Homework 3

Data Mining Technology for Business and Society

Gabriel Nespoli, Giusy Rose Tiro, Sergio Ballesteros

Part I

1. Data:

	Training set	Test set
Ham	120	52
Spam	122	53

2. Parameter tested

It was tested the following parameters and the respective values for the KNN classifier:

- Number of neighbors to use by default for k_neighbors queries: 5, 10 and 15
- Weight function used in prediction: uniform and distance
- Algorithm used to compute the nearest neighbors: auto, ball tree and kd_tree
- Leaf size: 30 and 40
- Power parameter for the Minkowski metric: 1 and 2
- Distance metric to use for the tree: minkowski and euclidean
- Tokenizer: None and stemming tokenizer
- The lower and upper boundary of the range of n-values for different n-grams to be extracted: (1, 1) and (1, 2)

3. Description on how to performance of the training-validation process using more than one CPU core:

It was also set the number of jobs running in parallel to the number of CPUs (the machine used has 4 CPUs), setting the parameter *n_jobs=-1* in the *GrideSearchCV*.

After a long process, the best parameters were:

• n_neighbors 10

• *weights* distance

• *algorithm* auto

leaf_size 30 *p* 2

• *metric* minkowski

• *ngram_range* (1, 2)

• tokenizer None

5. Output of the metrics.classification_report tool

	precision	recall	f1-score	support
Ham Spam	0.83	0.96 0.81	0.89	52 53
avg / total	0.90	0.89	0.89	105

6. Confusion-Matrix

		Predicted	
		Ham Spam	
A -4/	Ham	50	2
Actual	Spam	10	43

- 7. Normalized-Accuracy value: 0.89
- 8. Matthews-Correlation-Coefficient value: 0.78

Part II

1. Data:

	Training set	Test set
Positive reviews	308	308
Negative reviews	249	250

KNN Classifier

2. Parameter tested:

- Number of neighbors to use by default for k_neighbors queries: 5, 10 and 15
- Weight function used in prediction: uniform and distance
- Algorithm used to compute the <u>nearest</u> neighbors: auto, ball_tree and kd_tree
- Leaf size: 30 and 40
- Power parameter for the Minkowski metric: 1 and 2
- Distance metric to use for the tree: minkowski and Euclidean
- Tokenizer: None and stemming_tokenizer
- The lower and upper boundary of the range of n-values for different n-grams to be extracted: (1, 1) and (1, 2)

3. Description on how to performance of the training-validation process using more than one CPU core:

In the case of the SVM method only the CV can be parallelized. Instead, when dealing with decision trees, like random forest, we can parallelize the CV, but also for each CV the program can run different decision trees inside one CV; the same can be said for the KNN method, where we can run parallel jobs for neighbours search.

But in the code we only use the parallelization in the CV, and not inside the classifiers. This is due the CV already uses all the cores, and adding parallelization to the classifiers did not add any advantage, but in fact made the program even slower.

Here in the picture we show again that the program is using the 8 threads on another machine.

nmon-14g CPU Utilis	ation		—Hostna	me=prodi	gy-	-Refresh	= 2secs	 12:42	.07
			+						
CPU User%		ait% Idle		[25		50	7		100
1 100.0						υυυυυυυυι			
2 100.0						υυυυυυυυι			
3 100.0						υσουσουσι			
4 99.0						υυυυυυυυι			
5 100.0						υυυυυυυυι			
6 100.0						υυυυυυυυι			
7 100.0						υυυυυυυυι			
8 99.5	0.5 6	9.0 0.0	UUUUUUL	ισοσοσοσι	JUUUUUUU	UUUUUUUUU	JUUUUUUU	UUUUUUUU	<u>000</u> >
			+ <u></u>						+
Avg 99.8	0.2 6	9.0 0.0	0000000	ioooooo	JUUUUUUU	UUUUUUUUU	JUUUUUUU	UUUUUUUU	<u>000</u> >
T 0			+						+
Top Proces	ses Proc %CPU				S=Pert 4: Res				
FID									
		Size	Res	Res		Res	Shared		
17700	Used	KB	Set	Text	Data	Lib	KB	Min	Maj
17709	Used 99.8	KB 443272	Se t 66868	Text 4	Data 53780	Lib 0 :	KB 10352	Min 0	Maj 0 python
17707	Used 99.8 99.3	KB 443272 446272	Set 66868 69728	Text 4 4	Data 53780 56780	Lib 0 : 0 :	KB L0352 L0352	Min 0 0	Maj 0 python 0 python
17707 17706	Used 99.8 99.3 98.8	KB 443272 446272 446052	Set 66868 69728 69620	Tex t 4 4 4	Data 53780 56780 56560	Lib 0 1 0 1	KB 10352 10352 10352	Min 0 0	Maj 0 python 0 python 0 python
17707 17706 17710	Used 99.8 99.3 98.8 98.8	KB 443272 446272 446052 444368	Set 66868 69728 69620 67972	Text 4 4 4 4	Data 53780 56780 56560 54876	Lib 0 1 0 1 0 1	KB 10352 10352 10352 10352	Min 0 0 0	Maj 0 python 0 python 0 python 0 python
17707 17706 17710 17704	Used 99.8 99.3 98.8 98.8 98.3	KB 443272 446272 446052 444368 445560	Set 66868 69728 69620 67972 68668	Text 4 4 4 4 4	Data 53780 56780 56560 54876 56068	Lib 0 1 0 1 0 1	KB 10352 10352 10352 10352 9984	Min 0 0 0 0	Maj 0 python 0 python 0 python 0 python 0 python
17707 17706 17710 17704 17705	Used 99.8 99.3 98.8 98.8 98.3	KB 443272 446272 446052 444368 445560 444392	Set 66868 69728 69620 67972 68668 67896	Text 4 4 4 4 4 4	Data 53780 56780 56560 54876 56068 54900	Lib 0 1 0 1 0 1 0 1	KB 10352 10352 10352 10352 9984 10352	Min 0 0 0 0	Maj 0 python 0 python 0 python 0 python 0 python 0 python
17707 17706 17710 17704 17705 17711	Used 99.8 99.3 98.8 98.8 98.3 98.3	KB 443272 446272 446052 444368 445560 444392 443548	Set 66868 69728 69620 67972 68668 67896 67132	Text 4 4 4 4 4 4	Data 53780 56780 56560 54876 56068 54900 54056	Lib 0 0 0 0 0 0 0 0 0 0	KB 10352 10352 10352 10352 9984 10352	Min 0 0 0 0 0	Maj 0 python 0 python 0 python 0 python 0 python 0 python 0 python
17707 17706 17710 17704 17705	Used 99.8 99.3 98.8 98.8 98.3	KB 443272 446272 446052 444368 445560 444392	Set 66868 69728 69620 67972 68668 67896	Text 4 4 4 4 4 4	Data 53780 56780 56560 54876 56068 54900	Lib 0 0 0 0 0 0 0 0 0 0 0 0	KB 10352 10352 10352 10352 9984 10352	Min 0 0 0 0	Maj 0 python 0 python 0 python 0 python 0 python 0 python

