11

Assessment of High-Temperature Refractory Metals

Nasr M. Ghoniem Mechanical and Aerospace Engineering Department University of California at Los Angeles (UCLA)

OUTLINE

- 1. High Temperature Refractory Materials
- 2. Properties of Niobium and its Alloys (Z=41, [Kr]5s¹4d⁴)
- 3. Properties of Molybdenum and its Alloys (Z=42, [Kr]5s¹4d⁵)
- 4. Properties of Tantalum and its Alloys (Z=73, [Xe]6s²4f¹⁴5d³)
- 5. Properties of Tungsten and its Alloys (Z=74, [Xe]6s²4f¹⁴5d⁴)
- 6. Properties of Rhenium and its Alloys (Z=75, [Xe]6s²4f¹⁴5d⁵)
- 7. Comparisons with conventional Alloys, including Cost.
- 8. Nickel-Bearing Alloys
- 9. Compatibility with Lithium and Interstitial Elements.
- 10. Conclusions.

Mechanical Property of Nb-10Hf-1Ti

Mechanical Property of WC-3009

Mechanical Property of FS-85

3. Properties of Molybdenum and its Alloys (Z=42, [Kr]5s¹4d⁵) 3.1. Pure Molybdenum

Mechanical Properties of Molybdenum

PHYSICAL PROPERTIES OF MOLYBDENUM

	Мо
Density (g/cm ³)	10.2
Melting Point (°C)	2617
CTE (ppm/°C)	4.8
Crystal structure	BCC
Thermal conductivity	1.4
(W/cm °C)	
Specific heat	0.25
(J/g °C)	

Young's Modulus of Molybdenum

APEX Meeting

Ghoniem - UCLA

Design Property of Molybdenum

3.2. Selected Molybdenum Alloys

Mechanical Property of Mo-0.5Ti

Design Property of Mo-0.5Ti

Mo-0.5Ti COMPOSITION

Nominal Composition (wt.%)

Source	Nominal
Tungsten	
Titanium	0.5
Molybdenum	Balance
Nickel	
Iron	0.05
Oxygen	0.005
Carbon	0.04
Nitrogen	
Hydrogen	
Silicon	0.005
Cobalt	
Hafnium	
Vanadium	
Tantalum	

Commercial Designation:

Mo-0.5Ti

1. Basic Properties of High-Temperature Materials

2.

		Cr	Hf	Ir	Mo	Nb	Os	Pt	Re	Rh	Ru	Ta	V	W	Zr
Density		7.2	13.1	22.4	10.2	8.55	22.4	21.4	21	12.4	12.2	16.6	6.1	19.3	6.5
(g/cm3) Melting Point (oC)		1857	2227	2410	2617	2468	3045	1772	3180	1965	2310	2996	1890	3410	1852
CTE (ppm/°C)		4.9	5.9	6.4	4.8	7.3	5.1	8.8	6.2	8.2	6.4	6.3	8.4	4.5	5.7
Crystal Structure		BCC	НСР	FCC	BCC	BCC	HCP	FCC	НСР	FCC	HCP	ВСС	BCC	BCC	НСР
Thermal Conductivity	(W/cm °C)	0.94	0.23	1.5	1.4	0.54	0.88	0.72	0.48	1.5	1.2	0.52	0.31	1.7	0.23
Specific Heat (J/g oC)		0.45	0.14	0.13	0.25	0.26	0.13	0.13	0.14	0.24	0.24	0.14	0.49	0.13	0.28
Electrical Resistivity (mW cm)	-	12.9	32	5.1	5.4	14.4	9.2	10.4	18.5	4.7	7.3	13.1	20	5.3	42
Spectral Emissivity	@ 0.65 mm		0.45	0.3	0.3	0.37		0.3	0.37	0.24		0.39		0.415	0.43
	and °C		[1727]	[20]	[2527]	[1730]		[20]	[2800]	[20]		[2500]		[2727]	[20]
	@ 20 oC		0.5	1.2	0.7 - 1.4	0.4 - 0.7		0.15	1.0 - 2.0	0.9		0.2 - 0.5		0.7 - 3.5	0.4 - 0.5

Mechanical Properties of TZM

Design Property of TZM

Young's Modulus of TZM

TZM COMPOSITION

Nominal Composition (wt.%)

Source	Nominal
Nickel	
Iron	
Oxygen	
Carbon	0.01
Nitrogen	
Hydrogen	
Silicon	
Titanium	0.4
Zirconium	0.06
Molybdenur	Balance

Commercial Designation:

TZM = Mo-0.5Ti-0.08Zr

PHYSICAL PROPERTIES OF TZM

	TZM
Density (g/cm ³)	10.22
Melting Point (°C)	2625
CTE (ppm/°C)	3.6
Crystal structure	BCC
Thermal conductivity	1.4
(W/cm °C)	
Specific heat	0.25
$(J/g {}^{\circ}C)$	

