Géométrie repérée

Hypothèse. Dans tout ce qui suit, on se place dans un repère (0; I; J).

Définition. Soit $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur du plan. On représente le vecteur \vec{u} par une flèche.

 \vec{u} représente la translation « se déplacer de x unités vers la droite/gauche et de y unités vers le haut/bas ». Visuellement, deux vecteurs sont égaux s'ils pointent dans la même direction, et ont la même longueur.

Définition. Soit
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$. On pose $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Additionner des vecteurs, c'est appliquer des translations successiveme

Définition. Soit
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$. On pose $\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$

 $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$ donc soustraire un vecteur, c'est additionner son opposé

Définition. Soit
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et k un réel. On pose $k\vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$

Multiplier un vecteur par $k \ge 0$, c'est multiplier sa longueur par k.

Multiplier un vecteur par k < 0, c'est multiplier sa longueur par |k| et inverser son sens.

Le vecteur
$$\overrightarrow{AB}$$
 représente la translation qui déplace notamment le point A au point B **Exemple.** Si $A = (-1; 2)$ et $B = (0; -4)$, alors $\overrightarrow{AB} = \begin{pmatrix} 0 - (-1) \\ -4 - 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -6 \end{pmatrix}$.

Propriété. Relation de Chasles.

Soit A, B, C trois points. Alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. Attention, $AB + BC \ge AC$.

Définition. La longueur d'un vecteur $\vec{u} = {x \choose v}$, notée $\|\vec{u}\|$ et lue « norme de \vec{u} » est $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Définition. La longueur d'un segment
$$[AB]$$
 est $AB = \|\overrightarrow{AB}\| = \|\binom{x_B - x_A}{y_B - y_A}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Exemple. Soit
$$\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
, alors $||\vec{u}|| = \sqrt{(3)^2 + (-4)^2} = 5$. \vec{u} est de longueur 5.

Définition. M est le **milieu d'un segment** [AB] ssi $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$

Propriété. Les coordonnées du milieu
$$M$$
 d'un segment $[AB]$ sont $x_M = \frac{x_A + x_B}{2}$ et $y_M = \frac{y_A + y_B}{2}$
Exemple. Si $A = (3; 5)$ et $B = (9; -1)$ alors le milieu de $[AB]$ est le point $M = \left(\frac{3+9}{2}; \frac{5+(-1)}{2}\right) = (6; 2)$

Définition. Une **équation** est l'expression d'une égalité, par exemple « $2y^2 - 7x = 4$ ».

Définition par l'exemple. Un point (2; -3) vérifie l'équation « $2y^2 - 7x = 4$ » car $2(-3)^2 - 7 \times (2) = 4$

Exemples. Le point (2; 3) vérifie aussi l'équation car $2 \times (3)^2 - 7 \times (2) = 4$

Le point (5; 1) ne vérifie pas l'équation car $2 \times (1)^2 - 7 \times (5) = -33 \neq 4$.

Remarque. Une équation à deux variables réelles, correspond donc toujours à un ensemble de points du plan : L'ensemble de tous les points qui rendent l'équation vraie.

Propriété. Toute droite du plan d peut être décrite comme l'ensemble des points (x; y) du plan vérifiant une équation de la forme « ax + by + c = 0 » où $a, b, c \in \mathbb{R}$ et a et b ne sont pas tous les deux nuls. **Définition**. L'expression « ax + by + c = 0 » est <u>une</u> équation cartésienne de la droite d.

Remarque. Un point M = (x; y) du plan vérifie : $M \in d \Leftrightarrow ax + by + c = 0$

Idée. 2 vecteurs non nuls sont colinéaires s'ils sont alignés dans le même sens ou dans des sens opposés **Définition.** Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un <u>réel</u> k tel que $\vec{u} = k\vec{v}$.

Exemple.
$$\binom{3}{2}$$
 et $\binom{-9}{-6}$ sont colinéaires car $\binom{-9}{-6} = -3\binom{3}{2}$. (ou ce qui revient au même $\binom{3}{2} = -\frac{1}{3}\binom{-9}{-6}$

Idée. Un vecteur directeur d'une droite, est un vecteur aligné avec la droite dans un sens ou l'autre.

Définition. \vec{u} est un vecteur directeur de la droite (AB) ssi \vec{u} est colinéaire à \overline{AB} .

 $\vec{u} + \vec{v}$

BĆ

ū

Définition. Le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ est $\det(\vec{u}; \vec{v}) = xy' - x'y$.

Exemple. Si $\vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, alors $\det(\vec{u}; \vec{v}) = (3)(-1) - (1)(2) = -3 - 2 = -5$.

