Autoencoders and Generative Networks

Computing Methods for Experimental Physics and Data Analysis

Andrea.Rizzi@unipi.it

Dimensionality reduction task

- We have as input N numbers, we want to transform them to M numbers, with M <
 N, that contains as much information as possible of the initial numbers
- PCA is a possible way to do this dimensionality reduction
 - Do PCA, and only save the coordinate along the 1st (or first X) axis

Point	Initial	Encoded	Decoded
Α	(-0.50, -0.40)	-0.63	(-0.54, -0.33)
В	(-0.40, -0.10)	-0.39	(-0.34, -0.20)
C	(0.10, 0.00)	0.09	(0.07 0.04)
D	(0.30, 0.30)	0.41	(0.35, 0.21)
Е	(0.50, 0.20)	0.53	(0.46, 0.27)

Dimensionality reduction task

- We have as input N numbers, we want to transform them to M numbers, with M <
 N, that contains as much information as possible of the initial numbers
- PCA is a possible way to do this dimensionality reduction
 - o Do PCA, and only save the coordinate along the 1st (or first X) axis
- There are (even simple) data distributions where PCA is not going to help
- Autoencoders can help with this task
 - Encode, decode, define a loss based on input vs output difference

Autoencoder example

- Create a "bottleneck" to reduce the information
 - A layer with fewer nodes than the input and output
- Define a loss by comparing Output to Input
 - This is an unsupervised algorithm!
 - No need to have labels
- The content of the bottleneck layer is the "compressed representation" or "code"

How can we do it in Keras? model.fit(X,X) <= the target is the input

Generative models

- We may want to generate new samples from a distribution we learned
 - Generating fake images of animals, actors, dresses, etc...
 - E.g. for creating simulations of LHC events
- In many case we want to "conditionally" generate new samples
 - Generate a full picture of a product from a hand made sketch
 - Create color image from B&W
 - Generate realistic "reconstructed LHC event" from generated quarks and leptons
- Two powerful methods
 - With Autoencoders:
 - Train an autoencoder on the data you want to mimic
 - Take the trained "decoder" and start decoding a vector of random noise
 - This works best with so called "Variational Autoencoders"
 - Latent space representing "mean and variance" of the learned features (<u>tutorial</u>)
 - With Generative Adversarial Networks

Generative Adversarial Networks

GAN works with two independent networks:

- A generator
- A discriminator

The two networks "compete" against each other

- The discriminator tries to distinguish samples of the original training dataset from samples generated by the generator
- The generator tries to create samples starting from random noise

- For the **discriminator** training we use a mixture of real and generated samples
 - No labels are needed in the original sample as we can label "0" vs "1" the samples coming from generator vs original
- Generator loss is controlled by the discriminator being able to recognize the fake

GAN progress

2014: "dogs with three heads"

2018: coherent generation of faces

See also https://thispersondoesnotexist.com/

2019: re-create a playable video game just by looking at videos of an existing one (so far PacMan)

2021: GANTheftAuto

Assignment 5

- Create an autoencoder to compress a ring like distribution
 - As the input is 2 dimensional, can only be 1 number
- Steps for the exercise
 - Generate 1000 events in a ring with 0.95<R<1.05
 - Create an autoencoder with
 - An input with dimension 2
 - 2 encoding hidden layers with ~50 nodes per layer
 - A latent layer with a single node (sigmoid output) <= give it a name to later reuse
 - 2 decoding hidden layers with ~50 nodes per layer
 - An output with 2 nodes
 - Reuse the latent layer to create two models
 - Encoder (i.e. Input -> latent)
 - Decoder (i.e. latent -> output)
 - Make few tests like:
 - How are (0,1) and (1,0) mapped to "the code"
 - If we scan the code from 0 to 1, how does it map to (x,y)

Assignment 6

Follow the tutorial at

https://machinelearningmastery.com/how-to-devel op-a-generative-adversarial-network-for-a-1-dimen sional-function-from-scratch-in-keras/

Nicely following a similar approach to what we had in this lectures: start from something simple and under your complete control instead of loading the usual ML datasets (MNIST, Iris, etc..)

- Generate points in a x1,x2 plane following a known function
- Ask the GAN to produce "samples" that look like our dataset (i.e. follow the same distribution)

