Elucidating the Design Space of Multimodal Protein Language Models (DPLM-2.1)

ICML 2025 Spotlight

ByteDance Research

Presenter: Angxiao Yue

May 26, 2025

Outline

Introduction

Preliminary

Observations

Method

Conclusion

Background

Task: MultiModal Protein Language Models (PLMs).

Existing foundation models often treat sequence and structure as separate modalities (X, \checkmark) .

For PLMs family:

- **ESM2**. Science 2023. Citations: 3054. X
- **ESM3**. Science 2025. Citations: 274. ✓
- ▶ DPLM. ICML 2024. Citations: 42. 🗶
 - ▶ **DPLM-2**. ICLR 2025. Citations: 13. ✓
- **▶ DPLM-2.1**. ICML 2025. ✓

For DPLM and DPLM-2:

- ► Tokenization loss.
- ▶ Inaccurate structure prediction.

Contributions

Build upon **DPLM-2** to advance the design space spanning **improved** generative modeling, structure-aware architectures, representation learning, and data exploration.

PS. In this paper, generative modeling = structure prediction = Folding.

Outline

Introduction

Preliminary

Observations

Method

Conclusion

Notation

- L: Number of protein residues.
- \blacktriangleright $\mathbf{s} \in \mathbb{R}^{L \times |S|}$: Amino acid sequence, $s_i \in \{0,1\}^{|S|},$ $S = \{1,2,\dots,20\}.$
- $\mathbf{x} \in \mathbb{R}^{L \times N_{\text{atoms}} \times 3}$: Cartesian coordinates (structure), $x_i \in \mathbb{R}^{N_{\text{atoms}} \times 3}$
- $ightharpoonup \mathbf{z} \in \mathbb{R}^{L \times D}$: Latent representation of structure.

DPLM

The family of DPLMs is grounded in the absorbing discrete diffusion framework.

- ▶ Protein sequence **s** is a categorical distribution $Cat(\mathbf{s}; \mathbf{p})$, parameterized by a vector **p** on $(|\mathcal{V}| 1)$ -dimensional probability simplex.
- ▶ Forward Process (Noise Perturbation): Perturbs data $\mathbf{s} \sim q(\mathbf{s})$ to a stationary noise distribution $\mathbf{s}^{(T)} \sim q_{\text{noise}}$.

$$q(\mathbf{s}^{(t)}|\mathbf{s}^{(t-1)}) = \operatorname{Cat}(\mathbf{s}^{(t)}; \beta_t \mathbf{s}^{(t-1)} + (1 - \beta_t) q_{\text{noise}})$$
(1)

- ▶ Backward Process (Learned Denoising): A learned process $p_{\theta}(\mathbf{s}^{(t-1)}|\mathbf{s}^{(t)})$ reverses the noise, aiming to recover the original data distribution \mathbf{s} .
- ▶ Learning Objective:

$$\mathcal{J}_t = \mathbb{E}_{q(\mathbf{s})} - \text{KL}[q(\mathbf{s}^{(t-1)}|\mathbf{s}^{(t)}, \mathbf{s})||p_{\theta}(\mathbf{s}^{(t-1)}|\mathbf{s}^{(t)})]$$
$$= \mathbb{E}_{q(\mathbf{s})}[\lambda^{(t)} \Sigma_{1 \le i \le L} b_i(t) \cdot \log p_{\theta}(s_i|\mathbf{s}^{(t)})]. \tag{2}$$

DPLM-2

Extends DPLM by introducing a token-based latent representation for protein structure.

▶ Learning Objective For structure token sequence **z** and amino acid sequence **s**:

$$\mathcal{J}_t = \mathbb{E}_{q(\mathbf{x}, \mathbf{z})} \left[\lambda^{(t)} \sum_i b_i(t) \left(\log p_{\theta}(s_i|\cdot) + \log p_{\theta}(z_i|\cdot) \right) \right]$$
 (3)

► Structure tokenization

$$\mathbf{x} \xrightarrow{\mathrm{encoder}} \mathbf{z}_{\mathrm{cont}} \xrightarrow{\mathrm{dimension-wise}} \mathbf{z}_{\mathrm{quant}} \Leftrightarrow \mathbf{z}_{\mathrm{index}} \xrightarrow{\mathrm{decoder}} \tilde{\mathbf{x}},$$

