

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

## Трифонов Владислав Дмитриевич

# Отчет по заданию 1: Многопоточная реализация солвера СС для СЛАУ с разреженной матрицей, заданной в формате ELL

Курс "Параллельные вычисления" (1 курс магистратуры ВМК)

группа 528, дата подачи 13.10.2019

## Содержание

| 1 | Опи | исание задания и программной реализации  | 3  |
|---|-----|------------------------------------------|----|
|   | 1.1 | Краткое описание задания                 | 3  |
|   | 1.2 | Краткое описание программной реализации  | 3  |
|   |     | 1.2.1 Сборка                             | 3  |
|   |     | 1.2.2 Запуск                             | 4  |
|   |     | 1.2.3 Реализация                         | 4  |
| 2 | Исс | ледование производительности             | 6  |
|   | 2.1 | Характеристики вычислительной системы    | 6  |
|   |     | 2.1.1 Компиляция                         | 6  |
|   | 2.2 | Результаты измерений производительности  | 6  |
| 3 | Ана | ализ полученных результатов              | 11 |
|   | 3.1 | Процент от пика                          | 11 |
|   | 3.2 | Процент от достижимой производительности | 13 |
| 4 | Зак | лючение                                  | 17 |

## 1 Описание задания и программной реализации

#### 1.1 Краткое описание задания

В качестве задания 1 по курсу "Параллельные вычисления" предлагалось реализовать численное решение СЛАУ с разреженной матрицей, заданной в формате ELLPACK, методом сопряженных градиентов с предобуславливателем Якоби. Для этого требовалось:

- ullet реализовать генератор матрицы с диагональным преобладанием для расчетной области, представленной трехмерной декартовой решеткой заданного размера Nx, Ny, Nz
- выполнить последовательные реализации операций dot, axpby, SpMV, а также вспомогательные функции для работы с векторами
- реализовать предложенный солвер на основе данных операций
- выполнить многопоточные реализации данных операций с помощью библиотеки OpenMP
- реализовать многопоточный солвер
- реализовать проверочные вызовы последовательных и многопоточных реализаций для ручной проверки и оценки времени работы алгоритма
- исследовать эффективность реализованных алгоритмов

## 1.2 Краткое описание программной реализации

Реализация была выполнена на языке С.

#### **1.2.1** Сборка

Сборка выполняется с помощью Makefile. Компилятор и его параметры задаются в переменных Makefile CXX, CXXFLAGS (компилятор по-умолчанию – gcc). Скомпилированная программа находится по пути ./build/bin/main.

#### 1.2.2 Запуск

Параметры запуска можно узнать с помощью команды:

# ./build/bin/main --help

Пример запуска реализованных солверов с предварительной проверкой операций при размере сетки 5x5x5, 2 потоках, максимальном числе итераций 6, параметром eps=0.1, усреднением по 3 запускам:

# ./build/bin/main --qa --nx=5 --ny=5 --nz=5 --nt=2 --maxit=6 --tol=0.1 --nseeds=3

#### 1.2.3 Реализация

Для работы с матрицами в формате ELLPACK был реализован модуль  $ell\_utils.c$ , в нем содержатся функции:

- generate\_ELL\_3D\_DECART генерация случайной матрицы с диагональным преобладанием для трехмерной декартовой решетки заданных размеров
- delete ELL корректное освобождение выделенной памяти

Для работы с векторами был реализован модуль  $vector\_utils.c$ , в нем содержатся функции:

- create\_uninit\_Vector создание вектора заданной размерности без его инициализации
- create\_const\_Vector создание вектора заданной размерности с константной инициализацией
- $\bullet$  create\_cosine\_Vector создание вектора заданной размерности с инициализацией  $x_i = \cos(i*i)$
- $\bullet$ create\_sin\_Vector создание вектора заданной размерности с инициализацией  $x_i = sin(i*i)$
- сору Vector создание копии вектора

- copy\_from\_Vector\_to\_Vector копирование значений одного вектора в другой. Векторы должны быть одинаковых размеров
- compute sum подсчет суммы компонент вектора
- compute L2 norm подсчет L2 нормы
- compute\_L1\_norm подсчет L1 нормы
- compute Linf norm подсчет Linf нормы
- delete Vector корректное освобождение выделенной памяти

