Universidade Federal de Minas Gerais (UFMG) Escola de Ciência da Informação (ECI) Colegiado de Biblioteconomia

ECI046 – Ontologias em Organizações

Prof.: Renato Fabiano Matheus Supervisão: Maurício Barcellos

Atividade Avaliativa 02 - Exercício individual

Versão 20181206 (as modificações feitas após versão inicial estão <mark>marcadas</mark> e marcadas)

Prazo de entrega: 05/11/2018 até 23h55 Valor: 40 pontos Entrega via Moodle.

Obs: entrega com atraso implica subtração de 3 pontos a cada dia. Entrega em 10/11/2018 até 23h55 valendo 3 pontos.

Este documento atualizado encontra-se em:

https://docs.google.com/document/d/15Lf502g7BUuqfwp0GWzPUV t5XXljqVODHHWea fcsg/edit

(mudar para endereço do seu documento atualizado no Google Drive)

Descrição da atividade

1. Especificar um **problema organizacional** a ser resolvido utilizando **ontologias computacionais**, conforme detalhado no item **Especificação** deste documento.

Passos preliminares

- 2. Criar uma cópia deste documento no Google Drive e editar a cópia como seu documento de entrega
 - URL do documento:

(URL do documento base)

(Usar menu File ⇒ Make a Copy do Google Drive com usuário Google conectado e depois fazer SHARE ⇒ "Get Shareable Link" ⇒ "Done" e depois copiar endereço do documento a seguir) <Endereço deste documento no Google Drive>

- ENTREGA: documento com respostas em formato PDF via Moodle.
- Sugere-se colocar também uma cópia do PDF no seu Github: <endereço github>
- 3. Identifique-se: Aluno: <Aluno>

Requisitos de arquitetura da ontologia (a implementação das ontologias será objetos das Atividades 03 e 04)

4. Criar uma nova ontologia OWL básica em RDF/XML usando Protégé e/ou Protégé Web, cujo nome deve estar relacionado com a organização e o problema cuja solução você irá modelar e implementar. Os nomes das classes e propriedades de sua ontologia base devem ser em português.

- 5. Agregar à sua ontologia básica pelo menos outras 2 (duas) ontologias vistas durante o curso ou disponíveis na Web, e.g.: Schema.org, FOAF, DBPedia Linked Data, SKOS, BFO e OBO-Foundry, ... (ver <u>slides</u> usados em aulas).
- 6. Sua ontologia base deve conter pelo menos 5 classes, cada classe pelo menos 3 atributos e 3 consultas SPARQL. As consultas SPARQL devem consultar preferencialmente pelo menos 2 classes.
- 7. Lembre-se de usar restrições de propriedades OWL (InverseOf, SameAs, DistinctWith, Min/Max) (ver apresentações sobre OWL).
- 8. Procure usar outras características para propriedades de dados ("lang", com diferentes línguas "en", "pt"; tipos de dados "string", "integer", outros).
- 9. Não utilizar como base a ontologia universidade.owl.

Especificação básica

Especifique (cada especificação a seguir deve ser feita em 1 ou 2 parágrafos, com 10 a 20 linhas):

- 10. **(6 pts)** Cenário (descreva o contexto e a organização na qual o problema organizacional será resolvido) (e.g., biblioteca, agência bancária, loja de roupas presencial ou virtual)
- 11. **(6 pts) Processo de trabalho** (identifique e descreva o processo de trabalho que será foco da solução proposta) (e.g., processo de controle de usuários, processo de controle de estoque, processo de venda, ...)
- 12. **(6 pts) Problema a ser resolvido** (descreva o problema) (e.g., "Controlar quais usuários estão com livros emprestados"; "Identificar quais usuários estão com entregas em atraso")

As especificações a seguir devem ser apresentadas em tabelas com vários itens cada:

- 13. (3 pts) Requisitos de software a serem implementados e forma de implementação (mínimo de 3 requisitos específicos para "problema a ser resolvido") (criar tabela) (e.g., Especificar formato de dados ⇔ Criação de ontologia; Identificar/Listar usuários/produtos que são do tipo X/que custam mais do que Y... (procure ser específico neste requisito no sentido de ser capaz de fazer uma consulta SPARQL na sua ontologia para resolvê-lo (nas tabelas seguintes e na Atividade Avaliativa 03), sendo que a indicação é que as consultas SPARQL acessem mais de uma classe da sua ontologia e das ontologias agregadas ⇔ Cadastro de indivíduos usando Protégé OWL ou Protégé Web; Consultar usuários em atraso ⇔ "Fazer consulta SPARQL")
- 14. **(3 pts) Modelagem de dados** (identificar em quais ontologias/classes/propriedades cada um dos requisitos irão impactar) (criar tabela à parte ou incorporar tabela de **Requisitos de software**)
- 15. **(3 pts) Perfil de usuários** (criar tabela de funcionalidades por usuário) (identificar perfis de usuários do sistema e as várias funcionalidades que cada um poderá usar) (e.g., Administrador ⇔ Criação ontologia OWL com Protégé, Gerente, Estagiário ⇔ Consultar, ...)

