Package 'Rpu2'

January 13, 2016

Type Package
Title Routines pour RPU
Version 0.1.3
Date 2016-01-01
Maintainer Jean-Claude Bartier < jeanclaude.bartier@gmail.com>
Description Ensemble de fonctions destin <c3><a9>es <c3><a0> faciliter l'analyse des RPU.</a0></c3></a9></c3>
Depends R (>= 3.1.0), lubridate, xtable, openintro, plotrix
License GNU
LazyData true
Imports dplyr, lubridate, xtable, openintro, plotrix
RoxygenNote 5.0.1
NeedsCompilation no
Author JC Bartier [aut, cre]
R topics documented:

add.territoire	3
analyse_type_etablissement	3
attribJoin	4
barplot.week.variations	5
completude	6
completude.time	6
copyright	7
count.CIM10	8
datetime	9
df.duree.pas	9
duree.passage2	.1
evolution	. 1
factor2table	2
finess2territoires	.2
format.n	.3
horaire	3

40

Index

F	14
	15
	16
	17
<u> </u>	17
ι	18
	18
ι	19
pdsa	20
	20
print.summary.rpu	21
print.table.rpu	21
pyramide.age	22
radar.completude	22
reorder.dataframe.fedoru	23
reorder.vector.fedoru	23
resume.age	24
resume.age.sexe	24
resume.ccmu	25
resume.dateheure	25
resume.dp	26
resume.entree	26
resume.mode.sortie	27
resume.motif	27
resume.passages	28
resume.rpu	28
resume.sexe	29
resume.transport	30
rpu.par.jour	30
rpu.par.jour2	31
rpu.par.mois	31
	32
	33
summary.destination	33
summary.duree.passage	
, 1	34
•	35
	35
	36
	37
	37
	38
1	38
	20

add.territoire 3

add.territoire

NA

Description

Ajoute une colonne TERRITOIRE à un dataframe qui contient une colonne FINESS

Usage

```
add.territoire(dx)
```

Arguments

dx

un dataframe ayant une colonne FINESS renseignée

Value

un dataframe

```
analyse_type_etablissement
```

Analyse etablissement

Description

fournit une liste d'indicateur à partir des données d'un établissement ou d'un groupe d'établissements. Voir rapport 2014: Analyse par type d'établissement

Usage

```
analyse_type_etablissement(es)
```

Arguments

es

dataframe RPU (es = établissement de santé)

Value

```
"n.passages", "n.age.ren", "n.inf1an", "n.inf15ans", "n.75ans", "n.cp.rens", "n.etrangers", "n.lun", "n.mar", "n.mer", "n.jeu", "n.ven", "n.sam", "n.dim", "n.nuit", "n.pds", "n.h.rens", "n.trans.rens", "n.fo", "n.heli", "n.perso", "n.smur", "n.vsav", "n.ambu", "n.ccmu.rens", "n.ccmu1", "n.ccmu2", "n.ccmu3", "n.ccmu4", "n.ccmu5", "n.ccmuP", "n.ccmuD", "n.ccmu45", "n.sorties.conf", "mean.passage", "median.passage", "n.passage4", "n.hosp.passage4", "n.dom.passage4", "n.dom", "n.hosp", "n.transfert", "n.deces", "n.mode.sortie", "n.mutation2"
```

4 attribJoin

Examples

attribJoin

Jonction d'une table attributaire et un dataframe

Description

cette fonction réalise une jonction entre une table attributaire (daframe associé à un shapefile) et des données externes contenues dans un tableau. La procédure utilise match qui ne modifie pas l'ordre des lignes de la table attributaire (contrairement à merge). L'ordre des lignes de la table attributaire doit impérativement correspondre à l'ordre de la composante cartographique.

Usage

Arguments

df le tableau externe
spdf objet spatial
df.field variable de jointure (tableau externe)
spdf.field variable de jointure (objet spatial)

Value

SpatialPolygonDataFrame

Author(s)

groupe ElementR

Source

R et espace p.196

barplot.week.variations 5

barplot.week.variations

Variation du nombre de RPU par semaine

Description

Variation du nombre de RPU par semaine

Usage

```
barplot.week.variations()
```

Arguments

X	vecteur du nombre de RPU pr semaine (voir week.rpu)
coltitre	bool, si TRUE la valeur de la barre est inscrite au dessus ou en dessous
colmoins	couleur des barres négatives. Red par défaut
colplus	couleur des barres positives. Blue par défaut
xlab	nom pour l'axe des X. 'Semaines' par défaut
cex.names	échelle pour le titre des barres (n° de la semaine). 0.8 par défaut
cex.col	échelle pour les valeurs des colonnes. Utile que si coltitre = TRUE. Défaut 0.8
dx	écart entre le sommet de la barre et l'affichage de sa valeur. Utile que si coltitre = TRUE. Défaut 3.
	autres paramètres pour boxplot

Value

le vecteur des abcisses des colonnes

Examples

```
v <- week.variations(dx[dx$FINESS == "3Fr",])
barplot.week.variations(v[-length(v)], las = 2, main = "test", ylim = c(min(v[-length(v)])-10, max(v[-length(v)])
ylab = "Variations hebdomadaires")

###
v <- week.variations(week.rpu(dx[dx$FINESS == "Col",]))
barplot.week.variations(v[-length(v)], las = 2, main = "CH Colmar - 2015",</pre>
```

ylim = c(min(v[-length(v)])-10, max(v[-length(v)])+10), ylab = "Variations hebdomadaires", dx = 5)

6 completude.time

	_		
com	വി	<u>α+ι</u>	ıda
COIII	יבט	こしし	uue

taux de completude global.

