自動ドリル & ポケットマネージャ

2020.4.22 (株)セイロジャパン

自動ドリル

(株)セイロジャパン

自動ドリルとは

■ ソリッドオブジェクトから穴形状を認識し、事前に登録された 穴あけパターンと認識した穴形状を照らし合わせて、合致した 穴あけパターンを割当てる機能です。

標準穴あけ(ドリル3x)

- 標準穴あけ機能(手続き)は、点要素、円要素などの2D要素を対象に開発された穴あけ機能です。 穴の形状認識や穴あけパターンの自動認識はできません。
- ■標準穴あけ機能(手続き)は、1手続き1工具でのため、1つの穴に複数の手続きが必要になります。
 穴の種類が多い場合、手続き数が増える傾向にあります。

標準穴あけ(ドリル3x) との違い

■ 自動ドリルは、1つの穴に複数の加工工程を割当てることができます。

その加工工程を登録したファイルが "<u>ドリルシーケンスファイ</u>ル" と呼ばれるものです。

どの工具で、どこまで、どの加工パターンで加工するかを登録する必要があります。

ドリルシーケンス

- 認識した穴の各ポイント(アンカー)は、許容範囲を指定する事が可能です。
 径方向、深さ方向などです。
- Cimatronの穴属性があれば、それも認識可能です。

ドリルシーケンス

- 加工パターン
 - ドリル3xと同様のパターンです。
 - ネジ切り加工、ポケット加工、輪郭加工、ヘリカル加工が組込み加工 です。

ガンドリルは、さらに追加 オプションです。

自動ドリルパラメータ

- 加工順序
 - 最適化、主方向 X 、主方向 Y 、選択順序

ト゛リル3x には無い、"最適化" は、 近接距離の穴を自動選択して 加工します。

- 工具順序
 - 工具による、シーケンスによる

工具優先で、同一工具で加工できる穴をすべて加工します。

制限事項

- 斜め穴とブリーチ(一部欠け)穴
 - どちらも同じアンカーとして認識します。

- 残念ながら、自動的に区別することができません。

制限事項

- ホルダー干渉チェック
 - 自動ドリル内での干渉チェックは、通常の3軸形状加工のものと異なります。
 - ホルダーが干渉時は、軌跡は作成されません。
 - ホルダーが干渉時のみ必要突出し長の情報が出力されます。

まとめ

- 自動ドリル
 - ドリルシーケンスを登録することで、ほとんどを自動化できます。
 - 一部の制限事項のみ、手動対応となります。

ポケットマネージャ

(株)セイロジャパン

ポケットマネージャとは

■ ソリッドオブジェクトからポケット形状を認識し、事前に登録された加工手続き(工具軌跡/手続きテンプレート)を手動で適用する機能です。

通常の2.5 D手続き

■ 加工輪郭、加工最上点、加工最下点、は手動定義

」▼出 公差と囲れだす	
₽□工具軌道	
ÇZ値元	一般値
∳加工最上点	49.0000 <i>f</i>
♀加工最下点	43.0000 f
♀ダウンステップ	6.0000 f 4
♥仕上げパスカロエ	
♀ サイト`ステップ°	7.2000 f
♀コーナーカロエ	凸コーナー円弧動
♥切削モート。	タ・ウンカット
○切削方向	内から外

輪郭を選択した場合、加工開始 点/加工終了点は、すべての輪 郭で同一高さの加工

複数の輪郭を選択した場合、加工深さの不一致が発生

各輪郭ごとに手続きを作成する 必要がある。

ポケットマネージャでの手続き

- 加工手続きは、通常の2.5 D手続きを使用
- 加工輪郭として、ポケットを選択
 - 加工範囲、加工最上点、加工最下点を認識します。

複数のポケットを選択した場合でも、各ポケットの加 工深さを認識する事が可能です。

そのため、加工手続きも少なくすることができます。

ポケットマネージャでの手続き

- 開いた/閉じた輪郭加工
 - ポケットテーブルから、閉じた輪郭/開いた輪郭のみをフィルタ表示が可能です。 一括選択し、加工高さも認識できます。

制限事項

- 干渉チェック
 - 2.5 D手続きのため、干渉チェック機能が不十分です。 チェック面などを使用することができません。
 - 但し、最適化機能を後処理として行えば、干渉回避は可能です。

まとめ

■ ポケットマネージャ

- ポケット荒、底面仕上げ、側面仕上げの加工手続きをテンプレート ファイルとして登録し、手動でポケット選択を行います。 しかし、加工輪郭、加工高さの設定をほぼ自動化できます。
- 自動ドリルの様に、加工工程まで自動で割付けることはできません。