Базовые операции работы с векторами и матрицами выполнены в модуле ops utils.c:

- dot скалярное произведение двух векторов
- $\bullet$  axpby\_store операция  $r\vec{e}s = a * \vec{x} + b * \vec{y}$ , вектор результат должен быть указан
- ахрby аналогичная операция, для результата аллоцируется новая память
- SpMV\_store операция умножения разреженной матрицы на вектор, вектор результат должен быть указан
- SpMV аналогичная операция, для результата аллоцируется новая память
- inv\_diag\_SpMV\_store операция умножения обратной диагональной части разреженной матрицы на вектор, вектор результат должен быть указан
- inv\_diag\_SpMV аналогичная операция, для результата аллоцируется новая память

Аналогичные многопоточные операции реализованы в модуле  $omp\_ops\_utils.c.$ 

В модулях solver.c и omp\_solver.c реализованы функции solve и omp\_solve для решения СЛАУ с разреженной матрицей, заданной правой частью, начальным приближением, параметром eps и максимальным числом итераций.

В модуле main производится парсинг аргументов командной строки и использование приведенных функций.

## 2 Исследование производительности

#### 2.1 Характеристики вычислительной системы

Исследование было выполнено на ПК с 4-х ядерным CPU Intel i5-3570K, работающим на частоте 4.1 GHz, с памятью 4\*4Gb DDR3-1600MHz, работающей в двухканальном режиме. Пиковая производительность 131,2 GFLOPS, пиковая пропускная способность памяти 12.8\*2 = 25.6 Gb/s. OC – Ubuntu 16.04.

#### 2.1.1 Компиляция

Компиляция проводилась с помощью компилятора *gcc* 5.4.0 с флагами -g -Wall -O3 -Werror -Wl,-z,defs -Wextra -fopenmp.

### 2.2 Результаты измерений производительности

При проведении экспериментов проводилось 3 запуска, далее время усреднялось (--nseeds=3). В многопоточном варианте использовалось 2 и 4 потока(--nt=2, --nt=4). Параметр eps = 0.1, maxit = 20 (--tol=0.1 --maxit=20).

Посчитаем количество FLOP для каждой из операций в зависимости от размера N:

- $\bullet$  FLOP(dot) = N + (N-1) = 2N-1, N умножений и N-1 сложение
- FLOP(axpby) = 2N + 1N = 3N, 2N умножений и N сложений
- FLOP(SpMV) = (m+m-1)\*N = 13N, где m количество ненулевых элементов матрицы в строке, в предложенной декартовой сетке m=7
- $FLOP(inv\_diag\_SpMV) = 2N, N$  умножений и N делений
- $FLOP(solver) = FLOP(SpMV) + FLOP(axpby) + iter\_num*$  \*  $(FLOP(inv\_diag\_SpMV) + FLOP(dot) + FLOP(axpby) + FLOP(SpMV) + FLOP(dot) + 1 + 2*FLOP(axpby)) = FLOP(SpMV) + FLOP(axpby) + iter\_num*$  \*  $(FLOP(inv\_diag\_SpMV) + 2*FLOP(dot) + 3*FLOP(axpby) + FLOP(SpMV) + +1)) = 16N + iter\_num*(2N + 4N 2 + 9N + 13N + 1) = N(16 + iter\_num*28),$  где  $iter\_num$  количество проведенных итераций

| Размер системы $(N)$                   | $10^{6}$    | $10^{7}$    | $5*10^{7}$  | $7.5 * 10^7$  |
|----------------------------------------|-------------|-------------|-------------|---------------|
| GFLOP                                  | $2*10^{-3}$ | $2*10^{-2}$ | $1*10^{-1}$ | $1.5*10^{-1}$ |
| Время последовательной реализации      | 0.001       | 0.009       | 0.047       | 0.070         |
| (в секундах) $(T_1)$                   | 0.001       | 0.009       | 0.047       | 0.070         |
| GFLOPS (последовательная версия)       | 2.0         | 2.22        | 2.12        | 2.14          |
| Время многопоточной реализации,        | 0.001       | 0.008       | 0.039       | 0.058         |
| <b>2</b> потока $(T_2)$                | 0.001       | 0.008       | 0.039       | 0.036         |
| GFLOPS (2 потока)                      | 2.0         | 2.5         | 2.56        | 2.59          |
| Ускорение (2 потока) $(T_1/T_2)$       | 1.0         | 1.125       | 1.20        | 1.21          |
| Время многопоточной реализации,        | 0.003       | 0.009       | 0.039       | 0.057         |
| 4 потока $(T_4)$                       | 0.003       | 0.009       | 0.039       | 0.001         |
| GFLOPS (4 потока)                      | 0.67        | 2.22        | 2.56        | 2.63          |
| Ускорение (4 потока) $(T_1/T_4)$       | 0.33        | 1.0         | 1.20        | 1.23          |
| $O$ тносительное ускорение $(T_2/T_4)$ | 0.33        | 0.89        | 1.0         | 1.01          |

Таблица 1: Результаты производительности операции dot



Рис. 1: Графики производительности операции dot

| Pазмер системы $(N)$                           | $10^{6}$    | $10^{7}$    | $5*10^{7}$    | $7.5 * 10^7$   |
|------------------------------------------------|-------------|-------------|---------------|----------------|
| GFLOP                                          | $3*10^{-3}$ | $3*10^{-2}$ | $1.5*10^{-1}$ | $2.25*10^{-1}$ |
| Время последовательной реализации              | 0.003       | 0.027       | 0.135         | 0.204          |
| (в секундах) $(T_1)$                           | 0.003       | 0.021       | 0.133         | 0.204          |
| GFLOPS (последовательная версия)               | 1.0         | 1.11        | 1.11          | 1.10           |
| Время многопоточной реализации,                | 0.001       | 0.019       | 0.084         | 0.140          |
| ${f 2}$ потока $(T_2)$                         | 0.001       | 0.019       | 0.004         | 0.140          |
| GFLOPS (2 потока)                              | 3.0         | 1.58        | 1.78          | 1.61           |
| $oldsymbol{V}$ скорение (2 nomoкa) $(T_1/T_2)$ | 3.0         | 1.42        | 1.61          | 1.46           |
| Время многопоточной реализации,                | 0.002       | 0.017       | 0.070         | 0.101          |
| $4$ потока $(T_4)$                             | 0.002       | 0.017       | 0.070         | 0.101          |
| GFLOPS (4 потока)                              | 2.0         | 1.76        | 2.14          | 2.23           |
| Ускорение (4 потока) $(T_1/T_4)$               | 1.5         | 1.59        | 1.93          | 2.0            |
| Относительное ускорение $(T_2/T_4)$            | 0.5         | 1.12        | 1.2           | 1.39           |

Таблица 2: Результаты производительности операции ахрbу



Рис. 2: Графики производительности операции ахрbу

| ho Размер системы $(N)$             | $10^{6}$      | $10^{7}$        | $5*10^{7}$  | $7.5 * 10^{7}$ |
|-------------------------------------|---------------|-----------------|-------------|----------------|
| GFLOP                               | $1.6*10^{-2}$ | $1.6 * 10^{-1}$ | $8*10^{-1}$ | 1.2            |
| Время последовательной реализации   | 0.009         | 0.107           | 0.535       | 0.807          |
| (в секундах) $(T_1)$                | 0.009         | 0.107           | 0.555       | 0.807          |
| GFLOPS (последовательная версия)    | 1.77          | 1.49            | 1.49        | 1.49           |
| Время многопоточной реализации,     | 0.007         | 0.076           | 0.369       | 0.552          |
| $2$ потока $(T_2)$                  | 0.007         | 0.070           | 0.509       | 0.002          |
| GFLOPS (2 потока)                   | 2.28          | 2.10            | 2.17        | 2.17           |
| Ускорение (2 потока) $(T_1/T_2)$    | 1.28          | 1.4             | 1.45        | 1.46           |
| Время многопоточной реализации,     | 0.008         | 0.075           | 0.341       | 0.514          |
| <b>4</b> потока $(T_4)$             | 0.008         | 0.075           | 0.541       | 0.514          |
| GFLOPS (4 потока)                   | 2             | 2.13            | 2.35        | 2.33           |
| Ускорение (4 потока) $(T_1/T_4)$    | 1.125         | 1.43            | 1.57        | 1.57           |
| Относительное ускорение $(T_2/T_4)$ | 0.875         | 1.01            | 1.08        | 1.07           |

