DSC 540

Inman, Gracie

Project Milestone 5

11/18/23

```
In [25]: # Step 1 Import libraries
import pandas as pd
import numpy as np
from scipy import stats

In [26]: # Step 2 Load and check data
cars_df = pd.read_csv('cars_raw.csv')
cars_df.head()
```

Out[26]:		Year	Make	Model	Used/New	Price	ConsumerRating	ConsumerReviews	SellerType	SellerName	SellerRating	•••	Interior
	0	2019	Toyota	Sienna SE	Used	\$39,998	4.6	45	Dealer	CarMax Murrieta - Now offering Curbside Pickup	3.3		
	1	2018	Ford	F-150 Lariat	Used	\$49,985	4.8	817	Dealer	Giant Chevrolet	4.8		
	2	2017	RAM	1500 Laramie	Used	\$41,860	4.7	495	Dealer	Gill Auto Group Madera	4.6		
	3	2021	Honda	Accord Sport SE	Used	\$28,500	5.0	36	Dealer	AutoSavvy Las Vegas	4.6		
	4	2020	Lexus	RX 350	Used	\$49,000	4.8	76	Dealer	Lexus of Henderson	4.8		

5 rows × 32 columns

Loading the data and checking it is important to ensure that the data was properly loaded. If not, it could affect analysis and lead to problems.

```
In [27]: # Step 3 Remove duplicate rows based on all columns
    cars_df_rd = cars_df.drop_duplicates()
    prev_shape = cars_df.shape
    new_shape = cars_df_rd.shape
    print('The old shape of the data frame is', prev_shape)
    print('The new shape of the data frame is', new_shape)
```

```
The old shape of the data frame is (9379, 32) The new shape of the data frame is (8507, 32)
```

I selected for unique values to help eliminate biases within the data. This also helps improve accuracy.

```
In [28]: # Step 4 Check for missing values
         missing_values = cars_df_rd.isnull().sum()
         print("Missing values in each column:")
         print(missing values)
         Missing values in each column:
         Year
                                      0
         Make
         Model
                                      0
                                      0
         Used/New
         Price
                                      0
                                      0
         ConsumerRating
                                      0
         ConsumerReviews
         SellerType
                                      0
         SellerName
                                      0
         SellerRating
                                      0
                                      0
         SellerReviews
                                      0
         StreetName
         State
                                      0
         Zipcode
                                      0
         DealType
                                    206
         ComfortRating
                                      0
         InteriorDesignRating
                                      0
         PerformanceRating
                                      0
         ValueForMoneyRating
         ExteriorStylingRating
         ReliabilityRating
                                      0
         ExteriorColor
                                      0
         InteriorColor
                                      0
         Drivetrain
         MinMPG
         MaxMPG
         FuelType
                                      0
         Transmission
                                      0
         Engine
         VIN
                                      0
                                      0
         Stock#
         Mileage
         dtype: int64
```

I checked for missing values as they can create issues with analysis. To ensure that analysis would go smoothly I wanted to see where and how many missing values were in the dataset so I can figure out how to handle them.

```
In [29]: # Step 5 Remove rows with missing values
cars_cleaned = cars_df_rd.dropna()
```

I drop the rows with missing values for two reasons. One was there was only 206 rows with missing values and all of the missing values were located in the dealtype column. Two and the most important reason was I do not have the criteria for what was considered for each deal type. I felt I would not be able to accuratly replace these values.

```
In [30]: # Step 6 Check missing values again
missing_values = cars_cleaned.isnull().sum()
print("Missing values in each column:")
print(missing_values)
```

```
Missing values in each column:
Year
Make
                          0
                           0
Model
                          0
Used/New
Price
                           0
ConsumerRating
                           0
                           0
ConsumerReviews
SellerType
                           0
SellerName
                           0
                           0
SellerRating
SellerReviews
                           0
                           0
StreetName
State
                          0
                           0
Zipcode
DealType
                          0
ComfortRating
                          0
InteriorDesignRating
                          0
PerformanceRating
                          0
ValueForMoneyRating
                          0
ExteriorStylingRating
                          0
ReliabilityRating
                          0
ExteriorColor
                           0
                          0
InteriorColor
                           0
Drivetrain
MinMPG
                           0
                           0
MaxMPG
                          0
FuelTvpe
Transmission
                           0
                          0
Engine
                          0
VIN
Stock#
                          0
Mileage
                          0
dtype: int64
```

I just wanted to check and make sure that the NA rows were dropped sucessfully.

```
In [31]: # Step 7 Check shape change
    original_shape = cars_df.shape
    prev_shape = cars_df_rd.shape
    new_shape = cars_cleaned.shape
    print('The original shape of the data frame is', original_shape)
    print('The previous shape of the data frame is', prev_shape)
    print('The new shape of the data frame is', new_shape)
```

```
The original shape of the data frame is (9379, 32) The previous shape of the data frame is (8507, 32) The new shape of the data frame is (8301, 32)
```

I wanted to check how the dataset had changed from the begining. Since the begining of tranformation we have omitted 1,078 rows of data.

