

# Laporan Tugas Kelompok Analisis Data Kategori B Regresi Logistik Ordinal

\_\_\_\_\_

**Disusun Oleh:** 

 Bunga Tata Arinda
 06211840000044

 Haiva Qurrota A'yun
 06211840000045

 Lidya Cahya Aurellia
 06211840000054

Dosen Pengampu:

Dr. Purhadi, M.Sc.

Program Studi Sarjana Departemen Statistika Fakultas Sains Dan Analitika Data Institut Teknologi Sepuluh Nopember Surabaya 2021

# Daftar Isi

| Halaman Judul                                                                             | i   |
|-------------------------------------------------------------------------------------------|-----|
| Daftar Isi                                                                                | ii  |
| Daftar Tabel                                                                              | iii |
| A. Sumber Data                                                                            | 1   |
| B. Variabel yang Digunakan                                                                | 1   |
| C. Langkah Analisis                                                                       | 3   |
| D. Analisis dan Pembahasan                                                                | 3   |
| 1. Uji Independensi                                                                       | 3   |
| 2. Uji Multikolinearitas                                                                  | 4   |
| 3. Uji Signifikansi Parameter Secara Serentak                                             | 5   |
| 4. Uji Signifikansi Parameter Secara Parsial                                              | 6   |
| 5. Uji Signifikansi Parameter Model Terbaik Secara Serentak                               | 7   |
| 6. Uji Signifikansi Parameter Model Terbaik Secara Parsial                                | 8   |
| 7. Estimasi Parameter Regresi Logistik Ordinal                                            | 8   |
| 8. Uji Kesesuaian Model                                                                   | 9   |
| 9. Analisis Ketepatan Klasifikasi Model Regresi Logistik Ordinal                          | 10  |
| E. Kesimpulan                                                                             | 10  |
| Lampiran                                                                                  | 11  |
| Lampiran 1 Uji Independensi                                                               | 11  |
| Lampiran 2 Uji Multikolinieritas                                                          | 14  |
| Lampiran 3 Uji Signifikansi Parameter Secara Serentak                                     | 15  |
| Lampiran 4 Uji Signifikansi Parameter Secara Parsial                                      | 15  |
| Lampiran 5 Uji Signifikansi Parameter Model Terbaik Secara Serentak                       | 16  |
| Lampiran 6 Uji Signifikansi Parameter Secara Parsial Model Terbaik dan Estimasi Parameter | 16  |
| Lampiran 7 Uji Kesesuaian Model                                                           |     |
| Lampiran 8 Analisis Ketenatan Model                                                       | 16  |

# **Daftar Tabel**

| Tabel 1 Variabel Penelitian             | 1  |
|-----------------------------------------|----|
| Tabel 2 Uji Independensi                | 4  |
| Tabel 3 Keputusan Uji Independensi      | 4  |
| Tabel 4 Uji Multikolinearitas           | 5  |
| Tabel 5 Keputusan Uji Multikolinearitas | 5  |
| Tabel 6 Uji Serentak                    | 6  |
| Tabel 7 Keputusan Uji Serentak          | 6  |
| Tabel 8 Uji Parsial                     | 6  |
| Tabel 9 Keputusan Uji Parsial           | 7  |
| Tabel 10 Uji Serentak                   | 7  |
| Tabel 11 Keputusan Uji Serentak         | 7  |
| Tabel 12 Uji Parsial                    | 8  |
| Tabel 13 Keputusan Uji Parsial          | 8  |
| Tabel 14 Odds Ratio                     | 8  |
| Tabel 15 Uji Kesesuaian Model           | 9  |
| Tabel 16 Keputusan Uji Kesesuaian Model | 9  |
| Tabel 17 Ketepatan Klasifikasi          | 10 |

#### A. Sumber Data

Data yang digunakan dalam tugas ini adalah data sekunder yang diperoleh dari tugas akhir yang berjudul "Faktor-faktor Yang Mempengaruhi Tingkat Stadium Penyakit Kanker Serviks di RUMKITAL Dr. Ramelan Surabaya (RSAL) Dengan Metode Regresi Logistik Ordinal" dari mahasiswa Departemen Statistika Bisnis, Institut Teknologi Sepuluh Nopember (ITS) Surabaya tahun 2017.

#### B. Variabel yang Digunakan

Terdapat 11 variabel yang digunakan dalam tugas ini dimana variabel tingkat stadium kanker serviks sebagai variabel respon dan 10 variabel lainnya sebagai variabel prediktor yang ditunjukkan dalam tabel sebagai berikut.

