CONTENT-BASED IMAGE RETRIEVAL

Multimedia Databases SS 23 (Exercises)

Prof. Dr. Harald Kosch/ Prof. Dr. Mario Döller

Tutor: Kanishka Ghosh Dastidar, Dr. Alaa Alhamzeh

What is CBR?

- A content-based retrieval system processes the information contained in data and creates an abstraction of its content in terms of attributes.
- **E.g.:** Online clothes shopping might allow users to search by traditional categories (brand, price range) and also in terms of visual attributes (color, texture)
- Steps:

Feature Extraction: The first step in the process is extracting image features to a distinguishable extent.

Matching: The second step involves matching these features to yield a result that is visually similar.

- Compared to each other, what are the benefits and limitations of ABIR and CBIR?
- **Limitations of ABIR compared to CBIR**
 - Problem of Image annotations [Brahmi et al. 2004]
 - Large volumes of DB: manual image annotation is time-consuming and therefore costly. The annotation is language dependent.
 - Problem with human perception [Brahmi et al. 2004]
 - Human annotation is **subjective**
 - The accuracy and quality of the annotations are of the responsibility of the annotator and end-user.
 - Problem in annotating images with words [Sclaroff et al. 1999]
 - Some images could not be annotated as it is difficult to describe their content with words.
- Limitations of CBIR compared to ABIR
 - Problem of Semantic Gap [Inoue et al. 2004, Brahmi et al. 2004]
 - Visual features cannot fully represent concepts.
 - Problem of the availability of the image query [Inoue et al. 2004]
 - Users must have an example image in their hands

What are the components of a CBIR architecture? Explain the basic principle of each component using an example?

What is a feature vector?

- Numerical representation of object features in an ndimensional vector
- E.g. feature = avg color, fv = (255,0,0)

Which problem arise when indexing features vector?

- 'The query performance of access methods decreases, if the dimensionality of the underlying data set becomes high.'
 by Berchtold et al.
- A large number of features diminishes the distinguishing power of each feature and the indexing structures.

How to avoid the 'Curse of Dimensionality'?

- Development of specific index structures that are specialized for highdimensional data
- Reduction of the vector dimension:
 - Feature selection
 - Feature extraction

1. Dominant Color

- The Dominant Color Descriptor allows specification of a small number of dominant color values + statistical properties like distribution and variance.
- In contrast to histogram color, only the representative colors are selected from each region or image.
- Its purpose is to provide an effective, compact and intuitive representation of colors present in a region or image.

Dominant Color

The dominant color descriptor is defined by :

$$F = \{(c_i, p_i, v_i), s\}, (i = 1...N)$$

- N is the total number of color clusters (= bins in the histogram) in the image region, such that 1≤ N ≤ 8
- c_i is the dominant color vector (3d RGB vector),
- p_i is the percentage for each dominant color, such that
 - P_i ∈ [0,1] and their sum is equal to 1,
- v_i is its color variance,
- s is a scalar that represents the overall spatial coherency of the dominant colors in the image.

Dominant Color

 Often, the color variance v and spatial coherency s are not considered, which simplifies the definition of the dominant color descriptor to:

$$F = \{(c_i, p_i)\}, (i = 1...N)$$

2. Spatial Coherency

- The spatial coherency of a given dominant color is measured with the normalized average number of connected pixels of this color. It is computed using a 3x3 mask
- The overall spatial coherency is a linear combination of the individual spatial coherencies weighted with the corresponding percentages pi.

Note: these two images have the same colors but the distribution of the colors is not the same.

3. Distance metrics

 Degree of similarity between two points is measured by distance in data space. Several metrics have been established, i.e. euclidian distance.

4. Curse of Dimensionality

CBR performs worse when dimensionality of the FVs increases.

5. Types of content-based queries

- Point Query: Retrieve all points with identical feature vector
- Range Query: Retrieve all points with a maximum distance from query point.
- K-Nearest Neighbor Query: Returns the k most similar results

- What are the necessary conditions that must be fulfilled in order to be able to issue the following query to a CBIR system:
 - Give me all images which contain a red car!
- What are the problems that can occur?

