EE247 Lecture 11

Data converters

- Areas of application
- Data converter transfer characteristics
- Sampling, aliasing, reconstruction
- Amplitude quantization
- Static converter error sources
 - Offset
 - · Full-scale error
 - Differential non-linearity (DNL)
 - Integral non-linearity (INL)

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 1

Material Covered in EE247 Where are We?

- Continuous-time filters
 - · Biquads & ladder type filters
 - Opamp-RC, Opamp-MOSFET-C, gm-C filters
 - · Automatic frequency tuning
- Switched capacitor (SC) filters
- Data Converters
 - D/A converter architectures
 - A/D converter
 - Nyquist rate ADC- Flash, Pipeline ADCs,....
 - · Oversampled converters
 - · Self-calibration techniques
- · Systems utilizing analog/digital interfaces

EECS 247 Lecture 11:

Introduction to Data Converters

A/D & D/A Conversion

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 5

Data Converters

- Stand alone data converters
 - Used in variety of systems
 - Example: Analog Devices AD9235 12bit/ 65Ms/s ADC- Applications:
 - Ultrasound equipment
 - IF sampling in wireless receivers
 - Various hand-held measurement equipment
 - Low cost digital oscilloscopes

EECS 247 Lecture 11:

Introduction to Data Converters

Data Converters

- Embedded data converters
 - Integration of data conversion interfaces along with DSPs and/or RF circuits → Cost, reliability, and performance
 - Main issues
 - Feasibility of integrating sensitive analog functions in a technology typically optimized for digital performance
 - Down scaling of supply voltage as a result of downscaling of feature sizes
 - Interference & spurious signal pick-up from on-chip digital circuitry and/or high frequency RF circuits
 - Portable applications dictate low power consumption

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 7

Embedded Converters Example: Typical Cell Phone

Contains in integrated form:

- 4 Rx filters
- 4 Tx filters
- 4 Rx ADCs
- 4 Tx DACs
- · 3 Auxiliary ADCs
- 8 Auxiliary DACs

Dual Standard, I/Q

Audio, Tx/Rx power control, Battery charge control, display, ...

Total: Filters → 8

 $ADCs \rightarrow 7$

DACs → 12

EECS 247 Lecture 11:

Introduction to Data Converters

D/A Converter Transfer Characteristics

- An ideal digital-toanalog converter:
 - Accepts digital inputs b_I - b_n
 - Produces either an analog output voltage or current
 - Assumption (will be revisited)
 - Uniform, binary digital encoding
 - Unipolar output ranging from 0 to $V_{F\!S}$

Nomenclature:

$$N = \# \ of \ bits$$
 $V_{FS} = full \ scale \ output$
 $\Delta = min. \ step \ size \rightarrow ILSB$

$$\Delta = \frac{V_{FS}}{2^N}$$
or $N = log_2 \frac{V_{FS}}{2^N} \rightarrow resolution$

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 9

D/A Converter Transfer Characteristics

$$N = \# \ of \ bits$$

$$V_{FS} = full\ scale\ output$$

$$\Delta = min. step size \rightarrow ILSB$$

$$\Delta = \frac{V_{FS}}{2^N}$$

$$V_0 = V_{FS} \sum_{i=1}^{N} \frac{bi}{2^i}$$

$$= \Delta \times \sum_{i=1}^{N} bi \times 2^{N-i} , \quad bi = 0 \text{ or } 1$$

$$\begin{aligned} Note: &D(b_i = l, alli) \\ &\rightarrow V_o^{max} = V_{FS} - \Delta \\ &\rightarrow V_o^{max} = V_{FS} \left(1 - \frac{1}{2^N}\right) \end{aligned}$$

binary-weighted

EECS 247 Lecture 11:

