Lösungen der Übungsaufgaben von Kapitel 1

zu 1.2

- **1.2.1** Für Teilmengen A, B, C einer Menge M beweise man:
 - 1. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ Zwei Mengen M, N heißen gleich, wenn gilt : $M \subset N \wedge N \subset M$
 - (a) Man zeigt zunächst $(A \cap B) \cup C \subset (A \cup C) \cap (B \cup C)$, d.h. $x \in (A \cap B) \cup C \Rightarrow x \in (A \cup C) \cap (B \cup C)$

Sei $x \in (A \cap B) \cup C$, dann gilt :

$$x \in (A \cap B) \cup C$$
 Definition von
$$\xrightarrow{\cup} x \in A \cap B \vee x \in C$$

Man unterscheidet nun zwei Fälle :

i. $x \in A \cap B$ Es gilt:

$$\begin{array}{c} x \in A \cap B \\ \text{Definition von} \\ \stackrel{\cap}{\Longrightarrow} & x \in A \wedge x \in B \end{array}$$

Mit $x \in A$ gilt wegen der Definition von \cup auch $x \in A \cup C$, genauso folgt $x \in B \cup C$ aus $x \in B$, damit gilt:

$$\begin{array}{ccc} & x \in A \wedge x \in B \\ \Longrightarrow & x \in A \cup C \wedge x \in B \cup C \\ & \xrightarrow{\square} & x \in (A \cup C) \cap (B \cup C) \end{array}$$

Dies war zu zeigen.

ii. $x \in C$

Aus $x \in C$ folgt aufgrund der Definition von \cup sowohl $x \in A \cup C$, als auch $x \in B \cup C$, daher gilt :

$$\begin{array}{ccc} x \in C \\ \Longrightarrow & x \in A \cup C \land x \in B \cup C \\ \text{Definition von} \\ \stackrel{\cap}{\Longrightarrow} & x \in (A \cup C) \cap (B \cup C) \end{array}$$

Dies war zu zeigen.

In beiden Fällen folgt $x \in (A \cup C) \cap (B \cup C)$, daher gilt : $(A \cap B) \cup C \subset (A \cup C) \cap (B \cup C)$

(b) Als nächstes zeigt man $(A \cup C) \cap (B \cup C) \subset (A \cap B) \cup C$, d.h. $x \in (A \cup C) \cap (B \cup C) \Longrightarrow x \in (A \cap B) \cup C$

Sei $x \in (A \cup C) \cap (B \cup C)$:

$$x \in (A \cup C) \cap (B \cup C)$$
 Definition von
$$\stackrel{\cap}{\Longrightarrow} \qquad x \in A \cup C \land x \in B \cup C$$
 Definition von
$$\stackrel{\cup}{\Longrightarrow} \qquad (x \in A \lor x \in C) \land (x \in B \lor x \in C) \quad (*)$$

Man unterscheidet nun zwei Fälle :

i.
$$x \in C$$
Definition von
$$\xrightarrow{\longrightarrow} x \in (A \cap B) \cup C$$

Dies war zu zeigen.

ii.
$$x \notin C$$

(*), Definition

von \cap , \cup

Definition von

 $x \in A \land x \in B$

Definition von

 $x \in A \cap B$

Definition von

 $x \in A \cap B$

Definition von

 $x \in A \cap B$

Definition von

In beiden Fällen folgt $x\in (A\cap B)\cup C$, also gilt : $(A\cup C)\cap (B\cup C)\subset (A\cap B)\cup C$

Es gilt also $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

- 2. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ Zwei Mengen M, N heißen gleich, wenn gilt : $M \subset N \wedge N \subset M$
 - (a) Man zeigt zunächst $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$, d.h. $x \in (A \cap B) \cup C \Rightarrow x \in (A \cup C) \cap (B \cup C)$

Sei $x \in (A \cup B) \cap C$, dann gilt :

$$x \in (A \cup B) \cap C$$
 Definition von
$$\stackrel{\cap}{\Longrightarrow} \qquad x \in A \cup B \land x \in C$$
 Definition von
$$\stackrel{\cup}{\Longrightarrow} \qquad (x \in A \lor x \in B) \land x \in C$$

 $x \in C$ gilt also auf jeden Fall, zusätzlich gilt noch $x \in A$ oder $x \in B$. Wenn $x \in A$ gilt, gilt mit $x \in C$ aber auch $x \in A \cap C$, analog gilt : $x \in B$ $x \in C$ $x \in B \cap C$. Daher folgt :

$$(x \in A \lor x \in B) \land x \in C \\ \Longrightarrow \quad x \in A \cap C \lor x \in B \cap C \\ \overset{\cup}{\Longrightarrow} \qquad x \in (A \cap C) \cup (B \cap C)$$

Dies war zu zeigen. Es gilt : $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$

(b) Als nächstes zeigt man $(A\cap C)\cup (B\cap C)\subset (A\cup B)\cap C$, d.h. $x\in (A\cap C)\cup (B\cap C)\Longrightarrow x\in (A\cup B)\cap C$

Sei $x \in (A \cap C) \cup (B \cap C)$:

$$x \in (A \cap C) \cup (B \cap C)$$
 Definition von
$$\stackrel{\cup}{\Longrightarrow} \qquad x \in A \cap C \vee x \in B \cap C$$

Man unterscheidet zwei Fälle :

i.
$$x \in A \cap C$$
:
Es gilt :

$$x \in A \cap C$$
 Definition von
$$\xrightarrow{\bigcap} \qquad x \in A \wedge x \in C$$
 Definition von
$$\xrightarrow{\bigoplus} \qquad x \in A \cup B \wedge x \in C$$
 Definition von
$$\xrightarrow{\bigcap} \qquad x \in (A \cup B) \cap C$$

Dies war zu zeigen.

ii.
$$x \in B \cap C$$
:
Es gilt :

Dies war zu zeigen.

In beiden Fällen gilt :
$$x \in (A \cup B) \cap C$$
, damit folgt : $(A \cap C) \cup (B \cap C) \subset (A \cup B) \cap C$

Es gilt also $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

 A^c sei das Komplement von A bzgl. M, also $A^c := \{x \in M \mid x \notin A\}$.

1.
$$(A \cup B)^c = A^c \cap B^c$$

Zwei Mengen M,N heißen gleich, wenn gilt : $M \subset N \wedge N \subset M$

(a) Man zeigt zunächst
$$(A \cup B)^c \subset A^c \cap B^c$$
, d.h. $x \in (A \cup B)^c \Rightarrow x \in A^c \cap B^c$

Sei $x \in (A \cup B)^c$, dann gilt :

$$x \in (A \cup B)^c$$
 Definition von
$$\stackrel{c}{\Longrightarrow} \qquad x \not\in A \cup B$$
 Definition von
$$\stackrel{\cup}{\Longrightarrow} \qquad x \not\in A \land x \not\in B$$
 Definition von
$$\stackrel{c}{\Longrightarrow} \qquad x \in A^c \land x \in B^c$$
 Definition von
$$\stackrel{\cap}{\Longrightarrow} \qquad x \in A^c \cap B^c$$

Dies war zu zeigen, also gilt : $(A \cup B)^c \subset A^c \cap B^c$

(b) Als zweites zeigt man $A^c \cap B^c \subset (A \cup B)^c$, d.h. $x \in A^c \cap B^c \Rightarrow x \in (A \cup B)^c$

Sei $x \in A^c \cap B^c$, dann gilt :

$$x \in A^c \cap B^c$$
 Definition von
$$\stackrel{\cap}{\Longrightarrow} \qquad x \in A^c \wedge x \in B^c$$
 Definition von
$$\stackrel{c}{\Longrightarrow} \qquad x \not\in A \wedge x \not\in B$$
 Definition von
$$\stackrel{\cup}{\Longrightarrow} \qquad x \not\in A \cup B$$
 Definition von
$$\stackrel{c}{\Longrightarrow} \qquad x \in (A \cup B)^c$$

Dies war zu zeigen, also gilt : $A^c \cap B^c \subset (A \cup B)^c$

Es gilt : $(A \cup B)^c = A^c \cap B^c$.

2. $(A \cap B)^c = A^c \cup B^c$

Zwei Mengen M, N heißen gleich, wenn gilt : $M \subset N \land N \subset M$

(a) Man zeigt zunächst $(A\cap B)^c\subset A^c\cup B^c$, d.h. $x\in (A\cap B)^c\Rightarrow x\in A^c\cup B^c$

Sei $x \in (A \cap B)^c$, dann gilt :

$$x \in (A \cap B)^{c}$$
Definition von
$$\stackrel{c}{\Longrightarrow} x \not\in A \cap B$$
Definition von
$$\stackrel{\cap}{\Longrightarrow} x \not\in A \vee x \not\in B$$
Definition von
$$\stackrel{c}{\Longrightarrow} x \in A^{c} \vee x \in B^{c}$$
Definition von
$$\stackrel{\cup}{\Longrightarrow} x \in A^{c} \cup B^{c}$$

Dies war zu zeigen, also gilt : $(A \cap B)^c \subset A^c \cup B^c$

(b) Als zweites zeigt man $A^c \cup B^c \subset (A \cap B)^c$, d.h. $x \in A^c \cup B^c \Rightarrow x \in (A \cap B)^c$

Sei $x \in A^c \cup B^c$, dann gilt :

$$x \in A^c \cup B^c$$
 Definition von
$$\stackrel{\cup}{\Longrightarrow} \qquad x \in A^c \vee x \in B^c$$
 Definition von
$$\stackrel{c}{\Longrightarrow} \qquad x \not\in A \vee x \not\in B$$
 Definition von
$$\stackrel{\cap}{\Longrightarrow} \qquad x \not\in A \cap B$$
 Definition von
$$\stackrel{c}{\Longrightarrow} \qquad x \in (A \cap B)^c$$

Dies war zu zeigen, also gilt : $A^c \cup B^c \subset (A \cap B)^c$

Es gilt : $(A \cap B)^c = A^c \cup B^c$.

1.2.2 Welche der folgenden Definitionen ist eine zulässige Abbildungsdefinition:

1. $n \mapsto n^5$, auf \mathbb{N}_{naiv} :

Dies ist eine Abbildung, da jedem Element n aus \mathbb{N}_{naiv} eindeutig das Element n^5 zugeordnet wird.

2. $n/m \mapsto n/m^2$, auf \mathbb{Q}_{naiv} :

Dies ist keine zulässige Abbildungsdefinition, da nicht jedem Element $n/m \in \mathbb{Q}_{naiv}$ eindeutig ein Element zugeordnet wird.

Es genügt ein Gegenbeispiel:

Es gilt $1/2 \mapsto 1/4$ und gleichzeitig $1/2 = 2/4 \mapsto 2/16 = 1/8$. Da aber $1/4 \neq 1/8$ ist, liegt keine eindeutige Zuordnungsvorschrift vor.

3. $(x_1,\ldots,x_m)\mapsto x_m$, auf \mathbb{K}^m :

Dies ist eine zulässige Abbildungsvorschrift.

Sind $\vec{x} = (x_1, \ldots, x_m)$, $\vec{y} = (y_1, \ldots, y_m) \in \mathbb{K}^m$ zwei gleiche Elemente, dann gilt $x_i = y_i$ für $i = 1, \ldots, m$. Insebsondere gilt dann, dass $x_m = y_m$, was aber genau bedeutet, dass die Bilder von \vec{x} und \vec{y} miteinander übereinstimmen.

1.3.1 Diskutieren Sie die innere Verknüpfung

$$\circ: \ (x,y) \mapsto \frac{x}{y} + \frac{y}{x}$$

auf $\mathbb{R} \setminus \{0\}$: Überprüfen Sie auf

- 1. Wohldefiniertheit,
- 2. Assoziativität,
- 3. Kommutativität,
- 4. Existenz eines neutralen Elements
- 5. und Existenz von inversen Elementen.
- 1. \circ ist wohldefiniert:

Wegen den Verknüpfungen auf \mathbb{R} gilt mit $x, y \in \mathbb{R} \setminus \{0\}$:

$$\frac{x}{y} + \frac{y}{x} = \frac{x^2 + y^2}{xy}.$$

Aufgrund der Abgeschlossenheit der bekannten Verknüpfungen auf $\mathbb R$ liegt $\frac{x^2+y^2}{xy}$ wieder in \mathbb{R} .

Es bleibt zu zeigen, dass $\frac{x^2+y^2}{xy}\neq 0$ ist: Aufgrund von Satz 1.3.6 ist mit $x, y \neq 0$ auch $xy \neq 0$ und somit auch $(xy)^{-1} \neq 0$; außerdem ist dann auch $x^2, y^2 \neq 0$ und wegen Satz 1.4.3 $x^2 + y^2 \neq 0$. Nochmalige Anwendung von Satz 1.3.6 liefert uns $\frac{x^2 + y^2}{xy} \neq 0$. Folglich ist diese Verknüpfung wohldefiniert.

