LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57018\pm0.00035$$
 MeV (S = 1.2)
Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2)
 $c\tau=7.8045$ m

 $\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a]

$$F_V = 0.0254 \pm 0.0017$$
 $F_A = 0.0119 \pm 0.0001$ F_V slope parameter $a = 0.10 \pm 0.06$ $R = 0.059^{+0.009}_{-0.008}$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES		Fraction (Γ	_i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
${\mu^+ \nu_{\mu}}$	[b]	(99.9877	0±0.000	04) %	30
$\mu^{\dot{+}} u_{\mu}\gamma$	[c]	(2.00	±0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[<i>b</i>]	(1.230	±0.004	$) \times 10^{-4}$	70
$e^+ u_e\gamma$	[c]	(7.39	±0.05	$) \times 10^{-7}$	70
$e^+ u_e \pi^0$		(1.036	± 0.006	$) \times 10^{-8}$	4
$e^+ \nu_e e^+ e^-$		(3.2	±0.5	$) \times 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$		< 5		$\times 10^{-6} 90\%$	70

Lepton Family number (LF) or Lepton number (L) violating modes

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9766\pm0.0006$$
 MeV (S $=1.1$) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.52\pm0.18)\times10^{-17}$ s (S $=1.2$) $c\tau=25.5$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
2γ	$(98.823\pm0.03$	34) % S=1.5	67
$e^+e^-\gamma$	$(1.174\pm0.03$	S=1.5	67
γ positronium	(1.82 ± 0.29	$9) \times 10^{-9}$	67
$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0.16	$5) \times 10^{-5}$	67
e^+e^-	(6.46 ± 0.33	$3) \times 10^{-8}$	67
4 γ	< 2	$\times 10^{-8}$ CL=90%	67
$ u \overline{ u}$	[e] < 2.7	$\times 10^{-7}$ CL=90%	67
$ u_{\mathbf{e}}\overline{ u}_{\mathbf{e}}$	< 1.7	$\times10^{-6}$ CL=90%	67
$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$ CL=90%	67
$ u_{oldsymbol{ au}} \overline{ u}_{oldsymbol{ au}}$	< 2.1	$\times10^{-6}$ CL=90%	67
$\gamma u \overline{ u}$	< 6	$\times 10^{-4}$ CL=90%	67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times10^{-8}$ CL=90%	67
μ^+e^-	LF	< 3.8	$\times10^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.4	$\times 10^{-9}$ CL=90%	26
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	< 3.6	\times 10 ^{-10} CL=90%	26

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Cools factor/

Mass $m=547.862\pm0.018$ MeV Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^{+}\pi^{-}\pi^{0} & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12}) \times 10^{-2} \\ \pi^{+}\pi^{-}\pi^{0} & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11}) \times 10^{-2} \\ \pi^{+}\pi^{-}\pi^{0} & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^{+}\pi^{-}\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^{+}\pi^{-}\gamma & \beta \; (\textit{D-wave}) = -0.02 \pm 0.07 \; \; (\text{S} = 1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-\,e^+\,e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\,\pm\,3.1) imes10^{-2}$

Created: 8/25/2014 17:06

Dalitz plot parameter

$$\pi^0 \pi^0 \pi^0$$
 $\alpha = -0.0315 \pm 0.0015$

η DECAY MODES		Fraction (Γ_i/Γ)		cale factor/ idence level	-
	Neur	tral modes			
neutral modes	1400	(72.12 ± 0.34)	%	S=1.2	_
2γ		(39.41 ± 0.20)		S=1.1	274
$3\pi^0$		(32.68 ± 0.23)		S=1.1	179
$\pi^{0}2\gamma$		(2.7 ± 0.5)	_	S=1.1	257
$2\pi^0 \overset{'}{2}\gamma$,	$\times 10^{-3}$	CL=90%	238
4 γ		< 2.8	\times 10 ⁻⁴	CL=90%	274
invisible		< 1.0	\times 10 ⁻⁴	CL=90%	-
	Char	ged modes			
charged modes		(28.10 ± 0.34)	%	S=1.2	_
$\pi^+\pi^-\pi^0$		(22.92 ± 0.28)	%	S=1.2	174
$\pi^+\pi^-\gamma$		(4.22 ± 0.08)	%	S=1.1	236
$e^+e^-\gamma$		(6.9 ± 0.4)	$\times 10^{-3}$	S=1.3	274
$\mu^+\mu^-\gamma$		(3.1 ± 0.4)	\times 10 ⁻⁴		253
e^+e^-		< 5.6	\times 10 ⁻⁶	CL=90%	274
$\mu^+\mu^-$		(5.8 ± 0.8)	\times 10 ⁻⁶		253
$2e^{+}2e^{-}$		(2.40 ± 0.22)	\times 10 ⁻⁵		274
$\pi^+\pi^-e^+e^-(\gamma)$		(2.68 ± 0.11)	\times 10 ⁻⁴		235
$\mathrm{e^+e^-}\mu^+\mu^-$		< 1.6	\times 10 ⁻⁴	CL=90%	253
$2\mu^{+}2\mu^{-}$			\times 10 ⁻⁴	CL=90%	161
$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$			\times 10 ⁻⁴	CL=90%	113
$\pi^+e^-\overline{ u}_e+$ c.c.			\times 10 ⁻⁴	CL=90%	256
$\pi^+\pi^-2\gamma$			\times 10 ⁻³		236
$\pi^+\pi^-\pi^0\gamma$			\times 10 ⁻⁴	CL=90%	174
$\pi^0\mu^+\mu^-\gamma$		< 3	\times 10 ⁻⁶	CL=90%	210
		tion (C) , Parity	. ,		
		tion \times Parity (C	-		
		ber (<i>LF</i>) violati			
$\pi^0\gamma$	C		\times 10 ⁻⁵	CL=90%	257
$\pi^{+}\pi^{-}$	P,CP		\times 10 ⁻⁵	CL=90%	236
$2\pi^{0}$	P,CP		\times 10 ⁻⁴	CL=90%	238
$2\pi^0\gamma$	C		\times 10 ⁻⁴	CL=90%	238
$3\pi^0\gamma$	C		\times 10 ⁻⁵	CL=90%	179
3γ	C		$\times 10^{-5}$	CL=90%	274
$4\pi^0$	P,CP		$\times 10^{-7}$		40
$\pi^{0} e^{+} e^{-}$	-	-	\times 10 ⁻⁵	CL=90%	257
$\pi^{0}\mu^{+}\mu^{-}$	-	•	\times 10 ⁻⁶	CL=90%	210
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	< 6	× 10 ⁻⁶	CL=90%	264

 $f_0(500) \text{ or } \sigma^{[g]}$ was $f_0(600)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m = (400-550) MeV Full width $\Gamma = (400-700)$ MeV

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	dominant	_
$\gamma\gamma$	seen	_

ρ(770) [h]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=775.26\pm0.25$ MeV Full width $\Gamma=149.1\pm0.8$ MeV $\Gamma_{ee}=7.04\pm0.06$ keV

ho(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	-
$\pi\pi$	$\sim~100$	%		363
	$ ho$ (770) $^{\pm}$ dec	cays		
$\pi^{\pm} \gamma \ \pi^{\pm} \eta$	(4.5 ± 0.5	$) \times 10^{-4}$	S=2.2	375
$\pi^{\pm}\eta$	< 6	$\times10^{-3}$	CL=84%	152
$\pi^{\pm} \pi^{+} \pi^{-} \pi^{0}$	< 2.0	$\times 10^{-3}$	CL=84%	254
	$ ho(770)^{0} \; { m dec}$	ays		
$\pi^+\pi^-\gamma$	(9.9 ± 1.6	$) \times 10^{-3}$		362
$\pi^{0}\gamma$	(6.0 ± 0.8	$) \times 10^{-4}$		376
$\eta \gamma$	$(3.00\pm0.20$	$) \times 10^{-4}$		194
$^{\eta\gamma}_{\pi^0\pi^0}$	(4.5 ± 0.8	$) \times 10^{-5}$		363
$\mu^+\mu^-$	[i] (4.55 ± 0.28)	$) \times 10^{-5}$		373
e^+e^-	[i] (4.72 ± 0.05)	$) \times 10^{-5}$		388
$\pi^+\pi^-\pi^0$	$(1.01^{+0.54}_{-0.36}\pm$	$0.34) \times 10^{-4}$		323
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ± 0.9	$) \times 10^{-5}$		251
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ± 0.8	$) \times 10^{-5}$		257
$\pi^{0} e^{+} e^{-}$	< 1.2	× 10 ⁻⁵	CL=90%	376

ω(782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.65\pm0.12$ MeV (S = 1.9) Full width $\Gamma=8.49\pm0.08$ MeV $\Gamma_{ee}=0.60\pm0.02$ keV

HTTP://PDG.LBL.GOV

Page 4

ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
- 	Traction (1 ₁ /1)	Confidence level	(1010 0/0)
$\pi^{+}\pi^{-}\pi^{0}$	(89.2 ± 0.7) %	6	327
$\pi^{0}\gamma$	(8.28 ± 0.28) %	% S=2.1	380
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})$ %	√₀ S=1.2	366
neutrals (excluding $\pi^0\gamma$)	(8 +8)>	$< 10^{-3}$ S=1.1	_
$\eta\gamma$	(4.6 \pm 0.4) \times	10^{-4} S=1.1	200
$\eta \gamma \over \pi^0 e^+ e^-$	$(7.7 \pm 0.6) \times$	< 10 ⁻⁴	380
$\pi^{0} \mu^{+} \mu^{-}$	(1.3 ± 0.4) \times	10^{-4} S=2.1	349
e^+e^-	$(7.28\pm0.14) \times$	10^{-5} S=1.3	391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	< 2 ×	$< 10^{-4}$ CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6 ×	$< 10^{-3}$ CL=95%	366
$\pi^+\pi^-\pi^+\pi^-$	< 1 ×	$< 10^{-3}$ CL=90%	256
$\pi^0\pi^0\gamma$	$(6.6 \pm 1.1) \times$	< 10 ⁻⁵	367
$\eta \pi^{0} \gamma$	< 3.3 ×	$< 10^{-5}$ CL=90%	162
$\mu^+\mu^-$	$(9.0 \pm 3.1) \times$	< 10 ⁻⁵	377
3γ	< 1.9 ×	$< 10^{-4}$ CL=95%	391
Charge conjugation	on (C) violating	modes	
$\eta\pi^0$	< 2.1 ×	$< 10^{-4}$ CL=90%	162
$2\pi^0$	< 2.1 ×	$< 10^{-4}$ CL=90%	367
$3\pi^0$ C		< 10 ⁻⁴ CL=90%	330

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.198\pm0.009~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\frac{1}{\pi^+\pi^-\eta}$	$(42.9 \pm 0.7)\%$		232
$\rho^0 \gamma$ (including non-resonant $\pi^+ \pi^- \gamma$)	(29.1 \pm 0.5) %		165
$\pi^0 \pi^0 \eta$	(22.2 \pm 0.8) %		239
$\omega\gamma$	$(2.75\pm0.23)\%$		159
$\gamma \gamma$	$(2.20\pm0.08)\%$		479
$3\pi^0$	$(2.14\pm0.20)\times1$	10^{-3}	430
$\mu^+\mu^-\gamma$	$(1.08\pm0.27)\times1$	10^{-4}	467
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	< 2.9 ×	10^{-5} 90%	401
$\pi^+\pi^-\pi^0$	(3.8 \pm 0.4) \times	10^{-3}	428
$\pi^{0} \rho^{0}$	< 4 %	90%	111
$2(\pi^{+}\pi^{-})$	< 2.4 × 1	10^{-4} 90%	372

HTTP://PDG.LBL.GOV

Page 5

$\pi^{+}\pi^{-}2\pi^{0}$	< 2.5	\times 10 ⁻³	90%	376
$2(\pi^+\pi^-)$ neutrals	< 1	%	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.9	$\times 10^{-3}$	90%	298
$2(\pi^+\pi^-)2\pi^0$	< 1	%	95%	197
$3(\pi^{+}\pi^{-})$	< 3.1	\times 10 ⁻⁵	90%	189
$\pi^{+}\pi^{-}e^{+}e^{-}$	$(\begin{array}{cc} 2.4 & +1.3 \\ -1.0 \end{array}$	$) \times 10^{-3}$		458
$\pi^+e^- u_e$ + c.c.	< 2.1	\times 10 ⁻⁴	90%	469
$\gamma e^+ e^-$	< 9	\times 10 ⁻⁴	90%	479
$\pi^0 \gamma \gamma$	< 8	\times 10 ⁻⁴	90%	469
$4\pi^0$	< 5	\times 10 ⁻⁴	90%	380
e^+e^-	< 2.1	\times 10 ⁻⁷	90%	479
invisible	< 5	\times 10 ⁻⁴	90%	_

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	6	$\times 10^{-5}$	90%	458
$\pi^{0} \pi^{0}$	P,CP	<	4	$\times 10^{-4}$	90%	459
$\pi^0 e^+ e^-$	C	[f]	1.4	$\times 10^{-3}$	90%	469
$\eta e^+ e^-$	C	[f]	2.4	$\times 10^{-3}$	90%	322
3γ	С	<	1.0	\times 10 ⁻⁴	90%	479
$\mu^+\mu^-\pi^0$	C	[f]	6.0	$\times 10^{-5}$	90%	445
$\mu^+\mu^-\eta$	C	[f]	1.5	$\times 10^{-5}$	90%	273
$e\mu$	LF	<	4.7	$\times 10^{-4}$	90%	473

f₀(980) [*j*]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 8/25/2014 17:06

Mass $m=990\pm20~{\rm MeV}$ Full width $\Gamma=40~{\rm to}~100~{\rm MeV}$

f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	dominant	476
$K\overline{K}$	seen	36
$\gamma\gamma$	seen	495

a₀(980) [j]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=980\pm20$ MeV Full width $\Gamma=50$ to 100 MeV

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	dominant	319
$K\overline{K}$	seen	†
$\gamma\gamma$	seen	490

ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$$\label{eq:mass_m} \begin{split} \text{Mass } m = 1019.461 \pm 0.019 \text{ MeV} \quad \text{(S} = 1.1) \\ \text{Full width } \Gamma = 4.266 \pm 0.031 \text{ MeV} \quad \text{(S} = 1.2) \end{split}$$

ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
K ⁺ K ⁻	(48.9 ± 0.5)) % S=1.1	127
$K_I^0 K_S^0$	(34.2 ± 0.4)) % S=1.1	110
$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	(15.32 ± 0.32)) % S=1.1	_
$\eta\gamma$	(1.309 ± 0.024)	S=1.2	363
$\pi^{0}\gamma$	(1.27 ± 0.06	$) \times 10^{-3}$	501
$\ell^+\ell^-$	_		510
e^+e^-	(2.954 ± 0.030	$(1) \times 10^{-4}$ S=1.1	510
$\mu^+\mu^-$	(2.87 ± 0.19	$) \times 10^{-4}$	499
$\eta e^+ e^-$	(1.15 ± 0.10	,	363
$\pi^+\pi^-$	(7.4 ± 1.3		490
$\omega \pi^0$	(4.7 ± 0.5	$) \times 10^{-5}$	172
$\omega\gamma$	< 5	% CL=84%	209
$ ho\gamma$		$\times 10^{-5}$ CL=90%	215
$\pi^+\pi^-\gamma$	(4.1 ± 1.3		490
$f_0(980)\gamma$	(3.22 ± 0.19		29
$\pi^{0}\pi^{0}\gamma$	(1.13 ± 0.06	$) \times 10^{-4}$	492
$\pi^+\pi^-\pi^+\pi^-$	$(4.0 \begin{array}{c} +2.8 \\ -2.2 \end{array}$	$)\times 10^{-6}$	410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 4.6	$\times10^{-6}$ CL=90%	342
$\pi^0 e^+ e^-$	(1.12 ± 0.28	$) \times 10^{-5}$	501
$\pi^{0} \eta \gamma$	(7.27 ± 0.30	$) \times 10^{-5}$ S=1.5	346
$a_0(980)\gamma$	(7.6 ± 0.6	$) \times 10^{-5}$	39
$K^0\overline{K}{}^0\gamma$	< 1.9	$\times 10^{-8}$ CL=90%	110
$\eta'(958)\gamma$	(6.25 ± 0.21	$) \times 10^{-5}$	60
$\eta \pi^0 \pi^0 \gamma$	< 2	$\times 10^{-5}$ CL=90%	293

Lepton Family number (LF) violating modes

$$e^{\pm}\mu^{\mp}$$
 LF $<$ 2 $imes 10^{-6}$ CL=90% 504

h₁(1170)

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=1170\pm 20~{\rm MeV}$ Full width $\Gamma=360\pm 40~{\rm MeV}$

$h_1(1170)$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $ho\pi$ seen 308

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

<i>b</i> ₁ (1235) DECAY MODES	Fraction (Γ	· _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\frac{1}{\omega \pi}$ [D/S amplitude ratio = 0.27]	dominal 7 ± 0.027	nt		348
$\pi^{\pm}\gamma$	(1.6 ± 0	.4) × 10	-3	607
ηho	seen			†
$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	< 50	%	84%	535
$K^*(892)^\pmK^\mp$	seen			†
$(K\overline{K})^{\pm}\pi^{0}$	< 8	%	90%	248
$K_S^0 K_I^0 \pi^{\pm}$	< 6	%	90%	235
$K_S^0 K_L^0 \pi^\pm K_S^0 K_S^0 \pi^\pm$	< 2	%	90%	235
$\phi\pi$	< 1.5	%	84%	147

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

Mass $m=1230\pm40$ MeV ^[/] Full width $\Gamma=250$ to 600 MeV

a ₁ (1260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$(\rho\pi)_{S-wave}$	seen	353
$(ho\pi)_{D-wave}$	seen	353
$(ho(1450)\pi)_{S-wave}$	seen	†
$(ho(1450)\pi)_{D-wave}$	seen	†
$\sigma\pi$	seen	_
$f_0(980)\pi$	not seen	179
$f_0(1370)\pi$	seen	†
$f_2(1270)\pi$	seen	†
$K\overline{K}^{*}(892)+$ c.c.	seen	†
$\pi\gamma$	seen	608

$f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1275.1\pm1.2~{
m MeV}~{
m (S}=1.1)$ Full width $\Gamma=185.1^{+2.9}_{-2.4}~{
m MeV}~{
m (S}=1.5)$

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ dence level	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	$(84.8 \begin{array}{c} +2.4 \\ -1.2 \end{array})$	%	S=1.2	623
$\pi^{+}\pi^{-}2\pi^{0}$	$(7.1^{+1.4}_{-2.7})$	%	S=1.3	562
$K\overline{K}$	(4.6 ± 0.4)	%	S=2.8	403
$2\pi^{+}2\pi^{-}$	(2.8 ± 0.4)	%	S=1.2	559
$\eta\eta_{_{-}}$	(4.0 ± 0.8)	$\times 10^{-3}$	S=2.1	326
$4\pi^0$	(3.0 ± 1.0)	$\times 10^{-3}$		564
$\gamma\gamma$	(1.64 ± 0.19)	\times 10 ⁻⁵	S=1.9	638
$\eta\pi\pi$	< 8	$\times 10^{-3}$	CL=95%	477
$K^0 K^- \pi^+ + \text{c.c.}$	< 3.4	$\times 10^{-3}$	CL=95%	293
e^+e^-	< 6	$\times 10^{-10}$	CL=90%	638

$f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Created: 8/25/2014 17:06

Mass $m=1281.9\pm0.5$ MeV (S =1.8) Full width $\Gamma=24.2\pm1.1$ MeV (S =1.3)

f_1 (1285) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
4π	$(33.1^{+}_{-}\ \overset{2.1}{1.8})\ \%$	S=1.3	568
$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$	$(22.0^{+}_{-}\ \overset{1.4}{1.2})\ \%$	S=1.3	566
$2\pi^+2\pi^-$	$(11.0 {+\atop -}\ {0.7\atop 0.6})\ \%$	S=1.3	563
$ ho^{0}\pi^{+}\pi^{-}$	$(11.0 {+\atop -}\ {0.7\atop 0.6})\ \%$	S=1.3	336
$\rho^{0} \rho^{0}$ $4\pi^{0}$ $\eta \pi^{+} \pi^{-}$	seen $<$ 7 \times 10 (35 ± 15) %	-4 CL=90%	† 568 479
$\eta\pi\pi$	$(52.4^{+}_{-}\ \stackrel{1.9}{2.2})\ \%$	S=1.2	482
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow K\overline{K}$]	(36 ± 7)%		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	(16 \pm 7) %		482
$K\overline{K}_{\underline{\pi}}$	(9.0 \pm 0.4) %	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^{+}\pi^{-}\pi^{0}$	$(3.0\pm~0.9)\times10$		603
$\rho^{\pm}\pi^{\mp}$	< 3.1 × 10	$^{-3}$ CL=95%	390
γho^{0}	($5.5\pm~1.3)$ %	S=2.8	407
$\phi \gamma$	$(7.4\pm\ 2.6)\times10$	_4	236

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=1294\pm 4$ MeV (S =1.6) Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta \pi^+ \pi^-$	seen	487
$a_0(980)\pi \\ \eta \pi^0 \pi^0$	seen	248
·	seen	490
$\eta(\pi\pi)_{\mathcal{S}}$ -wave	seen	-

π (1300)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Created: 8/25/2014 17:06

Mass $m=1300\pm100$ MeV ^[/] Full width $\Gamma=200$ to 600 MeV

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	404
$\pi(\pi\pi)_{S ext{-wave}}$	seen	_

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m=1318.3^{+0.5}_{-0.6}$ MeV (S = 1.2) Full width $\Gamma=107\pm5$ MeV $^{[I]}$

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(70.1 \pm 2.7) %	S=1.2	624
$\eta\pi$	(14.5 ± 1.2) %		535
$\omega\pi\pi$	(10.6 \pm 3.2) %	S=1.3	366
$K\overline{K}$	(4.9 \pm 0.8) %		437
$\eta'(958)\pi$	(5.3 ± 0.9) $ imes$ 1	.0-3	288
$\pi^{\pm}\gamma$	$(2.68\pm0.31)\times1$	0.0^{-3}	652
$\gamma\gamma$	(9.4 ± 0.7) $ imes 1$	0^{-6}	659
e^+e^-	< 5 × 1	0^{-9} CL=90%	659

f₀(1370) [j]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 8/25/2014 17:06

Mass m=1200 to 1500 MeV Full width $\Gamma=200$ to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^+2\pi^-$	seen	612
$\pi^{+}\pi^{-}2\pi^{0}$	seen	615
ho ho	dominant	†
$2(\pi\pi)_{S ext{-wave}}$	seen	_
π (1300) π	seen	†
$a_1(1260)\pi$	seen	35
$\eta\eta$	seen	411
$K\overline{K}$	seen	475
$K\overline{K}$ n π	not seen	†
6π	not seen	508

$\omega \omega$	not seen	†
$\gamma \gamma$	seen	685
e^+e^-	not seen	685

$\pi_1(1400)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

Mass $m=1354\pm25$ MeV (S = 1.8) Full width $\Gamma=330\pm35$ MeV

π_1 (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^0$	seen	557
$\eta\pi^-$	seen	556

η (1405) [$^{\circ}$]

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=1408.8\pm1.8$ MeV $^{[I]}$ (S =2.1) Full width $\Gamma=51.0\pm2.9$ MeV $^{[I]}$ (S =1.8)

η (1405) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}\pi$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		345
$\eta(\pi\pi)_{\mathcal{S}}$ -wave	seen		_
$f_0(980)\eta$	seen		†
4π	seen		639
ho ho	<58 %	99.85%	†
$\rho^0\gamma$	seen		491
$K^*(892)K$	seen		123

f₁(1420) [p]

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Created: 8/25/2014 17:06

Mass $m=1426.4\pm0.9$ MeV (S =1.1) Full width $\Gamma=54.9\pm2.6$ MeV

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	dominant	438
$K\overline{K}^*(892)+$ c.c.	dominant	163
$\eta\pi\pi$	possibly seen	573
$\phi \gamma$	seen	349

 ω (1420) [q]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass m (1400–1450) MeV Full width Γ (180–250) MeV

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	dominant	486
$\omega \pi \pi$	seen	444
$b_1(1235)\pi$	seen	125
e^+e^-	seen	710

a₀(1450) [j]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=1474\pm19~{
m MeV}$ Full width $\Gamma=265\pm13~{
m MeV}$

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\eta$	seen	627
$\pi \eta'(958)$ $K \overline{K}$	seen	410
$K\overline{K}$	seen	547
$\omega \pi \pi$	seen	484
$a_0(980)\pi\pi$	seen	342
$\gamma \gamma$	seen	737

ρ(1450) [r]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Created: 8/25/2014 17:06

Mass $m=1465\pm25$ MeV ^[/] Full width $\Gamma=400\pm60$ MeV ^[/]

ho(1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
4π	seen	669
e^+e^-	seen	732
ηho	possibly seen	311
$a_2(1320)\pi$	not seen	54
$K\overline{K}$	not seen	541
$K\overline{K}^*(892)+$ c.c.	possibly seen	229
$\eta\gamma$	possibly seen	630

$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398
$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	178

η(1475) ^[o]

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=1476\pm 4$ MeV (S = 1.3) Full width $\Gamma=85\pm 9$ MeV (S = 1.5)

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	dominant	477
$K\overline{K}^{*}(892)+$ c.c.	seen	245
$a_0(980)\pi$	seen	396
$\gamma \gamma$	seen	738

f₀(1500) ^[n]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1505\pm 6$ MeV (S =1.3) Full width $\Gamma=109\pm 7$ MeV

f ₀ (1500) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	(34.9±2.3) %	1.2	741
$\pi^+\pi^-$	seen		740
$2\pi^0$	seen		741
4π	$(49.5\pm3.3)\%$	1.2	691
$4\pi^0$	seen		691
$2\pi^+2\pi^-$	seen		687
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
π (1300) π	seen		144
$a_1(1260)\pi$	seen		218
$\eta\eta$	$(5.1\pm0.9)\%$	1.4	516
$\eta \eta'(958)$	$(1.9\pm0.8)\%$	1.7	†
$K\overline{K}$	$(8.6\pm1.0)\%$	1.1	568
$\gamma\gamma$	not seen		753

$$f_2'(1525)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1525\pm 5$ MeV $^{[I]}$ Full width $\Gamma=73^{+6}_{-5}$ MeV $^{[I]}$

$f_2'(1525)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	(88.7 ±2.2) %	581
$\eta\eta$	(10.4 \pm 2.2) %	530
$\pi\pi$	$(8.2 \pm 1.5) \times 10^{-3}$	750
$\gamma \gamma$	$(1.10\pm0.14)\times10^{-6}$	763

$\pi_1(1600)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

Mass $m=1662^{+8}_{-9}$ MeV Full width $\Gamma=241\pm40$ MeV $(\mathsf{S}=1.4)$

$\pi_1(1600)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	not seen	803
$ ho^{f 0}\pi^-$	not seen	641
$f_2(1270)\pi^-$	not seen	318
$b_1(1235)\pi$	seen	357
$\eta'(958)\pi^-$	seen	543
$f_1(1285)\pi$	seen	314

$\eta_2(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-}+)$$

Created: 8/25/2014 17:06

Mass $m=1617\pm 5~{
m MeV}$ Full width $\Gamma=181\pm 11~{
m MeV}$

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	242
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta \pi^+ \pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1670\pm30~{
m MeV}$ Full width $\Gamma=315\pm35~{
m MeV}$

ω (1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	647
$\omega\pi\pi$	seen	617
$\omega\eta$	seen	500
e^+e^-	seen	835

ω_3 (1670)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{\rm MeV}$ Full width $\Gamma=168\pm 10~{\rm MeV}$ ^[/]

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	seen	645
$\omega\pi\pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Created: 8/25/2014 17:06

Mass $m=1672.2\pm3.0$ MeV $^{[I]}$ (S = 1.4) Full width $\Gamma=260\pm9$ MeV $^{[I]}$ (S = 1.2)

π_2 (1670) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(95.8±1.4) %		809
$f_2(1270)\pi$	(56.3±3.2) %		329
$ ho\pi$	$(31 \pm 4)\%$		648
$\sigma\pi$	$(10.9 \pm 3.4) \%$		_
$(\pi\pi)_{S ext{-wave}}$	(8.7±3.4) %		_
$K\overline{K}^{*}(892) + c.c.$	$(4.2\pm1.4)\%$		455
ωho	$(2.7\pm1.1)\%$		304
$\gamma \gamma$	< 2.8 ×	10^{-7} 90%	836
$ ho$ (1450) π	< 3.6 ×	10^{-3} 97.7%	147
$b_1(1235)\pi$	< 1.9 ×	10^{-3} 97.7%	365
$f_1(1285)\pi$	possibly seen		323
$a_2(1320)\pi$	not seen		292

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1680\pm 20$ MeV ^[/] Full width $\Gamma=150\pm 50$ MeV ^[/]

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\overline{K}^*(892) + c.c.$	dominant	462
$K_{S}^{0}K\pi$ $K\overline{K}$	seen	621
	seen	680
e^+e^-	seen	840
$\omega\pi\pi$	not seen	623
$K^+K^-\pi^+\pi^-$	seen	544

$\rho_3(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

Mass $m=1688.8\pm 2.1$ MeV $^{\mbox{[$I$]}}$ Full width $\Gamma=161\pm 10$ MeV $^{\mbox{[$I$]}}$ (S =1.5)

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	p (MeV/c)
4π	$(71.1 \pm 1.9)\%$		790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$		787
$\omega\pi$	$(16 \pm 6)\%$		655
$\pi\pi$	(23.6 \pm 1.3) %		834
$K\overline{K}\pi$	(3.8 ± 1.2) %		629
$K\overline{K}$	($1.58\pm~0.26$) %	1.2	685
$\eta \pi^+ \pi^-$	seen		727
$ ho$ (770) η	seen		520
$\pi\pi\rho$ Excluding 2ρ and $a_2(1320)\pi$.	seen		633
$a_2(1320)\pi$	seen		307
ho ho	seen		335

ρ(1700) [r]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=1720\pm20$ MeV $^{[I]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes) Full width $\Gamma=250\pm100$ MeV $^{[I]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes)

ho(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	large	803
$ ho\pi\pi$	dominant	653
$ ho^0\pi^+\pi^-$	large	651

HTTP://PDG.LBL.GOV

Page 17

$ ho^{\pm}\pi^{\mp}\pi^{0}$	I	650
	large	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
π (1300) π	seen	349
ho ho	seen	372
$\pi^+\pi^-$	seen	849
$\pi\pi$	seen	849
$K\overline{K}^*(892)+$ c.c.	seen	496
ηho	seen	545
$a_2(1320)\pi$	not seen	334
$K\overline{K}$	seen	704
e^+e^-	seen	860
$\pi^0 \omega$	seen	674

f₀(1710) [t]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1722^{+6}_{-5}$ MeV (S =1.6) Full width $\Gamma=135\pm7$ MeV (S =1.1)

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	705
$\eta\eta$	seen	664
$\pi\pi$	seen	850
$\omega \omega$	seen	358

π (1800)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Created: 8/25/2014 17:06

Mass $m=1812\pm12$ MeV (S = 2.3) Full width $\Gamma=208\pm12$ MeV

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	879
$f_0(500)\pi^-$	seen	_
$f_0(980)\pi^-$	seen	625
$f_0(1370)\pi^-$	seen	368
$f_0(1500)\pi^-$	not seen	250
$ ho\pi^-$	not seen	732
$\eta\eta\pi^-$	seen	661
$a_0(980)\eta$	seen	473

$a_2(1320)\eta$	not seen	†
$f_2(1270)\pi$	not seen	442
$f_0(1370)\pi^-$	not seen	368
$f_0(1500)\pi^-$	seen	250
$\eta \eta^\prime (958) \pi^-$	seen	375
$K_0^*(1430)K^-$	seen	†
$K^{*}(892)K^{-}$	not seen	570

ϕ_3 (1850)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~{
m (S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	785
$K\overline{K}^*$ (892) $+$ c.c.	seen	602

$\pi_2(1880)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Mass $m=1895\pm16$ MeV Full width $\Gamma=235\pm34$ MeV

$f_2(1950)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 8/25/2014 17:06

Mass $m=1944\pm12$ MeV (S =1.5) Full width $\Gamma=472\pm18$ MeV

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\overline{K}^*(892)$	seen	387
$\pi^+\pi^-$	seen	962
$\pi^0\pi^0$	seen	963
4π	seen	925
$\eta\eta$	seen	803
$K\overline{K}$	seen	837
$\gamma\gamma$	seen	972
$p\overline{p}$	seen	254

$f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2011^{+60}_{-80}~{
m MeV}$ Full width $\Gamma=202\pm60~{
m MeV}$

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	†
$K\overline{K}$	seen	876

a₄(2040)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

Mass $m=1996^{+10}_{-9}~{
m MeV}~{
m (S}=1.1)$ Full width $\Gamma=255^{+28}_{-24}~{
m MeV}~{
m (S}=1.3)$

a ₄ (2040) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	868
$\pi^+\pi^-\pi^0$	seen	974
$ ho\pi$	seen	841
$f_2(1270)\pi$ $\omega \pi^- \pi^0$	seen	580
$\omega \pi^- \pi^0$	seen	819
ωho	seen	624
$\eta\pi^0$	seen	918
$\eta'(958)\pi$	seen	761

f₄(2050)

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Created: 8/25/2014 17:06

Mass $m=2018\pm11$ MeV (S = 2.1) Full width $\Gamma=237\pm18$ MeV (S = 1.9)

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\omega \omega$	seen	637
$\pi\pi$	(17.0±1.5) %	1000
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880
$\eta\eta_{_{-}}$	$(2.1\pm0.8)\times10^{-3}$	848
$\eta \eta$ $4\pi^0$	< 1.2 %	964
$a_2(1320)\pi$	seen	567

$$\phi$$
(2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=2175\pm15~{
m MeV}~{
m (S}=1.6)$ Full width $\Gamma=61\pm18~{
m MeV}$

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	seen	1087
$\phi f_0(980)$	seen	416
$K^+K^-f_0(980) ightarrow$	seen	_
$K^{+}K^{-}\pi^{+}\pi^{-}$ $K^{+}K^{-}f_{0}(980) \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}$	seen	_
$K^{*0}K^{\pm}\pi^{\mp}$	not seen	770
$K^*(892)^0 \overline{K}^*(892)^0$	not seen	622

f₂(2300)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width $\Gamma=149\pm40~{\rm MeV}$

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	529
$K\overline{K}$	seen	1037
$\gamma\gamma$	seen	1149

$f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 8/25/2014 17:06

Mass $m=2339\pm60~\mathrm{MeV}$ Full width $\Gamma=319^{+80}_{-70}~\mathrm{MeV}$

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	573
$\eta\eta$	seen	1033

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=493.677\pm0.016$$
 MeV $^{[u]}$ (S $=2.8$)
Mean life $\tau=(1.2380\pm0.0021)\times10^{-8}$ s (S $=1.9$)
 $c\tau=3.712$ m

Slope parameter $g^{[v]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} g = -0.21134 \pm 0.00017$$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$
 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} g = 0.626 \pm 0.007$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$

K^{\pm} decay form factors [a,x]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e 3}^{+}) = (2.97 \pm 0.05) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.95 \pm 0.12) \times 10^{-2}$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.98 \pm 0.05) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu 3}^{+}) = (2.96 \pm 0.17) \times 10^{-2}$
 $\lambda_{0}(K_{\mu 3}^{+}) = (1.96 \pm 0.13) \times 10^{-2}$

 K_{e3} form factor quadratic fit

$$\lambda'_{+} (K_{e3}^{\pm}) \text{ linear coeff. } = (2.49 \pm 0.17) \times 10^{-2} \\ \lambda''_{+} (K_{e3}^{\pm}) \text{ quadratic coeff. } = (0.19 \pm 0.09) \times 10^{-2} \\ K_{e3}^{+} |f_{S}/f_{+}| = (-0.3_{-0.7}^{+0.8}) \times 10^{-2}$$

$$K_{e3}^{+}$$
 $|f_T/f_+| = (-1.2 \pm 2.3) \times 10^{-2}$
 $K_{\mu 3}^{+}$ $|f_S/f_+| = (0.2 \pm 0.6) \times 10^{-2}$
 $K_{\mu 3}^{+}$ $|f_T/f_+| = (-0.1 \pm 0.7) \times 10^{-2}$

$$K^{+} \rightarrow e^{+} \nu_{e} \gamma \quad |F_{A} + F_{V}| = 0.133 \pm 0.008 \quad (S = 1.3)$$
 $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad |F_{A} + F_{V}| = 0.165 \pm 0.013$
 $K^{+} \rightarrow e^{+} \nu_{e} \gamma \quad |F_{A} - F_{V}| < 0.49$
 $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad |F_{A} - F_{V}| = -0.24 \text{ to } 0.04, \text{ CL} = 90\%$

$$K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \left| F_{A} + F_{V} \right| = 0.165 \pm 0.013$$

$$K^+ \rightarrow e^+ \nu_e \gamma \left| F_A - F_V \right| < 0.49$$

$$K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \left| F_{A} - F_{V} \right| = -0.24 \text{ to } 0.04, \text{ CL} = 90\%$$

Charge Radius

$$\langle \mathit{r}
angle = 0.560 \pm 0.031 \; \mathrm{fm}$$

CP violation parameters

$$\begin{split} &\Delta(K_{\pi\,e\,e}^{\pm}) = (-2.2\pm1.6)\times10^{-2} \\ &\Delta(K_{\pi\,\mu\,\mu}^{\pm}) = 0.010\pm0.023 \\ &\Delta(K_{\pi\,\pi\,\gamma}^{\pm}) = (0.0\pm1.2)\times10^{-3} \\ &A_{FB}(K_{\pi\,\mu\,\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\,\mu})>0) - \Gamma(\cos(\theta_{K\,\mu})<0)}{\Gamma(\cos(\theta_{K\,\mu})>0) + \Gamma(\cos(\theta_{K\,\mu})<0)} < 2.3\times10^{-2}, \text{ CL} \\ &= 90\% \end{split}$$

T violation parameters

HTTP://PDG.LBL.GOV

$$K^+ \to \pi^0 \mu^+ \nu_\mu$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$ $K^+ \to \mu^+ \nu_\mu \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$ $K^+ \to \pi^0 \mu^+ \nu_\mu$ $Im(\xi) = -0.006 \pm 0.008$

 K^- modes are charge conjugates of the modes below.

			Sc	ale factor/	p				
K ⁺ DECAY MODES	Frac	tion (Γ_i/Γ)	Confi	dence level (N	ЛеV/ <i>c</i>)				
Leptonic and semileptonic modes									
$e^+ u_e$	(1.581±0.007) >	× 10 ⁻⁵		247				
$\mu^+ u_{\mu}$	(63.55 ± 0.11) %	6	S=1.2	236				
$\pi^0 e^+ \nu_e$	(5.07 ± 0.04) %	6	S=2.1	228				
Called K_{e3}^+ .									
$\pi^0 \mu^+ u_\mu$	(3.353±0.034) %	6	S=1.8	215				
Called $K_{\mu 3}^+$.									
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.2 ±0.4) >	× 10 ⁻⁵		206				
$\pi^{+}\pi^{-}e^{+}\overset{e}{\nu_{e}}$	•	4.254±0.032) >			203				
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$,	1.4 ±0.9) >			151				
$\pi^{0}\pi^{0}\pi^{0}e^{+}\nu_{e}$	<	3.5	10-6	CL=90%	135				
_	Hadronio	modes							
$\pi^+\pi^0$	(20.66 \pm 0.08) %	6	S=1.2	205				
$\pi^{+}\pi^{0}\pi^{0}$	($1.761\pm0.022)$ %	6	S=1.1	133				
$\pi^+\pi^+\pi^-$	(5.59 ± 0.04) %	6	S=1.3	125				
Leptonic and semileptonic modes with photons									
$\mu^+ \nu_\mu \gamma$	[y,z] (6.2 ±0.8) ×	$< 10^{-3}$		236				
$\mu^+ \dot{\nu_\mu} \gamma (SD^+)$	[a,aa] (1.33 ± 0.22) \times	10^{-5}		_				
		2.7 >		CL=90%	_				
$\mu^+ \nu_\mu \gamma (SD^- + SD^- INT)$				CL=90%	_				

Page 23

$e^+ u_e \gamma$	(9.4 ± 0.4) $\times 10^{-6}$		247
$\pi^0 e^+ \nu_e \gamma$	[y,z] (2.56 ± 0.16) $\times 10^{-4}$		228
$\pi^0 e^+ \nu_e \gamma(SD)$	[a,aa]<	5.3×10^{-5}	CL=90%	228
$\pi^0 \mu^+ u_\mu \gamma$	[y,z] ($1.25 \pm 0.25) \times 10^{-5}$		215
$\pi^0 \pi^0 e^+ \nu_e \gamma$	<	5×10^{-6}	CL=90%	206

Hadronic modes with photons or $\ell \overline{\ell}$ pairs

$\pi^+\pi^0\gamma$ (INT)	(- 4.2	± 0.9) × 10 ⁻⁶		_
$\pi^+\pi^0\gamma(DE)$,		± 0.4) $\times 10^{-6}$		205
$\pi^+\pi^0\pi^0\gamma$	[y,z] (7.6	$^{+6.0}_{-3.0}$) \times 10 ⁻⁶		133
$\pi^+\pi^+\pi^-\gamma$	[y,z] (1.04	± 0.31) $\times 10^{-4}$		125
$\pi^+ \gamma \gamma$	[y] (9.2	± 0.7) $\times 10^{-7}$		227
π^+ 3 γ	[y] <	1.0	× 10 ⁻⁴	CL=90%	227
$\pi^+ e^+ e^- \gamma$	(1.19	± 0.13) $\times 10^{-8}$		227

Leptonic modes with $\ell \overline{\ell}$ pairs

•			•		
$e^+ \nu_e \nu \overline{\nu}$	<	6	$\times10^{-5}$	CL=90%	247
$\mu^+ u_{\mu} u \overline{ u}$	<	6.0	\times 10 ⁻⁶	CL=90%	236
$e^{+} \nu_{e} e^{+} e^{-}$	(2.48 ±	$(0.20) \times 10^{-8}$		247
$\mu^+ u_\mu \mathrm{e}^+ \mathrm{e}^-$	($7.06 \pm$	$(0.31) \times 10^{-8}$		236
$e^{+} \nu_{e} \mu^{+} \mu^{-}$	(1.7 \pm	$(0.5) \times 10^{-8}$		223
$\mu^+ u_\mu \mu^+ \mu^-$	<	4.1	\times 10 ⁻⁷	CL=90%	185

Lepton Family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

_					• ,		
$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3		$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{\nu}_{\mu}$	SQ	<	3.0		$\times 10^{-6}$	CL=95%	151
$\pi^+e^+e^-$	<i>S</i> 1	(3.00	± 0.09	$) \times 10^{-7}$		227
$\pi^+\mu^+\mu^-$	<i>S</i> 1	(9.4	± 0.6	$) \times 10^{-8}$	S=2.6	172
$\pi^+ u \overline{ u}$	<i>S</i> 1	(1.7	±1.1	$) \times 10^{-10}$		227
$\pi^+\pi^0 u\overline{\nu}$	<i>S</i> 1	<	4.3		$\times 10^{-5}$	CL=90%	205
$\mu^- u \mathrm{e}^+ \mathrm{e}^+$	LF	<	2.1		$\times 10^{-8}$	CL=90%	236
$\mu^+ u_e$	LF	[d]	4		$\times 10^{-3}$	CL=90%	236
$\pi^+\mu^+e^-$	LF	<	1.3		\times 10 ⁻¹¹	CL=90%	214
$\pi^+\mu^-e^+$	LF	<	5.2		$\times10^{-10}$	CL=90%	214
$\pi^-\mu^+e^+$	L	<	5.0		$\times10^{-10}$	CL=90%	214
$\pi^-e^+e^+$	L	<	6.4		$\times10^{-10}$	CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	[d]	1.1		$\times 10^{-9}$	CL=90%	172
$\mu^+ \overline{\nu}_e$	L	[d]	3.3		$\times 10^{-3}$	CL=90%	236
$\pi^0 e^+ \overline{\nu}_e$	L	<	3		$\times 10^{-3}$	CL=90%	228
$\pi^+\gamma$		[<i>cc</i>] <	2.3		$\times 10^{-9}$	CL=90%	227

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=497.614\pm0.024~{
m MeV}~{
m (S}=1.6)$$
 $m_{K^0}-m_{K^\pm}=3.937\pm0.028~{
m MeV}~{
m (S}=1.8)$

Mean Square Charge Radius

$$\langle r^2 \rangle = -0.077 \pm 0.010 \text{ fm}^2$$

T-violation parameters in K^0 - \overline{K}^0 mixing [x]

Asymmetry A_T in K^0 - \overline{K}^0 mixing = $(6.6 \pm 1.6) \times 10^{-3}$

CPT-violation parameters [x]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [dd] $(\Gamma_{K^0} - \Gamma_{\overline{K}^0}) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

$$Re(x_{+})$$
, K_{e3} parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

K₅⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life
$$\tau = (0.8954 \pm 0.0004) \times 10^{-10} \, \mathrm{s} \quad (\mathrm{S} = 1.1)$$
 Assuming CPT

Mean life
$$au = (0.89564 \pm 0.00033) imes 10^{-10} \, \mathrm{s}$$
 Not assuming CPT

$$c\tau = 2.6844$$
 cm Assuming *CPT*

CP-violation parameters [ee]

$$\begin{array}{ll} \text{Im}(\eta_{+-0}) &= -0.002 \pm 0.009 \\ \text{Im}(\eta_{000}) &= (-0.1 \pm 1.6) \times 10^{-2} \\ \left|\eta_{000}\right| = \left|A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)\right| &< 0.0088, \text{ CL} = 90\% \end{array}$$

CP asymmetry *A* in
$$\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$$

K ⁰ _S DECAY MODES		Fraction	(Γ_i/Γ)		cale factor/ idence level	-			
Hadronic modes									
$\pi^{0}\pi^{0}$		•	$9 \pm 0.05) \%$			209			
$\pi^+\pi^-$		(69.20	$0 \pm 0.05)$ %	6		206			
$\pi^+\pi^-\pi^0$		(3.5	+1.1 -0.9)>	< 10 ⁻⁷		133			
Modes with photons or $\ell \overline{\ell}$ pairs									
$\pi^+\pi^-\gamma$	[<i>z</i> , <i>ff</i>]	(1.79	9±0.05) ×	10^{-3}		206			
$\pi^{+}\pi^{-}e^{+}e^{-}$		(4.79	9±0.15) ×	10^{-5}		206			
$\pi^{0}\gamma\gamma$	[<i>ff</i>]	(4.9	± 1.8) $ imes$	10^{-8}		231			
$\gamma\gamma$		(2.63	$3\pm0.17)$ ×	10^{-6}	S=3.0	249			
	Semilept	onic m	odes						
$\pi^{\pm} e^{\mp} \nu_e$	[gg]	(7.04	1±0.08) ×	10-4		229			
CP violating (CP) and	$\Delta S = 1$	weak	neutral c	urrent	(<i>S1</i>) mode	es			
$3\pi^0$	CP .	< 2.6	×	10 ⁻⁸	CL=90%	139			
$\mu^+\mu^-$	<i>51</i>	< 9	×	10^{-9}	CL=90%	225			
e^+e^-	51	< 9	×	10^{-9}	CL=90%	249			
$\pi^0 e^+ e^-$	51 [ff]	(3.0	+1.5 -1.2) >	< 10 ⁻⁹		230			
$\pi^0 \mu^+ \mu^-$	51	(2.9	+1.5 -1.2)>	< 10 ⁻⁹		177			

K_L⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} \textit{m}_{\textit{K}_{\textit{L}}} - \textit{m}_{\textit{K}_{\textit{S}}} \\ = (0.5293 \pm 0.0009) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad (\text{S} = 1.3) \quad \text{Assuming } \textit{CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \; \text{MeV} \quad \text{Assuming } \textit{CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad \text{Not assuming } \textit{CPT} \\ \text{Mean life } \tau = (5.116 \pm 0.021) \times 10^{-8} \; \text{s} \quad (\text{S} = 1.1) \\ \textit{c}\tau = 15.34 \; \text{m} \end{array}$$

Slope parameter $g^{[v]}$

(See Particle Listings for other linear and quadratic coefficients)

$$K_L^0 \rightarrow \pi^+ \pi^- \pi^0$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $K_L^0 \rightarrow \pi^0 \pi^0 \pi^0$: $h = (+0.59 \pm 0.20 \pm 1.16) \times 10^{-3}$

K_L decay form factors [x]

Linear parametrization assuming $\mu\text{-}e$ universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$
 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

HTTP://PDG.LBL.GOV

Page 26

Quadratic parametrization assuming μ -e universality

$$\lambda'_{+}(K^{0}_{\mu3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda''_{+}(K^{0}_{\mu3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda_{0}(K^{0}_{\mu3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$$

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$

 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\begin{array}{c} \Lambda_{+} = (0.251 \pm 0.006) \times 10^{-1} \quad (S = 1.5) \\ \ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0) \\ K_{e3}^{0} \quad \left| f_{S}/f_{+} \right| = (1.5_{-1.6}^{+1.4}) \times 10^{-2} \\ K_{e3}^{0} \quad \left| f_{T}/f_{+} \right| = (5_{-5}^{+4}) \times 10^{-2} \\ K_{\mu 3}^{0} \quad \left| f_{T}/f_{+} \right| = (12 \pm 12) \times 10^{-2} \\ K_{L} \rightarrow \ell^{+}\ell^{-}\gamma, \ K_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{K^{*}} = -0.205 \ \pm 0.022 \quad (S = 1.8) \\ K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, \ K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{DIP} = -1.69 \ \pm 0.08 \quad (S = 1.7) \\ K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-} \colon a_{1}/a_{2} = -0.737 \pm 0.014 \ \text{GeV}^{2} \\ K_{L} \rightarrow \pi^{0}2\gamma \colon \qquad a_{V} = -0.43 \pm 0.06 \quad (S = 1.5) \end{array}$$

CP-violation parameters [ee]

$$\begin{split} A_L &= (0.332 \pm 0.006)\% \\ \left| \eta_{00} \right| &= (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ \left| \eta_{+-} \right| &= (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ \left| \epsilon \right| &= (2.228 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ \left| \eta_{00} / \eta_{+-} \right| &= 0.9950 \pm 0.0007 \, ^{[hh]} \quad (S = 1.6) \\ \mathrm{Re}(\epsilon'/\epsilon) &= (1.66 \pm 0.23) \times 10^{-3} \, ^{[hh]} \quad (S = 1.6) \end{split}$$

Assuming CPT

$$\begin{split} \phi_{+-} &= (43.51 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.3) \\ \phi_{\epsilon} &= \phi_{\mathsf{SW}} = (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \mathsf{Im}(\epsilon'/\epsilon) &= -(\phi_{00} \ - \ \phi_{+-})/3 = (-0.002 \pm 0.005)^{\circ} \quad (\mathsf{S} = 1.7) \end{split}$$

Not assuming CPT

$$\phi_{+-} = (43.4 \pm 0.5)^{\circ} \quad (S = 1.2)$$
 $\phi_{00} = (43.7 \pm 0.6)^{\circ} \quad (S = 1.2)$
 $\phi_{\epsilon} = (43.5 \pm 0.5)^{\circ} \quad (S = 1.3)$

$$\begin{array}{l} \phi_{\epsilon} = (43.5 \pm 0.5)^{\circ} \quad (\text{S} = 1.3) \\ \text{CP asymmetry A in } K_{L}^{0} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-} = (13.7 \pm 1.5)\% \\ \beta_{CP} \text{ from } K_{L}^{0} \rightarrow e^{+}e^{-}e^{+}e^{-} = -0.19 \pm 0.07 \\ \gamma_{CP} \text{ from } K_{L}^{0} \rightarrow e^{+}e^{-}e^{+}e^{-} = 0.01 \pm 0.11 \quad (\text{S} = 1.6) \\ j \text{ for } K_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0} = 0.0012 \pm 0.0008 \\ f \text{ for } K_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0} = 0.004 \pm 0.006 \\ \left| \eta_{+-\gamma} \right| = (2.35 \pm 0.07) \times 10^{-3} \\ \phi_{+-\gamma} = (44 \pm 4)^{\circ} \\ \left| \epsilon_{+-\gamma}^{\prime} \right| / \epsilon < 0.3, \text{ CL} = 90\% \\ \left| g_{E1} \right| \text{ for } K_{L}^{0} \rightarrow \pi^{+}\pi^{-}\gamma < 0.21, \text{ CL} = 90\% \\ \end{array}$$

T-violation parameters

$${
m Im}(\xi) \ {
m in} \ {
m K}_{\mu 3}^0 = -0.007 \pm 0.026$$

CPT invariance tests

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

$\Delta S = -\Delta Q$ in $K_{\ell 3}^0$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

KO DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Semileptonic modes									
$\pi^{\pm} e^{\mp} \nu_e$ Called K_{e3}^0 .	[gg]	$(40.55 \pm 0.11)\%$	S=1.7	229					
$\pi^{\pm}\mu^{\mp} u_{\mu}$ Called $K_{\mu3}^{0}$.	[gg]	(27.04 ± 0.07) %	S=1.1	216					
$(\pi \mu atom) u$		(1.05 ± 0.11) $\times 10^{-7}$		188					
$\pi^0\pi^{\pm}e^{\mp}\nu$		(5.20 ± 0.11) $\times 10^{-5}$		207					
$\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$	[gg]	(1.26 ± 0.04) $\times 10^{-5}$		229					

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modes

$3\pi^0$		(19.52 ± 0.12) %	S=1.6	139
$\pi^+\pi^-\pi^0$		(12.54 ± 0.05) %		133
$\pi^+\pi^-$	CPV [ii]	$(1.967\pm0.010)\times10^{-3}$	S=1.5	206
$\pi^0\pi^0$	CPV	(8.64 ± 0.06) $\times 10^{-4}$	S=1.8	209

HTTP://PDG.LBL.GOV

Page 28

Semileptonic modes with photons

$\pi^{\pm} e^{\mp} \nu_e \gamma$	[z,gg,jj]	(3.79 ± 0.06)	\times 10 ⁻³	229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$		(5.65 ± 0.23)	$\times 10^{-4}$	216

Hadronic modes with photons or $\ell \overline{\ell}$ pairs

$\pi^0\pi^0\gamma$		< 2.43	\times 10 ⁻⁷	CL=90%	209
$\pi^+\pi^-\gamma$	[z,jj]	(4.15 ± 0.1	5) $\times 10^{-5}$	S=2.8	206
$\pi^+\pi^-\gamma(DE)$		(2.84 ± 0.1	1) \times 10 ⁻⁵	S=2.0	206
$\pi^0 2\gamma$	[<i>jj</i>]	(1.273 ± 0.0)	$33) \times 10^{-6}$		231
$\pi^0 \gamma e^+ e^-$		(1.62 ± 0.1	7) \times 10 ⁻⁸		230

Other modes with photons or $\ell \overline{\ell}$ pairs

2γ	$(5.47 \pm 0.04) \times 10^{-4}$	S=1.1	249
3γ	$< 7.4 \times 10^{-8}$	CL=90%	249
$e^+e^-\gamma$	$(9.4 \pm 0.4) \times 10^{-6}$	S=2.0	249
$\mu^+\mu^-\gamma$	$(3.59 \pm 0.11) \times 10^{-7}$	S=1.3	225
$e^+e^-\gamma\gamma$	[jj] (5.95 \pm 0.33) $ imes$ 10 ⁻⁷		249
$\mu^+\mu^-\gamma\gamma$	[jj] (1.0 $^{+0.8}_{-0.6}$) $ imes$ 10 ⁻⁸		225

Charge conjugation \times Parity (*CP*) or Lepton Family number (*LF*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

