UMD DATA605 - Big Data Systems Issues with Relational DBs NoSQL Taxonomy (Apache) HBase

Dr. GP Saggese gsaggese@umd.edu

with thanks to Prof.
Alan Sussman (UMD)
Amol Deshpande (UMD)
Oliver Kennedy (U. Buffalo)
Doug Thain (U. Notre Dame)

Jupyter Tutorial

- Let's start with a tutorial of Jupyter notebooks
- Jupyter tutorial dir
- Readme
 - Explains how to run the tutorial
- Notebook to execute / study

UMD DATA605 - Big Data Systems Issues with Relational DBs NoSQL Taxonomy (Apache) HBase

Resources

- Concepts in the slides
- Tutorial on MongoDB next lesson
- Tons of tutorials on line
- Silbershatz Chap 10.2
- Nice high-level view:
 - Seven Databases in Seven Weeks, 2e

Seven Databases in Seven Weeks

A Guide to Modern Databases and the NoSQL Movement

Luc Perkins with Eric Redmond and Jim R. Wilson

Series editor: *Bruce A. Tate* Development editor: *Jacquelyn Carter*

From SQL to NoSQL

DBs are central tools to big data

- New applications, new constraints to data / storage
- Around 2000s NoSQL "movement" started
 - Initially it meant "No SQL" -> "Not Only SQL"

DBs (e.g., SQL vs NoSQL) make different trade-offs

- Different worldviews
- Schema vs schema-less
- Rich vs fast ability of query
- Strong consistency (ACID), weak, eventual consistency
- APIs (SQL, JS, REST)
- Horizontal vs vertical scaling, sharding, replication schemes
- Indexing (for rapid lookup) vs no indexing
- Tuned for reads or writes, how much control over tuning

· The user base / applications have expanded

- IMO Postgres + Mongo cover 99% of use cases
- Any data scientist / engineer needs to be familiar with both
- "Which DB solves my problem best?"

Polyglot model

- Use more than one DB in each project
- Relational DBs are not going to disappear any time soon

Issues with Relational DBs

- Relational DBs have drawbacks
 - 1) Application-DB impedance mismatch
 - 2) Schema flexibility
 - 3) Consistency in distributed set-up
 - 4) Limited scalability
- In the next slides for each drawback we will discuss:
 - What is the problem
 - Possible solutions
 - Within relational SQL paradigm
 - With NoSQL approach

1) App-DB Impedance Mismatch: Problem

- Mismatch between how data is represented in the code and in a relational DB
 - Code thinks in terms of:
 - Data structures (e.g., lists, dictionaries, sets)
 - Objects
 - Relational DB thinks in terms of:
 - Tables (entities)
 - Rows (actual instances of entities)
 - Relationships between tables (relationships between entities)
- Example of the app-DB mismatch:
 - Application stores a simple Python map like:

```
# Store a dictionary from name (string) to tags (list of strings).
tag_dict: Dict[str, List[str]]
```

- A relational DB needs 3 tables:
 - Names (<u>nameId</u>, name) to store the keys
 - Tags(tagId, tag) to store the values
 - Names_To_Tags(nameId, tagId) to map the keys to the values
- One could denormalize the tables using a single table
 - Names(name, tag)

1) App-DB Impedance Mismatch: Solutions

Ad-hoc mapping layer

- Translate objects and data structures into DB data model
 - E.g., you implement a layer that handles storing into the DB "Name to Tags" transparently
 - The code thinks in terms of a map, but there are 3 tables in the DB
- Cons
 - You need to write / maintain code

Object-relational mapping (ORM)

- Pros
 - Convert automatically data between object code and relational DB
 - E.g., implement a Person object (e.g., name, phone number, addresses)
 using DB
 - E.g., <u>SQLAlchemy</u> for Python and SQL
- Cons
 - Complex types (e.g., struct), polymorphism, inheritance

NoSQL approach

- No schema
 - Every object can be flat or complex (e.g., nested JSON)
 - Stored objects (aka documents) can be different

