Problem Set - 11

AUTUMN 2016

MATHEMATICS-I (MA10001)

October 24, 2016

- 1. Find following limits (if exists)
 - (a) $\lim_{z\to 0} \frac{z^2}{|z|}$, (b) $\lim_{z\to i} \left[x + \frac{i}{1-x}\right] e^{xy}$, (c) $\lim_{z\to -i} \frac{z^4-1}{z+i}$, (d) $\lim_{z\to \infty} \frac{z}{2-iz}$, (e) $\lim_{z\to 0} \frac{z}{Rez}$.
 - (f) $\lim_{z\to 0} \frac{Im(z^2)}{|z|^2}$, (g) $\lim_{z\to 0} \frac{Re(z^2)}{|z|^2}$, (h) $\lim_{z\to 1} \frac{z^2+1}{z^2-3z+2}$, (i) $\lim_{z\to 0} \frac{\overline{z}}{2z}$ (j) $\lim_{z\to \infty} \frac{4+z^2}{(z-1)^2}$
 - $(k) \lim_{z\to 0} \frac{Im(z)}{z}$
- 2. Test the continuity of the following functions at z=0, if f(0)=0
 - (a) $f(z) = \frac{Re(z^3)}{|z|^2}$, (b) $f(z) = e^{-\frac{1}{z^2}}$, (c) $f(z) = \frac{Re(z^2)}{|z|}$, (d) $f(z) = \frac{Rez}{1+|z|}$, (e) $f(z) = \frac{(Rez Imz)}{|z|^2}$, (f) $f(z) = \frac{x^3y^5(x+iy)}{(x^4+y^4)}$, (g) $f(z) = \frac{Imz}{|z|}$, (h) $f(z) = \frac{(z+i)^2+1}{z}$.
- 3. Using $\epsilon \delta$ method prove the following problems (a) $\lim_{z \to i} \frac{3z^4 2z^3 + 8z^2 2z + 5}{z i} = 4 + 4i$ (b) $\lim_{z \to i} (z^2 + 2z) = 2i 1$

 - (c) $\lim_{z\to -i} z^2 = -1$
 - (d) If z_0 and w_0 are points in the z-plane and w-plane respectively, then show that
 - (i) $\lim_{z \to z_0} f(z) = \infty$ iff $\lim_{z \to z_0} \frac{1}{f(z)} = 0$, (ii) $\lim_{z \to \infty} f(z) = w_0$ iff $\lim_{z \to 0} f(\frac{1}{z}) = w_0$,
 - (e) $\lim_{z\to 2+i} z^2 = 3+4i$,
 - $(f) \lim_{z \to -i} \frac{1}{z} = i,$
 - (g) Let $f(x) = x^2$ for $x \ge 0$ and $f(x) = -x^2$ for x < 0. Show that f'(x) exists and is continuous but f''(x) does not exist at x=0.
- 4. Using $\epsilon \delta$ method show that $f(z) = z^2$ is continuous at $z = z_0$.
- 5. Show that if f(z) is continuous at z=a then $\overline{f(z)}$ is also continuous at z=a.
- 6. Using the definition find the derivative of $f(z) = z^3 2z$ at the point where z = a and
- 7. Show that $\frac{d}{dz}(z^2\overline{z})$ does not exist anywhere.
- 8. Show that (a) $\frac{\partial}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}}$, (b) $\frac{\partial}{\partial y} = (\frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}})i$, where z = x + iy and $\overline{z} = x iy$ (c) $\nabla \equiv \frac{\partial}{\partial x} + i\frac{\partial}{\partial y} = 2\frac{\partial}{\partial \overline{z}}$, (d) $\overline{\nabla} \equiv \frac{\partial}{\partial x} i\frac{\partial}{\partial y} = 2\frac{\partial}{\partial z}$
- 9. Prove that in polar form the C-R equations can be written as $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$, $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$
- 10. Let f(z) = u(x,y) + iv(x,y). If $u_1(x,y) = \frac{\partial u}{\partial x}$ and $u_2(x,y) = \frac{\partial u}{\partial y}$ prove that $f'(z) = \frac{\partial u}{\partial x}$ $u_1(z,0) - iu_2(z,0)$.
- 11. (a) Prove that the function u = 2x(1-y) is harmonic.
 - (b) Find a function v such that f(z) = u + iv is analytic.
 - (c) Express f(z) in terms of z.
- 12. Prove that $f(z) = |z|^4$ is differentiable at z = 0 but not analytic at z = 0.

- 13. Characterize and draw the set of points in the complex plane such that (a) $|z|^2 + 3z + 3\overline{z} + 5 = 0$, (b) |z i| = |z + i|.
- 14. At which points the following function is complex-differentiable?

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Does f satisfy Cauchy-Reimann equation at the origin?

- 15. Let f(z) be an analytic function on a connected open set D. If there are two constants c_1 and $c_2 \in \mathbb{C}$ not all zero such that $c_1 f(z) + c_2 \overline{f(z)} = 0$ for all $z \in D$, then f(z) is constant on D.
- 16. Show that the function $\sin(\overline{z})$ is nowhere analytic on \mathbb{C} .
- 17. Let $u(x,y) = 4xy x^3 + 3xy^2$, $(x,y) \in \mathbb{C}$. Find harmonic conjugate of u such that f = u + iv is an analytic function in \mathbb{C} . Also find explicitly f.
- 18. Show that if f(z) is analytic and if $Re\ z = \text{constant}$ or $Im\ z = \text{constant}$ then f(z) is constant.
- 19. Find an analytic function f(z) such that $Re[f'(z)] = 3x^2 4y 3y^2$ and f(1+i) = 0.