Problem Set 4: Quantum Circuit and Deutsch's Algorithm

Minh Pham

July 2021

1 Quantum Circuit

For this problem set, we are working with a standard gates set that is widely used throughout the quantum literature. This includes single qubit and double qubit gates.

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}, \quad P(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}, \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

To recap from previous lectures, gates in the quantum circuit are applied in opposite order to that of matrix multiplications.

$$|0\rangle$$
 A B C $= CBA |0\rangle$

1.1 Write down the quantum states denoted point P, Q, R in bra-ket notation

(a)
$$|0\rangle$$
 \longrightarrow X \longrightarrow H \longrightarrow X \longrightarrow H

(b)
$$|\psi\rangle$$
 P Q R , where $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$

(c)
$$|\psi\rangle \xrightarrow{P} Q \xrightarrow{R} |\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\phi\rangle = \gamma |0\rangle + \delta |1\rangle$$

1.2 Simplifying Quantum Circuit

For these exercises, we can simplify the circuit by following some basic identities.

Gate-Inverse Identity

$$M^{\dagger} = M^{\dagger} = I$$

Phase Addition Identity

This tells us that phase gates when apply in series, combines constructively, and so they are commutative.

$$P(\alpha) = P(\beta) = P(\alpha) = P(\alpha + \beta)$$

X - Z Transform Identity

$$H Z H = X$$

$$H X H = Z$$

Inverse Phase Identity

$$X - P(\theta) - X - e^{i\theta} - P(-\theta)$$

Note that $e^{i\theta}$ is a global phase.

Nested Gate-Inverse Gate Identity

This is a particularly powerful identity which can help us decompose many non-intuitive circuits. Since this is more of a mathematical identity, it will be presented in terms of matrix multiplication.

$$U(AB)U^{\dagger} = (UAU^{\dagger})(UBU^{\dagger})$$

We can extend this to a nested product of an arbitrary number of matrices. For a set L containing many matrices, we have the identity

$$U\bigg(\prod_{A\in L}A\bigg)U^{\dagger} = \prod_{A\in L}\bigg(UAU^{\dagger}\bigg)$$

Note that the \prod denotes matrix multiplication; just as \sum denotes a sum.

The reason behind this is quite easy to understand, if we expand the product out to a few terms, we have

$$\begin{split} (UAU^\dagger)(UBU^\dagger)(UCU^\dagger)...(UVU^\dagger)(UWU^\dagger) &= UA(U^\dagger U)B(U^\dagger U)C(U^\dagger ...U)V(U^\dagger U)WU^\dagger \\ &= UA(I)B(I)C...V(I)WU^\dagger \\ &= U(ABC...VW)U^\dagger \end{split}$$

We use this identity when the nested product of the individual matrix inside is easier to expand the the original product. For example,

$$H(ZX)H = (HZH)(HXH) = XZ$$

We know from X - Z Transform Identity that each part of the product multiplies to a simpler matrix, X and Z respectively.

Exercises

Decompose the circuit into a single simple quantum gate. Include global phase if there are any. Use circuit identities as listed above whenever possible. In the worst case, perform normal matrix multiplication. Note that $S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{2}} \end{pmatrix}$, and $S^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix}$

(a)
$$H$$
 T T^{\dagger} T

(b)
$$H$$
 T S^{\dagger} T^{\dagger} S X H

(c)
$$H$$
 S X S^{\dagger} X T T^{\dagger} H

(d)
$$T$$
 X T^{\dagger} H S S^{\dagger} X H T X T^{\dagger}

(e)
$$H$$
 T X T^{\dagger} X T X H

2 Deutsch's Algorithm

2.1 Quantum Oracle

Recall that the oracle action is defined as $U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$

For example, if $x = |1\rangle$, $y = |0\rangle$, $f(x) = x \land x$, then

$$U_f |1\rangle |0\rangle = |1\rangle |0 \oplus (1 \wedge 1)\rangle = |1\rangle |1\rangle$$

Exercises: Calculate the output of the circuit after the oracle

(a)
$$x = |0\rangle, y = |1\rangle, f(x) = x \land x \land 1$$

(b)
$$x = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle, y = |1\rangle, f(x) = (x \wedge 1) \vee x$$

(c)
$$x = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle, y = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle, f(x) = \overline{(x \vee 0)}$$

2.2 Deutsch's Oracle

The negation oracle has the action $f(x) = \overline{x}$. Equivalently,

$$U_f |x\rangle |y\rangle = |x\rangle |y \oplus \overline{x}\rangle$$

Exercises: Design an oracle for the negation function

The oracle goes between the two red lines

$$|x\rangle \longrightarrow U_f \qquad |x\rangle = |x\rangle \longrightarrow |x\rangle |y\rangle \longrightarrow |y \oplus \overline{x}\rangle$$