Attorney Docket No.: 19496-003020US

PATENT APPLICATION ZINC FINGER PROTEIN COMPOSITIONS

Inventor(s):

Stephen P. Eisenberg A Citizen of the United States of America, 5664 Pennsylvania Pl. Boulder, CO 80303

Casey C. Case A Citizen of the United States of America, 605 Barroilhet Avenue San Mateo, CA 94402

George N. Cox III A Citizen of the United States of America, 678 West Willow Street Louisville, CO 80027

Andrew Jamieson A Citizen of the United Kingdom 2528 Sutter Street San Francisco, CA 94115

Edward J. Rebar A Citizen of the United States of America, 1609 Roger Court El Cerrito CA 94530

Qiang Lui A Citizen of the United States of America 55 Williams Lane Foster City CA 94404

Assignee:

Sangamo Biosciences Point Richmond Tech Center 501 Canal Blvd., Suite A100 Richmond, CA 94804

Entity: SMALL

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor San Francisco, California 94111-3834 (650) 326-2400

Attorney Docket No.: 19496-003020US

ZINC FINGER PROTEIN COMPOSITIONS

5 CROSS-REFERENCES TO RELATED APPLICATIONS

The present application claims priority to U.S. provisional applications 60/126,238, filed March 24, 1999, 60/126,239 filed March 24, 1999, 60/146,596 filed July 30, 1999 and 60/146,615 filed July 30, 1999, all of which are incorporated by reference in their entirety for all purposes.

10

15

20

25

BACKGROUND

Zinc finger proteins (ZFPs) are proteins that can bind to DNA in a sequence-specific manner. Zinc fingers were first identified in the transcription factor TFIIIA from the oocytes of the African clawed toad, Xenopus laevis. An exemplary motif characterizing one class of these protein (C₂H₂ class) is -Cys-(X)₂₋₄-Cys-(X)₁₂-His-(X)₃₋₅-His (where X is any amino acid) (SEQ. ID. No:1). A single finger domain is about 30 amino acids in length, and several structural studies have demonstrated that it contains an alpha helix containing the two invariant histidine residues and two invariant cysteine residues in a beta turn co-ordinated through zinc. To date, over 10,000 zinc finger sequences have been identified in several thousand known or putative transcription factors. Zinc finger domains are involved not only in DNA-recognition, but also in RNA binding and in protein-protein binding. Current estimates are that this class of molecules will constitute about 2% of all human genes.

The x-ray crystal structure of Zif268, a three-finger domain from a murine transcription factor, has been solved in complex with a cognate DNA-sequence and shows that each finger can be superimposed on the next by a periodic rotation. The structure suggests that each finger interacts independently with DNA over 3 base-pair intervals, with side-chains at positions -1, 2, 3 and 6 on each recognition helix making contacts with their respective DNA triplet subsites. The amino terminus of Zif268 is situated at the 3' end of the DNA strand with which it makes most contacts. Some zinc fingers can bind to a fourth base in a target segment. If the strand with which a zinc finger protein makes most contacts is designated the target strand, some zinc finger

osasosa osaso

30

proteins bind to a three base triplet in the target strand and a fourth base on the nontarget strand. The fourth base is complementary to the base immediately 3' of the three base subsite.

The structure of the Zif268-DNA complex also suggested that the DNA sequence specificity of a zinc finger protein might be altered by making amino acid substitutions at the four helix positions (-1, 2, 3 and 6) on each of the zinc finger recognition helices. Phage display experiments using zinc finger combinatorial libraries to test this observation were published in a series of papers in 1994 (Rebar et al., *Science* 263, 671-673 (1994); Jamieson et al., *Biochemistry* 33, 5689-5695 (1994); Choo et al, *PNAS* 91, 11163-11167 (1994)). Combinatorial libraries were constructed with randomized side-chains in either the first or middle finger of Zif268 and then used to select for an altered Zif268 binding site in which the appropriate DNA sub-site was replaced by an altered DNA triplet. Further, correlation between the nature of introduced mutations and the resulting alteration in binding specificity gave rise to a partial set of substitution rules for design of ZFPs with altered binding specificity.

Greisman & Pabo, Science 275, 657-661 (1997) discuss an elaboration of the phage display method in which each finger of a Zif268 was successively randomized and selected for binding to a new triplet sequence. This paper reported selection of ZFPs for a nuclear hormone response element, a p53 target site and a TATA box sequence.

A number of papers have reported attempts to produce ZFPs to modulate particular target sites. For example, Choo et al., *Nature* 372, 645 (1994), report an attempt to design a ZFP that would repress expression of a brc-abl oncogene. The target segment to which the ZFPs would bind was a nine base sequence 5'GCA GAA GCC3' chosen to overlap the junction created by a specific oncogenic translocation fusing the genes encoding brc and abl. The intention was that a ZFP specific to this target site would bind to the oncogene without binding to abl or brc component genes. The authors used phage display to screen a mini-library of variant ZFPs for binding to this target segment. A variant ZFP thus isolated was then reported to repress expression of a stably transfected brc-able construct in a cell line.

Pomerantz et al., *Science* 267, 93-96 (1995) reported an attempt to design a novel DNA binding protein by fusing two fingers from Zif268 with a homeodomain from Oct-1. The hybrid protein was then fused with a transcriptional activator for expression as a chimeric protein. The chimeric protein was reported to bind a target site

20

25

30

5

10

15

10

15

20

25

30

representing a hybrid of the subsites of its two components. The authors then constructed a reporter vector containing a luciferase gene operably linked to a promoter and a hybrid site for the chimeric DNA binding protein in proximity to the promoter. The authors reported that their chimeric DNA binding protein could activate expression of the luciferase gene.

Liu et al., *PNAS* 94, 5525-5530 (1997) report forming a composite zinc finger protein by using a peptide spacer to link two component zinc finger proteins each having three fingers. The composite protein was then further linked to transcriptional activation domain. It was reported that the resulting chimeric protein bound to a target site formed from the target segments bound by the two component zinc finger proteins. It was further reported that the chimeric zinc finger protein could activate transcription of a reporter gene when its target site was inserted into a reporter plasmid in proximity to a promoter operably linked to the reporter.

Choo et al., WO 98/53058, WO98/53059, and WO 98/53060 (1998) discuss selection of zinc finger proteins to bind to a target site within the HIV Tat gene. Choo et al. also discuss selection of a zinc finger protein to bind to a target site encompassing a site of a common mutation in the oncogene ras. The target site within ras was thus constrained by the position of the mutation.

The present application is related to commonly owned copending applications 09/229,007 filed January 12, 1999 and 09/229,037 filed January 12, 1999.

SUMMARY OF THE CLAIMED INVENTION

Tables 1-5 show the amino acid sequences of a large collection of zinc finger proteins and corresponding target sites bound by the proteins. Nucleotide sequences of target sites are shown in Col. 2. Target sites typically have 9 or 10 bases and constitute three target subsites bound by respective zinc finger components of a multifinger protein. Amino acid sequences of zinc finger components are shown in cols. 4, 6 and 8. The amino acids shown occupy positions –1 to +6 of a zinc finger. Table 6 shows consensus sequences for zinc fingers and target subsites bound by the fingers. Col. 1 shows the nucleotides occupying a target subsite. Cols. 2-4 show amino acids occupying positions –1 to +6 of zinc fingers binding to a target subsite.

Accordingly, the invention provides zinc fingers having amino acid sequences and target subsite binding specificies shown in Table 6. As an example, a zinc

10

15

20

25

finger having the amino acid sequence DXSNXXR at positions –1 to +6 has a target subsite GAC. As an other example, a zinc finger having the amino acid sequence RX(D/S)NXXR at positions –1 to +6 has a target subsite of GAG. A zinc finger having an amino acid sequence TXGNXXR at positions –1 to +6 has the target subsite GAT. A zinc finger having the sequence (Q/T)XSNXXR at positions –1 to +6 binds to a target subsite GAT. A zinc finger having an amino acid sequence QXG(S/D)XXR at positions –1 to +6 binds to a target subsite GCA. A zinc finger having an amino acid sequence RXDEXXR binds to a target subsite GCG. A zinc finger having an amino acid sequence QXSDXXR at positions –1 to +6 binds to a target subsite GCT. A zinc finger having an amino acid sequence QX(G/A)HXXR at positions –1 to +6 binds to a target subsite GGC. A zinc finger having an amino acid sequence DXSHXXR binds to a target subsite GGC. A zinc finger having an amino acid sequence RXDHXXR at positions –1 to +6 binds to a target subsite GGC. A zinc finger having an amino acid sequence RXDHXXR at positions –1 to +6 binds to a target subsite GGG. A zinc finger having an amino acid sequence RXDAXXR at positions –1 to +6 binds to a target subsite GGG.

The invention further provides nucleic acid encoding zinc fingers, including all of the zinc fingers described above.

The invention further provides segments of a zinc finger comprising a sequence of seven contiguous amino acids as shown in any of Tables 1-5. The invention also provides nucleic acids encoding any of these segments and zinc fingers comprising the same.

The invention further provides zinc finger proteins comprising first, second and third zinc fingers. The first, second and third zinc fingers comprise respectively first, second and third segments of seven contiguous amino acids as shown in a row of Tables 1-5. The invention further provides nucleic acids encoding such zinc finger proteins.

BRIEF DESCRIPTION OF THE FIGURE

Fig. 1 shows assembly of nucleic acids encoding zinc finger binding proteins.

DEFINITIONS

A zinc finger DNA binding protein is a protein or segment within a larger protein that binds DNA in a sequence-specific manner as a result of stabilization of protein structure through coordination of a zinc ion. The term zinc finger DNA binding protein is often abbreviated as zinc finger protein or ZFP.

10

15

20

25

30

A designed zinc finger protein is a protein not occurring in nature whose design/composition results principally from rational criteria. Rational criteria for design include application of substitution rules and computerized algorithms for processing information in a database storing information of existing ZFP designs and binding data. .

A selected zinc finger protein is a protein not found in nature whose production results primarily from an empirical process such as phage display.

The term naturally-occurring is used to describe an object that can be found in nature as distinct from being artificially produced by man. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring. Generally, the term naturally-occurring refers to an object as present in a non-pathological (undiseased) individual, such as would be typical for the species.

A nucleic acid is operably linked when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it increases the transcription of the coding sequence. Operably linked means that the DNA sequences being linked are typically contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame. However, since enhancers generally function when separated from the promoter by up to several kilobases or more and intronic sequences may be of variable lengths, some polynucleotide elements may be operably linked but not contiguous.

A specific binding affinity between, for example, a ZFP and a specific target site means a binding affinity of at least $1 \times 10^6 \,\mathrm{M}^{-1}$.

The terms "modulating expression" "inhibiting expression" and "activating expression" of a gene refer to the ability of a zinc finger protein to activate or inhibit transcription of a gene. Activation includes prevention of subsequent transcriptional inhibition (i.e., prevention of repression of gene expression) and inhibition includes prevention of subsequent transcriptional activation (i.e., prevention of gene activation). Modulation can be assayed by determining any parameter that is indirectly or directly affected by the expression of the target gene. Such parameters include, e.g., changes in RNA or protein levels, changes in protein activity, changes in product levels, changes in downstream gene expression, changes in reporter gene transcription (luciferase, CAT, beta-galactosidase, GFP (see, e.g., Mistili & Spector, *Nature Biotechnology* 15:961-964

10

15

20

25

30

(1997)); changes in signal transduction, phosphorylation and dephosphorylation, receptor-ligand interactions, second messenger concentrations (e.g., cGMP, cAMP, IP3, and Ca2+), cell growth, neovascularization, *in vitro*, *in vivo*, *and ex vivo*. Such functional effects can be measured by any means known to those skilled in the art, e.g., measurement of RNA or protein levels, measurement of RNA stability, identification of downstream or reporter gene expression, e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, ligand binding assays; changes in intracellular second messengers such as cGMP and inositol triphosphate (IP3); changes in intracellular calcium levels; cytokine release, and the like.

A "regulatory domain" refers to a protein or a protein subsequence that has transcriptional modulation activity. Typically, a regulatory domain is covalently or non-covalently linked to a ZFP to modulate transcription. Alternatively, a ZFP can act alone, without a regulatory domain, or with multiple regulatory domains to modulate transcription.

A D-able subsite within a target site has the motif 5'NNGK3'. A target site containing one or more such motifs is sometimes described as a D-able target site. A zinc finger appropriately designed to bind to a D-able subsite is sometimes referred to as a D-able finger. Likewise a zinc finger protein containing at least one finger designed or selected to bind to a target site including at least one D-able subsite is sometimes referred to as a D-able zinc finger protein.

DETAILED DESCRIPTION

I. General

Tables 1-5 list a collection of nonnaturally occurring zinc finger protein sequences and their corresponding target sites. The first column of each table is an internal reference number. The second column lists a 9 or 10 base target site bound by a three-finger zinc finger protein, with the target sites listed in 5' to 3' orientation. The third column provides SEQ ID NOs for the target site sequences listed in column 2. The fourth, sixth and eighth columns list amino acid residues from the first, second and third fingers, respectively, of a zinc finger protein which recognizes the target sequence listed in the second column. For each finger, seven amino acids, occupying positions –1 to +6 of the finger, are listed. The numbering convention for zinc fingers is defined below. Columns 5, 7 and 9 provide SEQ ID NOs for the amino acid sequences listed in columns

10

15

20

25

4, 6 and 8, respectively. The final column of each table lists the binding affinity (*i.e.*, the K_d in nM) of the zinc finger protein for its target site. Binding affinities are measured as described below.

Each finger binds to a triplet of bases within a corresponding target sequence. The first finger binds to the first triplet starting from the 3' end of a target site, the second finger binds to the second triplet, and the third finger binds the third (*i.e.*, the 5'-most) triplet of the target sequence. For example, the RSDSLTS finger (SEQ ID NO: 646) of SBS# 201 (Table 2) binds to 5'TTG3', the ERSTLTR finger (SEQ ID NO: 851) binds to5'GCC3' and the QRADLRR finger (SEQ ID NO: 1056) binds to 5'GCA3'.

Table 6 lists a collection of consensus sequences for zinc fingers and the target sites bound by such sequences. Conventional one letter amino acid codes are used to designate amino acids occupying consensus positions. The symbol "X" designates a nonconsensus position that can in principle be occupied by any amino acid. In most zinc fingers of the C₂H₂ type, binding specificity is principally conferred by residues -1, +2, +3 and +6. Accordingly, consensus sequence determining binding specificity typically include at least these residues. Consensus sequences are useful for designing zinc fingers to bind to a given target sequence. Residues occupying other positions can be selected based on sequences in Tables 1-5, or other known zinc finger sequences. Alternatively, these positions can be randomized with a plurality of candidate amino acids and screened against one or more target sequences to refine binding specificity or improve binding specificity. In general, the same consensus sequence can be used for design of a zinc finger regardless of the relative position of that finger in a multi-finger zinc finger protein. For example, the sequence RXDNXXR can be used to design a N-terminal, central or C-terminal finger of three finger protein. However, some consensus sequences are most suitable for designing a zinc finger to occupy a particular position in a multifinger protein. For example, the consensus sequence RXDHXXQ is most suitable for designing a C-terminal finger of a three-finger protein.

30 II. Characteristics of Zinc Finger Proteins

Zinc finger proteins are formed from zinc finger components. For example, zinc finger proteins can have one to thirty-seven fingers, commonly having 2, 3, 4, 5 or 6 fingers. A zinc finger protein recognizes and binds to a target site (sometimes

referred to as a target segment) that represents a relatively small subsequence within a target gene. Each component finger of a zinc finger protein can bind to a subsite within the target site. The subsite includes a triplet of three contiguous bases all on the same strand (sometimes referred to as the target strand). The subsite may or may not also include a fourth base on the opposite strand that is the complement of the base immediately 3' of the three contiguous bases on the target strand. In many zinc finger proteins, a zinc finger binds to its triplet subsite substantially independently of other fingers in the same zinc finger protein. Accordingly, the binding specificity of zinc finger protein containing multiple fingers is usually approximately the aggregate of the specificities of its component fingers. For example, if a zinc finger protein is formed from first, second and third fingers that individually bind to triplets XXX, YYY, and ZZZ, the binding specificity of the zinc finger protein is 3'XXX YYY ZZZ5'.

The relative order of fingers in a zinc finger protein from N-terminal to C-terminal determines the relative order of triplets in the 3' to 5' direction in the target. For example, if a zinc finger protein comprises from N-terminal to C-terminal first, second and third fingers that individually bind, respectively, to triplets 5' GAC3', 5'GTA3' and 5"GGC3' then the zinc finger protein binds to the target segment 3'CAGATGCGG5'. If the zinc finger protein comprises the fingers in another order, for example, second finger, first finger, third finger, then the zinc finger protein binds to a target segment comprising a different permutation of triplets, in this example, 3'ATGCAGCGG5' (see Berg & Shi, Science 271, 1081-1086 (1996)). The assessment of binding properties of a zinc finger protein as the aggregate of its component fingers may, in some cases, be influenced by context-dependent interactions of multiple fingers binding in the same protein.

Two or more zinc finger proteins can be linked to have a target specificity that is the aggregate of that of the component zinc finger proteins (see e.g., Kim & Pabo, PNAS 95, 2812-2817 (1998)). For example, a first zinc finger protein having first, second and third component fingers that respectively bind to XXX, YYY and ZZZ can be linked to a second zinc finger protein having first, second and third component fingers with binding specificities, AAA, BBB and CCC. The binding specificity of the combined first and second proteins is thus 3'XXXYYYZZZ___AAABBBCCC5', where the underline indicates a short intervening region (typically 0-5 bases of any type). In this situation, the target site can be viewed as comprising two target segments separated by an intervening segment.

10

15

20

25

30

Linkage can be accomplished using any of the following peptide linkers. T G E K P: (SEQ. ID. No:2) (Liu et al., 1997, supra.); (G4S)n (SEQ. ID. No:3) (Kim et al., PNAS 93, 1156-1160 (1996.); GGRRGGGS; (SEQ. ID. No:4) LRQRDGERP; (SEQ. ID. No:5) LRQKDGGGSERP; (SEQ. ID. No:6) LRQKD(G3S)2 ERP (SEQ. ID. No:7) Alternatively, flexible linkers can be rationally designed using computer programs capable of modeling both DNA-binding sites and the peptides themselves or by phage display methods. In a further variation, noncovalent linkage can be achieved by fusing two zinc finger proteins with domains promoting heterodimer formation of the two zinc finger proteins. For example, one zinc finger protein can be fused with fos and the other with jun (see Barbas et al., WO 95/119431).

Linkage of two zinc finger proteins is advantageous for conferring a unique binding specificity within a mammalian genome. A typical mammalian diploid genome consists of 3 x 10^9 bp. Assuming that the four nucleotides A, C, G, and T are randomly distributed, a given 9 bp sequence is present ~23,000 times. Thus a ZFP recognizing a 9 bp target with absolute specificity would have the potential to bind to ~23,000 sites within the genome. An 18 bp sequence is present once in 3.4×10^{10} bp, or about once in a random DNA sequence whose complexity is ten times that of a mammalian genome.

A component finger of zinc finger protein typically contains about 30 amino acids and has the following motif (N-C):

(SEQ. ID. No:8)

The two invariant histidine residues and two invariant cysteine residues in a single beta turn are co-ordinated through zinc (see, e.g., Berg & Shi, Science 271, 1081-1085 (1996)). The above motif shows a numbering convention that is standard in the field for the region of a zinc finger conferring binding specificity. The amino acid on the left (N-terminal side) of the first invariant His residues is assigned the number +6, and other amino acids further to the left are assigned successively decreasing numbers. The alpha helix begins at residue 1 and extends to the residue following the second conserved histidine. The entire helix is therefore of variable length, between 11 and 13 residues.

The process of designing or selecting a nonnaturally occurring or variant ZFP typically starts with a natural ZFP as a source of framework residues. The process of

design or selection serves to define nonconserved positions (i.e., positions -1 to +6) so as to confer a desired binding specificity. One suitable ZFP is the DNA binding domain of the mouse transcription factor Zif268. The DNA binding domain of this protein has the amino acid sequence:

5 YACPVESCDRRFSRSDELTRHIRIHTGQKP (F1) (SEQ. ID No:9) FQCRICMRNFSRSDHLTTHIRTHTGEKP (F2) (SEQ. ID. No:10) FACDICGRKFARSDERKRHTKIHLRQK (F3) SEQ. ID. No:11) and binds to a target 5' GCG TGG GCG 3' (SEQ ID No:12).

Another suitable natural zinc finger protein as a source of framework

residues is Sp-1. The Sp-1 sequence used for construction of zinc finger proteins
corresponds to amino acids 531 to 624 in the Sp-1 transcription factor. This sequence is
94 amino acids in length. The amino acid sequence of Sp-1 is as follows:
PGKKKQHICHIQGCGKVYGKTSHLRAHLRWHTGERP
FMCTWSYCGKRFTRSDELQRHKRTHTGEKK

15 FACPECPKRFMRSDHLSKHIKTHQNKKG (SEQ. ID. No:13) Sp-1 binds to a target site 5'GGG GCG GGG3' (SEQ ID No: 14).

An alternate form of Sp-1, an Sp-1 consensus sequence, has the following amino acid sequence:

meklrngsgd

20 PGKKKQHACPECGKSFSKSSHLRAHQRTHTGERP YKCPECGKSFSRSDELQRHQRTHTGEKP YKCPECGKSFSRSDHLSKHQRTHQNKKG (SEQ. ID. No:15) (lower case letters are a leader sequence from Shi & Berg, Chemistry and Biology 1, 83-89. (1995). The optimal binding sequence for the Sp-1 consensus sequence is 5'GGGGCGGGG3' (SEQ ID No:

25 16). Other suitable ZFPs are described below.

There are a number of substitution rules that assist rational design of some zinc finger proteins (see Desjarlais & Berg, *PNAS* 90, 2256-2260 (1993); Choo & Klug, *PNAS* 91, 11163-11167 (1994); Desjarlais & Berg, *PNAS* 89, 7345-7349 (1992); Jamieson et al., supra; Choo et al., WO 98/53057, WO 98/53058; WO 98/53059; WO 98/53060). Many of these rules are supported by site-directed mutagenesis of the three-finger domain of the ubiquitous transcription factor, Sp-1 (Desjarlais and Berg, 1992; 1993). One of these rules is that a 5' G in a DNA triplet can be bound by a zinc finger incorporating arginine at position 6 of the recognition helix. Another substitution rule is

10

15

20

25

30

that a G in the middle of a subsite can be recognized by including a histidine residue at position 3 of a zinc finger. A further substitution rule is that asparagine can be incorporated to recognize A in the middle of triplet, aspartic acid, glutamic acid, serine or threonine can be incorporated to recognize C in the middle of triplet, and amino acids with small side chains such as alanine can be incorporated to recognize T in the middle of triplet. A further substitution rule is that the 3' base of triplet subsite can be recognized by incorporating the following amino acids at position -1 of the recognition helix: arginine to recognize G, glutamine to recognize A, glutamic acid (or aspartic acid) to recognize C, and threonine to recognize T. Although these substitution rules are useful in designing zinc finger proteins they do not take into account all possible target sites. Furthermore, the assumption underlying the rules, namely that a particular amino acid in a zinc finger is responsible for binding to a particular base in a subsite is only approximate. Context-dependent interactions between proximate amino acids in a finger or binding of multiple amino acids to a single base or vice versa can cause variation of the binding specificities predicted by the existing substitution rules.

The technique of phage display provides a largely empirical means of generating zinc finger proteins with a desired target specificity (see e.g., Rebar, US 5,789,538; Choo et al., WO 96/06166; Barbas et al., WO 95/19431 and WO 98/543111; Jamieson et al., supra). The method can be used in conjunction with, or as an alternative to rational design. The method involves the generation of diverse libraries of mutagenized zinc finger proteins, followed by the isolation of proteins with desired DNAbinding properties using affinity selection methods. To use this method, the experimenter typically proceeds as follows. First, a gene for a zinc finger protein is mutagenized to introduce diversity into regions important for binding specificity and/or affinity. In a typical application, this is accomplished via randomization of a single finger at positions -1, +2, +3, and +6, and sometimes accessory positions such as +1, +5, +8 and +10. Next, the mutagenized gene is cloned into a phage or phagemid vector as a fusion with gene III of a filamentous phage, which encodes the coat protein pIII. The zinc finger gene is inserted between segments of gene III encoding the membrane export signal peptide and the remainder of pIII, so that the zinc finger protein is expressed as an amino-terminal fusion with pIII or in the mature, processed protein. When using phagemid vectors, the mutagenized zinc finger gene may also be fused to a truncated version of gene III encoding, minimally, the C-terminal region required for assembly of pIII into the phage

particle. The resultant vector library is transformed into *E. coli* and used to produce filamentous phage which express variant zinc finger proteins on their surface as fusions with the coat protein pIII. If a phagemid vector is used, then the this step requires superinfection with helper phage. The phage library is then incubated with target DNA site, and affinity selection methods are used to isolate phage which bind target with high affinity from bulk phage. Typically, the DNA target is immobilized on a solid support, which is then washed under conditions sufficient to remove all but the tightest binding phage. After washing, any phage remaining on the support are recovered via elution under conditions which disrupt zinc finger – DNA binding. Recovered phage are used to infect fresh *E. coli.*, which is then amplified and used to produce a new batch of phage particles. Selection and amplification are then repeated as many times as is necessary to enrich the phage pool for tight binders such that these may be identified using sequencing and/or screening methods. Although the method is illustrated for pIII fusions, analogous principles can be used to screen ZFP variants as pVIII fusions.

In certain embodiments, the sequence bound by a particular zinc finger protein is determined by conducting binding reactions (see, e.g., conditions for determination of K_d , infra) between the protein and a pool of randomized double-stranded oligonucleotide sequences. The binding reaction is analyzed by an electrophoretic mobility shift assay (EMSA), in which protein-DNA complexes undergo retarded migration in a gel and can be separated from unbound nucleic acid. Oligonucleotides which have bound the finger are purified from the gel and amplified, for example, by a polymerase chain reaction. The selection (i.e. binding reaction and EMSA analysis) is then repeated as many times as desired, with the selected oligonucleotide sequences. In this way, the binding specificity of a zinc finger protein having a particular amino acid sequence is determined.

Zinc finger proteins are often expressed with a heterologous domain as fusion proteins. Common domains for addition to the ZFP include, e.g., transcription factor domains (activators, repressors, co-activators, co-repressors), silencers, oncogenes (e.g., myc, jun, fos, myb, max, mad, rel, ets, bcl, myb, mos family members etc.); DNA repair enzymes and their associated factors and modifiers; DNA rearrangement enzymes and their associated factors and modifiers; chromatin associated proteins and their modifiers (e.g. kinases, acetylases and deacetylases); and DNA modifying enzymes (e.g., methyltransferases, topoisomerases, helicases, ligases, kinases, phosphatases,

polymerases, endonucleases) and their associated factors and modifiers. A preferred domain for fusing with a ZFP when the ZFP is to be used for repressing expression of a target gene is a KRAB repression domain from the human KOX-1 protein (Thiesen et al., *New Biologist* 2, 363-374 (1990); Margolin et al., *Proc. Natl. Acad. Sci. USA* 91, 4509-4513 (1994); Pengue et al., *Nucl. Acids Res.* 22:2908-2914 (1994); Witzgall et al., *Proc. Natl. Acad. Sci. USA* 91, 4514-4518 (1994). Preferred domains for achieving activation include the HSV VP16 activation domain (see, e.g., Hagmann et al., *J. Virol.* 71, 5952-5962 (1997)) nuclear hormone receptors (see, e.g., Torchia et al., *Curr. Opin. Cell. Biol.* 10:373-383 (1998)); the p65 subunit of nuclear factor kappa B (Bitko & Barik, *J. Virol.* 72:5610-5618 (1998)and Doyle & Hunt, *Neuroreport* 8:2937-2942 (1997)); Liu et al., *Cancer Gene Ther.* 5:3-28 (1998)), or artificial chimeric functional domains such as VP64 (Seifpal et al., *EMBO J.* 11, 4961-4968 (1992)).

An important factor in the administration of polypeptide compounds, such as the ZFPs, is ensuring that the polypeptide has the ability to traverse the plasma membrane of a cell, or the membrane of an intra-cellular compartment such as the nucleus. Cellular membranes are composed of lipid-protein bilayers that are freely permeable to small, nonionic lipophilic compounds and are inherently impermeable to polar compounds, macromolecules, and therapeutic or diagnostic agents. However, proteins and other compounds such as liposomes have been described, which have the ability to translocate polypeptides such as ZFPs across a cell membrane.

For example, "membrane translocation polypeptides" have amphiphilic or hydrophobic amino acid subsequences that have the ability to act as membrane-translocating carriers. In one embodiment, homeodomain proteins have the ability to translocate across cell membranes. The shortest internalizable peptide of a homeodomain protein, Antennapedia, was found to be the third helix of the protein, from amino acid position 43 to 58 (see, e.g., Prochiantz, Current Opinion in Neurobiology 6:629-634 (1996)). Another subsequence, the h (hydrophobic) domain of signal peptides, was found to have similar cell membrane translocation characteristics (see, e.g., Lin et al., J. Biol. Chem. 270:1 4255-14258 (1995)).

Examples of peptide sequences which can be linked to a ZFP of the invention, for facilitating uptake of ZFP into cells, include, but are not limited to: an 11 animo acid peptide of the tat protein of HIV; a 20 residue peptide sequence which corresponds to amino acids 84-103 of the p16 protein (see Fahraeus et al., Current

10

15

20

25

30

Biology 6:84 (1996)); the third helix of the 60-amino acid long homeodomain of Antennapedia (Derossi et al., J. Biol. Chem. 269:10444 (1994)); the h region of a signal peptide such as the Kaposi fibroblast growth factor (K-FGF) h region (Lin et al., supra); or the VP22 translocation domain from HSV (Elliot & O'Hare, Cell 88:223-233 (1997)).

Other suitable chemical moieties that provide enhanced cellular uptake may also be chemically linked to ZFPs.

Toxin molecules also have the ability to transport polypeptides across cell membranes. Often, such molecules are composed of at least two parts (called "binary toxins"): a translocation or binding domain or polypeptide and a separate toxin domain or polypeptide. Typically, the translocation domain or polypeptide binds to a cellular receptor, and then the toxin is transported into the cell. Several bacterial toxins, including *Clostridium perfringens* iota toxin, diphtheria toxin (DT), *Pseudomonas* exotoxin A (PE), pertussis toxin (PT), *Bacillus anthracis* toxin, and pertussis adenylate cyclase (CYA), have been used in attempts to deliver peptides to the cell cytosol as internal or aminoterminal fusions (Arora *et al.*, *J. Biol. Chem.*, 268:3334-3341 (1993); Perelle *et al.*, *Infect. Immun.*, 61:5147-5156 (1993); Stenmark *et al.*, *J. Cell Biol.* 113:1025-1032 (1991); Donnelly *et al.*, *PNAS* 90:3530-3534 (1993); Carbonetti *et al.*, *Abstr. Annu. Meet. Am. Soc. Microbiol.* 95:295 (1995); Sebo *et al.*, *Infect. Immun.* 63:3851-3857 (1995); Klimpel *et al.*, *PNAS U.S.A.* 89:10277-10281 (1992); and Novak *et al.*, *J. Biol. Chem.* 267:17186-17193 1992)).

Such subsequences can be used to translocate ZFPs across a cell membrane. ZFPs can be conveniently fused to or derivatized with such sequences. Typically, the translocation sequence is provided as part of a fusion protein. Optionally, a linker can be used to link the ZFP and the translocation sequence. Any suitable linker can be used, e.g., a peptide linker.

Production of ZFPs

ZFP polypeptides and nucleic acids encoding the same can be made using routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook et al., *Molecular Cloning, A Laboratory Manual* (2nd ed. 1989); Kriegler, *Gene Transfer and Expression: A Laboratory Manual* (1990); and *Current Protocols in Molecular Biology* (Ausubel et al., eds., 1994)). In addition, nucleic acids less than about 100 bases can be custom ordered

from any of a variety of commercial sources, such as The Midland Certified Reagent Company (mcrc@oligos.com), The Great American Gene Company (http://www.genco.com), ExpressGen Inc. (www.expressgen.com), Operon Technologies Inc. (Alameda, CA). Similarly, peptides can be custom ordered from any of a variety of sources, such as PeptidoGenic (pkim@ccnet.com), HTI Bio-products, inc. (http://www.htibio.com), BMA Biomedicals Ltd (U.K.), Bio.Synthesis, Inc.

Oligonucleotides can be chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, *Tetrahedron Letts*. 22:1859-1862 (1981), using an automated synthesizer, as described in Van Devanter et al., *Nucleic Acids Res*. 12:6159-6168 (1984). Purification of oligonucleotides is by either denaturing polyacrylamide gel electrophoresis or by reverse phase HPLC. The sequence of the cloned genes and synthetic oligonucleotides can be verified after cloning using, e.g., the chain termination method for sequencing double-stranded templates of Wallace et al., *Gene* 16:21-26 (1981).

Two alternative methods are typically used to create the coding sequences required to express newly designed DNA-binding peptides. One protocol is a PCR-based assembly procedure that utilizes six overlapping oligonucleotides (Fig. 1). Three oligonucleotides (oligos 1, 3, and 5 in Figure 1) correspond to "universal" sequences that encode portions of the DNA-binding domain between the recognition helices. These oligonucleotides typically remain constant for all zinc finger constructs. The other three "specific" oligonucleotides (oligos 2, 4, and 6 in Fig. 1) are designed to encode the recognition helices. These oligonucleotides contain substitutions primarily at positions -1, 2, 3 and 6 on the recognition helices making them specific for each of the different DNA-binding domains.

The PCR synthesis is carried out in two steps. First, a double stranded DNA template is created by combining the six oligonucleotides (three universal, three specific) in a four cycle PCR reaction with a low temperature annealing step, thereby annealing the oligonucleotides to form a DNA "scaffold." The gaps in the scaffold are filled in by high-fidelity thermostable polymerase, the combination of Taq and Pfu polymerases also suffices. In the second phase of construction, the zinc finger template is amplified by external primers designed to incorporate restriction sites at either end for cloning into a shuttle vector or directly into an expression vector.

10

15

20

An alternative method of cloning the newly designed DNA-binding proteins relies on annealing complementary oligonucleotides encoding the specific regions of the desired ZFP. This particular application requires that the oligonucleotides be phosphorylated prior to the final ligation step. This is usually performed before setting up the annealing reactions. In brief, the "universal" oligonucleotides encoding the constant regions of the proteins (oligos 1, 2 and 3 of above) are annealed with their complementary oligonucleotides. Additionally, the "specific" oligonucleotides encoding the finger recognition helices are annealed with their respective complementary oligonucleotides. These complementary oligos are designed to fill in the region which was previously filled in by polymerase in the above-mentioned protocol. The complementary oligos to the common oligos 1 and finger 3 are engineered to leave overhanging sequences specific for the restriction sites used in cloning into the vector of choice in the following step. The second assembly protocol differs from the initial protocol in the following aspects: the "scaffold" encoding the newly designed ZFP is composed entirely of synthetic DNA thereby eliminating the polymerase fill-in step, additionally the fragment to be cloned into the vector does not require amplification. Lastly, the design of leaving sequence-specific overhangs eliminates the need for restriction enzyme digests of the inserting fragment. Alternatively, changes to ZFP recognition helices can be created using conventional site-directed mutagenesis methods.

Both assembly methods require that the resulting fragment encoding the newly designed ZFP be ligated into a vector. Ultimately, the ZFP-encoding sequence is cloned into an expression vector. Expression vectors that are commonly utilized include, but are not limited to, a modified pMAL-c2 bacterial expression vector (New England BioLabs or an eukaryotic expression vector, pcDNA (Promega). The final constructs are verified by sequence analysis.

Any suitable method of protein purification known to those of skill in the art can be used to purify ZFPs of the invention (see, Ausubel, supra, Sambrook, supra). In addition, any suitable host can be used for expression, e.g., bacterial cells, insect cells, yeast cells, mammalian cells, and the like.

Expression of a zinc finger protein fused to a maltose binding protein (MBP-ZFP) in bacterial strain JM109 allows for straightforward purification through an amylose column (NEB). High expression levels of the zinc finger chimeric protein can be obtained by induction with IPTG since the MBP-ZFP fusion in the pMal-c2 expression

30

25

10

15

20

25

30

plasmid is under the control of the tac promoter (NEB). Bacteria containing the MBP-ZFP fusion plasmids are inoculated into 2xYT medium containing 10 μ M ZnCl2, 0.02% glucose, plus 50 μ g/ml ampicillin and shaken at 37°C. At mid-exponential growth IPTG is added to 0.3 mM and the cultures are allowed to shake. After 3 hours the bacteria are harvested by centrifugation, disrupted by sonication or by passage through a french pressure cell or through the use of lysozyme, and insoluble material is removed by centrifugation. The MBP-ZFP proteins are captured on an amylose-bound resin, washed extensively with buffer containing 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 5 mM DTT and 50 μ M ZnCl2, then eluted with maltose in essentially the same buffer (purification is based on a standard protocol from NEB). Purified proteins are quantitated and stored for biochemical analysis.

The dissociation constants of the purified proteins, e.g., Kd, are typically characterized via electrophoretic mobility shift assays (EMSA) (Buratowski & Chodosh, in Current Protocols in Molecular Biology pp. 12.2.1-12.2.7 (Ausubel ed., 1996)). Affinity is measured by titrating purified protein against a fixed amount of labeled double-stranded oligonucleotide target. The target typically comprises the natural binding site sequence flanked by the 3 bp found in the natural sequence and additional, constant flanking sequences. The natural binding site is typically 9 bp for a three-finger protein and 2 x 9 bp + intervening bases for a six finger ZFP. The annealed oligonucleotide targets possess a 1 base 5' overhang which allows for efficient labeling of the target with T4 phage polynucleotide kinase. For the assay the target is added at a concentration of 1 nM or lower (the actual concentration is kept at least 10-fold lower than the expected dissociation constant), purified ZFPs are added at various concentrations, and the reaction is allowed to equilibrate for at least 45 min. In addition the reaction mixture also contains 10 mM Tris (pH 7.5), 100 mM KCl, 1 mM MgCl2, 0.1 mM ZnCl2, 5 mM DTT, 10% glycerol, 0.02% BSA. (NB: in earlier assays poly d(IC) was also added at 10-100 μg/μl.)

The equilibrated reactions are loaded onto a 10% polyacrylamide gel, which has been pre-run for 45 min in Tris/glycine buffer, then bound and unbound labeled target is resolved by electrophoresis at 150V. (alternatively, 10-20% gradient Tris-HCl gels, containing a 4% polyacrylamide stacker, can be used) The dried gels are visualized by autoradiography or phosphorimaging and the apparent Kd is determined by calculating the protein concentration that gives half-maximal binding.

The assays can also include determining active fractions in the protein preparations. Active fractions are determined by stoichiometric gel shifts where proteins are titrated against a high concentration of target DNA. Titrations are done at 100, 50, and 25% of target (usually at micromolar levels).

III. Applications of Designed ZFPs

ZPFs that fund to a particular target gene, and the nucleic acids encoding them, can be used for a variety of applications. These applications include therapeutic methods in which a ZFP or a nucleic acid encoding it is administered to a subject and used to modulate the expression of a target gene within the subject (see copending application Townsend & Townsend & Crew Attorney Docket 019496-002200, filed January 12, 1999). The modulation can be in the form of repression, for example, when the target gene resides in a pathological infecting microrganisms, or in an endogenous gene of the patient, such as an oncogene or viral receptor, that is contributing to a disease state. Alternatively, the modulation can be in the form of activation when activation of expression or increased expression of an endogenous cellular gene can ameliorate a diseased state. For such applications, ZFPs or more typically, nucleic acids encoding them are formulated with a pharmaceutically acceptable carrier as a pharmaceutical composition.

Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. (*see, e.g., Remington's Pharmaceutical Sciences*, 17th ed. 1985)). The ZFPs, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. Formulations suitable for parenteral administration, such as, for example, by intravenous, intramuscular, intradermal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. Compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or

10

15

20

25

30

intrathecally. The formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials. Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.

The dose administered to a patient should be sufficient to effect a beneficial therapeutic response in the patient over time. The dose is determined by the efficacy and K_d of the particular ZFP employed, the target cell, and the condition of the patient, as well as the body weight or surface area of the patient to be treated. The size of the dose also is determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular patient

In other applications, ZFPs are used in diagnostic methods for sequence specific detection of target nucleic acid in a sample. For example, ZFPs can be used to detect variant alleles associated with a disease or phenotype in patient samples. As an example, ZFPs can be used to detect the presence of particular mRNA species or cDNA in a complex mixtures of mRNAs or cDNAs. As a further example, ZFPs can be used to quantify copy number of a gene in a sample. For example, detection of loss of one copy of a p53 gene in a clinical sample is an indicator of susceptibility to cancer. In a further example, ZFPs are used to detect the presence of pathological microorganisms in clinical samples. This is achieved by using one or more ZFPs specific to genes within the microorganism to be detected. A suitable format for performing diagnostic assays employs ZFPs linked to a domain that allows immobilization of the ZFP on an ELISA plate. The immobilized ZFP is contacted with a sample suspected of containing a target nucleic acid under conditions in which binding can occur. Typically, nucleic acids in the sample are labeled (e.g., in the course of PCR amplification). Alternatively, unlabelled probes can be detected using a second labelled probe. After washing, bound-labelled nucleic acids are detected.

ZFPs also can be used for assays to determine the phenotype and function of gene expression. Current methodologies for determination of gene function rely primarily upon either overexpression or removing (knocking out completely) the gene of interest from its natural biological setting and observing the effects. The phenotypic effects observed indicate the role of the gene in the biological system.

10

15

One advantage of ZFP-mediated regulation of a gene relative to conventional knockout analysis is that expression of the ZFP can be placed under small molecule control. By controlling expression levels of the ZFPs, one can in turn control the expression levels of a gene regulated by the ZFP to determine what degree of repression or stimulation of expression is required to achieve a given phenotypic or biochemical effect. This approach has particular value for drug development. By putting the ZFP under small molecule control, problems of embryonic lethality and developmental compensation can be avoided by switching on the ZFP repressor at a later stage in mouse development and observing the effects in the adult animal. Transgenic mice having target genes regulated by a ZFP can be produced by integration of the nucleic acid encoding the ZFP at any site *in trans* to the target gene. Accordingly, homologous recombination is not required for integration of the nucleic acid. Further, because the ZFP is trans-dominant, only one chromosomal copy is needed and therefore functional knock-out animals can be produced without backcrossing.

All references cited above are hereby incorporated by reference in their entirety for all purposes.

		SEQ		SEQ		SEQ		SEQ	<u>Kd</u>
SBS#	TARGET	ID	<u>F1</u>	ID	<u>F2</u>	ID	<u>F3</u>	ID	<u>(nM)</u>
249	GCGGGGGCG	17	RSDELTR	123	RSDHLSR	229	RSDELRR	335	20
250	GCGGGGGCG	18	RSDELTR	124	RSDHLSR	230	RSDTLKK	336	70
251	GCGGAGGCG	19	RSDELTR	125	RSDNLTR	231	RSDELRR	337	27.5
252	GCGGCCGCG	20	RSDELTR	126	DRSSLTR	232	RSDELRR	338	100
253	GGATGGGGG	21	RSDHLAR	127	RSDHLTT	233	QRAHLAR	339	0.75
256	GCGGGGTCC	22	ERGDLTT	128	RSDHLSR	234	RSDELRR	340	800
258	GCGGGCGGG	23	RSDHLTR	129	ERGHLTR	235	RSDELRR	341	15
259	GCAGAGGAG	24	RSDNLAR	130	RSDNLAR	236	QSGSLTR	342	250
261	GAGGTGGCC	25	ERGTLAR	131	RSDALSR	237	RSDNLSR	343	0.5
262	GCGGGGGCT	26	QSSDLQR	132	RSDHLSR	238	RSDELRR	344	20
263	GCGGGGGCT	27	QSSDLQR	133	RSDHLSR	239	RSDTLKK	345	1
264	GTGGCTGCC	28	DRSSLTR	134	QSSDLQR	240	RSDALAR	346	27
265	GTGGCTGCC	29	ERGTLAR	135	QSSDLQR	241	RSDALAR	347	600
269	GGGGCCGGG	30	RSDHLTR	136	DRSSLTR	242	RSDHLTR	348	5
270	GGGGCCGGG	31	RSDHLTR	137	ERGTLAR	243	RSDHLTR	349	52.5
272	GCAGGGGCC	32	DRSSLTR	138	RSDHLSR	244	QSGSLTR	350	20
337	TGCGGGGCAA	33	RSADLTR	139	RSDHLTR	245	ERQHLAT	351	24
338	TGCGGGGCAA	34	RSADLTR	140	RSDHLTR	246	ERDHLRT	352	8
339	TGCGGGGCAA	35	RSADLTR	141	RSDHLTT	247	ERQHLAT	353	64
340	TGCGGGGCAA	36	RSADLTR	142	RSDHLTT	248	ERDHLRT	354	48
341	TGCGGGGCAA	37	RSADLTR	143	RGDHLKD	249	ERQHLAT	355	1000
342	TGCGGGGCAA	38	RSADLTR	144	RGDHLKD	250	ERDHLRT	356	1000
343	TGCGGGGCAA	39	QSGSLTR	14 5	RSDHLTR	251	ERQHLAT	357	8
344	TGCGGGGCAA	40	QSGSLTR	146	RSDHLTR	252	ERDHLRT	358	6
345	TGCGGGGCAA	41	QSGSLTR	147	RSDHLTT	253	ERQHLAT	359	96
346	TGCGGGGCAA	42	QSGSLTR	148	RSDHLTT	254	ERDHLRT	360	64
347	TGCGGGGCAA	43	QSGSLTR	149	RGDHLKD	255	ERQHLAT	361	1000

				2	2		
348	TGCGGGGCAA	44	QSGSLTR	150	RGDHLKD 256	ERDHLRT 362	1000
367	GGGGGCGGG	45	RSDHLTR	151	DSGHLTR 257	RSDHLQR 363	60
368	GAGGGGGCG	46	RSDELTR	152	RSDHLTR 258	RSDNLTR 364	3.5
369	GTAGTTGTG	47	RSDALTR	153	TGGSLAR 259	QSGSLTR 365	95
370	GTAGTTGTG	48	RSDALTR	154	NRATLAR 260	QSASLTR 366	300
371	GTAGTTGTG	49	RSDALTR	155	NRATLAR 261	QSGSLTR 367	175
372	GTAGTTGTG	50	RSDSLLR	156	TGGSLAR 262	QSASLTR 368	3 112.5
373	GTAGTTGTG	51	RSDSLLR	157	NRATLAR 263	QSASLTR 369	320
374	GCTGAGGAA	52	QRSNLVR	158	RSDNLTR 264	TSSELQR 370	3.3
375	GAGGAAGAT	53	QQSNLAR	159	QSGNLQR 265	RSDNLTR 371	. 85
401	GTAGTTGTG	54	RSDALTR	160	TGGSLAR 266	QSASLTR 372	80
403	GTAGTTGTG	55	RSDSLLR	161	NRATLAR 267	QSGSLTR 373	750
421	GTAGTTGTG	56	DSDSLLR	162	TGGSLAR 268	QSGSLTR 374	500
422	GTAGTTGTG	57	RSDSLLR	163	TGGSLTR 269	QSGSLTR 375	200
423	GTAGTTGTG	58	RSDALTR	164	TGGSLAR 270	QRSALAR 376	1000
424	GATGCTGAG	59	RSDNLTR	165	TSSELQR 271	TSANLSR 377	100
425	GATGCTGAG	60	RSDNLTR	166	QSSDLQR 272	QQSNLAR 378	25
426	GATGCTGAG	61	RSDNLTR	167	QSSDLQR 273	TSANLSR 379	5.5
427	GCTGAGGAA	62	QRSNLVR	168	RSDNLTR 274	QSSDLQR 380	1
428	GAAGATGAC	63	DSSNLTR	169	QQSNLAR 275	QRSNLVR 381	120
429	GAAGATGAC	64	DSSNLTR	170	TSANLSR 276	QRSNLVR 382	50
430	GATGACGAC	65	EKANLTR	171	DSSNLTR 277	QQSNLAR 383	250
431	GACGACGGC	66	DSGHLTR	172	DRSNLER 278	DSSNLTR 384	100
432	GACGACGGC	67	DSGHLTR	173	DHANLAR 279	DSSNLTR 385	1000
433	GACGACGGC	68	DSGNLTR	174	DHANLAR 280	DSSNLTR 386	1000
434	GACGGCGTA	69	QSASLTR	175	DSGHLTR 281	EKANLTR 387	152.5
435	GACGGCGTA	70	QSASLTR	176	DSGHLTR 282	ERGNLTR 388	150
436	GACGGCGTA	71	QRSALAR	177	DSGHLTR 283	EKANLTR 389	95
437	GACGGCGTA	72	QRSALAR	178	DSGHLTR 284	ERGNLTR 390	117.5
438	GAGGGGGCG	73	RSDELTR	179	RSDHLTT 285	RSDNLTR 391	62.5
440	GCCGAGGTGC	74	RSDSLLR	180	RSKNLQR 286	ERGTLAR 392	40
441	GGTGGAGTCA	75	DSGSLTR	181	QSGHLQR 287	TSGHLTR 393	250
445	GTCGCAGTGA	76	RSDSLRR	182	QSSDLQK 288	DSGSLTR 394	1000

450	GACTTGGTGC 77	RSDTLAR	183	RGDALTS 289	DRSNLTR 395	130
453	GGTGGAGTCA 78	DRSALAR	184	QSGHLQR 290	DSSKLSR 396	150
461	GAGTACTGTA 79	QRSHLTT	185	DRSNLRT 291	RSDNLAR 397	120
463	GTGGAGGAGA 80	RSDNLTR	186	RSDNLAR 292	RSDALAR 398	0.5
464	GTGGAGGAGA 81	RSDNLTR	187	RSDNLAR 293	RSDSLAR 399	0.4
466	CAGGCTGCGC 82	RSDDLTR	188	QSSDLQR 294	RSDNLRE 400	65
467	CAGGCTGCGC 83	RSDELTR	189	QSSDLQR 295	RGDHLKD 401	800
468	CAGGCTGCGC 84	RSDDLTR	190	QSSDLQR 296	RGDHLKD 402	42
469	GAAGAGGTCT 85	DRSALAR	191	RSDNLAR 297	QSGNLTR 403	13.5
472	GAGGTCTGGA 86	RSSHLTT	192	DRSALAR 298	RSDNLAR 404	80
476	GGAGAGGATG 87	TTSNLRR	193	RSDNLAR 299	QSDHLTR 405	80
477	GGAGAGGATG 88	TTSNLRR	194	RSDNLAR 300	QRAHLAR 406	100
478	GGAGAGGATG 89	TTSNLRR	195	RSDNLAR 301	QSGHLRR 407	60
479	GTGGCGGACC 90	DSSNLTR	196	RSDELQR 302	RSDALAR 408	8.5
480	GTGGCGGACC 91	DSSNLTR	197	RADTLRR 303	RSDALAR 409	. 5
483	GAGGGCGAAG 92	QSANLAR	198	ESSKLKR 304	RSDNLAR 410	130
484	GAGGGCGAAG 93	QSDNLAR	199	ESSKLKR 305	RSDNLAR 411	1000
485	GGAGAGGTTT 94	QSSALAR	200	RSDNLAR 306	QRAHLAR 412	110
487	GGAGAGGTTT 95	NRATLAR	201	RSDNLAR 307	QSGHLAR 413	76.9
488	TGGTAGGGGG 96	RSDHLAR	202	RSDNLTT 308	RSDHLTT 414	35
490	TAGGGGGTGG 97	RSDSLLR	203	RSDHLTR 309	RSDNLTT 415	1.5
503	GCCGAGGTGC 98	RSDSLLR	204	RSDNLAR 310	ERGTLAR 416	50
504	GCCGAGGTGC 99	RSDSLLR	205	RSDNLAR 311	DRSDLTR 417	25
505	GCCGAGGTGC 10	0 RSDSLLR	206	RSDNLAR 312	DCRDLAR 418	65
526	GCGGGCGGC 10	1 RSDHLTR	207	ERGHLTR 313	RSDTLKK 419	8
543	GAGTGTGTGA 10	2 RSDLLQR	208	MSHHLKE 314	RSDHLSR 420	50
544	GAGTGTGTGA 10	3 RSDSLLR	209	MSHHLKE 315	RSDNLAR 421	125
545	GAGTGTGTGA 10	4 RKDSLVR	210	TSDHLAS 316	RSDNLTR 422	32
546	GAGTGTGTGA 10	5 RSDLLQR	211	MSHHLKT 317	RLDGLRT 423	500
547	GAGTGTGTGA 10	6 RKDSLVR	212	TSGHLTS 318	RSDNLTR 424	500
548	GAGTGTGTGA 10	7 RSSLLQR	213	MSHHLKT 319	RSDHLSR 425	500
549	GAGTGTGTGA 10	8 RSSLLQR	214	MSHHLKE 320	RSDHLSR 426	500
550	GAGTGTGTGA 10	9 RKDSLVR	215	TKDHLAS 321	RSDNLTR 427	20

-	Total Just 8 18 Heary Just Wall Hall 18 9	
	Ĩ	
	10.7	-
	Į.	
-	li de	
į	~	=
	ĭ	=
	ì	=
2	:	
	=	=
1	i	=
	real Hosp	
	1	_
1		=
į		=

551	GAGTGTGTGA	110	RSDLLQR	216	MSHHLKT 322	RSDHLSR	428	50
552	GAGTGTGTGA	111	RKDSLVR	217	MSHHLKT 323	RSDNLTR	429	31
553	GAGTGTGTGA	112	RSDSLLR	218	MSHHLKE 324	RSDNLTR	430	125
554	GAGTGTGTGA	113	RKDSLVR	219	TSDHLAS 325	RSDNLAR	431	62.5
558	TGCGGGGCA	114	QSGDLTR	220	RSDHLTR 326	DSGHLAS	432	21
559	GAGTGTGTGA	115	RSDSLLR	221	TSDHLAS 327	RSDNLAR	433	1000
560	GAGTGTGTGA	116	RSSLLQR	222	MSHHLKT 328	RSDHLSR	434	500
561	GAGTGTGTGA	117	RKDSLVR	223	MSHHLKE 329	RSDNLAR	435	1000
562	GAGTGTGTGA	118	RSDSLLR	224	TSGHLTS 330	RSDNLAR	436	1000
565	GATGCTGAG	119	RSDNLTR	225	TSSELQR 331	QQSNLAR	437	100
567	GAAGATGAC	120	EKANLTR	226	TSANLSR 332	QRSNLVR	438	47.5
568	GATGACGAC	121	EKANLTR	227	DSSNLTR 333	TSANLSR	439	300
569	GTAGTTGTG	122	RSDSLLR	228	TGGSLAR 334	QRSALTR	440	52

		SEC	<u>)</u>	SEO		SEQ		SEQ	<u>Kd</u>
SBS#	TARGET	ID	F1	ID	F2	ID	<u>F3</u>	ID	<u>(nM)</u>
201	GCAGCCTTG	441	RSDSLTS	646	ERSTLTR	851	QRADLRR	1056	1000
202	GCAGCCTTG	442	RSDSLTS	647	ERSTLTR	852	QRADLAR	1057	1000
203	GCAGCCTTG	443	RSDSLTS	648	ERSTLTR	853	QRATLRR	1058	1000
204	GCAGCCTTG	444	RSDSLTS	649	ERSTLTR	854	QRATLAR	1059	1000
205	GAGGTAGAA	445	QSANLAR	650	QSATLAR	855	RSDNLSR	1060	80
206	GAGGTAGAA	446	QSANLAR	651	QSAVLAR	856	RSDNLSR	1061	1000
207	GAGTGGTTA	447	QRASLAS	652	RSDHLTT	857	RSDNLAR	1062	70
208	TAGGTCTTA	448	QRASLAS	653	DRSALAR	858	RSDNLAS	1063	1000
209	GGAGTGGTT	449	QSSALAR	654	RSDALAR	859	QRAHLAR	1064	35
210	GGAGTGGTT	450	NRDTLAR	655	RSDALAR	860	QRAHLAR	1065	65
211	GGAGTGGTT	451	QSSALAR	656	RSDALAS	861	QRAHLAR	1066	140
212	GGAGTGGTT	452	NRDTLAR	657	RSDALAS	862	QRAHLAR	1067	400
213	GTTGCTGGA	453	QRAHLAR	658	QSSTLAR	863	QSSALAR	1068	1000
214	GTTGCTGGA	454	QRAHLAR	659	QSSTLAR	864	NRDTLAR	1069	1000
215	GAAGTCTGT	455	NRDHLMV	660	DRSALAR	865	QSANLSR	1070	1000
216	GAAGTCTGT	456	NRDHLTT	661	DRSALAR	866	QSANLSR	1071	1000
217	GAGGTCGTA	457	QRSALAR	662	DRSALAR	867	RSDNLAR	1072	40
219	GATGTTGAT	458	QQSNLAR	663	NRDTLAR	868	NRDNLSR	1073	1000
220	GATGTTGAT	459	QQSNLAR	664	NRDTLAR	869	QQSNLSR	1074	1000
221	GATGAGTAC	460	DRSNLRT	665	RSDNLAR	870	NRDNLAR	1075	1000
222	GATGAGTAC	461	ERSNLRT	666	RSDNLAR	871	NRDNLAR	1076	1000
223	GATGAGTAC	462	DRSNLRT	667	RSDNLAR	872	QQSNLAR	1077	105
224	GATGAGTAC	463	ERSNLRT	668	RSDNLAR	873	QQSNLAR :	1078	1000
225	TGGGAGGTC	464	DRSALAR	669	RSDNLAR 8	874	RSDHLTT:	1079	6
226	GCAGCCTTG	465	RGDALTS	670	ERGTLAR 8	875	QSGSLTR :	1080	1000
227	GCAGCCTTG	466	RGDALTV	671	ERGTLAR 8	876	QSGSLTR :	1081	1000
228	GCAGCCTTG	467	RGDALTM	672	ERGTLAR 8	377	QSGSLTR :	1082	1000
229	GCAGCCTTG	468	RGDALTS	673	ERGTLAR 8	378	RSDELTR 3	1083	1000

				26		
230	GCAGCCTTG	469	RGDALTV 674	ERGTLAR 879	RSDELTR 1084	1000
231	GCAGCCTTG	470	RGDALTM 675	ERGTLAR 880	RSDELTR 1085	1000
232	GGTGTGGTG	471	RSDALTR 676	RSDALAR 881	NRSHLAR 1086	50
233	GGTGTGGTG	472	RSDALTR 677	RSDALAR 882	QASHLAR 1087	100
235	GTAGAGGTG	473	RSDALTR 678	RSDNLAR 883	QRGALAR 1088	80
236	GGGGAGGG	474	RSDHLAR 679	RSDNLAR 884	RSDHLSR 1089	0.3
237	GGGGAGGCC	475	ERGTLAR 680	RSDNLAR 885	RSDHLSR 1090	0.3
238	GGGGAGGCC	476	ERGTLAR 681	RSDNLQR 886	RSDHLSR 1091	0.8
239	GGCGGGGAG	477	RSDNLTR 682	RSDHLTR 887	DRSHLAR 1092	0.4
240	GCAGGGGAG	478	RSDNLTR 683	RSDHLSR 888	QSGSLTR 1093	1
242	GGGGGTGCT	479	QSSDLRR 684	QSSHLAR 889	RSDHLSR 1094	1
243	GTGGGCGCT	480	QSSDLRR 685	DRSHLAR 890	RSDALAR 1095	75
244	TAAGAAGGG	481	RSDHLAR 686	QSGNLTR 891	QSGNLRT 1096	100
245	TAAGAAGGG	482	RSDHLAR 687	QSANLTR 892	QSGNLRT 1097	235
246	GAAGGGGAG	483	RSDNLAR 688	RSDHLAR 893	QSGNLTR 1098	2
247	GAAGGGGAG	484	RSDNLAR 689	RSDHLAR 894	QSGNLRR 1099	2
276	GCGGCCGCG	485	RSDELTR 690	ERGTLAR 895	RSDERKR 1100	90
277	GCGGCCGCG	486	RSDELTR 691	DRSSLTR 896	RSDERKR 1101	107
278	GCGGCCGCG	487	QSWELTR 692	ERGTLAR 897	RSDERKR 1102	190
279	GCGGCCGCG	488	QSWELTR 693	DRSSLTR 898	RSDERKR 1103	260
280	GCGGCCGCG	489	QSGSLTR 694	ERGTLAR 899	RSDERKR 1104	160
281	GCGGCCGCG	490	QSGSLTR 695	DRSSLTR 900	RSDERKR 1105	225
282	GCAGAAGTG	491	RGDALTR 696	QSANLTR 901	QSADLAR 1106	1000
283	GCAGAAGTG	492	RSDALTR 697	QSGNLTR 902	QSGSLTR 1107	2
284	GCGGCCGCG	493	QSGSLTR 698	RSDHLTT 903	RSDERKR 1108	1000
285	TGTGCGGCC	494	ERGTLAR 699	RSDELTR 904	SRDHLQS 1109	1000
287	GCAGAAGCG	495	RGPDLAR 700	QSANLTR 905	QSGSLTR 1110	1000
288	GCAGAAGCG	496	RGPDLAR 701	QSANLTR 906	QSGSLTR 1111	1000
289	GCAGAAGCG	497	RGPDLAR 702	QSGNLQR 907	QSGSLTR 1112	800
2.90	GCAGAAGCG	498	RSDELAR 703	QSANLQR 908	QSÄDLAR 1113	1000
292	GCAGAAGCG	499	RSDELTR 704	QSANLQR 909	QSGSLTR 1114	1000
293	GTGTGCGGC	500	DRSHLTR 705	ERHSLQT 910	RSDALTR 1115	320
296	TGCGCGGCC	501	ERGTLAR 706	RSDELTR 911	DRDHLQS 1116	1000

297	TGCGCGGCC	502	ERGTLAR 707	RSDELRR 912	DRSHLQT 1117	500
298	GCTTAGGCA	503	QTGELRR 708	RSDNLQK 913	TSGDLSR 1118	4000
299	GCTTAGGCA	504	QTSDLRR 709	RSDNLQK 914	QSSDLQR 1119	4000
300	GCTTAGGCA	505	QTADLRR 710	RSDNLQR 915	QSSDLSR 1120	400
301	GCTTAGGCA	506	QSADLRR 711	RSDNLQT 916	QSSDLSR 1121	350
302	GCTTAGGCA	507	QSGSLTR 712	RSDNLQT 917	QSSDLSR 1122	75
303	GCTTAGGCA	508	QTGSLTR 713	RSDNLQT 918	QSSDLSR 1123	135
304	GCTTAGGCA	509	QTADLTR 714	RSDNLQT 919	QSSDLSR 1124	230
305	GCTTAGGCA	510	QTGDLTR 715	RSDNLQT 920	QSSDLSR 1125	230
306	GCTTAGGCA	511	QTASLTR 716	RSDNLQT 921	QSSDLSR 1126	280
307	GAAGAAGCG	512	RSDELRR 717	QSGNLQR 922	QSGNLSR 1127	50.5
308	GAAGAAGCG	513	RSDELRR 718	QSANLQR 923	QSANLQR 1128	1000
309	GGAGATGCC	514	ERSDLRR 719	QSSNLQR 924	QSGHLSR 1129	4000
310	GGAGATGCC	515	DRSDLTR 720	NRDNLQT 925	QSGHLSR 1130	1000
311	GGAGATGCC	516	DRSTLTR 721	NRDNLQR 926	QSGHLSR 1131	170
312	GGAGATGCC	517	ERGTLAR 722	NRDNLQR 927	QSGHLSR 1132	2000
313	GGAGATGCC	518	DRSDLTR 723	QRSNLQR 928	QSGHLSR 1133	1000
314	GGAGATGCC	519	DRSSLTR 724	QSSNLQR 929	QSGHLSR 1134	117.5
315	GGAGATGCC	520	ERGTLAR 725	QSSNLQR 930	QSGHLSR 1135	265
316	GGAGATGCC	521	ERGTLAR 726	QRDNLQR 931	QSGHLSR 1136	3000
318	TAGGAGATGC	522	RSDALTS 727	RSDNLAR 932	RSDNLAS 1137	100
319	GGGGAAGGG	523	KTSHLRA 728	QSGNLSR 933	RSDHLSR 1138	125
320	GGGGAAGGG	524	RSDHLTR 729	QSGNLSR 934	RSDHLSR 1139	5
321	GGCGGAGAT	525	TTSNLRR 730	QSGHLQR 935	DRSHLTR 1140	200
323	GGCGGAGAT	526	TTSNLRR 731	QSGHLQR 936	DRDHLTR 1141	600
324	GGCGGAGAT	527	TTSNLRR 732	QSGHLQR 937	DRDHLTR 1142	200
325	GTATCTGCT	528	NSSDLTR 733	NSDVLTS 938	QSDVLTR 1143	1000
326	GTATCTGTT	529	NSDALTR 734	NSDVLTS 939	QSDVLTR 1144	1000
327	TCTGCTGGG	530	RSDHLTR 735	NSADLTR 940	NSDDLTR 1145	1000
328	TCTGTTGGG	531	RSDHLTR 736	NSSALTS 941	NSDDLTR 1146	1000
349	GGTGTCGCC	532	DCRDLAR 737	DSGSLTR 942	TSGHLTR 1147	1000
350	TCCGAGGGT	533	TSGHLTR 738	RSDNLTR 943	DCRDLTT 1148	332
351	GCTGGTGTC	534	DSGSLTR 739	TSGHLTR 944	TLHTLTR 1149	1000

				20		
352	GGAGGGGTG	535	RSDSLLR 740	RSDHLTR 945	QSDHLTR 1150	26
353	GTTGGAGCC	536	DCRDLAR 741	QSDHLTR 946	TSGALTR 1151	1000
354	GAAGAGGAC	537	DSSNLTR 742	RSDNLTR 947	QRSNLVR 1152	28
355	GAAGAGGAC	538	EKANLTR 743	RSDNLTR 948	QRSNLVR 1153	20
356	GGCTGGGCG	539	RSDELRR 744	RSDHLTK 949	DSDHLSR 1154	1000
357	GGCTGGGCG	540	RSDELRR 745	RSDHLTK 950	DSDHLSR 1155	1000
358	GGCTGGGCG	541	RSDELRR 746	RSDHLTK 951	DSSHLSR 1156	225
361	GGGTTTGGG	542	RSDHLTR 747	QSSALTR 952	RSDHLTR 1157	130
363	GGGTTTGGG	543	RSDHLTR 748	QSSVLTR 953	RSDHLTR 1158	200
364	GTGTCCGAAG	544	RSDNLTR 749	DSAVLTT 954	RSDSLTR 1159	1000
365	GGTGCTGGT	545	QASHLTR 750	QASVLTR 955	QASHLTR 1160	600
366	GAGGGTGCT	546	QASVLTR 751	QASHLTR 956	RSDNLTR 1161	1000
367	GGGGGCGGG	547	RSDHLTR 752	DSGHLTR 957	RSDHLQR 1162	60
368	GAGGGGGCG	548	RSDELTR 753	RSDHLTR 958	RSDNLTR 1163	3.5
369	GTAGTTGTG	549	RSDALTR 754	TGGSLAR 959	QSGSLTR 1164	95
370	GTAGTTGTG	550	RSDALTR 755	NRATLAR 960	QSASLTR 1165	300
371	GTAGTTGTG	551	RSDALTR 756	NRATLAR 961	QSGSLTR 1166	175
372	GTAGTTGTG	552	RSDSLLR 757	TGGSLAR 962	QSASLTR 1167	112.5
373	GTAGTTGTG	553	RSDSLLR 758	NRATLAR 963	QSASLTR 1168	320
374	GCTGAGGAA	554	QRSNLVR 759	RSDNLTR 964	TSSELQR 1169	3.3
375	GAGGAAGAT	555	QQSNLAR 760	QSGNLQR 965	RSDNLTR 1170	85
377	GTGTTGGCAG	556	QSGSLTR 761	RGDALTS 966	RSDALTR 1171	89
378	GCCGAGGAGA	557	RSDNLTR 762	RSDNLTR 967	DRSSLTR 1172	31
379	GCCGAGGAGA	558	RSDNLTR 763	RSDNLTR 968	ERGTLAR 1173	3
380	GAGTCGGAAG	559	QSANLAR 764	RSDELTT 969	RSDNLAR 1174	1000
381	GCAGCTGCGC	560	RSDELTR 765	QSSDLQR 970	QSGDLTR 1175	1.5
383	TGGTTGGTAT	561	QSATLAR 766	RGDALTS 971	RSDHLTT 1176	1000
384	GTGGGCTTCA	562	DRSALTT 767	DRSHLAR 972	RSDALAR 1177	60
385	GGGGCGGAGC	563	RSDNLTR 768	RSDTLKK 973	RSDHLSR 1178	1.2
386	GGGGCGGAGC	564	RSDNLTR 769	RSDELQR 974	RSDHLSR 1179	0.4
387	GGCGAGGCAA	565	QSGSLTR 770	RSDNLAR 975	DRSHLAR 1180	2.5
388	GGCGAGGCAA	566	QSGDLTR 771	RSDNLAR 976	DRSHLAR 1181	28
390	GTGGCAGCGG	567	RSDTLKK 772	QSSDLQK 977	RSDALAR 1182	20

392	GTGGCAGCGG	568	RSDELTR 773	QSSDLQK 978	RSDALAR 1183	1000
396	GCGGGAGCAG	569	QSGSLTR 774	QSGHLQR 979	RSDTLKK 1184	18.8
397	GCGGGAGCAG	570	QSGDLTR 775	QSGHLQR 980	RSDTLKK 1185	25
400	TCAGTGGTGG	571	RSDALAR 776	RSDSLAR 981	QSGDLRT 1186	40
405	GCGGCCGCA	572	RSDELTR 777	ERGTLAR 982	RSDERKR 1187	110
406	GCGGCCGCA	573	RSDELTR 778	DRSSLTR 983	RSDERKR 1188	110
407	GCGGCCGCA	574	QSWELTR 779	ERGTLAR 984	RSDERKR 1189	410
408	GCGGCCGCA	575	QSWELTR 780	DRSSLTR 985	RSDERKR 1190	380
409	GCGGCCGCA	576	QSGSLTR 781	ERGTLAR 986	RSDERKR 1191	50
410	GCAGAAGTC	577	RSDALTR 782	QSGNLTR 987	QSGSLTR 1192	3
411	GCGGCCGCA	578	QSGSLTR 783	RSDHLTT 988	RSDERKR 1193	1000
412	GCGTGGGCG	579	QSGSLTR 784	RSDHLTT 989	RSDERKR 1194	5
413	GCGTGGGCA	580	QSGSLTR 785	RSDHLTT 990	RSDERKR 1195	5
414	GCAGAAGCA	581	RSDELTR 786	QSANLQR 991	QSGSLTR 1196	1000
415	GTGTGCGGA	582	DRSHLTR 787	ERHSLQT 992	RSDALTR 1197	1000
416	TGTGCGGCC	583	ERGTLAR 788	RSDELRR 993	DRSHLQT 1198	1000
493	GGGGTGGCGG	584	RSDTLKK 789	RSDSLAR 994	RSDHLSR 1199	300
494	GCCGAGGAGA	585	RSDNLTR 790	RSDNLTR 995	DRSSLTR 1200	90
496	GGTGGTGGC	586	DTSHLRR 791	TSGHLQR 996	TSGHLSR 1201	1000
497	GTTTGCGTC	587	ETASLRR 792	DSAHLQR 997	TSSALSR 1202	1000
498	GAAGAGGCA	588	QTGELRR 793	RSDNLQR 998	QSGNLSR 1203	30
499	GCTTGTGAG	589	RTSNLRR 794	TSSHLQK 999	DTDHLRR 1204	1000
500	GCTTGTGAG	590	RSDNLTR 795	QSSNLQT 1000	DRSHLAR 1205	1000
501	GTGGGGGTT	591	NRATLAR 796	RSDHLSR 1001	RSDALAR 1206	8
502	GGGGTGGGA	592	QSAHLAR 797	RSDALAR 1002	RSDHLSR 1207	60
507	GAGGTAGAGG	593	RSDNLAR 798	QRSALAR 1003	RSDNLAR 1208	10
508	GAGGTAGAGG	594	RSDNLAR 799	QSATLAR 1004	RSDNLAR 1209	10
509	GTCGTGTGGC	595	RSDHLTT 800	RSDALAR 1005	DRSALAR 1210	100
510	GTTGAGGAAG	596	QSGNLAR 801	RSDNLAR 1006	NRATLAR 1211	100
511	GTTGAGGAAG	597	QSGNLAR 802	RSDNLAR 1007	QSSALAR 1212	100
512	GAGGTGGAAG	598	QSGNLAR 803	RSDALAR 1008	RSDNLAR 1213	10
513	GAGGTGGAAG	599	QSANLAR 804	RSDALAR 1009	RSDNLAR 1214	1.5
514	TAGGTGGTGG	600	RSDALTR 805	RSDALAR 1010	RSDNLTT 1215	10

					50				
515	TGGGAGGAGT	601	RSDNLTR	806	RSDNLTR	1011	RSDHLTT	1216	0.5
516	GGAGGAGCT	602	TTSELRR	807	QSGHLQR	1012	QSGHLSR	1217	700
517	GGAGCTGGGG	603	RTDHLRR	808	TSSELQR	1013	QSGHLSR	1218	50
518	GGGGGAGGAG	604	QTGHLRR	809	QSGHLQR	1014	RSDHLSR	1219	30
519	GGGGAGGAGA	605	RSDNLAR	810	RSDNLSR	1015	RSDHLSR	1220	0.3
520	GGAGGAGAT	606	TTANLRR	811	QSGHLQR	1016	QSGHLSR	1221	300
521	GCAGCAGGA	607	QTGHLRR	812	QSGELQR	1017	QSGELSR	1222	1000
522	GATGAGGCA	608	QTGELRR	813	RSDNLQR	1018	TSANLSR	1223	200
527	GGGGAGGATC	609	TTSNLRR	814	RSSNLQR	1019	RSDHLSR	1224	2
528	GGGGAGGATC	610	TTSNLRR	815	RSSNLQR	102,0	RSDHLSR	1225	10
529	GA:GGCTTGGG	611	RTDHLRK	816	TSAELQR	1021	RSSNLSR	1226	1000
531	GCGGAGGCTT	612	TTGELRR	817	RSSNLQR	1022	RSDELSR	1227	160
532	GCGGAGGCTT	613	QSSDLQR	818	RSSNLQR	1023	RSDELSR	1228	100
533	GCGGAGGCTT	614	QSSDLQR	819	RSDNLAR	1024	RSADLSR	1229	7
534	GCGGAGGCTT	615	QSSDLQR	820	RSDNLAR	1025	RSDDLRR	1230	10
535	GCAGCCGGG	616	RTDHLRR	821	ESSDLQR	1026	QSGELSR	1231	1000
538	GCAGAGGCTT	617	QSSDLQR	822	RSDNLAR	1027	QSGSLTR	1232	70
540	TGGGCAGGCC	618	DRSHLTR	823	QSGSLTR	1028	RSDHLTT	1233	55
541	GGGGAGGAT	619	TTSNLRR	824	RSSNLQR	1029	RSDHLSR	1234	3
570	GGGGAAGGCT	620	DSGHLTR	825	QRSNLVR	1030	RSDHLTR	1235	20
571	GTGTGTGTGT	621	RSDSLTR	826	QRSNLVR	1031	RSDSLLR	1236	1000
572	GCATACGTGG	622	RSDSLLR	827	DKGNLQS	1032	QSDDLTR	1237	1000
573	GCATACGTG	623	RSDSLLR	828	DKGNLQS	1033	QSGDLTR	1238	1000
574	TACGTGGGGT	624	RSDHLTR	829	RSDHLTR	1034	DKGNLQT	1239	25
575	TACGTGGGCT	625	DFSHLTR	830	RSDHLTR	1035	DKGNLQT	1240	472
576	GAGGGTGTTG	626	NSDTLAR	831	TSGHLTR	1036	RSDNLTR	1241	200
577	GGAGCGGGGA	627	RSDHLSR	832	RSDELQR	1037	QSDHLTR	1242	200
579	GGGGTTGAGG	628	RSDNLTR	833	NRDTLAR	1038	TSGHLTR	1243	200
580	GGTGTTGGAG	629	QRAHLAR	834	NRDTLAR	1039	TSGHLTR	1244	1000
581	TACGTGGGTT	630	QSSHLTR	835	RSDSLLR	1040	DKGNLQT	1245	382
583	GTAGGGGTTG	631	NSSALTR	836	RSDHLTR	1041	QSASLTR	1246	46
584	GAAGGCGGAG	632	QAGHLTR	837	DKSHLTR	1042	QSGNLTR	1247	1000
585	GAAGGCGGAG	633	QAGHLTR	838	DSGHLTR	1043	QSGNLTR	1248	1000

587	GGGGGTTACG	634	DKGNLQT 839	TSGHLTR 1044	RSDHLSK 1249	500
588	GGGGGGGG	635	RSDHLSR 840	RSDHLTR 1045	RSDHLSK 1250	30
589	GGAGTATGCT	636	DSGHLAS 841	QSATLAR 1046	QSDHLTR 1251	1000
595	TGGTTGGTAT	637	QRGSLAR 842	RGDALTR 1047	RSDHLTT 1252	73.3
597	TGGTTGGTA	638	QNSAMRK 843	RGDALTS 1048	RSDHLTT 1253	1000
598	TGGTTGGTA	639	QRGSLAR 844	RDGSLTS 1049	RSDHLTT 1254	1000
599	TGGTTGGTA	640	QNSAMRK 845	RDGSLTS 1050	RSDHLTT 1255	1000
600	GAGTCGGAA	641	QSANLAR 846	RSDELRT 1051	RSDNLAR 1256	206.7
601	GAGTCGGAA	642	RSANLTR 847	RLDGLRT 1052	RSDNLAR 1257	606.7
602	GAGTCGGAA	643	RSANLTR 848	RQDTLVG 1053	RSDNLAR 1258	616.7
603	GAGTCGGAA	644	QSGNLAR 849	RSDELRT 1054	RSDNLAR 1259	166.7
606	GGGGAGGATC	645	TTSNLRR 850	RSDNLQR 1055	RSDHLSR 1260	0.2

		SEQ		SEQ		<u>SEQ</u>		<u>SEQ</u>	<u>Kd</u>
SBS#	TARGET	ID	F1	ID	F2	<u>ID</u>	F3	<u>ID</u>	<u>(nM)</u>
897	GAGGAGGTGA	1261	RSDALAR	1347	RSDNLAR	1433	RSDNLVR	1519	0.07
828	GCGGAGGACC	1262	EKANLTR	1348	RSDNLAR	1434	RSDERKR	1520	0.1
884	GAGGAGGTGA	1263	RSDSLTR	1349	RSDNLAR	1435	RSDNLVR	1521	0.15
817	GAGGAGGTGA	1264	RSDSLTR	1350	RSDNLAR	1436	RSDNLAR	1522	0.31
666	GCGGAGGCGC	1265	RSDDLTR	1351	RSDNLTR	1437	RSDTLKK	1523	0.5
829	GCGGAGGACC	1266	EKANLTR	1352	RSDNLAR	1438	RSDTLKK	1524	0.52
670	GACGTGGAGG	1267	RSDNLAR	1353	RSDALAR	1439	DRSNLTR	1525	0.57
801	AAGGAGTCGC	1268	RSADLRT	1354	RSDNLAR	1440	RSDNLTQ	1526	0.85
668	GTGGAGGCCA	1269	ERGTLAR	1355	RSDNLAR	1441	RSDALAR	1527	1.13
895	ATGGATTCAG	1270	QSHDLTK	1356	TSGNLVR	1442	RSDALTQ	1528	1.4
799	GGGGGAGCTG	1271	QSSDLQR	1357	QRAHLER	1443	RSDHLSR	1529	1.85
798	GGGGGAGCTG	1272	QSSDLQR	1358	QSGHLQR	1444	RSDHLSR	1530	3
842	GAGGTGGGCT	1273	DRSHLTR	1359	RSDALAR	1445	RSDNLAR	1531	5.4
894	TCAGTGGTAT	1274	QRSALAR	1360	RSDALSR	1446	QSHDLTK	1532	6.15
892	ATGGATTCAG	1275	QSHDLTK	1361	QQSNLVR	1447	RSDALTQ	1533	6.2
888	TCAGTGGTAT	1276	QSSSLVR	1362	RSDALSR	1448	QSHDLTK	1534	14
739	GCGGGCGGC	1277	RSDHLTR	1363	ERGHLTR	1449	RSDDLRR	1535	16.5
850	CAGGCTGTGG	1278	RSDALTR	1364	QSSDLTR	1450	RSDNLRE	1536	17
797	GCAGAGGCTG	1279	QSSDLQR	1365	RSDNLAR	1451	QSGDLTR	1537	17.5
891	TCAGTGGTAT	1280	QSSSLVR	1366	RSDALSR	1452	QSGSLRT	1538	18.5
887	TCAGTGGTAT	1281	QRSALAR	1367	RSDALSR	1453	QSGDLRT	1539	23.75
672	TCGGACGTGG	1282	RSDALAR	1368	DRSNLTR	1454	RSDELRT	1540	24
836	GGGGAGGCCC	1283	ERGTLAR	1369	RSDNLAR	1455	RSDHLSR	1541	24.25
674	GCGGCGTCGG	1284	RSDELRT	1370	RADTLRR	1456	RSDTLKK	1542	27.5
849	GGGGCCCTGG	1285	RSDALRE	1371	DRSSLTR	1457	RSDHLTQ	1543	29.05
825	GAATGGGCAG	1286	QSGSLTR	1372	RSDHLTT	1458	QSGNLTR	1544	37.3
673	GCGGGTGTCT	1287	DRSALAR	1373	QSSHLAR	1459	RSDTLKK	1545	48.33
848	GGGGAGGCCC	1288	DRSSLTR	1374	RSDNLAR	1460	RSDHLSR	1546	49.5

