Q1 Show that $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$.

Proof. Consider \mathbb{Q} as a subfield of \mathbb{C} . For each $n \in \mathbb{N}$, $\sqrt[n]{2} \in \mathbb{C}$ is algebraic over \mathbb{Q} , as it is a root of the polynomial $x^n - 2 \in \mathbb{Q}[x]$. In fact, $m_{\sqrt[n]{2},\mathbb{Q}}(x) = x^n - 2$, since it is monic and irreducible over \mathbb{Q} , by Eisenstein's criterion. Then

$$[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = \deg m_{\sqrt[n]{2},\mathbb{Q}}(x) = \deg(x^n - 2) = n.$$

So $\mathbb{Q}(\sqrt[n]{2})/\mathbb{Q}$ is algebraic, therefore $\overline{\mathbb{Q}(\sqrt[n]{2})} = \overline{\mathbb{Q}}$. We may now deduce

$$[\overline{\mathbb{Q}}:\mathbb{Q}] = [\overline{\mathbb{Q}(\sqrt[n]{2})}:\mathbb{Q}(\sqrt[n]{2})][\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] \ge [\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = n.$$

Since $[\overline{\mathbb{Q}} : \mathbb{Q}] \geq n$ for all $n \in \mathbb{N}$, then necessarily $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$.

$$a + (b \cdot c) = (a+b) \cdot (a+c)$$

Q2 Let $F \subseteq K \subseteq L$ be fields. Show that if L/F is separable, then both K/F and L/K are separable.

Proof. We first show K/F is separable. For each $\alpha \in K$, we also have $\alpha \in L$. And since L/F is separable, then α is separable over F. Hence, K/F is separable.

Next, we show L/K is separable. First, note that L/F is algebraic, so K/F and L/K are both algebraic. Let $\alpha \in L$ and consider its minimal polynomials $m_{\alpha,K}(x) \in K[x]$ and $m_{\alpha,F}(x) \in F[x]$. Since the minimal polynomial of α over F is also a polynomial over K with α as a root, then $m_{\alpha,K}(x) \mid m_{\alpha,F}(x)$. Then any root $\beta \in \overline{K}$ of $m_{\alpha,K}(x)$ is also a root of $m_{\alpha,F}(x)$. Moreover, because K/F is algebraic, we have $\overline{K} = \overline{F}$, so $\beta \in \overline{F}$.

Since L/F is separable and $\alpha \in L$, then $m_{\alpha,F}(x)$ is separable over F. Then β is a simple root for $m_{\alpha,F}(x)$. In $\overline{K}[x] = \overline{F}[x]$, we must at least have $(x-\beta) \mid m_{\alpha,K}(x)$. However, $(x-\beta)^2$ must not divide $m_{\alpha,K}(x)$, as $m_{\alpha,K}(x) \mid m_{\alpha,F}(x)$ but $(x-\beta)^2$ does not divide $m_{\alpha,F}(x)$. Hence, β is a simple root for $m_{\alpha,K}(x)$, and we conclude that L/K is separable.

- **Q3** Let F be a field and A be a subset of F[x]. An algebraic extension K of F is called a *splitting field* for A over F if
 - (i) every polynomial in A splits completely in K[x],
- (ii) if $F \subseteq E \subseteq K$ and every polynomial in A splits completely in E[x], then E = K.

Lemma 1. Let K/F be a field extension and let $f(x), g(x) \in F[x]$ be nonzero polynomials such that their product f(x)g(x) splits completely in K[x]. Then both f(x) and g(x) split completely in K[x].

Proof. We will use induction on $n = \deg f(x)g(x)$. For the base case, n = 1, we have

$$f(x)g(x) = a(x - \alpha)$$

for some $a \in F^{\times}$ and $\alpha \in K$. Then $\deg f(x) + \deg g(x) = 1$, so one of the two polynomials has degree 1 and the other has degree 0. Assume $\deg g(x) = 0$, so $g(x) = g \in F^{\times}$ (and g(x) splits completely in K[x]). Then

$$f(x) = g^{-1}a(x - \alpha)$$

is a factorization of f(x) into linear factors in K[x], so f(x) splits completely in K[x].

