(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年5 月30 日 (30.05.2003)

PCT

(10) 国際公開番号 WO 03/044188 A1

(51) 国際特許分類7: C12N 15/00, 5/10, A61K 48/00, 31/713, G01N 33/50, 33/15

(SAIGO,Kaoru) [JP/JP]; 〒168-0063 東京都 杉並区 和 泉 4-3 1-7 Tokyo (JP).

(21) 国際出願番号: PCT/JP02/12183 (74) 代理人: 小栗 昌平, 外(OGURI, Shohei et al.); 〒107-6028 東京都港区赤坂一丁目12番32号アーク森 ビル28階 栄光特許事務所 Tokyo (JP).

2002年11月21日(21.11.2002) (22) 国際出願日:

> (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,

(25) 国際出願の言語: 日本語

2001年11月21日(21.11.2001)

(26) 国際公開の言語: 日本語

(84) 指定国 (広域): ARIPO 特許 (GH. GM. KE. LS. MW. (71) 出願人 (米国を除く全ての指定国について): 三菱化 MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ 特許 (AT, BE, BG, CII, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC. NL, PT, SE, SK, TR), OAPI 特

(30) 優先権データ: 特願 2001-355896

学株式会社 (MITSUBISHI CHEMICAL CORPORA-TION) [JP/JP]; 〒100-0005 東京都 千代田区 丸の内二 丁目5番2号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 程 久美子 (TEI,Kumiko) [JP/JP]; 〒113-0032 東京都 文京区 弥生 1-5-1 第2東亜マンション503号 Tokyo (JP). 梶隆英 (KAJI, Takahide) [JP/JP]; 〒227-8502 神奈川 県 横浜市 青葉区鴨志田町1000番地 三菱化学株式 会社内 Kanagawa (JP). 上田 龍 (UEDA, Ryu) [JP/JP]; 〒194-8511 東京都 町田市 南大谷11号 株式会 社三菱化学生命科学研究所内 Tokyo (JP). 西郷 薫

添付公開書類:

国際調査報告書

NE, SN, TD, TG).

ZM, ZW.

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

許(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

(54) Title: METHOD OF INHIBITING GENE EXPRESSION

(54) 発明の名称: 遺伝子発現阻害方法

(57) Abstract: A method of inhibiting the expression of a target gene which comprises transferring a double-stranded polynucleotide consisting of a DNA having a sequence substantially identical with at least a part of the base sequence of the target gene and RNA into a cell, a tissue or an individual.

(57) 要約:

本発明は、標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有 する DNA と RNA からなる2本鎖ポリヌクレオチドを、細胞、組織、あるいは個 体に導入することによる標的遺伝子の発現阻害方法に関する。

WO 03/044188 A1

明 細 書

遗伝子発現阻害方法

技術分野

本発明は、標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有する DNA と RNA からなる 2 本鎖ポリヌクレオチドを、細胞、組織、あるいは個体に導入することによる標的遺伝子の発現阻害方法に関する。

背景技術

細胞、組織、あるいは個体内の標的遺伝子の発現阻害方法のひとつとして2本鎖 RNA を該細胞、組織、あるいは個体内に導入することによりその配列に相同性を持つ mRNA の分解を促進し、結果的に mRNA の鋳型となる遺伝子の発現を阻害する(以下この効果を「RNAi 効果」と称することがある)方法(以下これを「RNAi 法」と称することがある)がある。この手法はこれまで植物(Waterhouse、P. M., et al., Proc. Natl. Acad. Sci. USA., 95, 13959·13964 (1998))、トリパノソーマ(Ngo, H. et al., Proc. Natl. Acad. Sci. USA., 95, 14687·14692(1998))、ヒドラ(Lohmann、J. U., et al., Dev. Biol. ,214, 211·214(1999))、プラナリア(Sanchez Alvarado, et al., Proc.Natl. Acad. Sci. USA., 96, 5049·5054 (1999))、線虫(Fire, A., et al., Nature, 391, 806·811 (1998))、ショウジョウバエ(Kannerdell、J. R., et al., Cell、95, 1017·1026 (1998);Misquitta, L., et al., Proc.Natl. Acad. Sci. USA., 96, 1451·1456(1999))の個体で効果的であることが報告されている。

また、脊椎動物においてその効果は限定的であるとされていたが、3 末端に 2 ベース突出したそれぞれ 1 9 ヌクレオチドからなる 2 本鎖 RNA を用いれば、 脊椎動物の培養細胞において、RNAi 効果が見られることが報告されている (Elbashir, S., et al., Nature, 411, 494·498(2001))。後述する遺伝子機能の同定 や、有用物質生産に適した細胞株等のスクリーニング方法において、RNAi 法を 用いる優位性は明らかであるが、RNA は特に 1 本鎖の状態では RNA 分解酵素に

よって極めて容易に分解され、かつ製造費用が高額であるという問題点がある。 従って、RNAi 法に用い得る安定性の高いポリヌクレオチドの開発が望まれてい た。

発明の開示

本発明は、DNAを含むことにより安定性の高まった2本鎖ポリヌクレオチドを細胞、組織、あるいは個体に導入することにより、該ポリヌクレオチドが有する塩基配列と実質的に一部が同一の配列を有する標的遺伝子の発現を阻害する方法を提供すること等を課題とする。

本発明者らは、上記課題を解決するために鋭意努力を重ねた結果、ハムスター培養細胞である CHO・KI において、ルシフェラーゼ遺伝子の一部の塩基配列を有する DNA と RNA のハイブリッドである 2 本鎖ポリヌクレオチド、および DNA と RNA のキメラである 2 本鎖ポリヌクレオチドを導入したところ、該細胞内においてルシフェラーゼ遺伝子の発現が阻害されることを見いだし、本発明を完成させるに至った。

即ち、本発明によれば、下記(1)~(24)に記載の発明が提供される。

- (1)標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有する DNAと RNA からなる2本鎖ポリヌクレオチドを、細胞、組織、あるいは個体に 導入することを特徴とする標的遺伝子の発現阻害方法。
- (2) 2本鎖ポリヌクレオチドが、自己相補性を有する1本鎖からなることを特 徴とする上記(1)に記載の方法。
- (3) 2本鎖ポリヌクレオチドが、DNA 鎖と RNA 鎖のハイブリッドであること を特徴とする上記(1)または(2)に記載の方法。
- (4) DNA 鎖と RNA 鎖のハイブリッドが、センス鎖が DNA で、アンチセンス 鎖が RNA であることを特徴とする上記 (3) に記載の方法。
- (5) 2本鎖ポリヌクレオチドが、DNA RNA のキメラであることを特徴とする上記(1)または(2)に記載の方法。
- (6) 2本鎖ポリヌクレオチドが、該ポリヌクレオチドのうち、少なくとも上流側の一部が RNA であることを特徴とする上記 (1) ~ (5) のいずれかに記載

の方法。

(7)上流側の一部が、9~13ヌクレオチドからなることを特徴とする上記(6) に記載の方法。

- (9) 標的遺伝子が、複数であることを特徴とする上記 (1) \sim (8) のいずれかに記載の方法。
- (10)上記(1)~(9)のいずれかに記載の方法による標的遺伝子の発現阻害の結果、該細胞、組織、あるいは個体に現れる表現型の変化を解析することを特徴とする遺伝子の機能解析方法。
- (11)上記(1)~(9)のいずれかに記載の方法を用いた標的遺伝子の発現の阻害により、細胞、組織、あるいは個体に特定の性質を付与する方法。
- (12)上記(11)に記載の方法により得られる細胞、組織、あるいは個体。
- (13)上記(12)に記載の細胞、組織、あるいは個体に被検物質を添加し、 該細胞、組織、あるいは個体に付与された性質の変化を解析することを特徴とす る、標的遺伝子が関与する疾病の予防、及び/または治療剤のスクリーニング方 法。
- (14)上記(13)に記載の方法により得られた物質を有効成分とする標的遺伝子が関与する疾患の予防、及び/または治療剤。
- (15)上記(13)に記載の方法により選抜された物質を製剤化することを特徴とする標的遺伝子が関与する疾患の予防、及び/または治療剤の製造方法。
- (16)上記(1)~(9)のいずれかに記載の方法において、細胞、組織、あるいは個体にさらにインディケータータンパク質をコードする DNA を含む発現ベクターを導入して、該インディケータータンパク質から発せられる信号量が、特定の強さ以上のものを選択して解析することを特徴とする方法。
- (17)上記(1)~(9)のいずれかに記載の方法において、細胞、組織、あるいは個体にさらにインディケータータンパク質をコードする DNA を含む発現ベクター、及び該 DNA の少なくとも一部の塩基配列と実質的に同一の配列から

