Методы машинного обучения. Преобразование данных, оценивание и выбор моделей

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-21-22 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 14 декабря 2021

Содержание

- 🚺 Предварительная обработка данных
 - Преобразование признаков
 - Обработка пропущенных значений
 - Генерация признаков

- Оценивание и выбор моделей
 - Анализ ошибок
 - Выбор моделей
 - Автоматический выбор моделей

Межотраслевой стандарт интеллектуального анализа данных

CRISP-DM: CRoss Industry Standard Process for Data Mining (1999)

Компании-инициаторы:

- SPSS
- Teradata
- Daimler AG
- NCR Corp.
- OHRA

Шаги процесса:

- понимание бизнеса
- понимание данных
- предобработка данных
- моделирование
- оценивание
- внедрение

Шкалы измерения

Измерительная шкала — множество Z допустимых значений, получаемых в результате измерения признака f(x), f:X o Z

Тип шкалы определяется множествами

- ullet допустимых биективных преобразований $\psi\colon Z o Z'$
- ullet допустимых операций над значениями из шкалы Z

Классификация типов измерительных шкал по Стивенсу:

шкала	D	$\psi(z)$	операции
логическая (boolean)	0, 1	биективные	$\vee \wedge \neg$
номинальная (nominal)	$< \infty$	биективные	$= \neq \in$
порядковая (ordinal)	$< \infty$	монотонные	$= \neq \in < >$
интервальная (interval)	\mathbb{R}	az + b	<>+-
отношений (ratio)	\mathbb{R}	az	<>+-×÷
абсолютная (absolute)	\mathbb{R}	Z	любые

S.S. Stevens. On the Theory of Scales of Measurement // Science, 1946.

Примеры величин, измеряемых в различных шкалах

- Логическая наличие/отсутствие свойства, ответ «да/нет»
- Номинальная (можно переименовать или перенумеровать)
 идентификаторы классов, людей, регионов, фирм, товаров
- Порядковая (порядок частичный или линейный) уровень образования, тяжесть болезни, степень согласия
- Ранговая (частный случай порядковой: 1,2,3,..., N)
 оценка в баллах, шкалы Рихтера, Бофорта, Мооса
- Интервальная (можно сдвигать положение нуля)
 время, географическая широта, температура (°C, °F)
- Отношений (можно менять единицы измерения)
 масса, скорость, объём, сила, давление, заряд, яркость
- Абсолютная число предметов, частота события, оценка вероятности

Ослабление шкалы

Номинальный \rightarrow **много бинарных** (one-hot-encoding):

- ullet $f_{v}(x)=ig[f(x)=vig]$, для всех значений v признака
- ullet $f_A(x) = [f(x) \in A]$, индикаторный признак подмножества A

Числовой или порядковый o бинарный:

•
$$f_{a,b}(x) = \begin{bmatrix} a \leqslant f(x) \leqslant b \end{bmatrix}$$
 для заданного отрезка $[a,b]$

Числовой \rightarrow ранговый (data binning, quantization):

•
$$f_a(x) = \sum_{k=1}^K [f(x) \geqslant a_k]$$
, номер интервала сетки a_1, \ldots, a_K

Ослабление шкалы всегда влечёт потерю информации

Усиление шкалы

Номинальный \rightarrow числовой:

• категория заменяется частотой:

$$f'(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) = f(x)]$$

• условное среднее числового признака g(x):

$$f'(x) = \max(g|f(x)) = \frac{\sum_{i=1}^{\ell} g(x_i)[f(x_i) = f(x)]}{\sum_{i=1}^{\ell} [f(x_i) = f(x)]},$$

ullet условное среднее целевой величины y(x): $f'(x) = ext{mean} \big(y | f(x) ig)$, возможно переобучение!

Порядковый \rightarrow числовой:

• значение заменяется частотой:

$$f'(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) \leqslant f(x)]$$

Нормализация и стандартизация числовых шкал

Многие методы накапливают меньше вычислительных погрешностей, если признаки приведены к одному масштабу

$$ullet$$
 $f_j'(x)=rac{f_j(x)-f_j^{ ext{min}}}{f_j^{ ext{max}}-f_j^{ ext{min}}}$ — нормализация, приведение к $[0,1]$

$$\bullet$$
 $f_j'(x) = rac{f_j(x)}{|f_j|^{\mathsf{max}}}$ — масштабирование с сохранением нуля

