

Tema 1.3 Introducción a las Redes Neuronales

Deep Learning

Máster Oficial en Ingeniería Informática

Universidad de Sevilla

Contenido

- Regresión lineal
- El perceptrón
- Inspiración biológica
- Neurona artificial
- Redes multicapa
- Formulación matricial
- Aplicaciones

Máster Universitario en Ingeniería Informática

- Cómo depende el valor de una variable continua (objetivo) con respecto variables de entrada (características).
- La función f aproxima y a través de la entrada x como:

$$y \approx f = Wx$$

- Siendo $x \in \mathbb{R}^n$ y $W \in \mathbb{R}^n$
- Si pensamos en 1 dimensión, es la ecuación de la recta.
 - Pero estaría pasando por el punto (0,0)
- Añadimos bias:

$$f = Wx + b$$

Tamaño (m²)	Precio (€)
42,45	91241
54,25	101251
32,5	83051
62,3	110341
28,4	67124
45,69	98525
58,2	104251

Tamaño (m²)	Precio (€)
42,45	91241
54,25	101251
32,5	83051
62,3	110341
28,4	67124
45,69	98525
58,2	104251

Tamaño (m²)	Precio (€)
42,45	91241
54,25	101251
32,5	83051
62,3	110341
28,4	67124
45,69	98525
58,2	104251

Tamaño (m²)	Precio (€)
42,45	91241
54,25	101251
32,5	83051
62,3	110341
28,4	67124
45,69	98525
58,2	104251

Tamaño (m²)	Precio (€)
42,45	91241
54,25	101251
32,5	83051
62,3	110341
28,4	67124
45,69	98525
58,2	104251

Tamaño (m²)	Precio (€)
42,45	91241
54,25	101251
32,5	83051
62,3	110341
28,4	67124
45,69	98525
58,2	104251

$$y \approx f = Wx + b = 0.8233x + 52,096$$

Tamaño (m²)	Número habitaciones	Número plantas	Años construido	Precio (€)
42,45	2	1	10	91241
54,25	3	2	23	101251
32,5	2	1	5	83051
62,3	4	3	41	110341
28,4	1	1	24	67124

- Número características: n = 4
- y^i valor de la variable y para el ejemplo i
- x^i las características del ejemplo i
- x_i^i el valor de característica j del ejemplo i

X_1	\mathbf{x}_2	X_3	X_4
-------	----------------	-------	-------

Tamaño (m²)	Número habitaciones	Número plantas	Años construido	Precio (€)
42,45	2	1	10	91241
54,25	3	2	23	101251
32,5	2	1	5	83051
62,3	4	3	41	110341
28,4	1	1	24	67124

- Número características: n = 4
- y^i valor de la variable y para el ejemplo i
- x^i las características del ejemplo i
- x_i^i el valor de característica j del ejemplo i

x_1	X_2	X_3	X_4	y

Tamaño (m²)	Número habitaciones	Número plantas	Años construido	Precio (€)
42,45	2	1	10	91241
54,25	3	2	23	101251
32,5	2	1	5	83051
62,3	4	3	41	110341
28,4	1	1	24	67124

- Número características: n = 4
- y^i valor de la variable y para el ejemplo i
- x^i las características del ejemplo i
- x_i^i el valor de característica j del ejemplo i

1/

Regresión lineal

\mathbf{x}_1	x ₂	x ₃	X ₄	y
Tamaño (m²)	Número habitaciones	Número plantas	Años construido	Precio (€)
42,45	2	1	10	91241
54,25	3	2	23	101251
32,5	2	1	5	83051
62,3	4	3	41	110341
28,4	1	1	24	67124

 $f = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$

- Número características: n = 4
- y^i valor de la variable y para el ejemplo i
- xⁱ las características del ejemplo i
- x_i^i el valor de característica j del ejemplo i

V

x ₁	x ₂	X ₃	x ₄	y
Tamaño (m²)	Número habitaciones	Número plantas	Años construido	Precio (€)
42,45	2	1	10	91241
54,25	3	2	23	101251
32,5	2	1	5	83051
62,3	4	3	41	110341
28,4	1	1	24	67124

- Número características: n = 4
- y^i valor de la variable y para el ejemplo i
- x^i las características del ejemplo i
- x_i^i el valor de característica j del ejemplo i

$$f = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

$$f = 80 + 0.9x_1 + 0.5x_2 + 3x_3 - 2x_4$$

Máster Universitario en Ingeniería Informática

Perceptrón simple

- Frank Rosenblatt, ~1957
- Clasificación binaria (dos clases, c1 y c2).
- La función f retorna valores 0 (para c1) o 1 (para c2).

$$f = S(Wx + b)$$

- Donde la función S, o umbral, es:
 - 1, si Wx + b > valor_umbral
 - 0 en otro caso
- Si pensamos en 2 dimensiones, sería partir el plano mediante una recta.

