1.18, 1.21, 1.23, 1.25, 1.30

1.18 Two Hermitian operators anticommute:

$$\{A,B\} = AB + BA = 0.$$

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove or illustrate your assertion.

1.21 a. Compute

$$\langle (\Delta S_x)^2 \rangle \equiv \langle S_x^2 \rangle - \langle S_x \rangle^2$$
,

where the expectation value is taken for the S_z + state. Using your result, check the generalized uncertainty relation

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \geq \frac{1}{4} |\langle [A, B] \rangle|^2,$$

with $A \to S_x$, $B \to S_y$.

- b. Check the uncertainty relation with $A \to S_x$, $B \to S_y$ for the $S_x +$ state.
- **1.23** Evaluate the *x-p* uncertainty product $\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle$ for a one-dimensional particle confined between two rigid walls

$$V = \begin{cases} 0 & \text{for } 0 < x < a, \\ \infty & \text{otherwise.} \end{cases}$$

Do this for both the ground and excited states.

1.25 Consider a three-dimensional ket space. If a certain set of orthonormal kets, say, $|1\rangle$, $|2\rangle$, and $|3\rangle$, are used as the base kets, the operators A and B are represented by

$$A \doteq \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{array}\right), \quad B \doteq \left(\begin{array}{ccc} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{array}\right)$$

with a and b both real.

- a. Obviously A exhibits a degenerate spectrum. Does B also exhibit a degenerate spectrum?
- b. Show that A and B commute.
- c. Find a new set of orthonormal kets which are simultaneous eigenkets of both *A* and *B*. Specify the eigenvalues of *A* and *B* for each of the three eigenkets. Does your specification of eigenvalues completely characterize each eigenket?

1.30 a. Let x and p_x be the coordinate and linear momentum in one dimension. Evaluate the classical Poisson bracket
$[x,F(p_x)]_{ m classical}.$
b. Let x and p_x be the corresponding quantum-mechanical operators this time. Evaluate the commutator
$\left[x, \exp\left(\frac{ip_x a}{\hbar}\right)\right].$
c. Using the result obtained in (b), prove that
$\exp\left(\frac{ip_x a}{\hbar}\right) x'\rangle (x x'\rangle = x' x'\rangle)$
is an eigenstate of the coordinate operator <i>x</i> . What is the corresponding eigenvalue?