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} vaut $|\det(\vec{u}; \vec{v})|$

Propriété. Deux vecteurs sont colinéaires ssi leur déterminant est nul. (dans n'importe quel repère)

Exemple. $\det \begin{pmatrix} 3 \\ 2 \end{pmatrix}; \begin{pmatrix} -9 \\ -6 \end{pmatrix} = (3)(-6) - (2)(-9) = -18 + 18 = 0 \text{ donc } \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ et } \begin{pmatrix} -9 \\ -6 \end{pmatrix} \text{ sont bien colinéaires.}$

Propriété. Trois points distincts A, B et C sont alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$.

Exemple. Les points A = (1,3), B = (2,6) et C = (3,9) sont-ils alignés ?

 $\det(\overrightarrow{AB}; \overrightarrow{AC}) = \det\left(\binom{2-1}{6-3}; \binom{3-1}{9-3}\right) = \det\left(\binom{1}{3}; \binom{2}{6}\right) = 1 \times 6 - 2 \times 3 = 0. \text{ Donc } A, B \text{ et } C \text{ sont alignés.}$

Propriété. <u>Un</u> vecteur directeur d'une droite d d'équation cartésienne « ax + by + c = 0 » est $\binom{-b}{a}$.

Exemple. La droite d'équation cartésienne « 4x - 5y + 2 = 0 » admet comme vecteur directeur $\vec{u} = (5)$

Propriété. Deux droites d'équations cartésiennes « ax + by + c = 0 » et « a'x + b'y + c' = 0 » sont <u>parallèles</u> ssi $\det \begin{pmatrix} \binom{-b}{a}; \binom{-b'}{a'} \end{pmatrix} = 0$ (Leurs vecteurs directeurs sont colinéaires)

Exemple. Les droites 3x + 2y - 5 = 0 et -6x - 4y = 0 sont parallèles car $\det\left(\binom{-2}{3}; \binom{4}{-6}\right) = 0$

Remarque. Deux droites (AB) et (MN) sont parallèles ssi \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{MN}) = 0$.

Propriété. Etant donnés un point A et un vecteur \vec{u} non nul, il existe une unique droite d passant par le point A et ayant pour vecteur directeur \vec{u} .

Exemple. Déterminer une équation cartésienne de la droite passant par A = (-1, 3) et de vecteur directeur $\vec{u} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$. Soit M = (x; y) un point du plan.

 $M \in d \Leftrightarrow \overrightarrow{AM}$ colinéaire à $\overrightarrow{u} \Leftrightarrow \det(\overrightarrow{AM}; \overrightarrow{u}) = 0 \Leftrightarrow \det\begin{pmatrix} x+1 \\ y-3 \end{pmatrix}; \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 0 \Leftrightarrow (x+1)(1) - (y-3)(-2) = 0$ $M \in d \Leftrightarrow x+1+2y-6=0 \Leftrightarrow x+2y-5=0$. Donc une équation de d est x+2y-5=0.

Déf. « $\begin{cases} ax + by + c = 0 \\ a'x + b'v + c' = 0 \end{cases}$ » est un **système linéaire de 2 équations à 2 inconnues.** $a, b, c, a', b', c' \in \mathbb{R}$

Théorème. Un tel système a : soit une seule solution, soit aucune solution, soit une infinité de solutions. Résoudre un tel système revient à chercher les coordonnées du point d'intersection, s'il y en a un, des deux droites dont les équations sont celles du système. On le résout par substitution ou par combinaison.

- Le système admet un seul couple solution ssi les deux droites sont sécantes $(\det \begin{pmatrix} -b \\ a \end{pmatrix}; \begin{pmatrix} -b' \\ a' \end{pmatrix}) \neq 0$
- Le système admet aucune solution ssi les deux droites sont parallèles non confondues.
- Le système admet une infinité de solutions ssi les deux droites sont parallèles confondues.

Propriété. Equation cartésienne d'un cercle.

Le cercle \mathcal{C} de centre le point (a;b), de rayon r>0 admet pour équation « $(x-a)^2+(y-b)^2=r^2$ » **Exemple**. Une équation du cercle de centre (1;-2) et de rayon 3 est $(x-1)^2+(x+2)^2=9$.

Exemple. $(x-1)^2 + (x+2)^2 = -1$ n'est pas un cercle. L'équation n'est jamais vérifiée car un carré est ≥ 0

Exemple. Déterminer l'ensemble des points du plan vérifiant l'équation (E) : $x^2 + 6x + y^2 - 4y = 3$.

On met sous forme canonique $x^2 + 6x = (x+3)^2 - 9$. De même $y^2 - 4y = (y-2)^2 - 4$. Ainsi :

 $(E) \Leftrightarrow (x+3)^2 - 9 + (y-2)^2 - 4 = 3 \Leftrightarrow (x+3)^2 + (y-2)^2 - 13 = 3 \Leftrightarrow (x-(-3))^2 + (y-2)^2 = 16$

Donc l'ensemble cherché est un cercle de centre (-3; 2) et de rayon $\sqrt{16} = 4$