

DEPARTMENT OF COMPUTER ENGINEERING, MODELING, ELECTRONICS AND SYSTEM ENGINEERING

Antenna and Propagation

Patch Antenna Project Report

Group Members

- 1. ASSEFA HAFTU MERESSA
- 2. GEBERE HALEFOM MERESA
- 3. MATTHIAS GODEBO JARSO

Submitted to: Prof. SANDRA COSTANZO

Submission Date: 10/01/2024

1.Design of Mictrostrip Patch Antenna Using Quarter Wave Transformer Feed

Step 1:select the materials(dielectric, metal patch, and ground plan)

Step 2: estimate the dimensions of the patch

Step 3: estimate the microstrip line dimensions

Step 4: Model of the antenna

Step 5:optimize length and width in order to have Z_{in} characterized by imaginary $Z_{in} = 0$ at frequency = 10.5 GHz

Step 6: Replace the 50 ohm line with quarte wave transformer and optimize its dimension with impedance of $z_T = \sqrt{Zin*} Zo$

 Z_{in} =338.5 Ω

 $Z_0=50\Omega$

 $Z_T = \sqrt{Zin * Zo}$

 Z_T =130.096 Ωimpedance of the quarter wave transformer

Based on the above calculated values, we got the following estimation for quarter wave transformer

Step 7: Optimized Z_{in} of quarter wave transformer (Re(Z_{in}) =50 ohm, Im(Z_{in})=0)

Step 8: Add 50 ohm line with length 15mm in order to have Z_{in_final} (Im $(Z_{in_final} = 0)$, $Re(Z_{in_final}) = 50$ ohm) at frequency = 10.5GHz

Step 9: Plotted performance parameters

Input impedance after optimized the Transmission line

Reflection coefficient(s11)

Bandwidth

Bandwidth= $((F_{max}-F_{min})/F_o)*100=((10.6-10.378)/10.5)*100=2.114\%$

Radiation pattern

Gain

2. Mictrostrip Patch Antenna Design using Coaxial Feed

Input Impedance(Z_{in})

Reflection Coefficient S11

Bandwidth = ((Fmax-Fmin)/Fo)*100= ((10.68-10.339)/10.5)*100=3.247%

Radiation Pattern

Gain