Inspiración biológica

- La neurona, 1888, Santiago Ramón y Cajal
- Podemos reconocer diferentes partes:
 - El cuerpo central, llamado **soma**, que contiene el núcleo celular.
 - Una prolongación del soma, el **axón**.
 - Una ramificación terminal, dendritas.
 - Una zona de conexión entre una neurona y otra, conocida como sinapsis.

Neurona artificial

Perceptrón (1943, McCulloch y Pitts), modelo neuronal con n entradas, que consta de:

- Un conjunto de **entradas x₁,...x_n**
- Los **pesos** sinápticos $w_1,...w_n$, correspondientes a cada entrada
- Una entrada de **umbral**, con $\mathbf{w_0}$ y $\mathbf{x_0} = 1$
- Una función de agregación, Σ
- Una función de activación, f
- Una salida, o

$$o = f\left(\sum_{i=0}^{n} w_i \, x_i\right)$$

Neurona artificial

- La Función de Activación busca:
 - **Normalizar** valores ([0,1], [-1,1],...)
 - Preferiblemente, funciones no lineales.
 - Funciones de activación clásicas:

• Bipolar:
$$sgn(x) = \begin{cases} 1, si \ x > 0 \\ -1, si \ x \le 0 \end{cases}$$

• Umbral:
$$umbral(x) = \begin{cases} 1, si \ x > 0 \\ 0, si \ x \le 0 \end{cases}$$

- Sigmoide o logística: $S(x) = \frac{1}{1+e^{-x}}$
- **Sigmoide** es muy común (**regresión logística**). Al devolver valores entre 0 y 1, se suele usar cuando se quiere representar una probabilidad

- Organizando perceptrones simples en múltiples capas (MLP):
 - Capa de **neuronas** de entrada
 - Capa/s de **neuronas** ocultas
 - Capa de **neuronas** de salida
- Cada neurona de una capa conectada con todas de la capa anterior (fully connected)_{xm}
- Capa de entrada sin pesos

- ¿Cuántas neuronas en capa de salida?
- Clasificación binaria:
 - K=2 clases
 - Variable de salida es y=0 o 1
 - 1 unidad de salida
- Clasificación multiclase:
 - K≥3 clases
 - K variables de salida, , y₁...y_k
 - K unidades de salida
 - Se considera la más alta

• También se les denomina redes **feed-forward**, diferentes **funciones** que **componen** a **f** hasta dar la salida **o**:

H1 Weights =
$$(1.0, -2.0, 2.0)$$

H2 Weights =
$$(2.0, 1.0, -4.0)$$

H3 Weights =
$$(1.0, -1.0, 0.0)$$

O1 Weights =
$$(-3.0, 1.0, -3.0)$$

O2 Weights =
$$(0.0, 1.0, 2.0)$$

H1 Weights =
$$(1.0, -2.0, 2.0)$$

H2 Weights =
$$(2.0, 1.0, -4.0)$$

H3 Weights =
$$(1.0, -1.0, 0.0)$$

O1 Weights =
$$(-3.0, 1.0, -3.0)$$

O2 Weights =
$$(0.0, 1.0, 2.0)$$

$$H1 = S(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = S(-1.9) = 0.13$$

$$H2 = S(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = S(3.1) = 0.96$$

$$H3 = S(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = S(-0.4) = 0.40$$

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

$$O1 = S(0.13 * -3.0 + 0.96 * 1.0 + 0.40 * -3.0) = S(-.63) = 0.35$$

 $O2 = S(0.13 * 0.0 + 0.96 * 1.0 + 0.40 * 2.0) = S(1.76) = 0.85$

Formulación matricial

• Una capa oculta (k neuronas)

S(w

$$) = 0$$

H1 Weights =
$$(1.0, -2.0, 2.0)$$

H2 Weights =
$$(2.0, 1.0, -4.0)$$

H3 Weights =
$$(1.0, -1.0, 0.0)$$

Hidden Layer Weights Inputs

Hidden Layer Outputs

Aplicaciones

- Para problemas que se pueden expresar **numéricamente** (discretos o continuos)
- Se suelen utilizar en dominios en los que el volumen de datos es muy alto, y puede presentar ruido: imágenes, audio, bioinformática, etc.
- En los que interesa la solución, pero no el por qué de la misma
- Problemas en los que es asumible que se necesite previamente un tiempo largo de entrenamiento de la red
- Y en los que se requieren tiempos cortos para evaluar una nueva instancia

Recapitulación

- Las redes neuronales son una abstracción del concepto biológico.
- El **perceptrón**, o la neurona artificial básica, procesa las entradas mediante una función de agregación y usando unos pesos, y pasando por una función de activación.
- Se busca la no linealidad.
- Una red neuronal artificial se puede implementar mediante una formulación matricial.