Таблица 3: Результаты производительности операции SpMV



Рис. 3: Графики производительности операции SpMV

| Pазмер системы $(N)$                      | $10^{6}$       | $10^{7}$ | $5*10^{7}$      | $7.5 * 10^7$  |
|-------------------------------------------|----------------|----------|-----------------|---------------|
| Количество итераций                       | 7              | 8        | 9               | 9             |
| GFLOP                                     | $2.12*10^{-1}$ | 2.40     | $1.34 * 10^{1}$ | $2.01*10^{1}$ |
| Время последовательной реализации         | 0.161          | 1.963    | 10.719          | 15.925        |
| (в секундах) $(T_1)$                      | 0.101          | 1.905    | 10.719          | 10.920        |
| GFLOPS (последовательная версия)          | 1.32           | 1.22     | 1.25            | 1.26          |
| Время многопоточной реализации,           | 0.131          | 1.531    | 8.492           | 12.760        |
| <b>2</b> потока ( <i>T</i> <sub>2</sub> ) | 0.131          | 1.001    | 0.402           | 12.700        |
| GFLOPS (2 потока)                         | 1.62           | 1.57     | 1.58            | 1.57          |
| Ускорение (2 потока) $(T_1/T_2)$          | 1.23           | 1.28     | 1.26            | 1.25          |
| Время многопоточной реализации,           | 0.139          | 1.496    | 8.151           | 12.331        |
| 4 потока $(T_4)$                          | 0.133          | 1.430    | 0.101           | 12.551        |
| GFLOPS (4 потока)                         | 1.52           | 1.6      | 1.64            | 1.63          |
| Ускорение (4 потока) $(T_1/T_4)$          | 1.16           | 1.31     | 1.31            | 1.29          |
| $O$ тносительное ускорение $(T_2/T_4)$    | 0.94           | 1.02     | 1.04            | 1.03          |

Таблица 4: Результаты производительности солвера



Рис. 4: Графики производительности солвера

## 3 Анализ полученных результатов

Пиковая производительность TPP=131,2 GFLOPS, пиковая пропускная способность памяти BW=25.6 Gb/s. На одно ядро  $TPP_p=32.8$  GFLOPS.

## 3.1 Процент от пика

| Размер системы $(N)$       | $10^{6}$ | $10^{7}$ | $5*10^{7}$ | $7.5 * 10^7$ |
|----------------------------|----------|----------|------------|--------------|
| GFLOPS                     | 2.0      | 2.22     | 2.12       | 2.14         |
| (последовательная версия)  | 2.0      | 2.22     | 2.12       | 2.14         |
| Процент от пика            | 6.1%     | 6.77%    | 6.46%      | 6.5%         |
| $(GFLOPS/TPP_p)$           | 0.170    | 0.7770   | 0.4070     | 0.570        |
| GFLOPS (2 потока)          | 2.0      | 2.5      | 2.56       | 2.59         |
| Процент от пика (2 потока) | 3.05%    | 3.81%    | 3.9%       | 3.95%        |
| $(GFLOPS/(2*TPP_p))$       | 3.0370   | 3.01/0   | 3.970      | 3.9370       |
| GFLOPS (4 потока)          | 0.67     | 2.22     | 2.56       | 2.63         |
| Процент от пика (4 потока) | 0.51%    | 1.69%    | 1.95%      | 2.00%        |
| $(GFLOPS/(4*TPP_p))$       | 0.51/0   | 1.09/0   | 1.9370     | 2.00/0       |

