2 31112 Male 80.0 0 3 60182 Female 49.0 0 4 1665 Female 79.0 1	0 Yes 1 Yes 0 Yes 0 Yes	Private Self- employed Private Private Self- employed	Rural Rural Urban Rural	228.69 36.6 202.21 NaN 105.92 32.5 171.23 34.4 174.12 24.0	form smo
# id column will not give any impact df.drop('id', axis=1, inplace=True) df.head(2) gender age hypertension heart_disease Male 67.0 0 1 Female 61.0 0 0 # isnull() is used to check null value.	ever_married work Yes F Yes Self-emp	x_type Residence_ty Private Urb	oe avg_glucose_l an 22	evel bmi smoki 8.69 36.6 former	
ender 0 ge 0 ypertension 0 eart_disease 0 ver_married 0 ork_type 0 esidence_type 0 vg_glucose_level 0 mi 201 moking_status 0 troke 0 type: int64 # As we can see there are 201 null # # So we will check whether a column # # If data is normally distributed we	is normally dist	ributed or not.	node value		
# or else with median. sns.distplot(df['bmi']) plt.axvline(df['bmi'].mean()) plt.plot() 0.06 0.05 0.04					
0.02 0.01 0.00 df['bmi'].fillna(df['bmi'].mode()[0] df_num = df.select_dtypes(['int64', df_cat = df.select_dtypes('object') from sklearn.preprocessing import La	'float64'])	axScaler			
se==> Standard Scaling: As we caling. Standard Scaling is technique. for col in df_num: mm = MinMaxScaler() df_num[col] = mm.fit_transform(df] df_num.head() age hypertension heart_disease avg_ 0 0.816895 0.0 1.0 1 0.743652 0.0 0.0 2 0.975586 0.0 1.0	nique used to s	i stroke	ed so we w gives values	ill perform N s between 0	Min Ma to 1.
3 0.597168 0.0 0.0 4 0.963379 1.0 0.0 ===> Label Encoding: La	0.536008 0.276060 0.549349 0.156930 ncoding is used 1 data as well, s stands only numberng.	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			meric
<pre>gender ever_married work_type Residence 0 1</pre>	1 0 2 0 2 1 3 0 2 2 nt data.				
age hypertension heart_disease avg_ 0 0.816895 0.0 1.0 1 0.743652 0.0 0.0 2 0.975586 0.0 1.0 3 0.597168 0.0 0.0 4 0.963379 1.0 0.0 Now we have prepared and clear	0.801265	7 1.0 0 6 1.0 1 0 1.0 0 0 1.0 0	1 1 1 1	Residence 2 3 2 2 3	_type sr 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sns.heatmap(df.corr(), annot=True) plt.show() age - 1	0.33 0.25 - 1. 0.16 0.13 - 0. 0.038 0.13 - 0. 0.17 0.13 - 0. 1 0.038 - 0.	8 6 4			
Data Visualization (% of Stroke #==== Gender x_axis = [] y_axis = [] for col in df['gender'].unique():	bmi - stroke -	ns)			
<pre>data = df[df['gender']==col] s_yes = len(data[data['stroke']== total = len(df[df['gender']==col] percentage = (s_yes/total)*100 x_axis.append(col) y_axis.append(percentage) sns.barplot(x_axis,y_axis) plt.xlabel("Gender") plt.ylabel("Percentage") plt.show()</pre>					
Male Female Gender #====== Residence_type x_axis = [] y_axis = []	Other				
<pre>for col in df['Residence_type'].unid data = df[df['Residence_type']==color s_yes = len(data[data['stroke']==color total = len(df[df['Residence_type'] percentage = (s_yes/total)*100 x_axis.append(col) y_axis.append(percentage) sns.barplot(x_axis,y_axis) plt.xlabel('Residence Type') plt.ylabel("Percentage") plt.show()</pre>	ol] 1])				
Urban Residence Type #===== Ever Married x_axis = []	ral				
<pre>y_axis = [] for col in df['ever_married'].unique data = df[df['ever_married']==col s_yes = len(data[data['stroke']== total = len(df[df['ever_married']: percentage = (s_yes/total)*100 x_axis.append(col) y_axis.append(percentage) sns.barplot(x_axis,y_axis) plt.xlabel("Ever_Married") plt.ylabel("Percentage") plt.show()</pre>] 1])				
5 - 2 - 3 - 2 - 1 - 0 - Yes Ever Married N	0				
<pre>x_axis = [] y_axis = [] for col in df['heart_disease'].unique data = df[df['heart_disease']==color s_yes = len(data[data['stroke']==] total = len(df[df['heart_disease'] percentage = (s_yes/total)*100 x_axis.append(col) y_axis.append(percentage) sns.barplot(x_axis,y_axis) plt.xlabel("Heart Disease") plt.ylabel("Percentage") plt.show()</pre>	l] 1])				
16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 - 0 Heart Disease	1				
<pre>#====== Hypertension x_axis = [] y_axis = [] for col in df['hypertension'].unique data = df[df['hypertension']==col s_yes = len(data[data['stroke']== total = len(df[df['hypertension']: percentage = (s_yes/total)*100 x_axis.append(col) y_axis.append(percentage) sns.barplot(x_axis,y_axis) plt.xlabel("Hypertension") plt.ylabel("Percentage") plt.show()</pre>] 1])				
12 - 10 - 86 8 - 4 - 2 - 0 Hypertension	1				
