

Precision electroweak measurements and SMEFT studies at the EIC

Kaan Şimşek

Reference:

PRD**106**(2022)016006 [2204.07557]

Phenomenology 2023 Symposium University of Pittsburgh

May 9, 2023

Collaborators:

R. Boughezal, F. Petriello, D. Wiegand, and

S. Mantry et al. (EIC Group)

Prelude

A next-gen electron-hadron collider

Accardi et al. 1212.1701

first lepton-ion collider to polarize both beams

$$\sqrt{s} = 70 \text{ to } 140 \text{ GeV}$$

 $luminosity = 1000 \times HERA$

41 to 275 GeV polarized *p*up to 137 GeV polarized ²H
up to 166 GeV polarized ³He
unpolarized heavy ion up to 110 GeV

A next-gen electron-hadron collider

Accardi *et al.* 1212.1701

Data sets:

Label	$E_e [\mathrm{GeV}] \times E_H [\mathrm{GeV}]$	\mathcal{L} [fb ⁻¹]
D1	5×41	4.4
D2	5×100	36.8
D3	10×100	44.8
D4	10×137	100
D5	18×137	15.4
P1	5×41	4.4
P2	5×100	36.8
P3	10×100	44.8
P4	10×275	100
P5	18×275	15.4
P6	18×275	100

Q [GeV]

cuts to avoid nonperturbative QCD and nuclear dynamics Kinematic coverage: $\sqrt{s} = 29 \text{ GeV}$ $50 - \sqrt{s} = 45 \text{ GeV}$ $\sqrt{s} = 63 \text{ GeV}$ $\sqrt{s} = 105 \text{ GeV}$ $\sqrt{s} = 140 \text{ GeV}$ $0.1 \le y \le 0.9$ 10^{-4} 0.001 0.010 0.100

 \mathcal{X}

Khalek *et al.* 2103.05419

A next-gen electron-hadron collider

Accardi *et al.* 1212.1701

Observable of interest:

$$A_{\rm PV} = \frac{\sigma_{\rm NC}^{+} - \sigma_{\rm NC}^{-}}{\sigma_{\rm NC}^{+} + \sigma_{\rm NC}^{-}} \quad \begin{array}{c} \rm unpolarized \\ \rm PV \ asymmetry \end{array}$$

$$\Delta A_{\mathrm{PV}} = rac{\Delta \sigma_{\mathrm{NC}}^{0}}{\sigma_{\mathrm{NC}}^{0}}$$
 polarized PV asymmetry

$$A_{\rm LC} = \frac{\sigma_{\rm NC}^{e^{-}} - \sigma_{\rm NC}^{e^{+}}}{\sigma_{\rm NC}^{e^{-}} + \sigma_{\rm NC}^{e^{+}}}$$

lepton-charge (LC) asymmetry

 $(\Delta)\sigma_{NC}^{\pm}$: un(polarized) NC e^-H DIS cross section with only one beam polarized

 $(\Delta)\sigma_{NC}^0$: un(polarized) NC e^-H DIS cross section with no beams polarized

5 / 16 $\sigma_{NC}^{e^{\pm}}$: unpolarized NC $e^{\pm}H$ DIS cross section with no beams polarized

A next-gen electron-hadron collider

Accardi et al. 1212.1701

Uncertainty	$A_{ m PV}$	$\Delta A_{ m PV}$	$A_{ m LC}$
Statistical (NL)	$\delta A_{\mathrm{PV,stat}} = \frac{1}{P_{\ell}} \frac{1}{\sqrt{N}}$	$rac{P_{\ell}}{P_{H}} \delta A_{ ext{PV,stat}}$	$\sqrt{10}P_{\ell} \delta A_{\mathrm{PV,stat}}$
Statistical (HL)	$\frac{1}{\sqrt{10}} \delta A_{\mathrm{PV,stat}}$	$\frac{1}{\sqrt{10}} \frac{P_\ell}{P_H} \delta A_{\mathrm{PV,stat}}$	NO
Uncorrelated systematic	1% rel.	1% rel.	1% rel.
Fully correlated beam polarization	1% rel.	2% rel.	NO
Fully correlated luminosity	NO	NO	2% abs.
Uncorrelated NLO QED	NO	NO	$5\% \times (A_{\mathrm{LC}}^{\mathrm{NLO~QED}} - A_{\mathrm{LC}}^{\mathrm{Born}})$
Fully correlated PDF	YES	YES	YES

PDF sets used:

- Precision EW:
 - * CT18NLO
 - * MMHT2014nlo_68cl
 - * NNPDF31 NLO
- BSM analysis:
 - * NNPDF3.1 NLO
 - * NNPDFPOL1.1

A next-gen electron-hadron collider

Accardi et al. 1212.1701

$$-A_{\rm LC} - \delta \, A_{\rm LC,stat} - \delta \, A_{\rm LC,sys} - \delta \, A_{\rm LC,qed} - \delta \, A_{\rm LC,lum} - \delta \, A_{\rm LC,pdf}$$

Dominant uncertainties:

 A_{PV} : statistical

 $\Delta A_{\rm PV}:{\rm PDF}$

 $A_{\rm LC}$: luminosity

Phenomenology

Precision EW measurements

Extraction of $sin(\theta_W)^2$

Boughezal *et al.* 2204.07557

Observable: unpolarized PV asymmetry including target-mass correction terms in the structure-function language

$$A_{\text{PV}} = \frac{P_e \eta_{\gamma Z} \left[g_A^e 2y F_1^{\gamma Z} + g_A^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma Z} + g_V^e (2 - y) F_3^{\gamma Z} \right]}{2y F_1^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma} - \eta_{\gamma Z} \left[g_V^e F_1^{\gamma Z} + g_V^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma Z} + g_A^e (2 - y) F_3^{\gamma Z} \right]}$$

 $\sin(\theta_W)^2$ enters through $g_{V,A}^e$ and $g_{V,A}^q$. One-loop RGE of $\sin(\theta_W)^2$ in the $\overline{\rm MS}$ scheme and particle thresholds arising between $\mu=m_Z$ and $\mu=\sqrt{Q^2}$ are included. Fitting procedure:

$$\chi^2 = (A^{\text{theory}} - A^{\text{pseudodata}})^{\top} H(A^{\text{theory}} - A^{\text{pseudodata}})$$

where pseudodata is generated by smearing uncertainties around the SM predictions with a gaussian profile.

Precision EW measurements

Extraction of $sin(\theta_W)^2$

Boughezal *et al.* 2204.07557

Constraints on SMEFT parameters

Boughezal *et al.* 2204.07557

Extend SM Lagrangian with higher-dimensional operators, $O_k^{(n)}$, built up of SM fields at an energy scale Λ that is heavier than all SM fields and accessible collider energy, introducing Wilson coefficients, $C_k^{(n)}$, as effective couplings:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{n \ge 4} \frac{1}{\Lambda^{n-4}} \sum_{k} C_k^{(n)} O_k^{(n)}$$

SM couplings are shifted in a gauge-invariant manner, e.g.

$$g_{V,A}^f \to g_{V,A}^f [1 + c_{V,A}^f(M_Z, G_F, \alpha; C_k, \Lambda)]$$

We focus on the case n = 6 and semi-leptonic four-fermion operators that induce the contact interaction of leptons with quarks.

Constraints on SMEFT parameters

Boughezal et al. 2204.07557

Observable: un(polarized) PV and lepton-charge asymmetries linearized w.r.t. C_k

$$A = A_{\rm SM} + \sum_{k} C_k \, \delta A_k$$

Fitting procedure:

$$\chi^2 = (A^{\text{theory}} - A^{\text{pseudodata}})^{\top} H(A^{\text{theory}} - A^{\text{pseudodata}})$$

where pseudodata is generated by smearing uncertainties around the SM predictions with a gaussian profile.

Constraints on SMEFT parameters

Boughezal *et al.* 2204.07557

95% CL nonmarginalized bounds at $\Lambda = 1$ TeV in single-parameter fits

Corresponding effective UV scales

~ 4 TeV with high-lum EIC

Constraints on SMEFT parameters

Boughezal *et al.* 2204.07557

95% confidence ellipse at $\Lambda = 1$ TeV in two-parameter fits

LHC NC Drell-Yan
8 TeV 20 fb⁻¹
not 13 TeV high lum

Boughezal *et al.* 2104.03979

Coda

Conclusion

- The EIC will provide a determination of $\sin(\theta_W)^2$ at an energy scale that bridges higher-energy colliders with low- to medium-energy SM tests.
- It will offer distinct correlations compared to LHC Drell-Yan (also EWPO and LHeC; see the previous talk) fits of SMEFT parameters, showing complementarity, and resolve blind spots, demonstrating superiority of the EIC.

The EIC is designed as a QCD machine but seems promising as a useful probe of precision EW measurements, as well as BSM physics. Therefore, the taxpayers' money is wisely spent.

