## LAPORAN PRAKTIKUM

# STRUKTUR DATA LINIER MODUL V

Dosen Pengampu

JB. Budi Darmawan S.T., M.Sc.



DISUSUN OLEH : AGUSTINUS KEVIN YUDIPRATAMA 235314029

PROGRAM STUDI INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2024

### No 1 (Asending)

### A. TUJUAN PRAKTIKUM

- Mahasiswa mampu memahami algoritma pengurutan Insertion sort
- Mampu mengimplementasikan dan membandingkan program pengurutan Buble sort, Selection sort dan Insertion sort dengan tipe data primitive
- Mampu membandingkan program pengurutan Buble sort, Selection sort dan Insertion sort.



### C. SOURCE CODE

Class mainnya

```
package vscode.Modul5;
import vscode.Modul1.Larik;

public class InsertionSortMain {
   Run|Debug
   public static void main(String[] args) {
      int data [] = {5, 8, 26, 15, 11, 31};

      System.out.println(x:"Data: ");
      Larik.cetak(data);
      System.out.println(x:"");

      Larik.InsertionSortAcending(data);
      Larik.cetak(data);
   }
}
```

### DataRandomnya

### Data 1.000

```
package vscode.Modul1.Larik;

public class AcendingDataRandom {
    Run|Debug
    public static void main(String[] args) {
        int [] dataRandom = new int[1000];
        for (int i = 0; i < dataRandom.length; i++) {
            dataRandom[i] = (int) (Math.random()* 1000);
        }
        //Insertion Sort
        long mulai = System.nanoTime();
        Larik.InsertionSortAcending(dataRandom.clone());
        long selesai = System.nanoTime() - mulai;
        System.out.println("Untuk = " + dataRandom);
        System.out.println("Waktu untuk Insertion Sort: " + selesai + " nanoseconds ");
    }
}</pre>
```

### Data 10.000

```
package vscode.Modul1.Larik;

import vscode.Modul1.Larik;

public class AcendingDataRandom {
    Run|Debug
    public static void main(String[] args) {
        int [] dataRandom = new int[10000];
        for (int i = 0; i < dataRandom.length; i++) {
            dataRandom[i] = (int) (Math.random()* 1000);
        }
        //Insertion Sort
        long mulai = System.nanoTime();
        Larik.InsertionSortAcending(dataRandom.clone());
        long selesai = System.nanoTime() - mulai;

        System.out.println("Untuk = " + dataRandom);
        System.out.println("Waktu untuk Insertion Sort: " + selesai + " nanoseconds ");

}
}</pre>
```

### Data 100.000

### Data 1.000.000

```
package vscode.Modul1.Larik;

import vscode.Modul1.Larik;

public class AcendingDataRandom {
    Run|Debug
    public static void main(String[] args) {
        int [] dataRandom = new int[10000000];
        for (int i = 0; i < dataRandom.length; i++) {
            dataRandom[i] = (int) (Math.random()* 1000);
        }
        //Insertion Sort
        long mulai = System.nanoTime();
        Larik.InsertionSortAcending(dataRandom.clone());
        long selesai = System.nanoTime() - mulai;

        System.out.println("Untuk = " + dataRandom);
        System.out.println("Waktu untuk Insertion Sort: " + selesai + " nanoseconds ");
    }
}</pre>
```

### Classnya

### D. OUTPUT

### **Insertion Sort**

```
Data:
5 8 26 15 11 31
5 8 11 15 26 31
```

### Data 1.000

```
Untuk = [I@1f32e575
Waktu untuk Insertion Sort: 4359600 nanoseconds
```

### Data 10.000

```
Untuk = [I@1f32e575
Waktu untuk Insertion Sort: 40689800 nanoseconds
```

### Data 100.000

```
Untuk = [I@1f32e575
Waktu untuk Insertion Sort: 2574344900 nanoseconds
```

### Data 1.000.000

```
Untuk = [I@1f32e575
Waktu untuk Insertion Sort: 306900777100 nanoseconds
```

## E. ANALISIS

| sebelum   | 5 | 8 | 26 | 15 | 11 | 31 |
|-----------|---|---|----|----|----|----|
| Iterasi 1 | 5 | 8 | 26 | 15 | 11 | 31 |
| Iterasi 2 | 5 | 8 | 26 | 15 | 11 | 31 |
| Iterasi 3 | 5 | 8 | 15 | 26 | 11 | 31 |
| Iterasi 4 | 5 | 8 | 11 | 15 | 26 | 31 |
| Iterasi 5 | 5 | 8 | 11 | 15 | 26 | 31 |
| Sesudah   | 5 | 8 | 11 | 15 | 26 | 31 |

### No 2 (Desending)

### A. TUJUAN PRAKTIKUM

- Mahasiswa mampu memahami algoritma pengurutan Insertion sort
- Mampu mengimplementasikan dan membandingkan program pengurutan Buble sort, Selection sort dan Insertion sort dengan tipe data primitive
- Mampu membandingkan program pengurutan Buble sort, Selection sort dan Insertion sort.

