工科数学分析期中试题

ፓ.ከተ ሪπ ረ	W. 🗆	Lil. 😝
班级	子亏	姓名

(本试卷共6页,十一个大题. 试卷后面空白纸撕下做草稿纸,试卷不得拆散.)

题号	1	11	11]	四	五	六	七	八	九	+	+ 1	总分
得分												

- 一. 填空题 (每小题 4 分, 共 20 分)
- 1. 已知 $|\vec{a}|=2$, $|\vec{b}|=\sqrt{2}$, $\vec{a}\cdot\vec{b}=2$,则 \vec{a},\vec{b} 之间的夹角 $\alpha=$ _____, $|\vec{a}\times\vec{b}|=$ ____。
- 2. 曲面 $z-e^z+2xy=3$ 在点(1,2,0)处的切平面方程为______。 法线方程为_____。
- 3. 设 f 是连续函数, $I = \int_{-2}^{0} dx \int_{0}^{\frac{2+x}{2}} f(x, y) dy + \int_{0}^{2} dx \int_{0}^{\frac{2-x}{2}} f(x, y) dy$,则交换积分次序后, $I = \int_{-2}^{0} dx \int_{0}^{\frac{2+x}{2}} f(x, y) dy$,则交换积分次序后,
- 4. 设 $z = xy + xf(\frac{y}{x})$,其中 f 可导,则 $dz = \underline{\hspace{1cm}}$ 。
- 5. 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1) 处沿从 A 到 B(3,-2,2) 方向的方向导数 $\frac{\partial u}{\partial \overline{AB}}\bigg|_A = \underline{\hspace{1cm}}_{\hspace{1cm}}$
- 二. (8 分) 求直线 $L: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 $\pi: x-y+2z-1=0$ 上的投影直线 L_0 的方程。

三. (8 分) 设
$$z = \sin(xy) + \varphi(x, \frac{x}{y})$$
, 其中 φ 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.

四.
$$(8 \, f)$$
 设 $f(x,y) = \begin{cases} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$,证明在点 $(0,0)$ 处, $f(x,y)$ 连续且偏导数存在,但不可微。

五. (8 分)计算二重积分 $\iint_D x(x+y)dxdy$, 其中 $D = \{(x,y) | x^2 + y^2 \le 2, y \ge x^2 \}$.

六. (8 分) 计算三重积分 $I = \iint_{\Omega} z(x+y+z) dx dy dz$,其中 Ω 是由球面 $x^2 + y^2 + z^2 \le 2z$ 和锥面 $z \ge \sqrt{x^2 + y^2}$ 所围成立体。

七. (8 分) 求第一类曲线积分 $I = \int_L y dl$,其中 L 是摆线 $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} (0 \le t \le 2\pi)$ 的一拱。

八. (8分) 求柱面 $x^2 + y^2 = R^2$ 与 $x^2 + z^2 = R^2$ 所围立体的体积和表面积。

九. (8分) 求由方程 $(x^2 + y^2)z + \ln z + 2(x + y + 1) = 0$ 确定的函数z = z(x, y)的极值。

十. $(8\, \beta)$ 设曲线 $\begin{cases} z=y^2 \\ x=0 \end{cases}$ 绕 z 轴旋转一周所得的旋转曲面为 Σ , Σ 与平面 z=2y 所围成的立体

为 Ω , 假设 Ω 上各点的密度为常数 μ 。

(1) 写出曲面 Σ 的方程; (2) 求 Ω 对z 的转动惯量。