Теортест-1 (Вариант 23)

Тема – определенный интеграл

Задача 1

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x^2)dx = 2 \int f(t)tdt$;
- 2. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt$;
- 3. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 4. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. любое множество имеет неотрицательную площадь;
- 2. площадь $A \cup B$ равна сумме площадей A и B;
- 3. площадь отрезка равна нулю;
- 4. $S(A) = S(A \cap B) + S(A \setminus B)$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) является дробнорациональной, то все корни знаменателя f(x) кратные;
- 2. первообразная дробно-рациональной функции выражается через элементарные функции;
- 3. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 4. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;

Задача 4

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f(a) > 0, f(b) > 0;
- 2. f > 0 на [a, b];
- 3. f непрерывна в точке a и f(a) = 1;
- 4. f непрерывна на [a, b] и f((a + b)/2) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f монотонна на [a,b], то она интегрируема на [a,b];
- 2. Если f дифференцируема на [a,b], то она интегрируема на [a,b];
- 3. Если f имеет конечное число точек разрыва на [a,b], то она интегрируема на [a,b];
- 4. Если f интегрируема на [a, b], то она монотонна на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = v' + C;
- 2. vdt = du;
- 3. udt = dv;
- 4. v = u':

Задача 7

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau : s_{\tau} < S_{\tau};$
- 2. $\forall \tau \; \exists \xi : \; s_{\tau} = \sigma_{\tau}(\xi);$
- 3. $\forall \tau, \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 4. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} + \varepsilon;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения:

- 1. Гладкая кривая это кривая, все параметризации которой гладкие;
- 2. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 3. Длина спрямляемой кривой конечна;
- 4. Любая кривая имеет неотрицательную длину;
- 5. Длина замкнутой кривой равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-1, 10];
- 2. [-2, 20];
- 3. [-2, 10];
- 4. [-1, 20];

Задача 10

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F первообразная для f на [a,b];
- $2. \ F$ ограничена на [a,b];
- 3. F имеет разрывы в точках разрыва функции f;
- 4. F не убывает на [a, b];