Классические задачи Computer Science на языке Java

Дэвид Копец

Classic Computer Science Problems in Java

DAVID KOPEC

Дэвид Копец

Классические задачи Computer Science на языке Java

ББК 32.973.2-018.1 УДК 004.43 К65

Копец Дэвид

Кб5 Классические задачи Computer Science на языке Java. — СПб.: Питер, 2022. — 288 с.: ил. — (Серия «Библиотека программиста»).

ISBN 978-5-4461-3911-8

Столкнулись с «неразрешимой» проблемой при разработке программного обеспечения? Скорее всего, кто-то уже справился с этой задачей, и вы можете не ломать голову. Дэвид Копец собрал наиболее полезные готовые решения, принципы и алгоритмы. «Классические задачи Computer Science на языке Java» — это мастер-класс по программированию, содержащий 55 практических примеров, затрагивающих самые актуальные темы: базовые алгоритмы, ограничения, искусственный интеллект и многое другое.

16+ (В соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ.)

ББК 32.973.2-018.1 УДК 004.43

Права на издание получены по соглашению с Manning Publications. Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как надежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не может гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные ошибки, связанные с использованием книги. Издательство не несет ответственности за доступность материалов, ссылки на которые вы можете найти в этой книге. На момент подготовки книги к изданию все ссылки на интернет-ресурсы были действующими.

ISBN 978-1617297601 англ. ISBN 978-5-4461-3911-8

- © 2020 by Manning Publications Co. All rights reserved
- © Перевод на русский язык ООО Издательство «Питер», 2022
- © Издание на русском языке, оформление ООО Издательство «Питер», 2022
- © Серия «Библиотека программиста», 2022
- © Павлов А., перевод с английского языка, 2021

Краткое содержание

Благодарности	12
Об авторе	14
Об иллюстрации на обложке	15
От издательства	17
Введение	18
Глава 1. Простые задачи	25
Глава 2. Задачи поиска	48
Глава 3. Задачи с ограничениями	84
Глава 4. Графовые задачи	107
Глава 5. Генетические алгоритмы	136
Глава 6. Кластеризация методом k-средних	160
Глава 7. Простейшие нейронные сети	181
Глава 8. Состязательный поиск	216
Глава 9. Другие задачи	243
Глава 10. Интервью с Брайаном Гетцем	262
Приложение А. Глоссарий	277
Приложение Б. Дополнительные ресурсы	284

Оглавление

Благодарности	12
Об авторе	14
Об иллюстрации на обложке	15
От издательства	17
Введение	18
Для кого эта книга	19
Какие задачи представлены в издании	20
Об исходном коде	21
Дополнительные онлайн-ресурсы	23
Глава 1. Простые задачи	25
1.1. Ряд Фибоначчи	25
1.1.1. Первый вариант рекурсии	25
1.1.2. Использование базовых случаев	27
1.1.3. Спасение — в мемоизации	29
1.1.4. Будьте проще, Фибоначчи!	30
1.1.5. Генерация чисел Фибоначчи с помощью потока	31
1.2. Простейшее сжатие	32
1.3. Невскрываемое шифрование	37

1.3.1. Получение данных в заданной последовательности	37
1.3.2. Шифрование и дешифрование	39
1.4. Вычисление числа π	40
1.5. Ханойские башни	41
1.5.1. Моделирование башен	42
1.5.2. Решение задачи о ханойских башнях	43
1.6. Реальные приложения	45
1.7. Упражнения	46
Глава 2. Задачи поиска	48
2.1. Поиск ДНК	48
2.1.1. Хранение ДНК	48
2.1.2. Линейный поиск	51
2.1.3. Бинарный поиск	52
2.1.4. Параметризованный пример	55
2.2. Прохождение лабиринта	57
2.2.1. Создание случайного лабиринта	59
2.2.2. Мелкие детали лабиринта	61
2.2.3. Поиск в глубину	62
2.2.4. Поиск в ширину	
2.2.5. Поиск по алгоритму А*	70
2.3. Миссионеры и людоеды	76
2.3.1. Представление задачи	
2.3.2. Решение	80
2.4. Реальные приложения	82
2.5. Упражнения	83
Глава 3. Задачи с ограничениями	84
3.1. Построение структуры для задачи с ограничениями	85
3.2. Задача раскрашивания карты Австралии	90
3.3. Задача восьми ферзей	93
3.4. Поиск слова	96
3.5. SEND + MORE = MONEY	102
3.6. Размешение элементов на печатной плате	104