<pre>#====== Work Type x_axis = [] y_axis = [] for col in df['work_type'].unique() data = df[df['work_type']==col] s_yes = len(data[data['stroke']==col) total = len(df[df['work_type']==col) percentage = (s_yes/total)*100 x_axis.append(col) y_axis.append(percentage) sns.barplot(x_axis,y_axis) plt.xlabel("Work_Type") plt.ylabel("Percentage") plt.show()</pre>	1])				
8 - 7 - 6 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	Never_worked				
<pre>#====== Smoking status x_axis = [] y_axis = [] for col in df['smoking_status'].unic data = df[df['smoking_status']==color</pre>	ol] 1])				
8 - 7 - 6 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	Unknown				
Econclusion of Data Visualization Both the Genders have arround 5% People with history of Hypertension round 12.5% and 16.5% respectively. Married/Divorced people have a 6.5% Self Employed people have a highe Rural and Urban doesn't show much	chance. n and Heart Disea 5% chance of stro r chance compare	ke.		n percentage o	of Stro
The same reason people who once is moking. We have our Target column as coalanced or not. on the same of the sam	categorical dat	a so we need	to check w	hether a col	umn
<pre>from sklearn.model_selection import from collections import Counter x = df_new.drop('stroke', axis=1) y = df['stroke'] df_new['stroke'] = df_new['stroke'] df_zero = df_new[df_new['stroke']==1 df_one = df_new[df_new['stroke']==1 print(len(df_zero),len(df_one))</pre>	.astype(int)	# used to sp	olit data into	o training and	testii
<pre>((249+4861)/2) - 249 2306.0 df_new_2 = pd.concat([df_one, df_ze: df_new_2.shape (2549, 11) Model Building Dividing data into training and testing</pre>], axis=0)			
<pre>x = df_new_2.drop('stroke', axis=1) y = df_new_2['stroke'] x_train, x_test, y_train, y_test = fere we have worked with 4 me. Logistic Regression Decision Tree Random Forest</pre>		x,y, test_size=(.3,random_sta	ate=1)	
<pre>from sklearn.model_selection import from sklearn.model_selection import from sklearn.linear_model import Loc from sklearn.tree import DecisionTre from sklearn.ensemble import Random from sklearn.svm import SVC def find_best_model(x, y): models = { 'logistic_regression': { 'model': LogisticRegression': {</pre>	ShuffleSplit gisticRegression eeClassifier ForestClassifier	s', multi_class=	='auto'),		
<pre> 'decision_tree': { 'model': DecisionTreeClate 'parameters': { 'criterion': ['giniterion': [5,10]] } }, 'random_forest': { 'model': RandomForestClate 'parameters': { 'n_estimators': [10] } </pre>	', 'entropy'], assifier(criterio	n='gini'),			
<pre> 'svm': { 'model': SVC(gamma='auto 'parameters': { 'C': [1,10,20], 'kernel': ['rbf','l. } } scores = [] cv_shuffle = ShuffleSplit(n_spl. for model_name, model_params in </pre>	<pre>inear'] its=5, test_size=</pre>	0.20, random_sta	ate=0)		
<pre>gs = GridSearchCV(model_park gs.fit(x, y) scores.append({ 'model': model_name, 'best_parameters': gs.be 'score': gs.best_score_ }) return pd.DataFrame(scores, column find_best_model(x_train, y_train) model best_parameters</pre>	ams['model'], mod est_params_, umns=['model','be			= cv_shuffle,	return_
decision_tree {'criterion': 'gini', 'max_depth' random_forest {'n_estimators': svm {'C': 1, 'kernel': 'n lote: Since the Random Forest model using hyperparameter op # Using cross_val_score for gaining from sklearn.model_selection import scores = cross_val_score(RandomFore) print('Average Accuracy : {}%'.formate Average Accuracy : 90%	d: 5} 0.889636 15} 0.893557 dbf'} 0.896919 algorithm has ptimization. average accuracy cross_val_scorestClassifier(n_es	timators=20, ran	ndom_state=0),		
# Creating Random Forest Model classifier = RandomForestClassifier classifier.fit(x_train, y_train) RandomForestClassifier(n_estimators= Model Evaluation # Creating a confusion matrix from sklearn.metrics import confusion y_pred = classifier.predict(x_test) cm = confusion_matrix(y_test, y_predict)	20, random_state= on_matrix, classi	0)		ore	
# Plotting the confusion matrix plt.figure(figsize=(10,7)) p = sns.heatmap(cm, annot=True, cmap plt.title('Confusion matrix for Ranc plt.xlabel('Predicted Values') plt.ylabel('Actual Values') plt.show() Confusion matrix for Random Fores	dom Forest Classi	fier Model - Te	st Set')		
Actual Values O - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	5		500 400 300 200		
			100		
<pre># Accuracy Score score = round(accuracy_score(y_test print("Accuracy on test set: {}%".fo Accuracy on test set: 90.59% # After evaluating model we will model x = df_new_2.drop('stroke',axis=1) y = df_new_2['stroke']</pre>	, y_pred),4)*100 prmat(score))	rediction for d	nta.		