21 08 2004

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

> REC'D 2 9 SEP 2004 **WIPO** PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

03019619.0

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

.		
) V		
	·	
	·	
•		

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.: 03019619.0

Demande no:

Anmeldetag:

Date of filing: 04.09.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Bayer CropScience S.A. 55, avenue René Cassin 69009 Lyon FRANCE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.

Si aucun titre n'est indiqué se referer à la description.)

Pesticides

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C07D401/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

·
[

Bayer CropScience SA

BCS 03-1025

Dr.RI/pp

Description

Pesticides

5

10

30

The invention relates to novel 5-substituted-alkylaminopyrazole derivatives, processes for their preparation, to compositions thereof, and to their use for the control of pests (including arthropods and helminths).

The control of insects, arachnids and helminths with 1-arylpyrazole compounds has been described in, for example, patent publication numbers WO 98/28279, WO 98/24769, WO 99/62886 and U.S. 5,629,335.

However, since modern pesticides must meet a wide range of demands, for example regarding level, duration and spectrum of action, use spectrum, toxicity, combination with other active substances, combination with formulation auxiliaries or synthesis, and since the occurrence of resistances is possible, the development of such substances can never be regarded as concluded, and there is constantly a high demand for novel compounds which are advantageous over the known compounds, at least as far as some aspects are concerned.

It is an object of the present invention to provide new pesticides which may be used in domestic companion animals.

25 It is advantageous to apply pesticides to animals in oral form so as to prevent the possible contamination of humans or the surrounding environment.

Another object of the invention is to provide new pesticides which may be applied to animals in oral form and which are substantially non-emetic.

Another object of the invention is to provide new pesticides which may be used in lower dose than existing pesticides.

Another object of the invention is to provide new pesticides which are safer to the user and the environment.

Another object of the invention is to provide new pesticides which maintain a high level of oral control of flea and tick pests for a longer time period and consequently require less frequent dosing.

5 These objects are met in whole or in part by the present invention.

The compounds of the invention have improved pesticidal properties in various aspects, specifically with regard to the control of parasites in animals by oral administration. When administered as a single oral dose to animals (particularly dogs and cats) the compounds of the invention maintain a high level of control of flea and tick pests for a longer time period than prior art compounds.

The present invention provides a compound which is a 5-substitutedalkylaminopyrazole derivative of formula (I):

wherein:

10

15

25

 R^1 is CSNH₂ or C(=N-Z)-S(O)_r-Q;

20 W is C-halogen or N;

R² is hydrogen or Cl;

R³ is CF₃, OCF₃ or SF₅;

Q is (C₁-C₆)-alkyl or -CH₂R⁷;

Z is H, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -alkynyl, $-(CH_2)_qR^7$, COR^8 , $CO_2-(C_1-C_6)$ -alkyl, $S(O)_pR^8$, $CO_2-CH_2R^7$, $CO_2-(C_3-C_6)$ -alkenyl or $CO_2-(C_3-C_6)$ -alkynyl;

R⁴ is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₆)-alkyl, CO₂-(C₃-C₆)-alkenyl, CO₂-(C₃-C₆)-alkynyl, -CO₂-(CH₂)_q-R⁷, -CH₂R⁷, -CH₂R⁹, OR⁷, OR⁸, COCO₂R¹⁰ or COCONR¹⁰R¹¹; or CO₂-(C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy and (C₁-C₃)-alkylthio; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₆)-alkyl; A is (C₁-C₆)-alkylene or (C₁-C₆)-haloalkylene;

R⁵ is (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₃-C₆)-cycloalkyl or – (CH₂)_qR⁷; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₆)-alkyl; X is F or Cl;

15 R⁶ is F, Cl or Br;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, CO₂-(C₁-C₆)-alkyl, COR⁸, NR¹²R¹³ and OH; R⁸ is (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

- R⁹ is a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S, unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)_pR⁸ and OH;
- 25 R¹⁰ and R¹¹ are each independently H or R⁵; or the radical NR¹⁰R¹¹ forms a five- to seven-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl and CO₂-(C₁-C₆)-alkyl;
 - R^{12} and R^{13} are each independently H or (C_1 - C_6)-alkyl; m, n, p and r are each independently zero, one or two; and

q is zero or one;

10

15

25

30

or a pesticidally acceptable salt thereof.

The invention also encompasses any stereoisomer, enantiomer, geometric isomer or tautomer, and mixtures of the compounds of formula (I).

By the term "pesticidally acceptable salts" is meant salts the anions or cations of which are known and accepted in the art for the formation of salts for pesticidal use. Suitable acid addition salts include salts with inorganic acids, for example hydrochlorides, sulphates, phosphates and nitrates and salts with organic acids for example acetic acid. In formula (I) when m is 0 the term salts is understood also to include sulfonium salts, for example alkyl or benzyl sulfonium halide salts such as the methyl sulfonium chloride salts.

In the present specification, including the accompanying claims, the aforementioned substituents have the following meanings:

Halogen atom means fluorine, chlorine, bromine or iodine.

The term "halo" before the name of a radical means that this radical is partially or completely halogenated, that is to say, substituted by F, Cl, Br, or I, in any combination, preferably by F or Cl.

20 Alkyl groups and portions thereof (unless otherwise defined) may be straight- or branched-chain.

The expression "(C₁-C₆)-alkyl" is to be understood as meaning an unbranched or branched hydrocarbon radical having 1, 2, 3, 4, 5 or 6 carbon atoms, such as, for example a methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl radical.

Alkyl radicals and also in composite groups, unless otherwise defined, preferably have 1 to 4 carbon atoms.

"(C₁-C₆)Haloalkyl" means an alkyl group mentioned under the expression "(C₁-C₆)alkyl" in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms, such as monohaloalkyl, perhaloalkyl, CF₃, CHF₂, CH₂F, CHFCH₃, CF₃CH₂, CHF₂CF₂, CH₂FCHCl, CH₂Cl, CCl₃, CHCl₂ or CH₂CH₂Cl.

The expression "(C₁-C₆)-alkylene" is to be understood as meaning an unbranched or branched chain alkanediyl group having from 1 to 6 carbon atoms, according to the IUPAC Nomenclature of Organic Chemistry 1979, for example -CH₂-, -CH₂CH₂-, -CH₂CH₂- or -CH₂CH(CH₃)-.

- The expression "(C₁-C₆)-haloalkylene" is to be understood to mean an alkylene group mentioned under the expression "(C₁-C₆)-alkylene", in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms.
- "(C₁-C₆)Alkoxy" means an alkoxy group whose carbon chain has the meaning given under the expression "(C₁-C₆)alkyl". "Haloalkoxy" is, for example, OCF₃, OCHF₂, OCH₂F, CF₃CF₂O, OCH₂CF₃ or OCH₂CH₂CI.
 - "(C₂-C₆)Alkenyl" means an unbranched or branched non-cyclic carbon chain having a number of carbon atoms which corresponds to this stated range and which contains at least one double bond which can be located in any position of the respective unsaturated radical. "(C₂-C₆)Alkenyl" accordingly denotes, for example, the vinyl, allyl, 2-methyl-2-propenyl, 2-butenyl, pentenyl, 2-methylpentenyl or the hexenyl group.

15

20

- "(C₂-C₆)Alkynyl" means an unbranched or branched non-cyclic carbon chain having a number of carbon atoms which corresponds to this stated range and which contains one triple bond which can be located in any position of the respective unsaturated radical. "(C₂-C₆)Alkynyl" accordingly denotes, for example, the propargyl, 1-methyl-2-propynyl, 2-butynyl or 3-butynyl group.

 Cycloalkyl groups preferably have from three to seven carbon atoms in the ring and are optionally substituted by halogen or alkyl.
- In compounds of formula (I) the following examples of radicals are provided:
 An example of alkyl substituted by cycloalkyl is cyclopropylmethyl;
 an example of alkyl substituted by alkoxy is methoxymethyl (CH₃OCH₂-); and
 an example of alkyl substituted by alkylthio is methylthiomethyl (CH₃SCH₂-).
 A heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the
 ring selected from the group consisting of N, O and S, preferably pyridyl, pyrimidinyl,
 pyridazinyl, pyrazinyl, triazinyl, thiazolyl, thiadiazolyl, oxazolyl, isoxazolyl,
 furyl, pyrrolyl, pyrazolyl, imidazolyl or triazolyl.

The term pests means arthropod pests (including insects and arachnids), and helminths (including nematodes). The term parasites embraces all pests that live in or on animals.

In the following preferred definitions it is generally to be understood that where symbols are not specifically defined they are to be as previously defined in the description.

Preferably R¹ is CSNH₂ or C(=N-Z)-S-Q, wherein Q is (C₁-C₃)-alkyl and Z is H, (C₁-C₃)-alkyl, -(CH₂)_qR⁷, COR⁸, CO₂-(C₁-C₃)-alkyl, S(O)_pR⁸, CO₂-CH₂R⁷, CO₂-(C₃-C₆)-alkenyl or CO₂-(C₃-C₆)-alkynyl, in which each R⁷ is independently phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, CN and NO₂, and each R⁸ is independently (C₁-C₃)-alkyl.

15 More preferably R^1 is CSNH₂ or C(=N-Z)-S-Q, wherein Z is H and Q is (C₁-C₃)-alkyl (most preferably R^1 is CSNH₂).

Preferably W is C-Cl or N (more preferably W is C-Cl).

20 Preferably R² is CI.

Preferably R³ is CF₃ or OCF₃ (more preferably R³ is CF₃).

Preferably R⁴ is (C₂-C₄)-alkenyl, (C₂-C₄)-haloalkenyl, (C₂-C₄)-alkynyl, (C₂-C₂-C₄)-haloalkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₃)-alkyl, CO₂-(C₃-C₄)-alkenyl, CO₂-(C₃-C₄)-alkynyl, -CO₂-(CH₂)_q-R⁷, -CH₂R⁷, OR⁷, OR⁸, COCO₂R¹⁰ or COCONR¹⁰R¹¹; or CO₂-(C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy and (C₁-C₃)-alkylthio; or (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl, wherein each R⁷ is independently phenyl unsubstituted or substituted by one or more radicals selected from the group

consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂ and S(O)_pR⁸, each R⁸ is independently (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl, and R¹⁰ and R¹¹ are independently H or (C₁-C₃)-alkyl.

More preferably R⁴ is CO₂-(C₁-C₃)-alkyl, CO₂-(C₃-C₄)-alkenyl, CO₂-(C₃-C₄)-alkynyl or -CO₂-(CH₂)_q-R⁷, wherein R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl and (C₁-C₃)-alkoxy; or (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl.

10 Most preferably R^4 is CO_2 -(C_1 - C_3)-alkyl or (C_1 - C_3)-alkyl.

Preferably A is (C₁-C₄)-alkylene. More preferably A is -CH₂CH₂- or -CH₂CH₂-CH₂-.

Preferably R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $S(O)_pR^8$ and S

More preferably R^5 is (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl.

Preferably R^6 and X are each independently F or CI. More preferably R^6 and X are both F.

25

30

20

15

A preferred class of compounds of formula (I) are those wherein: R^1 is $CSNH_2$ or C(=N-Z)-S-Q, wherein Z is H, (C_1-C_3) -alkyl, $-(CH_2)_qR^7$, COR^8 , $CO_2-(C_1-C_3)$ -alkyl, $S(O)_pR^8$, $CO_2-CH_2R^7$, $CO_2-(C_3-C_6)$ -alkenyl or $CO_2-(C_3-C_6)$ -alkynyl, each R^7 is independently phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, CN and NO_2 , and each R^8 is independently (C_1-C_3) -alkyl; C_1-C_3 -alkyl; C_1-C_3 -alkyl; C_1-C_3 -alkyl;

```
R<sup>2</sup> is CI:
                 R<sup>3</sup> is CF<sub>3</sub> or OCF<sub>3</sub>:
                  Q is (C<sub>1</sub>-C<sub>3</sub>)-alkyl;
                 R<sup>4</sup> is (C<sub>2</sub>-C<sub>4</sub>)-alkenyl, (C<sub>2</sub>-C<sub>4</sub>)-haloalkenyl, (C<sub>2</sub>-C<sub>4</sub>)-alkynyl, (C<sub>2</sub>-C<sub>4</sub>)-haloalkynyl, (C<sub>3</sub>-
                 C<sub>7</sub>)-cycloalkyl, (C<sub>3</sub>-C<sub>7</sub>)-cycloalkyl-(C<sub>1</sub>-C<sub>3</sub>)-alkyl, CO<sub>2</sub>-(C<sub>3</sub>-C<sub>4</sub>)-alkenyl, CO<sub>2</sub>-(C<sub>3</sub>-C<sub>4</sub>
                  C_4)-alkynyl, -CO_2-(CH_2)_0-R^7, -CH_2R^7, OR^7, OR^8, COCO_2R^{10} or COCONR^{10}R^{11}; or
                  CO<sub>2</sub>-(C<sub>1</sub>-C<sub>3</sub>)-alkyl unsubstituted or substituted by one or more radicals selected from
                  the group consisting of halogen, (C<sub>1</sub>-C<sub>3</sub>)-alkoxy and (C<sub>1</sub>-C<sub>3</sub>)-alkylthio; or (C<sub>1</sub>-C<sub>3</sub>)-alkyl
                   unsubstituted or substituted by one or more radicals selected from the group
                   consisting of halogen, (C<sub>1</sub>-C<sub>3</sub>)-alkoxy, (C<sub>1</sub>-C<sub>3</sub>)-haloalkoxy, (C<sub>3</sub>-C<sub>7</sub>)-cycloalkyl, S(O)<sub>p</sub>R<sup>8</sup>
10
                   and CO<sub>2</sub>-(C<sub>1</sub>-C<sub>3</sub>)-alkyl, wherein each R<sup>7</sup> is phenyl unsubstituted or substituted by one
                   or more radicals selected from the group consisting of halogen, (C<sub>1</sub>-C<sub>3</sub>)-alkyl, (C<sub>1</sub>-
                   C<sub>3</sub>)-haloalkyl, (C<sub>1</sub>-C<sub>3</sub>)-alkoxy, (C<sub>1</sub>-C<sub>3</sub>)-haloalkoxy, CN, NO<sub>2</sub> and S(O)<sub>D</sub>R<sup>8</sup>, and each
                   R^8 is (C_1-C_3)-alkyl or (C_1-C_3)-haloalkyl;
                   A is (C_1-C_4)-alkylene or (C_1-C_4)-haloalkylene;
15
                   R^5 is (C_3-C_6)-cycloalkyl or -(CH_2)_aR^7; or (C_1-C_3)-alkyl unsubstituted or substituted by
                    one or more radicals selected from the group consisting of halogen, (C<sub>1</sub>-C<sub>3</sub>)-alkoxy,
                    (C<sub>1</sub>-C<sub>3</sub>)-haloalkoxy, (C<sub>3</sub>-C<sub>6</sub>)-cycloalkyl, S(O)<sub>0</sub>R<sup>8</sup> and CO<sub>2</sub>-(C<sub>1</sub>-C<sub>3</sub>)-alkyl, wherein R<sup>7</sup> is
                     phenyl unsubstituted or substituted by one or more radicals selected from the group
                    consisting of halogen, (C<sub>1</sub>-C<sub>3</sub>)-alkyl, (C<sub>1</sub>-C<sub>3</sub>)-haloalkyl, (C<sub>1</sub>-C<sub>3</sub>)-alkoxy, (C<sub>1</sub>-C<sub>3</sub>)-
 20
                    haloalkoxy, CN, NO<sub>2</sub> and S(O)_pR<sup>8</sup>, and R<sup>8</sup> is (C<sub>1</sub>-C<sub>3</sub>)-alkyl or (C<sub>1</sub>-C<sub>3</sub>)-haloalkyl;
                     X is F or Cl:
                     R<sup>6</sup> is F or Cl:
                     R<sup>10</sup> and R<sup>11</sup> are independently H or (C<sub>1</sub>-C<sub>3</sub>)-alkyl;
                     m, n and p are each independently zero, one or two; and
 25
                      q is zero or one.
                      A further preferred class of compounds of formula (I) are those wherein:
                      R<sup>1</sup> is CSNH<sub>2</sub> or C(=NH)-S-Q;
                     W is C-CI;
  30
                      R<sup>2</sup> is CI:
                      R<sup>3</sup> is CF<sub>3</sub> or OCF<sub>3</sub> (more preferably CF<sub>3</sub>);
```

Q is (C₁-C₃)-alkyl;

 R^4 is (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_3-C_7) -cycloalkyl, CO_2 - (C_1-C_3) -alkyl, CO_2 - (C_3-C_4) -alkenyl, CO_2 - (C_3-C_4) -alkynyl or $-CO_2$ - $(CH_2)_q$ - R^7 ; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen,

5 (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl;

A is (C_1-C_4) -alkylene or (C_1-C_4) -haloalkylene;

 R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy,

10 (C₁-C₃)-haloalkoxy, (C₃-C₆)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl; X is F or Cl;

R⁶ is F or Cl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-

haloalkoxy, CN, NO₂, S(O)_pR⁸, CO₂-(C₁-C₃)-alkyl, COR⁸, NR¹²R¹³ and OH; R⁸ is (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl;

 R^{12} and R^{13} are each independently H or (C₁-C₃)-alkyl; m, n and p are each independently zero, one or two; and q is zero or one.

20

A further preferred class of compounds of formula (I) are those wherein:

R¹ is CSNH₂ or C(=NH)-S-Q;

W is C-CI;

R² is CI:

25 R³ is CF₃ or OCF₃ (more preferably CF₃);

Q is (C₁-C₃)-alkyl;

 R^4 is CO_2 -(C_1 - C_3)-alkyl, CO_2 -(C_3 - C_4)-alkenyl, CO_2 -(C_3 - C_4)-alkynyl or - CO_2 -(CH_2)_q- R^7 ; or (C_1 - C_3)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1 - C_3)-alkoxy, $S(O)_pR^8$ and CO_2 -(C_1 - C_3)-alkyl;

30 A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $S(C_2-(C_1-C_3)$ -alkyl; $S(C_3-C_6)$ -cycloalkyl, $S(C_3-C_6)$ -cycloalkyl, $S(C_3-C_6)$ -alkyl; $S(C_3-C_6)$ -alkyl;

5 R⁶ is F or Cl:

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkyl, (C_1-C_3) -alkyl, (C_1-C_3) -alkyl, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl;

10 R¹² and R¹³ are each independently H or (C₁-C₃)-alkyl; m, n and p are each independently zero, one or two; and q is zero or one.

