Reduction and Kronecker Simultaneous Modular Substitution for small finite fields

Jean-Guillaume Dumas **Laurent Fousse Bruno Salv**

Grenoble University
Laboratoire Jean Kuntzmann
Applied Mathematics and Computer Science Department

INSTITUT NATIONAL
DE RECHERCHE
EN INFORMATIQUE
ET EN AUTOMATIQUE

cantra de mehembe DARIS - SOCGUENCOURT

Small field dense linear algebra

- Integer Factorization, discrete logarithm
- Linear algebra modulo 2, modulo n=p₁.p₂...p_k
- Combinatorics
- Integer normal forms, integer minimal/characteristic polynomials
- Stable Algorithms for numerical problems
- Rational matrices: Chinese reconstruction
- Sparse Matrices
- Bloc methods (Coppersmith-Wiedemann, Lanczos):
- ⇒ dense blocks such that MM is fast
- Probabilistic Methods (e.g. success depends on field size):
 - ⇒Resolution in a finite extension

[May, Saunders, Wan, ISSAC 2007]

Study of difference sets and partial difference sets in [Weng, Qiu, Wang, Xiang 2007] algebraic design theory

Requires computations of the rank of almost dense matrices of sizes 59049, 531441, 4782969, ...

Modulo small primes $p \equiv 3 \mod 4$ p = 3, 7, 11, 19, 23, ...

High performance / Exact computations?

- Memory: optimize memory accesses, cache usage etc.
- cf numerical BLAS (ATLAS, GOTO, etc.)
- Exact computations (modular, finite fields, etc.)
- Division (e.g.: modulo p) can be 10 to 100 times slower than machine multiplication/addition
- SSE (128 bits registers): simultaneous arithmetic operations
- in 2008, no integer multiplication available (only floating points)

- Division management:
- Homomorphism to Z: delay the modular reduction, compute a whole dot product before remaindering
- Locality management:
- Blocks
- SSE usage:
- Leave the linear algebra to a numerical code used exactly
- Integrated in Maple (LinearAlgebra:-Modular) and Magma since then

FFLAS: Exact linear algebra

Ex: Matrix multiplication mod a prime p

- 1. Convert matrices mod p towards floating point matrices (double)
- Use numerical BLAS (e.g. GOTO) to multiply within floating point
- 3. Convert back the doubles modulo p

 $O(n^2)$ conversions versus $O(n^3)$ fast arithmetic operations

Exact as long as dot products do not overflow \uparrow

Each one must fit inside the mantissa \uparrow

for n ≤ 6000, modulo can have 20 bits Ex.: n $(p-1)^2/4 < 2^{52}$: for p $\leq 2^{16}$, n=4 000 000 is OK

For larger primes or larger matrices, it is required to make the first recursive calls over the finite field and use the numerical routines only when the block is small enough.

Compressed Arithmetic

- 0. Context
- 1. Compressed Arithmetic
- Delayed reduction
- Kronecker Substitution and polynomial multiplication
 - REDQ: Simultaneous Modular Reduction
- Dot product
- 2. Modular Polynomial Multiplication
- Modular Linear Algebra
- Matrix Compression
- REDQ with Left and Right Matrix Compression
- Full Compression
- 4. Small Extension Field Linear Algebra

Delayed Modular Reduction

- Instead of computing a modulo p residue modulo p for each arithmetic operation:
 - Delayed the reduction after several +,* ...
- \odot Delayed reduction: if k p² < wordsize then
- At least k products are possible without overflow!
- Block operations by k and reduce only once every k products

Tricks

[D., Zimmermann 2004]

- Test every accumulation and reduce only in case of overflow
- Make k operations first, and then only test for overflow
- Replace division : $h = 2^{32} + x \Rightarrow h = x + CORR$, where $CORR = (2^{32} \% p)$
- Use a centered modular representation
- : |

Compressed arithmetic?

Within Z/2Z

binary implementations NTL/M4RI

Within GF(5³)

how to use only 7 bits per element?

In Z/5Z[X]

use just 3 bits per coefficient?

