Estrutura Atômica

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1 Revisão: Estrutura Atômica

1 Revisão: Estrutura Atômica

Problemas

Nível 1

PROBLEMA 1.1

Um imã de ferro possui 25 g de massa. A massa de um átomo de ferro é 9.3×10^{-26} kg.

Assinale a alternativa que mais se aproxima do número de átomos de ferro no imã.

- **A** $1.3 e^{23}$
- **B** $1.6e^{23}$
- c 2.1 e^{23}

- **D** $2,7 e^{23}$
- **E** $3,5 e^{23}$

PROBLEMA 1.2

Um garimpeiro que procurava ouro em um riacho do Alasca coletou 12 g de peças finas de ouro conhecidas como $p\acute{o}$ de ouro. A massa de um átomo de ouro é 3,3 \times 10⁻²⁵ kg.

Assinale a alternativa que mais se aproxima do número de átomos de ouro coletados.

- **A** $1,3 e^{22}$
- **B** $1,7 e^{22}$
- **c** $2,2e^{22}$

- **D** $2,9e^{22}$
- **E** $3,8e^{22}$

PROBLEMA 1.3

Quando J.J. Thompson fez seus experimentos com raios catódicos, a natureza do elétron foi colocada em cheque. Alguns o imaginavam como uma forma de radiação, como a luz; outros acreditavam que o elétron era uma partícula. Algumas das observações feiras com raios catódicos eram usadas para apoiar uma ou outra visão.

- 1. Eles passam através de folhas de metal.
- 2. Eles viajam em velocidades inferiores às da luz.
- Se um objeto é colocado em sua trajetória, observa-se uma sombra.
- 4. Sua trajetória muda quando eles passam entre placas com carga elétrica.

Assinale a alternativa que relaciona as propriedades que podem servir de suporte para o modelo de partícula do elétron.

- A 2
- B 4
- **c** 2 e 4

- **D** 1, 2 e 4
- E 2,3e4

PROBLEMA 1.4

1

J.J. Thompson inicialmente chamou os raios produzidos em sua aparelhagem de *raios canais*. Os raios canais sofrem desvios ao passar entre os polos de um ímã e depois atingem a tela de fósforo. A razão carga-massa das partículas que compõe os raios canais é

$$\frac{q}{m} = 2\text{,}4 \times 10^7 \, \text{C} \, \text{kg}^{-1}$$

O catodo e o anodo do aparelho são feitos de lítio, e o tubo contém hélio.

Assinale a alternativa com a partícula que forma os raios canais.

- **A** e⁻
- **B** He⁻
- C He⁺

- \mathbf{D} He^{2+}
- E Li⁺

Dados

- $m_e = 9.10 \times 10^{-31} \, \text{kg}$
- $m_n = 1.67 \times 10^{-27} \text{ kg}$
- $m_p = 1,67 \times 10^{-27} \, kg$

PROBLEMA 1.5

Considere os átomos.

- 1. Boro-11
- 2. ¹⁰B
- 3. Fósforo-31
- 4. ²³⁸B

Assinale a alternativa com o número de elétrons dos átomos, respectivamente.

- **A** 6, 5, 15, 92
- **B** 5, 5, 15, 92
- **c** 5, 5, 16, 92

- **D** 5, 5, 15, 146
- **E** 6, 5, 16, 92

PROBLEMA 1.6

Considere os átomos.

- 1. 40K
- 2. ⁵⁸Co
- 3. Tântalo-180
- 4. ²¹⁰At

Assinale a alternativa com o número de nêutrons dos átomos, respectivamente.

- **A** 19, 31, 107, 125
- **B** 21, 27, 107, 125
- **c** 21, 31, 107, 125
- **D** 21, 31, 73, 125
- **E** 21, 31, 107, 85

PROBLEMA 1.7

Considere os átomos de argônio-40, potássio-40 e cálcio-40.

Assinale a alternativa com a relação nuclear desses átomos.

A Isotopos.

B Isótonos.

c Isóbaros.

D Isômeros.

E Isodiáferos.

PROBLEMA 1.8

Considere os átomos de manganês-55, ferro-56 e níquel-58.

Assinale a alternativa com a relação nuclear desses átomos.

A Isotopos.

B Isótonos.

c Isóbaros.

D Isômeros.

E Isodiáferos.

PROBLEMA 1.9

Considere os átomos de carbono-12, carbono-13 e carbono-14.

Assinale a alternativa com a relação nuclear desses átomos.

A Isotopos.

B Isótonos.

c Isóbaros.

D Isômeros.

E Isodiáferos.

PROBLEMA 1.10

Considere os átomos de urânio-238, tório-234 e rádio-236.

Assinale a alternativa com a relação nuclear desses átomos.

A Isotopos.

B Isótonos.

c Isóbaros.

D Isômeros.

E Isodiáferos.

PROBLEMA 1.11

Assinale a alternativa que mais se aproxima da fração da massa total de um átomo de carbono-12 que é decorrente dos elétrons.

A 7.4×10^{-5}

B 1.4×10^{-4}

c 2.7×10^{-4}

D 5.2×10^{-4}

E 9.9×10^{-4}

Dados

• $m_e=9\text{,}10\times10^{-31}\,\text{kg}$

• $m_n = 1.67 \times 10^{-27} \, \text{kg}$

• $m_p = 1.67 \times 10^{-27} \, \text{kg}$

PROBLEMA 1.12

Suponha que a massa total de um automóvel de uma tonelada seja devido ao ferro-56.

Assinale a alternativa que mais se aproxima da massa de nêutrons no automóvel.

A 540 kg

B 940 kg

c 1600 kg

D 2900 kg

E 5000 kg

Dados

• $m_e = 9,10 \times 10^{-31} \, kg$

• $m_n = 1.67 \times 10^{-27} \, \text{kg}$

• $m_p = 1.67 \times 10^{-27} \, \text{kg}$

PROBLEMA 1.13

Considere os fenômenos.

- 1. Diminuição na velocidade da radiação.
- 2. Diminuição no comprimento de onda da radiação.
- 3. Diminuição na medida da variação no campo elétrico em determinado ponto.
- 4. Aumento da energia da radiação.

Assinale a alternativa que relaciona os fenômenos que acontecem quando a frequência da radiação eletromagnética diminui.

A 2

B 3

c 2 e 3

D 1, 2 e 3

E 2, 3 e 4

PROBLEMA 1.14

Considere as proposições.

- 1. Os raios X viajam a uma velocidade maior do que a da radiação infravermelha porque têm energia maior.
- 2. O comprimento de onda da luz visível aumenta a medida que sua cor passa de azul a verde.
- 3. A frequência da radiação infravermelha, cujo comprimento de onda é 1×10^3 nm, é mil vezes menor que a frequência das ondas de rádio, que têm comprimento de onda igual a 1×10^6 nm.
- 4. A frequência da radiação infravermelha, cujo comprimento de onda é 1×10^3 nm, é mil vezes maior que a frequência das ondas de rádio, que têm comprimento de onda igual a 1×10^6 nm.

Assinale a alternativa que relaciona as proposições *corretas*.

A 2

R 4

c 2 e 4

D 1, 2 e 4

E 2,3e4

PROBLEMA 1.15

Um sinal de trânsito emite luz vermelha com frequência 5,15 \times $10^{14}\,\text{Hz}.$

Assinale a alternativa que mais se aproxima do comprimento de onda da luz emitida pelo sinal.

A 700 nm

B 1200 nm

c 2200 nm

D 3900 nm

E 6900 nm

PROBLEMA 1.16

Uma estação de rádio transmite em 98,4 MHz.

Assinale a alternativa que mais se aproxima do comprimento de onda da luz emitida pelo sinal.

