Chapter 1

Sets

This text is part of the *Open Logic Text*. It is released under a Creative Commons Attribution 4.0 International license. Please see openlogic project.org for more information.

This version of the text was compiled on March 29, 2022.

1.1 Extensionality

A *set* is a collection of objects, considered as a single object. The objects making up the set are called *elements* or *members* of the set. If x is an element of a set a, we write $x \in a$; if not, we write $x \notin a$. The set which has no elements is called the *empty* set and denoted " \emptyset ".

It does not matter how we *specify* the set, or how we *order* its elements, or indeed how *many times* we count its elements. All that matters are what its elements are. We codify this in the following principle.

Definition 1.1 (Extensionality). If A and B are sets, then A = B iff every element of A is also an element of B, and vice versa.

Extensionality licenses some notation. In general, when we have some objects a_1 , ..., a_n , then $\{a_1, \ldots, a_n\}$ is *the* set whose elements are a_1, \ldots, a_n . We emphasise the word "*the*", since extensionality tells us that there can be only *one* such set. Indeed, extensionality also licenses the following:

$${a, a, b} = {a, b} = {b, a}.$$

This delivers on the point that, when we consider sets, we don't care about the order of their elements, or how many times they are specified.

Example 1.2. Whenever you have a bunch of objects, you can collect them together in a set. The set of Richard's siblings, for instance, is a set that contains one person, and we could write it as $S = \{\text{Ruth}\}$. The set of positive integers less than 4 is $\{1, 2, 3\}$, but it can also be written as $\{3, 2, 1\}$ or even as $\{1, 2, 1, 2, 3\}$. These are all the same set, by extensionality. For every element of $\{1, 2, 3\}$ is also an element of $\{3, 2, 1\}$ (and of $\{1, 2, 1, 2, 3\}$), and vice versa.

Frequently we'll specify a set by some property that its elements share. We'll use the following shorthand notation for that: $\{x : \varphi(x)\}$, where the $\varphi(x)$ stands for the property that x has to have in order to be counted among the elements of the set.

2 CHAPTER 1. SETS

Example 1.3. In our example, we could have specified *S* also as

 $S = \{x : x \text{ is a sibling of Richard}\}.$

Example 1.4. A number is called *perfect* iff it is equal to the sum of its proper divisors (i.e., numbers that evenly divide it but aren't identical to the number). For instance, 6 is perfect because its proper divisors are 1, 2, and 3, and 6 = 1 + 2 + 3. In fact, 6 is the only positive integer less than 10 that is perfect. So, using extensionality, we can say:

$$\{6\} = \{x : x \text{ is perfect and } 0 \le x \le 10\}$$

We read the notation on the right as "the set of x's such that x is perfect and $0 \le x \le 10$ ". The identity here confirms that, when we consider sets, we don't care about how they are specified. And, more generally, extensionality guarantees that there is always only one set of x's such that $\varphi(x)$. So, extensionality justifies calling $\{x : \varphi(x)\}$ the set of x's such that $\varphi(x)$.

Extensionality gives us a way for showing that sets are identical: to show that A = B, show that whenever $x \in A$ then also $x \in B$, and whenever $y \in B$ then also $y \in A$.

1.2 Subsets and Power Sets

We will often want to compare sets. And one obvious kind of comparison one might make is as follows: *everything in one set is in the other too*. This situation is sufficiently important for us to introduce some new notation.

Definition 1.5 (Subset). If every element of a set A is also an element of B, then we say that A is a *subset* of B, and write $A \subseteq B$. If A is not a subset of B we write $A \nsubseteq B$. If $A \subseteq B$ but $A \neq B$, we write $A \subsetneq B$ and say that A is a *proper subset* of B.

Example 1.6. Every set is a subset of itself, and \emptyset is a subset of every set. The set of even numbers is a subset of the set of natural numbers. Also, $\{a, b\} \subseteq \{a, b, c\}$. But $\{a, b, e\}$ is not a subset of $\{a, b, c\}$.

Example 1.7. The number 2 is an element of the set of integers, whereas the set of even numbers is a subset of the set of integers. However, a set may happen to *both* be an element and a subset of some other set, e.g., $\{0\} \in \{0, \{0\}\}$ and also $\{0\} \subseteq \{0, \{0\}\}$.

