

Ct-2 paper 27 chem - Hhj

Chemistry (SRM Institute of Science and Technology)

Scan to open on Studocu

7. Which of the following corrosion form is depicted in the given figure?

- a) Crevice corrosion b) Uniform corrosion c) Intergranular corrosion d) Pitting corrosion
- 8. Which of the following compounds displays optical isomerism?
 - b) CH₃-CHCl-COOH c) CH₂=CHCl d) CHCl=CHCl a) CH₂(OH)-CH₂(OH)
- 9. Choose the correct order of leaving group ability in nucleophilic substitution reaction
- a) H-> H0-> Br-> CH₃COO- b) CH₃COO-> Br-> H0-> H- c) Br-> CH₃COO-> H0-> H-
- d) HO-> CH3COO-> Br-> H-
- 10. Identify the mechanism that the following reaction undergoes:

a) S_N1 b) S_N2 c) free radical d) Electrophilic

$Part - B (2 \times 10 = 20 Marks)$

- 11a. i) How much work in joules is done on the system when 1.15atm external pressure causes a piston to decrease in volume from 6.55 litres to 3.16 litres?[1L-atm is = 101.3 J](4 Marks)
 - ii) Write a short note on internal energy and enthalpy.

(3 +3 Marks)

(OR)

- b. Describe how the Nernst equation can be applied to interpret a redox titration. (10 Marks)
- 12a. Discuss the oxidation corrosion mechanism, different types of oxide layers that form, and how the Pilling-Bedworth rule helps to understand the process. (10 Marks)

(OR)

b. Define the term conformers and explain the conformational analysis of n-butane, providing sketches of its conformers along with the energy level diagram. (10 Marks)

			A STATE OF THE PARTY OF THE PAR
Q.No	BL	CO	PO
1	3	2	2
2	2		2
3	1		3
4	2		1
5	3		1
6	3		3
7	3		3
8	1	3	4
9	2		3
10	3		2

Q.No	BL	CO	PO
11a.i. &ii.	3,2	2	1
&ii.			
11b.	2		3
12a.	2	e Meries de la company	2
12b	3	3	4

OSRM

DEPARTMENT OF CHEMISTRY

College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur – 603203 INTERNAL ASSESSMENT – II [FJ2]

Program: B.Tech Course Code & Title: 21CYB101J & Chemistry Year & Sem: I Year & II Sem	Date: 27 Time: 8.0 Max, Ma	00-9.00	M		
Course Articulation Matrix					PERSON.
At the end of this course, learners will be able to:			POs		
Course Outcomes (CO)	1	2	3	4	5
CO1 Rationalize bulk properties using periodic properties of elements, evaluate water quality parameters like hardness and alkalinity	3		3	2	
CO2 Utilize the concepts of thermodynamics in understanding thermodynamically driven chemical reactions, determine acidic strength and redox potentials of aqueous solution	3	3	3		
CO3 Perceive the importance of stereochemistry in synthesizing organic molecules applied in pharmaceutical industries, determine acidic strength and conductance of aqueous solution		3	3	2	
CO4 Utilize the concepts of polymer processing for various technological applications, determine average molecular weight of the polymer	3		3	3	391
COS Analyze the importance of advanced processing techniques towards engineering applications and measure the acidic strength of aqueous solution	3		3	g (12)	3
Part – A (10 x 1 = 10 Marks)					
Answer ALL the Questions					
 Decrease in free energy can be given by -ΔG= a) nFE b) n/FE c) nF/E Which of the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs on q and w represent a system that is doing to the following signs of the following signs on q and w represent a system that is doing to the following signs of the following signs of	ng work	d) F/	'nE		
surroundings, as well as losing heat to the surroundings? a) +q, +w b) -q, -w c) +q, -w d) -q, +	-w				
 3. A spontaneous process a) is reversible b) is irreversible c) may be reversible or irreversible depending on whether equilibrium throughout the process d) may be reversible or irreversible depending on the value of ΔS 	is maint	ained			
 4. In voltaic cells, the salt bridge a) is not necessary in order for the cell to work b) drives free electrons from one half-cell to the other c) allows charge balance to be maintained in the cell d) is tightly plugged with firm agar gel through which ions cannot pass 					
5. The enthalpy of fusion for water is 6.01 kJ/mol. Calculate the entropy of to form liquid at 273 K. a) 22 J/K b) 14 J/K c) 220J d) 37J	change fo	or 1.0 n	nole of	ice m	eltin
 6. Which of the following is an example of wet corrosion? a) Corrosion of metal in the water b) Corrosion of iron in the present c) Corrosion of titanium in dry chlorine d) Corrosion due to furna 	nce of an	hydrou	ıs calci	um ch	lorid

