Constructions of Hidden-Bits Generator for NIZKs

Shen Dong

SJTU

July 3, 2024

Outline

- 1 HBG and DV-HBG
- 2 DV-HBG Construction from CDH
- 3 Tries for Adaption to LPN

Contents

- 1 HBG and DV-HBG
- 2 DV-HBG Construction from CDH
- 3 Tries for Adaption to LPN

Hidden-bits Generator

Definition

A Hidden-Bits Generator (HBG) is given by a set of PPT algorithms (Setup, GenBits, Verify) satisfying statistical binding and computationally hiding:

- Setup $\left(1^{\lambda},1^{k}\right)$: Outputs a common reference string crs.
- GenBits(crs): Outputs a triple $\left(\text{com}, r, \{\pi_i\}_{i \in [k]}\right)$, where $r \in \{0, 1\}^k$.
- Verify(crs, com, i, r_i, π_i): Outputs accept or reject, where $i \in [k]$.

Correctness: $\forall k = poly(\lambda) \text{ and } \forall i \in [k]$:

$$\Pr\left[\mathsf{Verify}(\mathsf{crs},\mathsf{com},i,r_i,\pi_i) = \mathsf{accept} \ : \ \begin{array}{c} \mathsf{crs} & \leftarrow \mathsf{Setup}(1^\lambda,1^k) \\ (\mathsf{com},r,\pi_{[k]}) & \leftarrow \mathsf{GenBits}(\mathsf{crs}) \end{array} \right] = 1.$$

Properties

Succinct Commitment:

 $\mathcal{COM}(\lambda)$: set of all valid commitments, contains all possible commitments from GenBits (and possibly more):

$$\forall \mathsf{com} \notin \mathcal{COM}(\lambda), \ \mathsf{Verify}(\mathsf{crs}, \mathsf{com}, \cdot, \cdot) = \mathsf{reject}$$

$$\exists \ \delta < 1 \text{ s.t. } |\mathcal{COM}(\lambda)| \le 2^{k^{\delta} \operatorname{poly}(\lambda)}$$

as a part of proof in CRS model: for bounding the soundness error in CRS-model NIZK, intuitively this limits a prover's chances for cheating.

Properties

Statistical Binding: \exists (inefficient) deterministic algorithm Open outputs r such that for every (potentially unbounded) cheating prover $\widetilde{\mathcal{P}}$:

$$\Pr\left[\begin{array}{cccc} r_i^* \neq r_i & \operatorname{crs} & \leftarrow \operatorname{Setup}(1^{\lambda}, 1^k) \\ \wedge & \operatorname{Verify}(\operatorname{crs}, \operatorname{com}, i, r_i^*, \pi_i) = \operatorname{accept} \end{array}\right] \leq \operatorname{negl}(\lambda).$$

Computationally Hiding: $\forall I \subseteq [k]$, the two following distributions are computationally indistinguishable:

$$(\mathsf{crs},\mathsf{com},I,r_I,\pi_I,r_{\bar{I}}) \overset{\varepsilon}{\approx} \\ (\mathsf{crs},\mathsf{com},I,r_I,\pi_I,r_{\bar{I}}') \,,\,\, r' \overset{\$}{\leftarrow} \{0,1\}^k$$

Designated-Verifier Hidden-bits Generator

Definition

- Setup $(1^{\lambda}, 1^k)$: outputs (crs, td), td trapdoor associated to crs;
- Verify (crs,td,com, i,r_i,π_i) takes the trapdoor td as an additional input, and outputs accept or reject;

Statistical Binding: the cheating prover $\widetilde{\mathcal{P}}$ can make a polynomial number of oracle queries to Verify (crs, td, ...). $\forall \widetilde{\mathcal{P}}$:

$$\Pr\left[\begin{array}{ccc} & r_i^* \neq r_i & (\mathsf{crs},\mathsf{td}) & \leftarrow \mathsf{Setup}(1^\lambda,1^k) \\ \wedge & \mathsf{Verify}(\mathsf{crs},\mathsf{td},\mathsf{com},i,r_i^*,\pi_i) = \mathsf{accept} \end{array}\right] \leq \mathsf{negl}(\lambda)$$

Computational Hiding: we require indistinguishability given associated td:

$$(\mathsf{crs},\mathsf{td},\mathsf{com},I,r_I,\pi_I,r_{\bar{I}}) \overset{\mathsf{c}}{\approx} \left(\mathsf{crs},\mathsf{td},\mathsf{com},I,r_I,\pi_I,r_{\bar{I}}'\right)$$

