Differential Equations (Math 285)

- **H12** Determine the general solution of the following ODE's in terms of y(0) (three answers suffice).

- a) $dy/dt = e^{y+t}$; b) dy/dt = ty + y + t; c) $dy/dt = (\cos t)y + 4\cos t$; d) $dy/dt = t^m y^n \ (m, n \in \mathbb{Z})$.
- **H13** For the following ODE's, solve the corresponding IVP with y(0) = 1.
- a) dy/dt = -4ty; b) $dy/dt = ty^3$; c) (1+t)dy/dt = 4y.
- **H14** Determine all maximal solutions of $t^2y'=y^2$ and decide for which points $(t_0,y_0)\in$ \mathbb{R}^2 the IVP $t^2y'=y^2\wedge y(t_0)=y_0$ has no solution/exactly one solution/more than one solution.
- H15 a) According to worldometers.info, the world's population on July 1, 2020 was about 7.79 billion, with a 1.05 % increase since July 1, 2019. Use this data to determine a new logistic model for the world's population growth, and compare with that of the lecture. What is the limiting population according to the new model?
 - b) Show that the graph of $y(t) = a/(de^{-at} + b)$ (a, b, d > 0) is point-symmetric to its inflection point.

Hint: A superb way to solve this exercise is to observe that the mirror image of a solution curve w.r.t. its inflection point represents a solution as well and use the uniqueness of solutions of associated IVP's.

- H16 a) Explain how to adapt the analysis of the harvesting equation in the lecture to $y' = ay^2 + by + c$ with $a, b, c \in \mathbb{R}$ and a > 0.
 - b) Sketch the solution curves of (i) $y' = y^2 y + 1$, (ii) $y' = y^2 + 2y + 1$, (iii) $y' = y^2 + y - 2$ without actually computing solutions. Steady-state solutions and inflection points (if any) should be drawn exactly.
- **H17** The ODE $y' = a(t)y b(t)y^n$, $n \in \mathbb{R} \setminus \{0,1\}$ is called Bernoulli's differential equation.
 - a) Show that for an appropriate choice of $\beta \in \mathbb{R}$ the substitution $z = y^{\beta}$ turns Bernoulli's differential equation into a linear 1st-order ODE (which can be solved by the usual methods).
 - b) Solve the IVP $y' = 4y y^3 \wedge y(0) = 1$ by the method suggested in a).
 - c) Investigate the asymptotic stability of the steady-state solutions of the ODE in b).

H18 Optional exercise

a) Show that the general (real) solution of y'' = y is $y(x) = c_1 e^x + c_2 e^{-x}$, $c_1, c_2 \in \mathbb{R}$.

Hint: For a solution y the functions y + y' and y - y' satisfy linear 1st-order ODE's.

b) For $x \in \mathbb{R}$ let

$$F(x) = \int_0^\infty \frac{\cos(xt)}{t^2 + 1} \,\mathrm{d}t.$$

Show that

$$F'(x) = -\frac{\pi}{2} + \int_0^\infty \frac{\sin(xt)}{t(t^2 + 1)} dt \quad \text{for } x > 0.$$

Hint: Differentiate F under the integral sign and use $\int_0^\infty \sin(xt)/t \, dt = \int_0^\infty \sin(t)/t \, dt = \pi/2$ for x > 0.

- c) Show that F solves y'' = y on $(0, \infty)$.
- d) Determine F from a), c) and F(0), F'(0+), and use the result to evaluate the integral

$$\int_0^\infty \frac{\cos t}{t^2 + 1} \, \mathrm{d}t \,.$$

H19 Optional exercise

The task of this exercise is to show the Cauchy-Hadamard formula

$$R = \frac{1}{L}, \quad L = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$$

(with the conventions $1/0 = \infty$, $1/\infty = 0$) for the radius of convergence R of a (complex) power series $\sum_{n=0}^{\infty} a_n (z-a)^n$. Here $L = \limsup_{n \to \infty} x_n \in [-\infty, +\infty]$ (limit superior) denotes the largest accumulation point of a real sequence (x_n) , i.e., for every $\epsilon > 0$ there are only finitely many indexes n satisfying $x_n \ge L + \epsilon$ but no real number L' < L has this property (with suitable modifications for $L = \pm \infty$).

