

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN ANAK USIA DINI, PENDIDIKAN DASAR DAN PENDIDIKAN MENENGAH DIREKTORAT SEKOLAH MENENGAH ATAS 2020

Modul Pembelajaran SMA

INTERAKSI ANTAR MOLEKUL KIMIA KELAS X

PENYUSUN Muhammad Fadli Rasyid SMAN 7 TANJUNG PINANG

DAFTAR ISI

PENYUSUN	2
DAFTAR ISI	3
GLOSARIUM	4
PETA KONSEP	5
PENDAHULUAN	6
A. Identitas Modul	6
B. Kompetensi Dasar	6
C. Deskripsi Singkat Materi	6
D. Petunjuk Penggunaan Modul	6
E. Materi Pembelajaran	7
KEGIATAN PEMBELAJARAN 1	8
INTERAKSI ANTAR MOLEKUL	8
A. Tujuan Pembelajaran	8
B. Uraian Materi	8
C. Rangkuman	12
D. Penugasan Mandiri (optional)	12
E. Latihan Soal	13
F. Penilaian Diri	16
KEGIATAN PEMBELAJARAN 2	17
HUBUNGAN INTERAKSI ANTAR MOLEKUL DENGAN SIFAT FISIK ZAT	17
A. Tujuan Pembelajaran	17
B. Uraian Materi	17
C. Rangkuman	20
D. Penugasan Mandiri	20
E. Latihan Soal	22
F. Penilaian Diri	25
EVALUASI	26
DAFTAR PUSTAKA	29

GLOSARIUM

Gaya London : Gaya tarik menarik yang sifatnya lemah antara atom atau molekul yang

timbul dari pergerakan elektron yang acak di sekitar atom-atom

Gaya Van Der Waals : Gaya Tarik menarik yang terjadi antara

Ikatan Hidrogen : Ikatan yang terjadi antara atom H dengan atom lain yang memiliki

pasangan elektron bebas

Momen Dipol : Tingkat kepolaran molekul

Titik Didih : Suhu ketika tekanan uap sebuah zat cair sama dgn tekanan eksternal

yg dialami oleh cairan

Titik Leleh : Titik leleh adalah temperatur dimana zat padat berubah wujud

menjadi zat cair pada tekanan suatu atmosfer

Senyawa Polar : Senyawa yang terbentuk dari suatu ikatan antar electron pada unsur

unsurnya karena memiliki kelektronegatifan yang berbeda.

Senyawa Non Polar : Senyawa yang terbentuk dari suatu ikatan antar electron pada unsur

unsurnya karena memiliki kelektronegatifan yang hamper sama.

PETA KONSEP

PENDAHULUAN

A. Identitas Modul

Mata Pelajaran : Kimia Kelas/Semester : X/ Satu

Alokasi waktu : 6 jam pelajaran (2x pertemuan)

Iudul Modul : Antar Molekul

B. Kompetensi Dasar

3.7 Menghubungkan interaksi antar ion, atom dan molekul dengan sifat fisika zat

4.7 Menerapkan prinsip interaksi antar ion, atom dan molekul dalam menjelaskan sifat-sifat fisik zat di sekitarnya

C. Deskripsi Singkat Materi

Pernahkah kalian berfikir mengapa benda – benda ini begitu berbeda? Mengapa belerang sangat rapuh dan tidak dapat ditempa seperti besi? Mengapa lilin meleleh jika dipanaskan, sedangkan kertas atau kayu tidak? Mengapa air dapat membeku menjadi es? Mengapa kita menggunakan grafit untuk pensil, bukan arang atau intan padahal ketiganya sama – sama karbon? Mengapa air dan minyak tidak memiliki titik didih yang sama?

Sama seperti kalimat, setiap kata dan kalimat yang memberi arti berbeda tergantung pada bagaimana kalian merangkainya, sifat – sifat benda atau senyawa juga tergantung pada unsur dan bagaimana cara unsur itu bergabung.

Dalam modul ini kita akan mempelajari interaksi antara ion,atom dan molekul dengan sifat zat.

D. Petunjuk Penggunaan Modul

Untuk mempelajari materi ini, terdapat materi prasyarat yang harus dipahami yakni materi Ikatan Kimia pada KD sebelumnya. Agar modul dapat digunakan secara maksimal maka kalian diharapkan melakukan langkah-langkah sebagai berikut:

- 1. Pelajari dan pahami peta materi yang disajikan dalam setiap modul
- 2. Pelajari dan pahami tujuan yang tercantum dalam setiap kegiatan pembelajaran
- 3. Pelajari uaraian materi secara sistematis dan mendalam dalam setiap kegiatan pembelajaran.
- 4. Lakukan pengerjaan tugas untuk mengetahui tingkat penguasaan materi.
- 5. Lakukan pengerjaan latihan untuk mengetahui tingkat penguasaan materi
- 6. Diskusikan dengan guru atau teman jika mengalami kesulitan dalam pemahaman materi.
- 7. Lanjutkan pada modul berikutnya jika sudah mencapai ketuntasan yang diharapkan.

E. Materi Pembelajaran

Modul ini terbagi menjadi **2** kegiatan pembelajaran dan di dalamnya terdapat uraian materi, contoh soal, soal latihan dan soal evaluasi.

Pertama : Interaksi Antar Molekul

Kedua : Hubungan Interaksi Antar Molekul dengan Sifat Fisik Zat.

