Compiladores:

Apontamentos sobre linguagens livres de contexto

(ano letivo de 2024-2025)

Artur Pereira, Miguel Oliveira e Silva

Maio de 2025

Nota prévia

Este documento representa apenas um compilar de notas sobre a matéria teórico-prática lecionada na unidade curricular "Compiladores", sem pretensões, por isso, de ser um texto exaustivo. No caso do último capítulo, na realidade, é apenas um enumerar das secções do *Dragon Book* usadas na produção dos *slides*. A sua leitura deve apenas ser encarada como ponto de partida e nunca como único elemento de estudo. Os *slides*, em muitos aspetos, estão mais completos que estes apontamentos.

Conteúdo

1	Gra	mática li	ivre de contexto	1
	1.1	Definiçã	ão de gramática livre de contexto	. 2
	1.2	Derivaç	ão	. 3
	1.3	Operaçã	ões sobre gramáticas livres de contexto	. 4
		1.3.1	Reunião	. 4
		1.3.2	Concatenação	. 5
		1.3.3	Fecho de Kleene	. 5
		1.3.4	Intersecção e complementação	. 5
	1.4	Árvore	de derivação	. 5
		1.4.1	Ambiguidade	. 6
	1.5	Limpez	za de gramáticas	. 8
		1.5.1	Símbolos produtivos e não produtivos	. 8
		1.5.2	Símbolos acessíveis e não acessíveis	. 9
		1.5.3	Gramáticas limpas	. 10
	1.6	Transfo	ormações em GIC	. 10
		1.6.1	Eliminação de produções- ε	. 10
		1.6.2	Eliminação de recursividade à esquerda	. 11
		1.6.3	Fatorização à esquerda	. 12
	1.7	Os conj	juntos first, follow e predict	. 13
		1.7.1	O conjunto first	. 13
		1.7.2	O conjunto follow	. 13
		1.7.3	O conjunto predict	. 14

CONTEÚDO

2	Aná	lise sint	ática descendente	15
	2.1	Reconl	hecimento preditivo	16
	2.2	Reconl	hecedores recursivo-descendentes	17
	2.3	Reconl	hecedores descendentes não recursivos	18
	2.4	Implen	nentação de gramáticas de atributos	20
3	Aná	lise sint	áctica ascendente	21
	3.1	Conflit	os	23
	3.2	Constr	ução de um reconhecedor ascendente	25
		3.2.1	Construção da coleção de conjuntos de itens	25
		3.2.2	Tabela de decisão para um reconhecimento ascendente	27
		3.2.3	Algoritmo de reconhecimento	27
4	Gra	mática (de atributos	29
	4.1	Definiç	ção de gramática de atributos	29
		4.1.1	Atributos herdados e atributos sintetizados	29
		4.1.2	Construção de gramáticas de atributos	29
	4.2	Ordem	de avaliação dos atributos	30
		4.2.1	Grafo de dependências	30
		4.2.2	Tipos de gramáticas de atributos	30

Capítulo 1

Gramática livre de contexto

Considere uma estrutura G, definido sobre o alfabeto $T = \{a, b, c\}$, com as regras de rescrita

Que palavras se podem gerar a partir de S? Podem gerar-se 0 ou mais concatenações de X, sendo cada X substituível por a, c ou abc. Ou seja, pode gerar-se a mesma linguagem que a descrita pela expressão regular $e=(a|c|abc)^*$. Embora a linguagem seja regular, a gramática não o é. A produção $S\to XS$ viola a definição de gramática regular, porque tem dois símbolos não terminais.

Considere agora a gramática G

$$S \rightarrow \varepsilon$$
 a S b

definida sobre o alfabeto $T=\{a,b\}$. Qual é a linguagem L descrita pela gramática G? A partir de S podem gerar-se as palavras ε , ab, aabb, \cdots , ou seja $L=\{a^nb^n\mid n\geq 0\}$. Pode provar-se que esta linguagem não é regular. Por conseguinte, não é possível definir uma expressão regular, gramática regular ou autómato finito que a represente.

Exemplo 1.1

Considere sobre o alfabeto
$$T = \{a, b\}$$
, a gramática

$$egin{array}{cccc} S &
ightarrow & \operatorname{a} S \ & & \operatorname{a} X \ X &
ightarrow & \operatorname{a} \operatorname{b} \ & & & \operatorname{a} X & \operatorname{b} \end{array}$$

Esta gramática gera a linguagem $L=\{\mathbf{a}^m\mathbf{b}^n\mid n>0 \land m>n\}$. O símbolo X gera a linguagem $\mathbf{a}^n\mathbf{b}^n$, com n>0. O símbolo S gera \mathbf{a}^k , com k>0, seguido de X. A conjugação resulta nas palavras $\mathbf{a}^k\mathbf{a}^n\mathbf{b}^n$, com k,n>0.

Exemplo 1.2

Considere sobre o alfabeto $T = \{a, b, c\}$, a gramática

$$S \rightarrow c$$
 $\mid a S a$
 $\mid b S b$

Esta gramática gera a linguagem $L = \{w \in w^R \mid w \in \{a,b\}^*\}$, onde w^R representa a palavra w com os símbolos colocados por ordem inversa.

As linguagens dos dois últimos exemplos também não são regulares, não podendo, por isso, ser descritas por expressões regulares. Correspondem a linguagens designadas **livres de contexto**, ou **independentes do contexto**. As gramáticas adequadas para descrever estas linguagens têm todas as suas produções da forma $A \to \beta$, em que A é um símbolo não terminal e β é uma sequência constituída por zero ou mais símbolos terminais ou não terminais.

No exemplo seguinte apresenta-se uma gramática dependente do contexto.

Exemplo 1.3

Considere sobre o alfabeto $T = \{a, b, c\}$, a gramática

Esta gramática gera a linguagem $L = \{ a^n b^n c^n \mid n > 0 \}$. Note que, por exemplo, na produção $b B \to b b$ o símbolo não terminal B apenas se pode transformar em b se tiver um b imediatamente à sua esquerda.

1.1 Definição de gramática livre de contexto

Formalmente, uma gramática livre de contexto é um quádruplo G = (T, N, P, S), onde

• T é um conjunto finito não vazio de símbolos terminais;

1.2. DERIVAÇÃO 3

- N, sendo $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos não terminais;
- P é um conjunto de produções, cada uma da forma $\alpha \to \beta$, onde
 - $-\alpha \in N$
 - $-\beta \in (T \cup N)^*$
- $S \in N$ é o símbolo inicial.

Nas produções, α e β são designados por **cabeça da produção** e **corpo da produção**, respetivamente. Note que relativamente à definição de gramática regular a diferença está na definição de β . No caso das gramáticas dependentes do contexto, como é o caso da do exemplo 1.3, a cabeça das produções (α) deixa de ter de ser necessariamente um único símbolo não terminal.

1.2 Derivação

 \mathcal{D} Dada uma produção $u \to v$ e uma palavra $\alpha u\beta$, chama-se **derivação direta** à rescrita de $\alpha u\beta$ em $\alpha v\beta$, denotando-se

$$\alpha u\beta \Rightarrow \alpha v\beta$$

Em algumas situações, será usada o termo **passo de derivação** como sinónimo de derivação direta.

D Chama-se derivação a uma sucessão de zero ou mais derivações diretas, denotando-se

$$\alpha \Rightarrow^* \beta$$

ou, equivalentemente,

$$\alpha = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \cdots \Rightarrow \alpha_n = \beta$$

onde n é o comprimento da derivação.

