

Deep Learning:

Recurrent Neural Networks

Ozan Özdenizci

Institute of Theoretical Computer Science ozan.ozdenizci@igi.tugraz.at

Deep Learning VO - WS 23/24

Lecture 8 - November 27th, 2023

Today

- Recurrent Neural Networks
 - ☐ Simple RNNs
 - Backpropagation Through Time
 - Architectural Variants
 - Gated RNNs (LSTM & GRU)

Recurrent Neural Networks (RNNs)

Typical input: Sequence of values (vectors) $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(\tau)}$

Typical output: Sequence of values (vectors) $\mathbf{o}^{(1)}, \dots, \mathbf{o}^{(\tau)}$

Network graph includes recurrent connections.

At each discrete time step t,

- input $\mathbf{x}^{(t)}$ is presented,
- hidden state $\mathbf{h}^{(t)}$ is updated,
- output $\mathbf{o}^{(t)}$ is computed,
- ullet loss $L^{(t)}$ is evaluated, and
- gradient is backpropagated through time.

(Simple) RNNs were introduced in the 1980s.

Advantages:

- Can process inputs of variable length.
- Implements parameter sharing over time.
- Can therefore generalize over time (compare to CNNs).

Simple RNNs: Computation

Typical input: Sequence of values (vectors) $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(\tau)}$

Typical output: Sequence of values (vectors) $\mathbf{o}^{(1)}, ..., \mathbf{o}^{(\tau)}$

Network graph includes recurrent connections.

At each discrete time step t,

- input $\mathbf{x}^{(t)}$ is presented,
- hidden state $\mathbf{h}^{(t)}$ is updated,
- output $\mathbf{o}^{(t)}$ is computed,
- ullet loss $L^{(t)}$ is evaluated, and
- gradient is backpropagated through time.

$$\mathbf{a}^{(t)} = \mathbf{b} + W\mathbf{h}^{(t-1)} + U\mathbf{x}^{(t)}$$

$$\mathbf{h}^{(t)} = \tanh(\mathbf{a}^{(t)})$$

$$\mathbf{o}^{(t)} = \mathbf{c} + V\mathbf{h}^{(t)}$$

$$\hat{\mathbf{y}}^{(t)} = \operatorname{softmax}(\mathbf{o}^{(t)})$$

Unfolding in Time

View the RNN as a dynamical system driven by external input:

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

We can unfold the equation in time:

$$\mathbf{h}^{(3)} = f(\mathbf{h}^{(2)}, \mathbf{x}^{(3)}; \theta) = f(f(\mathbf{h}^{(1)}, \mathbf{x}^{(2)}; \theta), \mathbf{x}^{(3)}; \theta) = f(f(f(\mathbf{h}^{(0)}, \mathbf{x}^{(1)}; \theta), \mathbf{x}^{(2)}; \theta), \mathbf{x}^{(3)}; \theta)$$

Unfolding the computational graph:

(square indicates Unfold unit time delay)

Network typically learns to use $\mathbf{h}^{(t)}$ as a lossy summary of the task-relevant aspects of the past sequence up to t.

RNN Equations and Training

Training is via backpropagation through time: Compute the gradients in the unfolded computational graph.

Today

- Recurrent Neural Networks
 - Simple RNNs
 - Backpropagation Through Time
 - Architectural Variants
 - Gated RNNs (LSTM & GRU)

An example: a single neuron with a recurrent connection to itself.

Unfolded Network:

Unfolded Computational Graph

$$L = \sum_{t=1}^{T} L^{t} \quad L^{t} = \frac{1}{2} \left(h^{t} - h^{*t} \right)^{2}$$

$$L = \sum_{t=1}^{T} L^{t} \quad L^{t} = \frac{1}{2} (h^{t} - h^{*t})^{2}$$

- We need $\frac{\partial L}{\partial w}$ and $\frac{\partial L}{\partial u}$ for parameter updates.
- ullet To sketch the idea, we will show for $\dfrac{\partial L}{\partial w}$.

