

INTERNATIONAL APPLICATION PUBLIS	HED I	UNDER THE PATENT COUPERATION TREATY (PCI)
(51) International Patent Classification 6:		(11) International Publication Number: WO 97/11162
C12N 9/04	A1	(43) International Publication Date: 27 March 1997 (27.03.97)
(21) International Application Number: PCT/CA (22) International Filing Date: 12 September 1996 ((30) Priority Data: 08/532,896 22 September 1995 (22.09.5) (71) Applicant (for all designated States except US DORECHERCHE INC. [CA/CA]; 2989 de la Pr Ste-Foy, Québec G1W 2J5 (CA). (72) Inventors; and (75) Inventors/Applicants (for US only): LABRIE, [CA/CA]; 2989 de la Promenade, Ste-Foy, Qué 2J5 (CA). LUU-THE, Van [CA/CA]; 4460 rue de la Charny, Québec G6X 1C6 (CA). (74) Agent: MITCHELL, Richard, J.; Marks & Clerk, 957, Station B, Ottawa, Ontario K1P 5S7 (CA).	12.09.5 (i): E comenac Ferna bec G1 'Estuai	CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, IP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.
(54) Title: PRODUCTION AND USE OF TYPE 5 17BE	TA-H	YDROXYSTEROID DEHYDROGENASE
(57) Abstract		
I meential compounds which inhibit or alter the activity of	the en	ded. Methods of producing the enzyme and using the enzyme to identify zyme are described. In addition, methods of using the gene sequence or antisense DNA fragments thereof, or antisense RNA, are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Scnegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Liduania	TD	Chad
CZ	Czech Republic	LŪ	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia .	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
			· · · · · · · · · · · · · · · · · · ·		

PRODUCTION AND USE OF TYPE 5 17BETA-HYDROXYSTEROID DEHYDROGENASE

BACKGROUND OF THE INVENTION Field of the Invention

5

10

The present invention relates to the isolation and characterization of a novel enzyme which is implicated in the production of sex steroids, and more particularly, to the characterization of the gene and cDNA of a novel 20∞ , 17β -hydroxysteroid dehydrogenase (hereinafter type 5 17β -HSD) which has been implicated in the conversion of progesterone and 4-androstenedione (Δ^4 -dione) to 20∞ -hydroxyprogesterone (20∞ -OH-P) and testosterone (T), respectively. The use of this enzyme as an assay for inhibitors of the enzyme is also described, as are several other uses of the DNA, fragments thereof and antisense fragments thereof.

Description of the Related Art

15

20

25

30

The enzymes identified as 17β -HSDs are important in the production of human sex steroids, including androst-5-ene-3 β ,17 β -diol (Δ^5 -diol), testosterone and estradiol. It was once thought that a single gene encoded a single type of 17β -HSD which was responsible for catalyzing all of the reactions. However, in humans, several types of 17β -HSD have now been identified and characterized. Each type of 17β -HSD has been found to catalyze specific reactions and to be located in specific tissues. Further information about Types 1, 2 and 3 17β -HSD can be had by reference as follows: Type 1 17β -HSD is described by Luu-The, V. et al., *Mol. Endocrinol.*, 3:1301-1309 (1989) and by Peltoketo, H. et al., *FEBS Lett*, 239:73-77 (1988); Type 2 17β -HSD is described in Wu, L. et al., *J. Biol Chem*, 268:12964-12969 (1993); Type 3 17β -HSD is described in Geissler, WM, *Nature Genetics*, 7:34-39 (1994). A fourth type which is homologous to porcine ovarian 17β -HSD has recently been identified by researchers Adamski and de Launoit, however, applicant is not presently aware of published information on this type.

The present invention relates to a fifth type of 17β -HSD which is described in detail below.

10

15

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a novel 17β -hydroxysteroid dehydrogenase (17β -HSD) which is identified as type 5 17β -HSD.

It is also an object of the present invention to provide a 17 β -HSD which has been shown to be involved in the conversion of Δ^4 -dione to testosterone and in the conversion of progesterone to 20∞ -hydroxyprogesterone (20∞ -OH-P).

It is a further object of this invention to provide the nucleotide sequences and a gene map for type 5 17β -HSD.

It is also an object of this invention to provide methods of using type 5 17β -HSD in an assay to identify compounds which inhibit the activity of this enzyme, and thus may reduce production of testosterone or 20∞ -hydroxyprogesterone, and can be used to treat medical conditions which respond unfavorably to these steroids.

It is an additional object of this invention to provide methods of preventing the synthesis of type 5 17 β -HSD by administering an antisense RNA of the gene sequence of type 5 17 β -HSD to interfere with the translation of the gene's mRNA.

These and other objects are discussed herein.

In particular, a novel enzyme, type 5 17β-hydroxysteroid dehydrogenase, has been identified and characterized. The gene sequence for this type 5 17β-HSD was found to encode a protein of 323 amino acids, having an apparent calculated molecular weight of 36,844 daltons. The protein is encoded by nucleotides +11 through 982, including the stop codon (amino acids +1 through 323), numbered in the 5' to 3' direction, in the following sequence (SEQ ID Nos. 1 and 2):

25

20

GTGACAGGGA ATG GAT TCC AAA CAG CAG TGT GTA AAG CTA AAT GAT GGC 49
Met Asp Ser Lys Gtn Gin Cys Vei Lys Leu Asn Asp Giy
1 5 10

30

CAC TTC ATG CCT GTA TTG GGA TTT GGC ACC TAT GCA CCT CCA GAG GTT 97 His Phe Met Pro Val Leu Gly Phe Gly Thr Tyr Ala Pro Pro Glu Val 15 20 25

35 CCG AGA AGT AAA GCT TTG GAG GTC ACC AAA TTA GCA ATA GAA GCT GGG 145 Pro Arg Ser Lys Ala Leu Glu Val Thr Lys Leu Ala lie Glu Ala Gly 30 35 40 45

TTC CGC CAT ATA GAT TCT GCT CAT TTA TAC AAT AAT GAG GAG CAG GTT 193

- 3 -

	Phe Arg His Ile Asp Ser Ala His Leu Tyr Asn Asn Gtu Gtu Gin Val 50 55 60
5	GGA CTG GCC ATC CGA AGC AAG ATT GCA GAT GGC AGT GTG AAG AGA GAA 241 Gly Leu Ala lie Arg Ser Lys lie Ala Asp Gly Ser Val Lys Arg Glu 65 70 75
10	GAC ATA TTC TAC ACT TCA AAG CTT TGG TCC ACT TTT CAT CGA CCA GAG 289 Asp lie Phe Tyr Thr Ser Lys Leu Trp Ser Thr Phe His Arg Pro Glu 80 85 90
15	TTG GTC CGA CCA GCC TTG GAA AAC TCA CTG AAA AAA GCT CAA TTG GAC 337 Leu Val Arg Pro Ala Leu Glu Asn Ser Leu Lys Lys Ala Gin Leu Asp 95 100 105
	TAT GTT GAC CTC TAT CTT ATT CAT TCT CCA ATG TCT CTA AAG CCA GGT 385 Tyr Val Asp Leu Tyr Leu lie His Ser Pro Met Ser Leu Lys Pro Gly 110 115 120 125
20	GAG GAA CTT TCA CCA ACA GAT GAA AAT GGA AAA GTA ATA TTT GAC ATA 433 Glu Glu Leu Ser Pro Thr Asp Glu Asn Gly Lys Vel lie Phe Asp lie 130 135 140
25	GTG GAT CTC TGT ACC ACC TGG GAG GCC ATG GAG AAG TGT AAG GAT GCA 481 Val Asp Leu Cys Thr Thr Trp Glu Ala Met Glu Lys Cys Lys Asp Ala 145 150 155
30	GGA TTG GCC AAG TCC ATT GGG GTG TCA AAC TTC AAC CGC AGG CAG CTG 529 Gly Leu Ala Lys Ser lie Gly Val Ser Asn Phe Asn Arg Arg Gin Leu 160 165 170
35	GAG ATG ATC CTC AAC AAG CCA GGA CTC AAG TAC AAG CCT GTC TGC AAC 577 Glu Met Ile Leu Asn Lys Pro Gly Leu Lys Tyr Lys Pro Val Cys Asn 175 180 185
33	CAG GTA GAA TGT CAT CCG TAT TTC AAC CGG AGT AAA TTG CTA GAT TTC 625 Gtn Val Gtu Cys His Pro Tyr Phe Asn Arg Ser Lys Leu Leu Asp Phe 190 195 200 205
40	TGC AAG TCG AAA GAT ATT GTT CTG GTT GCC TAT AGT GCT CTG GGA TCT 673 Cys Lys Ser Lys Asp lie Val Leu Val Ala Tyr Ser Ala Leu Gly Ser 210 215 220
45	CAA CGA GAC AAA CGA TGG GTG GAC CCG AAC TCC CCG GTG CTC TTG GAG 721 Gin Arg Asp Lys Arg Trp Val Asp Pro Asn Ser Pro Val Leu Leu Giu 225 230 235
50	GAC CCA GTC CTT TGT GCC TTG GCA AAA AAG CAC AAG CGA ACC CCA GCC 769 Asp Pro Val Leu Cys Ala Leu Ala Lys Lys His Lys Arg Thr Pro Ala 240 245 250
55	CTG ATT GCC CTG CGC TAC CAG CTG CAG CGT GGG GTT GTG GTC CTG GCC 817 Leu lie Ala Leu Arg Tyr Gin Leu Gin Arg Gly Val Val Val Leu Ala 255 260 265
	AAG AGC TAC AAT GAG CAG CGC ATC AGA CAG AAC GTG CAG GTT TTT GAG 865 Lys Ser Tyr Asn Glu Gin Arg lie Arg Gin Asn Val Gin Val Phe Glu 270 275 280 285

TTC CAG TTG ACT GCA GAG GAC ATG AAA GCC ATA GAT GGC CTA GAC AGA 913
Phe Gin Leu Thr Ala Glu Asp Met Lys Ala Ile Asp Gly Leu Asp Arg
290 295 300

5

AAT CTC CAC TAT TTT AAC AGT GAT AGT TTT GCT AGC CAC CCT AAT TAT 961
Asn Leu His Tyr Phe Asn Ser Asp Ser Phe Ala Ser His Pro Asn Tyr
305 310 315

10 CCA TAT TCA GAT GAA TAT TAA CATGGAGACT TTGCCTGATG ATGTCTACCA 101: Pro Tyr Ser Asp Glu Tyr * 320

GAAGGCCCTG TGTGTGGATG GTGACGCAGA GGACGTCTCT ATGCCGGTGA CTGGACATAT 1072

CACCTCTACT TAAATCCGTC CTGTTTAGCG ACTTCAGTCA ACTACAGCTC ACTCCATAGG 1132

CCAGAAATAC AATAAATCCT GTTTAGCGAC TTCAGTCAAC TACAGCTCAC TCCATAGGCC 1192

20 AGAAATACAA TAAA

25

30

35

40

1206

In addition, a complete gene map (Figure 5) and nucleotide sequences (SEQ. ID Nos. 3 through 29 and Figures 6A and 6B) of the chromosomal DNA of type 5 17β-HSD are provided. A more detailed description of the sequences will be provided *infra*.

The present invention includes methods for the synthetic production of type 5 17β-HSD, as well as peptides that are biologically functionally equivalent, and to methods of using these compounds to screen test compounds for their ability to inhibit or alter the enzymatic function. In addition, methods of producing antisense constructs to the type 5 17β-HSD gene's DNA or mRNA or portions thereof, and the use of those antisense constructs to interfere with the transcription or translation of the enzyme are also provided.

The nucleotide sequence which encodes type 5 17β -HSD and recombinant expression vectors which include the sequence may be modified so long as they continue to encode a functionally equivalent enzyme. Moreover, it is contemplated, within the invention, that codons within the coding region may be altered, *inter alia*, in a manner which, given the degeneracy of the genetic code, continues to encode the same protein or one providing a functionally equivalent protein. It is believed that nucleotide sequences analogous to SEQ ID No. 1, or those that hybridize under stringent conditions to the coding region of SEQ ID No. 1, are likely to encode a type 5 17β -HSD functionally equivalent to that encoded by the coding region of SEQ ID No. 1, especially if such analogous nucleotide sequence is at least 700, preferably at

10

20

25

30

least 850 and most preferably at least 969 nucleotides in length. As used herein, except where otherwise specified, "stringent conditions" means 0.1x SSC (0.3 M sodium chloride and 0.03M sodium citrate) and 0.1% sodium dodecyl sulphate (SDS) and 60° C.

It is also likely that tissues or cells from human or non-human sources and which tissues or cells have the enzymatic machinery to convert Δ^4 -dione to testosterone, or to convert progesterone to 20x-hydroxyprogesterone, include a type 5 17β-HSD sufficiently analogous to human type 5 17β-HSD to be used in accordance with the present invention. In particular, cDNA libraries prepared from cells performing the foregoing conversions may be screening with probes in accordance with well known techniques prepared by reference to the nucleotides disclosed herein. and under varying degrees of stringency, in order to identify analogous cDNAs in other species. These analogous cDNAs are preferably at least 70% homologous to SEQ ID No. 1, more preferably at least 80% homologous, and most preferably at least 90% homologous. They preferably include stretches of perfect identity at least 10 nucleotides long, more preferably stretches of 15, 20 or even 30 nucleotides of perfect identity. Appropriate probes may be prepared from SEQ ID No. 1 or fragments thereof of suitable length, preferably at least 15 nucleotides in length. Confirmation with at least two distinct probes is preferred. Alternative isolation strategies, such as polymerase chain reaction (PCR) amplification, may also be used.

Homologous type 5 17β -HSDs so obtained, as well as the genes encoding them, are used in accordance with the invention in all of the ways for using SEQ ID No. 2 and SEQ ID No. 1, respectively.

Recombinant expression vectors can include the entire coding region for human type 5 17 β -HSD as shown in SEQ ID No. 1, the coding region for human type 5 17 β -HSD which has been modified, portions of the coding region for human type 5 17 β -HSD, the chromosomal DNA of type 5 17 β -HSD, an antisense construct to type 5 17 β -HSD, or portions of antisense constructs to type 5 17 β -HSD.

In the context of the invention, "isolated" means having a higher purity than exists in nature, but does not require purification from a natural source. Isolated nucleotides encoding type 5 17β -HSD may be produced synthetically, or by isolating cDNA thereof from a cDNA library or by any of numerous other methods well understood in the art.

10

15

20

25

30

In one embodiment, the invention provides an isolated nucleotide sequence encoding type 5 17β-hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 1 or a complement thereof, to hybridize under stringent conditions to the coding region of SEQ ID No. 1 or a complement thereof and said sequence encoding an enzyme which catalyzes the conversion of progesterone to 20∞-hydroxyprogesterone and the conversion of 4-androstenedione to testosterone.

In a further embodiment, the invention provides an isolated nucleotide sequence comprising at least ten consecutive nucleotides identical to 10 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.

In an additional embodiment, the invention provides an oligonucleotide sequence selected from the group consisting of SEQ ID Nos. 30 through 59.

In another embodiment, the invention provides a recombinant expression vector comprising a promoter sequence and an oligonucleotide sequence selected from the group of SEQ ID Nos. 30 to 59.

In a further embodiment, the invention provides a method of blocking synthesis of type 5 17β -HSD, comprising the step of introducing an oligonucleotide selected from the group consisting of SEQ ID Nos. 30 to 59 into cells.

In an additional embodiment, the invention provides an isolated chromosomal DNA fragment which upon transcription and translation encodes type 5 17β -hydroxysteroid dehydrogenase and wherein said fragment contains nine exons and wherein said fragment includes introns which are 16 kilobase pairs in length.

In another embodiment, the invention provides an isolated DNA sequence encoding type 5 17β -hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 3 or a complement thereof, to hybridize under stringent conditions to SEQ ID No. 3, or its complement.

In a further embodiment, the invention provides a method for producing type 5 17β -hydroxysteroid dehydrogenase, comprising the steps of preparing a recombinant host transformed or transfected with the vector of claim 3 and culturing said host under conditions which are conducive to the production of type 5 17β -hydroxysteroid dehydrogenase by said host.

In an additional embodiment, the invention provides a method for determining the inhibitory effect of a test compound on the enzymatic activity of type 5 17β -hydroxysteroid dehydrogenase, comprising the steps of providing type 5 17β -

10

15

20

25

30

hydroxysteroid dehydrogenase; contacting said type 5 17β -hydroxysteroid dehydrogenase with said test compound; and thereafter determining the enzymatic activity of said type 5 17β -hydroxysteroid dehydrogenase in the presence of said test compound.

In an additional embodiment, the invention provides a method of interfering with the expression of type 5 17β-hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 1 or a complement thereof.

In a further embodiment, there is provided a method of interfering with the synthesis of type 5 17β -hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 1 or a complement thereof.

In an additional embodiment, the invention provides a method of interfering with the expression of type 5 17β-hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.

In another embodiment, the invention provides a method of interfering with the synthesis of type 5 17β -hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.

In a further embodiment, there is provided a method for determining the inhibitory effect of antisense nucleic acids on the enzymatic activity of type 5 17β -hydroxysteroid dehydrogenase, comprising the steps of providing a host system capable of expressing type 5 17β -hydroxysteroid dehydrogenase; introducing said antisense nucleic acids into said host system; and thereafter determining the enzymatic activity of said type 5 17β -hydroxysteroid dehydrogenase.

Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B are graphs showing the enzymatic activities of Type 5 17B-

HSD on various substrates. The enzyme was expressed in embryonal kidney (293) cells (ATCC CRL 1573) which were transfected with a vector, prepared in accordance with the invention, and containing the gene encoding human type 5 17β -HSD. Figure 1A shows the substrate specificity of type 5 17β -HSD. The concentration of each substrate was 0.1 μ M. Figure 1B shows the time course amount of 20α -HSD and 17β -HSD activities of cells transfected with vectors containing human type 5 17β -HSD. The substrates, progesterone (P) and Δ^4 -dione, were added at a concentration of 0.1 μ M;

Figure 2 is a map of a pCMV vector which is exemplary of one that can be used to transfect host cells in accordance with the invention;

Figure 3 is the cDNA sequence (SEQ ID No. 1) and the deduced amino acid sequence (SEQ ID No. 2) of human type 5 17β -HSD. The nucleotide sequence is numbered in the 5' to 3' direction with the adenosine of the initiation codon (ATG) designated as +11. The translation stop codon is indicated by asterisks. The potential post modification sites are underlined, wherein TSK = tyrosine sulfokinase; CK2 = casein kinase II; PKC = protein kinase C; NG = N-glycosylation; and NM = N-myrystoylation;

20

25

15

Figure 4 is a comparison of the deduced amino acid sequence of human type 5 17β -HSD to the amino acid sequences of rabbit (rb), rat (r), and bovine (b) 20α -HSD as well as human (h) and rat (r) 3α -HSD, bovine prostaglandin f synthase (b pgfs) and frog ρ -crystallin (f ρ -crys). The amino sequences are indicated using the conventional single letter code and are numbered on the right. The dashes (-) and dots (.) indicate identical and missing amino acid residues, respectively;

Figure 5 is a map of the chromosomal DNA of a gene which encodes type 5 17β -HSD; and

30

Figures 6A and 6B are the nucleotide sequence of the chromosomal DNA of a gene which encodes type 5 17β -HSD.

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

A gene encoding the enzyme, type 5 17 β -HSD, has been isolated and encodes a protein having 323 amino acids with a calculated molecular weight of 36,844 daltons. As shown in Figure 3, the coding portion of this gene includes nucleotides +11 through 982, including the stop codon (and encodes amino acids +1 through 323), numbered in the 5' to 3' direction.

The chromosomal DNA fragment of the gene for type 5 17β-HSD has also been characterized. A map of the gene is provided in Figure 5. In particular, it was found, using primer extension analysis, that the gene includes 16 kilobase pairs (kb) and contained nine short exons. A portion of the 5' flanking region, as set forth in SEQ ID No. 3, of the genomic DNA includes 730 base pairs (bp). Exon I (SEQ ID No. 4) contains 37 nucleotides in the 5'-noncoding region and the nucleotides for the first 28 amino acids. The second intron region includes the nucleotides set forth in SEQ ID Nos. 5 and 6, which are 252 and 410 bp, respectively. These are joined by a 1.2 kb region which is not important and therefore, its sequence has been omitted. Exon 2 (SEQ ID No. 7) contains nucleotides for the following 56 amino acids of human type 5 17β-HSD. The following intron region includes SEO ID Nos. 8 and 9. 700 and 73 bp, respectively, which are joined by a 0.1 kb region for which the sequence has not been provided. Exon 3 (SEQ ID No. 10) includes the next 117 nucleotides which specify the following 39 amino acids. The fourth intron region is represented by SEQ ID Nos. 11 and 12, 152 and 208 nucleotides in length, respectively, with a 0.9 kb region in between which has not been provided. Exon 4 (SEQ ID No. 13) includes the next 78 bp which specify the following 26 amino acids of the enzyme. Intron region five contains SEQ ID Nos. 14 and 15, with 98 and 249 nucleotides, respectively, with a 0.1 kb region in the middle which has not been provided. The fifth exon (SEQ ID No. 16) contains nucleotides for the following 41 amino acids of human type 5 17β -HSD. The sixth intron region, set forth in SEQ ID Nos. 17 and 18 with 138 and 189 bp, respectively, also includes a 2.8 kb region which has not been provided. Exon 6 (SEQ ID No. 19) contains nucleotides for the following 36 amino acids of type 5 17β-HSD, as well as two nucleotides of the codon 227 (Trp). The next intron region includes a 136 bp portion (SEQ ID No. 20) and a

10

15

20

25

30

66 bp portion (SEQ ID No. 21) which are joined by a 0.1 kb region which is not set forth. Exon 7 (SEQ ID No. 22) contains nucleotides for the third nucleotide of codon 227 (Trp) and nucleotides for the following 55 codons. The following intron region includes a 136 nucleotide region (SEQ ID No. 23), a 2.5 kb region which is not provided and a 286 bp region (SEQ ID No. 24). Exon 8 (SEQ ID No. 25) includes 83 nucleotides which code for the following 27 amino acids and 2 nucleotides of codon 310. The ninth intron region contains 713 nucleotides (SEQ ID No. 26) followed by a 1 kb region which has not been provided followed by a 415 nucleotide region (SEQ ID No. 27). Exon 9 (SEQ ID No. 28) contains the third nucleotide of codon 310, 42 nucleotides for the last 13 amino acids and a stop codon and approximately 200 nucleotides in the 3'-untranslated region. A polymorphic (GT)_n repeat region that can be used to perform genetic linkage mapping of the type 5 17β-HSD can be found 255 nucleotides downstream from the TAA stop codon. SEQ ID No. 29 sets forth 109 bp of additional genomic sequence. The nucleotide sequence of the gene fragment, as described above, is provided in Figures 6A and 6B.

The type 5 17β -HSD enzyme can be produced by incorporating the nucleotide sequence for the coding portion of the gene into a vector which is then transformed or transfected into a host system which is capable of expressing the enzyme. The DNA can be maintained transiently in the host or can be stably integrated into the genome of the host cell. In addition, the chromosomal DNA can be incorporated into a vector and transfected into a host system for cloning.

In particular, for the cloning and expression of type 5 17β -HSD, any common expression vectors, such as plasmids, can be used. These vectors can be prokaryotic expression vectors including those derived from bacteriophage λ such as λ gtl1 and λ EMBL3, *E. coli* strains such as pBR322 and Bluescript (Stratagene); or eukaryotic vectors, such as those in the pCMV family. Vectors incorporating an isolated human cDNA shown in Sequence ID No. 1 (ATCC Deposit No.) and the chromosomal DNA as shown in Sequence ID Nos. 3 through 29 (ATCC Deposit No.) for type 5 17β -HSD have been placed on deposit at the American Type Culture Collection (ATCC, Rockville, MD), in accordance with the terms of the Budapest Treaty, and will be made available to the public upon issuance of a patent based on the present patent application.

These vectors generally include appropriate replication and control sequences

15

20

25

30

which are compatible with the host system into which the vectors are transfected. A promoter sequence is generally included. For prokaryotes, some representative promoters include β-lactamase, lactose, and tryptophan. In mammalian cells, commonly used promoters include, but are not limited to, adenovirus, cytomegalovirus (CMV) and simian virus 40 (SV40). The vector can also optionally include, as appropriate, an origin of replication, ribosome binding sites, RNA splice sites, polyadenylation sites, transcriptional termination sequences and/or a selectable marker. It is well understood that there are a variety of vector systems with various characteristics which can be used in the practice of the invention. A map of the pCMV vector, which is an example of a vector which can be used in the practice of the invention, is provided in Figure 2.

Commonly known host systems which are known for expressing an enzyme, and which may be transfected with an appropriate vector which includes a gene for Type 5 17β-HSD can be used in the practice of the invention. These host systems include prokaryotic hosts, such as *E. coli*, bacilli, such as *Bacillus subtilus*, and other enterobacteria, such as *Salmonella*, *Serratia*, and *Pseudomonas* species. Eukaryotic microbes, including yeast cultures, can also be used. The most common of these is *Saccharomyces cerevisiae*. although other species are commercially available and can be used. Furthermore, cell cultures can be grown which are derived from mammalian cells. Some examples of suitable host cell lines include embryonal kidney (293), SW-13, chinese hamster ovary (CHO), HeLa, myeloma. Jurkat. COS-1. BHK, W138 and madin-darby canine kidney (MDCK). In the practice of the invention, the 293 cells are preferred.

Type 5 17 β -HSD, whether recombinantly produced as described herein, purified from nature, or otherwise produced, can be used in assays to identify compounds which inhibit or alter the activity of the enzyme. In particular, since type 5 17 β -HSD is shown to catalyze the conversion of progesterone to 20 α -OH-P and the conversion of Δ^4 -dione to testosterone, this enzyme can be used to identify compounds which interfere with the production of these sex steroids. It is preferred that the enzyme be obtained directly from the recombinant host, wherein following expression, a crude homogenate is prepared which includes the enzyme. A substrate of the enzyme, such as progesterone or Δ^4 -dione and a compound to be tested are then mixed with the homogenate. The activity of the enzyme with and without the test compound

10

15

20

25

30

is compared. Numerous methods are known which can be used to indicate the effects of the test compound on the activity of the substrate for easy detection of the relative amounts of substrate and product over time. For example, it is possible to label the substrate so that the label also stays on any product that is formed. Radioactive labels, such as C¹⁴ or H³, which can be quantitatively analyzed are particularly useful.

It is preferred that the mixture of the enzyme, test compound and substrate be allowed to incubate for a predetermined amount of time. In addition, it is preferred that the product is separated from the substrate for easier analysis. A number of separation techniques are known, for example, thin layer chromatography (TLC), high pressure liquid chromatography (HPLC), spectrophotometry, gas chromatography, mass spectrophotometry and nuclear magnetic resonance (NMR). However, any known method which can differentiate between a substrate and a product can be used.

It is also contemplated that the gene for type 5 17β-HSD or a portion thereof can be used to produce antisense nucleic acid sequences for inhibiting expression of Type 5 17β-HSD in vivo. Thus activity of the enzyme and levels of its products (e.g. testosterone) may be reduced where desirable. In general, antisense nucleic acid sequences can interfere with transcription, splicing or translation processes. Antisense sequences can prevent transcription by forming a triple helix or hybridizing to an opened loop which is created by RNA polymerase or hybridizing to nascent RNA. On the other hand, splicing can advantageously be interfered with if the antisense sequences bind at the intersection of an exon and an intron. Finally, translation can be affected by blocking the binding of initiation factors or by preventing the assembly of ribosomal subunits at the start codon or by blocking the ribosome from the coding portion of the mRNA, preferably by using RNA that is antisense to the message. For further general information, see Hélène et al., Biochimica et Biophysica Acta, 1049:99-125 (1990), which is herein incorporated by reference in its entirety.

An antisense nucleic acid sequence is an RNA or single stranded DNA sequence which is complementary to the target portion of the target gene. These antisense sequences are introduced into cells where the complementary strand base pairs with the target portion of the target gene, thereby blocking the transcription, splicing or translation of the gene and eliminating or reducing the production of type 5 17β -HSD. The length of the antisense nucleic acid sequence need be no more than is sufficient to interfere with the transcription, splicing or translation of functional type 5

 17β -HSD. Antisense strands can range in size from 10 nucleotides to the complete gene, however, about 10 to 50 nucleotides are preferred, and 15 to 25 nucleotides are most preferred.

Although it is contemplated that any portion of the gene could be used to 5 produce antisense sequences, it is preferred that the antisense is directed to the coding portion of the gene or to the sequence around the translation initiation site of the mRNA or to a portion of the promoter. Some examples of specific antisense oligonucleotide sequences in the coding region which can be used to block type 5 17\(\beta_{-1} \) HSD synthesis include: TTTAGCTTTACACACTGCTGTT (SEQ ID No. 30); 10 TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31); GATGAAAAGTGGACCA ID No. 32); ATCTGTTGGTGAAAGTTC (SEQ ID No. TCCAGCTGCCTGCGGT (SEQ ID No. 34); CTTGTACTTGAGTCCTG (SEQ ID No. CTCCGGTTGAAATACGGA 35): (SEQ ID No. 36); CATCGTTTGTCTCGTTGAGA ID No. (SEO 37); 15 TCACTGTTAAAATAGTGGAGAT (SEQ ID No. 38); ATCTGAATATGGATAAT (SEQ ID No. 39). Examples of antisense oligonucleotide sequences which can block splicing of the type 5 17β-HSD premessage are as follows: TTCTCGGAACCTGGAGGAGC (SEO ID No. 40): GACACAGTACCTTTGAAGTG (SEQ ID No. 41): 20 TGGACCAAAGCTGCAGAGGT (SEQ ID No. 42); CCTCACCTGGCTGAAATAGA ID No. 43); (SEQ **AAGCACTCACCTCCCAGGTG** (SEO ID No. 44); GACATTCTACCTGCAGTTGA (SEQ ID No. 45); CTCAAAAACCTATCAGAAA (SEQ ID No. 46); GGAAACTTACCTATCACTGT (SEQ ID No. 25 GCTAGCAAAACTGAAAAGAG (SEQ ID No. 48). Examples of antisense oligonucleotide sequences which inhibit the promoter activity of type 5 17β-HSd GAGAAATATTCATTCTG (SEQ ID No. 49); CGAGTCCTGATAAAGCTG (SEQ ID No. 50); GATGAGGGTGCAAATAA (SEQ 51); GGAGTGTTAATTAATAACAGTTT (SEQ ID 52); 30 CAGAGATTACAAAAACAAT ID No. (SEQ 53); TGCCTTTTTACATTTTCAATCA (SEQ ID No. 54); ACACATAATTTAAAGGA 55): TTAAATTATTCAAAAGG (SEQ ID 56); **AAGAGAAATATTCATTTCTG** ID No. (SEQ 57);

10

15

20

25

CCCCTCCCCCACCCTGCA (SEQ ID No. 58); CTGCCGTGATAATGCCCC (SEQ ID No. 59).

As is well understood in the art, the oligonucleotide sequences can be modified in various manners in order to increase the effectiveness of the treatment with oligonucleotides. In particular, the sequences can be modified to include additional RNA to the 3' end of the RNA which can form a hairpin-loop structure and thereby prevent degradation by nucleases. In addition, the chemical linkages in the backbone of the oligonucleotides can be modified to also prevent cleavage by nucleases.

There are numerous methods which are known in the art for introducing the antisense strands into cells. One strategy is to incorporate the gene which encodes type 5 17β-HSD in the opposite orientation in a vector so that the RNA which is transcribed from the plasmid is complementary to the mRNA transcribed from the cellular gene. A strong promoter, such as pCMV, is generally included in the vector, upstream of the gene sequence, so that a large amount of the antisense RNA is produced and is available for binding sense mRNA. The vectors are then transfected into cells which are then administered. It is also possible to produce single stranded DNA oligonucleotides or antisense RNA and incorporate these into cells or liposomes which are then administered. The use of liposomes, such as those described in WO95/03788, which is herein incorporated by reference, is preferred. However, other methods which are well understood in the art can also be used to introduce the antisense strands into cells and to administer to these patients in need of such treatment.

The following is an example of the expression of human type 5 17β -HSD. This example is intended to be illustrative of the invention and it is well understood by those of skill in the art that modifications, alterations and different techniques can be used within the scope of the invention.

Expression of 20α, 17β-HSD (Type 5 17β-HSD)

30

Construction of the expression vector and nucleotide sequence determination

The phage DNA were digested with EcoRI restriction enzyme and the resulting cDNA fragments were inserted in the EcoRI site downstream to the cytomegalovirus

10

15

25

30

(CMV) promoter of the pCMV vector as shown in Figure 2. The recombinant pCMV plasmids were amplified in *Escherichia coli* DH5 α competent cells, and were isolated using the alkaline lysis procedure as described by Maniatis in Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press 1982). The sequencing of double-stranded plasmid DNA was performed according to the dideoxy chain termination method described by Sanger F. et al., *Proc. Natl. Acad. Sci.*, 74:5463-5467 (1977) using a T7 DNA polymerase sequencing kit (Pharmacia LKB Biotechnology). In order to avoid errors, all sequences were determined by sequencing both strands of the DNA. The oligonucleotide primers were synthesized using a 394 DNA/RNA synthesizer (Applied Biosystem).

As shown in Figure 2, the pCMV vector contains 582 nucleotides of the pCMV promoter, followed by 74 nucleotides of unknown origin which includes the EcoRI and HindIII sites, followed by 432 basepairs (bp) of a small t intron (fragment 4713 - 4570) and a polyadenylation signal (fragment 2825 - 2536) of SV40, followed by 156 nucleotides of unknown origin, followed by 1989 bp of the PvuII (628) to AatII (2617) fragment from the pUC 19 vector (New England Biolabs) which contains an *E. coli* origin of replication and an ampicillin resistance gene for propagation in *E. coli*.

20 Transient expression in transformed embryonal kidney (293) cells

The vectors were transfected using the calcium phosphate procedure described by Kingston, R.E., In: Current Protocols in Molecular Biology, Ausubel et al. eds., pp. 9.1.1 - 9.1.9, John Wiley & Sons, N.Y. (1987) and used 1 to 10 μg of recombinant plasmid DNA per 106 cells. The total amount of DNA is kept at 10μg of plasmid DNA per 106 cells by completing with pCMV plasmid without insert. The cells were initially plated at 104 cells/cm² in Falcon® culture flasks and grown in Dulbecco's modified Eagle's medium containing 10% (vol/vol) fetal bovine serum (hyclone, Logan, UT) under a humidified atmosphere of air/CO² (95%/5%) at 37°C and supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate. 100 IU penicillin/ml, and 100 μg streptomycin sulfate/ml.

Assay of enzymatic activity

The determination of enzymatic activity was performed as described by Luu-

10

15

20

25

30

The et al., *Biochemistry*, 13:8861-8865 (1991) which is herein incorporated by reference. See also Lachance et al., *J. Biol. Chem.*, 265:20469 - 20475 (1990). Briefly, 0.1 μM of the indicated ¹⁴C-labeled substrate (Dupont Inc. (Canada)), namely, dehydroepiandrosterone (DHEA), 4-androstene-3,17-dione (Δ⁴-dione), testosterone (T), estrone (E1), estradiol (E2), dihydrotestosterone (DHT), and progesterone (PROG), was added to freshly changed culture medium in a 6-well culture plate. After incubation for 1 hour, the steroids were extracted twice with 2 ml of ether. The organic phase was pooled and evaporated to dryness. The steroids were solubilized in 50 μl of dichloromethane, applied to a Silica gel 60 thin layer chromatography (TLC) plate (Merck, Darmstad, Germany) and then separated by migration in the toluene-acetone (4:1) solvent system (Luu-The, V. et al., *J. Invest. Dermatol.*, 102:221-226 (1994) which is herein incorporated by reference). The substrates and metabolites were identified by comparison with reference steroids, revealed by autoradiography and quantitated using the Phosphoimager System (Molecular Dynamics, Sunnyvale, CA).

Cloning of the type 5 17\(\beta\)-HSD genomic DNA clone

The hybridization and sequencing methods were as described above and as previously described (Luu-The et al., Mol. Endocrinol., 4:268-275 (1990); Luu-The et al., DNA and Cell Biol., 14:511-518 (1995); Lachance et al., J. Biol. Chem., 265:20469-20475 (1990); Lachance et al., DNA and Cell Biol. 10:701-711 (1991): Bernier et al., J. Biol. Chem, 269, 28200-28205, (1994) which are herein incorporated by reference).

About 20 recombinant clones which gave the strongest hybridization signal were selected for second and third screening in order to isolate a single phage plaque. The two longest clones that hybridized with specific oligonucleotides probes located at the 5' and 3' regions of type 5 17β-HSD, respectively, were selected for mapping, subcloning and sequencing. As shown in Figures 5 and 6, the gene is included in approximately 16 kilobase pairs of introns and contains 9 short exons. A primer extension analysis using oligoprimer CAT-CAT-TTA-GCT-TTA-CAT-ACT-GCT-G located at positions 13 to 27, indicates that the start site is situated 37 nucleotides upstream from the ATG initiating codon.

10

15

20

25

30

The sites and signatures in the primary protein sequence were detected using PC/Gene software (Intelli Genetics Inc., Mountain View, CA). This analysis revealed a potential N-glycosylation site at Asn-198; five protein kinase C sites at Ser-73, Thr-82, Ser-102, Ser-121, and Ser-221; five casein kinase II phosphorylation sites at Ser-129, Thr-146, Ser-221, Ser-271, and Thr-289; two N-myristoylation sites at Gly-158 and Gly-298; a tyrosine sulfatation site at Tyr-55; an aldo/keto reductase family signature 1 (25) at amino acids 158 to 168 and an aldo/keto reductase family putative active site signature at amino acids 262 to 280.

As described above, the enzymatic activity of the type 5 17 β -HSD was evaluated by transfecting 293 cells with vectors which included the gene encoding human type 5 17 β -HSD. The ability of the enzyme to catalyze the transformation of progesterone (P) to 20∞ -hydroxyprogesterone (20∞ -OH-P), 4-androstenedione (Δ^4 -dione) to testosterone (T), 5∞ -androstane-3,17-dione (A-dione) to dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA) to 5-androstene-3 β ,17 β -diol, and estrone (E1) to estradiol (E2) was analyzed. As shown in Figure 1A, the enzyme possesses high reductive 20∞ -HSD activity, wherein progesterone (P) is transformed to the inactive 20∞ -OH-P, and 17 β -HSD activity, wherein Δ^4 -dione is converted to testosterone (T). However, 3∞ -HSD activity which is responsible for the transformation of DHT to 5α -androstane- 3α ,17 β -diol is negligible. The ability of this enzyme to transform E1 and E2 was also negligible (Figure 1A). Figure 1B shows that the 20∞ -HSD and 17 β -HSD activities increased over time.

The isolated amino acid sequence of human type 5 17β -HSD was also compared with rabbit 20∞ -HSD (rb), rat 20∞ -HSD (r), human 3∞ -HSD (h), rat 3∞ -HSD (r), bovine prostaglandin f synthase (b pgfs), frog ρ -crystallin (f ρ -crys) and human type 1 and type 2 17β -HSDs (h) as shown in Figure 4. These sequences show 76.2%, 70.7%, 84.0%, 68.7%, 78.3%, 59.7%, 15.2% and 15.0% identity with type 5 17β -HSD, respectively.

Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will be apparent to those skilled in the art.

- 18 -

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
   5
              (i) APPLICANT: LUU-THE, Van
                                 LABRIE, Fernand
             (ii) TITLE OF INVENTION: PRODUCTION AND USE OF ISOLATED TYPE 5
 10
                      17B-HYDROXYSTEROID DEHYDROGENASE
            (iii) NUMBER OF SEQUENCES: 59
             (iv) CORRESPONDENCE ADDRESS:
 15
                    (A) ADDRESSEE: Ostrolenk, Faber, Gerb & Soffen
                    (B) STREET: 1180 Avenue of the Americas
                    (C) CITY: New York
                    (D) STATE: NY
                    (E) COUNTRY: US
 20
                    (F) ZIP: 10036-8403
              (v) COMPUTER READABLE FORM:
                    (A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30
 25
            (vi) CURRENT APPLICATION DATA:
                    (A) APPLICATION NUMBER: (B) FILING DATE:
 30
                    (C) CLASSIFICATION:
          (viii) ATTORNEY/AGENT INFORMATION:
                   (A) NAME: Meilman, Edward
(B) REGISTRATION NUMBER: 24,735
35
                    (C) REFERENCE/DOCKET NUMBER: P/1259-313
            (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: (212) 382-0700
(B) TELEFAX: (212) 382-0888
40
                   (C) TELEX: 236925
       (2) INFORMATION FOR SEQ ID NO:1:
45
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 1206 base pairs
                   (B) TYPE: nucleic acid
                   (C) STRANDEDNESS: single
50
                   (D) TOPOLOGY: linear
           (ix) FEATURE:
55
                   (A) NAME/KEY: CDS
```

SUBSTITUTE SHEET (RULE 26)

(B) LOCATION: 11..982

- 19 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

5	GTG	ACAC	GGA	ATG Met 1	GAT Asp	TCC Ser	AAA Lys	CAG Gln 5	CAG Gln	TGT Cys	GTA Val	AAG Lys	CTA Leu 10	AAT Asn	GAT Asp	GGC Gly	49
10	CAC	Phe 15		CCT Pro	GTA Val	Leu	GGA Gly 20	rne	GGC Gly	ACC Thr	TAT	GCA Ala 25	Pro	CC/	GAC Glu	GTT Val	97
15	30	****	261	Lys	, wie	35	GIU	VA1	Ini	Lys	40	Ala	Ile	Glu	Ala	GGG Gly 45	145
	TTC Phe	Arg	His	Ile	GAT Asp 50	Ser	GCT	CAT	TTA Leu	TAC Tyr 55	Asn	AAT ASD	GAG Glu	GAC	CAG Glm 60	GTT Val	193
20	GGA Gly	CTG	GCC	ATC Ile 65	- ALY	AGC	AAG Lys	ATI Ile	GCA Ala 70	Asp	GGC	AGT Ser	GTG Val	AAC Lys	Arg	GAA Glu	241
25	GAC Asp	ATA Ile	Phe 80	TYL	ACT	TCA Ser	AAG Lys	Leu 85	Trp	TCC Ser	ACT	TIT	CAT His	Arg	CCA Pro	GAG Glu	289
30	TTG Leu	GTC Val 95	- ALY	CCA Pro	GCC Ala	TTG Leu	GAA Glu 100	Asn	TCA Ser	CTG Leu	AAA Lys	AAA Lys 105	Ala	CAA Gln	TTG Leu	GAC Asp	337
35	iio	va1	vah	Leu	ıyı	115	116	HIS	Ser	Pro	Met 120	Ser	Leu	Lys	CCA Pro	Gly 125	385
	0.0	010	Deu	Ser	130	inr	Asp	GIU	Asn	G1y 135	Lys	Val	Ile	Phe	Asp 140		433
40	GTG Val	GAT Asp	CTC Leu	TGT Cys 145	1111	ACC Thr	TGG Trp	GAG Glu	GCC Ala 150	Met	GAG Glu	AAG Lys	TGT Cys	AAG Lys 155	GAT Asp	GCA Ala	481
45	GGA Gly	TTG Leu	GCC Ala 160	AAG Lys	TCC Ser	ATT Ile	GGG Gly	GTG Val 165	TCA Ser	AAC Asn	TTC Phe	AAC Asn	CGC Arg 170	AGG Arg	CAG Gln	CTG Leu	529
50	GAG Glu	ATG Met 175	ATC Ile	CTC Leu	AAC Asn	AAG Lys	CCA Pro 180	GGA Gly	CTC Leu	AAG Lys	TAC Tyr	AAG Lys 185	CCT Pro	GTC Val	TGC Cys	AAC Asn	577
. 55	CAG Gln 190	GTA Val	GAA Glu	TGT Cys	CAT His	CCG Pro 195	TAT Tyr	TTC Phe	AAC Asn	CGG Arg	AGT Ser 200	AAA Lys	TTG Leu	CTA Leu	GAT Asp	TTC Phe 205	625
	TGC Cys	AAG Lys	TCG Ser	AAA Lys	GAT Asp 210	ATT Ile	GTT Val	CTG Leu	GTT Val	GCC Ala 215	TAT Tyr	AGT Ser	GCT Ala	CTG Leu	GGA Gly 220	TCT Ser	673
60	CAA Gln	CGA Arg	GAC Qap	AAA Lys 225	CGA Arg	TGG Trp	GTG Val	GAC Asp	CCG Pro 230	AAC Asn	TCC Ser	CCG Pro	GTG Val	CTC Leu 235	TTG Leu	GAG Glu	721
65	GAC Asp	CCA Pro	GTC Val 240	CTT Leu	TGT Cys	GCC Ala	TTG Leu	GCA Ala 245	AAA Lys	AAG Lys	CAC His	AAG Lys	CGA Arg 250	ACC Thr	CCA Pro	GCC Ala	69ר

- 20 -

											_						
	CTG Leu	Ile 255	GCC Ala	CTG Leu	CGC	TAC Tyr	CAG Gln 260	reu	CAG Gln	CGT	GGG Gly	GTT Val 265	Val	GTC Val	CTG Leu	GCC	817
5	AAG Lys 270	267	TAC	AAT Asn	GAG Glu	CAG Gln 275	CGC Arg	ATC Ile	AGA Arg	CAG Gln	AAC Asn 280	GTG Val	CAG Gln	GTT Val	TTT Phe	GAG Glu 285	865
10	TTC Phe	CAG Gln	TTG Leu	ACT Thr	GCA Ala 290	CIO	GAC Asp	ATG Met	AAA Lys	GCC Ala 295	ATA Ile	GAT Asp	GGC Gly	CTA Leu	GAC Asp 300	AGA Arg	913
15	TAA nea	CTC Leu	CAC His	TAT Tyr 305	rne	AAC Asn	AGT Ser	GAT Asp	AGT Ser 310	TTT Phe	GCT Ala	AGC Ser	CAC His	CCT Pro 315	Asn	TAT Tyr	961
20	CCA Pro	TAT	TCA Ser 320	GAT Asp	GAA Glu	TAT Tyr	TAA	CAT	GGAG	ACT '	TTGC	CTGA	TG A	TGTC	TACC	A	1012
	GAA	GCC	CTG '	TGTG	TGGA'	TG G	IGAC	GCAG	A GG	ACGT	CTCT	ATG	CCGG	TGA	CTGG	ACATAI	1072
	CAC	CTCT	ACT '	TAAA'	TCCG.	TC C	IGIT	TAGC	G AC	TTCA(STCA	ACT.	ACAG	CTC .	ACTO	CATAGO	1132
25	CCA	GAAA'	TAC A	AATA	AATC	CT G	ATT1	GCGA	C TT	CAGT	CAAC	TAC	AGCT	CAC	TCCA	TAGGCC	1192
		AATA															1206
30	(2)	INF	ימשפר	TION	EOD.	SEO	TD 1	VO - 2	_								
	12,																
35			(1)	(B)	LEI TY	NGTH PE: 4	: 324 Amin	am:	ino a id	: acid:	3						
		(:	ii) I	MOLE	CULE	TYP	E: p:	rote:	in								
40		(;	(i)	SEQUI	ENCE	DES	CRIP	rion:	: SE(2 10	NO:	2:					
	•			Lys	7					10					15		
45	Pro	Val	Leu	Gly 20	Phe	Gly	Thr	Tyr	Ala 25	Pro	Pro	Glu	Val	Pro 30	Arg	Ser	
	Lys	Ala	Leu 35	Glu	Val	Thr	Lys	Leu 40	Ala	Ile	Glu	Ala	Gly 45	Phe	Arg	His	
50	Ile	Asp 50	Ser	Ala	His	Leu	Tyr 55	Asn	Asn	Glu	Glu	Gln 60	Val	Gly	Leu	Ala	
55	. ••			Lys		70					75					80	
	Tyr	Thr	Ser	Lys	Leu 85	Trp	Ser	Thr	Phe	His 90	Arg	Pro	Glu	Leu	Val 95	Arg	
50	Pro	Ala	Leu	Glu 100	Asn	Ser	Leu	Lys	Lys 105	Ala	Gln	Leu	Asp	Tyr 110	Val	Asp	
	Leu	Tyr	Leu 115	Ile	His	Ser	Pro	Met 120	Ser	Leu	Lys	Pro	Gly 125	Glu	Glu	Leu	
55	Ser	Pro 130	Thr	qeA	Glu	Asn	Gly 135	Lys	Val	Ile	Phe	Asp	Ile	Val	Asp	Leu	

	~	1	
-	Z	ı	•

	Cys Th	r Thr	Trp	Glu	Ala 150	Met	Glu	Lys	Cys	Lys 155	Asp	Ala	Gly	Leu	Ala 160		
5	Lys Se	r Ile	Gly	Val 165	Ser	Asn	Phe	Asn	Arg 170	Arg	Gln	Leu	Glu	Met 175	Ile		
	Leu As	n Lys	Pro 180	Gly	Leu	Lys	Tyr	Lys 185	Pro	Val	Суз	neA	Gln 190	Val	Glu		
10	Суз Ні	s Pro 195	Tyr	Phe	Asn	Arg	Ser 200	Lys	Leu	Leu	Asp	Phe 205	Cys	Lys	Ser		
15	Lys As	p Ile	Val	Leu	Val	Ala 215	Tyr	Ser	Ala	Leu	Gly 220	Ser	Gln	Arg	Asp		
13	Lys A: 225	g Trp	Val	Asp	Pro 230	Asn	Ser	Pro	Val	Leu 235	Leu	Glu	Asp	Pro	Val 240		
20	Leu Cy	s Ala	Leu	Ala 245	Lys	Lys	His	Lys	Arg 250	Thr	Pro	Ala	Leu	Ile 255	Ala		
	Leu At	g Tyr	Gln 260	Leu	Gln	Arg	Gly	Val 265	Val	Val	Leu	Ala	Lys 270	Ser	Tyr		
25	Asn Gl	u Gln 275	Arg	Ile	Arg	Gln	Asn 280	Val	Gln	Val	Phe	Glu 285	Phe	Gln	Leu		
30	Thr Al	a Glu O	Asp	Met	Lys	Ala 295	Ile	Asp	Gly	Leu	Asp 300	Arg	neA	Leu	His		
	Tyr Ph 305	e Asn	Ser	Asp	Ser 310	Phe	Ala	Ser	His	Pro 315	Asn	Tyr	Pro	Tyr	Ser 320		
35	Asp Gi	u Tyr	•														
	(2) IN	FORMA	TION	FOR	SEQ	ID I	NO: 3:	:									
40	•	(A) LI B) T: C: S:	CE CHENGTHE PRESENTE CONTRACTOR C	nuc. DEDNI	30 ba Leic ESS:	ase p acid sind	pair:	5								
‡ 5	()	i) MO	LECU	LE TY	PE:	DNA	(ger	nomic	2)								
		i) HY							•								
50	()	v) An	TI-SI	ense :	: NO												
	(x	i) SE	QUEN	CE DE	SCR	EPTIC	ON: S	SEQ 1	D NO):3:							
55	AAGAAC	TAAA	acta:	TAAC	G C	ACTG	TTG	TATA	TATI	AAA!	TGAT	GTC	AA A	CTCC	AAAAA:	\	60
	CTGTTA	AATA	TTAA	CACTO	C A	ATAN	AAAC1	r aca	CCAC	TAA	TTCI	TTTI	AT T	TGC	CCCTC	:	120
50	ATCAGG	ATTA	CAGC	TTA7	C A	GAC.	rgca1	ייבר ז	CTT	AGA	AATG	AATA	TT I	CTCI	TACAA		180
	CGCAAA	GAAA	gaaai	NATC	A A	ATAN	ATTT	CTC	ATTO	AAA	ATG1	AAAA:	JAG G	CAA	TATT	•	240
55	TTACAC	TTTT	aact:	TAA1	T T	TTA:	rtga(GAC	CAAC	TGT	TTGA	AAAA	TT C	TCAT	TAGTO	:	300
	ATTCCT	TTAA .	ATTA	rgtg1	TA TO	STGA	SAGAJ	A AGA	CGT	AGA	TGGT	TAAT	TA T	TTC	AATGA		360

- 22 -

	TGCBGTATAA BCARCCCCC TTATA	
	TGCAGTATAA AGAAGGGGCA TTATCACGGC AGAAACGAAA AAAGATATTT GTAGCTGGAG	420
5	GTTTTTATAG TCTAACATAT GGTTGCTATT TGTTCTACAA ATCCTTTTGA ATAATTTAAT	480
J	ATAGAGATTT CGAATAGAAA ATAATACTTT AGATAGAAAT TAATGAGTTT ATTATAACCA	540
	TATATTATAA TAATTTACTT AGGAATTCTC TTTGATAAGA AACAAATGAA CTGAATGCAA	600
10	TTTTCTCCAC AGACCATATA AGACTGCCTA TGTACCTCCT CCTACATGCC ATTGGTTAAC	660
	CATCAGTCAG TTTGCAGGGG TGGGGGGAGG GGTTTCCTGC CCATTGTTTT TGTAATCTCT	720
	GAGGAGAAGC	730
15	(2) INFORMATION FOR SEQ ID NO:4:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 121 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: NO	•
	(iv) ANTI-SENSE: NO	
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 38121	
35	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	AGCAGCAAAC ATTTGCTAGT CAGACAAGTG ACAGGGAATG GATTCCAAAC AGCAGTGTGT	60
40	AAAGCTAAAT GATGGCCACT TCATGCCTGT ATTGGGATTT GGCACCTATG CACCTCCAGA	120
•	G	121
	(2) INFORMATION FOR SEQ ID NO:5:	
45	(i) SEQUENCE CHARACTERISTICS:	
50	(C) STRANDEDNESS: single (C) TOPOLOGY: linear	
,,	(ii) MOLECULE TYPE: DNA (genomic)	
	(ili) HYPOTHETICAL: NO	
55	(iv) AMTI-SENSE: NO	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	GTAAGAATAA TTCCTTTTAG TTTTCGGATT TCAAAAGAAT AAACCTAGTA GAAGTGAAAC	60
55	CCGTATTGGG TIGTAAGGTT CGTGTTCCTA CCTTACTCTG GATGACTCAC TGGTCTAGGT	120
_	TTCCTAGGCT AGGAGAAAA AGTAGGCAAT CCTTCTTCTC CATTCACCTC CATTCACCTC	

-	23	-

	GTCACGTACT GCTTATTTTT CGTTTGTGCA CTGTTTCTTT CTTCTGTTCA TGTCTAGTTC	240
	CCAGCTTGGC AG	252
5	(2) INFORMATION FOR SEQ ID NO:6:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 410 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(111) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	GGAAGTCTGA GTGAGCATTC TGTGTAATAT CACTGGGAGA GAACTCATAT GAGCTTGCAC	
25	·	60
	CGTTTCCCTT CTATACTCCA TGTGATTTTT ACCATGTATA ATATCACTAT ATTAAAAATA	120
30	ATTAGGACTA TITCAGTCAT GITAACTITT CCAACAARTC ACTGAATCTG AGGGTGTTAT GTGGTACCTC CATAACAGTG ATCAACCAGA GATTGCCTGA GACTGAAGGT GTTTCTGGGA	180
	TGCTCARCCT TTATTACTAA CCAGGAAAGA CTCAGGCAAA CTGAGATGGA CTTTTCACCC	240
	CACATACAGA CAGGAGGAAA AGCTGATTCT TGTATAAAAG TCAATGCTTG TGCCTGAACT	300
35	ACCTCTCAGC CACAGTGATC ACCAGATACT ACCTTTGGTT GCTCCTCCAG	360
	(2) INFORMATION FOR SEQ ID NO:7:	410
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 168 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: NO	
55	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1168	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
50	GTTCCGAGAA GTAAAGCTTT GGAGGTCACA AAATTAGCAA TAGAAGCTGG GTTCCGCCAT	60
	ATAGATTCTG CTCATTTATA CAATAATGAG GAGCAGGTTG GACTGGCCAT CCGAAGCAAG	120
55	ATTGCAGATG GCAGTGTGAA GAGAGAAGAC ATATTCTACA CTTCAAAG	168
-	(2) INFORMATION FOR SEQ ID NO:8:	

- 24 -

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 700 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GTACTGTGTC TATGATGAGC TTGTGTGCAC ATGTATTTAT TGTGATTGTG TGGAGATGAC	
20	AATTCTATGA CTGGATGAGT AGTTGTGGGT GAATTTTGCT TCTGGGTTCA AATTTATTCA	60
	CACATACTCA CATACTARAR CTGRARTCAR RATCARGGAR TGATGATCAC TTTTCATTTT	120
	GGCTGTGTTC CAATTTATGA CCTGAAAGTC CCTTTACTTT TTTGAGCTTC AGCCGAGATC	180
25	AGTGTGATTT GACATGTGCT ATAGAATCAC AGAGAACAAT AATCATGTTA TGGTTTTTCT	- 240
	·	300
30	TATCGCCTGG GTGATTTTCT AAGATTTCTT ATTATTCTCT CAATTGCTAT CTTTATCAGT	360
	GAGATAGAAA GCAATATAAG AAAGCTCTGG GAGTATTAAA TAATAGACAC TTAAATTGTC	420
	CTARATTGTG TCCAGCATAG TGAGCATGTT CAAAACTTGT TTTACCCCCC TTTTATGTTG	480
35	CTTTAGTTTC TAAGCAACAT AAATAGCTAT TCTTAAGCAT TGGGTTGAAT GGATAGAAGA	540
	ATTAGACTGT TAAAATGAGT TGTAAACTCT ACTGAAGATA ATTCAGGTAA CATCATAGTT	600
40	ATTACTTAAT ACTAATCTTT ACATTTTAAG AATTTACTCC TATCATTCAG TAGATGTACA	660
40	AACTATACAT CCAACGTATA ATAAAGTTTA TAAGGATAGG	700
	(2) INFORMATION FOR SEQ ID NO:9:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) NOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
55		
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	ACTAGATGGC ACAAAGTAAT AAGATTTGCT CAAGCATTCA TTCAAAATCA CCTCCATTCT	60
	TTAACCTCTG CAG	73
65	(2) INFORMATION FOR SEQ ID NO:10:	
	(i) SECUENCE CHARACTERISTICS.	

- 25 -

5	(A) LENGTH: 117 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
,	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
10	(iv) ANTI-SENSE: NO	
15	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1117	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
20	CTTTGGTCCA CTTTTCATCG ACCAGAGTTG GTCCGACCAG CCTTGGAAAA CTCACTGAAA	60
