```
import numpy as np
import re
import mplcyberpunk
import matplotlib.pyplot as plt
from IPython.display import display, Latex
plt.style.use("cyberpunk")
```

Lista 2 - PRP41

Leonardo Antonio Lugarini

Questão 1:

```
of_values = []
cstar_values = []
# Regular expression patterns to match the desired lines and extract numbers
of_pattern = re.compile(r'0/F\s^*=\s^*([\d\.]+)')
cstar_pattern = re.compile(r'CSTAR, M/SEC\s*([\d\.]+)')
# Iterate through lines and search for matches
for line in lines:
    of_match = of_pattern.search(line)
    cstar_match = cstar_pattern.search(line)
    if of match:
        of_values.append(float(of_match.group(1)))
    if cstar_match:
        cstar_values.append(float(cstar_match.group(1)))
cstar_max = max(cstar_values)
of_max = of_values[cstar_values.index(cstar_max)]
plt.plot(of_values, cstar_values)
plt.text(of_max-0.06, cstar_max-2,f'max(c*)= \{cstar_max\} --> max(0/F)= \{of_max\}', fontsize = 20,bbox=dict(facecolor=
plt.ylabel('c*', fontsize=15)
plt.xlabel(r'$k_m$ (0/F)',fontsize=15)
plt.rcParams["figure.figsize"] = (15, 6)
mplcyberpunk.make_lines_glow()
```



```
In [12]: # #b) Inputs
        ### CEA analysis performed on Thu 19-Oct-2023 09:49:18
        # Problem Type: "Rocket" (Infinite Area Combustor)
        # # Pressure (1 value):
        # p,bar= 50
        # # Supersonic Area Ratio (1 value):
        # supar= 200
        # # Oxidizer/Fuel Wt. ratio (21 values):
        # o/f= 1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1
        # .13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2
        # # You selected the following fuels and oxidizers:
        # reac
        # fuel C2H5OH(L) wt%=100.0000
                       wt%=100.0000
        # oxid 02(L)
        with open("output1b.html", "r") as file:
            lines = file.readlines()
```

```
of_values = []
ivac_values = []
# Regular expression patterns to match the desired lines and extract numbers
of_pattern = re.compile(r'0/F\s^*=\s^*([\d\.]+)')
ivac_pattern = re.compile(r'Ivac, M/SEC\s*([\d\.]+)')
# Iterate through lines and search for matches
for line in lines:
    of_match = of_pattern.search(line)
   ivac_match = ivac_pattern.search(line)
    if of_match:
        of_values.append(float(of_match.group(1)))
    if ivac_match:
        ivac_values.append(float(ivac_match.group(1)))
ivac_max = max(ivac_values)
of_max = of_values[ivac_values.index(ivac_max)]
plt.plot(of_values, ivac_values)
plt.text(of_max-0.06, ivac_max-5, f'max(Ivac) = \{ivac_max\} --> max(0/F) = \{of_max\}', fontsize = 20, bbox=dict(facecolor=
plt.ylabel('Ivac', fontsize=15)
plt.xlabel(r'$k_m$ (0/F)', fontsize=15)
plt.rcParams["figure.figsize"] = (15, 6)
mplcyberpunk.make_lines_glow()
```


c)

- -> c* é uma medida da eficiência com que o propelente é queimado na câmara de combustão. Maximizar o mesmo significa que estamos otimizando a queima do propelente na câmara, independentemente das condições de expansão na saída do bocal.
- -> Isp é uma medida da eficiência global do motor, levando em consideração tanto a combustão na câmara quanto a expansão do gás no bocal. A razão de expansão entre

a garganta e a saída do bocal pode afetar significativamente o Isp. Uma razão de expansão maior pode permitir que os gases se expandam mais, potencialmente convertendo

mais energia térmica em energia cinética e, assim, produzindo um impulso maior.

Em resumo, enquanto c* foca apenas na eficiência da combustão, o Isp leva em consideração a eficiência de todo o processo, desde a combustão até a expansão dos gases

no bocal. Portanto, é possível que a razão de mistura que maximiza um não seja a mesma que maximiza o outro, especialmente quando consideramos diferentes razões de expansão no bocal.

