Analyse IV

Robert Dalang examen écrit de juin 2016

Quelques petites précisions : cet énoncé a été recopié à la main sur un bout de feuille vide dans les dernières minutes de l'examen pour finalement être retranscrit près d'un an plus tard. L'exactitude du contenu n'est donc pas 100% garantie.

-une bonne âme

Exercice 1.

Répondre aux points suivants en utilisant les propriétés de la transformée de Fourier et les Tables de transformées de Fourier à disposition.

- 1. $f(x) = e^{-2x^2}$ et $g(x) = e^{-3x^2}$ trouver f * g
- 2. $h(x) = [(x-1)\exp(-5(x-1)^2)]'$ trouver sa transformée de Fourier
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$, $\int_{\mathbb{R}} f(x) dx < \infty$, $\int_{\mathbb{R}} f'(x) dx < \infty$ et $\int_{\mathbb{R}} (f'(x))^2 dx < \infty$ montrer que:

$$\int_{-\infty}^{\infty} (f'(x))^2 dx = \int_{-\infty}^{\infty} \alpha^2 |\mathcal{F}f(\alpha)|^2 d\alpha$$

4. Soit $\mathcal{F}g = \frac{e^{-\alpha^2}}{1+\alpha}$ donner la fonction g comme un produit de convolution de $\mathbb{R} \to \mathbb{R}$

Exercice 2.

- 1. Par la méthode de Laplace résoudre $y^{(4)}(t) 16y(t) = 0$ avec les conditions initiales $y(0) = 1, y'(0) = y^{(2)}(0) = y^{(3)}(0) = 0$.
- 2. Par la méthode des résidus trouver f avec $F(z) = (z^2 6z + 10)^{-1}$ ainsi que l'abscisse γ_0 de f.

Exercice 3.

- 1. Donner $\mathcal{F}_s f$ la série de Fourier en sinus de $f(x) = x \cos(x/2)$ définie sur $(0, \pi)$
- 2. Comparer $\mathcal{F}_s f$ et f sur $(0, \pi)$
- 3. Soit l'équation:

$$\frac{1}{3-\sin(t)}\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

trouver u(x,t) pour $x\in]0,\pi[$ et t>0 avec les conditions limites $u(0,t)=u(\pi,t)=0$ et la condition initiale $u(x,0)=x\cos(x/2)$

Exercice 4.

Répondre aux points suivants en se servant des propriétés des distributions tempérées.

- 1. Soit f(x) = |x| et g(x) $\begin{cases} = 1 & x > 0 \\ = -1 & x < 0 \end{cases}$, prouver que f' = g
- 2. Démontrer l'égalité $h \cdot \delta' = h(0) \cdot \delta' h'(0) \cdot \delta$
- 3. Résoudre au sens des distributions l'équation $y''(x) 4y(x) = \delta(x) + 1$