บทที่ 6

พิกัดเชิงขั้ว (Polar Coordinate)

6.1 จุดในระบบพิกัดฉากและระบบพิกัดเชิงขั้ว

6.1.1 ระบบพิกัดฉาก

การระบุตำแหน่งของจุด P บนระนาบ ทำได้โดยการอ้างอิงตำแหน่งของจุด P กับแกนพิกัด 2 แกนที่ตั้งฉากกัน และ เขียนแทนด้วยพิกัด P(x,y)

6.1.2 ระบบพิกัดเชิงขั้ว

การระบุตำแหน่งของจุด *P*บนระนาบจะอาศัยระบบ
พิกัดฉากโดยให้จุดกำเนิด *O* แทน pole (ขั้ว) และ

ให้แกน x ทางด้านบวกที่ผ่านจุด O แทน polar axis (แกนเชิงขั้ว) หรือ initial ray (เส้นรังสีเริ่มต้น)

ถ้า P เป็นจุดใดๆในระนาบพิกัดเชิงขั้ว เราสามารถระบุตำแหน่ง ของจุด P ได้ด้วยคู่อันดับในรูป (r,θ) โดยที่

r เป็น directed distance จากจุด \emph{O} ไปยังจุด \emph{P}

heta เป็น directed angle ที่ส่วนของเส้นตรง(หรือเส้นรังสี) OP ทำกับ polar axis ในทิศทางทวนเข็มนาฬิกา

6.2 Rectangular & Polar Coordinate Map

เราใช้ระบบ rectangular grid สำหรับการเขียนจุ้ดที่กำหนดด้วย ระบบพิกัดฉาก และใช้ระบบ polar grid ที่ประกอบด้วยวงกลมรัศมี 1, 2, 3,... ที่มีจุดศูนย์กลางร่วมกันที่ขั้ว(pole) และเส้นรังสี (ray) ที่ผ่านขั้ว และทำมุมต่างๆกัน (เช่น $0, \frac{\pi}{12}, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2},...$) สำหรับการเขียนจุดที่ กำหนดด้วยระบบพิกัดเชิงขั้ว

heta.2.1 การวัดมุม heta

- θ มีค่าเป็นบวก เมื่อวัดในทิศทวนเข็มนาฬิกา
- θ มีค่าเป็น**ลบ** เมื่อวัดในทิศ**ตามเข็ม**นาฬิกา

แต่มุม heta ที่ r ค่าหนึ่ง อาจมีได้หลายค่า เช่น จุด P อยู่ห่างจาก pole ไปตาม ray $heta=30^{
m o}$ จะมีพิกัดเชิงขั้วได้หลายค่า คือ $(2,30^{
m o})$ และ $(2, -330^{\rm o})$ ซึ่งทั้งสองจุดนี้แทนจุดเดียวกัน

6.2.2 การวัดระยะ r

เนื่องจาก r เป็นระยะที่กำหนดทิศทางจากจุด o ไปยังจุด Pดังนั้นจะกำหนดให้

r มีเครื่องหมาย<u>บวก</u> เมื่อวัดจากขั้วไปตามเส้นที่ต่อจากจุด o ไป ์สิ้นสุดที่จุด *P* และมีเครื่องหมาย<u>ลบ</u> เมื่อวัดในทิศทางตรงข้าม

$$r>0$$
 $(2,30^\circ)$ $r=0$ $(2,30^\circ)$ $\theta=0^\circ$ $r<0$ $(-1,30^\circ)$ $\theta=0^\circ$ $(-2,30^\circ)$ มการสอนวิชา MTH 102 Mathematics II ภาควิชาคณิตศาสตร์ ค

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

6.2.3 Negative values of r

กำหนด OP มีพิกัดเชิงขั้วที่ P เป็น (r, θ) และ OQ ทำมุม π กับ OP ดังนั้น พิกัดของ Q คือ $(r, \pi + \theta)$

จะเรียก OQ ว่าเป็น $\overline{\mathbf{u}}$ เสธของ OP และเขียนแทนด้วยพิกัด $(-r, \theta)$ นั่นคือ นิเสธของ r ก็คือ r ที่ทำมุม π กับ r เดิม

หมายเหตุ สิ่งที่แตกต่างกันระหว่าง*ระบบพิกัดฉาก*และ*ระบบพิกัดเชิงขั้ว* คือการกำหนดจุดในระบบพิกัดฉากจะเขียนพิกัดแทนจุดได้เพียง<u>แบบ</u> เดียว ในขณะที่ระบบพิกัดเชิงขั้วสามารถเขียนพิกัดแทนจุดได้<u>หลายแบบ</u>

โดยทั่วไปจุดในระบบพิกัดเชิงขั้วที่เป็นจุดเดียวกันกับ (r,θ) จะเขียน อยู่ในรูป $(r,\theta+2n\pi)$ หรือ $(-r,\theta+(2n+1)\pi)$ เมื่อ n เป็นจำนวนเต็ม

สำหรับพิกัดเชิงขั้วที่ pole จะเขียนอยู่ในรูป $(0,\theta)$ เมื่อ θ เป็น ค่ามุม เช่น $(0,0),(0,\pi),(0,\frac{\pi}{4})$ หรืออื่นๆ ต่างแทนจุดที่ขั้ว

ตัวอย่าง 1 จงกำหนดจุด $(-2,-\frac{\pi}{4})$ ในระบบพิกัดเชิงขั้ว และหา พิกัดเชิงขั้วแบบอื่นๆของจุดนี้ เมื่อ

1)
$$r>0$$
 และ $0< heta<2\pi$

2)
$$r>0$$
 และ $-2\pi< heta<0$

3)
$$r < 0$$
 และ $0 < heta < 2\pi$

 ${\color{red} {f \widehat{2}} {f \widehat{5}} {f \mathring{n}} {\color{blue} 1}}$ ให้ P แทนจุดที่ต้องการของแต่ละเงื่อนไข

