Content

3	Specific Processes for Advanced Micro- and
	Nanoelectronics

3.1	Special CVD Processes
3.2	Epitaxy

3.3	Advanced PVD Processes
3.4	Atomic Layer Deposition

3.5	Ion Implantation /	Special Annealing	Processes
			,

3.6	Advanced Lithography
0.0	, tarancoa =og.ap,

2.7	Advenced Dr	/Dlaama	Etabina	Droopson
3.7	Advanced Dry	//Piasilia	⊏tching	FIUCESSES

3.8	Chemical	Mechanical	Polishing	/Planarization

3.9 Electrochemical Deposition and Electroless Deposition

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 1

3.1 Special CVD Processes

3.1.1 Metal CVD (W,	Cu))
-------------------	----	-----	---

- 3.1.2 Metal Nitride CVD Conductive Diffusion Barriers
- 3.1.3 Applications of CVD poly-Si, SiO_2 , Si_xN_y ...
- 3.1.4 CVD of low-k dielectrics

3.1.1 Metal CVD

(A) Tungsten (W) CVD

- Application and integration aspects
- Precursors and reactions
- Process characteristics and film properties
- Selective process

Application and integration aspects of CVD-W

Three Metal Layer CMOS Device

Source: PTI Seminars, Inc, 1749 Gilsinn Ln, St. Louis, MO 630

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 3

Application and integration aspects of CVD-W

TSMC 0.18 CMOS Cross Section

CVD Tungsten Via Fill: Process sequence ("W plug")

Tungsten CVD: Precursors

Precusor	Phase (@RT, air pressure)	vapour pressure
WF ₆	gaseous	880 Torr (21 °C)
WCI ₆	solid	0.7 7 Torr (150200 °C)
$W(CO)_6$	solid	10 50 mTorr (30 °C)
metalorgani	С	

Tungsten deposition using WF₆ is very sensitive to the wafer surface materials:

- → faster nucleation on metallic and conducting surfaces
- → bad nucleation and adhesion on insulators
- → liner for blanket deposition required
- → selective deposition mode possible

Advanced Integrated Circuit Technology

Hydrogen reduction of WF₆: blanket W deposition for contact and via fill

$$WF_6 + 3 H_2 \longrightarrow W$$

Silane reduction of WF₆:

nucleation step for blanket W CVD selective deposition for contact or via fill

+ 6 HF

$$2 WF_6 + 3 SiH_4 \longrightarrow 2 W \downarrow + 3 SiF_4 \uparrow + 6 H_2 \uparrow$$

$$WF_6 + 2 SiH_4 \longrightarrow W \downarrow + 3 SiHF_3 \uparrow + 3 H_2 \uparrow$$

Silicon reduction of WF₆: parasitic reaction during contact fill on Si

$$2 WF_6 + 3 Si \longrightarrow 2 W \downarrow + 3 SiF_4 \uparrow < 400^{\circ}C$$

$$WF_6 + 3 Si \longrightarrow W \downarrow + 3 SiF_2 \uparrow > 500^{\circ}C$$

Aluminium reduction of WF₆: parasitic reaction during via fill

$$WF_6$$
 + 2 AI \longrightarrow $W \downarrow$ + 2 AIF₃

AIF₃ increases via resistance: liner as barrier against WF₆ diffusion required

Only for internal use at TU Chemnitz for study purposes.
Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 7

Tungsten CVD:

Process characteristics

Temperature effect (T \downarrow :)

- resistivity ↑
- step coverage ↓
- deposition rate ↓

Tungsten CVD:

Film properties

Parameter	Via Fill	Interconnect
W Thickness Bulk resistivity film reflectance (bei 480 nm) Stress $T_{dep} = 440^{\circ}C$ $T_{dep} = 375^{\circ}C$	500 nm < 11.5 μΩcm 60% 1.5 GPa 1.9 GPa	350 nm < 10.5 μΩcm 70% 1.5 GPa 1.9 GPa
Step coverage 0.25 μ m, 8:1 AR T _{dep} = 375°C 0.30 μ m, 5:1 AR T _{dep} = 440°C Sheet resistance uniformity WIW (1 σ) WTW (1 σ)	90% 90% < 2% < 2%	NA NA < 2% < 2%

Advanced Integrated Circuit Technology

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 9

ZfM Fraunhofer

Tungsten CVD:

Selective deposition

Selective Tungsten CVD

W

Blanket Tungsten CVD W

Via clean **Liner deposition** W CVD **W CMP**

Via clean

W CVD

Tungsten CVD:

Selective deposition

IECHRISCHE INDIFERMITÄT CHEMINETZ

Source: S.E. Schulz, PhD thesis, TU Chemnitz, 1996

.

