به نام خدا

طراحی سیستم های دیجیتال ۱

ادامه فصل دوم جبر بول و گیت های منطقی

√ استخراج تابع منطقی از جدول صحت

💠 هدف بدست آوردن تابع منطقی مربوط به جدول صحت روبرو است

X	у	z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

$$f_1 = \underline{x}\overline{y}z + \underline{x}\overline{y}\overline{z} + \underline{x}\overline{y}\overline{z} + \underline{x}\overline{y}z + \underline{x}y\overline{z} + \underline{x}yz$$

$$f_2 = \overline{x}\overline{y}z + \overline{x}yz + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}z$$

√ استخراج جدول صحت از تابع منطقی

❖ هدف بدست آوردن جدول صحت از روی تابع منطقی است

$$f_2 = \bar{x}z + x\bar{y}$$

$$\bar{x}z \Rightarrow x = 0$$
, $z = 1$, $y = 0$ or $1 \Rightarrow (0,0,1)$, $(0,1,1)$

$$x\bar{y} \Rightarrow x = 1$$
, $y = 0$, $z = 0$ or $1 \Rightarrow (1,0,0)$, $(1,0,1)$

x	у	z	F ₂
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

√ مثال طراحي

الله عنه خواهیم مداری طراحی کنیم که رای اکثریت را در رای گیری از سه نفر بدست آورد.

X	У	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f = \bar{x}yz + x\bar{y}z + xy\bar{z} + xyz$$

$$= xy(z + \bar{z}) + \bar{x}yz + x\bar{y}z = y(x + \bar{x}z) + x\bar{y}z$$

$$= y(x + z) + x\bar{y}z = x(y + \bar{y}z) + yz$$

$$= xy + xz + yz$$

√فرم های توابع بولی

فرم (SOP (Sum of Product): جمع حاصلضرب ها \diamondsuit

$$f(A, B, C, D) = A\bar{B}C + \bar{B}\bar{D} + \bar{A}C\bar{D}$$

🍫 فرم (Product of Sum) POS: حاصلضرب جمع ها

$$f(A, B, C, D) = (\bar{A} + B + C)(\bar{B} + C + \bar{D})(A + \bar{C} + D)$$

- ❖ به این فرم ها، فرم استاندارد (Standard Form) نیز می گویند.
- ❖ فرم متعارف (Canonical Form): همان فرم های SOP و POS هستند که دارای ویژگی های خاصی باشند.

√ فرم های توابع بولی

جملات مینیمم (Minterms): اگر یک جمله حاصلضربی از تمامی متغیرهای تابع که فقط یکبار بصورت متمم یا غیرمتمم استفاده شده، تشکیل شده باشد، به آن جمله یک جمله مینیمم (Minterm) گویند.

💠 اگر تابعی از جمع Minterm ها تشکیل شده باشد، به آن فرم Canonical SOP گویند.

$$f_{\alpha}(A, B, C) = \bar{A}B\bar{C} + AB\bar{C} + \bar{A}BC + ABC$$

Uncomplemented variable: 1 Complemented variable: 0

Minterm	Minterm Code	Minterm Number
$ar{A}Bar{C}$ $ABar{C}$ $ar{A}BC$	010 110 011	m ₂ m ₆
ABC	111	m_3 m_7

تصاص داده می شود.
می دهند که \mathbf{j} معادل دهدهی عدد
ىت.
$f_{\alpha}(A, B, C) = m_2 + m_3 + m_6 + m_7$
$f_{\alpha}(A, B, C) = \sum m(2, 3, 6, 7)$

تص	Inputs	Outputs	
	ABC	$f_{\alpha}(A, B, C)$	$=\sum m(2,3,6,7)$
	000	0	
۲ی	001	0	
	010	1	$\leftarrow m_2$
هد	0 1 1	1	$\leftarrow m_2 \\ \leftarrow m_3$
	100	0	,
i_7	101	0	
	110	1	$\leftarrow m_6$
	111	1	$\leftarrow m_6 \\ \leftarrow m_7$
			•