กรณี 1) r>0 และ $0<\theta<2\pi$

กรณี 2) r>0 และ $-2\pi < \theta < 0$

กรณี 3) r<0 และ $0<\theta<2\pi$

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

ดังนั้น พิกัดเชิงขั้วของจุด $(-2, -\frac{\pi}{4})$ แบบอื่นๆ คือ 1) 2) 3)

<u>ตัวอย่าง 2</u> จงกำหนดจุดต่อไปนี้ในระบบพิกัดเชิงขั้ว

$$A(3,\frac{\pi}{4})$$
 $B(5,\frac{2\pi}{3})$ $C(-1,\frac{\pi}{2})$ $D(1,0)$ $E(-6,-\pi)$ $F(-4,\frac{\pi}{3})$ $G(2,-\frac{11\pi}{6})$ $H(-8,-\frac{7\pi}{4})$ $I(-5,-\frac{\pi}{6})$ $J(-3,\frac{3\pi}{2})$

6.3 ความสัมพันธ์ระหว่างระบบพิกัดเชิงขั้วและระบบพิกัดฉาก

ความสัมพันธ์ของระบบพิกัดทั้งสองจะใช้จุดกำเนิด และขั้วทับกัน

โดยให้แกนเชิงขั้วทับ แกน x ทางด้านบวก และให้เส้นรังสี $\theta = \frac{\pi}{2}$ ทับแกน y ทางด้านบวก

ให้ (x,y) เป็น<u>พิกัดฉาก</u> และ (r,θ) เป็น<u>พิกัดเชิงขั้ว</u>ของจุด P ตามลำดับ และจากรูปสามเหลี่ยมมุมฉาก จะได้ว่า

$$x = r\cos\theta, \quad y = r\sin\theta$$
 (1)

$$r^2 = x^2 + y^2$$
, $\tan \theta = \frac{y}{x}$ if $x \neq 0$ (2)

- ullet สมการ (1) ใช้หาจุดในระบบพิกัดฉาก เมื่อกำหนดจุด P(r, heta) ใน ระบบพิกัดเชิงขั้วมาให้
- ullet สมการ (2) ใช้หาจุดในระบบพิกัดเชิงขั้ว เมื่อกำหนดจุด P(x,y) ใน ระบบพิกัดฉากมาให้

ullet ค่า heta หาได้จากสมการ $an heta=rac{y}{x},\ x
eq 0$ ซึ่งจะได้ค่า heta ออกมา 2 ค่าเมื่อ $0 \le heta \le 2\pi$ ถ้าค่า heta สอดคล้องกับจุดใน quadrant ที่เลือกให้ กำหนด $r=\sqrt{x^2+y^2}$ แต่ถ้าเลือก heta อีกค่าหนึ่งให้กำหนด $r=-\sqrt{x^2+y^2}$

ตัวอย่าง 3 จงหาพิกัดฉากของจุดต่อไปนี้ เมื่อกำหนดพิกัดเชิงขั้วของจุด ให้ดังนี้ 1) $(4,\frac{\pi}{3})$ 2) $(-2,\frac{3\pi}{4})$ 3) $(-3,-\frac{5\pi}{6})$

วิธีทำ ใช้สมการ (1) แปลงจากระบบพิกัดเชิงขั้วไปเป็นระบบพิกัดฉาก 1)

2)

3)

ตัวอย่าง 4 จงหาพิกัดเชิงขั้วของจุด P ที่มีพิกัดฉากเป็น (4,-4) **วิธีทำ**

$$\theta = \frac{\pi}{2}$$

$$\theta = \frac{3\pi}{4}$$

$$\theta = \frac{3\pi}{4}$$

$$\theta = \pi$$

$$\theta = \frac{3\pi}{4}$$

$$\theta = \pi$$

$$\theta = \frac{7\pi}{4}$$

$$\theta = \frac{5\pi}{4}$$

$$\theta = \frac{3\pi}{4}$$

$$\theta = \frac{7\pi}{4}$$

$$\theta = \frac{5\pi}{4}$$

$$\theta = \frac{3\pi}{4}$$

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

ตัวอย่าง 5 จงแปลงสมการในระบบพิกัดเชิงขั้วต่อไปนี้ไปสู่ระบบพิกัด ฉาก พร้อมทั้งอธิบายลักษณะกราฟ

1)
$$r = 2\cos\theta$$

2)
$$r = 2\sec\theta$$

3)
$$r = \frac{4}{2\cos\theta + 3\sin\theta}$$

4)
$$r\cos(\theta - \frac{\pi}{3}) = 3$$

<u>วิธีทำ</u>

1)

2)

3) จากสมการ
$$r = \frac{4}{2\cos\theta + 3\sin\theta}$$

จะได้
$$2r\cos\theta + 3r\sin\theta = 4$$

ดังนั้น
$$2x+3y=4$$
 เป็นสมการที่ต้องการ

4) จากสมการ
$$r\cos(\theta - \frac{\pi}{3}) = 3$$

โดยใช้เอกลักษณ์ตรี โกณมิติ

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

จะได้ว่า
$$r\!\left(\cos\! heta\!\cos\!\frac{\pi}{3}\!+\!\sin\! heta\!\sin\!\frac{\pi}{3}
ight)\!=\!3$$
 $rac{1}{2}r\!\cos\! heta\!+\!rac{\sqrt{3}}{2}r\!\sin\! heta\!=\!3$ $x\!+\!\sqrt{3}v\!=\!6$

<u>ตัวอย่าง 6</u> จงแปลงสมการในระบบพิกัดฉากต่อไปนี้ไปสู่ระบบพิกัดเชิง ข้า ข้า

1)
$$2xy = a^2$$

2)
$$x^2 = 2y$$

1)
$$2xy = a^2$$
 2) $x^2 = 2y$ 3) $x^2 + y^2 - 6x = 0$

วิธีทำ

1)

2)

