ECE 275A: Parameter Estimation I Method of Moments

Florian Meyer

Electrical and Computer Engineering Department University of California San Diego

Convergence in Probability

• A sequence of random vectors $\{X_k\}$ with $X_k \in \mathbb{R}^n$, converges to random vector $X \in \mathbb{R}^n$ "in probability" if

$$\lim_{k\to\infty} P(\|\boldsymbol{X}_k - \boldsymbol{X}\| \ge \epsilon) = 0, \forall \epsilon > 0$$

ullet This is typically denoted either as $m{X}_k \overset{ ext{prob.}}{ o} m{X}$ or as p-lim $m{X}_k = m{X}$

Carry-Over Property of Convergence in Probability

- Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous vector-valued function
- For any two vectors \mathbf{x}_k and \mathbf{x} and $\forall \delta > 0$, there exists $\epsilon > 0$ such that we obtain

$$\|\mathbf{x}_k - \mathbf{x}\| < \epsilon \Rightarrow \|f(\mathbf{x}_k) - f(\mathbf{x})\| < \delta$$

• Note that the contrapositive statement is

$$||f(\mathbf{x}_k) - f(\mathbf{x})|| \ge \delta \Rightarrow ||\mathbf{x}_k - \mathbf{x}|| \ge \epsilon$$
 (1)

Carry-Over Property of Convergence in Probability

- Let $\{ {m X}_k \}$ be a sequence that converges in probability, i.e., p-lim ${m X}_k = {m X}$
- Using equation (1), we have

$$\forall \delta > 0, \exists \epsilon > 0, \text{ such that } P(\|f(\mathbf{X}_k) - f(\mathbf{X})\| \ge \delta) \le P(\|\mathbf{X}_k - \mathbf{X}\| \ge \epsilon)$$

• Hence, from p-lim $\boldsymbol{X}_k = \boldsymbol{X}$ it follows that

$$\lim_{k\to\infty} P(\|f(\boldsymbol{X}_k) - f(\boldsymbol{X})\| \ge \delta) = 0, \forall \delta > 0,$$

i.e., p-lim
$$f(\mathbf{X}_k) = f(\mathbf{X})$$

 This carry-over property of convergence in probability can also be denoted as

$$\boldsymbol{X}_k \overset{\mathsf{prob.}}{\to} \boldsymbol{X} \Rightarrow f(\boldsymbol{X}_k) \overset{\mathsf{prob.}}{\to} f(\boldsymbol{X})$$

Convergence in Mean Square

ullet A sequence $ig\{m{X}_kig\}$ converges to $m{X}$ "in mean square" if

$$\lim_{k\to\infty} E(\|\boldsymbol{X}_k - \boldsymbol{X}\|^2) = 0$$

- This is typically denoted as $X_k \stackrel{\text{m.s.}}{\to} X$
- By using the Markov inequality, we obtain

$$P(\|\boldsymbol{X}_k - \boldsymbol{X}\| \ge \epsilon) = P(\|\boldsymbol{X}_k - \boldsymbol{X}\|^2 \ge \epsilon^2) \le \frac{E(\|\boldsymbol{X}_k - \boldsymbol{X}\|^2)}{\epsilon^2}$$

• We have $\lim_{k\to\infty} P(\|\boldsymbol{X}_k-\boldsymbol{X}\|\geq\epsilon)\leq \lim_{k\to\infty} \frac{E(\|\boldsymbol{X}_k-\boldsymbol{X}\|^2)}{\epsilon^2}=0, \forall \epsilon>0$ and thus shown that convergence in mean square implies convergence in probability, i.e.,

$$\boldsymbol{X}_k \stackrel{\mathsf{m.s.}}{\to} \boldsymbol{X} \Rightarrow \boldsymbol{X}_k \stackrel{\mathsf{prob.}}{\to} \boldsymbol{X}$$

- Let $\theta \in \mathbb{R}^p$ be a parameter vector that parameterizes a (statistical family) of model distributions $p_{\theta}(x) = p(x; \theta)$
- Assume the statistical family is identifiable

$$p(x; \theta) = p(x; \theta'), \forall x \Leftrightarrow \theta = \theta'$$

and well-specified

$$\exists \theta \in \Theta$$
 such that $p_{\text{true}}(x) = p(x; \theta)$

where p_{true} is the true distribution

ullet If the family is identifiable and well-specified, then the truth distribution is uniquely represented by a "true parameter vector" $oldsymbol{ heta}_{ ext{true}}$:

$$\exists \theta_{\text{true}} \text{ such that } p_{\text{true}}(x) = p(x; \theta_{\text{true}})$$

ullet In this case, learning the true distribution is equivalent to learning the true parameter $heta_{
m true}$

