Correction de la Série d'exercices 2 en mathématiques

Exo1: Calculer les primitives suivantes :

$$\int (3x^2 - 2x + 3) \, dx \, ; \int (\frac{6}{x^2} - 3\sqrt{x} + \frac{2}{x}) \, dx \, ; \int e^x \sin(e^x) \, dx \, ; \int xe^{x^2} \, dx \, ; \int \frac{\ln x}{x} \, dx \, ; \int \cos^3 x \, dx \, ; \int t^2 e^t \, dt \, ; \int x^2 \ln x \, dx$$

Solution:

•
$$\int (3x^2 - 2x + 3) dx = x^3 - x^2 + 3x + c$$

•
$$\int (\frac{6}{x^2} - 3\sqrt{x} + \frac{2}{x}) dx = -\frac{6}{x} - 2\sqrt{x^3} + 2lnx + c$$

•
$$\int e^x \sin(e^x) dx = \int \sin(u) du = -\cos u + c = -\cos(e^x) + c$$
 où $u = e^x donc du = e^x dx$

•
$$\int xe^{x^2} dx = \frac{1}{2} \int 2xe^{x^2} dx = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + c = \frac{1}{2} e^{x^2} + c \text{ où } u = x^2 \text{ donc } du = 2xdx$$

•
$$\int \frac{\ln x}{x} dx = \int u du = \frac{u^2}{2} + c = \frac{(\ln x)^2}{2} + c \quad \text{où} = \ln x \quad donc \ du = \frac{1}{x} dx$$

•
$$\int \cos^3 x \ dx = \int \cos^2 x \cos x \ dx = \int (1 - \sin^2 x) \cos x \ dx =$$

$$\int (1 - u^2) du = u - \frac{1}{3}u^3 + c = \sin x - \frac{1}{3}\sin^3 x + c \text{ où } u = \sin x \text{ donc } du = \cos x \, dx$$

• $\int t^2 e^t dt$; on applique l'intégration par partie

$$\int u'(x)v(x)dx = u(x)v(x) - \int u(x)v'(x)dx$$

On pose: $u'=e^t$ et $v=t^2$ donc $u=e^t$ et v'=2t

 $\int t^2 e^t dt = t^2 e^t - 2 \int t e^t dt$ on utilise une seconde intégration par partie

On pose : $u'=e^t$ et v=t donc $u=e^t$ et v'=1

$$\int t^2 e^t dt = t^2 e^t - 2[te^t - \int e^t dt] = t^2 e^t - 2te^t + 2e^t + c = (t^2 - 2t + 2)e^t + c$$

• $\int x^2 \ln x \, dx$; on applique l'intégration par partie

$$\int u'(x)v(x)dx = u(x)v(x) - \int u(x)v'(x)dx$$

On pose: $u'=x^2$ et $v=\ln x$ donc $u=\frac{x^3}{2}$ et $v'=\frac{1}{x}$

$$\int x^{2} \ln x \, dx = \frac{x^{3}}{3} \ln x - \frac{1}{3} \int x^{3} \frac{1}{x} \, dx = \frac{x^{3}}{3} \ln x - \frac{1}{3} \int x^{2} \, dx = \frac{x^{3}}{3} \ln x - \frac{1}{3} \frac{x^{3}}{3} + c = \frac{x^{3}}{3} \ln x - \frac{x^{3}}{9} + c = \frac{x^{3}}{3} (\ln x - \frac{1}{3}) + c$$

1

Exo2: Déterminer les réels a et b tels que : $\forall x \in R - \{-1, 1\}$ $\frac{1}{x^2 - 1} = \frac{a}{x + 1} + \frac{b}{x - 1}$ Utiliser le changement de variable u=cosx pour calculer $\int \frac{dx}{\sin x}$

Solution:

1. En multipliant les deux membres par x+1, puis en remplaçant x par -1, on obtient $a=-\frac{1}{2}$.

En multipliant les deux membres par x-1, puis en remplaçant x

par 1, on obtient $b = \frac{1}{2}$. Donc:

$$\frac{1}{x^2 - 1} = -\frac{1}{2} \frac{1}{x + 1} + \frac{1}{2} \frac{1}{x - 1}$$

2. Commençons par un calcul formel (comme si on écrivait au brouillon):

$$du = -\sin x dx$$
 ; $\frac{dx}{\sin x} = -\frac{du}{\sin^2 x} = -\frac{du}{1 - \cos^2 x} = \frac{du}{u^2 - 1}$

