SQL PROJECT

Case 1 : Order Analysis

Question 1:

-Examine the order distribution on a monthly basis. For date data, order_approved_at should be used.

select count (order_id), to_char (order_approved_at,'YYYY-MM') as month from orders group by 2 order by 2

count	month
1	2016-09
320	2016-10
1	2016-12
760	2017-01
1765	2017-02
2689	2017-03
2374	2017-04
3693	2017-05
3252	2017-06
3974	2017-07

When we examine the order data table by month, we see that the data starts with very small values, then we can see that there is a general upward trend, but it can be seen that the number of orders peaked in November 2017. on this date, the company may have run a campaign, the effect of Black Friday, which is widely known around the world, may have been seen. in the following December, we can see a clear decline compared to November Christmas in December, so it can be expected that the number of orders will remain high, but it may have been a holiday period when people did not buy and give many gifts and spent time with each other. After that, we can see a general increase, albeit fluctuating, but there is a downward trend again in June and July. Although there is no clear indication of this situation, it can be said that the company is insufficient in terms of the campaigns it offers to its customers.

Question 2:

-Examine the number of orders in the order status breakdown on a monthly basis. Visualize the output of the query with excel. Are there any months with a dramatic decrease or increase? Analyze and interpret the data.

```
select
to_char(order_approved_at,'YYYY-MM') as month,
order_status,
count(order_id),
sum(Count(order_id)) OVER (PARTITION BY to_char(order_approved_at,'YYYY-MM')) AS
total
from orders
group by 1,2
order by 1
```

month	order_status	count	total
2016-09	delivered	1	1
2016-10	canceled	20	320
2016-10	delivered	265	320
2016-10	invoiced	18	320
2016-10	processing	2	320
2016-10	shipped	9	320
2016-10	unavailable	6	320
2016-12	delivered	1	1
2017-01	canceled	2	760
2017-01	delivered	715	760

Order numbers were analyzed by examining the order status angle and creating a graph according to each situation.

The first graph shows the number of orders delivered, this graph is proportional to the Total orders graph and does not show a different situation.

When the canceled orders are examined, it seems that there are not many order cancellations, but there is an increase in February 2018 compared to other months, and there is a Rio carnival in Brazil in February. There may have been delivery problems or order cancelations due to this.

The low number of invoiced but not yet processed orders was highest in November 2017, when there were only the highest number of total orders, which may be due to the large number of orders received delaying processing.

When we look at the number of orders processed, it is slightly higher in the months with holidays such as Christmas and Carnival, as mentioned earlier, which may be due to special occasions such as these. For shipped orders, the highest amount is reached in March 2018, but there is no reason that could be related to this.

As for non-existing orders, the highest amount was observed in November 2017, which may be due to order intensity.

Question 3:

-Examine the number of orders by product category. What are the categories that stand out on special occasions? For example, New Year, Valentine's Day...

select
count(distinct o.order_id),
category_name_english,
to_char(order_approved_at,'MM') as month
from orders o
left join order_items i on i.order_id=o.order_id
left join products p on i.product_id=p.product_id
left join translation t on t.category_name=p.product_category_name
group by 2,3
order by 1 desc

count	category_name_english	month
1135	health_beauty	8
1036	health_beauty	6
1025	bed_bath_table	7
1016	bed_bath_table	8
987	bed_bath_table	6
985	health_beauty	7
972	health_beauty	5
954	bed_bath_table	5
920	bed_bath_table	3
906	computers_accessories	2

