hfss_半波偶极子 天线设计

王康 10231063@zju.edu.cn 行政楼224

2024-09-24

Ansys Electronics Desktop Student Version2024R2

官方下载链接 https://www.ansys.com/zh-cn/academic/students/ansys-student
(Built-in license valid until 07/31/2025)

DOWNLOAD ANSYS ELECTRONICS DESKTOP STUDENT 2024 R2 >

HFSS天线设计参考书籍:

- [1]李明洋, 刘敏. HFSS天线设计.第2版[M]. 电子工业出版社, 2014.
- [2]李明洋. HFSS电磁仿真设计应用详解[M]. 人民邮电出版社, 2010.

CATALOGUE

- 引言
- 天线理论基础
- hfss软件介绍与操作指南
- 半波偶极子天线设计与仿真
- 性能评估与优化策略
- 实验验证与测试结果分析

背景与目的

背景

半波偶极子天线作为一种经典的对称阵子天线,广泛应用于通信、雷达、导航等领域。随着无线通信技术的快速发展,对天线性能的要求也日益提高,因此,通过HFSS(High Frequency Structure Simulator)等仿真工具对天线进行精确设计和优化显得尤为重要。

目的

本设计旨在利用HFSS仿真软件,对半波偶极子天线进行详细的建模、仿真和分析,以了解其辐射特性、阻抗匹配、驻波比等关键参数,为实际工程应用提供理论依据和技术支持。同时,通过本设计实践,加深对HFSS软件使用方法的理解,掌握天线设计与仿真的基本流程和方法。

设计任务与要求

设计任务

设计一个中心频率为3GHz的半波偶极子天线,包括天线模型的建立、边界条件的设置、激励方式的选择、求解参数的设置等。

设计要求

天线应具有良好的辐射特性,如较宽的辐射带宽、稳定的辐射方向图等;同时,天线的阻抗 匹配应良好,以确保信号的有效传输。此外,设计过程中需充分考虑天线的实际应用场景,如安装环境、馈电方式等因素对天线性能的影响。

设计流程与工具

设计流程

首先明确设计目标和要求,然后利用 HFSS软件进行天线模型的建立;接 着设置求解类型、边界条件、激励方 式等仿真参数;最后运行仿真分析, 查看求解结果并进行优化调整。

设计工具

主要采用HFSS仿真软件进行天线的设计与仿真。HFSS是一款强大的高频电磁仿真软件,可用于各种天线、微波电路、光学器件等的设计和仿真。在设计过程中,还需利用截图软件等辅助工具对仿真结果进行记录和分析。

天线理论基础

电磁波传播原理

电磁波定义

电磁波是由电场和磁场相互作用 产生的一种波动现象,能够在真 空中或介质中传播,传播速度为 光速。

电磁波传播方式

电磁波可以通过自由空间传播、 介质传播、谐振腔传播、波导传 播和辐射传播等多种方式进行传 播。

电磁波分类

电磁波根据频率的不同,可以分为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等多种类型。

电磁波特性

电磁波具有波粒二象性,即既表现出波动性质(如干涉、衍射),又表现出粒子性质(如光电效应)。

偶极子天线原理

偶极子天线定义

偶极子天线是一种基本的线性天线,由两个 长度相等、直径很小的导体棒组成,中间馈 电,两臂与馈电点等距,振子轴线与波的传 播方向垂直。

偶极子天线类型

常见的偶极天线类型包括半波偶极天线、全 波偶极天线、折叠偶极天线等。它们的结构 可以在空间中产生振荡电流,并通过辐射场 将电磁波发送或接收到外部。

偶极子天线工作原理

偶极子天线的工作原理基于偶极子理论,当 偶极子天线受到变化的电场激励时,会辐射 出电磁波。同时,偶极子天线也能够接收到 入射的电磁波并将其转换为电流。

偶极子天线应用

偶极子天线广泛应用于通信、雷达、导航等 领域,是无线传输系统中不可或缺的关键部 件。

伊波偶极子天线

1.电流分布

- 对于从中心馈电的偶极子,其两端开路,故电流为零。工程上通常将其电流分布近似为正弦分布。
- 假设天线沿z轴放置,其中心坐标位于坐标原点,如图 所示,则长度为I的偶极子天线的电流分布为:

I(z)=I_msink(I-|z|)
Im是波腹电流,k波数。
对半波偶极子而言I=λ/4.
则半波偶极子的电流分布可以写成:

 $I(z)=I_{m}\sin (\pi/2-kz) = I_{m}\cos (kz)$

2.辐射场和方向图

已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。上次课已经求解得:

$$E_{\theta} = j \frac{60I_{m}}{r} \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} e^{-jkr} = j \frac{60I_{m}}{r} f(\theta, \varphi)$$

加上方向特性, 半波偶极子天线的远区辐射电场为:

$$E = j \frac{60I_m}{r} e^{-jkr} f(\theta, \varphi) \hat{e}_{\theta}$$

式中,

$$f(\theta,\varphi) = f(\theta) = \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}$$

称为半波偶极子天线的方向性函数。

3.方向性系数

• 根据公式可计算出半波偶极子天线的方向性系数为:

$$D = \frac{1}{\frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \frac{\cos^2 \theta \left(\frac{\pi}{2} \cos \theta\right)}{\sin^2 \theta} \sin \theta d\theta d\phi} = 1.64$$

• 若以分贝表示为:

$$D_{\text{dB}} = 101\text{g}(1.64) = 2.15dB$$

4.辐射电阻

• 天线的评价功率密度可以用平均坡印亭矢量来表示:

$$P_{av} = \frac{1}{2} \left(E \times H^* \right) = \frac{15I_m^2}{\pi r^2} \frac{\cos^2 \left(\frac{\pi}{2} \cos \theta \right)}{\sin^2 \theta}$$

半波偶极子天线的辐射功率为:

$$P_{r} = \int P_{av} dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{15I_{m}^{2}}{\pi r^{2}} \frac{\cos^{2}\left(\frac{\pi}{2}\cos\theta\right)}{\sin^{2}\theta} r^{2} \sin\theta d\theta d\phi = 36.6I_{m}^{2}$$

这里使用R_r来表示辐射电阻,有:

$$P_r = 36.6I_m^2 = \frac{1}{2}I_m^2 R_r$$

所以: $R_r = 73.2\Omega$

5.输入阻抗

• 根据基本的传输线理论,输入阻抗一般同时包含实部和虚部两部分,即为:

Zin=Rin+jXin

实部电阻包含辐射电阻和导体损耗所产生的导体电阻,对于良导体而言,导体电阻可以忽略,此时实部仅包含辐射电阻Rin=Rr。

虚部电抗为零。

- 对于半波偶极子天线而言,输入阻抗近似看为辐射电阻 73.2欧姆。
- 可见,半波偶极子天线的输入阻抗是纯电阻,易于和馈线匹配,这也是它被较多采用的原因之一。

半波偶极子天线特点

结构简单

半波偶极子天线由一个导体构成,其中中央的直线部分称为驻波馈电处,两端有一个弯曲部分形成互补的驻波端,这种简单的结构使得制造和安装相对容易。

宽频带特性

半波偶极子天线具有较宽的频带特性,在设定频段范围内能够提供较好的性能,适用于不同频率的无线通信系统。

高辐射效率

半波偶极子天线的辐射效率较高,能够将传输的能量有效地转化为电磁波,使得信号传播距离更远。

半波偶极子天线特点

01 方向性辐射特性

半波偶极子天线的辐射特性呈现出较为明显的方向性,其主矢量辐射方向与驻波馈电处的延伸线相一致,有利于在特定方向上实现更好的接收和发送性能。

02 优良的阻抗匹配

半波偶极子天线通常与50欧姆的传输线匹配,这可以有效地减少反射和驻波现象,提高信号传输的质量。

hfss软件介绍与 操作指南

hfss软件简介

高频结构仿真器

HFSS (High Frequency Structure Simulator) 是由Ansoft公司开发后被ANSYS收购的三维电磁仿真软件,是业界公认的三维电磁场设计和分析的工业标准。

