ETH zürich

Übungslektion 10 – Dynamic Programming II

Informatik II

29. / 30. April 2025

Heutiges Programm

- Wiederholung: Rod Cutting
- Längste gemeinsame Teilsequenz
- DNA-Sequenzvergleich
- Wrap-Up

■ Um eine optimale Lösung zu finden, müssen möglicherweise viele Optionen evaluiert werden.

■ Wir können diese Teilprobleme mit Hilfe von Rekursion berechnen.

- Viele Teilprobleme überlappen jedoch das bedeutet, dass wir dieselben Berechnungen mehrfach durchführen.
- Dies verhindern wir durch den Einsatz von Memoisierung oder Dynamic Programming.

Memoisierung

- Die Rekursion bleibt erhalten.
- Bereits berechnete Lösungen von Teilproblemen werden in einer Tabelle gespeichert (memoisiert), um doppelte Berechnungen zu vermeiden.

Dynamic Programming

- Das Problem wird von unten nach oben gelöst – mithilfe einer geeigneten Datenstruktur.
- Voraussetzung dafür ist das Erkennen der Abhängigkeiten zwischen den Teilproblemen.

2. Längste gemeinsame Teilsequenz

Was ist eine Teilsequenz?

Eine Teilsequenz Z von einer Sequenz X wird gebildet, indem wir einige (oder keine) der Elemente aus der originalen Sequenz <u>entfernen, ohne die Reihenfolge zu verändern</u>.

Beispiel: Z_i sind mögliche Teilsequenzen von X = [A, B, C, B, D, A, B]

- $Z_1 = [A, B, C]$
- $\mathbb{Z}_2 = [B, C, B, A]$
- $Z_3 = [B, C, D, B]$
- Keine gültige Teilsequenz: F = [B, A, C]

Was ist eine gemeinsame Teilsequenz?

Eine gemeinsame Teilsequenz erscheint in weiteren zwei oder mehr Sequenzen in der gleichen Reihenfolge, aber nicht zwingend aufeinanderfolgend.

Beispiel: Gegeben seien die Sequenzen X und Y; die Z_i stellen mögliche gemeinsame Teilsequenzen dar.

$$X = [A, B, C, B, D, A, B]$$
 $Z_1 = [B, C, A]$
 $Y = [B, D, C, A, B, A]$ $Z_2 = [B, C, B, A]$
 $Z_3 = [B, C, D, B]$

Problemstellung: Längste gemeinsame Teilsequenz

- **Input:** Zwei Sequenzen, $X = [x_1, x_2, ..., x_m]$ und $Y = [y_1, y_2, ..., y_n]$, mit Längen m bzw. n. Die Längen der Sequenzen müssen dabei nicht übereinstimmen.
- **Output:** Die Länge *n* der längsten gemeinsamen Teilsequenz (LGT) von beiden Sequenzen *X* und *Y*.

Mögliche Echtwelt Anwendung

DNA-Sequenzvergleich: Gegeben sind zwei DNA-Sequenzen S_1 und S_2 , das Ziel ist die längste gemeinsame Teilsequenz (LGT) Z zu finden.

$$S_1 = ACCGTCGAGTGCGCGGAAGG$$

$$S_2 = GTCGTTCGGAATGCC$$

$$\rightarrow Z = GTCGTCGGAAG$$

Herausforderungen

Warum ist es so schwer, die LGT zu finden?

lacksquare Zu viele Möglichkeiten: Eine Sequenz mit Länge m hat 2^m Teilsequenzen.

Wenn wir den Brute-Force-Ansatz verwenden:

- 1. Erzeuge alle Teilsequenzen von X.
- 2. Überprüfe, jede dieser Teilsequenzen auch eine Teilsequenz von Y ist.
- 3. Verfolge und speichere die längste gemeinsame Teilsequenz.

Die Zeitkomplexität ist $\mathcal{O}(2^m \cdot 2^n)$, d.h. exponentielles Wachstum

→ Ineffizient für lange Sequenzen.

