Geometria in Bicocca 2011

Metriche bilanciate, espansione di TYZ
e
quantizzazione di una varietà di Kähler

in collaborazione con
Claudio Arezzo e Fabio Zuddas

Metriche bilanciate

(M,L) una varietà polarizzata (M varietà compatta complessa, L fibrato lineare olomorfo molto ampio su M).

Sia g metrica di Kähler su M tale che $\omega \in c_1(L)$ e h prodotto hermitiano su L tale che $Ric(h) = \omega$.

Kempf's distortion function $T_g \in C^{\infty}(M, \mathbb{R}^+)$

$$T_g(x) = \sum_{j=0}^{N} h(s_j(x), s_j(x)), \ x \in M$$

dove $\{s_0, \ldots, s_N\}$, $N+1 = \dim H^0(L)$, è una base ortonormale rispetto al prodotto scalare

$$\langle s, t \rangle_h = \int_M h(s, t) \frac{\omega^n}{n!}, s, t \in H^0(L)$$

Definizione (Donaldson): una metrica polarizzata $g \in c_1(L)$ si dice bilanciata se $T_g = cost = \frac{N+1}{V(M)}$, $V(M) = \int_M \frac{\omega^n}{n!}$.

Risultati principali sulle metriche bilanciate

Teorema (Zhang, 1996): $\exists g \text{ bilanciata}, g \in c_1(L) \Leftrightarrow (M, L)$ Chow polistabile.

Teorema (Donaldson, 2001): Sia $g_{cscK} \in c_1(L)$ e $\frac{Aut(M,L)}{\mathbb{C}^*}$ discreto. Allora, per ogni m >> 1, $\exists !$ metrica bilanciata $g_m \in c_1(L^m)$ t.c. $\frac{g_m}{m} \xrightarrow{C^\infty} g_{cscK}$. Inoltre se $g_m \in c_1(L^m)$ bilanciata tale che $\frac{g_m}{m} \xrightarrow{C^\infty} g_\infty$ allora g_∞ è cscK.

Corollario: Sia $g_{cscK} \in c_1(L)$ e $\frac{Aut(M,L)}{\mathbb{C}^*}$ discreto. Allora (M,L) è asintoticamente Chow stabile.

Corollario: Se $\frac{\operatorname{Aut}(M,L)}{\mathbb{C}^*}$ è discreto ed esiste $g_{cscK} \in c_1(L)$ allora g_{cscK} è unica in $c_1(L)$.

Cosa succede senza l'ipotesi su Aut(M, L)

Teorema (C. Arezzo – L. , 2004): Siano g e \tilde{g} due metriche bilanciate in $c_1(L)$. Allora esiste $F \in Aut(M,L)$ tale che $F^*\tilde{g} = g$.

Teorema (A. Della Vedova – F. Zuddas, 2011): Sia $M = Bl_{p_1,...,p_4}\mathbb{C}P^2$ (in quattro punti allineati tranne uno). Allora esiste una polarizzazione L di M e $g_{cscK} \in c_1(L)$ tale che (M,L^m) non è Chow polistabile per m >> 1.

Teorema (Chen –Tian, 2008): Se $\tilde{g}_{cscK} \sim g_{cscK} \Rightarrow \exists F \in Aut(M)$ t.c. $F^*\tilde{g}_{cscK} = g_{cscK}$.

Alcuni problemi sulle metriche bilanciate

Problema: studiare $\#\mathcal{B}_c(L)$ e $\#\mathcal{B}_{g_B}$.

Alcuni problemi sulle metriche bilanciate

 $\{mg_B \quad \text{bilanciata} \quad orall m >> 1 \quad \Leftrightarrow \quad \exists \text{ uno } * ext{-product alla Berezin su } (M,\omega_B)\}$

 $\{L \text{ polarizzazione di } (M, g_{hom} = g_B), \pi_1(M) = 1\}$

Una congettura

Congettura: Sia (M, L) una varietà polarizzata. Se esiste $g_B \in \mathcal{B}(L)$ tale che $\#\mathcal{B}_{g_B} = \infty$ allora (M, g_B) è omogenea.

Alcuni risultati

Teorema 1: Sia (M, L) una varietà polarizzata, dim M = 1. Se esiste $g_B \in \mathcal{B}(L)$ tale che $\#\mathcal{B}_{g_B} = \infty$ allora $M = \mathbb{C}P^1$.

Teorema 2: Sia M una varietà torica, $\dim M \leq 4$. Sia $g_{KE} \in c_1(L)$, $L = K^*$. Allora $\#\mathcal{B}_c(L) = \infty$. Inoltre esiste $g_B \in \mathcal{B}(L)$ tale che $\#\mathcal{B}_{g_B} = \infty$ se e solo se M è il proiettivo o il prodotto di proiettivi.