			,	
$\mu^+\mu^-$	S1 (6.84 ±0.11	$) \times 10^{-9}$		225
e^+e^-	$51 (9 +6 \\ -4$	$) \times 10^{-12}$		249
$\pi^{+}\pi^{-}e^{+}e^{-}$ $\pi^{0}\pi^{0}e^{+}e^{-}$	$S1 [jj] (3.11 \pm 0.19)$	· .	CL 000/	206
	<i>S1</i> < 6.6	\times 10 ⁻⁹	CL=90%	209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S1</i> < 9.2	\times 10 ⁻¹¹	CL=90%	57
$\mu^{+}\mu^{-}e^{+}e^{-}$	$S1$ (2.69 ± 0.27			225
$e^{+}e^{-}e^{+}e^{-}$	$S1$ (3.56 ± 0.21			249
$\pi^{0}\mu^{+}\mu^{-}$	CP,S1[kk] < 3.8	$\times10^{-10}$	CL=90%	177
$\pi^{0} e^{+} e^{-}$	CP,S1[kk] < 2.8	$\times 10^{-10}$	CL=90%	230
$\pi^0 \nu \overline{\nu}$	CP,S1 [II] < 2.6	\times 10 ⁻⁸	CL=90%	231
$\pi^0\pi^0 u^{\overline{ u}}$	<i>S1</i> < 8.1	\times 10 ⁻⁷	CL=90%	209
$e^{\pm}\mu^{\mp}$	LF [gg] < 4.7	$\times 10^{-12}$	CL=90%	238
$e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$	LF [gg] < 4.12	\times 10 ⁻¹¹	CL=90%	225
$\pi^0 \mu^{\pm} e^{\mp}$	LF [gg] < 7.6	\times 10 ⁻¹¹	CL=90%	217
$\pi^0\pi^0\mu^\pm e^\mp$	LF < 1.7	$\times 10^{-10}$	CL=90%	159

$$I(J^P) = \frac{1}{2}(1^-)$$

 $K^*(892)^{\pm}$ hadroproduced mass $m=891.66\pm0.26$ MeV $K^*(892)^{\pm}$ in au decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.81\pm0.19$ MeV (S = 1.4) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma=50.8\pm0.9$ MeV $K^*(892)^{\pm}$ in au decays full width $\Gamma=46.2\pm1.3$ MeV $K^*(892)^0$ full width $\Gamma=47.4\pm0.6$ MeV (S = 2.2)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	~ 100	%	289
$K^0\gamma$	(2.46 ± 0.21)	\times 10 ⁻³	307
$\mathcal{K}^{\pm}\gamma$	(9.9 ± 0.9)	\times 10 ⁻⁴	309
$K\pi\pi$	< 7	$\times 10^{-4}$ 95%	223

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1272\pm7~\mathrm{MeV}^{[I]}$ Full width $\Gamma=90\pm20~\mathrm{MeV}^{[I]}$

K₁(1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\rho$	(42 ±6)%	46
$K_0^*(1430)\pi$	(28 ±4)%	†
$K^{*}(892)\pi$	$(16$ ± 5 $) \%$	302
$K\omega$	$(11.0\pm2.0)~\%$	†
$K f_0(1370)$	(3.0±2.0) %	†
γK^{0}	seen	539

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Created: 8/25/2014 17:06

Mass $m=1403\pm7~{\rm MeV}$ Full width $\Gamma=174\pm13~{\rm MeV}~(S=1.6)$

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	402
$K \rho$	(3.0±3.0) %	293
$K f_0(1370)$	(2.0±2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
$K_0^*(1430)\pi \\ \gamma K^0$	not seen	†
γK^0	seen	613

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1414\pm15$ MeV (S =1.3) Full width $\Gamma=232\pm21$ MeV (S =1.1)

K*(1410) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	410
$K\pi$	(6.6±	1.3) %		612
$\kappa \rho \gamma \kappa^0$	< 7	%	95%	305
γK^0	seen			619

K*(1430) [nn]

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1425\pm 50~{
m MeV}$ Full width $\Gamma=270\pm 80~{
m MeV}$

K *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(93±10) %	619

K₂*(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

 $K_2^*(1430)^\pm$ mass $m=1425.6\pm1.5$ MeV (S = 1.1) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=98.5\pm2.7$ MeV (S = 1.1) $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K*(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
Κπ	(49.9±1.2) %		619
$K^*(892)\pi$	$(24.7 \pm 1.5) \%$		419
$K^*(892)\pi\pi$	(13.4 ± 2.2) %		372
$K \rho$	$(8.7\pm0.8)\%$	S=1.2	318
$K\omega$	$(2.9\pm0.8)\%$		311
$K^+\gamma$	$(2.4\pm0.5) \times 10$	S=1.1	627
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 10$	S=1.3	486
$K \omega \pi$	< 7.2 × 10	$^{-4}$ CL=95%	100
$\kappa^0 \gamma$	< 9 × 10	0 ⁻⁴ CL=90%	626

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1717\pm27$ MeV (S = 1.4) Full width $\Gamma=322\pm110$ MeV (S = 4.2)

K*(1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	781
$K \rho$	$(31.4^{+5.0}_{-2.1})\%$	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})$ %	618

K₂(1770) [00]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{
m MeV}$ Full width $\Gamma=186\pm 14~{
m MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$		794
$K_2^*(1430)\pi$	dominant	288
$K^*(892)\pi$	seen	654
$K f_2(1270)$	seen	55
$K\phi$	seen	441
$K \omega$	seen	607

$K_3^*(1780)$

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1776\pm7$ MeV (S = 1.1) Full width $\Gamma=159\pm21$ MeV (S = 1.3)

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	$(31 \pm 9)\%$		613
$K^*(892)\pi$	$(20 \pm 5)\%$		656
$K\pi$	$(18.8 \pm \ 1.0) \%$		813
$K\eta$	(30 \pm 13)%		719
$K_2^*(1430)\pi$	< 16 %	95%	291

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1816\pm13~{\rm MeV}$ Full width $\Gamma=276\pm35~{\rm MeV}$

K₂(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K_2^*(1430)\pi$	seen	327
$K^*(892)\pi$	seen	681
$K f_2(1270)$	seen	186
$K\omega$	seen	638

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2045\pm 9$ MeV (S =1.1) Full width $\Gamma=198\pm 30$ MeV

K ₄ *(2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$K\pi$	(9.9±1.2) %	958	
$K^*(892)\pi\pi$	$(9 \pm 5)\%$	802	
$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$	768	
$ ho K \pi$	$(5.7 \pm 3.2) \%$	741	
ω K π	$(5.0\pm3.0)~\%$	738	
ϕ K π	$(2.8 \pm 1.4) \%$	594	
ϕ K*(892)	$(1.4\pm0.7)~\%$	363	

CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,$ similarly for D^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.61\pm0.10$ MeV $(\mathsf{S}=1.1)$ Mean life $\tau=(1040\pm7)\times10^{-15}$ s $c\tau=311.8~\mu\mathrm{m}$

c-quark decays

 $\Gamma(c \rightarrow \ell^{+} \text{ anything})/\Gamma(c \rightarrow \text{ anything}) = 0.096 \pm 0.004 ^{[qq]}$ $\Gamma(c \rightarrow D^{*}(2010)^{+} \text{ anything})/\Gamma(c \rightarrow \text{ anything}) = 0.255 \pm 0.017$

HTTP://PDG.LBL.GOV

Page 33

CP-violation decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$$

$$A_{CP}(K_S^0\pi^{\pm}) = (-0.41 \pm 0.09)\%$$

$$A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.1 \pm 1.0)\%$$

$$A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (1.0 \pm 1.3)\%$$

$$A_{CP}(K_S^0\pi^{\pm}\pi^{0}) = (0.3 \pm 0.9)\%$$

$$A_{CP}(K_S^0\pi^{\pm}\pi^{+}\pi^{-}) = (0.1 \pm 1.3)\%$$

$$A_{CP}(\pi^{\pm}\pi^{0}) = (2.9 \pm 2.9)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (1.0 \pm 1.5)\% \quad (S = 1.4)$$

$$A_{CP}(\pi^{\pm}\eta'(958)) = (-0.5 \pm 1.2)\% \quad (S = 1.1)$$

$$A_{CP}(K_S^0K^{\pm}) = (-0.11 \pm 0.25)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}) = (0.36 \pm 0.29)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}) = (0.36 \pm 0.29)\%$$

$$A_{CP}(K^{\pm}K^{*0}) = (-0.3 \pm 0.4)\%$$

$$A_{CP}(K^{\pm}K^{*0}) = (0.09 \pm 0.19)\% \quad (S = 1.2)$$

$$A_{CP}(K^{\pm}K_0^{*}(1430)^{0}) = (8_{-6}^{+7})\%$$

$$A_{CP}(K^{\pm}K_0^{*}(1430)^{0}) = (43_{-26}^{+20})\%$$

$$A_{CP}(K^{\pm}K_0^{*}(800)) = (-12_{-13}^{+18})\%$$

$$A_{CP}(a_0(1450)^0\pi^{\pm}) = (-19_{-16}^{+14})\%$$

$$A_{CP}(\phi(1680)\pi^{\pm}) = (-9 \pm 26)\%$$

$$A_{CP}(K_S^0K^{\pm}\pi^{+}\pi^{-}) = (-4 \pm 7)\%$$

$$A_{CP}(K_S^0K^{\pm}\pi^{+}\pi^{-}) = (-4 \pm 7)\%$$

$$A_{CP}(K^{\pm}\pi^{0}) = (-4 \pm 11)\%$$

T-violation decay-rate asymmetry

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3} [rr]$$

D⁺ form factors

$$f_{+}(0)|V_{cs}| \text{ in } \overline{K}^{0}\ell^{+}\nu_{\ell} = 0.707 \pm 0.013$$

$$r_{1} \equiv a_{1}/a_{0} \text{ in } \overline{K}^{0}\ell^{+}\nu_{\ell} = -1.7 \pm 0.5$$

$$r_{2} \equiv a_{2}/a_{0} \text{ in } \overline{K}^{0}\ell^{+}\nu_{\ell} = -14 \pm 11$$

$$f_{+}(0)|V_{cd}| \text{ in } \pi^{0}\ell^{+}\nu_{\ell} = 0.146 \pm 0.007$$

$$r_{1} \equiv a_{1}/a_{0} \text{ in } \pi^{0}\ell^{+}\nu_{\ell} = -1.4 \pm 0.9$$

$$r_{2} \equiv a_{2}/a_{0} \text{ in } \pi^{0}\ell^{+}\nu_{\ell} = -4 \pm 5$$

$$f_{+}(0)|V_{cd}| \text{ in } D^{+} \rightarrow \eta e^{+}\nu_{e} = 0.086 \pm 0.006$$

$$r_{1} \equiv a_{1}/a_{0} \text{ in } D^{+} \rightarrow \eta e^{+}\nu_{e} = -1.8 \pm 2.2$$

$$r_{v} \equiv V(0)/A_{1}(0) \text{ in } D^{+}, D^{0} \rightarrow \rho e^{+}\nu_{e} = 1.48 \pm 0.16$$

$$r_{2} \equiv A_{2}(0)/A_{1}(0) \text{ in } D^{+}, D^{0} \rightarrow \rho e^{+}\nu_{e} = 0.83 \pm 0.12$$

$$r_{v} \equiv V(0)/A_{1}(0) \text{ in } \overline{K}^{*}(892)^{0}\ell^{+}\nu_{\ell} = 1.51 \pm 0.07 \quad (S = 2.2)$$

$$r_{2} \equiv A_{2}(0)/A_{1}(0) \text{ in } \overline{K}^{*}(892)^{0}\ell^{+}\nu_{\ell} = 0.807 \pm 0.025$$

$$r_{3} \equiv A_{3}(0)/A_{1}(0) \text{ in } \overline{K}^{*}(892)^{0}\ell^{+}\nu_{\ell} = 0.0 \pm 0.4$$

$$\Gamma_{L}/\Gamma_{T} \text{ in } \overline{K}^{*}(892)^{0}\ell^{+}\nu_{\ell} = 1.13 \pm 0.08$$

$$\Gamma_{+}/\Gamma_{-} \text{ in } \overline{K}^{*}(892)^{0}\ell^{+}\nu_{\ell} = 0.22 \pm 0.06 \quad (S = 1.6)$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

		Scale factor/	p
D+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
Inclu	sive modes		
e ⁺ semileptonic	$(16.07\pm0.30)\%$		_
μ^+ anything	(17.6 ± 3.2) %		_
K^- anything	$(25.7 \pm 1.4)\%$		_
\overline{K}^0 anything $+ K^0$ anything	$(61 \pm 5)\%$		_
K^+ anything	$(5.9 \pm 0.8)\%$		_
$K^*(892)^-$ anything	$(6 \pm 5)\%$		_
$\overline{K}^*(892)^0$ anything	$(23 \pm 5)\%$		_
$K^*(892)^0$ anything	< 6.6 %	CL=90%	_
η anything	(6.3 ± 0.7) %		_
η' anything	$(1.04\pm0.18)\%$		_
ϕ anything	(1.03 ± 0.12) %		_
Leptonic and	semileptonic mode	2 S	
$e^+\nu_e$	•	10 ⁻⁶ CL=90%	935
$\mu^+ \stackrel{e}{\nu_\mu}$	$(3.82\pm0.33)\times1$		932
	< 1.2 × 1		90
$\frac{\tau^+ \nu_{\tau}}{K^0 e^+ \nu_e}$	(8.83±0.22) %		869
$\overline{K}^0 \mu^+ \nu_\mu$	$(9.2 \pm 0.6)\%$		865
$K^-\pi^+e^+\nu_e$	(4.00±0.10) %		864
$\overline{K}^*(892)^0 e^+ \nu_e$, $\overline{K}^*(892)^0 \to$	$(3.68\pm0.10)\%$		722
$K^-\pi^+$,		
$(K^-\pi^+)_{S-wave} e^+ \nu_e$	$(2.32\pm0.10)\times1$		_
$\overline{K}^*(\underline{1}410)^0 e^+ \nu_e$,	< 6 × 1	10^{-3} CL=90%	_
$K^*(1410)^0 \to K^-\pi^+$		_	
$\overline{K}_2^*(1430)^0e^+ u_e$,	< 5 × 1	10^{-4} CL=90%	_
$\overline{K}_2^*(1430)^0 ightarrow K^- \pi^+$			
$\mathit{K}^-\pi^{ar{+}}e^+ u_e$ nonresonant	< 7 × 1	10^{-3} CL=90%	864
$K^-\pi^+\mu^+ u_\mu$	(3.8 \pm 0.4) %		851
$\overline{\mathit{K}}^{*}$ (892) 0 $\mu^{+} u_{\mu}$,	$(3.52\pm0.10)\%$		717
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$			
$\mathcal{K}^-\pi^+\mu^+ u_\mu$ nonresonant	($2.0~\pm0.5$) \times 1	10^{-3}	851
$\kappa^-\pi^+\pi^0\mu^+\dot{ u}_{\mu}$	< 1.6 × 1	10^{-3} CL=90%	825
$\pi^{0} e^{+} \nu_{e}$	$(4.05\pm0.18)\times1$	10-3	930
$\eta\mathrm{e}^+\nu_\mathrm{e}$	$(1.14\pm0.10)\times1$	10-3	855

$$\begin{array}{lllll} \rho^0 \, e^+ \, \nu_e & & (\, \, 2.18 ^{+\, 0.17}_{-\, 0.25}) \times 10^{-3} & & 774 \\ \rho^0 \, \mu^+ \, \nu_\mu & & (\, \, 2.4 \, \, \pm 0.4 \, \,) \times 10^{-3} & & 770 \\ \omega \, e^+ \, \nu_e & & (\, \, 1.82 \pm 0.19) \times 10^{-3} & & 771 \\ \eta'(958) \, e^+ \, \nu_e & & (\, \, 2.2 \, \, \pm 0.5 \, \,) \times 10^{-4} & & 689 \\ \phi \, e^+ \, \nu_e & & < \, 9 & \times 10^{-5} & \text{CL} = 90\% & 657 \\ \end{array}$$

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^*(892)^0_{\ \ e}^+ \nu_e$	(5.52 ± 0.1)	5) %		722
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	$(5.28\pm0.1$	5) %		717
$\overline{K}_{0}^{*}(1430)^{0}\mu^{+}\nu_{\mu}$	< 2.4	$\times 10^{-4}$	CL=90%	380
$\overline{K}^*(1680)^0 \mu^+ \nu_{\mu}$	< 1.5	$\times 10^{-3}$	CL=90%	105

Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$				
$egin{array}{c} \mathcal{K}_{\mathcal{S}}^{0}\pi^{+} \ \mathcal{K}_{L}^{0}\pi^{+} \end{array}$		$(1.47\pm0.07)\%$	S=2.0	863
$K_L^0\pi^+$		$(1.46\pm0.05)\%$		863
$K^{-}2\pi^{+}$	[<i>ss</i>]	(9.13±0.19) %		846
$(K^-\pi^+)_{S-wave}\pi^+$		$(7.32\pm0.19)\%$		846
$\overline{K}_0^*(1430)^0\pi^+$,	[tt]	$(1.21\pm0.06)\%$		382
$\overline{K}_0^*(1430)^0 \to K^-\pi^+$				
$\overline{\mathcal{K}}^*$ (892) $^0\pi^+$,		$(1.01\pm0.11)\%$		714
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$				
$\overline{K}^*(1410)^0\pi^+$, $\overline{K}^{*0} ightarrow$		not seen		381
$\frac{K^-\pi^+}{K_2^*(1430)^0\pi^+}$,	[tt]	$(2.2 \pm 0.7) \times 10^{-4}$		371
$\overline{K}_2^*(1430)^0 ightarrow K^- \pi^+$				
$\overline{K}^*(\overline{1}680)^0\pi^+$,	[tt]	$(2.1 \pm 1.1) \times 10^{-4}$		58
$\overline{K}^*(1680)^0 \rightarrow K^-\pi^+$				
$K^{-}(2\pi^{+})_{I=2}$		$(1.41\pm0.26)\%$		_
$K_S^0 \pi^+ \pi^0$	[<i>ss</i>]	(6.99±0.27) %		845
$K_S^0 ho^+$		(4.8 ± 1.0)%		677
$\overline{K}^*(892)^0\pi^+$,		(1.3 \pm 0.6)%		714
$\overline{K}^*(892)^0 \rightarrow K_S^0 \pi^0$				
$K^0_S \pi^+ \pi^0$ nonresonant		$(9 \pm 7) \times 10^{-3}$		845
$K^{-}2\pi^{+}\pi^{0}$	[<i>uu</i>]	$(5.99\pm0.18)\%$		816
$K_S^0 2\pi^+ \pi^-$	[uu]	$(3.12\pm0.11)\%$		814
$K^{-}3\pi^{+}\pi^{-}$	[<i>ss</i>]	$(5.6 \pm 0.5) \times 10^{-3}$	S=1.1	772
$\overline{K}_{-}^{*}(892)^{0}2\pi^{+}\pi^{-}$,		$(1.2 \pm 0.4) \times 10^{-3}$		645
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$		•		
$\overline{K}^*(892)^0 \rho^0 \pi^+$,		$(2.2 \pm 0.4) \times 10^{-3}$		239
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$		2		
$\overline{K}^*(892)^0 a_1(1260)^+$	[vv]	$(9.0 \pm 1.8) \times 10^{-3}$		†

$\mathcal{K}^- ho^0$ 2 π^+	$(1.68\pm0.27)\times10^{-3}$	524
$K^-3\pi^+\pi^-$ nonresonant	$(3.9 \pm 2.9) \times 10^{-4}$	772
$K^{+}2K_{S}^{0}$	$(4.5 \pm 2.0) \times 10^{-3}$	545
$K^+K^-K^0_S\pi^+$	$(2.4 \pm 0.6) \times 10^{-4}$	436

	Pionic modes			
$\pi^+\pi^0$	$(1.19\pm0.0$	$(06) \times 10^{-3}$		925
$2\pi^{+}\pi^{-}$	$(3.18\pm0.1$	$18) \times 10^{-3}$		909
$ ho^{f 0}\pi^+$		$5) \times 10^{-4}$		767
$\pi^+(\pi^+\pi^-)_{S-wave}$	$(1.78\pm0.1$	$16) \times 10^{-3}$		909
$\sigma\pi^+$, $\sigma ightarrow \pi^+\pi^-$	$(1.34\pm0.1$	$12) \times 10^{-3}$		_
$f_0(980)\pi^+$,	(1.52 ± 0.3)	$(33) \times 10^{-4}$		669
$f_0(980) ightarrow \pi^+ \pi^-$				
$f_0(1370)\pi^+$,	(8 ±4	$) \times 10^{-5}$		_
$f_0(1370) \rightarrow \pi^+\pi^-$				
$f_2(1270)\pi^+$,	(4.9 ± 0.9)	$9) \times 10^{-4}$		485
$f_2(1270) ightarrow \pi^+ \pi^-$				
$ ho$ (1450) $^{0}\pi^{+}$,	< 8	$\times 10^{-5}$	CL=95%	338
$ ho(1450)^0 ightarrow \ \pi^+\pi^-$				
$f_0(1500)\pi^+$,	(1.1 ± 0.4	4) \times 10 ⁻⁴		_
$f_0(1500) \to \pi^+\pi^-$				
$f_0(1710)\pi^+$,	< 5	$\times 10^{-5}$	CL=95%	_
$f_0(1710) \to \pi^+\pi^-$				
$f_0(1790)\pi^+$,	< 6	$\times 10^{-5}$	CL=95%	_
$f_0(1790) \to \pi^+\pi^-$				
$(\pi^+\pi^+)_{S-wave}\pi^-$	< 1.2	$\times 10^{-4}$	CL=95%	909
$2\pi^+\pi^-$ nonresonant	< 1.1	$\times 10^{-4}$	CL=95%	909
$\pi^{+}2\pi^{0}$	(4.6 ± 0.4	4) \times 10 ⁻³		910
$2\pi^{+}\pi^{-}\pi^{0}$	$(1.13\pm0.0$	08) %		883
$\eta \pi^+$, $\eta \to \pi^+ \pi^- \pi^0$	•	$5) \times 10^{-4}$		848
$\omega\pi^+$, $\omega ightarrow\pi^+\pi^-\pi^0$	< 3	$\times 10^{-4}$	CL=90%	763
$3\pi^{+}2\pi^{-}$	$(1.61\pm0.1$	$16) \times 10^{-3}$		845

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\eta\pi^+$	$(3.53\pm0.21)\times10^{-3}$	848
$\eta\pi^+\pi^0$	$(1.38\pm0.35)\times10^{-3}$	830
$\omega \pi^+$	$< 3.4 \times 10^{-4} \text{ CL}=90\%$	764
$\eta'(958)\pi^+$	$(4.67\pm0.29)\times10^{-3}$	681
$\eta'(958)\pi^+\pi^0$	$(1.6 \pm 0.5) \times 10^{-3}$	654

Hadronic modes with a $K\overline{K}$ pair

i lautoliic i	IIIOue	s willi a N N pali		
$K^+K^0_S$		$(2.83\pm0.16)\times10^{-3}$	S=2.2	793
$K^+K^-\pi^+$	[ss]	$(9.54\pm0.26)\times10^{-3}$	S=1.1	744
$\phi\pi^+$, ϕo K^+K^-		$(2.65^{+0.08}_{-0.09}) \times 10^{-3}$		647
$K^+\overline{K}^*(892)^0$, $\overline{K}^*(892)^0 ightarrow K^-\pi^+$		$(2.45^{+0.09}_{-0.14}) \times 10^{-3}$		613
$K^{+} \overline{K}_{0}^{*} (1430)^{0}$, $\overline{K}_{0}^{*} (1430)^{0} \rightarrow K^{-} \pi^{+}$		$(1.79\pm0.34)\times10^{-3}$		-
$K^+\overline{K}_2^*(1430)^0$, $\overline{K}_2^* ightarrow K^-\pi^+$		$(1.6 ^{+1.2}_{-0.8}) \times 10^{-4}$		-
$K^+\overline{K}_0^*(800)$, $\overline{K}_0^* \rightarrow K^-\pi^+$		$(6.7 \begin{array}{c} +3.4 \\ -2.1 \end{array}) \times 10^{-4}$		_
$a_0(1450)^0\pi^+$, $a_0^0 ightarrow$		$(4.4 \begin{array}{c} +7.0 \\ -1.8 \end{array}) \times 10^{-4}$		_
ϕ (1680) π^+ , $\phi ightarrow K^+K^-$		$(4.9 \ ^{+4.0}_{-1.9}) \times 10^{-5}$		_
${\it K}^+{\it K}^-\pi^+$ nonresonant		not seen		744
$K^+K^0_S\pi^+\pi^-$		$(1.75\pm0.18)\times10^{-3}$		678
$K_{S}^{0}K^{-2}\pi^{+}$		$(2.40\pm0.18)\times10^{-3}$		678
$K^+K^-2\pi^+\pi^-$		$(2.2 \pm 1.2) \times 10^{-4}$		600

A few poorly measured branching fractions:

Doubly Cabibbo-suppressed modes

Doubly Cabibbo-suppressed modes						
$K^+\pi^0$	$(1.83\pm0.26)\times10^{-4}$	S=1.4	864			
$K^+ \eta$	$(1.08\pm0.17)\times10^{-4}$		776			
$K^+ \eta'(958)$	$(1.76\pm0.22)\times10^{-4}$		571			
$K^+\pi^+\pi^-$	$(5.27\pm0.23)\times10^{-4}$		846			
$\mathcal{K}^+ ho^0$	$(2.0 \pm 0.5) \times 10^{-4}$		679			
$\mathit{K}^{*}(892)^{0}\pi^{+}$, $\mathit{K}^{*}(892)^{0} ightarrow$	$(2.5 \pm 0.4) \times 10^{-4}$		714			
$K^+\pi^-$	_					
$K^+ f_0(980) , \; f_0(980) o$	$(4.7 \pm 2.8) \times 10^{-5}$		_			
$\pi^{+}\pi^{-}$	· · · · · · · · · · · · · · · · · · ·					
$K_2^*(1430)^0\pi^+$, $K_2^*(1430)^0 o$	$(4.2 \pm 2.9) \times 10^{-5}$		_			
$K^+\pi^-$						
$K^+\pi^+\pi^-$ nonresonant	not seen		846			
$2K^+K^-$	$(8.7 \pm 2.0) \times 10^{-5}$		550			

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

$\pi^+e^+e^-$	C1		\times 10 ⁻⁶	CL=90%	930
$\pi^+\phi$, ϕo e^+e^-		[xx] (1.7]	$^{+1.4}_{-0.9}$) × 10 ⁻⁶		_
$\pi^+\mu^+\mu^-$	C1	< 7.3	$\times 10^{-8}$	CL=90%	918
$\pi^+ \phi$, $\phi \rightarrow \mu^+ \mu^-$		[xx] (1.8 =	$\pm 0.8 \) \times 10^{-6}$		_
$\rho^+\mu^+\mu^-$	C1	< 5.6	\times 10 ⁻⁴	CL=90%	757
$K^{+} e^{+} e^{-}$		[yy] < 1.0	\times 10 ⁻⁶	CL=90%	870
$K^+\mu^+\mu^-$		[yy] < 4.3	\times 10 ⁻⁶	CL=90%	856
$\pi^+e^+\mu^-$	LF	< 2.9	\times 10 ⁻⁶	CL=90%	927
$\pi^+e^-\mu^+$	LF	< 3.6	\times 10 ⁻⁶	CL=90%	927
$\mathit{K}^{+}e^{+}\mu^{-}$	LF	< 1.2	\times 10 ⁻⁶	CL=90%	866
$K^+e^-\mu^+$	LF	< 2.8	\times 10 ⁻⁶	CL=90%	866
π^- 2e $^+$	L	< 1.1	\times 10 ⁻⁶	CL=90%	930
$\pi^- 2\mu^+$	L	< 2.2	\times 10 ⁻⁸	CL=90%	918
$\pi^-e^+\mu^+$	L	< 2.0	\times 10 ⁻⁶	CL=90%	927
$ ho^-$ 2 μ^+	L	< 5.6	\times 10 ⁻⁴	CL=90%	757
$K^{-}2e^{+}$	L	< 9	\times 10 ⁻⁷	CL=90%	870
$K^-2\mu^+$	L	< 1.0	\times 10 ⁻⁵	CL=90%	856
$K^-e^+\mu^+$	L	< 1.9	\times 10 ⁻⁶	CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5	$\times 10^{-4}$	CL=90%	703

 D^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1864.84\pm0.07$ MeV (S = 1.1) $m_{D^\pm}-m_{D^0}=4.77\pm0.08$ MeV Mean life $\tau=(410.1\pm1.5)\times10^{-15}$ s $c\tau=122.9~\mu\mathrm{m}$ $|m_{D^0_1}-m_{D^0_2}|=(0.95^{+0.41}_{-0.44})\times10^{10}~\hbar~\mathrm{s}^{-1}$ $(\Gamma_{D^0_1}-\Gamma_{D^0_2})/\Gamma=2y=(1.29^{+0.14}_{-0.18})\times10^{-2}$ $|q/p|=0.92^{+0.12}_{-0.09}$ $A_\Gamma=(-0.125\pm0.526)\times10^{-3}$ $K^+\pi^-$ relative strong phase: $\cos\delta=0.81^{+0.23}_{-0.19}$ $K^-\pi^+\pi^0$ coherence factor $R_{K\pi\pi^0}=0.78^{+0.11}_{-0.25}$ $K^-\pi^+\pi^0$ average relative strong phase $\delta^{K\pi\pi^0}=(239^{+32}_{-28})^\circ$ $K^-\pi^-2\pi^+$ coherence factor $R_{K3\pi}=0.36^{+0.24}_{-0.30}$ $K^-\pi^-2\pi^+$ average relative strong phase $\delta^{K3\pi}=(118^{+60}_{-50})^\circ$ $K^0_SK^+\pi^-$ coherence factor $R_{K^0_SK\pi}=0.73\pm0.08$ $K^0_SK^+\pi^-$ average relative strong phase $\delta^{K^0_SK\pi}=(8\pm15)^\circ$ K^*K coherence factor $R_{K^*K}=1.00\pm0.16$ K^*K average relative strong phase $\delta^{K^*K}=(26\pm16)^\circ$

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$\begin{split} &A_{CP}(K^+K^-) = (-0.21 \pm 0.17)\% \\ &A_{CP}(2K_S^0) = (-23 \pm 19)\% \\ &A_{CP}(\pi^+\pi^-) = (0.22 \pm 0.21)\% \\ &A_{CP}(\pi^+\pi^-) = (0.3 \pm 0.4)\% \\ &A_{CP}(\rho(770)^+\pi^- \to \pi^+\pi^-\pi^0) = (1.2 \pm 0.9)\% ^{[zz]} \\ &A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\% ^{[zz]} \\ &A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\% ^{[zz]} \\ &A_{CP}(\rho(1450)^+\pi^- \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\% ^{[zz]} \\ &A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-20 \pm 40)\% ^{[zz]} \\ &A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\% ^{[zz]} \\ &A_{CP}(\rho(1700)^+\pi^- \to \pi^+\pi^-\pi^0) = (6 \pm 9)\% ^{[zz]} \\ &A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (13 \pm 9)\% ^{[zz]} \\ &A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (13 \pm 9)\% ^{[zz]} \\ &A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (8 \pm 11)\% ^{[zz]} \\ &A_{CP}(f_0(1370)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 35)\% ^{[zz]} \\ &A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\% ^{[zz]} \\ &A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\% ^{[zz]} \\ &A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\% ^{[zz]} \\ &A_{CP}(f_0(1700)^\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% ^{[zz]} \\ &A_{CP}(f_0(170)\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% ^{[zz]} \\ &A_{CP}(\pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\% \\ &A_{CP}(K^+\pi^0) \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% ^{[zz]} \\ &A_{CP}(K^+\pi^0) \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% ^{[zz]} \\ &A_{CP}(K^+\pi^0) \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% ^{[zz]} \\ &A_{CP}(K^+(3892)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\% ^{[zz]} \\ &A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\% ^{[zz]} \\ &A_{CP}(K^*(3892)^+K^- \to K^+K^-\pi^0) = (-5 \pm 16)\% ^{[zz]} \\ &A_{CP}(K^*(392)^-K^- \to K^+K^-\pi^0) = (-5 \pm 4)\% ^{[zz]} \\ &A_{CP}(K^*(392)^-K^- \to K^+K^-\pi^0) = (-5 \pm 4)\% ^{[zz]} \\ &A_{CP}(K^*(392)^-K^- \to K^+K^-\pi^0) = (-17 \pm 29)\% ^{[zz]} \\ &A_{CP}(K^*(392)^-K^- \to K^+K^-\pi^0) = (-17 \pm 29)\% ^{[zz]} \\ &A_{CP}(K^0S^0) = (-0.27 \pm 0.21)\% \\ &A_{CP}(K^0S^0) = (-0.27 \pm 0.21)\% \\ &A_{CP}(K^0S^0) = (-0.3 \pm 9)\% \\ &A_{CP}(K^0S^0) = (-0.3 \pm 9)\%$$

$$A_{CP}(K^-\pi^+\pi^0) = (0.2 \pm 0.9)\%$$

$$A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%$$

$$A_{CP}(K^0_S\pi^+\pi^-) = (-0.1 \pm 0.8)\%$$

$$A_{CP}(K^*(892)^-\pi^+ \to K^0_S\pi^+\pi^-) = (0.4 \pm 0.5)\%$$

$$A_{CP}(K^*(892)^+\pi^- \to K^0_S\pi^+\pi^-) = (1 \pm 6)\%$$

$$A_{CP}(\overline{K}^0\rho^0 \to K^0_S\pi^+\pi^-) = (-0.1 \pm 0.5)\%$$

$$A_{CP}(\overline{K}^0\rho^0 \to K^0_S\pi^+\pi^-) = (-0.1 \pm 0.5)\%$$

$$A_{CP}(\overline{K}^0\log \to K^0_S\pi^+\pi^-) = (-13 \pm 7)\%$$

$$A_{CP}(\overline{K}^0f_0(980) \to K^0_S\pi^+\pi^-) = (-4 \pm 5)\%$$

$$A_{CP}(\overline{K}^0f_0(1370) \to K^0_S\pi^+\pi^-) = (-4 \pm 10)\%$$

$$A_{CP}(\overline{K}^0f_0(1450) \to K^0_S\pi^+\pi^-) = (-4 \pm 10)\%$$

$$A_{CP}(\overline{K}^0f_0(600) \to K^0_S\pi^+\pi^-) = (-3 \pm 5)\%$$

$$A_{CP}(K^*(1410)^-\pi^+ \to K^0_S\pi^+\pi^-) = (4 \pm 4)\%$$

$$A_{CP}(K^*(1430)^+\pi^- \to K^0_S\pi^+\pi^-) = (4 \pm 4)\%$$

$$A_{CP}(K^*(1430)^+\pi^- \to K^0_S\pi^+\pi^-) = (3 \pm 6)\%$$

$$A_{CP}(K^*(1430)^+\pi^- \to K^0_S\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K^*(1680)^-\pi^+ \to K^0_S\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K^*(1680)^-\pi^+ \to K^0_S\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K^*(1680)^-\pi^+ \to K^0_S\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K^*(1670)^+K^- \to K^0_S\pi^+\pi^-) = (-10 \pm 32)\%$$

$$A_{CP}(K^*(1270)^+K^- \to K^0_S\pi^+K^-) = (-1 \pm 10)\%$$

$$A_{CP}(K^*(1270)^+K^- \to K^0_S\pi^+K^-) = (-1 \pm 10)\%$$

$$A_{CP}(K^*(1270)^+K^- \to \rho^0K^+K^-) = (-1 \pm 10)\%$$

$$A_{CP}(K^*(1410)^+K^- \to K^0_S\pi^+K^-) = (-1 \pm 13)\%$$

$$A_{CP}(K^*(1410)^+K^- \to K^0_S\pi^+K^-) = (-1 \pm 12)\%$$

$$A_{CP}(K^*(1410)^+K^- \to K^0_S\pi^+K^-) = (-1 \pm 14)\%$$

$$A_{CP}(K^*(1410)^+K^- \to K^0_S\pi^-K^+) = (-1 \pm 14)\%$$

$$A_{CP}(K^*(1410)^-K^+ \to K^0_S\pi^-K^+) = (-1 \pm 14)\%$$

$$A_{CP}(K^*(1410)^-K^+ \to K^0_S\pi^-K^+) = (-1 \pm 14)\%$$

$$A_{CP}(K^*(1410)^-K^- \to K^0_S\pi^-K^-) = (-20 \pm 17)\%$$

$$A_{CP}(K^*(1410)^-K^- \to K^0_$$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.46 \pm 0.25)\%$$
 (S = 1.8)

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (1 \pm 7) \times 10^{-3} [rr]$$

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

$$\begin{array}{l} {\rm r}_{V} \ \equiv \ {\rm V(0)/A_{1}(0)} \ {\rm in} \ D^{0} \to \ K^{*}(892)^{-}\ell^{+}\nu_{\ell} = 1.7 \pm 0.8 \\ {\rm r}_{2} \ \equiv \ {\rm A_{2}(0)/A_{1}(0)} \ {\rm in} \ D^{0} \to \ K^{*}(892)^{-}\ell^{+}\nu_{\ell} = 0.9 \pm 0.4 \\ f_{+}(0) \ {\rm in} \ D^{0} \to \ K^{-}\ell^{+}\nu_{\ell} = 0.727 \pm 0.011 \\ f_{+}(0) \big| V_{cs} \big| \ {\rm in} \ D^{0} \to \ K^{-}\ell^{+}\nu_{\ell} = 0.726 \pm 0.009 \\ r_{1} \ \equiv \ a_{1}/a_{0} \ {\rm in} \ D^{0} \to \ K^{-}\ell^{+}\nu_{\ell} = -2.65 \pm 0.35 \\ r_{2} \ \equiv \ a_{1}/a_{0} \ {\rm in} \ D^{0} \to \ K^{-}\ell^{+}\nu_{\ell} = 13 \pm 9 \\ f_{+}(0) \big| V_{cd} \big| \ {\rm in} \ D^{0} \to \ \pi^{-}\ell^{+}\nu_{\ell} = 0.152 \pm 0.005 \\ r_{1} \ \equiv \ a_{1}/a_{0} \ {\rm in} \ D^{0} \to \ \pi^{-}\ell^{+}\nu_{\ell} = -2.8 \pm 0.5 \\ r_{2} \ \equiv \ a_{1}/a_{0} \ {\rm in} \ D^{0} \to \ \pi^{-}\ell^{+}\nu_{\ell} = 6 \pm 3.0 \\ \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

				Sca	ale factor/	p		
D ⁰ DECAY MODES	I	Fraction	(Γ_i/Γ)		Confic	dence leve(N	leV/ <i>c</i>)	
	Topological modes							
0-prongs	[aaa]	(15	\pm 6) %			_	
2-prongs		(70	\pm 6) %			_	
4-prongs	[bbb]	(14.5	± 0.5	5)%			_	
6-prongs	[ccc]	(6.4	± 1.3	3) × 1	0^{-4}		_	
	Inclusi	ive mod	les					
e^+ anything	[ddd]	(6.49	± 0.1	11)%			_	
μ^+ anything		(6.7	± 0.6	5)%			_	
K^- anything		(54.7	± 2.8	3)%		S=1.3	_	
\overline{K}^0 anything $+ K^0$ anything		(47	\pm 4) %			_	
K^+ anything		(3.4	± 0.4	1)%			_	
$K^*(892)^-$ anything		(15	\pm 9) %			_	
$\overline{K}^*(892)^0$ anything		(9	± 4) %			_	
$K^*(892)^+$ anything		< 3.6		%		CL=90%	_	
$K^*(892)^0$ anything		(2.8	± 1.3	3)%			_	
η anything		(9.5	± 0.9	9)%			_	
η' anything		(2.48	± 0.2	27)%			_	
ϕ anything		(1.05	± 0.1	11)%			_	

Semileptonic modes

$\mathit{K^-e^+}\nu_e$	(3.55 ± 0.05) %	S=1.2	867					
$\mathcal{K}^-\mu^+ u_\mu$	(3.31 ± 0.13) %		864					
$K^*(892)^- e^+ \nu_e$	(2.16 ± 0.16) %		719					
$K^*(892)^- \mu^+ u_{\mu}$	(1.91 ± 0.24) %		714					
$K^-\pi^0e^+\nu_e$	$(\ 1.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		861					
$\overline{K}{}^0\pi^-e^+\nu_e$	$(\begin{array}{ccc} 2.7 & + & 0.9 \\ - & 0.7 \end{array})\%$		860					
$K^-\pi^+\pi^-e^+\nu_e$	$(2.8 + 1.4 - 1.1) \times 10^{-4}$		843					
$K_1(1270)^-{ m e}^+ u_{ m e}$	$(7.6 {}^{+}_{-} {}^{4.0}_{3.1}) \times 10^{-4}$		498					
$K^-\pi^+\pi^-\mu^+ u_\mu$	$< 1.2 \times 10^{-3}$	CL=90%	821					
$(\overline{K}^*(892)\pi)^{-}\mu^{+}\nu_{\mu}$	$< 1.4 \times 10^{-3}$	CL=90%	692					
$\pi^- e^+ \nu_e$	$(2.89 \pm 0.08) \times 10^{-3}$	S=1.1	927					
$\pi^-\mu^+ u_\mu$	$(2.37 \pm 0.24) \times 10^{-3}$		924					
$\rho^- e^+ \nu_e$	$(1.77 \pm 0.16) \times 10^{-3}$		771					

Hadronic modes with one \overline{K}							
$K^-\pi^+$	(3.88	± 0.0	5)%	S=1.1	861	
$K^+\pi^-$	(1.380	0.0 ±	$(28) \times 10^{-4}$		861	
$K_S^0 \pi^0$	(1.19	± 0.0	4)%		860	
$K_S^0 \pi^0$ $K_I^0 \pi^0$	(10.0	± 0.7	$) \times 10^{-3}$		860	
$K_{\mathcal{S}}^{ar{0}}\pi^{+}\pi^{-}$	[ss] (2.83	± 0.2	0)%	S=1.1	842	
$K_S^0 ho^0$	(6.3	+ 0.7 - 0.8	$) \times 10^{-3}$		674	
$K^0_S\omega$, $\omega ightarrow \pi^+\pi^-$	(2.1	± 0.6	$) \times 10^{-4}$		670	
$K_{S}^{ar{0}}(\pi^{+}\pi^{-})_{S-wave}$	(3.4	± 0.8	$) \times 10^{-3}$		842	
$K_S^0 f_0(980)$, $f_0(980) ightarrow \pi^+ \pi^-$	(1.22	+ 0.4 - 0.2	$^{0}_{4}$) × 10 ⁻³		549	
$K_S^0 f_0(1370), \ f_0(1370) ightarrow \pi^+ \pi^-$	(2.8	+ 0.9 - 1.3) × 10 ⁻³		†	
${\mathcal K}^0_{\mathcal S} f_2(1270)$, $f_2(1270) o \pi^+ \pi^-$	(9	+10 - 6) × 10 ⁻⁵		262	
$K^*(892)^- \pi^+$, $K^*(892)^- o K_S^0 \pi^-$	(1.66	+ 0.1 - 0.1	5 7)%		711	
$egin{aligned} {\mathcal K}_0^*(1430)^-\pi^+,\ {\mathcal K}_0^*(1430)^- & ightarrow &{\mathcal K}_{\mathcal S}^0\pi^- \end{aligned}$	(2.70	+ 0.4 - 0.3	$^{0}_{4}$) × 10 ⁻³		378	
$K_2^*(1430)^-\pi^+$, $K_2^*(1430)^- ightarrow K_5^0\pi^-$	(3.4	+ 1.9 - 1.0) × 10 ⁻⁴		367	
$K^*(1680)^-\pi^+, K^*(1680)^- o K^0_S\pi^-$	(4	± 4) × 10 ⁻⁴		46	

HTTP://PDG.LBL.GOV

Page 43

$K^*(892)^+\pi^-$, $K^*(892)^+ o K^0_5\pi^+$	[eee]	(1.14	+ 0.60 - 0.34) × 10 ⁻⁴		711
$K_0^*(1430)^+\pi^-$,	[eee]	< 1.4		$\times 10^{-5}$	CL=95%	_
$K_0^*(1430)^+ \rightarrow K_S^0 \pi^+$	г 1	. 2.4		× 10 ⁻⁵	CL 050/	
$K_2^*(1430)^+\pi^-$, $K_2^*(1430)^+ o K_5^0\pi^+$	[eee]	< 3.4		× 10 °	CL=95%	_
$K_S^0\pi^+\pi^-$ nonresonant		(2.5	+ 6.0) × 10 ⁻⁴		842
$K^-\pi^+\pi^0$	[ss]		\pm 0.5		S=1.7	844
$K^-\rho^+$	[SS]	,	± 0.7	•	3 1.1	675
$K^{-}\rho(1700)^{+}$,				$) \times 10^{-3}$		†
$\rho(1700)^{+'} \rightarrow \pi^{+}\pi^{0}$		•		,		'
$K^*(892)^-\pi^+$		(2.22	$^{+}$ 0.40 $^{-}$ 0.19) %		711
$K^*(892)^- \to K^- \pi^0$						
$\overline{K}^*(892)^0\pi^0$, $\overline{K}^*(892)^0 ightarrow K^-\pi^+$		(1.88	± 0.23) %		711
$K_0^*(1430)^-\pi^+$,		(4.6	± 2.1	$) \times 10^{-3}$		378
$K_0^*(1430)^- \to K^-\pi^0$		•		,		
$\overline{K}_{0}^{*}(1430)^{0}\pi^{0}$,		(5.7	+ 5.0) × 10 ⁻³		379
$\frac{67}{K_0^*}(1430)^0 \to K^-\pi^+$		`	- 1.5	,		
$K^*(1680)^-\pi^+$,		(1.8	± 0.7	$) \times 10^{-3}$		46
$K^*(1680)^- \rightarrow K^-\pi^0$		`		,		
$K^-\pi^+\pi^0$ nonresonant		(1.11	+ 0.50 - 0.19) %		844
$K_{S}^{0} 2\pi^{0}$		(9.1	± 1.1	$) \times 10^{-3}$	S=2.2	843
$K_S^0(2\pi^0)$ -S-wave		(2.6	± 0.7	$) \times 10^{-3}$		_
$\overline{K}^*(892)^0 \pi^0$,		(7.8	± 0.7	$) \times 10^{-3}$		711
$\overline{\mathcal{K}}^*(892)^0 \rightarrow \mathcal{K}_S^0 \pi^0$						
$\overline{K}^*(1430)^0\pi^0$, $\overline{K}^{*0} \rightarrow K_S^0\pi^0$		(4	± 23) × 10 ⁻⁵		_
$\overline{\mathit{K}}^{*}(1680)^{0}\pi^{0}$, $\overline{\mathit{K}}^{*0} ightarrow$		(1.0	± 0.4	$) \times 10^{-3}$		_
$\kappa_{\mathcal{S}}^{0}\pi^{0}$						
$K_S^0 f_2(1270), f_2 \rightarrow 2\pi^0$				$) \times 10^{-4}$		_
$2 {\it K}_{\it S}^{\it 0}$, one ${\it K}_{\it S}^{\it 0} ightarrow 2 \pi^{\it 0}$		(3.2	± 1.1	$) \times 10^{-4}$		_
$K^-2\pi^+\pi^-$	[<i>ss</i>]	(8.08	+ 0.21 - 0.19) %	S=1.3	813
$K^-\pi^+ ho^0$ total		•	± 0.33	,		609
$K^-\pi^+\rho^0$ 3-body				$) \times 10^{-3}$		609
$\overline{K}^*(892)^0 \rho^0$,		(1.05	± 0.23) %		416
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$,		\ 0 /		
$K^{-}a_{1}(1260)^{+}$,		(3.6	± 0.6) %		327
$a_1(1260)^+ \rightarrow 2\pi^+\pi^-$						

Fractions of many of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. (Modes for which there are only upper limits and $\overline{K}^*(892)\,\rho$ submodes only appear below.)

$\overline{K}^*(892)^0 ho^0$ transverse	(1.7	± 0.6) %		417			
$\overline{K}^*(892)^0 \rho^0 S$ -wave	(3.0	\pm 0.6) %		417			
$\overline{K}^*(892)^0 \rho^0 S$ -wave long.	< 3		$\times 10^{-3}$	CL=90%	417			
$\overline{K}^*(892)^0 \rho^0 P$ -wave	< 3		$\times 10^{-3}$	CL=90%	417			
$\overline{\mathit{K}}^*(892)^0 ho^0\mathit{D}$ -wave	(2.1	\pm 0.6) %		417			
$K_1(1270)^-\pi^+$	[fff] (1.6	\pm 0.8) %		484			
$K_1(1400)^-\pi^+$	< 1.2		%	CL=90%	386			
$\overline{K}^*(892)^0 \pi^+ \pi^- \pi^0$	(1.9	\pm 0.9) %		643			
$K^-\pi^+\omega$	(3.0	\pm 0.6) %		605			
$\overline{\mathcal{K}}^*(892)^0 \omega$	(1.1	\pm 0.5) %		410			
$K^-\pi^+\eta'(958)$	(7.5	\pm 1.9	$) \times 10^{-3}$		479			
$\overline{K}^*(892)^0 \eta'(958)$	< 1.1		$\times 10^{-3}$	CL=90%	119			
Hadronia madas with three V's								

Hadronic modes with three K's

$K_{5}^{0}K^{+}K^{-}$	$(4.47 \pm 0.34) \times 10^{-3}$	54	14
$K_{S}^{0} a_{0}(980)^{0}$, $a_{0}^{0} \rightarrow K^{+} K^{-}$	$(3.0 \pm 0.4) \times 10^{-3}$		_
$K^{-} a_{0}(980)^{+}$, $a_{0}^{+} ightarrow K^{+} K_{S}^{0}$	$(6.0\pm1.8)\times10^{-4}$		_
$K^+ a_0(980)^-$, $ a_0^- ightarrow K^- K_S^{ar 0}$	$< 1.1 \times 10^{-4}$	CL=95%	_
$K^0_S f_0(980)$, $f_0 \rightarrow K^+ K^-$	$< 9 \times 10^{-5}$	CL=95%	_
$ extstyle ilde{K}_{S}^{O} \phi$, $\phi ightarrow \ extstyle ilde{K}^{+} extstyle ilde{K}^{-}$	(2.05 ± 0.16) $\times 10^{-3}$	52	20
$K_S^{ar{0}} f_0(1370)$, $f_0 ightarrow K^+ K^-$	$(1.7 \pm 1.1) \times 10^{-4}$		_
$3K_S^0$	(9.1 ± 1.3) $ imes 10^{-4}$	53	39
$K^{+}2K^{-}\pi^{+}$	(2.21 ± 0.31) $\times 10^{-4}$	43	34
$K^+K^-\overline{K}^*$ (892) 0 ,	(4.4 \pm 1.7) \times 10 ⁻⁵		†
$\overline{\mathit{K}}^*(892)^0 \rightarrow \mathit{K}^-\pi^+$			
$\mathit{K}^{}\pi^+\phi$, $\phi ightarrow \mathit{K}^+\mathit{K}^-$	$(4.0 \pm 1.7) \times 10^{-5}$	42	22
$\phi \overline{K}^*(892)^0$,	$(1.06 \pm 0.20) \times 10^{-4}$		†
$\phi \rightarrow K^+K^-$,			
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$	_		
$K^+2K^-\pi^+$ nonresonant	$(3.3 \pm 1.5) \times 10^{-5}$	43	34
$2K_{S}^{0}K^{\pm}\pi^{\mp}$	$(6.0 \pm 1.3) \times 10^{-4}$	42	27

Pionic modes

$\pi^+\pi^-$	$(1.402 \pm 0.026) \times 10^{-3}$	S=1.1	922
$2\pi^{0}$	$(8.20 \pm 0.35) \times 10^{-4}$		923
$\pi^+\pi^-\pi^0$	(1.43 ± 0.06) %	S=1.9	907
$\rho^+\pi^-$	$(9.8 \pm 0.4) \times 10^{-3}$		764
$ ho^0\pi^0$	$(3.72 \pm 0.22) \times 10^{-3}$		764
$ ho^-\pi^+$	$(4.96 \pm 0.24) \times 10^{-3}$		764
$ ho(1450)^+\pi^-$, $ ho(1450)^+ ightarrow$	$(1.6 \pm 2.0) \times 10^{-5}$		_
$ ho(1450)^0\pi^0$, $ ho(1450)^0 o$	$(4.3 \pm 1.9) \times 10^{-5}$		-
$ ho(1450)^0\pi^+$, $ ho(1450)^-\to$	$(2.6 \pm 0.4) \times 10^{-4}$		-
$\pi^-\pi^0$			

$ ho(1700)^{+}\pi^{-}$, $ ho(1700)^{+}$ $ ightarrow$		(5.9	±	1.4	$) \times 10^{-4}$		_
$ ho(1700)^{0}\pi^{0}$, $ ho(1700)^{0}$ $ ightarrow$		(7.2	±	1.7	$) \times 10^{-4}$		_
$\rho(1700)^{-}_{0}\pi^{+}$, $\rho(1700)^{-}$ \rightarrow		(4.6	±	1.1) × 10 ⁻⁴		_
$f_0(980)\pi^0$, $f_0(980) o$		(3.6	±	8.0	$) \times 10^{-5}$		_
$f_0(500)\pi^0$, $f_0(500) o$		(1.18	±	0.21	$) \times 10^{-4}$		_
$f_0(1370)\pi^0$, $f_0(1370) ightarrow$		(5.3	±	2.1	$) \times 10^{-5}$		_
$\pi^{+}\pi^{-}$ $f_{0}(1500)\pi^{0}$, $f_{0}(1500) ightarrow$		(5.6	±	1.5	$) \times 10^{-5}$		_
$f_0(1710)\pi^0$, $f_0(1710) ightarrow$		(4.4	±	1.5	$) \times 10^{-5}$		_
$f_2(1270)\pi^0$, $f_2(1270) ightarrow$		(1.89	±	0.20	$) \times 10^{-4}$		_
$\pi^+ \pi^- \pi^0$ nonresonant $3\pi^0$		•				$) \times 10^{-4} \times 10^{-4}$	CL=90%	907 908
$2\pi^{+}2\pi^{-}$						$) \times 10^{-3}$	S=1.1	880
$a_1(1260)^+\pi^-$, $a_1^+ ightarrow$						$) \times 10^{-3}$	3-1.1	_
$2\pi^+\pi^-$ total $a_1(1260)^+\pi^-$, $a_1^+ ightarrow 0$		(3.21	±	0.25) × 10 ⁻³		_
$ ho^0\pi^+$ <i>S</i> -wave $a_1(1260)^+\pi^-$, $a_1^+ o$		(1.9	±	0.5	$) \times 10^{-4}$		-
$ ho^0\pi^+$ <i>D</i> -wave $a_1(1260)^+\pi^-$, $a_1^+ ightarrow$		(6.2	±	0.7) × 10 ⁻⁴		_
$\sigma\pi^+$ 2 $ ho^0$ total		(1.82	±	0.13) × 10 ⁻³		518
$2 ho^0$, parallel helicities		(8.2	\pm	3.2	$) \times 10^{-5}$		_
$2 ho^0$, perpendicular helicities) × 10 ⁻⁴		-
$2 ho^0$, longitudinal helicities	5	(1.25	+	0.10	$) \times 10^{-3}$		_
Resonant $(\pi^+\pi^-)\pi^+\pi^-$		•				$) \times 10^{-3}$		_
3-body total		(, = 5		
$\sigma \pi^+ \pi^-$		(6.1	+	0.9	$) \times 10^{-4}$		_
$f_0(980)\pi^+\pi^-$, $f_0 \rightarrow$) × 10 ⁻⁴		_
$f_2(1270)\pi^+\pi^-$, $f_2 \rightarrow$		(3.6	±	0.6) × 10 ⁻⁴		_
$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$		(1.00	+	ი იი) %		882
$\eta \pi^0$	[<i>hhh</i>]	•				$) \times 10^{-4}$		846
$\frac{\pi}{\omega}$ 0		•				× 10 ⁻⁴	CL=90%	761
$2\pi^{+}2\pi^{-}\pi^{0}$	[,,,,,,]					$) \times 10^{-3}$	CL-30/0	844
$\eta \pi^+ \pi^-$	[<i>hhh</i>]					$) \times 10^{-3}$		827

