Praktische Informatik 3: Funktionale Programmierung

Vorlesung 7 vom 14.12.2020: Funktionen Höherer Ordnung II — Jenseits der Liste

Christoph Lüth

Wintersemester 2020/21

Fahrplan

- ► Teil I: Funktionale Programmierung im Kleinen
 - Einführung
 - Funktionen
 - Algebraische Datentypen
 - ► Typvariablen und Polymorphie
 - ► Funktionen höherer Ordnung I
 - Rekursive und zyklische Datenstrukturen
 - Funktionen höherer Ordnung II
- ► Teil II: Funktionale Programmierung im Großen
- ► Teil III: Funktionale Programmierung im richtigen Leben

Heute

- ► Mehr über map und fold
- map und fold sind nicht nur für Listen
- ► Funktionen höherer Ordnung in anderen Programmiersprachen

Lernziel

Wir verstehen, warum map und fold besonders sind, wie sie für andere Datentypen aussehen, und wann wir sie benutzen können.

I. Berechnungsmuster

map und filter als Berechnungsmuster

- map, filter, fold als Berechnungsmuster:
 - 1 Anwenden einer Funktion auf jedes Element der Liste
 - 2 möglicherweise Filtern bestimmter Elemente
 - 3 Kombination der Ergebnisse zu Endergebnis E
- Gut parallelisierbar, skalierbar
- Berechnungsmuster für große Datenmengen
 - ► Map/Reduce (Google), Hadoop

Listenkomprehension

Besondere Notation: Listenkomprehension

```
[ f x | x\leftarrow as, g x ] \equiv map f (filter g as)
```

- ► Beispiel:
 - Remember this?

```
suche :: Artikel\to Lager\to Maybe Menge suche a (Lager ps) = listToMaybe (map (\lambda(Posten _ m)\to m) (filter (\lambda(Posten la _) \to la == a) ps))
```

Sieht so besser aus:

```
suche :: Artikel\rightarrow Lager\rightarrow Maybe Menge suche a (Lager ps) = listToMaybe [ m | Posten la m \leftarrow ps, la \Longrightarrow a ]
```

Listenkomprehension mit mehreren Generatoren

► Anderes Beispiel: Primzahlzwillinge

```
twin_primes :: [(Integer, Integer)]

twin_primes = [(x, y) | (x, y) \leftarrow zip primes (tail primes), x+2 == y]
```

► Mit mehreren Generatoren werden alle Kombinationen generiert:

```
idx:: [String]
idx = [ a: show i | a \leftarrow ['a'.. 'z'], i\leftarrow [0.. 9]]
```

Beispiel I: Quicksort

Quicksort per Listenkomprehension:

```
qsort1 :: Ord \alpha \Rightarrow [\alpha] \rightarrow [\alpha]
qsort1 [] = []
qsort1 xs@(x:_) = qsort1 [y | y\leftarrow xs, y< x ]#
[x0| x0\leftarrow xs, x0 == x ]#
qsort1 [z | z\leftarrow xs, z> x ]
```

► Erstaunlich effizient

► Einfache Rekursion mit 3-Weg-Split nicht wesentlich effizienter, aber wesentlich länger

Beispiel I: Quicksort

Quicksort per Listenkomprehension:

```
qsort1 :: Ord \alpha \Rightarrow [\alpha] \rightarrow [\alpha]
qsort1 [] = []
qsort1 xs@(x:_) = qsort1 [y | y\leftarrow xs, y< x ]#
[x0| x0\leftarrow xs, x0 == x ]#
qsort1 [z | z\leftarrow xs, z> x ]
```

Erstaunlich effizient

- ▶ Einfache Rekursion mit 3-Weg-Split nicht wesentlich effizienter, aber wesentlich länger
- ► Grund: Sortierte Liste wird nicht im ganzen aufgebaut

Beispiel II: 8-Damen-Problem

▶ Problem: Plaziere 8 Damen sicher auf einem Schachbrett

Source: wikipedia

Beispiel II: n-Damen-Problem

Position der Königinnen:

```
type Pos = (Int, Int)
type Board = [Pos]
```

ightharpoonup Rekursiv: Lösung für n-1 Königinnen, n-te sicher dazu positionieren

```
queens :: Int\rightarrow [Board]
queens n = qu n where
qu :: Int\rightarrow [Board]
qu i | i == 0 = [[]] — Nicht []!
| otherwise = [ p# [(i, j)] | p \leftarrow qu (i-1), j \leftarrow [1.. n],
safe p (i, j)]
```

