Clasificación

Taller de Procesamiento de Señales

TPS Matias Vera Clasificación 1/43

Agenda

- 1 Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- **6** Support Vector Machines
- Árboles de decisión

TPS Matias Vera Clasificación 2/43

Teoría de Clasificación

Bases

Objetivo: Clasificar Y (con $|\mathcal{Y}|$ finito) a partir del valor de X: $\hat{Y} = \varphi(X)$

Función costo: Hard $\rightarrow \quad \ell(x,y) = \mathbb{1} \{ y \neq \varphi(x) \}$

Riesgo Esperado: Probabilidad de error \rightarrow $\mathbb{P}(Y \neq \varphi(X))$

TPS Matias Vera Clasificación 3 / 43

Teoría de Clasificación

Bases

Objetivo: Clasificar Y (con $|\mathcal{Y}|$ finito) a partir del valor de X: $\hat{Y} = \varphi(X)$

Función costo: Hard $\rightarrow \ell(x,y) = 1 \{ y \neq \varphi(x) \}$

Riesgo Esperado: Probabilidad de error $\rightarrow \mathbb{P}(Y \neq \varphi(X))$

Optimalidad

$$\mathbb{P}\left(Y \neq \varphi(X)\right) \geq 1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right]$$

con igualdad si y solo si $\varphi(x) = \arg \max_{y} P_{Y|X}(y|x)$.

Clasificador Bayesiano: $\varphi(x) = \arg \max_{y} P_{Y|X}(y|x)$

Error Bayesiano:
$$1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right]$$

TPS Matias Vera Clasificación 3 / 43

Clasificador bayesiano

Objetivo

Quiero buscar $\varphi(\cdot)$ que minimice $\mathbb{P}(Y \neq \varphi(X))$. Es decir aprender el "clasificador bayesiano": $\varphi(x) = \arg\max_{y} P_{Y|X}(y|x)$.

TPS Matias Vera Clasificación 4 / 43

Clasificador bayesiano

Objetivo

Quiero buscar $\varphi(\cdot)$ que minimice $\mathbb{P}(Y \neq \varphi(X))$. Es decir aprender el "clasificador bayesiano": $\varphi(x) = \arg\max_{y} P_{Y|X}(y|x)$.

Problemas numéricos

La propuesta de buscar $\varphi(\cdot)$ que minimice el riesgo empírico:

 $\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{Y_{i}\neq\varphi(X_{i})\right\}$ suele tener problemas numéricos (no derivable).

TPS Matias Vera Clasificación 4 / 43

Clasificador bayesiano

Objetivo

Quiero buscar $\varphi(\cdot)$ que minimice $\mathbb{P}(Y \neq \varphi(X))$. Es decir aprender el "clasificador bayesiano": $\varphi(x) = \arg\max_{y} P_{Y|X}(y|x)$.

Problemas numéricos

La propuesta de buscar $\varphi(\cdot)$ que minimice el riesgo empírico:

 $\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{Y_{i}\neq\varphi(X_{i})\right\}$ suele tener problemas numéricos (no derivable).

Posible solución

El clasificador bayesiano se aprenderá en dos etapas:

- Aprender toda $P_{Y|X}(y|x)$.
- Quedarse con el máximo.

TPS Matias Vera Clasificación 4 / 43

Clasificadores extremos

Clasificador bayesiano

El mejor clasificador (en términos de la probabilidad de error) es:

$$\mathbb{P}\left(Y \neq \varphi(X)\right) \geq 1 - \mathbb{E}\left[\max_{y} P_{Y|X}(y|X)\right]$$

Clasificador al azar para k clases

Cualquier clasificador razonable debe ganarle a la decisión al azar:

$$\mathbb{P}\left(Y\neq\varphi(X)\right)\leq 1-\frac{1}{k}$$

Clasificador dummy

Otro clasificador muy precario (pero mejor que el azaroso) es elegir siempre la clase más probable. La probabilidad de error del dummy es:

$$\mathbb{P}\left(Y \neq \varphi(X)\right) \leq 1 - \max_{y} P_{Y}(y)$$

TPS Matias Vera Clasificación 5 / 43

Elementos de Teoría de Información

•
$$H(X) = \mathbb{E}\left[-\log P_X(X)\right]$$
 Entropía

•
$$h(X) = \mathbb{E}\left[-\log p_X(X)\right]$$
 Entropía diferencial

•
$$H(Y|X) = \mathbb{E}\left[-\log P_{Y|X}(Y|X)\right]$$
 Entropía condicional

$$ullet h(Y|X) = \mathbb{E}\left[-\log p_{Y|X}(Y|X)
ight]$$
 Entropía diferencial condicional

•
$$\mathsf{KL}(p_X \| q_X) = \mathbb{E}\left[\log\left(\frac{p_X(X)}{q_X(X)}\right)\right]$$
 Divergencia de Kullback Leibler

