Relevance feedback and query expansion: tuning the query

Stanislav Protasov

Agenda

- What if results for the query are not satisfactory?
 - Local methods of improvement
 - Global methods
- How to suggest continuation

Based on chapter 9

Relevance feedback

Relevance feedback is using explicit or implicit user's input to improve search results. Idea is to use this input as a navigator in vector space to drift towards better results.

Relevance feedback

User **feedback** on relevance of docs in initial set of results:

- 1. User issues a (short, simple) query
- 2. The user marks some results as relevant or non-relevant.
- The IR system computes a better representation of the information need based on feedback.
- 4. Relevance feedback can go through one or more iterations.

Idea: it may be difficult to formulate a good query when you don't know the collection well, so iterate

Similar pages IRL 2009

Sarah Brightman Official Website - Home Page

Official site of world's best-selling soprano. Join FAN AREA free to access exclusive perks, photo diaries, a global forum community and more...

www.sarah-brightman.com/ - 4k - Cached - Similar pages

Similar pages IRL 2021

Ad hoc results for query canine

Ad hoc results for query canine

User feedback: Select what is relevant

Results after relevance feedback

Sec. 9.1.1

Key concept: Centroid

 The <u>centroid</u> is the center of mass of a set of points (average vector)

Relevance feedback idea

- Uses the vector space model to pick a relevance feedback query
- Idea: move towards relevant and away from non-relevant
- Seek the query q_{opt} that maximizes

$$\vec{q}_{opt} = \underset{\vec{q}}{\operatorname{arg\,max}} [\sin(\vec{q}, C_r) - \sin(\vec{q}, C_{nr})]$$

How?
$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\vec{d}_j \in C_r} \vec{d}_j - \frac{1}{|C_{nr}|} \sum_{\vec{d}_j \in C_{nr}} \vec{d}_j$$

How?

Here C should be understood as a set of vectors described by a centroid (D later in book)

Sec. 9.1.1

The Theoretically Best Query

Problems

- 1. We don't know all relevant documents
- 2. We excluded **original query** out of consideration (*q*)
- 3. Will it bring us closer to relevant (*average relevant*), or we will jump over and leave a desired cluster (*average irrelevant*)?

Rocchio explicit algorithm

Kind of regularization for relevance feedback, which preserves from running away from relevant subspace and original query. Has recommended parameter values.

Rocchio 1971 Algorithm as a framework

Used in practice:

$$\vec{q}_{m} = \alpha \vec{q}_{0} + \beta \frac{1}{|D_{r}|} \sum_{\vec{d}_{j} \in D_{r}} \vec{d}_{j} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_{j} \in D_{nr}} \vec{d}_{j}$$

- D_r = set of known relevant doc vectors
- D_{nr} = set of <u>known</u> irrelevant doc vectors
 - Different from C_r and C_{nr}
- q_m = modified query vector; q_0 = original query vector; α, β , γ : weights (hand-chosen or set empirically to **1**, .**75**, .**15**)
- New query moves toward relevant documents and away from irrelevant documents

Practical comments to framework

- Tradeoff α vs. β/γ : If we have a lot of judged documents, we want a higher β/γ .
- We can consider single most similar irrelevant document
- Mostly in practice improves recall, not precision

Relevance feedback on initial query

Sec. 9.1.1

Relevance feedback overview

- We can modify the query based on relevance feedback and apply vector space model.
- Use only the docs that were marked.
- Relevance feedback can improve recall and precision
- Relevance feedback is most useful for increasing recall in situations where recall is important
 - Users can be expected to review results and to take time to iterate

Sec. 9.1.3

Relevance feedback assumptions

- A1: User has sufficient knowledge for initial query.
- A2: Relevance prototypes are "well-behaved".
 - Term distribution in relevant documents will be similar.
 - Term distribution in non-relevant documents will be different from those in relevant documents
 - Either: All relevant documents are tightly clustered around a single prototype.
 - Or: There are different prototypes, but they have significant vocabulary overlap.
 - Similarities between relevant and irrelevant documents are small

Violation of A1

- User does not have sufficient initial knowledge.
- Examples:
 - Misspellings (Brittany Speers).
 - Cross-language information retrieval (гиперповерхность).
 - Mismatch of searcher's vocabulary vs. collection vocabulary
 - Cosmonaut/astronaut