I wanted to check the column names to help identify columns to remove later and look at ones that may not be as good for analysis.

```
In [33]: # Step 9 Checking to make sure columns contain unique data
Seller_type = cars_cleaned['SellerType'].value_counts()
print(Seller_type)
Dealer 8271
```

Dealer 8271 Private 30

Name: SellerType, dtype: int64

Only thirty rows contain privately sold vehicles. This is not a factor I will be using in my analysis so I may omit this column later.

```
In [34]: used_or_new = cars_cleaned['Used/New'].value_counts()
print(used_or_new)
```

Used	6989
BMW Certified	220
Mercedes-Benz Certified	201
Honda Certified	178
Toyota Certified	131
Cadillac Certified	86
Ford Certified	64
Subaru Certified	55
Jeep Certified	49
Nissan Certified	48
Acura Certified	42
Chevrolet Certified	34
Kia Certified	32
INFINITI Certified	31
Volvo Certified	30
Porsche Certified	22
RAM Certified	22
Buick Certified	19
Volkswagen Certified	17
GMC Certified	13
Dodge Certified	10
Alfa Romeo Certified	6
MINI Certified	1
Maserati Certified	1
Name: Used/New, dtype: int	64

All of the data appears to be from used cars. Some are just dealer certified which makes this column not important to analysis.

```
In [35]: make = cars_cleaned['Make'].value_counts()
print(make)
```

BMW	82	
Mercedes-Be		
Toyota	70	
Honda		30
Ford	52	
Jeep	45	
Lexus	44	
Chevrolet	37	
Audi		70
Subaru	26	
Cadillac	23	
Nissan	23	
GMC	21	
Kia	21	
Acura	20	
Hyundai	19	
INFINITI	19	
Mazda	17	
Tesla	16	
Land	14	
RAM	13	
Dodge	13	
Volkswagen Volvo	12	28 27
Lincoln	12	
Porsche	10	
Buick	10	
Alfa		35
Chrysler		32
Jaguar		28
Mitsubishi		L9
Genesis		L7
Maserati		L4
MINI	-	5
Scion		4
Lamborghini		3
Bentley		2
Mercury		2
FIAT		1
Saturn		1
Name: Make,	dtype:	
- /	- 1	

64

All makes appear to be unique.

```
gas type = cars cleaned['FuelType'].value counts()
In [36]:
         print(gas type)
         Gasoline
                                           7886
         Electric
                                            140
         E85 Flex Fuel
                                            108
         Hvbrid
                                             61
         Diesel
                                             40
                                             29
                                             23
         Gasoline Fuel
         Gasoline/Mild Electric Hybrid
                                              5
         Electric Fuel System
                                              4
         Flex Fuel Capability
                                              3
                                              2
         Flexible Fuel
         Name: FuelType, dtype: int64
```

The most prominent type of fuel is gas, however fuel type can affect pricing of vehicles.

```
In [37]: # Step 10 Replace Gasoline Fuel with Gasoline
         cars cleaned copy = cars cleaned.copy()
         # Specify the column ("FuelType" in this case) and the value to replace
         old value = 'Gasoline Fuel'
         new value = 'Gasoline'
         # Replace the old value with the new value in the specified column of the copy
         cars cleaned copy['FuelType'] = cars cleaned copy['FuelType'].str.replace(old value, new value)
         # Check to see if it worked
         gas type2 = cars cleaned copy['FuelType'].value counts()
         print(gas_type2)
         Gasoline
                                           7909
         Electric
                                            140
         E85 Flex Fuel
                                            108
         Hybrid
                                             61
                                             40
         Diesel
                                             29
         Gasoline/Mild Electric Hybrid
                                              5
         Electric Fuel System
                                              4
         Flex Fuel Capability
                                              3
                                              2
         Flexible Fuel
         Name: FuelType, dtype: int64
```

Gasoline and gasoline fuel appeared to be the same thing. I combined them both under the name gasoline.

```
In [38]: # Step 11 Select for gasoline cars
gasoline_cars = cars_cleaned_copy[cars_cleaned_copy['FuelType'] == 'Gasoline']
gas_type3 = gasoline_cars['FuelType'].value_counts()
print(gas_type3)
```

Gasoline 7909

Name: FuelType, dtype: int64

I selected for gasoline fuel type to keep analysis consistent due to different fuel types usually have different price points.

Out[39]:		Year	Make	Price	ConsumerRating	ConsumerReviews	SellerRating	SellerReviews	State	Zipcode	DealType	ComfortRating
	0	2019	Toyota	\$39,998	4.6	45	3.3	3	CA	92562	Great	4.7
	1	2018	Ford	\$49,985	4.8	817	4.8	131	CA	93292	Good	4.9
	2	2017	RAM	\$41,860	4.7	495	4.6	249	CA	93637	Good	4.8
	4	2020	Lexus	\$49,000	4.8	76	4.8	4755	NV	89011	Good	4.9
	5	2012	Toyota	\$23,541	4.7	34	4.4	1071	CA	94544	Fair	4.7

There were columns that were not aiding in analysis and were able to be removed. FuelType was removed since the data was selected to only contain gasoline.

Print rows with values outside of the range
rows_outside_range = gas_cars_cleaned[outside_range]
print(rows_outside_range)

