Devoir Libre 9

Exercice 1: Développement Eulérien et Fonction périodique

Partie 1: Etude de φ

1. Symétrie et prériode

(a) $D = \mathbb{R} - \mathbb{Z}$ Pour $x \in D$, on a :

$$\varphi(x) = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2} = \frac{1}{x} - \sum_{n=1}^{+\infty} u_n(x)$$

Soit x un réel.

Pour que $\varphi(x)$ soit définie sur D, il faut que $\forall x \in D$, $\varphi(x)$ converge. Décomposons $\varphi(x)$ en deux :

$$\varphi(-x) = \underbrace{\frac{1}{x}}_{A(x)} - \underbrace{\sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}}_{B(x)}$$

- \square A(x) existe pour $x \neq 0$.
- \square B(x) n'existe pas si $x = n \in \mathbb{N}$. De plus, pour $x \in D$, on a :

$$\frac{2x}{n^2 - x^2} \underset{n \to +\infty}{\sim} \frac{1}{n^2}$$

Ainsi, par le théorème de compraison des séries à termes positifs, B(x) a même nature que $\sum_{n=0}^{+\infty} \frac{1}{n^2}$.

Or, la série de référence de Riemann $\sum\limits_{n=0}^{+\infty} \frac{1}{n^2}$ converge. Alors B(x) converge.

D'où, φ bien définie sur D.

De plus, pour $x \in D$:

$$\varphi(-x) = \frac{1}{-x} - \sum_{n=1}^{+\infty} \frac{2(-x)}{n^2 - x^2}$$

$$\iff \varphi(-x) = -\frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}$$

$$\iff \varphi(-x) = -\left(\frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}\right)$$

$$\iff \varphi(-x) = -\varphi(x)$$

Ainsi:

 φ est bien définie sur D et φ est **impaire**.

(b) Soit $x \in D$. D'après l'ennoncé, on a :

$$\varphi(x) = \frac{1}{x} - \underbrace{\sum_{n=1}^{+\infty} \left(\frac{1}{n-x}\right)}_{A(x)} + \underbrace{\sum_{n=1}^{+\infty} \left(\frac{1}{n+x}\right)}_{B(x)}$$

Ces séries A(x) et B(x) sont divergentes, passons donc par des somme partielles puis faisons tendre la borne N vers $+\infty$. \odot

Soit
$$N \in \mathbb{N}$$
. Posons $\varphi_N(x) = \frac{1}{x} - \sum_{n=1}^{+\infty} \left(\frac{1}{n-x}\right) + \sum_{n=1}^{+\infty} \left(\frac{1}{n+x}\right)$. Calculons $\varphi_N(x+1)$:
$$\varphi_N(x+1) = \frac{1}{x+1} - \sum_{n=1}^{N} \left(\frac{1}{n-1-x}\right) + \sum_{n=1}^{N} \left(\frac{1}{n+1+x}\right)$$

$$\iff \varphi_N(x+1) = \frac{1}{x+1} - \sum_{n=0}^{N-1} \left(\frac{1}{n-x}\right) + \sum_{n=2}^{N+1} \left(\frac{1}{n+x}\right)$$

$$\iff \varphi_N(x+1) = \frac{1}{x+1} - \left(\sum_{n=1}^{N-1} \left(\frac{1}{n-x}\right) + \frac{1}{-x} - \frac{1}{N-x}\right) + \left(\sum_{n=1}^{N+1} \left(\frac{1}{n+x}\right) - \frac{1}{1+x} + \frac{1}{N+1+x}\right)$$

$$\iff \varphi_N(x+1) = \frac{1}{x} - \sum_{n=1}^N \left(\frac{1}{n-x} - \frac{1}{n+x} \right) + \underbrace{\frac{1}{N+1+x} + \frac{1}{N-x}}_{\epsilon(x)}$$

$$\iff \varphi_N(x+1) = \varphi_N(x) + \epsilon(x)$$

Or

$$\lim_{N \to +\infty} \epsilon(x) = 0$$

$$\Rightarrow \qquad \varphi(x+1) = \varphi(x)$$

Ainsi:

 φ est 1-préiodique.

