The MOSFET as an Amplifier

➤ Basic structure of the common-source amplifier.

The Small-Signal Models

- (a) neglecting the channel-length modulation effect
- (b) including the effect of channel-length modulation, modeled by output resistance $r_o = |V_A|/I_D$.

The ac Characteristics

Transconductance
$$g_m \equiv \frac{\partial i_D}{\partial v_{GS}}\Big|_{v_{GS} = V_{GS}} = k_n \cdot \frac{W}{L} (V_{GS} - V_T)$$

Output Resistance
$$r_o \equiv \frac{\partial v_{DS}}{\partial i_D} \bigg|_{i_D = I_D} = \frac{V_A}{I_D}$$

 V_{Δ} is MOSFET parameter used to determine r_0

Voltage gain

$$A_{_{\scriptscriptstyle \mathcal{V}}}\equiv rac{\mathcal{V}_{_{\scriptscriptstyle O}}}{\mathcal{V}_{_{\scriptscriptstyle i}}}$$

The Common-Source Amplifier

(a)

- >Very high input resistance
- >Moderately high voltage gain
- >Relatively high output resistance

Equivalent Circuit of the CS Amplifier

Characteristics of CS Amplifier

Input resistance

$$R_{in} = R_G$$
 (b)

Voltage gain

$$A_{v} = \frac{v_{o}}{v_{gs}} = -g_{m}(r_{o} / /R_{D} / /R_{L})$$

Overall voltage gain
$$G_v = \frac{v_o}{v_{sig}} = -\frac{R_G}{R_G + R_{sig}} g_m (R_D / / R_L / / r_o)$$

Output resistance

$$R_{out} = r_o // R_D$$

Example-9: Small signal analysis of MOSFET Amplifiers

Determine A_v (neglecting the effects of R_G), R_{in} , and R_{out} for the circuit shown in Fig.. given that $V_t=1.5~V,\,V_A=50~V$ and $k_n'~W/L=0.25~mA/V^2$

The DC equivalent circuit:

$$egin{aligned}
u_{GS} > V_T \
u_{DS} >
u_{GS} - V_T \end{aligned}$$

Since
$$I_G = 0$$
, $V_G = V_D$

$$V_T > (v_{GS} - v_{DS})$$

$$V_T > 0$$

$$I_{D} = \frac{1}{2} \cdot 0.25 \times 10^{-3} (V_{GS} - 1.5)^{2} = 1.25 \times 10^{-4} (V_{GS} - 1.5)^{2}$$

Since,
$$V_{GS} = V_{DS}$$

$$I_D = 0.125(V_{DS} - 1.5)^2 \text{ mA}$$

For small signal analysis:

Transconductance

$$g_m = k_n' \frac{W}{L} (V_{GS} - V_t)$$

$$g_m = 0.25 \times 10^{-3} (4.4 - 1.5) = 0.725 \text{ mS}$$

Output Resistance

$$r_0 = \frac{V_A}{I_D}$$

$$r_0 = \frac{V_A}{I_D} = \frac{50}{1.06 \text{ mA}} = 47.2 \text{ k}\Omega$$

For small signal analysis:

For small-signal voltage gain,

 R_G is extremely large $R_G >> r_0 \parallel R_D \parallel R_L$

$$\mathbf{v}_0 \approx -\mathbf{g}_{\mathrm{m}} \mathbf{v}_{\mathrm{gs}} (\mathbf{r}_0 \parallel \mathbf{R}_{\mathrm{D}} \parallel \mathbf{R}_{\mathrm{L}})$$

$$V_{gs} = V_{i}$$

$$A_{v} = \frac{V_{0}}{V_{i}} \approx -g_{m}(r_{0} || R_{D} || R_{L}) = -3.3$$

Input resistance

$$R_{in} \equiv \frac{V_i}{i_i}$$

$$i_i = \frac{v_i - v_0}{R_G} = \frac{v_i}{R_G} \left(1 - \frac{v_0}{v_i} \right) = \frac{v_i}{R_G} (1 - A_v)$$

$$i_i = \frac{v_i}{R_G} (1 + 3.28)$$

$$R_{in} = \frac{V_i}{i_i} = \frac{R_G}{4.28} = 2.34 \text{ M}\Omega$$

Output Resistance,

- To compute this we set $v_{gs} = 0$ in the small scale equivalent circuit, which will open circuit the dependent current source leading to equivalent circuit as shown below.
- From the figure we can compute R_{out} as

$$R_{out} = R_G \parallel r_0 \parallel R_D = 8.24 \text{ k}\Omega$$

Common-Source Amplifier: Biasing with current source

- > Biasing with constant-current source.
- $\succ C_{C1}$ And C_{C2} are coupling capacitors.
- $\succ C_S$ is the bypass capacitor.