DPLM-2

- $\mathbf{x} \in \mathbb{R}^{L \times N_{\mathrm{atom}} \times 3} \xrightarrow{\mathrm{encoder}} \mathbf{z}_{\mathrm{cont}} \in \mathbb{R}^{L \times D}$
- $\qquad \qquad \mathbf{z}_{\mathrm{cont}} \xrightarrow[\mathrm{quantize}]{\mathrm{dimension-wise}} \mathbf{z}_{\mathrm{quant}} \in \{-1,+1\}^{L \times D}$

For $\mathbf{z}_{\text{cont},i}^{[k]}, \ k = 1, 2, \dots, D$:

- ▶ If $\mathbf{z}_{\text{cont},i}^{[k]} > 0$, $\mathbf{z}_{\text{quant},i}^{[k]} = +1$;
- $If \mathbf{z}_{\text{cont},i}^{[k]} \leq 0, \mathbf{z}_{\text{quant},i}^{[k]} = -1.$
- $\qquad \qquad \mathbf{z}_{\mathrm{quant}} \Leftrightarrow \mathbf{z}_{\mathrm{index}} \in \mathbb{R}^{L} \xrightarrow{\mathrm{decoder}} \tilde{\mathbf{x}} \in \mathbb{R}^{L \times N_{\mathrm{atom}} \times 3}$

$$\mathbf{z}_{\mathrm{index},\,i} = \sum_{k=1}^{D} \mathbf{1}(\mathbf{z}_{\mathrm{quant},\,i}^{[k]} > 0) \cdot 2^{k-1} \in \{0,\dots,2^D-1\}^L$$

e.g., if D = 3, $\mathbf{z}_{\text{quant},i} = [+1, -1, +1]$:

- $k = 1 : \mathbf{1}(+1 > 0) \cdot 2^{1-1} = 1 \cdot 1 = 1$
- $k = 2 : \mathbf{1}(-1 > 0) \cdot 2^{2-1} = 0 \cdot 2 = 0$
- $k = 3 : \mathbf{1}(+1 > 0) \cdot 2^{3-1} = 1 \cdot 4 = 4$
- $\mathbf{z}_{index i} = 1 + 0 + 4 = 5.$

(AI) structure tokenizer

tokenization converts structure into (latent) struct tokens

(A2) sequence-based language modeling w/ tokenized structure

Outline

Introduction

Preliminary

Observations

Method

Conclusion

Observation 1

(O1): Structure tokenization results in information loss.

Table 1. Effects of feature quantization on structure tokenizer reconstruction.

Latent feature	Struct token type	Reconstruction		
			TMscore†	
$\mathbf{z}_{ ext{cont}}$ $\mathbf{z}_{ ext{index}} \Leftrightarrow \mathbf{z}_{ ext{quant}}$	(pre-quantized) continuous token (quantized) discrete token	1.3127 1.9806	0.9733 0.9385	

This suggests that learning to **recover the lost residuals**—particularly as a refinement step—could enhance structure prediction accuracy.

Observation 2

(O2): High reconstruction accuracy does not guarantee better structure generative performance in language models, while a significant gap remains in between.

Table 2. **Tokenizer reconstruction** *vs.* **language model generation.** Evaluation of folding on CAMEO 2022.

Tokenizer	Reconstruction		Ger	neration
101101111101	rRMSD\	rTMscore†	RMSD↓	TMscore†
DPLM-2 ESM3	1.9806 0.7248	0.9385 0.9912	7.7025 8.4424	0.7936 0.7924

This suggests that, given that mild improvement in reconstruction do not necessarily translate into better generation, greater emphasis should be placed on improving **structure-aware** generative modeling and architectural design.

Observation 3

(O3): Index-based structure tokens? Multimodal PLM gets them miserably wrong in structure prediction.

Table 3. Language model structure token prediction accuracy. Index-based vs. bits-based evaluation on structure folding.

Model	Testset	Struct To	ken Acc↑	Struct Eval Metric		
1,10001	200000	index	bit	RMSD\	TMscore [†]	
DPLM-2 index-based	CAMEO 2022	0.0864	0.7720	7.7025	0.7936	
	PDB date split	0.1188	0.7932	5.3071	0.8306	
DPLM-2 BIT-based	CAMEO 2022	0.1258	0.7958	6.4028	0.8380	
	PDB date split	0.2641	0.8648	3.2213	0.9043	

This suggests that while the model struggles to recover exact indices, it effectively captures structural patterns at the bit level.

