Character tables of S_8 and A_8

2022年1月31日 1117137 Kota Watanabe

0. 指標表

指標表を先に載せておく.

1日伝化	22 22	- 単X で C · 40320	かく. 1440	360	192	96	36	30	96	36 1	6	12				
S_8	C	(1)	(2)		(2,2)	(4)	(3,2)			(4, 3, 3)		(6)				
40320	#C	1	28	112	210	420	1120	1344		1120 25		360				
0	χ_S	28	16	10	8	6	4	3	4	1 2	2	1				
1	1	1	1	1	1	1	1	1	1			1				
2	sgn	1	-1	1	1	-1	-1	1	-1			-1				
3	χ_3	7	5_	4	3	3	2	2	1			1				
4	χ_4	7	-5	4	3	-3	-2	2	-1			-1				
5	χ_5	21	9	6	1	3	0	1	-3			0				
6	χ_6	21	-9	6	1	-3	0	1	3			0				
7 8	χ_7	20 20	$10 \\ -10$	5 5	$\frac{4}{4}$	$\frac{2}{-2}$	1 -1	0 0	$\begin{array}{c} 2 \\ -2 \end{array}$			-1 1				
9	χ_8	14	-10	-1	2	$-2 \\ -2$	$\frac{-1}{1}$	-1	$\frac{-2}{0}$			0				
10	χ_9	14	-4	-1	$\frac{2}{2}$	$\frac{-z}{2}$	-1	-1	0			0				
11	χ_{10} χ_{11}	28	10	$\frac{-1}{1}$	$\frac{2}{4}$	-2	1	$-1 \\ -2$	2			-1				
12	χ_{12}	28	-10	1	4	2	-1	-2	-2			1				
13	χ_{13}	35	5	5	-5	1	-1	0	-3			0				
14	χ_{14}	35	-5	5	-5	-1	1	0	3	2 -	-1	0				
15	χ_{15}	42	0	-6	2	0	0	2	0	0 -	-2	0				
16	χ_{16}	56	4	-4	0	0	-2	1	4	-1 (1				
17	χ_{17}	56	-4	-4	0	0	2	1	-4			-1				
18	χ_{18}	64	16	4	0	0	-2	-1	0			0				
19	χ_{19}	64	-16	4_	0	0	2	-1	0			0				
20	χ_{20}	70	10	-5	2	-4	1	0	-2			1				
$\frac{21}{22}$	χ_{21}	70 90	$-10 \\ 0$	$-5 \\ 0$	$\frac{2}{-6}$	$\frac{4}{0}$	$-1 \\ 0$	0 0	$\frac{2}{0}$			$-1 \\ 0$				
	χ_{22}												0			
8	C	(3, 2, 2)	$\frac{12}{(4,3)}$	10 (5, 2			384 $(2, 2, 2, 2)$	36	32 $(4,2,2)$	32	15 (5.2)	12 $(6,2)$	8 (8)			
$\frac{S_8}{40320}$	#C	1680	3360				$\frac{1,2,2,2,2}{105}$	(3, 3, 2) 1120	$\frac{(4,2,2)}{1260}$	$\frac{(4,4)}{1260}$	(5,3) 2688	3360	5040	-		
0	χ_S	2	0	1	0		4	1	2	0	0	1	0	-		
1	1	1	1	1	1		1	1	1	1	1	1	1			
2	sgn	1	-1	-1	1		1	-1	-1	1	1	1	-1			
3	χ_3	0	0	0	0		-1	-1	-1	-1	-1	-1	-1			
4	χ_4	0	0	0	0	ı	-1	1	1	-1	-1	-1	1			
5	χ_5	-2	0	-1	0	1	-3	0	-1	1	1	0	1			
