${\bf Tire Ground}$

Generated by Doxygen 1.8.13

Contents

1	TireGround					
2	Namespace Index					
	2.1	Name	space List		5	
3	Hie	rarchic	cal Index		7	
	3.1	Class	Hierarchy	·	7	
4	Clas	$_{ m ss}$ Inde	ex		9	
	4.1	Class	List		9	
5	Nan	nespac	e Docun	nentation	11	
	5.1	-		mespace Reference	11	
		5.1.1		Description	13	
	5.2	TireG	round::alg	gorithms Namespace Reference	13	
		5.2.1	_	Description \ldots	13	
		5.2.2	Function	$\begin{array}{c} \overset{-}{\text{o}} \\ \text{n Documentation} \\ \ldots \\ \vdots \\ \ldots \\ \vdots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	13	
			5.2.2.1	intersectPointSegment()	13	
			5.2.2.2	intersectRayPlane()	14	
			5.2.2.3	minmax_XY() [1/2]	14	
			5.2.2.4	minmax_XY() [2/2]	15	
			5.2.2.5	trapezoidArea()	15	
			5.2.2.6	weightedMean() [1/2]	15	
			5.2.2.7	weightedMean() [2/2]	16	
	5.3	TireG	round::RI	OF Namespace Reference	16	
		5.3.1	Detailed	Description	17	
	5.4	TireG	round::RI	OF::algorithms Namespace Reference	17	
		5.4.1	Detailed	Description	17	
		5.4.2	Function	Documentation	17	
			5.4.2.1	firstToken()	17	
			5.4.2.2	getElement()	18	
			5.4.2.3	split()	18	
			5.4.2.4	tail()	18	

ii CONTENTS

3	Cla	ass Documentation 19		
	6.1	TireG	round::RDF::BBox2D Class Reference	19
		6.1.1	Detailed Description	20
		6.1.2	Constructor & Destructor Documentation	20
			6.1.2.1 BBox2D()	20
		6.1.3	Member Function Documentation	20
			6.1.3.1 print()	20
			6.1.3.2 updateBBox2D()	20
	6.2	TireG	round::Disk Class Reference	21
		6.2.1	Detailed Description	22
		6.2.2	Constructor & Destructor Documentation	22
			6.2.2.1 Disk()	22
		6.2.3	Member Function Documentation	22
			6.2.3.1 contactPlane()	22
			6.2.3.2 contactTriangles()	23
			6.2.3.3 getLineArea()	23
			6.2.3.4 intersectPlane()	24
			6.2.3.5 intersectSegment()	24
			6.2.3.6 isPointInside()	24
			6.2.3.7 segmentArea()	25
			6.2.3.8 segmentLength()	25
			6.2.3.9 set()	25
			6.2.3.10 setOriginXZ()	26
			6.2.3.11 y()	26
	6.3	TireG	round::ETRTO Class Reference	26
		6.3.1	Detailed Description	27
		6.3.2	Constructor & Destructor Documentation	27
			6.3.2.1 ETRTO()	27
		6.3.3	Member Function Documentation	27

CONTENTS

		6.3.3.1	print()	27
6.4	TireG	round::Ma	agicFormula Class Reference	28
	6.4.1	Detailed	Description	31
	6.4.2	Construc	ctor & Destructor Documentation	31
		6.4.2.1	MagicFormula()	31
	6.4.3	Member	Function Documentation	31
		6.4.3.1	evaluateContact()	31
		6.4.3.2	fourPointsSampling()	32
		6.4.3.3	getArea() [1/2]	32
		6.4.3.4	getArea() [2/2]	32
		6.4.3.5	$\operatorname{getEulerAngleX}()$	33
		6.4.3.6	$\operatorname{getEulerAngleY}()$	33
		6.4.3.7	$\operatorname{getEulerAngleZ}()$	33
		6.4.3.8	getFriction() [1/2]	33
		6.4.3.9	getFriction() [2/2]	34
		6.4.3.10	getMFpoint() [1/2]	34
		6.4.3.11	getMFpoint() [2/2]	34
		6.4.3.12	getMFpointRF() [1/2]	35
		6.4.3.13	getMFpointRF() [2/2]	35
		6.4.3.14	getNormal() [1/2]	35
		6.4.3.15	getNormal() [2/2]	36
		6.4.3.16	getRelativeCamber()	36
		6.4.3.17	getRho() [1/2]	36
		6.4.3.18	getRho() [2/2]	36
		6.4.3.19	getRhoDot() [1/2]	37
		6.4.3.20	getRhoDot() [2/2]	37
		6.4.3.21	getVolume() [1/2]	38
		6.4.3.22	getVolume() [2/2]	38
		6.4.3.23	pointSampling()	38

<u>iv</u> CONTENTS

		6.4.3.24	print()	39
		6.4.3.25	printETRTOGeometry()	39
		6.4.3.26	$\operatorname{setOrigin}() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	39
		6.4.3.27	${\bf setReferenceFrame}()\ \dots \dots$	40
		6.4.3.28	setRotationMatrix()	40
		6.4.3.29	$set Total Transformation Matrix () \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	40
		6.4.3.30	setup()	41
6.5	TireG	round::RI	DF::MeshSurface Class Reference	41
	6.5.1	Detailed	l Description	42
	6.5.2	Constru	ctor & Destructor Documentation	42
		6.5.2.1	MeshSurface() [1/2]	42
		6.5.2.2	MeshSurface() [2/2]	42
	6.5.3	Member	Function Documentation	43
		6.5.3.1	$intersect AABB tree () \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	43
		6.5.3.2	$intersectBBox() \dots \dots \dots \dots \dots \dots$	43
		6.5.3.3	LoadFile()	43
		6.5.3.4	printData()	44
		6.5.3.5	set()	44
6.6	TireG	round::M	ultiDisk Class Reference	44
	6.6.1	Detailed	l Description	47
	6.6.2	Constru	ctor & Destructor Documentation	47
		6.6.2.1	MultiDisk() [1/3]	47
		6.6.2.2	MultiDisk() [2/3]	48
		6.6.2.3	MultiDisk() [3/3]	48
	6.6.3	Member	Function Documentation	49
		6.6.3.1	getArea() [1/2]	49
		6.6.3.2	getArea() [2/2]	49
		6.6.3.3	${\it getDiskFriction}()\ .\ .\ .\ .\ .\ .\ .\ .$	50
		6.6.3.4	getDiskMFpoint()	50

CONTENTS

6.6.3.5	getDiskMFpointRF()	50
6.6.3.6	getDiskNormal()	51
6.6.3.7	getDiskOriginXYZ() [1/2]	51
6.6.3.8	getDiskOriginXYZ() [2/2]	51
6.6.3.9	getDiskRho()	51
6.6.3.10	$\operatorname{getDiskRhoDot}()$	52
6.6.3.11	$\operatorname{getEulerAngleX}()$	52
6.6.3.12	$\operatorname{getEulerAngleY}()$	52
6.6.3.13	$\operatorname{getEulerAngleZ}()$	53
6.6.3.14	getFriction() [1/2]	53
6.6.3.15	getFriction() [2/2]	53
6.6.3.16	getMFpoint() [1/2]	53
6.6.3.17	getMFpoint() [2/2]	54
6.6.3.18	getMFpointRF() [1/2]	54
6.6.3.19	getMFpointRF() [2/2]	54
6.6.3.20	getNormal() [1/2]	55
6.6.3.21	getNormal() [2/2]	55
6.6.3.22	getRelativeCamber()	55
6.6.3.23	getRho() [1/2]	56
6.6.3.24	getRho() [2/2]	56
6.6.3.25	getRhoDot() [1/2]	56
6.6.3.26	getRhoDot() [2/2]	57
6.6.3.27	getVolume() [1/2]	57
6.6.3.28	getVolume() [2/2]	58
6.6.3.29	pointSampling()	58
6.6.3.30	print()	58
6.6.3.31	printETRTOGeometry()	59
6.6.3.32	setDiskOriginXZ() [1/2]	59
6.6.3.33	setDiskOriginXZ() [2/2]	59

vi CONTENTS

		6.6.3.34	setOrigin()	60
		6.6.3.35	$\operatorname{setReferenceFrame}()$	60
		6.6.3.36	$\operatorname{setRotationMatrix}()$	60
		6.6.3.37	${\it setTotalTransformationMatrix}() \qquad \dots \\$	60
		6.6.3.38	setup()	62
6.7	TireG	round::Re	eferenceFrame Class Reference	62
	6.7.1	Detailed	Description	63
	6.7.2	Constru	ctor & Destructor Documentation	63
		6.7.2.1	ReferenceFrame()	63
	6.7.3	Member	Function Documentation	63
		6.7.3.1	$\operatorname{getEulerAngleX}()$	64
		6.7.3.2	getEulerAngleY()	64
		6.7.3.3	$\operatorname{getEulerAngleZ}()$	64
		6.7.3.4	$\operatorname{set}() \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	64
		6.7.3.5	setOrigin()	64
		6.7.3.6	$\operatorname{setRotationMatrix}()$	65
		6.7.3.7	$set Total Transformation Matrix () \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	65
6.8	TireG	round::Sa	mplingGrid Class Reference	65
	6.8.1	Detailed	Description	66
	6.8.2	Constru	ctor & Destructor Documentation	66
		6.8.2.1	SamplingGrid() [1/2]	66
		6.8.2.2	SamplingGrid() [2/2]	67
	6.8.3	Member	Function Documentation	67
		6.8.3.1	set() [1/2]	67
		6.8.3.2	set() [2/2]	67
		6.8.3.3	setSwitchNumber()	68
6.9	TireG	round::Sh	adow Class Reference	68
	6.9.1	Detailed	Description	68
	6.9.2	Constru	ctor & Destructor Documentation	68

CONTENTS

	6.9.2.1	Shadow()	. 69
6.9.3	Member	Function Documentation	. 70
	6.9.3.1	update()	. 70
6.10 TicTo	c Class R	ference	. 70
6.11 TireG	round::Ti	e Class Reference	. 71
6.11.1	Detailed	Description	. 73
6.11.2	Constru	tor & Destructor Documentation	. 73
	6.11.2.1	Tire()	. 73
6.11.3	Member	Function Documentation	. 74
	6.11.3.1	evaluateContact()	. 74
	6.11.3.2	getArea() [1/2]	. 74
	6.11.3.3	getArea() [2/2]	. 75
	6.11.3.4	$\operatorname{getEulerAngleX}()$. 75
	6.11.3.5	$\operatorname{getEulerAngleY}()$. 75
	6.11.3.6	$\operatorname{getEulerAngleZ}()$. 75
	6.11.3.7	getFriction() [1/2]	. 75
	6.11.3.8	getFriction() [2/2]	. 76
	6.11.3.9	getMFpoint() [1/2]	. 76
	6.11.3.10	getMFpoint() [2/2]	. 76
	6.11.3.1	getMFpointRF() [1/2]	. 77
	6.11.3.15	getMFpointRF() [2/2]	. 77
	6.11.3.13	getNormal() [1/2]	. 77
	6.11.3.1	getNormal() [2/2]	. 78
	6.11.3.1	getRelativeCamber()	. 78
	6.11.3.10	getRho() [1/2]	. 78
	6.11.3.1	getRho() [2/2]	. 79
	6.11.3.18	getRhoDot() [1/2]	. 79
	6.11.3.19	getRhoDot() [2/2]	. 79
	6.11.3.20	getVolume() [1/2]	. 80

viii

	6.11.3.21 getVolume() [2/2]	80
	6.11.3.22 pointSampling()	80
	6.11.3.23 print()	81
	6.11.3.24 printETRTOGeometry()	81
	6.11.3.25 setOrigin()	82
	$6.11.3.26 \; \mathrm{setReferenceFrame}() \; \ldots \; $	82
	6.11.3.27 setRotationMatrix()	82
	6.11.3.28 setTotalTransformationMatrix()	82
	6.11.3.29 setup()	84
6.12 Tir	reGround::RDF::Triangle3D Class Reference	84
6.1	2.1 Detailed Description	86
6.1	2.2 Constructor & Destructor Documentation	86
	6.12.2.1 Triangle3D()	86
6.1	2.3 Member Function Documentation	86
	$6.12.3.1 intersectEdgePlane() \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	86
	6.12.3.2 intersectPlane()	87
	6.12.3.3 intersectRay()	87
	6.12.3.4 print()	88
	6.12.3.5 setVertices() [1/2]	88
	6.12.3.6 setVertices() [2/2]	88
6.13 Tir	reGround::RDF::TriangleRoad Class Reference	89
6.1	3.1 Detailed Description	90
6.1	3.2 Constructor & Destructor Documentation	90
	6.13.2.1 TriangleRoad()	90
6.1	3.3 Member Function Documentation	91
	$6.13.3.1 intersectEdgePlane() \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	91
	6.13.3.2 intersectPlane()	91
	6.13.3.3 intersectRay()	92
	6.13.3.4 print()	92
	$6.13.3.5 \text{setFriction}() \dots \dots \dots \dots \dots$	92
	6.13.3.6 setVertices() [1/2]	93
	6.13.3.7 setVertices() [2/2]	93
Index		95

Chapter 1

TireGround

A repository for the code developed by Davide Stocco for his thesis.

