POKHARA UNIVERSITY

Level: Bachelor Programme: BE Course: Calculus II

Semester: Fall

Year : 2023 Full Marks: 100 Pass Marks: 45

Time :3hrs.

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

1.

a) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{4-y^2}} \cos(x^2 + y^2) dx dy$ by changing into polar 5 integration.

b) Evaluate: $\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) dz dy dx$ 5

c) Find the volume in the first octant bounded by the coordinate planes, 5 the cylinder $x^2 + y^2 = 4$ and z + y = 3.

2. a) Solve the differential equation $y'' + (1 - x^2)y = 0$ by using power series method.

b) Define Legendre's equation. Also derive the solution of Legendre's equation.

OR

If $J_n(x)$ represents the Bessel's function of order n then show that:

i.
$$\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x).$$

ii.
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x,$$

3. a) State First Shifting Theorem of Laplace transforms.

8

i. Find the Laplace transform of $te^{-t} \cosh t$

ii. Find the inverse Laplace transform of $\frac{1}{s^2-5s+6}$

b) Solve the initial value problem:

$$y'' + 4y' + 3y = e^{-t}$$
, $y(0) = y'(0) = 1$ by using Laplace 7 transform.

4. a) If
$$\emptyset = \log(x^2 + y^2 + z^2)$$
 then find div (grad Φ).

- b) Find the directional derivative of $f = x^2yz + 4xz^2$ at (1, -2, 1) in the direction $2\vec{i} \vec{j} 2\vec{k}$.
- c) Calculate: $\oint_{c} \vec{F} \cdot d\vec{r}$ if $\vec{F} = (y, z, x)$, C; $\vec{r} = (t, t^{2}, t^{3})$, from (0,0,0) and (2,4,8).
- 5. a) Define Green's Theorem. Evaluate $\oint_c \vec{F} \cdot d\vec{r}$, where $\vec{F} = (\sin y, \cos x)$ and c is the triangle with vertices $(0,0), (\pi,0), (\pi,1)$, by using Green's theorem.
 - b) Evaluate $\oint_{c} \vec{F} \cdot d\vec{r}$ by using Stoke's theorem, where $\vec{F} = (y^2, z^2, x^2)$ and c is the boundary of the surface S: x + y + z = 1 in the first octant.

Evaluate the surface integral $\iint_S \vec{F} \cdot \vec{n} dA$ where $\vec{F} = (x^2, y^2, z^2)$ and s: $\vec{r} = (u\cos v, u\sin v, 3v), \ 0 \le u \le 1, \ 0 \le v \le 2\pi$

6. a) Find the fourier series of f(x) = x + |x| for -π < x < π.
 b) Expand the function f(x) = x² in the interval 0 < x ≤ π in half

OR

- range Fourier cosine series and show that $\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$ 7. Solve Any Two:
 - a) Find the general solution of 2u_x + 2u_y u = 0.
 b) Derive the one-dimensional traffic flow model using conservation
 - law. c) Show that the value under integral sign $\int_{(4,0,3)}^{(-1,1,2)} [(yz+1)dx + (xz+1)dy + (xy+1)dz]$ is exact and evaluate the integral.