The Common-Source Amplifier with a Source Resistance

(a)

Small-signal Equivalent Circuit: Neglecting r_o

$$v_{in} = v_{gs} + g_m v_{gs} R_s$$

$$v_o = -g_m v_{gs} \left(R_D \square R_L \right)$$

Voltage gain

$$A_{v} = \frac{v_{o}}{v_{in}} = -\frac{g_{m}(R_{D} \sqcup R_{L})}{1 + g_{m}R_{S}}$$

$$A_{v} = \frac{v_{o}}{v_{in}} = -\frac{g_{m}(R_{D} \square R_{L})}{1 + g_{m}R_{S}}$$

$$v_{in} = \frac{R_G}{R_G + R_{sig}} v_{sig}$$

Overall voltage gain

$$G_{v} = \frac{v_{o}}{v_{sig}} = \frac{v_{o}}{v_{in}} \frac{v_{in}}{v_{sig}} = A_{v} \frac{v_{in}}{v_{sig}}$$

Characteristics of CS Amplifier with a Source Resistance

- Input resistance $R_{in} = R_G$
- Voltage gain

$$A_{v} = -\frac{g_{m}(R_{D} /\!/ R_{L})}{1 + g_{m}R_{S}}$$

Overall voltage gain

$$G_{v} = -\frac{R_{G}}{R_{G} + R_{sig}} \frac{g_{m}(R_{D} / / R_{L})}{1 + g_{m}R_{S}}$$

Output resistance

$$R_{out} = R_D$$

Example 9: Common Source Amplifier

Compute the small- signal voltage gain for the circuit shown in figure below with $R_s = 2 \text{ k}\Omega$, $k'_n W/L = 1 \text{ mA/V}^2$, and $V_t = 1.5 \text{ V}$.

Example 9 (Contd.)

DC Analysis:

$$V_{\rm G} = 0$$
 and $I_{\rm D} = I_{\rm S} = 0.5 \text{ mA}$

$$V_D = 10 - R_D I_D$$

= $10 - 14 \cdot 0.5 \text{ mA} = 3 \text{ V}$

$$I_{D} = \frac{1}{2} k_{n}' \frac{W}{L} (V_{GS} - V_{t})^{2}$$

$$0.5 \text{ mA} = \frac{1}{2} 1 \times 10^{-3} (V_{GS} - 1.5)^2$$

$$\Rightarrow V_{GS} - 1.5 = \pm 1$$

$$\Rightarrow V_{GS} = 2.5 \text{ V} \text{ or } 0.5 \text{ V}$$

MOSFET is in saturation mode

$$v_{GS} > V_T$$
 $V_{GS} = 2.5 \text{ V}$

$$V_{GS} = 2.5 \text{ V}$$

For small signal analysis:

$$g_m = k_n \frac{W}{L} (V_{GS} - V_t) = 10^{-3} (2.5 - 1.5) = 1 \text{ mS}$$

$$g_m = k_n' \frac{W}{L} (V_{GS} - V_t)$$

$$G_{v} = \frac{v_{o}}{v_{sig}} = -\frac{R_{G}}{R_{G} + R_{sig}} \frac{g_{m}(R_{D} \square R_{L})}{1 + g_{m}R_{s}}$$

Example: DC Analysis

For the circuit shown in Fig. below calculate the voltage V_0 and current I_0 . Both the MOSFET Q_1 and Q_2 are identical with V_t = 1 V, $\mu_n C_{ox} = 2.5~\mu\text{A/V}^2$, L = 10 μm , and W = 30 μm .

$$V_{GD} = 0 \text{ V for both the MOSFET.}$$

$$V_{GD} < V_{t} \text{ (MOSFET is in Saturation)}$$

$$I_{0} = I_{D1} = I_{D2} \implies V_{GS1} = V_{GS2}$$

$$V_{GS1} + V_{GS2} = 3 \text{ V} \implies V_{GS1} = V_{GS2} = 1.5 \text{ V}$$

$$V_{0} = 1.5 \text{ V}$$

$$I_{D} = \frac{1}{2} \mu_{0} C_{0x} \frac{W}{L} (V_{GS} - V_{t})^{2} = \frac{1}{2} 2.5 \times 10^{-6} \cdot \frac{30}{10} (1.5 - 1)^{2} = 0.9375 \quad \mu A$$