PCCP

View Article Online PAPER

Cite this: Phys. Chem. Chem. Phys., 2014, 16, 7015

Oxygen vacancy formation and annihilation in lanthanum cerium oxide as a metal reactive oxide on 4H-silicon carbide

Way Foong Lim and Kuan Yew Cheong*

A mechanism regarding the redox reaction in lanthanum cerium oxide (La_xCe_yO_z) post-deposition annealed in reducing and oxidizing atmosphere was schematized and discussed in association with the presence of lanthanum as a substitutional cation. Analyses have been performed using X-ray diffraction, energy-filtered transmission electron microscopy, scanning transmission electron microscope-energy dispersive spectroscopy line scan, and capacitance-voltage measurements. The results showed the presence of an oxygen vacancy when La³⁺ was in its substitution site, while annihilation of oxygen vacancy was accompanied by a displacement of La³⁺ from the substitutional site to the interstitial site via a kick-out mechanism prior to its disappearance from the CeO₂.

Received 11th December 2013. Accepted 27th January 2014

DOI: 10.1039/c3cp55214d

www.rsc.org/pccp

1 Introduction

Keeping pace with the prevalent application of cerium oxide (CeO₂), straddling areas from catalysis^{1,2} to solid oxide fuel cells,3 gas sensors,4 and more recently as a passivation5,6 and catalytic layer, 7,8 or the so-called metal reactive oxide on semiconductor substrates, the inherent properties of CeO2 associated with its reversible change from the +4 to +3 oxidation state have been unveiled. Oxygen vacancies have been found as the indispensable key defects in CeO2, coupling with changes between the two oxidation states (Ce4+ to Ce3+) in order to achieve the desired redox-ability in the oxide. 9-11 Hitherto, numerous research investigations have conclusively deduced the improvement in oxygen vacancies after the addition of aliovalent cations to the oxide. 12-14

Kaspar et al. indicated that doping of CeO2 with foreign cations would offer different benefits from the catalytic features of CeO2, which include oxygen storage capacity, surface reducibility, and oxygen mobility. 15-20 On the other hand, if an isovalent cation is introduced to the CeO2 lattice, limited oxygen vacancy concentration will be induced²¹ due to the absence of a charge compensation mechanism. For instance, the doping of Zr⁴⁺ into the CeO2 lattice has proved that doped CeO2 is better than pure CeO₂ in terms of the lowering of the Ce⁴⁺ reduction energy or oxygen vacancy formation energy, which would enhance the kinetics of Ce4+ reduction, but additional oxygen vacancies are not created. Therefore, it is preferable to dope CeO₂ with lower

Electronic Materials Research Group, School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia. E-mail: cheong@eng.usm.my, wayfoong317@yahoo.com.sg; Fax: +604-5941011: Tel: +604-5995259

valence cations that can eventually increase the oxygen vacancy concentration in the CeO2. The consideration has been shrunk down to trivalent cations since bivalent dopants like Ca²⁺ that have been doped into CeO2 are thermally unstable, and thus phase segregation happened and the oxygen migration became more difficult.21-23

Various trivalent cations can be doped into CeO2, which include Sm³⁺, Y³⁺, La³⁺, Lu³⁺, Yb³⁺, Er³⁺, and Gd³⁺. Particular consideration is focused on the La³⁺ cation in this work is due to its widespread use in the high dielectric constant (k) mixed oxides in metal-oxide-semiconductor (MOS) based devices, which include $La_2Zr_2O_7$, ^{24–26} $LaAlO_3$, ^{27–29} and $La_2Hf_2O_7$. ^{30–32} The investigation of La^{3+} -doped CeO_2 as the high k gate oxide material in MOS based devices have not been explored by other researchers. Furthermore, the improved catalytic property of CeO₂ after doping with La³⁺ has heightened further investigation on La^{3+} -doped CeO_2 as a high k metal reactive oxide on a 4H-SiC substrate for the development of a 4H-SiC-based MOS capacitor gas sensor.

Several studies regarding the incorporation of trivalent lanthanum cations (La3+) into CeO2 to form lanthanum cerium oxide (La_xCe_yO_z) solid solutions have been carried out. 14,32-35 Previous literatures have included atomistic simulations and theories to investigate the materials aspect of the La³⁺-doped CeO₂. It is noteworthy from first principles density functional theory reported by Nakayama and Martin³⁶ that defect association and migration energy is strongly dependent on ionic radius of the cation, wherein a smaller size causes trapping of the oxygen vacancy at the next nearest site of the dopant while a larger size decreases the trapping effect but causes an increase in the migration energy. Nevertheless, the extent to

