

实验五时序逻辑电路

汤雪娇 tangxuejiao@seu.edu.cn

教学内容

- ◆实验目的
- ◆相关知识点
- ◆实验内容
- ◆预习要求

实验目的

- 1. 掌握时序逻辑电路的一般设计过程;
- · 2. 掌握时序逻辑电路的时延分析方法, 了解时序电路对时钟 信号相关参数的基本要求;
- · 3. 掌握时序逻辑电路的基本调试方法,熟练使用示波器观察 波形图。

教学内容

- ◆实验目的
- ◆相关知识点
- ◆实验内容
- ◆预习要求

1.时序电路概述

- ▶由组合电路和存储器单元两部分组成的
- >存储器单元具有记忆功能,通常由锁存器或触发器组成
- ▶输出信号不仅取决于当前的输入信号,还取决于电路原来的状态

1.时序电路概述

根据触发器动作特点可分为同步时序逻辑电路和异步时序逻辑电路。

在同步时序逻辑电路中,存储电路中所有触发器的时钟使用统一的CLK,状态变化发生在同一时刻,即触发器在时钟脉冲的作用下同时翻转;

在异步时序逻辑电路中,触发器的翻转不是同时的,没有统一的CLK,触发器状态的变化有先有后。

根据输出信号的特点时序逻辑电路可分为米利(Mealy)型和穆尔(Moore)型。

在米利型时序逻辑电路中,输出信号不仅取决于存储电路的状态,而且还取决于输入变量;在穆尔型时序逻辑电路中,输出信号仅仅取决于存储电路的状态。

2.时序电路的模型及分析

I: 输入信号

E: 激励信号

S: 状态变量

0: 输出信号

输出方程: $O = f_1(I, S)$

表达输出信号与输入信号、状态变量的关系式

激励方程: $E = f_2(I, S)$

表达了激励信号与输入信号、状态变量的关系式

状态方程: $S^{n+1} = f_3(E, S^n)$

表达存储电路从现态到次态的转换关系式

2.时序电路的模型及分析

分析时序逻辑电路在输入信号的作用下,其状态和输出信号变化的规律,进而确定电路的逻辑功能。所以,分析过程主要是列出电路状态表或画出状态图、工作波形图。

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$				
	A=0	A=1			
0 0	00/0	01/0			
0 1	01/0	10/0			
10	10/0	11/0			
11	11/0	00/1			

2.时序电路的模型及分析

•有限状态机

有限状态机(简称状态机)相当于一个控制器,它将一项功能的完成分解为若干步,每一步对应于二进制的一个状态,通过预先设计的顺序在各状态之间进行转换,状态转换的过程就是实现逻辑功能的过程。

时序逻辑电路的设计任务是根据实际逻辑问题的要求,设计出 能实现给定逻辑功能的电路

(1) 根据给定的逻辑功能建立原始状态图和原始状态表

- ◆明确电路的输入条件和相应的输出要求,分别确定输入变量和输出变量的数目和符号
- ◆找出所有可能的状态和状态转换之间的关系
- ◆根据原始状态图建立原始状态表

(2) 状态化简—求出最简状态图

合并等价状态,消去多余状态的过程称为状态化简。 等价状态:在相同的输入下有相同的输出,并转换到同一个次态去的两个状态称为等价状态

(3) 状态编码(状态分配)

给每个状态赋以二进制代码的过程。根据状态数确定触发器的个数:

 $2^{n-1} < M \le 2^n$ (M:状态数; n:触发器的个数)

- (4) 选择触发器的类型
- (5) 求出电路的激励方程和输出方程
- (6) 画出逻辑图并检查自启动能力

◆D触发器74HC74

- ●边沿D触发器对时钟的边沿响应,状态方程为
- ●包含时钟、数据和输出管脚
- ●有的是上升沿触发,有的是下降沿触发
- ●一般有置数和复位端,可对状态置数或复位

SN54HC74 . . . J OR W PACKAGE SN74HC74 . . . D, DB, N, NS, OR PW PACKAGE (TOP VIEW)