► Invariante: *n*-te Königin in *n*-ter Spalte

Beispiel II: n-Damen-Problem

Wann ist eine Königin sicher?

```
safe :: Board\rightarrow Pos\rightarrow Bool safe others nu = and [ not (threatens other nu) | other \leftarrow others ]
```

▶ Bedrohung: gleiche Zeile oder Diagonale

```
threatens :: Pos \rightarrow Pos \rightarrow Bool
threatens (i, j) (m, n) = (j=n) || (i+j=m+n) || (i-j=m-n)
```

- ▶ Diagonalen charakterisiert durch y = a + x bzw. y = a x für konstantes a
- ightharpoonup Gleiche Spalte (i == m) durch Konstruktion ausgeschlossen

Was zum Nachdenken

```
queens :: Int→ [Board]
queens n = qu n where
  qu :: Int→ [Board]
  qu i \mid i == 0 = [[]] — Nicht []!
        otherwise = [p+ [(i, j)] \mid p \leftarrow qu (i-1), j \leftarrow [1.. n],
                                          safe p (i, i)]
```

Übung 7.1: Warum?

Wieso ist dort [[]] so wichtig? Was passiert, wenn wir [] zurückgeben?

PI3 WS 20/21 12 [44]

Was zum Nachdenken

```
queens :: Int\rightarrow [Board]

queens n = qu n where

qu :: Int\rightarrow [Board]

qu i | i == 0 = [[]] — Nicht []!

| otherwise = [ p# [(i, j)] | p \leftarrow qu (i-1), j \leftarrow [1.. n],

safe p (i, j)]
```

Übung 7.1: Warum?

Wieso ist dort [[]] so wichtig? Was passiert, wenn wir [] zurückgeben?

Lösung:

- ▶ Mit [] gibt es keine Lösung, mit [[]] gibt es eine, leere Lösung für i = 0.
- ► Mit [] gäbe es nie eine Lösung für alle i.

II. Map und Fold: Jenseits der Listen

map als strukturerhaltende Abbildung

map ist die kanonische strukturerhaltende Abbildung

► Für map gelten folgende Aussagen:

$$\label{eq:map_def} \begin{array}{l} \texttt{map id} = \texttt{id} \\ \\ \texttt{map f} \circ \texttt{map g} = \texttt{map (f} \circ \texttt{g)} \\ \\ \texttt{length} \circ \texttt{map f} = \texttt{length} \end{array}$$

- ► Was davon ist spezifisch für Listen?
- ▶ Wie können wir das verallgemeineren?

map als strukturerhaltende Abbildung

map ist die kanonische strukturerhaltende Abbildung

Für map gelten folgende Aussagen:

$$\label{eq:map_def} \begin{array}{l} \text{map id} = \text{id} \\ \\ \text{map } f \circ \text{map } g = \text{map } (f \circ g) \\ \\ \text{length} \circ \text{map } f = \text{length} \end{array}$$

- ► Was davon ist spezifisch für Listen?
- ▶ Wie können wir das verallgemeineren?

 \longrightarrow Typklassen?

map als strukturerhaltende Abbildung

map ist die kanonische strukturerhaltende Abbildung

► Für map gelten folgende Aussagen:

$$\label{eq:map_def} \begin{array}{l} \text{map id} = \text{id} \\ \\ \text{map } f \circ \text{map } g = \text{map } (f \circ g) \\ \\ \text{length} \circ \text{map } f = \text{length} \end{array}$$

- ► Was davon ist spezifisch für Listen?
- ▶ Wie können wir das verallgemeineren?

 \longrightarrow Konstruktorklassen!