which the redox-ability of the resulting oxide goes is dependent on the dominance of the effect. Redox-ability can be improved when there are a large amount of oxygen anions which are mobile and are distributed randomly through the CeO₂ lattice through migration. Doping of the CeO₂ lattice in this work with La³⁺ which is larger in ionic radius (0.118 nm) when compared with Ce4+ (0.097 nm) may decrease the defect association energy but in the mean time increase the migration energy, which may reduce the oxygen mobility in the lattice. Nonetheless, there exists a trade-off relationship whereby the distribution of La3+ in CeO2 lattice needs to be taken into consideration. It was shown by Heinmaa et al.35 via 17O high resolution magic angle spinning nuclear magnetic resonance analysis that La³⁺ distribution in the lattice is almost random. Oxygen migration can happen either in the CeO₂ lattice between the regular oxygen sites or between occupied and vacant oxygen sites, depending on the doping level of La³⁺. It was deduced that the calculated migration energy is within 0.45 and 0.96 eV. These values are in agreement with the findings from Nakayama and Martin.36 Structural evidences have been used to deduce that the distribution of La³⁺ in the CeO₂ lattice is random³⁵ and in particular the formation of oxygen vacancies^{14,32,37} is accompanied by a reduction of the Ce⁴⁺ to Ce³⁺ states.¹⁴ Whilst this phenomenon may be the primary defect mechanism in La_xCe_vO_z, other related studies have been performed, and utilization of the oxide for carbon monoxide adsorption32 has been used to successfully detect the location of oxygen vacancies in the oxide. Following findings from Heinmaa et al.35 regarding oxygen anion migration via a hopping mechanism, O'Neill and Morris14 further supported the idea that the oxygen anions are mobile and are distributed randomly through the CeO2 lattice. On the other hand, phenomena associated with oxidation from the Ce³⁺ to Ce⁴⁺ states have been reported by utilizing La_xCe_vO_z for soot oxidation³⁸ in ambient oxygen. This reversed transformation from Ce³⁺ to Ce⁴⁺ states happens as a result of an oxygen exchange between the ambient gas phase oxygen and lattice oxygen in the oxide. A similar oxidation was carried out by Fleming et al. with the exception that the oxide was subjected to oxygen exposure after argon treatment.³⁹ The oxidation process has been described as a surface-mediated process, however there is no evidence to justify the idea that there are remaining oxygen vacancies after the completion of oxidation process.

Although $La_x Ce_y O_z$ has been studied both theoretically and experimentally, the contribution of La^{3+} in the CeO_2 lattice, which may involve more complex defect chemistry than has been expected, is scant. Therefore, the present work is focused on further exploration of this aspect. In this work, a detailed mechanism involving redox that elaborates the function of lanthanum in perturbing the CeO_2 lattice and facilitating the removal of oxygen as well as the dwindling of lanthanum and oxygen vacancies from the CeO_2 lattice after oxygen gain is presented. The suggested mechanism is based on theoretical findings from previous literatures and supporting data from the present work. Dissimilar from previous work, which systematically studied $La_x Ce_y O_z$ using atomic simulations

and/or theoretical aspects, the experimental studies of $\text{La}_x\text{Ce}_y\text{O}_z$ deposited on a 4H-SiC substrate in this work have been performed by varying one of the processing parameters, which is by undergoing post-deposition annealing of the sample firstly in a reducing ambient to elaborate the reduction process in the oxide and then in an oxidizing ambient to describe the oxidation process in the oxide.

2 Experimental procedures

In this work, the $La_xCe_yO_z$ precursor was prepared using a wet chemical route, which is the metal-organic decomposition (MOD) method. Two types of precursors were prepared, one is associated with the cerium-containing precursor and the other one is associated with the lanthanum-containing precursor. The starting reagents used were [Ce(acac)₃] and lanthanum nitrate hydrate powders. Mixed solvent systems (acetic acid and methanol) were used to ensure the desired dissolution and reaction behaviour. Acetic acid (CH₃COOH) was added to the precursor mixture for suppression of hydrolysis, which in turn results in a precursor species, which is desirable for film formation. Methanol (CH3OH) was added to control the solution stability. An optimum molarity of 0.25 M of the cerium-containing precursor was prepared by dissolving 1.0936 g of the Ce(acac)₃ powder in 6 ml of CH₃COOH and the mixture was stirred at room temperature for 5 min before CH₃OH (4 ml) was added. The resulting mixture was then heated on a hot plate at 60 °C for 15 min. Simultaneously, different molarities of lanthanum-containing precursor were prepared by mixing an appropriate amount of the lanthanum nitrate hydrate [La(NO₃)₃·6H₂O] powder with an appropriate volume of acetylacetone solution to obtain an acac type of precursor. The solution was stirred at room temperature (r.t.) for 5 min prior to heating on a hot plate for 15 min with continuous stirring. Both precursors were subsequently mixed together in a beaker and stirred continuously at r.t. for another 15 min. After that, the mixture was poured into a round bottom flask, which was placed on a heating mantle. The mixture was lastly subjected to a reflux process at 130 °C for 2 h to allow the chelating process between two precursors to occur and so to obtain a more attractive final solution in terms of solution stability and film formation behaviour. The resulting La_rCe_vO_z precursor was cooled down prior to spin-coating on a RCA (Radio Corporation of America)-cleaned, 4.09°-off (0001) oriented, n-type Si-faced 4H-SiC substrate at a spinning rate and time of 4000 rpm and 30 s, respectively. After spinning, the samples were post-deposition annealed (PDA) at 1000 °C in ambient forming gas (FG; 95% N2-5% H2) and ambient oxygen [99.999% oxygen (O_2)] (heating and cooling rate = 5 °C min⁻¹) for 15 min.