•
$$f_j'(x) = \frac{f_j(x) - \mu_j}{\sigma_j}$$
 — стандартизация

 $f_j^{\mathsf{max}},\;|f_j|^{\mathsf{max}},\;f_j^{\mathsf{min}},\;\mu_j,\;\sigma_j$ определяются по обучающей выборке

Для повышения устойчивости к выбросам можно отбрасывать 5% наименьших и наибольших значений признака

Трансформация вида распределения

 F_j — функция распределения (c.d.f.) признака f_j Эмпирическая функция распределения (кусочно-постоянная):

$$\hat{F}_j(z) = \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f_j(x_i) \leqslant z \right]$$

- $f'_j(x) = F_j(f_j(x))$ преобразование $f_j(x)$ в равномерную на отрезке [0,1] случайную величину
- $f_j'(x) = \Phi^{-1}(F_j(f_j(x)))$ преобразование $f_j(x)$ в случайную величину с заданной функцией распределения Φ (например, в нормальную)
- $f_j'(x) = \ln(1 + f_j(x))$ преобразование случайной величины «с тяжёлым правым хвостом» (объёмы производства, перевозок, продаж)

Подходы к обработке пропущенных значений

- Игнорировать объекты или признаки с пропусками :(
- ullet Заполнить пропущенные значения признака f:
 - средним или медианным значением $ar{f}$
- Прогнозировать значения признака f по остальным:
 - регрессия для вещественного признака f
 - классификация для дискретного признака f
 - матричные разложения, например, разреженный SVD
- Использовать модели, способные обрабатывать пропуски:
 - решающие деревья
 - голосование низкоразмерных базовых предикторов
- ullet Ввести бинарный признак $f'(x) = igl[f(x) \$ не известноigr]

Непараметрическая регрессия для заполнения пропусков

Формула Надарая-Ватсона, ядерное сглаживание:

$$\hat{f}_j(x_i) = \frac{\sum_u f_j(u)S(u,x_i)}{\sum_u S(u,x_i)}$$

где \sum_u — сумма по всем объектам $u \in X^\ell$ с известным $f_j(u)$

Возможные конструкции функций сходства S(u,x):

•
$$S(u,x) = K\left(\frac{\rho(u,x)}{h}\right), \quad \rho^2(u,x) = \frac{1}{|J_{ux}|} \sum_{j \in J_{ux}} \left(f_j(u) - f_j(x)\right)^2$$

$$ullet$$
 $S(u,x)=rac{1}{|J_{ux}|}\sum_{j\in J_{ux}}f_j(u)f_j(x)$ — скалярное произведение

•
$$S(u,x)=rac{\sum_{j\in J_{ux}}f_j(u)f_j(x)}{\sqrt{\sum_{j\in J_{ux}}f_j^2(u)}\sqrt{\sum_{j\in J_{ux}}f_j^2(x)}}$$
 — косинусная ф.сх.

где J_{ux} — множество признаков j с известными $f_j(x)$ и $f_j(u)$

Разреженное низкоранговое матричное разложение

Дано: матрица
$$F = \left(f_{ij} = f_j(x_i)\right)_{\ell \times n}, \ \Omega \subseteq \{1, \dots, \ell\} \times \{1, \dots, n\}$$
 Найти: матрицы $G = (g_{it})_{\ell \times k}$ и $U = (u_{it})_{n \times k}$ такие, что

$$||F - GU^{\mathsf{T}}|| = \sum_{(i,j) \in \Omega} \left(\underbrace{f_{ij} - \langle g_i, u_j \rangle}_{\varepsilon_{ij}} \right)^2 = \sum_{(i,j) \in \Omega} \left(f_{ij} - \sum_{t=1}^k g_{it} u_{jt} \right)^2 \to \min_{G,U}$$

Классический SVD неприменим для разреженной задачи.

Метод стохастического градиента: перебираем $(i,j) \in \Omega$ в случайном порядке, делаем градиентные шаги $(\varepsilon_{ij})^2 \to \min_{\sigma_i,\mu_i}$

$$g_{it} := g_{it} + \eta \varepsilon_{ij} u_{jt}, \quad t = 1, \dots, k$$

 $u_{jt} := u_{jt} + \eta \varepsilon_{ij} g_{it}, \quad t = 1, \dots, k$

 $\hat{f}_j(x_i) = \langle g_i, u_j
angle$ — восстановление пропущенных значений g_{it} — новые признаки x_i в пространстве размерности k

Классические подходы к генерации признаков

Feature Engineering: признаки вычисляются по формулам, которые зависят от задачи, требуют изобретательности и знаний предметной области. Долго, дорого.

