บทที่ 7 การปรับบรรทัดฐานข[้]อมูล

(Normalization)

1. การปรับบรรทัดฐานข้อมูล หรือ นอร์มอลไลซ์เซชัน

ในอดีตการเก็บรวบรวมข้อมูลของระบบงาน ส่วนมากจะเป็นการเก็บรายละเอียดของ ข้อมูลทุกอย่างไว้ด้วยกันหมด อาจจะอยู่ในหลายรูปแบบ เช่นอยู่ในรูปแบบของเอกสาร หรือ รายงานต่าง ๆ ซึ่งจะมีบัญหาการซ้ำซ้อนของข้อมูล ทำให้ข้อมูลมีขนาดใหญ่เกินความจำเป็น สิ้นเปลืองเนื้อที่ในการเก็บข้อมูล และยากต่อการปรับปรุงข้อมูล ไม่ว่าจะเป็นการเพิ่ม หรือการ ลดข้อมูล ในปี ค.ศ.1917 Dr. Edgar Frank Codd เป็นคนแรก ที่ได้คิดหาวิธีการหรือแนวทางที่ ใช้ในการตรวจสอบ และแก้บัญหาดังกล่าวโดยการนำเค้าร่างของตารางหรือรีเลชัน มาทำให้ อยู่ในรูปแบบที่เป็นรูปแบบ*บรรทัดฐาน* (Normal Form) หรืออีกนัยหนึ่งคือเป็นการแปลงข้อมูล ที่มีโครงสร้างแบบตาราง จากรูปแบบที่มีความซ้ำซ้อนให้อยู่ในรูปที่ใช้งานได้ง่าย ทำให้การเพิ่ม ข้อมูล การลบข้อมูล หรือการแก้ไขข้อมูลที่อยู่ในรีเลชัน ไม่เกิดความผิดพลาดขึ้น โดยการทำ ใหข้อมูลในแต่ละรีเลชันอยู่ในรูปที่เป็นหน่วยที่เล็กที่สุดที่ไม่สามารถแตกออกเป็นหน่วยย่อย ๆ ได้อีก แต่ยังคงความสัมพันธ์ระหว่างข้อมูลในรีเลชันต่าง ๆ ไว้ตามหลักการที่กำหนดไว้ในแบบ จำลองฐานข้อมูลเชิงสัมพันธ์ เพราะการออกแบบฐานข้อมูลที่ดีจะต้องไม่มีความซ้ำซ้อนในการ จัดเก็บข้อมูล

Codd ได้คิดค้นรูปแบบบรรทัดฐานดังกล่าว และให้ชื่อว่า*รูปแบบบรรทัดฐานระดับที่ 1 รูปแบบบรรทัดฐานระดับที่* 2 และ *รูปแบบบรรทัดฐานระดับที่* 3 ต่อมาเขาได้พบว่ารูปแบบ บรรทัดฐานระดับที่ 3 มีข้อจำกัดบางอย่าง ในปี ค.ศ. 1974 Codd และ R. Boyce จึงได้ร่วมกัน พัฒนารูปแบบบรรทัดฐานระดับที่ 3 ขึ้นมาใหม่ ซึ่งในปัจจุบันเรียกกันว่า *รูปแบบบรรทัดฐาน บอยซ์-คอดด*์ (Boyce-codd Normal Form หรือ BCNF) สำหรับ*รูปแบบบรรทัดฐานระดับที่* 4 และ*รูปแบบบรรทัดฐานระดับที่* 5 นั้นคิดค้นโดย Ronald Fagin ในปี ค.ศ.1977 และ 1979 ตามลำดับ

การออกแบบจำลองฐานข้อมูลเชิงสัมพันธ์ สามารถออกแบบได้ 2 ทาง คือ 1) ผ่าน ขั้นตอนการออกแบบจำลองข้อมูลเชิงสัมพันธ์ และ 2) ไม่ผ่านขั้นตอนการออกแบบจำลอง ข้อมูล คือนักวิเคราะห์และออกแบบระบบที่มีประสบการณ์สูง สามารถที่จะออกแบบจำลอง ฐานข้อมูลเชิงสัมพันธ์ได้โดยตรง โดยไม่ต้องผ่านการออกแบบจำลองมาก่อน อาศัยเพียง ข้อมูลปฐมภูมิ (Primary Data) เช่น รายงาน หรือแบบฟอร์มต่าง ๆ เป็นข้อมูลเบื้องต้นในการ ออกแบบโมเดลฐานข้อมูลเชิงสัมพันธ์

1.1 ความหมายของ*การปรับบรรทัดฐานข[้]อมูล*

มีผู้ให้ความหมายของ การปรับบรรทัดฐานข้อมูล ใว้ดังนี้ เช่น พุธษดีศิริ แสงตระกูล (2539) กล่าวว่าการปรับบรรทัดฐานข้อมูล "เป็นวิธีการที่ใช้ วิเคราะห์และจัดโครงสร้างของ ฐานข้อมูลใหม่ โดยพยายามลดความซ้ำซ้อนของโครงสร้างฐานข้อมูล เพื่อให้ได้ฐานข้อมูลที่ เสถียรภาพ ซึ่งวิธีการทำคือปรับโครงสร้างของฐานข้อมูลให้อยู่ในรูปนอร์มัลระดับต่าง ๆ "

กิตติ ภักดีวัฒนะกุล และ จำลอง ครูอุตสาหะ กล่าวว่า (2544) การปรับบรรทัดฐาน ข้อมูล "เป็นวิธีการที่ใช้ในการตรวจสอบและแก้ไขปัญหาด้านความซ้ำซ้อนของข้อมูล โดยการ ดำเนินการให้ข้อมูลในแต่ละรีเลชันอยู่ในรูปที่เป็นหน่วยที่เล็กที่สุด ไม่สามารถแตกออกเป็น หน่วยย่อย ๆ ได้อีก แต่ยังคงความสัมพันธ์ระหว่างข้อมูลในรีเลชันต่าง ๆ ไว้ตามหลักการที่ กำหนดไว้ในแบบจำลองฐาน ข้อมูลเชิงสัมพันธ์"

ศิริลักษณ์ โรจนกิจอำนวย (2542) กล่าวว่า "เป็นกระบวนการที่ใช้ในการทดสอบการ ออกแบบรีเลชันตามเกณฑ์ของขั้นตอนต่าง ๆ ในการทำให้เป็นบรรทัดฐาน เป็นการพิจารณา ว่าคีย์หลักหรือคีย์คู่แข่งสามารถระบุค่าของแอททริบิวท์อื่น ๆ ของทูเพิล"

จากความหมายของการปรับบรรทัดฐานข้อมูลดังที่ได้กล่าวมาข้างบนพอจะสรุปได้ว่า
การปรับบรรทัดฐานข้อมูล เป็นกระบวนการที่ผู้ออกแบบฐานข้อมูลจะนำมาใช้ในการปรับปรุง
หรือแปลงข้อมูลที่อยู่ในรูปแบบซับซ้อน ให้อยู่ในรูปแบบบรรทัดฐาน โดยกำจัดความซ้ำซ้อน
ของข้อมูลในรีเลชันออกไป ให้อยู่ในรูปแบบที่เหมาะสม ง่ายกับการใช้งานในระบบฐานข้อมูล
และก่อให้เกิดปัญหาน้อยที่สุด โดยการกระจายรีเลชันที่มีโครงสร้างซับซ้อนออก เป็นรีเลชัน
ย่อย ๆ มีโครงสร้างแบบง่าย ๆ มีรูปแบบกระทัดรัด และข้อมูลอยู่ในรูปแบบบรรทัดฐาน
สามารถนำไปใช้งานได้อย่างมีประสิทธิภาพ และเป็นการลดเนื้อที่ในการจัดเก็บข้อมูลด้วย
การปรับบรรทัดฐานข้อมูล จึงมีความสำคัญต่อการออกแบบระบบของฐานข้อมูลมาก
ฐานข้อมูลที่ดีที่สามารถจัดการข้อมูลได้อย่างมีประสิทธิภาพ จะต้องถูกออกแบบโดยผ่าน
กระบวนการปรับบรรทัดฐานข้อมูลมาก่อนเสมอ

