Lista 2 - MAC0320

Paulo Henrique Albuquerque, NUSP = 12542251

E6. Seja G um grafo conexo. Prove que quaisquer dois caminhos mais longos em G possuem (pelo menos) um vértice em comum.

Solução. A prova será por contradição. Suponha que existam dois caminhos mais longos S_1 e S_2 em G sem nenhum vértice em comum. Sejam u e v vértices quaisquer de S_1 e S_2 , respectivamente. O caminho S_1 pode ser particionado em dois caminhos. Um que vai de uma extremidade até o vértice anterior a u em S_1 e outro que vai do vértice posterior a u em S_1 até a outra extremidade. Esses caminhos têm comprimentos x-1 e y-1, respectivamente (x e y são as quantidades de vértices nesses caminhos). Podemos definir uma partição análoga para S_2 , com caminhos de comprimento w e z. Seja S o tamanho de um caminhos mais longo em G, como S_1 e S_2 são caminhos mais longos, eles têm comprimento S:

$$(x-1) + 1 + 1 + (y-1) = S \rightarrow x + y = S$$

 $(w-1) + 1 + 1 + (z-1) = S \rightarrow w + z = S$

Agora, podemos formar 4 caminhos a partir de S_1 e S_2 : dois que começam numa extremidade de S_1 e vai até u, depois de u a v e de v a uma das extremidades de S_2 . Outros dois são formados de forma análoga, começando a partir da outra extremidade de S_1 . Os comprimentos desses 4 caminhos são: x+w+1, x+z+1, y+z+1, y+w+1. A soma desse quatro comprimentos é 2(x+y)+2(w+z)+4=2S+2S+4=4(S+1). Segue, portanto, que pelo menos um deles tem comprimento S+1. Caso contrário, a soma dos comprimentos seria, no máximo, 4S. Isso é uma contradição da premissa que um caminho mais longo em G tem comprimento S. Segue, então, que dois caminhos mais longos em G tem pelo menos um vértice em comum.

E7. Seja G um grafo simples. E possível que ambos G e sejam desconexos? Justifique.

Solução. Não. Suponha G desconexo. Provaremos que \bar{G} deve ser conexo. Sejam u um vértice da componente C_i de G e v um vértice da componente C_j . Em \bar{G} , u e v são vizinhos, logo, há um caminho entre eles nesse grafo. Além disso, para qualquer outro vértice x de C_i , v é vizinho de x. Logo, u-v-x é um caminho em \bar{G} . Portanto, em \bar{G} , u está conectado com qualquer vértice v de qualquer outra componente C_j de G e com qualquer outro vértice x na mesma componente C_i . Ou seja, u está conectado com todos os vértices de \bar{G} . Como u é um vértice qualquer, segue que a afirmação acima é válida para todos os vértices do grafo G, ou seja, \bar{G} é conexo.