2. o ist nicht assoziativ:

Es genügt ein Gegenbeispiel:

Wähle x = 1, y = 1, z = 2, dann gilt

$$(x \circ y) \circ z = \left(\frac{x}{y} + \frac{y}{x}\right) \circ z$$

$$= \frac{\frac{x}{y} + \frac{y}{x}}{z} + \frac{z}{\frac{x}{y} + \frac{y}{x}}$$

$$= \frac{\frac{1}{1} + \frac{1}{1}}{2} + \frac{2}{\frac{1}{1} + \frac{1}{1}}$$

$$= 2$$

$$x \circ (y \circ z) = x \circ \left(\frac{y}{z} + \frac{z}{y}\right)$$

$$= \frac{x}{\frac{y}{z} + \frac{z}{y}} + \frac{\frac{y}{z} + \frac{z}{y}}{x}$$

$$= \frac{1}{\frac{1}{2} + \frac{1}{1}} + \frac{\frac{1}{2} + \frac{2}{1}}{1}$$

$$= \frac{29}{10}.$$

Da $2 \neq 29/10$, ist die Verknüpfung nicht assoziativ.

 $3. \circ \text{ist kommutativ:}$

Seien $x, y \in \mathbb{R} \setminus \{0\}$. Dann gilt wegen der Kommutativität von ,+' in \mathbb{R}

$$x \circ y = \frac{x}{y} + \frac{y}{x} = \frac{y}{x} + \frac{x}{y} = y \circ x.$$

Dies zeigt die Kommutativität.

4. Es existiert kein neutrales Element:

Es reicht zu zeigen, dass zu $1 \in \mathbb{R} \setminus \{0\}$ kein neurtrales Element existiert. Angenommen e ist neutrales Element, dann müsste $1 \circ e = 1$ gelten. Diese Gleichung führt zu der Gleichung

$$\frac{1}{e} + \frac{e}{1} = 1$$

$$\Leftrightarrow 1 + e^2 = e$$

$$\Leftrightarrow e^2 - e + 1 = 0,$$

welche in $\mathbb R$ nicht lösbar ist. (Begründung: Bei der Anwendung der p-q-Formel erhält man eine negative Zahl unter der Wurzel bzw. die Funktion $x\mapsto x^2-x+1$ hat auf $\mathbb R$ keine Nullstelle.)

- 5. Da kein neutrales Element existiert, können nach Definition auch keine inversen Elemente existieren.
- **1.3.2** Sei (K, \oplus, \odot) der Restklassenring modulo p, also $K = \{0, 1, 2, \dots, p-1\}$ und \oplus und \odot gegeben durch :

$$x \oplus y(\text{bzw.}x \odot y) = \left\{ \begin{array}{l} \text{Rest der bei Teilen von } x + y \\ (\text{bzw. } x \cdot y) \text{ durch p bleibt.} \end{array} \right.$$

Mit der Modulofunktion $(x \mod y) := \text{Rest von } x \text{ durch } y)$ gilt :

$$x \oplus y = (x+y) \mod p$$

 $x \odot y = (x \cdot y) \mod p$

Ohne Beweis darf benutzt werden :

$$ggT(x,y) = d \Longrightarrow \exists a, b \in \mathbb{Z}_{naiv} : a \cdot x + b \cdot y = d$$
 (1)

$$\forall a \in \mathbb{Z}_{naiv} : (x + a \cdot p) \operatorname{mod} p = x \operatorname{mod} p \tag{2}$$

$$\forall x \in \mathbb{Z}_{naiv} \exists l \in \mathbb{Z}_{naiv} : x \bmod p = x + l \cdot p \tag{3}$$

Aus (2) und (3) folgt:

$$\forall x, y \in \mathbb{Z}_{naiv} : (x \bmod p + y) \bmod p = (x + y) \bmod p \tag{4}$$

$$\forall x, y \in \mathbb{Z}_{naiv} : (x \bmod p \cdot y) \bmod p = (x \cdot y) \bmod p \tag{5}$$

Beweis: Sei $x, y \in \mathbb{Z}_{naiv}$:

$$(x \bmod p + y) \bmod p \qquad \stackrel{\text{(3)}}{=} \qquad (x + l \cdot p + y) \bmod p$$

$$\stackrel{\text{(2)}}{=} \qquad (x + y) \bmod p$$

$$(x \bmod p \cdot y) \bmod p \qquad \stackrel{\text{(3)}}{=} \qquad [(x + l \cdot p) \cdot y] \bmod p$$

$$\stackrel{\text{Distr. in } \mathbb{Z}_{naiv}}{=} \qquad (x \cdot y + l \cdot p \cdot y) \bmod p$$

$$\stackrel{\text{(2)}}{=} \qquad (x \cdot y) \bmod p$$

 \oplus und \odot sind innere Verknüpfungen in K, da $a \mod p$ für alle $a \in \mathbb{Z}_{naiv}$ in K liegt und somit auch $(x+y) \mod p$ und $(x\cdot y) \mod p$.

Um zu überprüfen, ob (K, \oplus, \odot) ein Körper ist, muß man feststellen, ob alle Körperaxiome (A1, A2, A3, M1, M2, M3, D) für (K, \oplus, \odot) gelten :

- 1. $A1: \oplus$ ist assoziativ und kommutativ
 - Kommutativität: $x \oplus y = y \oplus x$ Seien $x, y \in K$ beliebig: Es gilt: $x \oplus y = (x+y) \mod p$ Wegen der Kommutativität von ,+' in \mathbb{N}_{naiv} gilt x+y=y+x, also: $(x+y) \mod p = (y+x) \mod p \stackrel{\oplus}{=} y \oplus x$. Es gilt also: $x \oplus y = y \oplus x$, d.h.: \oplus ist kommutativ.
 - Assoziativität : $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Es gilt $(x, y, z \in K)$:

$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & &$$

 \oplus ist assoziativ.

A1 ist erfüllt.

2. A2 : Es gibt ein neutrales Element ,0°bzgl. \oplus .

0 ist das neutrale Element bzgl. \oplus , was aus der Neutralität von 0 bzgl. ,+' in \mathbb{Z}_{naiv} folgt $(x \in K)$:

$$x \oplus 0 = (x+0) \operatorname{mod} p = x \operatorname{mod} p = x$$

 $0 \oplus x = (0+x) \operatorname{mod} p = x \operatorname{mod} p = x$

A2 ist erfüllt.

3. A3 : Es gibt zu jedem $x \in K$ ein Inverses bzgl. \oplus .

Das inverse Element zu $x \in K$ ist $(p-x) \mod p \in K$ da gilt :

$$x \oplus (p-x) \operatorname{mod} p$$
 = $[x + (p-x) \operatorname{mod} p] \operatorname{mod} p$
 $\stackrel{(4)}{\equiv}$ $(x + p - x) \operatorname{mod} p$
= $p \operatorname{mod} p$ Def. $\stackrel{\text{Def. von mod}}{=}$ 0

A3 ist erfüllt.

- 4. M1 : ⊙ ist assoziativ und kommutativ
 - Kommutativität

Es gilt : $x \odot y = (x \cdot y) \mod p$

Wegen der Kommutativität in \mathbb{N}_{naiv} gilt $x \cdot y = y \cdot x$, also:

 $(x \cdot y) \mod p = (y \cdot x) \mod p = y \odot x.$

Es gilt also : $x \odot y = y \odot x$, d.h. : \odot ist kommutativ.

• Assoziativität : $(x \odot y) \odot z = x \odot (y \odot z)$ Es gilt $(x, y, z \in K)$:

⊙ ist assoziativ.

M1 ist erfüllt.

5. M2 : Es gibt ein neutrales Element ,1'bzgl. ⊙.

1 ist das neutrale Element bzgl. \odot , was aus der Neutralität von 1 bzgl. ,' in \mathbb{Z}_{naiv} folgt $(x \in K)$:

$$x \odot 1 = (x \cdot 1) \mod p = x \mod p = x$$

 $1 \odot x = (1 \cdot x) \mod p = x \mod p = x$

M2 ist erfüllt.

6. M3 : Es gibt zu jedem $x \in K \setminus \{0\}$ ein Inverses bzgl. \odot .

Man unterscheidet hier zwei Fälle :

• p ist eine Primzahl Wenn p eine Primzahl ist, dann gilt :

 $\forall x \in K \setminus \{0\} : ggT(x, p) = 1$ sonst wäre p keine Primzahl

Wegen (1) gibt es dann a,b mit :

$$\begin{array}{l} a \cdot x + b \cdot p = 1 \Longrightarrow (a \cdot x + b \cdot p) \operatorname{mod} p = 1 \\ (a \cdot x) \operatorname{mod} p = 1 \end{array}$$

Dann ist $a \mod p \in K$ das Inverse bzgl. \odot zu $x \in K$, da gilt (1):

$$a \bmod p \odot x \stackrel{\text{Definition von}}{\stackrel{\odot}{=}} (a \bmod p \cdot x) \bmod p$$

$$\stackrel{(5)}{\stackrel{=}{=}} (a \cdot x) \bmod p = 1$$

Es gibt also, wenn p prim ist, zu jedem $x \in P$ ein Inverses bzgl. \odot .

• p ist keine Primzahl Wenn p keine Primzahl ist, gibt es $a,b\in P\setminus\{0\}$ mit $a\cdot b=p$. Für a und b gilt dann wegen der Definition von \odot , da p bei Division durch p den Rest 0 läßt : $a\odot b=0$. a hat dann kein Inverses bzgl. \odot , da : Angenommen, es gäbe $a^{-1}\in P\setminus\{0\}$ mit $a\odot a^{-1}=1$, dann würde gelten:

$$a \odot b = 0$$

$$\Longrightarrow a^{-1} \odot (a \odot b) = a^{-1} \odot 0$$
Ass. von \odot ,
$$\stackrel{\text{Def. von } 0}{\Longrightarrow} (a^{-1} \odot a) \odot b = 0$$

$$\stackrel{\text{Voraussetzung}}{\Longrightarrow} 1 \odot b = 0$$

$$\stackrel{\text{Def. von } 1}{\Longrightarrow} b = 0$$

Dies widerspricht aber der Vorraussetzung, dass $b \in P \setminus \{0\}$, also gibt es kein $a^{-1} \in K$ mit $a^{-1} \odot a = 1$, a hat also kein Inverses bzgl. \odot , d.h. wenn p keine Primzahl ist, haben nicht alle $x \in P$ ein Inverses bzgl. \odot .

M3 ist nur erfüllt, wenn p eine Primzahl ist.

7. D : Es gilt das Distributivgesetz : $(x \oplus y) \odot z = (x \odot z) \oplus (y \odot z)$

Es gilt $(x, y, z \in K)$:

$$(x \oplus y) \odot z$$
 $\stackrel{\text{Def. von } \oplus, \odot}{=}$ $[(x+y) \mod p \cdot z] \mod p$ $\stackrel{\text{(5)}}{=}$ $[(x+y) \cdot z] \mod p$

$$\begin{array}{ll} \text{Dist. in } N_{naiv} & \left[(x+y) \cdot (x+z) \right] \operatorname{mod} p \\ & \stackrel{(5)}{=} & \left[(x+y) \operatorname{mod} p \cdot (x+y) \operatorname{mod} p \right] \operatorname{mod} p \\ \text{Def. von } \oplus, \odot & \left(x \odot z \right) \oplus (y \odot z) \end{array}$$

D ist erfüllt.

Die Körperaxiome A1, A2, A3, M1, M2 und D sind also stets erfüllt, M3 dagegen nur, wenn p eine Primzahl ist. Des Weiteren gilt $0 \neq 1$. Daher ist (K, \oplus, \odot) nur dann ein Körper, wenn p eine Primzahl ist.

1.3.3

1. Diskutiere die innere Verknüpfung

$$(x,y) \mapsto x \circ y := x + 3y$$

auf $\mathbb R$ i.e. untersuche sie auf Assoziativität, Kommutativität, Existenz eines neutralen Elementes, Existenz von Inversen.

• Assoziativität:

 \circ ist nicht assoziativ, da für $0, 1 \in \mathbb{R}$ gilt:

also $(0 \circ 0) \circ 1 \neq 0 \circ (0 \circ 1)$, da $3 \neq 9$, damit ist \circ nicht assoziativ.

• Kommutativität:

 \circ ist nicht kommutativ, da für $0, 1 \in \mathbb{R}$ gilt:

$$0 \circ 1$$
 $\stackrel{\text{Def.}}{=}$ $0 + 3 \cdot 1$

$$= 3$$

$$1 \circ 0$$
 $\stackrel{\text{Def.}}{=}$ $1 + 3 \cdot 0$

also $0 \circ 1 \neq 1 \circ 0$, da $1 \neq 3$, damit ist \circ nicht kommutativ.

• Existenz eines neutralen Elementes: Es gibt in \mathbb{R} kein neutrales Element bzgl. \circ , da: Angenommen es gäbe $n \in \mathbb{R}$ mit

$$\forall r \in \mathbb{R} : n \circ r = r \circ n = n$$

Dann gelte insbesondere auch

$$n \circ 0 = 0 \iff n + 3 \cdot 0 = 0 \iff n = 0$$

und

$$n \circ 1 = 1 \iff n + 3 \cdot 1 = 1 \iff n = -2$$

da aber $-2 \neq 0$ ex. in $\mathbb R$ kein neutrales Element bzgl. \circ . Allerdings ist 0 wegen $\forall r \in \mathbb R: r \circ 0 = r + 3 \cdot 0 = r$ linksneutral.

Existenz von Inversen:
 Da in ℝ bzgl. ○ kein neutrales Element existiert, macht die Betrachtung von Inversen keinen Sinn.

2. Man definiere für $x, y \in \mathbb{R}$

$$\begin{array}{rcl} x \oplus y & := & x + y, \\ x \odot y & := & \frac{x \cdot y}{2} \end{array}$$

Ist dann $(\mathbb{R}, \oplus, \odot)$ ein Körper?

