Math 635 Lecture 33

Thomas Cohn

4/7/21

Today, we'll take the first step towards proving Gauss-Bonnet. Let $M \subseteq \mathbb{R}^{n+1}$ be a compact, oriented manifold of even dimension dim M=n=2m, with $N:M\to S^n$ given by the orientation. Define the Gaussian curvature $\mathscr{K}:M\to\mathbb{R}$ by $\mathscr{K}dV_M=N^*dV_{S^n}$.

Thm: \mathcal{K} is intrinsic to the Riemannian metric of N.

Recall the Weingarten formula: $\forall p \in M$, we have the commutative diagram

$$T_pM \xrightarrow{-dN} T_{N(p)}S^n$$

$$S_{N(p)} \xrightarrow{|||} T_pM$$

where $T_{N(p)}S^n \cong T_pM$ isometrically by translation. S_{N_p} is the shape operator by the Weingarten formula, so

$$\left. \mathscr{K} dV_M \right|_p = \left. S_{N(p)}^* dV_M \right|_p \qquad \Rightarrow \qquad \mathscr{K} = \det S_{N(p)} = \prod_{i=1}^n \kappa_i$$

To prove this, we use orthonormal moving frames on M. Let (E_1, \ldots, E_n) be a positive orthonormal moving frame. We get the curvature matrix (Ω_i^i) , a matrix of 2-forms.

$$\forall X,Y \in \mathfrak{X}(M), \quad R(X,Y)(E_j) = \Omega^i_j(X,Y)E_i \quad \Rightarrow \quad \Omega^i_j(X,Y) = R(X,Y,E_j,E_i)$$

Also, we have Gauss' formula:

$$0 = R(W, X, Y, Z) + \langle B(W, Y), B(X, Z) \rangle - \langle B(W, Z), B(X, Y) \rangle$$

So

$$\Omega_i^i(E_k, E_\ell) = \langle B(E_i, E_k), B(E_i, E_\ell) \rangle - \langle B(E_i, E_\ell), B(E_i, E_k) \rangle$$

Recall: $S_{ki} = S_{ik} \stackrel{\text{def}}{=} \langle S(E_i), E_k \rangle = \langle B(E_i, E_k), N \rangle$ is the N-component of $B(E_i, E_k)$ (S_{ij}) is the matrix of S. Written all together, we have

$$\Omega_j^i(E_k, E_\ell) = S_{ik} S_{j\ell} - S_{i\ell} S_{jk}$$

Prop: Let n = 2m. Then with σ_n the symmetric group,

$$\mathscr{K}dV = \frac{1}{n!} \sum_{\alpha \in \sigma_n} (-1)^{\alpha} \bigwedge_{i=1}^m \Omega_{\alpha(2i)}^{\alpha(2i-1)} \stackrel{\text{def}}{=} \operatorname{Pf}(\Omega)$$

Defn: Pf(Ω) is called the Pfaffian of Ω .

We'll prove that the Pfaffian is independent of choice of moving frame. It's enough to show $Pf(\Omega)(E_1, \ldots, E_n) = \mathcal{K}$. Well, we introduce

$$Q = \{ \varphi \in \sigma_n \mid \forall i \in \{1, ..., n\}, \varphi(2i - 1), \varphi(2i) \in \{2i - 1, 2i\} \}$$

We then begin to compute

$$Pf(\Omega)(E_{1},...,E_{n}) = \frac{1}{n!2^{m}} \sum_{\alpha,\beta \in \sigma_{n}} (-1)^{\alpha} (-1)^{\beta} \prod_{i=1}^{m} \Omega_{\alpha(2i)}^{\alpha(2i-1)}(E_{\beta(2i-1)}, E_{\beta(2i)})$$

$$= \frac{1}{n!2^{m}} \sum_{\alpha,\beta \in \sigma_{n}} (-1)^{\alpha} (-1)^{\beta} \sum_{\varphi \in Q} (-1)^{\varphi} \prod_{i=1}^{m} S_{\alpha(2i-1)\beta\varphi(2i-1)} S_{\alpha(2i)\beta\varphi(2i)}$$

$$= \frac{1}{n!2^{m}} \sum_{\varphi \in Q} \sum_{\alpha,\beta \in \sigma_{n}} (-1)^{\alpha} (-1)^{\beta} (-1)^{\varphi} \prod_{i=1}^{m} S_{\alpha(2i-1)\beta\varphi(2i-1)} S_{\alpha(2i)\beta\varphi(2i)}$$

Eventualy, this computation will give us $\det S$.

Defn: (Official definition) For $X = (x_i^i)$ an $n \times n$ matrix of commuting variables (with n = 2m even), we define the <u>Pfaffian</u>

$$Pf(X) = \frac{1}{n!} \sum_{\alpha \in \sigma_n} (-1)^{\alpha} \prod_{i=1}^m X_{\alpha(2i)}^{\alpha(2i-1)}$$

Lemma: $\forall X, Y, \operatorname{Pf}(Y^T X Y) = \det(Y) \operatorname{Pf}(X).$

Proof: Just another direct computation.

Now, go back to moving frames and curvature matrices. Considering local frames, write $E_i = a_i^j F_j$ on $U \subseteq M$. Then $A(p) = (a_i^j(p)) \in SO(n)$, and we know that $\Omega_F = A^{-1}\Omega_E A$. So $Pf(\Omega_F) = det(A) Pf(\Omega_E) = Pf(\Omega_E)$.

Thus, $\operatorname{Pf}(\Omega_F) = \operatorname{Pf}(\Omega_E)$. So by the usual arguments, there's a unique global top-degree form on M such that for any moving frame on U, it agrees with $\operatorname{Pf}(\Omega)$. Therefore, by our proposition, $\mathcal{K}dV$ is of that form. \square

Question: Are there other combinations of the Ω_j^i 's that give global forms on M? We need some polynomial $P: \operatorname{so}(n) \to \mathbb{R}$ such that $\forall A \in \operatorname{SO}(n), \, \forall X \in \operatorname{so}(n), \, P(A^{-1}XA) = P(X)$. Given such a P, repeat the previous argument to show that there's a global form ϖ such that on any U with a moving frame $E_1, \ldots, E_n, \, \varpi|_U = P(\Omega)$.

 $P(\Omega_E) = P(\Omega_F)$, so $dP(\Omega) = 0$ always ($\forall P$ invariant). We get the Chern-Weil morphism:

{Ad-invariant polynomials on so(n)} $\to H^*M$