- A notação $\alpha \Rightarrow^n \beta$ é usada para representar uma derivação de comprimento n
- A notação $\alpha \Rightarrow^+ \beta$ é usada para representar uma derivação de comprimento não nulo
- \mathcal{D} Dada uma gramática G = (T, N, P, S) e uma palavra $u \in (T \cup N)^+$, o conjunto das **palavras** derivadas a partir de u é representado por

$$D(u) = \{ v \in T^* : u \Rightarrow^* v \}$$

 \mathcal{D} A linguagem gerada pela gramática G = (T, N, P, S) é representada por

$$L(G) = D(S) = \{ v \in T^* : S \Rightarrow^+ v \}$$

Nas gramáticas livres de contexto, em geral, em cada passo de uma derivação estão envolvidos vários símbolos não terminais. Como as produções têm a forma $\alpha \to \beta$, com $\alpha \in N$ e $\beta \in (T \cup N)^*$, β pode conter vários símbolos não terminais, que serão introduzidos na derivação se a produção for utilizada.

A gramática seguinte, definida sobre p alfabeto $T=\{a,b\}$, é livre de contexto e gera a linguagem $L=\{w\in T^*\mid \#(\mathtt{a},w)=\#(\mathtt{b},w)\}$

$$S \rightarrow a B \mid b A$$

$$A \rightarrow a \mid a S \mid b A A$$

$$B \rightarrow b \mid b S \mid a B B$$

A palavra aabbab tem 4 derivações possíveis, das quais são apresentadas duas.

1.
$$\underline{S} \Rightarrow a\underline{B} \Rightarrow aa\underline{B}B \Rightarrow aab\underline{B} \Rightarrow aabb\underline{S} \Rightarrow aabba\underline{B} \Rightarrow aabbab$$

2.
$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aaBbS \Rightarrow aaBbaB \Rightarrow aaBbab \Rightarrow aabbab$$

Usou-se o sublinhado para destacar o símbolo não terminal expandido em cada derivação direta.

A derivação 1 designa-se por **derivação à esquerda**, porque em cada passo se expande o símbolo não-terminal mais à esquerda. A derivação 2 designa-se por **derivação à direita**, porque em cada passo se expande o símbolo não-terminal mais à direita.

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.2.3, "Derivations".

1.3 Operações sobre gramáticas livres de contexto

A classe das gramáticas livres de contexto é fechada sobre as operações de reunião, concatenação e fecho, mas não o é sobre as operações de intersecção e complementação.

1.3.1 Reunião

Sejam $G_1 = (T, N_1, P_1, S_1)$ e $G_2 = (T, N_2, P_2, S_2)$ duas gramáticas livres de contexto que geram as linguagens L_1 e L_2 , respetivamente. A gramática G = (T, N, P, S), onde

$$S \not\in (T \cup N_1 \cup N_2);$$
 $N = N_1 \cup N_2 \cup \{S\}$ $P = P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$ gera a linguagem $L = L_1 \cup L_2.$

1.3.2 Concatenação

Sejam $G_1 = (T, N_1, P_1, S_1)$ e $G_2 = (T, N_2, P_2, S_2)$ duas gramáticas livres de contexto que geram as linguagens L_1 e L_2 , respetivamente. A gramática G = (T, N, P, S), onde

$$\begin{split} S \not\in (T \cup N_1 \cup N_2); \\ N &= N_1 \cup N_2 \cup \{S\} \\ P &= P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\} \\ \text{gera a linguagem } L &= L_1 \cdot L_2. \end{split}$$

1.3.3 Fecho de Kleene

Seja $G_1 = (T, N_1, P_1, S_1)$ uma gramática livre de contexto que gera a linguagem L_1 . A gramática G = (T, N, P, S), onde

$$S \not\in (T \cup N_1);$$

$$N = N_1 \cup \{S\}$$

$$P = P_1 \cup \{S \rightarrow \varepsilon, S \rightarrow S_1 \ S\}$$
 gera a linguagem $L = L_1^*$.

1.3.4 Intersecção e complementação

Se L_1 e L_2 são duas linguagens livres de contexto, e, por conseguinte, descritíveis por gramáticas livres de contexto, a sua intersecção pode não o ser. Já se disse atrás que a linguagem

$$L=\{\mathbf{a}^i\mathbf{b}^i\mathbf{c}^i\mid i\geq 0\}$$

não é livre de contexto. No entanto, ela pode ser obtida por intersecção das linguagens $L_1=\{\mathtt{a}^i\mathtt{b}^j\mathtt{c}^j\mid i,j\geq 0\}$ e $L_2=\{\mathtt{a}^i\mathtt{b}^j\mathtt{c}^j\mid i,j\geq 0\}$ que o são.

Sabe-se que $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$. Então, se a intersecção de linguagens livres de contexto pode resultar numa linguagem que não o é, o mesmo pode acontecer com a complementação.

1.4 Árvore de derivação

Será que as várias derivações de uma mesma palavra são diferentes? Poderão ter interpretações diferentes? Veja-se com um exemplo que de facto podem. Considere a gramática

$$S \rightarrow S + S \mid S$$
 . $S \mid \neg S \mid$ (S) $\mid 0 \mid 1$

e compare as duas derivações esquerdas seguintes da palavra 1+1.0.

Derivação 1:

$$S \Rightarrow S+S \Rightarrow 1+S \Rightarrow 1+S \cdot S \Rightarrow 1+1 \cdot S \Rightarrow 1+1 \cdot 0$$

Derivação 2:

$$\underline{S} \Rightarrow \underline{S}.S \Rightarrow \underline{S} + S.S \Rightarrow 1 + \underline{S}.S \Rightarrow 1 + 1.\underline{S} \Rightarrow 1 + 1.0$$

Serão estas derivações equivalentes? Para responder a esta pergunta vão-se representar as derivações usando um outro formalismo. A **árvore de derivação** (*parse tree*) é um mecanismo de representação de uma derivação que capta a interpretação dada nessa derivação. Veja-se as duas derivações anteriores representadas de forma arbórea.

A árvore da esquerda corresponde à derivação 1 e a da direita à 2. Vê-se claramente que as duas árvores têm interpretações distintas: a da esquerda é equivalente a ter-se 1+ (1.0), enquanto que a direita é equivalente a (1+1).0. Em termos de álgebra booleana as duas expressões são bastante diferentes.

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.2.4, "Parse trees and derivations".

1.4.1 Ambiguidade

Diz-se que uma palavra é derivada **ambiguamente** se possuir duas ou mais árvores de derivação distintas. Na gramática anterior a palavra 1+1.0 é gerada ambiguamente. Diz-se que uma gramática é **ambígua** se possuir pelo menos uma palavra gerada ambiguamente. A gramática anterior é ambígua.

Frequentemente é possível definir-se uma gramática não ambígua que gere a mesma linguagem que uma ambígua. A gramática anterior pode ser rescrita por

que não é ambígua e gera exatamente a mesma linguagem. A gramática

$$S \rightarrow \circ | i \circ S | i \circ S \in S$$

é uma abstração da instrução if-then-else e possui ambiguidade. A palavra icicoeo tem duas árvores de derivação possíveis, representadas abaixo.

A árvore da esquerda corresponde à interpretação dada na linguagem C, em que $o \in (else)$ está associado ao i (if) mais à direita. A árvore da direita associa $o \in ao$ i mais à esquerda.

