- 1. Consider the function $f: \mathbb{R}^3 \to \mathbb{R}^3$, defined by $f(x, y, z) = \begin{pmatrix} x^3 y z \\ 2x + y + z \\ x + y z \end{pmatrix}$
 - (a) Compute Jf(x, y, z) and show that $df_{(x,y,z)}$ is invertible for any $(x, y, z) \in \mathbb{R}^3$.

Solution: Compute:

$$Jf(x,y,z) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{bmatrix} = \begin{bmatrix} 3x^2 & -1 & -1 \\ 2 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}.$$

Then we take the determinant;

$$\det Jf(x,y,z) = 3x^2 \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} - 2 \begin{vmatrix} -1 & -1 \\ 1 & -1 \end{vmatrix} + \begin{vmatrix} -1 & -1 \\ 1 & 1 \end{vmatrix} = -6x^2 - 4 + 0.$$

And we can see that since this determinant has no real roots, it must be nonzero for any $(x, y, z) \in \mathbb{R}^3$, and so Jf, as well as df are both invertible in \mathbb{R}^3 .

(b) Find the largest open $U\subset\mathbb{R}^3$ where f has a continuously differentiable inverse function g.

Solution: Begin by showing that f is injective in \mathbb{R}^3 . Suppose:

$$x_1^3 - y_1 - z_1 = x_2^3 - y_2 - z_2 \tag{1}$$

$$2x_1 + y_1 + z_1 = 2x_2 + y_2 + z_2 \tag{2}$$

$$x_1 + y_1 - z_1 = x_2 + y_2 - z_2.$$
 (3)

However, if we add (1)+(2), we get $x_1^3+2x_1=x_1(x_1^2+2)=x_2(x_2^2+2)=x_2^3+2x_2$. Let $h(x)=x^3+2x$, so that $h'(x)=3x^2+2$, positive for all x. So then h is increasing, and therefore injective, and since $h(x_1)=h(x_2)$, we must have $x_1=x_2$. Then we can transform (2), (3):

$$y_1 + z_1 - y_2 - z_2 = 0$$

 $y_1 - z_1 - y_2 + z_2 = 0$.

And we transform this homogenous system into a matrix to put into RREF:

$$\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ z_1 \\ y_2 \\ z_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ z_1 \\ y_2 \\ z_2 \end{bmatrix} = 0$$

And so we have $x_1 = x_2$, $y_1 = y_2$, $z_1 = z_2$ as desired, and f is injective in \mathbb{R}^3 , and clearly $f(\mathbb{R}^3) = \mathbb{R}^3$.

Then since f is injective in \mathbb{R}^3 and df is invertible in \mathbb{R}^3 , by the Global inversion theorem, $U = \mathbb{R}^3$ is the largest open set in which f is invertible.

- 2. Consider the system of equations: (S) $\begin{cases} x-y-u^2+v^2=0\\ x+y-2uv=0 \end{cases}$
 - (a) Show that the system (S) can be solved for u, v in term of (x, y) near the point (x, y, u, v) = (1, 1, 1, 1).

Solution: We solve for the Jacobian about (1, 1, 1, 1).

$$Jf(x, y, u, v) = \begin{bmatrix} 1 & -1 & -2u & 2v \\ 1 & 1 & -2v & -2u \end{bmatrix}$$
$$Jf(1, 1, 1, 1) = \begin{bmatrix} 1 & -1 & -2 & 2 \\ 1 & 1 & -2 & -2 \end{bmatrix}.$$

And if we break Jf into block matrices, we get the right half of Jf, $\partial_{u,v}f = \begin{bmatrix} -2 & 2 \\ -2 & -2 \end{bmatrix}$ which has nonzero determinant and must be invertible. So u, v can be implicitly defined about (1, 1, 1, 1) by the Implicit Function theorem.

(b) Compute $\partial_{X}u(1, 1) + \partial_{V}v(1, 1)$.