Outline

Introduction

Preliminary

Observations

Method

Conclusion

Overview

Recall the Contributions:

Build upon **DPLM-2** to advance the design space spanning **improved** generative modeling (O1&O3), structure-aware architectures(O2), representation learning (O2), and data exploration(Φ).

Improved Generative Modeling(O1&O3)

1. Recovering Tokenization Loss by Learning Quantization Residuals with RESDIFF (O1).

They introduce a light-weight diffusion module, i.e., RESDIFF, to predict the residual information: $\mathbf{r} = \mathbf{z}_{\text{cont}} - \mathbf{z}_{\text{quant}}$. The training loss is to minimize:

$$\mathcal{L}_{\phi} = \mathbb{E}_{q(\mathbf{r}), \epsilon \sim \mathcal{N}(0, \mathbf{I}), t} \left[\left\| \epsilon - \epsilon_{\phi}(\mathbf{r}_{t}, t, \mathbf{h}, \mathbf{z}_{\text{quant}}) \right\|_{2}^{2} \right]. \tag{4}$$

Table 4. Evaluation of improved approaches for structure prediction based upon DPLM-2. Folding SFT: supervised fine-tuning with folding objective.

Models	CAM	IEO 2022	PDB date split		
	RMSD↓	TMscore†	RMSD↓	TMscore†	
ESMFold (3B) (Lin et al., 2022)	3.9900	0.8500	2.8400	0.9300	
MultiFlow (Campbell et al., 2024a)	17.8400	0.5000	15.6400	0.5300	
ESM3 (1.4B) (Hayes et al., 2024)	6.3300	0.8400	4.9003	0.8653	
DPLM-2 (650M)	7.7025	0.7936	5.3071	0.8306	
DPLM-2 + RESDIFF	7.2881	0.8087	5.1072	0.8430	
DPLM-2 (BIT-based)	6.4028	0.8380	3.2213	0.9043	
DPLM-2 (BIT-based) + RESDIFF	6.1781	0.8428	3.0168	0.9076	
DPLM-2 (BIT-based) + FM	6.1825	0.8414	2.8697	0.9099	
DPLM-2 (BIT-based) + FM + RESDIFF	6.0765	0.8456	2.7884	0.9146	
w/ folding SFT	5.8472	0.8442	2.3698	0.9270	
DPLM-2 (3B) w/ folding SFT	5.9832	0.8443	3.1502	0.9012	

Improved Generative Modeling(O1&O3)

2. Bridging Discrete and Continuous Structure Tokens with BIT-based Language Modeling (O3).

To bridge this gap, they aim to perform language modeling of the bit-based feature of structure tokens instead of their indices:

$$\mathcal{J}_t^{\text{bit}} = \mathbb{E}_{q(\mathbf{x}, \mathbf{z})} \left[\lambda^{(t)} \sum_{i} b_i(t) \left(\log p_{\theta}(s_i|\cdot) + \sum_{k} \log p_{\theta}(z_{i, \text{quant}}^{[k]}|\cdot) \right) \right]$$
 (5)

Table 4. Evaluation of improved approaches for structure prediction based upon DPLM-2. Folding SFT: supervised fine-tuning with folding objective.

Models	CAM	EO 2022	PDB date split		
	RMSD↓	TMscore†	RMSD↓	TMscore†	
ESMFold (3B) (Lin et al., 2022)	3.9900	0.8500	2.8400	0.9300	
MultiFlow (Campbell et al., 2024a)	17.8400	0.5000	15.6400	0.5300	
ESM3 (1.4B) (Hayes et al., 2024)	6.3300	0.8400	4.9003	0.8653	
DPLM-2 (650M)	7.7025	0.7936	5.3071	0.8306	
DPLM-2 + RESDIFF	7.2881	0.8087	5.1072	0.8430	
DPLM-2 (BIT-based)	6.4028	0.8380	3.2213	0.9043	
DPLM-2 (BIT-based) + RESDIFF	6.1781	0.8428	3.0168	0.9076	
DPLM-2 (BIT-based) + FM	6.1825	0.8414	2.8697	0.9099	
DPLM-2 (BIT-based) + FM + RESDIFF	6.0765	0.8456	2.7884	0.9146	
w/ folding SFT	5.8472	0.8442	2.3698	0.9270	
DPLM-2 (3B) w/ folding SFT	5.9832	0.8443	3.1502	0.9012	

