

Statistical Analysis of NBA Players Salary

STATISTICAL LEARNING FINAL PROJECT (MOD B)

Mahir Selek - 2041295

Joi Berberi - 2033363

Academic Year 2021-2022

OUTLINE

- I. Dataset Description
- 2. Cleaning and Filtering the Data
- 3. Exploratory Data Analysis
- 4. Model Data
- 5. Conclusion

Introduction

- The goal of this project is to predict the NBA players salary
- We used the Basketball Reference database and Kaggle Repository to obtain various features regarding the players from the NBA
- We wanted to do a forecasting project because it is a big league in terms of money and because the income salary of the players arouse curiosity every year

1. Dataset Description

1. Dataset Description

- We have 3 different datasets. The "NBA Players stats since 1950" dataset which is available on Kaggle.
- However "player_salary" dataset was not provided at Kaggle. So, We scraped from
 "https://www.basketball-reference.com/contracts/players.html " website and created by ourselves.
- We consider a third dataset for including the info of players about their ages, heights and weights.
- The first dataset contains aggregate individual statistics for 67 NBA seasons since 1950. From basic box-score attributes such as points, assists, rebounds etc., to more advanced money-ball like features such as Value Over Replacement.
- We obtained the data for 24691 players. For every player we obtained a set with a total of 51 features
- The second dataset only contains player names, their teams and their salaries.

Wednesday, July 20, 2022 5

Dataset Variables

Year I	Player	Pos	Age	Tn	n (G	GS	M	Р	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%	BLK%	TOV%	USG%	blanl	OWS	DWS	WS
2017	Okaro Wh	PF	2	4 M	IA		35	0	471	7.5	0.507	0.391	0.253	5.8	13.5	9.6	6	1.1	1.7	15.7	7 10.	8	0.:	1 0.5	5 0.
2017	saiah Wh	PG	2	1 BF	RK		73	26	1643	7.5	0.487	0.293	0.222	2.1	9.7	5.9	17.7	1.2	1.7	20.3	18.	2	-1.7	7 0.9	9 -0.
2017	Hassan W	C	2	7 M	IA		77	77	2513	22.6	0.579	0	0.368	12.8	35.3	24	3.8	1.1	5	12	22.	7	4.:	2 5.	3 9.
2017	Andrew V	SF	2	1 M	IN		82	82	3048	16.5	0.534	0.184	0.345	3.9	8.8	6.3	10.6	1.4	0.8	9.4	1 2	9	3.	3 0.9	9 4.
2017	C.J. Wilco	SG	2	6 OI	RL		22	0	108	2.9	0.329	0.484	0.065	3.9	8.3	6	15.5	0.9	0.7	15.8	15.	4	-0.:	2 (0 -0.
2017	Alan Willi	С	2	4 PH	НО		47	0	708	19.5	0.547	0.004	0.419	14	31.2	22.4	5.2	1.8	3.7	10.5	20.	9	1.3	1 0.9	9 2.
2017	Deron Wi	PG	3	2 TC	TC		64	44	1657	14	0.541	0.39	0.182	0.9	9.4	5.1	35.9	1	0.4	17.6	22.	1	1.	5 0.9	9 2.
2017	Deron Wi	PG	3	2 D/	AL		40	40	1171	15	0.533	0.4	0.185	1.2	9.3	5.1	40.1	1.1	0.2	16.7	7 23.	7	1.3	1 0.	7 1.
2017	Deron Wi	PG	3	2 CL	LE .		24	4	486	11.4	0.566	0.361	0.17	0.2	9.7	5.1	25.9	0.6	1	20.2	18.	1	0.4	4 0.:	2 0.
2017	Derrick W	PF	2	5 TC	TC		50	11	804	10.6	0.537	0.398	0.365	2.6	15.1	8.9	5.1	0.9	0.7	9	17.	2	0.4	4 0.0	5 1.
2017	Derrick W	PF	2	5 M	IA		25	11	377	10.1	0.465	0.328	0.365	4.7	16.9	10.7	5.6	1.2	1	8.1	20.	4	-0.:	1 0.4	4 0.
2017	Derrick W	PF	2	5 CL	LE		25	0	427	11.1	0.628	0.486	0.364	0.8	13.5	7.4	4.7	0.6	0.4	10.1	14.	4	0.0	6 0.:	2 0.
2017	Lou Willia	SG	3	0 TC	TC		81	1	1994	21.4	0.593	0.447	0.458	1.4	9.9	5.5	19.9	1.9	0.8	11.8	29.	1	5.	1	1 6.
2017	Lou Willia	SG	3	0 LA	\L		58	1	1403	23.9	0.609	0.432	0.469	1.1	9.5	5.1	22.3	2.3	0.6	11.9	30.	6	4.	3 0.0	5 4.
2017	Lou Willia	SG	3	0 H	OU		23	0	591	15.4	0.547	0.489	0.428	2.2	10.7	6.5	14.3	1.2	1.2	11.3	25.	3	0.8	8 0.4	1 1.