应用领域

HFSS广泛应用于无线和有线通信、雷达、卫星、航空航天、电子、半导体、计算机、网络等领域,帮助工程师们高效地设计各种高频结构和程序。

核心功能

HFSS提供精确的电磁场仿真能力,包括S参数计算、天线增益、方向性、远场方向图等性能分析,支持从系统到部件级的设计。

hfss操作界面及功能

01

主菜单与工具栏:
HFSS采用标准的
Windows系统菜单栏
,包含所有操作命令
,工具栏列出常用操
作命令,方便用户快
速访问。

02

项目管理窗口:显示 所有打开的HFSS工程 设计文件名称,便于 管理和切换项目。 03

属性窗口与信息管理 窗口:属性窗口显示 选中设计或物体的属 性信息,信息管理窗 口则显示设计过程中 的详细信息及错误警 告。 04

三维模型窗口:用于 编辑和显示模型,支 持直观的视窗操作和 高级的分析控制。 05

进程窗口:显示当前 设计的仿真运算过程 ,包括仿真进度和状 态。

天线建模与仿真流程

01

创建几何模型:在 HFSS中新建模型,根 据设计要求创建天线 的几何结构,包括形 状、大小、材料等参 数。 02

设置边界条件和激励源:根据天线的实际工作环境设置合适的边界条件,如完美电导体(PEC)、完美磁导体(PMC)等,并定义天线的输入端口和激励信号的频率、功率等参数。

03

网格剖分与求解设置 : 利用HFSS的自适应 网格剖分技术,对模 型进行网格剖分,并 设置求解类型、频率 范围、收敛标准等求 解参数。 04

仿真计算与结果分析 :运行仿真计算,得 到天线的S参数、阻抗 匹配、辐射特性等结 果,并通过后处理器 生成详细的报告和图 表进行分析。 05

优化设计:根据仿真结果,对天线的结构和参数进行优化设计,以提高性能并满足设计要求。

半波偶极子天线设计与仿真

3.2 半波偶极子天线设计

• 这里要求设计一个中心频 率为3GHz的半波偶极子 天线, 天线沿Z轴放置, 中心位于坐标原点,天线 材质使用理想导体, 总长 度为0.48 礼, 半径为 λ/200.天线的馈电采用 集急端口激励方式,端口 距离为0.24mm,辐射边 界和天线的距离为 λ/4。

变量定义	变量名	变量单位 (mm)
工作波长	lambda	100
天线总长度	length	0.48*lamb da
端口距离	gap	0.24
单个极子长度	dip_length	Length/2-gap/2
天线半径	dip_radius	Lambda/2 00
辐射边界 圆柱体半 径	rad_radius	Dip_radius +lambda/4
辐射边界 圆柱体高 度	rad_height	Dip_length +gap/2+la mbda/10

3.37755天线设计流程

- · 设置求解类型: 模式驱动 (driven model)、 终端驱动 (driven Terminal)
- · 创建天线的结构模型:根据天线的初始尺寸和结构,在HFSS窗口中创建出天线的HFSS参数化设计模型。
- · 设置边界条件:在HFSS中,与背景接触的表面都被默认设置为理想导体边界 (Perfect E);为了模拟无限大的自由空间,必须把与背景相接触的表面设置为辐射边界条件或者理想匹配层 (PML),这样才能计算出远区辐射场。

- · 设置激励方式。天线必须通过传输线或波导传输信号,天线与传输线或者波导连接处即药馈电面或激励端口。有两种激励方式: 波端口激励 (wave port) 和集总端口激励 (Lumped port) 。通常在与背景相接触的馈电面的激励方式使用波端口激励,在模型自部的馈电面的激励方式使用集总端口激励。
- 设置参数水解,包括设定水解频率和扫频次数,水解频率通常设定为天线的工作频率。
- 运行求解分析。
- 查看求解结果。
- · Optimertries优化设计。

3.4天线的HFSS仿真设计

1.新建设计工程

(1)运行HFSS并新建工程

启动HFSS软件,新建一个工程文件,把工程文件 另存为dipole.hfss。

(2)设置求解类型

在主菜单栏中选择HFSS----Solution Type,选中Driven Mode 单选按钮,然后单击ok按钮,完成设置。

(3) 设置模型长度单位

在主菜单栏中选择Modeler----units,选择mm。

2.添加和定义设计变量

在HFSS中定义和添加如图1所示的变量。

在HFSS主菜单栏中选择HFSS----Design Properties命令,打开设计属性对话框,单击 ADD按钮,打开add property对话框,在add property对话框中的name输入lambda,初始值 100mm,然后单击ok。

