

Schema Refinement and Normal Forms

Chapter 15

d

The Evils of Redundancy

- * *Redundancy* is at the root of several problems associated with relational schemas:
- redundant storage, insert/delete/update anomalies
- dependencies, can be used to identify schemas with * Integrity constraints, in particular functional such problems and to suggest refinements.
- * Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- * Decomposition should be used judiciously:
- Is there reason to decompose a relation?
- What problems (if any) does the decomposition cause?

Database Management Systems, R. Ramakrishnan and J. Gehrke

Functional Dependencies (FDs)

* A functional dependency $X \to Y$ holds over relation R if, for every allowable instance r of R:

- $t1 \in r$, $t2 \in r$, $\pi_X(t1) = \pi_X(t2)$ implies $\pi_V(t1) = \pi_V(t2)$

- i.e., given two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)

* An FD is a statement about *all* allowable relations.

- Must be identified based on semantics of application.

Given some allowable instance r1 of R, we can check if it violates some FD f, but we cannot tell if f holds over R!

 \star K is a candidate key for R means that $K \to R$

- However, $K \rightarrow R$ does not require K to be minimal!

Example: Constraints on Entity Set

- * Consider relation obtained from Hourly_Emps:
- Hourly_Emps (ssn. name, lot, rating, hrly_wages, hrs_worked)
- * Notation: We will denote this relation schema by listing the attributes: SNLRWH
- This is really the *set* of attributes {5,N,L,R,W,H}.
- using the relation name. (e.g., Hourly_Emps for SNLRWH) Sometimes, we will refer to all attributes of a relation by
- Some FDs on Hourly_Emps:
- ssn is the key: $S \rightarrow SNLRWH$
- rating determines $hrly_wages$: $R \rightarrow W$

Example (Contd.) | 123-22-3666 | Attishoo

 \geqslant

2

48

 \diamond Problems due to $R \rightarrow W$:

Update anomaly: Can we change W in just

 ∞

612-67-4134 | Madayan

35

Guldu

434-26-3751

35

Smethurst

131-24-3650

231-31-5368 | Smiley

the 1st tuple of SNLRWH?

Insertion anomaly: What if vwant to insert an employee and don't know the hourly wage for his rating?

we lose the information about all employees with rating 5, *Deletion anomaly*: If we delet the wage for rating 5!

	∞		L R H	2	Н
ΑW	123-22-3666 Attishoo		48 8		40
	231-31-5368	Smiley	22 8	∞	30
	131-24-3650	Smethurst	35	2	30
	434-26-3751	Guldu	35	5	32
ite	ete 612-67-4134	Madayan	35 8	∞	40

Hourly_Emps2

≽	10	7
2	∞	¥

Wages [3 /

Refining an ER Diagram

1st diagram translated: Workers(S,N,L,D,S)Departments(D,M,B) - Lots associated with workers.

budget

<u>did</u>

<u>ರ</u>

SSN

name

Before:

(dname

since)

Departments

Works_In

Employees

Suppose all workers in a dept are assigned the same lot: D → L

Redundancy; fixed by: Workers2(S,N,D,S)Dept_Lots(D,L) Can fine-tune this:Workers2(S,N,D,S)Departments(D,M,B,L)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
- $ssn \rightarrow did$, $did \rightarrow lot$ implies $ssn \rightarrow lot$
- * An FD f is <u>implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
- F^+ = closure of F is the set of all FDs that are implied by F.
- * Armstrong's Axioms (X, Y, Z are sets of attributes):
- Reflexivity: If $X \subseteq Y$, then $X \to Y$
- <u>Augmentation</u>: If $X \to Y$, then $XZ \to YZ$ for any Z
- <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- * These are sound and complete inference rules for FDs!

Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
- *Union*: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- *Decomposition*: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- * Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
- C is the key: $C \rightarrow CSJDPQV$
- Project purchases each part using single contract: JP → C
- Dept purchases at most one part from a supplier: $SD \rightarrow P$
- * IP \rightarrow C, C \rightarrow CSJDPQV imply IP \rightarrow CSJDPQV
- $*SD \rightarrow P \text{ implies } SDJ \rightarrow JP$
- $*SDJ \rightarrow JP$, $JP \rightarrow CSJDPQV$ imply $SDJ \rightarrow CSJDPQV$

Reasoning About FDs (Contd.)

- expensive. (Size of closure is exponential in # attrs!) Computing the closure of a set of FDs can be
- * Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs *F*. An efficient check:
- Compute <u>attribute closure</u> of X (denoted X^{+}) wrt F:
- Set of all attributes A such that $X \to A$ is in F^+
- ◆ There is a linear time algorithm to compute this.
- Check if Y is in X^+
- ❖ Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$ imply $A \rightarrow E$?
- i.e, is $A \rightarrow E$ in the closure F^{+} ? Equivalently, is E in A^{+} ?

Normal Forms

- * Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- decide whether decomposing the relation will help. etc.), it is known that certain kinds of problems are If a relation is in a certain normal form (BCNF, 3NF avoided/minimized. This can be used to help us
- Role of FDs in detecting redundancy:
- Consider a relation R with 3 attributes, ABC.
- ◆ No FDs hold: There is no redundancy here.
- \bullet Given A \rightarrow B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- * Reln R with FDs F is in BCNF if, for all $X \to A$ in F^+
- $A \in X$ (called a *trivial* FD), or
- X contains a key for R.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
- No dependency in R that can be predicted using FDs alone.
- If we are shown two tuples that agree upon the X value, we cannot infer the A value in one tuple from the A value in the other.
- If example relation is in BCNF, the 2 tuples must be identical (since X is a key).

A	a	c ·
>	y1	y2
×	×	×

Third Normal Form (3NF)

- * Reln R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
- $A \in X$ (called a trivial FD), or
- X contains a key for R, or
- A is part of some key for R.
- * Minimality of a key is crucial in third condition above!
- * If R is in BCNF, obviously in 3NF.
- no ``good'' decomp, or performance considerations). compromise, used when BCNF not achievable (e.g., * If R is in 3NF, some redundancy is possible. It is a
- Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible. Database Management Systems, R. Ramakrishnan and J. Gehrke

What Does 3NF Achieve?

- * If 3NF violated by $X \rightarrow A$, one of the following holds:
- X is a subset of some key K
- ◆ We store (X, A) pairs redundantly.
- X is not a proper subset of any key.
- \bullet There is a chain of FDs $K \to X \to A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.
- * But: even if reln is in 3NF, these problems could arise.
- e.g., Reserves SBDC, $S \rightarrow C$, $C \rightarrow S$ is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.

Decomposition of a Relation Scheme

- A <u>decomposition</u> of R consists of replacing R by two or * Suppose that relation R contains attributes A1 ... An. more relations such that:
- Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
- Every attribute of R appears as an attribute of one of the new relations.
- instances of the relation schemes produced by the Intuitively, decomposing R means we will store decomposition, instead of instances of R.
- * E.g., Can decompose SNLRWH into SNLRH and RW.

Example Decomposition

- * Decompositions should be used only when needed.
- SNLRWH has FDs $S \rightarrow SNLRWH$ and $R \rightarrow W$
- associated with R values. Easiest way to fix this is to create a relation RW to store these associations, and to remove W Second FD causes violation of 3NF; W values repeatedly from the main schema:
- i.e., we decompose SNLRWH into SNLRH and RW
- tuples. If we just store the projections of these tuples The information to be stored consists of SNLRWH onto SNLRH and RW, are there any potential problems that we should be aware of?

Problems with Decompositions

- * There are three potential problems to consider:
- Some queries become more expensive.
- e.g., How much did sailor Joe earn? (salary = W*H)
- **②** Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
- ◆ Fortunately, not in the SNLRWH example.
- 8 Checking some dependencies may require joining the instances of the decomposed relations.
- ◆ Fortunately, not in the SNLRWH example.
- * *Tradeoff:* Must consider these issues vs. redundancy.