WS/48 b	lank2	ОВРМ	DBPM	BPM	VORP	FG	FGA	FG%	3P	3PA	3P%	2P	2PA	2P%	eFG%	FT	FTA	FT%	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS
0.066		-3.1	0.9	-2.:	1 0	33	8	7 0.379	12	34	0.353	21	1 5	3 0.39	6 0.448	3 20	22	0.90	09	25 5	7 82	2 2	1 10)	10	18	52 98
-0.023		-4.3	-0.6	-4.9	9 -1.2	204	50	0.402	44	149	0.295	160	35	9 0.44	6 0.445	91	113	0.80	05	32 15	2 184	19	2 42	2	36 1	142	175 543
0.181		-2	1.5	-0.	5 0.9	542	97	3 0.557	0	0		542	2 97	3 0.55	7 0.55	7 225	358	0.62	28 2	293 79	1088	3 5	7 56	5 10	51 1	154	226 1309
0.066		0.2	-2.9	-2.	7 -0.6	709	157	0.452	103	289	0.356	606	5 128	1 0.47	3 0.484	412	542	0.7	76 1	103 22	329	18	9 82	2	30 1	187	1933
-0.09		-6.5	-2.2	-8.7	7 -0.2		3	0.258	3	15	0.2		5 1	6 0.31	3 0.306	5 2	2	2	1	4	3 12	2 1	2 2	<u>)</u>	1	6	8 2:
0.142		-1.8	0.2	-1.7	7 0.1	. 138	26	7 0.517	0	1	0	138	3 26	6 0.51	9 0.517	7 70	112	0.62	25	94 19	3 292	2 2	3 2	7	32	37	25 346
0.069		0.2	-2.4	-2.	3 -0.1	. 263	60	0.438	85	234	0.363	178	36	6 0.48	6 0.509	90	109	0.82	26	14 13	3 14	7 36	0 3:	l	8 1	138	138 70:
0.073		1	-2.4	-1.4	4 0.2	195	45	3 0.43	63	181	0.348	132	2 27	2 0.48	5 0.5	69	84	0.82	21	13 89	9 102	2 27	4 25	5	2	98	96 522
0.059		-1.9	-2.6	-4.	5 -0.3	68	14	7 0.463	22	53	0.415	46	5 9	4 0.48	9 0.537	7 21	25	0.8	34	1 4	1 45	5 8	6 (5	6	40	42 179
0.064		-2.4	-1.8	-4.3	2 -0.4	108	24	4 0.443	30	97	0.309	78	3 14	7 0.53	1 0.504	1 58	89	0.65	52	19 11	130	2	8 14	l	7	28	60 304
0.038		-3.8	-1.4	-5.3	2 -0.3	54	13	7 0.394	9	45	0.2	45	5 9	2 0.48	9 0.42	7 31	. 50	0.6	52	16 5	7 7	3 1	4 9)	5	14	33 148
0.086		-1.1	-2.1	-3.3	2 -0.1	. 54	10	7 0.505	21	52	0.404	33	3 5	5 0.	6 0.603	3 27	39	0.69	92	3 54	1 5	7 1	4 5	5	2	14	27 156
0.147		3.7	-3	0.8	8 1.4	428	99	8 0.429	163	446	0.365	265	5 55	2 0.4	8 0.513	402	457	0.8	38	26 17	5 202	2 23	9 80)	19 1	L 60	92 142:
0.169		5.4	-3.2	2.:	2 1.5	326	73	0.444	122	317	0.385	204	4 41	7 0.48	9 0.52	7 304	344	0.88	34	14 11	3 132	2 18	3 65	5	10 1	120	67 1078
0.096		-0.1	-2.5	-2.0	6 -0.1	. 102	26	4 0.386	41	129	0.318	61	1 13	5 0.45	2 0.464	98	113	0.86	57	12 5	3 70	5	6 15	5	9	40	25 343