Vier Schritte für Dynamic Programming

Unterteile das Problem in kleinere Teilprobleme und speichere die Ergebnisse zur Wiederverwendung, um die Effizienz zu steigern.

- 1. Charakterisiere die optimale Substruktur für eine längste gemeinsame Teilsequenz
- 2. Finde eine rekursive Lösung
- 3. Berechne die Länge der LGT
- 4. Konstruiere ein LGT

Optimale Substruktur einer LGT

Vergleiche die letzten Elemente von zwei Sequenzen:

- Wenn $x_m = y_n$:
 - Der letzte Buchstabe muss Teil der LGT sein.
 - Wir können das Problem zur LGT von X[:m-1] und Y[:n-1] reduzieren.
 - LGS(X,Y) = LGS(X[:m-1], Y[:n-1]) + 1
- Wenn $x_m \neq y_n$:
 - Der letzte Buchstabe von X oder Y gehört nicht zur LGT. Es entstehen verschiedene Teilprobleme, und wir müssen die maximale Lösung wählen.
 - Ignoriere das letzte Element von X: LGS(X,Y) = LGS(X[:m-1], Y)
 - Ignoriere das letzte Element von Y: LGS(X,Y) = LGS(X,Y[:n-1])

■ Vergleiche die letzten beiden Elemente → sie sind gleich und gehören somit zur LGT.

- Vergleiche die letzten beiden Elemente → sie sind gleich und gehören somit zur LGT.
- Entferne das letzte Element aus beiden Sequenzen und fahre mit der Suche fort.

- Vergleiche die letzten beiden Elemente.
- Entferne das letzte Element aus beiden Sequenzen.
- Vergleiche die neuen letzten beiden Elemente

$$X = \begin{bmatrix} G & A & C & T & A \end{bmatrix}$$
 $Y = \begin{bmatrix} A & C & G & A \end{bmatrix}$
 T

- Vergleiche die letzten beiden Elemente
- Entferne das letzte Element aus beiden Sequenzen
- Vergleiche die neuen letzten beiden Elemente \rightarrow Sie sind ungleich und wir suchen nun die LGT für zwei Fälle, jeweils ohne x_m oder y_n .

- Vergleiche die letzten beiden Elemente.
- Entferne das letzte Element aus beiden Sequenzen.
- Vergleiche die neuen letzten beiden Elemente \rightarrow Sie sind ungleich und wir suchen nun die LGT für zwei Fälle, jeweils ohne x_m oder y_n .
- Nun vergleichen wir beide Fälle In welchem ist n maximal?

Struktur des Teilproblems

LGS(X,Y) = LGS(X[:m-1],Y[:n-1]) + 1

LGS(X,Y)

 $\max(LGS(X[:m-1],Y),LGS(X,Y[:n-1]))$

$$LGT(X,Y) = \max(LGS(X[:m-1],Y), LGS(X,Y[:n-1]))$$

Vier Schritte für Dynamische Programmierung

Unterteile das Problem in kleinere Teilprobleme und speichere die Ergebnisse zur Wiederverwendung, um die Effizienz zu steigern.

- Charakterisiere die optimale Substruktur für eine längste gemeinsame Teilsequenz ✓
- 2. Finde eine rekursive Lösung
- 3. Berechne die Länge der LGT
- 4. Konstruiere ein LGT

Rekursiver Aufrufs-Baum

Die rekursive Lösung

Wir bezeichnen mit Z[i,j] die länge des LGT für die ersten i Elemente von X und die ersten j Elemente von Y

$$Z[i,j] = \begin{cases} 0 & \text{wenn } i = 0 \text{ oder } j = 0 \\ Z[i-1,j-1] + 1 & \text{wenn } x_i = y_j \\ \max(Z[i,j-1], Z[i-1,j]) & \text{wenn } x_i \neq y_j \end{cases}$$

■ Der Basisfall tritt ein, wenn eine der beiden Sequenzen leer ist (i = 0) oder j = 0) → da eine leere Sequenz keine Teilsequenz enthalten kann.