Description

Pour chacune des rubriques RPU calcule le taux de réponse (complétude)

Usage

```
completude(dx, calcul = "percent", tri = FALSE)
```

Arguments

dx Un dataframe

calcul 2 options "percent" (défaut) ou "somme". Somme = nb de réponses non nulles.

Percent = % de réponses non nulles.

tri si tri = TRUE (defaut) les colonnes sont triées par ordre croissant.

Details

todo

Value

vecteur des taux de complétude

Author(s)

JcB 2013-02-01

See Also

Other RPU: radar.completude

completude.time

Pour un etablissement donne, calcule le aux de completude par mois, semaine, jours

Usage

```
completude.time(dx, finess, time = "month")
```

copyright 7

Arguments

dx un dataframe de type RPU

finess établissement concerné ('Wis', 'Hag', 'Sav', ...)

time factor de découpage

Details

Au départ on dispose d'un dataframe de type RPU. Ce dataframe est splité en sous groupes sur une base temporelle (mois, jour, semaine...). Sur chacun des sous-groupes on applique la fonction "completude". Retourne un dataframe où chaque ligne correspond à une période et chaque colonne à un élément du RPU. Utilise "ddply" qui fonctionne comme tapply mais s'applique à un DF au lieu d'un vecteur et retourne un DF. TODO: exension à plusieurs établissements simultannéent; limitation à certaines colonnes.

Examples

```
load("~/Documents/Resural/Stat Resural/RPU_2014/rpu2015d0112_provisoire.Rda")
    # old
    sav <- d15[d15$FINESS == "Sav",] # Saverne 2015
    t3 <- ddply(sav, .(month(as.Date(sav$ENTREE))), completude) # completude par mois

# new
    library(xts)
    t3 <- completude.time(d15, "Sav", "day")
    a <- seq(as.Date("2015-01-01"), length.out = nrow(t3), by = 1)
    x <- xts(t3, order.by = a)
    plot(x[, "DP"], main = "CH Saverne - DIAGNOSTIC PRINCIPAL", ylab = "\% de complétude")

# TODO: tableau de complétude par mois et par Finess:
    t3 <- ddply(dx, .(dx$FINESS, month(as.Date(dx$ENTREE))), completude)
    # Application: rpu2014/Analyse/Completude/Analyse_completude</pre>
```

copyright

copyrigth

Description

Place un copyright Resural sur un graphique. Par défaut la phrase est inscrite verticalement sur le bord droit de l'image

Usage

```
copyright(an ="2013-2015", side=4, line=-1, cex=0.8, titre = "Resural")
```

8 count.CIM10

Arguments

an (str) année du copyright (par défaut 2013)

side coté de l'écriture (défaut = 4)

line distance par rapport au bord. Défaut=-1, immédiatement à l'intérieur du cadre

cex taille du texte (défaut 0.8)
titre par défaut RESURAL

Value

"© 2012 Resural"

Author(s)

JcB

count.CIM10

Combien de codes CIM10

Description

examine un vecteur de caractères et compte le nombre de mots compatibles avec un code CIM10 NA n'est pas compté comme un code CIM10

Usage

```
count.CIM10(vx)
```

Arguments

vx un vecteur de character

Value

n nombre de codes CIM1

Author(s)

JcB

```
count.CIM10(dx[dx$FINESS == "Col", "MOTIF"])
@export
```

datetime 9

datetime

met une string date au format YYYY-MM-DD HH:MM:SS

Description

met une string date au format YYYY-MM-DD HH:MM:SS

Usage

datetime(date)

Arguments

date

une chaine de caractère de type Date

Value

un vecteur date time (lubridate)

Note

nécessite lubridate

See Also

horaire, passage.nuit

Examples

Transforme des rubriques ENTREE et SORTIE en objet datetime

df.duree.pas

NA

Description

fabrique à partir d'un dataframe de type RPU, un dataframe de type duree_passage comportant les colonnes suivantes: date/heure d'ebtree, date/heure de sortie, durée de passage (en minutes par défaut), l'heure d'entrée (HMS), l'heure de sortie

fabrique à partir d'un dataframe de type RPU, un dataframe de type duree_passage comportant les colonnes suivantes: date/heure d'entree, date/heure de sortie, durée de passage (en minutes par défaut), l'heure d'entrée (HMS), l'heure de sortie

10 df.duree.pas

Usage

```
df.duree.pas(dx, unit = "mins", mintime = 0, maxtime = 3)
df.duree.pas(dx, unit = "mins", mintime = 0, maxtime = 3)
```

