Lista 15 – Equílibrio Químico

- 01. Escreva as expressões das constantes de equilíbrio (K_c) para os seguintes sistemas:
- b) $CaCO_{3(s)}$ \longrightarrow $CaO_{(s)}$ + $CO_{2(g)}$
- 02. O processo Mond de purificação do níquel envolve a formação de niquelcarbonila, Ni(CO)₄, que é um líquido volátil:

$$Ni_{(s)} + 4 CO_{(g)} \longrightarrow Ni(CO)_{4(g)}$$

Escreva a expressão da constante de equilíbrio em termos de pressões parciais.

03. Monóxido de carbono e hidrogênio reagem segundo a seguinte equação:

Quando 1,0 mol de CO e 3,0 mols de H₂ são colocados em um recipiente de **10,0 litros** a 927 °C e esperase que o equilíbrio químico seja atingido, a mistura gasosa contém 0,387 mol de H₂O. Qual a composição molar da mistura em equilíbrio químico?

04. Um mol de A₂ e um mol de B₂ são introduzidos em um frasco de **um litro**, à temperatura de 490 °C. Qual será a concentração final de AB no frasco quando o equilíbrio for atingido?

Dados: $A_{2(g)} + B_{2(g)} \longrightarrow 2$ $AB_{(g)}$; constante de equilíbrio K = 45.9; $(45.9)^{1/2} = 6.77$.

- Questões 5, 6, 7 e 8. Deslocamento de Equilíbrios Químicos Príncipio de Le Chatelier.
- 05. Modificação na concentração.

Considere o seguinte equilíbrio em fase gasosa:

$$H_{2(g)} + I_{2(g)} \longrightarrow 2HI_{(g)}$$

O que irá ocorrer se o H₂ for removido da mistura?

06. Qual o efeito da adição de $\text{\rm Cl}_{2(g)}$ ao seguinte sistema em equilíbrio?

$$PCl_{3(g)} \ + \ Cl_{2(g)} \qquad \qquad PCl_{5(g)}$$

07. O que irá ocorrer se a pressão for aumentada nas reações a seguir?

$$a) \ CH_{4(g)} \ + \ 2S_{2(g)} \longrightarrow CS_{2(g)} \ + \ 2H_2S_{(g)}$$

b)
$$CO_{2(g)} + C_{(s)} \longrightarrow 2CO_{(g)}$$

08. Pode-se preparar hidrogênio pela decomposição da água:

$$2 H_2O_{(g)} \implies 2 H_{2(g)} + O_{2(g)} \quad \Delta H = +484 \text{ kJ}$$

A decomposição é favorecida por altas ou baixas temperaturas? Explique.

9. (UNB) Dissolvendo-se em água, em frascos diferentes, até a saturação e à mesma temperatura:

Carbonato de bário $(K_{ps} = 4.9 \times 10^{-9})$

Cromato de bário $(K_{ps} = 2. 10^{-10})$

Oxalato de bário $(K_{ps} = 1,7.10^{-7})$

Sulfato de bário ($K_{ps} = 1.10^{-10}$)

Apresentará maior concentração de íon bário a solução de:

- a) BaCO₃
- b) BaCrO₄
- c) BaC₂O₄
- d) BaSO₄
- e) Faltam dados.
- 10. O íon prata, Ag^+ , pode ser recuperado de uma solução de fixador para revelação de filmes fotográficos, por precipitação na forma de $AgCl_{(s)}$. A solubilidade do AgCl é 1,9 .10⁻³ g.L⁻¹. Calcule o Kps.

Dado: $AgCl = 143.5 \text{ g.mol}^{-1}$.