6	χ_6	-2	0	1	O	1	-3	0	1	1	1	0	-1			
7	χ_7	1	-1	0	_		4	1	2	0	0	1	0			
8	χ_8	1	1	0	_		4	-1	-2	0	0	1	0			
9	χ_9	-1	1	-1	0		6	-2	2	2	-1	0	0			
10	X10	-1	$-1 \\ 1$	1	0		6	2	$-2 \\ -2$	2	-1	0	0			
11 12	χ_{11}	1 1	-1	0	0		$-4 \\ -4$	1 -1	$\frac{-2}{2}$	0	1 1	$-1 \\ -1$	0			
13	χ_{12} χ_{13}	1	1	0	0		3	$\frac{-1}{2}$	1	-1	0	0	-1			
14	χ_{13} χ_{14}	1	-1	0	0		3	-2	-1	-1	0	0	1			
15	χ_{14}	2	0	0	0		-6	0	0	2	-1	0	0			
16	χ_{16}	0	0	-1	0		8	1	0	0	1	-1	0			
17	χ_{17}	0	0	1	0	1	8	-1	0	0	1	-1	0			
18	χ_{18}	0	0	1	1		0	-2	0	0	-1	0	0			
19	χ_{19}	0	0	-1	1		0	2	0	0	-1	0	0			
20	χ_{20}	-1	-1	0	0		-2	1	0	-2	0	1	0			
21	χ_{21}	-1	1	0	0		-2	-1	0	-2	0	1	0			
22	χ_{22}	0	0	0	_		-6	0	0	2_	0	0	0			_
8	14	20160	180	96	15	18	8	12	7	7		192	16	15	15	6
A ₈	<i>C</i>	(1)		(2,2)	(5)	(3,3)	(4,2)	(3, 2, 2)		(7) ₂		(2, 2, 2)	(4,4)	$(5,3)_1$	$(5,3)_2$	(6, 2)
20160	#C	1	112	210	1344	1120	2520	1680	2880	2880)	105	1260	1344	1344	3360
$\frac{1}{2}$	$\frac{1}{\phi_2}$	1 7	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	1 1	1 1	$\frac{1}{0}$	$\frac{1}{0}$	$\frac{1}{0}$		$\frac{1}{-1}$	$\frac{1}{-1}$	$\begin{array}{c} 1 \\ -1 \end{array}$	$\frac{1}{-1}$	1 -1
3	ϕ_3	21	6	3 1	1	0	-1	-2	0	0		$-1 \\ -3$	1	1	$\frac{-1}{1}$	0 - 1
4	ϕ_4	20	5	4	0	-1	0	1	-1	-1		4	0	0	0	1
5		14	-1	2	-1	2	0	-1	0	0		6	$\frac{\circ}{2}$	-1	-1	0
6	ω_5		-	$\frac{2}{4}$	-2	1	0	1	0	0		-4	0	1	1	-1
	$\phi_5 \ \phi_6$	28	1	4			-									
7	$\phi_6 \ \phi_7$		1 5	-5	0	2	-1	1	0	0		3	-1	0	0	0
	$\phi_6 \ \phi_7$	28 35	5	-5	0							3 -3		0 $\frac{-1+\sqrt{15}}{2}$	0 $\frac{-1-\sqrt{15}}{2}$	0
8	$\phi_6 \ \phi_7 \ \phi_8$	28 35 21	$\frac{5}{-3}$	-5 1	0 1	0	-1	1	0	0		3 -3 -3	1	0 $\frac{-1+\sqrt{15}}{2}$ $\frac{-1-\sqrt{15}}{2}$	0 $\frac{-1-\sqrt{15}}{2}$ $\frac{-1+\sqrt{15}}{2}$	0