•
$$I(X; Y) = KL(p_{XY} || p_X p_Y)$$
 Información Mutua

TPS Matias Vera Clasificación 6 / 43

Elementos de Teoría de Información

•
$$H(X) = \mathbb{E}\left[-\log P_X(X)\right]$$
 Entropía

•
$$h(X) = \mathbb{E}\left[-\log p_X(X)\right]$$
 Entropía diferencial

•
$$H(Y|X) = \mathbb{E}\left[-\log P_{Y|X}(Y|X)\right]$$
 Entropía condicional

$$ullet h(Y|X) = \mathbb{E}\left[-\log p_{Y|X}(Y|X)
ight]$$
 Entropía diferencial condicional

• KL
$$(p_X \| q_X) = \mathbb{E}\left[\log\left(\frac{p_X(X)}{q_X(X)}\right)\right]$$
 Divergencia de Kullback Leibler

•
$$I(X; Y) = KL(p_{XY} || p_X p_Y)$$
 Información Mutua

Teorema

$$\mathsf{KL}(P||Q) \geq 0$$

con igualdad si y solo si P(y) = Q(y) para todo $y \in \mathcal{Y}$. (*Hint*: $\log(x) \le x - 1$).

TPS Matias Vera Clasificación 6/43

Divergencia de Kullback Leibler

Propuesta inicial

Busco $\hat{P}(y|x)$ que minimice:

$$\underbrace{\mathbb{E}\left[\mathit{KL}\left(\mathit{P}_{Y|X}(\cdot|X)\|\hat{\mathit{P}}(\cdot|X)\right)\right]}_{\mathsf{Kullback Leibler}} = \underbrace{\mathbb{E}\left[-\log\hat{\mathit{P}}(Y|X)\right]}_{\mathsf{Cross-entropy}} - \underbrace{\mathit{H}(Y|X)}_{\mathsf{Entropia condicional}}$$

TPS Matias Vera Clasificación 7 / 43

Divergencia de Kullback Leibler

Propuesta inicial

Busco $\hat{P}(y|x)$ que minimice:

$$\underbrace{\mathbb{E}\left[\mathit{KL}\left(\mathit{P}_{Y|X}(\cdot|X)\|\hat{\mathit{P}}(\cdot|X)\right)\right]}_{\mathsf{Kullback}} = \underbrace{\mathbb{E}\left[-\log\hat{\mathit{P}}(Y|X)\right]}_{\mathsf{Cross-entropy}} - \underbrace{\mathit{H}(Y|X)}_{\mathsf{Entropia}\ \mathsf{condicional}}$$

Optimalidad para
$$\ell(x,y) = -\log \hat{P}(y|x)$$

$$\mathbb{E}\left[-\log \hat{P}(Y|X)\right] \geq H(Y|X)$$

son igualdad si y solo si $\hat{P}(y|x) = P_{Y|X}(y|x)$ para todo (x, y).

TPS Matias Vera Clasificación 7 / 43

Divergencia de Kullback Leibler

Propuesta inicial

Busco $\hat{P}(y|x)$ que minimice:

$$\underbrace{\mathbb{E}\left[\mathit{KL}\left(\mathit{P}_{Y|X}(\cdot|X)\|\hat{\mathit{P}}(\cdot|X)\right)\right]}_{\mathsf{Kullback}} = \underbrace{\mathbb{E}\left[-\log\hat{\mathit{P}}(Y|X)\right]}_{\mathsf{Cross-entropy}} - \underbrace{\mathit{H}(Y|X)}_{\mathsf{Entropia}\ \mathsf{condicional}}$$

Optimalidad para
$$\ell(x, y) = -\log \hat{P}(y|x)$$

$$\mathbb{E}\left[-\log \hat{P}(Y|X)\right] \geq H(Y|X)$$

son igualdad si y solo si $\hat{P}(y|x) = P_{Y|X}(y|x)$ para todo (x, y).

Mismatch de métricas

El mínimo de la cross entropy no tiene por que coincidir exactamente con el mínimo de la probabilidad de error. En general se mira la cross entropy para reducir el bias y la probabilidad de error para prevenir el overfitting.

TPS Matias Vera Clasificación 7 / 43

Función Sigmoide

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

TPS Matias Vera Clasificación 8 / 43

Función Sigmoide

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Propuesta

$$\hat{P}(1|x) = \sigma(w^T x + b)$$

$$\hat{P}(0|x) = 1 - \sigma(w^T x + b)$$

TPS Matias Vera Clasificación 8 / 43

Riesgo empírico

$$\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, Y_i) =$$

$$-\frac{1}{n} \sum_{i=1}^{n} Y_i \log \left(\sigma(w^T X_i + b) \right) + (1 - Y_i) \log \left(1 - \sigma(w^T X_i + b) \right)$$

TPS Matias Vera Clasificación 9 / 43

Riesgo empírico

$$\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, Y_i) =$$

$$-\frac{1}{n} \sum_{i=1}^{n} Y_i \log \left(\sigma(w^T X_i + b) \right) + (1 - Y_i) \log \left(1 - \sigma(w^T X_i + b) \right)$$

Elección del máximo

$$\hat{P}(1|x) \leqslant \hat{P}(0|x) \Leftrightarrow w^T x + b \leqslant 0$$

TPS Matias Vera Clasificación 9 / 43

Curvas ROC

Agregar un umbral

Puedo darle más peso a una clase:

$$w^T x + b \leq t$$

$$\mathsf{TPR} = \mathbb{P}(Y = \phi(X)|Y = 1)$$

$$\mathsf{FPR} = \mathbb{P}(Y \neq \phi(X)|Y = 0)$$

Equal Error Rate (EER)

El EER es el error para el cuál los errores FPR = 1 - TPR.

