Tutorat mathématiques : TD6

Université François Rabelais

Département informatique de Blois

Mathématiques générales

Problème 1

Soit la fonction $f: \mathbb{R}^* \to \mathbb{R}$ définie telle que $f(x) = \frac{x}{2} + \frac{x^2}{e^x - 1}$

- 1. Calculs des limites.
 - (a) Démontrer que $\lim_{x\to 0} \frac{e^x-1}{x} = 1$.
 - (b) Montrer que f est continue en 0 et calculer sa limite.
- 2. Calculer la fonction dérivée f' de f.
- 3. Montrer que f est de classe C^1 sur \mathbb{R} .
- 4. Calculer $\lim_{x\to +\infty} f(x)$ et chercher une asymptote à la courbe $\mathcal C$ représentative de f dans le plan. On donnera également sa position relative par rapport à $\mathcal C$.

Problème 2

Soit $n \in \mathbb{N}^*$. On cherche à résoudre l'équation suivante :

$$(n+3)^n = \sum_{k=3}^{n+2} k^n \qquad (*)$$

- 1. Montrer que l'équation (*) est équivalente à : $\left(1+\frac{3}{n}\right)^n = \sum_{k=3}^{n+2} e^{n \ln\left(\frac{k}{n}\right)}$.
- 2. Démontrer que : $\forall (a,b) \in (\mathbb{N}^*)^2$, $a \ln \left(\frac{b}{a}\right) \leq b a$.
- 3. Résoudre l'équation (*) pour $n \in \mathbb{N}$.

Problème 3

- 1. Montrer que pour tout $\forall x > 0, \frac{1}{x+1} \le \ln(x+1) \ln(x) \le \frac{1}{x}$.
- 2. Déterminer $\lim_{x\to +\infty} x[\ln(x+1) \ln(x)]$ et en déduire $\lim_{x\to +\infty} \left(1 + \frac{1}{x}\right)^x$.
- 3. Pour tout x > 0, on pose $f(x) = \left(1 + \frac{1}{x}\right)^x$. Montrer que f est croissante sur $]0, +\infty[$.

Fonctions réelles : dérivabilité

Problème 4

Le but de ce problème est d'étudier la convergence de la fraction continue $1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\dots}}}$

On considère la fonction f définie sur \mathbb{R}_+^* telle que $f(x) = 1 + \frac{1}{x}$.

- 1. Montrer que l'équation f(x) = x possède une unique solution φ sur \mathbb{R}_+^* et que cette solution est dans $I = \left[\frac{3}{2}, 2\right[$
- 2. Montrer que $f(I) \subset I$ et que $\forall x \in I, |f'(x)| \leq \frac{4}{9}$.
- 3. Soit la suite $(u_n)_{n\in\mathbb{N}}$ telle que $\begin{cases} u_0=1\\ u_{n+1}=1+\frac{1}{u_n} \end{cases}$
 - (a) Écrire un algorithme en java public static double suite(int n) qui pour un rang n donné retourne la valeur de la suite u_n .
 - (b) Montrer que (u_n) converge vers la solution φ .

Problème 5

Pour $(\lambda, x) \in \mathbb{R}^2$, on considère les fonctions f_{λ} telles que :

$$f_{\lambda}(x) = \frac{x+\lambda}{x^2+1}$$

On désigne par \mathcal{C}_{λ} les courbes des fonctions f_{λ} .

- 1. Montrer que les tangentes en 0 aux courbes \mathcal{C}_{λ} sont parallèles.
- 2. Montrer que les tangentes en 1 aux courbes \mathcal{C}_{λ} sont concourantes (i.e. se croisent en un point).

Problème 6

On définit la fonction f en posant $f(x) = \frac{x^3}{x^2-4}$

- 1. Quel est le domaine de définition D_f de f?
- 2. La fonction f est-elle paire? Impaire?
- 3. Calculer la dérivée f' de f et en déduire que f' a le même signe que $x^2 12$.
- 4. Dresser le tableau de variations de f sur \mathbb{R}^+ , y faire figurer les limites aux différentes bornes de D_f .
- 5. Déterminer, si elle existe, l'asymptote Δ en $+\infty$ à la courbe C_f .