Um zu überprüfen, ob $(\mathbb{R}, \oplus, \odot)$ ein Körper ist, muss man überprüfen, ob die Körperaxiome von $(\mathbb{R}, \oplus, \odot)$ erfüllt werden.

- (a) A1 : Assoziativität, Kommutativität von \oplus
 - Assoziativität:

z.z.:
$$\forall x, y, z \in \mathbb{R} : (x \oplus y) \oplus z = x \oplus (y \oplus z)$$

Seien $x, y, z \in \mathbb{R}$ beliebig, dann gilt:

$$(x \oplus y) \oplus z \qquad \stackrel{\text{Def. von } \oplus}{=} \qquad (x+y)+z$$

$$\stackrel{\text{Ass. von } +}{=} \qquad x+(y+z)$$

$$\stackrel{\text{Def. von } \oplus}{=} \qquad x \oplus (y \oplus z)$$

Also ist \oplus assoziativ.

• Kommutativität:

z.z.:
$$\forall x, y \in \mathbb{R} : x \oplus y = y \oplus x$$

Seien $x, y \in \mathbb{R}$ beliebig, dann gilt:

$$\begin{array}{cccc} x \oplus y & \stackrel{\text{Def. von } \oplus}{=} & x + y \\ & \stackrel{\text{Komm. von } +}{=} & y + x \\ & \stackrel{\text{Def. von } \oplus}{=} & y \oplus x \end{array}$$

Also ist \oplus kommutativ.

A1 ist erfüllt.

(b) A2 : Existenz eines neutralen Elementes bzgl. \oplus Beh.: 0 ist neutral bzgl. \oplus z.z.: $\forall r \in \mathbb{R} : r \oplus 0 = 0 \oplus r = r$

Sei $r \in \mathbb{R}$ beliebig, dann gilt $r \oplus 0 = r + 0 = r$, da 0 neutral bzgl. ,+' ist. Es gilt aber wegen der Kommutativität von \oplus auch $0 \oplus r = r \oplus 0 = r$. Also hat \oplus ein neutrales Element, nämlich 0.

(c) A3 : Existenz von inversen Elementen bzgl. \oplus Beh.: $-r \in \mathbb{R}$ ist zu $r \in \mathbb{R}$ invers bzgl. \oplus z.z.: $\forall r \in \mathbb{R} : r \oplus (-r) = (-r) \oplus r = 0$

Sei $r \in \mathbb{R}$ beliebig, dann gilt $r \oplus (-r) = r + (-r) = 0$, da -r invers zu r bzgl. + ist. Es gilt aber wegen der Kommutativität von \oplus auch $(-r) \oplus r = r \oplus (-r) = 0.$

Also hat jedes $r \in \mathbb{R}$ ein Inverses bzgl. \oplus , nämlich -r.

- (d) M1 : Assoziativität, Kommutativität von ⊙
 - Assoziativität:

z.z.:
$$\forall x, y, z \in \mathbb{R} : (x \odot y) \odot z = x \odot (y \odot z)$$

Seien $x, y, z \in \mathbb{R}$ beliebig, dann gilt:

$$\begin{array}{cccc} (x\odot y)\odot z & \overset{\mathrm{Def.\ yon\ }\odot}{=} & \frac{x\cdot y}{2}\odot z \\ & \overset{\mathrm{Def.\ yon\ }\odot}{=} & \frac{\frac{x\cdot y}{2}\cdot z}{2} \\ & \overset{\mathrm{Ass.\ yon\ }\cdot}{=} & \frac{(x\cdot y)\cdot z}{4} \\ & \overset{\mathrm{Ass.\ yon\ }\cdot}{=} & \frac{x\cdot (y\cdot z)}{4} \end{array}$$

$$\begin{array}{ll} \text{Ass.} \underbrace{\overset{\text{von }}{=}} & \frac{x \cdot \frac{y \cdot z}{2}}{2} \\ \text{Def.} \underbrace{\overset{\text{von }}{=}} & x \odot \frac{y \cdot z}{2} \\ \text{Def.} \underbrace{\overset{\text{von }}{=}} & x \odot (y \odot z) \end{array}$$

Also ist \odot assoziativ.

• Kommutativität:

z.z.: $\forall x, y \in \mathbb{R} : x \odot y = y \odot x$

Seien $x, y \in \mathbb{R}$ beliebig, dann gilt:

$$x \odot y \qquad \stackrel{\text{Def. yon } \odot}{=} \qquad \frac{x \cdot y}{2}$$

$$\text{Kom}_{\underline{\underline{m}}} \text{ von } \cdot \qquad \frac{y \cdot x}{2}$$

$$\stackrel{\text{Def. yon } \odot}{=} \qquad y \odot x$$

Also ist \odot kommutativ.

M1 ist erfüllt.

(e) M2 : Existenz eines neutralen Elementes bzgl. \odot Beh.: 2 ist neutral bzgl. \odot z.z.: $\forall r \in \mathbb{R} : r \odot 2 = 2 \odot r = r$

Sei $r \in \mathbb{R}$ beliebig, dann gilt $r \odot 2 = \frac{r \cdot 2}{2} = r \cdot 1 = r$, da 1 neutral bzgl. ,·' ist. Es gilt aber wegen der Kommutativität von \odot auch $2 \odot r = r \odot 2 = r$.

Also hat \odot ein neutrales Element, nämlich 2.

(f) M3 : Existenz von inversen Elementen bzgl. \odot Beh.: $\frac{4}{r} \in \mathbb{R}$ ist zu $r \in \mathbb{R} \setminus \{0\}$ invers bzgl. \odot z.z.: $\forall r \in \mathbb{R} \setminus \{0\} : r \odot \frac{4}{r} = \frac{4}{r} \odot r = 2$

Sei $r \in \mathbb{R}$ beliebig, dann gilt

$$r\odot\frac{4}{r}=\frac{r\cdot\frac{4}{r}}{2}=2.$$

Es gilt aber wegen der Kommutativität von \odot auch

$$\frac{4}{r}\odot r=r\odot\frac{4}{r}=2.$$

Also hat jedes $r \in \mathbb{R}$ ein Inverses bzgl. \odot , nämlich $\frac{4}{r}$.

(g) D: Distributivgesetz

z.z.:
$$\forall x, y, z \in \mathbb{R} : (x \oplus y) \odot z = (x \odot z) \oplus (y \odot z)$$

Seien $x, y, z \in \mathbb{R}$ beliebig, dann gilt:

$$(x \oplus y) \odot z \qquad \stackrel{\text{Def. von } \odot}{=} \qquad \frac{(x \oplus y) \cdot z}{2}$$

$$\stackrel{\text{Def. von } \oplus}{=} \qquad \frac{(x + y) \cdot z}{2}$$

$$\stackrel{\text{Distr. von } +, \cdot}{=} \qquad \frac{x \cdot z}{2} + \frac{y \cdot z}{2}$$

$$\stackrel{\text{Def. von } \odot}{=} \qquad (x \odot z) + (y \odot z)$$

$$\stackrel{\text{Def. von } \oplus}{=} \qquad (x \odot z) \oplus (y \odot z)$$

Also gilt das Distributivgesetz.

Da wegen $2 \neq 0$ das additiv und das multiplikativ Inverse in $(\mathbb{R}, \oplus, \odot)$ nicht übereinstimmen und alle Körperaxiome erfüllt sind, ist $(\mathbb{R}, \oplus, \odot)$ ein Körper.

- **1.3.4** Es sei $(K,+,\cdot)$ ein Körper, $y\in K$ und $f:K\to K$ mit $x\mapsto x$ y = x + (-y) eine Abbildung. Untersuche f auf Invjektivität, Surjektivität und Bijektivität.
 - 1. Injektivität : $f(a) = f(b) \Rightarrow a = b$

'0'sei das neutrale Element bzgl. ,+', $a,b \in K$

$$f(a) = f(b)$$

$$\stackrel{\text{Def. von } f}{\Longrightarrow} a + (-y) = b + (-y)$$

$$\Longrightarrow (a + (-y)) + y = (b + (-y)) + y$$

$$\stackrel{\text{Ass. von } +}{\Longrightarrow} a + ((-y) + y) = b + ((-y) + y)$$

$$\stackrel{\text{Def. von } -y}{\Longrightarrow} a + 0 = b + 0$$

$$\stackrel{\text{0 ist neutral}}{\Longrightarrow} a = b$$

f ist also injektiv.

2. Surjektivität: Z.z.: Zu jedem $a \in K$ existiert $b \in K$ mt f(b) = a.

Sei $a \in K$ beliebig, dann setze b := a + y. Es gilt :

$$f(b)$$
 $\stackrel{\text{Def. von } b}{=}$ $f(a+y)$ $f(a+y) + (-y)$

Ass.
$$\stackrel{\text{von }+}{=}$$
 $a+[y+(-y)]$
Def. $\stackrel{\text{von }-y}{=}$ $a+0$
0 ist $\stackrel{\text{meutral}}{=}$ a

f ist also surjektiv.

3. Bijektiv
ität : \boldsymbol{f} ist bijektiv, da \boldsymbol{f} injektiv und surjektiv
ist.

1.4.1 Kann der Körper (K, \oplus, \odot) aus Aufgabe 1.3.2 angeordnet werden?

Nein, denn:

 $\bigoplus_{k=1}^{n} 1$ sei für alle $n \in \mathbb{N}$ definiert durch :

$$\bigoplus_{k=1}^{n+1} 1 = 1$$

$$\bigoplus_{k=1}^{n+1} 1 = \bigoplus_{k=1}^{n} 1 \oplus 1$$

Für ⊕ gilt offenbar :

$$\bigoplus_{k=1}^{n} 1 = n \operatorname{mod} p$$

Beweis (durch vollständige Induktion):

Für n=1 gilt nach Definition von $\bigoplus: \bigoplus_{k=1}^1 1=1$ Def. von $\mod p$ Wenn nun $\bigoplus_{k=1}^{n} 1 = n \mod p$ gilt, folgt :

$$\bigoplus_{k=1}^{n+1} 1 \qquad \stackrel{\text{Def. von}}{=} \bigoplus_{k=1}^{n} 1 \oplus 1$$

$$\stackrel{\text{Voraussetzung}}{=} \qquad n \mod p \oplus 1$$

$$\stackrel{\text{Def. von}}{=} \bigoplus_{n \mod p + 1} \pmod p$$
s. Übung 1.3.2
$$\stackrel{\text{S. Übung 1.3.2}}{=} (n+1) \mod p$$

Angenommen nun, (K, \oplus, \odot) wäre anordbar, dann gälte :

$$\forall n \in \mathbb{N} : \bigoplus_{k=1}^{n} 1 > 0$$

Beweis : Es gilt in angeordneten Körpern stets 1>0 (wegen $1\neq 0$ (Axiom)) und $\forall x \in K : x^2 > 0 \land 1^2 = 1$ also (Def.) auch $\bigoplus_{k=1}^1 1 > 0$ und mit $\bigoplus_{k=1}^n 1 > 0$ folgt mit 1 > 0 auch $\bigoplus_{k=1}^{n+1} 1 > 0$ ($\forall a, b \in K : a, b > 0 \Rightarrow a+b > 0$). Also gälte auch:

$$\bigoplus_{k=1}^{p-1} 1 = p - 1 \operatorname{mod} p \stackrel{\text{Def. von mod}}{=} p - 1 > 0$$

 Da p-1aber wegen $p-1\oplus 1=p\,\mathrm{mod}\,p=0$ das Inverse zu 1, also -1ist, gelte K geordnet dann -1 > 0

1 < 0 ist ein Widerspruch zu 1 > 0, also ist die Voraussetzung falsch, und

 (K, \oplus, \odot) kann nicht angeordnet werden.

1.4.2 Man zeige, dass es auf \mathbb{R} nur einen Positivbereich gibt.

Hinweis : Es darf ausgenutzt werden, dass zu jeder nicht negativen reellen Zahl eine Wurzel in \mathbb{R} existiert.

Zunächst hat \mathbb{R} aufgrund des Axiomensystems von \mathbb{R} (\mathbb{R} ist ein vollständiger, archimedisch angeordneter Körper) einen Positivbereich P. Dieser definiert auf \mathbb{R} durch $\forall a,b \in \mathbb{R} : a > b :\Leftrightarrow a-b \in P$ eine Relation >. Um zu beweisen, dass dieser Positivbereich der einzige ist, muss man zeigen, dass, wenn \tilde{P} ein beliebiger Positivbereich von \mathbb{R} ist, $P = \tilde{P}$ folgt.

Sei \tilde{P} ein beliebiger Positivbereich in \mathbb{R} . Zu zeigen: $P = \tilde{P}$ Zwei Mengen M, N heissen gleich, wenn $M \subset N \wedge N \subset M$.

- ,C': Man zeigt zunächst $P \subset \tilde{P}$ Sei $x \in P$ beliebig. Dann existiert wegen $x \in P \Rightarrow x > 0$ ein $y \in \mathbb{R}$ mit $y^2 = x$. Da aber Quadrate von Zahlen ungleich $0 \ (x \neq 0 \ \text{gilt}, \, \text{da} \ 0 \notin P, \, \text{da}$ kein Positivbereich 0 enthalten kann) in jedem Positivbereich enthalten sind, folgt $y^2 \in \tilde{P}$, da \tilde{P} nach Voraussetzung Positivbereich ist. Und somit wegen $x = y^2$ auch $x \in \tilde{P}$. Dies war zu zeigen.
- ,⊃': Man zeigt nun $\tilde{P} \subset P$ Sei $x \in \tilde{P}$ beliebig. Angenommen nun $x \notin P$. Dann folgt, da $x \neq 0$ und P ein Positivbereich ist, dass $-x \in P$. Damit gilt aber auch, wie eben bewiesen $-x \in \tilde{P}$, also aufgrund der Positivbereichseigenschaft von $\tilde{P}: x \notin \tilde{P}$. Das widerspricht aber der Voraussetzung $x \in \tilde{P}$, also war die Annahme falsch und es gilt $x \in P$. Dies war aber zu zeigen.

