Deep Learning (CS324)

6. Recurrent Neural Networks* (Continued)

Jianguo Zhang SUSTech

RNN

- Gated Recurrent Neural Network
- Different architectures of RNN.

LSTM Forward Pass Summary

$$g_{t} \quad tanh \quad W_{g}$$

$$\binom{i_{t}}{f_{t}} = \binom{\sigma}{\sigma} \binom{W_{i}}{W_{f}} \binom{X_{t}}{h_{t-1}}$$

$$o_{t} \quad \sigma \quad W_{o}$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot tanh c_{t}$$

LSTM Backward Pass

Gradient flow from c_t to c_{t-1} only involves back-propagating through addition and elementwise multiplication, not matrix multiplication or tanh

For complete details: Illustrated LSTM Forward and Backward Pass

K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine

$$h_t = \tanh W \left(\frac{X_t}{h_{t-1}} \right)$$

$$r_t = \sigma \left(W_r \left(\frac{X_t}{h_{t-1}} \right) + b_t \right)$$

$$h'_t = \tanh W \left(\begin{matrix} x_t \\ r_t \odot h_{t-1} \end{matrix} \right)$$

$$r_t = \sigma \left(W_r \left(\frac{X_t}{h_{t-1}} \right) + b_t \right)$$

$$h'_{t} = \tanh W \left(\begin{matrix} x_{t} \\ r_{t} \odot h_{t-1} \end{matrix} \right)$$

$$z_t = \sigma \left(W_z \left(\begin{matrix} X_t \\ h_{t-1} \end{matrix} \right) + b_z \right)$$

$$r_t = \sigma \left(W_r \left(\frac{X_t}{h_{t-1}} \right) + b_t \right)$$

$$h'_t = \tanh W \left(\begin{matrix} x_t \\ r_t \odot h_{t-1} \end{matrix} \right)$$

$$z_t = \sigma \left(W_z \left(\begin{matrix} X_t \\ h_{t-1} \end{matrix} \right) + b_z \right)$$

$$h_{t} = (1 - z_{t}) \odot h_{t-1} + z_{t} \odot h_{t}'$$

Multi-layer RNNs

• We can of course design RNNs with multiple hidden

layers

Anything goes: skip connections across layers, across time, ...

Bi-directional RNNs

 RNNs can process the input sequence in forward and in the reverse direction

Popular in speech recognition

Use Cases

Sequence Classification

Sequence Classification

Sequence Classification

Image Caption Generation

It's raining LSTMs

- There exist countless variations of LSTMs, with different researchers proposing different arrangements of the LSTM units
- So, which one is better?
- None: https://arxiv.org/pdf/1503.04069.pdf
- Also, RNNs can outperform both LSTMs and GRUs:

http://proceedings.mlr.press/v37/jozefowicz15.pdf

A Zoo of RNNs

- If you are interested in the details for the following topics:
 - Bidirectional RNNs (Sec. 10.3 book)
 - Teacher forcing (Fig. 10.6 book)
 - Image captioning RNNs (Fig. 10.9 book)
 - Encoder-decoder architectures (Sec. 10.4 book)

• ...

Online resources

- Music composition: <u>http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/</u>
- Characters prediction: <u>https://cs.stanford.edu/people/karpathy/recurrentis/</u>
- Transformer networks: <u>https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html</u>
- RNN-Ts on your phone:

 <a href="https://ai.googleblog.com/2019/03/an-all-neural-

Summary

- Sequential data and temporal dependances
- Recurrent Neural Network and BPTT
- Long Short-Term Memory
- Gated Recurrent Unit
- Different application cases of RNN