

Probabilidade e Estatística

Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva

Probabilidade

Experimento Aleatório

Um experimento é dito aleatório quando satisfaz as seguintes condições:

- Pode ser repetido indefinidamente
- É possível descrever todos os resultados do experimento, sem predizer com certeza qual ocorrerá
- Obedece à regularidade estatística, ou seja, quando o experimento for repetido um grande número de vezes, surgirá uma configuração definida

Experimento Aleatório

Exemplos:

- Lançar um dado e observar a face superior
- Lançar duas moedas e verificar as faces que ocorrem
- Verificar o tempo de vida de uma lâmpada

Espaço Amostral

 $\acute{\text{E}}$ o conjunto Ω de todos os resultados possíveis de um experimento aleatório

Exemplo:

Considere o experimento aleatório sendo o lançamento de duas moedas não viciadas.

E = "duas moedas não viciadas são lançadas"

Seja cara = k e coroa = c

$$\Omega = \{(k,k), (k,c), (c,k), (c,c)\}$$

Tipos de Espaço Amostral

1) Finito: tem um número finito de elementos

Exemplo: Lançamento de um dado

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

2) **Infinito enumerável ou contável**: tem um número infinito de elementos enumeráveis

Exemplo: Uma moeda é lançada sucessivas vezes até que ocorra uma coroa (c)

$$\Omega = \{c, kc, kkc, kkkc, kkkc, ...\}$$

3) Infinito não enumerável ou não contável: tem um número infinito de elementos não enumeráveis

Exemplo: Observar o tempo de vida de uma lâmpada

$$\Omega = \{x / x \in \mathbb{R}, x \ge 0\}$$

Evento

É qualquer subconjunto de um espaço amostral Ω

Sempre deve ser considerado o evento impossível (aquele que nunca ocorre) e o evento certo (que é próprio espaço amostral Ω)

Exemplo:

No lançamento de um dado não viciado, considere o evento A quando ocorre um número par:

E = "uma dado não viciado é lançado"

A = "face par ocorre"

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{2, 4, 6\}$$

Sejam A e B dois eventos de um espaço amostral Ω

a) União

O evento A U B ocorre quando ocorre somente o evento A ou ocorre somente o evento B ou ocorrem ambos os eventos A e B

- b) Intersecção
- O evento A

 B ocorre quando ambos os eventos A e B ocorrem

c) Diferença

O evento A - B ocorre quando ocorre o evento A mas não ocorre o evento B

d) Complementar

O evento Ac ocorre quando o evento A não ocorre

e) Mutuamente Excludentes

Dois eventos A e B são ditos mutuamente excludentes (exclusivos ou disjuntos) quando não podem ocorrer simultaneamente. Isto é, se a interseção deles for o conjunto vazio

Exemplos:

- 1) Sendo os eventos $A = \{1, 3, 4, 7, 8\}, B = \{1, 2, 5, 6, 7, 9\}$
- e Ω = N, determinar:
- a) AUB
- b) A \cap B
- c) A B
- d) B A
- e) Ac N B

Exemplos:

2) Numa pesquisa, das pessoas entrevistadas, 120 assistem a emissora A, 150 assistem a emissora B, 40 assistem as duas emissoras e 120 não assistem nenhuma das emissoras. Quantas pessoas foram entrevistadas?

Resposta: 350 pessoas

- 3) Sejam A, B e C eventos de um espaço amostral Ω. Exprimir os eventos abaixo utilizando as operações de união, intersecção e complementar.
 - a) Somente o evento B ocorre.

Resposta: A^c ∩ B ∩ C^c

b) Pelo menos um evento ocorre.

Resposta: AUBUC

c) Os três eventos ocorrem.

Resposta: $A \cap B \cap C$

d) Exatamente dois eventos ocorrem.

Resposta: $(A \cap B \cap C^c) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C)$

Exemplos:

4) Exprimir os eventos hachurados nos diagramas abaixo utilizando as operações de união, intersecção e complementar.