É possível por manipulação gramatical obter-se uma gramática equivalente sem ambiguidade. A gramática seguinte não é ambígua e descreve a mesma linguagem que a anterior.

$$S \rightarrow \circ | \text{ic } S | \text{ic } S' \in S$$

 $S' \rightarrow \circ | \text{ic } S' \in S'$

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.2.5, "Ambiguity".

Linguagens inerentemente ambíguas

Há linguagens **inerentemente ambíguas**, no sentido em que é impossível definir-se uma gramática não ambígua que gere essa linguagem. É, por exemplo, o caso da linguagem

$$L = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid i = j \lor j = k \}$$

1.5 Limpeza de gramáticas

1.5.1 Símbolos produtivos e não produtivos

Seja G = (T, N, P, S) uma gramática qualquer. Um símbolo não terminal A diz-se **produtivo** se for possível transformá-lo num expressão contendo apenas símbolos terminais. Ou seja, A é produtivo se

$$A \Rightarrow^* u \quad \land \quad u \in T^*$$

Caso contrário, diz-se que A é **improdutivo**. Uma gramática é improdutiva se o seu símbolo inicial for improdutivo.

Sobre o alfabeto $T = \{a, b, c\}$, considere a gramática

$$\begin{array}{ccc} S & \rightarrow & \text{ab} \mid \text{a} \ S \ \text{b} \mid X \\ X & \rightarrow & \text{c} \ X \end{array}$$

S é produtivo, porque

$$S \Rightarrow \text{ab} \land \text{ab} \in T^*$$

Em contrapartida, X é improdutivo.

$$X \Rightarrow cX \Rightarrow ccX \Rightarrow^* c \cdots cX$$

Por mais que se tente é impossível transformar X numa sequência de símbolos terminais.

Seja G=(T,N,P,S) uma gramática qualquer. O conjunto dos seus símbolos produtivos, N_p , pode ser obtido por aplicação das seguintes regras construtivas

$$\label{eq:and_alpha} \begin{array}{l} \text{if } (A \to \alpha) \in P \text{ and } \alpha \in T^* \text{ then } A \in N_p \\ \text{if } (A \to \alpha) \in P \text{ and } \alpha \in (T \cup N_p)^* \text{ then } A \in N_P \end{array}$$

A 1ª regra é um caso particular da 2ª, pelo que poderia ser retirada. Optou-se por a incluir porque torna a leitura mais fácil.

Começando com um N_p igual ao resultado da aplicação da 1ª regra a todas as produções da gramática e extendendo depois esse conjunto por aplicação sucessiva da 2^a regra obtem-se o conjunto de todos os símbolos produtivos de G. O algoritmo seguinte executa esse procedimento.

Algoritmo 1.1 (Cálculo dos símbolos produtivos)

let
$$N_p=\emptyset$$
, $P_p=P$ repeat
$$\mbox{nothingAdded} = \mbox{TRUE}$$

$$\mbox{foreach} \ (A \to \alpha) \in P_p \ \mbox{do}$$

$$\begin{array}{c} \textbf{if } \alpha \in (T \cup N_p)^* \ \textbf{then} \\ \\ \textbf{if } A \not \in N_p \ \textbf{then} \\ \\ N_p = N_p \cup \{A\} \\ \\ \text{nothingAdded} \ = \ \text{FALSE} \\ \\ P_p = P_p \setminus \{A \rightarrow \alpha\} \\ \\ \textbf{until } \text{nothingAdded } \textbf{or } N_p = N \end{array}$$

Nele, N_p representa o conjunto dos símbolos produtivos já identificados e P_p o conjunto das produções contendo símbolos ainda não identificados como produtivos. Se numa iteração nenhum símbolo for marcado como produtivo o algoritmo pára, sendo o conjunto dos símbolos produtivos o conjunto N_p tido nesse momento. Obviamente que o algoritmo também pára, se no fim de uma iteração, $N_p = N$, isto é, se todos os símbolos foram marcados como produtivos.

1.5.2 Símbolos acessíveis e não acessíveis

Seja G = (T, N, P, S) uma gramática qualquer. Um símbolo terminal ou não terminal x diz-se **acessível** se for possível transformar S (o símbolo inicial) numa expressão que contenha x. Ou seja,

$$S \Rightarrow^* \alpha x \beta$$

Caso contrário, diz-se que x é **inacessível**.

Considere a gramática

É impossível transformar S numa expressão que contenha D, d, ou X, pelo que estes símbolos são inacessíveis. Os restantes são acessíveis.

Seja G = (T, N, P, S) uma gramática qualquer. O conjunto dos seus símbolos acessíveis, V_A , pode ser obtido por aplicação das seguintes regras construtivas

```
S \in V_A if A \to \alpha B \beta \in P and A \in V_A then B \in V_A
```

Começando com $V_A = \{S\}$ e aplicando sucessivamente a 2º regra até que ela não acrescente nada a V_A obtém-se o conjunto dos símbolos acessíveis. O algoritmo seguinte executa esse procedimento. Nele, V_A representa o conjunto dos símbolos acessíveis já identificados e N_X o conjunto dos símbolos não terminais acessíveis já identificados mas ainda não processados. No fim, quando N_X for o conjunto vazio, V_A contém todos os símbolos acessíveis.

Algoritmo 1.2 (Cálculo dos símbolos acessíveis)

1.5.3 Gramáticas limpas

Numa gramática os símbolos inacessíveis e os símbolos improdutivos são **símbolos inúteis**, porque não contribuem para as palavras que a gramática pode gerar. Se tais símbolos forem removidos obtem-se uma gramática equivalente, em termos da linguagem que descreve. Diz-se que uma gramática é **limpa** se não possuir símbolos inúteis.

Para limpar uma gramática deve-se começar por a expurgar dos símbolos improdutivos. Só depois se devem remover os inacessíveis.

1.6 Transformações em gramáticas livres de contexto

Em muitas situações práticas — algumas serão abordadas nos capítulos seguintes — é necessário transformar uma gramática numa outra que seja equivalente e goze de determinada propriedade. Apresentamse a seguir algumas dessas transformações.

1.6.1 Eliminação de produções- ε

Uma **produção-** ε é uma produção do tipo $A \to \varepsilon$, para um qualquer símbolo não terminal A. Se L é uma linguagem livre de contexto tal que $\varepsilon \not\in L$, é possível descrever L por uma gramática livre de contexto sem produções- ε . Se assim é então tem de ser possível transformar uma gramática que descreva uma linguagem L e possua produções- ε numa outra equivalente que as não possua.

Considere a gramática

que descreve a linguagem L formada pelas palavras definidas sobre o alfabeto $\{0,1\}$, com número ímpar de 1s. Claramente, a palavra vazia não pertence a L porque não tem número ímpar de uns. Mas, a gramática contém a produção $P \to \varepsilon$. Então, de acordo com o dito anteriormente, existe uma gramática equivalente que não tem produções- ε .

A existência de tal produção na gramática anterior significa que as produções $I \to 1P$ e $P \to 0P$ podem produzir as derivações $I \Rightarrow 1$ e $P \Rightarrow 0$, respetivamente. Mas, estas derivações podem ser contempladas acrescentando as produções $I \to 1$ e $P \to 0$ à gramática, tornando desnecessária a produção- ε . Na realidade a gramática

é equivalente à anterior e não possui produções- ε .