8 9	$egin{array}{c} \phi_6 \ \phi_7 \ \phi_8 \ \phi_9 \end{array}$	28 35 21 21	5 -3 -3	-5 1 1	0 1 1	0 0	$-1 \\ -1$	1 1	0	0 0		3 -3 -3 8	1 1	$ \begin{array}{r} 0 \\ -1 + \sqrt{15} \\ \hline 2 \\ -1 - \sqrt{15} \\ \hline 1 \\ \end{array} $	$0 \\ \frac{-1 - \sqrt{15}}{2} \\ \frac{-1 + \sqrt{15}}{2} \\ 1$	0 0
8 9 10	ϕ_6 ϕ_7 ϕ_8 ϕ_9 ϕ_{10}	28 35 21 21 56	5 -3 -3 -4	$ \begin{array}{c} -5 \\ 1 \\ 1 \\ 0 \end{array} $	0 1	$0 \\ 0 \\ -1$	-1 -1 0	1 1 0	0 0 0 1	0 0 0 1		-3 -3 8 0	1 1 0	$\frac{\frac{-1+\sqrt{15}}{2}}{\frac{-1-\sqrt{15}}{2}}$	$\frac{\frac{-1-\sqrt{15}}{2}}{\frac{-1+\sqrt{15}}{2}}$ 1	$0 \\ 0 \\ -1$
8 9 10 11	$ \phi_6 $ $ \phi_7 $ $ \phi_8 $ $ \phi_9 $ $ \phi_{10} $ $ \phi_{11} $	28 35 21 21	5 -3 -3	-5 1 1	0 1 1 1	0 0	$-1 \\ -1$	1 1 0 0	0 0 0 1	0 0 0 1		-3 -3 8 0	1 1 0 0	$ \begin{array}{c} 0 \\ $	$ \begin{array}{c} 0 \\ $	0 0
8 9 10 11 12	ϕ_{6} ϕ_{7} ϕ_{8} ϕ_{9} ϕ_{10} ϕ_{11} ϕ_{12}	28 35 21 21 56 64 70	5 -3 -3 -4 4 -5	$ \begin{array}{c} -5 \\ 1 \\ 0 \\ 0 \\ 2 \end{array} $	$0 \\ 1 \\ 1 \\ 1 \\ -1 \\ 0$	$0 \\ 0 \\ -1 \\ -2 \\ 1$		$egin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ -1 \end{array}$	0 0 0 1	0 0 0 1	<u>7</u>	-3 -3 8 0	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ -2 \end{array} $	$ \begin{array}{r} -1 + \sqrt{15} \\ \hline 2 \\ -1 - \sqrt{15} \\ \hline 1 \\ -1 \\ 0 \end{array} $	$ \frac{-1 - \sqrt{15}}{2} \\ -1 + \sqrt{15} \\ 1 \\ -1 \\ 0 $	$0 \\ 0 \\ -1 \\ 0 \\ 1$
8 9 10 11	ϕ_{6} ϕ_{7} ϕ_{8} ϕ_{9} ϕ_{10} ϕ_{11}	28 35 21 21 56 64	5 -3 -3 -4 4	$ \begin{array}{c} -5 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} $	0 1 1 1 -1	$0 \\ 0 \\ -1 \\ -2$	$ \begin{array}{r} -1 \\ -1 \\ 0 \\ 0 \end{array} $	1 1 0 0	0 0 0 1	0 0 0	<u>7</u>	-3 -3 8	1 1 0 0	$ \begin{array}{r} -1+\sqrt{15} \\ 2 \\ -1-\sqrt{15} \\ 2 \\ 1 \\ -1 \end{array} $	$ \begin{array}{r} -1 - \sqrt{15} \\ \hline 2 \\ -1 + \sqrt{15} \\ \hline 1 \\ -1 \end{array} $	$0 \\ 0 \\ -1 \\ 0$

