# Lecture Adaptive Filters 1

#### Let us note that

- ❖ We discussed Wiener filter and its application to linear prediction in last few lectures.
- ❖ Wiener filter is an LTI filter and it works on the assumption of WSS signals.
- ❖The filter coefficients are determined from the knowledge of the autocorrelation and cross correlation functions.
- ❖In practical situation, the signal is non-stationary. Under such circumstances, optimal filter should be time varying.

•

#### How to tackle nonstationarity

- ❖One way to tackle non-stationarity is to assume stationarity within certain data length. For example, in speech coding purpose, the signal is assumed to be WSS during a few milliseconds.
- ❖ The time-duration over which stationarity is a valid assumption, may be short so that accurate estimation of the model parameters is difficult.
- Another solution is *adaptive filtering*. Here the filter coefficients are updated as a function of the filtering error using an adaptive algorithm.
- ❖The adaptive algorithm updates filter coefficients based on the input signal and the other relevant information to obtain optimal performance
- \* This lecture will cover the basics of adaptive filters.

#### General set-up for adaptive filtering

The basic set-up for is as shown in the figure.



\* The adaptation of filter coefficients is based on the error e(n) between the filter output and a reference signal d(n) usually called the *desired signal*. Choosing d(n) is tricky- it depends on the specific application.

The adaptive filter may be FIR with a known filter length or IIR. The FIR filter ructure is normally used. The adaptive algorithm updates each filter coefficient dividually

#### **Applications**

- ❖System identification
  Used to obtain a linear model of the system
- A broadband signal y(n), usually a white noise is input to both the system and adaptive filter. The output of the system is the desired signal d(n).



• At convergence, adaptive filter gives the linear model of the system

#### **Applications**

Channel equalization

Used to cancel the effect of the channel.

- A training signal is sent through the channel
- The delayed version of the training signal is the desired output d(n).



• At convergence, the adaptive filter cancels the effect of the channel.

# FIR Wiener filter and steepest descent

\* Assume the signals to be WSS. Our goal is to estimate d(n) using an FIR Wiener filter of length M and the filter coefficients

$$h_i(n)$$
,  $i = 0,1, ... M-1$ .

\* Represent the filter coefficients by the filter parameter vector

$$\boldsymbol{h}(n) = \begin{bmatrix} h_0(n) \\ h_1(n) \\ \vdots \\ h_{M-1}(n) \end{bmatrix}$$

 $\diamond$  Our goal is to find h(n) by minimizing the mean-square error

$$Ee^{2}(n) = E(d(n) - \hat{d}(n))^{2} = E(d(n) - \sum_{i=0}^{M-1} h_{i}(n)y(n-i))^{2}$$

# FIR Wiener filter and steepest descent ...

\* Representing the observed signals as a vector

$$\mathbf{y}(n) = \begin{bmatrix} y(n) \\ y(n-1) \\ \vdots \\ y(n-M+1) \end{bmatrix}, \text{ we get}$$

$$Ee^{2}(n) = E(d(n) - \mathbf{h}'(n)\mathbf{y}(n))^{2}$$
$$= R_{d}(0) - 2\mathbf{h}'(n)\mathbf{r}_{d\mathbf{Y}} + \mathbf{h}'(n)\mathbf{R}_{\mathbf{Y}}\mathbf{h}(n)$$

Where

$$\mathbf{r}_{dY} = \begin{bmatrix} R_{dY}(0) \\ R_{dY}(1) \\ \vdots \\ R_{dY}(M-1) \end{bmatrix} \text{ and } \mathbf{R}_{Y} = \begin{bmatrix} R_{Y}(0) & R_{Y}(1) & \dots & R_{Y}(M-1) \\ R_{Y}(1) & R_{Y}(0) & \dots & R_{Y}(M-2) \\ \dots & & & & \\ R_{Y}(M-1) & R_{Y}(M-2) & \dots & R_{Y}(0) \end{bmatrix}$$

#### FIR Wiener filter and steepest descent ...

\* The Wiener filtering problem can be written as

Minimize 
$$Ee^2(n)$$
 (1) with respect to the filter coefficient vector  $\mathbf{h}(n)$ 

The cost function represented by  $Ee^2(n)$  is a quadratic function in h(n) and a unique global minimum exists