This talk: show that we can mimic binary/SSE behavior for small primes

Use a Q-adic Transform (Kronecker substitution)

Change of representation → remplace the indeterminate by a sufficiently large integer q:

X⁴+2X³+3X²+4X+5 modulo 7

• $64^4+2.64^3+3.64^2+4.64+5 = 17314053$

• $100^4+2.100^3+3.100^2+4.100+5=102030405$

Kronecker Substitution (Q-adic Transform)

•
$$A(X) = X + 1 \rightarrow DQT(A) =$$

$$A(x) = x + 2 \qquad \downarrow$$

$$B(x) = x + 2 \qquad \downarrow$$

$$DQT(A) = 100 + 1 = 101$$

 $DQT(B) = 100 + 2 = 102$

$$A \times B = X^2 + 3X + 2$$

• DQT(
$$A \times B$$
) = $100^2 + 3.100 + 2 = 10302$

Compressed polynomial multiplication

- Cut polynomials into blocks
- E.g. $[1,2,3] \times [4,5,6]$, is replaced by 1002003 \times 4005006 = 4013028027018
- Into Blocks8 operationsinstead of 61

	$X^{5}+2X^{4}+3X^{3}$	$4X^{2}+5X+6$
×	$X^{5}+2X^{4}+3X^{3}$	$4X^{2}+5X+6$
11	$16X^{4+}$	$16X^4 + 40X^3 + 73X^2 + 60X + 36$

4X⁴+13X³+28X²+27X+18 4X⁴+13X³+28X²+27X+18

 $X^4 + 26X^3 + 10X^2 + 12X + 9$

 $X^{10}+4X^{9}+$

 $10X^8 + 20X^7 + 35X^6 +$

 $56X^5 + 70X^4 + 76X^3$

73X²+60X+36

Only problem: how to reduce, fast?

1st tool: Floating point division

- Euclidian division r= k.p +u
- How to compute k efficiently?
- Direct integer division is (very) expensive
- [Shoup's NTL]: use floating point division
- Precompute invp = 1.0/static_cast<double>(p);
- Problem: due to rounding approximations results could be off by one
- Algorithm: breaks pipeline with tests to correct the results

Improvements: play with rounding modes

- Change of rounding modes is costly, still
- 1 rounding mode for precomputations
- 1 rounding mode for algorithms
- Three rounding modes:
- ▲ (upward); ▼ (downward); ◆ (nearest)
- Benefits and drawbacks
- rounding 1/p upward ensures that result is off only upward
 - → only 1 test instead of two
- Validity range is modified

Quotients with different rounding modes

mul	Range	Bound on r	Lost bits
k	$\leq \lfloor x \rfloor \leq k+1$	$2^{\beta}/(4+2^{2-\beta})$	3
k	$\leq \lfloor x \rfloor \leq k+1$	$2^{\beta}/(3+2^{1-\beta})$	2
k	$\leq \lfloor x \rfloor \leq k+1$	$2^{\beta}/2$	1
k	$\leq \lfloor x \rfloor \leq k+1$	$2^{\beta}/(3+2^{1-\beta})$	2
k-	$1 \le \lfloor x \rfloor \le k+1$	$2^{\beta}/(2+2^{-\beta})$	2
k	$-1 \le \lfloor x \rfloor \le k$	-	0
k-	$1 \le \lfloor x \rfloor \le k+1$	$2^{\beta}/2$	1
k	$-1 \le \lfloor x \rfloor \le k$	-	0
k	$-1 \le \lfloor x \rfloor \le k$	I	0

2nd tool: Montgomery reduction REDC

System division replaced by shifts and masks

```
#define MASK 65535UL
#define B 65536UL
#define HALF_BITS 16
/* nim is precomputed to -1/p mod B
with the extended gcd */
```

AXPY:

1.
$$c = (a \times x + y);$$

REDC:

/

/* 0 < c < 2p

return (c>p?c-p:c);

REDQ: simultaneous reduction

How to compute k modular reductions simultaneously?

Eloating point reduction [Shoup]:

$$-r = r - (r/p) \times p$$

Montgomery] reduction (REDC):

Use divisions by powers of 2 to avoid division by p

⇒ Combine floats/REDC on the DQT:

REDO_COMPRESSION

REDQ_CORRECTION when required

3. Adjust

$$: r_i = (u_i - qu_{i+1}) \mod p$$

 $: u_i = r/q^i - \lfloor d/q^i \rfloor \times p$

 $\lfloor d/r \rfloor = b$:

Binary case: packing multiplications

After each iterations $\log_2(\mathbf{q})$ bits needs to be discarded

⇒ Recopy parts of r into several words

○ Only \[\text{K/2} \] axpy required

Fast REDQ: tabulate CORRECTION

- CORRECTION is slow (back to k divisions!)
- But all the u_i are smaller than p thanks to the COMPRESSION

 \Rightarrow Adjustment is tabulated: $r = Q_d$ u mod p

Fast REDQ: time-memory trade-off

o Q					
Q o					
Q 2d+1 =					

Memory	Time
0	d (mul,add,mod)
<i>p</i> 2	d accesses
p^i	$\left\lceil \frac{d}{i-1} \right\rceil$ accesses
p^{d+1}	1 access

TMTO example:

Algorithm 2 Q_6 with an extra memory of size p^3

Input: $[u_0\ldots,u_6]\in(\mathbb{Z}/p\mathbb{Z})'$;

Input: a table Q_2 of the associated 2×3 matrix-vector multiplication over $\mathbb{Z}/p\mathbb{Z}$.

Output: $[\mu_0, ..., \mu_6]^T = Q_6[u_0, ..., u_6]^T$.

1: $a_0, a_1 = \underline{Q}_2[u_0, u_1, u_2]^T$;

2: $b_0, b_1 = \underline{Q}_2[u_2, u_3, u_4]^T$;

3: $c_0, c_1 = \underline{Q}_2[u_4, u_5, u_6]^T$;

4: Return $[\mu_0, \ldots, \mu_6]^T = [a_0, a_1, b_0, b_1, c_0, c_1, u_6]^T$;

REDQ implementation efficiency

Simultaneous reductions timings:

Profiling REDQ₅:

- (1) faster than five divisions ...
- ① But 58% of the time was spent in type casts

- Solution: include some casts in the REDQ_CORR table
- © 54% gain
- © size of k-REDQ_CORR multiplied by k

32 bits fast 3-REDQ

```
// One float division
                                                           // union of 64, 17-34 or 34-17 bits
                                                                                                                                                                                                                                                                                                                                                                                                                                                // Two axpy in one
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        inline void REDQ3_CORR(UINT32_three& res, const Container<_UINT32 >& Q3)
                                                                                                                                                                                                                                                                               res.high = static_cast<UINT32>(r_ll_copy._64-t_ll_copy._64*p); // One axpy
                                                                                                                                                                                                                                                                                                                                // Packing
                                                                                                                                                                                                                                                                                                                                                                                      // Packing
inline void REDQ_COMP(UINT32_three& res, const double r, const double p){
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    res.mid = static_cast<UINT32>(rll._17_34.high);
                                                                                                                                                                                                                                                                                                                                   r_{ll} copy._17_34.low = r_{ll} copy._34_17.high;
                                                                                                                                                                                                                                                                                                                                                                                        t_{ll} copy._17_34.low = t_{ll} copy._34_17.high;
                                                                                                                                                                                                                        t_{ll} copy._64 = static_cast < UINT64 > (r/p);
                                                                                                                                                                    r_ll_copy._64 = static_cast<UINT64>( r );
                                                           _ULL64_unions r_ll_copy, t_ll_copy;
                                                                                                                                                                                                                                                                                                                                                                                                                                              r_{ll} copy._64 -= t_{ll} copy._64*p;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            res.low = r_{ll} = r_{ll} = r_{ll} = r_{low};
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      res._32=Q3[res._32];
```

Compressed Arithmetic

- 0. Context
- 1. Compressed Arithmetic
- Delayed reduction
- Kronecker Substitution and polynomial multiplication
 - REDQ: Simultaneous Modular Reduction
- Dot product
- 2. Modular Polynomial Multiplication
- Modular Linear Algebra
- Matrix Compression
- REDQ with Left and Right Matrix Compression
- Full Compression
- 4. Small Extension Field Linear Algebra

NTL polynomial multiplication

Odd characteristic?