Es gilt also $P = \tilde{P}$ für beliebiges \tilde{P} und somit hat \mathbb{R} nur einen Positivbereich.

1.4.3 Sei die Menge $K := \mathbb{Q} + \mathbb{Q}\sqrt{2} \ (= \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\})$ gegeben.

- 1. Zeige das $(K,+,\cdot)$ ein Körper ist, wobei ,+' und ,·' die von $\mathbb R$ geerbten Verknüpfungen sind.
- 2. Es sei ">"die übliche Ordnung auf \mathbb{R} , und

$$\mathcal{P}_1 := \{ a + b\sqrt{2} \in K \, | \, a + b\sqrt{2} > 0 \} \quad \text{und}$$

$$\mathcal{P}_2 := \{ a + b\sqrt{2} \in K \, | \, a - b\sqrt{2} > 0 \}$$

Zeige, dass \mathcal{P}_1 und \mathcal{P}_2 verschiedene Positivbereiche auf K sind.

Es darf benutzt werden, dass $\sqrt{2}$ irrational ist.

1. Zuerst zeigt man, dass $K \subset \mathbb{R}$. Beweis : (z.z. : $x \in K \Rightarrow x \in \mathbb{R}$) Sei $x \in K$, dann kann x nach Definition von K als $a + b\sqrt{2}$ mit $a, b \in \mathbb{R}$

 \mathbb{Q} dargestellt werden. Da aber $\mathbb{Q} \subset \mathbb{R}$ und somit auch $a, b \in \mathbb{R}$, aber auch $\sqrt{2} \in \mathbb{R}$, woraus nach den Körpereigenschaften von \mathbb{R} (,+'und , 'sind innere Verknüpfungen auf \mathbb{R}) $a + b\sqrt{2} \in \mathbb{R}$ folgt. Dies heisst aber $x \in \mathbb{R}$. Dann zeigt man, dass

$$a + b\sqrt{2} = 0 \iff a = 0 \land b = 0 \quad (a, b \in \mathbb{Q})$$
 (6)

Beweis:

- , \Rightarrow ': Sei $x = a + b\sqrt{2} = 0 \in K$ gegeben. Man unterscheidet nun zwei
 - (a) b = 0: Setzt man dies in die Voraussetzung ein, folgt sofort a = 0, da $a + 0\sqrt{2} = 0 \Rightarrow a = 0$.
 - (b) $b \neq 0$: Hier folgt

$$a+b\sqrt{2}=0 \quad \overset{\mathbb{Q} \text{ ist K\"{o}rper}}{\Longleftrightarrow} \quad a=-b\sqrt{2} \qquad \overset{b\neq 0}{\Longleftrightarrow} \qquad -\frac{a}{b}=\sqrt{2}$$

Da mit $a,b\in\mathbb{Q}$ nach Voraussetzung, da \mathbb{Q} ein Körper ist und so , 'innere Verknüpfung, auch $-\frac{a}{b} \in \mathbb{Q}$, wäre $\sqrt{2} \in \mathbb{Q}$. Dies ist ein Widerspruch, da $\sqrt{2} \notin \mathbb{Q}$ schon bewiesen wurde. Also gilt b=0und damit folgt a = 0.

• ,\(\epsilon': \text{ Aus } a = 0 \text{ und } b = 0 \text{ folgt sofort } x = a + b\sqrt{2} = 0 + 0\sqrt{2} = 0.

Aus (1) folgt aber, dass sich jede Zahl $x \in K$ auf genau eine Art als $a+b\sqrt{2}$ mit $a, b \in \mathbb{Q}$ darstellen lässt. Denn : Sei $x \in K$ dargestellt als : $x = a + b\sqrt{2}$ und $x = \tilde{a} + b\sqrt{2}$. Das ist aufgrund der Definition von K stets möglich Dann folgt:

D.h. (2): Jede Zahl $x \in K$ lässt sich auf genau eine Art als x = a + $b\sqrt{2}$, $a, b \in \mathbb{Q}$ darstellen.

Um zu zeigen, dass $(K,+,\cdot)$ ein Körper ist, muss man überprüfen, ob die Körperaxiome für K erfüllt sind. Zunächst hat man zu zeigen, dass die von \mathbb{R} geerbten Verknüpfungen + und \cdot innere Verknüpfungen auf Ksind.

zu Zeigen : $\forall x_1, x_2 \in K : x_1 + x_2 \in K \land x_1 \cdot x_2 \in K$.

Seien nun $x_1, x_2 \in K$ bel. gegeben. Dann lassen sich x_1 und x_2 wegen (2) eindeutig darstellen durch:

$$\begin{array}{rcl} x_1 & = & a_1+b_1\sqrt{2} & a_1,b_1\in\mathbb{Q}\\ x_2 & = & a_2+b_2\sqrt{2} & a_2,b_2\in\mathbb{Q} \end{array} \text{ Damit folgt für } x_1+x_2\text{:}$$

$$x_1 + x_2 = (a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2})$$

Komm.,Ass. in
$$\stackrel{\mathbb{R}}{=} (a_1 + a_2) + b_1 \sqrt{2} + b_2 \sqrt{2}$$
Distr. in \mathbb{R} $(a_1 + a_2) + (b_1 + b_2) \sqrt{2}$

Da aufgrund der Körpereigenschaften von \mathbb{Q} (,+'ist innere Verknüpfung) mit a_1, a_2 auch $a_1 + a_2 \in \mathbb{Q}$ und mit b_1, b_2 auch $b_1 + b_2 \in \mathbb{Q}$ liegt, ist $x_1 + x_2$ nach der Definition von K Element von K. Für $x_1 \cdot x_2$ folgt:

Auch hier folgt aus den Eigenschaften von ,+'und ,-'als innere Verknüpfungen auf \mathbb{Q} , dass $a_1a_2+2b_1b_2\in\mathbb{Q}$ und $a_1b_2+a_2b_1\in\mathbb{Q}$ und somit $x_1\cdot x_2\in K$. Dies war aber zu zeigen.

Jetzt kann man die Gültigkeit der Körperaxiome für $(K,+,\cdot)$ überprüfen :

- (a) A1 : Kommutativität und Assoziativität von ,+'. ,+'ist kommutativ und assoziativ, da es vom Körper $(\mathbb{R},+,\cdot)$ geerbt wurde und somit auf \mathbb{R} kommutativ und assoziativ ist, also erst recht auf $K \subset \mathbb{R}$.
- (b) A2: Es gibt ein neutrales Element bzgl. ,+'
 Da ,+'in \mathbb{R} das neutrale Element 0 hat, hat es dies wegen $K \subset \mathbb{R}$ und $0 \in K$, da $0 = 0 + 0\sqrt{2}$ auch in K.
- (c) A3 : Jedes Element $x \in K$ hat ein Inverses bzgl. ,+' In \mathbb{R} hat jedes $x \in K \subset \mathbb{R}$ ein Inverses bzgl. ,+', nämlich -x, es bleibt noch zu zeigen, dass

$$\forall x \in K : -x \in K$$

Beweis:

Sei $x \in K$ bel. Dann kann x eindeutig als $a+b\sqrt{2}$ mit $a,b \in \mathbb{Q}$ dargestellt werden. Für -x gilt damit $-x=-a-b\sqrt{2}$ $\stackrel{\mathbb{R}}{=}$ $-a+(-b)\sqrt{2}$. Da aber \mathbb{Q} ein Körper ist, liegen mit a,b auch $-a,-b \in \mathbb{Q}$ und somit ist nach Definition von $K,-x \in K$ und das Inverse zu x.

- (d) M1 : Kommutativität und Assoziativität von ,·'. ,·'ist kommutativ und assoziativ, da es vom Körper $(\mathbb{R},+,\cdot)$ geerbt wurde und somit auf \mathbb{R} kommutativ und assoziativ ist, also erst recht auf $K \subset \mathbb{R}$.
- (e) M2 : Es gibt ein neutrales Element bzgl. , '. Da , 'in $\mathbb R$ das neutrale Element 1 hat, hat es dies wegen $K\subset \mathbb R$ und $1\in K$, da $1=1+0\sqrt{2}$ auch in K.

(f) M3: Zu jedem $x \in K \neq 0$ gibt es ein Inverses bzgl. , '. In \mathbb{R} hat jedes $x \neq 0 \in K \subset \mathbb{R}$ ein Inverses bzgl., ', nämlich x^{-1} , es bleibt noch zu zeigen, dass

$$\forall x \in K : x^{-1} \in K$$

Beweis: Sei $x \in K \setminus \{0\}$ bel. gegeben, dann gilt für x wg. (2): x = $a + b\sqrt{2}$ mit $a, b \in \mathbb{Q}$ und $(1): a \neq 0 \lor b \neq 0$. Mit $a \neq 0 \lor b \neq 0$ ist aber auch $a - b\sqrt{2} \neq 0$. Nun ist :

$$x^{-1} \qquad \stackrel{\underline{\mathrm{Def.}}}{=} \qquad \frac{1}{x}$$

$$\stackrel{(2)}{=} \qquad \frac{1}{a+b\sqrt{2}}$$

$$a-b\sqrt{2} \neq 0 \qquad \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})}$$

$$\mathbb{R} \text{ ist } \underbrace{\mathrm{K\"{o}rper}}_{=} \qquad \frac{a-b\sqrt{2}}{a^2-2b^2}$$

$$\mathrm{Ass., Distr. \ in } \mathbb{R} \qquad \frac{a}{a^2-2b^2} + \frac{-b}{a^2-2b^2}\sqrt{2}$$

Aus den Eigenschaften von + und \cdot in \mathbb{Q} folgt : $a^2 - 2b^2 \in \mathbb{Q}$ und $-b \in Q$, da $a, b \in \mathbb{Q}$ und somit gilt $x^{-1} \in K$. Also hat jedes $x \in K$ ein Inverses bzgl., '.

(g) D : Es gilt das Distributivgesetz Da das Distributvgesetz in R für ,+'und ,-'gilt, und ,+'und ,-'innere Verknüpfungen auf $K \subset \mathbb{R}$ sind, gilt es auch in K.

Alle Axiome sind erfüllt und es gilt $0 \neq 1$ wie in $\mathbb{R} \Rightarrow (K, +, \cdot)$ ist ein Körper.

2. Zunächst zeigt man, dass \mathcal{P}_1 und \mathcal{P}_2 wohldefiniert sind : Wie oben (2) bewiesen, gibt es für jedes $x \in K$ genau eine Möglichkeit, es in der Form $x = a + b\sqrt{2}$ mit $a, b \in \mathbb{Q}$ darzustellen, d.h. mit x sind auch a und b eindeutig bestimmt, und man kann eindeutig für jedes $x \in K$ entscheiden, ob $a+b\sqrt{2}>0$ und $a-b\sqrt{2}>0$ gelten. Man kann also für jedes $x \in K$, da das gerade die Eigenschaften sind, die die Teilmengen $\mathcal{P}_1 \subset K$ und $\mathcal{P}_2 \subset K$ definieren, eindeutig feststellen, ob $x \in \mathcal{P}_1$ oder $x \notin \mathcal{P}_1$, bzw. $x \in \mathcal{P}_2$ oder $x \notin \mathcal{P}_2$. Also sind \mathcal{P}_1 und \mathcal{P}_2 wohldefiniert.

Als nächstes hat man zu zeigen, dass \mathcal{P}_1 und \mathcal{P}_2 Positivbereiche sind, d.h. dass sie die für Positivbereiche geforderten Axiome erfüllen (,>'sei die natürlich Ordnung in \mathbb{R}):

Sei $(K, +, \cdot)$ ein Körper. $P \subset K$ heisst Positivbereich, wenn gilt :

 $P1: \forall x \in K \setminus \{0\}: (x \in P \vee -x \in P) \land \neg (x \in P \land -x \in P)$ $P2: \forall a, b \in P: a+b \in P$

 $P3: \forall a, b \in P: a \cdot b \in P$

- Man zeigt zunächst, dass \mathcal{P}_1 ein Positivbereich in K ist.
 - (a) P1 Sei $x \in K \setminus \{0\}$ dargestellt als $x = a + b\sqrt{2}$ mit $a, b \in \mathbb{Q}$. $x \in \mathcal{P}_1$ gilt laut Definition von \mathcal{P}_1 genau dann, wenn in \mathbb{R} $a + b\sqrt{2} = x > 0$ gilt. Da \mathbb{R} ein geordneter Körper ist, gilt stets x > 0 oder -x > 0, aber nie beides zugleich. Somit gilt auch stets $x \in \mathcal{P}_1$ oder $x \notin \mathcal{P}_1$, aber nie beides zugleich.
 - (b) P2 Seien $x, y \in \mathcal{P}_1$ beliebig. $x \in \mathcal{P}_1$ bedeutet aber (s. P1) gerade x > 0, wobei ">"die natürliche Ordnung in \mathbb{R} ist. Genauso gilt mit $y \in \mathcal{P}_1$ auch y > 0. Aufgrund der Ordnung in \mathbb{R} folgt aus x > 0 und y > 0 aber auch x + y > 0. Da $x + y \in K$ gilt, und x + y > 0 folgt, dass $x + y \in \mathcal{P}_1$ aus der Definition von \mathcal{P}_1 (\mathcal{P}_1 enthält gerade die Elemente aus K, für die $x = a + b\sqrt{2} > 0$ ist).
 - (c) P3 Seien $x, y \in \mathcal{P}_1$ beliebig. Analog wie oben (P2) gilt $x > 0 \land y > 0 \Rightarrow x \cdot y > 0$ und da K bzgl. , 'abgeschlossen ist, folgt $x \cdot y \in \mathcal{P}_1$.