Department of Industrial Engineering Master Degree in Mechatronics Engineering

 $\it EN$: Real-Time Computation of Tire/Road Contact using Tailored Algorithms $\it IT$: Valutazione Real-Time del Contatto Pneumatico/Strada con Algoritmi Dedicati

Academic Year 2019 · 2020

Author: Davide Stocco

Supervisor & Co-supervisor: Prof. Enrico Bertolazzi & Dr.Eng. Matteo Ragni

MagicFormula tire model usage

1. Load .rdf file.

```
TireGround::RDF::MeshSurface Road(
  "./file.rdf" // Path to the *.rdf file
);
```

 $2. \ \ Initialize the \ Magic Formula \ tire \ model.$

```
TireGround::Tire* TireSD = new TireGround::MagicFormula(
   SectionWidth, // [mm]
   AspectRatio, // [%]
   RimDiameter, // [in]
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling));
```

3. Contact evaluation.

```
bool Out = TireSD->setup( Road, \ // Road mesh TransfMat \ // 4x4 total transformation matrix );
```

4. Data extraction.

2 TireGround

```
// Variable initialization (for real numbers)
TireGround::vec3 N;
TireGround::vec3 P;
TireGround::real_type Friction;
TireGround::real_type Rho;
TireGround::real_type RhoDot;
TireGround::real_type RelativeCamber;
TireGround::real_type Area;
TireGround::real_type Volume;
// Data extraction (for real numbers)
TireSD->getNormal(N);
TireSD->getMFpoint(P);
TireSD->getFriction(Friction);
TireSD->getRho(Rho);
TireSD->getRhoDot(PreviousRho, TimeStep, RhoDot);
TireSD->getRelativeCamber(RelativeCamber);
TireSD->getArea(Area);
TireSD->getVolume(Volume);
// Extract data stucture size
TireGround::int_type size = TireSD->getDisksNumber();
// Variable initialization (for vectors)
TireGround::row vec3 NVec(size);
TireGround::row_vec3 PVec(size);
TireGround::row_vecN FrictionVec(size);
TireGround::row_vecN RhoVec(size);
TireGround::row_vecN RhoDotVec(size);
TireGround::row_vecN RelativeCamberVec(size);
TireGround::row_vecN AreaVec(size);
TireGround::row_vecN VolumeVec(size);
// Data extraction (for vectors)
TireSD->getNormal(NVec);
TireSD->getMFpoint(PVec);
TireSD->getFriction(FrictionVec);
TireSD->getRho(RhoVec);
TireSD->getRhoDot(PreviousRho, TimeStep, RhoDotVec);
TireSD->getRelativeCamber(RelativeCamberVec);
TireSD->getArea(AreaVec);
TireSD->getVolume(VolumeVec);
```

MultiDisk tire model usage

1. Load .rdf file.

```
TireGround::RDF::MeshSurface Road(
   "./file.rdf" // Path to the *.rdf file
);
```

- 2. Initialize the MultiDisk tire model:
 - (a) MultiDisk tire without sidewall radius (uniform cylinder).

```
TireGround::Tire* TireMD = new TireGround::MultiDisk(
   SectionWidth, // [mm]
   AspectRatio, // [%]
   RimDiameter, // [in]
   PointsNumber, // Sampling points for each disk
   DisksNumber, // Disks number
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

(b) MultiDisk tire with sidewall radius (uniform cylinder with filleted sidewall edge).

```
TireGround::Tire* TireMD = new TireGround::MultiDisk(
   SectionWidth, // [mm]
   AspectRatio, // [%]
   RimDiameter, // [in]
   SideRadius, // Sidewall radius [mm]
   PointsNumber, // Sampling points for each disk
   DisksNumber, // Disks number
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling));
```

(c) MultiDisk tire with custom disks radius.

```
TireGround::Tire* TireMD = new TireGround::MultiDisk(
   SectionWidth, // [mm]
   AspectRatio, // [%]
   RimDiameter, // [in]
   RadiusVec, // Disks radius vector [m]
   PointsNumber, // Sampling points for each disk
   SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
).
```

3. Contact evaluation.

4. Data extraction for contact point(s).

```
// Variable initialization (for real numbers)
TireGround::vec3 N:
TireGround::vec3 P;
TireGround::real_type Friction;
TireGround::real_type Rho;
TireGround::real_type RhoDot;
TireGround::real_type RelativeCamber;
TireGround::real_type Area;
TireGround::real_type Volume;
// Data extraction (for real numbers)
TireMD->getNormal(N);
TireMD->getMFpoint(P);
TireMD->getFriction(Friction);
TireMD->getRho(Rho);
TireMD->getRhoDot(PreviousRho, TimeStep, RhoDot);
TireMD->getRelativeCamber(RelativeCamber);
TireMD->getArea(Area);
TireMD->getVolume(Volume);
// Extract data stucture size
TireGround::int_type size = TireSD->getDisksNumber();
// Variable initialization (for vectors)
TireGround::row_vec3 NVec(size);
TireGround::row_vec3 PVec(size);
TireGround::row_vecN FrictionVec(size);
TireGround::row_vecN RhoVec(size);
TireGround::row_vecN RhoDotVec(size);
TireGround::row_vecN RelativeCamberVec(size);
TireGround::row_vecN AreaVec(size);
TireGround::row_vecN VolumeVec(size);
// Data extraction (for vectors)
TireMD->getNormal(NVec);
TireMD->getMFpoint(PVec);
TireMD->getFriction(FrictionVec);
TireMD->getRho(RhoVec);
TireMD->getRhoDot(PreviousRho,TimeStep,RhoDotVec);
TireMD->getRelativeCamber(RelativeCamberVec);
TireMD->getArea(AreaVec);
TireMD->getVolume(VolumeVec);
```

4 TireGround

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

1
13
10
1

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

TireGround::RDF::BBox2D
TireGround::Disk
TireGround::ETRTO
TireGround::RDF::MeshSurface
TireGround::ReferenceFrame
TireGround::SamplingGrid
TireGround::Shadow
TicToc
TireGround::Tire
TireGround::MagicFormula
TireGround::MultiDisk
TireGround::RDF::Triangle3D
TireGround::RDF::TriangleRoad

Hierarchical Index

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

TireGround::RDF::BBox2D
2D Bounding Box class
TireGround::Disk
Tire disk
TireGround::ETRTO
Tire ETRTO denomination
TireGround::MagicFormula
Pacejka MagicFormula contact model
TireGround::RDF::MeshSurface
Mesh surface
TireGround::MultiDisk
Multi-disk tire contact model
TireGround::ReferenceFrame
Reference frame
TireGround::SamplingGrid
Patch evaluation precision
TireGround::Shadow
2D shadow (2D bounding box enhacement)
TicToc
TireGround::Tire
Base class for Tire models
TireGround::RDF::Triangle3D
3D triangle (pure geometrical description)
TireGround::RDF::TriangleRoad
3D triangles for road representation

10 Class Index

Chapter 5

Namespace Documentation

5.1 TireGround Namespace Reference

Tire computations routines.

Namespaces

• algorithms

 $Algorithms\ for\ tire\ computations\ routine.$

• RDF

RDF mesh computations routines.

Classes

• class Disk

Tire disk.

• class ETRTO

Tire ETRTO denomination.

• class MagicFormula

Pacejka MagicFormula contact model.

• class MultiDisk

 ${\it Multi-disk\ tire\ contact\ model}.$

• class ReferenceFrame

 $Reference\ frame.$

• class SamplingGrid

 $Patch\ evaluation\ precision.$

• class Shadow

 $2D\ shadow\ (2D\ bounding\ box\ enhacement)$

• class Tire

Base class for Tire models.

Typedefs

Integer number type.

• typedef Eigen::Vector2i vec2_int

2D vector type of real integer type

• typedef Eigen::Vector2d vec2

2D vector type of real number type

• typedef Eigen::Vector3d vec3

3D vector type of real number type

• typedef Eigen::Vector4d vec4

4D vector type of real number type

• typedef Eigen::Matrix3d mat3

3x3 matrix type of real number type

• typedef Eigen::Matrix4d mat4

4x4 matrix type of real number type

• typedef Eigen::Matrix< real_type, 1, Eigen::Dynamic > row_vecN

Row vector type real number type.

• typedef Eigen::Matrix< real_type, Eigen::Dynamic, 1 > col_vecN

Column vector type real number type.

• typedef Eigen::Matrix< real_type, Eigen::Dynamic, Eigen::Dynamic > matN

Matrix type of real number type.

• typedef Eigen::Matrix < vec2, 1, Eigen::Dynamic > row_vec2

Row vector type of 2D vector.

• typedef Eigen::Matrix< vec2, Eigen::Dynamic, 1 > col_vec2

Column vector type of 2D vector.

• typedef Eigen::Matrix < vec2, Eigen::Dynamic, Eigen::Dynamic > $\max_{}$ vec2 $Matrix\ type\ of\ 2D\ vector.$

• typedef Eigen::Matrix < vec3, 1, Eigen::Dynamic > row_vec3 Row vector type of 3D vector.

• typedef Eigen::Matrix< vec3, Eigen::Dynamic, 1 > col_vec3

Column vector type of 3D vector.

• typedef Eigen::Matrix < vec3, Eigen::Dynamic, Eigen::Dynamic > matN_vec3

Matrix type of 3D vector.

• typedef Eigen::Matrix < mat4, 1, Eigen::Dynamic > row_mat4

Matrix type of 4x4 matrix.

• typedef std::basic_ostream< char > ostream_type

Output stream type.

Variables

• real_type const epsilon = std::numeric_limits<real_type>::epsilon()

Epsilon type.

5.1.1 Detailed Description

Tire computations routines.

Typedefs for tire computations routine.

file: PatchTire.hh
file: TireGround.hh

5.2 TireGround::algorithms Namespace Reference

Algorithms for tire computations routine.

Functions

- real_type weightedMean (row_vecN const &Values, row_vecN const &Weights)

 Calculate arithmetic weighted mean for real numbers.
- vec3 weightedMean (row_vec3 const &Values, row_vecN const &Weights)

 Calculate arithmetic weighted mean for 3D vectors.
- bool intersectPointSegment (vec2 const &Point1, vec2 const &Point2, vec2 const &PointQ)
- bool intersectRayPlane (vec3 const &planeN, vec3 const &planeP, vec3 const &RayPoint, vec3 const &RayDirection, vec3 &IntersectionPt)

Check if a segment hits a plane and find the intersection point.

 $\bullet \ \ {\rm void} \ \ \underline{\rm minmax_XY} \ \ ({\rm row_vec3} \ {\rm const} \ \& Points, \ \underline{\rm vec2} \ \& XYmin, \ \underline{\rm vec2} \ \& XYmax)$

Calculate minumum and maximum in XY plane for 3D vectors.

- void minmax_XY (row_vec2 const &Points, vec2 &XYmin, vec2 &XYmax)

 Calculate minumum and maximum in XY plane for 2D vectors.
- real_type trapezoidArea (real_type const Base2, real_type const Base1, real_type const Height)

Calculate area of a trapeziod $[m^2]$.

5.2.1 Detailed Description

Algorithms for tire computations routine.

5.2.2 Function Documentation

5.2.2.1 intersectPointSegment()

Check if a point lays inside or outside a line segment

Warning: The point query point must be on the same rect of the line segment!

Parameters

Point1	Line segment point 1
Point2	Line segment point 2
PointQ	Query point

5.2.2.2 intersectRayPlane()