Arguments

dx un dataframe de type RPU

unit unité de temps. Défaut = mins

mintime défaut = 0. Durée de passage minimale

maxtime défaut = 3 (72 heures). Durée de passage maximale

dx un dataframe de type RPU

unit unité de temps. Défaut = mins

mintime défaut = 0. Durée de passage minimale

maxtime défaut = 3 (72 heures). Durée de passage maximale

Details

nombre de patients présents à une heure précide. Par exemple combien de patients sont présents à 15 heures? Ce sont tous les patients arrivés avant 15 heures et repartis après 15 heures On part d'un dataframe formé de deux colonnes (ENTREE et SORIE) où chaque couple est complet => il faut éliminer les couples incomplets. # usage: - créer un dataframe "duree de passage" avec df.duree.pas Ce dataframe est l'objet de base à partir duquel d'autres fonctions vont agir - la fonction is.present.at permet de créer un vecteur de présence d'un patient à une heure donnée, et de la le nombre de patients présents à une heure donnée sum(is.present.at), ou le nombre de patients présents à une heure donnée pour chaque jour de l'année (tapply) puis de tracer le graphe de présence Nécessite lubridate, Rpu2

Value

```
dataframe de type duree_passage
dataframe de type duree_passage
```

```
df <- df.duree.pas(dx)
df <- df.duree.pas(dx)</pre>
```

duree.passage2

duree	passage2
uui ee.	Dassagez

Calcul de la duree de passage

Description

todo

Usage

```
duree.passage2(dx, h1 = 0, h2 = 4320, hors_uhcd = TRUE)
```

Arguments

dx dataframe RPU

h1 durée minimale en minutes (par défaut > 0)

h2 durée maximale en minutes (par défaut 4320 = 72 heures)

hors_uhcd si TRUE (défaut) on retire les engegistrements où ORIENTATION = UHCD

Value

dataframe à 4 colonnes: entree, sortie, mode_sortie, duree (en mn), he (heure d'entrée), hs (heure de sortie)

evolution

Evolution d'une annee sur l'autre

Description

calcule l'évolution entre 2 chiffres

Usage

```
evolution(a, b)
```

Arguments

a chiffre de l'année courante b chiffre de l'année précédente

Value

pourcentage d'augmentation ou de diminution

```
evolution(n.rpu, n.rpu.2013)
```

12 finess2territoires

factor2table

NA

Description

```
crée une table à 2 colonnes: fréquence et pourcentage
```

Usage

```
factor2table(vx, pc = TRUE)
```

Arguments

vx un vecteur de facteurs ou d'entiers pc si TRUE crée une colonne de %

Value

une table

Examples

finess2territoires

Usage

finess2territoires(finess)

Arguments

finess code finess de létablissement

NA

```
dx$FINESS <- finess2territoires(dx)</pre>
```

format.n

format.n

formate un nombre

Description

formate un nombre en ajoutant un espace pour les milliers une virgule décimale pas de notation scientifique deux chiffres significatifs

Usage

```
format.n(x)
```

Arguments

Х

un nombre entier ou décimal

Examples

```
format.n(7890.14) # "7 890,14"
```

horaire

extrait l'heure d'une date AAAA-MM-DD HH:MM:SS

Description

extrait l'heure d'une date AAAA-MM-DD HH:MM:SS

Usage

```
horaire(date)
```

Arguments

date

une date ou un vecteur au format DATE

Value

un vecteur d'heures au format HH:MM:SS

```
e <- datetime(dx$ENTREE); he <- horaire(e)</pre>
```

14 is.present.at

is.present.at NA

Description

Crée le vecteur des personnes présentes à une heure donnée Crée le vecteur des personnes présentes à une heure donnée

Usage

```
is.present.at((dp, heure = "15:00:00"))
is.present.at((dp, heure = "15:00:00"))
```

Arguments

dp dataframe de type duree_passage

heure au format HH:MM:SS. C'es l'heure à laquelle on veut mesurer les pas-

sages

dp dataframe de type duree_passage

heure au format HH:MM:SS. C'es l'heure à laquelle on veut mesurer les pas-

sages

Value

```
np vecteur de boolean: TRUE si présent à l'heure analysee et FALSE sinon np vecteur de boolean: TRUE si présent à l'heure analysee et FALSE sinon
```

```
dp <- df.duree.pas(dx)</pre>
          dp$present.a.15h <- is.present.at(dp)</pre>
          # nombre moyen de patients présents à 15h tous les jours
          n.p15 <- tapply(dp$present.a.15h, yday(as.Date(dp$ENTREE)), sum)</pre>
          summary(n.p15)
          sd(n.p15)
          # transformation en xts
          xts.p15 <- xts(n.p15, order.by = unique(as.Date(dp$ENTREE)))</pre>
        plot(xts.p15, ylab = "Nombre de patients à 15h", main = "Nombre de patients présents à 15 heures")
          lines(rollmean(x = xts.p15, k = 7), col = "red", lwd = 2)
          # à 2h du matin
          dp$present.a.2h <- is.present.at(dp, "02:00:00")</pre>
          n.p2 <- tapply(dp$present.a.2h, yday(as.Date(dp$ENTREE)), sum)</pre>
          summary(n.p2)
          xts.p2 <- xts(n.p2, order.by = unique(as.Date(dp$ENTREE)))</pre>
        plot(xts.p2, ylab = "Nombre de patients présents", main = "Nombre de patients présents à 2 heures du matin
```