1.2 วัตถุประสงค์และประโยชน์ของ*การปรับบรรทัดฐานข*้อมูล

วัตถุประสงค์ สำคัญของ*การปรับบรรทัดฐานข*้อมูล คือ

- 1) *ลดเนื้อที่ในการจัดเก็บข้อมูล* การปรับบรรทัดฐานข้อมูลเป็นการลดความ ซ้ำซ้อนของข้อมูลในรีเลชัน (Data Redundancy) ซึ่งจะทำให้ประหยัดเนื้อที่ในการจัดเก็บข้อมูลไ
- 2) ลดปัญหาความไม่ตรงกันของข้อมูล (Data Inconsistency) ลดปัญหาข้อมูล ที่ไม่ถูกต้องหรือความไม่ตรงกันของข้อมูลในฐานข้อมูลให้เหลือน้อยที่สุด เพราะหลังจากการ ปรับบรรทัดฐานข้อมูลแล้ว ข้อมูลในรีเลชันจะไม่ซ้ำกัน โอกาสที่จะเกิดความผิดพลาดในการ ปรับปรุงข้อมูลก็จะไม่เกิดขึ้น

3) ได*้รูปแบบที่เป็นบรรทัดฐาน* การปรับบรรทัดฐานข้อมูลทำให้การออก แบบฐานข้อมูลเชิงสัมพันธ์ให้อยู่ในรูปแบบที่เป็นบรรทัดฐาน และเพิ่มความคงทนให้กับโครง สร้างของฐานข้อมูล การค้นหาข้อมูลทำได้ง่าย และสามารถปรับปรุงข้อมูลได้จากแหล่งข้อมูล เพียงแหล่งเดียว

ประโยชน์หลัก ๆ ของการปรับบรรทัดฐานข้อมูล

- 1) เป็นเครื่องมือช่วยในการออกแบบจำลองฐานข้อมูลแบบเชิงสัมพันธ์ให[้]อยู่ใน รูปแบบที่เป็นบรรทัดฐาน
- 2) ทำให[้]ทราบว[่]ารีเลชันที่ถูกออกแบบมานั้นอยู่ในรูปแบบบรรทัดฐานหรือไม[่]? และจะก่อให[้]เกิดปัญหาอะไรบ[้]าง? และจะมีวิธีแก้ไขปัญหานั้นอย[่]างไร?
- 3) เมื่อทำการปรับบรรทัดฐานข้อมูลรีเลชันที่มีปัญหาแล้ว จะสามารถ รับประกันได[้]ว[่]ารีเลชันนั้นจะไม[่]มีปัญหาอีกหรือถ**้**ามีปัญหาก็จะมีน[้]อยลง

2. การขึ้นต่อกันแบบฟังชัน (Functional Dependency)

การขึ้นต่อกันแบบพังชัน หมายถึงความสัมพันธ์ ระหว่างค่าแอททริบิวท์ที่อยู่ในรีเลชัน เดียวกันในรูปของพังชัน โดยที่แอททริบิวท์จำนวนหนึ่งหรือกลุ่มของแอททริบิวท์ที่เมื่อประกอบ กันแล้ว สามารถระบุค่าของแอททริบิวท์อื่น ๆ ในทูเพิลเดียวกันของรีเลชันได้ แอททริบิวท์ หรือ กลุ่มของแอททริบิวท์ ที่เป็นคีย์หรือ*ตัวระบุค่า* หรือ ตัวเลือก ของแอททริบิวท์อื่น เรียกกันว่า "Determinant" ส่วนแอททริบิวท์ที่*ถูกระบุค่า* จะเรียกกันว่า "Dependent" ในทางทฤษฎีจะใช้ สัญญลักษณ์ลูกศร (→) ในการบอกถึงการขึ้นต่อกัน

สมมติให[้] A และ B เป็นแอททริบิวท์ ในรีเลชัน R (รีเลชัน R ประกอบด[้]วย แอททริบิวท์ A และ B หรือเขียนแทนด[้]วย R (A , B) A และ B อาจเป็นแอททริบิวท์เดียว หรือเป็นกลุ่มของ แอททริบิวท์ก็ได[้]

๑ ถ้าแอททริบิวท์ B มีการขึ้นต่อกันเชิงพังชันกับแอททริบิวท์ A จะเขียนเป็น สัญญลักษณ์ ได้ดังนี้ : A → B นั่นคือ A เป็น "Determinant" ของ B หรือ B ขึ้นกับ A นั่นเอง หรืออาจจะกล่าวได้ว่า แต่ละค่าของ A สามารถระบุค่า B ได้เพียง 1 ค่า

2.1 *ลักษณะของฟังชันการขึ้นต[่]อกัน* แบ่งออกได้หลายแบบ ดังนี้

- 1) กรณี "Determinant" และ "Dependent" มีเพียงอย่างละ 1 แอททริบิวท์ (การขึ้นต่อกันแบบฟังชันที่เกิดขึ้นจากความสัมพันธ์ระหว่าง "Determinant" และ "Dependent" อย่างละ 1 แอททริบิวท์) เช่น ความสัมพันธ์ระหว่างหมายเลขบัตรประชาชน และชื่อเจ้าของ บัตร ความสัมพันธ์ระหว่างรหัสนิสิตและอาจารย์ที่ปรึกษา ซึ่งเขียนได้หลายแบบ ดังนี้
 - รหัสนิสิต → ชื่ออาจารย์ที่ปรึกษา หรือ
 - ชื่ออาจารย์ที่ปรึกษา > รหัสนิสิต หรือ
 - ชื่ออาจารย์ที่ปรึกษา
 รหัสนิสิต

อาจารย์ที่ปรึกษา

รหัสนิสิต	อาจารย์ที่ปรึกษา
10058475	วิภา ใจดี
10058480	มาลินี เย็นใจ
10058485	ทวีศักดิ์ เกิดเพชร

2) กรณีที่ "Determinant" 1 แอททริบิวท์ มี "Dependent" มากกว่า 1 แอททริบิวท์ (การขึ้นต่อกันแบบฟังชันที่เกิดขึ้นจากความสัมพันธ์ระหว่าง "Determinant" 1 ค่า และ "Dependent" หลายค่า) เช่น รหัสนิสิต และข้อมูลที่ปรากฏอยู่บนบัตรประจำตัวนิสิต

อธิบาย : รหัสนิสิต เป็น "Determinant" ส่วน ชื่อนิสิตเป็น "Dependent" เมื่อระบุค่าของรหัส นิสิตจะทำให้ทราบชื่อของนิสิต และข้อมูลต่าง ๆ ของนิสิตนั่นเอง

นิสิต

รหัสนิสิต	ชื่อนิสิต	คณะวิชา	ภูมิลำเนา	หมู่เลือด
10058475	นงนุช ใจงาม	พยาบาล	เชียงราย	А
10258480	สมหมาย รักงาน	นิติศาสตร์	อุดรธานี	AB
10058485	นารี สุขใจ	พยาบาล	ชัยภูมิ	В
10659590	สมหญิง เอื้อเพื้อ	วิทยาศาสตร์	พะเยา	0
10759100	วิภา เอื้องคำ	ICT	ยะลา	0
10759201	ประสิทธิ์ ผลดี	ศิลปศาสตร์	เชียงใหม่	А

รีเลชัน*อาจารย์ที่ปรึกษา* มีความสัมพันธ์ระหว[่]างแอททริบิวท์แบบการขึ้นต[่]อกัน ดังนี้

- รหัสนิสิต > คณะวิชา
- รหัสนิสิต 🗲 ภูมิลำเนา
- รหัสนิสิต > ชื่อนิสิต , คณะวิชา , ภูมิลำเนา,หมู่เลือด

อธิบาย : รหัสนิสิต เป็น "Determinant" ส่วน ชื่อนิสิต, คณะวิชา, ภูมิลำเนา,หมู่เลือด เป็น "Dependent" เมื่อระบุค่าของรหัสนิสิตจะทำให้ทราบชื่อนิสิต, คณะวิชา, ภูมิลำเนา และ หมู่เลือดของนิสิตได้

- 3) กรณีที่ "Determinant" และ "Dependent" ต่างก็มีความสัมพันธ์ซึ่งกันและ กัน ทั้ง "Determinant" และ "Dependent" ต่างก็สามารถทำหน้าที่ของแต่ละฝ่ายได้ (ฟังชัน การขึ้นต่อกันที่มีความสัมพันธ์สองทาง) เช่น ความสัมพันธ์ระหว่าง รหัสนิสิต และ หมายเลข บัตรประชาชน ที่ต่างก็ไม่มีข้อมูลซ้ำกันเลย และต่างก็สามารถทำหน้าที่เป็น "Determinant" ได้ เช่นเดียวกัน ดังนี้
 - รหัสนิสิต → หมายเลขบัตรประชาชน
 - หมายเลขบัตรประชาชน → รหัสนิสิต
 - รหัสนิสิต หมายเลขบัตรประชาชน
- 4) กรณีที่ "Determinant" มีมากกว่า 1 แอททริบิวท์ และ "Dependent" มี 1 แอททริบิวท์หรือมากกว่า 1 แอททริบิวท์ (การขึ้นต่อกันแบบฟังชัน ที่ต้องใช้ "Determinant" มากกว่า 1 แอททริบิวท์ เพื่ออ้างถึง "Dependent")