Construction

Consider the following candidate NIZK ($Setup^{ZK}, \mathcal{P}, \mathcal{V}$) in the CRS model:

- $Setup^{ZK}\left(1^{\lambda}, 1^{n}\right)$: $crs^{BG} \leftarrow Setup^{BG}\left(1^{\lambda}, 1^{k}\right)$ $s \stackrel{\$}{\leftarrow} \{0, 1\}^{k}$ output: $crs = \left(crs^{BG}, s\right)$
- $(com, r^{\mathrm{BG}}, \pi_{[k]}) \leftarrow GenBits (crs^{\mathrm{BG}})$ $r_i = r_i^{\mathrm{BG}} \oplus s_i \forall i \in [k]$ $\mathrm{invoke} \ (I \subseteq [k], \pi^{\mathrm{HB}}) \leftarrow \mathcal{P}^{\mathrm{HB}}(r, x, w)$ $\mathrm{output:} \ \Pi = (I, \pi^{\mathrm{HB}}, com, r_I, \pi_I)$
- **③** $V\left(crs, x, \Pi = \left(\left(I, \pi^{\text{HB}}, com, r_I, \pi_I\right)\right)\right)$: $r_i^{\text{BG}} = r_i \oplus s_i, \ \forall i \in [k]$. Accept if $\forall i \in I, Verify\left(crs^{\text{BG}}, com, i, r_i^{\text{BG}}, \pi_i\right)$ accepts, and if $V^{\text{HB}}\left(I, r_I, x, \pi^{\text{HB}}\right)$ also accepts.

Contents

- 1 HBG and DV-HBG
- 2 DV-HBG Construction from CDH
- 3 Tries for Adaption to LPN

CDH DV-HBG Construction: Parameters and Setup

Parameters:

- **1** $(\mathbb{G}, p, g) \leftarrow \mathsf{GroupGen}(1^{\lambda}), p \text{ is prime order, } g \text{ generator.}$
- 2 hc is the corresponding Goldreich-Levin hard-core bit.

Setup $(1^{\lambda}, 1^k)$:

- $\bullet \ (\mathbb{G},p,g) \leftarrow \mathsf{GroupGen} \left(1^{\lambda}\right).$
- $\forall i \in [k], \ a_i, b_i \stackrel{\mathbb{S}}{\leftarrow} \mathbb{Z}_p, \ h_i \stackrel{\$}{\leftarrow} \mathbb{G} \ \text{and compute:} f_i = h_i^{a_i} \cdot g^{b_i}.$
- **3** Random coins γ matching the randomness used by hc (·).
- Output: $\left(\operatorname{crs} = \left(\mathbb{G}, \left\{\left(h_i, f_i\right)\right\}_{i \in [k]}, \gamma\right), \operatorname{td} = \left\{\left(a_i, b_i\right)\right\}_{i \in [k]}\right).$

CDH DV-HBG Construction: GenBits and Verify

GenBits(crs):

- Output:

$$\begin{aligned} & \mathsf{com} = s = g^y, \\ & \{r_i = \mathrm{hc}\,(t_i; \gamma)\}_{i \in [k]}\,, \\ & \{\pi_i = (u_i, t_i)\}_{i \in [k]}\,. \end{aligned}$$

Verify(crs, td = $\{(a_i, b_i)\}$, com = $s, i, r_i, \pi_i = (u_i, t_i)$):

- **2** Accept if and only if $\rho_i = u_i$, and $r_i = \text{hc } (t_i; \gamma)$.

Validation Proof

- Ompleteness:
 - $\rho_i = t_i^{a_i} \cdot s^{b^i} = h_i^{a_i y_i} g^y = (h_i^{a_i} \cdot g^{b_i})^y = f_i^y = u_i$ (certificate is right, from randomness y)
 - and $r_i = hc(t_i; \gamma)$ (hardcore bit is right).
- ② Succinctness: $|\mathcal{COM}| = |\mathbb{G}| = p = 2^{\text{poly}(\lambda)}$, independent of k.
- Omputational Hiding:
 - $\{r_i = hc(h_i^y; \gamma)\}_{i \notin I}$ look pseudorandom. Hardcore bit of $h_i^y = g^{x_i y}$ is still computationally unpredictable given $h_i = g^{x_i}$ and $s = g^y$.

Validation Proof

Lemma

 \mathbb{G} is a group of prime order $p, h \in \mathbb{G}, \forall (s := g^y, t \neq h^y) \in \mathbb{G}^2$, we have that for all $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$: $((t^a \cdot s^b), (h^a \cdot g^b)) \equiv \mathcal{U}(\mathbb{G} \times \mathbb{G})$ over (a, b).

