Licenciatura em Engenharia Informática Departamento de Engenharias - 2018/2019/2020/2021

Ficha de Trabalho 4: Raciocínio Baseado em Regras

Objetivo: Pretende-se promover a aquisição de conhecimentos e desenvolvimento de competências relativas ao raciocínio baseado em regras.

1) Considere a seguinte regra de produção:

If Temperatura Corporal ≥38°C Then Ir ao Médico

- a) Qual é o antecedente desta regra? (T)
- b) Qual é o consequente desta regra? (T)
- c) Que parte da regra se compara com a memória de trabalho no encadeamento para a frente? (T)
- d) Que parte da regra se compara com a memória de trabalho no encadeamento para trás? (T)
- 2) Considere a seguintes bases de dados das regras e dos factos:

Tabela 1: Base de dados das regras

#	Regra
R1	If T(verde) Then T(caminhe)
R2	If T(vermelho) Then T(pare)
R3	If T(verde) AND T(piscar)
	Then T(caminhe rápido)

Tabela 2: Base de dados dos factos

#	Facto
F1	T(verde)
F2	T(piscar)

- a) Utilizando o encadeamento para a frente explique justificando a resposta quais das regras serão colocadas no conjunto de conflito. (T)
- b) Explique qual a regra que seria disparada utilizando a estratégias i) *Primeira* a Chegar Primeira Atendida, ii) Prioridade com Especificade. (T)
- 3) Considere o problema da implementação de um Controlador de Temperatura de um sistema de aquecimento com água baseado num sistema de regras [1] (T). Neste sistema:
 - a válvula 1: controla a circulação da água quente entre os radiadores;
 - a válvula 2: controla a circulação da água quente entre o termoacumulador e os radiadores.

A base de dados das regras que regem o comportamento deste controlador estão apresentadas na Tabela 3 e os factos na Tabela 4.

Tabela 3: Base de dados das regras

#	Regra
R1	If (T(temperatura da sala <20) AND T(temporizador ON)
	Then T(caldeira ON)
R2	If (T(temperatura da água <40) AND T(temporizador ON)
	Then T(caldeira ON)
R3	If T(caldeira ON)
	Then T(bomba ON)
R4	If (T(bomba ON) AND T(temperatura da sala) < 20))
	Then T(válvula 1 ON)
R5	If (T(bomba ON) AND T(temperatura da água) < 40))
	Then T(válvula 2 ON)
R6	If ~T(temporizador ON)
	Then ~T(caldeira ON)
R7	If $\sim T($ temperatura da sala < 20 $)$
	Then ~T(válvula 1 ON)
R8	If ~T(temperatura da água < 40)
	Then ~T(válvula 2 ON)
R9	If ~T(caldeira ON)
	Then ~T(bomba ON)
R10	If \sim T(temperatura da sala <20) AND \sim T(temperatura da água <40))
	Then ~T(caldeiraON)

Tabela 4: Base de dados dos factos

#	Facto
F1	T(temperatura da sala <20)
F2	T(temperatura da água <40)
F3	T(temporizador ON)
F4	T(válvula 1 ON)
F5	T(válvula 2 ON)
F6	T(caldeira ON)
F7	T(bomba ON)

Aplique a regra de encadeamento para a frente explicitando a memória de trabalho, conjunto de conflito e regra disparada. Na resolução dos conflitos utilize as estratégias: *Primeira a Chegar Primeira Atendida* e *Antiguidade*.

Ciclo	Memória de Trabalho	Conjunto de Conflito	Regra Disparada
1			
2			
3			
4			
5			

4) Considere a seguintes bases de dados das regras e dos factos:

Tabela 1: Base de dados das regras

#	Regra
R1	If T(X coaxa) AND T(X come moscas)
	Then T(X é uma rã)
R2	If T(X chilreia) AND T(X canta)
	Then T(X é um canário)
R3	If T(X é uma rã)
	Then T(X é verde)
R4	If T(X é um canário)
	Then T(X é amarelo)

Tabela 2: Base de dados dos factos

#	Facto
F1	T(X coaxa)
F2	T(X é verde)

a) Aplique o encadeamento para trás explicitando a memória de trabalho, conjunto de conflito e regra disparada. (T)