Multiple Choice Questions

[MHT-CET 2022]

- The combined equation of the lines passing through the origin and making an acute 1.
 - a) $x^2 + 2xy \sec 2\alpha + y^2 = 0$
 - c) $x^2 + 2xy \tan 2\alpha + y^2 = 0$

- b) $x^2 2xy \tan 2 \alpha + y^2 = 0$
- d) $x^2 2xy \sec 2 \alpha + y^2 = 0$
- If the slope of one of the two lines $\frac{x^2}{a} + \frac{2xy}{h} + \frac{y^2}{h} = 0$ is twice that of the other, then $ab: h^2 =$
 - a) 1:2
- b) 2:1
- c) 8:9
- d) 9:8
- The joint equation of two lines passing through the origin and perpendicular to the lines given by $2x^2 + 5xy + 3y^2 = 0$ is
 - a) $3x^2 5xy 2y^2 = 0$

b) $3x^2 + 5xy + 2y^2 = 0$

c) $3x^2 - 5xy + 2y^2 = 0$

- d) $2x^2 5xy + 3y^2 = 0$
- If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ is two times the other,
- b) $8h^2 = 9ab^2$
- c) 8h = 9ab
- d) $8h = 9ab^2$
- The joint equation of the lines passing through the origin and trisecting the first 5. quadrant is
 - a) $x^2 \sqrt{3} xy y^2 = 0$

b) $\sqrt{3} x^2 - 4xy + \sqrt{3} y^2 = 0$

c) $x^2 + \sqrt{3} xy - y^2 = 0$

- d) $3x^2 y^2 = 0$
- If sum of the slopes of lines represented by $x^2 2xy \tan \theta y^2 = 0$ is 4 then $\theta = \dots$
 - a) tan^{-1} (-2)
- b) tan⁻¹ (2)
- c) $tan^{-1}(1)$
- d) $tan^{-1}(-1)$
- If the lines $x^2 4xy + y^2 = 0$ and x + y = 10 contain the sides of an equilateral triangle, then the area of the equilateral triangle is

- a) $\frac{5\sqrt{2}}{\sqrt{3}}$ sq. units b) $\frac{25}{\sqrt{3}}$ sq. units c) $\frac{50}{\sqrt{3}}$ sq. units d) $\frac{25\sqrt{2}}{\sqrt{3}}$ sq. units
- If the slopes of the lines $kx^2 4xy + 5y^2 = 0$ differ by 2, then $k = \dots$

- c) $\frac{21}{5}$
- The joint equation of pair of lines which bisect the angle between the lines
 - $x^2 + 3xy + 2y^2 = 0$ is

b) $2x^2 + 3xy - 2y^2 = 0$

a) $2x^2 - 3xy - 2y^2 = 0$

d) $3x^2 - 2xy - 3y^2 = 0$

- If θ is an acute angle between the lines $kx^2 4xy + y^2 = 0$ and $\tan \theta = \frac{1}{2}$, then the value of 10.
 - k is