An X-ray diffraction system (P8 Advan-Bruker) was used to characterize the presence of phase and orientation of $\text{La}_x\text{Ce}_y\text{O}_z$ film (scan range of $2\theta = 25\text{-}60^\circ$; step time = 71.60 ms; step size $2\theta = 0.0322^\circ$). Cross-sectional studies of the $\text{La}_x\text{Ce}_y\text{O}_z/4\text{H-SiC}$ were performed using energy filtered (Zeiss Libra 200)

PCCP

transmission electron microscopy (EFTEM) operated at 200 kV. Initially, a protective layer of resist and platinum was sputtered on the top surface of the La_xCe_vO_z films deposited on the 4H-SiC substrates. Subsequently, the samples were placed in a chamber for an ion milling process using a focused ion beam (FIB). The FIB was used to prepare TEM lamella samples using approximately 30 kV and 65 nA for voltage and current of the ion beam, respectively. The lamella sample, once finished thinning, was transferred to a TEM copper (Cu) grid using platinum deposition. Final thinning was performed on the lamella sample using an ion beam at 5 kV and current 81 pA. Subsequently, the Cu grid holding the TEM lamella samples was inserted into the TEM chamber. The oxide and IL thickness of the investigated samples were measured using ImageJ software. Scanning TEM mode (STEM; FEI Tecnai TF-20) with a high-angle annular dark field (HAADF) detector was used to obtain full 0-20 keV energy dispersive X-ray spectroscopy (EDS) spectra for line scan analysis on the samples. Impedancecapacitance-resistant (ICR) meter (Agilent 4284) and a semiconductor parameter analyzer (Keithley 4200-SCS) were utilized to measure the high frequency (1 MHz) C-V measurements on Al/La_xCe_vO_z/4H-SiC metal-oxide-semiconductor (MOS) capacitors by sweeping the gate voltage bi-directionally from -4 to 4 V. Flatband voltage shift ($\Delta V_{\rm FB}$) of the C-V curves can be used to calculate effective oxide charges (Q_{eff}) present in the oxide, which includes the oxide fixed charge, oxide trapped charge, and any mobile ionic charge⁴⁰ using eqn (1)

$$Q_{\rm eff} = \Delta V_{\rm FB} C_{\rm ox} / q A_{\rm G} \tag{1}$$

where C_{ox} is the oxide capacitance, q is the electronic charge, and A_G is the area of capacitor.

Results and discussion

In order to obtain deep insights into the redox reaction in La_xCe_vO_z, the effects of post-deposition annealing in ambient FG and O2 have been investigated. A plausible mechanism consisting of four elementary steps to elaborate the reaction is schematized in Scheme 1(a) and (b).

Scheme 1(a) is referred to as the reduction process in La_rCe_vO_z that has been PDA in ambient FG. The mechanism initiates with (1) substitution of Ce⁴⁺ cations with trivalent La³⁺ cations, (2) formation of oxygen vacancies, (3) transition from Ce⁴⁺ to Ce³⁺ states, and/or (4) re-oxidation.

Due to a similarity in ionic radius between La³⁺ (0.118 nm) and Ce4+ (0.097 nm) cations, a substitutional solid solution is formed, whereby the La3+ would substitute Ce4+ in the CeO2 lattice (Step 1). It has been reported that La_xCe_yO_z is a solid solution⁴¹ of La₂O₃ in CeO₂ and thus the crystal structure of La_xCe_vO_z follows the cubic fluorite structure of CeO₂ [The International Centre for Diffraction Data (ICDD) file no. 00-034-0394]. The formation of $La_rCe_vO_r$ has been confirmed *via* the detection of X-ray diffraction (XRD) peaks of $La_xCe_yO_z$, oriented at (111), (200), (220), and (311) planes (Fig. 1(b)).

Scheme 1 (a) Reduction process in $La_x Ce_y O_z$, described from Step (1) to Step (4) and (b) oxidation process in $La_xCe_yO_{z}$, described from Step (4') to Step (1') following the opposite sequence in (a).

The substitution of Ce⁴⁺ into the CeO₂ lattice by La³⁺ would lead to a localized distortion and therefore enlarging octahedral site of unit cell in the cubic fluorite lattice of CeO2.37 With these, it is not surprising to have a larger lattice parameter in La_xCe_vO_z. Supporting evidence can be obtained through the XRD peaks' shifts of $La_xCe_yO_z$ (Fig. 1(b)) to lower diffraction angles with respect to those of CeO2.11 In addition, the interplanar spacing, d, of crystalline regions observed in bulk oxide using a cross-sectional EFTEM image (Fig. 2(a) and (b)) has been measured and compared with the calculated d values of $La_x Ce_y O_z$ using Bragg's law. The measured d values (0.28-0.36 nm) are comparable with the calculated d values of $La_x Ce_y O_z$ oriented in (111) (0.33 nm) and (200) (0.28 nm) planes. Additional XRD peaks associated with lanthanum silicate (La_{9.33}Si₆O₂₆) with an ICDD no. 00-049-0443 oriented in the (022) plane and 4H-SiC (0001) with an ICDD no. 00-022-1317 are also detected. The formation of La9,33Si6O26 has been discussed elsewhere. 42,43

Fig. 1 X-ray diffraction patterns of La_xCe_vO_z PDA in ambient (a) Ar, (b) FG, and (c) O2. The inset shows the calculated crystallite site and microstrains of LaxCeyOz using a Williamson-Hall approach.

Paper

Fig. 2 Cross-sectional EFTEM (a) image and (b) zoomed in image and (c) EDS line scan of $\text{La}_x\text{Ce}_y\text{O}_z$ PDA in ambient FG. The yellow rectangle and arrow indicate respectively the area of interest and direction for the line scan.