なり、かつ DNA を含む 2 本鎖 RNA を細胞に導入して、該インディケータータンパク質から発せられる信号量が減弱した細胞、組織、あるいは個体を選択して解析することを特徴とする方法。

- (18) インディケータータンパク質が、タンパク質量とそれが発する信号量と が比例して変化していくものである上記(16) または(17) に記載の方法。
- (19) インディケータータンパク質が、ルシフェラーゼである上記(16)~
- (18) のいずれかに記載の方法。
- (20)(i)標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有する2本鎖ポリヌクレオチドであってDNAとRNAのキメラからなるものを作製し、(ii) 該2本鎖ポリヌクレオチドを細胞、組織、あるいは個体に導入し、(iii) 該細胞、組織、あるいは個体中の標的遺伝子の発現阻害度を測定し、(iv) 標的遺伝子の発現阻害に RNA であることが必要とされる配列を特定することを特徴とする RNAi 法における RNA の機能部位の同定方法。
- (21) 2本鎖ポリヌクレオチドが、その2本鎖のどちらか一方が RNA 鎖であることを特徴とする上記(20)に記載の方法。
- (22) 上記(1) \sim (11)、(13)、(15) \sim (21) のいずれかに記載の 方法に用いるための2本鎖ポリヌクレオチド。
- (23) 少なくとも上記(22) に記載の2本鎖ポリヌクレオチドを含む標的遺伝子が関与する疾患の予防、及び/または治療剤。
- (24)少なくとも上記(22)に記載の2本鎖ポリヌクレオチドを含む上記(1) \sim (11)、(13)、(15) \sim (21) のいずれかに記載の方法を行うためのキット。

図面の簡単な説明

図1は、2本鎖ポリヌクレオチドの作製に使われた21ヌクレオチドからなるセンス1本鎖ポリヌクレオチドならびに21ヌクレオチドからなるアンチセンス1本鎖ポリヌクレオチドの配列を示す図である。いずれも左が5'末端、右が3'末端を意味し、太字がRNA、下線がDNAからなることを示す。

図2は、CHO-KI細胞に、DNA-RNAハイブリッドの2本鎖ポリヌクレオチド

を導入した場合の luc 遺伝子発現の阻害を示す図である。

図3は、S2細胞に、センス鎖がRNAで、アンチセンス鎖がDNA-RNAキメラである2本鎖ポリヌクレオチドを導入した場合のluc遺伝子発現の阻害を示す図である。

図 4 は、HeLa 細胞、及び HEK293 細胞に、アンチセンス鎖が RNA で、センス鎖が DNA-RNA キメラである 2 本鎖ポリヌクレオチドを導入した場合の luc 遺伝子発現の阻害を示す図である。

図5は、CHO-K1 細胞に、DNA-RNA キメラである2本鎖ポリヌクレオチドを導入した場合のluc 遺伝子発現の阻害を示す図である。

発明を実施するための最良の形態

以下、本発明についてさらに詳細に説明する。

(1) RNAi 法に用いるための DNA と RNA からなる 2 本鎖ポリヌクレオチド本発明は、標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有する DNA と RNA からなる 2 本鎖ポリヌクレオチドを、細胞、組織、あるいは個体に導入することを特徴とする標的遺伝子の発現阻害方法である。

本発明において、標的遺伝子とは、これを導入する細胞、組織、あるいは個体(以下これを「被導入体」と称することがある)に mRNA、及び任意にタンパク質を産出するように翻訳され得るものであれば如何なるものであってもよい。具体的には、導入する対象物の内在性のものでも、また外来性のものでもよい。また、染色体上に存在する遺伝子でも、染色体外のものでもよい。外来性のものとしては、例えば、被導入体に感染可能なウィルス、バクテリア、真菌または原生動物のような病原体由来のもの等が挙げられる。その機能については、既知のものでも、未知のものでもよく、また、他生物の細胞内では機能が既知であるが、被導入体内では機能が未知のもの等でもよい。

これらの遺伝子の少なくとも一部の塩基配列と実質的に同一な配列を有するDNAとRNAからなる2本鎖ポリヌクレオチド(以下、これを「2本鎖ポリヌクレオチド」と称することがある)とは、標的遺伝子の塩基配列のうち、いずれの部分でもよい20ヌクレオチド以上の配列と実質的に同一な配列からなるもので

ある。ここで、実質的に同一とは、標的遺伝子の配列と50%以上、好ましくは 70%以上、さらに好ましくは80%以上の相同性を有することを意味する。ヌ クレオチドの鎖長は19ヌクレオチドから標的遺伝子のオープンリーディングフ レーム (ORF) の全長までの如何なる長さでもよいが、19~500ヌクレオチ ドの鎖長を有するものが好ましく用いられる。ただし、哺乳類動物由来の細胞に おいては、30ヌクレオチド以上の鎖長を有する2本鎖 RNA に反応して活性化 するシグナル伝達系の存在が知られている。これはインターフェロン反応と呼ば れており (Mareus, P. I., et al., Interferon, 5, 115·180(1983))、該2本鎖RNA が細胞内に侵入すると、PKR (dsRNA-responsive protein kinase: Bass, B.L., Nature, 411, 428-429(2001)) を介して多くの遺伝子の翻訳開始が非特異的に阻 害され、それと同時に2'、5' oligoadenylate synthetase (Bass, B.L., Nature, 411, 428·429(2001)) を介して RNaseL の活性化が起こり、細胞内の RNA の非 特異的な分解が惹起される。これらの非特異的な反応のために、標的遺伝子の特 異的反応が隠蔽されてしまう。従って哺乳類動物、または該動物由来の細胞、あ るいは組織を被導入体として用いる場合には19~25、好ましくは19~23、 さらに好ましくは19~21ヌクレオチドからなる2本鎖ポリヌクレオチドが用 いられる。本発明の2本鎖ポリヌクレオチドは、その全体が2本鎖である必要は なく、5′、または3′末端が一部突出したものも含み、その突出末端は1~5ヌ クレオチド、好ましくは1~3ヌクレオチド、さらに好ましくは2ヌクレオチド である。また、最も好ましい例としては、各ポリヌクレオチド鎖の3、末端が2 ヌクレオチドずつ突出している構造を有するものが挙げられる。 2 本鎖ポリヌク レオチドは、相補性を有する部分が2本鎖となっているポリヌクレオチドを意味 するが、自己相補正を有する1本鎖ポリヌクレオチドが自己アニーリングしたも のでもよい。自己相補正を有する1本鎖ポリヌクレオチドとしては、例えば、逆 方向反復配列を有するもの等が挙げられる。

さらに、DNA と RNA の混合については、DNA 鎖と RNA 鎖のハイブリッド型や、DNA と RNA のキメラ型等が用いられる。DNA 鎖と RNA 鎖のハイブリッドは、それを被導入体に導入した際に、標的遺伝子の発現が阻害される活性を有するものである限り如何なるものであってもよいが、好ましくは、センス鎖が DNA