Retrouvons du sens mathématique :

$$\int \frac{\mathrm{d}x}{\sin x} = \int \frac{\mathrm{d}u}{u^2 - 1} = -\frac{1}{2} \int \frac{\mathrm{d}u}{u + 1} + \frac{1}{2} \int \frac{\mathrm{d}u}{u - 1}$$
$$= -\frac{1}{2} \ln|u + 1| + \frac{1}{2} \ln|u - 1| = \frac{1}{2} \ln\left|\frac{u - 1}{u + 1}\right|$$
$$= \frac{1}{2} \ln\left|\frac{\cos x - 1}{\cos x + 1}\right|.$$

Exo3: Calculer les intégrales définies : $I = \int_0^{\frac{\pi}{2}} \sin 2x \, dx$; $J = \int_1^z \frac{dx}{2x-1}$; $K = \int_0^z e^{-t} \, dt$; $L = \int_1^4 \frac{x^2}{x^3+2} \, dx$; $S = \int_0^{+\infty} e^{-2t} \cos 3t \, dt$.

Solution:

1.
$$I = \int_0^{\frac{\pi}{2}} \sin 2x \ dx = \left[-\frac{1}{2} \cos 2x \right]_0^{\frac{\pi}{2}} = -\frac{1}{2} \left[\cos 2\frac{\pi}{2} - \cos 0 \right] = -\frac{-2}{2} = 1$$

2.
$$J = \int_{1}^{z} \frac{dx}{2x-1} = \frac{1}{2} \int_{1}^{z} \frac{2}{2x-1} dx = \frac{1}{2} \int_{1}^{z} \frac{u}{u} dx = \frac{1}{2} \left[\ln(x) \right]_{1}^{z} = \frac{1}{2} \left[\ln(2x-1) \right]_{1}^{z} =$$

$$\frac{1}{2}[\ln(2z-1) - \ln(2\times 1-1)] = \frac{1}{2}\ln(2z-1) \text{ où } u = 2x-1 \text{ donc } u' = 2$$

3.
$$K = \int_0^2 e^{-t} dt = [-e^{-t}]_0^2 = 1 - e^{-2} = 1 - \frac{1}{e^2}$$

4.
$$L = \int_{1}^{4} \frac{x^{2}}{x^{3}+2} dx = \frac{1}{3} \int_{1}^{4} \frac{3x^{2}}{x^{3}+2} dx = \frac{1}{3} \int_{1}^{4} \frac{uv}{u} dx = \frac{1}{3} \left[lnu(x) \right]_{1}^{4} = \frac{1}{3} \left[ln(x^{3}+2) \right]_{1}^{4} = \frac{1}{3} \left[ln(4^{3}+2) - ln(1+2) \right] = \frac{1}{3} \left[ln(66-ln3) \right] = \frac{1}{3} ln\left(\frac{66}{3}\right) = \frac{1}{3} ln22$$

5.
$$S = \int_0^{+\infty} e^{-2t} \cos 3t dt = \lim_{b \to +\infty} \int_0^b e^{-2t} \cos 3t dt$$
; posons $F(t) = \int e^{-2t} \cos 3t dt$ et faisons une intégration par partie :

On pose:
$$u'=e^{-2t}$$
 et $v=\cos 3t$ donc $u=-\frac{1}{2}e^{-2t}$ et $v'=-3\sin 3t$

$$F(t) = \int e^{-2t} \cos 3t dt = -\frac{1}{2} e^{-2t} \cos 3t - \frac{3}{2} \int e^{-2t} \sin 3t \ dt$$

Faisons une seconde intégration par partie :

On pose:
$$u'=e^{-2t}$$
 et $v=\sin 3t$ donc $u=-\frac{1}{2}e^{-2t}$ et $v'=3\cos 3t$

$$F(t)=-\frac{1}{2}e^{-2t}\cos 3t-\frac{3}{2}\int e^{-2t}\sin 3t \ dt = \\ -\frac{1}{2}e^{-2t}\cos 3t-\frac{3}{2}\left[-\frac{1}{2}e^{-2t}\sin 3t+\frac{3}{2}\int e^{-2t}\cos 3t \ dt\right]$$

$$F(t)=-\frac{1}{2}e^{-2t}\cos 3t+\frac{3}{4}e^{-2t}\sin 3t-\frac{9}{4}F(t) \ d'où \ F(t)=\frac{e^{-2t}}{13}\left[3\sin 3t-2\cos 3t\right]$$

$$F(b)-F(0)=\frac{e^{-2b}}{13}\left[3\sin 3b-2\cos 3b\right]+\frac{2}{13}$$

$$S=\lim_{b\to +\infty}\int_0^b e^{-2t}\cos 3t \ dt=\lim_{b\to +\infty}\left[F(b)-F(0)\right]=\lim_{b\to +\infty}\frac{e^{-2b}}{13}\left[3\sin 3b-2\cos 3b\right]+\frac{2}{13}$$

$$En\ effet,\ \lim_{b\to +\infty}\frac{e^{-2b}}{13}\left[3\sin 3b-2\cos 3b\right]=0\ (voir\ th\'{e}or\`{e}me\ d'encadrement)$$

Exo4 : Une substance commence à entrer dans la circulation sanguine d'un chat au temps t = 0. On note C(t) la concentration de cette substance au temps t. D'après un modèle théorique, la vitesse de variation C'(t) de la concentration est donnée par la formule

C'(t) = $Ae^{-\theta t} - Be^{-\alpha t}$ où A, B, θ , α sont des constantes.

