Statistics Advanced - 1 | Assignment

Instructions: Carefully read each question. Use Google Docs, Microsoft Word, or a similar tool to create a document where you type out each question along with its answer. Save the document as a PDF, and then upload it to the LMS. Please do not zip or archive the files before uploading them. Each question carries 20 marks.

Total Marks: 200

Question 1: What is a random variable in probability theory?

Answer:

A random variable in probability theory is a variable whose possible values are outcomes of a random experiment.

- It assigns a numerical value to each outcome of a random process.
- It can be thought of as a function that maps outcomes from a sample space to numbers.

There are two main types:

- 1. Discrete random variable takes countable values (e.g., number of heads in 3 coin tosses).
- 2. Continuous random variable takes values from an interval of real numbers (e.g., the exact height of students in a class).

Question 2: What are the types of random variables?

Answer:

There are mainly **two types of random variables** in probability theory:

- 1. Discrete Random Variable
 - o Takes a **countable** number of values.

Examples:

- Number of heads in 5 coin tosses (0, 1, 2, 3, 4, 5).
- Number of students present in a class.
- Probability is described using a probability mass function (PMF).

2. Continuous Random Variable

- Takes an uncountable, infinite set of values within an interval.
- Examples:
 - Height of a person (e.g., 160.2 cm, 160.25 cm, 160.253 cm...).
 - Time taken to run a race.
- Probability is described using a probability density function (PDF).

Question 3: Explain the difference between discrete and continuous distributions.

Answer:

1. Discrete Distributions

- Deal with discrete random variables (countable outcomes).
- The probability of each possible value is given by a probability mass function (PMF).
- The sum of probabilities of all possible values equals 1.

• Examples:

- o Binomial distribution (number of successes in coin tosses).
- Poisson distribution (number of calls at a call center in an hour).

2. Continuous Distributions

• Deal with **continuous random variables** (uncountably infinite outcomes).

- Probability is described using a probability density function (PDF).
- The probability of any single exact value is **zero**; we calculate probability over intervals (e.g., P(1.5 < X < 2.5)).
- The total area under the PDF curve is 1.
- Examples:
 - Normal distribution (heights, test scores).
 - Exponential distribution (time between arrivals in a queue).

Question 4: What is a binomial distribution, and how is it used in probability?

Answer:

A **binomial distribution** is a type of **discrete probability distribution** that describes the number of successes in a fixed number of independent trials, where each trial has only two possible outcomes: **success** or **failure**.

Key Features

- 1. Fixed number of trials (n) \rightarrow e.g., tossing a coin 10 times.
- 2. Two outcomes in each trial → success (say, head) or failure (tail).
- 3. Constant probability of success (p) in each trial.
- 4. **Trials are independent** → the outcome of one does not affect another.

Probability Formula

If *X* is the number of successes in nnn trials:

$$P(X = k) = (kn) \cdot pk \cdot (1 - p)n - k$$

Where:

- $(nk) = n! \ k! \ (n-k)! \ binom\{n\}\{k\} = \ frac\{n!\}\{k! \ (n-k)!\}(kn) = k! \ (n-k)! \ (number of ways to choose k successes)$
- p = probability of success

- 1-p = probability of failure
- K = number of successes

Examples of Use

- Coin tosses: Probability of getting exactly 3 heads in 5 tosses.
- Quality control: Probability that 2 out of 10 items in a batch are defective.
- **Elections:** Probability that exactly 60 out of 100 voters favor a candidate.

Question 5: What is the standard normal distribution, and why is it important?

Answer:

The **standard normal distribution** is a special case of the normal distribution. It is a continuous probability distribution with:

- Mean (μ) = 0
- Standard deviation (σ) = 1
- Its graph is the familiar **bell-shaped curve**, symmetric about zero.

The random variable that follows this distribution is called a **standard normal variable (Z)**.

Why it's important

- 1. Basis for the Z-score
 - Any normal random variable X with mean μ and standard deviation σ can be converted to a standard normal variable using:

$$Z = \sigma X - \mu$$

• This process is called **standardization**.

2. Simplifies probability calculations

 Instead of creating separate tables for every normal distribution, statisticians use the **Z-table** (standard normal table) to find probabilities.

3. Used in hypothesis testing and confidence intervals

- Z-scores help determine how extreme a data point is compared to the mean.
- Critical in testing significance and constructing confidence intervals.

Example

- Suppose test scores are normally distributed with mean = 70 and standard deviation = 10
- A student scored 85.
- Z-score = (85-70)/10=1.5.
- This means the student is **1.5 standard deviations above the mean**.

Question 6: What is the Central Limit Theorem (CLT), and why is it critical in statistics?

Answer:

The **Central Limit Theorem (CLT)** is one of the most important results in statistics.

What it says

The CLT states that:

- If you take many random samples of size nnn from **any population** (with finite mean $\mu\mu\mu$ and variance $\sigma 2\sigma^2 \sigma^2$),
- The distribution of the sample means will approximate a normal distribution as nnn becomes large,
- Regardless of the shape of the original population.

Formally:

 $X^- \sim N(\mu, n\sigma 2) as n \rightarrow \infty$

Why it's critical

1. Normal approximation

 Even if data isn't normally distributed, the CLT lets us use the normal distribution to approximate sampling distributions.

2. Foundation for inferential statistics

 Hypothesis testing, confidence intervals, and regression all rely on the CLT.

3. Predictability

 It ensures that averages of samples behave in a predictable, normal way, making statistical inference possible.

Simple Example

- Suppose exam scores in a school are skewed (not normal).
- You randomly take samples of 50 students and compute their average scores.
- If you repeat this many times, the distribution of those **sample averages** will look approximately normal, even though the original scores were skewed.

Question 7: What is the significance of confidence intervals in statistical analysis?

Answer:

A **confidence interval (CI)** gives a range of values that is likely to contain the true population parameter (like mean or proportion) with a certain level of confidence.

Why it's significant

1. Gives more information than a point estimate

- A sample mean alone doesn't tell us how precise it is.
- A CI shows the likely range for the true population mean.

2. Accounts for uncertainty

 Because samples vary, Cls reflect the uncertainty in estimating population parameters.

3. Links to probability

 A 95% CI means: If we took many samples and built CIs each time, about 95% of those intervals would contain the true parameter.

4. Used in decision-making

- o Helps determine if a result is statistically significant.
- Example: If a 95% CI for a difference between two treatments is (2, 5), we can be confident the true difference is positive.

Example

- Suppose the average height of a sample of 100 students is 165 cm, with a 95% CI of (163, 167).
- This means we are 95% confident that the true average height of all students lies between 163 cm and 167 cm.

Question 8: What is the concept of expected value in a probability distribution?

Answer:

The **expected value** (also called **mean** of a probability distribution) is the long-run average outcome of a random variable if an experiment is repeated many times.

It tells us the "center" or average result we should expect from a probability distribution.

Definition

For a random variable *X*::

• Discrete case:

$$E[X] = i\sum xi \cdot P(xi)$$

(sum of each value times its probability)

Continuous case:

```
E[X] = \int -\infty \infty x \cdot f(x) dx
```

(where f(x) is the probability density function)

Examples

1. Coin toss (fair coin):

```
• Let X = 1 for heads, X = 0 for tails.
```

```
\circ E[X] = 1.0.5 + 0.0.5 = 0.5.
```

On average, half of the tosses will be heads.

2. Rolling a fair die:

- o Possible outcomes: 1, 2, 3, 4, 5, 6 (each with probability 1/61/61/6).
- E[X]=61+2+3+4+5+6=3.5.
- You'll never roll a 3.5, but it represents the average in the long run.

Why it matters

- Helps in **decision-making under uncertainty** (like gambling, insurance, investments).
- Forms the basis of concepts like variance, risk, and utility theory.

Question 9: Write a Python program to generate 1000 random numbers from a normal distribution with mean = 50 and standard deviation = 5. Compute its mean and standard deviation using NumPy, and draw a histogram to visualize the distribution.

(Include your Python code and output in the code box below.)

Answer:

```
import numpy as np
import matplotlib.pyplot as plt

# Generate 1000 random numbers from normal distribution
```

```
data = np.random.normal(loc=50, scale=5, size=1000)

# Compute mean and standard deviation
mean = np.mean(data)
std_dev = np.std(data)

print(f"Sample Mean: {mean:.2f}")
print(f"Sample Standard Deviation: {std_dev:.2f}")

# Plot histogram
plt.hist(data, bins=30, edgecolor='black', alpha=0.7)
plt.title("Histogram of Normally Distributed Data (μ=50, σ=5)")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()
```


Here's the result:

- Sample Mean ≈ 49.95
- Sample Standard Deviation ≈ 5.06

The histogram shows a **bell-shaped curve**, which matches the expected normal distribution with mean 50 and standard deviation 5.

Question 10: You are working as a data analyst for a retail company. The company has collected daily sales data for 2 years and wants you to identify the overall sales trend.

```
daily_sales = [220, 245, 210, 265, 230, 250, 260, 275, 240, 255, 235, 260, 245, 250, 225, 270, 265, 255, 250, 260]
```

- Explain how you would apply the Central Limit Theorem to estimate the average sales with a 95% confidence interval.
- Write the Python code to compute the mean sales and its confidence interval.

(Include your Python code and output in the code box below.)

Answer:

Here's the visualization:

- The **blue dashed line** marks the mean daily sales (~248.25).
- The **red dashed lines** show the 95% confidence interval (~240.7 to 255.8).

This makes it clear where the true average daily sales likely fall.