A NEW FAMILY OF IRREDUCIBLE REPRESENTATIONS OF A_n

BY F. W. LEMIRE

- 0. Introduction. For a simple Lie algebra L over the complex numbers $\mathbb C$ all irreducible representations admitting a highest weight have been constructed and characterized for example in [3, 6]. In [1] Bouwer considered the family of all irreducible representations of L admitting at least one one-dimensional weight space (this includes, of course, all those having a highest weight space) and showed, by construction, that this is a strictly larger class of representations. A complete characterization of this family of irreducible representations requires more information about existence. In this paper we shall construct and study a large new family of irreducible representations having a one-dimensional weight space.
- 1. The Lie Algebra A_n . The Lie algebra A_n consists of all complex square matrices of order n+1 having zero trace with the usual matrix addition and commutation product. Using the notation of [2] a Cartan subalgebra H of A_n is the (maximal abelian) subalgebra of diagonal matrices in A_n . Letting w_i denote the projection of any square matrix of order n+1 onto its (i,i)th component then the set of all roots Δ of A_n with respect to H is $\{w_i-w_j\mid i\neq j,\ i,j=1,2,\ldots,n+1\}$. A simple set of roots Δ^{++} is $\{w_i-w_{i+1}\mid i=1,2,\ldots,n\}$ and ordering the roots Δ with respect to Δ^{++} the set of positive roots of A_n is $\Delta^+=\{w_i-w_j\mid 1\leq i< j\leq n+1\}$. For each $i=1,2,\ldots,n$ we set $h_i=E(i,i)-E(i+1,i+1)$ and for each $\xi=w_i-w_j\in\Delta$ we set $x_\xi=E(i,j)$ (where E(k,l) denotes the matrix of order n+1 having 1 in (k,l)th position and zero elsewhere). The elements x_ξ for each $\xi\in\Delta$ is in the ξ root space of A_n with respect to H. A linear basis of A_n is given by

$$\{h_i, x_{\xi} \mid i = 1, 2, \ldots, n; \quad \xi \in \Delta\}$$

The commutation product in A_n is completely described by

$$[h_{i}, h_{j}] = 0 for i, j = 1, 2, ..., n$$

$$[h_{i}, x_{\xi}] = \xi(h_{i})x_{\xi} for i = 1, ..., n and \xi \in \Delta$$

$$[x_{\xi}, x_{n}] = h_{i} + h_{i+1} + \cdots + h_{j-1} for -\eta = \xi = w_{i} - w_{j} \in \Delta^{+}$$

$$= -h_{i} - h_{i+1} - \cdots - h_{j-1} for \eta = -\xi = w_{i} - w_{j} \in \Delta^{+}$$

$$= (\delta_{jk} - \delta_{li})x_{\xi+n} for \eta \neq \xi with$$

$$\xi = w_{i} - w_{j}; \eta = w_{k} - w_{l}.$$

2. Construction of Representations of A_n . Let V denote a complex vector space with basis $\{v(\mathbf{k}) \mid \mathbf{k} = (k_1, \dots, k_n) \in \mathbb{Z}^n\}$. Fix a complex parameter s and a linear functional $\lambda \in H^*$ and define

$$\rho(h_i)v(\mathbf{k}) = (\lambda(h_i) - k_{i-1} + 2k_i - k_{i+1})v(\mathbf{k})$$

for
$$i = 1, 2, ..., n$$

(2)
$$\rho(x_{\xi})v(\mathbf{k}) = (s - \lambda(h_1 + \dots + h_{i-1}) - k_{i-1} + k_i)v(\mathbf{k} + \xi)$$
$$\rho(x_{-\xi})v(\mathbf{k}) = (s - \lambda(h_1 + \dots + h_{i-1}) - k_{i-1} + k_i)v(\mathbf{k} - \xi)$$

where
$$\xi = w_i - w_j \in \Delta^+$$

(Note i) $\xi \equiv$ the *n*-tuple having 1 in the *i*, $i+1, \ldots, j-1$ components and 0 elsewhere

(ii) by convention $h_0=0$ and $k_0=k_{n+1}=0$)

By direct computations one can verify that ρ preserves the commutation products (1) and hence extending ρ linearly to A_n we have a representation of A_n on the vector space V. Since for each $\mathbf{k} = (k_1, \ldots, k_n) \in \mathbb{Z}^n$ the vector $v(\mathbf{k})$ belongs to the $\lambda + \sum_{i=1}^n k_i(w_i - w_{i+1})$ weight space of this representation the weight lattice consists of $\{\lambda + \sum_{i=1}^n k_i(w_i - w_{i+1}) \mid l_i \in \mathbb{Z}\}$ and each weight space is one dimensional.

