ECE 1513: Introduction to Machine Learning

Lecture 8: Neural Networks II

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Quick Recap: Neural Networks

Quick Recap: Expressive Power of Deep NNs

As we go deep, our expressive power increases exponentially

Today's Agenda: Training and Inference via NNs

Today, we learn

How to Train Neural Networks

In this way, we discuss the following topics

- Understand Inference by NNs
- Backpropagation
- Complete training and test loop

Recall Supervised Learning

We have three components

A labeled dataset

$$\mathbb{D} = \{ (\boldsymbol{x}_n \in \mathbb{X}, \boldsymbol{v_n} \in \mathbb{V}) : n = 1, \dots, N \}$$

Model that relates data samples and their labels

$$f_{\mathbf{w}}: \mathbb{X} \mapsto \mathbb{V}$$

 \downarrow $f_{\mathbf{w}} \in \mathbb{H}$ is now a NN with m model parameters, i.e.,

$$\mathbb{H} = \{ f_{\mathbf{w}}(\mathbf{x}) \text{ for all } \mathbf{w} \in \mathbb{R}^m \}$$

- Learning algorithm finds optimal weights for the NN
 - → This is what we call training a NN

Using NNs for Classification

For classification, the NN needs to give us information about the class

Naive approach is to set

$$f_{\mathbf{w}}\left(\boldsymbol{x}\right) \in \left\{1, \dots, k\right\}$$

for k-class classification

- → This is not efficient for training as we will see
- In practice we set

$$f_{\mathbf{w}}(\mathbf{x}) \propto \Pr \left\{ \mathbf{x} \in \mathsf{Class} \ i \right\}$$

Binary Classification via NNs

Binary Classification via NNs: Sigmoid Activation

We need a single neuron at the output layer

Compute single linear combination and activate it by Sigmoid

$$\mathbf{w}\boldsymbol{\varphi} + b = z \leadsto \boldsymbol{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

We treat output as probability of one of the classes

$$f_{\mathbf{w}}(\mathbf{x}) = \Pr\left\{\mathbf{x} \in \mathsf{Class}\ 1\right\}$$

→ No need to compute another probability then

$$\Pr\left\{\boldsymbol{x} \in \mathsf{Class}\,2\right\} = 1 - f_{\mathbf{w}}\left(\boldsymbol{x}\right)$$

• For inference, we take the class with highest probability

Multiclass Classification via NNs

- ? What if we have more than two classes?
- We compute the complete distribution

We need an output layer with k outputs

$$\mathbf{y} = f_{\mathbf{w}}(\mathbf{x}) = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix} \in [0, 1]^k$$

such that $y_i = \Pr \{ \boldsymbol{x} \in \textit{Class } i \}$

$$\sum_{i=1}^{k} y_i = 1$$

Multiclass Classification via NNs: Softmax

Classic choice is to

• Compute k linear combinations in the output layer

$$\mathbf{W}oldsymbol{arphi} + \mathbf{b} = oldsymbol{z} \in \mathbb{R}^k$$

• Compute a Softmax of z

$$\begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix} = \mathsf{Soft}_{\max}(z) = \frac{1}{\sum_{j=1}^k e^{z_j}} \begin{bmatrix} e^{z_1} \\ \vdots \\ e^{z_k} \end{bmatrix}$$

Softmax

Softmax computes a distribution: larger z_i has higher probability

Using NNs for Regression

For regression, the NN needs to give us real values

We may have a single real output

$$y = f_{\mathbf{w}}(x) \in \mathbb{R}$$

• We may have multiple real outputs

$$\boldsymbol{y} = f_{\mathbf{w}}\left(\boldsymbol{x}\right) \in \mathbb{R}^k$$

• We may have restricted outputs

$$\mathbf{y} = f_{\mathbf{w}}(\mathbf{x}) \in [A, B]^k$$

Regression via NNs: Linear Output

We can consider the NN output as the real label

We can use directly the linear output

$$y = z = \mathbf{w}\varphi + b \leadsto \hat{v} = y$$

- The output layer is activated by linear function
- We may activate to restrict the output

$$y = \sigma(z) \leadsto \hat{v} = 7y - 2$$

Recall: Empirical Risk Minimization

Empirical Risk

Say $\mathbf{y}_n = f_{\mathbf{w}}\left(\mathbf{x}_n\right)$ for every $\left(\mathbf{x}_n, \mathbf{v}_n\right) \in \mathbb{D}$; then, the empirical risk is

$$\hat{R}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\mathbf{y}_n, \mathbf{v}_n) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\mathbf{w}}(\mathbf{x}_n), \mathbf{v}_n)$$

Optimal model is the one which minimizes the empirical risk

$$\mathbf{w}^{\star} = \underset{\mathbf{w} \in \mathbb{R}^{m}}{\operatorname{argmin}} \hat{R}(\mathbf{w})$$
$$= \underset{\mathbf{w} \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\mathbf{w}}(\mathbf{x}_{n}), \mathbf{v}_{n})$$

Choosing Loss: Binary Classification

Say we infer the label of a sample from model output y as

$$\hat{v} = \begin{cases} 1 & y \geqslant 0 \\ 0 & y < 0 \end{cases}$$

We can use the indicator function to compute loss

$$\mathcal{L}\left(\boldsymbol{y},v\right) = \begin{cases} 1 & \boldsymbol{y} \geqslant 0 \text{ and } v=0 \text{ or } \boldsymbol{y} < 0 \text{ and } v=1 \\ 0 & \text{otherwise} \end{cases}$$

But, it's not something we can easily work with! We may also use

$$\mathcal{L}\left(\mathbf{y},v\right) = \left(\mathbf{y}-v\right)^2$$

It still does what we want!

Binary Classification via FNN: Cross-Entropy

- ? What do we want?
- We want it to convince NN return right label!

Choosing Loss: Binary Cross Entropy

We know y is a probability: it's better to use maximum likelihood

$$\mathcal{L}(\mathbf{y}, v) = \begin{cases} -\log y & v = 1 \\ -\log(1 - y) & v = 0 \end{cases} = \operatorname{CE}(\mathbf{y}, v)$$

CE is again doing what we want! This time better

Choosing Loss: Multiclass Classification

For k-class classification, we can extend the idea of CE by setting

$$CE(\mathbf{y}, v) = -\log y_v$$

In this case, we see that

$$\mathbf{y} = \begin{bmatrix} 1 \to \begin{bmatrix} 0 \\ 2 \to \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ k \to \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix} \qquad \mathbf{\Sigma} \to \mathbf{CE}(\mathbf{y}, v) = 0 \qquad \mathbf{y} \neq \begin{bmatrix} 1 \to \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ k \to \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix} \qquad \mathbf{\Sigma} \to \mathbf{CE}(\mathbf{y}, v) > 0$$

Choosing Loss: Generic Cross Entropy

We can write it down more elegantly

$$CE(\mathbf{y}, v) = -\sum_{i=1}^{k} \mathbf{1} \{i = v\} \log y_i$$

Define one-hot vector for v

$$\mathbf{v} = \begin{bmatrix} 1 \to \begin{bmatrix} 0 \\ 2 \to 0 \\ \vdots \\ v \to 0 \\ \vdots \\ k \to 0 \end{bmatrix} \longrightarrow \mathrm{CE}\left(\mathbf{y}, v\right) = -\sum_{i=1}^k \mathrm{v}_i \log y_i = \mathrm{CE}\left(\mathbf{y}, \mathbf{v}\right)$$
 is the general cross-entropy between distributions \mathbf{y} and \mathbf{v}

This is the general cross-entropy between distributions y and v

Choosing Loss: Regression

Choosing Loss: Regression

Choosing Loss: MSE

With k-dimensional output, we can set

$$\mathcal{L}(\boldsymbol{y}, \boldsymbol{v}) = \|\boldsymbol{y} - \boldsymbol{v}\|^2 = \sum_{i=1}^{k} (\boldsymbol{y_i} - v_i)^2$$

It again does what we want

 $\,\,\,\,\,\,\,$ It gets minimize when we get close to true labels v

Empirical risk in this case is often referred to as

Mean Squared Error \equiv MSE

Recall: Gradient Descent

```
GradientDescent():
1: Choose some learning rate \eta
```

- 2: Start with an arbitrary \mathbf{w}^0
- 3: while not converged do
- 4: Compute the gradient at \mathbf{w}^t
- 5: Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \eta \nabla \hat{R} \left(\mathbf{w}^t \right)$
- Update $t \leftarrow t + 1$
- 7: end while
- 8: Return final \mathbf{w}^t

So, we need to find a way to compute $\nabla \hat{R}(\mathbf{w})$ for a given \mathbf{w}