依次定义变量length,初始值0.48*lambda;定义变量变量gap,初始值0.24mm;定义变量dip_length,初始值length/2-gap/2;定义变量dip_radius,初始值lambda/200;定义变量rad_radius,初始值dip_radius+lambda/4;定义变量rad_height,初始值dip_length+gap/2+lambda/10。

最后点确定按钮。

2.添加和定义设计变量

在HFSS中定义和添加如图1所示的变量。

在HFSS主菜单栏中选择HFSS----Design Properties命令,打开设计属性对话框,单击ADD按钮,打开add property对话框,在add property对话框中的name输入lambda,初始值100mm,然后单击ok。

依次定义变量length,初始值0.48*lambda; 定义变量gap,初始值0.24mm; 定义变量dip_length,初始值length/2-gap/2; 定义变量dip_radius,初始值值lambda/200; 定义变量rad_radius,初始值dip_radius+lambda/4; 定义变量rad_height,初始值dip_length+gap/2+lambda/10。

最后点确定按钮。

3.设计建模

(1) 创建偶极子天线模型

在主菜单栏中选择draw----cylinder或单击工具 栏上的圆柱体按钮,进入创建圆柱体的状态。新建的圆柱体会添加到操作历史树的 solids节点下,默认名cylinder。

双击操作历史树中的solids下的cylinder节点, 打开如下对话框。把圆柱体名称设置为 Dipole,其材质为pec。如图所示。

双击操作历史树中的Dipole下的createcylinder 节点,打开新建圆柱体属性对话框的 command选项卡,在该选项卡中设置圆柱体 的底面圆心坐标、半径和长度。在center Position文本框中输入底面圆心坐标(0,0, gap /2),在Radius文本框中输入半径值 dip_radius,在height文本框中输入长度值 dip_length,如下图所示。然后单击确定按钮, 完成圆柱体Dipole的创建。

到此为止创建好了名称为Dipole的理想导体细 圆柱体模型,按快捷键ctrl+D全屏显示。

接下来生成偶极子天线的另一个臂。

- · 选中创建的圆柱体模型Dipole,然后从主菜单栏中选择edit----duplicate----around axis,执行沿坐标轴的复制。会打开一个对话框。
- 在所打开的对话框中
- · 将Axis设置为x轴,
- 将Angle选项设置 为180deg,
- · 并在total number 数值框中输入2,
- 单击ok按钮。

(2)设置端口激励

半波偶极子天线由中心位置馈电。在偶极子中心位置创建一个平行于yz面矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。该矩形面需要把偶极子天线的两个臂连接起来。因此其顶点坐标为(0,-dip_radius,-gap/2),长度和宽度分别为2*dip_radius和gap。

- 双击操作历史树中的sheets下的rectangle1节点,打开新建矩形面属性对话框,把矩形面的名称设置为Port。

- · 双击操作历史树中port下的creatrectangle 节点,打开新建矩形面属性对话框的 command选项卡,在该选项卡中设置矩形 面的顶点坐标和大小。
- 在position文本框中输入顶点坐标(0,-dip_radius,-gap/2),在Ysize和Zsize文本框中分别输入矩形面的长和宽为2*dip_radius和gap,如下图所示。
- 最后按ok按钮。
- •接下来要设置该矩形面的激励方式为集总端口激励,具体操作方法如下:

• 在操作历史树中的sheets节点下选中该矩形面。然后在其上单击鼠标右键,在弹出的快捷菜单中选择assign excitation----lumped port,在打开的集总参数设置对话框中,将resistance设为73.2欧姆,将reactance设为0ohm,然后单击下一步;

Lumped Port : General
Name: 1 Full Port Impedance Resistance 73.2 ohm Reactance: 0 ohm Use Defaults
〈上一步 ®) 下一步 ®) 取消