According to Kroger-Vink notation, ⁴⁴ substitution of Ce^{4+} in CeO_2 by La^{3+} cation would lead to the formation of oxygen vacancies and the release of O_2 gas molecules (eqn (2)).

$$La_2O_3 + 6Ce_{Ce}^{\times} \rightarrow 2La_{Ce}' + 6Ce_{Ce}' + 4V_0^{\bullet \bullet} + 3/2O_2 (g)$$
 (2)

where Ce_{Ce}^{\times} is neutral Ce on the Ce lattice; $V_o^{\bullet \bullet}$ is the oxygen vacancy on the oxygen site with a charge of +2, Ce'_{Ce} and La'_{Ce} denote Ce on the Ce site and La on the Ce site, respectively. One school of thought indicates that the presence of La³⁺ in the CeO₂ lattice would give rise to (La³⁺-O^{vacancy}) defect centres with the oxygen holes (O⁻) compensating for the lower valence La³⁺. ³² Oxygen vacancies may form and lead to (Ce⁴⁺-O^{vacancy}) defect centres, provided that the associated Ce4+ cations are reducible to Ce³⁺ states.³² Studies of La_xCe_vO_z as a function of post-deposition annealing temperature in argon (Ar) ambient has deduced the co-existence of Ce4+ and Ce3+ states with predominant Ce³⁺ states in the oxide based on an X-ray photoelectron spectroscopy (XPS) depth profiling analysis of Ce 3d core level spectra. 43 Moreover, the acquisition of a negative flatband voltage shift of capacitance-voltage (C-V) curves supports the existence of positively charged defect centres in the oxide.⁴⁵ These clues have pre-determined that the oxygen vacancies are dominant in the oxide when compared with oxygen holes. Oxygen vacancies are doubly positively charged since two electrons carried by oxygen anion (O²⁻) that should occupy the site are missing. The formation of the oxygen vacancy (Step 2) is due to the removal of one oxygen anion (O²⁻) from the CeO₂ lattice when La³⁺ substitutes Ce⁴⁺ in the lattice. The two electrons are then transferred to neighbouring Ce4+ cations, followed by reduction of the Ce⁴⁺ states to Ce³⁺ states (Step 3). The occurrence of this is attributed to the localization of two electrons from the p orbital of the oxygen anion to 4f orbitals of Ce^{4+} , leading to the formation of Ce^{3+} , according to the localization concept proposed by Skorodumova *et al.*⁴⁶ The disappearance of electrons from the anion forms the O_2 , according to eqn (3) and (4).

$$2O^{2-} \rightarrow O_2 + 2e^-$$
 (3)

$$2Ce^{4+} + 2e^{-} \rightarrow 2Ce^{3+}$$
 (4)

It was proposed that the O_2 gas molecules can either diffuse outward to the oxide surface or diffuse inward to the oxide–4H-SiC interface. The outward diffusing O_2 gas molecules can be re-captured by the oxide at the surface through adsorption at the surface oxygen vacancies (Step 4). Adsorption of O_2 molecules at the oxygen vacancies may form active oxygen species, which are the O_2^- and/or O_2^{2-} ions, according to density functional theory calculations performed by Chen *et al.*⁴⁷ These active oxygen species may subsequently dissociate to O_2^{2-} and be incorporated into the oxide, depending on the available oxygen vacancy sites for the adsorption of O_2 gas.

In this work, in order to prove that oxygen vacancies are formed in the La_xCe_vO_z PDA in ambient FG, effective oxide charges (Q_{eff}) present in the oxide are calculated based on the flatband voltage shift of the C-V curve in Fig. 3. It is worth noting that positive Q_{eff} have been perceived, further assuring us of the presence of oxygen vacancies in La_xCe_vO₂. Nevertheless, the C-V curve of $La_xCe_yO_z$ PDA in ambient Ar is shifted to the more negative side, 45 indicating the presence of a higher amount of oxygen vacancies in the oxide. Supporting evidence can be obtained by approximating the concentration of oxygen vacancies based on principle component analysis, outlined by Holgado et al.⁴⁸ using the equation $[V_o] = 19.6 \times 1.6^{-D}$ where $[V_o]$ is the oxygen vacancy concentration and D is the crystallite size. The Williamson-Hall approach has been adapted to calculate the D from line broadening of the XRD peaks. 49 The results indicate that the D of $La_xCe_yO_z$ PDA in FG (26.3 nm) is greater than that in ambient Ar (25.0 nm, inset of Fig. 1). The calculated $[V_0]$ is therefore 4.26 for FG and 4.59 for Ar.

Fig. 3 High frequency (1 MHz) capacitance–gate voltage (C-V) curves of $La_xCe_yO_z$ PDA in ambient Ar, ⁴⁵ FG, and O_2 . The inset shows the calculated effective oxide charge from the flatband voltage shift of the C-V curves.

PCCP Paper

Apart from these, the decrease in total oxide thickness (120.6 nm) measured from the cross-sectional EFTEM image for FG-annealed $La_xCe_yO_z$ (Fig. 2(a)) when compared with the cross-sectional high resolution TEM (HRTEM) image of Ar-annealed La_xCe_yO_z (138.0 nm)⁴³ has suggested an improvement in the oxide density, which can be related to a reduction in $[V_0]$.

In addition, formation of a thin interfacial layer (IL) at the La_rCe_vO_z/4H-SiC interface, shown by cross-sectional EFTEM image in Fig. 2(a) for the sample post-deposition annealed in ambient FG was detected. This IL was determined by EDS line scan analysis (Fig. 2(c)) as the Si-O-C IL. The emergence of the Si-O-C IL is believed to be due the oxidation effect brought either by the inward diffusing O2 gas molecules and active oxygen species (from the oxide) or oxygen molecules from the ambient gas. The latter assumption is eliminated, attributed to the absence of oxidizing species from the post-deposition annealing ambient, which is the ambient FG. Therefore, it is mentioned that the inward diffusing O2 gas molecules and active oxygen species are responsible for the growth of the Si-O-C IL.