Now for a fixed linear functional $\lambda \in H^*$ if $s \in \mathbb{C}$ such that

$$s \notin \bigcup_{i=0}^{n} (\mathbb{Z} + \lambda(h_1 + \cdots + h_i))$$

the above representation is irreducible. In fact this restriction on s insures that each of the scalar coefficients in (2) is non-zero and hence the representation is cyclic, generated by any basis vector $v(\mathbf{k})$. Now for any non-zero vector $v \in V$ the sub-representation generated by v contains at least one basis vector since each basis vector belongs to a distinct weight space. Therefore V is generated by any non-zero vector.

If, on the other hand, $\lambda \in H^*$ is fixed and $s \in \bigcup_{i=0}^n (\mathbb{Z} + \lambda(h_1 + \cdots + h_i))$, for definiteness suppose $s = \lambda(h_1 + \cdots + h_{i-1}) + m$, then the subspace W of V generated by $\{v(k_1, \ldots, k_n) \mid k_{i-1} - k_i \ge m\}$ is a proper subrepresentation. Thus we have the following

PROPOSITION 1. To each complex scalar s and each linear functional $\lambda \in H^*$ we have constructed a representation which we shall denote $V_{s,\lambda}$ of A_n having a weight lattice $\{\lambda + \sum_{i=1}^n l_i(w_i - w_{i+1}) \mid l_i \in \mathbb{Z}\}$. This representation is irreducible iff $s \notin \bigcup_{i=0}^n (\mathbb{Z} + \lambda(h_1 + \cdots + h_i))$.

We now wish to analyze the equivalence classes of these representations. If λ , $\lambda' \in H^*$ such that $\lambda' - \lambda \notin \sum_{i=1}^n \mathbb{Z}(w_i - w_{i+1})$ then the representations $V_{s,\lambda}$ and $V_{t,\lambda'}$ have different weight lattices and hence are not equivalent.

If, on the other hand, $\lambda' - \lambda = \sum_{i=1}^{n} l_i(w_i - w_{i+1})$ where $l_i \in \mathbb{Z}$ for all i then the map

$$\phi: V_{s,\lambda} \to V_{t,\lambda'}$$

defined for each $(k_1, \ldots, k_n) \in \mathbb{Z}^n$ by

$$\phi(v(k_1,\ldots,k_n)) = v(k_1-l_1,\ldots,k_n-l_n)$$

yields an equivalence between $V_{s,\lambda}$ and $V_{t,\lambda}$, provided $t=s+l_1$. Thus we have

PROPOSITION 2. Every representation $V_{t,\lambda}$, defined above is equivalent to exactly one representation $V_{s,\lambda}$ where $\lambda = \sum_{i=1}^{n} \rho_i(w_i - w_{i+1})$ with $0 \le \text{Re } \rho_i < 1$.

3. New Irreducible Representations of other Simple Lie Algebras. We now make use of the representations which we have constructed for A_n in order to obtain new irreducible representations of simple Lie algebras other than the A_n -series.

Each weight space of the representation $V_{s,\lambda}$ is a one-dimensional representation of $C(A_n)$, the centralizer of the Cartan subalgebra H of A_n in the universal enveloping algebra $U(A_n)$. Thus, for example, the map $\gamma: C(A_n) \to \mathbb{C}$ determined by

$$\rho(c)v(\mathbf{0}) = \gamma(c)v(\mathbf{0}) \qquad (c \in C(A_n))$$

is an algebra homomorphism.

