NOIp2021 联测模拟赛

 $\begin{array}{c} {\rm BDFZ} \\ {\rm dengyaotriangle} \end{array}$

2021年11月13日

题目概况

· ·				
题目编号	A	В	С	D
题目名称	旋转吧	雪	月	 花
英文名称	maware	irori	yaya	komurasaki
题目类型	传统题	传统题	传统题	传统题
输入文件名	maware.in	irori.in	yaya.in	komurasaki.in
输出文件名	maware.out	irori.out	yaya.out	komurasaki.out
源文件名	maware.cpp	irori.cpp	yaya.cpp	komurasaki.cpp
时间限制	1s	1s	1s	1s
空间限制	128MB	512MB	512MB	512MB
编译方式	C++14 O2	C++14 O2	C++14 O2	C++14 O2
测试点/子任务数目	5	10	20	3
测试点/子任务分值	20	10	5	不等分
总分值	100	100	100	100

注意事项

- 1. main 函数的返回值类型必须是 int, 且正常结束时返回值必须是 0。
- 2. 代码长度限制为 50KB。
- 3. 评测系统最新版 NOI Linux 系统, LemonLime, i7-11700K。温馨提示,这个评测机可能比你熟悉的评测机快很多。

- 4. C++14 O2 对应的命令是 g++ name.cpp -o name -std=c++14 -02 -lm。
- 5. 请对于每一个题目建立与题目英文名称相同的子文件夹,在该文件夹中存放源文件,即 NOIp/NOI 所要求的目录结构。文件名必须使用英文小写。也就是**需要建子文件夹**。
- 6. 输出比对方式为忽略行末空格和文末空行的全文比对。
- 7. 1GB=1024MB, 1MB=1024KB, 1KB=1024B.
- 8. 如果你在复制 PDF 上的样例遇到了困难,或者不想复制,下发文件里面提供了包括题面里给出的所有样例文件。
- 9. 机巧 OIer 不会挂分。

A. 旋转吧

(maware/1s/128MB)

问题描述

你转晕了,现在眼前一片眩光,你突然对你看到的奇妙图像有了兴趣。 给定一个 $n \times n$ 的 01 矩阵 $a_{i,j}$ 。

定义一个子矩形的相似度为包含在该矩形中的 1 的个数与不在矩形中 1 的个数的比值,形式化来讲,子矩形 $[(x_1, y_1), (x_2, y_2)]$ 的相似度为:

$$\frac{\sum\limits_{x_{1} \leq i \leq x_{2} \land y_{1} \leq j \leq y_{2}} a_{i,j}}{\sum\limits_{(i < x_{1} \lor i > x_{2}) \lor (j < y_{1} \lor j > y_{2})} a_{i,j}}$$

特别的, 若上式分母为 0, 相似度不存在。

只需关心相似度是整数的子矩形,请对于所有整数 x,输出有多少个相似度为 x 的非空子矩形,请只输出个数非 0 的那些 x。两个子矩形 $[(x_1,y_1),(x_2,y_2)]$ 与 $[(x_3,y_3),(x_4,y_4)]$ 不同当且仅当 $x_1 \neq x_3$ 或 $y_1 \neq y_3$ 或 $x_2 \neq x_4$ 或 $y_2 \neq y_4$ 。

输入格式

包含多组测试数据,第一行一个正整数 T 代表数据组数。 每组数据 n+1 行,第一行一个正整数 n,代表大小。 接下来 n 行每行 n 个数,第 i 行第 j 个代表 $a_{i,j}$

输出格式

每组数据若干行,每行两个整数,x, cnt_x ,代表相似度为 x 的子矩形有 cnt_x 个,请按照 x 从小到大的顺序输出。

多组数据间并不需要空行分隔。

样例 1

maware.in	maware.out
1	0 1
2	2 2
1 0	
1 1	

样例解释

相似度为 0 的有一个: [(1,2),(1,2)]

相似度为 2 的有两个: [(1,1),(2,1)],[(2,1),(2,2)]

可以发现没有其它相似度为整数的子矩形,故输出只有两行。

样例 2

maware.in	maware.out
1	0 8
3	1 7
1 1 0	3 4
0 1 0	
0 0 1	

数据规模与约定

对于 100% 的数据, $1 \le T \le 10, 1 \le n \le 200$,保证每个 a_i 都是独立的在 $\{0,1\}$ 中等概率随机生成的。

测试点	n
1	≤ 5
2	≤ 20
3	≤ 60
4,5	≤ 200

B. 雪

(irori/1s/512MB)

问题描述

白色相簿的季节到了,街上下起了雪,有些位置有雪,有些位置没有,有些形状的雪是优美的。

定义一个 01 序列是优美的,当且仅当不存在一个子区间,其中 01 的个数的差的绝对值大于 k。

请计数由 $x \uparrow 0$, $y \uparrow 1$ 构成的优美的 01 序列个数, mod 998244353。

输入格式

一行,三个非负整数,x,y,k。

输出格式

一行,一个非负整数,答案 mod 998244353 的值。

样例 1

irori.in	irori.out
2 3 1	1

样例解释

只有 10101 一个优美的序列。

样例 2

irori.in	irori.out
114 514 455	548982214

数据规模与约定

对于 100% 的数据, $x, y \ge 0, 1 \le k, x + y \le 5 \times 10^7$.

