# MA1101R

LIVE LECTURE 3

Q&A: log in to PollEv.com/vtpoll

## Topics for week 3

- 2.3 Inverses of Square Matrices
- 2.4 Elementary Matrices
- 2.5 Determinant

If AB = I, then BA = I

### Invertible matrix

 $\boldsymbol{A}$ : square matrix of order n.

#### A is invertible

if there exists a square matrix **B** of order *n* such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} \text{ and } \mathbf{A}^{-1} = \mathbf{I}$$
only one

The matrix **B** here is called the inverse of **A**.

We use  $A^{-1}$  to denote this unique inverse of A.

A square matrix is called singular if it has no inverse.

### True or False



### Show Inverse

Given  $\mathbf{A}$  is a square matrix and  $\mathbf{A}^2 + \mathbf{A} = \mathbf{I}$ .

Show:  $A^{-1} = A + I$ 

#### Proof:

Start with  $A^2 + A = I$ 

Multiply A<sup>-1</sup> on both sides

$$A^{-1}(A^2 + A) = A^{-1}I$$

$$A^{-1}A^2 + A^{-1}A = A^{-1}$$

$$(A^{-1}A)A + I = A^{-1}$$

$$IA + I = A^{-1}$$

Conclusion:  $A^{-1} = A + I$ 

Anything wrong with the proof?

### Show Inverse

Given  $\mathbf{A}$  is a square matrix and  $\mathbf{A}^2 + \mathbf{A} = \mathbf{I}$ .

Show: 
$$\mathbf{A}^{-1} = \mathbf{A} + \mathbf{I}$$
  $\leftarrow$  to show  $\mathbf{A} + \mathbf{I}$  is the inverse of  $\mathbf{A}$ 

To show **B** is the inverse of **A**, we just need to show

$$BA = I \text{ or } AB = I$$

$$\mathbf{A}(\mathbf{A}+\mathbf{I}) = \mathbf{A}^2 + \mathbf{A} = \mathbf{I}$$
 algebraic manipulation use given condition

This implies

- A is invertible
- $A^{-1} = A + I$

## Invertibility and matrix operations

A, B: two invertible matrices (same size)

a: non-zero scalar

Scalar multiplication Transpose

Inverse Matrix multiplication

| Matrix           | Invertible? | Inverse                                         |
|------------------|-------------|-------------------------------------------------|
| a <b>A</b>       | yes         | $(aA)^{-1} = (1/a)A^{-1}$                       |
| $\mathbf{A}^{T}$ | yes         | $(\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$ |
| <b>A</b> -1      | yes         | $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$           |
| AB               | yes         | $(AB)^{-1} = B^{-1}A^{-1}$                      |

$$(AB...Z)^{-1} = Z^{-1}...B^{-1}A^{-1}$$

#### Note:

**A** and **B** invertible DOES NOT IMPLY  $\mathbf{A} + \mathbf{B}$  is invertible  $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} + \mathbf{B}^{-1} \leftarrow \text{FALSE}$ 

### Exercise 2 Q29

**A** and **B** are invertible matrices of the same size. Suppose **A** + **B** is invertible. Show that:

- (i)  $\mathbf{A}^{-1} + \mathbf{B}^{-1}$  is invertible and
- (ii)  $(A+B)^{-1} = A^{-1}(A^{-1}+B^{-1})^{-1}B^{-1}$

For (i), not easy to find a matrix M such that  $(A^{-1} + B^{-1})M = I$ 

For (ii), we consider the inverses of both sides:

We try to show:  $(A+B) = B(A^{-1}+B^{-1})A$ 

This is the same as showing:  $B^{-1}(A+B)A^{-1} = (A^{-1}+B^{-1})$ 

A and B are invertible matrices of the same size. Suppose A + B is invertible. Show that:

- (i)  $\mathbf{A}^{-1} + \mathbf{B}^{-1}$  is invertible and
- (ii)  $(A+B)^{-1} = A^{-1}(A^{-1}+B^{-1})^{-1}B^{-1}$

### Exercise 2 Q29

(ii) Is the same as showing:  $B^{-1}(A+B)A^{-1} = (A^{-1}+B^{-1})$ 

$$B^{-1}(A+B)A^{-1} = B^{-1}AA^{-1} + B^{-1}BA^{-1}$$
  
=  $B^{-1}I + IA^{-1}$   
=  $B^{-1} + A^{-1}$   
=  $A^{-1} + B^{-1}$  This shows part (ii)

To show (i), note that  $B^{-1}$ , A+B and  $A^{-1}$  are all invertible so the product  $B^{-1}(A+B)A^{-1}$  is invertible

This means  $A^{-1}+B^{-1}$  is invertible

## Elementary matrices

A square matrix is called an elementary matrix if it can be obtained from an identity matrix by performing a single elementary row operation.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{2R_2} \mathbf{E}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} \xrightarrow{2R_2} \mathbf{B} = \mathbf{E}_1 \mathbf{A}$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \mathbf{E}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{A} \xrightarrow{R_2 \leftrightarrow R_3} \mathbf{C} = \mathbf{E}_2 \mathbf{A}$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 + 2R_1} \mathbf{E}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} \xrightarrow{R_3 + 2R_1} \mathbf{D} = \mathbf{E}_3 \mathbf{A}$$

## Which are elementary?

Which of the following are elementary matrices?