であり、アンチセンス鎖が RNA であるものが用いられる。また、DNA と RNA のキメラ型では、それを被導入体に導入した際に、標的遺伝子の発現が阻害され る活性を有するものである限り如何なるものであってもよい。 2本鎖ポリヌクレ オチドの安定性を高めるためにはDNAをできるだけ多く含むことが好ましいが、 本発明のキメラ型2本鎖ポリヌクレオチドのうち、RNAであることが標的遺伝子 の発現阻害に必要な配列については、後述する標的遺伝子の発現阻害度の解析を 行いながら発現阻害の起こる範囲で適宜決定していくことが望ましい。これによ り、RNAi 法における RNA の機能部位を同定することもできる。 かくして決定さ れたキメラ型の好ましい例としては、例えば、2本鎖ポリヌクレオチドの上流側 の一部が RNA であるものが挙げられる。ここで、上流側とは、センス鎖の5° 側およびアンチセンス鎖の3'側を意味する。上流側の一部とは、上記2本鎖ポ リヌクレオチドの上流の末端から9~13ヌクレオチドの部分が好ましく挙げら れる。また、このようなキメラ型2本鎖ポリヌクレオチドとして好ましい例とし ては、ポリヌクレオチドの鎖長がそれぞれ19~21ポリヌクレオチドからなり、 該ポリヌクレオチドのうち、少なくとも上流側1/2がRNAで、それ以外がDNA である2本鎖ポリヌクレオチドが挙げられる。また、このような2本鎖ポリヌク レオチドにおいて、アンチセンス鎖が全て RNA であると、標的伝子の発現阻害 効果はさらに高い。

2本鎖ポリヌクレオチドの調製方法としては、特に制限はないが、それ自体既知の化学合成方法を用いることが好ましい。化学合成は、相補性を有する1本鎖ポリヌクレオチドを別個に合成し、これを適当な方法で会合させることにより2本鎖とすることができる。会合の方法として具体的には、例えば、合成した1本鎖ポリヌクレオチドを好ましくは少なくとも約3:7のモル比で、より好ましくは約4:6のモル比で、そして最も好ましくは本質的に同モル量(すなわち約5:5のモル比)で混合し、2本鎖が解離する温度にまで加熱し、その後徐々に冷却する方法等が挙げられる。会合した2本鎖ポリヌクレオチドは、必要に応じてそれ自体公知の通常用いられる方法により精製される。精製方法としては、例えばアガロースゲル等を用いて確認し、任意に残存する1本鎖ポリヌクレオチドを適当な酵素により分解する等して除去する方法を用いることができる。

また、自己相補正を有する1本鎖ポリヌクレオチドとして、逆方向反復配列を有するものを調製する場合には、該ポリヌクレオチドを化学合成等の方法で作製した後に上記と同様の方法で自己相補性を有する配列を会合させることにより調製する。

(2) 2本鎖ポリヌクレオチドの細胞、組織、あるいは個体への導入、及び標的 遺伝子の発現阻害

このようにして調製した2本鎖ポリヌクレオチドを導入する被導入体としては、標的遺伝子がその細胞内でRNAに転写、またはタンパク質に翻訳され得るものであれば如何なるものであってもよい。具体的には、本発明で用いる被導入体は、細胞、組織、あるいは個体を意味する。

本発明に用いられる細胞としては、生殖系列細胞、体性細胞、分化全能細胞、多分化能細胞、分割細胞、非分割細胞、実質組織細胞、上皮細胞、不滅化細胞、または形質転換細胞等何れのものであってもよい。具体的には、例えば、幹細胞のような未分化細胞、器官または組織由来の細胞あるいはその分化細胞等が挙げられる。組織としては、単一細胞胚または構成性細胞、または多重細胞胚、胎児組織等を含む。また、上記分化細胞としては、例えば、脂肪細胞、繊維芽細胞、筋細胞、心筋細胞、内皮細胞、神経細胞、グリア、血液細胞、巨核球、リンパ球、マクロファージ、好中球、好酸球、好塩基球、マスト細胞、白血球、顆粒球、ケラチン生成細胞、軟骨細胞、骨芽細胞、破骨細胞、肝細胞および内分泌線または外分泌腺の細胞等が挙げられる。このような細胞の具体例としては、CHO-KI細胞(RIKEN Cell bank)、ショウジョウバエS2細胞(Schneider, I., et al., J. Embryol. Exp. Morph., 27, 353·365(1972))、ヒト HeLa 細胞(ATCC: CCL-2)、あるいはヒト HEK293 細胞(ATCC: CRL-1573)等が好ましく用いられる。さらに、本発明で被導入体となる個体として、具体的には、植物、動物、原生

動物、ウィルス、バクテリア、または真菌種に属するもの等が挙げられる。植物は単子葉植物、双子葉植物または裸子植物であってよく、動物は、脊椎動物または無脊椎動物であってよい。本発明の被導入体として好ましい微生物は、農業で、または工業によって使用されるものであり、そして植物または動物に対して病原

性のものである。真菌には、カビ及び酵母形態両方での生物体が含まれる。脊椎動物の例には、魚類、ウシ、ヤギ、ブタ、ヒツジ、ハムスター、マウス、ラット、サル及びヒトを含む哺乳動物が含まれ、無脊椎動物には、線虫類及び他の虫類、キイロショウジョウバエ(Drosophila)、および他の昆虫が含まれる。

被導入体への2本鎖ポリヌクレオチドの導入法としては、被導入体が細胞、あるいは組織の場合は、カルシウムフォスフェート法、エレクトロポレーション法、リポフェクション法、ウィルス感染、2本鎖ポリヌクレオチド溶液への浸漬、あるいは形質転換法等が用いられる。また、胚に導入する方法としては、マイクロインジェクション、エレクトロポレーション法、あるいはウィスル感染等が挙げられる。被導入体が植物の場合には、植物体の体腔または間質細胞等への注入または灌流、あるいは噴霧による方法が用いられる。また、動物個体の場合には、経口、局所、(皮下、筋肉内及び静脈内投与を含む) 非経口、経膣、経直腸、経鼻、経眼、腹膜内投与等によって全身的に導入する方法、あるいはエレクトロポレーション法やウィルス感染等が用いられる。経口導入のための方法には、2本鎖ポリヌクレオチドを生物の食物と直接混合することができる。さらに、個体に導入する場合には、例えば埋め込み長期放出製剤等として投与することや、2本鎖ポリヌクレオチドを導入した導入体を摂取させることにより行うこともできる。

導入する2本鎖ポリヌクレオチドの量は、導入体や、標的遺伝子によって適宜 選択することができるが、細胞あたり少なくとも1コピー導入されるに充分量を 導入することが好ましい。具体的には、例えば、被導入体がヒト培養細胞で、カ ルシウムフォスフェート法により2本鎖ポリヌクレオチドを導入する場合、0. 1~1000nMが好ましい。

ここで、2本鎖ポリヌクレオチドは、2種類以上のものを同時に導入すること もできる。この場合、該ポリヌクレオチドの導入を受けた細胞、組織、あるいは 個体(以下これを「導入体」と称することがある)においては、2種類以上の標 的遺伝子の発現阻害が期待される。

本発明において、標的遺伝子の発現阻害とは、その発現を完全に阻害することだけでなく、m·RNA、もしくはタンパク質の発現量として20%以上の阻害を意味する。標的遺伝子の発現阻害度は、標的遺伝子のRNAの蓄積、または標的遺

伝子によってコードされるタンパク質の産出量を、2本鎖ポリヌクレオチドの導入体と非導入体において比較することにより測定することができる。mRNA量は、それ自体既知の通常用いられる方法により測定することができる。具体的には、例えば、ノーザンハイブリダイゼーション、定量的リバーストランスフェレースPCR、あるいは In situ hybridization 等を用いて行うことができる。また、タンパク質の産生量は、標的遺伝子がコードするタンパク質を抗原とする抗体によるウェスタンブロッティング法や、標的遺伝子がコードするタンパク質が有する酵素活性を測定すること等により測定することができる。

(3) 導入体内の遺伝子の発現阻害による遺伝子機能解析方法

本発明の2本鎖ポリヌクレオチドによる導入体内の遺伝子の発現阻害の結果、 該導入体に現れる表現型の変化を解析することにより導入した2本鎖ポリヌクレ オチドが標的とする遺伝子の機能を同定することができる。

ここで、標的遺伝子はその機能が既知であっても、被導入体内での機能が未知 のものであってもよい。該標的遺伝子に対応する2本鎖ポリヌクレオチドは上記 (1) に記載のとおり調製され、(2) に記載の被導入体に同様にして導入する。 導入体でその変化を解析すべき表現型は特に制限はされないが、例えば導入体の 形態、導入体内物質量、導入体が分泌する物質量、導入体内物質の動態、導入体 間接着、導入体の運動、あるいは導入体の寿命等の生命体行動が挙げられる。標 的遺伝子の機能が、他の被導入体において既知の場合には、その機能に連関する 表現型について解析することが好ましい。表現型の変化を解析する手段としては、 導入体の形態の変化を解析する場合には、顕微鏡、あるいは肉眼的に検出する方 法を用いることができる。また、導入体内の物質として、例えば mRNA の場合 には、その量の解析方法として、ノーザンハイブリダイゼーション、定量的リバ ーストランスフェレース PCR、あるいは In situ hybridization 等が挙げられる。 タンパク質の場合には、その量の解析方法として、標的遺伝子がコードするタン パク質を抗原とする抗体によるウェスタンブロッティング法や、標的遺伝子がコ ードするタンパク質が有する酵素活性を測定する方法等が挙げられる。このよう にして解析した、導入体にのみ現れる表現型の変化は、標的遺伝子の発現阻害の

結果生じているものであるので、これを標的遺伝子の機能として同定することが できる。

(4) 2本鎖ポリヌクレオチドを用いた標的遺伝子発現阻害により細胞、組織、 あるいは個体に特定の性質を付与する方法

本発明の2本鎖ポリヌクレオチドを用いた標的遺伝子の発現阻害により、細胞、 組織、あるいは個体に特定の性質を付与することができる。特定の性質とは、標 的遺伝子の発現阻害の結果、該導入体に現れるものをさす。ここでの標的遺伝子 としては、その発現の阻害が導入体に与える性質がすでに判明しているものでも よいし、機能、もしくは導入体内での機能が未知のものでもよい。機能が未知の 標的遺伝子については、これに対する2本鎖ポリヌクレオチドを導入した後に、 該導入体が示す表現型のうち所望のものを選択することにより、該導入体に所望 の性質を付与することができる。

被導入体に付与するべき所望の性質として、具体的には、例えば、細胞内生産機能、細胞外分泌を阻害する機能、細胞や DNA に対する障害の修復機能、特定の疾患に対する耐性機能等が挙げられる。具体的には、被導入体が植物個体等の場合、標的遺伝子としては、果実熟成に関連する酵素、植物構造タンパク質、若しくは病原性に関連する遺伝子等が挙げられる。

標的遺伝子の発現阻害が、特定の疾患に対する耐性機能を有する場合としては、特定のタンパク質の発現の上昇が特定の疾患の原因となる場合で、標的遺伝子は、上記タンパク質をコードする遺伝子や、上記タンパク質の発現を制御する機能を有するタンパク質をコードする遺伝子等が挙げられる。具体的例としては、標的遺伝子が癌化/腫瘍化表現型の保持に必要である遺伝子であり、被導入体が癌性細胞、または腫瘍組織等である。

このような標的遺伝子に対する2本鎖ポリヌクレオチドは、標的遺伝子がコードするタンパク質の発現を阻害することから、標的遺伝子が関連する疾患の治療または予防薬として用いることができる。2本鎖ポリヌクレオチドを上記薬剤の有効成分として用いる場合には、該ポリヌクレオチドを単独で用いることも可能であるが、薬学的に許容され得る担体と配合して医薬品組成物として用いること

もできる。この時の有効成分の担体に対する割合は、1~90重量%の間で変動され得る。また、かかる薬剤は種々の形態で投与することができ、それらの投与形態としては、錠剤、カプセル剤、顆粒剤、散剤、あるいはシロップ剤等による経口投与、または注射剤、点滴剤、リポソーム剤、坐薬剤等による非経口投与を挙げることができる。また、その投与量は、症状、年齢、体重等によって適宜選択することができる。

このような遺伝子を標的とする2本鎖ポリヌクレオチドが導入された導入体は、その遺伝子発現阻害に付随すると予測される表現型によって選択される。また、導入する2本鎖ヌクレオチドにおいて、特定の遺伝標識、例えば蛍光タンパク質等をコードする配列を連結しておけば、被導入体に該2本鎖ポリヌクレオチドと共に導入した蛍光タンパク質の発現阻害度に基づいて選択することも可能である。このうち、例えばガン抑制に機能する遺伝子を標的遺伝子とした場合、選択されるべき細胞の形質としては、増殖能の亢進や、細胞接着能の低下、あるいは運動(転移)能の亢進等、悪性腫瘍の形質等が挙げられる。また、生体リズムを調製する遺伝子を標的遺伝子とした場合、選択されるべき細胞の形質としては、細胞固有の慨日リズムの消失等が挙げられる。さらには、環境変異原による DNA 損傷の修復等に関与する遺伝子を標的遺伝子とした場合、選択されるべき細胞の形質としては、変異原に対して感受性を示すこと等が挙げられる。

選択された導入体は、それぞれに適したそれ自体既知のクローン化技術により系として樹立、取得することができる。具体的には、被導入体が細胞である場合には、導入体は通常の培養細胞における細胞株樹立法である、限界希釈法、薬剤耐性マーカーによる方法等により細胞株として樹立、取得することができる。本発明で取得された特定の機能を付与された導入体は、有用物質の産生あるいは分泌効率が上昇した細胞株、細胞あるいは DNA 等に対する障害を与える環境要因に対して高感受性を示す細胞株、疾病に付随する形質を示し、疾病治療のモデルとして使用することができる。

このうち、疾病治療のモデルとなる細胞株の取得方法を、本発明のさらなる具体的な適用例として説明する。標的遺伝子としては、その発現量の低下、または 欠如が疾病の原因となる遺伝子が挙げられる。具体的には、アルツハイマー病に

おける PS 1 遺伝子、色素性乾皮症の XPA/XPD/XPF/XPG 遺伝子や DNA polymerase n 遺伝子、大腸ガンの APC 遺伝子、乳ガンの BRCA 1/BRCA 2 遺伝子、糖尿病の INS/INSR 遺伝子等が挙げられる。

これらのヒト遺伝子等の少なくとも一部の塩基配列と実質的に同一の配列を有する DNA と RNA からなる 2 本鎖ポリヌクレオチドを、例えばヒト由来の培養細胞に導入することにより、ヒト型の疾病モデル細胞を取得することができる。

さらにこの特定の性質を付与された細胞、組織、あるいは個体に被検物質を接触させて、その遺伝子が関与する疾病の症状、あるいは形質に変化が現れるか否かを解析することによれば、上記疾病の治療剤、及び/または予防剤のスクリーニングを行うことも可能である。

このようなスクリーニングにより選択された物質を上記薬剤の有効成分として用いる場合には、該物質を単独で用いることも可能であるが、薬学的に許容され得る担体と配合して医薬品組成物として用いることもできる。この時の有効成分の担体に対する割合は、1~90重量%の間で変動され得る。また、かかる薬剤は種々の形態で投与することができ、それらの投与形態としては、錠剤、カプセル剤、顆粒剤、散剤、あるいはシロップ剤等による経口投与、または注射剤、点滴剤、リポソーム剤、坐薬剤等による非経口投与を挙げることができる。また、その投与量は、症状、年齢、体重等によって適宜選択することができる。

(5) インディケーター遺伝子の発現阻害度を指標とした一次選択を用いる方法本発明の上記(1)~(4) に記載した方法は、被導入体に標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有する DNA と RNA からなる 2本鎖ポリヌクレオチドを導入する方法であるが、本発明の方法では、さらに(a)インディケータータンパク質をコードする DNA を含む発現ベクター、(b) 該インディケータータンパク質をコードする塩基配列の少なくとも一部の塩基配列と実質的に同一の配列を有する DNA と RNA からなる 2本鎖ポリヌクレオチドを導入し、該インディケータータンパク質から発せられる信号量を指標として導入体を一次スクリーニングすることにより、導入体内での遺伝子の発現阻害がかかった導入体のみを解析することができ、効率的な解析を行うことができる。