```
bool TireGround::algorithms::intersectRayPlane (
    vec3 const & planeN,
    vec3 const & planeP,
    vec3 const & RayPoint,
    vec3 const & RayDirection,
    vec3 & IntersectionPt )
```

Check if a segment hits a plane and find the intersection point.

Parameters

planeN	Plane normal vector
planeP	Plane known point
RayPoint	Ray point
Ray Direction	Ray direction
Intersection Pt	Intersection point

$5.2.2.3 \quad minmax_XY() [1/2]$

Calculate minumum and maximum in XY plane for 3D vectors.

Parameters

Points	3D points vector
XYmin	Minimum (X, Y) values
XYmax	Maximum (X, Y) values

```
5.2.2.4 minmax_XY() [2/2]
```

Calculate minumum and maximum in XY plane for 2D vectors.

Parameters

Points	2D points vector
XYmin	Minimum (X, Y) values
XYmax	Maximum (X, Y) values

5.2.2.5 trapezoidArea()

Calculate area of a trapeziod [m^2].

Parameters

Base2	Base 1
Base1	Base 2
Height	Heigth

5.2.2.6 weighted Mean() [1/2]

Calculate arithmetic weighted mean for real numbers.

Parameters

Values	Values (real numbers)
Weights	Weights (real numbers)

5.2.2.7 weightedMean() [2/2]

Calculate arithmetic weighted mean for 3D vectors.

Parameters

Values	Values (3D vectors)
Weights	Weights (real numbers)

5.3 TireGround::RDF Namespace Reference

RDF mesh computations routines.

Namespaces

• algorithms

 $Algorithms \ for \ \textit{RDF} \ mesh \ computations \ routine.$

Classes

- class BBox2D
 - 2D Bounding Box class
- class MeshSurface

 $Mesh\ surface.$

- class Triangle3D
 - $3D\ triangle\ (pure\ geometrical\ description)$
- class TriangleRoad
 - 3D triangles for road representation

Typedefs

- typedef std::shared_ptr< TriangleRoad > TriangleRoad_ptr Shared pointer to TriangleRoad object.

5.3.1 Detailed Description

RDF mesh computations routines.

5.4 TireGround::RDF::algorithms Namespace Reference

Algorithms for RDF mesh computations routine.

Functions

- void split (std::string const &in, std::vector< std::string > &out, std::string const &token)

 Split a string into a string array at a given token.
- std::string tail (std::string const &in)

Get tail of string after first token and possibly following spaces.

• std::string firstToken (std::string const &in)

Get first token of string.

• template<typename T >

T const & getElement (std::vector< T > const & elements, std::string const & index)

Get element at given index position.

5.4.1 Detailed Description

Algorithms for RDF mesh computations routine.

5.4.2 Function Documentation

5.4.2.1 first Token()

Get first token of string.

Parameters

in Input string

5.4.2.2 getElement()

Get element at given index position.

Parameters

elements	Elements vector
index	Index position

5.4.2.3 split()

```
void TireGround::RDF::algorithms::split (
    std::string const & in,
    std::vector< std::string > & out,
    std::string const & token )
```

Split a string into a string array at a given token.

Parameters

in	Input string
out	Output string vector
token	Token

5.4.2.4 tail()

Get tail of string after first token and possibly following spaces.

Parameters

in Input string

Chapter 6

Class Documentation

6.1 TireGround::RDF::BBox2D Class Reference

```
2D Bounding Box class
```

```
#include <RoadRDF.hh>
```

Public Member Functions

- BBox2D ()
 - Default constructor.
- BBox2D (vec3 const Vertices[3])
 - Variable set constructor.
- void setXmin (real type const Xmin)
 - Set X_{min} shadow domain.
- void setYmin (real_type const _Ymin)
 - Set Y_{min} shadow domain.
- void setXmax (real_type const _Xmax)
 - Set X_{max} shadow domain.
- void setYmax (real_type const Ymax)
 - Set Y_{max} shadow domain.
- $\bullet \quad {\rm real_type~getXmin~(void)~const}$
 - Get X_{min} shadow domain.
- real_type getYmin (void) const
 - Get Y_{min} shadow domain.
- real type getXmax (void) const
 - Get X_{max} shadow domain.
- real_type getYmax (void) const
 - Get Y_{max} shadow domain.
- void clear (void)
 - Clear the bounding box domain.
- void print (ostream_type &stream) const
 - Print bounding box domain.
- void updateBBox2D (vec3 const Vertices[3])

Update the bounding box domain with three input vertices.

6.1.1 Detailed Description

 $2\mathrm{D}$ Bounding Box class

6.1.2 Constructor & Destructor Documentation

6.1.2.1 BBox2D()

Variable set constructor.

Parameters

Vertices Vertices reference vector

6.1.3 Member Function Documentation

6.1.3.1 print()

Print bounding box domain.

Parameters

```
stream | Output stream type
```

6.1.3.2 updateBBox2D()

Update the bounding box domain with three input vertices.

Parameters

Vertices Vertices reference vector

The documentation for this class was generated from the following file:

• include/RoadRDF.hh

6.2 TireGround::Disk Class Reference

Tire disk.

#include <PatchTire.hh>

Public Member Functions

• Disk (Disk &&)=default

Enable && operator.

• Disk ()

Default constructor.

• Disk (vec2 const & OriginXZ, real_type _ OffsetY, real_type _ Radius)

Variable set constructor.

• void set (Disk const &in)

Copy the Disk object.

• void setOriginXZ (vec2 const &_OriginXZ)

Set origin on XZ plane.

• vec2 const & getOriginXZ (void) const

 $Get\ origin\ vector\ XZ\text{-}axes\ coordinates.$

• vec3 getOriginXYZ (void) const

 $Get\ origin\ vector\ XYZ$ -axes coordinates.

• real_type getOffsetY (void) const

Get origin Y-axis coordinate.

• real type getRadius (void) const

Get Disk radius.

- void contactTriangles (RDF::TriangleRoad_list const &TriList, ReferenceFrame const &RF, vec3 &Normal, real_type &Friction, real_type &Area) const
- void contactPlane (vec3 const &Normal, vec3 const &Point, ReferenceFrame const &RF, real_type &Area) const
- void pointOnDisk (vec3 const &Normal, ReferenceFrame const &RF, vec3 &DiskPoint, vec3 &NormalOnDisk) const

Get the points on Disk the circumference and on a given plane.

- real_type segmentArea (real_type const Length) const
- bool isPointInside (vec2 const &Point) const

Check if a point in Disk reference frame is inside or outside the Disk.

• real type y (real type const x) const

Evaluate Y at a query X value on the lower side Disk circumfererence.

• real type segmentLength (vec2 const Point1, vec2 const Point2) const

Evaluate a generic segment length given 2 points on the Disk circumfererence.

- int_type intersectSegment (vec2 const &Point1, vec2 const &Point2, vec2 &Intersect1, vec2 &Intersect2) const
- bool intersectPlane (vec3 const &Plane_Normal, vec3 const &Plane_Point, vec3 &Line_← Direction, vec3 &Line_Point) const
- real_type getLineArea (vec2 const &Point1_XZ, vec2 const &Point2_XZ) const Get a two points line segment area [m²] (as ouput) inside the Disk.

6.2.1 Detailed Description

Tire disk.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 Disk()

Variable set constructor.

Parameters

$_OriginXZ$	(X_0, Z_0) origin coordinate
$_Offset Y$	Y_0 origin coordinate (offset from center)
_Radius	Radius

6.2.3 Member Function Documentation

6.2.3.1 contactPlane()

```
void TireGround::Disk::contactPlane (
    vec3 const & Normal,
    vec3 const & Point,
    ReferenceFrame const & RF,
    real_type & Area ) const
```

Get the contact area $[m^2]$ inside the single Disk given a plane in absolute reference frame

Parameters

Normal	Plane normal in absolute reference frame
Point	Plane point in absolute reference frame
RF	Tire ReferenceFrame
Area	Contact area [m^2]

6.2.3.2 contactTriangles()

```
void TireGround::Disk::contactTriangles (
    RDF::TriangleRoad_list const & TriList,
    ReferenceFrame const & RF,
    vec3 & Normal,
    real_type & Friction,
    real_type & Area ) const
```

Get area weighted mean road normal versor, area weighted mean friction and contact area [m^2] inside the single Disk of segments described by the intersection of triangles on XZ-plane

Parameters

TriList	Shadow / MeshSurface intersected triangles
RF	Tire ReferenceFrame
Normal	Area weighted mean road normal versor
Friction	Area weighted mean contact friction
Area	Contact area [m^2]

6.2.3.3 getLineArea()

Get a two points line segment area $[m^2]$ (as ouput) inside the Disk.

Parameters

_	Point 1 in Disk reference frame
$Point2_XZ$	Point 2 in Disk reference frame

6.2.3.4 intersectPlane()

```
bool TireGround::Disk::intersectPlane (
    vec3 const & Plane_Normal,
    vec3 const & Plane_Point,
    vec3 & Line_Direction,
    vec3 & Line_Point ) const
```

Check if two plane intersects and find the intersecting rect given two points in Disk reference frame

Parameters

$Plane_Normal$	Plane normal vector in Disk reference frame
$Plane_Point$	Plane known point in Disk reference frame
$Line_Direction$	Rect direction vector in Disk reference frame
$Line_Point$	Plane known point in Disk reference frame

6.2.3.5 intersectSegment()

Find the intersection points between the Disk and a two points line segment in Disk reference frame (output integer gives number of intersection points)

Parameters

Point1	Line segment point 1 in Disk reference frame
Point2	Line segment point 2 in Disk reference frame
Intersect1	Intersection point 1 in Disk reference frame
Intersect2	Intersection point 2 in Disk reference frame

6.2.3.6 isPointInside()

Check if a point in Disk reference frame is inside or outside the Disk.

Parameters

Point | Query point in Disk reference frame

6.2.3.7 segmentArea()

Get the contact patch area under the intersection plane in absolute reference frame $[m^2]$

Parameters

```
Length Chord length
```

6.2.3.8 segmentLength()

Evaluate a generic segment length given 2 points on the Disk circumfererence.

Parameters

Point1	Point 1
Point2	Point 2

6.2.3.9 set()

Copy the Disk object.

Parameters

in Disk object to be copied

6.2.3.10 set OriginXZ()

```
void TireGround::Disk::setOriginXZ (
    vec2 const & _OriginXZ ) [inline]
```

Set origin on XZ plane.

Parameters

 $_OriginXZ \mid$ New origin on XZ plane

6.2.3.11 y()

Evaluate Y at a query X value on the lower side Disk circumference.

Parameters

```
x \mid \text{Query } X \text{ value}
```

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.3 TireGround::ETRTO Class Reference

Tire ETRTO denomination.

```
#include <PatchTire.hh>
```

Public Member Functions

• **ETRTO** ()

 $Default\ constructor.$

- ETRTO (real_type _SectionWidth, real_type _AspectRatio, real_type _RimDiameter) Variable set constructor.
- real_type getSidewallHeight (void) const Get sidewall height [m].

- real_type getTireDiameter (void) const Get external tire diameter [m].
- real_type getTireRadius (void) const Get external tire radius [m].
- real_type getSectionWidth (void) const Get section width [m].
- void print (ostream_type &stream) const Display tire data.

6.3.1 Detailed Description

Tire ETRTO denomination.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 ETRTO()

Variable set constructor.

Parameters

$_SectionWidth$	Tire section width $[m]$
$_AspectRatio$	Tire aspect ratio [$\%$]
$_RimDiameter$	Rim diameter [in]

6.3.3 Member Function Documentation

```
6.3.3.1 \quad print() \\
```

Display tire data.

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.4 TireGround::MagicFormula Class Reference

Pacejka MagicFormula contact model.

#include <PatchTire.hh>

 $Inheritance\ diagram\ for\ TireGround:: MagicFormula:$

 $Collaboration\ diagram\ for\ Tire Ground:: Magic Formula:$

Public Member Functions

• ~MagicFormula ()

Default destructor.

• MagicFormula (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, int_type const SwitchN)

Variable set constructor.

• void getNormal (vec3 & Normal) const override

Get contact normal versor.

• void getNormal (row vec3 & Normal) const override

Get contact normal versors vector.

• void getMFpoint (vec3 & DiskPoint) const override

Get Magic Formula contact point.

• void getMFpoint (row vec3 & DiskPoint) const override

Get Magic Formula contact point vector.

• void getFriction (real type & Friction) const override

Get contact point friction.

• void getFriction (row vecN & Friction) const override

Get contact point friction vector.

• void getMFpointRF (mat4 &PointRF) const override

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

• void getMFpointRF (row mat4 & MFpointRF) const override

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

- void getRho (real_type &Rho) const override
- void getRho (row vecN &Rho) const override
- void getRhoDot (real_type const &Rho, real_type const &Time, real_type &RhoDot) const override

Get contact depth time derivative [m/s].

• void getRhoDot (row_vecN const &Rho, real_type const &Time, row_vecN &RhoDot) const override

Get contact depth time derivative vector [m/s].

• void getArea (real type & Area) const override

Get approximated contact area on Disk plane $[m^2]$.

• void getArea (row_vecN &_Area) const override

Get approximated contact area vector on Disk plane $[m^2]$.

• void getVolume (real type & Volume) const override

Get approximated contact volume $[m^3]$.

• void getVolume (row vecN &Volume) const override

Get approximated contact volume vector $[m^3]$.

• bool setup (RDF::MeshSurface &Mesh, mat4 const &TM) override

Update current tire position and find contact parameters.

• void print (ostream_type &stream) const override

Print contact parameters.

• void printETRTOGeometry (ostream_type &stream) const

Display Tire ETRTO geometry data.

• G2lib::AABBtree::PtrAABB const getAABBtree (void) const

Get total Tire Shadow G2Lib::AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const

Get upper side Tire Shadow G2Lib:AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const

Get lower side Tire Shadow G2Lib:AABBtree (3D projection on ground)

- void setReferenceFrame (ReferenceFrame const & RF)
- ReferenceFrame const & getReferenceFrame (void) const

 $Get\ tire\ Reference Frame\ object.$

• void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- real type getEulerAngleX (void) const
- real type getEulerAngleY (void) const
- real_type getEulerAngleZ (void) const
- void getRelativeCamber (real_type &RelativeCamber) const

Get relative camber angle [rad].

• int_type getDisksNumber (void) const

Dimension of the contact points data structure (disks number)

Protected Member Functions

• MagicFormula (MagicFormula const &)=delete

Deleted copy constructor.

• MagicFormula const & operator= (MagicFormula const &)=delete

Deleted copy operator.

• void evaluateContact (RDF::TriangleRoad list const &TriList) override

Evaluate contact with RoadTriangles.

• void fourPointsSampling (RDF::TriangleRoad list const &TriList, vec3 &P star)

Perform triangles sampling on 4 points at $\pm 0.1*R$ along X and $\pm 0.3*W$ along Y.

• bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &SampledPt, real_type &TriFriction=quietNaN, vec3 &Tri← Normal=vec3 NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

• Disk SingleDisk

Single Disk.

• vec3 Normal

Contact normal versor.

• vec3 MeshPoint

Contact point on Mesh (not for Magic Formula)

• vec3 DiskPoint

Contact point on undeformed Disk circumference (for Magic Formula)

• real type Friction

 $Contact\ friction.$

• real_type Area

Contact area $\lceil m^2 \rceil$.

• SamplingGrid Precision

Contacth patch evaluating precision.

• ETRTO TireGeometry

Tire ETRTO denomination.

• ReferenceFrame RF

Reference Frame.

• Shadow TireShadow

Tire shadow.

6.4.1 Detailed Description

Pacejka MagicFormula contact model.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 MagicFormula()

```
TireGround::MagicFormula::MagicFormula (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

Section Width	Tire section width [m]
AspectRatio	Tire aspect ratio [%]
Rim Diameter	Rim diameter [in]
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.4.3 Member Function Documentation

6.4.3.1 evaluateContact()

Evaluate contact with RoadTriangles.

```
TriList \mid Shadow/MeshSurface intersected triangles \mid
```

Implements TireGround::Tire.

6.4.3.2 fourPointsSampling()

Perform triangles sampling on 4 points at $\pm 0.1*R$ along X and $\pm 0.3*W$ along Y.

Parameters

TriList | Shadow/MeshSurface intersected triangles

```
6.4.3.3 \text{ getArea()} [1/2]
```

Get approximated contact area on Disk plane $[m^2]$.

Parameters

Implements TireGround::Tire.

```
6.4.3.4 \text{ getArea}() [2/2]
```

Get approximated contact area vector on Disk plane $[m^2]$.

```
\_Area \mid Contact area vector [m^2]
```

Implements TireGround::Tire.

```
6.4.3.5 getEulerAngleX()
```

Get current Euler angles [rad] for X-axis Warning: Factor as $[R_x][R_x][R_y]!$

6.4.3.6 getEulerAngleY()

Get current Euler angles [rad] for Y-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.4.3.7 getEulerAngleZ()

Get current Euler angles [rad] for Z-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.4.3.8 getFriction() [1/2]

Get contact point friction.

Parameters

Friction | Contact point friction

```
6.4.3.9 getFriction() [2/2]
```

Get contact point friction vector.

Parameters

```
_Friction | Contact point friction vector
```

Implements TireGround::Tire.

```
6.4.3.10 \text{ getMFpoint()} [1/2]
```

Get Magic Formula contact point.

Parameters

```
_DiskPoint | Magic Formula contact point
```

Implements TireGround::Tire.

```
6.4.3.11 getMFpoint() [2/2]
```

Get Magic Formula contact point vector.

Parameters

```
_DiskPoint | Contact point vector on Disk
```

```
6.4.3.12 getMFpointRF() [1/2]
```

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

```
PointRF | Magic Formula contact point reference frame
```

Implements TireGround::Tire.

```
6.4.3.13 getMFpointRF() [2/2]
```

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

Parameters

```
_MFpointRF | Magic Formula ontact point reference frames vector
```

Implements TireGround::Tire.

```
6.4.3.14 getNormal() [1/2]
```

Get contact normal versor.

Parameters

```
_Normal | Contact point normal versor
```

```
6.4.3.15 \text{ getNormal()} [2/2]
```

Get contact normal versors vector.

Parameters

_Normal | Contact point normal direction vector

Implements TireGround::Tire.

6.4.3.16 getRelativeCamber()

Get relative camber angle [rad].

Parameters

```
Relative Camber | Relative camber angle
```

```
6.4.3.17 getRho() [1/2]
```

Get contact depth at center point [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

```
Rho Depth at center point
```

```
6.4.3.18 \text{ getRho}() [2/2]
```

Get contact depth matrix [m] Warning: (if negative the tire does not touch the ground)!

Parameters

```
Rho Depth matrix
```

Implements TireGround::Tire.

6.4.3.19 getRhoDot() [1/2]

Get contact depth time derivative [m/s].

Parameters

Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Penetration derivative $[m/s]$

 ${\bf Implements} \ {\bf Tire Ground} {\bf :: Tire}.$

6.4.3.20 getRhoDot() [2/2]

Get contact depth time derivative vector [m/s].

Parameters

Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Penetration derivative [m/s]

```
6.4.3.21 getVolume() [1/2]
```

Get approximated contact volume $[m^3]$.

Parameters

```
\_Volume \mid \text{Contact volume } [m^3]
```

Implements TireGround::Tire.

```
6.4.3.22 \text{ getVolume}() [2/2]
```

Get approximated contact volume vector $[m^3]$.

Parameters

```
Volume | Contact volume vector [m^3]
```

Implements TireGround::Tire.

6.4.3.23 pointSampling()

Perform one point sampling (ray-triangle intersection)

Parameters

TriList Shadow/MeshSurface intersected triangles

RayOrigin	Ray origin
Ray Direction	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.4.3.24 print()

Print contact parameters.

Parameters

stream	Output stream type
--------	--------------------

Implements TireGround::Tire.

6.4.3.25 printETRTOGeometry()

Display Tire ETRTO geometry data.

Parameters

```
stream Output stream type
```

$6.4.3.26 \quad \operatorname{setOrigin}()$

Set a new tire origin.

```
Origin | Tire origin
```

6.4.3.27 setReferenceFrame()

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

Parameters

```
\_RF ReferenceFrame object to be copied
```

6.4.3.28 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

```
RotationMatrix | Rotation matrix
```

6.4.3.29 setTotalTransformationMatrix()

Set 4x4 total transformation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

TM | 4x4 total transformation matrix

6.4.3.30 setup()

Update current tire position and find contact parameters.

Parameters

Mesh	MeshSurface object (road)
TM	4x4 total transformation matrix

Implements TireGround::Tire.

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.5 TireGround::RDF::MeshSurface Class Reference

Mesh surface.

```
#include <RoadRDF.hh>
```

Public Member Functions

• MeshSurface ()

 $Default\ set\ constructor.$

• MeshSurface (TriangleRoad list const & PtrTriangleVec)

 $Variable\ set\ constructor.$

• MeshSurface (std::string const &Path)

Variable set constructor.

Get i-th TriangleRoad.

• TriangleRoad list const & getTrianglesList (void) const

Get all triangles inside the mesh as a vector.

 $\bullet \quad TriangleRoad_ptr\ const\ getTriangle\ (unsigned\ i)\ const$

• G2lib::AABBtree::PtrAABB const getAABBPtr (void) const Get AABBtree object.

• void printData (std::string const &FileName) const

Print data in file.

Get the mesh G2lib bounding boxes pointers vector.

• void set (MeshSurface const &in)

Copy the MeshSurface object.

• bool LoadFile (std::string const &Path)

Load the RDF model and print information on a file.

• bool intersectAABBtree (G2lib::AABBtree::PtrAABB const &AABBTreePtr, RDF::

TriangleRoad list &TrianglesList) const

Intersect the mesh AABB tree with an external AABB tree.

 $Update\ the\ mesh\ AABBtree\ with\ an\ external\ G2lib::BBox\ object\ pointer\ vector.$

6.5.1 Detailed Description

Mesh surface.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 MeshSurface() [1/2]

Variable set constructor.

Parameters

```
_PtrTriangleVec | Road triangles pointer vector list
```

6.5.2.2 MeshSurface() [2/2]

Variable set constructor.

Parameters

Path | Path to the RDF file

6.5.3 Member Function Documentation

6.5.3.1 intersectAABBtree()

Intersect the mesh AABB tree with an external AABB tree.

Parameters

AABBTreePtr	External AABBtree object pointer	
TrianglesList	Intersected TriangleRoad vector list	

6.5.3.2 intersectBBox()

Update the mesh AABBtree with an external G2lib::BBox object pointer vector.

