MeteoCH.output

September 3, 2023

1 Meteoschweiz

1.1 Cleanup and required imports

```
[1]: # conda install -c conda-forge pandas matplotlib jupyter pyyaml papermillunbconvert pandoc ipynbname

# 'Soft' reset: Only clears your namespace, leaving history intact.

%reset -sf
import pandas as pd
from datetime import datetime
import matplotlib.cbook
```

1.2 Available weather stations

```
[2]:
                         Station station/location Data since
                                                    01.01.1864
     0
                         Altdorf
                                               ALT
     1
                       Andermatt
                                               ANT 01.01.1864
     2
               Basel / Binningen
                                               BAS 01.01.1755
     3
               Bern / Zollikofen
                                               BER 01.01.1864
     4
               La Chaux-de-Fonds
                                               CDF 01.01.1900
                   Château-d'Oex
     5
                                               CHD 01.01.1879
     6
                        Chaumont
                                               CHM 01.01.1864
     7
                           Davos
                                               DAV 01.01.1864
     8
                             Elm
                                               ELM 01.02.1878
     9
                                               ENG 01.01.1864
                       Engelberg
     10
                         Grächen
                                               GRC 01.01.1864
     11
                  Grimsel Hospiz
                                               GRH 01.01.1932
         Col du Grand St-Bernard
     12
                                               GSB 01.01.1818
     13
               Genève / Cointrin
                                               GVE 01.01.1753
     14
                    Jungfraujoch
                                               JUN 01.01.1933
```

4-	т.	T 110	04 04 4004	
15	Lugano	LUG		
16	Luzern	LUZ	01.01.1864	
17	Meiringen	MER	01.07.1889	
18	Neuchâtel	NEU	01.01.1864	
19	Locarno / Monti	OTL	01.12.1882	
20	Payerne	PAY	01.08.1964	
21	Bad Ragaz	RAG	01.06.1870	
22	Säntis	SAE	01.01.1864	
23	Samedan	SAM		
24	S. Bernardino	SBE	01.01.1864	
25	Segl-Maria	SIA	01.12.1863	
26	Sion	SIO	01.12.1864	
27	Zürich / Fluntern	SMA		
28	St. Gallen	STG	01.01.1864	
	Ctation beight m a goo level	I o+i+udo	I on mitudo	\
^	Station height m. a. sea level		Longitude	\
0		46.887069		
1		46.630914		
2		47.541142		
3		46.990744		
4	1017.0	47.082947	6.792314	
5	1028.0	46.479819	7.139656	
6	1136.0	47.049169	6.978825	
7	1594.0	46.812969	9.843558	
8	958.0	46.923747	9.175350	
9		46.821639		
10	1605.0			
11		46.571689		
12		45.869092		
13		46.247519		
14		46.547556		
15		46.004217		
16	454.0	47.036439	8.301022	
17	589.0	46.732222	8.169247	
18	485.0	47.000067	6.953297	
19	367.0	46.172256	8.787494	
20	490.0	46.811581	6.942469	
21	497.0	47.016631	9.502594	
22	2501.0	47.249447	9.343469	
23	1709.0	46.526247	9.879469	
24	1639.0	46.463542	9.184700	
25	1804.0	46.432331	9.762325	
26	482.0	46.218650	7.330203	
27	556.0	47.377925	8.565742	
28	776.0	47.425475	9.398528	
20	110.0	±1.420410	J.JJ00Z0	

Climate region Canton

```
0
      Central Alpine north slope
                                       UR
1
      Central Alpine north slope
                                       UR
2
                     Eastern Jura
                                       BL
3
                  Central plateau
                                       BE
4
                     Western Jura
                                       NE
5
      Western Alpine north slope
                                       VD
6
                     Western Jura
                                       NE
7
    Northern and central Grisons
                                       GR
8
      Eastern Alpine north slope
                                       GL
9
      Central Alpine north slope
                                       OW
10
                            Valais
                                       VS
11
      Western Alpine north slope
                                       ΒE
12
                Alpine south side
                                       VS
13
                  Western plateau
                                       GE
14
      Western Alpine north slope
                                       ۷S
15
                Alpine south side
                                       ΤI
16
                  Central plateau
                                       LU
17
      Western Alpine north slope
                                       BE
18
                  Western plateau
                                       NE
19
                Alpine south side
                                       ΤI
20
                                       VD
                  Western plateau
21
    Northern and central Grisons
                                       SG
22
      Eastern Alpine north slope
                                       ΑI
23
                         Engadine
                                       GR
24
                Alpine south side
                                       GR
25
                         Engadine
                                       GR
26
                            Valais
                                       VS
27
           North-eastern plateau
                                       ZH
28
           North-eastern plateau
                                       SG
```

1.3 Specific weather station

```
[3]: # Define the default parameters and tag the cell accordingly
wsno = -1 # default -1 selects the last index, 2 sets BAS weather station
#
# Calling syntax from shell:
#
# time for i in {0..28}; do \
# papermill MeteoCH.ipynb \
# MeteoCH.output.ipynb \
# -p wsno $i; done
#
# The time command at the beginning of the call may be omitted.
```

```
[4]: # Parameters
wsno = 28
```

28

The label of weather station St. Gallen is STG.