TRUTH TABLE

INPUTS			OUT	PUTS	FUNCTION	
CLR	PR	D	СК	Q	Q	FUNCTION
L	Н	Х	Х	L	Н	CLEAR
Н	L	Х	Х	Н	L	PRESET
L	L	X	X	Н	Н	
Н	Н	L	7	L	Н	
Н	Н	Н	丁	Н	L	
Н	Н	Х	Z	Qn	Qn	NO CHANGE

X : Don't Care

例:用D触发器设计模10计数器的时序逻辑电路

 $2^{n-1} < M \le 2^n$ (M:状态数; n:触发器的个数)

M=10, n=4, 需要四个触发器

(1)异步

- > 将一个触发器的输出作另一个触发器的时钟输入
- 触发器逐级翻转,有先有后
- > 电路简单

 Q_1 , Q_2 , Q_3 都是在 Q_0 , Q_1 , Q_2 的下降沿触发,由此确定高位的CP信号

15

· Multisim仿真结果-异步时钟

计数到10时清零

• 异步计数器缺点

- ▶ 随着级数增加,延迟也增加
- > 易引起竞争和冒险

· 竞争和冒险对D触发器的影响

- ▶ 时钟、置数、清零端对"毛刺"敏感
- ➤ 数据端、使能端对"毛刺"不敏感
- 尽量将组合逻辑输出连到数据端或使能端,以避免误翻转

(2) 同步

- > 所有触发器的时钟输入端连接在一起
- ▶ 所有触发器的状态同时改变

组合

逻辑

S1.列出状态真值表

	现	态			次	次态		激励信号			
Q_3^n	\mathbf{Q}_{2}^{n}	Q_1^n	Q_0	Q_3^{n+1}	\mathbf{Q}_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	D_3	D_2	\mathbf{D}_1	D_0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	0
0	0	1	0	0	0	1	1	0	0	1	1
0	0	1	1	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	1	0	1	0	1
0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	1	0	1	1	1
0	1	1	1	1	0	0	0	1	0	0	0
1	0	0	0	1	0	0	1	1	0	0	1
1	0	0	1	0	0	0	0	0	0	0	0

S2.求激励方程、输出方程

$$Q_0^{n+1}=\ D_0=\overline{Q_0^n}$$

$$Q_1^{n+1} = D_1 = \overline{Q_3^n} \cdot Q_1^n \oplus Q_0^n$$

$\begin{pmatrix} \mathbf{Q}_1 \end{pmatrix} \mathbf{Q}_1^{\mathbf{q}} \mathbf{Q}_0^{\mathbf{q}}$								
n n	\langle	00	01	11	10			
Q_3Q_2 00		0	0	1	0			
01	1	1	1	0	1			
11	1	0	0	0	0			
10		0	0	0	0			

$$Q_2^{n+1} = D_2 = \overline{Q_3^n} \cdot (Q_2^n \oplus Q_1^n Q_0^n)$$

$\begin{pmatrix} \mathbf{Q}_{3} \end{pmatrix} \mathbf{Q}_{1}^{n} \mathbf{Q}_{0}^{n}$									
n n	00	01	11	10					
Q_3Q_2 00	0	0	0	0					
01	0	0	1	0					
11	0	0	0	0					
10	1	0	0	0					

$$Q_3^{n+1} = D_3 = \overline{Q_3^n Q_2^n Q_1^n Q_0^n} \cdot \overline{Q_3^n \overline{Q_2^n Q_1^n Q_0^n}}$$

S3.画出逻辑电路——Multisim仿真结果-同步时钟

1、广告流水灯(第11周课内验收)

- 用触发器、组合函数器件和门电路设计一个广告流水灯,该流水灯由8个 LED 组成,工作时始终为1暗7亮,且这一个暗灯循环右移。
 - 1) 写出设计过程, 画出设计的逻辑电路图, 按图搭接电路
 - 2) 将单脉冲加到系统时钟端,静态验证实验电路
 - 3)将 TTL 连续脉冲信号加到系统时钟端,用示波器观察并记录时钟脉冲 CP、触发器的输出端 Q_2 、 Q_1 、 Q_0 和 8个 LED 上的波形

