Roll Number:				
	Thapar Institute of I	Engineering and	Technology,	Patiala
	Department of C	omnuter Science	and Engineer	ing

B E- COE, CSE (VI Semester) MAKEUP-MST	Course Code: UCS701
	Course Name: Theory of Computation
April 20, 2023, 5:30 PM	•
Time: 2 Hours, M. Marks: 30	Name of Faculty: Sunita Garhwal,
	Nitigya Sambyal, Chinmaya Panigrahy
	Nidhi Kalra, Shashank Sheshar, Javed
	Imran.

Note: Attempt all questions with proper justification. Assume missing data, if any, suitably.

- Q1. Given the regular expression $r = (a+b)^* aba$ over the alphabet $\Sigma = \{a,b\}$ (5)
 - a) Convert the given r into NFA using Thompson's construction.
 - b) Convert the obtained NFA into DFA using subset construction.
 - c) Minimize the obtained DFA in 1 (b).
- Q2. Construct a deterministic finite automaton over $\Sigma = \{a, b\}$ such that (6)
 - a) It recognizes the language where every a is not followed by bb?
 - b) It recognizes the language $L = \{vwv: v, w \in \{a, b\}^*, |v| = 2\}$
 - c) It recognizes the language $L = \{ab^5wb^2 : w \in \{a, b\}^*\}$
- Q3. a) Construct a Moore machine that takes binary number as input and produces residue '5' as output? Convert it into an equivalent Mealy machine. (3)
 - b) Write the regular expression corresponding to the language L where $L = \{x \mid x \in \{0,1\}^* \mid x \text{ ends with 1 and does not contain substring 00}\}.$ (2)
 - c) Construct the Right Linear Grammar over the $\Sigma = \{a, b\}$ for representing the regular expression: $r = a(ba)^*$
- Q4. a) Write down regular expression corresponding to the following finite automaton using Arden's Theorem. (3)

[P.T.O.]

b) Construct a minimum DFA with initial state as q_0 and final state as q_2 for the given transition table:

(2)

Current	Input Symbol		
State	0	1	
q ₀	qı	q ₅	
q ₁	q ₆	q ₂	
q ₂	q_0	q ₂	
q ₃	q_2	q ₆	
Q4	q 7	q ₅	
q ₅	q_2	q 6	
q ₆	q ₆	q4	
q 7	q_6	q ₂	

- (c) Construct a left linear grammar for the language $L = \{a^n b^m : n \ge 2, m \ge 3\}$ over the $\Sigma = \{a, b\}$ (2)
- Q5. (a) Find all the strings of length 2, 3 and 4 that are not in the language represented by the regular expression $a^*(ab)^*b^*$ over alphabet $\Sigma = \{a, b\}$. (2)
 - (b) U sing Pumping Lemma, Prove that $L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$ over alphabet $\Sigma = \{a, b\}$ is not regular. (2)
 - (c) Prove that regular languages are closed under set difference. (2)

E-block

Roll Number	:	

Thapar Institute of Engineering and Technology Patiala Computer Science and Engineering Department

End Sem Test

BE Third Year (6th Semester) 13th May, 2023 9:00AM UCS701: Theory of Computation

Time: 3 Hours, Max Marks:40

Coordinators: Dr. Sunita Garhwal, Dr.

Nitigya Sambyal

Instructors: Sunita Garhwal, Nitigya Sambyal, Chinmaya Panigrahy, Nidhi Kalra, Shashank

Sheshar, Javed Imran

Note: Attempt all questions with proper justification. Assume missing data, if, any, suitably.

Q1	a)	Consider the following grammar G:	2+4
		$S \rightarrow (L) a$	
		$L \to L, S \mid S$	
		Remove the left recursion from the above grammar G.	
	b)	Consider a context-free grammar G:	
		$S \to XY$	
- 1		$X \to YS \mid 1$	
		$Y \rightarrow SX \mid 0$	
		Convert the context-free grammar into Greibach Normal Form(GNF).	
Q2	a)	Construct a context-free grammar over {0, 1} for the languages	3+2+2
		i) $L_1 = \{w \mid w \text{ starts and ends with the same symbol}\}$	
		ii) $L_2 = \{w \mid \text{length of } w \text{ is odd}\}$	
	b)	Construct deterministic finite automaton which accept a string containing "ing" at	
		the end of a string over {a-z}, e.g., "anything" but not "anywhere."	
	c)	Given the regular expression $r = 1*(10)*1*$. Convert the given r into NFA using	
		Thompson's construction.	
Q3	a)	Draw the flowchart for the language $L = \{a^n b^{2m} c^{3m} d^p \mid n > 0, m > 0, p > n\}$. Write down	
Q3)	the transition diagram for the above-designed flowchart.	5+2
	b)	Design a CFG for the language L over $\{0, 1\}$ to generate all strings having alternate sequence of 0 and 1.	
Q4	a)	Consider the CFLs $L_1 = \{a^n b^n \mid n \ge 1\}$ and $L_2 = \{a^n b^q \mid p, q \ge 1\}$, then intersection of L_1	
		and L_2 is a CFL or not. Justify your answer.	2+4
	b)	Given the context-free grammar	
		$S \rightarrow XY$	
		$X \to a b XA$	
		$Y \rightarrow \alpha AY$	
		$A \rightarrow a$	
		Apply CYK algorithm to determine whether the string $w=babaa$ belongs to the language generated by the above given grammar.	

Q5 a)	a)	Prove that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free language using Pumping Lemma.	3+4
	b)	Design a Mealy machine that recognises the double occurrence of symbol 'a' in the input string $w \in \{a,b\}^*$. Show the output sequence for the string $w = aababba$. [Hint: input: aba then output: 000 , input: $aaab$ then output: 0110]	
Q6	a)	Design a Post machine for the language $L = \{a^n b^n \mid n \ge 0 \}$.	3+4
	b)	Write down the logic for design of a Turing machine over $\{0, 1\}$ for the language L= $\{w \mid w \text{ contains equal number of 0's and 1's in any order, and } w >=2\}$. Design the Turing machine for L .	