Funktoren

- ► Konstruktorklassen sind Typklassen für Typkonstruktoren.
- ▶ Die Konstruktorklasse Functor für alle Typen mit einer stukturerhaltenden Abbildung:

```
class Functor f where fmap :: (\alpha \rightarrow \beta) \rightarrow f \alpha \rightarrow f \beta
```

► Es sollte gelten (kann nicht geprüft werden):

$$\label{eq:fmap} \begin{array}{l} \texttt{fmap id} = \texttt{id} \\ \\ \texttt{fmap f} \circ \texttt{fmap g} = \texttt{fmap (f} \circ \texttt{g)} \end{array}$$

► Infix-Synomym <\$> für fmap

Instanzen von Functor

Listen sind eine Instanz von Functor, aber es gibt map und fmap

Instanzen von Functor

- Listen sind eine Instanz von Functor, aber es gibt map und fmap
- ► Maybe ist eine Instanz von Functor:

```
instance Functor Maybe where
  fmap f (Just a) = Just (f a)
  fmap f Nothing = Nothing
```

► Propagiert Nothing — oft sehr nützlich

Instanzen von Functor

- Listen sind eine Instanz von Functor, aber es gibt map und fmap
- ► Maybe ist eine Instanz von Functor:

```
instance Functor Maybe where
  fmap f (Just a) = Just (f a)
  fmap f Nothing = Nothing
```

- Propagiert Nothing oft sehr nützlich
- ► Tupel sind Instanzen von Functor im zweiten Argument, bspw:

```
instance Functor (a, ) where
fmap f (a, b) = (a, f b)
```

foldr ist kanonisch

foldr ist die kanonische strukturell rekursive Funktion.

- ▶ Alle strukturell rekursiven Funktionen sind als Instanz von foldr darstellbar
- Insbesondere auch map und filter:
 map f = foldr ((:). f) []

```
filter p = foldr (\lambdaa as\rightarrow if p a then a:as else as) []
```

- ► Jeder algebraischer Datentyp hat ein foldr
- ▶ Nicht als Konstrukturklasse darstellbar (wie Functor und fmap)
 - Anmerkung: Typklasse Foldable schränkt Signatur von foldr ein

fold für andere Datentypen

fold ist universell

Jeder algebraische Datentyp T hat genau ein foldr.

- ► Kanonische Signatur für T:
 - ▶ Pro Konstruktor C ein Funktionsargument f_C
 - Freie Typvariable β für T
- ► Kanonische Definition:
 - ► Pro Konstruktor C eine Gleichung
 - \triangleright Gleichung wendet f_{C} auf Argumente an (und fold rekursiv auf Argumente vom Typ T)

fold für andere Datentypen

► Beispiel:

data IL = Cons Int IL | Err String | Mt

► Das Fold dazu:

fold für andere Datentypen

► Beispiel:

```
data IL = Cons Int IL | Err String | Mt
```

► Das Fold dazu:

```
foldIL :: (Int \rightarrow \beta \rightarrow \beta) \rightarrow (String \rightarrow \beta) \rightarrow \beta \rightarrow IL \rightarrow \beta
foldIL f e a (Cons i il) = f i (foldIL f e a il)
foldIL f e a (Err str) = e str
foldIL f e a Mt = a
```

- ► Was ist das?
 - ► Eine Art Listen von Int mit Fehlern ("Ausnahmen")
 - ▶ Das zweite Argument von foldIL fängt aufgetretene Ausnahmen

► Bool:

▶ Bool: Fallunterscheidung:

ightharpoonup Maybe α :

```
data Maybe \alpha= Nothing \mid Just \alpha foldMaybe :: \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow Maybe \alpha \rightarrow \beta foldMaybe b f Nothing = b foldMaybe b f (Just a) = f a
```

▶ Bool: Fallunterscheidung:

```
data Bool = False | True foldBool :: \beta \rightarrow \beta \rightarrow Bool\rightarrow \beta foldBool a1 a2 False = a1 foldBool a1 a2 True = a2
```

ightharpoonup Maybe α : Auswertung

data Maybe
$$\alpha=$$
 Nothing $|$ Just α foldMaybe $:: \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow$ Maybe $\alpha \rightarrow \beta$ foldMaybe b f Nothing $=$ b foldMaybe b f (Just a) $=$ f a

► Als maybe vordefiniert

► Tupel:

data
$$(\alpha, \beta) = (\alpha, \beta)$$

foldPair ::
$$(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha, \beta) \rightarrow \gamma$$
 foldPair f (a, b)= f a b