Date: 27.03.2025

Program: B.Tech

DEPARTMENT OF CHEMISTRY

College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur – 603203 INTERNAL ASSESSMENT – II [FJ2]

Year & Sem: I Year & 1	Time:8.0						
Course Articulation Mat	trix			7	Name of the last		
A	at the end of this course, learners will b	pe able to:		1	POs	THE PARTY	
	Course Outcomes (CO)	to a second second	1	2	3	4	5
nardness and alkalinity	ng periodic properties of elements, evalua	ate water quality parameters like	3		3	2	
determine acidic strength and re	ynamics in understanding thermodynamedox potentials of aqueous solution	ically driven chemical reactions,	3	3	3		
Perceive the importance of stere industries, determine acidic street	eochemistry in synthesizing organic mole ngth and conductance of aqueous solutio	ecules applied in pharmaceutical	10.00	3	3	2	
Utilize the concepts of polymer weight of the polymer	processing for various technological app		3		3	3	
CO5 Analyze the importance of adva acidic strength of aqueous solut	nced processing techniques towards eng	ineering applications and measure the	3		3		3
	Part - A	$(10 \times 1 = 10 \text{ Marks})$		7770			
	Answer	ALL the Questions					
1. A process is carried	d out at constant volume a	and at constant entropy. It	will be s	pontan	eous if		
a) $\Delta H < 0$	b) ΔU < 0	c) ΔA < 0		$\Delta G < 0$			
2. One mole of an ide of 10 dm ³ to a volu a) 3026 J	eal gas expands against a c ume of 30 dm ³ . Calculate v b) 2026 J	constant external pressure work done by the gas in jo c)-3026 J	ules. [11	from a -atm = -2026J	101.3	ne J]	
3. The Helmholtz fun	ction F is given by						
a) U-TS	b) U+TS	c) -U-TS	d)	-U+T	S		
4. Which of the follow	wing statement is correct v	with respect to the cathode	in an el	ectroch	emical	l	

- - a) Oxidation occurs at the cathode b) Electrons move into the cathode c) Usually denoted by a negative sign d) Is usually made up of insulating material
- 5. What is the correct Nernst equation for $M^{2+}(aq) + 2e^- \rightarrow M(s)$ at $45^{\circ}C$? a) $E=E^0+0.0315\log_{10}[M^{2+}]$ b) $E=E^0-0.0315\log_{10}[M^{2+}]$ c) $E=E^0+0.0425\log_{10}\left(1/[M^{2+}]\right)$ d) $E=E^{\circ} - 0.0425\log_{10}(1/[M^{2+}])$
- 6. Corrosion of material by furnace gases is classified as a) wet corrosion b) dry corrosion c) galvanic corrosion d) crevice corrosion
- 7. Which of the following is the driving force in galvanic corrosion?
 - a) Conductivity of electrolyte b) Crystal structure of metals c) The potential difference between the two metals d) Temperature of electrolyte
- 8. Which of the following compounds is a functional group isomer of C₂H₅OH, ethanol? a) ethanal, CH₃CHO b) acetic acid, CH₃COOH c) diethyl ether, (C₂H₅)₂O d) dimethyl ether, (CH₃)₂O

