2 Graphes : notions de base

- Les 7 ponts de Königsberg
- Que sont les graphes
- A quoi servent les graphes
- Des définitions...
- Des exercices...
- Représentation des graphes en machine

Les 7 ponts de Königsberg

Étant donné que la ville est construite sur deux îles reliées au continent par six ponts, et entre elles par un pont, trouver un chemin quelconque permettant, à partir d'un point de départ au choix, de passer une et une seule fois par chaque pont, et de revenir à son point de départ, étant entendu qu'on ne peut traverser l'eau qu'en passant par les ponts.

7 ponts de Königsberg

- 7 ponts de Königsberg
 - recherche d'un cycle eulérien (chaîne passant par toutes les arêtes du graphe une et une seule fois, et revenant à son point de départ)
 - possible si et seulement si le graphe associé au problème ne possède aucun sommet de degré impair
 - le graphe représentant Königsberg possède 4 sommets de degrés impairs (chaque berge est le départ de 3 ou 5 ponts)
 - le problème n'admet donc pas de solution
- Simplification du problème
 - emprunter chacun des ponts une seule fois sans pour autant revenir à son point de départ
 - recherche d'une chaîne eulérienne (chaîne passant par toutes les arêtes du graphe une et une seule fois)
 - possible que si le graphe associé au problème possède 0 ou 2 sommets de degré impair
 - dans le deuxième cas, le chemin doit partir d'un des sommets de degré impair, et aboutir à l'autre sommet de degré impair

Que sont les graphes ?

- Des objets mathématiques
 - un ensemble de nœuds ou sommets
 - mis en relation par des arcs ou des arêtes
 - orienté ou non
- Disposant d'une représentation « graphique »
 - d'où leur nom
 - algorithmes originaux guidés par l'aspect graphique

A quoi servent les graphes

- Modélisation de réseaux
 - transport
 - fluides
 - énergie
 - informatique, Web...
 - réseaux sociaux
- Représentation de liens logiques
 - dépendances entre fichiers sources
 - héritage
- Modélisation de l'état d'un système
- Ordonnancement de tâches

Quelques problèmes « célèbres »

- Problème du voyageur de commerce [travel(l)ing salesman problem]
 - un voyageur de commerce doit passer par toutes les villes
 - en minimisant la distance parcourue
- Recherche de cycle hamiltonien
 - avec arêtes entre sommets pondérées

Quelques problèmes « célèbres »

- Déplacement d'un cavalier sur un échiquier
 - un cavalier peut-il passer une et une seule fois sur chaque case et revenir à son point de départ ?
 - variantes
 - forme de l'échiquier
 - taille...

Définition d'un graphe non-orienté

- Graphe non-orienté G = (X,U)
- Sommet(s) [vertex (vertices)]
 - X ensemble des sommets du graphe G
 - $X = \{x_1, x_2, ..., x_n\}$
 - |X| = n fini
- Arêtes [edges]
 - U ensemble des arêtes du graphe G
 - u_i ∈ U est un couple (origine, extrémité)
 - origine ∈ X, extrémité ∈ X

Définition d'un graphe orienté

- Graphe orienté G = (X,U)
- Sommets
 - X ensemble des sommets du graphe G
 - $X = \{x_1, x_2, ..., x_n\}$
 - |X| = n fini
- Arcs [directed edges]
 - U ensemble des arcs du graphe G
 - u_i ∈ U est un couple (origine, extrémité)
 - origine ∈ X, extrémité ∈ X

Représentation d'un graphe

- Ceci est un graphe!
 - $X = \{v_1, v_2, v_3, v_4, v_5\}$
 - $U = \{(v_1, v_2), (v_1, v_4), (v_1, v_5), \}$ $(V_3, V_1), (V_3, V_2), (V_3, V_4), (V_4, V_5),$ $(v_5, v_1), (v_5, v_5)$
- La complexité des algorithmes sera généralement fonction de |X| et/ou |U|

Représentation d'un graphe

- Ceci est un graphe!
 - $X = \{v_1, v_2, v_3, v_4, v_5\}$
 - $U = \{(v_1, v_2), (v_1, v_4), (v_1, v_5),$ $(V_3, V_1), (V_3, V_2), (V_3, V_4), (V_4, V_5),$

 $(v_5, v_1), (v_5, v_5),$

Représentation d'un graphe

- La représentation graphique aide à comprendre nombre de leurs propriétés
- Que peut-on « voir » sur la représentation graphique ?
 - connexité
 - symétrie
 - « clusters »
 - distances...

