N_1 Définitions et propriétés

D Fonction inverse

Une fonction racine carrée f est définie par $f(x) = \sqrt{ax + b}$ où a et b sont deux nombres réels tels que $a \neq 0$. (c'est la racine carrée d'une fonction affine).

P Ensemble de définition

Soit f une fonction inverse telle que $f(x)=\sqrt{ax+b}$ alors son ensemble de définition est :

$$\mathcal{D}_f = [rac{-b}{a}\,; +\infty[$$
 si $a>0$ et $\mathcal{D}_f =]-\infty; rac{-b}{a}]$ si $a<0$

En effet comme on ne peut pas avoir de nombre négatif sous la racine carrée, il faut donc que $ax + b \geqslant 0$

P Tableau de variation

On considère une fonction racine carrée $f(x)=\sqrt{ax+b}$ avec $a\neq 0$. Si a=0 cette fonction inverse est **constante** et vaut $f(x)=\sqrt{b}$ si $b\geqslant 0$.

si a>0

si a < 0

Pour chaque fonction suivante, donner l'ensemble de définition puis dresser le tableau de variation :

- $\boxed{1} \quad f_1(x) = \sqrt{4x-6}$
- $f_2(x) = \sqrt{-3x+9}$

 $f_4(x)=\sqrt{x}$

- $\boxed{ 5 \quad f_5(x) = \sqrt{6-2x} }$
- $egin{pmatrix} 6 & f_6(x) = \sqrt{2+8x} \ \end{pmatrix}$

 $extstyle f_7(x) = \sqrt{6x}$

- $f_8(x)=\sqrt{2(5-2x)}$
- $f_9(x) = \sqrt{-3(2x+1)}$

N₂ Représentation graphique d'une fonction racine carrée

P Représentation graphique

On considère une fonction inverse $f(x)=\sqrt{ax+b}$. La représentation graphique \mathcal{C}_f est :

si a < 0

Pour chaque fonction suivante, tracer sa représentation graphique :

- $\boxed{1} \quad f_1(x) = \sqrt{2x-6}$
- $f_3(x) = \sqrt{-2x}$

 $\boxed{4} \quad f_4(x) = \sqrt{x}$

- $\left[egin{array}{c} 5 \end{array}
 ight] f_5(x) = \sqrt{3-3x}$
- $\left[egin{array}{c} 6 \end{array}
 ight]f_6(x)=\sqrt{16+8x}$

 $7 \quad f_7(x) = \sqrt{4x}$

- $f_8(x) = \sqrt{2(1-2x)}$
- $f_9(x) = \sqrt{-2(2x+3)}$

Signe d'une fonction racine carrée

P Signe d'une fonction racine carrée

On considère une fonction affine $f(x) = \sqrt{ax+b}$:

si
$$a>0$$

$oxed{x}$	$\frac{-b}{a}$		+∞
f(x)		+	

si a < 0

$oldsymbol{x}$	$-\infty$	$\frac{-b}{a}$
f(x)	+	

Pour chaque fonction suivante, dresser un tableau de signe sur son ensemble de définition :

$$\boxed{1} \quad f_1(x) = \sqrt{3x-6}$$

$$f_2(x) = \sqrt{-6x+6}$$

$$\boxed{3} \quad f_3(x) = \sqrt{-5x}$$

$$\boxed{4} \ f_4(x) = \sqrt{x}$$

$$\boxed{5f_5(x)=\sqrt{6-3x}}$$

$$\boxed{ ^6 } f_6(x) = \sqrt{16 + 4x}$$

7
$$f_7(x) = \sqrt{8x}$$

$$f_8(x)=\sqrt{3(2-2x)}$$

$$f_9(x) = \sqrt{-4(x-2)}$$

N_4 Fonction \sqrt{u}

Soit u une fonction définie sur D_u telle pour tout $x \in D_u$; $u(x) \geqslant 0$.

La fonction \sqrt{u} est définie sur D_u et par : $(\sqrt{u})(x) = \sqrt{u(x)}$

P Propriété : variations

Si u est monotone sur un intervalle I et si pour tout $x \in I$, $u(x) \geqslant 0$ alors la fonction \sqrt{u} a le même sens de variation que \boldsymbol{u} sur \boldsymbol{I} .

Construire un tableau de variation des fonctions suivantes sur leur ensemble de définition :

$$\boxed{1} \ f_1(x) = \sqrt{3x^2}$$

$$f_2(x)=\sqrt{rac{1}{x}}$$

$$rac{3}{2} f_3(x) = \sqrt{rac{1}{x^2}}$$

Fonction f $n^{\circ}1$

On considere la fonction f définie par $f(x) = \sqrt{-2x+4}$

- Résoudre l'inéquation $-2x+4\geqslant 0$. En déduire l'ensemble de défintion de f
- Pour deux réels a et b tels que $a \leqslant b$, calculer f(a) f(b)
- Dresser le tableau de variation de f
- Dresser le tableau de signe de f
- Tracer la représentation graphique de f

$n^{\circ}2$ Fonction g

On considère la fonction g définie par $g(x)=\sqrt{-2x^2-2x+4}$ et on pose $h(x)=-2x^2-2x+4$

- Démontrer que 1 et -2 sont les deux racines de h.
- Déterminer la forme factorisée de h.
- En déduire le tableau de variations et le tableau de signes de h
- Déterminer alors l'ensemble de définition de g. Déterminer le tableau de variation de g
- Tracer la représentation graphique de g
- g possède-t-elle un extremum ? Si oui le déterminer.