"JPEGVigilant: AI-Powered Malware Image Detection"

A SYNOPSIS SUBMITTED

to

SAVITRIBAI PHULE PUNE UNIVERSITY
FOR THE PARTIAL FULFILMENT OF AWARD OF DEGREE
BACHELOR OF ENGINEERING

in

COMPUTER ENGINEERING

SUBMITTED BY

1.	Mr.Kharade Nilesh Shahaji	Roll No:	69
2.	Mr.Korake Digvijay Dilip	Roll No:	73
3.	Mr.Kshirsagar Dipak Vinod	Roll No:	74
4.	Mr.Mind Rushikesh Satish	Roll No:	88

UNDER THE GUIDANCE OF

Prof.Ekatpure J.N.

DEPARTMENT OF COMPUTER ENGINEERING

SPVP's SBPCOE, Indapur

DEPARTMENT OF COMPUTER ENGINEERING SPVP'S S. B. PATIL COLLEGE OF ENGINEERING

VANGALI, INDAPUR, PUNE 413106

2023 - 24

SYNOPSIS

1. Project Group Information

Group Id:12

Name of Students:

- 1. Mr.Kharade Nilesh Shahaji
- 2. Mr.Korake Digvijay Dilip
- 3. Mr.Kshirsagar Dipak Vinod
- 4. Mr.Mind Rushikesh Satish

2. Project Title:

"JPEGVigilant: AI-Powered Malware Image Detection"

3. Project Sponsorship details

Sponsorship Company:NA

External Guide: NA

Sponsership Company Address: NA

4. Problem Statement

To build and implement web application for Machine Learning Based Solution for the Detection of Malicious JPEG Images

5. Area of Project

Image Processing With AI

6. Abstract

Cyberattacks against people, companies, and organisations have risen in recent years. In order to conduct an attack, cybercriminals are constantly searching for efficient channels to spread malware to targets. Millions of people use photos every day, and the majority of consumers believe that they are safe to use. However, some types of images may contain malicious payloads that carry out dangerous functions. Due in large part to its lossy compression, JPEG is the most widely used image format. In this study, we introduce MalJPEG, the first machine learning-based method designed exclusively for the quick and accurate identification of unknown malicious JPEG images. In order to distinguish between benign and malicious JPEG images, MalJPEG statically derives 10 straightforward yet discriminative properties from the JPEG LE structure.

7. Goals and Objectives

Goals: The major goal of this system focuses on the use of machine learning for the identification of fraudulent images, especially JPEG images.

Objectives:

- To train a machine learning model, you would need a diverse dataset of both benign (non-malicious) and malicious JPEG images.
- To study Voice-Enabled Traffic Sign Recognition and Alert System using ML.
- To scan incoming JPEG images for malicious content.
- To refine the results and reduce false positives.

8. Relevant mathematics associated with the Project :

What do we need to find?

We need to find if there is any malicious JPEG image in the system. Let us consider S as a system for Courier Management System.

Input:

• Files containing malicious JPEG images.

Output:

• The software should detect the malicious JPEG image if the input file contains any

Set of functions:

- a) Uploading the files of JPEG images
- b) Scanning the file for presence of any Malicious JPEG images
- c) Detecting Malicious JPEG images

Space Complexity:

The space complexity depends on Presentation and visualization of discovered patterns. More the storage of data more is the space complexity.

Time Complexity:

Check No. of patterns available in the datasets= n

If (n(1)) then retrieving of information can be time consuming. So the time complexity of this algorithm is $O(n^n)$.

Failures and Success conditions. Failures:

- 1. Huge database can lead to more time consumption to get the information.
- 2. Hardware failure.
- 3. Software failure.

Success:

- 1. Search the required information from available in Datasets.
- 2. User gets result very fast according to their needs.