KEGIATAN PEMBELAJARAN 1 INTERAKSI ANTAR MOLEKUL

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 1 ini diharapkan kalian dapat:

- 1. menjelaskan tentang interaksi antar molekul.
- 2. membedakan senyawa polar dan non polar melalui data momen dipol

B. Uraian Materi

Dalam kehidupan sehari-hari, kita menemukan berbagai jenis zat yang partikelnya berupa molekul dan berbeda fasa. Dalam fasa gas, pada suhu tinggi dan tekanan yang relatif rendah (jauh di atas titik didihnya), molekul-molekul benarbenar berdiri sendiri, tidak ada gaya tarik antarmolekul. Akan tetapi, pada suhu yang relatif rendah dan tekanan yang relatif tinggi, yaitu mendekati titik embunnya, terdapat suatu gaya tarik-menarik antarmolekul. Gaya tarik menarik antar molekul itulah yang memungkinkan suatu gas dapat mengembun. (James E. Brady, 1990).

Molekul-molekul dalam zat cair atau dalam zat padat diikat oleh gaya tarikmenarik antar molekul. Oleh karena itu, untuk mencairkan suatu zat padat atau untuk menguapkan suatu zat cair diperlukan energiuntuk mengatasi gaya tarikmenarik antar molekul. Makin kuat gaya tarik antar molekul, makin banyak energi yang diperlukan untuk mengatasinya, maka semakin tinggi titik cair atau titik didih.

1. Gaya Van Der Waals

Gaya Van Der Waals merupakan salah satu jenis gaya tarik menarik diantara molekul. Gaya ini timbul dari gaya London dan gaya antardipol-dipol. Jadi, gaya Van Der Waals dapat terjadi pada molekul nonpolar maupun molekul polar.

Gaya ini diusulkan pertama kalinya oleh Johannes Van der Waals (1837-1923). Konsep gaya tarik antar molekul ini digunakan untuk menurunkan persamaan tentang zat-zat yang berada pada fase gas.

Kejadian ini disebabkan adanya gaya tarik-menarik antara inti atom dengan elektron atom lain yang disebut gaya tarik menarik elektrostatis (gaya coulomb). Umumnya terdapat pada senyawa polar.

Untuk molekul non polar, gaya Van der waals timbul karena adanya dipol-dipol sesaat atau gaya London.

Gaya Van der Waals bekerja bila jarak antar-molekul sudah sangat dekat, tetapi tidak melibatkan terjadinya pembentukan ikatan antar atom. Misalnya, pada

suhu -160°C molekul Cl_2 akan mengkristal dalam lapisan tipis, dan gaya yang bekerja untuk menahan lapisan-lapisan tersebut adalah gaya Van der Waals. Paling sedikit terdapat tiga gaya antarmolekul yang berperan dalam terjadinya gaya Van der Waals, yaitu gaya orientasi, gaya imbas, dan gaya dispersi.

a. Gaya orientasi/Gaya dipol-dipol

Gaya orientasi terjadi pada molekul-molekul yang mempunyai dipol permanen atau molekul polar. Antar aksi antara kutub positif dari satu molekul dengan kutub negatif dari molekul yang lain akan menimbulkan gaya tarik menarik yang relatif lemah. Gaya ini memberi sumbangan yang relatif kecil terhadap gaya Van der Waals secara keseluruhan

Gambar 1. Gaya dipol-dipol

Kekuatan gaya orientasi ini akan semakin besar bila molekul-molekul tersebut mengalami penataan dengan ujung positif suatu molekul mengarah ke ujung negatif dari molekul yang lain.

b. Gaya imbas/Gaya dipol-dipol terinduksi

Gaya imbas terjadi bila terdapat molekul yang dipol permanen berinteraksi dengan molekul dipol sesaat dengan dipol permanen. Adanya molekul-molekul polar akan menyebabkanimbasan dari kutub molekul polar kepada molekul nonpolar, sehingga elektron-elektron dari molekul nonpolar tersebut mengumpul pada salah satu sisi molekul (terdorong atau tertarik), yang menimbulkan terjadinya dipol sesaat pada molekul nonpolar tersebut

Terjadinya dipol sesaat akan berakibat adanya gaya tarik-menarik antardipol tersebut yang menghasilkan gaya imbas. Gaya imbas juga memberikan andil yang kecil terhadap keseluruhan gaya Van der Waals.

Gambar 2. Gaya dipol-dipol terinduksi

Jarak antar molekul yang berjauhan mengakibatkan molekul nonpolar (Cl_2) belum terjadi imbas, tetapi bila sudah dekat akan terjadi imbasan. Molekul polar (H_2O) mempunyai dipol permanen. Akibat terimbas, molekul nonpolar (Cl_2) akan menjadi dipol permanen

2. Gaya London/Gaya Dispersi/Gaya Tari Menarik dipol Sesaat-dipol Terimbas

Gaya London adalah gaya tarik menarik yang sifatnya lemah antara atom atau molekul yang timbul dari pergerakan elektron yang acak disekitar atomatom. Karena elektron bergerak secara acak disekitar inti atom, maka suatu saat terjadi ketidakseimbangan muatan didalam atom. Akibatnya terbentuk dipol sesaat.

Dipol-dipol yang berlawanan arah ini saling berikatan walau sifatnya lemah. Adanya gaya-gaya ini terutama terdapat pada molekul-molekul nonpolar yang dikemukakan pertama kalinya oleh Fritz London.

Perhatikan Gambar 3, setiap atom helium mempunyai sepasang elektron. Apabila pasangan elektron tersebut dalam peredarannya berada pada bagian kiri atom, maka bagian kiri atom tersebut menjadi lebih negatif terhadap bagian kanan yang lebih positif. Akan tetapi karena pasangan elektron selalu beredar maka dipol tadi tidak tetap, selalu berpindah-pindah (bersifat sesaat). Polarisasi pada satu molekl akan mempengaruhi molekul tetangganya, Antara dipol-dipol sesaat tersebut terdapat suatu gaya tarik menarik yang mempersatukan molekul-molekul nonpolar dalam zat cair atau zat padat.

