# ZakrevskyAlA 30112024-110328

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

**Дана** частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Om).



Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d



Рисунок 2 – Различные реализаци и Г-образной цепи согласования

**Даны** значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|--------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG    | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.0  | 0.319    | -150.8 | 13.645   | 94.1 | 0.038    | 67.5 | 0.366    | -57.1  |
| 1.5  | 0.332    | -169.3 | 9.118    | 82.7 | 0.052    | 66.6 | 0.269    | -66.6  |
| 2.0  | 0.345    | 179.6  | 6.714    | 75.0 | 0.067    | 65.1 | 0.214    | -77.1  |
| 3.0  | 0.360    | 164.1  | 4.404    | 63.3 | 0.096    | 60.8 | 0.171    | -96.0  |
| 5.5  | 0.389    | 138.8  | 2.403    | 38.7 | 0.168    | 45.7 | 0.123    | -128.0 |
| 8.0  | 0.472    | 114.8  | 1.652    | 15.2 | 0.231    | 28.4 | 0.089    | 138.9  |

**Выбрать**  $\Gamma$ -образный четырёхполюсник (см. рисунок 3), который может обеспечить согласование со стороны плеча 2 на частоте 2  $\Gamma\Gamma$ ц.



Рисунок 3 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

**Дано** значение коэффициента отражения от входа реактивной цепи коррекции  $s_{11} = -0.18\text{-}0.41\mathrm{i}.$ 

**Найти** модуль (в дБ) коэффициента передачи  $s_{21}$ .

- 1) -1.9 дБ
- 2) -1.2 дБ
- 3) -1 дБ
- 4) -1.8 дБ

**Найти** неравномерность усиления в полосе, ограниченной частотами  $f_{\rm h}=6.8$  ГГц и  $f_{\rm b}=7.8$  ГГц, используя рисунок 4.



Рисунок 4 - Частотная характеристика усиления

- 1) 0.6 дБ
- 2) 1.3 дБ
- 3) 0.2 дБ
- 4) 1.5 дБ

Даны значения s-параметров на некоторой частоте:

| Freq                          | $s_{11}$                   |                      | $s_{21}$ |                       | $s_{12}$ |                      | $s_{22}$             |       |
|-------------------------------|----------------------------|----------------------|----------|-----------------------|----------|----------------------|----------------------|-------|
| CONT. F. 10. L. 10. B. 10. C. | 2.4502.00 GP-03.502.00 m/c | 10 W/W/W/100/100/100 | MAG      | 2010/06/07 2010/06/04 |          | - 100 pp 100 See - 1 | 5490545 032565050 mg |       |
| 1.0                           | 0.343                      | -157.7               | 12.929   | 92.5                  | 0.039    | 67.3                 | 0.326                | -63.5 |

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamouno, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 2.2 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 0.4 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 1.1 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 0.7 дБ, подключённый к плечу 2.

**Дано** значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом:  $s_{21} = -3.4$  дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 4.6 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 0.6 mB<sub>T</sub>
- 2) 1.3 mB<sub>T</sub>
- 3) 2.1 mBT
- 4) 1.6 mBT