Gradient of Empirical Risk

Let's define $\hat{R}_n\left(\mathbf{w}\right) = \mathcal{L}\left(f_{\mathbf{w}}\left(\boldsymbol{x}_n\right), \frac{\boldsymbol{v}_n}{\boldsymbol{v}}\right)$

this is a sample loss, i.e., the loss computed for single sample $oldsymbol{x}_n$

We can write

$$\nabla \hat{R}(\mathbf{w}) = \nabla \frac{1}{N} \sum_{n=1}^{N} \hat{R}_{n}(\mathbf{w})$$
$$= \frac{1}{N} \sum_{n=1}^{N} \nabla \hat{R}_{n}(\mathbf{w})$$

Conclusion

We need to find out a way to compute gradient of a sample loss

Gradient of Empirical Risk \equiv Average of Sample Gradients

Computing Sample Gradients

The sample loss is a nested function of model parameters

$$\nabla \hat{R}_n(\mathbf{w}) = \nabla \mathcal{L}\left(f_{\mathbf{w}}(\boldsymbol{x}_n), \boldsymbol{v_n}\right)$$

We need to compute the gradient of a nested function

Nested Function

Let y = f(z) and z = g(x); then, y is a nested function of x

Example: Say $y = z^2$ and z = 3x; then,

$$y = z^2 = (3x)^2 = 9x^2$$

Review: Chain Rule

Problem

Let y = f(z) and z = g(x): what is the derivative of y with respect to x?

If we change x with a tiny change dx: z changes with

$$\mathrm{d}z = g'(x)\,\mathrm{d}x$$

The change dz will change y by

$$dy = f'(z) dz = f'(z) g'(x) dx$$

So, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(z) g'(x) = \frac{\mathrm{d}y}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}x}$$

Review: Chain Rule

Chain Rule

Let $z_1=g_1\left(x\right)$ and $z_2=g_2\left(z_1\right)$ and \ldots and $y=f\left(z_\ell\right)$: then, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z_{\ell}} \frac{\mathrm{d}z_{\ell}}{\mathrm{d}z_{\ell-1}} \dots \frac{\mathrm{d}z_{2}}{\mathrm{d}z_{1}} \frac{\mathrm{d}z_{1}}{\mathrm{d}x}$$

We can show this on the so-called computation graph

Review: Vectorized Chain Rule

Problem

 $y = f(z_1, \dots, z_\ell)$ with $z_i = g_i(x)$: what is derivative of y with respect to x?

If we change x with a tiny change dx, each z_i changes with

$$\mathrm{d}z_i = g_i'(x)\,\mathrm{d}x$$

The changes dz_1, \ldots, dz_ℓ will change y by

$$dy = \frac{\partial y}{\partial z_1} dz_1 + \ldots + \frac{\partial y}{\partial z_\ell} dz_\ell = \frac{\partial y}{\partial z_1} g'_1(x) dx + \ldots + \frac{\partial y}{\partial z_\ell} g'_\ell(x) dx$$

So, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\partial y}{\partial z_1} \frac{\mathrm{d}z_1}{\mathrm{d}x} + \ldots + \frac{\partial y}{\partial z_\ell} \frac{\mathrm{d}z_\ell}{\mathrm{d}x}$$

Review: Vectorized Chain Rule

We can show this again on a computation graph

How Compute Derivatives on Computer: Example

Consider the following example

$$z_1 = x^2 \qquad z_2 = x^3 \qquad y = 2z_1^3 + z_2^2$$

We look for derivative of y w.r.t. x at x = 1

Our analytic brain does the following

$$y = 2z_1^3 + z_2^2 = 2(x^2)^3 + (x^3)^2 = 3x^6$$

Then, we would say

$$\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=1} = 18x^5|_{x=1} = 18$$

How Compute Derivatives on Computer: Example

Consider the following example

$$z_1 = x^2 \qquad z_2 = x^3 \qquad y = 2z_1^3 + z_2^2$$

We look for derivative of y w.r.t. x at x = 1

The computer can only follow the computation graph

- - \Rightarrow dy_dx = dy_dz1 * dz1_dx + dy_dz2 * dz2_dx

Back to Computing Sample Gradients

The sample loss is a nested function of model parameters

$$\nabla \hat{R}_n\left(\mathbf{w}\right) = \nabla \mathcal{L}\left(f_{\mathbf{w}}\left(\boldsymbol{x}_n\right), \boldsymbol{v_n}\right)$$

- ? How can we compute the derivative w.r.t. weights?
- ! We represent the NN by a computation graph and use chain rule

Example: Single Neuron

For weight w_n , we can write

$$\frac{\partial \hat{R}}{\partial w_n} = \frac{\mathrm{d}\hat{R}}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}z} \frac{\partial z}{\partial w_n}$$

the same is valid for the bias

Example: Simple Neural Network

In first hidden node, we have $h_0 = \xi x_2$ and $a_0 = f(h_0)$; then, we get

$$h_1 = \beta_0 + \beta_1 x_1 + \beta_2 a_0 \leadsto a_1 = f(h_1)$$

 $h_2 = \omega_0 + \omega_1 x_1 + \omega_2 a_0 \leadsto a_2 = f(h_2)$

and at the output we have

$$z = \alpha_0 + \alpha_1 a_1 + \alpha_2 a_2 \leadsto y = f(z)$$

Example: Simple Neural Network

By chain rule, we have

$$\frac{\partial \hat{R}}{\partial \beta_1} = \frac{\partial a_1}{\partial \beta_1} \frac{\partial \hat{R}}{\partial a_1}$$

and we have

$$\frac{\partial \hat{R}}{\partial a_1} = \frac{\partial y}{\partial a_1} \frac{\partial \hat{R}}{\partial y}$$

Example: Simple Neural Network

By chain rule, we have

$$\frac{\partial \hat{R}}{\partial \xi} = \frac{\partial a_0}{\partial \xi} \frac{\partial \hat{R}}{\partial a_0}$$

and we have

$$\frac{\partial \hat{R}}{\partial a_0} = \frac{\partial a_1}{\partial a_0} \frac{\partial \hat{R}}{\partial a_1} + \frac{\partial a_2}{\partial a_0} \frac{\partial \hat{R}}{\partial a_2}$$

Extension to General NN

For a neuron with J children, we can write

$$\frac{\partial \hat{R}}{\partial \xi} = \frac{\partial h}{\partial \xi} \frac{\partial \hat{R}}{\partial a_0}$$

and we have

$$\frac{\partial \hat{R}}{\partial a_0} = \sum_{j=1}^{J} \frac{\partial a_j}{\partial a_0} \frac{\partial \hat{R}}{\partial a_j}$$

Backpropagation: Forward Pass

$\mathtt{Forward}(oldsymbol{x}_n|\mathbf{w}^t)$:

- 1: Send x_n over the network
- 2: for each neuron from input to output do
- 3: Compute the linear output h and activated output a
- 4: end for
- 5: Return all linear and activated outputs

Backpropagation: Backward Pass

$\mathtt{Backward}(oldsymbol{v}_n|\mathbf{w}^t)$:

- 1: Set $\hat{R}_n = \mathcal{L}\left(\boldsymbol{y}_n, \boldsymbol{v}_n\right)$ and compute $\nabla_{\boldsymbol{y}} \hat{R}_n$
- 2: Send $\nabla_{\boldsymbol{y}}\hat{R}_n$ backward over the network
- 3: **for** each neuron a_i from output to input **do**
- 4: Compute $\partial \hat{R}_n/\partial a_i$ using its children
- 5: Compute derivative of \hat{R}_n w.r.t. weights of a_i from $\partial \hat{R}_n/\partial a_i$
- 6: end for
- 7: Return $\nabla_{\mathbf{w}^t} \hat{R}_n$

Backpropagation: Need for Gradient

At any activated neuron, we have $a_j = f(h_j)$

$$\frac{\partial a_j}{\partial a_0} = \frac{\partial a_j}{\partial h_j} \frac{\partial h_i}{\partial a_0}$$
$$= f'(h_j) \frac{\partial h_i}{\partial a_0}$$

Activation should be differentiable!

Backpropagation: Need for Gradient

By backtracking, we will end up with

$$\frac{\partial \hat{R}}{\partial \xi} \leadsto \frac{\partial \hat{R}}{\partial a_0} \leadsto \frac{\partial \hat{R}}{\partial a_j} \leadsto \ldots \leadsto \nabla_{\boldsymbol{y}} \hat{R}$$

Loss should be differentiable!

Backpropagation in Practice: PyTorch Example

Most packages have backpropagation implemented

```
prediction = model(data) # forward pass
```

We just need to pass backward

```
loss = (prediction - labels).sum()
loss.backward() # backward pass
```

Further Read

- Goodfellow
 - □ Chapter 6: Section 6.5
- Bishop
- ESL

- Backpropagation
- Backpropagation
- Backpropagation

Gradient Descent with Backpropagation

GradientDescent():

- 1: Choose some *learning rate* η
- 2: Start with an arbitrary \mathbf{w}^0
- 3: while not converged do
- 4: Compute the gradient at \mathbf{w}^t
- 5: Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \eta \nabla \hat{R} \left(\mathbf{w}^t \right)$
- 6: Update $t \leftarrow t + 1$
- 7: end while
- 8: Return final \mathbf{w}^t

We know that

$$\nabla \hat{R}\left(\mathbf{w}^{t}\right) = \frac{1}{N} \sum_{n=1}^{N} \nabla \hat{R}_{n}\left(\mathbf{w}^{t}\right)$$

We can compute $\nabla \hat{R}_n(\mathbf{w}^t)$ for each n by backpropagation

Gradient Descent with Backpropagation

```
GradientDescent():
 1: Choose some learning rate \eta
 2: Start with an arbitrary \mathbf{w}^0
 3: while not converged do
         Compute the gradient at \mathbf{w}^t
         for all samples in \mathbb{D} do
            Compute \nabla \hat{R}_n (\mathbf{w}^t) with backpropagation
 7:
      end for
         \nabla \hat{R}\left(\mathbf{w}^{t}\right) = \text{average}\left\{\nabla \hat{R}_{1}, \dots, \nabla \hat{R}_{N}\right\}
         Update \mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta \nabla \hat{R} \left( \mathbf{w}^t \right)
10:
          Update t \leftarrow t + 1
11 end while
12: Return final \mathbf{w}^t
```

Training with Complete Dataset

```
FullBatchGD():
 1: Choose some learning rate \eta
 2: Start with an arbitrary \mathbf{w}^0
 3: while not converged do
         Compute the gradient at \mathbf{w}^t
         for all samples in \mathbb{D} do
             Compute \nabla \hat{R}_n (\mathbf{w}^t) with backpropagation
 7:
      end for
         \nabla \hat{R}\left(\mathbf{w}^{t}\right) = \text{average}\left\{\nabla \hat{R}_{1}, \ldots, \nabla \hat{R}_{N}\right\}
         Update \mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \mathbf{\eta} \nabla \hat{R} \left( \mathbf{w}^t \right)
10:
          Update t \leftarrow t + 1
11 end while
12: Return final \mathbf{w}^t
```

Here, we use all samples for every single GD iteration

→ We need many GD iterations to converge!

Training with Complete Dataset: ImageNet

In ImageNet we have 1,281,167 images belonging to 1000 classes!

- \downarrow Each iteration of GD requires 1,281,167 forward and backward passes!
- This does not sound practical!

GD with Single Sample Gradient

SampleGD():

- 1: Choose some learning rate η
- 2: Start with an arbitrary \mathbf{w}^0
- 3: while not converged do
- 4: Compute the gradient at \mathbf{w}^t
- 5: Compute $\nabla \hat{R}_n \left(\mathbf{w}^t \right)$ with backpropagation
- 6: Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \frac{\eta}{\eta} \nabla \hat{R}_n (\mathbf{w}^t)$
- 7: Update $t \leftarrow t + 1$
- 8: end while
- 9: Return final \mathbf{w}^t

The idea is very simple

do not loop over samples: update after each backpropagation

GD with Single Sample Gradient: Possibility of Repetition

SampleGD():

- 1: Choose some learning rate η
- 2: Start with an arbitrary \mathbf{w}^0
- 3: while not converged do
- Compute the gradient at \mathbf{w}^t
- Compute $\nabla \hat{R}_n (\mathbf{w}^t)$ with backpropagation
- Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \eta \nabla \hat{R}_n (\mathbf{w}^t)$
- Update $t \leftarrow t + 1$
- 8: end while
- 9: Return final \mathbf{w}^t
- What if after last sample, we end up with initial weights?!
- Well, we could try shuffling the samples randomly

Stochastic GD

SGD():

- 1: Choose some *learning rate* η
- 2: Start with an arbitrary \mathbf{w}^0
- 3: while not converged do
- 4: Compute the gradient at \mathbf{w}^t
- 5: **if** we finished with all samples in \mathbb{D} **then**
- 6: Shuffle D randomly and start over
- 7: end if
- 8: Compute $\nabla \hat{R}_n$ (\mathbf{w}^t) with backpropagation
- 9: Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^{t} \eta \nabla \hat{R}_{n} (\mathbf{w}^{t})$
- 10: Update $t \leftarrow t + 1$
- 11: end while
- 12: Return final \mathbf{w}^t

Full-Batch Training vs SGD

- ? Do we pay any price for the speed boost in SGD?!
- Yes! Our gradient estimation have larger variance

Gradient Estimate Variance

In fact, we could show that the gradients

$$abla \hat{R}\left(\mathbf{w}^{t}
ight)$$
 and $abla \hat{R}_{n}\left(\mathbf{w}^{t}
ight)$

are both estimating $\nabla R\left(\mathbf{w}^{t}\right)$, i.e., gradient of the true risk. In this case, the estimators used by SGD are noisier than those used by full batch GD!