A further preferred class of compounds of formula (I) are those wherein:

15 R¹ is CSNH₂ or C(=NH)-S-Q;

W is C-Cl:

R² is CI:

R³ is CF₃ or OCF₃ (more preferably CF₃);

Q is (C₁-C₃)-alkyl;

R⁴ is (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₃-C₇)-cycloalkyl, CO₂-(C₁-C₃)-alkyl, CO₂-(C₃-C₄)-alkenyl, CO₂-(C₃-C₄)-alkynyl or -CO₂-(CH₂)_q-R⁷; or (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl;

25 A is (C₁-C₄)-alkylene;

 R^5 is (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl;

X is F or Cl;

R⁶ is F or Cl;

R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the
group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)haloalkoxy, CN, NO₂, S(O)_pR⁸, CO₂-(C₁-C₃)-alkyl, COR⁸, NR¹²R¹³ and OH;
R⁸ is (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl;

```
R^{12} and R^{13} are each independently H or (C<sub>1</sub>-C<sub>3</sub>)-alkyl; m, n and p are each independently zero, one or two; and q is zero or one.
```

5 A further preferred class of compounds of formula (I) are those wherein:

 R^1 is CSNH₂ or C(=NH)-S-Q;

W is C-CI:

R² is Cl;

R³ is CF₃ or OCF₃ (more preferably CF₃);

10 Q is (C₁-C₃)-alkyl;

 R^4 is CO_2 -(C_1 - C_3)-alkyl, CO_2 -(C_3 - C_4)-alkenyl, CO_2 -(C_3 - C_4)-alkynyl or - CO_2 -(CH_2)_q- R^7 ; or (C_1 - C_3)-alkyl;

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $S(C_2-C_6)$ -alkyl;

X is F or Cl;

R⁶ is F or CI:

R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂ and S(O)_pR⁸;

 R^8 is (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl;

m, n and p are each independently zero, one or two; and q is zero or one.

25

15

A further preferred class of compounds of formula (I) are those wherein:

R¹ is CSNH₂;

W is C-CI;

R² is Cl;

30 R³ is CF₃ or OCF₃ (more preferably CF₃);

 R^4 is (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_3-C_7) -cycloalkyl or CO_2 - (C_1-C_3) -alkyl, CO_2 - (C_3-C_4) -alkenyl, CO_2 - (C_3-C_4) -alkynyl or $-CO_2$ - $(CH_2)_q$ - R^7 ; or (C_1-C_3) -alkyl

unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_2) -alkoxy, (C_1-C_2) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$ and $CO_2-(C_1-C_2)$ -alkyl;

A is (C_1-C_4) -alkylene;

5 \mathbb{R}^5 is (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl;

X is F or Cl;

R⁶ is F or Cl:

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₂)-alkyl, (C₁-C₂)-haloalkyl, (C₁-C₂)-alkoxy, CN and

10 NO₂:

 R^8 is (C₁-C₂)-alkyl or (C₁-C₂)-haloalkyl; m, n and p are each independently zero, one or two; and q is zero or one.

15 A further preferred class of compounds of formula (I) are those wherein:

R1 is CSNH2;

W is C-CI;

R² is Cl:

R³ is CF₃:

- R⁴ is CO₂-(C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy and (C₁-C₃)-alkylthio; or CO₂-(C₃-C₄)-alkenyl, CO₂-(C₃-C₄)-alkynyl or -CO₂-(CH₂)_q-R⁷; or (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, methoxy, ethoxy and methylthio;
- 25 A is $-CH_2CH_2$ or $-CH_2CH_2CH_2$ -;

R⁵ is (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, methoxy and methylthio;

X is F:

R⁶ is F:

R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₂)-alkyl, (C₁-C₂)-alkoxy and NO₂; m and n are each independently zero, one or two; and

q is zero or one.

A further preferred class of compounds of formula (I) are those wherein:

 R^1 is C(=NH)-S-Q;

5 W is C-Cl;

R² is Cl:

R³ is CF₃;

Q is (C_1-C_3) -alkyl;

R4 is (C1-C3)-alkyl;

10 A is -CH₂CH₂- or -CH₂CH₂CH₂-;

R⁵ is (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, methoxy and methylthio;

X is F;

R⁶ is F; and

m and n are each independently zero, one or two.

The compounds of general formula (I) can be prepared by the application or adaptation of known methods (i.e. methods heretofore used or described in the chemical literature.

In the following description of processes when symbols appearing in formulae are not specifically defined, it is understood that they are "as defined above" in accordance with the first definition of each symbol in the specification.

According to a feature of the invention compounds of formula (I) wherein R¹ is CSNH₂, and R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined above, may be prepared by the reaction of the corresponding compound of formula (II):

wherein R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined above, with an alkali or alkaline earth metal hydrosulfide, such as lithium, potassium, calcium or preferably sodium hydrosulfide, in an inert solvent for example N,N-dimethylformamide, pyridine, dioxan, tetrahydrofuran, sulfolane, dimethyl sulfoxide, methanol or ethanol at a temperature from -35°C to 50°C preferably 0°C to 30°C. Optionally the hydrosulfide may be generated in situ by treatment with H₂S in the presence of an organic base, such as a metal alkoxide or trialkylamine or an inorganic base, such as an alkaline or alkaline earth metal hydroxide or a carbonate, such as sodium, potassium or ammonium carbonate. The use of a metal complexing agent, such as a crown ether, can be of benefit in accelerating the reaction. The reaction of hydrosulfide salt with the compound of formula (II) can also be conducted in a twophase water/organic solvent system using a phase transfer catalyst such as a crown ether or a tetraalkylammonium salt such as tetra-n-butylammonium bromide or benzyltrimethylammonium chloride. Organic solvents suitable for use in a two-phase system with water include benzene, toluene, dichloromethane, 1-chlorobutane and methyl tertiary-butyl ether.

5

10

15

20

25

Alternatively compounds of formula (I) may also be prepared from compounds of formula (II) by treatment with the reagent Ph₂PS₂, as described in Tet. Lett., 24 (20), 2059 (1983).

According to a further feature of the invention compounds of formula (I) wherein R^1 is $CSNH_2$, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, m and n are as defined above, may be prepared by the reaction of the corresponding compound of formula (II) as defined above with a bis(trialkylsilyl)sulfide, preferably bis(trimethylsilyl)sulfide, in the

presence of a base generally an alkali metal alkoxide such as sodium methoxide, in a solvent such as N,N-dimethylformamide, at a temperature of from 0°C to 60°C. The procedure is generally described by Lin, Ku and Shiao in Synthesis 1219 (1992).

According to a further feature of the invention compounds of formula (I) wherein R¹ is C(=NH)-S-Q, and Q, R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined above, may be prepared by the reaction of the corresponding compound of formula (I) wherein R¹ is CSNH₂ with an alkylating agent of formula (III) or (IV):

Q-L (III) $Q_3O^+BF_A^-$ (IV)

10

15

20

25

30

wherein Q is as defined above and L is a leaving group, generally halogen and preferably chlorine, bromine or iodine. The reaction is generally performed in the presence of a base, for example an alkali metal hydride such as sodium hydride, or an alkali metal alkoxide such as potassium tert-butoxide, in an inert solvent such as tetrahydrofuran at a temperature from 0 to 60°C. Alternatively an alkali metal carbonate such as potassium carbonate, or an organic base such as a trialkylamine, for example triethylamine or N,N-diisopropylethylamine may be used, in an inert solvent such as acetone, at a temperature from 0°C to the reflux temperature of the solvent. When a compound of formula (IV) such as trimethyloxonium tetrafluoroborate is used as the alkylating agent, the base is preferably an alkali metal bicarbonate such as sodium bicarbonate, the solvent is for example dichloromethane, and the temperature is from 0°C to the reflux temperature of the solvent.

According to a further feature of the present invention compounds of formula (I) wherein R¹ is C(=N-Z)-S-Q, Z is as defined above with the exclusion of H, and the other values are as defined in formula (I), may be prepared by the alkylation, acylation or sulfonylation of the corresponding compound of formula (I) wherein Z is H, with a compound of formula (V):

 $Z-L^1$ (V)

wherein Z is as defined above with the exclusion of H, and L¹ is a leaving group.

5

10

15

20

25

For alkylations, where Z is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -alkenyl C₆)-alkynyl or -(CH₂)_qR⁷, L¹ is preferably halogen, alkylsulfonyloxy or arylsulfonyloxy (more preferably chlorine, bromine, iodine, methylsulfonyloxy or ptoluenesulfonyloxy). A base is optionally present in the reaction which is generally performed in an inert solvent such as tetrahydrofuran, dioxan, acetonitrile, toluene, diethyl ether, dichloromethane; dimethylsulfoxide or N,N-dimethylformamide, at a temperature of from -30°C to 200°C, preferably at 20°C to 100°C. The base is generally an alkali metal hydroxide such as potassium hydroxide, an alkali metal hydride such as sodium hydride, an alkali metal carbonate such as potassium carbonate or sodium carbonate, an alkali metal alkoxide such as sodium methoxide. an alkaline earth metal carbonate such as calcium carbonate, or an organic base such as a tertiary amine, for example triethylamine or ethyldiisopropylamine, or pyridine, or 1,8-diazabicyclo[5.4.0]undec-7-en (DBU). For acylations, where Z is COR^8 , CO_2 -(C_1 - C_6)-alkyl, CO_2 - CH_2R^7 , CO_2 -(C_3 - C_6)-alkenyl or CO₂-(C₃-C₆)-alkynyl, (V) is preferably an acid halide where L¹ is preferably chlorine or bromine (more preferably chlorine), or an acid anhydride where L1 is R⁸-CO₂-. A base is optionally present in the reaction, which is generally performed using similar bases, solvents and temperatures as employed for the alkylations. For sulfonylations, where Z is S(O)_DR⁸, (V) is preferably a sulfonyl halide where L¹ is preferably chlorine or bromine (more preferably chlorine). A base is optionally present in the reaction, which is generally performed using similar bases, solvents and temperatures as employed for the alkylations.

Intermediate compounds of formula (II) wherein R², R³, R⁵, R⁶, W, A, X, m and n are as defined above, and R⁴ is H, may be prepared by the reaction of a compound of formula (VI):

wherein R^2 , R^3 , R^6 , W, X and n are as defined above and L^2 is a leaving group, generally halogen and preferably bromine, with a compound of formula (VII):

$$R^5-S(O)_m - A - NH_2$$
 (VII)

wherein A and m are as defined above and R⁵ is as defined above. The reaction is generally performed in the presence of a base such an alkali metal carbonate, for example potassium carbonate, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

Intermediate compounds of formula (II) wherein R², R³, R⁵, W, A, X, m and n are as defined above and R⁴ is as defined above with the exclusion of H, OR⁷ or OR⁸, may be prepared by the alkylation or acylation of a corresponding compound of formula (VIII):

wherein R^2 , R^3 , R^5 , R^6 , W, A, X, m and n are as defined above, with a compound of formula (IX):

(VIII)

15

5

10

$$R^4-L^3$$
 (IX)

wherein R4 is as defined above with the exclusion of H, OR7 or OR8, and L3 is a leaving group, generally halogen and preferably chlorine or iodine. Alkylation reactions are generally performed in the presence of a base such as sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C). Acylation reactions, where R^4 is CO_2 -(C_3 - C_6)-alkenyl, CO_2 -(C_3 - C_6)-alkynyl, $-CO_2$ -(CH_2) $_0$ - R^7 , $COCO_2R^{10}$ or COCONR¹⁰R¹¹; or CO₂-(C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C1-C3)-alkoxy and (C1-C₃)-alkylthio, and L³ is preferably chlorine, are generally performed using similar 10 bases, solvents and temperatures as employed for the alkylations.

5

15

20

25

Intermediate compounds of formula (II) wherein R2, R3, R5, R6, W, A, X, m and n are as defined above, and R4 is as defined above with the exclusion of H; may also be prepared by the reaction of a compound of formula (X):

wherein R², R³, R⁴, R⁶, W, X and n are as defined above, with a compound of formula (XI):

$$R^{5}-S(O)_{m}-A-L^{4}$$
 (XI)

wherein R⁵, A and m are as defined above and L⁴ is a leaving group, generally halogen and preferably chlorine. The reaction is generally performed in the presence of a base such sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,Ndimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

Intermediate compounds of formula (II) wherein R², R³, R⁴, R⁵, R⁶, W, A, X and n are as defined above, and m is 0, may be prepared by the reaction of a compound of formula (XII):

wherein R^2 , R^3 , R^4 , R^6 , W, A, X and n are as defined above, with a compound of formula (XIII):

5

$$R^5-L^5$$
 (XIII)

wherein R⁵ is as defined above and L⁵ is a leaving group, generally a halogen for example chlorine or an alkylsulphonyloxy group. The reaction is generally performed using an alkali metal salt, for example the sodium salt, of the compound of formula (XII), in an inert solvent such as tetrahydrofuran at a temperature from 0 to 60°C.

15 Intermediate compounds of formula (II) wherein R², R³, R⁴, R⁵, R⁶, W, A, X and n are as defined above, and m is 0, may also be prepared by the reaction of a compound of formula (XIV):

wherein R², R³, R⁴, R⁶, W, A, X and n are as defined above and L⁶ is a leaving group, generally a halogen for example chlorine or an alkylsulphonyloxy group, with a compound of formula (XV):

wherein R⁵ is as defined above. The reaction is generally performed in the presence of a base, for example an alkali metal hydride such as sodium hydride, or an alkali metal alkoxide such as potassium tert-butoxide, in an inert solvent such as tetrahydrofuran at a temperature from 0 to 60°C, or an alkali metal carbonate such as potassium carbonate, in an inert solvent such as acetone, at a temperature from 0°C to the reflux temperature of the solvent. 10

5

15

20

25

Intermediate compounds of formula (II) wherein R2, R3, R4, R5, R6, W, A and X are as defined above, and m and/or n is 1 or 2, may be prepared by oxidising a corresponding compound in which m and/or n is 0 or 1. The oxidation is generally performed using a a mild oxidising agent (to prevent destruction of the thioamide functional group) such as sodium periodate in an inert solvent for example methylene chloride at a temperature from -40°C to the reflux temperature of the solvent.

Intermediates compounds of formula (XII) wherein R2, R3, R4, R6, W, A, X and n are as defined above may be prepared by the reaction of the corresponding compound of formula (XIV) as defined above, with a compound of formula (XVI):

$$R^a$$
-C(=S)SH (XVI)

wherein R^a is (C₁-C₆)-alkyl, to give a compound of formula (XVII):

(XVII)

wherein the various symbols are as defined above. The reaction is generally performed in the presence of a base such as an alkali metal hydride for example sodium hydride, an alkali metal alkoxide such as sodium ethoxide, or triethylamine, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C. The compound of formula (XVII) is then hydrolysed to give the corresponding compound of formula (XII). The hydrolysis is generally carried out using a base such as aqueous ammonia or an alkali metal hydroxide such as sodium hydroxide, generally in the presence of a co-solvent such as an alcohol for example ethanol, at a temperature of from 0° to 100°C. Alternatively the hydrolysis may be performed in situ without isolation of (XVII).

Collections of compounds of the formula (I) which can be synthesized by the above mentioned process may also be prepared in a parallel manner, and this may be effected manually or in a semiautomated or fully automated manner. In this case, it is possible, for example, to automate the procedure of the reaction, work-up or purification of the products or of the intermediates. In total, this is to be understood as meaning a procedure as is described, for example, by S.H. DeWitt in "Annual Reports in Combinatorial Chemistry and Molecular Diversity: Automated Synthesis", Volume 1, Verlag Escom 1997, pages 69 to 77.

A series of commercially available apparatuses as are offered by, for example, Stem Corporation, Woodrolfe Road, Tollesbury, Essex, CM9 8SE, England or H+P Labortechnik GmbH, Bruckmannring 28, 85764 Oberschleißheim, Germany or Radleys, Shirehill, Saffron Walden, Essex, England, may be used for the parallel procedure of the reaction and work-up. For the parallel purification of compounds of the formula (I), or of intermediates obtained during the preparation, use may be made, inter alia, of chromatography apparatuses, for example those by ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.

30

25

10

15

20

The apparatuses mentioned lead to a modular procedure in which the individual process steps are automated, but manual operations must be performed between

the process steps. This can be prevented by employing semi-integrated or fully integrated automation systems where the automation modules in question are operated by, for example, robots. Such automation systems can be obtained, for example, from Zymark Corporation, Zymark Center, Hopkinton, MA 01748, USA.

5

10

15

20

In addition to what has been described here, compounds of the formula (I) may be prepared in part or fully by solid-phase-supported methods. For this purpose, individual intermediate steps or all intermediate steps of the synthesis or of a synthesis adapted to suit the procedure in question are bound to a synthetic resin. Solid-phase-supported synthesis methods are described extensively in the specialist literature, for example Barry-A. Bunin in "The Combinatorial Index", Academic Press, 1998.

The use of solid-phase-supported synthesis methods permits a series of protocols which are known from the literature and which, in turn, can be performed manually or in an automated manner. For example, the "tea-bag method" (Houghten, US 4,631,211; Houghten et al., Proc. Natl. Acad. Sci, 1985, 82, 5131-5135), in which products by IRORI, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA, are employed, may be semiautomated. The automation of solid-phase-supported parallel syntheses is performed successfully, for example, by apparatuses by Argonaut Technologies, Inc., 887 Industrial Road, San Carlos, CA 94070, USA or MultiSynTech GmbH, Wullener Feld 4, 58454 Witten, Germany.

25

30

The preparation of the processes described herein yields compounds of the formula (I) in the form of substance collections which are termed libraries. The present invention also relates to libraries which comprise at least two compounds of the formula (I).

Intermediates of formula (VI) wherein L² is chlorine, bromine or iodine may be prepared according to known procedures, for example as described in EP 0295117, by the diazotisation of the corresponding amine of formula (IX) wherein R⁴ is H, generally using an alkyl nitrite such as t-butyl nitrite, in the presence of a suitable halogenating agent, preferably bromoform, iodine or anhydrous cupric chloride,

optionally in the presence of a solvent such as acetonitrile or chloroform, at a temperature of from 0° to 100°C.

Intermediates of formula (VIII) (also of formula (II) wherein R⁴ is H) may be prepared according to the above process for the preparation of compounds of formula (II) by the reaction of compounds of formula (VII) with compounds of formula (VII).

Some of the intermediates of formula (VIII) are included in the definition of formula (II) and may be prepared by the above-mentioned methods, whilst other compounds of formula (VIII) are known or may be prepared by known methods.

Compounds of formula (III), (IV), (V), (VI), (VII), (IX), (X), (XI), (XIII), (XIV) and (XV) are known or may be prepared by known methods.

15 Chemical Examples

5

10

The following non-limiting Examples illustrate the preparation of the compounds of formula (I).

NMR spectra were run in deuterochloroform unless stated otherwise and chemical shifts are given in ppm.

Example 1

25

30

1-(2,6-Dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylthioethyl)amino-4-trifluoromethylthiopyrazole-3-thiocarboxamide

Bis(trimethylsilyl)sulfide (0.526 g, 2.9 mmol) and sodium methoxide (0.164 g, 2.9 mmol) were added to N,N-dimethylformamide (3 ml). The above mixture was sonicated to afford a dark blue solution. This resulting solution was added dropwise to 3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylthioethyl)amino-4-trifluoromethylthiopyrazole (0.3 g, 0.6 mmol) in N,N-dimethylformamide (4 ml), then stirred at 20°C for two hours. The reaction mixture

was poured into ether and water. The layers were separated and the organic layer was washed with water, dried (sodium sulfate), and concentrated to give a yellow solid (0.34 g). Purification by chromatography on silica gel eluting with heptane/ethyl acetate (9:1 to 4:1) gave the title compound as a yellow solid (0.273 g, Compound 1-1, 82 % yield), mp 120°C, 19F-NMR: -44.5, -63.6.

