## CLAIMS

What is claimed is:

1. A digital electronic method for increasing the calculation accuracy in non-linear functions, comprising the steps of:

inputting, for processing, into a first multiplexing device of an electronic data processing device with  $2^{\rm F}={\rm f}$  inputs, each with m locations, a value of a generally non-linear function which is present as a number and which serves as an input word together with a respective coded control word  $_{\rm f}$  having the input format

$$EF_f = S U1_f M_f A1_f$$

with the point being at an undetermined location, wherein S represents the plus or minus sign,  $\ddot{U}1_{\rm f}$  the locations with the highest values which likely can never be used,  $M_{\rm f}$  the locations with the uniform width m and  $A1_{\rm f}$  the locations with the lowest value, which cannot be used, and the index f'' is the coded control word of the length F,

said value is transformed in the data processing device to an intermediate format

$$ZF = S \ddot{U}Z_c A2_c$$

with (m=1) locations and a fixed point location, (fixed point representation) wherein the locations  $U1_f$  and  $U2_c$  are checked in an overflow device for overflow and which, upon occurrence of a fixed location, is capable of generating an alarm, and wherein the lower value locations  $A1_f$  and  $A2_f$  are cut off in an electronic cut-off device,

dividing the number range which is represented at the output of the first multiplex device by the intermediate format ZF

into C intervals of partially different sizes which cover the whole number range of ZF without overlapping and without gaps, and dividing the intermediate format ZF into a range  $K_c$  for coding and a range  $G_c$  of low value locations wherein both ranges may overlap.

- 2. A digital electronic system for increasing the calculation accuracy in non-linear functions, comprising:
- a first multiplexing device with  $2^F$  inputs for inputting arbitrary input formats (which can be numbered) with a certain word width and having a fixed point at different locations,
- a further coded control input by way of which the numbered input formats can be addressed,

an output with a uniform intermediate format also of predetermined width wherein the fixed point is only at a predetermined location,

an overflow device for receiving the highest value locations of the input format which are likely never set and also the higher value locations of the intermediate word at the multiplexing device which must be checked for overflow and which are interrogated for locations different from zero in order to provide an alarm if set locations are found,

a coding device K, in which a coding range  $K_{\rm c}$  is generated from the partial range  $B_{\rm c}$  to be coded of the intermediate format  $ZF_{\rm m}$ ,

a cut-off device in which the lowest value locations  $A1_{\rm f}$  and the low value locations  $A2_{\rm c}$  are eliminated from further processing, and

a second multiplexing device M2 in which the coded range  $SK_{\text{c}}$  which is provided with a sign and the attached uncoded range  $G_{\text{c}}$  of the low value locations in the intermediate format ZF are transformed into a predetermined output format AF.

- 3. A digital electronic system according to claim 2, wherein said overflow device, said coding device and said cut-off device consist of logic components.
- 4. A digital electronic system according to claim 3, wherein said system includes one of a specific chip and a specific set of chips.