Moral of Story

SGD has lower quality of update in each GD iteration

SGD with Mini-Batches

```
miniBatchSGD():
 1: Choose some learning rate \eta
 2: Split \mathbb D to mini-batches, each of size B
 3: Start with an arbitrary \mathbf{w}^0
 4: while not converged do
        Compute the gradient at \mathbf{w}^t
 5:
        if we finished with all mini-batches then
 7:
           Shuffle them randomly and start over
       end if
        for all samples in the mini-batch do
            Compute \nabla \hat{R}_n (\mathbf{w}^t) with backpropagation
10:
         end for
11:
        \nabla \hat{R}_b\left(\mathbf{w}^t\right) = \mathtt{average}\left\{\nabla \hat{R}_1, \dots, \nabla \hat{R}_B\right\}
12:
         Update \mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta \nabla \hat{R}_b \left( \mathbf{w}^t \right)
13:
14:
         Update t \leftarrow t + 1
15: end while
16: Return final \mathbf{w}^t
```

Few Definitions

Iteration

Iteration refers to one GD iteration, i.e., after each mini-batch

Epoch

Each time we go through all samples in \mathbb{D} , we are finished with one epoch

Batch-size

The size of each mini-batch B is called batch-size

Example

Consider MNIST with 60K samples used with batch-size B=100

Classic Trade-off: Variance vs Speed

Mini-batch SGD is the most common form of GD we use

- It provides a fair trade-off between speed and variance
- If we set mini-batch size B large
 - We have less variance
 w→ better gradient quality in each iteration
 - We have lower speed → longer training time
- If we set mini-batch size B small
 - We have higher variance
 w→ lower gradient quality in each iteration
 - **→** We have higher speed *→* shorter training time

Speed-Variance Trade-off

Choice of batch-size specifies the trade-off between variance and speed

Gradient-based Optimizer

Mini-batch SGD is probably not the one you use in your implementation

- In practice we use other tricks to improve quality of gradient estimation
 Momentum, learning rate scheduling, . . .
- The available optimizers all follow the mini-batch SGD approach
- Some famous optimizers are
 - □ Rprop, RMSprop and Adam

Splitting Data

Building and Training NN

TrainingLoop():

- 1: Build NN $y = f_{\mathbf{w}}(x)$ with some hyperparameters and initial weights
- 2: Split training set to mini-batches
- 3: Specify the loss function \mathcal{L}
- 4: **for** *epochs* = 1, ..., E **do**
- 5: Keep applying mini-batch SGD
- 6: end for
- 7: Return final weights \mathbf{w}^* , average training loss, and accuracy on training set

Validation

Validation():

- 1: Realize NN $y = f_{\mathbf{w}^*}(x)$ with trained weights \mathbf{w}^*
- 2: **for** sample i in validation set **do**
- 3: Compute $y_i = f_{\mathbf{w}*}(x_i)$
- 4: Compute sample loss $\hat{R}_i = \mathcal{L}(\boldsymbol{y}_i, \boldsymbol{v}_i)$
- 5: Check whether inferred label \hat{v}_i is the same as true label v_i
- 6: end for
- 7: Return average validation loss and accuracy

We repeat training with new hyperparameters till it's tuned

Evaluation

Evaluation():

- 1: Realize NN $y = f_{\mathbf{w}^*}(x)$ with trained weights \mathbf{w}^* and tuned hyperparameters
- 2: **for** sample i in evaluation set **do**
- 3: Compute $\boldsymbol{y}_i = f_{\mathbf{w}*} \left(\boldsymbol{x}_i \right)$
- 4: Compute sample loss $\hat{R}_i = \mathcal{L}(\boldsymbol{y}_i, \boldsymbol{v}_i)$
- 5: Check whether inferred label \hat{v}_i is the same as true label v_i
- 6: end for
- 7: Return average evaluation loss and accuracy

Further Read

- Goodfellow
 - → Chapter 6: Section 6.2 6.3 **Training**
- Bishop
- ESL
 - → Chapter 10: Section 10