Vier Schritte für Dynamische Programmierung

Unterteile das Problem in kleinere Teilprobleme und speichere die Ergebnisse zur Wiederverwendung, um die Effizienz zu steigern.

- Charakterisiere die optimale Substruktur für eine längste gemeinsame Teilsequenz ✓
- 2. Finde eine rekursive Lösung ✓
- 3. Berechne die Länge der LGT 🛑
- 4. Konstruiere ein LGT

Zeitkomplexität

Ohne speichern der Lösungen für die Teilprobleme ist die Zeitkomplexität der rekursiven Lösung $\mathcal{O}(2^{\min(n,m)})$.

Wir können mit DP redundante Rechnungen vermeiden, um die Zeitkomplexität auf $\mathcal{O}(n \cdot m)$ zu reduzieren!

Datenstruktur

$$Z[i,j] = \begin{cases} 0 & \text{wenn } i = 0 \text{ oder } j = 0 \\ Z[i-1,j-1] + 1 & \text{wenn } x_i = y_j \\ \max(Z[i,j-1], Z[i-1,j]) & \text{wenn } x_i \neq y_j \end{cases}$$

■ Z[i,j] hängt von drei vorher berechneten Lösungen ab Z[i-1,j-1], Z[i-1,j], Z[i,j-1].

- Zur Lösung verwenden wir eine DP-Tabelle der Grösse $m \times n$, um die Ergebnisse der Teilprobleme zu speichern.
 - Position i in Sequenz X sind die Spalten.
 - Position j in Sequenz Y sind die Zeilen.
- Wir müssen die Tabelle in einer sinnvollen Reihenfolge durchlaufen, sodass zu jedem Zeitpunkt alle Teilprobleme, von denen das aktuelle abhängt, bereits gelöst sind.

	$ \begin{array}{c} j = 0 \\ Y[: 0] \end{array} $	j = 1 $Y[: 1]$	j=2 $Y[:2]$	j = 4 $Y[: 4]$
$\begin{bmatrix} i = 0 \\ X[:0] \end{bmatrix}$				
i = 1 $X[:1]$				
i = 2 $X[:2]$				
i = 3 $X[:3]$				
i = 4 $X[: 4]$				

■ Die endgültige Lösung ist in Z[m,n] gespeichert und befindet sich in der unteren rechten Ecke der DP-Tabelle.

	_		j = 2 Y[: 2]	j = 3 $Y[:3]$	j = 4 Y[: 4]
i = 0 $X[:0]$	0	0	0	0	0
i = 1 $X[:1]$	0				
i=2 $X[:2]$	0				
i = 3 $X[:3]$	0				
i = 4 $X[: 4]$	0				

Die Basisfälle treten ein, wenn i = 0 oder j = 0 gilt \rightarrow in diesen Fällen ist Z[i,j] = 0.

				j = 3 $Y[:3]$	j = 4 $Y[: 4]$
i = 0 $X[:0]$	0	0	0	0	0
i = 1 $X[:1]$	0	•••			
i=2 $X[:2]$	0				
i = 3 $X[:3]$	0				
i = 4 $X[:4]$	0				

■ Wir gehen zu Z[1,1] und benutzen die rekursive Formel von vorhin.

	$ \begin{vmatrix} j = 0 \\ Y[: 0] \end{vmatrix} $		j = 2 $Y[: 2]$	j = 3 $Y[:3]$	j = 4 $Y[: 4]$
i = 0 $X[:0]$	0	0	0	0	0
i = 1 $X[:1]$	0				\uparrow
i=2 $X[:2]$	0				
i = 3 $X[:3]$	0				
i = 4 $X[: 4]$	0				

Wir iterieren durch die Zeile, indem wir *j* erhöhen und *i* erhalten.

	$ \begin{vmatrix} j = 0 \\ Y[: 0] \end{vmatrix} $	_		j = 3 $Y[:3]$	j = 4 $Y[: 4]$
i = 0 $X[:0]$	0	0	0	0	0
i = 1 $X[:1]$	0	•••	•••	•••	•••
i=2 $X[:2]$	0	•••	•••	•••	•••
i = 3 $X[:3]$	0				-
i = 4 $X[: 4]$	0				

Nach der Zeile erhöhen wir *i* um 1 und wiederholen das gleiche.

