FUNCTIONAL PREDICTION AT THE (META-)GENOMIC SCALE BY EVOLUTIONARY ANALYSIS

JAIME HUERTA CEPAS

BORK GROUP, EMBL HEIDELBERG

1. PHYLOGENOMIC APPROACHES FOR ORTHOLOGY DETECTION AND FUNCTIONAL PREDICTION

ORTHOLOGY AND FUNCTIONAL PREDICTION

Ortholog conjecture:

Function is more conserved between orthologs than between paralogs

Predicting gene function turns into an orthology prediction problem

Orthologs

Orthologs

Deeper Evolutionary → analysis

Paralogs

BLAST results →

Homologs

ORTHOLOGY DETECTION METHODS (PHYLOGENY)

Allows tracing the origin of duplication and speciation events

ORTHOLOGY DETECTION METHODS (CLUSTERING)

- Build Clusters of Orthologous Groups (COGs) based on sequence similarity network
- Tend to be faster and cope for larger amounts of species/ sequences
- No co-orthology disambiguation and requires taxonomic constraints

1 COG (all species)

2 COGs (mammal species)

- Rapid sequence search
- Find orthologous groups
- Functional annotations
 - Domains
 - Gene Ontology
 - KEGG
 - Taxonomic distribution

http://eggnog.embl.de

COG

Huerta-Cepas, et al. 2016 (Nucleic Acid Research)

FINE GRAINED ORTHOLOGY PREDICTIONS

http://eggnog.embl.de

EFFICIENT ANNOTATION BY ORTHOLOGY MAPPING

Find query's best match

Place it in tree

Transfer terms from orthologs

http://eggnog-mapper.embl.de

Huerta-Cepas et al. 2016 (submitted)

EGGNOG-MAPPER PERFORMANCE

CAFA2: Jiang et al. Genome Biology (2016)

CAFA2 Challenge:

- eggNOG-mapper ranked **top 5 out of 126 methods** in the 3 GO categories

3. FUNCTIONAL EXPLORATION OF METAGENOMIC DATASETS

FUNCTIONAL ANNOTATION OF METAGENOMIC DATA

Objective: "develop cutting edge methods for using large scale data to design cell factories and bacterial communities for biotechnological applications" http://dd-decaf.eu

@EMBL

- Mining new enzymes out from genomic and metagenomic data
- Building metabolic models based on functional annotation of bacterial communities

EXPLORING METAGENOMICS UNKNOWN FRACTION

C Ocean core vs gut core orthologous groups

73% of ocean gene abundance 63% of gut gene abundance

Structure and function of the global ocean microbiome

Sunagawa el al. Science 348 (6237), 1261359

3. TOOLS

Consistently annotated prokaryotic genomes

http://progenomes.embl.de

Mende et al. NAR 45 (2017) D286

Orthologous groups and functional information

http://eggnog.embl.de

Huerta-Cepas et al. NAR (2016)

Fast accurate functional annotation

http://eggnog-mapper.embl.de

Huerta-Cepas et al. MBE (2017)

ETE Toolkit

A Python framework to work with trees

from ete3 import Tree
tree = Tree('((A,B), D);')

Phylogenetic reconstruction and analysis

http://etetoolkit.org

Huerta-Cepas et al. MBE (2016)