Examination: M.Tech. Nanoscience and Technology	
Section 1 - Section 1	
Question No.1	4.00
Based on the information given answer the following question. 1. In a family of six persons, there are people from three generations. Each has separate professions and they like different colours. There are couples. 2. Shyam is an Engineer and his wife is not a doctor and she does not like Red colour.	_
 Chartered Accountant likes green colour and his wife is a teacher. Manisha is the mother-in-law of Sunita and she likes orange colour. Vimal is the grand father of Tarun and tarun is the Principal and likes black colour. Nyna is the grand daughter of Manisha and she likes blue colour. Nyna's Mother likes white colour. 	
What is the profession of Sunita? Cannot be determined Principal	
© Teacher © Chartered Accountant	
Question No.2	4.00 Bookmark □
The utilization of elemental carbon by microorganisms during bio-geochemical cycles is termed as © Dissimilation © Immobilization	BOOKIIIAIK [_
© Diffusion © Mineralization	
Question No.3	4.00
Yeast Replicating plasmids (YRp) carry C Centromere C Telomere	Bookmark □
C Mitochondrial DNA C Autonomously replicating sequence	
Question No.4	4.00 Bookmark
A fully formed infectious virus particle is called as C Prions	
C Virusoid C Virion C Capsid	
Question No.5	4.00 Bookmark □
Who is recognized as father of genetics? C Louis Pasteur	
© Gregor Mendel © Darwin © Alexander Fleming	
Question No.6	4.00
DNA makes and RNA makes proteins this is termed as © metabolism	Bookmark □
C biosynthesis	
C Central dogma C protein expression	
Question No.7	4.00 Bookmark
	DOOKMARK [_
What value of the activation energy is predicted by the Arrhenius equation if $T \to \infty$? • $E_a = \infty$	
$E_a = 0$	
4 7	

 $^{\circ}$ $E_a = -1$

 \circ $E_a = 1$

Question No.8

Bookmark |

If |f(Z)| is constant, then f(Z) is

- Variable
- C Partially variable and constant
- Constant
- None of these

Question No.9

4.00

4.00

Bookmark □

Bookmark |

The burgers vector of a dislocation in NaCl (a = 5.58 Å) is

5.58 Å

° 4.83 Å

° 3.95 Å

° 2.79 Å

Question No.10 4.00

The basis for measuring thermodynamic property of temperature is given by

- first law thermodynamics
- C Zeroth law thermodynamics
- third law thermodynamics
- second law thermodynamics

Question No.11 4.00

A certain op-amp has bias currents of 50 μA and 49.3 μA . The input offset current is

- 99 µA
- 49.7 µA
- 99.3 µA
- C 700 nA

Question No.12 4.00

If A+B means A is daughter of B,

A-B means A is husband of B

A × B means A is brother of B

From the statement $A \times B \times C \times D$, which of the following statement is not necessarily true?

- C is the brother of A
- C A, B, C are male
- © B is the brother of A
- O D is brother of C

Question No.13

Bookmark |

Let A = i + 2j - k, B = 2i + j - 3k, C = 3i - 2j + k

Find the value of Product (A X B). C

- C -20
- O 15
- O 20
- O -10

Question No.14

4.00

Bookmark |

C a sprightly walk C a sprightly walking C spright walkingly C spright walk	
Question No.15	4.00 Bookmark □
Appearance of thiophene is Colourless liquid Colourless soild Red colour liquid Red colour solid	
Question No.16	4.00 Bookmark □
The Laplace equation can be written as	
$\nabla^{2}u = Constant$ $\nabla^{2}u = f(x)$ $\nabla u = 0$ $\nabla^{2}u = 0$	
Question No.17	4.00 Bookmark □
According to Debye's theory of specific heat at low temperature specific heat is proportional to C T ² C Independent of T C T ³ C T	
Question No.18	4.00 Bookmark
Which among the following statement is wrong?	
© Every thermodynamic system has its own equation of state independent of the others.	
 An equation of state is a theoretical deduction from thermodynamics but is an experimental backing it. The equation of state is not applicable to systems which are not in thermodynamic equilibrium. 	
C An equation of state expresses the peculiar behaviour of one individual system which distinguishes it from the others	
Question No.19	4.00 Bookmark
For the cylindrical coordinate system, the coordinate r-curves are C horizontal straight lines.	
C horizontal circles with centres on the z-axis. C vertical straight lines	
C horizontal straight half-lines radiating from the z-axis.	
Guestion No.20 If A and B are non-zero square matrices, then AB = 0 implies	4.00 Bookmark □
C A and B are singular	
C A and B are orthogonal C B is singular C A is singular	
C A is singular	

Question No.21 4.00
Bookmark □

Find the Eigen values of the matrix $B = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$

- O 6,1
- 0 1,5
- C -6,1
- C -5,1

Question No.22 4.00

Bookmark □

A vector perpendicular to any vector that lies on the plane defined by x + y + z = 6

$$^{\circ}$$
 $\hat{j} + \hat{k}$

$$^{\circ}$$
 $\widehat{2}i + 3\hat{j} + 6\hat{k}$

$$\hat{i} + \hat{j} - \hat{k}$$

$$^{\circ}$$
 $\hat{i} + \hat{j} + \hat{k}$

Question No.23 4.00

Bookmark [

Symmetrical molecules are

- © Biological molecules
- © Polar
- C Organic molecules
- C Non-Polar

Question No.24

4.00

Bookmark □

Study the following information carefully and answer the question below it

Lakshman passes through seven lanes to reach his school. He finds that 'Truth lane' is between his house and 'Lie lane'. The third lane from his school is 'Karma lane'. 'Dharma lane' is immediately before the 'Yog lane'. He passes 'Salvation lane' at the end, 'Lie lane' is between 'Truth lane' and 'Dharma lane', the sixth lane from his house is 'Devotion lane'.

If Lakshman's house, each lane and his school are equidistant and he takes 2 minutes to pass one lane, then how long will he take to reach school from his house?

- C 15 minutes
- C 16 minutes
- C 13 minutes
- C 14 minutes

Question No.25 4.00

Bookmark ☐

Which of the following are electromagnic in nature? 1) Alpha rays; 2) X - rays; 3) Gamma rays; 4) Cathode rays.

- 1 and 4
- O 3 and 4
- C 2 and 3
- C 1 and 2

Question No.26 4.00

Bookmark □

A function u is said to be harmonic if and only if

$$u_x^2 + u_y^2 = 0$$

- $C u_{xy} + u_{yx} = 0$
- $u_x + u_y = 0$
- $C u_{xx} + u_{yy} = 0$

Question No.27	4.00 Bookmark □
Genes are pieces of that contain information for synthesis of ribonucleic acids (RNAs) or polypeptides	
© Proteins	
© pyrimidines © Purines	
C DNA	
Question No.28	4.00 Bookmark <u></u>
Which one of the following cannot be polarized?	
○ Sound waves ○ Radio waves	
© Radio waves © Microwaves	
C X-rays	
Question No.29	4.00 Bookmark
She studies very hard for the exams,?	
O isn't it?	
C is it?	
O does she?	
C doesn't she?	
Question No.30	4.00
The first step in gene expression is	Bookmark □
○ Translation	
© Transcription	
• Transduction	
© Replication	
Question No.31	4.00
Crumb : Bread ::	Bookmark
C Flower: Vase	
○ Tea : Cup	
C Splinter: Wood	
O Water: Bucket	
Question No.32	4.00
Disabine are made and	Bookmark □
Biochips are made up of C conducting molecules inserted into the protein frame work	
semi-conducting molecules inserted into the protein frame work	
© functionalization	
non-conducting molecules inserted into the protein frame work	

4.00

Study the following information carefully and answer the question below it

The Director of an MBA college has decided that six guest lectures on the topics of Motivation, Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday.

(i) One day there will be no lecture (Saturday is not that day), just before that day Group Discussion will be organised.

(ii) Motivation should be organised immediately after Assessment Centre.

(iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion

(iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion

Which of the following information is not required for the above lecture arrangements?

Only (ii)

C All are required

Only (i)

Only (iii)

Question No.34		4.00
		4.00 Bookmark □
Figure out the odd statement about		
Contains both metallic and		
usually less desire than meDuctile in nature	etals	
Good insulators of heat and	nd electricity	
Question No.35		4.00
The genetic information is stored in	in the form of in most of the organisms.	Bookmark □
C RNA		
C DNA		
© Proteins		
C Histones		
Question No.36		4.00
If the energy of a greature harmoni	sign conflictor in E = nhn n = 1, 2, 2. Withou nortifican function of the custom of conflictors in	Bookmark
	nic oscillator is $E_n = n/n$, $n = 1, 2, 3, \dots, Y$, the partition function of the system of oscillators is	
$e^{-\frac{hv}{kT}}$		
C 1		
$\frac{1}{\frac{\hbar v}{skT}-1}$		
$C = \frac{1}{1 - s \frac{hv}{kT}}$		
$1-\epsilon \frac{RV}{kT}$		
C hv e MT		
ekt		
-		
Question No.37		4.00 Bookmark
As per Faraday's laws of electrom	magnetic induction, an e.m.f. is induced in a conductor wheneverit	
C Lies perpendicular to the m		
Moves parallel to the direct	ction of the magnetic field	
 Lies in a magnetic field Cuts magnetic flux 		
- Cuto magnetic liax		
Question No.38		4.00
When an ideal monatomic gas is a	expanded adiabatically from an initial volume V_0 to $3V_0$, its temperature changes from T_0 to T . Then the ratio T .	Bookmark ☐
© (1/3) ^{1/3}	expended adiabatically from all materialists vi to ovig its temperature of anges from 10 to 1. Therefore tall of the	, 10
0 3		
o 1/3		
C (1/3) ^{2/3}		
Overtice No 20		400
Question No.39		4.00 Bookmark ┌
Question No.39 Match the correct opti	ions	
	tions - cellulose derivatives	
Match the correct opti		
Match the correct opti (i) paint (ii) varnishes	cellulose derivativesmixture of both paint and varnish	
Match the correct opti (i) paint (ii) varnishes (iii) enamel	 cellulose derivatives mixture of both paint and varnish mixture of vehicle and pigment 	
Match the correct opti (i) paint (ii) varnishes	cellulose derivativesmixture of both paint and varnish	

○ ii, iii, iv & i

○ ii, iii, i &iv

O iv, iii, ii &i

○ iv, iii, i & ii

Question No.40

Bookmark □

Bookmark |

A dielectric material must be

- Semiconductor
- Insulator
- C Good conductor
- Resistor

Question No.41 4.00
Bookmark □

What is the value of the following series?

$$\left(1 - \frac{1}{2!} + \frac{1}{4!} - \cdots\right)^2 + \left(1 - \frac{1}{3!} + \frac{1}{5!} - \cdots\right)^2$$

Ое

0 1

 \circ 0

Question No.42 4.00

The electric field inside a spherical shell of uniform surface charge density is

- Inversely proportional to distance from centre
- Zero
- C Non-Zero Constant
- O Directly proportional to distance from centre

Question No.43
4.00
Bookmark □

The actual rate equation for the reaction $CH_3COCH_3 + I_2 \rightarrow CH_3COCH_2I + HI$ is

 $\frac{d[CH_3COCH_3]}{dt} = k[CH_3COCH_3][H^+]$. What is the order of the reaction with respect to

acetone.

