Special tokens

Базовые токены Eos, воs, unk

- BOS/SOS токен начала последовательности
- EOS токен окончания последовательности
- UNK токен для слов/ подслов, которых нет в токенизаторе

Базовые токены вект: sep, cls, маsк

- CLS токен классификации, в выходе энкодера на его месте лежат эмбединги для классификации
- SEP токен для разделения двух предложений
- MASK токен для маски во время обучения

Токены детекции DETR

- CNN backbone learn 2D
 Representation of image: C x H x W
- Flatten + Linear + PE: d x HW
- Decoder input: Learned positional embeddings (object queries)

Токены детекции yolos

- Based on ViT
- Encoder-only
- Also learnable DET tokens

Токены детекции VIDT

Figure 2. Pipelines of fully transformer-based object detectors. DETR (ViT) means Detection Transformer that uses ViT as its body. The proposed ViDT synergizes DETR (ViT) and YOLOS and achieves best AP and latency trade-off among fully transformer-based object detectors.

Использование служебных токенов

- Object binding место для эмбедингов выхода
- Punctuation сслужебная информация о начале/конце последовательности/предложения

Мотивация

- Combination of local and global information in the same vector results in blurring global features and make in harder to acces them
- Poor scaling of attention span

Memory token Memory Transfomer

1. **Self-attention**. Calculate normalized sum of input X with multi-head attention MH(Q,K,V) between all elements of the sequence:

$$A = LN(X + MH(X, X, X)). \tag{1}$$

2. **Update**. For every element of the sequence update aggregated representation A with FF feed-forward sub-layer then add skip connection and normalize:

$$H = LN(A + FF(A)). (2)$$

 $X^{mem+seq} = [X^{mem}; X^{seq}] \in \mathbb{R}^{(n+m)\times d}, X^{mem} \in \mathbb{R}^{m\times d}, X^{seq} \in \mathbb{R}^{n\times d}.$

b. Mem Transformer layer

Memory Transformer: MemCTRL

$$\begin{split} A^{mem} &= LN(X^{mem} + MH^{mem}(X^{mem}, X^{mem+seq}, X^{mem+seq})), \\ H^{mem} &= LN(A^{mem} + FF^{mem}(A^{mem})). \end{split}$$

Sequence representation is updated as:

$$A^{seq} = LN(X^{seq} + MH^{seq}(X^{seq}, X^{mem+seq}, X^{mem+seq})),$$

$$H^{seq} = LN(A^{seq} + FF^{seq}(A^{seq})).$$

c. MemCtrl Transformer layer

Memory token Memory Transformer:

1. Memory update. First, calculate attention between every memory token and full sequence of memory X^{mem} and input X^{seq} (see Step 1 on the fig. 1d), and update memory token representations (see Step 2 on the fig. 1d):

$$A^{mem} = LN(X^{mem} + MH^{mem}(X^{mem}, X^{mem+seq}, X^{mem+seq})),$$

$$H^{mem} = LN(A^{mem} + FF^{mem}(A^{mem})).$$

2. Sequence update. Calculate attention between sequence and memory (Step 3 on the fig. 1d), and update sequence token representations (Step 4 on the fig. 1d):

$$\begin{split} A^{seq} &= LN(X^{seq} + MH^{seq}(X^{seq}, H^{mem}, H^{mem})), \\ H^{seq} &= LN(A^{seq} + FF^{seq}(A^{seq})). \end{split}$$

d. Mem Bottleneck Transformer layer

Memory token Memory Transformer: Results

	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE
BERT-base	62.9	92.7	90.2/85.8	86.0/85.8	86.6/89.8	83.0/ 83.5	90.5	65.0
5mem	61.3	92.4	90.4/86.4	86.0/85.8	86.8/90.1	82.7/83.3	90.7	68.0
5mem+pool	62.1	92.3	89.4/84.8	85.8/85.6	86.9/ 90.2	83.3 /83.3	90.8	60.2
10mem	60.6	92.5	91.3/87.6	86.6/86.4	86.4/89.8	82.8/83.3	90.5	66.8
10mem+pool	62.6	92.6	90.2/86.0	86.7/86.5	87.1/90.2	83.1/83.0	90.7	61.2
20mem	60.9	92.4	91.2/87.5	86.4/86.2	86.8/90.1	82.8/83.1	90.7	65.3

Fine-tuning Image Transformers using Learnable Memory

Memory token provide contextual information useful for specific datasets

Modified Transformer Encoder With Memory "*" denotes extra learnable class token. bird MLP Head "+" indicates residual connection car... *T*(*) denotes the output corresponding to class token T(*) MLP MLP MLP MLP Norm Norm Norm Norm Attention Attention Attention Attention Norm Norm Norm Norm Input Memor Input Memor Input Memor | Input | Memor Patches with added position encoding Linear projection of patches

Attention masking for computation reuse

Table 1. Attention mask for model extension and concatenation. Here \checkmark indicates that corresponding token type Q (query) attends to token type K (key), — that it does not attend, and \bigstar indicates that attention is used for model extension, but not for concatenation. For brevity, we denoted CLS-K as C_k and MEM-K as M_k and omitted memory rows since they do not attend to other tokens. See Sec. 2.2 for details.