16. (3 pts) Requisitos de interface (identificar como será a interface para acesso às funcionalidades) (criar tabela) (associar Requisitos de software ⇔ Usuário(s) ⇔ Descrição de requisitos de interface com identificação de ambiente) (identificar parâmetros de entrada e saída)

Solução (coloque suas respostas a partir daqui)

- 1) Em todo e qualquer linha de negócio e comércio é necessário manter total e atual controle dos dados relativos ao seu negócio: estoque de produto, fornecedores, preço, margem de lucro, dentre outras coisas. Uma ontologia pode ser atualizada a baixo custo, mantendo os administradores da empresa constantemente providos das informações necessárias para definir os próximos movimentos e investimentos a ser tomados dentro da empresa.
- 2) https://docs.google.com/document/d/15Lf502g7BUuqfwp0GWzPUV_t5XXljqVODHHWea _fcsg/edit
- 3) Aluno: Yuri Augusto Blanco
- 4) O problema em questão seria uma forma eficiente de retornar ao administrador informações a respeito de seus produtos e de seus fornecedores, bem como auxiliá-lo apresentado um sistema de fácil implantação de novos produtos. Para tal, o sistemas de ontologias se mostrariam extremamente eficientes, portanto o nome da ontologia será acougue.owl
- 5) Após análise foi verificado que não existe uma ontologia disponível em português de caráter comercial que poderia ser usada, dado a possibilidade de não haver necessidade de realizar essa mesclagem com ontologias externas.
- 6) Existem as classes "minhas classes", "produto", "bovinos", "suínos", "aves", "fornecedor" além de 8 instâncias para cumprir os requisitos, vale ressaltar que para a etapa deste exercício não foi considerado necessário realizar as consultas SPARQL.
- 7) As propriedades "fornece" e "fornpor" possuem caráter inverse of. As classes "bovinas", "suinas" e "aves" são disjuntas para garantir o cumprimento dos requisitos.
- 8) Estranhamente não consigo definir idioma na propriedade onde ela é mais relevante: string.
- 9) Não foi utilizado.

10) CENÁRIO

Os açougues e frigoríficos no país necessitam de uma atenção especial ao serem gerenciados, seus gestores devem entender as relações entre os produtos e fornecedores além das classes de produtos que existem em seu estoque. A criação de uma ontologia para este tipo de estabelecimento ajudaria a separar o conhecimento operacional do conhecimento do domínio, possibilitando aos gestores terem um maior domínio sobre as relações e conhecimento mais aprofundado sobre o seu negócio. Ao estabelecer um vocabulário comum para estes usuários, a comunicação entre os gestores, e pessoas que trabalham com frigoríficos e açougues (fornecedores, empresas, etc) seria facilitada, agilizando os processos de compra e venda. O problema a ser resolvido aqui seria estabelecer para o administrador, a relação entre seus produtos e fornecedores e apresentar um sistema que facilite a busca por essas relações.

11) Processo de trabalho

12) Problema a ser resolvido

O problema a ser resolvido por esta ontologia está relacionado à dificuldade operacional de se relacionar os produtos do açougue com os fornecedores e para isso será implantado um sistema que recupere essas relações entre conceitos facilitando a comunicação do gestor com os fornecedores além de um conhecimento detalhado do seu estoque com a possibilidade de inserir novos produtos e fornecedores, estabelecendo as relações necessárias. Para a recuperação dessas relações será implantado um sistema para possibilitar as buscas com base nesta ontologia.

ID	Requisito	Forma de implementação	Descrição
1001	Listar informações de empresas cadastradas para acesso ao SISBACEN	Consulta SPARQL	A consulta deve mostrar o nome da Empresa e CNPJ e o nome de seu Administrador (consultas duas

			classes distintas)
1002	Listar as empresas cadastradas que trabalham com seguros ou títulos público	Consulta SPARQL	As categorias de áreas de atuação serão cadastradas em uma tabela de conceitos à parte (ontologia SKOS).
1003			

]

Modelagem de dados

ID	Modelos de dados (ontologias/classes/propriedades/ <mark>relacionamentos</mark>)
1001	Empresa: nome, CNPJ (Nome de Classes iniciando com maiúscula e de propriedades com minúsculas) Administrador: NomeAdministrador, CPF Empresa temAdministrador Administrador: relacionamento entre Empresa e Administrador
1002	Usar SKOS:Concept: prefLabel para descrever áreas de atuação

Usuários

Perfil do usuário	Funcionalidade
Analista do Banco	Consultas I001

Central	Consulta I002 (listar a área de atuação de todas as empresa)
Administrador da Empresa/Banco	Consultas I002 (no caso de consulta com usuário Administrador listar apenas a área de atuação da própria empresa)

ID	Usuário	Descrição requisito de interface
1001	Analista do Banco Central	Receber o tipo de Usuário Devolver nome da Empresa, CNPJ e nome do Administrador