9. Assign R/S notation for the given compound:

a) R b) S c) Neither R nor S d) both a and b

10. What is the expected product formed from the reaction between 2-butene and Cl₂?

a) 1-chlorobutane b) 2-chlorobutane c) 2,3-dichlorobutane d) 2,2-dichlorobutane Part - B (2 x 10 = 20 Marks)

11a. i) Derive Gibbs-Helmholtz equation and mention its significance. (6 Marks)

ii) The standard enthalpies of formation of SO₂Cl_{2(g)}, H₂O_(l), HCl_(g) and H₂SO_{4(l)} are -364, -286, -92 and -814 kJmol⁻¹ respectively. Calculate the standard enthalpy change, ΔH^0_{rxn} for the reaction, $SO_2Cl_{2(g)} + 2H_2O_{(l)} \rightarrow 2HCl_{(g)} + H_2SO_{4(l)}$ (OR)

b. i. Explain in detail any one wet corrosion with a neat sketch and give the mechanism. (6 Marks)

ii. Write cell reactions for the electrochemical cell given, calculate E⁰ cell for the reaction: $Na(s)|Na^{+}(aq)||Cl_{2}(g)|Cl^{-}(aq)[E^{0} = -2.7144V \text{ for } Na^{+} \text{ and for } Cl^{-} \text{ is } 1.3601V]$ (4 marks)

12a. Draw a clear and detailed sketch of the Pourbaix diagram for Iron and explain its (10 Marks) key features.

(OR)

b. i) Define the terms enantiomers and racemic mixture with an example. (4 Marks)

ii) Explain the nucleophilic substitution unimolecular (S_N1) reaction mechanism with an (6 Marks) example.

Q.No	BL	СО	PO
1	3	2	2
2	2		2
3	1 1 1	on High	3
4	4		1
5	2	n Conte	and later
6	3		3
7	1		3
8	1	3	4
9	4	A STATE OF THE STA	3
10	2	BRIEF.	2

Q.No	BL.	CO	PO
11a.i. &ii.	2,3	2	1
11b.i. & ii.	2,3	Ten soll in	3
12a.	4	as all and	2
12b.i. & ii	2,3	3	4

DEPARTMENT OF CHEMISTRY College of Engineering and Technology SRM Institute of Science and Technology

Kattankula thur - 603203

Set - 1

INTERNAL ASSESSMENT - II [FJ2]

Program: B. Tech.

Course Code & Title: 21CYB101J & Chemistry

Year & Sem: I Year & II Sem Course Articulation Matrix

Date: 27 -03- 2025 Time: 12:30-1:30 pm Max. Marks: 30 marks

At the end of this course, learners will be able try.	POI					
Course Dutments (CO)	1	2	3	4	1	
CO1 Reclinatize bulk properties using periodic properties of elements, evaluate water quality parameters like hardness and aballanty	, 3		3	1		
CO2 Thirting the encopics of chemodynamics in understanding the modynamically driven open deal reactions, determine acidic everyth and redox potentials of appears solution.	3	3	3		T	
CO3 Personne the importance of stereochemistry in synthesizing organic molecules applied in pharmacoulcul industries, determine acidic strength and conductance of aquence solution.		3	3	1		
O4 Pull as the concepts of polymer processing for various technological applications, determine average molecular religion of the polymer.	3.		3	3		
205 Taly me the importance of advanced processing inchriques towards engineering applications and measure the Citic strength of equators and occurrent the	3		3		3	

$Part - A (10 \times 1 = 10 Marks)$ Answer ALL the Questions

- 1. Among the following, which is an example for extensive property?
 - (a) temperature (b) pressure (c) molar entropy (d) enthalpy
- 2. One of the following is not a state function.
 - (a) Heat (b) enthalpy (c) entropy (d) internal energy
- 3. The molar solubility of PbBr2 is 2.17 x 103 M at a certain temperature. Calculate Kin for PbBr2.
 - (a) 6.2 x 10⁻⁶
- (b) 4.1 x 10⁻⁸
- (c) 3.4 x 10⁻⁶ (d) 4.1 x 10⁻⁶
- 4. The cell potential for Daniell cell is 1.10 V under standard condition. If the standard reduction for potential for Fe2*/Fe is - 0.76 V, what is the standard reduction potential for Cu2*/Cu?
 - (a) + 0.76 V (b) + 1.86 V (c) + 0.34 V (d) 0.34 V
- 5. Identify the type of corrosion from the picture given below:

a) Hydrogen evolution type of wet corrosion (b) dry corrosion (c) oxygen absorption type of wet corrosion (d) liquid metal corrosion

