凸函数的世界 凸分析和凸优化

枫聆

2021年6月22日

目录

1	数学优化问题	2
2	基本概念	3
	2.1 仿射集 (affine set)	3

数学优化问题

Definition 1.1. 数学优化问题或者说优化问题可以写成如下形式

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i$, $i = 1, 2, \dots, m$.

其中向量 $x = (x_1, \dots, x_n) \in \mathbf{R}^n$ 称为问题的<mark>优化变量</mark>,函数 $f_0 : \mathbf{R}^n \to \mathbb{R}$ 称为<mark>目标函数</mark>,函数 $f_i : \mathbf{R}^n \to \mathbb{R}$ 被称为约束函数,常数 b_i 称为约束上限或者约束边界.

Definition 1.2. 那些满足约束的向量 z,即使得上述不等式成立的向量,它们构成一个<mark>解集</mark> Z. 这个解集中使得 $f_0(z)$ 最小的那些 x^* 称为当前优化问题的最优解,即

$$\forall z \in Z, f_i(z) \le b_i, \ i = 1, 2, \dots, m \text{ and } f(x^*) \le f(z).$$

基本概念

仿射集 (affine set)

Definition 2.1. (\mathbf{R}^n (n 维实数向量空间) 上直线的定义) 对任意两个 \mathbf{R}^n 中不同两个 \mathbf{x} 和 \mathbf{y} , 形如

$$\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}) = (1 - \lambda)\mathbf{x} + \lambda\mathbf{y}, \ \lambda \in \mathbf{R}$$

的点集被称为过 x 和 y 的直线.

Definition 2.2. 对于 \mathbb{R}^n 中的子集 M, 如果对于任意的 $\mathbf{x}, \mathbf{y} \in M$ 和 $\lambda \in \mathbb{R}$ 都有 $(1-\lambda)\mathbf{x} + \lambda \mathbf{y} \in M$,则称 M 为 \mathbb{R}^n 中的<mark>仿射集</mark>(affine set). 相关书与仿射集同义的名词有<u>仿射流形</u>(affine manifold),<u>仿射变量</u>(affine variety),线性变量(linear variety) 或者flat(平坦的).

Theorem 2.3. \mathbb{R}^n 上的所有子空间都是仿射集. 反过来含 0 的仿射集都是子空间.

证明. 由向量空间子空间的定义,给定任意的子空间 V,在scalar multiplication和vector addition下封闭的,自然也满足仿射集的定义.

相反, 若给定一个仿射集 M, 有 $\mathbf{0} \in M$, 因此

$$\forall \mathbf{x} \in M, \lambda x = (1 - \lambda)\mathbf{0} + \lambda \mathbf{x} \in M,$$

这就证明了scalar multiplication. 对任意的 $\forall \mathbf{x}, \mathbf{y} \in M$,有

$$\mathbf{x} + \mathbf{y} = 2(\frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y}) \in M.$$

即证明了vector addition.

Definition 2.4. 对于 $M \subseteq \mathbb{R}^n$ 及 $\mathbf{a} \in M$. M 关于 \mathbf{a} 的<mark>平移</mark>(translate) 定义为

$$M + \mathbf{a} = \{ \mathbf{x} + \mathbf{a} \mid \mathbf{x} \in M \}.$$

Definition 2.5. 给定仿射集 M 和仿射集 L,若可以找到一个 a 使得满足关系

$$M = L + \mathbf{a},$$

则称 M 和 L 平行.