การลงทะเบียน

รหัสวิชา	หมู่เรียน	ผู้สอน	ห้องเรียน
005101	111	บรรพต สุดสงวน	CE 101
012102	121	มาลินี เย็นใจ	CE 411
150100	130	สุดใจ กลิ่นหอม	CE 222
106225	100	ทวีศักดิ์ เกิดเพชร	CE 301

รีเลชันอาจารย์ที่ปรึกษา มีความสัมพันธ์ระหว[่]างแบบการขึ้นต[่]อกัน *ดังนี้*

รหัสวิชา, หมู่เรียน ,ห้องเรียน → ชื่อผู้สอน

2.2 *รูปแบบการขึ้นต[่]*อกัน รูปแบบการขึ้นต[่]อกันหรือความสัมพันธ์ระหว[่]างแอททริบิวท์ แบ[่]งออกเป็น 3 รูปแบบ

1) รูปแบบการขึ้นต่อกันแบบทั้งหมด (Fully Functional Dependency) เป็น รูปแบบของการขึ้นต่อกันที่แอททริบิวท์ที่ไม่ใช่คีย์หลักของรีเลชัน มีการขึ้นต่อแอททริบิวท์หรือ กลุ่มของแอททริบิวท์ที่ทำหน้าที่เป็นคีย์หลักของรีเลชัน เป็นรูปแบบการขึ้นต่อกันที่แอททริบิวท์ ที่เป็น "Determinant" มีขนาดเล็กที่สุดและสามารถระบุค่าแอททริบิวท์อื่นที่เป็น "Dependent" ได้ชัดเจน (แอททริบิวท์ด้านที่เป็นคีย์ สามารถใช้ระบุค่าของแอททริบิวท์ ที่เป็น "Determinant" จะทำให้ทราบค่าของแอททริบิวท์ที่เป็น "Dependent" ได้) เช่น

รหัสลูกค้า → ชื่อลูกค้า

2) รูปแบบการขึ้นต่อกันบางส่วน (Partial Dependency) ความสัมพันธ์ระหว่าง แอททริบิวท์แบบบางส่วนนี้ เกิดขึ้นเมื่อรีเลชันหนึ่ง ๆ มีคีย์หลักเป็นคีย์ผสมซึ่งประกอบไปด้วย แอททริบิวท์หลาย ๆ แอททริบิวท์รวมกัน และแอททริบิวท์บางส่วนของคีย์หลักสามารถที่จะไป ระบุค่าของแอททริบิวท์อื่นในทูเพิลเดียวกันที่ไม่ใช่คีย์หลัก (Non-key attribute) ของรีเลชันได้ นั่นคือ หากทราบค่าใดค่าหนึ่งของบางแอททริบิวท์ที่เป็น "Determinant" ก็จะทำให้ทราบค่า แอททริบิวท์ อื่น ๆ ที่เป็น "Dependent" ได้

การลงทะเบียน

รหัสวิชา	หมู่เรียน	ผู้สอน	ห้องเรียน
005101	111	บรรพต สุดสงวน	CE 101
012102	121	มาลินี เย็นใจ	CE 411
150100	130	สุดใจ กลิ่นหอม	CE 222
106225	100	ทวีศักดิ์ เกิดเพชร	CE 301
			<u> </u>

ภาพที่ 7.1 รีเลชันที่มีรูปแบบการขึ้นต[่]อกันบางส[่]วน (Partial Dependency)

จากภาพจะเห็นว่าแอททริบิวท์หมู่เรียนจะขึ้นอยู่กับคีย์รหัสวิชา ในขณะที่แอททริบิวท์ชื่อผู้สอน จะขึ้นอยู่กับคีย์ห้องเรียน ข้อมูลที่อยู่ในรีเลชันเดียวกัน แต่ไม่ได้ขึ้นอยู่กับคีย์ใดคีย์หนึ่งทั้งหมด แต่จะขึ้นอยู่กับคีย์ใดคีย์หนึ่ง*เพียงบางส่วน*เท่านั้น

- 3) รูปแบบการขึ้นต่อกันแบบส่งผ่าน (Transitive Dependency) เป็นรูป แบบการขึ้นต่อกันที่แอททริบิวท์อื่นที่ไม่ใช่คีย์หลักของรีเลชัน (Non-key attribute) แต่สามารถที่จะ ระบุค่าแอททริบิวท์อื่น ๆ ในทูเพิลเดียวกันของรีเลชันได้ (เพราะตามปกติแล้วแอททริบิวท์ที่มี คุณสมบัติเป็นคีย์หลักจะสามารถระบุค่าของทุกแอททริบิวท์ในแต่ละทูเพิลได้) เช่น
 - รหัสนิสิต 🗲 รหัสสาขาวิชา, ชื่อสาขาวิชา
 - รหัสสาขาวิชา 🗲 ชื่อสาขาวิชา

รีเลชัน : *รหัสนิสิต* เป็นคีย์หลักที่สามารถระบุ รหัสสาขาวิชาและ ชื่อสาขาวิชาของนิสิต แต่ใน ขณะเดียวกัน *รหัสสาขาวิชา* ซึ่งไม่ใช[่]คีย์หลักของรีเลชัน ก็สามารถระบุชื่อสาขาวิชานิสิตได[้]

3. รูปแบบบรรทัดฐานข้อมูล (Normal Forms)

จากระบบงานเดิมๆ ส่วนมากจะพบว่า การเก็บรวบรวมข้อมูลที่เกี่ยวกับการทำงานจะมี การเก็บรายละเอียดของข้อมูลทุกอย่างไว้ด้วยกันหมด ทำให้มีกลุ่มข้อมูลที่ซ้ำซ้อนกัน และมี รูปแบบที่ซับซ้อน รีเลชันที่มีลักษณะแบบนี้เรียกกันว่า "รีเลชันยังไม่ได้ปรับบรรทัดฐานข้อมูล" ((Un-Normalized relation)

การปรับบรรทัดฐานข้อมูล จะเริ่มจากรายงานของผู้ใช้ข้อมูล (มีข้อมูลอะไรบ้าง ? ข้อมูลแต่ละตัวมีความสัมพันธ์กันอย่างไร ? ข้อจำกัดของข้อมูลมีอะไรบ้าง ? ฯลฯ) แล้วทำการวิเคราะห์ตามความต้องการของผู้ใช้ นำข้อมูลที่ผ่านการวิเคราะห์ มาแปลงเป็นตารางตามแนวคิดของ Data Model โดยทำการปรับปรุงโครงสร้างฐานข้อมูลให้มีความซ้ำซ้อนกันน้อยที่สุด

Codd เป็นคนแรกที่ได้พัฒนารูปแบบบรรทัดฐานข้อมูล โดยทำการจัดระบบข้อมูลแยก ออกเป็นตาราง เก็บข้อมูลทุกอย่างให้อยู่ในตารางเดียวกัน การจัดระบบแบบนี้เป็นการดำเนิน งานอย่างเป็นขั้นตอน เป็นลำดับตามปัญหาที่เกิดขึ้น การปรับบรรทัดฐานข้อมูลแบ่งออกได้เป็น 3 รูปแบบตามแนวคิดของ Codd แต่ละระดับของรูปแบบบรรทัดฐานข้อมูล จะมีวัตถุประสงค์ ในการแก้ปัญหาของรีเลชันที่แตกต่างกันออกไป รีเลชันที่ผ่านกระบวนการปรับบรรทัดฐานใน ระดับที่สูงขึ้น ก็จะมีรูปแบบที่เป็นบรรทัดฐานมากขึ้น ปัญหาต่างๆ ที่จะเกิดขึ้นก็ลดน้อยลง

ภาพที่ 7.2 Domain / key Normal Form (DK/NF)

