שנהייל התשייף, סמסטר בי, מועד א

שאלון בחינה בקורס: מבנה נתונים ותוכניות אי

מספר קורס: 150015

Formula Sheet

Definition of O : Given two functions f(n), g(n): $N \rightarrow R^+$

We say that g(n) is O(f(n)) if there are positive constants n_0 and c such that $g(n) \le c^* f(n)$ for all $n \ge n_0$

Definition of \Omega: Given two functions f(n), g(n): $N \to \mathbb{R}^+$

We say that g(n) is Ω (f(n)) if there are positive constants n_0 and c such that $g(n) \ge c^* f(n)$ for all $n \ge n_0$

Definition of \Theta: Given two functions f(n), g(n): $N \to R^+$

We say that g(n) is Θ (f(n)) if there are positive constants n_0 , c_1 , c_2 and c such that $c_1f(n) \le g(n) \le c_2f(n)$ for all $n \ge n_0$

Definition of 0: Given two functions f(n), g(n): $N \rightarrow R^+$

We say that g(n) is o(f(n)) if for every positive c there is positive constant n_0 such that g(n) < c*f(n) for all $n \ge n_0$

Definition of \omega: Given two functions f(n), g(n): $N \to R^+$

We say that g(n) is ω (f(n)) if for every positive c there is positive constant n_0 such that g(n) > c*f(n) for all $n \ge n_0$

Arithmetic Series

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{1}{2}n(n+1)$$

Geometric Series

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \qquad |x| < 1 \qquad \forall x$$

Harmonic Series

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1)$$

Series of Squares

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 סדרת הריבועים:

שנה"ל **התש"ף**, סמסטר **ב'**, מועד **א** שאלון בחינה בקורס: מבנה נתונים ותוכניות אי מספר קורס: **150015**

$$\frac{\log_c a}{\log_c b} = \log_b a$$
 : log שינוי בסיס

$$n^{\log_c a} = a^{\log_c n}$$
 שינוי חזקה:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
:כלל לופיטל: