Lecture 8: Linear Classifiers and More Model Validation

INFO 1998: Introduction to Machine Learning

Agenda

- 1. Perceptron + SVM
- 2. More Cross-Validation techniques

Linear Classifiers

Linear Classifiers

A linear classifier is a hyper plane that is used to classify our data points

A hyperplane is our decision boundary and our goal is to find the hyper plane that best classifies our data

Perceptron Learning Algorithm

Goal: find a normal vector w that perfectly classifies all the points in our data set Algorithm:

Initialize classifier as some random hyperplane
While there exists a misclassified point x:

Tilt classifier slightly so that it classifies x correctly

(or, is a little closer to classifying x correctly)

End While

"Use your mistakes as your stepping stones"

Also, Frank Rosenblatt was first to implement perceptron

Gave him the title of 'Father of Deep Learning'

He went to Cornell!!!

Limitations of Perceptron

Is a great model to understand the intuition behind the training of a linear classifier: iteratively improve classifier by using misclassified points ©

The training algorithm will never terminate if your training dataset is not linearly separable $\stackrel{\hookrightarrow}{\circ}$

Not Linearly Separable

This data set is not linearly separable because of an <u>outlier</u>

SVM

Classify (+) and (-)

Which Hyperplane?

Optimal Hyperplane

Maximal Margin Classifier

- We want to find a separating hyperplane
- Once we find candidates for the hyperplane, we try to maximize the margin, the normal distance from borderline points
 - Only Support Vectors matter

What if...

Which Decision Boundary is better?

Margins

Use cost function to penalize misclassified points

Choice of cost function makes margin "hard" vs. "soft"

Non-separable training sets

Use linear separation, but admit training errors.

Penalty of error: distance to hyperplane multiplied by error cost C.

Hard Margins

- High penalty value
- The hyperplane can be dictated by a single outlier

Soft Margins

- Used in non-linearly separable datasets
- Allow for misclassification

 Can account for "dirty" boundaries

Misclassification Penalty C

Kernels

- You cannot linearly divide the 2 classes on the xy plane at right
- Introduce new feature, $z = x^2 + y^2$ (radial kernel)
- Map 2 dimensional data onto 3 dimensional data. Now a hyperplane is easy to find. (Imagine slicing a cone!)

Kernels

SVM has **MANY** Hyperparameters

SVM

C

The "penalty cost" for misclassifications (soft margins)

Gamma

How far the influence of a single training example reaches

Kernels

Method of transforming our data set

Finding the Best Hyper Parameters

Curse of Dimensionality

Our search space for the optimal hyper-parameters increases **exponentially** as the number of hyper parameters we are considering increases

Overview

Perceptron	SVM
 A very simple model Will perform poorly if data is not linearly separable 	 More complex model because we have to choose the "penalty cost" associated with misclassifications Can transform feature space by choosing a Kernel

Demo

More Validation Techniques

Leave-P-out Cross Validation (LpO CV)

Let **D** be our whole dataset

Choose a P

For every combination of **P** points in **D**:

Use a train/test split with those P points as test, the rest as train

Leave-P-out: different from K-fold!

Let's say **D** has a size of 4. There are four data points: *a, b, c,* and *d*. K-fold:

- K = 2.
- Each fold has a size of 2: {*a,b*} and {*c,d*}
- So, we only have 2 possible test sets: {a,b} and {c,d}

Leave-P-out:

- P = 2.
- We have 6 possible test sets: {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, and {c,d}

Leave-P-out Cross Validation (LpO CV)

Pros:

- more fine-grained estimate than k-fold
- test the model's generalization ability

Cons:

- Slow!
 - Runtime <u>increases</u> with larger datasets
 - Runtime <u>explodes</u> with larger P

Monte Carlo Cross Validation

- Need to use new, random train/test split each time
 - If you use the same train/test split each time, you're not getting any new information!
- Pros:
 - easy to implement
 - easy to make faster/slower by changing number of iterations
- Cons:
 - random -> train/test splits not guaranteed to be representative of dataset
 - harder to calculate how many iterations you need

The Bootstrap

What if we don't have enough data?

- Use bootstrap datasets to approximate the test error
- Sample with replacement from the original training dataset (with n samples) to generate bootstrap datasets of size n
 - Some data points may appear more than once in the generated data
 - Some data points may not appear
- Estimate of test error = average error among bootstrap datasets

Demo

Coming Up

- Assignment 8: Due midnight of next class
- Next Lecture: Applications of Unsupervised Learning