Em geral, o papel da produção $A \to \varepsilon$ sobre uma produção $B \to \alpha A \beta$ pode ser representado pela inclusão da produção $B \to \alpha \beta$. Assim a eliminação das produções- ε de uma gramática pode ser obtido por aplicação do algoritmo seguinte

Algoritmo 1.3 (Eliminação de produções- ε , 1^a versão)

```
foreach A \to \varepsilon do  {\it foreach} \ B \to \alpha A \beta \ {\it do}   {\it add} \ B \to \alpha \beta \ {\it to} \ P.   {\it remove} \ A \to \varepsilon \ {\it from} \ P.
```

O algoritmo anterior pode introduzir novas produções- ε na gramática. Se $B \to A$ for uma produção da gramática, a eliminação da produção $A \to \varepsilon$ introduz a produção $B \to \varepsilon$. A algoritmo deve ser alterado de modo a acautelar estas situações.

...

1.6.2 Eliminação de recursividade à esquerda

Diz-se que uma gramática é **recursiva à esquerda** se possuir um símbolo não terminal A que admita uma derivação do tipo $A \Rightarrow^+ A\gamma$, ou seja, que seja possível, em um ou mais passos de derivação, transformar A numa expressão que tem A no início.

A gramática seguinte é recursiva à esquerda

A derivação $E \Rightarrow X$ $T \Rightarrow E + T$ mostra que é possível transformar E numa expressão com E à esquerda. Logo, esta gramática tem recursividade à esquerda associada ao símbolo não terminal E.

Se a obtenção da expressão começada por A se faz em apenas um passo de derivação, então diz-se que a recursividade é **imediata**. Esta última situação só ocorre se a gramática possuir uma ou mais produções do tipo $A \to A \ \alpha$.

No gramática seguinte a recursividade à esquerda é imediata.

$$E \rightarrow T \mid E + T$$

$$T \rightarrow a \mid b \mid (E)$$

A eliminação de recursividade imediata à esquerda fazer-se com um algoritmo bastante simples. Considere que $A \to \beta$ e $A \to A$ α , onde A é um símbolo não terminal e α e β sequências de zero ou mais símbolos terminais ou não terminais, são duas produções de uma gramática qualquer. Será possível substituir as duas produções por outras que não possuam recursividade à esquerda e produzam uma gramática equivalente? Para responder a esta pergunta observem-se as palavras que se podem obter a partir de A. Numa derivação de um passo obtem-se $A \Rightarrow \beta$. Numa de dois passos obtem-se $A \Rightarrow A\alpha \Rightarrow \beta\alpha$. Numa de n passos, com n>0, obtem-se $A \Rightarrow \beta\alpha^{n-1}$. Mas estas palavras também podem ser obtidas com as produções

$$\begin{array}{ccc} A & \to & \beta \ X \\ X & \to & \varepsilon \mid \alpha \ X \end{array}$$

que não possui recursividade à esquerda. A nova gramática continua a ser recursiva. Na realidade, não pode deixar de o ser, a recursividade passou para à direita.

O algoritmo anterior pode ser facilmente adaptado a situações em que possa haver mais do que uma produção a introduzir a recursividade imediata à esquerda. Considere que

$$A \rightarrow \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m \mid A \mid \alpha_1 \mid A \mid \alpha_2 \mid \cdots \mid A \mid \alpha_n$$

são as produções de uma gramática com A à cabeça. As palavras que se podem gerar com estas produções são as mesmas que se podem gerar com as produções seguintes e que não possuem recursividade à esquerda.

Se a recursividade à esquerda não é imediata o algoritmo de eliminação é um pouco mais complexo.

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.3.3, "Elimination of left recursion".

1.6.3 Fatorização à esquerda

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.3.4, "Left factoring".

1.7 Os conjuntos first, follow e predict

A construção de reconhecedores sintáticos (*parsers*) — apresentados nos capítulos seguintes — é auxiliada por três funções associadas às gramáticas. Estas funções são os conjuntos **first**, **follow** e **predict**.

1.7.1 O conjunto first

Seja G=(T,N,P,S) uma gramática qualquer e α uma sequência de símbolos terminais e não terminais, isto é, $\alpha\in (T\cup N)^*$. O conjunto $\mathtt{first}(\alpha)$ contém todos os símbolos terminais que podem aparecer como primeira letra de sequências obtidas a partir de α por aplicação de produções da gramática. Ou seja, um símbolo terminal x pertence a $\mathtt{first}(\alpha)$ se e só se $\alpha\Rightarrow^*x\beta$, com β qualquer. Adicionalmente, considera-se que ε pertence ao conjunto $\mathtt{first}(\alpha)$ se $\alpha\Rightarrow^*\varepsilon$.

Algoritmo 1.4 (Conjunto first)

```
\begin{aligned} &\textbf{first}(\alpha) \, \big\{ \\ &\textbf{if} \, (\alpha = \varepsilon) \, \, \textbf{then} \\ &\textbf{return} \, \{ \varepsilon \} \\ &h = \textbf{head} \, (\alpha) \quad \# \, com \, |h| = 1 \\ &\omega = \textbf{tail} \, (\alpha) \quad \# \, tal \, que \, \alpha = h \, \omega \\ &\textbf{if} \, (h \in T) \, \, \textbf{then} \\ &\textbf{return} \, \{ h \} \\ &\textbf{else} \\ &\textbf{return} \quad \bigcup_{(h \to \beta_i) \in P} \textbf{first}(\beta_i \, \omega) \\ &\big\} \end{aligned}
```

Note que no último return o argumento do first é $\beta_i \omega$, concatenação dos β_i (que vêm dos corpos das produções começadas por h) com o ω (que é o tail do α

1.7.2 O conjunto follow

O conjunto **follow** está relacionado com os símbolos não terminais de uma gramática. Seja G=(T,N,P,S) uma gramática e A um elemento de N ($A\in N$). O conjunto **follow**(A) contém todos os símbolos terminais que podem aparecer imediatamente à direita de A num processo derivativo qualquer. Formalmente, **follow**(A) = $\{a\in T\mid S\Rightarrow^*\gamma Aa\psi\}$, com α e β quaisquer.

O cálculo dos conjuntos **follow** dos símbolos não terminais da gramática G = (T, N, P, S) baseia-se na aplicação das 4 regras seguintes, onde \supseteq significa "contém".

- 1. $\$ \in \mathbf{follow}(S)$.
- 2. se $(A \to \alpha B) \in P$, então follow $(B) \supseteq$ follow(A).
- 3. se $(A \to \alpha B \beta) \in P$ e $\varepsilon \notin \mathbf{first}(\beta)$, então $\mathbf{follow}(B) \supseteq \mathbf{first}(\beta)$.
- 4. se $(A \to \alpha B\beta) \in P$ e $\varepsilon \in \mathtt{first}(\beta)$, então $\mathtt{follow}(B) \supseteq ((\mathtt{first}(\beta) \{\varepsilon\}) \cup \mathtt{follow}(A))$.

A primeira regra é óbvia. Sendo o símbolo inicial da gramática, S representa as palavras da linguagem. Logo \$ vem a seguir.

A segunda regra diz que se $A \to \alpha B$ é uma produção da gramática e $x \in \mathbf{follow}(A)$, então $x \in \mathbf{follow}(B)$. Considere, por hipótese, que $x \in \mathbf{follow}(A)$. Então, pela definição de conjunto $\mathbf{follow}, S \Rightarrow^* \gamma A x \psi$. Logo, sendo $A \to \alpha B$ uma produção da gramática, tem-se que $S \Rightarrow^* \gamma \alpha B x \psi$, ou seja, $x \in \mathbf{follow}(B)$.

