## Digital Communications - SSY125

Convolutional Coding and the Viterbi Algorithm

Kashif Shabir Ilir Gashi Haitham Babbili

January 2020

## 1 Hard vs. Soft Receiver

The first task is about the evaluation of the performance of the system for uncoded and coded transmission, using  $\epsilon_2$  and  $\chi_{QPSK}$  with the Gray mapping. For the soft decoder also the upper bound error probability has been considered. The results are shown in Figure 1.



Figure 1: BER vs  $E_b/N_0$  plot for the encoder  $\epsilon_2$  with both hard and soft receiver

In order to evaluate the coding gain at BER=10<sup>-4</sup>, it is sufficient to look at the difference (in dB) between the uncoded simulation and the coded simulations.

The theoretical asymptotic coding gain can be calculated from the following formula:

$$Gain_{\infty} = 10\log_{10}(R_c d_{min}) \tag{1}$$

Where  $R_c$  is the coding rate (on our case 1/2) and  $d_{min}$  is the free distance (minimum Hamming distance between different codes). Equation 1 is valid only for soft decoding, and for this reason the asymptotic gain for hard decoding has not been calculated. In order to calculate the minimum value of  $E_b/N_0$  for both the hard and the soft case, it is sufficient to look at where the graphs for uncoded and coded simulations cross. However, equation 2 has been used for our case:

$$\frac{E_b}{N_0} = \frac{2^R - 1}{R} \tag{2}$$

Where R is the rate, that in our case is 1 since the code rate of  $\varepsilon_2$  is 1/2 and the number of bits per symbol is 2 (QPSK). From equation 2 we can notice that the minimum  $E_b/N_0$  is 0 dB, that is the capacity of the channel. In order to achieve reliable communication, the value of  $E_b/N_0$  must be greater than 0dB. Table 1 summarizes all the values mentioned so far.

Table 1: Comparison between hard and soft receivers using encoder  $\epsilon_2$  and QPSK modulation (BER=10<sup>-4</sup>)

|                   | Hard Receiver [dB] | Soft Receiver [dB] |
|-------------------|--------------------|--------------------|
| Coding gain       | -                  | 1.25               |
| Asymptotic gain   | 3.40               | 3.98               |
| Minimum $E_b/N_0$ | 4.50               | 0.8                |

From Figure 1, we can see that the difference in coding gain between hard and soft receivers is 1.9 dB. The soft-decoding is much more complex than the hard-decoding. Even if it performs better in terms of BER for a specific SNR, it is not so easy to apply in many applications.

## 2 Encoder Comparison

In this section, we will compare the performance of the considered three encoders  $\epsilon_1$ ,  $\epsilon_2$  and  $\epsilon_3$  for  $\chi_{QPSK}$  with the Gray mapping, by only considering the soft receiver. For each encoder, the upper bound of the theoretical BER has also been calculated. Figure 2 shows the obtained results .



Figure 2: BER vs  $E_b/N_0$  plot where the encoders ( $\epsilon_1$ ,  $\epsilon_2$  and  $\epsilon_3$  are compared. The upper bounds are plotted as well.

The coding gain and the asymptotic gain at BER= $10^{-4}$  has been calculated in the same way as in the previous task. The results are shown in Table 2.

Table 2: Comparison between  $\epsilon_1$ ,  $\epsilon_2$  and  $\epsilon_3$  using QPSK modulation (BER =  $10^{-4}$ )

|                 | $\epsilon_1$ | $\epsilon_2$ | $\epsilon_3$ |
|-----------------|--------------|--------------|--------------|
| Coding gain     | 3.58         | 3.44         | 4.11         |
| Asymptotic gain | 3.98         | 3.98         | 5.53         |

Table 2 shows that the encoder  $\epsilon_3$  performs best at BER=10<sup>-4</sup>, followed by  $\epsilon_1$ . The worst encoder among the three is  $\epsilon_2$  because of low free hamming distance. Since it is useful to keep the complexity in the system as low as possible, it can be seen that the complexity of  $\epsilon_1$  and  $\epsilon_2$  are the same, where  $\epsilon_2$  require four registers and 5 bitxor for every information bit.  $\epsilon_1$  instead requires two delay elements and its performance is still better than  $\epsilon_2$ . However  $\epsilon_3$  perform better than both of the two encoders because it has larger hamming distance =7 where the other's have = 5.

## 3 Coding can Increase Efficiency



Figure 3: BER vs  $E_b/N_0$  plot where the encoders  $\epsilon_1$ ,  $\epsilon_2$  and  $\epsilon_3$  are compared. The upper bounds are plotted as well.

In this section, we will compare System 1 ( $\epsilon_3$  with BPSK modulation), System 2 ( $\epsilon_3$  with QPSK modulation), and System 3 ( $\epsilon_4$  with AMPM modulation) for different performance parameters like power efficiency at BER= $10^{-4}$  and spectral efficiency for coded and uncoded scenarios. The results are shown in Table 3.

The spectral efficiency can be written as product of encoder rate  $R_c$  and the modulation order of the system (number of bits per symbol=  $\log_2 *M$  where M is the number of symbols in the constellation). However,  $R_c=1$  for uncoded transmission. Therefore, we can say that coding is modifying our spectral efficiency. In fact it decreases it as depicted in the Table

3 for all considered systems. Whereas, S3 is better than S1 and S2 in term of spectral efficiency (because of higher free hamming distance) but it needs almost 2dB more power than S1 and S2 in terms of power efficiency. In addition to that, S1 and S2 BERs are almost similar (because the BERs for QPSK and BPSK are the same) because we used same encoder and decoder. The difference is the spectral efficiency since BPSK sends one bit per symbol whereas QPSK sends 2 bits per symbol.

The system performance in term of capacity distance can be seen from Figure 3, which tells us that the difference is less for coded than uncoded which means its achieving higher capacity as compared to the uncoded part for different systems. The System 2 for coded part is outperforming all the other systems since it's value is 4.29 as compared to 4.31 (S1), 6.58 (S3), and uncoded values are 8.37 (S1), 8.41 (S2) and 10.87(S3) respectively.

All the coded systems are performing worst than uncoded systems in term of spectral efficiency as shown in Table 3. In the other way, coded power efficiency in all systems is almost double than uncoded. But coding decreases the BER with respect to uncoding. QPSK soft is outperforming all other scenarios in term of BER and AMPM is also performing better then rest of the others except QPSK (soft). In general coding enhances BER performance more than uncoded system. Overall, coding increases efficiency in terms of BER and power efficiency but at the loss in spectral efficiency .

Table 1: Table 3: Comparison between  $\epsilon_3$  using BPSK QPSK modulation and  $\epsilon_4$  using AMPM modulation (BER =  $10^{-4}$ )

| Decoder      | System type | Power efficiency | Spectral efficiency |
|--------------|-------------|------------------|---------------------|
|              | S1          | 4.31             | 0.5                 |
| Coded (soft) | S2          | 4.29             | 1                   |
|              | S3          | 6.58             | 2                   |
|              | S1          | 8.37             | 1                   |
| Uncoded      | S2          | 8.41             | 2                   |
|              | S3          | 10.87            | 3                   |