● 设计提示

- ▶流水灯有8个状态,需要3个触发器构成模8计数器
- ▶模8计数器可以是同步计数器,也可以是异步串行计数器
- ▶3位二进制计数值转8位输出,可通过3-8译码器实现

(1) 用D触发器设计异步计数器

- ▶将一个触发器的输出作另一个触发器的时钟输入
- ▶触发器逐级翻转,有先有后
- ▶电路简单

(2) 用D触发器设计同步计数器

- ▶所有触发器的时钟输入端连接在一起
- ▶所有触发器的状态同时改变
- ▶2N计数器各级触发器的特征方程

$$Q_{i}^{n+1} = Q_{i}^{n} \oplus (Q_{i-1}^{n} \bullet Q_{i-2}^{n} \cdots Q_{1}^{n} \bullet Q_{0}^{n} \bullet 1)$$

$$Q_{0}^{n+1} = Q_{0}^{n} \oplus 1 = \overline{Q_{0}^{n}}$$

$$Q_{1}^{n+1} = Q_{1}^{n} \oplus (Q_{0}^{n} \bullet 1) = Q_{1}^{n} \oplus Q_{0}^{n}$$

$$Q_{2}^{n+1} = Q_{2}^{n} \oplus (Q_{1}^{n} \bullet Q_{0}^{n})$$

> 调试之前,要了解电路中所有的器件功能

- 使能端、清零端、置位端的使能电平是什么
- 时钟端是上升沿触发还是下降沿触发
- 电路的初始状态是什么
- 自启动特性如何
- 大致画出各部分电路的状态转移图和时序关系图

> 常用的时序电路的调试方法主要有两种

- 静态(单步)调试
- 动态调试

◆静态调试——广告流水灯

- ▶ 先模块,后整体
- 计数器单元
 - 触发器输出接至数码管上
 - 触发器时钟接消抖处理过的单次脉冲
 - 按动单脉冲按钮,验证计数器功能

▶ 译码器单元

- 使能端ST_AST_BST_C要接"100"
- 地址端接逻辑电平开关
- 拨动逻辑电平开关,验证译码器功能

▶ 整体调试

- 将触发器的输出接到译码器的地址端,注意高低位的顺序
- 按动单脉冲按钮,验证流水灯功能

- 如电路存在故障,则按动单脉冲按钮到故障状态
- ▶ 用组合电路的调试方法,逐级进行检查,找出故障点
- ▶ 注意集成触发器、译码器的使能端、清零端、置位端

电子技术/ISP综合实验箱平面图

连续脉冲

● 人为制造故障:将U1-4的11脚与U2-1的4脚断开

- 将输入逻辑开关 "ABCD" 置在 "0011" 状态,根据真值表,输出应为 "0",即逻辑电平指示灯应该灭 **0 0 1 1**
- •实际输出逻辑电平指示灯是亮,电路存在故障

● 用万用表从后向前测各点的电平并与理论值比较

- 1) 最后一级2输入与非门(U1-3)
 - 理论分析:
 - 输入 U1-3输出(U1-38脚)应为"0"
 - 输入 U1-3的9、10脚应为"1"
 - 万用表实测
 - U1-3 8、9脚对地电压,约为5V,等效逻辑"1",9脚信号正确
 - U1-3 10脚对地电压,约为0V,等效逻辑"0",信号错误
 - 结论
 - 因为U1-3 10脚连接到4输入与非门输出(U2-1 6脚), 排查U2-1

37

2) 排查 4 输入与非门 U2-1

- 理论分析:
 - 如 U2-1 6 脚为"1",则 U2-6 脚和 U1-10 之间的连线有问题
 - 如 U2-1 6 脚为 " 0", 则需检查 U2-1 的 4 个输入信号
 - 根据原理图, U2-1 1、2、5 脚都应为"1", 4 脚应为"0"

