Quantale model of noncommutative linear logic with subexponentials

1 Calculus

Definition 1. A subexponential signature is an ordered quintuple: $\Sigma = \langle I, \leq, W, C, E \rangle$,

where $I = \{s_1, \ldots, s_n\}, \langle I, \leq \rangle$ is a preorder. W, C, E are subsets of I and $W \cup C \subseteq E$.

Definition 2. Noncommutative linear logic with subexponentials $(SMALC_{\Sigma})$, where Σ is a subexponential signature.

$$\begin{split} \frac{\Gamma, !^s A, \Delta, !^s A, \Theta \Rightarrow B}{\Gamma, \Delta, !^s A, \Theta \Rightarrow B} & \mathbf{ncontr}_2, s \in C \\ \frac{\Gamma, \Delta, !^s A, \Theta \Rightarrow B}{\Gamma, !^s A, \Delta, \Theta \Rightarrow A} & \mathbf{ex}_1, s \in E \\ \frac{\Gamma, !^s A, \Delta, \Theta \Rightarrow B}{\Gamma, \Delta, !^s A, \Theta \Rightarrow A} & \mathbf{ex}_1, s \in E \end{split}$$

Lemma 1. Let $A \Leftrightarrow B$, then $C[p_i := A] \Leftrightarrow C[p_i := B]$

Proof. By induction on C.

Lemma 2. • $!_{s_i}\Gamma \to A \text{ iff } !_{s_i}\Gamma \to !_{s_i}A$.

• $!_{s_i}A \leftrightarrow !_{s_i}(!_{s_i}A)$

Proof.

1.
$$!_{s_i}\Gamma \to A \text{ iff } !_{s_i}\Gamma \to !_{s_i}A;$$

$$\frac{ !_{s_i}\Gamma \to A}{ !_{s_i}\Gamma \to !_{s_i}A} \to !_{s_i}$$

$$\underbrace{ \begin{array}{ccc} \underline{!_{s_i}\Gamma \to !_{s_i}A} & \underline{\quad A \to A} \\ \underline{!_{s_i}\Gamma \to A} & \underline{\quad !_{s_i}A \to A} \end{array}}_{\text{cut}} \underbrace{ \begin{array}{c} \underline{!_{s_i}} \to A \\ \underline{\quad \vdots} \end{array}}_{\text{cut}}$$

$$2. !_{s_i}A \leftrightarrow !_{s_i}!_{s_i}A$$

$$\frac{A \to A}{\underbrace{!_{s_i} A \to A}_{!_{s_i} A \to !_{s_i} A}}$$
$$\underbrace{|_{s_i}!_{s_i} A \to !_{s_i} A}$$

2 Semantics

Definition 3. Quantale

A quantale is a triple $\langle A, \bigvee, \cdot \rangle$, such that $\langle A, \bigvee \rangle$ is a complete lattice and $\langle A, \cdot \rangle$ is a semi-group. A quantate is called unital, if $\langle A, \cdot \rangle$ is a monoid.

It is easy to see, that any (unital) quantale is a residual (monoid) semigroup. We define divisions as follows:

1.
$$a \setminus b = \bigvee \{c \mid a \cdot c \leq b\}$$

2.
$$b/a = \bigvee \{c \mid c \cdot a \leq b\}$$

2

Definition 4.

Let $\langle A, \bigvee, \cdot \rangle$ be a quantale. The center of a quantale is the set $Z(Q) = \{a \in Q \mid \forall b \in Q, a \cdot b = b \cdot a\}$

Definition 5. An open modality (or quantic conucleus) on quantale Q is a map $I: Q \to Q$, such that

```
1. I(x) \le x;

2. I(x) = I(I(x));

3. x \le y \Rightarrow I(x) \le I(y);

4. I(x) \cdot I(y) = I(I(x) \cdot I(y)).
```

Lemma 3.

Let $\langle A, \bigvee, \cdot \rangle$ be a quantale and $I: Q \to Q$ is an open modality on Q, then $I(x) \cdot I(y) \leq I(x \cdot y)$.