- C Second order rate equation
- C Third order rate equation
- C Zero order rate equation
- C First order rate equation

Question No.44 4.00

Bookmark □

Let $f(x,y)=e^{x^2}\cos y$. What is $\nabla f(x,y)$?

$$e^{x^2}$$
cosyi $-e^{x^2}$ sinyj

 $C = 2xe^{x^2}\cos yi - e^{x^2}\sin y$

C .2	
e^{x^2} i+cosyj	
$^{\circ}$ $2xe^{x^2}\cos y - e^{x^2}\sin y$	
Question No.45	4.00
This is the school where I studied till class 5.	Bookmark □
The underlined word is a	
© preposition © adjective	
© pronoun	
C adverb	
Question No.46	4.00
	Bookmark □
What is the resolving power of a Transmission Electron Microscope?	
© 0.05 nm	
C 0.02 nm	•
○ 0.2 nm	
○ 0.1 nm	
Question No.47	4.00
	Bookmark [
The eigen functions of hydrogen atom contain which of the following?	
(i) Legendre Polynomials	
(ii) Laguerre Polynomials	
(iii) Hermite Polynomials	
C i and ii	
C ii only	
○ i only	
○ i, ii and iii	
Question No.48	4.00
	Bookmark
In thermodynamics a quantity of energy that flows across the boundary between the system and	
the surrounding that can be used to change the height of the mass in the surroundings is defined	
as	
○ Work	
○ Force	
C Heat	
C Mass	
Question No.49	4.00
A can finish a work in 18 days and B can do the same work in half the time taken by A. Then, working together, what part of the same work the	Bookmark ☐ / can finish
in a day?	,

O 1/8O 1/4O 0 1/2O 0 1/6

Question No.50 Final product in aerobic glycolysis is	4.00 Bookmark
C Lactic acid C Glucose	
© Pyruvate © Lactate	
Question No.51	4.00 Bookmark ┌
Microorganisms are in a rapidly growing and dividing state in © Stationary phase	DOORIIIAI K
C Log phase C Declining phase	
C Lag phase	
Question No.52	4.00 Bookmark □
Calculate the degrees of freedom in an aqueous solution of sodium chloride.	
C 4 C 3 C 1	
C 2	
Question No.53	4.00 Bookmark □
Statement: Ten Candidates, who were on the waiting list could finally be admitted to the course. Assumptions: I. A large of number of candidates were on the waiting list.	
II. Wait listed candidates do not ordinarily get admission. © If both I and II are implicit	
© If neither I nor II is implicit © If only assumption II is implicit	
C If only assumption I is implicit	
Question No.54	4.00 Bookmark □
The difference between the magnitudes of the magnetic fields at which free nuclei and molecular	
nuclei resonate is called	
C Multiple splitting C Chemical shift	
C Hyperfine splitting C Isomer shift	
C BOTTLET STITE.	
Question No.55	4.00 Bookmark □
Statement: Apart from it's entertainment value of Television, it's educational value cannot be ignored Assumptions: I. People take Television to be the means of entertainment only.	
II. The educational value of Television is not realized properly © If both I and II are implicit	
If neither I nor II is implicit If only assumption II is implicit	
C If only assumption I is implicit	
Question No.56	4.00 Bookmark

Five membered hetro cyclic compounds are

- U IIIIUazuie, uxazuie aliu fullile
- C Furan, quinoline and purine
- C Pyridazine, pyrimidine and pyrazine
- C Furan, Pyrrole and Thiophene

4.00 Bookmark

de-Broglie wavelength for charged particle of charge q and accelerated through a potential

difference of V volts expressed as

$$\frac{h}{2mqv}$$

$$\frac{h}{\sqrt{2mqv}}$$

$$\frac{h}{2E_kqV}$$

$$^{\circ} \frac{h}{\sqrt{2E_k qV}}$$

Question No.58

4.00

Bookmark 🗆

What is the degree of polymerization of polyethylene? Assume the Molecular mass of polyethylene is 140000.

- C 5384
- C 5833
- C 8750
- C 5000

Question No.59

4.00

Bookmark □

Heat is transferred to a heat engine from a furnace at a rate of 70 MW. If the rate of waste heat rejection to a nearby river is 40 MW, the thermal efficiency of this heat engine is

- C 49.20%
- C 42.80%
- C 40.40%
- C 44.60%

Question No.60

Bookmark [

- In a transistor, emitter current is O slightly less than collector
 - c equal to collector
 - c equal to base current
 - slightly more than collector

Question No.61

4 00

Bookmark 🗆

Find the characteristic Equation of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$

$$^{\circ}$$
 $\lambda^{3} + 7\lambda^{2} + 2\lambda + 38 = 0$

$$^{\circ} \lambda^3 + 7\lambda^2 + 38 = 0$$

$$^{\circ} \lambda^3 - 7\lambda^2 + 2\lambda + 36 = 0$$

$$^{\circ} \lambda^3 - 7\lambda^2 + 36 = 0$$

Bookmark

 $f(x) = \begin{cases} 1, -\pi < x < 0 \\ 0, 0 < x < \pi \end{cases}$, In this case the sketch is

О

C

C

С

4.00 Bookmark |

In a magnetic material, the field strength is found to be 10⁶ A m⁻¹. If the magnetic susceptibility of the material is 0.5X10⁻⁵, calculate the intensity of magnetization and the

flux density of the material?

- C 6 A m⁻¹
- $^{\circ}$ 5 A m⁻¹
- C 3 A m⁻¹
- C 4 A m⁻¹

Question No.64

4.00

Bookmark [

Differential calculus involves an operator called

- C Laplace operator
- differential operator
- athematic operator
- integral operator

Question No.65

4.00

Bookmark |

Find the Sum and Product of the Eigen values of matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$

- C -5,4
- C 6,-5
- 0 4,-5
- 0 6,5

Question No.66

4.00

Bookmark |

In UV-visible spectroscopy ,if a spectrum is expressed as absorbance (A) as a function of wavelength (λ) , the Second order derivative spectra is

$$\frac{dA}{d\lambda} = f''(\lambda)$$

$$\frac{d^2A}{d\lambda^2} = f''(\lambda)$$

$$dA = f''(\lambda)$$

$$^{\circ} dA = f''(\lambda)$$

$$\frac{d^2A}{d\lambda} = f''(\lambda)$$

Question No.67

The function $f(x) = x^3 - 6x^2 + 3x + 25$ has

- \circ a maxima at x = 3 and a minima at x = 1
- O no maxima, but a _minima at x = 1
- O a maxima at x = 1, but no minima
- \circ a maxima at x = 1 and a minima at x = 3

Question No.68

4.00

Bookmark |

Thermoplast have high degree of plasticity because

Plastical deformation increases with increasing temperature

(ii) Secondary bonds are broken more readily and ultimately melting it
(iii) Plastical deformation decreases with increasing temperature
Select the correct option using the code given below.
San and San an
C (i) only C (ii) & (iii)
ℂ (i) & (ii)
C (ii) only
Question No.69
Bookmark ☐ The first antibody that invading microorganism is
C IgM C IgA
ℂ lgG
C lgJ
Question No.70 4.00
Bookmark ☐ The change of a single nitrogen base in a DNA sequence is
© Lethal mutation
C Point mutation C Site directed mutagenesis
© Deletion mutation
Question No.71 4.00
Select the Pair that best respresents the relationship that is given in the question:
Explore : Discover © Books : Knowledge
© Research : Learn © Think : Relate
© Tree: Wood
Question No.72 4.00
Bookmark ☐ Find the odd one out?
C Deposit C Withdrawal
© Deduction
C Debit
Question No.73 4.00 Bookmark □
In a cylindrical crystal of radius r = 10 mm, calculate the ratio of cross-sectional area available for
diffusion through the surface layers to the area available for mass transport through the cylinder.

(Assuming the effective thickness of the surface to be 4 Å)

○ 8 X 10 ⁻⁸	
° 7.8814 X 10 ⁻⁵ ° 2.51 X 10 ⁻⁵	
o 3.14	
Question No.74	4.00
Poisson's distribution is	_
TO A REPORT OF THE PROPERTY OF	
$P(r) = \frac{m^r e^{-m}}{r!}$	
$^{\circ} P(r) = \frac{m^r e^m}{r+1!}$	
$^{\circ} P(r) = \frac{m^r e^m}{r!}$	
$^{\circ}P(r) = \frac{m^{r}e^{-m}}{r+1!}$	
$\Gamma(r) = \frac{1}{r+1!}$	
Question No.75	4.00 Bookmark □
The Calculate the degrees of freedom in an aqueous solution of acetic acid.	
C 2 C 1	
C 4 C 3	
Question No.76	4.00
	Bookmark
Which of the following is an analytic function of z everywhere in the complex plane?	
$\overset{\circ}{}(Z^*)^2$ $\overset{\circ}{}Z^2$	
° Z ²	
$^{\circ}\sqrt{Z}$	
Question No.77	4.00
	Bookmark □
What is the curve made up of the points in the (x,y) plane satisfying the equation $ z = 3$?	
© Parabola © Line	
© Circle © Hyperbola	
Question No.78	4.00
is one of a pair of genes that appear at a particular location on a particular chromosome and control the same characteristic	Bookmark
© DNA © Allele	
© Chromosome © RNA	
Question No.79	4.00
Polar form of a complex number is	Bookmark
○ r(cosθ + isinθ) ○ r(tanθ + icotθ)	
ℂ r(sinθ + icosθ) ℂ r(secθ + icosecθ)	

Question No.80	4.00
	Bookmark □
Which of the following is even function?	
O tan x	
○ sin x	
C x ³	
C cos x	
Question No.81	4.00
Choose the best antonym of the italicized word.	Bookmark □
The deliberate suavity of Olaf's behavior made the emotions of the audience volatile.	
© impetuosity	
○ pleasantness ○ stupidity	
O politeness	
Question No.82	4.00 Bookmark
The first Brillouin zone for a FCC structure is	
C Rhombic dodecahedron C Hexagon	,
O Cube	
Truncated octahedron	
Question No.83	4.00
	Bookmark [
Being awarded the Best Singer in 2010 marked a in her life. © yardstick	
C sign-post	
© memorial	
© milestone	
Question No.84	4.00
	Bookmark □
The magnitude of the critical cooling rate depends on the stability of the	
© austenite	
© martensite	
C twinning	
○ detwinning	
Question No.85	4.00
	800kmark ☐
Choose the best synonym of the italicized word. Dr. Elango is in the habit of using <i>obsolete</i> words.	
© wrong	
C simple	
C difficult	
O difficult	

Question No.86	4.00
is a specialized type of cell division that reduces the chromosome number by half	Bookmark
C Dialysis	
C Meiosis C Mitosis	
C zygote	
Question No.87	4.00
	Bookmark □
Viruses largely lack metabolic machinery of their own to generate energy or to synthesize © Fat	
○ Alcohol	
C Protein	
© Glucose	
Question No.88	4.00 Bookmark
When their father died, their elder brother sold the old house and in a small flat in a far-off suburb	BOOKIIIAIK [
C set them up	
C put them down C set them down	
○ put them up	
Question No.89	4.00
	Bookmark 🗆
If A and B are square matrices of size n x n, then which of the following statement is not true? C det (kA) = k ⁿ det (A)	
C det (A + B) = det (A) + det (B)	
$^{\circ}$ det (A ^T) = 1/det (A ⁻¹)	
C det. (AB) = det (A) det (B)	
Question No.90	4.00
Satellite contains © Ni, Cu and Al © Co, V and Ni © Ni, Sc and Zn © Co, Cr, and W	Bookmark
Question No.91	4.00
	Bookmark □
The integral	
$\lim_{\alpha \to \infty} \int x^{-4} \ dx$	
C converges to 1/3 C converges to 0	
○ diverges	
^C converges to -1/a ³	
Question No.92	4.00
A Laplace Transform exists when A) The function is piece-wise continuous B)The function is of exponential order C) The function is piecewise discrete D) The function is of differential order. C A & D C C & D	Bookmark

O B & C

Question No.93

. . . _

- (A) Statement: Fused silica glass is used in the application requiring low thermal expansion
- (B) Reason: It is highly viscous even in the molten state because of the Si-O bond
 - C Both (A) & (B) are True
 - C (A)False & (B) True
 - Both (A) & (B) are False
 - (A)True & (B) False

Question No.94

4.00

Bookmark [

Choose the best synonym of the italicized word.

