CSE4001	PARALLEL AND DISTRIBUTED COMPUTING	L ?	ГРЈ	С
		2 0	244	
Pre-requisite	NIL	Syllabus version		
				v1.0
Course Objectiv	es:			
1. To introdu paradigms	uce the fundamentals of parallel and distributed computing ar s.	chitectur	esand	
2. To understand the technologies, system architecture, and communication architecture that propelled the growth of parallel and distributed computing systems.				
3. To develo	p and execute basic parallel and distributed application using	g basicpro	gramn	ning

Expected Course Outcome:

models and tools.

Students who complete this course successfully are expected to:

- 1. Design and implement distributed computing systems.
- 2. Asses models for distributed systems.

Module:6 Distributed Transactions

- 3. Design and implement distributed algorithms.
- 4. Experiment with mechanisms such as client/server and P2P algorithms, remoteprocedure calls (RPC/RMI), and consistency.
- 5. Analyse the requirements for programming parallel systems and critically evaluate the strengths and weaknesses of parallel programming models.
- 6. Differentiate between the major classes of parallel processing systems.
- 7. Analyse the efficiency of a parallel processing system and evaluate the types of application for which parallel programming is useful.

Module:1 Parallelism Fundamentals 2 hours Motivation – Key Concepts and Challenges – Overview of Parallel computing – Flynn"s Taxonomy – Multi-Core Processors – Shared vs Distributed memory. **Module:2** Parallel Architectures 3 hours Introduction to OpenMP Programming – Instruction Level Support for Parallel Programming – SIMD – Vector Processing – GPUs. Module:3 | Parallel Algorithm and | Design Preliminaries – Decomposition Techniques – Characteristics of Tasks and Interactions – Mapping Techniques for Load balancing – Parallel Algorithm Models. **Module:4** Introduction To Distributed Systems 4 hours Introduction - Characterization of Distributed Systems - Distributed Shared Memory - Message Passing – Programming Using the Message Passing Paradigm – Group Communication – Case Study (RPC and Java RMI). **Module:5** Coordination 6 hours Time and Global States – Synchronizing Physical Clocks – Logical Time and Logical Clock – Coordination and Agreement – Distributed Mutual Exclusion – Election Algorithms – Consensus and Related Problems.

6 hours

Transaction And Concurrency Control – Nested Transactions – Locks – Optimistic Concurrency Control – Timestamp Ordering Distributed Transactions – Flat and Nested – Atomic – Two Phase Commit Protocol – Concurrency Control. Module:7 **Distributed System Architecture and its** 2 hours **Variants** Distributed File System: Architecture – Processes – Communication Distributed Web-based System: Architecture – Processes – Communication. Overview of Distributed Computing Platforms. **Module:8** Recent Trends 2 hours Total Lecture hours: 30 hours Text Book(s) George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair, "Distributed Systems: Concepts and Design", 5th Edition, Pearson / Addison – Wesley, 2012 Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar, "Introduction to Parallel Computing", Pearson, 2nd Edition, 2008. Reference Books Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and Paradigms", Pearson, 2nd Edition, 2006 Pradeep K. Sinha, "Distributed Operating System: Concepts and Design", PHI Learning Pvt. Ltd., 2007 Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) OpenMP – Basic programs such as Vector addition, Dot Product 2 hours OpenMP – Loop work-sharing and sections work-sharing 2 hours OpenMP – Combined parallel loop reduction and Orphaned parallel loop 2 hours 3. 4. OpenMP – Matrix multiply (specify run of a GPU card, large scale data ... 3 hours Complexity of the problem need to be specified) 5. MPI – Basics of MPI 3 hours MPI – Communication between MPI process 3 hours 6. 7. MPI – Advanced communication between MPI process 3 hours MPI – Collective operation with "synchronization" 3 hours 8. 9. MPI – Collective operation with "data movement" 3 hours MPI – Collective operation with "collective computation" 10. 3 hours MPI – Non-blocking operation 3 hours 11. Total Laboratory Hours | 30 hours Mode of assessment: Project/Activity Recommended by Board of Studies 19-11-2018 Approved by Academic Council No. 53 Date 13-12-2018