Computer Networks

Lecture on

Other LANs

Plan of This Lecture

- Mechanisms for accessing transmission media
- Token Bus
- Token Ring
- Wi-Fi

Transmission Medium Access

Medium Access Control algorithms

- Stochastic
 - o Frames are sent in a random way
 - Collisions can occur
 - Efficient while transmission load is low
- Deterministic
 - o Frames are sent while control mechanism allows
 - No collisions
 - Efficient while transmission load is high
- Adaptive
 - o If transmission load is low a stochastic mechanism works
 - o If transmission load is high a deterministic mechanism works

Stochastic MAC Algorithms

- Pure Aloha
 - o A frame can be sent at any moment
 - o If no ACK frame, then retransmission after a random delay
 - Efficiency of medium usage = 18%
- Slotted Aloha
 - o A frame can be sent at the beginning of a time slot
 - Efficiency of medium usage = 37%
- CSMA
 - o A frame can be sent at random delay after previous frame
 - o Senders should hear each other
- CSMA/CD
 - o e.g. Ethernet

• ..

Deterministic MAC Algorithms

- Master-slave
 - One master controls some slave nodes
 - Are you ready to send?
 - Are you ready to receive?
 - o Any topology
- Token-Bus
 - The owner of the token is a master
 - The token circulates between selected nodes

Token-Ring

- o The token circulates in the ring
- o A node stops the token to send its frame
- o The retransmission delay (input to output interface) can be 1 bit
- o The frame can be removed by the addressee or by the sender

Slotted-Ring

- Empty frames (slots) circulate in the ring
- The slots can be filled with data frames
- The retransmission delay can be 1 bit

• Register-Insertion-Ring

- A node can insert its frame to the ring if enough "empty bits" enter its input interface
- The retransmission delay must be >= destination address header field

A monitor node can be elected

- to be the only one that generates clock signal then the network works faster
- to monitor the network health
 - o e.g. to remove lost frames

Token Bus

- The signal propagates over a bus topology
- Initialisation mechanism
 - A logical ring of nodes is built interface addresses are used
 - Selected node creates the token
- The token circulates in the ring
- The holder of the token is a master
 - o It can communicate with any node belonging or not to the ring
- Attaching a node to the ring mechanism
- Detaching mechanism

Example networks

•	ARCNet	1977
•	IEEE 802.4	1984
•	Thomas Conrad Networking System	1992

Token Ring

- The signal propagates over a ring topology
- Token it is a short frame carrying some management data
 - o e.g. priority reservation, monitor stamp
- A node can intercept the token if its data frame priority is not lower than the reservation
- The node holding the token can send its data frames for a limited time period
- There can be one or more tokens circulating in the network

Example networks

•	IBM Token Ring	1984	later IEEE 802.5	LAN
•	Fiber Distributed Data Interface (FDDI)	1986		MAN

In 80's IBM Token Ring was

- technically better than Ethernet
 - o no network congestions
 - o bigger throughput
 - o longer distance
 - o higher reliability
- more expensive than Ethernet ⇒ Ethernet was widely used and evolved rapidly

Wi-Fi The Standard for Wireless Fidelity

Dominant radio technology for access networks

Network types

- Ad hoc direct communication between connected terminals
- With an access point e.g. for Internet access
- With many access points e.g. a campus or city-wide network roaming between APs while the terminal moves

Works in non-licensed radio bands

Frame priorities are possible 802.11e

SSID – Service Set Identifier is a name of a given network

• Several independent networks can work in the same area

Communication Range

Strongly depends on

- transmission power hence local regulations
- antenna size and shape can be directional or omnidirectional
 - 802.11n/ac allow for multiple antennas
 - MIMO Multiple-Input and Multiple-Output
- environment outdoor, indoor, physical obstacles (e.g. motor lorry, aquarium)
- number of active terminals in the area
- radio noises
- expected transmission speed

It is assumed

- 20 m indoor
- up to 30 terminals per access point

Wi-Fi Generations

Year	Standard	Bandwidth	Max. Link-rate	Generation
1997	802.11	2.4 GHz	2 Mb/s	
1999	802.11a	5 GHz	54 Mb/s	
1999	802.11b	2.4 GHz	11 Mb/s	
2003	802.11g	2.4 GHz	54 Mb/s	
2009	802.11n	2.4/5 GHz	72-600 Mb/s	Wi-Fi 4
2012	802.11ac	5 GHz	433-6933 Mb/s	Wi-Fi 5
2014	802.11ad	2.4/5/60 GHz	6912 Mb/s	
2019	802.11ax	1-7/2.4/5 GHz	600-9608 Mbit/s	Wi-Fi 6