0 1 2 4 5 9373 9374 9376 9377	NaN N NaN N NaN N NaN N NaN N NaN N NaN N NaN N	ke Price aN NaN	Consumer	Rating NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	Consumer	Reviews NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	SellerF	Rating NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	\
0 1 2 4 5 9373 9374 9376 9377 9378	SellerR	NaN NaN NaN NaN NaN NaN NaN	Nan N Nan N Nan N Nan N . Nan N Nan N Nan N Nan N Nan N Nan N	ode Deal' laN laN laN laN laN laN laN laN	Type Com NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	Ni Ni Ni Ni Ni Ni	ng \ aN		
0 1 2 4 5 9373 9374 9376 9377	Interio	rDesignRa	ting Per NaN NaN NaN NaN NaN NaN NaN NaN NaN	formanc	eRating NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	ValueFor	MoneyRat	ing NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	1
0 1 2 4 5	Exterio	rStylingR	ating Re NaN NaN NaN NaN NaN	eliabili	tyRating NaN NaN NaN NaN NaN	MinMPG NaN NaN NaN NaN NaN	MaxMPG NaN NaN NaN NaN NaN	N N	age IaN IaN IaN IaN

```
. . .
                            . . .
                                                  . . .
                                                           . . .
                                                                     . . .
                                                                               . . .
9373
                           NaN
                                                  NaN
                                                           NaN
                                                                    NaN
                                                                               NaN
9374
                           NaN
                                                  NaN
                                                           NaN
                                                                    NaN
                                                                               NaN
9376
                           NaN
                                                  NaN
                                                           NaN
                                                                    NaN
                                                                               NaN
9377
                           NaN
                                                  NaN
                                                           NaN
                                                                    NaN
                                                                               NaN
9378
                                                                    NaN
                                                                               NaN
                           NaN
                                                  NaN
                                                           NaN
```

[7909 rows x 19 columns]

I wanted to check that all ratings were within the apparent 1 to 5 range. It appears that all values for the selected columns fall within this range.

```
In [41]: # Step 14 Identify Outliers
    numeric_columns = gas_cars_cleaned.select_dtypes(include=[np.number]).columns

    outliers = pd.DataFrame()

# Threshold for Z-scores for identifying outliers
    threshold = 3

# Loop and identify outliers
for column_name in numeric_columns:
    z_scores = np.abs(stats.zscore(gas_cars_cleaned[column_name]))
    column_outliers = gas_cars_cleaned[z_scores > threshold]
    outliers = pd.concat([outliers, column_outliers])

Out[41]: (1806, 19)
```

Checking for outliers is necessary to make sure data is not being skewed.

```
In [42]: # Step 15 Visualize Outliers
import matplotlib.pyplot as plt
numerical_columns = gas_cars_cleaned.select_dtypes(include=['number']).columns
# Create scatter plots for each numerical column
for column in numerical_columns:
    plt.figure(figsize=(8, 6))
    plt.scatter(gas_cars_cleaned.index, gas_cars_cleaned[column], alpha=0.5)
    plt.title(f'Scatter Plot of {column}')
    plt.xlabel('Index')
    plt.ylabel(column)
    plt.grid(True)
    plt.show()
```


Scatter Plot of SellerReviews

Visualizing numerical data helps to determine outliers and allows you to look at them visually. I believe that the outliers are valid data points and do not plan to remove them at this point.

```
: 'Exterior Styling Rating', 'ReliabilityRating': 'Reliability Rating',
  'MinMPG': 'Minimum MPG', 'MaxMPG': 'Maximum MPG'}, inplace=True)
```

In [44]: gas_cars_cleaned.head()

Out[44]:

	Year	Make	Price	Consumer Rating	Consumer Reviews	Seller Rating	Seller Reviews	State	Zipcode	Deal Type	Comfort Rating	Interior Design Rating	Performance Rating	Value For Money Rating	S
0	2019	Toyota	\$39,998	4.6	45	3.3	3	CA	92562	Great	4.7	4.6	4.6	4.4	
1	2018	Ford	\$49,985	4.8	817	4.8	131	CA	93292	Good	4.9	4.8	4.8	4.6	
2	2017	RAM	\$41,860	4.7	495	4.6	249	CA	93637	Good	4.8	4.7	4.8	4.6	
4	2020	Lexus	\$49,000	4.8	76	4.8	4755	NV	89011	Good	4.9	4.8	4.8	4.7	
5	2012	Toyota	\$23,541	4.7	34	4.4	1071	CA	94544	Fair	4.7	4.6	4.4	4.6	

I fixed the column names to allow for easier user readability.

Changing data sets can lead to innacurate representations during analysis. Removing the columns and making assumptions such as that gasoline fuel and gasoline are the same can also lead to skewing data. This is due to not considering all the facts for the data point. Assuming that the outliers were accuate data points can lead to an innacurate skew of the data and misrepresentation. I did not adujust price based on model of car (Mercedes is typical more expensive than Toyota) which can lead to a bias and/or misrepresentation due to the higher cost of the cars. There are more data points for some years than others which will skew results. It is important to consider all the ways the data could be skewed or biased.

Website Source Milestone 3

```
import requests
from bs4 import BeautifulSoup
import pandas as pd

# Scrape data
url = "https://www.currentresults.com/Weather/US/average-annual-state-temperatures.php#google_vignette"
response = requests.get(url)
```

```
soup = BeautifulSoup(response.text, "html.parser")

# Empty list to store data
all_data = []

# Iterate through each table and scrape data
for table in soup.find_all("table"):
    data = []
    for row in table.find_all("tr"):
        cols = row.find_all("td")
        cols = [col.text.strip() for col in cols]
        data.append(cols)
        all_data.extend(data)
average_temp = pd.DataFrame(all_data)
```