3) จากสมการ
$$x^2 + y^2 - 6x = 0$$
จะได้ว่า $(r\cos\theta)^2 + (r\sin\theta)^2 - 6r\cos\theta = 0$

$$r^2 - 6r\cos\theta = 0$$

$$r(r - 6\cos\theta) = 0$$
คังนั้น $r = 0$ หรือ $r - 6\cos\theta = 0$

$$r = 6\cos\theta$$
จาก $r = 6\cos\theta$ จะเห็นว่า ถ้า $\theta = \frac{\pi}{2}$ แล้ว $r = 0$
คังนั้น $r = 6\cos\theta$ เป็นสมการที่ต้องการ

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

6.4 Graph in Polar Coordinate

กราฟของสมการในระบบพิกัดเชิงขั้ว

$$r = f(\theta)$$
 หรือ $F(r,\theta) = 0$

จะประกอบด้วยเซตของจุด (r,θ) ต่างๆที่สอดคล้องกับสมการเชิงขั้ว \vec{v} ชึ่งการเขียนกราฟของสมการในระบบพิกัดเชิงขั้ว ทำได้ดังนี้

- 1. เขียนกราฟโดยการแปลงสมการในระบบพิกัดเชิงขั้วไปสู่ระบบ พิกัดฉากที่เราทราบกราฟและสามารถเขียนกราฟได้โดยง่าย หรือ
- 2. เขียนกราฟโดยการกำหนดจุด (r, θ) ที่สอดคล้องกับสมการเชิงขั้ว

<u>ตัวอย่าง 7</u> (Lines in Polar Coordinates)

Explain and sketch the graph of $r \sin \theta = 2$ and $r \cos \theta = -3$

วิธีทำ เนื่องจาก $y=r\sin\theta$ ดังนั้น สมการ $r\sin\theta=2$ สามารถ เขียนได้ในรูป y=2 ซึ่งเป็นสมการเส้นตรงในแนวนอน (horizontal line) อยู่เหนือจากขั้วขึ้นไปเป็นระยะทาง 2 หน่วย ดังรูปซ้าย $\theta=\frac{\pi}{2}$

 $heta=rac{5\pi}{6}=rac{5\pi}{4}$ เอกสารประกอบการสอนวิชา MTH 102 Mathehetanatics II $heta=rac{5\pi}{4}$ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ hetaจะ

 $\frac{-\frac{3h}{2}}{2}$

และเนื่องจาก $x = r\cos\theta$ ดังนั้น สมการ $r\cos\theta = -3$ สามารถ เขียนได้ใหม่ในรูป x = -3 ซึ่งเป็นสมการเส้นตรงในแนวตั้ง (vertical line) อยู่ห่างจากขั้วไปทางซ้ายเป็นระยะทาง 3 หน่วย ดังรูปขวา

<u>สรุป</u>

สมการเส้นตรง	พิกัดฉาก	พิกัดเชิงขั้ว
Horizontal Line	y = b	$r\sin\theta = b$
Vertical Line	x = a	$r\cos\theta = a$

หมายเหตุ สำหรับสมการ $\theta \! = \! \theta_{\! 0}$ ในระบบพิกัดเชิงขั้วก็คือ สมการเส้น ตรงที่ผ่าน pole และทำมุม $\theta_{\! 0}$ กับ polar axis

ตัวอย่าง 8 จงวาดกราฟ

- a) $r\cos\theta = 3$ b) $r\sin\theta = -2$
- c) $\theta = \frac{3\pi}{4}$

<u>ตัวอย่าง 9</u> (Circles in Polar Coordinates)

Explain and sketch the graph of $r = 4\sin\theta$ and $r = -2\cos\theta$

วิธีทำ

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

<u>สรุป</u>

สมการวงกลมรัศมี a	จุดศูนย์กลาง				
หน่วย (<i>a</i> >0)	ระบบพิกัดฉาก	ระบบพิกัดเชิงขั้ว			
$r=2a\sin\theta$	(0,a)	$(a,\frac{\pi}{2})$			
$r = -2a\sin\theta$	(0,-a)	$(a,-\frac{\pi}{2})$			
$r=2a\cos\theta$	(a, 0)	(a, 0)			
$r = -2a\cos\theta$	(-a, 0)	(a,π)			
r=a	origin	pole			

แบบฝึกหัด จงวาดกราฟของสมการต่อไปนี้

ก)
$$r = 4\cos\theta$$

ก)
$$r = 4\cos\theta$$
 ข) $r = -5\sin\theta$

ค)
$$r=3$$

<u>ตัวอย่าง 10</u> จงวาดกราฟในระบบพิกัดเชิงขั้วที่สอดคล้องกับเงื่อนไข ต่อไปนี้

ก)
$$1 \le r \le 2$$
 และ $0 \le \theta \le \frac{\pi}{2}$ ข) $-3 \le r \le 2$ และ $\theta = \frac{\pi}{4}$

ข)
$$-3\!\leq\!r\!\leq\!2$$
 และ $\theta\!=\!\!rac{\pi}{4}$

ค)
$$r \! \leq \! 0$$
 และ $\theta \! = \! \frac{\pi}{4}$

$$\exists \theta \leq \frac{3\pi}{4}$$
 (no restriction on r)

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณีตศาสตร์ คณะวิทยาศาสตร์ มจธ.