662	AGAGCGGCAC 1289	QTGSLTR 1375	RSDELQR 1461	QSGHLNQ 1547	50
667	GAGTCGGACG 1290	DRSNLTR 1376	RSDELRT 1462	RSDNLAR 1548	50
803	GCAGCGGCTC 1291	QSSDLQR 1377	RSDELQR 1463	QSGSLTR 1549	57.5
671	TCGGACGAGT 1292	RSDNLAR 1378	DRSNLTR 1464	RSDELRT 1550	64
851	GAGATGGATC 1293	QSSNLQR 1379	RRDVLMN 1465	RLHNLQR 1551	74
804	GCAGCGGCTC 1294	QSSDLQR 1380	RSDDLNR 1466	QSGSLTR 1552	82.5
669	GACGAGTCGG 1295	RSDELRT 1381	RSDNLAR 1467	DRSNLTR 1553	90
682	GCTGCAGGAG 1296	RSDHLAR 1382	QSGDLTR 1468	QSSDLSR 1554	90
845	GAGATGGATC 1297	QSSNLQR 1383	RSDALRQ 1469	RLHNLQR 1555	112.5
663	AGAGCGGCAC 1298	QTGSLTR 1384	RSDELQR 1470	KNWKLQA 1556	115
738	GCGGGGTCCG 1299	ERGTLTT 1385	RSDHLSR 1471	RSDDLRR 1557	120
664	AGAGCGGCAC 1300	QTGSLTR 1386	RADTLRR 1472	ASSRLAT 1558	125
833	GACTAGGACC 1301	EKANLTR 1387	RSDNLTK 1473	DRSNLTR 1559	136
685	GCTGCAGGAG 1302	RSDHLAR 1388	QSGSLTR 1474	QSSDLSR 1560	150
835	TAGGGAGCGT 1303	RADTLRR 1389	QSGHLTR 1475	RSDNLTT 1561	150
847	TAGGGAGCGT 1304	RSDDLTR 1390	QSGHLTR 1476	RSDNLTT 1562	150
818	GAATGGGCAG 1305	QSGSLTR 1391	RSDHLTT 1477	QSSNLVR 1563	167
834	GACTAGGACC 1306	EKANLTR 1392	RSDHLTT 1478	DRSNLTR 1564	186
837	GGGGCCCTGG 1307	RSDALRE 1393	DRSSLTR 1479	RSDHLSR 1565	222
764	GCAGAGGCTG 1308	TSGELVR 1394	RSDNLAR 1480	QSGDLTR 1566	255
774	GCAGCGGTAG 1309	QRSALAR 1395	RSDELQR 1481	QSGDLTR 1567	258
765	GCCGAGGCCG 1310	ERGTLAR 1396	RSDNLAR 1482	ERGTLAR 1568	262.5
766	GCCGAGGCCG 1311	ERGTLAR 1397	RSDNLAR 1483	DRSDLTR 1569	262.5
775	GCAGCGGTAG 1312	QSGALTR 1398	RSDELQR 1484	QSGDLTR 1570	265
763	GCAGAGGCTG 1313	TSGELVR 1399	RSDNLAR 1485	QSGSLTR 1571	275
838	GGGGCCCTGG 1314	RSDALRE 1400	DRSSLTR 1486	RSDHLTA 1572	300
841	GAGTGTGAGG 1315	RSDNLAR 1401	QSSHLAS 1487	RSDNLAR 1573	300
770	TTGGCAGCCT 1316	DRSSLTR 1402	QSGSLTR 1488	RSDSLTK 1574	325
767	GGGGGAGCTG 1317	QSSDLAR 1403	QSGHLQR 1489	RSDHLSR 1575	335
800	TTGGCAGCCT 1318	ERGTLAR 1404	QSGSLTR 1490	RSDSLTK 1576	400
832	GACTAGGACC 1319	EKANLTR 1405	RSDNLTT 1491	DRSNLTR 1577	408
844	GAGATGGATC 1320	QSSNLQR 1406	RSDALRQ 1492	RSDNLQR 1578	444
683	GCTGCAGGAG 1321	QSGHLAR 1407	QSGSLTR 1493	QSSDLSR 1579	500

805	GCAGCGGTAG 1322	QRSALAR 1408	RSDELQR 1494	QSGSLTR 1580	500
839	GAGTGTGAGG 1323	RSDNLAR 1409	TSDHLAS 1495	RSDNLAR 1581	625
840	GAGTGTGAGG 1324	RSDNLAR 1410	MSHHLKT 1496	RSDNLAR 1582	625
830	GGAGAGTCGG 1325	RSDELRT 1411	RSDNLAR 1497	QRAHLAR 1583	683
831	GGAGAGTCGG 1326	RSDDLTK 1412	RSDNLAR 1498	QRAHLAR 1584	700
684	GCTGCAGGAG 1327	RSAHLAR 1413	QSGSLTR 1499	QSSDLSR 1585	850
846	GAGATGGATC 1328	QSSNLQR 1414	RRDVLMN 1500	RSDNLQR 1586	889.5
819	AAGTAGGGTG 1329	QSSHLTR 1415	RSDNLTT 1501	RSDNLTQ 1587	1000
820	ACGGTAGTTA 1330	QSSALTR 1416	QRSALAR 1502	RSDTLTQ 1588	1000
821	ACGGTAGTTA 1331	NRATLAR 1417	QRSALAR 1503	RSDTLTQ 1589	1000
822	GTGTGCTGGT 1332	RSDHLTT 1418	ERQHLAT 1504	RSDALAR 1590	1000
823	GTGTGCTGGT 1333	RSDHLTK 1419	ERQHLAT 1505	RSDALAR 1591	1000
824	GTGTGCTGGT 1334	RSDHLTT 1420	DRSHLRT 1506	RSDALAR 1592	1000
885	GTGTGCTGGT 1335	RSDHLTK 1421	DRSHLRT 1507	RSDALAR 1593	1000
886	TCAGTGGTAT 1336	QSSSLVR 1422	RSDALSR 1508	QSGDLRT 1594	1000
889	ATGGATTCAG 1337	QSGSLTT 1423	QQSNLVR 1509	RSDALTQ 1595	1000
890	CTGGTATGTC 1338	QRSHLTT 1424	QRSALAR 1510	RSDALRE 1596	1000
896	AAGTAGGGTG 1339	TSGHLVR 1425	RSDNLTT 1511	RSDNLTQ 1597	1000
898	ACGGTAGTTA 1340	NRATLAR 1426	QSSSLVR 1512	RSDTLTQ 1598	1000
899	CTGGTATGTC 1341	QRSHLTT 1427	QSSSLVR 1513	RSDALRE 1599	1000
900	CTGGTATGTC 1342	MSHHLKE 1428	QSSSLVR 1514	RSDALRE 1600	1000
901	CTGGTATGTC 1343	MSHHLKE 1429	QRSALAR 1515	RSDALRE 1601	1000
773	GCAGCGGTAG 1344	QSGALTR 1430	RSDELQR 1516	QSGSLTR 1602	1250
768	GGGGGAGCTG 1345	QSSDLAR 1431	QRAHLER 1517	RSDHLSR 1603	2000
681	GCTGCAGGAG 1346	RSAHLAR 1432	QSGDLTR 1518	QSSDLSR 1604	3000

		SEO	F1	<u>SEO</u>	F2	<u>SEQ</u>	F3	SEO	<u>Kd</u>
SBS#	TARGET	ID		<u>ID</u>		<u>ID</u>		ID	(nM)
607	AAGGTGGCAG	1605	QSGDLTR	1707	RSDSLAR	1809	RLDNRTA	1911	6.5
608	TTGGCTGGGC	1606	GSWHLTR	1708	QSSDLQR	1810	RSDSLTK	1912	8
611	GTGGCTGCAG	1607	QSGDLTR	1709	QSSDLQR	1811	RSDALAR	1913	11.5
612	GTGGCTGCAG	1608	QSGTLTR	1710	QSSDLQR	1812	RSDALAR	1914	0.38
613	TTGGCTGGGC	1609	RSDHLAR	1711	QSSDLQR	1813	RGDALTS	1915	1.45
614	TTGGCTGGGC	1610	RSDHLAR	1712	QSSDLQR	1814	RSDSLTK	1916	2
616	GAGGAGGATG	1611	QSSNLQR	1713	RSDNLAR	1815	RSDNLQR	1917	0.08
617	AAGGGGGGG	1612	RSDHLSR	1714	RSDHLTR	1816	RKDNMTA	1918	1
618	AAGGGGGG	1613	RSDHLSR	1715	RSDHLTR	1817	RKDNMTQ	1919	0.55
619	AAGGGGGG	1614	RSDHLSR	1716	RSDHLTR	1818	RKDNMTN	1920	1.34
620	AAGGGGGG	1615	RSDHLSR	1717	RSDHLTR	1819	RLDNRTA	1921	0.54
621	AAGGGGGG	1616	RSDHLSR	1718	RSDHLTR	1820	RLDNRTQ	1922	0.75
624	ACGGATGTCT	1617	DRSALAR	1719	TSANLAR	1821	RSDTLRS	1923	7
628	TTGTAGGGGA	1618	RSDHLTR	1720	RSDNLTT	1822	RGDALTS	1924	130
629	TTGTAGGGGA	1619	RSSHLTR	1721	RSDNLTT	1823	RGDALTS	1925	150
630	CGGGGAGAGT	1620	RSDNLAR	1722	QSGHLQR	1824	RSDHLRE	1926	37.5
646	TTGGTGGAAG	1621	QSGNLAR	1723	RSDALAR	1825	RGDALTS	1927	35
647	TTGGTGGAAG	1622	QSANLAR	1724	RSDALAR	1826	RGDALTS	1928	40
651	GTTGTGGAAT	1623	QSGNLSR	1725	RSDALAR	1827	NRATLAR	1929	67.5
652	TAGGAGGCTG	1624	QSSDLQR	1726	RSDNLAR	1828	RSDNLTT	1930	1.5
653	TAGGAGGCTG	1625	TTSDLTR	1727	RSDNLAR	1829	RSDNLTT	1931	5.5
654	TAGGCATAAA	1626	QSGNLRT	1728	QSGSLTR	1830	RSDNLTT	1932	105
655	TAGGCATAAA	1627	QSGNLRT	1729	QSSTLRR	1831	RSDNLTT	1933	1000
656	TAGGCATAAA	1628	QSGNLRT	1730	QSGSLTR	1832	RSDNLTS	1934	540
657	TAGGCATAAA	1629	QSGNLRT	1731	QSSTLRR	1833	RSDNLTS	1935	300
660	GAGGGAGTTC	1630	NRATLAR	1732	QSGHLTR	1834	RSDNLAR	1936	8.25
661	GAGGGAGTTC	1631	TTSALTR	1733	QSGHLTR	1835	RSDNLAR	1937	1.73
665	GCGGAGGCGC	1632	RSDDVTR	1734	RSDNLTR	1836	RSDDLRR	1938	12.5

		. 30)			
689	AAGGCGGAGA 1633	RSDNLTR 17	35 RSDELQR	1837	RLDNRTA 1939	82.5
692	AAGGCGGAGA 1634	RSDNLTR 17	36 RSDELQR	1838	RSDNLTQ 1940	51
693	AAGGCGGAGA 1635	RSDNLTR 17	37 RADTLRR	1839	RLDNRTA 1941	95
694	AAGGCGGAGA 1636	RSDNLTR 17	38 RADTLRR	1840	RSDNLTQ 1942	28.5
695	GGGGGCGAGC 1637	RSSNLTR 17	39 DRSHLAR	1841	RSDHLTR 1943	850
697	TGAGCGGCGG 1638	RSDELTR 17	40 RSDELSR	1842	QSGHLTK 1944	200
698	TGAGCGGCGG 1639	RSDELTR 17	41 RSDELSR	1843	QSHGLTS 1945	300
699	GCGGCGGCAG 1640	QSGSLTR 17	42 RSDDLQR	1844	RSDERKR 1946	21.5
700	GCGGCGGCAG 1641	QSGDLTR 17	43 RSDDLQR	1845	RSDERKR 1947	45
701	GCAGCGGAGC 1642	RSDNLAR 17	44 RSDELQR	1846	QSGSLTR 1948	50.5
702	GCAGCGGAGC 1643	RSDNLAR 17	45 RSDELQR	1847	QSGDLTR 1949	73.5
704	AAGGTGGCAG 1644	QSGDLTR 17	46 RSDSLAR	1848	RSDNLTQ 1950	5
705	GGGGTGGGGC 1645	RSDHLAR 17	47 RSDSLAR	1849	RSDHLSR 1951	0.01
706	GGGGTGGGGC 1646	RSDHLAR 17	48 RSDSLLR	1850	RSDHLSR 1952	0.05
708	GAGTCGGAA 1647	QSANLAR ·17	49 RQDTLVG	1851	RSDNLAR 1953	300
709	GAGTCGGAA 1648	QSANLAR 17	50 RKDVLVS	1852	RSDNLAR 1954	400
710	GAGTCGGAA 1649	QSGNLAR 17	51 RLDGLRT	1853	RSDNLAR 1955	400
711	GAGTCGGAA 1650	QSGNLAR 17	52 RQDTLVG	1854	RSDNLAR 1956	400
712	GGTGAGGAGT 1651	RSDNLAR 17	53 RSDNLAR	1855	MSDHLSR 1957	9.5
713	GGTGAGGAGT 1652	RSDNLAR 17	54 RSDNLAR	1856	MSHHLSR 1958	0.15
714	TGGGTCGCGG 1653	RSDELRR 17	55 DRSALAR	1857	RSDHLTT 1959	200
715	TGGGTCGCGG 1654	RADTLRR 17	56 DRSALAR	1858	RSDHLTT 1960	0.46
716	TTGGGAGCAC 1655	QSGSLTR 17	57 QSGHLQR	1859	RGDALTS 1961	200
717	TTGGGAGCAC 1656	QSGSLTR 17	58 QSGHLQR	1860	RSDALTK 1962	150
718	TTGGGAGCAC 1657	QSGSLTR 17	59 QSGHLQR	1861	RSDALTR 1963	107.5
719	GGCATGGTGG 1658	RSDALTR 17	60 RSDALTS	1862	DRSHLAR 1964	20
720	GAAGAGGATG 1659	TTSNLAR 17	61 RSDNLAR	1863	QSGNLTR 1965	1.6
722	ATGGGGGTGG 1660	RSDALTR 17	62 RSDHLTR	1864	RSDALRQ 1966	0.7
724	GGCATGGTGG 1661	RSDALTR 17	63 RSDALRQ	1865	DRSHLAR 1967	2.5
725	GCTTGAGTTA 1662	QSSALAR 17	64 QSGHLQK	1866	QSSDLQR 1968	3000
726	GAAGAGGATG 1663	QSSNLAR 17	65 RSDNLAR	1867	QSGNLTR 1969	1.5
727	GCGGTGGCTC 1664	QSSDLTR 17	66 RSDALSR	1868	RSDTLKK 1970	0.1
728	GGTGAGGAGT 1665	RSDNLAR 17	67 RSDNLAR	1869	DSSKLSR 1971	15

			37				
729	GGAGGGGAGT 1666	RSDNLAR	1768	RSDHLSR	1870	QSGHLAR 1972	1000
730	TGGGTCGCGG 1667	RSDDLTR	1769	DRSALAR	1871	RSDHLTT 1973	1000
731	GTGGGGGAGA 1668	RSDNLAR	1770	RSDHLSR	1872	RSDALAR 1974	12
732	GCGGGTGGGG 1669	RSDHLAR	1771	QSSHLAR	1873	RSDDLTR 1975	22.5
733	GCGGGTGGGG 1670	RSDHLAR	1772	QSSHLAR	1874	RSDTLKK 1976	0.32
734	GGGGCTGGGT 1671	RSDHLAR	1773	QSSDLSR	1875	RSDHLSR 1977	0.25
735	GCGGTGGCTC 1672	QSSDLTR	1774	RSDALSR	1876	RSDERKR 1978	0.05
736	GAGGTGGGGA 1673	RSDHLAR	1775	RSDALSR	1877	RSDNLSR 1979	0.47
737	GGAGGGGAGT 1674	RSDNLAR	1776	RSDHLSR	1878	QRGHLSR 1980	1000
740	AAGGTGGCAG 1675	QSGSLTR	1777	RSDALAR	1879	RSDNRTA 1981	12.5
741	AAGGCTGAGA 1676	RSDNLTR	1778	QSSDLQR	1880	RSDNLTQ 1982	15
742	ACGGGGTTAT 1677	QRGALAS	1779	RSDHLSR	1881	RSDTLKQ 1983	29
743	ACGGGGTTAT 1678	QRGALAS	1780	RSDHLSR	1882	RSDTLTQ 1984	10
744	ACGGGGTTAT 1679	QRSALAS	1781	RSDHLSR	1883	RSDTLKQ 1985	8.33
745	ACGGGGTTAT 1680	QRSALAS	1782	RSDHLSR	1884	RSDTLTQ 1986	12.5
746	CTGGAAGCAT 1681	QSGSLTR	1783	QSGNLAR	1885	RSDALRE 1987	2.07
747	CTATTTTGGG 1682	RSDHLTT	1784	QSSALRT	1886	QSGALRE 1988	2000
748	TTGGACGGCG 1683	DSGHLTR	1785	DRSNLER	1887	RGDALTS 1989	112.3
749	TTGGACGGCG 1684	DRSHLTR	1786	DSSNLTR	1888	RGDALTS 1990	11.33
750	GAGGGAGCGA 1685	RSDELTR	1787	QSAHLAR	1889	RSDNLAR 1991	52
751	GGTGAGGAGT 1686	RSDNLAR	1788	RSDNLAR	1890	NRSHLAR 1992	7
752	GAGGTGGGGA 1687	RSHHLAR	1789	RSDALSR	1891	RSDNLSR 1993	31
757	CGGGCGGCTG 1688	QSSDLRR	1790	RSDELQR	1892	RSDHLRE 1994	14.5
758	CGGGCGGCTG 1689	QSSDLRR	1791	RADTLRR	1893	RSDHLRE 1995	16.5
759	TTGGACGGCG 1690	DSGHLTR	1792	DSSNLTR	1894	RGDALTS 1996	37
760	TTGGACGGCG 1691	DRSHLTR	1793	DRSNLER	1895	RGDALTS 1997	148.5
761	GCGGTGGCTC 1692	QSSDLQR	1794	RSDALSR	1896	RSDERKR 1998	6
762	GCGGTGGCTC 1693	QSSDLQR	1795	RSDALSR	1897	RSDTLKK 1999	18
776	ATGGACGGGT 1694	RSDHLAR	1796	DRSNLER	1898	RSDSLNQ 2000	0.4
777	ATGGACGGGT 1695	RSDHLAR	1797	DRSNLTR	1899	RSDALSA 2001	3.4
779	CGGGGAGCAG 1696	QSGSLTR	1798	QSGHLTR	1900	RSDHLAE 2002	0.5
780	CGGGGAGCAG 1697	QSGSLTR	1799	QSGHLTR	1901	RSDHLRA 2003	0.5
781	GGGGAGCAGC 1698	RSSNLRE	1800	RSDNLAR	1902	RSDHLTR 2004	4.25

783	TTGGGAGCGG 1699	RSDELTR	1801	QSGHLQR	1903	RGDALTS 2005	2000
785	TTGGGAGCGG 1700	RSDTLKK	1802	QSGHLQR	1904	RSDALTS 2006	50
786	TTGGGAGCGG 1701	RSDTLKK	1803	QSGHLQR	1905	RGDALRS 2007	2000
787	AGGGAGGATG 1702	QSDNLAR	1804	RSDNLAR	1906	RSDHLTQ 2008	4
826	GAGGGAGCGA 1703	RSDELTR	1805	QSGHLAR	1907	RSDNLAR 2009	2.75
827	GAGGGAGCGA 1704	RADTLRR	1806	QSGHLAR	1908	RSDNLAR 2010	1.2
882	GCGTGGGCGT 1705	RSDELTR	1807	RSDHLTT	1909	RSDERKR 2011	0.01
883	GCGTGGGCGT 1706	RSDELTR	1808	RSDHLTT	1910	RSDERKR 2012	1

TABLE 5

		SEQ	•	SEQ		SEQ		SEQ	<u>Kd</u>
SBS#	TARGET	<u>ID</u>	<u>F1</u>	<u>ID</u>	<u>F2</u>	<u>ID</u>	<u>F3</u>	<u>ID</u>	(nM)
903	ATGGAAGGG	2013	RSDHLAR	2513	QSGNLAR	3013	RSDALRQ	3513	1.027
904	AAGGGTGAC	2014	DSSNLTR	2514	QSSHLAR	3014	RSDNLTQ	3514	1
905	GTGGTGGTG	2015	RSSALTR	2515	RSDSLAR	3015	RSDSLAR	3515	1.15
908	AAGGTCTCA	2016	QSGDLRT	2516	DRSALAR	3016	RSDNLRQ	3516	50
909	GTGGAAGAA	2017	QSGNLSR	2517	QSGNLQR	3017	RSDALAR	3517	16.4
910	ATGGAAGAT	2018	QSSNLAR	2518	QSGNLQR	3018	RSDALAQ	3518	0.03
911	ATGGGTGCA	2019	QSGSLTR	2519	QSSHLAR	3019	RSDALAQ	3519	0.91
912	TCAGAGGTG	2020	RSDSLAR	2520	RSDNLTR	3020	QSGDLRT	3520	0.135
914	CAGGAAAAG	2021	RSDNLTQ	2521	QSGNLAR	3021	RSDNLRE	3521	1.26
915	CAGGAAAAG	2022	RSDNLRQ	2522	QSGNLAR	3022	RSDNLRE	3522	45.15
916	GAGGAAGGA	2023	QSGHLAR	2523	QSGNLAR	3023	RSDNLQR	3523	1.3
919	TCATAGTAG	2024	RSDNLTT	2524	RSDNLRT	3024	QSGDLRT	3524	250
920	GATGTGGTA	2025	QSSSLVR	2525	RSDSLAR	3025	TSANLSR	3525	4
921	AAGGTCTCA	2026	QSGDLRT	2526	DPGALVR	3026	RSDNLRQ	3526	11
922	AAGGTCTCA	2027	QSHDLTK	2527	DRSALAR	3027	RSDNLRQ	3527	4
923	AAGGTCTCA	2028	QSHDLTK	2528	DPGALVR	3028	RSDNLRQ	3528	2
926	GTGGTGGTG	2029	RSDALTR	2529	RSDSLAR	3029	RSDSLAR	3529	7.502
927	CAGGTTGAG	2030	RSDNLAR	2530	TSGSLTR	3030	RSDNLRE	3530	3.61
928	CAGGTTGAG	2031	RSDNLAR	2531	QSSALTR	3031	RSDNLRE	3531	25
929	CAGGTAGAT	2032	QSSNLAR	2532	QSATLAR	3032	RSDNLRE	3532	1.3
931	GAGGAAGAG	2033	RSDNLAR	2533	QSSNLVR	3033	RSDNLAR	3533	2
932	ATGGAAGGG	2034	RSDHLAR	2534	QSSNLVR	3034	RSDALRQ	3534	797
933	GACGAGGAA	2035	QSANLAR	2535	RSDNLAR	3035	DRSNLTR	3535	500
934	ATGGAAGAT	2036	QSSNLAR	2536	QSGNLQR	3036	RSDALTS	3536	0.07
935	ATGGGTGCA	2037	QSGSLTR	2537	QSSHLAR	3037	RSDALTS	3537	0.91
937	GTGGGGGCT	2038	QSSDLTR	2538	RSDHLTR	3038	RSDSLAR	3538	0.03
938	GTGGGGGCT	2039	QSSDLRR	2539	RSDHLTR	3039	RSDSLAR	3539	0.049
939	GGGGGCTGG	2040	RSDHLTT	2540	DRSHLAR	3040	RSĎHLSK	3540	0.352

			40	,		
940	GGGGGCTGG	2041	RSDHLTK 2541	DRSHLAR 3041	RSDHLSK 3541	1.5
941	GGGGCTGGG	2042	RSDHLAR 2542	QSSDLRR 3042	RSDKLSR 3542	0.077
942	GGGGCTGGG	2043	RSDHLAR 2543	QSSDLRR 3043	RSDHLSK 3543	0.13
943	GGGGCTGGG	2044	RSDHLAR 2544	TSGELVR 3044	RSDKLSR 3544	0.067
944	GGGGCTGGG	2045	RSDHLAR 2545	TSGELVR 3045	RSDHLSK 3545	0.027
945	GGTGCGGTG	2046	RSDSLTR 2546	RADTLRR 3046	MSHHLSR 3546	0.027
946	GGTGCGGTG	2047	RSDSLTR 2547	RSDVLQR 3047	MSHHLSR 3547	0.027
947	GGTGCGGTG	2048	RSDSLTR 2548	RSDELQR 3048	QSSHLAR 3548	0.013
948	GGTGCGGTG	2049	RSDSLTR 2549	RSDVLQR 3049	QSSHLAR 3549	0.017
962	GAGGCGGCA	2050	QSGSLTR 2550	RSDELQR 3050	RSDNLAR 3550	0.015
963	GAGGCGGCA	2051	QSGSLTR 2551	RSDDLQR 3051	RSDNLAR 3551	0.015
964	GCGGCGGTG	2052	RSDALAR 2552	RSDELQR 3052	RSDERKR 3552	0.041
965	GCGGCGGCC	2053	ERGDLTR 2553	RSDELQR 3053	RSDERKR 3553	3.1
966	GAGGAGGCC	2054	ERGTLAR 2554	RSDNLSR 3054	RSDNLAR 3554	0.028
967	GAGGAGGCC	2055	DRSSLTR 2555	RSDNLSR 3055	RSDNLAR 3555	0.055
968	GAGGCCGCA	2056	QSGSLTR 2556	DRSSLTR 3056	RSDNLAR 3556	1.4
969	GAGGCCGCA	2057	QSGSLTR 2557	DRSDLTR 3057	RSDNLAR 3557	0.275
970	GTGGGCGCC	2058	ERGTLAR 2558	DRSHLAR 3058	RSDALAR 3558	1.859
971	GTGGGCGCC	2059	DRSSLTR 2559	DRSHLAR 3059	RSDALAR 3559	0.144
972	GTGGGCGCC	2060	ERGDLTR 2560	DRSHLAR 3060	RSDALAR 3560	1.748
973	GCCGCGGTC	2061	DRSALTR 2561	RSDELQR 3061	ERGTLAR 3561	0.6
974	GCCGCGGTC	2062	DRSALTR 2562	RSDELQR 3062	DRSDLTR 3562	0.038
975	CAGGCCGCT	2063	QSSDLTR 2563	DRSSLTR 3063	RSDNLRE 3563	1.1
976	CAGGCCGCT	2064	QSSDLTR 2564	DRSDLTR 3064	RSDNLRE 3564	4.12
977	CTGGCAGTG	2065	RSDSLTR 2565	QSGSLTR 3065	RSDALRE 3565	0.017
978	CTGGCAGTG	2066	RSDSLTR 2566	QSGDLTR 3066	RSDALRE 3566	1.576
979	CTGGCGGCG	2067	RSSDLTR 2567	RSDELQR 3067	RSDALRE 3567	1.59
980	CTGGCGGCG	2068	RSDDLTR 2568	RSDELQR 3068	RSDALRE 3568	2.2
981	CAGGCGGCG	2069	RSDDLTR 2569	RSDELQR 3069	RSDNLRE 3569	0.375
982	CCGGGCTGG	2070	RSDHLTT 2570	DRSHLAR 3070	RSDELRE 3570	0.03
983	CCGGGCTGG	2071	RSDHLTK 2571	DRSHLAR 3071	RSDELRE 3571	1.385
984	GACGGCGAG	2072	RSDNLAR 2572	DRSHLAR 3072	DRSNLTR 3572	1.6
985	GACGGCGAG	2073	RSDNLAR 2573	DRSHLAR 3073	EKANLTR 3573	0.965

			41			
986	GGTGCTGAT	2074	QSSNLQR 2574	QSSDLQR 3074	MSHHLSR 3574	1.6
987	GGTGCTGAT	2075	QSSNLQR 2575	QSSDLQR 3075	TSGHLVR 3575	33.55
988	GGTGCTGAT	2076	TSGNLVR 2576	QSSDLQR 3076	MSHHLSR 3576	0.15
989	GGTGAGGGG	2077	RSDHLAR 2577	RSDNLAR 3077	MSHHLSR 3577	1.9
990	AAGGTGGGC	2078	DRSHLTR 2578	RSDSLAR 3078	RSDNLTQ 3578	5.35
991	AAGGTGGGC	2079	DRSHLTR 2579	SSGSLVR 3079	RSDNLTQ 3579	0.06
993	GGGGCTGGG	2080	RSDHLAR 2580	TSGELVR 3080	RSDHLSR 3580	3.1
994	GGGGGCTGG	2081	RSDHLTK 2581	DRSHLAR 3081	RSDHLSR 3581	0.03
995	GGGGAGGAA	2082	QSANLAR 2582	RSDNLAR 3082	RSDHLSK 3582	0.08
996	CAGTTGGTC	2083	DRSALAR 2583	RSDALTS 3083	RSDNLRE 3583	9.6
997	AGAGAGGCT	2084	QSSDLTR 2584	RSDNLAR 3084	QSGHLNQ 3584	1.65
998	ACGTAGTAG	2085	RSANLRT 2585	RSDNLTK 3085	RSDTLKQ 3585	0.23
999	AGAGAGGCT	2086	QSSDLTR 2586	RSDNLAR 3086	QSGKLTQ 3586	0.6
1000	CAGTTGGTC	2087	DRSALAR 2587	RSDALTR 3087	RSDNLRE 3587	11.15
1001	GGAGCTGAC	2088	EKANLTR 2588	QSSDLSR 3088	QRAHLAR 3588	1.8
1002	GCGGAGGAG	2089	RSDNLVR 2589	RSDNLAR 3089	RSDERKR 3589	0.028
1003	ACGTAGTAG	2090	RSANLRT 2590	RSDNLTK 3090	RSDTLRS 3590	0.118
1004	ACGTAGTAG	2091	RSDNLTT 2591	RSDNLTK 3091	RSDTLRS 3591	1.4
1006	GTAGGGGCG	2092	RSDDLTR 2592	RSDHLTR 3092	QRASLTR 3592	0.898
1007	GAGAGAGAT	2093	QSSNLQR 2593	QSGHLTR 3093	RLHNLAR 3593	167
1008	GAGATGGAG	2094	RSDNLSR 2594	RSDSLTQ 3094	RLHNLAR 3594	0.4
1009	GAGATGGAG	2095	RSDNLSR 2595	RSDSLTQ 3095	RSDNLSR 3595	1.9
1010	GAGAGAGAT	2096	QSSNLQR 2596	QSGHLTR 3096	RSDNLAR 3596	8.2
1011	TTGGTGGCG	2097	RSADLTR 2597	RSDSLAR 3097	RSDSLTK 3597	0.03
1012	GACGTAGGG	2098	RSDHLTR 2598	QSSSLVR 3098	DRSNLTR 3598	0.032
1013	GAGAGAGAT	2099	QSSNLQR 2599	QSGHLNQ 3099	RSDNLAR 3599	0.15
1014	GACGTAGGG	2100	RSDHLTR 2600	QSGSLTR 3100	DRSNLTR 3600	0.01
1015	GCGGAGGAG	2101	RSDNLVR 2601	RSDNLAR 3101	RSDTLKK 3601	0.008
1016	CAGTTGGTC	2102	DRSALAR 2602	RSDSLTK 3102	RSDNLRE 3602	0.09
1017	CTGGATGAC	2103	EKANLTR 2603	TSGNLVR 3103	RSDALRE 3603	0.233
1018	GTAGTAGAA	2104	QSANLAR 2604	QSSSLVR 3104	QRASLAR 3604	7.2
1019	AGGGAGGAG	2105	RSDNLAR 2605	RSDNLAR 3105	RSDHLTQ 3605	0.022
1020	ACGTAGTAG	2106	RSDNLTT 2606	RSDNLTK 3106	RSDTLKQ 3606	0.69

1022	GAGGAGGTG	2107	RSDALAR 2607	RSDNLAR 3107	RSDNLAR 3607	0.01
1024	GGGGAGGAA	2108	QSANLAR 2608	RSDNLAR 3108	RSDHLSR 3608	0.08
1025	GAGGAGGTG	2109	QSSALTR 2609	QSSSLVR 3109	RSDTLTQ 3609	0.115
1026	GTGGCTTGT	2110	MSHHLKE 2610	QSSDLSR 3110	RSDALAR 3610	0.076
1027	GCGGCGGTG	2111	RSDALAR 2611	RSDELQR 3111	RSDELQR 3611	0.054
1032	GGTGCTGAT	2112	TSGNLVR 2612	QSSDLQR 3112	TSGHLVR 3612	0.52
1033	GTGTTCGTG	2113	RSDALAR 2613	DRSALTT 3113	RSDALAR 3613	685.2
1034	GTGTTCGTG	2114	RSDALAR 2614	DRSALTK 3114	RSDALAR 3614	14.55
1035	GTGTTCGTG	2115	RSDALAR 2615	DRSALRT 3115	RSDALAR 3615	56
1037	GTAGGGGCA	2116	QSGSLTR 2616	RSDHLSR 3116	QRASLAR 3616	0.05
1038	GTAGGGGCA	2117	QTGELRR 2617	RSDHLSR 3117	QRASLAR 3617	0.152
1039	GGGGCTGGG	2118	RSDHLSR 2618	TSGELVR 3118	RSDHLTR 3618	1.37
1040	GGGGCTGGG	2119	RSDHLSR 2619	QSSDLQR 3119	RSDHLSK 3619	0.05
1041	TCATAGTAG	2120	RSDNLTT 2620	RSDNLRT 3120	QSHDLTK 3620	2.06
1043	CAGGGAGAG	2121	RSDNLAR 2621	QSGHLTR 3121	RSDNLRE 3621	0.16
1044	CAGGGAGAG	2122	RSDNLAR 2622	QRAHLER 3122	RSDNLRE 3622	1.07
1045	GGGGCAGGA	2123	QSGHLAR 2623	QSGSLTR 3123	RSDHLSR 3623	0.15
1046	GGGGCAGGA	2124	QSGHLAR 2624	QSGDLRR 3124	RSDHLSR 3624	0.09
1047	GGGGCAGGA	2125	QRAHLER 2625	QSGSLTR 3125	RSDHLSR 3625	24.7
1048	CAGGCTGTA	2126	QSGALTR 2626	QSSDLQR 3126	RSDNLRE 3626	1.387
1049	CAGGCTGTA	2127	QRASLAR 2627	QSSDLQR 3127	RSDNLRE 3627	55.6
1050	CAGGCTGTA	2128	QSSSLVR 2628	QSSDLQR 3128	RSDNLRE 3628	0.125
1051	GAGGCTGAG	2129	RSDNLTR 2629	QSSDLQR 3129	RSDNLVR 3629	0.02
1052	TAGGACGGG	2130	RSDHLAR 2630	EKANLTR 3130	RSDNLTT 3630	0.28
1053	TAGGACGGG	2131	RSDHLAR 2631	DRSNLTR 3131	RSDNLTT 3631	0.025
1054	GCTGCAGGG	2132	RSDHLAR 2632	QSGSLTR 3132	QSSDLQR 3632	0.033
1055	GCTGCAGGG	2133	RSDHLAR 2633	QSGSLTR 3133	TSGDLTR 3633	18.73
1056	GCTGCAGGG	2134	RSDHLAR 2634	QSGSLTR 3134	QSSDLQR 3634	0.045
1057	GCTGCAGGG	2135	RSDHLAR 2635	QSGDLTR 3135	TSGDLTR 3635	0.483
1058	GGGGCCGCG	2136	RSDELTR 2636	DRSSLTR 3136	RSDHLSR 3636	6.277
1059	GGGGCCGCG	2137	RSDELTR 2637	DRSDLTR 3137	RSDHLSR 3637	0.152
1060	GCGGAGGCC	2138	ERGTLAR 2638	RSDNLAR 3138	RSDERKR 3638	0.69
1061	GTTGCGGGG	2139	RSDHLAR 2639	RSDELQR 3139	QSSALTR 3639	0.165

			73			
1062	GTTGCGGGG	2140	RSDHLAR 2640	RSDELQR 3140	TSGSLTR 3640	0.068
1063	GTTGCGGGG	2141	RSDHLAR 2641	RSDELQR 3141	MSHALSR 3641	0.96
1064	GCGGCAGTG	2142	RSDALTR 2642	QSGSLTR 3142	RSDERKR 3642	0.453
1065	TGGGGCGGG	2143	RSDHLAR 2643	DRSHLAR 3143	RSDHLTT 3643	1.37
1066	GAGGGCGGT	2144	QSSHLTR 2644	DRSHLAR 3144	RSDNLVR 3644	0.15
1067	GAGGGCGGT	2145	TSGHLVR 2645	DRSHLAR 3145	RSDNLVR 3645	1.37
1068	GCAGGGGC	2146	DRSHLTR 2646	RSDHLTR 3146	QSGDLTR 3646	2.05
1069	GCAGGCGGT	2147	DRSHLTR 2647	RSDHLTR 3147	QSGSLTR 3647	0.1
1070	GGGGCAGGC	2148	DRSHLTR 2648	QSGSLTR 3148	RSDHLSR 3648	0.456
1071	GGGGCAGGC	2149	DRSHLTR 2649	QSGDLTR 3149	RSDHLSR 3649	0.2
1072	GGATTGGCT	2150	QSSDLTR 2650	RSDALTT 3150	QRAHLAR 3650	0.46
1073	GGATTGGCT	2151	QSSDLTR 2651	RSDALTK 3151	QRAHLAR 3651	1.37
1075	GTGTTGGCG	2152	RSDELTR 2652	RSDALTK 3152	RSDALTR 3652	0.915
1076	GCGGCAGCG	2153	RSDELTR 2653	QSGSLTR 3153	RSDERKR 3653	4.1
1077	GCGGCAGCG	2154	RSDELTR 2654	QSGDLRR 3154	RSDERKR 3654	6.2
1078	GGGGGGCC	2155	ERGTLAR 2655	RSDHLSR 3155	RSDHLSR 3655	0.2
1079	GGGGGGCC	2156	ERGDLTR 2656	RSDHLSR 3156	RSDHLSR 3656	4.1
1080	CTGGAGGCG	2157	RSDELTR 2657	RSDNLAR 3157	RSDALRE 3657	1.37
1081	GGGGAGGTG	2158	RSDALTR 2658	RSDNLTR 3158	RSDHLSR 3658	0.05
1082	CTGGCGGCG	2159	RSDELTR 2659	RSDELTR 3159	RSDALRE 3659	0.152
1083	CTGGTGGCA	2160	QSGDLTR 2660	RSDALSR 3160	RSDALRE 3660	0.152
1084	GGTGAGGCG	2161	RSDELTR 2661	RSDNLAR 3161	MSHHLSR 3661	0.5
1085	GGTGAGGCG	2162	RSDELTR 2662	RSDNLAR 3162	QSSHLAR 3662	0.46
1086	GGGGCTGGG	2163	RSDHLSR 2663	QSSDLQR 3163	RSDHLTR 3663	0.1
1087	CGGGCGGCC	2164	ERGDLTR 2664	RSDELQR 3164	RSDHLAE 3664	1.24
1088	CGGGCGGCC	2165	ERGDLTR 2665	RSDELQR 3165	RSDHLRE 3665	0.905
1089	GACGAGGCT	2166	QSSDLRR 2666	RSDNLAR 3166	DRSNLTR 3666	0.171
1090	AAGGCGCTG	2167	RSDALRE 2667	RSDELQR 3167	RSDNLTQ 3667	30.3
1091	GTAGAGGAC	2168	DRSNLTR 2668	RSDNLAR 3168	QRASLAR 3668	0.085
1092	GCCTTGGCT	2169	QSSDLRR 2669	RGDALTS 3169	DRSDLTR 3669	2.735
1093	GCGGAGTCG	2170	RSADLRT 2670	RSDNLAR 3170	RSDERKR 3670	0.046
1094	GCGGTTGGT	2171	TSGHLVR 2671	QSSALTR 3171	RSDERKR 3671	12.34
1095	GGGGGAGCC	2172	ERGDLTR 2672	QRAHLER 3172	RSDHLSR 3672	0.395