2. Cleaning and Filtering the Data

Wednesday, July 20, 2022 7

Player Features

- We obtained the data for 24691 players
- For every player we obtained a set with a total of 51 features
- The salary related features are 8 features (Age, Minutes, Points, Assist, Turnover, Block, Rebound, Steal)
- The others many of them Dummy Features for us to predict salary

Filtering

The advantage of the filtering after 2017 is that we don't have any NA or empty feature anymore. Thus, we have transformed our data into a more useful form. distinct functions help us to retain only unique/distinct rows from our input tables. Aim of the mutation is that in the seasons_stats file we don't have stats per game features. So, we mutated all of them to use in our salary prediction project. Our main purpose is to investigate how the stats effect next season's salary the players get.

Merging

Then we merged the two dataset that we have. After that we checked out new dataset and we decided to use only necessary features for our models. Our new dataset become clearer and more understandable. We prefer to use specific data belongs only on 2017. Also, we created new variables with mutate function to predict better and understandable data.

Cleaning and Filtering the Data

• After cleaning and filtering out big dataset now we have only salary related features

1-13 of 442 rows

	Player <chr></chr>	Year <int></int>	Pos <chr></chr>	Age <int></int>		MPG <dbl></dbl>	PPG <dbl></dbl>	APG <dbl></dbl>	RPG <dbl></dbl>	TOPG <dbl></dbl>	BPG <dbl></dbl>	SPG <dbl></dbl>	salary17_18 <dbl></dbl>	height <int></int>	weight <int></int>
1	A.J. Hammons	2017	С	24	DAL	7.409091	2.1818182	0.18181818	1.6363636	0.4545455	0.59090909	0.04545455	1312611	198	99
2	Aaron Brooks	2017	PG	32	IND	13.753846	4.9538462	1.92307692	1.0615385	1.0153846	0.13846154	0.38461538	2116955	183	73
3	Aaron Gordon	2017	SF	21	ORL	28.725000	12.7375000	1.87500000	5.0625000	1.1125000	0.50000000	0.80000000	5504420	206	99
4	Al-Farouq Aminu	2017	SF	26	POR	29.065574	8.7213115	1.62295082	7.3934426	1.5409836	0.72131148	0.98360656	7319035	206	99
5	Al Horford	2017	С	30	BOS	32.250000	14.0000000	4.95588235	6.8235294	1.7058824	1.27941176	0.76470588	27734405	208	111
6	Al Jefferson	2017	С	32	IND	14.106061	8.1060606	0.86363636	4.2121212	0.5000000	0.24242424	0.28787879	9769821	208	131
7	Alan Williams	2017	C	24	PHO	15.063830	7.3617021	0.48936170	6.2127660	0.7872340	0.68085106	0.57446809	6000000	198	90
8	Alec Burks	2017	SG	25	UTA	15.547619	6.7380952	0.71428571	2.8571429	0.8333333	0.11904762	0.42857143	10845506	198	97
9	Alex Abrines	2017	SG	23	OKC	15.514706	5.9705882	0.58823529	1.2647059	0.4852941	0.11764706	0.54411765	5725000	198	86
10	Alex Len	2017	С	23	PHO	20.259740	7.9610390	0.57142857	6.6233766	1.3246753	1.27272727	0.48051948	4187599	216	117
11	Alex Poythress	2017	PF	23	PHI	26.166667	10.6666667	0.83333333	4.8333333	0.5000000	0.33333333	0.50000000	778668	201	107
12	Alexis Ajinca	2017	С	28	NOP	14.974359	5.3076923	0.30769231	4.5384615	0.7948718	0.56410256	0.51282051	4961798	218	112
13	Allen Crabbe	2017	SG	24	POR	28.531646	10.6962025	1.17721519	2.8481013	0.7848101	0.25316456	0.68354430	19332500	198	95

3. Exploratory Data Analysis

First of all before start in order to get an idea, we wanted to look at the distribution relationship of the numerical data we have with the positions of the players.