	0	1	2	3
0	None	None	None	None
1	Alabama	62.8	17.1	7
2	Alaska	26.6	-3.0	50
3	Arizona	60.3	15.7	10
4	Arkansas	60.4	15.8	9
5	California	59.4	15.2	12
6	Colorado	45.1	7.3	39
7	Connecticut	49.0	9.4	29
8	Delaware	55.3	12.9	16
9	Florida	70.7	21.5	1
10	Georgia	63.5	17.5	5
11	Hawaii	70.0	21.1	2
12	Idaho	44.4	6.9	40
13	Illinois	51.8	11.0	23
14	Indiana	51.7	10.9	25
15	Iowa	47.8	8.8	36
16	Kansas	54.3	12.4	19
17	Kentucky	55.6	13.1	15
18	None	None	None	None
19	Louisiana	66.4	19.1	3
20	Maine	41.0	5.0	48
21	Maryland	54.2	12.3	20
22	Massachusetts	47.9	8.8	35
23	Michigan	44.4	6.9	40
24	Minnesota	41.2	5.1	47
25	Mississippi	63.4	17.4	6
26	Missouri	54.5	12.5	18
27	Montana	42.7	5.9	45
28	Nebraska	48.8	9.3	30
29 30	Nevada	49.9 43.8	9.9 6.6	28
31	New Hampshire New Jersey	52 . 7	11.5	42 22
32	New Mexico	53.4	11.9	21
33	New York	45.4	7.4	37
34	North Carolina	59.0	15.0	13
35	North Dakota	40.4	4.7	49
36	None	None	None	None
37	Ohio	50.7	10.4	26
38	Oklahoma	59.6	15.3	11
39	0 regon	48.4	9.1	33
40	Pennsylvania	48.8	9.3	30
41	Rhode Island	50.1	10.1	27
42	South Carolina	62.4	16.9	8
43	South Dakota	45.2	7.3	38

```
44
        Tennessee 57.6 14.2
                                14
45
            Texas 64.8 18.2
                                 4
             Utah 48.6
                         9.2
46
                                32
47
          Vermont 42.9
                         6.1
                                44
         Virginia 55.1 12.8
48
                                17
49
       Washington 48.3
                         9.1
                                34
    West Virginia 51.8 11.0
50
                                23
        Wisconsin 43.1
                         6.2
51
                                43
52
          Wyoming 42.0
                        5.6
                                46
```

The webscrapping obtained data from the three tables containing state weather data.

```
In [49]: # Check Shape
         average temp.shape
         (53, 4)
Out[49]:
In [50]: # Step 1: Drop the none (NA) values
         average_temp = average_temp.dropna()
         average temp.head()
Out[50]:
                  0
                            2
                             3
         1 Alabama 62.8 17.1 7
              Alaska 26.6 -3.0 50
             Arizona 60.3 15.7 10
         4 Arkansas 60.4 15.8 9
         5 California 59.4 15.2 12
```

There were apparent rows with the value None. These had to be removed in order to have accurcy and prevent issues down the road.

```
In [51]: # Step 2: Add column names for clarity
    new_column_names = ['State', 'Average Temperature (F)', 'Average Temperature (C)', 'Rank']
    average_temp.columns = new_column_names
    average_temp.head()
```

Out[51]:		State	Average Temperature (F)	Average Temperature (C)	Rank
	1	Alabama	62.8	17.1	7
	2	Alaska	26.6	-3.0	50
	3	Arizona	60.3	15.7	10
	4	Arkansas	60.4	15.8	9
	5	California	59.4	15.2	12

Define column names to improve clarifity and allow for clear understanding of data frame and purpose.

```
In [52]: # Step 3: Link state names to abbreviations
In [78]: # Dictionary of state abbreviations
         state abbreviations = {
             "Alabama": "AL",
             "Alaska": "AK",
             "Arizona": "AZ",
             "Arkansas": "AR",
             "California": "CA",
             "Colorado": "CO",
             "Connecticut": "CT",
             "Delaware": "DE",
             "Florida": "FL",
             "Georgia": "GA",
             "Hawaii": "HI",
             "Idaho": "ID",
             "Illinois": "IL",
             "Indiana": "IN",
             "Iowa": "IA",
             "Kansas": "KS",
             "Kentucky": "KY",
             "Louisiana": "LA",
             "Maine": "ME",
             "Maryland": "MD",
             "Massachusetts": "MA",
             "Michigan": "MI",
             "Minnesota": "MN",
             "Mississippi": "MS",
             "Missouri": "MO",
             "Montana": "MT",
             "Nebraska": "NE",
```

```
"Nevada": "NV",
"New Hampshire": "NH",
"New Jersey": "NJ",
"New Mexico": "NM",
"New York": "NY",
"North Carolina": "NC",
"North Dakota": "ND",
"Ohio": "OH",
"Oklahoma": "OK",
"Oregon": "OR",
"Pennsylvania": "PA",
"Rhode Island": "RI",
"South Carolina": "SC",
"South Dakota": "SD",
"Tennessee": "TN",
"Texas": "TX",
"Utah": "UT",
"Vermont": "VT",
"Virginia": "VA",
"Washington": "WA",
"West Virginia": "WV",
"Wisconsin": "WI",
"Wyoming": "WY"
```