U

a) 3

- b) -3
- c) 21
- d) 4

[MHT-CET 2021]		π	1	1.2
	$+2hxy+by^2=0 \text{ is}$	4	then 4	n* =

- If the acute angle between the lines given by $ax^2 + 2hxy$ d) (a-2b)(2a+b)11. c) $a^2 + 6ab + b^2$
- If the equation $3x^2 kxy 3y^2 = 0$ represents the bisectors of angles between the lines
- $x^2 3xy 4y^2 = 0$ then the value of k is c) 6
- If the two lines given by $ax^2 + 2hxy + by^2 = 0$ make inclinations α and β then tan $(\alpha + \beta)$ 13.
 - · · · · · · · · · c) $\frac{h}{a-h}$ b) $\frac{2h}{a+b}$ a) $\frac{h}{a+b}$
- If $(m+3n)(3m+n)=4h^2$, then the acute angle between the lines represented by mx^2+ 14. $2hxy + ny^2 = 0 \text{ is}$
 - c) tan⁻¹ (3/2) d) $tan^{-1}(1/2)$ b) $\frac{\pi^c}{6}$ a) $\frac{\pi^c}{2}$
- Area of the triangle formed by the lines $y^2 9xy + 18x^2 = 0$ and y = 9 is 15. d) 27 sq. units b) 27/2 sq. units c) 27/4 sq. units a) 27/3 sq. units
- If two lines represented by $ax^2 + 2hxy + by^2 = 0$ make angles α and β with positive 16. direction of x – axis then $\tan (\alpha + \beta) =$
 - b) $\frac{2h}{a-h}$ c) $\frac{h}{a+h}$ a) $\frac{2h}{b-a}$ d) $\frac{2h}{a+h}$
- If $4ab = 3h^2$, then the ratio of the slopes of the lines represented by $ax^2 + 2hxy + by^2 = 0$ 17.
 - a) $\sqrt{2}:1$ c) $\sqrt{3}:1$ b) 2:1
- If the lines represented by $ax^2 bxy y^2 = 0$ make angles α and β with the positive direction of x – axis then $\tan (\alpha + \beta) = ...$
 - a) $\frac{a}{a+b}$ b) $\frac{b}{1+h}$ c) $\frac{b}{1+a}$ d) $\frac{-b}{1+a}$
- If the angle between the lines is $\frac{\pi^c}{4}$ and slope of one of the lines is $\frac{1}{2}$, then slope of the 19.
- a) 3 or -1/3 b) 4 or -1/4 c) 2 or -1/2
- If one of the lines given by $kx^2 + xy y^2 = 0$ bisects the angle between the co-ordinate 20. b) 0 and 2
- c) 0 and -2 d) -1 and 2 [MHT-CET 2020] 21.
- If the equation $x^2 3xy + \lambda y^2 + 3x 5y + 2 = 0$ represents a pair of lines, where λ is a real number and θ is angle between them, then value of $\csc^2\theta$ is

d) 1/3

Pair	of straight lines		112	0 is three times their product,
34.	If sum of the slo	pes of the lines g	iven by a -1 -7	
	then p =		-> 1/	a) 74
	a) 3	6) 4	c) $\frac{1}{4}$	re coincident, then h =
35.	If lines represen	ted by equation ($5ax^2 + 2hxy + e^{-y}$ c) ± 1	are coincident, then $h =$ d) e^2

If the acute angle between the lines $ax^2 + 2hxy + by^2 = 0$ is 60° , then (a + 3b)(3a + b) =36. b) 2h² The joint equation of the pair of lines passing through A (1, 1) and which are parallel to

37. the co-ordinate axes is b) $x^2 - 2xy + y^2 = 0$ c) $x^2 - 2xy - 1 = 0$ d) xy - x - y + 1 = 0a) x + 2xy + y = 0

If line qx - py + r = 0 is perpendicular to one of the lines represented by $ax^2 + 2hxy + by^2$ 38. = 0 then b) $ap^2 - 2hpq - bq^2 = 0$

a)
$$ap^2 + 2hpq + bq^2 = 0$$

b) $ap^2 - 2hpq - bq^2 = 0$
c) $ap^2 + 2hpq - bq^2 = 0$
d) $bp^2 - 2hpq + aq^2 = 0$

The joint equation of lines through the origin having slopes $1 + \sqrt{3}$ and $1 - \sqrt{3}$ is

a)
$$2x^2 + 2xy + y^2 = 0$$
 b) $2x^2 + 2xy - y^2 = 0$ c) $2x^2 + xy + y^2 = 0$ d) $x^2 + 2xy + y^2 = 0$

[MHT-CET 2018]

40. The line 5x + y - 1 = 0 coincides with one of the lines given by $5x^2 + xy - kx - 2y + 2 = 0$. then the value of k is

a) - 11b) 31 c) 11 d) - 31

If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ is two times the other, then 41. a) $8h^2 = 9ab$ b) $8h^2 = 9ab^2$ c) 8h = 9abd) $8h = 9ab^2$

The point of intersection of lines represented by $x^2 - y^2 + x + 3y - 2 = 0$ is 42.

a) (1,0) b) (0, 2) c) $(-\frac{1}{2}, \frac{3}{2})$ d) $(1_2, 1_2)$

[MHT-CET 2017]

43. O(0,0), A (1, 2), B (3, 4) are the vertices of ΔOAB . The joint equation of the altitude and

a)
$$x^2 + 7xy - y^2 = 0$$

b) $x^2 + 7xy + y^2 = 0$
c) $3x^2 - xy - 2y^2 = 0$
If lines represented by equation 2

If lines represented by equation $px^2 - qy^2 = 0$ are distinct, then b) pq < 0

If slopes of lines represented by $kx^2 + 5xy + y^2 = 0$ differ by 1, then k = 045. c) 6