**Tabel 1** Variabel Penelitian

| Variabel       | Keterangan                           | Skala Data | Kategori                        |
|----------------|--------------------------------------|------------|---------------------------------|
|                | Timelest Cte diam. Venless           |            | [1] Stadium I (IA dan IB)       |
| Y              | Tingkat Stadium Kanker<br>Serviks    | Ordinal    | [2] Stadium II (IIA dan IIB)    |
|                | Serviks                              |            | [3] Stadium III (IIIA dan IIIB) |
| $X_1$          | X <sub>1</sub> Usia Pasien Nominal - |            | [0] > 45 tahun                  |
| $\Lambda_1$    | Usia Pasieli                         | Nommai     | [1] ≤ 45 tahun                  |
| v              | Usia Dantama Vali Manikah            | Nominal    | [1] < 20 tahun                  |
| $X_2$          | Usia Pertama Kali Menikah            | Nommai     | [2] ≥ 20 tahun                  |
| X <sub>3</sub> | Siklus Menstruasi                    | Nominal    | [1] Tidak teratur               |
| $\Lambda_3$    | Sikius Melisuuasi                    | Nommai     | [2] Teratur                     |
| v              | Mananausa                            | Nominal    | [1] Iya                         |
| $X_4$          | Menopause                            | Nommai     | [2] Tidak                       |
| X <sub>5</sub> | Pap Smear N                          |            | [1] Tidak                       |
| $\Lambda_5$    | rap Sineai                           | Nominal    | [2] Iya                         |
| $X_6$          | Danggungan Alat Kantrasansi          | Nominal    | [1] Menggunakan                 |
| $\Lambda_6$    | Penggunaan Alat Kontrasepsi          | Nommai     | [2] Tidak menggunakan           |
| X <sub>7</sub> | Paritas                              | Nominal    | [1] > 2                         |
| Λ7             | Failtas                              | Nommai     | [2] ≤ 2                         |
| v              | Divioust Vocascuran                  | Nominal    | [1] Pernah                      |
| $X_8$          | Riwayat Keguguran                    | Nommai     | [2] Tidak pernah                |
| ν.             | Riwayat Keluarga Pernah Sakit        | Nominal    | [1] Iya                         |
| $X_9$          | Kanker                               | Nommal     | [2] Tidak                       |
| v              | Vanutihan                            | Nominal    | [1] Iya                         |
| $X_{10}$       | Keputihan                            | Moninal    | [2] Tidak                       |

Definisi dari variabel-variabel yang digunakan dalam penelitian ini adalah sebagai berikut.

#### 1. Tingkat stadium kanker serviks (Y)

Tingkat stadium kanker serviks sebagai variabel respon yang dimaksud adalah tingkat stadium kanker pasien saat penelitian berlangsung mengacu pada status yang tertulis dalam buku rekam medis pasien dengan kategori sebagai berikut:

[1]: Stadium I (IA dan IB)

[2]: Stadium II (IIA dan IIB)

#### [3] : Stadium III (IIIA dan IIIB)

#### 2. Usia Pasien $(X_1)$

Usia pasien terindikasi kanker serviks hingga pada saat penelitian berlangsung mengacu pada status yang tertulis dalam buku rekam medis pasien yang dikelompokkan kedalam dua kategori sebagai berikut:

- [1]: > 45 Tahun
- [2]:  $\leq 45$  Tahun

#### 3. Usia Menikah (X<sub>2</sub>)

Usia menikah yang dimaksud adalah usia seorang pasien menikah pertama kalinya yang dikategorikan sebagai berikut:

- [1]: < 20 Tahun
- $[2]: \geq 20$  Tahun

#### 4. Siklus Menstruasi (X<sub>3</sub>)

Siklus menstruasi yang dimaksud dimana pasien tiap bulan mengalami menstruasi yang teratur atau tidak dengan kategori sebgai berikut:

- [1] : Tidak Normal, artinya pasien mengalami siklus mestruasi lebih dari 7 hari atau tidak mengalami mens tiap bulan.
- [2]: Normal, artinya pasien mengalami siklus mestruasi setiap bulan 3-7 hari

#### 5. Menoupause $(X_4)$

Menoupause adalah berhentinya siklus menstruasi secara fisologis yang berkaitan dengan usia tingkat lanjut wanita (umumnya terjadi sekitar usia 50 tahun). Dalam penelitian di kategorikan sebagai berikut:

- [1]: Iya, mengalami menoupause
- [2]: Tidak, tidak mengalami menoupause

#### 6. Tes Pap Smear $(X_5)$

Tes ini bertujuan untuk menemukan sel-sel yang tidak norma dan berkembang menjadi kanker serviks. Dalam penelitian di kategorikan sebagai berikut:

- [1]: Tidak, tidak pernah melakukan tes pap smear secara rutin
- [2]: Iya, pernah melakukan tes pap smear secara rutin

#### 7. Penggunaan Alat Kontrasepsi (X<sub>6</sub>)

Dalam penelitian ini penggunaan alat kontrasepsi di kategorikan sebagai berikut:

- [1]: Menggunakan, artinya memakai alat kontrasepsi sudah lebih dari 5 tahun
- [2]: Tidak Menggunakan, artinya tidak memakai alat kontrasepsi sudah lebih dari 5 tahun

#### 8. Paritas $(X_7)$

Paritas merupakan keadaan dimana seseorang pasien wanita pernah melahirkan bayi yang dapat hidup atau viable. Dalam penelitian kali ini di kategorikan sebagai berikut:

- [1] :> 2 anak
- $[2] : \leq 2$  anak

#### 9. Riwayat Keguguran (X<sub>8</sub>)

Riwayat keguguran adalah pasien mengalami keguguran atau kematian janin dalam kandungan sebulum usia kehamilan mencapai 20 minggu. Dalam penelitian ini dikategorikan sebagai berikut:

- [1]: Pernah
- [2]: Tidak pernah

#### 10. Riwayat Keluarga Pernah Sakit Kanker (X9)

Dalam penelitian kali ini dikategorikan pasien memiliki riwayat keluarga sakit kanker atau tidak adalah sebagai berikut:

[1] : Ya [2] : Tidak

#### 11. Keputihan $(X_{10})$

Keputihan merupakan sekresi vaginal pada wanita. Keputihan yang normal biasanya terjadi setiap bulannya dan mucul menjelang mestruasi atau sesudah mestruasi ataupun masa subur dan juga cairan sekresi berwarna bening, encer dan tidak lengket. Sedangkan keputihan yang tidak normal biasanya keluarnya cairan putih pekat atau putih kekuningan. Cairan ini mengeluarkan bau yang menyengat, lengket dan kental. Dalam penelitian ini di kategorikan sebagai berikut:

[1]: Iya, artinya pasien mengalami keputihan

[2]: Tidak, artinya pasien tidak pernah mengalami keputihan

#### C. Langkah Analisis

Langkah analisis yang dilakukan dalam penelitian ini adalah sebagai berikut.

