esempi

September 26, 2023

1 Esempi di approssimazioni con le B-Spline Gerarchiche

```
[]: from Curve_Fitting import Model
from HB_Spline import HB_Spline
from B_Spline import B_Spline
import numpy as np
from matplotlib import pyplot as plt
from copy import deepcopy

np.random.seed(1304)
```

Per la creazione delle B-spline gerarchiche abbiamo bisogno di una B-spline madre.

```
base = B_Spline(
          knots=np.linspace(0,10,5+1),
          order=3
     )

hb = HB_Spline(base)
```

Per i vari esempi useremo sempre lo stesso ordine della base, ma eventualmente cambieremo il vettore esteso dei nodi. > Le basi possono essere definite in un intervallo arbitrario e non è necessario che coincidano con il dominio della funzione da approssimare. Tuttavia è più comodo durante la fase di rifinitura che i domini coincidano.

Per approssimare le varie funzioni dobbiamo risolvere il problema dei minimi quadrati, più precisamente dobbiamo risolvere il sistema sovradeterminato

$$Ax = d$$

che non ha soluzione in senso classico.

La matrice A è detta matrice di collocamento, ovvero la matrice composta dalle basi valutate nelle ascisse di valutazione ad esclusione di quelle valutate nei nodi ausiliari. In altri contesti viene chiamata anche matrice di costruzione o di design. Nel nostro caso usiamo la base delle HB-sline e B-spline, ma si può usare una qualsiasi base, come quella delle potenze. Naturalmente le prestazioni e accuratezza variano in base al contesto.

Il vettore \underline{d} sono i dati e il vettore incognito \underline{x} sono i punti di controllo che ci permettono di approssimare i dati.

Il sistema viene risolto utilizzando la fattorizzazione QR. Tale risoluzione è implementato nella classe Model nel modulo Curve_Fitting.py

1.1 Approssimazione di una retta

Iniziamo da un esempio molto semplince e proviamo ad approssimare la funzione y=xGeneriamo i dati aggiungendo un errore casuale

```
[]: samples = np.shape(
          base.compute_base().get_collocation_matrix()
)[1]

x = np.linspace(0, 10, samples)
y= x + np.random.normal(0, 1, samples)

data = np.matrix([x, y]).T

plt.plot(x, y, "bo", label="data")
plt.legend(loc="best")
```

[]: <matplotlib.legend.Legend at 0x7f34f37bb250>

Adesso calcoliamo un'approssimazione della funzione generatrice e per farlo utilizziamo la classe

Model. Il costruttore necessita di un oggetto HB-spline e una matrice dei dati, che nel nostro caso, utilizzando la nomenclatura di numpy, sono un ndarray, con n = 2.

```
[]: model = Model(
    base=hb,
    data=data
).fit()

model.plot()
plt.plot(x, x, "y-", label="real")
plt.legend(loc="best")
```

MSE:1.042027e+00

[]: <matplotlib.legend.Legend at 0x7f34f35c1e90>

In questo caso si nota un'approssimazione soddisfacente che non necessita di raffinamento.

Giocanto con il vettore esteso dei nodi e l'ordine della base, si possono avere fit migliori o peggiori.

Ad esempio se siamo troppo generosi con la scelta dell'*ordine* e degli *intervalli* inizieremo a modellare il rumore al posto della funzione generatrice.