TPS Matias Vera Clasificación 10 / 43

Métricas para clases desbalanceadas

Precision-Recall

Cuando el costo de las clases está desbalanceado se utilizan las métricas *Precision* y *Recall*.

- Precision = $\mathbb{P}(Y = \phi(X)|\phi(X) = 1)$. Precision se utiliza cuando los falsos positivos tiene consecuencias graves. Por ejemplo, diagnosticar erróneamente una enfermedad a una persona sana
- Recall (TPR) = $\mathbb{P}(Y = \phi(X)|Y = 1)$. Recall se utiliza cuando cuando los falsos negativos tiene consecuencias graves. Por ejemplo, en la detección de fraudes, no detectar una transacción fraudulenta.

TPS Matias Vera Clasificación 11 / 43

Métricas para clases desbalanceadas

Precision-Recall

Cuando el costo de las clases está desbalanceado se utilizan las métricas *Precision* y *Recall.*

- Precision = $\mathbb{P}(Y = \phi(X)|\phi(X) = 1)$. Precision se utiliza cuando los falsos positivos tiene consecuencias graves. Por ejemplo, diagnosticar erróneamente una enfermedad a una persona sana
- Recall (TPR) = $\mathbb{P}(Y = \phi(X)|Y = 1)$. Recall se utiliza cuando cuando los falsos negativos tiene consecuencias graves. Por ejemplo, en la detección de fraudes, no detectar una transacción fraudulenta.

F1-score

Cuando la proporción de las clases está desbalanceada se utiliza la métrica F1:

$$F_1 = 2 \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

TPS Matias Vera Clasificación 11 / 43

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- 6 Support Vector Machines
- Árboles de decisión

TPS Matias Vera Clasificación 12 / 43

Regresión Logística Categórica (k clases)

Regresión logística clásica

$$\hat{P}(y|x) = \begin{cases} \frac{e^{w_y^T x + b_y}}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y \in \{1, \dots, k-1\} \\ \frac{1}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y = k \end{cases}$$

TPS Matias Vera Clasificación 13 / 43

Regresión Logística Categórica (k clases)

Regresión logística clásica

$$\hat{P}(y|x) = \begin{cases} \frac{e^{w_y^T x + b_y}}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y \in \{1, \dots, k-1\} \\ \frac{1}{1 + \sum_{j=1}^{k-1} e^{w_j^T x + b_j}} & y = k \end{cases}$$

Softmax

$$\hat{P}(y|x) = \frac{e^{w_j^T x + b_j}}{\sum_{i=1}^k e^{w_j^T x + b_i}}, \quad y \in \{1, \dots, k\}$$

TPS Matias Vera Clasificación 13 / 43

Regresión Logística Categórica (k clases)

Regresión logística clásica

$$\hat{P}(y|x) = \left\{ egin{array}{ll} rac{e^{w_{j}^{T} imes h b_{j}}}{1 + \sum_{j=1}^{k-1} e^{w_{j}^{T} imes h b_{j}}} & y \in \{1, \cdots, k-1\} \ \ rac{1}{1 + \sum_{j=1}^{k-1} e^{w_{j}^{T} imes h b_{j}}} & y = k \end{array}
ight.$$

Softmax

$$\hat{P}(y|x) = \frac{e^{w_y^T x + b_y}}{\sum_{i=1}^k e^{w_i^T x + b_i}}, \qquad y \in \{1, \dots, k\}$$

Riesgo empírico

$$\frac{1}{n} \sum_{i=1}^{n} \ell(X_i, Y_i) = \frac{1}{n} \sum_{i=1}^{n} \left[\log \left(\sum_{j=1}^{k} e^{w_j^T X_i + b_j} \right) - \left(w_{Y_i}^T X_i + b_{Y_i} \right) \right]$$

TPS Matias Vera Clasificación 13 / 43

Regresión Softmax

Elección del máximo

$$\arg\max_{y} \hat{P}(y|x) = \arg\max_{y} w_{y}^{T} x + b_{y}$$

Se separa con hiperplanos!