isWE

```
lines(rollmean(x = xts.p2, k = 7), col = "red", lwd = 2)
          # pour les données de 2015, noter le pic à 2 heures du matin
          # à 8 heures
          present.a.8h <- is.present.at(dp, "08:00:00")</pre>
          n.p8 <- tapply(present.a.8h, yday(as.Date(dp$ENTREE)), sum)</pre>
          summary(n.p8)
          xts.p8 <- xts(n.p8, order.by = unique(as.Date(dp$ENTREE)))</pre>
        plot(xts.p8, ylab = "Nombre de patients présents", main = "Nombre de patients présents à 8 heures du matin
          lines(rollmean(x = xts.p8, k = 7), col = "red", lwd = 2)
dp <- df.duree.pas(dx)</pre>
          dp$present.a.15h <- is.present.at(dp)</pre>
          # nombre moyen de patients présents à 15h tous les jours
          n.p15 <- tapply(dp$present.a.15h, yday(as.Date(dp$ENTREE)), sum)</pre>
          summary(n.p15)
          sd(n.p15)
          # transformation en xts
          xts.p15 <- xts(n.p15, order.by = unique(as.Date(dp$ENTREE)))</pre>
        plot(xts.p15, ylab = "Nombre de patients à 15h", main = "Nombre de patients présents à 15 heures")
          lines(rollmean(x = xts.p15, k = 7), col = "red", lwd = 2)
          # à 2h du matin
          dp$present.a.2h <- is.present.at(dp, "02:00:00")</pre>
          n.p2 <- tapply(dp$present.a.2h, yday(as.Date(dp$ENTREE)), sum)</pre>
          summary(n.p2)
          xts.p2 <- xts(n.p2, order.by = unique(as.Date(dp$ENTREE)))</pre>
        plot(xts.p2, ylab = "Nombre de patients présents", main = "Nombre de patients présents à 2 heures du matin
          lines(rollmean(x = xts.p2, k = 7), col = "red", lwd = 2)
          # pour les données de 2015, noter le pic à 2 heures du matin
          # à 8 heures
          present.a.8h <- is.present.at(dp, "08:00:00")</pre>
          n.p8 <- tapply(present.a.8h, yday(as.Date(dp$ENTREE)), sum)</pre>
          summary(n.p8)
          xts.p8 <- xts(n.p8, order.by = unique(as.Date(dp$ENTREE)))</pre>
        plot(xts.p8, ylab = "Nombre de patients présents", main = "Nombre de patients présents à 8 heures du matin
          lines(rollmean(x = xts.p8, k = 7), col = "red", lwd = 2)
```

isWE NA

Description

retourne TRUE si on est en horaire de week-end et False sinon

Usage

isWE(date)

16 mn2h

Arguments

date

date/heure de type YYYY-MM-DD HH:MM:SS

Details

la période de WE s'étend du vendredi 20 heures au lundi 8 heures. Nécessite lubridate. Ne traite qu'une date à la fois.

Value

boolean

Examples

```
isWE("2015-12-28 05:12:00") # TRUE
isWE(as.Date("2015-12-28 05:12:00")) # FALSE
```

mn2h

transforme des minutes en heure/mn

Description

transforme des minutes en heure/mn

Usage

mn2h(x)

Arguments

Х

integer = nombre de minutes

Value

char

n.isna 17

n.isna

Nombre de NA

Description

Nombre de NA dans un vecteur

Usage

```
n.isna(x)
```

Arguments

Χ

un vecteur quelconque

Value

en entier

p.isna

Pourcentage de NA

Description

Pourcentage de NA dans un vecteur

Usage

```
p.isna(x)
```

Arguments

Χ

un vecteur quelconque

Value

un pourcentage

passage

Horaires de passages

Usage

```
passage(he, horaire = "nuit")
```

Arguments

he vecteur time de type hms horaire = 'nuit', 'nuit profonde', 'jour'

Value

un vecteur avec 2 éléments: le nombre de passages et le pourcentage en fonction de la période (jour, nuit)

Note

necessite lubridate. Prend en compte toutes les heures et pas seulement celles comprises entre 0 et 72h (voir passage2)

See Also

horaire

Examples

```
e <- datetime(dx$ENTREE); he <- horaire(e); nuit <- passage(he, "nuit")</pre>
```

```
passages.en.moins.de.4h
```

Analyse les passages de moins de 4 heures.

Description

analyse les durée de passage de moins de 4 heures par rapport aux durées de passage conformes (c'est à dire de mons de 72 heures).

Usage

```
passages.en.moins.de.4h(dx)
```

Arguments

dx

un dataframe de type RPU

passages2

Value

n.so.conforme.dom, n.duree.passage.inf4h.dom, p.passages.en.moins.de.4h.dom, n.so.conforme.hosp, n.duree.passage.inf4h.hosp, p.duree.passage.inf4h.hosp

Warning

Cette fonction n'est pas terminée.

passages2

Nombre de RPU sur une plage horaire donnee

Description

Détermine le nombre de RPU sur une plage horaire donnée et le pourcentage par rapport au nombre total de passages contenus dans vx.

Usage

```
passages2(vx, h1, h2 = NULL)
```

Arguments

vx	vecteur de type datetime (dx\$ENTREE, dx\$SORTIE par exemple). Transformé par ymd_hms Transform dates stored as character or numeric vectors to POSIXct objects	
h1	char heure de début ou période: 'nuit', nuit_profonde', 'jour', 'pds', 'soir', '08:00:00'	
h2	char heure de fin. h2 doit être > h1	

Details

nécessite lubridate library(lubridate)

Value

2 objets: nombre de RPU et pourcentage

Author(s)

jcb

```
n.passages.nuit <- passages2(pop18$ENTREE, "nuit"); n.passages.nuit[1]; n.passages.nuit[2]</pre>
```

20 plot.xts2

pdsa

Determine si on est en horaire de PDS.