■ 打开modes对话框,在对话框中单击Integration Line列下的none,从下拉菜单中选择new line选项,此时会进入三维模型窗口进行端口积分线的设

置。

			X	
Lum	umped Port : Modes			
1	Number of Modes 1			
	Mode	Integration Line Characteristic Impedance	(Zo)	
		None Zpi		
		None New Line		
		New Line		
Use Defaults				
		〈上一步(8) 下一步(8) 〉	取消	

(3) 设置辐射边界条件

- 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件或PML边界条件。
- 当前设计中我们使用辐射边界条件,辐射边界和天线之间的距离为1/4个工作波长。
- 这里,我们要先创建一个沿着z轴放置的圆柱体模型,其材质为空气(air),底面圆心坐标为(0,0,-rad_height),半径为rad_radius,高度为2*rad_height,然后把该圆柱体的表面设置为辐射边界条件。

A。创建辐射边界的圆柱体

- · 单击工具栏上的YZ下拉列表框,从其下拉列表中选择XY项,把当前工作平面设置为xy平面;
- Draw----cylinder创建圆柱体,新建的圆柱体添加在操作历史树的solids节点下,默认为cylinder1;
- · 双击操作历史树下cylinder1,打开属性对话框,把圆柱体名称改为Rad_air,设置材质为air,其透明度为0.8.如下图所示。
- 最后单击确定按钮。

- · 双击操作历史树中的rad_air下的 createcylinder节点,打开属性对话框,在 该选项卡中设置圆柱体的底面圆心坐标、 半径和长度。
- Center position设为(0,0,-rad_height)
- Radius输入半径值rad_radius;
- Height文本框中输入长度值2*rad_height。
- 最后单击确定按钮。
- · 完成圆柱体rad_air的创建。如下如所示。

B。设置辐射边界条件

- 在操作历史树下单击rad_air节点,选中该圆柱体模型。
- · 然后在其上单击鼠标右键,在弹出的快捷菜单中选择assign boundary----radiation,打开辐射边界条件设置对话框,如下图所示。
- 在改对话框中保留默认设置,直接单击ok 按钮,把圆柱体模型rad_air的表面设置为辐射边界条件。

4.求解设置

分析的半波偶极子天线的中心频率在3GHz附近,因此求解频率设置为3GHz。同时添加2.5GHz~3.5GHz的扫频设置,扫频类型选择快速扫频(Fast),分析天线在2.5~3.5GHz频段内的

🖃 🟉 Rad_a

⊟ 💋 dipol 🗂 Cr

📶 Cr

dipole

🔁 HFSSDesign1 (D:

🕂 🥵 Excitations

😿 Mesh Operation

🔟 Res 💋 Add Solution Setup. . .

Analyze All

>

Revert to Initial Mesh

Apply Mesh Operations

Clear Linked Data

List...

→ 🗗 Model → 🗗 Boundaries

👰 Opt

Por

_____†††

🌇 Fie

. 🌩 Rad

🚞 Defini

Project

回波损耗和电压驻波比。

(1) 求解频率和网格剖分设置设置求解频率3GHz;自适应网格剖分的最大迭代次数为20,收敛误差为0.02. 右键单击工程树下的analysis,在弹出的对话框中选中add solution Setup,完成设置。

(2) 扫频设置

扫频类型选择快速扫频,扫频范围为 2.5GHz~3.5GHz, 频率步进为0.001GHz。

- 展开工程树下的analysis 节点,右键单击前面添加的 求解设置项Setup1;
- 在弹出的对话框中选择
 Add frequency sweep;
 打开edit sweep对话框
- 完成设置。

5.设计检查和运行仿真运算

前面已经完成了偶极子天线模型的创建和求解设置;接下来就运行仿真计算并查看分析结果。但在计算前要进行设计检查。

从主菜单HFSS----Validation check,得到如下对话框。

6.HFSS天线问题的数据后处理

HFSS拥有强大的数据后处理功能,仿真分析完成后,在数据后处理部分能够给出天线的各项性能参数的仿真分析结果。如回波损耗、驻波比、Smith圆图、输入阻抗和方向图。

