MATH 100, Fall, 2021 Tutorial #7

Derivative Tests and L'Hospital's Rule

- Q1 Let $f(x) = (x+1)^2(x-1)(x+2)$. Note that f is defined on the domain $(-\infty, \infty)$, but we can also consider f defined on any subdomain of $(-\infty, \infty)$. Discuss, without making calculations, what the graph of f should look like.
 - 1. Let D = [-3, 1]. Find (giving **exact** answers) all critical points.
- Q2 Consider the same function as in Q1.
 - 1. Find (with **exact** answers) inflection points. Sketch a graph and label the critical points from Q1 and the inflection points.

Discuss that $D = (-\infty, \infty)$, what are your global maxima and minima, if they exist? Explain in one sentence why they are the same or different from the global maxima and minima found in 1.

- Q3 Let $D = (-\infty, \infty)$. Suppose a function f has the following properties: f'(-1) = f'(0) = f'(1) = 0, f''(0) > 0, f''(-1) < 0, and f''(1) < 0.
 - 1. Sketch three different possible graphs for f. Be sure to label the points x = -1, 0, 1 on your x-axis. (Try to do something interesting!)

Discuss with your group: If in addition $f(\pm 1) = 0$ and f(0) = -2, how many different f's satisfy these requirements?

Q4 Let $k \in \mathbb{R}^+$.

1. Use L'Hospital's rule to show that $\lim_{\eta \to \infty} \left(1 + \frac{k}{\eta}\right)^{\eta} = e^k$.

Discuss with your group how $\lim_{\eta \to \infty} \left(1 + \frac{k}{\eta}\right)^{\eta} = e^k$ can be computed using only the fact that $\lim_{\eta \to \infty} \left(1 + \frac{1}{\eta}\right)^{\eta} = e$.

- Q5 Suppose $f(x) \neq 0$ for all $x \neq a$, and $\lim_{x \to a} f(x) = 0$.
 - 1. Evaluate $\lim_{x\to a} \frac{f(x)}{f(x)}$.
 - 2. Let $f(x) = e^{-1/x^2}$. What happens when we apply L'Hospital's rule to $\lim_{x\to 0} \frac{f(x)}{f(x)}$? Show your work and explain your answer in a sentence.

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2) $f(x) = (x+1)^{2} (x-1) (x+1)^{2}$	Your Name: Key Your Student Number: V00 Today's Date: 2, etc) 4 2)
$f'(x) = Q(x+1)\cdot 1\cdot (x+1)^2\cdot $	+2) +(x+1) 2(x-1).1
= 2(x+1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-	$(x+2) + (x+1)^{2}(x+2+x-1)$ $(+2) + (x+1)^{2}(2x+1)$ (+2) + (x+1)(2x+1) (+2) + (x+1)(2x+1) (+2) + (x+1)(2x+1) (+2) + (x+1)(2x+1) $(+2) + (x+1)^{2}(2x+1)$ $(+2) + (x+1)^{2}(2x+1)$ (+
,	

Each of these points lie in the aterror of D = [-3,1], hence all three points, x = -1, $-\frac{5}{8} \pm \frac{173}{8}$, are Crifical points.

MATH 100, Fall 2021 **Tutorial Worksheet**

Your Name: Your Student Number: 400

TUCOLIC	A A OLK	311661		
Tutorial	${\bf Section}$	(T01,	T02	etc)

Today's Date:

Tutorial Instructor Name:

Question Number Attempted (Q1, Q2, etc) 2

$$\int''(x) = \int_{x}^{y} ((x+1)(4x^{2}+5x-3))$$

$$= 1 \cdot (4x^{3}+5x-3) + (x+1)(8x+5)$$

$$= 4x^{2}+5x-3+8x^{2}+13x+5$$

$$= 12x^{2}+18x+2$$

$$= 12x^{2}+18x+2$$

$$= 2(6x^{2}+9x+1)$$

$$= 2(6x^{2}+9x+1)$$

$$= 2(6x^{2}+9x+1)$$

$$= 2.5$$

$$= -\frac{9}{12} \pm \frac{181-24}{12}$$

$$= -\frac{3}{4} \pm \frac{\sqrt{57}}{12}$$

$$\left(-\frac{3}{4}+\frac{\sqrt{57}}{12},-\frac{265+29\sqrt{57}}{288}\right)$$

Critical Valves: A=(-1.693,-0.397) B = (-1,0) Cx(0.443, -2.833)

1"(-1)=2(6.(-1)=+9(-1)+1) : 2 (6 -9+1) -21-27 10, concave down Inflection points: D > (-0.12, -0.212) F = (-1.38, -1.628)

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc.)	Your Name: Veg Your Student Number: V00 Today's Date:
2)	
3)	

MATH 100, Fall 2021	Your	Verse		
Tutorial Worksheet		· processing	No services	
Tutorial Section (TOI, TOZ enc)			Disc	
Tutorial Instructor Name	alementelle i kantala komulius i selejipaji delikus i ka			er en
Question Number Attempted Q1 Q2 of	ie .	2.4		
La (+ f)				
Consider lim y ln(+				
		, , , , , , , , , , , , , , , , , , ,		
1 Hispiral's (1+1/4)		2)		
= lm 1+49				
= k				
hus, $\lim_{k \to \infty} (1+\frac{k}{2})^2 = e^k$				

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (T01, T02 etc) Tutorial Instructor Name:_ Question Number Attempted (Q1, Q2, e	Your Name: Your Student Number: V00 Today's Date: tc)
1) limi f(x) = limi	A second
2) /W, E. J.	
S(x) e 42	
	f(x)
Method of L'Hôpil	al a " Circularia"
Of couse, the limit	ti = 1 as in part 1)