A terceira regra diz que se $A \to \alpha B \beta$ é uma produção da gramática, com $\varepsilon \notin \mathtt{first}(\beta)$, e $x \in \mathtt{first}(\beta)$, então $x \in \mathtt{follow}(B)$. Considere, por hipótese, que $x \in \mathtt{first}(\beta)$. Então, pela definição de conjunto \mathtt{first} , $\beta \Rightarrow^* x \gamma$ e, consequentemente, $A \Rightarrow^* \alpha B x \gamma$, ou seja, $x \in \mathtt{follow}(B)$.

Finalmente, a quarta e última regra diz que se $A \to \alpha B \beta$ é uma produção da gramática, com $\varepsilon \in \mathbf{first}(\beta)$, e $x \in (\mathbf{first}(\beta) - \{\varepsilon\}) \cup \mathbf{follow}(A)$, então $x \in \mathbf{follow}(B)$. Esta regra pode ser entendida cruzando as duas regras anteriores. Considere-se os elementos de $\mathbf{first}(\beta)$ diferentes de ε . Pela regra 3, pertencem ao $\mathbf{follow}(B)$. Se β se transforma em ε , então $A \Rightarrow^* \alpha B$ e, pela regra 2, se $x \in \mathbf{follow}(A)$, então $x \in \mathbf{follow}(B)$.

1.7.3 O conjunto predict

O conjunto **predict** aplica-se às produções de uma gramática e envolve os conjuntos **first** e **follow**. É dado pela seguinte equação.

$$\mathtt{predict}(A \to \alpha) = \left\{ \begin{array}{ll} \mathtt{first}(\alpha) & \varepsilon \not\in \mathtt{first}(\alpha) \\ (\mathtt{first}(\alpha) - \{\varepsilon\}) \cup \mathtt{follow}(A) & \varepsilon \in \mathtt{first}(\alpha) \end{array} \right.$$

Capítulo 2

Análise sintática descendente

NOTA PRÉVIA: Este capítulo não está completo e não foi devidamente revisto, pelo que, por um lado, há partes omissas e, por outro lado, pode conter falhas.

Dada uma gramática G=(T,N,P,S) e dada uma palavra $u\in T^*, u\in L(G)$ se e só se existir uma derivação que produza u a partir de S, isto é, se $S\Rightarrow^* u$. Um **reconhecedor sintático** da gramática G é um mecanismo que responde à pergunta " $u\in L(G)$?", tentando produzir a derivação anterior. Para o fazer, o reconhecedor pode partir de S e tentar chegar a S un partir de S e tentar chegar a S no primeiro caso diz-se que o reconhecedor é **descendente**, porque o seu procedimento corresponde à geração da árvore de derivação da palavra S de cima (raiz) para baixo (folhas).

O papel da análise sintática é definir procedimentos que permitam contruir reconhecedores sintáticos a partir da gramática. Por exemplo, considere a linguagem L descrita pela gramática G seguinte.

$$S \rightarrow a S b | c S | \varepsilon$$

Será que a palavra $acacbb \in L$? Pertencerá se $S \Rightarrow^* acacbb$. Na verdade pertence porque

$$S \Rightarrow aSb \Rightarrow acSb \Rightarrow acaSbb \Rightarrow acacSbb \Rightarrow acacbb$$

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.4, "Topdown parsing".

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.4.3, "LL(1) grammars".

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.4.1, "Predictive parsing".

2.1 Reconhecimento preditivo

Mas como deterministicamente produzir a derivação anterior se houver duas ou mais produções com o mesmo símbolo à cabeça? Por exemplo, considerando o caso anterior, como saber que se deve optar por expandir o S usando $S \to a$ S b e não $S \to c$ S ou $S \to \varepsilon$? A solução baseia-se na observação antecipada dos próximos símbolos à entrada (lookahead). No exemplo, se o próximo símbolo à entrada for um a expande-se usando a produção $S \to a$ S b; se for um c usa-se $S \to c$ S; se for b usa-se $S \to \varepsilon$. Se a entrada se esgotou, o que é representado considerando que a próxima entrada é um s, também se expande usando a produção $s \to \varepsilon$.

Pode-se então definir uma tabela que para cada símbolo não terminal da gramática e para cada valor do *lookahead* indica qual a produção da gramática que deve ser usada na expansão. O profundidade da observação antecipada (número de símbolos de *lookahead*) pode ser qualquer, embora apenas a profundidade 1 será usada neste documento. Para o exemplo anterior a tabela assume a forma

	lookahead			
symbol	a	b	С	\$
S	$S o \operatorname{a} S\operatorname{b}$	$S \to \varepsilon$	$S \to c S$	$S \to \varepsilon$

Na tabela anterior, o preenchimento das colunas a e c são óbvias, visto que as produções associadas começam pelo próprio símbolo do *lookahead*. Nas colunas b e \$ tal não acontece. O preenchimento da tabela de decisão baseia-se nos conjuntos **predict**, apresentados na secção 1.7, e faz-se usando o algoritmo seguinte:

Algoritmo 2.1 (Preenchimento da tabela de decisão para lookahead 1)

$$\begin{aligned} \text{foreach } & (A \to \alpha) \in P \\ & \text{foreach } & a \in \texttt{predict}(A \to \alpha) \\ & \text{add } & (A \to \alpha) \quad \text{to } & T[A,a] \end{aligned}$$

As células da tabela que fiquem vazias representam situações de erro sintático. As células da tabela que fiquem com dois os mais produções representam situações de não determinismo: com base no *lookahead* usado não é possível escolher que produção usar na expansão. Uma gramática diz-se **LL(1)** se na tabela de decisão, para um *lookahead* de profundidade 1, não houver células com mais que uma produção. Equivalentemente, uma gramática diz-se LL(1) se para todas as produções com o mesmo símbolo à cabeça os seus conjuntos **predict** são dijuntos entre si.

Exemplo 2.1

Calcule a tabela de decisão de um reconhecedor preditivo para a gramática seguinte.

Resposta:

(Deixo ao cuidado do leitor o cálculo dos conjuntos predict.)

$$\begin{split} &\mathbf{predict}(S \to A\,B) = \{\mathtt{a},\mathtt{b},\$\} \\ &\mathbf{predict}(A \to \varepsilon) = \{\mathtt{b},\$\} \\ &\mathbf{predict}(A \to \mathtt{a}A) = \{\mathtt{a}\} \\ &\mathbf{predict}(B \to \varepsilon) = \{\$\} \\ &\mathbf{predict}(B \to \mathtt{b}B) = \{\mathtt{b}\} \end{split}$$

	lookahead			
symbol	a	b	\$	
S	$S \to A B$	$S \to A B$	$S \to A B$	
A	A o a A	$A \to \varepsilon$	$A \to \varepsilon$	
В		$B \to b B$	$B \to \varepsilon$	

2.2 Reconhecedores recursivo-descendentes

O reconhecimento preditivo, sintetizado na tabela de decisão apresentada acima, permite construir programas de reconhecimento, reconhecedores (ou *parsers* na terminologia em inglês). Uma solução para a construção do reconhecedor é baseada numa estrutura na qual cada símbolo não terminal da gramática dá origem a uma função, possivelmente recursiva.

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 2.4.2, "Recursive-descent parsing".

Exemplo 2.2

Considere que com base na gramática e na tabela de decisão do exemplo anterior se contrói o programa seguinte.

```
function eat(token)
    if lookahead = token then
        lookahead := nextToken().
    else
        REJECT.
function S()
    A(), B().
function A()
    case lookahead in
        a : eat(a), A(), return .
        b, $: return .
function B()
    case lookahead in
        a : REJECT.
        b : eat(b), B(), return.
        $ : return .
program Parser()
    lookahead := nextToken(). S().
    if lookahead = $ then
        ACCEPT.
    else
        REJECT.
```

Se executar o programa Parser quando a entrada é aab verificará que após o retorno da função S o lookahead é igual a \$, indicando que a palavra é válida. Mas a palavra aba é rejeitada, porque durante a execução a função B vai ser invocada numa altura em que o lookahead é igual a a. (Confirme.)

