

Real and Functional Analysis

Professor: Gianmaria Verzini

Last updated: November 4, 2024

This document is intended for educational purposes only. These are unreviewed notes and may contain errors.

Made by Roberto Benatuil Valera

Contents

1	\mathbf{Set}	Theory	
	1.1	Basic notions	
	1.2	Families of subsets	
	1.3	Characteristic functions	
	1.4	Equivalence relations and Quotient sets	
	Measure Theory		
	2.1	Measure spaces	

Chapter 1

Set Theory

1.1 Basic notions

Definition 1.1.1. Let X, Y be sets. We say:

- X, Y are equipotent if there exists a bijection $f: X \to Y$.
- X has a cardinality greater or equal to Y if there exists an surjection $f: X \to Y$.
- X is **finite** if it is equipotent to $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. X is infinite otherwise.

Note: X is infinite \iff it is equipotent to a proper subset of itself.

E.g.: The set of natural numbers \mathbb{N} is infinite. In fact, the set of even natural numbers $E = \{2, 4, 6, \ldots\} \subset \mathbb{N}$ is equipotent to \mathbb{N} , as we can define the bijection $f : \mathbb{N} \to E$ as f(n) = 2n.

Definition 1.1.2. Let X be an infinite set. We say X is **countable** if it is equipotent to \mathbb{N} . X is **uncountable** otherwise, in which case it is **more than countable**.

Definition 1.1.3. X has the **cardinality of the continuum** if it is equipotent to $[0,1] \subset \mathbb{R}$. Any such set is uncountable.

E.g.: We have that:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable.
- $\mathbb{R}, \mathbb{R}^n, (0,1), [0,1]$ are uncountable.
- Countable union of countable sets is countable.

1.2 Families of subsets

Let X be a set. The "Power set" of X is the set of all subsets of X, denoted by $\mathcal{P}(X)$.

$$\mathcal{P}(X) = \{ E : E \subseteq X \}$$

Note that $\mathcal{P}(X)$ has always a cardinality greater than X. For example, if $X = \mathbb{N}$, then $\mathcal{P}(X)$ has the cardinality of the continuum.

Definition 1.2.1. Let X be a set. A family of subsets of X is a set E such that:

$$E \subseteq \mathcal{P}(X)$$

We usually denote $E = \{E_i\}_{i \in I}$, where I is an index set.

Definition 1.2.2. Let $E = \{E_i\}_{i \in I}$ be a family of subsets of X. We define:

• The union of E as:

$$\bigcup_{i \in I} E_i = \{ x \in X : x \in E_i \text{ for some } i \in I \}$$

• The intersection of E as:

$$\bigcap_{i \in I} E_i = \{ x \in X : x \in E_i \text{ for all } i \in I \}$$

Definition 1.2.3. Let $E = \{E_i\}_{i \in I}$ be a family of subsets of X. We say F is **pairwise disjoint** if:

$$E_i \cap E_j = \emptyset \ \forall i, j \in I, i \neq j$$

Definition 1.2.4. We say that the family $E = \{E_i\}_{i \in I}$ of subsets of X is a **covering** of X if:

$$X = \bigcup_{i \in I} E_i$$

Any subfamily of $E, E' = \{E_i\}_{i \in I'}$ is a **subcovering** of X if it is a covering of X itself.

E.g.: Let $X = \mathbb{R}$. We define:

$$\mathcal{T} = \{ E \subset X : E \text{ is open} \}$$

We say that \mathcal{T} is the standard topology of X. More generally, this can be done in

"metric spaces" (X, d).

Properties of \mathcal{T} (open sets):

- $\emptyset, X \in \mathcal{T}$.
- Finite intersection of elements in \mathcal{T} is in \mathcal{T} .
- Arbitrary union of elements in \mathcal{T} is in \mathcal{T} .

We can also define **sequences of sets**. Let X be a set. A sequence of sets in X is a family of sets $\{E_n\}_{n\in\mathbb{N}}$.

Definition 1.2.5. Let X be a set. A sequence of sets $\{E_n\}_{n\in\mathbb{N}}$ is said to be:

• Increasing if:

$$E_n \subseteq E_{n+1} \ \forall n \in \mathbb{N}$$

It is denoted by $\{E_n\} \uparrow$.

• Decreasing if:

$$E_n \supseteq E_{n+1} \ \forall n \in \mathbb{N}$$

It is denoted by $\{E_n\} \downarrow$.