Ci possiamo accorgere "ad occhio" che siamo in **overfitting** se la curva presenta varie ondulature, come si può vedere nell'esempio seguente.

```
[]: base = B_Spline(
             knots=np.linspace(0,10,30+1),
             order=5
         )
    hb = HB_Spline(base)
     samples = np.shape(base.compute_base().get_collocation_matrix())[1]
     x = np.linspace(0, 10, samples)
     y= x + np.random.normal(0, 1, samples)
     data = np.matrix([x, y]).T
    model = Model(
         base=hb,
         data=data
     ).fit()
     model.plot()
    plt.plot(x, x, "y-", label="real")
    plt.legend(loc="best")
```

MSE:9.315689e-01

[]: <matplotlib.legend.Legend at 0x7f34f3232f50>

1.2 Approssimazione di una parabola

Vediamo ora un esempio un po' piú complesso. Supponiamo di voler approssimare i seguenti dati

Vediamo come l'algoritmo approssima questa funzione.

```
[]: model = Model(
    base=hb,
    data=data
).fit()

model.plot()
plt.plot(x, y_real, "y-", label="real")
plt.legend(loc="best")
```

MSE:9.230662e-01

[]: <matplotlib.legend.Legend at 0x7f34f335f250>

Come possiamo vedere, con un ordine basso e con pochi nodi siamo riusciti ad avere un'approssimazione quasi perfetta della funzione generatrice.

Tuttavia è una funzione molto semplice, quindi adesso ne vedremo di più complesse.

1.3 Approssimazione del seno

Vediamo ora come se la cava l'algoritmo nell'approssimazione di una funzione trigonometrica.

```
base = B_Spline(
    knots=np.linspace(0,10,10+1),
    order=3
)

hb = HB_Spline(base)

samples = np.shape(base.compute_base().get_collocation_matrix())[1]

x = np.linspace(0, 10, samples)
y_real = np.sin(x)
y = np.random.normal(np.sin(x),1,samples)

data = np.matrix([x, y]).T
```

```
plt.plot(x,y , "bo", label="data")
plt.legend(loc="best")
plt.show()
```


1.4

```
[]: model = Model(
    base=hb,
    data=data
).fit()

model_auto = deepcopy(model)

fig, ax = plt.subplots(3, 1, figsize=(16,12))
model.plot(ax[0])
ax[0].plot(x, y_real, "y-", label="real")
ax[0].set_title("Senza raffinatura"+" MSE:"+"{:e}".format(model.mse))

model.refine((2,8)).plot(ax[1])
ax[1].plot(x, y_real, "y-", label="real")
ax[1].set_title("Raffinatura in (1,9)"+" MSE:"+"{:e}".format(model.mse))
```

```
model_auto.iterative_refine().plot(ax[2])
ax[2].plot(x, y_real, "y-", label="real")
ax[2].set_title("Raffinatura automatica"+" MSE:"+"{:e}".format(model_auto.mse))
```

MSE:1.092578e+00 MSE:1.085962e+00 MSE:9.515441e-01

[]: Text(0.5, 1.0, 'Raffinatura automatica MSE:9.515441e-01')

La raffinazione automatica, se pur portando ad un migliore adattamento dei dati, ha anche portato all' **overfitting**.

1.5 Approssimazione della somma di seni

Proviamo adesso ad approssimara una funzione ancora più complessa ovvero $\sin(2x) + \sin(3x)$

```
[]: base = B_Spline(
    knots=np.linspace(0,10,30+1),
    order=3
```

```
hb = HB_Spline(base)

samples = np.shape(base.compute_base().get_collocation_matrix())[1]

x = np.linspace(0, 10, samples)
y_real = np.sin(x) + np.sin(2 * x) + np.sin(3 * x)
y = y_real + np.random.normal(0, 1, samples)

data = np.matrix([x, y]).T
plt.plot(x,y, "bo", label="data")
plt.legend(loc="best")
plt.show()
```



```
[]: model_manual = Model(
          base=hb,
          data=data
)

model_auto = Model(
          base=hb,
```

```
data=data
)
model_manual.fit()
model_auto.fit().iterative_refine()
fig, ax = plt.subplots(3, 1, figsize=(16,12))
model_manual.plot(ax[0])
ax[0].plot(x, y_real, "y-", label="real")
ax[0].set_title("Senza raffinatura"+" MSE:"+"{:e}".format(model_manual.mse))
model_auto.plot(ax[1])
ax[1].plot(x, y_real, "y-", label="real")
ax[1].set_title("Raffinatura Automatica"+" MSE:"+"{:e}".format(model_auto.mse))
#Modello B-Spline
base_b = B_Spline(
    knots=[0,0,0,1,2,3,4,5,6,7,8,9,10,10,10],
#Dobbiamo generare un po' di dati in più per far tornare le dimensioni durante_{\sqcup}
 →l'inserimento dei nodi
samples = np.shape(base_b.compute_base().get_collocation_matrix())[1]
x = np.linspace(0, 10, samples)
y_real = np.sin(x) + np.sin(2 * x) + np.sin(3 * x)
y = y_real + np.random.normal(0, 1, samples)
data_b = np.matrix([x, y]).T
#Creiamo un modello con la base B-spline
auto_b = Model(
    base=base b,
    data=data_b
).fit().iterative_refine()
auto_b.plot(ax[2])
ax[2].plot(x, y_real, "y-", label="real")
ax[2].set_title("Raffinatura Automatica B-Spline"+" MSE:"+"{:e}".format(auto_b.
  ⇒mse))
MSE:1.027357e+00
```