Compressed polynomial multiplication

- Cut polynomials into blocks
- $[1,2,3] \times [4,5,6]$, replaced by 1002003 \times 4005006 = 4013028027018

Into Blocks8 operationsinstead of 61

1 004

 $10\ 020\ 035$

56 070 076

73 060 036

Then Reduce each bloc using REDQ

Complexity

• P of degree N in X \rightarrow P of degree D_q in Y=X^{d+1}

$$D_q = \left\lceil \frac{N+1}{d+1} \right\rceil - 1$$

$$n_d = \begin{bmatrix} 2^{\beta+1} \\ (p-1)^2 \end{bmatrix}$$
; $n_q = \begin{bmatrix} q \\ (d+1)(p-1)^2 \end{bmatrix}$

Reductions	$(2N+1) \left[\frac{2N+1}{n_d} \right]$ REDC $(2D_g+1) \left[\frac{2D_g+1}{n_g} \right]$ REDQ _{2d+1}
Mul & Add	$(2N+1)^2$ $(2D_q+1)^2$
	Delayed d-FQT

Example

- Degree N=500
- prime p=3
- Kronecker substitution with 4 elements per block

$$-D_q = 125$$

 $-n_q = 11$
 $-n_d = 4.5 \ 10^{16} >> N$

Reductions	10^{3}	$5.7 \cdot 10^{3}$
Mul & Add	10 ₆	$8.6 \cdot 10^{4}$
Algorithm	Delayed	4-FQT (floats, tabulations)

Modular polynomial multiplication

Compressed arithmetics + Delayed reduction

- Classical algorithm
- Karatsuba with recursive threshold
- NTL is using FFT

Compressed Arithmetic

- 0. Context
- 1. Compressed Arithmetic
- Delayed reduction
- Kronecker Substitution and polynomial multiplication
 - REDQ: Simultaneous Modular Reduction
- Dot product
- 2. Modular Polynomial Multiplication
- Modular Linear Algebra
- Matrix Compression
- REDQ with Left and Right Matrix Compression
- Full Compression
- 4. Small Extension Field Linear Algebra

Linear algebra with Q-adic Transform

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

$$\begin{bmatrix} Qa+b \\ Qc+d \end{bmatrix} \times [e+Qg \ f+Qh] =$$

$$[*+(ae+bg)Q+*Q^2 *+(af+bh)Q+*Q^2]$$

$$*+(ce+dg)Q+*Q^2 *+(cf+dh)Q+*Q^2$$

Lower bound on Q

- Each multiplication is $\leq (p-1)^2$
- Polynomial of degree d
- d+1 coefficient per machine word
- Compression factor of (d+1)
- Each polynomial coefficient is $\leq (d+1)(p-1)^2$
- Q-adic transform gets correct values by polynomial multiplication if

$$(d+1)(p-1)^2 < Q$$

Can also use Delayed reduction

- Compression factor of d+1
- For a row of size k, use k/(d+1) machine words (k/(d+1) polynomials of degree d)
- Result is correct if intermediate coefficients do not overflow Q:

$$\frac{k}{d+1}(d+1)(p-1)^2 = k(p-1)^2 < Q$$

Algorithm CMM

CA = CompressReverseRows(A);

2. CB = CompressColumns(B);

3. $C = CA \times CB$

4. Coefficient recovery:

1. Get the middle degree term

2. Compute one remainder

B, Column Compress		C = A B Uncompressed	
×	bressed	mo S wo	.Я ,А

Middle degree term recovery

• Q-adic polynomial stored in a machine word

1+ 2Q+

 $3Q^{2+}$

 $+4Q^3$

+ 01

 $3Q^{0+}$ +

 $+4Q^{1}$ $+5Q^{2}$

 \mathcal{C}

Mask

Shift

Lower bits (1+2Q) are not required

⇒ floating point precision

Available mantissa and upper bound on Q

- Q-adic polynomial stored in a machine word
- Floating point precision
- 10^{-2+} 20^{-1}
- $2Q^{-1}+3$

 $+5Q^{2}$

+40

 $+40^{3}$

 $3Q^{2+}$

1+ 2Q+

- +
- +4Q
- $+5Q^2$

Mask

Shift/Floor

 \mathcal{C}

$$\sum_{i=0}^{2d} \frac{k}{d+1} (i+1)(p-1)^2 Q^i < 2^{\beta}$$

$$Q^{d+1} < 2^{\beta}$$

Battery of available algorithms

Double CMM Single

MUL

23

RED

13

Single

Double

- deciding at runtime
- based on (size, prime, recursive level)
- ⇒ This should smoothen the drops and further improve the small size cases