			77			
1096	GGGGGAGCC	2173	DRSSLTR 2673	QRAHLER 3173	RSDHLSR 3673	0.019
1097	GAGGCCGAA	2174	QSANLAR 2674	DCRDLAR 3174	RSDNLAR 3674	0.77
1098	GCCGGGGAG	2175	RSDNLTR 2675	RSDHLTR 3175	DRSDLTR 3675	0.055
1099	GCGGAGTCG	2176	TSGHLVR 2676	TSGSLTR 3176	RSDERKR 3676	0.45
1100	GTGTTGGTA	2177	QSGALTR 2677	RGDALTS 3177	RSDALTR 3677	1.4
1101	ATGGGAGTT	2178	TTSALTR 2678	QRAHLER 3178	RSDALRQ 3678	0.065
1102	AAGGCAGAA	2179	QSANLAR 2679	QSGSLTR 3179	RSDNLTQ 3679	8.15
1103	AAGGCAGAA	2180	QSANLAR 2680	QSGDLTR 3180	RSDNLTQ 3680	1.4
1104	CGGGCAGCT	2181	QSSDLRR 2681	QSGSLTR 3181	RSDHLRE 3681	0.08
1105	CTGGCAGCC	2182	ERGDLTR 2682	QSGDLTR 3182	RSDALRE 3682	2.45
1106	CTGGCAGCC	2183	DRSSLTR 2683	QSGDLTR 3183	RSDALRE 3683	0.19
1107	GCGGGAGTT	2184	QSSALAR 2684	QRAHLER 3184	RSDERKR 3684	0.06
1108	CAGGCTGGA	2185	QSGHLAR 2685	TSGELVR 3185	RSDNLRE 3685	0.007
1109	AGGGGAGCC	2186	ERGDLTR 2686	QRAHLER 3186	RSDHLTQ 3686	0.347
1110	AGGGGAGCC	2187	DRSSLTR 2687	QRAHLER 3187	RSDHLTQ 3687	0.095
1111	CTGGTAGGG	2188	RSDHLAR 2688	QSSSLVR 3188	RSDALRE 3688	0.095
1112	CTGGTAGGG	2189	RSDHLAR 2689	QSATLAR 3189	RSDALRE 3689	0.125
1113	CTGGGGGCA	2190	QSGDLTR 2690	RSDHLTR 3190	RSDALRE 3690	0.06
1114	CAGGTTGAT	2191	QSSNLAR 2691	TSGSLTR 3191	RSDNLRE 3691	2.75
1115	CAGGTTGAT	2192	QSSNLAR 2692	QSSALTR 3192	RSDNLRE 3692	0.7
1116	CCGGAAGCG	2193	RSDELTR 2693	QSSNLVR 3193	RSDELRE 3693	12.3
1117	GCAGCGCAG	2194	RSSNLRE 2694	RSDELTR 3194	QSGSLTR 3694	2.85
1118	TAGGGAGTC	2195	DRSALTR 2695	QRAHLER 3195	RSDNLTT 3695	1.4
1119	TGGGAGGGT	2196	TSGHLVR 2696	RSDNLAR 3196	RSDHLTT 3696	0.1
1120	AGGGACGCG	2197	RSDELTR 2697	DRSNLTR 3197	RSDHLTQ 3697	2.735
1121	CTGGTGGCC	2198	ERGDLTR 2698	RSDALTR 3198	RSDALRE 3698	2.76
1122	CTGGTGGCC	2199	DRSSLTR 2699	RSDALTR 3199	RSDALRE 3699	0.101
1123	TAGGAAGCA	2200	QSGSLTR 2700	QSGNLAR 3200	RSDNLTT 3700	0.065
1124	GTGGATGGA	2201	QSGHLAR 2701	TSGNLVR 3201	RSDALTR 3701	0.101
1126	TTGGCTATG	2202	RSDALTS 2702	TSGELVR 3202	RGDALTS 3702	0.46
1127	CAGGGGGTT	2203	QSSALAR 2703	RSDHLTR 3203	RSDNLRE 3703	0.1
1128	AAGGTCGCC	2204	ERGDLTR 2704	DPGALVR 3204	RSDNLTQ 3704	5.45
1130	GGTGCAGAC	2205	DRSNLTR 2705	QSGDLTR 3205	MSHHLSR 3705	0.1

1131	GTGGGAGCC	2206	ERGDLTR 2706	QRAHLER 3206	RSDALTR 3706	0.95
1132	GGGGCTGGA	2207	QSGHLAR 2707	TSGELVR 3207	RSDHLSR 3707	0.055
1133	GGGGCTGGA	2208	QRAHLER 2708	TSGELVR 3208	RSDHLSR 3708	0.5
1134	TGGGGGTGG	2209	RSDHLTT 2709	RSDHLTR 3209	RSDHLTT 3709	0.067
1135	GCGGCGGG	2210	RSDHLAR 2710	RSDELQR 3210	RSDERKR 3710	0.025
1136	CCGGGAGTG	2211	RSDALTR 2711	QRAHLER 3211	RSDTLRE 3711	0.225
1137	CCGGGAGTG	2212	RSSALTR 2712	QRAHLER 3212	RSDTLRE 3712	0.085
1138	CAGGGGGTA	2213	QSGALTR 2713	RSDHLTR 3213	RSDNLRE 3713	0.027
1139	ACGGCCGAG	2214	RSDNLAR 2714	DRSDLTR 3214	RSDTLTQ 3714	0.535
1140	AAGGGTGCG	2215	RSDELTR 2715	QSSHLAR 3215	RSDNLTQ 3715	0.3
1141	ATGGACTTG	2216	RGDALTS 2716	DRSNLTR 3216	RSDALTQ 3716	1.7
1148	TTGGAGGAG	2217	RSDNLTR 2717	RSDNLTR 3217	RGDALTS 3717	0.006
1149	TTGGAGGAG	2218	RSDNLTR 2718	RSDNLTR 3218	RSDALTK 3718	0.004
1150	GAAGAGGCA	2219	QSGSLTR 2719	RSDNLTR 3219	QSGNLTR 3719	0.004
1151	GTAGTATGG	2220	RSDHLTT 2720	QRSALAR 3220	QRASLAR 3720	1.63
1152	AAGGCTGGA	2221	QSGHLAR 2721	TSGELVR 3221	RSDNLTQ 3721	1.605
1153	AAGGCTGGA	2222	QRAHLAR 2722	TSGELVR 3222	RSDNLTQ 3722	8.2
1154	CTGGCGTAG	2223	RSDNLTT 2723	RSDELQR 3223	RSDALRE 3723	1.04
1156	ATGGTTGAA	2224	QSANLAR 2724	QSSALTR 3224	RSDALRQ 3724	7.2
1157	ATGGTTGAA	2225	QSANLAR 2725	TSGSLTR 3225	RSDALRQ 3725	0.885
1158	AGGGGAGAA	2226	QSANLAR 2726	QSGHLTR 3226	RSDHLTQ 3726	0.1
1159	AGGGGAGAA	2227	QSANLAR 2727	QRAHLER 3227	RSDHLTQ 3727	0.555
1160	TGGGAAGGC	2228	DRSHLAR 2728	QSSNLVR 3228	RSDHLTT 3728	0.415
1161	GAGGCCGGC	2229	DRSHLAR 2729	DRSDLTR 3229	RSDNLAR 3729	0.45
1162	GTGTTGGTA	2230	QSGALTR 2730	RADALMV 3230	RSDALTR 3730	0.465
1163	GTGTGAGCC	2231	ERGDLTR 2731	QSGHLTT 3231	RSDALTR 3731	1.45
1164	GTGTGAGCC	2232	ERGDLTR 2732	QSVHLQS 3232	RSDALTR 3732	15.4
1165	GCGAAGGTG	2233	RSDALTR 2733	RSDNLTQ 3233	RSDERKR 3733	1.4
1166	GCGAAGGTG	2234	RSDALTR 2734	RSDNLTQ 3234	RSSDRKR 3734	0.195
1167	GCGAAGGTG	2235	RSDALTR 2735	RSDNLTQ 3235	RSHDRKR 3735	0.95
1168	AAGGCGCTG	2236	RSDALRE 2736	RSSDLTR 3236	RSDNLTQ 3736	2.8
1169	GTAGAGGAC	2237	DRSNLTR 2737	RSDNLAR 3237	QSSSLVR 3737	0.053
1170	GCCTTGGCT	2238	QSSDLRR 2738	RADALMV 3238	DRSDLTR 3738	2.75

1171 GCGGAGTCG 2239 RSDDLRT 2739 RSDNLAR 3239 RSDERKR 3739 0.18 1172 GCCGGGGAG 2240 RSDNLTR 2740 RSDHLTR 3240 ERGDLTR 3740 0.01 1173 GCTGAAGGG 2241 RSDHLSR 2741 QSGNLAR 3241 QSSDLRR 3741 0.008 1174 GCTGAAGGG 2242 RSDHLSR 2742 QSSNLVR 3242 QSSDLRR 3742 0.018 1175 AAGGTCGCC 2243 DRSDLTR 2743 DPGALVR 3243 RSDNLTQ 3743 1176 GTGGGAGCC 2244 DRSDLTR 2744 QRAHLER 3244 RSDALTR 3744 1177 CCGGGCGCA 2245 OSGSLTR 2745 DRSHLAR 3245 RSDTLRE 3745 1178 GAGGATGGC 2246 DRSHLAR 2746 TSGNLVR 3246 RSDNLAR 3746 0.085 1179 GCAGCGCAG 2247 RSSNLRE 2747 RSSDLTR 3247 QSGSLTR 3747 2.735 1180 AAGGAAAGA 2248 OSGHLNO 2748 OSGNLAR 3248 RSDNLTQ 3748 4.825 1181 TTGGCTATG 2249 RSDALRQ 2749 TSGELVR 3249 RGDALTS 3749 1182 CAGGAAGGC 2250 DRSHLAR 2750 QSGNLAR 3250 RSDNLRE 3750 1.48 1183 CAGGAAGGC 2251 DRSHLAR 2751 QSSNLVR 3251 RSDNLRE 3751 1.935 1184 AAGGAAAGA 2252 KNWKLQA 2752 QSGNLAR 3252 RSDNLTQ 3752 2.785 1185 AAGGAAAGA 2253 KNWKLQA 2753 QSHNLAR 3253 RSDNLTQ 3753 5.25 1186 GCCGAGGTG 2254 RSDSLLR 2754 RSKNLQR 3254 ERGTLAR 3754 27.5 1187 CTGGTGGGC 2255 DRSHLAR 2755 RSDALTR 3255 RSDALRE 3755 0.006 1188 GTAGTATGG 2256 RSDHLTT 2756 OSSSLVR 3256 ORASLAR 3756 2.74 1189 ATGGTTGAA 2257 QSANLAR 2757 TSGALTR 3257 RSDALRQ 3757 1190 ATGGCAGTG 2258 RSDALTR 2758 OSGDLTR 3258 RSDSLNO 3758 1.484 1191 ATGGCAGTG 2259 RSDALTR 2759 QSGSLTR 3259 RSDSLNQ 3759 5.325 1192 ATGGCAGTG 2260 RSDALTR 2760 QSGDLTR 3260 RSDALTQ 3760 2.364 1193 ATGGCAGTG 2261 RSDALTR 2761 QSGSLTR 3261 RSDALTQ 3761 3.125 1194 GAGAAGGTG 2262 RSDALTR 2762 RSDNRTA 3262 RSDNLTR 3762 2.19 1195 GAGAAGGTG 2263 RSDALTR 2763 RSDNRTA 3263 RSSNLTR 3763 2.8 1197 GAAGGTGCC 2264 ERGDLTR 2764 MSHHLSR 3264 OSGNLTR 3764 14.8 1199 ATGGAGAAG 2265 RSDNRTA 2765 RSDNLTR 3265 RSDALTQ 3765 3.428 1200 ATGGAGAAG 2266 RSDNRTA 2766 RSSNLTR 3266 RSDALTQ 3766 16.87 1201 ATGGAGAAG 2267 RSDNRTA 2767 RSHNLTR 3267 RSDALTQ 3767 1202 CTGGAGTAC 2268 DRSNLRT 2768 RSDNLTR 3268 RSDALRE 3768 2.834 1203 GGAGTACTG 2269 RSDALRE 2769 ORSALAR 3269 ORAHLAR 3769 2.945 1204 GGAGTACTG 2270 RSDALRE 2770 QSSSLVR 3270 QRAHLAR 3770 4.38 1205 CGGGCAGCT 2271 QSSDLRR 2771 QSGDLTR 3271 RSDHLRE 3771 0.9

1206 GCGGGAGTT 2272 TTSALTR 2772 QRAHLER 3272 RSDERKR 3772 0.034 1207 CAGGCTGGA 2273 ORAHLER 2773 TSGELVR 3273 RSDNLRE 3773 1209 CCGGAAGCG 2274 RSDELTR 2774 QSSNLVR 3274 RSDTLRE 3774 19.28 1211 GCAGCGCAG 2275 RSDNLRE 2775 RSDELTR 3275 QSGSLTR 3775 1212 CAGGGGGTT 2276 TTSALTR 2776 RSDHLTR 3276 RSDNLRE 3776 0.05 1213 GAAGAAGAG 2277 RSDNLTR 2777 OSSNLVR 3277 QSGNLTR 3777 12.3 1214 ATGGGAGTT 2278 TTSALTR 2778 QRAHLER 3278 RSDALTQ 3778 1215 GTGGGGGCT 2279 QSSDLRR 2779 RSDHLTR 3279 RSDALTR 3779 0.003 1217 GAAGAGGCA 2280 QSGSLTR 2780 RSDNLTR 3280 QSANLTR 3780 0.004 1218 GCGGTGAGG 2281 RSDHLTQ 2781 RSQALTR 3281 RSDERKR 3781 1219 AAGGAAAGG 2282 RSDHLTQ 2782 QSHNLAR 3282 RSDNLTQ 3782 1220 AAGGAAAGG 2283 RSDHLTQ 2783 QSGNLAR 3283 RSDNLTQ 3783 0.175 1221 AAGGAAAGG 2284 RSDHLTQ 2784 QSSNLVR 3284 RSDNLTQ 3784 1222 CAGGAGGGC 2285 DRSHLAR 2785 RSDNLAR 3285 RSDNLRE 3785 0.155 7 1223 ATGGACTTG 2286 RSDALTK 2786 DRSNLTR 3286 RSDALTQ 3786 1224 ATGGACTTG 2287 RADALMV 2787 DRSNLTR 3287 RSDALTQ 3787 12 1227 GAATAGGGG 2288 RSDHLSR 2788 RSDHLTK 3288 QSGNLAR 3788 25 1228 ACGGCCGAG 2289 RSDNLAR 2789 DRSDLTR 3289 RSDDLTQ 3789 12 1229 AAGGGTGCG 2290 RSDELTR 2790 MSHHLSR 3290 RSDNLTQ 3790 8.2 1230 AAGGGAGAC 2291 DRSNLTR 2791 QSGHLTR 3291 RSDNLTQ 3791 0.383 1231 AAGGGAGAC 2292 DRSNLTR 2792 ORAHLER 3292 RSDNLTQ 3792 0.213 1232 TGGGACCTG 2293 RSDALRE 2793 DRSNLTR 3293 RSDHLTT 3793 0.113 1233 TGGGACCTG 2294 RSDALRE 2794 DRSNLTR 3294 RSDHLTT 3794 0.635 1234 GAGTAGGCA 2295 QSGSLTR 2795 RSDNLTK 3295 RSDNLAR 3795 0.101 1236 GAGTAGGCA 2296 QSGSLTR 2796 RSDHLTT 3296 RSDNLAR 3796 0.065 1237 GAAGGAGAG 2297 RSDNLAR 2797 QRAHLER 3297 QSGNLAR 3797 0.065 1238 CTGGATGTT 2298 QSSALAR 2798 TSGNLVR 3298 RSDALRE 3798 0.313 1239 CAGGACGTG 2299 RSDALTR 2799 DPGNLVR 3299 RSDNLKD 3799 0.144 1240 GGGGAGGCA 2300 QSGSLTR 2800 RSDNLTR 3300 RSDHLSR 3800 0.056 1241 GAGGTGTCA 2301 QSHDLTK 2801 RSDALAR 3301 RSDNLAR 3801 0.027 1242 GGGGTTGAA 2302 QSANLAR 2802 TSGSLTR 3302 RSDHLSR 3802 1243 GGGGTTGAA 2303 QSANLAR 2803 QSSALTR 3303 RSDHLSR 3803 0.101 1244 GTCGCGGTG 2304 RSDALTR 2804 RSDELQR 3304 DRSALAR 3804 0.044

			40			
1245	GTCGCGGTG	2305	RSDALTR 2805	RSDELQR 3305	DSGSLTR 3805	0.102
1246	GTGGTTGCG	2306	RSDELTR 2806	TSGSLTR 3306	RSDALTR 3806	0.051
1247	GTGGTTGCG	2307	RSDELTR 2807	TSGALTR 3307	RSDALTR 3807	0.117
1248	GTCTAGGTA	2308	QSGALTR 2808	RSDNLTT 3308	DRSALAR 3808	5.14
1249	CCGGGAGCG	2309	RSDELTR 2809	QSGHLTR 3309	RSDTLRE 3809	0.26
1250	GAAGGAGAG	2310	RSDNLAR 2810	QSGHLTR 3310	QSGNLAR 3810	0.31
1252	CCGGCTGGA	2311	QRAHLER 2811	QSSDLTR 3311	RSDTLRE 3811	0.153
1253	CCGGGAGCG	2312	RSDELTR 2812	QRAHLER 3312	RSDTLRE 3812	0.228
1255	ACGTAGTAG	2313	RSDNLTT 2813	RSDNLTK 3313	RSDTLKQ 3813	0.69
1256	GGGGAGGAT	2314	QSSNLAR 2814	RSDNLQR 3314	RSDHLSR 3814	2
1257	GGGGAGGAT	2315	TTSNLAR 2815	RSDNLQR 3315	RSDHLSR 3815	1
1258	GGGGAGGAT	2316	QSSNLRR 2816	RSDNLQR 3316	RSDHLSR 3816	2
1259	GAGTGTGTG	2317	RSDSLLR 2817	DRDHLTR 3317	RSDNLAR 3817	1.5
1260	GAGTGTGTG	2318	RLDSLLR 2818	DRDHLTR 3318	RSDNLAR 3818	1.8
1261	TGCGGGGCA	2319	QSGDLTR 2819	RSDHLTR 3319	RRDTLHR 3819	0.2
1262	TGCGGGGCA	2320	QSGDLTR 2820	RSDHLTR 3320	RLDTLGR 3820	3
1263	TGCGGGGCA	2321	QSGDLTR 2821	RSDHLTR 3321	DSGHLAS 3821	21
1264	AAGTTGGTT	2322	TTSALTR 2822	RADALMV 3322	RSDNLTQ 3822	0.21
1265	AAGTTGGTT	2323	TTSALTR 2823	RSDALTT 3323	RSDNLTQ 3823	0.077
1266	CAGGGTGGC	2324	DRSHLTR 2824	QSSHLAR 3324	RSDNLRE 3824	6.1
1267	TAGGCAGTC	2325	DRSALTR 2825	QSGSLTR 3325	RSDNLTT 3825	6
1268	CTGTTGGCT	2326	QSSDLTR 2826	RADALMV 3326	RSDALRE 3826	1.52
1269	CTGTTGGCT	2327	QSSDLTR 2827	RSDALTT 3327	RSDALRE 3827	12.3
1270	TTGGATGGA	2328	QSGHLAR 2828	TSGNLVR 3328	RSDALTK 3828	0.4
1271	GTGGCACTG	2329	RSDALRE 2829	QSGSLTR 3329	RSDALTR 3829	0.915
1272	CAGGAGTCC	2330	DRSSLTT 2830	RSDNLAR 3330	RSDNLRE 3830	0.04
1273	CAGGAGTCC	2331	ERGDLTT 2831	RSDNLAR 3331	RSDNLRE 3831	0.1
1274	GCATGGGAA	2332	QSANLSR 2832	RSDHLTT 3332	QSGSLTR 3832	0.306
1275	GCATGGGAA	2333	QRSNLVR 2833	RSDHLTT 3333	QSGSLTR 3833	0.326
1276	TAGGAAGAG	2334	RSDNLAR 2834	QRSNLVR 3334	RSDNLTT 3834	0.685
1277	GAAGAGGGG	2335	RSDHLAR 2835	RSDNLAR 3335	QSGNLTR 3835	0.421
1278	GAGTAGGCA	2336	QSGSLTR 2836	RSDNLRT 3336	RSDNLAR 3836	0.019
1279	GAGGTGTCA	2337	QSGDLRT 2837	RSDALAR 3337	RSDNLAR 3837	0.025

