(a)(i)

From the plot above, the series does not look stationary as there is a baseline shift and the average over time spikes up from around 2005.

(a)(ii)

Null Hypothesis: COPPER has a unit root

Exogenous: None

Lag Length: 1 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*			
Augmented Dickey-Ful	ler test statistic	-0.733304	0.3988			
Test critical values:	1% level	-2.568242				
	5% level	-1.941272				
	10% level	-1.616398				

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER) Method: Least Squares Date: 02/13/19 Time: 18:57

Sample (adjusted): 1960M03 2018M12 Included observations: 706 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
COPPER(-1)	-0.001762	0.002403	-0.733304	0.4636	
D(COPPER(-1))	0.335927	0.035588 9.439353		0.0000	
R-squared	0.111507	Mean depend	7.573839		
Adjusted R-squared	0.110245	S.D. depende	ent var	243.9988	
S.E. of regression	230.1563	Akaike info cr	Akaike info criterion		
Sum squared resid	37292239	Schwarz criterion		13.73114	
Log likelihood	-4840.533	Hannan-Quinn criter.		13.72321	
Durbin-Watson stat	1.964526				

From the results above, the test's null hypothesis is not rejected since the probability of the augmented Dickey-Fuller test t-statistic is -0.7333, which is significantly greater than 0.05. As such, the series is non-stationary.

Null Hypothesis: COPPER has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-3.292650	0.0683
Test critical values:	1% level	-3.971104	
	5% level	-3.416195	
	10% level	-3.130392	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER) Method: Least Squares Date: 02/13/19 Time: 18:58 Sample (adjusted): 1960M03 2018M12 Included observations: 706 after adjustments

Variable	Coefficient	Std. Error	Prob.	
COPPER(-1)	-0.020058	0.006092	-3.292650	0.0010
D(COPPER(-1))	0.343349	0.035445	9.686863	0.0000
С	-2.992700	17.33630	-0.172626	0.8630
@TREND("1960M01")	0.181759	0.067408 2.696395		0.0072
R-squared	0.124816	Mean depend	7.573839	
Adjusted R-squared	0.121076	S.D. depende	ent var	243.9988
S.E. of regression	228.7512	Akaike info cr	iterion	13.70880
Sum squared resid	36733624	Schwarz crite	rion	13.73463
Log likelihood	-4835.205	Hannan-Quinn criter.		13.71878
F-statistic	33.37245	Durbin-Watso	on stat	1.971804
Prob(F-statistic)	0.000000			

From the results above, despite adding the trend and intercept, the test's null hypothesis is not rejected since the probability of the augmented Dickey-Fuller test t-statistic is -3.2927, which is significantly greater than 0.05. As such, the series is also non-stationary.

Correlogram of RESID

(a)(iv)

Autocorrelation	Partial Correlation	AC		PAC	Q-Stat	Prob	
ijis	ի փ	1	0.014	0.014	0.1372	0.71	
4	101	2	-0.030	-0.031	0.7918	0.67	
qt.	10	3	-0.021	-0.020	1.0975	0.77	
ı d ı	10	4	-0.028	-0.028	1.6539	0.79	
ı þ	i p	5	0.070	0.070	5.1854	0.39	
d i	(I)	6	-0.052	-0.056	7.0883	0.31	
r) C	111	7	0.002	0.007	7.0918	0.41	
<u>■</u> 1	■ 1	8	-0.169	-0.173		0.00	
il i	100	9	-0.030	-0.022	28.218	0.00	
die .	111	10	0.014	-0.006	28.349	0.000	
ı 🗀	I	11	0.180	0.189	51.674	0.00	
ı þ	i p	12	0.071	0.053	55.268	0.00	
= 1	III.	13	-0.104	-0.074	63.049	0.00	
11	10	14	-0.003	-0.016	63.054	0.00	
ghr .	1 10	15	0.013	0.017	63.169	0.00	
r r	ill ill	16	0.005	-0.047	63.185	0.00	
. j p i≋	10	17	0.052	0.059	65.147	0.00	
de:	11	18	-0.021	-0.006	65.470	0.00	
d:	11	19	-0.054	0.000	67.624	0.00	
t) t	il ili	20	-0.003	0.022	67.632	0.00	
ı þ	ı þ	21	0.078	0.062	72.074	0.00	
ı þ	1 1	22	0.059	0.008	74.594	0.00	
ı þ	10	23	0.054	0.051	76.734	0.00	
d)	101	24	-0.050	-0.031	78.556	0.00	
ille:	10	25	-0.009	0.024	78.621	0.00	
ų (di di	26	-0.037	-0.068	79.653	0.00	
qt.	10	27	-0.024	-0.019	80.064	0.00	
ığı .	(d)	28	-0.029	-0.055	80.699	0.00	
4	10	29	-0.041	-0.009	81.912	0.00	
(þ)	i)	30	0.036	0.065	82.863	0.00	
d ·	(1)	31	-0.081	-0.062	87.749	0.00	
ijii	i di	32	0.016	-0.031	87.946	0.00	
ija:	j jr	33	0.020	0.002	88.244	0.00	
ilu	10	34	-0.015	-0.048	88.404	0.00	
ı þ	10	35	0.045	0.043	89.927	0.000	
ıb.	10	36	0.061	0.082	92.721	0.000	

Having tried most of the lag values, we are still unable to reject the null hypothesis as the t-statistic for the Augmented Dickey-Fuller tests have probabilities above 0.05. As the above correlogram does not show any visible forms of patterns, there are no significant trends in the residual.

Date: 02/13/19 Time: 19:22 Sample: 1960M01 2018M12 Included observations: 707

Null Hypothesis: D_COPPER has a unit root Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=19)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	1	1	0.333	0.333	78.954	0.000
i þ	d:	2	0.063	-0.055	81.743	0.000
ili.	i di	3	-0.020	-0.027	82.020	0.000
ığı .	100	4	-0.037	-0.021	82.987	0.000
i j i	i bi	5	0.009	0.033	83.043	0.000
d i		6	-0.081	-0.107	87.696	0.000
Q!	101	7	-0.098	-0.045	94.588	0.000
<u> </u>		8	-0.205	-0.176	124.70	0.000
Q!	10	9	-0.090	0.037	130.57	0.000
i j i	10	10	0.025	0.041	131.02	0.000
1 🔤	1 1	11	0.166	0.160	150.89	0.000
ı þ	d ·	12	0.074	-0.058	154.87	0.000
q i	d	13	-0.082	-0.104	159.68	0.000
ı(i	j ji	14	-0.040	-0.004	160.86	0.000
10	1 1	15	-0.012	-0.004	160.96	0.000
1 1	10	16	-0.002	-0.046	160.96	0.000
r j t	10	17	0.021	0.053	161.29	0.000
ų(i	1 10	18	-0.039	-0.037	162.37	0.000
d.	1 1 1	19	-0.066	0.001	165.51	0.000
1 1	1 10	20	-0.007	0.026	165.54	0.000
·þ	i þ	21	0.078	0.041	169.93	0.000
ı þ	1 10	22	0.078	-0.015	174.42	0.000
ı þ	i)i	23	0.045	0.022	175.94	0.000
q.	d d	24	-0.049	-0.058	177.73	0.000
d.	1 1	25	-0.054	-0.004	179.85	0.000
Q I	III	26	-0.076	-0.092	184.05	0.000
Q ·	1 10	27	-0.073	-0.024	187.94	0.000
q.	(I		-0.075		192.07	0.000
Q!	1 1	29	-0.071	0.007	195.75	0.000
ı d ı	1)0	30	-0.026	0.021	196.25	0.000
q.	III		-0.085		201.62	0.000
40	1 10	32	-0.018	-0.027	201.87	0.000
1 1	10	33	0.004	-0.014	201.88	0.000
100	1 10	34	0.000	-0.040	201.88	0.000
ıb.	(1)	35	0.051	0.061	203.82	0.000
·þ	ı þ	36	0.064	0.042	206.93	0.000

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-18.75198	0.0000
Test critical values:	1% level	-2.568242	
	5% level	-1.941272	
	10% level	-1.616398	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(D_COPPER) Method: Least Squares Date: 02/13/19 Time: 19:27 Sample (adjusted): 1960M03 2018M12 Included observations: 706 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
D_COPPER(-1)	-0.665749	0.035503	-18.75198	0.0000
R-squared	0.332788			-0.188938
Adjusted R-squared	0.332788	S.D. depende	281.6753	
S.E. of regression	230.0808	Akaike info cr	iterion	13.71615
Sum squared resid	37320724	Schwarz criterion		13.72261
Log likelihood	-4840.802	Hannan-Quin	in criter.	13.71865
Durbin-Watson stat	1.963378			

From the unit root tests, the probability is close to 0 and so we can reject the null hypothesis, which implies that the series is stationary. In addition, differenced series has an average around 0 while the correlogram displays a significant drop after the first autocorrelation and partial autocorrelation.

Based on the results above, the presence of a sharp drop after the first partial autocorrelation while autocorrelations remaining close to 1.00 and not dying quickly implies that the series is non-stationary.

(b)(ii)

ARMA(1,0) ARMA(0,1) Dependent Variable: DLOG(GOLD) Method: ARMA Generalized Least Squares (Gauss-Newton) Dependent Variable: DLOG(GOLD) Method: ARMA Generalized Least Squares (Gauss-Newton) Date: 02/13/19 Time: 20:24 Date: 02/13/19 Time: 20:23 Sample: 1960M02 2018M12 Sample: 1960M02 2018M12 Included observations: 707 Included observations: 707 Convergence achieved after 7 iterations Convergence achieved after 2 iterations Coefficient covariance computed using outer product of gradients Coefficient covariance computed using outer product of gradients d.f. adjustment for standard errors & covariance d.f. adjustment for standard errors & covariance Variable Coefficient Coefficient Prob. 0.005054 0.002198 2.298982 0.0218 0.005054 0.002110 2 394999 0.0169 0.0000 MA(1) 7.223481 0.310681 0.035805 8.676966 0.0000 0.068911 0.005047 0.081961 0.005047 R-squared Mean dependent var R-squared Mean dependent var 0.067590 0.044664 Adjusted R-squared S.D. dependent var Adjusted R-squared 0.080658 0.044664 S.D. dependent var S.E. of regression 0.043128 Akaike info criterion -3.446353 S.E. of regression 0.042825 Akaike info criterion -3.460426 Sum squared resid -3.447523 -3.455440 1.311329 Schwarz criterion -3 433451 Sum squared resid 1.292950 Schwarz criterion Log likelihood 1220.286 -3.441368 Hannan-Quinn criter. Log likelihood 1225 260 Hannan-Quinn criter F-statistic 52.17775 Durbin-Watson stat 1.938848 F-statistic 62.94092 Durbin-Watson stat 2.022894 Prob(F-statistic) 0.000000 Prob(F-statistic) 0.000000 Inverted AR Roots Inverted MA Roots -.31 ARMA(1,1) Dependent Variable: DLOG(GOLD)

Method: ARMA General Date: 02/13/19 Time: : Sample: 1960M02 201 Included observations: Convergence achieved Coefficient covariance of .f. adjustment for stan	20:25 8M12 707 after 9 iteration computed using	is g outer product		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.005054	0.002045	2.470841	0.0137
AR(1)	-0.108232	0.119663	-0.904475	0.3661
MA(1)	0.407584	0.109922	3.707930	0.0002
R-squared	0.083109	Mean depend	ient var	0.005047
Adjusted R-squared	0.080504	S.D. depende	ent var	0.044664
S.E. of regression	0.042828	Akaike info cr	iterion	-3.458846
Sum squared resid	1.291333	Schwarz crite	rion	-3.439492
Log likelihood	1225.702	Hannan-Quin	n criter.	-3.451368
F-statistic	31.90612	Durbin-Watso	on stat	2.001359
Prob(F-statistic)	0.000000			
Inverted AR Roots	11			-
Inverted MA Roots	41			

Based on the comparison between all the results, ARMA(2,0) gave the lowest AIC value of - 3.882991 among the possible candidates and thus is the best ARMA model among all.

يد ند بان		باديال عاد	. بىلمىد	1	Sample: 1985M01 2 Included observation Q-statistic probabilit	018M12	MA te	rm			
2_	alt bright this				Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
11 0 1990 EDependent Variable: DMethod: ARMA General	ized Least Squ		Fitted	1		() () () () () () () () () () () () () (2 3 4 5 6 7 8 9	-0.083 0.006 0.044 0.012 -0.009 0.071 0.014 -0.013	-0.084 0.004 0.037 0.015 -0.002 0.073 0.013 -0.002 -0.013	0.0826 2.9407 2.9562 3.7572 3.8212 3.8545 5.9501 6.0963 6.1841 16.261 16.276 16.295 16.687 17.179	0.223 0.283 0.43 0.57 0.423 0.53 0.63 0.72 0.093 0.13 0.173 0.21
Date: 02/13/19 Time:: Sample: 1985M02 201 Included observations: Convergence achieved Coefficient covariance d.f. adjustment for stan	8M12 407 after 7 iteration computed using	outer product	of gradients				17 18 19 20 21 22	0.079 0.009 0.030	0.014 0.042 -0.006 0.087 0.011 0.016	22.172	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	16		23 24	0.025	0.021 0.045	22.442 23.291	
C MA(1)	0.003484 0.168141	0.002007 0.049007	1.736294 3.430960	0.0833 0.0007	•		25 26	-0.009 0.067	-0.021 0.069	23.329 25.265	0.50
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.022957 0.020545 0.034667 0.486726 791.8023	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion rion n criter.	0.003484 0.035029 -3.881092 -3.861393 -3.873297	ARMA(i	0,1)					

2.027007

Prob(F-statistic) Inverted MA Roots

F-statistic

Durbin-Watson stat

9.516057

-.17

As the residual plots for all the ARMA models have almost the same pattern, it is hard to determine whether the residuals look random.

However, from the correlogram plots, only ARMA(2,0) shows a sharp drop after the first ACF and PACF. The remaining models have ACF and PACF remaining close to zero throughout. As such, the residuals seems to be random for only ARMA(2,0).

Based on the results above, we can say that the fit for the above forecast is relatively good as it falls within the standard deviation band. Also, the error percentage of 2% is significantly small.

Based on the results above, the fit for the above forecast is comparatively worse. While it falls within the standard deviation band, the fit seems to display the mean rather than the trend of the actual DLOG(GOLD) values.

From the 12 month prediction interval graph above, we can expect the gold price to increase gradually over time. However, we need to take note that there exists a risk whereby if the price falls on a particular period, it will result in a drop for the subsequent prices.

We cannot use static forecast because it only predicts one-step ahead whereas for dynamic, the predication interval is flexible.