Eksponenttifunktio ja logaritmi

Potenssimerkintä:

$$a^1 = a, a^2 = a \cdot a, a^3 = a \cdot a \cdot a \dots$$

$$a^{-1} = \frac{1}{a}, \ a^{-2} = \frac{1}{a^2}, \ a^{-3} = \frac{1}{a^3}, \dots$$

$$a^0 = 1$$
 (sopimus)

$$a^{1/2} = \sqrt{a}, a^{1/3} = \sqrt[3]{a}, \dots$$

$$a^{3/2} = (a^{1/2})^3, a^{5/3} = (a^{1/3})^5, \dots$$

 a^x on "järkevä" luku, kun a>0 ja x mitä tahansa

Esim
$$2^{1.57} \approx 2.969$$
, $5^{2.51} \approx 56.809$, $10^{-1.15} \approx 0.07$, . . .

Huom: Aina $a^x > 0$, kun a > 0

Octave/MATLAB: $a \wedge x$

Laskusäännöt:

$$a^r \cdot a^s = a^r + s$$

$$\frac{a^r}{a^s} = a^{r-s}$$

$$(a^r)^s = a^{rs}$$

Eksponenttifunktio $y = a^x$

Esim: $y = 10^x$

$$10^0 = 1, 10^1 = 10, 10^2 = 100, \dots$$

$$10^{-1} = 0.1, 10^{-2} = 0.01, \dots$$

$$10^{x+1} = 10^x \cdot 10^1 = 10 \cdot 10^x$$

$$10^{x+2} = 10^x \cdot 10^2 = 100 \cdot 10^x$$

$$10^{x-1} = 10^x \cdot 10^{-1} = 10^x / 10$$

$$10^{x-2} = 10^x \cdot 10^{-2} = 10^x / 100$$

Logaritmi on käänteisfunktio

$$a^x = y \leftrightarrow x = \log_a(y)$$

= a-kantainen logaritmi y:stä

= mihin potenssiin a pitää korottaa, jotta saadaan \boldsymbol{y}

Huom: $\log_a(1) = 0$

Huom: koska $a^x>0$, niin logaritmin voi ottaa vain positiivisistä luvuista

Esim: 10-kantainen logaritmi

$$y = 10^x \leftrightarrow x = \log_{10}(y) = \lg(y)$$

Octave/MATLAB: log10(x)

$$lg(1) = 0$$

$$\lg(10) = 1, \lg(100) = 2, \dots$$

$$lg(0.1) = -1, lg(0.01) = -2, ...$$

$$\lg(4) \approx 0.6, \lg(40) \approx 1.6, \dots$$

$$lg(0.4) \approx -0.4, lg(0.04) \approx -1.4, \dots$$

X,	log10(x)	X	log10(x)
1.00000	0.00000	10.0000	1.0000
2.00000	0.30103	20.0000	1.3010
3.00000	0.47712	30.0000	1.4771
4.00000	0.60206	40.0000	1.6021
5.00000	0.69897	50.0000	1.6990
6.00000	0.77815	60.0000	1.7782
7.00000	0.84510	70.0000	1.8451
8.00000	0.90309	80.0000	1.9031
9.00000	0.95424	90.0000	1.9542
10.00000	1.00000	100.0000	2.0000
X	log10(x)	X	log10(x)
0.10000	-1.00000	100.0000	2.0000
0.20000	-0.69897	200.0000	2.3010
0.30000	-0.52288	300.0000	2.4771
0.40000	-0.39794	400.0000	2.6021
0.50000	-0.30103	500.0000	2.6990
0.60000	-0.22185	600.0000	2.7782
0.70000	-0.15490	700.0000	2.8451
0.80000	-0.09691	800.0000	2.9031
0.90000	-0.04576	900.0000	2.9542
1.00000	0.00000	1000.0000	3.0000

eli esimerkiksi

$$lg(10x) = lg(10) + lg(x)$$

= 1 + lg(x)

$$\lg(x/10) = \lg(x) - \lg(10)$$

= $\lg(x) - 1$

$$lg(2x) = lg(2) + lg(x)$$

= 0.3 + lg(x)

$$\lg(x/2) = \lg(x) - \lg(2)$$

= $\lg(x) - 0.3$

jne

Logaritmin laskusäännöt:

1)
$$\log(A \cdot B) = \log(A) + \log(B)$$

$$2) \log(A/B) = \log(A) - \log(B)$$

3)
$$\log(A^r) = r \cdot \log(A)$$

Syy: potenssin laskusäännöt

1) jos $\log = \log_a$, niin

$$a\log(A) + \log(B)$$

$$= a^{\log(A)} \cdot a^{\log(B)} = A \cdot B$$

$$eli \log(A \cdot B) = \log(A) + \log(B)$$

2) ja 3) vastaavasti

Esim: vahvistus K desibeleinä

$$KdB = 20 \cdot \lg(K) \iff \lg(K) = KdB/20$$

 $\Leftrightarrow K = 10^{KdB/20}$

K	lg(K)	KdB
1	0	0
10	1	20
100	2	40
1000	3	60
0,1	-1	-20
0,01	-2	-40
0,001	-3	-60
2	0,3	6
0,5	-0,3	-6
5	0,7	14
0,2	-0,7	-14

Kokonaisvahvistus $K=K_2K_1$, desibeleinä yhteenlasku

$$20 \lg(K) = 20 \lg(K_2K_1)$$
$$= 20 \lg(K_2) + 20 \lg(K_1)$$

Esim: Allaolevassa kuvassa on vahvistuksen K kuvasja, vaaka-akselilla $w=0\dots 100$

Alla on $KdB = 20 \lg(K)$:n kuvaaja, vaaka-akselilla $w = 10^0 \dots 10^4$ logaritmisella asteikolla (eli $\lg(w) = 0 \dots 4$ "normaalilla" asteikolla)

Esimerkiksi, jos w=300, niin $KdB\approx-30$ eli $K=10^{-30/20}\approx0.03$

Kuvaajan suora osa kertoo, että jos $w \to 10w$ eli $\lg(w) \to \lg(w) + 1$, niin $KdB \to KdB - 20$ eli $\lg(K) \to \lg(K) - 1$ eli $K \to K/10$

Eulerin luku $e \approx 2.718...$

$$\left(1+\frac{1}{n}\right)^n \to e$$
, kun n kasvaa

$$\left(1+\frac{a}{n}\right)^n \to e^a$$
, kun n kasvaa

Esim: Jos pääoma on nyt A, ja vuosikorko on 100a%, niin vuoden päästä pääoma on

(1+a)A, jos korko lisätään vuosittain

$$\left(1+\frac{a}{2}\right)^2 A$$
, jos korko lisätään puolivuosittain

$$\left(1+\frac{a}{12}\right)^{12}A$$
, jos korko lisätään kuukausittain

$$\left(1+\frac{a}{365}\right)^{365}A$$
, jos korko lisätään päivittäin

$$\left(1+\frac{a}{n}\right)^n A$$
, jos korko lisätään n kertaa vuodessa

eli jos korko lisätään jatkuvasti, niin vuoden päästä pääoma on $e^a {\cal A}$

Esim. jos a = 0.05, niin $e^a = 1.0513$

Eksponenttifunktio $y = e^x$

Octave/MATLAB: exp(x)

x	e^{x}
-5.0000	0.0067
-4.0000	0.0183
-3.0000	0.0498
-2.0000	0.1353
-1.0000	0.3679
0	1.0000
1.0000	2.7183
2.0000	7.3891
3.0000	20.0855
4.0000	54.5982
5.0000	148.4132

$$e^{x+1} = e^x e^1 = 2.7183 e^x$$

$$e^{x-1} = e^x e^{-1} = 0.3679 e^x$$

Esim. Kondensaattorin purkautuessa sen jännite $U=U_0\cdot e^{-t/\tau}$, missä τ on aikavakio

$$t = 0, U = U_0$$

$$t = \tau$$
, $U = U_0 e^{-1} \approx 0.37 U_0$

$$t = 2\tau$$
, $U = U_0 e^{-2} \approx 0.37^2 U_0$

$$t = 5\tau$$
, $U = U_0 e^{-5} \approx 0.37^5 U_0 = 0.0067 U_0$

ja latautuessa $U = U_0 \cdot (1 - e^{-t/\tau})$

$$t = 0, U = 0$$

$$t = \tau$$
, $U = U_0(1 - e^{-1}) \approx (1 - 0.37)U_0$

$$t = 2\tau$$
, $U = U_0(1 - e^{-2}) \approx (1 - 0.37^2)U_0$

$$t = 5\tau$$
, $U = U_0(1 - e^{-5}) \approx (1 - 0.37^5)U_0 = 0.9933U_0$

Esim. Jos kappaleen alkulämpötila hetkellä t=0 on T_0 ja sen ympäristön lämpötila on T_y , niin Newtonin jäähtymislain mukaan kappaleen lämpötila hetkellä t on

$$T = T_y + (T_0 - T_y)e^{-k \cdot t}$$

missä k>0 on kappaleesta riippuva lämpövakio (eli aikavakio $\tau=1/k)$.

