

HOME TOP CONTESTS GYM PROBLEMSET GROUPS RATING API HELP CALENDAR PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS STANDINGS CUSTOM INVOCATION

B. Square Filling

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

You are given two matrices A and B. Each matrix contains exactly n rows and m columns. Each element of A is either 0 or 1; each element of B is initially 0.

You may perform some operations with matrix B. During each operation, you choose any submatrix of B having size 2 imes 2, and replace every element in the chosen submatrix with 1. In other words, you choose two integers x and y such that $1 \le x < n$ and $1 \le y < m$, and then set $B_{x,y}$, $B_{x,y+1}$, $B_{x+1,y}$ and $B_{x+1,y+1}$ to 1.

Your goal is to make matrix B equal to matrix A. Two matrices A and B are equal if and only if every element of matrix A is equal to the corresponding element of matrix B.

Is it possible to make these matrices equal? If it is, you have to come up with a sequence of operations that makes B equal to A. Note that you don't have to minimize the number of operations.

Input

The first line contains two integers n and m ($2 \le n, m \le 50$).

Then n lines follow, each containing m integers. The j-th integer in the i-th line is $A_{i,j}$. Each integer is either 0 or 1.

Output

If it is impossible to make B equal to A, print one integer -1.

Otherwise, print any sequence of operations that transforms B into A in the following format: the first line should contain one integer k — the number of operations, and then k lines should follow, each line containing two integers x and y for the corresponding operation (set $B_{x,y}$, $B_{x,y+1}$, $B_{x+1,y}$ and $B_{x+1,y+1}$ to 1). The condition $0 \leq k \leq 2500$ should hold.

Examples innut

0 0 0 0 output

Tilbar	Сору
3 3 1 1 1 1 1 1 0 1 1	
output	Сору
3 1 1 1 2 2 2	
input	Сору
3 3 1 0 1 1 0 1 0 0 0	
output	Сору
-1	
input	Сору
3 2 0 0	

Educational Codeforces Round 71 (Rated for Div. 2)

Finished

Practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ACM-ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you - solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Practice

Conv

Copy

You are registered for practice. You can solve problems unofficially. Results can be found in the contest status and in the bottom of standings.

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

→ Submit?								
Language:	GNU G++11 5.1.0	•						
Choose file:	选择文件 未选择任何文件							
	Submit							

→ Contest materials									
Announcement #1 (en)	v								
Announcement #1 (cn)									
 Announcement #2 (ru) 	×								
 Tutorial #1 (en) 	\times								
 Tutorial #2 (en) 	×								

0

Tutorial #3 (ru)

×

Note

The sequence of operations in the first example:

0	0	0		1	1	0		1	1	1		1	1	1
0	0	0	\rightarrow	1	1	0	\rightarrow	1	1	1	\rightarrow	1	1	1
0	0	0		0	0	0		0	0	0		0	1	1

<u>Codeforces</u> (c) Copyright 2010-2019 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Aug/29/2019 13:42:41^{UTC+8} (f1). Desktop version, switch to mobile version.

<u>Privacy Policy</u>

Supported by

