Grupo de Pesquisas em Sistemas Inteligentes Laboratório de Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Detecção Inteligente de Falhas em Pavimentações Asfálticas com Redes Neurais Convolucionais Regionais

Rafael Barbosa de Carvalho, Elloá B. Guedes, Carlos Maurício S. Figueiredo {rbc.eng, ebgcosta, cfigueiredo} @uea.edu.br
III Workshop Brasileiro de Cidades Inteligentes
CSBC 2022 – Niterói – Rio de Janeiro

- Introdução
- 2 Trabalhos Resultados
- Materiais e Métodos
- 4 Resultados e Discussão
- 5 Estudo de Caso em Pavimentações Asfálticas no Brasi
- 6 Considerações Finais
- Agradecimento

- Organização das Nações Unidas (ONU 2018)
 - 57 % da população mundial vive em áreas urbanas
 - Até 2050 essa proporção será de 68 %

- Cidades Inteligentes (CIs)
 - Tecnologias da Informação e Comunicação colaborem para que os serviços providos se tornem mais flrxíveis, eficientes, sustentáveis e inteligentes
 - Melhoria contínua em benefício aos seus habitantes

• Transporte e Mobilidade

- Melhorias no acesso, eficiência de locomoção, segurança e conforto
- Realidade: degradação avançada, incoveniência para mobilidade e infraestrutura insuficiente
- Demanda por soluções viáveis frente a esses desafios

• Pavimentação Asfáltica

- Condições precárias e defeitos estruturais (localização, condições climáticas, volume de tráfego, etc.)
- Redução da segurança e conforto
- Impacto negativo na operação de veículos automores (Staniek 2021)

- Análise de qualidade para manutenção eficiente e economômica da pavimentação
 - Realidade: Limitações de tecnologia, *know-how* e de recursos financeiros para aquisição de equipamentos e serviços modernos (Arya *et al.* 2021a)

- Transporte rodoviário é o principal sistema logístico do Brasil (CNT 2019)
 - 52,9 % da malha rodoviária federal é pavimentada
 - Aumento no custo de manutenção dos veículos, consumo de combustível e lubrificantes, maior desgaste de pneus e freios e redução na seguranca viária
 - Em 2020:
 - 63.447 acidentes nas rodovias federais brasileiras
 - Custos financeiros da ordem de R\$ 10,22 bilhões (CNT 2020)

Objetivo do Trabalho

Avaliar o desempenho de Redes Neurais Convolucionais Regionais (R-CNNs, do inglês Regional Convolutional Neural Networks) da família YOLO (acrônimo para You Only Look Once) na tarefa de Visão Computacional de detecção (localização e classificação) de quatro tipos distintos de falhas em pavimentações asfálticas.

- Aquisição de experiência a partir de uma base de dados realística
- Potencial de detecção em tempo real e utilização em dispositivos embarcados
- Validação preliminar da solução em um estudo de caso no Brasil

- Introdução
- Trabalhos Resultados
- Materiais e Métodos
- 4 Resultados e Discussão
- 5 Estudo de Caso em Pavimentações Asfálticas no Brasil
- 6 Considerações Finais
- Agradecimento:

Trabalhos Relacionados

- Survey de Cao et al. 2020
 - Soluções seminais consideravam o uso de sensores (acelerômetro e giroscópio)
 - Solução tradicionais de Visão Computacional combinadas com Machine Learning
 - Uso de *Deep Learning* com diferentes métodos (R-CNNs, SSDs, R-FCNs)
 - Dificuldade: Comparação objetiva entre as soluções

- Global Road Damage Detection Challenge (Maeda et al. 2020)
 - Competição promovida pelo IEEE
 - RDD2020 para treinamento e base privada para avaliação (Arya et al. 2021b)
 - Top-3 melhores soluções: uso de *ensemble learning*; modelos da família YOLO; e múltiplas estratégias para aumento artificial de dados (Arya *et al.* 2020)

Trabalhos Relacionados

- Solução campeã: Hedge et al. 2020
 - F_1 -Score de 0,67 em ambas as partições de teste
 - Test Time Augmentation
 - Comitê de redes YOLOv5
 - 3.08 FPS