Calculer la valeur de la concentration C(t) au temps T.

Solution:
$$C(T) = \int_0^T C'(t)dt = \int_0^T (Ae^{-\theta t} - Be^{-\alpha t})dt = \left[-\frac{A}{\theta}e^{-\theta t} + \frac{B}{\alpha}e^{-\alpha t} \right]_0^T$$

 $C(T) = -\frac{A}{\theta}e^{-\theta T} + \frac{B}{\alpha}e^{-\alpha T} + \frac{A}{\theta} - \frac{B}{\alpha}$

Exo5 : Une population d'animaux augmente à la vitesse de 200 + 50t (en individus/an, t étant en années). De combien la population a-t-elle augmenté entre la quatrième et la dixième année

Solution : la population a augmenté entre la quatrième et la dixième année de :

$$\int_{4}^{10} (200 + 50t) dt = [200t + 25t^{2}]_{4}^{10} = 4500 - 1200 = 3300$$

Exo6 : Une population de bactéries d'initialement 700 unités croît à la vitesse de $452.7 \times e^{1.25t}$ bactéries par heure. Quel est l'effectif de cette population après trois heures ?

Solution: Posons y(t) l'effectif de la population de bactéries : y(t) = $\int 452.7 \times e^{1.25t} dt$

$$y(t) = \frac{452.7}{1.25}e^{1.25t} + c = 362.16 \times e^{1.25t} + c$$
 puisque $y(0) = 700$ on obtient c=337.84

d'où y(t)= $362.16 \times e^{1,25t} + 337.84$. Après trois heures l'effectif de la population de bactéries est devenu : y(3)= $362.16 \times e^{1,25 \times 3} + 337.84 = 15737.27$

Exercices sur les séries numériques à termes poritifs :

Exo1: Les sommes suivantes sont-elles finies?

$$S_1 = \sum_{n=0}^{+\infty} \frac{1}{5^n}$$
; $S_2 = \sum_{n=4}^{+\infty} \frac{2^n}{3^{n-2}}$; $S_3 = \sum_{n=0}^{+\infty} \frac{9}{(3n+1)(3n+4)}$

Solution : en utilisant les suites géométriques ou l'équivalence des séries numériques

• $\frac{1}{5^n} = \left(\frac{1}{5}\right)^n$ est le terme général d'une série géométrique de raison dans]-1,1[, la série converge.

- $\frac{2^n}{3^{n-2}} = 4 \times \left(\frac{2}{3}\right)^n$ est le terme général d'une série géométrique de raison dans]-1,1[, la série converge.
- $\frac{9}{(3n+1)(3n+4)} \sim \frac{1}{n^2}$ est le terme général d'une série d'une série de Riemann convergente avec $\alpha = 2 > 1$

Exo2 : Déterminer la nature des séries numériques suivantes : $a/\sum_{n\geq 1} \frac{1}{\sqrt{n(n+1)(n+2)}}$

$$b/\sum\nolimits_{n\geq 0}\frac{\left(n\:!\right)^{2}}{\left(2n\right)\:!}\quad c/\sum\nolimits_{n\geq 0}\frac{\left(n\:!\right)^{2}}{2^{n^{2}}}\quad d/\sum\nolimits_{n\geq 0}\frac{n^{2}}{n^{3}+1}\:e/\sum\nolimits_{n\geq 2}\frac{1}{\left(\ln(n)\right)^{n}}\quad f/\sum\nolimits_{n=2}^{+\infty}\frac{n^{2}+1}{n^{2}}\quad g/\sum\nolimits_{n=1}^{+\infty}\frac{2}{\sqrt{n}}\left(\ln(n)\right)^{n}$$

$$h/\sum_{n=1}^{+\infty} \frac{(2n+1)^4}{(7n^2+1)^3} \quad k/\sum_{n=1}^{+\infty} \left(1-\frac{1}{n}\right)^n \qquad i/\sum_{n=0}^{+\infty} \ln(1+e^{-n}) \ l/\sum_{n=1}^{+\infty} \left(ne^{\frac{1}{n}}-n\right)$$