• n_neighbors 5

weights distance
algorithm auto
leaf_size 30
p 1

• *metric* minkowski

• *ngram_range* (1, 1)

• **tokenizer** function stemming tokenizer

5. Output of the metrics.classification_report tool

	precision	recall	f1-score	support	
Posi nega		0.80 0.94	0.96 0.70	0.87 0.80	308 250
avg /	total	0.86	0.84	0.84	558

6. Confusion-Matrix

		Predicted		
		Ham Spam		
Antund	Ham	296	12	
Actual	Spam	75	175	

- 7. Normalized-Accuracy value: 0.84
- 8. Matthews-Correlation-Coefficient value: 0.70

SVM classifier

1. Parameter tested:

- Kernel type to be used in the algorithm: linear, rbf, poly and sigmoid
- Degree of the polynomial kernel function ('poly'): 2 and 3
- Independent term in kernel function (coef0): 0 and 1
- Kernel coefficient for 'rbf', 'poly' and 'sigmoid': 1e-2, 1e-3 and auto,
- Penalty parameter C of the error term: 1,5 and 10
- Tokenizer: None and stemming_tokenizer
- The lower and upper boundary of the range of n-values for different n-grams to be extracted: (1, 1) and (1, 2)

•	С	1
•	coef0	0.0
•	degree	2
•	gamma	0.01
•	kernel	linear
•	ngram_range	(1, 2)

 tokenizer function stemming_tokenizer

3. Output of the metrics.classification_report tool:

precision	recall	f1-score	support	
Positive negative	0.95 0.98	0.99 0.94	0.97	308 250
avg / total	0.97	0.97	0.97	558

4. Confusion-Matrix

		Predicted		
		Ham Spam		
Antoni	Ham	304	4	
Actual	Spam	15	235	

5. Normalized-Accuracy value: 0.97

6. Matthews-Correlation-Coefficient value: 0.93

Random Forest Classifier Method

1. Parameter tested:

- Number of trees in the forest: 100 and 800.
- Criterion function to measure the quality of a split:gini and entropy,
- The number of features to consider when looking for the best split: sqrt and log2
- The maximum depth of the tree :10,50 and None, where None means that nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
- The minimum number of samples required to split an internal node: 2 and 10
- Tokenizer: None and stemming tokenizer
- The lower and upper boundary of the range of n-values for different n-grams to be extracted: (1, 1) and (1, 2)

n_estimators 800
criterion entropy
max_features sqrt
max_depth 50
min_samples_split 10
ngram_range (1, 1)

• **tokenizer** function stemming_tokenizer

3. Output of the metrics.classification_report tool

	precision	recall	f1-score	support	
Posi nega		0.93 0.96	0.97 0.92	0.95 0.94	308 250
avg /	total	0.95	0.95	0.95	558

4.Confusion-Matrix

		Predicted		
		Ham Spam		
Actual	Ham	299	9	
Actual	Spam	21	229	

- **5. Normalized-Accuracy value: 0.95**
- 6. Matthews-Correlation-Coefficient value: 0.89