

Department of Computer Science and Engineering Indian Institute of Technology, Jodhpur

Presented by: Qazi Sajid Azam (B16CS026) Anurag Shah (B16CS034)

> Mentor: Dr. Gaurav Harit

Introduction

Abstract

We have designed a system that performs super-resolution of text images in order to improve the accuracy of OCR technologies.

Using deep learning methods, we are able to generate a high-resolution larger image from a smaller image, because the accuracy of OCR generally increases with larger, sharper images.

Concept of Super-Resolution

Super-Resolution refers to the task of recovering a high-resolution image from its low-resolution counterpart, while preserving the detail and visual fidelity expected from such a high-resolution image.

Modern state-of-the-art technologies implement deep learning to solve this problem, with varying levels of success.

Previous Work

Convolutional Neural Networks (SRCNN)

- Naive Initial approach
- Learn a mapping between the LR and HR images, from a large dataset of such pairs

Drawbacks:

- Loss functions not entirely indicative of the true visual quality
- Results in overly smooth textures
- Absence of high-frequency details
- Easily identified as fake

Generative Adversarial Networks (SRGAN)

- Smarter approach
- Solves the problem of missing texture details
- Employs a discriminator network along with a generator network
- Loss function includes whether the image looks real or fake
- Results in highly photorealistic generated images

GAN Network Architecture

SRGAN Network Architecture

G and D Architectures

GAN as a Minimax problem

GAN can be seen as a minimax problem, which is represented in below equation.

$$min_{\theta_{G}} max_{\theta_{D}} E_{I^{HR} \sim p_{train}(I^{HR})} \left[log D_{\theta_{D}} \left(I^{HR} \right) \right] + E_{I^{LR} \sim p_{G}(I^{LR})} \left[log \left(1 - D_{\theta_{D}} \left(G_{\theta_{G}} \left(I^{LR} \right) \right) \right) \right]$$

Work Done

Optimization for Text Images

- The original SRGAN is made for natural images.
- We have modified it to suit text images better by tweaking parameters
- Following improvements are made:
 - Tried different combinations of weights of loss components
 - Increase the weight of VGG loss, which relates to features
 - Include OCR evaluation of the results.

Loss Function

We use a perceptual loss function with two components with empirical weights to get the overall loss function below.

$$l^{SR} = \underbrace{l_{x}^{SR}}_{\text{content loss}} + \underbrace{10^{-3}l_{Gen}^{SR}}_{\text{adversarial loss}}$$

$$\underbrace{l_{x}^{SR}}_{\text{content loss}} + \underbrace{10^{-3}l_{Gen}^{SR}}_{\text{adversarial loss}}$$

Loss Components: Content Loss

The content loss has further two components:

1. MSE loss (mean squared error)

$$l_{MSE}^{SR} = rac{1}{r^2 W H} \sum_{r=1}^{rW} \sum_{y=1}^{rH} \left(I_{x,y}^{HR} - G_{\theta_G} \left(I^{LR} \right)_{x,y} \right)^2$$

2. VGG loss

$$l_{VGG/i,j}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} \left(\phi_{i,j} \left(I^{HR}\right)_{x,y} - \phi_{i,j} \left(G_{\theta_G} \left(I^{LR}\right)\right)_{x,y}\right)^2$$

Loss Components: Adversarial Loss

This component of the loss encourages our network to favor solutions that reside on the manifold of natural images, by trying to fool the discriminator network.

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -log D_{\theta_D} \left(G_{\theta_G} \left(I^{LR} \right) \right)$$

Results

Loss over epochs: Generator

Generator Loss

Epoch

Loss over epochs: Discriminator

Discriminator Loss

Comparison

	PSNR	MSE	SSIM
Bicubic	22.11959	618.1672	0.885283
SRGAN trained on DIV2K	21.45826	643.0672	0.864593
SRGAN trained on text	19.33736	833.2610	0.876426
Text SRGAN	21.86047	475.5829	0.921915

Some of the samples

LR	TICON	50	UNE SPATULE	TULLE	25.
Bicubic	NÉDIT	50	UNE SPATULE	TULLE	25
Text SRGAN	INÉDIT	50	UNE SPATULE	TULLE	25
HR	INÉDIT	50	UNE SPATULE	TULLE	25,

Output samples over the epochs

11 ANTOINE GRIEZMANN

Animated GIF showing the changes every 25 epochs from epoch 0 to 175

11 ANTOINE GRIEZMANN

Final Result after 300 epochs

11 ANTOINE GRIEZMANN

Ground Truth

Comparison of OCR Accuracies

Accuracy on Tesseract OCR

Relative performance with OCR

Relative performance

Improvement in OCR Accuracy

Relative to HR	95.54%	
Relative to Bicubic	121.3%	
Relative to LR	390.0%	

Future Work

Suggestions for Improvement of Results

- Further optimizations to loss function (replace VGG)
- Training on larger dataset for more number of epochs
- Including handwritten images dataset
- Improvement of network architecture