Graphes simples, multigraphes

- Un graphe simple [simple graph]
 - une seule arête (ou un seul arc) entre deux sommets donnés
 - pas de boucles
- Un multigraphe [multigraph]
 - plusieurs arêtes peuvent exister entre deux mêmes sommets

Adjacence, degré

- L'adjacence
 - 2 sommets sont dits adjacents [adjacent] s'ils sont reliés par un arc
- Le degré [degree] ou arité d'un sommet
 - nombre d'arêtes incidentes à un sommet donné
 - les boucles comptent deux fois
 - pour les graphes orientés, on distingue degré entrant [in-degree] d- et degré sortant [out-degree] d+
- Les successeurs d'un sommet : Γ(x)
- Les prédécesseurs d'un sommet : Γ-1(x)

Boucles, sommets

- Une boucle [loop]
 - arête (ou arc) dont les extrémités sont confondues
- Un sommet pendant [pending vertex]
 - sommet qui n'a qu'un seul voisin
- Un sommet isolé
 - sommet qui n'est relié à aucun autre

Chaînes, cycles

- Une chaîne [path] dans G
 - suite ayant pour éléments alternativement des sommets et des arêtes, commençant et se terminant par un sommet
 - telle que chaque arête est encadrée par ses extrémités
- La chaîne relie le premier sommet de la suite au dernier sommet
- La chaîne a pour longueur le nombre d'arêtes de la chaîne

Chaînes, cycles

Le graphe ci-dessous contient entre autres les chaînes (v₁, e₁, v₂, e₂, v₃, e₅, v₅) et (v₄, e₄, v₃, e₂, v₂, e₁, v₁)

Chaînes, cycles

- distance entre deux sommets
 - longueur de la plus petite chaîne les reliant
- diamètre d'un graphe
 - la plus longue des distances entre deux sommets du graphe
- chaîne élémentaire
 - chaque sommet y apparaît au plus une fois
- chaîne simple
 - chaque arête y apparaît au plus une fois
- chaîne fermée
 - chaîne dont les sommets de départ et de fin sont les mêmes
- cycle [cycle, circuit]
 - chaîne fermée simple

Graphe complet

- Graphe complet [complete graph]
 - graphe dont tous les sommets sont adjacents
 - ont un petit nom : K_n

Graphe biparti

- Graphe biparti [bipartite graph]
 - graphe dont l'ensemble des nœuds peut être divisé en deux ensembles disjoints U et V tels que chaque arête a un sommet en U et un sommet en V

Graphe biparti complet

- Graphe biparti complet
 - est biparti
 - contient le nombre maximal d'arêtes
- Il existe une partition de son ensemble de sommets en deux sous-ensembles U et V
 - chaque sommet de U est relié à chaque sommet de V
- K_{n,m}

Exercice 1

 Construire un graphe orienté dont les sommets sont les entiers compris entre 1 et 12 et dont les arcs représentent la relation « être diviseur de »

Exercice 2

- Une chèvre, un chou et un loup se trouvent sur la rive d'un fleuve
- Un passeur souhaite les transporter sur l'autre rive mais, sa barque étant trop petite, il ne peut transporter qu'un seul d'entre eux à la fois
- Comment doit-il procéder afin de ne jamais laisser ensemble et sans surveillance ni le loup et la chèvre, ni la chèvre et le chou?