By proceeding in a similar manner the following compounds were also prepared: 1-(2,6-dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylsulfonylethyl)amino-4-trifluoromethylsulfonylpyrazole-3-thiocarboxamide (Compound 1-9), 19F-NMR: -63.7, -74.6; and 1-(2.6-dichloro-4-trifluoromethylphenyl)- 5-N-methyl-N-(2-methylsulfinylethyl)amino-

1-(2,6-dichloro-4-trifluoromethylphenyl)- 5-N-methyl-N-(2-methylsulfinylethyl)amino-4-trifluoromethylthiopyrazole-3-thiocarboxamide (Compound 1-2), 19 F: -44.6, -64.1.

Example 2

5

10

20

25

30

1-(2,6-Dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylthioethyl)amino-4trifluoromethylthiopyrazole-3-carboximidothioic acid ethyl ester

A solution of triethyloxonium tetrafluoroborate (0.04 g, 0.2 mmol) in dichloromethane was added to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylthioethyl)amino-4-trifluoromethylthiopyrazole-3-thiocarboxamide (0.1 g, 0.2 mmol) in dichloromethane at 20°C and stirred for 1 hour. The mixture was added to saturated sodium bicarbonate solution and ethyl acetate, and the organic layer dried (sodium sulfate) and evaporated to afford the title compound as a clear yellow oil (96.4 mg, Compound 8-1, 84 % yield), 19F-NMR: -45.0, -64.1.

By proceeding in a similar manner but starting from 1-(2,6-dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylsulfinylethyl)amino-4-trifluoromethylthiopyrazole-3-thiocarboxamide and trimethyloxonium tetrafluoroborate there was prepared:

1-(2,6-dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylsulfinylethyl)amino-4-trifluoromethylthiopyrazole-3-carboximidothioic acid methyl ester, as a clear oil (Compound 7-2, 85 % yield), 19F-NMR: -44.8, -64.1.

5 Example 3

10

· 15

25

30

1-(2,6-Dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylsulfonylethyl)amino-4-trifluoromethylsulfonylpyrazole-3-carboximidothioic acid methyl ester

lodomethane (71 mg, 0.5 mmol) and N,N-diisopropylethylamine (32 mg, 0.2 mmol) were added to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-5-N-methyl-N-(2-methylsulfonylethyl)amino-4-trifluoromethylsulfonylpyrazole-3-thiocarboxamide (100 mg, 0.2 mmol) in acetone at 20°C. The resulting mixture was stirred for 2 hours, and then at 39°C for 2.5 hours. A further 1 equivalent each of iodomethane and N,N-diisopropylethylamine were added, and the resulting mixture stirred at 39°C for 3.5 hours. The mixture was then evaporated and purified via chromatographic purification eluting with heptane/ethyl acetate (4:1 to 2:1) to afford the title compound as a sticky solid (40 mg, Compound 7-9, 34 % yield), 19F-NMR: -63.8, -74.6, -78.6.

The following Intermediate Examples illustrate the preparation of intermediates used in the synthesis of the above Examples.

Intermediate Example 1

1-(2,6-Dichloro-4-trifluoromethylphenyl)-3-cyano-5-(2-methylthio)ethylamino-4-trifluoromethylsulfonylpyrazole

2-(Methylthio)ethylamine (37.12 g, 0.387 mol) and potassium carbonate (54 g, 0.387 mol) were added to a solution of 5-bromo-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-trifluoromethylsulfonylpyrazole (100 g, 0.193mol) in 1,4-dioxan and N,N-dimethylformamide, and stirred at 20°C for 3.5 hours. The mixture was then added to water and ethyl acetate and the aqueous layer extracted with ethyl acetate. The combined organic phase was washed with water and brine, dried (sodium sulfate),

evaporated and chromatographed eluting with heptane/ethyl acetate (4:1) to afford the title compound as a semi solid (47.76 g, 47 % yield) which was used for the following reaction.

5 Intermediate Example 2

1-(2,6-Dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-methyl-N-(2-methylthioethyl)amino-4-trifluoromethylsulfonylpyrazole

Sodium hydride (6.5 g, 0.163 mol) was added to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-(2-methylthio)ethylamino-4-trifluoromethylsulfonylpyrazole (66 g, 0.125 mol) in tetrahydrofuran, and stirred at 40°C for 1 hour. The mixture was cooled to 35°C, methyl iodide (35 g, 0.253 mol) added, and then stirred at 40°C for 2 hours. Additional methyl iodide (17.9 g, 0.126 mol) was then added and the mixture heated at 40°C for 1 hour. It was then cooled and poured into a mixture of saturated ammonium chloride solution and ethyl acetate. The organic layer was washed with water and brine, dried (sodium sulfate),and evaporated to give an orange oil. Recrystallisation from a mixture of heptane, ethyl acetate and methanol, with cooling in the freezer, gave the title compound as a light yellow solid (36.37 g, 54 % yield), mp 142°C.

20

10

15

Intermediate Example 3

1-(2 6-Dichloro-4-trifluoromethylphenyl)

1-(2,6-Dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-methyl-N-(2-methylsulfonylethyl)amino-4-trifluoromethylsulfonylpyrazole

m-Chloroperbenzoic acid (33.6 g, 70 %, 0.136 mol) was added slowly to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-methyl-5-N-(2-methylthioethyl)amino-4-trifluoromethylsulfonylpyrazole (36 g, 0.0665 mol) in 1,2-dichloroethane, maintaining the reaction at 20°C. After 1hour the mixture was added to ethyl acetate and sodium hydroxide solution (2N) and stirred for five minutes. The organic layer was washed with water and brine, dried (sodium sulfate) and evaporated. The residue was triturated with heptane/ethyl acetate (4:1) and with

ethanol to afford the title compound as a light brown solid (34.19 g, 89 % yield), 19F-NMR: -63.7, -78.6.

By proceeding in a similar manner the following compound was also prepared:

1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-methyl-N-(2-methylsulfinylethyl)amino-4-trifluoromethylthiopyrazole, 19 F: -44.1, -63.7.

Intermediate Example 4

1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-methyl-N-(2-methylthioethyl)amino-4-trifluoromethylthiopyrazole.

2-Chloroethyl methylsulfide (1.887 g, 16.5 mmol) and potassium phosphate (9.052 g, 41.4 mmo) were added to a solution of 1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-5-N-methylamino-4-trifluoromethylthiopyrazole (6.0 g, 13.8 mmol) in acetonitrile. The mixture was heated under reflux for four hours, cooled and poured into saturated ammonium chloride solution and ethyl acetate. The organic layer was washed with water and brine, dried (sodium sulfate), and evaporated. The residue was purified by chromatography, eluting with heptane/ethyl acetate (4:1) to give the title compound as a yellow oil (5.48 g, 78 % yield), 19 F-NMR: -44.3, -63.6.

Æ:

The following preferred compounds of formula (I) shown in Tables 1 to 9 also form part of the present invention, and were or may be prepared in accordance with, or analogously to, the above-mentioned Example 1 or the above-described general methods.

In the Tables, Me means methyl, Et means ethyl, Pr means n-propyl, OMe means methoxy, Ph means phenyl, CO₂CH₂CCH means propargyloxycarbonyl and CO₂CH₂(2F Ph) means 2-fluorobenzyloxycarbonyl.

Compound numbers are given for reference purposes only.

15

20

25

Table 1: $R^1 = CSNH_2$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$, $R^4 = Me$

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp	19F-NMR
No.				°C	
1-1	CH ₂ CH ₂	MeS	CF ₃ S	120	-44.52, -63.63
1-2	CH ₂ CH ₂	MeSO	CF₃S	68	-44.57, -64.07
1-3	CH ₂ CH ₂	MeSO ₂	CF ₃ S		-44.14, -63.64
1-4	CH ₂ CH ₂	MeS	CF₃SO		-63.65, -65.73
1-5	CH ₂ CH ₂	MeSO	CF₃SO		-64.10, -65.71, -66.09
1-6	CH ₂ CH ₂	MeSO ₂	CF ₃ SO	88	-64.11, -66.00
1-7	CH ₂ CH ₂	MeS	CF ₃ SO ₂	150	-63.68, -74.65
1-8	CH₂CH₂	MeSO	CF ₃ SO ₂		-64.15, -74.96
1-9	CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		-63.70, -74.59
1-10	CH ₂ CH ₂ CH ₂	MeS	CF ₃ S		
1-11	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ S		
1-12	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ S		
1-13	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO		
1-14	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO		
1-15	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃SO		
1-16	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO ₂		
1-17	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
1-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
1-19	CH ₂ CH ₂	EtS	CF ₃ S		
1-20	CH ₂ CH ₂	EtSO	CF ₃ S		
1-21	CH ₂ CH ₂	EtSO ₂	CF ₃ S		
1-22	CH ₂ CH ₂	EtS	CF₃SO		
1-23	CH ₂ CH ₂	EtSO	CF ₃ SO		
1-24	CH ₂ CH ₂	EtSO ₂	CF₃SO		
1-25	CH ₂ CH ₂	EtS	CF ₃ SO ₂		
1-26	CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
1-27	CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp	19F-NMR
No.			•	°C	
1-28	CH ₂ CH ₂ CH ₂	EtS	CF ₃ S		
1-29	CH ₂ CH ₂ CH ₂	EtSO	CF₃S		
1-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S		
1-31	CH ₂ CH ₂ CH ₂	EtS	CF₃SO		
1-32	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO		
1-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF₃SO		
1-34	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
1-35	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
1-36	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
1-37	CH ₂ CH ₂	PrS	CF₃S		·
1-38	CH ₂ CH ₂	PrSO	CF₃S		
1-39	CH ₂ CH ₂	PrSO ₂	CF ₃ S	<u> </u>	
1-40	CH ₂ CH ₂	PrS	CF₃SO	1	
1-41	CH ₂ CH ₂	PrSO	CF₃SO		
1-42	CH ₂ CH ₂	PrSO ₂	CF₃SO		
1-43	CH ₂ CH ₂	PrS	CF ₃ SO ₂		
1-44	CH₂CH₂	PrSO	CF ₃ SO ₂		
1-45	CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
1-46	CH ₂ CH ₂ CH ₂	PrS	CF₃S		
1-47	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ S		
1-48	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ S		
1-49	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO		
1-50	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO		
1-51	CH ₂ CH ₂ CH ₂	PrSO ₂	CF₃SO		
1-52	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO ₂		
1-53	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
1-54	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
1-55	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
1-56	CH₂CH₂	CICH ₂ CH ₂ SO	CF ₃ S		

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp	19F-NMR
No.				°C	
1-57	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃S		
1-58	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃SO		
1-59	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
1-60	CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
1-61	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
1-62	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
1-63	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
1-64	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
1-65	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
1-66	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃S		
1-67	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃SO		
1-68	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
1-69	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
1-70	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
1-71	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
1-72	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
1-73	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
1-74	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
1-75	CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
1-76	CH₂CH₂	MeOCH ₂ CH ₂ S	CF ₃ SO		
1-77	CH₂CH₂	MeOCH ₂ CH ₂ SO	CF ₃ SO		
1-78	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO		
1-79	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
1-80	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
1-81	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
1-82	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃S		
1-83	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
1-84	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	L		
1-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp	19F-NMR
No.				°C	
1-86	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO		
1-87	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
1-88	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO₂		
1-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO₂		
1-90	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO₂		
1-91	CH₂CH₂	MeSCH ₂ CH ₂ S	CF₃S		
1-92	CH ₂ CH ₂	MeSCH ₂ CH ₂ SO	CF ₃ S ⁻		
1-93	CH ₂ CH ₂	MeSCH ₂ CH ₂ SO ₂	CF ₃ S		
1-94	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
1-95	CH ₂ CH ₂	MeSCH ₂ CH ₂ SO	CF ₃ SO		
1-96	CH ₂ CH ₂	MeSCH ₂ CH ₂ SO ₂	CF ₃ SO		
1-97	CH ₂ CH ₂	MeSCH₂CH₂S	CF ₃ SO ₂		·
1-98	CH ₂ CH ₂	MeSCH ₂ CH ₂ SO	CF ₃ SO ₂		
1-99	CH₂CH₂	MeSCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
1-100	CH ₂ CH ₂ CH ₂	MeSCH₂CH₂S	CF ₃ S		
1-101	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ SO	CF ₃ S		
		MeSCH ₂ CH ₂ SO ₂	<u> </u>		
1-103	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO		
		MeSCH ₂ CH ₂ SO			
		MeSCH ₂ CH ₂ SO ₂	ļ <u></u>		
L	<u> </u>	MeSCH₂CH₂S	CF ₃ SO ₂		
_		MeSCH ₂ CH ₂ SO			
1-108	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		

Table 2 $R^1 = CSNH_2$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$, $R^4 = Et$

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
2-1	CH ₂ CH ₂	MeS	CF ₃ S		
2-2	CH ₂ CH ₂	MeSO	CF ₃ S		
2-3	CH₂CH₂	MeSO ₂	CF ₃ S		
2-4	CH ₂ CH ₂	MeS .	CF₃SO		
2-5	CH ₂ CH ₂	MeSO	CF ₃ SO		
2-6	CH₂CH₂	MeSO ₂	CF₃SO		
2-7	CH ₂ CH ₂	MeS	CF ₃ SO ₂		
2-8	CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
2-9	CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
2-10	CH ₂ CH ₂ CH ₂	MeS	CF ₃ S		
2-11	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ S		
2-12	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ S		
2-13	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO		
2-14	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO		
2-15	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃SO		
2-16	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO ₂		
2-17	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
2-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
2-19	CH ₂ CH ₂	EtS	CF ₃ S		
2-20	CH ₂ CH ₂	EtSO	CF₃S		
2-21	CH ₂ CH ₂	EtSO ₂	CF ₃ S		
2-22	CH ₂ CH ₂	EtS	CF₃SO		
2-23	CH ₂ CH ₂	EtSO	CF₃SO		
2-24	CH ₂ CH ₂	EtSO ₂	CF₃SO		
2-25	CH ₂ CH ₂	EtS	CF ₃ SO ₂		
2-26	CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
2-27	CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
2-28	CH ₂ CH ₂ CH ₂	EtS	CF ₃ S		
2-29	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ S		
2-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S		
2-31	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO		
2-32	CH ₂ CH ₂ CH ₂	EtSO	CF₃SO		
2-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF₃SO		
2-34	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
2-35	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
2-36	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
2-37	CH ₂ CH ₂	PrS	CF₃S		
2-38	CH ₂ CH ₂	PrSO	CF₃S		
2-39	CH ₂ CH ₂	PrSO ₂	CF₃S		
2-40	CH ₂ CH ₂	PrS	CF₃SO		
2-41	CH ₂ CH ₂	PrSO	CF₃SO		
2-42	CH ₂ CH ₂	PrSO ₂	CF₃SO		
2-43	CH ₂ CH ₂	PrS	CF ₃ SO ₂		
2-44	CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
2-45	CH₂CH₂	PrSO ₂	CF ₃ SO ₂		
2-46	CH ₂ CH ₂ CH ₂	PrS	CF ₃ S		
2-47	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ S		
2-48	CH ₂ CH ₂ CH ₂	PrSO₂	CF ₃ S		
2-49	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO		
2-50	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO		
2-51	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO		
2-52	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO ₂		
2-53	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
2-54	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
2-55	CH₂CH₂	CICH ₂ CH ₂ S	CF₃S		
2-56	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃S		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
2-57	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃S		
2-58	CH₂CH₂	CICH ₂ CH ₂ S	CF ₃ SO		
2-59	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
2-60	CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF₃SO	<u> </u>	
2-61	CH₂CH₂	CICH ₂ CH ₂ S	CF₃SO₂		
2-62	CH₂CH₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
2-63	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃SO₂		
2-64	CH₂CH₂CH₂	CICH ₂ CH ₂ S	CF₃S		
2-65	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃S		
2-66	CH₂CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF₃S		
2-67	CH₂CH₂CH₂	CICH₂CH₂S	CF₃SO		
2-68	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
2-69	CH₂CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
2-70	CH₂CH₂CH₂	CICH ₂ CH ₂ S	CF₃SO₂		
2-71	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO₂		
2-72	CH₂CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
2-73	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃S		
2-74	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃S	†	
2-75	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃S		
2-76	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		
2-77	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO		
2-78	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
2-79	CH ₂ CH ₂	MeOCH₂CH₂S	CF ₃ SO ₂		
2-80	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
2-81	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
2-82	CH₂CH₂CH₂	MeOCH₂CH₂S	CF ₃ S		
2-83	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
2-84	CH₂CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
2-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
2-86	CH₂CH₂CH₂	MeOCH ₂ CH ₂ SO	CF₃SO		
2-87	CH₂CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
2-88	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
2-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
2-90	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
2-91	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃S		
2-92	CH₂CH₂	MeSCH ₂ CH ₂ S	CF₃SO		
2-93	CH₂CH₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		
2-94	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ S		·
2-95	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO		
2-96	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		·

Table 3 $R^1 = CSNH_2$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$, $R^4 = CO_2Me$

Cpd	Α .	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
3-1	CH₂CH₂	MeS	CF ₃ S		
3-2	CH₂CH₂	MeSO	CF₃S		
3-3	CH₂CH₂	MeSO ₂	CF ₃ S		·
3-4	CH₂CH₂	MeS	CF₃SO		
3-5	CH₂CH₂	MeSO	CF₃SO		
3-6	CH ₂ CH ₂	MeSO ₂	CF₃SO		
3-7	CH ₂ CH ₂	MeS	CF ₃ SO ₂		
3-8	CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
3-9	CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
3-10	CH ₂ CH ₂ CH ₂	MeS	CF ₃ S		
3-11	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ S		
3-12	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ S	•	
3-13	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO		

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
3-14	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ SO		
3-15	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO		
3-16	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO ₂		
3-17	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
3-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
3-19	CH₂CH₂	EtS	CF ₃ S		
3-20	CH ₂ CH ₂	EtSO	CF ₃ S		
3-21	CH ₂ CH ₂	EtSO ₂	CF ₃ S		
3-22	CH₂CH₂	EtS	CF₃SO		-
3-23	CH₂CH₂	EtSO	CF₃SO		
3-24	CH ₂ CH ₂	EtSO ₂	CF₃SO		
3-25	CH ₂ CH ₂	EtS	CF ₃ SO ₂		
3-26	CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
3-27	CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
3-28	CH ₂ CH ₂ CH ₂	EtS	CF ₃ S		
3-29	CH₂CH₂CH₂	EtSO	CF ₃ S		
3-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S		-
3-31	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO		
3-32	CH ₂ CH ₂ CH ₂	EtSO	. CF₃SO		
3-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO		
	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
3-35	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
3-36	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
3-37	<u> </u>	PrS	CF₃S		
3-38	<u> </u>	PrSO	CF₃S		
3-39	CH₂CH₂	PrSO ₂	CF₃S		
3-40		PrS	CF₃SO		
3-41	CH ₂ CH ₂	PrSO	CF₃SO		
3-42	CH ₂ CH ₂	PrSO ₂	CF₃SO		

Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
CH₂CH₂	PrS	CF ₃ SO ₂		
CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
CH₂CH₂	PrSO ₂	CF ₃ SO ₂		
CH ₂ CH ₂ CH ₂	PrS	CF₃S		
CH ₂ CH ₂ CH ₂	PrSO	CF ₃ S		
CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ S		
CH ₂ CH ₂ CH ₂	PrS	CF₃SO		
CH ₂ CH ₂ CH ₂	PrSO	CF₃SO		
CH ₂ CH ₂ CH ₂	PrSO ₂	CF₃SO		
CH ₂ CH ₂ CH ₂	PrS	CF₃SO₂		
CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃S		
CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		·
CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
CH ₂ CH ₂	CICH₂CH₂S	CF ₃ SO		
CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO	·	
CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
CH₂CH₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
	CH ₂	CH ₂ CH ₂ PrS CH ₂ CH ₂ PrSO CH ₂ CH ₂ PrSO CH ₂ CH ₂ PrS CH ₂ CH ₂ CH ₂ PrS CH ₂ CH ₂ CH ₂ PrSO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO	CH2CH2 PrS CF3SO2 CH2CH2 PrSO CF3SO2 CH2CH2 PrSO CF3SO2 CH2CH2CH2 PrSO CF3SO2 CH2CH2CH2 PrS CF3S CH2CH2CH2 PrSO CF3SO CH2CH2CH2 PrSO CF3SO2 CH2CH2CH2 PrSO CF3SO2 CH2CH2CH2 PrSO CF3SO2 CH2CH2CH2 PrSO CF3SO2 CH2CH2CH2 CICH2CH2S CF3S CH2CH2 CICH2CH2SO CF3S CH2CH2 CICH2CH2SO CF3S CH2CH2 CICH2CH2SO CF3SO CH2CH2 CICH2CH2SO CF3SO2 CH2CH2 CICH2CH2SO CF3SO2 CH2CH2 CICH2CH2SO CF3SO2 CH2CH2 CICH2CH2SO CF3SO2 CH2CH2CH2 CICH2CH2SO CF3SO2 CH2CH2CH2 CICH2CH2SO CF3SO2 CH2CH2CH2 CICH2CH2SO CF3SO	CH ₂ CH ₂ PrS CF ₃ SO ₂ CH ₂ CH ₂ PrSO CF ₃ SO ₂ CH ₂ CH ₂ PrSO ₂ CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ PrS CF ₃ S CH ₂ CH ₂ CH ₂ PrS CF ₃ S CH ₂ CH ₂ CH ₂ PrSO CF ₃ S CH ₂ CH ₂ CH ₂ PrSO CF ₃ S CH ₂ CH ₂ CH ₂ PrSO ₂ CF ₃ S CH ₂ CH ₂ CH ₂ PrSO ₂ CF ₃ S CH ₂ CH ₂ CH ₂ PrSO CF ₃ SO CH ₂ CH ₂ CH ₂ PrSO CF ₃ SO CH ₂ CH ₂ CH ₂ PrSO CF ₃ SO CH ₂ CH ₂ CH ₂ PrSO ₂ CF ₃ SO CH ₂ CH ₂ CH ₂ PrSO ₂ CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ PrSO CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ PrSO CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ PrSO ₂ CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ PrSO ₂ CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ S CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ S CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ S CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO CH ₂ CH ₂ CH ₂ CICH ₂ CH ₂ SO CF ₃ SO

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
3-72	CH₂CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
3-73	CH₂CH₂	MeOCH ₂ CH ₂ S	CF ₃ S		
3-74	CH₂CH₂	MeOCH ₂ CH ₂ SO	CF₃S		
3-75	CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF₃S	1	
3-76	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO	 	
3-77	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO		
3-78	CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
3-79	CH₂CH₂	MeOCH ₂ CH ₂ S	CF₃SO₂		
3-80	CH₂CH₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂	·	
3-81	CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO₂		
3-82	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
3-83	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃S		
3-84	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃S	1	
3-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		
3-86	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO		
3-87	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
3-88	CH₂CH₂CH₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂	<u> </u>	
3-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
3-90	CH₂CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
3-91	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ S		
3-92	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
3-93	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		
3-94	CH₂CH₂CH₂	MeSCH ₂ CH ₂ S	CF₃S		
3-95	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
3-96	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		

Table 4 $R^1 = CSNH_2$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$, $R^4 = CO_2CH_2CH_2OMe$

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
4-1	CH ₂ CH ₂	MeS	CF ₃ S		
4-2	CH ₂ CH ₂	MeSO	CF ₃ S		
4-3	CH ₂ CH ₂	MeSO ₂	CF ₃ S		
4-4	CH ₂ CH ₂	MeS	CF₃SO		
4-5	CH ₂ CH ₂	MeSO	CF ₃ SO		
4-6	CH ₂ CH ₂	MeSO ₂	CF₃SO		
4-7	CH ₂ CH ₂	MeS	CF ₃ SO ₂		
4-8	CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
4-9	CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
4-10	CH ₂ CH ₂ CH ₂	MeS	CF ₃ S		
4-11	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ S		
4-12	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃S		
4-13	CH ₂ CH ₂ CH ₂	MeS	CF₃SO		
4-14	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO		
4-15	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃SO		
4-16	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO ₂		
4-17	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
4-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
4-19	CH ₂ CH ₂	EtS	CF₃S		·
4-20	CH ₂ CH ₂	EtSO	CF₃S		
4-21	CH ₂ CH ₂	EtSO ₂	CF₃S		
4-22	CH ₂ CH ₂	EtS	CF ₃ SO		
4-23	CH ₂ CH ₂	EtSO	CF ₃ SO		
4-24	CH ₂ CH ₂	EtSO ₂	CF₃SO		
4-25	CH ₂ CH ₂	EtS	CF ₃ SO ₂		
4-26	CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
4-27	CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
4-28	CH ₂ CH ₂ CH ₂	EtS	CF ₃ S		
4-29	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ S		
4-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S	-	
4-31	CH₂CH₂CH₂	EtS	CF ₃ SO		
4-32	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO	1	
4-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO		
4-34	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
4-35	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
4-36	CH₂CH₂CH₂	EtSO ₂	CF ₃ SO ₂		
4-37	CH₂CH₂	PrS	CF₃S		
4-38	CH₂CH₂	PrSO	CF₃S		
4-39	CH₂CH₂	PrSO ₂	CF₃S		
4-40	CH ₂ CH ₂	PrS	CF ₃ SO		
4-41	CH₂CH₂	PrSO	CF₃SO		
4-42	CH₂CH₂	PrSO ₂	CF₃SO		
4-43	CH₂CH₂	PrS	CF ₃ SO ₂		
4-44	CH₂CH₂	PrSO	CF ₃ SO ₂	<u> </u>	
4-45	CH₂CH₂	PrSO ₂	CF ₃ SO ₂		
4-46	CH ₂ CH ₂ CH ₂	PrS	CF ₃ S		
4-47	CH ₂ CH ₂ CH ₂	PrSO	CF₃S		
4-48	CH ₂ CH ₂ CH ₂	PrSO ₂	CF₃S		
4-49	CH ₂ CH ₂ CH ₂	PrS	CF₃SO		
4-50	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO		
4-51	CH ₂ CH ₂ CH ₂	PrSO ₂	CF₃SO		
4-52	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO ₂		
4-53	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
4-54	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂	 	
4-55	CH₂CH₂	CICH₂CH₂S	CF ₃ S		
4-56	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
4-57	CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF₃S		
4-58	CH₂CH₂	CICH ₂ CH ₂ S	CF₃SO		
4-59	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
4-60	CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO		
4-61	CH₂CH₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
4-62	CH₂CH₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
4-63	CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
4-64	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
4-65	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
4-66	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
4-67	CH ₂ CH ₂ CH ₂	CICH₂CH₂S	CF₃SO		
4-68	CH ₂ CH ₂ CH ₂	CICH₂CH₂SO	CF₃SO		
4-69	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
4-70	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
4-71	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
4-72	CH₂CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
4-73	CH ₂ CH ₂	MeOCH₂CH₂S	CF ₃ S		·
4-74	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
4-75	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
4-76	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		
4-77	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO		
4-78	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO		
4-79	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
4-80	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
4-81	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
4-82	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
4-83	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
4-84	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
4-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
4-86	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO	-	
4-87	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
4-88	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO₂		
4-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
4-90	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
4-91	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃S		
4-92	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
4-93	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		
4-94	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ S		
4-95	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
4-96	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		

Table 5 $R^1 = CSNH_2$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$, $R^4 = CO_2CH_2CH_2SMe$

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
5-1	CH ₂ CH ₂	MeS	CF ₃ S		
5-2	CH ₂ CH ₂	MeSO .	CF₃S		
5-3	CH ₂ CH ₂	MeSO ₂	CF₃S		
5-4	CH ₂ CH ₂	MeS	CF₃SO		
5-5	CH ₂ CH ₂	MeSO	CF₃SO		
5-6	CH ₂ CH ₂	MeSO ₂	CF₃SO		
5-7	CH ₂ CH ₂	MeS	CF ₃ SO ₂		
5-8	CH ₂ CH ₂	MeSO	CF₃SO₂		
5-9	CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
5-10	CH ₂ CH ₂ CH ₂	MeS	CF ₃ S		
5-11	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ S		
5-12	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ S		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
5-13	CH ₂ CH ₂ CH ₂	MeS	CF₃SO		
5-14	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO		
5-15	CH₂CH₂CH₂	MeSO ₂	CF₃SO		
5-16	CH₂CH₂CH₂	MeS	CF₃SO₂		
5-17	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO₂		
5-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
5-19	CH ₂ CH ₂	EtS	CF₃S		
5-20	CH ₂ CH ₂	EtSO	CF₃S		
5-21	CH₂CH₂	EtSO ₂	CF₃S		
5-22	CH₂CH₂	EtS	CF₃SO		
5-23	CH ₂ CH ₂	EtSO	CF₃SO		
5-24	CH ₂ CH ₂	EtSO ₂	CF₃SO		
5-25	CH ₂ CH ₂	EtS	CF ₃ SO ₂		
5-26	CH₂CH₂	EtSO	CF ₃ SO ₂		
5-27	CH₂CH₂	EtSO ₂	CF ₃ SO ₂		
5-28	CH ₂ CH ₂ CH ₂	EtS	CF ₃ S		
5-29	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ S		
5-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S		
5-31	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO		
5-32	CH ₂ CH ₂ CH ₂	EtSO	CF₃SO		
5-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO		
5-34	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
5-35	CH₂CH₂CH₂	EtSO	CF ₃ SO ₂		
5-36	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
5-37	CH₂CH₂	PrS	CF ₃ S		
5-38	CH₂CH₂	PrSO	CF ₃ S		
5-39	CH ₂ CH ₂	PrSO ₂	CF ₃ S		
5-40	CH ₂ CH ₂	PrS	CF ₃ SO		
5-41	CH ₂ CH ₂	PrSO	CF ₃ SO		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
5-42	CH ₂ CH ₂	PrSO ₂	CF ₃ SO		
5-43	CH ₂ CH ₂	PrS	CF ₃ SO ₂		
5-44	CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
5-45	CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
5-46	CH ₂ CH ₂ CH ₂	PrS	CF ₃ S		
5-47	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ S		
5-48	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ S		
5-49	CH ₂ CH ₂ CH ₂	PrS	CF₃SO		
5-50	CH ₂ CH ₂ CH ₂	PrSO	CF₃SO		
5-51	CH ₂ CH ₂ CH ₂	PrSO ₂	CF₃SO		
5-52	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO ₂	<u> </u>	
5-53	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
5-54	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
5-55	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃S		
5-56	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
5-57	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
5-58	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃SO		
5-59	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO		
5-60	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO		
5-61	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
5-62	CH ₂ CH ₂	CICH₂CH₂SO	CF ₃ SO ₂		
5-63	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
5-64	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
5-65	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
5-66	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
5-67	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃SO		
5-68	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
5-69	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
5-70	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
5-71	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO₂		
5-72	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
5-73	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃S		
5-74	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
5-75	CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF₃S		
5-76	CH₂CH₂	MeOCH ₂ CH ₂ S	CF₃SO		
5-77	CH₂CH₂	MeOCH ₂ CH ₂ SO	CF₃SO		
5-78	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
5-79	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
5-80	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
5-81	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
5-82	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
5-83	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
5-84	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
5-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO		
5-86	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO		
5-87	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO	•	
5-88	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
5-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
5-90	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
5-91	CH₂CH₂	MeSCH ₂ CH ₂ S	CF ₃ S		
5-92	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
5-93	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		
5-94	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃S		
5-95	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
5-96	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		

Table 6 $R^1 = CSNH_2$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$, $R^4 = CO_2CH_2CH_2CI$

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.	}				
6-1	CH ₂ CH ₂	MeS	CF ₃ S		
6-2	CH₂CH₂	MeSO	CF ₃ S		
6-3	CH₂CH₂	MeSO ₂	CF₃S		
6-4	CH ₂ CH ₂	MeS	CF₃SO		
6-5	CH ₂ CH ₂	MeSO	CF₃SO		
6-6	CH ₂ CH ₂	MeSO ₂	CF₃SO		
6-7	CH ₂ CH ₂	MeS	CF₃SO₂		
6-8	CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
6-9	CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
6-10	CH ₂ CH ₂ CH ₂	MeS	CF₃S		
6-11	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ S	1	
6-12	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃S		
6-13	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO		
6-14	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO		
6-15	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃SO		
6-16	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO ₂		
6-17	CH ₂ CH ₂ CH ₂	MeSO	. CF ₃ SO ₂		
6-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
6-19	CH ₂ CH ₂	EtS	CF₃S		
6-20	CH₂CH₂	EtSO	CF₃S		
6-21	CH₂CH₂	EtSO ₂	CF₃S		
6-22	CH₂CH₂	EtS	CF₃SO		
6-23	CH₂CH₂	EtSO	CF₃SO		
6-24	CH₂CH₂	EtSO ₂	CF₃SO		
6-25	CH₂CH₂	EtS	CF ₃ SO ₂		
6-26	CH ₂ CH ₂	EtSO	CF ₃ SO ₂	<u> </u>	
6-27	CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂	1	

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
6-28	CH ₂ CH ₂ CH ₂	EtS	CF₃S		
6-29	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ S		
6-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S		
6-31	CH ₂ CH ₂ CH ₂	EtS	CF₃SO		
6-32	CH ₂ CH ₂ CH ₂	EtSO	CF₃SO		
6-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO		1
6-34	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
6-35	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
6-36	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
6-37	CH ₂ CH ₂	PrS	CF₃S		
6-38	CH ₂ CH ₂	PrSO	CF ₃ S		
6-39	CH ₂ CH ₂	PrSO ₂	CF₃S		
6-40	CH ₂ CH ₂	PrS	CF₃SO		
6-41	CH ₂ CH ₂	PrSO	CF ₃ SO		
6-42	CH ₂ CH ₂	PrSO ₂	CF₃SO		
6-43	CH ₂ CH ₂	PrS	CF ₃ SO ₂		
6-44	CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
6-45	CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
6-46	CH ₂ CH ₂ CH ₂	PrS	CF ₃ S		
6-47	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ S		
6-48	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ S		
6-49	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO		
6-50	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO		
6-51	CH ₂ CH ₂ CH ₂	PrSO ₂	CF₃SO		
6-52	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO ₂		
6-53	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
6-54	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
6-55	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
6-56	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
6-57	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
6-58	CH₂CH₂	CICH ₂ CH ₂ S	CF₃SO		
6-59	CH₂CH₂	CICH ₂ CH ₂ SO	CF ₃ SO		
6-60	CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO		
6-61	CH₂CH₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
6-62	CH₂CH₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
6-63	CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
6-64	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃S		
6-65	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
6-66	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃S		
6-67	CH₂CH₂CH₂	CICH ₂ CH ₂ S	CF₃SO		
6-68	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
6-69	CH₂CH₂CH₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO		
6-70	CH₂CH₂CH₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
6-71	CH₂CH₂CH₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
6-72	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
6-73	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
6-74	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
6-75	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
6-76	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO		
6-77	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO		
6-78	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
6-79	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
6-80	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
6-81	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
6-82	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
6-83	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
6-84	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	2CF ₃ S		
6-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.			•		
6-86	CH₂CH₂CH₂	MeOCH ₂ CH ₂ SO	CF₃SO		
6-87	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO		
6-88	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO₂		
6-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
6-90	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
6-91	CH₂CH₂	MeSCH ₂ CH ₂ S	CF₃S		
6-92	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO		
6-93	CH₂CH₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		
6-94	CH₂CH₂CH₂	MeSCH ₂ CH ₂ S	CF ₃ S		
6-95	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO		
6-96	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		

Table 7 $R^1 = C(=NH)$ -S-Me, W = C-Cl, $R^2 = Cl$, $R^3 = CF_3$, $R^6 = X = F$, $R^4 = Me$

Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
CH ₂ CH ₂	MeS	CF ₃ S		
CH ₂ CH ₂	MeSO	CF₃S		-44.78, -64.08
CH ₂ CH ₂	MeSO ₂	CF₃S		-44.37, -63.67
CH ₂ CH ₂	MeS	CF ₃ SO		-63.72, -76.6
CH ₂ CH ₂	MeSO	CF₃SO		
CH ₂ CH ₂	MeSO ₂	CF₃SO		
CH ₂ CH ₂	MeS	CF ₃ SO ₂		
CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		-63.73, -74.56, -78.6
CH ₂ CH ₂ CH ₂	MeS	CF ₃ S		
CH ₂ CH ₂ CH ₂	MeSO	CF₃S		
CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃S		
	CH ₂	CH ₂ CH ₂ MeS CH ₂ CH ₂ MeSO CH ₂ CH ₂ MeSO ₂ CH ₂ CH ₂ MeS CH ₂ CH ₂ MeSO CH ₂ CH ₂ MeSO CH ₂ CH ₂ MeSO ₂ CH ₂ CH ₂ MeSO ₂	CH ₂ CH ₂ MeS CF ₃ S CH ₂ CH ₂ MeSO CF ₃ S CH ₂ CH ₂ MeSO ₂ CF ₃ S CH ₂ CH ₂ MeS CF ₃ SO CH ₂ CH ₂ MeSO CF ₃ SO CH ₂ CH ₂ MeSO CF ₃ SO CH ₂ CH ₂ MeSO ₂ CF ₃ SO CH ₂ CH ₂ MeS CF ₃ SO CH ₂ CH ₂ MeS CF ₃ SO CH ₂ CH ₂ MeS CF ₃ SO ₂ CH ₂ CH ₂ MeSO CF ₃ SO ₂ CH ₂ CH ₂ MeSO CF ₃ SO ₂ CH ₂ CH ₂ MeSO CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ MeS CF ₃ SO CH ₂ CH ₂ CH ₂ MeS CF ₃ S CH ₂ CH ₂ CH ₂ MeS CF ₃ S	CH ₂ CH ₂ MeS CF ₃ S CH ₂ CH ₂ MeSO CF ₃ S CH ₂ CH ₂ MeSO ₂ CF ₃ S CH ₂ CH ₂ MeS CF ₃ SO CH ₂ CH ₂ MeSO CF ₃ SO CH ₂ CH ₂ MeS CF ₃ SO CH ₂ CH ₂ MeS CF ₃ SO ₂ CH ₂ CH ₂ MeSO CF ₃ SO ₂ CH ₂ CH ₂ MeSO CF ₃ SO ₂ CH ₂ CH ₂ MeSO CF ₃ SO ₂ CH ₂ CH ₂ MeSO CF ₃ SO ₂ CH ₂ CH ₂ CH ₂ MeS CF ₃ SO CH ₂ CH ₂ CH ₂ MeS CF ₃ S

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
7-13	CH ₂ CH ₂ CH ₂	MeS	CF₃SO		
7-14	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO		
7-15	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃SO		
7-16	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO ₂		
7-17	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ SO ₂		
7-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
7-19	CH ₂ CH ₂	EtS	CF ₃ S		
7-20	CH ₂ CH ₂	EtSO	CF₃S		
7-21	CH ₂ CH ₂	EtSO ₂	CF ₃ S		-
7-22	CH ₂ CH ₂	EtS	CF₃SO		
7-23	CH ₂ CH ₂	EtSO	CF ₃ SO		
7-24	CH₂CH₂	EtSO ₂	CF ₃ SO	<u> </u>	
7-25	CH ₂ CH ₂	EtS	CF ₃ SO ₂		
7-26	CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
7-27	CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
7-28	CH ₂ CH ₂ CH ₂	EtS	CF ₃ S		
7-29	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ S		-
7-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S		
7-31	CH ₂ CH ₂ CH ₂	EtS	CF₃SO		
7-32	CH ₂ CH ₂ CH ₂	EtSO	CF₃SO		
7-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO		
7-34	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
7-35	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
7-36	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
7-37	CH ₂ CH ₂	PrS	CF ₃ S		
7-38	CH ₂ CH ₂	PrSO	CF ₃ S		
7-39	CH ₂ CH ₂	PrSO ₂	CF ₃ S		
7-40	CH ₂ CH ₂	PrS	CF ₃ SO		
7-41	CH ₂ CH ₂	PrSO	CF ₃ SO	1.	