TPS Matias Vera Clasificación 14 / 43

Confusion Matrix

TPS Matias Vera Clasificación 15 / 4:

Generalización del F1 score

		Predicted				
		Airplane	≜ Boat	€ Car		
	Airplane	2	1	0		
Actual	≜ Boat	0	1	0		
	€ Car	1	2	3		

TPS Matias Vera Clasificación 16 / 43

Generalización del F1 score

		Predicted				
		Airplane	≜ Boat	Car		
	Airplane	2	1	0		
Actual	≜ Boat	0	1	0		
	⇔ Car	1	2	3		

	Label	True Positive (TP)	False Positive (FP)	False Negative (FN)	Precision	Recall	F1 Score
ST.	Airplane	2	1	1	0.67	0.67	2 * (0.67 * 0.67) / (0.67 + 0.67) = 0.67
<u></u>	Boat	1	3	0	0.25	1.00	2*(0.25 * 1.00) / (0.25 + 1.00) = 0.40
	Car	3	0	3	1.00	0.50	2 * (1.00 * 0.50) / (1.00 + 0.50) = 0.67

TPS Matias Vera Clasificación 16 / 4:

Generalización del F1 score

		Predicted				
		Airplane	≜ Boat	Car		
	Airplane	2	1	0		
Actual	≜ Boat	0	1	0		
	⇔ Car	1	2	3		

Label	True Positive (TP)	False Positive (FP)	False Negative (FN)	Precision	Recall	F1 Score
Airplane	2	1	1	0.67	0.67	2 * (0.67 * 0.67) / (0.67 + 0.67) = 0.67
≜ Boat	1	3	0	0.25	1.00	2*(0.25 * 1.00) / (0.25 + 1.00) = 0.40
⇔ Car	3	0	3	1.00	0.50	2 * (1.00 * 0.50) / (1.00 + 0.50) = 0.67

$$\mathsf{Macro-} F_1 = \frac{0.67 + 0.40 + 0.67}{3} = 0.58$$

TPS Matias Vera Clasificación 16 / 4:

Calibración

Si valido hiperparámetros con respecto a la probabilidad de error, ¿la salida siguen siendo probabilidades?

Para cada par (x, y), existe $0 \le \zeta \le \log |\mathcal{Y}|$ tal que

$$-\log \hat{P}(y|x) = -(z(x))_{y} + \log \left(1^{T} e^{z(x)}\right) = \max_{y' \in \mathcal{Y}} (z(x))_{y'} - (z(x))_{y} + \zeta$$

Esta concentración de probabilidades es buena para acercarme al clasificador bayesiano, pero puede descalibrar la interpretación probabilística de f.

Guo et al. 2017: "On Calibration of Modern Neural Networks".

TPS Matias Vera Clasificación 17 / 43

Calibración

Temperature Scaling

Se soluciona con la inclusión de un nuevo parámetro (o hiper) T > 0:

$$f(x) = \frac{e^{z(x)/T}}{1^T e^{z(x)/T}}$$

Es importante mirar la cross-entropy en la etapa de validación!

Dataset	Model	Uncalibrated	Temp. Scaling
Birds	ResNet 50	0.9786	0.8792
Cars	ResNet 50	0.5488	0.5311
CIFAR-10	ResNet 110	0.3285	0.2102
CIFAR-10	ResNet 110 (SD)	0.2959	0.1718
CIFAR-10	Wide ResNet 32	0.3293	0.2283
CIFAR-10	DenseNet 40	0.2228	0.1750
CIFAR-10	LeNet 5	0.4688	0.459
CIFAR-100	ResNet 110	1.4978	1.0442
CIFAR-100	ResNet 110 (SD)	1.1157	0.8613
CIFAR-100	Wide ResNet 32	1.3434	1.0565
CIFAR-100	DenseNet 40	1.0134	0.9026
CIFAR-100	LeNet 5	1.6639	1.6560
ImageNet	DenseNet 161	0.9338	0.8885
ImageNet	ResNet 152	0.8961	0.8657
SVHN	ResNet 152 (SD)	0.0842	0.0821
20 News	DAN 3	0.7949	0.7387
Reuters	DAN 3	0.102	0.0994
SST Binary	TreeLSTM	0.3367	0.2739
SST Fine Grained	TreeLSTM	1.1475	1.1168

Guo et al. 2017: "On Calibration of Modern Neural Networks".

TPS Matias Vera Clasificación 18 / 43

Outline

- 1 Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- Support Vector Machines
- Árboles de decisión

TPS Matias Vera Clasificación 19 / 43

Modelos Discriminativos y Generativos

Clasificación de Algoritmos

- Modelos Discriminativos: Modelan la dist. condicional $\hat{P}(y|x)$.
- Modelos Generativos: Modelan la dist. conjunta $\hat{P}(x, y)$.

Los modelos generativos permiten generar datos sintéticos!

TPS Matias Vera Clasificación 20 / 43

Modelos Discriminativos y Generativos

Clasificación de Algoritmos

- Modelos Discriminativos: Modelan la dist. condicional $\hat{P}(y|x)$.
- Modelos Generativos: Modelan la dist. conjunta $\hat{P}(x, y)$.

Los modelos generativos permiten generar datos sintéticos!