Parameters

BBoxPtr	External G2lib::BBox object pointer vector
TrianglesList	Intersected TriangleRoad vector list

6.5.3.3 LoadFile()

Load the RDF model and print information on a file.

Parameters

Path | Path to the RDF file

6.5.3.4 printData()

Print data in file.

Parameters

FileName | File name in which print data

6.5.3.5 set()

Copy the MeshSurface object.

Parameters

```
in MeshSurface object to be copied
```

The documentation for this class was generated from the following file:

 \bullet include/RoadRDF.hh

6.6 TireGround::MultiDisk Class Reference

Multi-disk tire contact model.

```
#include <PatchTire.hh>
```

 $Inheritance\ diagram\ for\ TireGround::MultiDisk:$

Collaboration diagram for TireGround::MultiDisk:

Public Member Functions

• ~MultiDisk ()

Default destructor.

• MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, int_type const PointsN, int_type const DisksN, int_type const SwitchN)

Variable set constructor.

• MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, real_type const SideRadius, int_type const PointsN, int_type const DisksN, int_type const SwitchN)

Variable set constructor.

• MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, row_vecN const DisksRadius, int_type const PointsN, int_type const SwitchN)

Variable set constructor.

• real type getPointstep (void) const

Get grid step on X-axis between sampling points [m].

• real type getDiskStep (void) const

Get step on Y-axis between disks [m].

• void getNormal (vec3 & Normal) const override

Get contact normal mean versor.

• void getDiskOriginXYZ (row vec3 &Origin) const

Get disks origin (X, Y, Z).

• void getDiskOriginXYZ (int type const i, vec3 &Origin) const

Get i-th Disk origin (X, Y, Z).

• void setDiskOriginXZ (row vec2 &Origin)

Set disks origin (X, Y, Z).

• void setDiskOriginXZ (int type const i, vec2 &Origin)

Set i-th Disk origin (X, Y, Z).

• void getNormal (row vec3 & NormalVec) const override

Get contact normal versors vector.

• void getDiskNormal (int_type const i, vec3 &_Normal) const

Get i-th Disk contact normal versor.

• void getMFpoint (vec3 & DiskPoint) const override

 $Get\ Magic\ Formula\ contact\ point.$

• void getMFpoint (row_vec3 &_DiskPointVec) const override

Get Magic Formula contact points vector.

• void getDiskMFpoint (int type const i, vec3 & DiskPoint) const

Get i-th Disk Magic Formula contact point.

• void getFriction (real type & Friction) const override

Get area weighted mean contact friction.

• void getFriction (row vecN & Friction) const override

Get contact frictions vector.

• void getDiskFriction (int type const i, real type & Friction) const

Get i-th Disk contact friction.

• void getMFpointRF (mat4 &PointRF) const override

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

• void getMFpointRF (row mat4 &PointRF) const override

Get Magic Formula contact point reference frames vector with 4x4 transformation matrix.

• void getDiskMFpointRF (int type const i, mat4 &PointRF) const

Get Disk Magic Formula contact point reference frame with 4x4 transformation matrix.

- void getRho (real type &Rho) const override
- void getRho (row vecN &Rho) const override
- void getDiskRho (int type const i, real type &Rho) const
- void getRhoDot (real_type const &Rho, real_type const &Time, real_type &RhoDot) const override

Get contact depth time derivative [m/s].

• void getRhoDot (row_vecN const &Rho, real_type const &Time, row_vecN &RhoDot) const override

Get contact depths derivative vector [m/s].

• void getDiskRhoDot (int_type const i, real_type const &Rho, real_type const &Time, real
_type &RhoDot) const

Get i-th Disk contact depth derivative [m/s].

• void getArea (real type & Area) const override

Get approximated mean contact area on Disk plane $[m^2]$.

• void getArea (row_vecN &_AreaVec) const override

Get approximated contact areas vector on Disk plane $[m^2]$.

• void getVolume (real type &Volume) const override

Get approximated contact volume $[m^3]$.

• void getVolume (row_vecN &Volume) const override

Get approximated contact volumes vector $[m^3]$.

• bool setup (RDF::MeshSurface &Mesh, mat4 const &TM) override

Update current tire position and find contact parameters.

• void print (ostream_type &stream) const override

Print contact parameters.

• void printETRTOGeometry (ostream type &stream) const

Display Tire ETRTO geometry data.

• G2lib::AABBtree::PtrAABB const getAABBtree (void) const

Get total Tire Shadow G2Lib::AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const

Get upper side Tire Shadow G2Lib:AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const

Get lower side Tire Shadow G2Lib: AABBtree (3D projection on ground)

• void setReferenceFrame (ReferenceFrame const & RF)

 $Get\ tire\ Reference Frame\ object.$

• void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- real_type getEulerAngleX (void) const
- real type getEulerAngleY (void) const
- real type getEulerAngleZ (void) const
- void getRelativeCamber (real_type &RelativeCamber) const

Get relative camber angle [rad].

• int type getDisksNumber (void) const

Dimension of the contact points data structure (disks number)

Protected Member Functions

• bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &SampledPt, real_type &TriFriction=quietNaN, vec3 &Tri← Normal=vec3_NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

• SamplingGrid Precision

Contacth patch evaluating precision.

• ETRTO TireGeometry

Tire ETRTO denomination.

ReferenceFrame RF

Reference Frame.

• Shadow TireShadow

Tire shadow.

6.6.1 Detailed Description

Multi-disk tire contact model.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 MultiDisk() [1/3]

```
TireGround::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    int_type const PointsN,
    int_type const DisksN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Section Width	Tire section width [m]
AspectRatio	Tire aspect ratio [%]
Rim Diam eter	Rim diameter [in]
PointsN	Sampling points for each Disk (divisions on X-axis)
DisksN	Number of Disks (divisions on Y -axis -1)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.2.2 MultiDisk() [2/3]

Variable set constructor.

Parameters

Section Width	Tire section width $[m]$
AspectRatio	Tire aspect ratio [%]
Rim Diameter	Rim diameter [in]
SideRadius	Sidewall radius [m]
PointsN	Sampling points for each Disk (divisions on X-axis)
DisksN	Number of Disks (divisions on Y -axis -1)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.2.3 MultiDisk() [3/3]

```
TireGround::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    row_vecN const DisksRadius,
    int_type const PointsN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Section Width	Tire section width $[m]$
AspectRatio	Tire aspect ratio [%]
Rim Diameter	Rim diameter [in]
DisksRadius	Disks radius vector $[m]$
PointsN	Sampling points for each Disk (divisions on X-axis)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.3 Member Function Documentation

Get approximated mean contact area on Disk plane $[m^2]$.

Parameters

```
Area Contact area [ m^2]
```

 ${\bf Implements\ Tire Ground:: Tire.}$

```
6.6.3.2 getArea() [2/2]
```

Get approximated contact areas vector on Disk plane $[m^2]$.

Parameters

AreaVec	Contact areas vector $[m^2]$
	, 0000000000000000000000000000000000000

6.6.3.3 getDiskFriction()

Get *i*-th Disk contact friction.

Parameters

i	<i>i</i> -th Disk
$_{-}$ Friction	Disk contact friction

6.6.3.4 getDiskMFpoint()

Get i-th Disk Magic Formula contact point.

Parameters

i	i-th Disk
$_DiskPoint$	Disk Magic Formula contact point

6.6.3.5 getDiskMFpointRF()

Get Disk Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

i	i-th Disk
PointRF	Magic Formula contact point reference frame

6.6.3.6 getDiskNormal()

Get *i*-th Disk contact normal versor.

Parameters

i	<i>i</i> -th Disk
$_Normal$	Contact normal versor

6.6.3.7 getDiskOriginXYZ() [1/2]

Get disks origin (X, Y, Z).

Parameters

```
Origin Disks origin
```

6.6.3.8 getDiskOriginXYZ() [2/2]

Get i-th Disk origin (X, Y, Z).

Parameters

i	i-th Disk	
Origin	Disks origin	

6.6.3.9 getDiskRho()

```
void TireGround::MultiDisk::getDiskRho (
```

```
int_type const i,
real_type & Rho ) const [inline]
```

Get i-th Disk contact depth [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

i	<i>i</i> -th Disk
Rho	Disk contact depth

6.6.3.10 getDiskRhoDot()

```
void TireGround::MultiDisk::getDiskRhoDot (
    int_type const i,
    real_type const & Rho,
    real_type const & Time,
    real_type & RhoDot ) const [inline]
```

Get *i*-th Disk contact depth derivative [m/s].

Parameters

i	i-th Disk
Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Disk contact depth derivative $[m/s]$

6.6.3.11 getEulerAngleX()

Get current Euler angles [rad] for X-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.6.3.12 getEulerAngleY()

Get current Euler angles [rad] for Y-axis Warning: Factor as $[R_z][R_x][R_y]!$

```
6.6.3.13 getEulerAngleZ()
```

Get current Euler angles [rad] for Z-axis Warning: Factor as $[R_z][R_x][R_y]!$

```
6.6.3.14 getFriction() [1/2]
```

Get area weighted mean contact friction.

Parameters

```
_Friction | Area weighted mean contact friction
```

Implements TireGround::Tire.

```
6.6.3.15 getFriction() [2/2]
```

Get contact frictions vector.

Parameters

```
_Friction | Contact frictions vector
```

Implements TireGround::Tire.

```
6.6.3.16 getMFpoint() [1/2]
```

Get Magic Formula contact point.

```
_DiskPoint | Magic Formula contact point
```

 ${\bf Implements} \ {\bf Tire Ground} {\bf :: Tire}.$

```
6.6.3.17 \text{ getMFpoint()} [2/2]
```

Get Magic Formula contact points vector.

Parameters

```
_DiskPointVec | Magic Formula contact points vector
```

Implements TireGround::Tire.

```
6.6.3.18 getMFpointRF() [1/2]
```

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

```
PointRF | Magic Formula contact point reference frame
```

Implements TireGround::Tire.

```
6.6.3.19 getMFpointRF() [2/2]
```

Get Magic Formula contact point reference frames vector with 4x4 transformation matrix.

```
PointRF | Magic Formula contact point reference frames vector
```

Implements TireGround::Tire.

```
6.6.3.20 getNormal() [1/2]
```

Get contact normal mean versor.

Parameters

```
_Normal | Contact normal mean versor
```

Implements TireGround::Tire.

```
6.6.3.21 getNormal() [2/2]
```

Get contact normal versors vector.

Parameters

```
_NormalVec | Contact normal versors vector
```

Implements TireGround::Tire.

```
6.6.3.22 getRelativeCamber()
```

Get relative camber angle [rad].

```
Relative Camber | Relative camber angle
```

```
6.6.3.23 \text{ getRho}() [1/2]
```

Get contact depth at center point [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

```
Rho Depth at center point
```

Implements TireGround::Tire.

```
6.6.3.24 \text{ getRho}() [2/2]
```

Get contact depths vector [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

```
Rho | Contact depths vector
```

 ${\bf Implements\ Tire Ground:: Tire.}$

```
6.6.3.25 getRhoDot() [1/2]
```

Get contact depth time derivative [m/s].

Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Contact depth derivative $[m/s]$

 ${\bf Implements} \ {\bf Tire Ground} {\bf :: Tire}.$

```
6.6.3.26 getRhoDot() [2/2]
```

```
void TireGround::MultiDisk::getRhoDot (
    row_vecN const & Rho,
    real_type const & Time,
    row_vecN & RhoDot ) const [inline], [override], [virtual]
```

Get contact depths derivative vector [m/s].

Parameters

Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Contact depths derivative vector $[m/s]$

 ${\bf Implements} \ {\bf Tire Ground} {\bf :: Tire}.$

```
6.6.3.27 getVolume() [1/2]
```

Get approximated contact volume $[m^3]$.

Parameters

Volume	Contact volume	$[m^3]$

 ${\bf Implements\ Tire Ground} :: {\bf Tire}.$

```
6.6.3.28 getVolume() [2/2]
```

Get approximated contact volumes vector $[m^3]$.