Children of excessively indulgent parents often become very recalcitrant.

- disobedient
- indolent
- insolent
- dependent

Question No.95

4.00

4.00

Bookmark □

Which one of the following is not basic component of Materials Science?

- Properties
- Performance
- Structure
- C Cost

Question No.96

Which of the following is the correct statement

- (i) Hermitian operators have real eigen values
- (ii) Orthonormal functions satisfy the condition $\int \Psi_m^*(x)\Psi_n(x)dx = \delta_{mn}$
- (iii) Linear momentum $P = \frac{ih}{2\pi} (\frac{\partial}{\partial t})^{-1}$

(iv)
$$E_n = (2n+1)\frac{h\omega}{2\pi}$$

- O (i) & (ii)
- C (ii) & (iv)
- C (i), (ii) & (iii)
- (i), (ii) & (iv)

Question No.97 4.00

If $u = x^2 + y^2$, then $\frac{\partial^2 y}{\partial x \partial y}$ is equal to

- 0 2
- O 2y
- C 2x + 2y
- 0 0

Question No.98

Bookmark □

- (1)
- 0 2

Bookmark □

O 3 O 1

Question No.99 4.00

Solution of equation on an open interval is a pair of linearly independent solution on that interval is called

C basis

○ code

○ base

C core

Question No.100 4.00

Bookmark □

Nidhi walks 10 metres in front and 10 metres to the right. Then every time turning to her left, she walks 5, 15 and 15 metres respectively. How far is Nidhi now from her starting point?

C 10 metres

C 5 metres

C 15 metres

○ None of the above

Sr No.	MTECH NanoScience and Technology
	In the series 357,363,369, What will be the 10th term?
Alt1	
Alt2	411
Alt3	413
Alt4	417
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears: Moon: Satellite :: Earth : ?
Alt1	Sun
Alt2	Planet
Alt3	Solar System
Alt4	Asteroid
3	Door is related to Bang in the same way as Chain is related to?
Alt1	Thunder
Alt2	Clinch
Alt3	Tinkle
Alt4	Clank
4	Select the lettered pair that has the same relationship as the original pair of words:
	Emollient: Soothe
Alt1	Dynamo: Generate
Alt2	Elevation: Level
Alt3	Hurricane: Track
Alt4	Precipitation: Fall
5	Which of the following is the same as Count, List, Weight?
	Compare
	Sequence
	Number
Alt4	Measure
	Spot the defective segment from the following:
	The downtrodden
	needs
	to be uplifted
Alt4	on a war footing
_	
7	Choose the meaning of the idiom/phrase from among the options given:
. 1	A close shave
	a nice glance
	a narrow escape
	an intimate
Alt4	a triviality

8	Lightning in the same place twice.
Alt1	doesn't hit
Alt2	never strikes
Alt3	never attacks
Alt4	never falls
9	Choose the option closest in meaning to the given word:
	FLIPPANT
Alt1	serious
Alt2	unsteady
Alt3	irreverent
Alt4	caustic
10	Choose the antonymous option you consider the best:
	OBSOLETE
Alt1	obscure
Alt2	hackneyed
Alt3	current
Alt4	grasp
11	Akash scored 73 marks in subject A. He scored 56% marks in subject B and X marks in subject C. Maximum
	marks in each subject were 150. The overall percentage marks obtained by Akash in sall te three subjects were
	54%. How many marks did he score in subject C?
Alt1	84
Alt2	86
Alt3	79
Alt4	73
12	A person starts from his house and travels 6 Km towards the West, he then travelled 4 Km towards his left
	and then travels 8 Km towards west and 3 Km towards South. Finally he turns right and travels 5 Km. What is the
	horizontal distance he has travelled from his house ?
Alt1	7 Km
Alt2	15 Km
Alt3	23 Km
Alt4	19 Km
13	If 1st Jan 2012 is a Tuesday then on which day of the week will 1st Jan 2013 fall?
Alt1	Wednesday
Alt2	Thursday
Alt3	Friday
Alt4	Saturday
14	g
	shadow was exactly to the right of Reeta, which direction was Kavita facing?
Alt1	North
	South
Alt3	East

Alt4	West
15	In an exam every candidate took History (or)Geography(or)both. 74.8%took History and 50.2% took Geography.
	If the Total number of candidates is 1500,how many took History and Geography both?
Alt1	400
Alt2	350
Alt3	750
Alt4	375
16	Which word includes the larger % of Vowels?
	GOOGLE
Alt2	AMAZON
	FACE BOOK
Alt4	DOE
17	A= Least prime >24;
	B=Greatest prime <28; Then
Alt1	
Alt2	
Alt3	
	None
Alt4	Note
10	CL X VIII refers
Alt1	
Alt2	
Alt3	
Alt4	
Alt	
19	Which of the following is larger than 3/5 ?
Alt1	
	39/50
	7/25
	59/100
AIL4	39/100
20	Mr. Babu travelled 1200 km by air which formed 2/5 of his trip. One third of the whole trip, he travelled by car
	and the rest of the journey was by train. What was the distance travelled by train?
	600km
	700 km
	800 km
AIT4	900 km
24	During electrolysis
	During electrolysis:-
	Anion get reduced
	Cation get oxidized
	Anion get oxidized
Alt4	Both anion and cations get reduced

22	The key intermediates in the synthesis of phospholipids is:-
Alt1	DCP diacyl glycerol
Alt2	CDP diacyl glycerol
Alt3	CP diacyl glycerol
Alt4	Minimum number of times a fair coin must be tossed so that the probability of getting at least one head is atleast 0.95 is:-
23	Minimum number of times a fair coin must be tossed so that the probability of getting at least one head is
	atleast 0.95 is:-
Alt1	
Alt2	
Alt3	
Alt4	5
	Requirement for cross-slip movement of dislocation:-
	No preferred slip plane
	Preferred slip plane
	No preferred slip direction
Alt4	Preferred slip direction
25	Matix of cell wall is made of:-
	Hemicellulose
	Glycoprotein
	Cellulose
	Pectin
7.11.	, com
26	If the plane polarised light, whose plane of vibration inclined at an angle of 45° to the optic axis, is incident on a
	quarter wave plate, the emergent light is:-
Alt1	Plane polarised light
	Circularly polarised light
	Elliptically polarised light
	None of these
27	The value of α for which the quadratic equation x2 - (sin α -2) x - (1 + sin α) = 0has roots whose sum of squares is
	least, is:-
Alt1	π/3
Alt2	π/6
Alt3	π/2
Alt4	π/4
	Frictional energy is dissipated by:-
	wear
	wear and heat
	wear and sound
Alt4	wear, heat and sound
	Which of the following is a malachite ere?

	CuCO3.Cu(OH)2
Alt2	Cu2CO3
Alt3	CuCO3
Alt4	Cu2O
30	Let a , b , c be distinct non-zero real numbers such that a2 ,b2 , c2 are in harmonic progression and a, b, c are in
	arithmetic progression, then:-
Alt1	2b2 - ac = 0
Alt2	4b2 - ac = 0
Alt3	2b2 + ac = 0
Alt4	4b2 + ac = 0
31	Which of the following not allotrope of carbon?
Alt1	
	Graphite
Alt3	
	Diamond
32	The stress to strain ratio is known as:-
	Hall-Petch relation
	Toughness
	Eley-Rideal relation
	Young's modulus
AIL4	Tourig 3 modulus
22	The scattering amplitude can be obtained by substituting the unperturbed wave function in the integral, such an
	approximation is called:-
	Born approximation
	WKB approximation
	Bohr approximation
Alt4	None of these
	The correct option is "Born approximation "
	Planck's T3 law
	Einstein's law
	Stefan's T3 law
Alt4	Debye's T3 law
	The experimental technique most suitable for determination of 3D structure of crystalline solid:-
Alt1	
	Polarimetry
	FT-IR
Alt4	UV-Vis spectroscopy
36	A flux of 100 lumen falls normally on a steady table 0.5 m 1 m. The illumination on the table is:-
Alt1	50 lux
	50 lux 25 lux

Alt4	
	100 lux
37	Among the following which element does not exhibit allotropy?
	chlorine
	hydrogen
Alt3	
	carbon
38	The wave whose amplitude is the same at any point in perpendicular to specified direction is called:-
Alt1	Wave equation
	Rectangular wave
	Plane wave
	None of these
Alta	Notic of these
	-DNA consecut in 40 C colours of all consecutor
	rRNA present in 40 S subunit of ribosome is:-
Alt1	
	5.8 S
	18 S
Alt4	16 S
	$\lim_{x \to 0} \frac{\sin(\pi(1-\sin^2 x))}{\tan^2 x}$ is equal to:-
Λ I+1	
Alt1	
Alt2	π/ 2
Alt2 Alt3	π/ 2 1
Alt2	π/ 2 1
Alt2 Alt3 Alt4	π/ 2 1 π
Alt2 Alt3 Alt4	$\pi/2$ 1 π Let $ z1 = 30$ and $ z2 + 5 + 12i = 13$, then minimumvalue of $ z2 - z2 $ is:-
Alt2 Alt3 Alt4 41 Alt1	$\pi/2$ 1 π Let \mid z1 \mid = 30 and \mid z2 + 5 + 12i \mid = 13, then minimum value of \mid z2- z2 \mid is:- 2
Alt2 Alt3 Alt4 41 Alt1 Alt2	π/2 1 π Let z1 = 30 and z2 + 5 + 12i = 13, then minimum value of z2- z2 is:- 2 6
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3	π/2 1 π Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3	π/2 1 π Let z1 = 30 and z2 + 5 + 12i = 13, then minimum value of z2- z2 is:- 2 6
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4	π/2 1 π Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4 42	π/2 Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these The resistance of photo resistive cell
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4 42 Alt1	π/ 2 Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these The resistance of photo resistive cell Remains constant irrespective of the light intensity incident upon it
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4 42 Alt1 Alt2 Alt1	π/ 2 1 π Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these The resistance of photo resistive cell Remains constant irrespective of the light intensity incident upon it Increases with increase in light intensity
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4 42 Alt1 Alt2 Alt1	π/ 2 Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these The resistance of photo resistive cell Remains constant irrespective of the light intensity incident upon it
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4 42 Alt1 Alt2 Alt3	π/ 2 1 π Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these The resistance of photo resistive cell Remains constant irrespective of the light intensity incident upon it Increases with increase in light intensity
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4 42 Alt1 Alt2 Alt3	π/2 Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these The resistance of photo resistive cell Remains constant irrespective of the light intensity incident upon it Increases with increase in light intensity Decreases with increase in light intensity in an exponential manner
Alt2 Alt3 Alt4 41 Alt1 Alt2 Alt3 Alt4 42 Alt1 Alt2 Alt3 Alt4	π/2 Let z1 = 30 and z2 + 5 + 12i = 13, then minimumvalue of z2- z2 is:- 2 6 4 None of these The resistance of photo resistive cell Remains constant irrespective of the light intensity incident upon it Increases with increase in light intensity Decreases with increase in light intensity in an exponential manner