Linear Discriminant Analysis (LDA)

$$Y \sim \mathsf{Cat}(\{c_1, \cdots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma)$$

TPS Matias Vera Clasificación 20 / 43

Linear Discriminant Analysis

Expresiones Matemáticas

$$\hat{p}(x) = \sum_{k=1}^{K} c_k \frac{e^{-\frac{1}{2}(x-\mu_k)^T \Sigma^{-1}(x-\mu_k)}}{(2\pi)^{d_x/2} |\Sigma|^{1/2}}$$

$$\hat{P}(y|x) = \frac{e^{\mu_y^T \Sigma^{-1} x - \frac{1}{2} \mu_y^T \Sigma^{-1} \mu_y + \log(c_y)}}{\sum_{k=1}^K e^{\mu_k^T \Sigma^{-1} x - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log(c_k)}}$$

Relación con Regresión Logística

Si $w_y = \Sigma^{-1} \mu_y$ y $b_y = -\frac{1}{2} \mu_y^T \Sigma^{-1} \mu_y + \log(c_y)$, $\hat{P}(y|x)$ es el softmax. LDA utiliza hipótesis más fuertes ya que no solo asume $\hat{P}(y|x)$ softmax, sino también $\hat{p}(x)$ mezcla de gaussianas.

TPS Matias Vera Clasificación 21 / 43

Regresión Softmax

Elección del máximo

$$\arg\max_{y} \hat{P}(y|x) = \arg\max_{y} w_{y}^{T} x + b_{y}$$

Se separa con hiperplanos!

TPS Matias Vera Clasificación 22 / 43

Estimación Insesgada de Parámetros

Estimadores

$$\mathcal{D}_{k} = \{x_{i} : 1 \leq i \leq n \land y_{i} = k\}$$

$$c_{k} = \frac{|\mathcal{D}_{k}|}{n}$$

$$\mu_{k} = \frac{1}{|\mathcal{D}_{k}|} \sum_{x \in \mathcal{D}_{k}} x$$

$$\Sigma_{k} = \frac{1}{|\mathcal{D}_{k}| - 1} \sum_{x \in \mathcal{D}_{k}} (x - \mu_{k})(x - \mu_{k})^{T}$$

$$\Sigma = \frac{1}{n - K} \sum_{k=1}^{K} (|\mathcal{D}_{k}| - 1) \Sigma_{k}$$

TPS Matias Vera Clasificación 23 / 43

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

$$Y \sim \text{Cat}(\{c_1, \cdots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

TPS Matias Vera Clasificación 24 / 43

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

$$Y \sim \mathsf{Cat}(\{c_1, \cdots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Expresiones Matemáticas

$$\hat{p}(x) = \sum_{k=1}^{K} c_k \frac{e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1}(x-\mu_k)}}{(2\pi)^{d_x/2} |\Sigma_k|^{1/2}}$$

$$\hat{P}(y|x) = \frac{e^{-\frac{1}{2}(x-\mu_y)^T \sum_y^{-1}(x-\mu_y) + \log(c_y) - \frac{\log|\Sigma_y|}{2}}}{\sum_{k=1}^K e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1}(x-\mu_k) + \log(c_k) - \frac{\log|\Sigma_k|}{2}}}$$

TPS Matias Vera Clasificación 24 / 43

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

$$Y \sim \mathsf{Cat}(\{c_1, \cdots, c_K\}), \qquad X|Y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Expresiones Matemáticas

$$\hat{p}(x) = \sum_{k=1}^{K} c_k \frac{e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1}(x-\mu_k)}}{(2\pi)^{d_x/2} |\Sigma_k|^{1/2}}$$

$$\hat{P}(y|x) = \frac{e^{-\frac{1}{2}(x-\mu_y)^T \sum_y^{-1}(x-\mu_y) + \log(c_y) - \frac{\log|\Sigma_y|}{2}}}{\sum_{k=1}^K e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1}(x-\mu_k) + \log(c_k) - \frac{\log|\Sigma_k|}{2}}}$$

Elección del máximo

$$\arg\max_{y} \ -\frac{1}{2}(x-\mu_{y})^{T}\varSigma_{y}^{-1}(x-\mu_{y}) + \log(c_{y}) - \frac{\log|\varSigma_{y}|}{2}$$

TPS Matias Vera Clasificación 24 / 43

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- 6 Support Vector Machines
- Árboles de decisión

TPS Matias Vera Clasificación 25 / 43

Modelos Paramétricos y No Paramétricos

Clasificación de Algoritmos

- Modelos Paramétrcios: Asumen conocimiento parcial sobre la distribución, indexándola por parámetros.
- Modelos No Paramétricos: No se asume una estructura a priori para la distribución.

TPS Matias Vera Clasificación 26 / 43

Modelos Paramétricos y No Paramétricos

Clasificación de Algoritmos

- Modelos Paramétrcios: Asumen conocimiento parcial sobre la distribución, indexándola por parámetros.
- Modelos No Paramétricos: No se asume una estructura a priori para la distribución.

Histograma

El histograma asume una densidad constante por regiones. En cada región asigna $\hat{p}(x) = \frac{K}{n \cdot V}$ donde n es la cantidad de muestras totales, K la cantidad de muestras en dicha región y V el volumen de la región.