- S_nの指標表を求めるにあたって以下の事実を用いた.
- 1. 自明な指標と符号関数は既約指標である。
- 2. 既約指標の数は置換の型の数、n の分割数、n の分割に対するヤング図形の数と同じである.
- 3. 既約指標の次元はヤング図形とフック長から求められる.
- 4. 既約指標の直交性.
- 5. 次元が同じ既約指標の数が奇数のとき、 $\mathrm{sgn}(\mathrm{g}) = -1$ となる全ての g で $\chi(\mathrm{g}) = 0$ となる指標 χ が奇数個存在する.
- 6.(固定点) 1 は既約指標である.
- 7. 既約指標と符号関数の積はまた既約指標になる.
- $.S_n$ の既約指標の $S_m(m < n)$ への制限は S_m の指標になる (既約とは限らない).

指標1

・自明な指標.

指標 sgn

•符号関数.

指標 χ_3

・(固定点) - 1.

指標 γ₄

・指標 χ_3 と符号関数の積.

指標 χ_5

・指標 χ_3 の反対称テンソル積. $(\chi_3^2(g) - \chi_3(g^2))/2$.

指標 χ_6

・指標 χ₅ と符号関数の積.

指標 χ_7

• $(\chi_3^2(g) + \chi_3(g^2))/2 - 1 - \chi_3$.

指標 γ_8

・指標 χ_7 と符号関数の積.

 $n\leq 5$ のとき、 S_n の全ての既約指標は上の 8 つのどれかで求められる.n>5 のとき、上の指標は相異なる既約指標である. n=6 のときは、列の直交関係からすぐに残りの既約指標も求まる。列及び行の直交関係を用いて既約指標を求める前に既約指標の数を求めることを考える。既約指標の数は共役類の数に等しく、さらに置換の型の数、n の分割数、n の分割に対するヤング図形の数にも等しい。求めるのが簡単な n の分割数を考える. (a_1,\cdots,a_k) with $a_s>1(1\leq s\leq k)$ を m(<n) の分割とすると $(a_1,\cdots,a_k,a_{k+1},\cdots,a_{k+n-m})$ with $a_s=1(s>k)$ は n の分割である。よって (int)n/2 重のループで求められる. $n\leq 8$ は以下の通り。

直交関係を用いて次元を求めることもできるが、ここではヤング図形、フック公式から求める.一例を挙げる.

6	4	3	1
4	2	1	
1			

$$Deg = \frac{8!}{6 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 1} = 70$$

同様にして、

 ${\rm sgn}(g_i){\rm sgn}(g_j)=-1$ ならば i 列目と j 列目は必ず直交するので、指標 ${\rm sgn}$ の値で二分してみる. 次元が既にわかっているので 偶置換から. 以下 n=8.8 つの既約指標は求められているとする. 1 列目との直交性、列の二乗和が群の位数を共役類の位数で 割ったものに等しいことから、候補を選出すると、i=15 が一択であり、決定できる. さらにこれとの直交性を利用して i=21 が 4 つの候補を持つことを得る. $i=20,12,10,\cdots$ とこれを繰り返す. 実際は i=10 の時点で決定できた.

col^{row}	9	10	11	12	13	14	15	16	17	18	19	20	21	22
20	-1	-1	1	1	0	0	-1	1	1	-1	-1	0	0	0
12 12	-1	-1	1	1	1	1	2	0	0	0	0	-1	-1	0
12	1	1	1	1	-1	-1	-2	1	1	0	0	0	0	0
		÷												

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	-1	-1	1	1	1	1	2	0	0	0	0	-1	-1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	0	0	0	0	-1	-1	-2	0	0	0	0	0	0	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1	1	1	1	-1	-1	0	0	0	-1	-1	1	1	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:												
19 2 2 0 0 -1 -1 2 0 0 0 0 -2 -2 2 9 2 2 1 1 2 2 0 -1 -1 -2 -2 1 1 0 4 2 2 4 4 -5 -5 2 0 0 0 0 2 2 -6 3 -1 -1 1 1 5 5 -6 -4 -4 4 4 -5 -5 0	19 2 2 0 0 -1 -1 2 0 0 0 0 -2 -2 2 9 2 2 1 1 2 2 0 -1 -1 -2 -2 1 1 0 4 2 2 4 4 -5 -5 2 0 0 0 0 2 2 -6 3 -1 -1 1 1 5 5 -6 -4 -4 4 4 -5 -5 0	10	0	0	0	0	-1	-1	-2	0	0	0	0	0	0	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	-1	-1	-2	-2	0	0	2	1	1	-1	-1	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	2	2	0	0	-1	-1	2	0	0	0	0	-2	-2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2	2	1	1	2	2	0	-1	-1	-2	-2	1	1	0
		4	2	2	4	4	-5	-5	2	0	0	0	0	2	2	-6
16 6 6 -4 -4 3 3 -6 8 8 0 0 -2 -2 -6	$16 \mid 6 6 -4 -4 3 3 -6 8 8 0 0 -2 -2 -6$		1	_1	1	1	5	5	-6	-4	-4	4	4	-5	-5	0
		3	-I	1	_											

