MT251P – Lecture 12

Fiacre Ó Cairbre

Solution to example 14.

Let

$$A = (1,0,0), B = (1,2,1), C = (2,1,0)$$

Then, let

$$\underline{n} = \vec{AB} \times \vec{AC}$$

Then, \underline{n} will be perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} . Also, \underline{n} can be taken to be a normal vector to α . Now,

$$\underline{n} = (2j + k) \times (i + j)$$

$$=-i+j-2k$$

and so the equation of α is

$$-(x-1) + (y-0) - 2(z-0) = 0$$

$$\Rightarrow -x+y-2z+1=0$$

$$\Rightarrow x - y + 2z = 1$$

Example 15.

Find the parametric equation of the line L which is the intersection of the two planes

$$x+y+z=1 \quad \text{and} \quad x+2y+3z=2$$

Solution.

$$\underline{n} = i + j + k$$
 is a normal vector to the plane $x + y + z = 1$

$$\underline{s} = i + 2j + 3k$$
 is a normal vector to the plane $x + 2y + 3z = 2$

Now, a vector parallel to L is perpendicular to both \underline{n} and \underline{s} . So, we can take $\underline{n} \times \underline{s}$ as a vector parallel to L.

Now,

$$\underline{n} \times \underline{s} = i - 2j + k$$

and so i-2j+k is a vector parallel to L. We will now show how to find a point on L. Well, one can show that any line in \mathbb{R}^3 must have at least one point with either $x=0,\ y=0$ or z=0.

Try z = 0 to get

$$x + y = 1$$
 and $x + 2y = 2$ (*)

x=0, y=1 will satisfy (*). So, (0,1,0) is a point on L.

So, overall, we have that L is a line containing the point (0, 1, 0) and parallel to the vector i - 2j + k. Hence, the parametric equation of L is

$$L = \{(0,1,0) + t(1,-2,1) : t \in \mathbb{R}\}\$$

Theorem 7 – Shortest distance from a point to a plane.

Suppose (x_0, y_0, z_0) is a point not on the plane ax + by + cz + d = 0. Then, the shortest distance from (x_0, y_0, z_0) to this plane is

$$\frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}}$$

Example 16.

Find the shortest distance from (2, 2, 3) to the plane 2x + 2y - 3z + 3 = 0.

Solution.

The required shortest distance is

$$\begin{vmatrix} \frac{2(2) + 2(2) + 3(-3) + 3}{\sqrt{2^2 + 2^2 + (-3)^2}} \\ = \frac{2}{\sqrt{17}} \end{vmatrix}$$

Volume of a Parallelepiped in \mathbb{R}^3 .

A parallelepiped is a three–dimensional generalisation of a parallelepiped as in the picture. A parallelepiped is determined by the three vectors $\underline{a}, \underline{b}, \underline{c}$.

Theorem 8.

The volume of the above parallelepiped is

$$|\underline{a}.(\underline{b} \times \underline{c})|$$

 $\underline{a}.(\underline{b} \times \underline{c})$ is called the triple product of the three vectors $\underline{a}, \underline{b}, \underline{c}$.

Example 17.

Find the volume of the parallelepiped determined by $\underline{a} = (1,0,-1), \ \underline{b} = (2,1,2), \ \underline{c} = (3,2,-1).$

Solution.

The required volume V is given by

$$V = |\underline{a}.(\underline{b} \times \underline{c})|$$

Now, $\underline{b} \times \underline{c} = -5i + 8j + k$ and so $\underline{a} \cdot (\underline{b} \times \underline{c}) = -6$. Hence, V = 6.

Chapter 4 – Matrices.

Section 4.1 – Systems of linear equations.

Definition 1.

A linear equation in the n variables x_1, x_2, \dots, x_n is given by

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where b, a_i are constants for $1 \le i \le n$.

Example 1.

 $2x_1 + 3x_2 = 5$ is a linear equation. This is also the equation of a line in \mathbb{R}^2 .

Example 2.

 $2x_1 + 3x_2 - x_3 = 5$ is a linear equation. This is also the equation of a plane in \mathbb{R}^3 .

Example 3.

- (i) $3x \frac{1}{2}y + 2 = 0$ is a linear equation.
- (ii) $x^2 + 3y = 5$ is not a linear equation.
- (iii) $\cos x + 4y z = 2$ is not a linear equation.

Example 4.

Note that two lines in \mathbb{R}_2 :

$$ax + by = c$$
 and $rx + sy = t$ where a, b, c, r, s, t are constants

intersect in either no points, exactly one point or or infinitely many points.