9. Names of Conferences / Journals where papers can be published

- 1.IEEE
- 2.UGC Care
- 3.Springer

${\bf 10. \ \ Review/ \ Literature \ survey \ of \ Conference/Journal \ Papers \ supporting}$ ${\bf Project \ idea}$

Sr.	Paper Ti-	Author	Year	Problem	Technique	What will be
No	tle			solved in this	used to solve	future work :
				paper : Exist-	problem : Ex-	Future Scope
				ing Problem	isting Prob-	
				Statement	lem Solution	
1	A Novel	Tarun	2019	This study	we have pro-	Improve accu-
	Machine	Kumar,		A Novel Ma-	posed a frame-	rancy.
	Learning	Sanjeev		chine Learning	work for mal-	
	Approach	Sharma,		Approach for	ware analysis	
	for Mal-	Himan-		Malware Detec-	based on semi	
	ware	shu Goel,		tion.	automated mal-	
	Detection	Sumit			ware detection	
		Cahud-			usually machine	
		hary,Parag			learning which	
		Jain			is based on dy-	
					namic malware	
					detection.	
2	Detection	Sanjay	2019	This study	we study the	In future, we
	of Ad-	Sharma,		Detection of Ad-	frequency of op-	will imple-
	vanced	C. Rama		vanced Malware	code occurrence	ment proposed
	Malware	Krishna		by Machine	to detect un-	approach on dif-
	by Ma-	and Sanjay		Learning Tech-	known malware	ferent datasets
	chine	K. Sahay		niques.	by using ma-	and will perform
	Learning				chine learning	in the deep
	Techniques				technique.	analysis for the
						classification of
						advanced mali-
						cious software.

3	Novel	Nir Nis- 2019	We study Novel	In this paper	In future work,
	active	sim,	active learning	we proposed a	we are interested
	learning	Robert	methods for	framework based	in implementing
	methods	Moskovitch,	enhanced PC	on new active	this frame- 1361
	for en-	Lior	malware detec-	1274 learning	work also on
	hanced PC	Rokach,	tion in windows	methods (Ex-	Android appli-
	malware	Yuval	OS	ploitation and	cations where
	detection	Elovici		Combination)	it is not very
	in windows			designed for	feasible to 1362
	OS			1275 acquir-	apply advanced
				ing unknown	detection tech-
				malware.	niques over the
					device itself
					due to 1363 its
					resource limi-
					tations (CPU,
					battery, etc.).

4	TrustSign:	Daniel	2019	To obtain and	This paper	First direction
	Trusted	Nahmias,		develope Trust-	presents Trust-	for future work
	Malware	Aviad		Sign: Trusted	Sign, a novel,	is related to
	Signature	Cohen,		Malware Signa-	trusted auto-	maintaining the
	Generation	Nir Nis-		ture Generation	matic malware	updatability
	in Private	sim, Yuval		in Private	signature gen-	and efficiency
	Clouds Us-	Elovicia		Clouds Using	eration method	of our proposed
	ing Deep			Deep Feature	based on high-	solution.
	Feature			Transfer Learn-	level deep	
	Transfer			ing	features trans-	
	Learning.				ferred from a	
					VGG-19 neural	
					network model	
					pre-trained on	
					the ImageNet	
					dataset.	

5	Keeping	Nir Nis- 2	2019	To develope	In this study	In future work,
	pace with	sim, Aviad		Keeping pace	we present an	in addition to
	the cre-	Cohen,		with the cre-	active learning	additional types
	ation of	Robert		ation of new	(AL) based	of malicious
	new mali-	Moskovitch,		malicious PDF	framework,	documents we
	cious PDF	Asaf Shab-		files using an	specifically	are interested
	files using	tai, Matan		active-learning	designed to	in extending
	an active-	Edri, Oren		based detection	efficiently as-	this framework
	learning	BarAd and		framework.	sist anti-virus	to Android
	based de-	Yuval			vendors focus	applications.
	tection				their analytical	
	frame-				efforts aimed	
	work.				at acquiring	
					novel malicious	
					content.	
6	A Novel	Tarun 2	2019	To obtain and	In this paper, we	Improving accu-
	Machine	Kumara,		develope A	have proposed	racy.
	Learning	Sanjeev		Novel Ma-	a framework for	
	Approach	Sharmaa,		chine Learning	malware analy-	
	for Mal-	Himanshu		Approach for	sis based on semi	
	ware	Goela,		Malware Detec-	automated mal-	
	Detection	Sumit		tion	ware detection	
		Chaud-			usually machine	
		harya			learning which	
					is based on dy-	
					namic malware	
					detection.	