- 1. Mengumpulkan data.
- 2. Menguji asumsi independensi dan multikolinearitas.
- 3. Menaksir parameter model regresi logistik ordinal.
- 4. Menguji signifikansi parameter secara serentak.
- 5. Menguji signifikansi parameter secara parsial.
- 6. Mendapatkan model regresi logistik ordinal.
- 7. Menguji kesesuaian model regresi logistik ordinal.
- 8. Menganalisis ketepatan klasifikasi.
- 9. Menarik kesimpulan.

#### D. Analisis dan Pembahasan

#### 1. Uji Independensi

Uji independensi dilakukan untuk mengetahui hubungan antara variabel respon (Y) yaitu jenis perkara korupsi dengan variabel prediktor yaitu jenis kelamin  $(X_1)$ , profesi  $(X_2)$ , dan institusi  $(X_3)$ .

#### **Hipotesis**

H<sub>0</sub>: Tidak terdapat hubungan antara variabel Y dengan variabel X

H<sub>1</sub>: Terdapat hubungan antara variabel Y dengan variabel X

#### Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

#### Statistik Uji

$$X_{hitung}^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

Dimana  $E_{ij}$  dihitung dengan rumus sebagai berikut.

$$E_{ij} = \frac{n_{i \cdot} \times n_{\cdot j}}{n}$$

Tabel 2 Uji Independensi

| Variabel                                      | $X_{hit}^2$ |
|-----------------------------------------------|-------------|
| Usia Pasien [X <sub>1</sub> ]                 | 11,743      |
| Usia Pertama Kali Menikah [X2]                | 5,246       |
| Siklus Menstruasi [X <sub>3</sub> ]           | 2,543       |
| Menopause [X <sub>4</sub> ]                   | 10,875      |
| Pap Smear [X <sub>5</sub> ]                   | 11,132      |
| Penggunaan Alat Kontrasepsi [X <sub>6</sub> ] | 1,295       |
| Paritas [X <sub>7</sub> ]                     | 1,429       |
| Riwayat Keguguran [X <sub>8</sub> ]           | 2,085       |
| Riwayat Keluarga Pernah Sakit Kanker [X9]     | 1,067       |
| Keputihan [X <sub>10</sub> ]                  | 0,495       |

**Daerah Kritis**: Tolak H<sub>0</sub> jika  $X_{hit}^2 > X_{(df;\alpha)}^2$ 

# Keputusan dan Kesimpulan

Tabel 3 Keputusan Uji Independensi

|                                                  | 1                 | J  | 1                   |                            |
|--------------------------------------------------|-------------------|----|---------------------|----------------------------|
| Variabel                                         | $X_{\it hit}^{2}$ | df | $X_{(df;lpha)}^{2}$ | Keputusan                  |
| Usia Pasien [X <sub>1</sub> ]                    | 11,743            | 2  | 5,991               | Tolak H <sub>0</sub>       |
| Usia Pertama Kali<br>Menikah [X <sub>2</sub> ]   | 5,246             | 2  | 5,991               | Gagal Tolak H <sub>0</sub> |
| Siklus Menstruasi [X <sub>3</sub> ]              | 2,543             | 2  | 5,991               | Gagal Tolak H <sub>0</sub> |
| Menopause [X <sub>4</sub> ]                      | 10,875            | 2  | 5,991               | Tolak H <sub>0</sub>       |
| Pap Smear [X <sub>5</sub> ]                      | 11,132            | 2  | 5,991               | Tolak H <sub>0</sub>       |
| Penggunaan Alat<br>Kontrasepsi [X <sub>6</sub> ] | 1,295             | 2  | 5,991               | Gagal Tolak H <sub>0</sub> |
| Paritas [X <sub>7</sub> ]                        | 1,429             | 2  | 5,991               | Gagal Tolak H <sub>0</sub> |
| Riwayat Keguguran [X <sub>8</sub> ]              | 2,085             | 2  | 5,991               | Gagal Tolak H <sub>0</sub> |
| Riwayat Keluarga                                 |                   |    |                     |                            |
| Pernah Sakit Kanker                              | 1,067             | 2  | 5,991               | Gagal Tolak H <sub>0</sub> |
| $[X_9]$                                          |                   |    |                     |                            |
| Keputihan [X <sub>10</sub> ]                     | 0,495             | 2  | 5,991               | Gagal Tolak H <sub>0</sub> |

Kesimpulan yang dapat diambil yaitu variabel prediktor yang memiliki hubungan dengan variabel respon yaitu usia pasien  $(X_1)$ , menopause  $(X_4)$ , dan pap smear  $(X_5)$ .

#### 2. Uji Multikolinearitas

Uji multikolinearitas dilakukan untuk mengetahui hubungan antar variabel prediktor yang berupa data kategorik.