Then we did was to look at the distributions of the continuous variables conditioned on the stats salary

Tuesday, February 2, 20XX Sample Footer Text

Correlation

- We preferred to use correlation in order to look at the data we have from the outside. Being able to draw such a straight line helps us not only predict the unknown but also understand the relationship between the variables better
- Correlation strength: PPG > MPG > TOPG > RPG > PER
 SPG > APG > Age > Weight > G
- The interesting part of this is that the number of turnover players make is linked to their salary, and the relationship has a positive correlation.

Data Visualization

Data Distributions

- As expected, the minutes of the players are perfectly normal
- On the other hand, the other predictors are not perfectly normal

Data Distributions

We look to the features independently from the boxplot it can be noticed that the most frequent features are MPG and Age, as expected APG and BPG represent a minority.

4. Model Data

Model Data: Multiple Linear Regression

- For almost the entire project, we decided to focus the analyzes on the Salary player variable only (i.e. the annual salary that a player is going to earn, according to the statistics during the 2017 year)
- In particular our main task is to predict this response from our explanatory/predictors variables provided by the dataset using a multiple linear <u>regression</u> model.

Choosing the best fit distribution

- From this histograms we can see:
 - when we use Square Root Transformation instead of Log Transformation, we got slightly better results.
 - First we tried Log transformation but the results were not satisfactory. Actually, this last one is most likely the first thing you should do to remove skewness from the predictor.
 - After that we used squared root transform, which gives us a distribution more similar to the normal distribution (The one we need)

Adjusted R ² Skewed Population Distribution	Adjusted R ² Log Transformation	Adjusted R ² Sqrt Transformation				
0.5639	0.4708	0.5757				

Skewed Data Probability Distribuition

Log-Transformed Distribuition

Square Root-Transformed Distribuition


```
Call:
lm(formula = salary17_18_sqrt ~ MPG + PPG + APG + RPG + TOPG +
    BPG + SPG + Age + height + weight, data = stats_salary)
Residuals:
     Min
                   Median
-2594.16
         -628.69
                    44.62
                            607.64
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -3804.238
                       1439.646
MPG
               35.958
PPG
               88.533
                         17.001
                                  5.207 2.97e-07
             123.983
APG
                         53.153
                                  2.333
                                         0.02013
RPG
              96.626
                         34.236
                                  2.822
                                         0.00499 **
TOPG
             -321.248
                        144,468
                                 -2.224
                                         0.02669
BPG
              82.470
                        157,680
                                  0.523
                                         0.60123
SPG
             176.471
                        172.784
                                  1.021
                                         0.30767
Age
              41.095
                         10.457
                                  3.930 9.89e-05 ***
height
               12.367
                           8.949
                                  1.382 0.16768
               5.956
                           6.983
                                  0.853
                                         0.39421
weight
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 886.8 on 431 degrees of freedom
Multiple R-squared: 0.5853, Adjusted R-squared: 0.5757
F-statistic: 60.83 on 10 and 431 DF, p-value: < 2.2e-16
```

- R-Square: measures the proportion of variability of our Response
 Variable that can be explained using our Explanatory variables.
- Aim is to make R-Square near to one: measures of how regression predictions approximate real data points
- With the Square Root-transformed distribution: our adjusted R-squared is near to "One" (similar to a normal distribution) means that the RSS is near to 0 which in turn means that our regression predictions fit very well the data