(1) 回波损耗

- 右键单击工程树下的results节点,在弹出的菜单中选择create model solution data report----rectangle plot命令,打开报告设置对话框,如下图所示。
- · 然后单击new report按钮,再单击close按钮关闭对话框,此时可以生成在2.5~3.5GHz频段内的回波损耗S₁₁分析结果。

(2) 电压驻波比

- 查看天线驻波比的操作和查看回波损耗S11类似,同样右键单击工程树下的results节点,在弹出的快捷菜单中选择create modal solution data report----rectangle plot;
- 再按照如下图表进行设置,最后单击new report,单击close, 得到天线的驻波比分析结果。

(3) Smith 圆图

- 在天线的设计中,smith圆图是一个很有用的工具,借助圆图可以方便地分析阻抗匹配、驻波比、归一化输入阻抗。
- 右键单击工程树下的results节点,在弹出的快捷菜单中选择 create modal solution data report----Smith chart,打开如下对

(4)输入阻抗

- 输入阻抗是天线的一个重要性能参数。
- 右键单击工程树下的results节点,在弹出的快捷菜单中选择 create modal solution data report----rectangle plot,打开报告对 话框,进行如下图设置。

• 点击new report按钮,再单击close按钮关闭对话框,此时得到天 线的输入阻抗结果报告。

(5) 方向图

- 方向图是方向性函数的图形表示,它可以形象地描绘天线辐射特性随着空间方向坐标变化的关系, 是衡量天线性能的重要图形。
- 在HFSS后处理部分可以方便绘制出天线的平面方向图和立体方向图。
- 方向图是在远区场确定的,要查看天线的远区场辐射结果。首先要设立辐射表面。
- 接下来分析半波偶极子天线在xz平面和xy平面的增益方向图,以及查看半波偶极子天线三维立体增益方向图的具体操作。

A。定义辐射表面

辐射表面是基于球坐标系定义的。Xz平面即球坐标系下 φ =0°的平面,xy平面即球坐标系下 θ =90°的平面,而三维立体球面在球坐标下则表示为 $0\le\theta\le180$ °, $0\le\varphi\le360$ °。

• 定义xz平面

右键单击工程树下的radiation节点,在弹出的快捷菜单中选择insert far field setup----infinite sphere,打开far radiation sphere setup完成如下设置。

· 然后单击确定按钮,完成设置。此时定义的辐射表面的名称E__Plane会添加到工程树的Radiation节点下。

定义xy平面

- · 右键单击工程树下的 radiation节点,在弹 出的快捷菜单中选择 insert far field setup ----infinite sphere, 打开far radiation sphere setup完成 如下设置。
- 然后单击确定按钮, 完成设置。
- · 此时定义的 辐射表面的名称H__Plane

定义三维立体球面

- 右键单击工程树下的radiation 节点,在弹出的快捷菜单中选择insert far field setup-----infinite sphere,打开far field radiation sphere setup完成如下设置。
- · 然后单击确定按钮,完成设置此时定义的辐射表面的名称。。
 3D__Sphere会添加到工程树的Radiation节点下。

B.查看xz面的增益方向图

右键单击工程树下的results节点,在弹出的快捷菜单中选择 create far fields report----radiation pattern命令,打开报告设置对话框,如下图所示。

· 点击new report按钮,生成极坐标系下天线的xz 面增益方向图。如下图所示。

C.查看xy面的增益方向图

右键单击工程树下的results节点,在弹出的快捷菜单中选择 create far fields report----radiation pattern命令,打开报告设置对话框,如下图所示。

点击new report按钮,单击close,生成如下结果。

D。查看三维增益方向图

 右键单击工程树下的results节点,在弹出的快捷菜单中选择 create far fields report----3D Polar Plot命令,打开报告设置对话框, 如下图所示。

点击new report按钮,单击close,生成如下结果。

(6)其他参数

• 展开工程树下的radiation节点,右键单击相 应辐射表面的名称,这里右键单击 3D_Sphere,在弹出的菜单中选择compute antenna parameters命令,打开antenna parameters对话框,然后单击对话框中的ok 按钮,此时可以给出天线在该辐射表面上 的最大辐射强度、方向性系数、最大场强 及其所在方向等参数。