# Hipotesis

H<sub>0</sub>: Tidak terdapat multikolinearitas antar variabel prediktor

H<sub>1</sub>: Terdapat multikolinearitas antar variabel prediktor

#### Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

#### Statistik Uji

$$X_{hitung}^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

Dimana  $E_{ij}$  dihitung dengan rumus sebagai berikut.

$$E_{ij} = \frac{n_{i\bullet} \times n_{\bullet j}}{n}$$

Tabel 4 Uji Multikolinearitas

| Variabel                      | Keterangan            | Menopause [X <sub>4</sub> ] | Pap Smear [X <sub>5</sub> ] |
|-------------------------------|-----------------------|-----------------------------|-----------------------------|
|                               | $X_{hit}^{2}$         | 32,862                      | 0,137                       |
| Usia Pasien [X <sub>1</sub> ] | df                    | 1,000                       | 1,000                       |
| -                             | $X_{(d\!f;lpha)}^{2}$ | 3,841                       | 3,841                       |
|                               | $X_{hit}^2$           |                             | 0,699                       |
| Menopause [X <sub>4</sub> ]   | df                    |                             | 1,000                       |
|                               | $X_{(d\!f;lpha)}^{2}$ |                             | 3,841                       |

**Daerah Kritis**: Tolak  $H_0$  jika  $X_{hit}^2 > X_{(df;\alpha)}^2$ 

#### Keputusan dan Kesimpulan

Tabel 5 Keputusan Uji Multikolinearitas

| Variabel                      | Keterangan            | Menopause [X <sub>4</sub> ] | Pap Smear [X <sub>5</sub> ] |
|-------------------------------|-----------------------|-----------------------------|-----------------------------|
|                               | $X_{hit}^{2}$         | 32,862                      | 0,137                       |
| Haio Dogian IV 1              | df                    | 1,000                       | 1,000                       |
| Usia Pasien [X <sub>1</sub> ] | $X_{(d\!f;lpha)}^{2}$ | 3,841                       | 3,841                       |
|                               | Keputusan             | Tolak H <sub>0</sub>        | Gagal Tolak H <sub>0</sub>  |
|                               | $X_{hit}^{2}$         |                             | 0,699                       |
| Manananas IV 1                | df                    |                             | 1,000                       |
| Menopause [X <sub>4</sub> ]   | $X^{2}_{(d\!f;lpha)}$ |                             | 3,841                       |
|                               | Keputusan             |                             | Gagal Tolak H <sub>0</sub>  |

Kesimpulan yang dapat diambil adalah tidak terdapat multikolinearitas antar variabel prediktor.

#### 3. Uji Signifikansi Parameter Secara Serentak

Uji signifikansi parameter secara serentak bertujuan untuk mengetahui secara bersamasama apakah variabel prediktor berpengaruh terhadap model.

#### **Hipotesis**

$$H_0: \beta_1 = \beta_4 = \beta_5 = 0$$

 $\mathbf{H}_{\scriptscriptstyle 1}$ : Minimal terdapat satu $\boldsymbol{\beta}_{\scriptscriptstyle j}\neq 0$  ; j=1,4,5

#### Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

#### Statistik Uji

$$G = -2 \ln \frac{\left(\frac{n_1}{n}\right)^{n_i} \left(\frac{n_0}{n}\right)^{n_0}}{\sum_{i=1}^{n} \pi_i^{y_i} \left(1 - \pi_i\right)^{(1 - y_i)}}$$

dimana nilai G mengikuti distribusi Chi-Squared.

Tabel 6 Uji Serentak

| Model | $X_{hit}^2$ | df | P-Value |
|-------|-------------|----|---------|
| Final | 21,603      | 3  | 0,000   |

**Daerah Kritis**: Tolak H<sub>0</sub> jika  $X_{hit}^2 > X_{(df;\alpha)}^2$ 

#### Keputusan dan Kesimpulan

Tabel 7 Keputusan Uji Serentak

| Model | $X_{hit}^2$ | df | $X^{2}_{(d\!f;lpha)}$ | P-Value |
|-------|-------------|----|-----------------------|---------|
| Final | 21,603      | 3  | 7,815                 | 0,000   |

Keputusan yang dapat diambil adalah tolak  $H_0$  karena  $X_{hit}^2 > X_{(df;\alpha)}^2$  yaitu 21,603 > 7,815 sehingga kesimpulannya adalah variabel prediktor berpengaruh signifikan terhadap variabel respon secara bersama-sama (serentak).

#### 4. Uji Signifikansi Parameter Secara Parsial

Uji signifikansi parameter secara parsial bertujuan untuk mengetahui variabel prediktor yang berpengaruh terhadap model.

#### **Hipotesis**

$$\mathbf{H}_0: \boldsymbol{\beta}_i = \mathbf{0}$$

$$H_1: \beta_i \neq 0$$
;  $j = 1, 4, 5$ 

#### Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

#### Statistik Uji

$$W^2 = \frac{\beta_j^2}{SE(\beta_j)^2}$$

Tabel 8 Uji Parsial

| Variabel                      | Kategori   | Wald  | df | P-value |
|-------------------------------|------------|-------|----|---------|
| Usia Pasien [X <sub>1</sub> ] | > 45 Tahun | 3,198 | 1  | 0,074   |
| Menopause [X <sub>4</sub> ]   | Iya        | 3,335 | 1  | 0,068   |
| Pap Smear [X <sub>5</sub> ]   | Tidak      | 7,633 | 1  | 0,006   |

**Daerah Kritis**: Tolak H<sub>0</sub> jika  $W_{hit}^2 > X_{(df;\alpha)}^2$ 

#### Keputusan dan Kesimpulan

Tabel 9 Keputusan Uji Parsial

| Variabel                      | Kategori   | Wald  | df | $X_{(df;lpha)}^{2}$ | P-value | Keputusan                  |
|-------------------------------|------------|-------|----|---------------------|---------|----------------------------|
| Usia Pasien [X <sub>1</sub> ] | > 45 Tahun | 3,198 | 1  | 3,841               | 0,074   | Gagal Tolak H <sub>0</sub> |
| Menopause [X <sub>4</sub> ]   | Iya        | 3,335 | 1  | 3,841               | 0,068   | Gagal Tolak H <sub>0</sub> |
| Pap Smear [X <sub>5</sub> ]   | Tidak      | 7,633 | 1  | 3,841               | 0,006   | Tolak H <sub>0</sub>       |

Kesimpulan yang dapat diambil adalah variabel prediktor yang berpengaruh signifikan terhadap kedua kategori variabel respon adalah variabel Pap Smear ( $X_5$ ). Variabel usia pasien ( $X_1$ ) dan Menopause ( $X_4$ ) tidak signifikan terhadap kedua kategori sehingga dilakukan pemodelan kembali dengan hanya memasukkan variabel yang signifikan dari pemodelan sebelumnya agar memproleh model regresi logistik ordinal dengan seluruh variabel prediktor yang berpengaruh signifikan terhadap variabel respon.