3.1 ชนิดของรูปแบบบรรทัดฐานข้อมูล

การปรับรูปแบบบรรทัดฐานข้อมูล เป็นเทคนิคในการออกแบบรีเลชันอาศัยพื้นฐานของ คีย์หลัก คีย์คู่แข่ง และพังชันการขึ้นต่อกันระหว่างแอททริบิวท์ หรือเป็นกระบวนการที่ใช้ในการ ปรับเค้าร่างของรีเลชัน (Relational schema) โดยการแตกรีเลชันออกเป็นรีเลชันย่อยๆ ให้อยู่ใน รูปแบบของบรรทัดฐาน ที่เหมาะสมเหมาะสำหรับการใช้งานนั่นเอง

ตามปกติแล้ว การปรับรูปแบบบรรทัดฐานข้อมูล จะเริ่มจากแบบจำลอง E-R ก่อน แล้วจึงพิจารณาการปรับรูปแบบบรรทัดฐานข้อมูลแต่ละระดับ โดยเริ่มจากรูปแบบบรรทัดฐานข้อมูลแต่ละระดับ โดยเริ่มจากรูปแบบบรรทัดฐานข้อมูลระดับที่ 1 ซึ่งนับได้ว่าเป็นการปรับบรรทัดฐานข้อมูลระดับแรกสุด มีหลักการปรับ คือ ถ้าในรีเลชันมีกลุ่มของข้อมูลซ้ำกัน ให้แยกข้อมูลนั้นออกต่างหากให้เป็นแต่ละทูเพิล และ กำหนดคีย์หลักให้กับรีเลชันนั้น

1) รูปแบบบรรทัดฐานข้อมูลระดับที่ 1 (First Normal Form หรือ 1 NF) (กำจัดกลุ่มของข้อมูลที่มีความซ้ำซ้อน หรือ repeating group)

เงื่อนไขของรูปแบบบรรทัดฐานข้อมูลระดับที่ 1

- ค่าของแอททริบิวท์ต่างๆ ในแต่ละทูเพิลจะมีค่าของข้อมูลเพียงค่าเดียว
- ไม่มีกลุ่มข้อมูลซ้ำอยู่ในรีเลชัน

หลักการปรับรูปแบบบรรทัดฐานข้อมูลระดับที่ 1

- แยกแอททริบิวท์ที่เป็นกลุ่มข้อมูลซ้ำไปสร้างเป็นรีเลชันใหม่อีกหนึ่งรีเลชัน
- นำคีย์ที่อยู่ในรีเลชันเดิมมาร่วมสร้างเป็นคีย์หลักของรีเลชันใหม่
- แยกแอททริบิวท์ที่ไม่มีกลุ่มข้อมูลซ้ำออกเป็นรีเลชันใหม่ และหาคีย์หลัก
 ให้กับรีเลชันใหม่

คุณสมบัติของรีเลชันรูปแบบบรรทัดฐานข้อมูลระดับที่ 1

- เป็นรีเลชันที่มีคีย์หลักของรีเลชัน และจะต้องไม่มีค่า "Null"
- ไม่มีกลุ่มข้อมูลซ้ำอยู่ในรีเลชัน
- ค่าของแอททริบิวท์ต่างๆ ในแต่ละทูเพิลจะต้องมีค่าของข้อมูลเพียงค่าเดียว
- ทุก ๆ แอททริบิวท์จะต้องถูกระบุได้ด้วยค่าคีย์หลัก

ภาพที่ 7.3 แสดงขั้นตอนการปรับบรรทัดฐานข้อมูล

ตัวอย่างที่ 1 : รีเลชันที่ยังไม่ได้ปรับบรรทัดฐานข้อมูล : รีเลชันสินค้า

รหัสสินค้า	สีสินค้า	ราคาสินค้า
101	สีแดง สีเขียว	15
102	สีเหลือง	24
103	สีเขียว	17
104	สีเหลือง สีน้ำเงิน	9

จากรีเลชันนี้จะเห็นว่าแอททริบิวท*์ สีสินค*้า ยังมีหลายค่าคือแถวที่ 1 และ แถวที่ 4 มี 2 ค่า คือ "สีแดง สีเขียว" และ "สีเหลือง สีน้ำเงิน" ตามลำดับ การปรับบรรทัดฐานข้อมูลให้เป็น รูปแบบระดับที่ 1 กระทำได้โดยแยกรีเลชัน *สินค*้า ออกเป็น 2 รีเลชันย[่]อย คือ รีเลชัน สี และ รีเลชัน *ราคา* ดังภาพที่ 7.4

รีเลชัน สี

รหัสสินค้า	สีสินค้า
101	สีแดง
101	สีเขียว
102	สีเหลือง
103	สีเขียว
104	สีน้ำเงิน

รีเลชัน *ราคา*

รหัสสินค้า	ราคาสินค้า
101	15
102	24
103	17
104	9

ภาพที่ 7.4 รูปแบบบรรทัดฐานข้อมูลระดับที่ 1

รีเลชันทั้ง 2 อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 1 แต่ละรีเลชันจะไม่มีกลุ่มข้อมูล ซ้ำอยู่ในรีเลชัน และค่าของแอททริบิวท์ในแต่ละทูเพิลจะมีค่าของข้อมูลเพียงค่าเดียวเท่านั้น

ตัวอย่างที่ 2 : รีเลชันที่ยังไม่ได้ปรับบรรทัดฐานข้อมูล : รีเลชันทักษะความรู้บุคลากร

ชื่อ	นามสกุล	ความรู้ด้าน IT
ปิติ	ใจดี	JAVA C++ PHP
อุรศรี	ปัญหา	JAVA PHP
ลีลา	ใจดี	JAVA C++

ปรับให้อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 1

ชื่อ	นามสกุล	ความรู้ด้าน IT
ปิติ	ใจดี	JAVA
ปิติ	ใจดี	C++
ปิติ	ใจดี	PHP
อุรศรี	ปัญหา	JAVA
อุรศรี	ปัญหา	PHP
ลีลา	ใจดี	C++
ลีลา	ใจดี	JAVA

ภาพที่ 7.5 รูปแบบบรรทัดฐานข้อมูลระดับที่ 1

ข้อเสียของรูปแบบบรรทัดฐานข้อมูลระดับที่ 1

- สิ้นเปลืองเวลาในการปรับปรุงขอมูล เพราะจะตองทำซ้ำหลายแหง
- การลบขอมูลออกจากรีเลชั่นอาจทำใหขอมูลบางสวนสูญหายไปจาก ฐานขอมูลได้
- 2) รูปแบบบรรทัดฐานข้อมูลระดับที่ 2 (Second Normal Form :หรือ 2 NF) (กำจัดการขึ้นต[่]อกันบางส่วน หรือ partial dependency)

รูปแบบรรทัดฐานข้อมูลระดับที่ 2 จะเกี่ยวข้องกับเรื่องของความสัมพันธ์ระหว่าง
คีย์หลักกับแอททริบิวท์อื่น ๆ ที่ไม่ได้เป็นส่วนหนึ่งของคีย์หลัก เปนการตรวจสอบแกไขปญหา
ความซ้ำซอนของขอมูลที่ปรากฏในรีเลชันที่มีคุณสมบัติอยูในรูปแบบบรรทัดฐานของข้อมูล
ระดับที่ 1 โดยใหความสำคัญเรื่องของคียหลักและความสัมพันธระหวางแอททริบิวท์โดยเฉพาะ
อยางยิ่งความสัมพันธระหวางแอททริบิวท์แบบทั้งหมด

เงื่อนไขของรูปแบบบรรทัดฐานข้อมูลระดับที่ 2

- รีเลชันต้องอยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 1 มาก่อน
- แอททริบิวท์ทุกตัวที่ไม่ใช่คีย์หลัก จะต[้]องมีความสัมพันธ์กับแอททริบิวท์ ที่เป็นคีย์หลักแบบ*ทั้งหมด*
- ไม่มีแอททริบิวท์ที่มีการขึ้นต่อกันบางส่วนของคีย์หลัก

หลักการปรับรูปแบบบรรทัดฐานข้อมูลระดับที่ 2

- ตัดแอททริบิวท์ที่มีการขึ้นต่อกันแบบบางส่วนของรีเลชันออกไปใว้ใน
 รีเลชันใหม่ ให้คงแอททริบิวท์ที่ขึ้นกับทุกส่วนของคีย์หลักไว้ในรีเลชั่นเดิม
- สร้างรีเลชั่นใหม่ โดยดึงแอททริบิวท์ที่ขึ้นกับบางส่วนของคีย์หลัก และ กำหนดคีย์หลักของรีเลชั่นจากแอททริบิวท์ที่เป็นส่วนประกอบของรีเลชั่น ที่แอททริบิวท์เหล่านี้มีรูปแบบการขึ้นต่อกัน