Apparently, post-deposition annealing of the $La_xCe_yO_z$ in ambient FG should have created a higher amount of oxygen vacancies than that in ambient Ar since FG is an oxygen poor condition. The attainment of an opposite finding suggests the occurrence of the following mechanism that relates with of the FG molecules on oxygen vacancies in La_xCe_vO₂. During post-deposition annealing of the La_xCe_yO_z deposited on the 4H-SiC in ambient forming gas, which is comprised of N2 and H2, two plausible phenomena may happen, in which the N2-H2 gas molecules may or may not interact with the inward and/or outward diffusing O2 gas molecules, followed by adsorption on oxygen vacancy site. The interaction of N2-H2 molecules with O2 may happen, due to a higher electronegativity value of O (3.44) when compared with N (3.04) and H (2.20). These N₂H₂O₂ gas molecules are subsequently adsorbed on the oxygen vacancies of La_xCe_vO_z. In the former case, the resulting adsorbed products may be N2 and H2O while in latter case, N2 and H2 are formed. These assumptions are made based on the dehydrogenation process, which may happen, as conveniently described by Huang et al., 50 whereby N2 and H are formed (eqn (5)). The process is a proton transfer process, in which the H⁺ may bind to O₂ gas molecules (eqn (6)) and form H₂O, which becomes vapour gas and disappears from the lattice, leaving N2 and electrons in the lattice (eqn (7)). The evaporation of H₂O may happen since the post-deposition annealing temperature (1000 °C) used is much higher than the boiling temperature of H₂O. The N₂ may combine with the electrons and form N_2^{2-} (eqn (8)). Subsequent incorporation of the ${\rm N_2}^{2-}$ into the bulk oxide forms ${\rm N}^{3-}$ (eqn (9)). The reduction of $N_2^{\ 2-}$ to $2N^{3-}$ may happen when two neighbouring Ce⁴⁺ cations transfer two electrons to 2N⁻.

$$N_2H_2 \rightarrow N_2H + H^+ + e^-$$
 (5)

$$N_2H \rightarrow N_2 + 2H^+ + 2e^-$$
 (6)

$$2H^+ + O_2 \rightarrow 2H_2O \tag{7}$$

$$N_2 + 2e^- \rightarrow N_2^{2-}$$
 (8)

$$N_2^{2-} \to 2N^- \to 2N^{3-}$$
 (9)

The N³⁻ ions may substitute into the oxygen vacancies in the lattice. The N³⁻ is plausible to substitute into the oxygen vacancies since N3- with an ionic radius of 143 pm can accommodate the vacancies previously occupied by O²⁻ anions with an ionic radius of 140 pm. It is foreseen that substitution of N³⁻ in one oxygen vacancy will induce the formation of more oxygen vacancies in neighbouring anion sites and the reduced Ce³⁺ cations are oxidized to Ce⁴⁺ states for charge neutrality. This is an extraordinary condition with the presence of (Ce4+-Ovacancy) defect centres. Nevertheless, the findings from the $Q_{\rm eff}$ (Fig. 3) calculated from the flatband voltage shift of the C-V curve, which showed a lesser positive charge, allow us to deduce that this assumption may not possible. Moreover, the attainment of a smaller $[V_0]$ in this sample suggested that the N^{3-} anions do not replenish the oxygen vacancies. This is because substitution of the N3- ions would increase the amount of oxygen vacancies in the lattice. Therefore, it is expected that larger positive charges are attained. The acquisition of a lesser positive charges suggested that the nitrogen ions did not take part in oxygen vacancy association. The detection of a thinner Si-O-C IL (1.6 nm) measured from the cross-sectional EFTEM image when compared with the oxide post-deposition annealed in Ar ambient (2.5 nm), which was carried out previously, suggested that the N³⁻ ions reside at the oxide-4H-SiC interface and suppress the growth of the Si-O-C IL by accumulating at the oxide-4H-SiC interface as a barrier layer. The formation of a thinner Si-O-C IL thickness (1.6 nm) in FG-annealed La_xCe_vO_z measured from the EFTEM image (Fig. 2(a)) than in Ar-annealed $La_xCe_yO_z$ (2.5 nm)⁴⁴ has supported the hypothesis about N3- anions. The presence of N3- anions at the interface creates repulsive forces to the inward diffusing O2 and/or adsorbed oxygen species. Therefore, the amount of inward diffusing O2 and/or adsorbed oxygen species to oxidize 4H-SiC substrate surface 42,43 for the formation of the Si-O-C IL is decreased. Energy dispersive spectroscopy (EDS) line scan analysis (Fig. 2(c)) acquired from scanning TEM images that are focused by a high-angle annular dark field detector has also shown the detection of the Si-O-C IL.

On the other hand, the oxidation process (Scheme 1(b)) in $La_x Ce_y O_z$ can be described as an opposite process of the four aforementioned steps in Scheme 1, following the sequence from step (4)' to step (1)'. In short, Scheme 1(b) is a recovery process of Scheme 1(a), which brings the entire system close to the original condition of CeO₂, whereby the La³⁺ cations that have been introduced into the CeO2 lattice are de-activated. By undergoing post-deposition annealing of La_xCe_yO_z in ambient O2, adsorption of O2 molecules (Step 4') from the ambient would happen on oxygen vacancies in La_xCe_vO_z. A charge transfer involving electrons from the neighbouring reduced Ce³⁺ cations to the O₂ molecules happens in order to have the O₂ molecules slightly negatively charged (2O₂⁻). In this stage, the reduced Ce3+ is oxidized back to the Ce4+ state (Step 3').