Alt2	Fat
Alt3	Lignin
Alt4	Pectin
44	Coefficient of x5 in the expansion of the product(1 + 2x)6 (1 - x)7 is:-
Alt1	
Alt2	171
Alt3	160
Alt4	172
45	Identify the wrong statement in the following:-
Alt1	Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the periodic table
	Amongst isoelectronic species, greater the negative charge on the anion, larger is the ionic radius
	Atomic radius of the elements increases as one moves down the first group of the periodic table
Alt4	Amongst isoelectronic species, smaller the positive charge on the cation, smaller is the ionic radius
16	The time period of oscillation of a bar magnet suspended horizontally along the magnetic meridian is TO. If this
40	magnet is replaced by another magnet of the same size and pole strength, but double the mass, the new time
A I+1	period will be:-
	T0/V2
	V2 T0
	2 TO
AIL4	T0/2
47	The eigenvalue of a harmitian matrix are alimedians (h) real al variable d) constant. The wave function
47	The eigen value of a hermitian matrix are a)imaginary b) real c) variable d) constant. The wave function
Λ I+1	corresponding to two different Eigen values are:-
	Orthogonal Monoclinic
	Triclinic Name of these
Alt4	None of these
10	In general bonding energy values are higher for bonds.
	ionic
	hydrogen
	covalent
	metallic
AII4	metanic
49	Which of the following ions bind strongly to valinomycin?
Alt1	
	Al3+
Alt3	
	Ca2+
7 11 0-7	
50	What is active form of mannose in the synthesis of mannose-containing carbohydrate chains in glycoproteins?
	and the second s
Alt1	Uridinediphosphate mannose

Alt2	Adenosine diphosphate mannose
Alt3	Guanosinediphosphate mannose
Alt4	Cytidinediphosphate mannose
51	Sedimentation unit of ribosome is:-
Alt1	Svedberg (S)
Alt2	mili-micron (m)
Alt3	micronm()
Alt4	Angstrom (Å)
52	Ballistic tests are used in magnetic measurements for
Alt1	Determination of B-H curve of the specimen only
Alt2	Determination of hysteresis loop of the specimen only
Alt3	Determination of flux density, magnetizing force and B-H curve and hysteresis loop of the specimen
Alt4	Finding out iron losses in the specimen
53	The covalent bond having highest bond dissociation energy is:-
Alt1	C = C
Alt2	C≡O
Alt3	C = Si
Alt4	0 = 0
54	Which one of the following oxides crystallizes into fluorite structure?
Alt1	MgAl2O4
Alt2	BaTiO3
Alt3	Al2O3
Alt4	UO2
55	Vulcanization refers to:-
	extrusion
Alt2	strengthening of rubber
Alt3	injection moulding
Alt4	addition polymerization
56	Middle lamella contains:-
Alt1	Lignin
Alt2	Pectate
Alt3	Cutin
Alt4	Cellulose
	Aging is characterized by:-
	Increased catabolism
Alt2	Increased anabolism
	Decline in metabolic activity
Alt4	Increased metabolic activity
58	According to VSEPR theory, the molecules/ion having ideal tetrahedral shape is:-

Alt1	S2Cl2
Alt2	SO42-
Alt3	SF4
	SO2CI2
59	The EPR spectrum of phenyl radical (C6H5*) shows:-
	24 lines
Alt2	36 lines
	6 lines
	18 lines
60	An assembly of fermions is known as:-
	Fermi-Dirac gas
	Bose-Einstein gas
	Maxwell Dirac gas
	None of these
7 110 1	Horic of these
61	The existence of unique solution for the system of equations, $x + y + z = p$, $5x - y + qz = 10$ and $2x + 3y - z = 6$
	depends on:-
	neither'p' nor 'q'
	p' only.
	q' only.
	p' and 'q' both
AICT	p und q both
62	The number of linearly independent Eigen function is called:-
	System of Degeneracy
	Degree of Degeneracy
	Degeneracy Degeneracy
	None of these
Alt4	Notice of these
63	Healing of cuts and wounds is:-
	Repair
	Dedifferentiation Dedifferentiation
	Growth
	Regeneration
Alt4	negeneration
64	Monochromatic green light of wavelength 5X10-7m illuminates a pair of narrow slits 1.0mm apart. The
04	separator of bright lines on the interference pattern formed on a screen 2m away is:-
Λl+1	1.00mm
	0.10mm
	0.25mm
	0.40mm
AIL4	V-TVIIIII
6E	According to vanderwaal's equation of state, the critical volume is:-
Alt1	
Alt2	
Alt3	
AIL3	ZU ZU

Alt4	h.
AIL4	<u>U</u>
66	The reversible Cal gal transformation is called:
	The reversible Sol-gel transformation is called:-
	Electrophoresis
	Thioxotropy
	De-emulsification
Alt4	None of these
	With tempering temperature, the product becomes:-
	tougher
	softer
	stronger
Alt4	harder
	All of the following are true about lasers except:-
	The light is emitted only in pulses
	The light doesn't diverge significantly
Alt3	Light is essentially all the same wavelength
Alt4	Light waves are in phase
69	In molecular H2O, NH3 and CH4:-
Alt1	The hybridization are same
Alt2	The bond angles are same
Alt3	The bond distances are same
Alt4	The shapes are same
70	1If a curve passes through (1, 1) and tangent at any point 'P' on it cuts the axes at 'A' and 'B', where point 'P'
	bisects the segment AB, then curve is given by:-
Alt1	x2 + y2 = 2
Alt2	xy2 = 1
Alt3	xy = 1
	x2y = 1
71	
	For differential equation $\left(\frac{dy}{dx}\right)^2 - x\left(\frac{dy}{dx}\right) + y = 0$, the solution can be given by:-
	For differential equation (ay) = (ay) + y = 0, the solution can be given by:
	To i differential equation $\frac{1}{2} \left[-x \right] \frac{1}{2} \left[+y = 0$, the solution can be given by .
	(αx) (αx)
	40 MPM 30 W
Λ I+1	y = 2x2 - 4
	y = 2x2 - 4 y = 2 + x
	y = 2x - 4
Alt4	y = 2x

72 For a spontaneous reaction, e.m.f of the cell is:-

Alt1 Zero

Alt2	Negative
Alt3	Fixed
Alt4	Positive
73	A steam engine converts heat energy into
	Magnetic energy
Alt2	Electrical energy
Alt3	Chemical energy
	Mechanical energy
74	Among the following C-O bond order is linear in:-
	[Mn (CO)6]+
	Fe(CO)5
	[V(CO)6]-
	Cr(CO)6
7.11.1	5.(65)5
75	Extra uridine rich small sized RNA is:-
	sn RNA
	sc RNA
	5.8 S RNA
	5 S RNA
AIL4	3 3 RIVA
7.0	The weet common time of remarkustion in heaterialis
	The most common type of reproduction in bacteria is:-
	Budding
	Binary fission
	Binary fusion
Alt4	Sexual reproduction
	Regulated unit of genetic material is termed:-
Alt1	Regulator gene
	Okazaki segment
	Operator gene
Alt4	Operon
	Ferrites are:-
	paramagnetic
	ferrimagnetic
Alt3	ferromagnetic
Alt4	piezoresistive
79	Which among the following is not the non-destructive method of testing materials?
Alt1	magnetic particle inspection
Alt2	radiography
Alt3	X-ray diffraction
Alt4	dye penetrant test
80	Transformer cores are made from:-

Alt1	Cu-Si alloy
Alt2	Fe-Si alloy
Alt3	Cu-Co alloy
Alt4	Fe-Cu alloy
L	
81	Albinism is:-
	Genetic disorder
Alt2	Environment related disorder
	Infectious disease
	Deficiency disease
7.110.1	Deficiency disease
92	Select the false statement about catalyst:-
	Catalyst increases the reaction rate
	· ·
	Catalyst gets regenerated after the process
	Catalyst alters the thermodynamic path
Alt4	Catalyst reduces the activation energy
	Kreb's cycle takes place in:-
	Chloroplast
	Mitochondria
Alt3	Ribosome
Alt4	Endoplasmic reticulum
84	Melting point of ice
Alt1	Is proportional to cube of pressure
Alt2	Decreases with increase in pressure
Alt3	Increases with increase in pressure
Alt4	Does not depend upon pressure
85	If pair of lines 3x2 - 2pxy - 3y2 = 0 and 5x2 - 2qxy - 5y2 = 0 are such that each pair bisects the angle between the
	other pair, then pg is equal to:-
Alt1	
Alt2	
Alt3	
Alt4	
, ,,,,,	
86	Hydrogen gas is not liberated when the following metal is added to dilute HCL:-
Alt1	
Alt2	-
Alt3	
Alt3	
AIL4	211
07	Find out the statement which is incorrect about Duralumin
	Find out the statement which is incorrect about Duralumin:-
	It can be forged
	It has good machinability
	It is lighter than aluminum
Alt4	It undergoes age hardening

88	
	If the chords of contact of tangents from $(-4, 2)$ and $(2, 1)$ to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
	are at rightangle, then eccentricity of the hyperbola is:-
Alt1	$\sqrt{\frac{3}{2}}$
Alt2	√3
Alt3	$\sqrt{\frac{5}{2}}$
Alt4	√2
001	Nuring a deputation t
	Ouring adsorption:-
	AG will be equal to zero AG will be negative
	AG will be positive
	None of these
AIL4	Notice of these
anlı	/inegar is synthesized from alcohol by:-
	Azotobector
	Rhizobium
	actobacillus bacteria
	Bacilli aceti bacteria
<u> </u>	
91 7	The formula used to calculate the size of the particle is known as:-
Alt1 S	cherrer
Alt2	Bode Code Code Code Code Code Code Code C
Alt3 k	Cirkendall
Alt4 L	aue