TPS Matias Vera Clasificación 26 / 43

Adaptando el concepto a aprendizaje supervisado

Asumiendo que $\hat{P}(y) = \frac{N_y}{n}$ con N_y el número de muestras de la clase y, y que (en cada región) $\hat{p}(x|y) = \frac{K_y}{N_y \cdot V}$ con K_y la cantidad de muestras que caen en la región de la clase y, se obtiene:

$$\hat{P}(y|x) = \frac{\hat{p}(x|y)\hat{P}(y)}{\sum_{i=1}^{K} \hat{p}(x|i)\hat{P}(i)} = \frac{K_y}{K}$$

Es decir, la proporción de muestras de la clase y en la región.

TPS Matias Vera Clasificación 27 / 43

Adaptando el concepto a aprendizaje supervisado

Asumiendo que $\hat{P}(y) = \frac{N_y}{n}$ con N_y el número de muestras de la clase y, y que (en cada región) $\hat{p}(x|y) = \frac{K_y}{N_y \cdot V}$ con K_y la cantidad de muestras que caen en la región de la clase y, se obtiene:

$$\hat{P}(y|x) = \frac{\hat{p}(x|y)\hat{P}(y)}{\sum_{i=1}^{K} \hat{p}(x|i)\hat{P}(i)} = \frac{K_y}{K}$$

Es decir, la proporción de muestras de la clase y en la región.

K-Vecinos más cercanos

KNN fija el valor de vecinos K y en base a esto define las regiones. Por ejemplo, la región utilizada para computar un *feature* x es la región centrada en x que posee K muestras (las K más cercanas a x).

TPS Matias Vera Clasificación 27 / 43

TPS Matias Vera Clasificación 28 / 43

Elección del máximo

Notar que para quedarse con el máximo de $\hat{P}(y|x)$ no hace falta computarla. Simplemente se clasifica según sus K vecinos más cercanos, por mayoría.

TPS Matias Vera Clasificación 28 / 43

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- 6 Support Vector Machines
- Árboles de decisión

TPS Matias Vera Clasificación 29 / 43

Clases linealmente separables

Sea la clasificación binaria $y \in \{-1,1\}$ y $z(x) = w^T \cdot x + b$ su frontera de decisión. Decimos que las clases son linealmente separables, si existen w y b tales que $y \cdot z(x) > 0$ para todo $(x,y) \in \mathcal{D}_n$ (set de entrenamiento). Llamamos $f_i(w,b) = y_i z(x_i) > 0$ con $1 \le i \le n$.

TPS Matias Vera Clasificación 30 / 43

Clases linealmente separables

Sea la clasificación binaria $y \in \{-1,1\}$ y $z(x) = w^T \cdot x + b$ su frontera de decisión. Decimos que las clases son linealmente separables, si existen w y b tales que $y \cdot z(x) > 0$ para todo $(x,y) \in \mathcal{D}_n$ (set de entrenamiento). Llamamos $f_i(w,b) = y_i z(x_i) > 0$ con $1 \le i \le n$.

• w es ortogonal a la frontera y por lo tanto $w//(x-x_*)$ con x_* la proyección ortogonal de x sobre la frontera.

$$|w^T(x-x_*)| = ||w|| ||x-x_*||$$

• Dado que x_* está sobre la frontera, $w^T(x - x_*) = z(x)$ y por lo tanto:

$$d(x) = ||x - x_*|| = \frac{|z(x)|}{||w||} = \frac{y \cdot z(x)}{||w||}$$

TPS Matias Vera Clasificación 30 / 43

Margen

Se define el margen unilateral como criterio de peor caso:

$$m(w,b) = \min_{1 \le i \le n} \frac{y_i(w^T \cdot x_i + b)}{\|w\|} = \frac{1}{\|w\|} \min_{1 \le i \le n} f_i(w,b) = \frac{f_k(w,b)}{\|w\|}$$

con k un índice óptimo (función de w y b). Por lo tanto, el problema a resolver es maximizar el margen: $\max_{w,b} m(w,b)$.

TPS Matias Vera Clasificación 31/43

Margen

Se define el margen unilateral como criterio de peor caso:

$$m(w,b) = \min_{1 \le i \le n} \frac{y_i(w^T \cdot x_i + b)}{\|w\|} = \frac{1}{\|w\|} \min_{1 \le i \le n} f_i(w,b) = \frac{f_k(w,b)}{\|w\|}$$

con k un índice óptimo (función de w y b). Por lo tanto, el problema a resolver es maximizar el margen: $\max_{w,b} m(w,b)$.

Escala

Sea $\alpha \neq 0$, está claro la decisión $z(x) \gtrless 0$ no se ve afectada si reescalamos los parámetros $w \leftarrow \alpha w$ y $b \leftarrow \alpha b$. Esto mismo ocurre con el margen $m(\alpha w, \alpha b) = m(w, b)$. Con lo cuál no se pierde generalidad al asumir $f_k(w, b) = 1$. Luego $m(w, b) = \frac{1}{||w||}$ y $f_i(w, b) \geq 1$ para todo $1 \leq i \leq n$.

Las muestras en las que $f_i(w, b) = 1$ se denominan vectores soporte.

TPS Matias Vera Clasificación 31/43

Problema de optimización

$$\min_{w,b} \frac{1}{2} ||w||^2$$
 s.t. $y_i(w^T x_i + b) \ge 1$ $(\forall \ 1 \le i \le n)$

Bishop - "Pattern Recognition and Machine Learning" Capítulo 7.