Beispiel: DP-Tabelle füllen

	j = 0 $Y[: 0]$	j = 1 $Y[: 1]$		j = 3 $Y[:3]$	j = 4 $Y[: 4]$
i = 0 $X[:0]$	0	0	0	0	0
i = 1 $X[:1]$	0	:	•••	•••	•••
i = 2 $X[:2]$	0	•••	•••	•••	•••
i = 3 $X[:3]$	0				→
i = 4 $X[: 4]$	0	•			

```
for i in range(1, m+1):
    for j in range(1, n+1):
        if X[i-1] == Y[j-1]:
            L = Z[i-1][j-1]
            Z[i][j] = L + 1
        else:
            L1 = Z[i][j-1]
            L2 = Z[i-1][j]
            Z[i][j] = max(L1, L2)
```

Übung: Fülle die Tabelle für DNA-Sequenzen

	j = 0 $Y[: 0]$	j = 1 Y[: 1]	j = 2 $Y[: 2]$	j = 3 $Y[:3]$	j = 4 $Y[: 4]$
i = 0 $X[:0]$					
i = 1 $X[:1]$					
i = 2 $X[:2]$					
$\begin{bmatrix} i = 3 \\ X[:3] \end{bmatrix}$					
$ \begin{array}{ c c c c c } i = 4 \\ X[: 4] \end{array} $					
i = 5 $X[:5]$					

$$X = [T, A, G, C, A] \text{ und } Y = [A, G, C, G]$$

Wie lang ist die LGT?

Übung: Fülle die Tabelle für DNA-Sequenzen

	j = 0 $Y[: 0]$	j = 1 Y[: 1]	j = 2 Y[: 2]	j = 3 Y[:3]	j = 4 Y[: 4]
$\begin{bmatrix} i = 0 \\ X[:0] \end{bmatrix}$	0	0	0	0	0
i = 1 $X[:1]$	0	0	0	0	0
i=2 $X[:2]$	0	1	1	1	1
$\begin{bmatrix} i = 3 \\ X[:3] \end{bmatrix}$	0	1	2	2	2
i = 4 $X[: 4]$	0	1	2	3	3
i = 5 $X[:5]$	0	1	2	3	3

$$X = [T, A, G, C, A]$$
 und $Y = [A, G, C, G]$

Wie lang ist die LGT?

$$n = 3$$

Python Implementation, um LGT mit DP zu lösen

```
def lcs_len(X, Y):
    m, n = len(X), len(Y)
    Z = [0]*(n+1) for in range(m+1) | #Erstelle DP-Tabelle + Basisfälle
    for i in range(1, m+1): #Iteriere durch alle Zeilen
        for j in range(1, n+1): #Iteriere durch alle Zellen der Zeile
            if X[i-1] == Y[j-1]: #Berechne Ergebnis mit unserer Formel
                L = Z[i-1][j-1]
                Z[i][j] = L + 1
            else:
                L1 = Z[i][j-1]
                L2 = Z[i-1][j]
                Z[i][j] = max(L1, L2)
    return Z[m][n] #Resultat für komplette Sequenzen
```

Vier Schritte für Dynamische Programmierung

Unterteile das Problem in kleinere Teilprobleme und speichere die Ergebnisse zur Wiederverwendung, um die Effizienz zu steigern.