Parameters

```
Volume | Contact volumes vector [m^3]
```

Implements TireGround::Tire.

6.6.3.29 pointSampling()

Perform one point sampling (ray-triangle intersection)

Parameters

TriList	${\bf Shadow/MeshSurface\ intersected\ triangles}$
Ray Origin	Ray origin
Ray Direction	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

```
6.6.3.30 print()
```

Print contact parameters.

Parameters

stream	Output stream type
--------	--------------------

Implements TireGround::Tire.

6.6.3.31 printETRTOGeometry()

Display Tire ETRTO geometry data.

Parameters

```
stream | Output stream type
```

$6.6.3.32 \quad setDiskOriginXZ() \ \texttt{[1/2]}$

Set disks origin (X, Y, Z).

Parameters

```
Origin | New Disks origin vector
```

6.6.3.33 setDiskOriginXZ() [2/2]

Set *i*-th Disk origin (X, Y, Z).

Parameters

i	<i>i</i> -th Disk
Origin	New Disks origin vector

6.6.3.34 set Origin()

Set a new tire origin.

Parameters

```
Origin Tire origin
```

6.6.3.35 setReferenceFrame()

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

Parameters

```
\_RF ReferenceFrame object to be copied
```

6.6.3.36 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

```
RotationMatrix | Rotation matrix
```

6.6.3.37 setTotalTransformationMatrix()

Set 4x4 total transformation matrix Warning: Rotation matrix must be orthonormal!

```
TM | 4x4 total transformation matrix
```

6.6.3.38 setup()

Update current tire position and find contact parameters.

Parameters

Mesh	MeshSurface object (road)
TM	4x4 total transformation matrix

Implements TireGround::Tire.

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.7 TireGround::ReferenceFrame Class Reference

Reference frame.

```
#include <PatchTire.hh>
```

Public Member Functions

• ReferenceFrame ()

 $Default\ constructor.$

• ReferenceFrame (vec3 const &_Origin, mat3 const &_RotationMatrix)

Variable set constructor.

• bool is Empty (void)

Check if ReferenceFrame object is empty.

• mat3 const & getRotationMatrix (void) const

Get current 3x3 rotation matrix.

• mat3 getRotationMatrixInverse (void) const

Get current 3x3 rotation matrix inverse.

• vec3 getX (void) const

 $Get\ current\ X\mbox{-}axis\ versor.$

• vec3 getY (void) const

Get current Y-axis versor.

• vec3 getZ (void) const

Get current Z-axis versor.

• vec3 const & getOrigin (void) const

Get origin position.

• void setOrigin (vec3 const & Origin)

Set origin position.

• void setRotationMatrix (mat3 const &_RotationMatrix)

Set 3x3 rotation matrix.

• void setTotalTransformationMatrix (mat4 const &TM)

Set 4x4 total transformation matrix.

• mat4 getTotalTransformationMatrix (void)

Get 4x4 total transformation matrix.

- void set (ReferenceFrame const &in)
- real type getEulerAngleX (void) const
- real type getEulerAngleY (void) const
- real type getEulerAngleZ (void) const

6.7.1 Detailed Description

Reference frame.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 ReferenceFrame()

Variable set constructor.

Parameters

_ Origin	Origin position
$_RotationMatrix$	3x3 rotation matrix

6.7.3 Member Function Documentation

```
6.7.3.1 getEulerAngleX()
real_type TireGround::ReferenceFrame::getEulerAngleX (
             void ) const
Get current Euler angles [ rad] for X-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.2 getEulerAngleY()
real_type TireGround::ReferenceFrame::getEulerAngleY (
             void ) const
Get current Euler angles [ rad] for Y-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.3 getEulerAngleZ()
real_type TireGround::ReferenceFrame::getEulerAngleZ (
             void ) const
Get current Euler angles [ rad] for Z-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.4 \text{ set}()
void TireGround::ReferenceFrame::set (
             ReferenceFrame const & in ) [inline]
Copy the tire ReferenceFrame object
Warning: Rotation matrix must be orthonormal!
Parameters
     ReferenceFrame object to be copied
6.7.3.5 setOrigin()
void TireGround::ReferenceFrame::setOrigin (
             vec3 const & _Origin ) [inline]
```

Set origin position.

$_\mathit{Origin}$	Origin	position
---------------------	--------	----------

6.7.3.6 setRotationMatrix()

Set 3x3 rotation matrix.

Parameters

```
_RotationMatrix | 3x3 rotation matrix
```

6.7.3.7 setTotalTransformationMatrix()

Set 4x4 total transformation matrix.

Parameters

TM 4x4 total transformation matrix

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.8 TireGround::SamplingGrid Class Reference

Patch evaluation precision.

#include <PatchTire.hh>

Public Member Functions

• SamplingGrid ()

 $Default\ constructor.$

• SamplingGrid (int_type _PointsN, int_type _DisksN)

Variable set constructor.

• SamplingGrid (int type PointsN, int type DisksN, int type Switch)

 $Variable\ set\ constructor.$

• int type getPointsNumber (void) const

Get number of sampling points for each Disk (divisions on X-axis)

• int type getDisksNumber (void) const

Get number of Disks (divisions on Y-axis -1)

• unsigned getSwitchNumber (void) const

Get number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

• void setSwitchNumber (int_type const _Switch)

Set number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

- void set (int_type _PointsN, int_type _DisksN, int_type _Switch)

 Set number of divisions.
- void set (SamplingGrid const &in)

 $Copy\ the\ Sampling Grid\ object.$

6.8.1 Detailed Description

Patch evaluation precision.

6.8.2 Constructor & Destructor Documentation

6.8.2.1 SamplingGrid() [1/2]

Variable set constructor.

Parameters

$_PointsN$	Sampling points for each Disk (divisions on X -axis)
$_DisksN$	Number of Disks (divisions on Y -axis -1)

6.8.2.2 SamplingGrid() [2/2]

```
TireGround::SamplingGrid::SamplingGrid (
    int_type _PointsN,
    int_type _DisksN,
    int_type _Switch ) [inline]
```

Variable set constructor.

Parameters

$_PointsN$	Sampling points for each Disk (divisions on X-axis)
$_DisksN$	Number of Disks (divisions on Y -axis -1)
$_Switch$	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.8.3 Member Function Documentation

Set number of divisions.

Parameters

$_PointsN$	Sampling points for each Disk (divisions on X-axis)
$_DisksN$	Number of Disks (divisions on Y -axis -1)
$_Switch$	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

```
6.8.3.2 set() [2/2] void TireGround::SamplingGrid::set ( SamplingGrid const & in ) [inline]
```

 $Copy\ the\ {\bf Sampling Grid}\ object.$

Parameters

```
in | SamplingGrid object to be copied
```

6.8.3.3 setSwitchNumber()

Set number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

Parameters

 $_Switch \mid$ New switch number

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.9 TireGround::Shadow Class Reference

2D shadow (2D bounding box enhacement)

```
#include <PatchTire.hh>
```

Public Member Functions

- Shadow ()

 Default constructor.
- Shadow (ETRTO const &TireGeometry, ReferenceFrame const &RF)
- void update (ETRTO const &TireGeometry, ReferenceFrame const &RF)
- G2lib::AABBtree::PtrAABB const getAABBtree (void) const Get total Tire G2Lib::AABBtree (3D projection on ground)
- G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const
 - Get upper side Tire G2Lib:AABBtree (3D projection on ground)
 G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) cons
- G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const Get lower side Tire G2Lib:AABBtree (3D projection on ground)

6.9.1 Detailed Description

2D shadow (2D bounding box enhacement)

6.9.2 Constructor & Destructor Documentation

6.9.2.1 Shadow()

Variable set constructor

Warning: Rotation matrix must be orthonormal!

Tire Geometry	Tire ETRTO denomination
RF	Tire ReferenceFrame

6.9.3 Member Function Documentation

6.9.3.1 update()

Update the 2D tire shadow domain Warning: Rotation matrix must be orthonormal!

Parameters

Tire Geometry	Tire ETRTO denomination
RF	Tire ReferenceFrame

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.10 TicToc Class Reference

Public Member Functions

- void tic ()
- void **toc** ()
- ullet real_type **elapsed s** () const
- real_type **elapsed_ms** () const

The documentation for this class was generated from the following file:

 \bullet include/TicToc.hh

6.11 TireGround::Tire Class Reference

Base class for Tire models.

#include <PatchTire.hh>

Inheritance diagram for TireGround::Tire:

Collaboration diagram for TireGround::Tire:

Public Member Functions

- ~Tire ()
 - $Default\ destructor.$
- Tire (real_type const SectionWidth, real_type const AspectRatio, real_type const Rim Diameter, int type const PointsN, int type const DisksN)

 $Variable\ set\ constructor.$

- void printETRTOGeometry (ostream_type &stream) const Display Tire ETRTO geometry data.
- G2lib::AABBtree::PtrAABB const getAABBtree (void) const

Get total Tire Shadow G2Lib::AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const

Get upper side Tire Shadow G2Lib:AABBtree (3D projection on ground)

• G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const

Get lower side Tire Shadow G2Lib:AABBtree (3D projection on ground)

- void setReferenceFrame (ReferenceFrame const & RF)
- ReferenceFrame const & getReferenceFrame (void) const

 $Get\ tire\ Reference Frame\ object.$

• void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- real_type getEulerAngleX (void) const
- real type getEulerAngleY (void) const
- real type getEulerAngleZ (void) const
- void getRelativeCamber (real type &RelativeCamber) const

Get relative camber angle [rad].

• int type getDisksNumber (void) const

Dimension of the contact points data structure (disks number)

- virtual void getRho (real_type &Rho) const =0
- virtual void getRho (row vecN &Rho) const =0
- virtual void getRhoDot (real_type const &Rho, real_type const &Time, real_type &Rho↔ Dot) const =0

Get contact depth time derivative [m/s].

• virtual void getRhoDot (row_vecN const &Rho, real_type const &Time, row_vecN &Rho↔ Dot) const =0

Get contact depth time derivative vector [m/s].

• virtual void getNormal (vec3 &Normal) const =0

Get contact normal versor.

• virtual void getNormal (row vec3 &Normal) const =0

Get contact normal versors vector.

• virtual void getMFpoint (vec3 &Point) const =0

 $Get\ Magic\ Formula\ contact\ point.$

• virtual void getMFpoint (row vec3 &Point) const =0

Get Magic Formula contact point vector.

• virtual void getFriction (real type &Friction) const =0

Get contact point friction.

• virtual void getFriction (row vecN &Friction) const =0

Get contact frictions vector.

• virtual void getMFpointRF (mat4 &PointRF) const =0

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

• virtual void getMFpointRF (row mat4 &PointRF) const =0

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

• virtual void getArea (real_type &_Area) const =0

Get approximated contact area on Disk plane [m^2].

• virtual void getArea (row vecN &Area) const =0

Get approximated contact areas vector on Disk plane $[m^2]$.

• virtual void get Volume (real type & Volume) const =0

Get approximated contact volume $[m^3]$.

- virtual void getVolume (row_vecN &_Volume) const =0

 Get approximated contact volume [m³].
- virtual void evaluateContact (RDF::TriangleRoad_list const &TriList)=0

 $Evaluate\ contact\ with\ Road Triangles.$

• virtual bool setup (RDF::MeshSurface &Mesh, mat4 const &TM)=0

Update current tire position and find contact parameters.

• virtual void print (ostream type &stream) const =0

Print contact parameters.

Protected Member Functions

• Tire (Tire const &)=delete

Deleted copy constructor.

• Tire const & operator= (Tire const &)=delete

Deleted copy operator.

• bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &SampledPt, real_type &TriFriction=quietNaN, vec3 &Tri← Normal=vec3 NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

• SamplingGrid Precision

Contacth patch evaluating precision.