- a) If $L = \infty$ (i.e., $\sqrt[n]{|a_n|}$ is unbounded), show that $\sum_{n=0}^{\infty} a_n (z-a)^n$ converges only for z=a.
- b) If L = 0 (i.e., $\sqrt[n]{|a_n|}$ converges to zero), show that $\sum_{n=0}^{\infty} a_n (z-a)^n$ converges for all $z \in \mathbb{C}$.
- c) If $0 < L < \infty$, show that $\sum_{n=0}^{\infty} a_n (z-a)^n$ converges for |z-a| < 1/L and diverges for |z-a| > 1/L.

Due on Fri Mar 10, 4 pm

The optional exercises can be handed in until Fri Mar 17, 4 pm. Complex power series (relevant for H19) will be discussed in the lecture on Fri Mar 10. For Exercises H18 b)-d) you need to study the material on uniform convergence of improper parameter integrals in lecture11-13_handout.pdf, which won't be discussed in the Math 285 lecture. Exercise H18 a) is very instructive (also quite easy), and is recommended for every student.

2

Solutions

12 a)

$$e^{-y} dy = e^t dt$$

Integrating both sides of the equation, we get

$$\int_{y(0)}^{y} e^{-r} dr = \int_{0}^{t} e^{s} ds$$
$$-e^{-y} + e^{-y(0)} = e^{t} - 1$$

Finally, we obtain

$$y(t) = -\ln(e^{-y(0)} + 1 - e^t), \quad t < \ln(1 - e^{-y(0)}).$$

Remark: When determining the solution, one can also use indefinite integration $\int e^{-y} dy = e^t dt + C$ and determine C in terms of y(0). This applies to the subsequent exercises as well.

b) Rewrite the ODE in the form of y' = a(t)y + b(t):

$$y' = (t+1)y + t$$

According to the particular solution formula,

$$y_p(t) = e^{\frac{t^2}{2} + t} \int_0^t s \, e^{-(\frac{s^2}{2} + s)} \, \mathrm{d}s$$

$$= e^{\frac{t^2}{2} + t} \left(\int_0^t (s+1) e^{-(\frac{s^2}{2} + s)} \, \mathrm{d}s - \int_0^t e^{-(\frac{s^2}{2} + s)} \, \mathrm{d}s \right)$$

$$= -e^{\frac{t^2}{2} + t} \left(e^{-(\frac{t^2}{2} + t)} - 1 \right) - e^{\frac{1}{2}} \int_0^t e^{-(\frac{s^2}{2} + s + \frac{1}{2})} \, \mathrm{d}s$$

$$= e^{\frac{t^2}{2} + t} - 1 - e^{\frac{1}{2}} \int_0^t e^{-(\frac{s+1}{2})^2} \, \mathrm{d}s,$$

and the "homogeneous solution" is

$$y_h(t) = y(0) e^{\frac{t^2}{2} + t}$$

Since $y_p(0) = 0$, the general solution in terms of y(0) is

$$y(t) = y(0)e^{\frac{t^2}{2}+t} - 1 - e^{\frac{1}{2}} \int_0^t e^{-\left(\frac{s+1}{\sqrt{2}}\right)^2} ds$$
.