Improved Generative Modeling(O1&O3)

3. Hybrid Generative Approach Enables Direct Data-space Modeling (Φ) .

The combination of the structure encoder, language model, and decoder as a whole effectively functions as a denoising model, capable of refining structure in atomic coordinates.

$$\mathbf{x}_{\theta}(\mathbf{x}_t, t) : \mathbf{x}_t \mapsto \bar{\mathbf{x}}_{\text{denoised}} \triangleq \text{decoder} \circ \text{PLM} \circ \text{encoder}(\mathbf{x}_t).$$

Table 4. Evaluation of improved approaches for structure prediction based upon DPLM-2. Folding SFT: supervised fine-tuning with folding objective

Models	CAM	EO 2022	PDB date split		
	RMSD↓	TMscore†	RMSD↓	TMscore†	
ESMFold (3B) (Lin et al., 2022)	3.9900	0.8500	2.8400	0.9300	
MultiFlow (Campbell et al., 2024a)	17.8400	0.5000	15.6400	0.5300	
ESM3 (1.4B) (Hayes et al., 2024)	6.3300	0.8400	4.9003	0.8653	
DPLM-2 (650M)	7.7025	0.7936	5.3071	0.8306	
DPLM-2 + RESDIFF	7.2881	0.8087	5.1072	0.8430	
DPLM-2 (BIT-based)	6.4028	0.8380	3.2213	0.9043	
DPLM-2 (BIT-based) + RESDIFF	6.1781	0.8428	3.0168	0.9076	
DPLM-2 (BIT-based) + FM	6.1825	0.8414	2.8697	0.9099	
DPLM-2 (BIT-based) + FM + RESDIFF	6.0765	0.8456	2.7884	0.9146	
w/ folding SFT	5.8472	0.8442	2.3698	0.9270	
DPLM-2 (3B) w/ folding SFT	5.9832	0.8443	3.1502	0.9012	

Structure-aware Architectures(O2)

1. GeoDPLM: Geometry-aware Model Architecture (O2).

Operates on compact 2D pair representations to capture pairwise spatial dependencies of residues: Structure attention module + Seqstruct attention module.

Structure-aware Architectures(O2)

Structure attention module.

Segstruct attention module.

Structure-aware Architectures(O2)

3.6.4.1	S	Structure At	tention		Seqstruct	SFT	PDB	date split	CAM	IEO 2022
Methods	P. Bias & Tran.	S. Tran.	Tri. Up.	Tri. Attn.	Attn.	51.1	RMSD↓	TMscore†	RMSD↓	TMscore†
DPLM-2	×	×	×	×	×	×	5.521	0.8287	7.703	0.7936
GeoDPLM (Base)	√						4.823	0.8521	7.244	0.8128
(ST)	V	√					3.883	0.8857	6.550	0.8339
(TU)	V	V	√				4.837	0.8598	7.197	0.8255
(TA)	V	√ ×	•	√			4.415	0.8690	6.973	0.8210
(SSA)	~	*		•	\checkmark		4.040	0.8841	7.158	0.829
DPLM-2	×	×	×	×	×	√	3.347	0.9008	6.612	0.8233
GeoDPLM (Base)	√					√	3.165	0.9046	6.227	0.8414
(ST)	* /	√				1	3.021	0.9062	6.288	0.8393
(TU)	V	V	√			1	3.639	0.8903	6.877	0.8322
(TA)	V	V	*	√		1	3.863	0.8790	6.393	0.8340
(SSA)	1	•		*	1	1/	3.134	0.9054	6.329	0.8379

- ▶ P.Bias & Tran: pair bias and transition layer for pair representation.
- ▶ S. Tran: transition layer for structure representation.
- ▶ Tri. Up. & Attn.: triangle update and attention layers.

Representation Learning (O2)

1. Representation Alignments to Folding Model (O2).

The primary challenge of training diffusion models is learning high-quality representations. To address this, they adopt **REPA** by aligning the representations of the protein language model to transfer meaningful structural semantics from specialized folding model.

Table 6. **Representation alignment improves structure prediction.** REPA is compatible with both language model-based architectures (DPLM-2) and geometric designs (GeoDPLM).

