Práctica 3 - Determinismo (con resumen) - LFAC

Philips

1er Cuatrimestre 2025

Esquema

¿Como pasar de un AFND a un AFD?

- i. Si en AFND puedo saltar, desde un estado, a otros x estados. Entonces, en el AFD debería poder hacer un solo salto hacia un conjunto que tenga los x estados mencionados.
- ii. Sea un AFND $M = (Q, \Sigma, \delta, q_0, F)$ defino $M' = (\mathcal{P}(Q), \Sigma, \delta', q'_0, F')$
- iii. Ejemplo de estados:

$$p \xrightarrow{\alpha} r, p \xrightarrow{\alpha} s, p \xrightarrow{\alpha} t \Rightarrow \{p\} \xrightarrow{\alpha} \{r, s, t\}$$
$$p \xrightarrow{\alpha} s, q \xrightarrow{\alpha} s \Rightarrow \{p, q\} \xrightarrow{\alpha} \{s\}$$

iv. F' son los subconjuntos que contienen los estados finales del autómata original.

Algoritmo

i. Defino Mover (move) para saber donde puedo saltar, desde cada estado de T, utilizando una transición α .

$$Mover :: \mathcal{P}(Q)x\Sigma \to \mathcal{P}(Q)$$

 $Mover(T, a) = \bigcup_{t \in T} \delta(t, a)$

- ii. Defino $q'_0 = \{q_0\}$
- iii. Inicializo Q' con $\{q_0\}$ y lo marco como no-visitado.
- iv. Mientras que exista $T \in Q'$ no-visitado quiero:
 - \bullet Marcar T visitado.
 - Para cada símbolo $a \in \Sigma$:
 - -U = Mover(T, a)
 - Si $U \notin Q' \to \text{agrego } U$ a Q' como no-visitado
 - Defino $\delta'(T, a) = U$
- v. Defino $F' = \{T \in Q' \mid T \cap F \neq \emptyset\}$. Es decir, los conjuntos de estados que contengan algún estado final.

¿Como pasar de un AFND- λ a un AFD?

- i. Definir $cl_{\lambda} :: \mathcal{P}(Q) \to \mathcal{P}(Q)$ tal que: $cl_{\lambda}(k) = \{r \in Q \mid \exists p \in k, (p, \lambda) \vdash^{*} (r, \lambda)\}$ Es decir, el $cl_{\lambda}(k)$ es el conjunto de estados alcanzables desde k mediante solo transiciones lambda.
 - \rightarrow Tener en cuenta que: $k \subseteq cl_{\lambda}(k)$ y $cl_{\lambda}(c1 \cup c2) = cl_{\lambda}(c1) \cup cl_{\lambda}(c2)$
- ii. Usar el **algoritmo** pero con $q_0'=cl_\lambda(\{q_0\})$ y $Mover(T,a)=cl_\lambda(\bigcup_{t\in T}\delta(t,a))$

1

Resumen

¿Como pasar de un AFND a un AFD?

- I. Arranco con el estado inicial $\rightarrow q'_0 = q_0$ ¿A que conjunto de estados puedo ir con cada letra de Σ ? Formo los conjuntos correspondientes a q_0 y a cada letra de Σ .
- II. Repito para cada conjunto nuevo que haya aparecido en el paso anterior. Esto lo hago hasta que no tenga un nuevo conjunto.
- III. $F' = \{t \in Q \mid t \cap F \neq \emptyset\}$. En otras palabras, un conjunto de estados sera un estado final en F' si contiene un estado que sea final en F.

¿Como pasar de un AFND- λ a un AFD?

- I. Arranco con el estado inicial $\rightarrow q_0' = cl_{\lambda}(q_0)$ ¿A que conjunto de estados puedo ir con cada letra de Σ ? Formo los conjuntos correspondientes a q_0' y a cada letra de Σ . A cada uno de estos conjuntos les hago la clausura- λ
- II. Repito para cada conjunto (cl_{λ}) nuevo que haya aparecido en el paso anterior. Esto lo hago hasta que no tenga un nuevo conjunto.
- III. $F' = \{t \in Q \mid t \cap F \neq \emptyset\}$. En otras palabras, un conjunto de estados sera un estado final en F' si contiene un estado que sea final en F.