Procesos Termodinámicos- Modelo: Gas Ideal				
	ISOTERMICO	ISOBARICO	ISOVOLUMETRICO	ADIABATICO
Variable constante	temperatura	presión	volumen	Q
Ley de los gases	$P_1. V_1 = P_2. V_2$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$P_1.V_1^{\gamma} = P_2.V_2^{\gamma}$
grafico PV	P i	P i f	P i f	·i ·
AU Positiva si T aumenta Negativa si T disminuye	0	n C _V ∆T	n C _V ∆T	n C _V ∆T
1 ^{ra} Ley ΔU = Q - W	0= Q _{abs} - W _{hecho sistema} El gas se expande,	n $C_v \Delta T = Q - P.\Delta V$	ΔU = Q - La energía interna del gas se incrementa como resultado del	Δ U = - W - La energía interna disminuye porque el gas realiza trabajo de expansión.
	al recibir calor		calor recibido. - No se realiza trabajo	 Expansión adiabática produce enfriamiento del gas.
$W = \int P dV$ positivo si es expande negativo si es contrae	W= nRT In (V ₂ / V ₁)	$W = P (V_2 - V_1)$ $W = n R (T_2 - T_1)$	0	$-\Delta U = -n C_V \Delta T$ \acute{o} $W = (P_2V_2 - P_1V_1)/(1-\gamma)$
Q + si absorbe el sistema - si lo entrega el sistema	Q = W	$Q = n C_P \Delta T$	$Q = \Delta U$	0
_	ISOTERMICO	ISOBARICO	ISOVOLUMETRICO	ADIABATICO

 $\gamma = C_p/C_v \qquad \qquad (C_v + R) = C_p$

C_V y C_p : molares