Remark: It is not necessary to rewrite the integrand occurring in $y_p(t)$ in the particular form shown above, but at least this shows the relation with the incomplete Gauss integral (or the so-called error function). The simple answer is $y(t) = y_p(t) + y_h(t)$, $t \in \mathbb{R}$, with y_p , y_h as above.

c) According to the particular solution formula,

$$y_p(t) = e^{\sin(t)} \int_0^t 4\cos(s)e^{-\sin(s)} ds$$
 (1)

$$= -4e^{\sin(t)}(e^{-\sin(t)} - 1) \tag{2}$$

$$=4e^{\sin(t)}-4, (3)$$

and the "homogeneous solution" is

$$y_h(t) = y(0)e^{\sin(t)}.$$

The general solution is then

$$y(t) = (y(0) + 4)e^{\sin(t)} - 4.$$

The general form $y(t) = Ce^{\sin t} - 4$, $C \in \mathbb{R}$, also follows from the observation that $y(t) \equiv -4$ is a particular solution.

d) There is the constant solution y = 0, and for $y \neq 0$ we can separate:

$$\frac{dy}{y^n} = t^m \, \mathrm{d}t \, .$$

Integrating both sides, we get

$$\int_{y(0)}^{y} \frac{1}{r^n} dr = \int_{0}^{t} s^m ds$$
$$-\frac{1}{(n-1)y^{n-1}} + \frac{1}{(n-1)y(0)^{n-1}} = \frac{t^{m+1}}{m+1}, \quad (n \neq 1, \quad m \neq -1).$$

Then, we obtain the general solution

$$y(t) = \left[(n-1) \left(\frac{1}{(n-1)y(0)^{n-1}} - \frac{t^{m+1}}{m+1} \right) \right]^{-\frac{1}{n-1}} \quad (n \neq 1, \quad m \neq -1).$$

Next, we deal with the special cases:

i)
$$n=1, \quad m=-1$$

$$\frac{\mathrm{d}y}{y} = \frac{\mathrm{d}t}{t}$$

$$\ln|y| = \ln|t| + C$$

Finally, we obtain, with a different parameter $C' \in \mathbb{R}$,

$$y(t) = C't$$
, $t \in (-\infty, 0)$ or $t \in (0, +\infty)$.

y(0) is not defined in this case.

ii)
$$n = 1, m \neq -1$$

$$\frac{\mathrm{d}y}{y} = t^m dt$$

Integrating both sides, we get

$$\int_{y(0)}^{y} \frac{1}{r} dr = \int_{0}^{t} s^{m} ds,$$
$$\ln|y| - \ln|y(0)| = \frac{t^{m+1}}{m+1}.$$

Finally, noting that y(t) and y(0) must have the same sign, we obtain

$$y(t) = y(0)e^{\frac{t^{m+1}}{m+1}}, \quad t \in \mathbb{R}.$$

.

iii)
$$n \neq 1$$
, $m = -1$

$$\frac{\mathrm{d}y}{y^n} = \frac{\mathrm{d}t}{t}$$

Integrate both sides, we get

$$-\frac{1}{(n-1)y^{n-1}} = \ln|t| + C$$

Finally, we obtain

$$y(t) = (-(n-1)(\ln|t| + C))^{-\frac{1}{n-1}}, \quad t < -e^{-C} \text{ or } t > e^{-C}.$$

y(0) is not defined in this case.

13 a) dy/dt = -4ty

This is a homogeneous linear ODE, so we get

$$y(t) = Ce^{-2t^2}$$

Plugging into the IVP y(0) = 1, we can obtain the solution as

$$y(t) = e^{-2t^2}, \quad t \in \mathbb{R}.$$

b) $dy/dt = ty^3$

This is a separable ODE, so we can write

$$\frac{dy}{y^3} = tdt$$

$$\int_{1}^{y} \frac{1}{r^{3}} dr = \int_{0}^{t} s ds$$

The solution is

$$y(t) = (1 - t^2)^{-\frac{1}{2}}, -1 < t < 1.$$

c) (1+t)dy/dt = 4yRewrite the ODE as

$$y' = \frac{4}{t+1}y.$$

We use the "homogeneous solution formula" to get

$$y(t) = Ce^{4\ln|t+1|} = C(t+1)^4.$$

Plugging into the IVP y(0) = 1, we obtain the solution as

$$y(t) = (t+1)^4, \quad t \in \mathbb{R}.$$

14 We can rewrite this separable ODE as

$$\frac{dy}{y^2} = \frac{dt}{t^2} \quad (y, t \neq 0)$$

Integrating both sides of the above equation, we get

$$\int_{y_0}^{y} \frac{1}{\eta^2} d\eta = \int_{t_0}^{t} \frac{1}{\tau^2} d\tau$$
$$-\frac{1}{y} + \frac{1}{y_0} = -\frac{1}{t} + \frac{1}{t_0}$$

