Econometrics II

Lecture 6: Instrumental Variables

Konrad Burchardi

Stockholm University

18th of April 2024

Literature

1 "Mostly Harmless Econometrics", Angrist and Pischke Chapter 4.1-4.3, 4.6.1, 4.6.4

These notes draw on those books. All mistakes are mine.

Plan for Today

- 1 Introducing IV
- 2 Understanding IV
- 3 Common Mistakes
- 4 Specification Tests
- 5 Application: Shift-Share Instruments

Introducing IV

Take standard regression framework¹:

$$y = \mathbf{X}\beta + \varepsilon$$
,

where $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2]$. Worried about exogeneity of \mathbf{X}_1 .

Valid Instrumental Variables yield consistent estimates of β .

- ...in the presence of measurement error in X₁;
- ...in case of endogeneity of regressors, $\mathbb{E}[\varepsilon|\mathbf{X}_1] \neq 0$.

How does this work? And what are valid instruments?

¹Assume constant treatment effect. Later will talk about IV with treatment effect heterogeneity.

Introducing IV

We require some 'instruments' Z_1 such that:

- 1 Relevance: $plim \frac{1}{N}(\mathbf{Z}_{1}'\mathbf{X}_{1}) \neq 0$
- 2 Exogeneity: $plim \frac{1}{N}(\mathbf{Z}_{1}'\varepsilon) = 0$

Then $\hat{\beta}_{IV} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'y$ is consistent estimator of β , where $\mathbf{Z} = [\mathbf{Z}_1, \mathbf{X}_2]$:

$$\begin{aligned} \operatorname{plim} \hat{\beta}_{IV} &= \operatorname{plim} \left[\left(\frac{1}{N} \mathbf{Z}' \mathbf{X} \right)^{-1} \frac{1}{N} \mathbf{Z}' (\mathbf{X} \beta + \varepsilon) \right] \\ &= \beta + \left[\operatorname{plim} \left(\frac{1}{N} \mathbf{Z}' \mathbf{X} \right)^{-1} \times \operatorname{plim} \left(\frac{1}{N} \mathbf{Z}' \varepsilon \right) \right] = \beta, \end{aligned}$$

where we use $plim \frac{1}{N}(\mathbf{Z}_{1}'\mathbf{X}_{1}) \neq 0$ [Relevance] and $plim \frac{1}{N}(\mathbf{Z}_{1}'\varepsilon) = 0$ [Exogeneity].

Generalized IV and 2SLS

Generalized IV

The optimal choice of instruments Z is P_ZX .² (Note: X_2 is optimally instrumented with X_2 .) The estimator is called 'generalized IV', defined as:

$$\hat{\beta}_{GIV} = (\mathbf{X}'\mathbf{P}_{\mathbf{Z}}\mathbf{X})^{-1}\mathbf{X}'\mathbf{P}_{\mathbf{Z}}y.$$

2 Two-Stage Least-Spuares (2SLS)

Given that P_Z is idempotent and symmetric, $\hat{\beta}_{GIV}$ is numerically equivalent to:

$$\hat{\beta}_{2SLS} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1}\hat{\mathbf{X}}'y$$
,

where $\hat{\mathbf{X}} = \mathbf{P_7} \mathbf{X}$.

²In the least asymptotic variance sense.

³Proof of consistence works also for $\hat{\beta}_{GIV}$ and hence $\hat{\beta}_{2SLS}$.

Plan for Today

- 1 Introducing IV
- 2 Understanding IV
- 3 Common Mistakes
- 4 Specification Tests
- 5 Application: Shift-Share Instruments

Anatomy of IV Formula

- The 2SLS formula shows, we can calculate IV estimator in two steps:
 - 1 Regress X on Z to obtain predicted values \hat{X}
 - 2 Regress y on $\hat{\mathbf{X}}$.

Intuitive interpretation: 'only exploit variation in **X** driven by the instrument'.

- Meaning Relevance Condition:
 - 1 Z_1 needs to impact X_1 (conditional on X_2).
 - At least as many instruments as endogenous variables.
 - \rightarrow Without it cannot estimate effect of X_1 on y.
- Meaning Exogeneity Condition⁴:
 - 1 **Z**₁ is determined 'like an experiment' (instrument is external)...
 - 2 and Z_1 affects y only through X_1 (instrument is excludable).
 - → Without it do not solve original problem.

⁴Sometimes called "Exclusion Restriction" or "Identifying Assumption". Fundamentally not testable!