Line Labels	T	1	2	3	4	5	6		7	8	9	10 11	12 (blan k)	General Total
auto		291	410	435	434	446	412	454	Ĺ	550	109	161 255	278	550
baby		259	212	271	286	360	303	348 3	354		173	150 201	148	360
bed_bath_table		871	870	1088	1006	1140	1148	1199	118	80	532	556 956	568	1199
computers_accessories		711 1 0	98	946	668	793	674	737 7	778		261	333 527	301	1098
consoles_games				109						154		114 138		154
construction_tools_construction						125	120	123 1	170					170
cool_stuff		337	252	382	320	420	302	349 3	390		211	263 296	261	430
electronics		359	252	301	254	4 3 0	าวา	256 1	177			170	221	359
		161		204	155	223		161 2			122	179		230
fashion_bags_accessories food		101	147	204	155	223	1/6	101 2		126	122	121 196	155	126
furniture decor		700	670	942	781	899	625	737 9		120	240	437 776	404	942
_		296		419	385	455		359 3			-	286	326	548
garden_tools		290	304	419	363	455	299	3393	000		223	5 4 8	320	546
health_beauty		706	835	889	862	1079	1143	1095	12	21	389	403 565	483	1221
home_appliances					116		108	117 1	116					117
housewares		374	486	607	652	931	918	820	9 5 3	3	254	246 413	310	953
luggage_accessories		132			102	124		127	7 12	9				132
office_furniture		149	162	293	192	161	122	197				107		293
perfumery		260	263	313	279	343	344	326 3	356		159	221 306	249	356
pet_shop		106	142	169	214	215	241	243 2	295					295
sports_leisure		718	800	979	790	833	703	838 9	918		461	486 604	509	979
stationery		414	175	222	193	197	203	263 2	259			162	253	414
telephony		385	470	517	427	487	382	362 4	118		180	265 377	273	517
toys		208	210	339	310	427	350	356 3	363		298	313 4 7 3	470	473
watches_gifts		380	369	514	586	788	609	682 6	542		269	319 462	371	788

Question 3 was analyzed in terms of order quantities and months. Categories with more than 100 orders were included to reduce the crowding in the table. When analyzed by months, we see that the categories of electronics, luggage products and stationery products reached high numbers in January. This may have increased travel due to Christmas and increased stationery sales with the opening of schools. In February, we see that computers and accessories show the highest value. In March, sports equipment attracts attention, outdoor sports activities may have increased due to the summer season. Apart from this, it is seen that gardening products reached a high sales amount in November, which may be associated with the onset of spring and increased gardening activities.

Question 4:

-Examine the number of orders on the basis of days of the week (Monday, Thursday,) and days of the month (such as the 1st, 2nd of the month). Create and interpret a visual in excel with the output of the query you wrote.

SELECT count(order_id),
TO_CHAR(order_approved_at,'DAY') AS order_day from orders
group by 2

count	order_day
14659	FRIDAY
13001	MONDAY
12196	SATURDAY
9014	SUNDAY
15471	THURSDAY
19154	TUESDAY
15786	WEDNESDAY

SELECT count(order_id),
TO_CHAR(order_approved_at,'DD') AS order_day from orders
group by 2
ORDER BY 2
ASC

count	order_day
3170	1
3086	2
3168	3
3000	4
3970	5
3409	6
3644	7
3306	8
3226	9
3333	10

When the order numbers are evaluated by days of the week, we see that the lowest order numbers come first on Sunday and then on Saturday. The source of this situation may be that people spend more time socializing or resting at the weekend and do not show much interest in shopping. Then comes Monday and Friday, the first and last days of the week, where we can say that people are partly busier and spend less time shopping. Mid-week days can be seen as the days when people spend the most time shopping online.

Looking at the days of the month graph, 3 days stand out. It is seen that the number of orders increased on the 5th and the 24th, which may be salary or advance days from today. On the 31st of the month, it seems largely low. It may be due to the decrease in people's budgets at the end of the month.

Case 2 : Customer Analysis

Question 1:

-In which cities do customers shop more? Determine the city of the customer as the city where they place the most orders and analyze accordingly.