1.4 Current online observations

1.5 Summary statistics

```
[7]: df.describe()
```

```
hto000d0 nto000d0
                                              prestad0
                                                                      sre000d0
[7]:
            gre000d0
                                                          rre150d0
     count 400.00000
                      400.00000
                                       0.0 400.000000 400.000000 400.000000
    mean
            142.19000
                         0.70000
                                       NaN 927.671500
                                                          4.469000 283.107500
     std
            104.01267
                         2.37995
                                       NaN
                                              6.350051
                                                          9.544235 278.216025
                                                          0.000000
    min
             3.00000
                         0.00000
                                       NaN 898.400000
                                                                      0.000000
     25%
            50.00000
                         0.00000
                                       NaN 924.800000
                                                          0.000000
                                                                     16.750000
     50%
            120.50000
                         0.00000
                                       NaN 928.000000
                                                          0.150000 189.500000
     75%
            226.75000
                         0.00000
                                       NaN 930.925000
                                                          4.600000
                                                                    482.500000
            365.00000
                        14.00000
                                       NaN 944.600000
                                                         82.700000 902.000000
    max
             tre200d0
                          tre200dn
                                      tre200dx
                                                  ure200d0
     count 400.000000 400.000000 400.000000 400.000000
     mean
             10.734750
                          7.364000
                                     14.305000
                                                 73.925500
     std
             7.503447
                          6.805029
                                      8.495299
                                                 13.485481
            -7.400000 -10.000000
                                     -5.600000
                                                 42.200000
    min
     25%
             5.575000
                          2.300000
                                      8.775000
                                                 64.075000
```

```
      50%
      10.650000
      7.800000
      14.350000
      74.650000

      75%
      17.000000
      13.100000
      21.625000
      84.825000

      max
      26.000000
      21.500000
      31.800000
      100.000000
```

```
[8]: (rows, cols) = df.shape
print(f"{rows} observations from {min(df.index)} to {max(df.index)}.")
```

400 observations from 2022-07-29 00:00:00 to 2023-09-01 00:00:00.

1.6 Description of observed parameters

```
[9]: from urllib.request import urlopen
     from io import BytesIO
     from zipfile import ZipFile
     zip_url = url + "/" + path + "/" + "data.zip"
     plist = [] # parameter
     ulist = [] # unit
     dlist = [] # description
     with urlopen(zip_url) as f:
         with BytesIO(f.read()) as b, ZipFile(b) as myzipfile:
             rf = myzipfile.open('1_how-to-download-nbcn-d.txt')
             blines = rf.readlines()
             rf.close()
             for i in range(14, 25):
                 line =blines[i].decode('unicode-escape').rstrip('\r\n')
                 plist.append(line[0:21].strip())
                 ulist.append(line[21:38].strip())
                 dlist.append(line[38:].strip('\n'))
     # list of lists instead of list of tuples
     ##zipped = zip(plist[1:], ulist[1:], dlist[1:])
     list_of_lists = [list(tup) for tup in zip(plist[1:], ulist[1:], dlist[1:])]
     cols = [plist[0], ulist[0], dlist[0]]
     par = pd.DataFrame(list_of_lists, columns = cols)
     print(par)
```

```
Parameter Einheit
                                                          Beschreibung
0 gre000d0
               W/m^2
                                          Globalstrahlung; Tagesmittel
1 hto000d0
                             Gesamtschneehöhe; Morgenmessung von 6 UTC
2 nto000d0
                  %
                                          Gesamtbewölkung; Tagesmittel
                         Luftdruck auf Stationshöhe (QFE); Tagesmittel
3 prestad0
                hPa
4 rre150d0
                       Niederschlag; Tagessumme 6 UTC - 6 UTC Folgetag
                mm
5 sre000d0
                                         Sonnenscheindauer; Tagessumme
               min
                 °C
6 tre200d0
                            Lufttemperatur 2 m über Boden; Tagesmittel
7 tre200dn
                 °C
                           Lufttemperatur 2 m über Boden; Tagesminimum
```

```
8 tre200dx °C Lufttemperatur 2 m über Boden; Tagesmaximum
9 ure200d0 % Relative Luftfeuchtigkeit 2 m über Boden; Tage...
```

