Workshop 2

Problem 1.20

Consider N similar antennas emitting linearly polarized electromagnetic radiation of wavelength λ and velocity c. The antennas are located along the x axis at a speparation λ from each other. An observer is located on the x axis at a great distance fromt eh antennas. When a *single* antenna radiates, the observer measures an *intensity* (i.e., mean-square electric-field amplitude) equal to I.

(a) If all the antennas are driven in phase by the same generator of frequency $\nu=\frac{c}{\lambda}$, what's the total intensity measured by the observer?

Hint: Superposition of waves

(b) If the antennas all radiate at the same frequency $\nu=\frac{c}{\lambda}$ but with completely random phases, what's the mean intensity measured by the observer?

Hint: use vector to represent different direction of amplitudes

Problem 1.21

Simplified: Radar signals are emitted and reflected. The returning signals are picked up by a machine as a faint signal with definite amplitude a_s . However, a random fluctuating signal, for some complicated reasons, is also picked up by the machine with amplitude a_n . The machine thus registered a total amplitude of $a=a_s+a_n$. $\bar{a_n}=0$ since a_n is equally likely to be positive as negative. However, there is considerable probability that a_n attains values considerably in excess of a_s ; i.e., the root-mean-square amplitude $\overline{(a_n^2)}^{\frac{1}{2}}$ can be considerably greater than the signal a_s of interest. Suppose that the rms amplitude is $\overline{(a_n^2)}^{\frac{1}{2}}=1000a_s$. Then the fluctuating signal a_n constitues a background of "noise" makes observation of desired echo signal essentially impossible.

Suppose that N such signals are sent out in succession and that the total amplitudes a picked up at the machine after the signals are all added together before being displayed on the machine. The resulting amplitude must then have the form $A=A_s+A_n$, where A_n is the noice amplitude (with $\bar{A}_n=0$) and $\bar{A}=A_s$ represents the resultant echo-signal amplitude.

How many signals must be sent out before rms amplitude reach A_s , i.e. $\overline{(A_n^2)}^{\frac{1}{2}}=A_s$ so that the signal becomes detectable?

Problem 1.24

(a) A particle is equally likely to lie anywhere on the circumference of a circle. Consider any straight line in the plane of the circle and passing through its center. Denote by the θ the angle between the z axis and the straight line connecting the center of the circle to the particle. What's the probability that this angle lies between θ and $\theta + d\theta$?

Hint: In another word, what's the probability of lying between θ and $\theta + d\theta$ out of 2π ?

(b) A particle is equally likely to lie anywhere on the surface of a sphere. Consider any line through the center of this sphere as the z axis. Denote by θ the angle between this z axis and the straight line connecting the center of sphere to the particle. What's the probability that this angle lies between θ and $\theta + d\theta$?

Hint: draw the picture of places where they satisfy to have angle θ between z axis and the line go through these places and the origin. Then draw a region that's $d\theta$.

Problem 2.2

Consider a system consisting of two weakly interacting particles, each of mass m and free to move in one direction. Denote the respective postition corrdinates of the two particles by x_1 and x_2 , their respective momenta by p_1 and p_2 . The particles are confined in a box with end walls located at x=0 and x=L. The total energy of the system is known to lie between E and $E+\delta E$. Since it's difficult to draw a 4D phase space, draw seperately the part of the phase space invovling x_1 and x_2 , p_1 and p_2 . Indicate on these diagrams the regions of phase space accessible to the system.