M 383: Assignment 10

Nathan Stouffer

Exercises 5.3.4 — Problem 1

Problem. Define

$$x_{+} = \begin{cases} x & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

Prove that $f(x) = x_+^k$ is continuously differentiable if k is an integer greater than one.

Proof. We must show that $f(x) = x_+^k$ for k > 1 is continuously differentiable. That is, we must show f'(x) exists and is continuous on \mathbb{R} . First observe that f(x) is certainly continuously differentiable for $x \neq 0$. This is because for every $x \neq 0$, there exists a neighborhood of x such that $f(x) = x^k$ or f(x) = 0 which are both continuously differentiable.

All that remains is to show that f(x) is continuously differentiable at x=0. First, f(x) is differentiable at 0 if there exists $f'(0) \in \mathbb{R}$ such that for all 1/m there exists a 1/n such that we have $|(f(x)-f(0))/(x-0)-f'(0)| \le 1/m$ for $x \in (-1/n, 1/n)$ and $x \ne 0$. To find f'(0), we simplify:

$$\left| \frac{f(x) - f(0)}{x - 0} - f'(0) \right| = \left| \frac{f(x)}{x} - f'(0) \right| \le 1/m$$

Then we split into two cases: we have x<0 and x>0 (we assumed $x\neq 0$). If x<0, then f(x)/x=0/x=0 and we must have $|f'(0)|\leq 1/m$. The only real number to satisfy this is f'(0)=0. Will f'(0)=0 also satisfy the inequality for x>0? Select $n=m^{1/k-1}$. Then we have $|f(x)/x-f'(0)|=|x^k/x-0|=|x^{k-1}|\leq 1/n^{k-1}=1/m$. Then f'(0)=0 satisfies the derivative at 0.

We now must verify that f'(x) is continuous at 0. Note that

$$f'(x) = \begin{cases} kx^{k-1} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

We must show that for all 1/m, there exists a 1/n such that $|f'(x) - f'(0)| = |f'(x)| \le 1/m$ for $x \in (-1/n, 1/n)$. Again, we split into two cases: $x \le 0$ and x > 0. In the case where $x \le 0$, we have f'(x) = 0 so the inequality is trivially satisfied. Then in the case where x > 0, take $n = (km)^{1/(k-1)}$. Then $|f'(x)| < k/n^{k-1} = 1/m$ which shows that f'(x) is continuous. Since f'(x) exists and is continuous, the function f(x) for k > 1 is continuously differentiable.

Exercises 5.2.4 — Problem 1

Problem. Suppose $f'(x_0) = 0$, $f''(x_0) = 0$, ... $f^{n-1}(x_0) = 0$ and $f^{(n)}(x_0) > 0$ for a C^n function f. Prove that f has a local minimum at x_0 if n is even and that x_0 is neither a local maximum nor a local minimum if n is odd.

Proof. As in the textbook, let

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n$$

But since $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$, we have $T_n(x) = f(x_0) + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n$. Then, by Taylor's Theorem, we must have

$$f - T_n = o(|x - x_0|^n) \iff \lim_{x \to x_0} \frac{f - T_n}{|x - x_0|^n} = 0$$

which is equivalent to

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - 1/n! * f^{(n)}(x_0)(x - x_0)^n}{|x - x_0|^n} = 0$$

and to

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{|x - x_0|^n} = \lim_{x \to x_0} \frac{1/n! * f^{(n)}(x_0)(x - x_0)^n}{|x - x_0|^n}$$

The LHS looks like the derivative at x_0 , note that it is slightly different because of the absolute value in the denominator. We now consider the two cases where n is even and n is odd. If n is even then $|x-x_0|^n=(x-x_0)^n$ and we have

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{|x - x_0|^n} = 1/n! * f^{(n)}(x_0) > 0$$

But then since $|x - x_0|^n$ is strictly positive, we must have $f(x) > f(x_0)$ to satisfy the equality as $x \to x_0$ and $x \neq x_0$. Then there must exist a neighborhood of x_0 such that $f(x) > f(x_0)$ for all $x \neq x_0$ in the neighborhood. But then f has a strict local minimum at x_0 as desired.

Now consider the case where n is odd. Then $|x-x_0|^n = (x-x_0)^n$ for $x > x_0$ and $|x-x_0|^n = -(x-x_0)^n$ fro $x < x_0$. So for $x < x_0$, we must have

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{|x - x_0|^n} = -1/n! * f^{(n)}(x_0) < 0$$

which means $f(x) < f(x_0)$ for $x < x_0$ in a neighborhood of x_0 . And for $x > x_0$, we can use the logic from the even case of n to show that $f(x) > f(x_0)$ in a neighborhood of x_0 .

So we have just shown that, for some neighborhood of x_0 , f(x) is strictly less than $f(x_0)$ when $x < x_0$ and f(x) is strictly greater than $f(x_0)$ when $x > x_0$. Therefore, x_0 cannot be either of a local minimum or a local maximum.