- Let $\mu_k(\theta) = E(X^k; \theta)$ be the *k*-th non-central moment $(k = 1, 2, \cdots)$ of the model distribution $p(x; \theta)$
- Define $m(\cdot)$: $\mathbb{R}^p \to \mathbb{R}^p$ as a vector-valued function, i.e.,

$$m{m}(m{ heta}) = egin{bmatrix} \mu_{k_1}(m{ heta}) \ \mu_{k_2}(m{ heta}) \ dots \ \mu_{k_p}(m{ heta}) \end{bmatrix}$$

where the p elements are non-central moments $m_{k_i}(\theta)$ selected such that the $p \times p$ Jacobian matrix $\frac{\partial}{\partial \theta} m(\theta)$ is nonsingular for all θ

- Let $m_{ ext{true}}$ be the vector of true moments corresponding to the vector of model moments m(heta)
- Under the nonsingular Jacobian matrix assumption, the vector equation

$$extbf{ extit{m}}(heta) = extbf{ extit{m}}_{\mathsf{true}}$$

is a system of p independent scalar equations that can be solved for $heta_{\mathsf{true}}$, i.e.,

$$m{ heta}_{\mathsf{true}} = m{m}^{-1}(m{m}_{\mathsf{true}})$$

where $\mathbf{m}^{-1}(\cdot)$ is the inverse function of $\mathbf{m}(\cdot)$ which is also continuously differentiable

• However, $m_{\rm true}$ is unknown

- Assume that we observe N i.i.d. samples $\{x_1, \dots, x_N\}$ drawn from the true distribution $p_{\text{true}}(x)$
- Let $\hat{\mu}_k^{(N)} = \frac{1}{N} \sum_{i=1}^N x_i^k$ be the k-th non-central sample moment
- Define $\hat{\boldsymbol{m}}^{(N)}$ be the vector whose elements are the sample moments of the elements (which are moments) of $\boldsymbol{m}(\cdot)$

$$\hat{\boldsymbol{m}}^{(N)} = \begin{bmatrix} \hat{\mu}_{k_1}^{(N)} \\ \hat{\mu}_{k_2}^{(N)} \\ \vdots \\ \hat{\mu}_{k_p}^{(N)} \end{bmatrix}$$

ullet Note that $E(\hat{\mu}_k^{(N)}) = \mu_k(oldsymbol{ heta}_{ exttt{true}}) = \mu_{k*}$

• Assume $Var(X^k) < \infty, \forall k \in \{k_1, k_2, \cdots, k_p\}$

$$\begin{split} E\big((\hat{\mu}_k^{(N)} - \mu_{k*})^2\big) &= \mathsf{Var}\big(\hat{\mu}_k^{(N)}\big) \\ &= \mathsf{Var}\Big(\frac{1}{N}\sum_{i=1}^N X_i^k\Big) \\ &= \frac{1}{N^2}\sum_{i=1}^N \mathsf{Var}\big(X_i^k\big) \\ &= \frac{1}{N}\,\mathsf{Var}\big(X^k\big) \end{split}$$

Thus, we obtain

$$\lim_{N\to\infty} E\big((\hat{\mu}_k^{(N)} - \mu_{k*})^2\big) = 0 \Rightarrow \hat{\mu}_k^{(N)} \stackrel{\text{m.s.}}{\to} \mu_{k*} \Rightarrow \hat{\mu}_k^{(N)} \stackrel{\text{prob.}}{\to} \mu_{k*}$$

and p-lim
$$\hat{\boldsymbol{m}}^{(N)} = \boldsymbol{m}_{\mathsf{true}}$$

Now define the Method of Moments (MOM) estimate

$$\hat{oldsymbol{ heta}}^{(N)} = oldsymbol{m}^{-1}(\hat{oldsymbol{m}}^{(N)})$$

 The Carry-Over Property of Convergence in Probability yields consistency, i.e.,

$$\operatorname{p-lim}_{N\to\infty} \hat{\boldsymbol{\theta}}^{(N)} = \operatorname{p-lim}_{N\to\infty} \boldsymbol{m}^{-1}(\hat{\boldsymbol{m}}^{(N)}) = \boldsymbol{m}^{-1}(\boldsymbol{m}_{\mathsf{true}}) = \boldsymbol{\theta}_{\mathsf{true}},$$

Thus, we have

$$\hat{m{ heta}}^{(N)} \stackrel{\mathsf{prob.}}{ o} m{ heta}_{\mathsf{true}}$$