Projet Python: Bike Sharing Demand

NICOLAS MEUNIER – CHARLIE MARTIN – ELIOT LANGLOIS 09/12/2021

Sommaire

I) Contexte de l'étude

II) Analyse du Dataset

III) Visualisations et Modélisations

IV) Conclusion

I) Contexte de l'étude

Les transports à Séoul :

- La marche : Les distances à couvrir peuvent très vite devenir problématiques. Superficie de 605.52 km2.
- Véhicule personnel : Séoul se trouve saturée par des embouteillages de jour comme de nuit dû à sa population : 10 millions d'habitants et une aire urbaine de 25 millions d'habitants. De plus il y a un système de circulation alternée pour les jours de pics de pollution.
- Transport en commun : Intra-citée (Séoul dispose d'un réseau de bus très complet, doté de plus de 200 lignes, quadrillant toute la ville) et Métro transportant notamment 8.4 millions de touristes par an.
- Le vélo : (Seoul Bike) ressemble fortement aux Vélibs français.

I) Contexte de l'étude

Enjeux du projet

- Prédire le nombre de vélos loués en fonction des périodes et de la météo
- Améliorer la mise à disposition des vélos
- Améliorer la planification de l'économie de l'entreprise

II) Analyse du Dataset

Maîtrise et analyse du dataset

- 8760 Lignes -> 1 année en heures
- 14 colonnes -> 14 variables
- Informations
- Tendances

II) Analyse du Dataset

- •14 variables au sein du dataset
- •On peut les regrouper en 2 types autour de la variable principale : Rented by count
- Variables fixes vs variables aléatoires

Variables temporelles	Variables météorologiques
Date	Temperature
Hour	Humidity
Seasons	Wind speed
Holiday	Visibility
Fonctioning day	Dew point temperature
	Solar radiation
	Rainfall
	Snowfall

II) Analyse du Dataset – Premières valeurs

Date Ren	nted Bike Count	Hour	Temperature (°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature (°C)	Solar Radiation (MJ/m2)	Rainfall (mm)	Snowfall (cm)	Seasons	Holiday	Functioning Day
0 01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
1 01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
2 01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0	Winter	No Holiday	Yes
3 01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
4 01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0	Winter	No Holiday	Yes

Visualisations:

Temporelles (saisons, mois, jours, heures)

Météorologiques (températures, visibilité, vents, radiation solaire)

Boxplot des saisons :

Résultats plutôt similaire sauf pour l'hiver nettement inférieur.

Faible temperature explique bien le nombre de vélos loués

Boxplots des mois

Résultats en accord avec la visualisation des saisons

Plus de variations au sein des mois d'une même saison

Juillet et août = saison des pluies

Mois ou temperature ?

Intéressant d'ajouter les jours dans nos features ?

Non : peu de variations

Matin (6h à 12h)

Après-midi (12h à 18h)

Soirée (18h à minuit)

Nuit (de minuit à 6h)

Boxplots des heures :

Migrations pendulaires?

9 heures de migration :

De 7h à 11h

De 17h à 22h

- En 9h soit 37.5% de la journée on a 50% des vélos loués
- Il existe un vrai phénomène de migration pendulaire

	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall (mm)	Snowfall (cm)	Rented Bike Count	RBC%
Migration pendulaire									
No	12.824895	58.403470	1.677954	4.064237	0.658935	0.134977	0.076548	3109444	50.377282
Yes	12.979635	57.930898	1.803166	4.089772	0.419403	0.171537	0.072603	3062870	49.622718

Semaine VS week-end

Moyennes similaires

Grande différence dans la répartition dans la journée

Il est important de considérer le week-end

Température

Corrélation (temperature – Rented Bike Count) = 0.54

On retrouve bien les informations observées avec les saisons : la température explique plus lorsque sa valeur est faible (temps froid)

Visibilité

Quand la visibilité est très faible : très peu de vélos sont loués

Vent

Beaucoup de vent = peu de vélos loués

```
pre_temp2.tail(10) # 7.4 m/s | 7.2 m/s | 5.7 m/s

print(sbdata[sbdata['Wind speed (m/s)']==7.4].shape)
print(sbdata[sbdata['Wind speed (m/s)']==7.2].shape)
print(sbdata[sbdata['Wind speed (m/s)']==5.7].shape)

(1, 14)
(1, 14)
(1, 14)
```


Solar radiation : pas de relation linéaire

Bilan des visualisations:

- Température, heure et jour semblent être les features les plus importantes
- Les autres features (visibilité, vitesse du vent, radiation solaire) ont peu d'impact sauf dans les conditions extrêmes
- Jour n'est pas une feature de notre dataset :nous devons trouver un moyen de l'exprimer

Data set:

- Brut
- Sur une semaine
- Périodique (1h, 1j, 1semaine)
- Limiter les données corrélées
- Limiter les données inutiles
- Test de nouveaux modèles
- Optimisation des modèles

Brut:

- Toutes les colonnes : étudier brièvement la réponse du dataset à différent modèle
- Modifications pour utilisation :
 - Transformation des chaînes de caractères en valeur binaire.
 - Transformation de la date en nombre de jour d'après le calendrier grégorien proleptique.

	Date	Rented Bike Count		Holiday	Functioning Day	Autumn	Spring	Summer	Winter
0	736341	254		0	1	0	0	0	1
1	736341	204		0	1	0	0	0	1
2	736341	173	•••	0	1	0	0	0	1
3	736341	107		0	1	0	0	0	1
4	736341	78		0	1	0	0	0	1

lag_1 lag_24 lag_168 Weekend Hour_sin Hour_cos Weekday_sin Weekday_cos

- Sur une semaine :
 - Début de journée à 6h
 - Lag reprenant les locations sur la dernière semaine
- Périodique (1h, 1j, 1semaine) :
 - ► Evolution périodique à travers le temps
 - Dégradation de la précision en augmentant la portée de la prédiction.

- Limiter les données corrélées :
 - La température et la température du point de rosée sont fortement corrélées.
- Limiter les données inutiles :
 - Saisons
 - Humidité
 - Visibilité

- Test de nouveaux modèles
 - ► Régression multiple (R² = 88%)
 - Arbre de régression (89%)
 - RandomForest (96%)

- Optimisation des modèles
 - GridSearch
 - ▶ Profondeur de l'arbre : 12 niveaux

		У Но	ur '	Temperature(°C)	Wind speed (m/s)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	Holiday	Functioning Day	TemperatureM	lag_1	lag_24	lag_168	Weekend	Hour_sin	Hour_cos	Weekday_sin	Weekday_cos
	Date																		
2017	'-12-11	125	0	-2.5	3.4	0.0	0.0	0.0	0	1	-2.540463	148.0	326.0	285.0	0	0.000000	1.000000	0.0	1.0
2017	'-12-11	111	1	-3.4	3.8	0.0	0.0	0.0	0	1	-2.540463	125.0	280.0	186.0	0	0.258819	0.965926	0.0	1.0
2017	-12-11	67	2	-4.2	3.4	0.0	0.0	0.0	0	1	-2.540463	111.0	243.0	112.0	0	0.500000	0.866025	0.0	1.0
2017	'-12-11	45	3	-4.7	2.4	0.0	0.0	0.0	0	1	-2.540463	67.0	169.0	65.0	0	0.707107	0.707107	0.0	1.0
2017	-12-11	44	4	-5.2	3.2	0.0	0.0	0.0	0	1	-2.540463	45.0	71.0	41.0	0	0.866025	0.500000	0.0	1.0
2017	'-12-11	44	4	-5.2	3.2	0.0	0.0	0.0	0	1	-2.540463	45.0	71.0	41.0	0	0.866025	0.500000	0.0	

- Résultats :
 - Précision sur l'ensemble d'entrainement : 99%
 - Précision sur l'ensemble de test : 96%
 - ▶ R² mesure la proportion de variabilité de Y expliquée par les autres données.

$$R^2 = rac{ ext{TSS} - ext{RSS}}{ ext{TSS}} = 1 - rac{ ext{RSS}}{ ext{TSS}} \qquad \qquad R^2 = 1 - rac{\sum_{i=1}^n \left(Y_i - \hat{Y}_i
ight)^2}{\sum_{i=1}^n \left(Y_i - \overline{Y}_i
ight)^2}$$

IV) Conclusion

Résumé des bonnes fonctionnalités :

- Utilisation cyclique des données
- Apport du lag des précédentes heures

Améliorations possibles :

- Mise à jour de l'API
- Acquisition de données de localisation
- Acquisition de données économiques

Station de vélo à Séoul