► Tupel: die uncurry-Funktion

data
$$(\alpha, \beta) = (\alpha, \beta)$$

foldPair ::
$$(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha, \beta) \rightarrow \gamma$$
 foldPair f (a, b)= f a b

▶ Dazu gehört die Funktion curry (beide vordefiniert):

curry ::
$$((\alpha, \beta) \rightarrow \gamma) \rightarrow \alpha \rightarrow \beta \rightarrow \gamma$$

curry f a b = f (a, b)

► Die beiden sind invers:

$$uncurry \circ curry = id \quad curry \circ uncurry = id$$

► Natürliche Zahlen:

```
data Nat = Zero | Succ Nat foldNat :: \beta \rightarrow (\beta \rightarrow \beta) \rightarrow \text{Nat} \rightarrow \beta foldNat e f Zero = e foldNat e f (Succ n) = f (foldNat e f n)
```

Natürliche Zahlen: Iterator

```
data Nat = Zero | Succ Nat foldNat :: \beta \rightarrow (\beta \rightarrow \beta) \rightarrow \text{Nat} \rightarrow \beta foldNat e f Zero = e foldNat e f (Succ n) = f (foldNat e f n)
```

▶ Wendet Funktion f n-mal auf Startwert e an:

foldNat
$$e f n = f^n(e)$$

► Konversion nach Int:

```
natToInt :: Nat \rightarrow Int

natToInt = foldNat 0 (1+)
```

Kurze Denkpause

Übung 7.2: Merkwürdige Zahlen

Wenn wir die natürlichen Zahlen mit einem Typ-Parameter versehen:

data FNat $\alpha = FZero \mid FSucc \alpha \text{ (FNat } \alpha\text{)}$

Was ist die kanonische Funktion foldFNat, und welcher Datentyp ist das?

Kurze Denkpause

Übung 7.2: Merkwürdige Zahlen

Wenn wir die natürlichen Zahlen mit einem Typ-Parameter versehen:

data FNat
$$\alpha = FZero \mid FSucc \alpha \text{ (FNat } \alpha\text{)}$$

Was ist die kanonische Funktion foldFNat, und welcher Datentyp ist das?

Lösung:

foldFNat ::
$$\beta \rightarrow (\alpha \rightarrow \beta \rightarrow \beta) \rightarrow$$
 FNat $\alpha \rightarrow \beta$ foldFNat e f FZero = e foldFNat e f (FSucc a n) = f a (foldFNat e f n)

Das sind natürlich Listen, mit foldr:

foldr ::
$$(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow [\alpha] \rightarrow \beta$$

fold für binäre Bäume

▶ Binäre Bäume:

data Tree $\alpha = \operatorname{Mt} \mid \operatorname{Node} \alpha$ (Tree α) (Tree α)

Label nur in den Knoten

fold für binäre Bäume

► Binäre Bäume:

```
data Tree \alpha = Mt \mid Node \alpha (Tree \alpha) (Tree \alpha)
```

- Label nur in den Knoten
- ► Instanz von fold:

```
foldT :: \beta \rightarrow (\alpha \rightarrow \beta \rightarrow \beta \rightarrow \beta) \rightarrow \text{Tree } \alpha \rightarrow \beta
foldT e f Mt = e
foldT e f (Node a l r) = f a (foldT e f l) (foldT e f r)
```

▶ Instanz von Functor, kein (offensichtliches) Filter

```
instance Functor Tree where
fmap f Mt = Mt
fmap f (Node a l r)= Node (f a) (fmap f l) (fmap f r)
```

Funktionen mit foldT

► Höhe des Baumes berechnen:

```
height :: Tree \alpha \rightarrow Int
height = foldT 0 (\lambda 1 r\rightarrow 1+ max 1 r)
```

Inorder-Traversion der Knoten:

```
inorder :: Tree \alpha \rightarrow [\alpha]
inorder = foldT [] (\lambdaa l r\rightarrow l++ [a]++ r)
```

► Enthält der Baum dieses Element?

```
isElem :: Eq \alpha \Rightarrow \alpha \rightarrow Tree \alpha \rightarrow Bool isElem a = foldT False (\lambda b 1 r\rightarrow a == b || 1 || r)
```

► Nich-Striktheit von | begrenzt Traversion

Kanonische Eigenschaften von foldT und fmap

► Auch hier gilt:

foldT Mt Node = id
$$fmap \ id = id$$

$$fmap \ f \circ fmap \ g = fmap \ (f \circ g)$$

► Gilt für alle Datentypen. Insbesondere gilt:

fold
$$C_1$$
 C_2 ... $C_n = id$

Falten mit den Konstruktoren ergibt die Identität.