本発明のさらに具体的な例として、被導入体を脊椎動物由来の培養細胞とし、インディケータータンパク質を蛍光タンパク質とした場合を説明する。脊椎動物由来の培養細胞に蛍光タンパク質をコードする DNA を含む発現ベクターを導入して培養し、該インディケータータンパク質から発せられる蛍光量が、特定の強さ以上の細胞を選択する。ここで選択された細胞に、さらにインディケータータンパク質をコードする DNA の少なくとも一部の塩基配列と実質的に同一の配列を有する DNA と RNA からなる 2 本鎖ポリヌクレオチドを導入して培養して、インディケーター遺伝子の発現の阻害度を、該インディケータータンパク質から発せられる蛍光量の減弱度により解析する。

このような一次スクリーニングは、いずれも被導入体への2本鎖ポリヌクレオチドの導入が行われたことや、該導入体内で標的遺伝子の発現阻害が起こっていることを確認するものであるので、インディケータータンパク質は、そのタンパク質量とそれが発する信号量とが相関するものである必要がある。このようなタンパク質の具体例としては、ルシフェラーゼタンパク質が挙げられる。

さらには、標的遺伝子発現の阻害度を測定する場合に、インディケータータンパク質の発現量を基準として、標的遺伝子がコードするタンパク質量を算出することもできる。

(6) 本発明に用いられるキット

上記(1)~(5)に記載した方法を行うためのキットとしては、2本鎖ポリヌクレオチド、インディケータータンパク質をコードするDNAを含むベクター、インディケーター遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有するDNAとRNAからなる2本鎖ポリヌクレオチド、酵素、バッファー等の試薬類、ポリヌクレオチオド導入のための試薬類等が含まれる。本発明のキットは、これら全ての試薬類等を含む必要はなく、上記した本発明の方法に用いられるキットであればいかなる試薬類等の組み合わせであってもよい。

実施例

以下、本発明を実施例によりさらに具体的に説明するが、下記の実施例は本発

明についての具体的認識を得るための一助とみなすべきものであり、本発明の範囲は下記の実施例により何ら限定されるものではない。

実施例1 CHO·KI 細胞内に導入した 2 本鎖 DNA·RNA ハイブリッドによる標的 遺伝子の発現阻害

(1) DNA-RNA ハイブリッド型 2 本鎖ポリヌクレオチドの作成

標的遺伝子としてはホタル (Photinus pyralis) の luciferase 遺伝子 (P. pyralis luc 遺伝子: accession number: U47296) を用い、これを含む発現ベクターとしては pGL3-Control ベクター (Promega 社製) を用いた。P. pyralis luc 遺伝子断片はこのベクター中で SV40のプロモーターとポリ A シグナルで挟まれた形になっている。またインディケーター遺伝子はウミシイタケ (Renilla reniformis)の luciferase 遺伝子を用い、これを含む発現ベクターとして pRL-TK (Promega 社製) を用いた。

本実施例に用いた 2 本鎖ポリヌクレオチドの作製に使われた、 2 1ヌクレオチドからなるセンス鎖は配列番号 1 (DNA) または配列番号 2 (RNA) で示すものである。また、アンチセンス鎖は、配列番号 3 (DNA) または配列番号 4 (RNA) に示すものである。これらの配列について、DNA あるいは RNA のキメラ型 1 本鎖ポリヌクレオチドを図 1 に示すとおりに作製した。これらのポリヌクレオチドは日立計測器サービス株式会社を通じてジェンセット株式会社に合成を委託した。センス鎖ポリヌクレオチドの配列は、標的遺伝子である pGL3-Control ベクター中の P-pyralis luc 遺伝子(全長 1 , 6 5 3 塩基対)の 3 8 - 5 8 番目のヌクレオチドに相当する。

P.pyralis luc 遺伝子の発現を阻害するために用いた 2 本鎖 RNA、 2 本鎖 DNAならびに 2 本鎖 DNA・RNA ハイブリッドは、図 1 に示したセンス鎖 FLs 1 (RNA)または DFLs 1 (DNA)と、アンチセンス鎖 FLa 2 (RNA)または DFLa 2 (DNA)とを会合させることで作製した。会合は、センス 1 本鎖ポリヌクレオチド、アンチセンス 1 本鎖ポリヌクレオチドを 10 mM 1 Tris・HCl(1 H7.5),1 20 mM NaCl反応液中で 1 90 1 、1 公司 1 公司

し2本鎖ポリヌクレオチドが形成される。2本鎖ポリヌクレオチドの形成は、 TBE 緩衝液中での2%アガロースゲルでの電気泳動で検定するが、上記条件では 殆どすべての1本鎖ポリヌクレオチドが2本鎖ポリヌクレオチドに会合していた。

(2)標的遺伝子、インディケーター遺伝子、及び2本鎖ポリヌクレオチドの培養細胞への導入

培養細胞としては CHO-KI 細胞(RIKEN Cell bank)を用い、培地は Dulbecco's modified Eagle's medium (Gibco BRL 社製) に非働化 1 0 % 牛胎児血清 (Mitsubishi Kasei 社製) 及び抗生物質として penicillin (Meiji 社製) 1 0 units / ml、streptomycin (Meiji 社製) 5 0 μg/ml を添加したものを用い、3 7 ℃、5 % CO₂ 存在下で培養した。

この CHO-KI 細胞は 0. 3×1 0 6 cells/ml の濃度で 24 欠プレートにまき、 1 日後に Ca-phosphate 沈殿法(細胞工学ハンドブック、黒木登志夫ら編、羊土社(1992))で 1. 0μ g pGL3· Control DNA、 0. 5μ g pRL-TK DNA、 及び 0. 0 1、 0. 1、 1、 10、 100 nM の各 2本鎖ポリヌクレオチドを導入した。

(3) 培養細胞内の遺伝子発現の測定

上記実施例 1 (2) で調製した細胞は 2 0 時間後に回収し、Dual·Luciferase Reporter Assay System (Promega 社製)を用いて、2種類のルシフェラーゼ (Photinus pyralis luc 及び Renilla reniformis luc) タンパク質の発現量 (ルシフェラーゼ活性)を測定した。蛍光の測定は Lumat LB 9 5 0 7 luminometer (EG&G Berthold)を用いて行った。

CHO-KI 細胞に導入した遺伝子の発現は、DNA-RNA ハイブリッド型2本鎖ポリヌクレオチドによって阻害された(図2)。値はいずれも、インディケーター遺伝子の発現量(ルシフェラーゼ酵素活性)に対する標的遺伝子産物の非活性を示す。またこれらは3回の実験の平均値を示しており、図中の縦棒は標準偏差を示す。2本鎖ポリヌクレオチドを導入していない対照群に比べ、2本鎖 RNA 導入群の場合には2本鎖ポリヌクレオチドを100nM 添加したとき、96%、セン

ス鎖が DNA でアンチセンス鎖が RNA の2本鎖ポリヌクレオチド導入群では80%の標的遺伝子発現の阻害が観察された。即ち、2本鎖ポリヌクレオチドのセンス側が DNA であったとしてもアンチセンス側が RNA であれば、2本鎖 RNA に比べて効果が弱いながら、CHO-KI 細胞での遺伝子発現を阻害し得ることが証明された。

実施例 2 ショウジョウバエS 2 細胞内に導入した DNA-RNA キメラ型 2 本鎖 ポリヌクレオチドによる遺伝子の発現阻害

(1) DNA-RNA キメラ型 2本鎖ポリヌクレオチドの作製

標的遺伝子としては実施例1と同様のPhotinus pyralisのluciferase 遺伝子(P. pyralis luc 遺伝子: accession number: U47296)を用いた。またインディケーター遺伝子はRenilla reniformisのluciferase 遺伝子を用いた。さらに発現ベクターも実施例1に記載のものを用いた。

本実施例に用いた2本鎖ポリヌクレオチドの作製に使われた、21ヌクレオチドからなるセンス鎖は配列番号1(DNA)または配列番号2(RNA)で示すものである。また、アンチセンス鎖は、配列番号3(DNA)または配列番号4(RNA)に示すものである。これらの配列について、DNA あるいは RNA のキメラ型1本鎖ポリヌクレオチドを図1に示すとおりに作製した。これらのポリヌクレオチドは日立計測器サービス株式会社を通じてジェンセット株式会社に合成を委託した。

