#### AULA 6 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS (NÚMEROS DE MOTZKIN)

\*\*\* Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido \*\*\*

Os números de Motzkin

são definidos pela seguinte relação de recorrência:

$$\mathsf{Motzkin}\;(n) \;\; = \left\{ \begin{aligned} &1\;,\; \mathsf{se}\;\mathsf{n} = \;0\;\;\mathsf{e}\;\;\mathsf{n} = \;1\\ &\mathsf{Motzkin}\;(n-1) + \sum_{k=0}^{n-2} \mathsf{Motzkin}(k) \times \mathsf{Motzkin}\;(n-2-k)\;,\; \mathsf{se}\;\mathsf{n} \;>\; 1 \end{aligned} \right.$$

### Função Recursiva

- Implemente uma função recursiva Motzkin(n) que use diretamente a relação de recorrência acima, sem qualquer simplificação.
- Construa um programa para executar a função **Motzkin(n)** para **sucessivos valores de n** e que permita **contar o número total de multiplicações efetuadas** para cada valor de n.
- Preencha a as primeiras colunas tabela seguinte com o resultado da função recursiva e o número de multiplicações efetuadas para os sucessivos valores de n.

| n  | Motzkin(n) –<br>Versão Recursiva | Nº de<br>Multiplicações | Motzkin(n) – Versão<br>de Programação<br>Dinâmica | Nº de<br>Multiplicações |
|----|----------------------------------|-------------------------|---------------------------------------------------|-------------------------|
| 0  | 1                                | 0                       | 1                                                 | 0                       |
| 1  | 1                                | 0                       | 1                                                 | 0                       |
| 2  | 2                                | 1                       | 2                                                 | 1                       |
| 3  | 4                                | 3                       | 4                                                 | 3                       |
| 4  | 9                                | 8                       | 9                                                 | 6                       |
| 5  | 21                               | 20                      | 21                                                | 10                      |
| 6  | 51                               | 49                      | 51                                                | 15                      |
| 7  | 127                              | 119                     | 127                                               | 21                      |
| 8  | 323                              | 288                     | 323                                               | 28                      |
| 9  | 835                              | 696                     | 835                                               | 36                      |
| 10 | 2188                             | 1681                    | 2188                                              | 45                      |
| 11 | 5798                             | 4059                    | 5798                                              | 55                      |
| 12 | 15511                            | 9800                    | 15511                                             | 66                      |
| 13 | 41835                            | 23660                   | 41835                                             | 78                      |
| 14 | 113634                           | 57121                   | 113634                                            | 91                      |
| 15 | 310572                           | 137903                  | 310572                                            | 105                     |

NOME: JOÃO PEDRO COSTA GAMEIRO Nº MEC: 93097

• Analisando os dados da tabela, estabeleça uma ordem de complexidade para a função recursiva.

Ao analisar o valor do número de multiplicações em função de n da função recursiva, à primeira vista, pomos a hipótese de a ordem de complexidade ser exponencial (também visível na curva apresentada no gráfico).



Logo para tentar verificar se a complexidade é de facto exponencial vamos efetuar as divisões  $\frac{Mult(n+1)}{Mult(n)}$  para sucessivos valores de n e verificar se os valores obtidos convergem para uma certa constante.

| n  | Mult(n) - Recursiva | Mult(n+1)/Mult(n) |
|----|---------------------|-------------------|
| 0  | 0                   | #DIV/0!           |
| 1  | 0                   | #DIV/0!           |
| 2  | 1                   | 3                 |
| 3  | 3                   | 2,6666667         |
| 4  | 8                   | 2,5               |
| 5  | 20                  | 2,45              |
| 6  | 49                  | 2,42857143        |
| 7  | 119                 | 2,42016807        |
| 8  | 288                 | 2,41666667        |
| 9  | 696                 | 2,41522989        |
| 10 | 1681                | 2,41463415        |
| 11 | 4059                | 2,41438778        |
| 12 | 9800                | 2,41428571        |
| 13 | 23660               | 2,41424345        |
| 14 | 57121               | 2,41422594        |

Após análise dos resultados concluímos que à medida que o valor de n aumenta, o resultado de  $\frac{Mult(n+1)}{Mult(n)}$  converge para aproximadamente 2,41. Consequentemente podemos afirmar que a ordem de complexidade da função recursiva é exponencial,  $O(a^n)$ , em que a toma o valor 2,41.

# Programação Dinâmica

• Uma forma alternativa de resolver alguns problemas recursivos, para evitar o cálculo repetido de valores, consiste em efetuar esse cálculo de baixo para cima ("bottom-up"), ou seja, de Motzkin(0) para Motzkin(n), e utilizar um array para manter os valores entretanto calculados. Este método designa-se por programação dinâmica e reduz o tempo de cálculo à custa da utilização de mais memória para armazenar os valores intermédios.