$\omega \pi^+ \pi^-$					$) \times 10^{-3}$		738
$3\pi^{+}3\pi^{-}$					$) \times 10^{-4}$		795
$\eta'(958)\pi^{0}$					$) \times 10^{-4}$		678
$\eta'(958)\pi^{+}\pi^{-}$	•				$) \times 10^{-4}$		650
2η					$) \times 10^{-3}$		754
$\eta \eta'(958)$	(1.05	\pm	0.26	$) \times 10^{-3}$		537
	c modes	with	a K	(K	oair		
K^+K^-	(3.96	\pm	0.08	$) \times 10^{-3}$	S=1.4	791
$2K_S^0$	(1.7	\pm	0.4	$) \times 10^{-4}$	S=2.5	789
$K_S^0 K^- \pi^+$	(3.5	\pm	0.5	$) \times 10^{-3}$	S=1.2	739
$\overline{K}^*(892)^0 K_S^0, \overline{K}^{*0} \rightarrow$		5			$\times 10^{-4}$	CL=90%	608
$K_{S}^{0}K_{\pi}^{+}\pi^{-}$	(2 1	+	0.4) × 10 ⁻³	S=1.3	739
$K^*(892)^0 K_S^0, K^{*0} \rightarrow$		1.8		0.1	1	CL=90%	608
		1.0			^ 10	CL—9070	000
$K^{+}K^{-}\pi^{0}$	(3.29	\pm	0.14	$) \times 10^{-3}$		743
$K^*(892)^+K^-$, $K^*(892)^+$ -					$) \times 10^{-3}$		_
$K^+\pi^0$					4		
$K^*(892)^- K^+, K^*(892)^ K^- \pi^0 (K^+ \pi^0)_{S-wave} K^-$	→ (5.2	\pm	0.4) × 10 ⁻⁴		_
$(K^+\pi^0)_{S-wave}K^-$					$) \times 10^{-3}$		743
$(K^-\pi^0)_{S-wave}K^+$	(1.3	\pm	0.4	$) \times 10^{-4}$		743
$f_0(980)\pi^0$, $f_0 \to K^+K^-$	(3.5	\pm	0.6	$) \times 10^{-4}$		_
$\phi\pi^0$, $\phi \to K^+K^-$					$) \times 10^{-4}$		_
$2K_S^0\pi^0$	<	5.9			$\times 10^{-4}$		740
$K^+K^-\pi^+\pi^-$	(2.43	\pm	0.12	$) \times 10^{-3}$		677
$\phi(\pi^+\pi^-)_{S-wave}, \phi \rightarrow$	(2.50	±	0.33	$) \times 10^{-4}$		614
$(\phi ho^0)_{S-wave}, \ \phi ightarrow \ K^+ K^-$	- (9.3	+	1.2) × 10 ⁻⁴		250
$(\phi \rho^0)_{D-wave}, \phi \rightarrow K^+ K^-$	- ($) \times 10^{-5}$		_
$(K^{*0}\overline{K}^{*0})_{S-wave}, K^{*0} \rightarrow$	($) \times 10^{-4}$		_
$\mathcal{K}^{\pm}\pi^{\mp}$							
$(K^-\pi^+)_{P-wave}$	(2.6	\pm	0.5	$) \times 10^{-4}$		_
$(K^+\pi^-)_{S-wave}$					4		
$K_1(1270)^+ K^-$,	(1.8	土	0.5	$) \times 10^{-4}$		_
$K_1(1270)^+ \rightarrow K^{*0}\pi^+$,			0.06	\ 10-4		
$K_1(1270)^+ K^-, \ K_1(1270)^+ ightarrow ho^0 K^+$	(1.14	土	0.20) × 10 ⁻⁴		_
$K_1(1270) \rightarrow \rho K$ $K_1(1270) - K^+,$	(2.2	_	1 2) × 10 ⁻⁵		_
$K_1(1270)^- \rightarrow \overline{K}^{*0}\pi^-$	(2.2		1.2) × 10		
$K_1(1270)^-K^+$	(1.46	±	0.25	$) \times 10^{-4}$		_
$K_1(1270)^- \to \rho^0 K^-$	(-	,	, -		
$K^*(1410)^+K^-$	(1.02	\pm	0.26	$) \times 10^{-4}$		_
$K^*(1410)^+ \to K^{*0}\pi^+$	`				•		
•							

$K^*(1410)^- K^+$,	(1.14 ± 0.2	$5) \times 10^{-4}$		_
$\mathit{K}^{*}(1410)^{-} ightarrow\ \overline{\mathit{K}}^{*0}\pi^{-}$				
$2K_{S}^{0}\pi^{+}\pi^{-}$	(1.23 ± 0.2	4) \times 10 ⁻³		673
$K_S^0 K^- 2\pi^+ \pi^-$	< 1.5	$\times 10^{-4}$	CL=90%	595
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.1 ± 2.0	$) \times 10^{-3}$		600

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

$\phi\eta$	(1.4 ± 0.5	$) \times 10^{-4}$		489
$\phi \omega$	< 2.1	$\times 10^{-3}$	CL=90%	238

Radiative modes

$ ho^{0}\gamma$	< 2.4	$\times 10^{-4}$	CL=90%	771
$\omega\gamma$	< 2.4	$\times 10^{-4}$	CL=90%	768
$\phi\gamma$	(2.70 ± 0.3)	5) \times 10 ⁻⁵		654
$\frac{\phi \gamma}{K}$ *(892) $^{0} \gamma$	(3.27 ± 0.3)	4) \times 10 ⁻⁴		719

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

	- F	, , ,			
$\gamma \gamma$	C1	< 2.2	\times 10 ⁻⁶	CL=90%	932
$e^+ e^-$	C1	< 7.9	\times 10 ⁻⁸	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	$\times 10^{-9}$	CL=90%	926
$\pi^0 e^+ e^-$	C1	< 4.5	$\times 10^{-5}$	CL=90%	928
$\pi^{0} \mu^{+} \mu^{-}$	C1	< 1.8	$\times10^{-4}$	CL=90%	915

HTTP://PDG.LBL.GOV Page 49 Created: 8/25/2014 17:06

$\eta e^+ e^-$	C1		1 1	× 10	4 (1 00%	050
$\eta \mu^+ \mu^-$	C1		1.1	× 10 × 10	4 CL=90%	852
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1		5.3			838
$\rho^{0} e^{+} e^{-}$	C1		3.73	× 10		922
,	C1		1.0	× 10		771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1		5.5	× 10 ⁻		894
$\rho^0 \mu^+ \mu^-$	C1		2.2	× 10		754
$\omega e^+ e^-$	C1	<		× 10		768
$\omega \mu^+ \mu^-$	C1		8.3	× 10		751
$K^{-}K^{+}e^{+}e^{-}$	C1		3.15	× 10		791
$\phi e^+ e^-$	C1		5.2	× 10		654
$K^{-}K^{+}\mu^{+}\mu^{-}$	C1	<	3.3	× 10		710
$\phi \mu^+ \mu^-$	C1	<		× 10		631
$\overline{K}^0 e^+ e^-$		[yy] <	1.1	× 10		866
$\overline{K}^0 \mu^+ \mu^-$		[yy] <	2.6	× 10		852
$K^{-}\pi^{+}e^{+}e^{-}$	C1	<	3.85	× 10	4 CL=90%	861
$\overline{K}^*(892)^0 e^+ e^-$		[yy] <	4.7	\times 10 ⁻¹	⁵ CL=90%	719
$\mathcal{K}^-\pi^+\mu^+\mu^-$	C1	<	3.59	× 10	4 CL=90%	829
$\overline{K}^*(892)^0 \mu^+ \mu^-$		[yy] <	2.4	× 10	5 CL=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1	<	8.1	× 10		863
$\mu^{\pm}\mathrm{e}^{\mp}$	LF	[gg] <	2.6	× 10 ⁻	7 CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$	LF	[gg] <		\times 10 $^{-1}$	5 CL=90%	924
$\eta e^{\pm} \mu^{\mp}$	LF	[gg] <		× 10	4 CL=90%	848
$\pi^+\pi^-e^{\pm}\mu^{\mp}$	LF	[gg] <		× 10	5 CL=90%	911
$ ho^0e^\pm\mu^\mp$	LF	[gg] <		× 10 ⁻¹		767
$\omega e^{\pm} \mu^{\mp}$	LF	[gg] <		× 10		764
$K^- \stackrel{\cdot}{K^+} e^{\pm} \mu^{\mp}$	LF	[gg] <		× 10		754
$\phie^\pm\mu^\mp$	LF	[gg] <		× 10 ⁻¹	5 CL=90%	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$	LF	[gg] <		× 10		863
$K^-\pi^+\mathrm{e}^\pm\mu^\mp$	LF	[gg] <		× 10		848
$\overline{K}^*(892)^0 e^{\pm} \mu^{\mp}$	LF	[gg] <		× 10 ⁻¹	5 CL=90%	714
$2\pi^{-}2e^{+}+c.c.$	L		1.12	× 10		922
$2\pi^{-}2\mu^{+}$ + c.c.	L		2.9	× 10		894
$K^{-}\pi^{-}2e^{+}+\text{c.c.}$	L		2.06	× 10		861
$K^-\pi^-2\mu^+ + \text{c.c.}$	L		3.9	× 10		829
$2K^{-}2e^{+}$ + c.c.	L		1.52	× 10		791
$2K^{-}2\mu^{+}$ + c.c.	L		9.4	× 10 ⁻¹		710
$\pi^-\pi^-e^+\mu^++\text{c.c.}$	L		7.9	× 10 ⁻¹		911
$K^-\pi^-e^+\mu^+ + \text{c.c.}$	L		2.18	× 10 ⁻¹		848
$2K^{-}e^{+}\mu^{+}$ + c.c.	L		5.7	× 10 × 10 ⁻¹		754
pe^-	L L,B	[iii] <		× 10 × 10 ⁻¹		696
$\frac{\overline{p}e}{\overline{p}e^+}$	L,B L,B	[<i>iii</i>] <		\times 10 \times 10 ⁻¹		696
ρ C	L,D	ן נונען	1.1	× 10	CL=90/0	090

$$D^*(2007)^0$$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass
$$m=2006.96\pm0.10$$
 MeV $m_{D^{*0}}-m_{D^0}=142.12\pm0.07$ MeV Full width $\Gamma<2.1$ MeV, CL $=90\%$

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

<i>D</i> *(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(61.9±2.9) %	43
$D^0\gamma$	$(38.1\pm2.9)\%$	137

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass
$$m=2010.26\pm0.07$$
 MeV (S = 1.1) $m_{D^*(2010)^+}-m_{D^+}=140.66\pm0.08$ MeV $m_{D^*(2010)^+}-m_{D^0}=145.4257\pm0.0017$ MeV Full width $\Gamma=83.4\pm1.8$ keV

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

D*(2010) [±] DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	$(30.7 \pm 0.5) \%$	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

$D_0^*(2400)^0$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass
$$m=2318\pm29$$
 MeV (S = 1.7)
Full width $\Gamma=267\pm40$ MeV

$D_0^*(2400)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^+\pi^-$	seen	385

$D_1(2420)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I needs confirmation.

Mass
$$m=2421.4\pm0.6$$
 MeV (S = 1.2) $m_{D_1^0}-m_{D^{*+}}=411.1\pm0.6$ (S = 1.2) Full width $\Gamma=27.4\pm2.5$ MeV (S = 2.3)

HTTP://PDG.LBL.GOV

Page 51

 $\overline{D}_1(2420)^0$ modes are charge conjugates of modes below.

D ₁ (2420) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	354
$D^0\pi^+\pi^-$	seen	425
$D^+\pi^-$	not seen	473
$D^{*0}\pi^{+}\pi^{-}$	not seen	280

$D_2^*(2460)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P = 2^+$ assignment strongly favored.

Mass
$$m=2462.6\pm0.6$$
 MeV (S = 1.2) $m_{D_2^{*0}}-m_{D^+}=593.0\pm0.6$ MeV (S = 1.2) $m_{D_2^{*0}}-m_{D^{*+}}=452.3\pm0.6$ MeV (S = 1.2) Full width $\Gamma=49.0\pm1.3$ MeV (S = 1.5)

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

D ₂ *(2460) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^+\pi^-$	seen	507
$D^*(2010)^+\pi^-$	seen	391
$D^0 \pi^+ \pi^-$	not seen	463
$D^{st 0}\pi^+\pi^-$	not seen	326

$D_2^*(2460)^{\pm}$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P = 2^+$ assignment strongly favored.

Mass
$$m=2464.3\pm1.6~{
m MeV}~{
m (S}=1.7)$$
 $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7~{
m MeV}$ Full width $\Gamma=37\pm6~{
m MeV}~{
m (S}=1.4)$

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

<i>D</i> ₂ *(2460) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 \pi^+$	seen	512
$D^{st 0}\pi^+$	seen	395
$D^{+}\pi^{+}\pi^{-}$	not seen	461
$D^{*+}\pi^{+}\pi^{-}$	not seen	324

CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

 D_{s}^{\pm}

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.30\pm0.11$$
 MeV (S $=1.1$) $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(500\pm7)\times10^{-15}$ s (S $=1.3$) $c au=149.9~\mu{\rm m}$

CP-violating decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (5 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}) = (0.08 \pm 0.26)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}) = (-0.5 \pm 0.9)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}\pi^{0}) = (-2 \pm 6)\%$$

$$A_{CP}(2K_{S}^{0}\pi^{\pm}) = (3 \pm 5)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}\pi^{0}) = (0.0 \pm 3.0)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}\pi^{+}\pi^{-}) = (-6 \pm 5)\%$$

$$A_{CP}(K_{S}^{0}K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$$

$$A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}) = (-0.7 \pm 3.1)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (1.1 \pm 3.1)\%$$

$$A_{CP}(\pi^{\pm}\eta') = (-2.2 \pm 2.3)\%$$

$$A_{CP}(\eta\pi^{\pm}\pi^{0}) = (-1 \pm 4)\%$$

$$A_{CP}(\eta'\pi^{\pm}\pi^{0}) = (0 \pm 8)\%$$

$$A_{CP}(K^{0}\pi^{\pm}) = (1.2 \pm 1.0)\% \quad (S = 1.3)$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = (4 \pm 5)\%$$

$$A_{CP}(K^{\pm}\eta'(958)) = (6 \pm 19)\%$$

T-violating decay-rate asymmetry

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} [rr]$$

$D_{\rm s}^+ o \phi \ell^+ \nu_\ell$ form factors

$$r_2 = 0.84 \pm 0.11$$
 (S = 2.4)
 $r_v = 1.80 \pm 0.08$
 $\Gamma_L/\Gamma_T = 0.72 \pm 0.18$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

D+ DECAY MODES	Frac	tion (Γ_i/Γ)		ctor/ p level (MeV/c)
	Inclusive n	nodes		
e^+ semileptonic		6.5 ± 0.4) %	6	_
π^+ anything	(1	19.3 \pm 1.4) %	6	_
π^- anything	(43.2 ±0.9) %	6	_
$\pi^{f 0}$ anything	(1	23 ± 7) %	6	_
K^- anything	(18.7 \pm 0.5) %	6	_
K_{α}^{+} anything	(28.9 ± 0.7) %	6	_
K^0_S anything	(19.0 \pm 1.1) %	6	_
η anything	[///] (29.9 \pm 2.8) %	6	_
ω anything	($6.1~\pm1.4$) $\%$	6	_
η' anything	'	11.7 \pm 1.8) %	6	_
$\mathit{f}_0(980)$ anything, $\mathit{f}_0 ightarrow \pi^+\pi^-$	- <	1.3	6 CL=	90% –
ϕ anything	•	15.7 \pm 1.0) %		_
K^+K^- anything	(15.8 ± 0.7) %		_
$K^0_{\mathcal{S}}K^+$ anything	(5.8 ± 0.5) %	6	_
$K^0_SK^-$ anything	($1.9~\pm 0.4$) $\%$	6	_
$2K_S^0$ anything	(1.70±0.32) %	6	_
$2K^{+}$ anything	<	2.6	$< 10^{-3}$ CL=	90% –
$2K^-$ anything	<	6 >	$< 10^{-4}$ CL=	90% –
Leptonic	and semil	eptonic mod	es	
$e^+ u_e$	<	8.3	$< 10^{-5}$ CL=	90% 984
$\mu^+ \nu_{\mu}$	(5.56±0.25) >	< 10 ⁻³	981
$ au^+ u_ au$	(5.54±0.24) %	6	182
$K^+ \stackrel{\cdot}{K}^- e^+ \nu_e$	`			851
$\phi e^+ \nu_e$	[000] (2.49±0.14) %	6	720
$\eta e^+ \nu_e + \eta'(958) e^+ \nu_e$	[000] (3.66±0.37) %	6	_
$\eta\mathrm{e^+} u_\mathrm{e}$	[000] (2.67±0.29) %	6 S=	=1.1 908
$\eta'(958)e^+ u_e$	[000] (9.9 ±2.3) >	$< 10^{-3}$	751
$\omega e^+ \nu_e$		2.0		90% 829
$K^0 e^+ \nu_e$	(3.7 ± 1.0) >	$< 10^{-3}$	921
$K^*(892)^0 e^+ \nu_e$	[000] (1.8 ± 0.7) >		782
$f_0(980)e^+ u_e$, $f_0 ightarrow \pi^+\pi^-$	(2.00±0.32) >	< 10 ⁻³	_

Hadronic modes with a $K\overline{K}$ pair

riadionic	mode		itii a /\ /\ paii		
$K^+K^0_S$		($1.49 \pm 0.06) \%$		850
$K^+\overline{K}^{reve{0}}$		($2.95\pm0.14)\%$		850
$K^+K^-\pi^+$	[ss]	(5.39±0.21) %	S=1.4	805
$\phi\pi^+$ [00	0,qqq]	($4.5~\pm0.4$) %		712
$\phi\pi^+$, $\phi o K^+K^-$	[qqq]		2.24±0.10) %		712
$K^+ \overline{K}^* (892)^0$, $ \overline{K}^{*0} ightarrow$		(416
$K^-\pi^+$					
$f_0(980)\pi^+$, $f_0 ightarrow K^+K^-$		•	$1.14\pm0.31)$ %		732
$f_0(1370)\pi^+, f_0 \to K^+K^-$		(7 ± 5) × 10 ⁻⁴		_
$f_0(1710)\pi^+$, $f_0 \rightarrow K^+K^-$		(6.6 ± 2.9) $\times 10^{-4}$		198
$K^+ \overline{K}_0^* (1430)^0$, $\overline{K}_0^* \rightarrow$		($1.8 \pm 0.4 \times 10^{-3}$		218
$K^{+}K^{0}_{S}\pi^{0}$					
$K^+K^0_S\pi^0$		($1.52\pm0.22)\%$		805
$2K_{S}^{0}\pi^{+}$		($7.7 \pm 0.6 \times 10^{-3}$		802
$K^0 \overline{K}{}^0 \pi^+$			_		802
$K^*(892)^+\overline{K}^0$	[000]	(5.4 ± 1.2) %		683
$K^+K^-\pi^+\pi^0$		(6.3 \pm 0.7) %	S=1.1	748
$\phi \rho^+$	[000]	(8.4 $^{+1.9}_{-2.3}$) %		401
$K_S^0 K^- 2\pi^+$		($1.66\pm0.11)$ %		744
$K^*(892)^+ \overline{K}^*(892)^0$	[000]	(7.2 \pm 2.6) %		417
$K^{+}K_{S}^{0}\pi^{+}\pi^{-}$		($1.03 \pm 0.10) \%$		744
$K^{+}K^{-}2\pi^{+}\pi^{-}$		($8.6 \pm 1.5) \times 10^{-3}$		673
$\phi 2\pi^+\pi^-$	[000]	($1.21 \pm 0.16)$ %		640
$K^+K^- ho^0\pi^+$ non- ϕ		<	2.6×10^{-4}	CL=90%	249
$\phi ho^0 \pi^+$, $\phi ightarrow K^+ K^-$		($6.5 \pm 1.3 \times 10^{-3}$		181
$\phi a_1(1260)^+$, $\phi ightarrow$		(7.4 ± 1.2) $\times 10^{-3}$		†
$\mathit{K}^{+}\mathit{K}^{-}$, $\mathit{a}_{1}^{+} ightarrow \mathit{ ho}^{0} \pi^{+}$					
$K^+K^-2\pi^+\pi^-$ nonresonant		(9 ± 7) $\times 10^{-4}$		673
$2K_S^0 2\pi^+\pi^-$		($8 \pm 4) \times 10^{-4}$		669
Hadron	ic mo	des	without K's		
$\pi^+\pi^0$		<	1	CL=90%	975
$2\pi^{+}\pi^{-}$		($1.09\pm0.05)~\%$	S=1.2	959
$ ho^{0}\pi^+$		($2.0 \pm 1.2) \times 10^{-4}$		825

riadionic modes without A 5						
	<	3.4	$\times 10^{-4}$	CL=90%	975	
	(1.09 ± 0.05) %	S=1.2	959	
	(2.0 ± 1.2	$) \times 10^{-4}$		825	
[<i>rrr</i>]	(9.0 ± 0.5	$) \times 10^{-3}$		959	
	(1.09 ± 0.20	$) \times 10^{-3}$		559	
	(3.0 ± 1.9	$) \times 10^{-4}$		421	
	(6.5 ± 1.3	$) \times 10^{-3}$		960	
		_			935	
[000]	(1.69 ± 0.10) %	S=1.2	902	
[000]	(2.4 ± 0.6	$) \times 10^{-3}$		822	
	(7.9 ± 0.8	$) \times 10^{-3}$		899	
	[rrr]	[ooo] ([ooo] (< 3.4 $($ 1.09 \pm 0.05 $)$ $($ 2.0 \pm 1.2 $)$ $[rrr]$ $($ 9.0 \pm 0.5 $)$ $($ 1.09 \pm 0.20 $)$ $($ 3.0 \pm 1.9 $)$ $($ 6.5 \pm 1.3 $)$ - $[ooo]$ $($ 1.69 \pm 0.10 $)$ $[ooo]$ $($ 2.4 \pm 0.6 $)$	$< 3.4 \times 10^{-4}$ $(1.09 \pm 0.05) \%$ $(2.0 \pm 1.2) \times 10^{-4}$	$<$ 3.4 \times 10 ⁻⁴ CL=90% (1.09±0.05) % S=1.2 (2.0 ±1.2) \times 10 ⁻⁴ [rrr] (9.0 ±0.5) \times 10 ⁻³ (1.09±0.20) \times 10 ⁻³ (3.0 ±1.9) \times 10 ⁻⁴ (6.5 ±1.3) \times 10 ⁻³ — [ooo] (1.69±0.10) % S=1.2 [ooo] (2.4 ±0.6) \times 10 ⁻³	

$2\pi^{+}\pi^{-}2\pi^{0}$		_		902	
ηho^+	[000] (8.9 \pm 0.8) %		724	
$\eta\pi^+\pi^0$	(9.2 ± 1.2) %		885	
$\omega \pi^+ \pi^0$	[000] (2.8 ± 0.7) %		802	
$3\pi^{+}2\pi^{-}\pi^{0}$	(4.9 \pm 3.2) %		856	
$\omega 2\pi^+\pi^-$	[000] (1.6 \pm 0.5) %		766	
	nn,000] ($3.94\pm0.25)~\%$		743	
$3\pi^{+}2\pi^{-}2\pi^{0}$		_		803	
$\omega\eta\pi^+$	[000] <	2.13 %	CL=90%	654	
	nn,000] (12.5 ± 2.2)%		465	
$\eta'(958)\pi^{+}\pi^{0}$	(5.6 \pm 0.8) %		720	
Modes	with one	or three K's			
$K^+\pi^0$		$6.3 \pm 2.1) \times 1$	0^{-4}	917	
$K_{S}^{0}\pi^{+}$		$1.21 \pm 0.06) \times 1$	_	916	
$\kappa^+\eta$,	$1.76\pm0.35) \times 1$		835	
$K^+\omega$		2.4×1		741	
$K^{+}\eta'(958)$		1.8 ± 0.6) \times 1		646	
$K^+\pi^+\pi^-$		$6.5 \pm 0.4) \times 1$	_	900	
$\mathcal{K}^+ ho^{0}$,	2.5 ± 0.4) \times 1		745	
$K^{+}\rho(1450)^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}$		$6.9 \pm 2.4 \times 1$		_	
$K^*(892)^0\pi^+$, $K^{*0}\to$	(775	
$K^+\pi^-$	`	,			
$K^{+}\pi^{-}$ $K^{*}(1410)^{0}\pi^{+}$, $K^{*0} ightarrow$	($1.23 \pm 0.28) \times 1$	0-3	_	
$K^+\pi^-$ $K^*(1430)^0\pi^+$, $K^{*0} ightarrow$,		- 1		
$K^*(1430)^{\circ}\pi^+, K^{*\circ}\rightarrow$	($5.0 \pm 3.5) \times 1$	0-4	_	
$K^+\pi^- \ K^+\pi^+\pi^-$ nonresonant	($1.04\pm0.34) \times 1$	₀ -3	900	
$\kappa^0\pi^+\pi^0$	($1.00\pm0.18)\%$	O	899	
$\kappa_{\rm S}^{0} 2\pi^{+}\pi^{-}$	(0-3	870	
$K^+\omega\pi^0$	[000] <	8.2 × 1		684	
$K^+\omega\pi^+\pi^-$	[000] <		0^{-3} CL=90%	603	
$K^+\omega\eta$			0^{-3} CL=90%	366	
2K ⁺ K ⁻		$2.16 \pm 0.21) \times 1$		627	
$\phi {\it K}^+$, $\phi ightarrow {\it K}^+ {\it K}^-$		$8.8 \pm 2.0 \times 1$		_	
Doubly Cabibbo-suppressed modes					
$2K^+\pi^-$		$1.26\pm0.13) imes1$		805	
$K^{+}K^{*}(892)^{0}, K^{*0} \rightarrow$		$1.20\pm0.13) \times 1$ 5.9 ±3.4) \times 1		- 003	
$K^+\pi^-$	(5.5 ±5.4 / × 1	·		

$$2K^{+}\pi^{-}$$
 (1.26 ± 0.13) × 10^{-4} 805
 $K^{+}K^{*}(892)^{0}$, $K^{*0} \rightarrow$ (5.9 ± 3.4) × 10^{-5} –

Baryon-antibaryon mode

$$p\,\overline{n}$$
 (1.3 ±0.4) × 10⁻³ 295

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

$\pi^+ e^+ e^-$		[yy] <	1.3	$\times 10^{-5}$	CL=90%	979
$\pi^+\phi$, ϕo e^+e^-		[xx] ($6 \begin{array}{c} +8 \\ -4 \end{array}$	$) \times 10^{-6}$		_
$\pi^{+} \mu^{+} \mu^{-}$		[yy] <	4.1	$\times10^{-7}$	CL=90%	968
$K^+e^+e^-$	C1	<	3.7	$\times 10^{-6}$	CL=90%	922
$K^+\mu^+\mu^-$	C1	<	2.1	$\times 10^{-5}$	CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4	$\times 10^{-3}$	CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.2	$\times 10^{-5}$	CL=90%	976
$\pi^+ e^- \mu^+$	LF	<	2.0	$\times 10^{-5}$	CL=90%	976
$\mathit{K}^{+}e^{+}\mu^{-}$	LF	<	1.4	$\times 10^{-5}$	CL=90%	919
$K^+e^-\mu^+$	LF	<	9.7	\times 10 ⁻⁶	CL=90%	919
π^-2e^+	L	<	4.1	\times 10 ⁻⁶	CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	1.2	\times 10 ⁻⁷	CL=90%	968
π^- e ⁺ μ^+	L	<	8.4	\times 10 ⁻⁶	CL=90%	976
K^-2e^+	L	<	5.2	\times 10 ⁻⁶	CL=90%	922
$K^-2\mu^+$	L	<	1.3	$\times 10^{-5}$	CL=90%	909
$K^-e^+\mu^+$	L	<	6.1	$\times 10^{-6}$	CL=90%	919
$K^*(892)^- 2\mu^+$	L	<	1.4	$\times 10^{-3}$	CL=90%	765

$D_s^{*\pm}$

$$I(J^P) = 0(??)$$

 ${\stackrel{-}{J}}^P$ is natural, width and decay modes consistent with 1^- .

Mass
$$m=2112.1\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 D_{s}^{*-} modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D_s^+ \gamma$	(94.2±0.7) %	139
$D_s^+\pi^0$	(5.8 ± 0.7) %	48

$$D_{s0}^*(2317)^{\pm}$$

$$I(J^P) = 0(0^+)$$

J, P need confirmation.

 J^P is natural, low mass consistent with 0^+ .

Mass
$$m=2317.7\pm0.6$$
 MeV (S = 1.1) $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}=349.4\pm0.6$ MeV (S = 1.1) Full width Γ < 3.8 MeV, CL = 95%

HTTP://PDG.LBL.GOV

Page 57

 $D_{s0}^*(2317)^-$ modes are charge conjugates of modes below.

$D_{s0}^{*}(2317)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D_s^+\pi^0$	seen	298
$D_s^+ \pi^0 \pi^0$	not seen	205

$D_{s1}(2460)^\pm$

$$I(J^P) = 0(1^+)$$

Mass $m=2459.5\pm0.6$ MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_s^{*\pm}}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_s^{\pm}}=491.2\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^-$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$D_s^{*+}\pi^0$	(48 ±11)%		297
$D_s^+ \gamma D_s^+ \pi^+ \pi^-$	(18 \pm 4) %		442
$D_s^+\pi^+\pi^-$	$(4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-2.4})\%$		138

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Created: 8/25/2014 17:06

Mass
$$m=2535.10\pm0.08~{\rm MeV}~{\rm (S}=1.1)$$
 Full width $\Gamma=0.92\pm0.05~{\rm MeV}$

 $D_{\rm s1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ±0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	0.028 ± 0.005		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
$D^+ K^0$	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_s^{*+}\gamma D_s^{+}\pi^+\pi^-$	possibly seen		388
$D_s^+\pi^+\pi^-$	seen		437

$$D_{s2}^*(2573)$$

$$I(J^P) = 0(??)$$

 J^P is natural, width and decay modes consistent with 2^+ .

Mass
$$m=2571.9\pm0.8$$
 MeV Full width $\Gamma=17\pm4$ MeV (S = 1.3)

 $D_{\rm s2}^*(2573)^-$ modes are charge conjugates of the modes below.

D* _{\$2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	434
$D^*(2007)^0 K^+$	not seen	243

$$D_{s1}^*(2700)^{\pm}$$

$$I(J^P) = 0(1^-)$$

Mass $m=2709\pm 4~\text{MeV}$ Full width $\Gamma=117\pm 13~\text{MeV}$

BOTTOM MESONS $(B=\pm 1)$

$$B^+=u\overline{b},\ B^0=d\overline{b},\ \overline{B}{}^0=\overline{d}\,b,\ B^-=\overline{u}\,b,$$
 similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in

the B^{\pm} , B^{0} , and B^{\pm} B^{0} Admixture sections. *b*-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- B^{\pm} mass, mean life, *CP* violation, branching fractions
- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm} B^{0} Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions
- B* mass
- $B_1(5721)^0$ mass
- $B_2^*(5747)^0$ mass
- B_s^0 mass, mean life, B_s^0 - \overline{B}_s^0 mixing, CP violation, branching fractions
- \bullet B_s^* mass
- $B_{s1}(5830)^0$ mass
- $B_{s2}^* (5840)^0$ mass
- \bullet B_c^{\pm}

mass, mean life, branching fractions

At the end of Baryon Listings:

• Λ_b mass, mean life, branching fractions • $\Lambda_b(5912)^0$

mass, mean life

- $\Lambda_b(5920)^0$ mass, mean life
- \bullet Σ_b mass
- Σ_b^* mass
- \equiv_b^0 , \equiv_b^-

mass, mean life, branching fractions

- $\Xi_b(5945)^0$ mass, mean life
- Ω_b^- mass, branching fractions
- b-baryon Admixture mean life, branching fractions

 B^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.26\pm0.17$$
 MeV Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)K^{+}) = 0.003 \pm 0.006 \quad (S = 1.8)$$

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)\pi^{+}) = (0.1 \pm 2.8) \times 10^{-2} \quad (S = 1.2)$$

$$A_{CP}(B^{+} \rightarrow J/\psi\rho^{+}) = -0.11 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow J/\psi K^{*}(892)^{+}) = -0.048 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \eta_{c}K^{+}) = -0.02 \pm 0.10 \quad (S = 2.0)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)\pi^{+}) = 0.03 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{+}) = -0.024 \pm 0.023$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{*}(892)^{+}) = 0.08 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}(1P)\pi^{+}) = 0.07 \pm 0.18$$

$$A_{CP}(B^{+} \rightarrow \chi_{c0}K^{+}) = -0.20 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{+}) = -0.009 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow \overline{D}^{0}\pi^{+}) = -0.007 \pm 0.007$$

$$A_{CP}(B^+ \to D_{CP(+1)}\pi^+) = 0.035 \pm 0.024$$

$$A_{CP}(B^+ \to D_{CP(-1)}\pi^+) = 0.017 \pm 0.026$$

$$A_{CP}([K^+\pi^\pm\pi^+\pi^-]_D\pi^+) = 0.13 \pm 0.10$$

$$A_{CP}(B^+ \to \overline{D}^0K^+) = 0.01 \pm 0.05 \quad (S = 2.1)$$

$$A_{CP}([K^+\pi^\pm\pi^+\pi^-]_DK^+) = -0.42 \pm 0.22$$

$$r_B(B^+ \to D^0K^+) = 0.096 \pm 0.008$$

$$\delta_B(B^+ \to D^0K^+) = (115 \pm 13)^\circ$$

$$r_B(B^+ \to \overline{D}^0K^+) = (115 \pm 13)^\circ$$

$$r_B(B^+ \to D^0K^+) = (155 \pm 70)^\circ \quad (S = 2.0)$$

$$A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = -0.58 \pm 0.21$$

$$A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = 0.41 \pm 0.30$$

$$A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = 0.41 \pm 0.30$$

$$A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = 0.00 \pm 0.09$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.16 \pm 0.27$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.10 \pm 0.03$$

$$A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.10 \pm 0.03$$

$$A_{CP}(B^+ \to D_{CP}(+1)K^+) = 0.170 \pm 0.03$$

$$A_{CP}(B^+ \to D_{CP}(-1)K^+) = 0.10 \pm 0.07$$

$$A_{CP}(B^+ \to D_{CP}(-1)K^+) = -0.01 \pm 0.05$$

$$A_{CP}(B^+ \to D^*OK^+) = 0.114 \pm 0.023$$

$$A_{CP}(B^+ \to D^*OK^+) = 0.114 \pm 0.03$$

$$A_{CP}(B^+ \to D^*OK^+) = 0.07 \pm 0.10$$

$$A_{CP}(B^+ \to D^*OK^+) = 0.05 \pm 0.1$$

$$A_{CP}(B^+ \to D^*OK^+) = 0.00 \pm 0.1$$

$$A_{CP}(B^+ \to D^*OK^+) = 0.00 \pm 0.1$$

$$A_{CP}(B^+ \to D^*OK^+) = 0.00 \pm 0.1$$

$$A_{$$

$$A_{CP}(B^{+} \rightarrow K^{+}\pi^{0}) = 0.037 \pm 0.021$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{+}) = 0.013 \pm 0.017$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{*}(892)^{+}) = -0.26 \pm 0.27$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{*}(1430)^{+}) = 0.06 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow \eta' K^{*}(1430)^{+}) = 0.15 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow \eta K^{+}) = -0.37 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow \eta K^{*}(892)^{+}) = 0.02 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \eta K^{*}(892)^{+}) = 0.05 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow \eta K^{*}(1430)^{+}) = -0.45 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow \eta K^{*}(1430)^{+}) = 0.10 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow \omega K^{+}) = 0.29 \pm 0.35$$

$$A_{CP}(B^{+} \rightarrow \omega K^{*}) = 0.29 \pm 0.35$$

$$A_{CP}(B^{+} \rightarrow \omega K^{*}(1430)^{+}) = 0.14 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow \omega K^{*}(1430)^{+}) = 0.14 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow \omega K^{*}(1430)^{+}) = 0.006 \pm 0.24$$

$$A_{CP}(B^{+} \rightarrow \kappa^{*}(\pi^{+})) = -0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}(892)^{+}\pi^{0}) = -0.06 \pm 0.24$$

$$A_{CP}(B^{+} \rightarrow K^{*}(892)^{+}\pi^{0}) = -0.08 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}(892)^{+}\pi^{0}) = -0.08 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow f(1500)K^{+}) = 0.28 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow f^{0}(1500)K^{+}) = 0.28 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*}(1430)^{0}\pi^{+}) = 0.05 \pm 0.03$$

$$A_{CP}(B^{+} \rightarrow K^{*}(1430)^{0}\pi^{+}) = 0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow K^{*}(1430)^{0}\pi^{+}) = 0.05 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{*}(1430)^{0}\pi^{+}) = 0.01 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow K^{*}(1430)^{0}\pi^{+}) = 0.01 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{*}(1430)^{0}\pi^{+}) = 0.01 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow$$

$$A_{CP}(B^{+} \rightarrow \phi K^{*}(892)^{+}) = -0.01 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow \phi (K\pi)_{0}^{*+}) = 0.04 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \phi K_{1}(1270)^{+}) = 0.15 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow \phi K_{2}^{*}(1430)^{+}) = -0.23 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+}\phi\phi) = -0.10 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+}(\phi\phi)_{\eta_{c}}) = 0.09 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+}(\phi\phi)_{\eta_{c}}) = 0.018 \pm 0.029$$

$$A_{CP}(B^{+} \rightarrow \kappa^{+}(\phi\phi)) = -0.12 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow \phi K^{+}(\phi\phi)) = -0.12 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow \phi K^{+}(\phi\phi)) = -0.13 \pm 0.11 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = -0.13 \pm 0.11 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = -0.11 \pm 0.33$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = 0.03 \pm 0.04$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = 0.18 + 0.09$$

$$A_{CP}(B^{+} \rightarrow \phi^{-}(\phi\phi)) = 0.02 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = 0.02 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = -0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = -0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \phi^{+}(\phi\phi)) = -0.04 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \phi^{-}(\phi\phi)) = -0.04 \pm 0.06$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, $D_{\rm S}$, D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

-1		Scale factor/ p
B ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/c)
Semileptonic	and leptonic modes	
$\ell^+ u_\ell$ anything [ss.		_
$e^{+}\nu_{e}X_{c}$	$(10.8 \pm 0.4)\%$	_
$D\ell^+ u_\ell$ anything	$(9.8 \pm 0.7)\%$	_
$\overline{D}{}^0\ell^+ u_\ell$ [ss.	$[5]$ (2.27 ± 0.11)%	2310
$\overline{D}{}^0 au^+ u_ au$	$(7.7 \pm 2.5) \times 1$	10^{-3} 1911
$\overline{D}^*(2007)^0 \ell^+ \nu_\ell$ [ss.	$[5]$ (5.69 ± 0.19)%	2258
\overline{D}^* (2007) $^0 au^+ u_ au$	(1.88 \pm 0.20)%	1839
$D^-\pi^+\ell^+ u_\ell$	$(4.2 \pm 0.5) \times 1$	
$\overline{D}_0^*(2420)^0\ell^+ u_\ell$, \overline{D}_0^{*0} $ ightarrow$	$(2.5 \pm 0.5) \times 1$	-10^{-3}
$\overline{D}_2^+ \pi^+ $ $\overline{D}_2^* (2460)^0 \ell^+ \nu_\ell, \ \overline{D}_2^{*0} ightarrow$	(1.53 ±0.16)×	10^{-3} 2065
$D^-\pi^+ \ D^{(*)}$ n $\pi\ell^+ u_\ell$ (n \geq 1)	(1.87 ±0.26)%	_
$D^{*-}\pi^+\ell^+\nu_\ell$	$(6.1 \pm 0.6) \times 1$	10^{-3} 2254
$\overline{D}_1(2420)^0\ell^+ u_\ell$, \overline{D}_1^0 $ ightarrow$	(3.03 ± 0.20) \times	10^{-3} 2084
$D^{*-}\pi^{+}$ $\overline{D}'_{1}(2430)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}'^{0}_{1} \rightarrow$	(2.7 ±0.6)×	10 ⁻³ –
$D^{*-}\pi^{+}$ $\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}$	(1.01 ± 0.24) \times	10 ⁻³ S=2.0 2065
$\overline{D}_2^{*0} \rightarrow D^{*-}\pi^+$		
$D_s^{(*)-}$ K $^+$ ℓ^+ $ u_\ell$	(6.1 ± 1.0) \times	-10^{-4}
$D_s^- K^+ \ell^+ u_\ell$	$(3.0 {}^{+ 1.4}_{- 1.2}) \times$	10^{-4} 2242
D_s^{*-} K $^+$ ℓ^+ $ u_\ell$	(2.9 ± 1.9) \times	10^{-4} 2185

$\pi^0\ell^+ u_\ell$	($7.80 \pm 0.27) \times 10^{-5}$		2638
$\eta\ell^+ u_\ell$	(3.8 ± 0.6) $\times 10^{-5}$		2611
$\eta'\ell^+ u_\ell$	($2.3 \pm 0.8) \times 10^{-5}$		2553
$\omega \ell^+ \nu_\ell$	[sss] ($1.19 \pm 0.09) \times 10^{-4}$		2582
$ ho^0 \ell^+ u_\ell$	[sss] ($1.58 \pm 0.11) \times 10^{-4}$		2583
$ ho \overline{ ho} \ell^+ u_\ell$	($5.8 \begin{array}{c} +2.6 \\ -2.3 \end{array}) \times 10^{-6}$		2467
$ ho \overline{ ho} \mu^+ u_\mu$	<	8.5×10^{-6}	CL=90%	2446
$ ho \overline{ ho} e^+ u_e$	(8.2 $^{+4.0}_{-3.3}$) × 10 ⁻⁶		2467
$e^+ u_e$	<	9.8×10^{-7}	CL=90%	2640
$\mu^+ u_{\mu}$	<	1.0×10^{-6}	CL=90%	2639
$ au^+ u_ au$	($1.14 \pm 0.27) \times 10^{-4}$	S=1.3	2341
$\ell^+ u_\ell\gamma$	<	1.56×10^{-5}	CL=90%	2640
$e^+ u_e\gamma$	<	1.7×10^{-5}	CL=90%	2640
$\mu^+ u_\mu \gamma$	<	2.4×10^{-5}	CL=90%	2639

Inclusive modes

$D^0 X$	(8.6 ± 0.7) %	_
$\overline{D}{}^{0}X$	$(79 \pm 4)\%$	_
D^+X	(2.5 ± 0.5) %	_
D^-X	(9.9 ± 1.2)%	_
$D_s^+ X$	$(7.9^{+1.4}_{-1.3})\%$	_
$D_s^- X$	($1.10 \ ^{+0.40}_{-0.32}$) %	-
$\Lambda_c^+ X$	$(\begin{array}{cc} 2.1 & ^{+0.9}_{-0.6} \end{array}) \%$	_
$\overline{\Lambda}_c^- X$	$(\ \ 2.8 \ \ {}^{+1.1}_{-0.9} \ \)\%$	_
$\overline{c}X$	$(97 \pm 4)\%$	_
cX	$(23.4 \begin{array}{cc} +2.2 \\ -1.8 \end{array})\%$	_
$c/\overline{c}X$	(120 ± 6) %	_

D, D^* , or D_s modes

	-, - ,	5		
$\overline{D}{}^0\pi^+$	(4.81 ± 0.15) $\times 10^{-3}$		2308
$D_{CP(+1)}\pi^+$	[ttt] ($2.20 \pm 0.24) \times 10^{-3}$		_
$D_{CP(-1)}\pi^+$	[ttt] ($2.1 \pm 0.4) \times 10^{-3}$		_
$\overline{D}{}^{0}\rho^{+}$	(1.34 ± 0.18)%		2237
$\overline{D}{}^0K^+$	($3.70 \pm 0.17) \times 10^{-4}$		2281
$D_{CP(+1)}K^+$	[ttt] ($1.92 \pm 0.14) \times 10^{-4}$		_
$D_{CP(-1)}K^+$	[ttt] ($2.00 \pm 0.19) \times 10^{-4}$		_
$[K^-\pi^+]_DK^+$		2.8×10^{-7}		_
$[K^{+}\pi^{-}]_{D}K^{+}$	[<i>uuu</i>] <	1.8×10^{-5}	CL=90%	_
$[K^-\pi^+]_D\pi^+$	[<i>uuu</i>] (6.3 ± 1.1) $\times 10^{-7}$		_
$[K^{+}\pi^{-}]_{D}\pi^{+}$	($1.68 \pm 0.31) \times 10^{-4}$		_

$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$	(4.6	± 0.9) $\times 10^{-6}$		_
$\overline{D}^0 K^*(892)^+$	(5.3	± 0.4) $\times 10^{-4}$		2213
$D_{CP(-1)}K^*(892)^+$	[ttt] (2.7	± 0.8) $\times 10^{-4}$		_
$D_{CP(+1)}K^*(892)^+$	[ttt] (5.8	± 1.1) \times 10 ⁻⁴		_
$\overline{D}{}^{0}K^{+}\pi^{+}\pi^{-}$	(5.4	± 2.2) × 10 ⁻⁴		2237
$\overline{D}{}^{0}K^{+}\overline{K}{}^{0}$	(5.5	± 1.6) × 10 ⁻⁴		2189
$\overline{D}^0 K^+ \overline{K}^* (892)^0$	(7.5	± 1.7) × 10 ⁻⁴		2071
$\overline{D}{}^{0}\pi^{+}\pi^{+}\pi^{-}$	(5.7	± 2.2) $\times 10^{-3}$	S=3.6	2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant	(5	± 4) × 10 ⁻³		2289
$\overline{D}{}^0\pi^+\rho^0$	(4.2	± 3.0) $\times 10^{-3}$		2207
$\overline{D}^0 a_1(1260)^+$	(4	± 4) × 10 ⁻³		2123
$\overline{D}^0\omega\pi^+$	(4.1	± 0.9) $\times 10^{-3}$		2206
$D^*(2010)^-\pi^+\pi^+$	(± 0.22) × 10 ⁻³		2247
$\overline{D}_1(2420)^0\pi^+, \ \overline{D}_1^0 \rightarrow$	(5.3	± 2.3) × 10 ⁻⁴		2081
$D^*(2010)^-\pi^+ \ D^-\pi^+\pi^+$	(1 07	± 0.05) \times 10 ⁻³		2200
D^+K^0	(2.9	± 0.05) × 10 ⁻⁶	CL=90%	2299 2278
D^+K^{*0}	<	1.8	× 10 × 10 ⁻⁶	CL=90%	2211
$D^+ \overline{K}^{*0}$	<	1.4	× 10 × 10 ⁻⁶	CL=90%	2211
$\overline{D}^*(2007)^0\pi^+$	(± 0.26) $\times 10^{-3}$	CL-9070	2256
$D_{CP(+1)}^{*0}\pi^{+}$	[vvv] (2.9	± 0.20) $\times 10^{-3}$		
CP(+1) "					
$D_{CP(-1)}^{*0}\pi^{+}$	[vvv] (± 1.0) $\times 10^{-3}$		
$\overline{D}^*(2007)^0 \omega \pi^+$	(± 1.2) $\times 10^{-3}$		2149
$\overline{D}^*(2007)^0 \rho^+$	(± 1.7) × 10 ⁻³		2181
$\overline{D}^*(2007)^0 K^+$	(± 0.34) $\times 10^{-4}$		2227
$\overline{D}_{CP(+1)}^{*0}K^{+}$	[vvv] (2.8	± 0.4) × 10 ⁻⁴		_
$\overline{D}_{CP(-1)}^{*0}K^+$	[vvv] ($\pm 0.33) \times 10^{-4}$		_
$\overline{D}^*(2007)^0 K^*(892)^+$	(± 1.4) $\times 10^{-4}$		2156
$\overline{D}^*(2007)^0 K^+ \overline{K}^0$	<	1.06	\times 10 ⁻³	CL=90%	2132
$\overline{D}^*(2007)^0 K^+ K^*(892)^0$	(± 0.4) $\times 10^{-3}$		2008
$\overline{D}^*(2007)^0\pi^+\pi^+\pi^-$	(± 0.12) %		2236
$\overline{D}^*(2007)^0 a_1(1260)^+$	(±0.5)%		2063
$ \underline{\overline{D}}^*(2007)^0 \pi^- \pi^+ \pi^+ \pi^0 $	(±0.4)%		2219
$\overline{D}^{*0}3\pi^{+}2\pi^{-}$	(± 1.2) × 10 ⁻³		2196
$D^*(2010)^+\pi^0$	<	3.6	$\times 10^{-6}$	CL 000/	2255
$D^*(2010)^+ K^0$	<	9.0	× 10 ⁻⁶	CL=90%	2225
$D^*(2010)^-\pi^+\pi^+\pi^0$ $D^*(2010)^-\pi^+\pi^+\pi^+\pi^-$	(± 0.7)%		2235
$D^{**0}\pi^{+}$	()		± 0.4) $\times 10^{-3}$		2217
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$	[xxx] (± 1.3) × 10 ⁻³ ± 0.6) × 10 ⁻³	S=1.3	2001
± · · ·	(2081
$\overline{D}_1(2420)^0\pi^+ imes B(\overline{D}_1^0 o \overline{D}^0\pi^+\pi^-)$	(2.5	$^{+1.7}_{-1.4}$) × 10 ⁻⁴	S=4.0	2081

$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to \overline{D}_1^0 \to \overline{D}_$	(2.3	±1.0) × 10 ⁻⁴		2081
$\overline{D}^0 \pi^+ \pi^- \text{ (nonresonant))}$ $\overline{D}_2^* (2462)^0 \pi^+$	(3.5	±0.4) × 10 ⁻⁴		_
$\times B(\overline{D}_2^*(2462)^0 \to D^-\pi^+)$ $\overline{D}_2^*(2462)^0\pi^+ \times B(\overline{D}_2^{*0} \to 0)$	(2.3	± 1.1) × 10 ⁻⁴		_
$\overline{D}^0\pi^-\pi^+$) $\overline{D}_2^*(2462)^0\pi^+ \times B(\overline{D}_2^{*0} \to \overline{D}_2^{0} \to 0)$	<	1.7		× 10 ⁻⁴	CL=90%	-
$\overline{D}^0\pi^-\pi^+$ (nonresonant)) $\overline{D}_2^*(2462)^0\pi^+ imes B(\overline{D}_2^{*0} o D^*(2010)^-\pi^+)$	(2.2	± 1.1) × 10 ⁻⁴		_
$\overline{D}_0^*(2400)^0\pi^+ \times B(\overline{D}_0^*(2400)^0 \to D^-\pi^+)$	(6.4	± 1.4) × 10 ⁻⁴		2128
$\overline{D}_{1}(2421)^{0}\pi^{+} \times B(\overline{D}_{1}(2421)^{0} \to D^{*-}\pi^{+})$	(6.8	± 1.5) × 10 ⁻⁴		-
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+} \times B(\overline{D}_{2}^{*}(2462)^{0} \to D^{*-}\pi^{+})$	(1.8	± 0.5) × 10 ⁻⁴		-
$\overline{D}'_{1}(2427)^{0}\pi^{+}$ $\times B(\overline{D}'_{1}(2427)^{0} \to D^{*-}\pi^{+})$	(5.0	± 1.2) × 10 ⁻⁴		-
$\overline{D}_1(2420)^{ar{0}}\pi^+\! imes\!B(\overline{D}_1^0 o$	<	6		× 10 ⁻⁶	CL=90%	2081
$\overline{D}^{*0}\pi^{+}\pi^{-})$ $\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	<	1.4		$\times10^{-3}$	CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$	<	1.3		$\times 10^{-3}$	CL=90%	2062
$\overline{D}_2^*(2460)^0\pi^+ imes B(\overline{D}_2^{*0} o \overline{D}^{*0}\pi^+\pi^-)$	<	2.2		$\times 10^{-5}$	CL=90%	2062
				3	GL 000/	
$\overline{D}_{2}^{*}(2460)^{0}\rho^{+}$	<			$\times 10^{-3}$	CL=90%	1976
$\overline{D}^{0}D_{s}^{+}$	(9.0	± 0.9	$) \times 10^{-3}$		1815
$D_{s0}(2317)^{+}\overline{D}{}^{0} \times B(D_{s0}(2317)^{+} \to D_{s}^{+}\pi^{0})$	(7.3	$+2.2 \\ -1.7$) × 10 ⁻⁴		1605
$D_{s0}(2317)^{+}\overline{D}{}^{0}\times$	<	7.6		× 10 ⁻⁴	CL=90%	1605
$B(D_{s0}(2317)^+ \rightarrow D_s^{*+} \gamma)$ $D_{s0}(2317)^+ \overline{D}^*(2007)^0 \times$ $B(D_{s0}(2317)^+ \rightarrow D_s^+ \pi^0)$	(9	±7	$) \times 10^{-4}$		1511
$D_{sJ}(2457)^+\overline{D}{}^0$	(3.1	$^{+1.0}_{-0.9}$) × 10 ⁻³		_
$D_{sJ}(2457)^{+}\overline{D}^{0} \times $	(4.6	$^{+1.3}_{-1.1}$) × 10 ⁻⁴		_
$B(D_{sJ}(2457)^+ o D_s^+\gamma) \ D_{sJ}(2457)^+\overline{D}{}^0 imes \ B(D_{sJ}(2457)^+ o D_s^+\gamma^-)$	<	2.2		× 10 ⁻⁴	CL=90%	-
$D_s^+ \pi^+ \pi^-) \ D_{sJ}(2457)^+ \overline{D}{}^0 imes \ {\sf B}(D_{sJ}(2457)^+ o \ D_s^+ \pi^0)$	<	2.7		× 10 ⁻⁴	CL=90%	-

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 68

$D_{sJ}(2457)^{+}\overline{D}^{0} \times$	<	9.8	× 10 ⁻⁴	CL=90%	_
$B(D_{sJ}(2457)^+ o D_s^{*+} \gamma) \ D_{sJ}(2457)^+ \overline{D}^*(2007)^0$	(1.20	±0.30) %		_
$D_{s,I}(2457)^+ \overline{D}^*(2007)^0 \times$	($^{+0.7}_{-0.6}$) $\times 10^{-3}$		_
$B(D_{sJ}(2457)^+ \to D_{s}^+ \gamma)$	(-0.6		
$\overline{D}^0 D_{s1}(2536)^+ \times$	(4.0	± 1.0) × 10 ⁻⁴		1447
$B(D_{s1}(2536)^+ o$	`		,		
$D^*(2007)^0 K^+ +$					
$D^*(2010)^+ K^0$			4		
$\overline{D}{}^{0}D_{s1}(2536)^{+} \times $	(2.2	± 0.7) × 10 ⁻⁴		1447
${ m B}(D_{s1}(2536)^+ o D^*(2007)^0 K^+)$					
$\overline{D}^*(2007)^0 D_{s1}(2536)^+ \times$	(5.5	± 1.6) $\times 10^{-4}$		1339
$B(D_{s1}(2536)^+ \rightarrow$	(3.3	±1.0) × 10		1333
$D^*(2007)^0 K^+)$					
$\overline{D}{}^{0}D_{s1}(2536)^{+}\times$	(2.3	± 1.1) $ imes 10^{-4}$		1447
$B(D_{s1}(2536)^+ \to D^{*+}K^0)$					
$\overline{D}{}^{0}D_{sJ}(2700)^{+} imes$	(1.13	$^{+0.26}_{-0.40}$) \times 10 ⁻³		_
$B(D_{sJ}(2700)^+ \to D^0 K^+)$			0.10		
$\overline{D}^{*0}D_{s1}(2536)^{+}\times$	(3.9	± 2.6) × 10 ⁻⁴		1339
$B(D_{s1}(2536)^+ \to D^{*+}K^0)$			4		
$\overline{D}^{*0}D_{sJ}(2573)^{+} \times $	<	2	× 10 ⁻⁴	CL=90%	1306
$B(D_{sJ}(2573)^+ \to D^0 K^+)$					
$B(D_{sJ}(2573)^+ \to D^0 K^+)$ $\overline{D}^*(2007)^0 D_{sJ}(2573)^+ \times$	<		× 10 ⁻⁴ × 10 ⁻⁴		1306 1306
$B(D_{sJ}(2573)^+ \to D^0 K^+)$ $\overline{D}^*(2007)^0 D_{sJ}(2573)^+ \times$ $B(D_{sJ}(2573)^+ \to D^0 K^+)$	<	5	× 10 ⁻⁴		
$B(D_{sJ}(2573)^+ \to D^0 K^+)$ $\overline{D}^*(2007)^0 D_{sJ}(2573)^+ \times$ $B(D_{sJ}(2573)^+ \to D^0 K^+)$ $\overline{D}^0 D_s^{*+}$		5 7.6	$\times10^{-4}$ $\pm1.6)\times10^{-3}$		1306
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$	<	5 7.6 8.2	$\times 10^{-4}$ $\pm 1.6) \times 10^{-3}$ $\pm 1.7) \times 10^{-3}$		1306 1734
$B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$	<	5 7.6 8.2 1.71	$\times 10^{-4}$ $\pm 1.6) \times 10^{-3}$ $\pm 1.7) \times 10^{-3}$ $\pm 0.24) \%$		1306 1734 1737
$B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$	< (((5 7.6 8.2 1.71 2.7	$\times 10^{-4}$ ± 1.6) $\times 10^{-3}$ ± 1.7) $\times 10^{-3}$ ± 0.24) % ± 1.2) %		1306 1734 1737 1651
$B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$	< (((5 7.6 8.2 1.71 2.7 8.1	$\times 10^{-4}$ $\pm 1.6) \times 10^{-3}$ $\pm 1.7) \times 10^{-3}$ $\pm 0.24) \%$ $\pm 1.2) \%$ $\pm 1.7) \times 10^{-4}$	CL=90%	1306 1734 1737 1651 - 1713
$B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7	$\times 10^{-4}$ $\pm 1.6) \times 10^{-3}$ $\pm 1.7) \times 10^{-3}$ $\pm 0.24) \%$ $\pm 1.2) \%$ $\pm 1.7) \times 10^{-4}$		1306 1734 1737 1651
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30	$\times 10^{-4}$ $\pm 1.6) \times 10^{-3}$ $\pm 1.7) \times 10^{-3}$ $\pm 0.24) \%$ $\pm 1.2) \%$ $\pm 1.7) \times 10^{-4}$	CL=90%	1306 1734 1737 1651 - 1713
$B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.9 3.8	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \end{array}$	CL=90%	1306 1734 1737 1651 - 1713 1792
$B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \to D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{+}(2010)^{+}$ $\overline{D}^{0}D^{+}(2010)^{+}$ $\overline{D}^{0}D^{+}(2010)^{+}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.9 3.8 1.55	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \\ \pm 0.21) \times 10^{-3} \end{array}$	CL=90%	1306 1734 1737 1651 — 1713 1792
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{+}(2010)^{+}$ $\overline{D}^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.9 3.8 1.55 6.3	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \\ \pm 0.21) \times 10^{-3} \\ \pm 1.7) \times 10^{-4} \end{array}$	CL=90%	1306 1734 1737 1651 — 1713 1792 1792 1866 1571 1791
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{+}(2010)^{+}$ $\overline{D}^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}D^{+}K^{0}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.9 3.8 1.55 6.3 2.1	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \\ \pm 0.21) \times 10^{-3} \\ \pm 1.7) \times 10^{-4} \\ \pm 0.5) \times 10^{-3} \end{array}$	CL=90%	1306 1734 1737 1651 — 1713 1792 1792 1866 1571 1791 1474
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D_{s}^{*}(2010)^{+}$ $\overline{D}^{0}D_{s}^{*}(2010)^{+}$ $\overline{D}^{0}D_{s}^{*}(2010)^{+}$ $\overline{D}^{0}D_{s}^{*}(2010)^{+}$ $\overline{D}^{0}D_{s}^{*}(2007)^{0}D_{s}^{*}$ $D_{s}^{*}(2007)^{0}D_{s}^{*}$ $D_{s}^{*}(2007)^{0}D_{s}^{*}$ $D_{s}^{*}(2007)^{0}D_{s}^{*}$ $D_{s}^{*}(2007)^{0}D_{s}^{*}$ $D_{s}^{*}(2010)^{+}K_{s}^{0}$ $D_{s}^{*}(2010)^{+}K_{s}^{0}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.9 3.8 1.55 6.3 2.1 3.8	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \\ \pm 0.21) \times 10^{-3} \\ \pm 1.7) \times 10^{-4} \\ \pm 0.5) \times 10^{-3} \\ \pm 0.4) \times 10^{-3} \end{array}$	CL=90%	1306 1734 1737 1651 — 1713 1792 1792 1866 1571 1791 1474 1476
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}D^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}(2007)^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}K^{0}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.9 3.8 1.55 6.3 2.1 3.8 9.2	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \\ \pm 0.21) \times 10^{-3} \\ \pm 1.7) \times 10^{-4} \\ \pm 0.5) \times 10^{-3} \\ \pm 0.4) \times 10^{-3} \\ \pm 1.2) \times 10^{-3} \\ \end{array}$	CL=90%	1306 1734 1737 1651 - 1713 1792 1792 1866 1571 1791 1474 1476 1362
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{+}(2010)^{+}$ $\overline{D}^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.8 1.55 6.3 2.1 3.8 9.2 1.45	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \\ \pm 0.21) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.5) \times 10^{-3} \\ \pm 0.4) \times 10^{-3} \\ \pm 0.33) \times 10^{-3} \\ \end{array}$	CL=90%	1306 1734 1737 1651 — 1713 1792 1792 1866 1571 1791 1474 1476 1362 1577
$B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+} \times$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$ $\overline{D}^{0}D_{s}^{*+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{+}$ $\overline{D}^{*}(2007)^{0}D_{s}^{*+}$ $D_{s}^{(*)+}\overline{D}^{**0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{*}(2010)^{+}$ $\overline{D}^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}D^{+}K^{0}$ $D^{+}\overline{D}^{*}(2007)^{0}D^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{0}(2007)^{0}D^{*}(2010)^{+}K^{0}$ $\overline{D}^{*}(2007)^{0}D^{*}(2010)^{+}K^{0}$	<pre>((((</pre>	5 7.6 8.2 1.71 2.7 8.1 1.30 3.8 1.55 6.3 2.1 3.8 9.2 1.45	$\begin{array}{c} \times 10^{-4} \\ \pm 1.6) \times 10^{-3} \\ \pm 1.7) \times 10^{-3} \\ \pm 0.24) \% \\ \pm 1.2) \% \\ \pm 1.7) \times 10^{-4} \\ \% \\ \\ \pm 0.5) \times 10^{-4} \\ \pm 0.4) \times 10^{-4} \\ \pm 0.21) \times 10^{-3} \\ \pm 1.7) \times 10^{-4} \\ \pm 0.5) \times 10^{-3} \\ \pm 0.4) \times 10^{-3} \\ \pm 0.33) \times 10^{-3} \\ \pm 0.23) \times 10^{-3} \\ \end{array}$	CL=90%	1306 1734 1737 1651 - 1713 1792 1792 1866 1571 1791 1474 1476 1362