Таблица 5: Анализ достигаемой производительности для операции dot

| Размер системы $(N)$       | $10^{6}$ | $10^{7}$ | $5*10^{7}$ | $7.5 * 10^7$   |
|----------------------------|----------|----------|------------|----------------|
| GFLOPS                     | 1.0      | 1.11     | 1.11       | 1.10           |
| (последовательная версия)  | 1.0      | 1.11     | 1.11       | 1.10           |
| Процент от пика            | 3.04%    | 3.38%    | 3.38%      | 3.35%          |
| $(GFLOPS/TPP_p)$           | 3.0470   | 3.3670   | 3.3670     | <b>3.33</b> 70 |
| GFLOPS (2 потока)          | 3.0      | 1.58     | 1.78       | 1.61           |
| Процент от пика (2 потока) | 4.57%    | 2.4%     | 2.71%      | 2.45%          |
| $(GFLOPS/(2*TPP_p))$       | 4.57 /0  | 2.4/0    | 2.71/0     | 2.49/0         |
| GFLOPS (4 потока)          | 2.0      | 1.76     | 2.14       | 2.23           |
| Процент от пика (4 потока) | 1.52%    | 1.34%    | 1.63%      | 1.70%          |
| $(GFLOPS/(4*TPP_p))$       | 1.02/0   | 1.04/0   | 1.03/0     | 1.7070         |

Таблица 6: Анализ достигаемой производительности для операции ахрbу

| Размер системы $(N)$       | $10^{6}$ | $10^{7}$ | $5*10^{7}$ | $7.5*10^{7}$ |
|----------------------------|----------|----------|------------|--------------|
| GFLOPS                     | 1.77     | 1.49     | 1.49       | 1.49         |
| (последовательная версия)  | 1.77     | 1.43     | 1.43       | 1.49         |
| Процент от пика            | 5.40%    | 4.54%    | 4.54%      | 4.54%        |
| $(GFLOPS/TPP_p)$           | 3.4070   | 4.04/0   | 4.04/0     | 4.94/0       |
| GFLOPS (2 потока)          | 2.28     | 2.10     | 2.17       | 2.17         |
| Процент от пика (2 потока) | 3.47%    | 3.20%    | 3.30%      | 3.30%        |
| $(GFLOPS/(2*TPP_p))$       | 3.41/0   | 3.2070   | 3.3070     | 3.3070       |
| GFLOPS (4 потока)          | 2        | 2.13     | 2.35       | 2.33         |
| Процент от пика (4 потока) | 1.52%    | 1.62%    | 1.79%      | 1.77%        |
| $(GFLOPS/(4*TPP_p))$       | 1.02/0   | 1.02/0   | 1.79/0     | 1.17/0       |

Таблица 7: Анализ достигаемой производительности для операции SpMV

| Размер системы $(N)$       | $10^{6}$ | $10^{7}$ | $5*10^{7}$ | $7.5 * 10^7$   |
|----------------------------|----------|----------|------------|----------------|
| GFLOPS                     | 1.32     | 1.22     | 1.25       | 1.26           |
| (последовательная версия)  | 1.02     | 1.22     | 1.20       | 1.20           |
| Процент от пика            | 4.02%    | 3.72%    | 3.81%      | 3.84%          |
| $(GFLOPS/TPP_p)$           | 4.02/0   | 3.12/0   | 3.01/0     | <b>3.04</b> /0 |
| GFLOPS (2 потока)          | 1.62     | 1.57     | 1.58       | 1.57           |
| Процент от пика (2 потока) | 2.47%    | 2.39%    | 2.41%      | 2.39%          |
| $(GFLOPS/(2*TPP_p))$       | 2.41/0   | 2.39/0   | 2.41/0     | 2.39/0         |
| GFLOPS (4 потока)          | 1.52     | 1.6      | 1.64       | 1.63           |
| Процент от пика (4 потока) | 1.16%    | 1.22%    | 1.25%      | 1.24%          |
| $(GFLOPS/(4*TPP_p))$       | 1.1070   | 1.4470   | 2%   1.25% | 1.4470         |

Таблица 8: Анализ достигаемой производительности солвера

#### 3.2 Процент от достижимой производительности

Для оценки вычислительной интенсивности посчитаем количество обращений в памяти для каждой из операций, учитывая что sizeof(double) = 8 байт:

- DATA(dot) = 8 \* 2N = 16N байт, чтение компонент 2 векторов
- DATA(axpby) = 8 \* 3N = 24N байт, 2 чтения и 1 запись
- DATA(SpMV) = 8 \* N(3 \* m + 1) = 176N байт, чтение m номеров столбцов и значений матрицы, m значений вектора для каждой строки матрицы и произвести 1 запись результата
- $DATA(inv\_diag\_SpMV) = 8*3N = 24N$  байт, 2 чтения и 1 запись
- $DATA(solver) = DATA(SpMV) + DATA(axpby) + iter\_num*$  \*  $(DATA(inv\_diag\_SpMV) + DATA(dot) + DATA(axpby) + 1 + DATA(SpMV) + DATA(dot) + 2 + 2 * DATA(axpby)) = DATA(SpMV) + DATA(axpby) + iter\_num*$  \*  $(DATA(inv\_diag\_SpMV) + 2 * DATA(dot) + 3 * DATA(axpby) + DATA(SpMV) + 2 * DATA(sphy) + D$

Теперь вычислим значение вычислительной интенсивности:

• 
$$AI(dot) = \frac{2N-1}{16N} = \frac{1}{8} = 0.125 \text{ FLOP}/байт}$$

• 
$$AI(axpby) = \frac{3N}{24N} = \frac{1}{8} = 0.125 \text{ FLOP/байт}$$

• 
$$AI(SpMV) = \frac{13N}{176N} = 0.07 \; \mathrm{FLOP}/\mathrm{байт}$$

• 
$$AI(solver) = \frac{16 + 28*iter\_num}{200 + 304*iter\_num}$$
 FLOP/байт

Теоретически достижимая производительность TBP = min(TPP, BW \* AI):

• 
$$TBP(dot) = 25.6 * \frac{1}{8} = 3.2 \text{ GFLOPS}$$

• 
$$TBP(axpby) = 25.6 * \frac{1}{8} = 3.2 \text{ GFLOPS}$$

• 
$$TBP(SpMV) = 25.6 * \frac{13}{176} = 1.9 \text{ GFLOPS}$$

• 
$$TBP(solver) = 25.6 * \frac{16 + 28 * iter\_num}{200 + 304 * iter\_num}$$
 GFLOPS

| $\mathbb{P}$ азмер системы $(N)$ | $10^{6}$ | $10^{7}$ | $5*10^{7}$ | $7.5 * 10^7$ |
|----------------------------------|----------|----------|------------|--------------|
| TBР в GFLOPS                     | 3.2      | 3.2      | 3.2        | 3.2          |
| GFLOPS                           | 2.0      | 2.22     | 2.12       | 2.14         |
| (последовательная версия)        |          | 2.22     | 2.12       | 2.14         |
| Процент от пика                  | 62.5%    | 69.35%   | 66.25%     | 66.85%       |
| (GFLOPS/TBP)                     |          | 09.5570  | 00.2570    | 00.8570      |
| GFLOPS (2 потока)                | 2.0      | 2.5      | 2.56       | 2.59         |
| Процент от пика (2 потока)       | 62.5%    | 78.1%    | 80.0%      | 80.94%       |
| (GFLOPS/TBP)                     | 02.570   | 70.170   | 00.070     | 00.9470      |
| GFLOPS (4 потока)                | 0.67     | 2.22     | 2.56       | 2.63         |
| Процент от пика (4 потока)       | 20.94%   | 69.35%   | 80.0%      | 82.2%        |
| (GFLOPS/TBP)                     | 20.34/0  | 09.00/0  | 0 80.0%    | 02.270       |

