**Задание 11.1.** Электролитический «серый ящик». В «сером ящике» с выводами A и B и выведенным наружу ключом K собрана электрическая цепь, схема которой представленная на рисунке. Определите ёмкости конденсаторов  $C_1$ ,  $C_2$  и сопротивление резистора R.



<u>Оборудование</u>: батарейка, мультиметр в режиме вольтметра, конденсатор известной емкости  $C_0 = 1000$  мкФ, миллиметровая бумага для построения графиков, секундомер. *Примечание*. Все использующиеся в работе конденсаторы электролитические. Они должны подключаться в цепь с учетом полярности, указанной на ящике и выводах конденсатора  $C_0$ . Учтите, что при неверном подключении оборудование может выйти из строя, а вам его не заменят

### Возможное решение

- 1. Измерим напряжение  $U_0$  батарейки и занесём в отчёт полученный результат.
- 2. Подключим батарейку к выводам A и B при разомкнутом ключе K. При этом конденсаторы зарядятся до напряжения

$$U_1 = U_0 \frac{C_2}{C_1 + C_2},$$
  $U_2 = U_0 \frac{C_1}{C_1 + C_2}.$ 

3. Отключим батарейку, замкнём ключ K и, выждав некоторое время ( $\sim$  30 с), измерим напряжение  $U_{AB}$  на клеммах A и B. Убедимся, что  $U_{AB}$  с течением времени практически не изменяется, т.е.  $C_2$  разрядился, а  $C_1$  через вольтметр разряжается очень медленно. Тогда

$$U_{AB} = U_1 = U_0 \frac{C_2}{C_1 + C_2} .$$

Из полученных соотношений найдём:

$$\frac{C_1}{C_2} = \frac{U_0}{U_{AB}} - 1. {1}$$

4. Разрядим конденсаторы, замкнув выводы A и B. Разомкнём ключ K и, зарядив конденсатор  $C_0$ , подключим его к клеммам A и B и измерим напряжение

$$U'_{AB} = \frac{C_0 U_0}{C_0 + C_{12}}$$
, где  $C_{12} = \frac{C_1 C_2}{C_1 + C_2}$  (2)

5. Решая совместно уравнения (1) и (2), получим

$$C_1 = 1\ 000\ \mathrm{mk\Phi};$$
  $C_2 = 470\ \mathrm{mk\Phi}.$ 

6. Чтобы найти сопротивление резистора R, подключим к клеммам A и B (при разомкнутом ключе K) батарейку. Отключим батарейку и вместо неё подключим вольтметр (мультиметр). Замкнём ключ K и снимем зависимость напряжения  $U_{AB}(t)$  от времени. Сила тока, протекающего через резистор

$$I(t) = \frac{U_2(t)}{R} = -\frac{\Delta q_2}{\Delta t} = -\frac{C_2 \Delta U_2(t)}{\Delta t},$$

где  $\Delta q_2$  - изменение заряда на конденсаторе  $C_2$ . Величину  $\frac{U_2(t)}{\Delta t}$  можно определить, проведя касательную к графику  $U_{AB}(t)$ . Значение  $U_2(t) = U_0(t) - U_1$ .

7. Находим сопротивление  $R = -\frac{U_2(t)}{C_2 \frac{\Delta U_2(t)}{\Delta t}} \approx 20$  кОм.

Основная ошибка при проведении эксперимента — неполная разрядка конденсаторов внутри ЧЯ. В большинстве случае для полной разрядки конденсаторов внутри ЧЯ необходимо замкнуть его контакты, поставить тумблер в положение «вкл» и подождать пару минут. Недолгое замыкание ключа независимо от положения тумблера приводит к простому перераспределению заряда между конденсаторами.

## Критерии оценивания:

| №   | Содержание критерия                                             | Баллы |
|-----|-----------------------------------------------------------------|-------|
| 1.  | Измерение напряжение $U_0$ батарейки                            | 1     |
| 2.  | Идея нахождения отношения $C_2/C_1$ с расчетной формулой        | 1     |
| 3.  | Выполнены необходимые измерения для нахождения $C_2/C_1$        | 1     |
| 4.  | Выполнены повторные измерения                                   | 1     |
| 5.  | Найдено отношение $C_2/C_1$                                     | 1     |
| 6.  | Идея нахождения общей емкости конденсаторов $C_1$ и $C_2$ ,     | 1     |
|     | соединенных последовательно, с расчетной формулой               |       |
| 7.  | Выполнены необходимые измерения для нахождения общей емкости    | 1     |
|     | конденсаторов $C_1$ и $C_2$ , соединенных последовательно       |       |
| 8.  | Выполнены повторные измерения                                   | 1     |
| 9.  | Найдена общая емкость конденсаторов $C_1$ и $C_2$ , соединенных | 1     |
|     | последовательно                                                 |       |
| 10. | Вычислены емкости конденсаторов $C_1$ и $C_2$                   | 1     |
| 11. | Идея нахождения сопротивления R с расчетной формулой            | 1     |
| 12. | Выполнены необходимые измерения для нахождения сопротивления    | 2     |
|     | R (не менее 7 измерений)                                        |       |
|     | Если 5-6 измерений                                              | 1     |
| 13. | Обработка результатов измерений $U(t)$                          | 1     |
| 14. | Найдено сопротивление <i>R</i>                                  | 1     |