which gives

$$y(t) = \frac{t_0 y_0}{\frac{t_0 y_0}{t} - (y_0 - t_0)} = \frac{(t_0 y_0)t}{t_0 y_0 - (y_0 - t_0)t} = \frac{t}{1 - Ct} \quad \text{with} \quad C := \frac{y_0 - t_0}{t_0 y_0}.$$

Removal of the coordinate axes splits the (t, y)-plane into 4 quadrants ("small rectangles" in the parlance of the lecture), and every solution that is contained entirely in one of these quadrants must be of this form.

For t = 0 we must have y(t) = 0 (from $t^2y' = y^2$).

There is the constant solution $y(t) = 0, t \in \mathbb{R}$.

1) $t_0 = y_0 \neq 0$

$$y(t) = \begin{cases} t, & t \neq 0 \\ 0, & t = 0 \end{cases}$$

And y(0) = 0 fits with the expression y(t) = t, so we can write the solution as y(t) = t, $t \in \mathbb{R}$.

There is only one solution.

2) $t_0 = y_0 = 0$

Every solution of the ODE defined at t = 0 must satisfy y(0) = 0 (see above). The non-constant (maximal) solutions are

$$y(t) = \frac{t}{1 - Ct}, \quad C \in \mathbb{R}.$$

with domain \mathbb{R} if C = 0, $(-\infty, 1/C)$ if C > 0, and $(1/C, +\infty)$ if C < 0. In particular there are an infinite number of solutions.

- 3) $t_0 = 0, y_0 \neq 0$ This IVP contradicts y(0) = 0. Therefore, there is no solution.
- 4) $t_0 \neq 0, y_0 = 0$ The solution is

$$y(t) = 0$$

Therefore, there is only one solution.

5) $0 \neq t_0 \neq y_0 \neq 0$

$$y(t) = \frac{t}{1 - \frac{y_0 - t_0}{t_0 y_0} t}, \quad t \neq \frac{t_0 y_0}{y_0 - t_0}$$

Therefore, there is only one solution.

In conclusion, the IVP $t^2y' = y^2 \wedge y(t_0) = y_0$ has

- 1) no solution when $t_0 = 0$, $y_0 \neq 0$;
- 2) infinitely many (maximal) solutions when $t_0 = y_0 = 0$;
- 3) exactly one (maximal) solution otherwise.

Moreover, the maximal solutions are

$$\begin{split} y(t) &= 0, & t \in \mathbb{R}; \\ y(t) &= t, & t \in \mathbb{R}; \\ y_C^-(t) &= \frac{t}{1 - Ct}, & t \in (-\infty, 1/C); \\ y_C^+(t) &= \frac{t}{1 - Ct}, & t \in (1/C, +\infty). \end{split}$$

The 3rd and 4th type of solutions exist for any real number $C \neq 0$.

A better picture can be obtained by solving y = t/(1 - Ct) for C, which gives C = (y - t)/(ty) and shows that F(t, y) = (y - t)/(ty) provides a first integral for the given ODE.

From the contour plot of F you can see that all non-constant solutions that are defined at t=0 share the same tangent at (0,0). This also follows from $\frac{\mathrm{d}}{\mathrm{d}t}\frac{t}{1-Ct}=\frac{1}{(1-Ct)^2}$. Solutions $y_C^+(t)$ with C>0 fill the 4th quadrant, solutions $y_C^-(t)$ with C>0 fill the region above y=t in the 1st and 3rd quadrant, etc. All these properties can also be derived with some effort from the formulas.