Teorema 3: Sia g_{cscK} una metrica a curvatura scalare costante su una varietà M e sia \tilde{g}_{cscK} la metrica a curvatura scalare costante su $\tilde{M} = Bl_{p_1,...,p_k}M$ ottenuta tramite la costruzione di Arezzo-Pacard. Supponiamo che esista una polarizzazione L di \tilde{g}_{cscK} . Allora $\#\mathcal{B}_{g_B} < \infty$ per ogni g_B in $\mathcal{B}(L)$.

Metriche bilanciate e metriche proiettivamente indotte

(M,L) varietà polarizzata, $g \in c_1(L)$, $m \in \mathbb{N}^+$, $Ric(h_m) = m\omega$,

 $\{s_0,\ldots,s_{d_m}\},\ d_m+1=\dim H^0(L^m),\$ base ortonormale per

$$\langle s, t \rangle_h = \int_M h_m(s, t) \frac{\omega^n}{n!}, s, t \in H^0(L^m).$$

 $\varphi_m: M \to \mathbb{C}P^N: x \mapsto [s_0(x): \cdots: s_{d_m}(x)]$ coherent states map

$$\left| \varphi_m^* \omega_{FS} = m\omega + \frac{i}{2} \partial \bar{\partial} \log T_{mg}(x) \right|$$

$$T_{mg}(x) = \sum_{j=0}^{d_m} h_m(s_j(x), s_j(x)).$$

Quindi: $mg \in c_1(L^m)$ è bilanciata $\Leftrightarrow mg$ è proiettivamente indotta tramite φ_m .

Approssimazione di metriche polarizzate

Teorema (G. Tian, 1990): Sia (M,L) una varietà polarizzata e $g \in c_1(L)$. Allora

$$\frac{\varphi_m^* g_{FS}}{m} \xrightarrow{C^2} g.$$

L'espansione asintotica di TYZ (Tian-Yau-Zelditch)

Teorema (S. Zelditch, 1998): Sia (M, L) una varietà polarizzata e $g \in c_1(L)$. Allora

$$T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x) m^{n-j}, a_0(x) = 1,$$

cioè, per ogni r e k esistono costanti $C_{k,r}$ tali che

$$||T_{mg}(x) - \sum_{j=0}^{k} a_j(x)m^{n-j}||_{C^r} \le C_{k,r}m^{n-k-1}.$$

Corollario Sia (M,L) una varietà polarizzata e $g \in c_1(L)$. Allora $\varphi_m^* g_{FS} \xrightarrow{C^{\infty}} g$.

Teorema (Z. Lu, 2000): Ogni $a_j(x)$ è un polinomio della curvatura (della metrica g) e delle sue derivate covarianti. Inoltre

$$\begin{cases} a_1(x) = \frac{1}{2}\rho \\ a_2(x) = \frac{1}{3}\Delta\rho + \frac{1}{24}(|R|^2 - 4|Ric|^2 + 3\rho^2). \end{cases}$$

Lemma 1: Sia (M,L) una varietà polarizzata e $g \in c_1(L)$. Sia $\mathcal{B}_g = \{mg \ \text{è bilanciata} \mid m \in \mathbb{N}\}$. Se $\#\mathcal{B}_g = \infty$ allora i coefficienti $a_j(x)$ di $T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x) m^{n-j}$ sono costanti, per ogni $j = 0, 1, \ldots$

dimostrazione Se esistesse una successione illimitata $\{m_s\}_{s=1,2,...}$ tale che $T_{m_sg}(x) = T_{m_s}$. Sappiamo che $a_0 = 1$ supponiamo che $a_j(x) = a_j$, for j = 0, ..., k-1. Allora

$$|T_{s,k,n} - a_k(x)m_s^{n-k}| \le C_k m_s^{n-k-1}, T_{s,k,n} = T_{m_s} - \sum_{j=0}^{k-1} a_j m_s^{n-j}$$

per qualche costante C_k .