6.5 Symmetry Tests for Graphs

การพิจารณาการสมมาตรของกราฟของสมการเชิงขั้ว จะช่วยให้เราเขียน กราฟในระบบพิกัดเชิงขั้วได้ง่ายขึ้น

Symmetry with respect to	The polar equation is unchanged if replacing
Polar axis (x -axis)	heta by $- heta$
Line $\theta = \frac{\pi}{2}$ (y axis)	$ heta$ by $\pi{-} heta$
Pole (origin)	r by -r

6.6 กราฟของสมการเชิงขั้วที่ควรรู้จัก

1. ลีมาซอง (Limaçon) และคาร์ดิออยด์ (Cardioids)

ลีมาซองเป็นกราฟของสมการเชิงขั้ว ที่อยู่ในรูป

 $r=a\pm b\cos heta$ หรือ $r=a\pm b\sin heta$ เมื่อ a>0 และ b>0 ซึ่งมีอยู่ 4 รูปแบบด้วยกัน ขึ้นอยู่กับค่า อัตราส่วนของ $\frac{a}{b}$ ดังนี้

1.1 Limaçon with inner loop $(\frac{a}{b} < 1)$

ตัวอย่าง 11 Sketch the curve of $r = 1 + 2\cos\theta$

<u>วิธีทำ</u> พิจารณาการสมมาตรของกราฟ $r=1+2\cos\theta$ ①

1) แทน heta ด้วย - heta ในสมการ $\widehat{(1)}$:

2) แทน heta ด้วย $\pi- heta$ ในสมการ $\widehat{(1)}$:

3) แทน r ด้วย -r ในสมการ $\widehat{(1)}$:

จะเห็นว่าสมการเปลี่ยน ดังนั้น กราฟไม่มีสมมาตรกับ pole พิจารณาค่า r เมื่อ heta มีค่าระหว่าง 0 ถึง 2π ดังตารางต่อไปนี้

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
r	3	$1+\sqrt{3}$	2	1	0	$1-\sqrt{3}$	-1	$1-\sqrt{3}$	0	1	2	$1+\sqrt{3}$	3

 $\theta = \frac{3\pi}{2}$ กราฟในตัวอย่าง 11 มีชื่อว่า Limaçon with inner loop

#

1.2 Cardioid ($\frac{a}{b} = 1$)

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

<u>ตัวอย่าง 12</u> Sketch the curve of $r=1-sin\theta$

 ${\color{red} ar{2} ar{5} ar{n} {\color{blue} n}}$ พิจารณาการสมมาตรของกราฟ r = 1 - sin heta

1) แทน heta ด้วย - heta ในสมการ $extbf{1}$:

$$r = 1 - \sin(-\theta) = 1 + \sin\theta$$

จะเห็นว่าสมการเปลี่ยน ดังนั้น กราฟไม่มีสมมาตรกับ polar axis

2) แทน heta ด้วย $\pi- heta$ ในสมการ $\widehat{(1)}$:

$$r = 1 - \sin(\pi - \theta) = 1 - \sin\theta$$

จะเห็นว่าสมการไม่เปลี่ยน ดังนั้น กราฟมีสมมาตรกับเส้นตรง $heta=rac{\pi}{2}$

3) แทน r ด้วย -r ในสมการ (1) :

$$-r = 1 - \sin\theta \rightarrow r = -1 + \sin\theta$$

จะเห็นว่าสมการเปลี่ยน ดังนั้น กราฟไม่มีสมมาตรกับ pole

พิจารณาค่า r เมื่อ heta มีค่าระหว่าง 0 ถึง 2π ดังตารางต่อไปนี้

6-23

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
r	1	$\frac{1}{2}$	$1 - \frac{\sqrt{3}}{2}$	0	$1 - \frac{\sqrt{3}}{2}$	$\frac{1}{2}$	1	$\frac{3}{2}$	$1+\frac{\sqrt{3}}{2}$	2	$1+\frac{\sqrt{3}}{2}$	$\frac{3}{2}$	1

กราฟในตัวอย่าง 12 มีชื่อว่า Cardioid

1.3 Dimpled Limaçon ($1 < \frac{a}{b} < 2$)

1.4 Convex Limaçon ($\frac{a}{b} \ge 2$)

2. เส้นโค้งกุหลาบ (Rose Curves)

ตัวอย่าง 13 Sketch the curve of $r=2cos2\theta$

<u>วิธีทำ</u> พิจารณาการสมมาตรของกราฟ $r=2cos2\theta$ (1)

1) แทน heta ด้วย - heta ในสมการ $\widehat{f 1}$:

 $r=4-2\cos\theta$

$$r = 2\cos 2(-\theta) = 2\cos 2\theta$$

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

 $r=4-2\sin\theta$

จะเห็นว่าสมการไม่เปลี่ยน ดังนั้น กราฟมีสมมาตรกับ polar axis

2) แทน heta ด้วย $\pi- heta$ ในสมการ $\widehat{f 1}$:

$$r = 2\cos 2(\pi - \theta) = 2\cos 2\theta$$

จะเห็นว่าสมการไม่เปลี่ยน ดังนั้น กราฟมีสมมาตรกับเส้นตรง $heta=rac{\pi}{2}$

เนื่องจากกราฟมีสมมาตรกับแกนเชิงขั้ว สมมาตรกับเส้นตรง $heta=rac{\pi}{2}$

ดังนั้น กราฟจะสมมาตรกับขั้วด้วย

พิจารณาค่า r เมื่อ heta มีค่าระหว่าง 0 ถึง π ดังตารางต่อไปนี้

А	0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{2}$	2π	3π	5π	
	U	6	4	3	2	3	4	6	π
r	2	1	0	-1	-2	-1	0	1	2

เอกสารประกอบการสอนวิชา MTH 102 Mathematics II

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มจธ.