# 5. Uji Signifikansi Parameter Model Terbaik Secara Serentak Hipotesis

 $H_0: \beta_5 = 0$ 

 $H_1: \beta_5 \neq 0$ 

Taraf Signifikansi

 $\alpha = 5\% = 0.05$ 

Statistik Uji

$$G = -2 \ln \frac{\left(\frac{n_1}{n}\right)^{n_i} \left(\frac{n_0}{n}\right)^{n_0}}{\sum_{i=1}^n \pi_i^{y_i} \left(1 - \pi_i\right)^{(1 - y_i)}}$$

dimana nilai G mengikuti distribusi Chi-Squared.

Tabel 10 Uji Serentak

| Model | $X_{hit}^2$ | df | P-value |
|-------|-------------|----|---------|
| Final | 6,200       | 1  | 0,013   |

**Daerah Kritis**: Tolak H<sub>0</sub> jika  $X_{hit}^2 > X_{(df;\alpha)}^2$ 

#### Keputusan dan Kesimpulan

Tabel 11 Keputusan Uii Serentak

| Model | $X_{hit}^{2}$ | df | $X^{2}_{(d\!f;lpha)}$ | P-value |
|-------|---------------|----|-----------------------|---------|
| Final | 6,200         | 1  | 3,841                 | 0,013   |

Keputusan yang dapat diambil adalah tolak  $H_0$  karena  $X_{hit}^2 > X_{(df;\alpha)}^2$  yaitu 6,200 > 3,841 sehingga kesimpulannya adalah variabel prediktor berpengaruh signifikan terhadap variabel respon.

## 6. Uji Signifikansi Parameter Model Terbaik Secara Parsial

#### **Hipotesis**

$$\mathbf{H}_0: \boldsymbol{\beta}_i = 0$$

$$H_1: \beta_j \neq 0 ; j = 5$$

#### Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$W^2 = \frac{\beta_j^2}{SE(\beta_j)^2}$$

Tabel 12 Uji Parsial

| Variabel                    | Kategori | Wald  | df | P-value |
|-----------------------------|----------|-------|----|---------|
| Pap Smear [X <sub>5</sub> ] | Tidak    | 6,632 | 1  | 0,010   |

**Daerah Kritis**: Tolak  $H_0$  jika  $W_{hit}^2 > X_{(df;\alpha)}^2$ 

## Keputusan dan Kesimpulan

Tabel 13 Keputusan Uji Parsial

| Variabel                    | Kategori | Wald  | df | $X^{2}_{(d\!f;lpha)}$ | P-value | Keputusan            |
|-----------------------------|----------|-------|----|-----------------------|---------|----------------------|
| Pap Smear [X <sub>5</sub> ] | Tidak    | 6,632 | 1  | 3,841                 | 0,010   | Tolak H <sub>0</sub> |

Kesimpulan yang dapat diambil adalah variabel pap smear  $(X_5)$  berpengaruh signifikan terhadap variabel respon.

#### 7. Estimasi Parameter Regresi Logistik Ordinal

Berdasarkan hasil pengujian asumsi independensi dan multikolinearitas, variabel yang digunakan pada analisis regresi logistik ordinal adalah variabel respon (tingkat stadium kanker serviks) dengan variabel prediktor yaitu pap smear  $(X_5)$ . Fungsi logit yang didapatkan adalah sebagai berikut.

$$g_1(x) = -0.806 + 1.309 X_{5(1)}$$

$$g_2(x) = 1,120+1,309X_{5(1)}$$

Interpretasi koefisien parameter pada fungsi logit multinomial menggunakan *odds ratio*. Variabel yang diinterpretasikan adalah variabel prediktor yang signifikan dari hasil uji parsial.

Interpretasi dari nilai *odds ratio* adalah sebagai berikut.

1. Penderita kanker serviks yang tidak pernah melakukan tes pap smear cenderung terkena kanker serviks stadium I dan II 3,702 kali lebih tinggi dibandingkan penderita yang pernah melakukan tes pap smear.

Model regresi logistik ordinal adalah sebagai berikut.

$$\begin{split} \pi_1(x) &= \frac{\exp(g_1(x))}{1 + \exp(g_1(x))} \\ &= \frac{\exp(-0,806 + 1,309X_{5(1)})}{1 + \exp(-0,806 + 1,309X_{5(1)})} \\ \pi_2(x) &= \frac{\exp(g_2(x))}{1 + \exp(g_2(x))} - \frac{\exp(g_1(x))}{1 + \exp(g_1(x))} \\ &= \frac{\exp(1,120 + 1,309X_{5(1)})}{1 + \exp(1,120 + 1,309X_{5(1)})} - \frac{\exp(-0,806 + 1,309X_{5(1)})}{1 + \exp(-0,806 + 1,309X_{5(1)})} \\ \pi_3(x) &= 1 - \frac{\exp(g_2(x))}{1 + \exp(g_2(x))} \\ &= 1 - \frac{\exp(1,120 + 1,309X_{5(1)})}{1 + \exp(1,120 + 1,309X_{5(1)})} \end{split}$$

#### 8. Uji Kesesuaian Model

Uji kesesuaian model digunakan untuk mengetahui apakah model yang dihasilkan berdasarkan regresi logistik multivariat atau serentak sudah layak.