P. pyralis luc 遺伝子の発現を阻害するために用いる DNA·RNA キメラ型 2本鎖ポリヌクレオチドは、図1に示したセンス鎖 FLs1(1本鎖 RNA)とアンチセンス鎖 FLa2·1、Fla2·2、Fla2·3、Fla2·4、Fla2·5、Fla2·6、Fla2·7、Fla2·8、FLa2·9、Fla2·10(DNA·RNA キメラ型 1本鎖ポリヌクレオチド)とをそれぞれ会合させることで作製した。 会合の方法としてはセンス 1本鎖 RNA、アンチセンスDNA·RNA キメラ型 1本鎖ポリヌクレオチドを実施例 1と同様にして反応させた。2本鎖ポリヌクレオチドの産生は TBE 緩衝液中での 2 %アガロースゲルでの電気泳動で検定した。

(2) 標的遺伝子、インディケーター遺伝子、及び DNA-RNA キメラ型 2 本鎖ポ

リヌクレオチドの培養細胞への導入

培養細胞としてはショウジョウバエS 2 細胞(Schneider, I., et al., J. Embryol. Exp. Morph., 27, 353-365(1972))を用い、培地は Schneider's Drosophila medium(Gibco BRL 社製)に非働化 10% 年胎児血清(Mitsubishi Kasei 社製)及び抗生物質として penicillin(Meiji 社製) 10 units/ml、streptomycin(Meiji 社製) 50μ g/ml を添加したものを用い、25%、5% CO_2 存在下で培養した。

このS 2 細胞は 1.0×10 6 cells/ml の濃度で 2 4 穴プレートにまき、1日後に Ca-phosphate 沈殿法(細胞工学ハンドブック、黒木登志夫ら編、羊土社(1992))で 1.0 μ g pGL·3 Control DNA、0.05 μ g pRL-TK DNA、及び 100 nM の各 2 本鎖ポリヌクレオチドを導入した。

(3) 培養細胞内の遺伝子発現の測定

上記実施例 2 (2) で調製した細胞は 2 0 時間後に回収し、Dual-Luciferase Reporter Assay System (Promega 社製) を用いて、2 種類のルシフェラーゼタンパク質の発現量を測定した。蛍光の測定は Lumat LB 9 5 0 7 luminometer (EG&G Berthold) を用いて行った。

S2細胞に導入した遺伝子の発現は、2本鎖のうちのセンス側をRNAに固定し、アンチセンス側をDNAとRNAのキメラ型ポリヌクレオチドにして作製した21 ヌクレオチドからなる DNA・RNA キメラ型2本鎖ポリヌクレオチドによって阻害された(図3)。値はいずれも、インディケーター遺伝子の発現量(ルシフェラーゼ活性)に対する標的遺伝子産物の比活性として求め、3回の実験の平均値、及び標準偏差で示した。2本鎖ポリヌクレオチドの内、アンチセンス側がFLa2、FLa2・2、FLa2・3、FLa2・9であるものは、2本鎖ポリヌクレオチドを導入していない対照群に比べ、それぞれ96%、92%、94%、91%、96%と、ほぼ同等に強く遺伝子発現を阻害した。アンチセンス側がFLa2・5であるものは、73%と比較的強い阻害効果を示した。アンチセンス側がFLa2・1、FLa2・4、FLa2・6、FLa2・7、FLa2・10 であるものは、全く阻害効果がないか、あるいは阻害が認められても極めて弱い効果であった。強い効果を示した2本鎖ポリヌク

レオチドに共通する特徴の一つは、アンチセンス鎖の配列上、5^{*}末端から13、14番目の2ヌクレオチドが RNA(UA)であることである。一方、効果の弱かった2本鎖ポリヌクレオチドにおいては、いずれもアンチセンス鎖配列上の同2ヌクレオチドがDNA(TA)であった。従って、S2細胞を用いた本実施例においては、この2ヌクレオチドが、強い RNAi 効果の発現にとって必要かつ十分の領域であることが示唆される。

本実施例においては、アンチセンス配列上のこの領域を含む部分を RNA として保存し、その他の部分を DNA に置換した 2 本鎖ポリヌクレオチドの導入によっても RNAi 効果が認められた。本実施例で用いたような方法ならびにその他の手法によって、RNAi 効果の発現に必要かつ十分とされる領域を特定あるいは予測し、この領域を含む部分を RNA として保存し、その他の部分を DNA に置換して作製したそれぞれ 2 1 ヌクレオチドからなる 2 本鎖ポリヌクレオチドは、RNAi 効果によって標的遺伝子の発現を阻害できると推測される。

実施例3 ヒト HeLa 細胞、及びヒト HEK293 細胞に導入した DNA·RNA キメ ラ型2本鎖ポリヌクレオチドによる遺伝子の発現阻害

(1) DNA-RNA キメラ型 2 本鎖ポリヌクレオチドの作製

標的遺伝子としては実施例 1 と同様に P.pyralis luc 遺伝子を用い、これを含む発現ベクターとしては、pGL3-Control ベクター (Promega 社製) を用いた。またインディケーター遺伝子はRenilla reniformis の luc 遺伝子を用い、これを含む発現ベクターとして pRL-TK (Promega 社製) を用いた。

本実施例に用いた 2 本鎖ポリヌクレオチドの作製に使われた、 2 1ヌクレオチドからなるセンス鎖は配列番号 1 (DNA) または配列番号 2 (RNA) で示すものである。また、アンチセンス鎖は、配列番号 3 (DNA) または配列番号 4 (RNA) に示すものである。これらの配列について、DNA あるいは RNA のキメラ型 1 本鎖ポリヌクレオチドを図 1 に示すとおりに作製した。これらのポリヌクレオチドは日立計測器サービス株式会社を通じてジェンセット株式会社に合成を委託した。センス鎖ポリヌクレオチドの配列は、標的遺伝子である pGL3-Control ベクター中の P-pyralis luc 遺伝子 (全長 1,6 5 3 塩基対) の 3 8 - 5 8 番目のヌクレオ

チドに相当する。

P.pyralis luc 遺伝子の発現を阻害するために用いた DNA-RNA キメラ型 2 本鎖ポリヌクレオチドは、図 1 に示したセンス鎖 FLs1-1、FLs1-2(DNA-RNA キメラ型 1 本鎖ポリヌクレオチド)とアンチセンス鎖 Fla2(1 本鎖 RNA)とをそれぞれ会合させることで作製した。会合の方法としてはセンス DNA-RNA キメラ型 1 本鎖ポリヌクレオチド、アンチセンス 1 本鎖 RNA を実施例 1 と同様にして反応させた。 2 本鎖ポリヌクレオチドの産生は TBE 緩衝液中での 2 %アガロースゲルでの電気泳動で検定した。

(2)標的遺伝子、インディケーター遺伝子、及び DNA·RNA キメラ型 2本鎖ポリヌクレオチドの培養細胞への導入

標的遺伝子を発現するための組換え発現ベクターは、上記(1)に記載のpGL3-Control を用い、インディケーター遺伝子の発現ベクターは、上記(1)に記載のpRL-TK を用いた。培養細胞としてはヒト HeLa 細胞(ATCC: CCL-2)、及びヒト HEK293 細胞(ATCC: CRL-1573)を用い、培地は Dulbecco's modified Eagle's medium(Gibco BRL 社製)に非働化10%牛胎児血清

(Mitsubishi Kasei 社製) 及び抗生物質として penicillin (Meiji 社製) 1 0 units /ml、streptomycin (Meiji 社製) 5 0 µg/ml を添加したものを用い、3 7℃、5%CO₂存在下で培養した。

HeLa 細胞、HEK293 細胞はそれぞれ 0. 5×1 0 6 cells/ml、0.2 5×1 0 6 cells/ml の濃度で 2 4 穴プレートにまき、1 日後に Ca-phosphate 沈殿法で 1 . 0 μ g pGL3-Control DNA、1 . 0 μ g pRL-TK DNA、及び 1 0 0 nM の各 DNA-RNA キメラ型 2 本鎖ポリヌクレオチドを導入した。

