PSALTer results panel $\iiint \left(\frac{1}{16} \left(-8 \, a_{0} \, \mathcal{A}_{\alpha \chi \beta} \, \mathcal{A}^{\alpha \beta \chi} + 8 \, a_{0} \, \mathcal{A}^{\alpha \beta}_{\alpha \beta} \, \mathcal{A}^{\chi}_{\beta \chi} + 16 \, \mathcal{A}^{\alpha \beta}_{\alpha \beta} \, \mathcal{W}_{\alpha \beta \chi} + 16 \, \mathcal{T}^{\alpha \beta}_{\alpha \beta} \, h_{\alpha \beta} + 8 \, a_{0} \, h^{\alpha \beta}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\chi}_{\beta \beta} - 4 \, a_{0} \, h^{\alpha}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\beta \chi}_{\beta} + 4 \, a_{0} \, h^{\alpha}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\beta \chi}_{\beta} + h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\alpha \beta}_{\alpha \beta} - h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\alpha \beta}_{\beta \beta} - h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\beta \chi}_{\beta \beta} + h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\alpha \beta}_{\beta \beta} - h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\alpha \beta}_{\beta \beta} - h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\beta \chi}_{\beta \beta} + h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\alpha \beta}_{\beta} - h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\alpha \beta}_{\beta \beta} - h_{0}^{\lambda}_{\alpha \beta} \, \partial_{\chi} \mathcal{A}^{\beta \beta}_{\beta \beta}$ $\partial^{\chi}\mathcal{A}^{\alpha\beta}_{\quad \ \alpha} + h_{4} \partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} \partial_{\delta}\mathcal{A}^{\quad \ \delta}_{\quad \beta\chi} + 2 h_{4} \partial^{\chi}\mathcal{A}^{\alpha\quad \beta}_{\quad \alpha} \partial_{\delta}\mathcal{A}^{\quad \delta}_{\quad \beta\chi} - 2 h_{4} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\quad \alpha} \partial_{\delta}\mathcal{A}^{\quad \delta}_{\quad \beta\chi} - h_{4} \partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} \partial_{\delta}\mathcal{A}^{\quad \delta}_{\quad \chi\beta} - 2 h_{4} \partial^{\chi}\mathcal{A}^{\alpha\quad \beta}_{\quad \alpha} \partial_{\delta}\mathcal{A}^{\quad \delta}_{\quad \chi\beta} + 2 h_{4} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\quad \alpha} \partial_{\delta}\mathcal{A}^{\quad \delta}_{\quad \alpha} \partial$