Cpd	A	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
7-42	CH₂CH₂	PrSO ₂	CF₃SO		
7-43	CH ₂ CH ₂	PrS	CF ₃ SO ₂		
7-44	CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
7-45	CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
7-46	CH ₂ CH ₂ CH ₂	PrS	CF ₃ S		
7-47	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ S		
7-48	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ S		
7-49	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO		
7-50	CH ₂ CH ₂ CH ₂	PrSO	CF₃SO		
7-51	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO		
7-52	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO ₂		
7-53	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
7-54	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
7-55	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
7-56	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
7-57	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
7-58	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃SO		
7-59	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO		
7-60	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO		
7-61	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
7-62	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
7-63	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
7-64	4 CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
7-6	5 CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		
7-6	6 CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ S		
7-6	7 CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃SO		
7-6	B CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
i i	· · · · · · · · · · · · · · · · · · ·	CICH2CH2SO2	CF₃SO		
7-7	0 CH ₂ CH ₂ CH	CICH ₂ CH ₂ S	CF ₃ SO ₂		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
7-71	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
7-72	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
7-73	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
7-74	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
7-75	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
7-76	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		
7-77	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO		
7-78	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
7-79	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂	•	
7-80	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
7-81	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
7-82	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
7-83	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
7-84	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
7-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		
7-86	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO		
7-87	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
7-88	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
7-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
7-90	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
7-91	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ S		
7-92	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
7-93	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		
7-94	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃S		
7-95	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
7-96	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		

53

Table 8 $R^1 = C(=NH)$ -S-Et, W = C-Cl, $R^2 = Cl$, $R^3 = CF_3$, $R^6 = X = F$, $R^4 = Me$

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
8-1	CH ₂ CH ₂	MeS	CF ₃ S		-45.05, -64.09
8-2	CH ₂ CH ₂	MeSO	CF ₃ S		
8-3	CH ₂ CH ₂	MeSO ₂	CF ₃ S	†	
8-4	CH ₂ CH ₂	MeS	CF₃SO		
8-5	CH ₂ CH ₂	MeSO	CF ₃ SO		
8-6	CH₂CH₂	MeSO ₂	CF₃SO		
8-7	CH ₂ CH ₂	MeS	CF ₃ SO ₂		
8-8	CH ₂ CH ₂	MeSO	CF ₃ SO ₂		7
8-9	CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
8-10	CH ₂ CH ₂ CH ₂	MeS	CF ₃ S		
8-11	CH ₂ CH ₂ CH ₂	MeSO	CF ₃ S		
8-12	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ S		
8-13	CH ₂ CH ₂ CH ₂	MeS	CF₃SO		
8-14	CH ₂ CH ₂ CH ₂	MeSO	CF₃SO		
8-15	CH ₂ CH ₂ CH ₂	MeSO ₂	CF₃SO		·
8-16	CH ₂ CH ₂ CH ₂	MeS	CF ₃ SO ₂		
8-17	CH ₂ CH ₂ CH ₂	MeSO ·	CF ₃ SO ₂		
8-18	CH ₂ CH ₂ CH ₂	MeSO ₂	CF ₃ SO ₂		
8-19	CH ₂ CH ₂	EtS	CF ₃ S		-
8-20	CH ₂ CH ₂	EtSO	CF ₃ S		
8-21	CH ₂ CH ₂	EtSO ₂	CF ₃ S		
8-22	CH ₂ CH ₂	EtS	CF ₃ SO		
8-23	CH ₂ CH ₂	EtSO	CF₃SO		
8-24	CH ₂ CH ₂	EtSO ₂	CF₃SO		
8-25	CH ₂ CH ₂	EtS	CF ₃ SO ₂		
8-26	CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
8-27	CH₂CH₂	EtSO ₂	CF ₃ SO ₂		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
8-28	CH ₂ CH ₂ CH ₂	EtS	CF₃S		
8-29	CH ₂ CH ₂ CH ₂	EtSO	CF₃S		
8-30	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ S		
8-31	CH ₂ CH ₂ CH ₂	EtS	CF₃SO		
8-32	CH ₂ CH ₂ CH ₂	EtSO	CF₃SO		
8-33	CH ₂ CH ₂ CH ₂	EtSO ₂	CF₃SO	-	
8-34	CH ₂ CH ₂ CH ₂	EtS	CF ₃ SO ₂		
8-35	CH ₂ CH ₂ CH ₂	EtSO	CF ₃ SO ₂		
8-36	CH ₂ CH ₂ CH ₂	EtSO ₂	CF ₃ SO ₂		
8-37	CH ₂ CH ₂	PrS	CF ₃ S		
8-38	CH ₂ CH ₂	PrSO	CF ₃ S		
8-39	CH₂CH₂	PrSO ₂	CF₃S		
8-40	CH₂CH₂	PrS	CF₃SO		
8-41	CH ₂ CH ₂	PrSO	CF₃SO		
8-42	CH ₂ CH ₂	PrSO ₂	CF ₃ SO		
8-43	CH ₂ CH ₂	PrS	CF ₃ SO ₂		
8-44	CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
8-45	CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
8-46	CH ₂ CH ₂ CH ₂	PrS	CF ₃ S		
8-47	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ S		
8-48	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ S		
8-49	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO		
8-50	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO		
8-51	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO		
8-52	CH ₂ CH ₂ CH ₂	PrS	CF ₃ SO ₂		
8-53	CH ₂ CH ₂ CH ₂	PrSO	CF ₃ SO ₂		
8-54	CH ₂ CH ₂ CH ₂	PrSO ₂	CF ₃ SO ₂		
8-55	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ S		
8-56	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ S		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.			•		
8-57	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃S		
8-58	CH ₂ CH ₂	CICH₂CH₂S	CF₃SO		·
8-59	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO		
8-60	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO		
8-61	CH ₂ CH ₂	CICH ₂ CH ₂ S	CF ₃ SO ₂		
8-62	CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂	<u> </u>	
8-63	CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
8-64	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃S		
8-65	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃S		
8-66	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃S		
8-67	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ S	CF₃SO		
8-68	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF₃SO		
8-69	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF₃SO		
8-70	CH ₂ CH ₂ CH ₂	CICH₂CH₂S	CF ₃ SO ₂		
8-71	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO	CF ₃ SO ₂		
8-72	CH ₂ CH ₂ CH ₂	CICH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
8-73	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ S		
8-74	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ S		
8-75	CH₂CH₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		·
8-76	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		
8-77	CH₂CH₂	MeOCH ₂ CH ₂ SO	CF ₃ SO		
8-78	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO		
8-79	CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
8-80	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
8-81	CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
8-82	CH ₂ CH ₂ CH ₂	MeOCH₂CH₂S	CF ₃ S		
8-83	CH ₂ CH ₂ CH ₂	MeOCH₂CH₂SO	CF ₃ S		
8-84	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ S		
8-85	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF₃SO		

Cpd	Α	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
8-86	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF₃SO		
8-87	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF₃SO		
8-88	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ S	CF ₃ SO ₂		
8-89	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO	CF ₃ SO ₂		
8-90	CH ₂ CH ₂ CH ₂	MeOCH ₂ CH ₂ SO ₂	CF ₃ SO ₂		
8-91	CH₂CH₂	MeSCH ₂ CH ₂ S	CF ₃ S		
8-92	CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
8-93	CH₂CH₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		
8-94	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ S		-
8-95	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF₃SO		
8-96	CH ₂ CH ₂ CH ₂	MeSCH ₂ CH ₂ S	CF ₃ SO ₂		

Table 9 $R^1 = CSNH_2$, W = C-CI, $R^2 = CI$, $R^3 = CF_3$, A is CH_2CH_2 .

1	m(O)e 7	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
CO₂Me	MeS	CF ₃ S		
CO₂Me	MeSO	CF ₃ S		
CO₂Me	MeSO ₂	CF₃S		
CO₂Me	MeS	CF₃SO		
CO₂Me	MeSO	CF₃SO		
CO ₂ Me	MeSO ₂	CF ₃ SO		
CO₂Me	MeS	CF ₃ SO ₂		
CO ₂ Me	MeSO	CF ₃ SO ₂		
CO₂Me	MeSO ₂	CF ₃ SO ₂		
CO ₂ Et	MeS	CF ₃ S		
CO₂Et	MeSO	CF₃S		
CO₂Et	MeSO ₂	CF ₃ S	 	
CO ₂ Et	MeS	CF₃SO		
	CO ₂ Me CO ₂ Et CO ₂ Et CO ₂ Et	CO2Me MeSO CO2Me MeSO2 CO2Me MeS CO2Me MeSO CO2Me MeSO2	CO2Me MeSO CF3S CO2Me MeSO2 CF3S CO2Me MeS CF3SO CO2Me MeSO CF3SO CO2Me MeSO2 CF3SO CO2Me MeS CF3SO2 CO2Me MeSO CF3SO2 CO2Me MeSO2 CF3SO2 CO2Me MeSO2 CF3SO2 CO2Et MeS CF3S CO2Et MeSO CF3S CO2Et MeSO2 CF3S CO2Et MeSO2 CF3S	CO2Me MeSO CF3S CO2Me MeSO2 CF3S CO2Me MeS CF3SO CO2Me MeSO CF3SO CO2Me MeSO2 CF3SO CO2Me MeS CF3SO2 CO2Me MeSO CF3SO2 CO2Me MeSO2 CF3SO2 CO2Me MeSO2 CF3SO2 CO2Et MeSO CF3S CO2Et MeSO CF3S CO2Et MeSO2 CF3S CO2Et MeSO2 CF3S

Cpd	R⁴	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
9-14	CO₂Et	MeSO	CF₃SO		
9-15	CO ₂ Et	MeSO ₂	CF₃SO		
9-16	CO ₂ Et	MeS	CF₃SO₂		
9-17	CO₂Et	MeSO	CF ₃ SO ₂		
9-18	CO ₂ Et	MeSO ₂	CF ₃ SO ₂		
9-19	CO ₂ CH ₂ CH=CH ₂	MeS	CF ₃ S		
9-20	CO ₂ CH ₂ CH=CH ₂	MeSO	CF₃S		
9-21	CO ₂ CH ₂ CH=CH ₂	MeSO ₂	CF ₃ S		
9-22	CO ₂ CH ₂ CH=CH ₂	MeS	CF₃SO		
9-23	CO ₂ CH ₂ CH=CH ₂	MeSO	CF ₃ SO		
9-24	CO ₂ CH ₂ CH=CH ₂	MeSO ₂	CF₃SO		
9-25	CO ₂ CH ₂ CH=CH ₂	MeS	CF ₃ SO ₂		
9-26	CO ₂ CH ₂ CH=CH ₂	MeSO	CF ₃ SO ₂		
9-27	CO ₂ CH ₂ CH=CH ₂	MeSO ₂	CF ₃ SO ₂		
9-28	CO₂CH₂CCH	MeS	CF ₃ S		
9-29	CO ₂ CH ₂ CCH	MeSO	CF ₃ S		
9-30	CO₂CH₂CCH	MeSO ₂	CF ₃ S		
9-31	CO₂CH₂CCH	MeS	CF ₃ SO		
9-32	CO ₂ CH ₂ CCH	MeSO	CF ₃ SO		
9-33	CO ₂ CH ₂ CCH	MeSO ₂	CF ₃ SO		
9-34	CO ₂ CH ₂ CCH	MeS	CF ₃ SO ₂		
9-35	CO ₂ CH ₂ CCH	MeSO	CF ₃ SO ₂		
9-36	CO ₂ CH ₂ CCH	MeSO ₂	CF ₃ SO ₂		
9-37	CO₂Ph	MeS	CF ₃ S		
9-38	CO₂Ph	MeSO	CF ₃ S		
9-39	CO₂Ph	MeSO ₂	CF ₃ S		
9-40	CO ₂ Ph	MeS	CF ₃ SO		
9-41	CO₂Ph	MeSO	CF ₃ SO		
9-42	CO₂Ph	MeSO ₂	CF ₃ SO		

Cpd	R ⁴	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
9-43	CO₂Ph	MeS	CF ₃ SO ₂		
9-44	CO₂Ph	MeSO	CF ₃ SO ₂		
9-45	CO₂Ph	MeSO ₂	CF ₃ SO ₂		
9-46	CO ₂ (2F Ph)	MeS	CF ₃ S		
9-47	CO ₂ (2F Ph)	MeSO	CF ₃ S		
9-48	CO ₂ (2F Ph)	MeSO ₂	CF ₃ S		
9-49	CO ₂ (2F Ph)	MeS	CF ₃ SO		
9-50	CO ₂ (2F Ph)	MeSO	CF ₃ SO		
9-51	CO₂(2F Ph)	MeSO ₂	CF ₃ SO		
9-52	CO ₂ (2F Ph)	MeS	CF ₃ SO ₂		
9-53	CO ₂ (2F Ph)	MeSO	CF ₃ SO ₂		
9-54	CO ₂ (2F Ph)	MeSO ₂	CF ₃ SO ₂		
9-55	CO₂(2Cl Ph)	MeS	CF ₃ S		
9-56	CO ₂ (2Cl Ph)	MeSO	CF ₃ S		
9-57	CO ₂ (2Cl Ph)	MeSO ₂	CF ₃ S		
9-58	CO ₂ (2Cl Ph)	MeS	CF ₃ SO		
9-59	CO₂(2Cl Ph)	MeSO	CF₃SO		
9-60	CO ₂ (2Cl Ph)	MeSO ₂	CF ₃ SO		
9-61	CO ₂ (2Cl Ph)	MeS	CF ₃ SO ₂		
9-62	CO ₂ (2Cl Ph)	MeSO	CF ₃ SO ₂		
9-63	CO ₂ (2Cl Ph)	MeSO ₂	CF ₃ SO ₂		
9-64	CO₂(4Cl Ph)	MeS	CF ₃ S		
9-65	CO₂(4Cl Ph)	MeSO	CF ₃ S		
9-66	CO₂(4Cl Ph)	MeSO ₂	CF₃S		
9-67	CO ₂ (4Cl Ph)	MeS	CF₃SO		
9-68	<u> </u>	MeSO	CF₃SO		
9-69	CO ₂ (4Cl Ph)	MeSO ₂	CF ₃ SO		
9-70	CO ₂ (4Cl Ph)	MeS	CF ₃ SO ₂		
9-71	CO ₂ (4Cl Ph)	MeSO	CF ₃ SO ₂		