	AAAGCTCAAT TGGACTATGT TGACCTCTAT CTTATTCATT CTCCAATGTC TCTAAAG	117
25	(2) INFORMATION FOR SEQ ID NO:11:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 152 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
J J	(iv) ANTI-SENSE: NO	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	GTATGCAGTT TGTATGAGCA TAAAATTGCG CTTCTGCTGT CATTATAAAC ATTGTTTATC	60
45	TGGATAGTTG AACAGAGCTT TTTATTAGGA GGATGTAGGG ATTATCACAC AGAAGAAGAA	120
	CCGTAAGTGG AACACCTAAT TTCCTTTCTT TC	152
50	(2) INFORMATION FOR SEQ ID NO:12:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 208 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
۲0	(iii) HYPOTHETICAL: NO	
60	(iv) ANTI-SENSE: NO	
65		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	

- 26 -

	TATABATAT TOTABACACAM MAGAMATANA	
	ATATAATATT TGTAAGAGAT TAGAGGAAGC CTGTCTCCTG AATACATTCC TTATACCTTC	60
_	ATATGTAAAA CACTTAGCAC ATATCACTTT CTGGAGCATT GTACCACCTG TCTCATGGAG	120
5	SATTAGTGTC CTTAAAGGTA CCTGGGGTTA CAGCTATGAG TGGAGAAATT AATTTGTGAC	180
	ATCATTAAAA TGACTGCTTC TATTTCAG	208
10	(2) INFORMATION FOR SEQ ID NO:13:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 78 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
25	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 178	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
30	CCAGGTGAGG AACTTTCACC AACAGATGAA AATGGAAAAG TAATATTTGA CATAGTGGAT	60
	CTCTGTACCA CCTGGGAG	78
35	2) INFORMATION FOR SEQ ID NO:14:	78
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 98 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 'D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(111) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
50		
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	STGAGTGCTT SGCGGAGAGG ACACAGAGAA GGATGACAAA AAGAGAAAAT CTGTTTCCCA	
55	SGTTCGATAG GAAAGAATGG AATATGCACC ATTAGATC	60
	(2) INFORMATION FOR SEQ ID NO:15:	98
50		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 249 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: DNA (genomic)	

- 27 -

	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
10	GACAGGAATC TCTTTCCTTG CTTGTGCATT AATCTATGCA GTTTCCTAAG GAAGAGATAG	60
	AAATTCTTAC TCTTGCTGCC TCTATCTTCT TCCCCTATTT GCTGTTTGAA TTTTTCTTTT	120
15	TITGACARTC ACTGCTAGCT ATTITCATTG TCATACTTTG ARAGITGTTG CTCTCACAGT	180
13	TOTGTOTTGC ATTTACCGTG ATTTGCAGCC AACTGCACAA ATAATTCCTC ACAACCCCTT	240
	TCTCCACAG	249
20	(2) INFORMATION FOR SEQ ID NO:16:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 123 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
35	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1123	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	GCCATGGAGA AGTGTAAGGA TGCAGGATTG GCCAAGTCCA TTGGGGTGTC AAACTTCAAC	60
45	CGCAGGCAGC TGGAGATGAT CCTCAACAAG CCAGGACTCA AGTACAAGCC TGTCTGCAAC	120
73	CAG	123
	(2) INFORMATION FOR SEQ ID NO:17:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 138 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
۲۸	(iii) HYPOTHETICAL: NO	
60	(iv) ANTI-SENSE: NO	
65	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	·	.
	GTGAGCTCCC TTGGCCTTCT CTCCTTTCGG TTCTTCATGC CCCCTCTTCC TGTCCTATTG	60

- 28 -

	CCAAATATCT GTTTGTTTTG TCCCAGTTAT CTTTGTGAAG TAGAAGATTA TCTAGAGAGC	120
_	AAAGCTTCTG TCAAGAAA	•
5	(2) INFORMATION FOR SEQ ID NO:18:	138
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 189 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
••	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
20		
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
25	ATTTCCATTT ATACTTTTAG AAGATATATA AAATTTATTT CTATGAAAAA GGTTATTACT	. 60
	TGACAATAAT ATCCTCAGCT CAAATATAAT GCTATACTGA TTATTATTCA GCTTCCTTAC	120
30	TITCATCTIT TCAATATTAA CATAACTATI TCATATAAAT TGATGCTTCT CTCTTTTGGT	180
3 0	CAACTGCAG	189
	(2) INFORMATION FOR SEQ ID NO:19:	103
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 110 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	
45	(iv) ANTI-SENSE: NO	
-	127, MILL SENSE; NO	
5 0	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1110	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
55	GTAGAATGTC ATCCGTATTT CAACCGGAGT AAATTGCTAG ATTTCTGCAA GTCGAAAGAT	60
	ATTGTTCTGG TTGCCTATAG TGCTCTGGGA TCTCAACGAG ACAAACGATG	110
60	(2) INFORMATION FOR SEQ ID NO:20:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 136 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
65	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (GENOMIC)	

- 29 -

	(iii) HYPOTHETICAL: NO	
5	(iv) ANTI-SENSE: NO	•
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: GTAATAAAAA CAATGGGACC TITACATAAA CCTTCATTTT GCAGAAAATT TTTTAGTCAG	60
15	AGCATCCTCA GTTTCCTGTA GTTAAGTTTC AAGTGGCTCA TGGAGAGGAA AGAGAATTGC	120
13	GTTTCTGACG AGATCT	136
20	(2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 66 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
35	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:21: TTTAGGGAGC TGCCTAACAA ACTATCGGCA GCCTCAGGGC CTCAGCCTTT CTGCCTTTCC	60
40	TTCCAG	66
40	(2) INFORMATION FOR SEQ ID NO:22:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 166 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
55	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1166	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
-	GGTGGACCCG AACTCCCCGG TGCTCTTGGA GGACCCAGTC CTTTGTGCCT TGGCAAAAAA	
		60
55	GCACAAGCGA ACCCCAGCCC TGATTGCCCT GCGCTACCAG CTGCAGCGTG GGGTTGTGGT	120
	CCTGGCCAAG AGCTACAATG AGCAGCGCAT CAGACAGAAC GTGCAG	166

- 30 -

	(2) INFORMATION FOR SEQ ID NO:23:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 136 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
20	STGAGGAGCG GGGCTGTGGG CCTCAGGTCT CCTGCACAGT GTCCTTCACA CGTGTGCTTC	- 60
	TTGTAAGGCT CTCAGGACAG CCTTGGGCCA GCTCCATTTC CCTGTATTTC CCATATGAAT	120
25	SCTTTGCGTG CATCCT	136
	(2) INFORMATION FOR SEQ ID NO:24:	130
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 286 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
J J	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
45	CCCTATCATG TGGGCACAAT GTCAGCGCTG TTTCTTCTCC ATTTTCTGTT GAAATTTTCT	60
	CTTTGTCTGC AGAGTTGCAC AGTTTCAATA CATAATATCT AGGAATGGAT TTCTGCTTAT	120
50	TITICGIGAG CTATICATIG ACCCACCIGA GIGITITAGAG CIGACTICIA TAACIGITIA	180
	AAACTTACCA ATATTTTAAG TATTGTCTCT GCACCCTACT GTCTAATATA CTTGGGGATT	240
	CACAACTGGC AATCTAAAAA TAATAAAAGT TTTTTATTTC TGATAG	286
55	.2) INFORMATION FOR SEQ ID NO:25;	
50	(1) SEQUENCE CHARACTERISTICS: A) LENGTH: 83 base pairs B) TYPE: nucleic acid C) STRANDEDNESS: single D) TOPOLOGY: linear	
	(ii) MCLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	

-31-

5	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1.83	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
10	GTTTTTGAGT TCCAGTTGAC TGCAGAGGAC ATGAAAGCCA TAGATGGCCT AGACAGAAAT	60
	CTCCACTATT TTAACAGTGA TAG	83
1.5	(2) INFORMATION FOR SEQ ID NO:26:	
15 20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
~*	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	GTAAGTTTCC TTTGTAAATG GGTGATCTAA TTTATTTCTG GAGAAGGAAT GTAGGATGGG	60
35	TGTTGAGAGT GACCTCCATA CCAGAGGGAC AGAGGCCAAT GTGAGTCAGA GGTGAGACTG	120
	GAACTCTCCT GCTGGATTCA CTCCAGAGCT CTGTTCTCTG GCAGGGTGAG TGGGCAGGGA	180
	TCAGCATGGG TCAACCTGTG CCTCTGCTCT CCTGACTCCA TGGAACTTTC CAGAGCAGCC	240
40	AACATCATTG CCAAGTCTGC ACGTTCCATA TAGGCCTGGT GTTTCTACCA CTGGACATGC	300
	TGTGGATACT GCCCATGTGA CTTCATTAGA TGTTTCCAAA TCTGTGCTTA TATCACATTG	360
45	TCCCAAACCT GCTCAGCTCC TTATCAAATC AAAAACATTT CCATCAACTT TGTGGTCCAG	420
	GTGCCAATTC CCACCTCCTT CATATGGAAT TGCTTGCTAG ATCCTGTCAA TTCAGCATCT	480
50	TTTATTATTT CANATGITTT TCCTCCTTCT CCTTGCACGT TTGTTCATGC CCCANACTCT	540
50	GCTTTTGCCT CCAGAAAGCC TTCCTTAGTG GAGTGAATAG GAGTGCTTGT CCTTGATTTC	600
	CTGCAATATG GAGCTCTCAA GGCAGAGAAT TTAAAAAAAT TTAAAATCAA GGAGTGTGAG	660
55	TGTGGAGGCA GAAGCTCCAT TGTTGTATAT AATTTGTAGC TGATAAAAGA TCT	713
	(2) INFORMATION FOR SEQ ID NO:27:	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 415 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
65	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

- 32 -

(iv) ANTI-SENSE: NO

)		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
10	TITAATGCAC TGTAGCTCCT TGGATATTAG ACCCTATATC ATATATAACA ATTTACATTT	60
••	CTGAATCTTA CAAAATATAT TGCATACAGT AGGCAGTAGC AGGTAATAAG TAAAGTAACA	120
	AAAGAAAGTA TAATCAGAGT ATCTCTGCTC TGCTGACAGA TGTACAGGAA TATACTTGAA	180
15	TATTTGACTT TGTGTGTTTT ACGTGTTAAC TTCCAGATAA GGGAATATGA TTGAATAATT	240
	TATTATTTTG AAAATACTGT ATTATGAAGC CATGTTCATA AAGGTAAGAA AGGCAGATTC	300
20	TACAACTAGT CAGACAACTT AACATTCATA CTAATGACAG CTTCATTGAA ATCACTTTAC	360
	TACTCCCCTA GTAATGGAGT CATTGCATTT ATATTATACA TTATTCTCTT TTCAG	415
	(2) INFORMATION FOR SEQ ID NO:28:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 230 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
_ •	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
35	(iv) ANTI-SENSE: NO	
	(ix) FEATURE:	
40	(A) NAME/KEY: exon (B) LOCATION: 1230	
	·	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
43	TTTTGCTAGC CACCCTAATT ATCCATATTC AGATGAATAT TAACATGGAG GGCTTTGCCT	60
	GATGATGTCT ACCAGAAGGC CCTGTGTGTG GATGGTGACG CAGAGGACGT CTCTATGCCG	120
50	GTGACTGGAC ATATCACCTC TACTTAAATC CGTCCTGTTT AGCGACTTCA GTCAACTACA	180
	GCTGAGTCCA TAGGCCAGAA AGACAATAAA TTTTTATCAT TTTGAAATAA	230
	(2) INFORMATION FOR SEQ ID NO:29:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 109 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
60	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
65	(iv) ANTI-SENSE: NO	

•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
5	TTGAATGTTT TCTCAAAGAT TCTTTACCTA CTCTGTTCTG TAGTGTGTGT TTTCTTCTGG	60
	CTCAGAAGTG TGTGTGTGT TGTGTGTGCT TTCTTCTGGC TCAACAGGG	109
10	(2) INFORMATION FOR SEQ ID NO:30:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid	
15	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: YES	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	TITAGCTTTA CACACTGCTG TT	22
30	(2) INFORMATION FOR SEQ ID NO:31:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: NO	
	(iv) AMTI-SENSE: YES	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
5 0	TCCAAAGCTT TACTTCTCGG	20
50	(2) INFORMATION FOR SEQ ID NO:32:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
60	(ii) MOLECULE TYPE: DNA (genomic)	
•••	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	

- 34 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	SATGAAAGT GGACCA	16
5	2) INFORMATION FOR SEQ ID NO:33:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
25	ATCTGTTGGT GAAAGTTC	18
25	2) INFORMATION FOR SEQ ID NO:34:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
-	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
40		
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: TECAGCTGCC TGCGGT	16
	2) INFORMATION FOR SEQ ID NO:35:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
60	(iv) ACTI-SENSE: YES	
65	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
	CTTGTACTTG AGTCCTG	17

- 35 -

	(2) INFO	RMATION FOR SEQ ID NO:36:	
5	į(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) TOPOLOGY: linear	
10	(ii)	MOLECULE TYPE: DNA (genomic)	
••	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
15			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:36:	
20	CTCCGGTT	GA LATACGGA	18
	(2) INFO	RMATION FOR SEQ ID NO:37:	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
35	. (iv)	A::TI-SENSE: YES	
40		SEQUENCE DESCRIPTION: SEQ ID NO:37:	ge.
		DRIVATION FOR SEQ ID NO:38:	-
45		SEQUENCE CHARACTERISTICS: A) LENGTH: 22 base pairs B) TYPE: nucleic acid C) STRANDEDNESS: single	
50	1221	(C) TOPOLOGY: linear	
		MCLECULE TYPE: DNA (genomic) HYPOTHETICAL: NO	
55		ANTI-SENSE: YES	
	,207		
60	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:39:	
	TCACTGTT	TAL AATAGTGGAG AT	22
