A. Logarithms

1. $a^b = c \rightarrow b = \log_a c$ Definition

2. $\log_b b = 1$, $\log_b 1 = 0$ Special cases

 $3. \quad \log_b(\frac{x}{y}) = \log_b x - \log_b y$

4. $\log_b(x \times y) = \log_b x + \log_b y$

6. $\log_b x = \frac{\log_c x}{\log_c b}$ Changing bases

7. $x^{\log_b y} = y^{\log_b x}$

8. $b^{\log_b x} = x$ Follows directly from the previous rule.

9. $\lg(n!) = \sim n \lg n$ Stirling's Approximation

Notation:

- log n (no base) → used with orders of growth to indicate that the base is not important.
 Logarithms with different bases differ by a constant factor as shown in the listed identities.
- o $\lg n \to \text{base } 2$.
- $\ln n \rightarrow \text{natural logarithm}$ (base is e)

B. Summations

1.
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n$$
 Definition

2.
$$\sum_{i=1}^{n} c = c + c + \dots + c = c \times n$$
 If c does not depend on i .

3.
$$\sum_{i=1}^{n} c \times f_i = c \times \sum_{i=1}^{n} f_i$$

4.
$$\sum_{i=1}^{n} f_i + g_i = \sum_{i=1}^{n} f_i + \sum_{i=1}^{n} g_i$$

5.
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

6.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

7.
$$\sum_{i=0}^{n} r^{i} = r^{0} + r^{1} + r^{2} + \dots + r^{n} = \frac{r^{n+1} - 1}{r - 1}, \quad r \neq 1$$
 Geometric Sum.

8.
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 , \qquad \sum_{i=0}^{n} \left(\frac{1}{2}\right)^{i} = 1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{n}} = 2$$
 Special cases of a geometric sum $(r = 2 \text{ and } r = 0.5)$.

9.
$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \sim \int_{1}^{n} \frac{1}{i} di = \ln n$$
 Harmonic Number H_n .