- Charakterisiere die optimale Substruktur für eine längste gemeinsame Teilsequenz ✓
- 2. Finde eine rekursive Lösung ✓
- 3. Berechne die Länge der LGT ✓
- 4. Konstruiere ein LGT

Problembeschreibung

	j = 0 $Y[:0]$	j = 1 Y[:1]	j = 2 Y[: 2]	<i>j</i> = 3 <i>Y</i> [: 3]	j = 4 Y[: 4]
i = 0 $X[: 0]$	0	0	0	0	0
i = 1 $X[: 1]$	0	0	0	0	0
i = 2 $X[:2]$	0	1	1	1	1
i = 3 $X[:3]$	0	1	2	2	2
i = 4 $X[: 4]$	0	1	2	3	3
i = 5 X[: 5]	0	1	2	3	3

- **Input:** Eine Tabelle *Z* mit den optimalen Lösungen für jede Kombination von Teilsequenzen von *X* und *Y*.
- **Output:** Das LGT von *X* und *Y*.

Wann sollte ein Element Teil der LGT sein?

- Wenn $x_m = y_n$ gilt, ist das letzte Element Teil unserer Teilsequenz.
- Wenn $x_m \neq y_n$ gilt, ist keine Aussage möglich und es müssen zwei neue Fälle betrachtet werden:
 - \blacksquare x_m bleibt und bei Y wird das letzte Element entfernt.
 - y_n bleibt und bei X wird das letzte Element entfernt.

Wann sollte ein Element Teil der LGT sein?

- Mit unserer Tabelle können wir die Teilsequenz rekonstruieren.
- Wir beginnen bei Z[m,n]
 - \blacksquare Wenn $x_m = y_n$ bewegen wir uns diagonal
 - Wenn $x_m \neq y_n$ bewegen wir uns entweder hoch oder nach links zum Maximum von Z[i, j-1] oder Z[i-1, j].

LGT-Konstruktion

		В	D	С	A
	0	0	0	0	0
A	0	0	0	0	1
В	0	1 🛧	_ 1	1	1
С	0	1	1	2	2
В	0	1	1	2	2
D	0	1	2	2	2

- Wir beginnen bei Z[m,n]
 - Wenn $x_m = y_n$ bewegen wir uns diagonal.
 - Wenn $x_m \neq y_n$ bewegen wir uns hoch oder nach links links zum Maximum von Z[i, j-1] oder Z[i-1,j].

Python-Code, um LGT zu rekonstruieren

```
def reconstruct_LGT(X, Y, Z):
    m, n = len(X), len(Y)
    i, j = m, n
   lgt = []
    while i > 0 and j > 0: #Iteriere durch die Tabelle bis zum Rand
        if X[i-1] == Y[j-1]: #Gehe diagonal und merke dir das Element
            lgt.append(X[i-1])
            i -= 1
            j -= 1
        elif Z[i-1][j] >= Z[i][j-1]: #Gehe vertikal
            i -= 1
        else: #Gehe horizontal
            j -= 1
  return lgt[::-1] #Kehre das LGT um für die richtige Reihenfolge
```

Übung: Mit unserer Tabelle, finde die LGT.

		A	G	С	G
	0	0	0	0	0
T	0	0	0	0	0
A	0	1	1	1	1
G	0	1	2	2	2
С	0	1	2	3	3
A	0	1	2	3	3

$$X = [T, A, G, C, A]$$
 und $Y = [A, G, C, G]$

Wie lang ist die LGT?

$$n = 3$$

Wie lautet eine LGT?

Übung: Mit unserer Tabelle, finde die LGT.

		A	G	С	G
	0	0	0	0	0
T	0	0	0	0	0
A	0	1	1	1	1
G	0	1	2	2	2
С	0	1	2	3	3
A	0	1	2	3	3

$$X = [T, A, G, C, A]$$
 und $Y = [A, G, C, G]$

Wie lang ist die LGT?

n = 3

Wie lautet eine LGT?

LGT = [A, G, C]

3. DNA-Sequenzvergleich

Problemstellung: DNA-Sequenzvergleich

- **Input:** Zwei Sequenzen Query *Q* und Target *T*.
- **Aufgabe:** Verändere *Q* mit so wenigen verfügbaren Operationen wie möglich, um gleich wie *T* zu sein.
- Output: Minimale Anzahl nötiger Operationen.