Create dictionary of states and abrevations to allow for easy interchanging between both. This was done due to Fuzzy matching incorrecting matching states and abreviations.

```
In [79]: # Step 4: Make the words uppercase for easier matching
states_dict = {key.upper(): value.upper() for key, value in state_abbreviations.items()}
states_dict
```

```
{'ALABAMA': 'AL',
Out[79]:
           'ALASKA': 'AK',
           'ARIZONA': 'AZ',
           'ARKANSAS': 'AR',
           'CALIFORNIA': 'CA',
           'COLORADO': 'CO',
           'CONNECTICUT': 'CT',
           'DELAWARE': 'DE',
           'FLORIDA': 'FL',
           'GEORGIA': 'GA',
           'HAWAII': 'HI',
           'IDAHO': 'ID',
           'ILLINOIS': 'IL',
           'INDIANA': 'IN',
           'IOWA': 'IA',
           'KANSAS': 'KS',
           'KENTUCKY': 'KY',
           'LOUISIANA': 'LA',
           'MAINE': 'ME',
           'MARYLAND': 'MD',
           'MASSACHUSETTS': 'MA',
           'MICHIGAN': 'MI',
           'MINNESOTA': 'MN',
           'MISSISSIPPI': 'MS',
           'MISSOURI': 'MO',
           'MONTANA': 'MT',
           'NEBRASKA': 'NE',
           'NEVADA': 'NV',
           'NEW HAMPSHIRE': 'NH',
           'NEW JERSEY': 'NJ',
           'NEW MEXICO': 'NM',
           'NEW YORK': 'NY',
           'NORTH CAROLINA': 'NC',
           'NORTH DAKOTA': 'ND',
           'OHIO': 'OH',
           'OKLAHOMA': 'OK',
           'OREGON': 'OR',
           'PENNSYLVANIA': 'PA',
           'RHODE ISLAND': 'RI',
           'SOUTH CAROLINA': 'SC',
           'SOUTH DAKOTA': 'SD',
           'TENNESSEE': 'TN',
           'TEXAS': 'TX',
           'UTAH': 'UT',
           'VERMONT': 'VT',
```

```
'VIRGINIA': 'VA',
          'WASHINGTON': 'WA',
           'WEST VIRGINIA': 'WV',
           'WISCONSIN': 'WI',
           'WYOMING': 'WY'}
         Changed to all caps to insure proper matching.
In [55]: column types = average temp.dtypes
         print(column types)
         State
                                     object
         Average Temperature (F)
                                     object
         Average Temperature (C)
                                     object
         Rank
                                     object
         dtype: object
In [56]: # Step 5: Covert column types
         columns to convert = ['Average Temperature (F)', 'Average Temperature (C)', 'Rank']
         for column in columns to convert:
             average temp[column] = pd.to_numeric(average_temp[column], errors='coerce')
In [57]: average_temp['State'] = average_temp['State'].astype(str)
In [58]: column types = average temp.dtypes
         print(column types)
         State
                                      object
         Average Temperature (F)
                                     float64
         Average Temperature (C)
                                     float64
         Rank
                                       int64
         dtype: object
         Change columns to their correct types to allow for proper analysis and prevent issues later.
In [59]: # Step 6: Check for outliers
         z scores = np.abs(stats.zscore(average temp['Average Temperature (F)']))
         threshold = 3 # I'm going to use 3 deviations
         outlier indices = np.where(z scores > threshold)
```

print(average temp.iloc[index])

for index in outlier indices:

```
Empty DataFrame
         Columns: [State, Average Temperature (F), Average Temperature (C), Rank]
         Index: []
In [60]: z scores = np.abs(stats.zscore(average temp['Average Temperature (F)']))
         threshold = 2 # I'm going to use 2 deviations
         outlier_indices = np.where(z_scores > threshold)
         for index in outlier indices:
             print(average temp.iloc[index])
               State Average Temperature (F) Average Temperature (C)
                                                                        Rank
              Alaska
                                         26.6
                                                                  -3.0
                                                                          50
             Florida
                                         70.7
                                                                  21.5
         11 Hawaii
                                         70.0
                                                                  21.1
                                                                           2
```

Checking for outliers can help to increase accuarcy of analysis. In this case, outliers appear valid and will be used.

Milestone 4 API

```
In [61]: # Step 1: Obtain data from api to begin analysis.
import requests

api_key = "76137d4840f08913000b9384494b9b202a7997bf"

# API for State Data
api_url = f"https://api.census.gov/data/2021/pep/population?get=DENSITY_2021,POP_2021,NAME,STATE&for=state:*&

# Make the API request
response = requests.get(api_url)

# Check if the request was successful (status code 200)
if response.status_code == 200:
    data = response.json()

# Print the first 5 rows
for row in data[:5]:
    print(row)
else:
    print("Error: Unable to fetch data from the API.")
```

```
['DENSITY_2021', 'POP_2021', 'NAME', 'STATE', 'state']
         ['58.1171593930', '3986639', 'Oklahoma', '40', '40']
         ['25.5629643700', '1963692', 'Nebraska', '31', '31']
         ['224.4561379100', '1441553', 'Hawaii', '15', '15']
         ['11.8108489860', '895376', 'South Dakota', '46', '46']
In [62]: # Step 2: Create the data frame to allow for cleaning.
         state pop = pd.DataFrame(data[1:], columns=data[0])
         state pop.head()
Out[62]:
             DENSITY_2021 POP_2021
                                         NAME STATE state
         0 58.1171593930
                           3986639
                                      Oklahoma
                                                  40
                                                        40
         1 25.5629643700
                           1963692
                                       Nebraska
                                                        31
                                                   31
         2 224.4561379100
                           1441553
                                         Hawaii
                                                   15
                                                        15
         3 11.8108489860
                            895376 South Dakota
                                                  46
                                                        46
                                                        47
         4 169.1679021400
                            6975218
                                      Tennessee
                                                  47
In [63]: # Step 3: Remove uneeded columns for more efficent code.
         columns to remove = ['state', 'STATE']
         state pop clean = state pop.drop(columns=columns to remove)
         state pop clean.head()
Out[63]:
             DENSITY_2021 POP_2021
                                         NAME
         0 58.1171593930
                           3986639
                                      Oklahoma
         1 25.5629643700
                           1963692
                                       Nebraska
         2 224.4561379100
                           1441553
                                         Hawaii
         3 11.8108489860
                            895376 South Dakota
         4 169.1679021400
                            6975218
                                      Tennessee
In [64]: # Step 4: Change column names to be more readable.
         state_popul = state_pop_clean.rename(columns={
              'DENSITY_2021': 'Density',
              'POP_2021': 'Population',
              'NAME': 'State'
         })
```

```
state_popul.head()
```