Alt1 38 A Alt2 16 A Alt3 2 AT Alt4 36 A 93 Wha Alt1 8x3 - Alt2 x4 - Alt3 8x - Alt4 x3	at is the integral of $(2x + 3)(2x - 5)$ with respect to $-15x2 + c$ $2x3 - 15x2 + c$ $4 + c$ $2x2 - 15x + c$ ich of the following is an intensive property:- face tension sperature osity	o x?	aerobic respiration is:	
93 What Alt1 8x3 - Alt2 x4 - 2 Alt3 8x - 4 Alt4 x3 - 2 Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	at is the integral of (2x + 3)(2x - 5) with respect to -15x2 + c 2x3 - 15x2 + c 4 + c 2x2 - 15x + c ich of the following is an intensive property:-face tension aperature osity of these			
93 What Alt1 8x3 - Alt2 x4 - 2 Alt3 8x - 4 Alt4 x3 - 2 Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	at is the integral of (2x + 3)(2x - 5) with respect to -15x2 + c 2x3 - 15x2 + c 4 + c 2x2 - 15x + c ich of the following is an intensive property:-face tension aperature osity of these			
93 What Alt	at is the integral of $(2x + 3)(2x - 5)$ with respect to $-15x2 + c$ $2x3 - 15x2 + c$ $4 + c$ $2x2 - 15x + c$ ich of the following is an intensive property:- face tension sperature osity of these			
93 Wha Alt1 8x3 - Alt2 x4 - 2 Alt3 8x - 4 Alt4 x3 - 2 94 Whi Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o 95 Link	at is the integral of (2x + 3)(2x - 5) with respect to -15x2 + c 2x3 - 15x2 + c 4 + c 2x2 - 15x + c ich of the following is an intensive property:-face tension aperature osity of these			
93 What Alt 1 8x3 - Alt 2 x4 - 2 Alt 3 8x - 4 Alt 4 x3 - 2 Alt 4 X3 - 2 Alt 4 X3 - 2 Alt 4 Alt 5 Urfa Alt 2 Tem Alt 3 Visco Alt 4 All o	at is the integral of $(2x + 3)(2x - 5)$ with respect to $-15x2 + c$ $2x3 - 15x2 + c$ $4 + c$ $2x2 - 15x + c$ ich of the following is an intensive property:- face tension sperature osity of these			
Alt1 8x3 - Alt2 x4 - 2 Alt3 8x - 4 Alt4 x3 - 2 94 Whi Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	- 15x2 + c 2x3 - 15x2 + c 4 + c 2x2 - 15x + c ich of the following is an intensive property:- face tension sperature osity of these			
Alt1 8x3 - Alt2 x4 - 2 Alt3 8x - 4 Alt4 x3 - 2 94 Whi Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	- 15x2 + c 2x3 - 15x2 + c 4 + c 2x2 - 15x + c ich of the following is an intensive property:- face tension sperature osity of these			
Alt2 x4 - 2 Alt3 8x - 4 Alt4 x3 - 2 94 Whi Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	2x3 - 15x2 + c 4 + c 2x2 - 15x + c ich of the following is an intensive property:- face tension sperature osity of these			
94 Whi Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	4 + c 2x2 - 15x + c ich of the following is an intensive property:- face tension sperature osity of these			
94 Whi Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	2x2 - 15x + c ich of the following is an intensive property:- face tension sperature osity of these			
94 Whi Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	ich of the following is an intensive property:- face tension sperature osity of these	otugon alice live		
Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	ace tension sperature osity of these			
Alt1 Surfa Alt2 Tem Alt3 Visco Alt4 All o	ace tension sperature osity of these	otugon alicalisti		
Alt2 Tem Alt3 Visco Alt4 All o	osity of these	otugon alice licis		
Alt3 Visco Alt4 All o	osity of these	otugon al colucio		
Alt4 All o	of these	otugon glasskata		
95 Link		otwoon glysolysis		
	s between carbohydrate and fat metabolism or h	otugon alugalusia		
		erween givcolvsis."	Kreb's cycle and β-ox	idation of fatty
		A A A A		
Alt1 Pyru	uvic acid			
Alt2 Oxal		##		
Alt3 Citrio		A .		
Alt4 Acet		7		
96 I	If equations $\vec{r} \times \vec{a} = \vec{b}$ and $\vec{r} \times \vec{a}$	$c = \overline{d}$ are co	nsistent, ther	1:-
Alt1 b.c =	= a.d = 0			
Alt2 a.d +	+ b.c = 0			
Alt3 a.d +	+ c.d = 0			
Alt4 a.d =	= c.d			
07 Eicc	her-Tropsch process is used for the manufacture	v of:-		
	thetic petrol	: 01		
Alt2 Etha				
Alt3 Benz				
Alt4 Etha	ATIOIC ACID			
98 The	matrix A satisfies the condition A = AT is:-			
Alt1 iden	ntity			
Alt2 skev	v-symmetric			

Alt4	adjoint
99	Evolution of CO2 is more than intake of oxygen when:-
Alt1	Glucose is respired
Alt2	Fats are respired
Alt3	Organic acids are respired
Alt4	Sucrose is respired
100	If the order of matrix A is nxp and the order of matrix B is pxm, what is order of matrix AB:-
Alt1	рхр
Alt2	nxm
Alt3	nxp
Alt4	pxm

305 PU M Tech Nano Sciences and Technology

177	F100 PU_2016_305_E ability of the material to absorb energy on elastic deformation is known as:-		
0	Impact		
0	Resilience		
	сгеер		
0	Toughness		
2 of 100 207 PU_2016_305_E Membrane proteins are:-			
0 0 0	Aligned diagonally		
	Arranged in a zigzag manner		
	Symmetrically placed		
	Asymmetrically placed		
130 The	F 100 PU_2016_305_E half-life of a zero order reaction (A→P) is given by (K = rate constant):-		
-	$t_{1/2} = [A]_0/k$		
0	$t_{1/2} = 1/ k [A]_0$		
	$t_{1/2} = 2.303/k$		
	$t_{1/2} = [A]_0/2k$		
4 of 100 204 PU_2016_305_E Plastids storing proteins are called:-			
0 0 0 0	Aleuroplasts		
	Oleosomes		
	Phaeoplasts		
	Elaioplasts		
192	F 100 PU_2016_305_E fatigue strength of mild steel is:-		
0	lower than its yield strength		
0	equal to its tensile strength		
0	equal to its yield strength		

more than its tensile strength	
6 of 100 $168 \text{ PU}_2016_305_E$ The number of solutions of equation 6 $ \cos x - x = 0$ in $[0, 2\pi]$ are:- 2 6 3 4	
7 of 100 181 PU_2016_305_E In general, more ductile material has the following structure:-	
body centered cubic lattice	
diamond cubic	
hexagonal close packed	
face centered cubic	
8 of 100 156 PU_2016_305_E Area of region on the complex plane which is bounded by the curve $ z+2i + z-2i =8$ is:- $3\sqrt{8}\pi$ $16\pi\sqrt{3}$	
$\bigcirc 4\sqrt{12\pi}$	
None of these	
9 of 100 121 PU_2016_305_E The e.m.f around a closed path is equal to negative rate of change of magnetic flux linked with the path in significance of:-	
Maxwell's first equation	
Maxwell's second equation	
Maxwell's third equation	
Maxwell's fourth equation	
10 of 100 103 PU_2016_305_E If horizontal and vertical components of the earth's magnetic field are equal at a certain place, then the angle of dip at that place is:- 22.50 N	
22.00 IV	

0	11.25 N
\circ	45.00 N
0	7.20 N
148	of 100 PU_2016_305_E urve has equation y =3x²-7x-2.
What o	at is the gradient of the tangent at the point where x=3? 4 9 3 11
191	PU_2016_305_E compared to engineering stress strain curve, the true stress strain curve is:- crosses the engineering curve parallel to the engineering curve below and to the right above and to the left
194 The equ	of 100 PU_2016_305_E shear modulus, G, of plastic is related to the elastic modulus, E, and the Poisson ratio,v, through the ation:-
0	E = (1-v) G
0	E = (1+v) G
0	E = 2(1-v) G
0	E = 2(1+v) G
179	of 100 PU_2016_305_E percentage of carbon in cast iron is:-
0	4.5-6.5%
0	2.5-4%
0	0.5-1.5%
0	less than 0.5%
	of 100 PU_2016_305_E

The	particles are assumed to obey Pauli's exclusion principle in:-
0	Maxwell-Boltzmann statistics
0	Bose-Einstein statistics
0	Fermi-Dirac statistics
0	None of these
201 Euk	of 100 PU_2016_305_E caryotic cells devoid of Endoplasmic reticulum are:-
0	Mature erythrocytes
0	Liver cells
0	Kidney cells
0	Mature leucocytes
120	of 100 PU_2016_305_E ptons, phonons, helium, nuclei and mesons are treated with help of:-
	Fermi-Dirac statistics
0	Bose-Einstein statistics
0	Maxwell-Boltzmann statistics
0	None of these
218 Whi	of 100 PU_2016_305_E ich of the following bacteria are responsible for the conversion of pyruvic acid to propionic acid bugh oxaloacetic acid formation?
0	Enterobacter
0	Clostridium
0	Lactobacillus
0	Propionobacterium
175	of 100 PU_2016_305_E manent deformation is related to:-
0	fatigue
0	plasticity
0	creep
0	elasticity

20 of 100

	FPU_2016_305_E mmals can regenerate:-
0	Liver
0	Urinary bladder
0	Brain
0	Lung
152 Let	of 100 2 PU_2016_305_E a ,b∈R-{0} and α , β , γ be the roots of the equation $x^3+ax^2+bx-b=0$. If $2/\beta=1/\alpha+1/\gamma$,then the minimum ue of $(a+b)/b$ is equal to:- $3/4$ 2/3 $1/3$ 3/8
211 In h	of 100 PU_2016_305_E numan beings, which part shows the maximum increase in weight from birth to adulthood?
0	Muscles
0	Brain
0	Skeleton
0	Fat
144	of 100 PU_2016_305_E e main component of the brass are:- Cu and Zn
0	Cu and Al
0	Cu and Sn
0	Cu and Ni
162	of 100 $2 \text{ PU}_2016_305_E$ (x , y , z) be points with integer co-ordinates satisfying the system of homogeneous equation3x - y - z , -3x + z = 0, -3x + 2y + z = 0. Then the number of such points for whichx ² + y ² + z ² \leq 100 are:- 5 10
0	7

142	of 100 PU_2016_305_E uds represent an example of dispersion of:-		
0	Liquid in gas		
0	Solid in gas		
0	Gas in liquid		
0	Gas in gas		
26 of 100 216 PU_2016_305_E Heriditary fructose intolerance is a condition caused by a deficiency of:-			
0	Phosphofructokinase		
0	Fructokinase		
0	Fructokinase 1,6-diphosphate aldolase		
0	Fructokinase 1-phosphate aldolase		
186	of 100 FPU_2016_305_E nite forms when the transformation temperature is between pearlite and:-		
\circ	sorbite		
\circ	martensite		
0	cementite		
135 In th	of 100 PU_2016_305_E neir metallic form, elements from which of the following groups are usually effective for hydrogenation alyst:- Alkaline earth metals		
~	Halogens		
~	Actinides		
	Pt metals		
182	of 100 PU_2016_305_E chrometry is related to the study of:-		
0	combustion		
~	moist air		
100	biomimetics		

0	luminescence
138 Ran	of 100 PU_2016_305_E dom motions of colloidal particles is known as:-
0	Electro osmosis
0	Brownian movement
0	Tyndall effect
0	Dialysis
200 Prot	of 100 PU_2016_305_E coplasm is:-
0	Alveolar
0	Crystallo-colloidal
0	Fibrillar
0	Granular
174	of 100 PU_2016_305_E nentite is a:-
0	cement
0	composite
0	elastomer
0	glass
136 Whi	of 100 PU_2016_305_E ch of the following doesn't have a metal-metal bond?
0	Al_2Cl_6
0	Hg_2CI_2
	$K_2Fe_2CI_5$
0	$Mn_2(CO)_{10}$
34 of 100 196 PU_2016_305_E Protein synthesis takes place on groups or clusters of ribosomes which are calle	
0	Polyribosomes
0	Ergosomes
0	Endoplasmic Reticulum