Throughput varies due to:

- o protocol overheads
- o channel sharing
- o adaptive modulations

o number of terminals

- function of distance and radio noises

Modulation Techniques

- FHSS Frequency Hopping Spread Spectrum pseudorandom rapid switching a carrier among many frequency channels
- DSSS Direct Sequence Spread Spectrum modulation by a pseudorandom keying signal

 OFDM Orthogonal Frequency Division Multiplexing encoding digital data on multiple carrier frequencies

Modulation examples

- BPSK Binary Phase-Shift Keying
- QPSK *Quadrature PSK*
- 16-QAM, 64-QAM, 256-QAM Quadrature Amplitude Modulation

Adaptive channel modulation and coding

- Depends on received signal strength and packet error rate
- Link-rate lowers with distance
- Link-rate lowers with radio noises

CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance

Distributed Coordination Function

RTS and CTS frames can be used before long payload

DIFS – distributed CF interframe space

SIFS – short interframe space

Backoff - random delay in a given time slot

RTS – request to send

CTS - clear to send

Point Coordination Function

- only in network with an access point

PIFS – *point CF* interframe space

Hidden Node Problem

A broadcasts RTS(reservation_time)

- ⇒ AP broadcast CTS(reservation_time)
- \Rightarrow B remains silent for the time

PLCP Header

Physical Layer Convergence Protocol

			_			
	Preamble	Length Si		Signaling	CRC	MAC frame
	128 + 16 56 + 16	12	·	4	16	14 ÷ 4095
		192 μs				
1 Mb/s			1 Mb/s 2 Mb/s			

MAC Frame

2	2	6	6	6	2	6	2	0 - 2312	4	
control	duration/ID	address 1	address 2	address 3	sequence control	address 4	QoS control	payload	CRC	

Control bits allow for:

- fragmentation
- retransmission
- sleeping mode terminals power management

Addresses:

- source
- destination
- sender
- next hope receiver
- network segment

802.11 Security

Protection against

- eavesdropping the radio channel
- connection of unauthorised devices

```
WEP Wireless Equivalent Privacy insecure!

MAC address filtering insecure!

WPA Wi-Fi Protected Access pre-shared key or enterprise AAA servers (e.g. RADIUS or DIAMETER)

Authentication, Authorization and Accounting
```

WPA & WPA2 use temporal ciphering keys

Summary

- Mechanisms for accessing transmission media
 - o Stochastic MAC algorithms
 - o Deterministic MAC algorithms
- Token Bus
- Token Ring
- Wi-Fi
 - Network types
 - o Communication range
 - o Versions and generations
 - Modulation techniques
 - Collision avoidance
 - o Physical and MAC headers
 - o Security mechanisms

Questions

- 1. When stochastic access to a shared medium is more efficient than any deterministic one?
- 2. When deterministic access to a shared medium is more efficient than any stochastic one?
- 3. Why the slotted Aloha algorithm is more efficient than the pure Aloha algorithm?
- 4. In which way a master node controls access to a shared medium?
- 5. What is the principle of the Token-Bus?
- 6. What is the principle of the Token-Ring?
- 7. What is the principle of the Slotted-Bus?
- 8. What is the principle of the Register-Insertion-Bus?
- 9. What are the main functions of the monitor node in ring-based networks?
- 10. What are the Wi-Fi network types?
- 11. What are limitations for the Wi-Fi communication range?
- 12. Why is the Wi-Fi transmission throughput below 50% of maximum link-rate?
- 13. What is the principle of Direct Sequence Spread Spectrum?
- 14. What is the aim of the adaptive channel modulation and coding?
- 15. What is the principle of CSMA/CA?
- 16. What information is carried by the header of Physical Layer Convergence Protocol?
- 17. What is the aim of having 4 address fields in the MAC header?
- 18. What security methods should be used in Wi-Fi networks?

Questions for curious minds

- 1. How does one frame can get priority over another in 802.11e network?
- 2. What are advantages of having the duration field in the MAC header?