Pretext tasks 4. CPC || AR / LPC / VAR / RNN / APC / CPC ||

Autoregressive Predictive Coding (APC)

- Given a previous context (x_1,x_2,\dots,x_t) , APC tries to predict a future audio feature x_{t+n} that is n steps ahead of x_t
 - Uses an autoregressive model g_{AR} to summarize history and produce output
 - $n \ge 1$ encourages g_{AR} to infer more global underlying structures of the data rather than simply exploiting local smoothness of speech signals

Types of autoregressive model g_{AR}

- g_{AR}
 - Input: $x = (x_1, x_2, ..., x_N)$
 - Output: $y = (y_1, y_2, ..., y_N)$
- L-layer Unidirectional RNN:

$$h_0 = x$$

$$h_l = RNN^{(l)}(h_{l-1}), \forall l \in [1, L]$$

$$y = h_L \cdot W$$

• Feature extraction: h_L

Table 1: Comparing APCs with a series of CPC models on phone classification. PERs are reported.

Method	#(step)					
	2	5	10	20		
cpc-n9all cpc-n9same cpc-ctx-n9same cpc-ctx-exhaust	51.3 47.5 42.1 42.9	48.8 48.2 46.1 43.1	50.8 50.0 48.8 45.6	54.6 53.0 53.8 49.1		
apc (proposed)	36.5	35.6	35.4	37.7		

Table 2: *PERs on phone classification*. All features are fed to a linear classifier unless otherwise stated. The number of steps to the target #(steps) is not relevant in the first four rows.

Method	#(step)							
	1	2	3	5	10	20		
Mel	50.0							
Mel + MLP-1	43.4							
Mel + MLP-3	41.3							
cpc best	42.1							
apc 1-layer	39.4	36.5	35.4	35.6	35.4	37.7		
apc 2-layer	38.5	34.6	35.9	35.7	34.6	38.8		
apc 3-layer	37.2	36.7	33.5	36.1	37.1	38.8		
apc 4-layer	36.2	34.4	34.5	35.3	36.9	39.6		

Fig. 1. Phone error rates (PERs) of frame classification on dev93 with representations produced by 3-layer LSTMs (left) and 6-layer LSTMs (right). We use LS360 and LS960 to denote the LSTMs trained on the 360-hour subset and the 960 hours combined of LibriSpeech, respectively. We use k to denote the number of time steps into the future in the APC objective.

Transfer learning experiments

- Setup: pre-training + fine-tuning
- Pre-training data
 - Speech portion of the LibriSpeech 360 hours subset
 - 921 speakers
 - 80-dimensional log Mel spectrograms as input acoustic features (i.e., $x_t \in \mathbb{R}^{80}$)
 - Use extracted features to replace log Mel as new inputs to downstream models
- Considered downstream tasks
 - Speech recognition
 - Speech translation
 - Speaker identification (skipped in this talk, see paper!)
- Comparing methods
 - Contrastive predictive coding (CPC)
 - Problem-agnostic speech encoder (PASE)

Speech Recognition

- Considered dataset: Wall Street Journal
 - Training: 90% of si284 (~ 72 hours of audio)
 - Validation: 10% of si284
 - Test: dev93
- APC g_{AR}
 - RNNs: 4-layer, 512-dim GRUs
 - Transformers: 4-layer, 512-dim Transformer decoder blocks
- Downstream ASR model
 - Seq2seq with attention [Chorowski et al., 2015]
 - Beam search with beam size = 5
 - No language model rescoring

Choice of $m{n}$, and whether to fine-tune $m{g}_{Am{R}}$

Notations

- R stands for RNN
- T stands for Transformer
- Scratch: g_{AR} randomly initialized and concatenate with ASR model
- Frozen: keep g_{AR} frozen when training ASR model
- **Finetuned**: fine-tune g_{AR} along with ASR model

<u>Findings</u>

- Sweet spot exists for both Frozen and Finetuned when varying n
- Scratch performance is poor, even worse than log Mel baseline
- APC outperforms log Mel most of the time
- For both R and T, Frozen outperforms Finetuned
- Will use R-APC Frozen with n=3 and T-APC Frozen with n=5 for the rest

APC for reducing the amount of labeled training data

Recap: all feature extractors were pre-trained with 360 hours of LibriSpeech data; we did not fine-tune any feature extractor with the ASR model

Findings

- Full set:
 - 25% and 17% relative improvement for T-APC (13.7) and R-APC (15.2) over log Mel baseline (18.3), respectively
- As we decrease the amount of training data:
 - T-APC (yellow) and R-APC (gray) always outperform other methods
 - Gap between T-APC / R-APC and log Mel (blue) becomes larger
 - Using just half of si284, T-APC (16.4) already outperforms log Mel trained on full set (18.3)
- In the paper we also have the figure where all feature extractors were pre-trained on only 10 hrs of LibriSpeech data. TLDR: pre-training still helps even with just 10 hrs of pre-training data

APC for reducing downstream model size

Number of encoder layers in the ASR model

Note: all models trained on full si284

<u>Findings</u>

- T-APC (yellow) and R-APC (gray) always outperform other methods
- T-APC with just 2 layers (18.6) performs similar to log Mel with 4 layers (18.3)

TWANK YOU!