2) Schema Flexibility

Problem

- Not all applications have data that fits neatly into a schema
- E.g., data can be nested and / or dishomogeneous (e.g., List[Obj])

Within relational DB

- Use a schema general enough to accommodate all the possible cases
- Cons
 - Super-complicated schema with implicit relations
 - DB tables are sparse
 - It is a violation of the basic relational DB assumption

NoSQL approach

- E.g., MongoDB does not enforce any schema
- Pros
 - Application does not worry about schema when writing data
- Cons
 - Application needs to deal with variety of schemas when it processes the data
 - Related to ETL vs ELT data pipelines

3) Consistency in Relational DBs

All systems in the real-world fail

- Application error (e.g., corner case, internal error)
- Application crash (e.g., OS issue)
- Hardware failure (e.g., RAM ECC error, disk)
- Power failure

- Relational DBs enforce <u>ACID</u> properties

Need to be guaranteed for any system failure

- Atomicity

- = transactions are "all or nothing"
- Either a transaction (which can be composed of multiple statements) succeeds completely or fails

Consistency

- = any transaction brings the DB from a valid state to another
- The "invariants" of the DB (e.g., primary, foreign key constraints) must be maintained

Isolation

- = if transactions are executed *concurrently*, the result is the same as if the transactions were executed *sequentially*

Durability

- = once a transaction has been committed, the content is preserved for any system failure
- Just record the data in non-volatile memory

Application error

Hardware failure

3) Consistency in Distributed DB

- When data scales up or number of clients increases → distributed setup
- Goals to achieve:
 - Performance (e.g., transaction per seconds)
 - Availability (guarantee of a certain up-time)
 - Fault-tolerance (can recover from faults)

Achieving ACID consistency is:

- Not easy in a single DB setup
 - E.g., Postgres guarantees ACID
 - E.g., MongoDB doesn't guarantee ACID
- Impossible in a distributed DB setup
 - Due to CAP theorem
 - · Even weak consistency is difficult to achieve

A = Atomicity

C = Consistency

I = Isolation

D = Durability

CAP Theorem

- CAP theorem: Any distributed DB can have at most two of the following three properties
 - Consistent:
 - All clients see the same data
 - Writes are atomic and subsequent reads retrieve the new value
 - Available: a value is returned as long as a single server is running
 - Partition tolerant: the system still works even if communication is temporary lost (i.e., the network is partitioned)
- Originally a conjecture (Eric Brewer)
- Made formal later (Gilbert, Lynch, 2002)

CAP Corollary

- CAP Theorem: pick 2 among consistency, availability, partition tolerance
- Network partitions cannot be prevented in large-scale distributed system
 - Minimize probability of failures using redundancy and fault-tolerance
- Need to either sacrifice:
 - Availability (i.e., allow system to go down)
 - E.g., banking system
 - Consistency (i.e., allow different views of the system)
 - E.g., social network

CAP Theorem: Intuition

- Imagine there are
 - a client (Node0)
 - two DB replicas (Node1, Node2)

A network partition happens

- DB servers (Node1, Node2) can't communicate with each other
- Users (*Node0*) can access only one of them (*Node2*)
- **Reads**: the user can access the data of the server in the same partition
- **Writes**: data can't be updated since multiple users might be updating the data on different replicas, leading to inconsistency
- **CAP theorem:** one needs to sacrifice consistency or availability
- Available, but not consistent
 - Let updates happen on the accessible replica at cost of inconsistency
 - Sometimes inconsistency is fine (e.g., social networking)
- Consistent, but not available
 - Stop the service (no availability) to avoid inconsistency
 - Sometimes inconsistency is not acceptable (e.g., a banking system)

DB replica

Replication Schemes

- Replication schemes: how to organize multiple servers implementing a distributed DB
- Primary-secondary replication
 - Application only communicates with primary
 - Replicas cannot update local data, but require primary node to perform update
 - Single-point of failure

Update-anywhere replication

- Aka "multi-master replication"
- Every replica can update a data item, which is then propagated (synchronously or asynchronously) to the other replicas