Intuition for IV

1 Find variables Z_1 that...

Relevance: "shock" X₁, but...

Exogeneity: ...are unrelated to y otherwise.

Then we see how y changes when X_1 is shocked!

- 2 Only exploit variation in X_1 that we "know to be exogenous".
- 3 Idea much like an experiment:
 Shock the explanatory variable, rather than finding more controls!

First Stage, Reduced Form and Second Stage

"First Stage" is the (OLS) regression of each element of X_1 on Z.

This tells us how the instruments impact the endogenous variable. Key to test Condition 1!

"Reduced Form" is the (OLS) the regression of *y* on **Z**.

This tells us how the instrument is related to outcomes. (Excludability not necessary.)

"Second Stage" is the regression of y on $\hat{\mathbf{X}}$.

This tells us how exogenous changes in X_1 and X_2 impact y.

IV is Reduced Form over First Stage

In case of one endogenous variable and one regressor, we can write

$$\beta_{IV} = \frac{Cov(y_i, z_i)}{Cov(x_i, z_i)} = \frac{Cov(y_i, z_i)/V(z_i)}{Cov(x_i, z_i)/V(z_i)}$$

Sample analogue is called **Indirect Least Squares** estimator.

IV estimate is ratio of the reduced form over the first stage coefficient!⁵

Two-Sample IV (Angrist and Krueger, 1992):

To calculate IV estimator requires only $\frac{1}{N_A} \mathbf{Z}' \mathbf{X}$ and $\frac{1}{N_B} \mathbf{Z}' \mathbf{y}$. These might come from different samples (from the same population), so \mathbf{X} and \mathbf{y} need not be in same data set.

Split-Sample IV (Angrist and Krueger, 1995), more efficient:

Find first coefficient in sample A, $(\mathbf{Z}_{\mathbf{A}}'\mathbf{Z}_{\mathbf{A}})^{-1}\mathbf{Z}_{\mathbf{A}}'\mathbf{X}_{\mathbf{A}}$ and calculate IV estimate in sample B as regression y_B on $\mathbf{Z}_{\mathbf{B}}(\mathbf{Z}_{\mathbf{A}}'\mathbf{Z}_{\mathbf{A}})^{-1}\mathbf{Z}_{\mathbf{A}}'\mathbf{X}_{\mathbf{A}}$. Adjust standard errors (Inoue and Solon, 2010).

 $^{^{5}}$ Mathematical fact, also with X_{2} . If your results do not satisfy it, you did something wrong.

Simple Case: Wald Estimator

Take the case of a single dummy instrument z_i and one endogenous regressor x_i

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
.

Using $\mathbb{E}[\varepsilon_i|z_i] = 0$, it follows that $\mathbb{E}[y_i|z_i] = \alpha + \beta \mathbb{E}[X_i|z_i]$ and:

$$\beta = \frac{\mathbb{E}[y_i|z_i = 1] - \mathbb{E}[y_i|z_i = 0]}{\mathbb{E}[x_i|z_i = 1] - \mathbb{E}[x_i|z_i = 0]}$$

Population analogue of Wald Estimator.

Intuition?

Experiments: IV in 'encouragement designs', or with imperfect compliance.

Why is IV only consistent, but not unbiased?

OLS overfits the First Stage in small samples. [Problem Set 3]

But variance around true First Stage effect decreases with sample size.

Consistent but not Unbiased

What can be done about it?

1 Test how big problem (likely) is. Test *Relevance* condition!

$$\mathbb{E}[\hat{eta}_{2SLS} - eta] pprox rac{\sigma_{\etaarepsilon}}{\sigma_{\eta}^2} \left\lceil rac{\mathbb{E}[\pi' \mathbf{Z_1'} \mathbf{Z_1} \pi]/q}{\sigma_{\eta}^2} + 1
ight
ceil^{-1}$$

where $x = \mathbf{Z_1}\pi + \eta$ is the First Stage, end $\mathbb{E}[\pi'\mathbf{Z_1'Z_1}\pi]/q$ is the First Stage 'population F-statistics' on the excluded instruments (not $\mathbf{X_2}$).

- Finite sample bias of IV inversely related to "strength" of instruments; as rule of thumb: with First Stage F-statistics < 10,6 instruments were considered 'weak' (Staiger and Stock, 1997); see also Young (2022).
- If instruments are useless, bias as large as OLS.
- If you add useless instruments, F-statistic falls and bias increases.
- With multiple instruments: KP/AP test of differential variation.
- 2 Correct for the degree of bias: FIML estimator (less efficient with strong instr.)

