

CS 1550

Week 6 Lab 3 and Project 2

Teaching Assistant Henrique Potter

CS 1550 – Lab 3

• Modify xv6 scheduler from round robin to a priority based.

- Important feature of OS's is allowing concurrent execution of processes
- Better utilization of resources
 - While a process waits for I/O another one can execute

- Important feature of OS's is allowing concurrent execution of processes
- Better utilization of resources
 - While a process waits for I/O another one can execute
- In xv6, processes are scheduled in a round-robin fashion

- Important feature of OS's is allowing concurrent execution of processes
- Better utilization of resources
 - While a process waits for I/O another one can execute
- In xv6, processes are scheduled in a round-robin fashion

However, how does the scheduler work in xv6?

• xv6 scheduler interrupts

- xv6 scheduler interrupts
- The scheduler is called, and a new process is selected

- xv6 scheduler interrupts
- The scheduler is called, and a new process is selected

How processes are switched during their execution?

proc.c implements the scheduler function

• **proc.c** file

```
void
scheduler(void)
```

```
• proc.c file
```

The process information

```
void
scheduler(void)
struct proc *p;
  struct cpu *c = mycpu();
 c->proc = 0;
```

• proc.h file

```
// Per-CPU state
pstruct cpu {
   uchar apicid;
   struct context *scheduler;
   struct taskstate ts;
   struct segdesc gdt[NSEGS];
   volatile uint started;
   int ncli;
   int intena;
   struct proc *proc;
};
```

```
/ Per-process state
// Size of process memory (bytes)
  uint sz;
                          // Page table
  pde t* pgdir;
  char *kstack;
                         // Bottom of kernel stack for this process
                          // Process state
  enum procstate state;
  int pid;
                          // Process ID
  struct proc *parent;
                        // Parent process
  struct context *context;  // swtch() here to run process
  void *chan;
                        // If non-zero, sleeping on chan
  int killed;
                         // If non-zero, have been killed
  struct file *ofile[NOFILE]; // Open files
  struct inode *cwd;  // Current directory
  char name[16];  // Process name (debugging)
  int get counts[23];  // Array for get count of syscall
```

```
void
                      scheduler(void)
• proc.c file
                      struct proc *p;
The process state
                         struct cpu *c = mycpu();
                         c->proc = 0;
information
The cpu state
information
```

```
void
                       scheduler(void)
 • proc.c file
                         struct proc *p;
                         struct cpu *c = mycpu();
                         c->proc = 0;
 Infinite loop
                      for(;;){
                           // Enable interrupts on this processor.
Enable interrupts
                        → sti();
```

```
• proc.c file
```

Loop over all the processes

proc.c file

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
 c \rightarrow proc = 0;
                                                 Pointer arithmetic!
 for(;;){
   // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire(&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
```

proc.c file

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
                                                   Pointer arithmetic!
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
                            struct foobar *p;
                                                            struct foobar *p;
                                                            p = 0x1000 + sizeof(struct foobar);
                            p = 0x1000;
                            p++;
```

• proc.c file

cpu process is set

This is what myproc() returns

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c\rightarrow proc = p;
      switchuvm(p);
Loads the process page table
      p->state = RUNNING;
```

proc.c file

Here the process is switched to execute

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c->proc = p;
      switchuvm(p);
      p->state = RUNNING;
                                                      The kernel execution will stop here
      swtch(&(c->scheduler), p->context);
                                                      The process will continue from
      switchkvm();
                                                      wherever is stopped
```


proc.c implements the scheduler function

• proc.c file

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c->proc = p;
      switchuvm(p);
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm();
                                                   This loads the kernel's
                                                   state information
      // Process is done running for now.
      c->proc = 0;
    release (&ptable.lock);
```

When a process is interrupted is starts from here

```
• proc.c file
```

```
This loop never ends
```

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c \rightarrow proc = 0;
 for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c->proc = p;
      switchuvm(p);
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm();
      // Process is done running for now.
      c->proc = 0;
    release (&ptable.lock);
```

- Yield:
 - Acquire the process table lock ptable.lock
 - Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

```
//PAGEBREAK: 41
void
trap(struct trapframe *tf)
 if(tf->trapno == T SYSCALL) {
    if (myproc() ->killed)
      exit();
   myproc()->tf = tf;
   syscall();
    if (myproc() ->killed)
      exit();
    return;
 switch(tf->trapno) {
 case T IRQ0 + IRQ TIMER:
    if(cpuid() == 0){
      acquire (&tickslock);
      ticks++;
      wakeup(&ticks);
      release (&tickslock);
   lapiceoi();
   break;
 case T IRQ0 + IRQ IDE:
   ideintr();
   lapiceoi();
   break;
 case T IRQ0 + IRQ IDE+1:
   // Bochs generates spurious IDE1 interrupts.
   break;
  Caca T TROO + TRO KRD.
```

