멀티모달 2차 과제 2Model

생체인증보안

Given Data

- 64명의 얼굴, 홍채 데이터가 1명당 4개씩 총 256쌍의 이미지 데이터가 주어짐.
- 각 파일명의 앞쪽 숫자는 label을 의미함.

```
# 이미지 목록
images_face = sorted(glob.glob('./04_multimodal_training/*.BMP'))
images_iris = sorted(glob.glob('./04_multimodal_training/*.png'))
print(len(images_face), len(images_iris))
256 256
r = re.compile('#d+')
img_face = [] # 0/D/X/
ima iris = [] # O/D/X/
| label_face = [] # 라벨
label iris = [] # 라벨
for fname in images_face:
    I = r.findall(fname)[1]
    label_face.append(l)
    im = pilimg.open(fname)
    pix = np.array(im)/255.
    pix = pix.reshape(pix.shape[0], pix.shape[1], 1)
    pix = tf.image.grayscale_to_rgb(tf.convert_to_tensor(pix)) # ResNet50 위해 rgb 이미지로 변환
    img_face.append(pix)
for fname in images_iris:
    I = r.findall(fname)[1]
    label_iris.append(l)
    im = pilimg.open(fname)
    im = im.resize((int(im.width*0.2), int(im.height*0.2))) # 이미지 室이기
    pix = np.array(im)/255. # Normalize
    img_iris.append(pix)
X_face = np.array(img_face)
|X_iris = np.array(img_iris)
print(X_face.shape, X_iris.shape)
(256, 56, 46, 3) (256, 115, 153, 3)
```

데이터 불러오기

- glob 함수를 이용해 파일명을 불러오고, 파일명에서 label을 읽어 별도의 리스트에 저장함.
- Out of memory 문제를 해결하기 위한 방법으로 이미지의 크기를 줄임 (20%)
- 얼굴 이미지의 경우 grayscale로 되어 있는데, Pre-trained 모델을 이용하기 위해 RGB 이미지로 변환함.

얼굴 이미지 확인

0번 사람의 얼굴 이미지 plt.title('Face') plt.imshow(X_face[0]) print(X_face[0].shape) print(y_face[0]) (56, 46, 3) Face 10 20 30 40 50 30

홍채 이미지 확인

Data Augmentation

- 1명당 2개의 데이터는 얼굴/홍채를 구별하기에 부족하다고 판단.
- 이미지의 밝기 조절, 수평반전, 블러 등을 랜덤으로 적용한 image augmentation 사용.
- 각 이미지당 4개의 추가 augmented image를 생성하여 총 2560개의 데이터를 확보함.

- Add(0, 1)
- Fliplr(0.5)
- GaussianBlur(sigma=(0.0, 0.9))

최종 Data

```
#기존이미지
print(X_face.shape)
print(y_face.shape)
print(X_iris.shape)
print(y_iris.shape)
# 생성환 이미지
face_x_d = np.array(face_x_d)
face_y_d = np.array(face_y_d)
print(face_x_d.shape)
print(face_y_d.shape)
iris_x_d = np.array(iris_x_d)
iris_y_d = np.array(iris_y_d)
print(iris_x_d.shape)
print(iris_y_d.shape)
(256, 56, 46, 3)
(256.)
(256, 115, 153, 3)
(256,)
(1024, 56, 46, 3)
(1024,)
(1024, 115, 153, 3)
(1024,)
# 기존 이미지, 생성 이미지 합치기
X_face = np.concatenate([X_face, face_x_d], axis=0)
y_face = np.concatenate([y_face, face_y_d], axis=0)
X_iris = np.concatenate([X_iris, iris_x_d], axis=0)
y_iris = np.concatenate([y_iris, iris_y_d], axis=0)
print(X_face.shape)
print(X_iris.shape)
(1280, 56, 46, 3)
(1280, 115, 153, 3)
```

Split Data

- sklearn.model_selection의 train_test_split 함수 이용.
- Train: Test의 비율은 8:2로 하고, stratify 옵션을 주어 label이 균등하게 나뉘도록 함.
- X_test, y_test는 모델 훈련 후 evaluate으로 이용함.

```
from sklearn.model_selection import train_test_split
X_train_face, X_test_face, y_train_face, y_test_face = train_test_split(X_face,y_face, test_size=0.2, shuffle=True, stratify=y_face,
X_iris_face, X_test_iris, y_train_iris, y_test_iris = train_test_split(X_iris,y_iris, test_size=0.2, shuffle=True, stratify=y_iris,
```

label 똑같이 나누어진 것 확인

```
print(np.array_equal(y_train_face,y_train_iris))
print(np.array_equal(y_test_face, y_test_iris))
```

True True

```
print(X_train_face.shape, y_train_face.shape, X_test_face.shape, y_test_face.shape)
print(X_iris_face.shape, y_train_iris.shape, X_test_iris.shape, y_test_iris.shape)
```

```
(1024, 56, 46, 3) (1024,) (256, 56, 46, 3) (256,) (1024, 115, 153, 3) (1024,) (256, 115, 153, 3) (256,)
```

