$\rm EA513-2^{0}$ Semestre de 2008 — Prof. Christiano Lyra Filho Segunda Prova — 16 de outubro de 2008

25904105

- 1. No circuito com amplificador operacional representado a seguir, tem-se: $V_p=10$ Volts, $R_1=R_2=1$ $k\Omega$, C=1000 μF e $v_c(0)=0$.
 - (a) Encontre a tensão de saída $v_s(t)$ em termos da tensão de entrada $v_e(t)$. 158705
 - (b) Conhecendo $v_e(t) = 20t$ Volts, encontre a tensão $v_s(t)$ para t entre 0 e 4 PTO 0 seg.

(a)
$$i_1 = i_c$$

 $i_1 = \frac{v_e}{R_1}$, $i_c = c \frac{dv_c}{dt}$
 $\frac{v_e}{R_1} = c \frac{dv_c}{dt} = c \frac{d(-v_s)}{dt}$
 $v_e = -R.C. \frac{dv_s}{dt}$
 $v_e = -1.10^3.10^3.10^{-6} \frac{dv_s}{dt}$
 $v_{sl+1} - v_{sl0} = -\int v_{el+1} dv_s$
 $v_{sl+1} = v_{sl0} - \int v_{el+1} dv_s$

2. Considere o circuito representado abaixo. Obtenha a corrente *i* como função da resistência R.

$$2580 \times 105 = \frac{(a)}{(c)} \frac{0,5}{10} = \frac{101}{10} \frac{100}{100} = \frac{1500}{1500} = \frac{1500}{1500}$$

- 3. Considere a associação de capacitores lineares representada na figura (A) abaixo, onde cada capacitor pode suportar uma tensão máxima de 100 Volts. O capacitor C_1 tem capacitância de 2 $\mu {
 m F}$ e o capacitor C_2 tem capacitância de 4 $\mu {
 m F}$.
 - (a) Determine a capacitância equivalente da associação de capacitores.
 - (b) Determine a tensão máxima (v^M) que pode ser aplicada entre os terminais a e b da associação.
 - (c) Suponha que entre os terminais a e b da associação seja conectada uma resistência R = 1 $k\Omega$, como ilustra a figura (B), num momento em que a associação esteja carrega com a carga máxima suportada pela mesma. Determine a corrente i(t), para $t \geq 0$.

$$v = v_1 + v_2$$

$$v = v_1 + v_2$$

$$v = v_1 + v_2$$

$$v_1 + v_2 + v_3 = 100 \text{ V}$$

$$v_2 + v_3 = 100 \text{ V}$$

$$v_2 + v_3 = 100 \text{ V}$$

$$v_3 + v_4 = v_3 + v_4 = v_4 + v_4 + v_4 + v_4 + v_4 + v_4 = v_4 + v_4$$

(a)
$$\frac{1}{Coq} = \frac{1}{C1} + \frac{1}{C2}$$

$$\frac{1}{Coq} = \frac{1}{C1} + \frac{1}{C2}$$

$$\frac{1}{Coq} = \frac{1}{C1} + \frac{1}{C2} = \frac{2\mu F. \ 4\mu F}{2\mu F + 4\mu F} = \frac{8}{6}\mu F$$

$$\frac{1}{Coq} = \frac{4}{3}\mu F$$

(b)
$$\frac{1}{\sqrt{1 - 1}} c^{3}y$$
.

 $c_{0}y = c_{0}y = c_{0}y = c_{0}y$.

 $\frac{4}{3}v_{0}^{H} = 2v_{0}^{H} : v_{0}^{H} = \frac{6}{4}v_{1}^{H} = \frac{3}{2}(100) = 150V$
 $\frac{4}{3}v_{0}^{H} = 4v_{0}^{H} : v_{0}^{H} = \frac{12}{4}v_{0}^{H} = 3(100) = 320V$
 $v_{0}^{H} = w_{0} + v_{0}^{H} : v_{0}^{H} = \frac{12}{4}v_{0}^{H} = 3(100) = 320V$

(A)

(B)

(C)
$$\frac{1}{Co_1} = \frac{1}{C_1} + \frac{1}{C_2}$$

(C) $\frac{dc}{dc} = \frac{dc}{dc}$

(C) $\frac{dc}{dc} = \frac{dc}{dc}$

(C) $\frac{dc}{dc} = \frac{dc}{dc}$

(D) $\frac{dc}{dc} = \frac{dc$

- 4. Considere o circuito linear de primeira ordem não autônomo representado abaixo, onde $R_1=R_4=1$ Ω , $R_2=R_3=2$ Ω e o indutor tem indutância L=1 H. Suponha que a chave, depois de muito tempo fechada, é aberta em t=0.
 - (a) Determine a corrente i(t), através do indutor, para $t \ge 0$.
 - (b) Suponha que a chave é novamente fechada em t=1 segundo. Determine a corrente i(t) para $t\geq 1$ seg.

(a) VARIOS INICIAL MENTE DETERMINAR UM EQUIVALENTE DE THEVENIN PARA O CIRCUITO DA RONTE E RESISTORES, VISTAS DOS TERMINAIS Q Q 6.

PARA O CIRCUITO ABERTO, Lab=E.

PARA A SITUAÇÃO DE CURTO CIRCUITO ACC=I.

$$|1|+1 = |1|0| |1| + |-\frac{3}{2}t|$$
 $|1|+1 = 3 |1| + |-\frac{3}{2}t| A$

$$|b| | |i| | = 3 \exp(-3/2) - 3(0,22) = 0,66$$

$$|c| | |c| | |4| | |c| | |4| | |c| | |4| | |c| | |a| | |a|$$