Tarea: Supremos e ínfimos

- 1. Calcula el supremo, el ínfimo, el máximo y el mínimo (si existen) de los siguientes conjuntos:
 - (a) $A = \{r \in \mathbb{Q} : 2r^3 1 < 15\}.$
 - (b) $B = \{x \in \mathbb{R} \setminus \mathbb{Q} : x^2 + x \le 12\}.$
- 2. Calcula el supremo, el ínfimo, el máximo y el mínimo (si existen) de los siguientes conjuntos:
 - (a) $C = \{\frac{1}{n} : n \in \mathbb{Z}^+\}.$
 - (b) $D = \{\frac{1}{n} + (-1)^n : n \in \mathbb{Z}\}.$
- 3. Determina el supremo, ínfimo, máximo y mínimos, si existen de cada uno de los conjuntos siguientes:
 - (a) $A = \{x \in \mathbb{R} : 3x^2 10x + 3 < 0\}.$
 - (b) $C = \{x \in \mathbb{R} : (x-a)(x-b)(x-c)(x-d) < 0\}, \text{ donde } a < b < c < d\}$
- 4. Determina el supremo, ínfimo, máximo y mínimo, si existen, del conjunto:

$$B = \{x \in \mathbb{R} : 5|x| - |x^2| - 6 > 0\}.$$

5. Sean S y T dos conjuntos acotados tales que $T \subset S$. Demuestra que:

$$\inf S \leq \inf T \leq \sup T \leq \sup S$$

- 6. (a) Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente, sean $\mu = \sup A$ y $\epsilon > 0$. Demuestra que existe un $x_0 \in A$ tal que $\mu \epsilon < x_0 < \mu$.
 - (b) Sea $B \subset \mathbb{R}$ un conjunto no vacío y acotado inferiormente, sean $\lambda = \inf B$ y $\epsilon > 0$. Demuestra que existe un $y_0 \in B$ tal que $\lambda < y_0 < \lambda + \epsilon$.

7. Sean $S \subset \mathbb{R}$ un conjunto acotado y $a \in \mathbb{R}$. Definimos

$$a + S = \{a + x : x \in S\}$$
 y $a \cdot S = \{a \cdot x : x \in S\}$

- (a) Demuestra que $\sup(a+S) = a + \sup S$ y que $\inf(a+S) = a + \inf S$
- (b) Demuestra que, si a > 0, entonces $\sup(a \cdot S) = a \cdot \sup S$ y que $\inf(a \cdot S) = a \cdot \inf S$. Qué ocurre si a < 0?.
- 8. Dados dos conjuntos $S, T \subset \mathbb{R}$, definimos los conjuntos:

$$S + T = \{x + y : x \in S, y \in T\}$$
 y $S \cdot T = \{x \cdot y : x \in S, y \in T\}$

Supongamos ahora que S y T son conjuntos acotados:

- (a) Demuestra que $\sup(T+S) = \sup T + \sup S$ y que $\inf(T+S) = \inf T + \inf S$
- (b) Demuestra que si $T, S \subset \mathbb{R}^+$, entonces $\sup(T \cdot S) = \sup T \cdot \sup S$ y $\inf(T \cdot S) = \inf T \cdot \inf S$
- 9. Sean A yB subconjuntos no vacíos de números reales y consideremos el conjunto $C = \{a b : a \in A, b \in B\}$. Probar que C está acotado superiormente si, y sólo si, A está acotado superiormente y B está acotado inferiormente, en cuyo caso se tiene: sup $C = \sup A \inf B$.
- 10. Demuestra las siguientes igualdades:

(a)
$$\sup \left\{ 1 - \frac{1}{n} : n \in \mathbb{N} \right\} = 1$$
,

(b)
$$\inf \left\{ \frac{1}{m} + \frac{1}{2^n} : m, n \in \mathbb{N} \right\} = 0.$$