(due Friday, November 6, by 5:00 p.m. CST)

No credit will be given without supporting work.

7. Let $\psi > 0$ be a population parameter, and let X_1, X_2, \dots, X_n be a random sample from a distribution with probability density function

$$f(x; \psi) = \frac{2}{\sqrt{\pi \psi}} e^{-x^2/\psi},$$
 zero otherwise.

Recall: $W = X^2$ has Gamma ($\alpha = \frac{1}{2}$, $\theta = \psi$) distribution.

i) Construct a consistent estimator of ψ based on $\sum_{i=1}^{n} X_{i}^{4}$.

$$E(X^4) = E(W^2) = Var(W) + [E(W)]^2 = \alpha \theta^2 + (\alpha \theta)^2 = \frac{3}{4} \psi^2$$

By WLLN,
$$\overline{X^4} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i^4 \xrightarrow{P} E(X^4) = \frac{3}{4} \psi^2.$$

 $lack A \to a$, g is continuous at $a \Rightarrow g(A) \stackrel{P}{\to} g(a)$

Consider $g(x) = \sqrt{\frac{4}{3}x}$. Since $g(x) = \sqrt{\frac{4}{3}x}$ is continuous at $\frac{3}{4} \psi^2$,

$$\tilde{\tilde{\psi}} = \sqrt{\frac{4}{3n} \sum_{i=1}^{n} X_i^4} = \sqrt{\frac{4}{3} X^4} = g(X^4) \xrightarrow{P} g(\frac{3}{4} \psi^2) = \psi.$$

$$E(X^k) = E(W^{k/2}) = \dots$$

W has Gamma (
$$\alpha = \frac{1}{2}$$
, $\theta = \psi$) distribution. W = T_{1/2}.

If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

$$\dots = \frac{\psi^{k/2} \Gamma\left(\frac{1}{2} + \frac{k}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} = \frac{\psi^{k/2} \Gamma\left(\frac{1}{2} + \frac{k}{2}\right)}{\sqrt{\pi}}.$$

$$\begin{split} \mathrm{E}(\mathrm{X}^4) &= \frac{\psi^{4/2} \, \Gamma\!\left(\frac{1}{2}\!+\!\frac{4}{2}\right)}{\sqrt{\pi}} = \frac{\psi^2 \, \Gamma\!\left(\frac{5}{2}\right)}{\sqrt{\pi}} = \frac{\psi^2 \, \frac{3}{2} \, \Gamma\!\left(\frac{3}{2}\right)}{\sqrt{\pi}} \\ &= \frac{\psi^2 \, \frac{3}{2} \cdot \frac{1}{2} \, \Gamma\!\left(\frac{1}{2}\right)}{\sqrt{\pi}} = \frac{3}{4} \, \psi^2. \end{split}$$

OR

$$E(X^{4}) = \int_{0}^{\infty} x^{4} \cdot \frac{2}{\sqrt{\pi \psi}} e^{-x^{2}/\psi} dx \qquad u = \frac{x^{2}}{\psi} \qquad x^{2} = \psi u$$

$$x = \sqrt{\psi u} \qquad dx = \frac{\sqrt{\psi}}{2\sqrt{u}} du$$

$$= \int_{0}^{\infty} (\psi u)^{2} \cdot \frac{2}{\sqrt{\pi \psi}} e^{-u} \frac{\sqrt{\psi}}{2\sqrt{u}} du$$

$$= \frac{\psi^{2}}{\sqrt{\pi}} \int_{0}^{\infty} u^{3/2} e^{-u} du = \frac{\psi^{2}}{\sqrt{\pi}} \Gamma\left(\frac{5}{2}\right)$$

$$= \frac{\psi^{2}}{\sqrt{\pi}} \cdot \frac{3}{2} \Gamma\left(\frac{3}{2}\right) = \frac{\psi^{2}}{\sqrt{\pi}} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{3}{4} \psi^{2}.$$

- j) (i) Suggest a confidence interval for ψ with (1α) 100 % confidence level.
 - (ii) Suppose n = 4, and $x_1 = 0.2$, $x_2 = 0.6$, $x_3 = 1.1$, $x_4 = 1.7$. Construct a 95% confidence interval for ψ .

"Hint": Use $\sum_{i=1}^{n} X_i^2$.