IMHT-CET 2016]

46. The joint equation of lines passing through the origin and trisecting the first quadrant

a)
$$x^2 + \sqrt{3} xy - y^2 = 0$$

c) $\sqrt{3} x^2 - 4xy + \sqrt{3} y^2 = 0$
b) $x^2 - \sqrt{3} xy - y^2 = 0$

d) $3x^2 - y^2 = 0$

The joint equation of bisectors of angle between lines x = 5 and y = 3 is

a)
$$(x-3)(y-3)=0$$

c)
$$xy = 0$$

b)
$$x^2 - y^2 - 10x + 6y + 16 = 0$$

d)
$$xy - 5x - 3y + 15 = 0$$

Which of the following equations does not represent a pair of lines? 48.

a)
$$x^2 - x = 0$$

$$b) xy - x = 0$$

c)
$$y^2 - x + 1 = 0$$

d)
$$xy + x + y + 1 = 0$$

[MHT-CET 2015] (JEE - 2015)

Let L be the line passing through the point P(1, 2) such that its intercepted segment 49. between the co-ordinate axes is bisected at P. If L_1 is the line perpendicular to L and passing through the point (-2, 1) then the point of intersection of \hat{L} and \hat{L}_1 is

a)
$$\left(\frac{4}{5}, \frac{12}{5}\right)$$

a)
$$\left(\frac{4}{5}, \frac{12}{5}\right)$$
 b) $\left(\frac{3}{5}, \frac{23}{10}\right)$ c) $\left(\frac{11}{20}, \frac{29}{10}\right)$ d) $\left(\frac{3}{10}, \frac{17}{5}\right)$

c)
$$\left(\frac{11}{20}, \frac{29}{10}\right)$$

d)
$$\left(\frac{3}{10}, \frac{17}{5}\right)$$

A straight line L through the point (3, -2) is inclined at an angle of 60° to the line 50. $\sqrt{3}$ x+y = 1. If L also intersects the axis, then the equation of L is

a)
$$y + \sqrt{3} x + 2 - 3\sqrt{3} = 0$$

b)
$$\sqrt{3} y + x - 3 + 2\sqrt{3} = 0$$

c)
$$y - \sqrt{3} x + 2 + 3\sqrt{3} = 0$$

d)
$$\sqrt{3} y - x + 3 + 2 \sqrt{3} = 0$$

[MHT-CET 2014] (JEE - 2014)

If a line intercepted between the co-ordinated axes is trisected at a point A (4, 3), which 51. is nearer to x – axis, then its equation is

a)
$$4x - 3y = 7$$

b)
$$3x + 2y = 18$$

c)
$$3x + 8y = 36$$

d)
$$x + 3y = 13$$

Let a, b, c and d be non – zero numbers. If the point of intersection of the lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0 lies in the fourth quadrant and is equidistant from the two axes, then

a)
$$3bc - 2ad = 0$$

b)
$$3bc + 2ad = 0$$

c)
$$2bc - 3ad = 0$$

d)
$$2bc + 3ad = 0$$

Let PS be the median of the triangle with vertices P (2, 2), Q (6, -1) and R (7, 3). The equation of line passing through (1, -1) and parallel to PS is 53. b) 2x - 9y - 11 = 0 c) 4x - 7y - 11 = 0 d) 2x + 9y + 7 = 0

a)
$$4x + 7y + 3 = 0$$

b)
$$2x - 9y - 11 = 0$$

c)
$$4x - 7y - 1$$

d)
$$2x + 9y + 7 = 0$$

If a line L is perpendicular to the line 5x - y = 1 and the area of the triangle formed by the line L and the co-ordinate axes is 5, then the distance of Line L from the line x + 5y = 0 is

a)
$$\frac{7}{\sqrt{5}}$$

55,

b)
$$\frac{5}{\sqrt{13}}$$

c)
$$\frac{7}{\sqrt{13}}$$
 d) $\frac{5}{\sqrt{7}}$

d)
$$\frac{5}{\sqrt{7}}$$

[MHT-CET 2013]

