

Zastosowania:

Parametry falowników serii Pi160 pozwalają na aplikowanie zarówno do sterowania maszyn jak również jako elementy składowe w systemach sterowania procesami technologicznymi.

Specyfikacja i wymiary: (1M2 - 1M3)

Model	Napięcie (V)	Moc	Prąd wejściowy (A)	Prąd wyjściowy (A)	Wymia		nętrzne [mm]		Wymiary zabudowy [mm]			/ Obudowa
model		(KW)			L	W	Н	h	а	b	d	
PI160-0R4G1(Z)	1-fazowe 230V -10%/+5%	0.4	5.4	2.5	142	85	122.8	112	130	73	Ø5.3	1M2
PI160-0R7G1(Z)		0.75	8.2	4.0								
PI160-1R5G1(Z)		1.5	14.0	7.0	152	101	127.5	116.6	139.7	88.7	Ø5.3	1M3
PI160-2R2G1(Z)		2.2	23.0	10								
PI160-0R4G2(Z)	3-fazowe 230V -10%/+5%	0.4	4.1	2.5	142	85	122.8	112	130	73	Ø5.3	1M2
PI160-0R7G2(Z)		0.75	5.3	4.0								
PI160-1R5G2(Z)		1.5	8.0	7.0	152	101	127.5	116.6	139.7	88.7	Ø5.3	1M3
PI160-2R2G2Z)		2.2	11.8	10.0								
PI160-0R4G3Z	3-fazowe 400V -10%/+5%	0.4	2.0	1.2	152	101	127.5	116.6	139.7	88.7	Ø5.3	1M3
PI160-0R7G3Z		0.75	4.3	2.5								
PI160-1R5G3Z		1.5	5.0	3.8								
PI160-2R2G3Z		2.2	5.8	5.1								
PI160-3R7G3Z		3.7	10	8.5								

PI 160

201707EV2.0PL

Ekonomiczny, wysoko wydajny Falownik wektorowy

Opis produktu:

Falowniki serii PI160 są wysoko wydajnymi, kompaktowymi, trwałymi, niezawodnymi falownikami wektorowymi. Pozwalają uzyskać wysoki moment przy niskich prędkościach obrotowych. Są wyposażone w szereg funkcji zabezpieczającyh, które gwarantują niezawodność w długim okresie. Ze względu na dużą ilość wejść i wyjść sygnałowych znakomicie nadają się do sterowania małych maszyn i jako elementy wykonawcze w systemach sterowania prostych linii produkcyjnych.

