Skupovi

1. Pojmovi: skup, element skupa (∈)

Skup je svaka množina (nekih) objekata koje nazivamo elementima ili članovima skupa.

Činjenicu da element x pripada skupu A bilježimo sa $x \in A$.

Činjenicu da element x ne pripada skupu A bilježimo sa x ∉ A;

2. Definicija skupovne inkluzije (\subseteq i \subset), jednakosti skupova (=). Što je partitivni skup ($P(X), 2^X$) skupa X, prazan skup (\varnothing), univerzalni skup?

Definicija: Za skup A kažemo da je **podskup** skupa B ako je A sadržan u B, tj. ako $\forall x \in X$ vrijedi tvrdnja: $x \in A \Rightarrow x \in B$. Tada pišemo $A \subseteq B$.

Ako je $A \subseteq B$ onda kažemo da je B nadskup od A i pišemo $B \supseteq A$.

Znak ⊆ zovemo znakom inkluzije (uključivanja).

Defnicija: Kažemo da je A pravi podskup od B ako vrijedi $A \subseteq B$ i $A \ne B$ i pišemo $A \subseteq B$.

Definicija: Kažemo da su skupovi A i B jednaki ako vrijedi $A \subseteq B$ i $B \subseteq A$ i pišemo A = B.

Partitivni skup skupa X je skup koji kao svoje elemente sadrži sve podskupove od X. Označavamo ga kao P(X) ili kao 2^{X} .

Ako skup X ima n elemenata, onda skup 2^X ima 2ⁿ elemenata.

Prazan skup je skup koji ne sadrži niti jedan element. Oznaka za prazan skup je \varnothing . Skup $\{\varnothing\}$ sadrži jedan element, odnosno prazan skup. Vrijedi da je $\varnothing\subseteq A$ za svaki skup A.

Univerzalni skup X (ili U) je skup koji je prozivoljan, ali unaprijed zadan i svi skupovi koje promatramo su podskupovi tog skupa.

3. Definicija operacija: komplement ($^-$), unija (\cup), presjek (\cap) i razlika skupova (\setminus). Osnovna svojstva ovih operacija (citirati teorem i dokazati pojedina svojstva).

Definicija: Neka je A podskup univerzalnog skupa X. Skup $\overline{A} = \{x \in X : x \notin A \}$ nazivamo **komplement** skupa A.

Definicija: Neka su skupovi A i B podskupovi univerzalnog skupa X.

Skup $A \cup B = \{x : x \in A \text{ ili } x \in B \}$ se zove unija skupova A i B.

Skup $A \cap B = \{x : x \in A \mid x \in B \}$ se zove presjek skupova A i B.

Skup $A \setminus B = \{ x : x \in A \ i \ x \notin B \}$ se zove razlika skupova $A \ i \ B$.

Teorem: Neka su A, B, $C \in 2^X$. Tada vrijede ova pravila algebre skupova:

- 1. Idempotentnost unije i presjeka: $A \cup A = A$; $A \cap A = A$
- 2. Asocijativnost: $(A \cup B) \cup C = A \cup (B \cup C)$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

- 3. Komutativnost: $A \cup B = B \cup A$; $A \cap B = B \cap A$
- 4. Distributivnost: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

5. De Morganove formule: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

- 6. $A \cup \emptyset = A$; $A \cap X = A$
- 7. $A \cup X = X$; $A \cap \emptyset = \emptyset$
- 8. Komplementiranost: $A \cup \overline{A} = X$; $A \cap \overline{A} = \emptyset$
- 9. Involutivnost komplementiranja: $\overline{\overline{A}} = A$

4. Defnicija Kartezijevog produkta skupova (\times i oznaka Π)

Defnicija: Ako su $A_1,\,A_2,\,\dots$, A_n neprazni skupovi, onda definiramo Kartezijev produkt

$$A_1\times A_2\times \ldots \times A_n$$

kao skup svih uređenih n-torki $(a_1,a_2,...,a_n)$ takvih da je $a_k\in A_k$ za sve k=1,2,...,n. Taj se skup označava kraće:

$$\prod_{k=1}^{n} A_k$$

5. Defnicija ekvipotentnosti skupova (~). Dokazati da je relacija ekvipotentnosti refleksivna, simetrična i tranzitivna.

Definicija: Kažemo da je skup A ekvipotentan (jednakobrojan) sa skupom B ako postoji bijekcija $f: A \to B$. Oznaka za ekvipotenciju skupova $A \sim B$:

Teorem: Ekvipotentnost ima ova osnovna svojstva:

- a) refleksivnost: A ~ A za svaki skup A,
- b) simetričnost: ako je $A \sim B$; onda je $B \sim A$,
- c) tranzitivnost: ako je $A \sim B$ i $B \sim C$; onda je $A \sim C$.

Dokaz:

- a) Identiteta id : $A \rightarrow A$, id (x) = x, je bijekcija.
- b) Ako je f : A \rightarrow B bijekcija, onda je i inverzna funkcija f^{-1} : B \rightarrow A također bijekcija.
- c) Ako su funkcije $f: A \to B$ i $g: B \to C$ bijekcije, onda je i njihova kompozicija $g \circ f: A \to C$ također bijekcija.

6. Definicija beskonačnih i konačnih skupova. Pojam kardinalnog broja skupa. Prebrojivi i neprebrojivi beskonačni skupovi. Alef nula, kontinuum.

Definicija: Za skup kažemo da je beskonačan ako je ekvipotentan sa svojim pravim podskupom. Za skup kažemo da je konačan ako nije beskonačan.

Za beskonačni skup A kažemo da je **prebrojiv** ako se skup njegovih elemenata može poredati u beskonačni niz $A = \{a_1, a_2, a_3, ...\}$. Primjer: skup prirodnih brojeva N.

Za beskonačni skup A kažemo da je **neprebrojiv** ako se skup njegovih elemenata ne može poredati u beskonačni niz. Primjer: skup realnih brojeva R.

Definicija: Za skupove A i B kažemo da imaju isti **kardinalni broj** ako su ekvipotentni. Pišemo |A| = |B| (ili card A = card B).

Kardinalni broj konačnog skupa $\{1,2,...,n\}$ označavamo sa \mathbf{n} i pišemo card $\{1,2,...,n\}$ = \mathbf{n} .

Kardinalni broj prebrojivog beskonačnog skupa A označavamo sa $N_{\rm o}$ (alef nula) i pišemo card $A=N_{\rm o}$. Primjer: card $N=N_{\rm o}$. Dakle, svi prebrojivi bekonačni skupovi su ekvipotentni sa skupom prirodnih brojeva N.

Kardinalni broj skupa realnih brojeva R označavamo sa \mathbf{c} i zovemo ga **kontinuum** i pišemo card $R = |R| = \mathbf{c}$.

7. Prebrojivost skupova Z i Q

Teorem:

Skupovi cijelih brojeva Z i racionalnih brojeva Q su prebrojivo beskonačni.

To znači da se članovi tih skupova se mogu poredati u beskonačni niz. Svi prebrojivo beskonačni skupovi su ekvipotentni sa skupom prirodnih brojeva:

card
$$Z = \text{card } Q = N_0$$

Dokaz:

a) Ako su skupovi Z i N ekvipotentni, to znači da mora postojati funkcije $f: Z \to N$ koja je bijekcija.

Skup cijelih brojeva Z se može preslikati u skup prirodnih brojeva N pomoću funkcije $f: Z \to N$ definirane izrazom:

$$f(k) = \begin{cases} 2k & za \quad k > 0 \\ \\ 2|k|+1 & za \quad k \le 0 \end{cases}$$

koja je bijekcija.

b) Za dokaz da je skup Q prebrojiv, dovoljno je pronaći injektivnu funkciju $f: Q \to N$. Takva funkcija se može lako konstruirati kodiranjem i ona glasi:

$$f(p\frac{m}{n}) = 2^{p+1} 3^m 5^n$$

gdje je p = +1 ili p = -1 predznak racionalnog broja,

$$m \in N_0 \text{ - brojnik}, \qquad N_0 = \big\{\,0,1,2,3,\dots\big\},$$

$$n \in N$$
 - nazivnik.

Pri tom su brojnik i nazivnik skraćeni do kraja, tj. nemaju zajedničkog djelitelja.

Iz osnovnog teorema aritmetike slijedi da je:

$$f(p_1 \frac{m_1}{n_1}) = f(p_2 \frac{m_2}{n_2})$$
 \Rightarrow $2^{p_1+1} 3^{m_1} 5^{n_1} = 2^{p_2+1} 3^{m_2} 5^{n_2}$

samo onda kad je:

$$p_1 = p_2$$
, $m_1 = m_2$, $n_1 = n_2$ \Rightarrow $p_1 \frac{m_1}{n_1} = p_2 \frac{m_2}{n_2}$

što znači da je funkcija f injektivna.

8. Neprebrojivost skupa R. Cantorov dijagonalni postupak.

Teorem (Cantor): Skup relnih brojeva R je neprebrojiv, tj. nije ekvipotentan sa skupom N. Dakle, vrijedi da je N_0 < card R = c.

Dokaz (Cantorov dijagonalni postupak): Pretpostavimo suprotno, tj. da je skup R prebrojiv. Prebrojivi skup se može poredati u beskonačni niz. Budući da je R ekvipotentan s intervalom (0, 1], onda se i skup (0, 1] može poredati u beskonačni niz $(0, 1] = \{x_1, x_2, ...\}$. Prikažimo ove brojeve u decimalnom zapisu koji nije jednoznačan:

$$x_1 = 0.a_{11}a_{12}a_{13}...$$

 $x_2 = 0.a_{21}a_{22}a_{23}...$
 $x_3 = 0.a_{31}a_{32}a_{33}...$

gdje su a_{ij} znamenke između 0 i 9.

Odaberemo broj $b=0.b_1b_2b_3...$ tako da je znamenka $b_n\in\{1,2,...,9\}$ odabrana tako da je $b_n\neq a_{nn}$. Tada je:

 $b \neq x_1$ jer se ne podudaraju u prvoj decimali,

 $b \neq x_2$ jer se ne podudaraju u drugoj decimali, itd.

Dakle, $b \notin \{x_1, x_2, ...\}$. To je kontradikcija jer decimalni prikaz od b pokazuje da je $b \in \{x_1, x_2, ...\}$. Time je teorem dokazan.

9. Defnicija algebarskog broja i defnicija transcedentnog broja

Defnicija: Za realan broj a kažemo da je algebarski broj ako postoji polinom P(x) s cjelobrojnim koefcijentima takav ada je P(a) = 0.

Propozicija: Skup svih algebarskih brojeva je prebrojiv.

Defnicija: Realni brojevi koji nisu algebarski nazivaju se transcedentni.