Da alle Axiome von \mathcal{P}_1 erfüllt werden, ist \mathcal{P}_1 Positivbereich in K.

- Jetzt zeigt man, dass \mathcal{P}_2 ein Positivbereich in K ist.
 - (a) P1
 Sei $x \in K \setminus \{0\}$ eindeutig dargestellt als $x = a + b\sqrt{2}$ mit $a, b \in \mathbb{Q}$. $x \in \mathcal{P}_2$ gilt, wenn $a b\sqrt{2} > 0$ ist, wenn dies gilt, ist aber $-x = -a b\sqrt{2}$ wegen $a b\sqrt{2} > 0 \Rightarrow -a + b\sqrt{2} = -a (-b)\sqrt{2} < 0$. $-x \notin \mathcal{P}_2$. Gilt aber $x \notin \mathcal{P}_2$, so folgt $a b\sqrt{2} < 0$ $(a b\sqrt{2} = 0)$ ist wegen $x \neq 0$ unmöglich, da (1) $x \neq 0 \implies a \neq 0 \lor b \neq 0$ $\implies -b\sqrt{2} \neq 0$). Damit gilt aber $-a (-b)\sqrt{2} > 0$ und somit $-x \in \mathcal{P}_2$. Somit gilt für x stets $x \in \mathcal{P}_2$ oder $-x \in \mathcal{P}_2$ aber nie beides zugleich.
 - (b) P2
 Seien $x = a + b\sqrt{2} \in \mathcal{P}_2$ und $y = c + d\sqrt{2} \in \mathcal{P}_2$ gegeben. $x + y = (a + c) + (b + d)\sqrt{2} \in K$ kann als $x + y = e + f\sqrt{2}$ mit e := a + c und f := b + d geschrieben werden. $(a, b, c, d, e, f \in \mathbb{Q})$.

 Es gilt : $a b\sqrt{2} > 0$ und $c d\sqrt{2} > 0$, da $x, y \in \mathcal{P}_2$.

 Zu zeigen $x + y \in \mathcal{P}_2 \Leftrightarrow e f\sqrt{2} > 0$.

 Da \mathbb{R} ein geordneter Körper ist, folgt aus $a b\sqrt{2} > 0$ und $c d\sqrt{2} > 0$, dass $a b\sqrt{2} + c d\sqrt{2} > 0$ gilt. Wegen der Körpereigenschaften von \mathbb{R} ist dies gleichbedeutend mit : $(a + c) (b + d)\sqrt{2} > 0$, was mit den Definitionen von e und f gerade $e f\sqrt{2} > 0$ ergibt, dies war aber zu zeigen. Also gilt: $x + y \in \mathcal{P}_2$.
 - (c) P3
 Seien $x = a + b\sqrt{2} \in \mathcal{P}_2$ und $y = c + d\sqrt{2} \in \mathcal{P}_2$ gegeben. $x \cdot y = (ac + 2bd) + (ad + bc)\sqrt{2} \in K$ kann als $x \cdot y = e + f\sqrt{2}$ mit e := ac + 2bd und f := ad + bc geschrieben werden $(a, b, c, d, e, f \in \mathbb{Q})$.

 Es gilt : $a b\sqrt{2} > 0$ und $c d\sqrt{2} > 0$ zu zeigen : $x \cdot y \in \mathcal{P}_2 \Leftrightarrow e f\sqrt{2} > 0$

Dies war zu zeigen, also gilt : $x \cdot y \in \mathcal{P}_2$.

Da alle Axiome von \mathcal{P}_2 erfüllt werden, ist \mathcal{P}_2 ein Positivbereich.

Man hat jetzt noch zu zeigen, dass \mathcal{P}_1 und \mathcal{P}_2 voneinander verschieden sind. Dazu reicht es, ein $x \in K$ zu finden, für das $x \in P_1$ und $x \notin P_2$ gilt. Wir setzen $x := \sqrt{2}$. Offenbar gilt $x = 0 + 1\sqrt{2} \in K$. Wegen $0 + 1\sqrt{2} = 1$ $\sqrt{2} > 0$ ist $x \in \mathcal{P}_1$, aber wegen $0 - 1\sqrt{2} \geqslant 0$ gilt $x \notin \mathcal{P}_2$. Also sind \mathcal{P}_1 und \mathcal{P}_2 verschiedene Positivbereiche auf K.

1.4.4 Für $a, b, c, d \in \mathbb{R}$ mt b, d > 0 zeige :

$$\frac{a}{b} < \frac{c}{d} \Longrightarrow \frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

1. Man zeigt zunächst $\frac{a}{b} < \frac{c}{d} \Longrightarrow \frac{a}{b} < \frac{a+c}{b+d}$ Es sei $a, c \in \mathbb{R}, b, d \in \mathbb{R}^+, \frac{a}{b} < \frac{c}{d}, \text{ dann gilt}$:

2. Man zeigt nun $\frac{a}{b} < \frac{c}{d} \Longrightarrow \frac{a+c}{b+d} < \frac{c}{d}$ Es sei $a,c \in \mathbb{R}, b,d \in \mathbb{R}^+, \frac{a}{b} < \frac{c}{d}$, dann gilt :

$$\begin{array}{ccccc} \frac{a}{b} & < & \frac{c}{d} \\ & \stackrel{b,d>0}{\longleftrightarrow} & ad & < & bc \\ & \stackrel{\text{Monotoniege setz}}{\longleftrightarrow} & ad+cd & < & bc+cd \\ & \stackrel{\text{Distributiv}}{\longleftrightarrow} & d(a+c) & < & c(b+d) \\ & \stackrel{d,b+d>0}{\longleftrightarrow} & \frac{a+c}{b+d} & < & \frac{c}{d} \end{array}$$

1.5.1 Beweise folgende Summenformeln:

1.

$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

Induktionsanfang : Die Formel gilt für n=1 wegen

$$\sum_{k=1}^{1} k^2 = 1^2 = 1 = \frac{1}{6} \cdot 1 \cdot (1+1) \cdot (2+1)$$

Induktionsvoraussetzung : Die Formel gelte für ein festes n, i.e. es gelte :

$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

Induktions schluss : Dann gilt sie auch für n+1 : zu zeigen : $\sum_{k=1}^{n+1} k^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$\stackrel{\text{Voraussetzung}}{=} \frac{1}{6} n(n+1)(2n+1) + (n+1)^2$$

$$= \frac{1}{6} (2n^3 + 3n^2 + n) + \frac{1}{6} (6n^2 + 12n + 6)$$

$$= \frac{1}{6} (2n^3 + 9n^2 + 13n + 6)$$

$$= \frac{1}{6} (n+1)(2n^2 + 7n + 6)$$

$$= \frac{1}{6} (n+1)(n+2)(2n+3)$$

Aufgrund des Induktionsprinzips gilt die Formel für alle $n \in \mathbb{N}$.

2.

$$\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$$

Induktionsanfang : Die Formel gilt für n=1 wegen

$$\sum_{k=1}^{1} k^3 = 1^3 = 1 = \frac{1}{4} \cdot 1^2 \cdot 2^2$$

Induktionsvoraussetzung : Die Formel gelte für ein festes n, i.e. es gelte :

$$\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$$

Induktions
schluss : Dann gilt sie auch für n+1 : zu zeigen
: $\sum_{k=1}^{n+1}k^3=\frac{1}{4}(n+1)^2(n+2)^2$

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$

$$\stackrel{\text{Voraussetzung}}{=} \frac{1}{4} n^2 (n+1)^2 + (n+1)^3$$

$$= \frac{1}{4} (n^4 + 2n^3 + n^2) + \frac{1}{4} (4n^3 + 12n^2 + 12n + 4)$$

$$= \frac{1}{4} (n^4 + 6n^3 + 13n^2 + 12n + 4)$$

$$= \frac{1}{4} (n+1)(n^3 + 5n^2 + 8n + 4)$$

$$= \frac{1}{4} (n+1)^2 (n^2 + 4n + 4) = \frac{1}{4} (n+1)^2 (n+2)^2$$

Aufgrund des Induktionsprinzips gilt die Formel für alle $n \in \mathbb{N}$.

1.5.2 Finde und beweise eine Formel für die Zeilensummen im "Dreieck der ungeraden Zahlen ":

Es gilt:

$$1 = 1 = 1^{3}$$

$$3 + 5 = 8 = 2^{3}$$

$$7 + 9 + 11 = 27 = 3^{3}$$

$$\vdots$$

Vermutung : Die Summe der n-ten Zeile des Dreiecks beträgt für alle $n \in \mathbb{N}$ gerade $s(n) = n^3$.

Beweis:

1. Zuerst zeigt man: Für alle $i \in \mathbb{N}$ ist 2i - 1 die i-te ungerade Zahl.

Beweis:

Induktionsanfang:

Für i = 1 gilt : $2 \cdot 1 - 1 = 1$ ist die 1 ungerade Zahl.

Induktionsvoraussetzung:

Für ein $i \in \mathbb{N}$ gelte :

2i-1 ist die *i*-te ungerade Zahl.

Induktionsschluss:

Es folgt : 2(i+1) - 1 = (2i-1) + 2, also nach Voraussetzung, die Zahl, die um 2 größer ist, als die i-te Ungerade, also die (i + 1)-te. q.e.d.

2. Als nächstes zeigt man:

Für alle $n \in \mathbb{N}$ ist die Summe der ersten n ungerade Zahlen n^2 , also :

$$\sum_{k=1}^{n} 2k - 1 = n^2$$

Beweis:

Induktionsanfang:

Für n = 1 gilt :

$$\sum_{k=1}^{1} 2k - 1 = 2 \cdot 1 - 1 = 1 = 1^{2}$$

Induktionsvoraussetzung:

Für ein $n \in \mathbb{N}$ sei :

$$\sum_{k=1}^{n} 2k - 1 = n^2$$

Induktions schluss : zu zeigen : $\sum_{k=1}^{n+1} 2k - 1 = (n+1)^2$

$$\sum_{k=1}^{n+1} 2k - 1 = \sum_{k=1}^{n} 2k - 1 + 2(n+1) - 1$$

Voraussetzung $n^2 + 2n + 1 = (n+1)^2$

3. Des Weiteren gilt : Da in der k-ten Zeile k Zahlen stehen, stehen in den ersten n-Zeilen zusammen

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 (s. Buch)

Also ist die letzte Zahl der k-ten Zeile die $\frac{n(n+1)}{2}$ -te ungerade Zahl.

Die Summe der ersten Zeile ist s(1) = 1 (Dies ist klar). Die Summe der n-ten Zeile ist für n > 1 offensichtlich die Summe der ersten n Zeilen minus die Summe der ersten n-1 Zeilen.

Die Summe S(n) der ersten n Zeilen ist aber die Summe der ersten $\frac{n(n+1)}{2}$ ungeraden Zahlen, also:

$$S(n) = \sum_{k=1}^{\frac{n(n+1)}{2}} 2k - 1 = \left[\frac{n(n+1)}{2}\right]^2 = \frac{1}{4}n^2(n+1)^2.$$

Die Summe S(n-1) ist also:

$$S(n-1) = \frac{1}{4}(n-1)^2 n^2.$$

Die Differenz ist (n > 1):

$$s(n) = S(n) - S(n-1) = \frac{1}{4}(n^4 + 2n^3 + n^2 - n^4 + 2n^3 - n^2) = \frac{1}{4} \cdot 4n^3 = n^3 \text{ für alle } n > 1.$$

Wegen $s(1) = 1 = 1^3$ gilt $s(n) = n^3$ für alle $n \in \mathbb{N}$.

1.5.3 Beweise mit vollständiger Induktion:

1. Für $q \in \mathbb{R} \setminus \{1\}$ und $N \in \mathbb{N}$ gilt

$$\sum_{n=0}^{N} q^n = \frac{1 - q^{N+1}}{1 - q}.$$

2. Für alle reellen Zahlen x mit $0 \le x \le 1$ und alle natürlichen Zahlen ngilt:

$$(1+x)^n \le 1 + (2^n - 1)x$$

1. • Induktionsanfang: Für N=1 gilt:

$$\sum_{n=0}^{1} q^{n} \qquad \stackrel{\text{Def. von } \Sigma}{=} \qquad q^{0} + q^{1}$$

$$\sum_{n=0}^{1} q^{n} \qquad \stackrel{\text{Def. von } q^{0}, q^{1}}{=} \qquad 1 + q$$

$$\frac{1 - q^{1+1}}{1 - q} \qquad = \qquad \frac{1 - q^{2}}{1 - q}$$

$$\stackrel{\text{binom. Formel}}{=} \qquad \frac{(1 - q)(1 + q)}{1 - q}$$

$$1 - \frac{q}{=} \neq 0 \qquad 1 + q$$

Das ist offensichtlich gleich.