Quorum

- Let N be the total number of replicas
- When writing, we make sure to write to W replicas
- When reading, we read from *R* replicas and pick the latest update (using timestamps)

Primary-secondary replication

Update-anywhere replication

Synchronous Replication

- Synchronous replication: updates are propagated to other replicas as part of a single transaction
- Implementations
 - 2-Phase Commit (2PC): original proposal for doing this
 - Single point of failure
 - Can't handle primary server failure
 - Paxos: more widely used today
 - Doesn't require a primary
 - More fault tolerant
 - Both solutions are complex / expensive
- CAP theorem: still only one among Consistency, Availability, in case of Network partition
 - Many systems use relaxed / loose consistency models

Asynchronous Replication

Asynchronous replication

- The primary node propagates updates to replicas
- The transaction is completed before replicas are updated (even if there are failures)
- Commits are quick at cost of consistency

Eventual consistency

- Popularized by AWS DynamoDB
- Consistency guaranteed only on the eventual outcome
- "Eventual" can mean after the server or network is fixed

- "Freshness" property

- Under asynchronous updates, a read from a replica may not get the latest version of a data item
- User can request a version with a certain "freshness"
 - E.g., "data from not more than 10 minutes ago"
 - E.g., it's ok to show price for an airplane ticket that is few minutes old
- Replicas version their data with timestamps
- If local replica has fresh data, uses it, otherwise send request to primary node

Asynchronous Replication

4) Scalability Issues with RDMS

The sources of relational SQL DB scalability issues are:

Locking data

- The DB engine needs to lock rows and tables to ensure ACID properties
- When DB locked:
 - Higher latency → Fewer updates per second → Slower application

Even worse in distributed set-up

- Requires replicating data over multiple servers (scaling out)
- Application becomes even slower
 - Network delays
 - To enforce DB consistency, locks are applied across networks

Overhead of replica consistency (2PC, Paxos)

Scalability Issues with RDMS: Solutions

Table denormalization

- = approach used to increase relational DB performance by adding redundant data
- Pros
 - Reads become faster
 - Lock only one table, instead of multiple ones, reducing resource contention
 - No need for joins

Cons

- Writes become slower
 - There is more data to update
 - E.g., to update a category name, need to do a scan
- If we join the tables, we lose relations between tables (this is the main reason of using a relational DB!)

Relax consistency

- Give up on part of ACID
- Make definition of consistency weaker
 - E.g., eventual consistency
- NoSQL

Normalized data

Denormalized data

NoSQL Stores

Use cases of large-scale web applications

- Applications need real-time access with a few ms latencies
 - E.g., Facebook: 4ms for reads to get snappy UI
- Applications don't need ACID properties
- In fact, MongoDB started at DoubleClick (AdTech), acquired by Google

Solve previous problems with relational databases

- 1) Application-DB impedance mismatch
- 2) Schema flexibility
- 3) Consistency in distributed set-up
- 4) Scalability

If you want to really scale out, you must give up something

- Give up consistency
- Give up joins
 - Most NoSQL stores don't allow server-side joins
 - Instead require data to be denormalized and duplicated
- Only allow restricted transactions
 - Most NoSQL stores will only allow one object transactions
 - E.g., one document / key

Relational DB vs MongoDB

How MongoDB solves the four RDBM problems

1) Application-DB impedance mismatch

Store data as nested objects

2) Schema flexibility

 No schema, no tables, no rows, no columns, no relationships between tables

3) Consistency in replicated set-up

- Application decides consistency level
 - Synchronous: wait until primary and secondary servers are updated
 - Quorum synchronous: wait until the majority of secondary servers are updated
 - Asynchronous, eventual: wait until only the primary is updated
 - "Fire and forget": not even wait until the primary persisted the data

4) Scalability

- Updating data means locking only one document, and not entire collection
- Sharding: use more machines to do collectively do more work

UMD DATA605 - Big Data Systems Issues with Relational DBs NoSQL Taxonomy (Apache) HBase

Resources

- Concepts in the slides
- Silberschatz Chapter23.6
- Mastery:
 - Seven Databases in Seven Weeks, 2e

