Probabilistic Forecast Reconciliation **For Emergency Services Demand**

Rob J Hyndman Bahman Rostami-Tabar

MONASH University

robjhyndman.com/asc2023

Wales Health Board Areas

Data

- Daily number of attended incidents:
 - 1 October 2015 31 July 2019
- Disaggregated by:
 - control area
 - health board
 - priority
 - nature of incidents
- 2,142,000 rows observations from 1,530 time series.

Data structure

*

Nature of incident

Chest pain

Stroke

Breathing problem

...

Abdominal pain

Data structure

Level	Number of series
All country	1
Control	3
Health board	7
Priority	3
Priority * Control	9
Priority * Health board	21
Nature of incident	35
Nature of incident * Control	105
Nature of incident * Health board	245
Priority * Nature of incident	104
Control * Priority * Nature of incident	306
Control * Health board * Priority * Nature of incident (Bottom level)	691
Total	1530

Data

```
# A tsibble: 2,142,000 x 6 [1D]
# Key:
             region, category, nature, lhb [1,530]
  date
              region
                           category
                                        nature
                                                      lhb
                                                                   incident
   <date>
              <chr*>
                           <chr*>
                                        <chr*>
                                                      <chr*>
                                                                      <fdb>
 1 2015-10-01 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1020
 2 2015-10-02 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1021
 3 2015-10-03 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1025
 4 2015-10-04 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1043
 5 2015-10-05 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1067
 6 2015-10-06 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1063
 7 2015-10-07 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                        973
 8 2015-10-08 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1057
 9 2015-10-09 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1026
10 2015-10-10 <aggregated> <aggregated> <aggregated> <aggregated>
                                                                       1063
# i 2,141,990 more rows
```

Data

```
# A tsibble: 2,142,000 x 6 [1D]
# Kev:
           region, category, nature, lhb [1,530]
  date
            region category nature lhb
                                              incident
  <date> <chr*> <chr*> <chr*>
                                                  <dbl>
1 2015-10-01 C
                  Amber ABDOMINAL HD
                                                      0
2 2015-10-01 C
                  Amber ABDOMINAL PO
                                                      0
3 2015-10-01 C
                  Amber ABDOMINAL SB
                                                      0
4 2015-10-01 C
                  Amber
                           ABDOMINAL <aggregated>
                                                      0
5 2015-10-01 C
                  Amber
                           ALLERGIES HD
                                                      0
6 2015-10-01 C
                  Amber
                           ALLERGIES PO
7 2015-10-01 C
                  Amber
                           ALLERGIES SB
                                                      0
8 2015-10-01 C
                  Amber
                           ALLERGIES <aggregated>
9 2015-10-01 C
                  Amber
                           ANIMALBIT HD
                                                      0
10 2015-10-01 C
              Amber
                           ANIMALBIT PO
                                                      0
# i 2,141,990 more rows
```


Forecasting methods

- **Naïve**: Empirical distribution of past daily attended incidents.
- **ETS**: Exponential Smoothing State Space models.
- **GLM**: Poission Regression with spline trend, day of the week, annual Fourier seasonality, public holidays, school holidays, Christmas Day, New Year's Day.
- **TSGLM**: Poisson Regression with same covariates plus three autoregressive terms.
- Ensemble: Mixture distribution of 1–4.

Notation

Every collection of time series with linear constraints can be written as

$$y_t = Sb_t$$

- \mathbf{y}_t = vector of all series at time t
- $y_{Total,t}$ = aggregate of all series at time t.
- $y_{X,t}$ = value of series X at time t.
- **\mathbf{b}_t** = vector of most disaggregated series at time t
- S = "summing matrix" containing the linear constraints.

10

Notation

Every collection of time series with linear constraints can be written as

$$y_t = \mathbf{S}\mathbf{b}_t$$

- \mathbf{y}_t = vector of all series at time t
- $y_{Total,t}$ = aggregate of all series at time t.
- $y_{X,t}$ = value of series X at time t.
- **b**_t = vector of most disaggregated series at time t
- S = "summing matrix" containing the linear constraints.

- Base forecasts: $\hat{\mathbf{y}}_{T+h|T}$
- Reconciled forecasts: $\tilde{y}_{T+h|T} = SG\hat{y}_{T+h|T}$
- MinT:

 $G = (S'W_h^{-1}S)^{-1}S'W_h^{-1}$ where W_h is covariance matrix of base forecast errors.

Nonparametric bootstrap reconciliation

- Fit model to all series and store the residuals as ε_t .
- These should be serially uncorrelated but cross-sectionally correlated.
- Draw iid samples from $\varepsilon_1, \dots, \varepsilon_T$ with replacement.
- Simulate future sample paths for model using the bootstrapped residuals.
- Reconcile each sample path using MinT.
- Combine the reconciled sample paths to form a mixture distribution at each forecast horizon.

Boostrapping residuals

Boostrapping residuals

Performance evaluation

- Ten-fold time series cross-validation
- Forecast horizon of 1–84 days
- Each training set contains an additional 42 days.
- Forecasts at 43–84 days correspond to planning horizon.

Forecast accuracy: 43-84 days ahead

		MSSE		
Method	Model	Total	Control areas	Health boards
Base	Naïve	1.169	1.056	1.062
Base	ETS	0.979	0.875	0.816
Base	GLM	0.813	0.897	0.875
Base	TSGLM	0.822	0.901	0.875
Base	Ensemble	0.599	0.729	0.774
MinT	Naïve	1.168	1.057	1.062
MinT	ETS	0.785	0.852	0.845
MinT	GLM	0.720	0.827	0.837
MinT	TSGLM	0.722	0.833	0.839
MinT	Ensemble	0.560	0.706	0.765

 $\mathsf{MSSE} = \mathsf{mean}(q_j^2)$

$$q_j^2 = \frac{e_j^2}{\frac{1}{T-7} \sum_{t=8}^{T} (y_t - y_{t-7})^2}$$

- Observations: y_1, \dots, y_T .
- Forecast errors: $e_i = y_{T+i} - \hat{y}_{T+i|T}$.

Forecast accuracy: 43-84 days ahead

		CRPS		
Method	Model	Total	Control areas	Health boards
Base	Naïve	30.387	10.882	5.500
Base	ETS	14.309	6.074	3.476
Base	GLM	15.396	6.253	3.576
Base	TSGLM	15.316	6.227	3.575
Base	Ensemble	12.978	5.727	3.430
MinT	Naïve	30.368	10.902	5.498
MinT	ETS	13.515	5.967	3.547
MinT	GLM	13.839	5.917	3.453
MinT	TSGLM	14.000	5.947	3.455
MinT	Ensemble	12.585	5.728	3.426

CRPS = $mean(p_j)$

$$p_j = \int_{-\infty}^{\infty} \left(G_j(x) - F_j(x)\right)^2 dx,$$

- *G_j*(*x*) = forecast distribution for forecast horizon *j*
- F_j(x) = empirical distribution for same period

Conclusions

- Ensemble mixture distributions give better forecasts than any component methods.
- Forecast reconciliation improves forecast accuracy, even when some component methods are quite poor.
- The ensemble without the Naïve method was worse.
- Forecast reconciliation allows coordinated planning and resource allocation.

Conclusions

- Ensemble mixture distributions give better forecasts than any component methods.
- Forecast reconciliation improves forecast accuracy, even when some component methods are quite poor.
- The ensemble without the Naïve method was worse.
- Forecast reconciliation allows coordinated planning and resource allocation.

- robjhyndman.com/asc2023
- aus.social/@robjhyndman

ightharpoonup robins ro

rob.hyndman@monash.edu