Description

Détermine si on est en horaire de PDS de WE (PDSWE) ou de semaine (PDSS) ou hors horaire de PDS (NPDS) à partir d'une date.

Usage

```
pdsa(dx)
```

Arguments

dx

vecteur date/heure au format YYYY-MM-DD HH:MM:SS

Details

REM sur xps les jours commencent par une minuscule alors que sur le Mac c'est une majuscule ?

Value

un vecteur de factor NPDS, PDSS, PDSW

Examples

```
x \leftarrow "2009-09-02 \ 12:23:33"; weekdays(as.Date(x)); pds(x) # NPDS
```

plot.xts2

plot.xts en couleur

Description

La méthode plot.xts comprte un bug qui empêche l'affichage de courbes en couleur. Cette version corrige le bug.

Usage

```
plot.xts2(x, y = NULL, type = "1", auto.grid = TRUE, major.ticks = "auto", minor.ticks = TRUE, major.febar.col = "grey", candle.col = "white", ann = TRUE, axes = TRUE, col = "black", ...)
```

Author(s)

Roman Luštrik (http://stackoverflow.com/users/322912/roman-lu

Source

http://stackoverflow.com/questions/9017070/set-the-color-in-plot-xts

print.summary.rpu 21

print.summary.rpu 1

Imprime un summary.rpu

Description

imprime un objet de type summary.rpu, en ligne eou en colonne (défaut) avec xtable.

Usage

Arguments

x un vecteur nommé

sens 'colonne' = vertical, 'ligne' = horizontal

cnames noms des colonnes rnames noms des lignes

Examples

```
x <- ummary.wday(es$ENTREE))
    print.summary.rpu(x, cnames = c("Jour","n"), caption = "Nombre de RPU par jour de semaine")</pre>
```

print.table.rpu

Imprime une table avec xtable.

Description

imprime une table avec xtable. Par défaut l'environnement est du type latex, le séparateur de milliers est l'espace et la virgule décimale

Usage

```
print.table.rpu(t, caption = "", type = "latex", ref = "")
```

Arguments

t un objet de type table

caption une légende. Mettre c("légende", "sommaire") si nécessaire

type "latex" ou "html"

ref référence du tableau (latex)

22 radar.completude

Examples

```
print.table.rpu(t)
    print.table.rpu(t, "table de test")
    print.table.rpu(t, "table de test", "html")
```

pyramide.age

pyramide des ages

Description

pyramide des ages

Usage

```
pyramide.age(dx, cut = 5, gap = 1, cex = 0.8,col.h = "light green", col.f = "khaki1")
```

Arguments

dx	datafrae RPU ou DF à 2 colonnes: AGE et SEXE
cut	intervalles. Par défaut tranche d'age de 5 ans, borne sup exclue: [0-5[ans
gap	largeur de la colonne age (N = 1, varie de 0 à)
col.h	couleur pour les hommes
col.f	couleur pour les femmes

Details

pyramid nécessite epicalc, pyramid.plot nécessite plotrix

radar.completude

dessine un graphe en etoile

Description

dessine un graphe en étoile à partir des données retournées par "completude"

Usage

```
radar.completude(completude, finess = NULL, titre = NULL)
```

Arguments

completude taux de completude global calculé par la fonction completude

finess character: nom de l'établissement. NULL (defaut) => tout le datafame

reorder.dataframe.fedoru 23

Value

diagramme en étoile

Author(s)

JcB 2013-02-01

See Also

Other RPU: completude

Examples

```
radar.completude(completude(dx))
```

reorder.dataframe.fedoru

Reordonne les colonnes du dataframe RPU dans l'ordre defini par la FEDORU.

Description

Permet une meilleure cohérence du diagramme en étoile

Usage

```
reorder.dataframe.fedoru(dx)
```

Arguments

dx

un dataframe de type RPU

reorder.vector.fedoru $N\!A$

Description

On part d'un vecteur contenant les intitulés du RPU et on le réordonne pour que les intitulés doient mis dans l'ordre du rapport FEDORU (proposition de GillesFaugeras)

Usage

```
reorder.vector.fedoru(dx)
```

Arguments

dx

un dataframe du typr RPU

24 resume.age.sexe

Value

un dataframe

resume.age

Resume du vecteur des AGE

Description

résumé du vecteur vx des AGE

Usage

```
summary.age(vx)
```

Arguments

VX

vecteur char AGE

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens", "n.inf1an", "n.inf15ans", "n.inf18ans", "n.75ans", "n.85ans", "n.90ans", "p.inf1an", "p.inf15ans", "p.inf18ans", "p.75ans", "p.85ans", "p.90ans", "mean.age", "sd.age", "median.age", "min.age", "q1", "q3")
```

Examples

```
summary.dp(dx$AGE)
```

resume.age.sexe

NA

Description

résumé des vecteurs AGE et SEXE

Usage

```
summary.age.sexe(dx)
```

Arguments

dx

dataframe RPU

Value

moyenne, écart-type, médiane par sexe

resume.ccmu 25

Examples

```
summary.age.sexe(dx)
```

resume.ccmu

Resume du vecteur vx des CCMU

Description

résumé du vecteur vx des CCMU

Usage

