CLAIMS

The embodiment of the invention in which an exclusive property or privilege is claimed is defined as follows

8

1

2

1

2

3

- 1. A device for heat-treating water, the device comprising:
- a) a confined heating zone;
- b) a means for transporting the water to said confined heating zone so as to facilitate heating of the water;
- c) a means for preventing the heated water from leaving the device until pathogens entrained in the heated water are killed; and
- d) a means for preventing pathogens entrained in unheated water from leaving the device.
- 2. The device as recited in claim 1 wherein the means for preventing pathogens from leaving the device further comprises an antimicrobial substrate.
- 3. The device as recited in claim 1 wherein the means for preventing heated water from leaving the device includes a plurality of valves actuated by programmable logic controllers.
 - 4. The device as recited in claim 1 wherein the heating zone is subjected to

2	to exhaust gas from a gas-fired combustion.
1	5. The device as recited in claim 4 further comprising a zone for imparting
. 2	low pressure to the exhaust gas.
1	6. The device as recited in claim 6 wherein the zone for imparting low
2	pressure to the exhaust gas is intermediate the antimicrobial substrate and the heating
3	zone.
1	7. The device as recited in claim 1 wherein the water is heated to below its
2	boiling point. 5 8. The device as recited in claim 1 wherein the confined heating zone con-
1	8. The device as recited in claim 1 wherein the confined heating zone con-
2	tains a means for heating the fluid and the step of subjecting the fluid to the controlled
3	atmosphere further comprises injecting the fluid into the controlled atmosphere at a fluid
4	flow defined by the following equation:
5	BTU/hr of the heater / (Y x \Delta T)
6	wherein
7	ΔT = (Required Kill Temperature - Coldest possible inlet fluid temperature)
8	and where Y is derived from the following formula:
9	(Specific heat of the fluid to be heated X Weight of the fluid to be heated X
10	minutes in one hour).
_	
1	 A method for reclaiming fluid contaminated with pathogens, the method
2	comprising:
3	a) providing a heated, controlled atmosphere;
4	b) subjecting the fluid to the controlled atmosphere for a time and at a
5	temperature sufficient to kill pathogens entrained in a liquid phase of the fluid;
6	c) subjecting an aerosolized phase of the fluid to an antimicrobial substrate;
	·

PCT/US01/40956

WO 01/95949

10

minutes in one hour).

15

7 releasing the liquid phase and the aerosolized phase to the ambient d) 8 environment. 1 10. The method as recited in claim 9 wherein the controlled atmosphere has a 2 positive pressure flow leading to the ambient environment. 1 11. The method as recited in claim 9 wherein the fluid is water. 1 12. The method as recited in claim 9 wherein the temperature is below the 2 condensation point of the fluid. 1 13. The method as recited in claim 9 wherein the controlled atmosphere contains a means for heating the fluid and the step of subjecting the fluid to the controlled 2 3 atmosphere further comprises injecting the fluid into the controlled atmosphere at a fluid 4 flow defined by the following equation: **5**-BTU/hr of the heater $I(Y \times \Delta T)$ □ □ wherein 6 T. 7 ΔT = (Required Kill Temperature - Coldest possible inlet fluid temperature) \Box and where Y is derived from the following formula: 8 9_ (Specific heat of the fluid to be heated X Weight of the fluid to be heated X