$$L = \sum_{t=1}^{T} L^{t} \quad L^{t} = \frac{1}{2} (h^{t} - h^{*t})^{2}$$

$$\frac{\partial L}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} \frac{\partial a^{t}}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} h^{t-1} = \sum_{t=1}^{T} \delta^{t} h^{t-1}$$

$$\delta^{t} \stackrel{\text{def}}{=} \frac{\partial L}{\partial a^{t}}$$

$$L = \sum_{t=1}^{T} L^{t} \quad L^{t} = \frac{1}{2} \left(h^{t} - h^{*t} \right)^{2}$$

$$\frac{\partial L}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} \frac{\partial a^{t}}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} h^{t-1} = \sum_{t=1}^{T} \delta^{t} h^{t-1}$$

$$\delta^{t} \stackrel{\text{def}}{=} \frac{\partial L}{\partial a^{t}} = \frac{\partial L}{\partial h^{t}} \frac{\partial h^{t}}{\partial a^{t}} = \frac{\partial L}{\partial h^{t}} \dot{\sigma} (a^{t})$$

$$\frac{\partial L}{\partial h^{t}} = \frac{\partial L}{\partial L^{t}} \frac{\partial L^{t}}{\partial h^{t}} + \frac{\partial L}{\partial a^{t+1}} \frac{\partial a^{t+1}}{\partial h^{t}} = \frac{\partial L^{t}}{\partial h^{t}} + \delta^{t+1} \cdot w$$

$$L = \sum_{t=1}^{T} L^{t} \quad L^{t} = \frac{1}{2} (h^{t} - h^{*t})^{2}$$

$$\frac{\partial L}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} \frac{\partial a^{t}}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} h^{t-1} = \sum_{t=1}^{T} \delta^{t} h^{t-1}$$

$$\delta^{t} \stackrel{\text{def}}{=} \frac{\partial L}{\partial a^{t}} = \frac{\partial L}{\partial h^{t}} \frac{\partial h^{t}}{\partial a^{t}} = \frac{\partial L}{\partial h^{t}} \dot{\sigma} (a^{t})$$

$$\frac{\partial L}{\partial h^{t}} = \frac{\partial L}{\partial L^{t}} \frac{\partial L^{t}}{\partial h^{t}} + \frac{\partial L}{\partial a^{t+1}} \frac{\partial a^{t+1}}{\partial h^{t}} = \frac{\partial L^{t}}{\partial h^{t}} + \delta^{t+1} \cdot w$$

$$\boldsymbol{\delta^t} = \left(\frac{\partial L^t}{\partial h^t} + \delta^{t+1} \cdot w\right) \cdot \dot{\sigma}\left(a^t\right)$$

Backpropagating error through time

$$L = \sum_{t=1}^{T} L^{t} \quad L^{t} = \frac{1}{2} (h^{t} - h^{*t})^{2}$$

Notes on backpropagation through time:

- Depends on the number of time steps.
- Before each parameter update, we need to wait and store everything until all computations are done.
 - Memory demanding for longer sequences.
 - Alternative: "truncated backprop through time".

$$\frac{\partial L}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} \frac{\partial a^{t}}{\partial w} = \sum_{t=1}^{T} \frac{\partial L}{\partial a^{t}} h^{t-1} = \sum_{t=1}^{T} \delta^{t} h^{t-1}$$

$$\delta^t \stackrel{\text{def}}{=} \frac{\partial L}{\partial a^t} = \frac{\partial L}{\partial h^t} \frac{\partial h^t}{\partial a^t} = \frac{\partial L}{\partial h^t} \dot{\sigma} \left(a^t \right)$$

$$\frac{\partial L}{\partial h^t} = \frac{\partial L}{\partial L^t} \frac{\partial L^t}{\partial h^t} + \frac{\partial L}{\partial a^{t+1}} \frac{\partial a^{t+1}}{\partial h^t} = \frac{\partial L^t}{\partial h^t} + \delta^{t+1} \cdot w$$

$$\boldsymbol{\delta}^{t} = \left(\frac{\partial L^{t}}{\partial h^{t}} + \delta^{t+1} \cdot w\right) \cdot \dot{\sigma}\left(a^{t}\right)$$

Backpropagating error through time

Today

- Recurrent Neural Networks
 - Simple RNNs
 - Backpropagation Through Time
 - Architectural Variants
 - Gated RNNs (LSTM & GRU)

(1) Single output at the end of the sequence

Some potential use cases:

- Text classification.
- Detecting anomalies from a given measurement sequence.
- Summarize a sequence and produce a fixed-size representation, then use this as input for further processing.