Variadische Bäume

▶ Das Labyrinth ist ein variadischer Baum:

data VTree $\alpha = NT \alpha$ [VTree α]

► Auch hierfür fold und map:

Variadische Bäume

▶ Das Labyrinth ist ein variadischer Baum:

```
data VTree \alpha = NT \alpha [VTree \alpha]
```

► Auch hierfür fold und map:

```
foldT :: (\alpha \rightarrow [\beta] \rightarrow \beta) \rightarrow VTree \alpha \rightarrow \beta
foldT f (NT a ns) = f a (map (foldT f) ns)
```

```
instance Functor VTree where
```

fmap f (NT a ns) = NT (f a) (map (fmap f) ns)

Suche im Labyrinth

► Tiefensuche via foldT

```
dfs1 :: VTree \alpha \rightarrow [Path \alpha]
dfs1 = foldT add where
add a [] = [[a]]
add a ps = [a:p | p \leftarrow concat ps]
```

Problem:

► foldT terminiert nicht für zyklische Strukturen

Suche im Labyrinth

► Tiefensuche via foldT

```
dfs2 :: Eq \alpha \Rightarrow VTree \alpha \rightarrow [Path \alpha]
dfs2 = foldT add where
add a [] = [[a]]
add a ps = [a:p | p \leftarrow concat ps, not (a 'elem' p) ]
```

► Problem:

- ► foldT terminiert nicht für zyklische Strukturen
- Auch nicht, wenn add prüft ob a schon enthalten ist
- Pfade werden vom Ende konstruiert

Grenzen von foldr

- ► foldr traversiert die gesamte Struktur, konstruiert Ergebnis von nicht-rekursiven Konstruktoren her
- ▶ Nicht-Striktheit erlaubt zyklische Strukturen, wenn lokal Abbruch der Rekursion möglich
 - ▶ Beispiel: all = foldr (&&) True
 - ► Gegenbeispiel: Tiefensuche in zyklischen Strukturen, Breitensuche
- ► foldl ist nicht generalisierbar
 - ► Warum?

Grenzen von foldr

- ► foldr traversiert die gesamte Struktur, konstruiert Ergebnis von nicht-rekursiven Konstruktoren her
- ▶ Nicht-Striktheit erlaubt zyklische Strukturen, wenn lokal Abbruch der Rekursion möglich
 - ▶ Beispiel: all = foldr (&&) True
 - ► Gegenbeispiel: Tiefensuche in zyklischen Strukturen, Breitensuche
- ► foldl ist nicht generalisierbar
 - ► Warum? Nur für linear rekursive Typen

Andere Arten der Rekursion

- Andere rekursive Struktur über Listen
 - ► Quicksort: baumartige Rekursion
- Rekursion nicht (nur) über Listenstruktur:
 - ▶ take: Begrenzung der Rekursion

```
take :: Int\rightarrow [\alpha]\rightarrow [\alpha]

take n _ | n \le 0 = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs
```

▶ Version mit fold divergiert für nicht-endliche Listen

Kurzes Gehirnjogging

Übung 7.3:

Wie sieht die Version von take mit fold aus (foldl oder foldr)?

Kurzes Gehirnjogging

Übung 7.3:

Wie sieht die Version von take mit fold aus (foldl oder foldr)?

Lösung:

► Mit foldl:

```
take :: Int\rightarrow [\alpha] \rightarrow [\alpha] take i = foldl (\lambdap a\rightarrow if length p < i then (p+[a]) else p) []
```

► Mit foldr und zip:

```
takez' i = map \ snd \circ zip \ [1.. i]
```

Geschummelt weil zip nicht mit fold implementiert werden kann

III. Anhang: Datentypen in anderen Programmiersprachen

Andere Programmiersprachen

► C — systemnah, schnell

▶ Java — objektorientiert, Systemsprache

Python — Skriptsprache

Datentypen in C

- ► C: Produkte, Aufzählungen, keine rekursiven Typen
- ► Rekursion nur durch Zeiger
- ► Konstruktoren nutzerimplementiert
- ► Manuelle Speicherverwaltung (malloc/free)