Now consider an arbitrary simple Lie algebra L whose system of roots Δ contains a "complete" subsystem Δ_0 isomorphic to the root system of A_n . If H(L) denotes a fixed Cartan subalgebra of L and C(L) denotes the centralizer of H(L) in the universal enveloping algebra U(L) of L then C(L) contains an isomorphic copy of $C(A_n)$. In [5] we have shown that the algebra homomorphism γ defined above can be trivially extended to an algebra homomorphism $\hat{\gamma}: C(L) \rightarrow \mathbb{C}$. Using the construction in [4] we know that there exists a unique maximal left ideal $M_{\hat{\gamma}}$ of U(L) containing $\ker \hat{\gamma}$. Provided the parameter $s \notin \bigcup_{i=0}^n (\mathbb{Z} + \lambda(h_1 + \cdots + h_i))$, we claim the left regular representation of L on $U/M_{\hat{\gamma}}$ is a standard representation of L of order n. Conditions (iii) and (iv) of definition 3.1 in [1] are obviously satisfied thus it suffices to show that for each simple root $\alpha \in \Delta_0$ the α -ladder through $\hat{\lambda} = \hat{\gamma} \downarrow H(L)$ is doubly infinite and for each positive root $\beta \in \Delta$ with $\beta \notin \Delta_0$, $\hat{\lambda} + \beta$ is not a weight of $U(L)/M_{\hat{\gamma}}$.

Now for each simple root $\alpha \in \Delta_0$

$$\hat{\gamma}(X_{-\alpha}^n X_{\alpha}^n) = \gamma(X_{-\alpha}^n X_{\alpha}^n) = \text{coefficient of } \rho(X_{-\alpha}^n X_{\alpha}^n) v(\mathbf{0}) \neq 0$$

(due to the condition on s). Similarly $\hat{\gamma}(X_{\alpha}^{n}X_{-\alpha}^{n})\neq 0$. Thus $X_{-\alpha}^{n}$, $X_{\alpha}^{n}\notin M_{\hat{\gamma}}$ for all $n\in\mathbb{Z}$ which implies that $\hat{\lambda}+n\alpha$ is a weight of $U(L)/M_{\hat{\gamma}}$ for all $n\in\mathbb{Z}$. For any positive root $\beta\in\Delta$, $\beta\notin\Delta_{0}$ every element of U(L) having mass β belongs to $M_{\hat{\gamma}}$ (cf. Theorem 4.4 [1]). Thus $\hat{\lambda}+\beta$ is not a weight of $U(L)/M_{\hat{\gamma}}$.

The root systems of the simple Lie algebras B_k , C_k and D_k each contain complete subsystems of roots isomorphic to the root system of A_n for $n \le k-1$. The root systems of the exceptional simple Lie algebras G_2 , F_4 , E_6 , E_7 and E_8 contain complete subsystems of roots isomorphic to the root system of A_n for $n \le 1, 2, 5, 6$ and 7 respectively. Thus we have

PROPOSITION 3. There exist standard irreducible representations of order less than or equal to n for the simple Lie algebras B_{n+1} , C_{n+1} , and D_{n+1} . The exceptional simple Lie algebras G_2 , F_4 , E_6 , E_7 , and E_8 admit standard irreducible representations of order less than or equal to 1, 2, 5, 6, and 7 respectively.

BIBLIOGRAPHY

- 1. I. Z. Bouwer, Standard Representations of Simple Lie Algebras, Canad. J. Math. 70 (1968) 344-361.
 - 2. H. Freudenthal, H. de Vries, Linear Lie Groups, London-New York: Academic Press 1969.
- 3. Harish-Chandra, Some applications of the universal enveloping algebra of a semi-simple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28-99.
- 4. F. W. Lemire, Weight Spaces and Irreducible Representations of Simple Lie Algebras, Proc. Amer. Math. Soc. 22 (1969), 192-197.
- 5. F. W. Lemire, One-dimensional Representations of the Cycle Subalgebra of a Semi-simple Lie Algebra, Canad. Math. Bull. 13 (1970), 463-467.
- 6. Séminaire Sophus Lie, *Théorie des algébres de Lie Topologie des groupes Lie*, Paris: École Norm. Sup. 1954–55.