ตัวอย่าง : รีเลชันที่ยังไม่ได[้]ปรับบรรทัดฐานข[้]อมูล

รหัส	วิชาที่สอน	ตำแหน่ง	คุณวุฒิ	อายุ
อาจารย์		วิชาการ	การศึกษา	
111	Botany	Assist.Prof	M.Sc	35
111	Physiology	Assist.Prof	M.Sc	35
222	English	Assoc.Prof	Ph.D	40
333	Mathematics	Prof	Ph.D	43
333	Physics	Prof	Ph.D	43

คีย์คู่แข่ง : [รหัสอาจารย์, วิชาที่สอน]

Non prime attribute (Non-key attributes) : อาจารย์_ตำแห่นงวิชาการ , อาจารย์_คุณวุฒิการศึกษา, อาจารย์_อายุ

รีเลชันข้างบนอยู่ในรูปแบบบรรทัดฐานระดับที่ 1 เนื่องจากทุกรีเลชัน เป็นรีเลชันที่มีคีย์ หลัก และเป็นรีเลชันที่ไม่มีกลุ่มข้อมูลซ้ำ แต่ยังไม่อยู่ในรูปแบบบรรทัดฐานระดับที่ 2 เพราะว่า Non prime attribute หรือ แอททริบิวท์ที่ไม่เป็นส่วนหนึ่งของคีย์หลักคือ อาจารย์_ตำแหน่ง วิชาการ, อาจารย์_คุณวุฒิการศึกษา, อาจารย์_อายุ ยังขึ้นอยู่กับ รหัสอาจารย์ ซึ่งเป็นคีย์ หลักของรีเลชัน

ดังนั้นในการปรับให[้]เป็นรูปแบบบรรทัดฐานข้อมูลระดับที่ 2 จะต[้]องแยกออกเป็น 2 ตารางโดยแยกแอททริบิวท์ที่มีการขึ้นต[่]อกันแบบบางส[่]วนของรีเลชันออกไปใวใน รีเลชันใหม[่] และให[้]คงแอททริบิวท์ที่ขึ้นกับทุกส[่]วนของคีย์หลักไว้ในรีเลชั่นเดิม

อาจารย์_วิชาที่สอน

รหัสอาจารย์	วิชาที่สอน
111	Botany
111	Physiology
222	English
333	Mathematics
333	Physics

อาจารย์_อายุ

รหัสอาจารย์	อายุ
111	35
222	40
333	43

ภาพที่ 7.7 รีเลชันอยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 2

3) รูปแบบบรรทัดฐานข้อมูลระดับที่ 3 (Third Normal Form หรือ 3NF)

(กำจัดการขึ้นต่อกันของแอททริบิวท์ที่ไม่ใช่คีย์หลัก หรือ transitive dependency)
รูปแบบบรรทัดฐานข้อมูลระดับที่ 3 เป็นกระบวนการที่พยายามขจัดสภาพของรูปแบบ
การขึ้นต่อกันแบบส่งผ่าน หรือการที่ไม่มีแอททริบิวท์ที่ไม่ใช่คีย์หลักสามารถระบุค่าแอททริบิวท์ที่
ไม่ใช่คีย์หลักคื่นได้

เงื่อนไขของรูปแบบบรรทัดฐานข้อมูลระดับที่ 3

- รีเลชันต้องอยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 2 มาก่อน
- ทุกแอททริบิวท์จะขึ้นอยู่กับคีย์หลักเท่านั้น
- รีเลชันต้องไม่มีความสัมพันธ์ระหว่างแอททริบิวท์แบบส่งผ่าน

หลักการปรับรูปแบบบรรทัดฐานข้อมูลระดับที่ 3

- แยกแอททริบิวท์ที่มีความสัมพันธ์แบบส่งผ่าน (แอททริบิวท์ที่มีปัญหา)
 ออกไปสร้างเป็นรีเลชันใหม่
- กำหนดคีย์หลักโดยเลือกเอาแอททริบิวท์ที่สามารถกำหนดค่าของ
 แอททริบิวท์อื่น ๆ ได้
- ในรีเลชันเดิมให้คงแอททริบิวท์ที่สามารถเลือกค่าแอททริบิวท์ที่ไม่ใช่คีย์
 หลักไว้เป็นคีย์นอก เพื่อใช้ในการเชื่อมโยงกับรีเลชันที่สร้างขึ้นมาใหม่

จากรีเลชัน การทำงานของพนักงาน (ข้างล่าง) จะพบว่ามีรูปแบบการขึ้นต่อกันแบบ ส่งผ่าน คือ แอททริบิวท์ชื่อพนักงาน และแอททริบิวท์ รหัสตำแหน่ง จะขึ้นอยู่กับคีย์รหัส พนักงาน ในขณะที่แอททริบิวท์เงินประจำตำแหน่งของพนักงาน จะขึ้นอยู่กับแอททริบิวท์รหัส ตำแหน่งซึ่งไม่ใช่คีย์หลักอีกต่อหนึ่งทำให้มีการขึ้นต่อกันแบบส่งผ่านเกิดขึ้นในรีเลชันนี้

เมื่อต้องการปรับรูปบรรทัดฐานข้อมูล ให้อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 3 กระทำได้โดยการแตกออกเป็นรีเลชันย่อยที่<u>ไม่มีการขึ้นต่อกันแบบส่งผ่าน</u> (แยกแอททริบิวท์ที่ ไม่ใช่คีย์หลัก หรือส่วนใดส่วนหนึ่งของคีย์หลัก ที่ก่อให้เกิดปัญหาออกมา) จะได้รีเลชันสอง รีเลชันคือ คือรีเลชันพนักงาน และรีเลชันรหัสตำแหน่ง ซึ่งอยู่ในรูปแบบบรรทัดฐานข้อมูล ระดับที่ 3 ดังภาพ

ตัวอย่าง : รีเลชันที่ยังไม่ได้ปรับบรรทัดฐานข้อมูล
รีเลชัน "การทำงานของพนักงาน" ประกอบด้วย รหัสพนักงาน, ชื่อ-สกุล,
รหัสตำแหน่ง, เงินประจำตำแหน่ง

รหัสพนักงาน	ชื่อ-สกุล	รหัสตำแหน่ง	เงินประจำ
			ตำแหน่ง
1001	มานะ ใจงาม	105	5,000
1032	นารี สุขใจ	101	2,000
1022	เมตตา กรุณา	103	3,000
2010	ดีจริง ขยัน	104	3,000
	<u> </u>	<u> </u>	<u></u>

ภาพที่ 7.8 รีเลชันที่มีมีรูปแบบการขึ้นต่อกันแบบส่งผ่าน (Transitive Dependency)

รีเลชันพนักงาน

<u>รหัสพนักงาน</u>	ชื่อ-สกุล
1001	มานะ ใจงาม
1032	นารี สุขใจ
1022	เมตตา กรุณา
2010	ดีจริง ขยัน
	<u> </u>

รีเลชันตำแหน่งงาน

<u>รหัสตำแหน่ง</u>	เงินประจำตำแหน่ง
105	5,000
101	2,000
103	3,000
104	3,000
	1

ภาพที่ 7.9 รีเลชันที่อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 3

ตัวอย่าง : รีเลชันที่ยังไม่ได้ปรับบรรทัดฐานข้อมูล รีเลชัน "ประวัติพนักงาน" ประกอบด้วย รหัสพนักงาน ชื่อ–สกุล ที่อยู่ ฯลฯ

Emp_id	Emp_name	Emp_zip	Emp_province	Emp_city	Emp_district
1001	สมศักดิ์ ใจดี	56000	พะเยา	จุน	ดอกคำใต้
1002	นารี สดสวย	65000	พิษณุโลก	เมือง	ในเมือง
1006	มีนา เมตตา	46000	เชียงราย	แม่สาย	แม่จัน
1101	มานะ ขยัน	34000	กรุงเทพ	ลาดพร้าว	จตุจักร
1201	สุภาพ ดียิ่ง	12000	อุดรธานี	เมือง	ประจักษ์

ซูเปอร์คีย์ (Super keys) หรือกลุ่มของแอทริบิวต์ที่สามารถระบุความเป็นเอกลักษณ์ ของแต่ละแถวเพื่อให้แตกต่างกันในตารางได้ เช่น : {Emp_id}, {Emp_id, Emp_name}, {Emp_id, Emp_name, Emp_zip}........