Таблица 9: Анализ достигаемой производительности операции dot с учетом пропускной способности памяти

| Размер системы $(N)$       | $10^{6}$ | $10^{7}$        | $5*10^{7}$ | $7.5 * 10^7$ |
|----------------------------|----------|-----------------|------------|--------------|
| TBР в GFLOPS               | 3.2      | 3.2             | 3.2        | 3.2          |
| GFLOPS                     | 1.0      | 1.11            | 1.11       | 1.10         |
| (последовательная версия)  |          | 1.11            | 1.11       | 1.10         |
| Процент от пика            | 31.25%   | 34.68%          | 34.68%     | 34.37%       |
| (GFLOPS/TBP)               | 31.2370  | <b>34.0</b> 670 | 34.0070    | 34.3170      |
| GFLOPS (2 потока)          | 3.0      | 1.58            | 1.78       | 1.61         |
| Процент от пика (2 потока) | 93.1%    | 49.37%          | 55.62%     | 50.31%       |
| (GFLOPS/TBP)               | 95.170   | 49.31/0         | 33.02/0    | 30.3170      |
| GFLOPS (4 потока)          | 2.0      | 1.76            | 2.14       | 2.23         |
| Процент от пика (4 потока) | 62.5%    | 55.5%           | 66.87%     | 69.68%       |
| (GFLOPS/TBP)               | 02.070   | 00.070          | 00.8770    | 03.0070      |

Таблица 10: Анализ достигаемой производительности операции axpby с учетом пропускной способности памяти

| $\mathbb{P}$ азмер системы $(N)$ | $10^{6}$ | $10^{7}$ | $5*10^{7}$      | $7.5 * 10^7$ |
|----------------------------------|----------|----------|-----------------|--------------|
| TBР в GFLOPS                     | 1.9      | 1.9      | 1.9             | 1.9          |
| GFLOPS                           | 1.77     | 1.49     | 1.49            | 1.49         |
| (последовательная версия)        |          | 1.43     | 1.43            | 1.49         |
| Процент от пика                  | 93.1%    | 78.4%    | 78.4%           | 78.4%        |
| (GFLOPS/TBP)                     | 93.1/0   | 10.4/0   | 10.470          | 10.470       |
| GFLOPS (2 потока)                | 2.28     | 2.10     | 2.17            | 2.17         |
| Процент от пика (2 потока)       | 120.0%   | 110.5%   | $oxed{114.2\%}$ | 114.2%       |
| (GFLOPS/TBP)                     | 120.070  | 110.570  | 114.2/0         | 114.2/0      |
| GFLOPS (4 потока)                | 2.0      | 2.13     | 2.35            | 2.33         |
| Процент от пика (4 потока)       | 105.2%   | 112.1%   | 123.6%          | 122.6%       |
| (GFLOPS/TBP)                     | 100.270  | 112.1%   | 1/0   123.070   | 122.070      |

Таблица 11: Анализ достигаемой производительности операции SpMV с учетом пропускной способности памяти

| $\mathbb{P}$ азмер системы $(N)$ | $10^{6}$ | $10^{7}$ | $5*10^{7}$        | $7.5 * 10^7$ |
|----------------------------------|----------|----------|-------------------|--------------|
| Количество итераций              | 7        | 8        | 9                 | 9            |
| TBР в GFLOPS                     | 2.33     | 2.33     | 2.33              | 2.33         |
| GFLOPS                           | 1.32     | 1.22     | 1.25              | 1.26         |
| (последовательная версия)        |          |          |                   |              |
| Процент от пика                  | 56.65%   | 52.36%   | $\boxed{54.08\%}$ | 54.08%       |
| (GFLOPS/TBP)                     |          |          |                   |              |
| GFLOPS (2 потока)                | 1.62     | 1.57     | 1.58              | 1.57         |
| Процент от пика (2 потока)       | 69.5%    | 67.38%   | 67.81%            | 67.38%       |
| (GFLOPS/TBP)                     |          |          |                   |              |
| GFLOPS (4 потока)                | 1.52     | 1.6      | 1.64              | 1.63         |
| Процент от пика (4 потока)       | 65.24%   | 68.67%   | 69.96%            | 69.96%       |
| (GFLOPS/TBP)                     |          |          |                   |              |

Таблица 12: Анализ достигаемой производительности солвера с учетом пропускной способности памяти

## 4 Заключение

В результате практического задания была выполнена последовательная и многопоточная реализация солвера СЛАУ с разреженной матрицей. В ряде экспериментов было установлено, что, несмотря на высокую теоретическую пиковую производительность процессора, фактически достигаемая производительность реализованных алгоритмов сильно зависит от пропускной способности памяти, что ограничивает эффективность многопоточной версии солвера.