```
summary.ccmu(vx)
```

Arguments

٧X

vecteur de factor CCMU

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens", "n.ccmu1", "n.ccmu2", "n.ccmu3", "n.ccmu4", "n.ccmu5", "n.ccmup", "n.ccmud", "p.ccmu1", "p.ccmu2", "p.ccmu3", "p.ccmu4", "p.ccmu5", "p.ccmu0")
```

Examples

```
summary.ccmu(dx$GRAVITE)
```

resume.dateheure

Resume du vecteur des ENTREE ou SORTIE

Description

résumé du vecteur vx des ENTREE ou SORTIE

Usage

```
summary.dateheure(vx)
```

Arguments

VX

vecteur ENTREE ou SORTIE

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens"
```

```
summary.ccmu(dx$SORTIE)
```

26 resume.entree

resume.dp

Resume du vecteur DP (diagnostic principal)

Description

résumé du vecteur vx des DP (diagnostic principal)

Usage

```
summary.dp(vx)
```

Arguments

VX

vecteur char DP

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens"
```

Examples

```
summary.dp(dx$DP)
```

resume.entree

analyse du vecteur ENTREE ou SORTIE

Description

analyse du vecteur ENTREE ou SORTIE

Usage

```
summary.entree(vx)
```

Arguments

VX

vecteur de Date ou de DateTime

Value

```
vecteur nommé: "n", "n.na", "n.rens", "p.rens", "min", "max", "range"
```

Note

min et max ne s'affichent pas sous forme de date. Que donne hms

```
summary.entree(as.Date(pop75$ENTREE))
```

resume.mode.sortie 27

resume.mode.sortie

Resume du vecteur vx des MODE_SORTIE

Description

résumé du vecteur vx des MODE_SORTIE

Usage

```
summary.mode.sortie(vx)
```

Arguments

٧X

vecteur char MODE_SORTIE

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens", "n.dom", "n.hosp", "n.transfert", "n.mutation", "n.deces", "p.dom", "p.hosp", "p.transfert", "p.mutation", "p.deces")
```

Examples

```
summary.mode.sortie(dx$MODE_SORTIE)
```

resume.motif

analyse un vecteur de MOTIF

Description

retourne: le nombre d'éléments du vecteur (NA inclus), le nombre de NA, nombre et pourcentage de valeurs renseignées,

Usage

```
summary.motif(vx)
```

Arguments

٧X

vecteur de Char (motif)

Value

```
vecteur nommé: "n.na", "p.na", "n.rens", "p.rens"
```

28 resume.rpu

resume.passages

analyse un objet de type duree.passage2

Description

analyse un objet de type duree.passage2

Usage

```
summary.passages(dp)
```

Arguments

dp

un objet de type duree.passage2. Correspond à un dataframe d'éléments du RPU dont la rurée de passage est conforme cad non nulle et inférieure à 72 heures

Value

n.conforme NB de durées conformes (>0 mn et < 72 heures) duree.moyenne.passage durée moyenne d'un passage en minutes duree.mediane.passage durée médiane d'un passage en minutes duree.moyenne.passage.dom durée moyenne d'un passage en minutes si retour dom duree.mediane.passage.dom durée médiane d'un passage en minutes duree.moyenne.passage.hosp durée moyenne d'un passage en minutes si hospit. duree.mediane.passage.hosp durée médiane d'un passage en minutes n.passage4 nombre de passages de moins de 4 heures n.hosp.passage4 nombre de passages de moins de 4 heures suivi d'hospitalisation n.domicile nombre de retours à domicile n.dom.passage4 nombre de passages de moins de 4 heures suivi d'un retour à domicile n.dom nombre de retours à domicile

resume.rpu

calcule le nombre de RPU par SU, territoire de sante et departement.

Description

calcule le nombre de RPU par SU, territoire de santé et département à partir d'un dataframe RPU. Deux colonnes sont indispensables: ENTREE et FINESS

Usage

```
summary.rpu(dx)
```

Arguments

dx

un dataframe RPU ou un dataframe réduit à 2 colonnes: ENTREE et FINESS

Details

v1.0 24/08/2015

resume.sexe 29

Value

un objet "list" n nombre total de RPU n.tx total RPU du territoire x n.67 total pour le 67 n.68 total pour 68 n.xxx total pour le Finess xxx p.tx

Author(s)

```
JcB - 2015-08-24
```

Source

```
summary_rpu.R
```

Examples

```
s \leftarrow summary.rpu(d15); s[1]; s$debut; s$n
```

resume.sexe

NA

Description

retourne: le nombre d'éléments du vcteur (NA inclus), le nombre de NA, nombre et pourcentage de valeurs renseignées, nombre et pourcentage d'hommes et de femmes, sex ratio et taux de masculinité.

Usage

```
summary.sexe(vx)
```

Arguments

VX

vecteur de Char (sexe)

Value

```
vecteur nommé: "N", "n.na", "n.rens", "p.rens", "n.hommes", "n.femmes", "p.hommes", "p.femmes", "sex.ratio", "tx.masculinité"
```

30 rpu.par.jour

resume.transport

analyse du vecteur TRANSPORT

Description

analyse du vecteur TRANSPORT

Usage

```
summary.transport(vx)
```

Arguments

٧x

vecteur de Factor

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens", "n.fo", "n.heli", "n.perso", "n.smur", "n.vsav", "n.ambu", "p.fo", "p.heli", "p.perso", "p.smur", "p.vsav", "p.ambu"
```

