# **Big Data**

### **Basisprincipes**



Elfde-Liniestraat 24, 3500 Hasselt, www.pxl.be



# Inleiding









# Inleiding

- Relationele databanken: Gegevens opslaan door bedrijven
- Massa andere gegevens niet opgeslagen in relationele databank: tweets, facebook, weblogs, feeds, RFID-scans, sensordata, clickstreamdata,...
- Nood aan:
  - > Infrastructuur
  - > nieuwe programmeeromgeving
  - > nieuwe dataomgeving



# **Terminologie**

### Database: archief voor dataopslag

- Opgeslagen gegevens als zodanig
- Wijze waarop gegevens zijn opgeslagen
- Software waarmee databases worden aangemaakt en benaderd

#### Datawarehouse

- Gegevensverzameling voor snelle ad-hoc vragen zonder belasting bron
- Nooit rechtstreeks gegevens toegevoegd/gewijzigd/verwijderd
- Gegevens worden gebruikt voor BI-doeleinden
- Voorbeeld controle CV-ketels



# **Terminologie**

### **Datamining**

- ➤ Gericht zoeken naar (statistische) verbanden tussen gegevensverzamelingen → patronen:
  - Business Intelligence BI
  - Artificiële Intelligentie Al
- > Betekenis en inhoud (context) informatie cruciaal
- > Snelheid waarmee bruikbare resultaten worden bekomen is in realtime-toepassingen zeer belangrijk bv. monitoren en bijsturen van bedrijfsprocessen
- Doel? Wetenschappelijk, journalistiek, commercieel gebruik Vb verband tussen leeftijd klant en type shampoo



# **Big Data - vroeger**

'Big Data': al in de jaren '50

- Aanvang: Analyses via wiskunde en/of statistiek(manueel)
- Later: gebruik van applicaties o.a. spreadsheets en database-toepassingen(o.a.Access)
- **Doel:** beslissingen nemen voor de toekomst => BI en AI



# Big Data – nu hype

- Voedingsbodem:
  - ➤ Hardware mogelijkheden, server
  - Goedkopere en ruimere opslag
  - ➤ Mogelijkheden van opensource software
  - > Beschikbaarheid massa's gegeven
- Toepassingen:
  - Marketing
  - ➤ Politieonderzoek –en opsporing (fraude, cybercrime)
  - ➤ Analyses datalekken (bv WikiLeaks, Luxleaks, Panama Papers)
  - Onderzoek gezondheidssector (ziektes, erfelijkheid)
  - Industrie (bv technologie veiligheid auto's)
  - Gaming
  - Bedrijfsbeslissingen



# **Term Big Data**

Honderden terabytes

'Klassieke' databank kan gegevens niet aan, alternatief nodig voor niet-

relationele gegevens

• 5 V's: - Volume

- Velocity

- Variety
- Veracity
- Value





# Volume – de size of Big Data



# Velocity - the speed at which data is growing



Number of montly active twitter users (in millions) - statista



# Variety - the different types of data



STRUCTURED SEMI STRUCTURED UNSTRUCTURED



# **Veracity – Accuracy or truthfulness of data?**



### Value – How useful is the data?



# **Hoe werkt Big Data?**

- Architectuur
- Distributed System met nodes
- CAP-theorema

### **Architectuur**

https://app.pluralsight. com/player?author=be n-sullins&name=dataanalytics-hands-onm9&mode=live&clip=3 &course=dataanalytics-hands-on





# **Distributed system**

- Big data → grote hoeveelheden
  - → geen structuur

Gevolg: verwerkingstijd schaalt met hvh informatie

- Hoe verwerking versnellen?
  - →snellere server
  - → meer servers
  - → optimalisering programma's
- Distributed system mainframes, workstations, PC's communiceren via netwerk

https://app.pluralsight.com/player?author=ben-sullins&name=data-analytics-hands-on-m9&mode=live&clip=4&course=data-analytics-hands-on