**Figure** - Cost Function  $Ee^2(n)$  for a length 2 FIR Wiener filter

#### FIR Wiener filter and steepest descent ...

 $\clubsuit$  The gradient of  $Ee^2(n)$  is given by

$$\nabla Ee^{2}(n) = \begin{bmatrix} \frac{\partial Ee^{2}(n)}{\partial h_{0}} \\ \dots \\ \frac{\partial Ee^{2}(n)}{\partial h_{M-1}} \end{bmatrix}$$
$$= -2\mathbf{r}_{d\mathbf{V}} + +2\mathbf{R}_{\mathbf{V}}\mathbf{h}(n)$$

 $\bullet$  By setting  $\nabla Ee^2(n) = 0$  we get the WH equations

$$\mathbf{R}_{\mathbf{Y}}\mathbf{h}_{\mathbf{opt}} = \mathbf{r}_{d\mathbf{Y}}$$
$$\therefore \mathbf{h}_{\mathbf{opt}} = \mathbf{R}_{\mathbf{Y}}^{-1}\mathbf{r}_{d\mathbf{Y}}$$

\* Instead of analytical solution, the optimization problem in (1) can be solved iteratively. One of the iterative optimization algorithms is the *steepest descent* algorithm (SDA). The most of the popular adaptation algorithms including machine learning, are based on the SDA.

#### **SDA** iterations

- Since the gradient of a function points to the direction of maximum increase of the function, the negative of the gradient is the direction of maximum decrease of the function.
- Applying the SDA, the optimization problem in (1) can be solved by the following iterative relation:

$$\mathbf{h}(n+1) = \mathbf{h}(n) + \frac{\mu}{2}(-\nabla Ee^2(n))$$

where  $\mu$  is the step-size parameter.

So the steepest descent rule will now give

$$\mathbf{h}(n+1) = \mathbf{h}(n) + \mu(\mathbf{r}_{dY} - \mathbf{R}_{Y}\mathbf{h}(n))$$

For a proper choice of  $\mu$ , the SDA solves the Wiener Hopf equation in a finite number of iterations.

We have, 
$$\mathbf{h}(n+1) = \mathbf{h}(n) + \mu(\mathbf{r}_{dY} - \mathbf{R}_{Y}\mathbf{h}(n))$$
  

$$= \mathbf{h}(n) - \mu\mathbf{R}_{Y}\mathbf{h}(n) + \mu\mathbf{r}_{dY}$$

$$= (\mathbf{I} - \mu\mathbf{R}_{Y})\mathbf{h}(n) + \mu\mathbf{r}_{dY}$$

where **I** is the  $M \times M$  identity matrix.

$$\therefore \mathbf{h}(n+1) = (\mathbf{I} - \mu \mathbf{R}_{\mathbf{V}})\mathbf{h}(n) + \mu \mathbf{r}_{dY}$$
 (2)

Expanding, we get

$$\therefore \begin{bmatrix} h_0(n+1) \\ h_1(n+1) \\ \vdots \\ h_{M-1}(n+1) \end{bmatrix} = \begin{bmatrix} 1-\mu R_Y(0) & -R_Y(1) & \dots & -R_Y(M-1) \\ -R_Y(1) & 1-\mu R_Y(0) & \dots & -R_Y(M-2) \\ \vdots \\ h_{M-1}(n+1) \end{bmatrix} \begin{bmatrix} h_0(n) \\ h_1(n) \\ \vdots \\ h_{M-1}(n) \end{bmatrix} + \mu \begin{bmatrix} R_{dY}(0) \\ R_{dY}(1) \\ \vdots \\ R_{dY}(M-1) \end{bmatrix}$$

Thus the SDA iteration is given by a coupled set of linear difference

 $\mathbf{R}_{\mathbf{Y}}$  is a symmetric non-singular matrix and can be diagonalized by the following similarity transform

$$\mathbf{R}_{\mathbf{v}} = \mathbf{Q} \Lambda \mathbf{Q}'$$

where  ${\bf Q}$  is the orthogonal matrix of the eigenvectors of  ${\bf R}_{{\bf Y}}$ .  ${\bf \Lambda}$  is a diagonal matrix with the corresponding eigen values as the diagonal elements.

$$Also I = QQ' = Q'Q$$

$$\therefore \mathbf{h}(n+1) = (\mathbf{Q}\mathbf{Q}' - \mu \mathbf{Q}\Lambda \mathbf{Q}')\mathbf{h}(n) + \mu \mathbf{r}_{dY}$$

Multiply by Q'

$$\mathbf{Q'h}(n+1) = (\mathbf{I} - \mu \mathbf{\Lambda})\mathbf{Q'h}(n) + \mu \mathbf{Q'r}_{d\mathbf{Y}}$$