(2) Bidirectional RNNs

- If the whole sequence is known in advance.
- Future may provide important information.
- When deciding on $\mathbf{o}^{(t)}$, take times around t into account.

 $\mathbf{h}^{(t)}$: RNN that moves **forward** in time

 $\mathbf{g}^{(t)}$: RNN that moves **backward** in time ($\mathbf{g}^{(t)}$ sees the sequence in reversed order)

(3) Encoder-Decoder (Sequence-to-Sequence) Architecture

• If the output sequence does not have the same length as input sequence, e.g. in language translation.

Input: Sequence $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n_x)}$

Output: Sequence $\mathbf{y}^{(1)}, ..., \mathbf{y}^{(n_y)}$

Encoder: Processes input and emits the context C, typically a simple function of its final hidden state.

Decoder: Generates the output sequence conditioned on this context C.

(4) Deep Recurrent Networks

Possible ways to deepen RNNs:

- (a) Several recurrent hidden layers.
- (b, c) Additional input/output layers.
- (b) Deep hidden-to-hidden interactions
- (c) Same as (b) but with skip-connections.

Today

- Recurrent Neural Networks
 - Simple RNNs
 - Backpropagation Through Time
 - Architectural Variants
 - ☐ Gated RNNs (LSTM & GRU)

Problem: Challenging long-term dependencies

Vanishing/exploding gradients problem:

Gradients propagated over many stages tend to either vanish or explode.

We can mitigate exploding gradients by gradient clipping.

What about vanishing gradients?

- In order to store memories in a way that is robust to small perturbations, the RNN must enter a region of parameter space where gradients vanish.
- The gradient of a long term interaction has exponentially smaller magnitude than that of a short term interaction.

Long Short-Term Memory (LSTM)

Idea: Create paths through time that have derivatives that neither vanish nor explode.

LSTM basic unit: A memory cell

- A linear neuron with a unit-weight self loop, where:
 - an input gate controls whether to load something in,
 - an output gate controls whether to make the content available to others,
 - a forget gate controls whether to forget the content.

LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter
Fakultät für Informatik
Technische Universität München
80290 München, Germany
hochreit@informatik.tu-muenchen.de
http://www7.informatik.tu-muenchen.de/~hochreit

Jürgen Schmidhuber
IDSIA
Corso Elvezia 36
6900 Lugano, Switzerland
juergen@idsia.ch
http://www.idsia.ch/~juergen

Abstract

Learning to store information over extended time intervals via recurrent backpropagation takes a very long time, mostly due to insufficient, decaying error back flow. We briefly review Hochreiter's 1991 analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called "Long Short-Term Memory" (LSTM). Truncating the gradient

$$s^t = s^{t-1} + g^t x^t$$

Forget Gate:

$$s^t = f^t s^{t-1} + g^t x^t$$

Output Gate:

$$s^{t} = f^{t}s^{t-1} + g^{t}x^{t}$$
$$h^{t} = q^{t} \cdot \tanh(s^{t})$$

$$s^{t} = f^{t}s^{t-1} + g^{t}x^{t}$$
$$h^{t} = q^{t} \cdot \tanh(s^{t})$$

LSTM - Memory Cell - Details

$$\begin{split} h_i^{(t)} &= \tanh\left(s_i^{(t)}\right) q_i^{(t)} \\ s_i^{(t)} &= f_i^{(t)} s_i^{(t-1)} + g_i^{(t)} \sigma\left(b_i + \sum_j U_{i,j} x_j^{(t)} + \sum_j W_{i,j} h_j^{(t-1)}\right) \\ g_i^{(t)} &= \sigma\left(b_i^g + \sum_j U_{i,j}^g x_j^{(t)} + \sum_j W_{i,j}^g h_j^{(t-1)}\right) \\ f_i^{(t)} &= \sigma\left(b_i^f + \sum_j U_{i,j}^f x_j^{(t)} + \sum_j W_{i,j}^f h_j^{(t-1)}\right) \\ q_i^{(t)} &= \sigma\left(b_i^o + \sum_j U_{i,j}^o x_j^{(t)} + \sum_j W_{i,j}^o h_j^{(t-1)}\right) \end{split}$$

 $oldsymbol{x}^{(t)}$ is the current input vector.

 $\boldsymbol{h}^{(t)}$ is the current hidden layer vector.

LSTM - Memory Cell - Details

LSTM - Memory Cell - Details

 $s_i^{(t)} = f_i^{(t)} s_i^{(t-1)} + g_i^{(t)} \sigma \left(b_i + \sum_j U_{i,j} x_j^{(t)} + \sum_j W_{i,j} h_j^{(t-1)} \right)$

 The state unit can also be used as an extra input to the gating units.

 $oldsymbol{x}^{(t)}$ is the current input vector.

 $\boldsymbol{h}^{(t)}$ is the current hidden layer vector.

Gated Recurrent Unit (GRU)

A simplified version of an LSTM cell.

- ullet an **update** gate : u simultaneously controls the forgetting factor and the input gating.
- a **reset gate** : *r* controls which parts of the hidden state are used for the update.

$$h_i^{(t)} = u_i^{(t-1)} h_i^{(t-1)} + (1 - u_i^{(t-1)}) \sigma \left(b_i + \sum_j U_{i,j} x_j^{(t)} + \sum_j W_{i,j} r_j^{(t-1)} h_j^{(t-1)} \right)$$

ullet The output values of u_i^t and r_j^t are computed in the usual way.

Recall LSTMs: $h_i^{(t)} = \tanh\left(s_i^{(t)}\right)q_i^{(t)}$

$$s_i^{(t)} = f_i^{(t)} s_i^{(t-1)} + g_i^{(t)} \sigma \left(b_i + \sum_j U_{i,j} x_j^{(t)} + \sum_j W_{i,j} h_j^{(t-1)} \right)$$

- GRUs have only two gates (instead of three with LSTMs).
- A single "update gate". (LSTMs: input & forget gates).
- Therefore usually less parameters than LSTMs.

Example: Application to Text Translation

• **LSTMs** became popular after they achieved state-of-the-art results in text translation.

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever
Google
ilyasu@google.com

Oriol Vinyals
Google
vinyals@google.com

Quoc V. Le Google qvl@google.com

Input: Sentence in language A as a sequence of words.

Output: Sentence in language B as a sequence of words.

Length of input and output sequence may differ.

The model uses two LSTM-based network blocks:

- **Encoder:** Reads the input sequence and produces a fixed-size vector representation (its hidden state).
- **Decoder:** Starting with the hidden state of the encoder, it produces the output sequence.

Example: Application to Text Translation

- Dataset: WMT'14 English-to-French
- Vector representation for each word:
 - 160k words for source language.
 - 80k words for target language.
 - Words are embedded in 1000-dim embeddings.
 - Out-of-vocabulary words: <UNK> token.
 - End-of-sentence: <EOS> token.
- A B C <EOS> W X Y Z <EOS>
 A SEOS> W X Y Z

- Network (384M parameters):
 - Deep LSTM with 4 layers.
 - 1000 cells per layer.
 - 1000-dim word embeddings.
 - Output: Softmax over 80k words.
 - Decoding the output as sentences:
 - Left-to-right beam search decoder.

• Training:

- SGD for 7.5 epochs with gradient clipping.
- After epoch 5, half the learning rate each epoch.

Example: Application to Text Translation

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM his after processing the phrases in the figures. The phrases are clustered by meaning primarily a function of word order, which would be difficult to capture with a bag both clusters have similar internal structure.

Summary

- RNN graphs include recurrent connections & implement parameter sharing over time.
 - Can process input sequences of variable length.
- Simple RNNs use standard neurons in the recurrent layer.
 - Architectural variants (e.g., bidirectional RNNs, encoder-decoder, ...) exist.
- Training is via backpropagation through time.
 - Dompute the gradients over the unrolled network & unrolled computation graph.
- Problems in training (simple) RNNs: vanishing/exploding gradients.
 - Memory units can overcome that!
 - LSTMs & GRUs use gating mechanisms in the recurrent layer units.
- Around 2010s, LSTMs became popular with state-of-the-art results in text translation.
 - > Today, transformers have become the dominating model for such language processing tasks.

[Vaswani et al. "Attention is all you need." NeurlPS 2017.]

Today

- Recurrent Neural Networks
 - Simple RNNs
 - Backpropagation Through Time
 - Architectural Variants
 - Gated RNNs (LSTM & GRU)

Questions?