D*(0007)0 D*(0007)0 W±						
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+ $ $D^- D^+ K^+$	(± 0.13	•		1368
$D^{-}D^{+}K^{+}$ $D^{-}D^{*}(2010)^{+}K^{+}$	(2.2	±0.7	$) \times 10^{-4}$		1571
$D^*(2010)^- D^+ K^+$	(6.3 6.0	$\pm 1.1 \\ \pm 1.3$	$) \times 10^{-4}$ $) \times 10^{-4}$		1475 1475
$D^*(2010)^- D^*(2010)^+ K^+$	($) \times 10^{-3}$		1363
$(\overline{D}+\overline{D}^*)(D+D^*)K$	(± 0.10 ± 0.30	*		-
$D_s^+ \pi^0$	(1.6		$) \times 10^{-5}$		2270
$D_s^{s+}\pi^0$	<	2.6		× 10 ⁻⁴	CL=90%	2215
$D_{-}^{s}\eta$	<	4		× 10 ⁻⁴	CL=90%	2235
D_{-}^{s}	<	6		$\times 10^{-4}$	CL=90%	2178
$\rho^{\stackrel{s}{+}} \rho^{0}$	<	3.0		$\times 10^{-4}$	CL=90%	2197
$D_s^{s+}\rho^0$	<	4		$\times 10^{-4}$	CL=90%	2138
$D_{s}^{+}\eta$ $D_{s}^{*+}\eta$ $D_{s}^{+}\rho^{0}$ $D_{s}^{*+}\rho^{0}$ $D_{s}^{+}\omega$ $D_{s}^{*+}\omega$	<	4		× 10 ⁻⁴	CL=90%	2195
$D_{-}^{s+}\omega$	<	6		\times 10 ⁻⁴	CL=90%	2136
$D_{s}^{s} a_{1}(1260)^{0}$	<	1.8		× 10 ⁻³	CL=90%	2079
$D_s^{*+} a_1 (1260)^0$	<	1.3		× 10 ⁻³	CL=90%	2015
			+1.2		0_ 00,0	
$D_s^+ \phi$	(1.7	$+1.2 \\ -0.7$	$) \times 10^{-6}$		2141
$D_s^{*+}\phi$	<	1.2		× 10 ⁻⁵	CL=90%	2079
$D_{s}^{s} + \frac{\varphi}{K^{0}}$ $D_{s}^{s} + \overline{K^{0}}$	<	8		× 10 ⁻⁴	CL=90%	2242
3	<	9		\times 10 ⁻⁴	CL=90%	2185
$D_s^+ \overline{K}^* (892)^0$	<	4.4		\times 10 ⁻⁶	CL=90%	2172
$D_s^+ K^{*0}$	<	3.5		\times 10 ⁻⁶	CL=90%	2172
$D_s^{*+}\overline{K}^*(892)^0$	<	3.5		$\times 10^{-4}$	CL=90%	2112
$D_s^-\pi^+K^+$	(1.80	± 0.22	$) \times 10^{-4}$		2222
$D_s^{*-}\pi^+K^+$	(1.45	± 0.24	$) \times 10^{-4}$		2164
$D_s^- \pi^+ K^* (892)^+$	<	5		$\times 10^{-3}$	CL=90%	2138
$D_s^{*-}\pi^+K^*(892)^+$	<	7		$\times 10^{-3}$	CL=90%	2076
$D_s^- K^+ K^+$	(1.1	± 0.4	$) \times 10^{-5}$		2149
$D_s^{*-}K^+K^+$	<	1.5		$\times 10^{-5}$	CL=90%	2088
Charm	oniur	n mo	des			
$\eta_c K^+$				$) \times 10^{-4}$		1751
$\eta_c K^+$, $\eta_c \rightarrow K_S^0 K^\mp \pi^\pm$	(2.7	± 0.6	$) \times 10^{-5}$		_
$\eta_c K^*(892)^+$	() × 10 ⁻³		1646
$\eta_c(2S)K^+$	(3.4	± 1.8	$) \times 10^{-4}$		1319
$\eta_c(2S)K^+, \eta_c \rightarrow p\overline{p}$				$^{'} \times 10^{-7}$	CL=95%	_
$n_{\rm c}(2S)K^+$ $n_{\rm c} \rightarrow$	(3.4	+2.3	$) \times 10^{-6}$		_
$\eta_{m{c}}(2S) m{K}^+, \;\; \eta_{m{c}} ightarrow \ m{K}_{S}^0 m{K}^{\mp} \pi^{\pm}$	(-1.6	,		
$h_c(1P) \overset{3}{K}^+, h_c \rightarrow J/\psi \pi^+ \pi^-$	<	3.4		$\times10^{-6}$	CL=90%	1401
$X(3872)K^{+}$	<	3.2		$\times 10^{-4}$	CL=90%	1141

$X(3872)K^+, X \rightarrow p\overline{p}$	<				CL=95%	_
$X(3872)K^+, X \rightarrow$	(8.6	± 0.8	$) \times 10^{-6}$		1141
$J/\psi \pi^+ \pi^-$ $X(3872)K^+, X \rightarrow J/\psi \gamma$	(2.1	+04) × 10 ⁻⁶	S=1.1	1141
$X(3872)K^+, X \rightarrow y(2S)\gamma$	($) \times 10^{-6}$	S=2.5	1141
$X(3872)K^+, X \rightarrow$	<			× 10 ⁻⁶	CL=90%	1141
$J/\psi(1S)\eta$						
$X(3872)K^+, X \rightarrow D^0\overline{D}^0$	<	6.0		\times 10 ⁻⁵	CL=90%	1141
$X(3872)K^{+}, X \rightarrow D^{+}D^{-}$	<			\times 10 ⁻⁵	CL=90%	1141
$X(3872)K^+, X \rightarrow D^0\overline{D}^0\pi^0$	(1.0	± 0.4) × 10 ⁻⁴		1141
$X(3872)K^{+}, X \rightarrow \overline{D}^{*0}D^{0}$	(8.5	± 2.6	$) \times 10^{-5}$	S=1.4	1141
$X(3872)K^*(892)^+, X \rightarrow$	<	4.8		$\times 10^{-6}$	CL=90%	939
$J/\psi\gamma$				_		
$X(3872)K^*(892)^+, X \rightarrow$	<	2.8		$\times 10^{-5}$	CL=90%	939
$\psi(2S)\gamma$				6		
$X(3872)^+ K^0, X^+ \rightarrow [yyy]$	<	6.1		× 10 ⁻⁰	CL=90%	_
$J/\psi(1S)\pi^{+}\pi^{0}$ $X(4430)^{+}K^{0}, X^{+} \rightarrow J/\psi\pi^{+}$		1 -		·· 10-5	CL 0E0/	
$X(4430)^+K^0, X^+ \rightarrow J/\psi \pi^+$ $X(4430)^+K^0, X^+ \rightarrow$	<	1.5 4.7		$\times 10^{-5}$	CL=95% CL=95%	_
$\psi(2S)\pi^+$	<	4.7		× 10 °	CL=95%	_
$X(4260)^{0}K^{+}, X^{0} \rightarrow$	<	2.9		× 10 ⁻⁵	CL=95%	_
$J/\psi \pi^+ \pi^-$		2.5		× 10	CL 3070	
$\chi_{c0}(2P)K^+, X^0 \rightarrow J/\psi\gamma$	<	1.4		$\times10^{-5}$	CL=90%	_
$X(3930)^0 K^+, X^0 \to J/\psi \gamma$	<	2.5		6	CL=90%	_
$J/\psi(1S)K^+$	(1.027	7 ± 0.03	$(1) \times 10^{-3}$		1683
$J/\psi(1S)K^+\pi^+\pi^-$	($) \times 10^{-4}$	S=2.5	1612
$\chi_{c0}(2P)K^+$, $\chi_{c0} o p\overline{p}$	<	7.1		$\times 10^{-8}$	CL=95%	_
$J/\psi(1S)K^*(892)^+$	(1.44	± 0.08	$\times 10^{-3}$		1571
$J/\psi(1S) K(1270)^+$	($) \times 10^{-3}$		1390
$J/\psi(1S)K(1400)^+$	<	5		$\times 10^{-4}$	CL=90%	1308
$J/\psi(1S)\etaK^+$	(1.08		$() \times 10^{-4}$		1510
$J/\psi(1S)\eta'K^+$		8.8		$\times 10^{-5}$	CL=90%	1273
$J/\psi(1S)\phiK^+$				$) \times 10^{-5}$	S=1.2	1227
$X(4140)K^+,\;\;X ightarrow$	(10	± 5	$) \times 10^{-6}$		_
$J/\psi(1S)\phi$						
$X(4274)K^+, X \rightarrow$	<	4		$\times 10^{-6}$	CL=90%	_
$J/\psi(1S)\phi$						
$J/\psi(1S)\omega K^+$	(3.20	+0.60 -0.32) × 10 ⁻⁴		1388
$X(3872)K^+$, $X o J/\psi \omega$	(6.0	±2.2	$) \times 10^{-6}$		1141
$\chi_{c0}(2P)K^+$, $\chi_{c0} ightarrow J/\psi \omega$	(3.0	$+0.9 \\ -0.7$	$) \times 10^{-5}$		1103
$J/\psi(1S)\pi^+$	(4.1	± 0.4	$) \times 10^{-5}$	S=2.6	1727

$J/\psi(1S) ho^+$	(5.0	±0.8) × 10 ⁻⁵		1611
$J/\psi(1S)\pi^+\pi^0$ nonresonant	<	7.3		$\times 10^{-6}$	CL=90%	1717
$J/\psi(1S) a_1(1260)^+$	<	1.2		$\times10^{-3}$	CL=90%	1415
$J/\psi p \overline{p} \pi^+$	<	5.0		$\times10^{-7}$	CL=90%	643
,	Charmanium		مامم			
$J/\psi(1S) ho\overline{\Lambda}$	Charmoniur () × 10 ⁻⁵		567
$J/\psi(1S)\overline{\Sigma}^0 p$	<	1.1	⊥ 0.51	× 10 ⁻⁵	CL=90%	-
$J/\psi(1S)D^+$	<	1.2		× 10 ⁻⁴	CL=90%	870
$J/\psi(1S)\overline{D}{}^0\pi^+$	<			_	CL=90%	665
$\psi(2S)\pi^+$	($) \times 10^{-5}$		1347
$\psi(2S)K^+$	($) \times 10^{-4}$		1284
$\psi(2S)K^*(892)^+$	(6.7		$) \times 10^{-4}$	S=1.3	1115
$\psi(2S)K^{+}\pi^{+}\pi^{-}$	(4.3		$) \times 10^{-4}$		1179
ψ (3770) K^{+}	(4.9	± 1.3	$) \times 10^{-4}$		1218
$\psi(3770)K+,\psi \rightarrow D^0\overline{D}^0$	(1.6	± 0.4	$) \times 10^{-4}$	S=1.1	1218
$\psi(3770)K+, \psi \to D^+D^-$	(9.4		$) \times 10^{-5}$		1218
$\chi_{c0}\pi^+$, $\chi_{c0} \rightarrow \pi^+\pi^-$	<	1		\times 10 ⁻⁷	CL=90%	1531
$\chi_{c0}(1P)K^+$	(1.50	$^{+0.15}_{-0.14}$	$) \times 10^{-4}$		1478
$\chi_{c0} K^*(892)^+$	<	2.1		$\times 10^{-4}$	CL=90%	1341
$\chi_{c2}\pi^+$, $\chi_{c2} \rightarrow \pi^+\pi^-$	<	1		\times 10 ⁻⁷	CL=90%	1437
$\chi_{c2}K^+$	(1.1	± 0.4	$) \times 10^{-5}$		1379
$\chi_{c2} K^*(892)^+$	<	1.2		$\times 10^{-4}$	CL=90%	1227
$\chi_{c1}(1P)\pi^+$	($) \times 10^{-5}$		1468
$\chi_{c1}(1P)K^{+}$	($) \times 10^{-4}$		1412
$\chi_{c1}(1P)K^*(892)^+$	(3.0	± 0.6) × 10 ⁻⁴	S=1.1	1265
$h_c(1P)K^+$	<	3.8		$\times 10^{-5}$	CI 050/	1401
$h_c(1P)K^+, h_c \rightarrow p\overline{p}$	<	6.4		× 10 ⁻⁸	CL=95%	_
_	K or K*	mode	es			
$K^0\pi^+$	($) \times 10^{-5}$		2614
$K^+\pi^0$	($) \times 10^{-5}$		2615
$\eta^\prime {\sf K}^+$	(7.06	± 0.25	$) \times 10^{-5}$		2528
$\eta' K^* (892)^+$	(4.8	$^{+1.8}_{-1.6}$	$) \times 10^{-6}$		2472
$\eta' K_0^* (1430)^+$	(5.2	± 2.1	$) \times 10^{-6}$		_
$\eta' K_2^* (1430)^+$	(2.8	± 0.5	$) \times 10^{-5}$		2346
$\eta {\sf K}^{ar{+}}$	(2.4	± 0.4	$) \times 10^{-6}$	S=1.7	2588
$\eta K^*(892)^+$	(1.93	± 0.16	$) \times 10^{-5}$		2534
$\eta K_0^* (1430)^+$	(1.8	± 0.4	$) \times 10^{-5}$		_
$\eta K_{2}^{*}(1430)^{+}$	(9.1	± 3.0	$) \times 10^{-6}$		2414
$\eta(1295){\cal K}^+ imes{\sf B}(\eta(1295) ightarrow \eta\pi\pi)$	(2.9	$^{+0.8}_{-0.7}$	$)\times10^{-6}$		2455
77 (7)						

<	1.3		$\times10^{-6}$	CL=90%	2425
<	1.2		$\times 10^{-6}$	CL=90%	2425
(1.38	$^{+0.21}_{-0.18}$	$)\times10^{-5}$		2406
<	2.0		$\times 10^{-6}$	CL=90%	2458
<	2.9		× 10 ⁻⁶	CL=90%	2420
<	4.1		\times 10 ⁻⁶	CL=90%	2420
<	3.4		\times 10 ⁻⁶	CL=90%	2344
(3.7	± 2.2	$) \times 10^{-6}$		2398
(6.7			S=1.8	2557
<	7.4		$\times 10^{-6}$	CL=90%	2503
(2.8	± 0.4	$) \times 10^{-5}$		_
(2.4	± 0.5	$) \times 10^{-5}$		_
(2.1	± 0.4	$) \times 10^{-5}$		2380
<	3.9		× 10 ⁻⁶	CL=90%	_
<	2.5		× 10 ⁻⁶	CL=90%	-
(1.01	+0.09	$) \times 10^{-5}$		2562
(· _		2563
(•		2609
(1.63	$^{+0.21}_{-0.15}$	$)\times10^{-5}$		2609
(6	± 9	$) \times 10^{-6}$		2557
(9.4	$^{+1.0}_{-1.2}$	$) \times 10^{-6}$		2522
(1.07	±0.27	$) \times 10^{-6}$		_
				CL=90%	_
<	1.17		$\times 10^{-5}$	CL=90%	_
<	3.4		\times 10 ⁻⁶	CL=90%	2392
,			6		
(*		2559
(4.5	$+0.9 \\ -0.7$	$) \times 10^{-5}$	S=1.5	2445
(5.6	$+2.2 \\ -1.5$	$) \times 10^{-6}$		2445
<	4.5		$\times 10^{-5}$	CL=90%	2448
		 (1.38 (2.0 (2.9 (4.1 (3.4 (3.7 (6.7 (7.4 (2.8 (2.4 (2.1 (3.9 (2.5 (1.01 (8.2 (5.10 (1.63 (6 (9.4 (1.07 (1.07 (1.07 (1.17 (3.4 (3.7 (4.5 (5.6 	< 1.2 $(1.38 + 0.21 - 0.18)$ < 2.0 < 2.9 < 4.1 < 3.4 $(3.7 \pm 2.2 - 0.8)$ < 7.4 $(2.8 \pm 0.4 - 0.15)$ $(2.1 \pm 0.4 - 0.5)$ $(2.1 \pm 0.4 - 0.5)$ $(3.7 \pm 0.5 - 0.15)$ $(6 \pm 9 - 0.15)$ $(6 \pm 9 - 0.15)$ $(1.07 \pm 0.27 - 0.15)$ $(6 \pm 9 - 0.15)$ $(1.07 \pm 0.27 - 0.15)$ $(1.07 \pm 0.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

//*/1.coo)0 ±				Б		
$K^*(1680)^0\pi^+$	<	1.2		\times 10 ⁻⁵	CL=90%	2358
$K^{+}\pi^{0}\pi^{0}$	($) \times 10^{-5}$		2610
$f_0(980)K^+ \times B(f_0 \to \pi^0\pi^0)$	(2.8	± 0.8	$) \times 10^{-6}$		2522
$K^-\pi^+\pi^+$	<	9.5		\times 10 ⁻⁷	CL=90%	2609
$K^-\pi^+\pi^+$ nonresonant	<	5.6		$\times 10^{-5}$	CL=90%	2609
$K_1(1270)^0\pi^+$	<	4.0		\times 10 ⁻⁵	CL=90%	2484
$K_1(1400)^0 \pi^+$	<	3.9		$\times 10^{-5}$	CL=90%	2451
$K^{0}\pi^{+}\pi^{0}$	<	6.6		$\times 10^{-5}$	CL=90%	2609
$\kappa^0 \rho^+$	(8.0	± 1.5	$) \times 10^{-6}$		2558
$K^*(892)^+\pi^+\pi^-$	(7.5		$) \times 10^{-5}$		2557
$K^*(892)^+ \rho^0$	(4.6	± 1.1	$) \times 10^{-6}$		2504
$K^*(892)^+ f_0(980)$	(4.2	± 0.7	$) \times 10^{-6}$		2466
$a_1^+ K^0$	(3.5	± 0.7	$) \times 10^{-5}$		_
$b_1^+ {\sf K}^0 imes {\sf B}(b_1^+ o\omega\pi^+)$	(9.6	± 1.9	$) \times 10^{-6}$		_
$K^*(892)^0 \rho^+$	(9.2	± 1.5	$) \times 10^{-6}$		2504
$K_1(1400)^+ \rho^0$	<	7.8		$\times10^{-4}$	CL=90%	2388
$K_2^*(1430)^+\rho^0$	<	1.5		$\times10^{-3}$	CL=90%	2381
$b_1^0 K^+ \times B(b_1^0 \to \omega \pi^0)$	(9.1	± 2.0	$) \times 10^{-6}$		_
$b_1^+ K^{*0} \times B(b_1^+ \rightarrow \omega \pi^+)$	<	5.9		$\times 10^{-6}$	CL=90%	_
$b_1^{\bar{0}} K^{*+} \times B(b_1^{\bar{0}} \rightarrow \omega \pi^0)$	<	6.7		$\times10^{-6}$	CL=90%	_
$K^{+}\overline{K}^{0}$	(1.31	+0.17	$) \times 10^{-6}$	S=1.2	2593
$\overline{K}{}^0K^+\pi^0$	<	2.4		× 10 ⁻⁵	CL=90%	2578
$K^{+} K^{0}_{5} K^{0}_{5}$	(±0.06	$) \times 10^{-5}$		2521
$f_0(980)K^+, f_0 \rightarrow K_5^0K_5^0$	($) \times 10^{-5}$		_
$f_0(1710)K^+, f_0 \rightarrow K_S^0K_S^0$	(4.8	$^{+4.0}_{-2.6}$) × 10 ⁻⁷		_
$K^+K^0_SK^0_S$ nonresonant	(2.0		$) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}\pi^{+}$	<	5.1		× 10 ⁻⁷	CL=90%	2577
$K^+K^-\pi^+$	(5.0	+0.7	$) \times 10^{-6}$	02 00,0	2578
$K^+K^-\pi^+$ nonresonant	<	7.5	± 0.7	$\times 10^{-5}$	CL=90%	2578
$K^+\overline{K}^*(892)^0$	<	1.1		× 10 ⁻⁶	CL=90%	2540
$K + \frac{K}{K_0}(1430)^0$	<	2.2		× 10 ⁻⁶	CL=90%	2421
$K^+K^+\pi^-$	<	1.6		× 10 ⁻⁷	CL=90%	2578
$K^+K^+\pi^-$ nonresonant	<	8.79		× 10 ⁻⁵	CL=90% CL=90%	2578
$f_2'(1525)K^+$	(1.8	±0.5	$) \times 10^{-6}$	S=1.1	2392
$K^{*+}\pi^{+}K^{-}$		1.18	±0.5	× 10 ⁻⁵	CL=90%	2524
$K^*(892)^+ K^*(892)^0$	< (⊥0 E	$\times 10^{-6}$	CL=90/0	2484
$K^{*+}K^{+}\pi^{-}$	(6.1	±0.5	$\times 10^{-6}$	CL=90%	2524
K+ K- K+	< (⊥0.1 <i>4</i>	$\times 10^{-5}$	S=1.4	
$K^+\phi$	(2523
,	(• • •	$) \times 10^{-6}$	S=1.1	2516
$f_0(980) \mathcal{K}^+ imes B(f_0(980) ightarrow \ \mathcal{K}^+ \mathcal{K}^-)$	(9.4	±3.2) × 10 ⁻⁶		2522

$a_2(1320)K^+ \times$	<	1.1		$\times 10^{-6}$	CL=90%	2449
$B(a_2(1320) \to K^+ K^-)$ $X_0(1550) K^+ \times$	(4.3	+0.7	$) \times 10^{-6}$		_
$B(X_0(1550) \to K^+K^-)$	(1.0) × 10		
ϕ (1680) $K^+ imes B(\phi$ (1680) $ ightarrow$	<	8		$\times 10^{-7}$	CL=90%	2344
$egin{aligned} \mathcal{K}^+\mathcal{K}^-) \ f_0(1710)\mathcal{K}^+ imesB(f_0(1710) ightarrow \ \mathcal{K}^+\mathcal{K}^-) \end{aligned}$	(1.1	±0.6) × 10 ⁻⁶		2330
$K^+K^-K^+$ nonresonant	(2.38	+0.28	$) \times 10^{-5}$		2523
$K^*(892)^+ K^+ K^-$	(3.6		$) \times 10^{-5}$		2466
$K^*(892)^+ \phi$	(10.0	±2.0	$) \times 10^{-6}$	S=1.7	2460
$\phi(\kappa\pi)_0^{*+}$	(8.3	± 1.6	$) \times 10^{-6}$		_
$\phi K_1(1270)^+$	(6.1	± 1.9	$) \times 10^{-6}$		2375
$\phi K_1(1400)^+$	<	3.2		× 10 ⁻⁶	CL=90%	2339
$\phi K^*(1410)^+$	<	4.3		$\times10^{-6}$	CL=90%	_
$\phi K_0^*(1430)^+$	(7.0	± 1.6	$) \times 10^{-6}$		_
$\phi K_2^*(1430)^+$	(8.4	± 2.1	$) \times 10^{-6}$		2333
$\phi K_2^{*}(1770)^{+}$	<	1.50		$\times10^{-5}$	CL=90%	_
$\phi K_2^*(1820)^+$	<	1.63		$\times10^{-5}$	CL=90%	_
$a_1^+ K^{*0}$	<	3.6		$\times10^{-6}$	CL=90%	_
$K^+\phi\phi$	(5.0	± 1.2	$) \times 10^{-6}$	S=2.3	2306
$\eta'\eta'K^+$	<	2.5		$\times 10^{-5}$	CL=90%	2338
$\omega \phi K^+$	<	1.9		$\times10^{-6}$	CL=90%	2374
$X(1812)K^+ \times B(X o \omega \phi)$	<	3.2		\times 10 ⁻⁷	CL=90%	_
$K^*(892)^+ \gamma$	(4.21		$) \times 10^{-5}$		2564
$K_1(1270)^+ \gamma$	(4.3	± 1.3	$) \times 10^{-5}$		2486
$\eta K^+ \gamma$	(7.9	± 0.9	$) \times 10^{-6}$		2588
$\eta' \mathcal{K}^+ \gamma$	(2.9	$^{+1.0}_{-0.9}$	$) \times 10^{-6}$		2528
$\phi K^+ \gamma$	(2.7	± 0.4	$) \times 10^{-6}$	S=1.2	2516
$K^+\pi^-\pi^+\gamma$	(2.76	± 0.22	$) \times 10^{-5}$	S=1.2	2609
K^* (892) 0 π^+ γ	(2.0	$^{+0.7}_{-0.6}$	$) \times 10^{-5}$		2562
$\mathcal{K}^+ ho^{f 0}\gamma$	<	2.0		$\times10^{-5}$	CL=90%	2559
$K^+\pi^-\pi^+\gamma$ nonresonant	<	9.2		$\times 10^{-6}$	CL=90%	2609
$K^0\pi^+\pi^0\gamma$	(4.6	±0.5	$) \times 10^{-5}$		2609
$K_1(1400)^+ \gamma$	<	1.5		\times 10 ⁻⁵	CL=90%	2453
$K_2^*(1430)^+ \gamma$	(1.4	± 0.4	$) \times 10^{-5}$		2447
$K^*(1680)^+\gamma$	<	1.9		\times 10 ⁻³	CL=90%	2360
$K_3^*(1780)^+ \gamma$	<	3.9		\times 10 ⁻⁵	CL=90%	2341
$K_4^*(2045)^+ \gamma$	<	9.9		$\times 10^{-3}$	CL=90%	2244

Light unflavored meson modes

$\rho^+\gamma$	(9.8	± 2.5	$) \times 10^{-7}$		2583
$\pi^+\pi^0$	(5.5	± 0.4	$) \times 10^{-6}$	S=1.2	2636
$\pi^{+}\pi^{+}\pi^{-}$	(1.52		$) \times 10^{-5}$		2630
$ ho^0\pi^+$	(8.3	± 1.2	$) \times 10^{-6}$		2581
$\pi^+ f_0(980), f_0 \to \pi^+ \pi^-$	<	1.5		\times 10 ⁻⁶	CL=90%	2545
$\pi^+ f_2(1270)$	(1.6	$^{+0.7}_{-0.4}$	$) \times 10^{-6}$		2484
$\rho(1450)^0 pi+, \rho^0 \to \pi^+ \pi^-$	(1.4	$^{+0.6}_{-0.9}$	$) \times 10^{-6}$		2434
$\mathit{f}_{0}(1370)\pi^{+}$, $\mathit{f}_{0} ightarrow \pi^{+}\pi^{-}$	<	4.0		$\times 10^{-6}$	CL=90%	2460
$\mathit{f}_{0}(500)\pi^{+}$, $\mathit{f}_{0} ightarrow \pi^{+}\pi^{-}$	<	4.1		$\times 10^{-6}$	CL=90%	_
$\pi^+\pi^-\pi^+$ nonresonant	(5.3	$^{+1.5}_{-1.1}$	$) \times 10^{-6}$		2630
$\pi^{+}\pi^{0}\pi^{0}$	<	8.9		$\times 10^{-4}$	CL=90%	2631
$ ho^+\pi^0$	(1.09	±0.14	$) \times 10^{-5}$		2581
$\pi^{+}\pi^{-}\pi^{+}\pi^{0}$	<	4.0		$\times 10^{-3}$	CL=90%	2622
$ ho^+ ho^0$	(2.40	± 0.19	$) \times 10^{-5}$		2523
$ ho^+ f_0(980)$, $f_0 ightarrow \pi^+ \pi^-$	<	2.0		$\times 10^{-6}$	CL=90%	2486
$a_1(1260)^+\pi^0$	(2.6	± 0.7	$) \times 10^{-5}$		2494
$a_1(1260)^0\pi^+$	(2.0		$) \times 10^{-5}$		2494
$\omega \pi^+$	(6.9		$) \times 10^{-6}$		2580
$\omega \rho^+$	($) \times 10^{-5}$		2522
$\eta \pi^+$	(4.02	± 0.27	$) \times 10^{-6}$		2609
$\eta \rho^+$	(7.0	± 2.9	$) \times 10^{-6}$	S=2.8	2553
$\eta'\pi^+$	(2.7	± 0.9	$) \times 10^{-6}$	S=1.9	2551
$\eta' \rho_{\perp}^+$	(9.7	± 2.2	$) \times 10^{-6}$		2492
$\phi\pi^+$	<	1.5		\times 10 ⁻⁷	CL=90%	2539
$\phi \rho^+$	<	3.0		\times 10 ⁻⁶	CL=90%	2480
$a_0(980)^0\pi^+$, $a_0^0\to \eta\pi^0$	<	5.8		\times 10 ⁻⁶	CL=90%	_
$a_0(980)^+\pi^0$, $a_0^+ o \eta \pi^+$	<	1.4		\times 10 ⁻⁶	CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	<	8.6		$\times 10^{-4}$	CL=90%	2608
$ ho^0 a_1(1260)^+$	<	6.2		$\times 10^{-4}$	CL=90%	2433
$ ho^0 a_2(1320)^+$	<	7.2		$\times 10^{-4}$	CL=90%	2410
$b_1^0\pi^+$, $b_1^0 \rightarrow \omega\pi^0$	(6.7	± 2.0	$) \times 10^{-6}$		_
$b_1^+\pi^0$, $b_1^+ o \omega\pi^+$	<	3.3		$\times 10^{-6}$	CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	6.3		$\times10^{-3}$	CL=90%	2592
$b_1^+ ho^0$, $b_1^+ ightarrow \omega \pi^+$	<	5.2			CL=90%	_
$a_1(1260)^{\frac{1}{4}}a_1(1260)^0$	<	1.3		%	CL=90%	2336
$b_1^0 \rho^+, b_1^0 \rightarrow \omega \pi^0$	<	3.3		× 10 ⁻⁶	CL=90%	_

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$

$$h^{+} \pi^{0}$$

$$(1.6 \begin{array}{c} +0.7 \\ -0.6 \end{array}) \times 10^{-5}$$

$$2636$$

$$\omega h^{+}$$

$$(1.38 \begin{array}{c} +0.27 \\ -0.24 \end{array}) \times 10^{-5}$$

$$< 4.9 \times 10^{-5} \text{ CL} = 90\%$$

	Baryon r	node	S		
$ ho \overline{ ho} \pi^+$	(1.62	± 0.20) $\times 10^{-6}$		2439
$ ho \overline{ ho} \pi^+$ nonresonant	<	5.3	\times 10 ⁻⁵	CL=90%	2439
$ ho \overline{ ho} K^+$	(5.9	± 0.5) $\times 10^{-6}$	S=1.5	2348
$\Theta(1710)^{++}\overline{ ho},~~\Theta^{++} ightarrow ho$ $ hoK^+$	[zzz] <	9.1	× 10 ⁻⁸	CL=90%	_
$f_{J}(2220)K^{+}$, $f_{J} ightarrow~p\overline{p}$	[zzz] <	4.1	$\times 10^{-7}$	CL=90%	2135
$p\overline{\Lambda}(1520)$	(3.9	± 1.0) × 10 ⁻⁷		2322
$p\overline{p}K^+$ nonresonant	<	8.9	$\times 10^{-5}$	CL=90%	2348
$p \overline{p} K^*(892)^+$	(3.6	$^{+0.8}_{-0.7}$) × 10 ⁻⁶		2215
$f_{J}(2220) K^{*+}, f_{J} ightarrow ho \overline{ ho}$	<	7.7	\times 10 ⁻⁷	CL=90%	2059
pΛ	<	3.2	$\times 10^{-7}$	CL=90%	2430
$p\overline{\Lambda}\gamma$	(2.4	$^{+0.5}_{-0.4}$) \times 10 ⁻⁶		2430
$ ho \overline{\Lambda} \pi^0$	(3.0	$^{+0.7}_{-0.6}$) \times 10 ⁻⁶		2402
$p\overline{\Sigma}(1385)^0$	<	4.7	\times 10 ⁻⁷	CL=90%	2362
$\Delta^{+}\overline{\Lambda}$	<	8.2	\times 10 ⁻⁷	CL=90%	_
$p\overline{\sum}\gamma$	<	4.6	× 10 ⁻⁶	CL=90%	2413
$p \overline{\Lambda} \pi^+ \pi^-$	(5.9	± 1.1) × 10 ⁻⁶		2367
$p\overline{\Lambda}\rho^0$	(4.8	± 0.9) $\times 10^{-6}$		2214
$p\overline{\Lambda}f_2(1270)$	(2.0	± 0.8) $\times 10^{-6}$		2026
$\Lambda \overline{\Lambda} \pi^+$	<	9.4	× 10 ⁻⁷	CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(3.4	± 0.6) × 10 ⁻⁶		2251
$\Lambda \overline{\Lambda} K^{*+}$	(2.2	$^{+1.2}_{-0.9}$) × 10 ⁻⁶		2098
$\overline{\Delta}{}^{0}p$	<	1.38		CL=90%	2403
$\Delta^{++}_{\cdot}\overline{p}$	<	1.4	× 10 ⁻⁷	CL=90%	2403
$D^+ \rho \overline{\rho}$	<	1.5	\times 10 ⁻⁵	CL=90%	1860
$D^*(2010)^+ p \overline{p}$	<	1.5	× 10 ⁻⁵	CL=90%	1786
$\overline{D}{}^{0}p\overline{p}\pi^{+}$	(± 0.27) $\times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$	($\pm 0.32) \times 10^{-4}$		1709
$D^- p \overline{p} \pi^+ \pi^-$	(± 0.30) $\times 10^{-4}$		1705
$D^{*-} \frac{p \overline{p} \pi}{p \overline{\Lambda}^0 \overline{D}^0} \pi^+ \pi^-$	(± 0.25) $\times 10^{-4}$		1621
<i>P</i> /Λ <i>D</i> * (2007)0	($\pm 0.32) \times 10^{-5}$	CI 220/	_
$\frac{\rho \overline{\Lambda}^0 \overline{D}^* (2007)^0}{\overline{\Lambda}_c^- \rho \pi^+}$	<		× 10 ⁻⁵	CL=90%	_
$\Lambda_c p\pi$	(2.8	± 0.8) $\times 10^{-4}$		1980

$\overline{\Lambda}_c^- \Delta(1232)^{++}$	<	1.9		$\times10^{-5}$	CL=90%	1928
$\overline{\varLambda}_c^- \Delta_X(1600)^{++}$	(5.9	± 1.9	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^- \Delta_X(2420)^{++}$	(4.7	± 1.6	$) \times 10^{-5}$		_
$(\overline{\varLambda}_c^- p)_s \pi^+$	[aaaa] (3.9	±1.3	$) \times 10^{-5}$		_
$\overline{\Sigma}_c(2520)^0 p$	<	3		$\times 10^{-6}$	CL=90%	1904
$\overline{\Sigma}_c(2800)^0 p$	(3.3	± 1.3	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^- \rho \pi^+ \pi^0$	(1.8	± 0.6	$) \times 10^{-3}$		1935
$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^-$	(2.2	±0.7	$) \times 10^{-3}$		1880
$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^- \pi^0$	<	1.34		%	CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$	(8.7	±3.5	$) \times 10^{-4}$		_
$\overline{\Sigma}_{c}(2455)^{0}p$	(3.7	± 1.3	$) \times 10^{-5}$		1938
$\overline{\Sigma}_{c}(2455)^{0} p \pi^{0}$	(4.4	± 1.8	$) \times 10^{-4}$		1896
$\overline{\Sigma}_{c}(2455)^{0}p\pi^{-}\pi^{+}$	(4.4	±1.7	$) \times 10^{-4}$		1845
$\overline{\Sigma}_{c}(2455)^{}p\pi^{+}\pi^{+}$	(3.0	± 0.8	$) \times 10^{-4}$		1845
$\overline{\Lambda}_{c}(2593)^{-}/\overline{\Lambda}_{c}(2625)^{-}p\pi^{+}$	<	1.9		$\times 10^{-4}$	CL=90%	_
$\overline{\Xi}_c^0 \Lambda_c^+, \ \overline{\Xi}_c^0 \to \overline{\Xi}^+ \pi^-$	(3.0	±1.1	$) \times 10^{-5}$		1144
$ \overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \overline{\Xi}_{c}^{+} \pi^{-} $ $ \overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \Lambda K^{+} \pi^{-} $	(2.6	± 1.1	$) \times 10^{-5}$	S=1.1	1144

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

				•	•	
$\pi^+\ell^+\ell^-$	B1	<	4.9	$\times 10^{-8}$	CL=90%	2638
$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$	CL=90%	2638
$\pi^{+}\mu^{+}\mu^{-}$	B1	<	5.5	$\times 10^{-8}$	CL=90%	2634
$\pi^+ \nu \overline{\nu}$	B1	<	9.8	$\times 10^{-5}$	CL=90%	2638
$K^+\ell^+\ell^-$	B1	[sss] (4.51 ± 0.23	$3) \times 10^{-7}$	S=1.1	2617
$K^+e^+e^-$	B1	(5.5 ± 0.7	$) \times 10^{-7}$		2617
$\mathcal{K}^+\mu^+\mu^-$	B1	(4.49 ± 0.23	$3) \times 10^{-7}$	S=1.1	2612
ψ (4040) K^+		<	1.3	$\times 10^{-4}$	CL=90%	1003
ψ (4160) K^+		(5.1 ± 2.7	$) \times 10^{-4}$		868
$K^+ \overline{ u} \nu$	B1	<	1.6	$\times 10^{-5}$	CL=90%	2617
$\rho^+ \nu \overline{\nu}$	B1	<	2.13	$\times 10^{-4}$	CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[<i>sss</i>] (1.29 ± 0.23			2564
$K^*(892)^+ e^+ e^-$	B1	($1.55 \begin{array}{c} +0.40 \\ -0.31 \end{array}$	$(1) \times 10^{-6}$		2564
$K^*(892)^+ \mu^+ \mu^-$	B1	(1.12 ± 0.15	$5) \times 10^{-6}$		2560
$K^*(892)^+ u \overline{ u}$	B1	<	4.0	$\times 10^{-5}$	CL=90%	2564
$\pi^+ e^+ \mu^-$	LF	<	6.4	$\times 10^{-3}$	CL=90%	2637
$\pi^+e^-\mu^+$	LF	<	6.4	$\times 10^{-3}$	CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7	$\times 10^{-7}$	CL=90%	2637
$\pi^+ e^+ \tau^-$	LF	<	7.4	$\times 10^{-5}$	CL=90%	2338
$\pi^+e^-\tau^+$	LF	<	2.0	$\times 10^{-5}$	CL=90%	2338
$\pi^+ e^{\pm} \tau^{\mp}$	LF	<	7.5	$\times 10^{-5}$	CL=90%	2338
$\pi^+\mu^+\tau^-$	LF	<	6.2	$\times 10^{-5}$	CL=90%	2333
$\pi^+\mu^-\tau^+$	LF	<	4.5	$\times 10^{-5}$	CL=90%	2333

$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<	7.2	$\times 10^{-5}$	CL=90%	2333
$K^+e^+\mu^-$	LF	<	9.1	$\times 10^{-8}$	CL=90%	2615
$K^+e^-\mu^+$	LF	<	1.3	$\times 10^{-7}$	CL=90%	2615
$K^+e^\pm\mu^\mp$	LF	<	9.1	$\times 10^{-8}$	CL=90%	2615
$K^+e^+ au^-$	LF	<	4.3	$\times 10^{-5}$	CL=90%	2312
$K^+e^- au^+$	LF	<	1.5	$\times 10^{-5}$	CL=90%	2312
$K^+e^\pm au^\mp$	LF	<	3.0	$\times 10^{-5}$	CL=90%	2312
$K^+\mu^+\tau^-$	LF	<	4.5	$\times 10^{-5}$	CL=90%	2298
$K^+\mu^-\tau^+$	LF	<	2.8	\times 10 ⁻⁵	CL=90%	2298
$\mathcal{K}^+ \mu^\pm au^\mp$	LF	<	4.8	$\times 10^{-5}$	CL=90%	2298
$K^*(892)^+ e^+ \mu^-$	LF	<	1.3	\times 10 ⁻⁶	CL=90%	2563
$K^*(892)^+ e^- \mu^+$	LF	<	9.9	$\times 10^{-7}$	CL=90%	2563
$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4	$\times 10^{-6}$	CL=90%	2563
$\pi^{-}e^{+}e^{+}$	L	<	2.3	$\times 10^{-8}$	CL=90%	2638
$\pi^-\mu^+\mu^+$	L	<	1.3	$\times 10^{-8}$	CL=95%	2634
$\pi^-e^+\mu^+$	L	<	1.5	$\times 10^{-7}$	CL=90%	2637
$ ho^-\mathrm{e}^+\mathrm{e}^+$	L	<	1.7	$\times 10^{-7}$	CL=90%	2583
$\rho^{-}\mu^{+}\mu^{+}$	L	<	4.2	$\times 10^{-7}$	CL=90%	2578
$\rho^-e^+\mu^+$	L	<	4.7	$\times 10^{-7}$	CL=90%	2582
$K^-e^+e^+$	L	<	3.0	$\times 10^{-8}$	CL=90%	2617
$K^-\mu^+\mu^+$	L	<	4.1	$\times 10^{-8}$	CL=90%	2612
$K^-e^+\mu^+$	L	<	1.6	$\times 10^{-7}$	CL=90%	2615
$K^*(892)^- e^+ e^+$	L	<	4.0	$\times 10^{-7}$	CL=90%	2564
$K^*(892)^- \mu^+ \mu^+$	L	<	5.9	\times 10 ⁻⁷	CL=90%	2560
$K^*(892)^-e^+\mu^+$	L	<	3.0	$\times 10^{-7}$	CL=90%	2563
$D^{-}e^{+}e^{+}$	L	<	2.6	\times 10 ⁻⁶	CL=90%	2309
$D^-e^+\mu^+$	L	<	1.8	$\times 10^{-6}$	CL=90%	2307
$D^-\mu^+\mu^+$	L	<	6.9	$\times 10^{-7}$	CL=95%	2303
$D^{*-}\mu^+\mu^+$	L	<	2.4	$\times 10^{-6}$	CL=95%	2251
$D_s^- \mu^+ \mu^+$	L	<	5.8	$\times 10^{-7}$	CL=95%	2267
$\overline{D}{}^{0}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5	$\times 10^{-6}$	CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6	$\times 10^{-8}$	CL=90%	_
$\Lambda^0 e^+$	L,B	<	3.2	$\times 10^{-8}$	CL=90%	_
$\overline{\Lambda}^0 \mu^+$	L,B	<	6	$\times 10^{-8}$	CL=90%	_
$\overline{\Lambda}^{0}'e^{+}$	L,B	<	8	$\times 10^{-8}$	CL=90%	_
	•					

$$I(J^P) = \frac{1}{2}(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.58\pm0.17$$
 MeV $m_{B^0}-m_{B^\pm}=0.32\pm0.06$ MeV Mean life $\tau_{B^0}=(1.519\pm0.005)\times10^{-12}$ s $c\tau=455.4~\mu{\rm m}$ $\tau_{B^+}/\tau_{B^0}=1.076\pm0.004$ (direct measurements)

$B^0 - \overline{B}{}^0$ mixing parameters

$$\chi_d = 0.1874 \pm 0.0018$$

$$\Delta m_{B^0} = m_{B_H^0} - m_{B_L^0} = (0.510 \pm 0.003) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (3.337 \pm 0.033) \times 10^{-10} \ \text{MeV}$$
 $\chi_d = \Delta m_{B^0} / \Gamma_{B^0} = 0.774 \pm 0.006$

$$\text{Re}(\lambda_{CP} / |\lambda_{CP}|) \ \text{Re}(z) = 0.01 \pm 0.05$$

$$\Delta \Gamma \ \text{Re}(z) = -0.007 \pm 0.004$$

$$\text{Re}(z) = (2 \pm 5) \times 10^{-2}$$

$$\text{Im}(z) = (-0.8 \pm 0.4) \times 10^{-2}$$

CP violation parameters

$$Re(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2) = (0.1 \pm 0.8) \times 10^{-3}$$

$$A_{T/CP} = 0.005 \pm 0.018$$

$$A_{CP}(B^0 \to D^*(2010)^+ D^-) = 0.037 \pm 0.034$$

$$A_{CP}(B^0 \to [K^+ K^-]_D K^*(892)^0) = -0.45 \pm 0.23$$

$$A_{CP}(B^0 \to [K^+ \pi^-]_D K^*(892)^0) = -0.08 \pm 0.08$$

$$A_{CP}(B^0 \to K^+ \pi^-) = -0.082 \pm 0.006$$

$$A_{CP}(B^0 \to \eta' K^*(892)^0) = 0.02 \pm 0.23$$

$$A_{CP}(B^0 \to \eta' K^*(1430)^0) = -0.19 \pm 0.17$$

$$A_{CP}(B^0 \to \eta' K^*(1430)^0) = 0.14 \pm 0.18$$

$$A_{CP}(B^0 \to \eta K^*(892)^0) = 0.19 \pm 0.05$$

$$A_{CP}(B^0 \to \eta K^*(1430)^0) = 0.06 \pm 0.13$$

$$A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19$$

$$A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.12$$

$$A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.09$$

$$A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.09$$

$$A_{CP}(B^0 \to \psi K^*(1430)^0) = -0.37 \pm 0.17$$

$$A_{CP}(B^0 \to \psi$$

$$A_{CP}(B^0 \to K^+\pi^-\pi^0 \text{ nonresonant}) = 0.10 \pm 0.18$$

$$A_{CP}(B^0 \to K^0\pi^+\pi^-) = -0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^+\pi^-) = -0.22 \pm 0.06$$

$$A_{CP}(B^0 \to (K\pi)^*_0^+\pi^-) = 0.09 \pm 0.07$$

$$A_{CP}(B^0 \to (K\pi)^*_0^0\pi^0) = -0.15 \pm 0.11$$

$$A_{CP}(B^0 \to (K^*0\pi^0) = -0.15 \pm 0.13$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^0) = -0.06 \pm 0.09$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^0) = -0.06 \pm 0.09$$

$$A_{CP}(B^0 \to K^*(892)^0K^+K^-) = 0.01 \pm 0.15$$

$$A_{CP}(B^0 \to K^*(892)^0K^+K^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^+K^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.4$$

$$A_{CP}(B^0 \to K^*(892)^0Y^-) = -0.002 \pm 0.015$$

$$A_{CP}(B^0 \to K^*(892)^0Y^-) = -0.002 \pm 0.015$$

$$A_{CP}(B^0 \to K^*(892)^0Y^-) = -0.002 \pm 0.015$$

$$A_{CP}(B^0 \to K^*(892)^0Y^-) = -0.08 \pm 0.15$$

$$A_{CP}(B^0 \to K^*(892)^0Y^-) = -0.08 \pm 0.16$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to F^-) = 0.05 \pm 0.10$$

$$A_{CP}(B^0 \to F^-) = 0.05 \pm 0.10$$

$$A_{CP}(B^0 \to F^-) = 0.04 \pm 0.07$$

$$A_{CP}(B^0 \to F^-) = 0.09 \pm 0.10$$

$$A_$$

$$\begin{array}{l} \mathbf{S_{D^+D^-}} & (\mathbf{B^0} \to \mathbf{D^+D^-}) = -0.99^{+0.17}_{-0.14} \\ C_{J/\psi(1S)\pi^0} & (\mathbf{B^0} \to J/\psi(1S)\pi^0) = -0.13 \pm 0.13 \\ \mathbf{S_{J/\psi(1S)\pi^0}} & (\mathbf{B^0} \to J/\psi(1S)\pi^0) = -0.94 \pm 0.29 \quad (S = 1.9) \\ C_{D_{CP}^{(*)}h^0} & (\mathbf{B^0} \to D_{CP}^{(*)}h^0) = -0.23 \pm 0.16 \\ \mathbf{S_{D_{CP}^{(*)}h^0}} & (\mathbf{B^0} \to D_{CP}^{(*)}h^0) = -0.56 \pm 0.24 \\ C_{K^0\pi^0} & (\mathbf{B^0} \to K^0\pi^0) = 0.00 \pm 0.13 \quad (S = 1.4) \\ \mathbf{S_{K^0\pi^0}} & (\mathbf{B^0} \to K^0\pi^0) = 0.58 \pm 0.17 \\ C_{\eta'(958)K_S^0} & (\mathbf{B^0} \to \eta'(958)K_S^0) = -0.04 \pm 0.20 \quad (S = 2.5) \\ \mathbf{S_{\eta'(958)K_S^0}} & (\mathbf{B^0} \to \eta'K^0) = 0.55 \pm 0.05 \\ \mathbf{S_{\eta'(958)K_S^0}} & (\mathbf{B^0} \to \eta'K^0) = 0.60 \pm 0.07 \\ C_{\eta'(800)} & (\mathbf{B^0} \to \eta'K^0) = 0.60 \pm 0.07 \\ C_{\psi K_S^0} & (\mathbf{B^0} \to \psi K_S^0) = 0.43 \pm 0.24 \quad (S = 1.6) \\ \mathbf{S_{\psi K_S^0}} & (\mathbf{B^0} \to \psi K_S^0) = 0.43 \pm 0.24 \\ C & (\mathbf{B^0} \to K_S^0\pi^0\pi^0) = 0.2 \pm 0.5 \\ \mathbf{S} & (\mathbf{B^0} \to K_S^0\pi^0\pi^0) = 0.7 \pm 0.7 \\ C_{\rho^0K_S^0} & (\mathbf{B^0} \to \rho^0K_S^0) = 0.04 \pm 0.20 \\ \mathbf{S_{\rho^0K_S^0}} & (\mathbf{B^0} \to \rho^0K_S^0) = 0.50 \pm 0.16 \\ \mathbf{S_{f_2K_S^0}} & (\mathbf{B^0} \to \rho^0K_S^0) = 0.50 \pm 0.16 \\ \mathbf{S_{f_2K_S^0}} & (\mathbf{B^0} \to f_0(980)K_S^0) = -0.5 \pm 0.5 \\ C_{f_2K_S^0} & (\mathbf{B^0} \to f_2(1270)K_S^0) = 0.3 \pm 0.4 \\ \mathbf{S_{f_2K_S^0}} & (\mathbf{B^0} \to f_2(1300)K_S^0) = 0.13 \pm 0.35 \\ \mathbf{S_{K^0\pi^+\pi^-}} & (\mathbf{B^0} \to K_S^0\pi^0\pi^0) = 0.2 \pm 0.5 \\ \mathbf{C_{K^0\pi^+\pi^-}} & (\mathbf{B^0} \to K_S^0\pi^0\pi^0) = 0.10 \pm 0.26 \\ C_{K_S^0K_S^0} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0.0 \pm 0.4 \quad (\mathbf{S} = 1.4) \\ \mathbf{S_{K^0S_S^0}} & (\mathbf{B^0} \to K_S^0K_S^0) = 0$$

$$\begin{split} & \mathbf{S}_{\phi \mathbf{K}_{\mathbf{S}}^{\mathbf{G}}} (\mathbf{B}^{\mathbf{O}} \to \phi \mathbf{K}_{\mathbf{S}}^{\mathbf{G}}) = 0.59 \pm 0.14 \\ & C_{K_S} \kappa_S \kappa_S (B^0 \to K_S \kappa_S \kappa_S) = -0.23 \pm 0.14 \\ & S_{K_S} \kappa_S \kappa_S (B^0 \to K_S \kappa_S \kappa_S) = -0.5 \pm 0.6 \quad (S = 3.0) \\ & C_{K_S^0 \pi^0} \gamma (B^0 \to K_S^0 \pi^0 \gamma) = 0.36 \pm 0.33 \\ & S_{K_S^0 \pi^0} \gamma (B^0 \to K_S^0 \pi^0 \gamma) = -0.8 \pm 0.6 \\ & C_{K_S^0 \pi^0} \gamma (B^0 \to K^*(892)^0 \gamma) = -0.04 \pm 0.16 \quad (S = 1.2) \\ & S_{K_S^0 \gamma} (B^0 \to K^*(892)^0 \gamma) = -0.15 \pm 0.22 \\ & C_{\eta \kappa^0 \gamma} (B^0 \to \eta \kappa^0 \gamma) = -0.3 \pm 0.4 \\ & S_{\eta \kappa^0 \gamma} (B^0 \to \eta \kappa^0 \gamma) = -0.2 \pm 0.5 \\ & C_{K_S^0 \gamma} (B^0 \to \kappa^0 \phi \gamma) = -0.3 \pm 0.6 \\ & S_{K_S^0 \gamma} (B^0 \to \kappa^0 \phi \gamma) = -0.3 \pm 0.6 \\ & S_{K_S^0 \gamma} (B^0 \to \kappa^0 \phi \gamma) = 0.7_{-1.1}^{+0.7} \\ & C(B^0 \to \kappa^0 \rho^0 \gamma) = -0.05 \pm 0.19 \\ & S(B^0 \to \kappa^0 \rho^0 \gamma) = -0.05 \pm 0.19 \\ & S(B^0 \to \kappa^0 \rho^0 \gamma) = -0.8 \pm 0.7 \\ & C_{\pi\pi} (B^0 \to \pi^+ \pi^-) = -0.31 \pm 0.05 \\ & S_{\pi\pi} (B^0 \to \pi^+ \pi^-) = -0.03 \pm 0.07 \quad (S = 1.2) \\ & S_{\rho\pi} (B^0 \to \rho^0 \gamma) = 0.43 \pm 0.24 \\ & C_{\rho\pi} (B^0 \to \rho^+ \pi^-) = 0.05 \pm 0.07 \\ & \Delta C_{\rho\pi} (B^0 \to \rho^+ \pi^-) = 0.05 \pm 0.07 \\ & \Delta C_{\rho\pi} (B^0 \to \rho^+ \pi^-) = 0.01 \pm 0.08 \\ & C_{\rho^0 \eta^0} (B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24 \\ & S_{\rho^0 \eta^0} (B^0 \to \rho^0 \pi^0) = -0.23 \pm 0.34 \\ & C_{a_1\pi} (B^0 \to a_1(1260)^+ \pi^-) = -0.05 \pm 0.11 \\ & S_{a_1\pi} (B^0 \to a_1(1260)^+ \pi^-) = -0.22 \pm 0.4 \quad (S = 3.2) \\ & \Delta C_{a_1\pi} (B^0 \to a_1(1260)^+ \pi^-) = -0.11 \pm 0.12 \\ & C(B^0 \to b_1^- \pi^+) = -1.04 \pm 0.24 \\ & C_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.2 \pm 0.9 \\ & S_{\rho\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.3 \pm 0.7 \\ & C_{\rho\rho} (B^0 \to \rho^0 \rho^0) = 0.3 \pm 0.7 \\ & C_{\rho\rho} (B^0 \to \rho^+ \rho^-) = -0.06 \pm 0.17 \\ & | \lambda | (B^0 \to J/\psi \kappa^* (892)^0) < 0.25, \text{CL} = 95\% \\ & \cos 2\beta (B^0 \to J/\psi \kappa^* (892)^0) < 0.25, \text{CL} = 95\% \\ & \cos 2\beta (B^0 \to J/\psi \kappa^* (892)^0) = 1.7_{-0.7}^{+0.7} (S = 1.8) \\ \end{aligned}$$

$$\begin{array}{l} (S_{+} + S_{-})/2 \; (B^{0} \rightarrow D^{*-}\pi^{+}) = -0.039 \pm 0.011 \\ (S_{-} - S_{+})/2 \; (B^{0} \rightarrow D^{*-}\pi^{+}) = -0.009 \pm 0.015 \\ (S_{+} + S_{-})/2 \; (B^{0} \rightarrow D^{-}\pi^{+}) = -0.046 \pm 0.023 \\ (S_{-} - S_{+})/2 \; (B^{0} \rightarrow D^{-}\pi^{+}) = -0.022 \pm 0.021 \\ (S_{+} + S_{-})/2 \; (B^{0} \rightarrow D^{-}\pi^{+}) = -0.024 \pm 0.032 \\ (S_{-} - S_{+})/2 \; (B^{0} \rightarrow D^{-}\rho^{+}) = -0.10 \pm 0.06 \\ C_{\eta_{c}} K_{S}^{0} \; (B^{0} \rightarrow \eta_{c} K_{S}^{0}) = 0.08 \pm 0.13 \\ \hline \textbf{S}_{\eta_{c}} K_{S}^{0} \; (B^{0} \rightarrow \eta_{c} K_{S}^{0}) = 0.93 \pm 0.17 \\ C_{c\overline{c}} K_{S}^{(*)0} \; (B^{0} \rightarrow c\overline{c}K^{(*)0}) = (0.5 \pm 1.7) \times 10^{-2} \\ \textbf{sin}(2\beta) = 0.682 \pm 0.019 \\ C_{J/\psi}(nS) K^{0} \; (B^{0} \rightarrow J/\psi(nS) K^{0}) = (0.5 \pm 2.0) \times 10^{-2} \\ \hline \textbf{S}_{J/\psi} K_{S}^{*0} \; (B^{0} \rightarrow J/\psi K_{S}^{*0}) = 0.03 \pm 0.10 \\ S_{J/\psi} K_{S}^{*0} \; (B^{0} \rightarrow J/\psi K_{S}^{*0}) = 0.03 \pm 0.10 \\ S_{J/\psi} K_{S}^{*0} \; (B^{0} \rightarrow J/\psi K_{S}^{*0}) = 0.03 \pm 0.10 \\ S_{J/\psi} K_{S}^{*0} \; (B^{0} \rightarrow \chi_{c0} K_{S}^{0}) = -0.7 \pm 0.5 \\ C_{\chi_{c0}} K_{S}^{0} \; (B^{0} \rightarrow \chi_{c0} K_{S}^{0}) = -0.7 \pm 0.5 \\ C_{\chi_{c1}} K_{S}^{0} \; (B^{0} \rightarrow \chi_{c1} K_{S}^{0}) = 0.63 \pm 0.10 \\ \sin(2\beta_{\text{eff}}) (B^{0} \rightarrow \kappa_{S}^{*1} K_{S}^{0}) = 0.63 \pm 0.10 \\ \sin(2\beta_{\text{eff}}) (B^{0} \rightarrow K_{S}^{*1} K_{S}^{0}) = 0.77^{+0.13}_{-0.12} \\ \sin(2\beta_{\text{eff}}) (B^{0} \rightarrow K_{S}^{*1} K_{S}^{0}) = 0.77^{+0.13}_{-0.12} \\ \sin(2\beta_{\text{eff}}) (B^{0} \rightarrow K_{S}^{*1} K_{S}^{-1} D_{(*)} h^{0}) = 0.45 \pm 0.28 \\ |\lambda| \; (B^{0} \rightarrow [K_{S}^{0} \pi^{+} \pi^{-}]_{D(*)} h^{0}) = 1.01 \pm 0.08 \\ |\sin(2\beta + \gamma)| > 0.40, \; \text{CL} = 90\% \\ 2 \; \beta + \gamma = (83 \pm 60)^{\circ} \\ \gamma (B^{0} \rightarrow D^{0} K^{*0}) = (162 \pm 60)^{\circ} \\ \alpha = (90 \pm 5)^{\circ} \\ \end{array}$$

