HIERARCHICAL STRUCTURE AND TOPOLOGICAL CONTENT OF ENTANGLEMENT OF FREE FERMIONS

ABHIRUP MUKHERJEE, SIDDHARTHA PATRA, SIDDHARTHA LAL

DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA, MOHANPUR

JUNE 25, 2022

THE SYSTEM

Massless Dirac fermions on a 2-torus

$$L = i \overline{\psi} \gamma_{\mu} \partial_{\mu} \psi$$

In presence of an Aharonov-Bohm flux

$$L = \overline{\psi} \left(i \gamma_{\mu} + e A_{\mu} \right) \partial_{\mu} \psi$$

$$\rho = |\Psi\rangle\langle\Psi|$$
 \longrightarrow density matrix

$$\rho = |\Psi\rangle\langle\Psi|$$
 —density matrix

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$\rho = |\Psi\rangle\langle\Psi|$$
 —density matrix

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow **reduced DM**

$$S(A) = -\text{Tr}\left[\rho_A \log \rho_A\right] \longrightarrow \text{entanglement entropy of A}$$

→ quantifies information shared between A and rest

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow$$
density matrix

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$I(A:B) = S(A) + S(B) - S(A \cup B) \longrightarrow$$
 mutual information between A and B

 \rightarrow quantifies information shared between A and B

ENTANGLEMENT OF FREE FERMIONS

Diagonal in k-space \longrightarrow **Vanishing** entanglement in momentum space

ENTANGLEMENT OF FREE FERMIONS

Diagonal in k-space \longrightarrow **Vanishing** entanglement in momentum space

Off-diagonal in r-space \longrightarrow **Fluctuations** exist in real space \longrightarrow leads to entanglement in real space

ENTANGLEMENT OF FREE FERMIONS

massless fermion on 1-d line:
$$\frac{1}{3} \log(l/\epsilon)$$

massive fermions on 1-d line:
$$\frac{1}{3} \log (l/\epsilon) - \frac{1}{6} (ml \log ml)^2$$

massless fermions in higher dims.: $l^{d-1} \log l$

REDUCTION OF 2-D SYSTEM TO (1 + 1)-D SYSTEMS

REDUCTION TO (1 + 1)-D SYSTEMS

In presence of flux:
$$L = \int dx dy \ \overline{\Psi}(x) (i\gamma_{\mu} + eA_{\mu}) \partial_{\mu} \Psi(x)$$

Periodic boundary conditions along
$$\vec{x}$$
: $k_x^n = \frac{2\pi n}{L_x}$, $n \in \mathbb{Z}$

Introduce Fourier modes:
$$\Psi(x) = \sum_{n=-\infty}^{\infty} e^{ixk_x^n} \Psi(k_x^n)$$

REDUCTION TO (1 + 1)-D SYSTEMS

Decouples into massive 1D modes: $L = \sum_{n} \int dy \ \overline{\Psi}(k_x, y) \left(i\gamma_{\mu}\partial_{\mu} - M\right) \Psi(k_x, y)$ Mass of each mode: $M(n, \phi) = \frac{2\pi}{L_x} |n + \phi|$

REDUCTION TO (1 + 1)-D SYSTEMS

2D system is described by sum over 1D modes.

Modes do not couple - no inter-mode entanglement.

Total entanglement is sum of each part: $S = \sum_{n} S_{n}$

$$S_n(\phi) = \underbrace{c \log(\alpha L_x)}_{\text{modified area law}} - \underbrace{c \log|n + \phi|}_{\text{mass correction}}$$

WHAT ARE WE GOING AFTER?

- Distribution of entanglement across subsystems
- Emergent space generated by this entanglement
- Curvature and related quantities of this space

ENTANGLEMENT HIERARCHY IN MIXED MOMENTUM AND REAL SPACE

CREATING SUBSYSTEMS

$$k_x^n = \frac{2\pi}{L_x} n$$
, $n \in \mathbb{Z}$; define **distance** = $\Delta n = 1$

Simplest choice: the entire set

distance = 1
$$\longrightarrow$$
 $n \in \{-N, -(N-1), -(N-2), ..., -1, 0, 1, ..., N-2, N-1, N\}$

Coarser choices: increase distance

distance = 2
$$\longrightarrow n \in \{-N, -(N-2), -(N-4), ..., -2, 0, 2, ..., N-4, N-2, N\}$$

distance =
$$4 \longrightarrow n \in \{-N, -(N-4), -(N-8), ..., -4, 0, 4, ..., N-8, N-4, N\}$$

$$n=0$$
 $n=4$ $n=16$ • • •

SEQUENCE OF SUBSYSTEMS

Define **sequence** of subsystems

$$A_z(j): t_z(j) = 2^{j^z}$$

sequence index: j = 0, 1, 2, ...

strength of coarse/fine-graining: $z = \pm 1, \pm 2, \pm 3, ...$

THE SEQUENCE AS A RENORMALISATION GROUP FLOW

Sequence of Hamiltonians **←→ renormalisation** group flow

RG \longrightarrow transformation of Hamiltonian via change of scale

Superset of all members:
$$A_z^{(0)} = \bigcup_j A_z(j)$$

"Super-Hamiltonian":
$$H^{(0)} = \sum_{k_x \in A_z^{(0)}} H(k_x)$$

RG equation:
$$H_z(j) = \underbrace{P_z(j)}_{\text{projector}} H^{(0)} P_z(j)$$

WHAT, EXACTLY, IS GETTING RENORMALISED?

Several ways to look at this

- renormalisation in **entanglement**: $\Delta \log S_z(j) \sim \Delta f_z(j)$
- renormalisation in 1-particle **spectral gap**: $M(n, \phi) \sim |n + \phi|$
- renormalisation in real space quantum fluctuation

FRACTION OF MAXIMUM STATES

 $f_z(j)$ = fraction of maximum states = $1/t_z(j)$

SEQUENCE OF SUBSYSTEMS

$$j = 0$$
: $A_z(0)$: annulus

$$\Delta n \sim \Delta k_x \sim 1/L_x \longrightarrow$$

z > 0: decreasing system size

z < 0: increasing system size

Modes are decoupled → entanglement is additive

$$S_{A_z(j)} = \sum_{n \in A_z(j)} S_n = f_z(j) c \alpha L_x - c \log \left| 2 \sin \left(\pi f_z(j) \phi \right) \right|$$

$$i < j, \quad S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_j, & z < 0 \end{cases}$$

ENTANGLEMENT HIERARCHY

$$i < j, \quad S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_j, & z < 0 \end{cases}$$

presents a **hierarchy** of entanglement → EE distributed across levels

RG transformation → reveals entanglement

distribution of entanglement also present in multipartite entanglement

Mutual information: $I^2(A:B) \equiv S(A) + S(B) - S(A \cup B)$

information gained about B upon measuring A

define distance along the RG:
$$d_z(j) = \log I_{\max}^2 - \log I_z^2(0:j) = \log t_z(j)$$

For z > 0:

- mut. info. is maximum for small i
- decreases for large i
- corresponds to increasing distance

Van Raamsdonk 2010: Lee et al. 2016: Mukheriee et al. 2022.

Define 2-dimensional x - y structure

Lee 2010; Lee 2014; Qi 2013; Lee et al. 2016; Mukherjee et al. 2020a; Mukherjee et al. 2020b; Ryu et al. 2006b; Ryu et al. 2006a; Nozaki et al. 2012.

Define coupling that measures spectral gap: $g_z(j) = \log \frac{M_{n+1}(\phi) - M_n(\phi)}{2\pi/L_v} = \log t_z(j)$

RG beta function for its evolution:

$$\beta_z(j) = \Delta \log g_z(j) = z \log (1 + j^{-1})$$

RG beta function can be related to the x, y-distances

$$x_z = \left(e^{\frac{\beta_z}{z}} - 1\right)^{-z} \log 2$$

$$y_z = \begin{cases} x_z e^{\beta}, & z > 0 \\ x_z \left(2 - e^{\frac{\beta}{z}}\right)^z, & z < 0 \end{cases}$$

explicit relation between the RG flow and the emergent geometry

CURVATURE OF THE EMERGENT SPACE

Define first and second derivatives in emergent space

$$v_z(j) = \frac{\Delta y_z(j)}{\Delta x_z(j)} = \begin{cases} \frac{(j+2)^z - (j+1)^z}{(j+1)^z - j^z}, & z > 0\\ \frac{(j)^z - (j-1)^z}{(j+1)^z - j^z}, & z < 0 \end{cases}$$

$$v_z'(j) = \frac{v_z(j+1) - v_z(j)}{x_z(j+1) - x_z(j)}$$
Define curvature using them: $K_z(j) = \frac{v_z'(j)}{\left[1 + v_z(j)^2\right]^{\frac{3}{2}}}$

$$\longrightarrow \text{ can be expressed in terms of } \beta_z(j)$$

CURVATURE OF THE EMERGENT SPACE

- **p** positive curvature for z < 0
- \blacksquare zero curvature for z = 1
- negative curvature for z > 1
- **asymptotically flat** for large j, at all z

THE SIGN OF THE CURVATURE IS TOPOLOGICAL

Curvature can be written as the product of winding numbers:

$$sign[\kappa_z] = W_z(\gamma^*) \times [2W_z'(\alpha^*) - 1]$$

winding numbers count singularities, robust against deformations

THE SIGN OF THE CURVATURE IS TOPOLOGICAL

Where exactly is the topology changing?

- z acts as the **anomalous dimension** of the effective field theory
- change in z can be interpreted as a change in the underlying interacting theory
- change in sign of z might then be a **topological phase transition** in the microscopic theory

EVOLUTION OF EXPANSION PARAMETER

Define an expansion parameter:
$$\theta_z(j) = \frac{1}{\sqrt{1+v_z^{-2}}}$$

can be related to RG flow through β_z

related to change in area of flows of g_z

$$\theta_z \sim \frac{1}{\sqrt{\Delta x^2 + \Delta y^2}} \Delta g_z(j+1)$$

■ Expansion parameter satisfies "Raychaudhuri-like" equation

$$\frac{\mathrm{d}\theta_z}{\mathrm{d}x_z} = \kappa$$

■ No attractive θ^2 term: fixed points reached only at $j \to \infty$

■ Transformation to a different space

$$\tilde{\theta} = \frac{1}{1 - \sqrt{2}\theta}, \quad \frac{d\tilde{\theta}}{dx_z} = \sqrt{2}\tilde{\theta}^2\kappa$$

- Does generate θ^2 term
- Effective curvature is zero

Conclusions

- hierarchy of entanglement, both across scales as well as number of parties
- RG beta function gives rise to emergent distances
- \blacksquare anomalous dimension z determines sign of curvature
- sign of curvature is topological
- lacksquare heta, $ilde{ heta}$ satisfy "Raychaudhuri-like" equations

REFERENCES I

- Arias, Raúl E, David D Blanco, and Horacio Casini (2015). "Entanglement entropy as a witness of the Aharonov-Bohm effect in QFT". In: Journal of Physics A: Mathematical and Theoretical 48.14, p. 145401.
- Balasubramanian, Vijay and Per Kraus (1999). "Spacetime and the holographic renormalization group". In: Physical Review Letters 83.18, p. 3605.
- Calabrese, Pasquale and John Cardy (2004a). "Entanglement entropy and quantum field theory". In: Journal of Statistical Mechanics: Theory and Experiment 2004.06, P06002.
- (2004b). "Entanglement entropy and quantum field theory". In: Journal of Statistical Mechanics: Theory and Experiment 2004.06, P06002.
- Casini, H, C D Fosco, and M Huerta (2005). "Entanglement and alpha entropies for a massive Dirac field in two dimensions". In: Journal of Statistical Mechanics: Theory and Experiment 2005.07, P07007–P07007.
- Casini, H and M Huerta (2009). "Entanglement entropy in free quantum field theory". In: Journal of Physics A: Mathematical and Theoretical 42.50, p. 504007.
- Chen, Xiao et al. (2017). "Two-cylinder entanglement entropy under a twist". In: Journal of Statistical Mechanics: Theory and Experiment 2017.4, p. 043104.
- Chung, Ming-Chiang and Ingo Peschel (2000). "Density-matrix spectra for two-dimensional quantum systems". In: Phys. Rev. B 62 (7), pp. 4191–4193.
- Gioev, Dimitri and Israel Klich (2006). "Entanglement entropy of fermions in any dimension and the Widom conjecture". In: Physical review letters 96.10, p. 100503.
- ► Kar, Sayan (2001). "Geometry of renormalization group flows in theory space". In: *Phys. Rev. D* 64 (10), p. 105017.
- Kar, Sayan and Soumitra Sengupta (2007). "The Raychaudhuri equations: A brief review". In: Pramana 69.1, pp. 49–76.

REFERENCES II

- Lee, Ching Hua and Xiao-Liang Qi (2016). "Exact holographic mapping in free fermion systems". In: Physical Review B 93.3, p. 035112.
- ▶ Lee, Sung-Sik (2010). "Holographic description of quantum field theory". In: Nuclear Physics B 832.3, pp. 567–585.
- ▶ (2014). "Quantum renormalization group and holography". In: Journal of High Energy Physics 2014.1, p. 76.
- Li, Weifei et al. (2006). "Scaling behavior of entanglement in two- and three-dimensional free-fermion systems". In: *Phys. Rev. B* 74 (7), p. 073103.
- Mukherjee, Anirban and Siddhartha Lal (2020a). "Unitary renormalisation group for correlated electrons-I: a tensor network approach". In: Nuclear Physics B 960, p. 115170.
- (2020b). "Unitary renormalisation group for correlated electrons-II: insights on fermionic criticality". In: Nuclear Physics B 960, p. 115163.
- ► (2022). "Superconductivity from repulsion in the doped 2D electronic Hubbard model: an entanglement perspective". In: Journal of Physics: Condensed Matter 34.27, p. 275601.
- Murciano, Sara, Paola Ruggiero, and Pasquale Calabrese (2020). "Symmetry resolved entanglement in two-dimensional systems via dimensional reduction". In: Journal of Statistical Mechanics: Theory and Experiment 2020.8, p. 083102.
- Nozaki, Masahiro, Shinsei Ryu, and Tadashi Takayanagi (2012). "Holographic geometry of entanglement renormalization in quantum field theories". In: Journal of High Energy Physics 2012.10, p. 193.
- Qi, Xiao-Liang (2013). "Exact holographic mapping and emergent space-time geometry". In: arXiv preprint arXiv:1309.6282.

REFERENCES III

- Ryu, Shinsei and Tadashi Takayanagi (2006a). "Aspects of holographic entanglement entropy". In: Journal of High Energy Physics 2006.08, p. 045.
- (2006b). "Holographic derivation of entanglement entropy from the anti-de sitter space/conformal field theory correspondence". In: *Physical review letters* 96.18, p. 181602.
- Van Raamsdonk, Mark (2010). "Building up spacetime with quantum entanglement". In: General Relativity and Gravitation 42.10, pp. 2323–2329.
- ▶ Wolf, Michael M. (2006). "Violation of the Entropic Area Law for Fermions". In: Phys. Rev. Lett. 96 (1), p. 010404.