Azure Al Infrastructure Running Al Workloads at Scale

Jarek Kazmierczak MTC Silicon Valley

Reasoning

Learn and form conclusions with imperfect data

Understanding

Interpret meaning of data including text, voice, images

Interacting

Interact with people in natural ways

Artificial Intelligence, Machine Learning and Deep Learning

The Rise of Deep Learning in ML

Deep neural networks have enabled major advances in machine learning and AI

Computer vision

Language translation

Speech recognition

Question answering

And more...

Recurrent Neural Networks

Convolutional Neural Networks

Deep Learning Hype

Microsoft Al Platform

Microsoft Al Platform

Deep Learning Demands Compute Power

Massive scale inference

Computational capacity – CPU, GPU, ASICs

Processor type	Operations per cycle
CPU	a few
CPU with vector extensions (e. AVX-512)	tens
GPU	tens of thousands
ASIC/FPGA	hundreds of thousands

GPU Power

- Tesla P40
 - 12 Teraflops per second
 - 47 INT8 operations per second (TOPS)
 - 24 GB GPU memory
 - 346 GB/s Memory Bandwidth
- Volta 100
 - 120 Teraflops per second (Deep Learning)
 - 640 Tensor Cores
 - 900 GB/s Memory Bandwidth

Deep Learning Training in One Workday

Server Config: Dual Xeon E5-2699 v4, 2.6GHz | 8x Tesla K80, Tesla P100 or Tesla V100 | V100 performance measured on pre-production hardware. | ResNet-50 Training on Microsoft Cognitive Toolkit for 90 Epochs with 1.28M ImageNet dataset

Every Deep Learning Framework is GPU Accelerated

Compute Virtual Machines (NC)

	NC6	NC12	NC24	NC24r
Cores	6	12	24	24
GPU	1 K80 GPU (1/2 Physical Card)	2 K80 GPUs (1 Physical Card)	4 K80 GPUs (2 Physical Cards)	4 K80 GPUs (2 Physical Cards)
Memory	56 GB	112 GB	224 GB	224 GB
Disk	~380 GB SSD	~680 GB SSD	~1.5 TB SSD	~1.5 TB SSD
Network	Azure Network	Azure Network	Azure Network	InfiniBand

Next-Gen GPU Compute VM: NC_v2

	NC6s_v2	NC12s_v2	NC24s_v2	NC24rs_v2
Cores	6	12	24	24
GPU	1 x P100 GPU	2 x P100 GPU	4 x P100 GPU	4 x P100 GPU
Memory	112 GB	224 GB	448 GB	448 GB
Disk	~700 GB SSD	~1.4 TB SSD	~3 TB SSD	~3 TB SSD
Network	Azure Network	Azure Network	Azure Network	InfiniBand

Next-Gen GPU Deep Learning VM: ND

	ND6s	ND12s	ND24s	ND24rs
Cores	6	12	24	24
GPU	1 x P40	1 x P40	4 x P40	4 x P40
Memory	112 GB	224 GB	448 GB	448 GB
Disk	~700 GB SSD	~1.4 TB SSD	~3 TB SSD	~3 TB SSD
Network	Azure Network	Azure Network	Azure Network	InfiniBand

Project BrainWave

A Scalable FPGA-powered DNN Serving Platform

Fast: ultra-low latency, high-throughput serving of DNN models at low batch sizes

Flexible: adaptive numerical precision and custom operators

Friendly: turnkey deployment of CNTK/Caffe/TF/etc

Pretrained DNN Model in CNTK, etc.

Scalable DNN Hardware Microservice

BrainWave Soft DPU

Quantum hardware technologies

Microsoft Al Platform

Challenges of Training at Scale

- Deploy virtual machines
- Install Drivers and dependencies
- Manage Cost
- Queue Work

- Handle monitoring and Failures
- Keep things secure
- Training on compliance restricted data
- Cleanup when done

Azure Batch Al Training Service

- Managed Service
- Supports Role Based Access Control
- Hierarchical Quota Management
- Easily Provision VMs at scale
- Load based automatic scaling

- Run experiments in Parallel
- Run in Containers or directly on VM
- Run any toolkit (CNTK, Tensorflow, Caffee, Chainer...)
- Only compute cost. Service is free

Experience Specialized for Learning

Appendix

Why go deep?

 Deep learning algorithms attempt multiple levels of representation of increasing complexity/abstraction

Brains have a deep architecture

 Deep Learning has been successful in tasks that have been a challenge for "traditional ML"

Artificial Neural Networks - ANNs

Neurons can connect in various ways ...

"Feedback "Sparse" "Dense" loops" Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks

... and can be arranged in layers

Revolution of depth

ResNet: 152 layers, and 1001 layers later on MSRA's ResNet won the 1st places in ImageNet classification, ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation in <u>ILSVRC</u> & <u>COCO</u> competitions 2015

ANN Learning

Stochastic Gradient Descent and Backpropagation

Loss function

$$\min_{\mathbf{w}} \sum_{i=1}^{N} f(x_i, y_i; \mathbf{w})$$

Stochastic Gradient Descent (SGD)

$$g(w_t) = \nabla f(x_i, y_i; w_t)$$

$$w_{t+1} = w_t - \eta_t g(w_t)$$