This document is available on

- 6. The green patches observed on brass utensils are composed of
 - (a) Copper chloride (b) Copper oxide (c) Basic copper carbonate (d) Copper hexa-aqua complex
- 7. According to Pourbaix diagram of iron, which form of the metal exists at pH = 1 and E = 0 V?
 - (a) Fe2*
- (b)Fe3+
- (c) FeO42-
- (d) Fe₂O₃
- 8. The internal compensation is exhibited by----.
 - (a) D-glucose (b) (d/l)-glycine (c) meso-tartarie acid (d) (+/-)-glutarie acid
- 9. The infinite number of intermediate conformations are called:
 - (a) eclipsed (b) staggered (c) gauche (d) skew
- 10. Which of the following molecule has an alternating axis of rotation S4?
 - (a) methane (b) ethane (c) ethylene (d) benzene

$Part - B (2 \times 10 = 20 Marks)$

- 11a. (i) Derive Gibbs-Helmholtz equation and explain its significances. [7 marks]
 - (ii) Write the equation relating equilibrium constant and the standard Gibbs free energy change of a reaction. Explain what happens when $\Delta G^{\circ} > 0$, $\Delta G^{\circ} < 0$ and $\Delta G^{\circ} = 0$.

(OR)

b. (i) Calculate the standard EMF of a cell that uses the Mg/Mg2+ and Cu/Cu2+ half-cell reactions at 25 °C. Write the equations for two half-cells and overall cell reactions that occurs under standard-state condition and calculate overall cell potential.

Given: $E^{\alpha}_{Mg2+Mg} = -2.37 \text{ V}$; and $E^{\alpha}_{Cu2+Cu} = 0.34 \text{ V}$.

[6 marks]

(ii) What is a salt bridge and give its utility?

[4 marks]

12a. (i) Explain briefly the Pilling-Bedworth Rule.

[5 marks]

(ii) For the reaction of conversion of ATP into ADP at 293 K, the change in enthalpy is 19.07 Kcal/mol, and the change in entropy is 90 Cal per mol per K. Calculate the change in Gibbs free energy for the process.

[5 marks]

(OR)

b. (i) Describe the conformational analysis of n-butane with a neat sketch of the conformers and potential energy [8 marks]

diagram.

(ii) What is a nucleophile? Give an example.

[2 marks]

Q. No.	BL	co	PO	Q.No	BL.	CO	PO
1.	2	2	1	10.	2	3	2
2	2		1	IIIa.io	2	2	3
3.	4		1	Tit.	4		2
4.	2		1	11.b.i.	3		4
5	1		2	11.	2		
6	4		2	12 a i			1
7	2	9	1	ii.	3		3
8.	2	3	2	12.6 i.	2	3	2
9.	1		2				

DEPARTMENT OF CHEMISTRY

College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur - 603203 Set - 2

INTERNAL ASSESSMENT - II [FJ2]

Program: B. Tech.