### **B. DIAGRAM UML**



### C. SOURCE CODE

### **InsertionSort**

```
package vscode.Modul1.Larik;

import vscode.Modul1.Larik;

public class InsertionSortMain {
   Run|Debug
   public static void main(String[] args) {
      int data [] = {5, 8, 26, 15, 11, 31};

      System.out.println(x:"Data: ");
      Larik.cetak(data);
      System.out.println(x:"");

      Larik.InsertionSortDecending(data);
      Larik.cetak(data);
   }
}
```

#### Data 1.000

```
package vscode.Modul1.Larik;

import vscode.Modul1.Larik;

public class DecendingDataRandom {
    Run | Debug
    public static void main(String[] args) {
        | int [] dataRandom = new int[1000];
        | for (int i = 0; i < dataRandom.length; i++) {
        | dataRandom[i] = (int) (Math.random()* 1000);
        }
        //Insertion Sort
        long mulai = System.nanoTime();
        Larik.InsertionSortDecending(dataRandom.clone());
        long selesai = System.nanoTime() - mulai;

        System.out.println("Untuk = " + dataRandom);
        System.out.println("Waktu untuk Insertion Sort: " + selesai + " nanoseconds ");
    }
}</pre>
```

### Data 10.000

```
package vscode.Modul1.Larik;

import vscode.Modul1.Larik;

public class DecendingDataRandom {
    Run | Debug
    public static void main(String[] args) {
        | int [] dataRandom = new int[]10000[];
        | for (int i = 0; i < dataRandom.length; i++) {
            | dataRandom[i] = (int) (Math.random()* 1000);
        }
        //Insertion Sort
        long mulai = System.nanoTime();
        Larik.InsertionSortDecending(dataRandom.clone());
        long selesai = System.nanoTime() - mulai;

        System.out.println("Untuk = " + dataRandom);
        System.out.println("Waktu untuk Insertion Sort: " + selesai + " nanoseconds ");
    }
}</pre>
```

#### Data 100.000

```
package vscode.Modul1.tarik;

import vscode.Modul1.tarik;

public class DecendingDataRandom {
    Run|Debug
    public static void main(String[] args) {
        int [] dataRandom = new int[]1000000]];
        for (int i = 0; i < dataRandom.length; i++) {
            dataRandom[i] = (int) (Math.random()* 10000);
        }
        //Insertion Sort
        long mulai = System.nanoTime();
        Larik.InsertionSortDecending(dataRandom.clone());
        long selesai = System.nanoTime() - mulai;

        System.out.println("Untuk = " + dataRandom);
        System.out.println("Waktu untuk Insertion Sort: " + selesai + " nanoseconds ");
    }
}</pre>
```

### Data 1.000.000

```
package vscode.Modul5;
import vscode.Modul1.Larik;

public class DecendingDataRandom {
    Run | Debug
    public static void main(String[] args) {
        | int [] dataRandom = new int[]10000000];
        | for (int i = 0; i < dataRandom.length; i++) {
        | dataRandom[i] = (int) (Math.random()* 1000);
        |}
        //Insertion Sort
        long mulai = System.nanoTime();
        Larik.InsertionSortDecending(dataRandom.clone());
        long selesai = System.nanoTime() - mulai;
        System.out.println("Untuk = " + dataRandom);
        System.out.println("Waktu untuk Insertion Sort: " + selesai + " nanoseconds ");
    }
}</pre>
```

### **CLASNYA**

```
public static void InsertionSortDecending(int[]larik){
   for (int iterasi = 1; iterasi < larik.length; iterasi++) {
      int kunci = larik[iterasi];
      int elemen = iterasi -1;
      while (elemen >= 0 && larik[elemen ]< kunci) {
            larik[elemen +1] = larik[elemen];
            elemen = elemen - 1;
      }
      larik[elemen + 1] = kunci;
}</pre>
```

### D. OUTPUT

### **Insertion Sort**

Data:

5 8 26 15 11 31 31 26 15 11 8 5

### **Data 1.000**

Untuk = [I@1f32e575

Waktu untuk Insertion Sort: 3612900 nanoseconds

### Data 10.000

Untuk = [I@1f32e575

Waktu untuk Insertion Sort: 40113600 nanoseconds

### Data 100.000

Untuk = [I@1f32e575

Waktu untuk Insertion Sort: 2637940800 nanoseconds

### Data 1.000.000

Untuk = [I@1f32e575

Waktu untuk Insertion Sort: 320337168100 nanoseconds

# E. ANALISIS

| Sebelum   | 5  | 8  | 26 | 15 | 11 | 31 |
|-----------|----|----|----|----|----|----|
| Iterasi 1 | 5  | 8  | 26 | 15 | 11 | 31 |
| Iterasi 2 | 8  | 5  | 26 | 15 | 11 | 31 |
| Iterasi 3 | 26 | 15 | 8  | 5  | 11 | 31 |
| Iterasi 4 | 26 | 15 | 11 | 8  | 5  | 31 |
| Iterasi 5 | 31 | 26 | 15 | 11 | 8  | 5  |
| Sesudah   | 31 | 26 | 15 | 11 | 8  | 5  |

Insertion sort ini pengurutan yang dengan menyisipkan nilai yang ada baik acending maupun decending.