Appunti Elettronica Digitale

Leonardo Toccafondi

2024-04-12

Indice

1	Dis	Dispositivi elettronici					
	1.1	Semiconduttori	1				
		1.1.1 Giunzione p-n	1				
	1.2	I diodi	3				
		1.2.1 Polarizzazione	3				
		1.2.2 Equazione caratteristica e breakdown	4				
		1.2.3 Diodi Speciali					
2	I tr	ansistor	7				
	2.1	Introduzione	7				
	2.2	Bipolar Junction Transistor: i BJT					
	2.3	Bipolar Junction Transistor: i BJT					
		2.3.1 Il BJT npn					
		2.3.2 Layout planare di un transistor NPN					
		2.3.3 Il BJT pnp					
		2.3.4 Transistor "speciali"					
	2.4	I transistor MOS					
		2.4.1 N-Mos					
		2.4.2 P-MOS					
		2.4.3 Real N-MOS					
3	Dio	ital Logic Circuits (circuiti a logica digitale)	15				
J	3.1	Famiglie logiche					
	0.1	3.1.1 Operatori logici (booleani)					
		3.1.2 Leggi (o teoremi) di de Morgan					
	3.2	Famiglie logiche: parametri statici					
1	Fco	rcizi	19				
4			19				
	4.1	Esercizi capitolo i	15				
5	Var	ie :	21				
	5.1	Semiconduttori e bande	21				

iv INDICE

Dispositivi elettronici

1.1 Semiconduttori

I semiconduttori sono i materiali con cui sono composti i circuiti integrati. Sono, come suggerisce il nome, materiali in cui il flusso di corrente *non è libero* (non è un conduttore), ma è **presente** (non è un'isolante). In particolare, conducono in particolari situazioni. Quali sono però i materiali con queste condizioni?

- Elementi semiconduttori: Silicio (Si), Germanio (Ge) (Carbonio (C), ma composto)
- *Elementi composti*: GaAs, GaN (Gallio-Arsenico/Azoto) In generale sono gli elementi della 14° colonna della tavola periodica o composti a numero medio di elettroni liberi pari a 4 (dai 3 ai 4).

Silicio

Il silicio è il materiale semiconduttore sicuramente più diffuso.

Un atomo presenta 4 elettroni (detti di valenza) nello strato più esterno, ma sua forma cristallina pura del silicio ogni atomo forma un legame covalente^a con i suoi vicini "più prossimi". Il cristallo di silicio puro ha inoltre una struttura cristallina matriciale, che blocca il passaggio di carica.

È da notare che all'aumentare della temperatura, qualche elettrone può rompere il legame e muoversi liberamente nel cristallo.

Per dotare un materiale semiconduttore di conduttività *selettiva* è necessario "drogare" il materiale stesso. Il drogaggio, quindi, va a **modificare** la concentrazione di elettroni e di lacune ¹, attraverso questo inserimento di impurità sostituzionali (ovvero atomi di elementi diversi, i quali si sostituiscono ad alcuni degli atomi di silicio.) In pratica andiamo ad aggiungere, in piccole dosi, nel reticolo cristallino materiali della 5° colonna (drogaggio di tipo **n**, hanno 5 elettroni di valenza, sono detti **donatori**, ad esempio il fosforo), o elementi della 3° colonna (tipo **p**, hanno 3 elettroni di valenza e sono detti **accettori**, ad esempio il boro).

Tale discrepanza induce la formazione di livelli energetici aggiuntivi all'interno della banda proibita² o "gap" del semiconduttore. Nel primo caso si genera un eccesso di lacune, le quali si comportano come particelle cariche *positivamente*, mentre nel secondo si ha un eccesso di elettroni liberi, determinando così una variazione della conducibilità elettrica intrinseca del materiale.

Non solo, sia le lacune che gli elettroni liberi sono quindi liberi di muoversi all'interno del semiconduttore! La qualità del semiconduttore è influenzata dal materiale usato (per esempio Ge è meglio del Si, ma è più raro), che è a sua volta influenzato dal goal³ (elettronica digitale usa Si, l'elettronica di potenza il GaN o SiC).

Vediamo ora degli elementi in silicio.

1.1.1 Giunzione p-n

Una giunzione p
n (o p-n) si forma quando una del materiale semiconduttore intrinseco
⁴ drogato con un drogaggio p (con una percentuale N_A , n. accettori) viene posta a contatto con altro materiale semiconduttore drogato con

 $[^]a$ legame chimico in cui due atomi mettono in comune delle coppie di elettroni.

¹Assenza di elettroni dovuta alla **rottura** di un legame. È insieme all'elettrone, un portatore di carica nei semiconduttori.

²Intervallo di energia interdetto agli elettroni, distanza tra la banda di valenza di conduzione (nei semiconduttori distanti 1eV). ³(penso voglia dire "obiettivo perseguito").

⁴Puro, quindi privo di un quantitativo significativo di drogaggio.

un drogaggio n (con una percentuale N_D , n. donatori). La concentrazione di ioni dalle seguenti "formule":

$$N_A = \frac{\#acceptors}{vol.unit} \text{ e } N_D = \frac{\#donors}{vol.unit}$$

dove N_a indica il numero⁵ di ioni di tipo p:'positivo', mentre N_d il numero di ioni di tipo n:'negativo'.

Collegando un blocco drogato tipo p ed uno tipo n abbiamo (idealmente)⁶

Figura 1.1: Giunzione pn

Il materiale quindi è separato in due zone *nettamente distinte*, senza alterazione della struttura cristallina all'interfaccia delle due zone.

L'abbondanza di lacune in p è, come sappiamo, corrispondente ad una carenza di elettroni, di cui n abbonda. In altre parole questa diversa densità di portatori di carica genera una **migrazione** di elettroni da N verso P, detta anche diffusione⁷ (elettrica) I_D oppure anche corrente di diffusione, che consiste quindi in

- lacune che si diffondono dalla regione (dal semiconduttore) drogata con p alla regione n;
- elettroni che si diffondono dalla regione drogata con n alla regione p.