この時点(未決定箇所は暫定で 0)で行の直交関係を調べると、ほぼ全てで正しい値に一致している.一致してない箇所は、例えば χ_9 と χ_9 、 χ_9 と χ_{10} など次元が同じ既約指標のペアができるもので値は 20160、群の位数の半値である.(小数を嫌って内積に群の位数を掛けたものを使用.)n=7,6 でも同じ結果を得られた.このことから、

$$\sum_{\mathbf{m}(g)=\pm 1} |g^G| \chi_i(g) \chi_j(g) = \begin{cases} \delta_{ij} \cdot |G|/2 &, where \ \chi_i(1) \neq \chi_j(1) \\ \pm |G|/2 &, otherwise \end{cases}$$
 (複合同順) · · · · · (α)

がわかる. つまり、行の直交関係も指標 sgn の値で二分した中で探索することができる. よって、 $i=1,2,\cdots,8,j$ と j に対して (α) を満たす χ_j を探索する. 得られたものは以下の 12.

未決定の数 12 と一致しているので、これが残りの部分かと予想したが実際そうなっている.しかしどの順番で埋めればいいのかわからなく、(lpha) から S_8 の中だけでは決定できないと考え、指標表が既知の S_6 への制限を使って決定することを考えた. $(S_7$ は、このことから、間違いがあることに気づき使えなかった.) 過程は省き結果のみ.

S_6	C	(1)	(2)	(3)	(2, 2)	(4)	(3, 2)	(5)	(2, 2, 2)	(3, 3)	(4, 2)	(6)			
720	1	1	15	40	45	90	120	144	15	40	90	120			
1	1	1	1	1	1	1	1	1	1	1	1	1			
2	sgn	1	-1	1	1	-1	-1	1	-1	1	1	-1	24- 8-	_	als 1 als -
3	ψ_3	5	3	2	1	1	0	0	-1	-1	-1	-1	$\chi_9 \downarrow S_6$	=	$\psi_7 + \psi_{10}$
4	ψ_4	5	-3	2	1	-1	0	0	1	-1	-1	1	$\begin{array}{c} \chi_{11} \downarrow S_6 \\ \chi_{13} \downarrow S_6 \end{array}$	=	$\psi_3 + 2\psi_7 + \psi_{10} \psi_3 + 2\psi_5 + \psi_6$
5	ψ_5	10	2	1	-2	0	-1	0	-2	1	0	1	$\chi_{13} \downarrow S_6$ $\chi_{16} \downarrow S_6$	=	
6	ψ_6	10	-2	1	-2	0	1	0	2	1	0	-1			$\psi_5 + \psi_7 + \psi_9 + 2\psi_{11}$
7	ψ_7	9	3	0	1	-1	0	-1	3	0	1	0	$\chi_{18} \downarrow S_6$	=	$2\psi_3 + 2\psi_5 + 2\psi_7$
8	ψ_8	9	-3	0	1	1	0	-1	-3	0	1	0	$\chi_{20} \downarrow S_6$	_	$\psi_5 + 2\psi_7 + 2\psi_{10} + 2\psi_{11}$
9	ψ_9	5	-1	-1	1	1	-1	0	3	2	-1	0			
10	ψ_{10}	5	1	-1	1	-1	1	0	-3	2	-1	0			
11	ψ_{11}	16	0	-2	0	0	0	1	0	-2	0	0			
NL	C	n 🛆 🤈	一 の田	(火)十七	価よい出	2 4	ht-								

以上、 S_8 の全ての既約指標が求められた.