Beispiel

Problembeschreibung: DNA-Sequenzvergleich

- Zur Angleichung von Q an T stehen drei Operationen zur Verfügung:
 - Löschen
 - Einfügen
 - Ersetzen
- Problem: Wie gezeigt, existieren dabei viele mögliche Lösungswege, um *Q* an *T* anzugleichen.

Vier Schritte für Dynamische Programmierung

Unterteile das Problem in kleinere Teilprobleme und speichere die Ergebnisse zur Wiederverwendung, um die Effizienz zu steigern.

- Charakterisiere die Struktur einer optimalen Lösung
 - Finde eine rekursive Lösung
- 3. Berechne den Wert der optimalen Lösung
- 4. Konstruiere die optimale Lösung hier out of scope

Optimale Substruktur

- Wir erkennen die Ähnlichkeit zum LGT-Problem. Wie erwarte eine optimale Substruktur, und die Teilprobleme einer optimalen Lösung müssen wiederum optimal gelöst werden.
- Wie beim LGT-Problem beschreiben wir mit (i, j) das Teilproblem, bei dem die ersten i Buchstaben von Q and die ersten j Buchstaben von T abgeglichen werden.

Vier Schritte für Dynamische Programmierung

Unterteile das Problem in kleinere Teilprobleme und speichere die Ergebnisse zur Wiederverwendung, um die Effizienz zu steigern.

- 1. Charakterisiere die Struktur einer optimalen Lösung ✓
- 2. Finde eine rekursive Lösung 🛑
- 3. Berechne den Wert der optimalen Lösung
- 4. Konstruiere die optimale Lösung hier out of scope

Rekursive Struktur

Schauen wir eine optimale Lösung an.

Output: [replace, delete, -, -, delete, -, -] → 3 Operationen

- Indem wir unsere Operationen betrachten, können wir die Rekursion identifizieren:
- 1. Wenn zwei Buchstaben an der Position (i, j) übereinstimmen, behalten wir sie und bewegen uns zu (i 1, j 1). Die Anzahl der Operationen steigt nicht.

$$Q = \boxed{A} \boxed{T} \boxed{A} \boxed{C}$$

$$T = \boxed{A} \boxed{T} \boxed{A} \boxed{C}$$

Mit c[i,j] (c für cost) bezeichnen wir die Anzahl Operationen, die nötig sind, um den Substring Q[:i+1] an T[:j+1] anzugleichen.

$$c[i,j] = \begin{cases} c[i-1,j-1] & \text{wenn } q_i = t_j \\ \end{cases}$$

- Indem wir unsere Operationen betrachten, können wir die Rekursion identifizieren:
- 1. Wenn zwei Buchstaben an der Position (i, j) übereinstimmen, behalten wir sie und bewegen uns zu (i 1, j 1). Die Anzahl der Operationen steigt nicht.
- 2. Wenn zwei Buchstaben nicht übereinstimmen, können wir sie ersetzen und uns zu (i-1, j-1) bewegen.

$$Q = \boxed{A} \boxed{T} \boxed{T} \boxed{A} \boxed{C}$$

$$T = \boxed{A} \boxed{T} \boxed{T} \boxed{A} \boxed{C}$$

Mit c[i,j] (c für cost) bezeichnen wir die Anzahl Operationen, die nötig sind, um den Substring Q[:i+1] an T[:j+1] anzugleichen.

$$c[i,j] = \begin{cases} c[i-1,j-1] & \text{wenn } q_i = t_j \\ c[i-1,j-1] + 1 & \text{wenn } q_i \neq t_j \end{cases} \rightarrow \text{ersetzen}$$

- Indem wir unsere Operationen betrachten, können wir die Rekursion identifizieren:
- 1. Wenn zwei Buchstaben an der Position (i, j) übereinstimmen, behalten wir sie und bewegen uns zu (i 1, j 1). Die Anzahl der Operationen steigt nicht.
- 2. Wenn zwei Buchstaben nicht übereinstimmen, können wir sie ersetzen und uns zu $(i-1,\ j-1)$ bewegen.
- 3. Wir können auch löschen und uns zu (i-1,j) bewegen.