(i) $Y = \sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} W_i$ has a Gamma $(\alpha = \frac{n}{2}, \theta = \psi)$ distribution.

Let Y be a random variable with a Gamma distribution with parameters α and θ . Then $\frac{2Y}{\theta}$ has a chi-square distribution with $r = 2\alpha$ degrees of freedom.

$$\Rightarrow \frac{2Y}{\Psi}$$
 has a $\chi^2(2\alpha = n)$ distribution.

$$\Rightarrow \qquad P\left(\chi_{1-\alpha/2}^{2}(n) < \frac{2Y}{\Psi} < \chi_{\alpha/2}^{2}(n) \right) = 1-\alpha.$$

$$\Rightarrow \quad P\left(\frac{2\,Y}{\chi_{1-\alpha/2}^{\,2}(\,n\,\,)}\,>\,\psi\,>\,\frac{2\,Y}{\chi_{\,\alpha/2}^{\,2}(\,n\,\,)}\,\right)\,=\,1-\alpha.$$

A $(1-\alpha)$ 100 % confidence interval for ψ is

$$\left(\frac{2 Y}{\chi_{\alpha/2}^{2}(n)}, \frac{2 Y}{\chi_{1-\alpha/2}^{2}(n)}\right) = \left(\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right).$$

(ii)
$$n = 4$$
,
$$\sum_{i=1}^{n} x_i^2 = 0.2^2 + 0.6^2 + 1.1^2 + 1.7^2 = 4.5.$$

$$\chi_{0.975}^{2}(4) = 0.484,$$
 $\chi_{0.025}^{2}(4) = 11.14.$

$$\left(\frac{2\sum_{i=1}^{n}x_{i}^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{2\sum_{i=1}^{n}x_{i}^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right) = \left(\frac{9}{11.14}, \frac{9}{0.484}\right) \approx (0.808, 18.595).$$

k) Find a sufficient statistic $u(X_1, X_2, ..., X_n)$ for ψ .

$$\prod_{i=1}^{n} f(x_i; \psi) = \prod_{i=1}^{n} \frac{2}{\sqrt{\pi \psi}} e^{-x_i^2/\psi} = \left(\frac{2}{\sqrt{\pi \psi}}\right)^n \cdot \exp\left\{-\frac{1}{\psi} \sum_{i=1}^{n} x_i^2\right\}.$$

By Factorization Theorem, $Y = \sum_{i=1}^{n} X_i^2$ is a sufficient statistic for ψ .

OR

$$f(x; \psi) = \exp \left\{ -\frac{1}{\psi} \cdot x^2 - \frac{1}{2} \cdot \ln \psi + \ln 2 - \frac{1}{2} \cdot \ln \pi \right\}.$$

$$\Rightarrow$$
 $K(x) = x^2$.

$$\Rightarrow$$
 Y = $\sum_{i=1}^{n}$ K(X_i) = $\sum_{i=1}^{n}$ X_i² is a sufficient statistic for ψ.

- 1) Recall that a method of moments estimator for ψ is $\tilde{\psi} = \pi \left(\overline{X}\right)^2$. Show that $\tilde{\psi}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.
- "Hint": \bigcirc By CLT, $\sqrt{n} \left(\overline{X} \mu \right) \xrightarrow{D} N \left(0, \sigma^2 \right)$.
 - ② If g(x) is differentiable at μ and $g'(\mu) \neq 0$, then $\sqrt{n} \left(g\left(\overline{X} \right) g\left(\mu \right) \right) \xrightarrow{D} N \left(0, \left[g'(\mu) \right]^2 \sigma^2 \right).$

That is, for large n,

 $g(\overline{X})$ is approximately $N(g(\mu), [g'(\mu)]^2 \frac{\sigma^2}{n})$.

$$\mu = E(X) = \frac{\sqrt{\psi}}{\sqrt{\pi}}.$$
 $E(X^2) = \frac{\psi}{2}.$

$$\sigma^2 = Var(X) = E(X^2) - [E(X)]^2 = \frac{\psi}{2} - \frac{\psi}{\pi} = \psi(\frac{\pi - 2}{2\pi}).$$

Consider
$$g(x) = \pi x^2$$
. Then $g(\overline{X}) = \tilde{\psi}$, $g(\mu) = \psi$.