Ocorre o evento A

Ocorre o evento $A \cap B$

Ocorre o evento B U C

Ocorre o evento $(A \cap B) \cup (A \cap C)$

Ocorre o evento (A \cap B^c \cap C^c)

Propriedades das operações com evento

a) Idempotentes: AUA=A e A∩A=A

b) Comutativas: AUB=BUA e ANB=BNA

c) Associativas: (A U B) U C = A U (B U C)

 $(A \cap B) \cap C = A \cap (B \cap C)$

d) Distributivas: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

e) Identidades: AUΦ=A e A∩Φ=Φ

 $AU\Omega = \Omega e A \cap \Omega = A$

f) Complementar: $A \cup A^{\circ} = \Omega = A \cap A^{\circ} = \Phi$

 $(A^{\circ})^{\circ} = A \ e \ \Omega^{\circ} = \Phi \ e \ \Phi^{\circ} = \Omega$

Propriedades das operações com evento

g) Lei de Morgan: $(A \cup B)^{\circ} = A^{\circ} \cap B^{\circ}$ e $(A \cap B)^{\circ} = A^{\circ} \cup B^{\circ}$

Partição de um Espaço Amostral

Os eventos $A_1, A_2, ..., A_n$ formam uma partição do espaço amostral Ω se:

i)
$$A_i \neq \emptyset$$
, $i = 1, 2, ..., n$

ii) $A_i \cap A_j = \emptyset$, para $i \neq j$ ($A_i \in A_j$ são eventos mutuamente excludentes)

iii)
$$\bigcup_{i=1}^{n} A_i = \Omega$$

Uma partição de um espaço amostral Ω é uma coleção de subconjuntos não-vazios e mutuamente excludentes de Ω , cujas uniões são iguais a Ω

1) Definição Frequentista (Richard von Mises, 1883-1953)

Se em N realizações de um experimento aleatório, o evento A ocorre n_A vezes, então a frequência relativa de A nas N realizações é:

$$f_r = \frac{n_A}{N}$$

E a probabilidade de ocorrência do evento A é:

$$P(A) = \lim_{N \neq \infty} \frac{n_A}{N}$$

2) Definição Clássica (Atribuída à Laplace)

Seja um espaço amostral finito Ω , formado por eventos equiprováveis. Sendo A um evento de Ω , então a probabilidade de ocorrência de A é dada por:

Pierre-Simon Laplace (1749-1827)

$$P(A) = \frac{n(A)}{n(\Omega)}$$
, com $0 \le P(A) \le 1$,

Onde:

n(A) é o número de elementos do evento A $n(\Omega)$ é o número de elementos do espaço amostral Ω

Exemplo:

Qual a probabilidade de sair pelo menos uma cara em dois lançamentos consecutivos de uma moeda não viciada?

Solução:

$$cara = k e coroa = c$$

$$\Omega = \{k_1k_2, k_1c_2, c_1k_2, c_1c_2\}$$

A = "sair pelo menos uma cara"

$$A = \{k_1k_2, k_1c_2, c_1k_2\}$$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{4} = 75\%$$

3) Definição Axiomática da Probabilidade

Considere os eventos A e B associados ao espaço amostral Ω .

$$1^{\circ}$$
) $0 \le P(A) \le 1$

$$2^{0}$$
) P(Ω) = 1

 3°) Se A e B são eventos mutuamente excludentes, então P(A U B) = P(A) + P(B)

1°) Se ϕ é um conjunto vazio, então $P(\phi) = 0$.

Demonstração:

Tem-se: $\phi U \Omega = \Omega$

Como $\phi \cap \Omega = \phi$, então ϕ e Ω são mutuamente excludentes.

Aplicando o 3º axioma:

$$P(\phi \cup \Omega) = P(\phi) + P(\Omega) = P(\Omega)$$

$$P(\phi) = 0$$

Exemplo:

A probabilidade de ocorrer face 2 e 3 no lançamento de um dado não viciado é $P(\phi) = 0$, enquanto que a probabilidade de ocorrer face 2 ou 3 é 1/6 + 1/6 = 1/3.

 2°) Se A^{c} é o evento complementar do evento A, então $P(A^{c}) = 1 - P(A)$.

Demonstração:

$$A^{c}UA = \Omega$$

$$P(A^c \cup A) = P(\Omega)$$

 $A^c \cap A = \phi$, então A^c e A são mutuamente excludentes.