Remark: With the Existence and Uniqueness Theorems now at hand, we can easily get a complete qualitive picture. Rewriting $t^2y' = y^2$ as $y^2 dt - t^2 dy = 0$, we see that the origin $(t_0, y_0) = (0, 0)$ is the only singular point, and hence that through any other point there passes precisely one integral curve (solution curve). For points $(0, y_0)$ with $y_0 \neq 0$ this is the curve t = 0, which cannot be seen from $t^2y' = y^2$, because it can be parametrized only as t(y).

15 a) The new logistic model is $y(t) = \frac{a}{d'e^{-a(t-2020)}+b}$ with a = 0.029 (natural reproduction rate of humans) and b, d' determined from $\frac{y'(2020)}{y(2020)} = a - b y(2020) = 0.0105, y(2020) = \frac{a}{d'+b} = 7.79 \times 10^9$. The solution is $b = \frac{37}{1558} \times 10^{-10}, d' = \frac{21}{1558} \times 10^{-10}$, so that

$$y(t) = \frac{0.029 \times 10^{10}}{\frac{21}{1558} e^{-0.029(t - 2020)} + \frac{37}{1558}}$$

and the limiting population is $a/b \approx 12.2$ billion people.

b) With the Hint, we want to prove that the mirror image of a solution curve w.r.t. its inflection point represents a solution as well and use the uniqueness of solutions of associated IVP's.

The function of the mirror image is

$$g(t) = \frac{a}{b} - \frac{a}{de^{-a(2t_h - t)} + b}$$

where $t_h = (\ln d - \ln b)/a$.

First, we prove that g(t) is a solution to the ODE $y' = ay - by^2$.

$$g'(t) = -\frac{a^2 de^{a(2t_h - t)}}{(de^{a(2t_h - t)} + b)^2}$$

and

$$ag(t) - bg^{2}(t) = \frac{a^{2}}{b} - \frac{a^{2}}{de^{-a(2t_{h}-t)} + b} - b(\frac{a^{2}}{b^{2}} - \frac{2a^{2}}{b(de^{-a(2t_{h}-t)} + b)} + \frac{a^{2}}{(de^{-a(2t_{h}-t)} + b)^{2}})$$

$$= \frac{-a^{2}de^{-a(2t_{h}-t)} - a^{2}b + 2a^{2}b - a^{2}b}{(de^{-a(2t_{h}-t)} + b)^{2}}$$

$$= -\frac{a^{2}de^{-a(2t_{h}-t)}}{(de^{-a(2t_{h}-t)} + b)^{2}}$$

Thus, $g'(t) = ag(t) - bg^2(t)$, which means g(t) is also a solution to the ODE $y' = ay - by^2$.

Then, we will use the uniqueness of the solution of th IVP $y' = ay - by^2 \wedge y(t_h) = a/2b$. Since the original solution curve has the inflection point $(t_h, a/2b)$, it shares the same IVP with the mirror image g(t). The logistic equation has a unique solution for any given IVP, so y(t) = g(t).

Remark: The computation can be simplified a little by using the observation that y(t) solves $y' = ay - by^2$ iff $t \mapsto y(t - t_0)$, $t_0 \in \mathbb{R}$, does.

16 a) It should be noted that the analysis in the lecture used the notation $y' = ay - by^2 - h$, where a, b, h > 0. However, the parabola $f(y) = y' = ay^2 + by + c$, a > 0, is a vertically flipped version of that considered in the lecture. This discrepancy will lead to different behaviors of the solution curves.

The discriminant is $\Delta = b^2 - 4ac$. For $\Delta \ge 0$, there are the steady-state solutions

$$y_{1} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$
$$y_{2} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

where $0 < y_1 \le y_2$.