Let now $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$ be a sequence of sets in X:

Definition 1.2.6. We define the following:

• The **limit superior** of $\{E_n\}$ as:

$$\limsup_{n \to \infty} E_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} E_k$$

• The **limit inferior** of $\{E_n\}$ as:

$$\liminf_{n \to \infty} E_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} E_k$$

• If the limit superior and limit inferior are equal, we say that

$$\lim_{n\to\infty} E_n = \limsup_{n\to\infty} E_n = \liminf_{n\to\infty} E_n$$

Exercise: Let X be a set and $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$ be a sequence of sets in X. Prove that:

(i)
$$\{E_n\} \uparrow \Rightarrow \lim_{n \to \infty} E_n = \bigcup_{n \in \mathbb{N}} E_n$$
 (ii) $\{E_n\} \downarrow \Rightarrow \lim_{n \to \infty} E_n = \bigcap_{n \in \mathbb{N}} E_n$

1.3 Characteristic functions

Definition 1.3.1. Let X be a set and $E \subseteq X$. The characteristic function of E is the function $\mathbb{1}_E: X \to \{0,1\}$ defined as:

$$\mathbb{1}_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

This function is also called the **indicator function** of E.

Note: Let $E, F \subseteq X$. We have that:

- $\mathbb{1}_{E \cap F} = \mathbb{1}_E \cdot \mathbb{1}_F$.
- $\mathbb{1}_{E \cup F} = \mathbb{1}_E + \mathbb{1}_F \mathbb{1}_{E \cap F}$.
- $\mathbb{1}_{E^c} = 1 \mathbb{1}_E$.

Equivalence relations and Quotient sets 1.4

Definition 1.4.1. A relation R on a set X is a subset of $X \times X$. For any $x, y \in X$, we say that x is related to y if $(x, y) \in R$. We denote this as xRy.

Definition 1.4.2. A relation R on a set X is an equivalence relation if it satisfies:

• Reflexivity:

$$xRx \ \forall x \in X$$

• Symmetry:

$$xRy \Rightarrow yRx \ \forall x,y \in X$$

• Transitivity:

$$xRy, yRz \implies xRz \ \forall x, y, z \in X$$

Every equivalence relation on X induces a partition of X. We define the equivalence **class** of $x \in X$ as:

$$[x] = \{ y \in X : xRy \}$$

The set of all equivalence classes is called the **quotient set** of X by R, denoted by X/R.

$$X/R = \{[x]: x \in X\}$$

E.g.: Let $X = \mathbb{Z} \times \mathbb{Z}_0$ such that $\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}$. We define the relation R on X as:

$$(a,b)R(c,d) \iff ad = bc$$

We can prove that R is an equivalence relation. The equivalence classes are:

$$[(a,b)] = \{(c,d) \in X : ad = bc\}$$

Notice that:

$$[(a,b)] = \{(a,b), (2a,2b), (3a,3b), \ldots\}$$

If we denote a class [(a,b)] as [a/b], then we have that:

$$X/R = \{[a/b]: a, b \in \mathbb{Z}_0\} = \mathbb{Q}$$

Chapter 2

Measure Theory

2.1 Measure spaces

Definition 2.1.1. Let X be a non-empty set. A family $\mathcal{M} \subseteq \mathcal{P}(X)$ is a σ -algebra if:

- (i) $\emptyset \in \mathcal{M}$.
- (ii) $E \in \mathcal{M} \implies E^c \in \mathcal{M}$.
- (iii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M} \implies \bigcup_{n\in\mathbb{N}}E_n\in\mathcal{M}.$

If instead of (iii) we have that $E_1, E_2 \in \mathcal{M} \implies \mathbb{E}_1 \cup E_2 \in \mathcal{M}$, then \mathcal{M} is called an algebra.

Note: If \mathcal{M} is a σ -algebra, then we say that (X, \mathcal{M}) is a **measurable space**. Any set $E \in \mathcal{M}$ is called a **measurable set**.

E.g.: Let $X \neq \emptyset$. Then:

- $\mathcal{P}(X)$ is a σ -algebra.
- $\{\emptyset, X\}$ is a σ -algebra.
- $\{\emptyset, E, E^c, X\}$ is a σ -algebra for any $E \subseteq X$.
- $X = \mathbb{R}$, $\mathcal{M} = \{E \subseteq \mathbb{R} : E \text{ is open}\}$ is NOT a σ -algebra.

Properties 2.1.1. Let (X, \mathcal{M}) be a measurable space. Then:

- (i) $X = \emptyset^c \in \mathcal{M}$
- (ii) \mathcal{M} is also an algebra. Indeed, if $\{E_1, E_2\} \subseteq \mathcal{M}$, $E_n = \emptyset \ \forall n \geq 3$, then $E_1 \cup E_2 = \bigcup_{n \in \mathbb{N}} E_n \in \mathcal{M}$.
- (iii) $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathcal{M} \implies \bigcap_n E_n\in\mathcal{M}.$
- (iv) $E, F \in \mathcal{M} \implies E \setminus F \in \mathcal{M}$
- (v) $\Omega \subseteq X$. Then, the **restriction** of \mathcal{M} to Ω is:

$$\mathcal{M}|_{\Omega} := \{ F \subseteq \Omega : F = E \cap \Omega, E \in \mathcal{M} \}$$

Then, $(\Omega, \mathcal{M}|_{\Omega})$ is a measurable space.