NOME: JOÃO PEDRO COSTA GAMEIRO Nº MEC: 93097

- Usando programação dinâmica, implemente uma função iterativa para calcular Motzkin(n). Não utilize um array global.
- Construa um programa para executar a função iterativa que desenvolveu para **sucessivos valores de n** e que permita **contar o número de multiplicações efetuadas** para cada valor de n.
- Preencha as últimas colunas tabela anterior com o resultado da função iterativa e o número de multiplicações efetuadas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para a função iterativa.

Seguindo uma metodologia semelhante à recursiva, ao analisar os valores da tabela ponderamos a hipótese de a complexidade ser quadrática (visível também na curva do gráfico).



Logo assim sendo vamos efetuar as divisões  $\frac{\log\left(\frac{Mult(n+1)}{Mult(n)}\right)}{\log\left(\frac{n+1}{n}\right)}$ , para os sucessivos valores de n, e verificar se o resultado converge para um certo valor.

| n  | Mult(n) - Dinâmica | $\frac{\log(\mathrm{Mult}(n+1)/\mathrm{Mult}(n))}{\log((n+1)/n)}$ |
|----|--------------------|-------------------------------------------------------------------|
| 0  | 0                  | #DIV/0!                                                           |
| 1  | 0                  | #DIV/0!                                                           |
| 2  | 1                  | 2,70951129                                                        |
| 3  | 3                  | 2,40942084                                                        |
| 4  | 6                  | 2,28922423                                                        |
| 5  | 10                 | 2,22390109                                                        |
| 6  | 15                 | 2,18274896                                                        |
| 7  | 21                 | 2,15441528                                                        |
| 8  | 28                 | 2,1337065                                                         |
| 9  | 36                 | 2,11790489                                                        |
| 10 | 45                 | 2,10544871                                                        |
| 11 | 55                 | 2,09537607                                                        |
| 12 | 66                 | 2,08706189                                                        |
| 13 | 78                 | 2,08008228                                                        |
| 14 | 91                 | 2,08008228                                                        |

Analisando os resultados obtidos concluímos que as divisões efetuadas convergem para o valor 2. Logo podemos afirmar que a complexidade é do tipo  $O(n^a)$ , em que a=2, ou seja complexidade quadrática.

Nome: João Pedro Costa Gameiro Nº mec: 93097

N° MEC: 93097

## Função Recursiva - Análise Formal da Complexidade

• Escreva uma expressão recorrente (direta) para o número de multiplicações efetuadas pela função recursiva Motzkin(n). Obtenha, depois, uma expressão recorrente simplificada. Note que  $\sum_{k=0}^{n-2} \text{Mult}(k) = \sum_{k=0}^{n-2} \text{Mult}(n-2-k)$ . Sugestão: efetue a subtração Mult(n) - Mult(n-1).

A partir da observação da relação de recorrência Motzkin(n), podemos obter uma expressão recorrente direta para o número de multiplicações:

$$Mult(n) = \begin{cases} 0, n \le 1 \\ Mult(n-1) + \sum_{k=0}^{n-2} (Mult(k) + Mult(n-2-k) + 1), n \ge 2 \end{cases}$$

Expressão que neste caso pode ser simplificada tendo em conta que Mult(0) = Mult(1) = 0:

$$Mult(n) = Mult(n-1) + \sum_{k=0}^{n-2} (2 \cdot Mult(k) + 1) = Mult(n-1) + 2 \cdot \sum_{k=0}^{n-2} (Mult(k)) + (n-1) \quad , n \ge 2$$

Vamos agora calcular a expressão recorrente simplificada, com auxílio da fórmula direta obtida anteriormente, através da seguinte subtração:

$$Mult(n) - Mult(n-1) = \left(Mult(n-1) + 2 \cdot \sum_{k=0}^{n-2} (Mult(k)) + (n-1)\right) - \left(Mult(n-2) + 2 \cdot \sum_{k=0}^{n-3} (Mult(k)) + (n-2)\right)$$

$$= Mult(n-1) + 2 \cdot Mult(n-2) + 2 \cdot \sum_{k=0}^{n-3} (Mult(k)) + n - 1 - Mult(n-2) - 2 \cdot \sum_{k=0}^{n-3} (Mult(k)) - n + 2$$

$$= Mult(n-1) + Mult(n-2) + 1$$

E assim sendo através do resultado obtido anteriormente, concluímos que a expressão recorrente simplificada é:

$$Mult(n) = 2 \cdot Mult(n-1) + Mult(n-2) + 1$$
 ,  $n \ge 2$ 

Nome: João Pedro Costa Gameiro

• A equação de recorrência obtida é uma equação de recorrência linear não homogénea. Considere a correspondente equação de recorrência linear homogénea. Determine as raízes do seu polinómio característico. Sem determinar as constantes associadas, escreva a solução da equação de recorrência linear não homogénea.