• Induktionsvoraussetzung: Für ein $N \in \mathbb{N}$ gelte :

$$\sum_{n=0}^{N} q^n = \frac{1 - q^{N+1}}{1 - q}.$$

• Induktionsschluss : zu zeigen: Dann gilt auch:

$$\sum_{n=0}^{N+1} q^n = \frac{1 - q^{N+2}}{1 - q}.$$

Es gilt:

$$\sum_{n=0}^{N+1} q^{n} \qquad \stackrel{\text{Def. yon } \Sigma}{=} \qquad \sum_{n=0}^{N} q^{n} + q^{N+1}$$

$$\stackrel{\text{Voraussetzung}}{=} \qquad \frac{1 - q^{N+1}}{1 - q} + q^{N+1}$$

$$\stackrel{1 - q}{=} \neq 0 \qquad \frac{1 - q^{N+1}}{1 - q} + \frac{q^{N+1} - q^{N+2}}{1 - q}$$

$$= \qquad \frac{1 - q^{N+2}}{1 - q}$$

2. • Induktionsanfang: Für n = 1 gilt:

$$(1+x)^1 \stackrel{\text{Def.}}{=} 1+x \le 1+x = 1+(2^1-1)x$$
 wahr

• Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gelte :

$$(1+x)^n \le 1 + (2^n - 1)x$$

• Induktionsschluss: zu zeigen, dann gilt auch :

$$(1+x)^{n+1} \le 1 + (2^{n+1} - 1)x$$

Es gilt:

$$(1+x)^{n+1}$$
 $\stackrel{\text{Def.}}{=}$ $(1+x)^n \cdot (1+x)$

Aus der Voraussetzung folgt mit (1+x) > 0 wegen $x \ge 0$

$$(1+x)^n \cdot (1+x) \leq [1+(2^n-1)x] \cdot (1+x)$$

$$\stackrel{\text{Distributivgesetz}}{=} (1+x) + (1+x)(2^n-1)x$$

$$\stackrel{x \leq 1}{\leq} 1 + x + 2 \cdot (2^n-1)x$$

$$\stackrel{\text{Distributivität}}{=} 1 + x + 2^{n+1}x - 2x$$

$$\stackrel{\text{Ass., Komm.}}{=} 1 + 2^{n+1}x - x$$

$$\stackrel{\text{Distr.}}{=} 1 + (2^{n+1}-1)x$$

Dies war zu zeigen.

1.5.4 Auf einer einsamen Insel gibt es $n \in \mathbb{N}$ Städte, und zwischen je zwei Städten genau eine Einbahnstraße. Zeige, dass es möglich ist, jede Stadt einmal zu besuchen, ohne gegen die Verkehrsregeln zu verstoßen.

Man zeigt dies durch vollständige Induktion:

 $\bullet \;\; {\rm Induktions an fang:} \;\;$

Für n=1 gibt es nur eine Stadt und keine Straße. Diese Stadt ist Start und Ziel der Reise, die alle Städte besucht.

Für n=2 gibt es die zwei Städte S_1 und S_2 wenn die Einbahnstraße in S_1 beginnt, ist $S_1\to S_2$ die gesuchte Reise, ansonsten $S_2\to S_1$.

• Induktionsvoraussetzung:

Für ein $n \in \mathbb{N}$ gelte : Es ist möglich n Städte, die jeweils mit Einbahnstraßen verbunden sind, alle hintereinander zu besuchen.

• Induktionsschluss:

zu zeigen : Es ist auch mit n + 1 Städten möglich :

Seien die n+1 Städte mit $S_1, S_2, S_3, S_4, \ldots, S_{n+1}$ bezeichnet, und zwar in der Art, dass die Reise, die nach Induktionsvoraussetzung in $(S_1, S_2, \dots S_n)$ existiert, die Städte in der Reihenfolge ihrer Nummerierung besucht, also $S_1 \to S_2 \to \ldots \to S_n$ die Reise ist.

Betrachte nun die Straße, die S_1 und S_{n+1} verbindet. Wenn sie von S_{n+1} in Richtung S_1 läuft (im Folgenden mit $S_{n+1} \to S_1$ abgekürzt), ist eine Reise gefunden, die alle Städte besucht, nämlich $S_{n+1} \to S_1 \to S_2 \to \ldots \to S_n$. Wenn aber $S_1 \to S_{n+1}$, dann betrachte die Straße zwischen S_n und S_{n+1} . Wenn $S_n \leftarrow S_{n+1}$, ist man fertig, da dann $S_1 \to S_2 \to \ldots \to S_n \to S_{n+1}$ alle Städte besucht.

Wenn aber $S_{n+1} \to S_n$, dann muss es, da $S_{n+1} \to S_n$ aber $S_{n+1} \leftarrow S_1$ eine Stadt S_i mit $(1 \le i < n)$ geben, so dass $S_i \to S_{n+1}$ und $S_{n+1} \to S_{i+1}$, da ansonsten wegen $S_1 \to S_{n+1}$ und aus $S_i \to S_{n+1}$ folgt stets $S_{i+1} \to S_{n+1}$ für alle $1 \le i < n$ auch $S_n \to S_{n+1}$ folgen würde (Induktionsprinzip) und dies der Voraussetzung $S_n \leftarrow S_{n+1}$ widerspricht.

Dann ist aber $S_1 \to \ldots \to S_i \to S_{n+1} \to S_{i+1} \to \ldots \to S_n$ die gesuchte

Es ist also stets möglich alle Städte zu besuchen.

1.5.5 Zeigen Sie durch vollständige Induktion, dass die Zahl n^3-4n für alle $n \in \mathbb{N}$ mit $n \ge 2$ durch 3 teilbar ist.

I.A. n = 2: $2^3 - 4 \cdot 2 = 8 - 8 = 0$ ist durch 3 teilbar.

I.V. Für ein $n \in \mathbb{N}$ ist $n^3 - 4n$ durch 3 teilbar, d.h. es existiert ein $a \in \mathbb{N}$, so dass gilt:

$$3a = n^3 - 4n$$

I.S. $n \to n + 1$:

$$(n+1)^{3} - 4(n+1) = n^{3} + 3n^{2} + 3n - 4n - 3$$

$$= n^{3} - 4n + 3n^{2} + 3n - 3$$

$$= (n^{3} - 4n) + 3(n^{2} + n - 1)$$

$$\stackrel{\text{I.V.}}{=} 3a + 3(n^{2} + n - 1)$$

$$0 \text{ Distr.-Gesetz} = 3m$$

Also ist $(n+1)^3 - 4(n+1)$ durch 3 teilbar. q.e.d.

1.5.6 Zeigen Sie durch vollständige Induktion, dass für alle $n \in \mathbb{N}$

$$\sum_{k=1}^{2n} (-1)^k k = n$$

gilt.

I.A.
$$n = 1$$
: $\sum_{k=1}^{2} (-1)^k k = -1 + 2 = 1 = n$.

I.V.
$$\sum_{k=1}^{2n} (-1)^k k = n$$
 gilt für ein $n \in \mathbb{N}$.

I.S.
$$n \to n+1$$

$$\sum_{k=1}^{2(n+1)} (-1)^k k = \sum_{k=1}^{2n} (-1)^k k + (-1)^{2n+1} (2n+1) + (-1)^{2n+2} (2n+2)$$

$$\stackrel{\text{I.V.}}{=} n-2n-1+2n+2$$

$$= n+1$$

1.5.7 Beweisen Sie die binomische Formel:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Dabei ist der so genannte Binomialkoeffizient $\binom{n}{k}$ für k>0 durch den Quotienten $n\cdot (n-1)\cdots (n-k+1)/k!$ erklärt, und $\binom{n}{0}:=1$.

I.A.
$$n = 0$$
 $(a + b)^0 = 1 = \binom{0}{0} a^0 b^0 = \sum_{k=0}^{0} \binom{0}{k} a^k b^{n-k}$.

I.V.
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
 gilt für ein $n \in \mathbb{N}$.

I.S.
$$n \rightarrow n+1$$

die Tatsache, dass
$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}$$

1.6.1 Zeigen Sie, dass $\mathbb Q$ der kleinste Körper ist, der in $\mathbb R$ enthalten ist. (Genauer: Ist $K \subset \mathbb R$ bezüglich der üblichen Operationen ein Körper, so gilt $\mathbb Q \subset K$.)

Es wird konstruktiv gezeigt, dass jede rationale Zahl $\frac{n}{m}$ (mit $n\in\mathbb{Z}, m\in\mathbb{N})$ in jedem beliebigen Körper, der in \mathbb{R} enhalten ist, liegt.

Sei also $K\subset \mathbb{R}$ ein Körper (mit den von \mathbb{R} geerbten Verknüpfungen), dann gilt:

- $1 \in K \Rightarrow \forall n \in \mathbb{N} : n \in K$ (Aufgrund der Verknüpfung ,+' in \mathbb{R}
- $\forall z \in \mathbb{Z} : z \in K \text{ (wegen } n \in K \Rightarrow -n \in K)$
- $\forall z \in \mathbb{Z} \setminus \{0\}: z^{-1} = \frac{1}{z} \in K \text{ (we$ $gen } z \in K \setminus \{0\} \Rightarrow z^{-1} \in K)$
- Somit auch $\frac{n}{m} \in K \; \forall \, n \in \mathbb{Z}, m \in \mathbb{N} \; (\text{weil } n \in K, \frac{1}{m} \in K \Rightarrow \frac{n}{m} \in K)$
- Somit gilt: $\mathbb{Q} \subset K$.

Da $\mathbb Q$ ein Körper ist, ist somit $\mathbb Q$ der kleinste Körper in $\mathbb R$.

1.6.2 Ist \mathbb{Z} wohlgeordnet?

Behauptung: \mathbb{Z} ist nicht wohlgeordnet.

Zu zeigen ist, dass eine nicht leere Teilmenge T von $\mathbb Z$ existiert, die kein kleinstes Element besitzt:

Wähle $T = \mathbb{Z}$. Dann gilt für jedes $z \in \mathbb{Z}$ (bzw. aus T):

- $z-1 \in \mathbb{Z}$
- z 1 < z

Angenommen also es würde ein minimales Element m in T existieren, dann wäre $m-1 \in T$ und echt kleiner als m, was im Widerspruch dazu steht, dass m das kleinste Element in T sein sollte.

Also kann T kein kleinstes Element besitzen.

1.7.1 Zeige: Zwischen je zwei rationalen Zahlen, liegt eine irrationale. Es darf verwendet werden, das es irrationale Zahlen gibt.

Man zeigt zunächst (Hilfssatz) : Ist $k \in \mathbb{R}$ irrational, ist auch $a \cdot k + b$ $(a, b \in \mathbb{Q} \setminus \{0\})$ irrational.

Beweis: Angenommen, $a \cdot k + b$ wäre rational, so wäre auch $k = [(a \cdot k + b) - b] \cdot a^{-1}$ aufgrund der Körpereigenschaften von $\mathbb Q$ eine rationale Zahl. Dies ist ein Widerspruch zur Voraussetzung $k \notin \mathbb{Q}$.

Seien nun $q_1, q_2 \in \mathbb{Q}$ mit $q_1 < q_2$ gegeben. Wähle eine irrationale Zahl $k \in$ $\mathbb{R} > 0$. Diese existiert, da irrationale Zahlen nach Voraussetzung existieren, und da mit r nach Hilfssatz auch -r = -1r irrational ist und stets eine der beiden Zahlen r und -r positiv ist $(r \neq 0, da 0 rational)$. Aufgrund der Gültigkeit des Archimedes-Axioms in $\mathbb R$ gibt es ein $n_0 \in \mathbb N$ mit $n_0 > k$. Dann setze s = $\frac{k\cdot (q_2-q_1)}{n_0}+q_1$ und s ist die gesuchte irrationale Zahl zwischen q_1 und $q_2.$ Beweis:

- s ist irrational Nach Voraussetzung ist k irrational. Dann folgt aus dem Hilfssatz mit $a=\frac{q_2-q_1}{n_0}\in\mathbb{Q}$ und $b=q_1\in\mathbb{Q}$ die Irrationalität von s.
- Es gilt $q_1 < s$, da

$$0 \stackrel{\text{Voraussetzung}}{<} k$$

$$\stackrel{q_2 - q_1}{\Longrightarrow} 0 \quad 0 \quad < \quad k \cdot (q_2 - q_1)$$

$$\stackrel{n_0 > 0}{\Longrightarrow} \quad 0 \quad < \quad \frac{k \cdot (q_2 - q_1)}{n_0}$$

$$\stackrel{\text{Monotonie}}{\Longrightarrow} \quad q_1 \quad < \quad \frac{k \cdot (q_2 - q_1)}{n_0} + q_1 \quad \stackrel{\text{Def.}}{\Longrightarrow} \quad s$$

• Es gilt $s < q_2$, da

$$k \xrightarrow{\text{Voraussetzung}} n_0$$

$$\xrightarrow{\frac{1}{n_0} > 0} \frac{k}{n_0} < 1$$

$$\xrightarrow{q_2 - q_1} > 0 \xrightarrow{k \cdot (q_2 - q_1)} \qquad < \qquad q_2 - q_1$$

$$\xrightarrow{\text{Monotonie}} \frac{k \cdot (q_2 - q_1)}{n_0} + q_1 \xrightarrow{\text{Def.}} s < q_2$$

1.8.1 Schnittzahlen Dedekindscher Schnitte sind eindeutig bestimmt.

Sei (A,B) ein Dedekindscher Schnitt und angenommen w,z seien Schnittzahlen mit $w \neq z$.