www.powtran.com www.powtran-polska.pl

Specyfikacja standardowa

Cecha	Funkcja	Specyfikacja					
Zasilanie	Napięcie nominalne	Jednofazowe 230V, 50/60 Hz Trójfazowe 230V, 50/60 Hz Trójfazowe 400V, 50/60 Hz					
asil	Częstotliwość nominalna	50 Hz / 60 Hz					
N	Dopuszczalne fluktuacje	Napięcie wejściowe: +/- 10%, Częstotliwość: +/- 5% Zniekształcenia wg IEC61800-2					
	Sterowanie	Wysokowydajne sterowanie wektorem pola oparte na DSP					
	Metody sterowania	Sterowanie V/f, wektorowe bez sprzężenia, wektorowe ze sprzężeniem					
	Funkcja automatycznego podbicia momentu	Pozwala uzyskać wysoki moment na wyjściu przy niskich częstotliwościach (1Hz) metodą V/f					
	Przyspieszanie / Zwalnianie	Charakterystyka liniowa lub krzywa typu S. Dostępne cztery zestawy czasów w zakresie od 06500 s					
	Tryb krzywej V/f	Charakterystyka liniowa, kwadratowa/n-potęgowa, predefiniowalna dowolna krzywa V/f					
System sterowania	Przeciążalność	Typ G prąd 150% przez 1 minutę, prąd 180% przez 2s,					
	Częstotliwość maksymalna	Sterowanie wektorowe - do 300 Hz Sterowanie V/f - 3200 Hz					
	Częstotliwość nośna	0,5 do 16 kHz z automatycznym dostosowaniem częstotliwości do charakterystyki obciążenia					
	Rozdzielczość częstotliwości zadanej	Zadawanie cyfrowe 0,01 Hz Zadawanie analogowe: częstotliwość maksymalna * 0,1 %					
	Moment początkowy	Typ G: 0,5Hz/150% (bezczujnikowe sterowanie wektorowe)					
	Zakres prędkości	1:100 (bezczujnikowe sterowanie wektorowe)					
	Stabilizacja częstotliwości	Bezczujnikowe sterowanie wektorowe: <= +/- 0,5% nominalnnej prędkości synchronicznej					
	Odpowiedź momentu	< 40ms (bezczujnikowe sterowanie wektorowe)					
	Podbicie momentu	Automatyczne podbicie momentu (0,1 do 30%)					
	Hamowanie prądem stałym	Częstotliwość hamowania DC: 0,0 Hz do częstotliwości maksymalnej Czas hamowania: 0,0 do 100,0 sekund Wartość prądu hamowania: 0,0 do 100%					
	Sterowanie JOG	Zakres częstotliwość JOG: 0,0 Hz do częstotliwości maksymalnej Rozpędzanie / Zwalnianie JOG: 0,0 s. Do 6500,0 s					
	Częstotliwości predefiniowalne	16 predefiniowalnych prędkości dostępnych przez listwę zaciskową					
Wbudowany regulator PID		System sterowania parametrówprocesu realizowany jest za pomocą wbudowanego regulatora PID					
	Automatyczna regulacja napięcia (AVR)	Automatyczne utrzymanie wartości napięcia wyjściowego przy przy zmianach wartości napięcia zasilającego					
	Ograniczenie momentu i sterowanie	Moment jest automatycznie ograniczany podczas pracy w celu zabezpieczenia przed ewentualnymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest wektorowy tryb sterowania ze sprzężeniem zwrotnym					
Funkcje własne	Samokontrola obwodów wyjściowych po zasileniu	Po włączeniu zasilania falownik sprawdza obwody wejściowe pod kątem doziemienia, zwarć itp					
	Szybkie ograniczenie prądu	Dla ograniczenia prawdopodobieństwa wystąpienia nadmiernego prądu i poprawienia zdolności zapobiegania zakłóceniom, zastosowano algorytmy ograniczające prąd wyjściowy					
	Funkcje kontroli czasu	Falownik wyposażony jest w funkcje kontroli czasu pracy i czasu pozostawania z włączonym zasilaniem. Zakres ustawień 0 do 65000 minut					

