KHOA CÔNG NGHỆ THÔNG TIN & TRUYỀN THỐNG

TRƯỜNG ĐẠI HỌC CẨN THƠ

Chapter 2: Physical layer

Lecturer: Lam Nhut Khang 9/2020

Slides are adapted from

- [1] Computer Networks An Open Source Approach. Ying-dar Lin, Ren-hung Hwang, Fred Baker
- [2] Computer Networking: A Top-Down Approach. 8th Edition. Jim Kurose, Keith Ross, Pearson, 2020
- [3] Sami Rollins, Computer network's slides, University of San Francisco, www.cs.usfca.edu
- [4] Ajit Pal, CSE IIT, Kharagpur https://nptel.ac.in/course.html

Data and Signal

Transmission Media

Network infrastructure devices

Some examples of intermediary network devices:

- Network access devices (hubs, switches, wireless access points,...)
- Internetworking devices (routers)
- Security devices (firewalls)

Classification of the transmission media

Ajit Pal, CSE IIT, Kharagpur https://nptel.ac.in/course.html

Network media

Twisted-pair cable

Twisted-pair cable

RJ-45 Male

STP (Shielded Twisted Pair)

Twisted Pair

Specifications	Description
Category 1/2	For traditional phone lines. Not specified in TIA/EIA
Category 3	Transmission characteristics specified up to 16 MHz
Category 4	Transmission characteristics specified up to 20 MHz
Category 5(e)	Transmission characteristics specified up to 100 MHz
Category 6(a)	Transmission characteristics specified up to 250 MHz (Cat-6) and 500
	MHz (Cat-6a)
Category 7	Transmission characteristics specified up to 600 MHz

UTP Cable Types

Cable Type	TIA/EIA Standard	Cable Use
Straight-through cable	Both ends the same, either 568A or 568B.	Connects a network host to a hub or switch.
Crossover cable	One end 568A, and the other 568B. It does not matter which end goes to which device.	Directly connects like devices, such as two hosts, two switches, or two routers. Also used to directly connect a host to a router.
Rollover cable (also known as a "Cisco" cable)	Cisco-proprietary.	Connects a workstation serial port to a Cisco device console port.

Straight Through vs Crossover Cable, which to choose?

http://www.cables-solutions.com/difference-between-straight-through-and-crossover-cable.html

T-568A and T-568B

STRAIGHT-THROUGH

CROSSOVER

- 1. White Green
- 2. Green
- 6. Orange
- 3. White Orange
- 7. White Brown
- 4. Blue
- 8. Brown

Coaxial cable

Coaxial cable

Thick coaxial cable (RG11)

Thin coaxial cable (RG58)

Fiber-optic cable

Optical Fiber: a thin glass or plastic core is surrounded by a cladding glass with a different density

Fiber-optic cable

Fiber-optic cable

- Single-mode:
 - A fiber with a very thin core allowing only one mode of light to be carried.
- Multi-mode:
 - A fiber carries more than one mode of light

Physical media

- •Bit: propagates between transmitter- receiver pairs
- •Physical link: what lies between transmitter and receiver
- •Guided media: signals propagate in solid media, e.g., copper, fiber, coax
- •Unguided media: signals propagate freely, e.g., radio

Popular Wired and Wireless Link Technologies

	Wired	Wireless
Local	Cat-5 twisted-pair Ethernet	2.4 GHz band WLAN
	(10 Mbps ~ 1 Gbps)	(2 ~ 54 Mbps ~ 600 Mbps)
Last-mile	POTS (28.8 ~ 56 kbps)	GPRS (128 kbps)
	ISDN (64 ~ 128 kbps)	3G (384 kbps ~ several Mbps)
	ADSL (16 kbps ~ 55.2Mbps)	WiMAX (40 Mbps)
	CATV (30 Mbps)	
	FTTB (10 Mbps ~)	
Leased-line	T1 (1.544 Mbps)	
	T3 (44.736 Mbps)	
	OC-1 (51.840 Mbps)	
	OC-3 (155.250 Mbps)	
	OC-12 (622.080 Mbps)	
	OC-24 (1.244160 Gbps)	
	OC-48 (2.488320 Gbps)	
	OC-192 (9.953280 Gbps)	
	OC-768 (39.813120 Gbps)	

Bandwidth

- The maximum amount of data that can be handled by a system in a second
- The number of bits transmitted and *contained* in the distance *propagated* by the signal in one second

1 bit time in 10Base-T = 1 / $(10x10^6)$ = 0.1 µs 1 bit length in 10Base-T = 0.1 µs x 2 x 10^8 m/sec = 20 m

Manchester Coding for data in 10Base-T transmission

Performance Measures

For a node, link, or path

- Bandwidth, or capacity
- Offered load, or utilization
- Throughput

Performance Measures Latency in a Node

- •Latency (delay) in a node = queuing + processing
- In M/M/1 queuing system,

latency = 1 / (bandwidth - offered load)

•Little's Result: How many in the box?

 $occupancy = throughput \ x \ latency (assume no loss)$

Performance Measures Latency in a Link

- •Latency (delay) in a link = queuing + transmission + propagation
- •Bandwidth delay product: BDP (Little's result in a link or path!)

Max outstanding bits in transit = bandwidth x delay

Data and Signal: Analog or Digital

Data

- Digital data discrete value of data for storage or communication in computer networks
- Analog data continuous value of data such as sound or image

Signal

- Digital signal discrete-time signals containing digital information
- Analog signal continuous-time signals containing analog information

Principle in Action: Nyquist Theorem vs. Shannon Theorem

Nyquist Theorem:

- Nyquist sampling theorem
 - \circ f_s ≥ 2 x f_{max}
- Maximum data rate for noiseless channel
 - 2 B log₂ L (B: bandwidth, L: # states to represent a symbol)
 - \circ 2 x 3k x log₂ 2 = 6 kbps

Shannon Theorem:

- Maximum data rate for noisy channel
 - ∘ B log₂ (2(1+S/N)) (B: bandwidth, S: signal, N: noise)
 - \circ 3k x log₂ (2 x (1+1000)) = 32.9 kbps

Transmission and Reception Flows

A digital communications system

Bandwidths of Line Coding (1/3)

- The bandwidth of polar NRZ-L and NRZ-I.
- The bandwidth of bipolar RZ.

Bandwidths of Line Coding (2/3)

• The bandwidth of Manchester.

• The bandwidth of AMI.

Bandwidths of Line Coding (3/3)

The bandwidth of 2B1Q