 $\overline{B}{}^0$ modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES		Frac	Scale factor Fraction (Γ_i/Γ) Confidence leve			,	
							(1 / 1)
$\ell^+ u_\ell$ anything	[sss]	(10.33±	0.28) %	1		_
$e^+ \nu_e X_c$		(10.1 ± (0.4) %	1		_
$D\ell^+ u_\ell$ anything		(9.2 ± (0.8) %)		_
$D^-\ell^+ u_\ell$	[sss]	•	2.19±				2309
$D^- au^+ \overset{\circ}{ u_ au}$		(,			1909
$D^*(2010)^- \ell^+ u_{\ell}$	[sss]	(4.93±	,			2257
$D^*(2010)^- \tau^+ \nu_{\tau}$		•	1.84±				1837
$\overline{D}{}^0\pi^-\ell^+\nu_\ell$		(4.3 ± (,	_		2308
$D_0^*(2400)^- \ell^+ \nu_\ell, \ D_0^{*-} \rightarrow$		(3.0 ±	,		S=1.8	_
$\overline{D}{}^{0}\pi^{-}$		`		,			
$D_2^*(2460)^-\ell^+\nu_\ell, \ D_2^{*-} \rightarrow$		(1.21±	0.33) ×	10^{-3}	S=1.8	2065
2		`		,			
$\overline{{\cal D}}^{(*)} {}_{n} \pi^{-} \over {}_{\ell} \ell^{+} u_{\ell} (n \ \geq \ 1)$		(2.3 ±	0.5) %)		_
$\overline{D}^{*0}\pi^-\ell^+\overline{\nu_\ell}$		•	4.9 ± (,	_		2256
$D_1(2420)^{-}\tilde{\ell}^+\nu_{\ell},\ D_1^- \to$		(2.80±				_
$\overline{D}^{*0}\pi^{-}$		`		,			
$D_1'(2430)^- \ell^+ \nu_{\ell}, D_1'^- \rightarrow$		(3.1 ± (0.9)×	10^{-3}		_
$\overline{D}*0_{\pi}$		•		ŕ			
$D_2^*(2460)^-\ell^+\nu_\ell, \ D_2^{*-} \rightarrow$		(6.8 ±	1.2)×	10^{-4}		2065
$\overline{D}^{*0}\pi^{-}$		•		,			
$\rho^-\ell^+\overline{ u_\ell}$	[sss]	(2.94± (0.21) ×	10^{-4}		2583
$\pi^-\ell^+ u_\ell$	[sss]	(1.45±	0.05) ×	10^{-4}		2638

Inclusive modes

molasive modes			
(78 ± 8)) %		_
(8.1 ± 1.5) %		_
(47.4 ± 2.8)) %		_
< 3.9	%	CL=90%	_
$(~36.9~\pm~3.3$) %		_
($10.3 \begin{array}{c} + & 2.1 \\ - & 1.8 \end{array}$) %		-
< 2.6	%	CL=90%	_
< 3.1	%	CL=90%	_
$(5.0 + 2.1 \\ -1.5$) %		_
(95 \pm 5) %		_
(24.6 ± 3.1) %		_
(119 \pm 6) %		_
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$(8.1 \pm 1.5)\%$ $(47.4 \pm 2.8)\%$ $< 3.9 % CL=90\%$ $(36.9 \pm 3.3)\%$ $(10.3 + 2.1 / 1.8)\%$ $< 2.6 % CL=90\%$ $< 3.1 % CL=90\%$ $(5.0 + 2.1 / 1.5)\%$ $(95 \pm 5)\%$ $(24.6 \pm 3.1)\%$

D, D^* , or D_s modes

D , D^* , or D_s modes							
$D^-\pi^+$	($2.68\pm$	$0.13)\times10^{-3}$		2306		
$D^- \rho^+$	($1.3) \times 10^{-3}$		2235		
$D^- \mathcal{K}^0 \pi^+$	(4.9 ±	$0.9\)\times 10^{-4}$		2259		
$D^-K^*(892)^+$	($0.7) \times 10^{-4}$		2211		
$D^-\omega\pi^+$	($0.6\)\times 10^{-3}$		2204		
D^-K^+	($1.97\pm$	$0.21) \times 10^{-4}$		2279		
$D^ K^+$ π^+ π^-	(3.8 ±	$0.9) \times 10^{-4}$		2236		
$D^-K^+\overline{K}^0$	<	3.1	\times 10 ⁻⁴	CL=90%	2188		
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	(8.8 \pm	$1.9) \times 10^{-4}$		2070		
$\overline{D}{}^0\pi^+\pi^-$	(8.4 \pm	$0.9) \times 10^{-4}$		2301		
$D^*(2010)^-\pi^+$	($2.76\pm$	$0.13) \times 10^{-3}$		2255		
$\overline{D}{}^0{\mathcal K}^+{\mathcal K}^-$	($4.7~\pm$	$1.2) \times 10^{-5}$		2191		
$D^-\pi^+\pi^+\pi^-$	($6.4~\pm$	$0.7) \times 10^{-3}$		2287		
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	t ($3.9~\pm$	$1.9) \times 10^{-3}$		2287		
$D^-\pi^+ ho^0$	($1.1~\pm$	$1.0) \times 10^{-3}$		2206		
$D^- a_1(1260)^+$	($6.0~\pm$	$3.3) \times 10^{-3}$		2121		
$D^*(2010)^-\pi^+\pi^0$	($1.5~\pm$	0.5) %		2248		
$D^*(2010)^- ho^+$	($6.8~\pm$	$0.9) \times 10^{-3}$		2180		
$D^*(2010)^-K^+$	($2.14\pm$	$0.16) \times 10^{-4}$		2226		
$D^*(2010)^-K^0\pi^+$	($3.0~\pm$	$0.8) \times 10^{-4}$		2205		
$D^*(2010)^-K^*(892)^+$	($0.6) \times 10^{-4}$		2155		
$D^*(2010)^- K^+ \overline{K}^0$	<	4.7	\times 10 ⁻⁴	CL=90%	2131		
$D^*(2010)^- K^+ \overline{K}^*(892)^0$	($1.29\pm$	$0.33) \times 10^{-3}$		2007		
$D^*(2010)^-\pi^+\pi^+\pi^-$	($7.0~\pm$	$0.8) \times 10^{-3}$	S=1.3	2235		
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	- ($0.0~\pm$	$2.5) \times 10^{-3}$		2235		
resonant							
$D^*(2010)^-\pi^+\rho^0$	(3.2) \times 10 ⁻³		2150		
$D^*(2010)^- a_1(1260)^+$	($1.30\pm$	0.27) %		2061		

$\overline{D}_{1}(2420)^{0}\pi^{-}\pi^{+}, \ \overline{D}_{1}^{0} \rightarrow$	(1.4 ±	$0.4) \times 10^{-4}$		_
$D^{*-}\pi^+ \ D^*(2010)^- K^+\pi^-\pi^+$	(1 5 ⊥	$0.7) \times 10^{-4}$		2181
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$,		0.7) × 10		2218
$D^{*-}3\pi^{+}2\pi^{-}$	`		$0.27) \times 10^{-3}$		2195
$\overline{D}^*(2010)^- \omega \pi^+$,		$0.30) \times 10^{-3}$		2148
$D_1(2430)^0 \omega \times$	(1.6 $) \times 10^{-4}$		1992
$B(D_1(2430)^0 \to$	`		,		
$\frac{D^{*-}\pi^+)}{\overline{D}^{**-}\pi^+}$	[xxx] (2.1 ±	1.0) $\times 10^{-3}$		_
$D_1(2420)^-\pi^+ \times \ B(D_1^- \to$			$0.21 \\ 0.25) \times 10^{-4}$		_
$D^{-}\pi^{+}\pi^{-}$	(1.00_	0.25) ^ 10		
$D_1(2420)^-\pi^+\times B(D_1^-\to$	<	3.3	\times 10 ⁻⁵	CL=90%	_
$D^{*-}\pi^{+}\pi^{-}$)					
$\overline{D}_{2}^{*}(2460)^{-}\pi^{+}\times$	($2.15\pm$	$0.35) \times 10^{-4}$		2062
$B(D_2^*(2460)^- \to D^0\pi^-)$					
$\overline{D}_{0}^{*}(2400)^{-}\pi^{+}\times$	(6.0 ±	$3.0) \times 10^{-5}$		2090
$B(D_0^*(2400)^- \to D^0\pi^-)$					
$D_2^*(2460)^-\pi^+\times B((D_2^*)^-\to$	<	2.4	$\times 10^{-5}$	CL=90%	_
$D^{*-}\pi^{+}\pi^{-}$)					
$\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$	<	4.9	$\times 10^{-3}$	CL=90%	1975
$D^{\overline{0}}\overline{D}{}^{0}$	(1.4 ±	$0.7\)\times 10^{-5}$		1868
$D^{*0}\overline{D}^{0}$	<	2.9		CL=90%	1794
D-D+			$0.18) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}(CP$ -averaged)	($0.6) \times 10^{-4}$		_
$D^-D_s^+$	($0.8) \times 10^{-3}$		1812
$D^*(2010)^- D_s^+$	(1.1) \times 10 ⁻³		1735
$D^{-}D_{s}^{*+}$	(7.4 ±	$1.6) \times 10^{-3}$		1732
$D^*(2010)^- D_s^{*+}$	($1.77\pm$	0.14) %		1649
$D_{s0}(2317)^- K^+ \times$	(4.2 ±	$1.4) \times 10^{-5}$		2097
$B(D_{s0}(2317)^- \to D_s^- \pi^0)$					
$D_{s0}(2317)^{-}\pi^{+}\times$	<	2.5	$\times 10^{-5}$	CL=90%	2128
$B(D_{s0}(2317)^{-} \rightarrow D_{s}^{-}\pi^{0})$					
$D_{sJ}(2457)^- K^+ imes$	<	9.4	$\times 10^{-6}$	CL=90%	_
$B(D_{sJ}(2457)^- o \ D_s^- \pi^0)$					
$D_{sJ}(2457)^-\pi^+ imes$	<	4.0	$\times 10^{-6}$	CL=90%	_
$B(D_{sJ}(2457)^- o \ D_s^- \pi^0)$					
$D_{s}^{-}D_{s}^{+}$	<	3.6	$\times10^{-5}$	CL=90%	1759
$D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*-}D_{s}^{*+}$	<	1.3	$\times10^{-4}$	CL=90%	1674
$D_{s}^{\tilde{*}-}D_{s}^{\tilde{*}+}$	<	2.4	$\times10^{-4}$	CL=90%	1583

HTTP://PDG.LBL.GOV

Page 88

5+				
$D_s^+\pi^-$		$2.16\pm 0.26) \times 10^{-5}$		2270
$D_s^{*+}\pi^-$	($2.1 \pm 0.4 \times 10^{-5}$	S=1.4	2215
$D_{s}^{*} h$ $D_{s}^{*+} \pi^{-}$ $D_{s}^{+} \rho^{-}$ $D_{s}^{*+} \rho^{-}$ $D_{s}^{+} a_{0}^{-}$ $D_{s}^{*+} a_{0}^{-}$ $D_{s}^{+} a_{0}^{-}$	<	2.4×10^{-5}	CL=90%	2197
$D_s^{*+}\rho^-$	($4.1 \pm 1.3 \times 10^{-5}$		2138
$D_{s}^{+}a_{0}^{-}$	<	1.9×10^{-5}	CL=90%	_
$D_{c}^{*+} a_{0}^{-}$	<	3.6×10^{-5}	CL=90%	_
$D_s^+ a_1(1260)^-$	<	2.1×10^{-3}	CL=90%	2080
$D_s^{*+} a_1(1260)^-$	<	1.7×10^{-3}	CL=90%	2015
$D_s^+ a_2^-$	<	1.9×10^{-4}	CL=90%	_
$D_s^{s+2} - D_s^{-1} K^+$	<	2.0×10^{-4}	CL=90%	_
$D^{-}K^{+}$		$2.2 \pm 0.5) \times 10^{-5}$		2242
$D_s^{s-}K^+$		$2.19\pm\ 0.30)\times10^{-5}$		2185
$D_s^s K^*(892)^+$	($3.5 \pm 1.0 \times 10^{-5}$		2172
$D_s^{*-}K^*(892)^+$	`	$3.2 + 1.5 \times 10^{-5}$		2112
$D_s^-\pi^+K^0$	($1.10\pm 0.33) \times 10^{-4}$		2222
$D_s^{*-}\pi^+K^0$	<			2164
$D_{\epsilon}^{s}K^{+}\pi^{+}\pi^{-}$	($1.8 \pm 0.5) \times 10^{-4}$		2198
$D_{\varepsilon}^{s} \pi^{+} K^{*}(892)^{0}$	<	3.0×10^{-3}		2138
	<	1.6×10^{-3}		2076
$\frac{D_s^{*-}\pi^+K^*(892)^0}{\overline{D}^0K^0}$		$5.2 \pm 0.7) \times 10^{-5}$		2280
$\overline{D}{}^0K^+\pi^-$		$8.8 \pm 1.7 \times 10^{-5}$		2261
$\overline{D}^0 K^*(892)^0$	•	$4.2 \pm 0.6 \times 10^{-5}$		2213
$D_2^*(2460)^{-'}K^+ \times$	(1.8 ± 0.5) $\times 10^{-5}$		2029
$B(D_2^*(2460)^-\to \overline{D}{}^0\pi^-)$	•	,		
$\overline{D}^0 K^+ \pi^-$ non-resonant	<	3.7×10^{-5}	CL=90%	_
$[K^+K^-]_D K^*(892)^0$	($5.8 + 1.8 \times 10^{-5}$		_
$\overline{D}{}^0\pi^0$		$2.63\pm 0.14) \times 10^{-4}$		2308
$\frac{D}{D^0} \stackrel{n}{\rho^0}$		$3.2 \pm 0.5 \times 10^{-4}$		2237
$\frac{D^0}{D^0} f_2$	($1.2 \pm 0.4 \times 10^{-4}$		_
$\frac{D}{D}$ $\frac{D}{\eta}$	($2.36 \pm 0.32) \times 10^{-4}$		2274
$\overline{D}{}^0\eta'$		$1.38\pm 0.16) \times 10^{-4}$		2198
$\overline{D}{}^0\omega$	($2.53\pm 0.16) \times 10^{-4}$		2235
$D^0 \phi$	<	1.16×10^{-5}		2183
$D^0K^+\pi^-$	($5.3 \pm 3.2 \times 10^{-6}$		2261
$D^0 K^*(892)^0$	<		CL=90%	2213
$\overline{D}^{*0}\gamma$	<	2.5×10^{-5}	CL=90%	2258
$\overline{D}^*(2007)^0_0 \pi^0_0$	($2.2 \pm 0.6 \times 10^{-4}$		2256
$\overline{D}^*(2007)^0_0 \rho^0$	<		CL=90%	2182
$\overline{D}^*(2007)^0_0 \eta$		$2.3 \pm 0.6 \times 10^{-4}$		2220
$\overline{D}^*(2007)^0 \eta'$	($1.40\pm 0.22) \times 10^{-4}$		2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	($6.2 \pm 2.2 \times 10^{-4}$		2248

D*(000=)() (()					
$\overline{D}^*(2007)^0 K^0$			$1.2) \times 10^{-5}$		2227
$\overline{D}^*(2007)^0 K^*(892)^0$			$\times 10^{-5}$		2157
$D^*(2007)^0 K^*(892)^0$			$\times 10^{-5}$	CL=90%	2157
$D^*(2007)^0\pi^+\pi^+\pi^-\pi^-$	($0.5) \times 10^{-3}$		2219
$D^*(2010)^+D^*(2010)^-$	($0.6) \times 10^{-4}$		1711
$\overline{D}^*(2007)^0_{\ \ \omega}$	($1.1) \times 10^{-4}$		2180
$D^*(2010)^+D^-$	($1.5) \times 10^{-4}$		1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	<		$\times 10^{-5}$	CL=90%	1715
$D^{-}D^{0}K^{+}$	($1.07\pm$	$0.11) \times 10^{-3}$		1574
$D^-D^*(2007)^0K^+$	($3.5~\pm$	$0.4) \times 10^{-3}$		1478
$D^*(2010)^- D^0 K^+$	($2.47\pm$	$0.21) \times 10^{-3}$		1479
$D^*(2010)^- D^*(2007)^0 K^+$	($1.06\pm$	0.09) %		1366
$D^{-}D^{+}K^{0}$	($7.5~\pm$	$1.7) \times 10^{-4}$		1568
$D^*(2010)^- D^+ K^0 +$	($0.5) \times 10^{-3}$		1473
$D^-D^*(2010)^+K^0$					
$D^*(2010)^- D^*(2010)^+ K^0$	($8.1~\pm$	$0.7\)\times 10^{-3}$		1360
$\hat{D}^{*-}\hat{D_{s1}}(2536)^{+}\times$			$2.4) \times 10^{-4}$		1336
$B(D_{s1}(2536)^+ \to$	•		,		
$D^{*+}K^{0}$					
$\overline{D}{}^0 D^0 K^0$	(2.7 ±	$1.1) \times 10^{-4}$		1574
$\overline{D}{}^{0} D^{*} (2007)^{0} K^{0} +$	($0.5) \times 10^{-3}$		1478
$\overline{D}^*(2007)^0 D^0 K^0$	`		,		
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	(2.4 ±	$0.9) \times 10^{-3}$		1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(0.26) %		_
			ŕ		
		mode			
$\eta_c K^0$			1.2) \times 10 ⁻⁴		1751
$ \eta_c K^* (892)^0 $ $ \eta_c (2S) K^{*0} $	(
$n_{\bullet}(25)K^{*0}$			$0.9) \times 10^{-4}$		1646
16(20)11	<	3.9	$\times 10^{-4}$		1157
$h_c(1P) K^{*0}$	<	3.9 4	$\begin{array}{c} \times10^{-4} \\ \times10^{-4} \end{array}$	CL=90% CL=90%	1157 1253
$h_c(1P)K^{*0} \ J/\psi(1S)K^0$	< (3.9 4 8.73±	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$		1157 1253 1683
$egin{aligned} h_c(1P) K^{*0} \ J/\psi(1S) K^0 \ J/\psi(1S) K^+ \pi^- \end{aligned}$	< ((3.9 4 8.73± 1.2 ±	$ \times 10^{-4} $ $ \times 10^{-4} $ $ 0.32) \times 10^{-4} $ $ 0.6) \times 10^{-3} $		1157 1253
$h_c(1P) K^{*0} \ J/\psi(1S) K^0 \ J/\psi(1S) K^+ \pi^- \ J/\psi(1S) K^* (892)^0$	< ((3.9 4 $8.73\pm$ $1.2\pm$ $1.32\pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-3}$		1157 1253 1683
$h_c(1P)K^{*0} \ J/\psi(1S)K^0 \ J/\psi(1S)K^+\pi^- \ J/\psi(1S)K^*(892)^0 \ J/\psi(1S)\eta K_S^0$	< ((3.9 4 $8.73\pm$ $1.2\pm$ $1.32\pm$	$ \times 10^{-4} $ $ \times 10^{-4} $ $ 0.32) \times 10^{-4} $ $ 0.6) \times 10^{-3} $		1157 1253 1683 1652
$h_c(1P)K^{*0} \ J/\psi(1S)K^0 \ J/\psi(1S)K^+\pi^- \ J/\psi(1S)K^*(892)^0 \ J/\psi(1S)\eta K^0_S \ J/\psi(1S)\eta' K^0_S$	< ((3.9 4 $8.73\pm$ $1.2\pm$ $1.32\pm$ $8\pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-3}$ 0.06×10^{-5}	CL=90%	1157 1253 1683 1652 1571
$h_c(1P)K^{*0} \ J/\psi(1S)K^0 \ J/\psi(1S)K^+\pi^- \ J/\psi(1S)K^*(892)^0 \ J/\psi(1S)\eta K_S^0$	< (((((((((((((((((((3.9 4 $8.73 \pm 1.2 \pm 1.32 \pm 8 \pm 2.5$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-3}$ 0.06×10^{-5}	CL=90%	1157 1253 1683 1652 1571 1508
$h_c(1P)K^{*0} \ J/\psi(1S)K^0 \ J/\psi(1S)K^+\pi^- \ J/\psi(1S)K^*(892)^0 \ J/\psi(1S)\eta K_S^0 \ J/\psi(1S)\eta' K_S^0 \ J/\psi(1S)\phi K^0 \ J/\psi(1S)\omega K^0$	< (((((((((((((((((((3.9 4 $8.73\pm$ $1.2\pm$ $1.32\pm$ $8\pm$ 2.5 $9.4\pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-3}$ $4) \times 10^{-5}$ $\times 10^{-5}$	CL=90%	1157 1253 1683 1652 1571 1508
$h_c(1P)K^{*0} \ J/\psi(1S)K^0 \ J/\psi(1S)K^+\pi^- \ J/\psi(1S)K^*(892)^0 \ J/\psi(1S)\eta K_S^0 \ J/\psi(1S)\eta' K_S^0 \ J/\psi(1S)\phi K^0 \ J/\psi(1S)\omega K^0$	<pre></pre>	3.9 4 $8.73 \pm$ $1.2 \pm$ $1.32 \pm$ $8 \pm$ 2.5 $9.4 \pm$ $2.3 \pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-5}$ $\times 10^{-5}$ $2.6) \times 10^{-5}$ $0.4) \times 10^{-4}$	CL=90%	1157 1253 1683 1652 1571 1508 1271 1224
$egin{aligned} h_c(1P) K^{*0} \ J/\psi(1S) K^0 \ J/\psi(1S) K^+ \pi^- \ J/\psi(1S) K^*(892)^0 \ J/\psi(1S) \eta K^0_S \ J/\psi(1S) \eta' K^0_S \ J/\psi(1S) \phi K^0 \end{aligned}$	<pre></pre>	3.9 4 $8.73 \pm$ $1.2 \pm$ $1.32 \pm$ $8 \pm$ 2.5 $9.4 \pm$ $2.3 \pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-3}$ $4) \times 10^{-5}$ $\times 10^{-5}$ $2.6) \times 10^{-5}$	CL=90%	1157 1253 1683 1652 1571 1508 1271 1224 1386
$h_c(1P)K^{*0} \ J/\psi(1S)K^0 \ J/\psi(1S)K^+\pi^- \ J/\psi(1S)K^*(892)^0 \ J/\psi(1S)\eta K_S^0 \ J/\psi(1S)\eta' K_S^0 \ J/\psi(1S)\phi K^0 \ J/\psi(1S)\omega K^0 \ X(3872)K^0 imes B(X o J/\psi\omega)$	<pre></pre>	3.9 4 $8.73 \pm$ $1.2 \pm$ $1.32 \pm$ $8 \pm$ 2.5 $9.4 \pm$ $2.3 \pm$ $6.0 \pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-5}$ $\times 10^{-5}$ $0.4) \times 10^{-5}$ $0.4) \times 10^{-4}$ $0.4) \times 10^{-6}$	CL=90%	1157 1253 1683 1652 1571 1508 1271 1224 1386
$h_c(1P) K^{*0}$ $J/\psi(1S) K^0$ $J/\psi(1S) K^+\pi^ J/\psi(1S) K^*(892)^0$ $J/\psi(1S) \eta K_S^0$ $J/\psi(1S) \eta' K_S^0$ $J/\psi(1S) \phi K^0$ $J/\psi(1S) \omega K^0$ $X(3872) K^0 \times B(X \rightarrow J/\psi\omega)$ $\chi_{c0}(2P), \chi_{c0} \rightarrow J/\psi\omega$	<pre></pre>	3.9 4 $8.73\pm$ $1.2\pm$ $1.32\pm$ $8\pm$ 2.5 $9.4\pm$ $2.3\pm$ $6.0\pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-5}$ $\times 10^{-5}$ $0.4) \times 10^{-4}$ $0.4) \times 10^{-6}$ $0.9) \times 10^{-5}$	CL=90%	1157 1253 1683 1652 1571 1508 1271 1224 1386 1140
$h_c(1P)K^{*0} \ J/\psi(1S)K^0 \ J/\psi(1S)K^+\pi^- \ J/\psi(1S)K^*(892)^0 \ J/\psi(1S)\eta K_S^0 \ J/\psi(1S)\eta' K_S^0 \ J/\psi(1S)\phi K^0 \ J/\psi(1S)\omega K^0 \ X(3872)K^0 imes B(X o J/\psi\omega)$	<pre></pre>	3.9 4 $8.73\pm$ $1.2\pm$ $1.32\pm$ $8\pm$ 2.5 $9.4\pm$ $2.3\pm$ $6.0\pm$ $2.1\pm$ $1.3\pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-5}$ $\times 10^{-5}$ $0.4) \times 10^{-5}$ $0.4) \times 10^{-4}$ $0.9) \times 10^{-5}$ $0.5) \times 10^{-3}$	CL=90%	1157 1253 1683 1652 1571 1508 1271 1224 1386 1140
$h_c(1P)K^{*0}$ $J/\psi(1S)K^0$ $J/\psi(1S)K^+\pi^ J/\psi(1S)K^*(892)^0$ $J/\psi(1S)\eta K_S^0$ $J/\psi(1S)\eta' K_S^0$ $J/\psi(1S)\phi K^0$ $J/\psi(1S)\omega K^0$ $X(3872)K^0 \times B(X \rightarrow J/\psi\omega)$ $\chi_{c0}(2P), \chi_{c0} \rightarrow J/\psi\omega$ $J/\psi(1S)\pi^0$	<pre></pre>	3.9 4 $8.73 \pm$ $1.2 \pm$ $1.32 \pm$ $8 \pm$ 2.5 $9.4 \pm$ $2.3 \pm$ $6.0 \pm$ $2.1 \pm$ $1.3 \pm$ $1.76 \pm$	$\begin{array}{c} \times 10^{-4} \\ \times 10^{-4} \\ 0.32) \times 10^{-4} \\ 0.6) \times 10^{-3} \\ 0.06) \times 10^{-5} \\ \times 10^{-5} \\ 2.6) \times 10^{-5} \\ 0.4) \times 10^{-4} \\ 3.2) \times 10^{-6} \\ \\ 0.9) \times 10^{-5} \\ 0.5) \times 10^{-3} \\ 0.16) \times 10^{-5} \\ \end{array}$	CL=90% CL=90%	1157 1253 1683 1652 1571 1508 1271 1224 1386 1140 1102 1390 1728
$h_c(1P)K^{*0}$ $J/\psi(1S)K^0$ $J/\psi(1S)K^+\pi^ J/\psi(1S)K^*(892)^0$ $J/\psi(1S)\eta K_S^0$ $J/\psi(1S)\eta' K_S^0$ $J/\psi(1S)\phi K^0$ $J/\psi(1S)\omega K^0$ $X(3872)K^0 \times B(X \rightarrow J/\psi\omega)$ $\chi_{c0}(2P), \chi_{c0} \rightarrow J/\psi\omega$ $J/\psi(1S)K_S^0$	<pre></pre>	3.9 4 $8.73\pm$ $1.2\pm$ $1.32\pm$ $8\pm$ 2.5 $9.4\pm$ $2.3\pm$ $6.0\pm$ $2.1\pm$ $1.76\pm$ $1.23\pm$	$\times 10^{-4}$ $\times 10^{-4}$ $0.32) \times 10^{-4}$ $0.6) \times 10^{-3}$ $0.06) \times 10^{-5}$ $\times 10^{-5}$ $0.4) \times 10^{-5}$ $0.4) \times 10^{-4}$ $0.9) \times 10^{-5}$ $0.5) \times 10^{-3}$	CL=90% CL=90%	1157 1253 1683 1652 1571 1508 1271 1224 1386 1140 1102 1390

			_		
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<	1.2	$\times 10^{-5}$	CL=90%	1716
$J/\psi(1S) f_0(500), f_0 \rightarrow \pi\pi$	($6.5 \begin{array}{c} + & 2.6 \\ - & 1.1 \end{array}$	$(5) \times 10^{-6}$		_
$J/\psi(1S) f_2$	(4.2 ± 0.7	$() \times 10^{-6}$		_
$J/\psi(1S)\rho^{0}$	(1612
$J/\psi(1S)f_0(980), f_0 \rightarrow$	<		$\times 10^{-6}$	CL=90%	_
$\pi^+\pi^-$					
$J/\psi(1S) ho(1450)^0$, $ ho^0$ $ ightarrow$	(2.1 + 2.5	$(2) \times 10^{-6}$		_
$\pi\pi$		0.1			
$J/\psi(1S)\omega$		2.3 ± 0.6			1609
$J/\psi(1S)K^{+}K^{-}$		2.6 ± 0.4			1533
$J/\psi(1S)a_0(980),\;\;a_0 ightarrow K^+K^-$	(4.7 ± 3.4	\) × 10 ⁻⁷		_
$J/\psi(1S)\phi$	<	1.9	$\times 10^{-7}$	CL=90%	1520
$J/\psi(1S)\eta'(958)$		7.4			1546
$J/\psi(1S)K^{0}\pi^{+}\pi^{-}$		1.0 ± 0.4			1611
$J/\psi(1S)K^0\rho^0$	(5.4 ± 3.0	$) \times 10^{-4}$		1390
$J/\psi(1\dot{S})\dot{K}^*(892)^+\pi^-$	($) \times 10^{-4}$		1514
$J/\psi(1S)K^*(892)^0\pi^+\pi^-$	(6.6 ± 2.2	,		1447
$X(3872)^{-}K^{+}$	<		× 10 ⁻⁴	CL=90%	_
$X(3872)^{-}K^{+}\times$	[yyy] <	4.2			_
$B(X(3872)^- \rightarrow$	[333]				
$J/\psi(1S)\pi^{-}\pi^{0}$					
$X(3872)K^0 \times B(X \rightarrow$	(4.3 ± 1.3	$3) \times 10^{-6}$		1140
$J/\psi\pi^+\pi^-)$	`		,		
$X(3872)K^0 \times B(X \rightarrow J/\psi \gamma)$	<	2.4	$\times 10^{-6}$	CL=90%	1140
$X(3872)K^*(892)^0 \times B(X \to X)$	<	2.8	$\times 10^{-6}$	CL=90%	940
$J/\psi\gamma$)					
$X(3872)K^0 \times B(X \rightarrow$	<	6.62	$\times 10^{-6}$	CL=90%	1140
$\psi(2S)\gamma)$					
$X(3872) K^*(892)^0 \times B(X \to X)$	<	4.4	$\times 10^{-6}$	CL=90%	940
$\psi(2S)\gamma)$					
$X(3872)K^0 \times B(X \rightarrow$	(1.7 ± 0.8	$3) \times 10^{-4}$		1140
$D^0 \overline{D}{}^0 \pi^0)$					
$X(3872)K^0 \times B(X \rightarrow \overline{D}^{*0}D^0)$	(1.2 ± 0.4	$\times 10^{-4}$		1140
$X(4430)^{\pm} K^{\mp} \times B(X^{\pm} \rightarrow$	(6.0 + 3.0	$) \times 10^{-5}$		575
$\psi(2S)\pi^{\pm})$		2.7			
$X(4430)^{\pm} K^{\mp} \times B(X^{\pm} \rightarrow$	<	4	$\times 10^{-6}$	CL=95%	575
$J/\psi \pi^\pm)$					
$J/\psi(1S) \rho \overline{ ho}$	<	5.2	$\times 10^{-7}$	CL=90%	862
$J/\psi(1S)\gamma$	<	1.6		CL=90%	1731
$J/\psi(1S)\overline{D}{}^0$	<	1.3	$\times 10^{-5}$	CL=90%	877
$\psi(2S)K^0$	(6.2 ± 0.5			1283
$\psi(3770)K^0 \times B(\psi \to \overline{D}{}^0D^0)$	<	1.23	$\times 10^{-4}$	CL=90%	1217

ψ (3770) $K^0 \times B(\psi \rightarrow D^-D^+)$	<	1.88	\times 10 ⁻⁴	CL=90%	1217
$\psi(2S)\pi^+\pi^-$	($2.3\ \pm$	$0.4) \times 10^{-5}$		1331
$\psi(2S)K^+\pi^-$	($5.8~\pm$	$0.4) \times 10^{-4}$		1238
$\psi(2S) K^*(892)^0$	($6.0~\pm$	$0.4) \times 10^{-4}$	S=1.1	1116
$\chi_{c0} K^0$	($1.47\pm$	$0.27) \times 10^{-4}$		1477
$\chi_{c0} K_{c}^{*}(892)^{0}$	($1.7~\pm$	$0.4) \times 10^{-4}$		1341
$\chi_{c2}K^0$	<	1.5	$\times 10^{-5}$	CL=90%	1378
$\chi_{c2} K^* (892)^0$	($5.0 \pm$	$1.2) \times 10^{-5}$	S=1.1	1228
$\chi_{c1}\pi^0$	($1.12\pm$	$0.28) \times 10^{-5}$		1468
$\chi_{c1} K^0$	($3.93\pm$	$0.27) \times 10^{-4}$		1411
$\chi_{c1} K^- \pi^+$	($3.8~\pm$	$0.4) \times 10^{-4}$		1371
$\chi_{c1} K^* (892)^0$	($2.42\pm$	$0.21) \times 10^{-4}$	S=1.3	1265
X (4051) $^+$ $K^ imes$ B(X^+ $ ightarrow$	(3.0 +	$^{4.0}_{1.8} \) \times 10^{-5}$		_
$X_{c1}\pi^{+}$) $X(4248)^{+}K^{-}\times B(X^{+}\rightarrow \chi_{c1}\pi^{+})$	(4.0 +2	$^{20.0}_{1.0}$) × $^{10}^{-5}$		_

K or K* modes

	/\ O /\	iloues			
$K^+\pi^-$	($1.96\pm$	$0.05) \times 10^{-5}$		2615
$K^0\pi^0$	(9.9 \pm	$0.5) \times 10^{-6}$		2615
$\eta' K^0$	($6.6~\pm$	$0.4) \times 10^{-5}$	S=1.4	2528
$\eta' K^*(892)^0$	($3.1~\pm$	$0.9) \times 10^{-6}$		2472
$\eta' K_0^* (1430)^0$	($6.3~\pm$	$1.6) \times 10^{-6}$		2346
$\eta' K_2^* (1430)^0$	($1.37\pm$	$0.32) \times 10^{-5}$		2346
ηK^0	(1.23 +	$^{0.27}_{0.24})\times 10^{-6}$		2587
$\eta K^*(892)^0$	($1.59\pm$	$0.10) \times 10^{-5}$		2534
$\eta K_0^* (1430)^0$	($1.10\pm$	$0.22) \times 10^{-5}$		2415
$\eta K_2^*(1430)^0$	(9.6 ±	$2.1) \times 10^{-6}$		2414
$\omega K^{\bar{0}}$	(5.0 ±	$0.6) \times 10^{-6}$		2557
$a_0(980)^0 {\cal K}^0 imes {\sf B}(a_0(980)^0 ightarrow $	<	7.8	× 10 ⁻⁶	CL=90%	_
$b_1^0 {\mathsf K}^0 imes {\mathsf B}(b_1^0 o \ \omega \pi^0)$	<	7.8	$\times10^{-6}$	CL=90%	_
$a_0^-(980)^\pmK^{\mp} imesB(a_0(980)^\pm-\eta\pi^\pm)$	→ <	1.9	× 10 ⁻⁶	CL=90%	_
$b_1^- \overset{\cdot}{K}^+ \overset{\cdot}{ imes} B(b_1^- o \omega \pi^-)$	(7.4 ±	$1.4) \times 10^{-6}$		_
$b_1^{\dagger} K^{*0} \times B(b_1^{\dagger} \rightarrow \omega \pi^0)$	<	8.0	× 10 ⁻⁶	CL=90%	_
$b_1^- K^{*+} \times B(b_1^- \rightarrow \omega \pi^-)$	<	5.0		CL=90%	_
$a_0(1450)^{\pm} K^{\mp} \times$	<	3.1		CL=90%	_
$B(a_0(1450)^\pm\to~\eta\pi^\pm)$		0.1	/\ _ 5	0_ 00/0	
$K_S^0 X^0$ (Familon)	<	5.3	$\times10^{-5}$	CL=90%	_
$\omega K^*(892)^0$	($0.5) \times 10^{-6}$		2503
$\omega(K\pi)_0^{*0}$	($0.25) \times 10^{-5}$		_
` '/0	(_	,		

$\omega K_0^* (1430)^0$	($1.60\pm$	$0.34) \times 10^{-5}$		2380
$\omega K_2^*(1430)^0$			$0.23) \times 10^{-5}$		2380
$\omega K^+\pi^-$ nonresonant	(5.1 ±	$1.0) \times 10^{-6}$		2542
$K^+\pi^-\pi^0$			$0.32) \times 10^{-5}$		2609
$K^+ ho^-$			$0.9) \times 10^{-6}$		2559
$K^{+}\rho(1450)^{-}$			$1.2) \times 10^{-6}$		_
$K^{+} \rho(1700)^{-}$	(7) $\times 10^{-7}$		_
$(\mathit{K}^{+}\pi^{-}\pi^{0})$ non-resonant	($2.8~\pm$	$0.6\)\times 10^{-6}$		_
$(K\pi)_0^{*+}\pi^- \times B((K\pi)_0^{*+} \to$	($0.5) \times 10^{-5}$		_
$\mathcal{K}^+\pi^0)$					
$(K\pi)_0^{*0}\pi^0 \times B((K\pi)_0^{*0} \to$	($8.6~\pm$	$1.7) \times 10^{-6}$		_
$\mathcal{K}^+\pi^-)$					
$K_2^*(1430)^{0'}\pi^0$	<	4.0	$\times 10^{-6}$	CL=90%	2445
$K^{*}(1680)^{0}\pi^{0}$	<	7.5	\times 10 ⁻⁶	CL=90%	2358
$K_{\cdot}^{*0}\pi^{0}$			$1.6) \times 10^{-6}$		_
$\kappa^0 \hat{\pi^+} \pi^-$			0.8×10^{-5}	S=1.2	2609
$K^0\pi^+\pi^-$ non-resonant			$0.40 \\ 0.26) \times 10^{-5}$	S=2.1	_
$K^0 \rho^0$			0.20° 0.6) $\times 10^{-6}$		2558
$K^*(892)^+\pi^-$			0.8×10^{-6}		2563
$K_0^*(1430)^+\pi^-$			0.0°) × 10^{-5}	S=2.0	_
$K_{*}^{*+}\pi^{-}$			1.6) \times 10 ⁻⁶	0 =.0	_
$K^*(1410)^+\pi^- \times$	(× 10 ⁻⁶	CI -00%	_
$B(K^*(1410)^+ \to K^0 \pi^+)$		5.0	× 10	CL—9070	
$f_0(980) K^0 \times B(f_0(980) \rightarrow$		7 O +	$0.9) \times 10^{-6}$		2522
$\pi^{+}\pi^{-}$)	(7.0 ±	0.9) × 10		2322
,	,	a = +	1.3 \ 10=6		2.450
$f_2(1270)K^0$			$\begin{array}{c} 1.3 \\ 1.2 \end{array}) \times 10^{-6}$		2459
$f_{\chi}(1300) K^0 \times B(f_{\chi} \rightarrow$	(1.8 ±	$0.7) \times 10^{-6}$		_
$\pi^{+}\pi^{-}$)	,		6		
$K^*(892)^0 \pi^0$			$0.6) \times 10^{-6}$	GL 000/	2563
$K_2^*(1430)^+\pi^-$		6		CL=90%	2445
$K^*(1680)^+\pi^-$		1.0		CL=90%	2358
$K^{+}\pi^{-}\pi^{+}\pi^{-}$			× 10 ⁻⁴	CL=90%	2600
$ ho^0$ K ⁺ π^-			$0.7) \times 10^{-6}$		2543
$f_0(980) K^+ \pi^-, f_0 \to \pi \pi$			$\begin{array}{c} 0.5 \\ 0.6 \end{array}) \times 10^{-6}$		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant			× 10 ⁻⁶	CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$			$0.5) \times 10^{-5}$		2557
$K^*(892)^0 ho^0$	(3.9 ±	1.3) \times 10 ⁻⁶	S=1.9	2504
$K^*(892)^0 f_0(980), f_0 \rightarrow \pi \tau$	τ (3.9 +	$^{2.1}_{1.8}$) × 10 ⁻⁶	S=3.9	2466
$K_1(1270)^+\pi^-$	<	3.0	$\times 10^{-5}$	CL=90%	2484
$K_1(1400)^+\pi^-$		2.7		CL=90%	2451
$a_1(1260)^-K^+$	[ccaa] ($1.6~\pm$	$0.4) \times 10^{-5}$		2471

V*(000)+	,	1 00 0 06)	10-5		0504
$K^*(892)^+ \rho^-$		1.03 ± 0.26)	_		2504
$K_0^*(1430)^+\rho^-$	(,			
$K_1(1400)^0 \rho^0$	<			CL=90%	2388
$K_0^*(1430)^0 \rho^0$	(,	_		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($2.7 ~\pm~ 0.9~)$			_
$K_2^*(1430)^0 f_0(980), f_0 \rightarrow \pi\pi$	(8.6 ± 2.0)	$\times 10^{-6}$		_
$K^{+}K^{-}$	(1.3 ± 0.5)	$\times10^{-7}$		2593
$K^0\overline{K}^0$	(1.21± 0.16)			2592
$K^0K^-\pi^+$	(7.3 ± 1.1		S=1.2	2578
$\overline{K}^{*0}K^0 + K^{*0}\overline{K}^0$	<	1.9			_
$K^+K^-\pi^0$	(2.2 ± 0.6)	_		2579
$K_{S}^{0}K_{S}^{0}\pi^{0}$	<			CL=90%	2578
$K_S^{\vec{0}}K_S^{\vec{0}}\eta$	<	1.0			2515
$K_S^0 K_S^0 \eta'$	<				2452
$K_0^0 K_1^+ K_1^-$					
$K^0\phi$		$2.63\pm 0.15)$ 7.3 ± 0.7)		S=1.3	2522
,	`	,			2516
$f_0(980) K^0$, $f_0 \to K^+ K^-$	($7.0 \begin{array}{c} + & 3.5 \\ - & 3.0 \end{array}$	× 10 ⁻⁶		_
$f_0(1500)K^0$	($1.3 \ ^{+}_{-} \ 0.7_{0.5}$)	\times 10 ⁻⁵		2398
$f_2'(1525)^0 K^0$	(3 + 5)	$\times 10^{-7}$		_
$f_0(1710) K^0, \;\; f_0 \to \; K^+ K^-$	(4.4 ± 0.9)	\times 10 ⁻⁶		_
$K^{0}K^{+}K^{-}$ nonresonant	•	3.3 ± 1.0)			2522
$K_S^0 K_S^0 K_S^0$		6.0 ± 0.5		S=1.1	2521
$f_0(980)K^0$, $f_0 \to K_S^0 K_S^0$		2.7 ± 1.8)			_
$f_0(1710)K^0, f_0 \rightarrow K^0_S K^0_S$		$5.0 + 5.0 \\ - 26$			_
		2.0			
$f_0(2010)K^0, f_0 \rightarrow K^0_S K^0_S$	(,			
$K_S^0 K_S^0 K_S^0$ nonresonant	(1.33± 0.31)			2521
$K_S^0 K_S^0 K_L^0$	<	1.6	× 10 ⁻⁵	CL=90%	2521
$K^*(892)^0K^+K^-$	(2.75 ± 0.26)	_		2467
$K^*(892)^0 \phi$	($1.00 \pm 0.05)$			2460
$K^+K^-\pi^+\pi^-$ nonresonant	<	7.17	\times 10 ⁻⁵	CL=90%	2559
$K^*(892)^0 K^- \pi^+$	($4.5~\pm~1.3~)$	$\times 10^{-6}$		2524
$K^*(892)^0\overline{K}^*(892)^0$	(8 ± 5)	$\times 10^{-7}$	S=2.2	2485
$K^+K^+\pi^-\pi^-$ nonresonant	<	6.0	$\times10^{-6}$	CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<	2.2	$\times 10^{-6}$	CL=90%	2524
$K^*(892)^0 K^*(892)^0$	<	2	$\times10^{-7}$	CL=90%	2485
K*(892)+K*(892)-	<	2.0	\times 10 ⁻⁶	CL=90%	2485
$K_1(1400)^0 \phi$	<	5.0	$\times 10^{-3}$	CL=90%	2339
$\phi(K\pi)^{*0}$	(4.3 ± 0.4)	_		_
$\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15)$ (ddaa)	`	•		CL=90%	_
$K_0^*(1430)^0 K^- \pi^+$				CL=90%	2403
V0(1420) V V	<	3.18	× 10 °	CL=90%	2403

o _					
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3		CL=90%	2360
$K_0^*(1430)^0 \overline{K}_0^*(1430)^0$	<	8.4	\times 10 ⁻⁶	CL=90%	2222
$K_0^*(1430)^0 \phi$	($3.9~\pm$	$0.8) \times 10^{-6}$		2333
$K_0^*(1430)^0 K^*(892)^0$	<	1.7	\times 10 ⁻⁶	CL=90%	2360
$K_0^*(1430)^0 K_0^*(1430)^0$	<	4.7	$\times 10^{-6}$	CL=90%	2222
$K^*(1680)^0 \phi$	<	3.5	$\times 10^{-6}$	CL=90%	2238
$K^*(1780)^0 \phi$	<	2.7	\times 10 ⁻⁶	CL=90%	_
$K^*(2045)^0 \phi$	<	1.53	$\times10^{-5}$	CL=90%	_
$K_2^*(1430)^0 \rho^0$	<	1.1	$\times 10^{-3}$	CL=90%	2381
$K_2^{-}(1430)^0 \phi$	(6.8 ±	$0.9\)\times 10^{-6}$	S=1.2	2333
$\kappa^{ar{0}}\phi\phi$	($0.9) \times 10^{-6}$		2305
$\eta' \eta' K^0$	<	3.1	$\times 10^{-5}$	CL=90%	2337
$\eta K^0 \gamma$	($1.8) \times 10^{-6}$		2587
$\eta' K^0 \gamma$	<	6.4	$\times 10^{-6}$	CL=90%	2528
$\mathcal{K}^0\phi\gamma$	($2.7~\pm$	$0.7) \times 10^{-6}$		2516
$K^+\pi^-\gamma$	($4.6~\pm$	$1.4) \times 10^{-6}$		2615
$K^*(892)^0 \gamma$	($0.15) \times 10^{-5}$		2564
$K^*(1410)\gamma$	<	1.3	$\times 10^{-4}$		2451
$K^+\pi^-\gamma$ nonresonant	<	2.6		CL=90%	2615
	eaa] <	2.26	$\times 10^{-8}$	CL=90%	_
$\mu^+\mu^-)$			F		
$K^0\pi^+\pi^-\gamma$	($0.22) \times 10^{-5}$		2609
$K^{+}\pi^{-}\pi^{0}\gamma$	($0.4) \times 10^{-5}$	7. 7.0 /	2609
$K_1(1270)^0 \gamma$	<		$\times 10^{-5}$		2486
$K_1(1400)^0 \gamma$	<	1.2	_	CL=90%	2453
$K_2^*(1430)^0 \gamma$	($0.24) \times 10^{-5}$	7. 7.0 /	2447
$K^*(1680)^0 \gamma$	<		$\times 10^{-3}$		2361
$K_3^*(1780)^0 \gamma$	<		$\times 10^{-5}$		2341
$K_4^*(2045)^0 \gamma$	<	4.3	× 10 ⁻³	CL=90%	2244
Light unfl	avored r	neson	modes		
$\rho^0 \gamma$			1.5) \times 10 ⁻⁷		2583
$ ho^0 X(214) imes B(X o \mu^+ \mu^-)$ [e	eaa] <	1.73	× 10 ⁻⁸	CL=90%	_
$\omega\gamma$	(4.4 +	$^{1.8}_{1.6}$) $ imes$ 10 ⁻⁷		2582
$\phi \gamma$	<	8.5	\times 10 ⁻⁷	CL=90%	2541
$\pi^+\pi^-$			$0.19) \times 10^{-6}$		2636
$\pi^{0}\pi^{0}$			$0.22) \times 10^{-6}$		2636
$\eta\pi^0$	<	1.5		CL=90%	2610
$\eta\eta$		1.0		CL=90%	2582
$\eta'\pi^0$	($1.2~\pm$	$0.6) \times 10^{-6}$		2551
$\eta'_{\cdot}\eta'_{\cdot}$	<	1.7	_	CL=90%	2460
$\eta'\eta$	<			CL=90%	2523
$\eta' \rho^0$	<	1.3	\times 10 ⁻⁶	CL=90%	2492

$\eta'f_0(980)\! imesB(f_0(980) ightarrow \ \pi^+\pi^-)$		<	9	× 10 ⁻⁷	CL=90%	2454
$\eta \rho^0$		<	1.5	× 10 ⁻⁶	CL=90%	2553
$\eta f_0(980) \times B(f_0(980) \to$		<	4		CL=90%	2516
$\pi^+\pi^-)$						
$\omega\eta$		($9.4 + 4.0 \\ - 3.1$			2552
$\omega\eta'$		($1.0 ^{+}_{-} 0.5 \\ - 0.4$	$) \times 10^{-6}$		2491
ωho^0		<			CL=90%	2522
$\omega f_0(980) \times B(f_0(980) \to \pi^+\pi^-)$		<	1.5		CL=90%	2485
$\omega\omega$		($1.2\ \pm\ 0.4$	$) \times 10^{-6}$		2521
$\phi\pi^0$		<	1.5	\times 10 ⁻⁷	CL=90%	2540
$\phi\eta$		<	5	$\times 10^{-7}$	CL=90%	2511
$\phi \eta'_{\perp}$		<	5	$\times 10^{-7}$	CL=90%	2448
$\phi ho^{f 0}$		<	3.3	$\times 10^{-7}$	CL=90%	2480
$\phi f_0(980) \times B(f_0 \to \pi^+\pi^-)$		<	3.8	\times 10 ⁻⁷	CL=90%	2441
$\phi \omega$		<	7		CL=90%	2479
$\phi\phi$		<	2		CL=90%	2435
$a_0(980)^{\pm}\pi^{\mp} \times B(a_0(980)^{\pm} ightarrow \eta \pi^{\pm})$		<	3.1	× 10 ⁻⁶	CL=90%	_
$a_0(1450)^{\pm} \pi^{\mp} \times B(a_0(1450)^{\pm} \to \eta \pi^{\pm})$		<	2.3	× 10 ⁻⁶	CL=90%	_
$\pi^{+}\pi^{-}\pi^{0}$		<	7.2	× 10 ⁻⁴	CL=90%	2631
$\rho^0 \pi^0$		(2.0 ± 0.5		CL-3070	2581
$\rho^{\mp}\pi^{\pm}$	[gg]	•	2.30± 0.23	_		2581
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	[00]	<	1.93		CL=90%	2621
$\rho^0 \pi^+ \pi^-$		<	8.8			2575
ρ^0 ρ^0			7.3 ± 2.8			2523
$f_0(980)\pi^+\pi^-$		<			CL=90%	2539
$\rho^{0}f_{0}(980) \times B(f_{0}(980) \rightarrow$		<	3			2486
$\pi^+\pi^-)$						
$f_0(980) f_0(980) imes \ {\sf B}^2(f_0(980) ightarrow \ \pi^+ \pi^-)$		<	1	× 10 ⁻⁷	CL=90%	2447
$f_0(980) f_0(980) \times B(f_0 \rightarrow \pi^+ \pi^-) \times B(f_0 \rightarrow K^+ K^-)$		<	2.3	\times 10 ⁻⁷	CL=90%	2447
$a_1(1260)^{\mp}\pi^{\pm}$	[سما	(2.6 ± 0.5) v 10-5	S_1 0	2494
$a_1(1200)^{+}\pi$ $a_2(1320)^{\mp}\pi^{\pm}$			6.3			2494
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	[88]		3.1	× 10	CL=90%	2622
$\rho^+\rho^-$			2.42± 0.31		CL—90/0	2523
$a_1(1260)^0\pi^0$					CL=90%	2523 2495
$\omega \pi^0$			5		CL=90%	2580
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$		<	9.0		CL=90%	2609
$a_1(1260)^+ \rho^-$		<	6.1		CL=90%	2433
$a_1(1200) \rho$			0.1	V 10	CL-90/0	∠ 4 33