Out[64]:

State	Population	Density				
Oklahoma	3986639	58.1171593930	0			
Nebraska	1963692	25.5629643700 2 224.4561379100				
Hawaii	1441553					
South Dakota	895376	11.8108489860	3			
Tennessee	6975218	169.1679021400	4			

```
In [65]: # Step 5: Change order of columns to help increase readability and understanding.
         state_population = state_popul[['State', 'Population', 'Density']]
         state_population.head()
```

Out[65]:

	State	Population	Density		
0	Oklahoma	3986639	58.1171593930		
1 2 3	Nebraska	1963692	25.5629643700		
	Hawaii	1441553	224.4561379100		
	South Dakota	895376	11.8108489860		
4	Tennessee	6975218	169.1679021400		

```
In [66]: # Step 6: Sort the values by state name
         pop_state = state_population.sort_values(by='State')
         pop_state.head()
```

Out[66]:

	State	Population	Density
48	Alabama	5039877	99.5099129150
51	Alaska	732673	1.2830925496
45	Arizona	7276316	64.0221138030
12	Arkansas	3025891	58.1946786180
19	California	39237836	251.7543622300

```
In [67]: # Step 7: Round density values to two decimal places to increase readability.
         pop_state['Density'] = pop_state['Density'].astype(float).round(2)
         pop_state.head()
```

```
Out[67]:
```

	State	Population	Density
48	Alabama	5039877	99.51
51	Alaska	732673	1.28
45	Arizona	7276316	64.02
12	Arkansas	3025891	58.19
19	California	39237836	251.75

```
In [68]: # Step 8: Make all letter uppercase for matching and to prevent errors.
         pop_state['State'] = pop_state['State'].str.upper()
         pop_state.head()
```

Out[68]:

	State	Population	Density
48	ALABAMA	5039877	99.51
51	ALASKA	732673	1.28
45	ARIZONA	7276316	64.02
12	ARKANSAS	3025891	58.19
19	CALIFORNIA	39237836	251.75

State Deputation Dencity

```
In [69]: # Step 9: Drop states with NA (Puerto Rico)
         pop_states = pop_state.dropna()
         print(pop_states)
```

	Ctata	Danii laddan	Danada
40		Population	Density
48	ALABAMA	5039877	99.51
51	ALASKA	732673	1.28
45	ARIZONA	7276316	64.02
12	ARKANSAS	3025891	58.19
19	CALIFORNIA	39237836	251.75
28	COLORADO	5812069	56.08
39	CONNECTICUT	3605597	744.56
23	DELAWARE	1003384	514.94
9	DISTRICT OF COLUMBIA	670050	10961.85
40	FLORIDA	21781128	405.98
25	GEORGIA	10799566	187.11
2	HAWAII	1441553	224.46
34	IDAHO	1900923	23.00
43	ILLINOIS	12671469	228.26
35	INDIANA	6805985	189.97
33 7	IOWA	3193079	57.17
8	KANSAS	2934582	
			35.89
30	KENTUCKY	4509394	114.19
21	LOUISIANA	4624047	107.01
32	MAINE	1372247	44.49
22	MARYLAND	6165129	634.85
42	MASSACHUSETTS	6984723	895.37
13	MICHIGAN	10050811	177.55
27	MINNESOTA	5707390	71.68
44	MISSISSIPPI	2949965	62.87
11	MISSOURI	6168187	89.72
36	MONTANA	1104271	7.59
1	NEBRASKA	1963692	25.56
5	NEVADA	3143991	28.62
14	NEW HAMPSHIRE	1388992	155.13
29	NEW JERSEY	9267130	1260.03
6	NEW MEXICO	2115877	17.44
37	NEW YORK	19835913	420.94
15	NORTH CAROLINA	10551162	217.00
20	NORTH DAKOTA	774948	11.23
16	OHIO	11780017	288.31
0	OKLAHOMA	3986639	58.12
26	OREGON	4246155	44.23
24	PENNSYLVANIA	12964056	289.75
	RHODE ISLAND	1095610	
50			1059.70
17	SOUTH CAROLINA	5190705	172.65
3	SOUTH DAKOTA	895376	11.81
4	TENNESSEE	6975218	169.17
10	TEXAS	29527941	113.02

46	UTAH	3337975	40.52	
33	VERMONT	645570	70.04	
41	VIRGINIA	8642274	218.89	
31	WASHINGTON	7738692	116.45	
49	WEST VIRGINIA	1782959	74.16	
47	WISCONSIN	5895908	108.85	
18	WYOMING	578803	5.96	

Data was imported from the api and placed in the dataframe to allow for cleaning. The first step in cleaning was to remove the unneeded state columns as they were unneeded and provide no value to analysis. The column names were changed to improve readability and anlysis. The order of the columns was then changed to improve readibility and understanding of the table. The values were then sorted by state name. This is consistent with previous tables. Denisity was rounded to two decimal places. There was a significant amount of extra decimal places that were not necissary for analysis. I capitalized all letes to improve matching later down the road. Lastly, I dropped Puerto Rico as it is not needed for analysis and contained NA values which could have caused issues for anlysis later on.

