Decision Trees

Lecturer: Ji Liu

Thank Jerry Zhu for sharing his slides

X

- The input
- These names are the same: example, point, instance, item, input
- Usually represented by a feature vector
 - These names are the same: attribute, feature
 - For decision trees, we will especially focus on discrete features (though continuous features are possible, see end of slides)

y

- The output
- These names are the same: label, target, goal
- It can be
 - Continuous, as in our population prediction → Regression
 - Discrete, e.g., is this mushroom x edible or poisonous? → Classification

Evaluating classifiers

- During training
 - Train a classifier from a training set (x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n) .
- During testing
 - For new test data $x_{n+1}...x_{n+m}$, your classifier generates predicted labels $y'_{n+1}...y'_{n+m}$
- Test set accuracy:
 - You need to know the true test labels y_{n+1} ...

$$-\text{Test set accuracy: } acc = \frac{1}{m} \sum_{i=n+1}^{n+m} 1_{y_i = y'_i}$$

- Test set error rate = 1 - acc

Decision Trees

- One kind of classifier (supervised learning)
- Outline:
 - The tree
 - Algorithm
 - Mutual information of questions
 - Overfitting and Pruning
 - Extensions: real-valued features, tree→rules, pro/con

Akinator: Decision Tree

http://en.akinator.com/personnages/

A Decision Tree

- A decision tree has 2 kinds of nodes
 - 1. Each leaf node has a class label, determined by majority vote of training examples reaching that leaf.
 - 2. Each internal node is a question on features. It branches out according to the answers.

Automobile Miles-per-gallon prediction

npg	
ood	
ad	
ad	
ood	

bad

good

bad

good

good

good

bad

bad

-						
cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
4	· low	low	low	high	75to78	asia
6	medium	medium	medium	medium	70to74	america
4	medium	medium	medium	low	75to78	europe
8	high	high	high	low	70to74	america
6	medium	medium	medium	medium	70to74	america
4	· low	medium	low	medium	70to74	asia
4	· low	medium	low	low	70to74	asia
8	high	high	high	low	75to78	america
:	:	:	:	:	:	:
:	:	:	:	:	:	:
:	:	:	:	:	:	:
8	high	high	high	low	70to74	america
8	high	medium	high	high	79to83	america
8	high	high	high	low	75to78	america
4	· low	low	low	low	79to83	america
6	medium	medium	medium	high	75to78	america
4	medium	low	low	low	79to83	america
4	· low	low	medium	high	79to83	america
8	high	high	high	low	70to74	america
4	· low	medium	low	medium	75to78	europe
5	medium	medium	medium	medium	75to78	europe

A very small decision tree

A bigger decision tree

Predict "good" is also reasonable by following its parent node instead of the root node.

Decision tree algorithm

buildtree(examples, questions, default)

```
/* examples: a list of training examples
   questions: a set of candidate questions, e.g., "what's the value
  of feature x<sub>i</sub>?"
   default: default label prediction, e.g., over-all majority vote */
IF empty(examples) THEN return(default)
IF (examples have same label y) THEN return(y)
IF empty(questions) THEN return(majority vote in
  examples)
q = best question(examples, questions)
```

Create and return an internal node with n children

Let there be n answers to q

- The ith child is built by calling buildtree({example|q=ith answer}, questions\{q}, default)

The best question

- What do we want: pure leaf nodes, i.e. all examples having (almost) the same y.
- A good question → a split that results in pure child nodes
- How do we measure the degree of purity induced by a question? Here's one possibility (Max-Gain in book):

mutual information (a.k.a. information gain)

A quantity from information theory

- At the current node, there are $n=n_1+...+n_k$ examples
 - n₁ examples have label y₁
 - n₂ examples have label y₂
 - **—** ...
 - n_k examples have label y_k
- What's the impurity of the node?
- Turn it into a game: if I put these examples in a bag, and grab one at random, what is the probability the example has label y_i?

- Probability estimated from samples:
 - with probability $p_1=n_1/n$ the example has label y_1
 - with probability $p_2=n_2/n$ the example has label y_2
 - ...
 - with probability $p_k = n_k/n$ the example has label y_k
- $p_1+p_2+...+p_k=1$
- The "outcome" of the draw is a random variable y with probability $(p_1, p_2, ..., p_k)$
- What's the impurity of the node → what's the uncertainty of y in a random drawing?

$$H(Y) = \sum_{i=1}^{k} -\Pr(Y = y_i) \log_2 \Pr(Y = y_i)$$
$$= \sum_{i=1}^{k} -p_i \log_2 p_i.$$

 Interpretation: The number of yes/no questions (bits) needed on average to pin down the value of y in a random drawing

p(head)=0.5 p(tail)=0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

p(head)=0.51 p(tail)=0.49 H=0.9997 p(head)=1 p(tail)=0 H=0 (Why?)