Remarques .

- j'ai utilisé les sommes partielles parce que vous nous l'avez dit en cours, je n'avais pas vu de problème à utiliser des séries qui divergent...
- (c) D n'est pas un intervalle mais une union infinie d'intervalles ouverts. De plus, φ est une somme infinie de fonctions continues, donc je ne pense pas que l'argument "en tant que somme de fonctions continues" marche ici.

2. Continuité

(a) Je n'avais pas réussi cette question. J'ai compris avec le corrigé, mais franchement je ne pense pas que j'aurai trouvé sans y passer beaucoup de temps... Concrètement en DS/concours j'aurai sauté la question!

Par contre dans le corrigé il n'y aurait pas une erreur? à la ligne :

$$\text{Mais on a } x+h \in \left[-\frac{1}{2},\frac{3}{2}\right] \text{ donc } \left\{ \begin{array}{l} x+h \leq \frac{3}{2} \Rightarrow n-(x+h) \geq n-\frac{3}{2} \\ \\ x+h \leq -\frac{1}{2} \Rightarrow n+(x+h) \geq n-\frac{1}{2} \end{array} \right.$$

(b) D'après la question précédente, on a :

$$\forall x \in [0,1], \left| \frac{g(x+h) - g(x)}{h} \right| \le C$$

avec $C = \sum_{n=2}^{+\infty} \frac{2}{(n-1)(n-\frac{3}{2})}$ Or, $\frac{2}{(n-1)(n-\frac{3}{2})} \sim \frac{2}{n^2}$, donc par le théorème de comparaison de séries à termes positifs, C converge.

$$g\in\mathcal{C}([0,1])$$

(c) Soit $x \in]0,1[$.

$$\varphi(x) = \underbrace{\frac{1}{x} + \frac{2x}{1 - x^2}}_{\in \mathcal{C}(]0,1[)} - \underbrace{g(x)}_{\in \mathcal{C}([0,1])}$$

Alors $\varphi \in \mathcal{C}(]0,1[)$. De plus, comme φ est 1-périodique :

$$\varphi\in\mathcal{C}(D)$$

(d) Je suppose qu'ici c'est le piège d'inverser limite et somme infinie :

$$\lim_{x \to 0} \left(\sum_{n=0}^{+\infty} \frac{2x}{n^2 - x^2} \right) \underset{\text{pas forcément}}{=} 0$$

Ha oui mais non car ici g(0) existe d'après la question 2.(b). Donc on peut le calculer directement, sans faire de limite?

$$g(0) = 0$$
 et

$$\varphi(x) = \frac{1}{x} + \frac{2x}{1 - x^2} - g(x)$$

$$\Rightarrow \varphi(x) \underset{x \to 0}{\sim} \frac{1}{x}$$

De plus, comme φ est 1-périodique, φ aura le même équivalent en 0 qu'en 0 + 1 D'où

$$\begin{cases} \varphi(x) \underset{x \to 0}{\sim} \frac{1}{x} \\ \varphi(x) \underset{x \to 1}{\sim} \frac{1}{x} \end{cases}$$

Partie 2: Etude d'un endomorphisme de E

1. Bon comme je ne me suis pas bouché les oreilles, je sais qu'il faut faire attention à l'*endo* plus qu'au *morphisme*!

Soit
$$f \in E \iff f \in \mathcal{C}([0,1])$$

 \square Montrons que T est une application linéaire. Soit $(f,i) \in E^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$T(\mu f + \lambda i)(x) = (\mu f + \lambda i) \left(\frac{x}{2}\right) + (\mu f + \lambda i) \left(\frac{x+1}{2}\right)$$
$$= \mu f\left(\frac{x}{2}\right) + \lambda i \left(\frac{x}{2}\right) + \mu f\left(\frac{x+1}{2}\right) + \lambda i \left(\frac{x+1}{2}\right)$$
$$= \mu T(f)(x) + \lambda T(i)(x)$$

Donc T est linéaire.