The adsorption process is followed by dissociation to monatomic ions 20⁻ that reduces to 20²⁻. It is envisioned that either the adsorbed 202- ions will fill two oxygen vacancies

or with an oxygen vacancy filled and leaving another O²⁻ diffusing to the bulk oxide or departing as O2 gas to the surface (Step 2'). At present, justification for the dominance of either of these mechanism remains unclear. Nonetheless, an assumption has been drawn by comparing EDS line scan analysis between La_rCe_vO₂ PDA in ambient FG and O₂ (Fig. 2(c) and 4(c)). Based on the EDS line scan analysis, the intensity of O for O₂-annealed La_rCe_vO_z is lower than FG-annealed La_rCe_vO_z. Supposedly, post-deposition annealing in O2 ambient will supply more O2 molecules to the oxide. The O2 molecules once adsorbed either fill one oxygen vacancy or two oxygen vacancies, the resulting positive Q_{eff} in the oxide will become smaller than the FG-annealed $La_xCe_yO_z$. This is in agreement with the calculated Q_{eff} in (Fig. 3) for O_2 -annealed $La_x Ce_y O_z$. However, the attainment of a lower intensity of O in EDS line scans for O₂-annealed La_xCe_vO_z when compared with the FG-annealed $La_x Ce_y O_z$ reflects that much of the adsorbed O^{2-} not filling the oxygen vacancies has been missing from the bulk oxide (Fig. 4c). A detailed illustration of the disappearance of O will be discussed in subsequent step (step 1').

Following the re-oxidation of Ce^{3+} to the Ce^{4+} state after the adsorption filling of oxygen vacancies by adsorbed O^{2-} , a charge compensation can be accomplished by forming [La³⁺–O⁻] defect centres, which are similar to the initial condition described when La³⁺ cations are substituting Ce^{4+} in the CeO_2 lattice. Due to the acquisition of the lowest $Q_{\rm eff}$ and lowest [$V_{\rm o}$] (2.53) that is calculated by considering D (35.2 nm) from the Williamson–Hall approach, it is undeniable that [La³⁺–O⁻] defect centres may be present in La_x Ce_yO_z PDA in ambient O_2 . Conversely, the La profile in the EDS line scan for this sample is relatively low (Fig. 4(c)) when compared with the

Fig. 4 Cross-sectional EFTEM (a) image and (b) zoomed in image and (c) EDS line scan of $La_xCe_yO_z$ PDA in ambient O_2 . The yellow rectangle and arrow indicate respectively the area of interest and direction for the line scan.

La_rCe_vO_r PDA in ambient FG (Fig. 2(c)). This condition is unlikely due to the preparation method of La_xCe_vO_z because the same molar ratio of La:Ce (1:1) has been used for the $La_xCe_yO_z$ PDA in ambient Ar, 42,43 FG, and O_2 . Due to the utilization of same molar ratio, XPS wide scans of La and Ce have showed comparable intensity of La and Ce in the oxide for Ar-annealed La_xCe_vO_z while the EDS line scan for FG-annealed La_rCe_vO_z (Fig. 2(c)) shows a similar intensity of La and Ce in the bulk oxide. Therefore, it is concluded that some of the substitutional La³⁺ has been withdrawn from the CeO₂ lattice. If this happens, the defect centres will be reduced. In Scheme 1(a), the substitution of Ce4+ with La3+ has been discussed. This substitution has in fact displaced the Ce⁴⁺ from the bulk to interstitial sites. When oxidation happens in La_xCe_vO_z, for charge neutrality, besides annihilation of oxygen vacancies via adsorption filling, a kick-out mechanism^{51,52} will occur. A kick-out mechanism commonly happens when the diffusing interstitial atoms have comparable size with the substitutional impurity atom. 52,53 In this case, the Ce4+ interstitials that are fairly mobile will diffuse around the CeO2 lattice. When the Ce4+ interstitials reach the substitutional La³⁺, the interstitials will push the substitutional La³⁺ to adjacent interstitial sites (Step 1'). The reduction in intensity of La observed in the EDS line scan (Fig. 4(c)) is explainable when some of the La³⁺ interstitials are diffusing outward to the surface along with C-O that is diffusing outward from the $\text{La}_x\text{Ce}_y\text{O}_z/4\text{H-SiC}$ interface, as is described in ref. 42 and 43. This can be used to explain the relatively lower intensity of O in $La_xCe_yO_z$ PDA in ambient O_2 . The idea of outward diffusion of the La³⁺ interstitials has been seen in the literatures that have reported about diffusion of titanium interstitials from the bulk oxide to the surface and react with oxygen when the reduced titanium oxide (TiO2) crystal is annealed in an oxidizing ambient gas.⁵² Unlike the case of TiO₂, metastable La₂O₃ phases are not detected at the surface of the La_xCe_vO_z. Nonetheless, the vanishing of La^{3+} from $La_xCe_yO_z$ is supported *via* the XRD peak shift of La_xCe_vO_z (Fig. 1(b)) to higher diffraction angles, which are closer to the XRD patterns of CeO2 (Fig. 1(a)). Besides, d values (0.18–0.28 nm) measured from the EFTEM image Fig. 4(a) are matched with the calculated d values for $La_xCe_yO_z$ oriented in (200) (0.27 nm), (220) (0.19 nm), (311) (0.17 nm) planes and La_{9,33}Si₆O₂₆ (0.23 nm). Apart from these, cross-sectional EFTEM studies have deduced a decrease in total oxide thickness (94.3 nm) in $La_x Ce_y O_z$ PDA in ambient O_2 when compared with $La_x Ce_y O_z$ PDA in ambient FG (120.6 nm). This is an indication of an improvement in the oxide density as a result of a decrease in positive Qeff (oxygen vacancies) in LaxCevOz PDA in ambient O2 (Fig. 2). Above and beyond comparing $La_xCe_yO_z$ PDA in ambient Ar, FG, and O₂, the calculated microstrain is decreasing with the decrease in Q_{eff} (Fig. 2) but with the increase in D (inset of Fig. 1) from $La_xCe_yO_z$ PDA in ambient Ar to O_2 . This phenomenon is attributed to the ease for agglomeration of neighbouring crystallites when lower amounts of oxygen vacancies are present, as in the O2-annealed LaxCevO2. The microstrain is reduced in the sample due to a reduction in available oxygen vacancies for migration of O^{2-} to happen.

