Linear Alebgra HW05

Aamod Varma

October 1, 2024

1

Proof. We know for a linear map, T(u+v)=T(u)+T(v) and $T(\lambda v)=\lambda T(v)$

First we look at additivity,

Consider an arbitrary $u = (x_1, y_1, z_1)$ and $v = (x_2, y_2, z_2)$. So we have,

$$T(u+v) = T((x_1 + x_2), (y_1 + y_2), (z_1 + z_2))$$

$$= (2(x_1+x_2)-4(y_1+y_2)+3(z_1+z_2)+b, 6(x_1+x_2)+c(x_1+x_2)(y_1+y_2)(z_1+z_2))$$

We need the above to be equal to,

$$T(u) + T(v) = (2x_1 - 4y_1 + 3z_1 + b, 6x_1 + cx_1y_1z_1) + (2x_2 - 4y_2 + 3z_2 + b, 6x_2 + cx_2y_2z_2)$$

$$= (2(x_1 + x_2) - 4(y_1 + y_2) + 3(z_1 + z_2) + 2b, 6(x_1 + x_2) + c(x_1y_1z_1 + x_2y_2z_2)$$

Comparing each of the terms we have,

$$2(x_1+x_2)-4(y_1+y_2)+3(z_1+z_2)+2b=2(x_1+x_2)-4(y_1+y_2)+3(z_1+z_2)+b$$

$$2b = b$$

$$b = 0$$

Similarly comparing the second term we have,

$$6(x_1 + x_2) + c(x_1 + x_2)(y_1 + y_2)(z_1 + z_2) = 6(x_1 + x_2) + c(x_1y_1z_1 + x_2y_2z_2)$$

$$c(x_1 + x_2)(y_1 + y_2)(z_1 + z_2) = c(x_1y_1z_1 + x_2y_2z_2)$$

$$c((x_1 + x_2)(y_1 + y_2)(z_1 + z_2) - (x_1y_1z_1 + x_2y_2z_2)) = 0$$

For this to be true for any x,y,z we need c=0. Hence for additivity we need b=c=0

Now we check if T(kv) = kT(v). Consider v = (x, y, z). Then we have

$$T(kv) = T(kx, ky, kz) = (2kx - k4y + 3kz + b, 6kx + k^3cxyz)$$

We need this to be equal to

$$kT(v) = k(2x - 4y + 3z + b, 6x + cxyz) = (2kx - 4ky + 3kz + bk, 6kx + kcxyz)$$

Comparing the terms we have,

$$2kx - 4ky + 3kz + bk = 2kx - 4ky + 3kz + b$$

$$bk = b$$

$$b = 0$$

$$6kx + kcxyz = 6kx + k^3cxyz$$

$$c = k^2 c$$

$$c = 0$$

So we have b = c = 0

6

Proof. 1. Associativity. We have $(T_1T_2)T_3 = T_1(T_2T_3)$ Consider the operation on a vector v so we have, $(T_1T_2)T_3v$ which is,

$$((T_1T_2)(T_3(v)) = T_1(T_2(T_3(v)))$$

Now looking at the right side we have, $T_1(T_2T_3) = T_1(T_2(T_3(v)))$. So we showed that the LHS is equal to the RHS.

2. Identity. Consider a vector v we have,

$$TIv = T(I(v)) = T(v)$$

Now,

$$ITv = I(T(v)) = T(v)$$
 because $Iv = v, \forall v$

3. Distributive Property

To show that,

$$(S_1 + S_2)T = S_1T + S_2T$$

Consider an abitrary vector v in the domain of T. We have,

$$(S_1 + S_2)Tv = (S_1 + S_2)(T(v))$$

By definitino of addition of linera maps we have,

$$= (S_1(T(v))) + (S_2(T(v)))$$

Simliary we have,

$$(S_1T + S_2T)v = S_1T(v) + S_2T(v) = S_1(T(v)) + S_2(T(v))$$

We see that the distributive property holds.

Now To show that $S(T_1 + T_2) = ST_1 + ST_2$. Consider v we have,

$$S(T_1 + T_2)v = S(T_1(v) + T_2(v)) = S(T_1(v)) + S(T_2(v))$$

And we have,

$$(ST_1 + ST_2)v = ST_1(v) + ST_2(v) = S(T_1(v)) + S(T_2(v))$$

We see that the property holds again.

7

Proof. Let V be a one dimentional vector space. This means that the basis of V contains a single vector, let the basis be $\{v\}$. Now we are considering a linear map from V to itself.

So assume that the linear map T maps some v_0 in V to w_0 . We need to show that $w_0 = \lambda v_0$ for some $\lambda \in F$. Because T maps V to itself we known that that $w_0 \in V$ for any w_0 . If $w_0 \in V$ then wek now that it can be written as a linear complination of its basis. As the basis only has one vector we can write $w_0 = \lambda_1 v$. Similarly as $v_0 \in V$ we can write $v_0 = \lambda_2 v$. So we have,

$$\frac{v_0}{\lambda_2} = v$$

$$w_0 = \lambda_1 \frac{v_0}{\lambda_2} = \lambda v_0$$

8

Proof. Consider the function that maps any vector (x,y) to the max(|x|,|y|). We can see that this satisfies homogeneity. For instance consider (2,6). Our function maps this to 6. Now consider $(2\times3,6\times3)$ which is mapped to 18 which is 3×6 as we saw above.

Now consider two vector (1,0) and (0,4). Our function maps both these vectors to 1 and 4 respectively. However it maps its sum (1,4) to $4 \neq 4+1$. Hence it does not follow additivity. Hence not a linear space.