DB Taxonomy

At least five DB genres

- Relational (e.g., Postgres)
- Key-value (e.g., Redis)
- Document (e.g.,. MongoDB)
- Columnar (e.g., Parquet)
- Graph (e.g., Neo4j)

Key-Value

Document

Criteria to differentiate DBs

- Data model
- Trade-off with respect to CAP theorem
- Querying capability
- Replication scheme

Wide-column

Graph

Relational DB

E.g., Postgres, MySQL, Oracle, SQLite

Data model

- Based on set-theory and relational algebra
- Data as two dimensional tables with rows and columns
- Many attribute types (e.g., numeric, strings, dates, arrays, blobs)
- Attribute types are strictly enforced
- SQL query language
- ACID consistency

Application

Any relational tabular data

Good for

- When layout of data is known, but not the data access pattern
- Complexity upfront for schema to achieve query flexibility
- Used when data is regular

Not so good for

- When data is hierarchical (not a nice row in one or more tables)
- When data structure is variable/dishomogeneous (record-to-record variation)

Key-Value Store

• E.g., Redis, DynamoDB, Git, AWS S3, filesystem

Data model

- Map simple keys (e.g., strings) to more complex values (e.g., it can be anything, binary blob)
- Support get, put, and delete operations on a primary key

Application

- Caching data
- E.g., store users' session data in a web application
- E.g., store the shopping cart in an e-commerce application

Good for

- Useful when data is not "related" (e.g., no joins)
- Lookups are fast
- Easy to scale horizontally using partitioning scheme

Not so good for

- Not great if data queries are needed
- Lacking secondary indexes and scanning capabilities

Key-Value

Document Store

• E.g., MongoDB, CouchDB

Data model

- Like key-value but value is a document (i.e., a nested dict)
- Each document has a unique ID (e.g., hash)
- Any number of fields per document, even nested
 - · E.g., JSON, XML, dict data

Application

Any semi-structured data

Good for

- When you don't know how your data will look like
- Map well to OOP models (less impedance mismatch between application and DB)
- Since documents are not related, it's easy to shard and replicate over distributed servers

Not so good for

- Complex join queries
- Denormalized form is the norm

Document

Columnar Store

E.g., HBase, Cassandra, Parquet

Data model

- Data is stored by columns, instead of rows like in relational DBs
- Share similarities with both key-value and relational DBs
 - Keys are used to query values (like key-value stores)
 - Values are groups of zero or more columns (like relational stores)

Application

- Storing web-pages
- Storing time series data
- OLAP workloads

Good for

- Horizontal scalability
- Enable compression and versioning
- Tables can be sparse without extra storage cost
- Columns are inexpensive to add

Not so good for

- Need to design the schema based on how you plan to query the data
- No native joins, applications need to handle join

Wide-column

Graph DB

E.g., Neo4J, GraphX

Data model

- Highly interconnected data, storing nodes and relationships between nodes
- Both nodes and edges have properties (i.e,. key-value pairs)
- Queries involve traversing nodes and relationships to find relevant data

Applications

- Social data
- Recommendation engines
- Geographical data

Good for

- Perfect for "networked data", which is difficult to model with relational model
- Good match for OO systems

Not so good for

- Don't scale well, since it's difficult to partition graph on different nodes
 - Store the graph in the graph DB and the relations in a key-value store

Graph

Taxonomy by CAP

Taxonomy by CAP

CA (Consistent, Available) systems

- Have trouble with partitions and typically deal with it with replication
- Traditional RDBMSs (e.g., PostgreSQL, MySQL)

CP (Consistent, Partition-Tolerant) systems

- Have trouble with availability while keeping data consistent across partitioned nodes
- BigTable (column-oriented/tabular)
- HBase (column-oriented/tabular)
- MongoDB (document-oriented)
- Redis (key-value)
- MemcacheDB (key-value)
- Berkeley DB (key-value)

