Арифметический корень натуральной степени.

Перечень тем, рассматриваемых на уроке:

- преобразование и вычисление арифметических корней,
- свойства арифметического корня натуральной степени,
- корень нечетной степени из отрицательного числа,
- какими свойствами обладает арифметический корень натуральной степени.

Глоссарий

- 1. Квадратным корнем из числа a называют такое число, квадрат которого будет равен a.
- 2. Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен a.
- 3. Кубический корень из a- это такое число, которое при возведении в третью степень дает число a.
- 4. Корнем n-ой степени из числа a называют такое число, n-ая степень которого будет равна a.
- 5. Арифметическим корнем натуральной степени, где $n \ge 2$, из неотрицательного числа a называется неотрицательное число, n-я степень которого равна a.

Объяснение темы «Арифметический корень натуральной степени»

Решим задачу.

Площадь квадрата $S=16 \text{ m}^2$.

Обозначим сторону квадрата a, м.

Тогда, $a^2 = 16$.

Решим данное уравнение:

a=4 и a=-4.

Проверим решение:

$$4^2 = 16$$
;

$$(-4)^2 = 16.$$

Ответ: длина стороны квадрата равна 4 м.

Определение:

Квадратным корнем из числа a называют такое число, квадрат которого будет равен a.

Определение:

Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен a.

Обозначение: \sqrt{a} .

Определение:

Кубический корень из a- это такое число, которое при возведении в третью степень дает число a.

Обозначение: $\sqrt[4]{a}$.

Например:

$$\sqrt[8]{125} = 5$$

На основании определений квадратного и кубического корней, можно сформулировать определения корня n-ой степени и арифметического корня n-ой степени.

Определение:

Корнем n-ой степени из числа a называют такое число, n-ая степень которого будет равна a.

Определение:

Арифметическим корнем натуральной степени, где n≥2, из неотрицательного числа α называется неотрицательное число, n-я степень которого равна α .

Обозначение: $\sqrt[n]{a}$ – корень n-й степени, где

п–степень арифметического корня;

а– подкоренное выражение.

Давайте рассмотрим такой пример: $\sqrt[8]{-64} = ?$.

Мы знаем, что $(-4)^3 = -64$, следовательно, $\sqrt[8]{-64} = -4$.

Еще один пример: $\sqrt[5]{-243} = ?$.

Мы знаем, что $(-3)^5 = -243$, следовательно, $\sqrt[5]{-243} = -3$.

На основании этих примеров, можно сделать вывод:

 $\sqrt[n]{-a} = -\sqrt[n]{a}$, при условии, что *n* —нечетное число.

Свойства арифметического корня натуральной степени:

Если $a \ge 0$, $b \ge 0$ и n, m — натуральные числа, причем $n \ge 2$, $m \ge 2$, то справедливо следующее:

1.
$$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$$
.

Примеры:

$$\sqrt[4]{16 \cdot 625} = \sqrt[4]{16} \cdot \sqrt[4]{625} = 2 \cdot 5 = 10$$

$$\sqrt[5]{27} \cdot \sqrt[5]{9} = \sqrt[5]{27 \cdot 9} = \sqrt[5]{243} = 3$$

$$\int_{a}^{\pi} \frac{\overline{a}}{b} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}.$$

Примеры:

$$\sqrt[8]{\frac{27}{8}} = \frac{\sqrt[8]{27}}{\sqrt[8]{8}} = \frac{3}{2} = 1,5$$

$$\frac{\sqrt[5]{288}}{\sqrt[5]{9}} = \sqrt[5]{\frac{288}{9}} = \sqrt[5]{32} = 2$$

$$1. \quad (\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

Пример:

$$(\sqrt[4]{2})^8 = \sqrt[4]{2^8} = \sqrt[4]{256} = 4$$

$$1. \sqrt[n]{\sqrt[m]{a}} = \sqrt[mn]{a}.$$

Пример:

$$\sqrt[8]{\sqrt[2]{729}} = \sqrt[6]{729} = \sqrt[6]{3^6} = 3$$

1. Для любогоа справедливо равенство:

$$\sqrt[2k]{a^{2k}} = |a|$$
, где k — натуральное число.

Пример:

Найдите значение выражения $\sqrt[4]{(x-3)^4} + \sqrt[2]{(x-6)^2}$, при 3 < x < 6.

Степени заданных арифметических корней 4 и 2, четные числа, следовательно, мы можем применить свойство №5:

$$\sqrt[4]{(x-3)^4} = |x-3| = x-3, \text{ T.K. } x>3;$$

$$\sqrt[2]{(x-6)^2}$$
 = $|x-6|=6-x$, T.K. $x<6$.

Получаем: x - 3 + 6 - x = 3.

Примеры заданий.

Первый пример.

Задача:

Выберите верные утверждения:

1.
$$\sqrt[4]{-225} = 5$$

$$2.\sqrt[4]{625} = 5$$

$$3. \sqrt[5]{-\frac{1}{225}} = \frac{1}{15}$$

1.
$$\sqrt[5]{243} = 3$$

$$5. \sqrt[3]{\frac{27}{64}} = \frac{3}{4}$$

Разбор задания.

Применим определение арифметического корня: Арифметическим корнем натуральной степени из неотрицательного числа *а* называется неотрицательное число, n-я степень которого равна *а*. Следовательно, верными могут быть только неотрицательные выражения.

Omeem:
$$\sqrt[4]{625} = 5$$
; $\sqrt[5]{243} = 3$; $\sqrt[8]{\frac{27}{64}} = \frac{3}{4}$

Второй пример.

Задача:

Выделите самое маленькое число:

- 1. ^{2π}
- 2. 0
- 3. ∜100000000
- 4. ∜−243

Разбор задания:

Корень из отрицательного числа будет отрицательным числом, следовательно, наименьшее число – $\sqrt[5]{-243}$

Ответ: 4. ∜-243

_