#### All elementary matrices are invertible

The inverse of an elementary matrix is also an elementary matrix

## Inverse of elementary matrix

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{2R_2} \mathbf{E}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{E}_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathbf{R}_2 \leftrightarrow \mathbf{R}_3} \mathbf{E}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \longrightarrow \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{E}_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 + 2R_1} \mathbf{E}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \longrightarrow \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
\mathbf{E}_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

### Gaussian elimination

$$A \longrightarrow \longrightarrow \longrightarrow R$$
 REF

R is obtained from A by pre-multiplying A with a series of elementary matrices

$$\boldsymbol{E}_{n}...\boldsymbol{E}_{2}\boldsymbol{E}_{1}\boldsymbol{A} = \boldsymbol{R}$$

### True or false

Given **A** and **B** are row equivalent

- I. There is an invertible matrix C such that CA = B True
- II. There is an invertible matrix D such that A = DB True

$$A \longrightarrow \longrightarrow \longrightarrow B$$

$$E_{n}...E_{2}E_{1}A = B \Rightarrow CA = B \Rightarrow A = C^{-1}B$$

Let 
$$C = E_n ... E_2 E_1$$
 Let  $D = C^{-1}$ 

## Finding inverse matrix

$$\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{G.J.E.}
\begin{pmatrix}
1 & 0 & 0 & -40 & 16 & 9 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{pmatrix}$$

$$(\boldsymbol{A} \mid \boldsymbol{I}) \xrightarrow{\text{Gauss-Jordan}} (\boldsymbol{I} \mid \boldsymbol{A}^{-1})$$

$$m{A} \stackrel{\mathsf{GJE}}{\longrightarrow} m{I}$$
  $m{I} \stackrel{\mathsf{GJE}}{\longrightarrow} m{A}^{-1}$   $m{E}_k \cdots m{E}_2 m{E}_1 m{A} = m{A}^{-1}$ 

### Let's revise

- An elementary matrix can be obtained by performing exactly one e.r.o. on the identity matrix.
- The action of an e.r.o. on A is the same as
   pre-multiplying an elementary matrix on A
- There are three types of elementary matrices
- All elementary matrices are invertible
- The inverse of an elementary matrix is an elementary matrix.

### A very important theorem

Let **A** be a square matrix.

### The following statements are equivalent

- 1. **A** is invertible.
- 2. The linear system Ax = 0 has only the trivial solution.
- 3. The reduced row-echelon form of **A** is an identity matrix.
- 4. **A** can be expressed as a product of elementary matrices.

### REF and invertible matrix

To check whether a square matrix is invertible:

 $n \times n$ 

- Look at the RREF
  - RREF = *I* implies invertible n non-zero rows
  - RREF ≠ I implies not invertible < n non-zero rows
- Look at REF
   n non-zero rows
  - REF has no zero row implies invertible
  - REF has zero rows implies not invertible
     n non-zero rows

### Exercise 2 Q44(b)

- 1. **A** is invertible.
- 2. The linear system Ax = 0 has only the trivial solution.
- 3. The reduced row-echelon form of **A** is an identity matrix.
- 4. **A** can be expressed as a product of elementary matrices.

A is m x n and B is n x m. So AB is NOT invertible If m > n, can AB be invertible?

$$Bx = 0$$

This homogeneous system has m variables and n equations

The system has infinitely many solutions

So it has a non-trivial solution, say x = u

$$Bu = 0$$

$$ABu = A0 = 0$$

So ABx = 0 has a non-trivial solution  $\mathbf{u}$ 

## Product of elementary matrices

Express 
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
 as a product of elementary matrices

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \xrightarrow{R_3 - 2R_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \xrightarrow{-R_3} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_2 - R_3} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 - R_3} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 - R_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$

$$\boldsymbol{E}_{5}\boldsymbol{E}_{4}\boldsymbol{E}_{3}\boldsymbol{E}_{2}\boldsymbol{E}_{1}\boldsymbol{A} = \boldsymbol{I}$$

$$\mathbf{A} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \mathbf{E}_3^{-1} \mathbf{E}_4^{-1} \mathbf{E}_5^{-1} \mathbf{I}$$

