Constantin Lazari, Marco Wettstein

26. Februar 2013

1. Geben Sie (graphisch) einen DEA mit Alphabet $\Sigma = \{0, 1, 2\}$ an, der genau die Wörter aus Σ^* akzeptiert welche geraden natürlichen Zahlen in der Ternärdarstellung (Basis 3 Darstellung) entsprechen.

Beispiel: Der Automat akzeptiert beispielsweise 1101221, verwirft aber 1010010

2. Es sei Σ ein beliebiges Alphabet und $A \subset \Sigma^*$ eine Sprache. Ist folgende Aussage wahr? Begründen Sie Ihre Antwort.

$$A \text{ ist regul\"ar } \Leftrightarrow (\Sigma^* \setminus A) \text{ ist regul\"ar}$$
 (1)

Lösung:

 $\Sigma^* \setminus A$ ist das Inverse von A (und andersrum).

Es lässt sich ein deterministischer, endlicher Automat (DEA a) bauen, der prüft, ob ein gegebenes Wort bzw. ein regulärer Ausdruck von Element von A ist.

Es lässt sich auch ein Automat (DEA b) bauen, der:

- 1. alle Wörter von Σ^* akzeptiert
- 2. alle akzeptierten Wörter DEA a übergibt
- 3. Falls:
 - (a) das Wort von DEA a akzeptiert wird, es für ungültig erklärt
 - (b) ansonsten das Wort für gültig erklärt.

Somit ist die Implikation nach rechts bewiesen.

Sofern Σ^* regulär ist, lässt sich ein deterministischer, endlicher Automat bauen, der prüft, ob ein Wort Element von Σ^* ist und falls nicht in den Zustand " $w \notin \Sigma^*$ " übergeht.

Falls, die Σ^* Prüfung erfolgreich verläuft, kann im nächsten Schritt geprüft werden, ob das Wort $\in A$ ist. (Falls ja, Zustand " $w \in A$ ", sonst Zustand " $w \notin A$ ").

Somit kann der Automat entscheiden, ob ein Wort ein Element von $\Sigma^* \setminus A$ ist. Damit ist auch die Implikation nach links bewiesen.

Im Ergebnis ist die Aussage damit richtig, sofern Σ^* auch regulär ist.

3. Die Zustandsübergangfunktion δ vom NEA $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, \{q_0\}, \{q_0\})$ ist durch folgende Tabelle gegeben:

δ	0	1	
q_0	$\{q_0\}$	$\{q_1,q_2\}$	
q_1	$\{q_0\}$	_	
q_2	_	$\{q_0\}$	

(a) Zeichnen Sie das Zustandsübergangsdiagramm von A.

(b) Beschreiben Sie die vom Automaten akzeptierte Sprache L(A).

Lösung:

Als regulärer Ausdruck: $L(A) = (0 + (10) + (11))^*$

(c) Konstruieren Sie den zu A äquivalenten DEA A_D . Verwenden Sie dazu die Teilmengenkonstruktion (siehe Hopcroft et al. S. 70ff. – Kopie der S. auf Moodle).

Lösung:

Teilmengenkonstruktion:

	δ	0	1	
A	Ø	Ø	Ø	
В	$\{q_0\}$	В	G	
С	$\{q_1\}$	_		
D	$\{q_2\}$	_	_	
Ε	$\{q_0,q_1\}$	_	_	
F	$\{q_0,q_2\}$	_	_	
G	$\{q_1,q_2\}$	В	В	
Η	$\{q_0,q_1,q_2\}$	_	-	
	[90, 91, 92]			

Darstellung $(q_1 \text{ von } A \neq q_1 \text{ von } A_D)$:

