線形代数 II 第 4 回レポート課題 (提出期限:10 月 31 日 17:00*)

担当:大矢 浩徳 (OYA Hironori)

学籍番号:

氏名:

問題 1. n 次元空間 \mathbb{R}^n において、ベクトル $\mathbf{a}=(a_1,\ldots,a_n)$ と $\mathbf{a}'=(a_1',\ldots,a_n')$ が直交するとは

$$\mathbf{a} \cdot \mathbf{a}' = a_1 a_1' + a_2 a_2' + \dots + a_n a_n' = 0$$

となることとする. (これは2次元,3次元の時は"普通の"直交であることに注意.)

- (1) \mathbb{R}^3 において (1,2,-5), (3,4,4) の両方に直交するベクトルを 1 つ挙げよ.
- (2) \mathbb{R}^4 において (1,1,1,1), (-7,2,0,-1), (-2,1,7,-9) の全てに直交するベクトルを 1 つ挙げよ.

(裏もあります)

問題 2. 以下の表を埋めよ:

\mathfrak{S}_4 の元 σ	逆元 σ^{-1}	符号	\mathfrak{S}_4 の元 σ	逆元 σ^{-1}	符号	\mathfrak{S}_4 の元 σ	逆元 σ^{-1}	符号
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
$\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$			$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{pmatrix} 3 & 4 & 2 & 1 \end{pmatrix}$		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
$\begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix}$			$\begin{pmatrix} 2 & 4 & 1 & 3 \end{pmatrix}$			$\begin{pmatrix} 4 & 1 & 2 & 3 \end{pmatrix}$		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
1 3 4 2			$\begin{pmatrix} 2 & 4 & 3 & 1 \end{pmatrix}$			$\begin{pmatrix} 4 & 1 & 3 & 2 \end{pmatrix}$		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
1 4 2 3			$\begin{pmatrix} 3 & 1 & 2 & 4 \end{pmatrix}$			$\left \begin{array}{cccc} 4 & 2 & 1 & 3 \end{array} \right $		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
1 4 3 2			$\begin{pmatrix} 3 & 1 & 4 & 2 \end{pmatrix}$			$\left \begin{array}{ccccc} 4 & 2 & 3 & 1 \end{array} \right $		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
$\begin{pmatrix} 2 & 1 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 3 & 2 & 1 & 4 \end{pmatrix}$			4 3 1 2		
$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$			$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$		
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\left \begin{array}{ccccc} 3 & 2 & 4 & 1 \end{array} \right $			$\left \begin{array}{ccccc} 4 & 3 & 2 & 1 \end{array} \right $		

問題 3. 今回の講義で重要だったあるいは気に入ったキーワード・定理を挙げよ. (白紙にはしないこと.)

(以下質問・感想欄. 質問・要望・感想等あればお願いします.)