Equação de recorrência:

$$Mult(n) = 2 \cdot Mult(n-1) + Mult(n-2) + 1 \Leftrightarrow Mult(n) - 2 \cdot Mult(n-1) - Mult(n-2) = 1$$

O que representa uma equação de recorrência linear não homogénea, cuja solução é do tipo

$$Mult(n) = Mult^{1}(n) + Mult^{2}(n)$$

Cálculo do Mult<sup>1</sup>(n)

(1) Cálculo das raízes do polinómio característico da equação de recorrência linear homogénea associada Equação de recorrência linear homogénea:  $Mult(n) - 2 \cdot Mult(n-1) - Mult(n-2) = 0$ 

$$x^2 - 2x - 1 = 0 \Leftrightarrow x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \Leftrightarrow x = \frac{2 \pm \sqrt{8}}{2} \Leftrightarrow x = 1 \pm \sqrt{2}$$

(2) Conclusão Concluímos assim que  $Mult^1(n) = (1 + \sqrt{2})^n A + (1 - \sqrt{2})^n B$  em que A e B são as constantes associadas.

Cálculo do Mult<sup>2</sup>(n)

- (1)  $Mult^2(n)$  é calculado tendo em conta que f(n) = 1 (ver equação de recorrência)  $Mult^2(n) = Cn^r$  em que C é uma constante e r é a multiplicidade de 1 enquanto raiz característica da equação linear homogénea obtida anteriormente (r = 0, neste caso).
- (2) Conclusão Concluímos que  $Mult^2(n) = Cn^0 = C$ , em que C é uma constante associada.

Podemos assim afirmar que a solução da equação de recorrência linear não homogénea é:  $Mult(n) = (1+\sqrt{2})^n A + (1-\sqrt{2})^n B + C$ 

 Usando a solução da equação de recorrência obtida acima, determine a ordem de complexidade do número de multiplicações efetuadas pela função recursiva. Compare a ordem de complexidade que acabou de obter com o resultado da análise experimental Analisando a solução obtida anteriormente  $Mult(n) = (1 + \sqrt{2})^n A + (1 - \sqrt{2})^n B + C$ , em que A,B e C são constantes, podemos determinar a ordem de complexidade do número de multiplicações efetuadas pela função recursiva.

Ao saber que para a determinação da ordem de complexidade devemos desprezar constantes e termos de menor ordem, chegamos então à conclusão de que  $(1+\sqrt{2})^n$  é o termo de maior ordem, logo todos os outros podem ser desprezados

Assim sendo concluímos que a ordem de complexidade do algoritmo é  $O((1 + \sqrt{2})^n)$ , que neste caso representa uma complexidade exponencial.

A partir da análise experimental concluímos que a complexidade era  $O(a^n)$  em que  $a \cong 2,41$ . Comparando o resultado obtido anteriormente, podemos verificar que  $1+\sqrt{2}\cong 2,41$  o que nos indica que o valor da complexidade é o mesmo que o obtido na análise experimental.

### Programação Dinâmica - Análise Formal da Complexidade

 Considerando o número de multiplicações efetuadas pela função iterativa, efetue a análise formal da sua complexidade. Obtenha uma expressão exata e simplificada para o número de multiplicações efetuadas.

Considerando as condições iniciais, Mult(0) = Mult(1) = 0, temos que:

$$Mult(n) = \sum_{i=2}^{n} \left( \sum_{k=0}^{i-2} 1 \right) = \sum_{i=2}^{n} i - 1 = \frac{1+n-1}{2} \cdot (n-1) = \frac{n}{2} \cdot (n-1) = \frac{n^2 - n}{2}$$

Ao analisar o resultado obtido chegamos à conclusão de que o número de multiplicações efetuadas pela função iterativa, tem uma complexidade quadrática,  $O(n^2)$ .

• Usando a expressão obtida acima, determine a **ordem de complexidade do número de multiplicações** efetuadas pela função iterativa. **Compare** a ordem de complexidade que acabou de obter com o resultado da **análise experimental**.

A expressão obtida anteriormente para o número de multiplicações foi  $Mult(n) = \frac{n^2 - n}{2}$ 

Assim sendo facilmente concluímos que a ordem de complexidade para o número de multiplicações efetuadas pela versão iterativa é quadrática,  $O(n^2)$ , visto que o termo de maior ordem neste caso é  $\frac{n^2}{2}$ .

O valor obtido através da análise experimental foi também de complexidade quadrática  $O(n^2)$ .

Nome: João Pedro Costa Gameiro Nº mec: 93097