

Criptografias de rotor

Introdução

- Criptografias pré-rotor → métodos manuais de encriptação e decriptação
 - Sujeito a erros humanos
 - Processo trabalhoso e dispendioso
- Máquinas de rotor
 - Encriptação e decriptação feitas de forma automática
 - Processo rápido e íntegro
 - Maior segurança devido à imensa quantidade de combinações dos rotores

Enigma

Rotor

- Mapeamento entre plaintext e ciphertext é feito através das conexões internas do rotor
- Pressionar uma tecla faz o rotor girar, alterando o mapeamento (alfabeto)
- Após 26 rotações ele começa a se repetir
 - Semelhante a uma chave de Vigenère de 26 caracteres
- Para encriptar e decriptar mensagens, uma posição inicial deve ser combinada
- A decriptação (inicialmente) exige que o rotor seja invertido

Rotor por dentro

Rotor da Enigma

Múltiplos rotores

- Utilizar somente 1 rotor não produz a segurança necessária
 - Solução: conectar múltiplos rotores serialmente
- *n* mapeamentos sequenciais e *n* posições iniciais
 - \circ *n* = quantidade de rotores
- 26ⁿ possibilidades de encriptação
- 26 rotações do rotor à esquerda → 1 rotação do rotor à direita
- Também era possível alternar o uso com rotores "reservas" disponíveis

Múltiplos rotores

Plugboard (Enigma)

- Conectando pares de letras entre si, trocamos o sinal que é enviado ao primeiro rotor
 - Digitar uma dessas letras produzia um resultado diferente
- Em um alfabeto com 26 letras e 13 conexões possíveis:
 - \circ 26! / (13! * 2¹³) = 7,9 * 10¹² possibilidades de conexões
- Dificulta o ataque por força bruta

Plugboard (Enigma)

Refletor (Enigma)

- Inicialmente, a decriptação exigia inverter o sentido dos rotores
- A Enigma resolveu essa dificuldade com o uso do refletor
- Conexões fixas entre pares de letras
- Permitiu decriptar mensagens mantendo os mesmos rotores na posição inicial
- No caso da Enigma, não possibilitava que uma letra fosse mapeada para ela mesma
 - Vulnerabilidade crítica que permitiu aos aliados quebrar a criptografia da Enigma

Refletor (Enigma)

Enigma - funcionamento

Vulnerabilidades

- Refletor
- Encriptação de mensagens muito grandes e/ou sem alteração prévia nos rotores
- Padrões conhecidos nas mensagens
 - "Previsão do tempo"
 - Começar novas mensagens com "continuação", etc.
- Regras para a escolha de rotores
 - Nenhum rotor poderia ser colocado na mesma posição que foi utilizado na configuração anterior

Enigma - ataque

 Н	U	K	G	Р	W	0	Α	С	V	J	L	М	Α	Q	
Т	Е	М	Р	Е	S	Т	Α	D	Е						
							V								
 Н	U	K	G	Р	W	0	Α	С	V	J	L	М	Α	Q	
	Т	Е	М	Р	Ε	S	Т	Α	D	Ε					
							П								

 Н	U	K	G	Р	W	0	Α	С	V	J	L	M	Α	Q	
		Т	Е	М	Р	Е	S	Т	Α	D	Е				

Réplica da "Bombe"

GANESH

Grupo de Segurança da Informação ICMC / USP - São Carlos, SP http://ganesh.icmc.usp.br/ganesh@icmc.usp.br