⁶And then? 1. Drop weak instruments; 2. Get better instruments; 3. LIML/JIV; 4. New project.

IV and Classical Measurement Error

With classical measurement error, where $x_{1i}^* = x_{1i} + v_i$:

$$\mathsf{plim}\left[\hat{\beta}_{1}\right] = \beta_{1} \frac{\mathsf{Var}(\mathsf{x}_{1i})}{\mathsf{Var}(\mathsf{x}_{1i}) + \mathsf{Var}(\mathsf{v}_{i})} \equiv \beta_{1} \lambda$$

Now consider you have additionally another measure of x_{1i} :

$$z_i = x_{1i} + \xi_i$$
, with $Cov(v_i, \xi_i) = 0$

Then the reduced form and first stage identify

$$\gamma_{1} = \frac{\textit{Cov}(y_{i}, z_{i})}{\textit{Var}(z_{i})} = \beta_{1} \frac{\textit{Var}(x_{1i})}{\textit{Var}(x_{1i}) + \textit{Var}(\xi_{i})}; \pi_{1} = \frac{\textit{Cov}(x_{1i}^{*}, z_{i})}{\textit{Var}(z_{i})} = \frac{\textit{Var}(x_{1i})}{\textit{Var}(x_{1i}) + \textit{Var}(\xi_{i})}$$

Therefore $\beta = \frac{\gamma_1}{\pi_1}$, i.e. IV estimator identifies β_1 , not $\beta_1\lambda$.

Often if $\beta_{2SLS} > \beta_{OLS}$ in absolute value - against the readrers' expectations-authors conclude: 'IV solved measurement error'.

Plan for Today

- 1 Introducing IV
- 2 Understanding IV
- 3 Common Mistakes
- 4 Specification Tests
- 5 Application: Shift-Share Instruments

Getting Standard Errors Right

There is a temptation to calculate the 2SLS estimator by:

- 1 running the First Stage as OLS regression of X on Z;
- 2 calculate the predicted values $\hat{\mathbf{X}}$;
- 3 running the Second Stage as OLS regression of y on $\hat{\mathbf{X}}$.

This will provide you with the correct $\hat{\beta}_{2SLS}$ (discussed above). However the standard errors will be wrong! Should be (without proof)

$$y - \mathbf{X}\hat{\beta}_{2SLS}$$
,

but in the above procedure your statistical package will calculate them as

$$y - \hat{\mathbf{X}}\hat{\beta}_{2SLS}$$
.

Getting First Stage Right

Rewriting the Second Stage we get:

$$y = \mathbf{\hat{X}_1}\beta_1 + \mathbf{X_2}\beta_2 + (\mathbf{X_1} - \mathbf{\hat{X}_1})\beta_1 + \varepsilon$$

Note that:

- 1 X_2 is uncorrelated of ε (by assumption);
- 2 X_2 is uncorrelated of $X_1 \hat{X}_1$ (by construction);
- 3 $\hat{\mathbf{X}}_1$ is linear combination of $[\mathbf{Z}_1, \mathbf{X}_2]$, asymp. uncorrelated of ε (by assumption);
- 4 $\hat{\mathbf{X}}_1$ is uncorrelated of $\mathbf{X}_1 \hat{\mathbf{X}}_1$ (by construction).

Together these imply we can consistently estimate β .

Failure to include X_2 in the First Stage means (2) breaks down. Failure to run linear First Stage means (2), (4) and (3) might break down.

Interpreting R^2 in Second Stage

The R^2 in Second Stage [when displayed] is not meaningful.

- Residuals are calculated, correctly, as $y \mathbf{X}\hat{\beta}_{2SLS}$. The RSS might be larger than TSS, and hence $R^2 < 0$.
- The point of the Second Stage is *not* to fit y to **X**, but solely to estimate $\hat{\beta}$.

What is (somewhat) meaningful is the R^2 in the Reduced Form.

Basic Mistakes in Typical IV Paper

In my (limited) experience the most common drawbacks of IV papers are:

1 Authors present an instrument that is plausibly external, but might impact *y* through multiple channels; authors highlight one channel.

To save project: Is Reduced Form interesting?

2 Authors do not critically assess plausibility of exclusion restriction.

Plan for Today

- 1 Introducing IV
- 2 Understanding IV
- 3 Common Mistakes
- 4 Specification Tests
- 5 Application: Shift-Share Instruments

Discussing Exogeneity

Relevance condition can be tested (see above).

Exogeneity condition can fundamentally not be tested.

