

Objectives

- What is Entity-Relationship modelling?
- How to use Entity–Relationship (ER) modeling in database design.
- Basic concepts associated with ER model.
- Diagrammatic technique for displaying ER model using Unified Modeling Language (UML).

What is Entity-Relationship modelling?

- Entity–Relationship (ER) modeling is a topdown database design approach.
- Starts with identification of entities and relationships between the entities, which are of interest to the organization.
- Then applies successive top-down refinements to identify lower-level entities, relationships, and the associated attributes.

6

Concepts of the ER Model

- Entity types
- Relationship types
- Attributes

COMP211

Entity Type

- · Entity types Attributes
- · Relationship type

- Entity type
 - Group of objects with same properties, identified by enterprise as having an independent existence.
 - The basic concept of ER model.
 - Each uniquely identifiable object of an entity type is referred to as an entity occurrence (which is the same as the concept of record in relational model).

6

Diagrammatic representation of Staff and Branch entity types

 Each entity type is shown as a rectangle, labeled with the name of the entity, which is usually a singular noun.

 In UML, the first letter of each word in the entity name is uppercase.

COMP211

Entity types

Relationship type

Attributes

Strong and Weak Entity Types

- Strong Entity Type
 - Entity type that is not existence-dependent on some other entity type.
 - A characteristic is that each entity occurrence is uniquely identifiable using the primary key attribute(s) of that entity type.
- Weak Entity Type
 - Entity type that is existence-dependent on some other entity type. It cannot exist without the entity with which it has a relationship.
 - Such weak entity has a primary key that is partially or totally derived from the owner entity in the relationship.
 - A characteristic is that each entity occurrence has a mandatory foreign key — a foreign key attribute that cannot be null.

8

Example on Strong and Weak entity type Note that there is no primary key for the Preference entity. We can uniquely identify each

- We can uniquely identify each preference only through the relationship that a preference has with a client.
- Strong entity

 Client

 States ▶ Preference

 clientNo {PK}
 name
 fName
 IName
 telNo
- We will add clientNo as the foreign key into Preference entity in later stage of database design (logical database design) and here, the foreign key of clientNo cannot be null.
- In the example, the Preference entity is described as having existence dependency for the Client entity, which is referred to as being the owner entity.
- Why not merge the two entities in the design? What reason can you think of?

COMP211

Other Examples of weak entity types

Relationship types

Entity types

Relationship type:
 Attributes

- Can you think of any other examples of weak entities?
 - A company insurance policy insures an employee and any dependents, the DEPENDENT cannot exist without the EMPLOYEE; that is, a person cannot get insurance coverage as a dependent unless the person is a dependent of an employee. DEPENDENT is the weak entity in the relationship "EMPLOYEE has DEPENDENT".
 - An Order has OrderItems

10

9

Relationship Types

- Relationship types
- Attributes

- Relationship type
 - Set of meaningful associations among entity types.
 - Each relationship type is given a name that describes its function.
 - A uniquely identifiable association which includes one occurrence from each participating entity type is called relationship occurrence.

11

ER diagram of Branch *Has* Staff relationship

- Entity types
 Relationship types
- The concepts of ER model can be used to represent the relationships between entities.
- Each relationship type is shown as a line connecting the associated entity types and labeled with the name of the relationship.
- Usually, a relationship name is a verb, with the first letter of each word shown in upper case.
- An arrow symbol is placed beside the relationship name indicating the correct direction.
- Whenever possible, a relationship name should be unique for a given ER model.

COMP211

Entity types
 Relationship types

Attributes

Branch has staff

Degree of Relationship Types

- Number of participating entity types (also referred to as <u>participants</u>) in a relationship is called the <u>degree of relationship type</u>.
- Relationship of degree
 - two is binary
 - three is ternary
 - four is quaternary.

14

· Relationship types

Recursive Relationship

- Recursive Relationship
 - Relationship type where the same entity type participates more than once in different roles.
 - Sometimes called *unary* relationships.
- Relationships may be given role names to indicate the purpose that each participating entity type plays in a relationship.

Attributes

- Entity types
 Relationship types
- Attributes

- Attribute
 - Property of an entity or a relationship type.
- Attribute Domain
 - Data type and set of allowable values for one or more attributes.
- Simple Attribute
 - Attribute composed of a single component with an independent existence. E.g. salary
- Composite Attribute
 - Attribute composed of multiple components, each with an independent existence.
 - For example, address attribute can be subdivided into street, city.

COMP211

21

- Entity types
- Relationship type:
- Attributes

Multi-valued Attributes

- Single-valued Attribute
 - Attribute that holds a single value for each occurrence of an entity type.
 - For example, each occurrence of Branch entity type has a single value for the branch number.
- Multi-valued Attribute
 - Attribute that holds multiple values for each occurrence of an entity type.
 - For example
 - each occurrence of the Branch entity type can have multiple values for the telNo attribute;
 - a person may have several college degrees
 - A multi-valued attribute may have a set of numbers with upper and lower limits.

22

Derived Attributes

- Entity types
 Relationship types
- Attributes

Derived Attribute

- Attribute that represents a value that is derivable from the value of a related attribute, or set of attributes, not necessarily in the same entity type.
- For example,
 - the duration attribute of the Lease entity is calculated from the rentStart and rentFinish attributes
 - an employee's age may be found by computing the integer value of the difference between the current date and employee's date of birth

23 COMP211

Entity types

Relationship types

Attributes

Storing Derived Attributes?

- Should Derived Attribute be stored?
 - The decision to store derived attributes in database tables depends on the processing requirements and the constraints placed on a particular application. The designer should be able to balance the design in accordance with such constraints.

NOT STORED
Saves storage space
Computation always yields current value
historical data
ce to ensure Uses CPU processing cycles
ecially if any values Increases data access time
e Adds coding complexity to queries

24

Examples of Attributes on Relationships

- Entity types
 Relationship types
- Attributes
- Can you think of any other examples of attributes on relationships?
 - A student enrolls in courses
 - A customer books flight tickets

27

Structural Constraints

- Main type of constraint on relationships is called multiplicity.
- Multiplicity
 - number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
 - Represents policies (called business rules) established by user or enterprise.

29

COMP211

Structural Constraints (cont'd)

- The most common degree for relationships is binary.
- Binary relationships are generally referred to as being:
 - one-to-one (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)
- Examples:
 - A member of staff manages a branch (1:1)
 - A member of staff oversees properties for rent (1:*)
 - Newspapers advertise properties for rent (*:*)

30

One-to-Many (1:*) Relationships (cont'd)

- If we know the actual minimum and maximum values for the multiplicity, we can display these instead.
- For example, if a member of staff oversees a minimum of zero and a maximum of 100 properties for rent, we can write "0..*" with "0..100"

Question to Reflect on

- Compare the difference between the two models we have discussed:
 - Relational model
 - Entity-relationship model

36

Summary

We have covered the following:

- Binary relationships
 - One-to-one (1:1)
 - One-to-many(1:*)
 - Many-to-many (*:*)

• Terms:

Composite attribute, Multi-valued attribute, Derived attribute

37