0	Polysomes
173 The	of 100 PU_2016_305_E typical property of ceramic is:-
0	Elasticity
0	low hardness
0	Brittleness
0	machinability
153 Con <i>f(x)</i>	PU_2016_305_E sider the function = $(1+m) x_2 - 2(3m+1)x + (8m+1)$, where $m \in \mathbb{R} - \{-1\}$ number of real values of 'm' such that $f(x) = 0$ has roots which are in the ratio 2:3 is /are:-0 1 4
188	PU_2016_305_E ch among the following parameters which strongly affects diffusivity? Presence of defects Lattice parameter
0	Diffusing species
	Temperature
178	of 100 PU_2016_305_E ich among the following has highest ductility?
0	Cu
~	W
~	Ti
	Ni
146 The	of 100 PU_2016_305_E compound used in preparing antiseptic ointment:-
0	Para-aldehyde
0	Phenol

0	Benzyl chloride
0	Benzyl alcohol
212	of 100 PPU_2016_305_E compared to whole body, the head of an adult human being is:-
_	One-fifth
0	One-seventh Control of the Control o
0	One-eighth
U	One-sixth
149	of 100 PU_2016_305_E o circles have equations $x^2 + y^2 = 16$ and $(x - 2)^2 + y^2 = 4$.
	ich of the following correctly describes the relative position of the two circles?
0	The two circles touch externally
0	The circles do not touch or intersect
0	The two circles intersect
0	The two circles touch internally
115 In F	of 100 PU_2016_305_E Fermi-Dirac statistics, the particles are called fermions and in the case of Bose-Einstein statistics, the ticles are called as:-
0	Bosons
0	Hyperons
0	Mesons
0	None of these
205	of 100 PU_2016_305_E cophorin is a:-
0	Cytosolic protein
0	Triple α-helix
0	Transmembrane protein
0	Peripheral protein
109	of 100 PU_2016_305_E assembly of bosons is known as:-

0	Bose-Einstein condensation
0	Fermi-Dirac gas
\circ	Bose-Einstein gas
0	None of these
	of 100 PU_2016_305_E
If	$\log_7\left(\log_5\sqrt{(x^2+x+5)}\right) = 0$, then x is equal to:-
0	4
	-2
0	3
0	2
127 The	of 100 PU_2016_305_E molecular geometry of IF ₅ is:-
0	Trigonal planar
0	Linear
0	Square pyramidal
0	Square planar
47 of 100 150 PU_2016_305_E A, B and C have coordinates (1, -2, 4), (5, 4, -2) and (7, 7, -5) respective Here are two statements about the points A, B and C (1) A, B and C are collinear (2) $ \overrightarrow{AC} $: $ \overrightarrow{BC} = 2:1$. Which of the following is true?	
0	Neither statement is correct
0	Only statement 1 is correct
0	Only statement 2 is correct
0	Both statements are correct
137 Am	of 100 PU_2016_305_E ong the following one having highest bond strength is:-
0	O_2^-
0	O ₂ ⁺
0	O_2

O_2^{2-}	
49 of 100 169 PU_2016_305_E Area enclosed by inequality 2 ≤ x +y + x -y ≤4is:-	
5 sq. units	
12 sq. units	
8 sq. Units	
4 sq. units	
50 of 100 100 PU_2016_305_E If m*h > m*e, then the position of Fermi energy level is:-	
Just above the centre of energy gap	
Just above valence band	
Just below conduction band	
At the centre of energy gap	
51 of 100 184 PU_2016_305_E Which micro-constituent is not the part of the iron-carbon system?	
Troostite	
Martensite	
Sorbite	
Magnesite	
52 of 100 159 PU_2016_305_E If a, b, c, d \in {0, 1}, then the probability that system of equations ax + by = 2; cx + dy = 4 is having unique solution is given by:-	J
5/8	
1/2	
3/8	
53 of 100 219 PU_2016_305_E Enterobacter helps in production of from pyruvic acid.	
Propanol	
Acetone	

Butanediol

Ethanol

54 of 100

161 PU_2016_305_E

Let ' ω ' be the non-real cube root of unity, where $A = \begin{bmatrix} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{bmatrix}$, then A^{2010} is equal to:-

0

O -A

° 0

O A

55 of 100

165 PU_2016_305_E If log_{12} 27 = a, then log_6 16 is:-

 $2\left(\frac{4-a}{4+a}\right)$

 $2\left(\frac{3-a}{3+a}\right)$

 $4\left(\frac{3-a}{3+a}\right)$

 $3\left(\frac{3-a}{3+a}\right)$

56 of 100

158 PU 2016 305 E

If John is allowed to select at most (n + 1) chocolates from a collection of (2n + 2) distinct chocolates, then total number of ways by which John can select at leasttwo chocolates are given by:-

 $(2(4)^n + 4.^{2n+1}C_n - 2n + 3)$

 $^{\circ}$ 2(4)ⁿ+ $^{2n+1}$ C_n- 2n-3

 $(4)^n + 4 \cdot {}^{2n+1}C_n - 2n + 1$

 $(2(4)^n-^{2n+1}C_n-2n-3)$

57 of 100

172 PU_2016_305_E

Which among the following is NOT the typical metallic property?

C Lustre C Formability Ductility High specific heat	
58 of 100 125 PU_2016_305_E Which one of the following exhibit rotational spectra? H ₂ N ₂ CO ₂ CO CO	
59 of 100 167 PU_2016_305_E If log x²-log 2x = 3log 3-log 6, then x is:- 10 9 1 2	
60 of 100 171 PU_2016_305_E If y = f (x) and y cosx + xcosy = π for all x∈R,then f" (0) is:- - π π 2π 0	
61 of 100 230 PU_2016_305_M pH value of buffer can be calculated using the equation pH = pKa + [acid]/[salt] [acid]/salt [acid] [salt]	
62 of 100 231 PU_2016_305_M An octahedral complex is formed when hybrid orbitals of the following type are involved	:-

0	sp^2d^2
0	d^2sp^3
\circ	dsp ²
0	sp ³
228 The C C C C 64 (251	PU_2016_305_M complex compound in which oxidation number of metal is zero is:- [Pt(NH ₃) ₄]Cl ₂ [K ₄ Fe(CN) ₆] K ₃ [Fe(CN) ₆] [NiCO ₄] of 100 PU_2016_305_M isoble property for components to withstead about and impact load?
O O O	toughness brittleness strength stiffness
234 Gro	PU_2016_305_M und state term for the d ⁷ configuration:- ³ p ⁵ d ¹ s ⁴ f
236 The O	of 100 PU_2016_305_M equation of common tangent to the curves $y = 6 - x - x^2$ and $xy = x + 3$ is:- $3x + y = 10$ $3x + y = 7$ $2x + y = 4$ $3x - y = 8$
247	of 100 PU_2016_305_M magnetic materials are:-

0	are magnetized in direction opposite to that of applied field
0	can be magnetized in one direction only
\circ	non magnetic
0	cannot be magnetized
243 The is:- O	of 100 PU_2016_305_M experience control of smallest circle which cuts the circles $x^2 + y^2 = 1$ and $x^2 + y^2 + 8x + 8y - 33 = 0$ orthogonally $(\sqrt{3},2)$ $(2,2)$ $(2\sqrt{2},\sqrt{3})$ $(2,2\sqrt{2})$
241 If th	of 100 PU_2016_305_M e straight lines $6x + 3y - 10 = 0$, $6x + Ky - 4 = 0$ and $2x + y - 3 = 0$ are concurrent, then:- $K = 3$ $K \in \Phi$ $K = 1$ $K \in R$
237 Equ	of 100 PU_2016_305_M variation of normal to curve $y = (1+x)^y + \sin - 1(\sin^2 x)$ at $x = 0$ is:- x + y - 1 = 0 x - y + 1 = 0 x + y = 0 x + y + 1 = 0
240 If L	of 100 PU_2016_305_M 1,L2, L3 are three non-concurrent and non parallel lines in 2-dimesional plane, then maximum ober of points which are equidistant from all the three lines is/are:- 3 2 1 4

	PU_2016_305_M spiration is regarded as:-	
0	Synthetic process	
0	Reduction process	
0	Catabolic process	
0	Anabolic process	
225 The per	of 100 PU_2016_305_M waves of frequency 12 MHZ are emitted by a radio station. The velocity of radio waves is 3 X10 ⁸ milli second. The wavelength of emitted waves will be	
0	25 m	
0	36 m	
0	3.6 m	
0	2.5 m	
74 of 100 227 PU_2016_305_M A free electron is placed in the path of a plane electromagnetic wave. The electron will start moving		
0	Along the magnetic field	
\circ	In a plane containing the magnetic field and the direction of propagation	
0	Along the electric field	
0	Along the direction of propagation of the wave	
254	of 100 PU_2016_305_M all nuclear RNAs are involved in:-	
0	Splicing and processing of both rRNA and mRNA	
0	Splicing of RNAs	
0	Splicing and processing of mRNA	
0	Binding of DNA	
235	of 100 PU_2016_305_M ential of hydrogen electrode at pH 10:-	
0	-0.059V	
0	0.59V	
0	-0.59V	
0	0.00 V	

222	of 100 PU_2016_305_M hich of the following, the speed of sound will be maximum?
0	Water
\circ	Air
\circ	Vacuum
0	Steel
220	of 100 PU_2016_305_M nuclear reactor, the control rods are made of Uranium-238 Uranium-235
0	Plutonium
0	Cadmium
224	PU_2016_305_M displacement current arises due to Positive charges only Time varying electric field Both positive and negative charges Negative charges only
255 Sigr	of 100 PU_2016_305_M nal theory is related to:- Nervous system Synthesis of secretory proteins Emergency Formation of special membrane lipiol
262	of 100 PU_2016_305_D cific heat of the water is minimum at:-
0	
0	0K
0	273°C
	4°C

264 The	of 100 PU_2016_305_D main significance of the relativistic formula for the variation of mass with velocity is that no materially can have
0	A velocity equal to or greater than the velocity of light
0	A velocity equal to or lesser than the velocity of light
0	A velocity lesser than the velocity of light
0	None of these
260 A m	of 100 PU_2016_305_D nonochromatic electromagnetic waves means that
0	The wave always travels in the same direction
0	Electric field vector E lies in one direction only
0	Magnetic field vector B must be perpendicular to the direction of propagation
0	The field strength at a point varies with time according to sine or cosine function
297 Wh	of 100 'PU_2016_305_D ich is the final electron acceptor in respiration?
0	Oxygen
0	Dehydrogenase
0	Cytochrome
0	Hydrogen
269	of 100 PU_2016_305_D e nature of ether is:-
0	Amphoteric
0	Acidic
0	Neutral
0	Slightly basic
273 The	of 100 BPU_2016_305_D e entropy of the universe is:-
0	Continuously increasing
0	Constant
0	Zero

0	Continuously decreasing
287 The	of 100 PU_2016_305_D corrosion resistance of stainless steel primarily arise from the presence of:-
0	Ni
0	Cr
0	P
0	Со
284	of 100 PU_2016_305_D ition of increases the machinability of aluminium.
0	Magnesium
0	lead and bismuth
0	Silicon
0	Copper
286	PU_2016_305_D degree of freedom when ice, water and water vapour co-exist in equilibrium is:- 3 0 2
289	of 100 PU_2016_305_D ch is not the metal joining process:-
0	slip casting
0	welding
\circ	soldering
0	brazing
295	of 100 PU_2016_305_D eral activator needed for the enzymes carboxylase of TCA cycle is:-
0	Мо
0	Mg
\cup	Fe