√جملات مینیمم (Minterms)

$$f_{\alpha}(A,B,C) = \sum m(2,3,6,7)$$

$$\begin{split} f_{\beta}(B,C,A) &= \sum_{} m(2,3,6,7) \\ &= \underbrace{m_2}_{010} + \underbrace{m_3}_{011} + \underbrace{m_6}_{110} + \underbrace{m_7}_{111} \\ &= \bar{B}C\bar{A} + \bar{B}CA + BC\bar{A} + BCA \\ &= \bar{A}\bar{B}C + A\bar{B}C + \bar{A}BC + ABC \end{split}$$

$$\begin{split} f_{\beta}(A,B,C) &= f_{\beta}(B,C,A) \\ &= \underbrace{\bar{A}\bar{B}C}_{001} + \underbrace{\bar{A}BC}_{011} + \underbrace{\bar{A}\bar{B}C}_{101} + \underbrace{\bar{A}BC}_{111} \\ &= m_1 + m_3 + m_5 + m_7 \\ &= \sum m(1,3,5,7) \end{split}$$

❖ متمم تابع:

Row No.	Inputs ABC	Outputs $f_{\alpha}(A, B, C)$	$=\sum m(2,3,6,7)$	Complement $\bar{f}_{\alpha}(A, B, C)$	$=\sum m(0,1,4,5)$
0	000	0		1	$\leftarrow m_0$
1	001	0		1	$\leftarrow m_1$
2	010	1	$\leftarrow m_2$	0	•
3	011	1	$\leftarrow m_3^2$	0	
4	100	0	,	1	$\leftarrow m_4$
5	101	0		1	$\leftarrow m_5^7$
6	110	1	$\leftarrow m_6$	0	3
7	111	1	$\leftarrow m_7$	0	

$$f_{\alpha}(A, B, C) = \sum m(2, 3, 6, 7)$$

$$\bar{f}_{\alpha}(A, B, C) = \sum m(0, 1, 4, 5)$$

$$\sum_{i=0}^{2^n-1} m_i = 1$$

√ فرم توابع بولي

◄ جملات ماکزیمم (Maxterms): اگر یک جمله حاصل جمعی از تمامی متغیرهای تابع که فقط یکبار بصورت متمم یا غیرمتمم استفاده شده، تشکیل شده باشد، به آن جمله یک جمله ماکزیمم (Maxterm) گویند.

ا کر تابعی از ضرب Maxterm ها تشکیل شده باشد، به آن فرم Canonical POS گویند.

$$f_{\gamma}(A, B, C) = (A + B + C)(A + B + \bar{C})(\bar{A} + B + C)(\bar{A} + B + \bar{C})$$

Uncomplemented variable: 0

Complemented variable: 1

Maxterm	Maxterm Code	Maxterm List
A+B+C	000	M_0
$A+B+\bar{C}$	001	M_1
$\bar{A} + B + C$	100	$M_{\scriptscriptstyle A}$
$\bar{A} + B + \bar{C}$	101	M_5

د باینری اختصاص داده می شود.

نشان می دهند که j معادل دهدهی عدد M_j

 $f_{\gamma}(A, B, C) = M_0 M_1 M_4 M_5$ $= \prod M(0, 1, 4, 5)$

	Inputs	Outputs
د باینری اختصاص	ABC	$f_{\gamma}(A, B, C)$
	000	0
! :: M ·	001	0
ن M _j نشان می د	010	1
Maxtern است.	0 1 1	1
	100	0
M	101	0
$_4M_5$	110	1
1, 4, 5)	111	1

(Maxterms) جملات ماکزیمی

Inputs	Outputs	Outputs
ABC	$f_{\alpha}(A, B, C)$	$f_{\gamma}(A, B, C)$
000	0	0
001	0	0
010	1	1
0 1 1	1	1
100	0	0
101	0	0
110	1	1
111	1	1