 S_8 を A_8 に制限する際に分裂する共役類を求めるプログラミングの作成が間に合ったので A_8 の Character Table も求めることにした. 1 0 の既約指標は 2 0 章から χ_{15} と χ_{22} を除く 2 0 の既約指標の制限ですぐにもとまる.分裂する共役類は型が (7), (5,3) のもの.ここを除いた場所の値は S_8 の半値.よって残りの 1 6 の、しかし実際は順番の違いを除いて 4 つの値を求めればいい. $x \in (7)_1, y \in (5,3)_1$ として、 $a = \phi_8(x), b = 1/2 + \phi_8(y), c = 1/2 + \phi_{13}(x), d = \phi_{13}(y)$ と定める.直交関係から、 $a^2 + c^2 = 7/4, b^2 + d^2 = 15/4, (4/7)a^2 + (4/15)b^2 = (4/7)c^2 + (4/15)d^2 = 1, ab + cd = 0$.これを代入法で解こうとしたが、求めることができず、直接法に切り替えてもできなかった. 2 0 章の例と違って特定できないのは、自由度が大きいせいか.仕方なく、 A_7 の既約指標を求め制限をして a,c の値を求めた. ϕ_8 の制限は既約指標で $\phi_8 \downarrow A_7(x) = 0$ 、よって a = 0 を、それに伴い $b = \sqrt{15}/2, c = \sqrt{7}/2, d = 0$ を得る.

求め始めた時期的に、基本的に直交関係から求めている $n \geq 7$ では直交関係のみでは求めることができず、制限を使わざるを得なかった。直交関係は如何せん計算量が多く、手計算では無理だろう。実際n = 8 ですらコンピュータでも数分かかるほど。誘導を使って S_7 を求めたと言っていた人がいたので、誘導を使って求めようとしたが、共役が部分群の元かどうかの判定が必要で、今それの作成中で、ついでに A_8 までの共役類が求められたので A_8 までの指標表も求めてみた。ただn = 9 がメモリ不足で実行できなかったので、メモリを多く使わずに出せる方法を模索中である。時間があれば誘導もやってみたい。誘導に関しては、軌道を求める際に同じ元が登場する回数は同じなので、簡単に作れそうではある。よく見てみたら、共役類の分裂も、分裂する(しない)部分の指標の値は奇数または0(偶数)で、すぐに出せそうだと最後ながらに気づいた。無念。

 $\mathbf{H}=S_n$ 、 $\mathbf{G}=S_m$ (n< m) とする. S_l の共役類は同じ型を持つ元全てで構成されているので、 $x^\mathbf{H} \leq x^\mathbf{G}$ for all $x \in \mathbf{H}$ である. このことから、 ψ を \mathbf{H} の既約指標とすると、

$$\psi \uparrow G(g) = \frac{1}{|\mathcal{H}|} \sum_{y \in \mathcal{G}} \dot{\psi}(y^{-1}gy) = \frac{|\mathcal{G}|}{|\mathcal{H}||g^{\mathcal{G}}|} \sum_{y \in g^{\mathcal{G}}} \dot{\psi}(y) = \frac{|\mathcal{G}|}{|\mathcal{H}||g^{\mathcal{G}}|} \left(\sum_{y \in g^{\mathcal{H}}} \psi(y) + \sum_{y \in g^{\mathcal{G}} \backslash g^{\mathcal{H}}} 0 \right) = \frac{|\mathcal{G}|}{|\mathcal{H}|} \frac{|g^{\mathcal{H}}|}{|g^{\mathcal{G}}|} \psi(g) = \frac{|\mathcal{C}_{\mathcal{G}}(g)|}{|\mathcal{C}_{\mathcal{H}}(g)|} \psi(g)$$

,if $g \in H$, 0 if $g \notin H$.

 χ_i,ψ_j を G,H の既約指標とすると、 ψ_j ↑ $G=\sum_i a_{ij}\chi_i$ となる unsigned int a_{ij} が存在する. この a_{ij} を特定できれば、 $\langle \psi \uparrow G,\chi \rangle_G = \langle \psi,\chi \downarrow H \rangle_H$ から、 $\chi_i \downarrow H = \sum_i a_{ij}$ で求めることができる. m=9,n=8 での結果は以下の通り.