$$Q = \begin{bmatrix} A & T & T & A & C \\ & & & & & \\ T & & & & & \\ \end{bmatrix}$$

$$T = \begin{bmatrix} A & T & T & A & C \\ & & & & \\ \end{bmatrix}$$

Mit c[i,j] (c für cost) bezeichnen wir die Anzahl Operationen, die nötig sind, um den Substring Q[:i+1] an T[:j+1] anzugleichen.

$$c[i,j] = \begin{cases} c[i-1,j-1] & \text{wenn } q_i = t_j \\ c[i-1,j-1] + 1 & \text{wenn } q_i \neq t_j \\ c[i-1,j] + 1 & \rightarrow \text{löschen} \end{cases}$$

- Indem wir unsere Operationen betrachten, können wir die Rekursion identifizieren:
- 1. Wenn zwei Buchstaben an der Position (i, j) übereinstimmen, behalten wir sie und bewegen uns zu (i 1, j 1). Die Anzahl der Operationen steigt nicht.
- 2. Wenn zwei Buchstaben nicht übereinstimmen, können wir sie ersetzen und uns zu $(i-1,\ j-1)$ bewegen.
- 3. Wir können auch löschen und uns zu (i-1,j) bewegen.
- 4. Einfügen ist das Gegenteil von Löschen: Wir bewegen uns zu (i, j 1), wobei das Einfügen hinter unserem aktuellen Index stattfindet.

■ Mit c[i,j] (c für cost) bezeichnen wir die Anzahl Operationen, die nötig sind, um den Substring Q[:i+1] an T[:j+1] anzugleichen.

$$c[i,j] = \begin{cases} c[i-1,j-1] & \text{wenn } q_i = t_j \\ c[i-1,j-1]+1 & \text{wenn } q_i \neq t_j \\ c[i-1,j]+1 & \rightarrow \text{löschen} \\ c[i,j-1]+1 & \rightarrow \text{einfügen} \end{cases}$$

Uns ist egal, ob wir ersetzen, löschen, oder hinzufügen. Uns interessiert nur die minimale Anzahl an Operationen.

$$c[i,j] = \begin{cases} c[i-1,j-1] & \text{wenn } q_i = t_j \\ c[i-1,j-1] + 1 & \text{wenn } q_i \neq t_j \\ c[i-1,j] + 1 & \\ c[i,j-1] + 1 \end{cases}$$

$$c[i,j] = \begin{cases} c[i-1,j-1] & \text{wenn } q_i = t_j \\ \min(c[i-1,j-1],c[i-1,j],c[i,j-1]) + 1 & \text{wenn } q_i \neq t_j \end{cases}$$

Vier Schritte für Dynamische Programmierung

Unterteile das Problem in kleinere Teilprobleme und speichere die Ergebnisse zur Wiederverwendung, um die Effizienz zu steigern.

- 1. Charakterisiere die Struktur einer optimalen Lösung ✓
- 2. Finde eine rekursive Lösung ✓
- 3. Berechne den Wert der optimalen Lösung 🛑
- 4. Konstruiere die optimale Lösung hier out of scope

■ Die Problemstruktur ist gleich wie bei LGT, also können wir auch die gleiche DP-Struktur benutzen.

	j = 0	j = 1 A	j=2 T	j=3	j=4	j = 5 A
i = 0						
i = 1 A						
i = 2 T						
i = 3 T						
i = 4 A						

■ Eine leere Sequenz (*i* = 0) in eine Sequenz der Länge *j* zu verwandeln, braucht *j* Einfüge-Operationen.

	j = 0	j = 1 A	j=2	j=3	j=4	j = 5 A
i = 0	0	1	2	3	4	5
i = 1 A						
i=2 T						
i = 3 T						
i = 4 A						

Eine Sequenz der Länge i in eine leere Sequenz (j = 0) zu verwandeln, braucht i Lösch-Operationen.

	j = 0	j = 1 A	j=2	j=3	j=4	j = 5 A
i = 0	0	1	2	3	4	5
i = 1 A	1					
i = 2 T	2					
i = 3 T	3					
i = 4 A	4					

