Reading Notes for

Quantum Theory, Groups and Representations: An Introduction

Zhi Wang

September 15, 2021

Contents

0	Notes and Definitions 0.1 Notes	2 2
1	Introduction and Overview	2
2	The Group $U(1)$ and its Representations	2
3	Two-state Systems and $SU(2)$	2
4	Linear Algebra Review, Unitary and Orthogonal Groups Definition (nondegenerate bilinear form)	2 3 3 3 5 5 6 7 7
5	Lie Algebras and Lie Algebra Representations	9

- 0 Notes and Definitions
- 0.1 Notes
- 1 Introduction and Overview
- 2 The Group U(1) and its Representations
- 2.2 The group U(1) and its representations P19

$$\pi_k \colon \mathbb{C}^* \to \mathbb{C}^*$$

k must be integer, with the same reason as U(1). If $g,h\in\mathbb{C}^*$ satisfies

$$g = e^{ia}, h = e^{ib},$$

where $a, b \in \mathbb{R}$ and $a + b = 2\pi$, then gh = 1. Therefore

$$\pi_k(g)\pi_k(h) = e^{iak}e^{ibk} = e^{iak+ibk} = e^{ik(2\pi)} = \pi_k(1) = 1^k = 1,$$

indicating $k \in \mathbb{Z}$.

2.4 Conservation of charge and U(1) symmetry P22

$$[U(t),Q]=0$$

The assumption here is "if [H, Q] = 0".

- 3 Two-state Systems and SU(2)
- 4 Linear Algebra Review, Unitary and Orthogonal Groups
- 4.4 Inner products

P38

Definition of Inner Product

Definition (nondegenerate bilinear form). A **nondegenerate bilinear form** is a bilinear form $f: V \times V \to K$ on a vector space V over a field K, such that $v \mapsto (x \mapsto f(x, v))$ is an isomorphism from V to V^* .

Remark. In finite dimensions, this is equivalent to

$$\forall y \in V[f(x,y) = 0] \implies [x = 0].$$

Definition (sesquilinear form). Over a complex vector space V a map $\varphi \colon V \times V \to \mathbb{C}$ is **sesquilinear** if

$$\varphi(x+y,z+w) = \varphi(x,z) + \varphi(x,w) + \varphi(y,z) + \varphi(y,w),$$

$$\varphi(ax,by) = \overline{a}b\,\varphi(x,y),$$

for all $x,y,z,w\in V$ and all $a,b\in\mathbb{C}$. Here, \overline{a} is the complex conjugate of a scalar a.

Definition (Hermitian form). A sesquilinear form is **Hermitian** if and only if $\langle x, x \rangle$ is real for all x.

4.7 Eigenvalues and eigenvectors

Polynomial and Algebraically Closed Field

Definition (polynomial ring). The **polynomial ring**, R[x], in x over a commutative ring R is the set of functions $f: R \to R$, called polynomials in x, of the form

$$f(x) = \sum_{i=0}^{n} a_i x^i,$$

where a_0, a_1, \ldots, a_n , the **coefficients** of f, are elements of R.

Proposition 4.1. If a non-constant polynomial $f(x) \in R[x]$ has a root $\lambda \in R$, then $f(x) = (x - \lambda)g(x)$ where g(x) is a nonzero polynomial in R[x]. The degree of g(x) is one less than that of f(x).

Proof. Since f is non-constant with root $\lambda \in R$ of order n, it can be expressed by

$$f(x) = \sum_{i=0}^{n} a_i x^i,$$

where n > 0 and $a_n \neq 0$. Consider $g: R \to R$ expressed as (which is undefined if n = 0)

$$g(x) = \sum_{i=0}^{n-1} b_i x^i,$$

where

$$b_{n-1} = a_n \neq 0,$$

$$b_k = a_{k+1} + \lambda b_{k+1}, \ \forall 0 < k < n-1,$$
(1)

Coefficients b's are in R because all a's and λ are in R. Therefore $g(x) \in R[x]$. Its degree is n-1, and its leading coefficient is nonzero.

From mathematical induction it can be derived that

$$b_k = \sum_{m=0}^{n-1-k} a_{k+1+m} \lambda^m.$$

The following shows it satisfies $b_k = a_{k+1} + \lambda b_{k+1}$:

$$a_{k+1} + \lambda b_{k+1} = a_{k+1} + \sum_{m=0}^{n-2-k} a_{k+2+m} \lambda^{m+1}$$

$$= a_{k+1} + \sum_{m'=1}^{n-1-k} a_{k+1+m'} \lambda^{m'}$$

$$= \sum_{m'=0}^{n-1-k} a_{k+1+m'} \lambda^{m'} = b_k,$$

where m' = m + 1.

