Data 8 Connector: Sports Analytics

Review - 02/13/18

Course stuff

→ Project proposals: due end of day today. Email to

apapanicolaou@berkeley.edu

- → Homework: 4th Down Bot still coming
- → Still evolving: to avoid not enough of other sports, will take plenty of time to introduce related concepts from other sports/fields

Not quite to same depth due to limitations (you'll see why)

Last week: shooting %s in basketball

Today will actually be financial markets

In the future: Basketball expected value model, DVOA for football, etc

Recap

The classic stats had a good correlation with run scoring

In some fields, that level of correlation would be unheard of. Of course (finance sometimes), there's a higher standard in baseball

OBP and SLG served as better predictors of run scoring than BA Higher correlation, smaller errors

Just one thing: try not to be a snob.

Without anything else, the classic stats are okay They're a good place to start but if you can dig deeper, do so.

Still our goal: find better weight values for events

We introduced run expectancy

→ Given a number of outs and a base state, how many runs do you expect to score?

We introduced run expectancy

→ Given a number of outs and a base state, how many runs do you expect to score?

We introduced run expectancy

→ Given a number of outs and a base state, how many runs do you expect to score?

We introduced run expectancy

- → Average over all values and you get run expectancy
- → It's an expected value under completely average circumstances: average hitters, average pitcher, etc.

In the homework: win probability or win expectancy

- → Compute probability of scoring at least one run: chances of winning in a late tie game
- → More generally, you can look at score differences and other innings

Strategies

- → Stolen bases and bunting: can use RE or WP to figure out what to do
- → WP more general for choosing late game strategies than RE

Inning	Top/Bottom	Score	Outs	1B	2B	3B	WE
7	Bottom	-1	0				0.353
7	Bottom	-1	0	1st			0.431
7	Bottom	-1	0	1st	2nd		0.545
7	Bottom	-1	0	1st	2nd	3rd	0.687
7	Bottom	-1	0	1st		3rd	0.612
7	Bottom	-1	0		2nd		0.487
7	Bottom	-1	0		2nd	3rd	0.656
7	Bottom	-1	0	П	6	3rd	0.545
Inning	Top/Bottom	Score	Outs	1B	2B	3B	WE
7	Bottom	-1	1				0.305
7	Bottom	-1	1	1st			0.360
7	Bottom	-1	1	1st	2nd		0.438
7	Bottom	-1	1	1st	2nd	3rd	0.561
7	Bottom	-1	1	1st		3rd	0.504
7	Bottom	-1	1	П	2nd		0.399
7	Bottom	-1	1	П	2nd	3rd	0.546
7	Bottom	-1	1			3rd	0.465
Inning	Top/Bottom	Score	Outs	1B	2B	3B	WE
7	Bottom	-1	2				0.268
7	Bottom	-1	2	1st			0.296
7	Bottom	-1	2	1st	2nd		0.341
7	Bottom	-1	2	1st	2nd	3rd	0.406
7	Bottom	-1	2	1st		3rd	0.359
7	Bottom	-1	2	Г	2nd		0.322
7	Bottom	-1	2		2nd	3rd	0.382
7	Bottom	-1	2			3rd	0.336
\vdash			-	\vdash			

Expected value modeling is pervasive and one area where it can help in a volatile system is financial markets

How buying and selling of stocks/futures/currencies works (a bit stylized but generally true)

- → You want to buy \$50k Apple
- → You have access to the venue/exchange where buying and selling happens (in reality, you don't but let's pretend you're a hedge fund)
- → The "market" is a bunch of banks/hedge funds etc in the venue offering up prices to buy and sell to you or anyone else
- → Your order matches with what's there in the venue: if you aren't willing to pay the quoted prices, there is no match.
- → All the orders coming from various places cause the price to fluctuate

It's a pretty simple market and not that much different from what we're used to

→ Or even what's depicted in Trading Places

But here's where it gets complicated

- → Speed plays a factor and sometimes you need to place very large orders
- → Speed (this is not a judgment!): the price may move before you get there You need to model the probability/expectation of actually filling the order
- → Large orders (very large, much larger than what's quoted): they need to be split over minutes/hours/days/weeks
 - Buying makes the price go up, selling makes the price go down
 - You need to model the expected effects of your order

Expected value modeling

- → Can help you with what to expect when placing the order
- → It's not perfect because there is so much happening that causes the price to fluctuate

A stylized depiction

- → Blue shows the modeled price movement based on every other participant
- → Red shows the order's pressure pushing the price up
- → Yellow is the actual price including your effect

Price you see

Information that leads into a model that then creates a signal to trade

Price you expect

Your model for the actual trading leads to an expectation of the price (which can affect your willingness to trade)

Price you get

Mismatch between model and observed

Can tell you if your execution is bad (maybe you go through a broker or your IT built a bad/slow system) Or your model is weak.