Exercice 2 (correction)

- Modélisation à l'aide d'un graphe
 - P le passeur
 - C la chèvre
 - X le chou
 - L le loup
 - Sommets du graphe : couples précisant qui est sur la rive de départ, qui est sur la rive d'arrivée
 - exemple : (PCX,L) signifie que le passeur est sur la rive initiale avec la chèvre et le chou (qui sont donc sous surveillance), alors que le loup est sur l'autre rive.
 - Une arête relie deux sommets lorsque le passeur peut passer d'une situation à l'autre
 - exemple : en transportant la chèvre, le passeur passe de (PCX,L) à (X,PCL)
 - Le graphe obtenu est biparti : les sommets pour lesquels le passeur est sur la rive initiale ne sont reliés qu'aux sommets pour lesquels le passeur est sur l'autre rive
 - on ne considère pas les sommets dont l'une des composantes est CX ou LC car ces situations sont interdites
- Il faut alors trouver un chemin entre la situation initiale (PCXL,-) et la situation finale souhaitée (-,PCXL)
 - le plus court chemin nous permet de minimiser le nombre de déplacements

Exercice 2 (correction)

Exercice 3

On souhaite prélever 4 litres de liquide dans un tonneau. Pour cela, nous avons à notre disposition deux récipients (non gradués !), l'un de 5 litres, l'autre de 3 litres... Comment doit-on faire ?

Exercice 3 (correction)

- Même principe que pour l'exercice 2, modélisation sous forme de graphe
 - les sommets sont cette fois des couples donnant le contenu du récipient de 5 litres et celui du récipient de 3 litres
 - un arc entre deux sommets signifie qu'on peut passer d'une situation à l'autre
 - on cherche un chemin du sommet 0,0 au sommet 4,0

Exercice 3 (correction)

Exercice 4

- Soit X un ensemble de lapins, et G un graphe orienté ayant X pour ensemble de sommets.
- G est un « graphe de parenté » si les arcs de
 G codent la relation « être l'enfant de »
- Quelles conditions doit nécessairement vérifier G pour pouvoir être un graphe de parenté ?

Exercice 4 (correction)

- Voici une liste de conditions nécessaires :
 - chaque sommet doit avoir un degré entrant égal à 2
 - chaque lapin a deux parents
 - à l'exception de deux sommets pour lesquels le degré entrant est nul (« Adam » et « Ève »)
 - le graphe doit être sans circuit
 - un lapin ne peut avoir pour parent l'un de ses descendants
 - on doit pouvoir colorier les sommets de ce graphe en deux couleurs
 - male et femelle
 - de façon telle que tout sommet de degré entrant égal à 2 possède un prédécesseur male et un prédécesseur femelle

Graphe partiel

- Soit G = (V, E) un graphe
- Le graphe G' = (V, E') est un graphe partiel de G, si E' est inclus dans E
- Autrement dit, on obtient G' en enlevant une ou plusieurs arêtes au graphe G

Graphe partiel

G=(V, E)
V={
$$v_1$$
, v_2 , v_3 , v_4 , v_5 }
E={ e_1 =(v_1 , v_2),
 e_2 =(v_2 , v_3), e_3 =(v_1 , v_3),
 e_4 =(v_3 , v_4), e_5 =(v_3 , v_5)}
G'=(V', E')
V'=V
E'={ e_1 , e_4 , e_5 }
 e_2

Sous-graphe

- Soit **G** = (**V**, **E**) un graphe
- Pour un sous-ensemble de sommets A inclus dans V, le sous-graphe de G induit par A est le graphe G' = (A, E(A)) dont l'ensemble des sommets est A et l'ensemble des arêtes E(A) est formé de toutes les arêtes de G ayant leurs deux extrémités dans A
- Autrement dit, on obtient G' en enlevant un ou plusieurs sommets au graphe G, ainsi que toutes les arêtes incidentes à ces sommets