4 Conclusions

PCCP

In conclusion, the findings from present work have envisaged the occurrence of redox in $La_xCe_yO_z$, which can be manipulated by changing the processing conditions of $La_xCe_yO_z$ to being in either a reducing or oxidizing ambient. The redox reaction is a cyclic process, whereby the switching between Ce^{4+} to Ce^{3+} states as well as the kick-out mechanism involving the substitutional and interstitial cations, can be reversed back provided that the La^{3+} cations are still active in the lattice. At present, there is no clear understanding for the de-activation of La^{3+} cations, in which the La^{3+} cations are pushed away from the lattice. Although the proposed model has more spaces for improvement, it provides a framework for better understanding the chemistry of O_2 on $La_xCe_yO_z$.

Acknowledgements

One of the authors (W. F. Lim) would like to acknowledge financial support given by the Vice Chancellor's Award, USM-RU-PRGS (8043001), and Malaysia Toray Science Foundation (MTSF) grant (6050205).

References

- 1 J. Kaspar, P. Fornasiero and M. Graziani, *Catal. Today*, 1999, **50**, 285–298.
- 2 A. Trovarelli, C. de Leitenburg, M. Boaro and G. Dolcetti, *Catal. Today*, 1999, **50**, 353–367.
- 3 L. Adijanto, A. Sampath, A. S. Yu, M. Cargnello, P. Fornasiero, R. J. Gorte and J. M. Vohs, *ACS Catal.*, 2013, 3, 1801–1809.
- 4 P. Jasinski, T. Suzuki and H. U. Anderson, *Sens. Actuators, B*, 2003, **95**, 73–77.
- 5 H. J. Quah, K. Y. Cheong, Z. Hassan and Z. Lockman, J. Mater. Sci.: Mater. Electron., 2011, 22, 583-591.
- 6 W. F. Lim, K. Y. Cheong and Z. Lockman, *Appl. Phys. A: Mater. Sci. Process.*, 2011, **103**, 1067–1075.
- 7 M. Issa, H. Mahzoul, A. Brillard and J.-F. Brilhac, *Chem. Eng. Technol.*, 2009, 32, 1859–1865.
- 8 S. Jacobsen, U. Helmersson, L. Ekedahl, I. Lundstrom, P. Martensson and A. L. Spetz, *Proceedings of Transducers*, *The 11th International Conference on Solid-state Transducers*, 2001, pp. 832–835.
- N. V. Skorodumova, S. I. Simak, B. I. Lundqvost,
 I. A. Abrikosov and B. Johansson, *Phys. Rev. Lett.*, 2002, 89,
 1666011–1666014.
- 10 R. K. Hailstone, A. G. DiFrancesco, J. G. Leong, T. D. Allston and K. J. Reed, *J. Phys. Chem. C*, 2009, **113**, 15155–15159.
- 11 W. F. Lim and K. Y. Cheong, J. Mater. Sci.: Mater. Electron., 2012, 23, 257–266.
- 12 G. S. Li, Y. C. Mao, L. P. Li, S. H. Feng, M. Q. Wang and X. Yap, *Chem. Mater.*, 1999, **11**, 1259–1266.
- 13 G. R. Rao and B. G. Mishra, *Bull. Catal. Soc. India*, 2003, 2, 122–134.

