Combinazioni semplici (senza ripetizioni)

Si chiama combinazione semplice una presentazione di elementi di un insieme nella quale non ha importanza l'ordine dei componenti e non si può ripetere lo stesso elemento più volte. La collezione delle combinazioni di ${\bf k}$ elementi estratti da un insieme ${\bf S}$ di ${\bf n}$ oggetti distinti si può considerare ottenuta dalla collezione delle disposizioni semplici di lunghezza ${\bf k}$ degli elementi di ${\bf S}$ ripartendo tali sequenze nelle classi delle sequenze che presentano lo stesso sottoinsieme di ${\bf S}$ e scegliendo una sola sequenza da ciascuna di queste classi. Ciascuna delle suddette classi di sequenza di lunghezza ${\bf k}$ contiene ${\bf k}!$ sequenze, in quanto accanto a una sequenza ${\bf \sigma}$ si hanno tutte e sole quelle ottenibili permutando i componenti della ${\bf \sigma}$. Quindi il numero delle combinazioni semplici di ${\bf n}$ elementi di lunghezza ${\bf k}$ si ottiene dividendo per ${\bf k}!$ il numero delle disposizioni semplici di ${\bf n}$ elementi di lunghezza ${\bf k}$:

$$C_{n,k}=rac{D_{n,k}}{P_k}=rac{n!}{k!(n-k)!}=inom{n}{k}$$

(fonte Wikipedia)

Applicazione al progetto Schools as Energy Communities

Le combinazioni semplici possono essere utilizzate per disaggregare una misura del primo principio di Kirchhoff. Ad esempio se consideriamo un array di **n=5** elementi, le collezioni saranno necessariamente **k=5**. In Javascript il primo elemento di un array ha indice 0, per cui un vettore di dimensione 5 avrà indici [0, 1, 2, 3, 4] a cui possono corrispondere correnti, nomi di utenze, cosfì, flussi termici ecc.

Se consideriamo la collezione **k=5** otteniamo un'unica combinazione e l'array è: [0, 1, 2, 3, 4]

Per **k=4** otteniamo 5 combinazioni. Gli array si possono costruire estraendo ciclicamente 4 indici visibili di seguito in colore rosso:

0123 [4] 0124 [3] 0134 [2] 0234 [1]

[0]

1234

Per **k=3** otteniamo 10 combinazioni. Gli array si possono costruire estraendo ciclicamente 3 indici :

012 [3, 4]

```
013 [2, 4]
```

Per **k=2** otteniamo 10 combinazioni. Gli array si possono costruire estraendo ciclicamente 2 indici :

Per **k=1** otteniamo 5 combinazioni. Gli array si possono costruire estraendo ciclicamente 1 indice :

Si può osservare che la somma degli oggetti degli array a cui gli indici fanno riferimento, è la somma delle correnti al nodo che soddisfa il primo principio di Kirchhoff. Naturalmente dovranno essere escluse le ripetizioni nei casi in cui l'array di partenza contiene una o più correnti nulle.