Sous-graphe

$$G=(V, E) \\ V=\{v_1, v_2, v_3, v_4, v_5\} \\ E=\{e_1=(v_1, v_2), \\ e_2=(v_2, v_3), e_3=(v_1, v_3), \\ e_4=(v_3, v_4), e_5=(v_3, v_5)\}$$

$$G'=(V', E') \\ V'=\{v1, v3, v4, v5\} \\ E'=\{e3, e4, e5\}$$

Sous-graphe partiel

Un graphe partiel d'un sous-graphe est un sous-graphe partiel de G

$$\begin{aligned} & G=(V, E) \\ & V=\{v_1, v_2, v_3, v_4, v_5\} \\ & E=\{e_1=(v_1, v_2), e_2=(v_2, v_3), \\ & e_3=(v_1, v_3), \\ & e_4=(v_3, v_4), e_5=(v_3, v_5)\} \end{aligned}$$

$$G'=(V',E')$$

Clique

On appelle clique un sous-graphe complet de G

$$G=(V, E)$$

V={v₁, v₂, v₃, v₄,

$$V=\{v_1, v_2, v_3, v_4, v_5\}$$

$$E=\{e_1=(v_1, v_2), e_2=(v_2, v_3),$$

$$e_3=(v_1, v_3),$$

$$e_4 = (v_3, v_4), e_5 = (v_3, v_5)$$

est une clique de ${\bf G}$

Stable

On appelle stable un sous-graphe de G sans arêtes

$$\begin{aligned} & G=(V, E) \\ & V=\{v_1, v_2, v_3, v_4, v_5\} \\ & E=\{e_1=(v_1, v_2), e_2=(v_2, v_3), \\ & e_3=(v_1, v_3), \\ & e_4=(v_3, v_4), e_5=(v_3, v_5)\} \end{aligned}$$

V'=
$$\{v_1, v_4, v_5\}$$

E'= $\{\}$
est un stable de G

• V4

Connexité

- Un graphe est connexe [connected] s'il est possible, à partir de n'importe quel sommet, de rejoindre tous les autres en suivant les arêtes
- Le réseau du
- métro parisien est connexe

Composante connexe

- Un sous-graphe connexe maximal d'un graphe non orienté est une composante connexe [connected component] de ce graphe
- Le sous-graphe connexe est maximal : si on ajoutait un sommet, il ne serait plus connexe
- Un graphe non connexe se décompose en composantes connexes

Composante fortement connexe

- Une composante fortement connexe [strongly connected component] d'un graphe orienté G est un sous-graphe de G tel que
 - pour tout couple (u, v) de nœuds dans ce sous-graphe il existe un chemin de u à v
 - ce sous-graphe est maximal

Représentation des graphes en machine

- Matrice d'incidence
 - u_{i,i} = -1 si v_i est origine de e_i
 - u_{i,j} = 1 si v_i est extrémité de e_i
 - 0 sinon

	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈
V ₁	-1	0	-1	0	-1	-1	1	0
V ₂	1	-1	0	0	0	0	0	0
v ₃	0	1	1	-1	0	0	0	0
V ₄	0	0	0	1	1	0	0	1
V ₅	0	0	0	0	0	1	-1	-1

Exercice 5

- Pour chacune des représentations, évaluer la complexité algorithmique des opérations suivantes
 - est-ce que **v**_i et **v**_i sont voisins ?
 - combien v_i a-t-il de voisins ?
 - quels sont les voisins de v_i ?
 - supprimer l'arête (v_i,v_i)
 - lacksquare supprimer le premier voisin de $oldsymbol{v_i}$

TD 1

- Dans le langage de votre choix, proposez une implémentation de l'objet mathématique graphe permettant notamment
 - de créer et détruire des sommets, des arcs entre sommets
 - à partir d'un sommet, d'accéder aux arcs incidents et aux sommets voisins
- Ecrivez une fonction (récursive ?) qui cherche un chemin entre deux sommets
- Ecrivez une fonction qui vérifie la connexité d'un graphe