65	:2: INFO	DREATION FOR SEQ ID NO:35:	
03	(i)	SEQUENCE CHARACTERISTICS: A) LENGTH: 17 base pairs	

- 36 -

			- 50	
	(C)	TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear		
5	(ii) MOLE	ECULE TYPE: DNA (genomic	:)	
	(iii) HYPO	OTHETICAL: NO		
10	(iv) ANT	I-SENSE: YES	•	
	(xi) SEQ	JENCE DESCRIPTION: SEQ I	D NO:39:	
15	ATCTGAATAT G			17
	(2) INFORMAT	ION FOR SEQ ID NO:40:		
20	(A) (B) (C)	UENCE CHARACTERISTICS: LENGTH: 20 base pairs TYPE: nucleic acid STRANDEDNESS: single		
25		TOPOLOGY: linear		
		ECULE TYPE: DNA (genomic OTHETICAL: NO		
30		I-SENSE: YES		
35		UENCE DESCRIPTION: SEQ I	ID NO:40:	٠
	TTCTCGGAAC C	_		20
40	(2) INFORMAT	ION FOR SEQ ID NO:41: UENCE CHARACTERISTICS: LENGTH: 20 base pairs		20
45		Proposition of the state of the		
		ECULE TYPE: DNA (genomic	=)	
50		OTHETICAL: NO		
	(1V) ANT	I-SENSE: YES		
55	(xi) SEQ	UENCE DESCRIPTION: SEQ I	ID NO:41:	
	GACACAGTAC C	TTTGAAGTG		20
60	(2) INFORMAT	ION FOR SEQ ID NO:42:		
65	:A :B :C	UENCE CHARACTERISTICS:) LENGTH: 20 base pairs) TYPE: nucleic acid) STRANDEDNESS: single) TOPOLOGY: linear		

- 37 -

	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
5	(iv) ANTI-SENSE: YES	
10		
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	20
	TGGACCAAAG CTGCAGAGGT	20
15	(2) INFORMATION FOR SEQ ID NO:43:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: YES	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	20
25	CCTCACCTGG CTGAAATAGA	20
35	(2) INFORMATION FOR SEQ ID NO:44:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA :genomic;	
45	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
<i>e</i>	AAGCACTCAC CTCCCAGGTG	20
55	(2) INFORMATION FOR SEQ ID NO:45:	
60	(i) SEQUENCE CHARACTERISTICS: :A) LENGTH: 20 base pairs :B) TYPE: nucleic acid :C) STRANDEDNESS: single :D) TOPOLOGY: linear	
65	(ii) MOLECULE TYPE: DNA (genomic)	
UJ	(iii) HYPOTHETICAL: NO	

- 38 -

(iv) A:TI-SENSE: YES

5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
	SACATTCTAC CTGCAGTTGA	20
10	2) INFORMATION FOR SEQ ID NO:46:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) AUTI-SENSE: YES	
25		
	(xi) SEQUENCE DESCRIPTION: SEO ID NO:46:	
	CTCAAAACC TATCAGAAA	10
30	.2) INFORMATION FOR SEQ ID NO:47:	19
	•	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MCLECULE TYPE: DNA (genomic)	
70	:iii) HYPOTHETICAL: NO	
	(iv) ACTI-SENSE: YES	
45		
		•
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
50	SGAAACTTAC CTATCACTGT	20
	2) INFORMATION FOR SEQ ID NO:48:	
55	(i) SEQUENCE CHARACTERISTICS: A) LENGTH: 20 base pairs B) TYPE: nucleic acid C) STRANDEDNESS: single D) TOPOLOGY: linear	
60	(ii) MCLECULE TYPE: DNA (genomic)	
	:iii) HYPOTHETICAL: NO	
65	(iv) A:TI-SENSE: YES	

- 39 -

	(xī)	SEQUENCE DESCRIPTION: SEQ ID NO:48:	
5	GCTAGCAA	AA CTGAAAAGAG	20
3	(2) INFO	RMATION FOR SEQ ID NO:49:	
10	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii)	MOLECULE TYPE: DNA (genomic)	
13	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
20			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:49:	
25	GAGAAATA'	TT CATTCTG	17
	(2) INFO	RMATION FOR SEQ ID NO:50:	
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
40	(iv)	ANTI-SENSE: YES	
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:50:	
	CGAGTCCT	GA TAAAGCTG	18
	(2) INFO	RMATION FOR SEQ ID NO:51:	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
60	(iv)	ANTI-SENSE: YES	
65	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:51:	
	GATGAGGG'	TG CAAATAA	17

- 40 -

	(2) INFORMATION FOR SEQ ID NO:52:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	•
15	(iv) ANTI-SENSE: YES	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
	GGAGTGTTAA TTAATAACAG TTT	23
,	(2) INFORMATION FOR SEQ ID NO:53:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
35	(iv) ANTI-SENSE: YES	-
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
	CAGAGATTAC AAAAACAAT	<u>:</u>
45	(2) INFORMATION FOR SEQ ID NO:54:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
55	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
60		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
	TGCCTTTTTA CATTTTCAAT CA	22
65	(2: INFORMATION FOR SEQ ID NO:55:	
	(i) SEQUENCE CHARACTERISTICS:	

-41-

5	(A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO		
10	(iv) ANTI-SENSE: YES		
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:		
	ACACATAATT TAAAGGA		17
20	(2) INFORMATION FOR SEQ ID NO:56:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single		
25	(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA (genomic)		
30	(iii) HYPOTHETICAL: NO		
	(iv) ANTI-SENSE: YES		
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:		
	TTAAATTATT CAAAAGG		17
40	(2) INFORMATION FOR SEQ ID NO:57:		
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•	
	(ii) MOLECULE TYPE: DNA (genomic)		
50	(iii) HYPOTHETICAL: NO		
	(iv) ANTI-SENSE: YES		
55			
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:		
60	AAGAGAAATA TTCATTTCTG		. 20
	(2) INFORMATION FOR SEQ ID NO:58:		
65	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		

- 42 -

	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: NO	
J	(iv) ANTI-SENSE: YES	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
	CCCCTCCCCC CACCCCTGCA	20
15	(2) INFORMATION FOR SEQ ID NO:59:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
	CTGCCGTGAT AATGCCCC	18

CLAIMS

We claim:

- 5 1. An isolated nucleotide sequence encoding type 5 17β-hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 1 or a complement thereof, to hybridize under stringent conditions to the coding region of SEQ ID No. 1 or a complement thereof and said sequence encoding an enzyme which catalyzes the conversion of progesterone to 20∞-hydroxyprogesterone and the conversion of 4-androstenedione to testosterone.
 - 2. The nucleotide sequence, as recited in claim 1, wherein said sequence is the coding region of SEQ ID No. 1.
- 15 3. A recombinant expression vector comprising a promoter sequence and a nucleotide sequence in accordance with claim 1.
 - 4. A recombinant expression vector comprising a promoter sequence and a nucleotide sequence in accordance with claim 2.
 - 5. A recombinant host cell, transformed or transfected with the vector of claim 4.
 - 6. The recombinant host cell of claim 5. wherein said host cell is a eukaryotic cell.
 - 7. A recombinant host cell, transformed or transfected with the vector of claim 3.
 - 8. The recombinant host cell of claim 7, wherein said host cell is a eukaryotic cell.
 - 9. The recombinant host cell of claim 8, wherein a nucleotide sequence that hybridizes under stringent conditions with SEQ ID No. 1 or its complement is integrated into the genome of said host cell.

30

20

25

15

- 10. The recombinant host cell of claim 9, wherein said nucleotide sequence is located on a recombinant vector.
- 5 11. The recombinant host cell, as recited in claim 8, wherein said host cell is capable of expressing a biologically active type 5 17β-hydroxysteroid dehydrogenase.
 - 12. An isolated nucleotide sequence comprising at least ten consecutive nucleotides identical to 10 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
 - 13. The nucleotide sequence, as recited in claim 12, wherein said sequence comprises at least fifteen consecutive nucleotides identical to 15 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
 - 14. The nucleotide sequence, as recited in claim 13, wherein said sequence comprises at least twenty consecutive nucleotides identical to 20 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
- 20 15. The nucleotide sequence, as recited in claim 13, wherein said sequence comprises at least thirty consecutive nucleotides identical to 30 consecutive nucleotides in the coding region of SEQ ID No. 1, or the complement thereof.
- An oligonucleotide sequence selected from the group consisting of 25 TTTAGCTTTACACACTGCTGTT (SEQ ID No. 30). TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31), GATGAAAAGTGGACCA ID No. 32), ATCTGTTGGTGAAAGTTC (SEQ TCCAGCTGCCTGCGGT (SEQ ID No. 34), CTTGTACTTGAGTCCTG (SEQ ID No. 35). CTCCGGTTGAAATACGGA (SEO ID No. 36), CATCGTTTGTCTCGTTGAGA 30 (SEO ID No. 37), **TCACTGTTAAAATAGTGGAGAT** (SEO ID No. 38), and ATCTGAATATGGATAAT (SEQ ID No. 39).

- 45 -

17. A	l n	oligonucleo	otide	sequence	selected	from	the	group	consi	sting	of
TTCTC	GG.	AACCTGG	AGG	AGC	(SEQ		ID	N	lo.	•	40),
GACAC	CAG	TACCTTT	GAA	GTG	(SEQ	•	ID	N	lo.	4	41),
TGGAC	CA	AAGCTGC	AGA	GGT	(SEQ		ID	N	lo.	4	42),
CCTCA	CC	TGGCTGA	AATA	AGA	(SEQ		ID	N	lo.	•	43),
AAGCA	CT	CACCTCC	CAG	GTG	(SEQ		ID	N	io.	4	44),
GACAT	TC	TACCTGC	AGT1	rga (sec	ID No. 4	5), CT(CAA	AAACC	TATC	AGA	AA
(SEQ I	D	No. 46),	GGA.	AACTTA	CCTATCA	CTGT	(SE	Q ID	No.	17) ,	and
GCTAG	C A	AAACTGA	LAAA	GAG (SE	Q ID No. 4	8).					

10

5

18. An oligonucleotide sequence selected from the group consisting of GAGAAATATTCATTCTG (SEQ ID No. 49), CGAGTCCTGATAAAGCTG (SEQ **GATGAGGGTGCAAATAA** No. 50), (SEQ ID No. 51), No. 52), **GGAGTGTTAATTAATAACAGTTT** (SEQ ID 15 CAGAGATTACAAAAACAAT (SEQ ID No. 53), TGCCTTTTTACATTTTCAATCA (SEQ ID No. 54), ACACATAATTTAAAGGA TTAAATTATTCAAAAGG (SEQ No. 55), ID 56), (SEQ ID No. **AAGAGAAATATTCATTTCTG** (SEQ ID 57). CCCCTCCCCCCACCCCTGCA (SEO ID No. 58). and CTGCCGTGATAATGCCCC (SEQ ID No. 59). 20

19. A recombinant expression vector comprising:

a promoter sequence; and

an oligonucleotide sequence selected from the group consisting of 25 TTTAGCTTTACACACTGCTGTT (SEQ ID No. 30), TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31), GATGAAAAGTGGACCA 32), ATCTGTTGGTGAAAGTTC (SEQ ID (SEQ ID No. TCCAGCTGCCTGCGGT (SEQ ID No. 34), CTTGTACTTGAGTCCTG (SEQ ID CTCCGGTTGAAATACGGA ID No. No. 35). (SEQ 36), 30 CATCGTTTGTCTCGTTGAGA (SEQ ID No. 37), **TCACTGTTAAAATAGTGGAGAT** (SEQ ID No. 38), and ATCTGAATATGGATAAT (SEQ ID No. 39).

- 46 -

20. A recombinant expression vector comprising:

a promoter sequence; and

	an	oligonucleo	tide	sequence	selected	from	the	group	consi	sting of
	TTCTCG	GAACCTGG	AGG	AGC	(SEQ		ID	N	lo.	40),
5	GACACA	GTACCTTT	GAA	GTG	(SEQ		ID	N	lo.	41),
	TGGACC.	AAAGCTG	CAGA	GGT	(SEQ		ID	N	lo.	42),
	CCTCAC	CTGGCTGA	AAT	AGA	(SEQ		ID	N	lo.	43),
	AAGCAC	TCACCTCC	CAG	GTG	(SEQ		ID	1	lo.	44),
	GACATT	CTACCTGC	AGT	rga (sec	ID No.	45), CT	CAA	AAACC	TATO	AGAAA
10	(SEQ ID	No. 46),	GGA	AACTTA	CCTATC	ACTGT	(SE	Q ID	No.	47), and
	GCTAGC.	AAAACTGA	1 AAA	GAG (SE	Q ID No.	48).				

21. A recombinant expression vector comprising:

a promoter sequence; and

15 an oligonucleotide sequence selected from the group consisting of GAGAAATATTCATTCTG (SEQ ID No. 49), CGAGTCCTGATAAAGCTG (SEQ ID No. GATGAGGGTGCAAATAA (SEQ ID No. 51), **GGAGTGTTAATTAATAACAGTTT** (SEO ID No. 52). ID CAGAGATTACAAAAACAAT (SEQ No. 53). 20 TGCCTTTTTACATTTCAATCA (SEQ ID No. 54), ACACATAATTTAAAGGA (SEO No. 55). TTAAATTATTCAAAAGG (SEQ ID No. 56), AAGAGAAATATTCATTTCTG (SEQ ID No. 57). CCCCTCCCCCACCCCTGCA (SEO ID No. 58), and CTGCCGTGATAATGCCCC (SEQ ID No. 59).

25

30

22. A method of blocking synthesis of type 5 17β-HSD, comprising the step of:

introducing an oligonucleotide selected from the group consisting of TTTAGCTTTACACACTGCTGTT ID No. 30), (SEO TCCAAAGCTTTACTTCTCGG (SEQ ID No. 31), GATGAAAAGTGGACCA 32), ATCTGTTGGTGAAAGTTC (SEQ ID No. (SEQ ID No. TCCAGCTGCCTGCGGT (SEQ ID No. 34), CTTGTACTTGAGTCCTG (SEQ ID No. 35). CTCCGGTTGAAATACGGA (SEQ ID No. 36), CATCGTTTGTCTCGTTGAGA (SEO ID No. 37),

- 47 -

TCACTGTTAAAATAGTGGAGAT (SEQ ID No. 38), and ATCTGAATATGGATAAT (SEQ ID No. 39) into cells.

- 23. A method of blocking synthesis of type 5 17β -HSD, comprising the step of: selected from the group consisting of 5 introducing an oligonucleotide TTCTCGGAACCTGGAGGAGC (SEQ \mathbf{ID} No. 40). No. GACACAGTACCTTTGAAGTG (SEO \mathbf{ID} 41), ID No. (SEQ 42), TGGACCAAAGCTGCAGAGGT CCTCACCTGGCTGAAATAGA (SEQ ID No. 43), ID No. 44), 10 **AAGCACTCACCTCCCAGGTG** (SEQ GACATTCTACCTGCAGTTGA (SEQ ID No. 45), CTCAAAAACCTATCAGAAA (SEQ ID No. 46), GGAAACTTACCTATCACTGT (SEQ ID No. 47), and GCTAGCAAAACTGAAAAGAG (SEQ ID No. 48) into cells.
