CS 688: Homework 3

Due: Friday March 29 by 10:00 PM

Notes:

- Homework is due by 10:00 PM on the due date. Remember that you may not use more than 2 late days on any one homework, and you only have a budget of 5 in total.
- Please keep in mind the collaboration policy as specified in the course syllabus. If you discuss questions with others you **must** write their names on your submission, and if you use any outside resources you **must** reference them. **Do not look at each others' writeups, including code.**
- There are 7 problems on 2 pages in this homework.
- Remember that you will be graded on correctness and clarity. Please write carefully and clearly.

Problems:

- 1. (20 points) (From Russell & Norvig) Construct a support vector machine that computes the XOR function. Use values of +1 and -1 (instead of 1 and 0) for both inputs and outputs, so that an example looks like ([-1,1],1) or ([-1,-1],-1). Map the input $[x_1,x_2]$ into a space consisting of x_1 and x_1x_2 . Draw the four input points in this space, and the maximal margin separator. What is the margin? Now draw the separating line back in the original Euclidean input space.
- 2. (15 points) The key point of the so-called "kernel trick" in SVMs is to learn a classifier that effectively separates the training data in a higher dimensional space without having to explicitly compute the representation $\Phi(\mathbf{x})$ of every point \mathbf{x} in the original input space. Instead, all the work is done through the kernel function that computes dot products $K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)\Phi_i(\mathbf{x}_j)$.
 - Show how to compute the squared Euclidean distance in the projected space between any two points \mathbf{x}_i , \mathbf{x}_j in the original space without explicitly computing the Φ mapping, instead using the kernel function K.
- 3. (15 points) Suppose we use a radial basis kernel function $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{1}{2}\|\mathbf{x}_i \mathbf{x}_j\|^2)$. This gives some implicit unknown map $\Phi(\mathbf{x})$. Show that for any $\mathbf{x}_i, \mathbf{x}_j, \|\Phi(\mathbf{x}_i) \Phi(\mathbf{x}_j)\|^2 \le 2$.
- 4. (10 points) Consider the transform $\Phi_{\text{poly}}^n(\mathbf{x})$ where $\mathbf{x} \in \mathbb{R}^d$. What is the exact dimensionality of the implied feature space in terms of n (the degree of the polynomial) and d (the dimensionality of the original input data)? Show how you derive this, it is not enough to just write down the answer from the textbook. Evaluate this when n = d = 10. (Hint: you will need to use a combinatorial argument be sure to check your work on some small instances that you can compute by hand)?
- 5. (15 points) Consider the loss function for linear regression, as a function of the hypothesis h, $L(h) = \mathbb{E}[(h(\mathbf{x}) y)^2]$. Show that among all hypotheses, the one that minimizes L over the population is given by $h^*(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$. [Hint: You may want to get started by writing out the loss function over the population as $\int d\mathbf{x} \int dy P(\mathbf{x}, y)(h(\mathbf{x}) y)^2$. The expectation is over \mathbf{x} and y]

- 6. (10 points) Consider any differentiable loss function $L(\mathbf{w})$ and now consider an L_2 -regularized version $L(\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$. What is the gradient descent rule for the regularized loss function (you can use $\nabla_{\mathbf{w}}(L)$ in your expression). Could you speculate, based upon this, as to why L_2 regularization is sometimes called weight decay?
- 7. (15 points) The *VC dimension* of a hypothesis class is defined as the maximum size of a set of data that can be shattered by the hypothesis class (so, the biggest n for which there exists a set of points $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ such that \mathcal{H} can achieve all dichotomies on $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$). If there is no such set, the VC-dimension of \mathcal{H} is said to be infinite.
 - (5 points) What is the VC-dimension of axis-parallel rectangles in the plane?
 - (5 points) What are the VC dimensions of (i) rays and (ii) intervals that can be either positive *or* negative (so, for intervals you get to pick both the interval *and* whether points in that interval are all positive or all negative, and for rays you get to pick the start point of the ray *and* whether all points to the right of it are positive or negative)?
 - (5 points) What is the VC-dimension of the hypothesis space of concentric spheres in \mathbb{R}^d that is, \mathcal{H} contains the functions that are +1 for $a \leq \sqrt{x_1^2 + x_2^2 + \ldots + x_d^2} \leq b$?