N.B.: Nella zona n i **portatori maggioritari** di carica sono le cariche negative, mentre nella zona p sono le cariche positive

Tale fenomeno carica in modo *positivo* il semiconduttore drogato n (meno elettroni), e in modo *negativo* il semiconduttore drogato p (più elettroni).

Le lacune che si diffondono dalla regione/zona p alla n si ricombinano con gli elettroni liberi, scomparendo. Di conseguenza, il numero di elettroni liberi nella zona n diminuisce, quindi non saranno più neutralizzate alcune cariche fisse positive (atomi donatori). Dal momento che questa ricombinazione avviene in prossimità della giunzione, accanto a questa si svilupperà una regione **svuotata** di elettroni, con cariche fisse positive non compensate.

Analogamente nella zona p otterremo una zona svuotata dalle lacune e che comprende delle cariche fisse (in questo caso negative) non compensate.

Entrambe queste zone danno luogo alla **regione di svuotamento**⁸ (o di carica spaziale, in inglese *depletion layer*). Inoltre lo spostamento delle cariche crea a cavallo della giunzione un campo elettrico, con la zona n positiva rispetto alla zona p. La presenza del campo elettrico comporta la presenza di una differenza di potenziale. Questa è anche detta **barriera di potenziale**⁹, in quanto si oppone ad un'ulterore diffusione ai portatori di

⁵Oppure densità di ioni, o concentrazione...

⁶Nella pratica parto da un blocco puro di silicio, per poi iniettare a *strati* il drogaggio.

⁷Fenomeno che si ritrova in natura qualora vi sia uno squilibrio nella distribuzione nello spazio di particelle simili.

 $^{^8 \}mathrm{Svuotata}$ di portatori \mathbf{mobili}

⁹È possibile superarla, ma deve essere fornita una differenza di potenziale **esterna**.

1.2. I DIODI 3

carica soggetti alla spinta della diffusione (si oppone al movimento di elettroni nella regione p e lacune nella regione n). Una volta che la corrente di diffusione equivale la corrente di trascinamento 10 I_S raggiungiamo un **equilibrio** (dinamico): la presenza del campo elettrico comporta la presenza di una differenza di potenziale. In genere la regione di svuotamento non è simmetrica: la seguente equazione regola la larghezza della regione:

$$x_p N_A = x_N N_D$$

dove x_p e x_n sono rispettivamente le **larghezze** della regione di svuotamento entro il semiconduttore drogato p e drogato n.

Figura 1.3: Grafici relativi al potenziale, al campo elettrico e alla carica nella giunzione pn

Come si vede nella @fig:1.3:

- $N_A > N_D \to \text{più è drogata la regione più la regione di svuotamento è piccola.}$

1.2 I diodi

Il simbolo circuitale della giunzione p-n, detta **diodo**¹¹ è

Figura 1.4: Diodo

dove a sinistra abbiamo un **anodo** A (dal greco *salita*), e a destra un **catodo** K (dal greco *discesa*). Sia la zone p che la zona n sono munite di un contatto elettrico (detto **reoforo**), in modo tale che sia possibile applicarvi una tensione.

1.2.1 Polarizzazione

L'applicazione di un potenziale sul diodo viene detta polarizzazione, e si distingue la:

• Polarizzazione diretta (forward bias): applico un potenziale positivo sull'anodo A (lato p) e negativo sul catodo K (lato n). La differenza di potenziale applicata ha la polarità *concorde* con la barriera di potenziale.

¹⁰Detta anche corrente di deriva (drift), in questo caso i portatori si muovono perché **spinti** dal campo elettrico dovuto allo squilibrio di carica.

¹¹Il diodo ideale è un dispositivo che lascia passare corrente solo in un senso, con resistenza nulla, e non lascia passare corrente nell'altro senso. Il diodo a giunzione approssima molto bene un diodo ideale, ed è l'elemento circuitale non lineare più importante.

- L'aumento della tensione determina una riduzione della barriera di potenziale, e di conseguenza della larghezza della regione di svuotamento. In questo modo aumenta il numero di elettroni e di lacune capaci di attraversare la giunzione tramite la diffusione.
- La corrente di diffusione, rispetto a quella di deriva, aumenta rapidamente di svariati ordini di grandezza.

Figura 1.5: Diodo polarizzato direttamente

- Polarizzazione indiretta (reverse bias): applico un potenziale negativo sull'anodo e positivo sul catodo. In questo caso la polarità della tensione applicata è discorde rispetto a quella della barriera di potenziale.
 - La regione di svuotamento si allarga, e la tensione di polarizzazione richiama le lacune verso il terminale negativo e gli elettroni verso il terminale positivo. Quindi l'ampiezza della barriera di potenziale aumenta.
 - La corrente di diffusione diminuisce fino ad annullarsi, mentre quella di deriva rimane (anche se è molto piccola e varia con la temperatura). Quindi quasi nessuna corrente riesce a scorrere.
 - Il campo elettrico incrementa fino ad ottenere il breakdown.

Figura 1.6: Diodo polarizzato indirettamente

1.2.2Equazione caratteristica e breakdown

In generale, la giunzione pu ha un'equazione caratteristica

$$i = I_S(e^{\frac{V_d}{nV_t}} - 1)$$

detta equazione di Shockley:

- V_d indica la differenza di potenziale applicati ai capi del diodo;
- nV_t è il potenziale nativo dei diodi (pari a 0.7 V), o tensione termica, pari a 26 mV. I_S (o I_0) è una costante detta corrente di saturazione (per il Si ha valori tra 10^{-15} e 10^{-19} A)

In condizioni di polarizzazione diretta la corrente è trascurabile per tensioni al di sotto di 0, 5-0, 6V (per diodi al silicio) e dopo aver superato la $tensione\ di\ soglia$ cresce molto repentinamente 12 .

