Young-Tableaus

Permutation P:

"Anordnung", spez. Reihenfolge von Elementen

z.B. Operator
$$\hat{P} = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_1 \end{pmatrix} \equiv$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}}_{\text{Reihenfolge der Spalten}} = \underbrace{\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}}_{\text{repräsentierbar durch Zyklus}}$$

Permutationsgruppe S_n :

= n! versch. Permutationen des Sets von n S

$$\hat{P} = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

- permutiert Sequenz $a_1a_2a_3$ zu $a_2a_3a_1$
- Anwendung auf z.B. 1: (123)1 = 2
- Zyklusrepräsentation \leftrightarrow Reihenfolge der Spalten egal

Permutation endlichen Sets = Produkt von Zyklen (ungleicher Elemente):

 $P_c = P_a P_b$, wobei P_b vor P_a angewandt wird

 \leftrightarrow **Transposition**: Zyklus mit 2 Symbolen

Zyklen ohne gleiche Elemente kommutieren, bei Element in beiden Zyklen nicht

$$A = \sum_{Q} (-1)^{q} Q$$
$$S = \sum_{P} P$$

$$S = \sum_{P} P$$

[3]	[21]		$[1^3]$
123	123	132	1 2 3
A fällt weg	S bzgl. Indizes 1 und	S bzgl. Indizes 1 und	S fällt weg
	2; A bzgl. Indizes 1	3; A bzgl. Indizes 1	
	und 3	und 2	
$f_S^{(3)}$	$f_1^{(3)}$	$\int_{2}^{(3)}$	$f_A^{(3)}$
$= Ya_1b_2c_3 = Sa_1b_2c_3$			$= Ya_1b_2c_3 = Aa_1b_2c_3$
$= \sum_{P} Pa_1b_2c_3$	$= A \left(a_1 b_2 c_3 + a_2 b_1 c_3 \right)$	$= A \left(a_1 b_2 c_3 + a_3 b_2 c_1 \right)$	$=\sum_{Q}(-1)^{q}Qa_{1}b_{2}c_{3}$
	$= a_1b_2c_3 - a_3b_2c_1 +$	$= a_1b_2c_3 - a_2b_1c_3 +$	$= a_1b_2c_3 - a_1b_3c_2 -$
$a_2b_1c_3 + a_2b_3c_1 +$	$a_2b_1c_3 - a_2b_3c_1$	$a_3b_2c_1 - a_3b_1c_2$	$a_2b_1c_3 + a_2b_3c_1 +$
$a_3b_1c_2 + a_3b_2c_1$			$a_3b_1c_2 - a_3b_2c_1$
			$\begin{vmatrix} a_1 & b_1 & c_1 \end{vmatrix}$
			$= \begin{vmatrix} a_2 & b_2 & c_2 \end{vmatrix}$
			$\begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}$

- $\begin{vmatrix} \frac{3}{2} & \frac{3}{2} \end{vmatrix}$
- $\begin{vmatrix} \frac{3}{2} & \frac{1}{2} \end{vmatrix}$
- $\left|\frac{3}{2}\right| \left|\frac{1}{2}\right|$
- $\left|\frac{3}{2}\right| \frac{3}{2}$
- $\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{vmatrix}$
- $\left|\frac{1}{2} \frac{1}{2}\right\rangle$
- 123:
- $\begin{vmatrix} \frac{3}{2} & \frac{3}{2} \end{vmatrix}$
- $\begin{vmatrix} \frac{3}{2} & \frac{1}{2} \end{vmatrix}$
- $\left|\frac{3}{2}\right| \frac{1}{2}$
- $\left|\frac{3}{2}\right| \frac{3}{2}$
- 123
- $\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{vmatrix}$
- $\left|\frac{1}{2}\right| \left|\frac{1}{2}\right|$
- 13 :
- $\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{vmatrix}$
- $\left|\frac{1}{2}\right| \left|\frac{1}{2}\right|$

123.

$$\begin{vmatrix} \frac{3}{2} & \frac{3}{2} \\ \text{nur} \\ \text{Spin-up} \end{vmatrix} = (\alpha \alpha \alpha)$$

$$\frac{3}{2} \qquad \underbrace{\frac{1}{2}}_{\text{2}} \qquad \bigg\rangle = \frac{1}{\sqrt{3}} \left[(\alpha \alpha \beta) + (\beta \alpha \alpha) + (\alpha \beta \alpha) \right]$$
 1 \$\alpha\$-Spin im
Überschuss

$$\begin{vmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{\beta} - \text{Spin im} \\ \text{Überschuss} \end{vmatrix} = \frac{1}{\sqrt{3}} \left[(\beta \beta \alpha) + (\alpha \beta \beta) + (\beta \alpha \beta) \right]$$

$$\begin{vmatrix} \frac{3}{2} & \frac{3}{2} \\ & \text{nur} \\ & \text{Spin-down} \end{vmatrix} = (\beta\beta\beta)$$

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{\sqrt{2}} \left[(\alpha \alpha \beta) - (\beta \alpha \alpha) \right]$$

$$\left|\frac{1}{2} - \frac{1}{2}\right\rangle = \frac{1}{\sqrt{2}}\left[\left(\alpha\beta\beta\right) - \left(\beta\alpha\beta\right)\right]$$

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{\sqrt{2}} \left[(\alpha \beta \alpha) - (\beta \alpha \alpha) \right]$$

$$\left|\frac{1}{2} - \frac{1}{2}\right\rangle = \frac{1}{\sqrt{2}}\left[\left(\alpha\beta\beta\right) - \left(\beta\alpha\beta\right)\right]$$

$$\Psi = |LSM_L M_S\rangle \equiv |^{2S+1} L M_L M_S\rangle$$

- $|2 \quad 2\rangle$
- $|2 1\rangle$
- |2 $0\rangle$
- |2 $-1\rangle$
- |2 $-2\rangle$
- 1 2 3:
- $|3 \quad M_L\rangle \text{ mit } M_L \in \{-3,-2,-1,0,1,2,3\}$
 - 13 :
- $|2 \quad M_L\rangle \text{ mit } M_L \in \{-2, -1, 0, 1, 2\},\$
- $|1 \quad M_L\rangle \text{ mit } M_L \in \{-1, 0, 1\}$
- $|2 \quad M_L\rangle \text{ mit } M_L \in \{-2, -1, 0, 1, 2\},\$
- $|1 \quad M_L\rangle \text{ mit } M_L \in \{-1, 0, 1\}$

$$(1 \quad 1 \quad 0) = p_{+1}(1)p_{+1}(2)p_0(3)$$

$$\underbrace{p}_{je \ in \ p \ Orbital} \underbrace{3}_{Elektronen} \underbrace{2S+1 \Leftrightarrow S=\frac{1}{2}}_{2} \underbrace{D}_{L=2} \underbrace{M_{L}}_{M_{S}} \underbrace{\frac{1}{2}}_{M_{S}}$$

$$\Psi = \begin{vmatrix} p^3 & {}^2D & 2 & \frac{1}{2} \end{vmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} |2 & 2\rangle_{II} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} - |2 & 2\rangle_{I} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$