As always, changing data comes with ethical emplications. Removing Puerto Rico from my data set removes a state with a smaller population and can cause imbalance. However, since we are not considering state population seperately but as a means to scale data this is not a concern. Another possible delima is the rounding of the density values. This can cause innacurate representation due to rounding. However, I rounded to two decimal places so this should not be a concern. Lastly, I changed column names and removed columns. Removing columns could be seen as removing important data, however the data removed was state numbers which is not relevant to the analysis. The changed column names also were not changed to anything misrepresentive of the data. They were changed to improve readability abd were consistent with previous column names.

Project Milestone 5

```
In [94]: # Make all of the states uppercase abbrevations
    average_temp['State'] = average_temp['State'].map(state_abbreviations)
    pop_states['State'] = pop_states['State'].map(states_dict)
In [95]: # Check df
gas_cars_cleaned.head()
```

Out[95]:

:	Year	Make	Price	Consumer Rating	Consumer Reviews	Seller Rating	Seller Reviews	State	Zipcode	Deal Type	Comfort Rating	Interior Design Rating	Performance Rating	Value For Money Rating	Ex S F
C	2019	Toyota	\$39,998	4.6	45	3.3	3	CA	92562	Great	4.7	4.6	4.6	4.4	
•	2018	Ford	\$49,985	4.8	817	4.8	131	CA	93292	Good	4.9	4.8	4.8	4.6	
2	2017	RAM	\$41,860	4.7	495	4.6	249	CA	93637	Good	4.8	4.7	4.8	4.6	
4	2020	Lexus	\$49,000	4.8	76	4.8	4755	NV	89011	Good	4.9	4.8	4.8	4.7	
5	2012	Toyota	\$23,541	4.7	34	4.4	1071	CA	94544	Fair	4.7	4.6	4.4	4.6	

In [114... # Check df

average_temp.head()

Out[114]:

	State	Average Temperature (F)	Average Temperature (C)	Rank
1	AL	62.8	17.1	7.0
2	AK	26.6	-3.0	50.0
3	AZ	60.3	15.7	10.0
4	AR	60.4	15.8	9.0
5	CA	59.4	15.2	12.0

In [115... # Check df

pop_states.head()

Out[115]:

	State	Population	Density
48	AL	5039877	99.51
51	AK	732673	1.28
45	AZ	7276316	64.02
12	AR	3025891	58.19
19	CA	39237836	251.75

In [116... # import packages
import sqlite3

```
import pandas as pd
In [134... # Connect to SOLite database
          conn = sqlite3.connect('CarsMerged1.db')
In [135... # Create Tables from the dataframes
          gas_cars_cleaned.to_sql('gas_cars_cleaned', conn, index=False, if_exists='replace')
          average temp.to sql('temperature', conn, index=False, if exists='replace')
          pop states.to sql('population', conn, index=False, if exists='replace')
Out[135]:
In [136... # Close the connections (I did this due to persistent errors it helped)
          conn.close()
In [217... # Connect to the database
          conn = sqlite3.connect('CarsMerged1.db')
In [166... # SQL query to combine the tables
          # Had to specify exact columns to prevent duplicate state columns
          query combine tables = """
          SELECT
              ac.*.
              at.'Average Temperature (F)' AS 'Average Temperature (F)',
              at.'Average Temperature (C)' AS 'Average Temperature (C))',
              at.Rank,
              ps.Population,
              ps.Density
          FROM
              gas_cars_cleaned gc
          JOIN
              temperature at ON gc.State = at.State
          JOIN
              population ps ON gc.State = ps.State;
          0.00
In [224... # Read the joined result into a new DF
          combined data = pd.read sql query(query combine tables, conn)
          # Check
          print(combined data)
```

				IIIIIa	IID3C3401 Tojectivi4	
0 1 2 3 4	Year Make 2019 Toyota 2018 Ford 2017 RAM 2020 Lexus 2012 Toyota	Price Cor \$39,998 \$49,985 \$41,860 \$49,000 \$23,541	nsumer Rat	4.6 4.8 4.7 4.8 4.7	er Reviews 45 817 495 76 34	\
7884 7885 7886 7887 7888	2019 Honda 2019 Subaru 2017 Buick 2019 Subaru 2019 Hyundai	\$31,999 \$27,374 \$26,944 \$28,568 \$32,091		4.8 4.7 4.8 4.7 4.8	540 205 137 279 204	
0 1 2 3 4	Seller Rating 3.3 4.8 4.6 4.8 4.4	47	ews State 3 CA 131 CA 249 CA 755 NV	Zipcode Dea ⁻¹ 92562 93292 93637 89011 94544	Type Great Good Good Good Fair	\
7884 7885 7886 7887 7888	4.8 4.4 4.7 4.4 4.4	19 2 8 6	917 CT 1443 MA 331 NH 580 MA L05 MA	06092 01089 03060 01923 02767	Good Good Good Good Good	
0 1 2 3 4	Exterior Styl	ing Rating Re 4.6 4.8 4.8 4.8 4.8	eliability	Rating Mir 4.7 4.7 4.7 4.9 4.9	nimum MPG M 19 19 15 20 17	aximum MPG \ 27 24 21 27 23
7884 7885 7886 7887 7888		4.8 4.8 4.9 4.7 4.9		4.8 4.8 4.8 4.8 4.8	27 27 15 26 21	33 33 22 33 27
0 1 2 3 4	Mileage Avera 29403 32929 23173 28137 105469	age Temperatur	re (F) Av 59.4 59.4 59.4 49.9 59.4	verage Tempe	rature (C)) 15.2 15.2 15.2 9.9 15.2	Rank \ 12.0 12.0 12.0 28.0 12.0

. . .