- 14 W. M. O'Neill and M. A. Morris, Chem. Phys. Lett., 1999, 305, 389–394.
- 15 A. Trovarelli, Comments Inorg. Chem., 1999, 20, 263-284.
- E. Mamontov, T. Egami, R. Brezny, M. Koranne and S. J. Tyagi, J. Phys. Chem. B, 2000, 104, 11110–11116.
- 17 F. Zhang, C.-H. Chen, J. C. Hanson, R. D. Robinson, L. P. Herman and S.-W. Chan, *J. Am. Ceram. Soc.*, 2006, 89, 1028–1036.
- 18 G. Balducci, J. Kaspar, P. Rofnasiero and M. Graziani, J. Phys. Chem. B, 2008, 102, 557–561.
- 19 W. D. Cai, F. Chen, X. X. Shen, L. J. Chen and J. L. Zhang, *Appl. Catal.*, *B*, 2010, **101**, 160–168.
- 20 M. Biswas and S. Bandyopadhyay, *Mater. Res. Bull.*, 2012, 47, 544–550.
- 21 M. F. García, A. M. Arias, J. C. Hanson and J. A. Rodriguez, Chem. Rev., 2004, 104, 4063–4104.
- 22 J. S. Albero, F. R. Reinoso and A. S. Escribano, *J. Catal.*, 2002, **210**, 127–136.
- 23 X.-Q. Wang, J. C. Hanson, G. Liu, J. A. Rodriguez, A. I. Juez and M. F. Garcia, *J. Chem. Phys.*, 2004, **121**, 5434–5444.
- 24 J. M. Gaskell, A. C. Jones, H. C. Aspinall, S. Taylor, P. Taechakumput, P. R. Chalker, P. N. Heys and R. Odedra, Appl. Phys. Lett., 2007, 91, 112912.
- 25 C. Z. Zhao, S. Taylor, M. Werner, P. R. Chalker, R. T. Murray, J. M. Gaskell and A. C. Jones, *J. Appl. Phys.*, 2009, 105, 044102.
- 26 J. M. Gaskell, A. C. Jones, P. R. Chalker, M. Werner, H. C. Aspinall, S. Taylor, P. Taechakumput and P. N. Heys, *Chem. Vap. Deposition*, 2007, 13, 684–690.
- 27 L. Yan, L. B. Kong and C. K. Ong, Semicond. Sci. Technol., 2004, 19, 935–938.
- 28 K. Kukli, M. Ritala, V. Pore, M. Leskela, T. Sajavaara, R. I. Hegde, D. C. Gilmer, P. J. Tobin, A. C. Jones and H. C. Aspinall, *Chem. Vap. Deposition*, 2006, **12**, 158–164.
- 29 Y.-P. Liu, W. Lan, Z.-W. He and Y.-Y. Wang, *Chin. Phys. Lett.*, 2006, 23, 2236–2238.
- 30 Y. F. Loo, S. Taylor, R. T. Murray, A. C. Jones and P. R. Chalker, *J. Appl. Phys.*, 2006, **99**, 103704.
- 31 C. Y. Kang, P. D. Kirsch, B. H. Lee, H.-H. Tseng and R. Jammy, *IEEE Trans. Device Mater. Reliab.*, 2009, **9**, 171–179.
- 32 I. Yeriskin and M. Nolan, *J. Chem. Phys.*, 2009, **131**, 2447021–2447026.
- 33 M. Biswas and S. Bandyopadhyay, *Mater. Res. Bull.*, 2012, 47, 544–550.
- 34 M. R. Benjaram, K. Lakshmi and R. Gode, *Chem. Mater.*, 2010, 22, 467–475.
- 35 I. Heinmaa, T. Joon, H. Kooskora, J. Pahapill and J. Subbi, *Solid State Ionics*, 2010, **181**, 1309–1315.
- 36 M. Nakayama and M. Martin, *Phys. Chem. Chem. Phys.*, 2009, **11**, 3241–3249.
- 37 L. Liu, X. Way, M. Guo and M. Zhang, *J. Nanosci. Nanotechnol.*, 2011, 11, 2155–2162.
- 38 A. B. Lopez, K. Krishna, B. van der Linden, G. Mul, J. A. Moulijn and M. Makkee, *Catal. Today*, 2007, **121**, 237–245.
- 39 P. Fleming, S. Ramirez, J. D. Holmes and M. A. Morris, *Chem. Phys. Lett.*, 2011, **509**, 51–57.

- 40 E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semi-conductor) Physics and Technology, Wiley, New York, 1982.
- 41 L. Truffault, M.-T. Ta, T. Devers, K. Konstantinov, V. Harel, C. Simmonard, C. Andreazza, I. P. Nevirkovets, A. Pineau, O. Veron and J.-P. Blondeau, *Mater. Res. Bull.*, 2010, 45, 527–535.
- 42 W. F. Lim and K. Y. Cheong, J. Phys. Chem. C, 2013, 117, 14014-14024.
- 43 W. F. Lim and K. Y. Cheong, *Mater. Chem. Phys.*, 2013, **140**, 622–633.
- 44 X.-Y. Du, W.-C. Li, Z.-X. Liu and K. Xie, *Chin. Phys. Lett.*, 1999, **16**, 376–377.
- 45 W. F. Lim and K. Y. Cheong, *Mater. Res. Soc. Symp. Proc.*, 2012, **1433**, DOI: 10.1557/opl.2012.1114.
- 46 N. V. Skorodumova, S. I. Simak, B. I. Lundqvost, I. A. Abrikosov and B. Johansson, *Phys. Rev. Lett.*, 2002, **89**, 166601.

- 47 H.-T. Chen, J. G. Chang, H. L. Chen and S. P. Ju, *J. Comput. Chem.*, 2009, **30**, 2433–2442.
- 48 J. Holgado, R. Alvarez and G. Munuera, *Appl. Surf. Sci.*, 2000, **161**, 301–315.
- 49 J. Pelleg, E. Elish and D. Mogilyanski, *Metall. Mater. Trans. A*, 2005, **36**, 3187–3194.
- 50 S. X. Huang, T. S. Rufael and J. L. Gland, Surf. Sci., 1993, 290, L673–L676.
- 51 K. L. Smith and N. Mousseau, *Eur. Phys. J. B*, 2008, **64**, 165–172.
- 52 M. A. Carpenter, S. Mathur and A. Kolmakov, *Metal Oxide Nanomaterials for Chemical Sensors*, Springer, New York, 2013, p. 60.
- 53 M. Nastasi and J. W. Mayer, *Ion Implantation and Synthesis of Materials*, Springer, Berlin, 2006, p. 122.