# Notes

Supplemental Video: https://www.youtube.com/watch?v=3twLwF2F6CY

## Nonhomogeneous Differential Equations

The following differential equation is a nonhomogeneous differential equation:

$$\frac{d^2y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = b$$

where b is a constant.

Even though this expression isn't equal to 0, we can still solve it using our method for homogeneous differential equations. If we substitute y with  $\tilde{y} = y - \frac{b}{a_0}$ , then we end up with a new differential equation that is homogeneous:

$$\frac{d^2\tilde{y}}{dt^2} + a_1 \frac{d\tilde{y}}{dt} + a_0 \tilde{y} = 0$$

Now we can solve for  $\tilde{y}$  and then reverse our substitution to get y.

## Questions

#### 1. Differential Equations

Solve the following second-order differential equation.

(a) 
$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 13y = 13$$
, where  $y(0) = 3$  and  $\frac{dy}{dt}(0) = 7$ 

### 2. RLC circuit

Consider the following circuit:



- (a) Draw the circuit corresponding to t < 0. What are the values of  $V_C$ ,  $V_R$ ,  $V_L$ , and i at  $t = 0_-$ , the time right before the switches close. Assume this circuit has been in this state for a long time.
- (b) Now draw the circuit corresponding to  $t \ge 0$ . Using your results from the previous part, what are  $V_C$ ,  $V_R$ ,  $V_L$ , and i at  $t = 0_+$ .
- (c) Define your state variables as  $V_c(t)$  and  $i_c(t)$ . Find the equation for  $V_c(t)$  for  $t \ge 0$ . Use component values  $V_s = 4V$ , C = 2fF,  $R = 60k\Omega$ , and  $L = 1\mu H$ .

### 3. Charging RLC Circuit

Consider the following circuit:



(a) Write out the differential equation describing this circuit for  $t \ge 0$  in the form:

$$\frac{d^2V_c}{dt^2} + a_1 \frac{dV_c}{dt} + a_0 V_c = b$$

(b) Find a  $\tilde{V}_c$  and substitute it to the previous equation such that

$$\frac{d^2\tilde{V}_c}{dt^2} + a_1 \frac{d\tilde{V}_c}{dt} + a_0 \tilde{V}_c = 0$$

(c) Solve for  $V_c(t)$  for  $t \ge 0$ . Use component values  $V_s = 4V$ , C = 2fF,  $R = 60k\Omega$ , and  $L = 1\mu H$ .

#### **Contributors:**

- · Titan Yuan.
- · Brian Kilberg.