TEMPLATE TITLE

Subtitle

Author

Who?

Where?

When?

Contents

1	Ayudantia 14 de Agosto	3
2	Ejercicio 11 (Guia) (i)	3
3	Ejercicio 11 (Guia) (ii)	3
4	Ejercicio 11 (Guia) (i)	4

1 Ayudantia 14 de Agosto

2 Ejercicio 11 (Guia) (i)

Dem 2.1. (A) Para ver que C es cerrado, veremos que cada C_n lo se. Notamos que si $f:\to,g:\to$ tales que f(x)frac13x y g(x)frac23+frac13 son continuas y $C_n=f(C_{n-1})\cup g(C_{n-1})\Rightarrow C_n$ es compacto \Rightarrow es cerrado, $\forall n$

(B) Para ver que es no numerable, vamos a construir una inyeccion $\Phi: X \to X$ con X no numerable. Sea entonces X0, 2 y dado $w \in X$, definimos:

$$C_n(w)\frac{C_0}{3^n} + \sum_{k=1}^n n \frac{w_k}{3^k}$$

Si
$$n = 2$$
: $C_2(w) = [0, \frac{1}{9}] + \frac{w_1}{3} + \frac{w_2}{9} = \begin{cases} [0, \frac{1}{9}] \\ [\frac{2}{3}, \frac{7}{9}] \\ [\frac{2}{9}, \frac{1}{3}] \\ [\frac{8}{9}, 1] \end{cases}$

Basicamente, $C_n(w)$ referencia siempre a alguno de los 2^n intervalos de C_n . Luego, es claro que para w fijo, $C_{n+1}(w) \subseteq C_n(w) \subseteq C_n(*)$ y $diam(C_n(w)) \xrightarrow{n \to \infty} 0$. Por el Teorema de interseccion de Cantor: $|\cap_{n \in C_n(w)}| = 1$. Sea C(w) tal elemento. Luego, por (*), $C(w) \in C$.

Sea entonces $\Phi: 0, 2 \to C$ tal que $\Phi(w)C(w)$ y Φ es inyectiva (basta ver que pasa si $w^{(1)}, w^{(2)}$ difieren en una coordenada). Como |0, 2| = C, se concluye.

(C) Si suponemos que existe $(a,b)\subset C.$ SPG, a=0. Consideremos $n\in$ suficientemente grande.

$$3^{-n} < b \Rightarrow (0,b) \nsubseteq [0,\frac{1}{3^n}] \cup [\frac{2}{3^n},\frac{3}{3^n}] \subseteq C_n$$

Luego, $z \in (0, b) : z \notin C_n, nz \notin C$ (Contradiccion).

3 Ejercicio 11 (Guia) (ii)

Dem 3.1. Por (i), sabemos que $C = \overline{C} = \partial C$. El resultado se sigue de lo siguiente: Si (X, d) espacio metrico y $A \subseteq XD = \partial A$ (donde D son los puntos de discontinuidad de X_A .

3

4 Ejercicio 11 (Guia) (i)

Dem 4.1. Consideremos entonces 1_C . Veamos sus integrales superior e inferior.

$$\underline{\int_0^1} 1_C(x) dx = \sup\{L(P, 1_C) \quad : \quad P \text{ particion de } [0, 1]\}$$

$$L(P, 1_C) = \sum m_i(x_{i+1} - x_i) = 0$$
 siempre, $\forall P$.

Por lo tanto, $\underline{\int_0^1} 1_C(x) dx = 0$.

Ahora, para la integral superior:

$$\overline{\int_0^1} 1_C(x) dx = \inf \{ U(P, mathds 1_X) : P \text{ particion} \}$$