Итого: 15 баллов

#### Залание 11.2. Наклоненный маятник.

### Задание

1. В этой задаче изучаются свободные колебания выданного вам маятника на горизонтальной поверхности стола. Свободные колебания маятника являются затухающими. Затухание количественно характеризуется декрементом затухания (от лат. decrementum — уменьшение,



убыль). Декремент затухания d равен натуральному логарифму отношения двух последовательных максимальных отклонений A колеблющейся величины в одну и ту же сторону:  $d = ln(A_1/A_2)$ . Закрепите **поочередно** при помощи магнита у **края** диска маленькую и большую гайку, и, проведя необходимые **измерения**, выясните, в каком случае декремент затухания колебаний маятника меньше. Опишите ваши измерения и приведите их результаты.

2. Выберите гайку, для которой декремент затухания колебаний маятника **меньше**. Закрепите при помощи магнитов две такие гайки у края диска, как показано на рисунке. Исследуйте зависимость периода T малых колебаний маятника от угла  $\alpha$  между радиусами, проведенными из центра диска к центрам гаек. Постройте график зависимости  $T(\alpha)$ . Сделайте вывод о характере зависимости  $T(\alpha)$ .



<u>Оборудование</u>: Маятник с прикрепленным транспортиром, две большие и две маленькие гайки, два магнита, секундомер, 2 листа миллиметровой бумаги формата А5 (для построения графиков).

### Возможное решение

- 1. Будем измерять число колебаний за которое угловая амплитуда уменьшается в два раза, например, с  $\varphi_0 = 30^\circ$  до  $\varphi_1 = 15^\circ$ . Для большой гайки это число примерно в два раза больше чем для маленькой. Следовательно, декремент затухания колебаний маятника с большой гайкой меньше. Выбираем её для выполнения второй части задания.
- 2. Измеряем период колебаний для  $\alpha$  в диапазоне  $30^{\circ} < \alpha < 150^{\circ}$  с шагом  $15^{\circ}$ .
- 3. По результатам измерений строим график зависимости  $T(\alpha)$ .
- 4. Делаем вывод о характере зависимости: она монотонно возрастающая и  $\frac{\Delta T}{\Delta \alpha}$  непрерывно растёт во всём диапазоне.



# Критерии оценивания:

| №  | Содержание критерия                                                                                   | Баллы |
|----|-------------------------------------------------------------------------------------------------------|-------|
| 1. | Предложен метод сравнения декрементов затухания - измерение                                           | 1     |
|    | числа полных колебаний, за которое амплитуда уменьшается в одно                                       |       |
|    | и то же количество раз для каждой из гаек                                                             |       |
| 2. | Проведены необходимые измерения и записаны их результаты                                              | 1     |
| 3. | Сделан правильный вывод – декремент затухания для маятника с                                          | 1     |
|    | большой гайкой меньше                                                                                 |       |
| 4. | Проведены измерения периода для 9-10 значений α                                                       | 3     |
|    | для 7-8 значений                                                                                      | 2     |
|    | для 5-6 значений                                                                                      | 1     |
| 5. | Период измерялся через время $t$ , за которое маятник совершает $N$                                   | 1     |
|    | полных колебаний, при этом $t \ge 10$ с                                                               |       |
| 6. | Повторные измерения $t$ при одном и том же $\alpha$                                                   | 2     |
|    | если повторение однократное                                                                           | 1     |
| 7. | Построен график зависимости $T(\alpha)$ :                                                             | 4     |
|    | нанесены точки                                                                                        | 1     |
|    | подписаны оси                                                                                         | 0,5   |
|    | указаны единицы измерения                                                                             | 0,5   |
|    | указан масштаб по осям                                                                                | 0,5   |
|    | масштаб выбран так, что график занимает не менее 50% по каждой                                        | 0,5   |
|    | оси                                                                                                   |       |
|    | проведена линия тренда (не ломаная)                                                                   | 1     |
| 8. | Сделан правильный вывод о зависимости $T(\alpha)$ :                                                   | 2     |
|    | при увеличении α период монотонно возрастает                                                          | 1     |
|    | скорость возрастания $\frac{\Delta T}{\Delta \alpha}$ также непрерывно растет при увеличении $\alpha$ | 1     |