153_project

2022-04-05

```
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                   v purrr
                             0.3.4
## v tibble 3.1.6
                  v dplyr
                             1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr
          2.1.2
                 v forcats 0.5.1
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(TSA)
##
## Attaching package: 'TSA'
## The following object is masked from 'package:readr':
##
##
      spec
## The following objects are masked from 'package:stats':
##
      acf, arima
## The following object is masked from 'package:utils':
##
      tar
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
    method
    as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##
    method
                from
##
    fitted.Arima TSA
##
    plot.Arima
```

```
library(astsa)
##
## Attaching package: 'astsa'
## The following object is masked from 'package:forecast':
##
##
      gas
source('cleaning.R')
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
## New names:
## * '' -> ...1
## Rows: 1746661 Columns: 29
## -- Column specification ------
## Delimiter: ","
         (8): Address, State, County, City, NO2 Units, O3 Units, SO2 Units, CO ...
## chr
       (20): ...1, State Code, County Code, Site Num, NO2 Mean, NO2 1st Max Va...
## dbl
## date (1): Date Local
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## 'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.
```

Original data

- 1. The original data have clear sign of seasonality, but there seems to be linear upward trend.
- 2. The ACF PACF plot shows the strong sign of seasonality

```
ozone <- phoenix$o3
ozone = ozone - mean(ozone) # mean centered
plot(ozone, type ="1")</pre>
```


acf(ozone, lag.max = 30)

Series ozone

pacf(ozone)

Series ozone

Sinusoidal fitting

$$\begin{aligned} & \text{Vt} = \text{ozone } (1 + \text{B}) \\ & \text{Vt} = \text{Xt } (\text{Vt - f(t)}) = \text{Xt} \\ & f(t) = -0.003 + 0.000042 * t - 0.0012 * sin(t) - 0.0123 * cos(t) + 0.000002 * t * sin(t) - 0.000011 * t * cos(t) \end{aligned}$$

1. There is one significant peak in the periodogram 2. The residual plot shows some seasonality but the plot seems to be AR process and possible seasonal ARMA

```
t = 1:length(ozone)
# Check the periodogram
periodo = periodogram(ozone,plot=TRUE,ylab="Periodogram", xlab="Frequency") # There is one significant
```



```
# Get the high magnitudes in descending order
order_spec = sort(periodo$spec,decreasing = TRUE)
# Get the frequency that gives max magnitude
first_max = order_spec[1]
first_maximizing_freq = periodo$freq[periodo$spec==first_max]
first_sin_max = sin(2*pi*first_maximizing_freq*t)
first_cos_max = cos(2*pi*first_maximizing_freq*t)
# Max Sinusoidal fitting
ozone_sinusoid_model = lm(ozone ~ first_sin_max*(1+t)+first_cos_max*(1+t))
print(ozone_sinusoid_model$coefficients)
##
       (Intercept)
                     first_sin_max
                                                     first_cos_max first_sin_max:t
##
     -3.009489e-03
                     -1.160248e-03
                                      4.163369e-05
                                                     -1.233604e-02
                                                                       1.963185e-06
## t:first_cos_max
     -1.058031e-05
##
# Overlay the sinusoidal fitting over the original plot
plot(ozone,type = "1")
lines(t,ozone_sinusoid_model$fitted.values,col = "red")
```



```
# Get the residual, hoping for removing seasonality
ozone_sinusoid_residual = ozone_sinusoid_model$residuals
plot(ozone_sinusoid_residual,type = "l") # residual seems to be stationary
```


acf2(ozone_sinusoid_residual)


```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.12 -0.24 -0.16 -0.02 0.18 0.22 0.11 -0.09 -0.19 -0.19 0.07 0.48 0.09 ## PACF 0.12 -0.26 -0.10 -0.05 0.14 0.17 0.15 0.01 -0.09 -0.22 -0.03 0.37 0.00 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] ## ACF -0.24 -0.10 -0.03 0.11 0.24 0.15 -0.05 -0.11 -0.20 ## PACF -0.05 0.11 -0.03 -0.02 0.11 0.10 0.03 0.08 -0.14
```