Extensionality gives a criterion of identity for sets: A = B iff every element of A is also an element of B and vice versa. The definition of "subset" defines $A \subseteq B$ precisely as the first half of this criterion: every element of A is also an element of B. Of course the definition also applies if we switch A and B: that is, $B \subseteq A$ iff every element of B is also an element of A. And that, in turn, is exactly the "vice versa" part of extensionality. In other words, extensionality entails that sets are equal iff they are subsets of one another.

Proposition 1.8. A = B iff both $A \subseteq B$ and $B \subseteq A$.

Now is also a good opportunity to introduce some further bits of helpful notation. In defining when A is a subset of B we said that "every element of A is ...," and filled the "..." with "an element of B". But this is such a common *shape* of expression that it will be helpful to introduce some formal notation for it.

Definition 1.9. $(\forall x \in A)\varphi$ abbreviates $\forall x(x \in A \to \varphi)$. Similarly, $(\exists x \in A)\varphi$ abbreviates $\exists x(x \in A \land \varphi)$.

Using this notation, we can say that $A \subseteq B$ iff $(\forall x \in A)x \in B$.

Now we move on to considering a certain kind of set: the set of all subsets of a given set.

Definition 1.10 (Power Set). The set consisting of all subsets of a set A is called the *power set of* A, written $\varphi(A)$.

$$\wp(A) = \{B : B \subseteq A\}$$

Example 1.11. What are all the possible subsets of $\{a, b, c\}$? They are: \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, $\{a, b, c\}$. The set of all these subsets is $\emptyset(\{a, b, c\})$:

$$\wp(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}\}\}$$

1.3 Some Important Sets

Example 1.12. We will mostly be dealing with sets whose elements are mathematical objects. Four such sets are important enough to have specific names:

$$\mathbb{N}=\{0,1,2,3,\ldots\}$$
 the set of natural numbers
$$\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$
 the set of integers
$$\mathbb{Q}=\{m/n:m,n\in\mathbb{Z}\text{ and }n\neq0\}$$
 the set of rationals
$$\mathbb{R}=(-\infty,\infty)$$

the set of real numbers (the continuum)

These are all *infinite* sets, that is, they each have infinitely many elements.

As we move through these sets, we are adding *more* numbers to our stock. Indeed, it should be clear that $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$: after all, every natural number is an integer; every integer is a rational; and every rational is a real. Equally, it should be clear that $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$, since -1 is an integer but not a natural number, and 1/2 is rational but not integer. It is less obvious that $\mathbb{Q} \subseteq \mathbb{R}$, i.e., that there are some real numbers which are not rational.

We'll sometimes also use the set of positive integers $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$ and the set containing just the first two natural numbers $\mathbb{B} = \{0, 1\}$.

Example 1.13 (Strings). Another interesting example is the set A^* of *finite strings* over an alphabet A: any finite sequence of elements of A is a string over A. We include the *empty string* Λ among the strings over A, for every alphabet A. For instance,

```
\mathbb{B}^* = \{\Lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \ldots\}.
```

If $x = x_1 \dots x_n \in A^*$ is a string consisting of n "letters" from A, then we say *length* of the string is n and write len(x) = n.

4 CHAPTER 1. SETS

Figure 1.1: The union $A \cup B$ of two sets is set of elements of A together with those of B.

Example 1.14 (Infinite sequences). For any set A we may also consider the set A^{ω} of infinite sequences of elements of A. An infinite sequence $a_1a_2a_3a_4...$ consists of a one-way infinite list of objects, each one of which is an element of A.

1.4 Unions and Intersections

In section 1.1, we introduced definitions of sets by abstraction, i.e., definitions of the form $\{x:\varphi(x)\}$. Here, we invoke some property φ , and this property can mention sets we've already defined. So for instance, if A and B are sets, the set $\{x:x\in A\vee x\in B\}$ consists of all those objects which are elements of either A or B, i.e., it's the set that combines the elements of A and B. We can visualize this as in Figure 1.1, where the highlighted area indicates the elements of the two sets A and B together.

This operation on sets—combining them—is very useful and common, and so we give it a formal name and a symbol.

Definition 1.15 (Union). The *union* of two sets A and B, written $A \cup B$, is the set of all things which are elements of A, B, or both.

