Circle (বৃত্ত)

১। (i)(0,0) কেন্দ্র বিশিষ্ট এবং a ব্যাসার্ধ বিশিষ্ট বৃত্তের সমীকরণ, $x^2+y^2=a^2$

(ii)(h,k) কেন্দ্রবিশিষ্ট এবং a ব্যাসার্ধ বিশিষ্ট বৃত্তের সমীকরণ, $(x-h)^2+(y-k)^2=a^2$

 ${
m (iii)}$ বৃত্তের সাধারণ সমীকরণ, $x^2+y^2+2gx+2fy+c=0$

যার কেন্দ্র
$$=(rac{-x_{\text{usi NEV}}}{2},rac{-y_{\text{usiNEV}}}{2})=(-g,-f)$$
 এবং ব্যাসার্ধ , $r=\sqrt{g^2+f^2-c}$

 ${f Remember}$: বৃত্তের কেন্দ্র /ব্যাসার্ধ নির্ণয় করতে হলে অবশ্যই x^2 এবং y^2 এর সহগ +1 করে নিতে হবে। যেমন ঃ $5x^2 + 5y^2 + 10x + 16y + 20 = 0$ বৃত্তের কেন্দ্র, ব্যাসার্থ কত?

Now,
$$x^2+y^2+2x+\frac{16}{5}y+4=0$$
 েকেন্দ্র $\left(\frac{-2}{2},\frac{-16/5}{2}\right)\equiv \left(-1,\frac{-8}{5}\right)$ এবং $r=\sqrt{1+\frac{64}{25}-4}$

২। বৃত্তের সমীকরণের বৈশিষ্ট্য ঃ

- $(i) \; \chi^2$ এবং $\; y^2$ এর সহগ অবশ্যই সমান হতে হবে
- (iii) এটি একটি দ্বিঘাত সমীকরণ
- (ii) xy যুক্ত কোন পদ থাকবে না /xy যুক্ত কোন পদের সহগ অবশ্যই শূন্য (0) হতে হবে
- (iv) বৃত্তের উৎকেন্দ্রিকতা শূন্য (e=0)

৩। বৃত্তের সাধারণ সমীকরণে $\ (i)\ g=0$ হলে কেন্দ্র $\ y$ অক্ষের উপর অবস্থিত; কেন্দ্র $\ (o,-f)$

$$(ii)\ f=0$$
 হলে কেন্দ্র x অক্ষের উপর অবস্থিত; কেন্দ্র $(-g,o)$

- 8। (i) বৃত্ত কর্তৃক x অক্ষের খন্ডিতাংশ $=2\sqrt{g^2-c}$ (ii) বৃত্ত কর্তৃক y অক্ষের খন্ডিতাংশ $=2\sqrt{f^2-c}$
- ৫। (i) $g^2=c$ হলে বৃত্তটি x অক্ষকে স্পর্শ করবে (ii) $f^2=c$ হলে বৃত্তটি y অক্ষকে স্পর্শ করবে
 - (iii) $g^2=f^2=c$ হলে বৃত্তটি উভয় অক্ষকে স্পর্শ করবে
- ৬। (i) বাস্তব বৃত্তের জন্য $r\geqslant o$

(ii) r=0 হলে তাকে বিন্দু বৃত্ত বলে।

- ৭। বহিঃস্পর্শ ও অন্তঃস্পর্শ ঃ A ১ম বৃত্তের কেন্দ্র এবং B ২য় বৃত্তের কেন্দ্র হলে,
- (i) দুইটি বৃত্ত পরস্পরকে বহিঃস্থভাবে স্পর্শ করলে, কেন্দ্রদ্বয়ের দূরত্ব = ব্যাসার্ধদ্বয়ের যোগফল অর্থাৎ $AB = r_1 + r_2$ (চিত্র -১)
- (ii) দুইটি বৃত্ত পরস্পারকে অন্তঃস্থভাবে স্পর্শ করলে, কেন্দ্রদ্বয়ের দূরত্ব = ব্যাসার্ধদ্বয়ের বিয়োগফল অর্থাৎ $AB = r_1 \sim r_2$ (চিত্র-২)

৮ । $A(x_1,y_1)$ ও $B(x_2,y_2)$ বিন্দুদ্বয়কে ব্যাসের প্রান্তবিন্দু ধরে বৃত্তের সমীকরণ , $(x-x_1)$ $(x-x_2)$ + $(y-y_1)(y-y_2)$ = 0৯। সাধারণ জ্যা ঃ

$$S \equiv x^2 + y^2 + 2gx + 2fy + c$$

 $S\equiv x^2+y^2+2gx+2fy+c$ (i) S ও S' বৃত্তের সাধারণ জ্যা এর সমীকরণ, S-S'=0

$$S' \equiv x^2 + y^2 + 2g'x + 2f'y + c'$$
 (ii) সাধারণ জ্যা এর দৈর্ঘ্য $= 2\sqrt{r^2 - d^2}$

এখানে, r= প্রথম বৃত্তের ব্যাসার্ধ ; d= প্রথম বৃত্তের কেন্দ্র থেকে সাধারণ জ্যা এর উপর লম্ব দূরত্ব

