Modelling habitat selection across multiple spatial scales using varying coefficient regression

Thomas Cornulier - University of Aberdeen, UK

Alex Villers - CNRS-CEB Chize, France

Species-habitat relationship

Abundance = f_1 (habitat₁) + f_2 (habitat₂) + ... + ε

Predictor variables	Coefficient	SE
(Intercept)	-11.05	0.77
AgriPast	-0.71	0.97
AgriPast ²	0.43	0.30
WaterSurf	0.55	0.18
Log(AgriPerm)	-1.19	0.48
Aquatic	-0.28	0.07
Urban	-0.29	0.07
AgriIntens	-0.60	0.09
Stream	0.15	0.05
DistRoad	0.26	0.08
AgriHetero	-0.33	0.09

(Gadenne et al. 2014)

Scale-dependence

Statistical considerations (1)

- Selecting optimal scale(s)
 - Model selection: likelihood profiling of fixed optimal scale?
 - Optimization / multiple testing
 - Control for effective # parameters / Overfitting?

Statistical considerations (1)

- Selecting optimal scale(s)
 - Model selection: likelihood profiling of fixed optimal scale?
 - Optimization / multiple testing
 - Control for effective # parameters / Overfitting?
- Selecting optimal shape: step function, gradual decay?

Scale-dependence

Statistical considerations (2)

- Combining effects at multiple scales
 - Multicollinearity
 - Multiple sets of coefficients equally plausible
 - -> ill-defined/unstable/overfitting models

Statistical considerations (2)

- Combining effects at multiple scales
 - Multicollinearity
 - Multiple sets of coefficients equally plausible
 - -> ill-defined/unstable/overfitting models

- Regularization:
 - Penalizing excessive variance in the coefficients by imposing a smoothness constraint

Insights from ecology

Scale of habitat effect should depend on function

- Habitat for breeding
- Habitat for hiding
- Habitat for feeding
- ...

Insights from ecology

- Habitat selection strength varies with spatial scale.
- Shape and scale of selection habitat-specific.

We need

a practical approach to gain ecological insight about the strength, shape and scale of habitat selection, and able to deal with multicollinearity

Varying coefficient regression

See e.g. Hastie and Tibshirani (1993)

• Coefficients α_p for habitat A_p varying smoothly with distance p.

 $Y_i \sim Poisson(\lambda_i)$

$$\log \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_N \end{pmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \gamma + \begin{bmatrix} a_{1,1} & \cdots & a_{1,P} \\ \vdots & \ddots & \vdots \\ a_{N,1} & \cdots & a_{N,P} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_P \end{bmatrix}$$

$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_P \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} 1 \\ \vdots \\ P \end{bmatrix} \end{pmatrix}$$

• *f* is some smooth function

Sims, Elston et al. (2007) Journal of Animal Ecology

- Red deer weight at birth ~ temperature prior to birth
- Coefficients for temperature varying smoothly with time lag.

First-order random walk"Difference Penalty Regression"

Coded in R (about 60 lines)

Varying coefficient regression

• Coefficients α_p for habitat A_p varying smoothly with distance p.

$$Y_i \sim Poisson(\lambda_i)$$

$$\log \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_N \end{pmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \gamma + \begin{bmatrix} a_{1,1} & \cdots & a_{1,P} \\ \vdots & \ddots & \vdots \\ a_{N,1} & \cdots & a_{N,P} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_P \end{bmatrix}$$

$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_P \end{bmatrix} = f \left(\begin{bmatrix} 1 \\ \vdots \\ P \end{bmatrix} \right)$$

- f is some smooth function (e.g. thin-plate spline).
- Estimated with mgcv::gam (Wood 2006) in R using GCV (1 line of R code)

Illustration

Nest site selection in Montagu's harrier (Semi-colonial raptor)

Illustration

- Nesting and foraging habitats selected at short range (<1 km) with respect to foraging range (~5 Km).
- Built up areas avoided up to 2-3 Km.
- Seeks proximity to conspecifics within 1-1.5 Km.

Simulations

(1) Random landscapes: compute habitat availability within concentric rings (radius $x+\delta x$)

Simulations

(2) Random habitat selection functions f(p)

Either **Logistic** or **Beta**(U(0.5,10), U(0.5,10))

Last coefficient always zero.

Direction \sim binomial(0.5)

(3) Simulated species distributions

Model performance

Point-wise variance and bias of coefficients α

Point-wise coverage for α

Explained Deviance

Conclusions

- **Multicollinearity** across spatial scales **taken care of** by smoothing function *f*.
- Great simplification of model selection:
 1-stop estimation of strength, shape and scale of habitat selection.
- Gains in stability and explanatory power thanks to borrowing information across spatial scales.
- Simple implementation with standard software.
- Ecologically meaningful.

Future directions

- Investigate performance of different smoothing functions, e.g. difference penalty (Sims et al. 2007) or parametric smoothers?
- Control for scale-dependent collinearity between different resources in a multi-habitat regression setting.
- Impose explicit zero-effect constraint at large distances?