

ЧТО TAKOE DEEP-LEARNING НА ГРАФАХ?

Применяем различные типы нейросетей для предсказания на графе (узлов, или всей структуры)

Анализ социальных сетей
Анализ автотрафика
Работа с изображениями

ДВЕ ГЛАВНЫХ КАТЕГОРИИ GNN

Задачи на узлах Классификация вершин связей Рекомендация вершин

Задачи на графе

Классификация графов

Генерация графов

Category	Method	Recursive/sequential patterns of graphs	Scalability	Other Improvements
Node-level	GNN [23]	Recursive definition of node states	No	-
	NN4G [24]		No	-
	GGS-NNs [25]		Yes	Sequence output
	SSE [26]		Yes	-
Graph-level	You et al. [27]	Generate nodes and edges in an autoregressive manner	No	-
	DGNN [28]	Capture the time dynamics of the formation of nodes and edges	Yes	-
	RMGCNN [29]	Recursively reconstruct the graph	Yes	Convolutional layers
	Dynamic GCN [30]	Gather node representations in different time slices	Yes	Convolutional layers

КЛАССИЧЕСКИЙ GNN НА УЗЛАХ

1) Каждая вершина графа представляется как вектор

$$s_i = \sum_{j \in \mathfrak{Y}(i)} \mathfrak{F}(s_i, s_j, F_i^{v}, F_j^{v}, F_{i,j}^{E})$$

Тараметрическая функция

$$F_{i}^{\mathcal{V}}$$
 - признаки вершины i $F_{i,j}^{E}$ - признаки ребра из i в j

- 2) Выход считается как $\hat{y}_i = \mathcal{O}(s_i, F_i^v)$
- 3) Обучение методом сквозного обратного распространения ошибки

МОДИФИКАЦИИ И ПРИМЕНЕНИЕ GNN НА УЗЛАХ

Gated Graph Sequence Neural Network

Использует управляемый рекуррентный блок в качестве модификации, тогда узлы

СЧИТАЮТСЯ КАК
$$\mathbf{s}_i^{(t)} = (1-\mathbf{z}_i^{(t)})\odot\mathbf{s}_i^{(t-1)} + \mathbf{z}_i^{(t)}\odot\widetilde{\mathbf{s}}_i^{(t)}$$

z - вычисляется через систему вентилей

t - время

SSE

Использует стохастический градиентный спуск вместе с GRU

Применения:

GNN НА ГРАФАХ

Основное отличие – теперь все признаки находятся с помощью RNN, применяемой сразу ко всему графу, то есть вершины кодируются не по отдельности, а все вместе, а основная цель – предсказание на графе

Примеры

You et. Al 2 RNN

Dynamic Graph Neural Networks

СВЁРТОЧНЫЕ НЕЙРОСЕТИ НА ГРАФАХ (GCN)

Проблема: очевидно, что нельзя использовать свёрточные операции, обычно применяемые для изображений, из-за отсутствия сеточной структуры (для большинства графов)

Пусть h_v^t состояние вершины «v» в момент времени «t». Аналогично, e_{vw}^t — состояние ребра между вершинами «v» и «w» в момент времени «t». Тогда назовём сообщением $m_v^{t+1} = (\Sigma h_w^t, \Sigma e_{vw}^t)$

Тогда определим свёрточную операцию как $\mathbf{u}_1 *_G \mathbf{u}_2 = \mathbf{Q}\left(\left(\mathbf{Q}^T\mathbf{u}_1\right)\odot\left(\mathbf{Q}^T\mathbf{u}_2\right)\right)$

Где $\upsilon 1$, $\upsilon 2$ — сообщения между соответствующими вершинами, Q — собственные вектора матрицы лапласиана графа, которая вычисляется как L = D - A

Labelled graph	Degree matrix	Adjacency matrix	Laplacian matrix
	(2 0 0 0 0 0)	(0 1 0 0 1 0)	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \end{pmatrix}$
6	0 3 0 0 0 0	1 0 1 0 1 0	$\begin{bmatrix} -1 & 3 & -1 & 0 & -1 & 0 \end{bmatrix}$
4	0 0 2 0 0 0	0 1 0 1 0 0	$\begin{bmatrix} 0 & -1 & 2 & -1 & 0 & 0 \end{bmatrix}$
	0 0 0 3 0 0	0 0 1 0 1 1	$\begin{bmatrix} 0 & 0 & -1 & 3 & -1 & -1 \end{bmatrix}$
(3)—(2)	0 0 0 0 3 0		$\begin{bmatrix} -1 & -1 & 0 & -1 & 3 & 0 \end{bmatrix}$
	(0 0 0 0 0 1/	\0 0 0 1 0 0/	$\begin{pmatrix} 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

СВЁРТОЧНЫЕ ОПЕРАЦИИ (ПРОДОЛЖЕНИЕ)

Определив свёрточные операции теперь введём свёрточный слой:

$$\mathbf{u}_{j}^{l+1} = \rho \left(\sum_{i=1}^{f_l} \mathbf{Q} \mathbf{\Theta}_{i,j}^l \mathbf{Q}^T \mathbf{u}_{i}^l \right) \ j = 1, ..., f_{l+1},$$

 \mathbf{u}' - выход

 $m{\Theta} = m{\Theta}(m{\Lambda}) \in \mathbb{R}^{N imes N}$ - матрица, полученная наложением фильтров на матрицу из собственных векторов матрицы Лапласа

Проблема: вычисление собственных векторов очень ресурсозатратно и требует $O(N)^2$ операций. Недавно было предложено решение этой проблемы с использованием Чебышёвского разложения

READOUT OPERATIONS

Мы вывели свёрточные слои. Каким образом теперь следует соединить выходы, чтобы решать задачу на графе целиком, а не на узлах?

подсчёт статистик $\mathbf{h}_G = mean/max/sum(\mathbf{h}_1^{(K)}, \mathbf{h}_2^{(K)}, ..., \mathbf{h}_n^{(K)})$ (самый простой, но не эффективный способ: не учитывается структура и размер графа)

Set2Set алгоритм, создающий память и применяющий LSTM

«осмысленная» нумерация узлов и объединение их в бинарное дерево в зависимости от номера

DiffPool — учитывает и структуру графа, но гораздо более ресурсозатратен (для каждого слоя строится кластеровая матрица $\mathbf{S}^{(k)} = softmax(ConvGNN_k(\mathbf{A}^{(k)}, \mathbf{H}^{(k)}))$)

ПРИМЕНЕНИЕ GCN

Image recognition

Molecular Structure Analysis

travelling salesman problem Community Prediction