Lambda Calculus Recursão

Prof. Edson Alves

Faculdade UnB Gama

Recursão Combinador Y

Lambda Calculus

Sumário

1. Recursão

 ${\hbox{\bf 2. Combinador}}\ Y$

Recursão

- A recursão diz respeito a definicão de uma função em termos de si mesma
- Ao contrário de outras notações, o cálculo λ não permite esta definição diretamente, uma vez que os termos- λ são anônimos
- \triangleright Uma maneira de contornar isso é utilizar uma expressão- λ que receba a si mesma como argumento
- Além disso, é preciso lidar com os dois aspectos fundamentais de uma função recursiva: o(s) caso(s) base(s) e a chamada recursiva

Estrutura básica da recursão

$$\gamma(x) = \left\{ \begin{array}{l} g(x), & \text{se } P(x), \\ h(x,\gamma), & \text{caso contrário} \end{array} \right.$$

- $\triangleright P(x)$ é um predicado que retorna verdadeiro se x é o valor que caracteriza um caso base
- ightharpoonup Se P(x) for verdadeiro, o valor de γ em x será dado pela função g
- Example Caso contrário, $\gamma(x)$ será dado por $h(x,\gamma)$, onde h é uma função que depende de $x \in \mathsf{de} \gamma$

Representação da estrutura básica da recursão no cálculo- λ

$$\Gamma \equiv (\lambda \gamma x. (Px)(gx)(h))$$

- ightharpoonup Observe que na definição da função recursiva Γ é utilizado o termo- λ I_F
- \triangleright Se o predicado (Px) retornar verdadeiro, o retorno será o primeiro parâmetro (qx), que corresponde ao valor de Γ para o caso base
- ► Se falso, será avaliada a função $h = h(x, \gamma)$
- Não há garantias, contudo, que $\Gamma \equiv \gamma$, pois no cálculo λ os termos são anônimos
- ▶ É preciso, portanto, definir um termo que garanta esta equivalência

Lambda Calculus

Teorema do Ponto Fixo

Teorema do Ponto Fixo

Para qualquer termo- λ G existe um termo X tal que $GX \equiv X$.

Demonstração

Seja G um termo- λ qualquer. Defina $W \equiv (\lambda x.G(xx))$ e X = WW. Deste modo.

 $X \equiv WW \equiv (\lambda x.G(xx))W \equiv G(WW) \equiv GX$

Combinador Y

Proposição (Combinador Y)

O combinador Y

$$\mathbf{Y} \equiv \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

é um termo- λ tal que, para qualquer termo G,

$$\mathbf{Y}G \equiv G(\mathbf{Y}G)$$

Demonstração

Seia G um termo- λ qualquer. Daí

$$\mathbf{Y}G \equiv (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))G$$

$$\equiv (\lambda x.G(xx))(\lambda x.G(xx)) \equiv G((\lambda x.G(xx))(\lambda x.G(xx)))$$

$$\equiv G(\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))G) \equiv G(\mathbf{Y}G)$$

Observações sobre o combinador Y

- \triangleright Veja que, para qualquer termo- λ G, YG é um ponto fixo de G
- Esta propriedade é o que faltava para a definição completa da recursão, pois ao aplicar $(\mathbf{Y}G)$ ao parâmetro x da recursão, o resultado é

$$(\mathbf{Y}G)x \equiv G(\mathbf{Y}G)x,$$

- ou seja, o termo G é aplicado aos parâmetros $\mathbf{Y}G$ e x, o que permite invocar Gnovamente quantas vezes forem necessárias
- Assim, para definir uma função recursiva $\mathbf{Y}\Gamma$ no cálculo- λ , basta determinar o predicado P e as funções q e h que compõem a função Γ

Lambda Calculus

Exemplo de recursão: fatorial

$$!n = \left\{ egin{array}{ll} 1, & ext{se } n = 0, \\ n \times !(n-1), & ext{caso contrário} \end{array} \right.$$

- A notação está "invertida" para ficar consistente com a notação prefixada do cálculo lambda
- Na notação de recursão do cálculo lambda, $P \equiv Z, g \equiv 1$ e $h \equiv \times x(f(Px))$, onde $\times ab$ é a multiplicação dos naturais a e b e Pn é o antecessor do natural n.
- Deste modo, $! = \mathbf{Y}\Gamma$, onde

$$\Gamma \equiv \lambda f x.(Zx) 1(\times x(f(Px)))$$

Combinador V

Exemplo de aplicação do fatorial

$$!3 \equiv (\mathbf{Y}\Gamma)3 \equiv \Gamma(\mathbf{Y}\Gamma)3$$

$$\equiv (\lambda f x.(Zx)1(\times x(f(Px))))(\mathbf{Y}\Gamma)3$$

$$\equiv (Z3)1(\times 3((\mathbf{Y}\Gamma)(P3)))$$

$$\equiv F1(\times 3((\mathbf{Y}\Gamma)(P3)))$$

$$\equiv \times 3((\mathbf{Y}\Gamma)2)) \equiv \times 3(\Gamma(\mathbf{Y}\Gamma)2))$$

$$\equiv \times 3((Z2)1(\times 2((\mathbf{Y}\Gamma)(P2))))$$

$$\equiv \times 3(\times 2((\mathbf{Y}\Gamma)1)) \equiv \times 3(\times 2(\Gamma(\mathbf{Y}\Gamma)1))$$

$$\equiv \times 3(\times 2((Z1)1(\times 1((\mathbf{Y}\Gamma)(P1))))$$

$$\equiv \times 3(\times 2(\times 1((\mathbf{Y}\Gamma)0)))$$

$$\equiv \times 3(\times 2(\times 1((Z0)1(\times 0((\mathbf{Y}\Gamma)(P0))))))$$

$$\equiv \times 3(\times 2(\times 1(1))) \equiv \times 3(\times 2(1)) \equiv \times 3(2) \equiv 6$$

Referências

- 1. BARENDREGT, Henk: BARENDSEN, Erik. Introduction to Lambda Calculus. March 2000.
- 2. ROJAS, Raul. A Tutorial Introduction to the Lambda Calculus, FU Berlin. WS-97/98.
- 3. Wikipédia. Combinatory logic, acesso em 07/01/2020.
- 4. Wikipédia. Lambda calculus, acesso em 03/01/2020.

Lambda Calculus