• ETRTO TireGeometry

Tire ETRTO denomination.

ReferenceFrame RF

Reference Frame.

• Shadow TireShadow

Tire shadow.

6.11.1 Detailed Description

Base class for Tire models.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 Tire()

Variable set constructor.

Section Width	Tire section width $[m]$
AspectRatio	Tire aspect ratio [%]
Rim Diameter	Rim diameter [in]
PointsN	Sampling points for each Disk (divisions on X-axis)
DisksN	Number of Disks (divisions on Y -axis -1)

6.11.3 Member Function Documentation

6.11.3.1 evaluateContact()

 $\label{eq:contact} Evaluate\ contact\ with\ Road Triangles.$

Parameters

TriList Shadow/MeshSurface intersected trian	$_{ m igles}$
--	---------------

Implemented in TireGround::MagicFormula.

```
6.11.3.2 getArea() [1/2]
```

Get approximated contact area on Disk plane $[m^2]$.

Parameters

 $Implemented\ in\ Tire Ground:: Multi Disk,\ and\ Tire Ground:: Magic Formula.$

Get approximated contact areas vector on Disk plane $[m^2]$.

Parameters

```
Area Contact areas vector [m^2]
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.4 getEulerAngleX()
```

Get current Euler angles [rad] for X-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.11.3.5 getEulerAngleY()

Get current Euler angles [rad] for Y-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.11.3.6 getEulerAngleZ()

Get current Euler angles [rad] for Z-axis Warning: Factor as $[R_z][R_x][R_y]!$

```
6.11.3.7 getFriction() [1/2]
```

Get contact point friction.

```
Friction | Contact point friction
```

 $Implemented \ in \ Tire Ground:: Multi Disk, \ and \ Tire Ground:: Magic Formula.$

Get contact frictions vector.

Parameters

```
Friction | Contact frictions vector
```

 $Implemented\ in\ Tire Ground:: Multi Disk,\ and\ Tire Ground:: Magic Formula.$

Get Magic Formula contact point.

Parameters

```
Point | Magic Formula contact point
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Get Magic Formula contact point vector.

```
Point | Magic Formula Contact point vector
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.11 \operatorname{getMFpointRF}() [1/2]
```

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

```
PointRF | Magic Formula contact point reference frame
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

row_mat4 & PointRF) const [pure virtual]

```
6.11.3.12 \quad getMFpointRF() \ \cite{RF(2)} virtual void TireGround::Tire::getMFpointRF (
```

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

Parameters

```
PointRF | Magic Formula ontact point reference frames vector
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.13 getNormal() [1/2]

virtual void TireGround::Tire::getNormal (

vec3 & Normal ) const [pure virtual]
```

Get contact normal versor.

Normal Contact point normal direction

 $Implemented \ in \ Tire Ground :: Multi Disk, \ and \ Tire Ground :: Magic Formula.$

Get contact normal versors vector.

Parameters

Normal Contact point normal direction vector

 ${\bf Implemented\ in\ Tire Ground:: Multi Disk,\ and\ Tire Ground:: Magic Formula.}$

```
6.11.3.15 getRelativeCamber()
```

Get relative camber angle [rad].

Parameters

Relative Camber | Relative camber angle

```
6.11.3.16 \text{ getRho}() [1/2]
```

Get contact depth at center point [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

Rho | Depth at center point

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

Get contact depth vector [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

```
Rho Depth vector [m]
```

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.18 \quad getRhoDot() \ \texttt{[1/2]}
```

Get contact depth time derivative [m/s].

Parameters

Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Penetration derivative $[m/s]$

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

```
6.11.3.19 getRhoDot() [2/2]
```

Get contact depth time derivative vector [m/s].

Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Penetration derivative $[m/s]$

 $Implemented \ in \ Tire Ground:: Multi Disk, \ and \ Tire Ground:: Magic Formula.$

Get approximated contact volume $[m^3]$.

Parameters

$lume$ Contact volume [m^3]

 $Implemented \ in \ Tire Ground:: Multi Disk, \ and \ Tire Ground:: Magic Formula.$

Get approximated contact volume $[m^3]$.

Parameters

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

6.11.3.22 pointSampling()

```
vec3 const & RayDirection,
vec3 & SampledPt,
real_type & TriFriction = quietNaN,
vec3 & TriNormal = vec3_NaN ) const [protected]
```

Perform one point sampling (ray-triangle intersection)

Parameters

TriList	${\bf Shadow/MeshSurface\ intersected\ triangles}$
RayOrigin	Ray origin
Ray Direction	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.11.3.23 print()

Print contact parameters.

Parameters

```
stream Output stream type
```

 $Implemented \ in \ Tire Ground:: Multi Disk, \ and \ Tire Ground:: Magic Formula.$

6.11.3.24 printETRTOGeometry()

Display $\operatorname{Tire}\ \operatorname{ETRTO}\ \operatorname{geometry}\ \operatorname{data}.$

Parameters

stream | Output stream type

6.11.3.25 setOrigin()

Set a new tire origin.

Parameters

```
Origin Tire origin
```

6.11.3.26 setReferenceFrame()

Copy the tire ReferenceFrame object Warning: Rotation matrix must be orthonormal!

Parameters

```
\_RF ReferenceFrame object to be copied
```

6.11.3.27 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

```
RotationMatrix | Rotation matrix
```

$6.11.3.28 \quad setTotalTransformationMatrix() \\$

Set 4x4 total transformation matrix Warning: Rotation matrix must be orthonormal!

	TM	4x4 total	${\it transformation}$	matrix
--	----	-----------	------------------------	--------

6.11.3.29 setup()

Update current tire position and find contact parameters.

Parameters

Mesh	MeshSurface object (road)
TM	4x4 total transformation matrix

Implemented in TireGround::MultiDisk, and TireGround::MagicFormula.

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.12 TireGround::RDF::Triangle3D Class Reference

3D triangle (pure geometrical description)

```
#include <RoadRDF.hh>
```

 $Inheritance\ diagram\ for\ TireGround::RDF::Triangle 3D:$

Collaboration diagram for TireGround::RDF::Triangle3D:

Public Member Functions

• Triangle3D ()

Variable set constructor.

• Triangle3D (vec3 const _ Vertices[3])

Variable set constructor.

• void setVertices (vec3 const Vertices[3])

Set new vertices and update bounding box domain.

• void setVertices (vec3 const &Vertex0, vec3 const &Vertex1, vec3 const &Vertex2)

Set new vertices then update bounding box domain and normal versor.

• vec3 const & getNormal (void) const

 $Get\ normal\ versor.$

• vec3 const & getVertex (unsigned i) const

Get i-th vertex.

• BBox2D const & getBBox (void) const

 $Get\ Triangle 3D\ bonding\ box\ BBox 2D.$

• void print (ostream_type &stream) const

Print vertices data.

- bool intersectRay (vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &IntPt) const
- int_type intersectEdgePlane (vec3 const &PlaneN, vec3 const &PlaneP, int_type const Edge, vec3 &IntPt1, vec3 &IntPt2) const
- bool intersectPlane (vec3 const &PlaneN, vec3 const &PlaneP, std::vector< vec3 > &IntPts) const

Protected Member Functions

• Triangle3D (Triangle3D const &)=delete

Deleted copy constructor.

• Triangle3D & operator= (Triangle3D const &)=delete

Deleted copy operator.

Protected Attributes

• vec3 Vertices [3]

Vertices reference vector.

• vec3 Normal

Triangle normal versor.

• BBox2D TriangleBBox

Triangle 2D bounding box (XY plane)

6.12.1 Detailed Description

3D triangle (pure geometrical description)

6.12.2 Constructor & Destructor Documentation

6.12.2.1 Triangle3D()

Variable set constructor.

Parameters

```
_ Vertices | Vertices reference vector
```

6.12.3 Member Function Documentation

6.12.3.1 intersectEdgePlane()

Check if an edge of the Triangle3D object hits a and find the intersection point

PlaneN	Plane normal vector
PlaneP	Plane known point
Edge	Triangle edge number (0:2)
IntPt1	Intersection point 1
IntPt2	Intersection point 2

6.12.3.2 intersectPlane()

Check if a plane intersects a Triangle3D object and find the intersection points

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
IntPts	Intersection points

6.12.3.3 intersectRay()

Check if a ray hits a Triangle3D object through Möller-Trumbore intersection algorithm

Parameters

Ray Origin	Ray origin position
Ray Direction	Ray direction vector
IntPt	Intersection point

6.12.3.4 print()

Print vertices data.

Parameters

```
stream | Output stream type
```

6.12.3.5 set Vertices() [1/2]

Set new vertices and update bounding box domain.

Parameters

6.12.3.6 set Vertices() [2/2]

Set new vertices then update bounding box domain and normal versor.

Parameters

$Vertex\theta$	Vertex 1
Vertex1	Vertex 2
Vertex2	Vertex 3

The documentation for this class was generated from the following file:

 \bullet include/RoadRDF.hh

6.13 TireGround::RDF::TriangleRoad Class Reference

3D triangles for road representation

#include <RoadRDF.hh>

 $Inheritance\ diagram\ for\ TireGround::RDF::TriangleRoad:$

 $Collaboration\ diagram\ for\ TireGround:: RDF:: TriangleRoad:$

Public Member Functions

- TriangleRoad ()
 - $Default\ set\ constructor.$
- TriangleRoad (vec3 const _Vertices[3], real_type _Friction)

 Variable set constructor.
- void setFriction (real type Friction)

Set friction coefficient.

• real type getFriction (void) const

Get friction coefficent on the face.

• void setVertices (vec3 const Vertices[3])

Set new vertices and update bounding box domain.

• void setVertices (vec3 const &Vertex0, vec3 const &Vertex1, vec3 const &Vertex2)

Set new vertices then update bounding box domain and normal versor.

• vec3 const & getNormal (void) const

Get normal versor.

• vec3 const & getVertex (unsigned i) const

Get i-th vertex.

• BBox2D const & getBBox (void) const

Get Triangle3D bonding box BBox2D.

• void print (ostream type &stream) const

Print vertices data.

- bool intersectRay (vec3 const &RayOrigin, vec3 const &RayDirection, vec3 &IntPt) const
- int_type intersectEdgePlane (vec3 const &PlaneN, vec3 const &PlaneP, int_type const Edge, vec3 &IntPt1, vec3 &IntPt2) const
- bool intersectPlane (vec3 const &PlaneN, vec3 const &PlaneP, std::vector< vec3 > &IntPts) const

Protected Attributes

• vec3 Vertices [3]

Vertices reference vector.

• vec3 Normal

 $Triangle\ normal\ versor.$

• BBox2D TriangleBBox

Triangle 2D bounding box (XY plane)

6.13.1 Detailed Description

3D triangles for road representation

6.13.2 Constructor & Destructor Documentation

6.13.2.1 TriangleRoad()

Variable set constructor.

_ Vertices	Vertices reference vector
$_{-}$ Friction	Friction coefficient

6.13.3 Member Function Documentation

6.13.3.1 intersectEdgePlane()

Check if an edge of the Triangle3D object hits a and find the intersection point

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
Edge	Triangle edge number (0:2)
IntPt1	Intersection point 1
IntPt2	Intersection point 2

6.13.3.2 intersectPlane()

Check if a plane intersects a Triangle3D object and find the intersection points

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
IntPts	Intersection points

6.13.3.3 intersectRay()

Check if a ray hits a Triangle3D object through Möller-Trumbore intersection algorithm

Parameters

RayOrigin	Ray origin position
Ray Direction	Ray direction vector
IntPt	Intersection point

6.13.3.4 print()

Print vertices data.

Parameters

```
stream | Output stream type
```

6.13.3.5 setFriction()

Set friction coefficient.

Parameters

_ Friction	New friction	coefficient

```
6.13.3.6 set Vertices() [1/2]
```

Set new vertices and update bounding box domain.

Parameters

Vertices Vertices reference vector

6.13.3.7 set Vertices() [2/2]