Quando il diodo è in polarizzazione inversa, aumentando la tensione la corrente rimane costante finché non si raggiunge la cosiddetta tensione di breakdown (o di rottura). Una volta oltrepassata la corrente aumenta (forse in questo caso diminuisce) in maniera drastica a tensione praticamente costante.

Il breakdown

Il fenomeno del breakdown è dovuto a:

- 1. Effetto Zener: prevalente per tensioni di breakdown inferiori alla decina di volt. Quando il diodo è polarizzato inversamente e la tensione è compresa tra 0V e V_Z (inferiore a zero), si comporta quasi come un circuito aperto, seppur continui a scorrere una piccola corrente di saturazione inversa, oltre V_Z la banda di valenza della regione p si avvicina talmente tanto alla banda di conduzione che alcuni elettroni si spostano dall'una all'altra;
- 2. Effetto valanga (avalanche): prevalente per tensioni di breakdown superiori alla decina di volt. Si manifesta in presenza di campi elettrici molto elevati, dovuti alla presenza di una tensione "moderata", ma imposta su distanze molto corte.

Solitamente il processo del breakdown è irreversibile, tranne per i diodi Zener, i quali sono ideati per andare in breakdown.

 $^{^{12}}$ Per un aumento di corrente di un fattore mille è sufficiente un aumento di tensione pari a $0.8\,\mathrm{V}$. Infatti viene assunta $0.6\,\mathrm{V}$ come tensione di soglia e $0.8\,\mathrm{V}$ come tensione massima.

1.2. I DIODI 5

Figura 1.7: Una tipica caratteristica I-V di un diodo a giunzione PN

1.2.3 Diodi Speciali

1.2.3.1 Fotodiodi

I fotodiodi sono diodi in cui la giunzione è "scoperta", o incapsulata in un materiale trasparente, in quanto vogliamo che sia in grado di **emettere** una corrente elettrica sfruttando l'effetto fotoelettrico. Difatti è un $trasduttore^{13}$ da un segnale ottico ad un elettrico.

L'equazione caratteristica del fotodiodo è pari a quella di un diodo normale, con l'aggiunta di un termine I_{ph} , che rappresenta la corrente $fotogenerata^{14}$:

$$i = I_S(e^{\frac{V_d}{nV_t}}-1) - I_{ph}$$

$$+ - - - - + - - -$$
 Diodo normale Fotodiodo

I fotodiodi p-n possono essere utilizzati senza essere polarizzati: sono adatti per "applicazioni" in situazioni di bassa luminosità. Quando sono illuminati, il campo elettrico nella regione di deplezione aumenta, producendo la corrente fotogenerata la quale è cresce all'aumentare del flusso di fotoni.

Altrimenti i fotodiodi operano in *polarizzazione inversa*, in modo tale che i fotoni (del colore "giusto") possedano energia sufficiente ad oltrepassare la barriera di potenziale e a condurre quindi corrente elettrica.

1.2.3.2 Led

I led (*light emitting diode*) è un tipo di diodo che **converte** energia elettrica in luce. Sono formati da sottili strati di materiali semiconduttori fortemente drogati, i quali caratterizzano i diversi colori emessi quando viene applicata una polarizzazione *diretta*.

Da un punto di vista *costruttivo* i led sono ricoperti da uno strato spesso di resina¹⁵ **trasparente** di forma emisferica, sia per proteggere il led stesso sia per convogliare la luce emessa.

Figura 1.8: Simbolo circuitale di un led

Applicando quindi una tensione positiva all'anodo, riduciamo la barriera di potenziale, in modo tale che elettroni e lacune ricombinandosi generino fotoni pari al gap tra la banda di conduzione e quella di valenza.

 $^{^{13}\}mathrm{Dispositivo}$ in grado di convertire una forma di energia in una diversa.

 $^{^{14}\}mathrm{Risulta}$ proporzionale al flusso di fotoni che colpiscono il fotodiodo

 $^{^{15}}$ Epossidica, in inglese *epoxy*.

Come si può vedere nella tabella sottostante, al fine di generare un colore visibile, deve essere fornita una tensione almeno pari a $1,5\mathrm{V}$

Semiconduttore composto	V_F a 20 mA	Banda di lunghezza d'onda	Colore
GaInN	4.0V	450 nm	Bianco
SiC	3.6V	430-505 nm	Blu
GaAsP	22V	585-595 mm	Giallo
GaAsP	2.0V	605-620nm	Ambra
GaAsP	1.8V	630-660nm	Rosso
GaAs	1.2V	850-940nm	Infrarosso

Tabella 1.1: Diverse tipologie di led in base al colore prodotto

1.2.3.3 Diodo Schottky

In questa tipologia di diodo la giunzione p-n è data dall'unione del metallo (che svolge il ruolo della regione p) con un materiale semiconduttore drogato n. In questo modo si viene a creare una "barriera Schottky": questa, a differenza della giunzione p-n standard, ha una bassa tensione di giunzione (o tensione di soglia). Infatti ai capi di un diodo Schottky si misura solitamente una differenza di potenziale tra i 0.15V e i 0.45V: così facendo abbiamo una maggior efficienza e una maggior velocità di commutazione, riducendo i tempi di turnoff¹⁶! Inoltre, nella zona della giunzione del metallo, la zona di svuotamento è **nulla o quasi inesistente**¹⁷.

Figura 1.9: Simbolo circuitale di un diodo Schottky

1.2.3.4 Diodo Zener

Questa tipologia di diodo lavora in **breakdown**. Se viene applicata una polarizzazione diretta esso lavora e funziona come un diodo "qualsiasi". Invece, se viene applicata una polarizzazione inversa la tensione di breakdown è "molto precisa": in questo modo se $V_G < V_Z$ non accade nulla $(V_G = V_Z)$, mentre se $V_G \ge V_Z$ allora il diodo va in breakdown e su esso scorre una corrente. Ho quindi una tensione di uscita stabilizzata $(V_O = V_Z)$.

