Université de lille 1

IDL

Le jeu Pac-Man

AUTEURS

Julia Leven

Jérémy Bossut

January 26, 2015

Sommaire

1	Système Multi-Agents	2
2	Comportement des agents	2
3	Exécution du projet	2
4	Interface graphique	3
5	Structure du projet	3

Jeu Pac-Man

Ce projet met en oeuvre le jeu Pac-Man. On peut y voir évoluer des prédateurs qui cherchent à manger des projes. Les projes tentent d'éviter les prédateurs pour survivre tandis que les prédateurs essayent d'atteindre une proje le plus rapidement possible pour se nourrir.

1 Système Multi-Agents

L'environnement modélisé correspond à un labyrinthe. Le labyrinthe est formé par le placement aléatoire d'agents immobiles qui représentent les murs. Le jeu comporte deux types de personnages : les prédateurs et les proies. Ces personnages sont des agents qui évoluent dans le labyrinthe.

2 Comportement des agents

À chaque tour, chaque prédateur et chaque proie se déplacent. Un prédateur cherche à attraper une proie le plus efficacement possible. Il connait la distance qui le sépare de chacune des proies à l'aide de l'algorithme de Dijkstra et choisit alors de se rapprocher de la proie dont la distance est inférieure à celle des autres. Les proies tentent de s'éloigner des prédateurs. Une proie détermine le barycentre des positions des prédateurs et effectue un déplacement dans la direction opposée.

3 Exécution du projet

Le projet peut être lancé à l'aide de la commande suivante :

java -jar nbTurns nbRows nbCols nbWalls nbPreys nbPredators

Voici un tableau récapitulatif avec les paramètres à indiquer et leurs valeurs souhaitées :

Paramètre	Description	Valeur souhaitée
nbTurns	Nombre de tours	0 (le programme n'est
		pas limité en nombre
		de tours)
nbRows	Nombre de lignes	40
	constituant	
	l'environnement	
nbCols	Nombre de colonnes	40
	constituant	
	l'environnement	
nbWalls	Nombre de murs	200
nbPreys	Nombre de proies	150
nbPredators	Nombre de prédateurs	3

4 Interface graphique

L'environnement et les agents sont représentés à l'aide d'une interface graphique:

- les cases grises représentent les cases libres.
- les cases noires représentent les murs.
- les ronds jaunes représentent les prédateurs.
- les ronds verts représentent les proies.

Les données suivantes peuvent être lues à droite de l'interface graphique : le numéro du tour, le nombre de murs, le nombre de prédateurs et le nombre de proies encore vivantes.

5 Structure du projet

Toutes les classes spécifiques au projet "Pac-Man" sont placées dans le dossier pacman. On peut y trouver les classes suivantes:

- Board.java: cette classe modélise l'environnement, c'est-à-dire le labyrinthe.
- MainPacman.java: cette classe permet de lancer le jeu.

Dans ce dossier, on trouve un package agent contenant toutes les classes qui permettent de modéliser les agents, à savoir :

- PacmanAgent: cette classe permet de modéliser l'ensemble des agents utilisés dans le jeu.
- Predator: cette classe modélise un prédateur. On y retrouve toutes les méthodes permettant au prédateur de se déplacer et de manger une proie.
- Prey: cette classe modélise une proie. On y retrouve toutes les méthodes permettant à la proie de se déplacer. C'est également dans cette classe que l'on retrouve l'algorithme de Dikjstra qui calcule le chemin le plus court pour arriver à la proie.
- Wall: cette classe modélise un mur.