1282 TCGGTCGCC 2338 ERGDLTR 2838 DPGALVR 3338 RSDELRT 3838 1287 GTGGTAGGA 2339 QSGHLAR 2839 QSGALAR 3339 RSDALTR 3839 0.152 1288 CAGGGTGGC 2340 DRSHLTR 2840 QSSHLAR 3340 RSDNLTE 3840 1289 TAGGCAGTC 2341 DRSALTR 2841 OSGSLTR 3341 RSDNLTK 3841 1.37 1290 GTGGTGATA 2342 QSGALTQ 2842 RSHALTR 3342 RSDALTR 3842 24.05 1291 GTGGTGATA 2343 OOASLNA 2843 RSHALTR 3343 RSDALTR 3843 20.55 1292 TTGGATGGA 2344 QSGHLAR 2844 TSGNLVR 3344 RSDALTT 3844 1293 AAGGTAGGT 2345 TSGHLVR 2845 OSGALAR 3345 RSDNLTQ 3845 0.457 1294 AAGGTAGGT 2346 MSHHLSR 2846 QSGALAR 3346 RSDNLTQ 3846 1295 CAGGAGTCC 2347 DRSSLTT 2847 RSDNLAR 3347 RSDNLTE 3847 0.116 1296 CAGGAGTCC 2348 ERGDLTT 2848 RSDNLAR 3348 RSDNLTE 3848 37 1297 TAGGAAGAG 2349 RSDNLAR 2849 QRSNLVR 3349 RSDNLTK 3849 0.05 1298 CAGGACGTG 2350 RSDLATR 2850 DPGNLVR 3350 RSDNLTE 3850 0.05 1300 GTCTAGGTA 2351 QSGALTR 2851 RSDNLTK 3351 DRSALAR 3851 0.46 1302 CCGGCTGGA 2352 QSGHLTR 2852 QSSDLTR 3352 RSDTLRE 3852 0.05 1303 TAGGAGTTT 2353 QRSALAS 2853 RSDNLAR 3353 RSDNLTT 3853 0.088 1306 CTGGCCTTG 2354 RSDALTT 2854 DCRDLAR 3354 RSDALRE 3854 2.285 1308 TGGGCAGCC 2355 ERGTLAR 2855 QSGSLTR 3355 RSDHLTT 3855 0.305 1309 TAGGAGTTT 2356 QSSALAS 2856 RSDNLAR 3356 RSDNLTT 3856 0.184 1310 TAGGAGTTT 2357 TTSALAS 2857 RSDNLAR 3357 RSDNLTT 3857 0.075 1311 TGGGCAGCC 2358 ERGDLAR 2858 QSGSLTR 3358 RSDHLTT 3858 0.91 1312 GGGGCGTGA 2359 QSGHLTK 2859 RSDELQR 3359 RSDHLSR 3859 0.23 1313 GGGGCGTGA 2360 QSGHLTT 2860 RSDELQR 3360 RSDHLSR 3860 0.09 1314 GTACAGTAG 2361 RSDNLTT 2861 RSDNLRE 3361 QSSSLVR 3861 3.09 1315 GTACAGTAG 2362 RSDNLTT 2862 RSDNLTE 3362 QSSSLVR 3862 9.27 1318 ATGGTGTGT 2363 TSSHLAS 2863 RSDALAR 3363 RSDALAQ 3863 0.048 1319 ATGGTGTGT 2364 MSHHLTT 2864 RSDALAR 3364 RSDALAQ 3864 0.228 1320 TTGGGAGAG 2365 RSDNLAR 2865 QRAHLER 3365 RSDALTT 3865 0.044 1321 TTGGGAGAG 2366 RSDNLAR 2866 QRAHLER 3366 RADALMV 3866 0.127 1322 GTGGGAATA 2367 QSGALTQ 2867 QSGHLTR 3367 RSDALTR 3867 0.799 1323 GTGGGAATA 2368 QLTGLNQ 2868 QSGHLTR 3368 RSDALTR 3868 0.744 1324 GTGGGAATA 2369 QQASLNA 2869 QSHHLTR 3369 RSDALTR 3869 18.52 1325 TTGGTTGGT 2370 TSGHLVR 2870 TSGSLTR 3370 RSDALTK 3870 0.306

			50			
1326	TTGGTTGGT	2371	TSGHLVR 2871	QSSALTR 3371	RSDALTK 3871	4.385
1327	TTGGTTGGT	2372	TSGHLVR 2872	TSGSLTR 3372	RSDALTT 3872	0.566
1328	TTGGTTGGT	23.73	TSGHLVR 2873	QSSALTR 3373	RSDALTT 3873	7.95
1329	CTGGCCTGG	2374	RSDHLTT 2874	DRSDLTR 3374	RSDALRE 3874	0.68
1330	GAGGTGTGA	2375	QSGHLTT 2875	RSDALTR 3375	RSDNLAR 3875	0.175
1331	CTGGCCTGG	2376	RSDHLTT 2876	DCRDLAR 3376	RSDALRE 3876	0.388
1334	CCGGCGCTG	2377	RSDALRE 2877	RSSDLTR 3377	RSDDLRE 3877	0.31
1335	GACGCTGGC	2378	DRSHLTR 2878	QSSDLTR 3378	DSSNLTR 3878	1.4
1336	CGGGCTGGA	2379	QSGHLAR 2879	QSSDLTR 3379	RSDHLAE 3879	1.4
1337	CGGGCTGGA	2380	QSSHLAR 2880	QSSDLTR 3380	RSDHLAE 3880	0.235
1338	GGGATGGCG	2381	RSDELTR 2881	RSDALTQ 3381	RSDHLSR 3881	1.04
1339	GGGATGGCG	2382	RSDELTR 2882	RSDSLTQ 3382	RSDHLSR 3882	0.569
1340	GGGATGGCG	2383	RSDELTR 2883	RSDALTQ 3383	RSHHLSR 3883	0.751
1341	GGGATGGCG	2384	RSDELTR 2884	RSDSLTQ 3384	RSHHLSR 3884	4.1
1342	CAGGCGCAG	2385	RSDNLRE 2885	RSSDLTR 3385	RSDNLTE 3885	0.68
1343	CAGGCGCAG	2386	RSDNLTT 2886	RTSTLTR 3386	RSDNLTE 3886	37.04
1344	CCGGGCGAC	2387	DRSNLTR 2887	DRSHLAR 3387	RSDTLRE 3887	2.28
1346	GATGTGTGA	2388	QSGHLTT 2888	RSDALAR 3388	TSANLSR 3888	0.153
1347	CAGTGAATG	2389	RSDALTS 2889	QSHHLTT 3389	RSDNLTE 3889	8.23
1348	GGGTCACTG	2390	RSDALTA 2890	QAATLTT 3390	RSDHLSR 3890	2.58
1350	CAGTGAATG	2391	RSDALTQ 2891	QSGHLTT 3391	RSDNLTE 3891	74.1
1351	GGGTCACTG	2392	RSDALRE 2892	QSHDLTK 3392	RSDHLSR 3892	0.234
1352	GTGTGGGTC	2393	DRSALAR 2893	RSDHLTT 3393	RSDALTR 3893	0.023
1353	CTGGCGAGA	2394	QSGHLNQ 2894	RSDELQR 3394	RSDALRE 3894	56.53
1354	CTGGCGAGA	2395	KNWKLQA 2895	RSDELQR 3395	RSDALRE 3895	20.85
1355	GCTTTGGCA	2396	QSGSLTR 2896	RSDALTT 3396	QSSDLTR 3896	0.172
1356	GCTTTGGCA	2397	QSGSLTR 2897	RADALMV 3397	QSSDLTR 3897	0.034
1357	GACTTGGTA	2398	QSSSLVR 2898	RSDALTT 3398	DRSNLTR 3898	0.032
1358	GACTTGGTA	2399	QSSSLVR 2899	RADALMV 3399	DRSNLTR 3899	0.05
1360	CAGTTGTGA	2400	QSGHLTT 2900	RADALMV 3400	RSDNLTE 3900	41.7
1361	AAGGAAAAA	2401	QKTNLDT 2901	QSGNLQR 3401	RSDNLTQ 3901	0.835
1362	AAGGAAAAA	2402	QSGNLNQ 2902	QSGNLQR 3402	RSDNLTQ 3902	0.332
1363	AAGGAAAAA	2403	QKTNLDT 2903	QRSNLVR 3403	RSDNLTQ 3903	74.1

			31			
1364	ATGGGTGAA	2404	QSANLSR 2904	QSSHLAR 3404	RSDALAQ 3904	1.22
1365	ATGGGTGAA	2405	QRSNLVR 2905	QSSHLAR 3405	RSDALAQ 3905	0.152
1366	ATGGGTGAA	2406	QSANLSR 2906	TSGHLVR 3406	RSDALAQ 3906	22.63
1367	ATGGGTGAA	2407	QRSNLVR 2907	TSGHLVR 3407	RSDALAQ 3907	1.028
1368	CTGGGAGAT	2408	QSSNLAR 2908	QRAHLER 3408	RSDALRE 3908	0.051
1369	CTGGGAGAT	2409	QSSNLAR 2909	QSGHLTR 3409	RSDALRE 3909	0.227
1373	GTGGTGGGC	2410	DRSHLTR 2910	RSDALSR 3410	RSDALTR 3910	0.025
1374	CCGGCGGTG	2411	RSDALTR 2911	RSDELQR 3411	RSDELRE 3911	0.003
1375	CCGGCGGTG	2412	RSDALTR 2912	RSDDLQR 3412	RSDELRE 3912	0.008
1376	CCGGCGGTG	2413	RSDALTR 2913	RSDERKR 3413	RSDELRE 3913	0.858
1377	CCGGCGGTG	2414	RSDALTR 2914	RSDELQR 3414	RSDDLRE 3914	0.012
1378	CCGGCGGTG	2415	RSDALTR 2915	RSDDLQR 3415	RSDDLRE 3915	0.012
1379	CCGGCGGTG	2416	RSDALTR 2916	RSDERKR 3416	RSDDLRE 3916	0.25
1380	GCCGACGGT	2417	QSSHLTR 2917	DRSNLTR 3417	ERGDLTR 3917	0.076
1381	GCCGACGGT	2418	QSSHLTR 2918	DPGNLVR 3418	ERGDLTR 3918	0.23
1382	GCCGACGGT	2419	QSSHLTR 2919	DRSNLTR 3419	DCRDLAR 3919	3.1
1383	GCCGACGGT	2420	QSSHLTR 2920	DPGNLVR 3420	DCRDLAR 3920	1.74
1384	GGTGTGGGC	2421	DRSHLTR 2921	RSDALSR 3421	MSHHLSR 3921	0.013
1385	TGGGCAAGA	2422	QSGHLNQ 2922	QSGSLTR 3422	RSDHLTT 3922	0.229
1386	TGGGCAAGA	2423	ENWKLQA 2923	QSGSLTR 3423	RSDHLTT 3923	0.193
1389	CTGGCCTGG	2424	RSDHLTT 2924	DCRDLAR 3424	RSDALRE 3924	0.175
1393	TGGGAAGCT	2425	QSSDLRR 2925	QSGNLAR 3425	RSDHLTT 3925	0.1
1394	TGGGAAGCT	2426	QSSDLRR 2926	QSGNLAR 3426	RSDHLTK 3926	0.04
1395	GAAGAGGGA	2427	QSGHLQR 2927	RSDNLAR 3427	QSGNLAR 3927	0.025
1396	GAAGAGGGA	2428	QRAHLAR 2928	RSDNLAR 3428	QSGNLAR 3928	0.107
1397	GAAGAGGGA	2429	QSSHLAR 2929	RSDNLAR 3429	QSGNLAR 3929	0.14
1398	TAATGGGGG	2430	RSDHLSR 2930	RSDHLTT 3430	QSGNLRT 3930	0.065
1399	TGGGAGTGT	2431	TKQHLKT 2931	RSDNLAR 3431	RSDHLTT 3931	0.1
1400	CCGGGTGAG	2432	RSDNLAR 2932	QSSHLAR 3432	RSDDLRE 3932	0.371
1401	GAGTTGGCC	2433	ERGTLAR 2933	RADALMV 3433	RSDNLAR 3933	0.167
1402	CTGGAGTTG	2434	RGDALTS 2934	RSDNLAR 3434	RSDALRE 3934	0.15
1403	ATGGCAATG	2435	RSDALTQ 2935	QSGSLTR 3435	RSDALTQ 3935	0.07
1404	GAGGCAGGG	2436	RSDHLSR 2936	QSGSLTR 3436	RSDNLAR 3936	0.022
	•					

1405 GAGGCAGGG 2437 RSDHLSR 2937 QSGDLTR 3437 RSDNLAR 3937 0.045 1406 GAAGCGGAG 2438 RSDNLAR 2938 RSDELTR 3438 QSGNLAR 3938 0.025 1407 GCGGGCGCA 2439 OSGSLTR 2939 DRSHLAR 3439 RSDERKR 3939. 0.585 1408 CCGGCAGGG 2440 RSDHLSR 2940 QSGSLTR 3440 RSDELRE 3940 0.305 1409 CCGGCAGGG 2441 RSDHLSR 2941 QSGSLTR 3441 RSDDLRE 3941 0.153 1410 CCGGCGGCG 2442 RSDELTR 2942 RSDELQR 3442 RSDELRE 3942 0.814 1411 TGAGGCGAG 2443 RSDNLAR 2943 DRSHLAR 3443 QSGHLTK 3943 0.282 1412 CTGGCCGTG 2444 RSDSLLR 2944 ERGTLAR 3444 RSDALRE 3944 0.172 1413 CTGGCCGCG 2445 RSDELTR 2945 DRSDLTR 3445 RSDALRE 3945 0.152 1414 CTGGCCGCG 2446 RSDELTR 2946 ERGTLAR 3446 RSDALRE 3946 0.914 1415 GCGGCCGAG 2447 RSDNLAR 2947 DRSDLTR 3447 RSDELQR 3947 0.102 1416 GCGGCCGAG 2448 RSDNLAR 2948 ERGTLAR 3448 RSDELQR 3948 0.153 1417 GAGTTGGCC 2449 ERGTLAR 2949 RGDALTS 3449 RSDNLAR 3949 1.397 1418 CTGGAGTTG 2450 RADALMV 2950 RSDNLAR 3450 RSDALRE 3950 0.241 1422 GGGTCGGCG 2451 RSDELTR 2951 RSDDLTT 3451 RSDHLSR 3951 0.064 1423 GGGTCGGCG 2452 RSDELTR 2952 RSDDLTK 3452 RSDHLSR 3952 0.034 1424 CAGGGCCCG 2453 RSDELRE 2953 DRSHLAR 3453 RSDNLRE 3953 1427 CAGGGCCCG 2454 RSDDLRE 2954 DRSHLAR 3454 RSDNLTE 3954 0.271 1428 TGAGGCGAG 2455 RSDNLAR 2955 DRSHLAR 3455 QSVHLQS 3955 0.102 1429 TGAGGCGAG 2456 RSDNLAR 2956 DRSHLAR 3456 QSGHLTT 3956 0.074 1430 TCGGCCGCC 2457 ERGTLAR 2957 DRSDLTR 3457 RSDDLTK 3957 0.352 1431 TCGGCCGCC 2458 ERGTLAR 2958 DRSDLTR 3458 RSDDLAS 3958 1432 TCGGCCGCC 2459 ERGTLAR 2959 ERGTLAR 3459 RSDDLTK 3959 1.778 1434 CTGGCCGTG 2460 RSDSLLR 2960 DRSDLTR 3460 RSDALRE 3960 0.051 1435 TAATGGGGG 2461 RSDHLSR 2961 RSDHLTT 3461 QSGNLTK 3961 0.057 1436 TGGGAGTGT 2462 TSDHLAS 2962 RSDNLAR 3462 RSDHLTT 3962 0.026 1439 GGAGTGTTA 2463 QRSALAS 2963 RSDALAR 3463 QSGHLQR 3963 0.075 1440 GGAGTGTTA 2464 QSGALTK 2964 RSDALAR 3464 QSGHLQR 3964 0.035 1441 ATAGCTGGG 2465 RSDHLSR 2965 QSSDLTR 3465 QSGALTQ 3965 0.262 1442 TGCTGGGCC 2466 ERGTLAR 2966 RSDHLTT 3466 DRSHLTK 3966 0.36 1443 TGGAAGGAA 2467 QSGNLAR 2967 RSDNLTQ 3467 RSHHLTT 3967 0.22 1444 TGGAAGGAA 2468 QSGNLAR 2968 RSDNLTQ 3468 RSSHLTT 3968 1445 TGGAAGGAA 2469 QSGNLAR 2969 RLDNLTA 3469 RSHHLTT 3969 0.182

			-			
1446	TGGAAGGAA	2470	QSGNLAR 2970	RLDNLTA 3470	RSSHLTT 3970	0.42
1454	GGAGAGGCT	2471	QSSDLRR 2971	RSDNLAR 3471	QSGHLQR 3971	0.01
1455	CGGGATGAA	2472	QSANLSR 2972	TSGNLVR 3472	RSDHLRE 3972	0.043
1456	GGAGAGGCT	2473	QSSDLRR 2973	RSDNLAR 3473	QRAHLAR 3973	0.016
1457	GCAGAGGAA	2474	QSANLSR 2974	RSDNLAR 3474	QSGSLTR 3974	0.014
1460	TTGGGGGAG	2475	RSDNLAR 2975	RSDHLTR 3475	RADALMV 3975	0.007
1461	GACGAGGAG	2476	RSANLAR 2976	RSDNLTR 3476	DRSNLTR 3976	0.014
1462	CGGGATGAA	2477	QSGNLAR 2977	TSGNLVR 3477	RSDHLRE 3977	0.05
1463	GAGGCTGTT	2478	TTSALTR 2978	QSSDLTR 3478	RSDNLAR 3978	0.003
1464	GACGAGGAG	2479	RSDNLAR 2979	RSDNLTR 3479	DRSNLTR 3979	0.002
1465	CTGGGAGTT	2480	TTSALTR 2980	QSGHLQR 3480	RSDALRE 3980	0.018
1466	CTGGGAGTT	2481	NRATLAR 2981	QSGHLQR 3481	RSDALRE 3981	0.017
1468	GGTGATGTC	2482	DRSALTR 2982	TSGNLVR 3482	MSHHLSR 3982	0.08
1469	GGTGATGTC	2483	DRSALTR 2983	TSGNLVR 3483	TSGHLVR 3983	0.28
1470	GGTGATGTC	2484	DRSALTR 2984	TSGNLVR 3484	QRAHLER 3984	0.156
1471	CTGGTTGGG	2485	RSDHLSR 2985	QSSALTR 3485	RSDALRE 3985	0.09
1472	TTGAAGGTT	2486	TTSALTR 2986	RSDNLTQ 3486	RADALMV 3986	3.22
1473	TTGAAGGTT	2487	TTSALTR 2987	RSDNLTQ 3487	RSDSLTT 3987	0.47
1474	TTGAAGGTT	2488	QSSALAR 2988	RSDNLTQ 3488	RADALMV 3988	1.39
1475	TTGAAGGTT	2489	QSSALAR 2989	RSDNLTQ 3489	RLHSLTT 3989	0.39
1476	TTGAAGGTT	2490	QSSALAR 2990	RSDNLTQ 3490	RSDSLTT 3990	0.305
1477	GCAGCCCGG	2491	RSDHLRE 2991	DRSDLTR 3491	QSGSLTR 3991	2.31
1479	GAAAGTTCA	2492	QSHDLTK 2992	MSHHLTQ 3492	QSGNLAR 3992	37.04
1480	GAAAGTTCA	2493	NKTDLGK 2993	TSGHLVQ 3493	QSGNLAR 3993	62.5
1481	GAAAGTTCA	2494	NKTDLGK 2994	TSDHLAS 3494	RSDELRE 3994	37.04
1482	CCGTGTGAC	2495	DRSNLTR 2995	TSDHLAS 3495	RSDELRE 3995	111.1
1483	CCGTGTGAC	2496	DRSNLTR 2996	MSHHLTT 3496	RSDELRE 3996	20.8
1484	GAAGTGGTA	2497	QSSSLVR 2997	RSDALSR 3497	QSGNLAR 3997	0.01
1485	AAGTGAGCT	2498	QSSDLRR 2998	QSGHLTT 3498	RSDNLTQ 3998	1.537
1486	GGGTTTGAC	2499	DRSNLTR 2999	TTSALAS 3499	RSDHLSR 3999	0.085
1487	TTGAAGGTT	2500	TTSALTR 3000	RSDNLTQ 3500	RLHSLTT 4000	0.188
1488	AAGTGGTAG	2501	QSSDLRR 3001	QSGHLTT 3501	RLDNRTQ 4001	5.64
1490	CTGGTTGGG	2502	RSDHLSR 3002	TSGSLTR 3502	RSDALRE 4002	0.04

1491	AAGGGTTCA	2503	NKTDLGK 3003	DSSKLSR 3503	RLDNRTA 4003	4.12
1492	AAGTGGTAG	2504	RSDNLTT 3004	RSDHLTT 3504	RSDNLTQ 4004	1.37
1493	AAGTGGTAG	2505	RSDNLTT 3005	RSDHLTT 3505	RLDNRTQ 4005	15.09
1494	GGGTTTGAC	2506	DRSNLTR 3006	QRSALAS 3506	RSDHLSR 4006	0.255
1496	TTGGGGGAG	2507	RSDNLAR 3007	RSDHLTR 3507	RSDALTT 4007	0.065
1497	GAGGCTCTT	2508	QSSALAR 3008	QSSDLTR 3508	RSDNLAR 4008	0.007
1498	GAGGTTGAT	2509	QSSNLAR 3009	QSSALTR 3509	RSDNLAR 4009	0.101
1499	GAGGTTGAT	2510	QSSNLAR 3010	TSGALTR 3510	RSDNLAR 4010	0.02
1500	GCAGAGGAA	2511	QSGNLAR 3011	RSDNLAR 3511	QSGSLTR 4011	0.003
1522	GCAATGGGT	2512	TSGHLVR 3012	RSDALTQ 3512	QSGDLTR 4012	0.08