AP (Available, Partition-Tolerant) systems

- Achieve "eventual consistency" through replication and verification
- <u>Dynamo</u> (key-value)
- <u>Cassandra</u> (column-oriented/tabular)
- CouchDB (document-oriented)

UMD DATA605 - Big Data Systems NoSQL Stores NoSQL Taxonomy (Apache) HBase

Resources

- Content in slides
- Web
 - 2006, BigTable paper
 - https://hbase.apache.org/
 - https://github.com/apache/h base
- Good overview:
 - Seven Databases in Seven
 Weeks, 2e

Seven Databases in Seven Weeks

> A Guide to Modern Databases and the NoSQL Movement

Second Edition

Luc Perkins with Eric Redmond and Jim R. Wilson

Series editor: *Bruce A. Tate* Development editor: *Jacquelyn Carter*

(Apache) HBase

HBase = Hadoop DataBase

- Support very large tables on clusters of commodity hardware
- Column oriented DB
- Part of Apache Hadoop ecosystem
- Use Hadoop filesystem (HDFS)
 - HDFS modeled after Google File System (GFS)
 - HBase based on Google BigTable
 - Google BigTable runs on GFS, HBase runs on HDFS
- Used at Google, Airbnb, eBay

When to use HBase

- For large DBs (e.g., at least many 100 GBs or TBs)
- When having at least 5 nodes in production

Applications

- Large-scale online analytics
- Heavy-duty logging
- Search systems (e.g., Internet search)
- Facebook Messages (based on Cassandra)
- Twitter metrics monitoring

HBase: Features

- Data versioning
 - Store versions of data
- Data compression
 - Compress and decompress on-the-fly
 - Makes the system much more complicated
 - Difficult to do random access
- Garbage collection (for expired data)
- In-memory tables
- Atomicity, but only at row level
 - Relational DBs have flexible atomicity begin ... end transaction
- Strong consistency guarantees
- Fault tolerant (for machines and network)
 - Write-ahead logging
 - Write data to an in-memory log before it's written to disk
 - Distributed configuration
 - Nodes can rely on each other rather than on a centralized source

From HDFS to HBase

Different types of workloads for DB backends

- OLTP (On-Line Transactional Processing)
 - Read and write individual data items in a large table
 - E.g., update inventory and price as orders come in
- OLAP (On-Line Analytical Processing)
 - Read large amount of data and process it
 - E.g., analyze item purchases over time

Hadoop FileSystem (HDFS) supports OLAP workloads

- Provide a filesystem consisting of arbitrarily large files
- Data should be read sequentially, end-to-end
- Rarely updated

HBase supports OLTP interactions

- Built on top of HDFS
- Use additional storage and memory to organize the tables

Write tables back to HDFS as needed

HBase Data Model

- Warning: HBase uses names similar to relational DB concepts, but with different meanings
- A database consists of multiple tables
- Each table consists of multiple rows, sorted by row key
- Each row contains a row key and one or more column families
- Each column family
 - Can contain multiple columns (family:column)
 - Is defined when the table is created
- A cell
 - Is uniquely identified by (table, row, family:column)
 - Contains metadata (e.g., timestamp) and an uninterpreted array of bytes (blob)
- Versioning
 - New values don't overwrite the old ones
 - 'put()' and 'get()' allow to specify a timestamp (otherwise uses current time)

```
# HBase Database: from table name to Table.
Database = Dict[str, Table]
# HBase Table.
table: Table = {
  # Row kev
  'row1': {
    # (column family:column) → value
    cf1:col1 : value1 ,
    'cf1:col2': 'value2',
    'cf2:col1': 'value3'
  },
  'row2': {
    ... # More row data
database = {'table1': table}
# Querying data.
(value, metadata) = \
    table['row1']['cf1:col1']
```

Example 1: Colors and Shape

- Table with:
 - 2 column families
 - "color" and "shape"
 - 2 rows
 - "first" and "second")
- The row "first" has:
 - 3 columns in the column family "color"
 - "red", "blue", "yellow"
 - 1 column in the column family "shape"
 - shape = 4
- The row "second" has:
 - no columns in "color"
 - 2 columns in the column family "shape"
- Data is accessed using a row key and column (family:qualifier)

```
row keys column family "color" column family "shape"

"red": "#F00" "square": "4"

"yellow": "#FF0" "triangle": "3" "square": "4"
```

Why all this convoluted stuff?

