Opções: cálculo a partir da flutuação empírica da volatilidade

Josué Xavier de Carvalho Rosane Riera Freire[†] Luca Moriconi*

†Pontifícia Universidade Católica - Rio *Universidade Federal do Rio de Janeiro

2010

Sumário

- Introdução
 - Precificação de opções
 - Derivação da equação de BS
 - Críticas ao BS
- Apreçamento do prêmio a partir da flutuação empírica da volatilidade
 - Teoria
- Resultados para IBOVESPA
 - Evolução do índice BOVESPA
 - Retornos
 - Volatilidade diária
- Resultados
- Pespectivas futuras

Introdução

Definição

Contrato que dá o direito (mas não o dever), mediante o pagamento de um prêmio, de comprar ou vender um ativo a determinado preço até/em uma data futura.

Se caracteriza por

- V prêmio (ou valor da opção).
- E preco de exercício ou Strike.
- T tempo de maturação (data limite para exercício do direito).

Problema

Como determinar o valor do prêmio de uma opção?

Modelo de Black-Scholes (BS)

Modelo pioneiro para precificaç ao de opções Black, F. & Scholes, M. (1973), Journal of Political Economy, **81**, 637-656.

Hipóteses

- Taxa livre de juros r é constante.
- Volatilidade σ é constante.
- Preço S do ativo segue Movimento Browniano geomético

$$\frac{dS}{S} = \mu dt + \sigma dZ \tag{1}$$

- O ativo não paga dividendos ou outros benefícios (ausência de saltos nos preços).
- A opção é do tipo européia (Exercício na data de vencimento).
- Não há custo de transação (Número ilimitado de transações).
- É possível negociar quantidade fracionária do ativo.

Derivação da equação de Bs

Proteção contra o risco

- Monta-se carteira $\rightarrow \Pi = -V + \Delta S$
- Ausência de risco: $\Delta = \frac{\partial V}{\partial S}$.

Se a carteira evolui livre de risco, então

$$d\Pi = r\Pi dt \tag{2}$$

Usando o Lemma de Itô

$$d\Pi = \left(-\frac{\partial V}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right) \tag{3}$$

$$d\Pi = r\Pi dt = r\left(-V + \frac{\partial V}{\partial S}\right) dt \tag{4}$$

A equação de Black & Scholes

A equação de Black & Scholes

$$r\frac{\partial V}{\partial S}S + \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - rV = 0$$
 (5)

Críticas

- A volatilidade varia ao longo do tempo.
- A distribuição dos preços não segue uma distribuição log-normal.

Críticas ao BS

Volatilidade varia ao longo do tempo

Figure: Cada ponto corresponde a volatilidade anualizada calculada no período de um

Densidade de retornos

A distribuição de retornos não segue uma gaussiana.

Figure: Ajuste:
$$P(x) \propto \left[1 - (1 - q) \left(\frac{x}{B}\right)^2\right]^{1/(1-q)}$$
, com $q = 1.56$ e $B = 0.32$.

Cálculo a partir da flutuação empírica da volatilidade

Proposta

Retorno logarítmico modelado por

$$\ln \frac{S_t}{S_0} = \mu t + x_t,$$
(6)

sendo constituído de uma parte determinística (tendência μ , constante) mais uma parte estocástica x_t governada por

$$\frac{dx}{dt} = f(x, t)\eta(t) \quad \text{Langevin} \tag{7}$$

sendo $\eta(t)$ é um ruído branco e $x \in \rho(x, t)$ e x(t = 0) = 0.

$$\frac{\partial \rho}{\partial t} = \frac{1}{2} \frac{\partial^2 (f^2 \rho)}{\partial x^2} \quad \text{Fokker-Planck} \tag{8}$$

Cálculo a partir da flutuação empírica da volatilidade

Equação Black-Schole generalizada

Usando o mesma esquema aplicado para o BS tradicional obtemos

$$r\frac{\partial V}{\partial S}S + \frac{\partial V}{\partial t} + \frac{1}{2}f^2S^2\frac{\partial^2 V}{\partial S^2} - rV = 0$$
(9)

Cuja solução é

$$V = \exp[-r(t^* - t)] \langle \Theta(S \exp(\zeta) - E)(S \exp(\zeta) - E) \rangle, \tag{10}$$

onde

$$\zeta = \int_{t}^{t^*} dt \left(\dot{x} + r - \frac{1}{2} f^2 \right) \tag{11}$$

$$\zeta = x(t^*) - x(t) + r(t^* - t) - \frac{1}{2} \int_{t}^{t^*} dt \, f^2 \tag{12}$$