Aplicando o 3º axioma:

$$P(A^c) + P(A) = P(\Omega)$$

$$P(A^c) = P(\Omega) - P(A)$$

$$P(A^c) = 1 - P(A)$$

Exemplo:

Uma urna contém 4 bolas verdes, 3 bolas brancas e 8 bolas amarelas. Uma bola é retirada aleatoriamente. Determinar a probabilidade de que a bola retirada:

- a) Não ser amarela
- b) Não ser verde e nem amarela

Solução:
$$V =$$
 "a bola retirada é verde" $P(V) = 4/15 = 26,67\%$ $P(B) = 3/15 = 20,00\%$ $P(B) = 3/15 = 53,33\%$

a) A^c = "a bola retirada não é amarela" $P(A^c) = 1 - P(A) = 1 - 8/15 = 7/15 = 46,67\% = P(V \cup B)$

b) V^c ∩ A^c = "a bola retirada não é verde e nem amarela"
Da lei de Morgan: V^c ∩ A^c = (V U A)^c
P[(V U A)^c] = 1 − P(V U A). Como V e A são mutuamente excludente:
P[(V U A)^c] = 1 − [P(V) + P(A)] = 1 − 4/15 − 8/15 = 3/15 = 20,00% = P(B)

3º) Teorema da Soma

Se A e B são dois eventos quaisquer, ou seja, podem ser mutuamente excludentes ou não, então:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Demonstração:

Se A \cap B \neq ϕ , então A e (A^c \cap B) são mutuamente excludentes e A U (A^c \cap B) = A U B, logo:

$$P[(A \cup (A^c \cap B))] = P(A \cup B) = P(A) + P(A^c \cap B)$$
 (1)

Considerando que B é a união dos eventos mutuamente excludentes (B \cap A) e (B \cap Ac), então:

$$P(B) = P(B \cap A) + P(B \cap A^{c})$$

$$P(B \cap A^c) = P(B) - P(B \cap A) (2)$$

Substituindo (2) em (1), tem-se:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exemplo:

Dois dados não viciados foram lançados simultaneamente. Determine a probabilidade de ocorrer pelo menos uma face 5.

Solução: A = "ocorrer face 5 no dado 1"

B = "ocorrer face 5 no dado 2"

A U B = "ocorrer pelo menos uma face 5"

Dado 1	Dado 2					
	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$n(\Omega) = 36$$

 $n(A) = 6$
 $n(B) = 6$
 $n(A \cap B) = 1$

4º) Se A, B e C são eventos quaisquer, ou seja, podem ser mutuamente excludentes ou não, então:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

5°) Se A - B é a diferença entre os eventos quaisquer A e B, então, $P(A - B) = P(A) - P(A \cap B)$.

Demonstração:

$$A = (A - B) U (A \cap B)$$

Como (A – B) e (A \cap B) são mutuamente excludentes, então aplicando o 3° axioma:

$$P(A) = P[(A - B) U (A \cap B)] = P(A - B) + P(A \cap B)$$
. Logo:

$$P(A - B) = P(A) - P(A \cap B)$$

Exemplo:

Prove que
$$P[(A \cap B^c) \cup (A^c \cap B)] = P(A) + P(B) - 2.P(A \cap B)$$

Solução:

$$A \cap B^c = A - B$$
 e $A^c \cap B = B - A$

Como A ∩ B^c e A^c ∩ B são mutuamente excludentes:

$$P[(A \cap B^c) \cup (A^c \cap B)] = P(A \cap B^c) + P(A^c \cap B)$$

Sabe-se que:
$$P(A \cap B^c) = P(A - B) = P(A) - P(A \cap B)$$
 e

$$P(A^c \cap B) = P(B - A) = P(B) - P(B \cap A)$$

sendo
$$A \cap B = B \cap A$$

Então:
$$P[(A \cap B^c) \cup (A^c \cap B)] = P(A) + P(B) - 2.P(A \cap B)$$

Probabilidade Condicional e Independência

Considere o experimento aleatório E = "um dado honesto é lançado e a face é observada" e os eventos A = "ocorre face 3" e B = "ocorre face ímpar"

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$A = {3}$$

$$B = \{1, 3, 5\}$$

Qual a probabilidade do evento A ocorreu?

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{1}{6}$$

Qual a probabilidade do evento B ocorreu?