POWTRAN-POLSKA Sp. Z o.o.; Garbary 3; 85-229 BYDGOSZCZ; www.powtran-polska.pl

Specyfikacja standardowa

Cecha		Funkcja	Specyfikacja				
		Źródła sterowania	Klawiatura / listwa zaciskowa / port komunikacyjny				
	Sygnały wejściowe	Zadawanie częstotliwości	Dostępnych jest 8 źródeł zadawania częstotliwości, wśród nich wejścia analogowe DC (010 V, 0/420 mA), pokrętło na klawiaturze, sygnały dwustanowe na listwie zaciskowej Napięcia wejściowego: +/- 10%				
		Rodzaje sygnału startu	"Obroty do przodu, "obroty do tyłu", "zmiana obrotów"				
		Prędkości predefiniowalne	Można ustawić 16 predefiniowalnych prędkości wybieranych sygnałami z wejść dwustanowych DI lub z poziomu programowania falownika				
		Stop bezpieczeństwa	Podanie sygnału zdefiniowanego jako "STOP bezpeczeństwa" powoduje natychmiastowe zatrzymanie falownika z odcięciem napięcia wyjściowego				
		Kasowanie błędów	Jeśli funkcja jest aktywna, komunikaty błędów mogą być kasowane ręcznie lub automatyczni				
		Sprzężenie zwrotne regulatora PID	Sygnał sprzężenia zwrotnego regulatora PID może być doprowadzony do falownika na wejście analogowe 010 V lub 0/420 mA lub dwustanowe. Pozwala to na realizację autonomicznych układów regulacji procesów technologicznych				
	Sygnały wyjściowe	Wyjście sygnalizacji pracy	Sygnalizuje stan pracy silnika: zatrzymanie, rozpędzanie, zwalnianie, prędkość ustaloną, etap pracy programu				
	wyjś	Wyjście przekaźnikowe	Parametry wyjść: styk normalnie zwarty 7A 250VAC				
ca	nały v	Wyjście analogowe	jedno wyjście analogowe. Można zaprogramować jeden z 16-tu sygnałów wyjściowych takich jak częstotliwość, prąd, na pięcie i inne. Standard elektryczny 010 V, 020 mA				
Praca	Sygı	Wyjście dwustanowe	Jedno wyjście dwustanowe. Na którym można zaprogramować jeden z 40-tu sygnałów wyjściowych				
	Funkcje podczas pracy		Podczas pracy dostępne są takie funkcje jak ograniczenie częstotliwości, przeskok częstotliwości, kompensacja częstotliwości, automatyczny dobór parametrów silnika regulacja PID				
	Н	amowanie prądem stałym DC	Wbudowany regulator hamowania prądem stałym pozwala zatrzymać silnik o dużej inercji bez przeciążenia falownika				
	Ź	ródła zadawania parametrów	Są trzy źródła zadawania parametrów: panel operatorski, listwa zaciskowa i port komunikacyjny RS485. Kanały te mogą być przełączane na wiele sposobów				
	ź	ródło częstotliwości zadanej	Jest 5 źródeł częstotliwości zadanej: zadawanie cyfrowe, wejście analogowe (010 V, 020 mA), wejście dwustanowe (wybór prędkości predefiniowalnych), port komunikacyjny RS485. Kanały te mogą być przełączane na wiele sposobów				
	W	/ejścia sygnałowe	 7 wejść dwustanowych DI dla sygnałów PNP lub NPN, jedno z nich jest szybkim wejściem impulsowym (0100 kHz dla fali prostokątnej) 1 wejście analogowe dla sygnałów 010 V lyb 020 mA 				
	Wyjścia sygnałowe		 1 przekaźnikowe wyjście dwustanowe DO OC 1 wyjście analogowe dla sygnałów 010 V lyb 020 mA, pozwalające na wyprowadzenie n częstotliwości zadanej lub wyjściowej, prędkości i wielu innych parametrów falownika 				
wa	z	abezpieczenie elektryczne falownika	Falownik zabezpieczony jest min. w zabezpieczenia nadprądowe, nadnapięciowe, podnapięciowe, przeciążeniowe, termiczne, ziemnozwarciowe, błędu komunikacji na Rs485 i				
Funkcje pieczeńst	P	omiar temperatury IGBT	Falownik wyświetla i kontroluje bieżącą temperaturę modułu IGBT. Przekroczenie temperatur dozwolonej skutkuje zatrzymaniem falownika				
Funkcje bezpieczeństwa	F	Reakcja na zanik zasilania	Przerwa poniżej 15 ms - kontynuacja pracy, powyżej 15 ms - możliwa autodetekcja prędkości silnika i natychmiastowy restart na żądanie				
þe	Ochrona parametrów falownika		Dostęp do parametrów konfiguracyjnych falownika zabezpieczony jest możliwością ustalen hasła dostępowego administratora				
e e	Temperatura pracy		-10 stC do +40 stC				
kow	Т	emperatura przechowywania	-20 stC do +65 stC				
wis		Vilgotność	Poniżej 90% R.H bez kondensacji				
Parametry środowiskowe	Wibracje		Poniżej 5,9 m./s2 (=0,6g)				
	Zabudowa		Wewnątrz obudowy lub w pomieszczeniu, w miejscu wolnym od bezpośredniego działania promieni słonecznych, korodujących i wybuchowych gazów, pary wodnej, kurzu, gazów i mgieł palnych, mgieł oleju, skroplin lub soli itp.				
	V	Vysokość	Poniżej 1000 m. npm				
Pa	s	topień ochrony	IP 20				