Assignment-3: Basics of Statistics

IITG AI-ML Course

March 11, 2020

- 1. Visualizing mean, median, mode and their weighted versions:
 - (a) Generate a 1-d dataset by randomly drawing 1000 points from an uniform distribution of range[-100,100].
 - (b) Generate a set of 1000 weight values by drawing 1000 values from a normal distribution of mean 0 and variance 4.
 - (c) Compute the mean, median, mode.
 - (d) Compute the weighted mean, weighted median, weighted mode, where the i^{th} weight value corresonds to the i^{th} element in the dataset.
 - i. The weighted mean can be computed from the formula: $\frac{\sum_{i=1}^n w_i * x_i}{\sum_{i=1}^n w_i}$
 - ii. For calculation of the weighted median, the frequency value for the i^{th} point is given by $w_i/\Sigma w_i$.
 - iii. For the weighted mode, the weight w_i is proportional to the number of occurrence of the i^{th} element.
 - (e) Visualize the mean, median, mode and their weighted versions on a histogram with proper colouring to distinguish them.

2. Correlation between variables:

- (a) Consider the equation of the straight line y = mx where $m = \tan \theta$ and θ varies from 5° to 185° in steps of 10°.
- (b) Add random Gaussian noise to each of the y values obtained from the straight line equation to obtain a set of noisy values \hat{y}
- (c) Compute the correlation co-efficient between x and \hat{y} for each value of θ .
- (d) Plot the correlation values against the θ values.