Cálculo Numérico - IME/UERJ

Trabalho Extra N^{0} 2 - Prazo de entrega: 06/10/2025

- (1,0 ponto) Resolva os itens a seguir para entregar em sala de aula ou por e-mail usando um arquivo PDF de forma legível.
 - 1. Duas escadas, uma de comprimento a e outra de comprimento b, apoiam-se em edifícios fronteiros em uma avenida, como mostrado na figura a seguir.

Se o ponto onde as escadas se cruzam está a uma altura h do solo, **mostre que**:

(a) O valor da altura A do prédio à esquerda é calculado pela equação

$$A^4 - 2hA^3 + (h - A)^2(b^2 - a^2) = 0,$$

o valor da altura B do prédio à direita é calculado pela equação

$$B^4 - 2hB^3 + (h - B)^2(a^2 - b^2) = 0,$$

e o valor da largura d da avenida é calculado por

$$d^2 = a^2 - A^2$$
 ou $d^2 = b^2 - B^2$.

Dica: Use semelhança de triângulos para **mostrar** as relações A = Bh/(B-h) e B = Ah/(A-h) e use-as em conjunto com o teorema de Pitágoras.

(b) Use as equações do item (a) com os dados de entrada a, b, h que **foram enviados por e-mail para você** e gere um relatório para apresentar as iterações das soluções aproximadas de A, B e d e os erros absolutos entre elas pelo método de Newton-Raphson com tolerâncias de erro $\epsilon_1 \leq 10^{-5}$ e $\epsilon_2 \leq 10^{-6}$.

Você deve escolher uma das opções a seguir para gerar o relatório:

- Usando uma planilha no LibreOffice Calc ou Microsoft Excel, ou
- Através de um **programa** na sua linguagem de programação preferida.

1

Na próxima página, é mostrado um modelo do relatório que deve ser usado.

ENTRADA (valores dados em metros):

Comprimento da escada a: [inserir aqui] Comprimento da escada b: [inserir aqui]

Altura da interseção das escadas h: [inserir aqui]

Tolerância do erro: $\epsilon = 10^{-5}$.

SAÍDA:

Iter.	A	$E_{abs}(A)$
0	A_0	
1	A_1	$ A_1 - A_0 $
2	A_2	$ A_2 - A_1 $
3	A_3	$ A_3 - A_2 $
n_1	A_{n_1}	$ A_{n_1} - A_{n_1-1} $

Iter.	B	$E_{abs}(B)$
0	B_0	
1	B_1	$ B_1 - B_0 $
2	B_2	$ B_2-B_1 $
3	B_3	$ B_3 - B_2 $
	• • •	
n_2	B_{n_2}	$ B_{n_2} - B_{n_2-1} $

Iter.	d	$E_{abs}(d)$
0	d_0	
1	d_1	$ d_1-d_0 $
2	d_2	$ d_2-d_1 $
3	d_3	$ d_3-d_2 $
n_3	d_{n_3}	$ d_{n_3} - d_{n_3-1} $

Tolerância do erro: $\epsilon = 10^{-6}$.

SAÍDA:

Iter.	A	$E_{abs}(A)$
0	A_0	_
1	A_1	$ A_1 - A_0 $
2	A_2	$ A_2 - A_1 $
3	A_3	$ A_3-A_2 $
n_1	A_{n_1}	$ A_{n_1} - A_{n_1-1} $

Iter.	B	$E_{abs}(B)$
0	B_0	
1	B_1	$ B_1-B_0 $
2	B_2	$ B_2-B_1 $
3	B_3	$ B_3-B_2 $
	• • •	
n_2	B_{n_2}	$ B_{n_2} - B_{n_2-1} $

Iter.	d	$E_{abs}(d)$
0	d_0	
1	d_1	$ d_1 - d_0 $
2	d_2	$ d_2 - d_1 $
3	d_3	$ d_3 - d_2 $
n_3	d_{n_3}	$ d_{n_3} - d_{n_3-1} $

Tabela 1: Modelo de relatório

Obs. 1: No modelo do relatório, E_{abs} é o erro absoluto entre o valor da iteração atual e a iteração anterior. A_i , B_i e d_i são respectivamente os valores aproximados de A, B e d calculados pela fórmula iterativa de Newton-Raphson na iteração i. Note que as tabelas podem ter diferentes tamanhos dependendo de suas respectivas quantidades de iterações n_1 , n_2 , n_3 .

Obs. 2: Se optar pela planilha Excel ou Calc, o relatório deve ser gerado e exportado de forma organizada para um arquivo PDF com nome completo e matrícula.

Obs. 3: Se optar pela parte de programação, o código-fonte e o relatório de saída devem ser gerados e mostrados de forma organizada num arquivo PDF com nome completo e matrícula.

Obs. 4: Não será aceito manuscrito. A entrega deverá ser feita obrigatoriamente em arquivo PDF por e-mail dentro do prazo estabelecido.