Hi Mike,

to test the Bayesian PEST I build a simple model 21 nodes x 21 nodes. I made just one zone right now. The parameters (hydraulic conductivities values) are ordered like you can see in the figure below. I put in the model 12 observation points and an extraction well. The model run in steady state, with constant and flat specified head boundary conditions.

Marco

P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21
P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32	P33	P34	P35	P36	P37	P38	P39	P40	P41	P42
P43	P44	P45	P46	P47	P48	P49	P50	P51	P52	P53	P54	P55	P56	P57	P58	P59	P60	P61	P62	P63
P64	P65	P66	P67	P68	P69	P70	P71	P72	P73	P74	P75	P76	P77	P78	P79	P80	P81	P82	P83	P84
P85	P86	P87	P88	P89	P90	P91	P92	P93	P94	P95	P96	P97	P98	P99	P100	P101	P102	P103	P104	P105
P106	P107	P108	P109	P110	P111	P112	P113	P114	P115	P116	P117	P118	P119	P120	P121	P122	P123	P124	P125	P126
P127	P128	P129	P130	P131	P132	P133	P134	P135	P136	P137	P138	P139	P140	P141	P142	P143	P144	P145	P146	P147
P148	P149	P150	P151	P152	P153	P154	P155	P156	P157	P158	P159	P160	P161	P162	P163	P164	P165	P166	P167	P168
P169	P170	P171	P172	P173	P174	P175	P176	P177	P178	P179	P180	P181	P182	P183	P184	P185	P186	P187	P188	P189
P190	P191	P192	P193	P194	P195	P196	P197	P198	P199	P200	P201	P202	P203	P204	P205	P206	P207	P208	P209	P210
P211	P212	P213	P214	P215	P216	P217	P218	P219	P220	P221	P222	P223	P224	P225	P226	P227	P228	P229	P230	P231
P232	P233	P234	P235	P236	P237	P238	P239	P240	P241	P242	P243	P244	P245	P246	P247	P248	P249	P250	P251	P252
P253	P254	P255	P256	P257	P258	P259	P260	P261	P262	P263	P264	P265	P266	P267	P268	P269	P270	P271	P272	P273
P274	P275	P276	P277	P278	P279	P280	P281	P282	P283	P284	P285	P286	P287	P288	P289	P290	P291	P292	P293	P294
P295	P296	P297	P298	P299	P300	P301	P302	P303	P304	P305	P306	P307	P308	P309	P310	P311	P312	P313	P314	P315
P316	P317	P318	P319	P320	P321	P322	P323	P324	P325	P326	P327	P328	P329	P330	P331	P332	P333	P334	P335	P336
P337	P338	P339	P340	P341	P342	P343	P344	P345	P346	P347	P348	P349	P350	P351	P352	P353	P354	P355	P356	P357
P358	P359	P360	P361	P362	P363	P364	P365	P366	P367	P368	P369	P370	P371	P372	P373	P374	P375	P376	P377	P378
P379	P380	P381	P382	P383	P384	P385	P386	P387	P388	P389	P390	P391	P392	P393	P394	P395	P396	P397	P398	P399
P400	P401	P402	P403	P404	P405	P406	P407	P408	P409	P410	P411	P412	P413	P414	P415	P416	P417	P418	P419	P420
P421	P422	P423	P424	P425	P426	P427	P428	P429	P430	P431	P432	P433	P434	P435	P436	P437	P438	P439	P440	P441