Θέματα

Θέμα Α (7)

Α1. [Μονάδες 6] Έστω η συνάρτηση f(x)=x. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο $\mathbb R$ και ισχύει

$$f'(x) = 1$$

A2. [Μονάδες 5] Για τις συναρτήσεις $f,g:\mathbb{R}\to\mathbb{R}$ θεωρήστε τους παρακάτω ισχυρισμούς:

Π1: "Αν f(x)=0 για κάθε $x\in\mathbb{R}$ ή g(x)=0 για κάθε $x\in\mathbb{R}$, Τότε $f(x)\cdot g(x)=0$ για κάθε $x\in\mathbb{R}$ "

Π2: "Αν $f(x)\cdot g(x)=0$ για κάθε $x\in\mathbb{R}$ τότε f(x)=0 για κάθε $x\in\mathbb{R}$ ή g(x)=0 για κάθε $x\in\mathbb{R}$ "

Π3: "Αν $f(x)\cdot g(x)\neq 0$ για κάθε $x\in\mathbb{R}$ τότε $f(x)\neq 0$ για κάθε $x\in\mathbb{R}$ και $g(x)\neq 0$ για κάθε $x\in\mathbb{R}$ "

Π4: "Αν $f^2(x)=0$ για κάθε $x\in\mathbb{R}$ τότε f(x)=0 για κάθε $x\in\mathbb{R}$."

Π5: "Αν $f^2(x)+g^2(x)=0$ για κάθε $x\in\mathbb{R}$ τότε f(x)=g(x)=0 για κάθε $x\in\mathbb{R}$."

Να χαρακτηρίσετε καθένα από τους παραπάνω ισχυρισμούς με Α, αν είναι αληθής ή Ψ αν είναι ψευδής.

- A3. [Μονάδες 8] Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη.
 - (α΄) Αν υπάρχει το όριο της συνάρτησης f στο x_0 , τότε

$$\lim_{x\to x_0}[f(x)]^n=[\lim_{x\to x_0}f(x)]^n$$

για κάθε $n \in \mathbb{N}^*$.

- (β΄) Αν το ${\bf A}(x_0,f(x_0))$ είναι σημείο καμπής της γραφικής παράστασης της f, δύο φορές παραγωγίσιμης, τότε f''(x)=0.
- (γ΄) Έστω η συνάρτηση $f(x)=\sqrt{x}$. Η συνάρτηση είναι παραγωγίσιμη στο $(0,+\infty)$ και ισχύει $f'(x)=\frac{1}{2\sqrt{x}}$.
- (δ΄) Ο κύκλος αποτελεί γραφική παράσταση συνάρτησης.
- Α4. [Μονάδες 6] Έστω η παραγωγίσιμη συνάρτηση $f: \mathbb{R} \to \mathbb{R}$. Αν η f είναι άρτια, τότε να αποδείξετε ότι η f' είναι περιττή (Μονάδες 4). Να δώσετε ένα παράδειγμα τέτοιας συνάρτησης (Μονάδες 2).

Θέμα Β (36)

Στο παραπάνω σχήμα φαίνεται η γραφική παράσταση της f'.

Β1. [Μονάδες 5] Να βρείτε τα διαστήματα μονοτονίας και κυρτότητας για τη συνάρτηση f καθώς επίσης τις θέσεις, το είδος των τοπικών ακροτάτων της και τη θέση που η f έχει καμπή.

Αν η f είναι πολυωνυμική 3ου βαθμού και τέμνει τον άξονα y'y σε σημείο με τεταγμένη -2, να δείξετε ότι:

- B2. [Μονάδες 7] $f(x) = x^3 6x^2 + 9x 2$.
- Β3. i. [Μονάδες 3] η f παρουσιάζει δύο ακρότατα και ένα σημείο καμπής από τα οποία τα δύο από αυτά είναι συμμετρικά ως προς το τρίτο.
 - ii. [Μονάδες 5] Η ευθεία y=-3x+6 "διαπερνά" την C_f
- B4. [Μονάδες 5] 2f(2021) < f(2020) + f(2022).

Θέμα Γ (24)

Δίνεται η μοναδιαίος κύκλος κέντρου O όπως φαίνεται στο σχήμα. Η ευθεία (ε) είναι κάθετη στον άξονα x'x στο σημείο A(1,0) και η γωνία $\widehat{AOM}=\theta$ rad με $\theta\in(-\pi,\pi)$ όπου M σημείο του κύκλου. Έστω B(-1,0) και BM τέμνει την (ε) στο σημείο N(1,y).

Γ1. [Μονάδες 9] Να δείξετε ότι $y = \frac{2\eta\mu\theta}{1+\sigma\upsilon\nu\theta} = y(\theta)$.

- Γ2. [Μονάδες 8] Να βρείτε το
 - i. [Μονάδες 2] $\lim_{\theta \to 0} \frac{y(\theta)}{\theta}$
 - ii. [Μονάδες 6] Να βρείτε το $\lim_{\theta\to\pi^-}y(\theta)$ και $\lim_{\theta\to\pi^+}y(\theta)$ χρησιμοποιώντας αλλαγή μεταβλητής, θέτοντας $\theta=\pi+u$ και $\theta=u-\pi$ αντίστοιχα.
- Γ3. [Μονάδες 6] Να αποδείξετε ότι η συνάρτηση y είναι περιττή και να τη μελετήσετε ως προς τη μονοτονία της.
- Γ4. [Μονάδες 2] Να βρείτε την εξίσωση της εφαπτομένης της C_f στο σημείο της (0,y(0)) και το σύνολο τιμών της συνάρτησης.

Θέμα Δ (24)

Έστω η συνάρτηση $f:(0,+\infty)$ που είναι γνήσια μονότονη, δύο φορές παραγωγίσιμη για την οποία ισχύουν:

$$f(x) \ge 0$$
 για κάθε $x \ge 1$

και

$$\frac{f(x)+e^x}{x} \leq e^x \ \text{για κάθε} \ x>0$$

- Δ1. [Μονάδες 6] Να δείξετε ότι η f έχει μοναδική ρίζα την x=1 και ότι είναι γνήσια αύξουσα στο πεδίο ορισμού της.
- Δ2. [Μονάδες 6] Να δείξετε ότι η εφαπτόμενη της f στο σημείο της $\mathbf{A}(1,f(1))$ είναι η ευθεία με εξίσωση y=ex-e. Ισχύει επιπλέον ότι $x^2f''(x)+e^x=x^2f'(x)+xe^x$ για κάθε x>0.
- Δ3. [Μονάδες 8] Να δειχθεί ότι η $f(x)=e^x\ln x, x>0$ και να βρεθεί το σύνολο τιμών της συνάρτησης.
- Δ4. [Μονάδες 5] Αν η εφαπτόμενη της f στο $\mathbf{A}(1,f(1))$ και η C_f έχουν και άλλο κοινό σημείο με τετμημένη $x_0\in(0,1)$ α δείξετε ότι υπάρχει $\xi\in(x_0,1)$ ώστε να ισχύει $f(\xi)+\frac{e^\xi}{\xi}=e.$