NOVEMBER 6, 2024

HOMEWORK 4 B CS 457 B

> UMAIR DADA 20281 - SFBU

(TABLES)

```
1 CREATE TABLE T1 (
       P INT,
 2
 3
      Q CHAR(1),
 4 R INT
 5);
 6
7
   -- Inserting values into Table T1
   INSERT INTO T1 (P, Q, R) VALUES (10, 'a', 5);
    INSERT INTO T1 (P, Q, R) VALUES (15, 'b', 8);
9
10
   INSERT INTO T1 (P, Q, R) VALUES (25, 'a', 6);
11
12 -- Creating Table T2
13 CREATE TABLE T2 (
14 A INT,
      B CHAR(1),
15
   C INT
16
17 );
18
19 —— Inserting values into Table T2
20 INSERT INTO T2 (A, B, C) VALUES (10, 'b', 6);
21 INSERT INTO T2 (A, B, C) VALUES (25, 'c', 3);
22 INSERT INTO T2 (A, B, C) VALUES (10, 'b', 5);
```

A int	B char(1)	C hint	P int •	Q char(1)	R hint
10	b	6	10	а	5
25	С	3	15	b	8
10	b	5	25	а	6

(8.22)

a) SELECT * FROM T1 JOIN T2 ON T1.P = T2.A;

P int 💠	Q string	R hint	A hint	B string	C hint
10	а	5	10	b	6
25	а	6	25	С	3
10	а	5	10	b	5

b) SELECT * FROM T1 JOIN T2 ON T1.Q = T2.B;

P int •	Q string	R int	A int	B string →	C hint
15	b	8	10	b	6
15	b	8	10	b	5

c) SELECT * FROM T1 JOIN T2 ON T1.P = T2.A;

P int •	Q string •	R hint	A hint	B string	C int ◆
10	а	5	10	b	6
25	а	6	25	С	3
10	а	5	10	b	5

d) SELECT * FROM T1 JOIN T2 ON T1.Q = T2.B;

	P int	\$	Q string	\$	R int	\$	A int	\$	B string	\$	C int	\$
15	5		b		8		10		b		6	
15	5		b		8		10		b		5	

www.umairdada.com

e) SELECT P AS Column1, Q AS Column2, R AS Column3 FROM T1 UNION SELECT A AS Column1, B AS Column2, C AS Column3 FROM T2;

Column1 int	Column2 string	Column3 int
10	а	5
15	b	8
25	а	6
10	b	6
25	С	3
10	b	5

f) SELECT * FROM T1 JOIN T2 ON T1.P = T2.A AND T1.R = T2.C;

P int	Q string	R int	A int	B string	C tint
10	а	5	10	b	5

www.umairdada.com

(8.24) - Tuple Relational Calculus (TRC) / Domain Relational Calculus (DRC)