- Baixo FPS em virtude do tamanho dos modelos e estratégias de previsão
- Não houve aferição quanto ao número de parâmetros das soluções propostas

- Introdução
- Trabalhos Resultados
- Materiais e Métodos
- 4 Resultados e Discussão
- 5 Estudo de Caso em Pavimentações Asfálticas no Brasil
- 6 Considerações Finais
- Agradecimentos

Materiais e Métodos

- Tarefa de detecção (localização e classificação) mediante Aprendizado Supervisionado com R-CNNs da família YOLO
- Dados Experimentais: RDD2020 (Aryal et al. 2021b)
 - Trincas longitudinais (D00)
 - Trincas transversais (D10)
 - Malha tipo "couro de jacaré" (D20)
 - Buracos (D40)

(a) Trinca longitudinal

(b) Trinca transversal

Figura 1: Exemplos de imagens da base de dados RD2020.

(a) Malha "couro de jacaré"

(b) Buraco

Figura 2: Exemplos de imagens da base de dados RD2020.

Figura 3: Base de dados RD2020 (21.041 imagens).

Figura 4: Dados experimentais após limpeza e pré-processamento (18.667 imagens).

Materiais e Métodos: Modelos

- YOLO (You Only Look Once) (Redmond et al. 2016)
 - R-CNN single-shot
 - Muito utilizada em aplicações de detecção em tempo real (Miichelucci 2019)
- YOLOv4 (Bochkovskiy et al. 2020)
 - Novas abordagens de aumento artificial de dados, extração de características e regularização
 - Treinamento exclusivamente com aceleração em hardware via GPU
- YOLOv5 (Jocher et al. 2020)
 - Redução significativa na quantidade de pesos com melhorias na acurácia, velocidiade de treinamento e inferência
 - Desenvolvida nativamente com Pytorch

Materiais e Métodos: Parâmetros e Hiperparâmetros

- Transferência de aprendizados com pesos oriundos da base MS COCO
- Regularização com early stopping
- Arquitetura: YOLOv4:
 - Configuração 1. Tamanho do *batch*: 64; Tamanho máximo do *batch*: 4.000; Taxa de aprendizado: 10⁻³; *Steps*: 6.400;
 - Configuração 2. Tamanho do *batch*: 64; Tamanho máximo do *batch*: 4.000; Taxa de aprendizado: 10⁻²; *Steps*: 3.200;
- Arquitetura: YOLOv5:
 - Configuração 3. Tamanho da arquitetura: Pequeno; Tamanho do batch: 16; Taxa de aprendizado: 10⁻²; Épocas: 300;
 - Configuração 4. Tamanho da arquitetura: Médio; Tamanho do *batch*: 16; Taxa de aprendizado: 10⁻²; *Épocas*: 300;

Avaliação de Desempenho

- Validação cruzada holdout
 - 70% para treinamento, 10% para validação e 20% para testes

- Métricas de desempenho:
 - Precisão
 - Revocação
 - F₁-Score
 - Mean Average Precision (mAP@0.5)

- Introdução
- 2 Trabalhos Resultados
- Materiais e Métodos
- Resultados e Discussão
- 5 Estudo de Caso em Pavimentações Asfálticas no Brasi
- 6 Considerações Finais
- Agradecimentos

Resultados e Discussão

Tabela 1: Síntese dos resultados experimentais.

	YOL	-Ov4	YOLOv5		
Métrica	Configuração 1	Configuração 2	Configuração 3	Configuração 4	
Precisão	66,00 %	59,00 %	54,11 %	57,21 %	
Revocação	18,00 %	22,00 %	52,28 %	52,08 %	
F ₁ -Score	28,00 %	32,00 %	53,18 %	54,53 %	
mAP@0.5	31,27 %	31,43 %	50,70 %	53,19 %	

Resultados e Discussão

Figura 5: Matriz de confusão do teste da YOLOv5 Configuração 4. Elloá B. Guedes (ebgcosta@uea.edu.br)

Resultados e Discussão

- Aquém da melhor solução na literatura, com decréscimo percentual de $18,61\,\%$ no F_1 -Score
- Ontorna as limitações no tocante ao tempo de previsão, com 64 FPS versus 3,08 FPS (aumento percentual de 1.977,92 %)
- Ossui significativamente menos parâmetros, uma vez que a solução de referência usa um comitê de 3 redes YOLOv5;
- Treinada com significativamente menos exemplos (30 %) que a solução do estado da arte

- Introdução
- Trabalhos Resultados
- Materiais e Métodos
- 4 Resultados e Discussão
- 5 Estudo de Caso em Pavimentações Asfálticas no Brasil
- 6 Considerações Finais
- Agradecimento

• Road Traversing Knowledge Dataset (RTK dataset) (Rateke et al. 2019)

Figura 6: Exemplos do RTK dataset com rótulos de classes mapeados.