เมื่อทำการ plot กราฟค่า r จาก $\theta=0$ ถึง π ได้กราฟดังรูปซ้ายมือ จากนั้นใช้หลักการสมมาตร สำหรับ $\theta=\pi$ ถึง 2π ได้กราฟดังรูปขวามือ

กราฟในตัวอย่าง 13 เรียกว่า four-petal rose curve (เส้นโค้งกุหลาบ 4 กลีบ)

สรุป เส้นโค้งกุหลาบ (rose curve) มีสมการในรูป

$$r=a\cos n heta$$
 หรือ $r=a\sin n heta$

โดยที่ a>0 และ n เป็นจำนวนเต็มบวก ($n\geq 2$) ลักษณะกราฟ แสดงถึงรูปร่างของกลีบกุหลาบ โดยที่**จำนวนกลีบ**(petals) ของ rose curve จะขึ้นอยู่กับค่า n คือ

• ถ้า n เป็นจำนวนเต็มคู่ จะมีจำนวน petal เท่ากับ 2n

ullet ถ้า n เป็นจำนวนเต็มคี่ จะมีจำนวน petal เท่ากับ n

3. เลมนิสเคต (Lemniscate)

ตัวอย่าง 14 Sketch the curve of $r^2 = 4sin2\theta$ **วิธีทำ** กราฟนี้มีสมมาตรกับขั้ว และเมื่อกำหนดค่า θ จาก 0 ถึง π จะ ได้ค่า r ดังตาราง

		π	π	π	π	5π	π
θ	U	12	6	$\frac{\overline{4}}{4}$	3	12	2
r^2	0	2	$2\sqrt{3}$	4	$2\sqrt{3}$	2	0
r	0	±1.414	±1.861	±2	±1.861	±1.414	0

หมายเหตุ จะไม่มีกราฟในจตุภาคที่สอง $\left(\frac{\pi}{2} < \theta < \pi\right)$ และจตุภาคที่สี่ $\left(\frac{3\pi}{2} < \theta < 2\pi\right)$ เนื่องจาก $\sin 2\theta < 0$ ทำให้ $r^2 < 0$

Lemniscate มี polar equation ในรูป

$$r^2=a^2{
m cos}2 heta$$
 หรือ $r^2=a^2{
m sin}2 heta$

$$r^2 = a^2 \sin 2\theta$$

โดยที่ $a \neq 0$ ลักษณะกราฟแสดงถึงรูปร่างของใบพัด(propeller)

4. Spiral

4.1 เส้นโค้งเกลี่ยวของอาร์คีมีดิส (Spiral of Archimedes) จะ

มีสมการอยู่ในรูป

$$r = a\theta$$

เมื่อ
$$a>0$$

 $r = 2\theta, \ 0 \le \theta \le 2\pi$

4.2 เส้นโค้งเกลี่ยวแบบลอการิทึม (Logarithmic Spiral) จะมี

สมการอยู่ในรูป $\,r=e^{\,a heta}\,$ โดยที่ a>0

<u>แบบฝึกหัด</u> Sketch the graph of $r=e^{rac{ heta}{5}}$

- 1) จากการทดสอบการสมมาตร ไม่พบว่ากราฟนี้มีสมมาตรกับแกนเชิง π
- ขั้ว, เส้นตรง $heta=rac{\pi}{2}$ และขั้ว
- 2) ไม่มีค่า heta ใดที่ทำให้ r=0 ดังนั้นกราฟไม่ผ่านขั้ว
- 3) r มีค่าเป็นบวกทุกๆค่า heta

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	$-\frac{\pi}{4}$	$-\frac{\pi}{2}$	_π	$-\frac{3\pi}{2}$
r	1	1.17	1.37	1.87	2.57	3.51	0.85	0.73	0.53	0.39

จะเห็นว่า r o 0 ขณะที่ $heta o -\infty$ และ $r o +\infty$ ขณะที่ $heta o +\infty$

6.7 Finding the points where the curves intersect

ตัวอย่าง 15 จงหาจุดตัดของเส้นโค้ง $r=cos\theta$ และ $r=sin\theta$ $\frac{1}{2}$ งหาจุดตัดของกราฟ $r=cos\theta$ และ $r=sin\theta$ จะได้ว่า $sin\theta=cos\theta$ หรือ $tan\theta=1$ นั่นคือ $\theta=\frac{\pi}{4}$ และจะได้ $r=\frac{1}{\sqrt{2}}$ ดังนั้น จุดตัดของกราฟสองกราฟนี้มี 1 จุด คือ $(\frac{1}{\sqrt{2}},\frac{\pi}{4})$

แต่เมื่อทำการเขียนกราฟจะเห็นว่ามีจุดตัดระหว่างกราฟทั้งสอง ทั้งหมด 2 จุด คือ จุด $\left(\frac{1}{\sqrt{2}},\frac{\pi}{4}\right)$ ที่ได้จากการแก้สมการ และจุดตัดที่ขั้ว 1 จุด ดังรูป

การแก้สมการเพื่อหาจุดตัดในระบบพิกัดเชิงขั้ว จุดตัดที่ได้จาก การแก้สมการจะมี<u>บางจุดหายไป</u> ดังนั้นถ้าเราใช้การ<u>วาดกราฟ</u>เข้าช่วย จะทำให้เราหาจุดตัดทั้งหมดได้ **ตัวอย่าง 16** จงหาจุดตัดของเส้นโค้ง $r=4sin3\theta$ และ r=2 **วิธีทำ** เมื่อวาดกราฟดังรูปจะพบว่ามีจุดตัดทั้งหมด 6 จุด

โดยการแก้สมการของเส้นโค้ง r=4sin3 heta และ r=2

จะได้
$$4\sin 3\theta = 2 \rightarrow \sin 3\theta = \frac{1}{2}$$

ดังนั้น

$$3\theta = \frac{\pi}{6}, \frac{5\pi}{6}, 2\pi + \frac{\pi}{6}, 2\pi + \frac{5\pi}{6}, 4\pi + \frac{\pi}{6}, 4\pi + \frac{5\pi}{6}$$

$$3\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{25\pi}{6}, \frac{29\pi}{6}$$

$$\theta = \frac{\pi}{18}, \frac{5\pi}{18}, \frac{13\pi}{18}, \frac{17\pi}{18}, \frac{25\pi}{18}, \frac{29\pi}{18}$$

จุดตัดทั้ง 6 จุดมีพิกัดเป็น

$$\left(2, \frac{\pi}{18}\right)$$
, $\left(2, \frac{5\pi}{18}\right)$, $\left(2, \frac{13\pi}{18}\right)$, $\left(2, \frac{17\pi}{18}\right)$, $\left(2, \frac{25\pi}{18}\right)$, $\left(2, \frac{29\pi}{18}\right)$