Wave operator

Saturated propagator

	${\overset{0^+}{\cdot}}\mathcal{T}^\perp$	0 ⁺ √ ∥	0⁺Ws ^{⊥t}	0. W _s ∥	^{0⁺} Ws ^{⊥h}	i								
${\stackrel{0^{\scriptscriptstyle +}}{\cdot}}\mathcal{T}^{\scriptscriptstyle \perp}$ †	$-\frac{4 k^2}{3 a \cdot (4+k^2)^2}$	0	$-\frac{8 i k}{3 a \cdot (4+k^2)^2}$	$\frac{10 i k}{12 a +3 a k^2}$	$\frac{4 i \sqrt{2} k}{12 a +3 a k^2}$									
^{⊙+} ⁄⁄″ †	0	$\frac{4}{a \cdot k^2}$	0	$-\frac{2i}{\sqrt{3} a.k}$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$									
0+	8 i k	0	_ 16	20	8 √ 2									
°Ws ^{⊥t} †	$\frac{8 i k}{3 a_{0} (4+k^{2})^{2}}$	0	$-\frac{1}{3 a_{0} (4+k^{2})^{2}}$	$12 a_0 + 3 a_0 k^2$	12 $a_{0} + 3 a_{0} k^{2}$									
${}^{0^+}\mathcal{W}_{S}{}^{\parallel}$ †	$-\frac{10 i k}{12 a + 3 a \cdot k^2}$	$\frac{2i}{\sqrt{3}} a_{0} k$	$\frac{20}{12 a_{\bullet} + 3 a_{\bullet} k^2}$	0	0									
${}^{0^+}_{\bullet}W_{S}^{\perp h}$ †	$-\frac{4 i \sqrt{2} k}{12 a + 3 a k^{2}}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{8 \sqrt{2}}{12 a_0 + 3 a_0 k^2}$	0	0	$^{1^+}_{\bullet}W_{S}^{\perp}{}_{\alpha\beta}$	$\overset{1^{-}}{\cdot}\mathcal{T}^{\perp}_{\alpha}$	¹⁻Ws¹⁺α	¹⁻Ws ^{∥t} α	¹⁻Ws ^{⊥h} α	¹⁻w₅ ^{∥h} a			
					$^{1^{+}}_{\cdot}W_{S}^{\perp}$ $^{\alpha\beta}$	$\frac{16}{4 \cdot a \cdot -k^2 \cdot h \cdot 4}$	0	0	0	0	0			
					$\overset{1}{\cdot}\mathcal{T}^{\perp}\dagger^{lpha}$		24 a. $k^2 + 26 k^4 h$.	$2 i \sqrt{\frac{2}{3}} k \left(12 a_{0} (1+k^{2})+k^{2} (5+9 k^{2}) h_{4}\right)$	$i \sqrt{30} k \left(4 a_{0} - k^{2} h_{4}\right)$	$2 i k \left(12 a_{0} (4+k^{2})+k^{2} (44+9 k^{2}) h_{4}\right)$	_ 16 i √6 k			
					· T - †	0	$a_{0}(2+k^{2})^{2}\left(12 a_{0}+k^{2} h_{4}\right)$	$= \frac{a_{\bullet} (2+k^2)^2 \left(12 a_{\bullet} + k^2 h_{\bullet}\right)}{4}$	$a_{0}(2+k^{2})\left(12 a_{0}+k^{2} h_{4}\right)$	$\sqrt{3} \ a_{0} (2+k^{2})^{2} \left(12 a_{0} + k^{2} h_{4}\right)$	$-\frac{(2+k^2)\left(12a_{.0}+k^2h_{.4}\right)}{(2+k^2)\left(12a_{.0}+k^2h_{.4}\right)}$			
					1 · W_{S} 1 $^{\alpha}$	0	$\frac{2 i \sqrt{\frac{2}{3}} k \left(12 a_{0} (1+k^{2})+k^{2} (5+9 k^{2}) h_{1}\right)}{4}$	$-\frac{4\left(4 a_{0} \left(13+10 k^{2}+k^{4}\right)+k^{2} \left(3-2 k^{2}-5 k^{4}\right) h_{4}\right)}{4}$	$\frac{2\sqrt{5}\left(4a_{0}(5+k^{2})+3k^{2}(1+k^{2})h_{4}\right)}{4}$	$\frac{2\sqrt{2}\left(4a_{0}\left(4+k^{2}+k^{4}\right)-k^{2}\left(12+29k^{2}+5k^{4}\right)h_{1}\right)}{4}$	32 (1+2 k²)			
					· ms	Ü	$a_{0}(2+k^{2})^{2}(12 a_{0}+k^{2} h_{4})$	$3 a_{0} (2+k^{2})^{2} \left(12 a_{0}+k^{2} h_{4}\right)$	$3 a_{0}(2+k^{2})(12 a_{0}+k^{2} h_{4})$	$3 a_0 (2+k^2)^2 (12 a_0 + k^2 h_4)$	$3(2+k^2)\left(12a_0+k^2h_4\right)$			
					1 $^{-}$ W_{s} $^{\parallel}$ † $^{\alpha}$	0	$\frac{i \sqrt{30} k \left(-4 a + k^2 h_{\frac{1}{4}}\right)}{4}$	$\frac{2\sqrt{5}\left(4a_{\frac{1}{6}}(5+k^2)+3k^2(1+k^2)h_{\frac{1}{4}}\right)}{\sqrt{1+k^2+k^2+k^2}}$	$\frac{3}{a_{0}^{2}} - \frac{80}{36 a_{0} + 3 k^{2} h_{4}}$	$-\frac{\sqrt{10} \left(4 a_{0} \left(-4+k^{2}\right)+3 k^{2} \left(4+k^{2}\right) h_{4}\right)}{\sqrt{4}}$	$\frac{16\sqrt{5}}{36 \times 34^{2}}$			