- What are the necessary conditions that must be fulfilled in order to be able to issue the following query to a CBIR system:
 - Give me all images which contain a red car!

To resolve this question using a "query by feature", we could:

- Define the set of colors that correspond to the concept of "red"
- 2. Define a set of contours (shape descriptors), which correspond to the shape of a car.
- Perform a query by features based on these two features.

- What are the problems that can occur?
- In the QBF-solution, the difficulty lies in the definition of the shape, as cars can have very different contours (e.g. formula 1 cars, BMW cars, etc.).
- To which extent the definition of the shape should be precise?
 - precise definition will lead to a good precision but a bad recall.
 - less precise definition will provide bad precision (false positives) but a better recall.
- Thus, the appropriate strategy depends on the exact goals of the query.
 - But, it is very difficult to get this information from the user.

How good is the result?

Precision How many of the returned entities are relevant? High precision = few false positives

Recall How many relevant entities are returned? High recall = few false negatives

- Apply a uniform colour quantization of 8 bins.
- Which quantization area (range) do the colours in the two images belong to?

Image 2

Apply a uniform colour quantization of 8 bins.

Apply a uniform colour quantization of 8 bins.

(0,0,0)
 (0,0,1)
 (0,1,0)
 (0,1,1)
 (1,0,0)
 (1,1,0)
 (1,1,1)

Which quantization area (range) do the colours in the two images belong to?

■ Red pixels are part of the (1,0,0) bin

Image 1

Image 2

- Black pixels are part of the (0,0,0) bin
- White pixels are part of the (1,1,1) bin

Create a color histogram for both images

Image 1

 \blacksquare H₁ = (0,0,0,0,8,0,0,8)

Image 2

$$\blacksquare$$
 H₂ = (8,0,0,0,0,0,0,8)

Apply a uniform bin quantization for 2 bits.

Image 1

$$\bullet \ \mathsf{H}_1 = (0,0,0,0,8,0,0,8)$$

$$=> H_1 = (0,0,0,0,2,0,0,2)$$

Image 2

$$=> H_2 = (2,0,0,0,0,0,0,0,0)$$

Minkowski Distances

Use the two images of exercise 4 and the results of exercise 4.b (without bin quantification). Determine the similarity of the images with the help of Minkowski distances:

- L₁: Manhattan distance
- L₂: Euclidian distance
- L_∞: Maximal distance (also called Tschebyschow distance)

Manhattan Distance

Euclidean Distance

Minkowski Distances

Starting with
$$P = (x_1, x_2, \dots, x_n)$$
 and $Q = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$

$$L_p(P,Q) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}$$

$$\blacksquare$$
 H₁ = (0,0,0,0,8,0,0,8)

$$\blacksquare$$
 H₂ = (8,0,0,0,0,0,0,8)

$$L_1(H_1,H,2) = |0-8| + |0-0| + |0-0| + |0-0| + |8-0| + |0-0| + |0-0| + |8-8| = 8 + 8 = 16$$

$$L_2(H_1,H_2) = \sqrt{(0-8)^2 + \dots + (8-0)^2 + \dots + (8-8)^2} = \sqrt{128} \approx 11,3$$

$$L_{\infty}(H_1,H,2) = \max_i |x_i - y_i| = 8$$

 Which result would you obtain if the red colour in the left image was black? Which conclusions do you draw?

Image 2

Spatial Distribution of colors ignored!

Statistical Distances

Starting with the following colour distribution: $H_1 = (4, 4, 4, 4)$ and $H_2 = (8, 3, 4, 5)$

Non-parametrical distances:

Calculate the distances between H_1 and H_2 with the help of the following functions: Kolgomorov-Smirnov Distance, Chi-squared Distance.

Kolgomorov-Smirnov Distance:

$$KS(P,Q) = \max_{i} |F^{r}(i;P) - F^{r}(i;Q)|$$

 $F^{r}(i; P)$ is equivalent to *cumulative histogram* of P in place i.