Nel circuito della figura seguente la resistenza è molto importante, in quanto se non fosse presnete $i_R = \frac{V_G - V_i}{R}$, ma $R \to 0$ e quindi $i_R \to \infty$

Figura 1.10: Schema di un diodo Zener

 $^{^{16}}$ Tempo che passa tra la fine dell'influenza esterna (forward bias) ed il momento in cui smette di fluire corrente. È un ritardo causato dalla carenza di lacune ($N_D >> N_A$), causando un accumulo extra di carica in p, la quale sarà rilasciata durante il turnoff. 17 Dal lato p.

I transistor

2.1 Introduzione

Un transistor è un dispositivo a semiconduttori utilizzato per interrompere (commutare) o amplificare segnali elettrici, come se fosse una **valvola**¹: in pratica regola la corrente che scorre in una maglia (quella in uscita al circuito) tramite la tensione applicata ad un'altra (ovvero quella in ingresso al circuito).

Quando viene utilizzato come interruttore, un transistor è un dispositivo logico a *due stati*: ON e OFF (binario 1 e 0). Sulla base di questo vengono realizzate *porte logiche* più complesse, quali AND, OR, NOT, le quali a loro volta sono impiegate per realizzare tutti quei dispositivi che compongono la parte **digitale** dell'elettronica (famiglie logiche, memorie etc.).

Invece, quando viene utilizzato come modulatore di corrente, un transistor \grave{e} a "semplicemente" un **amplificatore**².

2.2 Bipolar Junction Transistor: i BJT

A differenza dei diodi a giunzione, i $transistor\ bipolari$ utilizzano tre strati di materiali semiconduttori, in pratica otteniamo due diodi posti in $antiserie^3$, in modo tale da "condividere" uno strato.

Ad ogni strato sarà associato un $terminale^5$: quello che sarà detto **base**, che a sua volta separa due terminali drogati con gli stessi materiali (opposti al materiale della base), che saranno detti rispettivamente **collettore** ed **emettitore**.

I dispositivi BJT sono dispositivi bipolari in quanto il processo di conduzione coinvolge portatori di entrambe le polarità.

La struttura di un transistor BJT può essere realizzata in due modi: quello \mathbf{npn} e quello \mathbf{pnp} . È importante notare come in un transistor la zona dell'emettitore è significativamente più drogata di quelle di base e di collettore; si indica infatti con $\mathbf{p+}$ nei transistori \mathbf{pnp} e con $\mathbf{n+}$ nei transistori \mathbf{npn} .

Figura 2.1: Transistor BJT

¹Infatti sono andate a sostituire le valvole termoioniche, o tubo a vuoto.

 $^{^2\}mathrm{Pu}\grave{\mathrm{o}}$ essere sia un amplificatore di potenza che di tensione.

³Antiserie indica, per bipoli **polarizzati**, una connessione in serie (quindi un solo punto di contatto), in cui le polarità dei terminali vengono accoppiate per segni uguali

⁴Oppure possiamo anche dire che sono due giunzioni p-n poste l'una di seguito all'altra e orientata in senso inverso, andando poi a costituire tre regioni *consecutive*.

⁵Si può esprimere anche come *elettrodo*

Figura 2.2: Overall caption for the figure

Come è possibile notare dalle figure precedenti, da un punto di vista circuitale i transistor BJT sono rappresentati utilizzando 3 terminali: \rightarrow nel simbolo indica la giunzione (e ne è riportata solo una), mentre le frecce indicano i versi delle tensioni (dove sono maggiori). Parlando del transistor npn, per quanto riguarda le correnti abbiamo che all'equilibrio $I_B + I_C = I_E$, ed I_B, I_C sono entranti, mentre I_E è uscente.

Per entrambe le tipologie di BJT, da un punto di vista costruttivo valgono queste regole:

- 1. La regione dell'emettitore è altamente drogata e ha il compito di emettere o iniettare portatori di corrente nella regione di base. Nei transistor npn, l'emettitore di tipo n immette elettroni liberi nella base, mentre nei transistor pnp, l'emettitore di tipo p introduce lacune nella base.
- 2. La base è sottile e leggermente drogata. La maggior parte dei portatori di corrente iniettati nella regione di base si muove verso il collettore senza fuoriuscire dal conduttore della base.
- 3. La regione del collettore è moderatamente drogata ed è la più grande all'interno del transistor. La sua funzione consiste nel raccogliere o attrarre i portatori di corrente iniettati nella regione di base.

2.3 Bipolar Junction Transistor: i BJT

Il transistor BJT è stato il primo transistor ad essere prodotto su larga scala, precedendo di una decade l'introduzione dei transistor ad **effetto di campo**.

I BJT sono un dispositivo a semiconduttore a **tre** terminali, realizzato tramite due giunzioni p-n. Sono **bipolari** in quanto il processo di conduzione coinvolge portatori di *entrambe le polarità*: quindi sia lacune che elettroni. La realizzazione fisica consiste nell'utilizzo di tre strati di materiale semiconduttore, collegati ognuno ad un proprio terminale: abbiamo due strati esterni composti con lo stesso materiale drogante (**collettore** ed **emettitore**), ed un secondo strato posto tra gli altri due all'interno del quale viene introdotto un materiale drogante opposto (**base**). Così facendo otteniamo due giunzioni p-n: una base-emettitore ed una base-collettore.

Configurazione a diodi

In generale un transistor BJT è **quasi equivalente** a porre due diodi in antiserie^a. In realtà è più vicina una configurazione di due giunzioni p-n poste l'una di seguito all'altra e orientate in senso inverso (ognuna delle quali con la propria regione di svuotamento). Questo perché per far funzionare il transistor BJT è necessaria la presenza di un'unica regione di base, che svolge un ruolo cruciale nel controllo della corrente. Quando si affiancano due diodi, l'interazione tra le loro giunzioni non riproduce le caratteristiche di amplificazione e controllo della corrente tipiche di un BJT, in quanto l'introduzione di un metallo nel circuito non permette la corretta gestione delle correnti e delle tensioni necessarie per il funzionamento del transistor: non vi è il campo elettrico necessario a far passare gli elettroni da un diodo all'altro passando per il filo metallico.

