Examen Parcial 2

Heriberto Espino Montelongo – 175199

Universidad de las Américas Puebla

P24-LII2042-3: Teoría y Técnica de Optimización

Abraham Benito Barragán Amigón

12 de marzo de 2024

Índice

Pregunta 1	3
Pregunta 2	4
Pregunta 3	5
Pregunta 4	6

Considérese el siguiente problema. Siendo la iteración 0 del método simplex aquella donde por primera vez se pregunta quién es la variable de entrada ¿Cuál es la variable que entra y cual la que sale en la iteración 1?

$$\max 300x + 400y$$
s. a. $3x + 3y \le 120$

$$3x + 6y \le 180$$

$$x, y \ge 0$$

En la iteración uno entra x, sale s1

Básicas	х		У	s1		s2	Resultado	Razón
s1		3		3	1	0	120	40
s2		3		6	0	1	180	30
Z	-	300	-40	0	0	0	0	
entra	sale							
У	s2							
Básicas	x		y	s1		s2	Resultado	
s1		3		3	1	0	120	
У		3		6	0	1	180	
z	-	300	-40	0	0	0	0	
Básicas	×		52				Resultado	
s1		3		3	1	0	120	
У		0.5		1	0	0.166667	30	
z	-	300	-40	0	0	0	0	
Básicas	×		у	s1		s2	Resultado	Razón
s1		1.5		0	1	-0.5	30	20
У		0.5		1	0	0.166667	30	60
z		100		0	0	66.66667	12000	
entra	sale							
×	s1							

Considera al siguiente problema donde s1, s2 y s3 representan las variables de holgura de las restricciones, respectivamente ¿Qué valor tiene x2 cuando s1 y s2 son variables no básicas?

max
$$z = 2x_1 + x_2$$

s. a. $x_1 + 2x_2 \le 6$
 $x_1 - x_2 \le 4$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

					punto esquina	funcion objetiv
No basicas	Basicas	soluc	ion basica	x1	x2	2x1 + x2
s1, s2	x, 2x, s3	4.67	0.67	1.33	4.67	0.67 10.0
	El sistema a resolver e	5				
x + 2x2= 6		/1	2 0 6			
x1 - x2 = 4		1	$ \begin{array}{cccc} 2 & 0 & 6 \\ -1 & 0 & 4 \\ 1 & 1 & 2 \end{array} $			
x2 + s3 = 2		1 0	-1 0 4			
		10	1 1 2/			
		A4555				
		Use	Gauss Jordan)		
		1.	14 \			
		1 ($\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		- P	2			
		0	$1 \ 0 \ \frac{2}{3}$			
			4			
		0 ($1 \frac{4}{3}$			

El valor de x_2 cuando s_1 y s_2 son variables no básicas es de 2/3.

¿Cuál es el valor óptimo del siguiente problema? En Excel

$$\max 300x + 400y$$

 $s. a. 3x + 3y \le 120$
 $3x + 6y \le 180$
 $x, y \ge 0$

Con Excel el valor óptimo es 14.

¿Cuál es el valor óptimo del siguiente problema?

Min
$$z = x_1 + 2x_2 + 3x_3 + 2x_4 + x_5 + 2x_6 + 3x_7 + 2x_8 + x_9$$

Sa $x_1 + x_2 + x_3 = 2$
 $x_4 + x_5 + x_6 = 3$
 $x_7 + x_8 + x_9 = 4$
 $x_1 + x_4 + x_7 = 5$
 $x_2 + x_5 + x_8 = 2$
 $x_3 + x_6 + x_9 = 2$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$

Dados los datos, tenemos lo siguiente:

```
Tue Mar 12 2024 11:56:36 GMT-0600 (hora estándar central)
n:9
                          FICO Xpress Mosel 64-bit v6.4.4, FICO Xpress v9.3.0
m:6
                          (c) Copyright Fair Isaac Corporation 2001-2024. All rights reserved
t_r:[000000]
                          Compiling produccion.mos to out\produccion.bim with -g
t_p:2
                          Running model
                          El valor de la funcion objetivo es: 14
c:[1 2 3 2 1 2 3 2 1]
                          El valor de la variable x(1) es 2
                          El valor de la variable x(2) es 0
A: [1 1 1 0 0 0 0 0 0
                          El valor de la variable x(3) es 0
000111000
                          El valor de la variable x(4) es 3
000000111
                          El valor de la variable x(5) es 0
100100100
                          El valor de la variable x(6) es 0
                          El valor de la variable x(7) es 0
010010010
                          El valor de la variable x(8) es 2
001001001
                          El valor de la variable x(9) es 2
b: [2 3 4 5 2 2]
                           Process exited with code: 0
```

Con Xpress el valor óptimo es 14.