$_{j}^{i}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	1		1																											
2		1		1																										
3			1		1		1																							
4				1		1		1																						
5					1									1					1											
6						1									1					1										
7							1					1							1											
8								1					1							1										
9									1								1													
10										1								1												
11									1			1											1							
12										1			1											1						
13														1		1											1			
14															1	1												1		
15											1														1	1				
16																					1					1			1	
17																						1			1					1
18																			1		1		1				1			
19																				1		1		1				1		
20																	1						1		1				1	
21																		1						1		1				1
22																											1	1	1	1

残りの23列目から30列目の値は、行の直交関係を用いて求めた。符号関数によってできるペアを除いて以下の表のとおり、行番号は上の表のiと対応している。

col^{row}	1	2	3	5	7	9	11	12	14	16	17	19	21	23	25	27	29
1	1	1	8	28	27	42	42	48	56	70	84	105	120	162	168	189	216
2	1	-1	6	14	15	14	0	20	14	0	14	35	20	36	6	21	14
3	1	1	5	10	9	0	-6	6	11	10	-6	15	0	0	-15	9	-9
4	1	1	4	4	7	6	2	8	-4	-10	4	5	0	6	4	-11	-4
5	1	-1	4	6	5	-4	0	0	4	0	-6	5	0	-6	-4	1	-4
6	1	-1	3	2	3	2	0	2	-1	0	2	-1	-4	0	3	-3	-1
7	1	1	3	3	2	-3	2	-2	1	0	-1	0	0	-3	3	-1	1
8	1	-1	2	-2	3	2	0	4	-6	0	-2	-1	4	0	-6	-3	2
9	1	1	2	1	0	3	0	0	2	4	3	-3	-3	0	0	0	0
10	1	1	2	0	1	0	-2	0	-2	-2	0	-1	0	0	-2	1	2
11	1	-1	2	1	0	-1	0	-2	0	0	1	-1	1	0	0	0	2
12	1	1	1	-2	1	0	2	2	-1	2	-2	-1	0	0	1	1	-1
13	1	-1	1	0	-1	2	0	0	1	0	0	-1	0	0	-1	1	-1
14	1	-1	1	-1	0	-1	0	0	-1	0	-1	0	0	1	1	1	-1
15	1	1	1	0	-1	0	0	-1	0	0	0	0	1	1	0	0	-1
16	1	1	0	-4	3	2	-6	0	0	6	4	1	8	-6	0	-3	0
17	1	-1	0	-1	0	-1	0	2	2	0	-1	-1	-1	0	0	0	2
18	1	-1	0	-2	1	0	0	0	0	0	2	1	0	-2	0	1	0
19	1	1	0	0	-1	2	2	0	0	-2	0	1	0	-2	0	1	0
20	1	1	0	0	-1	0	-1	1	1	0	-1	0	0	0	0	-1	1
21	1	1	0	-1	0	-1	0	0	0	0	1	1	-1	0	0	0	0
22	1	-1	0	0	-1	0	0	0	0	0	0	1	0	0	0	-1	0
23	1	-1	-1	-2	3	2	0	-2	3	0	-2	-1	4	0	3	-3	-1
24	1	1	-1	1	0	-3	6	3	2	-2	3	-3	3	0	-3	0	0
25	1	1	-1	0	1	0	-2	0	1	-2	0	-1	0	0	1	1	-1
26	1	1	-1	-1	2	1	2	-2	1	0	-1	0	0	1	-1	-1	1
27	1	-1	-1	1	0	1	0	0	-1	0	-1	0	0	-1	1	1	1
28	1	-1	-1	1	0	-1	0	1	0	0	1	-1	1	0	0	0	-1
29	1	-1	-1	0	1	0	0	-1	0	0	0	0	-1	1	-1	0	0
30	1	1	-1	1	0	0	0	0	-1	1	0	0	0	0	0	0	0

これにて、S₉ の指標表が求まった. 直交関係だけから求めようとした時に比べて、圧倒的に楽だった.