$$g'(x) = 2\pi x.$$
 $g'(\mu) = 2\sqrt{\pi \psi}.$

$$\left[g'(\mu)\right]^2\sigma^2 = 4\pi\psi\cdot\psi\left(\frac{\pi-2}{2\pi}\right) = 2(\pi-2)\psi^2.$$

$$\Rightarrow \qquad \sqrt{n} \, \left(\, \tilde{\psi} \! - \! \psi \, \right) \, \stackrel{D}{\rightarrow} \, N \, \left(\, 0 \, , \, 2 \, \left(\, \pi \! - \! 2 \, \right) \psi^{\, 2} \, \right) \! .$$

For large n, $\tilde{\Psi}$ is approximately $N(\Psi, \frac{2(\pi-2)\Psi^2}{n})$.

For fun:

m) Recall that the maximum likelihood estimator for ψ is $\hat{\psi} = \frac{2}{n} \sum_{i=1}^{n} X_i^2 = 2 \overline{X^2}$. Show that $\hat{\psi}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.

$$\hat{\psi} = 2 \overline{X^2} = 2 \overline{W}.$$

$$\mu_{W} = E(W) = \alpha \theta = \frac{1}{2} \psi.$$
 $\sigma_{W}^{2} = Var(W) = \alpha \theta^{2} = \frac{1}{2} \psi^{2}.$

By CLT,
$$\sqrt{n} \left(\overline{W} - \mu_W \right) \stackrel{D}{\to} N \left(0, \sigma_W^2 \right)$$
.

$$\Rightarrow \qquad \sqrt{n} \, \left(\, 2 \, \overline{W} \, - \, 2 \, \mu_{\, W} \, \right) \, \stackrel{D}{\rightarrow} \, \mathit{N} \, \left(\, 0 \, , \, 4 \, \sigma_{\, W}^{\, 2} \, \right)$$

$$\Rightarrow \qquad \sqrt{n} \, \left(\hat{\psi} - \psi \right) \stackrel{D}{\rightarrow} N \, \left(\, 0 \, , \, 2 \, \psi^{\, 2} \, \right).$$

For large n, $\hat{\psi}$ is approximately $N(\psi, \frac{2\psi^2}{n})$.

Since $\pi - 2 > 1$, $\hat{\psi}$ is "better" than $\tilde{\psi}$.

8. Let $\beta > 0$ be a population parameter, and let $X_1, X_2, ..., X_n$ be a random sample from a distribution with probability density function

$$f(x; \beta) = \beta (1-x)^{\beta-1},$$
 $0 < x < 1,$ zero otherwise.

Recall:
$$W = -\ln(1-X) \text{ has an Exponential} \left(\theta = \frac{1}{\beta}\right)$$
$$= Gamma\left(\alpha = 1, \theta = \frac{1}{\beta}\right) \text{ distribution.}$$

- j) (i) Suggest a confidence interval for β with (1α) 100 % confidence level.
 - (ii) Suppose n = 3, and $x_1 = 0.31$, $x_2 = 0.77$, $x_3 = 0.93$. Construct a 90% confidence interval for β .

"Hint": Use
$$\sum_{i=1}^{n} \left(-\ln(1-X_i)\right)$$
.

(i)
$$Y = \sum_{i=1}^{n} \left(-\ln(1-X_i) \right) = \sum_{i=1}^{n} W_i$$
 has a Gamma $(\alpha = n, \theta = \frac{1}{\beta})$ distribution.

Let Y be a random variable with a Gamma distribution with parameters α and $\theta = 1/\lambda$. Then $2Y/\theta = 2\lambda Y$ has a chi-square distribution with $r = 2\alpha$ degrees of freedom.

$$\Rightarrow$$
 2 β Y has a $\chi^2(2\alpha = 2n)$ distribution.

$$\Rightarrow \qquad P\left(\ \chi_{\, 1-\alpha/2}^{\, \, 2} \left(\ 2 \ n \ \right) \ < \ 2 \ \beta \ Y \ < \ \chi_{\, \alpha/2}^{\, \, 2} \left(\ 2 \ n \ \right) \ \right) \ = \ 1-\alpha.$$

$$\Rightarrow P\left(\frac{\chi_{1-\alpha/2}^{2}(2n)}{2Y} < \beta < \frac{\chi_{\alpha/2}^{2}(2n)}{2Y}\right) = 1-\alpha.$$