Cumulative H₁ = (4, 8, 12, 16) and Cumulative H₂
= (8, 11, 15, 20)

$$\Rightarrow$$
 KS (H₁, H₂) =4

Chi-squared Distance

$$H_1 = (4, 4, 4, 4)$$
 and $H_2 = (8, 3, 4, 5)$

$$D_{\chi}(P,Q) = \sum_{i} \frac{(x_i - f'(i))^2}{f'(i)}$$

$$f'(i) = \frac{x_i + y_i}{2}$$

$$f'(i_1) = 6, f'(i_2) = \frac{7}{2}, f'(i_3) = 4, f'(i_4) = \frac{9}{2}$$

$$D_{\chi}(H_1, H_2) = \frac{(4-6)^2}{6} + \frac{(4-\frac{7}{2})^2}{\frac{7}{2}} + 0 + \frac{(4-\frac{9}{2})^2}{\frac{9}{2}} = \frac{4}{6} + \frac{\frac{1}{4}}{\frac{7}{2}} + \frac{\frac{1}{4}}{\frac{9}{2}}$$

$$D_{\chi}(H_1, H_2) = \frac{2}{3} + \frac{1}{14} + \frac{1}{18} = \frac{50}{63}$$

$$D_{\chi}(H_1, H_2) \approx 0,794$$

- Parametrical Distance Function
- Calculate the distance between H1 and H2. Use Weighted-mean-variance and the following training data:
 - V₁ (8,8,4,12), V₂ (4,0,0,16), V₃ (2,3,8,7), V₄ (4,4,6,10)

Weighted-mean-variance:

$$WMV(P,Q) = \frac{|\mu(P) - \mu(Q)|}{|\sigma(\mu(Ref))|} + \frac{|\sigma(P) - \sigma(Q)|}{|\sigma(\sigma(Ref))|}$$

μ: Average

 σ : Standard deviation

 $\mu(Ref)$: Average calculated from training data

 $\sigma(Ref)$: Standard deviation calculated from training data

- Parametrical Distance Function
 - V_1 (8,8,4,12), V_2 (4,0,0,16), V_3 (2,3,8,7), V_4 (4,4,6,10)

$$WMV(P,Q) = \frac{|\mu(P) - \mu(Q)|}{|\sigma(\mu(Ref))|} + \frac{|\sigma(P) - \sigma(Q)|}{|\sigma(\sigma(Ref))|}$$

How to calculate it?

$$H_1 = (4, 4, 4, 4)$$
 and $H_2 = (8, 3, 4, 5)$

- Numerator:
 - Mean values of μ(H₁), μ(H₂)
 - Standard deviation: σ (H₁), σ (H₂)

$$\sigma(P) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu(P))^2}{n}}$$

Parametrical Distance Function

- V_1 (8,8,4,12), V_2 (4,0,0,16), V_3 (2,3,8,7), V_4 (4,4,6,10)
- Ref = $\{V_1, V_2, V_3, V_4\}$

$$WMV(P,Q) = \frac{|\mu(P) - \mu(Q)|}{|\sigma(\mu(Ref))|} + \frac{|\sigma(P) - \sigma(Q)|}{|\sigma(\sigma(Ref))|}$$

How to calculate it?

- Denominator: σ (μ (Ref)) ≈ 1,224
 - μ (Ref) = (μ (V_{d1}), μ (V_{d2}), μ (V_{d3}), μ (V_{d4}))
 - $\sigma(Ref) = (\sigma(V_{d1}), \, \sigma(V_{d2}), \, \sigma(V_{d3}), \, \sigma(V_{d4}))$

$$\sigma(P) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu(P))^2}{n}}$$

- Parametrical Distance Function
 - V₁ (8,8,4,12), V₂ (4,0,0,16), V₃ (2,3,8,7), V₄ (4,4,6,10)

$$WMV(P,Q) = \frac{|\mu(P) - \mu(Q)|}{|\sigma(\mu(Ref))|} + \frac{|\sigma(P) - \sigma(Q)|}{|\sigma(\sigma(Ref))|}$$

- How to calculate it?
 - Denominator: σ (σ (Ref)) ≈ 1,716
 - Mean value of μ (σ (Ref))

$$\sigma(P) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu(P))^2}{n}}$$

• **Result:** WMV(H₁, H₂) ≈ 1,907