คีย์คู*ู่แข*่ง (Candidate Keys) หรือซูเปอร์คีย์ที่มีขนาดเล็กที่สุด ที่ไม[่]มีแอททริบิวท์อื่นเป็น เซตย[่]อย มาร[่]วมกันเพื่อให*้*เกิดเป็นเอกลักษณ์ในตารางนั้น ๆ : {Emp_id}

Non-key attributes หรือ แอททริบิวท์ที่ไม่ได้เป็นส่วนหนึ่งของคีย์คู่แข่งใด ๆ เลย คือทุก แอททริบิวท์ยกเว[้]นแอททริบิวท์ Emp_id ที่เป็น key attribute

ปรับรูปบรรทัดฐานข้อมูลให[้]อยู[่]ในรูปแบบบรรทัดฐานข[้]อมูลระดับที่ 3 จะได[้]รีเลชันสอง รีเลชันคือ คือรีเลชัน*พนักงาน* และรีเลชัน*ที่อยู[่]พนักงาน*

รีเลชันพนักงาน

รีเลชันที่อยู่พนักงาน

Emp_id	Emp_name	Emp_zip	Emp_zip	Emp_provir
1001	สมศักดิ์ ใจดี	56000	56000	พะเยา
1002	นารี สดสวย	65000	65000	พิษณุโลก
1006	มีนา เมตตา	46000	46000	เชียงราย
1101	มานะ ขยัน	34000	34000	บรุ่งเทพ
1201	สุภาพ ดียิ่ง	12000	12000	อุดรธานี

Emp_zip	Emp_province	Emp_city	Emp_district
56000	พะเยา	จุน	ห้วยข้าวก่ำ
65000	พิษณุโลก	เมือง	ในเมือง
46000	เชียงราย	แม่สาย	แม่จัน
34000	กรุ่งเทพ	ลาดพร้าว	จตุจักร
12000	อุดรธานี	เมือง	ประจักษ์

ภาพที่ 7.10 รีเลชันที่อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 3

4) รูปแบบบรรทัดฐานข้อมูลของบอยส์และคอดด์ (Boyce-Codd Normal Form) ตามปกติแล้วในทางปฏิบัติ การปรับรูปแบบบรรทัดฐานข้อมูลจนรีเลชันมีคุณสมบัติ อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 3 ก็สามารถที่จะขจัดปัญหาความซ้ำซ้อนของข้อมูลได้ จนเกือบหมด แต่ก็อาจจะมีปัญหาความซ้ำซ้อนของข้อมูลได้อีก แม้จะพบได้ค่อนข้างน้อยก็ตาม เพื่อให้รีเลชันมีความถูกต้อง และรัดกุมมากยิ่งขึ้น อาจจำเป็นต้องทำให้รีเลชันให้อยู่ในรูปแบบ บรรทัดฐานข้อมูลที่ขยายขอบเขตมาจากรูปแบบบรรทัดฐานระดับที่ 3 เราสามารถกำหนด นิยามของรีเลชันที่อยู่ในรูปแบบบรรทัดฐานข้อมูลของบอยส์และคอดด์ก็ต่อเมื่อรีเลชันมี คุณสมบัติตามเงื่อนไขดังต่อไปนี้

เงื่อนไขของรูปแบบบรรทัดฐานข้อมูลของบอยส์ -คอดด์

- รีเลชันต้องอยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 3 อยู่แล้ว
- ทุกแอททริบิวท์ที่เป็น "Determinant" ในรีเลชันนั้นต้องเป็นคีย์หลัก
- ไม่มีแอททริบิวท์ใดในรีเลชัน ที่สามารถระบุค่าของแอททริบิวท์ที่เป็นคีย์
 หลัก หรือส่วนใดส่วนหนึ่งของแอททริบิวท์ที่ประกอบเป็นคีย์หลักได้

หลักการปรับรูปแบบบรรทัดฐานข้อมูลของบอยส์ -คอดด์

- คัดลอกแอททริบิวท์ที่เป็น "Determinant" ซึ่งไม่ใช่เป็นคีย์คู่แข่งออกมาเป็น รีเลชันใหม่ และให้เป็นคีย์หลักของรีเลชันใหม่
- ดึงแอททริบิวท์ที่ขึ้นกับแอททริบิวท์ที่เป็นตัวกำหนดค่านั้นออกมาอยู่ใน
 รีเลชั่นใหม่

โดยทั่วไปการปรับรูปแบบบรรทัดฐานข้อมูลแบบบอยส์-คอดด์ รีเลชันจะต้องอยู่ใน รูปแบบบรรทัดฐานข้อมูลระดับที่ 3 อยู่แล้ว แต่รูปแบบระดับที่ 3 ไม่จำเป็นต้องเป็นรูปแบบ แบบบอยส์-คอดด์เสมอไป เพราะรูปแบบนี้เป็นรูปแบบที่ขยายเพิ่มเติมจากรูปแบบ ระดับที่ 3 ให้มีความเหมาะสมยิ่งขึ้น เช่น รีเลชันลงทะเบียน (ข้างล่าง) อยู่ในรูปแบบบรรทัดฐานข้อมูล ระดับที่ 3 แล้ว แต่แอททริบิวท์รหัสวิชา และผลการเรียนจะขึ้นอยู่กับคีย์นิสิต และคีย์ผู้สอน ในขณะเดียวกันคีย์รหัสผู้สอนก็ขึ้นอยู่กับรหัสวิชา ถ้าหากต้องการเปลี่ยนแปลงผู้สอนในวิชา 101 จะต้องมีการเปลี่ยนแปลงถึง 2 ทูเพิล คือทูเพิลที่ 2 และที่ 5 ซึ่งผลลัพธ์ที่ได้อาจจะทำให้ เกิดความผิดพลาดถ้าทำการแก้ไขไม่ครบถ้วน และถ้านิสิตรหัส 1022 ถอนการลงทะเบียนวิชา 103 หากเราลบข้อมูลนี้ ข้อมูลของผู้ที่สอนวิชานี้ (241) จะหายไปจากระบบ

ลงทะเบียน

<u>รหัสนิสิต</u>	<u>รหัสผู้สอน</u>	รหัสวิชา	ผลการเรียน
1001	331	105	С
1001	241	101	А
1022	241	103	С
2010	555	104	В
2010	241	101	А
		1	1

ภาพที่ 7.11 รีเลชันที่อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 3 (แต่ไม่อยู่รูปแบบบรรทัดฐานข้อมูลของบอยส์-คอดด์)

ผู้สอน

ผลการเรียน

<u>รหัสวิชา</u>	รหัสผู้สอน
105	331
103	241
104	555
101	241
	

<u>รหัสนิสิต</u>	<u>รหัสผู้สอน</u>	ผลการเรียน
1001	331	С
1001	241	А
1022	241	С
2010	555	В
2010	241	A

ภาพที่ 7.12 รีเลชันที่ปรับบรรทัดฐานให้อยู่ในรูปแบบบรรทัดฐานข้อมูลบอยส์-คอดด์

เราสามารถทำการแตกตารางออกมาให้อยู่ในรูปของบอยซ์คอดด์นอร์มัลฟอร์มได้ โดยการแยกแอททริบิวท์รหัสวิชา และรหัสผู้สอนซึ่งขึ้นอยู่กับแอททริบิวท์รหัสวิชาออกมาเป็น อีกหนึ่งรีเลชัน และแยกแอททริบิวท์ รหัสนิสิต รหัสผู้สอน และผลการเรียนออกมาเป็นอีกหนึ่ง รีเลชัน

5) รูปแบบบรรทัดฐานข้อมูลระดับที่ 4 (Forth Normal Form : 4 NF)

ถ้าความสัมพันธ์ระหว่างแอททริบิวท์ในรีเลชันเป็นความสัมพันธ์แบบเชิงกลุ่มหรือมีการ ขึ้นต่อกันแบบกลุ่ม ซึ่งเป็นคุณสมบัติของการนำรีเลชันย่อยที่เกิดจากการแยกรีเลชันมารวมกัน แล้วได้ข้อมูลเช่นเดียวกับรีเลชันเดิม จะทำให้เกิดปัญหาความซ้ำซ้อนของข้อมูลได้เช่นเดียวกัน และปัญหานี้ไม่สามารถแก้ไขได้โดยการปรับรูปแบบบรรทัดฐานระดับที่ 3 หรือแบบ บอยส์- คอดด์ เพื่อแก้ปัญหาดังกล่าว จึงได้มีการพัฒนารูปแบบบรรทัดฐานข้อมูลระดับที่ 4 ขึ้นมา