<u>แบบฝึกหัด</u> จงหาจุดตัดของเส้นโค้ง r=1 และ $r=2cosrac{ heta}{2}$

6.8 Area in Polar Coordinates

6.8.1 Area between the pole and $r=f(\theta)$, $\alpha \leq \theta \leq \beta$

ให้ A เป็นพื้นที่ที่ถูกล้อมรอบด้วยเส้นโค้ง $r=f(\theta)$ และ rays $\theta=\alpha$ และ $\theta=\beta$ โดยที่ $r=f(\theta)$ มีความต่อเนื่องและเป็น nonnegative บนช่วง $\alpha\leq\theta\leq\beta$, $0<\alpha<\beta\leq2\pi$ แล้วจะได้ว่า

$$A = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$$

ตัวอย่าง 17 จงหาพื้นที่ใน quadrant ที่ 1 ที่ถูกล้อมรอบด้วยเส้นโค้ง r=1-sin heta

วิธีทำ เนื่องจากพื้นที่ที่ต้องการในจตุภาคที่ 1 ถูกปิดล้อมด้วยเส้นโค้ง

$$r=1-sin heta$$
 จาก $heta=0$
ถึง $heta=rac{\pi}{2}$ ดังนั้น พื้นที่ที่
ต้องการคือ

$$A = \int_0^{\frac{\pi}{2}} \frac{1}{2} r^2 d\theta$$

แบบฝึกหัด

จงหาพื้นที่ที่ถูกปิดล้อมด้วยสมการ
$$r=1-sin heta$$
 $\left[rac{3\pi}{2}
ight]$

ทั่วอย่าง 18 Find the area enclosed by the rose curve $r=2{\rm cos}3\theta$

ใช้หลักการสมมาตรในการหาพื้นที่ โดยให้ A_1 เป็นพื้นที่ที่ถูกปิดล้อม ด้วยเส้นโค้ง $r=2{\cos}3 heta$ ในจตุภาคที่ 1 ที่เริ่มจากมุม heta=0 ถึง $heta={\pi\over 6}$ (พื้นที่ของกลีบกุหลาบครึ่งกลีบ)

ดังนั้น พื้นที่ $A=6A_1=6\int_0^{\pi} \frac{1}{2}(2\cos 3\theta)^2 d\theta$

แบบฝึกหัด

จงหาพื้นที่ที่ถูกปิดล้อมด้วยสมการ
$$r=2+\cos heta$$
 $\left[rac{9\pi}{2}
ight]$

6.8.2 Area of Region $f_1(\theta) \le r \le f_2(\theta)$, $\alpha \le \theta \le \beta$

ให้ A เป็นพื้นที่ของบริเวณที่ถูกปิดล้อมด้วยเส้นโค้ง $r_1=f_1(\theta)$ และ $r_2=f_2(\theta)$ โดยที่ $0\leq f_1(\theta)\leq f_2(\theta)$ บนช่วง $\theta{=}lpha$ ถึง $\theta{=}eta$ จะได้ว่า

$$A = \int_{\alpha}^{\beta} \frac{1}{2} (r_2)^2 d\theta - \int_{\alpha}^{\beta} \frac{1}{2} (r_1)^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} (r_2^2 - r_1^2) d\theta$$

<u>ตัวอย่าง 19</u> Find the area that lies outside the cardioid $r=1+cos\theta$ and inside the circle $r=3cos\theta$ วิธีทำ หาจุดตัดของเส้นโค้ง $r=1+cos\theta$ และ $r=3cos\theta$

โดยการแก้สมการ จะได้
$$1+\cos heta=3\cos heta$$
 $\cos heta=rac{1}{2}$ $heta=$ ดังนั้น กราฟตัดกันที่จุด และ

$$=\frac{1}{2}[3\theta+2\mathrm{sin}2\theta-2\mathrm{sin}\theta]^{\frac{\pi}{3}}_{-\frac{\pi}{3}}$$
$$=\pi$$
 ตารางหน่วย

<u>ตัวอย่าง 20</u> จงหาพื้นที่ร่วมกันระหว่างเส้นโค้งรูปหัวใจ

$$r=1+{
m cos} heta$$
 และวงกลม $r=\sqrt{3}{
m sin} heta$

วิธีทำ หาจุดตัดของเส้นโค้ง $r=1+cos\theta$ และ $r=\sqrt{3}sin\theta$ โดยการแก้สมการ จะได้

ตัวอย่าง 21 จงหาพื้นที่ที่อยู่ภายในบ่วงใหญ่ แต่อยู่นอกบ่วงเล็กของเส้น โค้ง $r=1+2sin\theta$

<u>วิธีทำ</u> เนื่องจาก $r=1+2sin\theta$ เป็นเส้นโค้ง Limaçon

เขียนกราฟได้รูปm value val

$$0 = 1 + 2\sin\theta$$

$$\sin\theta = -\frac{1}{2}$$

$$\theta = \frac{7\pi}{6}, \frac{11\pi}{6}$$

เนื่องจากเส้นโค้งมีสมมาตรกับเส้นตรง $heta=rac{\pi}{2}$ ดังนั้น พื้นที่ A จะ เท่ากับ $2(A_1-A_2)$ โดยที่ A_1 เป็นพื้นที่ของบ่วงใหญ่ครึ่งหนึ่งทาง ด้านขวา และ A_2 เป็นพื้นที่ของบ่วงเล็กครึ่งหนึ่งทางด้านขวา

$$A_{1} = \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2} (1 + 2\sin\theta)^{2} d\theta = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} (1 + 4\sin\theta + 4\sin^{2}\theta) d\theta$$
$$= \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \left[1 + 4\sin\theta + 4\left(\frac{1 - \cos 2\theta}{2}\right) \right] d\theta$$

$$=\frac{1}{2}[3\theta-4\cos\theta-\sin2\theta]_{-\frac{\pi}{6}}^{\frac{\pi}{2}}=\pi+\frac{3\sqrt{3}}{2}$$