Proof.

$$I(x) \cdot I(y) \leqslant x \cdot y$$
, then $I(I(x) \cdot I(y)) \leqslant I(x \cdot y)$, but $I(x) \cdot I(y) \leqslant I(I(x) \cdot I(y))$. Thus, $I(x) \cdot I(y) \leqslant I(x \cdot y)$.

Definition 6. An open modality is called central, if $\forall a, b \in Q, I(a) \cdot b = b \cdot I(a)$.

Definition 7. An open modality is called weak idempotent, if $\forall a, b \in Q, I(a) \cdot b \leq I(a) \cdot b \cdot I(a)$ and $b \cdot I(a) \leq I(a) \cdot b \cdot I(a)$.

Definition 8. An open modality is called unital, if $\forall a \in Q, I(a) \leq e$.

Lemma 4. Let I be an interior on some unital quantale $\langle Q, \bigvee, \cdot, e \rangle$. Then, if I is unital and weak idempotent, then I is central.

Proof.

```
b \cdot I(a) \leqslant
Right weak idempotence
I(a) \cdot b \cdot I(a) \leqslant
Unitality
I(a) \cdot b \cdot I(e) \leqslant
Identity
I(a) \cdot b \leqslant
Left weak idempotence
I(a) \cdot b \cdot I(a) \leqslant
Unitality
e \cdot b \cdot I(a) \leqslant
Identity
b \cdot I(a)
Hence, b \cdot I(a) = I(a) \cdot b
```

Proposition 1.

Let Q be a quantale and $S \subseteq Q$ a subquantale, then $I: Q \to Q$, such that $I(a) = \bigvee \{s \in S \mid x \leq a\}$, is an open modality. Moreover, $\{x \in Q \mid I(x) = x\} = S$.

Proof. See

Proposition 2.

Let Q be a quantale and $S_1, S_2 \subseteq Q$, such that $S_1 \subseteq S_2$. Then $I_1(a) \leq I_2(a)$.

Proof.

Let
$$a \in Q$$
, so $\{s \in S_1 \mid s \leqslant a\} \subseteq \{s \in S_2 \mid s \leqslant a\}$, so $\bigvee \{s \in S_1 \mid s \leqslant a\} \subseteq \bigvee \{s \in S_2 \mid s \leqslant a\}$. Thus, $I_1(a) \leqslant I_2(a)$.

Proposition 3.

Let Q be a quantale and $S \subseteq Q$ a subquantale, then the following operations are open modalities:

- 1. $I_z(a) = \bigvee \{ s \in S \mid s \leq a, s \in Z(Q) \};$
- 2. $I_{1}(a) = \bigvee \{s \in S \mid s \leq a, s \leq 1\};$
- 3. $I_{idem}(a) = \bigvee \{ s \in S \mid s \leqslant a, \forall b \in Q, b \cdot s \lor s \cdot b \leqslant s \cdot b \cdot s \};$
- 4. $I_{z,1}, I_{z,idem}, I_{1,idem}, I_{z,1,idem}$.

Proof. Immediatly.

Proposition 4.

- 1. $\forall a \in Q, I_{1,idem}(a) \leq I_z(a)$.
- 2. $\forall a \in Q, I_{z,1,idem} = I_{1,idem}(a)$

Proof. Follows from Lemma 3.

Proposition 5.

- 1. $I_z(a) \vee I_1(a) \vee I_{idem}(a) \leq I(a)$
- 2. $I_{z,1,idem} \leq I_{z,1}(a) \wedge I_{z.idem}(a)$

Lemma 5. $\forall a \in Q, I_1(a) \leq I_2(I_1(a)), \text{ if } I_1(a) \leq I_2(a).$

Proof.
$$I_1(a) \leq I_1(I_1(a)) \leq I_2(I_1(a))$$

Lemma 6. $I_1(a_1) \cdot I_2(a_2) \leq I'(I_1(a_1) \cdot I_2(a_2))$, where $I_i \leq I'$, i = 1, 2.