Model1 : SARIMA(2,0,0)(1,0,1)12

```
model1 <- sarima(ozone_sinusoid_residual, p=2, d=0, q=0, P=1, D=0, Q=1, S=12) # fit the model
```

```
## initial value -5.921137
## iter
          2 value -6.020457
          3 value -6.079641
## iter
## iter
          4 value -6.085871
## iter
          5 value -6.091190
## iter
          6 value -6.095582
          7 value -6.095958
## iter
          8 value -6.095969
## iter
          9 value -6.095970
## iter
## iter
          9 value -6.095970
          9 value -6.095970
## iter
## final value -6.095970
```

```
## converged
## initial value -6.075290
## iter 2 value -6.078754
## iter 3 value -6.081474
       4 value -6.085882
## iter
## iter
       5 value -6.088012
## iter
       6 value -6.092257
       7 value -6.095296
## iter
## iter
       8 value -6.097651
## iter
        9 value -6.099009
## iter 10 value -6.100678
## iter 11 value -6.101042
## iter 12 value -6.101155
## iter 13 value -6.101161
## iter 14 value -6.101163
## iter 15 value -6.101163
## iter 16 value -6.101166
## iter 17 value -6.101167
## iter 18 value -6.101167
## iter 19 value -6.101168
## iter 20 value -6.101168
## iter 21 value -6.101169
## iter 22 value -6.101169
## iter 22 value -6.101169
## iter 22 value -6.101169
## final value -6.101169
## converged
```



```
## ar1 0.0903 0.0837 1.0792 0.2824 -0.073752 0.254352

## ar2 -0.0160 0.0881 -0.1810 0.8566 -0.188676 0.156676

## sar1 0.9462 0.0545 17.3486 0.0000 0.839380 1.053020

## sma1 -0.7176 0.1439 -4.9858 0.0000 -0.999644 -0.435556

## xmean -0.0002 0.0006 -0.3728 0.7099 -0.001376 0.000976
```

Model2: SARIMA(1,0,0)(1,0,1)12

```
model2 <- sarima(ozone sinusoid residual, p=1, d=0, q=0, P=1, D=0, Q=1, S=12) # fit the model
## initial value -5.924525
## iter
          2 value -6.014280
## iter
          3 value -6.072474
## iter
          4 value -6.080884
## iter
          5 value -6.087853
          6 value -6.094164
## iter
## iter
          7 value -6.094618
          8 value -6.094677
## iter
```

```
## iter 9 value -6.094683
## iter 10 value -6.094683
## iter 11 value -6.094684
## iter 12 value -6.094684
## iter 12 value -6.094684
## iter 12 value -6.094684
## final value -6.094684
## converged
## initial value -6.075303
## iter
        2 value -6.078312
## iter
        3 value -6.083138
        4 value -6.089196
## iter
## iter
        5 value -6.092910
## iter
        6 value -6.095028
## iter
        7 value -6.096554
## iter
        8 value -6.098751
## iter
        9 value -6.100853
## iter 10 value -6.101030
## iter 11 value -6.101038
## iter 12 value -6.101038
## iter 13 value -6.101041
## iter 14 value -6.101048
## iter 15 value -6.101050
## iter 16 value -6.101052
## iter 17 value -6.101053
## iter 18 value -6.101054
## iter 19 value -6.101055
## iter 20 value -6.101055
## iter 20 value -6.101055
## iter 20 value -6.101055
## final value -6.101055
## converged
```



```
0.0888 0.0832 1.0667 0.2879 -0.074272
                                                  0.251872
## ar1
          0.9489 0.0498 19.0430 0.0000 0.851292
## sar1
                                                  1.046508
         -0.7226 0.1379 -5.2393 0.0000 -0.992884 -0.452316
## sma1
## xmean -0.0002 0.0006 -0.3640 0.7164 -0.001376 0.000976
```

Model3: SARIMA(2,1,1)(1,0,1)12

iter

```
model3 <- sarima(ozone_sinusoid_residual, p=2, d=1, q=1, P=1, D=0, Q=1, S=12) # fit the model
## initial value -5.626415
## iter
          2 value -5.817904
          3 value -5.967005
## iter
## iter
          4 value -6.000235
## iter
          5 value -6.022716
## iter
          6 value -6.038025
          7 value -6.061036
## iter
## iter
          8 value -6.062258
          9 value -6.063975
```

```
## iter 10 value -6.065519
## iter 11 value -6.066125
## iter
        12 value -6.066443
## iter
        13 value -6.067328
## iter
        14 value -6.067686
## iter
        15 value -6.067780
## iter
        16 value -6.067831
        17 value -6.067832
## iter
## iter
        18 value -6.067883
## iter
        19 value -6.067920
## iter
        20 value -6.067946
        21 value -6.067967
## iter
        22 value -6.068029
## iter
## iter
        23 value -6.068059
## iter
        24 value -6.068062
## iter
        25 value -6.068063
## iter
        25 value -6.068063
## iter 25 value -6.068063
## final value -6.068063
## converged
## initial value -6.049027
## iter
         2 value -6.063938
        3 value -6.069719
## iter
## iter
         4 value -6.077660
## iter
         5 value -6.081289
## iter
         6 value -6.083983
## iter
         7 value -6.086264
## iter
         8 value -6.089727
## iter
          9 value -6.093924
        10 value -6.097960
## iter
        11 value -6.098795
## iter
## iter
        12 value -6.099032
## iter
        13 value -6.099192
## iter
        14 value -6.099209
## iter
        15 value -6.099215
## iter
        16 value -6.099216
## iter
        17 value -6.099217
## iter
        18 value -6.099217
## iter
        19 value -6.099217
## iter 20 value -6.099218
## iter
        21 value -6.099219
## iter
        22 value -6.099220
        23 value -6.099220
## iter
## iter 23 value -6.099220
## iter 23 value -6.099220
## final value -6.099220
## converged
```


