

Al Imam Mohammad Ibn Saud Islamic University College of Computer and Information Sciences

Computer Science Department

	Course Title:	Digital L	ogic	
Course Code:		CS 106		
Con	rse Instructor:	Dr. Sulta	n S. Alqahtani	
	Exam:	First Mid	term	
Semester:		Summer semester		
	Date:	10/07/201	9 - 07/11/1440	
	Duration:	60 minute	es	
	Marks:	30		
Privileges:	☐ Open Book ☑ Calculator I		☐ Open Notes ☐ Laptop Permitted	

Student name:	MODEL ANSWERS
Student ID:	
Section No.:	

Instructions:

1. Answer all questions; there are three questions in 5 pages.

Write your answers directly on the question sheets. Use the ends of the question pages for rough work or if you need extra space for your answer.

 If information appears to be missing from a question, make a reasonable assumption, state your assumption, and proceed.

4. No questions will be answered by the invigilator(s) during the exam period.

Official Use Only					
Question	Student Marks	Question Marks			
10		10			
2		10			
3		10			
Total		30			

Question1:

(25) Minutes | / 10 Marks

1. Convert the hexadecimal number 64CD to binary, and then convert it from binary to (64<D)=(0110010011001101)= 110010011001101=(62315)

Represent the decimal number 6,248 in BCD, and from BCD to Excess-3.

3. Find the 9's and the 10's complement of the following decimal numbers:

00000000	25,000,000 9's complement: 74 9 99 999 10's complement: 75 000 000	
9's complement: 9999999		
10's complement: \ 0000000		

4. Perform subtraction on the given unsigned binary numbers using the 2's complement of the subtrahend. Where the result should be negative, find its 2's complement and affix a minus sign

a) 10011 - 10010

5. Convert decimal+49 and+29 to binary, using the signed-2's-complement representation and enough digits to accommodate the numbers. Then perform the binary equivalent of (+29)+(-49), (-29)+(+49), and (-29)+(-49). Convert the answers back to decimal and verify that they are correct.

(heck=> -29+49=+20 (-29)+(-49)=(1)_100011+(1)_001111 (heck magnitude: 01_00110=78, (-29)+(-49)=-78

Question2:

(20) Minutes [

] / 10 Marks

- 1. Simplify the following Boolean expressions to a minimum number of literals:
 - a) XY + XY'
 - b) (A + B)' (A' + B')

(b)
$$(\overline{A}+\overline{B})(\overline{A}+\overline{B}) = \overline{A}\overline{B}(\overline{A}+\overline{B})$$

 $= \overline{A}\overline{B}\overline{A} + \overline{A}\overline{B}\overline{B}$
 $= \overline{A}\overline{B} + \overline{A}\overline{B}$
 $= \overline{A}(\overline{B}+\overline{B})$
 $= \overline{A}\overline{B}$

Draw logic diagrams of the circuits that implement the original and simplified expressions in a and b.

2. Express the following function as a sum of minterms and as a product of maxterms: F(A,B,C,D) = B'D + A'B + BD

A	B	C	D	Ł
6	0	0	0	O E Mo
0	0	ð	V	1 + m
0	0	1	0	O+ me
0	0	1	1	1 4 m3
0	1	0	6	1 - m"
0	1	0	V	1 - ms
0	1	ŧ	0	1 - m6
0	1	1	1	1 4 mg
1	0	0	6	0 <- m2
4	0	0	1	11 -ma
1	0	1	0	O. e- mio
1	0	J.	1	1 - m
i	1	0	0	6 4- m12
100	ŀ	0	1	1 4 mn
1	i	1	0	0 d- 19 14
1	1	ŧ	1	1 = m15

3. Express the complement of the following functions in sum of minterms form:

b)
$$F(x, y, z) = \Pi(3, 5, 7)$$

Question3:

(15) Minutes [

1/10 Marks

Simplify the following Boolean functions using Karnaugh Maps:
 c) F(A, B, C, D) =Σ(2, 4, 7, 10, 12, 14)

F= BCD+ ABD+ BCD+ ABCD

d) $F(x,y,z) = \Sigma(2,3,6,7)$

F = 4