Esim: Lauseke

$$y = Ae^{-t/\tau}\sin(\omega t + \phi)$$

kuvaa vaimenevaa värähtelyä

värähtelyn amplitudi on $Ae^{-t/ au}$

kulmataajuus ω

jakso $T = 2\pi/\omega$.

Esim: hyperboliset funktiot

$$\cosh(x) = \frac{1}{2}(e^x + e^{-x})$$

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Octave/MATLAB: cosh(x), sinh(x), tanh(x)

Käänteisfunktio on luonnollinen logaritmi

$$y = e^x \leftrightarrow x = \log_e(y) = \ln(y)$$

Octave/MATLAB: log(x)

Esim: Ratkaise t yhtälöstä

$$U = U_0 e^{-t/\tau}$$

$$e^{-t/\tau} = U/U_0$$

$$-t/\tau = \ln(U/U_0)$$

$$t = -\tau \ln(U/U_0)$$

Esim: Ratkaise R yhtälöstä

$$L = \frac{\mu_0}{2} \cdot \ln\left(\frac{R}{r}\right)$$

$$\ln\left(\frac{R}{r}\right) = \frac{2L}{\mu_0}$$

$$\frac{R}{r} = e^{2L/\mu_0}$$

$$R = re^{2L/\mu_0}$$

Esim: Käänteiset hyperboliset

$$y = \cosh(x) = \frac{1}{2}(e^x + e^{-x})$$

$$\leftrightarrow x = \operatorname{acosh}(y) = \ln(y + \sqrt{y^2 - 1}), \ y \ge 1$$

$$y = \sinh(x) = \frac{1}{2}(e^x - e^{-x})$$

$$\leftrightarrow x = \operatorname{asinh}(y) = \ln(y + \sqrt{y^2 + 1}), y \text{ mitä vaan}$$

$$y = \tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\leftrightarrow x = \operatorname{atanh}(y) = \ln\left(\frac{1+y}{1-y}\right), \ -1 < y < 1$$

Octave/MATLAB: acosh(x), asinh(x), atanh(x)

Х

х

Esim: Ratkaise yhtälö $2^x = b$ eli laske 2-kantainen logaritmi $x = \log_2(b)$

$$log(2^x) = log(b)$$
 | $log = ln tai lg$

$$x \cdot \log(2) = \log(b)$$

$$x = \frac{\log(b)}{\log(2)}$$

Esim:

$$\log_2(5) = \frac{\lg(5)}{\lg(2)} = \frac{\ln(5)}{\ln(2)} \approx 2.32$$

Logaritmin kantaluvun vaihto eli miksi ei tarvita kuin yksi logaritmi

$$\log_a(b) = \frac{\lg(b)}{\lg(a)} = \frac{\ln(b)}{\ln(a)}$$

eli toisin sanoen,

$$a^x = b \leftrightarrow x = \frac{\lg(b)}{\lg(a)} = \frac{\ln(b)}{\ln(a)}$$

Esim: Piano keyboard frequencies

So called chromatic scale is commonly used in western music. This means that each octave is split into 12 equally spaced notes ('equally spaced' means that the ratio of adjacent notes is constant).

Adding one octave to any note means doubling the frequency of sound produced.

The frequency of "A above middle C" (the yellow key in figure) is 440 Hz.

An 88-key piano, with the octaves numbered and middle C (cyan) and A4 (yellow) highlighted

$$f_1, f_2, \dots, f_{88}, \quad f_2 = rf_1, f_3 = r^2 f_1, f_4 = r^3 f_1, \dots$$

$$f_{13} = r^{12} f_1 = 2f_1 \to r = 2^{1/12} = \sqrt[12]{2} \approx 1.06$$

$$f_{49} = r^{48} f_1 = 440 \to f_1 = 440/r^{48} = 27.5$$

$$f_k = r^{k-1} f_1 \to \log_2(f_k) = \log_2\left(r^{k-1}\right) + \log_2(f_1)$$

$$= \log_2\left(2^{(k-1)/12}\right) + \log_2(27.5) = \frac{1}{12}(k-1) + 4.8$$