- Yield:
 - Acquire the process table lock ptable.lock
 - Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

In trap.c:

```
// Force process to give up CPU on clock tick.
// If interrupts were on while locks held, would need to check nlock.
if(myproc() && myproc()->state == RUNNING &&
    tf->trapno == T_IRQ0+IRQ_TIMER)
    yield();
```

- Yield:
 - Acquire the process table lock ptable.lock
 - Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

In trap.c:

- Yield:
 - Acquire the process table lock ptable.lock
 - · Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

In proc.c:

```
// Give up the CPU for one scheduling round.
void
yield(void)

{
   acquire(&ptable.lock); //DOC: yieldlock
   myproc()->state = RUNNABLE;
   sched();
   release(&ptable.lock);
}
```

• In lab 3 we will implement priority queue in xv6.

What if processes have different priorities?

 Let all the higher priority processes finish before moving to lower priority ones

- Let all the higher priority processes finish before moving to lower priority ones
- What is the problem here?

 Let all the higher priority processes finish before moving to lower priority ones

- Even better: Don't yield if the current process is the only one of its priority
- This is the bonus part of your lab

Processes with same priorities

What if different processes have the same priorities?

Processes with same priorities

• What if **different processes** have the **same** priorities?

Processes with same priorities

- Group processes with the same priorities together!
 - Use round robin!

Lab 3 – part 1: priority-based scheduler for XV6

- The valid priority for a process is in the range of 0 to 200.
- The smaller value represents the higher priority.
- Default priority for a process is 50.
- proc.h:
 - Add an integer field called priority to struct proc.
- proc.c:
 - allocproc function:
 - Set the default priority for a process to 50
 - Scheduler function:
 - Replace the scheduler function with your implementation of a priority-based scheduler.

Lab 3 – part 2: add a syscall to set priority

- Add a new syscall, setpriority, for the process to change its priority.
- Changes the current process's priority and returns the old priority.
- Review lab1 to refresh steps to add a new syscall.

Question 6

• Pair up men and women as they enter a Friday night mixer.

- Pair up men and women as they enter a Friday night mixer
- Each man and each woman will be represented by one thread(Process)

- Pair up men and women as they enter a Friday night mixer
- Each man and each woman will be represented by one thread

- Pair up men and women as they enter a Friday night mixer.
- Each man and each woman will be represented by one thread
- When the **man** or **woman** enters the **mixer**, its thread will call **one** of two procedures, **man** or **woman**, depending on the **thread gender**.

- Pair up men and women as they enter a Friday night mixer.
- Each man and each woman will be represented by one thread
- When the **man** or **woman** enters the **mixer**, its thread will call **one** of two procedures, **man** or **woman**, depending on the **thread gender**.

```
Man () {
}
```

```
Woman () {
}
```

- Pair up men and women as they enter a Friday night mixer.
- Each man and each woman will be represented by one thread
- When the man or woman enters the mixer, its thread will call one of two procedures, man or woman, depending on the thread gender.
- Each procedure takes a single parameter, *name*, which is just an integer name for the **thread**.

```
Man (name) {
}
```

```
Woman (name) {
}
```

Question 6

• The procedure **must wait** until there is an **available thread** of the opposite **gender** and must then **exchange names** with this **thread**.

```
Man (name) {
}
```

```
Woman (name) {
}
```

Question 6

 The procedure must wait until there is an available thread of the opposite gender and must then exchange names with this thread

```
Semaphore: sem = 0;
String: nameM, nameW;

Man (name) {
    nameM = name;
    }

Woman (name) {
    nameW = name;
    }
```

- The procedure must wait until there is an available thread of the opposite gender and must then exchange names with this thread.
- Each procedure must **return** the integer **name** of the thread it paired up with

```
Semaphore: sem = 0;
String: nameM, nameW;

Man (name) {
    nameM = name;
    return nameW;
}

Woman (name) {
    nameW = name;
    return nameM;
}
```

Question 6

• Each procedure must return the integer name of the thread it paired up with

Question 6

• Each procedure must return the integer name of the thread it paired up with

When a Man attempts to enter a call to the **Man function** is done.