A row in HBase is almost like a mini-database

- A cell has many different values associated with it
- Data is stored in a sparse format

Rows in HBase are "deeper" than in relational DBs

- In relational DBs rows contain a lot of column values (fixed array with types)
- In HBase rows contain something like a two-level nested dictionary and metadata (e.g., timestamp)

Applications

- Store versioned web-site data
- Store a wiki

	row keys	column family "color"	column family "shape"	
(0N	"first"	"red": "#F00" "blue": "#00F" "yellow": "#FF0"	"square": "4"	
1014	"second"		"triangle": "3" "square": "4"	

Example 2: Storing a Wiki

Wiki (e.g., Wikipedia)

- Contains pages
- Each page has a title, an article text varying over time

HBase data model

- Table name → `wikipedia`
- Row → entire wiki page
- Row keys \rightarrow wiki identifier (e.g., title or URL)
- Column family → `text`
- Column \rightarrow '' (empty)
- Cell value → article text


```
wikipedia_table = {
  # wiki id.
  'Home': {
    # Column family:column → value
    :text : Welcome to the wiki! ,
  'Welcome page': {
    ... # More row data
Database = Dict[str, Table]
database: Database = {'wikipedia':
wiki table}
(article, metadata) = \
     wiki table['Home']['text']
```

Example 2: Storing a Wiki

Add data

- Columns don't need to be predefined when creating a table
- The column is defined as 'text'

```
> put 'wikipedia', 'Home', 'text',
'Welcome!'
```

Query data

 Specify the table name, the row key, and optionally a list of columns

```
> get 'wikipedia', 'Home', 'text'
text: timestamp=1295774833226,
value=Welcome!
```

HBase returns the timestamp (ms since the epoch 01-01-1970 UTC)


```
wikipedia table = {
  # wiki id.
  'Home': {
    # Column family, column \rightarrow value
    'text': 'Welcome to the wiki!',
  'Welcome page': {
    ... # More row data
Database = Dict[str, Table]
database: Database = {'wikipedia':
wiki table}
(queried value, metadata) = \
     wiki table['Home']['text']
```

Example 2: Improved Wiki

Improved wiki using versioning

- A page
 - Is uniquely identified by its title
 - Can have multiple revisions
- A revision
 - Is made by an author
 - Contains optionally a commit comment
 - Is identified by its timestamp
 - Contains text
- HBase data model
- Add a family column "revision" with multiple columns
 - E.g., author, comment, ...
- Timestamp is automatic and binds article text and metadata
- The title is not part of the revision
 - It's fixed and identified uniquely the page (like a primary key)
 - If you want to change the title you need to re-write all the row

Data in Tabular Form

	Name		Home		Office	
Key	First	Last	Phone	Email	Phone	Email
101	Florian	Krepsbach	555-1212	florian@wobegon.org	666-1212	fk@phc.com
102	Marilyn	Tollerud	555-1213		666-1213	
103	Pastor	Inqvist			555-1214	inqvist@wel.org

Fundamental operations

- CREATE table, families
- PUT table, rowid, family:column, value
- PUT table, rowid, whole-row
- GET table, rowid
- SCAN table (WITH filters)

DROP table

Data in Tabular Form

	Name		Home		Office		Social	
Key	First		Last	Phone	Email	Phone	Email	FacebookID
101	Florian	Garfield	Krepsbach	555-1212	florian@wobegon.org	666-1212	fk@phc.com	
102	Marilyn		Tollerud	555-1213		666-1213		
103	Pastor		Inqvist			555-1214	inqvist@wel.org	