- A method of blocking synthesis of type 5 17β -HSD, comprising the step of: 15 24. introducing an oligonucleotide selected from the group consisting of GAGAAATATTCATTCTG (SEO ID No. 49), CGAGTCCTGATAAAGCTG (SEQ **GATGAGGGTGCAAATAA** No. 51), No. 50). (SEQ ID \mathbf{ID} **GGAGTGTTAATTAATAACAGTTT** (SEQ ID No. 52), 20 CAGAGATTACAAAAACAAT (SEO ID No. 53). TGCCTTTTTACATTTCAATCA (SEQ ID No. 54), ACACATAATTTAAAGGA TTAAATTATTCAAAAGG (SEQ No. 56). No. 55). ID No. 57). **AAGAGAAATATTCATTTCTG** (SEQ CCCCTCCCCCCACCCCTGCA (SEQ ID No. 58), and CTGCCGTGATAATGCCCC (SEQ ID No. 59) into cells. 25
 - 25. An isolated chromosomal DNA fragment which upon transcription and translation encodes type 5 17β-hydroxysteroid dehydrogenase and wherein said fragment contains nine exons and wherein said fragment includes introns which are 16 kilobase pairs in length.
 - 26. An isolated DNA sequence encoding type 5 17β -hydroxysteroid dehydrogenase, said sequence being sufficiently homologous to SEQ ID No. 3 or a

10

complement thereof, to hybridize under stringent conditions to SEQ ID No. 3, or its complement.

27. A method for producing type 5 17β-hydroxysteroid dehydrogenase, comprising the steps of:

preparing a recombinant host transformed or transfected with the vector of claim 3; and

culturing said host under conditions which are conducive to the production of type 5 17β -hydroxysteroid dehydrogenase by said host.

28. A method for determining the inhibitory effect of a test compound on the enzymatic activity of type 5 17β -hydroxysteroid dehydrogenase, comprising the steps of:

providing type 5 17β-hydroxysteroid dehydrogenase;

contacting said type 5 17β -hydroxysteroid dehydrogenase with said test compound; and thereafter

determining the enzymatic activity of said type 5 17β -hydroxysteroid dehydrogenase in the presence of said test compound.

29. The method, as recited claim 28, wherein said step of determining enzymatic activity includes the steps of:

adding a substrate which is metabolized by said type 5 17β -hydroxysteroid dehydrogenase; and

determining an amount of said substrate which is converted to metabolite.

25

30. A method of interfering with the expression of type 5 17β -hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 1 or a complement thereof.

30

31. A method of interfering with the synthesis of type 5 17β-hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 1 or a

15

complement thereof.

- 32. A method of interfering with the expression of type 5 17β -hydroxysteroid dehydrogenase, comprising the step of administering nucleic acids substantially identical to at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.
- 33. A method of interfering with the synthesis of type 5 17β-hydroxysteroid dehydrogenase, comprising the step of administering antisense RNA complementary to mRNA encoded by at least 15 consecutive nucleotides of SEQ ID No. 3 or a complement thereof.
- 34. A method for determining the inhibitory effect of antisense nucleic acids on the enzymatic activity of type 5 17β-hydroxysteroid dehydrogenase, comprising the steps of:

providing a host system capable of expressing type 5 17β -hydroxysteroid dehydrogenase;

introducing said antisense nucleic acids into said host system; and thereafter determining the enzymatic activity of said type 5 17β -hydroxysteroid dehydrogenase.

FIG. 1A

SUBSTITUTE SHEET (RULE 26)

FIG. 2

4/15

49	97	145	193	241	289	337
66c 61y	GTT	. GGG . G1y	GTT	GAA	GAG Glu	GAC Asp
gat Asp	GAG Glu	GCT	CAG Gln	aga Arg	CCA Pro	TTG
AAT (Asn 1	CCA	GAA	GAG Glu	AAG Lys	CGA	CAA Gln
CTA 1	CCT	ATA Ile	GAG Glu	GTG Val	CAT	GCT
AAG (Lys 1	GCA Ala	GCA	AAT Asn	AGT	TTT	AAA Lys
GTA A	TAT	TTA Leu	AAT	ggc gly	ACT	AAA Lys
TGT C	ACC	AAA Lys	TAC	GAT	TCC	CTG
CAG 1 Gln (GGC Gly	Acc	TTA Leu	GCA Ala	TGG	TCA
CAG (Glu G	TTT Phe	GTC Val	CAT	ATT Ile	CTT	AAC
AAA (Lys (GGA G1y	GAG Glu	GCT	AAG Lys	AAG Lys	GAA
TCC 1	TTG	TTG	TCT	AGC	TCA	TTG
GAT 1	GTA	GCT	gat Asp	CGA	ACT	600 A1a
ATG (Met 2	CCT	AAA	ATA	ATC Ile	TAC	CCA Pro
	ATG Met	AGT	CAT His	GCC	TTC	CGA
gtgacaggga	TTC	AGA	cgc Arg	CTG	ATA Ile	GTC
GTGA	CAC	Pro	TTC Phe	GGA G1y	GAC	TTG

FIG. 3A-1

385	433	481	529	577	625	673	721
GGT	ATA Ile	GCA	CTG	AAC	TTC	TCT	
CCA	GAC	GAT	CAG Gln	TGC Cys	GAT	GGA Gly	TTG
AAG	TTT Phe	AAG Lys	AGG	GTC Val	CTA	CTG	CIC
CTA	ATA Ile	TGT	cgc Arg	CCT	TTG	GCT	GTG Val
	GTA Val	AAG Lys	AAC	AAG Lys	AAA Lys	AGT Ser	CCG
ATG	AAA Lys	GAG Glu	TTC Phe	1 TAC Tyf	AGT	TAT Tyr	TCC
CCA	GGA Gly	ATG Met	AAC Asn	AAG Lys	CGG Arg	GCC	AAC Asn
TCT	AAT Asn	GCC	TCA	gnature CTC AAG Leu Lys	AAC	NG GTT Val	CCG
CAT	GAA Glu	GAG Glu	GTG Val	2 83 668 614	TTC Phe	CTG	gac Asp
ATT Ile	gat Asp	TGG Trp	ATT GGG GTG Ile Gly Val	family signature CCA GGA CTC AAG Pro Gly Leu Lys	TAT	GTT	GTG Val
CIT	ACA	Acc	ATT Ile	See AAG Lys	CCG	ATT Ile	TGG Trp
TAT Tyr		ACC		reductase CTC AAC AAG Leu Asn Lys	CAT	gat Asp	CGA Arg
CTC	TCA	CK2 TGT Cys	AAG Lys		TGT Cys	AAA Lys	aaa Lys
GAC Asp	CTT	CTC	GCC Ala	Keto ATC Ile	GAA Glu	TCG	gac Asp
GIT	GAA Glu	GAT Asp	TTG	A Aldo/Keto AG ATG ATC lu Met Ile	GTA Val	AAG Lys	CGA Arg
TAT			GGA	SAG GAG Glu	CAG Gln	TGC	CAA

FIG. 3A-2

1132 1192 1206	ACTCCATAGG TCCATAGGCC	ACTCC		ACTACAGCTC TACAGCTCAC	ACTA	AAC	ACTTCAGTCA TTCAGTCAAC		AGCG	CTGTTTAGCG GTTTAGCGAC		ATCO	TAAATCCGTC AATAAATCCT TAAA		CACCTCTACT CCAGAAATAC AGAAATACAA	CACC
1012	TACCA CTGGACATAT	ATGTCTACCA GTGA CTGGA	O	TGATG ATGT ATGCCGGTGA	TGAT ATGC	TGCC	AGACT TTGC GGACGTCTCT	GAGA	TAA CATGGAGACT TTGCCTGATG * GACGCAGA GGACGTCTCT ATGCCG	T TAA CATG T * GTGACGCAGA	Æ >→	GAA Glu GGAT	GAT GAA T Asp Glu T TGTGTGGATG	≪ Li	CCA TAT IC Pro Tyr Se GAAGGCCCTG	CCA Pro GAAG
	Tyr	Asn	Pro	His	Ser	Ala	Phe	Ser	Asp	Ser	Asn	Phe	Tyr	L/A		Asn
961		AAT	CCT	CAC	AGC	GCT	TTT GCT AGC	AGT	GAT	AGT	AAC	TTT	TAT	CAC	CIC	
	Arg	Asp	Leu	Z Z	Asp	Ile	Ala	Lys		Asp	Glu	Ala	Thr	Leu	Gln	
913		GAC	CIA	၁၅၅	GAT	ATA	ATG AAA GCC ATA GAT GGC	AAA		GAC	GAG	5 5	ACT GCA GAG	TTG	CAG	TIC
	מזמ	rne	٧a١	u 75	7 B A	ASU	UT S	AEG	116	N T	2 2	signature 2	signature 2	*	CK2	2
865	GAG	AGC TAC AAT GAG CAG CGC ATC AGA CAG AAC GTG CAG GTT TTT GAG	GIT	CAG	GIG	AAC	CAG	AGA	ATC	ည္သ	CAG	GAG	AAT	TAC	AGC	
	<u>Ala</u>	Gln Arg Gly Val Val Val Leu Ala	Va 1	Val	Val	715	Arg	Gln.	Leu	Gln	Tyr	Arg	Leu	Ala		a
817	ညည	CAG CGT GGG GTT GTG GTC CTG GCC	GIC	GTG	GTT	999	CGT	CAG	CTG	CAG		ည္ပ		CCC	ATT	CTG
	Ala	Ala Lys Lys His Lys Arg Thr Pro Ala	Thr	Arg	Lys	His	Lys	Lys	Ala	Leu	Ala	Cys	Leu	Val	Pro	Asp
769	ညည	CCA	ACC	CGA	AAG	CAC	AAG	AAA	GCA	TIG (ည္ဟ	TGT	GTC CTT	GIC	CCA	GAC

SUBSTITUTE SHEET (RULE 26)

FIG. 3A-3

7/15

ស ហ	110	165
MDSKQQCVKLNDGHFMFVLGFGTYAPPEVPRSKALEVTKLAIEAGFRHIDSAHLYP-F-R-A-SIYFN-I-KMESITE-NL-K-SM-S-IDVCSP-Y-R-ESITP-NL-K-SM-S-IDV	NNEEQVGLAIRSKIADGSVKREDIFYTSKLWSTFHRPELVRPALENSLKKAQLDY 110 KKETT	VDLYLIHSPMSLKPGEELSPTDENGKVIFDIVDLCTTWEAMEKCKDAGLAKSIGVIF-TAV-IIH-ATI-A LF-VDL-QH-NL-L-TD
h 20cksu rb20cksu r 20cksu b 20cksu h 3cksu r 3chsd r 3chsd f p-crys	h 20cHBD rb20cHBD r 20cHBD b 20chBd h 3cHBD r 3cHBD f pgfs	h 20cked rb20cked r 20cked b 20cked h 3cked r 3cked r 3cked

FIG. 4A-1

0 7 7	275	323
SNFNRRQLEMIINKPGLKYKPVCNQVECHPYFNRSKLLDFCKSKDIVLVAYSALG 220	SQRDKRWVDPNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQ -H-EPEQSALIGQQI	RIRQNVQVFEFQLTAEDMKAIDGLDRNLHYFNSDSFASHPNYPYSDEYKE-I
h 20ceso rb20ceso r 20ceso b 20chsd h 3ceso r 3ceso r 3ceso r 3ceso r 3ceso	h 200HSD rb200HSD r 200HSD b 200HSD h 30HSD r 30HSD f pgfs	h 20ceso rb20ceso r 20ceso b 20ceso h 3ceso r 3ceso r 3ceso r 3ceso

FIG. 4A-2

SUBSTITUTE SHEET (RULE 26)

aagaacaaatactattaaggcactgcttgcatataataatgatgtccaaactccaaaactgttaataacactcc <u> Aðtaðaðattacaccagaðtttctttttttttgcaccctcatcaggattacagctttatcaggactgcatcttcttcaga</u> ratgaatattecettacaacgcaaagaaagaaatcaaattaattetegattgaaaatgtaaaaggcaaatatt **FTACAGTTTTAACTTTTAATTTTAATTGAGGACCAACTGTTTGAAAAATTCTCATTAGTCATTCCTTTAAATTATGTGTA** | | CTGAGAGAAAGACGTAAGATGGTTAATTATTTCAAATGATGCAGTATAAAGAAGGGGGCATTATCACGGCAGAAACGAAA atagagatttcgaatagaaaataatactttagatagaaattaatgagtttattataaccatatataataataatttactt aggaattctctttgataagaaacaaatgaactgaatgcaattttctccacagaccatataagactgcctatgtacctcc BAGGAGAAGC

Cys Val Lys Leu Asn Asp Gly His Phe Met Pro Val TGT GTA AAG CTA AAT GAT GGC CAC TTC ATG CCT GTA AGCAGCAAACATTTGCTAGTCAGACAAGTGACAGGGA Pro Glu CCA GAG Gln Pro CAG CCT TYT Ala E CAG AAA Ser TCC Thr ACC **G1y** GGC GAT Met Asp ATG Phe TII

/**1**5

TTAGGACTATTTCAGTCATGTTAACTTTTCCAACAATCACTGAATCTGAGGGTGTTATGTGGTACCTCCATAACAGTG TCAACCAGAGATTGCCTGAGACTGAAGGTGTTTCTGGGATGCTCAACCTTTATTACTAACCAGGAAAGACTCAGGCAAAC CGTGTTCCTACCTTACTCTGGATGACTCACTGGTCTAGGTTTCCTAGGCTAGGAGAAAAAAAGTAGGCAATCCTTGTTCTG aactcatatgagcttgcaccgtttcccttctatactccatgtgattttaccatgtattataccatgtataatatcactattaaaaataa Igagatggacttttcaccccacatacagacaggaaaaagctgattcttgtataaaagtcaatgccttgtgaact STAAGAATAATTCCTTTTAGTTTTCGGATTTCAAAAGAATAAACCTAGTAGAAGTGAAACCCGTATTGGGTTGTAAGGTT CCTCTCAGCCACAGTGATCACCAGATACTACCTTTGGTTTGCTCCTCCAG

FIG. 6A-1

11/15

48	68		84	
His	Lys Lys	AAG		
Arg	Ser	AGC		
Phe	Arg	CGA		
Gly	GGG	ATC		
Ala	GCT Ala	ပ္ပ	Lys	AAG
	GAA			
	ATA Glv			
_	GCA			
	TTA			
	AAA			
	AC C			
	GTC	•	_	_
_	GAG			
	TTC			
	GCT			
	AAA 1			
	A AGT			
	G AGA			
	, CCG			
Va	GIT	i i	AL	AT

aagatttcttattattctctcaattgctatctttatcagtgagatagaaagcaatataagaaagctctgggagtattaaa agttgtgggtgaattttgcttctgggttcaaatttattcacacatactcacatactaaaactgaaatcaaaatcaaggaa taatagacacttaaattgtcctaaattgtgtccagcatagtgagcatgttcaaaacttgttttacccccctttttatgttg tgtaaactctactgaagataattcaggtaacatcatagttattacttaatactaatctttacattttaagaatttactcc IGATGATCACTITTICATITITGGCTGTGCTGCAATITTATGACCTGAAAGICCCTTITACTITITIGAGCTTCAGCCGAGAIC ctttagtttctaagcaacataaatagctattcttaagcattgggttgaatggatagaagaattagactgttaaaatgagt TATCATTCAGTAGATGTACAAACTATACATCCAACGTATAATAAAGTTTATAAGGATAGG.....0.1 kd....

6A-2 T. C.

104	123		143	
Lys	§	GTATGCAGTTTGTATGAGCATAAATTGCGCTTCTGCTGTCATTATAAACATTGTTTATCTGGATAGTTGAACAGAGCTT TTTATTAGGAGGATGTAGGGATTATCACACAGAAGAACCGTAAGTGGAACACCTAATTTCCTTTCTTT	Ser Pro Thr Asp Glu Asn Gly Lys Val Ile Phe Asp Ile Val Asp TCA CCA ACA GAT GAA AAT GGA AAA GTA ATA TTT GAC ATA GTG GAT Glu GAG	ACACAGAGAAGGATGACAAAAAGAGAAAATCTGTTTCCCAGGTTCGATAGGAAAGAATGG
Leu	Age S	CCTTC	Val GTG	AAAG; FTAA
Ser	988	TIGAZ TITIC TATAC	Ile	ragg rgca
Asn	CAT CGA CCA GAG TTG GTC CGA CCA GCC TTG GAA AAC TCA CIG Tyr Val Asp Leu Tyr Leu Ile His Ser Pro Met Ser Leu Lys TAT GTT GAC CTC TAT CTT ATT CAT TCT CCA ATG TCT CTA AAG	VIAGI TITIC FCCIT	Asp GAC	rcga: cttg
Glu	GAA Met ATG	taaaattgcgcttctgctgtcattataaacattgttattgga/ attatcacacagaagaaccgtaaggaaccctaatttcc aatatttgtaagagttagaggaagcctgtctcctgaatacatt cactttctggagcattgtaccacctgtctcatggaggattagtg	Phe TTT	AGGT
Leu	Pro CCA	TTATC CTAAT SAATY SGATT CTAT	Ile	TCCC
Ala	Ser	TTGTT ACAC FCCT(FGGA(Val	TCTC
Pro	CAT CAT	AACA IGEA GTCA GACT	ly Lys ia aaa 149	AATC
Arg	CGA Ile ATT	TATA TAAG AGCC CTGT	61y 66A	AGAA
Val	GTC CTT	TCAT ACCG AGGA CCAC	Asn Aat	AAAG
Len	TYT TAT	GCTG AAGA TTAG TGTA CATC	GAA GAA	ACAA
Glu	GAG CTC	TTCT GAAG GAGA GCAT	asp Gat	GATG
Pro	Asp GAC	SCGC CACA GTAA TGGA ATTT	Thr	GAAG 1 kb
Arg	CGA Val GTT	AATTI ATTTI ATTTI	Pro CCA	CAGA.
		ATAA GATT TAAT TCAC		GACA
	TTT ASP GAC	SAGC FAGG ATA CATA	Leu Cir Trp TGG	AGAG ATC.
	ACT Leu TTG	STATI SATG: AGCA(ATGA(Glu GAA Thr	GCGG
	TCC Gln Caa	SGAG SGAG ACTT	Glu GAG Thr Acc	CTTG
	TGG Ala GCT	GTATGCAGTTTGTATGAGCATAAATTGCGCTTCTGCTGTCATTATAAACATTGTTTATCTGGATAGTTGAACAGAGCTTTATTAGGAGGTTGAACAGAGCTTTATTAGGAGGATTATTAGGAACAGAGGGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAATTTCCTTTTTTTT		GTGAGTGCTTGGCGGAGAGG. AATATGCACCATTAGATC
Leu	CTT Lys AAA	GTA: TTTI 0.9 GTAI GGGJ	Pro CCA CTC	GTG

ო 12/15

