Generalized Policy Iteration (Page1-10) N-Step TD method (Page 11) Off-Policy MC method (Page 12-14)

Prof. Subrahmanya Swamy

Challenges of Policy Iteration in Model-Free Context

Policy Iteration

- Policy Evaluation: $V_{k+1}(s) = R_s^{\pi} + \sum_{s'} P_{ss'}^{\pi} V_k(s')$
- Policy Improvement: $\pi_{i+1}(s) \coloneqq argmax_a \ R_s^a + \sum_{s'} P_{ss'}^a \ V_{\pi_i}(s')$

1. Policy Evaluation requires model dynamics

Solution:

- Don't use Iterative Policy Evaluation to estimate V_{π}
- Instead use MC/TD methods to estimate V_{π}

Challenges of Policy Iteration in Model-Free Context

Policy Iteration

- Policy Evaluation: $V_{k+1}(s) = R_s^{\pi} + \sum_{s'} P_{ss'}^{\pi} V_k(s')$
- Policy Improvement: $\pi_{i+1}(s) \coloneqq argmax_a \ R_s^a + \sum_{s'} P_{ss'}^a \ V_{\pi_i}(s')$

2. Policy Improvement requires model dynamics

Solution:

PI
$$\pi_{i+1}(s) \coloneqq argmax_a \ R_s^a + \sum_{s'} P_{ss'}^a \ V_{\pi_i}(s')$$

$$= argmax_a \ Q_{\pi_i}(s, a)$$

- If Q_{π_i} is known, model dynamics not required for PI
- Hence, estimate Q_{π} instead of V_{π} in the PE step

How to estimate $Q_{\pi}(s, a)$?

MC method to estimate V_{π}

•
$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

- Generate multiple episodes starting from s
 - Episode 1: $S_0 = s$, $A_0 \sim \pi$, R_1 , S_1 , $A_1 \sim \pi$, R_2 , S_2 , ..., S_T
 - Episode 2: $S_0 = s$, $A_0 \sim \pi$, R_1 , S_1 , $A_1 \sim \pi$, R_2 , S_2 , ..., S_T
 - ...
 - ...
- Compute sample returns of each episode from state s

•
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

• $V_{\pi}(s) \approx \text{sample avg of the returns}$

MC method to estimate Q_{π}

•
$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

- Generate multiple episodes starting from (s, a)
 - Episode 1: $S_0 = s$, $A_0 = a$, R_1 , S_1 , $A_1 \sim \pi$, R_2 , S_2 , ..., S_T
 - Episode 2: $S_0 = s$, $A_0 = a$, R_1 , S_1 , $A_1 \sim \pi$, R_2 , S_2 , ..., S_T
 - ...
 - ...
- Compute sample returns of those episodes starting from (s, a)

•
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

• $Q_{\pi}(s, a) \approx \text{sample avg of the returns}$

TD Method for Q_{π} (SARSA)

$$Q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a V_{\pi}(s')$$

$$Q_{\pi}(s, a) = \mathbb{E}[R_{t+1} | S_t = s, A_t = a] + \gamma \mathbb{E}[V_{\pi}(S_{t+1})]$$

$$= \mathbb{E}[R_{t+1} | S_t = s, A_t = a] + \gamma \mathbb{E}[\mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1})]]$$

$$\approx R_{t+1} + \gamma Q_{\pi}(S_{t+1}, A_{t+1})$$

$$Q_{new}(S_t, A_t) = Q_{old}(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q_{old}(S_{t+1}, A_{t+1}) - Q_{old}(S_t, A_t)\right)$$

$$SARSA$$

Q_{π} Estimation: Challenges

Observation: Only Deterministic policies are encountered in Policy Iteration

Issue with Deterministic Policy

- Consider 3 states A, B, C
- 4 actions in each state: Left, Right, Up, Down
- Consider a deterministic policy

$$\pi(A) = Right$$

 $\pi(B) = Right$
 $\pi(C) = Left$

Sample Episode

$$A$$
, Left, -1 , B , Right, -1 , A , Right, -1 , C , Left, -1 , ...

Generalized Policy Iteration (GPI)

Policy **Iteration** Policy Policy Evaluation **Improvement** $\pi_0 \to Q_{\pi_0} \to \pi_1 \to Q_{\pi_1} \to \pi_2 \to Q_{\pi_2} \to \dots$ **GPI** Approx. ϵ –greedy **Policy** Policy **Evaluation Improvement**

N-Step TD Method

Off-Policy MC

Importance Sampling

pling
$$E_{p}[f(x)] = \sum_{x} f(x) p(x = x)$$

$$= \sum_{x} f(x) b(x = x) \times \frac{p(x = x)}{b(x = x)}$$

$$= \sum_{x} \left(f(x) \cdot \frac{p(x = x)}{b(x = x)} \right) b(x = x)$$

$$= \sum_{x} \left(f(x) \cdot \frac{p(x = x)}{b(x = x)} \right) b(x = x)$$

$$= \sum_{x} g(x) b(x = x) = E_{p}[g(x)] \approx g(x) + g(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) + f(x) p(x) + \cdots + g(x)$$

$$= \sum_{x} f(x) p(x) +$$

Off-Policy MC MC for Vm.

$$V_{\underline{\pi}}(s)$$
 $S_{0} = S, \quad A_{0} \sim \overline{\Pi} \quad R_{1}, \quad S_{1}, \quad A_{1} \sim \overline{\pi}, \quad \ldots \quad G^{(1)}$
 $V_{\underline{\pi}}(s) \approx \overline{G^{(1)}}_{1} + G^{(2)}_{1} + G^{(2)}_{1}$
 $S_{0} = S, \quad A_{0} \sim \overline{\Pi} \quad R_{1}, \quad S_{1}, \quad A_{1} \sim \overline{\pi}, \quad \ldots \quad G^{(1)}_{1}$
 $S_{0} = S, \quad A_{0} \sim \overline{\Pi} \quad R_{1}, \quad S_{1}, \quad A_{1} \sim \overline{\pi}, \quad \ldots \quad G^{(1)}_{1} \quad V_{\underline{\pi}}(s) \approx \overline{G^{(1)}}_{1} + G^{(2)}_{1} + G^{(2)}_{1}$
 $S_{0} = S, \quad A_{0} \sim \overline{\Pi} \quad R_{1}, \quad S_{1}, \quad A_{1} \sim \overline{\pi}, \quad \ldots \quad G^{(1)}_{1} \quad V_{\underline{\pi}}(s) \approx \overline{G^{(1)}}_{1} + G^{(2)}_{1} + G^{(2)}_{2} + G^{(2)}_{2}$