Spaces and Points

Lecture 3a

CS3400 Machine Learning

Space

- Coordinate system
- Has a specified number of dimensions
- Examples:
 - 2D x, y
 - 3D x, y, z
- Not restricted to 2 or 3
 dimensions in this course we'll
 see examples of high dimensional spaces!

Geographic Coordinate System

- Latitude and longitude form a 2D coordinate system or space
- Used to describe locations across the globe
- MSOE: 43.041070, -87.909420
- Miller Park: 43.011790, -87.967780
- Margate, FL: 26.242530,
 -80.204920

Points

- A point is a 0-dimensional geometric object (has no volume)
- Represented as a tuple of N numbers (one for each dimension in the space)
 - p = (x, y)
 - p = (x, y, z)

Points

Examples of 2D points:

- (0.75, 0.2)
- (1.25, 0)
- (1.25, -1.75)

Examples of 3D Points

- Each point is the client of an advertising company
- The coordinates refer to the number advertisements they bought
 - TV advertisements
 - radio advertisements
 - newspaper advertisements

Calculating Distance

- We can calculate the distance between two points
- A distance function is any function d(p0, p1) that satisfies three properties:
 - d(p0, p0) = 0 the distance of any point and itself is 0
 - d(p0, p1) >= 0 distances cannot be negative
 - d(p0, p1) <= d(p0, p2) + d(p2, p1)
 –triangle inequality

Euclidean Distance

You are probably familiar with Euclidean distance:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

for the 2D points (x1, y1) and (x2, y2) and

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

for the 3D points (x1, y1, z1) and (x2, y2, z2) Euclidean distance can be extended to any number of dimensions

Spaces in This Course

In this course, we're going to talk about two main types of spaces:

- Feature spaces
 - Features are variables containing measurements of objects (e.g., length)
 - A feature space is the collection of all features describing objects
 - Each point in our data set is a point in the feature space
- Parameter spaces
 - Models have variables called parameters
 - The parameters form a space
 - Each fitted model is a unique combination of the parameter values that is a distinct point in the parameter space
 - The parameter space represents all possible models

Advertising Data Set

- Each record corresponds to a single company that is a client of an advertising agency
- Response: Amount of sales
- Predictors (features):
 - Amount of TV advertisements
 - Amount of radio advertisements
 - Amount of newspaper advertisements

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Feature Space

- The data set has 3 features
 - TV advertisements
 - radio advertisements
 - newspaper advertisements
- The feature space therefore has 3 dimensions
- Note that the feature space does not include the output variable!
- These features describe each object as a point in the feature space

Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

where \hat{y} is the predicted value, p is the number of features, x_i are the features, and β_i are the feature weights.

Advertising Data

$$\widehat{sales} = \beta_0 + \beta_1 TV + \beta_2 radio + \beta_3 newspaper$$

where \widehat{sales} is the predicted value, TV, radio, and newspaper are the features, and β_i are the feature weights.

Fitted Model

$$\widehat{sales} = 0.0874 + 0.0530 \cdot TV + 0.2215 \cdot radio + 0.0162 \cdot newspaper$$

where \widehat{sales} is the predicted value, TV, radio, and newspaper are the features, and β_i are the feature weights.

Parameter Space

- The model has four 4 parameters $(\beta_0 \beta_3)$
- The parameter space has 4 dimensions
- The parameter values describe each model as a point in the parameter space

Parameter Space

- We'll use the parameter space to search for model parameters that optimize a model for a given data set
- We'll use a "cost" function to measure the fit of a set of parameters
- The parameters that give the lowest cost will be give us the best model

