}) = \frac{\pi}{4} - \frac{2}{3};$$

$$l_3 + l_5 = \frac{1}{4}, \text{ donc } l_5 = \frac{1}{4} - (\frac{1}{2} - \frac{\ln 2}{2}) = \frac{\ln 2}{2} - \frac{1}{4}.$$

Exercice 23. a) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue et soit $a \in \mathbb{R}$. Justifier

l'égalité
$$\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(-x) dx.$$

- b) Montrer que si f est paire, alors $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- a) Par le changement de variable x = -t (et donc dx = -dt), on obtient

$$\int_{-a}^{0} f(x) dx = \int_{a}^{0} f(-t) (-dt) = \int_{0}^{a} f(-t) dt = \int_{0}^{a} f(-x) dx.$$

b) D'après a),

(*)
$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = \int_{0}^{a} f(-x) dx + \int_{0}^{a} f(x) dx.$$

Si f est paire, f(-x) = f(x) pour tout $x \in \mathbb{R}$, donc (*) donne $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$

c) Montrer que si
$$f$$
 est impaire, alors $\int_{-a}^{a} f(x) dx = 0$.

On a vu en b) l'égalité

(*)
$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = \int_{0}^{a} f(-x) dx + \int_{0}^{a} f(x) dx.$$

Si f est impaire, f(-x) = -f(x) pour tout $x \in \mathbb{R}$, donc (*) donne

$$\int_{-a}^{a} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx = 0.$$

7 / 12

L1S1 Portails Math-Info & Math-Physique A TD3. Corrigé des exercices complémentaires. 2020-21

Exercice 24. Calculer les intégrales suivantes.

a)
$$\int_{1}^{2} \frac{\sqrt{x}}{1+x} dx$$
 (utiliser un changement de variable)

Par le changement de variable $x = t^2$ (et donc dx = 2tdt),

$$\int_{1}^{2} \frac{\sqrt{x}}{1+x} dx = \int_{1}^{\sqrt{2}} \frac{t}{1+t^{2}} 2t dt = \int_{1}^{\sqrt{2}} \frac{2t^{2}}{1+t^{2}} dt = \int_{1}^{\sqrt{2}} \frac{2(t^{2}+1)-2}{1+t^{2}} dt$$

$$= \int_{1}^{\sqrt{2}} 2 - \frac{2}{1+t^{2}} dt = 2(\sqrt{2}-1) - [2\arctan(t)]_{1}^{\sqrt{2}}$$

$$= 2(\sqrt{2}-1-\arctan(\sqrt{2})+\arctan(1))$$

$$= 2\sqrt{2}-2-2\arctan(\sqrt{2}) + \frac{\pi}{2}$$

b)
$$\int_{1}^{2} x \ln x \, dx$$
 c) $\int_{1}^{2} \frac{\ln x}{x} \, dx$

b) Par une intégration par parties, avec $\begin{cases} u(x) = \ln(x) \\ v'(x) = x \end{cases}$ et $\begin{cases} u'(x) = 1/x \\ v(x) = x^2/2 \end{cases}$, on obtient

$$\int_{1}^{2} x \ln(x) dx = \left[\frac{x^{2}}{2} \ln(x) \right]_{1}^{2} - \int_{1}^{2} \frac{x}{2} dx$$
$$= 2 \ln(2) - \left[\frac{x^{2}}{4} \right]_{1}^{2} = 2 \ln(2) - 1 + \frac{1}{4} = 2 \ln(2) - \frac{3}{4}.$$

c)

$$\int_{1}^{2} \frac{\ln(x)}{x} dx = \int_{1}^{2} \ln(x) \ln'(x) dx = \left[\frac{(\ln(x))^{2}}{2} \right]_{1}^{2}$$
$$= \frac{(\ln(2))^{2}}{2}$$

L1S1 Portails Math-Info & Math-Physique ATD3 Corrigé des exercices complémentaires. 2020-21 9 / 12

Exercice 25. Calculer les intégrales suivantes.

a)
$$\int_0^1 7x(3x^2+1)^4 dx$$

En posant $u(x) = 3x^2 + 1$,

$$\int_0^1 7x (3x^2 + 1)^4 dx = \frac{7}{6} \int_0^1 6x (3x^2 + 1)^4 dx$$

$$= \frac{7}{6} \int_0^1 u'(x) u(x)^4 dx = \frac{7}{6} \left[\frac{u(x)^5}{5} \right]_0^1$$

$$= \frac{7}{6} \left[\frac{(3x^2 + 1)^5}{5} \right]_0^1 = \frac{7}{6} \times \frac{4^5 - 1}{5}$$

$$= \frac{7 \times 341}{30} = 238, 7.$$

b)
$$\int_{0}^{2} s \sqrt{s^2 + 1} \, ds$$

Posons
$$\varphi(s) = s^2 + 1$$
. On a $\varphi'(s) = 2s$, donc $s\sqrt{s^2 + 1} = \frac{1}{2}\varphi'(s)\varphi(s)^{1/2}$.

Ainsi la fonction $s\mapsto \frac{1}{2}\frac{\varphi(s)^{\frac{1}{2}+1}}{\frac{1}{2}+1}$ est une primitive sur $\mathbb R$ de la fonction $s\mapsto s\sqrt{1+s^2}$. Il vient

$$\int_0^2 s \sqrt{s^2 + 1} \, ds = \left[\frac{1}{2} \frac{\varphi(s)^{\frac{3}{2}}}{\frac{3}{2}} \right]_0^2 = \left[\frac{1}{3} (s^2 + 1)^{\frac{3}{2}} \right]_0^2 = \frac{5^{\frac{3}{2}} - 1}{3} = \frac{5\sqrt{5} - 1}{3} \, .$$

11 / 12

c)
$$\int_0^1 \ln(1+x^2) dx$$

On fait une intégration par parties, en posant $\begin{cases} u(x) = \ln(1+x^2) \\ v'(x) = 1 \end{cases}$

$$\begin{cases} u'(x) = \frac{2x}{1+x^2} \\ v(x) = x \end{cases}$$

$$\int_0^1 \ln(1+x^2) \, dx = \int_0^1 u(x)v'(x) \, dx = [u(x)v(x)]_0^1 - \int_0^1 u'(x)v(x) \, dx$$

$$= [x \ln(1+x^2)]_0^1 - \int_0^1 \frac{2x^2}{1+x^2} dx$$
$$= \ln(2) - \int_0^1 \frac{2(x^2+1-1)}{1+x^2} dx$$

$$= \ln(2) - \int_0^1 2 - \frac{2}{1 + x^2} \, dx$$

$$= \ln(2) - 2 + [2\arctan(x)]_0^1 = \ln(2) - 2 + \frac{\pi}{2}.$$