No. 9-72 CO ₂ (4Cl Ph) MeSO ₂ CF ₃ SO ₂ 9-73 CO ₂ (4Br Ph) MeS CF ₃ S 9-74 CO ₂ (4Br Ph) MeSO CF ₃ S 9-75 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-76 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-77 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-78 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-79 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-80 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-81 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-85 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-92 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-94 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-99 CO ₂ (4NO ₂	Cpd	R ⁴	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
9-73	No.		į			
9-74 CO ₂ (4Br Ph) MeSO CF ₃ S 9-75 CO ₂ (4Br Ph) MeSO ₂ CF ₃ S 9-76 CO ₂ (4Br Ph) MeS CF ₃ SO 9-77 CO ₂ (4Br Ph) MeSO CF ₃ SO 9-78 CO ₂ (4Br Ph) MeSO CF ₃ SO 9-79 CO ₂ (4Br Ph) MeSO CF ₃ SO 9-80 CO ₂ (4Br Ph) MeSO CF ₃ SO ₂ 9-81 CO ₂ (4Br Ph) MeSO CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeSO CF ₃ S 9-83 CO ₂ (4F Ph) MeSO CF ₃ S 9-84 CO ₂ (4F Ph) MeSO CF ₃ S 9-85 CO ₂ (4F Ph) MeSO CF ₃ S 9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO 9-90 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-91 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-94 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO	9-72	CO ₂ (4Cl Ph)	MeSO ₂	CF₃SO₂		
9-75 CO ₂ (4Br Ph) MeSO ₂ CF ₃ S 9-76 CO ₂ (4Br Ph) MeS CF ₃ SO 9-77 CO ₂ (4Br Ph) MeSO CF ₃ SO 9-78 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-79 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-80 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-81 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-83 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-91 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-92 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-93 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-94 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-96 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4HO ₂ Ph) MeSO ₂ CF ₃ SO ₂	9-73	CO ₂ (4Br Ph)	MeS	CF₃S		
9-76 CO ₂ (4Br Ph) MeS CF ₃ SO 9-77 CO ₂ (4Br Ph) MeSO CF ₃ SO 9-78 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-79 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-80 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-81 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-83 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-91 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-92 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-94 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂	9-74	CO ₂ (4Br Ph)	MeSO	CF₃S		
9-77 CO ₂ (4Br Ph) MeSO CF ₃ SO 9-78 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-79 CO ₂ (4Br Ph) MeS CF ₃ SO ₂ 9-80 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-81 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeS CF ₃ S 9-83 CO ₂ (4F Ph) MeSO CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-90 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-91 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-92 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-94 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO	9-75	CO ₂ (4Br Ph)	MeSO ₂	CF ₃ S		
9-78 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO 9-79 CO ₂ (4Br Ph) MeS CF ₃ SO ₂ 9-80 CO ₂ (4Br Ph) MeSO CF ₃ SO ₂ 9-81 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeS CF ₃ S 9-83 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO 9-90 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-91 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-91 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO	9-76	CO₂(4Br Ph)	MeS	CF₃SO		
9-79 CO ₂ (4Br Ph) MeS CF ₃ SO ₂ 9-80 CO ₂ (4Br Ph) MeSO CF ₃ SO ₂ 9-81 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeS CF ₃ S 9-83 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₃ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeSO ₄ CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO ₃ CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₄ CF ₃ SO ₅ 9-97 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-97 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅ 9-98 CO ₂ (4NO ₂ Ph) MeSO ₅ CF ₃ SO ₅	9-77	CO₂(4Br Ph)	MeSO	CF₃SO		
9-80 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-81 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-83 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-86 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ S 9-92 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ S 9-93 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-96 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4RO ₂ Ph) MeSO ₂ CF ₃ SO ₂	9-78	CO₂(4Br Ph)	MeSO ₂	CF ₃ SO		
9-81 CO ₂ (4Br Ph) MeSO ₂ CF ₃ SO ₂ 9-82 CO ₂ (4F Ph) MeS CF ₃ S 9-83 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeS CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂ 9-92 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-94 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂	9-79	CO ₂ (4Br Ph)	MeS	CF ₃ SO ₂		
9-82 CO ₂ (4F Ph) MeS CF ₃ S 9-83 CO ₂ (4F Ph) MeSO CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeS CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-94 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂	9-80	CO₂(4Br Ph)	MeSO	CF ₃ SO ₂		
9-83 CO ₂ (4F Ph) MeSO CF ₃ S 9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeS CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeSO CF ₃ SO 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO	9-81	CO ₂ (4Br Ph)	MeSO ₂	CF ₃ SO ₂		
9-84 CO ₂ (4F Ph) MeSO ₂ CF ₃ S 9-85 CO ₂ (4F Ph) MeS CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeS CF ₃ SO ₂ 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂	9-82	CO ₂ (4F Ph)	MeS	CF ₃ S		
9-85 CO ₂ (4F Ph) MeS CF ₃ SO 9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeS CF ₃ SO ₂ 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-83	CO ₂ (4F Ph)	MeSO	CF ₃ S		
9-86 CO ₂ (4F Ph) MeSO CF ₃ SO 9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeS CF ₃ SO ₂ 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-84	CO ₂ (4F Ph)	MeSO ₂	CF ₃ S		
9-87 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO 9-88 CO ₂ (4F Ph) MeS CF ₃ SO ₂ 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-85	CO ₂ (4F Ph)	MeS	CF₃SO		
9-88 CO ₂ (4F Ph) MeS CF ₃ SO ₂ 9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-86	CO ₂ (4F Ph)	MeSO	CF ₃ SO		·
9-89 CO ₂ (4F Ph) MeSO CF ₃ SO ₂ 9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-87	CO ₂ (4F Ph)	MeSO ₂	CF ₃ SO		
9-90 CO ₂ (4F Ph) MeSO ₂ CF ₃ SO ₂ 9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-88	CO ₂ (4F Ph)	MeS	CF ₃ SO ₂		
9-91 CO ₂ (4NO ₂ Ph) MeS CF ₃ S 9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-98 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO ₂	9-89	CO ₂ (4F Ph)	MeSO	CF ₃ SO ₂		
9-92 CO ₂ (4NO ₂ Ph) MeSO CF ₃ S 9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-90	CO ₂ (4F Ph)	MeSO ₂	CF ₃ SO ₂		
9-93 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ S 9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-91	CO ₂ (4NO ₂ Ph)	MeS	CF ₃ S		
9-94 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO 9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-92	CO ₂ (4NO ₂ Ph)	MeSO	CF ₃ S		
9-95 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO 9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-93	CO ₂ (4NO ₂ Ph)	MeSO ₂	CF ₃ S	•	
9-96 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO 9-97 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-94	CO ₂ (4NO ₂ Ph)	MeS	CF ₃ SO		
9-97 CO ₂ (4NO ₂ Ph) MeS CF ₃ SO ₂ 9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-95	CO ₂ (4NO ₂ Ph)	MeSO	CF₃SO		
9-98 CO ₂ (4NO ₂ Ph) MeSO CF ₃ SO ₂	9-96	CO ₂ (4NO ₂ Ph)	MeSO ₂	CF ₃ SO		
	9-97	CO ₂ (4NO ₂ Ph)	MeS	CF ₃ SO ₂		
9-99 CO ₂ (4NO ₂ Ph) MeSO ₂ CF ₃ SO ₂	9-98	CO ₂ (4NO ₂ Ph)	MeSO	CF ₃ SO ₂		
	9-99	CO ₂ (4NO ₂ Ph)	MeSO ₂	CF ₃ SO ₂		
9-100 CO ₂ (4Me Ph) MeS CF ₃ S	9-10	0 CO₂(4Me Ph)	MeS	CF ₃ S		

Cpd	R⁴	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
9-101	CO₂(4Me Ph)	MeSO	CF₃S		
9-102	CO₂(4Me Ph)	MeSO ₂	CF₃S		
9-103	CO ₂ (4Me Ph)	MeS	CF₃SO		
9-104	CO ₂ (4Me Ph)	MeSO	CF₃SO		
9-105	CO ₂ (4Me Ph)	MeSO ₂	CF₃SO		
9-106	CO ₂ (4Me Ph)	MeS	CF ₃ SO ₂		
9-107	CO ₂ (4Me Ph)	MeSO	CF ₃ SO ₂		
9-108	CO ₂ (4Me Ph)	MeSO ₂	CF ₃ SO ₂		
9-109	CO ₂ (4OMe Ph)	MeS	CF ₃ S		
9-110	CO₂(4OMe Ph)	MeSO	CF ₃ S		
9-111	CO ₂ (4OMe Ph)	MeSO ₂	CF ₃ S		
9-112	CO ₂ (4OMe Ph)	MeS	CF₃SO		
9-113	CO ₂ (4OMe Ph)	MeSO	CF₃SO		
9-114	CO ₂ (4OMe Ph)	MeSO ₂	CF ₃ SO		
9-115	CO ₂ (4OMe Ph)	MeS	CF ₃ SO ₂		
9-116	CO ₂ (4OMe Ph)	MeSO	CF ₃ SO ₂		
9-117	CO ₂ (4OMe Ph)	MeSO ₂	CF ₃ SO ₂		
9-118	CO ₂ CH ₂ Ph	MeS	CF ₃ S		
9-119	CO ₂ CH ₂ Ph:	MeSO	CF ₃ S		
i	CO ₂ CH ₂ Ph	MeSO ₂	CF ₃ S		
9-121	CO ₂ CH ₂ Ph	MeS	CF₃SO		
9-122	CO ₂ CH ₂ Ph	MeSO	CF₃SO		
9-123	CO ₂ CH ₂ Ph	MeSO ₂	CF ₃ SO		
9-124	CO ₂ CH ₂ Ph	MeS	CF ₃ SO ₂		
9-125	CO ₂ CH ₂ Ph	MeSO	CF ₃ SO ₂		
9-126	CO ₂ CH ₂ Ph	MeSO ₂	CF ₃ SO ₂		
9-127	CO ₂ CH ₂ (2F Ph)	MeS	CF ₃ S		
9-128	CO ₂ CH ₂ (2F Ph)	MeSO	CF ₃ S		
9-129	CO ₂ CH ₂ (2F Ph)	MeSO ₂	CF ₃ S		

Cpd	R⁴	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
9-130	CO₂CH₂(2F Ph)	MeS	CF₃SO		
9-131	CO ₂ CH ₂ (2F Ph)	MeSO	CF₃SO		
9-132	CO ₂ CH ₂ (2F Ph)	MeSO ₂	CF₃SO		
9-133	CO ₂ CH ₂ (2F Ph)	MeS	CF ₃ SO ₂		
9-134	CO ₂ CH ₂ (2F Ph)	MeSO	CF ₃ SO ₂		
9-135	CO ₂ CH ₂ (2F Ph)	MeSO ₂	CF ₃ SO ₂		
9-136	CO ₂ CH ₂ (2Cl Ph)	MeS	CF ₃ S		
9-137	CO₂CH₂(2Cl Ph)	MeSO	CF ₃ S		
9-138	CO ₂ CH ₂ (2Cl Ph)	MeSO ₂	CF₃S		
9-139	CO ₂ CH ₂ (2Cl Ph)	MeS	CF₃SO		
9-140	CO ₂ CH ₂ (2Cl Ph)	MeSO	CF ₃ SO		
9-141	CO ₂ CH ₂ (2Cl Ph)	MeSO ₂	CF₃SO		
9-142	CO ₂ CH ₂ (2Cl Ph)	MeS	CF ₃ SO ₂		
9-143	CO ₂ CH ₂ (2Cl Ph)	MeSO	CF ₃ SO ₂		
9-144	CO ₂ CH ₂ (2Cl Ph)	MeSO ₂	CF ₃ SO ₂		
9-145	CO ₂ CH ₂ (4Cl Ph)	MeS	CF₃S		
9-146	CO ₂ CH ₂ (4Cl Ph)	MeSO	CF₃S		
9-147	CO ₂ CH ₂ (4Cl Ph)	MeSO ₂	CF₃S		
9-148	CO ₂ CH ₂ (4Cl Ph)	MeS	CF₃SO		
9-149	CO ₂ CH ₂ (4Cl Ph)	MeSO	CF₃SO		
9-150	CO ₂ CH ₂ (4Cl Ph)	MeSO ₂	CF ₃ SO		
9-15	CO ₂ CH ₂ (4Cl Ph)	MeS	CF ₃ SO ₂		
9-152	CO ₂ CH ₂ (4Cl Ph)	MeSO	CF ₃ SO ₂		
9-15	CO ₂ CH ₂ (4Cl Ph)	MeSO ₂	CF ₃ SO ₂		
9-15	CO ₂ CH ₂ (4Br Ph)	MeS	CF ₃ S		
9-15	CO ₂ CH ₂ (4Br Ph)	MeSO	CF ₃ S		
9-15	6 CO ₂ CH ₂ (4Br Ph)	MeSO ₂	CF ₃ S		
9-15	7 CO ₂ CH ₂ (4Br Ph)	MeS	CF ₃ SO		
9-15	8 CO ₂ CH ₂ (4Br Ph)	MeSO	CF ₃ SO		

Cpd	R⁴	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
9-159	CO ₂ CH ₂ (4Br Ph)	MeSO ₂	CF ₃ SO		
9-160	CO ₂ CH ₂ (4Br Ph)	MeS	CF ₃ SO ₂	 	7
9-161	CO ₂ CH ₂ (4Br Ph)	MeSO	CF ₃ SO ₂		
9-162	CO ₂ CH ₂ (4Br Ph)	MeSO ₂	CF ₃ SO ₂		
9-163	CO ₂ CH ₂ (4F Ph)	MeS	CF₃S		
9-164	CO ₂ CH ₂ (4F Ph)	MeSO	CF₃S		
9-165	CO ₂ CH ₂ (4F Ph)	MeSO ₂	CF₃S		
9-166	CO ₂ CH ₂ (4F Ph)	MeS	CF₃SO		
9-167	CO ₂ CH ₂ (4F Ph)	MeSO	CF ₃ SO		
9-168	CO ₂ CH ₂ (4F Ph)	MeSO ₂	CF₃SO		
9-169	CO₂CH₂(4F Ph)	MeS	CF ₃ SO ₂		
9-170	CO ₂ CH ₂ (4F Ph)	MeSO	CF ₃ SO ₂		
9-171	CO ₂ CH ₂ (4F Ph)	MeSO ₂	CF ₃ SO ₂		
9-172	CO ₂ CH ₂ (4NO ₂ Ph)	MeS	CF ₃ S		
9-173	CO ₂ CH ₂ (4NO ₂ Ph)	MeSO	CF ₃ S		
9-174	CO ₂ CH ₂ (4NO ₂ Ph)	MeSO ₂	CF₃S		
9-175	CO ₂ CH ₂ (4NO ₂ Ph)	MeS	CF₃SO		
9-176	CO ₂ CH ₂ (4NO ₂ Ph)	MeSO	CF₃SO		
9-177	CO ₂ CH ₂ (4NO ₂ Ph)	MeSO ₂	CF₃SO		
9-178	CO ₂ CH ₂ (4NO ₂ Ph)	MeS	CF ₃ SO ₂		
9-179	CO ₂ CH ₂ (4NO ₂ Ph)	MeSO	CF ₃ SO ₂		
9-180	CO ₂ CH ₂ (4NO ₂ Ph)	MeSO ₂	CF ₃ SO ₂		
9-181	CO ₂ CH ₂ (4Me Ph)	MeS	CF ₃ S		
9-182	CO ₂ CH ₂ (4Me Ph)	MeSO	CF ₃ S		
9-183	CO ₂ CH ₂ (4Me Ph)	MeSO ₂	CF₃S		
9-184	CO ₂ CH ₂ (4Me Ph)	MeS	CF₃SO		
9-185	CO ₂ CH ₂ (4Me Ph)	MeSO	CF₃SO		
9-186	CO₂CH₂(4Me Ph)	MeSO ₂	CF₃SO		
9-187	CO₂CH₂(4Me Ph)	MeS	CF ₃ SO ₂		

Cpd	R⁴	R ⁵ S(O) _m	R ⁶ CFX-S(O) _n	mp °C	19F-NMR
No.					
9-188	CO ₂ CH ₂ (4Me Ph)	MeSO	CF ₃ SO ₂		
9-189	CO ₂ CH ₂ (4Me Ph)	MeSO ₂	CF ₃ SO ₂		
9-190	CO ₂ CH ₂ (4OMe Ph)	MeS	CF ₃ S		
9-191	CO ₂ CH ₂ (4OMe Ph)	MeSO	CF ₃ S		
9-192	CO ₂ CH ₂ (4OMe Ph)	MeSO ₂	CF ₃ S		
9-193	CO ₂ CH ₂ (4OMe Ph)	MeS	CF ₃ SO		
9-194	CO ₂ CH ₂ (4OMe Ph)	MeSO	CF ₃ SO		
9-195	CO ₂ CH ₂ (4OMe Ph)	MeSO ₂	CF ₃ SO		
9-196	CO ₂ CH ₂ (4OMe Ph)	MeS	CF ₃ SO ₂		
9-197	CO ₂ CH ₂ (4OMe Ph)	MeSO	CF ₃ SO ₂		
9-198	CO ₂ CH ₂ (4OMe Ph)	MeSO ₂	CF ₃ SO ₂		

According to a further feature of the present invention there is provided a method for the control of pests at a locus which comprises applying thereto an effective amount of a compound of formula (I) or a salt thereof. For this purpose, the said compound is normally used in the form of a pesticidal composition (i.e. in association with compatible diluents or carriers and/or surface active agents suitable for use in pesticidal compositions), for example as hereinafter described.

5

15

The term "compound of the invention" as used hereinafter embraces a 5-substitutedalkylaminopyrazole of formula (I) as defined above and a pesticidally acceptable salt thereof.

One aspect of the present invention as defined above is a method for the control of pests at a locus. The locus includes, for example, the pest itself, the place (plant, field, forest, orchard, waterway, soil, plant product, or the like) where the pest resides or feeds, or a place susceptible to future infestation by the pest. The compound of the invention may therefore be applied directly to the pest, to the place where the pest resides or feeds, or to the place susceptible to future infestation by the pest.

As is evident from the foregoing pesticidal uses, the present invention provides pesticidally active compounds and methods of use of said compounds for the control of a number of pest species which includes: arthropods, especially insects or mites, or plant nematodes. The compound of the invention may thus be advantageously employed in practical uses, for example, in agricultural or horticultural crops, in forestry, in veterinary medicine or livestock husbandry, or in public health. The compounds of the invention may be used for example in the following applications and on the following pests:

5

10

15

20

For the control of soil insects, such as corn rootworm, termites (especially for protection of structures), root maggots, wireworms, root weevils, stalkborers, cutworms, root aphids, or grubs. They may also be used to provide activity against plant pathogenic nematodes, such as root-knot, cyst, dagger, lesion, or stem or bulb nematodes, or against mites. For the control of soil pests, for example corn rootworm, the compounds are advantageously applied to or incorporated at an effective rate into the soil in which crops are planted or to be planted or to the seeds or growing plant roots.

In the area of public health, the compounds are especially useful in the control of many insects, especially filth flies or other Dipteran pests, such as houseflies, stableflies, soldierflies, hornflies, deerflies, horseflies, midges, punkies, blackflies, or mosquitoes.

In the protection of stored products, for example cereals, including grain or flour, groundnuts, animal feedstuffs, timber or household goods, e.g. carpets and textiles, compounds of the invention are useful against attack by arthropods, more especially beetles, including weevils, moths or mites, for example Ephestia spp. (flour moths),

25 Anthrenus spp. (carpet beetles), Tribolium spp. (flour beetles), Sitophilus spp. (grain weevils) or Acarus spp. (mites).

In the control of cockroaches, ants or termites or similar arthropod pests in infested domestic or industrial premises or in the control of mosquito larvae in waterways, wells, reservoirs or other running or standing water.

For the treatment of foundations, structures or soil in the prevention of the attack on building by termites, for example, Reticulitermes spp., Heterotermes spp., Coptotermes spp..

In agriculture against adults, larvae and eggs of Lepidoptera (butterflies and moths), e.g. Heliothis spp. such as Heliothis virescens (tobacco budworm), Heliothis armigera and Heliothis zea. Against adults and larvae of Coleoptera (beetles) e.g. Anthonomus spp. e.g. grandis (cotton boll weevil), Leptinotarsa decemlineata (Colorado potato beetle), Diabrotica spp. (corn rootworms). Against Heteroptera (Hemiptera and Homoptera) e.g. Psylla spp., Bemisia spp., Trialeurodes spp., Aphis

(Hemiptera and Homoptera) e.g. Psylla spp., Bemisia spp., Trialeurodes spp., Aphis spp., Myzus spp., Megoura viciae, Phylloxera spp., Nephotettix spp. (rice leaf hoppers), Nilaparvata spp..

Against Diptera e.g. Musca spp.. Against Thysanoptera such as Thrips tabaci.

5

20

25

30

Against Orthoptera such as Locusta and Schistocerca spp., (locusts and crickets)
e.g. Gryllus spp., and Acheta spp. for example, Blatta orientalis, Periplaneta
americana, Blatella germanica, Locusta migratoria migratorioides, and Schistocerca
gregaria. Against Collembola e.g. Periplaneta spp. and Blatella spp. (roaches).
Against arthropods of agricultural significance such as Acari (mites) e.g. Tetranychus
spp., and Panonychus spp..

Against nematodes which attack plants or trees of importance to agriculture, forestry or horticulture either directly or by spreading bacterial, viral, mycoplasma or fungal diseases of the plants. For example root-knot nematodes such as Meloidogyne spp. (e.g. M. incognita).

In the field of veterinary medicine or livestock husbandry or in the maintenance of public health against arthropods which are parasitic internally or externally upon vertebrates, particularly warm-blooded vertebrates, for example domestic animals, e.g. cattle, sheep, goats, equines, swine, poultry, dogs or cats, for example Acarina, including ticks (e.g. soft-bodied ticks including Argasidae spp. e.g. Argas spp. and Ornithodorus spp. (e.g. Ornithodorus moubata); hard-bodied ticks including Ixodidae spp., e.g. Boophilus spp. e.g. Boophilus microplus, Rhipicephalus spp. e.g. Rhipicephalus appendiculatus and Rhipicephalus sanguineus; mites (e.g. Damalinia spp.); fleas (e.g. Ctenocephalides spp. e.g. Ctenocephalides felis (cat flea) and Ctenocephalides canis (dog flea)); lice e.g. Menopon spp.; Diptera (e.g. Aedes spp., Anopheles spp., Musca spp., Hypoderma spp.); Hemiptera.; Dictyoptera (e.g. Periplaneta spp., Blatella spp.); Hymenoptera; for example against infections of the

gastro-intestinal tract caused by parasitic nematode worms, for example members of the family Trichostrongylidae.

In a preferred aspect of the invention the compounds of formula (I) are used for the control of parasites of animals. Preferably the animal to be treated is a domestic companion animal such as a dog or a cat.