• 万用表实测论

- U2-1 1、2、5 脚对地电压,约为5V,等效逻辑"1",1、2、5脚信号正常
- U2-1 4 脚对地电压,约为 0~1V,等效逻辑 " X",信号错误

• 结论

• 因为 U2-1 4 脚信号连接到 2 输入与非门输出(U1-4 11 脚), 需排查 U1-4

3) 排查 2 输入与非门 U1-4

- 理论分析:
 - 如 U1-4 11 脚为 " 0", 则 U1-4 11 脚和 U2-1 4 脚之间的连线有问题
 - 如 U1-4 11 脚为"1",则需检查 U1-4 的 2 个 输入信号

- 万用表实测论
 - U1-4 11 脚对地电压,约为 0V,等效逻辑"0",信号正常
- 结论
 - U1-4 11 脚和 U2-1 4 脚之间的连线有问题

39

●通电调试

- ●稳压电源的输出接到实验电路
- ●万用表直流电压档测量集成芯片电源端和地线两引脚之间的电压

正确

错误

测试方法: 用万用表由后向前逐级检查, 测量每个节点的电压测量的时候

一定要注意尽量直接测量集成电路的管脚上的电压

万用表测量电路导通性

- 如电路存在故障,则按动单脉冲按钮到故障状态
- ▶ 用组合电路的调试方法,逐级进行检查,找出故障点
- ▶ 注意集成触发器、译码器的使能端、清零端、置位端

◆动态调试——广告流水灯

- 触发器时钟接连续脉冲信号
- ▶ 时钟和L₀分别CH1和CH2通道,记录波形
- ▶ L₀作为参考信号接CH1通道,L₁接CH2通道,记录L₀和L₁波形
- ▶ L₀接CH1通道不变,依次将L₂到L₂接CH2通道,记录波形

▶ 汇总波形,记录到同一坐标系

◆ 4位二进制计数器 74161

输入								输 出				
CLR	LOAD	ENT	ENP	CLK	A	В	C	D	QA	QB	Qc	QD
0	×	×	×	×	×	×	×	×	0	0	0	0
1	0	×	×	↑	a	b	c	d	a	b	С	d
1	1	1	1	↑	×	×	×	×		计	数	
1	1	0	×	×	×	×	×	×		保	持	
1	1	×	0	×	×	×	×	×		保	持	

- · CLR=0时异步清零;
- CLR=1、LOAD=0时同步置数;
- · CLR=LOAD=1且ENT=ENP=1时,按照4位二进制码进行同步计数;
- · CLR=LOAD=1且ENT ENP=0时,计数器状态保持不变。

2023/4/2

❤️应用

(1)计数器——异步清零

模10

◆应用

(1)计数器——同步置零

模10

◆应用

(1)计数器——同步置数

模10

(2)序列发生器

- 在数字信号的传输和数字系统的测试中,有时需要用到一组特定的串行数字信号,通常把这种串行数字信号叫做序列信号
- 能够循环地产生序列信号的电路称为序列信号发生器

实现"01011"序列发生器

- > 由计数器和组合网络构成
- > 某些特定的序列也可以直接由计数器产生
- > 可以产生一组或多组二值序列
- ▶ 常用的设计方法:
 - 根据序列码的长度M设计模M计数器(状态可以自定)
 - 根据计数器的状态变化和给定的序列码,设计输出组合网络

> 设计

● 计数器部分

实现"01011"序列发生器

- 模5的计数器
- 排除了冗余状态影响,不需要考虑自启动问题

顺序	$Q_{\rm C}$	Q_{B}	Q_{A}	Y
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1

• 组合网络部分

- 门电路
- 3-8译码器——将状态表中所有Y=1的项取出来与非

顺序	Q_{C}	Q_{B}	$\mathbf{Q}_{\mathbf{A}}$	Y
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1

• 组合网络部分

- 门电路
- 3-8译码器——将状态表中所有Y=1的项取出来与非
- 数据选择器——将对应数端置 "0"或置 "1"

顺序	Q_{C}	Q_{B}	$\mathbf{Q}_{\mathbf{A}}$	Y
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1