2.3 Reconhecedores descendentes não recursivos

Uma solução alternativa para implementar o reconhecedor preditivo usa uma pilha (*stack*) para reter o estado no processo de reconhecimento e usa a tabela de decisão para decidir como evoluir no processo de reconhecimento.

Seja G = (T, N, P, S) uma gramática independente do contexto, que se assume seja LL(1). Seja M a tabela de decisão de G para um *lookahead* de profundidade 1. Finalmente, considere que dispõe de uma

pilha onde pode armazenar elementos do conjunto $Z=T\cup N\cup \{\$\}$ e que pode ser manipulada com as funções **push**, **pop** e **top**, que, respetivamente, coloca uma sequência de símbolos na pilha, retira o símbolo no topo da pilha e mostra qual o símbolo no topo sem o retirar. O programa seguinte é um reconhecedor das palavras da gramática G

```
program Parser()
     push(S $).
     lookahead = getToken().
     forever
          z := top().
           if z \in T then
                if z \neq lookahead then
                     REJECT.
                elseif z = $ then
                     ACCEPT.
                else (* z = lookahead \land z \neq \$ *)
                     pop(), lookahead = getToken().
           else (* z \in N *)
                \alpha := M(z, lookahead).
                if \alpha = \emptyset then
                      REJECT.
                else
                     \mathtt{pop}\left(\right) , \mathtt{push}\left(\alpha\right) .
```

A evolução do programa anterior no processo de reconhecimento pode ser captado por uma tabela onde se mostre a cada passo os estados da pilha e da entrada e a ação tomada. Se se considerar a gramática e a tabela de decisão do exemplo 2.1, a execução do programa anterior sobre a palavra aab resulta na seguinte tabela. Na coluna da pilha, o símbolo mais à direita é o que está no topo e, na coluna entrada, o símbolo mais à esquerda é o *lookahead*.

Pilha	Entrada	Ação
\$ S	aab\$	pop(), push(A B)
\$ B A	aab\$	pop(), push(a A)
\$BA a	aab\$	<pre>pop(), lookahead = getToken()</pre>
\$ B A	ab\$	pop(), push(a A)
\$BA a	ab\$	<pre>pop(), lookahead = getToken()</pre>
\$ B A	b \$	pop()
\$ B	b \$	pop (), push (b B)
\$ B b	b \$	pop(), lookahead = getToken()
\$ B	\$	pop()
\$	\$	ACCEPT

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.4.4, "Nonrecursive predictive parsing".

2.4 Implementação de gramáticas de atributos

Os reconhecedores recursivo-descendentes (ver secção 2.2) permitem implementar facilmente gramáticas de atributos do tipo L (ver secção 4.2.2). As funções recursivas podem ter parâmetros de entrada e de saída. O valor de retorno pode também funcionar como parâmetro de saída. Os primeiros permitem passar informação da função chamadora para a função chamada, o que corresponde, na árvore de derivação, a definir atributos herdados dos nós filhos com base em atributos do nó pai. Os segundos permitem passar informação da função chamada para a função chamadora, o que corresponde ao suporte de atributos sintetizados e de atributos herdados de nós filhos com base em atributos de nós filhos à esquerda na árvore de derivação.

Capítulo 3

Análise sintáctica ascendente

NOTA PRÉVIA: Este capítulo não está completo e não foi devidamente revisto, pelo que, por um lado, há partes omissas e, por outro lado, pode/deve conter falhas.

Considere a gramática

$$D \rightarrow T L;$$

$$T \rightarrow i \mid r$$

$$L \rightarrow v \mid L, v$$

que representa uma declaração de variáveis a la C. Como reconhecer a palavra "u=i v, v;" como pertencente à linguagem gerada pela gramática dada? Se u pertence à linguagem gerada pela gramática, então $D \Rightarrow^* u$. Tente-se chegar lá andando no sentido contrário ao de uma derivação, ie. de u para D.

```
\begin{array}{lll} & \texttt{i} \;\; \texttt{v} \;\; , \;\; \texttt{v} \;\; ; \\ \Leftarrow \;\; T \;\; \texttt{v} \;\; , \;\; \texttt{v} \;\; ; & (\text{por aplicação da regra} \; T \to \texttt{i}) \\ \Leftarrow \;\; T \;\; L \;\; , \;\; & (\text{por aplicação da regra} \; L \to \texttt{v}) \\ \Leftarrow \;\; T \;\; L \;\; ; & (\text{por aplicação da regra} \; L \to L \;\; , \;\; \texttt{v}) \\ \Leftarrow \;\; D & (\text{por aplicação da regra} \; D \to T \;\; L \;\; ;) \end{array}
```

Colocando ao contrário

```
D\Rightarrow T L ; \Rightarrow T L , v ; \Rightarrow T v , v ; \Rightarrow i v , v ;
```

vê-se que corresponde a uma derivação à direita. A tabela seguinte mostra como, na prática, se realiza esta (retro)derivação.

pilha	entrada	ação
\$	iv, v; \$	deslocamento
\$ i	v , v ; \$	redução por $T o \mathtt{i}$
T	v , v ; \$	deslocamento
$T \lor$, v ; \$	redução por $L o { t v}$
T L	, v ; \$	deslocamento
$\ \ T\ L$,	v ; \$	deslocamento
$\$ \ T \ L$, \lor	; \$	redução por $L o L$, $ v$
T L	; \$	deslocamento
TL;	\$	redução por $D o T \ L$;
$\ \ D$	\$	aceitação

Inicialmente, o topo da pilha apenas possui um símbolo especial, representado por um \$, que indica, quando no topo, que a pilha está vazia. A entrada possui a palavra a reconhecer seguida também de um símbolo especial, aqui também representado por um \$, que indica fim da entrada. Em cada ciclo realiza-se, normalmente, uma operação de deslocamento ou de redução. A operação de **deslocamento** (no inglês, *shift*) transfere o símbolo não terminal da entrada para o topo da pilha. A operação de **redução** (no inglês, *reduce*) substitui os símbolos do topo da pilha que correspondem ao corpo de uma produção da gramática pela cabeça dessa regra.

Se se atingir uma situação em que a entrada apenas possui o símbolo \$ e a pilha apenas possui o símbolo \$ e o símbolo inicial da gramática, tal como acontece na tabela anterior, a palavra é reconhecida como pertencendo à linguagem descrita pela gramática. Caso contrário, a palavra é rejeitada.

Veja-se a reação deste procedimento a uma entrada errada, por exemplo a palavra i v v ; .

pilha	entrada	ação
\$	i v v ; \$	deslocamento
\$ i		redução por $T o \mathtt{i}$
\$ T	v v ; \$	deslocamento
\$ T v	v ; \$	rejeição

Com T v na pilha e v na entrada é impossível chegar-se à aceitação. Porque se se reduzir v para L ficar-se-ia com um T L na pilha e v na entrada, que não pertence ao conjunto **follow**(L). Mais à frente voltaremos a este assunto.

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.5.1, "Reductions".

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.5.2, "Handle pruning".

3.1. CONFLITOS 23

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.5.3, "Shift-reduce parsing".