Excellent Video for Entropy

https://www.youtube.com/watch? v=R4OIXb9aTvQ

 Entropy roughly measures the average number of yes/no questions we need to ask to figure out the class label of an object without any additional attribute information.

Conditional entropy

$$H(Y|X=v) = \sum_{i=1}^{k} -\Pr(Y=y_i|X=v)\log_2\Pr(Y=y_i|X=v)$$

$$H(Y|X=v) = \sum_{i=1}^{k} -\Pr(Y=y_i|X=v)H(Y|X=v)$$

$$H(Y|X) = \sum_{v: \text{values of } X} \Pr(X=v) H(Y|X=v)$$

- Y: label. X: a question (e.g., a feature). v: an answer to the question
- Pr(Y|X=v): conditional probability
- H(Y|X) estimates the average number of y/n questions required after know the attribute information X

Information gain

Information gain, or mutual information

$$I(Y;X)=H(Y)-H(Y|X)$$

 Choose question (feature) X which maximizes I(Y;X).

- Features: color, shape, size
- What's the best question at root?

The training set

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

H(class)= H(class | color)=

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

green is -

$$H(class) = H(3/6,3/6) = 1$$

 $H(class \mid color) = 3/6 * H(2/3,1/3) + 1/6 * H(1,0) + 2/6 * H(0,1)$

3 out of 6 are red

2 of the red are +

1 out of 6 is blue

2 out of 6 are green

blue is +

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

H(class) = H(3/6,3/6) = 1 H(class | color) = 3/6 * H(2/3,1/3) + 1/6 * H(1,0) + 2/6 * H(0,1)I(class; color) = H(class) - H(class | color) = 0.54 bits

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	_

H(class) = H(3/6,3/6) = 1 H(class | shape) = 4/6 * H(1/2, 1/2) + 2/6 * H(1/2,1/2)I(class; shape) = H(class) - H(class | shape) = 0 bits

Shape tells us nothing about the class!

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	-

H(class) = H(3/6,3/6) = 1 H(class | size) = 4/6 * H(3/4, 1/4) + 2/6 * H(0,1)I(class; size) = H(class) - H(class | size) = 0.46 bits

Example	Color	Shape	Size	Class
1	Red	Square	Big	+
2	Blue	Square	Big	+
3	Red	Circle	Big	+
4	Red	Circle	Small	-
5	Green	Square	Small	-
6	Green	Square	Big	_

I(class; color) = H(class) - H(class | color) = 0.54 bits I(class; shape) = H(class) - H(class | shape) = 0 bitsI(class; size) = H(class) - H(class | size) = 0.46 bits

→ We select color as the question at root

Overfitting

- Overfitting happens if the prediction model is overcomplicated while the training data is few.
- Another perspective to say overfitting is the model fits the training data perfectly.
- https://www.youtube.com/watch?v=iILj9g8xObc

Example: Overfitting in SVM

Example: Overfitting in regression: Predicting US Population

<i>x</i> =Year	<i>y</i> =Million
1900	75.995
1910	91.972
1920	105.71
1930	123.2
1940	131.67
1950	150.7
1960	179.32
1970	203.21
1980	226.51
1990	249.63
2000	281.42

- We have some training data (n=11)
- What will the population be in 2020?

Regression: Polynomial fit

 The degree d (complexity of the model) is important

 $f(x) = c_d x^d + c_{d-1} x^{d-1} + \dots + c_1 x + c_0$

 Fit (=learn) coefficients c_d, ... c₀ to minimize Mean Squared Error (MSE) on training data

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - f(x_i) \right)^2$$

Overfitting

 As d increases, MSE on training data improves, but prediction outside training data

worsens

degree=0 MSE=4181.451643
degree=1 MSE=79.600506
degree=2 MSE=9.346899
degree=3 MSE=9.289570
degree=4 MSE=7.420147
degree=5 MSE=5.310130
degree=6 MSE=2.493168
degree=7 MSE=2.278311
degree=8 MSE=1.257978
degree=9 MSE=0.001433
degree=10 MSE=0.000000

Overfitting: Toy Example

- Predict if the outcome of throwing a die is "6" from its (color, size)
- Color = {red, blue}, Size={small, large}
- Three training samples:
 - -X1 = (red, large), y1 = not 6
 - -X2 = (blue, small), y2 = not 6
 - -X3 = (blue, large), y3 = 6

Overfitting: Example for Decision Tree

Three training samples:

```
- X1 = (red, large), y1 = not 6
-X2 = (blue, small), y2 = not 6
                                    Root
- X3 = (blue, large), y3 = 6
                                   Color?
                                    (1, 2)
                                               Blue
                          Red
                                               Size?
                         (0,1)
                         Not 6
                                                     Small
                                       Large
```

(1, 0)

It is 6

(0, 1)

Not 6

Toy Example

- Assume "color" and "size" are independent attributes for any die
- Assume P(red)=P(blue)=1/2,
 P(large)=P(small)=1/2
- The prediction accuracy for this decision tree is 1-(1/2*1/6+1/4*5/6+1/4*1/6)=2/3

Toy Example

 If the decision tree only has the root node, we predict all new instances as "Not 6".