For example, Sibel orders from 3 different cities, 3 orders from Çanakkale, 8 orders from Muğla and 10 orders from Istanbul. Sibel's city is the city with the most orders You should select Istanbul and Sibel's orders should appear as 21 orders from Istanbul.

```
WITH customer_orders AS (
    SELECT
    c.customer_unique_id,
    c.customer_id,
    c.customer_city,
    COUNT(o.order_id) AS order_count
    FROM customers c
    LEFT JOIN orders o ON c.customer_id = o.customer_id
    GROUP BY c.customer_id, c.customer_city
),
```

```
ranked_orders AS (
  SELECT
    customer_unique_id,
    customer_id,
    customer_city,
            order_count,
    ROW_NUMBER() OVER (PARTITION BY customer_unique_id ORDER BY
order count DESC) AS row_num
  FROM customer_orders
)
SELECT
  customer_city,
  sum(order count)
FROM ranked orders
WHERE row_num = 1
group by customer city
order by sum desc
```

Cities with the most orders;

customer_city	sum
sao paulo	14970
rio de janeiro	6614
belo horizonte	2670
brasilia	2066
curitiba	1462
campinas	1398
porto alegre	1326
salvador	1209
guarulhos	1151
sao bernardo do campo	908

For this question, the top 10 cities were selected from the output. The top 10 cities with the highest number of orders in the table also have the highest population density in Brazil. Here we can conclude that the number of orders is directly proportional to the population density. We can also see that the number of orders from Sao Paulo is quite high, more than twice that of the next city.

Case 3: Vendor Analysis

Question 1:

-Who are the sellers who deliver orders to customers the fastest? Bring Top 5. Examine and comment on the number of orders of these sellers and the reviews and ratings of their products.

select

distinct oi.seller_id,

AVG(AGE(order_delivered_customer_date,order_purchase_timestamp)) as delivery_time, count(o.order_id)as order_count,

AVG (r.review score),

r.review comment message

from orders o

left join reviews r on r.order id=o.order id

left join order items oi on o.order id=oi.order id

where order status='delivered'

group by

oi.seller_id,o.order_delivered_customer_date,order_purchase_timestamp,r.review_score,r.re view comment message

order by delivery_time asc

limit 5

seller_id	delivery_ti me	order_co unt	av g	review_comment_me ssage
46dc3b2cc0980fb8ec44634e21 d2718e	12:48:07	1	5.0	
f8db351d8c4c4c22c6835c19a4 6f01b0	18:45:10	1	3.0	
fdb9095204a334cd8872252ffec 6f2db	20:31:39	1	3.0	
3b15288545f8928d3e65a8f949 a28291	20:43:20	6	1.0	os produtos ainda nao foram entrgues
c847e075301870dd144a11676 2eaff9a	21:22:41	1	5.0	

The sellers who deliver their orders in the fastest way are as in the table. When we look at the table, we see that the number of orders is low. This may be a one-time situation, 4 sellers in the table sent one order and seem to have received 3 and 5 points. 4 sellers sent 6 orders, the delivery time is short, but the average score seems to be one, and in one comment it is mentioned that the order did not arrive. the delivery time of this sale may be incorrect.

Question 2:

-Which sellers sell products from more categories? Do sellers with more categories also have more orders?

select o.seller_id, count(distir

count(distinct product_category_name) as category_count,

count(distinct order_id) as order_count

from order_items o

left join products p on o.product_id=p.product_id

group by o.seller_id

order by category_count desc

limit 10

seller_id	category_count	order_count
b2ba3715d723d245138f291a6fe42594	27	337
955fee9216a65b617aa5c0531780ce60	23	1287
4e922959ae960d389249c378d1c939f5	23	420
1da3aeb70d7989d1e6d9b0e887f97c23	21	265
f8db351d8c4c4c22c6835c19a46f01b0	19	667
18a349e75d307f4b4cc646a691ed4216	17	121
6edacfd9f9074789dad6d62ba7950b9c	15	208
70a12e78e608ac31179aea7f8422044b	15	315
7178f9f4dd81dcef02f62acdf8151e01	14	203
8b28d096634035667e8263d57ba3368c	14	143

```
with cte as
(
select
o.seller_id,
count(distinct product_category_name) as category_count,
count(distinct order_id) as order_count
from order_items o
left join products p on o.product_id=p.product_id
group by o.seller_id
order by category_count desc
limit 10
)
select *,
order_count/category_count as rate
from cte
order by rate desc
```