#### **Hipotesis**

H<sub>0</sub>: Model sesuai (tidak terdapat perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model)

H<sub>1</sub>: Model tidak sesuai (terdapat perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model)

#### Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

#### Statistik Uji

$$C = \sum_{k=1}^{g} \frac{\left(o_k - n_k \overline{\pi}_k\right)^2}{n_k \overline{\pi}_k \left(1 - \overline{\pi}_k\right)}$$

dimana nilai C mengikuti distribusi Chi-Squared.

Tabel 15 Uji Kesesuaian Model

| $X_{hit}^2$ | df | P-value |
|-------------|----|---------|
| 2,838       | 1  | 0,092   |

**Daerah Kritis**: Tolak  $H_0$  jika  $X_{hit}^2 > X_{(df;\alpha)}^2$ 

#### Keputusan dan Kesimpulan

Tabel 16 Keputusan Uji Kesesuaian Model

| $X_{hit}^2$ | df | $X_{(d\!f;lpha)}^{2}$ | P-value |
|-------------|----|-----------------------|---------|
| 2,838       | 1  | 3,841                 | 0,092   |

Keputusan yang diambil adalah gagal tolak  $H_0$  karena  $X_{hit}^2 < X_{(df;\alpha)}^2$  yaitu 2,838 < 3,841 sehingga kesimpulannya adalah model telah sesuai atau tidak ada perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model.

#### 9. Analisis Ketepatan Klasifikasi Model Regresi Logistik Ordinal

Analisis ketepatan klasifikasi bertujuan untuk mengetahui proporsi kasus yang tepat diklasifikasikan melalui model regresi logistik ordinal.

Tabel 17 Ketepatan Klasifikasi

|                             | Prediksi                 |                             |                                |    |       |
|-----------------------------|--------------------------|-----------------------------|--------------------------------|----|-------|
| Observasi                   | Stadium I<br>(IA dan IB) | Stadium II<br>(IIA dan IIB) | Stadium III<br>(IIIA dan IIIB) |    | Total |
| Stadium I (IA dan IB)       | 0                        | 7                           |                                | 6  | 13    |
| Stadium II (IIA dan IIB)    | 0                        | 5                           |                                | 28 | 33    |
| Stadium III (IIIA dan IIIB) | 0                        | 6                           |                                | 39 | 45    |
| Total                       | 0                        | 18                          |                                | 73 | 91    |

Total Akurasi = 
$$\frac{0+5+39}{91}x100\%$$
  
= 48,35%

Hasil perhitungan diatas menunjukkan bahwa data penelitian yang tepat diklasifikasikan oleh model regresi logistik ordinal sebesar 48,35%.

#### E. Kesimpulan

Dari hasil penelitian tingkat stadium penyakit kanker serviks di RUMKITAL Dr. Ramelan Surabaya (RSAL) didapatkan bahwa variabel Pap Smear ( $X_5$ ) merupakan faktor yang memengaruhi tingkat stadium kanker serviks dengan ketepatan klasifikasi sebesar 48,35%. Model regresi logistik ordinal yang terbentuk yaitu:

$$g_1(x) = -0.806 + 1.309 X_{5(1)}$$
  
 $g_2(x) = 1.120 + 1.309 X_{5(1)}$ 

Penderita kanker serviks yang tidak pernah melakukan tes Pap Smear memiliki probabilitas terkena kanker serviks stadium I dan II sebesar 3,702 kali lebih tinggi dibandingkan penderita yang pernah melakukan tes Pap Smear.

#### Lampiran

# Lampiran 1 Uji Independensi

1. Tingkat Stadium Kanker Serviks dan Usia Pasien

#### Chi-Square Tests

|                                 | Value               | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|---------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 11.743 <sup>a</sup> | 2  | .003                                    |
| Likelihood Ratio                | 11.855              | 2  | .003                                    |
| Linear-by-Linear<br>Association | 11.606              | 1  | .001                                    |
| N of Valid Cases                | 91                  |    |                                         |

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 2.57.

#### 2. Tingkat Stadium Kanker Serviks dan Usia Pertama Kali Menikah

#### Chi-Square Tests

|                                 | Value  | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|--------|----|-----------------------------------------|
| Pearson Chi-Square              | 5.246ª | 2  | .073                                    |
| Likelihood Ratio                | 5.357  | 2  | .069                                    |
| Linear-by-Linear<br>Association | .889   | 1  | .346                                    |
| N of Valid Cases                | 91     |    |                                         |

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.00.

#### 3. Tingkat Stadium Kanker Serviks dan Siklus Menstruasi

|                                 | Value              | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|--------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 2.543 <sup>a</sup> | 2  | .280                                    |
| Likelihood Ratio                | 2.513              | 2  | .285                                    |
| Linear-by-Linear<br>Association | .984               | 1  | .321                                    |
| N of Valid Cases                | 91                 |    |                                         |

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 5.43.

#### 4. Tingkat Stadium Kanker Serviks dan Menopause

# **Chi-Square Tests**

|                                 | Value               | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|---------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 10.875 <sup>a</sup> | 2  | .004                                    |
| Likelihood Ratio                | 11.119              | 2  | .004                                    |
| Linear-by-Linear<br>Association | 10.293              | 1  | .001                                    |
| N of Valid Cases                | 91                  |    |                                         |

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 4.71.