TPS Matias Vera Clasificación 32 / 43

Problema de optimización

$$\min_{w,b} \frac{1}{2} ||w||^2$$
 s.t. $y_i(w^T x_i + b) \ge 1$ $(\forall \ 1 \le i \le n)$

Relajando los márgenes

Relajar los márgenes ayuda a mitigar el problema de los outlaiers:

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \quad \text{s.t.} \quad \left\{ \begin{array}{c} y_i(w^T x_i + b) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{array} \right. \quad (\forall \ 1 \le i \le n)$$

Bishop - "Pattern Recognition and Machine Learning" Capítulo 7.

TPS Matias Vera Clasificación 32 / 43

Problema de optimización

$$\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad y_i(w^T x_i + b) \ge 1 \quad (\forall \ 1 \le i \le n)$$

Relajando los márgenes

Relajar los márgenes ayuda a mitigar el problema de los outlaiers:

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \quad \text{s.t.} \quad \left\{ \begin{array}{c} y_i(w^T x_i + b) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{array} \right. \quad (\forall \ 1 \le i \le n)$$

Generalización a fronteras no lineales

Este método es generalizable a diferentes fronteras $z(x) = w^T \phi(x) + b$. La función $k(x_1, x_2) = \phi^T(x_1)\phi(x_2)$ recibe el nombre de Kernel, siendo el más conocido el gaussiano o rbf: $k(x_1, x_2) = e^{-\gamma ||x_1 - x_2||^2}$.

Bishop - "Pattern Recognition and Machine Learning" Capítulo 7.

TPS Matias Vera Clasificación 32 / 43

Generalización a K-clases

- one-vs-one: Se toman todas las combinaciones de pares de clases (son $\frac{K(K-1)}{2}$) y se entrenan clasificadores binarios. Se clasifica seleccionando a la clase con más votos.
- one-vs-the-rest: Se entrenan K clasificadores binarios, donde cada uno toma una clase como positiva y el resto como negativa. Se clasifica según arg $\max_k w_k^T \phi(x) + b_k$.

Bishop - "Pattern Recognition and Machine Learning" Capítulo 7.

TPS Matias Vera Clasificación 33 / 43

Generalización a K-clases

- one-vs-one: Se toman todas las combinaciones de pares de clases (son $\frac{K(K-1)}{2}$) y se entrenan clasificadores binarios. Se clasifica seleccionando a la clase con más votos.
- one-vs-the-rest: Se entrenan K clasificadores binarios, donde cada uno toma una clase como positiva y el resto como negativa. Se clasifica según arg $\max_k w_k^T \phi(x) + b_k$.

Generalización a Regresión

$$\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad |w^T x_i + b - y_i| \le \epsilon \quad (\forall \ 1 \le i \le n)$$

Bishop - "Pattern Recognition and Machine Learning" Capítulo 7.

TPS Matias Vera Clasificación 33 / 43

Outline

- Introducción al problema de clasificación
- 2 Regresión Logística Binaria
- 3 Regresión Logística Categórica
- 4 Linear Discriminant Analysis
- 5 K-Vecinos más cercanos
- Support Vector Machines
- Árboles de decisión

TPS Matias Vera Clasificación 34 / 43

CART: Classification and Regression Trees

TPS Matias Vera Clasificación 35 / 43

TPS Matias Vera Clasificación 36 / 43

Modelado matemático por nodo

Llamamos:

- Q_m al conjunto de datos en el nodo m.
- $Q_m^L(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} \leq t_m\}.$
- $Q_m^R(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} > t_m\}.$
- $H(Q_m)$ a la función impureza del conjunto Q_m .
- $G_m(j_m, t_m) = \frac{|Q_m^L(j_m, t_m)|}{|Q_m|} H(Q_m^L(j_m, t_m)) + \frac{|Q_m^R(j_m, t_m)|}{|Q_m|} H(Q_m^R(j_m, t_m)).$
- ullet Busco para cada nodo $(j_m^*,t_m^*)=rg\min_{j_m,t_m} G_m(j_m,t_m)$

TPS Matias Vera Clasificación 37 / 43

Modelado matemático por nodo

Llamamos:

- Q_m al conjunto de datos en el nodo m.
- $Q_m^L(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} \leq t_m\}.$
- $Q_m^R(j_m, t_m) = \{(x, y) \in Q_m : x_{j_m} > t_m\}.$
- $H(Q_m)$ a la función impureza del conjunto Q_m .
- $G_m(j_m, t_m) = \frac{|Q_m^L(j_m, t_m)|}{|Q_m|} H(Q_m^L(j_m, t_m)) + \frac{|Q_m^R(j_m, t_m)|}{|Q_m|} H(Q_m^R(j_m, t_m)).$
- ullet Busco para cada nodo $(j_m^*,t_m^*)=rg\min_{j_m,t_m}G_m(j_m,t_m)$

Funciones impurezas habituales

Sea $p_{m,k}$ la proporción de muestras de la clase k en el nodo m:

- Gini: $H(Q_m) = \sum_k p_{m,k} (1 p_{m,k})$.
- Entropía: $H(Q_m) = \sum_k -p_{m,k} \log_2(p_{m,k})$.