If the line $ay^2 + bxy + ex + dy = 0$ represents a pair of lines then

b) be -ad = 0 or e = 0

a)
$$bd - ae = 0$$
 or $e = 0$

d)
$$ad + be = 0$$
 or $e = 0$

c)
$$ad - ab = 0$$
 or $e = 0$

The joint equation of pair of lines through the origin each of which makes an angle of 56. c) $3x^2 - y^2 = 0$ d) $3x^2 + y^2 = 0$

is
b)
$$x^2 + 3y^2 = 0$$

d)
$$3x^2 + y^2 = 0$$

a)
$$x^2 - 3y^2 = 0$$

b)
$$x^2 + 3y^2 = 0$$

Pair of straight lines

If the equation kxy + 10x + 6y + 4 = 6 represents a pair of lines then the value of k is c) - 15

a) 0

b) 15

If 2a + b + 3c = 0 then the line ax + by + c = 0 passes through the fixed point that is 58.

a) $(\frac{2}{3}, \frac{1}{3})$

b) (0, 1)

c) $(\frac{2}{3}, 0)$

[MHT-CET 2011]

If one of the lines of the pair $ax^2 + 2hxy + by^2 = 0$ bisects the angle between positive directions of the axes, then a, b and h satisfy the relation 59.

b) a + b = -2h

c) a - b = 2|h|

d) $(a-b)^2 = 4h^2$

If a pair of lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ is such that each pair bisects the 60. angle between the other pair, then

a) pq = -1

b) pq = 1

c) $\frac{1}{p} + \frac{1}{q} = 0$ d) $\frac{1}{p} - \frac{1}{q} = 0$

[MHT-CET 2010]

The angle between the lines $3x^2 + 7xy + 2y^2 + 5x + 5y + 2 = 0$ is given by 61.

a) 0

b) 3/2

d) 76

62. Find the equation of pair of lines at a distance of 5 units from the line y = 1.

a) $y^2 - y - 24 = 0$ b) $y^2 - 2y - 24 = 0$ c) $y^2 + y + 24 = 0$ d) $y^2 + 2y - 24 = 0$

[MHT-CET 2009]

Joint equation of lines passing through (3, -2) and parallel to the lines given by 63. $x^2 - 4xy + 3y^2 = 0$ is

a) $x^2 - 4xy + 3y^2 - 14x + 24y + 45 = 0$

b) $x^2 - 4xy - 3y^2 - 14x - 24y - 45 = 0$

c) $3x^2 + 4xy + y^2 + 14x - 24y - 45 = 0$

d) $3x^2 + 4xy + y^2 - 14x - 24y + 45 = 0$

If the equation kxy + 10x + 6y + 4 = 0 represents pair of lines, then the value of k = ...64.

c) (0, 15)

d) (0, 20)

The angle between the lines $x^2 + 2xy \sec\theta + y^2 = 0$ is 65.

a) 2θ

b) 3θ

d) %

[MHT-CET 2008]

Find the equation of the pair of lines through origin, one of which is parallel and the 66.

c) $6x^2 + 5xy - 6y^2 = 0$

b) $6x^2 + 18xy - 6y^2 = 0$

The equation of pair of lines perpendicular to the given pair of lines $2x^2 - 3xy + y^2 = 0$ is

b) $2y^2 - 3xy + x^2 = 0$

d) $x^2 - 3xy - 2y^2 = 0$ A second degree equation always represents a pair of lines through origin if 68.

