COMP408 - Linear Algebra Dennis Wong

### Remember last time...



Let S be a subspace of  $R^n$  and let  $b_1, b_2, ..., b_s$  be vectors in S. The set  $\{b_1, b_2, ..., b_s\}$  is a **basis** for S if

- 1. Span $\{b_1, b_2, \dots, b_s\} = S$ ,
- 2.  $b_1, b_2, \ldots, b_s$  are linearly independent (can be not  $\perp$ ).

Suppose now we want to have a *better* basis where

- 1. the basis vectors are pairwise orthogonal,
- 2. each basis vector is a unit vector.

We can then use the *Gram-Schmidt* process to transform a basis into a basis with such properties.

# Orthogonal set

Let  $\{b_1, b_2, ..., b_s\}$  be a set of vectors in the inner product space V. The set is **orthogonal** if  $\{b_i, b_j\} = 0$  for all  $i \neq j$  (the vectors are **pairwise orthogonal**).

The set is *orthonormal* if it is orthogonal and each vector is a unit vector.

Any orthogonal set of nonzero vectors can be changed into an orthonormal set by dividing each vector by its norm.



# Orthogonal set

Let S be a subspace of V and let  $\{u_1, u_2, ..., u_n\}$  be an orthonormal basis for S. Let b be a vector in V and let

$$\mathbf{p} = \sum_{i=1}^{s} \langle \mathbf{b}, \mathbf{u}_i \rangle \mathbf{u}_i.$$

Then  $p \in S$  and  $b - p \in S^{\perp}$ . Also, the vector p is the projection of b on S.



Suppose that  $\{b_1, b_2, b_3\}$  is a basis for an inner product space V. The GramSchmidt process uses these vectors to produce an orthonormal basis  $\{u_1, u_2, u_3\}$  for V.



Let  $\{b_1, b_2, \dots, b_s\}$  be a basis for the inner product space V. Define vectors  $u_1, u_2, \dots, u_2$  recursively by

$$\mathbf{u}_1 = \frac{\mathbf{b}_1}{\|\mathbf{b}_1\|}$$

$$\mathbf{u}_k = \frac{\mathbf{b}_k - \mathbf{p}_{k-1}}{\|\mathbf{b}_k - \mathbf{p}_{k-1}\|}, \quad \text{where } \mathbf{p}_{k-1} = \sum_{i=1}^{k-1} \langle \mathbf{b}_k, \mathbf{u}_i \rangle \mathbf{u}_i \quad (k > 1)$$

Then  $\{u_1, u_2, \dots, u_n\}$  is an orthonormal basis for V. Moreover,  $Span\{u_1, u_2, \dots, u_k\} = Span\{b_1, b_2, \dots, b_k\}$  for each k.





Example: Let  $b_1 = [1, 2, 2, 4]^T$ ,  $b_2 = [-2, 0, -4, 0]^T$ , and  $b_3 = [-1, 1, 2, 0]^T$ , and let S be the span of these vectors. Apply the Gram-Schmidt process to  $\{b_1, b_2, b_3\}$  to obtain an orthonormal basis  $\{u_1, u_2, u_3\}$  for S.

Solution: First we compute  $u_1$  and  $p_1$ :

$$u_1 = b_1 / ||b_1|| = [1, 2, 2, 4]^T / ||[1, 2, 2, 4]^T|| = 1/5[1, 2, 2, 4]^T$$

$$p_1 = \langle b_2, u_1 \rangle u_1 = \langle [-2, 0, -4, 0]^T, 1/5[1, 2, 2, 4]^T \rangle u_1$$
  
= -2/5[1, 2, 2, 4]<sup>T</sup>

Solution (cont): Then, we compute  $b_2 - p_1$  and  $u_2$ :

$$b_2 - p_1 = [-2, 0, -4, 0]^T + 2/5[1, 2, 2, 4]^T = 4/5[-2, 1, -4, 2]^T$$

$$u_2 = (b_2 - p_1) ||b_2 - p_1|| = 4/5[-2, 1, -4, 2]^T / || 4/5[-2, 1, -4, 2]^T ||$$
  
= 1/5[-2, 1, -4, 2]<sup>T</sup>

Finally we compute  $p_2$ ,  $b_3$  -  $p_2$ , and  $u_3$ :

$$p_2 = \langle b_2, u_1 \rangle u_1 + \langle b_3, u_2 \rangle u_2$$
  
=  $\langle [-1, 1, 2, 0]^T, 1/5[1, 2, 2, 4]^T \rangle u_1 + \langle [-1, 1, 2, 0]^T, 1/5[-2, 1, -4, 2]^T \rangle u_2$   
=  $1/5[3, 1, 6, 2]^T$ 

$$b_3 - p_2 = [-1, 1, 2, 0]^T - 1/5[3, 1, 6, 2]^T = 2/5[-4, 2, 2, -2]^T$$

$$u_3 = (b_3 - p_2) ||b_3 - p_2|| = 2/5[-4, 2, 2, -1]^T / || 2/5[-4, 2, 2, -1]^T ||$$
  
= 1/5[-4, 2, 2, -1]<sup>T</sup>