Examples

```
\verb|summary.transport(pop75\$TRANSPORT)|\\
```

rpu.par.jour

Nombre de RPU par jour et par FINESS

Description

retourne une table contenant le nombre de RPU par jour et par FINESS

Usage

```
rpu.par.jour(dx)
```

Arguments

dx

un dataframe de type rpu ayant un minimum 2 colonnes ENTREE et FINESS

```
rpu.par.jour(d04)
```

rpu.par.jour2 31

rpu.par.jour2

A partir d'un vecteur de dates, calcule le nombre de RPU par jour

Usage

```
rpu.par.jour(d, roll = 7)
```

Arguments

d vecteur de dates compatible avec le format Date roll: nb de jours pour la moyenne lissée. Défaut = 7

Details

RAJOUTER LES SOMMES CUMuLEES. Nécessite xts, lubridate

Value

un dataframe de 4 colonnes: date calendaire, nb de RPU du jour, le n° du jour de l'année (1 à 365), la moyennne lissée

Examples

```
p2013 <- rpu.par.jour(j2013$ENTREE)
    plot(p2013$V2, type="1") # les RPU
    lines(p2013$V3, p2013$V4) # moyenne mobile</pre>
```

rpu.par.mois

Nombre de RPU par mois

Description

Calcule le nombre de RPU par mois entre deux dates sous forme brute ou corrigée en mois constants de 30 jours.

Usage

```
rpu.par.mois(dx, standard = FALSE)
```

Arguments

dx dataframe (au minimum la colonne ENTREE)

standard (boolean) si true retourne par mois corrigés de 30j sinon le nombre brut de RPU

32 rpu2xts

Value

un vecteur nommé: nom du mois, nb de RPU

Examples

```
tc1 <- rpu.par.mois(d15, FALSE)
tc2 <- rpu.par.mois(d15, TRUE)
a <- rbind(tc1, tc2)
par(mar=c(5.1, 4.1, 8.1, 2), xpd=TRUE)
barplot(a, beside = TRUE, cex.names = 0.8)
legend("topleft", inset = c(0, -0.1), legend = c("Brut", "Standardisé"), bty = "n", col = c("black", "gray80"), pch</pre>
```

rpu2xts

Transforme RPU eb XTS

Description

A partir du fichier habituel des RPU retourne un objet xts ayant autant de colonnes qu'il y a de SU dans d plus 2 colonnes supplémentaires: - date de type 'Date' qui sert d'index à xts - total nombre total de RPU par jour

Usage

```
rpu2xts(dx)
```

Arguments

dx

un datafrale de type RPU comportant au moins une colonne ENTREE

Value

un dataframe avec une colonne 'total'

```
ts <- rpu2xts(d0106p); plot(ts$total); lines(rollapply(ts$total, 7, mean), col="red")
```

summary.cp 33

summary.cp

resume du vecteur CODE_POSTAL (cp)

Description

résumé du vecteur vx des CODE_POSTAL (cp)

Usage

```
summary.cp(vx)
```

Arguments

VX

vecteur char CODE_POSTAL

Details

NECESSITE LA BIBLIOTHEQUE RPU_Doc/mes.constantes

Value

- nb de CP renseignés - nb de résidents alsaciens - nb d'étrangers

Examples

```
summary.cp(dx$CODE_POSTAL)
```

summary.destination

Resume de la DESTINATION

Description

résumé du vecteur vx des DESTINATION. En cas d'hospitalisation, il y a quatre destinations possibles: MCO, SSR, SLD et PSY. En ca de sortie au domicile: HAD et Structure médico-sociale (EHPAD)

Usage

```
summary.destination(dx, correction = TRUE)
```

Arguments

dx dataframe RPU

correction = TRUE: on ne retient que les destinations correspondant à une hospitalisation

34 summary.orientation

Details

MANQUE LE SUMMARY DU VECTEUR.

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens"
```

summary.duree.passage Resume de la Duree de passage.

Description

Résumé de dp. dp est produit par duree.passages2 et se présente sous forme d'un data.frame à 4 colonnes

analyse de la colonne durée

Usage

```
summary.duree.passage(dp)
```

Arguments

dp

un objet de type duree.passage2

Value

- nb de durées min durée max durée durée moyenne durée médiane écart-type 1er quartile
- 3ème quartile

summary.orientation

Resume de ORIENTATION

Description

résumé du vecteur vx des ORIENTATION

Usage

```
summary.orientation(dx, correction = TRUE)
```

Arguments

dx dataframe RPU

correction = TRUE: on ne retient que les orientation correspondant à une hospitalisation

summary.wday 35

Value

```
"n", "n.na", "p.na", "n.rens", "p.rens", "n.chir", "n.med", "n.obst", "n.si", "n.sc", "n.rea", "n.uhcd", "n.ho", "n.hdt", "n.reo", "n.scam", "n.psa", "p.chir", "p.med", "p.obst", "p.si", "p.sc", "p.rea", "p.uhcd", "p.ho", "p.hdt", "p.reo", "p.scam", "p.psa"
```

summary.wday

Nombre de RPU par jour de semaine

Description

à partir du vecteur vx des ENTREE, retourne le nombre de RPU pour chaque jour de la semaine

Usage