 $h = g^x : (g^{az+by}, g^{ax+b})$, the exponents are linearly independent, equivalent to guessing an independent random pair.

Statistical Binding:

- Open $(1^k, \operatorname{crs} = \{\mathbb{G}, \{(h_i, f_i)\}_{i \in [k]}, \gamma\}, \operatorname{com} = g^y)$: traverse the group to find y, computes $\{r_i = hc(h_i^y; \gamma)\}_{i \in [k]}$.
- ② Prob that $\tilde{\mathcal{P}}$ outputs $t \neq h_i^y$ but Verify accepts (in j-th attempts among polynomial queries) is

$$\Pr[s^{b_i} \cdot t^{a_i} = (f^i)^y | t_i \neq h_i^y, t^{a_i} \cdot s^{b_i} \text{ uniform over } \mathbb{G} \setminus U] = \frac{1}{|\mathbb{G} \setminus U|} = \text{negl}$$

Union bound also negl.

Contents

- 1 HBG and DV-HBG
- 2 DV-HBG Construction from CDH
- 3 Tries for Adaption to LPN

What is Non-trivial?

- lacktriangle Succinctness: commitment cannot be too long, even shorter than k, so the hidden bits must be **pseudorandom**.
- Open with only crs and com: our short commitment must contain all information in hidden bits, com functions as (part of) seed for pseudo-randomness in hidden bits, and perhaps auxiliary info in crs.
- 3 Two paths: $\{\pi_i\}$ functions like **trapdoor** (or with sk in DV-NIZK).

Tweak Exact-LPN String Commitment

- Parameters: security parameter λ , $k = \text{poly}(\lambda)$ and $N = O(k^{\delta})$ where $0 < \delta < 1$; $n = \Theta(N)$, an idealized $\frac{1}{\sigma}$ -stretch PRG.
- ② Setup(1^λ, 1^k):∀ $i \in [k], A_i \stackrel{\$}{\leftarrow} \{0, 1\}^{N \times n}$, exact weight constant w, PRG,crs = ({ A_i }, w, PRG).
- GenBits(crs):
 - $seed \stackrel{\$}{\leftarrow} \{0,1\}^{k^{\delta}}, \ \{r_i\}_{i \in [k]} \leftarrow PRG(seed).$
 - $s \stackrel{\$}{\leftarrow} \{0,1\}^{n-1}, e_i \stackrel{\$}{\leftarrow} X_w^n \text{ s.t. } |e_i| = w \text{ with exact weight.}$
 - Output $(com = s, \{\pi_i = A_i \cdot (s || r_i) + e_i\}_{i \in [k]}, \{r_i\}_{i \in [k]}).$
- Verify(crs, com, r_i , π_i): accept iff PRG checks valid and

$$|\pi_i \oplus A_i \cdot (\mathsf{com}||r_i)| = w$$

Validation

Lemma

Parameterize $w=2N\mu$ s.t. $\{(A,Ax\oplus e)\mid e\stackrel{\$}{\leftarrow} B^N_\mu\}$ and $\{(A,Ax\oplus f)\mid f\stackrel{\$}{\leftarrow} B^N_\mu, \ |f|\leq w\}$ are statistically IND, the statistical difference of the two random ensembles is bounded above by $2e^{-2\mu^2N}$.

Statistical binding:

- Open: guess *seed* inefficiently from com.
- Perfect binding from minimum distance of exact-LPN: Assume exist different $m_i, r_i, i = 1, 2$ for commitment c i.e.

$$e_i = c \oplus A. (r_i || m_i), |e_i| = w, \forall i = 1, 2$$

 $\therefore e_1 \oplus e_2 = \mathbf{A} \cdot (\mathbf{r}_1 \| \mathbf{m}_1 \oplus \mathbf{r}_2 \| \mathbf{m}_2)$ is a codeword of length

$$\|\mathbf{e}_1 \oplus \mathbf{e}_2\|_1 \le \|\mathbf{e}_1\|_1 + \|\mathbf{e}_2\|_1 \le 2w$$

contradicting the distance of the code generated by \mathbf{A} .

Computationally Hiding: From the PRG

Need a Good PRG for Binding

How to be verifiable for each bit without disclosing others? To hide other bits, the seed must be hidden!

Variant Definition: Short crs

TODO:

- Why this definition is equivalent with short commitment?
- Fit LPN construction into this definition?