ESCUELA POLITECNICA NACIONAL CONSEJO DE DOCENCIA

EPN-GD-MSP-03-03-PRD-05-FRM-02

SILABO

Versión 2

UNIDAD ACADÉMICA:	DEP MATEMATICA				
CARRERA:	(RRA19) MAESTRÍA EN OPTIMIZACIÓN MATEMÁTICA				
PERIODO ACADÉMICO:	2025-B	SEPTIEMBRE 2025 - FEBRERO 2026	TIPO:	ORDINARIO	

DETALLE DE ASIGNATURA:

NOMBRE:	REDES DE TRANSPORTE Y LOGÍSTICA	PARALELO:	1
CÓDIGO:	MOPRR234	PENSUM:	2020B
CRÉDITOS:	4.00	MODALIDAD	PRESENCIAL
		(TIPO)	OBLIGATORIA

COMPONENTES DE ORGANIZACIÓN DE LOS APRENDIZAJES	HORAS POR SEMANA	HORAS POR PERIODO ACADEMICO
Aprendizaje en Contacto con el Docente (AC)	3.00	48
Aprendizaje Práctico Experimental (AP)	1.00	16
Aprendizaje Autónomo (AA)	8.0	128
TOTAL	12.00	192

REQUISITOS DE LA ASIGNATURA

CO-REQUISITOS		PRE-REQUISITOS			
NOMBRE	CÓDIGO	NOMBRE CÓDIG			
		GEOMETRÍA COMPUTACIONAL	MOPRR14 4		

HORARIO DE LA ASIGNATURA:

COMPONENTE DE APRENDIZAJES	HORARIO
AC	MOPRR234 - REDES DE TRANSPORTE Y LOGÍSTICA - 1 - Desde: 29/09/2025Hasta:28/10/2025

DESCRIPCIÓN DE LA ASIGNATURA:

SE ESTUDIA LA FORMULACIÓN Y SOLUCIÓN DE DIFERENTES PROBLEMAS DE OPTIMIZACIÓN SOBRE GRAFOS Y REDES, CONJUNTAMENTE CON SUS APLICACIONES EN LA LOGÍSTICA Y EL TRANSPORTE

INFORMACIÓN DE PROFESOR(ES) A CARGO:

NOMBRE CORREO FORM ACAD		COMPONENTE DOCEN PRINCIF	
-------------------------	--	--------------------------	--

TORRES CARVAJAL LUIS MIGUEL luis.torres du.e	' I NATURALES I	1	AC	Х	
---	-----------------	---	----	---	--

OBJETIVOS DE CARRERA QUE APORTA LA ASIGNATURA: REDES DE TRANSPORTE Y LOGÍSTICA

CARRERA	OBJETIVO
(RRA19) MAESTRÍA EN OPTIMIZACIÓN MATEMÁTICA	NO APLICA

RESULTADOS DEL APRENDIZAJE DE LA ASIGNATURA:

TIPO DE RESULTADO	DESCRIPCIÓN DEL RESULTADO	FORMA DE EVIDENCIAR EL CUMPLIMIENTO**
Conocimientos	CONOCER LOS FUNDAMENTOS TEÓRICOS DE LA OPTIMIZACIÓN SOBRE GRAFOS Y REDES, ASÍ COMO SUS APLICACIONES.	Evaluaciones escritas
Destrezas	DISEÑAR HERRAMIENTAS PARA LA MODELIZACIÓN DE DIVERSOS PROBLEMAS DE OPTIMIZACIÓN EN LOGÍSTICA Y TRANSPORTE.	Ejercicios de implementación
Valores y actitudes	IDENTIFICAR PROBLEMAS RELEVANTES PARA EL DESARROLLO DE LA SOCIEDAD Y EL PAÍS, QUE PUEDEN SER FORMULADOS DESDE EL MARCO TEÓRICO DE LA OPTIMIZACIÓN SOBRE GRAFOS.	Diálogo en clases

^{**} Descripciones específicas, medibles y demostrables de lo que el estudiante deberá hacer para el logro de los resultados del aprendizaje.