$$A_2=\int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}}\frac{1}{2}(1+2\sin\theta)^2d\theta=\frac{1}{2}[3\theta-4\cos\theta-\sin2\theta]_{\frac{7\pi}{6}}^{\frac{3\pi}{2}}$$

$$=\frac{\pi}{2}+\frac{3\sqrt{3}}{2}$$
 ดังนั้น $A=2(A_1-A_2)=\pi$ ตารางหน่วย

แบบฝึกหัด

1. จงจับคู่พิกัดเชิงขั้วที่เป็นจุดเดียวกัน

b)
$$(-3.0)$$

c)
$$(-3,\pi)$$

a) (3,0) b) (-3,0) c)
$$(-3,\pi)$$
 d) $(-3,2\pi)$

e)
$$(2,\frac{2\pi}{3})$$

e)
$$(2,\frac{2\pi}{3})$$
 f) $(2,-\frac{2\pi}{3})$ g) $(2,\frac{7\pi}{3})$ h) $(-2,\frac{\pi}{3})$

g)
$$(2,\frac{7\pi}{3})$$

h)
$$(-2,\frac{\pi}{3})$$

i)
$$(2, -\frac{\pi}{3})$$

j)
$$(2,\frac{\pi}{3})$$

k)
$$(-2, -\frac{\pi}{3})$$

i)
$$(2,-\frac{\pi}{3})$$
 j) $(2,\frac{\pi}{3})$ k) $(-2,-\frac{\pi}{3})$ l) $(-2,\frac{2\pi}{3})$

$$m) (r, \theta)$$

n)
$$(r,\theta+\pi)$$

m)
$$(r,\theta)$$
 n) $(r,\theta+\pi)$ o) $(-r,\theta+\pi)$ p) $(-r,\theta)$

p)
$$(-r,\theta)$$

2. จงหาพิกัดเชิงขั้วแบบอื่นๆของจุดที่กำหนดให้ต่อไปนี้อีกสองจุด เมื่อ r>0 และ r<0

a)
$$(4, \frac{\pi}{3})$$

a)
$$(4,\frac{\pi}{3})$$
 b) $(-4,-\frac{\pi}{3})$ c) $(\sqrt{2},\frac{\pi}{4})$ d) $(6,\frac{4\pi}{3})$

c)
$$(\sqrt{2}, \frac{\pi}{4})$$

d)
$$(6, \frac{4\pi}{3})$$

3. จงหาพิกัดฉากของพิกัดเชิงขั้วที่กำหนดให้ต่อไปนี้

a)
$$(6, \frac{\pi}{6})$$

b)
$$(-6, -\frac{\pi}{6})$$

c)
$$(5,\frac{\pi}{2})$$

a)
$$(6,\frac{\pi}{6})$$
 b) $(-6,-\frac{\pi}{6})$ c) $(5,\frac{\pi}{2})$ d) $(2\sqrt{2},-\frac{\pi}{4})$

e)
$$(\sqrt{2}, \frac{\pi}{4})$$

g)
$$(0,\frac{\pi}{2})$$

e)
$$(\sqrt{2}, \frac{\pi}{4})$$
 f) $(1,0)$ g) $(0, \frac{\pi}{2})$ h) $(-\sqrt{2}, \frac{\pi}{4})$

i)
$$(-3, \frac{5\pi}{6})$$

i)
$$(-3,\frac{5\pi}{6})$$
 j) $(5,\tan^{-1}(\frac{4}{3}))$ k) $(-1,7\pi)$ l) $(2\sqrt{3},\frac{2\pi}{3})$

$$(2\sqrt{3},\frac{2\pi}{3})$$

4. จงหาพิกัดเชิงขั้ว เมื่อ r > 0, $0 \le \theta < 2\pi$ ของพิกัดฉากต่อไปนี้

a)
$$(2,-2)$$

b)
$$(-2,-2\sqrt{3})$$
 c) $(-\sqrt{3},1)$

c)
$$(-\sqrt{3},1)$$

5. จงแปลงสมการในระบบพิกัดฉากต่อไปนี้ไปสู่ระบบพิกัดเชิงขั้ว

a)
$$\frac{x^2}{4} + \frac{x^2}{9} = 1$$

b)
$$x^2 + y^2 - 4x = 0$$

c)
$$x^2 = 1 - 4y$$

d)
$$xy=1$$

6. จงแปลงสมการในระบบพิกัดเชิงขั้วต่อไปนี้ไปสู่ระบบพิกัดฉาก

a)
$$r = \cos\theta$$

b)
$$r^2 = \sin \theta$$

a)
$$r = \cos\theta$$
 b) $r^2 = \sin\theta$ c) $r = \frac{4}{1 - \cos\theta}$

d)
$$r^2 = \theta$$
 e) $r = 2$

e)
$$r = 2$$

f)
$$\tan \theta = 4$$

7. จงอธิบายลักษณะของกราฟต่อไปนี้

a)
$$r=4$$

b)
$$\theta = \frac{\pi}{3}$$

c)
$$r\sin\theta=4$$

d)
$$r\cos\theta = -2$$
 e) $r = 2\cos\theta$ f) $r = -4\sin\theta$

e)
$$r = 2\cos\theta$$

f)
$$r = -4\sin\theta$$

g)
$$r \sec \theta = 4$$

g)
$$r \sec \theta = 4$$
 h) $r \csc \theta = -2$

8. จงทดสอบการสมมาตรของกราฟต่อไปนี้

a)
$$r=1+2\sin\theta$$

a)
$$r=1+2\sin\theta$$
 b) $r=2-3\cos\theta$ c)

