ECUACIONES NO LINEALES (Segunda parte)

ANÁLISIS NUMÉRICO/MÉTODOS MATEMÁTICOS Y NUMÉRICOS

(75.12/95.04/95.13)

CURSO TARELA

PROBLEMA:

Hallar la raíz de $f(x) = \frac{x^2}{4} - sen(x)$ en el intervalo [1,6; 2] con un error absoluto de 0,02 por los métodos:

- a. Newton-Raphson
- b. Secante

Calcular orden de convergencia para cada uno.

FUNCIÓN:

NEWTON RAPHSON

A partir de un valor semilla, se calcula la recta tangente a f en x_0 . La intersección de esta recta con el eje de abscisas define el nuevo valor semilla x_1

$$g(x) = x - \frac{f(x)}{f'(x)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

NEWTON RAPHSON

Hay que tener en cuenta que:

- Se cumplan las condiciones del Teorema de Punto Fijo.
- Exista f''(x) en el intervalo [1,6; 2]
- $f'(x) \neq 0 \ \forall x \in [1,6;2]$

Se cumple la condición de existencia del PF:

[1,6; 2]

[1,8; 2]

NEWTON RAPHSON

$$g(x) = x - \frac{\frac{x^2}{4} - sen(x)}{\frac{x}{2} - cos(x)}$$

n	x_n	x_{n+1}	$oldsymbol{arepsilon}_n$
0	1,60	2,033639	0,434
1	2,03364	1,938557	0,095
2	1,93856	1,933766	0,0048

Raíz:

$$x = 1,93 \pm 0,005$$

SECANTE

Utiliza una aproximación de la derivada de f:

$$f'(x_n) \cong \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

$$x_{n+1} = x_n - f(x_n) * \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Necesito dos valores semilla (x_{-1} y x_0)

⇒ Utilizo métodos de arranque: Bisección o Regula Falsi.

SECANTE

\boldsymbol{n}	x_{n-1}	x_n	$f(x_{n-1})$	$f(x_n)$	x_{n+1}	$oldsymbol{arepsilon}_n$
0	1,8	1,9	-0,1638476	-0,0438	1,936486	0,03649
1	1,9	1,93649	-0,0438001	0,0036166	1,933703	0,00278
2	1,93649	1,9337	0,00361664	-0,0000675	1,933754	0,00005

Raíz:

$$x = 1,934 \pm 0,003$$

$$ln(\varepsilon_{n+1}) = ln(\lambda) + P * ln(\varepsilon_n)$$