7	Dynamic	Nir nissim,	2019	To study Survey	In this study, we	In future work,
	Malware	aviad co-		of Dynamic Mal-	present related	we suggest
	Analysis	hen1, jian		ware Analysis	vulnerabilities	evaluating the
	in the	wu, andrea		in the Modern	and malware	malicious PDF
	Modern	lanzi, lior		Era—A State of	distribution	presence in ad-
	Era—A	rokach,		the Art Survey.	approaches that	ditional digital
	State of	Yuval			exploit the vul-	libraries such
	the Art	elovici and			nerabilities of	as MAS, Web
	Survey	lee giles			scholarly digital	of Science, and
					libraries.	PubMed, as well
						as investigat-
						ing them for
						vulnerabilities.
8	Dynamic	ORI OR-	2019	To study Survey	We describe the	future research
	Malware	MEIR,		of Dynamic Mal-	advancements	stems from the
	Analysis	NIR NIS-		ware Analysis	made in analysis	fact that dy-
	in the	SIM,		in the Modern	techniques dur-	namic analysis
	Modern	YUVAL		Era—A State of	ing this time.	produces a time
	Era—A	ELOVICI,		the Art Survey.	Early research	sequence output
	State of	and LIOR			centered on	of observed
	the Art	ROKACH			function call	behavior.
	Survey.				analysis, execu-	
					tion control, and	
					flow tracking.	

9	Survey of	Daniele	2018	To study Sur-	This survey aims	The novel con-
	Machine	Ucci,		vey of Machine	at providing an	cept of malware
	Learning	Leonardo		Learning Tech-	overview on the	analysis eco-
	Tech-	Aniello,		niques for Mal-	way machine	nomics can
	niques for	Roberto		ware Analysis.	learning has	encourage fur-
	Malware	Baldoni			been used so far	ther research
	Analysis				in the context of	directions,
					malware analy-	where appro-
					sis in Windows	priate tuning
					environments.	strategies can
						be provided to
						balance com-
						peting metrics
						(e.g. accuracy
						and cost) when
						designing a mal-
						ware analysis
						environment.

10	Malware	Young-	2018	To study Survey	In this paper,	As a future
	Detection	Seob		of Malware De-	we design a	work, we will
	on Byte	Jeong ,		tection on Byte	convolutional	collect data
	Streams of	Jiyoung		Streams of PDF	neural network	of other file
	PDF Files	Woo , and		Files Using Con-	to tackle the	types (e.g.,
	Using Con-	Ah Reum		volutional Neu-	malware detec-	.rtf files) and
	volutional	Kang		ral Networks.	tion on the PDF	perform further
	Neural				files.We collect	investigation.
	Networks.				malicious and	
					benign PDF files	
					and manually	
					label the byte	
					sequences within	
					the files.	

11. Plan of Project Execution

- Start date From Group Registration 6 July 2023 TO 31 March 2024.
- Submission of Synopsis 31 Aug. 2023.
- Submission of Survey Paper 11 September 2023.
- Submission of Design Paper 30 September 2023.
- Last date to submit Report SEM I Spiral 20 Oct. 2023. of Result Paper Feb. 2024.
- Last date to submit Black Golden Embossing Report SEM II 15 March 2024.
- Completion of all documents and records till 15 March 2024 is must.
- All activities must be completed on or before above dates.

Guide Prof.J.N.Ekatpure Project Coordinator
Dr.A.B.Gavali

HOD

Dr.S.T.Shirkande