(3) 培養細胞内の遺伝子発現の測定

実施例1と同様に、上記実施例3(2)で調製した細胞は20時間後に回収し、Dual-Luciferase Reporter Assay System を用いて、2種類のルシフェラーゼタンパク質の発現量を測定した。蛍光の測定は Lumat LB9507 luminometerを用いて行った。

HeLa 細胞ならびに HEK293 細胞に導入した遺伝子の発現は、2本鎖のアンチセンス側を RNA に固定し、センス側を DNA と RNA のキメラポリヌクレオチドにして作製した 2 1 ヌクレオチドからなる 2 本鎖ポリヌクレオチドによって阻害された(図4)。値はいずれも、インディケーター遺伝子の発現量(ルシフェラーゼ酵素活性)に対する標的遺伝産物の比活性として求め、3 回の実験の平均値、及び標準偏差で示した。2 本鎖ポリヌクレオチドの内、センス側が FLs1・2 であるものを導入した群は、2 本鎖ポリヌクレオチドを導入していない対照群に比べ、90%(HeLa 細胞)、95%(HEK293 細胞)と、2 本鎖 RNA(FLs1/FLa2)導入群と同等の強い阻害効果を示した。FLs1・2 は配列上 5 ^{*}側の12 ヌクレオチドが RNA であり、その他の領域のヌクレオチドが DNA である。従って、HeLa 細胞ならびに HEK293 細胞を用いた本実施例においては、アンチセンス鎖を RNAとした場合、センス側の該12 ヌクレオチドの全体あるいはその一部が、強い RNAi 効果の発現にとって必要かつ十分の領域であることが示唆される。

実施例4ヒト CHO-K1 に導入した DNA-RNA キメラ型 2 本鎖ポリヌクレオチドによる遺伝子の発現阻害

(1) DNA-RNA キメラ型 2本鎖ポリヌクレオチドの作製

標的遺伝子としては実施例 1 と同様に P.pyralis luc 遺伝子を用い、これを含む発現ベクターとしては、pGL3-Control ベクター(Promega 社製)を用いた。またインディケーター遺伝子はR enilla reniformis の luc 遺伝子を用い、これを含む発現ベクターとして pRL-TK (Promega 社製)を用いた。

それぞれの塩基配列は、8-28のセンス鎖が配列番号5 (DNA)、6 (RNA)、アンチセンス鎖が配列番号7 (DNA)、8 (RNA) に示すものであり、38-58 8のセンス鎖が配列番号1 (DNA)、2 (RNA) で、アンチセンス鎖が配列番号

3 (DNA)、4 (RNA) に示すものである。また1087-1107のセンス鎖の塩基配列は配列番号9 (DNA)、10 (RNA) で、アンチセンス鎖が配列番号11 (DNA)、12 (RNA) で示すものである。

これらの配列について、上流側の約半分($10\sim13$ ヌクレオチド)がセンス、アンチセンス共に RNA であるもの(C)、上流側の約半分($10\sim13$ ヌクレオチド)がセンス、アンチセンス共に DNA であるもの(D)であるもの、アンチセンスが RNA であり、センス鎖の上流の約半分($10\sim13$ ヌクレオチド)が RNA であるもの(E)、センス鎖が RNA であり、アンチセンス鎖の上流の約半分($10\sim13$ ヌクレオチド)が DNA であるもの(F)を作製した。これらのポリヌクレオチドは日立計測器サービス株式会社を通じてジェンセット株式会社に合成を委託して、キメラ型ポリヌクレオチドとした後にそれぞれ会合させて作製した。会合方法としてはセンス、アンチセンス DNA・RNA キメラ型 1 本鎖ポリヌクレオチドを実施例 1 と同様にして反応させた。 2 本鎖ポリヌクレオチドの産生は TBE 緩衝液中での 2 %アガロースゲルでの電気泳動で検定した。

(2)標的遺伝子、インディケーター遺伝子、及び DNA·RNA キメラ型 2本鎖ポリヌクレオチドの培養細胞への導入

標的遺伝子を発現するための組換え発現ベクターは、上記(1)に記載の pGL3-Control を用い、インディケーター遺伝子の発現ベクターは、上記(1)に記載の pRL-TK を用いた。培養細胞としてはヒト CHO-K1 細胞(ATCC: CCL-61)を用い、培地は Dulbecco's modified Eagle's medium(Gibco BRL 社製)に非働化 1 0 % 牛胎児血清(Mitsubishi Kasei 社製)及び抗生物質として penicillin(Meiji 社製) 1 0 units/ml、streptomycin(Meiji 社製) 5 0 μ g/ml を添加したものを用い、3 7 $\mathbb C$ 、5 % $\mathbb C$ $\mathbb C$ 2 存在下で培養した。

CHO-K1 細胞はそれぞれ 0. 3×1 0 6 cells/ml の濃度で 2 4 穴プレートにまき、 1 日後に Ca-phosphate 沈殿法で 1 . 0 μ g pRL-TK DNA、 1 0 nM または 1 0 0 nM の各 DNA-RNA キメラ型 2 本鎖ポリヌクレオチドを導入した。

(3)培養細胞内の遺伝子発現の測定

実施例1と同様に、上記実施例4(2)で調製した細胞は20時間後に回収し、Dual-Luciferase Reporter Assay System を用いて、2種類のルシフェラーゼタンパク質の発現量を測定した。蛍光の測定は Lumat LB9507 luminometer を用いて行った。

2本鎖ポリヌクレオチドの構造およびコントロール(2本鎖ポリヌクレオチドを導入していない細胞)のルシフェラーゼ活性に対する該ポリヌクレオチドを導入した細胞のルシフェラーゼ活性を図5に示した。図中、白抜きの四角は RNA鎖を示し、黒い四角は DNA鎖を示す。図から明らかなように、いずれの塩基配列からなるポリヌクレオチドにおいても、CHO-K1細胞に導入した遺伝子の発現は、少なくともポリヌクレオチドの上流約半分を RNA としたそれぞれが21ヌクレオチドからなる2本鎖ポリヌクレオチドによって阻害された(図5(A)、(C)および(E))。

本実施例で用いたような方法ならびにその他の手法によって、RNAi 効果の発現に必要かつ十分とされる領域を特定あるいは予測し、この領域を含む部分をRNAとして保存し、その他の部分をDNAに置換して作製したそれぞれが21ヌクレオチドからなる2本鎖ポリヌクレオチドは、RNAi 効果によって標的遺伝子の発現を阻害できると推測される。

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。

本出願は、2001年11月21日出願の日本特許出願(特願2001-355896)に基づくものであり、その内容はここに参照として取り込まれる。

産業上の利用可能性

本発明によれば、培養細胞、組織、個体において、ヒトならびにその他の生物種の遺伝子が生体内でどのような機能を有するかを直接的に解析する手段が提供される。また、インディケーターを用いる方法によれば、RNAi 効果の発現が弱い細胞であっても、特に RNAi 効果の高く発現している細胞を一次スクリーニン

グすることができるため、効率のよい解析を行うことができる。

同目的に供される従来の発明技術としては、2本鎖 RNA の導入による RNAi 法が挙げられるが、RNA は特に1本鎖の状態では RNA 分解酵素によって極めて容易に分解され、かつ製造費用が高額であるという問題点がある。本発明では、導入するポリヌクレオチドが完全に RNA であることを限定しない。従って、DNAと RNA からなるポリヌクレオチド、具体的には DNA 鎖と RNA 鎖からなるハイブリッドポリヌクレオチド、又は DNA・RNA キメラポリヌクレオチドを用いることによって導入するポリヌクレオチドの物質としての安定性を高め、製造費用を低減することが可能である。このことから、本発明によれば、導入するポリヌクレオチド自体を疾患治療を目的とした製剤として開発することができる。また、DNA は RNA と比較して蛍光標識、ビオチン標識、アミン化、リン酸化、チオール化等の修飾をより多種にわたり容易に行うことができる。従って、医薬品あるいは試薬として使用する場合に、このような化学的修飾を行うことによって目的に応じた機能を付加することができる。