A $(1-\alpha)$ 100 % confidence interval for β is

$$\left(\frac{\chi_{1-\alpha/2}^{2}(2n)}{2Y}, \frac{\chi_{\alpha/2}^{2}(2n)}{2Y}\right) = \left(\frac{\chi_{1-\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}(-\ln(1-X_{i}))}, \frac{\chi_{\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}(-\ln(1-X_{i}))}\right).$$

(ii)
$$n = 3$$
, $\sum_{i=1}^{n} \left(-\ln(1 - x_i) \right) = -\ln 0.69 - \ln 0.23 - \ln 0.07 \approx 4.5$.
 $\chi_{0.95}^2(6) = 1.635$, $\chi_{0.05}^2(6) = 12.59$.

$$\left(\frac{\chi_{1-\alpha/2}^2(2n)}{2\sum_{i=1}^{n} \left(-\ln(1 - x_i) \right)}, \frac{\chi_{\alpha/2}^2(2n)}{2\sum_{i=1}^{n} \left(-\ln(1 - x_i) \right)} \right) \approx \left(\frac{1.635}{9}, \frac{12.59}{9} \right)$$

$$\approx \left(0.1817, 1.3989 \right)$$

k) Find a sufficient statistic $u(X_1, X_2, ..., X_n)$ for β .

$$\prod_{i=1}^{n} f(x_i; \beta) = \prod_{i=1}^{n} \beta(1-x_i)^{\beta-1} = \beta^n \cdot \left(\prod_{i=1}^{n} (1-x_i)\right)^{\beta-1}.$$

By Factorization Theorem, $Y_1 = \prod_{i=1}^{n} (1 - X_i)$ is a sufficient statistic for β .

$$\Rightarrow$$
 Y₂ = ln Y₁ = $\sum_{i=1}^{n}$ ln (1-X_i) is also a sufficient statistic for β.

$$\Rightarrow$$
 Y = -Y₂ = $\sum_{i=1}^{n}$ (-ln(1-X_i)) is also a sufficient statistic for β.

$$f(x;\beta) = \exp\{(\beta-1)\cdot\ln(1-x) + \ln\beta\}.$$

$$\Rightarrow$$
 $K(x) = \ln(1-x)$.

$$\Rightarrow$$
 Y₂ = $\sum_{i=1}^{n}$ K(X_i) = $\sum_{i=1}^{n}$ ln(1-X_i) is a sufficient statistic for β.

$$\Rightarrow$$
 Y₁ = $e^{Y_2} = \prod_{i=1}^n (1-X_i)$ is also a sufficient statistic for β,

Y = -Y₂ =
$$\sum_{i=1}^{n}$$
 (- ln(1-X_i)) is also a sufficient statistic for β.

1) Let $Y_1 < Y_2 < ... < Y_n$ denote the corresponding order statistics.

Proving that $Y_1 \xrightarrow{P} 0$ is super easy, barely an inconvenience.

Find δ so that $V_n = n^{\delta} Y_1$ converges in distribution.

Find the limiting distribution of V_n .

"Hint": ① Use $F_X(x)$ to find the c.d.f. of Y_1 , $F_{Y_1}(x) = F_{\min X_i}(x)$.

- ② Use $F_{Y_1}(x)$ to find the c.d.f. of V_n , $F_{V_n}(v) = P(V_n \le v)$.
- $\mathbf{\mathfrak{F}}_{\infty}(v) = \lim_{n \to \infty} \mathbf{F}_{\mathbf{V}_n}(v).$ IF the limit exists and IF $\mathbf{F}_{\infty}(v)$ is a c.d.f. of a probability distribution, then that is the limiting distribution of \mathbf{V}_n .
- 4 $\lim_{n\to\infty} \left(1+\frac{a}{n^1}\right)^n = e^a$. Only "interesting" case is interesting.

$$F_{X}(x) = \int_{0}^{x} \beta (1-u)^{\beta-1} du = -(1-u)^{\beta} \Big|_{0}^{x} = 1 - (1-x)^{\beta}, \qquad 0 < x < 1.$$

$$F_{Y_1}(x) = F_{\min X_i}(x) = 1 - (1 - F_X(x))^n = 1 - (1 - x)^{\beta n}, \quad 0 < x < 1.$$

Proving that $Y_1 \stackrel{P}{\rightarrow} 0$ (super easy, barely an inconvenience):

Let $\varepsilon > 0$.