Solution: Begin with the identity from the Implicit Function Theorem:

$$\begin{bmatrix} \partial_{x}u & \partial_{y}u \\ \partial_{x}v & \partial_{y}v \end{bmatrix} = \begin{bmatrix} \partial_{u}f_{1} & \partial_{v}f_{1} \\ \partial_{u}f_{2} & \partial_{v}f_{2} \end{bmatrix}^{-1} \begin{bmatrix} \partial_{x}f_{1} & \partial_{y}f_{1} \\ \partial_{x}f_{2} & \partial_{y}f_{2} \end{bmatrix}$$

$$= \left(\det \begin{bmatrix} -2u & 2v \\ -2v & -2u \end{bmatrix} \right)^{-1} \begin{bmatrix} -2u & -2v \\ 2v & -2u \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \frac{1}{2(u^{2} + v^{2})} \begin{bmatrix} -u & -v \\ v & -u \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \frac{1}{2(u^{2} + v^{2})} \begin{bmatrix} -u - v & u - v \\ v - u & -v - u \end{bmatrix}.$$

And so if we want the sum $\partial_X u(1,1) + \partial_Y v(1,1)$ we need only take the trace of this matrix and evaluate at (1,1).

$$\partial_{x}u(1,1) + \partial_{y}v(1,1) = \frac{1}{2(u^{2} + v^{2})} \Big|_{(1,1)}$$

$$= -2\frac{u+v}{2(u^{2} + v^{2})} \Big|_{(1,1)}$$

$$= -1$$

3. Let $f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \to f(x,y)$. Show that if $f \in C^1(\mathbb{R}^2,\mathbb{R})$, then f can't be injective on \mathbb{R}^2 . Hint: Use the implicit functions theorem.

Solution: Assume, for the purpose of deriving a contradiction, that f is injective on \mathbb{R}^2 . Let $(a,b) \in \mathbb{R}^2$, and note that c=f(a,b) is only attained at (a,b). Take the derivative;

$$df = [\partial_X f \ \partial_V f].$$

If $\partial_y f(a,b) \neq 0$, there exists some function $g: \mathbb{R} \to \mathbb{R}$, so that c = f(x,g(x)), for all (x,y) close to (a,b) within a neighborhood U of (a,b). But then we have multiple distinct points mapping to p, and then $\partial_Y f(a,b) = 0$.

Otherwise, if $\partial_y f = 0$, we check $\partial_x f$. If this is nonzero, we repeat the above argument with ImFT for x, to get $\partial_x f(\alpha, b) = 0$.

Since (a, b) was chosen arbitrarily, we must have df = 0 for any $(x, y) \in \mathbb{R}^2$. The only functions for which this holds true are constant, and since constant functions are not injective, f cannot be injective.

4. Let $E = C([a, b], \mathbb{R})$ equipped with the norm of uniform convergence, let $u \in C(\mathbb{R}, \mathbb{R})$, and consider the mapping $\phi : E \to E$, defined by $\phi(v) = u \circ v$. Is ϕ continuous? Make sure to justify your answer.

Solution: Let $\varepsilon > 0$, and $v, w \in E$. Recall that the image of compact sets under continuous functions is compact, and the union of compact sets is compact. Then since continuous functions are uniformly continuous on compact sets, u must be uniformly continuous on $v([a, b]) \cup w([a, b])$. Let $x \in [a, b]$, and let δ be chosen so that $|w(x) - v(x)| < \delta \implies |u(w(x)) - u(v(x))| < \varepsilon$. Suppose

$$||w - v|| = \sup_{x \in [a,b]} |w(x) - v(x)| < \delta.$$
 (*)

Then we must have $|w(x) - v(x)| < \delta$ for any $x \in [a, b]$. But by continuity of u, we have

$$|\phi(w) - \phi(v)| = |u(w(x)) - u(v(x))| < \varepsilon.$$

for any $x \in [a, b]$. Then recall that since $u, v, w \in E$ are continuous, the composition, difference and absolute value $|u \circ w - u \circ v|$ is continuous. Therefore the supremum of this function is attained in the compact set [a, b], and when we take the supremum $\sup_{x \in [a, b]} |u(w(x)) - u(v(x))|$, we can say that it is attained for some $x_0 \in [a, b]$. And from (*), we have:

$$\|\phi(w) - \phi(v)\| = \|u \circ w - u \circ v\|$$

$$= \sup_{x \in [a,b]} |u(w(x)) - u(v(x))|$$

$$= |u(w(x_0)) - u(v(x_0))|$$

$$< \varepsilon.$$

And ϕ is continuous as desired.