È possibile realizzare la struttura in due diverse modalità:

- tipo npn
- tipo pnp

I transistor npn sono usati più frequentemente. Inoltre le regole ed i risultati ottenuti possono essere estesi ai transistor pnp modificando opportunamente i versi di tensioni e correnti.

^aAntiserie indica, per bipoli polarizzati, una connessione in serie (quindi un solo punto di contatto), in cui le polarità dei terminali vengono accoppiate per segni uguali

2.3.1 Il BJT npn

Un BJT npn è formato da due sezioni di tipo n (emettitore e collettore), e da una di tipo p. Di fondamentale importanza per la fabbricazione di un BJT è lo spessore della base. Infatti deve essere il più sottile possibile, senza fare un corto circuito tra le regioni del collettore e dell'emettitore.

In base alle polarizzazioni applicate alle giunzioni base-collettore e base-emettitore, otteniamo 4 regioni di funzionamento del transistor BJT:

Polariza	zazione delle giunzioni	Regione di funzionamento	
B- E	B- C	Regione di funzionamento	
Inversa	Inversa	Cutoff (Spento)	
Diretta	Inversa	Attiva Diretta	
Diretta	Diretta	Saturazione	
Inversa	Diretta	Attiva Inversa	

Tabella 2.1: Regioni di funzionamento in base alla polarizzazione delle giunzioni

2.3.1.1 Regioni di funzionamento

2.3.1.1.1 Cutoff In questa regione il transistor è spento. Entrambe le giunzioni sono polarizzate inversamente: le rispettive tensioni sono ambedue sotto soglia. In particolare $V_{BE} < V_{\text{soglia}}$ e $V_{BC} < 0$.

Dato che la giunzione BE non è polarizzata $\rightarrow i_B = 0$. Inoltre, dato che tutte le giunzioni sono polarizzate inversamente, anche la corrente del collettore è $\textit{nulla.} \rightarrow i_C = 0$

Nel grafico, la corrente non è esattamente nulla dato che secondo la legge di I_D in una giunzione con polarizzazione inversa la corrente vale I_O .

In definitiva non vi è conduzione.

2.3.1.1.2 Attiva diretta In questa regione la giunzione BE è polarizzata direttamente, mentre la giunzione BC è polarizzata inversamente. Significa che:

- $\begin{array}{ll} \bullet & V_{BE} > V_{\rm soglia} \\ \bullet & V_{BC} < 0 \end{array}$

La corrente $I_B > 0$, e nonostante la tensione della giunzione BC sia negativa, $I_C = h_{fe}I_b$.

Dunque gli elettroni dovrebbero ricombinarsi e "richiudersi" verso la base. Tuttavia, sapendo che la base è "corta" gli elettroni raggiungono il collettore prima di ricombinarsi, il quale li prende (forse meglio dire li accetta), in quanto possiede un potenziale positivo. È da notare che comunque non tutti gli elettroni riescono ad attraversare tutto il transistor, statisticamente alcuni si ricombinano con le lacune presenti nella regione

Il ⁶guadagno⁷ del transistor di corrente è $h_{fe} = \frac{I_C}{I_B}$. Il transistor ha una funzione di amplificatore della corrente di base nel caso in cui h_{fe} sia un valore alto: ciò lo rende "attivo"

In questa regione funge da generatore di corrente controllato in corrente.

2.3.1.1.3 Saturazione In questa regione anche la giunzione BE è polarizzata direttamente:

- $\begin{array}{ll} \bullet & V_{BE} < V_{\rm soglia} \\ \bullet & V_{CE} < V_{CE-sat} \end{array}$

Se vale quest'ultima condizione (la tensione della giunzione BE è bassa) allora anche BC è polarizzata direttamente. Per lo stesso motivo gli elettroni non vengono "raccolti" dal collettore, tendendo a rimanere nella base:

- $\begin{array}{ll} \bullet & I_B > 0 \\ \bullet & I_C < h_{fe} \ I_B \end{array}$

È da notare come in questa configurazione/regione otteniamo una tensione in uscita costante V_{CE-sat}

⁶È una funzione di.

⁷In inglese è **gain**.

2.3.1.1.4 Regione attiva inversa In questo caso $V_{BE} < 0$ e $V_{BC} > V_{\text{soglia}}$. Quindi gli elettroni si spostano nel collettore. In questo caso il *guadagno di corrente è ≤ 1 : $I_e \simeq -I_B$.

Otteniamo un guadagno di corrente molto basso (tipicamente ≤ 1)

Figura 2.3: Curva BJT.

In questo grafico sono rappresentate delle curve che riportano gli andamenti di I_C in funzione di V_{CE} con I_B .

2.3.2 Layout planare di un transistor NPN

Figura 2.4: Configurazione planare di un BJT npn

Come mostra anche lo schema, da un punto di vista fisico il layout planare di un transistor BJT npn non è simmetrico: questo sia per il drogaggio, sia per la realizzazione del dispositivo stesso. L'emettitore è molto piccolo e molto drogato, mentre le regioni della base e del collettore sono (viceversa) molto grandi e poco drogate.

I contatti della base, dell'emettitore e del collettore sono metallici (se legati a zona n viene un diodo di silicio). Dato che i materiali n^+ sono molto drogati la regione di svuotamento è molto piccola e gli elettroni la possono attraversare come se non ci fosse.

2.3.3 Il BJT pnp

È un dispositivo *complementare* al pnp: valfolo le stesse equazioni, ma tensioni e correnti sono **opposte** Sia le prestazioni che il guadagno sono **minori**, perché i portatori in movimento sono le *lacune*, più lente rispetto agli elettroni. 2.4. I TRANSISTOR MOS

2.3.4 Transistor "speciali"

2.3.4.1 Foto transistor

Il phototransistor è caratterizzato da una corrente di base "photo-generated". Il resto dei parametri di lavoro sono gli stessi un un normale BJT.

$$I_C = k \cdot P_L$$

dove P_L è la potente luminosa.