- i) $c < b^2/4a$ If the initial condition $y(t_0)$ satisfies $y_1 < y(t_0) < y_2$, then y(t) decreases and $\lim_{t\to\infty} y(t) = y_1$. If $y(t_0) > y_2$, then y(t) increases to ∞ . If $y(t_0) < y_1$, then y(t) increases and $\lim_{t\to\infty} y(t) = y_1$.
- ii) $c = b^2/4a$ If $y(t_0) > -b/2a$, then y(t) increases to ∞ . If $y(t_0) < -b/2a$, then y(t) increases and $\lim_{t\to\infty} y(t) = y_1$.
- iii) $c > b^2/4a$ Regardless of the initial condition, y(t) will increase to ∞ .

b) i)
$$y' = y^2 - y + 1$$

Figure 1: $y' = y^2 - y + 1$

ii)
$$y' = y^2 + 2y + 1$$

Figure 2: $y' = y^2 + 2y + 1$

iii)
$$y' = y^2 + y - 2$$

Figure 3: $y' = y^2 + y - 2$

17 a) We can write

$$\frac{dz}{dt} = \beta y^{\beta - 1} \frac{dy}{dt}.$$

Then, we get

$$\frac{dy}{dt} = \frac{1}{\beta} y^{1-\beta} \frac{dz}{dt}.$$

Substituting the above expression into the ODE, we get

$$\frac{1}{\beta}y^{1-\beta}\frac{dz}{dt} = a(t)y - b(t)y^n,$$

$$z' = \beta a(t)y^{\beta} - \beta b(t)y^{n+\beta-1},$$

$$z' = \beta a(t)z - \beta b(t)y^{n+\beta-1}.$$

Then, setting $\beta = 1 - n$, we can obtain the 1st-order linear ODE

$$z' = \beta a(t)z - \beta b(t)$$

for $z(t) = y(t)^{1-n}$. Depending on n, the 1-1 correspondence between solutions of both ODEs may only hold for a smaller domain, e.g., for general n > 1 we need to restrict to y > 0 (except for certain integers n).

b) Setting $\beta = 1 - 3 = -2$, we can rewrite the ODE as

$$z' = -8z + 2.$$

The corresponding IVP is $z(0) = y(0)^{-2} = 1$. Then, we can get its solution as

$$z(t) = \frac{3}{4}e^{-8t} + \frac{1}{4}.$$

Since $z = y^{\beta} = y^{-2}$,

$$y(t) = \pm z(t)^{-\frac{1}{2}} = \pm \left(\frac{3}{4}e^{-8t} + \frac{1}{4}\right)^{-\frac{1}{2}}$$

Because y(0) = 1, we eliminate the negative solution, leaving

$$y(t) = \left(\frac{3}{4}e^{-8t} + \frac{1}{4}\right)^{-\frac{1}{2}} = \frac{2}{\sqrt{1+3e^{-8t}}}, \quad t \in \mathbb{R}.$$

c) The steady-state solution is z(t) = 1/4, corresponding to $y(t) = \pm 2$. The general solution to the ODE in b) is $y(t) \equiv 0$ and the non-constant solutions

$$y_1(t) = -\left[\left(y^{-2}(0) - \frac{1}{4}\right)e^{-8t} + \frac{1}{4}\right]^{-\frac{1}{2}},$$

and

$$y_2(t) = \left[\left(y^{-2}(0) - \frac{1}{4} \right) e^{-8t} + \frac{1}{4} \right]^{-\frac{1}{2}}.$$

 $\lim_{t\to\infty} y_1(t) = -2$, and $\lim_{t\to\infty} y_1(t) = 2$.

If the initial condition is $y(0) = y_0 < 0$, then the solution will be $y_1(t)$, so $\lim_{t\to\infty} y(t) = -2$;

if the initial condition is $y(0) = y_0 > 0$, then the solution will be $y_2(t)$, so $\lim_{t\to\infty} y(t) = 2$.

This shows that both y = -2 and y = 2 are asymptotically stable.

The third steady state solution $y(t) \equiv 0$ is unstable. This follows from the cases y(0) > 0 and y(0) < 0 covered above.