Violation of A2

- There are several relevance prototypes.
- Example:
 - Pop stars that worked at Burger King
 - Kiev / Kyiv
 - Different vocabularies

Relevance feedback problems

- Long queries are inefficient for typical IR engine.
- Users are often lazy to provide explicit feedback
- It's often harder to understand why a particular document was retrieved after applying relevance feedback

Evaluation of relevance feedback

- Use q_0 and compute precision-recall graph
- Use q_m and compute precision-recall graph
 - Assess on all documents in the collection
 - Spectacular improvements, but ... it's cheating!
 - Partly due to known relevant documents ranked higher
 - Must evaluate with respect to documents not seen by user
 - Use documents in residual collection (set of documents minus those assessed relevant)
 - Measures usually then lower than for original query
 - But a more realistic evaluation
 - Relative performance can be validly compared

Evaluation of relevance feedback

- Most satisfactory use two collections each with their own relevance assessments
 - \mathbf{q}_0 and user feedback from first collection
 - \mathbf{q}_m run on second collection and measured
- **Empirically**, one round of relevance feedback is often very useful. Two rounds is sometimes marginally useful.

Pseudo and implicit feedbacks

User is lazy. Use **top search results** or **user search history** instead of explicit input to improve a query.

Pseudo relevance feedback

- Pseudo-relevance feedback automates the "manual" part of true relevance feedback.
- Pseudo-relevance algorithm:
 - Retrieve a ranked list of hits for the user's query
 - Assume that the top k documents are relevant.
 - Do relevance feedback (e.g., Rocchio)
- Works very well on average
- But can go horribly wrong for some queries.
- Several iterations will cause query drift.

Implicit (indirect) relevance feedback

- Ok, we don't know the actual feedback
- But we know which documents user or users clicked for other queries
 - For a single user consider his/her preferences via CTR of the documents through other queries (e.g. "How to trim a string" for C++ developer)
 - For overall community select "relevant"
 based on high CTR

Query expansion and suggest

Sec. 9.2.2

Query Expansion

- In relevance feedback, users give additional input (relevant/non-relevant) on documents, which is used to reweight terms in the documents
- In query expansion, users give additional input (good/bad search term) on words or phrases

Sec. 9.2.2

How do we augment the user query?

- Manual thesaurus
 - E.g. MedLine: physician, syn: doc, doctor, MD, medico
 - Can be query rather than just synonyms
- Global Analysis: (static; of all documents in collection)
 - Automatically derived thesaurus
 - (co-occurrence statistics)
 - Refinements based on query log mining
 - Common on the web
- Local Analysis: (dynamic)
 - Analysis of documents in result set

Thesaurus-based auto query expansion

- For each term t in a query, expand the query with synonyms and related words of t from the thesaurus, maybe weighted
 - feline \rightarrow feline +cat
- Generally increases recall
- Widely used in many science/engineering fields
- May significantly decrease precision, particularly with ambiguous terms.
 - "interest rate" → "interest rate +fascinate +evaluate"
- There is a high cost of manually producing a thesaurus
 - And for updating it for scientific changes

Automatic Thesaurus Generation

- Attempt to generate a thesaurus automatically by analyzing the collection of documents
- Fundamental notion: similarity between two words
- Definition 1: Two words are similar if they co-occur with similar words.
- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words.
 - Co-occurrence based is more robust,
 - grammatical relations are more accurate.

Automatic Thesaurus Generation Discussion

- Quality of associations is usually a problem.
- Term ambiguity may introduce irrelevant statistically correlated terms.
 - "Apple computer" → "Apple +red +fruit computer"
- Since terms are highly correlated anyway,
 expansion may not retrieve many additional documents.

Suggest

... query feature used in computing to show the **searcher shortcuts**, while the query is typed into a text box. Before the query is complete, a drop-down list with the **suggested completions** appears to provide options to select [wiki]

- Blacklist of what can be a "bad" suggest
- Complaints on certain suggestions (bots, law violations, insults)
- Trie is the most useful data structure to Implement suggestions

Suggest

Thanks for your attention!