PLINK/Seq

Analysis of genetic variation data from large-scale, population-based medical sequencing studies

Shaun Purcell shaun@pngu.mgh.harvard.edu

Analytic and Translational Genetics Unit, MGH Center for Human Genetic Research, MGH

PLINK

GWAS

PED file

Large datasets (but held in RAM)

Common variation

Simple SNPs

Sequential tests of single variants

Analysis largely "self-contained"

Command-line interface

Downstream of Birdsuite

"PLINK/Seq project"

Individuals Queries Filtered, merged, reconciled & annotated "singleton, dataset for case-only coding analysis variants. not seen in dbSNP. from genes on chr22"

View/reformat data

Summary stats for variants, individuals, genes

Rare variant association

Iterate over

(groups of)

variants

An object in R, in a user-defined R function

Viewed via web-browser interface

. . .

Command-line interface: pseq

Some basic commands illustrated here: a growing number of utilities for viewing, filtering, annotating, presenting summary statistics and performing various types of association analysis

Initiate a new project

```
./pseq project1 new-project
    --vcf /path/to/data1.vcf.gz /path/to/data2.vcf.gz
    --resources /path/to/core/databases/hg19
```

Populate with phenotype and genotype information

```
./pseq project1 load-vcf
./pseq project1 load-pheno --file /path/to/data.phe
```

View variants, genotypes for a certain gene, excluding variants with non-PASS filters

```
./pseq project1 v-view --gene ABC123 --mask any.filter.ex
```

Gene-based association

```
./pseq project1 assoc --phenotype dis1 --mask loc.group=refseq
```

A growing number of gene-based rare-variant association tests

- A core set of methods, including the variable threshold test (Price et al, 2010) and C-Alpha (Neale et al, in press)
- External investigators collaborating to incorporate their methods in this framework (e.g. J. Witte, S. Leal)
- PolyPhen2 weights (courtesy of Sunyaev lab) can be applied

Filters and grouping data with masks

List variants in genes in file mygenes.txt that are seen not more than twice, not in dbSNP, and are unique to cases. Exclude the MHC region. Set to missing individual genotypes with an individual read depth less than 10.

```
./pseq project1 v-view
    --mask loc.subset=refseq,@mygenes.txt
    mac=1-2
    ref.ex=dbsnp
    case.uniq
    reg.ex=chr6:25000000..35000000
    geno=DP:ge:10
```

Arbitrary expressions can be evaluated based on a variant's metadata, to use as a filter for inclusion in analysis, or to produce on-the-fly new metadata

```
--mask include=" XX = g( GQ > 0.95 ); DB || XX > 0.8 "
```

Here, a new tag XX is added to the variant for this particular analysis

The function g(cond) gives the proportion of individuals for whom GQ greater 0.95

Filtering against 1000 Genomes data

(1) Obtain VCF from 1000Genomes FTP site (sites and some meta-information)

```
wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/.../ALL...sites.vcf.gz
```

(2) Load into a "REFDB" (database of reference variants, e.g. dbSNP, HGMD, etc)

```
./pseq - load-ref --refdb glk.db --group glk --vcf ALL.2of4intersection.20100804.sites.vcf.gz
```

(3) With REFDB as part of project, can filter your data for presence in G1K and G1K metadata

Accessing data via R

Attach an existing PLINK/Seq project

```
pseq.project( "/path/to/my/project" )
```

Either "apply" a user-defined function func1 to the data given a mask...

```
res <- var.iterate( func1 , "mac=1-2 any.filter.ex" )
```

... or obtain a list of variants

```
k <- var.fetch( "mac=1-2 any.filter.ex" )</pre>
```

Various convenience functions to work with variant and variant group data and metadata

```
x.consensus.altcount( k )
```

Individuals

```
[1,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,1] 2 NA 1 2 2 2 1 1
[2,1] NA 1 1 2 2 1 2 NA
[3,1] 0 0 1 1 0 NA NA NA
[4,1] NA 0 NA NA NA 1 1 0
```