设计参数确定

长度与波长关系

确定天线的总长度L,使其等于半个波长λ/2,这是 半波偶极子天线的基本定义,直接影响天线的工作 频率和辐射效率。

馈电点位置

确定馈电点的具体位置,通常位于天线中心,以保证两臂电流分布均匀,提高天线的匹配性能和辐射方向性。

导线半径

选择适当的导线半径a,以平衡天线的结构强度、导电性能及辐射特性。半径过小可能导致电阻增大,过大则可能影响辐射场分布。

介质材料

考虑天线周围介质的电磁特性,如介电常数、磁导率等,这些参数会影响天线的辐射场分布和传播特性。

建模过程展示

创建基础模型

在HFSS软件中新建项目,设置求解类型为DrivenModel,并设置适当的长度单位(如毫米)。根据设计参数,创建半波偶极子天线的基础几何模型,包括两臂的圆柱形结构。

复制与对称

利用HFSS的坐标轴复制功能,快速生成天线的另一个臂,确保两臂关于中心点对称。

设置激励端口

在天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面,用于模拟实际馈电情况。

建模过程展示

设定辐射边界条件

创建一个沿Z轴放置的圆柱模型作为 辐射边界条件,材质设定为空气,以 模拟无限大自由空间中的辐射场分布

材料与属性赋值

为天线模型分配适当的材料属性,如金属导体的电导率等,并设置求解频率范围及扫频类型(如快速扫频)。

仿真结果分析

回波损耗分析

观察并分析S11参数(回波损耗),评估天线在设定频段内的阻抗匹配性能。理想的匹配状态下,S11应小于-10dB。

电压驻波比分析

计算并绘制电压驻波比(VSWR)曲线,了解天线在不同频率点的传输特性。VSWR越接近于1,表示传输特性越接近行波状态,性能越理想。

史密斯圆图分析

利用史密斯圆图直观展示天线端口的归一化阻抗随频率变化的轨迹,进一步分析阻抗匹配情况。

仿真结果分析

辐射特性分析

分析天线的辐射方向图(包括二维和三维增益图)、极化特性等,评估天线的辐射效率和方向性。重点关注电场和磁场在XOY平面上的辐射均匀性及沿Z轴方向的衰减情况。

敏感性分析

调整天线的设计参数(如长度、宽度、高度等),观察并分析这些变化对天线性能的影响,以确定最优设计方案。

性能评估与优化策略

辐射性能评估指标

● 辐射方向图

评估天线在不同方向上的辐射强度分布,包括主瓣宽度、副瓣电平、前后比等参数,以了解天线的辐射特性。

● 増益

衡量天线在特定方向上收发信号的能力,增益越高,表示天线在该方向上的辐射或接收效率越高。

● 极化特性

评估天线辐射电场的极化方式,包括线极化、圆极化等,以及极化纯度和交叉极化比等参数,以了解天线的极化特性对通信质量的影响。

阻抗匹配优化方法

调整馈电点位置

通过改变馈电点在天线上的位置,可以优化天线的输入阻抗,使其与馈线特性阻抗更好地匹配,减少反射损耗

添加匹配网络

在天线与馈线之间添加匹配网络,如 L型、T型、π型等匹配电路,以补偿 天线输入阻抗与馈线特性阻抗之间的 差异,实现阻抗匹配。

优化天线结构参数

通过调整天线的长度、宽度、高度等 结构参数,可以改变天线的电流分布 和辐射特性,从而优化天线的输入阻 抗和匹配性能。

结构调整对性能影响

长度调整

改变天线的长度会直接影响其工作频率和辐射特性。一般来说, 天线长度增加会使工作频率降低,但也会增加辐射阻抗和增益。

宽度调整

调整天线的宽度可以改变其辐射 方向图的形状和副瓣电平。较宽 的天线往往具有较宽的主瓣宽度 和较低的副瓣电平。

馈电方式优化

不同的馈电方式会影响天线的电流分布和辐射特性。例如,采用平衡馈电方式可以减少馈线上的共模电流,降低交叉极化比和反射损耗。同时,优化馈电点的位置和馈电网络的结构也可以进一步提高天线的性能。

