

Thilo Keber

Bringing DLT into Practice in the Insurance Industry

July 15th, 2020

Agenda

01

Introduction B3i and (Re)Insurance use cases on DLR

02

Real Life Experience with different DLT platforms

03

Challenges of bringing DLT insurance applications into practice

<u>04</u>

Outlook

Thilo Keber

- Consultant at metafinanz GmbH München
- Software Developer / Architect
- Various Blockchain Projects at Allianz in 2016
- 2016-2019 accompanying B3i in developing DLT platform
- DevOps enthusiast

01

Introduction

Introduction

Insurance

Principle

- Combination of multiple risk entities into larger sets in order to average expected losses
- Collection of premiums to cover for expected losses

Business Model

- Accurate calculation of required premiums so that the insurance expects long time profit (underwriting)
- Investment of pooled funds for interest generation
- Efficient processes in sales and operation (e.g. claims handling, fraud detection)
- Modern insurance can be traced back to roots in the 17th century (reflected in some terminology)

Introduction

Reinsurance

Reinsurance

- Insurance for Insurers (primary insurer, cedent)
- Reinsurer covers some amount of insurer's losses for a fee (share of premiums)
- Excess of Loss: Reinsurer covers losses that exceed an amount that the cedent is willing to bear
- Multiple layers with multiple reinsurers

Retrocession

Reinsurance for reinsurer

Insurance Linked Securities (ILS)

 Making reinsurance constructs available as financial market instruments (e.g. Catastrophe Bond)

Characteristics

- Reinsurance is capital intensive, therefor only limited number reinsurers on the market (in contrast, thousands of primary insurers on the market)
- There is a role for reinsurance brokers

Example: CatXoL layers

DLT to the rescue

Reinsurance process inefficiencies

Common practice

- Office tools (spreadsheets, databases)
- Communication by eMail, phone, fax
- Large attachments (e.g. database dump)
- Manual processing
- Unclear status in process
- Standardization Efforts (ACORD, Rüschlikon) to reduce friction in the process

DLT promise

- Shared Data Model
- Reliable communication
- Automated processing
- Common view on data and process
 (I see what you see)
- Standardisation implicit by API

Introduction

B3i (Blockchain Insurance Industry Initiative)

History

- 2016: started as a roundtable of representatives 5 insurers and reinsurers with an interest in exploring blockchain technologies in insurance
- Q1 2017: 10 new members and start of joint development of a reinsurance contract negotiation and execution platform on blockchain
- Q4 2017: market test of the prototype with 35 parties, feedback: parties estimated gains in efficiency of up to 30%.
- Q1 2018: incorporation as B3i Services AG, Zürich, Implementation of platform on new DLT
- Q3 2019: CatXoL v1.0 released
- Q4 2019: 30+ complex reinsurance contracts on live platform
- Q2 2020: Fluidity Platform as "DLT based Operating System for Insurance" launched

Info

https://b3i.tech/home.html

02

Real life DLT experiences

— From Experimentation to Experience

B3i technology journey

• allianz catastrophe swap POC

· B3i prototype launch

B3i CatXoL v1.0

2016 2017 2018 2019 2020

DLT Technologies Compared

Requirement	(Enterprise) Ethereum	Hyperledger Fabric	R3 Corda
Transaction Privacy	♀ quorum	channels	strict need to know approach
Runtime environment	© EVM	golang runtime, docker	ivm, docker
Development Environment	Solidity	© golang	⊜ java, kotlin
State Persistence		©leveldb, couchdb	⊕enterprise sql db
File persistence	© off chain	② off chain	in vault (attachments)
P2P protocol	P2P/Gossip		AMQP over TLS
location of keys	Client (wallet)	Client / node	Node

03

Challenges

- non-technical

Challenges: Governance

Define and assign roles and responsibilities for

- Legal and regulatory framework
- Development & maintenance of assets
- Membership (certificate authority)
- Network operation (e.g. notary services), Monitoring
- Metering and Billing

Business Network Governor / Operator roles in Corda

see https://solutions.corda.net/business-networks/intro.html

- technical

Challenges: Distribution and Operation in a decentralized network

Who is running a node?

- Ideally: each party for itself
- Practically: there will always be a need for hosted nodes
 - Temporary or permanent solution?
 - Repatriation options (migrating a previously hosted node onto premise)

How are artifacts (cordapps) distributed?

- Source code
- .jar archives
- Docker container (preferred)

Software live cycle

- When new software (smart contracts, cordapps) get rolled out, not all parties will upgrade their nodes at the same time
- Coexistence of multiple versions must be supported

- technical

Challenges: Network Security Practices / Expectations

Traditional Expectations

- Multiple Network zones (DMZ, internal, persistence) separated by firewalls
 - All external connectivity is terminated in the DMZ
- Deep packet inspection (DPI) on transferred data
- Secrets / Keys in secure separated vaults

DLT reality

- Most DLT technologies dont support DMZ termination
 - Corda Enterprise with SOCKS proxy / float in DMZ
- End to End SSL encryption of payloads prevents DPI
- Secrets / keys on the file system
 - Corda Enterprise with HSM support

Corda Enterprise Firewall

Opportunities

— Outlook

The Corda Network connects business networks

— Outlook

Current state

B3i:

- 2019/2020 Year end contract renewals with CatXoL 1.0 on the DLT platform
- Adding new parties to the network for CatXoL
- Expanding the network by releasing Fluidity tools, allowing additional parties to provide solutions to the network

Corda:

- Corda network hosts multiple business networks
- Corda Conclave beta provides JVM support for computation in SGX CPU enclaves
- New Developer environments:
 - VSCode Corda extension: https://marketplace.visualstudio.com/items?itemName=R3.vscode-corda
 - Hosted as IDE.Corda.net: https://jigman.ide.corda.net/
 - Corda Flavored Ganache: https://www.trufflesuite.com/blog/branching-out-phase-2-of-corda-flavored-ganache

— Outlook

DLT opens opportunities for new specialized players in the insurance business process

Examples:

- Oracles for testation of natural catastrophes
- New AI based risk valuation by examining satellite images
- New approaches to sales in B2C, C2C scenarios
- Underwriting as a Service
- Automated claims handling in Secure SGX enclave
- Fraud detection

– ...

Enablers

- B3i Fluidity framework
- Corda Conclave

Questions?

Thilo Keber

metafinanz Informationssysteme GmbH

Leopoldstraße 146 D-80804 München

+49 89 360531-5288 thilo.keber@metafinanz.de www.metafinanz.de