Model4: SARIMA(2,0,1)(1,0,1)12

sma1

iter

constant

```
model4 <- sarima(ozone_sinusoid_residual, p=2, d=0, q=1, P=1, D=0, Q=1, S=12) # fit the model
## initial value -5.921137
## iter
          2 value -6.021739
## iter
          3 value -6.079075
## iter
          4 value -6.085438
## iter
          5 value -6.091319
## iter
          6 value -6.095255
          7 value -6.095886
```

-0.7544 0.1106 -6.8202 0.0000 -0.971176 -0.537624

0.0000 0.0001 -0.0145 0.9884 -0.000196 0.000196

```
## iter
         8 value -6.095982
## iter
         9 value -6.095984
## iter
        10 value -6.095987
        11 value -6.095993
## iter
## iter
        12 value -6.096006
## iter
        13 value -6.096024
        14 value -6.096036
        15 value -6.096039
## iter
## iter
        16 value -6.096040
## iter
        17 value -6.096040
## iter
        18 value -6.096040
## iter
        19 value -6.096040
        19 value -6.096040
## iter
## iter 19 value -6.096040
## final value -6.096040
## converged
## initial value -6.075372
## iter
         2 value -6.077112
## iter
         3 value -6.080624
## iter
        4 value -6.083981
## iter
         5 value -6.086061
## iter
         6 value -6.091109
         7 value -6.094569
## iter
## iter
         8 value -6.096817
## iter
         9 value -6.097887
## iter
        10 value -6.099778
## iter
        11 value -6.100684
        12 value -6.101115
## iter
## iter
        13 value -6.101118
## iter
        14 value -6.101118
## iter
        15 value -6.101118
## iter
        16 value -6.101124
## iter
        17 value -6.101136
        18 value -6.101149
## iter
## iter
        19 value -6.101171
## iter
        20 value -6.101187
## iter
        21 value -6.101190
## iter
        22 value -6.101192
## iter
        23 value -6.101197
## iter
        24 value -6.101201
        25 value -6.101209
## iter
## iter
        26 value -6.101219
        27 value -6.101230
## iter
## iter
        28 value -6.101233
        29 value -6.101237
## iter
## iter
        29 value -6.101237
## iter 29 value -6.101237
## final value -6.101237
## converged
## Warning in sqrt(diag(fitit$var.coef)): NaNs produced
## Warning in sqrt(diag(fitit$var.coef)): NaNs produced
```



```
##
##
           0.0214
                               NaN
                                       NaN
##
   ar2
                      NaN
                                                  NaN
                                                             NaN
## ma1
           0.4374
                      NaN
                               NaN
                                       NaN
                                                  NaN
                                                             NaN
           0.9498 0.0488 19.4654
                                    0.0000
                                             0.854152
                                                        1.045448
##
  sar1
          -0.7278 0.1344 -5.4138
                                    0.0000 -0.991224 -0.464376
##
   sma1
          -0.0002 0.0006 -0.3604
                                    0.7191 -0.001376
   xmean
```

Diagnositics

- 1. From the Standardized residual plot, all models show very stationary behavior over time.
- 2. From the ACF plot, we can assure the stationarity for all 4 models that sampleautocorrelation for all lags are inside of the 95% confidence interval (blue curve)
- 3. From the Normal probability plot, all of the models satisfy the normality assumption.
- 4. From the Ljung-Box test, all models have accept the null hypothesis that the data is from the fitted SARIMA process which gives strength that models have very good fit to the data.
- 5. In conclusion the performance of the 4 models are very nice and have good fit on data. We can decide the best two models, by looking at the (AIC,AICc,BIC) and check the SSE with the Cross Validation.

Evaluation Matrix

1. The first two models, SARIMA(2,0,0)(1,0,1)12, SARIMA(1,0,0)(1,0,1)12 gives the lowest AIC,AICc,BIC, hence theses models are the potential best two parametric models

```
# AIC, AICc, BIC
eval<- function(model){</pre>
  return (c(model$AIC, model$AICc,model$BIC))
m1_evaludation = eval(model1)
m2_evaludation = eval(model2)
m3_evaludation = eval(model3)
m4_evaludation = eval(model4)
eval_matrix = rbind(m1_evaludation,m2_evaludation,m3_evaludation,m4_evaludation)
rownames(eval_matrix) = c("SARIMA(2,0,0)(1,0,1)12","SARIMA(1,0,0)(1,0,1)12",
                          "SARIMA(2,1,1)(1,0,1)12 ", "SARIMA(2,0,1)(1,0,1)12 ")
colnames(eval_matrix) = c("AIC", "AICc", "BIC")
eval_matrix
                                           AICc
                                                      BIC
                                  AIC
## SARIMA(2,0,0)(1,0,1)12 -9.281128 -9.278109 -9.157386
## SARIMA(1,0,0)(1,0,1)12 -9.294789 -9.292790 -9.191670
## SARIMA(2,1,1)(1,0,1)12 -9.262661 -9.258342 -9.117626
```

