

Trabalho extra 2 Portabilidade - Instalabilidade

Alunos:

Nome:	GitHub:	Matricula
André Bargas	@andrebargas	12/0110237
Brian Lui	@brian2397	15/0006802
Gustavo Duarte	@gustavoduartemoreira	15/0059957
Lucas Machado Martins	@ImmLucasMachado	15/0015917
Mateus Oliveira	@omateusp	16/0015006
João de Assis	@Jonjon667	17/0036634
Tâmara Barbosa Tavares	@tamarabarbosa	12/0022613

Universidade de Brasília - UNB Faculdade Gama - FGA

Brasília, DF Outubro, 2019

Resumo Portabilidade

"Uma unidade de software é portátil (exibe portabilidade) em uma classe de ambientes na medida em que o custo para transportá-lo e adaptá-lo a um novo ambiente da classe. menor do que o custo da reconstrução."

Dentre as características de qualidade de um software, sob os aspectos funcionais e não funcionais, podemos citar a medida da portabilidade como a quantidade de esforço exigido para transferir um software de um ambiente para outro. Segundo a ISO / IEC 25010 a característica da portabilidade pode ser definida como o grau de eficácia com o qual um sistema, produto ou componente pode ser transferido de um hardware, software ou outro ambiente operacional ou de uso para outro. Na resolução ainda é descrito com sub características da portabilidade:

- Adaptabilidade: Mede a capacidade do software de se adaptar a diferentes ambientes de funcionamento. Pode ser metrificado a partir da :
 - o Compatibilidade com multiplos Sistemas Operacionais.
 - Utilização de ferramentas intrínsecas que afetam a adaptabilidade.
 - Quantidade de pacotes como pré-requisitos.
- Instalabilidade: Mede qual o nível de esforço necessário para realizar a instalação do sistema. Pode ser medida através de:
 - Quantidade pacotes não relacionados ao sistema operacional necessários para a instalação do sistema no ambiente.

- Capacidade para Substituir: Capacidade do produto de software de ser usado em substituição a outro produto de software especificado, com o mesmo propósito e no mesmo ambiente.
- Coexistência: Capacidade do produto de software de coexistir com outros produtos de software independentes, em um ambiente comum, compartilhando recursos comuns. Pode ser medido a partir de:
 - Frequência de deadlocks que o sistema dispara quando em funcionamento. Quanto maior a ocorrência destes eventos menor é o nível de coexistência do sistema.

The Classification of Portability into Sub Characteristics and Metrics (fonte: https://www.researchgate.net/publication/228518831_Integrated_Software_Quality_Evaluation_A_Fuzzy_Multi-Criteria_Approach)

Pontos Importantes

- Teste poderia ser automatizado utilizando de um webdriver (Selenium). Mas como é um jogo este tipo de teste fica inviável.

Como será testado

- Teste em diferentes OSs:
 - Ubuntu
 - Windows
- Teste em diferentes hardwares :
 - Dell G5, 16 ram, SSD
 - Dell G3, 8 ram
- Teste em diferentes Browser
 - Chrome
 - Firefox
 - IE (se possível testar em diferentes versões)

Resultados:

NAVEGADORES	Número de Fases sem drop de quadros	Taxa de quadros máxima	Taxa de quadros mínima	Desempenho Final
FIREFOX	2	64	12	вом
INTERNET EXPLORER	3	82	14	ОТІМО*
OPERA	5**	95	25	ÓTIMO
GOOGLE CHROME	5**	92	24	ÓТIMO
Legenda	*=Taxa de quadros diminuiu uma única vez, não foi possível reproduzir o erro	**=Não foram testadas fases acima da 5		

Porcentagem de Trabalho:

André Bargas	95
Brian Lui	65
Gustavo Duarte	70
Lucas Machado Martins	65
Mateus Oliveira	65
João de Assis	90
Tâmara Barbosa Tavares	90

Bibliografia:

- Moraga, Carmen & Moraga, Maria & Calero, Coral & Caro, Angelica. (2009).
 SQuaRE-Aligned Data Quality Model for Web Portals. Proceedings International Conference on Quality Software. 117-122. 10.1109/QSIC.2009.23.
 Disponível em: https://ieeexplore.ieee.org/abstract/document/5381502/
 Acessado em: 14 de outubro de 2019
- Normas ISO para Qualidade de Software. Modelos de Qualidade https://profandreluisbelini.files.wordpress.com/2016/02/aula-10-normas-iso-para-qualidade-de-software-modelos-de-qualidade.pdf Acessado em: 14 de outubro de 2019
- Abramowicz, Witold & Hofman, Radosław & Suryn, Witold & Dominik, Zyskowski. (2008). SQuaRE based Web Services Quality Model. Lecture Notes in Engineering and Computer Science. 1. Disponível em: https://pdfs.semanticscholar.org/fcc8/a97b7d3edf821f5b90ef34de8760799597b c.pdf> Acessado em: 14 de outubro de 2019
- Challa, Jagat & Paul, Arindam & Dada, Yogesh & Nerella, Venkatesh & Srivastava, Dr. Praveen & Singh, Ajit Pratap. (2011). Integrated Software Quality Evaluation: A Fuzzy Multi-Criteria Approach. Journal of Information Processing Systems. 77473. 10.3745/JIPS.2011.7.3.473.
 Disponível
 - https://www.researchgate.net/publication/228518831_Integrated_Software_Quality_Evaluation_A_Fuzzy_Multi-Criteria_Approach Acessado em: 14 de outubro de 2019
- Yuhana, Umi & Saptarini, Istiningdyah & Rochimah, Siti. (2015). Portability characteristic evaluation Academic information System assessment module using AIS Quality Instrument. 133-137. 10.1109/ICITACEE.2015.7437785. Disponível em : https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7437785> Acessado em: 14 de outubro de 2019
- MOONEY, James D.. Bringing Portability to the Software Process. 1997. 9 f.
 Tese (Doutorado) Curso de Statistics And Computer Science, Computer
 Science, West Virginia University, Morgantown, 1997. Disponível em:
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.9762&rep=rep1&ty
 pe=pdf>. Acesso em: 15 out. 2019.