FIG. 6A-3

TITITICACAATCACTAGCTAGCTATITICATIGCATACTITICAAAGTIGCTGCTCTCACAGTICTGTTGCATITIACC gcagtttcctaaggaagatagaaattcttactcttgctgcctcttattttcttccctatttgctgtttgaatttttt

GTGATTTGCAGCCAACTGCACAAATAATTCCTCACAACCCCTTTCTCCACAG

169	189	190	13/15 0 1	227	
Ala Met Glu Lys Cys Lys Asp Ala Gly Leu Ala Lys Ser Ile Gly Val Ser Asn Phe Asn GCC ATG GAG AAG TGT AAG GAT GCA GGA TTG GCC AAG TCC ATT GGG GTG TCA AAC TTC AAC	Glu Met Ile Leu Asn Lys Pro Gly Leu Lys GAG ATG ATC CTC AAC AAC CCA GGA CTC AAG		GCTCCCTTGGCCTTCTCTCCCCCCCCCCCCCCCCCCCC	Leu Val Ala CTG GTT GCC	GTAATAAAAACAATGGGACCTTTACATAAACCTTCATTTTGCAGAAATTTTTTAGTCAGAGCATCCTCAGTTTCCTGT AGTTAAGTTTCAAGTGGCTCATGGAGAAAGAAATTGCGTTTCTGACGAGATCT0.1 kb

FIG. 6B-1

246	266	282				14/15	302	6	210	
	Gly Val	115 555		CAGGICTCCTGCACAGTGTCTTCACACGTGTGCTTCTTGTAAGGCTCTCAGGACA IGTATTTCCCATATGAATGCTTTGCGTGCATCCT2.5	CACANGTCAGGGGGGTGTTCTTCTCTGTTGAAATTTTCTTGACCCACTG	actgittaaaacttaccaatattittaagtattgictctgcaccctactgttaata Atctaaaaataataaagttittitattictgatag	Asp Arg Asn	GAC AGA		
	Gln	Gla Gla	GTG CAG	TTCTTGTAAG	GAGCTATTCA	CTCTGCACCC	Asp Gly Leu	AT GGC CTA		
Pro Val	Tyr Glu	TAC CAG Gln Asn	CAG AAC	CACACGTGTGC GCGTGCATCCT	rccartificie Itatititicgi	ttaagtattgi tatttctgata	Ala Ile	GCC ATA		
	CAG	acc cre cec arg ile arg	ATC	ACAGTGTCCTT ATGAATGCTTT	SCIGITIFCITC FGGATTICIGG	actgittaaaacttaccaataitttaagtaitgic Atctaaaaataataaagtittittatitctgatag	Asp Met Lys			
	GTG	crc Glu	AAT GAG CAG	GGTCTCCTGC	CAATGTCAGC TATCTAGGAAT	TGTTTAAAAC; CCTAAAAATAA		ACT GCA GAG	Asp Se	TA LA
Asn Ser	AAC TCC Thr Pro	ACC CCA Ser Tyr	AGC TAC	CTGGGCCTCA	rcatgregeca rcaatacataa	ACTTCTATAAC	Gln Leu	CAG TTG	Asn Ser	AAC ACT
Val Asp Pro	GTG GAC His Lys	CAC AAG Leu Ala	CTG GCC	GTGAGGAGCGGGCCTGTGGGCCT(GCCCCCCCCTTTCCCCCCCATTTCCCCCCCATTTCCCCCCC	ccctatcatgtggg Agagttgcacagtttcaatacati	agtgtttagagctgacttctata Tacttggggattcacaactggca	Phe Glu	TTT GAG	His Tyr	S
<u>a</u>	G Lys	AAG	G D D	910	AGA	AGT	Val	GIT	ren	<u>ر</u>

FIG. 6B-2

TTAAAATCAAGGAGTGTGAGTGTGGAGGCAGAAGCTCCATTGTTGTATATATTTGTAGCTGATAAAAGATCT....

tttattatttcaaatgtttttcctccttccttgcacgtttgttcatgccccaaactctgcttttgcctccagaaggc ttccttagtggagtgaataggagtgcttgtccttgatttcctgcaatatggagctctcaaggcagagaatttaaaaaaa

aacatcattgccaagtctgcacgttgcatataggcctggtgtttctaccactggacatgctgtggatactgccatgtga **CTTCATTAGATGTTTCCAAATCTGTGCTTATATCACATTGTCCCAAACCTGCTCAGCTCCTTATCAAATCAAAACATTT**

CCAGAGGGACAGAGGCCAATGTGAGTCAGAGGTGAGACTGGAACTCTCCTGCTGGATTCACTCCAGAGCTCTGTTCTCT gcagggtgagtgggcagggatcagcatgggtcaacctgtgcctctgcttcctgactccatggaactttccagagcagc

gtaagtttccttttgtaatgggtgatctaatttatttctggagaaggaatgtaggatgggtgttgagagtgacctccata

aatatgattgaataatttatttttgaaaatactgtattatgaagccatgttcataaaggtaagaaaggcagattctac aactagtcagacaacttaacattcatactaatgacagcttcattgaaatcactttactactcccctagtaatggagtcat

IGCALTITATATACATTATICICITITICAG

HE

323

actegacatatcacctctacttaaatccgtcctgtttagcgacttcagtcaactacagtcaggtcaggtccataggccagaaaga Phe Ala Ser His Pro Asn Tyr Pro Tyr Ser Asp Glu Tyr : TTT GCT AGC CAC CCT AAT TAT CCA TAT TCA GAT GAA TAT Caataaatititatcatitigaaataa

rgigigigcititcitciggcicaacaggg

FIG. 6B-3

	<u></u>		
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N9/04		
According to	o International Patent Classification (IPC) or to both national classification	fication and IPC	
B. FIELDS	SEARCHED	·	
Minumum d IPC 6	ocumentation searched (classification system followed by classification C12N	on symbols)	
Documenta	tion searched other than minimum documentation to the extent that	such documents are included in the fields se	arched
Electronic	tata base consulted during the international search (name of data bas	se and, where practical, search terms used)	
C. DOCUN	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
Х	CLINICAL AND INVESTIGATIVE MEDIC vol. 18, no. sup.4, September 199 TORONTO CA, page b40 XP000196659		1-15,25, 26
	Y. ZHANG ET AL.: "Isolation and characterization of human type 5 17-beta-hydroxysteroid dehydrogen	nase*	16 24
A	see the whole document		16-24, 27-34
x	EMBL SEQUENCE DATABASE, Acc.No.: Emhum1:Hsorf1,15 December N. Miyajima, "Human mRNA (HA1753 see abstract	er 1993,)".	1,2, 12-15
A	XP002020808		3-11, 16-24, 27-34
		-/	
X Fur	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
'A' docum	ategories of cited documents: ment defining the general state of the art which is not dered to be of particular relevance	"I" later document published after the into or priority date and not in conflict we cited to understand the principle or to invention	th the approxition out
"E" eartier filing	r document but published on or after the international date nent which may throw doubts on priority clasm(s) or	"X" document of particular relevance; the cannot be considered novel or canno involve an inventive step when the do	t be considered to ocument is taken alone
"O" docur	h is cited to establish the publication date of another on or other special reason (as specified) mem referring to an oral disclosure, use, exhibition or means	"Y" document of particular relevance; the carnot be considered to involve an in document is combined with one or in ments, such combination being obvious	overtive step when the core other such docu-
"P" docum	nent published prior to the international filing date but than the priority date claimed	in the art. "A" document member of the same paters.	
Date of the	e actual completion of the international search	Date of mailing of the international a	raren teput
1	12 December 1996	0 6. 01. 97	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswyk	Authorized officer	
1	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	De Kok, A	

INTERNATIONAL SEARCH REPORT

PCT/0 /00605

Company Cuasor of document with indication, where appropriate, of the relevant passager X			PC1/0 5/00005
X JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 46, 1993, 0XFORD GB, pages 673-679, XP000196680 K.N. QIN ET ALL: "Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3-alpha-hydroxysteroid dehydrogenase" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 55, no. 5-6, 1995, 0XFORD GB, pages 581-587, XP000196678 V. LUU-THE ET ALL: "Characterisitics of human types 1, 2 and 3 17-beta-hydroxysteroid dehydrogenase activities" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY, vol. 34, no. 1-6, 1989, 0XFORD GB, pages 189-197, XP000196658 F. LABRIE ET ALL: "Characterization of two mRNA species encoding human estradiol 17 beta-dehydrogenase and assignment of the gene to chromosome 17" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 41, no. 3-8, Narch 1992, 0XFORD GB, pages 685-608, XP000196681 H. DUMONT ET ALL: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells" see the whole document A EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 H. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" see the whole document	C.(Continu	IDON) DOCUMENTS CONSIDERED TO BE RELEVANT	
MOLECULAR BIOLOGY, vol. 46, 1993, XXFORD GB, pages 673-679, XP80B195680 K.N. QIN ET ALL: "Molecular cloning of multiple cONAs encoding human enzymes structurally related to 3-alpha-hydroxysteroid dehydrogenase" A JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 55, no. 5-6, 1995, OXFORD GB, pages 581-587, XP8080196678 V. LUU-THE ET ALL: "Characterisitics of human types 1, 2 and 3 17-beta-hydroxysteroid dehydrogenase activities" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY, vol. 34, no. 1-6, 1989, OXFORD GB, pages 189-197, XP8080196658 F. LABRIE ET ALL: "Characterization of two mRNA species encoding human estradiol 17 beta-dehydrogenase and assignment of the gene to chromosome 17" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 41, no. 3-8, March 1992, OXFORD GB, pages 685-608, XP8080196681 M. DUMONT ET ALL: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells" see the whole document A EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP8080196661 H. PELTOKETO ET ALL: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" see the whole document	Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A See the whole document 3-11, 16-24, 27-34	X	MOLECULAR BIOLOGY, vol. 46, 1993, OXFORD GB, pages 673-679, XP000196680 K.N. QIN ET AL.: "Molecular cloning of multiple cDNAs encoding human enzymes structurally related to	
MOLECULAR B10L0GY, vol. 55, no. 5-6, 1995, OXFORD GB, pages 581-587, XP000196678 V. LUU-THE ET AL.: "Characterisitics of human types 1, 2 and 3 17-beta-hydroxysteroid dehydrogenase activities" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY, vol. 34, no. 1-6, 1989, OXFORD GB, pages 189-197, XP000196658 F. LABRIE ET AL.: "Characterization of two mRNA species encoding human estradiol 17 beta-dehydrogenase and assignment of the gene to chromosome 17" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR B10LOGY, vol. 41, no. 3-8, March 1992, OXFORD GB, pages 605-608, XP000196681 M. DUMONT ET AL.: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells" see the whole document A EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 M. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" see the whole document	A	see the whole document	16-24,
vol. 34, no. 1-6, 1989, OXFORD GB, pages 189-197, XP000196658 F. LABRIE ET AL.: "Characterization of two mRNA species encoding human estradiol 17 beta-dehydrogenase and assignment of the gene to chromosome 17" see the whole document A JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 41, no. 3-8, March 1992, OXFORD GB, pages 605-608, XP000196681 M. DUMONT ET AL.: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells" see the whole document A EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 H. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" see the whole document	A	MOLECULAR BIOLOGY, vol. 55, no. 5-6, 1995, OXFORD GB, pages 581-587, XP000196678 V. LUU-THE ET AL.: "Characterisitics of human types 1, 2 and 3 17-beta-hydroxysteroid dehydrogenase activities"	
MOLECULAR BIOLOGY, vol. 41, no. 3-8, March 1992, OXFORD GB, pages 605-608, XP000196681 M. DUMONT ET AL.: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells" see the whole document A EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 H. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" see the whole document	A	vol. 34, no. 1-6, 1989, OXFORD GB, pages 189-197, XP000196658 F. LABRIE ET AL.: "Characterization of two mRNA species encoding human estradiol 17 beta-dehydrogenase and assignment of the gene to chromosome 17"	1-15
vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 H. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions" see the whole document	A	MOLECULAR BIOLOGY, vol. 41, no. 3-8, March 1992, OXFORD GB, pages 605-608, XP000196681 M. DUMONT ET AL.: "Expression of human 17 beta-hydroxysteroid dehydrogenase in mammalian cells"	1-11
-/	A	vol. 209, no. 1, 1992, BERLIN DE, pages 459-466, XP000196661 H. PELTOKETO ET AL.: "Genomic organisation and DNA sequences of human 17-beta hydroxysteroid dehydrogenase genes and flanking regions"	
		-/	

1

w gy 📥

		PC1/CK 90/00003
C.(Continu	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 53, no. 1-6, 1995, OXFORD GB, pages 37-39, XP000196679 S. ANDERSSON ET AL.: "The molecular biology of androgenic 17-beta-hydroxysteroid dehydrogenases" see the whole document	1,25,26
A	JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 81, no. 20, 18 October 1989, BETHESDA US, pages 39-44, XP000351436 M. ROTHENBERG ET AL.: "Oligodeoxynucleotides as anti-sense inhibitors of gene expression: therapeutic implications" see the whole document	16-24
P,X	EMBL SEQUENCE DATABASE, Acc. No.: Emhum1:Hs516761, 19 April 1996, P.J. Ciaccio et al., "Human dihydrodiol dehydrogenase gene, 5'-flanking region" XP002020809 see abstract	26,32,33

1