• The accuracy is 5/6 > 2/3Root
(1, 2)

Not 6

Five inputs, all bits, are generated in all 32 possible combinations

Output y = copy of e,
Except a random
25% of the records have y set to the opposite of e

- The test set is constructed similarly
 - -y=e, but 25% the time we corrupt it by $y=\neg e$
 - The corruptions in training and test sets are independent
- The training and test sets are the same, except
 - Some y's are corrupted in training, but not in test
 - Some y's are corrupted in test, but not in training

We build a full tree on the training

Training set accuracy = 100% 25% of these training leaf node labels will be corrupted (≠e)

And classify the test data with the tree

25% of the test examples are corrupted - independent of training data

On average:

- ¾ training data uncorrupted
 - ¾ of these are uncorrupted in test correct labels
 - ¼ of these are corrupted in test wrong
- ¼ training data corrupted
 - ¾ of these are uncorrupted in test wrong
 - ¼ of these are also corrupted in test correct labels
- Test accuracy = $\frac{3}{4} * \frac{3}{4} + \frac{1}{4} * \frac{1}{4} = \frac{5}{8} = 62.5\%$

• But if we knew a,b,c,d are irrelevant features and don't use them in the tree...

The tree would be

In training data, about ¾ y's are 0 here. Majority vote predicts y=0

In training data, about ¾ y's are 1 here. Majority vote predicts y=1

In test data, $\frac{1}{4}$ y's are different from e. test accuracy = ?

The tree would be

In training data, about ¾ y's are 0 here. Majority vote predicts y=0

In training data, about ¾ y's are 1 here. Majority vote predicts y=1

In test data, $\frac{1}{4}$ y's are different from e. test accuracy = $\frac{3}{4}$ = 75% (better!)

Full tree test accuracy = $\frac{3}{4} * \frac{3}{4} + \frac{1}{4} * \frac{1}{4} = \frac{5}{8} = 62.5\%$

In the full tree, we overfit by learning non-existent relations (noise)

Avoid overfitting: pruning

Pruning with a tuning set

- 1. Randomly split data into TRAIN and TUNE, say 70% and 30%
- 2. Build a full tree using only TRAIN
- 3. Prune the tree down on the TUNE set. On the next page you'll see a greedy version.

Pruning

Prune(tree T, TUNE set)

- 1. Compute T's accuracy on TUNE, call it A(T)
- 2. For every internal node N in T:
 - a) New tree $T_N = \text{copy of T, but prune (delete) the subtree under N.}$
 - b) N becomes a leaf node in T_N . The label is the majority vote of TRAIN examples reaching N.
 - c) $A(T_N) = T_N$'s accuracy on TUNE
- 3. Let T* be the tree (among the T_n 's and T) with the largest A(). Set $T \leftarrow T^*$ /* prune */
- 4. Repeat from step 1 until no more improvement available. Return T.

Real-valued features

- What if some (or all) of the features
 x1, x2, ..., xk are real-valued?
- Example: x1=height (in inches)
- Idea 1: branch on each possible numerical value.

Real-valued features

- What if some (or all) of the features x1, x2, ..., xk are real-valued?
- Example: x1=height (in inches)
- Idea 1: branch on each possible numerical value. (fragments the training data and prone to overfitting)
- Idea 2: use questions in the form of (x1>t?), where t is a threshold.
 There are fast ways to try all(?) t.

$$H(y|x_{i}>t?)=p(x_{i}>t)H(y|x_{i}>t)+p(x_{i}\leq t)H(y|x_{i}\leq t)$$

$$I(y|x_{i}>t?)=H(y)-H(y|x_{i}>t?)$$

What does the feature space look like?

Axis-parallel cuts

Conclusions

- Decision trees are popular tools for data mining
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
- Overfitting might happen
- We used decision trees for classification (predicting a categorical output from categorical or real inputs)

What you should know

- Trees for classification
- Top-down tree construction algorithm
- Information gain
- Overfitting
- Pruning
- Real-valued features