Proof.

$$I_1(a_1) \cdot I_2(a_2) \leqslant I_1(I_1(a_1)) \cdot I_2(I_2(a_2)) \leqslant I'(I_1(a_1)) \cdot I'(I_2(a_2)) \leqslant I'(I_1(a_1) \cdot I_2(a_2)) \leqslant I'(I_1(a_1) \cdot I_2(a_2))$$

Definition 9. Interpretation of subexponential signature

Let $\Sigma = \langle I, \leq, W, C, E \rangle$ be a subexponential signature, where |I| = n and $S = \{\Box_1, \ldots, \Box_n\}$ be a set of open modalities on quantale Q. Subexponential interpretation is a contravariant map $\sigma: I \to S$ defined as follows:

$$\sigma(s_i) = \begin{cases} \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a\}, \\ if \ s_i \notin W \cap C \cap E \\ \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \leqslant 1\}, \\ if \ s_i \in W \\ \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \in Z(Q)\}, \\ if \ s_i \in E \\ \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \forall b, b \cdot s \lor s \cdot b \leqslant s \cdot b \cdot s\}, \\ if \ s_i \in E \\ otherwise, \ if \ s_i \ belongs \ to \ some \ intersection \ of \ subsets, \ then \ we \ combine \ the \ relevant \ conditions \end{cases}$$

Definition 10. Let Q be a quantale, $f: Tp \to Q$ a valuation and $\sigma: I \to \mathcal{S}$ a subexponential interpretation, then interpretation is defined inductively:

Theorem 1. $\Gamma \to A \Rightarrow \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Proof. We consider the case with polymodal promotion rule.

- 1. Let $!_{s_1}A_1, \ldots, !_{s_n}A_n \to A$ and $\forall i, s \leq s_i$. Then $\forall a \in Q, \sigma(s_i)(a) \leq \sigma(s)(a)$. By IH, $\sigma(s_1) \llbracket A_1 \rrbracket \cdot \cdots \cdot \sigma(s_n) \llbracket A_n \rrbracket \leq \llbracket A \rrbracket$. Thus, $\sigma(s)(\sigma(s_1) \llbracket A_1 \rrbracket \cdot \cdots \cdot \sigma(s_n) \llbracket A_n \rrbracket) \leq \sigma(s)(\llbracket A \rrbracket)$. By Lemma 5, $\sigma(s_1) \llbracket A_1 \rrbracket \cdot \cdots \cdot \sigma(s_n) \llbracket A_n \rrbracket \leq \sigma(s)(\sigma(s_1) \llbracket A_1 \rrbracket \cdot \cdots \cdot \sigma(s_n) \llbracket A_n \rrbracket)$. So, $\sigma(s_1) \llbracket A_1 \rrbracket \cdot \cdots \cdot \sigma(s_n) \llbracket A_n \rrbracket \leq \sigma(s)(\llbracket A \rrbracket)$.
- 2. Let $\Gamma, A, \Delta \to B$.

By IH,
$$\llbracket \Gamma \rrbracket \cdot \llbracket A \rrbracket \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$$
.

By the definition, $\sigma(s_i)(\llbracket A \rrbracket) \leq \llbracket A \rrbracket$.

So,
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$$

3. Let $\Gamma, \Delta \to B$, $A \in Fm$, and $s_i \in W$.

So, $\llbracket \Gamma \rrbracket \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$, then $\llbracket \Gamma \rrbracket \cdot e \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$, where $e \in Q$ is unit.

By the definition of unital open modality, $\sigma(s_i)(\llbracket A \rrbracket) \leq e$.

Thus, $\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$.

4. Let Γ , $!_{s_i}A$, Δ , $!_{s_i}A$, $\Pi \to B$ and $s_i \in C$.

By IH,
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$$
.