TPS Matias Vera Clasificación 37 / 43

Condiciones de Parada

- Todas las observaciones tienen la misma etiqueta.
- Si la rama tiene menos de un número preestablecido de observaciones.
- Otras.

TPS Matias Vera Clasificación 38 / 43

Condiciones de Parada

- Todas las observaciones tienen la misma etiqueta.
- Si la rama tiene menos de un número preestablecido de observaciones.
- Otras.

Variables Categóricas

Dada la característica binaria de los árboles, estas variables se codifican en estructuras binarias (ej. one hot encoding).

TPS Matias Vera Clasificación 38 / 43

Condiciones de Parada

- Todas las observaciones tienen la misma etiqueta.
- Si la rama tiene menos de un número preestablecido de observaciones.
- Otras.

Variables Categóricas

Dada la característica binaria de los árboles, estas variables se codifican en estructuras binarias (ej. one hot encoding).

Importancia de cada Feautre

La *Gini Importance* se define como la disminución total de la impureza del nodo, ponderada por la probabilidad de llegar a ese nodo (normalizado).

TPS Matias Vera Clasificación 38 / 43

Problemas de regresión

Modelando la función regresión como constante por regiones, este método puede ser adaptado. Como función impureza suele usarse el error cuadrático medio:

$$H(Q_m) = \sum_{(x,y)\in Q_m} (y - \bar{y}_m)^2$$

donde \bar{y}_m es el promedio de las y en Q_m .

TPS Matias Vera Clasificación 39 / 43

Problemas de regresión

Modelando la función regresión como constante por regiones, este método puede ser adaptado. Como función impureza suele usarse el error cuadrático medio:

$$H(Q_m) = \sum_{(x,y)\in Q_m} (y - \bar{y}_m)^2$$

donde \bar{y}_m es el promedio de las y en Q_m .

Podado: Regularización

Sea T un árbol determinado (sin condiciones de parado fuertes), L(T) su respectivo conjunto de hojas y α el parámetro de complejidad. Se denomina medida de costo-complejidad a

$$H_{\alpha}(T) = \sum_{m \in L(T)} \frac{|Q_m|}{n} \cdot H(Q_m) + \alpha \cdot |L(T)|$$

La poda se basa en quedarse con el subárbol de menor costo-complejidad.

TPS Matias Vera Clasificación 39 / 43

Poda

TPS Matias Vera Clasificación 40 / 43

Poda

TPS Matias Vera Clasificación 41 / 43

Poda

- La cantidad de candidatos a óptimos es menor a la cantidad de subárboles (el T_2 nunca es el de menor costo-complejidad).
- El subárbol se elige por validación (típicamente sobre el error de clasificación) comparando todos los casos posibles (en este caso 4 candidatos).

TPS Matias Vera Clasificación 41/43

Bosques aleatorios

Bagging

El problema de los árboles de decisión es el *overfitting*. Las condiciones de stop y la poda ayudan a combatirlo, pero muchas veces no son suficiente. Es por eso que surge *Bagging*: Entrenar múltiples algoritmos y decidir por mayoría o promedio (en clasificación o regresión respectivamente). Un algoritmo de múltiples árboles se llama bosque.

¿Por que promediar?

 El promedio mantiene la esperanza y reduce la varianza en muestras i.i.d:

$$\mathbb{E}\left[\frac{1}{B}\sum_{b=1}^{B}Z_{b}\right] = \mu, \quad \operatorname{var}\left(\frac{1}{B}\sum_{b=1}^{B}Z_{b}\right) = \frac{\sigma^{2}}{B}$$

 En clasificación, si se piensan etiquetas en codificación one-hot, promediar para luego elegir el máximo equivale a elegir la respuesta mayoritaria.

TPS Matias Vera Clasificación 42 / 43

Bosques aleatorios

Se desea entrenar varios algoritmos (de manera que sean variados). Para asegurar ésto, se toman dos decisiones:

No usar todos los features

En lugar de usar todos los d_x features, para asegurar variedad en los árboles, para cada nodo se eligen al azar $\sqrt{d_x}$ features.

TPS Matias Vera Clasificación 43 / 43

Bosques aleatorios

Se desea entrenar varios algoritmos (de manera que sean variados). Para asegurar ésto, se toman dos decisiones:

No usar todos los features

En lugar de usar todos los d_x features, para asegurar variedad en los árboles, para cada nodo se eligen al azar $\sqrt{d_x}$ features.

Bootstrap

Generar B conjuntos de datos diferentes del mismo tamaño que el dataset original n. Para esto, se utiliza una técnica llamada Bootstrap: Se eligen al azar n datos del conjunto con reposición y se arma cada conjunto Bootstrap, de manera que la probabilidad que un dato no esté en el conjunto es del $\approx 37\%$:

$$\left(1-\frac{1}{n}\right)^n\to e^{-1}$$

TPS Matias Vera Clasificación 43 / 43