Tabela 2: Descrição estatística do pré-processamento do RTK dataset.

	Comprimento		Largura			Exemplos	
	Média	Máx	Mín	Média	Máx	Mín	Quantidade
Classe D00	43.27 ± 26.06	98	6	33.61 ± 21.17	87	3	36
Classe D10	18.76 ± 21.00	107	2	42.24 ± 47.70	345	5	390
Classe D40	13.92 ± 10.11	62	3	34.52 ± 17.38	93	4	105

- Transferência de Aprendizado da YOLOv5 Configuração 4
- Validação cruzada holdout

- Transferência de Aprendizado da YOLOv5 Configuração 4
- Validação cruzada holdout

Tabela 3: Desempenho da rede na previsão de falhas em pavimentações asfálticas no Brasil.

	Precisão	Revocação	F ₁ -Score	mAP@0.5
Todas as Classes	43,8 %	51,0 %	47,1 %	45,6 %
Classe D00	18,7 %	23,4 %	20,8 %	11,5%
Classe D10	42,6 %	45,0 %	43,8 %	40,9 %
Classe D40	70,2 %	84,6 %	76,7 %	84,3 %

(a) Exemplo 1 – Desejado

(b) Exemplo 1 - Previsto

Figura 7: Exemplos de previsão do modelo no cenário brasileiro.

D00 0.92

(a) Exemplo 2 – Desejado

(b) Exemplo 2 - Previsto

Figura 8: Exemplos de previsão do modelo no cenário brasileiro.

- Transferência de Aprendizado negativa
 - mAP@0.5 sofreu um decréscimo percentual de 14,25 % quando comparado aos resultados apresentados anteriormente
 - Baixa resolução das imagens
 - Baixo quantitativo de exemplos
 - Diferenças entre domínio de origem (RDD2020) e domínio alvo (RTK dataset)

 Tarefa crucial: Elaboração de bases de dados representativas do Brasil para esse problema

- Introdução
- Trabalhos Resultados
- Materiais e Métodos
- 4 Resultados e Discussão
- 5 Estudo de Caso em Pavimentações Asfálticas no Brasil
- 6 Considerações Finais
- Agradecimento

Considerações Finais

- Resultados experimentais das R-CNNs YOLOv4 e YOLOv5 para detecção automática de falhas em pavimentações asfálticas
 - Contexto realístico
 - Colabora no monitoramento inteligente para soluções de transporte
 - Estudo de caso da solução proposta em um contexto realístico nacional

Trabalhos futuros

- Explorar mais estratégias de aumento de dados e ajuste fino de parâmetros
- Necessidade de propor bases de dados para construir soluções inteligentes que fomentem a inspeção automática da qualidade da pavimentação asfáltica no Brasil

- Introdução
- Trabalhos Resultados
- Materiais e Métodos
- Resultados e Discussão
- 5 Estudo de Caso em Pavimentações Asfálticas no Brasil
- 6 Considerações Finais
- Agradecimentos

Agradecimentos

Os autores agradecem ao Laboratório de Sistemas Inteligentes da Universidade do Estado do Amazonas pela disponibilização dos recursos computacionais que viabilizaram a realização deste trabalho.

Grupo de Pesquisas em Sistemas Inteligentes Laboratório de Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Detecção Inteligente de Falhas em Pavimentações Asfálticas com Redes Neurais Convolucionais Regionais

Rafael Barbosa de Carvalho, Elloá B. Guedes, Carlos Maurício S. Figueiredo {rbc.eng, ebgcosta, cfigueiredo} @uea.edu.br
III Workshop Brasileiro de Cidades Inteligentes
CSBC 2022 – Niterói – Rio de Janeiro