Solution:

$$a$$
 / On a $u_n = \frac{1}{\sqrt{n(n+1)(n+2)}} \sim \frac{1}{n^{3/2}}$, la série $\sum \frac{1}{n^{3/2}}$ est convergente (série de Riemann

avec $\alpha = \frac{3}{2} > 1$), on en déduit que la série $\sum u_n$ est convergente (critère d'équivalence)

$$b \ / \textit{Critère de D'Alembert} : \frac{u_{n+1}}{u_n} = \frac{\left((n+1)!\right)^2}{\left(2(n+1)\right)!} \frac{(2n)!}{\left(n!\right)^2} = \left[\frac{(n+1)!}{n!}\right]^2 \frac{(2n)!}{(2n+2)!}$$

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} (n+1)^2 \frac{1}{(2n+2)(2n+1)} = \lim_{n \to +\infty} \frac{n+1}{4n+2} = \frac{1}{4} < 1,$$

la série est donc convergente

$$c \ / \ Crit\grave{e}re \ de \ D \ 'A \ lembert : \ \frac{u_{n+1}}{u_n} = \frac{((n+1)!)^2}{2^{(n+1)^2}} \frac{2^{n^2}}{(n\,!)^2} = \left[\frac{(n+1)!}{n\,!}\right]^2 \frac{2^{n^2}}{2^{(n+1)^2}}$$

$$\lim_{n\to+\infty} (n+1)^2 \frac{1}{2^{2n+1}} = \lim_{n\to+\infty} \frac{(n+1)^2}{e^{(2n+1)\ln 2}} = 0 < 1, \ la \ s\'erie \ est \ donc \ convergente.$$

d / La série est à termes positifs, on peut donc appliquer le critère d'équivalence :

on a $u_n = \frac{n^2}{n^3 + 1} \sim \frac{1}{n}$, la série harmonique $\sum \frac{1}{n}$ est divergente, donc la série $\sum u_n$ est divergente.

$$e \ / \ Crit\grave{e}re \ de \ D \ 'A \ lembert : \ \frac{u_{n+1}}{u_n} = \frac{\left(\ln(n)\right)^n}{\left(\ln(n+1)\right)^{n+1}} = \left[\frac{\ln(n)}{\ln(n+1)}\right]^n \cdot \frac{1}{\ln(n+1)}$$

on a:
$$0 \le \frac{u_{n+1}}{u_n} \le \frac{1}{\ln(n+1)} \Rightarrow \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 0 < 1, la \text{ série est donc convergente}.$$

f/
$$\sum_{n=2}^{+\infty} \frac{n^2+1}{n^2}$$
; $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} \frac{n^2+1}{n^2} = 1 \neq 0$ donc la série diverge

$$g/\sum_{n=1}^{+\infty}\tfrac{2}{\sqrt{n}}=2\sum_{n=1}^{+\infty}\tfrac{1}{\sqrt{n}}=2\sum_{n=1}^{+\infty}\tfrac{1}{n^{\frac{1}{2}}}\text{Série de Riemann avec}=\tfrac{1}{2}<1\text{ , donc la série diverge}$$

$$h/\sum_{n=1}^{+\infty} \frac{(2n+1)^4}{(7n^2+1)^3}$$

$$\frac{(2n+1)^4}{(7n^2+1)^3} \sim \frac{2^4}{7^3} \times \frac{1}{n^2}$$

Il s'agit du terme général d'une série de Riemann convergente avec $\alpha=2>1$

$$k/\sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)^n$$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^n = \lim_{n \to +\infty} e^{n\ln(1 - \frac{1}{n})} = \lim_{n \to +\infty} e^{-\frac{\ln(1 - \frac{1}{n})}{-\frac{1}{n}}}$$

$$\lim_{n \to +\infty} u_n = \lim_{x = -\frac{1}{n} \to 0} e^{-\frac{\ln(1 + x)}{x}} = e^{-1} = \frac{1}{e} \neq 0 \text{ donc la série diverge}$$

$$\lim_{n\to+\infty} u_n = \lim_{x=-\frac{1}{x}\to 0} e^{-\frac{in(1+x)}{x}} = e^{-1} = \frac{1}{e} \neq 0$$
 donc la série diverge

$$i/\textstyle\sum_{n=0}^{+\infty} ln(1+e^{-n})$$

$$\ln(1 + e^{-n}) \sim e^{-n} = \left(\frac{1}{e}\right)^n$$

Il s'agit d'une suite géométrique de raison dans]-1,1[.

$$1/\sum_{n=1}^{+\infty} \left(n e^{\frac{1}{n}} - n \right)$$

$$\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} \left(ne^{\frac{1}{n}} - n \right) = \lim_{n\to+\infty} \frac{\left(e^{\frac{1}{n}} - 1 \right)}{\frac{1}{n}} = \lim_{x=\frac{1}{n}\to 0} \frac{\left(e^{x} - 1 \right)}{x} = 1 \neq 0. \text{ La série diverge}$$