Gambar 3. Dua skema yang menggambarkan pembentukan dipol sesaat pada atom-atom helium

Berdasarkan gambar di atas dapat dijelaskan sebagai berikut.

- 1. Molekul nonpolar mempunyai sebaran muatan lautan electron setimbang dan simetris dalam keadaan normal, electron terdistribusi merata dalam molekul.
- 2. Pada waktu-waktu tertentu (sesaat) dapat terjadi pengutuban atau pembentukan dipol yang disebut dipol sesaat.
- 3. Sisi bermuatan parsial negatif dari dipol sesaat akan mempengaruhi kerapatan elektron molekul terdekat sehingga membentuk dipol, hal ini memungkinkan dua molekul membentuk ikatan yang disebut Gaya London.
- 4. Gaya tarik-menarik ini hanya berlangsung sesaat, dikarenakan dipol sesaat dan terimbas muncul mengikuti fluktuasi elektron.

Gambar 4. Terjadinya dipol sesaat

3. Ikatan Hidrogen

Antara molekul-molekul yang sangat polar dan mengandung atom hidrogen terjadi ikatan hidrogen. Titik didih senyawa "hidrida" dari unsur-unsur golongan A, VA, VIA, dan VIIA, diberikan pada gambar berikut.

Gambar 5. Titik didih senyawa hidrida dari unsur-unsur golongan IVA, VA, VIA, dan VIIA.

(Sumber: Chemistry, The Molecular Nature of Matter and Change, Martin S. Silberberg. 2000)

Perilaku normal ditunjukkan oleh senyawa hidrida dari unsur-unsur golongan IVA, yaitu titik didih meningkat sesuai dengan penambahan massa molekul. Kecenderungan itu sesuai dengan yang diharapkan karena dari CH ke SnH massa molekul relatif meningkat, sehingga gaya Van der Waals juga makin kuat. Akan tetapi, ada beberapa pengecualian seperti yang terlihat pada gambar, yaitu HF, H₂O, dan NH₃. Ketiga senyawa itu mempunyai titik didih yang luar biasa tinggi dibandingkan anggota lain dalam kelompoknya. Fakta itu menunjukkan adanya gaya tarik-menarik antarmolekul yang sangat kuat dalam senyawa-senyawa tersebut. Walaupun molekul HF, H2O, dan NH₃bersifatpolar,gaya dipol-dipolnya tidak cukup kuat untuk menerangkan titik didih yang mencolok tinggi itu.

Perilaku yang luar biasa dari senyawa-senyawa yang disebutkan di atasdisebabkan oleh ikatan lain yang disebut *ikatan hidrogen* (James E. Brady, 2000). Oleh karena unsur F, O, dan N sangat elektronegatif, maka ikatan F – H, O – H, dan N – H sangat polar, atom H dalam senyawa-senyawa itu sangat positif. Akibatnya, atom H dari satu molekul terikat kuat pada atom unsur yang sangat elektronegatif (F, O, atau N) dari molekul tetangganya melalui pasangan elektron bebas pada atom unsur berkeelektronegatifan besar itu. Ikatan hidrogen dalam $\rm H_2O$ disajikan pada gambar berikut:

Gambar 6. Molekul polar air (kiri) dan ikatan hidrogen pada air (kanan). (Sumber: Chemistry, The Molecular Nature of Matter and Change, Martin S. Silberberg. 2000.)

C. Rangkuman

- 1. Interaksi antara atom atom dalam senyawa atau kumpulan molekul dalam senyawa yang mengalami gaya tarik menarik disebut gaya antarmolekul. Gaya antarmolekul berkaitan erat dengan sifat fisik zat yang bersangkutan.
- 2. Interaksi pada senyawa senyawa kimia dibedakan antara interaksi intramolekul dan antar molekul.
- 3. Interaksi intra molekul terjadi pada sebuah atom dengan atom yang lain yang mengalami gaya tarik menarik untuk membentuk molekul yang disebut dengan ikatan kimia.
- 4. Interaksi antar molekul adalah interaksi kimia yang terjadi antara atom dalam suatu molekul dengan molekul yang lain dengan mengalami gaya tarik menarik.
- 5. Gaya antar molekul berdasarkan kekuatan dari yang terlemah hingga yang terkuat sebagai berikut :
- 6. Gaya Van der Waals merupakan interaksi antar molekul yang sangat lemah. Gaya Van der Waals pada awal abad XX, dikemukakan oleh Johannes Diderik Van der Waals. Gaya ini dibagi dua yaitu gaya london dan gaya tarik dipol.
- 7. Gaya London, merupakan gaya tarik menarik antar molekul nonpolar akibat adanya dipol terimbas yang ditmbulkan oleh perpindahan elektron dari satu orbital ke orbital yang lain membentuk dipol sesaat. Jenis gaya ini umumnya terjadi di antara molekul molekul kovalen nonpolar.

D. Penugasan Mandiri

Momen dipol (μ) merupakan jumlah vektor dari momen ikatan dan momen pasangan elektron bebas dalam suatu molekul. Molekul dikatakan bersifat polar jika memiliki μ > 0 atau $\mu \neq 0$ dan dikatakan bersifat nonpolar jika memiliki μ = 0. Titik didih suatu zat itu berbanding lurus dengan momen dipolnya bila massa molar zat-zat tersebut tidak besar perbedaannya. Semakin tinggi momen dipol maka titik didih zat tersebut akan semakin tinggi pula. Bila massa molar memiliki perbedaan yang besar tentu massa molar akan turut mempengaruhi.

