Tarea 7 (en proceso...)

Integrantes:

- Joaquín Elías Ramírez Gutiérrez 201910277
- Mayra Diaz Tramontana 201910147

Ejercicio 1

Realice un análisis LR(0) para:

a) 000111 de acuerdo a la gramática S \rightarrow 0S1|01

Pila	Entrada	Acción
\$ o	000111\$	shift(o)
\$02	00111\$	shift(o)
\$0202	0111\$	shift(o)
\$020202	111\$	shift(1)
\$02020213	11\$	reduce(01)
\$020254	11\$	shift(1)
\$02025215	1\$	reduce(0S1)
\$0254	1\$	shift(1)
\$025415	\$	reduce(0S1)
\$ S o	\$	reduce(S)

\$ S' 1	\$	Aceptar
----------------	----	---------

b) aaa*a++ de acuerdo a la gramática S \rightarrow SS + | SS* | a

Pila	Entrada	Acción
\$	aaa*a++\$	shift(a)
\$a 2	aa*a++\$	reduce(a)
\$S 1	aa*a++\$	shift(a)
\$S1a2	a*a++\$	reduce(a)
\$S1S1	a*a++\$	shift(a)
\$S1S3a2	*a++\$	reduce(a)
\$\$1\$3\$3	*a++\$	shift(*)
\$S1S3S3*5	a++\$	reduce(SS*)
\$S1S3	a++\$	shift(a)
\$S1S3a2	++\$	reduce(a)
\$S1S3S3	++\$	shift(+)
\$\$1\$3\$3+4	+\$	reduce(SS+)
\$\$1\$3	+\$ shift(+)	
\$\$1\$3+4	\$	reduce(SS+)
\$S1	\$	Aceptar

¿Encuentra algún conflicto en estos casos?

Ejercicio 3

$$S' \rightarrow S$$

$$S \rightarrow (L)$$

$$S \rightarrow X$$

$$L \rightarrow S$$

$$L \rightarrow L,S$$

a) Genere el DFA de análisis LR(o)

- b) ¿Se presenta algún conflicto LR(o)?
 - Como todos los estados con ítems completos A $\to \alpha$. no contienen ninguna otra regla (están solos), es no ambiguo, por lo que no se identifica ningún conflicto.
- c) Si no hay conflicto, aplique el análisis LR(0) a la cadena (x,x). Si encuentra algún conflicto, evalúe el método SLR(1). Para ello, construya los conjuntos de Primeros y Siguientes.

Pila	Entrada	Acción
\$	(x,x)\$	shift(()
\$(2	x,x)\$	shift(x)
\$(2×3	,x)\$	reduce($S \rightarrow x$)
\$(255	,x)\$	reduce(L \rightarrow S)
\$(2 L 4	,x)\$	shift(,)
\$(2 \ 4,7	x)\$	shift(x)
\$(2L4,7×3)\$	reduce($S \rightarrow x$)
\$(2L4,7S8)\$	reduce($L \rightarrow L,S$)
\$(2 L 4)\$	shift())
\$(2 \(\) 4)6	\$	reduce($S \rightarrow (L)$)
\$ S 1	\$	aceptar

 $\begin{aligned} & \text{Primeros(S')} = \{(, +\} & \text{Siguientes(S')} = \{\$\} \\ & \text{Primeros(S)} = \{(, +\} & \text{Siguientes(S)} = \{\$,), ,\} \\ & \text{Primeros(l)} = \{(, +\} & \text{Siguientes(l)} = \{\}, ,\} \end{aligned}$

d) ¿Se presenta algún conflicto SLR(1)?

No presenta ningún conflicto SLR(1).

e) Si no hay conflicto, desarrolle la tabla de análisis sintáctico correspondiente y realice el análisis SLR(1) a la cadena (x,x)

Estado	Entrada				lr	a	
	()	x	,	\$	S	L
0	S2		s3			S1	
1					aceptar		
2	S2		s3			s5	S 4
3		r(S→x)		r(S→x)	r(S→x)		
4		s6		s7			
5		r(L→S)		r(L→S)			

6		r(S→(L))		r(S→(L))	r(S→(L))		
7	s2		s3			s8	
8		r(L→ L,S)		r(L→ L,S)			

Análisis de la cadena (x,x)

Pila	Entrada	Acción
\$ o	(x,x)\$	S2
\$0(2	x,x)\$	s3
\$ 0 (2 × 3	,x)\$	reduce($S \rightarrow x$)
\$0(255	,x)\$	reduce(L \rightarrow S)
\$0(2 L 4	,x)\$	s7
\$0(2 \(\) 4,7	x)\$	s 3
\$ 0 (2 L 4 , 7 × 3)\$	reduce($S \rightarrow x$)
\$0(2L4,7S8)\$	reduce(L → L,S)
\$0(2 L 4)\$	s6
\$0(2 L 4)6	\$	reduce($S \rightarrow (L)$)
\$ o S 1	\$	aceptar