```
summary.wday(vx)
```

Arguments

VX

vecteur datetime

Details

La semaine américaine est modifiée pour correspondre à la semaine française commençant un lundi.

Value

vecteur nommé commençant le lundi

Examples

```
summary.wday(dx$ENTREE)
```

 $\verb|synthese.completude| \\$

Calcule le tableau des taux de completude de l'ensemble des Finess.

Description

A partir du dataframe initial (dx) calcule le tableau des taux de complétude de l'ensemble des Finess présents dans dx.

Usage

```
synthese.completude(dx)
```

36 tab.completude

Arguments

dx

dataframe de type RPU

Details

à compléter Le tableau comporte en ordonnée le nom des établissements, en abcisse les différents items du RPU et à l'intersection ligne/colonne la complétude correspondante. dx peut comprter un ou plusieurs Finess et concerner une période variable (semaine, mois, année...) Nécessite la librairie plyr pour la fonction ddply()

Value

un dataframe

Examples

```
synthese.completude(dx)\\ synthese.completude(dx<math>fINESS == "Hag",]) pour un seul établissement
```

tab.completude

tableau de completude par jour

Description

faire un tableau de complétude par jour pendant une période donnée Permet de suivre les taux de complétude pour une structure et par période

Usage

```
tab.completude(dx, d1, d2, finess = NULL)
```

Arguments

dx	dataframe de type R	PU
----	---------------------	----

d1 date de début d2 date de fin

finess = NULL ou un des finess abrégés autorisés. Si NULL, dx doit être spécifique

d'un établissement.

tarru 37

Examples

tarru

Taux de Recours Regional aux Urgences

Description

Les RPU générés par les habitants de la région sont comptés à partir du vecteur des codes postaux. Le rapport est calculé en divisant le nombre de RPU régionaux par la population de la région.

Usage

```
tarru(cp, pop.region, rpu.region)
```

Arguments

cp vecteur des codes postaux. Détermine le nb de RPU générés par des Alsaciens pop.region population régionale de référence

Value

un pourcentage

Examples

```
pop.region <- pop.als.tot.2014 <- 1868773
          tarru(dx$CODE_POSTAL, pop.als.tot.2014)</pre>
```

teste.radar

NA

Usage

```
teste.radar()
```

```
teste.radar()
```

38 week.variations

week.rpu

Calcule le nombre de RPU par mois

Description

Calcule le nombre de RPU par mois de tous les ES présents dans le dataframe

Usage

```
week.rpu(dx)
```

Arguments

dx

un dataframe de type RPU. Doit comporter au moins une colonne ENTREE

Details

Nécessite Lubridate. dx peut regroupper tous les ES ou ne converner qu'un ES Particulier.

Value

un vecteur du nombre de RPU par mois

Examples

```
s <- week.rpu(dx)
tot <- sum(s) # nombre total de RPU
p = s/tot # % de RPU par semaine
summary(p)</pre>
```

week.variations

Variation du nombre de RPU par semaine

Description

Variation du nombre de RPU par semaine

Usage

```
week.variations(vx, last = FALSE)
```

Arguments

vx vecteur du nombre de RPU pr semaine (voir week.rpu)

last boolean Si TRUE, on élimine la dernière semaine qui est souvent incomplète.

FALSE par défaut.

week.variations 39

Value

un vecteur d'entiers positifs ou négatifs

```
# d3 <- week.rpu(dx[dx$FINESS == "3Fr",])
# v <- week.variations(d3)</pre>
```

Index

*Topic étoile	passages2, 19
radar.completude,22	pdsa, 20
*Topic complétude	plot.xts2, 20
completude, 6	print.summary.rpu, 21
*Topic diagramme	print.table.rpu,21
radar.completude,22	pyramide.age, 22
*Topic spider ,	1
radar.completude,22	radar.completude, $6,22$
	reorder.dataframe.fedoru, 23
add.territoire, 3	reorder.vector.fedoru, 23
<pre>analyse_type_etablissement, 3</pre>	resume.age, 24
attribJoin,4	resume.age.sexe, 24
	resume.ccmu, 25
barplot.week.variations, 5	resume.dateheure, 25
1 () (22	resume.dp, 26
completude, 6, 23	resume.duree.passage
completude.time, 6	(summary.duree.passage), 34
copyright, 7	resume.entree, 26
count.CIM10,8	resume.mode.sortie, 27
datatina O	resume.motif, 27
datetime, 9	resume.passages, 28
df.duree.pas,9	resume.rpu, 28
duree.passage2, 11	resume.sexe, 29
evolution, 11	resume.transport, 30
evolution, II	rpu.par.jour, 30
factor2table, 12	rpu.par.jour2,31
finess2territoires, 12	rpu.par.mois, 31
format.n, 13	rpu2xts, 32
101 1114 1.11, 15	, pazzas, sz
horaire, 13	summary.cp, 33
1101 021 0, 10	summary.destination, 33
is.present.at, 14	summary.duree.passage, 34
isWE, 15	summary.orientation, 34
,	summary.wday,35
mn2h, 16	synthese.completude, 35
	, , , , , , , , , , , , , , , , , , , ,
n.isna, 17	tab.completude, 36
	tarru, 37
p.isna, 17	teste.radar, 37
passage, 18	
passages.en.moins.de.4h, 18	week.rpu,38

INDEX 41

week.variations, 38