1. Perhatikan tabel di bawah ini :

Zat	Massa molar (g/mol)	Momen dipol (Debye)
Propana (CH ₃ CH ₂ CH ₃)	44	0,1
Dimetileter (CH ₃ OCH ₃)	46	1,3
Metilklorida (CH ₃ Cl)	50	1,9
Asetaldehid (CH ₃ CHO)	44	2,7
Asetonitril (CH ₃ CN)	41	3,9

- a. Berdasarkan hal tersebut, manakah dari kelima senyawa dalam tabel berikut yang diperkirakan memiliki titik didih tertinggi? Kemukakan alasanmu!
- b. Manakah dari kelima senyawa dalam tabel berikut yang diperkirakan memiliki titik didih terendah? Kemukan alasanmu!

E. Latihan Soal

1. Perhatikan gambar ilustrasi dari trikloro metana CHCl₃:

Gaya antar dipol ditunjukkan oleh nomor

- A. (1
- B. (2)
- C. (3)
- D. (4)
- E. (5)
- 2. Berikut ini merupakan gambar struktur ikatan tak sebenarnya dari molekul $\mathrm{H}_2\mathrm{O}\,$:

Ikatan hidrogen pada struktur tersebut terdapat pada nomor

- A. (1)
- B. (2)
- C. (3)
- D. (4)
- E. (5)
- 3. Gaya London atau gaya dispersi pada molekul-molekul non polar terjadi karena terbentuk ... dan ...
 - A. Dipol permanen dan dipol permanen
 - B. Dipol sesaat dan dipol terinduksi
 - C. Dipol permanen dan dipol sesaat
 - D. Dipol terinduksi dan dipol terinduksi
 - E. Ikatan hIdrogen
- 4. Diketahui pasangan-pasangan senyawa berikut.
 - (1) NH₃ dan HF
 - (2) H₂O dan HCl
 - (3) HF dan H₂O
 - (4) NH₃ dan HBr
 - (5) NH₃ dan H₂S

Kelompok senyawa yang dapat membentuk ikatan hidrogen adalah ...

- A. (1) dan (3)
- B. (1) dan (5)
- C. (2) dan (3)
- D. (3) dan (4)
- E. (4) dan (5)
- 5. Manakah zat berikut yang hanya memiliki gaya dispersi sebagai gaya antarmolekul?
 - A. CH₄
 - B. HCl
 - C. NH₃
 - $D. \ C_6H_{13}NH_2$
 - E. NaCl

Kunci Jawaban dan Pembahasan Soal Latihan

No	Kunci	Pembahasan	
	Jawaban		
1	В	Gaya dipol-dipol muncul akibat adanya interaksi antar molekul	
		polar. Gaya tersebut ditunjukkan oleh no. 2	
2	D	Ikatan hidrogen terbentuk pada senyawa-senyawa sangat polar	
		yang mengandung atom H dan atom yang sangat elektronegatif (F,	
		O, N) pada gambar ditunjukkan nomor 4	
3	В	Gaya dispersi London antara lain gaya dispersi, gaya London, atau	
		gaya dipol terinduksi versus dipol terinduksi	
4	Α	Senyawa yang dapat membentuk ikatan hidrogen adalah senyawa	
		yang mempunyai atom yang sangat elektronegatif (F/O/N) dan	
		atom H yang dapat membentuk jembatan hidrogen (F-H; O-H; N-	
		H)	
5	Α	Gaya dispersi hanya dimiliki oleh molekul-molekul nonpolar dan	
		atom golongan gas mulia.	

Pedoman Penskoran

Cocokkanlah jawaban Anda dengan Kunci Jawaban yang terdapat di bagian akhir modul ini. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Kegiatan Belajar 1.

Nilai =
$$\frac{Jumlah\ Skor\ Perolehan}{Jumlah\ Skor\ Maksimum} \times 100\%$$

Konversi tingkat penguasaan:

90 - 100% = baik sekali 80 - 89% = baik 70 - 79% = cukup < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Kegiatan Belajar 2. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Kegiatan Belajar 1, terutama bagian yang belum dikuasai.

F. Penilaian Diri

Setelah mempelajari modul ini maka jawablah pertanyaan yang terdapat dalam tabel penilaian diri berikut dengan memberikan tanda centang ($\sqrt{}$)

NO	PERTANYAAN	JAWABAN	
NO	FERTANTAAN		TIDAK
1	Setelah mempelajari modul ini,saya mengetahui		
	tentang gaya antar molekul		
2	Setelah mempelajari modul ini, saya dapat		
	mengetahui pengaruh momen dipol terhadap tingkat		
	kepolaran		
3	Setelah mempelajari modul ini, saya dapat		
	menentukan urutan urutan kekuatan gaya anta		
	molekul		
4	Setelah mempelajari modul ini, saya dapat		
	menentukan senyawa yang memiliki ikatan hidrogen		

Bila ada jawaban "Tidak", maka segera lakukan review pembelajaran, terutama pada bagian yang masih "Tidak". Bila semua jawaban "Ya", maka Anda dapat melanjutkan ke pembelajaran berikutnya.

KEGIATAN PEMBELAJARAN 2

HUBUNGAN INTERAKSI ANTAR MOLEKUL DENGAN SIFAT FISIK ZAT

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 2 ini diharapkan kalian mampu:

- 1. Menganalisa sifat fisik zat berdasarkan interaksi antar molekul yang terjadi
- 2. Menganalisa bentuk molekul dan polaritas senyawa

B. Uraian Materi

Perhatikan ilustrasi garfik di bawah ini!

Gambar 7. Grafik titik didih sebagai fungsi massa molekul senyawa hidrida golongan IVA–VIIA

(Sumber: Brown, Theodore L. et al. 2015. Chemistry: The Central Science (13th edition). New Jersey: Pearson Education, Inc.)

Hal apa yang dapat kalian kemukan? Adakah pengaruh gaya antar molekul terhadap titik didih, titik leleh ataupun wujud zat? Untuk mempelajarinya, mari bersama kita bahas modul pembelajaran kedua berikut ini.

