Understanding the radio beam of PSR J1136+1551 through its single pulses

Lucy Oswald, Aris Karastergiou and Simon Johnston MNRAS 489, 310-324(2019)

Reporter: 曹顺顺

2022.5

I. Introduction

II. Observations and Data Processing

III. Simulation

IV. Results

V. Discussions

VI. Conclusion

Contents

I. Introduction

Radio pulsar: basic geometry

"1D cut through a 3D magnetosphere"

From *Pulsar Astronomy*

Integrated profile, single pulses and sub-pulses

Fig. 16.6. An idealised pattern of drifting sub-pulses.

From *Pulsar Astronomy*

Separation of sub-pulses could change with frequency changing.

Radiation beam:

From *Pulsar Astronomy*

Radius to frequency mapping(RFM)

Separation of sub-pulses could change with frequency changing.

Radiation beam:

How does **separation** between sub-pulses concretely change with frequency?

The authors use PSR J1136+1551's single pulses to see which beam model could yield a true pattern.

Pattern A?

Pattern B?

II. Observations and Data Processing

GMRT, wideband backend— $-300MHz^{500MHz}$, 2048 channels time solution 327.68 μs

J1136+1551: P=1.188s, DM=4.892 cm^-3pc, totally 4759 pulses.

3600bins each period, ~3ms a bin.

Processing using DSPSR and PSRCHIVE.

The band is divided into **10 channels**, and **7** are left after zapping out RFIs—Example:

How to describe sub-pulses' separation quantitatively?

Firstly, identify the edges of the on-pulse region.

https://blog.csdn.net/liyuanbhu/article/details/48502005

Deem on-pulse region: SNR > 4

Then the authors use a Gaussian to correlate the on-pulse region, and identify the sub-pulses' positions.

885 double-peak pulses are finally used in the analysis.

Frequency (MHz)		470	450	430	410	390	350	330
Subpulse dis	stribution 1 (left	:)						
Data	μ (°) σ (°)	- 3.30 0.45	- 3.30 0.46	- 3.38 0.46	- 3.35 0.47	- 3.37 0.46	- 3.45 0.52	- 3.55 0.53
Subpulse di	istribution 2 (rig	ght)						
Data	μ (°)	3.30	3.30	3.35	3.37	3.41	3.46	3.53
	σ (°)	0.85	0.82	0.89	0.88	0.91	0.88	0.89

III. Simulations

Basic assumptions:

- (1) Dipolar magnetic field; $r = K \sin^2 \theta$
- (2) Tangential emitting;
- (3) Each frequency ←→One single height;
- (4) RFM(Lower frequency higher height)
- (5) Emission from some specific region(Beam structure...)
- (6) Same active field lines at different heights responsible for a sub-pulse observed across a broad-band.

$$r = K \sin^2 \theta$$

——From the last assumption:

The authors suggest that the same sub-pulses **peaks** are from **only one** magnetic field line, of which the K constant could be yielded:

$$K^p = \frac{r_{\rm S}}{\sin^2\left(s_{\rm L}^p \arcsin\sqrt{r_{\rm S}/R_{\rm LC}}\right)}$$
 Light Cylinder

=0.5 (σ =0.02&0.04 for Hollow cone, 0.03 & 0.05 for Fan beam) Pulsar radius (10km) Field line footprint

D_(magnetic axis to field line)/D_(magnetic axis to Last open field line)

Make connection between sub-pulse data, field line and pulsar surface:

What we have known: Observation data sub-pulses' peak position $--\mathbf{p}_{\text{obs}}$ at all frequency channels.

What we need: The position of the emission peak \mathbf{p}_{peak} and how it relates with \mathbf{p}_{obs} at all frequency channels.

The authors choose 330Hz(lowest frequency, highest height) as the reference frequency and define $\mathbf{p}_{peak} = \mathbf{E}(\mathbf{p}_{obs}) = \mu$ at this frequency.

(On other frequencies, the relationship between \mathbf{p}_{peak} and μ is determined by the beam model)

So what could the beam model give us?

First let's figure out what can we get from a sub-pulse's peak position μ.

μ is related to the radiation beam half-opening angle ρ:

$$\cos \rho = \cos \alpha \cos (\alpha + \beta) + \sin \alpha \sin (\alpha + \beta) \cos (\mu)$$

 α and β can be yielded with fitting the RVM to the PA. $\alpha = 51.3^{\circ}$, $\beta = 3.7^{\circ}$

Then, ρ is related to spherical polar angle θ .

$$\cos(2\theta) = \frac{1}{3}(\cos\rho\sqrt{8 + \cos^2\rho} - \sin^2\rho), -\pi \le \rho \le \pi$$

For each frequency, the radiation height could be calculated. (RS model 1975, $r=C*f^{(-2/3)}$)

After knowing the emission height and the dipole field constant K (p12), The peak emitting polar angle θ_{peak} could be yielded.

What models could affect——is how could θ_{peak} be converted to θ_{μ} —— θ_{μ} can be used to calculate the theoretical μ , comparing with the observed μ .

The hollow cone model:

$$\theta_{\mathrm{peak}}^{j} = \theta_{\mu}^{j}$$

The fan beam model:

IV. Results

1. Independence of sub-pulses

Randomly combine the two sets of sub-pulses

The positions of the two sub-pulses making up a single pulse are independent of each other.

2. Hollow cone simulation:

2. Fan beam simulation:

Figure 9. Cumulative distributions of spectral index of subpulse separation (η) for the data (solid) and the RFM model with the fan beam emission region (dotted).

2. Fan beam simulation: ——an justification——add OPM in

OPM(orthogonally polarized plasma modes):

(Backer et al. 1976, Melrose and Stoneham 1977.....)

Sub-pulses may have orthogonal polarization modes.

(leading to PA jumping 90° and low linear polarization degree for integrated profile)

X mode: does not evolve with frequency

O mode: as before(simulate with the method discussed in section III)

sub-pulse number X : O = 7: 3 gives the best fit:

2. Fan beam simulation:

Figure 12. Cumulative distributions of the spectral index η for the data (solid) and the mode divergence model with fan beam emission region (dotted).

V. Discussions

1. Emission height:

The authors' results do not constrain footprints of field lines, which could affect emission heights.

- 2. Aberration and retardation:
- Make a phase lag between the intensity and PA profiles at a given frequency.
- ——Could be used to fit and measure emission height——change footprint
- ——Polarization data can be used for a further study
- 3. Emission region shape:

Each frequency can be emitted by an extended region along the beam.

VI. Conclusion:

After a physical and geometry analysis to make a simulation, fan beam model with OPM performs best in explaining the single pulse sub-pulse data from J1136+1551.

Thank you for your attention