18 a) We have

$$(y + y')' = y' + y'' = y' + y = y + y',$$

 $(y - y')' = y' - y'' = y' - y = -(y - y'),$

i.e., z = y + y' satisfies z' = z and w = y - y' satisfies w' = -w. From the theory of 1st-order linear ODE's it follows that $z(x) = y(x) + y'(x) = c_1 e^x$, $w(x) = y(x) - y'(x) = c_2 e^{-x}$ for some $c_1, c_2 \in \mathbb{R}$. $\Longrightarrow y(x) = \frac{1}{2}(c_1 e^x + c_2 e^{-x}) = (c_1/2)e^x + (c_2/2)e^{-x}$, which is of the required form.

b) From the lecture recall that F is continuous on \mathbb{R} and can be differentiated under the integral sign for x > 0. Thus for x > 0 we have

$$F'(x) = -\int_0^\infty \frac{t \sin(xt)}{t^2 + 1} dt = -\int_0^\infty \frac{t^2 \sin(xt)}{t(t^2 + 1)} dt = -\int_0^\infty \frac{(t^2 + 1 - 1)\sin(xt)}{t(t^2 + 1)} dt$$
$$= -\int_0^\infty \frac{\sin(xt)}{t} dt + \int_0^\infty \frac{\sin(xt)}{t(t^2 + 1)} dt.$$

The first integral is actually independent of x, since

$$\int_0^\infty \frac{\sin(xt)}{t} = \int_0^\infty \frac{\sin s}{(s/x)x} \, \mathrm{d}s = \int_0^\infty \frac{\sin s}{s} \, \mathrm{d}s, \qquad \text{(Subst. } s = xt, \, \mathrm{d}s = x \, \mathrm{d}t)$$

and has the value $\pi/2$, as we know from the Calculus III fnal exam.

c) Differentiating the expression in b) again under the integral sign, we obtain

$$F''(x) = \int_0^\infty \frac{\mathrm{d}}{\mathrm{d}x} \frac{\sin(xt)}{t(t^2+1)} \, \mathrm{d}t = \int_0^\infty \frac{t \cos(xt)}{t(t^2+1)} \, \mathrm{d}t = \int_0^\infty \frac{\cos(xt)}{t^2+1} \, \mathrm{d}t = F(x).$$

This is justified, since

$$\left| \frac{\mathrm{d}}{\mathrm{d}x} \frac{\sin(xt)}{t(t^2 + 1)} \right| = \frac{|\cos(xt)|}{t^2 + 1} \le \frac{1}{t^2 + 1} = \Phi(t),$$

which is independent of x and integrable over $(0, \infty)$.

d) According to a) and c) we have

$$F(x) = c_1 e^x + c_2 e^{-x},$$

 $F'(x) = c_1 e^x - c_2 e^{-x}$

for some $c_1, c_2 \in \mathbb{R}$ and x > 0. Since F is continuous in 0, the first identity holds also for x = 0 and gives $c_1 + c_2 = F(0) = \int_0^\infty \frac{\mathrm{d}t}{t^2 + 1} = \pi/2$.

Since

$$\left| \frac{\sin(xt)}{t(t^2+1)} \right| \le \frac{1}{t(t^2+1)} = \Phi(t),$$

which is independent of x and integrable over $(0, \infty)$, we get

$$F'(0+) = -\frac{\pi}{2} + \int_0^\infty \lim_{x \downarrow 0} \frac{\sin(xt)}{t(t^2+1)} dt = -\frac{\pi}{2} + \int_0^\infty 0 dt = -\frac{\pi}{2}$$

On the other hand, $F'(0+) = \lim_{x\downarrow 0} (c_1 e^x - c_2 e^{-x}) = c_1 - c_2$, so that $c_1 - c_2 = -\pi/2$. It follows that $c_1 = 0$, $c_2 = \pi/2$. Hence $F(x) = (\pi/2)e^{-x}$ for $x \ge 0$ and

$$\int_0^\infty \frac{\cos t}{t^2 + 1} \, \mathrm{d}t = F(1) = \frac{\pi}{2e}.$$

Remarks: This exercise is based on a video from the Youtube channel "Flammable Maths", who's author Jens Fehlau has shot several nice videos with quite nontrivial evaluations of interesting integrals.