## Elementary column operations

Perform e.c.o. C to a matrix **A** is the same as post-multiply a certain elementary matrix **E** to **A** 

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{2C_2} \mathbf{E}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{A} \xrightarrow{2C_2} \mathbf{B} = \mathbf{AE}_1$$

$$\mathbf{A} \xrightarrow{2C_2} \mathbf{B} = \mathbf{AE}_1$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathbf{C}_2 \leftrightarrow \mathbf{C}_3} \mathbf{E}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \mathbf{A} \xrightarrow{\mathbf{C}_2 \leftrightarrow \mathbf{C}_3} \mathbf{C} = \mathbf{A}\mathbf{E}_2$$

$$\mathbf{A} \xrightarrow{C_2 \leftrightarrow C_3} \mathbf{C} = \mathbf{AE}_2$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_3 + 2C_1} \mathbf{E}_3 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{A} \xrightarrow{C_3 + 2C_1} \mathbf{D} = \mathbf{AE}_3$$

$$\mathbf{A} \xrightarrow{C_3 + 2C_1} \mathbf{D} = \mathbf{AE}_3$$

### True or false

We can reduce a matrix **A** to REF by performing a series of elementary column operations (e.c.o).

#### False

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

#### If AB = I, then BA = I

### Exercise 2 Q45

 $R_1$ ,  $R_2$ , ...,  $R_n$  are e.r.o. corresponding to some elementary matrices  $\boldsymbol{E}_1$ ,  $\boldsymbol{E}_2$ , ...,  $\boldsymbol{E}_n$ .

 $C_1$ ,  $C_2$ , ...,  $C_n$  are e.c.o. corresponding to the same elementary matrices  $\boldsymbol{E}_1$ ,  $\boldsymbol{E}_2$ , ...,  $\boldsymbol{E}_n$ .

If

$$A \xrightarrow{R_1} \xrightarrow{R_2} \cdots \xrightarrow{R_n} I$$

then

$$A \xrightarrow{C_n} \xrightarrow{C_{n-1}} \cdots \xrightarrow{C_1} I$$

True or false?

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

### Determinant

$$\begin{vmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{vmatrix} = \mathbf{a}_{11} \mathbf{a}_{22} - \mathbf{a}_{12} \mathbf{a}_{21}$$

#### For a 3 x 3 matrix



### cofactor expansion along row 1

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \vdots & \vdots & & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \dots & \mathbf{a}_{mn} \end{pmatrix}$$

## Cofactor expansion

$$det(\mathbf{A}) = \underbrace{\partial_{11}}_{12} \underbrace{\partial_{12}}_{12} + \dots + \underbrace{\partial_{1n}}_{n} \underbrace{\partial_{1n}}_{1n}$$
cofactor expansion along row 1

$$A_{ij} = (-1)^{i+j} \det(\mathbf{M_{ij}}) \qquad (i, j)\text{-cofactor of } \mathbf{A}$$
$$\det(\mathbf{A}) = \mathbf{a_{i1}} \mathbf{A_{i1}} + \mathbf{a_{i2}} \mathbf{A_{i2}} + \cdots + \mathbf{a_{in}} \mathbf{A_{in}}$$

cofactor expansion along row i

for any 
$$j = 1, 2, ..., n$$

$$\det(\mathbf{A}) = a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots + a_{nj}A_{nj}$$

cofactor expansion along column j

## Finding determinant

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 1 & 2 & 3 \\ 0 & 2 & 0 & 2 \end{pmatrix}$$

cofactor expansion along column 3

$$\det(\mathbf{A}) = 2 \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 2 \end{vmatrix} = 2 \times 1 \begin{vmatrix} 2 & 1 \\ 2 & 2 \end{vmatrix} = 2 \times 1(2 \times 2 - 2 \times 1) = 2$$

cofactor expansion along column 1

If **A** is a triangular matrix, then the determinant of **A** is equal to the product of the diagonal entries of **A**.

Same determinant?

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

- (A) All 3 have same determinant
- (B) Only  $\boldsymbol{A}$  and  $\boldsymbol{B}$
- (C) Only **B** and **C**
- (D) Only  $\boldsymbol{A}$  and  $\boldsymbol{C}$
- (E) All 3 have different determinant

### Announcement

#### Practice Session

- Practice 1 this week
- No meeting in week 4
- Practice 2 week 5

#### MATLAB

- Worksheet 1 this week (own pace)

#### Textbook exercise

- Exercise 1 solution in LumiNUS > Files

#### Online quiz 3

- Due this Sunday