Question 6

• Each procedure must return the integer name of the thread it paired up with

He must **wait** to be paired with a Woman's name.

Question 6

• Each procedure must return the integer name of the thread it paired up with

Question 6

• Each procedure must return the integer name of the thread it paired up with

We need a **signaling mechanism** that would hold
both processes/threads(Man
and Woman) and only allow
them to go when they are **paired**

Question 6

• Men and women may enter the fraternity in any order, and many threads may call the man and woman procedures simultaneously.

Question 6

 Men and women may enter the fraternity in any order, and many threads may call the man and woman procedures simultaneously.

Question 6

• Men and women may enter the fraternity in any order, and many threads may call the *man* and *woman* procedures simultaneously.

Question 6

 Men and women may enter the fraternity in any order, and many threads may call the man and woman procedures simultaneously.

- Men and women may enter the fraternity in any order, and many threads may call the man and woman procedures simultaneously.
- It doesn't **matter which man** is paired up with **which woman** (Pitt frats aren't very choosy in this exercise), as long as each pair contains one man and one woman, and each gets the other's name.
- Use semaphores and shared variables to implement the two procedures.


```
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                           mName Woman (name) {
  nameM = name;
                                                             nameW = name;
 return nameW;
                                                             return nameM;
```



```
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                           mName Woman (name) {
 nameM = name;
                                                             nameW = name;
 return nameW;
                                                             return nameM;
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
```

```
wName Man (name) {
   Down(mutexM);
   nameM = name;

return nameW;
}
```

Only allow 1 person to enter

```
mName Woman (name) {
    Down(mutexW);
    nameW = name;

    return nameM;
}
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
```

```
wName Man (name) {
   Down(mutexM);
   nameM = name;
   Up(mutexM);
   return nameW;
}
```

Only allow 1 person to enter

Should we allow each process to signal back to the same gender?

```
mName Woman (name) {
    Down(mutexW);
    nameW = name;
    return nameM;
}
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
```

```
wName Man (name) {
   Down(mutexM);
   nameM = name;
   Up(mutexM);
   return nameW;
}
```

Only allow 1 person to enter

Should we allow each process to signal back to the same gender?

No, multiple Mans would overwrite each others name.

```
mName Woman (name) {
    Down(mutexW);
    nameW = name;
    Woman 3
```

return nameM;


```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
```

```
Woman 1
Woman 3
```

```
wName Man (name) {
   Down(mutexM);
   nameM = name;
   Up(mutexW);
   return nameW;
}
```

Only allow 1 person to enter

```
mName Woman (name) {
   Down(mutexW);
   nameW = name;
   Up(mutexM);
   return nameM;
}
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                            mName Woman (name) {
  Down(mutexM);
                                                              Down(mutexW);
  nameM = name;
                                                              nameW = name;
 Up(mutexW); ←
                                                             Up(mutexM);
                                 Each person of a
 return nameW;
                                                              return nameM;
                                 different gender
                                   must wait on
                                    each other
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                            mName Woman (name) {
  Down(mutexM);
                                                              Down(mutexW);
  nameM = name;
                                                              nameW = name;
 Up(mutexW); ←
                                                             Up(mutexM);
                                 Each person of a
 return nameW;
                                                              return nameM;
                                  different gender
                                   must wait on
                                    each other
                                   This still don't
                                     solve the
                                     problem
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
```



```
Man 1
```

Let's assume that two man arrived first and that's the current state

```
mName Woman (name) {
    Down(mutexW);
    nameW = name;
    Up(mutexM);
    return nameM;
}
```

```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
```


Then a Woman arrives calls the Woman procedure

```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                            mName Woman (name)
  Down(mutexM);
                                                              Down(mutexW);
                                                              nameW = name;
  nameM = name;
                                                                               Woman 3
                                                              Up(mutexM); ←
Up(mutexW);
                                                              return nameM;
  return nameW;
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                           mName Woman (name)
 Down(mutexM); Man 2
                                                             Down(mutexW);
                                                             nameW = name;
  nameM = name;
                                                                              Woman 3
Up(mutexW);
                                                             Up(mutexM);
                                 And releases the
  return nameW;
                                                             return nameM;
                                   Man waiting
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                            mName Woman (name)
  Down(mutexM); 
                                                              Down(mutexW);
  nameM = name;
                                                              nameW = name;
                                                                               Woman 3
Up(mutexW);
                                                              Up(mutexM);
                                 Each person of a
  return nameW;
                                                              return nameM;
                                 different gender
                    Man 2
                                   must wait on
                                    each other
                                  This still don't
                                     solve the
                                     problem
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */
```

```
wName Man (name) {
   Down(mutexM);
   nameM = name;
   Up(mutexW);
   return nameW;
}
```