d) $h^2 - ab < 0$

	of straight lines If one of the lines represented by a. 18, then	118			dicula	r to	line the m	x + ny =
Pair	of straight lines	2 + 2hvu + b	yu^2	=0 is perp	enaicuie			
103.	If one of the lines represented by a.	x2 + Zhay	i)		· hu2 = 1)		
	18, then	b	b)	am² – 2hmr	1+0n)		
	a) $am^2 + 2hmn + bn^2 = 0$	d	d)	an² – 2hmn	lines		given	by
	c) $an^2 + 2hmn + bm^2 = 0$	between		the	Illies		Ü	,
104.	The acute angle $\frac{2}{3}$, $\frac{2}{3}$ (and a) and $\frac{2}{3}$ = 0 is					-1 ((cosecα√c	200 200
	$x^2 + 2 (\cot \alpha) xy + y^2 = 0 is$	C	-)	90°	d) ta	in 1	COSECUIVO	.0320.)
	a) 0° b) 60°		-) - (1	o hetweer	the pa	ir of	lines giv	ven by
105.	a) 0° b) 60° If the angle θ is acute, then the $(\cos \theta - \sin \theta) x^2 + 2(\cos \theta) xy + (\cos \theta)$	e acute an	181	$c^2 = 0$ is				
	(cos θ – sin θ) $x^2 + 2$ (cos θ) $xy + (cos \theta)$			120				
	a) θ b) 2θ	c	2)	$\frac{\theta}{2}$	a)	$\frac{\theta}{3}$		
	* -			the	lines		given	by
106.				the .				
	$(\tan^2 A) x^2 - kxy - y^2 = 0$ is 2A, th a) 0 b) 1	en c	:) 2	2	d)	tan	A	
107	The joint equation of pair of lines	s passing th	hro	ough the o	rigin and	l ma	king an ar	ngle of
2071	45° with the line $3x + y = 0$ is							
	a) $2x^2 + 3xy + 2y^2 = 0$	b) 2	$2x^2 - 3xy -$	$2y^2=0$			
	c) $2x^2 + 3xy - 2y^2 = 0$	_ d	1) 2	$2x^2 - 3xy +$	$2y^2=0$			
108.	The joint equation of pair of lines	through th	he	origin and	making	an a	ngle of 30	° with
	line the $3x + y - 6 = 0$ is.					× 97		
	a) $13x^2 - 12xy - 3y^2 = 0$	b) 1	$3x^2 - 12xy$	$+3y^2 =$	0		
100	c) $13x^2 + 12xy - 3y^2 = 0$	ď	l) 1	$3x^2 + 12xy$	$+3y^2 = 0$) '		
109.	If the lines $kx^2 + 6xy + 2y^2 = 0$ and a) -8 b) 8	x + 3y = 9 for	or	m an isosc	eles triar	ıgle,	then $k =$	
110.	The equation of pair of lines u = m	(C)) 6)	'd)	- 6		
	the equation of the pair of the an	gle bisector	ca rs c	of the lines	n as (y –	px) ((y-qx)=0.	. Then
	a) $r^2 + 4ry + 4r^2 = 0$ b) 2	•		r cric illies	given b	v x	$-4xy - 5y^2$	= 0 is
111.	The product of lengths of the perp $-5xy + 2y^2 = 0$ is	endiculars	fr	om point (r = 0 d)	$x^2 +$	$3xy - y^2 =$	0
	$-3xy+2y^2=0$ is	<i>E</i> .		Poziti (2	-, - 1) on	the li	nes given	by $2x^2$
	a) 4 b) 9	190		1				
110	1.10.5	c)) -	$\frac{1}{\sqrt{5}}$	d)	$\frac{9}{\sqrt{5}}$		
112.	Let \triangle OAB be formed by the lines 0. Then the equation of the media a) $x + y = 0$ b) $x - y = 0$					√ 5		
	0. Then the equation of the media a) $x + y = 0$ b) $x - y = 0$	n of the tria	an	gle drawn	line AB	giver	1 by $2x + 31$	<i>i</i> – 1 =
113.	a) $x + y = 0$ b) $x - y = 0$ O (0, 0), A (1, 2), B (3, 4) are the vermedian drawn from O is a) $x^2 + 7xy - y^2 = 0$ b) $x^2 + 7xy = 0$	c)	7	x + y = 0	rom O	s		,
	median drawn from O is	tices of Δ O	A	B. The join	d)	7x -	8y = 0	
	a) $x^2 + 7xy - y^2 = 0$ b) $x^2 + 7xy$. 2 -		John	equatio	n of	the altitud	e and
114.	Circumcenter of the triangle form	$y^2 = 0$ c)	3	$x^2 - xy - 2y$	$u^2 = 0$.			
	median drawn from O is a) $x^2 + 7xy - y^2 = 0$ b) $x^2 + 7xy - 0$ Circumcenter of the triangle form a) $(0,0)$ b) $(1,0)$	ed by the I	ine	es xy = 0 ar	1dr+	$3x^2$	$+xy-2y^2$	= 0
115.	A diagonal of the rectangle for-		(1	0, 1)	d)	(1	1)	
	= 0 is	1 by the line	es	given b	,	(2'	2	
	A diagonal of the rectangle formed $= 0$ is a) $6x - 5y - 14 = 0$ b) $6x - 5y + 14 = 0$	14 = 0		The by X	-7x+6	= 0 a	nd v2	
	a) $6x - 5y - 14 = 0$ b) $6x - 5y + 14 = 0$	· 4 = 0 c)	5	x - 6y = 0	* 9		9 - 14	y + 40
				<i>y</i> 0	d)	5x +	6y = 0	
			_					