Further variants in the strategy

- Smaller matrices
- Reduce the memory usage/management
- Less modular reductions
- Speed up conversion times
- More compression
- Less arithmetic operations

Left or Right Compression

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e + Qf \\ g + Qh \end{bmatrix} =$$

$$(ae + bg) + Q(af + bh)$$

 $(ce + dg) + Q(cf + dh)$

- Same bounds on Q
- But here not only the middle term needs recovery

REDQ

Full Compression

Q can be R^{d+1}

Much lower bound on Q

Reductions are squared

B, Row Complessed

$$a + Qc b + Qd$$

$$\begin{bmatrix} e+Rf \\ g+Rh \end{bmatrix} =$$

C=AB

$$(ae + bg) + Q(ce + dg) + R(af + bh) + QR(cf + dh)$$

Ž
Q
S
Q
<u> </u>
E
0
U

Compression factor $e = \beta/log_2(Q)$

– CMM, Left or Right: d = $\lfloor e \rfloor - 1$

– Full: d = $\lfloor \sqrt{e} \rfloor$ - 1

Algorithm	Operations	Reductions	Conversions
CMM	$\mathcal{O}\left(mn\left(\frac{k}{\epsilon}\right)^{\omega-2}\right)$	$m \times n$ REDC	‡mn INITe
Right Comp.	$O\left(mk\left(\frac{n}{e}\right)^{\omega-2}\right)$	$m \times \frac{n}{\varepsilon}$ REDQ _e	±nn EXTRACT e
Left Comp.	$\mathcal{O}\left(nk\left(\frac{m}{\epsilon}\right)^{\omega-2}\right)$	$\frac{m}{\epsilon} \times n \text{ REDQ}_{\epsilon}$	½mm ΕΧΤΡΑCΤε
Full Comp.	0 (k (mn) =	$\frac{m}{\sqrt{e}} \times \frac{n}{\sqrt{e}} \text{REDQ}_e$	½mn INITe

Compressed Arithmetic

- 0. Context
- 1. Compressed Arithmetic
- Delayed reduction
- Kronecker Substitution and polynomial multiplication
 - REDQ: Simultaneous Modular Reduction
- Dot product
- 2. Modular Polynomial Multiplication
- Modular Linear Algebra
- Matrix Compression
- REDQ with Left and Right Matrix Compression
- Full Compression
- 4. Small Extension Field Linear Algebra

Word size extension field arithmetic

We use a generator g of the invertible group of GF(pk)

e.g.
$$GF(9) \approx Z/3Z[X] / (X^2+X-1) = \{0\} U \{(X+1)^i, i=0..7\} = \{0,1,2,X,X+1,X+2,2X,2X+1,2X+2\}$$

•
$$(X+1)^0 = 1$$

•
$$(X+1)^1 = X+1$$

•
$$(X+1)^2 = X^2+2X+1 = X+2$$

•
$$(X+1)^3 = (X+2)(X+1) = 2 X$$

$$(X+1)^4 = 2$$

•
$$(X+1)^5 = 2X+2$$

•
$$(X+1)^6 = 2X+1$$

•
$$(X+1)^7 = X$$

•
$$(X+1)^8 = 1$$

Word size extension field arithmetic

- Pre-compute 3 tables
- 1) Correspondence between x and i: $t_1[x] = i$, s.t. $x = g^i$
- 2) Correspondence between i and x: $t_2[i] = x$, s.t. $x = g^i$
- 3) « Zech logarithm » table: $t_3[i] = j$, s.t. $1+g^i = g^j$
- Perform operations only on the indices
- O No system division (can be 10 times slower than other arithmetic operations)
- Polynomial operations of degree k replaced by 2 or 3 integer operations and sometimes a table lookup \uparrow
- 0 and 1 have special values, for instance 0 and pk-1
- $a \times x : (g^i \times g^j) = g^{i+j} \pm (p^{n-1})$
- $x + y = g^{j} + g^{k} = g^{k} \times (1+g^{j-k})$

Linear Algebra over small extension fields

- Polynomials as table indexes?
- indeterminate by p (to minimize table size) to get a bijection Kronecker substitution (p-adic transform) replaces the
- Calling SSE, numerical BLAS routines can be 2 or 4 times faster than integer routines
- Polynomials as numerical values?
- indeterminate by $q>n(p-1)^2$ (to be able to perform the linear algebra operations on the coefficients without overlapping) + Kronecker substitution (q-adic transform) replaces the
- + Delayed reduction
- \Rightarrow Works as long as $\sum (\sum a_i b_i) q^{i+j} < q^{2k-1} < 2^{53}$

Improve the q-adic algorithm

Algorithm 3 Polynomial dotproduct by DQT

ID., Gautier, Pernet 20021

Input: Two vectors v_1 and v_2 in $(Z/pZ[X]/P_k)^n$ of degree less than k.

Input: a sufficiently large integer q.

Output: $R \in GF(p^k)$, with $R = v_1^T \cdot v_2$.

Polynomial to q-adic conversion

1: Set $\widetilde{v_1}$ and $\widetilde{v_2}$ to the floating point vectors of the evaluations at qof the elements of $v_1 \mid 1$: **Table lookup**

Numerical computation (or BLAS call)

Compute $\tilde{r} = \widetilde{v_1}^T . \widetilde{v_2}$::

Building the solution (can be 2k divisions)

- $ilde{r}=\sum_{i=0}^{2k-2}\widetilde{\mu_i}q^i$. {Using 3: REDQ simultaneous reduction 4: For each i, set $\mu_i = \widehat{\mu}_i$
- set $R = \sum_{i=0}^{2k-2} \mu_i X^i m$ 4: **REDQ table lookup** 5:

Q-adic transform revisited

Algorithm 4 Dot product over Galois fields via FQT

Input: a field GF (p^k) with elements represented as exponents of a generator of the field.

Input: Two vectors v_1 and v_2 of elements of $GF(p^k)$.

Input: a sufficiently large integer q.

Output: $R \in \mathrm{GF}(p^k)$, with $R = v_1^T \cdot v_2$.

Tabulated q-adic conversion (1 table)

Set $\widetilde{v_1}$ and $\widetilde{v_2}$ to the floating point evaluations at q of the elements of v_1 and v_2 .

The floating point computation

Compute $\tilde{r} = \widetilde{v_1}^T \widetilde{v_2}$; 5

Delayed reduction compression

3:
$$[u_0, \dots u_{2k-2}] = REDQ_COMP(\tilde{r})$$

Tabulated (2 tables) radix conversion to exponents of the generator

4: Set
$$L = REDQ_CORR([u_0, ..., u_{k-1}])$$

4: Set
$$L = REDQ_CORR([u_0, ..., u_{k-1}])$$
 {representation of $\sum_{i=0}^{k-2} \mu_i X^i$ }
5: Set $H = REDQ_CORRvariant([u_{k-1}, ..., u_{2k-2}])$ { H is $X^{k-1} \times \sum_{i=k-1}^{2k-2} \mu_i X^{i-k+1}$ }

Reduction in the field
$$Reduction = \frac{Reduction}{R}$$

6: Return
$$R = H + L \in GF(p^k)$$
;

Q-adic transform revisited

	Alg. 3	Alg. 4
Memory	$3p^k$	$4p^k + 2^{1+k[\log_2 p]}$
Axpy	0	R
Div	2k - 1	0
Table	0	\sim
Red	> 5k	

Conclusion

- Compressed arithmetic gains constant factors
- 64bits: Degree 3/4/5 Polynomial multiplication at cost 1
- 64bits: Size 3/4/5 dotproduct at cost 1
- Some larger precision arithmetic could be used ...
- representation where cache/SSE/multicore efficient The FFLAS paradigm is to convert towards a routines exist
- Integer SSE (2009?) will extend the mantissa from 53 to 64 bits
- Extended BLAS [Demmel et al.] or Complex BLAS could give 128

Perspectives

Implementations of Full compression

Explore other choices of q

Automatic recursive cutting:

e.g.: n=2048 can use compression factor of 4 where n=2049 can use only a factor of 3

compression factor of 4 and the highest recursive level Alternative: compute multiplications of size 1024 with within the uncompressed field ⇒ smoothen the drops at the change of compression factor

INSTITUT NATIONAL
DE RECHERCHE
EN INFORMATIQUE
ET EN AUTOMATIQUE

partra de nehambe DARIS - ECCOUENCOUCT

Laboratoire Jean Kuntzmann
Applied Mathematics and Computer Science Department

Grenoble University