5. Find in $C([0,1],\mathbb{R})$ the distance from the function u(t)=t to the subspace \mathbb{P}_0 of polynomials of degree 0. Make sure to justify your answer.

Solution: Let u(t) = t, and take the distance:

$$d(u, \mathbb{P}_0) = \inf_{p \in \mathbb{P}_0} d(u, p)$$

$$= \inf_{c \in \mathbb{R}} ||u - c|| \qquad p \text{ is simply a real constant}$$

$$= \inf_{c \in \mathbb{R}} \sup_{t \in [0, 1]} |u(t) - c|$$

$$= \inf_{c \in \mathbb{R}} \sup_{t \in [0, 1]} |t - c|.$$

Write $f_c(t) = |t - c|$. This continuous function will attain its supremum in the compact [0,1]. Since |t-c| is decreasing on $(-\infty,c]$ and increasing on $[c,\infty)$, the supremum must be either at 0 or 1. So we can rewrite $d(u,\mathbb{P}) = \inf_{c \in \mathbb{R}} \max\{|c|,|1-c|\}$.

We claim that $\frac{1}{2}$ is this infimum. First we show that this is a lower bound; let $c \in \mathbb{R}$. If $c < \frac{1}{2}$, then $|c| < \frac{1}{2}$, $|1-c| > \frac{1}{2}$, and so $\frac{1}{2} < \max\{|c|, |1-c|\} = |1-c|$.

Now if $c > \frac{1}{2}$, we have $|1 - c| < \frac{1}{2}$, $|c| > \frac{1}{2}$ and so $\frac{1}{2} < \max\{|c|, |1 - c|\} = |c|$.

Finally, if $c = \frac{1}{2}$, we have $\max\left\{\left|\frac{1}{2}\right|, \left|1-\frac{1}{2}\right|\right\} = \frac{1}{2}$. All this is to say that $\frac{1}{2}$ is the greatest lower bound for this set of maximums, and therefore $d(u, \mathbb{P}_0) = \frac{1}{2}$

6. Let $f \in C([a,b], \mathbb{R})$ be such that $\int_a^b f(x) x^n dx = 0$, $\forall n \in \mathbb{N}$ Show that f is identically zero. Hint: Use Weierstrass Theorem.

Solution: First, we claim that if p is any real polynomial, then $\int_a^b f(x)p(x)\,dx=0$. Write $p=\sum_{i=0}^n c_i x^i$. Then:

$$\int_{a}^{b} f(x)p(x) dx = \int_{a}^{b} f(x) \sum_{i=0}^{n} c_{i}x^{i} dx$$

$$= \sum_{i=0}^{n} \int_{a}^{b} c_{i}x^{i}f(x) dx$$

$$= \sum_{i=0}^{n} c_{i} \int_{a}^{b} x^{i}f(x) dx$$

$$= \sum_{i=1}^{n} c_{i} \cdot 0$$

$$= 0$$

By Weierstrass, there exists a sequence of real polynomials convergent to f. Let $\{p_n\}$ be such a sequence, and take:

$$\int_{a}^{b} f^{2}(x) dx = \int_{a}^{b} \lim_{n \to \infty} p_{n}(x) f(x) dx$$

$$= \lim_{n \to \infty} \int_{a}^{b} f(x) p_{n}(x) dx \qquad fp_{n} \in C([a, b])$$

$$= \lim_{n \to \infty} 0$$

$$= 0$$

Define F(x) so that $\frac{d}{dx}F(x)=f^2(x)$ by the Fundamental Theorem of Calculus. Then $\int_a^b f^2(x) \, dx = F(a) - F(b) = 0$. Then F(a) = F(b). But since $f^2(x) \ge 0$, F is increasing, and we must have F(x) = c for some constant real $c \in \mathbb{R}$. Then since $f^2(x) = \frac{d}{dx}F(x) = \frac{d}{dx}C = 0$, we have f^2 is identically 0, and then f must also be identically 0.