Interval estimation

Motivation

Suppose we have data $(X_1,Y_1),\ldots,(X_n,Y_n)$ with

$$Y_i \sim Bernoulli(p_i)$$

$$\log \left(\frac{p_i}{1 - p_i}\right) = \beta^T X_i$$

So far, we have discussed:

- lacktriangle Finding point estimates \widehat{eta}
- lacktriangle Testing hypotheses about the true (but unknown) parameters eta

What are the limitations of point estimates and hypothesis tests for inference about β ?

Confidence interval

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.6415063 0.1213233 21.77 <2e-16 ***
## WBC -0.2892904 0.0134349 -21.53 <2e-16 ***
## PLT -0.0065615 0.0005932 -11.06 <2e-16 ***
```

How would I calculate a 95% confidence interval for β_1 (the change in the log odds of dengue for a one-unit increase in WBC, holding PLT fixed)?

Confidence interval

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.6415063 0.1213233 21.77 <2e-16 ***
## WBC -0.2892904 0.0134349 -21.53 <2e-16 ***
## PLT -0.0065615 0.0005932 -11.06 <2e-16 ***
```

95% confidence interval for β_1 : (-0.315, -0.262)

How do I interpret this confidence interval?

Deriving the coverage probability

Formal definition

Inverting a test

Example

Suppose $X_1,\ldots,X_n \overset{iid}{\sim} Uniform[0, heta].$ We want to test

$$H_0: heta = heta_0 \hspace{0.5cm} H_A: heta
eq heta_0$$

Find the LRT statistic for this test.

Example

Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim}Uniform[0,\theta]$. Inverting the LRT gives us a confidence interval of the form

$$C(X_1,\ldots,X_n)=\left\{ heta:X_{(n)}\leq heta\leq X_{(n)}k'
ight\}$$

Find a value k' such that the test is size α .