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}$$

 Qual a probabilidade do evento A ocorrer sabendo que o evento B já ocorreu?

$$P(A/B) = \frac{n(A)}{n(B)} = \frac{1}{3}$$

Probabilidade Condicional Definição:

Sejam A e B dois eventos quaisquer de uma espaço amostral Ω , com P(B) > 0. A probabilidade de A ocorrer, na hipótese de B já ter ocorrido, denotado por P(A/B), é dada por:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

No exemplo anterior:

E = "um dado honesto é lançado e a face é observada"

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

 $A = \text{``ocorre face 3''} = \{3\}$

 $B = \text{"ocorre face impar"} = \{1, 3, 5\}$

$$A \cap B = \{3\}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{3/6} = \frac{1}{3}$$

Regra do Produto

Da probabilidade condicional tem-se:

$$P(A \cap B) = P(A/B).P(B)$$

Dois eventos A e B são ditos independentes se a probabilidade de ocorrência de um evento não interfere na probabilidade de ocorrência do outro evento, ou seja:

- P(A/B) = P(A)
- P(B/A) = P(B)

Logo: $P(A \cap B) = P(B \cap A) = P(A).P(B)$

Exemplos:

1) Num lote de 12 peças, 4 são defeituosas. Duas peças são retiradas, uma a uma sem reposição. Qual a probabilidade de que ambas sejam não defeituosas?

Solução:

$$A =$$
 "primeira peça é não defeituosa" => $P(A) = 8/12$

$$P(A \cap B) = P(A).P(B/A) = 8/12.7/11 = 14/33 = 42,42\%$$

Ou, utilizando a definição clássica de probabilidade:

N = "duas peças retiradas são não defeituosas"

$$n(\Omega) = C_{12}^2 = \frac{12!}{(12-2)!2!} = 66$$
 $n(N) = C_8^2 = \frac{8!}{(8-2)!2!} = 28$

P(A \cap B) =
$$\frac{C_8^2}{C_{12}^2} = \frac{28}{66} = 42,42\%$$

Exemplos:

 Considere no exemplo anterior que os eventos A e B são independentes, ou seja, existe reposição da primeira peça após verificar se é ou não defeituosa.

Solução:

A = "primeira peça é não defeituosa" => P(A) = 8/12

B = "segunda peça é não defeituosa" => P(B) = 8/12

$$P(A \cap B) = P(A).P(B/A) = 8/12.8/12 = 4/9 = 44,44\%$$

Ou, utilizando a definição clássica de probabilidade:

N = "duas peças retiradas com reposição são não defeituosas"

$$n(\Omega) = 12.12 = 144$$
 $n(N) = 8.8 = 64$

$$P(A \cap B) = \frac{n(N)}{n(\Omega)} = \frac{64}{144} = 44,44\%$$

Teorema da Probabilidade Total

Definição:

Considere A_1 , A_2 , A_3 ... A_n uma partição do espaço amostral Ω e B um evento qualquer de Ω . A probabilidade do evento B ocorrer é dada por:

 $P(B) = \sum_{i=1}^{11} P(A_i).P(B/A_i)$

Tem-se: $B = (A_1 \cap B) \cup (A_2 \cap B) \cup ... \cup (A_n \cap B)$

$$P(B) = P[(A_1 \cap B) \cup (A_2 \cap B) \cup ... \cup (A_n \cap B)]$$

Aplicando o 3º axioma para eventos mutuamente excludentes:

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + ... + P(A_n \cap B)$$

Aplicando a regra do produto:

$$P(B) = P(A_1).P(B/A_1) + P(A_2).P(B/A_2) + ... + P(A_n).P(B/A_n)$$

Em aplicações prática, as probabilidades dos eventos da partição de Ω são conhecidas ou podem ser calculadas, por isso, $P(A_i)$ são chamadas de probabilidades à priori dos eventos A_i .

Teorema da Probabilidade Total

Exemplo: (MAGALHÃES e LIMA, 2010, pag. 58)

Um fabricante de sorvete recebe 20% do todo o leite que utiliza de uma fazenda F_1 , 30% de uma fazenda F_2 e 50% de uma fazenda F_3 . Um órgão de fiscalização inspecionou as fazendas e observou que 20% do leite produzido na fazenda F_1 estava adulterado por adição de água, enquanto que para F_2 e F_3 , essa proporção era de 5% e 2%, respectivamente. Na fábrica de sorvete os leites são armazenados dentro de um refrigerador sem identificação das fazendas. Qual a probabilidade de que uma amostra de leite retirada do refrigerador esteja adulterada?