Lossless Join Decompositions

- * Decomposition of R into X and Y is *lossless-join* w.r.t. a set of FDs F if, for every instance r that satisfies F:
- $\pi_X(r) \times \pi_Y(r) = r$
- * It is always true that $r \subseteq \pi_X(r) \times \pi_Y(r)$
- In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- * It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)

More on Lossless Join

if and only if the closure of F X and Y is lossless-join wrt F The decomposition of R into contains:

 $- \times \cap Y \rightarrow X$, or

 $- \times \cap Y \rightarrow Y$

	1		`
C	3	9	∞
B		2	7
A		4	

C	3	9	∞
B	2	~	7

C	3	9	∞	∞	\mathcal{C}
B	2	2	7	7	7
A	1 2 3	4	7	\leftarrow	7

UV and R - V is lossless-join

if $U \to V$ holds over R.

decomposition of R into

In particular, the

U	3	9	∞	∞	α
B	2 3	2	7	7	7
A		4	7	\leftarrow	7
	·				

ehrke.
nd J. Ge
amakrishnan and
, R. R
ystems,
Management Systems,
Manag
atabase
\Box

Dependency Preserving Decomposition

- * Consider CSJDPQV, C is key, $JP \rightarrow C$ and $SD \rightarrow P$.
- BCNF decomposition: CSJDQV and SDP
- Problem: Checking JP→ C requires a join!
- Dependency preserving decomposition (Intuitive):
- If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem (3).)
- * Projection of set of $\overline{FDs F}$: If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of FDs $U \rightarrow V$ in F⁺ (closure of F) such that U, V are in X.

Dependency Preserving Decompositions (Contd.)

- * Decomposition of R into X and Y is dependency preserving if $(F_X \text{ union } F_Y)^+ = F^+$
- without considering X, these imply all dependencies in F⁺. i.e., if we consider only dependencies in the closure F + that can be checked in X without considering Y, and in Y
- * Important to consider F +, not F, in this definition:
- ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
- Is this dependency preserving? Is $C \rightarrow A$ preserved?????
- Dependency preserving does not imply lossless join:
- ABC, $A \rightarrow B$, decomposed into AB and BC.
- And vice-versa! (Example?)

Decomposition into BCNF

- * Consider relation R with FDs F. If $X \to Y$ violates BCNF, decompose R into R - Y and XY.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
- e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- To deal with $SD \rightarrow P$, decompose into SDP, CSJDQV.
- To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
- In general, several dependencies may cause violation of BCNF. The order in which we `deal with' them could lead to very different sets of relations!

BCNF and Dependency Preservation

In general, there may not be a dependency preserving decomposition into BCNF.

- e.g., CSZ, CS \rightarrow Z, Z \rightarrow C

- Can't decompose while preserving 1st FD; not in BCNF.

and CJDQV is not dependency preserving (w.r.t. the * Similarly, decomposition of CSJDQV into SDP, IS FDs $P \rightarrow C$, $SD \rightarrow P$ and $I \rightarrow S$).

- However, it is a lossless join decomposition.

- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.

◆ JPC tuples stored only for checking FD! (Redundancy!)

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
- If $X \rightarrow Y$ is not preserved, add relation XY.
- addition of CJP to 'preserve' $JP \rightarrow C$. What if we also - Problem is that XY may violate 3NF! e.g., consider the have $J \rightarrow C$?
- * Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

* Minimal cover G for a set of FDs F:

- Closure of F = closure of G.
- Right hand side of each FD in G is a single attribute.
- If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F.
- \diamond e.g., A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG has the following minimal cover:
- A \rightarrow B, ACD \rightarrow E, EF \rightarrow G and EF \rightarrow H
- \star M.C. \rightarrow Lossless-Join, Dep. Pres. Decomp!!! (in book) Database Management Systems, R. Ramakrishnan and J. Gehrke

Summary of Schema Refinement

- * If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- * If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
- Must consider whether all FDs are preserved. If a losslessjoin, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
- Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.