> str(k[[1]]\$VAR[[1]] , max.level=3)

```
List of 7
 $ CHR: int 10
 $ BP1: int 61472483
 $ BP2: int 61472483
 $ ID : chr "."
 $ CON:List of 8
  ..$ REF : chr "C"
  ..$ ALT
          : chr "T"
  ..$ OUAL : num 13194
  ..$ FILTER: chr "PASS"
  ..$ META :List of 20
  .. .. $ cDNAchange : chr "c.13106G>A"
  ....$ codonchange : chr "c.(13105-13107)CGG>CAG"
  .. ..$ gene
                      : chr "ANK3"
  .. .. $ genomechange : chr "g.chr10"
  .. .. $ proteinchange: chr "p.R4369Q"
  .. ..$ strand
                    : chr "-"
  ....$ transcript : chr "NM 020987"
                    : chr "Missense"
  .. ..$ type
  .. ..$ AC
                     : int 2
  ...$ AN
                    : int 262
  .. ..$ DB
                    : int 0
  .. ..$ DP
                    : int 49758
                   : num 0.61
  .. ..$ AB
  .. ..$ AF
                 : num 0.01
  .. ..$ MO
                     : num 94.7
  .. ..$ OD
                     : num 17.2
  .. ..$ SB
                     : num -5285
  ..$ GENO :List of 4
  .. ..$ GT: int [1:132] 0 0 0 0 0 0 0 0 0 ...
  .. ..$ DP: int [1:132] 355 259 504 463 451 76 499 99 420 349 ...
  .. ..$ GL: num [1:132, 1:3] -1.16 -7.27 -5.08 -4.89 -1.2 -1.15 -1.24 -3.06 -1.15 -3.37 ...
  .. ..$ GQ: num [1:132] 99 99 99 99 99 99 99 99 ...
```

PLINK/Seq library to handle the large datasets and serve up variation data according to "genomically-oriented" queries

R to provide a rich, standardised and welldocumented statistical and graphical environment

Easy prototyping of methods

```
## C-alpha, implemented as a single R function
calpha.test <- function(q) {</pre>
   d <- x.consensus.genotype(g);</pre>
   y < - apply( g[ , p==1 ], 1, sum )
   n \leftarrow apply(q, 1, sum)
   score \leftarrow sum( (y - n * ratio)^2 - n * ratio2 )
   var <- sum( sapply( lwr:upr , function(m)</pre>
                sum(length(n[n==m])
                    * ((0:m-m*ratio)^2-m*ratio2)^2
                    * dbinom(0:m,m,ratio))))
   return( score/sqrt(var) )
}
## Attach project
  pseq.project("/path/to/my/project")
## Phenotype data from individual datastore
 p <<- inddb.phenotype("scz")</pre>
## Specify a mask: rare missense variants in CCDS genes
 mask <- "loc.group=CCDS mac=2-10 include =</pre>
           type == 'Missense' || type == 'Nonsense' "
## Run the analysis
  results <- vardb.iterate( calpha.test , mask )
```


Individual genotype information

26 <u>view</u> 12 8912215 31

C/T

1064.18

n/a

1/0

0.62 1 0 12874 94.66 10.86 -1777.87 c.4056C>T

	Individual ID	Phenotype	Genotype	DP	GL	$\mathbf{G}\mathbf{Q}$
Most Visited - Getting Starter	00187213	CASE	C/T	218	-442.07,-67.97,-414.22	99
PLINK/SEQ Browse	00028296	CASE	C/C	223	-1.12,-68.19,-848	99
# Indiv Chr Pos Ex	00028320	CASE	C/C	119	-1.31,-37,-376.56	99
1 <u>view</u> 12 8866554 1 2 <u>view</u> 12 8867087 2	00028328	CASE	C/C	258	-1.08,-78.71,-1005.79	99
3 view 12 8867140 2 4 view 12 8867168 2	00028380	CASE	C/C	242	-1.04,-73.87,-980.01	99
5 <u>view</u> 12 8867178 2 6 <u>view</u> 12 8879507 6	00028397	CASE	C/C	283	-1.07,-86.24,-1131.3	99
7 <u>view</u> 12 8882204 9	00028454	CASE	C/C	41	-1.05,-13.37,-140.53	99
8 <u>view</u> 12 8887023 12 9 <u>view</u> 12 8894100 18	00045279	CASE	C/C	235	-1.06,-71.78,-935.58	99
10 <u>view</u> 12 8895688 19 11 <u>view</u> 12 8895779 19	00045301	CASE	C/C	50	-1.18,-16.16,-157.59	99
12 <u>view</u> 12 8896159 20 13 <u>view</u> 12 8899376 23	00045303	CASE	C/C	230	-1.05,-70.27,-905.51	99
14 <u>view</u> 12 8901046 24 15 <u>view</u> 12 8901087 24	00045413	CASE	C/C	188	-4.07,-57.72,-651.94	99
16 <u>view</u> 12 8901102 24 17 <u>view</u> 12 8901938 26	00060622	CONTROL	C/C	113	-1.03,-35.03,-447.45	99
18 <u>view</u> 12 8901953 26	00069374	CONTROL	C/C	255	-1.07,-77.8,-1004.02	99
19 view 12 8905022 28 20 view 12 8905053 28	00071204	CONTROL	C/C	214	-11.98,-74.46,-835.3	99
21 <u>view</u> 12 8907723 29 22 <u>view</u> 12 8907840 29	00071456	CASE	C/C	157	-1.05,-48.29,-631.58	99
23 view 12 8911756 30 24 view 12 8911830 30	00071460	CASE In/a	C/C	249		99 31>C
25 view 12 8912179 31	rs1476910 A/G 1	343251 n/a	61/59	0.53 1		Į.