### **Distributed datastores**

- Datastores in een gedistribueerd systeem
  - → RDBMS komen hiervoor niet in aanmerking, dus NoSQL
- Voordelen dergelijk systeem:
  - Reliability
  - Scalability
  - Sharing resources
  - > Flexibility
  - > Speed
  - Open system
  - Performance



### CAP-theorema

- Consistency
- Availability
- Partition tolerance



Belang van CAP-stelling: <a href="https://app.pluralsight.com/player?author=ben-sullins&name=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-



# CAP-stelling – soorten DB

CA: consistentie en beschikbaar

CP: consistentie, alle data niet direct

bereikbaar

AP: beschikbaar, niet altijd volledig





# **Database principes**

- ACID
- BASE

# **Database principes - ACID**

- Atomic:
  - Elke transactie slaagt volledig, inclusief deelacties, of niet
- Consistent (ACID Consistency):
   Gegevens mogen niet tegenstrijdig worden.

   Referentiële integriteit.
- Isolated:
   Elke transactie wordt los van andere transactie uitgevoerd.
- Durable: Transactie is permanent/onomkeerbaar.

# **Database principes - BASE**

- Basic Availability
   Beschikbaarheid van data, zelfs met tijdelijke fouten (spreiding gegevens over meerdere opslagsystemen)
- Soft State
   Consistent zijn ligt bij ontwikkelaar, niet bij databank.
- Eventual Consistency
   Uiteindelijk komen tot consistentie, niet meteen staat haaks op ACID.

### **NoSQL DBMS**

- niet-relationeel databasemanagement systeem
- distributed data stores met big data
- geen vaste structuren
- vermijdt join-operaties

# RDBMS ⇔ NoSQL

| RDBMS                             | NoSQL                               |
|-----------------------------------|-------------------------------------|
| Gestructureerde data              | Not Only SQL – ook                  |
|                                   | ongestructureerde data              |
| SQL – structured query language   | Geen standard query language        |
| Data en relaties worden in aparte | Geen vooraf gedefinieerde structuur |
| tabellen opgeslagen               |                                     |
| DML – data manipulation language  | Soms onvoorspelbare data            |
| DDL – data definition language    |                                     |
| Altijd data consistency           | Eventual consistency maar wel hoge  |
|                                   | performantie                        |
| ACID-transacties                  | BASE-transacties                    |



## Voordelen / nadelen NoSQL

| Voordelen NoSQL                     | Nadelen NoSQL                    |
|-------------------------------------|----------------------------------|
| Hoge scalability                    | Geen standaard                   |
| Distributed computing               | Beperkte query mogelijkheden     |
| Lagere kost                         | Eventual consistency is moeilijk |
|                                     | programmeerbaar                  |
| Flexibiliteit in structuur van data |                                  |
| Geen gecompliceerde relaties/joins  |                                  |



# NoSQL database types





# Database type: Key-value stores

- Meest gebruikte datatype
- Kan vele TB aan gegevens aan
- Laten ongestructueerde gegevens toe
- Makkelijk uitbreidbaar
- Gegevens opgeslagen als hashtable elke key uniek, value kan string, JSON-object, BLOB-object,.. zijn
- Key-value pair kan bestaan uit naam gecombineerd met waarde
- Beperking: je kan enkel zoeken via key!



