Portfolio VaR 投资组合 VaR

- 互相独立的同质性资产
 - o n: 资产的数量
 - o m: 每个资产的价值 (每个资产的价值一样)
 - p: 每个资产的**平均**违约概率 (资产之间违约互相**独立**)
 - p_{wcl}: 每个资产**最坏**违约概率 (一般未知)
 - o α: VaR 的 significance level 显著水平(比如 1%)
 - 1 α: VaR 的 confidence level 置信水平(比如 99%, 99.99%)
- 组合的违约分布是二项分布 Binomial Distribution
- 平均损失
 - \circ $EL = n \times p \times m$
 - *EL* = n_{avg} × m,其中n_{avg} = n × p是平均违约次数
- 最坏损失
 - $\circ \quad WCL = n \times p_{wcl} \times m$
 - WCL = n_{wcl} × m, 其中n_{wcl} = n × p_{wcl}是最坏违约次数
- VaR
 - o VaR = WCL EL = $(\mathbf{n}_{wcl} \mathbf{n}_{avg}) \times \mathbf{m} = (\mathbf{n}_{wcl} \mathbf{n} \times \mathbf{p}) \times \mathbf{m}$
 - 核心问题就是如何寻找 n_{wcl}
- n_{wcl}的性质
 - 范围 $n_{avg} = n \times p \leq n_{wcl} = n_{o}$
- n_{wcl}的算法 (常用算法)
 - 如果 n 很大而且 p 很小时,n_{wcl}偏小,因此计算时从小的开始计算。
 - 从违约次数 k=0 开始,每次增加 1,一直到 n,做如下的计算
 - 违约 k 次的概率 $P_k = C_n^k \times p^k \times (1-p)^{n-k}$
 - 违约 k 次的累计概率 $F_k = \sum_{i \leq k} P_i$
 - 如果 $F_k > 1 \alpha$, 那么 $n_{wel} = k$. 停止计算。
- n_{wcl}的另一种算法
 - 如果 n 很小而且 p 比较大时,n_{wcl}偏大,因此计算时从大的开始计算。
 - 从违约次数 k=n 开始,每次减少 1,一直到 0,做如下的计算
 - 违约 k 次的概率 $P_k = C_n^k \times p^k \times (1-p)^{n-k}$
 - 违约 k 次的累计概率 $F_k = \sum_{i \leq k} P_i$
 - 如果 $F_k > \alpha$. 那么 $\mathbf{n}_{wcl} = k$. 停止计算。

- Becky the Risk Analyst is trying to estimate the credit value at risk (CVaR) of a three-bond portfolio, where the CVaR is defined as the maximum unexpected loss at 99.0% confidence over a one-month horizon. The bonds are independent (i.e., no default correlation) and identical with a one-month forward value of \$1.0 million each, a one-year cumulative default probability of 4.0%, and an assumed zero recovery rate. Which is nearest to the one-month 99.0% CVaR? EL- PD x LOD x1 = 0.339 x1 x A. \$989,812 \$1.0 million (1-5mm) = (1-cpv), 52. C. \$1.7 million D. \$2.3 million Answer: A The one-month PD = $1 - (100\% - 4\%)^{(1/12)} = 0.3396\%$ **Expected Loss** Expected Loss = $(98.9846\% \times 0) + (1.10119\% \times \$1.0 \text{ m}) + (0.0034\% \times \$2.0 \text{ m}) + (0\% \times \$3.0 \text{ m}) = \$10,188$ The probability of zero defaults = $(1 - 0.3396\%)^3 = 98.98464\%$. Therefore, the 99.0% WCL is one default or \$1.0 million, and the 99.0% CVaR = \$1.0 million - \$10,188 = \$989,812.
 - Yearly pd to monthly pd 算出每月违约概率

$$(1 - PD_{m})^{12} = 1 - PD_{y}$$

$$PD_{m} = 1 - \sqrt[12]{1 - PD_{y}} = 1 - \sqrt[12]{1 - 0.04} = 0.003396$$

- n_{wcl}

 - 数. 这里是1次。
- VaR
 - $VaR = WCL EL = (n_{wcl} n_{avg}) \times m = (n_{wcl} n \times p) \times m$ $=> VaR = (1 3 \times 0.003396) \times 1 \text{million} = 989812$

违约分布, 3 个 bond, 每个 bond 都是 1m。 VaR confidence level $1 - \alpha = 99\%$

Default Times (k)	Probability	Loss (million)	Cumulative Probability
0	$(1-p)^3 = 98.98\%$	0	98.98%
1	$C_3^1 \times p^1 \times (1-p)^2$	1	99.99% > 99%
	1.01%		计算停止
2	$C_3^2 \times p^2 \times (1-p)^1$	2	
3	p^3	3	

另一种算法 VaR significance level $\alpha = 0.01 = 1\%$

Default Times (k)	Probability	Loss (million)	Cumulative Probability
3	$p^3 = 3.92e^{-6}\%$	3	3.92e ⁻⁶ %

2	$C_3^2 \times p^2 \times (1-p)^1$	2	0.00345%
	= 0.003448%		
1	$C_3^1 \times p^1 \times (1-p)^2$	1	1.015% > 1%
	1.01%		计算停止
0	$(1-p)^3 = 98.98\%$	0	