一、k 名专家对n 件作品按从优到劣的顺序进行排序,用 $\sigma_j^i = l$ 表示专家i 认为作品 j 位于 第 l 位。 记 $\sigma_i = (\sigma_1^i, \sigma_2^i, \cdots, \sigma_n^i)$ 为 专 家 i 的 排 序 向 量, $i = 1, \cdots, k$, $\Sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_k\}$ 为 k 名专家的排序集合。现希望给出一种能较好地反映所有专家意见的综合排序。

- (1) 给定 $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_k\}$,求n维向量 $\mu = (\mu_1, \mu_2, \dots, \mu_n)$,使得 $\sum_{i=1}^k L_i(\mu, \sigma_i)$ 最小。你能否根据 μ 给出n件作品的一种综合排序 σ' , σ^* 是否也能从 μ 得到,为什么;
- (2)有人提议用 Borda 计分法给出综合排序。首先计算作品 j 的平均得分 $\beta_j = \frac{1}{k} \sum_{i=1}^k \sigma^i_j \text{ , 再按得分从小到大的顺序对作品进行排序(得分相同的作品之间的顺序可任意确定),由此给出一种综合排序 <math>\sigma$ "。证明:对任意 j , $\sum_{i=1}^k |\beta_j \sigma^i_j| \leq 2 \sum_{i=1}^k |\mu_j \sigma^i_j|$ 。
 - (3) 证明: $d(\sigma', \Sigma) \leq 3d(\sigma^*, \Sigma)$ 且 $d(\sigma'', \Sigma) \leq 5d(\sigma^*, \Sigma)$ 。
- 二、n 支球队进行比赛,每场比赛在两支球队之间进行,任意两支球队之间至多进行一场比赛,每支球队参与比赛的场数相同。记队i 与队j 比赛中,队i 的得分为 p_{ij} ,队j 的得分为 p_{ji} ,队i 的分差为 $q_{ij} = p_{ij} p_{ji}$ 。与队i 进行过比赛的球队集合记为 T_i 。约定 $i \in T_i$,且 $q_{ii} = 0$ 。记 $|T_i| = |T_2| = \cdots = |T_n| = l$ 。

A-B	5-10
A-D	57-45
В-С	10-7
C-D	3-10

F

- (1)记 s_i 为队i在各场比赛中分差之和,即 $s_i = \sum_{j \in T_i} q_{ij}$, $\mathbf{S} = (s_1, s_2, \cdots, s_n)^T$ 称为分差向量,可用来衡量各球队的实力。若四支球队之间的比赛结果如表所示,求向量 \mathbf{S} ;
- (2) 对任意 $j \in T_i$,若 $k \in T_j$,则称队 i 与队 k 之间进行了一场"二级比赛",且在该场比赛中队 i 的分差为 $q_{ij} + q_{jk}$ 。(队 i 可与自身进行二级比赛,队 i 与队 j 之间可以进行多场二级比赛)。记 $s_i^{(2)}$ 为队 i 在所有可能的 l^2 场二级比赛中的分差之和, $\mathbf{S}^{(2)} = (s_1^{(2)}, s_2^{(2)}, \cdots, s_n^{(2)})^T$ 称为二级分差向量。对表中所示的比赛结果,求向量 $\mathbf{S}^{(2)}$;
- (3) 定义矩阵 $\mathbf{M} = (m_{ij})_{n \times n}$, 其中 $m_{ij} = \begin{cases} 1, & \text{若 } j \in T_i, \\ 0, & \text{其他} \end{cases}$, 试给出由 $\mathbf{M} \cap \mathbf{S}$ 计算 $\mathbf{S}^{(2)}$ 的公式,并说明 \mathbf{M}^2 中各元素的含义。
- (4) 类似地,对任意整数r,可定义r 级比赛和r 级分差向量 $\mathbf{S}^{(r)}$,试给出由 \mathbf{M} 和 \mathbf{S} 计算 $\mathbf{S}^{(r)}$ 的公式。