Questão 2:

O valor de M_p é igual a 1589.77 kg

```
In [14]: #b)
fuel_mass = Mp/(1+km)
oxi_mass = km*fuel_mass

r = 0.5 #raio
base_area = np.pi*r**2
volume_sphere = (4/3)*np.pi*r**3
oxi_rho = 1144
fuel_rho = 790
```

```
oxi_volume = oxi_mass/oxi_rho
         fuel_volume = fuel_mass/fuel_rho
         oxi_height = (oxi_volume - volume_sphere)/base_area
         fuel_height = (fuel_volume - volume_sphere)/base_area
         print(f'Massa Combustivel: {fuel_mass:.2f} kg; Massa Oxidante: {oxi_mass:.2f} kg')
         print(f'Altura Tanque Combustível: {fuel_height:.2f} m; Altura Tanque Oxidante: {oxi_height:.2f} m')
        Massa Combustivel: 611.45 kg; Massa Oxidante: 978.32 kg
        Altura Tanque Combustível: 0.32 m; Altura Tanque Oxidante: 0.42 m
In [15]: #c)
         p_p = 70 \# bar
         gamma_He = 1.667
         M_{He} = 4 \# g/mol
         R_{He} = (8314.462618/M_{He}) \#J/(kg.K)
         T_0 = 300 \# K
         p_0 = 200 \#bar
         f_s = 1.5
         sigma_Al = 0.214 \#GPa
         rho_Al = 2800 \# kg/m3
         sigma_Ti = 1.23 \#GPa
         rho_Ti = 4460 \# kg/m3
         #massa tanques propelentes
         A_e = 4*np.pi*r**2
         x_e = f_s*p_p*r/(2*sigma_Al*10000)
         A_c_oxi = 2*np.pi*r*oxi_height
         A_c_fuel = 2*np.pi*r*fuel_height
         x_c = f_s*p_p*r/(sigma_Al*10000)
         M_{T_oxi} = rho_Al^*(A_e^*x_e + A_c_oxi^*x_c)
         M_T_{fuel} = rho_Al^*(A_e^*x_e + A_c_{fuel}^*x_c)
         #tanque pressurizante
         #máximo que M0 pode ser
```

```
M_0_oxi = ((p_p*100000*oxi_volume)/(R_He*T_0))*(gamma_He/(1 - (p_p/p_0)))
M_0_fuel = ((p_p*100000*fuel_volume)/(R_He*T_0))*(gamma_He/(1 - (p_p/p_0)))

r_oxi = ((3*M_0_oxi*R_He*T_0)/(4*np.pi*p_0*100000))**(1/3)

r_fuel = ((3*M_0_fuel*R_He*T_0)/(4*np.pi*p_0*100000))**(1/3)

M_T_He_oxi = 4*np.pi*(r_oxi**2)*rho_Ti*(f_s*p_0*r_oxi/(2*sigma_Ti*10000))

M_T_He_fuel = 4*np.pi*(r_fuel**2)*rho_Ti*(f_s*p_0*r_fuel/(2*sigma_Ti*10000))

print(f'0xidante ==> Massa Tanque Propelente: {M_T_oxi:.2f} kg; Massa Gás Hélio: {M_0_oxi:.2f} kg; Massa Tanque Propelente: {M_T_fuel:.2f} kg; Massa Gás Hélio: {M_0_fuel:.2f} kg; Massa Tanque
```

Oxidante ==> Massa Tanque Propelente: 199.01 kg; Massa Gás Hélio: 24.62 kg; Massa Tanque Pressurizante: 125.25 kg Combustível ==> Massa Tanque Propelente: 176.70 kg; Massa Gás Hélio: 22.28 kg; Massa Tanque Pressurizante: 113.36 kg

```
In [16]: #d)
#eps = (Mp)/(Mp + Me)
Mp = fuel_mass + oxi_mass + M_0_oxi + M_0_fuel
Me = M_T_oxi + M_T_fuel + M_T_He_oxi + M_T_He_fuel
eps_d = Mp/(Mp + Me)

print(f'Eficiência estrutural recalculada: {eps_d:.2%}; Eficiência inicialmente considerada: {eps:.2%}')
```

Eficiência estrutural recalculada: 72.71%; Eficiência inicialmente considerada: 80.00%

Ações a serem tomadas (d), dado que a eficiência calculada ficou abaixo do palpite inicial:

Revisão do Design: Revisar o design para identificar áreas onde o peso pode ser reduzido sem comprometer a segurança e a funcionalidade.

Isso pode incluir a escolha de materiais mais leves e/ou mais fortes, otimização da geometria dos tanques e estruturas de suporte,

e a revisão dos sistemas de pressurização.

Otimização dos Materiais: Avaliar se há materiais mais avançados ou tratamentos que podem ser aplicados para melhorar a resistência e reduzir o peso.

Análise de Trade-off: Realizar análises de trade-off para entender as implicações de diferentes configurações de design sobre a