È importante che il dispositivo si trovi in regione attiva: per questo sarà inserito un resistore dal lato del collettore per evitare di andare in saturazione.

Figura 2.5: Un fototransistor npn ed uno pnp

Figura 2.6: Schema con fototransistor npn

2.4 I transistor MOS

I MOSFET (Metal Oxide Semiconductor Field Effect Transistor) sono una tipologia di transistor appartenente ai transistor ad effetto di campo.

I transistor ad effetto di campo

I transistor ad effetto di campo sono caratterizzati dalla possibilità di controllare la **conduttività elettrica del dispositivo**, ovvero la quantità di corrente elettrica che attraversa il dispositivo stesso, attraverso la formazione di un *campo elettrico* all'interno di esso.

Possono essere realizzati in diverse modalità:

- 1. JFET: ovvero Junction-Fet, realizzato con una giunzione p-n come elettrodo "rettificante";
- 2. MESFET: abbreviazione di Metal Semiconductor FET realizzato tramite una giunzione Schottky raddrizzante metallo-semiconduttore;
- 3. MOSFET: il più comune.

I MOS sono strutturati con più strati di materiali sovrapposti: metallo, ossido di silicio (SiO_2) e del silicio, o di tipo p o di tipo n. Si utilizza l'ossido come un isolante, non permettendo quindi il passaggio di cariche elettriche tra il metallo ed il semiconduttore.

Come per i transistor a giunzione, a seconda del drogaggio possiamo ottenere due tipologie diverse di transistor MOS: i nmos e i pmos.

In particolare, sono dispositivi controllati in tensione.

2.4.1 N-Mos

Nell'N-MOS (a canale P), il silicio è di tipo n: il drogaggio n+ favorisce il contatto ohmico⁹ con l'alluminio. Le definizioni delle correnti e delle tensioni equivalgono quelle dei transistor NPN.

 $^{^8\}mathrm{In}$ questo caso la corrente di base è sostituita dall'intensità luminosa.

 $^{^9}$ Un contatto ohmico è una giunzione elettrica tra un metallo e un semiconduttore che non ha proprietà rettificanti (non trasforma un segnale alternato in uno continuo). La caratteristica principale è avere una curva corrente-tensione I-V lineare, come prevista dalla legge di Ohm.

Figura 2.7: Sezione di un transistor N-MOS.

È da notare come solitamente il metallo utilizzato sia l'alluminio, anche se a volte può essere del silicio molto drogato. L'ossido, invece, è ossido di silicio.

In generale qualsiasi MOSFET (quindi anche un N-MOS) ha tre terminali: **source** (emettitore), **gate** (base) e **drain** (collettore).

All'atto pratico si ha la corrente del gate sempre **nulla** (in regime continuo). L'ossido ha la funzione di isolante, inoltre la lastra (di metallo) è sottile ($\approx 10nm$), la quale *blocca* il passaggio di corrente dal gate al blocco sottostante, formando una struttura di un *condensatore a facce piane*.

Uno dei pregi dei transistor di tipo MOS è il **consumo**: un BJT ha un consumo di energia *costante* nel tempo (dal momento che deve mantenere la polarizzazione), mente un transistor MOS consuma solo durante le *transizioni*.

Come detto in precedenza la struttura di un transistor N-MOS è simile ad un condensatore, dove le piastre sono il gate, mentre la piastra sotto è l'ossido. Applicando una tensione positiva in GS (tra il gate e il source, $V_{GS} > 0$), si accumulano sopra e sotto l'ossido delle cariche (che saranno positive sopra e negative sotto). Queste cariche andranno a riempire alcune lacune presenti sotto l'ossido, creando così un $depletion \ layer$.

Come in un condensatore, al crescere della tensione V_{GS} aumenta anche l'accumulo delle cariche; superata una certa **tensione di soglia** V_T ($V_{GS} > V_T$), le cariche accumulate hanno riempito tutte le lacune, ed iniziano ad accumularsi sotto l'ossido: così facendo si va creare una regione caratterizzata da una **carica elettrica libera**, che collega S a G.

Come il BJT, anche con un transistor N-MOS si hanno diverse working regions:

- Cutoff: il dispositivo è spento, in quanto $V_{GS} < V_T$; si ha quindi corrente nulla, come un interruttore aperto $(i_D) = 0$;
- Linear: il dispositivo è in conduzione $V_{GS} > V_T$; non ha ancora raggiunto la massima corrente (di saturazione, $i_D < i_{D-sat}$). Esiste allora un rapporto di proporzionalità $i_D \propto V_{DS}$; il rapporto tra i due è detto resistenza di canale.
- Saturation: il dispositivo è acceso $V_{GS} > V_T$, ma ha saturato¹⁰ la corrente $(i_D = I_{sat})$. Questo è dovuto alla tensione di D; all'aumentare della tensione V_{DS} con la tensione V_GS fissata, oltre una certa soglia non otteniamo un aumento di corrente, dal momento che il drain D attira più elettroni di quanti ne inserisca S. Indichiamo le caratteristiche di un Mos con due grafici:

Figura 2.8: Curve caratteristiche di un transistor N-MOS.

 $^{^{10}\}mathrm{Ha}$ raggiunto la massima corrente.

2.4. I TRANSISTOR MOS

Come accennato prima abbiamo a che fare con un generatore di corrente governato in tensione, in particolare dalla V_{DS} , quella tra drain e source. L'equazione della corrente è:

$$i_D = \left\{ \begin{array}{ll} K[2(V_{GS} - V_T)V_{DS} - V_{DS}^2)] & : \ V_{DS} \leq V_{GS} - V_T \\ i_{D-sat} = k(V_{GS} - V_T) & : \ V_{DS} \geq V_{GS} - V_T \end{array} \right.$$

La prima equazione raffigura una parabola che ha come parametro la tensione V_{DS} : avrà il proprio vertice in $V_{GS} - V_T$.

$$K = \frac{1}{2}\mu \, C_{ox} \frac{W}{L}$$

Nel parametro K, μ dovrebbe essere la *mobilità*¹¹ del materiale, C_{ox} la capacità dell'ossido per unità di carica, mentre W rappresenta la larghezza della zona che va a costituire il canale, mentre L è la lunghezza.

$$K \propto \mu \Rightarrow K_n \simeq 2K_p$$

All'aumentare della corrente il N-MOS si comporta come un resistore la cui resistenza è data da $R = \frac{\rho \cdot L}{s}$.

