La diode et le transistor

Objectifs:

- Étudier la caractéristique d'une diode réelle.
- Étudier l'utilisation d'une diode dans une application comportant un signal variable.
- Utiliser des transistors en commutation pour des applications d'électronique numérique et de puissance.

Préparation: Obligatoire.

Compte rendu : À remettre à la fin de la séance de TP.

1 Préparation (6 points)

On s'intéresse à un montage similaire à celui vu en cours pour étudier la droite de charge de la diode. Pour ce montage $U_E=10~{\rm V},\,R_{var}$ est une résistance variable et R est une résistance fixe.

- 1. Rappeler l'expression de la résistance dynamique R_D .
- 2. Donner les expressions du U_D et I_D pour tel montage (cas diode bloquée et passante).
- 3. Tracer la droite de charge lorsque $R_{var}=0$ et $R=100~\Omega.$

2 Manipulations (14 points)

2.1 Caractéristique de la diode

Pour les manipulations on prend D = 1N4148. On câble le montage proposé dans la partie préparation.

- 1. Faire varier R_{var} et mesurer au moins 10 couples de valeurs U_D et U_R . En déduire I_D pour chaque mesure.
- 2. Tracer la caractéristique $I_D = f(U_D)$ sur une feuille de papier millimétrée.
- 3. En déduire la tension seuil V_F de votre diode.
- 4. En déduire la valeur de la résistance dynamique R_D .

2.2 Redresseur élémentaire

On a le montage suivant :

Pour les manipulations on prend : $R=10~k\Omega$ et D=1N4148. La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace V_{Eeff} , inférieure à 10 V et de fréquence f = 100 Hz.

- 1. Relever les oscillogrammes de $v_S(t)$ et $v_E(t)$ pour V_{Eeff} = 1 V puis V_{Eeff} = 7 V.
- 2. Effectuer quelques mesures permettant de tracer la courbe $V_{Smoy} = f(V_{Eeff})$, (échelle 1 V \leftrightarrow 1 cm). **Justifier** le choix des appareils de mesure.
- 3. Quelle est la valeur approchée du coefficient directeur m de la courbe tracée? Quelle est la valeur de $\frac{\sqrt{2}}{m}$?

2.3 Commutation d'un MOSFET sur charge résistive

Câbler le montage ci-dessus avec Q= IRF530, $R_G=$ 1 k Ω , $R_S=$ 1,5 Ω et R= 220 Ω (2 W). On applique à l'entrée du montage un signal carré $v_E(t)$ réglé pour assurer la mise en conduction maximale et le blocage du transistor.

- 1. Rappeler le comportement du Transistor MOSFET en fonction de V_{GS} et $V_{GS(th)}$ (vu en cours).
- 2. Relever les signaux $v_E(t)$, $v_G(t)$, $v_D(t)$ et $v_S(t)$ en concordance temporelle. Commenter et expliquer les différentes phases.
- 3. Calculer la puissance absorbée pendant un cycle pour la charge R.
- 4. Calculer la puissance absorbée pendant un cycle R_S . Peut-on négliger la puissance dissipée par cette résistance?
- 5. En appliquant les signaux $v_D(t)$ et $v_S(t)$ sur les voies 1 et 2 de l'oscilloscope vous pourrez effectuer l'opération CH1*CH2. Relever l'oscillogramme correspondant. Interpréter.
- 6. Évaluer les pertes dans le composant dues :
 - aux commutations
 - à la conduction