Examenul de bacalaureat național 2020 Proba E. d) Informatică Limbajul C/C++

Testul 15

Filieră teoretică, profil real, specializare matematică-informatică / matematică-informatică intensiv informatică Filieră vocațională, profil militar, specializare matematică-informatică

- Toate subjectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.
- Identificatorii utilizați în rezolvări trebuie să respecte precizările din enunț (bold), iar în lipsa unor precizări explicite, notațiile trebuie să corespundă cu semnificațiile asociate acestora (eventual în formă prescurtată). Datele de intrare se consideră corecte, validarea lor nefiind necesară.
- În grafurile din cerințe oricare arc/muchie are extremități distincte și oricare două arce/muchii diferă prin cel putin una dintre extremităti.

SUBIECTUL I (20 de puncte)

Pentru fiecare dintre itemii de la 1 la 5, scrieți pe foaia de examen litera corespunzătoare răspunsului corect. Fiecare răspuns corect se notează cu 4 puncte.

- Expresia C/C++
 (x>=16) && ! (x<17 || x>19) && (x<=20)
 are valoarea 1 dacă şi numai dacă valoarea memorată de variabila întreagă x aparține intervalului:
 - a. [16,18] b. [17,19] c. [18,20] d. [19,20]
- 2. Utilizând metoda backtracking se generează toate posibilitățile de a așeza în compartimentele unei voliere porumbei de rase din mulțimea {creți,iacobini, jucători, rotați, toboșari}. Două soluții sunt diferite dacă ordinea raselor diferă. Primele patru soluții obținute sunt, în această ordine: (creți,iacobini, jucători, rotați, toboșari), (creți,iacobini, jucători, toboșari, rotați), (creți,iacobini, rotați, jucători, toboșari), (creți,iacobini, rotați, toboșari, jucători). Indicați penultima soluție generată.
 - a. (toboșari, rotați, creți, iacobini, jucători)
 - b. (tobosari, rotati, creti, jucători, iacobini)
 - C. (toboșari, rotați, jucători, creți, iacobini)
 - d. (toboșari, rotați, jucători, iacobini, creți)
- 3. Fiecare dintre variabilele A și B, declarate alăturat, memorează coordonatele pozitive (x abscisa, iar y ordonata) ale câte unui punct în sistemul de coordonate xOy, extremități ale unui segment. Indicați o expresie C/C++ care are valoarea 1 dacă și numai dacă cel puțin una dintre extremitățile segmentului precizat este în originea sistemului de coordonate xOy.

struct punct
{ int x,y;
} A,B;

a. (A.x+A.y) * (B.x+B.y) == 0

b. (A(x)+A(y))*(B(x)+B(y))==0

c. (x.A+y.A)*(x.B+y.B) == 0

- d. punct.A(x+y) *punct.B(x+y) == 0
- 4. Într-un arbore cu rădăcină un nod se află pe nivelul x dacă lanțul elementar care are o extremitate în nodul respectiv și cealaltă extremitate în rădăcina arborelui are lungimea x. Pe nivelul 0 se află un singur nod (rădăcina).

Un arbore cu rădăcină are 8 noduri, numerotate de la 1 la 8, și muchiile [1,3], [1,7], [1,8], [2,4], [3,5], [3,6], [4,5]. Știind că rădăcina arborelui este nodul numerotat cu 7, indicați numărul de niveluri ale arborelui dat.

a. 3

b. 4

c. 6

- d. 7
- 5. Un graf orientat cu 5 vârfuri, numerotate de la 1 la 5, are arcele (1,4), (3,5), (5,1), (5,2). Indicați numărul minim de arce care trebuie adăugate acestuia, astfel încât graful obținut să fie tare conex.
 - a. 1

b. 2

c. 3

d. 4

SUBIECTUL al II-lea (40 de puncte)

- 1. Algoritmul alăturat este reprezentat în pseudocod.
 - a. Scrieți numărul afișat în urma executării algoritmului dacă pentru n se citește valoarea 5.
 (6p.)
 - b. Scrieți două numere din intervalul [10,10²) care pot fi citite astfel încât, pentru fiecare dintre acestea, în urma executării algoritmului, să se afișeze 14.
 (6p.)
 - c. Scrieți programul C/C++ corespunzător algoritmului dat. (10p.)
 - d. Scrieți în pseudocod un algoritm, echivalent cu cel dat, înlocuind adecvat prima structură pentru...execută cu o structură repetitivă de alt tip.
 (6p.)

```
citește n (număr natural)

nr 0

pentru i n,1,-1 execută

| x 0; y 1

| pentru j 1,i execută

| r 2*x-y; x y; y r

| dacă y>0 atunci
| nr nr+1
```

int f(int x, int y)

return 1;

{ if(x>y) return x%y+f(x-y,y);

if(x<y) return y%x+f(x,y-x);</pre>

```
    Subprogramul f este definit alăturat. Scrieți două numere naturale din intervalul [1,10], care pot fi memorate în variabilele întregi x1, respectiv x2, astfel încât valoarea lui f(10,x1) să fie 5, iar valoarea lui f(x2,10) să fie 1.
```

```
3. Variabilele i și j sunt de tip întreg, iar variabila a memorează un tablou bidimensional cu 4 linii și 5 coloane, numerotate începând de la 0, cu elemente numere întregi, inițial toate nule. Fără a utiliza alte variabile decât cele menționate, scrieți o secvență de instrucțiuni astfel încât, în urma executării acesteia, variabila a să memoreze tabloul alăturat.
```

SUBIECTUL al III-lea (30 de puncte)

- 1. Subprogramul divPrimMax are doi parametri:
 - n, prin care primește un număr natural (n∈ [2,10⁹]);
 - p, prin care furnizează cel mai mare divizor prim al lui n.

Scrieți definiția completă a subprogramului.

Exemplu: dacă n=2000, în urma apelului p=5, deoarece $2000=24.5^3$. (10p.)

2. Într-un text cu cel mult 100 de caractere, cuvintele sunt formate din litere mici ale alfabetului englez și sunt separate prin câte un spațiu. Scrieți un program C/C++ care citește de la tastatură un text de tipul menționat și afișează pe ecran numărul de cuvinte ale sale formate dintr-un număr egal de vocale și consoane. Se consideră vocale literele din mulțimea a, e, i, o, u.

```
Exemplu: pentru textul cuvantul consoane are un numar de patru vocale si patru consoane se afișează pe ecran 6. (10p.)
```

3. Se citesc de la tastatură două numere naturale din intervalul [1,81], p1 și p2, și se cere scrierea în fișierul bac.out a tuturor numerelor naturale cu exact 7 cifre, pentru care produsul primelor două cifre este egal cu p1, cele trei cifre din mijloc sunt egale între ele, iar produsul ultimelor două cifre este egal cu p2. Numerele apar în fișier în ordine strict crescătoare, fiecare pe câte o linie. Proiectați un algoritm eficient din punctul de vedere al memoriei utilizate și al timpului de executare.

Exemplu: dacă p1=12, iar p2=8, atunci $\underline{26}333\underline{24}$ și $\underline{34}000\underline{18}$ sunt două dintre cele 160 de numere cu proprietatea cerută ($2 \cdot 6=3 \cdot 4=12$ și $2 \cdot 4=1 \cdot 8=8$).

a. Descrieți în limbaj natural algoritmul proiectat, justificând eficiența acestuia. (2p.)

b. Scrieți programul C/C++ corespunzător algoritmului proiectat. (8p.)

Probă scrisă la informatică Limbaiul C/C++