eficiência estrutural, a segurança e o desempenho do foguete.

```
In [17]: #e)
         p_p = 5 \#bar
         #massa tanques propelentes
         A_e = 4*np.pi*r**2
         x_e = f_s*p_p*r/(2*sigma_Al*10000)
         A_c_oxi = 2*np.pi*r*oxi_height
         A_c_fuel = 2*np.pi*r*fuel_height
         x_c = f_s*p_p*r/(sigma_Al*10000)
         M_T_oxi = rho_Al^*(A_e^*x_e + A_c_oxi^*x_c)
         M_T_{fuel} = rho_Al^*(A_e^*x_e + A_c_fuel^*x_c)
         #tanque pressurizante
         #máximo que M0 pode ser
         M_0 = xi = ((p_p*100000*oxi_volume)/(R_He*T_0))*(qamma_He/(1 - (p_p/p_0)))
         M_0 fuel = ((p_p*100000*fuel_volume)/(R_He*T_0))*(gamma_He/(1 - (p_p/p_0)))
         r_{oxi} = ((3*M_{ooxi}*R_{He}*T_{o})/(4*np.pi*p_{o}*100000))**(1/3)
         r_fuel = ((3*M_0_fuel*R_He*T_0)/(4*np.pi*p_0*100000))**(1/3)
         M_T_{He_oxi} = 4*np.pi*(r_oxi**2)*rho_Ti*(f_s*p_0*r_oxi/(2*sigma_Ti*10000))
         M_T_{He} = 4*np.pi*(r_fuel**2)*rho_Ti*(f_s*p_0*r_fuel/(2*sigma_Ti*10000))
         print(f'Oxidante ==> Massa Tanque Propelente: {M T oxi:.2f} kg; Massa Gás Hélio: {M O oxi:.2f} kg; Massa Tanque Pres
         print(f'Combustível ==> Massa Tanque Propelente: {M_T_fuel:.2f} kg; Massa Gás Hélio: {M_0_fuel:.2f} kg; Massa Tanqu€
        Oxidante ==> Massa Tanque Propelente: 14.21 kg; Massa Gás Hélio: 1.17 kg; Massa Tanque Pressurizante: 5.96 kg
        Combustível ==> Massa Tanque Propelente: 12.62 kg; Massa Gás Hélio: 1.06 kg; Massa Tanque Pressurizante: 5.40 kg
In [18]: |#f)
         Mp = fuel_mass + oxi_mass + M_0_oxi + M_0_fuel
         Me = M T oxi + M T fuel + M T He oxi + M T He fuel
         eps_f = Mp/(Mp + Me)
         print(f'Eficiência estrutural recalculada: {eps f:.2%}; Eficiência inicialmente considerada: {eps:.2%}')
```

Eficiência estrutural recalculada: 97.66%; Eficiência inicialmente considerada: 80.00%

Ações a serem tomadas (f), dado que a eficiência calculada ficou acima do palpite inicial:

Manutenção da Pressão Reduzida: Considerar manter a pressão mais baixa nos tanques se isso não comprometer o desempenho do foguete.

A redução da pressão pode resultar em uma estrutura de tanque mais leve e, portanto, uma eficiência estrutural mais alta.

Revisão da Análise de Segurança: Realizar uma análise de segurança detalhada para garantir que a redução da pressão não comprometa

a segurança do foguete.

Monitoramento Contínuo: Monitorar continuamente a eficiência estrutural e o desempenho do foguete durante os testes e ajustar o

design conforme necessário para garantir que os objetivos de desempenho sejam atingidos.

Questão 3:

Deduziremos a massa do tanque inicial (M_T) em função de M:

$$M_T=4\pi r^2
ho x,\; x=rac{f_sp_0r}{2\sigma}$$

$$M_T = rac{2\pi r^3
ho f_s p_0}{\sigma}$$

Sendo o valor de r definido em função de M:

$$r = (rac{3MRT}{4\pi p_0})^{rac{1}{3}}$$

Portanto:

$$M_T = rac{3MRT}{4\pi p_0}rac{2\pi
ho f_s p_0}{\sigma}$$

$$M_T = rac{3MRT
ho f_s}{2\sigma}$$

Considerando agora um tanque idêntico ao inicial, com mesma densidade e tensão superficial. Para um mesmo gás com temperatura igual ao inicial e massa 'n' vezes menor:

$$m_T=rac{3mRT
ho f_s}{2\sigma}, \ m=rac{M}{n}$$

Fazendo a somatória das massas dos tanques menores:

$$\sum_{i=1}^n m_{Ti} = \sum_{i=1}^n rac{3m_i RT
ho f_s}{2\sigma}$$

Tirando os valores constantes da soma:

$$\sum_{i=1}^n m_{Ti} = rac{3RT
ho f_s}{2\sigma} \sum_{i=1}^n m_i$$

Como m i tem sempre o mesmo valor:

$$\sum_{i=1}^n m_{Ti} = rac{3RT
ho f_s}{2\sigma} \sum_{i=1}^n rac{M}{n}$$

$$\sum_{i=1}^n m_{Ti} = rac{3MRT
ho f_s}{2\sigma}rac{1}{n}\sum_{i=1}^n 1$$

$$\sum_{i=1}^n m_{Ti} = rac{3MRT
ho f_s}{2\sigma} rac{1}{n} n$$

$$\sum_{i=1}^n m_{Ti} = rac{3MRT
ho f_s}{2\sigma} = M_T, \,\, ext{c. q. d.}$$