$a_1(1260)^0 \rho^0$	<	2.4	$\times10^{-3}$	CL=90%	2433
$b_1^{\mp}\pi^{\pm}\! imesB(b_1^{\mp} o\omega\pi^{\mp})$	(1.09± 0.15)	$\times 10^{-5}$		_
$b_1^0\pi^{ar{0}} imes B(b_1^0 o\omega\pi^0)$	<	1.9	$\times10^{-6}$	CL=90%	_
$b_1^- ho^+ imes B(b_1^- o \ \omega \pi^-)$	<	1.4	$\times 10^{-6}$	CL=90%	_
1' \ 1 '	<	3.4	\times 10 ⁻⁶	CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	<	3.0	$\times 10^{-3}$	CL=90%	2592
$a_1(1260)^+a_1(1260)^- imes$	(1.18± 0.31)	$\times 10^{-5}$		2336
$B^2(a_1^+ \to 2\pi^+\pi^-)$					
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	<	1.1	%	CL=90%	2572

Baryon modes

	_				
ρ p	($1.5 \begin{array}{c} + & 0.0 \\ - & 0.0 \end{array}$	$^{7}_{.5}$) × 10 ⁻⁸		2467
$ ho \overline{ ho} \pi^+ \pi^-$	<	2.5	$\times 10^{-4}$	CL=90%	2406
$p\overline{p}K^0$	(2.66± 0.	$.32) \times 10^{-6}$		2347
$\Theta(1540)^+\overline{p},~\Theta^+ o~pK_S^0$	$[\mathit{ffaa}] <$	5	$\times 10^{-8}$	CL=90%	2318
$f_J(2220)K^0$, $f_J o p\overline{p}$	<	4.5	$\times 10^{-7}$	CL=90%	2135
$p \overline{p} K^* (892)^0$	(1.24^{+}_{-} 0.	$(28) \times 10^{-6}$		2216
$f_J(2220)K_0^*,\;\;f_J o\;p\overline{p}$	<	1.5	$\times 10^{-7}$	CL=90%	_
$p\overline{\Lambda}\pi^-$	(3.14± 0.	$(29) \times 10^{-6}$		2401
$p\overline{\Sigma}(1385)^-$	<	2.6	$\times 10^{-7}$	CL=90%	2363
$\Delta^0 \overline{\Lambda}$	<	9.3	$\times 10^{-7}$	CL=90%	2364
$p\overline{\Lambda}K^-$	<	8.2	$\times 10^{-7}$	CL=90%	2308
$p\overline{\Sigma}{}^0\pi^-$	<	3.8	$\times 10^{-6}$	CL=90%	2383
$\overline{\Lambda}\Lambda$	<	3.2	$\times 10^{-7}$	CL=90%	2392
$\overline{\Lambda}\Lambda K^0$	(4.8 + 1.	$\frac{10}{9}$) × 10 ⁻⁶		2250
$\overline{\Lambda}\Lambda K^{*0}$	($2.5 \begin{array}{c} + & 0.0 \\ - & 0.0 \end{array}$	$^{9}_{8}$) × 10 ⁻⁶		2098
$\overline{\Lambda}\Lambda D^0$	($1.1 {}^{+}_{-} {}^{0}_{0}$	$^{.6}_{.5}$) × 10 ⁻⁵		1661
$\Delta^0 \overline{\Delta}{}^0$	<	1.5	$\times 10^{-3}$	CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<	1.1	$\times 10^{-4}$	CL=90%	2335
$\overline{D}{}^0 p \overline{p}$	(1.04± 0.	$.07) \times 10^{-4}$		1863
$D_s^- \overline{\Lambda} p$	($2.8 \pm 0.$	$.9) \times 10^{-5}$		1710
$\overline{D}^*(2007)^0 p \overline{p}$	(9.9 ± 1.	1.1×10^{-5}		1788
$D^*(2010)^{-} p \overline{n}$	($(4) \times 10^{-3}$		1785
$D^{-}p\overline{p}\pi^{+}$	(3.32± 0.	$(31) \times 10^{-4}$		1786
$D^*(2010)^- p \overline{p} \pi^+$	(4.7 ± 0.	$.5) \times 10^{-4}$	S=1.2	1707
$\overline{D}{}^{0}p\overline{p}\pi^{+}\pi^{-}$	($3.0 \pm 0.$	$.5) \times 10^{-4}$		1708
$\overline{D}^{*0} p \overline{p} \pi^+ \pi^-$	($1.9 \pm 0.$	$.5) \times 10^{-4}$		1623
$\Theta_c \overline{p} \pi^+$, $\Theta_c o D^- p$	<	9	$\times 10^{-6}$	CL=90%	_
$\Theta_c \overline{p} \pi^+$, $\Theta_c \to D^{*-} p$	<	1.4	$\times 10^{-5}$	CL=90%	_
$\overline{\Sigma}_c^{}\Delta^{++}$	<	1.0	\times 10 ⁻³	CL=90%	1839

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

• ,				` '	
$\gamma \gamma$	B1	<	3.2	$\times 10^{-7}$ CL=90%	2640
e^+e^-	B1	<	8.3	$\times 10^{-8}$ CL=90%	2640
$e^+e^-\gamma$	B1	<	1.2	$\times10^{-7}$ CL=90%	2640
$\mu^+\mu^-$	B1	<	6.3	$ imes$ 10 $^{-10}$ CL=90%	2638
$\mu^+\mu^-\gamma$	B1	<	1.6	$\times 10^{-7}$ CL=90%	2638
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$		<	5.3	$\times10^{-9}$ CL=90%	2629
SP, $S ightarrow \ \mu^+ \mu^-$,		[ggaa] <	5.1	$\times10^{-9}$ CL=90%	_
$P ightarrow~\mu^+\mu^-$					
$ au^+ au^-$	B1	<	4.1	$\times 10^{-3}$ CL=90%	1952
$\pi^0 \ell^+ \ell^-$	B1	<	5.3	$\times10^{-8}$ CL=90%	2638
$\pi^0e^+e^-$	B1	<	8.4	$\times10^{-8}$ CL=90%	2638
$\pi^{0} \mu^{+} \mu^{-}$	B1	<	6.9	$\times10^{-8}$ CL=90%	2634
$\eta \ell^+ \ell^-$		<	6.4	$\times10^{-8}$ CL=90%	2611
ηe^+e^-		<	1.08	$\times10^{-7}$ CL=90%	2611
$\eta\mu^+\mu^-$		<	1.12	$\times10^{-7}$ CL=90%	2607
$\pi^0 u \overline{ u}$	B1	<	6.9	$\times10^{-5}$ CL=90%	2638

$\kappa^0 \ell^+ \ell^-$	B1	[sss] ($3.1 \begin{array}{c} + & 0.8 \\ - & 0.7 \end{array}$) × 10 ⁻⁷	2616
$K^0e^+e^-$	B1	($1.6 \begin{array}{c} + & 1.0 \\ - & 0.8 \end{array}$	$) \times 10^{-7}$	2616
$\mathcal{K}^0\mu^+\mu^-$	B1	(2612
$K^0 u \overline{\nu}$	B1	<		´ -	2616
$ ho^{0} u \overline{ u}$	B1	<	2.08	$\times10^{-4}$ CL=90%	2583
$K^*(892)^0 \ell^+ \ell^-$	B1	[sss] ($9.9 \ + \ 1.2 \ - \ 1.1$	$) \times 10^{-7}$	2564
$K^*(892)^0e^+e^-$	В1	($1.03^{+}_{-} \begin{array}{l} 0.19 \\ 0.17 \end{array}$	$) \times 10^{-6}$	2564
$K^*(892)^0\mu^+\mu^-$	B1	(1.05 ± 0.10	$) \times 10^{-6}$	2560
$K^*(892)^0 \nu \overline{\nu}$	B1	<	5.5	$\times10^{-5}$ CL=90%	2564
$\phi u \overline{ u}$	B1	<	1.27	$\times10^{-4}$ CL=90%	2541
$e^{\pm}\mu^{\mp}$	LF	[gg] <	2.8	$\times10^{-9}$ CL=90%	2639
$\pi^0e^\pm\mu^\mp$	LF	<	1.4	$\times 10^{-7}$ CL=90%	2637
$K^0e^\pm\mu^\mp$	LF	<	2.7	$\times 10^{-7}$ CL=90%	2615
$K^*(892)^0 e^+ \mu^-$	LF	<	5.3	$\times 10^{-7}$ CL=90%	2563
$K^*(892)^0 e^- \mu^+$	LF	<	3.4	$\times10^{-7}$ CL=90%	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$	LF	<	5.8	$\times 10^{-7}$ CL=90%	2563
$e^{\pm} au^{\mp}$	LF	[gg] <	2.8	$\times10^{-5}$ CL=90%	2341
$\mu^{\pm} au^{\mp}$	LF	[gg] <	2.2	$\times10^{-5}$ CL=90%	2339
invisible	B1	<	2.4	$\times10^{-5}$ CL=90%	_
$ u \overline{ u} \gamma$	B1	<	1.7	$\times 10^{-5}$ CL=90%	2640
$\Lambda_c^+ \mu^-$	L,B	<	1.8	$\times 10^{-6}$ CL=90%	2143
$\Lambda_c^+e^-$	L,B	<	5	\times 10 ⁻⁶ CL=90%	2145

B^{\pm}/B^0 ADMIXTURE

CP violation

$$A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.017$$

 $A_{CP}(b \to s\gamma) = -0.008 \pm 0.029$
 $A_{CP}(b \to (s+d)\gamma) = -0.01 \pm 0.05$
 $A_{CP}(B \to X_s \ell^+ \ell^-) = -0.22 \pm 0.26$
 $A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15$
 $A_{CP}(B \to K^* \mu^+ \mu^-) = -0.03 \pm 0.13$
 $A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07$
 $A_{CP}(B \to \eta \text{ anything}) = -0.13^{+0.04}_{-0.05}$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \to B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 8/25/2014 17:06

Semileptonic and leptonic modes

```
e^+ \nu_e anything
                                                             10.86 \pm 0.16) %
                                            [hhaa]
   \overline{p}e^+\nu_e anything
                                                                                   \times 10^{-4} CL=90%
                                                               5.9
\mu^+ \nu_{\mu} anything
                                                             10.86 \pm 0.16 ) %
                                            [hhaa]
\ell^+ \nu_{\ell} anything
                                       [sss,hhaa]
                                                             10.86 \pm 0.16 ) %
   D^-\ell^+\nu_\ell anything
                                                               2.8 \pm 0.9 ) %
                                              [sss]
   \overline{D}^0 \ell^+ \nu_\ell anything
                                              [sss]
                                                               7.3 \pm 1.5 ) %
   \overline{D}\ell^+\nu_\ell
                                                               2.42 \pm 0.12) %
                                                                                                               2310
   \overline{D}\tau^+\nu_{\tau}
                                                               1.07 \pm 0.18 ) %
                                                                                                               1911
   D^{*-}\ell^{+}\nu_{\ell} anything
                                                               6.7 \pm 1.3 \times 10^{-3}
                                              [iiaa]
    D^*\ell^+\nu_\ell
                                                               4.95 \pm 0.11)%
                                              [jjaa]
                                                                                                               2257
    D^* \tau^+ \nu_{\tau}
                                                               1.64 \pm 0.15 ) %
                                                                                                               1837
   \overline{D}^{**}\ell^+\nu_{\ell}
                                        [sss,kkaa]
                                                               2.7 \pm 0.7 ) %
       \overline{D}_1(2420)\ell^+\nu_{\ell} anything
                                                                      ± 1.3
                                                                               ) \times 10^{-3}
                                                                                                   S = 2.4
       D\pi \ell^+ \nu_\ell anything +
                                                                      \pm 0.5
                                                                                ) %
                                                                                                   S = 1.5
            D^*\pi\ell^+\nu_\ell anything
       D\pi \ell^+ \nu_{\ell} anything
                                                                      \pm 0.6 ) %
       D^*\pi\ell^+\nu_\ell anything
                                                               1.9 \pm 0.4) %
       \overline{D}_2^*(2460)\ell^+\nu_\ell anything
                                                               4.4 \pm 1.6 \times 10^{-3}
       D^{*-}\pi^+\ell^+\nu_\ell anything
                                                               1.00 \pm 0.34 ) %
    D_{s}^{-}\ell^{+}\nu_{\ell} anything
                                                               7
                                                                                   \times 10^{-3} CL=90%
       D_s^- \ell^+ \nu_\ell K^+ anything
                                                                                   \times 10^{-3} CL=90%
       D_s^- \ell^+ \nu_\ell K^0 anything
                                                                                   \times 10^{-3} CL=90%
```

```
X_{c}\ell^{+}\nu_{\ell}
                                                         10.65 \pm 0.16) %
   X_{II}\ell^+\nu_{\ell}
                                                          2.14 \pm 0.31 \times 10^{-3}
   K^+\ell^+\nu_\ell anything
                                                          6.3 \pm 0.6 ) %
                                           [sss]
   K^-\ell^+\nu_\ell anything
                                                                           ) \times 10^{-3}
                                                                 \pm 4
                                           [sss]
   K^0/\overline{K}^0\ell^+\nu_\ell anything
                                           [sss]
                                                                 \pm 0.5 ) %
                                        D, D^*, or D_s modes
D^{\pm} anything
                                                         23.7
                                                                 \pm 1.3 )%
D^0/\overline{D}{}^0 anything
                                                         62.7 \pm 2.9 ) %
                                                                                            S = 1.3
D^*(2010)^{\pm} anything
                                                         22.5 \pm 1.5 ) %
D^*(2007)^0 anything
                                                         26.0 \pm 2.7 ) %
D_s^{\pm} anything
                                                          8.3 \pm 0.8 ) %
                                           [gg]
D_s^{*\pm} anything
                                                          6.3 \pm 1.0 ) %
D_s^{*\pm}\overline{D}^{(*)}
                                                                 \pm 0.6 ) %
                                                                + 2.7
- 1.7
D^{(*)} \overline{D}^{(*)} K^0 +
                                       [gg,llaa]
                                                                           ) %
     D^{(*)}\overline{D}^{(*)}K^{\pm}
b \rightarrow c \overline{c} s
                                                         22
                                                                 \pm 4
                                                                           ) %
D_s^{(*)}\overline{D}^{(*)}
                                                          3.9 \pm 0.4 ) %
                                       [gg, Ilaa] (
D^* D^* (2010)^{\pm}
                                                                             \times 10^{-3} CL=90%
                                           [gg] <
                                                          5.9
                                                                                                       1711
DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                             \times 10^{-3} CL=90%
                                                          5.5
                                           [gg] <
DD^{\pm}
                                                                             \times 10^{-3} CL=90%
                                           [gg] <
                                                                                                       1866
D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})
                                       [gg,llaa]
                                                                           ) %
D^*(2010)\gamma
                                                                           \times 10^{-3} CL=90%
                                                          1.1
                                                                                                       2257
D_s^+\pi^-, D_s^{*+}\pi^-, D_s^+\rho^-,
                                                                             \times 10^{-4} CL=90%
                                           [gg] <
     D_s^{*+} \rho^{-}, D_s^{+} \pi^{0}, D_s^{*+} \pi^{0}
    D_s^+ \eta, D_s^{*+} \eta, D_s^+ \rho^0,
     D_{s}^{*+}\rho^{0}, D_{s}^{+}\omega, D_{s}^{*+}\omega
D_{s1}(2536)^{+} anything
                                                                             \times 10^{-3} CL=90%
                                                          9.5
                                        Charmonium modes
J/\psi(1S) anything
                                                          1.094 \pm 0.032) \%
                                                                                            S=1.1
   J/\psi(1S) (direct) anything
                                                          7.8 \pm 0.4 \times 10^{-3}
                                                                                            S=1.1
                                                          3.07 \pm 0.21 \times 10^{-3}
\psi(2S) anything
                                                          3.86 \pm 0.27 \times 10^{-3}
\chi_{c1}(1P) anything
   \chi_{c1}(1P) (direct) anything
                                                          3.24 \pm 0.25 \times 10^{-3}
                                                          1.4 \pm 0.4 \times 10^{-3}
\chi_{c2}(1P) anything
                                                                                            S=1.9
   \chi_{c2}(1P) (direct) anything
                                                          1.65 \pm 0.31 \times 10^{-3}
                                                                             \times 10^{-3} CL=90%
\eta_c(1S) anything
                                                          1.2 \pm 0.4 \times 10^{-4}
KX(3872) \times B(X \rightarrow
                                                                                                       1141
     D^0 \overline{D}{}^0 \pi^0
```

```
KX(3872) \times B(X \rightarrow
                                                            8.0 \pm 2.2 \times 10^{-5}
                                                                                                          1141
        D^{*0}D^{0}
KX(3940) \times B(X \rightarrow
                                                                               \times 10^{-5} CL=90%
                                                            6.7
                                                                                                          1084
     D^{*0}D^{0}
K\chi_{c0}(2P), \; \chi_{c0} \rightarrow \; \omega \, J/\psi \; \; [nnaa] \; \; (
                                                            7.1 \pm 3.4 \times 10^{-5}
                                                                                                          1103
                                            K or K*
                                                          modes
K^{\pm} anything
                                             [gg]
                                                          78.9
                                                                  \pm 2.5
                                                                             ) %
   K^+ anything
                                                                   \pm 5
                                                                             ) %
   K^- anything
                                                          13
                                                                   \pm 4
                                                                             ) %
K^0/\overline{K}^0 anything
                                                          64
                                                                             ) %
                                             [gg]
K^*(892)^{\pm} anything
                                                          18
                                                                   \pm 6
                                                                             ) %
K^*(892)^0 / \overline{K}^*(892)^0 anything [gg]
                                                          14.6
                                                                  \pm 2.6 ) %
K^*(892)\gamma
                                                                  \pm 0.6
                                                                             ) \times 10^{-5}
                                                                                                          2564
                                                                   ^{+} 1.8 ^{-} 1.6
\eta K \gamma
                                                                              ) \times 10^{-6}
                                                                                                          2588
                                                                               \times 10^{-4} CL=90%
K_1(1400)\gamma
                                                            1.27
                                                   <
                                                                                                          2453
K_2^*(1430)\gamma
                                                     (
                                                            1.7
                                                                             ) \times 10^{-5}
                                                                                                          2447
K_2(1770)\gamma
                                                                               \times 10^{-3} CL=90%
                                                                                                          2342
                                                            1.2
                                                   <
                                                                               \times 10^{-5} CL=90%
K_3^*(1780)\gamma
                                                   <
                                                                                                          2341
K_4^*(2045)\gamma
                                                                                \times 10^{-3} CL=90%
                                                                                                          2244
K \eta'(958)
                                                                  \pm 1.1 ) \times 10^{-5}
                                                     (
                                                            8.3
                                                                                                          2528
K^*(892)\eta'(958)
                                                                  \pm 1.1
                                                                           ) \times 10^{-6}
                                                            4.1
                                                                                                          2472
                                                                                \times 10^{-6} CL=90%
K\eta
                                                            5.2
                                                                                                          2588
                                                                  \pm 0.5 ) \times 10^{-5}
K^*(892)\eta
                                                            1.8
                                                                                                          2534
K\phi\phi
                                                                  \pm 0.9 ) \times 10^{-6}
                                                            2.3
                                                                                                          2306
b \rightarrow \overline{s}\gamma
                                                            3.40 \pm 0.21 \times 10^{-4}
\overline{b} \rightarrow \overline{d} \gamma
                                                            9.2
                                                                  \pm 3.0 ) \times 10^{-6}
\overline{b} \rightarrow \overline{s} gluon
                                                                                %
                                                                                           CL=90%
                                                                  ^{+} 0.5 ^{-} 0.8
                                                                             ) \times 10^{-4}
   \eta anything
                                                            2.6
   \eta' anything
                                                                           ) \times 10^{-4}
                                                     (
                                                            4.2
                                                                   \pm 0.9
   K^+ gluon (charmless)
                                                                                \times 10^{-4} CL=90%
                                                            1.87
   K^0 gluon (charmless)
                                                                  \pm 0.7 ) \times 10^{-4}
                                                            1.9
                                  Light unflavored meson modes
                                                            1.39 \pm 0.25 \times 10^{-6}
                                                                                              S = 1.2
\rho\gamma
                                                                                                          2583
                                                            1.30 \pm 0.23 \times 10^{-6}
\rho/\omega\gamma
                                                                                              S=1.2
\pi^{\pm} anything
                                                                   ± 7
                                                                             ) %
                                      [gg,ooaa]
                                                         358
\pi^0 anything
                                                         235
                                                                   \pm 11
                                                                             ) %
\eta anything
                                                          17.6
                                                                  \pm 1.6
                                                                             ) %
\rho^0 anything
                                                          21
                                                                   \pm 5
                                                                             ) %
\omega anything
                                                                                           CL=90%
                                                          81
                                                                                %
```

ϕ anything	($3.43\ \pm\ 0.12$) %	_
ϕ K*(892)	<	2.2	$ imes 10^{-5}$ CL=90%	2460
π^+ gluon (charmless)	(3.7 ± 0.8) × 10 ⁻⁴	_

Baryon modes								
$\Lambda_c^+ \ / \ \overline{\Lambda}_c^-$ anything		(4.5	\pm	1.2) %		_
Λ_c^+ anything		<	1.7			%	CL=90%	_
$\overline{\Lambda}_c^-$ anything		<	9			%	CL=90%	_
$\overline{\varLambda}_c^-\ell^+$ anything		<	1.1			\times 10 ⁻³	CL=90%	_
$\overline{\Lambda}_c^- e^+$ anything		<	2.3			\times 10 ⁻³	CL=90%	_
$\overline{\varLambda}_c^-\mu^+$ anything		< -	1.8			\times 10 ⁻³	³ CL=90%	- - - -
$\overline{\Lambda}_c^- p$ anything		(2.6	\pm	8.0) %		_
$\overline{\Lambda}_c^- p e^+ \nu_e$		<	1.0			\times 10 ⁻³	CL=90%	2021
$\overline{\Sigma}_c^{}$ anything		(4.2	\pm	2.4	$) \times 10^{-3}$		_
$\overline{\Sigma}_c^-$ anything		<	9.6			\times 10 ⁻³	CL=90%	_
$ \overline{\Sigma}_{c}^{0} $ anything $ \overline{\Sigma}_{c}^{0}N(N=p \text{ or } n) $		(4.6	\pm	2.4	$) \times 10^{-3}$		_
$\overline{\Sigma}_c^0 N(N=p \text{ or } n)$		<	1.5			\times 10 ⁻³	CL=90%	1938
Ξ_c^0 anything		(1.93	\pm	0.30	$) \times 10^{-4}$	S=1.1	_
\times B($\Xi_c^0 \rightarrow \Xi^- \pi^+$)								
Ξ_c^+ anything		(4.5	+	1.3	$) \times 10^{-4}$		_
\times B($\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$)					1.2			
p/\overline{p} anything	[gg]	(8.0	\pm	0.4) %		_
p/\overline{p} (direct) anything	[gg]	(5.5	\pm	0.5) %		- - - -
Λ/Λ anything	[gg]	(_
$ar{\Xi}^-/\overline{\overline{\Xi}}^+$ anything	[gg]	(2.7	\pm	0.6	$) \times 10^{-3}$		_
baryons anything		(6.8	\pm	0.6) %		_
$p\overline{p}$ anything		(2.47	\pm	0.23) %		_
$\Lambda \overline{ ho}/\overline{\Lambda} ho$ anything	[gg]	(2.5	\pm	0.4	•		_
$\Lambda\overline{\Lambda}$ anything		<	5			$\times 10^{-3}$	CL=90%	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

			·	,		
se^+e^-	B1	($4.7 \hspace{0.2in} \pm \hspace{0.2in} 1.3$	$) \times 10^{-6}$		_
$s\mu^+\mu^-$	B1	(4.3 ± 1.2	$) \times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[sss] ($4.5~\pm~1.0$	$) \times 10^{-6}$		_
$\pi \ell^+ \ell^-$	B1	<	5.9	$\times 10^{-8}$	CL=90%	2638
πe^+e^-		<	1.10	$\times 10^{-7}$	CL=90%	2638
$\pi \mu^+ \mu^-$		<	5.0	$\times 10^{-8}$	CL=90%	2634
$K e^+ e^-$	B1	($4.4~\pm~0.6$	$) \times 10^{-7}$		2617
$K^*(892)e^+e^-$	B1	(1.19 ± 0.20	$0) \times 10^{-6}$	S=1.2	2564
$K\mu^+\mu^-$	B1	(4.4 ± 0.4	$) \times 10^{-7}$		2612
$K^*(892) \mu^+ \mu^-$	B1	(1.06 ± 0.09	$9) \times 10^{-6}$		2560

B1	(4.8	\pm 0.4) \times 10 ⁻⁷		2617
B1	(1.05	$\pm 0.10) \times 10^{-6}$		2564
B1	<	1.7			2617
B1	<	7.6	\times 10 ⁻⁵	CL=90%	_
LF	[gg] <	2.2	\times 10 ⁻⁵	CL=90%	_
LF	<	9.2	× 10 ⁻⁸	CL=90%	2637
LF	<	3.2	\times 10 ⁻⁶	CL=90%	2582
LF	<	3.8	$\times 10^{-8}$	CL=90%	2616
LF	<	5.1	× 10 ⁻⁷	CL=90%	2563
	B1 B1 B1 LF LF LF	B1 (B1 < B1 < LF [gg] < LF < LF < LF <	B1 (1.05 B1 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 (1.05 ± 0.10) × 10^{-6} B1 < 1.7 × 10^{-5} CL=90% B1 < 7.6 × 10^{-5} CL=90% LF [gg] < 2.2 × 10^{-5} CL=90% LF < 9.2 × 10^{-8} CL=90% LF < 3.2 × 10^{-6} CL=90% LF < 3.8 × 10^{-8} CL=90%

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life
$$au=(1.568\pm0.009)\times10^{-12}$$
 s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged b -hadron admixture Mean life $au=(1.58\pm0.14)\times10^{-12}$ s Neutral b -hadron admixture
$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.014)\times10^{-12} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.2\pm0.4)\times10^{-3}$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFAG) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. The production fractions in b-hadronic Z decay or $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$B(\overline{b} \rightarrow B^+) = B(\overline{b} \rightarrow B^0)$$

$$\mathsf{B}(\overline{b} \to B^+) + \mathsf{B}(\overline{b} \to B^0) + \mathsf{B}(\overline{b} \to B^0_s) + \mathsf{B}(b \to b ext{-baryon}) = 100 \%.$$

The correlation coefficients between production fractions are also reported:

cor(
$$B_s^0$$
, b-baryon) = -0.291
cor(B_s^0 , $B^{\pm} = B^0$) = -0.083
cor(b-baryon, $B^{\pm} = B^0$) = -0.929.

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are *b*-hadronization fractions, not the conventional branching fractions of *b*-quark to a *B*-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

b DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
B^+	(40.2 ± 0.7)	%	_
B^0	(40.2 ± 0.7)	%	_
B_s^0	(10.5 ± 0.6)	%	_
<i>b</i> -baryon	$(9.2\ \pm\ 1.5)$	%	_

DECAY MODES

Semileptonic and leptonic modes

u anything		$(23.1 \pm 1.5)\%$	_
$\ell^+ u_\ell$ anything	[sss]	(10.69 ± 0.22) %	_
$e^+ u_e$ anything		($10.86\pm~0.35)~\%$	_
$\mu^+ u_\mu$ anything		$(\ 10.95 ^{+}_{-}\ 0.29)\ \%$	_
$D^-\ell^+ u_\ell$ anything	[sss]	(2.27± 0.35) % S=1.7	_
$D^-\pi^+\ell^+ u_\ell$ anything		$(4.9 \pm 1.9) \times 10^{-3}$	_
$D^-\pi^-\ell^+ u_\ell$ anything		$(2.6 \pm 1.6) \times 10^{-3}$	_
$\overline{D}{}^0 \ell^+ u_\ell$ anything	[sss]	(6.84 ± 0.35) %	_
$\overline{\it D}{}^0\pi^-\ell^+ u_\ell$ anything		($1.07\pm~0.27)~\%$	_
$\overline{\it D}{}^0\pi^+\ell^+ u_\ell$ anything		$(2.3 \pm 1.6) \times 10^{-3}$	_
$D^{*-}\ell^+ u_\ell$ anything	[sss]	($2.75\pm~0.19)~\%$	_
$D^{*-}\pi^-\ell^+ u_\ell$ anything		$(6 \pm 7) \times 10^{-4}$	_
$D^{*-}\pi^+\ell^+ u_\ell$ anything		$(4.8 \pm 1.0) \times 10^{-3}$	_
$\overline{D}{}^0_i \ell^+ u_\ell$ anything $ imes$	[sss,ppaa]	$(2.6 \pm 0.9) \times 10^{-3}$	_
$B(\overline{D}_j^0 o \ D^{*+}\pi^-)$			
$D_i^-\ell^+ u_\ell$ anything $ imes$	[sss,ppaa]	$(7.0 \pm 2.3) \times 10^{-3}$	_
$B(D_j^- o \ D^0 \pi^-)$			

$$\begin{array}{c} \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \, {\rm anything} \\ \times \, {\rm B}(\overline{D}_2^*(2460)^0 \, \rightarrow \\ D^{*-} \pi^+) \\ D_2^*(2460)^- \ell^+ \nu_\ell \, {\rm anything} \\ \times \, {\rm B}(D_2^*(2460)^- \rightarrow \\ D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \, {\rm anything} \\ \times \, {\rm B}(D_2^*(2460)^0 \, \rightarrow \\ D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \, {\rm anything} \\ \times \, {\rm B}(\overline{D}_2^*(2460)^0 \, \rightarrow \\ D^- \pi^+) \\ {\rm charmless} \, \ell \overline{\nu}_\ell \\ \tau^+ \nu_\tau \, {\rm anything} \\ D^- \tau \nu_\tau \, {\rm anything} \\ C \to \ell^- \overline{\nu}_\ell \, {\rm anything} \\ C \to \ell^- \overline{\nu}_\ell \, {\rm anything} \\ C \to \ell^+ \nu \, {\rm anything} \\ C \to \ell^- \nu_\ell \, {\rm anything} \\ C \to \ell^- \nu_\ell \, {\rm anything} \\ C \to \ell^+ \nu \, {\rm anything} \\ C \to \ell^- \nu_\ell \, {\rm anything}$$

Charmonium modes

$$J/\psi(1S)$$
 anything $(1.16\pm~0.10)~\%$ $-\psi(2S)$ anything $(2.83\pm~0.29)\times10^{-3}$ $-\chi_{c1}(1P)$ anything $(1.4\pm~0.4)~\%$ $-$

K or K^* modes

$\overline{s}\gamma$		$(3.1 \pm 1.1) \times 10^{-4}$	_
$\overline{s}\overline{\nu}\nu$	B1	$<$ 6.4 $\times 10^{-4}$ CL=90%	_
K^\pm anything		$(74 \pm 6)\%$	_
K_S^0 anything		(29.0 ± 2.9) %	_

Pion modes

π^\pm anything		(397	± 21) %		_
π^0 anything	[ooaa]	(278	± 60) %		_
ϕ anything		(2.8	2± 0.2	(3) %		_

Baryon modes

$$p/\overline{p}$$
 anything $(13.1 \pm 1.1)\%$ - $\Lambda/\overline{\Lambda}$ anything $(5.9 \pm 0.6)\%$ - b -baryon anything $(10.2 \pm 2.8)\%$

Other modes

charged anything	[ooaa]	$(497 \pm 7)\%$	_
${\sf hadron}^+\ {\sf hadron}^-$		$(1.7 \ ^{+}_{-} \ ^{1.0}_{0.7} \) \times 10^{-5}$	_
charmless		$(7 \pm 21) \times 10^{-3}$	_

$\Delta B = 1$ weak neutral current (B1) modes

$$\mu^+\mu^-$$
 anything B1 < 3.2 \times 10⁻⁴ CL=90%

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*}=5325.2\pm0.4~{
m MeV}$$
 $m_{B^*}-m_B=45.78\pm0.35~{
m MeV}$ $m_{B^{*+}}-m_{B^+}=45.0\pm0.4~{
m MeV}$

B* DECAY MODES

Fraction (Γ_i/Γ)

o (MeV/*c*)

Created: 8/25/2014 17:06

 $B\gamma$ dominant 45

 $B_1(5721)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^0 \; {
m MASS} = 5723.5 \pm 2.0 \; {
m MeV} \; \; ({
m S}=1.1) \ m_{B_1^0} - m_{B^+} = 444.3 \pm 2.0 \; {
m MeV} \; \; ({
m S}=1.1)$$

HTTP://PDG.LBL.GOV

Page 107

 $B_1(5721)^0$ DECAY MODES

Fraction (Γ_i/Γ)

o (MeV/d

 $B^{*+}\pi^{-}$

dominant

$B_2^*(5747)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^0$$
 MASS $= 5743 \pm 5$ MeV (S $= 2.9$) Full width $\Gamma = 23^{+\ 5}_{-11}$ MeV $m_{B_2^{*0}} - m_{B_1^0} = 19 \pm 6$ MeV (S $= 3.0$)

$B_2^*(5747)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$B^{+}\pi^{-}$$

 $B^{*+}\pi^{-}$

dominant dominant

_

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P) = 0(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5366.77\pm0.24~{
m MeV}$$
 $m_{B_s^0}-m_B=87.35\pm0.23~{
m MeV}$ Mean life $\tau=(1.512\pm0.007)\times10^{-12}~{
m s}$ $c au=453.3~{
m \mu m}$ $\Delta\Gamma_{B_s^0}=\Gamma_{B_{sL}^0}-\Gamma_{B_{sH}^0}=(0.091\pm0.008)\times10^{12}~{
m s}^{-1}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.761 \pm 0.022) \times 10^{12} \ \hbar \ {\rm s}^{-1}$$

$$= (1.1691 \pm 0.0014) \times 10^{-8} \ {\rm MeV}$$
 $x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.85 \pm 0.13$
 $\chi_s = 0.499311 \pm 0.000007$

CP violation parameters in B_s^0

$$\begin{array}{l} \operatorname{Re}(\epsilon_{B^0_s}) \ / \ (1 + \left| \epsilon_{B^0_s} \right|^2) = (-1.9 \pm 1.0) \times 10^{-3} \\ C_{KK}(B^0_s \to K^+ K^-) = 0.14 \pm 0.11 \\ S_{KK}(B^0_s \to K^+ K^-) = 0.30 \pm 0.13 \\ CP \ \text{Violation phase} \ \beta_s = (0.0 \pm 3.5) \times 10^{-2} \\ \textbf{\textit{A}_{CP}}(\textbf{\textit{B}_s} \to \boldsymbol{\pi^+ K^-}) = 0.28 \pm 0.04 \\ A_{CP}(B^0_s \to [K^+ K^-]_D \ \overline{K}^*(892)^0) = 0.04 \pm 0.16 \end{array}$$

These branching fractions all scale with $B(\overline{b} \to B_s^0)$.

The branching fraction ${\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell\,{\sf anything})$ is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_s^0)\times {\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell\,{\sf anything})$ was used to determine ${\sf B}(\overline{b}\to B_s^0)$, as described in the note on " $B^0-\overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

•			Scale factor/	=
B _s DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
D_s^- anything		(93 ±25) %	ı	_
$\ell u_{\ell} X$		(10.5 \pm 0.8) %	1	_
$D_{s}^{-}\ell^{+} u_{\ell}$ anything	[qqaa]	(7.9 ± 2.4) %	ı	_
$D_{s1}(2536)^- \mu^+ \nu_{\mu}$,		(2.5 \pm 0.7) \times	10^{-3}	_
$D_{s1}^- ightarrow \ D^{*-} K_S^0$				
$D_{s1}(2536)^- X \mu^+ \nu$,		(4.3 \pm 1.7) \times	10^{-3}	_
$D_{s1}^- ightarrow \; \overline{D}{}^0 {\it K}^+$				
$D_{s2}(2573)^- X \mu^+ \nu$,		(2.6 \pm 1.2) \times	10^{-3}	_
$D_{s2}^- ightarrow \; \overline{D}{}^0 {\it K}^+$				
$D_s^-\pi^+$		($3.04\pm~0.23)$ $ imes$	10^{-3}	2320
$D_s^- ho^+$		(7.0 \pm 1.5) \times	10^{-3}	2249
$D_s^- \pi^+ \pi^+ \pi^-$		(6.3 \pm 1.1) \times	10^{-3}	2301
$D_{s1}(2536)^{-}\pi^{+}$,		(2.5 \pm 0.8) \times	10^{-5}	_
$D_{s1}^- \rightarrow D_s^- \pi^+ \pi^-$				
$D_s^+ K^\pm$		($2.03\pm~0.28$) $ imes$	10^{-4} S=1.3	2293
$D_s^- K^+ \pi^+ \pi^-$		(3.3 \pm 0.7) \times	10^{-4}	2249
$D_s^+ D_s^-$		(4.4 \pm 0.5) \times	10^{-3}	1824
$D_s^- D^+$		(3.6 \pm 0.8) \times	10^{-4}	1875
D^+D^-		($2.2~\pm~0.6$) \times	10^{-4}	1925
$D^0 \overline{D}{}^0$		(1.9 \pm 0.5) \times	10^{-4}	1929

HTTP://PDG.LBL.GOV

Page 109

$D_s^{*-}\pi^+$	$(2.0 \pm 0.5) \times 10^{-3}$		2265
$D_s^{*-}\rho^+$	$(9.7 \pm 2.2) \times 10^{-3}$		2191
$D_{-}^{*+}D_{-}^{-} + D_{-}^{*-}D_{-}^{+}$	(1.28± 0.23) %	S=1.2	1742
$D_{s}^{*+}D_{s}^{-} + D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*+}D_{s}^{*-}$ $D_{s}^{(*)+}D_{s}^{(*)-}$	(1.85 ± 0.30) %		1655
$D_{(*)}^{(*)} + D_{(*)}^{(*)}$	$(4.5 \pm 1.4)\%$		_
$\frac{D_s}{D^0} K^- \pi^+$	$(9.9 \pm 1.5) \times 10^{-4}$		2212
$\frac{D}{D^0} \frac{\pi}{K^*} (892)^0$	$(3.5 \pm 0.6) \times 10^{-4}$		2312 2264
$\overline{D}^0 K^+ K^-$	$(3.3 \pm 0.0) \times 10^{-5}$		2242
$\overline{D}^0 \phi$	$(2.4 \pm 0.7) \times 10^{-5}$		2235
$D^{*\mp}\pi^{\pm}$	$< 6.1 \times 10^{-6}$	CL=90%	
$J/\psi(1S)\phi$	$(1.07 \pm 0.09) \times 10^{-3}$	CL 3070	1588
$J/\psi(1S)\pi^0$	$< 1.2 \times 10^{-3}$	CL=90%	1786
$J/\psi(1S)\eta$	$(4.0 \pm 0.7) \times 10^{-4}$	S=1.3	1733
$J/\psi(1S)K_S^0$	$(1.87 \pm 0.17) \times 10^{-5}$		1743
$J/\psi(1S)K^*(892)^0$	$(4.4 \pm 0.9) \times 10^{-5}$		1637
$J/\psi(1S)\eta'$	$(3.4 \pm 0.5) \times 10^{-4}$		1612
$J/\psi(1S)\pi^+\pi^-$	$(2.12\pm 0.19) \times 10^{-4}$		1775
$J/\psi(1S) f_0(980), f_0 \rightarrow$	$(1.39\pm\ 0.14)\times10^{-4}$		_
$\pi^+\pi^-$,		
$J/\psi(1S) f_0(1370)$,	$(3.9 \ ^{+} \ 0.8 \) \times 10^{-5}$		_
$f_0 \rightarrow \pi^+\pi^-$	- 1.0		
$J/\psi(1S) f_2(1270),$	$(1.1 \pm 0.4) \times 10^{-6}$		_
$f_2 \rightarrow \pi^+\pi^-$			
$J/\psi(1S)\pi^+\pi^-$ (nonres-	$(1.8 + 1.1 \atop -0.4) \times 10^{-5}$		1775
onant)	· – 0.4 /		
$J/\psi(1S)K^{+}K^{-}$	(7.9 \pm 0.7) \times 10 ⁻⁴		1601
$J/\psi(1S)f_2'(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1304
$J/\psi(1S) p\overline{\overline{p}}$	$< 4.8 \times 10^{-6}$	CL=90%	982
$\psi(2S)\eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$\psi(2S)\pi^+\pi^-$	$(7.2 \pm 1.2) \times 10^{-5}$		1397
$\psi(2S)\phi$	$(5.4 \pm 0.6) \times 10^{-4}$		1120
$\chi_{c1}\phi$	$(2.02\pm\ 0.30)\times10^{-4}$		1274
$\pi^+\pi^-$	$(7.6 \pm 1.9) \times 10^{-7}$	S=1.4	2680
$\pi^{0} \pi^{0}$	$< 2.1 \times 10^{-4}$	CL=90%	2680
$\eta \pi^0$	$< 1.0 \times 10^{-3}$	CL=90%	2654
$\eta \eta$	$< 1.5 \times 10^{-3}$	CL=90%	2627
$\rho^{0} \rho^{0}$	$< 3.20 \times 10^{-4}$	CL=90%	2569
$\phi \rho^0$	$< 6.17 \times 10^{-4}$	CL=90%	2526
$\phi \phi$	$(1.91 \pm 0.31) \times 10^{-5}$		2482
$\pi^+ K^-$	$(5.5 \pm 0.6) \times 10^{-6}$		2659
$K^+K^ K^0\overline{K}^0$	$(2.49 \pm 0.17) \times 10^{-5}$	CL 000/	2638
$K^0\pi^+\pi^-$	$< 6.6 \times 10^{-5}$	CL=90%	2637
$\kappa^-\pi^+\pi^-$	$(1.9 \pm 0.5) \times 10^{-5}$		2653

$K^0 K^\pm \pi^\mp$		(9.7 \pm	$1.7) \times 10^{-5}$		2622
$K^0K^+K^-$		< 4	$\times 10^{-6}$	CL=90%	2568
$\overline{K}^*(892)^0 \rho^0$		< 7.67	$\times 10^{-4}$	CL=90%	2550
$\overline{K}^*(892)^0 K^*(892)^0$		($2.8 \pm$	$0.7) \times 10^{-5}$		2531
$\phi K^* (892)^0$		($1.13\pm$	$0.30) \times 10^{-6}$		2507
$p\overline{p}$		(2.8 +	$^{2.2}_{1.7}$) × 10 ⁻⁸		2514
$\Lambda_c^- \Lambda \pi^+$		(3.6 \pm	$1.6) \times 10^{-4}$		_
$\gamma \gamma$	B1	< 8.7	$\times 10^{-6}$	CL=90%	2683
$\phi\gamma$		(3.6 \pm	$0.4) \times 10^{-5}$		2587

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

$$B_s^*$$

$$I(J^P) = 0(1^-)$$

 \it{I} , \it{J} , \it{P} need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m=5415.4^{+2.4}_{-2.1}~{\rm MeV}~{\rm (S}=3.0)$$
 $m_{B_s^*}-m_{B_s}=48.7^{+2.3}_{-2.1}~{\rm MeV}~{\rm (S}=2.8)$

 B_s^* DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

 $B_{s}\gamma$

dominant

$$B_{s1}(5830)^0$$

$$I(J^P) = 0(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.7\pm0.4~{
m MeV}~{
m (S}=1.2)$$
 $m_{B_{\rm s1}^0}^{~0}-m_{B^{*+}}^{~+}=504.41\pm0.25~{
m MeV}$

$B_{s1}(5830)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/*c*)

Created: 8/25/2014 17:06

 $B^{*+}K^{-}$

dominant

$$B_{s2}^*(5840)^0$$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.96\pm0.20$$
 MeV $m_{B_{s2}^{*0}}-m_{B_{s1}^{0}}=10.5\pm0.6$ MeV Full width $\Gamma=1.6\pm0.5$ MeV

 $B_{s2}^{*}(5840)^{0}$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 B^+K^-

dominant

253

BOTTOM, CHARMED MESONS $(B=C=\pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass
$$m = 6.2756 \pm 0.0011$$
 GeV
Mean life $\tau = (0.452 \pm 0.033) \times 10^{-12}$ s

 B_c^- modes are charge conjugates of the modes below.

 B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$) Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Created: 8/25/2014 17:06

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \to B_c)$.

$D^*(2010)^+ \overline{D}{}^0$	< 6.2	$\times 10^{-3}$	90%	2467
$D^{+} K^{*0}$	< 0.20	\times 10 ⁻⁶	90%	2783
$D^+\overline{K}^{*0}$	< 0.16	\times 10 ⁻⁶	90%	2783
$D_s^+ K^{*0}$	< 0.28	\times 10 ⁻⁶	90%	2752
$D_{s}^{+}\overline{K}^{*0}$ $D_{s}^{+}\phi$	< 0.4	$\times 10^{-6}$	90%	2752
$D_s^+\phi$	< 0.32	\times 10 ⁻⁶	90%	2728
K^+K^0	< 4.6	\times 10 ⁻⁷	90%	3098
$B_s^0\pi^+/\ B(\overline{b}\to\ B_s)$	$(2.37^{+0.37}_{-0.35}$	$) \times 10^{-3}$		_

cc MESONS

$\eta_c(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 2983.6 \pm 0.7 \; \text{MeV} \quad (S = 1.3)$ Full width $\Gamma=32.2\pm0.9~\text{MeV}$

 $\eta_{\it c}(1S)$ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Created: 8/25/2014 17:06

Decays involving hadronic resonances

2002,00	,	. 00011011000		
$\eta'(958)\pi\pi$	(4.1 \pm	1.7) %		1323
ho ho	($1.8 \pm$	0.5) %		1275
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	($2.0 \pm$	0.7) %		1277
$K^*(892)\overline{K}^*(892)$	($7.0 \pm$	$(1.3) \times 10^{-3}$		1196
$K^{*0}\overline{K}^{*0}\pi^{+}\pi^{-}$	(1.1 \pm	0.5) %		1073
$\phi K^+ K^-$	($2.9 \pm$	$(1.4) \times 10^{-3}$		1104
$\phi \phi$	($1.76\pm$	$(0.20) \times 10^{-3}$		1089
$\phi 2(\pi^+\pi^-)$	< 4	\times 10 ⁻³	90%	1251
$a_0(980)\pi$	< 2	%	90%	1327
$a_2(1320)\pi$	< 2	%	90%	1196
$K^*(892)\overline{K}$ + c.c.	< 1.28	%	90%	1309
$f_2(1270)\eta$	< 1.1	%	90%	1145
$\omega \omega$	< 3.1	\times 10 ⁻³	90%	1270
$\omega \phi$	< 1.7	\times 10 ⁻³	90%	1185
$f_2(1270) f_2(1270)$	(9.8 \pm	$(2.5) \times 10^{-3}$		774
$f_2(1270) f_2'(1525)$	(9.7 \pm	$(3.2) \times 10^{-3}$		513

Decays into stable hadrons

$K\overline{K}\pi$	(7.3 ± 0.5) %	1381
$\eta \pi^+ \pi^-$	($1.7~\pm0.5$) %	1428
$\eta 2(\pi^+\pi^-)$	(4.4 ± 1.3) %	1385
$K^+K^-\pi^+\pi^-$	$(6.9 \pm 1.1) \times 10^{-3}$	1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.5 ± 0.6) %	1304
$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.6 ± 1.5) %	_
$K^+ K^- 2(\pi^+ \pi^-)$	$(7.5 \pm 2.4) \times 10^{-3}$	1253
$2(K^+K^-)$	$(1.47\pm0.31)\times10^{-3}$	1055
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	($4.7~\pm1.0$) %	1460
$2(\pi^{+}\pi^{-})$	$(9.7 \pm 1.2) \times 10^{-3}$	1459
$2(\pi^{+}\pi^{-}\pi^{0})$	(17.4 ± 3.3) %	1409
$3(\pi^{+}\pi^{-})$	($1.8~\pm0.4$) %	1407
$\rho \overline{p}$	$(1.52\pm0.16)\times10^{-3}$	1160
$ ho \overline{ ho} \pi^0$	$(3.6 \pm 1.3) \times 10^{-3}$	1101
$\Lambda \overline{\Lambda}$	$(1.09\pm0.24)\times10^{-3}$	990
$\Sigma^{+}\overline{\Sigma}^{-}$	$(2.1 \pm 0.6) \times 10^{-3}$	901
Ξ − <u></u> <u></u> = +	$(8.9 \pm 2.7) \times 10^{-4}$	692
$K\overline{K}\eta$	$(10 \pm 5) \times 10^{-3}$	1265
$\pi^+\pi^-p\overline{p}$	$(5.3 \pm 1.8) \times 10^{-3}$	1027

Radiative decays

 $\gamma\gamma$ ($1.57\pm0.12)\times10^{-4}$ 1492

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

		• •	_		
$\pi^+\pi^-$	P,CP <	1.1	\times 10 ⁻⁴	90%	1485
$\pi^0\pi^0$	P,CP <	3.5	\times 10 ⁻⁵	90%	1486
K^+K^-	P,CP <	6	\times 10 ⁻⁴	90%	1408
$K_S^0 K_S^0$	P,CP <	3.1	\times 10 ⁻⁴	90%	1406

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.916\pm0.011$ MeV Full width $\Gamma=92.9\pm2.8$ keV (S = 1.1) $\Gamma_{e\,e}=5.55\pm0.14\pm0.02$ keV

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level (MeV/ c)
hadrons	(87.7 ± 0.5) %	_
virtual $\gamma ightarrow $ hadrons	(13.50 ± 0.30)%	_
ggg	(64.1 ± 1.0) %	_
$\gamma g g$	(8.8 ± 1.1) %	_
e^+e^-	$(5.971\pm0.032)\%$	1548
$e^+e^-\gamma$	[rraa] (8.8 ± 1.4) $ imes 10$	-3 1548
$\mu^+\mu^-$	(5.961 ± 0.033) %	1545

HTTP://PDG.LBL.GOV

Page 114

Decays involving hadronic resonances

Decays inv	o. v6	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		
$\rho\pi$				± 0.15			S=2.4	1448
$ ho^0 \pi^0$) × 10 ⁻	-3		1448
$a_2(1320) \rho$		•		± 0.22	•	2		1123
$\omega \pi^+ \pi^+ \pi^- \pi^-$) × 10 ⁻⁷			1392
$\omega \pi^+ \pi^- \pi^0$) × 10 ⁻			1418
$\omega \pi^+ \pi^-$		(8.	6	± 0.7) × 10 ⁻¹	-3	S=1.1	1435
$\omega f_2(1270)$) × 10 ⁻¹			1142
$K^*(892)^0 \overline{K}^*(892)^0$		(2.	3	± 0.7) × 10 ⁻	-4		1266
$K^*(892)^{\pm} K^*(892)^{\mp}$		(1.	00	$+0.22 \\ -0.40$) × 10	-3		1266
$K^*(892)^{\pm} K^*(800)^{\mp}$) × 10			_
$\eta K^*(892)^0 \overline{K}^*(892)^0$) × 10 ⁻¹			1003
$K^*(892)^0\overline{K}_2^*(1430)^0+$ c.c.		(6.	0	± 0.6) × 10 ⁻¹	-3		1012
$K^*(892)^0 \overline{K}_2(1770)^0 + \text{c.c.} \rightarrow$		(6.	9	± 0.9) × 10 ⁻	-4		_
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$						2		
$\omega K^*(892)\overline{K} + \text{c.c.}$) × 10			1097
$K^+K^*(892)^- + \text{c.c.}$) × 10			1373
$K^{+}K^{*}(892)^{-} + \text{c.c.} \rightarrow$		(1.	97	± 0.20) × 10 ⁻	-3		_
$K^{+}K^{-}\pi^{0}$ $K^{+}K^{*}(892)^{-} + \text{c.c.} \rightarrow$		(3.	0	±0.4) × 10 ⁻	-3		_
$K^0 K^{\pm} \pi^{\mp} + \text{c.c.}$ $K^0 \overline{K}^* (892)^0 + \text{c.c.}$		(1	20	. 0 21) 10 ⁻	-3		1070
$(692)^{4} + 6.6.$) × 10			1373
$K^0\overline{K}^*(892)^0+ ext{c.c.} ightarrow K^0K^\pm\pi^\mp+ ext{c.c.}$		(3	2	±0.4) × 10 ⁻	J		_
$K_1(1400)^{\pm} K^{\mp}$		(3	Q	⊥1 <i>1</i>) × 10 ⁻	-3		1170
$\frac{K_1(1400)}{K^*(892)^0}K^+\pi^- + \text{c.c.}$				⊥1.4) ^ 10			1343
$\omega \pi^0 \pi^0$		see (3.		⊥ ∩ 0) × 10 ⁻¹	-3		1436
$b_1(1235)^{\pm}\pi^{\mp}$	[مم]	•			$) \times 10^{-}$			1300
	[gg]	(3.	4	±0.5) × 10	-3		
$\omega K^{\pm} K_{S}^{0} \pi^{\mp}$	[gg]) × 10			1210
$b_1(1235)^0\pi^0$		(2	3	±0.6) × 10	_3		1300
$\eta K^{\pm} K_S^0 \pi^{\mp}$	[gg]	(2.) × 10			1278
$\phi K^*(892)\overline{K} + \text{c.c.}$) × 10 ⁻			969
$\omega K \overline{K}$) × 10 ⁻			1268
$\omega f_0(1710) \rightarrow \omega K K$) × 10 ⁻¹			878
$\phi 2(\pi^+\pi^-)$) × 10 ⁻			1318
Δ (1232) ⁺⁺ $\overline{p}\pi$) × 10			1030
$\omega \eta$) × 10		S=1.6	1394
$\phi K \overline{K}$) × 10 ⁻¹		S=1.5	1179
$\phi f_0(1710) \rightarrow \phi K K$) × 10 ⁻			875
$\phi f_2(1270)$) × 10 ⁻			1036
$\Delta(1232)^{++} \overline{\Delta}(1232)^{}$) × 10 ⁻¹			938
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$ (or c.c.)	[gg]	(1.	10	± 0.12) × 10 ⁻¹			697
$\phi f_2'(1525)$		8)		± 4) × 10 ⁻¹	-4	S=2.7	871

