Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 28.04.2015r	Dzień: Wtorek								
Grupa: VII	Godzina: 12:15-15:00								
Temat ćwiczenia:									
Wzmacniacz tranzystorowy									
Dane projektowe:									
$I_{CQ} = 3.5mA$	$R_{B1} = 50.615k\Omega$	Ucc = 12V							
$K_{u12} = 100\frac{V}{V}$	$R_{B2} = 15.077k\Omega$	$C_E = 144uF$							
$R_w = 1.596k\Omega$	$R_E = 552.3\Omega$	$C_1 = C_2 = 0.9464nF$							
$R_g = 1.196k\Omega$	$R_C = 1.4867k\Omega$								
l.p	Nazwisko i imię	Oceny							
1	Arkadiusz Ziółkowski								
2	Jakub Koban								

1 Zadanie projektowe

Zaprojektować wzmacniacz tranzystorowy o zadanych parametrach:

- $I_{CQ} = 3.5mA$
- $K_{U12} = 100 \frac{V}{V}$
- $R_w = 1.6k\Omega$
- $R_g = 1.2k\Omega$

2 Obliczenia projektowe

• Dane katalogowe tranzystora (BC527 II)

$$\beta_0 = 200$$

$$\varphi_T = 26.5mV$$

$$U_{BEQ} = 0.65V$$

$$U_Y = 100V$$

• Obliczenia

$$g_m = \frac{I_{CQ}}{\varphi_T} = \frac{3. * 10^{-3}}{26.5 * 10^{-3}} = 0.1321S \tag{1}$$

$$r_{ce} = \frac{U_Y}{I_{CQ}} = \frac{100}{3.5 * 10^{-3}} = 28.571k\Omega$$
 (2)

$$\mathbf{R_C} = \left(\frac{g_m}{K_{U12}} - r_{ce}^{-1} - R_w^{-1}\right)^{-1} = \left(\frac{0.1321}{100} - (28.571^3)^{-1} - 1600^{-1}\right)^{-1} \approx \mathbf{1.5k\Omega}$$
(3)

$$Przyjmujemy \quad U_{RE} = 3*U_{BEQ} = 3*0.65 = 1.95V, \quad oraz \quad U_{CEQ} = 4.753V$$
(4)

$$\mathbf{Ucc} = I_{CQ} * R_C + U_{CEQ} + U_{RE} = 3.5 * 10^{-3} * 1500 + 4.753 + 1.95 = \mathbf{12V}$$
(5)

$$\mathbf{R_E} = \frac{U_{RE}}{I_{CO}} = \frac{1.95}{3.5 * 10^{-3}} \approx 557\Omega \tag{6}$$

$$I_{BQ} = \frac{I_{CQ}}{\beta_0} = \frac{3.5 * 10^{-3}}{200} = 1.75 * 10^{-5} A$$
 (7)

$$Przyjmujemy \quad I_{RB2} = 10 * I_{BQ} = 10 * 1.75 * 10^{-5} = 1.75 * 10^{-4} A$$
 (8)

$$I_{RB1} = I_{RB2} + U_{BQ} = 1.75 * 10^{-4} + 1.75 * 10^{-5} = 1.925 * 10^{-4} A$$
 (9)

$$\mathbf{R_{B1}} = \frac{Ucc - U_{BEQ} - U_{RE}}{I_{RB1}} = \frac{12 - 0.65 - 1.95}{1.925 * 10^{-4}} \approx 48.83 k\Omega \qquad (10)$$

$$\mathbf{R_{B2}} = \frac{U_{BEQ} + U_{RE}}{I_{RB2}} = \frac{0.65 + 1.95}{1.75 * 10^{-4}} \approx \mathbf{14.86k\Omega}$$
 (11)

3 Schemat projektowy

Rysunek 1: Schemat do symulacji projektowanego układu

4 Wyniki symulacji

Rysunek 2: Charakterystyka częstotliowściowa wzmacniacza, $C_E=144uF$

Rysunek 3: Charakterystyka częstotliowściowa wzmacniacza, $C_{\cal E}=0$

5 Część laboratoryjna

5.1 Charakterystyka częstotliwościowa wzmacniacza

Pomiary napięcia wejściowego (U_{we}) są dziesięciokrotnie zaniżone ze względu na dzielnik napięciowy znajdujący się na wejściu badanego układu.

$ m C_E=144uF, R_w=1.596[k\Omega]$									
$ m R_{g}=1.196[k\Omega]$				$ m R_{g}=0$					
f[kHz]	$U_{we}[mV]$	$\mathbf{U}_{\mathbf{w}\mathbf{y}}[\mathbf{V}]$	$\mathrm{K_{U12}}[rac{\mathrm{V}}{\mathrm{V}}]$		f[kHz]	$U_{we}[mV]$	$\mathbf{U}_{\mathbf{w}\mathbf{y}}[\mathbf{V}]$	$\mathrm{K}_{\mathrm{USK}}[rac{\mathrm{V}}{\mathrm{V}}]$	
0,25	74,0	0,398	53,73		0,15	72,8	0,210	28,85	
0,35	73,6	0,448	60,87		0,35	74,0	0,272	36,76	
0,48	73,6	0,500	67,93		0,55	73,0	0,288	39,45	
0,60	73,0	0,545	74,66		5,00	74,4	0,300	40,32	
30,00	72,5	0,569	78,48		70,00	73,6	0,300	40,76	
150,00	72,4	0,568	78,48		85,00	73,6	0,300	40,76	
330,00	74,0	0,550	74,32		220,00	74,0	0,272	36,76	
525,00	72,4	0,506	69,89		440,00	73,0	0,212	29,04	
840,00	73,6	0,442	60,05		_				
1000,00	72,0	0,392	54,44		-				
$\mathbf{R_w} = \infty$									
150,00	72,2	1,050	-		85,00	73,0	0,544	-	
$ m C_E=0, R_w=1.596[k\Omega]$									
0,06	1,44	0,138	0,96		0,06	1,44	0,122	0,85	
0,22	1,44	0,180	1,25		0,09	1,44	0,144	1,00	
50,00	1,44	0,200	1,39		0,15	1,44	0,160	1,11	
130,00	1,44	0,200	1,39		10,00	1,44	0,172	1,19	
460,00	1,44	0,180	1,25		30,00	1,44	0,172	1,19	
1000,00	1,44	0,142	0,99		515,00	1,44	0,158	1,10	
	-				785,00	1,44	0,140	0,97	
-				1150,00	1,44	0,120	0,83		
$\mathrm{R}_{\mathbf{w}}=\infty$									
130,00	1,46	0,60	-		30	1,44	0,330	_	

Rysunek 4: Charakterystyka częstotliowściowa wzmacniacza przy $C_E=144 u {\cal F}$

Z danych pomiarowych zamieszczonych w tabeli oraz powyższego wykresu możemy odczytać:

- $K_{U12} = 78.48 \frac{V}{V}$
- $\bullet \ K_{USK} = 40.76 \frac{V}{V}$
- Otrzymane na podstawie symulacji $K_{U12} = K_{USK} \approx 100 \frac{V}{V}$
- $fd_{12} \approx 0.25kHz$
- $fd_{SK} \approx 0.15kHz$
- $fd_{sim} \approx 0.2kHz$
- $fg_{12} \approx 1000kHZ$
- $fg_{SK} \approx 440kHz$
- $fg_{sim} \approx 80000kHz$

Rysunek 5: Charakterystyka częstotliowściowa wzmacniacza przy ${\cal C}_E=0$

Z danych pomiarowych zamieszczonych w tabeli oraz powyższego wykresu możemy odczytać:

- $K_{U12} = 1.39 \frac{V}{V}$
- $\bullet \ K_{USK} = 1.19 \frac{V}{V}$
- Otrzymane na podstawie symulacji $K_{U12} = K_{USK} \approx 1.37 \frac{V}{V}$
- $fd_{12} \approx 0.06kHz$
- $fd_{SK} \approx 0.06kHz$
- $fd_{sim} \approx 0.06kHz$
- $fg_{12} \approx 1000kHZ$
- $fg_{SK} \approx 1150kHz$
- $fg_{sim} > 40000kHz$

5.2 Punkt pracy tranzystora

- Dysponując zmierzonym napięciem $U_{R_E}=1.8724V$ wyznaczono $I_{EC}\approx \mathbf{I_{CQ}}=\frac{U_{R_E}}{R_E}=\frac{1.8724}{552.3}=\mathbf{3.39mA}$
- $U_{R_C} = I_{CQ} * R_C = 3.39 * 10^{-3} * 1486.7 = 5.80V$ $\mathbf{U_{CEQ}} = U_{R_C} - U_{R_E} = 5.80 - 1.8724 = \mathbf{3.93V}$

5.3 Rezystancja wyjściowa i wejściowa wzmacniacza

1.
$$C_E = 144uF$$

$$R_{wy} = \left(\frac{U_{wy(Rw=\infty}}{U_{wy}} - 1\right) * R_w\right) = \left(\frac{1.050}{0.568} - 1\right) * 1595.5 = 1.354k\Omega$$

$$R_{we} = \frac{R_{g}}{\frac{K_{U12}}{K_{USK}} - 1} - R_{wygen} = \frac{1196}{\frac{78.45}{40.76} - 1} - 50 = 1.243k\Omega$$

2.
$$C_E = 0$$

 $R_{wy} = (\frac{U_{wy(Rw=\infty}}{U_{wy}} - 1) * R_w) = (\frac{0.330}{0.172} - 1) * 1595.5 = 1.465k\Omega$
 $R_{we} = \frac{R_g}{\frac{K_{U12}}{K_{USK}} - 1} - R_{wygen} = \frac{1196}{\frac{1.39}{1.19} - 1} - 50 = 0.978k\Omega$

6 Wnioski

- Na rysunku nr 4 widać, że wzmocnienie jak i wzmocnienie skuteczne wzmacnicza jest odpowiednio o ok. 20% i 60% mniejsze od wzmocnienia otrzymanego na podstawie symulacji.
- Z tego samego wykresu można odczytać dolne i górne częstotliwości graniczne. Różnice w wartości dolnych częstotliwości granicznych wszystkich trzech przypadków przestawionych na wykresie są pomijalnie małe. Natomiast górna częstotliwość graniczna jest największa dla wyników symulacji (8MHz), dla wzmocnienia(12) układu jest osiemdziesiokrotnie mniejsza (1MHz) i dla wzmocnienia skutecznego jest najmniejsza (ok. dwukrotnie mniejsza od $fg_{K_{U12}}$, wynosi 450kHz).
- Zgodnie z rysunkiem 5. wzmocnienie nie skuteczne badanego układu zgadza się co o wartości ze wzmocnieniem otrzymanym na podstawie symulacji. Natomiast wzmocnienie skuteczne otrzymane na podstawie pomiarów jest o ok. 15% mniejsze od dwóch powyższych.

- Na rysunku nr 5 widać, że dolne częstotliwości graniczne wszystkich trzech przedstawionych przypadków są równe co do wartości. Natomiast górne częstotliwości graniczne są równe co do wartości dla badanego wzmacniacza w przypadku wzmocnienia kutecznego jak i nie skutecznego, aczkolwiem górna częstotliwość graniczna otrzymana na podstawie symulacji przyjmuje dużo większą wartość (zdecydowanie ponad 40%).
- Punkt pracy tranzystora to $I_{CQ} = 3.39 mA$ $U_{CEQ} = 3.93 V$.
- Zmierzona rezystancja wyjściowa wzmacniacza dla dwóch powmiarów przy CE=144uF i $C_E=0$ wyniosła odpowiednio $1.354k\Omega$ oraz $1.465k\Omega$. Wartości te są zgodne z obliczonyą na podstawie zmiennoprądowego schematu projektowanego wzmacniacza $1.43k\Omega$ (punkt 7.2).
- Rezystancja wejściowa obliczona na podstawie dwóch pomiarów przy CE=144uF i $C_E=0$ wyniosła odpowiednio $1.243k\Omega$ oraz $0.978k\Omega$. Są to wartości nieco niższe od obliczonej na podstawie zmiennoprądowego schematu projektowanego wzmacniacza $1.34k\Omega$.

7 Dodatki

7.1 Zdjęcie oscyloskopu

Rysunek 6: Obraz prezentuje sinusoidalny sygnał wejściowy i wyjściowy wzmacniacza bez zniekształceń

7.2 Schemat zmiennoprądowy wzmacniacza

W tej części zostały obliczone paramtery układu projektowanego na podstawie zmiennorpądowego schematu wzmacniacza w którym tranzystor zastąpiono jego modelem małosygnałowym hybryd π .

Rysunek 7: Zmiennoprądowy schemat wzmacniacza

$$c_{be} = 4.5pF \tag{12}$$

$$f_T = 150MHz \tag{13}$$

$$r_{be} = \frac{\beta_0 \varphi_T}{I_{CO}} = \frac{200 * 26.5 * 10^{-3}}{3.5 * 10^{-3}} = 1.51k\Omega$$
 (14)

$$c_{be} = \frac{g_m}{2\pi f_T} = \frac{0.1321}{2 * \pi * 15 * 10^7} = 1.4 * 10^{-10}$$
 (15)

$$R_B = \frac{R_{B1} * R_{B2}}{R_{B1} + R_{B2}} = \frac{48830 * 14860}{48830 + 14860} = 11.39k\Omega$$
 (16)

$$\mathbf{R_{we}} = \frac{R_B * r_{be}}{R_B + r_{be}} = \frac{11390 * 1510}{11390 * 1510} = \mathbf{1.34k\Omega}$$
 (17)

$$\mathbf{R_{wy}} = \frac{R_C * r_{ce}}{R_C + r_{ce}} = \frac{1500 * 28571}{1500 + 28571} = \mathbf{1.43k\Omega}$$
 (18)