New columns can be added at runtime

Column families cannot be added at runtime

```
Table People(Name, Home, Office)
{
    101: {
        Timestamp: T403;
        Name: {First="Florian", Middle="Garfield", Last="Krepsbach"},
        Home: {Phone="555-1212", Email="florian@wobegon.org"},
        Office: {Phone="666-1212", Email="fk@phc.com"}}
},
102: {
        Timestamp: T593;
        Name: {First="Marilyn", Last="Tollerud"},
        Home: {Phone="555-1213"},
        Office: {Phone="666-1213"}
},
```

Nested Data Representation

	Name		Home		Office	
Key	First	Last	Phone	Email	Phone	Email
101	Florian	Krepsbach	555-1212	florian@wobegon.org	666-1212	fk@phc.com
102	Marilyn	Tollerud	555-1213		666-1213	
103	Pastor	Inqvist			555-1214	inqvist@wel.org

```
GET People:101
    {
        Timestamp: T403;
        Name: {First="Florian", Last="Krepsbach"},
        Home: {Phone="555-1212", Email="florian@wobegon.org"},
        Office: {Phone="666-1212", Email="fk@phc.com"}
}

GET People:101:Name
    {First="Florian", Last="Krepsbach"}
GET People:101:Name:First
    "Florian"
```

Column Family vs Column

· Adding a column

- Is cheap
- Can be done at run-time

Adding a column family

- Can't be done at run-time
- Need a copy operation of the table (expensive)
- This tells you something about how the data is stored
 - Easy to add is a map
 - Hard to add is some sort of static array
 - E.g., MongoDB document vs Relational DB column

Why differentiating column families vs columns?

- Why not storing all the row data in a single column family?
- Each column family can be configured independently, e.g.,
 - Compression
 - Performance tuning
 - Stored together in files
- Everything is designed to accommodate a special kind of data

E.g., timestamped web data for search engine

Consistency Model

Atomicity

- Entire rows are updated atomically or not at all
- Independently of how many columns are affected

Consistency

- A GET is guaranteed to return a complete row that existed at some point in the table's history
 - Weak / eventual consistency
 - Check the timestamp to be sure!
- A SCAN
 - Must include all data written prior to the scan
 - · May include updates since it started

Isolation

- Concurrent vs sequential semantics
- Not guaranteed outside a single row
- The atom of information is a row

Durability

All successful writes have been made durable on disk

Checking for Row or Column Existence

- HBase supports Bloom filters to check whether a row or column exists
 - It's like a cache for key in keys, instead of keys[key]
 - E.g., instead of querying one can keep track of what's present

Hashset complexity

- Space needed to store data is unbounded
- No false positives
- O(1) in average / amortized (because of reallocations, re-balancing)

Bloom filter implementation

- Bloom filter is like a probabilistic hash set
- Array of bits initially all equal to 0
- When a new blob of data is presented, turning the blob into a hash, and then use hash to set some bits to 1
- To test if we have seen a blob, compute the hash, check the bits
 - If all bits are 0s, then for sure we didn't see it
 - If all bits are 1s, then it's likely but not sure you have seen that blob (false positive)

Bloom filter complexity

- Use a constant amount of space
- Has false positives (no false negatives)

- O(1)

Write-Ahead Log (WAL)

- Write-Ahead Log is a general technique used by DBs
 - Provide atomicity and durability
 - Protect against node failures
 - Equivalent to journaling in file system
- HBase and Postgres uses WAL

WAL mechanics

- For performance reasons, the updated state of tables are:
 - Not written to disk immediately
 - Buffered in memory
 - Written to disk as checkpoints periodically

Problem

If the server crashes during this limbo period, the state is lost

Solution

- Use append-only disk-resident data structure
- Log of operations performed since last table checkpoint are appended to the WAL (it's like storing deltas)
- When tables are stored to disk, the WAL is cleared
- If the server crashes during the limbo period, use WAL to recover the state that was not written yet
- When running a big import job, disable the WAL to improve performance

Trade off disaster recovery protection for speed

Storing variable-length data in DBs

SQL Table

People(ID: Integer, FirstName: CHAR[20], LastName: CHAR[20], Phone: CHAR[8])
UPDATE People SET Phone="555-3434" WHERE ID=403;