As the induction hypothesis, assume the result is true for any pair of polynomials in K[x] whose product has degree at most n-1. Now suppose deg f(x)g(x) = n, so

$$f(x)g(x) = a(x - \alpha_1) \cdots (x - \alpha_n)$$

for some $a \in F^{\times}$ and $\alpha_1, \ldots, \alpha_n \in K$. Since $x - \alpha_n$ is an irreducible polynomial in the UFD K[x], then it is prime. Then the fact that $(x - \alpha_n) \mid f(x)g(x)$ implies $x - \alpha_n$ divides either f(x) or g(x). Without loss of generality, assume $(x - \alpha_n) \mid g(x)$, so

$$g(x) = (x - \alpha_n)h(x)$$

for some $h(x) \in K[x]$ with deg $h(x) = \deg g(x) - 1$. Then we have

$$f(x)h(x) = a(x - \alpha_1) \cdots (x - \alpha_{n-1}).$$

Because deg f(x)h(x) = n - 1, then we may apply the induction hypothesis to deduce that both f(x) and h(x) split completely in K[x]. As h(x) splits completely in K[x], we write

$$h(x) = b(x - \beta_1) \cdots (x - \beta_m)$$

for some $b \in F^{\times}$ and $\beta_1, \ldots, \beta_m \in K$. Then

$$g(x) = b(x - \beta_1) \cdots (x - \beta_m)(x - \alpha_n),$$

which is a factorization of g(x) into linear factors in K[x]. Hence, g(x) splits completely in K[x], which completes the induction.

(a) Suppose that $A = \{f_1(x), f_2(x), \dots, f_n(x)\} \subseteq F[x]$. Let $f(x) = \prod_{j=1}^n f_j(x)$ and K be a splitting field of $f(x) \in F[x]$. Show that that K is a splitting field of A over F.

Proof. We will use induction on n. For the base case, if n = 1, then $f(x) = f_1(x)$ and K is simply the splitting field of $f_1(x)$. This is the same as saying K is the splitting field for the singleton $A = \{f_1(x)\}$.

For the inductive hypotheses, assume that the result is true for any subset of F[x] containing at most n-1 polynomials. For $j=1,\ldots,n-2$ define $g_j(x)=f_j(x)$, and define $g_{n-1}(x)=f_{n-1}(x)f_n(x)$. Then we apply the induction hypothesis to the subset $B=\{g_1(x),\ldots,g_{n-1}(x)\}\subseteq F[x]$ containing n-1 polynomials. We see that

$$g_1(x)\cdots g_{n-1}(x) = f_1(x)\cdots f_{n-1}(x)f_n(x) = f(x),$$

so K is a splitting field of B over F. In particular, $g_{n-1}(x) = f_{n-1}(x)f_n(x)$ splits completely in K[x], so Lemma 1 tells us that both $f_{n-1}(x)$ and $f_n(x)$ split completely in K[x]. And since $f_1(x), \ldots, f_{n-2}(x) \in B$ also split completely in K[x], we conclude that every polynomial in A splits completely in K[x].

Suppose E is a field such that $F \subseteq E \subseteq K$ and every polynomial in A splits completely in E[x]. Then, for $j = 1, \ldots, n-2$, each $g_j(x) = f_j(x)$ splits completely in E[x]. We write

$$f_{n-1}(x) = a(x - \alpha_1) \cdots (x - \alpha_m)$$
 and $f_n(x) = b(x - \beta_1) \cdots (x - \beta_k)$,

for some $a, b \in F^{\times}$ and $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_k \in E$. Then

$$g_{n-1}(x) = ab(x - \alpha_1) \cdots (x - \alpha_m)(x - \beta_1) \cdots (x - \beta_k)$$

is a factorization of $g_{n-1}(x)$ into linear factors in E[x]. Hence, every polynomial in B splits completely in E[x]. Since K is a splitting field of B over F, then E=K. Thus, K is a splitting field of A over F.

(b) Let $S \subseteq \overline{F}$ be the subset consisting of roots of polynomials in A. Show that F(S) is a splitting field of A over F.

Proof. Because $F(S) \subseteq \overline{F}$, we know that F(S)/F is an algebraic field extension. For each $f(x) \in A$, we have

$$f(x) = a(x - \alpha_1) \cdots (x - \alpha_n)$$

for some $a \in F$ and $\alpha_1, \ldots, \alpha_n \in \overline{F}$. Since $\alpha_1, \ldots, \alpha_n$ are precisely the roots of f(x), they are contained in $S \subseteq F(S)$. Therefore, this is a factorization of f(x) into linear factors in (F(S))[x], i.e., every polynomial in A splits completely in (F(S))[x].

Suppose E is a field such that $F \subseteq E \subseteq F(S)$ and every polynomial in A splits completely in E[x]. Given $\alpha \in S$, there is some $f(x) \in A$ such that α is a root of f(x). Then we write

$$f(x) = a(x - \alpha_1) \cdots (x - \alpha_n),$$

for some $a \in F$ and $\alpha_1, \ldots, \alpha_n \in E$. Since $f(\alpha) = 0$, then $\alpha = \alpha_j$ for some j. This implies $\alpha \in E$, and we conclude that $S \subseteq E$. Since the field E also contains F, then in fact $F(S) \subseteq E$. Therefore, as we have the opposite inclusion by assumption, we have equality E = F(S). Hence, F(S) is a splitting field of A over F.