Solução:

Denotando por B = "o leite está adulterado", deseja-se então P(B).

A probabilidade de que o leite (adulterado ou não) é procedente da fazenda:

- F_1 : $P(F_1) = 0.20$
- F_2 : $P(F_2) = 0.30$
- F_3 : $P(F_3) = 0.50$

A probabilidade de que o leite **está adulterado** e que é procedente da fazenda:

- F_1 : $P(B/F_1) = 0.20$
- F_2 : $P(B/F_2) = 0.05$
- F_3 : $P(B/F_3) = 0.02$

Logo:
$$P(B) = P(F_1).P(B/F_1) + P(F_2).P(B/F_2) + P(F_3).P(B/F_3)$$

 $P(B) = 0.20.0.20 + 0.30.0.05 + 0.50.0.02 = 0.065 = 6.5\%$

Definição:

Considere A_1 , A_2 , A_3 ... A_n uma partição do espaço amostral Ω e B um evento qualquer de Ω .

Do teorema da probabilidade total tem-se: $P(B) = \sum_{i=1}^{11} P(A_i).P(B/A_i)$

Onde P(A_i) são as probabilidade à priori dos eventos A_i.

Vamos supor agora que o evento B tenha ocorrido e desejamos determinar a probabilidade à posteriori do evento A_i , ou seja, $P(A_i/B)$.

Por definição, tem-se: $P(A_i/B) = \frac{P(A_i \cap B)}{P(B)}$

Aplicando a regra do produto e o teorema da probabilidade total:

$$P(A_{i}/B) = \frac{P(A_{i}).P(B/A_{i})}{\sum_{i=1}^{n} P(A_{i}).P(B/A_{i})}$$

Exemplo 1:

Considerando o exemplo anterior do fabricante de sorvete, sabendo que a amostra está adulterada, determinar a probabilidade de que o leite tenha sido fornecido pela fazenda F_2 .

Solução:

Deseja-se então P(F₂/B).

Por definição:
$$P(F_2/B) = \frac{P(F_2 \cap B)}{P(B)} = \frac{P(F_2).P(B/F_2)}{\sum_{i=1}^{3} P(F_i).P(B/F_i)}$$

$$P(F_2/B) = \frac{0,30.0,05}{0.065} = 0,2308 = 23,08\%$$

Teorema de Bayes

Exemplo 2:

Determinadas peças são produzidas em três fábricas F₁, F₂, e F₃, sendo que a fábrica 1 e 2 produzem a mesma proporção de peças e a fábrica 3 produz o dobro das peças que cada uma das outras duas fábricas produzem. Sabe-se também, que 2% das peças produzidas pela fábrica 1 são defeituosas e que a proporção para as fábricas 2 e 3 são 3% e 4%, respectivamente. Qual a probabilidade de que uma peça defeituosa tenha origem da fábrica 2?

Solução:

Sendo x a proporção de peças produzidas pelas fábricas 1 e 2, tem-se: x + x + 2x = 1. Logo x = 25%. Denotando por A ="a peça é defeituosa", deseja-se então $P(F_2/A)$.

A probabilidade de que a peça (defeituosa ou não) é de procedência da fábrica:

$$F_1$$
: $P(F_1) = 0.25$; F_2 : $P(F_2) = 0.25$; F_3 : $P(F_3) = 0.50$

A probabilidade de que a peça é defeituosa e de procedência da fábrica:

$$F_1$$
: $P(A/F_1) = 0.02$; F_2 : $P(A/F_2) = 0.03$; F_3 : $P(A/F_3) = 0.04$

Logo:
$$P(A) = P(F_1).P(A/F_1) + P(F_2).P(A/F_2) + P(F_3).P(A/F_3) = 0.0325 = 3.25\%$$

Portanto:
$$P(F_2/A) = \frac{P(F_2 \cap A)}{P(A)} = \frac{P(F_2).P(A/F_2)}{\sum_{i=1}^{3} P(A_i).P(A/F_i)} = \frac{0,25.0,03}{0,0325} = 23,08\%$$