seller_id	category_count	order_count	rate
955fee9216a65b617aa5c0531780ce60	23	1287	55
f8db351d8c4c4c22c6835c19a46f01b0	19	667	35
70a12e78e608ac31179aea7f8422044b	15	315	21
4e922959ae960d389249c378d1c939f5	23	420	18
7178f9f4dd81dcef02f62acdf8151e01	14	203	14
6edacfd9f9074789dad6d62ba7950b9c	15	208	13
1da3aeb70d7989d1e6d9b0e887f97c23	21	265	12
b2ba3715d723d245138f291a6fe42594	27	337	12
8b28d096634035667e8263d57ba3368c	14	143	10
18a349e75d307f4b4cc646a691ed4216	17	121	7

This question was analyzed with 2 outputs. In the first table, the sellers with the highest number of categories were ranked. In the second table, the number of orders of the sellers was divided by the number of categories and a ratio was obtained and a ranking was made. In one table, although the sellers changed in the ranking, the sellers maintained their place in the top 10. Here we can also see that the number of categories increases the number of orders.

Case 4 : Payment Analysis

Question 1:

-In which region do users with a high number of installments live the most? Comment on this output.

```
with installment as (
  select
     c.customer_unique_id,
    c.customer city,
     count(p.order_id) as installment_count
  from orders o
  left join customers c on o.customer id=c.customer id
  left join payments p on o.order_id=p.order_id
  where p.payment_installments > 1
  group by c.customer unique id, c.customer city
)
select
       customer_city,
  count(customer_unique_id)
  from installment
group by 1
order by 2 desc
```

customer_city	count
sao paulo	6901
rio de janeiro	3543
belo horizonte	1450
brasilia	1028
salvador	707
porto alegre	678
curitiba	675
campinas	629
guarulhos	578
niteroi	422

In this question, the number of taxis with 2 or more taxis is included in the calculation and the top 10 cities are included in the table. In the table, we can see that Sao Paulo and Rio de Janeiro have the highest number of installments.

Question 2:

-Calculate the number of successful orders and total amount of successful payments by payment type. Rank from the most used payment type to the least used payment type.

select
payment_type,
count(o.order_id),
case
when order_status='unavailable' or order_status='canceled' then
'unsuccessful' else 'successful'
end as odeme_durumu
from orders o
left join payments p on o.order_id=p.order_id
group by 1,3
order by 2 desc

payment_type	count	payment_status
credit_card	75905	successful
boleto	19539	successful
voucher	5613	successful
debit_card	1516	successful
credit_card	890	unsuccessful
boleto	245	unsuccessful
voucher	162	unsuccessful
debit_card	13	unsuccessful
not_defined	3	unsuccessful

select
payment_type,
sum(p.payment_value::int),
case
when order_status='unavailable' or order_status='canceled' then
'unsuccessful' else 'successful'
end as odeme_durumu
from orders o
left join payments p on o.order_id=p.order_id
group by 1,3
order by 2 desc

payment_type	sum	payment_status
credit_card	12350350	successful
boleto	2826928	successful
voucher	349829	successful
debit_card	212430	successful
credit_card	192043	unsuccessful
boleto	42560	unsuccessful
voucher	29562	unsuccessful
debit_card	5572	unsuccessful
not_defined	0	unsuccessful

The number of successful orders by payment type is tabulated as follows: credit card, boleto, voucher and debit card. We can see that payment by credit card is about 3 times the size of the total of other payment methods at a high rate.

Likewise, the order amounts according to the payment method are as in the table. In this table, we can see the same ranking, and we can also see a considerably higher amount compared to the other 3 methods under credit card payments.