° _{Mn}	
92 of 100 267 PU_2016_305_D There is universal equivalence between mass and energy i.e. mass may appear as energy and energy as mass is called	
Mass-velocity equivalence	
Mass-energy variation	
Mass-energy equivalence	
None of these	
93 of 100 277 PU_2016_305_D Minimum distance between the ellipse $x^2x^2+2y^2=6$ and the line x +y - 7 =0 is equal to: $4\sqrt{2}$	
C √5	
° _{2√2}	
○ √10	
94 of 100 281 PU_2016_305_D When $\nabla \times A = 0$ then the vector field is:- Irrotational Sinusoidal Solenoidal Constant	
95 of 100 270 PU_2016_305_D If 1 mol of NH3 is mixed with 1 molHCl in closed container to form NH ₄ Cl gas then:-	
$\Delta H = \Delta U$	
ΔH>ΔU	
ΔH < ΔU	
There is no relationship	
96 of 100 266 PU_2016_305_D One atomic mass unit is equal to	
931.3 MeV	
911.3 MeV	

0	913.3 MeV
0	None of these
268 Sat O O	of 100 B PU_2016_305_D curated solution of KNO3 is used to make salt bridge because:- Velocity of both are nearly same Velocity of K ⁺ is greater than NO ₃ ⁻ KNO ₃ is highly soluble in water Velocity of NO ₃ ⁻ is greater than K ⁺ of 100
	PU_2016_305_D ich of the following statements is true?
0	In air the sound waves are transverse and the light waves are longitudinal
0	Both the sound and the light waves are transverse waves
0	In air the sound waves are longitudinal and the light waves are transverse
0	The sound and the light waves are both longitudinal waves
294	of 100 PU_2016_305_D a living organism which of the following has the greater amount of available energy per molecule:- ADP H_2O CO_2 ATP
299 Acti	O of 100 O PU_2016_305_D ion of ATPase needs the presence of:-
0	Na ⁺ and K ⁺
0	Mg ⁺⁺ and K ⁺
0	Cu ⁺⁺ and Fe ⁺⁺
100	Ca ⁺⁺ and Mg ⁺⁺

PU M Tech Nano Sciences and Technology

122	f 100 PU_2015_305 ctile fracture is characterized by:- shiny appearance cup and cone structure with no plastic deformation subsurface cracks
100 Cas	F 100 PU_2015_305 St iron known for its character. Brittle Ductile Toughness Low melting point
120 The	F 100 PU_2015_305 Example preparation process by which the structural features of a metallic sample is revealed in cal microscopy is known as: implantation etching sputtering lithography
112 For C	f 100 PU_2015_305 a cylindrical shaft of length 'L' and radius 'r', if torque 'M' operates then shear stress is given by:- $2/M \pi r^3$ $2M/\pi r^2$ $2M/\pi r^3$ $2/\pi M r^2$
114	F 100 PU_2015_305 ong the following bonding types which exhibit high melting point:- covalent secondary metallic ionic

118	f 100 PU_2015_305 underground pipelines the commonly used joint is:-
	sleeve joint
	flange
- 7	expansion joint
_	coupling
106	f 100 PU_2015_305 four stroke cycle, the minimum temperature inside the engine cylinder occurs at the:-
	end of exhaust stroke
	beginning of exhaust stroke
	beginning of suction stroke
	end of suction stroke
110	f 100 PU_2015_305 hardest material among the following:-
	sapphire
_	gypsum
	apatite
	fluorite
108	f 100 PU_2015_305 nerally used moderator in the nuclear power plant is:-
	beryllium
	cadmium
	lead
	graphite
104	of 100 PU_2015_305 bond formed by the transfer of one electron to the other is known as:-
	ionic
	metallic
ند	hydrogen
	covalent
11 (of 100

11 of 100
102 PU_2015_305
In non-destructive testing, the dye penetrant test is usually carried out to check the defects.

	core
	chemical
	elemental
	surface
116 Whi C	PU_2015_305 ch among the following notation represents the family of directions in a crystal? (111) <111> [111]
223 Whi	PU_2015_305 ch among the following has highest percentage of ionic character? MgO ZnS SiC NaCI
225	PU_2015_305 process by which consolidation of powder into solid dense mass is known as:- sintering diffusion infiltration pressing
221	PU_2015_305 ch one among the following is not converted into non pollutant in a catalytic converter? unburnt hydrocarbon oxides of nitrogen carbon monoxide sulphur
227 A cc	PU_2015_305 completely aligned fiber reinforced composite consist – 40 vol% fiber with modulus of elasticity 69 GPa 60 vol% matrix with the modulus of 3.4GPa. The modulus of the composite is:-

	60 GPa
	30 GPa
	45 GPa
266	of 100 5 PU_2015_305 en a material is stressed, the generation of electricity is known as:-
	piezoresistivity
	ferroelectricity
	thermoelectricity
	piezoelectricity
264 On	of 100 PU_2015_305 increasing the temperature:-
	the resistivity of a metal and a semiconductor increases
	the resistivity of a metal and a semiconductor decreases
	the resistivity of a metal increases while for a semiconductor decreases
L	the resistivity of a metal decreases while for a semiconductor increases
260	of 100 PU_2015_305 ntify the statement which is TRUE with respect to nanomaterials.
	For unit mass surface energy of the nanostructures are lower than the micron sized particles
	Surface energy of the nanostructures are zero
	For nanomaterials surface area to volume ratio is high
	For nanomaterials total number of atoms present on the surface is low
262	of 100 PU_2015_305 manent magnetic moment in the absence of electric field is known as:-
	ferromagnetism
	diamagnetism
	paramagnetism
	giant magneto resistance
137 Det efm	of 100 'PU_2015_305 uteron has only one bound state with spin parity 1 ⁺ , isospin 0 and electric quadrupole moment 0.286 ² . These data suggest that the nuclear forces are having:-
	only spin and isospin dependence
	spin dependence along with tensor components

spin dependence but no tensor components
Ono spin dependence and no tensor components
of 100 PU_2015_305 Hall coefficient, RH, of sodium depends on:- The charge carrier density only The effective charge carrier mass and carrier density The charge carrier density and relaxation time
The effective charge carrier mass
PU_2015_305 ground state wave function of deuteron is in a superposition of s and d states. Which of the following OT true as a consequence? It has a non-zero quadruple moment The neutron-proton potential is non-central The Hamiltonian does not conserve the total angular momentum The orbital wavefunction is not spherically symmetric
PU_2015_305 ragnetic field sensor based on the Hall Effect is to be fabricated by implanting Asintoa Si film of kness 1 μ m. The specifications require a magnetic field sensitivity of 500 mV/Tesla at an excitation tent of 1 mA. The implantation dose is to be adjusted such that the average carrier density, after vation, is:- 1.25 × 10^{22} m ⁻³ 1.25 × 10^{26} m ⁻³ 4.1 × 10^{20} m ⁻³
of 100 PU_2015_305 a three-dimensional crystal having N primitive unit cells with a basis of p atoms, the number of optical nodes is:- $3p$ $3p-3$ $3N-3p$ 3

143 PU_2015_305 A cavity contains blackbody radiation in equilibrium at temperature T. The specific heat per unit volume of the photon gas in the cavity is of the form $C_V = \gamma T^3$, where γ is a constant. The cavity is expanded to twice

its original volume and then allowed to equilibrate at the same temperature T. The new internal energy per unit volume is:-
$\Box_{\forall T^4/4}$ $\Box_{\forall T^4}$
$\square_{2\gamma T^4}$
$\square_{4\gamma T^4}$
27 of 100 139 PU_2015_305 Choose the CORRECT statement from the following? Electron does not interact through weak interaction Neutron interacts through electromagnetic interaction Neutrino interacts through weak and electromagnetic interaction
Quark interacts through strong interaction but not through weak interaction
28 of 100 141 PU_2015_305 A proton is confined to a cubic box, whose sides have length 10^{-12} m. What is the minimum kinetic energy of the proton? The mass of proton is 1.67 x 10^{-27} kg and Planck's constant is 6.63 x 10^{-34} Js. $ \begin{array}{c} 3.3 \times 10^{-17} J \\ 9.9 \times 10^{-17} J \\ \hline 0.6 \times 10^{-17} J \end{array} $ 1.1 x $10^{-17} J$
29 of 100 129 PU_2015_305 The excitations of a three-dimensional solid are bosonic in nature with their frequency ω and wavenumber k are related by $\omega \propto k^2$ in the large wavelength limit. If the chemical potential is zero, the behaviour of the specific heat of the system at low temperature is proportional to: $\begin{array}{ccc} & T^{3/2} \\ & & T^{1/2} \\ & & & T^{3/2} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $
30 of 100 133 PU_2015_305 The pressure of a nonrelativistic free Fermi gas in three-dimensions depends, at $T = 0$, on the density of fermions n as:- $ \Box n^{4/3} $ $ \Box n^{2/3} $ $ \Box n^{5/3} $ $ \Box n^{5/3} $ $ \Box n^{1/3} $

31 of 100 145 PU_2015_305 Consider a Maxwellian distribution of the velocity of the molecules of an ideal gas. Let <i>Vmp</i> and <i>Vrms</i> denote the most probable velocity and the root mean square velocity, respectively. The magnitude of the ratio <i>Vmp/Vrmsis:</i> - L
32 of 100 147 PU_2015_305 A gas of N non-interacting particles is in thermal equilibrium at temperature T . Each particle can be in any of the possible non-degenerate states of energy 0, 2ε and 4ε . The average energy per particle of the gas, when $\beta\varepsilon$ <<1, is:-
33 of 100 231 PU_2015_305 Bose condensation occurs in liquid He 4 kept at ambient pressure at 2.17 K. At whichtemperature will Bose condensation occur in He 4 in gaseous state, the density of which is 1000 times smaller than that of liquid He 4 ? (Assume that it is a perfect Bose gas.) $\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ $
2.17 mK 34 of 100 229 PU_2015_305 Gas molecules of mass m are confined in a cylinder of radius R and height L(withR>>L) kept vertically in the Earth's gravitational field. The average energy of the gas at low temperatures (such that mgL>>kBT) is given by:- 2NkBT NkBT/2 5NkBT/

C _{3NkBT/2}

35 of 100 233 PU_2015_305 Let ΔW be the work done in a quasistatic reversible thermodynamic process. Which of the following statements about ΔW is correct?