 $r=2+2\cos\theta$

d)
$$r=3-3\sin\theta$$
 e) $r=3\cos 2\theta$ f) $r=4\sin 3\theta$

e)
$$r = 3\cos 2\theta$$

f)
$$r = 4\sin 3\theta$$

g)
$$r^2 = 9\cos 2\theta$$

9. จงหาจุดตัดระหว่างกราฟต่อไปนี้

a)
$$r=1+\cos\theta$$
, $r=1-\cos\theta$

b)
$$r=1-\sin\theta$$
, $r^2=4\sin\theta$

c)
$$r=1$$
, $r=2\sin 2\theta$

10. จงหาพื้นที่ที่ถูกปิดล้อมด้วยเงื่อนไขต่อไปนี้

a)
$$r{=}3{\cos}\theta$$
, $\theta{=}0$ และ $\theta{=}\frac{\pi}{3}$

- b) $r=1+\cos\theta$
- c) ภายใน $r\!=\!2\!\sin\! heta$ แต่อยู่นอก $r\!=\!1$
- d) ภายใน $r\!=\!\sin\! heta$ แต่อยู่นอก $r\!=\!1\!-\!\cos\! heta$
- e) ภายใน $r\!=\!2\!+\!2{\rm cos}\theta$ แต่อยู่นอก $r\!=\!3$
- f) พื้นที่ร่วมกันระหว่าง $r\!=\!\cos\! heta$ และ $r\!=\!1\!-\!\cos\! heta$
- g) ภายใน $r\!=\!8\!\cos\! heta$ แต่อยู่ทางขวาของ $r\!=\!2\!\sec\! heta$

เฉลย

1. a,c; b,d; e,k; g,j; h,f; i,l; m,o; n,p

2. a)
$$(4,\frac{7\pi}{3}),(-4,-\frac{2\pi}{3})$$

b)
$$(-4, -\frac{7\pi}{3}), (4, \frac{2\pi}{3})$$

c)
$$(\sqrt{2}, \frac{9\pi}{4}), (-\sqrt{2}, \frac{5\pi}{4})$$

d)
$$(6,\frac{10\pi}{3}),(-6,\frac{\pi}{3})$$

3. a)
$$(3\sqrt{3},3)$$
 b) $(-3\sqrt{3},3)$ c) $(0,5)$ d) $(2,-2)$

b)
$$(-3\sqrt{3},3)$$

c)
$$(0,5)$$

d)
$$(2,-2)$$

f)
$$(1,0)$$

g)
$$(0,0)$$
 h) $(-1,-1)$

i)
$$(\frac{3\sqrt{3}}{2}, -\frac{3}{2})$$
 j) $(3,4)$

k)
$$(1,0)$$
 l) $(-\sqrt{3},3)$

4. a)
$$(2\sqrt{2}, \frac{7\pi}{4})$$
 b) $(4, \frac{4\pi}{3})$

b)
$$(4, \frac{4\pi}{3})$$

c)
$$(2, \frac{5\pi}{6})$$

5. a)
$$r^2 \left(\frac{\cos^2 \theta}{4} + \frac{\sin^2 \theta}{9} \right) = 1$$

b)
$$r = 4\cos\theta$$

c)
$$r^2\cos^2\theta + 4r\sin\theta - 1 = 0$$

d)
$$r^2 \sin 2\theta = 2$$

6. a)
$$x^2 + y^2 - x = 0$$

b)
$$(x^2+y^2)^{\frac{3}{2}}-y=0$$

c)
$$y^2 = 8(x+2)$$

d)
$$y = x \tan(x^2 + y^2)$$

e)
$$x^2 + y^2 = 4$$

f)
$$y = 4x$$

7. a) circle,
$$x^2 + y^2 = 16$$
 b) line, $y = \sqrt{3}x$

b) line,
$$y = \sqrt{3}x$$

c) horizontal line, y=4 d) vertical line, x=-2

e) circle,
$$x^2 + (y+2)^2 = 4$$

f) circle ไม่รวมจุดกำเนิด,
$$(x-2)^2 + y^2 = 4$$

g) circle ไม่รวมจุดกำเนิด,
$$x^2 + (y+1)^2 = 1$$

8. a) กราฟลีมาซอง สมมาตรกับเส้นตรง
$$\theta {=} rac{\pi}{2}$$

- b) กราฟลีมาซอง สมมาตรกับแกนเชิงขั้ว
- c) กราฟรูปหัวใจ สมมาตรกับแกนเชิงขั้ว
- d) กราฟหัวใจ สมมาตรกับเส้นตรง $heta = rac{\pi}{2}$
- e) กราฟกลีบกุหลาบ สมมาตรกับแกนเชิงขั้วและเส้นตรง $heta = rac{\pi}{2}$
- f) กราฟกลีบกุหลาบ สมมาตรกับเส้นตรง $\theta = \frac{\pi}{2}$
- g) กราฟเลมนิสเคต สมมาตรกับขั้ว แกนเชิงขั้วเส้นตรง $heta = rac{\pi}{2}$

9. a)
$$(1,\frac{\pi}{2}),(1,\frac{3\pi}{2})$$
 ແລະ ນັ້ວ

b)
$$\left(2(\sqrt{2}-1),\sin^{-1}(3-2\sqrt{2})\right)$$
, $\left(-2(\sqrt{2}-1),\sin^{-1}(3-2\sqrt{2})\right)$, $\left(2,\frac{3\pi}{2}\right)$ ແລະ ຫຼື

c)
$$(1,\frac{\pi}{12}),(1,\frac{5\pi}{12}),(1,\frac{7\pi}{12}),(1,\frac{11\pi}{12}),(1,\frac{13\pi}{12}),(1,\frac{17\pi}{12}),(1,\frac{19\pi}{12}),(1,\frac{23\pi}{12})$$

10. a)
$$\frac{3\pi}{4} + \frac{9\sqrt{3}}{16}$$

b)
$$\frac{3\pi}{2}$$

c)
$$\frac{\pi}{3} + \frac{\sqrt{3}}{2}$$

d)
$$1-\frac{\pi}{4}$$

e)
$$\frac{9\sqrt{3}}{2} - \pi$$

f)
$$\frac{7\pi}{12} - \sqrt{3}$$

g)
$$\frac{32\pi}{3} + 4\sqrt{3}$$