OBJECTIVEI: I

a) 2-bit synchronous up counter using D-Hipblop.

Exatiation table:

Present State	Next State	Rlip MOP
A(t) $B(t)$	Alt+1) Blt+1)	D _A D _B
0	0 1	0 1
	1 0	1 0
	L	1 1
1	0	000

$$\begin{array}{c}
D_A = AB' + A'B \\
\hline
D_A = A(+) B
\end{array}$$

$$D_{B} = A'B' + AB'$$

$$D_{B} = B'$$

b) HDL code

Module 2-bit-up (QA, QB, CLK, DA, DB)

Input DA, DB, CLK,
OUTPUT QA, QB
reg QA, QB
always @ (Posedge CLK)

assign $D_A = Q_A \wedge Q_B$ assign $D_B = \sim Q_B$ end module

OBJECTIVE-I

a) 2-bit down counter using JK Hip-Hop

Exitation table

en.	1 's 1 - w. 4		113 200	- 1		
present state	Next 8t	ate	4	Glip	- 610	P
A (t) B (t)	A(t+1)	B (+1)	JA	KA	JB	KB
0 0		14		X		X
0 1	0	0	0	X	X	1-
1 0	10	1	X	1	1	X
	1	0.	X	0	X	1

b) HDL code

Module 2-bit-down (
$$Q_A$$
, Q_B , CLK , J_A , K_A , J_B , R_B)

Output Q_A , Q_B

9 n put CLK , J_A , K_A , J_B , K_B

reg Q_A , Q_B

always G (Posedyc CLK)

also gn $J_B = 1$

as sign $K_B = 1$

as sign $K_B = 1$

as sign $K_B = 1$

as sign $K_A = Q_A + (Q_B)$

end module

OBJECTIVE-III a) 3-bit up counter using T-Hip-Hop (000 X00) (110) (010)

Exitation Table TB Tc TA Next State Present State Alt+1) B(t+1) c(t+1) B(t)C(t)A(t)0 0 0 \bigcirc 0 0 0 0 0 0 0 TA = BC $T_c = 1$

TA A(t) TB B/t) φ C(t) TB P BC T-Jc T-Mip_ Mip-Hipar-CIK Мор Нор Mop CLK.

b) HDL code;-

Module 3-bit-up (QA,QB,QG, TA,TB, TG, CLK)

Priput TA, TB, TG

Ovtput QA, QB, Qc

wire DTA, DTB, TTC

always @) (Posedge CIK)

assign DTA = QB + Qc;

assign DTB = Qc;

assign DTC = 1;

endmodule

III LAB:

S. No	Name of component	specibication	Quantity
1	D-Hip-Hop	7474	1
2	XOR	7486	1
3	gnvetes	7404	1
4	J-K-Hip-Hop	7.476	9 1
5	AND	7408	1
6	T-Hip-Hop	7476	8 2

Conclusion

1) The output of the 2-bit up counter can be used is a digital circuit that counts up from 0 to 3 and then resets back to 0.

- A 2-bit Synchronous down counter using JK-Hip-Hop is a digital circuit that counts down brom 3 too and then resets back to 3.
- 3) A 3-bit Synchronous up counter using T- Hip-Hops is a digital circuit that counts up brom 0 to 7 and then resets back to 0.

IV. POST LAB:

1) 3 Hip-Hop will be complemental in a 10-bit binary sipple counter to seach the next count abter the Bollowing count 1001100111.

Presen	t Stat	e	Next	Stat	P	1/3/1	Pb	10 P
A(t)	B (t)	q(t)	A(t+1)	-B/t+1)	C(t+1)	DA	DB	Dc
0	0	0	Ó	0	1	0	0	0
0	Ĭ	0	0	1	0	0	0	90
0	0	1	X	X	X	X	X	v 1
	D	0	X	1. Y	0	1	1	\hat{o}
1		8	0	Ô	0	0	X O	o l
			X	X	X	X	X	X
					To 124			100

DB

K-Map FOX DB

K-Map box Dc

$$I = \begin{cases} A'BC \\ A'BC' \end{cases} = A'B$$

$$II = \begin{cases} AB'C' = AB' \\ AB'C = AB' \end{cases}$$

$$J = \begin{cases} A'B'C \\ A'BC \\ AB'C \end{cases} = C$$

$$\begin{cases} ABC \end{cases}$$

$$II = \begin{cases} AB'C' \\ AB'C \end{cases} = AB'$$

$$D_{B} = C + AB'$$

$$D_c = 0$$

