Interpretability of Sentence Embeddings in low-resource Languages

Master thesis final presentation Supervisors: Dr. Steffen Eger, Dr. Johannes Daxenberger

Agenda

- Introduction
- 2 Sentence Embeddings
- 3 Probing and Downstream Tasks
- 4 Stability Analysis
- 5 Summary

Section: Introduction

Introduction

- A plethora of sentence embedding techniques has been developed
- ► Problem:

The knowledge about what is captured by sentence embeddings is limited!

- Probing tasks come to the rescue:
 - 'Classification problem that focuses on simple linguistic properties of sentences' (Conneau.2018)
 - Conneau.2018 introduced a set of ten probing tasks
 - ► E. g. sentence length, containment of words, subject number, tense, etc.
 - Conneau and colleagues mainly drew inspiration from Ettinger.2016, Shi.2016 and Adi.2017

Scope of this Thesis

- ▶ Most research in this domain is done for English/high-resource languages
- Low-resource languages are mainly neglected
- Languages considered in this thesis:

English	EN		high-resource
German	DE	Deutsch	high-resource
Russian	RU	русский язык	low-resource
Turkish	TR	Türkçe	low-resource
Georgian	KA	ქართული ენა	low-resource

► Are patterns for English reproducible in low-resource languages?

High-Level Process

Embeddings Probing Downstream Stability

• Embeddings Train sentence encoders in multiple languages

Probing Data generation / Evaluation on probing tasks

Downstream Data generation / Evaluation on downstream applications

Stability Discrepancies with literature / different setups in literature:

Investigate the rank stability of embeddings in various setups

Section:

Sentence Embeddings

Sentence Embedding Algorithms

- Vanilla average (300 d)
- p-Means (1,500 d)
- ► Geometric embeddings (300 d)
- Smooth inverse frequency (300 d)
- Hierarchical pooling (300 d)
 - Non-parametric

- ► InferSent (4,096 d)
- Quick-Thought (2,400 d)
- sent2vec (700 d)
- LASER (1,024 d)
- BERT (768 d)
- Random encoders (4,096/8,192 d)

Parametric

- Non-parametric: Aggregation of word embeddings without training
- Parametric models are trained from scratch on top of word embeddings

Section:

Probing and Downstream Tasks

Probing Task Examples

► Sentence Length (SENTLEN):

E.g.: Label: short Sentence: It felt good to smile.

(A binning approach is used for the labels. Think of classes like 'short', 'medium', 'long')

▶ Word Content (WC):

E.g.: Label: everybody Sentence: Everybody should step back.

Subject-Verb Agreement (SVAGREE):

E.g.: Label: disagree Sentence: They works together.

Probing Task Setup

- ► Implementation of 9 probing tasks for EN, DE, RU, TR as well as 7 for KA (SENTLEN, WC, BISHIFT, SVAGREE, SVDIST*, VOICE, WO, EOS and SUBJNUM*)
- ▶ New: SVAGREE and SVDIST (inspired by Linzen.2016)
- Many tasks require corpora with morpho-syntactic annotations
- Universal Dependencies offers tree banks for many languages / GNC
- Evaluation: MLP with 5-fold x-val
 - One hidden layer with 50 hidden units
 - Dropout: 0.00
 - Activation: Sigmoid
 - Optimizer: Adam

^{*} not implemented for KA

Probing Task Results for English

0.4 0.8

0.4 0.8

0.4 0.8 0.4 0.8

0.4 0.8

Probing Task Results for Georgian

0.4 0.8

0.4

0.8

0.4 0.8

0.4 0.8

rand, BiLSTM

0.4 0.8

Downstream Tasks

Downstream tasks:

- 1. Sentential argumentation mining (ARGMIN) \rightarrow translation necessary
- 2. Sentiment analysis (SENTI)
 - EN: US Airline Twitter data
 - ▶ KA: Own Twitter data set using Emojis as label indication (Choudhary.2018)
- 3. Question type detection (TREC) → translation necessary

Evaluation:

Analogously to probing tasks, except for TREC $(\rightarrow \text{pre-defined splits from } \textit{SentEval})$

Downstream Task Results (EN)

Downstream Task Results (KA)

Summary Observations

- ▶ More volatility in probing tasks (e. g. SENTLEN, WO)
- ▶ No universal embedding (Perone.2018)
- Trained encoders tend to work best for English
- Averaging methods often provide strong baseline (e. g. SubjNum)
- Random encoders work surprisingly well (Wieting.2019)
- ► Worse performance of trained models in low-resource languages (lack of training data)

Correlations of Probing and Downstream Tasks

English language

- WC has high positive correlations (intuitive)
- TREC is correlated positively with almost all probing tasks (found by Conneau.2018), also ARGMIN
- Senti is less connected to probing tasks
- No negative correlations

positive / negative correlations

Correlations of Probing and Downstream Tasks

Georgian language

- WC has high positive correlations
- Many correlations below an absolute value of 0.20 or negative
- WO is negatively correlated (flexible word order in KA)
- Correlations are language-dependent!

positive / negative correlations

Section:

Stability Analysis

Stability Analysis

- Discrepancies with the literature were found
- Different evaluation setups:

Size	10k	\Leftrightarrow	90k+
Class balance	imbalanced	\Leftrightarrow	(im)balanced
Classifier	MLP	\Leftrightarrow	MLP / Logistic regression
HP tuning	no	\Leftrightarrow	yes (sometimes no)

- A stability analysis is performed in order to investigate the effects of these factors
- ▶ The word content task (English) is used as an example

Stability across Classifiers

- ▶ Rankings are quite unstable, especially for RF classifier
- NN and LR are similar, also NN and NN_H
- ► Recommendation: Use a neural architecture (outperforms other classifiers)

Stability across Data Set Sizes

- Correlations between 5k ⇔ { 10k, 30k, 60k } decrease
- However, high correlations for RF (less data sufficient for stable ranking)
- Correlations between 30k ⇔ 60k close to 1.0
- ► Recommendation: Use at least 30k instances

Effects of Class Balance and HP Tuning

Section: Summary

Summary

- ▶ The gap between trained encoders and compositional models vanishes in low-resource languages
- Correlations in English and Georgian differ (e.g. no word order in Georgian)
- Nevertheless, the results should be treated with caution:
 - Use balanced data sets (considerable impact on ranking)
 - Use at least 30k instances
 - Use an MLP with hyper-parameter tuning
- ► The evaluation should be agnostic to factors like class balance or data set size (probing tasks suboptimal?) → future research

Thank you very much for your attention!

Presenter: Daniel Wehner

Date: October 15, 2019

Topic: Interpretability of sentence embeddings

in low-resource languages

Universal Dependencies - Example

1	But	but	CC	_	8:cc
2	in	in	IN	_	4:case
3	my	my	PRP\$	Number=Sing Person=1 Poss=Yes	4:nmod:poss
4	view	view	NN	Number=Sing	8:obl
5	it	it	PRP	Case=Nom Gender=Neut Number=Sing	8:nsubj
6	is	be	VBZ	Mood=Ind Number=Sing Person=3	8:cop
7	highly	highly	RB	_	8:advmod
8	significant	significant	JJ	Degree=Pos	0:root
9				_	8:punct

Winner Statistics (Probing Tasks)

Top-three counts									
Embedding	EN	DE	RU	TR	KA				
Vanilla Average	0 (0.00)	1 (0.11)	3 (0.33)	1 (0.11)	0 (0.00)				
p-Means	3 (0.33)	1 (0.11)	3 (0.33)	3 (0.33)	4 (0.57)				
SIF	0 (0.00)	0 (0.00)	1 (0.11)	1 (0.11)	0 (0.00)				
GEM	0 (0.00)	1 (0.11)	1 (0.11)	2 (0.22)	0 (0.00)				
hier. Pooling	0 (0.00)								
BOREP	0 (0.00)	1 (0.11)	0 (0.00)	0 (0.00)	1 (0.14)				
Random BiLSTM	3 (0.33)	2 (0.22)	3 (0.33)	2 (0.22)	2 (0.29)				
InferSent	7 (0.78)	2 (0.22)	1 (0.11)	1 (0.11)	3 (0.43)				
Quick-Thought	5 (0.56)	5 (0.56)	5 (0.56)	4 (0.44)	2 (0.29)				
sent2vec	0 (0.00)	4 (0.44)	2 (0.22)	1 (0.11)	2 (0.29)				
BERT	2 (0.22)	3 (0.33)	3 (0.33)	5 (0.56)	3 (0.43)				
LASER	7 (0.78)	7 (0.78)	5 (0.56)	8 (0.89)	4 (0.57)				

Winner Statistics (Probing Tasks)

Effect of Hyper-Parameter Tuning (other Tasks)

Effect of hyper-parameter tuning on other tasks								
	△ SENTI	△ VOICE	∆ SubjNum					
Vanilla average	0.02	0.00	0.00					
p-Means	0.00	0.02	0.03					
BOREP	0.00	0.02	0.03					
Random BiLSTM	0.00	0.01	0.00					
InferSent	0.05	0.03	0.03					
Quick-Thought	0.03	0.02	0.04					
sent2vec	0.00	0.00	0.01					
BERT	0.01	0.02	0.02					
LASER	0.01	0.03	0.02					

Stability Analysis: Effects on Ranking

		,e	is a de			.:(, O	o'i	STM		ught	
	Vani	II2 ON	iage eans cif	GE	M rief	. Poolis	S Ran	domit	Sent	Killi Ser	lught Ruec Refer	, \v
1 class (im-)balance												
Ranking (imbalanced, 10k)	8	6	7	5	12	9	11	1	3	4	9	2
Ranking (balanced, 10k)	8	7	6	5	11	9	10	2	4	1	12	3
	Spearman correlation: 0.91											
(no) hyper-parameter tuning												
Ranking (balanced, no optimization, 10k)	8	7	6	5	11	9	10	2	4	1	12	3
Ranking (balanced, optimization, 10k)	7	8	4	4	11	10	9	2	6	1	12	3
	Spearman correlation: 0.95											
9 size (30k ↔ 60k)												
Ranking (balanced, 30k)	6	6	5	8	11	10	9	2	4	1	12	3
Ranking (balanced, 60k)	7	5	5	9	11	10	8	1	4	1	12	3
	Spearman correlation: 0.98											