KTU Students

Course code	Course Name	L-T-P - Credits	Year of Introduction
MA482	APPLIED LINEAR ALGEBRA	3-0-0-3	2016

Prerequisite: NIL

Course Objectives

- 1. To visualize of vectors in n-space which is useful in representing data.
- 2. To learn handling of linear system of equations using matrix as a tool.
- 3. To introduce eigen values and eigen vectors which are significant in dynamic problems.
- 4. To introduce matrix decompositions methods that reduce a matrix into constituent parts which make it easier to calculate more complex matrix operations

Syllabus:

Vector spaces, linear equations and matrices, linear transformation, Inner product, eigen values and eigen vectors, matrix decomposition.

Expected outcome:

The students will be able to apply

- 1. Theory of vector space in representing data.
- 2. Matrix operations in solving system of linear equations.
- 3. Matrix decomposition in solving system of equations.

Text Books:

- 1. Gilbert Strang Linear Algebra and It's Applications, 4th edition, Cengage Learning, 2006.
- 2. Stephen Boyd, Lieven Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018
- 3. W. Keith Nicholson, Linear Algebra with applications, 4th edition, McGraw-Hill, 2002

References:

- 1. I.N Herstein, Topics in Linear Algebra, Wiley Eastern, 1975.
- 2. S.Kumaresan, Linear Algebra: A Geometric Approach, Prentice-Hall of India, 2000.
- 3. Seymour Lipschutz, Marc Lipson, Schaum's outline of linear algebra, 3rd Ed., Mc Graw Hill Edn., 2017

Module	Content	Hours	End Sem. Exam Marks %		
I	Vector Spaces: Vector Spaces, Subspaces- Definition and Examples, Linear independence of vectors, Bases and dimension, Linear Span, Field-Definition	6	15%		
П	Vector space in Rⁿ: System of linear equations, row space, Column space and null space. Four fundamental spaces, relation between rank and nullity, consistency theorem, basis from a spanning set and independent set:	7	15%		
FIRST INTERNAL EXAMINATION					
III	Linear transformations : General linear transformation, Matrix of transformation, Kernel and range, properties, Isomorphism, change of basis, invariant subspace, Linear functional.	7	15%		
IV	Inner Product: Real and complex inner product spaces, properties of inner product, length and distance, Cauchy-Schwarz inequality, Orthogonality, Orthogonal complement, Orthonormal bases, Gram Schmidt orthogonalization	8	15%		
SECOND INTERNAL EXAMINATION					

V	Eigens pace: Properties of Eigen values and Eigen vectors, Eigen values, Eigen vectors, minimal polynomial, Diagonalization, Orthogonal diagonalization, Jordan canonical form	8	20%			
VI	Matrix Factorization: LU decomposition, QR Decomposition and singular value decomposition	6	20%			
1	END SEMESTER EXAMINATION					

QUESTION PAPER PATTERN (End semester examination)

Time: 3 hours Maximum marks: 100

The question paper shall consist of Part A, Part B and Part C.

Part A shall consist of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer any two questions $(15\times2=30 \text{ marks})$.

Part B shall consist of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer any two questions $(15 \times 2=30 \text{ marks})$.

Part C shall consist of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer any two questions (20×2=40 marks)