ID	FirstName	LastName	Phone
101	Florian	Krepsbach	555-3434
102	Marilyn	Tollerud	555-1213
103	Pastor	Ingvist	555-1214

- Each row is exactly 4 + 20 + 20+ 8 = 52 bytes long
- To move to the next row:
 fseek(file,+52)
- To get to Row 401fseek(file, 401*52);
- Overwrite the data in place

HBase Table

```
People(ID, Name, Home, Office)
PUT People, 403, Home: Phone, 555-3434
```

Need to use pointers

HBase Implementation

- How to store the web on disk?
- HBase is backed by HDFS
 - Store each table (e.g., Wikipedia) in one file
 - "One file" means one gigantic file stored in HDFS
 - HDFS splits/replicate file into blocks on different servers
- Here is the idea in several steps:
 - Idea 1: Put an entire table in one file
 - Need to overwrite the file every time there is a change in any cell
 - Too slow
 - Idea 2: One file + WAL
 - Better, but doesn't scale to large data
 - Idea 3: One file per column family + WAL
 - Getting better!
 - Idea 4: Partition table into regions by key
 - Region = a chunk of rows [a, b)
 - Regions never overlap

Idea 1: Put the Table in a Single File

File "People"

- How do we do the following operations?
 - CREATE, DELETE (easy / fast)
 - SCAN (easy / fast)
 - GET, PUT (difficult / slow)

Idea 2: One file + WAL

Table People(Name, Home, Office)

```
101: {
    Timestamp: T403;
    Name: {First="Florian", Middle="Garfield", Last="Krepsbach"},
    Home: {Phone="555-1212", Email="florian@wobegon.org"},
    Office: {Phone="666-1212", Email="fk@phc.com"}
},
102: {
    Timestamp: T593;
    Name: {First="Marilyn", Last="Tollerud"},
    Home: {Phone="555-1213"},
    Office: {Phone="666-1213"}
},
```

WAL for Table People

```
PUT 101:Office:Phone = "555-3434"
PUT 102:Home:Email = mt@yahoo.com
....
```


PUT People:101:Office:Phone = "555-3434"

- Changes are applied only to the log file
- The resulting record is cached in memory
- Reads must consult both memory and disk

Idea 2 Requires Periodic Table Update

Table for People on Disk (Old)

```
101: {Timestamp: T403;Name: {First="Florian", Middle="Garfield", Last="Krepsbach"},Home: {Phone="555-1212", Email="florian@wobegon.org"},Office: {Phone="666-1212", Email="fk@phc.com"}},
102: {Timestamp: T593;Name: { First="Marilyn", Last="Tollerud"},Home: {
Phone="555-1213" },Office: { Phone="666-1213" }}, . . .
```

WAL for Table People:

```
PUT 101:Office:Phone = "555-3434"
PUT 102:Home:Email = mt@yahoo.com
....
```


- Write out a new copy of the table, with all of the changes applied
- Delete the log and memory cache
- Start over

Table for People on Disk (New)

```
101: {Timestamp: T403;Name: {First="Florian", Middle="Garfield", Last="Krepsbach"},Home: {Phone="555-1212", Email="florian@wobegon.org"},Office: {Phone="555-3434", Email="fk@phc.com"}},102: {Timestamp: T593;Name: {First="Marilyn", Last="Tollerud"},Home: { Phone="555-1213", Email="my@yahoo.com" }, . . .
```

Similar to caching in memory hierarchy

Idea 3: Partition by Column Family

- Same scheme as before but split by column family
- Now it's clear why column family vs columns

Tables for People on Disk (Old)

Data for Column Family Name Data for Column Family Home Data for Column Family Office

WAL for Table People

PUT 101:Office:Phone = "555-3434"
PUT 102:Home:Email = mt@yahoo.com
....

 Write out a new copy of the table, with all of the changes applied

- Delete the log and memory cache
- Start over

Tables for People on Disk (New)

Data for Column Family Name Data for Column Family Home (Changed) Data for Column Family Office (Changed)

Idea 4: Split Into Regions

Final HBase Data Layout

Table People