4. Properties of Tantalum and its Alloys (Z=73, [Xe]6s²4f¹⁴5d³) 4.1. Pure Tantalum

PHYSICAL PROPERTIES OF TANTALU
M

	Та
Density (g/cm ³)	16.6
Melting Point (°C)	2996
CTE (ppm/°C)	6.3
Crystal structure	BCC
Thermal conductivity	0.52
(W/cm °C)	
Specific heat	0.14
(J/g °C)	

Mechanical Properties of Tantalum

Design Property of Tantalum

4.2. Selected Tantalum Alloys

Mechanical Properties of T-111

Design Property of T-111

Tensile Strength			65	180	100 -	60 - 100		21	150 - 300	125		35 - 70		100 - 500	60 - 70
(Gpa)	@ 500 oC				0.2 -	0.3 - 0.5					-	0.2 - 0.3		0.5 - 1.4	
(Ksi)	00	** ····			0.5 35 - 65	40 - 75						25 - 45		75 - 200	
	@ 1000				0.1 -	0.04 -			0.7			0.1		0.3 - 0.5	
	oC				0.2	0.1			100			13 - 17		50 - 75	
	@ 20 oC	259	139	533	330	130	550	175	470	330	430	185	129	410	94
Young's Modulus		38	20	77	48	19	80	25	68	48	62	27	19	60	14
(Gpa) (Msi)	@ 500 oC				320	125			415			180		390	
	00				46	18			60			26		57	
·	@ 1000 oC	· · · · · · · · · · · · · · · · · · ·			280	110			360			170		365	
***************************************	00				41	16			52			25		53	
Recrystalliza tion Temperature (oC)					900 -	900 - 1250			1300 - 1500			1000 - 1200		1200 - 1400	
Stress Relief Temperature (oC)					800				1200			850		1100	

Thermal Conductivity of T-111

T-111 COMPOSITION

Nominal Composition (wt.%)

Nominal
8
0.1
0.1
0.005
0.015
0.005
0.0075
0.001
0.02
0.005
2
0.002
Balance

Commercial Designation:

T-111 = Ta-8W-2Hf

Mechanical Properties of T-222

Design Property of T-222

Melting Points of Refractory Metals

Thermal Conductivity Of Selected Materials At 1000 C

2. Properties of Niobium and its Alloys (Z=41, [Kr]5s¹4d⁴) 2.1. Pure Niobium (&Nb-1Zr)

Mechanical Properties of Niobium

Design Properties of Niobium

Modulus of Elasticity of Niobium

PHYSICAL PROPERTIES OF NIOBIUM

	Νb
Density (g/cm ³)	8.55
Melting Point (°C)	2468
CTE (ppm/°C)	7.3
Crystal structure	BCC
Thermal conductivity	0.54
(W/cm °C)	
Specific heat	0.26
$(J/g {}^{\circ}C)$	

Young's Modulus of T-222

T-222 COMPOSITION

Nominal Composition (wt.%)

Source	Nominal
Tungsten	9.6
Columbium	
Mlybdenum	
Nickel	
Iron	
Oxygen	
Carbon	0.008
Nitrogen	
Hydrogen	
Chromium	
Cobalt	
Hafnium	2.2
Vanadium	
Tantalum	Balance

Commercial Designation:

T-222 = Ta-9.6W-2.4Hf-0.01C

Design Property of Ta-10W

Mechanical Property of Ta-10W

Ghoniem – UCLA

Ta-10W COMPOSITION

Nominal Composition (wt.%)

Source	Nominal
Tungsten	8.5
Columbium	
Molybdenun	n
Nickel	
Iron	
Oxygen	
Carbon	
Nitrogen	
Hydrogen	
Chromium	
Cobalt	
Hafnium	
Vanadium	
Tantalum	Balance

Commercial Designation:

Tantalum

5. Properties of Tungsten and its Alloys (Z=74, [Xe]6s²4f¹⁴5d⁴) 5.1. Pure Tungsten

Mechanical Properties of Tungsten

Design Properties of Tungsten

APEX Meeting

PHYSICAL PROPERTIES OF TUNGSTEN

	W
Density (g/cm ³)	19.3
Melting Point (°C)	3410
$CTE \qquad (ppm/^{o}C)$	4.5
Crystal structure	ВСС
Thermal conductivity	1.7
(W/cm°C)	
Specific heat	0.13
$(J/g {}^{\circ}C)$	

5.2. Selected Tungsten Alloys

Mechanical Property of W-3.6Re-0.26HfC

Design Property of W-3.6Re-0.26HfC

Mechanical Property of W-3.6Re-1ThO₂

Ghoniem – UCLA

Design Property of W-3.6Re-1ThO₂

6. Properties of Rhenium and its Alloys (Z=75, [Xe]6s²4f¹⁴5d⁵)

Mechanical Property of Rhenium

Design Property of Rhenium

Mechanical Property of Rhenium

Ghoniem – UCLA

Thermal Property of Rhenium

PHYSICAL PROPERTIES OF RHENIUM

	Re
Density (g/cm ³)	21
Melting Point (°C)	3180
CTE (ppm/°C)	6.2
Crystal structure	НСР
Thermal conductivity	0.48
(W/cm°C)	
Specific heat	0.14
(J/g °C)	