Course Code & Title: 21CYB101J & Chemistry

Year & Sem: 1 Year & 11 Sem

Date: 27 -03- 2025 Time:12:30 - 1:30 pm

Max. Marks: 30 marks

Course Articulation Matrix

At the end of this course, learners will be able to:	POs						
Course Outcames (CO)	1	2	3	4	5		
CO1 Retionalize bulk properties using periodic properties of elements, evaluate water quality parameters like hardness and alkalinity	3		3	2			
CO2 Utilize the concepts of thermodynamics in understanding thermodynamically driven chemical reactions, determine acidic strength and redox potentials of aqueous solution	3	3	3				
CO3 Perceive the importance of stereochemistry in synthesizing organic molecules applied in pharmaceutical industries, determine acidic strength and conductance of aqueous solution.		3	3	2			
CO4 Utilize the concepts of polymer processing for various rechnological applications, determine average molecular weight of the polymer	3		3	3			
COS Analyze the importance of advanced processing techniques towards engineering applications and measure the acidis strength of aqueous solution	3		3		3		

Part - A (10 x 1 = 10 Marks) Answer ALL the Questions

	Answer ALL the Questions
1.	Which of the following properties describe entropy?
	a) state function, intensive property
	b) state function, extensive property
	c) path function, extensive property
	d) path function, intensive property
2.	The entropy of an isolated system can never
	a) decrease b) be zero c) increase d) none of the mentioned
3.	the state of the s
	a) Isochoric process b) Isenthalpic process c) Steady-state process
	d) Isentropic process
4.	If the temperature of the source is increased, the efficiency of a heat engine
	a) Increases b) decreases c) remains constant d) first increases and
	then becomes constant
5.	In the Pourbaix diagram of iron, which form of the metal exists at pH = 0 and E = 1.2 V?
	(a) Fe ²⁺ (b) Fe ³⁺ (c) FeO ₄ ²⁻ (d) Fe ₂ O ₃
6.	Passivity is not the reason for inertness for one of the following:
	(a) Gold (b) Aluminum (c) Chromium (d) Nickel
7.	For $Cu(OH)_2$, $K_{1p} = 1.6 \times 10^{-19}$. What is the molar solubility of $Cu(OH)_2$?
	(a) 6.4 x 10 ⁻⁷ M (b) 3.4 x 10 ⁻¹ M (c) 4.0 x 10 ⁻¹⁰ M (d) 2.7 x 10 ⁻¹¹ M

8. Identify the conformations from the given structures:

- (a) I -Gauche and II-Eclipsed (b) I -Gauche and II-Gauche (c) I -Eclipsed and II-Gauche (d) both I and II are Eclipsed forms
- 9. Which of the following has the best leaving group?
 - (a) CCI4
- (b) CHCl
- (c) CH₂F
- (d) CH₃1
- 10. 1,2-Dichlorobeneze and 1,4-dichlorobeneze are the examples of
 - (a) Chain isomers
- (b) position isomers
- (c) metamers
- (d) stereoisomers

Part - B (2 x 10 = 20 Marks)

- 11a. (i) Describe the construction of Daniell cell (clearly indicate the electrodes, electrolytes, half-cell reactions, overall reaction, and cell potential). [6 marks]
 - (ii) Calculate the entropy change for the following reaction at standard condition:

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

The standard molar entropies are given as:

S°(H₂) = 130.6 J mol-1 K-1

So(N2) = 191.5 J mol-1 K-1

 $S^{o}(NH_{3}) = 192.5 \text{ J mol}^{-1} \text{ K}^{-1}$.

[4 marks]

(OR)

- b. What is corrosion? Give its types. Compare the hydrogen evolution type with oxygen absorption type of wet corrosion with suitable reactions. [10 marks]
- 12a. (i) Derive Nernst equation and explain any one application.

[7 marks]

(ii) Explain with chemical equation what happens when a copper rod is dipped into a solution containing AgNO₃. [3 marks]

OR

b. (i) By applying Cahn-Ingold-Prelog rules determine the R/S convention for the following molecule (explain steps).

[5 marks]

(ii) Explain any two structural isomerism with an example for each.

[5 marks]

Q.No.	BL	CO	PO
1	2	2	1
2	2		1
3	2		-1
-4	2		
5	2		1
6	2		1
7	4		2
X	4	3	2
9	3		4
10	3		3

Q. No.	BL	CO	PO
Ha.i.	2	2	1
ii	4		2
116.	3		1
12a. i	4		2
ii	3		1
126.1	4	3	2
11	2		2