Assumption 1 (β -smoothness): For any parameter W_1, W_2 , each loss function F_i satisfies $F_i(W_1) \leq F_i(W_2) + (W_1 - W_2)^T \nabla F_i(W_2) + \beta/2 \parallel W_1 - W_2 \parallel_2^2$. It also implies that $\parallel \nabla F_i(W_1) - \nabla F_i(W_2) \parallel \leq \beta(W_1 - W_2)$.

Assumption 2 (μ -strongly convex): For any parameter W_1, W_2 , each loss function F_i satisfies $F_i(W_1) \ge F_i(W_2) + (W_1 - W_2)^T \nabla F_i(W_2) + \mu/2 \parallel W_1 - W_2 \parallel_2^2$. It also implies that $\parallel \nabla F_i(W_1) - \nabla F_i(W_2) \parallel \ge \mu(W_1 - W_2)$.

Assumption 3 (Bounded gradient): The stochastic gradient is bounded as $\mathbb{E}(\|\nabla F_i(W_i^t)\|_2^2) \leq \sigma^2$.

Theorem 1: There exist two constants $A = 1 - 2\mu\eta$, $B = \eta\sigma^2/(2\mu)$. The gap between the optimal W^* and W_i^t follows: $\mathbb{E}(\|W_i^t - W^*\|_2^2) \le A^t \|W_i^0 - W^*\|^2 + B$.

$$\begin{aligned} &\operatorname{Proof:} \ \| \ W_i^{t+1} - W^* \|_2^2 \\ &= \| \ W_i^{t+1} - W_i^t + W_i^t - W^* \|_2^2 \\ &= \| \ W_i^{t+1} - W_i^t + W_i^t - W^* \|_2^2 \\ &= \| \ W_i^{t+1} (M_i = 1) - W_i^t (M_i = 1) + W_i^{t+1} (M_i = 0) - W_i^t (M_i = 0) + \| \ W_i^t - W^* \|_2^2 \\ &= \| \ W_i^{t+1} (M_i = 1) - W_i^t (M_i = 1) + \| \ W_i^t - W^* \|_2^2 \\ &= \| \ \eta \nabla F_i (W_i^t (M_i = 1)) + W_i^t - W^* \|_2^2 \\ &= \| \ \eta \nabla F_i (W_i^t (M_i = 1)) \|_2^2 + \| \ W_i^t - W^* \|_2^2 - 2 \eta \nabla F_i (W_i^t (M_i = 1) (W_i^t - W^*)) \\ &\text{Then, we have} \\ &\mathbb{E}(\| \ W_i^{t+1} - W^* \|_2^2) \\ &= \eta^2 \mathbb{E}(\| \ \nabla F_i (W_i^t (M_i = 1) \|_2^2) + \| \ W_i^t - W^* \|_2^2 - 2 \eta \nabla F_i (W_i^t (M_i = 1)) \mathbb{E}(\| \ W_i^t - W^* \|_2) \\ &\leq \eta^2 \mathbb{E}(\| \ \nabla F_i (W_i^t (M_i = 1) \|_2^2) + \| \ W_i^t - W^* \|_2^2 - 2 \eta (\nabla F_i (W_i^t (M_i = 1))) - \\ &\nabla F_i (W^* (M_i = 1))) \mathbb{E}(\| \ W_i^t - W^* \|_2) \\ &\leq \eta^2 \mathbb{E}(\| \ \nabla F_i (W_i^t) \|_2^2) + \| \ W_i^t - W^* \|_2^2 - 2 \eta (\nabla F_i (W_i^t) - \nabla F_i (W^*)) \mathbb{E}(\| \ W_i^t - W^* \|_2) \\ &\leq \eta^2 \mathbb{E}(\| \ \nabla F_i (W_i^t) \|_2^2) + \| \ W_i^t - W^* \|_2^2 - 2 \eta \mu \| \ W_i^t - W^* \|_2^2 \\ &\leq \eta^2 \sigma^2 + (1 - 2 \eta \mu) \mathbb{E}(\| \ W_i^{t+1} - W^* \|_2^2) \\ &\leq \eta^2 \sigma^2 + (1 - 2 \eta \mu) \mathbb{E}(\| \ W_i^{t+1} - W^* \|_2^2) \\ &\leq \eta^2 \sigma^2 + (1 - 2 \eta \mu) \mathbb{E}(\| \ W_i^{t+1} - W^* \|_2^2) \end{aligned}$$

As round t increases, the gap gradually decreases to near zero, indicating the model convergence.