8 Оглавление

3.7. Реальные приложения	105
3.8. Упражнения	106
Глава 4. Графовые задачи	107
4.1. Карта как граф	107
4.2. Построение графовой структуры	110
4.2.1. Работа с Edge и UnweightedGraph	115
4.3. Поиск кратчайшего пути	117
4.3.1. Пересмотр алгоритма поиска в ширину	117
4.4. Минимизация затрат на построение сети	119
4.4.1. Работа с весами	119
4.4.2. Поиск минимального связующего дерева	123
4.5. Поиск кратчайших путей во взвешенном графе	129
4.5.1. Алгоритм Дейкстры	129
4.6. Реальные приложения	135
4.7. Упражнения	135
Глава 5. Генетические алгоритмы	136
5.1. Немного биологической теории	136
5.2. Обобщенный генетический алгоритм	138
5.3. Примитивный тест	146
5.4. SEND + MORE = MONEY, улучшенный вариант	149
5.5. Оптимизация сжатия списка	153
5.6. Проблемы генетических алгоритмов	156
5.7. Реальные приложения	157
5.8. Упражнения	159
Глава 6. Кластеризация методом <i>k</i> -средних	160
6.1. Предварительные сведения	161
6.2. Алгоритм кластеризации методом <i>k</i> -средних	164
6.3. Кластеризация губернаторов по возрасту и долготе штата	
6.4. Кластеризация альбомов Майкла Джексона по длительности	
6.5. Проблемы и расширения кластеризации методом k -средних	
6.6. Реальные приложения	
6.7. Упражнения	180

Глава 7. Простейшие нейронные сети	181
7.1. В основе — биология?	182
7.2. Искусственные нейронные сети	184
7.2.1. Нейроны	184
7.2.2. Слои	185
7.2.3. Обратное распространение	186
7.2.4. Ситуация в целом	190
7.3. Предварительные замечания	191
7.3.1. Скалярное произведение	191
7.3.2. Функция активации	192
7.4. Построение сети	193
7.4.1. Реализация нейронов	194
7.4.2. Реализация слоев	195
7.4.3. Реализация сети	197
7.5. Задачи классификации	201
7.5.1. Нормализация данных	202
7.5.2. Классический набор данных радужной оболочки	203
7.5.3. Классификация вина	208
7.6. Повышение скорости работы нейронной сети	211
7.7. Проблемы и расширения нейронных сетей	212
7.8. Реальные приложения	214
7.9. Упражнения	215
Глава 8. Состязательный поиск	216
8.1. Основные компоненты настольной игры	216
8.2. Крестики-нолики	
8.2.1. Управление состоянием игры в крестики-нолики	
8.2.2. Минимакс	
8.2.3. Тестирование минимакса для игры в крестики-нолики	226
8.2.4. Разработка ИИ для игры в крестики-нолики	
8.3. Connect Four	
8.3.1. Подключите четыре игровых автомата	230
8.3.2. ИИ для Connect Four	
8.3.3. Улучшение минимакса с помощью альфа-бета-отсечения	238

10 Оглавление

8.4. Другие улучшения минимакса	240
8.5. Реальные приложения	241
8.6. Упражнения	242
Глава 9. Другие задачи	243
9.1. Задача о рюкзаке	243
9.2. Задача коммивояжера	249
9.2.1. Наивный подход	250
9.2.2. Переходим на следующий уровень	255
9.3. Мнемоника для телефонных номеров	257
9.4. Реальные приложения	260
9.5. Упражнения	261
Глава 10. Интервью с Брайаном Гетцем	262
Приложение А. Глоссарий	277
Приложение Б. Дополнительные ресурсы	284
Java	284
Алгоритмы и структуры данных	285
Искусственный интеллект	
Функциональное программирование	287