7. Comparison with Conventional Alloys, including Cost

Element	Z	\mathbf{A}	\$/ Kg
Fe	26	55.85	67
Si	14	28.086	54
Cu	29	63.55	27
Ti	22	47.9	61
Zr	40	91.22	160
Hf	72	178.49	1200
V	23	50.94	2200
Nb	41	92.906	180
Ta	73	180.947	1200
Cr	24	51,996	100
Mo	42	95.94	110
\mathbf{W}	74	183.85	110
Re	75	186.2	5400

COMPARISON OF SELECTED THERMO-MECHANICAL PROPERTIES

FIGURE IX-B-10—Coefficient of Thermal Expansion
FOR CTR MATERIALS

FIGURE IX-B-9- Thermal Conductivity — CTR

Materials

FIGURE IX-B-2 IX-B-5
Electrical CTR Materials Resistivity

MODULUS OF ELASTICITY, MPa

FIGURE IX-B-7

IX-B-41

8. CORROSION-RESISTANT NICKEL-BEARING ALLOYS

Alloy	%Ni	%Fe	%Cr	Yield Strength at RT(ksi)
Inco-alloy C-276	55	6	16	50
Inconel-718 (up to 980 °C)	52.5	18.5	19	181
Incoloy 800- HT (up to 980 °C)	32.5	46	21	20-50

9. COMPATIBILITY WITH LITHIUM AND INTERSTITIAL ELEMENTS

LITHIUM COMPATIBILITY ISSUES:

- (1) Solubility of metal in Li,
- (2) Impurity Transfer between the metal and Li.
 - @ Unlike steels, refractory Metals are relatively insoluble in Li (20-50 ppm at 800-1000 °C).
 - @ Lithium extracts oxygen from Mo, Nb, and V. If Zr is added, it can reverse the flow of oxygen.
 - @ Nb and V (no protective coating) will be contaminated with N an C, if Li contains more than 0.001 ppm N.
 - @ Pure Mo loses C & N to Li in the temperature range (600-1000 °C).
 - @ The addition of Zr and Ti stabilizes carbides and nitrides in refractory metals.

FIGURE IX-B-50 EFFECT OF CARBON ON DBTT OF POTENTIAL CTR REFRACTORY STRUCTURAL MATERIALS

FIGURE IX-B-5b EFFECT OF OXYGEN ON DBTT OF Mo, Nb and V.

FIGURE IX-B-24 TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM DISTRIBUTION COEFFICIENTS FOR INTERSTITIAL ELEMENTS BETWEEN SELECTED REFRACTORY METALS AND LITHIUM

FIG. IX-B-25 CONCENTRATIONS IN LITHIUM AT WHICH REFRACTORY METAL TEMPERATURE DEPENDENCE COMPOUNDS ARE STABLE. OF THE INTERSTITIAL STARLE *

* COMPOUNDS ARE STABLE **ABOVE** THE GIVEN LINES.

ATOMIC PERCENT OXYGEN, NITROGEN OR CARBON

HELIUM COMPATIBILITY ISSUES:

- No protective oxide, nitride or carbide will form on refractories at high temperatures.
- V and Nb (also Nb-1 Zr) are very sensitive to interstitial impurity contamination. Mechanical properties are severely degraded.
- Oxygen diffusion in Mo is slow; its effects may be delayed.
- Terminal Solubility of Interstitial Impurities (wppm):

Element	T, °C	C	O	N
Mo	1000	0.4	15	3
Nb	1000	8	3500	380
V	800	2000	9000	?

COMPATIBILITY WITH LITHIUM SALTS:

- Mo, Ni -bearing alloys and graphite are very resistant to the corrosive effects of LiF-BeF₂ salt mixtures.
- Nb and Fe base alloys are less corrosion resistant, but may operate up to 600-700 °C.
- V is prone to corrosion attack by LiF-BeF₂.
- The radiation field will produce free HF radicals, which may accelerate corrosion.

10. CONCLUSIONS

- 1. Nb alloys are less desirable than Mo, Ta and W alloys, because of sensitivity to interstitial elements.
- 2. Within the Nb group, the alloys (C-103{Nb-10Hf-1Ti}), (WC-3009{Nb-30Hf-9W}) can be used up to 1100-1200 °C.
- 3. The best Mo alloy is TZM, which has an upper temperature limit of 1200-1400 °C.
- 4. Tantalum alloys (T-111{Ta-8W-2Hf}), and (T-222{Ta-9.6W-2.4Hf}) have upper operational temperature limits of 1200 °C and 1400 °C, respectively.

- 5. The Tungsten alloy {W-3.6Re-0.26 HfC} may be used up to 2000 °C.
- 6. Rhenium and its alloys are excluded because of high costs.
- 7. The alloys Inconel-718, TZM, T-111, T-222, C-103, and WC-3009 are compatible with Flibe up to high temperatures.