- 1 Need to argue, using understanding of the world, that it is satisfied.
- 2 Might provide 'balance' tests, demonstrating that Z is unrelated to baseline variables that might impact y.
- 3 Might provide 'placebo' tests, demonstrating that **Z** has no impact on pseudo outcomes, outcomes which it should not impact.

Order of Identification

With number of instruments in Z_1 ...

1 ...greater than number of variables in X_1 , model is 'over-identified'.

Efficient to use all instruments, if they are relevant.

- 2 ...equal to number of variables in X_1 , model is 'exactly identified'.
- 3 ...less than number of variables in X_1 , model is 'under-identified'.

Overidentification Tests

In the over-identified case, can calculate Sargan-Hansen/Sargan's J test:

$$J(\hat{\beta}) = N \frac{\hat{\varepsilon}' P_Z \hat{\varepsilon}}{\hat{\varepsilon} \hat{\varepsilon}}$$

Under H_0 that Exogeneity is satisfied for all **Z**, this is χ^2 -distributed.

- Empirically straight-forward to implement as M times R^2 of regression of Second Stage residuals on all elements of \mathbf{Z} .
- Intuition is: in case *Exogeneity* is not satisfied for some instruments, they will be correlated with $\hat{\epsilon}$ and H_0 is rejected.
- Omnibus test: Tells you something is wrong, not what.
- With effect heterogeneity, different instruments identify different causal effects, and test is no longer useful.

Plan for Today

- 1 Introducing IV
- 2 Understanding IV
- 3 Common Mistakes
- 4 Specification Tests
- 5 Application: Shift-Share Instruments

Shift-Share / Bartik Instruments

$$z_{l}=\sum_{n}s_{ln}g_{n},$$

a weighted sum of

- common shocks, varying at level n = 1, ..., N,
- weighted by exposure shares, varying at level of outcome l = 1, ..., L.

Shift-Share: Examples

Bartik (1991) and Blanchard and Katz (1992):

instrument region l's labor demand, where g_n is the national growth of industry n and $s_{ln} \in [0, 1]$ are lagged employment shares; and study impact on wages.

Autor, Dorn and Hanson (2013):

instrument Chinese import competition in location I, where g_n is growth in Chinese exports in manufacturing industry n to 8 non-U.S. countries, and s_{In} are lagged employment shares; study impact on manufacturing employment I unemployment.

Shift-Share / Bartik Instruments

Recent Developments

- 1 Borusyak, Kirill, Peter Hull, and Xavier Jaravel (2022) "Quasi- Experimental Shift-Share Research Designs" *Review of Economic Studies*
- 2 Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift (2020) "Bartik Instruments: What, When, Why and How" American Economic Review

Questions?

References

- 1 Angrist and Pischke (2008): Chapter 4.1-4.3, 4.6.1, 4.6.4.
- 2 Angrist, Joshua and Alan B. Krueger (1992) "The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples" Journal of the American Statistical Association 87: 328–336.
- 3 Angrist, Joshua and Alan B. Krueger (1995) "Split-Sample Instrumental Variables Estimates of the Return to Schooling" Journal of Business and Economic Statistics 13: 225–235.
- 4 Autor, David, David Dorn, and Gordon Hanson (2013) "The China Syndrome: Local Labor Market Effects of Import Competition in the United States." American Economic Review 103 (6): 2121–68.
- 5 Bartik, Timothy (1991 "Who Benefits from State and Local Economic Development Policies?" W.E. Upjohn Institute.
- 6 Blanchard, Olivier, and Lawrence Katz (1992) "Regional Evolutions" Brookings Papers on Economic Activity 23(1): 1–76.
- 7 Borusyak, Kirill, Peter Hull and Xavier Jaravel (2022) "Quasi-Experimental Shift-Share Research Designs" Review of Economic Studies 89(1): 181–213.

References

- 8 Goldsmith-Pinkham, Paul, Isaac Sorkin, Henry Swift (2020) "Bartik Instruments: What, When, Why, and How" American Economic Review 110(8): 2586–2624.
- 9 Inoue, Atsushi, and Gary Solon (2010) "Two-Sample Instrumental Variables Estimators" The Review of Economics and Statistics 92(3): 557–561.
- 10 Staiger, Douglas, and James Stock (1997) "Instrumental Variables Regressions with Weak Instruments" Econometrica 65(3): 557–586.
- 11 Young, Alwyn (2022) "Consistency without Inference: Instrumental Variables in Practical Application" European Economic Review 147: 104–112.