請 求 の 範 囲

1. 標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有する DNA と RNA からなる 2 本鎖ポリヌクレオチドを、細胞、組織、あるいは個体に 導入することを特徴とする標的遺伝子の発現阻害方法。

- 2. 2本鎖ポリヌクレオチドが、自己相補性を有する1本鎖からなることを特 徴とする請求項1に記載の方法。
- 3. 2本鎖ポリヌクレオチドが、DNA鎖とRNA鎖のハイブリッドであることを特徴とする請求項1または2に記載の方法。
- 4. DNA 鎖と RNA 鎖のハイブリッドが、センス鎖が DNA で、アンチセンス 鎖が RNA であることを特徴とする請求項 3 に記載の方法。
- 5. 2本鎖ポリヌクレオチドが、DNAとRNAのキメラであることを特徴とする請求項1または2に記載の方法。
- 6. 2本鎖ポリヌクレオチドが、該ポリヌクレオチドのうち、少なくとも上流側の一部がRNAであることを特徴とする請求項1~5のいずれかに記載の方法。
- 7. 上流側の一部が、9~13ヌクレオチドからなることを特徴とする請求項 6に記載の方法。
- 8. 2本鎖ポリヌクレオチドが、 $19\sim25$ ヌクレオチドからなり、該ポリヌクレオチドのうち、少なくとも上流1/2が RNA であることを特徴とする請求項 $1\sim6$ のいずれかに記載の方法。
- 9. 標的遺伝子が、複数であることを特徴とする請求項1~8のいずれかに記載の方法。
- 10. 請求項1~9のいずれかに記載の方法による標的遺伝子の発現阻害の結果、該細胞、組織、あるいは個体に現れる表現型の変化を解析することを特徴とする遺伝子の機能解析方法。
- 11. 請求項1~9のいずれかに記載の方法を用いた標的遺伝子の発現の阻害により、細胞、組織、あるいは個体に特定の性質を付与する方法。
- 12. 請求項11に記載の方法により得られる細胞、組織、あるいは個体。
- 13. 請求項12に記載の細胞、組織、あるいは個体に被検物質を添加し、該

細胞、組織、あるいは個体に付与された性質の変化を解析することを特徴とする、 標的遺伝子が関与する疾病の予防、及び/または治療剤のスクリーニング方法。

- 14. 請求項13に記載の方法により得られた物質を有効成分とする標的遺伝子が関与する疾患の予防、及び/または治療剤。
- 15. 請求項13に記載の方法により選抜された物質を製剤化することを特徴とする標的遺伝子が関与する疾患の予防、及び/または治療剤の製造方法。
- 16. 請求項1~9のいずれかに記載の方法において、細胞、組織、あるいは 個体にさらにインディケータータンパク質をコードする DNA を含む発現ベクタ ーを導入して、該インディケータータンパク質から発せられる信号量が、特定の 強さ以上のものを選択して解析することを特徴とする方法。
- 17. 請求項 $1\sim 9$ のいずれかに記載の方法において、細胞、組織、あるいは個体にさらにインディケータータンパク質をコードする DNA を含む発現ベクター、及び該 DNA の少なくとも一部の塩基配列と実質的に同一の配列からなり、かつ DNA を含む 2 本鎖 RNA を細胞に導入して、該インディケータータンパク質から発せられる信号量が減弱した細胞、組織、あるいは個体を選択して解析することを特徴とする方法。
- 18. インディケータータンパク質が、タンパク質量とそれが発する信号量とが比例して変化していくものである請求項16または17に記載の方法。
- 19. インディケータータンパク質が、ルシフェラーゼである請求項16~1 8のいずれかに記載の方法。
- 20. (i) 標的遺伝子の少なくとも一部の塩基配列と実質的に同一の配列を有する2本鎖ポリヌクレオチドであってDNAとRNAのキメラからなるものを作製し、(ii) 該2本鎖ポリヌクレオチドを細胞、組織、あるいは個体に導入し、(iii) 該細胞、組織、あるいは個体中の標的遺伝子の発現阻害度を測定し、(iv) 標的遺伝子の発現阻害に RNA であることが必要とされる配列を特定することを特徴とする RNAi 法における RNA の機能部位の同定方法。
- 21. 2本鎖ポリヌクレオチドが、その2本鎖のどちらか一方が RNA 鎖であることを特徴とする請求項20に記載の方法。
- 22. 請求項1~11、13、15~21のいずれかに記載の方法に用いるた

めの2本鎖ポリヌクレオチド。

23. 少なくとも請求項22に記載の2本鎖ポリヌクレオチドを含む標的遺伝子が関与する疾患の予防、及び/または治療剤。

24. 少なくとも請求項 2 2 に記載の 2 本鎖ポリヌクレオチドを含む請求項 1 ~ 1 1 3 、 1 5 ~ 2 1 のいずれかに記載の方法を行うためのキット。

図 1

センス鎖:

FLs1: CAUUCUAUCCGCUGGAAGAUG

DFLs1: CATTCTATCCGCTGGAAGATG

FLs1-1:CATTCTATCCGCUGGAAGAUG

FLs1-2:CAUUCUAUCCGCTGGAAGATG

アンチセンス鎖:

FLa2: UCUUCCAGCGGAUAGAAUGGC

DFLa2: TCTTCCAGCGGATAGAATGGC

FLa2-1: UCUUCCAGCGGATAGAAUGGC

FLa2-2: TCTTCCAGCGGAUAGAATGGC

FLa2-3: TCTUCCAGCGGAUAGAAUGGC

FLa2-4: UCUTCCAGCGGATAGAATGGC

FLa2-5: TCTTCCAGCGGAUAGAAUGGC

FLa2-6: UCUUCCAGCGGATAGAATGGC

FLa2-7: TCTTCCAGCGGATAGAATGGC

FLa2-8: UCUUCCAGCGGAUAGAAUGGC

FLa2-9: TCTTCCAGCGGAUAGAAUGGC

FLa2-10:UCUUCCAGCGGATAGAATGGC

図 2

図 3

図 4

図 5

10nM 100nM 10nM 10nM 10nM 10nM 100nM 96 1087-1107 31 Relative luciferase activity (%) 94 96 101 62 12 112 38-58 108 15 95 91 66 105 8-28 86 15 104 102 (A) $\widehat{\mathbb{C}}$ (B) (C)(E) (F)

SEQUENCE LISTING

<110> MITSUBISHI CHEMICAL CORPORATION

<120> Genetic Inhibition by doublestranded polynucleotide

<130> P-43361

<140> JP 2001-355896

<141> 2001-11-21

<160> 8

<170> PatentIn Ver. 2.0

<210> 1

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthesized

<400> 1

cattctatcc gctggaagat g

21

<210> 2

<211> 21

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthesized

<400> 2

cauucuaucc gcuggaagau g

21

<210> 3

<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:synthesized	
<400> 3	
tcttccagcg gatagaatgg c	21
<210> 4	
<211> 21	
<212> RNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:synthesized	
<400> 4	
ucuuccagcg gauagaaugg c	21
<210> 5	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: synthesized	
<400> 5	
acgccaaaaa cataaagaaa g	21
<210> 6	
<211> 21	
<212> RNA	

<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:synthesized	
<400> 6	
acgccaaaaa cauaaagaaa g	21
<210> 7	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: synthesized	
<400> 7	
ttetttatgt ttttggegte t	21
<210> 8	
<211> 21	
<212> RNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: synthesized	
<400> 8	
uucuuuaugu uuuuggcguc u	21
<210> 9	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	

```
<223> Description of Artificial Sequence: synthesized
<400> 9
ggtaaagttg ttttattttt t
                                                                  21
<210> 10
<211> 21
<212> RNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthesized
<400> 10
gguaaaguug uuuuauuuuu u
                                                                       21
<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthesized
<400> 11
aaaatggaac aactttaccg a
                                                                     21
<210> 12
<211> 21
<212> RNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:synthesized
<400> 12
```

aaaauggaac aacuuuaccg a

21