National Institute of Technology, Delhi

Name of the Examination: B. Tech. Mid Semester Examination December 2022 (Delayed Autumn Semester)

Branch

: CSE, ECE, EEE

Semester

: 1st

Title of the Course

: Advanced Calculus /

Course

: MAL101 /MAL103

 Engineering Mathematics I Code

Time: One and Half Hours

Maximum Marks: 25

Note: All sections are compulsory.

Section A

Section A contains 03 MCQ's (Question number 1 to 3) of 01 Mark each.

Multiple options may be correct.

Q.1. The inflection points on the curve $y = x^4 - 4x^3 + 10$ are

(A). (0, 10)

(B). (2, -6)

(C). (3, -17)

(D). (1,7)

Q.2. Which of the following functions do not satisfy the hypothesis of mean value theorem

(A). $f(x) = x^{2/3}$, [-1,8]

(B). $f(x) = x^{4/5}$, [0,1]

(C). $f(x) = \sin x$, $[0,\pi]$

(D).
$$f(x) = \begin{cases} \frac{\sin x}{x}, & -\pi \le x < 0 \\ 0, & x = 0 \end{cases}$$

Q.3. The graph of f the derivative of the function f is given below:

Graph of f'

Which of the following could be graph of f?

Section B Section B contains 04 theoretical question (Question number 4 - 7) of 04 Marks each.

Q.4. Find the interval where function is increasing or decreasing and locate the extreme values for the function $f(x) = x^{2/3}(x+5)$.

- Q.5. Find the value of constants a, b and c so that the graph of $y = \frac{x^2 + a}{bx + c}$ has a local minimum at x=3 and a local maximum at (-1, -2).
- Q.6. Sketch a smooth connected curve y = f(x) with the following data:

$$f(-2) = 8$$
, $f(0) = 4$, $f(2) = 0$, and $f'(-2) = 0$, $f'(2) = 0$, $f'(x) > 0$ for $|x| > 2$, and $f'(x) < 0$ for $|x| < 2$, $f''(x) < 0$ for $|x| < 0$, and $f''(x) > 0$ for $|x| > 0$.

Q.7. Find the asymptotes of the function

(A)
$$f(x) = \frac{x^2 + x - 6}{x^2 + 2x - 8}$$

Section C

(B) $f(x) = \frac{\sqrt{x+4}}{\sqrt{x+4}}$

Section C contains 1 theoretical question (Question number 8) of 06 Marks.

- Q.8. (A) Define convergence of a sequence and show that the sequence $\{\frac{lnn}{n}\}$ is convergent.
 - (B) Find the sum of the series $\sum_{n=0}^{\inf} \left(\frac{5}{2^n} + \frac{1}{3^n} \right)$
 - (C) Find the sum of the series $\sum_{n=1}^{\inf} \left(\frac{3}{n^2} \frac{3}{(n+1)^2} \right)$

OR

Find the critical points for the function $f(x, y) = xy + 2x - ln(x^2y)$ in the open first quadrant (x>0, y>0) and find out if these represent local maxima, local minima or saddle points.