- Damit sind die Basisfälle abgedeckt.
- Ab hier können wir die gefundene Formel nutzen:

$$c[i,j] = \begin{cases} c[i-1,j-1] & wenn \ q_i = t_j \\ min(c[i-1,j-1],c[i-1,j],c[i,j-1]) + 1 & wenn \ q_i \neq t_j \end{cases}$$

Wenn die Buchstaben übereinstimmen, gilt:

$$c[i,j] = c[i-1,j-1]$$

	j = 0	j = 1 A	j=2 T	j=3	j = 4 T	j = 5 A
i = 0	0	1	2	3	4	5
i = 1 A	1	0				
i = 2 T	2					
i = 3 T	3					
i = 4 A	4					

Wenn die Buchstaben nicht übereinstimmen, gilt:

$$c[i,j] = min \begin{pmatrix} c[i-1,j-1], \\ c[i-1,j], \\ c[i,j-1] \end{pmatrix} + 1$$

	j = 0	j = 1 A	j=2	j=3	j=4	j = 5 A
i = 0	0	1	2	3	4	5
i = 1 A	1	0	1			
i=2 T	2					
i = 3 T	3					
i = 4 A	4					

■ Die DP-Tabelle wird analog zum LGT-Problem traversiert, jedoch mit der anderen, neuen rekursiven Formel.

	j = 0	j = 1 A	j=2 T	j=3	j = 4	j = 5 A
i = 0	0	1	2	3	4	5
i = 1 A	1	0	1			—
i = 2 T	2					
i = 3 T	3					
i = 4 A	4					

Die Lösung finden wir, wie gewohnt, in c[m, n].

	j = 0	j = 1 A	j=2 T	j=3	j=4	j=5 A
i = 0	0	1	2	3	4	5
i = 1 A	1	0	1	2	3	4
i=2 T	2	1	0	1	2	3
i = 3 T	3	2	1	1	1	2
i = 4 A	4	3	2	2	2	1

Implementation in Python

```
import numpy as np
def match(query, target):
   #Erstelle DP-Tabelle
   m, n = len(target), len(query)
    table = np.zeros((m+1,n+1))
    #Basisfälle der Berechnung
    table[0,:] = np.arange(n+1)
    table[:,0] = np.arange(m+1)
   #Fülle Tabelle, starte bei (i, j) = (1, 1)
    for i in range(1, m+1):
        for j in range(1, n+1):
            #Formel anwenden
            if query[j-1] == target[i-1]:
                table[i,j] = table[i-1,j-1]
            else:
                table[i,j] = max(table[i-1,j-1], table[i-1,j], table[i,j-1]) + 1
   #Ergebnis zurückgeben
    return table[m, n]
```

4. Wrap-Up

Wrap-Up: LGT

- Datenstruktur initialisieren:
 - 2D-Matrix
- 2. Rekursive Lösung finden
- 3. Datenstruktur ausfüllen:
 - Iteriere durch Zeilen
- 4. Resultat zurückgeben

```
Z = [[0]*(n+1) for _ in range(m+1)]
```

$$Z[i,j] = \begin{cases} 0 & \text{wenn } i = 0 \text{ oder } j = 0 \\ Z[i-1,j-1] + 1 & \text{wenn } x_i = y_j \\ \max(Z[i,j-1], Z[i-1,j]) & \text{wenn } x_i \neq y_j \end{cases}$$

```
for i in range(1, m+1):
  for j in range(1, n+1):
   ...
```

```
return Z[m][n]
```

5. Hausaufgaben

Übung 9: Dynamic Programming II

Auf https://expert.ethz.ch/enrolled/SS25/mavt2/exercises

Übung 9: DP II

- Mission Mars mit Lava
- Binomialkoeffizienten
- Dreieck
- Längste gemeinsame Teilsequenz

Abgabedatum: Montag 05.05.2025, 20:00 MEZ

KEINE HARDCODIERUNG