FIL	CCL JELDYDW	167/DFDI1
teinchange	transcript	type
14A	NM_144670	Missense
35S	NM_144670	Synonymous
53R	NM_144670	
62T	NM_144670	Synonymous
66L		Synonymous
207G		Synonymous
287E	NM_144670	Missense
425V	NM_144670	Synonymous
733L	NM_144670	Missense
759V	NM_144670	Missense
789P	NM_144670	Synonymous
850E	NM_144670	
923K		Synonymous
956A	NM_144670	Synonymous
970Y	NM_144670	Missense
1975T	NM_144670	Missense
1079V	NM_144670	Synonymous
1084H	NM_144670	Synonymous
1122W	NM_144670	Missense
1132I	NM_144670	
1190V	NM_144670	Missense
1229R	NM_144670	Missense
1257V	NM_144670	
1281V	NM_144670	Synonymous

NM_144670 Synonymous

NM_144670 Synonymous

Internal sharing of summary data (counts) across exome-studies

Create a summary-level VCF of genotype counts by group, and variant meta-data

```
./pseq /my/project counts --options vcf --name scz1 > my.vcf
```

Upload to summary database (ACDB: "a counts database")

```
./acdb db1 load --vcf my.vcf
```

Can be queried (by qualified investigators) by position, count, disease-specificity, etc.

```
./acdb db1 lookup --pos chr1:887188 --mask any.filter.ex
```

chr1:887188:

```
Project | Sample
        C/C
                C/G
                         G/G
        23/23
                1/2
                         1/0
                                 aut1 | 1 N=50
                                                           MO0=0:AB=0.55
                                                  PASS
1/0
        20/20
                1/2
                                 aut1 2 N=44
                                                          MO0=0; AB=0.51
                                                  PASS
        12/35
                0/6
                                 aut1 3 N=53
                                                  PASS
                                                           MQ0=0;AB=0.59
        19/20
                5/5
                         1/0
                                 aut1 4 N=50
                                                  PASS
                                                           MQ0=0; AB=0.6
        24/21
                1/3
                         0/1
                                 aut1|5 N=50
                                                          MQ0=0; AB=0.58
                                                  PASS
        22/22
                2/3
                         0/1
                                 aut1 6 N=50
                                                  PASS
                                                           MQ0=0; AB=0.59
1/0
        52/56
                12/11
                                 scz1 | 1 N=132
                                                           MQ0=0; AB=0.53
                                                  PASS
```

GWAS 2.0

- Directly genotyping >>1 million SNPs in large samples,
 PLINK becomes unwieldy
- Imputation packages (e.g. BEAGLE) will output VCFs
 - calls, quality scores and posterior genotype probabilities/ dosages
- PLINK/Seq as a platform for GWAS analysis
 - Basic QC, stratification analysis (MDS), linear & logistic regression of direct and imputed genotypes, etc
- The R interface enables easier extension of methods
 - e.g. multinomial logistic regression for a cross-disorder GWAS

- Project has been evolving slowly but steadily over the past year
- Available internally on Broad network; public release within one month
- http://atgu.mgh.harvard.edu/plinkseq/
- Developers/collaborators:
 - Brett Thomas, Douglas Ruderfer, Jason Flannick, Jared MacGuire, Menachem Fromer, Manny Rivas, Ron Do, Ben Neale, Mark Daly
 - Adam Kiezun, Alkes Price, Paul de Bakker, LJ Wei, Shamil Sunyaev (methods grant)
- Funding: NHGRI grant R01 HG005827