A 1,8 m

B 2,3 m

c 3,0 m

D 3,9 m

E 5,0 m

PROBLEMA 1.17

Os fótons de raios γ emitidos durante decaimento nuclear de um átomo de tecnécio-99 usado em produtos radiofarmacêuticos têm energia igual a 140 keV.

Assinale a alternativa que mais se aproxima do comprimento de onda desses raios γ .

- **A** 4,6 pm
- **B** 6,3 pm
- **c** 8,8 pm

- **D** 12 pm
- **E** 17 pm

PROBLEMA 1.18

Quando um feixe de elétrons choca-se com um bloco de cobre, são emitidos raios X com frequência 1,2 \times 10 Hz.

Assinale a alternativa que mais se aproxima da energia dos fótons emitidos.

- A $8 \times 10^{-17} \, \text{J}$
- **B** $3.5 \times 10^{-16} \, \text{J}$
- c $1.6 \times 10^{-15} \,\mathrm{J}$

- **D** $6.9 \times 10^{-15} \, \text{J}$
- **E** $3.1 \times 10^{-14} \, \text{J}$

PROBLEMA 1.19

Assinale a alternativa que relaciona os tipos de radiação em ordem crescente de energia.

- A Radiação infravermelho, luz visível, radiação ultravioleta, raios X, raios γ.
- B Luz visível, radiação infravermelho, radiação ultravioleta, raios X, raios γ .
- Radiação infravermelho, radiação ultravioleta, luz visível, raios X, raios γ.
- **D** Radiação infravermelho, luz visível, raios X, radiação ultravioleta, raios γ.
- **E** Radiação infravermelho, luz visível, radiação ultravioleta, raios γ, raios X.

PROBLEMA 1.20

Assinale a alternativa que relaciona os tipos de radiação em ordem crescente de energia.

- A Ondas de rádio, micro-ondas, radiação infravermelho, radiação ultravioleta, luz visível.
- B Ondas de rádio, micro-ondas, luz visível, radiação infravermelho, radiação ultravioleta.
- C Ondas de rádio, radiação infravermelho, micro-ondas, luz visível, radiação ultravioleta.
- D Micro-ondas, ondas de rádio, radiação infravermelho, luz visível, radiação ultravioleta.
- Ondas de rádio, micro-ondas, radiação infravermelho, luz visível, radiação ultravioleta.

PROBLEMA 1.21

Um átomo de hidrogênio emite radiação com $n_1 = 1$ e $n_2 = 3$.

Assinale a alternativa que mais se aproxima do comprimento de onda da radiação emitida.

- **A** 490 nm
- **B** 850 nm
- c 1500 nm

- **D** 2600 nm
- **E** 4500 nm

PROBLEMA 1.22

Um átomo de hidrogênio emite radiação com $n_1 = 2$ e $n_2 = 5$.

Assinale a alternativa que mais se aproxima do comprimento de onda da radiação emitida.

- **A** 430 nm
- **B** 740 nm
- **c** 1300 nm

- **D** 2200 nm
- **E** 3800 nm

PROBLEMA 1.23

Um átomo de hidrogênio emite radiação ao decair do segundo para o primeiro estado excitado.

Assinale a alternativa que mais se aproxima do comprimento de onda da radiação emitida.

- **A** 660 nm
- **B** 1200 nm
- c 2100 nm

- **D** 3600 nm
- **E** 6400 nm

PROBLEMA 1.24

Assinale a alternativa com o decaimento para o átomo de hidrogênio que leva à emissão de um fóton com maior comprimento de onda.

- **A** $n_1 = 1 e n_2 = 2$
- **B** $n_1 = 2 e n_2 = 3$
- $n_1 = 3 e n_2 = 4$
- **D** $n_1 = 4 e n_2 = 5$
- **E** $n_1 = 5 e n_2 = 6$

20. E

Gabarito

Nível 1

19. A

1. D 2. E 3. C 4. C 5. B 6. C 7. C В 8. 9. A 10. E 11. C 12. A 13. C 14. C 15. A 16. C 17. C 18. A

21. A

22. A

23. A

24. E