Exercici 11. Siguin $a, b \in \mathbb{Z}$ nombres enters tals que mcd(a, b) = 1. Calculeu $mcd(a^2 + b^2, a^2 - b^2, 2ab)$ en funcio de a i b.

Solucio 11

Tenim que $mcd(a^2 + b^2, a^2 - b^2, 2ab) = mcd(2a^2, a^2 + b^2, 2ab)$, distiguierm per casos en funcio de la paritat de a i b:

- 1. Cas a i b parells tenim que es imposible ja que llavors $mcd(a, b) \ge 2$ o mcd(a, b) = 0(si a = b = 0),
- 2. Cas a parell i b imparell o viceversa (el desenvolupment sera analog), tenim que $a^2+b^2=4l+4k^2+4k+1=2(2k+2l+2k^2)+1$, per tant a^2+b^2 , es imparell i aleshores $\operatorname{mcd}(2a^2,a^2+b^2,2ab)=1$, ja que suposem que $\exists n>1$ tal que $\operatorname{mcd}(2a^2,a^2+b^2,2ab)=n$, tenim que n ha de ser imparell ja que si fos parell no seria divisor de a^2+b^2 , sigui q un dels primers de la descomposicio en primers de n, tenim que, q|n i $n|2a^2$, $n|a^2+b^2$ o n|2ab, per la transitivitat de |, q divideix els tres membres del m.c.d., com que $q|a^2+b^2$ i $q|2a^2$ (i q es imparell ja que divideix a^2+b^2), tenim que $q|a^2$, i per tant $q|b^2$, i per la primertat de q, extraiem que q|a i q|b, i com q es primer tenim que q>1, i per tant $\operatorname{mcd}(a,b)\leq q>1$, que comptradiu l'hipotesi que $\operatorname{mcd}(a,b)=1$, i per tant

$$mcd(2a^2, a^2 + b^2, 2ab) = 1$$

.

3. Cas a i b imparells, aqui tenim que $a^2 + b^2 = 4k^2 + 4k + 1 + 4l^2 + 4l + 1 = 2(2k^2 + 2k + 2l^2 + 2l + 1)$, i per tant, $a^2 + b^2$, i els altres membres del m.c.d, clarament, tambe, i tenim llavors que $\operatorname{mcd}(2a^2, a^2 + b^2, 2ab) = 2$, ja que suposem que $\exists n > 2$ tal que $\operatorname{mcd}(2a^2, a^2 + b^2, 2ab) = n$, aleshores tenim que $n|2a^2$ i $n|a^2 + b^2$, $\Longrightarrow n|2a^2 - 2(a^2 + b^2) = -2b^2 \Longrightarrow n|2b^2$, com que tenim que $\operatorname{mcd}(a, b) = 1$, implica que no tenen cap factor en comu i per tant a^2 i b^2 , clarament tampoc, per tant, $k|2^*$, el que implica que $k \neq 2$ que contradiu el que hem suposat al principi, i per tant

$$mcd(2a^2, a^2 + b^2, 2ab) = 2$$

.

*Tenim que el raonament es cert ja que sigui q un nombre primer que apareix en la descomposicÃ 3 denombresprimersdentenimqueq—2a 2 i $q|2b^2$ i q|2ab, llavors q|2 o $q|a^2$, si $q|a^2 \Longrightarrow q|a$, q no pot divir aleshores b i tampoc b^2 , per tant com q no divideix b^2 , q|2, i com es primer q=2, com q es un factor primer de n $\exists c$ tal que $qsc=2a^2$, i com q=2, $sc=a^2$, i com $qsc'=2b^2$, i per l'argument anterior $sc'=b^2$, i tenim que $s|b^2$ i $s|a^2$, ara com a^2 i b^2 no tenen factors en comu al no tenir-ne a i b, tenim que s=1, i per tant n=2. Que contradiu que n>2.