Solutions due by 10.30am Friday 12th March.

1. Last week we showed that if $X_i \sim N(\mu, \sigma^2)$, then: if $\mu \neq 0$, $\sqrt{n}(\bar{X}^2 - \mu^2) \stackrel{d}{\to} N(0, 4\mu^2\sigma^2)$; if $\mu = 0$, $\frac{n\bar{X}^2}{\sigma^2} \stackrel{d}{\to} \chi^2(1)$.

In whatever language you prefer, verify with a Monte Carlo simulation that this is correct. Consider $n \in \{50, 500\}$, $\mu \in \{-2, -1, 0, 1, 2\}$, and $\sigma^2 = 1$. For each combination of parameters, draw n observations from a $N(\mu, \sigma^2)$ distribution and compute the sample mean ITER = 1000 times. Plot the empirical distribution of $\sqrt{n}(\bar{X}^2 - \mu^2)$ or $\frac{n\bar{X}^2}{\sigma^2}$ as appropriate, and overlay the density that it should converge to.

2. Solve the following problem:

$$\max xyz$$
s.t. $y + 2x = 15$

$$2z + y = 7$$

$$y \ge 5$$

- 3. Suppose there is a worker who chooses consumption c and labor ℓ to maximize the utility function $u(c,\ell) = \log(c) + \eta \log(1-\ell)$, where $1-\ell$ is their leisure time, $\ell \in [0,1]$, and $\eta \in \mathbb{R}_+$ is the elasticity of leisure. When labor ℓ is provided, the worker can produce $A\ell$ units of the consumption good. The worker's output is taxed at a rate $\tau \in [0,1]$.
 - a) Is the utility function concave, convex, or neither?
 - b) Solve the worker's optimization problem for how much labor they choose to supply and how much consumption they obtain.
 - c) How does labor supply change with the tax rate in this model? How much revenue does the government receive?
- 4. Consider the problem of a student who is working to solve a problem. The student receives payoff \bar{z} if they correctly solve the problem, and payoff \bar{z} if they do not, $\bar{z} > \bar{z}$. Unfortunately, thinking about the problem requires effort. Let the amount of effort exerted by the student be $e \geq 0$. For a given level of effort, the probability that they solve the problem is given by the function $p(e) \in [0,1]$, with p' > 0, p'' < 0, $\lim_{e \to \infty} p' = 0$. For any level of effort, the student experiences disutility, v(e), where v' > 0, v'' > 0, v(0) = 0.

Write down the student's optimization problem. Solve for the optimality conditions.

- 5. Consider adding labor to the Ramsay growth model. The agent has one unit of time each period that they can split between labor ℓ , and leisure, $1-\ell$. Their utility function, $U(c_t, 1-\ell_t)$ is increasing and concave in both consumption and leisure. Let the production technology be $F(k_t, \ell_t)$.
 - a) Solve for the agent's optimality condition governing the intra-temporal consumption-leisure tradeoff.
 - b) Assume a steady state exists and log-linearize this equation around it.