We need to also that a woman can only return the name of a single man

```
mName Woman (name) {
    Down(mutexW);
    nameW = name;
    Up(mutexM);
    return nameM;
}
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */
                                  We need to also that
wName Man (name) {
                                                            mName Woman (name) {
                                   a woman can only
  Down(mutexM);
                                                              Down(mutexW);
                                  return the name of a
  nameM = name;
                                                              nameW = name;
                                       single man
 Down(waitW); __
                                                              Down(waitM);
 Up(mutexW);
                                                              Up(mutexM);
                                  We needs processes
 return nameW;
                                                              return nameM;
                                  to signal each other
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */
                                  We need to also that
wName Man (name) {
                                                            mName Woman (name) {
                                   a woman can only
  Down(mutexM);
                                                              Down(mutexW);
                                  return the name of a
                                                              nameW = name;
  nameM = name;
                                       single man
 Down(waitW); __
                                                              Down(waitM);
 Up(mutexW);
                                                              Up(mutexM);
                                  We needs processes
 return nameW;
                                                              return nameM;
                                  to signal each other
                                   Now each is waiting
                                    on each other on
                                        deadlock
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */
                                  We need to also that
wName Man (name) {
                                                            mName Woman (name) {
                                   a woman can only
  Down(mutexM);
                                                              Down(mutexW);
                                  return the name of a
  nameM = name;
                                                              nameW = name;
                                       single man
                                                             Up(waitW);
 Up(waitM);
  Down(waitW);
                                                              Down(waitM);
                                  We needs processes
                                  to signal each other
 Up(mutexW);
                                                              Up(mutexM);
  return nameW;
                                                              return nameM;
                                   Now each is waiting
                                    on each other on
                                        deadlock
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0; /* allows woman to wait for man */
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                             mName Woman (name) {
  Down(mutexM);
                                                               Down(mutexW);
 nameM = name;
                                                              nameW = name;
                                                              Up(waitW);
 Up(waitM);
 Down(waitW);
                                                              Down(waitM);
                                   Makes processes
                                 wait for each other
 Up(mutexW);
                                                               Up(mutexM);
  return nameW;
                                                               return nameM;
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */
wName Man (name) {
                                                             mName Woman (name) {
 Down(mutexM);
                                                               Down(mutexW);
 nameM = name;
                                                               nameW = name;
 Up(waitM);
                                                               Up(waitW);
  Down(waitW);
                                                               Down(waitM);
                                  Only allows one
 Up(mutexW);
                                                               Up(mutexM);
                                   process inside
  return nameW;
                                                               return nameM;
```


wName Man (name) {

Down(mutexM);

nameM = name;

Down(waitW);

Up(mutexW);

return nameW;

Up(waitM);


```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */
```

```
We still have a problem. We cannot return directly the shared global variable value. It mays still be changed.
```

```
mName Woman (name) {
    Down(mutexW);
    nameW = name;
    Up(waitW);
    Down(waitM);

    Up(mutexM);
    return nameM;
}
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */
```

```
wName Man (name) {
    String temp;
    Down(mutexM);
    nameM = name;
    Up(waitM);
    Down(waitW);
    temp = nameW;
    Up(mutexW);
    return temp;
}
```

We still have a problem. We cannot return directly the shared **global** variable value. It mays **still be changed**.

It must be a local variable.

```
mName Woman (name) {
   String temp;
   Down(mutexW);
   nameW = name;
   Up(waitW);
   Down(waitM);
   temp = nameM;
   Up(mutexM);
   return temp;
}
```



```
Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */
```

```
Woman 1
Woman 3
```

```
wName Man (name) {
   String temp;
   Down(mutexM);
   nameM = name;
   Up(waitM);
   Down(waitW);
   temp = nameW;
   Up(mutexW);
   return temp;
}
```

Finally we have the solution!

```
mName Woman (name) {
   String temp;
   Down(mutexW);
   nameW = name;
   Up(waitW);
   Down(waitM);
   temp = nameM;
   Up(mutexM);
   return temp;
}
```


CS 1550

Week 6 Lab 3 and Project 2

Teaching Assistant Henrique Potter