ا در تابع بسیار مهم است.	حالت نيز ترتيب متغيرها	💠 نکته مهم: در این
--------------------------	------------------------	--------------------

با مقایسه جدول صحت دو تابع f_lpha و f_γ خواهیم داشت: \clubsuit

$$f_{\alpha}(A, B, C) = \sum m(2, 3, 6, 7)$$

$$= f_{\gamma}(A, B, C)$$

$$= \prod M(0, 1, 4, 5)$$

ی Canonical SOP و Canonical POS قابل تبدیل به یکدیگر هستند. ❖

$$\bar{m}_1 = \overline{\underline{A}\overline{B}C} = \underline{A + B + \overline{C}} = M_1$$
001 (minterm code) (maxterm code)

$$\begin{split} \bar{m}_i &= M_i \\ \bar{M}_i &= \bar{\bar{m}}_i = m_i \end{split}$$

 $ar{m}_i = M_i$ ها متمم یکدیگر Minterm lacktrightهستند.

در Canonical SOP با یک های تابع سروکار داریم و در Canonical POS با صفرهای تابع سروکار داریم

√ فرم توابع بولي

💠 مثال: تابع روبرو را به فرم Minterm و Maxterm بنویسید.

$$f(A, B, C) = (A + B + \bar{C}).(A + \bar{B} + \bar{C}).(\bar{A} + B + \bar{C}).(\bar{A} + \bar{B} + \bar{C})$$

$$f(A, B, C) = \underbrace{(A + B + \bar{C})}_{001} \underbrace{(A + \bar{B} + \bar{C})}_{011} \underbrace{(\bar{A} + B + \bar{C})}_{101} \underbrace{(\bar{A} + \bar{B} + \bar{C})}_{111}$$

$$= M_1 M_3 M_5 M_7$$

$$= \prod M(1, 3, 5, 7)$$

$$f(A, B, C) = \prod M(1, 3, 5, 7) = \sum m(0, 2, 4, 6)$$

Row No.	Inputs	Outputs	Outputs	
(i)	ABC	f(A, B, C)	$\bar{f}(A, B, C)$	$=\prod M(0, 2, 4, 6)$
0	000	1	0	$\leftarrow M_0$
1	001	0	1	•
2	010	· 1	0	$\leftarrow M_2$
3	011	0	1	-
4	100	1	0	$\leftarrow M_{A}$
5	101	0	1	•
6	110	1	0	$\leftarrow M_6$
7	111	0	1	0

$$f(A, B, C) = \sum m(0, 2, 4, 6) = \prod M(1, 3, 5, 7)$$
$$\bar{f}(A, B, C) = \sum m(1, 3, 5, 7) = \prod M(0, 2, 4, 6)$$

$$\bar{f}(A, B, C) = \sum m(1, 3, 5, 7) = \prod M(0, 2, 4, 6)$$

💠 یس برای متمم یک تابع، یا اعداد را تغییر می دهیم یا علامت را.

√فرم توابع بولی

کنکته: برای دستیابی به ضابطه تابع از روی جدول صحت:

- می توان برای هر ترکیبی از متغیرها که به ازای آن تابع یک می شود، یک Minterm تشکیل داده و سپس جملات را با هم OR کنیم (بصورت SOP).

