DEFINIERBARE FUNKTIONEN IM λ-KALKÜL MIT TYPEN*

Von Helmut Schwichtenberg

Bekanntlich sind im typenfreien λ -Kalkül genau die rekursiven Funktionen definierbar¹. Der dabei verwendete Begriff der Definierbarkeit einer Funktion ist auch für den λ -Kalkül mit Typen sinnvoll. Wir beantworten hier die Frage² nach den dann definierbaren Funktionen.

Typen sind 0 und mit σ , τ auch $(\sigma \rightarrow \tau)$. Terme (bezeichnet mit r^t , s^t , t^t) werden aus Variablen mit Typen durch Anwendung und λ -Abstraktion gebildet. Typenindizes, die sich aus dem Zusammenhang ergeben oder die unwesentlich sind, lassen wir häufig weg. Terme, die sich nur durch gebundene Umbenennung unterscheiden, werden identifiziert. Die Relation t = |t'| (t ist reduzierbar auf t') wird induktiv definiert durch

- (i) $(\lambda x t) s = |t_x[s]$.
- (ii) Wenn t = |t'| und s = |s'|, so ts = |t'|s'.
- (iii) Wenn t = |t'|, so $\lambda x t = |\lambda x t'|$.
- (iv) t = |t|
- (v) Wenn t = |t'| und t' = |t''|, so t = |t''|.

Ein Term heißt in Normalform, wenn er keine Teilterme der Gestalt $(\lambda x t)s$ besitzt. Bekanntlich gibt es zu jedem Term t eine eindeutig bestimmte Normalform t' mit t=|t'|. Zwei Terme heißen gleich, wenn sie dieselbe Normalform besitzen. Man kann jetzt natürliche Zahlen einführen als Terme $\bar{n} :\equiv \lambda \alpha \cdot \alpha^n$ vom Typ $v := (0 \rightarrow 0) \rightarrow (0 \rightarrow 0)$; dabei ist α^n die n-te Iterierte von α , also $\equiv \lambda x \cdot \alpha(\alpha \dots (\alpha x) \dots)$. Jeder abgeschlossene Term vom Typ v in Normalform ist ein \bar{n} . Also definiert jeder abgeschlossene Term t vom Typ $v \rightarrow (v \rightarrow \dots (v \rightarrow v) \dots)$ eine zahlentheoretische Funktion f, die durch $t\bar{n}_1 \dots \bar{n}_k = f(n_1, \dots, n_k)$ bestimmt ist. Zum Beispiel wird³

n + m definiert durch $\lambda F G \alpha \cdot (F \alpha) \circ (G \alpha)$

 $n \cdot m$ definiert durch $\lambda FG \cdot F \circ G$

k (konstante Funktion) definiert durch $\lambda F \alpha \cdot \alpha^k$

$$d(n, m, i) = \begin{cases} n & \text{falls } i = 0 \\ m & \text{falls } i \neq 0 \end{cases}$$
 definiert durch $\lambda FGH\alpha x \cdot H(\lambda y \cdot G\alpha x) (F\alpha x)$

 $[F, G, H \text{ Variable vom Typ } v, t^{\tau \to \tau} \circ s^{\tau \to \tau} :\equiv \lambda x^{\tau} \cdot t(sx)]$. Die Menge der so definierbaren Funktionen ist offenbar abgeschlossen gegen Einsetzungen. Also sind alle

^{*} Eingegangen am 15. 11. 1973.

¹ Siehe etwa [2, § 31]. ² Siehe [4, § 5], [3, § 8.9], [1, § 13D4]. ³ Nach [4, § 5].

Polynome definierbar, und allgemeiner alle Funktionen, die aus Polynomen durch Fallunterscheidung nach Verschwinden oder Nicht-Verschwinden von Argumenten definierbar sind; im 2-stelligen Fall sind dies die Funktionen

$$f(n,m) = \begin{cases} k & \text{falls } n = 0 \text{ und } m = 0 \\ P_1(m) & = & + \\ P_2(n) & + & = \\ P_3(n,m) & + & + \end{cases}$$

mit Polynomen P_1 , P_2 , P_3 . Im folgenden soll gezeigt werden, daß dies schon alle definierbaren Funktionen sind.

t definiere also eine etwa 2-stellige Funktion. Man bringe $tFG\alpha$ auf Normalform. Jeder Teilterm (der Normalform von $tFG\alpha$) hat einen der Typen 0, $0 \rightarrow 0$ oder v. Jeder Teilterm vom Typ v ist identisch mit F oder G. Mögliche Teilterme vom Typ $0 \rightarrow 0$ sind:

- (1) α .
- (2) Mit s auch Fs, Gs.
- (3) Mit $s_1, ..., s_q$ gebildet nach (1), (2) auch $\lambda y \cdot s_1 (... s_q(z)...)$, wobei z auch identisch mit y sein kann.

s steht im folgenden für Teilterme vom Typ $0 \to 0$. – Für F, G setze man \overline{n} , \overline{m} , wobei zunächst $n, m \ge 1$ angenommen sei. Durch Induktion über s zeigt man: Jedes $s' :\equiv s_{F,G}[\overline{n}, \overline{m}]$ ist gleich einem $\alpha^{P(n,m)}$ oder gleich einer konstanten Funktion $\lambda y \cdot \alpha^{P(n,m)} z$ (P(n,m) Polynom). Beweis: Zu (2).

$$(\lambda \beta \beta^n) \alpha^{P(n,m)} = \alpha^{P(n,m) \cdot n}$$
$$(\lambda \beta \beta^n) (\lambda y \cdot \alpha^{P(n,m)} z) = \lambda y \cdot \alpha^{P(n,m)} z \qquad (da \ n \ge 1).$$

Zu (3). Fall 1: Keines der s'_i ist konstant.

$$\lambda y \cdot s'_1(\ldots s'_q(z)\ldots) = \lambda y \cdot \alpha^{P_1(n,m)+\cdots+P_q(n,m)} z$$
.

Fall 2: Es gibt ein erstes konstantes s_i' , etwa $s_i' = \lambda \tilde{y} \cdot \alpha^{P_i(n,m)} \tilde{z}$.

$$\lambda y \cdot s'_1(\ldots s'_q(z)\ldots) = \lambda y \cdot \alpha^{P_1(n,m)+\cdots+P_i(n,m)} z$$

Da die Normalform von $t F G \alpha$ keine freie Variable vom Typ 0 enthält, ist sie nach Ersetzung von F, G durch \overline{n} , \overline{m} $(n, m \ge 1)$ gleich einem $\alpha^{P(n,m)}$.

Ist etwa n = 0, $m \ge 1$, so kann man alle äußersten Teilterme der Form Fs ersetzen durch λxx und erhält wie eben ein $\alpha^{P(m)}$.

LITERATUR

- [1] Curry, H.B., Hindley, J.R., Seldin, J.P.: Combinatory logic, Bd. II. Amsterdam 1972.
- [2] Hermes, H.: Aufzählbarkeit, Entscheidbarkeit, Berechenbarkeit. Berlin 1961.
- [3] Hindley, J. R., Lercher, B., Seldin, J. P.: Introduction to combinatory logic. Cambridge 1972.
- [4] Schütte, K.: Theorie der Funktionale endlicher Typen. Hektographiert, München 1968.