Therefore,

$$b_0 \lambda = \sum_{m'=1}^n a_{m'} \lambda^{m'},$$

where m' = m + 1. Since λ is the root of f(x), we have

$$b_0 \lambda = -a_0. (2)$$

In conclusion (in case n = 1, the last summation evaluates zero), by

plugging (1) and (2):

$$(x - \lambda)g(x) = \sum_{i'=1}^{n} b_{i'-1}x^{i'} - \sum_{i=0}^{n-1} b_i\lambda x^i$$

$$= b_{n-1}x^n - b_0\lambda + \sum_{i=1}^{n-1} (b_{i-1} - b_i\lambda)x^i$$

$$= a_nx^n + a_0 + \sum_{i=1}^{n-1} a_ix^i$$

$$= f(x).$$

Definition (algebraically closed field). A field F is algebraically closed if every non-constant polynomial in F[x] has a root in F.

Proposition 4.2. Given an algebraically closed field F, every non-constant polynomial in F[x] is a product of first degree polynomials.

Proof. Every non-constant polynomial $f(x) \in F[x]$ has degree n > 0. From the definition of algebraically closed field, f(x) has a root, denoted λ . Therefore, $f(x) = (x - \lambda)g(x)$, where $g(x) \in F[x]$.

This process can be repeated until the remaining polynomial is a nonzero constant. Note that roots of g(x) are also roots of f(x). Since the order of g is one less than that of f, this can be done exactly n times, giving

$$f(x) = k \prod_{i=1}^{n} (x - \lambda_i),$$

where $\lambda_i \in F$ are roots of f(x) and $k \in F$ is the leading coefficient.

Eigenvalues, Eigenvectors, Schur decomposition, and Jordan form

Definition (algebraic multiplicity). The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

Proposition 4.3. Given a matrix $A \in M_n(F)$, where F is an algebraically closed field, the sum of algebraic multiplicities is n.

Proof. Definition of algebraically closed field. https://en.wikipedia.org/wiki/Algebraically_closed_field#Every_polynomial_is_a_product_of_first_degree_polynomials

Definition (geometric multiplicity). The dimension of the eigenspace associated with an eigenvalue is referred to as the eigenvalue's **geometric multiplicity**.

Theorem 4.4. Geometric multiplicity is at least 1, at most algebraic multiplicity.

Corollary 4.5. There is at least one eigenvalue-eigenvector pair for a square matrix over an algebraically closed field.

Proof. Worst case scenario: 1 eigenvalue, algebraic multiplicity is the order of the square matrix, geometric multiplicity is 1. \Box

Corollary 4.6. Any square matrix over an algebraically closed field is conjugate with an upper triangular matrix.

Proof. https://math.stackexchange.com/questions/281833/matrix-similarity-upper-trial

The direct sum of all eigenspaces is not necessarily the original vector space!

Proposition 4.7. Any square matrix over an algebraically closed field is conjugate with an upper triangular matrix, with its eigenvalues in the main diagonal.

Proof. In the previous proof, a square matrix A of order n is transformed to

$$B^{-1}AB = \begin{pmatrix} \lambda & C \\ 0 & A' \end{pmatrix} = \begin{pmatrix} \lambda & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix},$$

where A' is the $(n-1) \times (n-1)$ submatrix. The characteristic polynomial for A is

$$\det(t\mathbf{I} - A) = \det(B^{-1}(t\mathbf{I} - A)B) = (t - \lambda)\det(t\mathbf{I} - A').$$

Therefore the eigenvalues of A' are also those of A, with the same algebraic multiplicities, except that of λ , which is decreased by 1.

Corollary 4.8. The trace of a square matrix is the sum of its eigenvalues.

Definition (Schur decomposition). Given $A \in M_n(K)$, where K is an algebraically closed field, the **Schur decomposition** (or Schur's unitary triangularization) of A is

$$A = QUQ^{-1},$$

where Q is a unitary matrix, and U is an upper triangular matrix, called the **Schur form** of A.

Theorem 4.9. Any matrix $A \in M_n(K)$, where K is an algebraically closed field, has Schur decomposition.

The Schur form has the same spectrum, and its eigenvalues are the diagonal entries.

Definition (Jordan block). a **Jordan block** over a ring R (whose identities are the zero 0 and one 1) is a matrix composed of zeroes everywhere except for the diagonal, which is filled with a fixed element $\lambda \in R$, and for the superdiagonal, which is composed of ones.

Definition (Jordan matrix). Any block diagonal matrix whose blocks are Jordan blocks is called a **Jordan matrix**.

Theorem 4.10. Any $n \times n$ square matrix A whose elements are in an algebraically closed field K is similar to a Jordan matrix J, whose main diagonal entries are eigenvalues of A.