1. Hubungan Interaksi Antar Molekul dengan Sifat Fisik Zat

Sifat fisis seperti titik lebur dan titik didih sangat dipengaruhi oleh gaya interaksi antar-molekul. Adanya ikatan hidrogen sebagai gaya interaksi antar-molekul yang paling kuat memberikan pengaruh yang signifikan pada titik didih beberapa senyawa hidrida biner dari unsur-unsur golongan IVA hingga VIIA.

Titik didih dari senyawa hidrida unsur golongan IVA (CH₄, SiH₄, GeH₄, dan SnH₄, seluruhnya nonpolar) meningkat dari atas ke bawah golongan (dari C ke Sn). Hal ini dapat dimengerti sebagai akibat dari adanya polarisabilitas dan gaya dispersi London secara umum meningkat seiring dengan bertambahnya massa molekul. Senyawasenyawa hidrida dari golongan VA, VIA, dan VIIA secara umum juga mengikuti pola kenaikan titik didih yang sama, namun khusus untuk senyawa NH₃, H₂O, dan HF titik didihnya jauh lebih tinggi dari yang diperkirakan.

Faktanya, ketiga senyawa ini juga memiliki sifat-sifat yang membedakannya dari senyawa-senyawa lain dengan massa molekul dan polaritas yang bermiripan.

Sebagai contoh, air (H_2O) memiliki titik leleh yang tinggi, kalor jenis yang tinggi, dan kalor penguapan yang tinggi. Sifat-sifat ini menunjukkan bahwa adanya gaya antarmolekul tak lazim yang kuat pada molekul-molekul ketiga senyawa tersebut, yakni ikatan hidrogen.

Molekul yang sebaran muatannya tidak simetris, bersifat polar dan mempunyai dua ujung yang berbeda muatan (dipol). Dalam zat polar molekulnya cenderung menyusun diri dengan ujung (pol) positif berdekatan dengan ujung (pol) negatif dari molekul di dekatnya. Suatu gaya tarik-menarik yang terjadi disebut *gaya tarik dipoldipol* dibandingkan gaya dispersi (gaya London), sehingga zat polar cenderung mempunyai titik cair dan titik didih lebih tinggi dibandingkan zat nonpolar yang massa molekulnya kira-kira sama. Contohnya normal butana dan aseton.

Gaya-gaya antarmolekul, yaitu gaya dispersi (gaya London) dan gaya dipoldipol, secara kolektif disebut gaya Van Der Waals. Gaya dispersi setiap zat, baik polar maupun nonpolarzatpolar menambah gaya dispersi dalam zat itu. Dalam membandingkan zat –zat yang mempunyai massa molekul relatif (Mr) kira-kira sama, adanya gaya dipol-dipol dapat menghasilkan perbedaan sifat yang cukup nyata. Misalnya, n-butana dengan aseton. Akan tetapi dalam membandingkan zat dengan massa molekul relatif (Mr) yang berbeda jauh, gaya dispersi menjadi lebih penting. Misalnya, HCl dengan HI, HCl (momen dipol = 1,08) lebih polar dari HI(momen dipol = 0,38). Kenyataannya, HI mempunyai titik didih lebih tinggi daripada HCl. Fakta itu menunjukkan bahwa gaya V lebih kuat daripada HCl. Berarti, lebih polarnya HCl tidak cukup untuk mengimbangi kecenderungan peningkatan gaya dispersi akibat pertambahan massa molekul dari HI.

Kemudahan suatu molekul untuk membentuk dipol sesaat atau untuk mengimbas suatu molekul disebut *polarisabilitas*. Polarisabilitas berkaitan dengan massa molekul relatif (Mr) dan bentuk molekul. Pada umumnya, makin banyak jumlah elektron dalam molekul, makin mudah mengalami polarisasi. Oleh karena jumlah elektron berkaitan dengan massa molekul relatif, makadapat dikatakan bahwa makin besar massa molekul relatif, makin kuat gaya London. Misalnya, radon (Ar = 222) mempunyai titik didih lebih tinggi dibandingkan helium (A = 4), 221 K untuk Rn dibandingkan dengan 4 K untuk He. Molekul yang bentuknya panjang lebih mudah mengalami polarisasi dibandingkan molekul yang kecil, kompak, dan simetris. Misalnya, normal pentana mempunyai titik cair dan titik didih yang lebih tinggi dibandingkan neopentana. Kedua zat itu mempunyai massa molekul relatif yang sama besar. Contoh lainnya adalah ikatan hidrogen pada air dan makhluk hidup.

a. Ikatan hidrogen pada air

Pada air, satu molekul air dapat berikatan hidrogen dengan empat molekul air lain di sekitarnya dalam susunan tetrahedral seperti terlihat dalam gambar (a) di bawah. Pada es, molekul-molekul air berikatan hidrogen dalam struktur susunan yang kaku namun lebih terbuka. Struktur yang lebih terbuka (berongga) pada es seperti terlihat pada gambar (b) mengakibatkan es memiliki densitas (massa jenis) yang lebih kecil. Ketika es melebur, sebagian ikatan hidrogen putus. Hal ini menyebabkan molekul-molekul air dapat tersusun lebih rapat sehingga densitasnya meningkat seperti terlihat pada gambar (c). Dengan kata lain, jumlah molekul $\rm H_2O$ per satuan volum dalam wujud cair lebih banyak dibanding dalam wujud padat.

Gambar 8. Ikatan hidrogen pada air (Sumber: Petrucci, Ralph H. et al. 2017. General Chemistry: Principles and Modern Applications (11th edition). Toronto: Pearson Canada Inc.)

Seiring air es dipanaskan di atas titik lebur, pemutusan ikatan hidrogen terus berlanjut sehingga molekul-molekul air menjadi semakin tersusun rapat dan densitas air semakin meningkat. Air dalam wujud cair akan mencapai densitas maksimum pada suhu 3,98°C. Di atas suhu tersebut, air berperilaku "normal" seperti zat-zat lain pada umumnya sebagaimana densitas menurun seiring dengan kenaikan suhu.

Sifat anomali air ini berperan dalam beberapa fenomena-fenomena yang terjadi di bumi, seperti misalnya gunung es yang mengapung di atas perairan dan meledaknya pipa air pada musim salju. Ledakan pipa air dapat terjadi jika pendinginan terjadi secara mendadak sebagaimana air yang membeku menjadi es mengalami pemuaian. Dalam peristiwa es yang mengapung pada perairan yang membeku di musim salju, mengapungnya bongkahan es akan menghambat terjadinya pembekuan air lebih lanjut sehingga makhluk hidup yang berada di dalam perairan dapat bertahan hidup. Tanpa adanya sifat anomali air oleh karena keberadaan ikatan hidrogen ini, perairan akan membeku dari dasar hingga ke permukaan. Hal ini tentunya akan mengakibatkan makhluk hidup di perairan tersebut terancam tidak dapat bertahan hidup selama musim salju.

b. Ikatan Hidrogen pada Makhluk Hidup

Reaksi-reaksi kimia pada tubuh makhluk hidup melibatkan senyawa-senyawa dengan struktur kompleks, seperti protein dan DNA, di mana dalam reaksi-reaksi tersebut ikatan-ikatan tertentu harus dapat dengan mudah diputuskan dan dibentuk kembali. Ikatan hidrogen merupakan ikatan yang energinya pas dalam memungkinkan hal tersebut. Energi ikatan hidrogen paling besar di antara gaya-gaya interaksi antar-molekul lainnya, dan energinya relatif jauh lebih kecil dibanding ikatan kimia intramolekul seperti ikatan kovalen dan ikatan ionik.

Bentuk dari suatu molekul protein sangat dipengaruhi oleh ikatan hidrogen; jika ada ikatan-ikatan yang putus, molekul protein dapat kehilangan fungsinya. Ikatan ini juga berperan penting dalam mengikatkan kedua untai molekul DNA membentuk heliks ganda. Ikatan hidrogen yang tidak terlalu kuat ini dapat mempertahankan struktur rantai ganda DNA namun juga dapat dengan mudah diputuskan pada proses replikasi DNA dalam pembelahan sel.

2. Analisa Bentuk Molekul dan Polaritas Molekul

Molekul mempunyai sifat polarisabilitas berbeda-beda. Polarisabilitas merupakan kemudahan suatu molekul untuk membentuk dipol sesaat atau

mengimbas suatu dipol. Polarisabilitas sangat erat hubungannya dengan massa relatif molekul dan kerumitan molekul.

a. Massa relatif molekul

Pada umumnya molekul dengan jumlah elektron yang besar akan lebih mudah mengalami polarisabilitas. Jika semakin besar nomor massa molekul relatif, maka semakin kuat pula gaya London yang bekerja pada molekul itu. Misal, dua molekul propana saling menarik dengan kuat dibandingkan dua molekul metana. Molekul dengan distribusi elektron besar lebih kuat saling menarik daripada molekul yang elektronnya kuat terikat. Misal molekul I_2 akan saling tarik-menarik lebih kuat daripada molekul F_2 yang lebih kecil. Dengan demikian titik didih F_2 akan lebih besar jika dibandingkandengan titik didih F_2 .

b. Bentuk Molekul

Molekul yang mempunyai bentuk molekul memanjang lebih mudah mengalami polarisabilitas dibandingkan dengan molekul dengan bentuk rumit, membulat atau simetris. Misal deretan hidrokarbon dengan rantai cabang akan mempunyai titik didih lebih rendah jika dibandingkan dengan hidrokarbon dengan rantai lurus. Normal butana mempunyai titik didih lebih tinggi dibandingkan isobutana yang memiliki rantai cabang.

$$\begin{array}{cccc} \operatorname{CH_3--CH_2--CH_3} & & \operatorname{CH_3--CH--CH_3} \\ \textit{n-butana} & & \operatorname{CH_3} \\ & & \operatorname{CH_3} \\ & & \operatorname{isobutana} \end{array}$$

C. Rangkuman

- 1. Hubungan interaksi antar molekul dengan titik didih pada suatu senyawa adalah semakin kuat gaya antar molekul yang dimiliki maka semakin tinggi titik didihnya. Sebab dengan adanya gaya antar molekul yang kuat maka membutuhkan energi dan suhu yang besar untuk memutuskan ikatannya.
- Contoh penerapan hubungan interaksi antara molekul dalam kehidupan sehari-hari adalah ikatan hidrogen pada air. Air merupakan satu-satunya senyawa di alam yang memiliki tiga wujud, yaitu cair, padat, dan gas. Air merupakan senyawa kovalen yang mempunyai titik didih tinggi karena adanya ikatan hidrogen di antara molekul - molekulnya

D. Penugasan Mandiri

Ikatan hidrogen hanya dapat terbentuk di antara atom elektronegatif N, O, atau F yang memiliki pasangan elektron bebas dan atom H yang berikatan dengan atom elektronegatif N, O, atau F. Senyawa yang molekul-molekulnya dapat berikatan hidrogen harus memiliki atom N, O, atau F yang berikatan langsung dengan H (ikatan N—H, O—H, atau F—H).

- 1. Berdasarkan pernyataan dalam kalimat tersebut senyawa manakah di bawah ini yang molekul-molekulnya dapat membentuk ikatan hidrogen? Berikan penjelasanmu!
 - a. CHCl₃
 - b. CH₃OH
 - c. CH₃F

T.	d. CH ₃ NH ₂ e. CH ₃ OCH ₃
•	wab: olekul yang memiliki ikatan hidrogen adalah (tuliskan senyawanya)
	enjelasan :
	$CHCl_3:tidak$ / memiliki ikatan hidrogen , Karena :
	CH ₃ OH : tidak / memiliki ikatan hidrogen , Karena :
	CH ₃ F : tidak / memiliki ikatan hidrogen , Karena :
	CH_3NH_2 : tidak / memiliki ikatan hidrogen , Karena:
e.	CH ₃ OCH ₃ : tidak / memiliki ikatan hidrogen , Karena :
•••	
2.	Lakukanlah percobaan berikut ini, kemudian kamu amati apa yang terjadi .
	Alat : Gelas beaker/wadah utk memanaskan air/minyak , kompor/Bunser
	penyala+kaki tiga dan thermometer ,stop watch/jam Bahan : Air dan minyak
	Petunjuk kerja :
	a. Panaskan air ,amati sampai waktu 10 menit
	b. Panaskan minyak, amati sampai waktu 10 menit
	c. Lakukan kegiatan a dan b sampai 3 kali pengulangan
	Setelah melakukan kegiatan sesuai petunjuk kerja , buatlah lembar pengamatanmu.
	Dari pengamatan yang kamu lakukan maka kesimpulan yang di peroleh
	Hal ini di karenakan

E. Latihan Soal

1. Perhatikan grafik di bawah ini!

Senyawa yang mengandung ikatan hidrogen antar molekulnya adalah nomor ...

- A. (1) dan (2)
- B. (1) dan (3)
- C. (2) dan (3)
- D. (3) dan (4)
- E. (5) dan (6)
- 2. Pernyataan berikut ini yang benar adalah ...
 - A. Titik didih molekul yang memiliki ikatan hidrogen lebih besar daripada molekul yang memiliki gaya Van der Waals
 - B. Polarisabilitas suatu molekul dipengaruhi oleh kepolaran molekul
 - C. Gaya London hanya berlaku untuk molekul polar saja
 - D. Gaya induksi terjadi antara molekul polar dengan molekul polar
 - E. Urutan kekuatan gaya antarmolekul yaitu ikatan hidrogen > gaya London > gaya tarik-menarik dipol-dipol
- 3. Gaya antarmolekul yang bertanggung jawab kurang rapatnya es (air padat) dibanding air (air bentuk cair) adalah
 - A. gaya dispersi London
 - B. gaya dipol-dipol
 - C. gaya ion-dipol
 - D. ikatan hidrogen
 - E. ikatan ion
- 4. Gaya yang terjadi antara molekul HCl dengan molekul HCl lain disebut ...
 - A. Gaya tarik-menarik dipol-dipol
 - B. Gaya induksi
 - C. Gaya London
 - D. Gaya Van der Waals
 - E. Ikatan hidrogen
- 5. Berdasar pada massa molar dan momen dipol dari lima senyawa dalam tabel, manakah yang diperkirakan mempunyai titik didih tertinggi?

Zat	Massa molar (g/mol)	Momen dipol (Debye)
Propana (CH ₃ CH ₂ CH ₃)	44	0,1
Dimetileter (CH ₃ OCH ₃)	46	1,3
Metilklorida (CH ₃ Cl)	50	1,9

Asetaldehid (CH ₃ CHO)	44	2,7
Asetonitril (CH3CN)	41	3,9

- A. CH₃CH₂CH₃
- B. CH₃OCH₃
- C. CH₃Cl
- D. CH₃CHO
- E. CH₃CN

Kunci Jawaban dan Pembahasan Soal Latihan

No	Kunci	Dl. l
	Jawaban	Pembahasan
1	В	Senyawa yang memiliki ikatan hidrogen antara molekulnya memiliki titik didih jauh lebih tinggi dari senyawa segolongannya
2	A	Ikatan hidrogen lebih kuat dibandingkan dengan ikatan Van der Waals, sehingga titik didih molekul yang memiliki ikatan hidrogen lebih besar daripada molekul yang memiliki gaya Van der Waals
3	D	Bentuk padat dari kebanyakan zat lebih rapat daripada fase cairnya, sebagian besar zat padat akan tenggelam dalam cairan. Berbeda dengan air, ini merupakan anomali air, es ini menyimpang dari karakter padatan pada umumnya. Zat yang memiliki kerapatan lebih rendah akan mengapung di permukaan zat cair yang memiliki kerapatan lebih besar. Yang menyebabkan es memiliki kerapatan yang lebih rendah adalah adanya ikatan hidrogen pada molekul sebagai gaya antarmolekul air. Ikatan-ikatan hidrogen yang cukup kuat pada air padat ini membentuk kerangka tetrahedral sehingga meninggalkan
		rongga atau jarak. Dengan demikian ia memiliki kerapatan yang lebih kecil dibanding air dalam fase cair.
4	A	HCl adalah molekul yang bersifat polar sehingga apabila kedua molekul HCl berinteraksi akan membentuk gaya tarik dipol-dipol
5	Е	Momen dipol (μ) merupakan jumlah vektor dari momen ikatan dan momen pasangan elektron bebas dalam suatu molekul. Molekul dikatakan bersifat polar jika memiliki $\mu > 0$ atau $\mu \neq 0$ dan dikatakan bersifat nonpolar jika memiliki $\mu = 0$ Titik didih suatu zat itu berbanding lurus dengan momen dipolnya bila massa molar zat-zat tersebut tidak besar perbedaannya. Semakin tinggi momen dipol maka titik didih zat tersebut akan semakin tinggi pula. Bila massa molar memiliki perbedaan yang besar tentu massa molar akan turut mempengaruhi. Pada soal ini tampak massa molar zat-zat yang dibandingkan tidak relatif kecil perbedaannya.
		Jadi mutlak pada soal tersebut yang memiliki titik didih tertinggi adalah Asetonitril.

Pedoman Penskoran

Cocokkanlah jawaban Anda dengan Kunci Jawaban yang terdapat di bagian akhir modul ini. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Kegiatan Belajar 1.

Nilai =
$$\frac{Jumlah\ Skor\ Perolehan}{Jumlah\ Skor\ Maksimum} \times 100\ \%$$

Konversi tingkat penguasaan:

90 - 100% = baik sekali 80 - 89% = baik 70 - 79% = cukup < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Kegiatan Belajar 2. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Kegiatan Belajar 1, terutama bagian yang belum dikuasai.

F. Penilaian Diri

Setelah mempelajari modul ini maka jawablah pertanyaan yang terdapat dalam tabel penilaian diri berikut dengan memberikan tanda centang ($\sqrt{}$)

NO	PERTANYAAN		ABAN
NO			TIDAK
1	Setelah mempelajari modul ini, saya mengetahui tentang hubungan interaksi antar molekul dengan sifat fisik zat		
2	Setelah mempelajari modul ini, saya dapat menentukan senyawa yang memiliki ikatan hidrogen		
3	Setelah mempelajari modul ini, saya dapat mengetahui pengaruh momen dipol terhadap tingkat kepolaran		
4	Setelah mempelajari modul ini, saya dapat menentukan urutan kenaikan titik didik dari yang terkecil sampai yang terbesar atau sebaliknya		

Bila ada jawaban "Tidak", maka segera lakukan review pembelajaran, terutama pada bagian yang masih "Tidak". Bila semua jawaban "Ya", maka Anda dapat melanjutkan ke pembelajaran berikutnya.

EVALUASI

- 1. Senyawa manakah yang molekul-molekulnya dapat membentuk ikatan hidrogen?
 - A. CHCl₃
 - B. CH₃OH
 - C. CH₃F
 - D. CH₃NH₂
 - E. CH₃OCH₃
- 2. Ikatan yang terjadi antara atom H dengan atom yang elektronegatifitasnya tinggi (F,
 - O, N) disebut ...
 - A. Ikatan ion
 - B. Ikatan kovalen polar
 - C. Ikatan kovalen non polar
 - D. Ikatan hidrogen
 - E. Ikatan kovalen koordinasi
- 3. Gaya London atau gaya dispersi pada molekul-molekul non polar terjadi karena terbentuk ... dan ...
 - A. Dipol permanen dan dipol permanen
 - B. Dipol sesaat dan dipol terinduksi
 - C. Dipol permanen dan dipol sesaat
 - D. Dipol terinduksi dan dipol terinduksi
 - E. Ikatan hidrogen
- 4. Pernyataan berikut ini yang benar adalah ...
 - A. Titik didih molekul yang memiliki ikatan hidrogen lebih besar daripada molekul yang memiliki gaya Van der Waals
 - B. Polarisabilitas suatu molekul dipengaruhi oleh kepolaran molekul
 - C. Gaya London hanya berlaku untuk molekul polar saja
 - D. Gaya induksi terjadi antara molekul polar dengan molekul polar
 - E. Urutan kekuatan gaya antarmolekul yaitu ikatan hidrogen > gaya London > gaya tarik-menarik dipol-dipol
- 5. Diketahui pasangan-pasangan senyawa berikut.
 - (1) NH₃ dan HF
 - (2) H₂O dan HCl
 - (3) HF dan H₂O
 - (4) NH₃ dan HBr
 - (5) NH₃ dan H₂S

Kelompok senyawa yang dapat membentuk ikatan hidrogen adalah ...

- A. (1) dan (3)
- B. (1) dan (5)
- C. (2) dan (3)
- D. (3) dan (4)
- E. (4) dan (5)
- 6. Manakah molekul yang memiliki gaya tarik-menarik dipol-dipol antarmolekulnya? (Gunakan tabel periodik yang tersedia)
 - A. AsH₃
 - B. BCl₃
 - C. Cl₂

- D. CO₂
- E. XeF₄
- 7. Perhatikan grafik di bawah ini!

Senyawa yang mengandung ikatan hidrogen antar molekulnya adalah nomor ...

- A. (1) dan (2)
- B. (1) dan (3)
- C. (2) dan (3)
- D. (3) dan (4)
- E. (5) dan (6)
- 8. Gaya yang terjadi antara molekul HCl dengan molekul HCl lain disebut ...
 - A. Gaya tarik-menarik dipol-dipol
 - B. Gaya induksi
 - C. Gaya London
 - D. Gaya Van der Waals
 - E. Ikatan hidrogen

KUNCI JAWABAN SOAL EVALUASI

No	Kunci
	Jawaban
1	В
2	D
3	В
4	A
5	A
6	E
7	В
8	A

DAFTAR PUSTAKA

- Brady, James E. 1999. *Kimia Universitas, Asas dan Struktur, Edisi Kelima*. Binarupa Aksara: Jakarta
- Hart, Harold (Suminar Achmadi). 1990 Kimia Organik Suatu Kuliah Singkat (terjemahan). Erlangga: Jakarta
- Petrucci, Ralph H., 1987. Kimia Dasar Prinsip dan Terapan Modern, Jilid 3, Erlangga: Jakarta
- Respati. 1986. Pengantar Kimia Organik. Aksara Baru: Jakarta
- Unggul Sudarmo. 2016. Kimia untuk SMA/MA Kelas X. Erlangga: Jakarta.
- https://id.wikipedia.org/wiki/Gaya antarmolekul
- https://www.studiobelajar.com/ikatan-hidrogen/