Define a new variable

$$\overline{\mathbf{h}}(n) = \mathbf{Q}'\mathbf{h}(n)$$
 and  $\overline{\mathbf{r}}_{XY} = \mathbf{Q}'\mathbf{r}_{dY}$ 

Then

$$\mathbf{\bar{h}}(n+1) = (\mathbf{I} - \mu \mathbf{\Lambda}) \mathbf{\bar{h}}(n) + \mu \mathbf{\bar{r}}_{d\mathbf{Y}}$$

$$= \begin{bmatrix}
1 - \mu \lambda_1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & & \\
0 & \cdots & & 1 - \mu \lambda_M
\end{bmatrix}
\mathbf{\bar{h}}(n) + \mu \mathbf{\bar{r}}_{d\mathbf{Y}}$$

This is a decoupled set of linear difference equations

$$\overline{h}_i(n+1) = (1 - \mu \lambda_i) \overline{h}_i(n) + \mu \overline{r}_{dy}(i) \qquad i = 1, ..., M$$

and can be easily checked for convergence.

**\*** The convergence condition is given by

$$\begin{aligned} |1 - \mu \lambda_i| < 1 \\ \Rightarrow -1 < 1 - \mu \lambda_i < 1 \\ \Rightarrow 0 < \mu < 2 / \lambda_i, i = 1, ..., M \\ \Rightarrow 0 < \mu < 2 / \lambda_{Max} \end{aligned}$$

Thus, the condition for the convergence of the modified difference equation

$$\overline{h}_{i}(n+1) = (1 - \mu \lambda_{i})\overline{h}_{i}(n) + \mu \overline{r}_{dy}(i)$$
  $i = 1,...,M$ 

is given by,

$$0 < \mu < 2 / \lambda_{Max}$$

Equivalently, the SDA iteration  $\mathbf{h}(n+1) = (\mathbf{I} - \mu \mathbf{R}_{\mathbf{Y}})\mathbf{h}(n) + \mu \mathbf{r}_{d\mathbf{Y}}$  converges if

$$0 < \mu < 2 / \lambda_{Max}$$

#### **A simpler condition**

Note that all the eigen values of  $\mathbf{R}_{\mathbf{v}}$  are positive.

 $\diamond$  Let  $\lambda_{\max}$  be the maximum eigen value. Then,

$$\lambda_{\text{max}} < \lambda_{1} + \lambda_{2} + \dots + \lambda_{M}$$

$$= \text{Trace}(\mathbf{R}_{Y})$$

$$\therefore 0 < \mu < \frac{2}{\text{Trace}(\mathbf{R}_{yy})}$$

$$= \frac{2}{M.R_{yy}(0)}$$

The steepest decent algorithm converges to the corresponding Wiener filter

$$\lim_{n\to\infty}\mathbf{h}[n]=\mathbf{R}_{\mathbf{Y}}^{-1}\mathbf{r}_{d\mathbf{Y}}$$

if the step size  $\mu$  is within the range of specified by the above relation.

#### **Rate of Convergence**

Considering the difference equation,

$$\mathbf{h}(n+1) = (\mathbf{I} - \mu \mathbf{R}_{\mathbf{Y}})\mathbf{h}(n) + \mu \mathbf{r}_{d\mathbf{Y}}$$

the rate of convergence depends on the eigen value spread for the autocorrelation matrix  $\mathbf{R}_{\mathbf{Y}}$ . This spread is expressed in terms of the condition

number of 
$$\mathbf{R}_{\mathbf{Y}}$$
, defined as  $k = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$ .

The fastest convergence of this system of difference equations occurs when k = 1, corresponding to white noise.

# Example

- Suppose  $\mathbf{R}_{\mathbf{Y}} = \begin{bmatrix} 21 & 16 \\ 16 & 21 \end{bmatrix}$  and  $r_{d\mathbf{Y}} = \begin{bmatrix} 20 \\ 16 \end{bmatrix}$ . We want to determine a length-2
  - FIR Wiener filter using the SDA. Take  $\mathbf{h}(0) = \begin{bmatrix} h_0(0) \\ h_1(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ . The eigen

values of  $\mathbf{R}_{\mathbf{Y}}$  are  $\lambda_1 = 37$  and  $\lambda_2 = 5$ . We can choose  $\mu = 0.02 < \frac{2}{37}$ .