Datentypen in Java

► Nachbildung durch Klassen

▶ Datentyp ist abstrakte Klasse, Konstruktoren sind Unterklassen dieser Klasse

► Volle Speicherverwaltung (mit garbage collection)

Datentypen in Python

- ► Listen und Tupel fest eingebaut
- Diverse Funktionen auf Listen
 - ► Methoden (stateful) vs. Funktionen
 - ► Bsp. sort vs. sorted
- Definition eigener Typen über Klassen
- ► Volle Speicherverwaltung (mit garbage collection)

Polymorphie in C

- ► Polymorphie in C: void *
- ▶ Pointer-to-void ist kompatibel mit allen anderen Pointer-Typen.
- ► Manueller Typ-Cast nötig
 - Vergl. Object in Java
- ► Extrem Fehleranfälig

Polymorphie in Java

- Polymorphie in Java: Methode auf alle Subklassen anwendbar
 - ► Manuelle Typkonversion nötig, fehleranfällig
- Neu ab Java 1.5: Generics
 - ► Damit parametrische Polymorphie möglich
 - Nachteil: Benutzung umständlich, weil keine Typherleitung
 - ► Vorteil: Typkorrektheit sichergestellt:
 - ► Allerdings: Typ-Parameter nur für Klassen.

Ad-Hoc Polymorphie in Java

- ▶ interface und abstract class
- ► Flexibler in Java: beliebig viele Parameter etc.
- ► Eingeschränkt durch Vererbungshierarchie
- Ähnliche Standardklassen
 - ► toString
 - equals und ==, keine abgeleitete strukturelle Gleichheit

Polymorphie in Pyton

- ► In Python werden Typen zur Laufzeit geprüft (dynamic typing)
- **duck typing**: strukturell gleiche Typen sind gleich
- ► Polymorphie durch Klassen
- Statt Interfaces kennt Python Mixins
 - Abstrakte Klassen ohne Oberklasse

PI3 WS 20/21 40 [44]

Funktionen höherer Ordnung in C

▶ Implizit vorhanden: Funktionen = Zeiger auf Funktionen

```
extern list map1(void *(*f)(void *x), list 1);
extern list filter(int(*f)(void *x), list 1);
```

- ► Keine direkte Syntax (e.g. namenlose Funktionen)
- ► Typsystem zu schwach (keine Polymorphie)
- ► Benutzung: qsort (C-Standard 7.20.5.2)

PI3 WS 20/21 41 [44]

Funktionen höherer Ordnung in Java

- ▶ Java: keine direkte Syntax für Funktionen höherer Ordnung
- ► Folgendes ist **nicht** möglich:

```
interface Collection {
   Object fold(Object f(Object a, Collection c), Object a); }
```

Aber folgendes:

```
interface Foldable { Object f (Object a); }
interface Collection { Object fold(Foldable f, Object a); }
```

▶ Vergleiche Iterator aus Collections Framework (Java SE 6):

```
public interface Iterator<E> {
  boolean hasNext();
  E next(); }
```

▶ Seit Java SE 8 (März 2014): Anonyme Funktionen (Lambda-Ausdrücke)

Funktionen höherer Ordnung in Python

Python kennt map, filter, fold:

```
letters = map(chr, range(97, 123))
```

- ► Map auf Iteratoren definiert, nicht auf Listen
- ▶ Python kennt Listenkomprehension:

```
idx = [x + str(i) for x in letters for i in range(10)]
```

▶ Python kennt Lambda-Ausdrücke:

```
num = map (lambda x: 3*x+1, range (1,10))
```

Zusammenfassung

- ► Einge Funktionen höherer Ordnung sind speziell:
 - map ist die strukturerhaltende Funktion
 - ▶ fold ist die strukturelle Rekursion über dem Typen
- ▶ Jeder Datentyp hat map und fold
- ► Konstruktorklassen sind Klassen für Typkonstruktoren
 - Beispiel Functor
- Listenkomprehension ist ein nützlicher, leichtgewichtiger syntaktischer Zucker für map und filter

PI3 WS 20/21 44 [44]