Dummit & Foote Ch. 3.2: More on Cosets and Lagrange's Theorem

Scott Donaldson

Oct. 2023

Let G be a group.

1. (10/1/23)

Which of the following are permissible orders of subgroups of a group of order 120: 1, 2, 5, 7, 9, 15, 60, 240? For each permissible order give the corresponding index.

Proof. From Lagrange's theorem, the order of a subgroup of a group of order 120 must divide 120. Then the permissible orders for subgroups are $1 = \frac{120}{120}$, $2 = \frac{120}{60}$, $5 = \frac{120}{24}$, $15 = \frac{120}{8}$, and $60 = \frac{120}{2}$. For each of these orders the index is given by the corresponding denumerator.

2. (10/2/23)

Prove that the lattice of subgroups of S_3 below is correct (i.e., prove that it contains all subgroups of S_3 and that their pairwise joins and intersections are correctly drawn).

Proof. The symmetric group S_3 contains 6 elements. By Lagrange's theorem, its proper subgroups must have order 2 or 3. Each of the subgroups in the lattice above have order 2 or 3, so there are no smaller or larger subgroups not depicted above.

From Corollary 10, a subgroup of order 2 must be isomorphic to Z_2 , that is, cyclic and generated by a single element of order 2. The three subgroups generated by the three elements of order 2 (the 2-cycles of S_3) are depicted above. Similarly, a subgroup of order 3 must be isomorphic to Z_3 and generated by a single element of order 3. The subgroup generated by (1,2,3) contains (1,3,2), so there is only a single subgroup of order 3.

Next, again by Lagrange's Theorem, a subgroup of two different containing groups must have an order that divides the order of both of the containing groups. First consider a subgroup of order 2 and a subgroup of order 3. Only 1 divides 2 and 3, so the intersection must be the identity. Similarly, if a subgroup of order 2 and a subgroup of order 3 are contained in a larger group, then that group's order must have both 2 and 3 as divisors. The smallest integer for which this is possible is 6, which is the order of all of S_3 .

Finally, consider a pair of subgroups of order 2. Their intersection is either the identity or else they are the same subgroup. Their join must have even order, but 4 does not divide 6 and any larger even number exceeds the order of S_3 . Thus their join is all of S_3 . This concludes the proof that the lattice of subgroups of S_3 is correct.

3. (10/2/23)

Prove that the lattice of subgroups of Q_8 below is correct.

Proof. The group Q_8 has order $8 = 2^3$, so by Lagrange's theorem its proper subgroups must have order 2 or 4. We will start from the bottom and work toward the top: There is only one element of order 2 in Q_8 , -1, and the cyclic subgroup generated by it is in the lattice.

For each of i, j, and $k, \langle -1 \rangle$ is contained in the subgroup generated by them (ex. $\langle i \rangle = \{\pm 1, \pm i\}$) and there are no intermediate subgroups, since there is no divisor of 4 that is strictly greater than 2. At this point, every element of Q_8 is represented, so there are no cyclic subgroups missing. We might ask if there is a subgroup of order 4 missing. If so, it cannot be cyclic, and from Ch. 1.1, Exercise 36, it must be isomorphic to V_4 . However, V_4 contains three elements of order 2, and Q_8 only has one, so there is no subgroup of Q_8 isomorphic to V_4 .

Finally, the join of any of the subgroups generated by i, j, or k must contain strictly more than 4 elements and its order must divide 8. Then any of their joins must have order 8, that is, be all of Q_8 .

4. (10/3/23)

Show that if |G| = pq for some primes p and q (not necessarily distinct) then either G is abelian or Z(G) = 1.

Proof. We will show, equivalently, that if |Z(G)| > 1, then G is abelian.

Let $x \in Z(G)$. From Corollary 9, the order of x divides |G| = pq. If |x| = pq, then $G = \langle x \rangle$ and so is abelian. Suppose without loss of generality that |x| = p. Now since the center of a group is a subgroup, we must have $\langle x \rangle \leq Z(G)$. If there exists a $y \in Z(G), y \notin \langle x \rangle$, then the order of Z(G) exceeds p and must divide pq, then it must be all of G and hence G is abelian. So suppose $Z(G) = \langle x \rangle$.

The center of a group is normal in that group, so G/Z(G) is well-defined. Since |Z(G)| = p, it has q cosets in G; that is, the quotient group G/Z(G) has prime order q and is thus isomorphic to Z_q , hence cyclic. From Ch. 3.1, Exercise 36., G is thus abelian.

5. (10/4/23)

Let H be a subgroup of G and fix some element $g \in G$.

(a) Prove that gHg^{-1} is a subgroup of G of the same order as H.

Proof. By definition elements of gHg^{-1} can be written in the form ghg^{-1} for some $h \in H$, so let $gh_1g^{-1}, gh_2g^{-1} \in gHg^{-1}$. Then we have:

$$(gh_1g^{-1})(gh_2g^{-1})^{-1} = gh_1g^{-1}gh_2^{-1}g_1 = gh_1h_2^{-1}g^{-1} \in gHg^{-1},$$

so gHg^{-1} fulfills the subgroup criterion and is thus a subgroup of G.

Next, let $\varphi_g: H \to gHg^{-1}$ be defined by $\varphi_g(h) = ghg^{-1}$ for all $h \in H$. This map is injective by the cancellation laws: $gh_1g^{-1} = gh_2g^{-1}$ implies that $h_1 = h_2$. It is also surjective: Let $x \in gHg^{-1}$. By definition $x = ghg^{-1}$ for some $h \in H$, so $\varphi_g(h) = x$. Therefore φ_g is a bijection, and so H and gHg^{-1} have the same order.

(b) Deduce that if $n \in \mathbb{Z}^+$ and H is the unique subgroup of G of order n then $H \subseteq G$.

Suppose that H is the unique subgroup of order n in G. Then for all $g \in G$, we must have $gHg^{-1} = H$ (it cannot be any other subgroup, because $|gHg^{-1}| = |H| = n$ and there is no other subgroup of order n in G). It follows that H is normal in G.

6. (10/4/23)

Let $H \leq G$ and let $g \in G$. Prove that if the right coset of Hg equals some left coset of H in G then it equals the left coset gH and g must be in $N_G(H)$.

Proof. Suppose Hg = xH for some $x \in G$. Now $g \in Hg$, so we must also have $g \in xH$. Then g = xh for some $h \in H$. It follows that $x = gh^{-1}$. So $Hg = xH = (gh^{-1})H = gH$, which in turns implies that $gHg^{-1} = H$. Therefore $g \in N_G(H)$.