						_		
$\phi \pi^+ \pi^-$		(9.4	± 0.9		< 10 ⁻⁴	S=1.2	1365
$\phi \pi^0 \pi^0$		(5.6	± 1.6		10-4		1366
$\phi K^{\pm} K_S^0 \pi^{\mp}$	[gg]	(7.2	± 0.8		10^{-4}		1114
$\omega f_1(1420)$		(6.8	± 2.4		10^{-4}		1062
$\phi\eta$		(7.5	± 0.8) ×	$< 10^{-4}$	S=1.5	1320
=0 $=0$		(1.20	± 0.24) ×	10^{-3}		818
$\Xi(1530)^{-}\overline{\Xi}^{+}$		(5.9	±1.5		$< 10^{-4}$		600
$pK^{-}\overline{\Sigma}(1385)^{0}$		(5.1	± 3.2) ×	$< 10^{-4}$		646
$\omega\pi^0$		(4.5	± 0.5) ×	< 10 ^{−4}	S=1.4	1446
$\phi \eta'(958)$		(4.0	± 0.7		$< 10^{-4}$	S=2.1	1192
$\phi f_0(980)$		(3.2	± 0.9) ×	$< 10^{-4}$	S=1.9	1178
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$		(1.8	± 0.4) ×	< 10 ^{−4}		_
$\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$		(1.7	± 0.7) ×	10^{-4}		_
$\eta \phi f_0(980) \rightarrow \eta \phi \pi^+ \pi^-$		(3.2	± 1.0		10^{-4}		_
$\phi a_0(980)^0 \rightarrow \phi \eta \pi^0$		(5	± 4) ×	10^{-6}		_
$\Xi(1530)^{0}\overline{\Xi}^{0}$		(3.2	± 1.4) ×	10^{-4}		608
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)	[gg]	(± 0.5) ×	10^{-4}		855
$\phi f_1(1285)$	[00]	(2.6	± 0.5		10-4	S=1.1	1032
$\eta \pi^+ \pi^-$		(4.0	± 1.7		10-4		1487
$\rho\eta$		(±0.23				1396
$\omega \eta'(958)$		(±0.21				1279
$\omega f_0(980)$		(1.4			10-4		1267
$\rho \eta'(958)$		(±0.18				1281
$a_2(1320)^{\pm}\pi^{\mp}$	[gg] <	<	4.3		, ×	10-3	CL=90%	1263
$K\overline{K}_{2}^{*}(1430) + \text{c.c.}$		<	4.0			10-3	CL=90%	1159
$K_1(1270)^{\pm}K^{\mp}$	<	<	3.0			10-3	CL=90%	1231
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$		` <	2.9			10-3	CL=90%	604
$\phi \pi^0$		`	6.4			10-6	CL=90%	1377
$\phi \eta (1405) \rightarrow \phi \eta \pi \pi$		<	2.5			10 ⁻⁴	CL=90%	946
$\omega f_2'(1525)$		<				10-4	CL=90%	1003
$\omega X(1835) \rightarrow \omega p \overline{p}$			3.9			10 ⁻⁶	CL=95%	_
$\eta \phi(2170) ightarrow$			2.52			10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	CL=90%	_
$\eta K^*(892)^0 \overline{K}^*(892)^0$		_	2.52		^	\ 10	CL=9070	
$\Sigma(1385)^{0}\overline{\Lambda}+\text{c.c.}$			8.2		V	10-6	CL=90%	912
$\Delta(1232)^+\overline{p}$			1			10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	CL=90%	1100
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$			4.1			10 × 10 × 10 × 10 × 10 × 10	CL=90%	1100
$\Theta(1540)\overline{\Theta}(1540) \rightarrow$			1.1			10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	CL=90%	
$K_S^0 p K^- \overline{n} + \text{c.c.}$		_	1.1		^	. 10	CL—90 /0	
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$			2 1			× 10 ⁻⁵	CL 000/	
			2.1			_	CL=90%	_
$\Theta(1540) K_S^0 \overline{p} \to K_S^0 \overline{p} K^+ n$			1.6			(10 ⁻⁵	CL=90%	_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$			5.6			< 10 ⁻⁵	CL=90%	_
$\overline{\Theta}(1540) K_S^0 p \rightarrow K_S^0 p K^- \overline{n}$			1.1			× 10 ⁻⁵	CL=90%	_
$\Sigma^0 \overline{\Lambda}$	<	<	9		×	10 ⁻⁵	CL=90%	1032

Decays into stable hadrons

	Decays into stable hadrons		
$2(\pi^{+}\pi^{-})\pi^{0}$	(4.1 \pm 0.5) %	S=2.4	1496
$3(\pi^+\pi^-)\pi^0$	(2.9 \pm 0.6) %		1433
$\pi^{+}\pi^{-}\pi^{0}$	(2.11 ± 0.07) %	S=1.5	1533
$\pi^+\pi^-\pi^0 \mathit{K}^+ \mathit{K}^-$	(1.79 ± 0.29) %	S=2.2	1368
$4(\pi^+\pi^-)\pi^0$	$(9.0 \pm 3.0) \times 10^{-3}$		1345
$\pi^+\pi^-K^+K^-$	$(6.6 \pm 0.5) \times 10^{-3}$		1407
$\pi^+\pi^-$ K $^+$ K $^ \eta$	$(1.84 \pm 0.28) \times 10^{-3}$		1221
$\pi^0\pi^0$ K $^+$ K $^-$	$(2.45 \pm 0.31) \times 10^{-3}$		1410
$K\overline{K}\pi$	$(6.1 \pm 1.0) \times 10^{-3}$		1442
$2(\pi^{+}\pi^{-})$	$(3.57 \pm 0.30) \times 10^{-3}$		1517
$3(\pi^{+}\pi^{-})$	$(4.3 \pm 0.4) \times 10^{-3}$		1466
$2(\pi^{+}\pi^{-}\pi^{0})$	(1.62 ± 0.21) %		1468
$2(\pi^{+}\pi^{-})\eta$	$(2.29 \pm 0.24) \times 10^{-3}$		1446
$3(\pi^{+}\pi^{-})\eta$	$(7.2 \pm 1.5) \times 10^{-4}$		1379
р <u></u>	$(2.120\pm0.029)\times10^{-3}$		1232
$p\overline{p}\pi^0$	$(1.19 \pm 0.08) \times 10^{-3}$	S=1.1	1176
$p\overline{p}\pi^+\pi^-$	$(6.0 \pm 0.5) \times 10^{-3}$	S=1.3	1107
$p\overline{p}\pi^+\pi^-\pi^0$	[ssaa] (2.3 ± 0.9) $ imes 10^{-3}$	S=1.9	1033
$p\overline{p}\eta$	$(2.00 \pm 0.12) \times 10^{-3}$		948
$p\overline{p}\rho$	$< 3.1 \times 10^{-4}$	CL=90%	774
$p\overline{p}\omega$	$(9.8 \pm 1.0) \times 10^{-4}$	S=1.3	768
$p\overline{p}\eta'(958)$	$(2.1 \pm 0.4) \times 10^{-4}$		596
$p\overline{p}\phi$	(4.5 ± 1.5) $ imes 10^{-5}$		527
n n	$(2.09 \pm 0.16) \times 10^{-3}$		1231
$n\overline{n}\pi^+\pi^-$	$(4 \pm 4) \times 10^{-3}$		1106
$\Sigma + \overline{\Sigma}$	$(1.50 \pm 0.24) \times 10^{-3}$		992
$\Sigma^0 \overline{\Sigma}{}^0$	$(1.29 \pm 0.09) \times 10^{-3}$		988
$2(\pi^{+}\pi^{-})K^{+}K^{-}$	$(4.7 \pm 0.7) \times 10^{-3}$	S=1.3	1320
$p\overline{n}\pi^-$	$(2.12 \pm 0.09) \times 10^{-3}$		1174
n N(1440)	seen		984
n N(1520)	seen		928
n N(1535)	seen		914
<u>=-=</u> +	$(8.6 \pm 1.1) \times 10^{-4}$	S=1.2	807
$\Lambda \overline{\Lambda}$	$(1.61 \pm 0.15) \times 10^{-3}$	S=1.9	1074
$\Lambda \overline{\Sigma}^- \underline{\pi}^+$ (or c.c.)	[gg] (8.3 ± 0.7) $\times 10^{-4}$	S=1.2	950
$pK^{-}\overline{\Lambda}$	$(8.9 \pm 1.6) \times 10^{-4}$		876
$2(K^{+}K^{-})$	$(7.6 \pm 0.9) \times 10^{-4}$		1131
$pK^{-}\overline{\Sigma}^{0}$	$(2.9 \pm 0.8) \times 10^{-4}$		819
K^+K^-	$(2.70 \pm 0.17) \times 10^{-4}$		1468
$K_S^0 K_L^0$	$(2.1 \pm 0.4) \times 10^{-4}$	S=3.2	1466
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(4.3 ± 1.0) $\times 10^{-3}$		903
$\Lambda \overline{\Lambda} \eta$	(1.62 ± 0.17) $\times 10^{-4}$		672
$\Lambda \overline{\Lambda} \pi^0$	$(3.8 \pm 0.4) \times 10^{-5}$		998

$\overline{\Lambda}nK_{S}^{0}+\text{c.c.}$	(6	5.5	± 1.1) × 10 ⁻⁴		872
$\pi^+\pi^-$				$) \times 10^{-4}$		1542
$\Lambda \overline{\Sigma} + \text{c.c.}$				$) \times 10^{-5}$		1034
$K_S^0 K_S^0$	< 1	1		$\times 10^{-6}$	CL=95%	1466
Radi	ative	dec	avs			
3γ			-) × 10 ⁻⁵		1548
4γ	< 9			× 10 ⁻⁶	CL=90%	1548
5γ		1.5		× 10 ⁻⁵	CL=90%	1548
$\gamma \eta_c(1S)$			±0.4		S=1.6	111
$\gamma \eta_c(1S) \rightarrow 3\gamma$,) × 10 ⁻⁶	S=1.1	_
$\gamma \pi^+ \pi^- 2\pi^0$	(8) × 10 ⁻³		1518
$\gamma \eta \pi \pi$	`			$) \times 10^{-3}$		1487
$\gamma \eta_2$ (1870) $\rightarrow \gamma \eta \pi^+ \pi^-$	`			$) \times 10^{-4}$		_
$\gamma \eta (1405/1475) \rightarrow \gamma K \overline{K} \pi$ [6]	`		± 0.6	$) \times 10^{-3}$	S=1.6	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho^0$	` `) × 10 ⁻⁵	S=1.8	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \eta \pi^+ \pi^-$	(3		± 0.5	$) \times 10^{-4}$		_
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \phi$	< 8	3.2		$\times 10^{-5}$	CL=95%	_
$\gamma \rho \rho$	(4	4.5	± 0.8	$) \times 10^{-3}$		1340
$\gamma ho \omega$	< 5	5.4		$\times 10^{-4}$	CL=90%	1338
$\gamma ho \phi$	< 8			\times 10 ⁻⁵	CL=90%	1258
$\gamma \eta'(958)$				$) \times 10^{-3}$	S=1.2	1400
$\gamma 2\pi^+ 2\pi^-$				$) \times 10^{-3}$	S=1.9	1517
$\gamma f_2(1270) f_2(1270)$	`			$) \times 10^{-4}$		879
$\gamma f_2(1270) f_2(1270)$ (non resonant)	3)	3.2	± 1.9) × 10 ⁻⁴		_
$\gamma K^+ K^- \pi^+ \pi^-$	(2	2.1	± 0.6	$) \times 10^{-3}$		1407
$\gamma f_4(2050)$				$) \times 10^{-3}$		891
$\gamma\omega\omega$	(1	1.61	± 0.33	$) \times 10^{-3}$		1336
$\gamma\eta(1405/1475) \rightarrow \gamma\rho^0\rho^0$				$) \times 10^{-3}$	S=1.3	1223
$\gamma f_2(1270)$	(1	1.43	± 0.11	$) \times 10^{-3}$		1286
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(8	3.5	$^{+1.2}_{-0.9}$	$)\times 10^{-4}$	S=1.2	1075
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(4	4.0	± 1.0	$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	•			$) \times 10^{-4}$		_
$\gamma\eta$				$(1) \times 10^{-3}$		1500
$\gamma f_1(1420) \rightarrow \gamma K K \pi$				$) \times 10^{-4}$		1220
$\gamma f_1(1285)$	•			$) \times 10^{-4}$		1283
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	(4) × 10 ⁻⁴		_
$\gamma f_2'(1525)$	(4	4.5	$+0.7 \\ -0.4$	$) \times 10^{-4}$		1173
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$	(2	2.8	± 1.8	$) \times 10^{-4}$		_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	`		± 1.4	$) \times 10^{-4}$		_
$\gamma f_0(1800) \rightarrow \gamma \omega \phi$	(2	2.5	± 0.6	$) \times 10^{-4}$		_

$\gamma f_2(1950) ightarrow$	(7.0	± 2.2) × 10 ⁻⁴		_
$\gamma K^*(892) \overline{K}^*(892)$						
$\gamma K^*(892)\overline{K}^*(892)$	(4.0	± 1.3	$) \times 10^{-3}$		1266
$\gamma \phi \phi$	(4.0	± 1.2	$) \times 10^{-4}$	S=2.1	1166
$\gamma \rho \overline{\rho}$	(3.8	± 1.0	$) \times 10^{-4}$		1232
$\gamma \eta$ (2225)	(3.3	± 0.5	$) \times 10^{-4}$		749
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$,	1.3		$) \times 10^{-4}$		1048
$\gamma \eta(1760) \rightarrow \gamma \omega \omega$	(1.98	± 0.33	$) \times 10^{-3}$		_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	(2.6	± 0.4	$) \times 10^{-4}$		1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(7.7	$^{+1.5}_{-0.9}$	$) \times 10^{-5}$		_
$\gamma X(1840) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4	$^{+0.7}_{-0.8}$	$) \times 10^{-5}$		_
$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$	(7	± 4	$) \times 10^{-4}$	S=2.1	1442
$\gamma \pi^0$	(3.49) × 10 ⁻⁵		1546
$\gamma \rho \overline{\rho} \pi^+ \pi^-$	<	7.9		$\times10^{-4}$	CL=90%	1107
$\gamma \Lambda \overline{\Lambda}$	<	1.3		$\times 10^{-4}$	CL=90%	1074
$\gamma f_J(2220)$	>	2.50		$\times10^{-3}$	CL=99.9%	745
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	(8	± 4	$) \times 10^{-5}$		_
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	<	3.6		$\times 10^{-5}$		_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	(1.5	± 0.8	$) \times 10^{-5}$		_
$\gamma f_0(1500)$	(1.01	± 0.32	$) \times 10^{-4}$		1183
$\gamma A \rightarrow \gamma$ invisible	[ttaa]<	6.3		$\times 10^{-6}$	CL=90%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[uuaa] <	2.1		$\times 10^{-5}$	CL=90%	_
	Weak	decay	ys			
$D^{-}e^{+}\nu_{e}+{ m c.c.}$	<	1.2		$\times10^{-5}$	CL=90%	984
$\overline{D}{}^{0} e^{+} e^{-} + \text{c.c.}$	<	1.1		$\times10^{-5}$	CL=90%	987
$D_{s}^{-}e^{+}\nu_{e}+\text{c.c.}$	<	3.6		$\times10^{-5}$	CL=90%	923
$D^{-}\pi^{+}$ + c.c.	<	7.5		$\times10^{-5}$	CL=90%	977
$\overline{D}{}^0\overline{K}{}^0+$ c.c.	<	1.7		$\times10^{-4}$	CL=90%	898
$D_{s}^{-}\pi^{+}$ + c.c.	<	1.3		$\times10^{-4}$	CL=90%	916
3			\ D'	- (D)		
Charge conjugation (C) , Parity (P) , Lepton Family number (LF) violating modes						
-	(•	<i>)</i> viola	$\times 10^{-6}$	CL=90%	1548
$\begin{array}{ccc} \gamma \gamma & \mathcal{C} & \mathcal{C} \\ e^{\pm} \mu^{\mp} & \mathcal{L} \mathcal{F} \end{array}$		1.6		$\times 10$ $\times 10^{-7}$	CL=90%	1547
$e^{\pm} au^{\mp}$ LF		8.3		\times 10 \times 10 ⁻⁶	CL=90%	1039
$\mu^{\pm} au^{\mp}$ LF		2.0		× 10 × 10 −6	CL=90%	1035
				× 10	CL-30/0	1000
	Other	deca	ys	-		
invisible	<	7		\times 10 ⁻⁴	CL=90%	_

$\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.75\pm0.31~{\rm MeV}$ Full width $\Gamma=10.5\pm0.6~{\rm MeV}$

		Scale factor/				
$\chi_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)			
Hadronic decays						
$2(\pi^{+}\pi^{-})$	$(2.24\pm0.18)\%$		1679			
$ ho^{0}\pi^+\pi^-$	$(8.7 \pm 2.8) \times 10^{-2}$	₀ –3	1607			
$f_0(980)f_0(980)$	$(6.5 \pm 2.1) \times 10$	0^{-4}	1391			
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(3.3 \pm 0.4) %		1680			
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}+\text{c.c.}$ $4\pi^{0}$	(2.8 \pm 0.4) %		1607			
	$(3.2 \pm 0.4) \times 10^{-2}$	₀ –3	1681			
$\pi^+\pi^-K^+K^-$	$(1.75\pm0.14)~\%$		1580			
$K_0^*(1430)^0\overline{K}_0^*(1430)^0 ightarrow \pi^+\pi^-K^+K^-$	$(9.6 \begin{array}{c} +3.5 \\ -2.8 \end{array}) \times 10^{-1}$	0 ⁻⁴	_			
$K_0^*(1430)^0 \overline{K}_2^*(1430)^0 + \text{c.c.} \rightarrow \pi^+\pi^-K^+K^-$	$(7.8 \begin{array}{c} +1.9 \\ -2.4 \end{array}) \times 10^{-1}$	0 ⁻⁴	_			
$K_1(1270)^+K^- + \text{c.c.} \rightarrow \pi^+\pi^-K^+K^-$	$(6.1 \pm 1.9) \times 10^{-2}$	0-3	_			
$K_1(1400)^+K^- + \text{c.c.} \rightarrow \pi^+\pi^-K^+K^-$	< 2.6 × 10	0^{-3} CL=90%	_			
$f_0(980) f_0(980)$	$(1.6 \ ^{+1.0}_{-0.9}) \times 10^{-1}$	0 ⁻⁴	1391			
$f_0(980) f_0(2200)$	$(7.8 \begin{array}{c} +2.0 \\ -2.5 \end{array}) \times 10^{-2}$	0^{-4}	584			
$f_0(1370) f_0(1370)$	< 2.7 × 10		1019			
$f_0(1370) f_0(1500)$	$< 1.7 \times 10$	$^{-4}$ CL=90%	920			
$f_0(1370) f_0(1710)$	$(6.6 \ ^{+3.5}_{-2.3}) \times 10^{-1}$	0^{-4}	721			
$f_0(1500) f_0(1370)$	< 1.3 × 10		920			
$f_0(1500) f_0(1500)$	< 5 × 10		805			
$f_0(1500) f_0(1710)$	< 7 × 10	0^{-5} CL=90%	557			
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.11\pm0.26)~\%$		1545			
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(5.4 \pm 0.9) \times 10$	₀ –3	1582			
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0} + \text{c.c.}$	(2.44 ± 0.33) %		1581			
$\rho^{+}K^{-}K^{0} + \text{c.c.}$	$(1.18\pm0.21)~\%$	2	1458			
$K^*(892)^- \frac{K^+ \pi^0}{K^0 \pi^0 + CC}$	$(4.5 \pm 1.1) \times 10$	ე—3	_			
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$ $K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	$(5.6 \pm 1.0) \times 10$	0-3	1579			
$K^+K^-\eta\pi^0$	$(3.0 \pm 0.7) \times 10$	₀ -3	1468			
$3(\pi^{+}\pi^{-})$	(1.20 ± 0.18) %		1633			
$K + \overline{K}^* (892)^0 \pi^- + \text{c.c.}$	$(7.2 \pm 1.6) \times 10^{-2}$	₀ –3	1523			
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.7 \pm 0.6) \times 10^{-1}$	0-3	1456			

$\pi\pi$	$(8.33\pm0.35)\times10^{-1}$	₀ –3	1702
$\pi^0 \eta$	< 1.8 × 1	0-4	1661
$\pi^0 \eta'$	< 1.1 × 1	0-3	1570
$\eta\eta$	$(2.95\pm0.19)\times10^{-1}$		1617
$\eta\eta'$	< 2.3 × 1	$^{-4}$ CL=90%	1521
$\eta' \eta'$	$(1.96\pm0.21)\times10^{-1}$	₀ –3	1413
$\omega\omega$	$(9.5 \pm 1.1) \times 10$		1517
$\omega \phi$	$(1.16\pm0.21)\times10^{-1}$	0-4	1447
K^+K^-	$(5.91\pm0.32)\times10^{-1}$	₀ –3	1634
$K_S^0 K_S^0$	$(3.10\pm0.18)\times10^{-1}$	₀ –3	1633
$\pi + \pi - \eta$	< 1.9 × 10	$^{-4}$ CL=90%	1651
$\pi^+\pi^-\eta'$	< 3.5 × 10	$^{-4}$ CL=90%	1560
$\overline{K}^{0}K^{+}\pi^{-}+\text{c.c.}$	< 9 × 10	0^{-5} CL=90%	1610
$K^+K^-\pi^0$	< 6 × 1	0^{-5} CL=90%	1611
$K^+K^-\eta$	< 2.2 × 10	$^{-4}$ CL=90%	1512
$K^+K^-\overset{'}{K}^0_SK^0_S$	$(1.4 \pm 0.5) \times 10^{-2}$	0-3	1331
$K^+K^-K^+K^-$	$(2.75\pm0.28)\times10^{-2}$		1333
$K^+K^-\phi$	$(9.5 \pm 2.4) \times 10^{-1}$		1381
$\phi\phi$	$(7.7 \pm 0.7) \times 10^{-1}$		1370
$p\overline{p}$	$(2.25\pm0.09)\times10^{-2}$		1426
$p \overline{p} \pi^0$	$(6.8 \pm 0.7) \times 10^{-2}$		1379
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-2}$		1187
$p \overline{p} \omega$	$(5.1 \pm 0.6) \times 10^{\circ}$		1043
$p\overline{p}\phi$	$(5.9 \pm 1.4) \times 10^{\circ}$		876
$p\overline{p}\pi^+\pi^-$	$(2.1 \pm 0.7) \times 10^{-2}$	_	1320
$p \overline{p} \pi^0 \pi^0$	$(1.02\pm0.27)\times10^{-2}$		1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.19\pm0.26)\times10^{-2}$	_	890
$p\overline{p}K_S^0K_S^0$		$_{0}^{-4}$ CL=90%	884
$p \overline{n} \pi^-$	$(1.24\pm0.11)\times10^{-1}$		1376
$\frac{p}{p}n\pi^+$	$(1.34\pm0.12)\times10^{-1}$		1376
$p \overline{n} \pi^- \pi^0$	$(2.29\pm0.21)\times10^{-2}$		1321
$\frac{7}{p}n\pi^{+}\pi^{0}$	$(2.16\pm0.18)\times10^{-2}$		1321
$\Lambda \overline{\Lambda}$	$(3.21\pm0.25)\times10^{-2}$		1292
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.15\pm0.13)\times10^{-2}$		1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)		$_{0}^{-4}$ CL=90%	1153
$\Sigma(1385)^{+} \overline{\Lambda} \pi^{-} + \text{c.c.}$		0^{-4} CL=90%	1083
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.}$		0^{-4} CL=90%	1083
$K^{+}\overline{p}\Lambda + c.c.$	$(1.22\pm0.12)\times10^{-1}$		1132
$K^{+} \frac{7}{p} \Lambda(1520) + \text{c.c.}$	$(2.9 \pm 0.7) \times 10^{-2}$		858
$\Lambda(1520)\overline{\Lambda}(1520)$	$(3.1 \pm 1.2) \times 10^{-1}$		779
$\Sigma^0 \overline{\Sigma}^0$	$(4.4 \pm 0.4) \times 10^{-1}$		1222
$\Sigma^{+} \overline{\Sigma}^{-}$	$(3.9 \pm 0.7) \times 10^{-1}$		1225
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$(1.6 \pm 0.6) \times 10^{-1}$		1001
	,		

$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	$(2.3 \pm 0.6) \times 10^{-4}$	1001
<u>=</u> 0 <u>=</u> 0	$(3.1 \pm 0.8) \times 10^{-4}$	1089
<u>=</u> − = +	$(4.7 \pm 0.7) \times 10^{-4}$	1081

Radiative decays

	_			
$\gamma J/\psi(1S)$	(1.27 ± 0.00)	.06) %		303
$\gamma \rho^0$	< 9	\times 10 ⁻⁶	CL=90%	1619
$\gamma \omega$	< 8	$\times 10^{-6}$	CL=90%	1618
$\gamma \phi$	< 6	\times 10 ⁻⁶	CL=90%	1555
$\gamma\gamma$	(2.23 ± 0.6)	$.13) \times 10^{-4}$		1707

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m = 3510.66 \pm 0.07 \text{ MeV}$ (S = 1.5) Full width $\Gamma=0.84\pm0.04~\text{MeV}$

Y-1((1 <i>P</i>)	DECAY	MODES
Xc11		DECAI	INIODES

Fraction (Γ_i/Γ)

Scale factor/ Confidence level (MeV/c)

$\chi_{c1}(1P)$ DECAY MODES	Fraction (1 ;/1)	Confidence leve	(IVIEV/C)
н	ladronic decays		
$3(\pi^{+}\pi^{-})$	$(5.8 \pm 1.4) \times$	10^{-3} S=1.2	1683
$2(\pi^{+}\pi^{-})$	(7.6 \pm 2.6) $ imes$	10^{-3}	1728
$\pi^+\pi^-\pi^0\pi^0$	$(1.22\pm0.16)\%$		1729
$ ho^{+}\pi^{-}\pi^{0}+$ c.c.	$(1.48\pm0.25)\%$, 0	1658
$ ho^{+}\pi^{-}\pi^{0}+\text{c.c.} ho^{0}\pi^{+}\pi^{-} ho^{0}\pi^{0}\pi^{0}$	(3.9 \pm 3.5) \times	10^{-3}	1657
$4\pi^0$	(5.5 \pm 0.8) $ imes$		1729
$\pi^+\pi^-$ K $^+$ K $^-$	(4.5 ± 1.0) $ imes$		1632
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(1.14\pm0.28) \times$		1634
$K^{+}\pi^{-}\overline{K^{0}}\pi^{0}$ + c.c.	(8.7 ± 1.4) $ imes$		1632
$\rho^- K^+ \overline{K}^0 + \text{c.c.}$	(5.1 ± 1.2) $ imes$		1514
$K^*(892)^0\overline{K}^0\pi^0$	(2.4 ± 0.7) $ imes$	10^{-3}	_
$K^+ \pi^- \overline{K}{}^0 \pi^0 + \text{c.c.}$ $K^+ K^- \eta \pi^0$		2	
	$(1.14\pm0.35) \times$		1523
$\pi^+\pi^-K^0_SK^0_S$	(7.0 \pm 3.0) \times		1630
$K^+K^-\eta$	(3.2 ± 1.0) \times		1566
$\overline{K}^{0}K^{+}\pi^{-} + \text{c.c.}$	(7.1 \pm 0.6) $ imes$		1661
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	(1.0 \pm 0.4) $ imes$		1602
$K^*(892)^+K^- + \text{c.c.}$	($1.5~\pm0.7$) $ imes$	4	1602
$K_J^*(1430)^0\overline{K}^0+\text{c.c.} o$	< 8 ×	10^{-4} CL=90%	, –
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K_J^*(1430)^+ K^- + { m c.c.} ightarrow$	< 2.2 ×	10^{-3} CL=90%	, –
$K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$			
$K^+K^-\pi^0$	(1.85±0.25) ×	10-3	1662
$\eta \pi^+ \pi^-$	(4.9 ±0.5)×		1701
$a_0(980)^+\pi^- + \text{c.c.} \rightarrow \eta \pi^+\pi^-$			_
,	,		

HTTP://PDG.LBL.GOV

Page 122

$f_2(1270)\eta$	$(2.7 \pm 0.8) \times 10^{-3}$		1468
$\pi^+\pi^-\eta'$	$(2.3 \pm 0.5) \times 10^{-3}$		1612
$\pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$	$< 6 \times 10^{-6}$	CL=90%	_
$K^{+} \frac{6}{K} * (892)^{0} \pi^{-} + \text{c.c.}$	$(3.2 \pm 2.1) \times 10^{-3}$		1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.5 \pm 0.4) \times 10^{-3}$		1512
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	$< 4 \times 10^{-4}$	CL=90%	1390
$K^{+}K^{-}K^{+}K^{-}$	$(5.5 \pm 1.1) \times 10^{-4}$		1393
$K^+K^-\phi$	$(4.2 \pm 1.6) \times 10^{-4}$		1440
$\omega\omega$	$(5.8 \pm 0.7) \times 10^{-4}$		1571
$\omega\phi$	$(2.1 \pm 0.6) \times 10^{-5}$		1503
$\phi \overset{'}{\phi}$	$(4.2 \pm 0.5) \times 10^{-4}$		1429
$p\overline{\overline{p}}$	$(7.72\pm0.35)\times10^{-5}$		1484
$p \overline{p} \pi^0$	$(1.59\pm0.19)\times10^{-4}$		1438
$p\overline{p}\eta$	$(1.48\pm0.25)\times10^{-4}$		1254
$p\overline{p}\omega$	$(2.16\pm0.31)\times10^{-4}$		1117
$p\overline{p}\phi$	$< 1.8 \times 10^{-5}$	CL=90%	962
$ ho \overline{ ho} \pi^+ \pi^-$	(5.0 ± 1.9) $\times 10^{-4}$		1381
$p\overline{p}K^+K^-$ (non-resonant)	$(1.30\pm0.23)\times10^{-4}$		974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
$p\overline{n}\pi^{-}$	$(3.9 \pm 0.5) \times 10^{-4}$		1435
$\overline{p}n\pi^+$	(4.0 ± 0.5) $ imes 10^{-4}$		1435
$p\overline{n}\pi^-\pi^0$	$(1.05\pm0.12)\times10^{-3}$		1383
$\frac{1}{p} \underline{n} \pi^+ \pi^0$	$(1.03\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.16\pm0.12)\times10^{-4}$		1355
$\Lambda \overline{\Lambda} \underline{\pi}^+ \underline{\pi}^-$	$(3.0 \pm 0.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^- (\underline{n} on-resonant)$	$(2.5 \pm 0.6) \times 10^{-4}$		1223
$\Sigma(1385)^+\overline{\Lambda}\pi^-+$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.}$	$< 1.3 \times 10^{-4}$	CL=90%	1157
$K^{+}\overline{p}\Lambda$	$(4.2 \pm 0.4) \times 10^{-4}$	S=1.1	1203
$K^{+}\overline{p}\Lambda(\underline{15}20)+\text{ c.c.}$	$(1.7 \pm 0.5) \times 10^{-4}$		950
$\Lambda(1520)\overline{\Lambda}(1520)$ $\Sigma^{0}\overline{\Sigma}^{0}$	$< 1.0 \times 10^{-4}$	CL=90%	879
	$< 4 \times 10^{-5}$	CL=90%	1288
$\Sigma + \overline{\Sigma} -$	$< 6 \times 10^{-5}$	CL=90%	1291
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 1.0 \times 10^{-4}$	CL=90%	1081
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$ = $0 = 0$	$< 5 \times 10^{-5}$	CL=90%	1081
_	$< 6 \times 10^{-5}$	CL=90%	1163
<u>=-=</u> +	$(8.2 \pm 2.2) \times 10^{-5}$		1155
$\pi^{+}\pi^{-} + K^{+}K^{-}$	$< 2.1 \times 10^{-3}$		_
$K_S^0 K_S^0$	$< 6 \times 10^{-5}$	CL=90%	1683

Radiative decays

$\gamma J/\psi(1S)$	(33.9 ± 1.2) %	389
$\gamma \rho^{0}$	$(2.20\pm0.18)\times10^{-4}$	1670
$\gamma \omega$	$(6.9 \pm 0.8) \times 10^{-5}$	1668
$\gamma \phi$	$(2.5 \pm 0.5) \times 10^{-5}$	1607

$h_c(1P)$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

Mass $m=3525.38\pm0.11~\mathrm{MeV}$ Full width $\Gamma=0.7\pm0.4$ MeV

$h_c(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi\pi$	not seen		312
p p	< 1.5 × 10	-4 90%	1492
$\eta_c(1S)\gamma$	$(51 \pm 6)\%$		500
$\pi^+\pi^-\pi^0$	< 2.2 × 10	_3	1749
$2\pi^{+}2\pi^{-}\pi^{0}$	$(2.2^{+0.8}_{-0.7})\%$		1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 2.9 %		1661

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 3556.20 \pm 0.09 \text{ MeV}$ Full width $\Gamma=1.93\pm0.11~\text{MeV}$

v -0	(1 <i>P</i>)	DECAY	MODES
X c21	\ - '	DECAI	MODES

р

$\chi_{c2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
	Hadronic decays		
$2(\pi^+\pi^-)$	$(1.07\pm0.10)\%$		1751
$\pi^+\pi^-\pi^0\pi^0$	(1.92±0.25) %		1752
$ ho^+\pi^-\pi^0$ + c.c.	(2.3 ± 0.4) %		1682
$4\pi^0$	$(1.16\pm0.16) imes$	₁₀ -3	1752
$\mathit{K^{+}K^{-}\pi^{0}\pi^{0}}$	(2.2 \pm 0.4) $ imes$	₁₀ -3	1658
$K^+\pi^-\overline{K}{}^0\pi^0+$ c.c.	$(1.44\pm0.21)\%$		1657
$ ho^ K^+$ $\overline{K}{}^0+$ c.c.	(4.3 ± 1.3) $ imes$	₁₀ -3	1540
$K^*(892)^0 K^- \pi^+ \to$	($3.1~\pm0.8$) $ imes$	₁₀ -3	_
$K^{-}\pi^{+}K^{0}\pi^{0} + \text{c.c.}$ $K^{*}(892)^{0}\overline{K^{0}}\pi^{0} \rightarrow K^{+}\pi^{-}\overline{K^{0}}\pi^{0} + \text{c.c.}$	(4.0 \pm 0.9) $ imes$	₁₀ -3	_
$K^*(892)^- K^+ \pi^0 \rightarrow$	(3.9 \pm 0.9) $ imes$	10^{-3}	_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$ $K^{*}(892)^{+}\overline{K}^{0}\pi^{-} \rightarrow K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$	(3.1 ±0.8)×	10-3	_

HTTP://PDG.LBL.GOV

Page 124

$\mathcal{K}^+\mathcal{K}^-\eta\pi^0$	$(1.3 \pm 0.5) \times 10^{-3}$		1549
$K^{+}K^{-}\pi^{+}\pi^{-}$	$(8.8 \pm 1.0) \times 10^{-3}$		1656
$K^{+} \underline{K}^{-} \pi^{+} \pi^{-} \pi^{0}$	(1.23±0.34) %		1623
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(2.2 \pm 1.1) \times 10^{-3}$		1602
$K^*(892)^0 \overline{K}^*(892)^0$	$(2.4 \pm 0.5) \times 10^{-3}$		1538
$3(\pi^+\pi^-)$	$(8.6 \pm 1.8) \times 10^{-3}$		1707
$\phi\phi$	$(1.12\pm0.10)\times10^{-3}$		1457
$\omega \omega$	$(8.8 \pm 1.1) \times 10^{-4}$		1597
$\pi\pi$	$(2.33\pm0.12)\times10^{-3}$		1773
$ ho^0\pi^+\pi^-$	$(3.8 \pm 1.6) \times 10^{-3}$		1682
$\pi^+\pi^-\eta$	$(5.0 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	$(5.2 \pm 1.9) \times 10^{-4}$		1636
$\eta \eta$	$(5.7 \pm 0.5) \times 10^{-4}$		1692
K^+K^-	$(1.05\pm0.07)\times10^{-3}$		1708
$K_S^0 K_S^0$	$(5.5 \pm 0.4) \times 10^{-4}$		1707
$\frac{K_{S}^{0}K_{S}^{0}}{K^{0}K^{+}\pi^{-}+\text{c.c.}}$	$(1.34\pm0.19)\times10^{-3}$		1685
$\mathcal{K}^+\mathcal{K}^-\pi^0$	$(3.2 \pm 0.8) \times 10^{-4}$		1686
$K^+K^-\eta$	$<$ 3.4 $\times 10^{-4}$	90%	1592
$\eta\eta'$	$<$ 6 \times 10 ⁻⁵	90%	1600
$\eta' \eta'$	$< 1.0 \times 10^{-4}$	90%	1498
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(2.3 \pm 0.6) \times 10^{-3}$		1655
$K^{+}K^{-}K_{5}^{0}K_{5}^{0}$	< 4 × 10 ⁻⁴	90%	1418
$K^+K^-K^+K^-$	$(1.73\pm0.21)\times10^{-3}$		1421
$K^+K^-\phi$	$(1.48\pm0.31)\times10^{-3}$		1468
$p\overline{p}$	$(7.5 \pm 0.4) \times 10^{-5}$		1510
$p \overline{p} \pi^0$	$(4.9 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.82\pm0.26)\times10^{-4}$		1285
$p\overline{p}\omega$	$(3.8 \pm 0.5) \times 10^{-4}$		1152
$p\overline{p}\phi$	$(2.9 \pm 0.9) \times 10^{-5}$		1002
$p\overline{p}\pi^{+}\pi^{-}$	$(1.32\pm0.34)\times10^{-3}$		1410
$p\overline{p}\pi^0\pi^0$	$(8.2 \pm 2.5) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(2.00\pm0.34)\times10^{-4}$		1013
$p\overline{p}K_S^0K_S^0$	$< 7.9 \times 10^{-4}$	90%	1007
$p\overline{n}\pi^-$	$(8.9 \pm 1.0) \times 10^{-4}$	3070	1463
$\frac{\overline{p}n\pi}{\overline{p}n\pi^+}$	$(9.3 \pm 0.9) \times 10^{-4}$		
$p \overline{n} \pi^- \pi^0$	$(9.3 \pm 0.9) \times 10$ $(2.27 \pm 0.19) \times 10^{-3}$		1463 1411
$\frac{\overline{p}n\pi^{+}\pi^{0}}{\overline{p}n\pi^{+}\pi^{0}}$	$(2.21\pm0.19)\times10$ $(2.21\pm0.20)\times10^{-3}$		1411
$\Lambda \overline{\Lambda}$	$(2.21\pm0.20)\times10^{-4}$ $(1.92\pm0.16)\times10^{-4}$		
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.92\pm0.10) \times 10$ $(1.31\pm0.17) \times 10^{-3}$		1385
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(6.9 \pm 1.6) \times 10^{-4}$		1255
	`	000/	1255
$\Sigma(1385)^+\overline{\varLambda}\pi^-+$ c.c. $\Sigma(1385)^-\overline{\varLambda}\pi^++$ c.c.	4	90%	1192
		90%	1192
$K^{+}\overline{p}\Lambda + \text{c.c.}$	$(8.1 \pm 0.6) \times 10^{-4}$		1236
$K^+ \overline{ ho} \Lambda(1520) + \text{c.c.}$	$(2.9 \pm 0.7) \times 10^{-4}$		992

$\Lambda(1520)\overline{\Lambda}(1520)$	(4.8 ± 1.5	$) \times 10^{-4}$		923
$\Sigma^0 \overline{\Sigma}{}^0$	< 6	\times 10 ⁻⁵	90%	1319
$\Sigma^{+}\overline{\Sigma}^{-}$	< 7	$\times 10^{-5}$	90%	1322
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 1.6	\times 10 ⁻⁴	90%	1118
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	< 8	\times 10 ⁻⁵	90%	1118
=0 $=0$	< 1.1	\times 10 ⁻⁴	90%	1197
<u>=-</u> =+	(1.48 ± 0.33)	$) \times 10^{-4}$		1189
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5	%	90%	185
$\eta_c(1S)\pi^+\pi^-$	< 2.2	%	90%	459
Radia	tive decays			
$\gamma J/\psi(1S)$	(19.2 ± 0.7)) %		430
$\gamma \rho^0$	< 2.0	\times 10 ⁻⁵	90%	1694
$\gamma \omega$	< 6	\times 10 ⁻⁶	90%	1692
$\gamma \phi$	< 8	\times 10 ⁻⁶	90%	1632
$\frac{\gamma\gamma}{}$	(2.74 ± 0.14)) × 10 ⁻⁴		1778

$\eta_c(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Quantum numbers are quark model predictions.

Mass
$$m=3639.4\pm1.3~{
m MeV}~{
m (S}=1.2)$$
 Full width $\Gamma=11.3^{+3.2}_{-2.9}~{
m MeV}$

$\eta_{\mathcal{C}}(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	not seen		_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$		1730
$2\pi^+2\pi^-$	not seen		1793
$ ho^0 ho^0$	not seen		1646
$3\pi^{+}3\pi^{-}$	not seen		1750
$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen		1701
$K^{*0}\overline{K}^{*0}$	not seen		1586
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.4\pm1.0)\%$		1668
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	not seen		1628
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	seen		1667
$2K^{+}2K^{-}$	not seen		1471
$\phi\phi$	not seen		1507
$p\overline{p}$	< 2.0 × 10	90%	1559
$\gamma\gamma$	$(1.9\pm1.3)\times10$	₎ -4	1820
$\pi^+\pi^-\eta$	not seen		1767
$\pi^+\pi^-\eta'$	not seen		1681
$\mathcal{K}^+ \mathcal{K}^- \eta$	not seen		1638
$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%	539

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.109^{+0.012}_{-0.014}~{\rm MeV}$ Full width $\Gamma=299\pm8~{\rm keV}$ $\Gamma_{e\,e}=2.36\pm0.04\;\text{keV}$

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
hadrons	(97.85 ± 0.13)		
virtual $\gamma \to hadrons$	(57.03 ± 0.14)		_
ggg	(10.6 ± 1.6)		_
γgg	(1.03 ± 0.29)		_
light hadrons	(15.4 ± 1.5)		_
e^+e^-	(7.89 ± 0.17)	$) \times 10^{-3}$	1843
$\mu^+\mu^-$	(7.9 ± 0.9)		1840
$ au^+ au^-$	(3.1 ± 0.4	$) \times 10^{-3}$	490
Decays into J_{ℓ}	$/\psi(1S)$ and anyt	hing	
$J/\psi(1S)$ anything	(60.9 ± 0.6)		_
$J/\psi(1S)$ neutrals	(25.10 ± 0.33)) %	_
$J/\psi(1S)\pi^+\pi^-$	(34.45 ± 0.30)) %	477
$J/\psi(1S)\pi^0\pi^0$	$(18.13 \pm 0.31$) %	481
$J/\psi(1S)\eta$	(3.36 ± 0.05) %	199
$J/\psi(1S)\pi^0$	$(1.268\pm0.032$	$(2) \times 10^{-3}$	528
Hadr	onic decays		
$\pi^0 h_c(1P)$	(8.6 ± 1.3)	$) \times 10^{-4}$	85
$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5 ± 1.6)		1746
$2(\pi^{+}\pi^{-})\pi^{0}$	(2.9 ± 1.0)		1799
$\rho a_2(1320)$	(2.6 ± 0.9		1500
p p	(2.80 ± 0.11		1586
$\Delta^{++}\overline{\Delta}^{}$	(1.28 ± 0.35	$) \times 10^{-4}$	1371
$\Lambda \overline{\Lambda} \pi^0$	< 2.9		1412
$A\overline{A}\eta$	(2.5 ± 0.4)		1197
$\Lambda \overline{p} K^+$	(1.00 ± 0.14)		1327
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	(1.8 ± 0.4)		1167
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(2.8 ± 0.6)		1346
$\Lambda\Lambda$ $\Lambda\overline{\Sigma}^+\pi^-+\text{c.c.}$	(2.8 ± 0.5)		1467
$\Lambda \Sigma^{-} \pi^{+} + \text{c.c.}$ $\Lambda \overline{\Sigma}^{-} \pi^{+} + \text{c.c.}$	(1.40 ± 0.13 (1.54 ± 0.14	_	1376 1379
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$	(1.67 ± 0.14)	,	1291
$\Sigma + \overline{\Sigma} -$	(2.6 ± 0.8)		1408
$\sum_{0}^{\infty} \frac{\sum_{0}^{\infty} 0}{\sum_{0}^{\infty} 0}$	(2.2 ± 0.4)		1405
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	(1.1 ± 0.4)		1218
$\underline{\Xi} - \overline{\Xi} +$	(1.8 ± 0.6)	$) \times 10^{-4}$ S=2.8	1284
HTTP://PDG.LBL.GOV Pa	nge 127 C	Created: 8/25/201	4 17:06

<u>=0</u> =0	(2.8	±0.9) × 10 ⁻⁴		1292
$\Xi(1530)^0\overline{\Xi}(1530)^0$	•) × 10 ⁻⁵		1025
$\Omega^{-}\overline{\Omega}^{+}$				× 10 ⁻⁵	CL=90%	774
$\pi^0 p \overline{p}$) × 10 ⁻⁴		1543
$N(940)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$		6.4) × 10 ⁻⁵		_
$N(1440)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$				$) \times 10^{-5}$	S=2.5	_
$N(1520)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	(6.4	$+2.3 \\ -1.8$	$) \times 10^{-6}$		_
$N(1535)\overline{p}+ ext{ c.c.} ightarrow \ \pi^0p\overline{p}$	(2.5	± 1.0	$) \times 10^{-5}$		_
$N(1650)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	(3.8	$^{+1.4}_{-1.7}$	$) \times 10^{-5}$		_
$N(1720)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(1.79	$^{+0.26}_{-0.70}$	$) \times 10^{-5}$		_
$N(2300)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(2.6	$^{+1.2}_{-0.7}$	$) \times 10^{-5}$		_
$N(2570)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(2.13	$^{+0.40}_{-0.31}$	$) \times 10^{-5}$		_
$\pi^0 f_0(2100) \rightarrow \pi^0 \rho \overline{\rho}$				$) \times 10^{-5}$		_
$\eta p \overline{p}$	(6.0	± 0.4	$) \times 10^{-5}$		1373
$\eta f_0(2100) \rightarrow \eta p \overline{p}$				$) \times 10^{-5}$		_
$N(1535)\overline{p} \rightarrow \eta p \overline{p}$,			$) \times 10^{-5}$		_
$\omega p \overline{p}$	(6.9	± 2.1	$) \times 10^{-5}$		1247
$\phi p \overline{p}$		2.4			CL=90%	1109
$\pi^+\pi^-p\overline{p}$				$) \times 10^{-4}$		1491
$p\overline{n}\pi^-$ or c.c.	•			$) \times 10^{-4}$		_
$p\overline{n}\pi^-\pi^0$	•	3.2		$) \times 10^{-4}$		1492
$2(\pi^{+}\pi^{-}\pi^{0})$	•			$) \times 10^{-3}$		1776
$\eta \pi^+ \pi^-$		1.6			CL=90%	1791
$\eta \pi^+ \pi^- \pi^0$				$) \times 10^{-4}$		1778
$2(\pi^{+}\pi^{-})\eta$				$) \times 10^{-3}$		1758
$\eta' \pi^{+} \pi^{-} \pi^{0}$				$) \times 10^{-4}$		1692
$\omega \pi^+ \pi^-$				$) \times 10^{-4}$	S=2.1	1748
$b_{1}^{\pm}\pi^{\mp} \ b_{1}^{0}\pi^{0}$				$) \times 10^{-4}$	S=1.1	1635
	($) \times 10^{-4}$		_
$\omega f_2(1270)$	(2.2	± 0.4	$) \times 10^{-4}$		1515
$\pi^{+}\pi^{-}K^{+}K^{-}$	($) \times 10^{-4}$	S=1.9	1726
$\rho^0 K^+ K^-$	($) \times 10^{-4}$		1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$				$) \times 10^{-4}$		1418
$K^+K^-\pi^+\pi^-\eta$	(1.3	± 0.7	$) \times 10^{-3}$		1574
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$				$) \times 10^{-3}$		1611
$K^{+}K^{-}2(\pi^{+}\pi^{-})$				$) \times 10^{-3}$		1654
$K_1(1270)^{\pm} K^{\mp}$				$) \times 10^{-3}$		1581
$K_S^0 K_S^0 \pi^+ \pi^-$				$) \times 10^{-4}$		1724
$ ho^{0} p \overline{p}$	(5.0	± 2.2) × 10 ⁻⁵		1252

$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	(6.7	±2.5	$) \times 10^{-4}$		1674
$2(\pi^{+}\pi^{-})$	(2.4		$) \times 10^{-4}$	S=2.2	1817
$\rho^0 \pi^+ \pi^-$	(2.2	± 0.6	$) \times 10^{-4}$	S=1.4	1750
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.26	± 0.09	$) \times 10^{-3}$		1694
$\omega f_0(1710) \rightarrow \omega K^+ K^-$	(5.9	± 2.2	$) \times 10^{-5}$		_
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{ c.c.}$	(8.6	±2.2	$) \times 10^{-4}$		_
$K^*(892)^+ K^- \pi^+ \pi^- + \text{ c.c.}$	(9.6	± 2.8	$) \times 10^{-4}$		_
$K^*(892)^+_{1}K^-\rho^0_{1}$ c.c.	(7.3	± 2.6	$) \times 10^{-4}$		_
$K^*(892)^0 K^- \rho^+ + \text{ c.c.}$	`		$) \times 10^{-4}$		_
$\eta {\it K}^+ {\it K}^-$, no $\eta \phi$			$) \times 10^{-5}$		1664
$\omega K^+ K^-$			$) \times 10^{-4}$	S=1.1	1614
$\omega K^*(892)^+ K^- + \text{c.c.}$	(2.07		$) \times 10^{-4}$		1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	(6.1	± 1.2	$) \times 10^{-5}$		1253
$\omega \overline{K}^* (892)^0 K^0$			$) \times 10^{-4}$		1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	(5.8	±2.2	$) \times 10^{-5}$		1251
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	(1.6	± 0.4	$) \times 10^{-5}$		_
$\omega X(1440) ightarrow \omega K^+ K^- \pi^0$	(1.00	±0.26	$) \times 10^{-5}$		_
$\omega K(1440) \rightarrow \omega K K^0 K^- \pi^+ + \omega K_S^0 K^- \pi^- \pi^- + \omega K_S^0 K^- \pi^- \pi^- + \omega K_S^0 K^- + \omega K_S^0 $			$) \times 10^{-6}$		
$\omega \Pi(1203) \rightarrow \omega \Pi_{S} \Pi \Pi \Pi + \Pi_{S} \Pi \Pi$	(3.0	⊥1.0) × 10		
$\omega f_1(1285) \rightarrow \omega K^+ K^- \pi^0$	(1.2	± 0.7	$) \times 10^{-6}$		_
$3(\pi^{+}\pi^{-})$	(3.5		$) \times 10^{-4}$	S=2.8	1774
$\rho \overline{\rho} \pi^+ \pi^- \pi^0$	•) × 10 ⁻⁴		1435
K+ K-	7.1		$) \times 10^{-5}$	S=1.5	1776
$K_S^0 K_I^0$			$) \times 10^{-5}$		1775
$\pi + \pi^{-}\pi^{0}$			$) \times 10^{-4}$	S=1.7	1830
$\rho(2150)\pi \rightarrow \pi^+\pi^-\pi^0$) × 10 ⁻⁴		_
$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$			$) \times 10^{-5}$	S=1.8	_
$\pi^+\pi^-$) × 10 ⁻⁶		1838
$K_1(1400)^\pm K^\mp$	< 3.1			CL=90%	1532
$K_2^*(1430)^{\pm} K^{\mp}$	(7.1	+1.3	$) \times 10^{-5}$		_
$K^{+}K^{-}\pi^{0}$		• • •	$) \times 10^{-5}$		1754
$K^+K^*(892)^- + \text{c.c.}$			$) \times 10^{-5}$	S=1.2	1698
$K^*(892)^0 \overline{K^0} + \text{c.c.}$			$) \times 10^{-4}$		1697
$\phi \pi^+ \pi^-$	`		$) \times 10^{-4}$	S=1.7	1690
$\phi f_0(980) \to \pi^+ \pi^-$) × 10 ⁻⁵	S=1.1	_
$2(K^+K^-)$	(6.0	± 1.4) × 10 ⁻⁵		1499
$\phi K^+ K^-$			$) \times 10^{-5}$		1546
$2(K^{+}K^{-})\pi^{0}$	`) × 10 ⁻⁴		1440
$\phi\eta$) × 10 ⁻⁵		1654
$\phi \eta'$) × 10 ⁻⁵		1555
$\omega \eta'$) × 10 ⁻⁵		1623

$\omega\pi^0$	(2.1	±0.6	$) \times 10^{-5}$	1757
$ ho\eta'$	(1.9	$+1.7 \\ -1.2$	$) \times 10^{-5}$	1625
$ ho\eta$	(2.2	± 0.6	$) \times 10^{-5}$ S=1.1	1717
$\omega \eta$	< 1.1		$\times 10^{-5}$ CL=90%	1715
$\phi\pi^{f 0}$	< 4		$\times 10^{-7}$ CL=90%	1699
$\eta_c \pi^+ \pi^- \pi^0$	< 1.0		$\times 10^{-3}$ CL=90%	<u> </u>
$p\overline{p}K^+K^-$	(2.7	±0.7	$) \times 10^{-5}$	1118
$\overline{\Lambda}nK_{S}^{0}+\text{c.c.}$	(8.1	± 1.8	$) \times 10^{-5}$	1324
$\phi f_2'(1525)$	(4.4	± 1.6	$) \times 10^{-5}$	1321
$\Theta(\overline{1}540)\overline{\Theta}(1540) ightarrow$	< 8.8		$\times 10^{-6}$ CL=90%	_
$K_S^0 p K^- \overline{n} + \text{c.c.}$				
$\Theta(15\overline{40})K^{-}\overline{n} \rightarrow K_{S}^{0}pK^{-}\overline{n}$	< 1.0		$\times 10^{-5}$ CL=90%	<u> </u>
$\Theta(1540)K_S^0\overline{p} ightarrow K_S^{ar{0}}\overline{p}K^+n$	< 7.0		$\times 10^{-6}$ CL=90%	_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$	< 2.6		$\times 10^{-5}$ CL=90%	_
$\overline{\Theta}(1540) K_S^0 p \rightarrow K_S^{0} p K^{-} \overline{n}$	< 6.0		$\times 10^{-6} \text{ CL} = 90\%$	<u> </u>
$K_S^0 K_S^0$	< 4.6		$\times 10^{-6}$	1775

Radiative decays

$\gamma \chi_{c0}(1P)$	(9.99 \pm 0.27)%	261
$\gamma \chi_{c1}(1P)$	($9.55\ \pm0.31$) %	171
$\gamma \chi_{c2}(1P)$	(9.11 ± 0.31) %	128
$\gamma \eta_c(1S)$	$(3.4 \pm 0.5) \times 10^{-3}$ S=1.3	636
$\gamma \eta_c(2S)$	$(7 \pm 5) \times 10^{-4}$	46
$\gamma \pi^0$	$(1.6 \pm 0.4) \times 10^{-6}$	1841
$\gamma \eta'$ (958)	$(1.23 \pm 0.06) \times 10^{-4}$	1719
$\gamma f_2(1270)$	$(2.1 \pm 0.4) \times 10^{-4}$	1623
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	$(3.0 \pm 1.3) imes 10^{-5}$	_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(6.0 ± 1.6) $ imes 10^{-5}$	_
$\gamma\gamma$	$< 1.4 \times 10^{-4} \text{ CL}=90\%$	1843
$\gamma\eta$	$(1.4 \pm 0.5) \times 10^{-6}$	1802
$\gamma \eta \pi^+ \pi^-$	$(8.7 \pm 2.1) \times 10^{-4}$	1791
$\gamma \eta(1405) ightarrow \gamma K \overline{K} \pi$	$< 9 \times 10^{-5} \text{ CL} = 90\%$	1569
$\gamma \eta$ (1405) $ ightarrow \eta \pi^+ \pi^-$	$(3.6 \pm 2.5) \times 10^{-5}$	_
$\gamma \eta$ (1475) $ ightarrow \ K \overline{K} \pi$	$< 1.4 \times 10^{-4} \text{ CL}=90\%$	_
$\gamma \eta$ (1475) $ ightarrow \ \eta \pi^+ \pi^-$	$< 8.8 \times 10^{-5} \text{ CL} = 90\%$	_
$\gamma 2(\pi^+\pi^-)$	$(4.0 \pm 0.6) \times 10^{-4}$	1817
$\gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}$	$(3.7 \pm 0.9) \times 10^{-4}$	1674
$\gamma K^{*0} \overline{K}^{*0}$	$(2.4 \pm 0.7) \times 10^{-4}$	1613
$\gamma K_S^0 K^+ \pi^- + \text{c.c.}$	$(2.6 \pm 0.5) \times 10^{-4}$	1753
$\gamma K^+ K^- \pi^+ \pi^-$	$(1.9 \pm 0.5) \times 10^{-4}$	1726
$\gamma p \overline{p}$	$(3.9 \pm 0.5) \times 10^{-5}$ S=2.0	1586
$\gamma f_2(1950) \rightarrow \gamma p \overline{p}$	$(1.20 \pm 0.22) \times 10^{-5}$	_
$\gamma f_2(2150) \rightarrow \gamma p \overline{p}$	$(7.2 \pm 1.8) \times 10^{-6}$	_

$$\begin{array}{lllll} \gamma X(1835) \to & \gamma \, p \, \overline{p} & (& 4.6 & {}^{+1.8}_{-4.0} &) \times 10^{-6} & & - \\ \gamma X \to & \gamma \, p \, \overline{p} & [\text{vvaa}] < 2 & \times 10^{-6} \text{ CL} = 90\% & - \\ \gamma \pi^{+} \, \pi^{-} \, p \, \overline{p} & (& 2.8 & \pm 1.4 &) \times 10^{-5} & 1491 \\ \gamma 2(\pi^{+} \, \pi^{-}) \, K^{+} \, K^{-} & < 2.2 & \times 10^{-4} \text{ CL} = 90\% & 1654 \\ \gamma 3(\pi^{+} \, \pi^{-}) & < 1.7 & \times 10^{-4} \text{ CL} = 90\% & 1774 \\ \gamma \, K^{+} \, K^{-} \, K^{+} \, K^{-} & < 4 & \times 10^{-5} \text{ CL} = 90\% & 1499 \\ \gamma \gamma \, J/\psi & (& 3.1 & {}^{+1.0}_{-1.2} &) \times 10^{-4} & 542 \\ \end{array}$$

Other decays

invisible < 1.6 % CL=90% -

ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 3773.15 \pm 0.33 \text{ MeV}$ Full width $\Gamma = 27.2 \pm 1.0 \text{ MeV}$ $\Gamma_{ee} = 0.262 \pm 0.018 \text{ keV} \quad (S = 1.4)$

In addition to the dominant decay mode to $D\overline{D}$, $\psi(3770)$ was found to decay into the final states containing the J/ψ (BAI 05, ADAM 06). ADAMS 06 and HUANG 06A searched for various decay modes with light hadrons and found a statistically significant signal for the decay to $\phi\eta$ only (ADAMS 06).