모델 학습

- Stratified K-Fold Cross Validation으로 모델을 평가함.
- 데이터셋을 split하기 위해 label의 one-hot encoding은 학습 직전에 함수를 적용함

```
#Cross validation
from sklearn.model_selection import KFold
from keras.utils import to_categorical
kf = KFold(n splits=4, shuffle=True, random state=42)
all_history_face = [] # face 결과 저장
all_history_iris = [] # iris 결과 저장
def score_model(cv=None):
   if cv is None:
        cv = KFold(n splits=4, random state=42, shuffle=True)
   for train_fold_index, val_fold_index in cv.split(X_train_face, y_train_data):
       # index를 split하는 것이기 때문에 face, iris에 동일하게 적용 가능 (random_state)
       print('Fold #',i)
        # Get the training data
       X_train_face_fold = X_train_face[train_fold_index]
       X_train_iris_fold = X_train_iris[train_fold_index]
       y_train_fold = y_train_data[train_fold_index]
       # Get the validation data
       X_val_face_fold = X_train_face[val_fold_index]
       X_val_iris_fold = X_train_iris[val_fold_index]
       y_val_fold = y_train_data[val_fold_index]
       print(X_train_face_fold.shape)
       print(X_train_iris_fold.shape)
       print(y_val_fold.shape)
        # 원화인 코딩
       y_train_fold = to_categorical(y_train_fold, num_classes=64)
        y_val_fc d = to_categorical(y_val_fold, num_classes=64)
```

모델

- Pre-trained 모델인 VGG19와 ResNet50V2
 네트워크로 학습.
- 비교적 데이터의 크기가 작은 얼굴은 VGG19를, 홍채는 ResNet50V2로 학습함.
- 오버피팅을 방지해주기 위해 L2 kernel_regularizer를 적용함.

```
def build_model():
    learning_rate = 0.0001
   METRICS = [
      tf.keras.metrics.CategoricalAccuracy(name='accuracy')
    # A=face / B=iris
    inputA = Input(shape=X_face[0].shape, name='face_input')
    inputB = Input(shape=X_iris[0].shape, name='iris_input')
    # base model
    base_modelA = VGG16(include_top=False, input_tensor=inputA)
    for layer in base_modelA.layers:
        laver.trainable=False
    base_modelB = ResNet50V2(include_top=False, input_tensor=inputB)
    for layer in base modelB. layers[:44]:
        layer.trainable=False
    # Face
    x = base_modelA.output
    x = Flatten()(x)
    x = Dense(256, activation='relu', kernel_regularizer='12')(x)
    x = Dense(128, activation='relu', kernel_regularizer='l2', name='face_output')(x)
    x = Model(inputA, x)
    # Iris
    y = base_modelB.output
    y = MaxPooling2D(pool_size=(2,2))(y)
    y = Flatten()(y)
    y = Dense(512, activation='relu', kernel_regularizer='12')(y)
    v = Dropout(0.5)(v)
    y = Dense(256, activation='relu', kernel_regularizer='12')(y)
    y = Dense(128, activation='relu', kernel_regularizer='12', name='iris_output')(y)
   y = Model(inputB, y)
    # Concatenate Face NN and Iris NN
    result = concatenate([x.output, y.output])
    # Dense Tayer
    #z = Dense(64, activation='relu', kernel_regularizer='12')(result)
   z = Dense(64, activation='softmax')(result) # 648
    model = Model(inputs=[inputA, inputB], outputs=z)
    model.compile(loss='categorical_crossentropy',
                  optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), metrics=METRICS)
    return model
```

Training and Validation Loss & Accuracy

예측 결과 확인

• Test set으로 분리한 데이터의 일부의 실제 label과 예측 label을 확인함.

Accuracy, Precision, Recall, F1 score

- Multi-class model임을 고려하여 평가지표들을 계산함.
- 각 label마다의 confusion matrix TP, FN, FP, TN의 평균인 Macro Average를 계산함.

<pre>from sklearn.metrics import classification_report print(classification_report(y_test_data,preds, zero_division=1))</pre>							
	precision	recall	f1-score	support			
0	1.00	1.00	1.00	4			
1	1.00	1.00	1.00	4			
2	1.00	1.00	1.00	4			
3	1.00	1.00	1.00	4			
4	1.00	1.00	1.00	4			
5	1.00	1.00	1.00	4			
6	1.00	1.00	1.00	4			
7	1.00	1.00	1.00	4			

	Precision	Recall	F1-score	
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	256 256 256

Test 예측 결과

	Image	Answer		
0	0	27		
11	1	31		
22	2	22		
33	3	57		
44	4	54		
54	59	39		
56	60	38		
57	61	23		
58	62	51		
59	63	44		
64 rows × 2 columns				

정리

- 평소 Sequential API 모델만 구현해왔는데 pre-trained 모델과 두 개의 인풋을 처리하기 위해 Functional API로 구현해볼 수 있어서 좋았다.
- 모델 학습 시 batch_size를 조절하면 학습이 제대로 되지 않았다는 점이 아쉽다.
- 앞선 과제에서 CNN 아키텍쳐를 이용해 왔는데, CNN에서는 모델의 성능이 제대로 나오지 않았던 것이 아쉽다.