 \Box ΔW is always a perfect differential

	ΔW is a perfect differential if the process is adiabatic
	ΔW is a perfect differential if the process is isothermal
	ΔW cannot be a perfect differential
A s tem as:	of 100 5 PU_2015_305 yestem of non-interacting spin-1/2 charged particles are placed in an external magnetic field. At low operature T , the leading behavior of the excess energy above the ground state energy, depends on T (c is a constant) e^{-c}/T
	c <i>T</i>
	cT^3
	c (is independent of T)
271 If th C C	of 100 PU_2015_305 The peak output voltage of a full wave rectifier is 10 V, its d.c. voltage is:- 3.18 V 6.36 V 10.0 V 7.07 V
269 The ferr C	of 100 PU_2015_305 pressure of a nonrelativistic free Fermi gas in three-dimensions depends, at T =0, on the density of nions n as:- $n^{4/3}$ $n^{1/3}$ $n^{2/3}$ $n^{5/3}$
273 For	of 100 3 PU_2015_305 the set of all Lorentz transformations with velocities along the x-axis consider the two statements en below:
	f L is a Lorentz transformation then, L^{-1} is also a Lorentz transformation. Q: If L 1 and L 2 are Lorentz references then, L 1L2 is necessarily a Lorentz transformation.
Cho	pose the correct option.
	P is true and Q is false
	P is false and Q is true
	Both P and Q are true
\Box	Both P and Q are false

Two particles each of rest mass m collide head-on and stick together. Before collision, the speed of each mass was 0.6 times the speed of light in free space. The mass of the final entity is:-		
	2 <i>m</i>	
\Box	5 <i>m</i> /2	
\Box	25 m/8	
	5 <i>m</i> / 4	
15 <i>°</i> An	of 100 PU_2015_305 ibodies that recognize only one epitop derived from a single clone is called:-	
	Bivalent antibodies	
C	Polyclonal antibodies	
	Monoclonal antibodies	
	Monovalent antibodies	
171	of 100 PU_2015_305 ative amount of A, T, G and C in DNA were measured first by:-	
\Box	Ramachandran	
\Box	Watson and Crick	
\Box	Erwing Chargaff	
\Box	Peterson	
161	of 100 PU_2015_305 e enzymes used in polymerase chain reaction is:- Taq DNA polymerase Polymerase III DNA ligase RNA polymerase	
159 Gua LI LI	of 100 PU_2015_305 enosine nucleotide is held by the cytosine nucleotide by the number of H-bonds:- 4 2 1	
\Box	3	

40 of 100

275 PU_2015_305

169	PU_2015_305 first reaction involved in the carbohydrate metabolism is:- Formation of Acety Co-A Carboxylation Phosphorylation Hydrogenation
167 In th	PU_2015_305 ne melting point curve of DNA, Tm increases with increasing:- A + G content G + C content A + C content G + T content
163	of 100 PU_2015_305 able organism for use in recombinant vaccine is:- Influenza virus Vaccina virus Small pox virus Poliomyelitus virus
153	PU_2015_305 process of synthesis of protein from RNA is called:- Isolation Replication Transcription Translation
157	PU_2015_305 en the idiotopes are used as vaccine to mimic antigen, the vaccine is known as:- Synthetic vaccine Recombinant vaccine Subunit vaccine Anti-idiotypic vaccine

149 The nylc	of 100 PU_2015_305 technique of transfer of DNA molecules separated by gel electrophoresis to the nitrocellulose or on membrane is called:-
	Eastern blot
	Northern blot
	Southern blot
	Western blot
155 Cor	of 100 5 PU_2015_305 njucal transfer of gene takes place in Bacteria by:- Fimbriae Sexpili Polymerized molecule Flagellae
165 The	4
239 The	of 100 PU_2015_305 e lethal gene ratio is:- 2:1 4:1 8:1 1:1
243	of 100 8 PU_2015_305 elix is disrupted by certain aminoacids like:- Arginine Proline Histidine Lysine

237	PU_2015_305 recombinant DNA based human vaccine commercially available against:- Leprosy HIV Tuberculosis Hepatitis B
241	PU_2015_305 neutral aminoacid is:- Proline Histidine Leucine Serine
279 All t	PU_2015_305 -RNA molecules have a common CCA sequence at the:- 5' 3' terminal 3' terminal 5' terminal 3'5' terminal
277 Kera	PU_2015_305 atin is synthesized from:- Glycine Proline Serine Methionine
281	PU_2015_305 shape of natural DNA strands cannot be:- Hairpin Interlocked Circular Linear

283 The	of 100 PU_2015_305 gene coding for VP1 is cloned in:- pUC 18 pUC 19 pMB 9 pBR 322
177 If in app C C	of 100 PU_2015_305 a frequently distribution, the mean and median are 21 and 22 respectively, then its mode is proximately:- 20.5 22.0 25.5 24.0
191 The U	
193 In the rem C C C C C C C C C C C C C C C C C C C	of 100 8 PU_2015_305 he first 10 overs of a cricket game, the run rate was only 3.2. What should be the run rate in the raining 40 overs to reach the target of 282 runs? 7 6.5 6.75 6.25
183 The C C C C C C C C C C C C C	of 100 3 PU_2015_305 a area enclosed between the curve y = loge (x + e) and the coordinate axes is:- 4 3 2 1

65 of 100 187 PU_2015_305 If $\cos -1(1/x) = \theta$, then $\tan \theta =$
$U_{\sqrt{(x^2-1)}}$
$\square_{\sqrt{(1-x^2)}}$
$\square_{\sqrt{(x^2+1)}}$
$\Gamma_{1/\sqrt{(x^2-1)}}$
66 of 100
173 PU_2015_305
A school committee consists of 2 teachers and 4 students. The number of different committees that can be formed from 5 teachers and 10 students is:-
\square_{10}
\mathbb{C}_{-15}
U ₂₁₀₀
67 of 100 195 PU_2015_305 The number of real roots of the equation e^{sinx} - e^{-sinx} - $4 = 0$ are:-
Infinite
None
68 of 100 175 PU_2015_305
The period of 2 sinxcosx is:-
$\square_{4\pi}$
$\square_{4\pi^2}$
$\square_{2\pi}$
\square_{π}
69 of 100 189 PU_2015_305 In a single throw of two dice, the probability of getting more than 7 is:-
C _{5/36}
C _{7/12}
C _{7/36}
□ _{5/12}

185	of 100 5 PU_2015_305 Fare of either of the two imaginary cube roots of unity will be:- Real root of unity Other imaginary cube root of unity Sum of two imaginary roots of unity None of these
179 If in sin (of 100 PU_2015_305 a triangle ABC, the altitudes from the vertices A, B, C on opposite sides are in H.P., then sin A, sin B, C are in:- H.P. Arithmetic – Geometric Progression A.P. G.P.
181	2 1
248	of 100 PPU_2015_305 e expression (2 + √2)⁴ has value, lying between. 134 and 135 135 and 136 136 and 137 None of these
250	of 100 PU_2015_305 sum of 3 numbers in geometric progression is 38 and their product is 1728. The middle number is. 12 8 6 18

246 Two	of 100 6 PU_2015_305 6 Correctly describes relative position of the two circles.
	The two circles touch externally
	The two circles touch internally
	The circles do not touch or intersect
	The two circles intersect
244 The resp	of 100 PU_2015_305 de degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are prectively:-
	2, 1
	1, 2
	2, 3
	3, 2
287 The	of 100 PU_2015_305 e ends of latus rectum of parabola $x^2 + 8y = 0$ are:- (-4, -2) and (4, -2) (4, 2) and (-4, 2)
	(4, -2) and (-4, 2)
С	(-4, -2) and (4, 2)
289 The	of 100 PU_2015_305 e points (0, 8/3), (1, 3) and (82, 30) are the vertices of:- A right angled triangle
\Box	A right angled triangle
	An equilateral triangle
С	None of these
285 Whi 6)?	of 100 5 PU_2015_305 ich vector is perpendicular to the plane containing the three points P(2, 1, 5), Q(-1, 3, 4), and R(3, 0
F 3	2i +2 j-k
	2i - j + k
F 3	i+2j+2k
	i+2j+k

291	of 100 PU_2015_305
	P _r , then r is equal to:-
C	
C	
C	
218 The C	PU_2015_305 condensation polymer among the following is:- Protein PVC Polythene Rubber
214	of 100 PU_2015_305 laws of electrolysis were proposed by:-
	Fritz Haber
	Friedrich Kohlrausch
	Michael Faraday
	Richard Abegg
216 Whi	0.2N
C	0.002N
84 (of 100 PU_2015_305 at is the electrochemical equivalent (in g coulomb ⁻¹) of silver? (Ag = 108; F = Faraday) 108 F 1/108 F F/108
	108/F

85 of 100

202 PU_2015_305

During the process of electrolytic refining of copper, some metals present as impurity settle as 'anode mud' These are:-

	Sn and Ag
	Ag and Au
	Fe and Ni
\Box	Pb and Zn
208	of 100 PU_2015_305 congst the following the most basic compound is:- acetanilide p-nitroaniline aniline benzylamine
212	of 100 PU_2015_305 best way to prevent rusting of iron is:- putting it in an acidic solution making iron cathode both (A) and (B) neither (A) nor (B)
204	PU_2015_305 number and type of bonds between two carbon atoms in calcium carbide are: One sigma, one pi Two sigma, one pi One sigma, two pi
80	Two sigma, two pi
196	of 100 PU_2015_305 Inumber of d-electrons in Fe2+ (Z = 26) is not equal to that of:- d-electrons in Fe (Z=26) p-electrons in Ne (Z=10) s-electrons in Mg (Z=12) p-electrons in Cl(Z=17)

Thiokol 91 of 100 200 PU_2015_305 Which one of the following pairs of species have the same bond order? O and CN CN and NO+ NO+ and CN+
200 PU_2015_305 Which one of the following pairs of species have the same bond order? O and CN CN CN and NO+
CN ⁻ and CN ⁺
92 of 100 198 PU_2015_305 The number of moles of solute present in 1 kg of a solvent is called its:- Molarity Normality Molality Formality
93 of 100 256 PU_2015_305 $(NH_4)_2Cr_2O_7$ On heating gives a gas which is also given by:- \square heating NH_4NO_2 \square $Mg_3N_2 + H_2O$ \square $Na (comp.) + H_2O_2$ \square heating NH_4NO_3
94 of 100 258 PU_2015_305 Which one of the following does not involve coagulation? L Peptization C Clotting of blood by the use of ferric chloride Formation of delta regions Treatment of drinking water by potash alum
95 of 100 252 PU_2015_305 Which of the following factors is of no significance for roasting sulphide ores to the oxides and n subjecting the sulphide ores to carbon reduction directly? Metal sulphides are less stable than the corresponding oxides CO ₂ is thermodynamically more stable than CS ₂ Metal sulphides are thermodynamically more stable than CS ₂

	CO ₂ is more volatile than CS ₂
254	of 100 PU_2015_305 e potential of a hydrogen electrode at pH = 10 is:-
F 3	-0.59V
	0.059V
	0.00V
	0.59V
292 Phe	of 100 PPU_2015_305 enol, when it first reacts with concentrated sulphuric acid and then with concentrated nitric acid, gives:-
	p-nitrophenol
	nitrobenzene
	o-nitrophenol
	2,4,6-trinitrobenzene
296 Whit?	of 100 5 PU_2015_305 ich of the following arrangements does not represent the correct order of the property stated against Co ³ +< Fe ³⁺ < Cr ³⁺ < Sc ³⁺ : stability in aqueous solution
	Sc <ti<cr<mn: number="" of="" oxidation="" states<="" td=""></ti<cr<mn:>
	V^{2+} < C^{r^2} +< Mn^2 +< Fe^{2+} : paramagnetic behavior
	$Ni^2+< Co^{2+}< Fe^2+< Mn^{2+}$: ionic size
298 Bas	of 100 B PU_2015_305 sed on the first law of thermodynamics, which one of the following is correct?
מממ	For an isochoric process, $\Delta U = \Delta q$
	For an adiabatic process, $\Delta U = \Delta w$
	For a cyclic process, $q = \Delta w$
L	For an isothermal process, q = +w
294	O of 100 PU_2015_305 action of one molecule of HBr with one molecule of 1,3-butadiene at 40°C gives predominantly.
	3-bromobutene under kinetically controlled conditions
	1-bromo-2-butene under thermodymically controlled conditions
	1-bromo-2-butene under kinetically controlled conditions
-	3-bromobutene under thermodynamically controlled conditions