#### 5. Tingkat Stadium Kanker Serviks dan Pap Smear

# **Chi-Square Tests**

|                                 | Value   | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|---------|----|-----------------------------------------|
| Pearson Chi-Square              | 11.132ª | 2  | .004                                    |
| Likelihood Ratio                | 9.159   | 2  | .010                                    |
| Linear-by-Linear<br>Association | 7.163   | 1  | .007                                    |
| N of Valid Cases                | 91      |    |                                         |

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 2.57.

# 6. Tingkat Stadium Kanker Serviks dan Penggunaan Alat Kontrasepsi

|                                 | Value              | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|--------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 1.295 <sup>a</sup> | 2  | .523                                    |
| Likelihood Ratio                | 1.272              | 2  | .529                                    |
| Linear-by-Linear<br>Association | .226               | 1  | .635                                    |
| N of Valid Cases                | 91                 |    |                                         |

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 3.43.

#### 7. Tingkat Stadium Kanker Serviks dan Paritas

#### **Chi-Square Tests**

|                                 | Value              | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|--------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 1.429 <sup>a</sup> | 2  | .489                                    |
| Likelihood Ratio                | 1.433              | 2  | .488                                    |
| Linear-by-Linear<br>Association | .984               | 1  | .321                                    |
| N of Valid Cases                | 91                 |    |                                         |

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 5.43.

#### 8. Tingkat Stadium Kanker Serviks dan Riwayat Keguguran

# **Chi-Square Tests**

|                                 | Value              | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|--------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 2.085 <sup>a</sup> | 2  | .353                                    |
| Likelihood Ratio                | 2.519              | 2  | .284                                    |
| Linear-by-Linear<br>Association | 1.558              | 1  | .212                                    |
| N of Valid Cases                | 91                 |    |                                         |

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 3.00.

## 9. Tingkat Stadium Kanker Serviks dan Riwayat Keluarga Pernah Sakit Kanker

|                                 | Value              | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|--------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 1.067 <sup>a</sup> | 2  | .586                                    |
| Likelihood Ratio                | 1.250              | 2  | .535                                    |
| Linear-by-Linear<br>Association | .823               | 1  | .364                                    |
| N of Valid Cases                | 91                 |    |                                         |

a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 2.29.

#### 10. Tingkat Stadium Kanker Serviks dan Keputihan

# **Chi-Square Tests**

|                                 | Value | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|-------|----|-----------------------------------------|
| Pearson Chi-Square              | .495ª | 2  | .781                                    |
| Likelihood Ratio                | .493  | 2  | .781                                    |
| Linear-by-Linear<br>Association | .090  | 1  | .765                                    |
| N of Valid Cases                | 91    |    |                                         |

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 5.29.

## Lampiran 2 Uji Multikolinieritas

# 1. Usia Pasien dan Menopause

#### Chi-Square Tests

|                                    | Value               | df | Asymptotic<br>Significance<br>(2-sided) | Exact Sig. (2-<br>sided) | Exact Sig. (1-<br>sided) |
|------------------------------------|---------------------|----|-----------------------------------------|--------------------------|--------------------------|
| Pearson Chi-Square                 | 32.862 <sup>a</sup> | 1  | .000                                    |                          |                          |
| Continuity Correction <sup>b</sup> | 29.799              | 1  | .000                                    |                          |                          |
| Likelihood Ratio                   | 34.695              | 1  | .000                                    |                          |                          |
| Fisher's Exact Test                |                     |    |                                         | .000                     | .000                     |
| Linear-by-Linear<br>Association    | 32.501              | 1  | .000                                    |                          |                          |
| N of Valid Cases                   | 91                  |    |                                         |                          |                          |

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.53.

#### 2. Usia Pasien dan Pap Smear

|                                    | Value | df | Asymptotic<br>Significance<br>(2-sided) | Exact Sig. (2-<br>sided) | Exact Sig. (1-<br>sided) |
|------------------------------------|-------|----|-----------------------------------------|--------------------------|--------------------------|
| Pearson Chi-Square                 | .137ª | 1  | .711                                    |                          |                          |
| Continuity Correction <sup>b</sup> | .002  | 1  | .968                                    |                          |                          |
| Likelihood Ratio                   | .142  | 1  | .707                                    |                          |                          |
| Fisher's Exact Test                |       |    |                                         | 1.000                    | .501                     |
| Linear-by-Linear<br>Association    | .136  | 1  | .713                                    |                          |                          |
| N of Valid Cases                   | 91    |    |                                         |                          |                          |

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.56.

b. Computed only for a 2x2 table

b. Computed only for a 2x2 table

#### 3. Menopause dan Pap Smear

#### **Chi-Square Tests**

|                                    | Value | df | Asymptotic<br>Significance<br>(2-sided) | Exact Sig. (2-<br>sided) | Exact Sig. (1-<br>sided) |
|------------------------------------|-------|----|-----------------------------------------|--------------------------|--------------------------|
| Pearson Chi-Square                 | .699ª | 1  | .403                                    |                          |                          |
| Continuity Correction <sup>b</sup> | .316  | 1  | .574                                    |                          |                          |
| Likelihood Ratio                   | .721  | 1  | .396                                    |                          |                          |
| Fisher's Exact Test                |       |    |                                         | .585                     | .291                     |
| Linear-by-Linear<br>Association    | .691  | 1  | .406                                    |                          |                          |
| N of Valid Cases                   | 91    |    |                                         |                          |                          |

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.53.

# Lampiran 3 Uji Signifikansi Parameter Secara Serentak

#### Model Fitting Information

| Model          | -2 Log<br>Likelihood | Chi-Square | df | Sig. |
|----------------|----------------------|------------|----|------|
| Intercept Only | 61.176               |            |    |      |
| Final          | 39.573               | 21.603     | 3  | .000 |

Link function: Logit.