• Using  $\mathbf{h}(n+1) = \mathbf{h}(n) + \mu(\mathbf{r}_{dY} - \mathbf{R}_{Y}\mathbf{h}(n))$ , we get

$$\mathbf{h}(1) = \begin{bmatrix} h_0(1) \\ h_1(1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 0.02 \times \left( \begin{bmatrix} 20 \\ 16 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 0.4 \\ 0.32 \end{bmatrix}$$

Similarly  $\mathbf{h}(3) = \begin{bmatrix} 0.5863 \\ 0.3695 \end{bmatrix}$ , and after iterations we will get close to the

WH solution 
$$\mathbf{h} = \begin{bmatrix} 0.8865 \\ 0.0865 \end{bmatrix}$$

#### **Summary**

The filter coefficients of an adaptive filter are updated based on the error e(n) between the filter output and the desired signal d(n) as shown in the figure.



**The cost function**  $Ee^2(n)$  for an FIR Wiener filter is a quadratic function in h(n) and a unique global minimum exists.

The optimal set of filter parameters can be found by the SDA iteration:

$$\mathbf{h}(n+1) = \mathbf{h}(n) + \frac{\mu}{2}(-\nabla Ee^2(n))$$

Under WSS assumption

$$\mathbf{h}(n+1) = \mathbf{h}(n) + \mu(\mathbf{r}_{d\mathbf{Y}} - \mathbf{R}_{\mathbf{Y}}\mathbf{h}(n))$$

# LMS algorithm (Least Mean Square) algorithm

Consider the steepest descent relation

$$\mathbf{h}(n+1) = \mathbf{h}(n) - \frac{\mu}{2} \nabla \mathbf{E} e^2(n)$$

where

$$\nabla \mathbf{E}e^{2}(n) = \begin{bmatrix} \frac{\partial Ee^{2}(n)}{\partial h_{0}} \\ \dots \\ \frac{\partial Ee^{2}(n)}{\partial h_{M-1}} \end{bmatrix}$$

#### LMS algorithm...

In the LMS algorithm  $Ee^2(n)$  is approximated by  $e^2(n)$  to achieve a computationally simple algorithm.

$$\nabla \mathbf{E}e^{2}(n) \cong 2.e(n).$$

$$\cdots$$

$$\cdots$$

$$\vdots$$

$$\frac{\partial e(n)}{\partial h_{0}}$$

$$\vdots$$

$$\vdots$$

$$\frac{\partial e(n)}{\partial h_{M-1}}$$

Now consider

$$e(n) = d(n) - \sum_{i=0}^{M-1} h_i(i) y(n-i)$$

$$\frac{\partial e(n)}{\partial h_i} = -y(n-j), j = 0,1,\dots,M-1$$

# LMS algorithm...

$$\begin{bmatrix} \frac{\partial e(n)}{\partial h_0} \\ \vdots \\ \frac{\partial e(n)}{\partial h_{M-1}} \end{bmatrix} = -\begin{bmatrix} y(n) \\ y(n-1) \\ \vdots \\ y(n-M+1) \end{bmatrix} = -\mathbf{y}(n)$$

$$\begin{bmatrix} \frac{\partial e(n)}{\partial h_{M-1}} \\ \vdots \\ y(n-M+1) \end{bmatrix}$$

$$\therefore \nabla \mathbf{E} \mathbf{e}^2(n) \cong -2e(n)\mathbf{y}(n)$$

\* The steepest descent update now becomes

$$\mathbf{h}(\mathbf{n}+\mathbf{1}) = \mathbf{h}(\mathbf{n}) + \mu e(n)\mathbf{y}(\mathbf{n})$$

This modification is due to Widrow and Hopf and the corresponding adaptive filter is known as the *LMS filter*.

# LMS algorithm steps

- Given the input signal y[n], reference signal x(n) and step size  $\mu$ 
  - 1. Initialization  $h_i(0) = 0, i = 0, 1, 2, \dots, M-1$
  - 2. For n > 0

Filter output 
$$\hat{d}(n) = \mathbf{h}'(n)\mathbf{y}(n)$$

Estimation of the error  $e(n) = d(n) - \hat{x}(n)$ 

$$e(n) = d(n) - \hat{x}(n)$$

3. Tap weight adaptation

$$\mathbf{h}(\mathbf{n}+\mathbf{1}) = \mathbf{h}(\mathbf{n}) + \mu e(n)\mathbf{y}(\mathbf{n})$$



# **THANK YOU**