Falta estimar $f(x, t)^2$

$$\frac{dx}{dt} = f(x, t)\eta(t) \tag{13}$$

Usando o lemma de Itô em e^x e multiplicando por e^{-x} obtemos

$$e^{-x}\frac{d}{dt}e^{x} = \dot{x} + \frac{1}{2}f^{2}.$$
 (14)

Discretizando a derivada ($\Delta t = 1$ min.)

$$\frac{1}{2} \int_{t}^{t*} dt f^{2} \simeq -(x_{N} - x_{0}) - \left[N - \sum_{i=0}^{N-1} \exp(\delta x_{i}) \right]. \tag{15}$$

Como $\Delta = 1$ min, N = T. Logo,

$$\zeta = 2(x_T - x_0) + rT + T - \sum_{i=0}^{T-1} \exp(\delta x_i).$$
 (16)

$$\delta x_i \equiv x_{i+1} - x_i = \ln(S_{i+1}/S_i) - \mu$$

Como extrair δx_i da série de preços?

- A partir da série de preços é gerada a série de retornos $\delta z_i = \ln S_i/S_{i-1} = \mu + \delta x_i$.
- A série de retornos é dividida em sub-séries de tamanho T (tempo de maturação).
- Para cada sub-série determina-se a tendência:

$$\mu = \delta z_m = \frac{1}{T} \sum_{i}^{T} \delta z_i \tag{17}$$

• Dentro de cada sub-série: $\delta x_i = \delta z_i - \delta z_m$

12 / 20

Resultados para BOVESPA

- Utilizamos a série de preço do índice BOVESPA entre julho de 2006 a julho de 2008 catalogados minuto a minuto (total de 213900 dados).
- Prêmios são estimados a partir de

$$V = \exp[-r(t^* - t)] \langle \Theta(S \exp(\zeta) - E)(S \exp(\zeta) - E) \rangle, \qquad (18)$$

$$\zeta = 2(x_T - x_0) + rT + T - \sum_{i=0}^{T-1} \exp(\delta x_i)$$
 (19)

 Médias: consideramos 3000 trajetórias sucessivamente deslocadas uma da outra de uma hora.

Detalhes extras

- Taxa livre de risco usada → Taxa DI
- Desvio padrão considerando toda série δx_i de retornos sem tendência $\sigma_0 = 5.9 \times 10^{-4}$.
- Dados para os quais $\delta x_i > 10\sigma_0$ foram descartados (um total de 78 dados).

Evolução do índice BOVESPA

Retornos

Volatilidade diária

nome	Е	MKT	EP	EP*	BS
BOVAG44	44	8.09	7.68	7.68	7.54
BOVAG46	46	6.24	5.68	5.68	5.54
BOVAG52	52	1.28	0.53	0.56	0.54
BOVAG54	54	0.40	0.15	0.17	0.09

Opções lançadas em 01 de julho de 2009 com vencimento em 20 de julho de 2009 (T=13 dias), r=8.87% a.a, S=51.54.

- Volatilidade da série histórica = 19.73%
- Volatilidade da série entrei Janeiro 2009 a Maio 2009 = 19.05%

$$g = \frac{\text{Vol. atual}}{\text{Vol. histórica}} \sim 1.04$$
 (20)

• Resultados para EP*: $\delta x_i \rightarrow g \delta x_i$.

nome	Е	MKT	EP	EP*	BS
BOVAH42	42	8.56	8.12	8.14	7.50
BOVAH54	54	1.04	0.23	0.26	0.12
BOVAH55	55	0.74	0.16	0.18	0.06
BOVAH59	59	1.01	0.01	0.01	0.00

Opções lançadas em 22 de junho de 2009 com vencimento em 17 de agosto de 2009 (T = 39 dias), r = 8.89% a.a, S = 49.50.

NOME	Е	MKT	EP	EP*	BS
BOVAD34	34	8.23	7.93	7.94	7.80
BOVAD35	35	7.12	6.93	6.94	6.80
BOVAD38	38	4.84	3.94	3.94	3.80
BOVAD39	39	3.80	2.96	2.97	2.83
BOVAD42	42	2.12	0.58	0.60	0.59

Opções lançadas em 25 de marco de 2009 com vencimento em 20 de abril de 2009 (T = 17 dias), r = 10.78% a.a, S = 41.80.

Futuramente

Pretendemos obter f(x, t) a partir dos coeficientes de Kramers-Moyal.