

W 8 Tutorial Notes

1. Construct a truth table for the following statement: $(p \leftrightarrow q) \rightarrow r$

Р	9	r	P <> 9	(p↔q) → r
T	Т	T	T	Т
T	Τ	F	T	F
τ	۴	7	۴	Τ
Τ	F	F	F	T
F	T	T	F	7
F	T	F	۴	τ
F	F	T	T	7
F	F	F	Т	F

2. Devive from this fruth table an equivalent formula to $(p \leftrightarrow a) \Rightarrow r$ that only uses connectives from $\{ \land, \lor, \tau \}$ and has exactly 6 propositional variables in it (for example, $(p \land q) \lor (\tau q \land p) \lor r$ has exactly 4 propositional variables)

7, since we tound that \Rightarrow $7(p \leftrightarrow q) \Rightarrow r = ((P \land q) \land 7r) \land (7P \land 7q \land 7r)$ false in $(p \leftrightarrow q) \Rightarrow r = not ((P \land q) \land 7r) \land (7P \land 7q \land 7r)$ table above.

double negation

from line above

3. Explain how you derived your formula

First we look at the results that evaluate to False for $(p \Leftrightarrow q) \Rightarrow r$. We can write the formulas for Prq. r and then negate the whole formula. This is when it is false. Double negation on both sides would give not $((P \land q) \land \neg r) \land (\neg P \land \neg q \land \neg r)$

4. Prove that $(p \leftrightarrow q) \rightarrow r$ is logically equivalent to $(\neg p \land q) \lor (\neg q \land p) \lor r$ using the logical equivalence laws.

 $\Leftrightarrow (p \leftrightarrow q) \rightarrow r$ $\Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) \rightarrow r$ $\Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) \rightarrow r$ $\Leftrightarrow \neg ((\neg p \lor q) \land (\neg q \lor p)) \lor r$ $\Leftrightarrow [(\neg (\neg p \lor q)) \lor (\neg (\neg q \lor p))] \lor r$ $\Leftrightarrow ((\neg p \land q)) \lor ((\neg q \land p)) \lor r$ $\Leftrightarrow ((\neg p \land q)) \lor ((\neg q \land p)) \lor r$ $\Leftrightarrow (p \land \neg q) \lor (q \land \neg p) \lor r$ $\Leftrightarrow (p \land \neg q) \lor (q \land \neg p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor r$ $\Leftrightarrow (\neg p \land q) \lor (\neg q \land p) \lor (\neg q \land p$