CG1111: Engineering Principles and Practice I

Principles & DC Transient of Inductors

Learning Outcomes

Inductors:

- Be aware of some of their applications
- Appreciate their basic principles
- Appreciate their energy storage capability

Application: Traffic Sensor

Credit: Picture from HowStuffWorks.com

- Many traffic junctions have wire coil sensors embedded underneath the roads
- When a vehicle is above the coil, its inductance increases due to the car's steel
- The change in inductance is detected by a circuit

Application: Ignition System for Spark Plugs

Allows current is built up in ignition coil (an inductor)
 → stores magnetic field energy

 When current is interrupted, a large voltage occurs across electrodes

• Fuel-air mixture becomes ionized & an electrically conductive channel develops → spark! Generates a spark to ignite fuel-air mixture in petrol car's engine

"Coil"

Chassis ground

High voltage output

to spark plug(s)

Ignition switch

"points"

Examples of Inductors

Credit: Picture from Autodesk.com

Principle Construction of Inductor

 Constructed by coiling a wire in some form

Magnetic Field Lines

• The proportionality constant is called the "Inductance": $\Phi = Li$

Faraday's Law

 A voltage is induced in a coil when the magnetic flux varies with time

$$v = \frac{d\Phi}{dt} = \frac{d(Li)}{dt}$$

■ Since *L* is assumed to be a constant:

$$v = L \frac{di}{dt}$$

Steady-state Voltage

• From $v = L \frac{di}{dt}$ we see that inductor has voltage only when its current is changing

 At steady state, when the current is stable, its voltage will be 0

Hence, inductors in DC circuits behave as short-circuit in steady state

Formula for Inductance

A coil's inductance can be determined using

$$L = \frac{\mu_r \mu_0 N^2 A}{l}, \text{ where}$$

• μ_r : Relative permeability of core material

- μ_0 : Permeability of free space $(4\pi \times 10^{-7} \text{ Wb.A/m})$
- N: Number of turns in the coil
- A: Cross-sectional area of core
- l: Length of the core

Material	μ_r
Vacuum	1
Carbon steel	100
Iron	5000

Inductances in Series

- Current is the same for all three inductors, but voltage different
- From KVL: $v = v_1 + v_2 + v_3$

$$\Rightarrow L_{eq} \frac{di}{dt} = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt}$$

Hence,
$$L_{eq} = L_1 + L_2 + L_3$$

Inductances in Parallel

- Voltage is the same for all three inductors, but current different
 - Since $v_n = L_n \frac{di_n}{dt}$ $\Rightarrow \frac{di_n}{dt} = \frac{v_n}{L_n} = \frac{v}{L_n}$
 - From KCL: $i = i_1 + i_2 + i_3$ Hence, $\frac{di}{dt} = \frac{di_1}{dt} + \frac{di_2}{dt} + \frac{di_3}{dt}$

$$\therefore \frac{v}{L_{eq}} = \frac{v}{L_1} + \frac{v}{L_2} + \frac{v}{L_3}$$

Hence,
$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

Energy Storage

- When current passes through an inductor, energy is stored in its magnetic field
- The stored energy can be expressed in terms of the work done in establishing the magnetic field
- Instantaneous power $P = iv = iL\frac{di}{dt}$
- Hence, work done is

$$W = \int_{0}^{T} P \, dt = \int_{0}^{T} iL \frac{di}{dt} dt = L \int_{0}^{I} idi = \frac{1}{2} LI^{2}$$

Inductor's Current Cannot Change Instantaneously!

- From earlier slide, $v(t) = L \frac{di(t)}{dt}$
- If current changes instantaneously from i_1 to i_2 (i.e., in zero time duration), then $\frac{di(t)}{dt} = \infty$
 - \rightarrow Impossible because it requires $v(t) = \infty$

Hence, inductor current cannot change instantaneously, and must be continuous

 This reluctance to change is because of the energy stored in the inductor's magnetic field

What Happens if We Try to Break Inductor's Current?

- Not possible to open a switch in 0 time in real life
- The inductor's voltage becomes extremely large, but not ∞ (e.g., how spark plug works)
- The air around can breakdown causing a flash arc (see https://www.youtube.com/watch?v=Zez2r1RPpWY)

Inductor's Transient Current in a Series RL Circuit

Following the same procedure as transient voltage analysis for capacitors, we can also derive an inductor's current when it is in a series RL circuit:

$$i_L(t) = i_L(0)e^{-\frac{t}{\tau}} + i_L(\infty)[1 - e^{-\frac{t}{\tau}}], \ \tau = \frac{L}{R}$$

THANK YOU