

b

Engineering Chemistry

CYC 102

Dr. Sukriti

School Of Basic Sciences

Indian Institute of Information Technology, Una Himachal Pradesh

Overview

- Numerical problems on determination of hardness
- Summary

Numerical problems

Determination of hardness of water

1. A water sample contains 408 mg of CaSO₄ per litre. Calculate the hardness in terms of CaCO₃ equivalents.

✓ Solution:

```
Hardness = (mass of CaSO<sub>4</sub> in mg/L) × Multiplication factor 

= (mass of CaSO<sub>4</sub> in mg/L) × \frac{\text{Chemical equivalent of CaCO3}}{\text{Chemical equivalent of CaSO4}}

= (408 mg/L) × \frac{50}{68}

= 300 mg/L = 300 ppm
```


Numerical problems...Contd.

2. How many grams of MgCO3 dissolved per litre gives 84 ppm of hardness?

Solution:

Hardness = $(mass of MgCO3 in mg/L) \times Multiplication factor$

Hence, mass of MgCO3 in mg/L = (Hardness) $\times \frac{\text{Chemical equivalent of MgCO3}}{\text{Chemical equivalent of CaCO3}}$

$$= (84 \text{ ppm}) \times \frac{42}{50}$$

= 70.56 ppm = 70.56 mg/ L

Thus, 70.56×10^{-3} gms of MgCO3 dissolved per litre gives 84 ppm of Hardness.

Numerical problems...Contd.

3. A sample of water is found to contains following dissolving salts in milligrams per litre: Ca(HCO3)2 = 4, CaSO4 = 8, Mg(HCO3)2 = 6 and MgSO4 = 10 Calculate temporary and permanent hardness in ppm, ° Fr and °Cl.

Solution: Step1 Conversion to CaCO3 equivalents

Constituents	Amount mg/L [A]	Multiplication Factor [M]	CaCO3 equivalent = [A] × [M]
Ca(HCO3)2	4	100/162	$4 \times 100/162 = 2.47 \text{ mg/L}$
Mg(HCO3)2	6	100/146	$6 \times 100/146 = 4.11$ mg/L
CaSO4	8	100/136	$8 \times 100/136 = 5.88 \text{ mg/L}$
MgSO4	10	100/120	$10 \times 100/120 = 8.33 \text{ mg/L}$

Numerical problems...Contd.

Step 2 Determination of temporary hardness

As Temporary hardness is due to bicarbonates of calcium and Magnesium

:. Temporary hardness =
$$2.47 + 4.11 = 6.58 \text{ mg/L}$$

As
$$1 \text{ mg/L} = 1 \text{ ppm} = 0.1 ^{\circ} \text{ Fr } = 0.07 ^{\circ} \text{ Cl}$$

Hence, Temporary hardness =
$$6.58 \text{ mg/ L} = 6.58 \text{ ppm}$$

$$= 6.58 \times 0.1 = 0.658$$
 ° Fr

$$= 6.58 \times 0.07 = 0.46$$
 °C1

Step 3 Determination of Permanent hardness

As Temporary hardness is due to CaSO4 and MgSO4

:. Permanent Hardness =
$$5.88 + 8.33 = 14.21 \text{ mg/L} = 14.21 \text{ ppm}$$

$$= 14.21 \times 0.1 = 1.421$$
 ° Fr

$$= 14.21 \times 0.07 = 0.995$$
 °C1

Summary

- Hardness can easily be determined using CaCO3 equivalent.
- Temporary and permanent hardness can be determined separately.

Thank You!