- a) .
- I. TRC {e.Fname, e.Lname | EMPLOYEE(e) Λ WORKS_ON(w) Λ e.Ssn = w.Essn Λ e.Dno = 5 Λ w.Pno = 1 Λ w.Hours > 10}
- II. DRC {Fname, Lname | \exists Ssn, Dno, Pno, Essn, Hours (EMPLOYEE(Fname, Lname, Ssn, Dno, _, _) \land WORKS_ON(Essn, Pno, Hours) \land Ssn = Essn \land Dno = $5 \land$ Pno = $1 \land$ Hours > 10}
- b) .
- I. TRC {e.Fname, e.Lname | EMPLOYEE(e) \land DEPENDENT(d) \land e.Ssn = d.Essn \land e.Fname = d.Dependent name}
- II. DRC − {Fname, Lname | ∃ Ssn, Dependent_name (EMPLOYEE(Fname, Lname, Ssn, _, _, _) ∧ DEPENDENT(Ssn, Dependent_name, _, _, _, _) ∧ Fname = Dependent_name)}
- c) .
- I. TRC {e.Fname, e.Lname | EMPLOYEE(e) $\Lambda \exists$ s (EMPLOYEE(s) Λ s.Fname = 'Franklin' Λ s.Lname = 'Wong' Λ e.Super_ssn = s.Ssn)}
- II. DRC {Fname, Lname | ∃ Ssn, Super_ssn (EMPLOYEE(Fname, Lname, Ssn, Super_ssn, _, _) ∧ ∃ Ssn2 (EMPLOYEE(_, 'Franklin', 'Wong', Ssn2, _, _) ∧ Super_ssn = Ssn2))}
- d) --
- e) .
- I. TRC {e.Fname, e.Lname | EMPLOYEE(e) $\land \neg \exists p \text{ (PROJECT(p) } \land \neg \exists w \text{ (WORKS_ON(w) } \land w.Essn = e.Ssn } \land w.Pno = p.Pnumber))}$
- II. DRC {Fname, Lname | \exists Ssn (EMPLOYEE(Fname, Lname, Ssn, _, _, _) \land – \exists Pnumber (PROJECT(Pnumber, _, _) \land – \exists Pno (WORKS_ON(Ssn, Pno, _) \land Pno = Pnumber)))}
- f) .
- I. TRC {e.Fname, e.Lname | EMPLOYEE(e) $\Lambda \neg \exists w \text{ (WORKS ON(w) } \Lambda \text{ w.Essn} = \text{e.Ssn})}$
- II. DRC {Fname, Lname | \exists Ssn (EMPLOYEE(Fname, Lname, Ssn, _, _, _) $\land \neg \exists$ Essn (WORKS_ON(Essn, _, _) \land Essn = Ssn))}
- g) --
- h) --
- i) .
- I. TRC {e.Lname | EMPLOYEE(e) Λ 3 d (DEPARTMENT(d) Λ d.Mgr_ssn = e.Ssn) Λ –3 dep (DEPENDENT(dep) Λ dep.Essn = e.Ssn)}
- II. DRC {Fname, Lname, Address | \exists Ssn, Dno (EMPLOYEE(Fname, Lname, Ssn, Dno, Address, _) \land \exists Pnumber (PROJECT(Pnumber, _, 'Houston') \land \exists Pno (WORKS_ON(Ssn, Pno, _) \land Pno = Pnumber)) \land \neg Dnumber (DEPT_LOCATIONS(Dnumber, 'Houston') \land Dnumber = Dno))}
- j) .
- I. TRC {e.Lname | EMPLOYEE(e) Λ \exists d (DEPARTMENT(d) Λ d.Mgr_ssn = e.Ssn) Λ \neg \exists dep (DEPENDENT(dep) Λ dep.Essn = e.Ssn)}
- II. DRC {Lname | ∃ Ssn (EMPLOYEE(_, Lname, Ssn, _, _,) ∧ ∃ Mgr_ssn (DEPARTMENT(Mgr_ssn, _, _) ∧ Mgr_ssn = Ssn) ∧ −∃ Essn (DEPENDENT(Essn, _, _, _, _, _) ∧ Essn = Ssn))}

Umair Dada 20281 4

www.umairdada.com

(8.26) - Tuple Relational Calculus (TRC) / Domain Relational Calculus (DRC)

- a) --
- b) --
- c) .
- a. TRC {name | BORROWER(b) \land -3 | (BOOK LOANS(l) \land l.Card no = b.Card no) \land b.Name = name}
- b. DRC {Name | 3 Card_no, Address (BORROWER(Name, Card_no, Address, _, _) \(\Lambda \frac{1}{2} \) Book_id, Due_date, Branch_id (BOOK_LOANS(Card_no, Book_id, Due_date, Branch_id)))}
- d) .
- a. **TRC -** {b.Title, br.Name, br.Address | BOOK_LOANS(I) \land LIBRARY_BRANCH(Ib) \land Ib.Branch_name = 'Sharpstown' \land I.Due_date = TODAY \land I.Branch_id = Ib.Branch_id \land BORROWER(br) \land BOOK(b) \land I.Card_no = br.Card_no \land I.Book_id = b.Book_id}
- b. DRC {Title, Name, Address | ∃ Book_id, Card_no, Branch_id (BOOK_LOANS(Card_no, Book_id, TODAY, Branch_id)
 Λ∃ Branch_name (LIBRARY_BRANCH(Branch_id, Branch_name, _) ∧ Branch_name = 'Sharpstown') ∧ ∃
 BorrowerName, BorrowerAddress (BORROWER(BorrowerName, Card_no, BorrowerAddress, _, _) ∧ ∃ BookTitle
 (BOOK(Book_id, BookTitle, _) ∧ Title = BookTitle ∧ Name = BorrowerName ∧ Address = BorrowerAddress)))}
- e) -
- f) .
- a. TRC {name, address, count | BORROWER(b) Λ \exists lc (BOOK_LOANS(lc) Λ lc.Card_no = b.Card_no Λ COUNT(Book_id) > 5 Λ name = b.Name Λ address = b.Address Λ count = COUNT(Book_id))}
- b. DRC {Name, Address, LoanCount | ∃ Card_no (BORROWER(Name, Card_no, Address, _, _) Λ ∃ LoanCount (LoanCount > 5 Λ ∃ Book_id (BOOK_LOANS(Card_no, Book_id, _, _) Λ COUNT(Book_id) = LoanCount)))}