1.7 Air temperature

```
[10]: import matplotlib.pyplot as plt
plt.style.use('_mpl-gallery')
fswidth = 10
fsheight = 5
[11]: fig, axs = plt.subplots(figsize=(fswidth, fsheight))
```

```
fig, axs = plt.subplots(figsize=(fswidth, fsheight))

axs.plot(df.index, df.tre200d0)
axs.plot(df.index, df.tre200dn, color='0.8')
axs.plot(df.index, df.tre200dx, color='0.8')
axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

#axs.grid(which='major', color='0.8', linestyle='-')

plt.xlabel('')
plt.ylabel('Air temperature [°C]')
plt.title('Air temperature 2 m above ground; daily mean\n' + wstation)
plt.xticks(rotation=30)

plt.show()
```


1.8 Global radiation

```
[12]: fig, axs = plt.subplots(figsize=(fswidth, fsheight))
    axs.plot(df.index, df.gre000d0)
    axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

plt.xlabel('')
    plt.ylabel('Global radiation [W/m²]')
    plt.title('Global radiation; daily mean\n' + wstation)
    plt.xticks(rotation=30)

plt.show()
```


1.9 Total snow depth

```
fig, axs = plt.subplots(figsize=(fswidth, fsheight))
axs.plot(df.index, df.hto000d0)
axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

plt.xlabel('')
plt.ylabel('Total snow depth [cm]')
plt.title('Total snow depth; morning recording at 6 UTC\n' + wstation)
plt.xticks(rotation=30)

plt.show()
```


1.10 Cloud cover

```
fig, axs = plt.subplots(figsize=(fswidth, fsheight))
axs.plot(df.index, df.nto000d0)
axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

plt.xlabel('')
plt.ylabel('Cloud cover [%]')
plt.title('Cloud cover; daily mean\n' + wstation)
plt.xticks(rotation=30)

plt.show()
```


1.11 Pressure at station level

```
[15]: fig, axs = plt.subplots(figsize=(fswidth, fsheight))
    axs.plot(df.index, df.prestad0)
    axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

plt.xlabel('')
    plt.ylabel('Pressure at station level [hPa]')
    plt.title('Pressure at station level (QFE); daily mean\n' + wstation)
    plt.xticks(rotation=30)

plt.show()
```


1.12 Precipitation

```
[16]: fig, axs = plt.subplots(figsize=(fswidth, fsheight))
    axs.plot(df.index, df.rre150d0)
    axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

plt.xlabel('')
    plt.ylabel('Cloud cover [mm]')
    plt.title('Precipitation; daily total 6 UTC\n' + wstation)
    plt.xticks(rotation=30)

plt.show()
```


1.13 Sunshine duration

```
[17]: fig, axs = plt.subplots(figsize=(fswidth, fsheight))
    axs.plot(df.index, df.sre000d0)
    axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

plt.xlabel('')
    plt.ylabel('Sunshine duration [min]')
    plt.title('Sunshine duration; daily total\n' + wstation)
    plt.xticks(rotation=30)

plt.show()
```


1.14 Relative air humidity

```
[18]: fig, axs = plt.subplots(figsize=(fswidth, fsheight))
    axs.plot(df.index, df.ure200d0)
    axs.grid(visible='visible', which='major', color='0.8', linestyle='-')

plt.xlabel('')
    plt.ylabel('Relative air humidity [%]')
    plt.title('Relative air humidity; 2 m above ground; daily\n' + wstation)
    plt.xticks(rotation=30)

plt.show()
```


1.15 Export as PDF Report

```
[]: import os
     # Note that this only reliably works when running a notebook in a browser.
     # So it does not currently work for things like nbconvert or papermill.
     #import ipynbname
     nb_fname = 'MeteoCH' # hard-coded: import ipynbname raises an exception...
     out_fname = nb_fname + ".output"
     #out_fname = nb_fname
     #label = "FOOBAR"
     static_format = 'pdf' # pdf or html, etc.
     os.system(f'jupyter nbconvert --to {static_format} {out_fname}.ipynb')
     # Linux
     os.system(f'mv {out_fname}.{static_format} {label}.{static_format}')
     # Windows
     #os.system(f'del {label}.{static_format}')
     #os.system(f'ren {out_fname}.{static_format} {label}.{static_format}')
     os.system(f'echo done {wsno}: {label}')
```