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 11

Tungsten CVD:

Reactions -Thermodynamic considerations

Reduction reactions on Si

 H2-Red.
 Si-Red. (SiF2)
 Si-Red. (SiF4)
 SiH4-Red. (SiF4)
 SiH4-Red. (SiHF3)

Tungsten CVD:

Selective deposition

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 13

3.1.1 Metal CVD

(B)Copper (Cu) CVD

- Application and integration aspects
- Precursors and reactions
- Process characteristics and film properties
- Adhesion of copper

Copper CVD: Application and integration aspects

Potential fields of application (not yet in production!):

- Patterns with high aspect ratios can be covered conformal
- Metallization of on-chip Cu damascene interconnects or through silicon vias (TSVs) for 3D integration (see chapter 6):
 - Complete fill of via/trench or TSV patterns
 - Seed layer for subsequent fill using copper electroplating

Technical requirements for use

- State of the art single wafer cluster tool with CVD-chamber
- Direct liquid inject or vaporizer system for precursor delivery (variety of systems available by AMAT, Bronkhorst, MKS, Kemstream, ...)
- Efficient in situ chamber clean (not available yet)

Interaction with other processes / layers

- Adhesion is an critical issue
- Process has low thermal budget, applicable for temperature sensitive materials

Cost

- Precursor cost (still) high no high volume fabrication
- Limited throughput

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 15

Copper CVD: Application and integration aspects

Example of use: CVD-Cu as seed layer for electroplating of Cu

Copper CVD:

Application and integration

Example: CVD-Cu for interchip via fill in Vertical System Integration

Source: S.Riedel et al., MAM 2001

Chapter 3.1 - 17

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited.

Copper CVD:

Precursors and Reactions

inorganic

Fraunhofer

$$CuCl_2 + H_2 \xrightarrow{reduction \ of \ metal \ halide} Cu + 2HCl$$

organic

classification after oxidation state of the copper atom:

copper (I) compounds:

different β-diketonates, stabilized by ligands (various Lewis bases possible)

$$\begin{array}{c|c}
R & R \\
2 & O & disproportion \\
Cu & reaction
\end{array} \quad Cu + 2L + Cu(II) - compound$$

copper (II) compounds:

 $\mathbf{R} = \mathrm{CH}_3$, CF_3 or t-butyl

R, L determine vapour pressure and stability

CupraSelect $^{\tiny{\circledR}}$:

$$R = CF_3$$

$$L = TMVS$$

Copper CVD: Application and integration aspects

Precursor related information

The only production worthy precursor (now a days) is:

Cu(I) hexafluoro acetylacetonato trimethylvinylsilan

Abbreviation: Cu(hfac)TMVS (Trade name: CupraSelect®, supplier: Air Products/Schumacher)

because it is the most stable precursor with the highest vapour pressure.

Potentials:

- + Clean films at low temperatures enabled by disproportion reaction
- + No corrosive byproducts
- + Precursor is stable at normal storage conditions
- + Precursor is a liquid with a sufficient vapour pressure, 2 Torr at 65°C
- + Commercially available in microelectronics quality
- + Process can be installed at standard CVD single wafer clustertools

Drawbacks:

- Precursor decomposes at storage/ vaporising temperatures above 65°C
- Expensive
- Only the half of the copper atoms are available for film growth
- Reaction byproducts with low volatility (long pump down between processes)

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 19

Copper CVD: Process characteristics

Important parameters:

Temperature range: 150°C ... 210°C

- below 150°C deposition rate < 40 nm/min
- 150°C ... 180°C very high conformality,low deposition rate ~ 80 nm/min
- 180°C ... 210°C reduced conformality,
 high deposition rate ~ 200 nm/min
- above 210°C very rough films consisting of loosely connected grains
- Chamber pressure: 0.5 Torr ... 20 Torr, is not a critical parameter; wide range can be used for optimisation
- Precursor feed rate: 1 ... 1.5 g/min for 200 mm Wafers

Equipment: not yet commercialized; tools used in R&D:

P5000 or Endura (Applied Materials), ALTUS (Novellus Systems), SPTS, ALTATECH

Copper CVD: Film characteristics

- Specific electrical resistivity: 2.0 ... 2.5 $\mu\Omega cm$ (dependent on film thickness and grain size)
- Film stress: ≤ 280 MPa (2.8 Gdyn/cm²)
- Roughness: R_a = 17 nm (film thickness of 350 nm, deposition temperature of 200°C)
- Grain size: 110 nm (evaluated from TEM for a film thickness of 350 nm perpendicular to the surface), columnar structure
- Density: 8 ... 8.5 g/cm³ (90% ... 96% of bulk value)
- Impurities: Si/Cu < 1 at%, F/Cu < 0.3 at%,
 C/Cu < 1 at%, O/Cu < 1 at% (all below detection limit AES)
- Adhesion: depends on base layer and process flow special issue

Copper CVD: Adhesion

General issues

- CVD is a low energy process related to the incident precursor molecules

 Diffusion barrier and copper must not interact / chemical reaction between the both are not allowed

• Special problem:

Formation of an amorphous intermediate layer (fluorocarbon)

Solutions

- Sputtered copper seed layers (Cu flash layer)
- Application of reactive adhesion layers (for instance modified MOCVD-TiN), with post deposition anneal
 - Fluorine-free precursor (not mature yet)

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1 - 23