By the definition, $\sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \leq \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket).$

Then $\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$

5. Let $\Gamma, !_{s_i}A, \Delta, \Pi \to B$ and $s_i \in E$, so $\sigma(s_i)(a) \in Z(Q)$ for all $a \in Q$ by the definition.

By IH,
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$$

Hence,
$$\llbracket \Gamma \rrbracket \cdot \llbracket \Delta \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$$
.

3 Quantale completeness

Definition 11.

Let $\mathcal{F} \subseteq Fm$, an ideal is a subset $\mathcal{I} \subseteq \mathcal{F}$, such that:

- If $B \in \mathcal{I}$ and $A \to B$, then $A \in \mathcal{I}$;
- If $A, B \in \mathcal{I}$, then $A \vee B \in \mathcal{I}$.

Definition 12.

Let
$$S \subseteq \mathcal{F} \subseteq Fm$$
, then $\bigvee S = \bigcap \{ \mathcal{I} \subseteq \mathcal{F} \mid S \subseteq \mathcal{I} \}$

Proposition 6. $\bigvee S$ is an ideal.

Lemma 7. $A \subseteq Fm$, then $\{B \mid B \to A'\} = \bigvee A$.

Proof.

Let
$$A \subseteq Fm$$
. Then $\{B \mid B \to A', A' \in A\} \subseteq \bigvee A$, so far as $A' \to A'$ by axiom.
On the other hand, $\{B \mid B \to A', A' \in A\}$ is an ideal, hence, $A \subseteq \{B \mid B \to A', A' \in A\}$.

Lemma 8. $\bigvee A \subseteq \bigvee B \text{ iff } \forall A' \in A, \forall B' \in B, A' \rightarrow B'.$

Proof. Let
$$\bigvee A \subseteq \bigvee B$$
, then $\{C | C \to A', A' \in A\} \subseteq \{D \mid D \to B', B' \in B\}$.

Thus, for all $A' \in A$, $A' \in \{C | C \to A', A' \in A\}$, then $A' \in \{D | D \to B', B' \in B\}$, hence $A' \to B'$, for all $B' \in B$.

On the other hand, let $A' \to B'$ for all $A' \in A$, $B' \in B$ and $C \in \bigvee A$.

Thus,
$$C \to A'$$
, then $C \to B'$ by cut, so $C \in B'$.

Lemma 9. Let $Q = \{\bigvee S | S \subseteq Fm\}$ and $\bigvee A \cdot \bigvee B = \{A \bullet B | A \in A, B \in B\}$. Then $\langle Q, \subseteq, \cdot, \bigvee \mathbf{1} \rangle$ is a quantale.

Proof. See
$$\Box$$

 $\mathbf{Lemma} \ \mathbf{10.} \ \mathit{Interior\ lemma}.$

Let $Q_1 \subseteq \mathcal{Q}$, define a map $\square : Q \to Q$, such that $\square(A) = \{Q \in Q_1 \mid Q \subseteq A\}$. Then \square is a quantic conucleus.

Lemma 11.

Let
$$A_1, A_2 \subseteq Fm$$
 and $!_s A_i = \{!_s W \mid W \in S_i\}$, for $i = 1, 2$.
Then $\bigvee (!_s A_1 \cdot !_s A_2) \subseteq \bigvee (!_s (A_1 \cdot A_2))$.

Proof.

$$\bigvee (!_s A_1 \cdot !_s A_2) = \bigvee \{\bigvee W \mid \bigvee W \subseteq \bigvee (!_s A_1 \cdot !_s A_2)\}.$$
Let $W' \in \bigvee (!_s A_1 \cdot !_s A_2)$, then $W' \to !_s A_1' \bullet !_s A_1'$ for each $A_i' \in A_i$. But, $!_s A_1' \bullet !_s A_2' \to !_s (A_1' \bullet A_2')$.
Then, $W' \to !_s (A_1' \bullet A_2')$ by cut, then $W' \in \bigvee (!_s (A_1 \cdot A_2))$.