 \square Montrons que $T: E \to E$ $x \in [0,1] \to \frac{x}{2} \in [0,1]$ et $\frac{x+1}{2} \in [0,1]$. Donc:

$$T(f)(x) = \underbrace{f\left(\frac{x}{2}\right)}_{\in E} + \underbrace{f\left(\frac{x+1}{2}\right)}_{\in E}$$

Ainsi, T est un endomorphisme.

 \square Montrons que F_n est stable par T i.e. montrons que $T(F_n) = F_n$ avec :

Pour
$$x \in [0, 1]$$
, $F_n = Vect\{\underbrace{(x \mapsto 1, x \mapsto x, x \mapsto x^2, x \mapsto x^3, ..., x \mapsto x^n)}_{e_0}\}$

$$f \in F_n \implies f = \sum_{k=0}^n \alpha_k e_k$$

$$\Rightarrow T(f)(x) = \sum_{k=0}^n \alpha_k T(e_k)(x)$$

$$\Rightarrow T(f)(x) = \sum_{k=0}^n \alpha_k \frac{x^k + (x+1)^k}{2^k}$$

$$\Rightarrow T(f)(x) = \sum_{k=0}^n \beta_k \left(x^k + (x+1)^k\right)$$

On retrouve une combinaison linéaire des e_k . Donc $T(f) = \sum_{k=0}^n \alpha'_k e_k$.

Ainsi

T est un endomorphisme de E et F_n est stable par T.

2. On a donc; $T_n: F_n \to F_n$. Les fonctions sont donc maintenant uniquement des polynômes Montrons que T_n est diagonalisable. Notons d'abord que \mathcal{B}_n est une base car une famille de degré échelonnée donc libre et génératrice de F_n car $\mathcal{B}_n = Vect\{F_n\}$. Ecrivons la matrice associée à T_n dans la base \mathcal{B}_n . On a :

$$T_n(e_j) = x \mapsto \frac{x^j}{2^j} + \frac{(x+1)^j}{2^j}$$
$$= x \mapsto \frac{x^j}{2^j} + \frac{1}{2^j} \times \sum_{k=0}^j \binom{j}{k} x^k$$

Donc:

$$mat(T_n) = A = \begin{pmatrix} T_n(e_1) & T_n(e_2) & \dots & T_n(e_j) & \dots & T_n(e_n) \\ 2 & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ 0 & 1 & & & \vdots \\ \vdots & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & 2^{1-i} & & a_{in} \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 & 2^{1-n} \end{pmatrix} \begin{array}{c} e_1 \\ e_2 \\ \vdots \\ e_i \\ \vdots \\ e_n \end{pmatrix}$$

On remarque donc que A est triangulaire supérieure, et donc, par propriété son déterminant est le produit des coefficients de la diagnoale. On en déduit son polynôme caractéristique :

$$\chi(x) = \prod_{k=0}^{n} \left(x - \frac{1}{2^{k-1}} \right)$$

 χ est donc scindé à racines simples dans \mathbb{R} , par théorème, A est diagonalisable, d'où :

 T_n est diagonalisable.

