High Recall Oriented Employee Attrition Prediction using Stacking Ensemble Model

Garima Singh, Nishkarsh Singhal, Shaivee Sharma

under the scheme of DSKC guided by: Dr. Seema Aggarwal, Dr. Tarun Kumar Gupta, Dr. Tulika

ABSTRACT

Understanding and predicting employee attrition has become essential for effective HR planning and talent retention strategies. In this study, we developed a stacking ensemble machine learning model optimized for high recall on the minority class (Attrition = 'Yes') using the IBM HR Analytics dataset. The dataset showed significant class imbalance (16:84), necessitating the use of SMOTE for synthetic oversampling. After rigorous preprocessing — including feature pruning, label encoding, and standard scaling — we trained base learners (Random Forest, XGBoost, LightGBM) and a meta learner (Extra Trees Classifier) with manually tuned hyperparameters for optimal performance.

To further enhance sensitivity, we applied threshold tuning (optimal at 0.28) to maximize F1-score for the minority class. The final model achieved a recall of 0.83 and an F1-score of 0.57 on the attrition class, significantly outperforming classical baselines.

METHODOLOGY

Model Exploration & Final Choice Started with Logistic Regression, SVM, and shallow Neural **MODEL NAME** F1(minority class) Recall(minority class) logistic regression Observed low F1 & recall, especially on minority class and 0.55 Tree-based models like RF, XGBoost, and LGBM showed 0.55 0.6 Inspired by stacking strategies proposed in recent research [7] we explored Stacking 0.53 0.54 — Final model = RF + XGB + LGBM → Extra Trees 0.53 0.51 0.6 0.52 0.56 0.57

Model architecture We meticulously tested all parameters of each model manually to achieve optimal results Input Dataset Preprocessed HR data with balanced classes Base Learners Random Forest [n_estimators=120,max_depth=5,min_samples_split=10,min_samples_leaf=5,max_features='sqrt',bootstrap=True,classweight='balanced_subsample'] $[use_label_encoder=False, eval_metric='logloss', n_estimators=100, learning_rate=0.03, max_depth=3, subsample=0.6, colsample_bytree=0.6, scale_pos_weight=2, reg_label_encoder=False, eval_metric='logloss', n_estimators=100, learning_rate=0.03, max_depth=3, subsample=0.6, colsample_bytree=0.6, scale_pos_weight=2, reg_label_encoder=False, eval_metric='logloss', n_estimators=100, learning_rate=0.03, max_depth=3, subsample=0.6, colsample_bytree=0.6, scale_pos_weight=2, reg_label_encoder=False, eval_metric='logloss', n_estimators=100, learning_rate=0.03, max_depth=3, subsample=0.6, scale_pos_weight=2, reg_label_encoder=100, learning_rate=0.03, max_depth=3, subsample=0.6, scale_pos_weight=2, reg_label_encoder=100, learning_rate=0.03, learn$ mbda=10,reg_alpha=2,gamma=10] $\textbf{LightGBM} \ [n_estimators=100, learning_rate=0.05, max_depth=5, subsample=0.7, colsample_by tree=0.7, class_weight='balanced', reg_lambda=5, reg_alpha=1]$ $\textbf{ExtraTrees Classifier} \ [n_estimators=100, max_depth=6, min_samples_split=10, min_samples_leaf=5, max_features='sqrt', class_weight='balanced', n_jobs=-1]$ Combines predictions from base models Final Prediction Optimized for high recall on attrition class

Threshold Tuning & F1 Optimization

Tuning the threshold allowed us to better balance false positives

and false negatives, especially important for the minority class

RESULTS & CONCLUSION

High Recall of positive attrition cases (0.83) ensures most attrition cases are detected, aligning with our real-world objective of early identification & intervention.

Reference Study for SOTA: "Developing a hybrid machine learning model for employee turnover prediction: Integrating LightGBM and genetic algorithms" Hojat Talebi et al., Journal of Open Innovation: Technology, Market, and Complexity, Volume 11 (2025), Article ID: 100557 DOI:

Comparison with State-of-the-Art Model

It Uses GA for feature selection + LightGBM for classification

Performance Comparison	Metric	SOTA Model	Proposed Model
Proposed model outperforms SOTA across all key metrics	F1-Score	0.73	0.83
Ensemble Advantage	Precision	0.75	0.88
Stacking ensemble captures diverse learning patterns from RF, XGBoost & LGBM	Recall	0.72	0.81
Threshold Tuning Additional threshold tuning improves recall (crucial for attrition prediction)	Accuracy	0.78	0.80

Cross-Dataset Validation

The model was tested on two additional datasets with different class balances and feature dimensions, to assess its generalization and recall consistency.

Dataset	Records	Features	Class Balance	Accuracy	Weighted Recall	Weighted F1- score
IBM	294	35	16:84	0.80	0.81	0.83
Watson	336	35	13:87	0.93	0.93	0.93
StealthTech	14,900	23	47:52	0.74	0.74	0.74

High weighted metrics across all datasets show strong generalization

with class imbalance

Model adapts well to both imbalanced and balanced

Reflects strong potential for real-world implementation

Business Impact

High Recall = Early Identification of At-Risk Employees → Even if few false positives exist, better to consult and retain proactively

Helps in flagging "Asset-Class" Employees → Companies can't afford to lose top performers

Supports Strategic HR Decisions → Personalized retention plans, counseling, incentive tweaking Saves Cost of Rehiring & Retraining → Retaining employees is cheaper than replacing them

Conclusion

High-Performance Predictor Stacked ensemble model + threshold tuning creates a powerful attrition prediction system

Recall-Focused Strategy

 $\textbf{Recall-focused approach} \ \text{aligns with}$ modern HR priorities by catching all potential exits

Cross-Dataset Performance Generalizes well across diverse datasets including corporate, healthcare, and synthetic environments

"Missing an attrition case can be costlier than wrongly flagging one"

so high recall gives the company that protective edge.

REFERENCES