MSE:1.027357e+00 MSE:1.029448e+00 MSE:1.037245e+00

[]: Text(0.5, 1.0, 'Raffinatura Automatica B-Spline MSE:1.037245e+00')

1.6 Funzione di runge

La funzione di Runge è di particolare interesse durante l'approssimazione e interpolazione, presenta un aumento dell'errore in prossimità degli estremi se si aumenta il grado della base delle potenze. Questo fenomento si presenta con le ascisse di valutazione equidistanti come abbiamo noi. Vediamo come si comporta l'algoritmo. Il vantaggio di usare le base delle B-spline è che non dobbiamo aumentare il grado se vogliamo una maggiore accuratezza.

```
[]: base = B_Spline(
          knots=np.linspace(-1,1,10+1),
          order=3
)

hb = HB_Spline(base)

samples = np.shape(base.compute_base().get_collocation_matrix())[1]

def runge_function(x):
    return 1 / (1 + 25 * x**2)
```

```
x = np.linspace(-1, 1, samples)
y_real = runge_function(x)
y = y_real + np.random.normal(0, 0.1, len(x))

data = np.matrix([x, y]).T
plt.plot(x,y, "bo", label="data")
plt.legend(loc="best")
plt.show()
```



```
[]: model = Model(
    base=hb,
    data=data
).fit()

fig, ax = plt.subplots(3, 1, figsize=(16,12))
model.plot(ax[0])
ax[0].plot(x, y_real, "y-", label="real")
ax[0].set_title("Senza raffinatura"+" MSE:"+"{:e}".format(model.mse))

model.refine((-.25,0.25)).plot(ax[1])
```

```
ax[1].plot(x, y_real, "y-", label="real")
ax[1].set_title("Raffinatura in (-.25, 0.25)"+" MSE:"+"{:e}".format(model.mse))

model.refine((-0.1,0.1)).plot(ax[2])
ax[2].plot(x, y_real, "y-", label="real")
ax[2].set_title("Raffinatura in (-0.1, 0.1)"+" MSE:"+"{:e}".format(model.mse))

plt.suptitle("Raffinature successive HB-Spline")
```

MSE:1.826487e-02 MSE:1.089727e-02 MSE:1.044166e-02

[]: Text(0.5, 0.98, 'Raffinature successive HB-Spline')