Cross Validation

- 1. To determine best two models, use crovalidations and find two models that gives the lowest SSEs. Train: $2004 \sim 2011$ Test: 2012 2015
- 2. The first two models SARIMA(2,0,0)(1,0,1)12, SARIMA(1,0,0)(1,0,1)12 gives the lowest SSEs.
- 3. Overall, the first two models gives the lowest values on both (AIC,AICc,BIC) and the SSE. Hence, the best two parametric models are SARIMA(2,0,0)(1,0,1)12, SARIMA(1,0,0)(1,0,1)12
- 4. The SSE for both model are low, but SARIMA(2,0,0)(1,0,1)12 is slighly better

SARIMA(2,0,1)(1,0,1)12 -9.267376 -9.263118 -9.123010

```
sse1 = c()
sse2 = c()
sse3 = c()
sse4 = c()
test_years = seq(10,15,1)
for (year in test_years) {

train_index = 1:(12*(year-4))
test_index = (12*(year-4)+1):(12*(year-4+1))

train <- ozone_sinusoid_residual[train_index]
test <- ozone_sinusoid_residual[test_index]
m1_forecast <- sarima.for(train, p=2, d=0, q=0, P=1, D=0, Q=1, S=12, n.ahead=12)$pred</pre>
```

```
m2_forecast <- sarima.for(train, p=1, d=0, q=0, P=1, D=0, Q=1, S=12, n.ahead=12)$pred
m3_forecast <- sarima.for(train, p=2, d=1, q=1, P=1, D=0, Q=1, S=12, n.ahead=12)$pred
m4_forecast <- sarima.for(train, p=2, d=0, q=1, P=1, D=0, Q=1, S=12, n.ahead=12)$pred

sse1 = c(sse1,sum((m1_forecast - test)^2))
sse2 = c(sse2,sum((m2_forecast - test)^2))
sse3 = c(sse3,sum((m3_forecast - test)^2))
sse4 = c(sse4,sum((m4_forecast - test)^2))
}</pre>
```



```
sse = rbind(sum(sse1), sum(sse2), sum(sse3), sum(sse4))
rownames(sse) = c("SARIMA(2,0,0)(1,0,1)12", "SARIMA(1,0,0)(1,0,1)12", "SARIMA(2,1,1)(1,0,1)12", "SARIMA(2,0,0)(1,0,1)12", "SARIMA(2,0,0)(1,0,1)12", "SARIMA(2,0,0)(1,0,1)12", "SARIMA(2,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,0)(1,0,
```

```
## SSE
## SARIMA(2,0,0)(1,0,1)12 0.0003465800
## SARIMA(1,0,0)(1,0,1)12 0.0003502556
## SARIMA(2,1,1)(1,0,1)12 0.0003684125
## SARIMA(2,0,1)(1,0,1)12 0.0003583199
```

Future 10 values prediction


```
ts = as.data.frame(145:154)
predict_t = 145:154
prediction = c()
coef = ozone_sinusoid_model$coefficients
for (t in predict_t){
        pred = coef[1] + coef[2] * sin(t) + coef[3] * t + coef[4] * cos(t) + coef[5] * sin(t) * t + coef[6] * cos(t) * coef[6] * cos(t) * t + coef[6] * 
       prediction = c(prediction,pred)
prediction
##
             (Intercept)
                                                                (Intercept)
                                                                                                                (Intercept)
                                                                                                                                                                 (Intercept)
                                                                                                                                                                                                                 (Intercept) (Intercept)
## -0.009641503
                                                              0.001033070
                                                                                                                0.013597515
                                                                                                                                                                0.016528621
                                                                                                                                                                                                                0.007152463 -0.005881246
           (Intercept)
                                                               (Intercept)
                                                                                                                (Intercept)
                                                                                                                                                                 (Intercept)
## -0.010543420 -0.002492147
                                                                                                                0.010919518
                                                                                                                                                               0.017393830
m1_forecast = as.vector(m1_forecast)
prediction = as.vector(prediction)
predictions = m1_forecast+prediction
ts2 = 1:154
preds = rep(NA, 144)
```

preds = c(preds,predictions)

```
plot(ozone2,type ="1")
lines(ts2,preds,col = "red")
```