If $0 < \varepsilon < 1$,

$$P(|Y_1 - 0| \ge \varepsilon) = P(Y_1 \le -\varepsilon) + P(Y_1 \ge \varepsilon) = 0 + 1 - F_{Y_1}(\varepsilon)$$
$$= (1 - \varepsilon)^{\beta n} \to 0 \quad \text{as} \quad n \to \infty.$$

If
$$\varepsilon \ge 1$$
, $P(|Y_1 - 0| \ge \varepsilon) = 0$.

$$F_{V_n}(v) = P(V_n \le v) = P(Y_1 \le \frac{v}{n^{\delta}}) = 1 - \left(1 - \frac{v}{n^{\delta}}\right)^{\beta n}, \qquad 0 < v < n^{\delta}.$$

If
$$\delta = 1$$
,
$$F_{V_n}(v) = 1 - \left(1 - \frac{v}{n}\right)^{\beta n}, \qquad 0 < v < n.$$

$$F_{\infty}(v) = \lim_{n \to \infty} F_{V_n}(v) = 1 - e^{-\beta v}, \qquad 0 < v < \infty$$

The limiting distribution of V_n is Exponential with mean $\frac{1}{\beta}$.

For fun: Only "interesting" case is interesting. However, ...

If
$$\delta < 1$$
,
$$F_{\infty}(v) = \lim_{n \to \infty} F_{V_n}(v) = 1, \qquad 0 < v < \infty.$$
 Then $V_n \xrightarrow{D} 0$, and thus $V_n \xrightarrow{P} 0$.

If
$$\delta > 1$$
, $F_{\infty}(v) = \lim_{n \to \infty} F_{V_n}(v) = 0$, $0 < v < \infty$.

Then V_n does not have a limiting distribution.

For fun:

m) [Proving that $Y_n \xrightarrow{P} 1$ is super easy, barely an inconvenience.]

Find γ so that $W_n = n^{\gamma} (1 - Y_n)$ converges in distribution.

Find the limiting distribution of W_n .

$$F_{Y_n}(x) = F_{\max X_i}(x) = (F_X(x))^n = (1 - (1-x)^{\beta})^n, \quad 0 < x < 1.$$

Let $\varepsilon > 0$.

If $0 < \varepsilon < 1$,

$$P(|Y_n - 1| \ge \varepsilon) = P(Y_n \le 1 - \varepsilon) + P(Y_n \ge 1 + \varepsilon) = F_{Y_n}(1 - \varepsilon) + 0$$
$$= (1 - \varepsilon^{\beta})^n \to 0 \quad \text{as} \quad n \to \infty.$$

If
$$\varepsilon \ge 1$$
, $P(|Y_n - 1| \ge \varepsilon) = 0$.

$$\Rightarrow \qquad \mathbf{Y}_n \overset{P}{\rightarrow} \mathbf{1}.$$

$$F_{W_n}(w) = P(W_n \le w) = P(Y_n \ge 1 - \frac{w}{n^{\beta}}) = 1 - \left(1 - \left(\frac{w}{n^{\gamma}}\right)^{\beta}\right)^n$$
$$= 1 - \left(1 - \frac{w^{\beta}}{n^{\gamma\beta}}\right)^n, \qquad 0 < w < n^{\gamma}.$$

If
$$\gamma = \frac{1}{\beta}$$
,
$$F_{W_n}(w) = 1 - \left(1 - \frac{w^{\beta}}{n}\right)^n, \qquad 0 < w < n^{\gamma}.$$

$$F_{\infty}(w) = \lim_{n \to \infty} F_{W_n}(w) = 1 - e^{-w^{\beta}}, \qquad 0 < w < \infty.$$

The limiting distribution is a Weibull distribution.

Only "interesting" case is interesting. However, ...

If
$$\gamma < \frac{1}{\beta}$$
,
$$F_{\infty}(w) = \lim_{n \to \infty} F_{W_n}(w) = 1, \qquad 0 < w < \infty.$$
Then $W_n \xrightarrow{D} 0$, and thus $W_n \xrightarrow{P} 0$.

If
$$\gamma > \frac{1}{\beta}$$
, $F_{\infty}(w) = \lim_{n \to \infty} F_{W_n}(w) = 0$, $0 < w < \infty$.

Then W_n does not have a limiting distribution.