Backward Stepwise Selection

• We applied a "Backward Stepwise Selection": technique to remove non statistically significant features

```
#TEST 2 removing "BPG" predictor
lm.model_sqrt <- lm(formula= salary17_18_sqrt ~ MPG+PPG+APG+RPG+TOPG+SPG+Age+height+weight.data=stats_salary)
summary(lm.model_sgrt) #Adjusted R-sguared: 0.5764
par(mfrow=c(2,2))
plot(lm.model_sqrt)
mtext("Model 3: MPG+PPG+APG+RPG+TOPG+SPG+Age+height+weight", side = 3, line = -28, outer = TRUE)
    R Console
lm(formula = salary17_18_sqrt \sim MPG + PPG + APG + RPG + TOPG +
    SPG + Age + height + weight, data = stats_salary)
Residuals:
               10
                  Median
-2618.39 -628.80
                    45.07
                            613.40 2665.48
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) -3958.103 1408.083 -2.811 0.005164 **
                         12.284 2.933 0.003530 **
PPG
               88.393
                         16.985 5.204 3.02e-07 ***
APG
              120.901
                         52.782
                                  2.291 0.022468
RPG
              104.645
                         30.584
                                 3.422 0.000682 ***
TOPG
             -315.452
                        143.921 -2.192 0.028924
SPG
              180.050
                        172.503
                                 1.044 0.297186
               40.558
                         10.397
                                  3.901 0.000111 ***
Age
height
               13.283
                          8.769
                                 1.515 0.130563
weight
                           6.971 0.832 0.405999
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 886 on 432 degrees of freedom
Multiple R-squared: 0.585,
                               Adjusted R-squared: 0.5764
F-statistic: 67.67 on 9 and 432 DF, p-value: < 2.2e-16
```

```
#TEST 3 removing "weight" predictor
lm.model_sqrt <- lm(formula= salary17_18_sqrt ~ MPG+PPG+APG+RPG+TOPG+SPG+Age+height, data=stats_salary)</pre>
summary(lm.model_sqrt) #Adjusted R-squared: 0.5767
par(mfrow=c(2,2))
plot(lm.model_sqrt)
mtext("Model 1: MPG+PPG+APG+RPG+TOPG+SPG+Age+height", side = 3, line = -28, outer = TRUE)
par(mfrow=c(1,1))
    R Console
 lm(formula = salarv17\_18\_sqrt \sim MPG + PPG + APG + RPG + TOPG +
    SPG + Age + height, data = stats_salary)
 Residuals:
               1Q Median
 -2602.12 -643.63
                     38.47
                             624.50 2665.95
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) -4474.060 1263.634 -3.541 0.000442 ***
               34.488
                          12.138 2.841 0.004705 **
               88.965
                          16.965
                                 5.244 2.46e-07 ***
              119.290
                          52.727
                                 2.262 0.024168 *
              111.215
                          29.536
                                 3.765 0.000189 ***
             -306.130
                         143.433 -2.134 0.033379 *
              167.472
                                  0.975 0.330138
               42.330
                          10.173 4.161 3.82e-05 ***
               18.490
                           6.137 3.013 0.002738 **
 height
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 Residual standard error: 885.7 on 433 degrees of freedom
Multiple R-squared: 0.5844, Adjusted R-squared: 0.5767
 F-statistic: 76.1 on 8 and 433 DF, p-value: < 2.2e-16
```

FINAL MODEL

```
49.4
-2644.8 -633.1
                         630.0 2664.5
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -4385.968
                       1260.327
                                 -3.480 0.000552
MPG
               39.591
                         10.951
                                  3.615 0.000335
PPG
               86.140
                         16.715
                                  5.154 3.89e-07
             131.532
                         51.207
APG
                                  2.569 0.010543 *
RPG
             113.220
                         29.463
                                 3.843 0.000140 ***
TOPG
             -299.107
                        143.244
                                 -2.088 0.037371
               41.664
                         10.149
                                  4.105 4.83e-05 ***
Age
               18.091
                          6.123
                                  2.955 0.003300 **
height
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 885.6 on 434 degrees of freedom
Multiple R-squared: 0.5835, Adjusted R-squared: 0.5767
F-statistic: 86.84 on 7 and 434 DF, p-value: < 2.2e-16
```


After the "Backward Stepwise Selection" technique, we have more or less the same results, however now my model is less overfitted, less complex and more easy to interpret.