3.1 Conflitos

O procedimento acabado de descrever pode acarretar situações ambíguas chamadas **conflitos**. Considere a gramática

e execute o procedimento de reconhecimento com a palavra i c i c a e a. Obtém-se

pilha	entrada	ação
\$	icicaea\$	deslocamento
\$ i	cicaea\$	deslocamento
\$ i c	icaea\$	deslocamento
\$ici	caea\$	deslocamento
\$icic	aea\$	deslocamento
\$icica	ea\$	redução por $S o$ a
\$icic S	ea\$	conflito: redução usando $S ightarrow \mathtt{i} \mathtt{c} S$
		ou deslocamento para tentar $S o \mathtt{i} \mathtt{c} S \in S$?

Na última linha é possível reduzir-se por aplicação da regra $S \to \text{i} \circ S$ ou deslocar-se o e para tentar posteriomente a redução pela regra $S \to \text{i} \circ S \in S$. Trata-se de um conflito deslocamento-redução (*shift-reduce conflict*). Perante este tipo de conflitos, ferramentas como o *bison* optam pelo deslocamento, mas pode não ser a mais adequada.

Também pode haver conflitos entre reduções (reduce-reduce conflict). Considere a gramática

e a palavra c. O procedimento de reconhecimento produz

pilha	entrada	ação
\$	с\$	deslocamento
\$ c	\$	conflito: redução usando $A \to c$ ou $B \to c$?

Na última linha é possível reduzir-se por aplicação das regras $A \to c$ ou $B \to c$. Perante este tipo de conflitos, ferramentas como o bison optam pela produção que aparece primeiro. Neste caso é irrelevante, mas pode não ser o adequado.

Veja-se agora a situação de um falso conflito. Considere a gramática

$$S \rightarrow a \mid (S) \mid aP \mid (S) S$$

 $P \rightarrow (S) \mid (S) S$

e reconheça-se a palavra "a (a) a".

pilha	entrada	ação
\$	a (a) a \$	deslocamento
\$ a	(a)a\$	redução usando $S o$ a
		deslocamento para tentar $S \rightarrow a P$?

Considerar a redução corresponde a realizar a retro-derivação

a (a)
$$a \Leftarrow S$$
 (a) a

que não faz sentido porque ($\not\in$ follow(S). Não há, portanto, conflito, sendo realizado o deslocamento.

pilha	entrada	ação
\$	a (a) a\$	deslocamento
\$ a	(a)a\$	deslocamento
\$ a (a) a\$	deslocamento
\$a(a) a \$	redução por $S o$ a
\$ a (S) a \$	deslocamento
\$ a (S)	a \$	deslocamento, porque a $\not\in$ follow (S) , follow (P)
\$a(S)a	\$	redução por $S o$ a
\$a (S) S	\$	redução por $P ightarrow $ (S) S
\$ a P	\$	redução por $S o$ a P
\$ S	\$	aceitação

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.5.4, "Conflicts during shift-reduce parsing".

Pode-se alterar uma gramática de modo a eliminar a fonte de conflito. Considerando que se pretendia optar pelo deslocamento, a gramática seguinte gera a mesma linguagem e está isenta de conflitos.

3.2 Construção de um reconhecedor ascendente

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.6, "Introduction to LR parsing: Simple LR".

O procedimento de reconhecimento apresentado atrás é um mecanismo iterativo. Em cada passo, a operação a realizar — deslocamento, redução, aceitação ou rejeição — depende da configuração nesse momento. Uma *configuração* é formada pelo conteúdo da pilha mais a parte da entrada ainda não processada. A pilha é conhecida — na realidade, é preenchida pelo procedimento de reconhecimento —, mas a entrada é desconhecida, conhecendo-se apenas o próximo símbolo (*lookahead*). Então a decisão a tomar só pode basear-se no conteúdo da pilha e no *lookahead*.

Mas, se se quiser construir um reconhecedor apenas com capacidade de observar o topo da pilha, uma pilha onde se guardam os símbolos terminais e não terminais tem pouco interesse. Deve-se guardar um símbolo que represente tudo o que está para trás.

Como definir esses símbolos?

A associação de um símbolo diferente por cada configuração da pilha não serve porque a pilha pode, em geral, crescer de forma não limitada. Os símbolos a colocar na pilha devem representar estados no processo de deslocamento-redução. O alfabeto da pilha representa assim o conjunto de estados nesse processo de reconhecimento.

Cada estado representa um conjunto de itens. O item de uma produção representa uma fase no processo de obtenção dessa produção. É representado por uma produção com um ponto (\cdot) numa posição do seu corpo. Por exemplo, a produção $A \to B_1 \ B_2 \ B_3$, produz 4 itens, a saber

A produção $A \to \varepsilon$ produz um único item

$$A \rightarrow \cdot$$

Um item representa o quanto de uma produção já foi obtido e, simultaneamente, o quanto falta obter. Por exemplo, $A \to B_1 \cdot B_2$ B_3 , significa que já foi obtido algo corresponente a B_1 , faltando obter o correspondente a B_2 B_3 . Se o ponto(•) se encontra à direita, então poder-se-á reduzir B_1 B_2 B_3 a A.

3.2.1 Construção da coleção de conjuntos de itens

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 4.6.2, "Items and the LR(0) automaton".

Considere a gramática

O estado inicial (primeiro elemento da coleção de conjunto de itens) contém o item

$$Z_0 = \{S \rightarrow \cdot E \$\}$$

Este conjunto tem de ser fechado. O facto de o ponto (\cdot) se encontrar imediatamente à esquerda de um símbolo não terminal, significa que para se avançar no processo de reconhecimento é preciso obter esse símbolo. Isso é considerado juntando ao conjunto Z_0 os itens iniciais das produções cuja cabeça é E. Fazendo-o, Z_0 passa a

$$Z_0 = \{ S \rightarrow \cdot E \$ \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

Se nos novos elementos adicionados ao conjunto voltasse à acontecer de o ponto (•) ficar imediatamente à esquerda de outros símbolos não terminais o processo deve ser repetido para esses símbolos.

O estado Z_0 pode evoluir por ocorrência de um E, um a ou um (. Correspondem aos símbolos que aparecem imediatamente à direita do ponto (•), e produzem 3 novos estados

$$\begin{array}{lll} Z_1 & = & \delta(Z_0,E) = \{ \, S \to E \cdot \$ \, \} \\ Z_2 & = & \delta(Z_0,\mathbf{a}) = \{ \, E \to \mathbf{a} \cdot \, \} \\ Z_3 & = & \delta(Z_0,\, () = \{ \, E \to \, (\cdot \, E \,) \, \} \, \cup \, \{ \, E \to \cdot \mathbf{a} \, , \, E \to \cdot \, (E \,) \, \} \end{array}$$

Note que Z_3 foi estendido pela função de fecho, uma vez que o ponto ficou imediatamente à esquerda de um símbolo não terminal (E). Z_1 representa um situação de aceitação se o símbolo à entrada (lo-okahead) for igual a \$ e de erro caso contrário. Z_2 representa uma possível situação de redução pela regra $E \to a$. Esta redução só faz sentido se o símbolo à entrada (lookahead) for um elemento do conjunto follow(E). Caso contrário corresponde a uma situação de erro. Finalmente, Z_3 pode evoluir por ocorrência de um E, um a ou um (, que correspondem aos símbolos que aparecem imediatamente à direita do ponto (\cdot) . Estas evoluções são indicadas a seguir

$$Z_4 = \delta(Z_3,E) = \{\,E
ightarrow \,(\,E \,\cdot\,)\,\,\}$$
 $\delta(Z_3,\mathrm{a}) = Z_2$ $\delta(Z_3,\,() = Z_3$

