STAC67: Regression Analysis

Assignment 1 (Total: 100 points)

Please submit R Markdown file for Q. 1 and Q. 6 along with your submission of the assignment.

Q. 1 (10 pts) This question is to practice R to sample from a Normal distribution. Obtain random samples from a Normal with mean $\mu=100,\,\sigma=20$ of size n = 100, 1000, 10,000, 100,000.

When you generate a random number, use R code, **set.seed(your student number)** before the R codes of generating a random number, so that we can replicate the result.

- (a) (5 pts) On a single page (2 rows, 2 columns) give the histograms on the same set of bins, with a normal density superimposed on each. Comment on the approximation accuracy.
- (b) (5 pts) For each sample size, give the mean, standard deviation, and the following percentiles (2.5, 25, 50, 75, 97.5). Compare these with the theoretical values.
- Q. 2 (14 pts) (a) (4 pts) Prove the following equalities.
 - (i) $S_{XX} = \sum_{i=1}^{n} X_i^2 n\bar{X}^2$
 - (ii) $S_{XY} = \sum_{i=1}^{n} X_i Y_i n \bar{X} \bar{Y}$
 - (b) Suppose that $(Y_1, X_1), \ldots, (Y_n, X_n)$ is a data set to which we fit a simple linear regression. Let $\hat{\beta}_1$ be the least squares estimate of the slope with Y and let r be the sample correlation coefficient.
 - (i) (5 pts) Show that

$$\hat{\beta}_1 = r \frac{s_Y}{s_X}$$

where s_Y and s_X are the sample standard deviations of $Y_1 \dots Y_n$ and $X_1 \dots X_n$ respectively.

(ii) (5 pts) Show that

$$\frac{\hat{\beta}_1}{s.e(\hat{\beta}_1)} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Q. 3 (16 pts) (4 pts each) Anastrozole is a drug often used to treat breast cancer patients. One study attempted to see if the effect of Anastrozole is associated with the age of patients. The response variable Y is the change the levels of cortisol-binding globulin (CBG). and the covariate x is age. The following summary statistics were reported.

$$n = 26$$
 $\sum X_i = 1613$ $\sum Y_i = 281.9$ $S_{XX} = 3756.96$ $S_{YY} = 465.34$ $S_{XY} = -757.64$

- (a) Find the least squares estimates of the intercept and slope.
- (b) Give the standard errors for your estimates in (a).

- (c) Construct 95% confidence intervals for the true intercept and true slope.
- (d) What conclusions would you draw from your results?
- Q. 4 (28 pts) (4 pts each) We fit the linear regression model without the intercept, $Y_i = \beta_1 X_i + \epsilon_i, i = 1, \dots n$,
 - (a) Find the least square estimator of β_1 .
 - (b) Denote the estimator by $\hat{\beta}_1$ then the estimated model is $\hat{Y}_i = \hat{\beta}_1 X_i$. Let $e_i = Y_i \hat{Y}_i$. Can you conclude $\sum_{i=1}^n e_i = 0$?
 - (c) Assume that the error term are independent and identically distributed, $N(0, \sigma^2)$ with σ^2 unknown for successive questions (c to f). Find the Standard Error for the estimator of β_1 .
 - (d) Design a procedure to test

$$H_0: \beta_1 = 0$$
 $H_1: \beta_1 \neq 0$

(e) (5 pts) The data is collected for six observations.

Find the maximum likelihood estimator of β_1 and evaluate its value.

- (f) Consider another estimator $\tilde{\beta}_1 = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n X_i}$. Derive its mean and variance.
- (g) Which estimator has the smaller variance? Why?

Q. 5 (8 pts) Consider a simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
, for $i = 1, 2, \dots, n$,

where $\epsilon_i \sim N(0, \sigma^2)$ and

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

is the least squares estimator of β_1 . Imagine $\hat{\beta}_1^* = \sum_{i=1}^n c_i Y_i$ is any other unbiased estimator of β_1 with c_i being arbitrary constant. Prove that $Var(\hat{\beta}_1) \leq Var(\hat{\beta}_1^*)$. That is, prove that the least squares estimator of β_1 has the minimum variance among all other linear unbiased estimators of β_1 .

- Q. 6 (24 pts) (4 pts each) For this question, use R Markdown file. The data set, "vote.txt" is posted at Quercus. The data contains the incumbent party's vote percentage of the two-party vote coded as **vote** and average personal income growth in the previous years coded as **growth**. The political scientist Douglas Hibbs forecasts elections based solely on economical growth.
 - (a) Obtain a scatter plot between two variables (make sure which variable goes to y axis), also add the fitted linear regression line.

- (b) Fit a simple linear regression in R, predicting elections from the economy. Interpret both estimates $(\hat{\beta}_0 \text{ and } \hat{\beta}_1)$ in words.
- (c) Predict the incumbent party's vote in 2008 election and based on that, who will won the election between "McCain" and "Obama"? (both by hands and in R)
- (d) Test whether there is a positive association between incumbent party's vote share and economical growth.
- (e) Give a 95% confidence interval for the mean incumbent party's vote share change as economical growth increases in one unit (percent) (both by hands and in R).
- (f) Compute the probability that $P(|\hat{\beta}_1 \beta| > 1)$.