Introduction to Data Converters

D/A Converter Exampe: D/A with 3-bit Resolution

Example: for N=3 and V_{FS} =0.8V input code \rightarrow 101 Find the output value V_{θ}

$$V_0 = \Delta \left(b_1 \times 2^2 + b_2 \times 2^1 + b_3 \times 2^0 \right)$$

Then:
$$\Delta = V_{FS} / 2^3 = 0.1V$$

$$\rightarrow V_0 = 0$$
. IV $(1 \times 2^2 + 0 \times 2^l + 1 \times 2^0) =$

$$\rightarrow V_0 = 0.5V$$

Note: $MSB \rightarrow V_{FS}/2$ & $LSB \rightarrow V_{FS}/2^N$

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 11

Ideal 3-Bit D/A Transfer Characteristic

- Ideal DAC introduces no error!
- One-to-one mapping from input to output

EECS 247 Lecture 11:

Introduction to Data Converters

A/D Converter Transfer Characteristics

- An ideal analog-to-digital converter:
 - Accepts analog input in the form of either voltage or current
 - Produces digital output either in serial or parallel form
 - Assumption (will be revisited)
 - Unipolar input ranging from 0 to V_{FS}
 - Uniform, binary digital encoding

N = # of bits

 $V_{FS} = full \ scale \ output$

 $\Delta = min. \ resolvable \ input {\rightarrow} 1LSB$

$$\begin{split} &\Delta = \frac{V_{FS}}{2^N} \\ &N = log_2 \frac{V_{FS}}{\Delta} &\rightarrow resolution \end{split}$$

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 13

Ideal A/D Transfer Characteristic Example: 3Bit A/D Converter

 Ideal ADC introduces error with max peakto-peak:

$$\rightarrow$$
 (+-1/2 Δ)
 $\Delta = V_{FS}/2^N$

N= # of bits

 This error is called ``quantization error``

EECS 247 Lecture 11:

Introduction to Data Converters

Non-Linear Data Converters

- So far data converter characterisitics studied are with uniform, binary digital encoding
- For some applications to maximize dynamic range non-linear coding is used e.g. Voiceband telephony,
 - Small signals → larger # of codes
 - Large signals → smaler # of codes

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 15

Example: Non-Linear A/D Converter For Voice-Band Telephony Applications

Non-linear ADC and DAC used in voice-band CODECs

- To maximize dynamic range without need for large # of bits
- Non-linear Coding scheme called A-law & μ-law is used
- · Also called companding

Ref: P. R. Gray, et al. "Companded pulse-code modulation voice codec using monolithic weighted capacitor arrays," *IEEE Journal of Solid-State Circuits*, vol. 10, pp. 497 - 499, December 1975.

EECS 247 Lecture 11:

Introduction to Data Converters

Data Converter Performance Metrics

- Data Converters are typically characterized by static, time-domain, & frequency domain performance metrics :
 - -Static
 - Offset
 - · Full-scale error
 - Differential nonlinearity (DNL)
 - · Integral nonlinearity (INL)
 - · Monotonicity
 - Dynamic
 - · Delay, settling time
 - · Aperture uncertainty
 - · Distortion- harmonic content
 - Signal-to-noise ratio (SNR), Signal-to-(noise+distortion) ratio (SNDR)
 - · Idle channel noise
 - · Dynamic range & spurious-free dynamic range (SFDR)

EECS 247 Lecture 11:

Introduction to Data Converters

Discrete Time Signals

- A sequence of numbers (or vector) with discrete index time instants
- Intermediate signal values <u>not defined</u> (not the same as equal to zero!)
- · Mathematically convenient, non-physical
- We will use the term "sampled data" for related signals that occur in real, physical interface circuits

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 19

Uniform Sampling

- Samples spaced T seconds in time
- Sampling Period T ⇔ Sampling Frequency f_s=1/T
- Problem: Multiple continuous time signals can yield exactly the same discrete time signal (aliasing)

EECS 247 Lecture 11:

Introduction to Data Converters

Data Converters

- ADC/DACs need to sample/reconstruct to convert from continuous-time to discrete-time signals and back
- Purely mathematical discrete-time signals are different from "sampled-data signals" that carry information in actual circuits
- Question: How do we ensure that sampling/reconstruction fully preserve information?