● 直接通过计数器实现

顺序	Q_{D}	$Q_{\rm C}$	Q_{B}	Q_{A}	顺序	Q_{D}	$Q_{\rm C}$	Q_{B}	Q_{A}
0	0	0	0	0	8	1	0	0	0
1	0	0	0	1	9	1	0	0	1
2	0	0	1	0	10	1	0	1	0
3	0	0	1	1	11	1	0	1	1
4	0	1	0	0	12	1	1	0	0
5	0	1	0	1	13	1	1	0	1
6	0	1	1	0	14	1	1	1	0
7	0	1	1	1	15	1	1	1	1

"01011"序列发生器

- > 调试(动态)
 - 测量的时候一定要用双踪显示

教学内容

- ◆实验目的
- ◆相关知识点
- ◆实验内容
- ◆预习要求

实验内容

1、广告流水灯(第11周课内验收)

- 用触发器、组合函数器件和门电路设计一个广告流水灯,该流水灯由8个 LED 组成,工作时始终为1暗7亮,且这一个暗灯循环右移。
 - 1) 写出设计过程, 画出设计的逻辑电路图, 按图搭接电路
 - 2) 将单脉冲加到系统时钟端,静态验证实验电路
 - 3)将 TTL 连续脉冲信号加到系统时钟端,用示波器观察并记录时钟脉冲 CP、触发器的输出端 Q_2 、 Q_1 、 Q_0 和 8个 LED 上的波形

画波形

◆静态调试——广告流水灯

- ▶ 先模块,后整体
- 计数器单元
 - 触发器输出接至数码管上
 - 触发器时钟接消抖处理过的单次脉冲
 - 按动单脉冲按钮,验证计数器功能

▶ 译码器单元

- 使能端ST_AST_BST_C要接"100"
- 地址端接逻辑电平开关
- 拨动逻辑电平开关,验证译码器功能

▶ 整体调试

- 将触发器的输出接到译码器的地址端,注意高低位的顺序
- 按动单脉冲按钮,验证流水灯功能

- 如电路存在故障,则按动单脉冲按钮到故障状态
- ▶ 用组合电路的调试方法,逐级进行检查,找出故障点
- ▶ 注意集成触发器、译码器的使能端、清零端、置位端

◆动态调试——广告流水灯

- 触发器时钟接连续脉冲信号
- ▶ 时钟和L₀分别CH1和CH2通道,记录波形
- ▶ L₀作为参考信号接CH1通道,L₁接CH2通道,记录L₀和L₁波形
- ▶ L₀接CH1通道不变,依次将L₂到L₂接CH2通道,记录波形

▶ 汇总波形,记录到同一坐标系

实验内容

2、序列发生器(第11周课内课内验收)

- 用 MSI 计数器设计一个具有自启动功能的 01011 序列信号发生器
 - 1) 写出设计过程, 画出电路逻辑图
 - 2) 搭接电路,并用单脉冲静态验证实验结果
 - 3) 加入 TTL 连续脉冲, 用示波器观察观察并记录时钟脉冲 CLK、序列输出端的波形

画波形

- > 由计数器和组合网络构成
- > 某些特定的序列也可以直接由计数器产生
- > 可以产生一组或多组二值序列
- > 常用的设计方法:
 - 根据序列码的长度M设计模M计数器(状态可以自定)
 - 根据计数器的状态变化和给定的序列码,设计输出组合网络

● 组合网络部分

- 门电路(卡诺图化简)
- 3-8译码器——将状态表中所有Y=1的项取出来与非
- 数据选择器——将对应数端置 "0"或置 "1"

> 调试

• 测量的时候一定要用双踪显示

实验报告

- ◆报告提交形式: 电子报告
- ◆报告提交时间:在每次实验课前完成上一次课的实验报告,具体时间参照《教学计划》
- ◆报告提交地址: http://seu.olab.top
- ◆下载实验报告模板,在本地编辑后再以pdf格式上传

下次实验预习要求

◆第 12 周课前完成"简易数字钟"电路设计,将设计方案、原理图(手绘和 Multisim 仿真)写在实验报告的原理部分,并完成电路搭接

安装Quartus II 9.1sp2 Web Edition

THANK YOU!