Global System Analysis of Interconnected Flow Sheet Models for Drug Product Manufacturing to Performance

Pankaj Doshi, Marta Moreno Benito and Conrad Davies

April 26th, 2017

The Motivation for a Systems Based Approach to Pharmaceutical Development

Research Inventing the right molecule

Development

Creating the right product

Commercialization
Optimizing the operating margin

Advanced multi-scale modeling of all processes

Pharmaceutics

Systems Biology & System Pharmacology

Transforming new chemical entity into medication

Relating properties of drugs and dosage to onset, duration & intensity of action

Biopharmaceutics

Molecular Design

Opportunity to influence molecular design

Long term Vision: Digital Design

Organization of the presentation

- Interconnected flowsheet model: Crystallization to Dissolution
 - Batch cooling crystallization model
 - Dry Milling Model
 - In vitro Dissolution Model
- Global System Analysis of individual unit operations
- Global System Analysis of Interconnected flowsheet model
 - First example of GSA applied to complex flowsheet
- Conclusion and Future Direction

Interconnected flowsheet

Interoperability of different models

Crystallization Model

API crystallization

Growth and dissolution: Classical two-step kinetics; Garside et al. (1990)

Batch recipe:

Oh - 4h Cooling – piecewise linear ramp for T Initial temperature (60-90°C) Final temperature 10°C

4h - 6h Unload - Constant output flowrate

Input variables:

- Cooling profile: initial temperature (60-90°C)
- Impeller frequency (10-50 rpm)
- API concentration in solution (3-5 %w)
- Initial seed concentration (5-15 e⁻⁶ g/kg)
- Seed lognormal PSD: peak 15 μm; SD 5 μm

Physicochemical parameters:

- Nucleation rate (35 m⁻³s⁻¹)
- Growth rate constant (5e⁻⁶ m/s)
- Growth activation energy (1.25e⁴ J/mol)
- API solubility function of T

Output variables:

Crystal PSD

Results from single Crystallization Simulation

API crystallization

Scenario

- Cooling profile: initial temperature (90°C)
- Impeller frequency (25 rpm)
- API concentration in solution (5%w)
- Initial seed concentration (10 e⁻⁶ g/kg)

Solute concentration & solubility

Mass concentration of solute in solution

Mass concentration of solute at saturation

Solution and crystal mass in crystallizer

Cumulative particle size distribution

GSA Algorithm/Methodology

- Define the uncertainty distribution of model parameters and inputs
- Define a Monte Carlo simulations scheme
- Calculate the statistics (mean, variance and distributions) from the model output
- Calculate the Sobol indices using ANOVA decomposition
- Reduce the model keeping only dominant parameters for further analysis

Effect of initial seed mass on Crystal PSD

1000 -5000 simulations on 64 core machine

Effect of impeller RPM on Crystal PSD

Effect of Initial Slurry Temperature on Crystal PSD

Effect of Initial API Concentration in Solution on Crystal PSD

Effect of Initial API Concentration in Solution on Crystal PSD

API Hammer Mill Model

Processing conditions:

Oh - 6h Constant operation Flowrate 1.5 kg/h

Input variables:

- Crystal PSD (fixed from crystallizer)
- Impact energy (5,000-10,000 J/kg)
- No. impacts (1-10)
- Power law exponent (0.3-3)
- Screen aperture size (100-1,000 μm)

Physicochemical parameters:

- Material strength parameter (0.5 kg/Jm)
- Breakage rate constant (0.01 s⁻¹)
- Product of threshold energy and particle size (0.25 Jm/kg)
- Range of non-ideal separation in screen (50 μ m)

Output variables:

Milled API PSD

Milling Breakage Parameters

k is the number of successive impacts or stressing events [-],

Process parameters

 $W_{m,kin}$ is the mass specific impact energy to cause particle breakage [J/kg],

 $W_{m,min}$ is the mass specific threshold energy that a particle can absorb without fracture [J/kg],

q is a kernel function to model breakage size distribution (q<0) [-], Material parameters

x' is the fragment size from which on the additional fading of the power law becomes significant [m], $f_{Mat.}$ characterises the particulate material resistance against fracture in impact comminution [kg/J/m],

$$B_{M,p}(x,y) = \left(\frac{y}{x}\right)^{q} \frac{1}{2} \left(1 + \tanh\left(\frac{x - x'}{x'}\right)\right)$$

$$P_{B}(y) = 1 - \exp\left(-f_{Mat}yk\left(W_{m,kin} - W_{m,min}\right)\right)$$

Results from single mill simulation

API milling

Scenario

- Impact energy (7,500 J/kg)
- No. impacts (5)
- Power law exponent (2)
- Screen aperture size (100 μm)

Breakage rate per particle size

Pfizer WORLDWIDE RESEARCH & DEVELOPMENT

PSD before and after milling

PSD within the unit

Effect of Impact Energy on the Milled PSD

Impact of Screen Size on Milled PSD

In Vitro Dissolution Model

Drug product formulation and in vitro dissolution

Processing conditions:

- Media pH (4.5)
- Media volume (250 ml)

Input variables:

- API PSD (Lognormal with mean size)
- Drug load (10 %w)
- Dosage time (0 h)
- Tablet mass (100-500 mg)
- API diffusivity (50-500 μ m²/s)

Physicochemical parameters:

- API solubility (3.25 mg/L)
- Neutral compound

Output variables:

- API fraction dissolved
- API mass dissolved

Results from single dissolution simulation

Drug product formulation and in vitro dissolution

Scenario

- API PSD (fixed from milling)
- Drug load (10 %w)
- Dosage time (0 h)
- Tablet mass (100 g)
- API diffusivity (500 μm²/s)

API mass per dose = 10 mg

Fraction dissolved in 15 min = 0.346

mg/mg API in dose

Fraction dissolved in 2 h = 0.965 mg/mg

API in dose

Fraction of total API dosed dissolved

Mass of API dosed dissolved

Dissolution_diff

Fraction Dissolved vs. Diffusivity

Fraction Dissolved vs. Mean Size

Interconnected flowsheet

Interconnected drug manufacturing to performance

Effect of Crystallization Process on Fraction Dose Dissolved

Effect of Milling Process on Fraction Dose Dissolved

MD50

Effect of API Diffusivity on Fraction Dissolved

Diffusivity

Sens	·i+i、	i+\/	Indi	COC
JE113	DILIV	ity i	IIIGI	CE3

	First Order			
Parameters	Effect	Effect		
Impact Energy	0.58	0.62		
Screen Size	0.01	0.01		
Seed Mass	0.02	0.00		
Tset	0.02	0.00		
Diffusivity	0.37	0.41		

SCIENCE LIFE-CHANGING IMPACT

Long term Vision: Digital Design

Conclusions

- Global System Analysis enables a comprehensive study of interconnected flowsheet models
- Seamless execution of large number of simulation (Virtual DOE) and aggregation of relevant output in a widows based "HPC environment" is a very powerful feature
- Extension to a Linux based HPC environment or Cloud computing infrastructure will be a very desirable feature
- Virtual DOE enables "stress testing of the model" leading to more rigorous verification and also exposing some shortcomings
- Sensitivity Analysis helps in dimensionality reduction
- Seamless, integrated in silico modeling from API and drug product manufacture to oral absorption will become part of work-flow

Acknowledgement

- Ravi Shanker
- Susan Ewing
- Martyn Ticehurst
- Kevin Girard
- Mary am Ende
- Bill Ketterhagen