ψ (3770) DECAY MODES	Fraction (Γ_i/Γ) C	Scale factor/ onfidence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	(93 +8)%	S=2.0	286
$D^0 \overline{D}{}^0$	(52 ±5) %	S=2.0	286
D^+D^-	$(41 \pm 4)\%$	S=2.0	252
$J/\psi \pi^+ \pi^-$	$(1.93\pm0.28) imes10^{-}$	-3	560
$J/\psi \pi^0 \pi^0$	($8.0~\pm3.0~) imes 10^-$	4	564
$J/\psi\eta$	$(9 \pm 4) imes 10^{-}$	4	360
$J/\psi \pi^0$	$< 2.8 \times 10^{-}$	CL=90%	603
e^+e^-	(9.6 ± 0.7) $ imes 10^-$	S=1.3	1887
	Decays to light hadrons		
$b_1(1235)\pi$	$< 1.4 \times 10^{-}$	CL=90%	1683
$\phi \eta'$	< 7 × 10 ⁻¹	CL=90%	1607
$\omega \eta'$	< 4 × 10 ⁻¹	CL=90%	1672
$ ho^{f 0}\eta'$	< 6 × 10 ⁻¹	CL=90%	1674
$\phi \eta$	($3.1~\pm0.7~) imes 10^-$	4	1703
$\omega \eta$	$< 1.4 \times 10^{-}$	CL=90%	1762
$ ho^{0}\eta$	< 5 × 10 ⁻¹	_	1764
$\phi \pi^0$	< 3 × 10 ⁻	CL=90%	1746
$\omega \pi^0$	< 6 × 10	CL=90%	1803

HTTP://PDG.LBL.GOV

Page 131

$\pi^+\pi^-\pi^0$	< 5	$\times 10^{-6}$	CL=90%	1874
$ ho\pi$	< 5	\times 10 ⁻⁶	CL=90%	1804
$K^*(892)^+K^-+$ c.c.	< 1.4	\times 10 ⁻⁵	CL=90%	1745
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2	$\times 10^{-3}$	CL=90%	1744
$K_S^0 K_I^0$	< 1.2	$\times 10^{-5}$	CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.12	$\times 10^{-3}$	CL=90%	1861
$2(\pi + \pi^{-})\pi^{0}$	< 1.06	$\times 10^{-3}$	CL=90%	1843
$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.85	%	CL=90%	1821
$\omega \pi^+ \pi^-$	< 6.0	$\times 10^{-4}$	CL=90%	1794
$3(\pi^{+}\pi^{-})$	< 9.1	$\times 10^{-3}$		1819
$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.37	%		1792
$3(\pi^{+}\pi^{-})2\pi^{0}$	< 11.74	%	CL=90%	1760
$\eta \pi^+ \pi^-$	< 1.24	$\times 10^{-3}$	CL=90%	1836
$\pi^{+}\pi^{-}2\pi^{0}$	< 8.9	$\times 10^{-3}$	CL=90%	1862
$\rho^0 \pi^+ \pi^-$	< 6.9	$\times10^{-3}$	CL=90%	1796
$\eta 3\pi$	< 1.34	$\times10^{-3}$	CL=90%	1824
$\eta^{2}(\pi^{+}\pi^{-})$	< 2.43	%		1804
$\eta \rho^0 \pi^+ \pi^-$	< 1.45	%	CL=90%	1708
$\eta' 3\pi$	< 2.44	$\times10^{-3}$	CL=90%	1740
$K^{+}K^{-}\pi^{+}\pi^{-}$	< 9.0	$\times 10^{-4}$	CL=90%	1772
$\phi\pi^+\pi^-$	< 4.1	$\times 10^{-4}$	CL=90%	1737
$K^+K^-2\pi^0$	< 4.2	$\times10^{-3}$	CL=90%	1774
$4(\pi^{+}\pi^{-})$	< 1.67	%	CL=90%	1757
$4(\pi^{+}\pi^{-})\pi^{0}$	< 3.06	%	CL=90%	1720
$\phi f_0(980)$	< 4.5	$\times 10^{-4}$	CL=90%	1597
$K + K - \pi + \pi - \pi^{0}$	< 2.36	$\times 10^{-3}$	CL=90%	1741
$\mathcal{K}^+\mathcal{K}^- ho^0\pi^0$	< 8	$\times 10^{-4}$	CL=90%	1624
$K^{+}K^{-}\rho^{+}\pi^{-}$	< 1.46	%	CL=90%	1622
$\omega K^+ K^-$	< 3.4	$\times 10^{-4}$	CL=90%	1664
$\phi\pi^+\pi^-\pi^0$	< 3.8	$\times 10^{-3}$	CL=90%	1722
$K^{*0}K^{-}\pi^{+}\pi^{0}+$ c.c.	< 1.62	%	CL=90%	1693
$K^{*+}K^{-}\pi^{+}\pi^{-}+$ c.c.	< 3.23	%	CL=90%	1692
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	< 2.67	%	CL=90%	1705
$K^+ K^- 2(\pi^+ \pi^-)$	< 1.03	%	CL=90%	1702
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	< 3.60	%	CL=90%	1660
$\eta K^+ K^-$	< 4.1	$\times 10^{-4}$	CL=90%	1712
$\eta K^+ K^- \pi^+ \pi^-$	< 1.24	%	CL=90%	1624
$\rho^0 K^+ K^-$	< 5.0	$\times 10^{-3}$	CL=90%	1665
$2(K^{+}K^{-})$	< 6.0	$\times 10^{-4}$	CL=90%	1552
$\phi K^+ K^-$	< 7.5	$\times 10^{-4}$	CL=90%	1598
$2(K^{+}K^{-})\pi^{0}$	< 2.9	$\times 10^{-4}$	CL=90%	1493
$2(K^{+}K^{-})\pi^{+}\pi^{-}$	< 3.2	$\times10^{-3}$	CL=90%	1425
$K_S^0 K^- \pi^+ K_S^0 K^- \pi^+ \pi^0$	< 3.2	$\times 10^{-3}$	CL=90%	1799
$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$	< 1.33	%	CL=90%	1773
3				

		_		
$K_S^0 K^- \rho^+$	< 6.6	× 10 ⁻³	CL=90%	1664
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}$	< 8.7	$\times 10^{-3}$	CL=90%	1739
$K_{\mathcal{S}}^{0}K^{-}\pi^{+}\rho^{0}$	< 1.6	%	CL=90%	1621
$K_S^{0}K^{-}\pi^{+}\eta$	< 1.3	%	CL=90%	1669
$K_S^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$	< 4.18	%	CL=90%	1703
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\eta$	< 4.8	%	CL=90%	1570
$K_{S}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$	< 1.22	%	CL=90%	1658
$K_{S}^{0}K^{-}\pi^{+}2\pi^{0}$	< 2.65	%	CL=90%	1742
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}$	< 4.9	\times 10 ⁻³	CL=90%	1490
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$	< 3.0	%	CL=90%	1427
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$	< 2.2	%	CL=90%	1214
$K^{*0}K^{-}\pi^{+}$ + c.c.	< 9.7	$\times10^{-3}$	CL=90%	1722
$p\overline{p}\pi^0$	< 1.2	$\times 10^{-3}$		1595
$p \overline{p} \pi^+ \pi^-$	< 5.8	\times 10 ⁻⁴	CL=90%	1544
$\Lambda \overline{\Lambda}$	< 1.2	$\times 10^{-4}$	CL=90%	1521
$ ho \overline{ ho} \pi^+ \pi^- \pi^0$	< 1.85	$\times 10^{-3}$	CL=90%	1490
$\omega \underline{\rho} \overline{\rho}$ $\Lambda \overline{\Lambda} \pi^0$	< 2.9	$\times 10^{-4}$	CL=90%	1309
	< 7	$\times 10^{-5}$	CL=90%	1469
$p\overline{p}2(\pi^+\pi^-)$	< 2.6	$\times 10^{-3}$	CL=90%	1425
$\eta p \overline{p}$	< 5.4	\times 10 ⁻⁴	CL=90%	1430
$\eta \rho \overline{\rho} \pi^+ \pi^-$	< 3.3	$\times 10^{-3}$	CL=90%	1284
$\rho^0 p \overline{p}$	< 1.7	\times 10 ⁻³	CL=90%	1313
$p\overline{p}K^+K^-$	< 3.2	\times 10 ⁻⁴	CL=90%	1185
$\eta p \overline{p} K^+ K^-$	< 6.9	\times 10 ⁻³	CL=90%	736
$\pi^0 p \overline{p} K^+ K^-$	< 1.2	\times 10 ⁻³	CL=90%	1093
$\phi \underline{p} \overline{p}$	< 1.3	$\times 10^{-4}$	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.5	$\times 10^{-4}$	CL=90%	1405
$\Lambda \overline{p} K^+$	< 2.8	\times 10 ⁻⁴	CL=90%	1387
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	< 6.3	$\times 10^{-4}$	CL=90%	1234
$\Lambda\Lambda\eta_{\Xi}$	< 1.9	\times 10 ⁻⁴	CL=90%	1262
$ \begin{array}{l} \Sigma + \overline{\Sigma} - \\ \Sigma^0 \overline{\Sigma}^0 \\ \Xi + \overline{\Xi} - \\ \Xi^0 \overline{\Xi}^0 \end{array} $	< 1.0	$\times 10^{-4}$	CL=90%	1464
∠ ´ ∠ ° -+ = -	< 4		CL=90%	1462
= ' = =0 = 0	< 1.5		CL=90%	1050
=~=~	< 1.4	× 10 ⁻⁴	CL=90%	1353
Radia	ative decays			
$\gamma \chi_{c2}$	< 9	$\times 10^{-4}$	CL=90%	211
$\gamma \chi_{c1}$	`	6) \times 10 ⁻³		253
$\gamma \chi_{c0}$	(7.3 ± 0.1)	9) \times 10 ⁻³		341
$\gamma\eta'$	< 1.8	× 10 ⁻⁴	CL=90%	1765
$\gamma \eta_{2}$	< 1.5		CL=90%	1847
$\gamma\pi^{0}$	< 2	$\times 10^{-4}$	CL=90%	1884

X(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3871.69\pm0.17~{
m MeV}$ $m_{X(3872)}-m_{J/\psi}=775\pm4~{
m MeV}$ $m_{X(3872)}-m_{\psi(2S)}$ Full width $\Gamma~<~1.2~{
m MeV},~{
m CL}=90\%$

X(3872) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-J/\psi(1S)$	> 2.6 %	650
$\omega J/\psi(1S)$	> 1.9 %	†
$D^0 \overline{D}{}^0 \pi^0$	>32 %	117
$\overline{D}^{*0} D^0$	>24 %	†
γ J/ψ	$> 6 \times 10^{-3}$	697
$\gamma \psi$ (2S)	[xxaa] > 3.0 %	181
$\pi^+\pi^-\eta_c(1S)$	not seen	746
ρ p	not seen	1693

$X(3900)^{\pm}$

$$I(J^P) = ?(1^+)$$

Mass $m=3888.7\pm3.4$ MeV (S = 1.3) Full width $\Gamma=35\pm7$ MeV

X(3900) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi^{\pm}$	seen	700
$h_c \pi^{\pm} (D \overline{D}^*)^{\pm}$	not seen	_
$(D\overline{D}^*)^{\pm}$	seen	_

$\chi_{c0}(2P)$ was X(3915)

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 8/25/2014 17:06

Mass $m=3918.4\pm1.9~{
m MeV}$ Full width $\Gamma=20\pm5~{
m MeV}~({
m S}=1.1)$

$\chi_{c0}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega J/\psi$	seen	222
$\pi^+\pi^-\eta_c(1S)$	not seen	785
$K\overline{K}$	not seen	_
$\gamma \gamma$	seen	1959

$$\chi_{c2}(2P)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3927.2\pm2.6$ MeV Full width $\Gamma=24\pm6$ MeV

$\chi_{c2}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\gamma}\gamma$	seen	1964
$D\overline{D}$	seen	615
D^+D^-	seen	600
$D^0 \overline{D}{}^0$	seen	615
$\pi^+\pi^-\eta_c(1S)$	not seen	792
K \overline{K}	not seen	1901

ψ (4040) ^[yyaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4039\pm1~{
m MeV}$ Full width $\Gamma=80\pm10~{
m MeV}$ $\Gamma_{ee}=0.86\pm0.07~{
m keV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4040) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$e^{+}e^{-}$	$(1.07\pm0.16)\times1$	0-5	2019
$D\overline{D}$	seen		775
$D^0 \overline{D}{}^0$	seen		775
D^+D^-	seen		764
$D^*\overline{D}$ + c.c.	seen		569
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		575
$D^*(2010)^+D^-+$ c.c.	seen		561
$D^*\overline{D}^*$	seen		193
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		225
$D^*(2010)^+ D^*(2010)^-$	seen		193
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen		_
$D^*(2007)^0 \overline{D}^{0'} + \text{c.c.},$			
$D^*(2010)^+ D^- + c.c.)$			
$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seen		_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen		_
$D^*(2010)^+ D^*(2010)^-)$			
$D_s^+ D_s^-$	seen		452

HTTP://PDG.LBL.GOV

Page 135

$J/\psi \pi^+ \pi^-$	< 4	$\times10^{-3}$	90%	794
$J/\psi \pi^0 \pi^0$	< 2	$\times10^{-3}$	90%	797
$J/\psi\eta$	(5.2 ± 0)	$0.7) \times 10^{-3}$		675
$J/\psi\pi^{f 0}$	< 2.8	$\times 10^{-4}$	90%	823
$J/\psi\pi^+\pi^-\pi^0$	< 2	$\times10^{-3}$	90%	746
$\chi_{c1}\gamma$	< 1.1	%	90%	494
$\chi_{c2}\gamma$	< 1.7	%	90%	454
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 1.1	%	90%	306
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	< 3.2	%	90%	233
$h_c(1P)\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	403
$\phi\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	1880
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	$\times 10^{-4}$	90%	1578
$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times 10^{-5}$	90%	1636
$\Lambda \overline{\Lambda} \eta$	< 3.0	$\times 10^{-4}$	90%	1452
$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.3	$\times 10^{-4}$	90%	1632
$\Sigma^0 \overline{\Sigma}{}^0$	< 7	$\times10^{-5}$	90%	1630
<u>=</u> + = -	< 1.6	$\times 10^{-4}$	90%	_
<u>=</u> 0 <u>=</u> 0	< 1.8	$\times 10^{-4}$	90%	1533

ψ (4160) [yyaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=4191\pm 5~{
m MeV}$$

Full width $\Gamma=70\pm 10~{
m MeV}$
 $\Gamma_{ee}=0.48\pm 0.22~{
m keV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(6.9\pm3.3)\times10^{-1}$	5	2096
$\mu^{+}\underline{\mu}^{-}$	seen		2093
DD	seen		956
$D^0 \overline{D}{}^0$	seen		956
D^+D^-	seen		947
$D^*\overline{D}+$ c.c.	seen		798
$D^*(2007)^0 \overline{D}{}^0 + {\sf c.c.}$	seen		802
$D^*(2010)^+ D^- + \text{c.c.}$	seen		792
$D^* \overline{D}^*$	seen		592
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		603
$D^*(2010)^+ D^*(2010)^-$	seen		592

$D^0D^-\pi^++$ c.c. (excl.	not seen			_
$D^*(2007)^0 \overline{D}{}^0 + {\rm c.c.},$				
$D^*(2010)^+D^-$ +c.c.)				
$D\overline{D}^*\pi$ +c.c. (excl. $D^*\overline{D}^*$)	seen			_
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+D_s^-$	not seen			720
$D_s^{*+}D_s^-+\text{c.c.}$	seen			385
$J/\psi \pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	919
/ /	< 3	\times 10 ⁻³	90%	922
$J/\psi K^+ K^-$	< 2	\times 10 ⁻³	90%	407
	< 8	\times 10 ⁻³	90%	821
$J/\psi \pi^0$	< 1	\times 10 ⁻³	90%	944
/ / /	< 5	\times 10 ⁻³	90%	457
, ,	< 1	\times 10 ⁻³	90%	879
$\psi(2S)\pi^+\pi^-$	< 4	\times 10 ⁻³	90%	396
$\chi_{c1}\gamma$	< 7	\times 10 ⁻³	90%	625
	< 1.3	%	90%	587
$\chi_{c1} \pi^+ \pi^- \pi^0$	< 2	× 10 ⁻³	90%	496
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	< 8	\times 10 ⁻³	90%	445
	< 5	\times 10 ⁻³	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	\times 10 ⁻³	90%	560
	< 2	\times 10 ⁻³	90%	348
	< 4	\times 10 ⁻⁴	90%	600
$\phi \pi^+ \pi^-$	< 2	× 10 ⁻³	90%	1961

X(4260)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Mass $m=4251\pm 9$ MeV (S =1.6) Full width $\Gamma=120\pm 12$ MeV (S =1.1)

X(4260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi^+ \pi^-$	seen	967
$J/\psif_0(980),\;\;f_0(980) ightarrow \;\pi^+\pi^-$	seen	_
$X(3900)^{\pm}\pi^{\mp}$, $X^{\pm} \rightarrow J/\psi\pi^{\pm}$	seen	_
$J/\psi \pi^0 \pi^0$	seen	969
$J/\psi K^+ K^-$	seen	512
$X(3872)\gamma$	seen	363
$J/\psi\eta$	not seen	876
$J/\psi\pi^{0}$	not seen	991
$J/\psi\eta'$	not seen	552
$J/\psi \pi^+ \pi^- \pi^0$	not seen	930

HTTP://PDG.LBL.GOV

Page 137

$J/\psi \eta \eta$	not seen	311
$\psi(2S)\pi^+\pi^-$	not seen	459
$\psi(2S)\eta$	not seen	129
$\chi_{c0}\omega$	not seen	265
$\chi_{c1}\gamma$	not seen	676
$\chi_{c2}\gamma$	not seen	638
$\chi_{c1}\pi^{+}\pi^{-}\pi^{0}$	not seen	560
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	not seen	512
$h_c(1P)\pi^+\pi^-$	not seen	613
$\phi \pi^+ \pi^-$	not seen	1993
$ \frac{\phi \pi^{+} \pi^{-}}{\frac{\phi}{D}} f_{0}(980) \rightarrow \phi \pi^{+} \pi^{-} $	not seen	_
$D\overline{D}$	not seen	1020
$D^0 \overline{D}{}^0$	not seen	1020
\underline{D}^+D^-	not seen	1011
$D^*\overline{D}$ +c.c.	not seen	887
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	_
$D^*(2010)^+ D^- + c.c.$	not seen	_
$D^*\overline{D}^*$	not seen	691
$D^*(2007)^0 \overline{D}{}^*(2007)^0$	not seen	700
$D_{2}^{*}(2010)^{+}D^{*}(2010)^{-}$	not seen	691
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2007)^0 \overline{D}^{*0} + \text{c.c.},$		
$D^*(2010)^+D^- + c.c.$		
$D\overline{D}^*\pi + \text{c.c.} (\text{excl. } D^*\overline{D}^*)$	not seen	723
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2010)^+D^*(2010)^-)$		
$D_{-}^{0}D^{*}(2010)^{-}\pi^{+}+c.c.$	not seen	716
$D^*\overline{D}^*\pi$	not seen	449
$D_s^+ D_s^-$	not seen	803
$D_s^{*+}D_s^-+c.c.$	not seen	615
$D_s^{*+}D_s^- + \text{c.c.}$ $D_s^{*+}D_s^{*-}$	not seen	239
p p	not seen	1907
$K^0_S K^{\pm} \pi^{\mp}$	not seen	2048
$K^{+}K^{-}\pi^{0}$	not seen	2049

X(4360)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Created: 8/25/2014 17:06

X(4360) MASS = 4361 \pm 13 MeV X(4360) WIDTH = 74 \pm 18 MeV

X(4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	567

$$\psi$$
(4415) ^[yyaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4421\pm4~{\rm MeV}$ Full width $\Gamma=62\pm20~{\rm MeV}$ $\Gamma_{ee}=0.58\pm0.07~{\rm keV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{D\overline{D}}$	not seen		1187
$D^0 \overline{D}{}^0$	seen		1187
D^+D^-	seen		1179
$D^*\overline{D}$ + c.c.	not seen		1063
$D^*(2007)^0 \overline{D}{}^0 + {\sf c.c.}$	seen		1066
$D^*(2010)^+ D^- + \text{c.c.}$	seen		1059
$D^*\overline{D}^*$	not seen		919
$D^*(2007)^0\overline{D}^*(2007)^0+$ c.c.	seen		927
$D^*(2010)^+ D^*(2010)^- + \text{c.c.}$	seen		919
$D^0 D^- \pi^+ (\text{excl. } D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
$_{-}$ +c.c., $D^{*}(2010)^{+}D^{-}$ +c.c.			
$D\overline{D}_{2}^{*}(2460) \to D^{0}D^{-}\pi^{+}+c.c.$	(10 ± 4)%		_
$D^0 D^{*-} \pi^+ + c.c.$	< 11 %	90%	926
$D_{s}^{+}D_{s}^{-}$	not seen		1006
$D_s^{*+}D_s^-+\text{c.c.}$	seen		_
$D_{s}^{*+}D_{s}^{*-}$	not seen		652
$J/\psi \eta$	< 6 × 10	-3 90%	1022
e^+e^-	$(9.4\pm3.2)\times10^{-3}$	-6	2210

X(4660)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Created: 8/25/2014 17:06

X(4660) MASS = 4664 ± 12 MeV X(4660) WIDTH = 48 ± 15 MeV

X(4660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	838

$b\overline{b}$ MESONS

T(1*S*)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=9460.30\pm0.26$ MeV (S = 3.3) Full width $\Gamma=54.02\pm1.25$ keV $\Gamma_{ee}=1.340\pm0.018$ keV

au(1S) DECAY MODES	Fraction (Γ_i/Γ)	Confidence leve	(MeV/ <i>c</i>)
$\tau^+\tau^-$	(2.60 ± 0.10) %	4384
e^+e^-	(2.38 ± 0.11) %	4730
$\mu^+\mu^-$	(2.48 ± 0.05)) %	4729
	Hadronic decays		
ggg	(81.7 ± 0.7)) %	_
$\gamma g g$	(2.2 ± 0.6) %	_
$\eta'(958)$ anything	(2.94 ± 0.24) %	_
$J/\psi(1S)$ anything	(6.5 ± 0.7	$) \times 10^{-4}$	4223
χ_{c0} anything	< 5	$\times 10^{-3}$ 90%	_
χ_{c1} anything	(2.3 ± 0.7	$) \times 10^{-4}$	_
χ_{c2} anything	(3.4 ± 1.0	$) \times 10^{-4}$	_
$\psi(2S)$ anything	(2.7 ± 0.9	$) \times 10^{-4}$	_
$ ho\pi$	< 3.68	$\times 10^{-6}$ 90%	4697
$\omega\pi^0$	< 3.90	$\times 10^{-6}$ 90%	4697
$\pi^+\pi^-$	< 5	$\times 10^{-4}$ 90%	4728
K^+K^-	< 5	$\times 10^{-4}$ 90%	4704
$p\overline{p}$	< 5	$\times 10^{-4}$ 90%	4636
$\pi^+\pi^-\pi^0$	(2.1 ± 0.8	$) \times 10^{-6}$	4725
$\phi K^+ K^-$	•	$) \times 10^{-6}$	4622
$\omega \pi^+ \pi^-$	(4.5 ± 1.0	$) \times 10^{-6}$	4694
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(4.4 ± 0.8	$) \times 10^{-6}$	4667
$\phi f_2'(1525)$	< 1.63	$\times 10^{-6}$ 90%	4549
$\omega f_2(1270)$	< 1.79	$\times 10^{-6}$ 90%	4611
$\rho(770) a_2(1320)$	< 2.24	$\times 10^{-6}$ 90%	4605
$K^*(892)^0\overline{K}_2^*(1430)^0+$ c.c.	(3.0 ± 0.8	$) \times 10^{-6}$	4579
$K_1(1270)^{\pm}ar{K}^{\mp}$	< 2.41	$\times 10^{-6}$ 90%	4631
$K_1(1400)^\pmK^\mp$	(1.0 ± 0.4	$) \times 10^{-6}$	4613
$b_1(1235)^{\pm}\pi^{\mp}$	< 1.25	$\times 10^{-6}$ 90%	4649
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.28 ± 0.30	$) \times 10^{-5}$	4720
$K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$		$) \times 10^{-6}$	4696
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	(2.9 ±0.9) × 10 ⁻⁶	4675

$K^*(892)^- K^+ + \text{c.c.}$	< 1.11	$\times 10^{-6}$	90%	4675
$D^*(2010)^\pm$ anything	(2.52 ± 0.2	20)%		_
\overline{d} anything	(2.86 ± 0.2	28) \times 10 ⁻⁵		_
Sum of 100 exclusive modes	(1.200 ± 0.0)	017) %		_

Radiative decays

Radiative decays				
$\gamma \pi^+ \pi^-$	(6.3	$\pm 1.8) \times 10^{-5}$		4728
$\gamma\pi^0\pi^0$	(1.7	± 0.7) × 10 ⁻⁵		4728
$\gamma \pi^{0} \eta$	< 2.4	$\times10^{-6}$	90%	4713
γ K $^+$ K $^-$	[zzaa] (1.14 <u>-</u>	$\pm 0.13) \times 10^{-5}$		4704
$\gamma p \overline{P}$	[<i>aabb</i>] < 6	\times 10 ⁻⁶	90%	4636
$\gamma 2h^+2h^-$	(7.0	± 1.5) × 10 ⁻⁴		4720
γ 3 h ⁺ 3 h ⁻	(5.4 =	± 2.0) × 10 ⁻⁴		4703
γ 4 h^+ 4 h^-	(7.4	± 3.5) × 10 ⁻⁴		4679
$\gamma\pi^+\pi^-\mathit{K}^+\mathit{K}^-$	(2.9 =	± 0.9) $\times 10^{-4}$		4686
$\gamma 2\pi^+ 2\pi^-$	(2.5	± 0.9) × 10 ⁻⁴		4720
$\gamma 3\pi^+ 3\pi^-$	(2.5	± 1.2) × 10 ⁻⁴		4703
$\gamma 2\pi^+ 2\pi^- K^+ K^-$	(2.4	± 1.2) × 10 ⁻⁴		4658
$\gamma \pi^+ \pi^- \rho \overline{\rho}$	(1.5	± 0.6) × 10 ⁻⁴		4604
$\gamma 2\pi^+ 2\pi^- \rho \overline{\rho}$	(4 =	± 6) $\times 10^{-5}$		4563
γ 2K $^+$ 2K $^-$	(2.0 =	± 2.0) × 10 ⁻⁵		4601
$\gamma \eta'$ (958)	< 1.9	\times 10 ⁻⁶	90%	4682
$\gamma\eta$	< 1.0	\times 10 ⁻⁶	90%	4714
$\gamma f_0(980)$	< 3	\times 10 ⁻⁵	90%	4678
$\gamma f_2'(1525)$	(3.8 =	± 0.9) $\times 10^{-5}$		4607
$\gamma f_{2}(1270)$	(1.01 =	± 0.09) $\times 10^{-4}$		4644
$\gamma\eta$ (1405)	< 8.2	$\times10^{-5}$	90%	4625
$\gamma f_0(1500)$	< 1.5	$\times10^{-5}$	90%	4610
$\gamma f_0(1710)$	< 2.6	$\times 10^{-4}$	90%	4573
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	< 7	\times 10 ⁻⁶	90%	_
$\gamma f_0(1710) \rightarrow \gamma \pi^0 \pi^0$	< 1.4	\times 10 ⁻⁶	90%	_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	< 1.8	\times 10 ⁻⁶	90%	_
$\gamma f_4(2050)$	< 5.3	$\times10^{-5}$	90%	4515
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	< 2	$\times 10^{-4}$	90%	4475
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	< 8	\times 10 ⁻⁷	90%	4469
$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$	< 6	\times 10 ⁻⁷	90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	< 1.1	\times 10 ⁻⁶	90%	_
$\gamma \eta$ (2225) $ ightarrow \gamma \phi \phi$	< 3	$\times 10^{-3}$	90%	4469
$\gamma \eta_c(1S)$	< 5.7	$\times10^{-5}$	90%	4260
$\gamma \chi_{c0}$	< 6.5	$\times 10^{-4}$	90%	4114
$\gamma \chi_{c1}$	< 2.3	\times 10 ⁻⁵	90%	4079
$\gamma \chi_{c2}$	< 7.6	\times 10 ⁻⁶	90%	4062
$\gamma X(3872) \rightarrow \pi^+ \pi^- J/\psi$	< 1.6	\times 10 ⁻⁶	90%	_
$\gamma X(3872) \rightarrow \pi^+ \pi^- \pi^0 J/\psi$	< 2.8	\times 10 ⁻⁶	90%	_

 $\chi_{b0}(1P)$ [hhbb]

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31 \text{ MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ_i/I)	Γ) Confid	ence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (1S)$	(1.76±0.3	35) %		391
D^0X	< 10.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 1.6	\times 10 ⁻⁴	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻⁵	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S} \ 2\pi^{+}\pi^{-}K^{-}K^{0}_{S} 2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	\times 10 ⁻⁴	90%	4905
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(1.1 ± 0.6	$(5) \times 10^{-4}$		4861
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4828
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	< 1.6	$\times 10^{-4}$	90%	4827
$3\pi^+3\pi^-$	< 8	$\times10^{-5}$	90%	4904
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	4881
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.4 ± 1.2	$(2) \times 10^{-4}$		4827
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times 10^{-3}$	90%	4808
$4\pi^+4\pi^-$	< 8	\times 10 ⁻⁵	90%	4880
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times10^{-3}$	90%	4850
$J/\psiJ/\psi$	< 7	$\times10^{-5}$	90%	3836
$J/\psi \psi(2S)$	< 1.2	$\times 10^{-4}$	90%	3571
$\psi(2S)\psi(2S)$	< 3.1	\times 10 ⁻⁵	90%	3273

$$\chi_{b1}(1P)^{[hhbb]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	p (MeV/ c)
$\gamma \Upsilon(1S)$ $D^0 X$	(33.9±2.2) % (12.6±2.2) %		423 —
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(2.0\pm0.6)\times10^{-2}$	₎ —4	4892
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.3\pm0.5)\times10$	₎ —4	4892
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 6 × 10	90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(8.0\pm2.5) \times 10$	₀ —4	4921
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.5\pm0.5) \times 10$	₎ —4	4878
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.5\pm1.2)\times10$	₎ —4	4863
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(8.6\pm3.2)\times10^{-2}$	₎ —4	4845
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	$(9.3\pm3.3)\times10$	₀ -4	4844
$3\pi^{+}3\pi^{-}$	$(1.9\pm0.6)\times10$	₀ -4	4921
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.7\pm0.5)\times10$	₎ —3	4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.6\pm0.8)\times10^{-2}$	₎ —4	4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(7.5\pm2.6)\times10$	₀ -4	4825
$4\pi^{+}4\pi^{-}$	$(2.6\pm0.9)\times10^{-2}$	₎ —4	4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.4\pm0.6) \times 10$	₎ –3	4867
$J/\psiJ/\psi$	< 2.7 × 10	₀ -5 90%	3857
$J/\psi\psi(2S)$	< 1.7 × 10	90%	3594
$\psi(2S)\psi(2S)$	< 6 × 10	90%	3298

$h_b(1P)$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

Created: 8/25/2014 17:06

Mass $m = 9899.3 \pm 1.0 \text{ MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta_b(1S)\gamma$	(49 ⁺⁸ ₋₇) %	489

$$\chi_{b2}(1P)^{[hhbb]}$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(1S)$	$(19.1 \pm 1.2) \%$		442
D^0X	< 7.9 %	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(8 \pm 5) \times 10$	₀ –5	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 1	0^{-4} 90%	4901
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(5.3\pm2.4)\times10^{-1}$	0^{-4}	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10^{-1}$	0-4	4931
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.1\pm0.4)\times10^{-1}$	0^{-4}	4888
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(2.1\pm0.9)\times10^{-2}$	0^{-4}	4872
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(3.9\pm1.8)\times10^{-1}$	0^{-4}	4855
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 5 × 1	0^{-4} 90%	4854
$3\pi^{+}3\pi^{-}$	$(7.0\pm3.1)\times10^{-2}$	₀ –5	4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0.4)\times10^{-1}$	0-3	4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 8 × 1	0^{-5} 90%	4854
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.6\pm1.5)\times10^{-1}$	0^{-4}	4835
$4\pi^+4\pi^-$	$(8 \pm 4) \times 10$	₀ –5	4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0.7)\times10^{-1}$	0-3	4877
$J/\psiJ/\psi$	< 4 × 10	0^{-5} 90%	3869
$J/\psi\psi(2S)$	< 5 × 10	0^{-5} 90%	3608
$\psi(2S)\psi(2S)$	< 1.6 × 10	o ⁻⁵ 90%	3313

T(2S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10023.26\pm0.31~{\rm MeV}$ $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13~{\rm MeV}$ Full width $\Gamma=31.98\pm2.63~{\rm keV}$ $\Gamma_{ee}=0.612\pm0.011~{\rm keV}$

T(2S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$\Upsilon(1S)\pi^+\pi^-$	(17.85 ± 0.26) %		475
$\Upsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4) %		480
$ au^+ au^-$	$(2.00\pm~0.21)~\%$		4686
$\mu^+\mu^-$	($1.93\pm~0.17$) %	S=2.2	5011
e^+e^-	($1.91\pm~0.16$) %		5012
$\Upsilon(1S)\pi^0$	< 4 ×	10^{-5} CL=90%	531
$\Upsilon(1S)\eta$	($2.9~\pm~0.4$) $ imes$	10^{-4} S=2.0	126
$J/\psi(1S)$ anything	< 6 ×	10^{-3} CL=90%	4533
\overline{d} anything	(3.4 \pm 0.6) \times	10^{-5}	_

HTTP://PDG.LBL.GOV

Page 144

hadrons	$(94 \pm 11)\%$		_
ggg	(58.8 \pm 1.2) %		_
γ g g	(8.8 ± 1.1) %		_
$\phi K^+ K^-$	$(1.6 \pm 0.4) \times 10^{-6}$		4910
$\omega \pi^+ \pi^-$	$< 2.58 \times 10^{-6}$	CL=90%	4977
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(2.3 \pm 0.7) \times 10^{-6}$		4952
$\phi f_2'(1525)$	$< 1.33 \times 10^{-6}$	CL=90%	4841
$\omega f_2(1270)$	$< 5.7 \times 10^{-7}$	CL=90%	4899
$\rho(770) a_2(1320)$	$< 8.8 \times 10^{-7}$	CL=90%	4894
$K^*(892)^0\overline{K}_2^*(1430)^0+$ c.c.	$(1.5 \pm 0.6) \times 10^{-6}$		4869
$K_1(1270)^\pmK^\mp$	$< 3.22 \times 10^{-6}$	CL=90%	4918
$K_1(1400)^\pmK^\mp$	$< 8.3 \times 10^{-7}$	CL=90%	4901
$b_1(1235)^\pm\pi^\mp$	$< 4.0 \times 10^{-7}$	CL=90%	4935
$ ho \pi$	$< 1.16 \times 10^{-6}$	CL=90%	4981
$\pi^+\pi^-\pi^0$	$< 8.0 \times 10^{-7}$	CL=90%	5007
$\omega \pi^0$	$< 1.63 \times 10^{-6}$	CL=90%	4980
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.30\pm\ 0.28)\times10^{-5}$		5002
$K_S^0 K^+ \pi^- + \text{c.c.}$	$(1.14\pm\ 0.33) \times 10^{-6}$		4979
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$< 4.22 \times 10^{-6}$	CL=90%	4959
$K^*(892)^-K^+ + \text{c.c.}$	$< 1.45 \times 10^{-6}$	CL=90%	4960
Sum of 100 exclusive modes	$(2.90\pm\ 0.30)\times 10^{-3}$		_

Radiative decays

$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4)	4)%		130
$\gamma \chi_{b2}(1P)$	($7.15\pm~0.3$	35) %		110
$\gamma \chi_{b0}(1P)$	(3.8 ± 0.4)	4)%		162
$\gamma f_0(1710)$	< 5.9	$\times 10^{-4}$	CL=90%	4864
$\gamma f_2'(1525)$	< 5.3	$\times 10^{-4}$	CL=90%	4896
$\gamma f_{2}(1270)$	< 2.41	$\times10^{-4}$	CL=90%	4931
$\gamma \eta_c(1S)$	< 2.7	$\times10^{-5}$	CL=90%	4568
$\gamma \chi_{c0}$	< 1.0	$\times 10^{-4}$	CL=90%	4430
$\gamma \chi_{c1}$	< 3.6	$\times 10^{-6}$	CL=90%	4397
$\gamma \chi_{c2}$	< 1.5	$\times10^{-5}$	CL=90%	4381
$\gamma X(3872) \rightarrow \pi^+\pi^- J/\psi$	< 8	$\times 10^{-7}$	CL=90%	_
$\gamma X(3872) \rightarrow \pi^+ \pi^- \pi^0 J/\psi$	< 2.4	$\times 10^{-6}$	CL=90%	_
$\gamma \chi_{c0}(2P) \rightarrow \omega J/\psi$	< 2.8	$\times 10^{-6}$	CL=90%	_
$\gamma X(4140) ightarrow \phi J/\psi$	< 1.2	$\times 10^{-6}$	CL=90%	_
$\gamma X(4350) \rightarrow \phi J/\psi$	< 1.3	\times 10 ⁻⁶	CL=90%	_
$\gamma \eta_b(1S)$	(3.9 ± 1.5)	$5) \times 10^{-4}$		606
$\gamma \eta_{\it b}(1S) ightarrow \gamma {\sf Sum} {\sf of} 26 {\sf exclu}$	< 3.7	$\times 10^{-6}$	CL=90%	_
sive modes		6		
$\gamma X_{b\overline{b}} \rightarrow \gamma Sum \text{ of 26 exclusive}$	< 4.9	$\times 10^{-6}$	CL=90%	_
modes				

Lepton Family number (LF) violating modes

Υ(1D)

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

Mass $m = 10163.7 \pm 1.4 \text{ MeV}$ (S = 1.7)

T(1D) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma \Upsilon(1S)$	seen	679
$\gamma \chi_{bJ}(1P)$	seen	300
$\eta \ \varUpsilon(1S)$	not seen	426
$\pi^+\pi^- \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 10232.5 \pm 0.4 \pm 0.5 \text{ MeV}$

$\chi_{b0}(2P)$ DECAY MODES	Fraction (Γ	- _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(2S)$	(4.6±2.	1) %		207
$\gamma \Upsilon(1S)$	(9 ±6	$) \times 10^{-3}$	3	743
D^0X	< 8.2	%	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 3.4	\times 10 ⁻⁵	90%	5064
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 $^{-5}$	90%	5063
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$ $2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	< 2.2	\times 10 ⁻²	90%	5036
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	\times 10 ⁻²	90%	5092
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	< 1.5	\times 10 ⁻²	90%	5050
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.2	\times 10 ⁻²	90%	5035
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 1.1	$\times 10^{-3}$	90%	5019
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 7	\times 10 ⁻²	90%	5018
$3\pi^{+}3\pi^{-}$	< 7	\times 10 $^{-5}$	90%	5091
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	\times 10 ⁻³	90%	5070
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻²	90%	5017
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	\times 10 ⁻²	90%	4999
$4\pi^+4\pi^-$	< 1.7	\times 10 ⁻²	90%	5069
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	\times 10 ⁻²	90%	5039

$$\chi_{b1}(2P)^{[hhbb]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass
$$m=10255.46\pm0.22\pm0.50$$
 MeV $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0$ MeV

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\omega \Upsilon(1S)$	(1.63+0.40) %		135
$\gamma \Upsilon(2S)$	(19.9 ± 1.9) %		230
$\gamma \Upsilon(1S)$	(9.2 \pm 0.8) %	1.1	764
$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$		238
D^0X	(8.8 ± 1.7) %		_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.1 \pm 1.0) \times 10^{-4}$		5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$		5075
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$		5047
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$		5104
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(10 \pm 4) \times 10^{-5}$		5062
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(5.5 \pm 1.8) \times 10^{-4}$		5047
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$		5030
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$		5029
$3\pi^{+}3\pi^{-}$	$(1.2 \pm 0.4) \times 10^{-4}$		5103
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$		5081
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$		5029
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$		5011
$4\pi^+4\pi^-$	$(1.7 \pm 0.6) \times 10^{-4}$		5080
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$		5051

$\chi_{b2}(2P)^{[hhbb]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass
$$m=10268.65\pm0.22\pm0.50$$
 MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.5\pm0.6$ MeV

$\chi_{b2}(2P)$ DECAY MODES	Fraction (Γ_i	/Γ) (Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega \Upsilon(1S)$	(1.10^{+0}_{-0})	.34 .30) %		194
$\gamma \Upsilon(2S)$	(10.6 ± 2	.6)%	S=2.0	242
$\gamma \Upsilon(1S)$	(7.0 ± 0	.7)%		777
$\pi\pi\chi_{b2}(1P)$	($5.1~\pm0$.9) × 10	-3	229
$D^0 X$	< 2.4	%	CL=90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.1	\times 10	⁻⁴ CL=90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9	× 10	⁻⁵ CL=90%	5082

HTTP://PDG.LBL.GOV

Page 147

$2\pi^{+}\pi^{-}K^{-}K^{0}_{5}2\pi^{0}$	< 7	$\times10^{-4}$	CL=90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	($3.9 \pm$	$1.6) \times 10^{-4}$		5110
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	$(9 \pm$	4) \times 10 ⁻⁵		5068
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	(2.4 \pm	$1.1) \times 10^{-4}$		5054
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	(4.7 \pm	$2.3) \times 10^{-4}$		5037
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 4	\times 10 ⁻⁴	CL=90%	5036
$3\pi^{+}3\pi^{-}$	$(9 \pm$	4) \times 10 ⁻⁵		5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2 \pm	$0.4) \times 10^{-3}$		5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4 \pm	$0.7) \times 10^{-4}$		5036
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(4.2 \pm	$1.7) \times 10^{-4}$		5017
$4\pi^+4\pi^-$	$(9 \pm$	$5) \times 10^{-5}$		5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3 \pm	$0.5) \times 10^{-3}$		5058

T(3*S*)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.2\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=20.32\pm1.85$ keV $\Gamma_{ee}=0.443\pm0.008$ keV

		Scale factor/	p
au(3S) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$\gamma(2S)$ anything	(10.6 \pm 0.8) %		296
\varUpsilon (2S) $\pi^+\pi^-$	(2.82±0.18) %	S=1.6	177
$\Upsilon(2S)\pi^0\pi^0$	$(1.85\pm0.14)\%$)	190
$\Upsilon(2S)\gamma\gamma$	(5.0 \pm 0.7) %)	327
$\Upsilon(2S)\pi^0$	< 5.1 ×	10^{-4} CL=90%	298
$\Upsilon(1S)\pi^+\pi^-$	(4.37±0.08) %)	813
$\Upsilon(1S)\pi^0\pi^0$	$(2.20\pm0.13)\%$)	816
$\Upsilon(1S)\eta$	< 1 ×	10^{-4} CL=90%	677
$\Upsilon(1S)\pi^0$	< 7 ×	10^{-5} CL=90%	846
$h_b(1P)\pi^0$	< 1.2 ×	10^{-3} CL=90%	426
$h_b(1P)\pi^0 ightarrow \gamma \eta_b(1S)\pi^0$	(4.3 ± 1.4) $ imes$	10^{-4}	_
$h_b(1P)\pi^+\pi^-$	< 1.2 ×	10^{-4} CL=90%	353
$ au^+ au^-$	$(2.29\pm0.30)\%$)	4863
$\mu^+\mu^-$	$(2.18\pm0.21)\%$	S=2.1	5177
e^+e^-	seen		5178
ggg	$(35.7 \pm 2.6)\%$))	_
$\gamma g g$	(9.7 ± 1.8) $ imes$	10^{-3}	_

Radiative decays

(13.1 ± 1.6) %	S=3.4	86
(12.6 \pm 1.2) %	S=2.4	99
(5.9 ± 0.6) %	S=1.4	122
($9.9~\pm1.3~) imes10^{-3}$	-3 S=2.0	434
< 8 × 10	$^{-5}$ CL=90%	_
$(9 \pm 5) \times 10^{-5}$	-4 S=1.9	452
$(2.7 \pm 0.4) \times 10^{-5}$	-3	484
$< 6.2 \times 10^{-1}$	⁻⁴ CL=90%	350
` ,		913
$[jjbb]$ < 2.2 \times 10	⁻⁴ CL=95%	_
$< 5.5 \times 10^{-5}$	^{−6} CL=90%	_
$[kkbb]$ < 1.6 \times 10	⁻⁴ CL=90%	_
	$(12.6 \pm 1.2)\%$ $(5.9 \pm 0.6)\%$ $(9.9 \pm 1.3) \times 10^{-2}$ $< 8 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Lepton Family number (LF) violating modes

$e^{\pm} au^{\mp}$	LF	< 4.2	\times 10 ⁻⁶	CL=90%	5025
$\mu^{\pm} au^{\mp}$	LF	< 3.1	\times 10 ⁻⁶	CL=90%	5025

$\chi_b(3P)$

$$I^{G}(J^{PC}) = ?^{?}(?^{?+})$$

Mass $m=10534\pm 9~{
m MeV}$

$\chi_b(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma(1S)\gamma$	seen	1019
$\Upsilon(2S)\gamma$	seen	498

$$\Upsilon(4S)$$
 or $\Upsilon(10580)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10579.4\pm1.2$ MeV Full width $\Gamma=20.5\pm2.5$ MeV $\Gamma_{ee}=0.272\pm0.029$ keV (S=1.5)

T(4S) DECAY MODES	Fraction (I	- _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	327
B^+B^-	(51.4 \pm	0.6)%		332
D_s^+ anything $+$ c.c.	(17.8 \pm	2.6) %		_
$B^0\overline{B}^0$	(48.6 ±	0.6)%		327
$J/\psi K_S^0 (J/\psi, \eta_c) K_S^0$	< 4	× 10	90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	($1.57\pm$	$0.08) \times 10^{-1}$	₀ –5	5290
$ ho^+ ho^-$	< 5.7	× 10	90%	5233

HTTP://PDG.LBL.GOV

Page 149

$K^*(892)^0 \overline{K}{}^0$	< 2.0	$\times 10^{-6}$	90%	5240
$J/\psi(1S)$ anything	< 1.9	$\times10^{-4}$	95%	_
D^{*+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	(7.1 ± 0.6) %			5240
$\phi\eta$	< 1.8	\times 10 ⁻⁶	90%	5226
$\phi \eta'$	< 4.3	\times 10 ⁻⁶	90%	5196
$ ho\eta$	< 1.3	\times 10 ⁻⁶	90%	5247
$ ho\eta'$	< 2.5	\times 10 ⁻⁶	90%	5217
$\varUpsilon(1S)$ anything	< 4	\times 10 ⁻³	90%	1053
$\varUpsilon(1S)\pi^+\pi^-$	(8.1 ± 0.1	$.6) \times 10^{-5}$		1026
\varUpsilon (1 S) η	(1.96 ± 0.6)	$.28) \times 10^{-4}$		924
$\Upsilon(2S)\pi^+\pi^-$	(8.6 ± 1	$.3) \times 10^{-5}$		468
$h_b(1P)\pi^+\pi^-$	not seen			600
\overline{d} anything	< 1.3	$\times 10^{-5}$	90%	_

γ(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10876\pm11$ MeV Full width $\Gamma=55\pm28$ MeV $\Gamma_{ee}=0.31\pm0.07$ keV ~(S=1.3)

↑ (10860) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}X$	$(76.2 \begin{array}{c} +2.7 \\ -4.0 \end{array})\%$	1	_
$B\overline{B}$	(5.5 ± 1.0) %		1303
$B\overline{B}^* + \text{c.c.}$	(13.7 ± 1.6) %		_
$B^*\overline{B}^*$	(38.1 ± 3.4) %		1102
$B\overline{B}^{(*)}\pi$	< 19.7 %	90%	990
$B\overline{B}\pi$	(0.0 ± 1.2) %		990
$B^*\overline{B}\pi + B\overline{B}^*\pi$	(7.3 \pm 2.3) %		_
$B^*\overline{B}^*\pi$	(1.0 ± 1.4) %		701
$B\overline{B}\pi\pi$	< 8.9 %	90%	504
$B_s^{(*)}\overline{B}_s^{(*)}$	(20.1 ± 3.1) %		877
$B_s^{(*)} \overline{B}_s^{(*)} $ $B_s \overline{B}_s$	$(5 \pm 5) \times$	10 ⁻³	877
$B_s \overline{B}_s^* + \text{c.c.}$	(1.35±0.32) %		_
$B_s^*\overline{B}_s^*$	(17.6 ± 2.7) %		495
no open-bottom	(3.8 $^{+5.0}_{-0.5}$) %		_
e^+e^-	(5.6 \pm 3.1) \times	10^{-6}	5438
$K^*(892)^0 \overline{K}{}^0$	< 1.0 ×	10^{-5} 90%	5390
$\Upsilon(1S)\pi^+\pi^-$	(5.3 \pm 0.6) \times	10-3	1297
$\Upsilon(2S)\pi^+\pi^-$	(7.8 ± 1.3) $ imes$	10 ⁻³	774

$\Upsilon(3S)\pi^+\pi^-$	$(4.8^{+}1.9)\times10^{-3}$	429
$\Upsilon(1S) K^+ K^-$	(6.1 ± 1.8) $\times 10^{-4}$	947
$h_b(1P)\pi^+\pi^-$	$(3.5 \begin{array}{c} +1.0 \\ -1.3 \end{array}) \times 10^{-3}$	894
$h_b(2P)\pi^+\pi^-$	$(6.0 \begin{array}{c} +2.1 \\ -1.8 \end{array}) \times 10^{-3}$	534

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

$(13.8 \begin{array}{c} +2.4 \\ -1.7 \end{array})\%$
(108 ±8)% —
(46 ±6) % —
(2.06±0.21) % -
(77 ±8) % —
(72 ±6) % —

<u>γ(11020)</u>

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

 $\begin{aligned} \text{Mass } m &= 11019 \pm 8 \text{ MeV} \\ \text{Full width } \Gamma &= 79 \pm 16 \text{ MeV} \\ \Gamma_{\text{ee}} &= 0.130 \pm 0.030 \text{ keV} \end{aligned}$

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
e ⁺ e ⁻	$(1.6\pm0.5)\times10^{-6}$	5510	

NOTES

- [a] See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm Particle Listings for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^{\pm} Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the π^0 Particle Listings.
- [f] C parity forbids this to occur as a single-photon process.
- [g] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings . The interpretation of this entry as a particle is controversial.
- [h] See the "Note on $\rho(770)$ " in the $\rho(770)$ Particle Listings .
- [i] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [j] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings .
- [k] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics (generic for all A,B,E,G) **G33** 1 (2006).
- [/] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [n] See the "Note on non- $q\overline{q}$ mesons" in the Particle Listings in PDG 06, Journal of Physics (generic for all A,B,E,G) **G33** 1 (2006).
- [o] See the "Note on the $\eta(1405)$ " in the $\eta(1405)$ Particle Listings.
- [p] See the "Note on the $f_1(1420)$ " in the $\eta(1405)$ Particle Listings.
- [q] See also the $\omega(1650)$ Particle Listings.
- [r] See the "Note on the $\rho(1450)$ and the $\rho(1700)$ " in the $\rho(1700)$ Particle Listings.
- [s] See also the $\omega(1420)$ Particle Listings.
- [t] See the "Note on $f_0(1710)$ " in the $f_0(1710)$ Particle Listings in 2004 edition of *Review of Particle Physics*.
- [u] See the note in the K^{\pm} Particle Listings.

[v] The definition of the slope parameter g of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [x] For more details and definitions of parameters see the Particle Listings.
- [y] See the K^{\pm} Particle Listings for the energy limits used in this measurement
- [z] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [aa] Structure-dependent part.
- [bb] Direct-emission branching fraction.
- [cc] Violates angular-momentum conservation.
- [dd] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [ee] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= \left| \eta_{+-} \right| \mathrm{e}^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon \; + \; \epsilon' \\ \eta_{00} &= \left| \eta_{00} \right| \mathrm{e}^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon \; - \; 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} \; , \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \; \mathrm{viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} \; , \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} \; . \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, ${\rm Re}(\eta_{+-0}) \simeq 0$ and ${\rm Re}(\eta_{000}) \simeq 0$.

- [ff] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [gg] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [hh] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.

- [ii] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [jj] See the K_L^0 Particle Listings for the energy limits used in this measurement
- [kk] Allowed by higher-order electroweak interactions.
- [//] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [nn] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [oo] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** S1 (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [pp] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [qq] This result applies to $Z^0 \to c \overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [rr] See the Particle Listings for the (complicated) definition of this quantity.
- [ss] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [tt] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.
- [uu] Submodes of the $D^+ oup K^- 2\pi^+ \pi^0$ and $K^0_S 2\pi^+ \pi^-$ modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [vv] The unseen decay modes of the resonances are included.
- [xx] This is *not* a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [yy] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
- [zz] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [aaa] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [bbb] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-$, and $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.

- [ccc] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [ddd] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.19 \pm 0.17 %.
- [eee] This is a doubly Cabibbo-suppressed mode.
- [fff] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.
- [ggg] Submodes of the $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [hhh] This branching fraction includes all the decay modes of the resonance in the final state.
 - [iii] This limit is for either D^0 or $\overline{D}{}^0$ to pe^- .
 - [jjj] This limit is for either D^0 or \overline{D}^0 to $\overline{p}e^+$.
- [kkk] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an η , η' , ϕ , K^0 , K^{*0} , or $f_0(980)$ is 7.0 \pm 0.4 %
 - [///] This fraction includes η from η' decays.
- [nnn] Two times (to include μ decays) the $\eta' e^+ \nu_e$ branching fraction, plus the $\eta' \pi^+$, $\eta' \rho^+$, and $\eta' K^+$ fractions, is $(18.6 \pm 2.3)\%$, which considerably exceeds the inclusive η' fraction of $(11.7 \pm 1.8)\%$. Our best guess is that the $\eta' \rho^+$ fraction, $(12.5 \pm 2.2)\%$, is too large.
- [000] This branching fraction includes all the decay modes of the final-state resonance.
- [ppp] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [qqq] We decouple the $D_s^+ \to \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ \to \phi \pi^+$, $\phi \to K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ \to K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi \to K^+ K^-$ branching fraction 0.491.
 - [rrr] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
- [sss] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [ttt] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the $D^0-\overline{D}{}^0$ system.
- [uuu] D denotes D^0 or \overline{D}^0 .

- [vvv] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [xxx] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [yyy] $X(3872)^+$ is a hypothetical charged partner of the X(3872).
- [zzz] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [aaaa] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [bbaa] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [ccaa] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [ddaa] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [eeaa] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- [ffaa] $\Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [ggaa] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [hhaa] These values are model dependent.
- [iiaa] Here "anything" means at least one particle observed.
- [jjaa] This is a B($B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$) value.
- [kkaa] D^{**} stands for the sum of the $D(1\,^{1}P_{1})$, $D(1\,^{3}P_{0})$, $D(1\,^{3}P_{1})$, $D(1\,^{3}P_{2})$, $D(2\,^{1}S_{0})$, and $D(2\,^{1}S_{1})$ resonances.
- [IIaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [nnaa] X(3915) denotes a near-threshold enhancement in the ω J/ψ mass spectrum.
- [ooaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [ppaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [qqaa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [rraa] For $E_{\gamma} > 100$ MeV.
- [ssaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [ttaa] For a narrow state A with mass less than 960 MeV.
- [uuaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [vvaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [xxaa] BHARDWAJ 11 does not observe this decay and presents a stronger 90% CL limit than this value. See measurements listings for details.

[yyaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.

[zzaa]
$$2m_{\tau} < M(\tau^{+}\tau^{-}) < 9.2 \text{ GeV}$$

[aabb] 2 GeV
$$< m_{K^+K^-} < 3$$
 GeV

[bbbb]
$$X = \text{scalar with } m < 8.0 \text{ GeV}$$

[ccbb]
$$X\overline{X}$$
 = vectors with $m < 3.1$ GeV

[ddbb]
$$X$$
 and $\overline{X} = \text{zero spin with } m < 4.5 \text{ GeV}$

[eebb] 1.5 GeV
$$< m_X < 5.0$$
 GeV

[ffbb] 201 MeV
$$<$$
 M($\mu^+\mu^-$) $<$ 3565 MeV

[ggbb] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.

[hhbb] Spectroscopic labeling for these states is theoretical, pending experimental information.

[iibb] 1.5 GeV
$$< m_X < 5.0$$
 GeV

[
$$jjbb$$
] 1.5 GeV $< m_X < 5.0$ GeV

[kkbb] For $m_{\tau^+\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.