D.h. es gilt:

 $a \le w \le b$ für alle $a \in A, b \in B$

 $a \le z \le b$ für alle $a \in A, b \in B$

Sei o.B.d.A. w < z. Seien $a \in A$, $b \in B$ und man betrachte $\frac{w+z}{2}$:

$$a \le w < \frac{w+z}{2} \Rightarrow \frac{w+z}{2} \in B$$
$$\frac{w+z}{2} < z \le b \Rightarrow \frac{w+z}{2} \in A$$

Also ist $\frac{w+z}{2}$ ein Element von $A\cap B$. Das ist jedoch ein Widerspruch zur Voraussetzung, dass $A\cap B=\emptyset$. Somit kann ein Dedekindscher Schnitt keine zwei verschiedenen Schnittzahlen besitzen.

1.8.2 Sei (A, B) ein Dedekindscher Schnitt in \mathbb{R} . Dann gibt es ein x_0 , so dass entweder

$$A = \{x | x < x_0\}, B = \{x | x \ge x_0\}$$

oder

$$A = \{x | x \le x_0\}, B = \{x | x > x_0\}$$

gilt.

In $\mathbb R$ hat jeder Dedekindsche Schnitt eine Schnittzahl (Definition von $\mathbb R:1.8.2$). Hat (A,B) die Schnittzahl s, so gilt entweder $s\in A$ oder $s\in B$, da $A\cap B=\emptyset$. Da nach Definition der Schnittzahl immer $a\leq s\leq b$ für alle $a\in A,b\in B$ gilt, gilt im Fall $s\in A$

$$A = \{x | x \le s\}, \ B = \{x | x > s\}$$

und im Fall $s \in B$

$$A = \{x | x < s\}, \ B = \{x | x \ge s\}.$$

Mit $s = x_0$ ist dann alles gezeigt.

1.9.1

$$\frac{1+i}{7-i}\frac{7+i}{7+i} = \frac{6+8i}{50} \\
= \frac{6}{50} + \frac{8}{50}i \\
\frac{i^3}{7-i}\frac{7+i}{7+i} = \frac{1-7i}{50} \\
= \frac{1}{50} - \frac{7}{50}i$$

 $i^{19032003} \colon \mathrm{Da}\; i^4$ wieder 1 ergibt muss man nur noch 19032003 durch 4 teilen und den Rest betrachten. Der Rest ist 3 und somit ist $i^3 = -i$ das Ergebnis.

Die Lösung von $\sum_{n=1}^{5021234512302} i^n$ ist etwas länger: $z = \sum_{n=1}^{5021234512302} i^n$

Zunächst gilt für alle $n \in \mathbb{N}$ offenbar :

Desweiteren gilt:

$$\forall n \in \mathbb{N} : \sum_{k=1}^{4n} i^k = 0$$

Beweis durch vollstänige Induktion:

• Induktionsanfang : zu zeigen : $\sum_{k=1}^{4} i^k = 0$ Es gilt für n = 1:

$$\sum_{k=1}^{4} i^{k} \qquad \stackrel{\text{Def. yon } \Sigma}{=} \qquad i^{1} + i^{2} + i^{3} + i^{4}$$

$$\stackrel{i^{2}}{=} \stackrel{-1}{=} \qquad i - 1 - i + 1$$

$$\stackrel{\text{Kommutativität}}{=} \qquad 1 - 1 + i - i = 0$$

• Induktionsvoraussetzung : Für $n \in N$ gelte :

$$\sum_{k=1}^{4n} i^k = 0$$

• Induktionsschluss :

zu zeigen:

$$\sum_{k=1}^{4(n+1)} i^k = 0$$

Es gilt:

Damit folgt für z:

1.9.2
$$z = \left(\frac{1+i}{\sqrt{2}}\right)^{21}$$
 Es gilt :

$$z = \left(\frac{1+i}{\sqrt{2}}\right)^{21} \qquad \text{Pot.gesetz} \qquad \left(\frac{1+i}{\sqrt{2}}\right)^{20} \cdot \left(\frac{1+i}{\sqrt{2}}\right)$$

$$\text{Pot.gesetz} \qquad \left[\left(\frac{1+i}{\sqrt{2}}\right)^2\right]^{10} \cdot \left(\frac{1+i}{\sqrt{2}}\right)$$

$$= \qquad \left(\frac{1+2i-1}{2}\right)^{10} \cdot \left(\frac{1+i}{\sqrt{2}}\right)$$

$$= \qquad i^{10} \cdot \left(\frac{1+i}{\sqrt{2}}\right)$$

$$\text{siehe oben} \qquad -1 \cdot \left(\frac{1+i}{\sqrt{2}}\right)$$

$$= \qquad -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i = -\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2}i$$

1.9.3 Zeichne die folgenden Mengen in der Gaußschen Zahlenebene :

1. $\mathcal{M}_a := \{ z \in \mathbb{C} \mid |z - 1| = |z + 1| \}$

Wenn man $z \in \mathbb{C}$ als a + bi schreibt, kann man aus der \mathcal{M}_a definierenden Eigenschaft Bedingungen für a,b herleiten, die die $z\in\mathcal{M}_a$ erfüllen müssen, da die Darstellung von z = a + bi eindeutig ist.

Es sei $z = a + bi \in \mathbb{C}$ beliebig, dann gilt :

$$\begin{array}{rcl} |z-1| & = & |z+1| \\ & \stackrel{\mathrm{Komm, \, Ass.}}{\Longleftrightarrow} & |(a-1)+bi| & = & |(a+1)+bi| \\ \overset{\mathrm{Def. \, von \, }||}{\Longleftrightarrow} & \sqrt{(a-1)^2+b^2} & = & \sqrt{(a+1)^2+b^2} \end{array}$$

Zwei Wurzeln sind dann gleich, wenn ihre Radikanden gleich sind.

$$\begin{array}{rcl} \sqrt{(a-1)^2+b^2} &=& \sqrt{(a+1)^2+b^2}\\ \iff (a-1)^2+b^2 &=& (a+1)^2+b^2\\ & \iff a^2-2a+1+b^2 &=& a^2+2a+1+b^2\\ \iff -2a &=& 2a\\ \iff 4a &=& 0\\ \iff a &=& 0 \end{array}$$

In \mathcal{M}_a liegen also alle $z \in \mathbb{C}$, deren Realteil 0 ist. Das sind aber alle z, die die Form bi mit $b \in \mathbb{R}$ haben, also alle z auf der Imaginärachse :

Darstellung von \mathcal{M}_a

2. $\mathcal{M}_b := \{ z \in \mathbb{C} \mid 1 \le |z - i| \le 2 \}$

Die $z\in\mathcal{M}_b$ müssen also zwei Eigenschaften haben, nämlich $|z-i|\geq 1$ und $|z-i|\leq 2$. Man prüft zunächst, welche $z\in\mathbb{C}$ die erste Bedingung erfüllen, indem man sie wie oben umformt, und tut dann gleiches für die zweite.

• Es sei $z = a + bi \in \mathbb{C}$ bel., dann gilt :

$$\begin{array}{ccc} |z-i| & \geq & 1 \\ \iff |a+bi-i| & \geq & 1 \\ & \iff |a+(b-1)i| & \geq & 1 \\ & \iff & |a+(b-1)i| & \geq & 1 \\ & \iff & \sqrt{a^2+(b-1)^2} & \geq & 1 \end{array}$$

Die Wurzel kann nur größer als 1 sein, wenn ihr Radikand größer als 1 ist, da $\forall x \in \mathbb{R} : 0 \le x \le 1 \Longleftrightarrow 0 \le x^2 \le 1$ und die Wurzel auf \mathbb{R}^+_0 gerade die Umkehrabbildung von x^2 ist.

$$\sqrt{a^2 + (b-1)^2} \ge 1$$

$$\iff a^2 + (b-1)^2 \ge 1$$

$$\iff a^2 + (b-1)^2 \ge 1^2$$

 $a^2 + (b-1)^2 = 1^2$ ist gerade die Gleichung eines Kreises mit dem Radius 1 um den Punkt der Gaußschen Zahlenebene, an dem a=0 und b=1 ist, also um i. Die Bedingung wird von allen Punkten erfüllt, die auf oder außerhalb dieses Kreises liegen.

• Es sei $z = a + bi \in \mathbb{C}$ bel., dann gilt :

$$\begin{array}{rcl} |z-i| & \leq & 2 \\ \iff |a+bi-i| & \leq & 2 \\ & \iff |a+(b-1)i| & \leq & 2 \\ & \iff & |a+(b-1)i| & \leq & 2 \\ & \iff & \sqrt{a^2+(b-1)^2} & \leq & 2 \end{array}$$

Die Wurzel kann nur kleiner als 2 sein, wenn ihr Radikand kleiner als 4 ist, da $\forall x \in \mathbb{R} : 0 \le x \le 2 \Longleftrightarrow 0 \le x^2 \le 4$ und die Wurzel auf \mathbb{R}_0^+ gerade die Umkehrabbildung von x^2 ist.

$$\sqrt{a^2 + (b-1)^2} \le 4$$

$$\iff a^2 + (b-1)^2 \le 4$$

$$\iff a^2 + (b-1)^2 \le 2^2$$

 $a^2 + (b-1)^2 = 2^2$ ist gerade die Gleichung eines Kreises mit dem Radius 2 um den Punkt der Gaußschen Zahlenebene, an dem a=0 und b=1 ist, also um i. Die Bedingung wird von allen Punkten erfüllt, die auf oder innerhalb dieses Kreises liegen.

Darstellung von \mathcal{M}_b

Insgesamt ergibt sich für \mathcal{M}_b die Darstellung als Schnitt der beiden eben beschriebenen Flächen \mathcal{M}_b kann also durch den Kreisring um i mit dem inneren Radius 1 und dem äußeren Radius 2 dargestellt werden.

3. $\mathcal{M}_c := \{ z \in \mathbb{C} \mid \text{Re}(z^2) = 1 \}$

Zunächst überlegt man wieder, wie man die Eigenschaft $Re(z^2) = 1$ als Eigenschaft für a und b schreiben kann, um diese dann als Darstellung einer Kurve in der Gaußschen Zahlenebene zu deuten.

Sei $z = a + bi \in \mathbb{C}$ beliebig, dann gilt :

$$\operatorname{Re}(z^{2}) = 1$$

$$\iff \operatorname{Re}((a+bi)^{2}) = 1$$

$$\stackrel{\text{Distributivität}}{\iff} \operatorname{Re}(a^{2}+2abi-b^{2}) = 1$$

$$\stackrel{\text{Kommutativität}}{\iff} \operatorname{Re}((a^{2}-b^{2})+2abi) = 1$$

$$\stackrel{\text{Def. von Re}()}{\iff} a^{2}-b^{2} = 1$$

$$\stackrel{1^{2}=1}{\iff} a^{2}-b^{2} = 1^{2}$$

Dies ist aber gerade die Gleichung der Einheitshyperbel in der Gaußschen Zahlenebene, \mathcal{M}_c enthält also alle komplexen Zahlen, die durch Punkte auf der Einheitshyperbel repräsentiert werden.

Darstellung von \mathcal{M}_c

4. $\mathcal{M}_d := \{ z \in \mathbb{C} \setminus \{0\} \mid \text{Re}(\frac{1}{z}) < \frac{1}{2} \}$

Wie bisher verschafft man sich auch hier eine äquivalente Beziehung zwischen a und b.

Sei $z = a + bi \in \mathbb{C} \setminus \{0\}$, dann gilt :

$$\operatorname{Re}\left(\frac{1}{z}\right) < \frac{1}{2}$$

$$\Leftrightarrow \operatorname{Re}\left(\frac{1}{a+bi}\right) < \frac{1}{2}$$

$$\overset{\operatorname{Erw.\ mit}\ \overline{z}}{\Longrightarrow} \operatorname{Re}\left(\frac{a-bi}{(a+bi)(a-bi)}\right) < \frac{1}{2}$$

$$\overset{\operatorname{Distr.,\ Ass.,}}{\bowtie} \operatorname{Re}\left(\frac{a-bi}{a^2+b^2}\right) < \frac{1}{2}$$

$$\overset{\operatorname{Distr.,\ butivit {at}}}{\Longrightarrow} \operatorname{Re}\left(\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i\right) < \frac{1}{2}$$

$$\overset{\operatorname{Def.\ yon\ Re}()}{\Longrightarrow} \frac{a}{a^2+b^2} < \frac{1}{2}$$

$$\overset{a^2+b^2>0}{\Longrightarrow} 2a < a^2+b^2$$

$$\overset{\operatorname{Monotoniegesetz}}{\Longrightarrow} 0 < a^2-2a+b^2$$

$$\overset{\operatorname{Monotoniegesetz}}{\Longrightarrow} 1 < a^2-2a+1+b^2$$

$$\overset{\operatorname{Distributivit {at}}}{\Longrightarrow} (a-1)^2+b^2 > 1^2$$

Zunächst betrachtet man einmal $(a-1)^2 + b^2 = 1^2$, dies ist die Gleichung des um 1 in Richtung der reellen Achse verschobenen Einheitskreises in der Gaußschen Zahlenebene. $(a-1)^2+b^2>1$ gilt also für alle Punkte die "außerhalb"dieses Kreises liegen, gehören zu \mathcal{M}_d alle $z \in \mathbb{C} \setminus \{0\}$, die durch außerhalb dieses Kreises liegende Punkte repräsentiert werden.