In a further aspect of the invention the compounds of formula (I) or salts or compositions thereof are used for the preparation of a veterinary medicament.

10

15

20

25

30

5

In practical use for the control of arthropods, especially insects or mites, or helminths, especially nematode pests of plants, a method, for example, comprises applying to the plants or to the medium in which they grow an effective amount of a compound of the invention. For such a method, the compound of the invention is generally applied to the locus in which the arthropod or nematode infestation is to be controlled at an effective rate in the range of about 2g to about 1kg of the active compound per hectare of locus treated. Under ideal conditions, depending on the pest to be controlled, a lower rate may offer adequate protection. On the other hand, adverse weather conditions, resistance of the pest or other factors may require that the active ingredient be used at higher rates. The optimum rate depends usually upon a number of factors, for example, the type of pest being controlled, the type or the growth stage of the infested plant, the row spacing or also the method of application. Preferably an effective rate range of the active compound is from about 10g/ha to about 400g/ha, more preferably from about 50g/ha to about 200 g/ha. When a pest is soil-borne, the active compound generally in a formulated composition, is distributed evenly over the area to be treated (ie, for example broadcast or band treatment) in any convenient manner and is applied at rates from

composition, is distributed evenly over the area to be treated (ie, for example broadcast or band treatment) in any convenient manner and is applied at rates from about 10g/ha to about 400g ai/ha, preferably from about 50g/ha to about 200 g ai/ha. When applied as a root dip to seedlings or drip irrigation to plants the liquid solution or suspension contains from about 0.075 to about 1000 mg ai/l, preferably from about 25 to about 200 mg ai/l. Application may be made, if desired, to the field or crop-growing area generally or in close proximity to the seed or plant to be protected

from attack. The compound of the invention can be washed into the soil by spraying with water over the area or can be left to the natural action of rainfall. During or after application, the formulated compound can, if desired, be distributed mechanically in the soil, for example by ploughing, disking, or use of drag chains. Application can be prior to planting, at planting, after planting but before sprouting has taken place, or after sprouting.

5

10

25

30

The compound of the invention and methods of control of pests therewith are of particular value in the protection of field, forage, plantation, glasshouse, orchard or vineyard crops, of ornamentals, or of plantation or forest trees, for example: cereals (such as wheat or rice), cotton, vegetables (such as peppers), field crops (such as sugar beets, soybeans or oil seed rape), grassland or forage crops (such as maize or sorghum), orchards or groves (such as of stone or pit fruit or citrus), ornamental plants, flowers or vegetables or shrubs under glass or in gardens or parks, or forest trees (both deciduous and evergreen) in forests, plantations or nurseries.

They are also valuable in the protection of timber (standing, felled, converted, stored or structural) from attack, for example, by sawflies or beetles or termites.

They have applications in the protection of stored products such as grains, fruits, nuts, spices or tobacco, whether whole, milled or compounded into products, from moth, beetle, mite or grain weevil attack. Also protected are stored animal products such as skins, hair, wool or feathers in natural or converted form (e.g. as carpets or textiles) from moth or beetle attack as well as stored meat, fish or grains from beetle, mite or fly attack.

Additionally, the compound of the invention and methods of use thereof are of particular value in the control of arthropods or helminths which are injurious to, or spread or act as vectors of diseases domestic animals, for example those hereinbefore mentioned, and more especially in the control of ticks, mites, lice, fleas, midges, or biting, nuisance or myiasis flies. The compounds of the invention are particularly useful in controlling arthropods or helminths which are present inside domestic host animals or which feed in or on the skin or suck the blood of the animal, for which purpose they may be administered orally, parenterally, percutaneously or topically.

The compositions hereinafter described for application to growing crops or crop growing loci or as a seed dressing may, in general, alternatively be employed in the protection of stored products, household goods, property or areas of the general environment. Suitable means of applying the compounds of the invention include:

- to growing crops as foliar sprays (for example as an in-furrow spray), dusts, granules, fogs or foams or also as suspensions of finely divided or encapsulated compositions as soil or root treatments by liquid drenches, dusts, granules, smokes or foams; to seeds of crops via application as seed dressings, e.g. by liquid slurries or dusts;
- to animals infested by or exposed to infestation by arthropods or helminths, by parenteral, oral or topical application of compositions in which the active ingredient exhibits an immediate and/or prolonged action over a period of time against the arthropods or helminths, for example by incorporation in feed or suitable orally-ingestible pharmaceutical formulations, edible baits, salt licks, dietary supplements,
 pour-on formulations, sprays, baths, dips, showers, jets, dusts, greases, shampoos, creams, wax smears or livestock self-treatment systems;
 to the environment in general or to specific locations where pests may lurk, including stored products, timber, household goods, or domestic or industrial premises, as sprays, fogs, dusts, smokes, wax-smears, lacquers, granules or baits, or in
 tricklefeeds to waterways, wells, reservoirs or other running or standing water.

The compounds of formula (I) are particularly useful for the control of parasites of animals when applied orally, and in a further preferred aspect of the invention the compounds of formula (I) are used for the control of parasites of animals by oral application. The compounds of the formula (I) or salts thereof may be administered before, during or after meals. The compounds of the formula (I) or salts thereof may be mixed with a carrier and/or foodstuff.

25

30

The compound of the formula (I) or salt thereof is administered orally in a dose to the animal in a dose range generally from 0.1 to 500 mg/kg of the compound of the formula (I) or salt thereof per kilogram of animal body weight (mg/kg).

The frequency of treatment of the animal, preferably the domestic animal to be treated by the compound of the formula (I) or salt thereof is generally from about

once per week to about once per year, preferably from about once every two weeks to once every three months.

The compounds of the invention may be administered most advantageously with another parasiticidally effective material, such as an endoparasiticide, and/or an ectoparasiticide, and/or an endectoparasiticide. For example, such compounds include macrocyclic lactones such as avermectins or milbemycins e.g., ivermectin, pyratel or an insect growth regulator such as lufenuron or methoprene.

The compounds of the formula (I) can also be employed for controlling harmful organisms in crops of known genetically engineered plants or genetically engineered plants yet to be developed. As a rule, the transgenic plants are distinguished by especially advantageous properties, for example by resistances to particular crop protection agents, resistances to plant diseases or pathogens of plant diseases, such as particular insects or microorganisms such as fungi, bacteria or viruses. Other particular properties concern, for example, the harvested material with regard to quantity, quality, storage properties, composition and specific constituents. Thus, transgenic plants are known where the starch content is increased, or the starch quality is altered, or where the harvested material has a different fatty acid composition.

20

15

5

10

The use in economically important transgenic crops of useful plants and ornamentals is preferred, for example of cereals such as wheat, barley, rye, oats, millet, rice, cassava and maize or else crops of sugar beet, cotton, soya, oilseed rape, potatoes, tomatoes, peas and other types of vegetables.

25

30

When used in transgenic crops, in particular those which have resistances to insects, effects are frequently observed, in addition to the effects against harmful organisms to be observed in other crops, which are specific for application in the transgenic crop in question, for example an altered or specifically widened spectrum of pests which can be controlled, or altered application rates which may be employed for application.

The invention therefore also relates to the use of compounds of the formula (I) for controlling harmful organisms in transgenic crop plants.

According to a further feature of the present invention there is provided a pesticidal composition comprising one or more compounds of the invention as defined above, in association with, and preferably homogeneously dispersed in one or more compatible pesticidally acceptable diluents or carriers and/or surface active agents [i.e. diluents or carriers and/or surface active agents of the type generally accepted in the art as being suitable for use in pesticidal compositions and which are compatible with compounds of the invention].

In practice, the compounds of the invention most frequently form parts of compositions. These compositions can be employed to control arthropods, especially insects, or plant nematodes or mites. The compositions may be of any type known in the art suitable for application to the desired pest in any premises or indoor or outdoor area. These compositions contain at least one compound of the invention as the active ingredient in combination or association with one or more other compatible components which are for example, solid or liquid carriers or diluents, adjuvants, surface-active-agents, or the like appropriate for the intended use and which are agronomically or medicinally acceptable. These compositions, which may be prepared by any manner known in the art, likewise form a part of this invention.

The compounds of the invention, in their commercially available formulations and in the use forms prepared from these formulations may be present in mixtures with other active substances such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth regulatory substances or herbicides.

The pesticides include, for example, phosphoric esters, carbamates, carboxylic esters, formamidines, tin compounds and materials produced by microorganisms.

30 Preferred components in mixtures are:

5

10

15

20

1. from the group of the phosphorus compounds acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, bromophos, bromophosethyl, cadusafos (F-67825), chlorethoxyphos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, demeton, demeton-S-methyl, demeton-S-methyl sulfone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, EPN, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitriothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, methacrifos, methamidophos, methidathion, salithion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosfolan, phosphocarb (BAS-301), phosmet, phosphamidon, phoxim, pirimiphos, pirimiphosethyl, pirimiphos-methyl, profenofos, propaphos, proetamphos, prothiofos, pyraclofos, pyridapenthion, quinalphos, sulprofos, temephos, terbufos, tebupirimfos, tetrachlorvinphos, thiometon, triazophos, trichlorphon, vamidothion;

- 2. from the group of the carbamates alanycarb (OK-135), aldicarb, 2-sec-butylphenyl methylcarbamate (BPMC), carbaryl, carbofuran, carbosulfan, cloethocarb, benfuracarb, ethiofencarb, furathiocarb, HCN-801, isoprocarb, methomyl, 5-methyl-m-cumenylbutyryl (methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, 1-methylthio(ethylideneamino)-N-methyl-N-(morpholinothio)carbamate (UC 51717), triazamate;
- 3. from the group of the carboxylic esters acrinathrin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)- (1R)-cis-2,2-dimethyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, beta-cyfluthrin, alpha-cypermethrin, beta-cypermethrin, bioallethrin, bioallethrin ((S)-cyclopentylisomer), bioresmethrin, bifenthrin, (RS)-1-cyano-1-(6-phenoxy-2-pyridyl)methyl (1RS)-trans-3-(4-tert-butylphenyl)-2,2-dimethylcyclopropanecarboxylate (NCI 85193), cycloprothrin, cyfluthrin, cyhalothrin, cythithrin, cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, fenfluthrin, fenpropathrin, fenvalerate, flucythrinate, flumethrin, fluvalinate (D isomer), imiprothrin (S-41311), lambda-cyhalothrin, permethrin, phenothrin (® isomer), prallethrin, pyrethrins (natural products),

resmethrin, tefluthrin, tetramethrin, theta-cypermethrin, tralomethrin, transfluthrin, zeta-cypermethrin (F-56701);

4. from the group of the amidines amitraz, chlordimeform;

- 5. from the group of the tin compounds cyhexatin, fenbutatin oxide:
- 6. others 10 abamectin, ABG-9008, acetamiprid, acequinocyl, Anagrapha falcitera, AKD-1022, AKD-3059, ANS-118, azadirachtin, Bacillus thuringiensis, Beauveria bassianea, bensultap, bifenazate, binapacryl, BJL-932, bromopropylate, BTG-504, BTG-505, buprofezin, camphechlor, cartap, chlorobenzilate, chlorfenapyr, chlorfluazuron, 2-(4-chlorophenyl)-4,5-diphenylthiophene (UBI-T 930), chlorfentezine, chlorproxyfen, 15 chromafenozide, clothianidine, 2-naphthylmethyl cyclopropanecarboxylate (Ro12-0470), cyromazin, diacloden (thiamethoxam), diafenthiuron, DBI-3204, ethyl 2chloro-N-(3,5-dichloro-4-(1,1,2,3,3,3-hexafluoro-1-propyloxy)phenyl)carbamoyl)-2carboximidate, DDT, dicofol, diflubenzuron, N-(2,3-dihydro-3-methyl-1,3-thiazol-2ylidene)-2,4-xylidine, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, 20 diofenolan, emamectin benzoate, endosulfan, ethiprole (sulfethiprole), ethofenprox, etoxazole, fenazaquin, fenoxycarb, fipronil, flonicamid (IKI-220), fluazuron, flumite (flufenzine, SZI-121), 2-fluoro-5-(4-(4-ethoxyphenyl)-4-methyl-1-pentyl)diphenyl ether (MTI 800), granulosis and nuclear polyhedrosis viruses, fenpyroximate, fenthiocarb, 25 fluacrypyrim, flubenzimine, flubrocythrinate, flucycloxuron, flufenoxuron, flufenzine, flufenprox, fluproxyfen, gamma-HCH, halfenozide, halofenprox, hexaflumuron (DE_473), hexythiazox, HOI-9004, hydramethylnon (AC 217300), indoxacarb, ivermectin, L-14165, imidacloprid, indoxacarb (DPX-MP062), kanemite (AKD-2023), lufenuron, M-020, M-020, methoxyfenozide, milbemectin, NC-196, neemgard, nidinoterfuran, nitenpyram, 2-nitromethyl-4,5-dihydro-6H-thiazine (DS 52618), 30 2-nitromethyl-3,4-dihydrothiazole (SD 35651), 2-nitromethylene-1,2-thiazinan-3ylcarbamaldehyde (WL 108477), novaluron, pirydaryl, propargite, protrifenbute,

pymethrozine, pyridaben, pyrimidifen, pyriproxyfen, NC-196, NC-1111, NNI-9768, novaluron (MCW-275), OK-9701, OK-9601, OK-9602, OK-9802, R-195, RH-0345, RH-2485, RYI-210, S-1283, S-1833, SI-8601, silafluofen, silomadine (CG-177), spinosad, spirodiclofen, SU-9118, tebufenozide, tebufenpyrad, teflubenzuron, tetradifon, tetrasul, thiacloprid, thiocyclam, thiamethoxam, tolfenpyrad, triazamate, triethoxyspinosyn A, triflumuron, verbutin, vertalec (mykotal), YI-5301.

The abovementioned components for combinations are known active substances, many of which are described in Ch.R Worthing, S.B. Walker, The Pesticide Manual, 12th Edition. British Crop Protection Council, Farnham 2000.

The effective use doses of the compounds employed in the invention can vary within wide limits, particularly depending on the nature of the pest to be eliminated or degree of infestation, for example, of crops with these pests. In general, the compositions according to the invention usually contain about 0.05 to about 95% (by weight) of one or more active ingredients according to the invention, about 1 to about 95% of one or more solid or liquid carriers and, optionally, about 0.1 to about 50% of one or more other compatible components, such as surface-active agents or the like. In the present account, the term "carrier" denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate its application, for example, to the plant, to seeds or to the soil. This carrier is therefore generally inert and it must be acceptable (for example, agronomically acceptable, particularly to the treated plant).

The carrier may be a solid, for example, clays, natural or synthetic silicates, silica, resins, waxes, solid fertilizers (for example ammonium salts), ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite, bentonite or diatomaceous earth, or ground synthetic minerals, such as silica, alumina, or silicates especially aluminium or magnesium silicates. As solid carriers for granules the following are suitable: crushed or fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite; synthetic granules of inorganic or organic meals; granules of organic material such as sawdust, coconut shells, corn cobs, corn husks or tobacco stalks; kieselguhr, tricalcium phosphate, powdered cork,

or absorbent carbon black; water soluble polymers, resins, waxes; or solid fertilizers. Such solid compositions may, if desired, contain one or more compatible wetting, dispersing, emulsifying or colouring agents which, when solid, may also serve as a diluent.

The carrier may also be liquid, for example: water; alcohols, particularly butanol or 5 glycol, as well as their ethers or esters, particularly methylglycol acetate; ketones, particularly acetone, cyclohexanone, methylethyl ketone, methylisobutylketone, or isophorone; petroleum fractions such as paraffinic or aromatic hydrocarbons, particularly xylenes or alkyl naphthalenes; mineral or vegetable oils; aliphatic chlorinated hydrocarbons, particularly trichloroethane or methylene chloride; 10 aromatic chlorinated hydrocarbons, particularly chlorobenzenes; water-soluble or strongly polar solvents such as dimethylformamide, dimethyl sulphoxide, or Nmethylpyrrolidone; liquefied gases; or the like or a mixture thereof. The surface-active agent may be an emulsifying agent, dispersing agent or wetting agent of the ionic or non-ionic type or a mixture of such surface-active agents. 15 Amongst these are e.g., salts of polyacrylic acids, salts of lignosulphonic acids, salts of phenolsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or fatty acids or fatty esters or fatty amines, substituted phenols (particularly alkylphenols or arylphenols), salts of sulphosuccinic acid esters, 20 taurine derivatives (particularly alkyltaurates), phosphoric esters of alcohols or of polycondensates of ethylene oxide with phenols, esters of fatty acids with polyols, or sulphate, sulphonate or phosphate functional derivatives of the above compounds. The presence of at least one surface-active agent is generally essential when the active ingredient and/or the inert carrier are only slightly water soluble or are not water soluble and the carrier agent of the composition for application is water. 25 Compositions of the invention may further contain other additives such as adhesives or colorants. Adhesives such as carboxymethylcellulose or natural or synthetic polymers in the form of powders, granules or lattices, such as arabic gum, polyvinyl alcohol or polyvinyl acetate, natural phospholipids, such as cephalins or lecithins, or synthetic phospholipids can be used in the formulations. It is possible to use 30 colorants such as inorganic pigments, for example: iron oxides, titanium oxides or Prussian Blue; organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs or metal

phthalocyanine dyestuffs; or trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum or zinc.

For their agricultural application, the compounds of the invention are therefore generally in the form of compositions, which are in various solid or liquid forms.

Solid forms of compositions which can be used are dusting powders (with a content of the compound of the invention, ranging up to 80%), wettable powders or granules (including water dispersible granules), particularly those obtained by extrusion, compacting, impregnation of a granular carrier, or granulation starting from a powder (the content of the compound of the invention, in these wettable powders or granules being between about 0.5 and about 80%). Solid homogenous or heterogenous compositions containing one or more compounds of the invention, for example granules, pellets, briquettes or capsules, may be used to treat standing or running water over a period of time. A similar effect may be achieved using trickle or intermittent feeds of water dispersible concentrates as described herein.

15

20

25

30

Liquid compositions, for example, include aqueous or non-aqueous solutions or suspensions (such as emulsifiable concentrates, emulsions, flowables, dispersions, or solutions) or aerosols. Liquid compositions also include, in particular, emulsifiable concentrates, dispersions, emulsions, flowables, aerosols, wettable powders (or powder for spraying), dry flowables or pastes as forms of compositions which are liquid or intended to form liquid compositions when applied, for example as aqueous sprays (including low and ultra-low volume) or as fogs or aerosols.

Liquid compositions, for example, in the form of emulsifiable or soluble concentrates most frequently comprise about 5 to about 80% by weight of the active ingredient, while the emulsions or solutions which are ready for application contain, in their case, about 0.01 to about 20% of the active ingredient. Besides the solvent, the emulsifiable or soluble concentrates may contain, when required, about 2 to about 50% of suitable additives, such as stabilizers, surface-active agents, penetrating agents, corrosion inhibitors, colorants or adhesives. Emulsions of any required concentration, which are particularly suitable for application, for example, to plants, may be obtained from these concentrates by dilution with water. These

may be obtained from these concentrates by dilution with water. I hese compositions are included within the scope of the compositions which may be

employed in the present invention. The emulsions may be in the form of water-in-oil or oil-in-water type and they may have a thick consistency.