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 21

Aliasing

- The frequencies f_x and $nf_s \pm f_x$, n integer, are indistinguishable in the discrete time domain
- Undesired frequency interaction and translation due to sampling is called aliasing
- If aliasing occurs, no signal processing operation downstream of the sampling process can recover the original continuous time signal!

EECS 247 Lecture 11:

Introduction to Data Converters

Practical Anti-Aliasing Filter

- · Practical filter: Nonzero "transition band"
- In order to make this work, we need to sample faster than 2x the signal bandwidth
- "Oversampling"

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 25

Data Converter Classification

- $f_s > 2f_{max}$ Nyquist Sampling
 - "Nyquist Converters"
 - Actually always slightly oversampled (e.g. CODEC f_{sig}^{max} = 3.4kHz & ADC sampling 8kHz → f_s/f_{max} = 2.35)
 - Requires anti-aliasing filtering prior to A-to-D conversion
- $f_s >> 2f_{max}$ Oversampling
 - "Oversampled Converters"
 - Anti-alias filtering is often trivial
 - Oversampling is also used to reduce quantization noise, see later in the course...
- $f_s < 2f_{max}$ Undersampling (sub-sampling)

EECS 247 Lecture 11:

Introduction to Data Converters

- Sub-sampling \rightarrow sampling at a rate less than Nyquist rate \rightarrow aliasing
- For signals centered @ an intermediate frequency → Not destructive!
- Sub-sampling can be exploited to mix a narrowband RF or IF signal down to lower frequencies

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 27

Nyquist Data Converter Topics

- · Basic operation of data converters
 - Uniform sampling and reconstruction
 - Uniform amplitude quantization
- · Characterization and testing
- Common ADC/DAC architectures
- · Selected topics in converter design
 - Practical implementations
 - Compensation & calibration for analog circuit non-idealities
- · Figures of merit and performance trends

EECS 247 Lecture 11:

Introduction to Data Converters

Where Are We Now?

- We now know how to preserve signal information in CT→DT transition
- How do we go back from DT→ CT?

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 29

Ideal Reconstruction

$$. \text{III.} \xrightarrow{x(k)} \Rightarrow \overset{x(t)}{}$$

• The DSP books tell us:

$$x(t) = \sum_{k=-\infty}^{\infty} x(k) \cdot g(t - kT) \qquad g(t) = \frac{\sin(2\pi Bt)}{2\pi Bt}$$

• Unfortunately not all that practical...

EECS 247 Lecture 11:

Introduction to Data Converters

Zero-Order Hold Reconstruction

- How about just creating a staircase, i.e. hold each discrete time value until new information becomes available?
- What does this do to the frequency content of the signal?
- Let's analyze this in two steps...

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 31

DT→ CT: Infinite Zero Padding

Time Domain Frequency Domain

DT sequence

Infinite Zero padded Interpolation: CT Signal

0.5f_s 1.5f_s 2.5f_s

Next step: pass the samples through a sample & hold stage (ZOH)

EECS 247 Lecture 11:

Introduction to Data Converters

Summary

- Sampling theorem $f_s > 2f_{max}$, usually dictates anti-aliasing filter
- If theorem is met, CT signal can be recovered from DT without loss of information
- ZOH and smoothing filter reconstruct CT signal from DT vector
- Oversampling helps reduce order & complexity of anti-aliasing & smoothing filters

EECS 247 Lecture 11:

Introduction to Data Converters

Next Topic

- Done with "Quantization in time"
- Next: Quantization in amplitude

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 37

Ideal ADC ("Quantizer")

- Accepts & analog input & generates it's digital representation
- · Quantization step:

$$\Delta$$
 (= 1 LSB)