Raffinature successive HB-Spline

Confrontiamo adesso 3 metodi: - Raffinazione manuale - Raffinzaione automatica - Raffinazione automatica tramite il knot_insertion (B-Spline)

```
[]: base_hb = B_Spline(
         knots=np.linspace(-1,1,10+1),
         order=3
     )
     np.random.seed(1304)
     samples = np.shape(base_hb.compute_base().get_collocation_matrix())[1]
     #Addesso le B-Spline sono state calcolate e possiamo dichiarare le HB-Spline
     hb_a = HB_Spline(base_hb)
     hb_b = HB_Spline(base_hb)
     #Generazione dati per la funzione di runge (Dimensione per le HB-Spline)
     x = np.linspace(-1, 1, samples)
     y_true = runge_function(x)
     y = y_true + np.random.normal(0, 0.1, len(x))
     data_hb = np.matrix([x, y]).T
     b = Model(
     base=hb_b,
     data=data_hb
     b.fit().iterative_refine()
     a = Model(
     base=hb a,
     data=data_hb
     a.fit().refine((-0.25,0.25)).refine((-0.1,0.1))
     #Base B-Spline
     base = B_Spline(
         knots= [-1,-1,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1,1],
         order=3
     samples = np.shape(base.compute_base().get_collocation_matrix())[1]
     x = np.linspace(-1, 1, samples)
     y_true = runge_function(x)
     y = y_true + np.random.normal(0, 0.1, len(x))
     data = np.matrix([x, y]).T
     c = Model(
         base=base,
         data=data
     ).fit().iterative_refine()
     fig, ax = plt.subplots(3, 1, figsize=(16,12))
     a.plot(ax[0])
```

MSE:9.819320e-03 MSE:1.064666e-02 MSE:9.547758e-03

Confronto tra metodi

1.7 Funzione di runge con tanto rumore

Proviamo adesso ad approssimare la stessa funzione, ma questa volta con rumore notevolmente aumentato.

```
base = B_Spline(
    knots=np.linspace(-1,1,10+1),
    order=3
)

hb = HB_Spline(base)

samples = np.shape(base.compute_base().get_collocation_matrix())[1]

def runge_function(x):
    return 1 / (1 + 25 * x**2)

x = np.linspace(-1, 1, samples)
y_real = runge_function(x)

y = y_real + np.random.normal(0, 1, len(x))

data = np.matrix([x, y]).T

plt.plot(x,y, "bo", label="data")
plt.legend(loc="best")
plt.show()
```



```
[]: model = Model(
         base=hb,
         data=data
     ).fit()
     fig, ax = plt.subplots(3, 1, figsize=(16,12))
     model.plot(ax[0])
     ax[0].plot(x, y_real, "y-", label="real")
     ax[0].set_title("Senza Raffinatura"+" MSE:"+"{:e}".format(model.mse))
    model.iterative_refine().plot(ax[1])
     ax[1].plot(x, y_real, "y-", label="real")
     ax[1].set_title("Raffinatura automatica"+" MSE:"+"{:e}".format(model.mse))
     #Base B-Spline
     base = B_Spline(
         knots= [-1,-1,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1,1],
         order=3
     samples = np.shape(base.compute_base().get_collocation_matrix())[1]
     x = np.linspace(-1, 1, samples)
     y_real = runge_function(x)
```

```
y = y_real + np.random.normal(0, 1, len(x))
data = np.matrix([x, y]).T

c = Model(
    base=base,
    data=data
).fit().iterative_refine()

c.plot(ax[2])
ax[2].plot(x, y_real, "y-", label="real")
ax[2].set_title("Raffinatura automatica B-Spline"+" MSE:"+"{:e}".format(c.mse))

plt.suptitle("Confronto tra metodi")
plt.show()
```

MSE:1.043227e+00 MSE:1.027666e+00 MSE:9.710130e-01

Confronto tra metodi

2 Conclusioni

Il criterio di scelta dell'intervallo di rifinitura viene effettuata scegliendo i dati che danno maggior contributo a MSE e si itera questo procedimento fino a che MSE dell'approssimazione risultante è migliore rispetto alla precedente. Per migliore si intende che si adatta meglio ai dati e che quindi ha MSE minore. Come possiamo vedere dagli esempio, questo può portare ad overfitting e ad allontanare l'approssimante dalla funzione generatrice.