					J .		$a_{0}(2+k^{2})\left(12 a_{0}+k^{2} h_{4}\right)$	$3 a_{0} (2+k^{2}) \left(12 a_{0} + k^{2} h_{4}\right)$		$3 a \cdot (2+k^2) \left(12 a \cdot k^2 h_4\right)$	${36 a.+3 k^2 h.}_{0}$			
					1 $W_{s}^{\perp h}$ \dagger^{α}	0	$-\frac{2 i k \left(12 a \cdot (4+k^2)+k^2 \left(44+9 k^2\right) h \cdot k^2\right)}{\sqrt{2} \left(44+9 k^2\right) \left(44+9 k^2\right) h \cdot k^2}$	$\frac{2\sqrt{2}\left(4a.\left(4+k^2+k^4\right)-k^2\left(12+29k^2+5k^4\right)h.\right)}{2(2+2)^2\left(12+29k^2+5k^4\right)h.}$	$-\frac{\sqrt{10} \left(4 a. \left(-4+k^2\right)+3 k^2 \left(4+k^2\right) h.\right)}{\left(4 a. \left(2+k^2\right) \left(4 a. + 2 a.\right)\right)}$	$\frac{-8 a \cdot \left(-32 - 8 k^2 + k^4\right) + 2 k^2 \left(4 + k^2\right) \left(36 + 5 k^2\right) h}{2 \cdot \left(4 + k^2\right) \left(12 - k^2\right) + 2 k^2}$	$-\frac{32 \sqrt{2} (5+k^2)}{3 (2+k^2) \left(12 a + k^2 h_4\right)}$			
							$-\frac{\sqrt{3} \ a_{.0} (2+k^2)^2 \left(12 \ a_{.0} + k^2 \ h_{.4}\right)}{16 \ i \ \sqrt{6} \ k}$	$3 a_{0} (2+k^{2})^{2} (12 a_{0} + k^{2} h_{4})$ $32 (1+2 k^{2})$	$3 a \cdot (2+k^2) \left(12 a \cdot + k^2 h_4\right)$	$3 a_{0} (2+k^{2})^{2} (12 a_{0} + k^{2} h_{4})$ $32 \sqrt{2} (5+k^{2})$				
					${}^{1}\mathcal{W}_{S}^{lh}t^{\alpha}$	0	$\frac{16 i \sqrt{6 k}}{(2+k^2)\left(12 a + k^2 h \right)}$	$\frac{32(1+2k)}{3(2+k^2)(12a_0+k^2h_4)}$	$\frac{16 \sqrt{5}}{36 a + 3 k^2 h}$	$-\frac{32 \sqrt{2} (3+k^{2})}{3 (2+k^{2}) \left(12 a + k^{2} h_{4}\right)}$	$-\frac{16}{36 a_{.} + 3 k^{2} h_{.}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{2^{-}}W_{s}^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta	$-\frac{8}{a \cdot k^2} \qquad \frac{4i}{\sqrt{3} a \cdot k} - \frac{8i \sqrt{\frac{2}{3}}}{a \cdot k}$	0	
											$^{2^{+}}W_{s}^{\parallel}$ † $^{\alpha\beta}$, , , , , , , , , , , , , , , , , , , ,	0	
											$\overset{2^{+}}{\cdot}W_{s}^{\perp} + \overset{\alpha\beta}{\cdot}$	$\frac{8 i \sqrt{\frac{2}{3}}}{a \cdot k} \qquad \frac{4 \sqrt{2}}{3 a \cdot 0} \qquad -\frac{4}{3 a \cdot 0}$	0	
											2 w_{s} $\dagger^{\alpha\beta\chi}$		$\frac{4}{a}$	$3^{-}W_{s} _{\alpha\beta\chi}$
													$3^{-}\alpha V \parallel + \alpha \beta \chi$	

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$k \stackrel{0^+}{\cdot} W_S^{\perp t} + 2 i \stackrel{0^+}{\cdot} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} w^{\alpha\beta\chi}$	1			
$2 k \cdot W_{s}^{\perp h^{\alpha}} + k \cdot W_{s}^{\perp t^{\alpha}} + 6 i \cdot V_{s}^{\perp \tau^{\alpha}} = 0$	$2\;\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\mathcal{W}^{\beta\alpha\chi}==\;2\;\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}+\partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{W}^{\beta\chi\delta}$	3			
Total expected gauge generators:					

Massive spectrum

Massless spectrum

Massless particle

Pole residue:	$-\frac{p^2}{a} > 0$
Polarisations:	2

Unitarity conditions

(Demonstrably impossible)