10 Sept 2021

H-I due on Honday!!

-> group submission (I sub per group per platform)

· Grade scope: Select group members

· D2L: just one person submits

· no upper bound on group size

-> Q5 (recursions)

· all base cover are 1.

· Use Floor for getting the closed form.

so, thint of T(n/4) as T(Ln/4])

Formally writing up that extra condition for rose 3 looks like:

Let $n_0=1$ and c=2/3. Then, $\forall n \geq n_0$, af(n/b)=2f(n/4) by substitution =2(n/4) by substitution =n/2 $\leq 2/3n$, as was to be shown. \Box

								Asumpton	_
	a	b	$\log_b a$	$n^{\log_b a}$	f(n)	Potential Case?	ε , if Case 1 or 3	Asympton Colosed Form	11
T(n) = T(n/2) + 1 birary search!	i	a	0	1 =	٠١	2	nla	O(logn)	Its wheel we expect
	3	4	1/2	n=	n'z	2	Phla	O(n'12 logi	2
T(n) = 2T(n/4) + n	2	4	1/2	n"<	'n	3	·/2 (*)	(n)	
$T(n) = 2T(n/4) + 10^{2}$	2	4	1/2	n'/2	6n2 €0(n2)	3	E = 1/2	$\Theta(n^2)$	
$T(n) = 3T(n/3) + \Theta(1)$	3	3	1	$ \rangle $	9(1)	1	want: n >n E=1/3	(n)	
Ecompare nigor to fin) to quess									

back of this page.

We need n_0 , c = 1. $\forall n \ge n_0$, $a \cdot f(n/b) \le c f(n)$. Since f(n) = n, $\forall a = 2$, b = 4, this means: $2 \cdot (n/4) \le c \cdot n$ (=) $n/2 \le c \cdot n$.

So, $n_0 = 1$; works.

Remember, Case 3 has an additional condition to check! Do that in the space provided below, or on the

There, anything in the half-open interval (0,0.5] works.

But, pick a value + give it to me in your proof!

I need & s.t. $\Theta(n''^2+2)$ SO(n')