Darstellung von \mathcal{M}_d

 ${\bf 1.9.4}\;$ Beweise das Parallelogramm
gesetz für zwei komplexe Zahlen w und
 z :

$$|w + z|^2 + |w - z|^2 = 2(|w|^2 + |z|^2).$$

Offensichtlich gilt mit $\forall z \in \mathbb{C}: |z| = \sqrt{z\overline{z}}$ auch $\forall z \in \mathbb{C}: |z|^2 = z\overline{z}$ Damit gilt : Seien $z,w\in\mathbb{C}$ beliebig :

$$\begin{aligned} |w+z|^2 + |w-z|^2 & \overset{\text{Def. von }|\cdot|}{=} & (w+z)(\overline{w+z}) + (w-z)(\overline{w-z}) \\ & \overset{\text{Konj. ist Isom.}}{=} & (w+z)(\overline{w}+\overline{z}) + (w-z)(\overline{w}-\overline{z}) \\ & \overset{\text{Distributivität}}{=} & w\overline{w} + \overline{z}w + z\overline{w} + z\overline{z} + w\overline{w} - \overline{z}w - z\overline{w} + z\overline{z} \\ & \overset{\text{Komm., Ass.}}{=} & w\overline{w} + w\overline{w} + z\overline{z} + z\overline{z} \\ & \overset{\text{Distributivität}}{=} & 2\left(w\overline{w} + z\overline{z}\right) \\ & z\overline{z} = |z|^2 & 2\left(|w|^2 + |z|^2\right) \end{aligned}$$

Um die geometrische Bedeutung dieses Gesetzes zu veranschaulichen, zeichnet man z, w, z + w, z - w in die Gaußsche Zahlenebene ein, dann bedeutet dieses Gesetz:

Darstellung der Parallelogrammregel

Wie man sieht hat das Parallelogramm mit den Ecken (0,z,w+z,w) die Seitenlängen |z| und |w| und die Diagonalenlängen |w+z| und |w-z|. Als geometrische Deutung für das Gesetz ergibt sich :

Die Summe der Flächeninhalte der Quadrate über den Diagonalen eines Parallelogramms ist gleich der Summe der Flächeninhalte der Quadrate über dessen Seiten.

1.10.1 Zeige, dass $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ (vgl. Aufgabe 1.4.3) abzählbar ist.

Wir wissen, dass Q abzählbar ist, betrachte nun die Abbildung

$$f: \mathbb{Q} \to \mathbb{Q}\sqrt{2}$$
$$q \mapsto q\sqrt{2}$$

Diese Abbildung f ist bijektiv, da:

• f ist injektiv z.z.: $\forall x, y \in \mathbb{Q} : f(x) = f(y) \Longrightarrow x = y$

Seien also $x, y \in \mathbb{Q}$ mit f(x) = f(y) geg., dann gilt:

$$f(x) = f(y) \iff x\sqrt{2} = y\sqrt{2} \iff x = y$$

Also ist f injektiv.

• f ist surjektiv z.z.: $\forall r \in \mathbb{Q}\sqrt{2} \,\exists q \in \mathbb{Q} : f(q) = r$

Sei also $r \in \mathbb{Q}\sqrt{2}$ beliebig, r hat nach Def. von $\mathbb{Q}\sqrt{2}$ die Form $r = t\sqrt{2}$ mit $t \in \mathbb{Q}$ passend, dann gilt $f(t) = t\sqrt{2} = r$. Also ist f surjektiv.

Da es eine Bijektion zwischen $\mathbb{Q}\sqrt{2}$ und einer abzählbaren Menge gibt, ist auch $\mathbb{Q}\sqrt{2}$ abzählbar.

 \mathbb{Q} ist abzählbar, i.e. es gibt eine bijektive Abbildung $g: \mathbb{N} \to \mathbb{Q}$, dann gilt : $\mathbb{Q} = \{g(1), g(2), \ldots\}, \mathbb{Q}\sqrt{2}$ ist abzählbar, i.e. es gibt eine bijektive Abbildung $h: \mathbb{N} \to \mathbb{Q}$, dann gilt : $\mathbb{Q}\sqrt{2} = \{h(1), h(2), \ldots\}$.

Man kann nun (Cantorsches Diagonalverfahren) die Menge $\mathbb{Q}+\sqrt{2}$ in folgendem Schema anordnen:

Die eingezeichneten Pfeile definieren eine Abbildung $\phi: \mathbb{N} \to \mathbb{Q} + \mathbb{Q}\sqrt{2}$ mit $\phi(n) := \text{das als } n\text{-tes erreichte Element.}$

Diese Abbildung ist bijektiv, da jedes Element aus $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ in der Liste vertreten ist, also jedes erreicht wird, also ist ϕ surjektiv, andererseits ist aber jedes Element von $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ eindeutig als f(n) + g(m) mit $n, m \in \mathbb{N}$ passend, darstellbar (siehe Übung 1.4.3), also ist jedes Element nur einmal in der Liste vertreten, damit ist ϕ injektiv.

 ϕ ist also eine bijektive Abbildung von $\mathbb N$ nach $\mathbb Q + \mathbb Q \sqrt{2}$, daher ist $\mathbb Q + \mathbb Q \sqrt{2}$ abzählbar.

1.10.2 Beweise:

1. Die Menge aller endlichen Teilmengen von $\mathbb N$ ist abzählbar.

Zu zeigen: Es gibt eine bijektive Abbildung von $\mathbb N$ in die Menge aller endlichen Teilmengen von $\mathbb N$.

Man kann die endlichen Teilmengen von $\mathbb N$ im folgenden quadratischen Schema anordnen (Diagonalverfahren) :

In jeder Zeile sind dabei die Teilmengen von $\mathbb N$ lexikographisch geordnet. Jetzt kann man indem man durch dieses Quadrat "wandert", eine bijektive Abbildung zwischen der aufgeschriebenen Menge und $\mathbb N$ bestimmen : $n \mapsto$ die auf dem Weg als n-tes erreichte Menge.

Durch dieses Durchlaufen des quadratischen Schemas der endlichen Teilmengen von $\mathbb N$ wird folgende Abbildung bestimmt :

$$f: \mathbb{N} \to \{C \subset \mathbb{N} \mid C \text{ endlich}\}$$
$$1 \mapsto \emptyset$$

$$\begin{array}{cccc} 2 & \mapsto & \{1,2\} \\ 3 & \mapsto & \{1\} \\ 4 & \mapsto & \{2\} \\ 5 & \mapsto & \{1,3\} \\ & \vdots \end{array}$$

Diese Abbildung ist injektiv, da im Schema jede Menge nur einmal aufgeführt ist und nur einmal erreicht wird, und sie ist surjektiv, da alle endlichen Teilmengen von N im Schema aufgeführt sind und beim diagonalen durchlaufen alle erreicht werden, es also zu jeder Menge ein $n \in \mathbb{N}$ gibt, das auf sie abgebildet wird.

Die Abbildung ist damit bijektiv und $\{C \subset \mathbb{N} \mid C \text{ endlich}\}$ ist abzählbar, da es zwischen ihr und \mathbb{N} eine Bijektion gibt.

2. Die Menge aller Teilmengen von $\mathbb N$ ist überabzählbar.

Zu zeigen: Es gibt keine bijektive Abbildung von \mathbb{N} nach $\mathcal{P}(\mathbb{N})$, das ist die Menge aller Teilmengen von \mathbb{N} .

Da jede bijektive Abbildung auch surjektiv ist, reicht es zu zeigen: Es gibt keine surjektive Abbildung von \mathbb{N} nach $\mathcal{P}(\mathbb{N})$.

Man zeigt dies durch einen Widerspruchsbeweis:

Angenommen es existierte $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ mit f surjektiv.

Dann betrachte man die Menge $M := \{x \in \mathbb{N} \mid x \notin f(x)\}$. Offensichtlich gilt, da M nur natürliche Zahlen enthält : $M \subset \mathbb{N}$, also $M \in \mathcal{P}(\mathbb{N})$.

Also gibt es, da f surjektiv ist, nach Definition der Surjektivität ein $m \in \mathbb{N}$ mit f(m) = M.

Es kann nun aber weder $m \in M$ noch $m \notin M$ gelten, obwohl M wohldefiniert ist, da:

Sei $m \in M$, dann gilt :

$$m \in M \xrightarrow{f(m) = M} m \in f(m) \xrightarrow{\text{Def. von } M} m \notin M$$

Dies ist ein Widerspruch. Also kann $m \in M$ nicht gelten. Sei nun $m \notin M$, dann gilt :

$$m \notin M \stackrel{f(m) = M}{\Longrightarrow} m \notin f(m) \stackrel{\text{Def. von } M}{\Longrightarrow} m \in M$$

Auch dies ist ein Widerspruch. Es gilt also weder $m \in M$ noch $m \notin M$. Da M aber eine wohldefinierte Teilmenge von \mathbb{N} und $m \in \mathbb{N}$ ist, muss entweder $m \in M$ oder $m \notin M$ gelten.

Da sich ein Widerspruch ergibt, war die Voraussetzung, dass eine surjektive Abbildung von \mathbb{N} nach $\mathcal{P}(\mathbb{N})$ existiert falsch.

Also ist $\mathcal{P}(\mathbb{N})$ überabzählbar.

1.11.1 Zu einer komplexen Zahl z = a + bi definiert man ihre konjugierte \overline{z} gemäß $\overline{z} := a - bi$. Zeige, dass die Konjugation, also die Abbildung

$$f: \mathbb{C} \to \mathbb{C}, \ z \mapsto \overline{z}$$

ein Körperisomorphismus auf $\mathbb C$ ist.

Um zu zeigen dass die Konjugation, also die Abbildung f, ein Körperisomorphismus auf $\mathbb C$ ist, hat man zu zeigen, dass f alle Bedingungen erfüllt, die ein Körperisomorphismus erfüllen muss, nämlich :

- 1. f ist bijektiv
- 2. $\forall z_1, z_2 \in \mathbb{C} : \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- 3. $\forall z_1, z_2 \in \mathbb{C} : \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- 1. Eine Abbildung f heisst bijektiv, wenn sie sowohl injektiv als auch surjektiv ist.
 - Injektvität : f inj. \iff $(f(z_1) = f(z_2) \Longrightarrow z_1 = z_2)$ Es seien $z_1 = a + bi \in \mathbb{C}, z_2 = c + di \in \mathbb{C}$ mit $\overline{z_1} = \overline{z_2}$ gegeben. Zu zeigen $z_1 = z_2$

Die Konjugation ist also injektiv.

• Surjektivität : f surj. $\iff \forall z_2 \in \mathbb{C} \exists z_1 \in \mathbb{C} : f(z_1) = z_2$ Es sei $z_2 = a + bi \in \mathbb{C}$ bel. gegeben. Dann setze $z_1 = a - bi$. Damit gilt:

$$f(z_1) = f(a - bi)$$

$$\stackrel{\text{Def. von } f}{=} \frac{\overline{a - bi}}{a + bi}$$

$$= z_2$$

Die Konjugation ist also surjektiv.

Da die Konjugation injektiv und surjektiv ist, ist sie auch bijektiv.

2. Es seien
$$z_1=a+bi, z_2=c+di\in\mathbb{C}$$
bel. zu zeigen : $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$

$$\overline{z_1 + z_2} = \overline{(a+bi) + (c+di)}$$

$$\text{Komm., Ass.,}$$

$$\text{Digt.} \quad \overline{(a+c) + (b+d)i}$$

$$\text{Def. von } \overline{z} \quad (a+c) - (b+d)i$$

$$\text{Komm., Ass.,}$$

$$\text{Digt.} \quad (a-bi) + (c-di)$$

$$\text{Def. von } \overline{z} \quad \overline{a+bi} + \overline{c+di}$$

$$= \overline{z_1} + \overline{z_2}$$

Die Konjugation ist also verknüpfungstreu bzgl. ,+'.

3. Es seien $z_1 = a + bi, z_2 = c + di \in \mathbb{C}$ bel. Zu zeigen: $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

$$\overline{z_1 \cdot z_2} = \overline{(a+bi)(c+di)}$$

$$\overline{ac+bci+adi-bd}$$
Ass., Komm.,
$$\overline{Dist}. \qquad \overline{(ac-bd)+(ad+bc)i}$$

$$\overline{ac-bd)-(ad+bc)i}$$
Ass., Komm.,
$$\overline{Dist}. \qquad ac-bci-adi-bd$$

$$\overline{-1} \equiv i^2 \qquad ac-bci-adi+bdi^2$$

$$\overline{Distributivität} \qquad (a-bi)c-(a-bi)di$$

$$\overline{Distributivität} \qquad (a-bi)(c-di)$$

$$\overline{Def.} \underline{von} \ \overline{z} \qquad (a+bi) \cdot (c+di)$$

$$\overline{z_1} \cdot \overline{z_2}$$

Die Konjugation ist also verknüpfungstreu bzgl. , '.

Da die Konjugation eine bijektive Abbildung von $\mathbb C$ nach $\mathbb C$ ist, die verknüpfungstreu bzgl. ,+'und ,-'ist, ist sie ein Körperisomorphismus auf $\mathbb C.$