The liquid compositions of this invention may, in addition to normal agricultural use applications be used for example to treat substrates or sites infested or liable to infestation by arthropods (or other pests controlled by compounds of this invention) including premises, outdoor or indoor storage or processing areas, containers or equipment or standing or running water.

5

10

15

20

25

30

All these aqueous dispersions or emulsions or spraying mixtures can be applied, for example, to crops by any suitable means, chiefly by spraying, at rates which are generally of the order of about 100 to about 1,200 liters of spraying mixture per hectare, but may be higher or lower (eg. low or ultra-low volume) depending upon the need or application technique. The compound or compositions according to the invention are conveniently applied to vegetation and in particular to roots or leaves having pests to be eliminated. Another method of application of the compounds or compositions according to the invention is by chemigation, that is to say, the addition of a formulation containing the active ingredient to irrigation water. This irrigation may be sprinkler irrigation for foliar pesticides or it can be ground irrigation or underground irrigation for soil or for systemic pesticides.

The concentrated suspensions, which can be applied by spraying, are prepared so as to produce a stable fluid product which does not settle (fine grinding) and usually contain from about 10 to about 75% by weight of active ingredient, from about 0.5 to about 30% of surface-active agents, from about 0.1 to about 10% of thixotropic agents, from about 0 to about 30% of suitable additives, such as anti-foaming agents, corrosion inhibitors, stabilizers, penetrating agents, adhesives and, as the carrier, water or an organic liquid in which the active ingredient is poorly soluble or insoluble Some organic solids or inorganic salts may be dissolved in the carrier to help prevent settling or as antifreezes for water.

The wettable powers (or powder for spraying) are usually prepared so that they contain from about 10 to about 80% by weight of active ingredient, from about 20 to about 90% of a solid carrier, from about 0 to about 5% of a wetting agent, from about 3 to about 10% of a dispersing agent and, when necessary, from about 0 to about 80% of one or more stabilizers and/or other additives, such as penetrating agents.

adhesives, anti-caking agents, colorants, or the like. To obtain these wettable powders, the active ingredient is thoroughly mixed in a suitable blender with additional substances which may be impregnated on the porous filler and is ground using a mill or other suitable grinder. This produces wettable powders, the wettability and the suspendability of which are advantageous. They may be suspended in water to give any desired concentration and this suspension can be employed very advantageously in particular for application to plant foliage. The "water dispersible granules (WG)" (granules which are readily dispersible in water) have compositions which are substantially close to that of the wettable powders. They may be prepared by granulation of formulations described for the wettable powders, either by a wet route (contacting finely divided active ingredient with the inert filler and a little water, e.g. 1 to 20% by weight, or with an aqueous solution of a dispersing agent or binder, followed by drying and screening), or by a dry route (compacting followed by grinding and screening).

The rates and concentrations of the formulated compositions may vary according to the method of application or the nature of the compositions or use thereof. Generally speaking, the compositions for application to control arthropod or plant nematode pests usually contain from about 0.00001% to about 95%, more particularly from about 0.0005% to about 50% by weight of one or more compounds of the invention, or of total active ingredients (that is to say the compounds of the invention, together with other substances toxic to arthropods or plant nematodes, synergists, trace elements or stabilizers). The actual compositions employed and their rate of application will be selected to achieve the desired effect(s) by the farmer, livestock producer, medical or veterinary practitioner, pest control operator or other person skilled in the art.

Solid or liquid compositions for application topically to animals, timber, stored products or household goods usually contain from about 0.00005% to about 90%, more particularly from about 0.001% to about 10%, by weight of one or more compounds of the invention. For administration to animals orally or parenterally, including percutaneously solid or liquid compositions, these normally contain from about 0.1% to about 90% by weight of one or more compounds of the invention. Medicated feedstuffs normally contain from about 0.001% to about 3% by weight of

one or more compounds of the invention. Concentrates or supplements for mixing with feedstuffs normally contain from about 5% to about 90%, preferably from about 5% to about 50%, by weight of one or more compounds of the invention. Mineral salt licks normally contain from about 0.1% to about 10% by weight of one or more compounds of formula (I) or pesticidally acceptable salts thereof.

5

10

15

20

compounds of the invention.

Dusts or liquid compositions for application to livestock, goods, premises or outdoor areas may contain from about 0.0001% to about 15%, more especially from about 0.005% to about 2.0%, by weight, of one or more compounds of the invention. Suitable concentrations in treated waters are between about 0.0001 ppm and about 20 ppm, more particularly about 0.001 ppm to about 5.0 ppm. of one or more compounds of the invention, and may be used therapeutically in fish farming with appropriate exposure times. Edible baits may contain from about 0.01% to about 5%, preferably from about 0.01% to about 1.0%, by weight, of one or more

When administered to vertebrates parenterally, orally or by percutaneous or other means, the dosage of compounds of the invention, will depend upon the species, age, or health of the vertebrate and upon the nature and degree of its actual or potential infestation by arthropod or helminth pests. A single dose of about 0.1 to about 100 mg, preferably about 2.0 to about 20.0 mg, per kg body weight of the animal or doses of about 0.01 to about 20.0 mg, preferably about 0.1 to about 5.0 mg, per kg body weight of the animal per day, for sustained medication, are generally suitable by oral or parenteral administration. By use of sustained release formulations or devices, the daily doses required over a period of months may be combined and administered to animals on a single occasion.

The following composition EXAMPLES 2A - 2M illustrate compositions for use against arthropods, especially mites or insects, or plant nematodes, which comprise, as active ingredient, compounds of the invention, such as those described in preparative examples. The compositions described in EXAMPLES 2A - 2M can each be diluted to give a sprayable compositon at concentrations suitable for use in the field. Generic chemical descriptions of the ingredients (for which all of the following percentages are in weight percent), used in the composition EXAMPLES 2A - 2M exemplified below, are as follows:

Trade Name Chemical Description

Ethylan BCP Nonylphenol ethylene oxide condensate

Soprophor BSU Tristyrylphenol ethylene oxide condensate

Arylan CA A 70% w/v solution of calcium dodecylbenzenesulfonate

Solvesso 150 Light C₁₀ aromatic solvent

Arylan S Sodium dodecylbenzenesuifonate

Darvan NO₂ Sodium lignosulphonate

Celite PF Synthetic magnesium silicate carrier

Sopropon T36 Sodium salts of polycarboxylic acids

10 Rhodigel 23 Polysaccharide xanthan gum

Bentone 38 Organic derivative of magnesium montmorillonite

Aerosil Microfine silicon dioxide

EXAMPLE 2A

15 A water soluble concentrate is prepared with the composition as follows:

Active ingredient 7%
Ethylan BCP 10%
N-methylpyrrolidone 83%

To a solution of Ethylan BCP dissolved in a portion of N-methylpyrrolidone is added the active ingredient with heating and stirring until dissolved. The resulting solution is made up to volume with the remainder of the solvent.

20 EXAMPLE 2B

25

An emulsifiable concentrate (EC) is prepared with the composition as follows:

Active ingredient 25%(max)
Soprophor BSU 10%

Arylan CA 5%

N-methylpyrrolidone 50% Solvesso 150 10%

The first three components are dissolved in N-methylpyrrolidone and to this is then added the Solvesso 150 to give the final volume.

EXAMPLE 2C

A wettable powder (WP) is prepared with the composition as follows:

Active ingredient 40%
Arylan S 2%
Darvan NO₂ 5%

Celite PF 53%

The ingredients are mixed and ground in a hammer-mill to a powder with a particle size of less than 50 microns.

EXAMPLE 2D

5

10

15

An aqueous-flowable formulation is prepared with the composition as follows:

Active ingredient 40.00%

Ethylan BCP 1.00%

Sopropon T360. 0.20%

Ethylene glycol 5.00%

Rhodigel 230. 0.15%

Water 53.65%

The ingredients are intimately mixed and are ground in a bead mill until a mean particle size of less than 3 microns is obtained.

EXAMPLE 2E

An emulsifiable suspension concentrate is prepared with the composition as follows:

Active ingredient 30.0% Ethylan BCP 10.0% Bentone 38 0.5% Solvesso 150 59.5%

The ingredients are intimately mixed and ground in a beadmill until a mean particle size of less than 3 microns is obtained.

EXAMPLE 2F

A water dispersible granule is prepared with the composition as follows:

Active ingredient	30%
Darvan No 2	15%
Arylan S	8%
Celite PF	47%

The ingredients are mixed, micronized in a fluid-energy mill and then granulated in a rotating pelletizer by spraying with water (up to 10%). The resulting granules are dried in a fluid-bed drier to remove excess water.

5 EXAMPLE 2G

A dusting powder is prepared with the composition as follows:

Active ingredient

1 to 10%

Talc powder-superfine

99 to 90%

The ingredients are intimately mixed and further ground as necessary to achieve a fine powder. This powder may be appplied to a locus of arthropod infestation, for example refuse dumps, stored products or household goods or animals infested by, or at risk of infestation by, arthropods to control the arthropods by oral ingestion. Suitable means for distributing the dusting powder to the locus of arthropod infestation include mechanical blowers, handshakers or livestock self treatment devices.

15 EXAMPLE 2H

10

20

An edible bait is prepared with the composition as follows:

Active ingredient

0.1 to 1.0%

Wheat flour

80%

Molasses

19.9 to 19%

The ingredients are intimately mixed and formed as required into a bait form. This edible bait may be distributed at a locus, for example domestic or industrial premises, e.g. kitchens, hospitals or stores, or outdoor areas, infested by arthropods, for example ants, locusts, cockroaches or flies, to control the arthropods by oral ingestion.

EXAMPLE 21

A solution formulation is prepared with a composition as follows:

Active ingredient

15%

Dimethyl sulfoxide

85%

The active ingredient is dissolved in dimethyl sulfoxide with mixing and or heating as required. This solution may be applied percutaneously as a pour-on application to domestic animals infested by arthropods or, after sterilization by filtration through a polytetrafluoroethylene membrane (0.22 micrometer pore size), by parenteral injection, at a rate of application of from 1.2 to 12 ml of solution per 100 kg of animal body weight.

10 EXAMPLE 2J

5

15

A wettable powder is prepared with the composition as follows:

Active ingredient 50%
Ethylan BCP 5%
Aerosil 5%
Celite PF 40%

The Ethylan BCP is absorbed onto the Aerosil which is then mixed with the other ingredients and ground in a hammer-mill to give a wettable powder, which may be diluted with water to a concentration of from 0.001% to 2% by weight of the active compound and applied to a locus of infestation by arthropods, for example, dipterous larvae or plant nematodes, by spraying, or to domestic animals infested by, or at risk of infection by arthropods, by spraying or dipping, or by oral administration in drinking water, to control the arthropods.

20 EXAMPLE 2K

A slow release bolus composition is formed from granules containing the following components in varying percentages(similar to those described for the previous compositions) depending upon need:

Active ingredient

Density agent

Slow-release agent

Binder

The intimately mixed ingredients are formed into granules which are compressed into a bolus with a specific gravity of 2 or more. This can be administered orally to ruminant domestic animals for retention within the reticulo-rumen to give a continual slow release of active compound over an extended period of time to control infestation of the ruminant domestic animals by arthropods.

EXAMPLE 2L

5

A slow release composition in the form of granules, pellets, brickettes or the like can be prepared with compositions as follows:

Active ingredient 0.5 to 25%

Polyvinyl chloride 75 to 99.5%

Dioctyl phthalate (plasticizer)

The components are blended and then formed into suitable shapes by melt-extrusion or molding. These composition are useful, for example, for addition to standing water or for fabrication into collars or eartags for attachment to domestic animals to control pests by slow release.

15 EXAMPLE 2M

A water dispersible granule is prepared with the composition as follows:

Active ingredient	85%(max)
Polyvinylpyrrolidone	5%
Attapulgite clay	6%
Sodium lauryl sulfate	2%
Glycerine	2%

The ingredients are mixed as a 45% slurry with water and wet milled to a particle size of 4 microns, then spray-dried to remove water.

METHODS OF PESTICIDAL USE

5

10

15

The following representative test procedure, using compounds of the invention, was conducted to determine the parasiticidal activity of the compounds of the invention.

METHOD A: Screening method to test systemicity of compounds against Ctenocephalides felis (Cat flea)

A test container was filled with 10 adults of Ctenocephalides felis. A glass cylinder was closed on one end with parafilm and placed on top of the test container. The test compound solution was then pipetted into bovine blood and added to the glass cylinder. The treated Ctenocephalides felis were held in this artificial dog test (blood 37 °C, 40-60 % relative humidity; Ctenocephalides felis 20-22°C, 40-60 % relative humidity) and assessment performed at 24 and 48 hours after application.

Compound numbers 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 7-2, 7-3, 7-4, 7-9 and 8-1 gave at least 80% control of Ctenocephalides felis at a test concentration of 5ppm or less.

BCS 03-1025

CLAIMS

1. A compound of formula (I):

wherein:

5

25

 R^1 is $CSNH_2$ or $C(=N-Z)-S(O)_CQ$;

W is C-halogen or N;

R² is hydrogen or Cl:

R³ is CF₃, OCF₃ or SF₅; 10

Q is (C_1-C_6) -alkyl or $-CH_2R^7$;

Z is H, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -alkynyl, $-(CH_2)_qR^7$, C₆)-alkynyl;

R⁴ is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-15 C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₆)-alkyl, CO₂-(C₃- C_6)-alkenyl, CO_2 - $(C_3$ - C_6)-alkynyl, $-CO_2$ - $(CH_2)_q$ - R^7 , $-CH_2R^7$, $-CH_2R^9$, OR^7 , OR^8 , COCO₂R¹⁰ or COCONR¹⁰R¹¹; or CO₂-(C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C1-C3)-alkoxy and (C₁-C₃)-alkylthio; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more 20 radicals selected from the group consisting of halogen, (C1-C6)-alkoxy, (C1- C_6)-haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_pR^8$ and CO_2 - (C_1-C_6) -alkyl; A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene;

 R^5 is (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₃-C₆)-cycloalkyl or --(CH₂)_qR⁷; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals

selected from the group consisting of halogen, (C_1 - C_6)-alkoxy, (C_1 - C_6)-haloalkoxy, (C_3 - C_7)-cycloalkyl, S(O) $_p$ R 8 and CO $_2$ -(C_1 - C_6)-alkyl;

X is F or Cl;

R⁶ is F, Cl or Br;

R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, CO₂-(C₁-C₆)-alkyl, COR⁸, NR¹²R¹³ and OH; R⁸ is (C₁-C₆)-alkyl or (C₁-C₆)-haloalkyl;

R⁹ is a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S, unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)_pR⁸ and OH;

R¹⁰ and R¹¹ are each independently H or R⁵;

- or the radical NR¹⁰R¹¹ forms a five- to seven-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl and CO₂-(C₁-C₆)-alkyl;
- 20 R¹² and R¹³ are each independently H or (C₁-C₆)-alkyl; m, n, p and r are each independently zero, one or two; and q is zero or one; or a pesticidally acceptable salt thereof.
- 25 2. A compound or a salt thereof as claimed in claim 1 wherein R¹ is CSNH₂ or C(=N-Z)-S-Q, wherein Z is H and Q is (C₁-C₃)-alkyl.
 - 3. A compound or a salt thereof as claimed in claim 1 or 2 wherein R^6 and X are both F.
 - 4. A compound or a salt thereof as claimed in claim 1, 2 or 3 wherein R¹ is CSNH₂ or C(=NH)-S-Q;

W is C-Cl;

R² is Cl;

R³ is CF₃ or OCF₃;

Q is (C₁-C₃)-alkyl;

- R⁴ is (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₃-C₇)-cycloalkyl, CO₂-(C₁-C₃)-alkyl, CO₂-(C₃-C₄)-alkenyl, CO₂-(C₃-C₄)-alkynyl or -CO₂-(CH₂)_q-R⁷; or (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl;
- A is (C₁-C₄)-alkylene or (C₁-C₄)-haloalkylene;

 R⁵ is (C₃-C₆)-cycloalkyl or –(CH₂)_qR⁷; or (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, (C₃-C₆)-cycloalkyl, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl;

 X is F or Cl;
- 15 R⁶ is F or Cl;
 - R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkyl, (C_1-C_3) -alkyl, (C_1-C_3) -alkyl, (C_1-C_3) -alkyl, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl;
- 20 R¹² and R¹³ are each independently H or (C₁-C₃)-alkyl; m, n and p are each independently zero, one or two; and q is zero or one.
- 5. A compound or a salt thereof as claimed in any one of claims 1 to 4 wherein 25 R¹ is CSNH₂ or C(=NH)-S-Q;

W is C-CI:

R² is Cl:

R³ is CF₃ or OCF₃;

Q is (C₁-C₃)-alkyl;

30 R^4 is CO_2 -(C_1 - C_3)-alkyl, CO_2 -(C_3 - C_4)-alkenyl, CO_2 -(C_3 - C_4)-alkynyl or - CO_2 -(CH_2)_q- R^7 ; or (C_1 - C_3)-alkyl;

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl or $-(CH_2)_qR^7$; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and $S(C_1-C_3)$ -alkyl;

X is F or CI:

5 R^6 is F or CI;

20

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂ and S(O)_pR⁸;

 R^8 is (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl;

- m, n and p are each independently zero, one or two; and q is zero or one.
 - 6. A process for the preparation of a compound of formula (I) or a salt thereof as defined in any one of claims 1 to 5, which process comprises:
- 15 a) where R¹ is CSNH₂, and R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined in claim 1, reacting a compound of formula (II):

wherein R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined in formula (I), with an alkali or alkaline earth metal hydrosulfide; or

- b) where R¹ is CSNH₂, and R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined in claim 1, reacting a compound of formula (II) as defined above with a bis(trialkylsilyl)sulfide, in the presence of a base; or
- c) where R¹ is C(=NH)-S-Q, and Q, R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined in claim 1, reacting a compound of formula (I) wherein R¹ is CSNH₂ with an alkylating agent of formula (III) or (IV):

Q-L (III) $Q_3O^+BF_4^-$ (IV)

wherein Q is as defined in formula (I) and L is a leaving group; or

5

15

d) where R¹ is C(=N-Z)-S-Q, Z is as defined in claim 1 with the exclusion of H, and the other values are as defined in formula (I), alkylating, acylating or sulfonylating the corresponding compound of formula (I) wherein Z is H, with a compound of formula (V):

 $Z-L^1$ (V)

wherein Z is as defined in formula (I) with the exclusion of H, and L^1 is a leaving group; and

- 10 (e) if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.
 - 7. A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 5, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.
- 8. The use of a compound of formula (I) or a salt thereof according to any one of claims 1 to 5 or of a composition according to claim 7, for the preparation of a veterinary medicament.
 - 9. The use of a compound of formula (I) or a salt thereof according to any one of claims 1 to 5 or of a composition according to claim 7, for the control of pests.
- 10. A method for controlling pests at a locus which comprises applying thereto an effective amount of a compound of formula (I) or a salt thereof as claimed in any one of claims 1 to 5 or of a composition according to claim 7.

b r			
			×

ABSTRACT

BCS 03-1025

Pesticides

The invention relates to 5-substituted-alkylaminopyrazole derivatives of formula (I) or salts thereof:

wherein the various symbols are as defined in the description, to processes for their preparation, to compositions thereof, and to their use for the control of pests (including arthropods and helminths).

CT/EP2004/009376

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.