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Example 1.16. Since the multiplicity of elements doesn't matter, the union of two sets which have an element in common contains that element only once, e.g., $\{a, b, c\} \cup \{a, 0, 1\} = \{a, b, c, 0, 1\}$.

The union of a set and one of its subsets is just the bigger set: $\{a, b, c\} \cup \{a\} = \{a, b, c\}$.

The union of a set with the empty set is identical to the set: $\{a, b, c\} \cup \emptyset = \{a, b, c\}$.

We can also consider a "dual" operation to union. This is the operation that forms the set of all elements that are elements of *A* and are also elements of *B*. This operation is called *intersection*, and can be depicted as in Figure 1.2.

Definition 1.17 (Intersection). The *intersection* of two sets A and B, written $A \cap B$, is the set of all things which are elements of both A and B.

$$A \cap B = \{x : x \in A \land x \in B\}$$

Two sets are called *disjoint* if their intersection is empty. This means they have no elements in common.

Figure 1.2: The intersection $A \cap B$ of two sets is the set of elements they have in common.

Example 1.18. If two sets have no elements in common, their intersection is empty: $\{a, b, c\} \cap \{0, 1\} = \emptyset$.

If two sets do have elements in common, their intersection is the set of all those: $\{a, b, c\} \cap \{a, b, d\} = \{a, b\}.$

The intersection of a set with one of its subsets is just the smaller set: $\{a, b, c\} \cap \{a, b\} = \{a, b\}$.

The intersection of any set with the empty set is empty: $\{a, b, c\} \cap \emptyset = \emptyset$.

We can also form the union or intersection of more than two sets. An elegant way of dealing with this in general is the following: suppose you collect all the sets you want to form the union (or intersection) of into a single set. Then we can define the union of all our original sets as the set of all objects which belong to at least one element of the set, and the intersection as the set of all objects which belong to every element of the set.

Definition 1.19. If A is a set of sets, then $\bigcup A$ is the set of elements of elements of A:

$$\bigcup A = \{x : x \text{ belongs to an element of } A\}, \text{ i.e.,}$$
$$= \{x : \text{there is a } B \in A \text{ so that } x \in B\}$$

Definition 1.20. If *A* is a set of sets, then $\bigcap A$ is the set of objects which all elements of *A* have in common:

$$\bigcap A = \{x : x \text{ belongs to every element of } A\}, \text{ i.e.,}$$
$$= \{x : \text{for all } B \in A, x \in B\}$$

Example 1.21. Suppose $A = \{\{a, b\}, \{a, d, e\}, \{a, d\}\}$. Then $\bigcup A = \{a, b, d, e\}$ and $\bigcap A = \{a\}$.

We could also do the same for a sequence of sets $A_1, A_2, ...$

$$\bigcup_{i} A_{i} = \{x : x \text{ belongs to one of the } A_{i}\}$$

$$\bigcap_{i} A_{i} = \{x : x \text{ belongs to every } A_{i}\}.$$

6 CHAPTER 1. SETS

Figure 1.3: The difference $A \setminus B$ of two sets is the set of those elements of A which are not also elements of B.

When we have an *index* of sets, i.e., some set I such that we are considering A_i for each $i \in I$, we may also use these abbreviations:

$$\bigcup_{i \in I} A_i = \bigcup \{A_i : i \in I\}$$
$$\bigcap_{i \in I} A_i = \bigcap \{A_i : i \in I\}$$

Finally, we may want to think about the set of all elements in A which are not in B. We can depict this as in Figure 1.3.

Definition 1.22 (Difference). The *set difference* $A \setminus B$ is the set of all elements of A which are not also elements of B, i.e.,

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$$

Problems

Problem 1.1. Prove that there is at most one empty set, i.e., show that if A and B are sets without elements, then A = B.

Problem 1.2. List all subsets of $\{a, b, c, d\}$.

Problem 1.3. Show that if *A* has *n* elements, then $\wp(A)$ has 2^n elements.

Problem 1.4. Prove that if $A \subseteq B$, then $A \cup B = B$.

Problem 1.5. Prove rigorously that if $A \subseteq B$, then $A \cap B = A$.

Problem 1.6. Show that if *A* is a set and $A \in B$, then $A \subseteq \bigcup B$.

Problem 1.7. Prove that if $A \subseteq B$, then $B \setminus A \neq \emptyset$.