```
void TireGround::RDF::Triangle3D::setVertices (
    vec3 const & Vertex0,
    vec3 const & Vertex1,
    vec3 const & Vertex2 ) [inline], [inherited]
```

Set new vertices then update bounding box domain and normal versor.

Parameters

Vertex0	Vertex 1
Vertex1	Vertex 2
Vertex2	Vertex 3

The documentation for this class was generated from the following file:

 \bullet include/RoadRDF.hh

Index

BBox2D	TireGround::MagicFormula, 33
TireGround::RDF::BBox2D, 20	TireGround::MultiDisk, 52
	TireGround::ReferenceFrame, 64
contactPlane	TireGround::Tire, 75
TireGround::Disk, 22	$\operatorname{getEulerAngleZ}$
contactTriangles	TireGround::MagicFormula, 33
TireGround::Disk, 23	TireGround::MultiDisk, 52
	TireGround::ReferenceFrame, 64
Disk	TireGround::Tire, 75
TireGround::Disk, 22	getFriction
DIDE	TireGround::MagicFormula, 33
ETRTO	TireGround::MultiDisk, 53
TireGround::ETRTO, 27	TireGround::Tire, 75, 76
evaluateContact	$\operatorname{getLineArea}$
TireGround::MagicFormula, 31	TireGround::Disk, 23
TireGround::Tire, 74	$\operatorname{get}\operatorname{MFp}\operatorname{oint}$
first Token	TireGround::MagicFormula, 34
TireGround::RDF::algorithms, 17	TireGround::MultiDisk, 53, 54
fourPointsSampling	TireGround::Tire, 76
TireGround::MagicFormula, 32	$\operatorname{get}\operatorname{MFp}\operatorname{oint}\operatorname{RF}$
Theoroundwagieromidia, 02	TireGround::MagicFormula, 34, 35
getArea	TireGround::MultiDisk, 54
TireGround::MagicFormula, 32	TireGround::Tire, 77
TireGround::MultiDisk, 49	$\operatorname{get}\operatorname{Normal}$
TireGround::Tire, 74	TireGround::MagicFormula, 35
getDiskFriction	TireGround::MultiDisk, 55
TireGround::MultiDisk, 49	TireGround::Tire, 77, 78
getDiskMFpoint	$\operatorname{get} \operatorname{RelativeCamber}$
TireGround::MultiDisk, 50	TireGround::MagicFormula, 36
getDiskMFpointRF	${ m TireGround::MultiDisk,\ 55}$
TireGround::MultiDisk, 50	TireGround::Tire, 78
getDiskNormal	$\operatorname{get}\operatorname{Rho}$
TireGround::MultiDisk, 50	${ m TireGround::MagicFormula,\ 36}$
getDiskOriginXYZ	${ m TireGround::MultiDisk,\ 56}$
TireGround::MultiDisk, 51	TireGround::Tire, 78, 79
getDiskRho	$\operatorname{get}\operatorname{RhoDot}$
TireGround::MultiDisk, 51	${ m TireGround::MagicFormula,\ 37}$
$\operatorname{get} \operatorname{DiskRhoDot}$	TireGround::MultiDisk, 56, 57
TireGround::MultiDisk, 52	TireGround::Tire, 79
getElement	$\operatorname{get}\operatorname{Volume}$
TireGround::RDF::algorithms, 17	TireGround::MagicFormula, 38
getEulerAngleX	${ m TireGround::MultiDisk,\ 57}$
TireGround::MagicFormula, 33	TireGround::Tire, 80
${\it TireGround::MultiDisk, 52}$	
${\it TireGround::} Reference Frame, \ {\it 63}$	${\rm intersect AABBtree}$
TireGround::Tire, 75	$Tire Ground :: RDF :: Mesh Surface, \ 4$
getEulerAngleY	intersect BBox

96 INDEX

TireGround::RDF::MeshSurface, 43	TireGround::Disk, 25
intersectEdgePlane	segmentLength
TireGround::RDF::Triangle3D, 86	TireGround::Disk, 25
TireGround::RDF::TriangleRoad, 91	set
intersectPlane	${\it TireGround::Disk, 25}$
TireGround::Disk, 23	TireGround::RDF::MeshSurface, 44
TireGround::RDF::Triangle3D, 87	TireGround::ReferenceFrame, 64
${ m TireGround::RDF::TriangleRoad,~91}$	${\it TireGround::SamplingGrid, 67}$
${\rm intersectPointSegment}$	$\operatorname{set}\operatorname{Disk}\operatorname{Origin}\operatorname{XZ}$
TireGround::algorithms, 13	${ m TireGround::MultiDisk,\ 59}$
intersectRay	$\operatorname{setFriction}$
TireGround::RDF::Triangle3D, 87	${\it TireGround::RDF::TriangleRoad,92}$
${ m TireGround::RDF::TriangleRoad,~92}$	$\operatorname{setOrigin}$
intersectRayPlane	TireGround::MagicFormula, 39
TireGround::algorithms, 14	${ m TireGround::MultiDisk,\ 59}$
intersectSegment	TireGround::ReferenceFrame, 64
TireGround::Disk, 24	TireGround::Tire, 81
isPointInside	$\operatorname{set}\operatorname{Origin}\operatorname{XZ}$
TireGround::Disk, 24	TireGround::Disk, 26
	set ReferenceFrame
LoadFile	TireGround::MagicFormula, 40
TireGround::RDF::MeshSurface, 43	TireGround::MultiDisk, 60
M ' D	TireGround::Tire, 82
MagicFormula	$\operatorname{set} \operatorname{RotationMatrix}$
TireGround::MagicFormula, 31	TireGround::MagicFormula, 40
MeshSurface	TireGround::MultiDisk, 60
TireGround::RDF::MeshSurface, 42	TireGround::ReferenceFrame, 65
minmax_XY	TireGround::Tire, 82
TireGround::algorithms, 14	$\operatorname{setSwitchNumber}$
MultiDisk	TireGround::SamplingGrid, 68
TireGround::MultiDisk, 47, 48	${\bf set} {\bf Total Transformation Matrix}$
pointSampling	TireGround::MagicFormula, 40
TireGround::MagicFormula, 38	TireGround::MultiDisk, 60
TireGround::MultiDisk, 58	TireGround::ReferenceFrame, 65
TireGround::Tire, 80	TireGround::Tire, 82
print	setVertices
TireGround::ETRTO, 27	TireGround::RDF::Triangle3D, 88
TireGround::MagicFormula, 39	TireGround::RDF::TriangleRoad, 92, 93
TireGround::MultiDisk, 58	setup
TireGround::RDF::BBox2D, 20	TireGround::MagicFormula, 41
TireGround::RDF::Triangle3D, 87	TireGround::MultiDisk, 62
TireGround::RDF::TriangleRoad, 92	TireGround::Tire, 84
TireGround::Tire, 81	Shadow
print Data	TireGround::Shadow, 68
TireGround::RDF::MeshSurface, 43	split
printETRTOGeometry	TireGround::RDF::algorithms, 18
TireGround::MagicFormula, 39	
TireGround::MultiDisk, 59	tail
TireGround::Tire, 81	TireGround::RDF::algorithms, 18
11100104114111110, 01	TicToc, 70
ReferenceFrame	Tire
TireGround::ReferenceFrame, 63	TireGround::Tire, 73
,	TireGround, 11
SamplingGrid	TireGround::Disk, 21
TireGround::SamplingGrid, 66	contactPlane, 22
segment Area	contactTriangles, 23

INDEX 97

Disk, 22	${ m getVolume,\ 57}$
$getLineArea, \frac{23}{}$	MultiDisk, 47, 48
intersectPlane, 23	pointSampling, 58
intersectSegment, 24	print, 58
isPointInside, 24	printETRTOGeometry, 59
segmentArea, 25	setDiskOriginXZ, 59
segmentLength, 25	setOrigin, 59
set , 25	$\operatorname{setReferenceFrame}, 60$
set OriginXZ, 26	$\operatorname{set} \operatorname{RotationMatrix}, 60$
y, 26	setTotalTransformationMatrix, 60
TireGround::ETRTO, 26	setup, 62
ETRTO, 27	TireGround::RDF::BBox2D, 19
print, 27	BBox2D, 20
TireGround::MagicFormula, 28	print, 20
evaluateContact, 31	updateBBox2D, 20
fourPointsSampling, 32	TireGround::RDF::MeshSurface, 41
getArea, 32	intersect AABBtree, 43
getEulerAngleX, 33	intersectBBox, 43
getEulerAngleY, 33	LoadFile, 43
getEulerAngleZ, 33	MeshSurface, 42
getFriction, 33	printData, 43
getMFpoint, 34	set, 44
getMFpointRF, 34, 35	TireGround::RDF::Triangle3D, 84
getNormal, 35	intersectEdgePlane, 86
getRelativeCamber, 36	intersectPlane, 87
m getRho, 36	intersectRay, 87
getRhoDot, 37	print, 87
getVolume, 38	setVertices, 88
MagicFormula, 31	Triangle3D, 86
pointSampling, 38	TireGround::RDF::TriangleRoad, 89
print, 39	intersectEdgePlane, 91
printETRTOGeometry, 39	intersectPlane, 91
set Origin, 39	intersectRay, 92
setReferenceFrame, 40	print, 92
setRotationMatrix, 40	setFriction, 92
setTotalTransformationMatrix, 40	setVertices, 92, 93
setup, 41	TriangleRoad, 90
TireGround::MultiDisk, 44	TireGround::RDF::algorithms, 17
getArea, 49	firstToken, 17
getDiskFriction, 49	getElement, 17
getDiskMFpoint, 50	split, 18
getDiskMFpointRF, 50	tail, 18
getDiskNormal, 50	TireGround::RDF, 16
getDiskOriginXYZ, 51	TireGround::ReferenceFrame, 62
9 ,	
getDiskRho, 51	getEulerAngleX, 63
getDiskRhoDot, 52	getEulerAngleY, 64
getEulerAngleX, 52	getEulerAngleZ, 64
getEulerAngleY, 52	ReferenceFrame, 63
getEulerAngleZ, 52	set , 64
getFriction, 53	setOrigin, 64
getMFpoint, 53, 54	setRotationMatrix, 65
getMFpointRF, 54	setTotalTransformationMatrix, 65
getNormal, 55	TireGround::SamplingGrid, 65
getRelativeCamber, 55	SamplingGrid, 66
$ m getRho, {f 56}$	set , 67
getRhoDot, 56, 57	setSwitchNumber, 68

98 INDEX

```
TireGround::Shadow, 68
    Shadow, 68
    update, 70
TireGround::Tire, 71
    evaluateContact, 74
    getArea, 74
    getEulerAngleX, 75
    getEulerAngleY, 75
    getEulerAngleZ, 75
    getFriction, 75, 76
    getMFpoint, 76
    getMFpointRF, 77
    getNormal, 77, 78
    getRelativeCamber, 78
    getRho, 78, 79
    getRhoDot, 79
    getVolume, 80
    pointSampling, 80
    print, 81
    printETRTOGeometry, 81
    set Origin, 81
    setReferenceFrame, 82
    setRotationMatrix, 82
    setTotalTransformationMatrix, 82
    setup, 84
    Tire, 73
TireGround::algorithms, 13
    intersectPointSegment, 13
    intersectRayPlane, 14
    minmax_XY, 14
    {\rm trapezoidArea},\, {\color{red}15}
    weightedMean, 15, 16
trapezoidArea
    {\bf Tire Ground:: algorithms,\ 15}
Triangle3D
    TireGround::RDF::Triangle3D, 86
TriangleRoad
    TireGround::RDF::TriangleRoad, 90
update
    TireGround::Shadow, 70
updateBBox2D
    TireGround::RDF::BBox2D, 20
weightedMean
    TireGround::algorithms, 15, 16
у
```

TireGround::Disk, 26