เงื่อนไขของรูปแบบบรรทัดฐานข้อมูลระดับที่ 4

- รีเลชันต้องอยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 3 หรือรูปแบบบรรทัดฐานข้อมูล บอยส์-คอดด์ มาก่อน
- เป็นรีเลชันที่ไม่มีความสัมพันธ์ในการระบุค่าของแอททริบิวท์แบบหลายค่า (multivalued dependency) หรือรีเลชันจะต้องไม่มีการขึ้นต่อกันแบบกลุ่ม

หลักการปรับรูปแบบบรรทัดฐานข้อมูลระดับที่ 4

แยกรีเลชันออกเป็นสองรีเลชัน แต่ละรีเลชันเก็บข้อมูลที่ขึ้นต่อกัน

ตัวอย่าง : รีเลชัน นิสิต-ลงทะเบียน-ชมรม (ภาพที่ 7.13) ซึ่งอยู่ในรูปแบบบรรทัดฐาน ข้อมูลระดับบอยส์-คอดด์ แล้ว แต่จะพบว่าลักษณะของข้อมูลในรีเลชันนี้มีการขึ้นต่อกันแบบ เชิงกลุ่ม ทำให้รีเลชันนี้ยังคงมีปัญหาเกี่ยวกับการจัดการข้อมูล เช่น

นิสิต-ลงทะเบียน-ชมรม : (รหัสนิสิต,วิชาลงทะเบียน,ชมรม)

<u>รหัสนิสิต</u>	<u>วิชาลงทะเบียน</u>	<u>ชมรมที่สนใจ</u>
59-10001	Mathematics	Badminton
59-10001	Physics	Badminton
59-10001	Mathematics	Tennis
59-10001	Physics	Tennis
59-20011	Operating System	Badminton
59-20011	Operating System	Swimming
59-30111	English	Volleyball

ภาพที่ 7.13 รีเลชันอยู่ในระดับบอยส์-คอดด์ แต่ยังพบว่าข้อมูลมีการขึ้นต่อกันแบบเชิงกลุ่ม (ตารางที่ยังไม่ได้ปรับบรรทัดฐานข้อมูลเป็นรูปแบบบรรทัดฐานข้อมูลระดับที่ 4)

• การเพิ่มข้อมูล : สมมุติวาถ้านิสิตรหัส "59–10001" มีชมรมที่สนใจเพิ่มขึ้นมาอีก คือ "Volleyball" ในการเก็บข้อมูลจำเป็นต้องมีการเพิ่มแถวเข้าไปอีก 2 แถว ตามจำนวนวิชา ที่นิสิตคนนี้ลงทะเบียน ดังภาพที่ 7.14

นิสิต-ลงทะเบียน-ชมรม : (รหัสนิสิต,วิชาลงทะเบียน,ชมรม)

<u>รหัสนิสิต</u>	<u>วิชาลงทะเบียน</u>	ชมรมที่สนใจ
59-10001	Mathematics	Badminton
59-10001	Physics	Badminton
59-10001	Mathematics	Tennis
59-10001	Physics	Tennis
59-10001	Mathematics	Volleyball
59-10001	Physics	Volleyball
59-20011	Operating System	Badminton
59-20011	Operating System	Swimming
59-30111	English	Volleyball

ภาพที่ 7.14 การเพิ่มชมรม "Valleyball" ของนิสิตรหัส 59-10001 เข้าไปในรีเลชัน

- การลบข้อมูล: ปัญหานี้เกิดจากลักษณะของข้อมูลในรีเลชันนี้มีการขึ้นต่อกันแบบ เชิงกลุ่ม เช่นนิสิตรหัส 59-10001 ลงทะเบียนเรียน 2 วิชา คือ Mathematics และ Physics ดังภาพที่ 7.14 แต่ชมรมที่นิสิตคนนี้สนใจ มี 2 ชมรม คือชมรม Badminton และ Tennis ทำให้ ข้อมูลไม่สอดคล้องกับข้อมูลในภาพที่ 7.15
- การเปลี่ยนแปลงการเก็บข้อมูล เช่น นิสิต รหัส "59–10001" มีการเก็บข้อมูล นิสิตใหม่เพียงแค่ 2 แถว ดังภาพที่ 7.15 จะทำให้เข้าใจได้ว่า นิสิตคนนี้ จะสนใจชมรม "Tennis" ก็ต่อเมื่อเขาลงทะเบียนวิชา "Mathematics" และวิชา "Physics" เท่านั้น ซึ่งจะเห็นว่าเป็น รูปแบบการเก็บข้อมูลที่ไม่ถูก ต้อง เพราะทำให้เกิดการตีความหมายของข้อมูลผิดไปได้ เนื่องจากวิชาที่ลงทะเบียนกับชมรมที่นิสิตสนใจนั้นเป็นอิสระต่อกันหรือไม่ขึ้นต่อกัน

<u>รหัสนิสิต</u>	<u>วิชาลงทะเบียน</u>	ชมรมที่สนใจ
59-10001	Mathematics	Tennis
59-10001	Physics	Tennis
59-20011	Operating System	Badminton
59-20011	Operating System	Swimming
59-30111	English	Volleyball

ภาพที่ 7.15 แสดงการเก็บข้อมูลนิสิตที่ทำให้เกิดการเข้าใจผิดได้

รีเลชันในภาพที่ 7.15 จะเป็นรีเลชันที่มีรูปแบบการขึ้นต[่]อกันเชิงกลุ่ม โดยมีแอททริบิวท์ รหัสนิสิต ที่ใช[้]ในการเลือกกลุ่มข้อมูลของ วิชาที่ลงทะเบียน เขียนแทนด[้]วยสัญลักษณ์ :

นอกจากนี้ แอททริบิวท์ รหัสนิสิต ก็ยังใช้ในการเลือกกลุ่มข้อมูลของ ชมรม ซึ่งเขียน แทนด้วยสัญลักษณ์ :

แต[่] วิชาที่ลงทะเบียน และ ชมรม จะมีความ**เป็นอิสระต**่อ**กัน**

จากนิยามของรูปแบบบรรทัดฐานข้อมูลระดับที่ 4 ที่ว่า " รีเลชันใดจะอยู่ในรูปแบบ บรรทัดฐานข้อมูลระดับที่ 4 รีเลชันนั้นต้องอยู่ในรูปแบบบรรทัดฐานข้อมูลแบบ บอยส์-คอดด์ มาก่อน และข้อมูลจะต้องไม่มีการขึ้นต่อกันเชิงกลุ่มภายในรีเลชันนั้น "

เพื่อขจัดปัญหาที่เกิดขึ้น จำเป็นจะต้องขจัดการขึ้นต่อกันเชิงกลุ่มนี้ ออกไปจากรีเลชัน เพื่อทำให้รีเลชันนั้นอยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 4 โดยทำการแยกแอททริบิวท์ที่มี การขึ้นต่อกันเชิงกลุ่ม ออกเป็นรีเลชันใหม่และกำหนดให้แอททริบิวท์ทุกตัวในรีเลชันทำหน้าที่ เป็นคีย์หลักของรีเลชัน นั่นคือรีเลชัน "นิสิต-ลงทะเบียน-ชมรม" ในภาพที่ 7.15 จะถูกแยก ออก เป็นสองรีเลชันคือ รีเลชัน "นิสิต-ลงทะเบียน" และรีเลชัน "นิสิต-ชมรม" โดยแต่ละรีเลชันจะเก็บข้อมูลที่มีการขึ้นต่อกัน ดังภาพที่ 7.16 ซึ่งเป็นรีเลชันที่อยู่ในรูปแบบบรรทัดฐานข้อมูล ระดับที่ 4 เรียบร้อยแล้ว

นิสิต-ลงทะเบียน

คีย์หลัก: รหัสนิสิต,วิชาลงทะเบียน

<u>รหัสนิสิต</u>	<u>วิชาลงทะเบียน</u>
59-10001	Mathematics
59-10001	Physics
59-20011	Operating System
59-30111	English

นิสิต-ชมรม

คีย์หลัก: รหัสนิสิต,ชมรม

<u>รหัสนิสิต</u>	<u>ชมรมที่สนใจ</u>
59-10001	Tennis
59-10001	Tennis
59-10001	Volleyball
59-20011	Badminton
59-20011	Swimming
59-30111	Volleyball