- Full-scale input range:
 -0.5∆ ... (2^N-0.5)∆
- E.g. N = 3 Bits

$$\rightarrow$$
 V_{FS}= -0.5 Δ to 7.5 Δ

EECS 247 Lecture 11:

Introduction to Data Converters

Quantization Error

- Quantization error→ Difference between analog input and digital output of the ADC converted to analog via an ideal DAC
- · Called:
 - Quantization error
 - ☐ Residue
 - Quantization noise

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 39

• For an ideal ADC: • Quantization error is bounded by $-\Delta/2 \dots + \Delta/2$ for inputs within full-scale range ADC Model V_{in} V_{in}

ADC Dynamic Range

 Assuming quantization noise is much larger compared to circuit generated noise:

$$D.R._{Maximum} = 10 log \frac{Full \ Scale \ \ Signal \ Power}{Quantization \ Noise \ Power}$$

 Crude assumption: Same peak/rms ratio for signal and quantization noise!

$$D.R._{Maximum} = 20 log \frac{Peak Full Scale}{Peak Quantization Noise}$$
$$= 20 log \frac{V_{FS}}{\Delta} = 20 log 2^{N} = 6.02 \times N \ [dB]$$

Question: What is the quantization noise power?

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 41

Quantization Error

Assume $V_{\rm in}$ is a slow ramp signal with amplitude equal to ADC full-scale

Note: Ideal ADC quantization error waveform→ periodic and also ramp

EECS 247 Lecture 11:

Introduction to Data Converters

Quantization Error Derivation

Need to find the *rms* value for quantization error waveform:

$$\overline{\varepsilon_{eq}}^2 = \frac{1}{T} \int_{-T/2}^{+T/2} (k \times t)^2 dt = \frac{\Delta}{k} \int_{-\Delta/2k}^{+\Delta/2k} (k \times t)^2 dt$$

$$= \frac{\Delta \times k^2}{k} \int_{-\Delta/2k}^{+\Delta/2k} t^2 dt$$

$$\rightarrow \overline{\varepsilon_{eq}}^2 = \frac{\Delta^2}{I2} \quad \Rightarrow \text{Independent of } k$$

In general above equation applies if:

- Input signal much larger than 1LSB
- · Input signal busy
- · No signal clipping

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 43

Quantization Error PDF

- Probability density function
 (PDF) <u>Uniformly</u> distributed from -Δ/2 ... +Δ/2 provided that:
 - Busy input
 - Amplitude is many LSBs
 - No overload
- · Not Gaussian!

- · Zero mean
- Variance

$$\overline{e^2} = \int_{-\Delta/2}^{+\Delta/2} \frac{e^2}{\Delta} de = \frac{\Delta^2}{12}$$

Ref: W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., vol. 27, pp. 446-72, July 1988.

B. Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory," IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

EECS 247 Lecture 11:

Introduction to Data Converters

Signal-to-Quantization Noise Ratio

- If certain conditions the quantization error can be viewed as being "random", and is often referred to as "noise"
- In this case, we can define a peak "signal-to-quantization noise ratio", SQNR, for sinusoidal inputs:

$$SQNR = \frac{\frac{1}{2} \left(\frac{2^{N} \Delta}{2}\right)^{2}}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2N}$$
e.g. $\frac{N}{8}$
 $\frac{SQNR}{8}$
 $\frac{SQNR}{$

- =6.02N+1.76 dB
- Accurate for N>3
- Real converters do not quite achieve this performance due to other sources of error:
 - Electronic noise
 - Deviations from the ideal quantization levels

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 45

ADC SNR Measurement

EECS 247 Lecture 11:

Introduction to Data Converters

Static Ideal Macro Models

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 47

Cascade of Data Converters

EECS 247 Lecture 11:

Introduction to Data Converters

Static Converter Errors

Deviation of converter characteristics from ideal:

- Offset
- Full-scale error
- Differential nonlinearity → DNL
- Integral nonlinearity → INL

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 49

Offset Error

<u>Ref</u>: "Understanding Data Converters," Texas Instruments Application Report SLAA013, Mixed-Signal Products, 1995.