CONTENIDOS Y ACTIVIDADES DE APRENDIZAJE DE LA ASIGNATURA

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

N°	SEMANA	CONTENIDO	COMPONENTE DE APRENDIZAJE	HOR AS	ACTIVIDADES DE APRENDIZAJE
1	FECHA1	Conceptos básicos. Problema del árbol generador de peso mínimo.	AC	3.0	Clase magistral
2	FECHA2	LAB1: Representación de grafos. Algoritmos de Prim y de Kruskal.	AC	4.0	Laboratorio
3	FECHA3	Propiedades de árboles. Validez de los algoritmos de Prim y Kruskal.	AC	3.0	Clase magistral.
4	FECHA4	Eficiencia de los algoritmos de Prim y de Kruskal.	AC	3.0	Clase magistral
5	FECHA5	Problema de flujo máximo. Flujos versus cortes.	AC	3.0	Clase magistral
6	FECHA6	Cadenas aumentantes. Teorema flujo máximo - corte mínimo.	AC	3.0	Clase magistral
7	FECHA7	LAB2: Implementación del algoritmo de Ford-Fulkerson.	AC	4.0	Laboratorio.
8	FECHA8	Primera evaluación: Árboles generadores de peso mínimo.	AC	3.0	Evento de evaluación
9	FECHA9	Validez y eficiencia del algoritmo de la cadena aumentante.	AC	3.0	Clase magistral
10	FECHA10	Aplicaciones y generalizaciones del problema de flujo máximo.	AC	4.0	Clase magistral
11	FECHA11	Teorema de Dualidad en la Programación Lineal.	AC	3.0	Clase magistral
12	FECHA12	Algoritmo del simplex.	AC	3.0	Clase magistral
13	FECHA13	Flujos de costo mínimo. Condiciones de optimalidad.	AC	3.0	Clase magistral
14	FECHA14	Segunda evaluación: Problemas de flujo máximo.	AC	3.0	Evento de evaluación
15	FECHA15	Ciclos x-aumentantes de costo negativo. Caracterización de optimalidad.	AC	3.0	Clase magistral

16	FECHA16	Soluciones de árbol. Propiedades.	AC	3.0	Soluciones de árbol. Propiedades.
17	FECHA17	Algoritmo del simplex en redes.	AC	3.0	Clase magistral
18		LAB 3: Implementación del algoritmo de simplex en redes.	AC	4.0	Laboratorio
19		Tercera evaluación: Flujos de costo mínimo.	AC	3.0	Evento de evaluación
20		Cuarta evaluación: Implementación práctica.	AC	3.0	Evento de evaluación

BIBLIOGRAFÍA BÁSICA OBLIGATORIA:

1.-Korte & Vygen , 2018. Combinatorial Optimization. Lugar de publicación: NA. EditorialSpringer

BIBLIOGRAFÍA COMPLEMENTARIA ADICIONAL:

-Cook, Cunningham, Pulleyblank & Schrijver, 1997. Combinatorial Optimization. Lugar de publicación: NA. EditorialWiley Interscience
-Diestel, 2017. Graph Theory. Lugar de publicación: NA. EditorialSpringer

METODOLOGÍA DE APRENDIZAJE DE LA ASIGNATURA

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

Método de aprendizaje	Recursos de aprendizaje	Escenarios de aprendizaje
Clase magistral y ejercicios		

USO DE HERRAMIENTAS DE INTELIGENCIA ARTIFICIAL

a.- Ámbito de aplicación de la inteligencia artificial por parte del profesor

b.- Ámbito de aplicación de la inteligencia artificial por parte del estudiante

EVALUACIÓN

IMPORTANTE: De acuerdo al Art. 80 del RRA la contribución de cada componente de evaluación no podrá exceder el 35% de la calificación del aporte

ACTIVIDAD DE EVALUACIÓN	TIPO	APORTE 1 (%)	APORTE 2 (%)
Primera evaluación	Formativa	25.0	25.0
Segunda evaluación	Formativa	25.0	25.0
Tercera evaluación	Formativa	25.0	25.0
Cuarta evaluación	Formativa	25.0	25.0
		100.0	100.0

HORARIO Y MECANISMOS DE TUTORÍAS:

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

Horario (s) de tutorías	Ubicación / mecanismo / herramienta de contacto
Viernes 12h00 - 13h00	Previa cita por email.

POLÍTICAS DE DESARROLLO DE LA ASIGNATURA

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

ADAPTACIONES CURRICULARES PARA ATENDER A ESTUDIANTES CON NECESIDADES EDUCATIVAS ESPECIALES:

Metodologías de enseñanza-aprendizaje:	
Ar	nbientes de enseñanza-aprendizaje:
Mé	todos e instrumentos de evaluación:

UBICACIÓN:

Espacio:E12-P4/E006
