Analysis II

Ferrulli Massimiliano

21 febbraio 2024

Indice

1	The vector space \mathbb{R}^n		
	1.1	Operations	2
	1.2	Euclidean Norm on \mathbb{R}^n	2
	1.3	Topology on \mathbb{R}^n	3
2	Allegati		
	2.1	Dimostrazione 1	5

1 The vector space \mathbb{R}^n

1.1 Operations

Addition and scalar multiplications are defined as follows:

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$
$$\lambda \mathbf{x} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix}$$
$$\lambda \mathbf{x} + \mathbf{y} = \lambda \mathbf{x} + \lambda \mathbf{y}$$

Scalar product, $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, in the vector space \mathbb{R}^n is defined as:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k y_k = \mathbf{x}^{\mathsf{T}} \mathbf{y} = (x_1 \cdots x_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

The scalar product satisfies the following properties:

- 1. Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0 \,\forall x \text{ with } \langle \mathbf{x}, \mathbf{x} \rangle = 0 \stackrel{\text{iff}}{\longleftrightarrow} x = 0$
- 2. Simmetry: $\langle x, y \rangle = \langle y, x \rangle$
- 3. Bilinearity: $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \ \forall x, y, z \in \mathbb{R}^n \ \text{and} \ \forall \alpha, \beta \in \mathbb{R}$

1.2 Euclidean Norm on \mathbb{R}^n

The function $\|\cdot\|_2 : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$\|x\|_2 = \sqrt{\langle x, x \rangle} = \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}$$

The Euclidean norm on \mathbb{R}^n has the following properties:

- 1. Non-negativity: $\|\mathbf{x}\|_2 \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$, with eequality $\stackrel{\text{iff}}{\longleftrightarrow} \mathbf{x} = \mathbf{0}$.
- 2. Homogeneity: $\|\lambda \cdot \mathbf{x}\|_2 = |\lambda| \cdot \|\mathbf{x}\|_2$ for all $\lambda \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$
- 3. Triangle inequality: $\|\mathbf{x} + \mathbf{y}\|_2 \le \|\mathbf{x}\|_2 + \|\mathbf{y}\|_2 \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (also called Cauchy Schwartz inequality)

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2$$
 (Angle Formula)

if x and y are orthogonal then:

$$||x + y||_2^2 = ||x||_2^2 + ||y||_2^2$$
 (Pythagoras)

Definition:

The Euclidean distance on \mathbb{R}^n is the function $d(.,.): \mathbb{R}^n \times \mathbb{R}^n \to [0,\infty)$ given by:

$$d(\mathbf{x}, \mathbf{y}) := \|x - y\|_2 = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

This function outputs the distance between two points in \mathbb{R}^n and it satisfies the following 3 properties:

- 1. Non-negativity: $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with equality $\stackrel{\text{iff}}{\longleftrightarrow} \mathbf{x} = \mathbf{y}$.
- 2. Symmetry: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
- 3. Triangle inequality: $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$.

1.3 Topology on \mathbb{R}^n

Definition: Open Ball

Let $\mathbf{a} \in \mathbb{R}^n$ and r > 0. The set

$$B(a, r) = \{x \in \mathbb{R}^n : d(x, a) < r\}$$

is called the open ball of radius r centered at \boldsymbol{a} .

If and are two distinct points then: if $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{x} \neq \mathbf{y}$ then we can find a sufficiently small open ball centered in \mathbf{x} and another centered in \mathbf{y} such that the two balls don't touch. Open balls are open sets¹

Definition: Open set

A subset $U \subseteq \mathbb{R}^n$ is open if $\forall \mathbf{x} \in U \exists \varepsilon > 0$: the open ball $B(x, \varepsilon)$ is contained in U.

Example of an open set:

1. if a < b are real numbers then the interval

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

is an open set.

Proof: take $r = min\{x - a, b - x\}$ (both a and b are strictly positive), the minimum is positive and the ball $B(x, r) = \{y \in \mathbb{R} : |x - y| < r\}$ is a subset of (a, b). As \mathbf{x} is arbitrary, that works $\forall \mathbf{x} \in (a, b)$ and so it satisfies the definition of an open set.

2. The infinite interval (a, ∞) and $(-\infty, b)$ are also open but the intervals

$$(a, b] = \{x \in \mathbb{R} : a < x \le b\}$$
 and $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$

 $^{^{1}}$ An open set is a set with the property that if \mathbf{x} is a point in the set then all points that are sufficiently near to it also belong to the set.

are not open sets.

3. the rectangle $(a, b) \times (c, d) = \{(x, y) \in \mathbb{R}^2 : a < x < b, c < y < d\}$ is an open set.

Definition: Closed Set

A subset $C \subseteq \mathbb{R}^n$ is closed if its complement \mathbb{R}^n C is open.

<u>Convention:</u> The empty set and the space \mathbb{R}^n are the only two spaces both open and closed at the same time.

Definition: Closed Ball

Let $\mathbf{a} \in \mathbb{R}^n$ and r > 0. The set

$$\overline{B(\mathbf{a},r)} = {\mathbf{x} \in \mathbb{R}^n : d(\mathbf{x},\mathbf{a}) \le r}$$

is called the closed ball of radius r centered at a and it is a closed set. Example of a closed set:

- 1. The closed interval $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ is a closed set and its complementary $\mathbb{R}[a,b] = (-\infty,a) \cup (b,\infty)$ is an open set.
- 2. Infinite intervals with closed boundary $[a, \infty)$ and $(-\infty, b]$ are closed sets.
- 3. Halfopen intervals such as [a, b) or (a, b] are neither closed nor open sets.
- 4. Any set consisting of only finitely many points is a closed set.

Propositions:

- \cdot if $U \subseteq \mathbb{R}^n$ is open and $C \subseteq \mathbb{R}^n$ is closed then U C is open. (Open Closed = Open)
- \cdot if $U \subseteq \mathbb{R}^n$ is closed and $C \subseteq \mathbb{R}^n$ is open then U C is closed. (Closed Open = Closed.)
- · if $U_1, \dots U_k \subseteq \mathbb{R}^n$ are open then $U_1 \cup \dots \cup U_k$ and $U_1 \cap \dots \cap U_k$ are open.
- · if $C_1, \dots C_k \subseteq \mathbb{R}^n$ are open then $C_1 \cup \dots \cup C_k$ and $C_1 \cap \dots \cap C_k$ are closed².

²intersezione e unione di sottoinsiemi chiusi (rispettivamente aperti) danno un sottoinsieme ancora chiuso (rispettivamente aperto).

2 Allegati

2.1 Dimostrazione 1