Figura 2.9: Vista di un transistor N-MOS dall'alto.

2.4.2 P-MOS

È il dispositivo complementare all'N-MOS.

Figura 2.10: Sezione di un transistor P-MOS

Valgono le stesse equazioni, ma le tensioni e le correnti sono opposte $(V_{GS} < 0, V_{DS} > 0, V_t < 0)$. Applicando al Ground una tensione negativa si accumulano cariche positive sotto l'ossido: si formerà dunque un canale di lacune. Il guadagno (e quindi la corrente di uscita) sono minori, in quanto le lacune sono portatori minoritari (come per i transistor BJT, in quanto $k_n \approx 2k_p$).

Per valutare K dato delle curve è possibile risolvere il seguente sistema:

$$\begin{cases} I_{D1} = K(V_{G1} - V_t)^2 \\ I_{D2} = K(V_{G2} - V_t)^2 \end{cases} \longrightarrow \begin{cases} \sqrt{I_{D1}} = \sqrt{K}(V_{G1} - V_t) \\ \sqrt{I_{D2}} = \sqrt{K}(V_{G2} - V_t) \end{cases}$$

 $^{^{11}\}mathrm{Quanto}\ scorrono$ facilmente le cariche al suo interno

2.4.3 Real N-MOS

All'apparenza il transistor N-MOS sembra un dispositivo *simmetrico*, ma non lo è. Infatti in precedenza abbiamo assunto la tensione $V_{DS} > 0$ perché polarizzando la S viene polarizzato anche il blocco P^{12} sottostante: in questo modo si viene a formare un **body diode** tra l'emettitore ed il collettore.

Body diode

Il **body diode** sono diodi *intrinseci* per qualsiasi transistor ad effetto di campo. Nelle applicazioni FET a canale N, la corrente scorre tipicamente dal drain alla source a causa della polarità del body diode. Anche se non è stato indotto un canale, la corrente può comunque fluire dalla source al drain attraverso la connessione in cortocircuito source-body e il diodo body-drain. Per questo motivo, un tipico FET a canale N non può bloccare il flusso di corrente dalla sorgente al drain.

Nel nostro caso è essenzialmente una giunzione p-n parassita in cui passa la corrente invece che nel canale.

Figura 2.11: Presenza nel real N-MOS del body diode

Figura 2.12: Schema circuitale del real N-MOS

Se $V_{DS} < 0$ il diodo in questione è in forward bias, e la corrente i_D non dipende più dal gate¹³. Per evitarlo il drain dovrebbe essere positivo rispetto al source.

 $^{^{12}\}mathrm{O}$ n se in un P-MOS.

 $^{^{13}\}mathrm{Nel}$ transistore P-MOS accade se la tensione tra drain e source $V_{DS}>0$

Digital Logic Circuits (circuiti a logica digitale)

Servono per trasferire e processare informazioni, funzionano realizzando operazioni booleane su dati booleani.

3.1 Famiglie logiche

Definizione: famiglie logiche

Una famiglia logica è un insieme di dispositivi elettronici i quali, se connessi tra di loro in modo opportuno, permettono di realizzare una qualsiasi funzione logica. Queste sono funzioni che definiscono lo stato di un'uscita per ogni possibile configurazione degli stati.

3.1.1 Operatori logici (booleani)

• Not (negazione): restituisce il bit negato.

A
$$\overline{A}$$

Figura 3.1: Simbolo circuitale di NOT con A e
$$\overline{A}$$

$$\begin{array}{c|c}
A & \overline{A} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Figura 3.2: Tabella di verità per NOT

• And (prodotto logico): restituisce vero se entrambi i bit sono veri.

Figura 3.3: Simbolo circuitale di AND con A e B

Α	В	A+B
0	0	0
1	0	0
0	1	0
1	1	1

Figura 3.4: Tabella di verità per AND

• OR (somma logica): restituisce vero se almeno un bit è vero.

Figura 3.5: Simbolo circuitale di AND con A e B

A	В	A+B
0	0	0
1	0	1
0	1	1
1	1	1

Figura 3.6: Tabella di verità per AND

3.1.2 Leggi (o teoremi) di de Morgan

Servono a stabilire relazioni di equivalenza tra la congiunzione (AND) e la disgiunzione (OR) logica: attraverso la negazione (NOT) è possibile esprimere queste due porte logiche in termini reciproci. Le leggi sono le seguenti

$$A + B = \overline{\overline{A} \cdot \overline{B}} \Longrightarrow \overline{A + B} = \overline{A} \cdot \overline{B} \tag{1}$$

$$A \cdot B = \overline{\overline{A} + \overline{B}} \Longrightarrow \overline{A \cdot B} = \overline{A} + \overline{B} \tag{2}$$

A parole:

- La legge (1) dice che effettuare la negazione dell'operazione di AND tra due ingressi equivale all'OR tra la negazione dei due singoli ingressi;
- Allo stesso modo la legge numero (2) ci dice che la negazione dell'operazione OR tra i due ingressi equivale alla somma tra gli stessi ingressi negati singolarmente.

A questo punto possiamo ricavare due porte:

• NAND: o "NOT AND", è un dispositivo complementare alla porta AND. Per le leggi di Morgan un NAND equivale all'operazione di OR tra due ingressi negati.

