Probability and Statistics: Lecture-9

Monsoon-2020

```
by Pawan Kumar (IIIT, Hyderabad) on August 28, 2020
```

» Table of contents

1. Conditional Probability, Bayes Theorem

2. The Monty Hall Problem

* We can easily calculate how many spam emails contain "Dear":

$$P(E|F) = P(Dear|Spam)$$

 We can easily calculate how many spam emails contain "Dear":

$$P(E|F) = P(Dear|Spam)$$

But what is the probability that an email containing "Dear" is spam?

$$P(F|E) = P(Spam email|Dear)$$

 We can easily calculate how many spam emails contain "Dear":

$$P(E|F) = P(Dear|Spam)$$

Bayest

But what is the probability that an email containing "Dear" is spam?

$$P(F|E) = P(Spam email|Dear)$$

» Bayes Theorem

» Bayes Theorem

Bayes Theorem

For any events *E* and *F* where P(E) > 0 and P(F) > 0,

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Proof of Bayes Theorem:

» Bayes Theorem with Total Probability...

Bayes Theorem

For any events E and F where P(E) > 0 and P(F) > 0,

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^c)P(F^c)}$$

Proof of Bayes Theorem:

Spam Email Example

Given the following:

 \ast 60% of all email in 2016 is spam

Spam Email Example

Given the following:

- \ast 60% of all email in 2016 is spam
- * 20% of spam has the word "Dear"

Spam Email Example

Given the following:

- \ast 60% of all email in 2016 is spam
- * 20% of spam has the word "Dear"
- * 1% of non-spam (aka ham) has the word "Dear"

Spam Email Example

Given the following:

- * 60% of all email in 2016 is spam
- * 20% of spam has the word "Dear"
- * 1% of non-spam (aka ham) has the word "Dear"

You get an email with the word "Dear" in it. What is the probability that the email is spam?

Solution:

» Application of Bayes Theorem...

Example

A test is 98% effective at detecting a disease ("true positive"). However, the test has a "false positive" rate of 1%. The 0.5% of the US population has disease. What is the likelihood you have the disease, if you test positive?

Solution:

Movie Monty Hall Movie 21 Video Clip Here!

Another Monty Hall Youtube Movie Here!

* There is a game show.

* There is a game show. The show host shows you three doors

- * There is a game show. The show host shows you three doors
- * Behind one of the doors, there is a car,

- * There is a game show. The show host shows you three doors
- * Behind one of the doors, there is a car, and in other two there are goats

- * There is a game show. The show host shows you three doors
- * Behind one of the doors, there is a car, and in other two there are goats
- * Rules of the Game Show:

- * There is a game show. The show host shows you three doors
- * Behind one of the doors, there is a car, and in other two there are goats
- * Rules of the Game Show:
 - * you are allowed to pick a door without opening

- * There is a game show. The show host shows you three doors
- * Behind one of the doors, there is a car, and in other two there are goats
- * Rules of the Game Show:
 - you are allowed to pick a door without opening
 - $\ast\,$ then the host opens a door

- * There is a game show. The show host shows you three doors
- * Behind one of the doors, there is a car, and in other two there are goats
- * Rules of the Game Show:
 - * you are allowed to pick a door without opening
 - * then the host opens a door
- * Question: if the host always opens goat door,

- * There is a game show. The show host shows you three doors
- * Behind one of the doors, there is a car, and in other two there are goats
- * Rules of the Game Show:
 - * you are allowed to pick a door without opening
 - * then the host opens a door
- * Question: if the host always opens goat door, is it wise to change your door?

» Solution to Monty Hall Problem with Graphical Illustration

» Solution to Monty Hall Problem with Graphical Illustration

Graphical illustration of Monty hall problem. Source: Google

Let us look into all possible (exhaustive) cases:

Door You Choose | Prize in Door | Host Opens | Stay | Switch

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win
2	2	1/3	win	loose

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win
2	2	1/3	win	loose
2	3	1	loose	win

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win
2	2	1/3	win	loose
2	3	1	loose	win
3	1	2	loose	win

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win
2	2	1/3	win	loose
2	3	1	loose	win
3	1	2	loose	win
3	2	1	loose	win

Let us look into all possible (exhaustive) cases:

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win
2	2	1/3	win	loose
2	3	1	loose	win
3	1	2	loose	win
3	2	1	loose	win
3	3	1/2	win	loose

Exhaustive list of possibilities

Conclusion

If you switch, the probability that you win a car is 2/3

Let us look into all possible (exhaustive) cases:

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win
2	2	1/3	win	loose
2	3	1	loose	win
3	1	2	loose	win
3	2	1	loose	win
3	3	1/2	win	loose

Exhaustive list of possibilities

Conclusion

If you switch, the probability that you win a car is 2/3, and if you switch,

Let us look into all possible (exhaustive) cases:

Door You Choose	Prize in Door	Host Opens	Stay	Switch
1	1	2/3	win	loose
1	2	3	loose	win
1	3	2	loose	win
2	1	3	loose	win
2	2	1/3	win	loose
2	3	1	loose	win
3	1	2	loose	win
3	2	1	loose	win
3	3	1/2	win	loose

Exhaustive list of possibilities

Conclusion

If you switch, the probability that you win a car is 2/3, and if you switch, the probability that you win goat is 1/3.