(c) Suppose that K is a splitting field of A over F. Show that there exists a field isomorphism $\varphi: K \to F(S)$ such that $\varphi|_F = \mathrm{id}_F$.

(Hint: Prop 5 on Apr 13 can be useful.)

Proof. Both F(S)/F and K/F are algebraic. Consider the algebraic closure \overline{F} of F, which contains F(S) as a subfield. Then Proposition 5 implies the existence of a field embedding $\varphi: K \to \overline{F}$ such that the following diagram commutes:

$$F \hookrightarrow F(S) \hookrightarrow \overline{F}$$

$$\downarrow \qquad \qquad \varphi$$

$$K$$

In particular, $\varphi|_F = \mathrm{id}_F$. Since the inclusion map $F \hookrightarrow \overline{F}$ is injective, then φ is injective, therefore $K \cong \varphi(K)$. We claim that $\varphi(K) = F(S)$.

Given a polynomial $f(x) \in A$, we have

$$f(x) = a(x - \alpha_1) \cdots (x - \alpha_n)$$

for some $a \in F^{\times}$ and $\alpha_1, \ldots, \alpha_n \in F(S)$. More specifically, we know that $\alpha_1, \ldots, \alpha_n \in S$. Additionally,

$$f(x) = b(x - \beta_1) \cdots (x - \beta_n)$$

for some $b \in F^{\times}$ and $\beta_1, \ldots, \beta_n \in K$. Extending φ to a ring homomorphism $\varphi' : K[x] \to \overline{F}[x]$, we know that $\varphi'|_{F[x]} = \mathrm{id}_{F[x]}$. Then in $\overline{F}[x]$, we find

$$f(x) = \varphi'(f(x)) = \varphi'(b(x - \beta_1) \cdots (x - \beta_n)) = b(x - \varphi(\beta_1)) \cdots (x - \varphi(\beta_n)).$$

Then we now have two factorizations of f(x) into linear factors in $\overline{F}[x]$, given by

$$f(x) = a(x - \alpha_1) \cdots (x - \alpha_n) = b(x - \varphi(\beta_1)) \cdots (x - \varphi(\beta_n)).$$

Since $\overline{F}[x]$ is a UFD then, up to reordering, $\alpha_j = \varphi(\beta_j)$ for $j = 1, \ldots, n$. That is, every root of f(x) in \overline{F} is an element of $\varphi(K)$. Since this is true for all polynomials in A, then we must have $S \subseteq \varphi(K)$. And since $F = \varphi(F) \subseteq \varphi(K)$, then we must have $F(S) \subseteq \varphi(K)$. Since K is a splitting field for A over F, then so is $\varphi(A)$. And since F(S) is also a splitting field for A over F, then in fact $F(S) = \varphi(K)$. Hence, $\varphi: K \to F(S)$ is an isomorphism which is the identity on F.

Q4 Let F be a field of characteristic p. Show that if K/F is a finite inseparable field extension, then $p \mid [K:F]$.

Proof. Since K/F inseparable, then there exists some element $\alpha \in K$ such that $m_{\alpha,F}(x)$ is inseparable, so $\deg m_{\alpha,F}(x) \geq 2$ and $\gcd(m_{\alpha,F}(x), m'_{\alpha,F}(x)) \neq 1$. Since $m_{\alpha,F}(x)$ is irreducible, this means that $m_{\alpha,F}(x)$ divides $m'_{\alpha,F}(x)$. But the degree of $m_{\alpha,F}(x)$ is strictly greater than the degree of its derivative, and the only polynomial multiple of $m_{\alpha,F}(x)$ with a lesser degree is 0. Therefore, $m'_{\alpha,F}(x) = 0$. Suppose

$$m_{\alpha,F}(x) = x^n + \sum_{j=0}^{n-1} a_j x^j$$

where $n = \deg m_{\alpha,F}(x)$, then

$$m'_{\alpha,F}(x) = nx^{n-1} + \sum_{j=1}^{n-1} ja_j x^{j-1}.$$

But deg $m_{\alpha,F}(x) \geq 2$ and deg $m'_{\alpha,F}(x) = 0$. so we must have n = 0 in F, which means that n is an integer multiple of p. Therefore,

$$[K : F] = [K : F(\alpha)][F(\alpha) : F] = [K : F(\alpha)] \cdot n$$

is an integer multiple of p, i.e., $p \mid [K : F]$.