- Прогнозирование временных рядов:
 признаки агрегируются по предыстории различной глубины
- Распознавание лиц:
 признаки размера и формы черт лица
- Классификация и поиск текстов:
 признаки частоты слов, терминов, названий, синонимов
- Распознавание речи: спектральные, фонетические, лингвистические признаки

Преобразование признаков Обработка пропущенных значений Генерация признаков

Иногда удачные признаки решают задачу без ML

Copeвнование «Ford Classification Challenge» (2008) Задача детектирования поломок по сигналу датчика

Признаки, генерируемые по исходным временным рядам, слабы:

Среди признаков рядов их производных оказывается идеальный:

https://dyakonov.org/2018/06/28/простые-методы-анализа-данных/

Общий подход — автоматическая векторизация данных

Глубокие нейронные сети объединили этапы векторизации данных и обучения предсказательной модели

- Компьютерное зрение
- Обработка текстов естественного языка
- Распознавание и синтез речи
- Анализ транзакционных данных
- Анализ сигналов
- Прогнозирование временных рядов
- Анализ графов
- ...

(в следующем семестре)

Преобразование признаков Обработка пропущенных значений Генерация признаков

Концепция фундаментальных моделей (Foundation Models)

Обучаемая векторизация данных — глобальный тренд в ML

R.Bommasani et al. (Stanford University) On the opportunities and risks of foundation models // CoRR, 20 August 2021.

Методология анализа ошибок

 $\mathscr{L}(x_i,a)$ — функция потерь (чем меньше, тем лучше) Критерий средней потери алгоритма a на выборке U:

$$Q(a) = \frac{1}{|U|} \sum_{x_i \in U} \mathscr{L}(x_i, a) \ o \ ext{min}$$

- ullet Ранжировать объекты по убыванию потерь $\mathscr{L}_i = \mathscr{L}(x_i,a)$
- Сравнить распределения потерь на обучении и тесте.
- Если сильно отличаются, то надо устранять переобучение.
- Есть ли объекты со сверхбольшими потерями, много ли их?
- Можно ли от них избавиться? Может, это выбросы?
- Если нет, то что общего у объектов с большими потерями?
- Как модифицировать модель, чтобы уменьшить потери?
- Может, что-то не так с функцией потерь?

Две модели, «базовая А» и «улучшенная В», построенные по историческим данным X^ℓ , тестируются по метрике качества Q на новых данных X^k

В чём отличия A/B тестирования от обычного hold-out?

- X^k это именно будущие данные (out-of-time), а не часть прошлых данных, исключённых из обучения (out-of-sample)
- больше реализма: за это время могут измениться свойства потока данных, реальные данные не обязаны быть i.i.d.
- однократный выбор модели почти не переобучается
- ullet накопление данных X^k может потребовать много времени
- работа модели может влиять на формирование потока данных (например, в рекомендательных системах)

Мета-обучение (meta-learning, learning to learn)

Дано: выборка «задача, метод» ightarrow критерии качества

Найти: модель предсказания, каким методом решать задачу

Критерий: точность предсказания оптимального метода

Признаки:

- размерные характеристики задачи
- характеристики пространства признаков: типы, выбросы, пропуски, корреляции
- результаты быстрых низкоразмерных методов

Joaquin Vanschoren. Meta-Learning: A Survey. 2018.

Joaquin Vanschoren. Meta-learning Architectures: Collecting, Organizing and Exploiting Meta-knowledge. 2009.

Автоматический выбор моделей и гиперпараметров (AutoML)

Проблема:

подбор структуры модели (архитектуры нейросети) и гиперпараметров требует слишком много ресурсов

Дано: выборка «задача, структура» ightarrow критерии качества

Найти: какой следующий эксперимент провести с моделью

Критерий:

минимизация затрат ресурсов на автоматический поиск оптимальной модели, сопоставимой по качеству с моделями, построенными профессиональными исследователями

Близкая классическая задача — планирование экспериментов

Xin He, Kaiyong Zhao, Xiaowen Chu. AutoML: A Survey of the State-of-the-Art. 2019

https://github.com/sberbank-ai-lab/LightAutoML — AutoML от Сбербанка

- Культура анализа данных:
 - смотреть на данные глазами
 - делать анализ ошибок
 - в случае неудачи порождать новые гипотезы
 - учитывать сильные и слабые стороны методов
- Автоматизация распространяется по схеме CRISP-DM, охватывая не только моделирование, но и предобработку, оценивание и выбор моделей
- Современный подход к векторизации данных глубокие нейронные сети (об этом в следующем семестре)