Methods	Methods PDB date split		CAMEO 2022		
	RMSD↓	TMscore†	RMSD↓	TMscore†	
DPLM-2	5.521	0.8287	7.703	0.7936	
w REPA	4.919	0.8508	7.344	0.8046	
GeoDPLM	4.823	0.8521	7.244	0.8128	
w REPA	4.340	0.8671	7.058	0.8217	

On the Orthogonality of Design Methods

Examine the interactions of these designs by combining them in a unified setting.

The recommended setting: Geo + Bit-based modeling.

Table 7. Analysis of orthogonality. We analyze the compatibility of design methods when combined, with the recommended setting highlighted. All^* denotes the combination of all methods: Geo, Bit, FM, REPA, ResiDiff, and SFT.

Models	PDB	date split	CAMEO 2022		Uncond. Gen.
	RMSD\	TMscore†	RMSD\	TMscore†	Diversity†
DPLM-2 (650M)	5.307	.8306	7.703	.7936	0.700
Bit	3.221	.9043	6.403	.8380	0.825
Bit + FM	2.870	.9099	6.183	.8418	0.525
Bit + FM + ResDiff	2.788	.9146	6.077	.8456	0.525
w/ SFT	2.370	.9270	5.847	.8442	-
Geo + Bit	2.551	.9254	5.955	.8520	0.900
Geo + Bit + FM	2.443	.9261	6.172	.8404	0.575
Geo + Bit + REPA	2.507	.9264	6.192	.8412	0.875
w/ SFT	2.404	.9322	5.754	.8424	-
All*	2.379	.9297	6.200	.8398	-

Data Exploration(Φ)

Table 8. **Statistics of PDB-Multimer.** We curate a dataset of multichain proteins from PDB to analyze their effects on structural modeling.

Dataset	# proteins Train / Val	# chains	Protein Length	Chain Length
PDB- Multimer	11614/291	2.88 ± 1.66	661.57 ± 416.37	229.39 ± 167.00

Table 9. Effects of monomer data on tokenizer reconstruction for multimer. Scaling monomer data significantly improves the structure tokenizer reconstruction on PDB-Multimer, suggesting the relevance between multimer and monomer modeling. We also provide results of monomer on CAMEO dataset.

Training Data	Size	PDB	-Multimer	CAMEO 2022		
Training Data	Size	RMSD↓	TMscore↑	RMSD↓	TMscore†	
PDB & SwissProt AFDB_Rep	200K +1.2M	9.973 6.873	0.694 0.784	2.589 2.245	0.930 0.938	

Table 10. Applying chain linker and position offset in multimer modeling. We present the folding results on PDB-Multimer and report the reconstruction performance of structure tokenizer. ESM-Fold used G-linker of length 25 by default in multimer folding.

PDB-Multimer			
RMSD↓	TMscore1		
struction			
6.873	0.784		
5.886	0.812		
17.297	0.850		
19.110	0.768		
17.966	0.771		
18.338	0.767		
	RMSD↓ struction 6.873 5.886 17.297 19.110 17.966		

Table 11. Fine-tuning with multimer and monomer data. We evaluate the effects of fine-tuning with PDB-Multimer and Swissprot on structure prediction. Incorporating multimer data improves both monomer and multimer folding. SFT: supervised fine-tuning with folding objective.

Training Data			PDB-Multimer		CAMEO 2022	
PDB -Multimer	Swissprot	SFT	RMSD↓	TMscore†	RMSD↓	TMscore†
	√		17.966	0.771	7.703	0.793
	\checkmark	√	19.615	0.799	6.612	0.823
√	•	V	16.146	0.775	10.989	0.686
V	√	√.	16.674	0.798	6.410	0.831

Outline

Introduction

Preliminary

Observations

Method

Conclusion

Conclusion

They identify the limitations in structural modeling for multimodal protein language models and propose an effective design space to bridge the gap.

- ▶ They demonstrate that tokenization quantization loss can be effectively mitigated with bit-label supervision and flow-matching.
- ▶ They introduce geometric inductive biases through architectural design and leverage representation learning to refine generation diversity.
- ▶ Building on the strengths of each component, we further investigate their orthogonality, which informs the final recommended setting.
- Lastly, to tackle the scarcity of structure data, we explore the data coverage to include multimers, ensuring broader 3D structural understanding.

Thank you!