Quindi $|m_s^{k-n}T_{s,k,n}-a_k(x)| \leq C_k m_s^{-1}$ e se $s\to\infty$ allora $m_s^{k-n}T_{s,k,n}\to a_k(x)$ e quindi a_k è costante. \square

dimostrazione del Teorema 1

Teorema 1: Sia (M, L) una varietà polarizzata, dim M = 1. Se esiste $g_B \in \mathcal{B}(L)$ tale che $\#\mathcal{B}_{g_B} = \infty$ allora $M = \mathbb{C}P^1$.

dimostrazione

Se
$$\#\mathcal{B}_{g_B} = \infty \stackrel{Lemma1}{\Longrightarrow} g_B \operatorname{csc} K \Rightarrow M = \mathbb{C}P^1 \operatorname{e} g_B = m_0 g_{FS}. \square$$

Lemma 2: Sia (M,L) una varietà polarizzata e $g=g_{cscK}\in c_1(L)$. Supponiamo che almeno una di queste condizioni sia soddisfatta:

- 1. mg non è proiettivamente indotta $\forall m$;
- 2. Esiste $j_0 \ge 2$ tale che $a_{j_0} \ne cost \ (T_{mg}(x) \sim \sum_{j=0}^{\infty} a_j(x) m^{n-j})$

Allora $\#\mathcal{B}_{g_B} < \infty$ per ogni $g_B \in \mathcal{B}(L)$.

dimostrazione Sia $g_B \in \mathcal{B}(L)$ $(g_B \text{ bilanciata e } g_B \in c_1(L^{m_0}) \text{ per qualche } m_0).$

Se per assurdo $\#\mathcal{B}_{g_B} = \infty \stackrel{\text{Lemma 1}}{\Longrightarrow} a_j^B (T_{mg_B}(x) \sim \sum_{j=0}^{\infty} a_j^B(x) m^{n-j})$ sono costanti per ogni $j = 0, 1, \ldots$

In particolare $a_1^B = \rho_B/2$ è costante e quindi (per il Teorema di Chen-Tian) esiste $F \in Aut(M)$ tale che $F^*g_B = m_0g$.

Questo implica che m_0g è proiettivamente indotta e che tutti gli a_j sono costanti per ogni $j=0,1,\ldots$ in contrasto con 1. e 2.

Osservazione: Esistono metriche polarizzate $g_{cscK} \in c_1(L)$ tale che tutti i coefficienti dello sviluppo di TYZ di T_{mg} sono costanti ma mg non è proiettivamente indotta per ogni m (metriche iperboliche, toro piatto).

dimostrazione del Teorema 2

Teorema 2: Sia M una varietà torica, dim $M \leq 4$. Sia $g_{KE} \in c_1(L)$, $L = K^*$. Allora $\#\mathcal{B}_c(L) = \infty$. Inoltre esiste $g_B \in \mathcal{B}(L)$ tale che $\#\mathcal{B}_{g_B} = \infty$ se e solo se M è il proiettivo o il prodotto di proiettivi.

idea della dimostrazione

 $\#\mathcal{B}_c(L) = \infty$ segue del fatto (noto) che per le varietà toriche simmetriche $(M, L = K^*)$ è asint. Chow polistabile.

Inoltre si dimostra che mg_{KE} è proiettivamente per qualche m se solo se M è il proiettivo o il prodotto di proiettivi. La conclusione segue dal Lemma 2. \square

dimostrazione del Teorema 3

Teorema 3: Sia g_{cscK} una metrica a curvatura scalare costante su una varietà M e sia \tilde{g}_{cscK} la metrica a curvatura scalare costante su $\tilde{M} = Bl_{p_1,\dots,p_k}M$ ottenuta tramite la costruzione di Arezzo-Pacard. Supponiamo che esista una polarizzazione L di \tilde{g}_{cscK} . Allora $\#\mathcal{B}_{g_B} < \infty$ per ogni g_B in $\mathcal{B}(L)$.

idea della dimostrazione Si dimostra che il coefficiente a_2 dello sviluppo di TYZ di $T_{m\tilde{g}_{cscK}}$ non è costante e quindi la conclusione segue dal Lemma 2. \square

Alcuni problemi sui coefficienti di TYZ

- 1. Classificare la varietà dove i coefficienti dello sviluppo di TYZ sono tutti costanti.
- 2. Classificare le varietà dove i coefficienti $a_k = 0$, per k > n.

Teorema (L., 2005): Esiste $U \subset M$ tale che:

$$a_k(x) = C_k(1) + \sum_{\substack{r+j=k\\r \ge 0 \ j \ge 1}} C_r(\tilde{a}_j(x,y))|_{y=x}$$

$$\mathcal{L}_m(x) = \int_U f(y) e^{-mD(x,y)} \frac{\omega^n}{n!}(y) \sim \frac{1}{m^n} \sum_{r \ge 0} m^{-r} C_r(f)(x),$$

$$T_{mg}(x,\bar{y}) \sim \sum_{j\geq 0} a_j(x,\bar{y}) m^{n-j} \quad \Rightarrow \quad |T_{m\omega}(x,\bar{y})|^2 \sim m^{2n} (1 + \sum_{j=1}^{+\infty} \tilde{a}_j(x,y) m^{-j})$$