In [115]: import pandas as r
d=r.read_csv("/home/placement/Downloads/fiat500") #reading the file into the jupyter
d.describe()

Out[115]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

Out[116]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [117]: dl=r.get_dummies(dl)# it converts the
dl.describe()

Out[117]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	51.904421	1650.980494	53396.011704	1.123537	8576.003901	0.711313	0.232770	0.055917
std	3.988023	1289.522278	40046.830723	0.416423	1939.958641	0.453299	0.422734	0.229836
min	51.000000	366.000000	1232.000000	1.000000	2500.000000	0.000000	0.000000	0.000000
25%	51.000000	670.000000	20006.250000	1.000000	7122.500000	0.000000	0.000000	0.000000
50%	51.000000	1035.000000	39031.000000	1.000000	9000.000000	1.000000	0.000000	0.000000
75%	51.000000	2616.000000	79667.750000	1.000000	10000.000000	1.000000	0.000000	0.000000
max	77.000000	4658.000000	235000.000000	4.000000	11100.000000	1.000000	1.000000	1.000000

In [118]: d1.shape

Out[118]: (1538, 8)

```
In [119]: y=d1['price']
x=d1.drop('price',axis=1)
x
```

Out[119]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
0	51	882	25000	1	1	0	0
1	51	1186	32500	1	0	1	0
2	74	4658	142228	1	0	0	1
3	51	2739	160000	1	1	0	0
4	73	3074	106880	1	0	1	0
1533	51	3712	115280	1	0	0	1
1534	74	3835	112000	1	1	0	0
1535	51	2223	60457	1	0	1	0
1536	51	2557	80750	1	1	0	0
1537	51	1766	54276	1	0	1	0

1538 rows × 7 columns

```
In [120]: y
Out[120]: 0
                  8900
                  8800
          2
                  4200
                  6000
                  5700
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [121]: from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [122]: #Ridge regression model
          from sklearn.model selection import GridSearchCV
          from sklearn.linear model import Ridge
          alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
          ridge = Ridge()
          parameters = {'alpha': alpha}
          ridge regressor = GridSearchCV(ridge, parameters)
          ridge regressor.fit(x train, y train)
Out[122]:
           ▶ GridSearchCV
           ▶ estimator: Ridge
                 ▶ Ri|dge
In [123]: ridge regressor.best params
Out[123]: {'alpha': 30}
```

```
In [124]: ridge=Ridge(alpha=30)
    ridge.fit(x_train,y_train)
    y_pred_ridge=ridge.predict(x_test)

In [125]: from sklearn.metrics import mean_squared_error
    Ridge_Error=mean_squared_error(y_pred_ridge,y_test)
    Ridge_Error

Out[125]: 579521.7970897449

In [126]: from sklearn.metrics import r2_score #to check the efficiency
    r2_score(y_test,y_pred_ridge)

Out[126]: 0.8421969385523054
```

In [127]: results=r.DataFrame(columns=['Actual','Predicted']) #To compare the actual and predicted price
 results['Actual']=y_test
 results['Predicted']=y_pred_ridge
 results=results.reset_index()
 results['Id']=results.index
 results

Out[127]:

	index	Actual	Predicted	Id
0	481	7900	5869.741155	0
1	76	7900	7149.563327	1
2	1502	9400	9862.785355	2
3	669	8500	9719.283532	3
4	1409	9700	10035.895686	4
503	291	10900	10029.070743	503
504	596	5699	6297.833772	504
505	1489	9500	10008.285472	505
506	1436	6990	8375.789449	506
507	575	10900	10368.170257	507

508 rows × 4 columns

```
In [129]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Actual',data=results.head(50))
sns.lineplot(x='Id',y='Predicted',data=results.head(50))
plt.plot()
```

Out[129]: []

[n []:		
---------	--	--