Remember: x^2 এবং y^2 এর সহগ উভয় বৃত্তে +1 হতে হবে ।

যেমনঃ
$$x^2 + y^2 + 2x + 4y + 1 = 0$$
 এবং $4x^2 + 4y^2 + 12x + 20y + 36 = 0$

ব্রুত্তের সাধারণ জ্যা বের করতে হলে (ii) নং বৃত্তকে 4 দিয়ে ভাগ করে নিতে হবে।

$$x^2 + y^2 + 2x + 4y + 1 = 0$$
 ... (i) $x^2 + y^2 + 3x + 5y + 9 = 0$... (ii) (4 দিয়ে ভাগ করার পর)

সাধারণ জ্যা, $S - S' = 0 \Rightarrow -x - y - 8 = 0$ $\therefore x + y + 8 = 0$

১০। বৃত্তের উপর কোন বিন্দুর অবছান নির্ণয় ঃ $A(x_1,y_1)$ বিন্দুটি $S\equiv x^2+y^2+2gx+2fy+c$ বৃত্তের কোথায় অবস্থিত ?

Now, $A(x_1, y_1)$ দিয়ে সিদ্ধ করলে, $S_1 \equiv x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$

(i) $S_1 = 0$ হলে A বিন্দুটি বৃত্তের উপর/ পরিধিতে (ii) $S_1 > 0$ হলে A বিন্দুটি বৃত্তের বাইরে

 $(iii) S_1 < 0$ হলে A বিন্দুটি বৃত্তের ভিতরে

১১। y=mx+c রেখা $x^2+y^2=a^2$ বৃত্তের স্পর্শক হওয়ার শর্ত $c^2=a^2m^2+a^2$

১২। ax+by+c=0 রেখা $x^2+y^2+2gx+2fy+c=0$ বুত্তের স্পর্শক হবার শর্ত ঃ ${f r}={f d}$

এখানে, r= বৃত্তের ব্যাসার্ধ; d= বৃত্তের কেন্দ্র হতে ঐ রেখার উপর লম্ব দূরত্ব

১৩। বৃত্তের উপরস্থ (x_1,y_1) বিন্দুতে স্পর্শক ঃ

 χ^2 এর পরিবর্তে $\chi\chi_1$

 y^2 এর পরিবর্তে yy_1

 χ এর পরিবর্তে $\frac{x+x_1}{2}$

y এর পরিবর্তে $\frac{y+y_1}{2}$ বৃত্তের সমীকরণে

বসালেই উপরস্থ ঐ বিন্দুতে স্পর্শক পাওয়া যাবে।

১৪। বৃত্তের বহিঃছ (x_1,y_1) বিন্দুতে স্পর্শক ঃ

 (x_1,y_1) বিন্দু গামী যেকোন রেখার সমীকরণ, $y-y_1=m(x-x_1) \Rightarrow mx-y-mx_1+y_1=0$ Now r=d — Solve করে m এর মান পাওয়া যাবে।

বিকল্প পদ্ধতিঃ S $S_1 = T^2$ এখানে, $T = (x_1, y_1)$ কে বৃত্তের উপরস্থ বিন্দু ধরে স্পর্শকের সমীকরণ বৃত্তের সমীকরণ (x_1, y_1) দ্বারা সিদ্ধ কৃত মান

১৫। একটি বৃত্ত (S) ও একটি সরলরেখার (L) ছেদবিন্দু দিয়ে যায় এরূপ বৃত্তের সমীকরণ , বৃত্তের সমীকরণ +k (সরলরেখার সমীকরণ) =0 i.e. S+kL=0 ১৬। দুইটি বৃত্তের ছেদবিন্দু দিয়ে যায় এরূপ বৃত্তের সমীকরণ , প্রথম বৃত্ত +k (দ্বিতীয় বৃত্ত) =0 ; S+kS'=0 ১৭। বৃত্তের উপরস্থ (x_1,y_1) বিন্দুতে অভিলম্বের সমীকরণ হল

 (x_1,y_1) ও কেন্দ্র (h,k) বিন্দুগামী দুইবিন্দু রেখার সমীকরণ, $\frac{x-x_1}{x_{1-h}}=\frac{y-y_1}{y_1-k}$

যেমনঃ(2,3) কেন্দ্রগামী বৃত্ত এবং (5,6) উপরস্থ বিন্দুতে অভিলম্ব , $\frac{x-2}{2-5}=\frac{y-3}{3-6}\Rightarrow \frac{x-2}{-3}=\frac{y-3}{-3}\div x-y+1=0$

১৮। (x_1,y_1) বিন্দু হতে কোন বৃত্তে অংকিত স্পর্শকের দৈর্ঘ্য $=\sqrt{(\mathrm{x}_1^{},\mathrm{y}_1^{})\,\,\,\, দ্বারা\,\, সি দ্ধ কৃ ত মান}$

যেমন ঃ (i) (x_1,y_1) হতে $x^2+y^2=r^2$ বৃত্তে অংকিত স্পর্শকের দৈর্ঘ্য $=\sqrt{x_1^2+y_1^2-r^2}$

(ii) (x_1, y_1) হতে $x^2 + y^2 + 2gx + 2fy + c = 0$ বৃত্তে

অংকিত স্পর্শকের দৈর্ঘ্য= $\sqrt{x_1^2+y_1^2+2gx_1+2fy_1+c}$

 ${f Remember}:$ অবশ্যই বৃত্তের সমীকরণে x^2 এবং y^2 এর সহগ (+1) করে নিতে হবে।