ภาพที่ 7.16 : รีเลชันที่อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 4 โดยขจัดการขึ้นต่อกันเชิงกลุ่ม

6) รูปแบบบรรทัดฐานข้อมูลระดับที่ 5 (Fifth Normal Form : 5 NF)

รูปแบบบรรทัดฐานข้อมูลระดับระดับที่ 5 หรือ Project-Join Normal Form (PJ/NF) เป็นรูปแบบบรรทัดฐานข้อมูลที่ค่อนข้างจะเกิดขึ้นยาก

เงื่อนไขของรูปแบบบรรทัดฐานข้อมูลระดับที่ 5

- รีเลชันจะต้องมีคุณสมบัติรูปแบบบรรทัดฐานข้อมูลระดับที่ 4 มาก่อน
- รีเลชันจะต้องมีคุณสมบัติจอยน์ดีเพนเดนซี (Join Dependency)"

 (เมื่อแตกรีเลชันออกเป็นรีเลชันย่อย ๆ แล้วสามารถนำรีเลชันย่อย ๆ นั้น
 มารวมกัน (join) แล้วได้ค่าหรือข้อมูลเช่นเดียวกับรีเลชันเดิม)

หลักการแปลงเป็นรูปแบบบรรทัดฐานข้อมูลระดับระดับที่ 5

- แยกรีเลชันเดิมออกเป็นรีเลชันย่อย ๆ
- กำหนดคีย์หลักให้กับแต่ละรีเลชันย่อย ๆ นั้น

ตัวอย่าง : รีเลชันที่ยังไม่ได้ปรับรูปแบบบรรทัดฐานข้อมูล : รีเลชันการขาย

ชื่อลูกค้า	ชื่อสินค้า	ชื่อตัวแทนขาย
A-Minimart	Coke	นารี
A-Minimart	Pepsi	นารี
B-Minimart	Coke	วิชา
B-Minimart	Slippers	วิชา
Books Store	Pen	สุดา

ภาพที่ 7.18 รีเลชันก่อนผ่านกระบวนการปรับรูปแบบบรรทัดฐานข้อมูลในระดับที่ 4

ปัญหาจากการเพิ่ม การแก้ไข และการลบข้อมูล ในตารางข้างบน เช่น

• ถ้ามีการแก้ไขชื่อสินค้า จะต้องแก้หลายรายการ และหลายแถว

 ถ้ามีการลบข้อมูลชื่อสินค้าออกไปจากรีเลชัน จะทำให้ข้อมูลชื่อลูกค้าที่อยู่ใน แถวเดียวกันหายไปด้วย

ในการแก[้]ปัญหาดังกล[่]าว จะต[้]องทำให[้]รีเลชันให[้]อยู่ในรูปแบบบรรทัดฐานข[้]อมูลใน ระดับที่ 4 ซึ่งกระทำได[้]โดยแตกรีเลชันให[้]เป็นรีเลชันย[่]อย ๆ 3 รีเลชัน ดังนี้

รีเลชันย่อยที่ 1		
ชื่อลูกค้า	ตัวแทนขาย	
A-Minimart	นารี	
B-Minimart	วิชา	
Books Store	สุดา	

รีเลชันย่อยที่ 2		
ชื่อลูกค้า	ชื่อสินคำ	
A-Minimart	Coke	
A-Minimart	Pepsi	
B-Minimart	Coke	
B-Minimart	Slippers	
Books Store	Pens	
<u> </u>		

รีเลชันย [่] อยที่ 3		
ตัวแทนขาย	ชื่อสินค้า	
นารี	Coke	
นารี	Pepsi	
วิชา	Coke	
วิชา	Slippers	
สุดา	Pens	

ภาพที่ 7.19 รีเลชันที่อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 4

กระบวนการปรับรีเลชันให**้**อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 5 กระทำได[้]ดังนี้ ขั้นตอนที่ 1 นำรีเลชันย[่]อยที่ 2 และรีเลชันย[่]อยที่ 3 มา join รีเลชันกัน ได้ผลลัพธ์ดังนี้

ชื่อลูกค้า	ชื่อสินค้า	ชื่อตัวแทนขาย
A-Minimart	Coke	นารี
A-Minimart	Pepsi	นารี
A-Minimart	Coke	วิชา
B-Minimart	Coke	วิชา
B-Minimart	Coke	นารี
B-Minimart	Slippers	วิชา
Books Store	Pen	สุดา

ภาพที่ 7.20 ผลลัพธ์จากการ join รีเลชันที่ 2 และ 3

ขั้นตอนที่ 2 นำรีเลชันที่เป็นผลลัพธ์จากขั้นตอนที่ 1 และรีเลชันย[่]อยที่ 1 มา join รีเลชันกัน ได[้]ผลลัพธ์ดังนี้

ชื่อลูกค้า	ชื่อสินค้า	ชื่อตัวแทนขาย
A-Minimart	Coke	นารี

A-Minimart	Pepsi	นารี
B-Minimart	Coke	วิชา
B-Minimart	Slippers	วิชา
Books Store	Pen	สุดา

ภาพที่ 7.21 ผลลัพธ์จากการ join รีเลชันจากขั้นตอนที่ 1 กับรีเลชันย[่]อยที่ 1

ตัวอย่างรีเลชันวิชาประจำภาคเรียน อยู่ในรูปบรรทัดฐานข้อมูลระดับที่ 4 แล้ว เพราะ แอททริบิวท์ภาคเรียนเป็นตัวกำหนดแอททริบิวท์รายวิชาหลายค่า และแอททริบิวท์รายวิชาก็ เป็นตัวกำหนดแอททริบิวท์ชั้นเรียนหลายค่าเช่นกัน เมื่อทำการทดสอบคุณสมบัติของรูปแบบ บรรทัดฐานข้อมูลระดับที่ 5 ของรีเลชันวิชาประจำภาคเรียน โดยแตกรีเลชันดังกล่าวออกเป็น รีเลชันย่อย ๆ 3 รีเลชัน คือ รีเลชัน ภาคเรียน รีเลชันวิชา_ชั้นเรียน และ รีเลชันภาคเรียน เรียน เมื่อทำการรวมทั้งสามรีเลชันกลับไปเป็นหนึ่งรีเลชันอีกครั้งหนึ่งจะได้จำนวนข้อมูลเท่ากัน กับรีเลชันเดิมก่อนที่จะมีแตกเป็นรีเลชันย่อยทุกประการ นั่นคือรีเลชันดังกล่าวมีคุณสมบัติ จอยน์ดีเพนเดนซี และอยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 5 แล้ว

ตัวอย่าง : รีเลชันที่ยังไม่ได้ปรับรูปแบบบรรทัดฐานข้อมูล
วิชาประจำภาคเรียน

ภาคเรียน	วิชา	ชั้นเรียน
1/2558	คณิตศาสตร์	A002
1/2558	ฟิสิกส์	A001
2/2558	คณิตศาสตร์	A001
1/2558	คณิตศาสตร์	A001
า	* . d	กาดเ

<u>ภาคเรียน</u>	<u>รายวิชา</u>
1/2558	คณิตศาสตร์
1/2558	ฟิสิกส์
2/2558	คณิตศาสตร์

<u>รายวิชา</u>	<u>ชั้นเรียน</u>
คณิตศาสตร์	A002
ฟิสิกส์	A001
คณิตศาสตร์	A001

01.7700270_27000270	
<u>ชั้นเรียน</u>	<u>ภาคเรียน</u>
A002	1/2558
A001	1/2558
A001	2/2558

ภาพที่ 7.22 การปรับรีเลชันให้อยู่ในรูปแบบบรรทัดฐานข้อมูลระดับที่ 5

จะเห็นได้ว่า ยิ่งมีการปรับบรรทัดฐานข้อมูลในระดับที่สูงขึ้น ก็ยิ่งจะมีการแบ่งแยก ตารางย่อย ๆ มากขึ้นตามไปด้วย ทำให้เสียเวลาในการค้นหาข้อมูล เพราะต้องทำการเชื่อมโยง ข้อมูลในหลาย ๆ ตารางเข้าด้วยกัน ดังนั้นการปรับตารางหรือรีเลชันด้วยวิธีการปรับบรรทัด ฐานควรเลือกปรับในระดับที่พอดีและเหมาะกับการใช้งาน ในแต่ละงาน