### RDBMS → tabel met rijen en kolommen

#### Facebook\_Friends

| Name | City          | Age |
|------|---------------|-----|
| Matt | Los Angeles   | 27  |
| Dave | San Francisco | 30  |
| Tim  | Oakland       | 33  |



Opslag data per rij

| Matt | Los Angeles | 27 | Dave | San Francisco | 30 | Tim | Oakland | 33 |  |
|------|-------------|----|------|---------------|----|-----|---------|----|--|
|------|-------------|----|------|---------------|----|-----|---------|----|--|

### Toevoegen van een rij:



**HOGESCHOOL** 

#### **RDBMS**

Opslag op verschillende harde schijven:

|               | Disk 1      |  |    |
|---------------|-------------|--|----|
| Name City Age |             |  |    |
| Matt          | Los Angeles |  | 27 |

|      | Disk 2        |     |
|------|---------------|-----|
| Name | City          | Age |
| Dave | San Francisco | 30  |

|      | Disk 3  |     |    |
|------|---------|-----|----|
| Name | City    | Age |    |
| Tim  | Oakland |     | 33 |

Berekening gemiddelde leeftijd:

- Full Table Scan
- Verspreid over meerdere harde schijven
- → traag



#### Column-oriented database

Facebook\_Friends

| Name | City          | Age |
|------|---------------|-----|
| Matt | Los Angeles   | 27  |
| Dave | San Francisco | 30  |
| Tim  | Oakland       | 33  |



Opslag data per kolom

### Toevoegen van data:





#### Column-oriented database

Opslag op verschillende harde schijven:

|      | Disk 1 |     |  |
|------|--------|-----|--|
| Name |        |     |  |
| Matt | Dave   | Tim |  |

| Disk 2                            |  |  |  |
|-----------------------------------|--|--|--|
| City                              |  |  |  |
| Los Angeles San Francisco Oakland |  |  |  |

Berekening gemiddelde leeftijd:

- Geen overtollige data inladen in geheugen
- Data enkel op 1 harde schijven
- → Veel performanter





# Database type: Column-oriented stores

- Werken met kolommen
- Slaan values kolom aaneengesloten op
- Kolomgegevens in specifieke files (harde schijven)
- Keys verwijzen naar verschillende kolommen
- Queries mogelijk
- Data in kolomfile → zelfde type → gemakkelijke compressie
- Hoge performantie bij gewone queries en groepsqueries → zeer geschikt voor BI en CRM
- Vb: Hbase Cassandra, SimpleDB, SAP HANA



# Database type: Documented-oriented stores

- Verzameling van documenten
- Data in documenten, key geeft toegang
- Niet noodzakelijk vaste structuur
- Documents → collections: groepering data
  - verschillende key-value pairs
  - > geneste documenten
- JSON objecten
- Vanuit applicaties verwijzing via URI's
- Queries mogelijk

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
},
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
    "type": "office",
    "number": "646 555-4567"
    "type": "mobile",
    "number": "123 456-7890"
],
"children": [],
"spouse": null
```

# **Database type: Graph stores**

- Slaan data op in grafiek
- Presentatie zeer toegankelijk
- Verzameling nodes en edges
- Indexen voor opzoeking
- Vb: OrientDB, Neo4J, Apache Giraph

### **Graph Databases**



Zie Pluralsight: <a href="https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m1-tech-">https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m1-tech-</a>

<u>breakdown&clip=4&mode=live&start=77.868176&noteid=fb45d5c9-4e66-4d99-8b73-352b6c0de7e6</u>



## NoSQL, relational, or both?



Figure 13.3. Example implementation of polyglot persistence

Zie Pluralsight: <a href="https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m5-both&clip=3&mode=live&start=1.257044&noteid=35a1c93e-d59d-4be8-b130-a9928583f170">https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m5-both&clip=3&mode=live&start=1.257044&noteid=35a1c93e-d59d-4be8-b130-a9928583f170</a>



### Recommendations

- Large, public, content-centric properties: NoSQL
- Internal, LOB supporting business operations: relational
- Investment in RDBMS licenses, infrastructure, skills:
  - □ Relational
  - Use both (application-dependent)
  - Use hybrid approaches
- Productivity
  - Do cost-benefit analysis
    - How much extra dev time/\$\$?
    - What is cost of less scalable system?
- It will be tempting to use one for the other
  - And it very well may work, but that doesn't make it right