Outliers

- WE HAVETO CARRY also for 1. outliers and 2. leverage points
- The residual plot identifies some outliers. However, it can be difficult to decide how large a residual needs to be before we consider the point to be an outlier. To address this problem, instead of plotting the residuals, we can plot the studentized residuals, computed by dividing each residual Ei by its estimated standard error. Observations whose studentized residuals are greater than 3 in absolute value are possible outliers.
- Note that the empirical motivation for the value equal to 3 is that the Standardized Residuals are approximated by a N(0,1). The probability to observe a value greater than 3 is then 0.001349898.

Outliers

• This norm is the value to identify that the pnorm in R is a built-in function that returns the value of the cumulative density function (cdf) of the normal distribution given a certain random variable q, and a population mean μ , and the population standard deviation σ .

- An outlier is a data point whose response y does not follow the general trend of the rest of the data. A data point has high leverage if it has "extreme" predictor x values. With a single predictor, an extreme x value is simply one that is particularly high or low
- a studentized residual is the value resulting from the division of a residual by an estimate of its standard deviation. It is a form of a Student's t-statistic, with the estimate of error varying between points. This is an important technique in the detection of outliers.

Out two ourliers:

Wednesday, July 20, 2022 25

REGRESSION ON TRAINING SET PREDICTION ON TEST SET

red we present the predicted salary values and in blue we shower are our true salary values

Wednesday, July 20, 2022 26

Classification Problem

- Our goal was to predict the Annual Salary for the 2017 season, but in order to quantify the quality of our model we needed to transform our original regression into a classification problem.
- We proceeded as follows:
- I. Analysis of the distribution of the square-root of the Salary
- 2. Definition of a list of thresholds that could divide in equal parts the distribution
- 3. Creation a new feature "Salary Class" generated from the thresholds applied to Salary
- 4. Training the linear model on training data
- 5. Prediction of the salary on test data
- 6. Application of the same thresholds to predicted Salary class
- 7. Building a Confusion Matrix from "Salary class" vs "Salary class predicted"

Classification: 3-Classes Model Results

Confusion Matrix:

reference\ predicted	low	medium	high
low	21	18	0
medium	4	30	9
high	0	8	21

```
[1] "Percentiles used:"
33% 67%
1454.615 2828.427
[1] "Confusion Matrix ( 111 istances )"
low medium high
low 21 18 0
medium 4 30 9
high 0 8 21
[1] "Accuracy = 64.86 %"
```

Classification: LDA & QDA comparison

We compared our model to some R built-in methods in order to prove his soundness

Salary Classes	Basic Classification Model	LDA built-in	QDA built-in
3 CLASSES	64,86%	71,17%	58,56 %

Our model reached lower accuracy compared to LDA built-in function

QDA is not able to achieve good results

Our model vs LDA built-in

- LDA is easier to implement & reaches higher accuracies
- Our model is built from the ground up from a Multiple Linear Regression:
 - I. We can inspect the diagnostic plots
 - 2. We can get the Adjusted R-squared of the model (and other statistics)
 - 3. We have a better understanding and a better control of the model

Summary of the models

- With our final model, considering 3 classes for the annual salary of 2017, we reached an Adjusted R2 of 0.5767 for the predictor and an average accuracy of 64,86% for the classifier
- Probably we would have been able to obtain a greater Adjusted R2: maybe if we had considered statistics from earlier years, we would have gotten it

5. Conclusion

- As a result, as we can clearly see, a lot of variables directly affect player salaries. However, two of them caught our attention during this project. The first of these, without doubt, is the time the basketball players take during the match. As the minutes played by the players increase, we can clearly say that their salaries also increase.
- For the second pick, our favorite was turnovers. As we mentioned at the beginning of the project, turnovers are closely related to player salaries.
- Anyway, even if the model has different possibilities for improvement, our simple model can still be used in some practical way

THANK YOU

Mahir Selek

Joi Berberi