Lemma 12. Let $!_s \in I$, $I \notin W \cap E \cap C$ and $Q \subseteq Q$. Then there exist a subset $Q \subseteq Q$ and a quantic conucleus $\Box_s(\bigvee \{A\}) = \{\bigvee Q \in Q \mid \}$

$$Proof.$$
 See

Lemma 13. Let $Q \subseteq \mathcal{Q}$, then the following operators are quantic conuclei:

1.
$$\Box_z(A) = \bigvee \{ \bigvee \{W\} \in Q \mid \bigvee \{W\} \subseteq \bigvee \{A\}, \bigvee \{W\} \in Z(Q) \};$$

2.
$$\Box_{\mathbf{1}}(A) = \bigvee \{\bigvee \{W\} \in Q \mid \bigvee \{W\} \subseteq \bigvee \{A\}, \bigvee \{W\} \subseteq \bigvee \{\mathbf{1}\}\};$$

3.
$$\Box_{idem}(A) = \bigvee\{\bigvee\{W\} \in Q \mid \bigvee\{W\} \subseteq \bigvee\{A\}, \forall B \in Fm, (\bigvee\{B\} \cdot \bigvee\{W\}) \cup (\bigvee\{W\} \cdot \bigvee\{B\}) \subseteq \bigvee\{W\} \cdot \bigvee\{A\} \cdot \bigvee\{W\}\};$$

 $4. \quad \Box_{z,1}, \Box_{z,idem}, \Box_{1,idem}, \Box_{z,1,idem}.$

Proof. Follow from one of lemmas above.

Lemma 14. Let $!_s \in I$, $I \notin W \cap E \cap C$, then $\Box_s(\bigvee A) = \bigvee \{!_s B \mid !_s B \rightarrow \bigvee A', A' \in A\}$ is a quantic conucleus.

Proof.

1.
$$\Box_s(\bigvee A) \subseteq \bigvee A$$
;
 $\Box_s(\bigvee A) = \Box_s(\{B \mid B \to A', A' \in A\}) = \{!_s B \mid !_s B \to A', A' \in A\}.$
Let $!_s B \in \Box_s(\bigvee A)$, then $!_s B \to A'$, $A' \in A$, hence $!_s B \in \bigvee A$.

2.
$$\Box_s(\Box_s(\bigvee A)) = \bigvee \Box_s(\bigvee A);$$

 $\Box_s(\Box_s(\bigvee A)) = \{!_s!_sB \mid !_s!_sF \to \bigvee A', A' \in A\}.$
Follows from equivalence $!_s!_sB \leftrightarrow !_sB$.

3.
$$\bigvee A \subseteq \bigvee B \Rightarrow \Box_s(\bigvee A) \subseteq \Box_s(\bigvee B);$$

Follows from admissiability of K-rule for all $s \in I$.

4.
$$\Box_s \bigvee A \cdot \Box_s \bigvee B = \Box_s(\Box_s \bigvee A \cdot \Box_s \bigvee B)$$
.

$$\Box_s \bigvee A \cdot \Box_s \bigvee B = \\
\bigvee \{!_s C \bullet !_s D \mid !_s C \to A', !_s D \to B', A' \in A, B' \in B\} = \\
\bigvee \{!_s (!_s C \bullet !_s D) \mid !_s C \to A', !_s D \to B', A' \in A, B' \in B\} = \\
\Box_s \bigvee \{!_s C \bullet !_s D \mid !_s C \to A', !_s D \to B', A' \in A, B' \in B\} = \\
\Box_s (\Box_s \bigvee A \cdot \Box_s \bigvee B)$$

Lemma 15. Let Q be a quantale constructed above and $\square_1, \ldots, \square_n$ be a family of quantic conuclei on Q. Then there exist a model $\langle Q, \llbracket. \rrbracket \rangle$, such that $\llbracket A \rrbracket = \bigvee \{A\}, A \in Fm$.

Theorem 2. $\Gamma \models A \Rightarrow \Gamma \rightarrow A$.