Question 3:

Make a category-based analysis of orders paid in single check and installments. Which categories use installment payments the most?

```
with installment_table
as (
select
o.order id,
product_category_name,
payment_installments,
CASE
WHEN payment_installments = '1' THEN
'single_cekim_siparis' WHEN payment_installments != '1'
THEN 'installment_siparis' end as installment
from order items o
left join products p on o.product_id=p.product_id
left join payments pa on o.order_id=pa.order_id
       )
       select
       product_category_name,
       count(order id),
       installment
       from installment table
       where
       installment='installment_sip
       aris' group by 1,3
       order by 2 desc
```

category_name_english	count	installment
bed_bath_table	7133	installment_sip aris
health_beauty	5539	installment_sip aris
furniture_decor	4503	installment_sip aris
watches_gifts	4012	installment_sip aris
sports_leisure	3961	installment_sip aris
housewares	3779	installment_sip aris
computers_accessories	3055	installment_sip aris
cool_stuff	2309	installment_sip aris
garden_tools	2218	installment_sip aris
toys	2153	installment_sip aris

In the table, the 10 categories with the highest number of installment orders were added. When we look at these categories, we see that there are furniture, home products, computers, sports products, watches and beautiful categories. The relatively higher prices of products in these categories may have led people to shop in installments.

Case 5: RFM Analysis

Perform RFM analysis using the data set in e_commerce_data_.csv below. When calculating recency, use the date of the last order, not today's date.

```
WITH max_o_d AS (

SELECT
    customer_id,
    MAX(order_approved_at) AS max_order_approved_at
    FROM orders
    WHERE order_status IN ('canceled', 'unavailable')
    GROUP BY customer_id
),

recency AS (

SELECT
    customer_id,
    max_order_approved_at,
    ('2018-08-22' - max_order_approved_at:: date) AS recency
FROM max_o_d
```

```
frequency AS (
  SELECT
    customer_id,
    COUNT(DISTINCT order_id) AS frequency
  FROM orders
  WHERE order_status IN ('canceled', 'unavailable')
  GROUP BY customer_id
),
monetary AS (
  SELECT
    customer_id,
    SUM(payment value) AS monetary
  FROM orders o
  LEFT JOIN payments p ON o.order_id = p.order_id
  WHERE order status IN ('canceled', 'unavailable')
  GROUP BY customer id
),
scores AS (
 SELECT
    r.customer_id,
    r.recency,
    ntile(5) OVER (ORDER BY recency DESC) AS recency_score,
    f.frequency,
    CASE WHEN f.frequency >= 1 AND f.frequency <= 4 THEN f.frequency ELSE 5 END
AS frequency score,
    m.monetary,
    ntile(5) OVER (ORDER BY monetary) AS monetary_score
  FROM recency r
  LEFT JOIN frequency f ON r.customer id = f.customer id
  LEFT JOIN monetary m ON r.customer_id = m.customer_id
),
merge_mont_fre AS (
  SELECT
    customer_id AS customer_id,
    recency_score,
    frequency_score + monetary_score AS mon_fre_score
  FROM scores
),
rfm score AS (
  SELECT
    customer_id,
    recency_score,
```

```
ntile(5) OVER (ORDER BY mon_fre_score) AS mon_fre_score
FROM merge_mont_fre
)
```

SELECT * FROM rfm_score;

customer_id	recency_score	mon_fre_score
002b5342c72978cf0aba6aae1f5d5293	1	1
deac5870962fbc4af64040f2cbfd57d9	5	1
019f5bb93ed18dd059051c3f81abe394	5	1
36ecc6ff2c4a59fd150e9524b12b9259	4	1
259e07ebcf2a6be5fcd98f01099eb7f4	2	1
556b350ff8b8954e863415703f9b58cd	3	1
ca970e8045a80d7bfb9b994b321439f8	3	1
ad8939b7dfebf1e59e4145ed73bb0e33	3	1
8840e68ca97a89b084ca61284b559d41	5	1
0b1899150b4ee7ae778d02ecb621324f	1	1
e8c2884e61a7c098543e33fcc3ba4be2	2	1
eb55392e91ca4fb066e8c3d099400dd1	2	1
43b2ae9283ff026230ccdeaa82986b62	3	1