Since F is even, we have $F(x) = (\pi/2)e^{-|x|}$ for $x \in \mathbb{R}$. At x = 0 the function F is not differentiable, although the right-hand side of the integral representation

$$F'(x) = -\int_0^\infty \frac{t\sin(xt)}{t^2 + 1} dt, \quad \text{valid for } x \neq 0,$$

evaluates to zero at x = 0.

Numerically, $\pi/(2e) \approx 0.5778636748954609$. This differs only slightly from the Euler-Mascheroni constant $\gamma = \lim_{n \to \infty} (1 + 1/2 + 1/3 + \dots + 1/n - \ln(n)) \approx 0.5772156649015329$, so that perhaps someone who computes the integral $\int_0^\infty \frac{\cos t}{t^2 + 1} \, dt$ numerically but doesn't know about the exact evaluation is mislead to conjecture that it has the value γ .

19 First a remark on the cases $L = \pm \infty$. If (x_n) is unbounded then (and only then) for every $R \in \mathbb{R}$ there exist infinitely many indexes n such that $x_n > R$, and hence it is natural to call $+\infty$ an accumulation point of (x_n) and set $L = +\infty$ in this case. On the other hand, if (x_n) diverges to $-\infty$ then (and only then) for every $R \in \mathbb{R}$ there exist only finitely many indexes n such that $x_n > R$, but of course infinitely many indexes n such that $x_n < R$, and hence it is natural to call $-\infty$ an accumulation point of (x_n) and set $L = -\infty$ in this case, since there is no other accumulation point. The case $L = -\infty$ doesn't occur for nonnegative sequences like $x_n = \sqrt[n]{|a_n|}$.

a) Suppose the power series converges for some $z_1 \neq a$ and set $r = |z_1 - a|$, which is then > 0. Since $\sum a_n(z_1 - a)^n$ converges, there exists a constant M > 1 such that $|a_n(z_1 - a)^n| = |a_n| r^n \leq M$ for all n. Hence

$$\sqrt[n]{|a_n|} \le \frac{\sqrt[n]{M}}{r} \le \frac{M}{r}$$
 for all n ,

contradicting the unboundedness of $\sqrt[n]{|a_n|}$.

b) Assume $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 0$. Then for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|a_n| < \epsilon^n$ for n > N. Now let $z \in \mathbb{C} \setminus \{a\}$ be arbitary and r = |z - a|, i.e., $|a_n(z - a)^n| = |a_n| r^n$. Setting $\epsilon = 1/(2r)$ and denoting by N the corresponding response, we get

$$|a_n| r^n \le \left(\frac{1}{2r}\right)^n r^n = \frac{1}{2^n} \quad \text{for } n > N.$$

Since $\sum 2^{-n}$ converges, the series $\sum a_n(z-a)^n$ converges absolutely by the comparison test. In particular $\sum a_n(z-a)^n$ converges for all $z \in \mathbb{C}$ (including z=a, of course).

c) Suppose first that $z \neq a$ satisfies r = |z - a| < 1/L. Then L < 1/r, and hence there exist $\theta \in (0,1)$ and $N \in \mathbb{N}$ such that $\sqrt[n]{|a_n|} \leq \theta/r$ for all n > N. (The number θ need only satisfy $L < \theta/r < 1/r$, i.e., $\theta \in (rL,1)$. Then there can be only finitely many n such that $\sqrt[n]{|a_n|} > \theta/r$.) From this we obtain $|a_n| r^n \leq \theta^n$ for n > N and can use the comparison test with the convergent series $\sum \theta^n$ to conclude that $\sum_{n=0}^{\infty} a_n(z-a)^n$ converges.

Next suppose r = |z - a| > 1/L. Then 1/r < L, and hence $\sqrt[n]{|a_n|} > 1/r$ for infinitely many n. Thus $|a_n| r^n > 1$ for infinitely many n, implying the divergence of $\sum_{n=0}^{\infty} a_n (z - a)^n$. (Since convergence requires $|a_n| r^n \to 0$.)