实验验证与测试结果分析

实验装置及测试方法

• 实验装置

采用高精度信号发生器、矢量网络分析仪、远场天线测试系统等设备,确保测试数据的准确性和可靠性。

测试环境

在无遮挡、无电磁干扰的开阔场地进行测试,确保测试环境的一致性和可重复性。

测试方法

通过矢量网络分析仪测量天线的回波损耗、驻波比等参数,利用远场天线测试系统测量天线的辐射方向图、增益等辐射特性。同时,与仿真结果进行对比分析,验证设计的准确性和可靠性。

测试结果与仿真对比

回波损耗对比

实测回波损耗曲线与仿真结果基本一 致,验证了天线设计在阻抗匹配方面 的有效性。

辐射方向图对比

实测辐射方向图与仿真结果基本一致 ,验证了天线在辐射特性方面的设计 准确性。同时,通过对比不同频率下 的辐射方向图,可以评估天线的频带 宽度和辐射稳定性。

驻波比对比

实测驻波比与仿真结果吻合良好,表明天线在传输过程中的能量损耗较小,传输特性稳定。

增益对比

实测增益与仿真结果相近,表明天线 在辐射强度方面达到了预期目标。

问题诊断及改进方向

问题诊断

针对实测结果与仿真结果之间的差异,进行问题诊断。可能的原因包括加工误差、装配误差、测试环境干扰等。通过逐一排查和验证,确定问题的具体原因。

改进方向

针对发现的问题,提出相应的改进措施。例如,优化加工工艺和装配流程,提高天线的加工精度和装配质量;改进测试方法,减少测试环境的干扰;调整天线设计参数,进一步优化天线的性能。同时,总结实验经验,为后续的天线设计提供参考和借鉴。

项目成果总结

天线模型构建

成功利用HFSS软件构建了 半波偶极子天线的精确模型 ,包括天线长度、宽度、高 度等关键参数的精确设定, 确保了模型与实际情况的高 度一致。

电磁仿真分析

通过HFSS软件对天线模型 进行了详细的电磁仿真分析 ,包括辐射方向图、驻波比 、输入阻抗等关键参数的仿 真,验证了天线设计的有效 性和可行性。

参数优化

针对天线性能进行了多轮参数优化,包括天线长度、宽度、高度等参数的调整,以及辐射单元布局的优化,显著提升了天线的辐射效率和频带宽度。

实际应用验证

将优化后的天线模型应用于 实际通信系统中,验证了天 线在实际工作环境中的稳定 性和可靠性,满足了系统对 天线性能的需求。 作业提交注意事项:

- 1, 完整的作业一次性提交在《学在浙大》系统上;
- 2,评分标准:解答的完整过程,书写的清晰度,答案的正确性

存在问题及解决方案

电磁干扰问题

在仿真过程中发现天线在特定频段内存在电磁干扰问题,通过调整天线的布局和增加屏蔽措施,有效降低了电磁干扰对天线性能的影响。

参数设置误差

在仿真过程中发现参数设置存在微小误差,导致仿真结果与实际情况存在一定偏差。通过多次仿真验证和参数微调,最终确保了仿真结果的准确性和可靠性。

加工精度问题

在天线加工过程中发现加工精度对天线性能有一定影响。通过与加工厂家沟通协商,制定了严格的加工精度标准,并加强了加工过程中的质量控制,确保了天线加工精度的稳定性和可靠性。

未来研究方向

多频带天线设计

针对未来通信系统的需求,研究多频带半波 偶极子天线的设计方法,实现天线在不同频 段内的良好匹配和高效辐射。

宽带天线设计

研究宽带半波偶极子天线的设计方法,提高 天线的工作带宽和频率适应性,满足未来宽 带通信系统的需求。

智能化天线设计

结合人工智能和机器学习技术,研究智能化 半波偶极子天线的设计方法,实现天线性能 的自适应优化和智能调节。

小型化天线设计

针对现代通信设备对天线体积和重量的要求, 研究小型化半波偶极子天线的设计方法, 实现天线体积和重量的显著减小。

THANKS

感谢观看