EECS 247 Lecture 11:

Introduction to Data Converters

Offset and Full-Scale Errors

- Alternative specification in % Full-Scale = 100% * (# of LSB value)/ 2^N
- Gain error can be extracted from offset & full-scale error
- Non-trivial to build a converter with extremely good full-scale/offset specs
- Typically full-scale/offset error is most easily compensated by the digital pre/post-processor
- More critical: Linearity measures→DNL, INL

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 53

ADC Differential Nonlinearity ADC Transfer Curve DNL = deviation Real of code width from Ideal Δ (1LSB) -0.4 LSB DNL error Digital Output Code 1. Endpoints connected 2. Ideal characteristics 0 LSB DNL error derived eliminating offset +0.4 LSB DNL error & full-scale error 3. DNL measured ADC Input Voltage [∆] EECS 247 Lecture 11: Introduction to Data Converters © 2008 H. K. Page 54

ADC Differential Nonlinearity

- Ideal ADC transitions point equally spaced by 1LSB
- For DNL measurement, offset and full-scale error is eliminated
- DNL [k] (a vector) measures the deviation of each code from its ideal width
- Typically, the vector for the entire code is reported
- If only one DNL # is reported that would be the worst case

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 55

Example Offset, Full-Scale Error, Gain,& DNL

A 3bit ADC is designed to have an ideal: LSB= $0.1V \rightarrow V_{FS}=0.8V$

The measured transitions levels for the end product is shown in the table, compute offset, full-scale, gain error, & DNL

- 1- Offset: (real transition-ideal)= -0.03V, in LSB $\rightarrow -0.03/0.1 = -0.3LSB$
- 2- Full-scale error (real last transition-ideal) = 0.68-0.65=0.03Vin LSB $\rightarrow 0.03/0.1$ =+0.3LSB
- 3- LSB after correcting for offset & full-scale error:

LSB= (Last transition-first transition)/ (2^N-2) LSB= (0.68-0.02)/6=0.11V

	Transition #	Ideal transition point [V]	Real transition point [V]
-	1	0.05	0.02
	2	0.15	0.15
	3	0.25	0.2
	4	0.35	0.37
	5	0.45	0.42
	6	0.55	0.5
	7	0.65	0.68

EECS 247 Lecture 11:

Introduction to Data Converters

ADC Differential Nonlinearity Example

 $V_{FS} = 2^{N}x0.11V = 0.88V$ 4-Gain relative to ideal Gain=0.8/0.88 = 0.9

Find all code widths

Width[k] = Transition[k+1]Transition[k]

-Divide code width by LSB $\rightarrow W[k]$

5- Find DNL: DNL[k]=W[k]-LSB

Code #	Code Width [V]	Width [LSB]	DNL [LSB]
0	-		-
1	0.13	1.18	0.18
2	0.05	0.45	-0.55
3	0.17	1.55	0.55
4	0.05	0.45	-0.55
5	0.08	0.73	-0.27
6	0.18	1.64	0.64
7	-		-

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 57

ADC Differential Nonlinearity Example

Code	DNL
#	[LSB]
0	1
1	0.18
2	-0.55
3	0.55
4	-0.55
5	-0.27
6	0.64
7	-

EECS 247 Lecture 11:

Introduction to Data Converters

EECS 247 Lecture 11:

Introduction to Data Converters

© 2008 H. K. Page 59

ADC DNL

- DNL=-1 implies missing code
- For an ADC DNL < -1 not possible → undefined
- Can show:

$$\sum^{all\ i} DNL[i] = 0$$

• For a DAC possible to have DNL < -1

EECS 247 Lecture 11:

Introduction to Data Converters