#### Lampiran 4 Uji Signifikansi Parameter Secara Parsial

#### Parameter Estimates

|           |         |          |            |        |    |      | 95% Confid  | ence Interval |
|-----------|---------|----------|------------|--------|----|------|-------------|---------------|
|           |         | Estimate | Std. Error | Wald   | df | Sig. | Lower Bound | Upper Bound   |
| Threshold | [Y = 1] | .603     | .636       | .899   | 1  | .343 | 643         | 1.849         |
|           | [Y = 2] | 2.821    | .712       | 15.679 | 1  | .000 | 1.425       | 4.218         |
| Location  | [X1=1]  | 1.145    | .640       | 3.198  | 1  | .074 | 110         | 2.399         |
|           | [X1=2]  | 0 a      |            |        | 0  |      |             |               |
|           | [X4=1]  | .979     | .536       | 3.335  | 1  | .068 | 072         | 2.030         |
|           | [X4=2]  | 0 a      |            |        | 0  |      |             |               |
|           | [X5=1]  | 1.460    | .528       | 7.633  | 1  | .006 | .424        | 2.495         |
|           | [X5=2]  | 0 a      |            |        | 0  |      |             |               |

Link function: Logit.

b. Computed only for a 2x2 table

a. This parameter is set to zero because it is redundant.

Lampiran 5 Uji Signifikansi Parameter Model Terbaik Secara Serentak

# **Model Fitting Information**

| Model          | -2 Log<br>Likelihood | Chi-Square | df | Sig. |
|----------------|----------------------|------------|----|------|
| Intercept Only | 23.575               |            |    |      |
| Final          | 17.375               | 6.200      | 1  | .013 |

Link function: Logit.

# Lampiran 6 Uji Signifikansi Parameter Secara Parsial Model Terbaik dan Estimasi Parameter

#### Parameter Estimates

|           |         |          |            |       |    |      | 95% Confide | ence Interval |
|-----------|---------|----------|------------|-------|----|------|-------------|---------------|
|           |         | Estimate | Std. Error | Wald  | df | Sig. | Lower Bound | Upper Bound   |
| Threshold | [Y = 1] | 806      | .459       | 3.079 | 1  | .079 | -1.705      | .094          |
|           | [Y = 2] | 1.120    | .471       | 5.665 | 1  | .017 | .198        | 2.042         |
| Location  | [X5=1]  | 1.309    | .508       | 6.632 | 1  | .010 | .313        | 2.306         |
|           | [X5=2]  | 0 a      |            |       | 0  |      |             |               |

Link function: Logit.

#### Lampiran 7 Uji Kesesuaian Model

#### Goodness-of-Fit

|          | Chi-Square | df | Sig. |
|----------|------------|----|------|
| Pearson  | 2.838      | 1  | .092 |
| Deviance | 2.959      | 1  | .085 |

Link function: Logit.

# **Lampiran 8 Analisis Ketepatan Model**

| Estimated Cell         | Estimated Cell         | Estimated Cell         | Predicted           |  |
|------------------------|------------------------|------------------------|---------------------|--|
| Probability For Respon | Probability For Respon | Probability For Respon | Respons<br>Category |  |
| Category: 1            | Category: 2            | Category: 3            |                     |  |
| 0.11                   | 0.35                   | 0.55                   | 3                   |  |
| 0.11                   | 0.35                   | 0.55                   | 3                   |  |
| 0.31                   | 0.45                   | 0.25                   | 2                   |  |
| 0.31                   | 0.45                   | 0.25                   | 2                   |  |
| 0.31                   | 0.45                   | 0.25                   | 2                   |  |
| 0.11                   | 0.35                   | 0.55                   | 3                   |  |
| 0.11                   | 0.35                   | 0.55                   | 3                   |  |
| 0.31                   | 0.45                   | 0.25                   | 2                   |  |
| 0.11                   | 0.35                   | 0.55                   | 3                   |  |
| 0.31                   | 0.45                   | 0.25                   | 2                   |  |
| 0.11                   | 0.35                   | 0.55                   | 3                   |  |
| 0.31                   | 0.45                   | 0.25                   | 2                   |  |

a. This parameter is set to zero because it is redundant.

| 0.31 | 0.45 | 0.25 | 2 |
|------|------|------|---|
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |

| 0.11 | 0.35 | 0.55 | 3 |
|------|------|------|---|
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.31 | 0.45 | 0.25 | 2 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |
| 0.11 | 0.35 | 0.55 | 3 |

# Tingkat Stadium Kanker Serviks \* Predicted Response Category Crosstabulation

|                                   |                             |            | Predicted Response Category |                                |        |
|-----------------------------------|-----------------------------|------------|-----------------------------|--------------------------------|--------|
|                                   |                             |            | Staium II (IIA<br>dan IIB)  | Stadium III<br>(IIIA dan IIIB) | Total  |
| Tingkat Stadium Kanker<br>Serviks | Stadium I (IA dan IB)       | Count      | 7                           | 6                              | 13     |
|                                   |                             | % of Total | 7.7%                        | 6.6%                           | 14.3%  |
|                                   | Staium II (IIA dan IIB)     | Count      | 5                           | 28                             | 33     |
|                                   |                             | % of Total | 5.5%                        | 30.8%                          | 36.3%  |
|                                   | Stadium III (IIIA dan IIIB) | Count      | 6                           | 39                             | 45     |
|                                   |                             | % of Total | 6.6%                        | 42.9%                          | 49.5%  |
| Total                             |                             | Count      | 18                          | 73                             | 91     |
|                                   |                             | % of Total | 19.8%                       | 80.2%                          | 100.0% |