Remark. Given an eigenvalue λ_i , its geometric multiplicity is the number of Jordan blocks corresponding to λ_i .

The sum of the sizes of all Jordan blocks corresponding to an eigenvalue λ_i is its algebraic multiplicity.

Spectral Theorem

Proposition 4.11. Any self-adjoint complex matrix is conjugate with a real diagonal matrix through similarity transformation by a unitary matrix.

Proof. Perform the Schur decomposition for the self-adjoint matrix, denoted H:

$$Q^{-1}HQ = U,$$

where U is upper triangular and Q is unitary. Since H is self-adjoint, we have

$$U^{\dagger} = Q^{\dagger} H^{\dagger} (Q^{-1})^{\dagger} = Q^{-1} H Q = U.$$

Lemma 4.12. Unitary triangular matrix is diagonal, with diagonal entries being roots of unity.

Proof. If the unitary matrix is lower triangular, we take its conjugate transpose. The new matrix should be a unitary upper triangular matrix.

Denote the unitary upper triangular matrix as T, then:

$$(T^{\dagger}T)_{ij} = \sum_{k=1}^{n} \overline{T_{ki}} T_{kj} = \delta_{ij}.$$

Since T is upper triangular, $T_{kj} = 0, \forall k > j$. Therefore,

$$\sum_{k=1}^{j} \overline{T_{ki}} T_{kj} = \delta_{ij}.$$

Especially, for i = 1, j = 1,

$$\overline{T_{11}}T_{11}=1,$$

indicating $T_{11} = e^{i\theta_1} \neq 0$ where $\theta_1 \in \mathbb{R}$.

For
$$i \neq 1, j = 1$$
,

$$\overline{T_{1i}}T_{11}=0,$$

implying $T_{1i} = 0$ because $T_{11} \neq 0$. $T_{i1} = 0$ for all i > 1 because T is upper triangular.

We have proved that $T_{ij} = e^{i\theta_j} \delta_{ij}$ for i < 2 or j < 2. If $T_{ij} = e^{i\theta_j} \delta_{ij}$ for all i < q or j < q, then (since $T_{kq} = 0$ for all k < q)

$$\delta_{pq} = (T^{\dagger}T)_{pq} = \sum_{k=1}^{q} \overline{T_{kp}} T_{kq} = \overline{T_{qp}} T_{qq}.$$

When p=q, this means $T_{qq}=e^{i\theta_q}\neq 0$. When p>q, since $T_{qq}\neq 0$, we have

$$T_{qp} = \frac{\overline{\delta_{pq}}}{\overline{T_{qq}}} = 0.$$

Simultaneously, T_{pq} because p > q and T is upper triangular. Therefore, $T_{ij} = e^{i\theta_j} \delta_{ij}$ for all i = q or j = q.

Mathematical induction concludes that T is a diagonal matrix with roots of unity as diagonal entries. Therefore its conjugate transpose (lower triangular matrix) has the same property.

Proposition 4.13. Any unitary matrix is conjugate with a diagonal matrix of roots of unity through similarity transformation by another unitary matrix.

Proof. Perform the Schur decomposition for the $n \times n$ unitary matrix denoted U:

$$Q^{-1}UQ = T,$$

where T is upper triangular and Q is unitary. Since U is unitary, we have

$$T^{\dagger}T = Q^{\dagger}U^{\dagger}(Q^{-1})^{\dagger}Q^{-1}UQ = Q^{-1}U^{-1}QQ^{-1}UQ = \mathbf{I}.$$

T is invertible because so are Q and U. Therefore T is unitary.

Main Text

P45

Spectral theorem

Note that a general (invertible) matrix cannot be diagonalized, but it can be similarity-transformed to upper triangular form, where the main diagonal entries are eigenvalues.

Since similarity transformation does not change the trace of a matrix, the trace is still the sum of eigenvalues.

5 Lie Algebras and Lie Algebra Representations

5.2 Lie algebras of the orthogonal and unitary groups

P52 U(n), different from O(n), is connected because

$$e^{i\pi} = -1,$$

while this is impossible in \mathbb{R} .

There are two components in O(n), one of which containing identity is SO(n).

P53 Prove: Skew-Hermitian matrices in $\mathfrak{u}(n)$ are diagonalizable.

U(n) and $\mathfrak{u}(n)$ matrix are diagonalizable by unitary matrix, so any element Ω in the Lie group U(n) can be written as

$$\Omega = e^{tX}$$
,

where $t \in \mathbb{R}$ and X is in the corresponding Lie algebra.

Similarly SO(n) can be written as exponential, but SL(n) is large to be expressed this way. (maybe only Jordan form?)

5.4 Lie algebra representations

P54 Lie algebra representation is algebra homomorphism because it is linear map + preserving Lie bracket.