Figura 3.7: Simbolo circuitale di NAND con A e B

A	В	\overline{A}	\overline{B}	$A \cdot B$	$\overline{A \cdot B}$
0	0	1	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
1	1	0	0	1	0

Figura 3.8: Tabella di verità per NAND

• NOR: o "NOT OR", è il dispositivo complementare alla porta OR. Sempre per le leggi di Morgan un NOR equivale all'operazione AND fra due ingressi negati

Figura 3.9: Simbolo circuitale di NOR con A e B

A	В	\overline{A}	\overline{B}	A + B	$\overline{A+B}$
0	0	1	1	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	1	0	0	1	0

Figura 3.10: Tabella di verità per NOR

Osservazione: completezza della famiglia logica

Una famiglia logica si dice *completa* quando tra i suoi dispositivi è presente la porta NOT ed una tra la porta AND o la porta OR. In particolare è possibile realizzare, con le porte NAND e NOR, tutte le porte precedenti: in questo modo quindi *si possono realizzare tutti i circuiti con una singola porta!*

• Esempi:

Figura 3.11: Rappresentazioni della porta NOT.

Figura 3.12: Rappresentazioni della porta AND.

Figura 3.13: Rappresentazioni della porta OR.

In elettronica, lo stato logico 0 è associato ad una bassa tensione, mentre lo stato 1 è associato ad un'alta tensione.

3.2 Famiglie logiche: parametri statici

Sono misurati con il circuito "fermo", senza commutazioni.

- 1) **Tensione di ingresso**: discrimina il valore *logico* in base alla tensione d'ingresso, quindi come questa sia *interpretata*:
 - $V_{iL} \doteq \grave{e}$ il massimo valore di tensione in ingresso associabile allo 0 logico (stato negativo);
 - $V_{iH} \doteq \dot{e}$ il minimo valore di tensione in ingresso associato allo 1 logico (stato positivo).
- 2) Tensione di uscita: indica come interpretare i valori rilevati all'uscita di un circuito:
 - $V_{oL} \doteq \grave{\rm e}$ il massimo valore di tensione in uscita prodotto da uno 0 logico;
 - $V_{oH} \doteq \grave{e}$ il minimo valore in uscita prodotto da un 1 logico.

Nota

Per evitare ambiguità devono valere:

$$V_{iL} \leq V_{iH}; \quad V_{oL} \leq V_{oH}$$

Idealmente tutti i valori in ingresso corrispondono ai valori in uscita. Tuttavia questo non è possibile, a causa di possibili variazioni ambientali e/o nel processo di costruzione. Si usano quindi dei valori $V_{i/oL}$ più bassi dei $V_{i/oH}$, statisticamente certi, i quali considerano anche le possibili oscillazioni dei valori. Inoltre un qualsiasi valore di tensione di ingresso compreso tra $[V_{iL-max}, V_{iH-min}]$ non potrà essere riconosciuto dalla porta come 1 logico o come 0 logico: si dice che sono valori nella regione di indeterminazione.

Allo stesso modo, un qualsiasi valore di tensione di uscita compreso nell'intervallo $[V_{oL-max}, V_{oH-min}]$ potrà essere riconosciuto con 1 logico o come 0 logico da una porta posta immediatamente in cascata.

 V_{iH} Regione di Indeterminazione V_{iL}

3) Corrente assorbita:

¹La porta successiva potrà riconoscerlo.

- I_{iH} : corrente assorbita in ingresso quando viene applicato il valore logico alto;
- I_{iL} : corrente assorbita in ingresso quando viene applicato il valore logico basso.

Da queste grandezze ne derivano altre 3:

4) **Noise Margin**: resilienza del circuito al rumore; quanto disturbo può ricevere *senza influire sul suo comportamento*:

$$NM = \min(NM_H, NM_L); \quad NM_H = V_{oH} - V_{iH}; \quad NM_L = V_{iL} - V_{oL}$$

Osservazione

 NM_{H} e NM_{L} devono essere ${\bf positivi},$ per cui è necessario che le tensioni siano:

$$V_{oH} > V_{iH}; \quad V_{iL} > V_{oL}$$

Esercizi

Le leggi di Kirchoff

- 1. Legge di Kirchoff alle correnti: la somma delle correnti in un nodo è pari a 0.
- 2. Legge di Kirchoff alle tensioni: la somma delle tensioni lungo un percorso chiuso è pari a0.

4.1 Esercizi capitolo 1

Varie

5.1 Semiconduttori e bande

Gli elettroni in un solido allo stato fondamentale e a temperatura 0 kelvin, in obbedienza alla loro natura fermionica e al principio di Pauli che preclude ai fermioni il fatto di potersi trovare in due nello stesso stato, riempiono gli stati elettronici loro consentiti partendo dal livello energetico più basso via via su, fino a che tutti gli elettroni del solido hanno trovato un'accomodazione. Si distribuiscono cioè rispettando la distribuzione di Fermi-Dirac calcolata a temperatura 0 kelvin. Nei metalli, il livello energetico più alto occupato si definisce livello di Fermi.

Figura 5.1: Schema semplificato della struttura elettronica a bande per metalli, semiconduttori e isolanti.

A questo punto possono verificarsi diverse possibilità:

- Vi è una banda, o più di una fra le ultime riempite da elettroni, che è parzialmente riempita e restano
 degli stati vuoti. In tal caso si ha a che fare con un metallo, cioè un sistema in cui gli ultimi elettroni
 hanno la possibilità di spostarsi in livelli energetici molto vicini, infinitesimalmente più alti in energia, e
 dunque hanno la possibilità di una mobilità elevata che porta il sistema ad essere un buon conduttore di
 elettricità.
- L'ultima banda è stata riempita completamente in modo tale che il prossimo stato elettronico consentito si trovi sulla banda successiva e fra questa banda e la banda completamente riempita c'è una banda proibita (band gap) di energie. In tal caso il solido è un dielettrico.
- Si parla infine di semiconduttore nel caso di un isolante in cui la banda proibita è talmente piccola che a temperatura ambiente c'è una certa probabilità che gli elettroni si trovino a saltare la banda proibita per agitazione termica, e dunque il sistema si trovi in una situazione prossima a quella di un metallo, con valori di conducibilità elettrica non nulli.

(N.B paragrafo proveniente da Wikipedia)