- می توان برای هر ترکیبی از متغیرها که به ازای آن تابع صفر می شود، یک Maxterm تشکیل داده و سپس جملات را با هم AND کنیم (بصورت POS). (POS کنیم (بصورت علام ایکا میکا

Α	В	C	f (A	,B,C)
0	0	0	0	M_0
0	0	1	0	M_1
0	1	0	1	m_2
0	1	1	0	M_3
1	0	0	1	m_4
1	0	1	1	m_5
1	1	0	0	M_6
1	1	1	1	m_7

$f(A,B,C) = \int_{C}^{C} f(A,B,C) dA$	m(2,4,5,7) = 1	M(0,1,3,6)

√فرم توابع بولی

خ نکته: اگر در جملات تابع، یک یا چند متغیر (مثلا متغیر A) وجود نداشت، آن جمله را در $(A + \overline{A})$ ضرب می کنیم تا متغیر ظاهر شود و بتوان لیست جملات مینیمم و ماکزیمم را بدست آورد.

$$F = A + B'C$$

$$A = A(B + B') = AB + AB'$$

$$A = AB(C + C') + AB'(C + C')$$

= $ABC + ABC' + AB'C + AB'C'$

$$B'C = B'C(A + A') = AB'C + A'B'C$$

$$F = A'B'C + AB'C + AB'C + ABC' + ABC$$

= $m_1 + m_4 + m_5 + m_6 + m_7$

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

💠 روش دیگر:

$$f=A+BC \rightarrow AXX \rightarrow \begin{cases} A \circ 0 \rightarrow 100 \rightarrow m_4 \\ A \circ 1 \rightarrow 101 \rightarrow m_5 \\ A \circ 0 \rightarrow 110 \rightarrow m_6 \end{cases}$$
 $f=A+BC \rightarrow AXX \rightarrow \begin{cases} A \circ 0 \rightarrow 100 \rightarrow m_4 \\ A \circ 1 \rightarrow 101 \rightarrow m_5 \\ A \circ 0 \rightarrow 101 \rightarrow m_6 \end{cases}$
 $f=\sum_{i=1}^{n} (1,4,5,6,7)$
 $f=\sum_{i=1}^{n} (1,4,5,6,7)$

V شبکه های AND-OR و NAND√

❖ توابعی که به فرم SOP هستند، از طریق شبکه های AND-OR پیاده سازی می شوند.

$$f_{\delta}(p,q,r,s) = p\bar{r} + qrs + \bar{p}s$$

❖ اینگونه توابع را می توان بصورت تمام NAND نیز پیاده سازی کرد.

$$f_{\delta}(p,q,r,s) = \frac{\overline{p\bar{r} + qrs + \bar{p}s}}{\overline{p\bar{r}} \cdot \overline{qrs} \cdot \overline{\bar{p}s}}$$

V شبکه های OR-AND و NOR

❖ توابعی که به فرم POS هستند، از طریق شبکه های OR-AND پیاده سازی می شوند.

$$f_{\epsilon}(A, B, C, D) = (\bar{A} + B + C)(B + C + D)(\bar{A} + D)$$

💠 اینگونه توابع را می توان بصورت تمام NOR نیز پیاده سازی کرد.

$$f_{\epsilon}(A, B, C, D) = \overline{(\overline{A} + B + C)(B + C + D)(\overline{A} + D)}$$

$$= \overline{\overline{A} + B + C} + \overline{B + C + D} + \overline{\overline{A} + D}$$

$(\mathbb{IC}_{\mathbb{S}})$ آی سی ها

- (Integrated Circuits) مدارهای مجتمع
 - 💠 مشخصات مهم آی سی ها
 - سرعت (Speed) سرعت
- √ توان مصرفی (Power Consumption)
 - √ حاشیه نویز (Noise Margin)
 - Fan-In ✓
 - Fan-Out ✓

√ آی سی ها (ICs)

❖ دسته بندی آی سی ها از لحاظ مجتمع سازی:

- ✓ Small-Scale Integration (SSI) NG < 10
- ✓ Medium-Scale Integration (MSI) 10 < NG < 1000 (Decoders, Adders,...)
- ✓ Large-Scale Integration (LSI) NG > 1000 (Processors, Memory,...)
- ✓ Very Large-Scale Integration (VLSI) NG ~ millions of Gate (Memory array, ...)