Apenas um novo estado foi gerado (Z_4). Este estado apenas evolui por ocorrência de) .

$$Z_5 = \delta(Z_4,)) = \{E \rightarrow (E) \cdot \}$$

Pondo tudo agrupado, a coleção de conjunto de itens é

$$\begin{split} Z_0 &= \{S \to \cdot E \,\} \, \cup \, \{E \to \cdot \mathbf{a} \,,\, E \to \cdot (E) \,\} \\ Z_1 &= \delta(Z_0, E) = \{S \to E \cdot \$ \,\} \\ Z_2 &= \delta(Z_0, \mathbf{a}) = \{E \to \mathbf{a} \cdot \} \\ Z_3 &= \delta(Z_0, () = \{E \to (\cdot E) \,\} \cup \, \{E \to \cdot \mathbf{a} \,,\, E \to \cdot (E) \,\} \\ Z_4 &= \delta(Z_3, E) = \{E \to (E \cdot) \,\} \\ Z_5 &= \delta(Z_4,)) = \{E \to (E) \cdot \} \end{split}$$

3.2.2 Tabela de decisão para um reconhecimento ascendente

A coleção de conjuntos de itens (conjunto de estados) fornece a base para a construção de uma tabela usada no algoritmo de reconhecimento. A tabela de decisão é uma matriz dupla, em que as linhas são indexadas pelo alfabeto da pilha (coleção de conjuntos de itens) e as colunas são indexadas pelos símbolos terminais e não terminais da gramática. Representa simultaneamente duas funções, designadas ACTION e GOTO. A função ACTION tem como argumentos um estado (símbolo da pilha) e um símbolo terminal (incluindo o \$) e define a ação a realizar. Pode ser uma de *shift*, *reduce*, *accept* ou *error*. A função GOTO mapeia um estado e um símbolo não terminal num estado. É usada após uma operação de redução.

Veja-se um exemplo. Considerando a gramática e a coleção de conjunto de itens anteriores, obtém-se a seguinte tabela de decisão.

	a	()	\$	E
Z_0	shift, Z_2	shift, Z_3			Z_1
Z_1				accept	
Z_2			reduce $E o { m a}$	reduce $E o { m a}$	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			\mathtt{shift}, Z_5	Ť	
Z_5			${\tt reduce}\ E \to (E)$	reduce $E ightarrow$ (E)	

- $Z = \{Z_0, Z_1, Z_2, Z_3, Z_4, Z_5\}$ é o alfabeto da pilha e foi obtida calculando a coleção de conjuntos de itens.
- shift, Z_i, com Z_i ∈ Z, representa um deslocamento, no qual é consumido o símbolo à entrada, e é feito o empilhamento (push) do símbolo Z_i.
- reduce $A \to \alpha$, onde $A \to \alpha$ é uma produção da gramática, representa uma redução, na qual são retirados da pilha tantos símbolo quantos os símbolo do corpo da regra.
- Os símbolos $Z_i \in Z$ na última coluna representam os símbolos a empilhar após uma redução.
- accept representa a aceitação.
- As células vazias representam situações de erro.

3.2.3 Algoritmo de reconhecimento

O algoritmo seguinte mostra como se usa a tabela anterior. Nele, top, push e pop são funções de manipulação da pilha, com os significados habituais, e lookahead e adv são funções de manipulação da entrada que, respetivamente, devolve o próximo símbolo terminal à entrada e consome um símbolo.

Algoritmo 3.1

```
\begin{aligned} &\operatorname{push}\left(Z_{0}\right) \\ &\operatorname{forever} \\ &\operatorname{if}\left(\operatorname{top}(\right) == Z_{1} \&\& \operatorname{lookahead}(\right) == \$) \\ &\operatorname{aceita} \operatorname{a} \operatorname{entrada} \operatorname{como} \operatorname{pertencendo} \operatorname{à} \operatorname{linguagem}. \\ &\operatorname{acc} = \operatorname{ACTION}[\operatorname{top}(),\operatorname{lookahead}()] \\ &\operatorname{if}\left(\operatorname{acc} \operatorname{is} \operatorname{shift}, Z_{i}\right) \\ &\operatorname{adv}(); \operatorname{push}\left(Z_{i}\right); \\ &\operatorname{else} \operatorname{if}\left(\operatorname{acc} \operatorname{is} \operatorname{reduce} A \to \alpha\right) \\ &\operatorname{pop}\left|\alpha\right| \operatorname{símbolos}; \operatorname{push}\left(\operatorname{GOTO}[\operatorname{top}(),A]\right); \\ &\operatorname{else} \\ &\operatorname{rejeita} \operatorname{a} \operatorname{entrada} \end{aligned}
```

A aplicação deste algoritmo à palavra "((a))" resulta na tabela seguinte. No preenchimento dessa tabela, optou-se por separar em duas linhas as operações de *pop* e *push* das ações de redução. Desta forma fica mais claro que o símbolo a empilhar resulta do símbolo no topo da pilha após os *pops*.

pilha	entrada	ação
$\overline{Z_0}$	((a))\$	shift, Z_3
Z_0 Z_3	(a))\$	shift, Z_3
Z_0 Z_3 Z_3	a))\$	shift, Z_2
Z_0 Z_3 Z_3 Z_2)) \$	reduce $E o a$
Z_0 Z_3 Z_3)) \$	push Z_4
Z_0 Z_3 Z_3 Z_4)) \$	shift, Z_{5}
Z_0 Z_3 Z_3 Z_4 Z_5) \$	reduce $E ightarrow$ (E)
Z_0 Z_3) \$	push Z_4
$\overline{Z_0 Z_3 Z_4}$) \$	shift, Z_{5}
Z_0 Z_3 Z_4 Z_5	\$	reduce $E ightarrow$ (E)
Z_0	\$	push Z_1
Z_0 Z_1	\$	accept

Na redução com a produção $E \to a$ foi feito o pop de 1 símbolo (número de símbolos no corpo da produção), ficando, em consequência, um Z_3 no topo da pilha. O Z_4 que foi empilhado logo a seguir corresponde a table $[Z_3,E]$. Nas duas reduções com a produção $E \to (E)$ são feitos o pop de 3 símbolos, ficando, em consequência, um Z_3 no topo da pilha, no primeiro caso, e um Z_0 no segundo.

Capítulo 4

Gramática de atributos

NOTA PRÉVIA: Este capítulo é apenas um enumerado das secções do livro de referência (Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition;) que cobrem a matéria sobre gramáticas de atributos.

4.1 Definição de gramática de atributos

No contexto destes apontamentos considera-se *gramáticas de atributos* o que no livro de referência se designa por *syntax-directed definitions*.

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.1, "Syntax-directed definitions".

4.1.1 Atributos herdados e atributos sintetizados

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.1.1, "Inherited and synthesized attributes".

4.1.2 Construção de gramáticas de atributos

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.1.2, "Evaluating an SDD at the nodes of a parse tree".

4.2 Ordem de avaliação dos atributos

4.2.1 Grafo de dependências

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.2.1, "Dependency graphs".

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.2.2, "Ordering the evaluation of attributes".

4.2.2 Tipos de gramáticas de atributos

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.2.3, "S-attributed definitions".

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.2.4, "L-attributed definitions".

Compilers: principles, techniques, and tools; Aho, Lam, Sethi and Ullman; 2nd edition; sec. 5.2.5, "Semantic rules with controlled side effects".