- 3. Etude de l'espace propre de T associé à 2
 - (a) Comme on l'a montré précédemment, $\chi(x) = \prod_{k=0}^{n} \left(x \frac{1}{2^{k-1}}\right)$. 2 est racine du polynôme, donc 2 est valeur propre de T_n . Ainsi

$$2 \in Sp(T)$$

- (b) On a:
 - -- [0, 1] est un intervalle
 - $-f \in \mathcal{C}([0,1])$

Par le théorème des bornes atteintes, f est bornée et atteint ses bornes. D'où :

$$\exists (x_0, x_1) \in [0, 1]/(m, M) = (f(x_0), f(x_1))$$

(c) On a $f \in Ker(T - 2Id_E)$, donc f est vecteur propre de T associé à la valeur propre 2, d'où :

$$T(f) = 2f$$

$$\Rightarrow T(f)(x_0) = 2f(x_0)$$

$$\Rightarrow f\left(\frac{x_0}{2}\right) + f\left(\frac{x_0 + 1}{2}\right) = 2m$$

$$\Rightarrow f\left(\frac{x_0}{2}\right) \le m$$

De même :

$$f\left(\frac{x_0}{2}\right) = 2f(x_0) - \underbrace{f\left(\frac{x_0+1}{2}\right)}_{\geq m}$$

$$\Rightarrow f\left(\frac{x_0}{2}\right) \ge 2f(x_0) - m$$
$$\Rightarrow f\left(\frac{x_0}{2}\right) \ge m$$

On a donc bien:

$$f\left(\frac{x_0}{2}\right) = m$$

(d) Pour $n \in \mathbb{N}$ on définit " $P(n) : f\left(\frac{x_0}{2^n}\right) = m$ ".

 \square <u>Heredite</u>: pour $n \in \mathbb{N}$ fixé, supposons P(n) vraie, montrons que P(n+1) l'est aussi. On a, d'après le raisonnement précédent:

 $f\left(\frac{x_0}{2^n}\right) = m \Rightarrow f\left(\frac{x_0}{2^{n+1}}\right) = m$

D'où P(n+1) vraie.

 \square Conclusion : On a montré l'initialisation et l'hérédité de P. Par le principe de démonstration par récurrence, on a montré :

 $\forall n \in \mathbb{N}, f\left(\frac{x_0}{2^n}\right) = m$

De plus:

$$\lim_{n \to +\infty} f\left(\frac{x_0}{2^n}\right) = m$$

$$\Rightarrow f(0) = m$$

Donc

$$f\left(0\right)=m$$

(e) Par exactement le même raisonnement que pour les 3 relations précédentes :

$$M = f(0)$$

(f) On a montré que pour f quelconque appartenant à $Ker(T-2Id_E)$:

$$\inf_{x \in [0,1]} \! f(x) = \sup_{x \in [0,1]} \! f(x) = f(0)$$

$$\Rightarrow \forall x \in [0,1], f(x) = f(0)$$

Donc

$$Ker(T - 2Id_E) = \{ f \in \mathcal{C}([0, 1]) / \forall x \in [0, 1], f(x) = f(0) \}$$

Partie 3: Etude de cotan

1.
$$cotan(x) = \frac{cos(x)}{sin(x)}$$

Soit $x \in \mathbb{R}$

$$\begin{aligned} & \cot n(x) = y \\ \Rightarrow & \frac{\cos(x)}{\sin(x)} = y \\ \Rightarrow & x = \arctan\left(\frac{1}{y}\right) \end{aligned}$$

$$I=]0,\pi[$$

- 2. question 2
- 3. question 3
- 4. question 4
- 5. question 5

Partie 4: Développement eulérien

- 1. question 1
- 2. question 2
- 3. question 3

4. Application et généralisation

- (a) question a
- (b) question b
- (c) question c

Partie 5: Calcul d'un intégrale à paramètre

- 1. (a) question a
 - (b) question b
 - (c) question c
- 2. question 2
- 3. question 3
- 4. question 4
- 5. question 5
- 6. question 6

Exercice 2: Temps d'attente d'une séquence dans un automate

Partie 1: Etude d'un cas simple

- 1. question 1
- 2. question 2
- 3. question 3
- 4. question 4

Partie 2: Etude d'un cas intermédiaire

- 1. question a
- 2. question a
- 3. question a
- 4. question a
- 5. question a
- 6. question a
- 7. question a
- 8. question a
- 9. question a
- 10. question a
- 11. question a