测试点编号	x + y	k
1	≤ 10	≤ 10
2	≤ 50	≤ 50
3,4	≤ 500	< 100
5,6	$\leq 10^4$	≤ 100
7	<u> </u>	$\leq 10^{4}$
8,9	$\leq 5 \times 10^5$	$\leq 5 \times 10^5$
10	$\leq 5 \times 10^7$	$\leq 5 \times 10^7$

C. 月

(yaya/1s/512MB)

问题描述

作为一个月球探测器,你正在闲的没事考虑一个数学问题。

对于一个常数 w,和任意一个正整数 x,你一次操作可以花费 c(x) 的 代价将其变为 $\left|\frac{x}{2}\right|,\left|\frac{x}{3}\right|,\cdots,\left|\frac{x}{w}\right|$ 中的任意一个。

初始时, $c(x) = d_0(x)$,其中 $d_0(x)$ 为 x 的因子个数。你需要执行 q 次询问或修改操作。

对于一次修改操作,给定正整数 x,令 c(x) 减少 1,数据保证任意时刻任意 $c(x) \ge 0$ 。

对于一次询问操作,给定正整数 x,求对其进行任意次操作后变为 0 的最小代价。

输入格式

第一行,三个整数 x_{max}, w, q ,代表所有操作中都有 $x \leq x_{max}$,常数 w,和操作次数。

接下来 q 行,每行先给出一个整数 op。

若 op = 1,则代表一次修改操作,接下来会给出一个正整数 x,代表修改的位置。

若 op = 2,则代表一次询问操作,接下来会给出一个正整数 x,代表询问 x 的最小代价。

输出格式

对于每个询问输出一行,代表对应的最小代价。

样例 1

yaya.in	yaya.out
10 3 15	5
1 1	2
2 9	3
1 10	4
2 3	5
1 3	5
2 7	5
2 9	2
2 6	4
2 6	2
1 7	
2 6	
1 2	
2 7	
2 10	
2 5	

样例 2

见下发文件。

数据规模与约定

对于 100% 的数据, $1 \le x_{max}, w \le 5 \times 10^4, 1 \le q \le 10^6, op \in \{1,2\}$ 。对于所有询问和修改,均有 $1 \le x \le x_{max}$,保证任意时刻 $c(x) \ge 0$ 。

测试点编号	x_{max}	w	q
1,2	≤ 100	≤ 100	≤ 100
3,4	$\leq 10^{3}$	$\leq 10^{3}$	$\leq 10^{3}$
5,6,7			≤ 200
8,9,10		≤ 5	$\leq 2 \times 10^5$
11,12	$\leq 5 \times 10^4$		
13,14,15,16		$\in (5, 10^3]$	$\leq 10^{6}$
17,18,19,20		$\in (10^3, 5 \times 10^4]$	

D. 花

(komurasaki/1s/512MB)

问题描述

门前有很多花,有些开放了,有些没有,你认为有些花的图案是美丽的,你想知道有多少种美丽的图案。

有 $n \uparrow 01$ 变量 x_i , 有m 条限制, 形如 u_i, v_i 不能同时是1, 其中 u_i, v_i 是某一个 x_j , 或 $\neg x_j$ (即 x_j 的逻辑非)。

求满足限制的条件下这 n 个变量有多少种取值。

输入格式

第一行,两个整数 n, m。

接下来 m 行,每行四个整数 a,i,b,j,代表一条限制,若 a=0,则代表限制中第一个变量是 x_i ,a=1 代表 $\neg x_i$,若 b=0,则代表限制中第二个变量是 x_i ,b=1 代表 $\neg x_i$ 。

输出格式

一行,一个非负整数,答案。

样例 1

komurasaki.in	komurasaki.out
4 2	10
1 1 0 2	
0 3 0 2	

样例解释

 $x_1x_2x_3x_4$ 的所有可能取值是: 0000,0001,0010,0011,1000,1001,1010,1011,1100,1101

样例 2

见下发文件。

数据规模与约定

对于 100% 的数据, $1 \leq n \leq 60, 0 \leq m \leq 2 \times 10^4, 1 \leq i, j \leq n, a, b \in \{0,1\}$ 。

本题采用捆绑测试。

子任务编号	分值	n
1	20	≤ 18
2	30	≤ 40
3	50	≤ 60