. . .

. . .

```
7884
                                                                        9.4 29.0
                  44481
                                            49.0
          7885
                  15606
                                            47.9
                                                                        8.8 35.0
          7886
                  62649
                                            43.8
                                                                        6.6 42.0
          7887
                  30760
                                            47.9
                                                                        8.8 35.0
          7888
                  41645
                                            47.9
                                                                        8.8 35.0
                Population Density
                  39237836
                            251.75
          0
          1
                  39237836
                            251.75
                  39237836
          2
                            251.75
          3
                            28,62
                  3143991
          4
                  39237836
                             251.75
                              . . . .
          . . .
                   3605597
                            744.56
          7884
          7885
                   6984723
                            895.37
          7886
                   1388992
                            155.13
          7887
                   6984723
                            895.37
          7888
                   6984723
                            895.37
          [7889 rows x 24 columns]
In [251... conn.close()
          Create 5 Visulizations
         # Fix issues with newly combined data
In [225...
          combined_data['Price'] = pd.to_numeric(combined_data['Price'].replace('[\$,]', '', regex=True),
                                                 errors='coerce').astype(float)
          combined_data['Population'] = pd.to_numeric(combined_data['Population'], errors='coerce')
          combined data['Average Temperature (F)'] = pd.to numeric(combined data['Average Temperature (F)'],
                                                                    errors='coerce')
          combined data = combined data.dropna()
In [226... # Price by state
          plt.figure(figsize=(12, 6))
          sns.boxplot(x='State', y='Price', data=combined data)
          plt.title('Price Distribution by State')
          plt.xlabel('State')
          plt.ylabel('Price')
```

plt.xticks(rotation=45, ha='right')

plt.show()

Price Distribution by State


```
# Average Temp vs Price
plt.scatter(combined_data['Average Temperature (F)'], combined_data['Price'], alpha=0.5)
plt.title('Average Temperature vs. Price')
plt.xlabel('Average Temperature (F)')
plt.ylabel('Price')
plt.show()
```

Average Temperature vs. Price

Temperature Categories vs. Price


```
In [228... # Distribution of Price(log)
plt.hist(np.log1p(combined_data['Price']), bins=20, edgecolor='black')
plt.title('Logarithmic Price Distribution')
plt.xlabel('Log(Price + 1)')
plt.ylabel('Frequency')
plt.show()
```



```
# Temp vs Price (log)
plt.scatter(combined_data['Average Temperature (F)'], np.log1p(combined_data['Price']), alpha=0.5)
plt.title('Average Temperature vs. Logarithmic Price')
plt.xlabel('Average Temperature (F)')
plt.ylabel('Log(Price + 1)')
plt.show()
```

Average Temperature vs. Logarithmic Price


```
In [229... # Price by deal type
sns.boxplot(x='Deal Type', y='Price', data=combined_data)
plt.title('Deal Type vs. Price')
plt.xlabel('Deal Type')
plt.ylabel('Price')
plt.show()
```



```
# Population vs Price
plt.scatter(combined_data['Population'], combined_data['Price'], alpha=0.5)
plt.title('Population vs. Price')
plt.xlabel('Population')
plt.ylabel('Price')
plt.show()
```



```
In [235... # Population density vs Price
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Density', y='Price', data=combined_data, alpha=0.5)
plt.title('Density vs. Price')
plt.xlabel('Density')
plt.ylabel('Price')
plt.show()
```

Density vs. Price


```
# State distribution
plt.figure(figsize=(12, 6))
sns.barplot(x=state_counts.index, y=state_counts.values, palette="viridis")
plt.title('Number of Entries Per State')
plt.xlabel('State')
plt.ylabel('Number of Entries')
plt.xticks(rotation=45, ha='right')
plt.show()
```

Number of Entries Per State

MPG vs. Price


```
# Distribution of Pricing
price_bins = [0, 20000, 40000, 60000, 80000, float('inf')]
price_labels = ['0-20k', '20k-40k', '40k-60k', '60k-80k', '80k+']
combined_data['Price_Category'] = pd.cut(combined_data['Price'], bins=price_bins, labels=price_labels)

# Calculate the count of entries for each price category
price_counts = combined_data['Price_Category'].value_counts()

# pie chart
plt.figure(figsize=(8, 8))
plt.pie(price_counts, labels=price_counts.index, autopct='%1.1f%%', startangle=90)
```

plt.title('Price Distribution')
plt.show()

Distribution of Entries Across Price Categories

In [252... combined_data.head()

Out[252]:

:		Year	Make	Price	Consumer Rating	Consumer Reviews		Seller Reviews	State	Zipcode	Deal Type	•••	Mileage	Average Temperature (F)	Average Temperature (C))	F
	0	2019	Toyota	39998.0	4.6	45	3.3	3	CA	92562	Great		29403	59.4	15.2	
	1	2018	Ford	49985.0	4.8	817	4.8	131	CA	93292	Good		32929	59.4	15.2	
	2	2017	RAM	41860.0	4.7	495	4.6	249	CA	93637	Good		23173	59.4	15.2	
	3	2020	Lexus	49000.0	4.8	76	4.8	4755	NV	89011	Good		28137	49.9	9.9	
	4	2012	Toyota	23541.0	4.7	34	4.4	1071	CA	94544	Fair		105469	59.4	15.2	

5 rows × 28 columns

In []: