笔记前言:

本笔记的内容是去掉步骤的概述后,视频的所有内容。 本猴觉得,自己的步骤概述写的太啰嗦,大家自己做笔记时, 应该每个人都有自己的最舒服最简练的写法,所以没给大家写。 再是本猴觉得,不给大家写这个概述的话,大家会记忆的更深, 掌握的更好!

所以老铁!一定要过呀!不要辜负本猴的心意! ~~~

【祝逢考必过,心想事成~~~~】

【一定能过!!!!!】

ZINOC MAZINOC MAZINOC

求极限

例1. 试求
$$\lim_{x\to 3} (x^2+3)$$

$$=3^2+3$$

例2. 试求 $\lim_{x\to 0} \sin x$

$$= \sin 0$$

= 0

求极限 —— $\frac{\infty}{\infty}$ 型

例3. 试求
$$\lim_{x \to \infty} \frac{x^{100} + x}{x^{1000} + 2x}$$
 例4. 试求 $\lim_{x \to +\infty} \frac{\ln x}{2x}$

$$= \frac{\infty^{100} + \infty}{\infty^{1000} + 2 \cdot \infty} \qquad \qquad = \frac{\ln (+\infty)}{2 \cdot (+\infty)}$$

$$= \frac{\infty}{\infty}$$

结果为 $\frac{\infty}{\infty}$,则:

方法1:只保留分子和分母中含x的指数最大的项

方法2:分子分母同时求导(洛必达法则)

例3. 试求
$$\lim_{x\to\infty} \frac{x^{100}+x}{x^{1000}+2x}$$
 (方法1)

$$= \lim_{x \to \infty} \frac{x^{100}}{x^{1000}}$$

$$= \lim_{x \to \infty} \frac{1}{x^{900}}$$

$$= \frac{1}{\infty^{900}}$$

$$= \frac{1}{\infty}$$

例4. 试求 $\lim_{x\to +\infty} \frac{\ln x}{2x}$ (方法2)

$$= \lim_{x \to +\infty} \frac{\frac{(\ln x)'}{(2x)'}}{\frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{2x}}$$

$$= \lim_{x \to +\infty} \frac{1}{2x}$$

$$= \frac{1}{2 \cdot (+\infty)}$$

$$= \frac{1}{+\infty}$$

求极限 —— $\frac{0}{0}$ 型

例5. 试求
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$

$$= \frac{\sin 2\cdot 0}{0}$$

$$= \frac{0}{0}$$

例5. 试求
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
 (方法1)
$$= \lim_{x\to 0} \frac{2x}{x}$$
 [2x\to 0 时, $\sin 2x$ 可换成 2x]
$$= \lim_{x\to 0} 2$$

$$= 2$$

例5. 试求
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
 (方法2)
$$= \lim_{x\to 0} \frac{(\sin 2x)'}{x'}$$
 详见第3课导数的表格
$$= \lim_{x\to 0} \frac{\cos 2x \cdot (2x)'}{1}$$

$$= \lim_{x\to 0} (2\cos 2x)$$

$$= 2\cos(2\cdot 0)$$

$$= 2\times 1$$

$$= 2$$

求极限 —— 1∞型

例6. 武求
$$\lim_{x\to 2} \left(\frac{x+1}{3}\right)^{\frac{2x-1}{x-2}}$$
 例7. 武求 $\lim_{x\to 0} (1+3x)^{\frac{2}{x}}$

$$= \left(\frac{2+1}{3}\right)^{\frac{2\cdot 2-1}{2-2}}$$

$$= 1^{\frac{3}{0}}$$

$$= 1^{\infty}$$

例6. 试求
$$\lim_{x\to 2} \left(\frac{x+1}{3}\right)^{\frac{2x-1}{x-2}}$$

$$= e^{\lim_{x\to 2} \frac{2x-1}{x-2} \cdot \left(\frac{x+1}{3}\right)-1}$$

$$= e^{\lim_{x\to 2} \frac{2x-1}{x-2} \cdot \frac{x-2}{3}}$$

$$= e^{\lim_{x\to 2} \frac{2x-1}{x-2} \cdot \frac{x-2}{3}}$$

$$= e^{\lim_{x\to 2} \frac{2x-1}{3}}$$

$$= e^{\lim_{x\to 0} \frac{2}{x} \cdot (1+3x-1)}$$

$$= e^{\lim_{x\to 0} \frac{2}{x} \cdot 3x}$$

$$= e^{\lim_{x\to 0} 6}$$

$$= e^{1}$$

$$= e^{1}$$

$$= e$$

结果为 $\frac{0}{0}$,则:

方法1:根据下表,把复杂项简化后再算

Δ→0时	lim式子里的复杂项	可换成
	sinΔ,tanΔ,arcsinΔ,	
	$\operatorname{arctan}\Delta, e^{\Delta} - 1, \ln(1 + \Delta)$	_ ×
	1−cos∆	$\frac{1}{2}\Delta^2$
	$(1+\Delta)^{\alpha}-1$	α·Δ
	$a^{\Delta}-1$	Δ·lna

方法2:分子分母同时求导(洛必达法则)

结果为 1[∞]型 (接近1的数[∞]):

 $\lim_{x \to ?} 底数指数 = e^{\lim_{x \to ?} 指数 \cdot (底数-1)}$

求极限 —— 0.∞ 型

例8. 试求
$$\lim_{x\to 0} (\sin 2x) \cdot \frac{1}{x}$$

$$= \sin(2 \cdot 0) \cdot \frac{1}{0}$$

$$= (\sin 0) \cdot \infty$$

$$= 0 \cdot \infty$$

 $= \lim_{x \to 0} 2$

求极限——左右极限

例9. 试证明 $\lim_{x\to 0} \frac{1}{x}$ 是否存在

① 左极限:

$$\lim_{x \to 0^{-}} \frac{1}{x}$$

$$= \frac{1}{0^{-}}$$

$$= \frac{1}{-0.000 \cdots 01}$$

$$= -\infty$$

② 右极限:

$$\lim_{x \to 0^{+}} \frac{1}{x}$$

$$= \frac{1}{0^{+}}$$

$$= \frac{1}{0.000 \cdots 01}$$

$$= +\infty$$

③ $\lim_{x\to 0} \frac{1}{x}$ 不存在

【 可能有的同学有疑问: $\lim_{x\to 0} \frac{1}{x}$ 不等于 ∞ 么? 大家记住,极限等于 ∞ , 也属于极限不存在,极限等于不为 ∞ 的数才算极限存在

结果为 $0.\infty$ 型(接近0的数 $.\infty$): 把式子变成 $\frac{?}{?}$ 的形式,它就变成 $\frac{0}{0}$ 型或 $\frac{\infty}{\infty}$ 型了

若 左极限 = 右极限 = 不为∞的数,则 函数极限存在,且函数极限 = 左极限 = 右极限;若为其他情况,则 函数极限不存在/函数没有极限

求极限 —— 已知 $f'(x_0)=?$,求某极限

例10. 已知
$$f'(x_0)=a$$
,求 $\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{h}$

$$\lim_{h \to 0} \frac{f(x_0 - 2h) - f(x_0)}{h} = f'(x_0) \cdot \lim_{h \to 0} (-2)$$

$$= a \cdot (-2)$$

$$= -2a$$

$$\lim_{\Delta \to 0} \frac{f(x_0 + \alpha \Delta) - f(x_0)}{\Delta} = f'(x_0) \cdot \lim_{\Delta \to 0} \alpha$$

$$\lim_{\Delta \to 0} \frac{f(x_0 + \alpha \Delta) - f(x_0 + \beta \Delta)}{\Delta} = f'(x_0) \cdot \left(\lim_{\Delta \to 0} \alpha - \lim_{\Delta \to 0} \beta\right)$$

例11. 已知
$$f'(1)=a$$
,求 $\lim_{h\to 0} \frac{f(1+3h)-f(1-2h)}{h}$

$$\lim_{h \to 0} \frac{f(1+3h) - f(1-2h)}{h} = f'(1) \cdot \left[\lim_{h \to 0} 3 - \lim_{h \to 0} (-2) \right]$$

$$= a \cdot [3 - (-2)]$$

1/3 分析 an 的取值范围

例1. 已知 $0 < a_1 < 2$, $a_{n+1} = \sqrt{a_n \cdot (2 - a_n)}$, 试分析 a_n 的取值范围 项1 项2

$$\sqrt{a_n \cdot (2 - a_n)} \le \frac{a_n + (2 - a_n)}{2}$$

$$\implies \sqrt{a_n\cdot(2-a_n)}\le 1$$

$$\Rightarrow$$
 $a_{n+1} \le 1$

$$\not \sqsubseteq \because a_{n+1} = \sqrt{a_n \cdot (2 - a_n)} \ge 0$$

$$\therefore 0 \le a_{n+1} \le 1$$

$$\therefore 0 \le a_n \le 1$$

2/3 证明 a_n 的极限存在

例2. 已知 $0 < a_1 < 2$, $a_{n+1} = \sqrt{a_n \cdot (2-a_n)}$, 试证明 $\lim_{n \to \infty} a_n$ 存在

$$0 \le a_n \le 1$$
 例1结果

$$a_{n+1} - a_n = \sqrt{a_n \cdot (2 - a_n)} - a_n$$

$$\because 0 \le a_n \le 1$$

$$\therefore \underline{2 - a_n} \ge 1 \ge a_n$$

$$\therefore a_n \cdot (\underline{2 - a_n}) \ge a_n \cdot \underline{a_n} = a_n^2$$

$$\therefore \sqrt{a_n \cdot (2 - a_n)} \ge \sqrt{{a_n}^2} = a_n$$

$$\therefore \sqrt{a_n \cdot (2-a_n)} \ge \sqrt{{a_n}^2} = a_n$$

$$\therefore \sqrt{a_n \cdot (2 - a_n)} - a_n \ge 0$$

∴a_n 是递增的

$$\because$$
 a_n ≤ 1

 $\lim_{n \to \infty} a_n$ 存在

3/3 夹逼定理

例3. 试求
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right)$$
 共 n 项

$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} \cdot n\right) = \lim_{n\to\infty} \frac{n}{\sqrt{n^2+1}}$$

$$= \lim_{n\to\infty} \frac{n}{\sqrt{n^2}}$$

$$= \lim_{n\to\infty} \frac{n}{n}$$

$$= \lim_{n\to\infty} 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+n}} \cdot n\right) = \lim_{n\to\infty} \frac{n}{\sqrt{n^2+n}}$$

$$= \lim_{n\to\infty} \frac{n}{\sqrt{n^2}}$$

$$= \lim_{n\to\infty} \frac{n}{n}$$

$$= \lim_{n\to\infty} 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$\frac{1}{\sqrt{n^2+1}} \cdot n > \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} > \frac{1}{\sqrt{n^2+n}} \cdot n$$

$$\frac{1}{\sqrt{n^2+1}} \cdot n > \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}) = 1$$

1/3 证明 f(x) 在某点连续

例1. 试证明
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x > 0 \\ 1, & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续

①
$$f(0)=1$$

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} 1 = 1$$

$$\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} \frac{\sin x}{x}$$

$$= \lim_{x\to 0^{+}} \frac{x}{x}$$

$$= \lim_{x\to 0^{+}} 1$$

$$= \lim_{x\to 0^{+}} 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

② ::
$$f(0) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$
 成立
:: $f(x)$ 在 $x = 0$ 处连续

2/3 已知 f(x) 在某点连续, 求未知数

例2. 若函数
$$f(x) = \begin{cases} \frac{\sin x}{ax}, & x > 0 \\ 1, & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,试求 a

①
$$f(0)=1$$

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} 1 = 1$$

$$\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} \frac{\sin x}{ax}$$

$$= \lim_{x\to 0^{+}} \frac{x}{ax}$$

$$= \lim_{x\to 0^{+}} \frac{1}{a}$$

$$= \frac{1}{a}$$
② 型 ,
$$\therefore \text{ $ \preceq \Delta \to 0$ } \text{ $ \bowtie \Delta \to \Delta$ }$$

$$\therefore \text{ $ \preceq x \to 0^{+},$ } \text{ $ \bowtie x \to 0$ } \text{ $ \bowtie x$$

(2)
$$1 = 1 = \frac{1}{a} \implies a = 1$$

3/3 间断点

例3. 试判断
$$f(x) = \begin{cases} -1, & x < 1 \\ x, & x \ge 1 \end{cases}$$
 的间断点类型

- ① 没有 sin、cos
- ② 分段点为 x=1

(3)
$$f(1) = 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-1) = -1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x = 1^{+} = 1$$

∴x=1 是间断点

$$\lim_{x\to 1^-} f(x) \neq \lim_{x\to 1^+} f(x)$$
,且均不为 ∞

∴x=1 是跳跃间断点

无穷间断点或第二类间断点(无穷)

1/5 照公式求导

, , , , , ,		
f(x)	f'(x)	例子
C A	0	(1)'=0
x ^a	a·x ^{a−1}	$(x^2)' = 2 \cdot x^{2-1} = 2x$
a ^x	a ^x ·lna	$(3^{\mathbf{x}})' = 3^{\mathbf{x}} \cdot \ln 3$
e ^x	e ^x	$(e^x)' = e^x$
log _a x	1 x·lna	$(\log_5 x)' = \frac{1}{x \cdot \ln 5}$
lnx, ln x	$\frac{1}{x}$	$(\ln x)' = \frac{1}{x}$
sinx	cosx	(sinx)'=cosx
cosx	-sinx	$(\cos x)' = -\sin x$
tanx	$\frac{1}{\cos^2 x}$	$(\tan x)' = \frac{1}{\cos^2 x}$
arcsinx	$\frac{1}{\sqrt{1-x^2}}$	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$
arccosx	$-\frac{1}{\sqrt{1-x^2}}$	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$
arctanx	$\frac{1}{1+x^2}$	$(\operatorname{arctanx})' = \frac{1}{1+x^2}$
arccotx	$-\frac{1}{1+x^2}$	$(\operatorname{arccotx})' = -\frac{1}{1+x^2}$

常用组合公式:

①
$$(u \pm v)' = u' \pm v'$$
如: $(x^2 + 3^x)' = (x^2)' + (3^x)'$
② $(Cu)' = Cu'$
如: $(3x^2)' = 3 \cdot (x^2)'$
③ $(uv)' = u'v + uv'$
如: $(x^2 \cdot 3^x)' = (x^2)' \cdot 3^x + x^2 \cdot (3^x)'$
④ $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
如: $\left(\frac{x^2}{3^x}\right)' = \frac{(x^2)' \cdot 3^x - x^2 \cdot (3^x)'}{(3^x)^2}$
⑤ 若已知 $[a(x)]' = b(x)$
则 $\{a[h(x)]\}' = b[h(x)] \cdot [h(x)]'$
如:已知 $(\sin x)' = \cos x$
则 $[\sin h(x)]' = \cos h(x) \cdot [h(x)]'$
像 $(\sin e^x)' = \cos e^x \cdot (e^x)'$
 $(\sin x^2)' = \cos x^2 \cdot (x^2)'$

2/5 隐函数求导

例1. 若 y=y(x) 由 $y^3-x^2+y=0$ 确定,则 $y'=____, y''=_____$ 。

$$y^{3}(x) - x^{2} + y(x) = 0$$

$$[y^{3}(x) - x^{2} + y(x)]' = 0$$

$$x - 0' = 0$$

$$y^{3}(x)|' - (x^{2})' + |y(x)|' = 0$$

$$x - 0' = 0$$

$$x - 0$$

3/5 参数方程求导

例2. 设
$$\begin{cases} x = 1 + t^2 \\ y = \cos t \end{cases}$$
,则 $y' = \underline{\qquad}$, $y'' = \underline{\qquad}$ 。

$$y' = \frac{y'(t)}{x'(t)}$$
$$y'' = \frac{y' \forall t x 导的结果}{x'(t)}$$

$$y' = \frac{y'(t)}{x'(t)}$$

$$= \frac{(\cos t)'}{(1+t^2)'}$$

$$= \frac{-\sin t}{2t}$$

$$y'' = \frac{y' \forall t x$$
 导的结果
$$x'(t)$$

$$= \frac{\left(\frac{-\sin t}{2t}\right)'}{(1+t^2)'} \qquad \qquad \because \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$= \frac{\left(-\sin t\right)' \cdot 2t - \left(-\sin t\right) \cdot (2t)'}{(2t)^2}$$

$$= \frac{\left(-\sin t\right)' \cdot 2t - \left(-\sin t\right) \cdot (2t)'}{2t}$$

$$= \frac{-2t \cdot \cos t + 2\sin t}{4t^2}$$

$$= \frac{-t \cdot \cos t + \sin t}{4t^3}$$

4/5 求极值、最值

例3. 若 y=y(x) 由 $y^3 - x^2 + y = 0$ 确定, 试求其极值

①
$$y' = \frac{2x}{3y^2 + 1}$$
, $y'' = \frac{6y^2 + 2 - 12xyy'}{(3y^2 + 1)^2}$ 例1求过

③ 将
$$x=0$$
 代入 $y^3 - x^2 + y = 0$ 中,

可得:
$$y^3 - 0^2 + y = 0$$

$$\Longrightarrow$$

$$y^3 + y = 0$$

$$\Rightarrow$$

$$y \cdot (y^2 + 1) = 0$$

$$\Longrightarrow$$

$$\mathbf{v} = 0$$

代入 y"=
$$\frac{6y^2+2-12xyy'}{(3y^2+1)^2}$$
中,

可得:
$$y'' = \frac{6 \cdot 0^2 + 2 - 12 \cdot 0 \cdot 0 \cdot 0}{(3 \cdot 0^2 + 1)^2} = 2 > 0$$

: 极小值点为(0,0), 极小值为 0

5/5 求凹凸区间与拐点

例4. 求曲线 y=ln(x²+1) 的凹凸区间和拐点

$$y' = [\ln(x^{2} + 1)]'$$

$$= \frac{2x}{x^{2} + 1}$$

$$[\ln(x^{2} + 1)]' = ?$$

$$\therefore (\ln x)' = \frac{1}{x}$$

$$\therefore [\ln h(x)]' = \frac{1}{h(x)} \cdot h'(x)$$

$$\therefore [\ln(x^{2} + 1)]' = \frac{1}{x^{2} + 1} \cdot (x^{2} + 1)'$$

$$= \frac{1}{x^{2} + 1} \cdot [(x^{2})' + 1']$$

$$= \frac{1}{x^{2} + 1} \cdot (2x + 0)$$

$$= \frac{2x}{x^{2} + 1}$$

$$y'' = (y')'$$

$$= \left(\frac{2x}{x^2 + 1}\right)'$$

$$= \frac{(2x)' \cdot (x^2 + 1) - 2x \cdot (x^2 + 1)'}{(x^2 + 1)^2} \qquad \therefore \left(\frac{2x}{x^2 + 1}\right)' = \frac{(2x)' \cdot (x^2 + 1) - 2x \cdot (x^2 + 1)'}{(x^2 + 1)^2}$$

$$= \frac{2 \cdot (x^2 + 1) - 2x \cdot \left[(x^2)' + 1'\right]}{(x^2 + 1)^2}$$

$$= \frac{2x^2 + 2 - 2x \cdot (2x + 0)}{(x^2 + 1)^2}$$

$$= \frac{2 - 2x^2}{(x^2 + 1)^2}$$

凸区间:满足 $\frac{2-2x^2}{(x^2+1)^2}$ < 0的区间

$$\Rightarrow 2-2x^2 < 0 \Rightarrow x^2 > 1 \Rightarrow x > 1 \stackrel{?}{\Longrightarrow} x < -1$$

凸区间为 (1,+∞)U(-∞,-1)

凹区间:满足 $\frac{2-2x^2}{(x^2+1)^2} > 0$ 的区间

$$\Rightarrow 2 - 2x^2 > 0 \Rightarrow x^2 < 1 \Rightarrow -1 < x < 1$$

凹区间为 (-1,1)

拐点: x=-1 和 x=1 所对应的点

$$y = \ln(x^2 + 1)$$

∴
$$x=-1$$
 时, $y = ln[(-1)^2+1] = ln2$

对应的点为(-1,ln2)

$$x=1 \text{ ff}, y = \ln(1^2 + 1) = \ln 2$$

对应的点为(1,ln2)

方法:求 y"

凸区间:满足y"<0的区间

凹区间:满足y">0的区间

拐点:凹凸区间交界的点

不定积分——猜

则
$$\int b = a + C$$

比如:

$$(x^2)' = 2x$$

$$\int 2x \, dx = x^2 + C$$

$$(\sin x)' = \cos x$$

$$\int \cos x \, dx = \sin x + C$$

$$(e^x)' = e^x$$

$$\int e^x dx = e^x + C$$

$$\int x^3 dx = \frac{1}{4}x^4 + C$$

$$(x^4)' = 4 \cdot x^3$$

$$\left(\frac{1}{4}x^4\right)' = \frac{1}{4} \cdot 4 \cdot x^3 = x^3$$

不定积分——套公式法

f(x)	$\int f(x) dx$
k	kx+C
$\alpha \cdot x^{\alpha-1}$	$x^{\alpha}+C$
$\frac{1}{x}$	ln x +C
a ^x	$\frac{a^{x}}{\ln a}$ +C
e ^x	e ^x +C
cosx	sinx+C
sinx	-cosx+C
$tanx = \frac{sinx}{cosx}$	-ln cosx +C
$\frac{1}{\cos x}$	$\ln \left \frac{1}{\cos x} + \frac{\sin x}{\cos x} \right + C$
$cotx = \frac{cosx}{sinx}$	ln sinx +C
1 sinx	$-\ln\frac{1+\cos x}{\sin x}+C$
$\frac{1}{\cos^2 x}$	tanx+C

f(x)	$\int f(x) dx$
$\frac{1}{\sin^2 x}$	-cotx+C
$\frac{\sin x}{\cos^2 x}$	$\frac{1}{\cos x}$ +C
$\frac{\cos x}{\sin^2 x}$	$-\frac{1}{\sin x}+C$
$\frac{1}{a^2+x^2}$	$\frac{1}{a}$ · arctan $\frac{x}{a}$ + C
$\frac{1}{a^2-x^2}$	$\frac{1}{2a} \cdot \ln \left \frac{a+x}{a-x} \right + C$
$\frac{1}{\sqrt{a^2-x^2}}$	$\arcsin \frac{x}{a} + C$
$\frac{1}{\sqrt{x^2 \pm a^2}}$	$\ln\left x + \sqrt{x^2 \pm a^2}\right + C$

常用公式①: ∫k·U=k·∫U

如:
$$\int 3 \cdot e^x dx = 3 \cdot \int e^x dx$$

常用公式②: ∫(U±V)=∫U±∫V

如:
$$\int (a^x + e^x) dx = \int a^x dx + \int e^x dx$$

求多个sin、cos相乘式子的积分时,常用的小技巧:

A.
$$\sin\alpha \cdot \cos\beta = \frac{1}{2} \cdot [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

B.
$$\sin\alpha \cdot \sin\beta = -\frac{1}{2} \cdot [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

प्रा:
$$\int \sin\frac{x}{2} \cdot \sin\frac{x}{2} dx = \int -\frac{1}{2} \cdot \left[\cos\left(\frac{x}{2} + \frac{x}{2}\right) - \cos\left(\frac{x}{2} - \frac{x}{2}\right) \right] dx$$
$$= \int -\frac{1}{2} \cdot (\cos x - 1) dx$$

C.
$$\cos\alpha \cdot \cos\beta = \frac{1}{2} \cdot [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

如:
$$\int \cos\frac{x}{2} \cdot \cos\frac{x}{2} dx = \int \frac{1}{2} \cdot \left[\cos\left(\frac{x}{2} + \frac{x}{2}\right) + \cos\left(\frac{x}{2} - \frac{x}{2}\right) \right] dx$$
$$= \int \frac{1}{2} \cdot (\cos x + 1) dx$$

不定积分——第一类换元法

复杂部分

例1. 计算∫2x·e^{x²}dx

$$2x \cdot e^{x^2} du = \frac{1}{2x} du$$

$$\int 2x \cdot e^{x^2} dx = \int 2x \cdot e^{x^2} \cdot \frac{1}{2x} du$$

$$= \int e^{x^2} du$$

$$= \int e^u du$$

$$= e^u + C$$

 $=e^{x^2}+C$

不定积分——第二类换元法

例2. 计算 $\int \frac{dx}{(x-1)\cdot\sqrt{(x-1)^2-1^2}}$

原式 =
$$\int \frac{\frac{a \cdot \sin t}{\cos^2 t} dt}{\left(\frac{a}{\cos t} - c - 1\right) \cdot \sqrt{\left(\frac{a}{\cos t} - c - 1\right)^2 - 1}}$$

$$= \int \frac{\frac{1 \cdot \sin t}{\cos^2 t} dt}{\left(\frac{1}{\cos t} - (-1) - 1\right) \cdot \sqrt{\left(\frac{1}{\cos t} - (-1) - 1\right)^2 - 1}}$$

$$= \int \frac{\frac{\sin t}{\cos^2 t} dt}{\frac{1}{\cos t} \cdot \sqrt{\left(\frac{1}{\cos t}\right)^2 - 1}}$$

$$= \int \frac{\cos^2 t \cdot \frac{\sin t}{\cos^2 t} dt}{\cos^2 t \cdot \frac{1}{\cos t} \cdot \sqrt{\frac{1}{\cos^2 t} - 1}}$$

$$= \int \frac{\sin t dt}{\cos t \cdot \sqrt{\frac{1 - \cos^2 t}{\cos^2 t}}}$$

$$= \int \frac{\sin t dt}{\cot t}$$

$$= \int \frac{\sin t dt}{\cot t}$$

式子中 $(x+c)^2+a^2$ 、 $(x+c)^2-a^2$ 、 $a^2-(x+c)^2$ 时, 用第二类换元法可能会简单

被积分的 式子中有	方法
$(x+c)^2+a^2$	$ \Rightarrow x = a \cdot tant - c $ $ dx = \frac{a}{\cos^2 t} dt $
$\frac{(x+c)^2-a^2}{}$	$x = \frac{a}{\cos t} - c$ $dx = \frac{a \cdot \sin t}{\cos^2 t} dt$
$a^2 - (x+c)^2$	$ \Rightarrow x = a \cdot sint - c dx = a \cdot cost dt $
	式子中有 $(x+c)^2+a^2$ $(x+c)^2-a^2$

$$= \int \frac{\sin t \, dt}{\cos t \cdot \sqrt{\frac{\sin^2 t}{\cos^2 t}}}$$

$$= \int \frac{\sin t \, dt}{\cos t \cdot \frac{\sin t}{\cos t}}$$

$$= \int \frac{\sin t \, dt}{\sin t}$$

$$= \int 1 \, dt$$

$$= t + C$$

$$\therefore x = \frac{1}{\cos t} - (-1)$$

$$\Rightarrow x = \frac{1}{\cos t} + 1$$

$$\Rightarrow \cos t \cdot x = 1 + \cos t$$

$$\Rightarrow \cot \cdot x - \cot t = 1$$

$$\Rightarrow \cot \cdot (x - 1) = 1$$

∴ \mathbb{R} 式 = t + C = $\arcsin \frac{1}{x-1}$ + C

考试时题干可能先转化一下才能看出来 比如:计算 $\int \frac{dx}{(x-1)\cdot\sqrt{x^2-2x}}$ $\underline{x^2 - 2x} = x^2 - 2x + 1 - 1$ $= (x-1)^2 - 1^2$

不定积分——分部积分法

例3. 计算∫e^x·x dx

① 设 $U' = e^x$, V = x

② V' = x' = 1

$$U = \int e^x dx = e^x$$

$$3) \int e^{x} \cdot x \, dx = e^{x} \cdot x - \int e^{x} \cdot 1 \, dx$$

$$= e^{x} \cdot x - \int e^{x} \, dx$$

$$= e^{x} \cdot x - (e^{x} + C)$$

$$= e^{x} \cdot x - e^{x} - C$$

$$= e^{x} \cdot x - e^{x} + C$$

例4. 计算 ∫ lnx dx

① $\int \ln x \, dx = \int 1 \cdot \ln x \, dx$ = $\int x^0 \cdot \ln x \, dx$ 设 $U' = x^0 = 1$, $V = \ln x$

②
$$V' = (\ln x)' = \frac{1}{x}$$
, $U = \int U' dx = \int 1 dx = x$

③ $\int 1 \cdot \ln x \, dx = x \cdot \ln x - \int x \cdot \frac{1}{x} \, dx$ $= x \cdot \ln x - \int 1 \, dx$ $= x \cdot \ln x - (x + C)$ $= x \cdot \ln x - x - C$ $= x \cdot \ln x - x + C$

设 U' 的顺序: a^x、sin/cos、x^a ∫U'·V=U·V−∫U·V'

计算定积分——普通定积分

$$\int 2x \, dx = x^2 + C$$

$$\implies \int_{2}^{3} 2x \, dx = x^{2}|_{x=3} - x^{2}|_{x=2} = 3^{2} - 2^{2} = 5$$

$$\int e^x dx = e^x + C$$

$$\implies \int_{2}^{3} e^{x} dx = e^{x}|_{x=3} - e^{x}|_{x=2} = e^{3} - e^{2}$$

 $\int_0^1 \sqrt{1-x^2} \, dx = x=0$ 、x=1之间 f(x) 同 x轴 之间图像的面积

 $f(x) = b + \sqrt{a^2 - (x - c)^2}$: 圆心为 (c,b)、半径为 a 的上半圆

$$f(x) = b - \sqrt{a^2 - (x - c)^2}$$
: 圆心为 (c,b) 、半径为 a 的下半圆

性质1:

若
$$\int f(x) dx = F(x) + C$$
,

则
$$\int_a^b f(x) dx = F(b) - F(a)$$

性质2:

$$\int_a^b f(x) dx = x = a$$
、 $x = b$ 之间 $f(x)$ 同 x 轴 间图像的面积

性质2:

 $\int_{a}^{b} f(x) dx = x=a$ 、x=b之间 f(x) 同 x轴 间图像的面积

①
$$f(x)$$
 为奇函数时, $\int_{-a}^{a} f(x) dx = 0$

奇函数:满足f(-x)=-f(x)的函数

$$f(x) = xe^{-|x|}$$

$$f(-x) = -xe^{-|-x|}$$

$$=-xe^{-|x|}$$

$$f(-x) = -f(x)$$

$$\int_{-2}^{2} x e^{-|x|} \, dx = 0$$

$$\int_{-3}^{3} x e^{-|x|} \, dx = 0$$

$$\int_{-10086}^{10086} x e^{-|x|} dx = 0$$

性质2:

 $\int_a^b f(x) dx = x=a$ 、x=b之间 f(x) 同 x轴 间图像的面积

② f(x) 为偶函数时, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

偶函数:满足
$$f(-x)=f(x)$$
的函数

$$f(x) = |x|$$

$$f(-x) = |-x|$$

$$= |x|$$

|x|是个偶函数

$$\int_{-2}^{2} |x| \, dx = 2 \int_{0}^{2} |x| \, dx$$

$$|x| 有时为 x, 有时为 - x$$

$$= 2 \int_{0}^{2} x \, dx$$

③
$$\int_{a}^{a+b+c} f(x) dx = \int_{a}^{a+b} f(x) dx + \int_{a+b}^{a+b+c} f(x) dx$$

【如: $\int_{2}^{5} f(x) dx = \int_{2}^{3} f(x) dx + \int_{3}^{5} f(x) dx$ 】

④ 若 f(x) 是以 T 为周期的周期函数,

则
$$\int_a^{a+T} f(x) dx = \int_0^T f(x) dx$$

$$[\![\!] t] : \int_{1/\mathbb{Z}}^{1/\mathbb{Z}+2\pi} \sin x \, dx = \int_{0}^{2\pi} \sin x \, dx \,]\!]$$

【注意: $\sin ax/\cos ax$ 的周期为 $\frac{2\pi}{a}$ 】

计算定积分——变限积分

例1. 试求 $\left[\int_{x}^{e^{-x}} f(t) dt\right]'$

$$\begin{aligned} [\int_{x}^{e^{-x}} f(t) \ dt]' &= f(e^{-x}) \cdot (e^{-x})' - f(x) \cdot x' \\ &= f(e^{-x}) \cdot e^{-x} \cdot (-1) - f(x) \cdot 1 \\ &= -f(e^{-x}) \cdot e^{-x} - f(x) \end{aligned}$$

$$\left(\int_{h(x)}^{g(x)} f(t) dt\right)' = f[g(x)] \cdot g'(x) - f[h(x)] \cdot h'(x)$$

$$\begin{split} \left(\int_{h(x)}^{g(x)} k(x) \cdot f(t) \, dt\right)' &= \left(k(x) \cdot \int_{h(x)}^{g(x)} f(t) \, dt\right)' \\ &= k'(x) \cdot \int_{h(x)}^{g(x)} f(t) \, dt + k(x) \cdot \left(\int_{h(x)}^{g(x)} f(t) \, dt\right)' \end{split}$$

例2. 试求 $\left[\int_{x}^{e^{-x}} x \cdot f(t) dt\right]'$

$$\begin{split} [\int_{x}^{e^{-x}} x \cdot f(t) \ dt]' &= \left(x \cdot \int_{x}^{e^{-x}} f(t) \ dt \right)' \\ &= x' \cdot \int_{x}^{e^{-x}} f(t) \ dt + x \cdot \left(\int_{x}^{e^{-x}} f(t) \ dt \right)' \\ &= x' \cdot \int_{x}^{e^{-x}} f(t) \ dt + x \cdot \left[-f(e^{-x}) \cdot e^{-x} - f(x) \right] \\ &= \int_{x}^{e^{-x}} f(t) \ dt - x \cdot f(e^{-x}) \cdot e^{-x} - x f(x) \end{split}$$

计算定积分 —— 利用定积分求面积

例3. 求 $y=1-x^2$ 与 x 轴正半轴、y 轴正半轴围成区域的面积

所求面积 =
$$\int_{\mathbf{x}_{/\!\!\!\perp}}^{\mathbf{x}_{/\!\!\!\perp}} (\mathbf{y}_{\perp} - \mathbf{y}_{\top}) \, d\mathbf{x}$$

$$x_{\pm}=1$$
, $x_{\pm}=0$ $y_{\pm}=1-x^2$, $y_{\mp}=0$

所求面积 =
$$\int_0^1 (1 - x^2 - 0) dx$$

= $\int_0^1 (1 - x^2) dx$
= $\left(x - \frac{x^3}{3}\right)\Big|_0^1$
= $1 - \frac{1^3}{3} - \left(0 - \frac{0^3}{3}\right)$
= $\frac{2}{3} - 0$
= $\frac{2}{3}$

例4. 求 $y^2=x$ 与 y=x-2 围成区域的面积

所求面积 =
$$\int_{-1}^{2} (y+2-y^2) dy$$

= $\left(\frac{y^2}{2} + 2y - \frac{y^3}{3}\right)\Big|_{-1}^{2}$
= $\left(\frac{2^2}{2} + 2 \times 2 - \frac{2^3}{3}\right) - \left[\frac{(-1)^2}{2} + 2 \times (-1) - \frac{(-1)^3}{3}\right]$
= $\frac{10}{3} - \left(-\frac{7}{6}\right)$
= $\frac{9}{2}$

计算定积分 —— 利用定积分求体积

例5. 由 $y=1-x^2$ 与 x 轴正半轴、y 轴正半轴所围成区域的图形,绕 x=-2 旋转一周生成一个旋转体,求其体积

$$V = \int_{c}^{d} \pi [f(y) - a]^{2} dy - \int_{c}^{d} \pi [g(y) - a]^{2} dy$$

$$V = \int_0^1 \pi \left[\frac{\sqrt{1 - y}}{-} - (-2) \right]^2 dy - \int_0^1 \pi \left[0 - (-2) \right]^2 dy$$

$$= \pi \int_0^1 (1 - y + 4\sqrt{1 - y} + 4) dy - 4\pi \int_0^1 1 dy$$

$$= \pi \cdot \left(\int_0^1 5 dy - \int_0^1 y dy + 4 \int_0^1 \sqrt{1 - y} dy \right) - 4\pi \int_0^1 1 dy$$

$$= \pi \cdot \left(5 - \frac{1}{2} + \frac{8}{3} \right) - 4\pi$$

$$= \frac{19}{6} \pi$$

例6. 由 $y=1-x^2$ 与 x 轴正半轴、y 轴正半轴所围成区域的图形,绕 y=-1 旋转一周生成一个旋转体,求其体积

c=0 d=1 $f(x)=1-x^2$ g(x)=0 a=-1 (由转轴可得)

$$V = \int_0^1 \pi [1 - x^2 - (-1)]^2 dx - \int_0^1 \pi [0 - (-1)]^2 dx$$

$$= \int_0^1 \pi (2 - x^2)^2 dx - \int_0^1 \pi \cdot 1^2 dx$$

$$= \pi \int_0^1 (4 - 4x^2 + x^4) dx - \pi \int_0^1 1 dx$$

$$= \pi \left(\int_0^1 4 dx - \int_0^1 4x^2 dx + \int_0^1 x^4 dx \right) - \pi \cdot 1$$

$$= \pi \cdot \left(4 - \frac{4}{3} + \frac{1}{5} \right) - \pi$$

$$= \frac{28}{15} \pi$$

微分方程 ——一阶(只有y')

例1. 试求
$$x \cdot y' - \frac{1}{\sin y} = 0$$
 的通解

$$x \cdot \frac{dy}{dx} - \frac{1}{\sin y} = 0$$

$$\frac{x \, dy}{dx} = \frac{1}{\sin y}$$

$$x \sin y \, dy = 1 \, dx$$

$$\sin y \, dy = \frac{1}{x} \, dx$$

$$\int \sin y \, dy = \int \frac{1}{x} \, dx$$

$$-\cos y + C_1 = \ln|x| + C_2$$

$$\cos y = -\ln|x| + C_1 - C_2$$

$$\cos y = -\ln|x| + C$$

例2. 试求 $x \cdot y' + y = 0$ 的通解

$$x \cdot \frac{dy}{dx} + y = 0$$

$$\frac{x \cdot dy}{dx} = -y$$

$$x \cdot dy = -y \cdot dx$$

$$\frac{1}{y} \cdot dy = -\frac{1}{x} \cdot dx$$

$$\int \frac{1}{y} \cdot dy = \int \left(-\frac{1}{x}\right) dx$$

$$\ln|y| + C_1 = -\int \frac{1}{x} dx$$

$$\ln|y| + C_1 = -(\ln|x| + C_2)$$

$$\ln|y| = (-C_2 - C_1) - \ln|x|$$

$$\ln|y| = C_3 - \ln|x|$$

$$\left[\because \ln e^a = a\right]$$

$$\therefore \ln|y| = \ln e^{C_3} - \ln|x|$$

$$\left[\because \ln a - \ln b = \ln \frac{a}{b}\right]$$

$$\therefore \ln|y| = \ln \frac{e^{C_3}}{|x|}$$

$$\ln|y| = \ln \frac{e^{C_3}}{x}$$

$$\ln|y| = \frac{e^{C_3}}{x}$$

$$y = \pm \frac{e^{C_3}}{x}$$

$$y = \frac{e^{C_3}}{x}$$

$$y = \frac{e^{C_3}}{x}$$

$$y = \frac{e^{C_3}}{x}$$

$$y = \frac{e^{C_3}}{x}$$

 $\therefore y = \frac{C}{x}$

例3. 试求
$$y' = \frac{y}{x} + \frac{1}{\sin \frac{y}{x}}$$
 的通解
$$\frac{dy}{dx} = \frac{y}{x} + \frac{1}{\sin \frac{y}{x}} \quad \diamondsuit \frac{y}{x} = Y, \frac{dy}{dx} = Y + x \frac{dY}{dx}$$

$$Y + x \frac{dY}{dx} = Y + \frac{1}{\sin Y}$$

$$x \frac{dY}{dx} = \frac{1}{\sin Y} \quad (例1做过)$$

$$\cos Y = -\ln|x| + C \implies \cos \frac{y}{x} = -\ln|x| + C$$

例4. 試求
$$y' + y = x$$
 的通解
$$\frac{dy}{dx} + y = x$$

$$\frac{dy}{dx} = x - 1 \cdot y \qquad Q(x) = x, \quad P(x) = 1$$

$$y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right]$$

$$= e^{-\int 1dx} \left(\int xe^{\int 1dx} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} dx + C \right)$$

$$= e^{-x} \left(\int x \cdot (e^{x})' dx + C \right)$$

$$= e^{-x} \left(\int x \cdot (e^{x})' dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int x' \cdot e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int x' \cdot e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int x' \cdot e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x} \left(\int xe^{x} - \int e^{x} dx + C \right)$$

$$= e^{-x}$$

微分方程——可降阶的高阶

例5. 试求
$$y'' + y' = x$$
 的通解

令 y'=Y、y"'=Y'
$$y" + y' = x \Rightarrow Y' + Y = x \quad (例4做过)$$

$$Y = x - 1 + Ce^{-x}$$

$$y = \int (x - 1 + Ce^{-x}) dx$$

$$= \int x dx - \int 1 dx + \int Ce^{-x} dx$$

$$= \frac{1}{2}x^2 + C_1 - (x + C_2) + C_3 \cdot \int e^{-x} dx$$

$$= \frac{1}{2}x^2 - x + (C_1 - C_2) + C_3 \cdot (-e^{-x} + C_4)$$

$$= \frac{1}{2}x^2 - x - C_3 \cdot e^{-x} + (C_1 - C_2 + C_3C_4)$$

$$= \frac{1}{2}x^2 - x - C_3 \cdot e^{-x} + C_5$$

$$= \frac{1}{2}x^2 - x + C_1 \cdot e^{-x} + C_2$$

例6. 试求 $yy'' + (y')^2 = 0$ 的通解

$$y' = \frac{C}{y}$$

$$\frac{dy}{dx} = \frac{C}{y}$$

$$y dy = C dx$$

$$\int y dy = \int C dx$$

$$\frac{1}{2}y^2 + C_1 = Cx + C_2$$

$$y^2 = 2Cx + 2(C_2 - C_1)$$

$$y^2 = C_3x + C_4$$

$$y^2 = C_1x + C_2$$

例. 试求 $x \cdot y' + y = 0$ 的通解, 并求其满足 y(1)=1 的特解

$$x \cdot \frac{dy}{dx} + y = 0$$

$$\frac{x \, dy}{dx} = -y$$

$$x \, dy = -y \, dx$$

$$\frac{1}{y} \, dy = -\frac{1}{x} \, dx$$

$$\int \frac{1}{y} \, dy = \int \left(-\frac{1}{x}\right) dx$$

$$\ln|y| + C_1 = -\int \frac{1}{x} \, dx$$

$$\ln|y| + C_1 = -(\ln|x| + C_2)$$

$$\ln|y| = (-C_2 - C_1) - \ln|x|$$

$$\ln|y| = C_3 - \ln|x|$$

$$\vdots \quad \ln e^a = a$$

$$\therefore \ln|y| = \ln e^{C_3} - \ln|x|$$

$$\vdots \quad \ln a - \ln b = \ln \frac{a}{b}$$

$$\therefore \ln|y| = \ln \frac{e^{C_3}}{|x|}$$

$$\ln|y| = \ln \left|\frac{e^{C_3}}{x}\right|$$

$$\ln|y| = \ln \frac{e^{C_3}}{x}$$

$$\ln|y| = \frac{e^{C_3}}{x}$$

$$y = \frac{\pm e^{C_3}}{x}$$

$$y = \frac{\pm e^{C_3}}{x}$$

$$\vdots \quad y = \frac{c}{x}$$

$$y(1) = \frac{c}{1} = C$$

$$C = 1$$

$$\forall k M \Rightarrow y = \frac{1}{x}$$

微分方程——常系数齐次

求 y'' -5y'+6y=0 的通解

$$y^{(2)} y^{(1)} y^{(0)}$$

$$1 r^{2} r^{1} r^{0}$$

$$r^{2} -5r^{1} +6r^{0} = 0$$

② ⇒
$$r^2 - 5r + 6 = 0$$

⇒ $(r-2)(r-3) = 0$
##: $r_1 = 2$, $r_2 = 3$

④ 通解:
$$y = C_1 \cdot e^{2x} + C_2 \cdot e^{3x}$$

特点	称为	对应的式子	
$r_n = \alpha$	単实根α	C∙e ^{αx}	
$\begin{cases} r_1 \\ r_2 \\ \dots \\ r_k \end{cases} = \alpha$	k重实根α	$e^{\alpha x} \cdot (C_1 + C_2 x + + C_k x^{k-1})$	
$r_a = \alpha + \beta i$ $r_b = \alpha - \beta i$	一对复根 α±βi	$e^{\alpha x} \cdot (C_1 \cos \beta x + C_2 \sin \beta x)$	
$\begin{cases} r_{a1} \\ r_{a2} \\ \dots \\ r_{ak} \end{cases} = \alpha + \beta i$ $\begin{cases} r_{b1} \\ r_{b2} \\ \dots \\ r_{bk} \end{cases} = \alpha - \beta i$	一对 k 重 复根α±βi	$e^{\alpha x} \cdot [(C_1 + C_2 x + + C_k x^{k-1}) \cos \beta x + (D_1 + D_2 x + + D_k x^{k-1}) \sin \beta x]$	

微分方程——常系数非齐次

例1. 求 y" -5y'+6y=ex 的通解

①
$$y'' - 5y' + 6y = 0$$

特征方程的单实根 2,单实根 3 常系数齐次的题目做过 齐次方程的通解 $\bar{y} = C_1 \cdot e^{2x} + C_2 \cdot e^{3x}$

$$2) \ f(x) = e^x = 1 \cdot e^{1 \cdot x}$$

$$\lambda = 1 \ , \quad m = 0 \ , \quad k = 0$$

$$3 y^* = x^k (b_0 x^m + b_1 x^{m-1} + \dots + b_m x^0) e^{\lambda x}$$

$$= x^0 \cdot b_0 x^0 \cdot e^{1 \cdot x}$$

$$= b_0 \cdot e^x$$

$$\begin{split} (b_0 \cdot e^x)'' - 5 \cdot (b_0 \cdot e^x)' + 6 \cdot (b_0 \cdot e^x) &= e^x \\ (b_0 \cdot e^x)' - 5 b_0 e^x + 6 b_0 e^x &= e^x \\ b_0 e^x - 5 b_0 e^x + 6 b_0 e^x &= e^x \\ 2b_0 &= 1 \\ b_0 &= \frac{1}{2} \end{split}$$

① 通解 =
$$C_1 \cdot e^{2x} + C_2 \cdot e^{3x} + \frac{1}{2}e^x$$

例2. 求 y" -5y'+6y=cosx+sinx 的通解

①
$$y'' - 5y' + 6y = 0$$

特征方程的单实根 2,单实根 3 常系数齐次的题目做过 齐次方程的通解 $\bar{y} = C_1 \cdot e^{2x} + C_2 \cdot e^{3x}$

②
$$f(x) = cosx + sinx = e^{0 \cdot x} [1 \cdot cos(1 \cdot x) + 1 \cdot sin(1 \cdot x)]$$

 $\lambda = 0$, $\beta = 1$, $n = 0$, $t = 0$, $k = 0$, $m = 0$

$$λ+βi = 0+1·i = i , i 不是特征方程的根, :: k=0$$

$$3 y^* = x^k[(a_0x^m + a_1x^{m-1} + \dots + a_mx^0)\cos\beta x + (b_0x^m + b_1x^{m-1} + \dots + b_mx^0)\sin\beta x]e^{\lambda x}$$

$$= x^0[a_0x^0\cos(1\cdot x) + b_0x^0\sin(1\cdot x)]e^{0\cdot x}$$

$$= a_0\cos x + b_0\sin x$$

$$(a_0 \cos x + b_0 \sin x)'' - 5(a_0 \cos x + b_0 \sin x)' + 6(a_0 \cos x + b_0 \sin x) = \cos x + \sin x$$

$$-a_0 \cos x - b_0 \sin x + 5a_0 \sin x - 5b_0 \cos x + 6a_0 \cos x + 6b_0 \sin x = \cos x + \sin x$$

$$(5a_0 + 5b_0 - 1)\sin x + (5a_0 - 5b_0 - 1)\cos x = 0$$

$$\Rightarrow \begin{cases} 5a_0 + 5b_0 - 1 = 0 \\ 5a_0 - 5b_0 - 1 = 0 \end{cases} \Rightarrow \begin{cases} a_0 = \frac{1}{5} \\ b_0 = 0 \end{cases}$$

$$y^* = \frac{1}{5}\cos x + 0 \cdot \sin x = \frac{1}{5}\cos x$$

4)
$$\mathbb{E}[H] = C_1 \cdot e^{2x} + C_2 \cdot e^{3x} + \frac{1}{5} \cos x$$

微分方程 —— 需要用知识点快速做的小题

例3.已知
$$y_1=e^{3x}-xe^{2x}$$
, $y_2=e^x-xe^{2x}$, $y_3=-xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解,则该方程的通解为 $y=$ ______

找非齐次方程的通解 \rightarrow 找 $\left\{\begin{array}{ll}$ 齐次方程的通解 $C_1 \cdot e^{3x} + C_2 \cdot e^x \\ \text{非齐次方程的特解 } y_3 = -xe^{2x} \end{array}\right.$ 找 齐次方程的通解 \rightarrow 找 齐次方程的两个特解且 $\frac{\text{齐次特解}_1}{\text{齐次特解}_2} \neq 0$

齐次特解1:
$$y_1 - y_3 = (e^{3x} - xe^{2x}) - (-xe^{2x}) = e^{3x}$$

齐次特解2: $y_2 - y_3 = (e^x - xe^{2x}) - (-xe^{2x}) = e^x$

$$\therefore$$
 齐次特解1 = $\frac{e^{3x}}{e^x}$ = $e^{2x} \neq C$

:: 齐次方程的通解为 $C_1 \cdot e^{3x} + C_2 \cdot e^x$

:: 非齐次方程的通解为
$$C_1 \cdot e^{3x} + C_2 \cdot e^x - xe^{2x}$$

找啥	需要有啥	能得到啥
非齐次的通解	齐次的通解 ӯ , 非齐次的特解 y*	非齐次的通解 为 y +y*
齐次的 特解	非齐次的 特解 y ₁ , y ₂	齐次的特解为 y ₁ - y ₂
齐次的 通解	齐次的特解 y_1 , y_2 且 $\frac{y_1}{y_2} \neq C$	齐次的通解为 C ₁ y ₁ +C ₂ y ₂
,o ^C	齐次的 特解 y ₁ ,y ₂	齐次的特解为 C ₁ y ₁ +C ₂ y ₂
	?= f ₁ (x)的特解 y _a * ?= f ₂ (x)的特解 y _b *	?= f ₁ (x)+f ₂ (x)的 特解为 y _a *+y _b *

证明题

× × × × × × × × × × × × × × × × × × ×	只含 x		单调性
不等式		能一边只有 x_1 , 一边只有 x_2	单调性
$\exists X_1$	含 X ₁ , X ₂	有 f(? ₂) - f(? ₁) 形式的式子	拉格朗日中值定理
不含 f'	TA CI	已知两点的 f 值	零点定理
	小含 f	已知范围内几个点加减后的值	介值定理推论
等式 含 f'		证明范围中存在 ξ 满足要求	罗尔中值定理
		证明范围中存在 ξ、η 满足要求	柯西定理

证明题 —— 利用单调性证明不等式

例1. 设 x>0, 常数 a>e, 证明 (a+x)·lna>a·ln(a+x)

- ① $(a+x)\cdot \ln a > a\cdot \ln(a+x)$
- $\Rightarrow (a+x)\cdot \ln a a\cdot \ln(a+x) > 0$ $f(x) = (a+x)\cdot \ln a a\cdot \ln(a+x)$
- ② f(0) = 0

 \Rightarrow (a+x)·lna>a·ln(a+x)

【 题难一点可能要用的公式:

$$\begin{array}{l} a^b = e^{b \cdot \ln a}, \ e^{\alpha} > e^{\beta} \implies \alpha > \beta \quad \textbf{1} \\ \\ a^{a+x} = e^{(a+x) \cdot \ln a} \\ (a+x)^a = e^{a \cdot \ln(a+x)} \\ \\ e^{(a+x) \cdot \ln a} > e^{a \cdot \ln(a+x)} \implies (a+x) \cdot \ln a > a \cdot \ln(a+x) \end{array}$$

例2. 设 $x_1>x_2>e$,证明 $x_1\cdot \ln x_2>x_2\cdot \ln x_1$

$$\implies \frac{\ln x_2}{x_2} > \frac{\ln x_1}{x_1}$$

$$f(x_1) = \frac{\ln x_1}{x_1}, f(x_2) = \frac{\ln x_2}{x_2}$$

$$(2) f(x) = \frac{\ln x}{x}$$

$$3 f'(x) = \left(\frac{\ln x}{x}\right)'$$

$$= \frac{(\ln x)' \cdot x - (\ln x) \cdot x'}{x^2}$$

$$= \frac{\frac{1}{x} \cdot x - (\ln x) \cdot 1}{x^2}$$

$$= \frac{1 - \ln x}{x^2}$$

$$: x_1 > x_2 > e$$

$$\ln x > \ln e = 1$$

∴ 范围内
$$f'(x) = \frac{1-\ln x}{x^2} < 0$$

:: 范围内 f(x) 单调递减

$$4 : x_1 > x_2$$

$$\therefore f(x_1) < f(x_2)$$

$$\Rightarrow \frac{\ln x_1}{x_1} < \frac{\ln x_2}{x_2}$$

$$\Rightarrow \frac{\ln x_1}{x_1} \cdot x_1 x_2 < \frac{\ln x_2}{x_2} \cdot x_1 x_2$$

$$\implies \quad \mathbf{x_2} \cdot \mathbf{ln} \; \mathbf{x_1} < \mathbf{x_1} \cdot \mathbf{ln} \; \mathbf{x_2}$$

证明题 —— 利用拉格朗日中值定理证明不等式

例3. 设 f''(x) < 0, 证明:对任何的 $x_1 \ge x_2 > 0$, 有 $f(x_1 + x_2) - f(x_1) < f(x_2) - f(0)$

$$\begin{split} f(x_1+x_2)-f(x_1) &= f'(\xi_1) \cdot (x_1+x_2-x_1) \ , \ \xi_1 \in (x_1,x_1+x_2) \\ &= f'(\xi_1) \cdot x_2 \qquad \qquad , \ \xi_1 \in (x_1,x_1+x_2) \end{split}$$

$$\begin{split} f(x_2) - f(0) &= f'(\xi_2) \cdot (x_2 - 0) \ , \ \xi_2 \in (0, x_2) \\ &= f'(\xi_2) \cdot x_2 \qquad , \ \xi_2 \in (0, x_2) \end{split}$$

:: f'(x) 单调递减

$$x_1 \ge x_2 > 0$$
, $\xi_1 \in (x_1, x_1 + x_2)$, $\xi_2 \in (0, x_2)$

证明题 —— 利用零点定理证明等式

例4. 已知函数 f(x) 在 [0,1] 上连续,且 f(0)=0,f(1)=1,

证明:存在 $x_0 \in (0,1)$, 使得 $f(x_0)=1-x_0$

①
$$f(x_0)=1-x_0 \implies f(x_0)+x_0-1=0$$

 $\implies F(x_0)=f(x_0)+x_0-1$
 $\implies F(x)=f(x)+x-1$

②
$$F(0) = f(0)+0-1$$
 $F(1) = f(1)+1-1$
= 0 +0-1 = 1 +1-1
= -1

③
$$: F(0) \cdot F(1) = -1 \times 1 = -1 < 0$$

 $: (0,1)$ 内必有一点 x_0 ,可使 $F(x_0) = 0$
即 $f(x_0) + x_0 - 1 = 0$
即 $f(x_0) = 1 - x_0$

证明题 —— 利用介值定理推论证明等式

例5. 已知函数 f(x) 在 [0,2] 上连续,且 f(0)+2f(1)=12,

证明:存在 x₀∈[0,2],使得 f(x₀)=4

- ① 设在[0,2]内, f(x) 最大值为 M, 最小值为 m
- ② $m+2m \le 12 \Rightarrow 3m \le 12 \Rightarrow m \le 4$ $M+2M \ge 12 \Rightarrow 3M \ge 12 \Rightarrow M \ge 4$
- \Rightarrow m \leq 4 \leq M
- \Rightarrow [0,2]必有一点 x_0 ,可使 $f(x_0)=4$

证明题 —— 利用罗尔中值定理证明等式

例6. 设 f(x) 在 [-1,1] 上有二阶导数, 且 f(0)=0, f(1)=1,

证明:存在 $\xi \in (0,1)$,使得 $f'(\xi)=1$

①
$$f'(\xi)=1 \implies f'(\xi)-1=0$$

②
$$F(x) = f(x) + (-1) \cdot x = f(x) - x$$

$$F'(x) = [f(x) - x]'$$
$$= f'(x) - x'$$
$$= f'(x) - 1$$

③
$$F(0) = f(0) - 0$$
 $F(1) = f(1) - 1$
= 0 -0 = 1 -1
= 0

④ (0,1)内存在 ξ , 可使 $F'(\xi)=0$

对照下表设 F(x)

/// / / / / / / / / / / / / / / / / /	
标准格式	F(x)
$f'(\xi)+C=0$	f(x)+Cx
$f'(\xi) + \lambda f(\xi) + C = 0$	$e^{\lambda x}f(x) + \frac{C}{\lambda}e^{\lambda x}$
$f'(\xi)+g'(\xi)f(\xi)=0$	$e^{g(x)}f(x)$
$\xi f'(\xi) + \lambda f(\xi) + C = 0$	$x^{\lambda}f(x) + \frac{c}{\lambda}x^{\lambda}$

证明题 —— 利用柯西定理证明等式

例7. 设 f(x) 在 [a,b] 上连续,在 (a,b) 上可导,且 f'(x)≠0,

证明:存在
$$\xi$$
、 $\eta \in (a,b)$,可使 $\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b-a} \cdot e^{-\eta}$

含ξ的项

$$② \diamondsuit \frac{f'(\xi)}{g'(\xi)} = f'(\xi) \implies g'(\xi) = 1$$

$$g(\xi) = \int 1 d\xi = \xi$$

$$\therefore$$
 (a,b)内必有一点 ξ ,可使 $f'(\xi) = \frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{b - a}$

$$h(\eta) = \int e^{\eta} d\eta = e^{\eta}$$

$$\therefore$$
 (a,b)内必有一点 η , 可使 $e^{-\eta} \cdot f'(\eta) = \frac{f'(\eta)}{h'(\eta)} = \frac{f(b) - f(a)}{e^b - e^a}$

$$\textcircled{4} : f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

$$e^{-\eta} \cdot f'(\eta) = \frac{f(b) - f(a)}{e^b - e^a}$$

$$\therefore \frac{f'(\xi)}{e^{-\eta} \cdot f'(\eta)} = \frac{\frac{f(b) - f(a)}{b - a}}{\frac{f(b) - f(a)}{b - a}} = \frac{e^b - e^a}{b - a}$$

$$\Rightarrow \frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a} \cdot e^{-\eta}$$

$$: (a,b)$$
内必有一点 ξ、η ,可使 $\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b-a} \cdot e^{-\eta}$