Mathematical Logic – Proofs by Resolution (recap)

$$P \to Q \equiv \neg P \lor Q$$
$$\neg (P \to Q) \equiv P \land \neg Q$$

- P ∧ Q → R processed as a whole
- or process separately P, Q and $\neg R$
- why?

The method:

- negate the statement (why?)
- (1) convert to prenex form
 - move quantifiers as prefix
 - convert to skolem form
 - remove quatifiers and replace with functions
 - convert to clausal form = conj NF = $(... \lor ...) \land (... \lor ...)$...
- (2) unifications and substitutions
- resolve by (predicates) resolution
- (4) resolution for propositions (explanation)
 - examples
- (5) ex 37, example of predicates resolution
 - Prolog computation
 - example, the English succession
 - Prolog execution of above

fact
$$B$$
. $\{B\}$
definite clause $B \leftarrow A_1, ..., A_n$. $\{\neg A_1, ..., \neg A_n, B\}$
goal $\leftarrow A_1, ..., A_n$. $\{\neg A_1, ..., \neg A_n\}$