Théorème du moment cinétique

#chapitre21 #mecanique #dynamique

Moment d'une Force

$$\overrightarrow{M_{\overrightarrow{F}}}\!(O) = \overrightarrow{OM} \wedge \overrightarrow{F} \, \mathsf{en} \; N \cdot m$$

O : centre de rotation

• M: point d'application

Formule de Varignon

$$\overrightarrow{M_{\overrightarrow{R}}}(B) = \overrightarrow{M_{\overrightarrow{R}}}(A) + \overrightarrow{BA} \wedge \overrightarrow{R}$$

Par rapport à une axe orienté

$$M_{\Delta}(\overrightarrow{F}) = \overrightarrow{M_{\overrightarrow{F}}}(O) \cdot \overrightarrow{u_{\Delta}}$$

Moment cinétique d'un point

$$\overrightarrow{\mathcal{L}_\sigma} = \overrightarrow{OM} \wedge \overrightarrow{p_\sigma} ext{ en } Kg \cdot m^2 \cdot s^{-1} ext{ ou } J \cdot s$$

- Equivalente à la quantité de mouvement.
- En dynamique :

Par rapport à une axe

$$\mathcal{L}_{\Delta}(\sigma) = \overrightarrow{\mathcal{L}_{\sigma}}(O) \cdot \overrightarrow{u_{\Delta}}$$

Dynamique

Théorème du moment cinétique par rapport à un point

Conditions

- Référentiel galiléen \mathcal{R}_G .
- Point O fixe dans \mathcal{R}_G .

Cas général

ullet $\overrightarrow{\mathcal{L}(\mathcal{O})} = \overrightarrow{M}(O)$ (somme des moments)

Pour un système ponctuelle

$$egin{array}{c} \cdot & \overrightarrow{\mathcal{L}(\mathcal{O})} = \overrightarrow{M_{\overrightarrow{R}}}(O) \end{array}$$

Pour un axe orienté

$$oldsymbol{\dot{\mathcal{L}}_{\Delta}}=M_{\Delta}$$

Conservation du moment cinétique

Le moment cinétique d'un système quelconque par rapport à un point est conservé ⇔.

$$\sum \overrightarrow{M_{\overrightarrow{f_{ext}}}}(O) = \overrightarrow{0} \Leftrightarrow rac{d\overrightarrow{\mathcal{L}}(O)}{dt} = \overrightarrow{0}$$