

Weekly Report

Wang Tianyi

October 29, 2024

Outline

- 1 Methodology
 - Logical Evaluation of Reasoning Paths
 - Summary Standardizer

- 2 Experiments
 - Benchmark Testing Automation
 - Logging and Progress Tracking

Outline

- 1 Methodology
 - Logical Evaluation of Reasoning Paths
 - Summary Standardizer

- 2 Experiments
 - Benchmark Testing Automation
 - Logging and Progress Tracking

Logical Evaluation of Reasoning Paths

- Define the reasoning chain $T = \{T_1, T_2, ..., T_m\}$, where each T_i represents an inference step.
- Use a Natural Language Inference (NLI) model to evaluate the logical relationship between adjacent steps T_i and T_{i+1} .
- Possible relations:

$$\mathsf{NLI}(T_i, T_{i+1}) = egin{cases} \mathsf{Entailment} & \mathsf{Reasoning\ logic\ is\ rational} \ \mathsf{Neutral} & \mathsf{Reasoning\ logic\ is\ uncertain} \ \mathsf{Contradiction} & \mathsf{Reasoning\ logic\ contradicts} \end{cases}$$

Dasso) wangitamyideangtiamyidealcobe-Air raa_gpu_v1.3 & python test_py
Please enter your research question (or type 'exit' to quit): Question: In an experiment observing Ligand binding patterns on Gold Nano-Bipyramids (Au NBPs) with low Ligand coverage, what was the predominant observation regarding the Ligand binding behavior/Nn/Given options:\na. Ligands bind predominant observation regarding the Ligand binding behavior/Nn/Given options:\na. Ligands bind predominant observation regarding the Ligand binding behavior/Nn/Given options:\na. Ligands bind predominant observation behavior as a constant of the constant o

o-Bipyramids (AuNBPs) with low ligand coverage is that ligands bind predominantly to sharp tips due to high surface energy, leading to growth redirect

NLI Model Judgment and Scoring

Scoring System

Each pair (T_i, T_{i+1}) receives a score based on the NLI result:

$$S(T_i, T_{i+1}) = egin{cases} 1 & ext{if Entailment} \\ 0 & ext{if Neutral} \\ -1 & ext{if Contradiction} \end{cases}$$

Average Logic Score L

The overall logical consistency of the reasoning chain is given by:

$$L = \frac{1}{m-1} \sum_{i=1}^{m-1} S(T_i, T_{i+1})$$

where $L \approx 1$ indicates high logical consistency, and $L \approx -1$ suggests logical contradictions.

Interpretation of the Logic Score

- $L \approx 1$: The reasoning chain is coherent and logically consistent.
- $L \approx 0$: Logic is uncertain across steps, with possible logical jumps.
- $L \approx -1$: Significant logical contradictions are present in the reasoning chain.

Note: In the actual code, I set a threshold where $L \ge 0.5$ is considered *reasonable*, and $L \le -0.5$ is considered *contradiction*.

```
Logical Consistency Scores for Each Step Pair:
Step 1 to Step 2 - Score: 1
Step 2 to Step 3 - Score: -1
Step 3 to Step 4 - Score: 1
Step 4 to Step 5 - Score: 1
Final Average Logical Consistency Score: 0.50
```

Summary Standardizer

- In initial testing, it was observed that GPT sometimes generates final summaries that do not strictly follow the prompt-imposed format.
- This inconsistency in format led to issues in post-processing, particularly in applying regex-based answer extraction.
- As a result, benchmark tests were affected since the system could not reliably match answers in improperly formatted summaries.

Standardization Details

Standardization Criteria

The Standardizer focuses on specific criteria, including:

- **Consistency in terminology:** Ensuring uniform terminology across the summary.
- Structural clarity: Adjusting sentence order and paragraph breaks to improve readability.
- Formatted correctly:Especially Ans: such a clear answer to the part

Outcome of Summary Format Correction

- After implementing the Standardizer mechanism, the consistency of summary format significantly improved.
- This allowed the regex patterns to correctly match and extract answers, leading to more reliable benchmark test results.
- Overall, the Standardizer step enhanced the robustness and accuracy of the system's performance in tests.

```
Change) wengstianyidewongitianyideMacBook_Air rag_gpu_vi_3 % python test_standardize_summery.py
Original Summary:

Literature Summary: Studies on the growth of Aubbrs (Gold Nono-Bipyramids) under varying conditions suggest that ligand binding behavior is influenced. Literature Summary:

Freet index all conditions, Observations across experiments lack direct evidence for specific structural changes under low ligand concentrations. None theless, the consensus supports a binding preference at the tips of the bipyramids.

Ans: The correct option seems to be closest to B, given the evidence presented, though it's based on general trends rather than specific confirmation. New Records and Standardized Summary:

Some studies referenced were inconclusive

Standardized Summary:

Literature Summary:

Litera
```

Outline

- 1 Methodology
 - Logical Evaluation of Reasoning Paths
 - Summary Standardizer

- 2 Experiments
 - Benchmark Testing Automation
 - Logging and Progress Tracking

Benchmark Testing Automation

- Developed an automated script to run benchmark tests.
- 2 Implemented rules to validate answer formats for consistency.
- 3 Recorded accuracy metrics in real-time.
- Challenge: Encountered issues with inconsistent output formats.
- **Solution**: Enhanced prompt design and used regex for answer extraction.

Progress: 95/775 (12.26%) Final Accuracy: 51.58% (49/95) [96/775] Question 96 - Incorrect Logical Consistency of Reasoning Chain: reasonable Progress: 96/775 (12.39%) Final Accuracy: 51.04% (49/96) [97/775] Question 97 - Incorrect Logical Consistency of Reasoning Chain: reasonable Progress: 97/775 (12.52%) Final Accuracy: 50.52% (49/97) [98/775] Question 98 — Correct Logical Consistency of Reasoning Chain: neutral Progress: 98/775 (12.65%) Final Accuracy: 51.02% (50/98) [99/775] Question 99 - Incorrect Logical Consistency of Reasoning Chain: neutral Progress: 99/775 (12.77%) Final Accuracy: 50.51% (50/99) [100/775] Question 100 — Incorrect Logical Consistency of Reasoning Chain: neutral Progress: 100/775 (12.90%) Final Accuracy: 50.00% (50/100)

Logging and Progress Tracking

Key Features

- Added logging for each answer generation step.
- 2 Implemented progress tracking to avoid data loss.
- 3 Enhanced fault tolerance for long-running experiments.

