

Al for Aquaculture Behavior Insight

Harnessing Computer Vision to Understand Life Beneath the Surface

1. Introduction

The future of aquaculture depends not only on feeding fish and shrimp — but on understanding them. Today, the industry is data-rich in chemistry and mechanics: temperature, oxygen, pH, and flow are measured continuously. Yet one essential source of information remains largely untapped — behavior.

Behavior is the first and most sensitive indicator of stress, hunger, health, and reproductive readiness. It reveals what no probe can measure: how animals feel and react.

At Vismar Aqua, we believe that integrating Al-driven behavioral monitoring into aquaculture will redefine how farmers manage life in water.

2. The Project Vision

We are developing an Al-based visual monitoring system to automatically detect and interpret breeding behavior of Litopenaeus vannamei — the whiteleg shrimp, one of the world's most farmed crustaceans.

The system uses **computer vision and machine learning** to recognize patterns of courtship, pairing, and spawning in broodstock tanks.

Instead of relying on human observation or indirect parameters, hatchery operators will receive real-time insights into when animals are ready to mate or release eggs.

This project will be implemented at our **new hatchery in Ukraine**, with the goal of validating how digital observation can enhance the efficiency and welfare of shrimp breeding.

3. Why It Matters

Traditional aquaculture relies on experience and manual observation.

A technician must physically watch tanks to identify behavioral cues — an approach that is time-consuming, subjective, and easily affected by fatigue or bias.

An Al monitoring system changes this reality:

- Continuous observation 24/7, without disturbing animals.
- **Ø** Early detection of behavioral change, signaling stress or disease.
- Data correlation between environmental parameters and natural behavior.
- Standardized data that can be shared, compared, and learned from globally.

In short — Al allows aquaculture to move from reactive management to predictive care.

4. Broader Applications Across Aquaculture

Although the first application focuses on shrimp reproduction, the technology can be extended to **virtually every aquatic species and farming system**:

Fish Feeding Behavior

Al can analyze how fish respond to feeding events, reducing waste and optimizing feed conversion — the single largest cost in aquaculture.

🦐 Health and Welfare Monitoring

Changes in swimming speed, posture, or color can indicate stress or disease long before mortality occurs. Continuous video analysis enables early intervention.

Selective Breeding and Genetics

Behavioral traits can be quantified for selection programs — from growth aggressiveness in tilapia to spawning readiness in shrimp — giving scientists new tools for precision breeding.

Environmental Adaptation Studies

Al video data can correlate behavioral patterns with environmental variables like temperature, salinity, or photoperiod, supporting research into climate resilience.

Automation and Workforce Efficiency

Behavioral monitoring can reduce manual workload and improve safety by allowing staff to supervise multiple systems remotely through a single dashboard.

Training and Education

Visualized behavioral analytics become powerful learning material for hatchery managers, students, and technicians, helping raise the professional standard of aquaculture globally.

5. Socioeconomic and Global Impact

- 1. **Raising Productivity in Emerging Economies** affordable AI tools allow small and medium farms to benefit from the same precision as industrial players.
- 2. **Supporting Animal Welfare and Certification** transparent, data-driven welfare indicators can support eco-labels and responsible sourcing.
- 3. **Reducing Losses and Resource Waste** early detection of stress or disease reduces mortality and chemical use.
- 4. **Strengthening Food Security** more efficient reproduction and growth cycles increase local supply of sustainable protein.
- 5. **Empowering the Next Generation of Farmers** making aquaculture smarter, cleaner, and data-driven attracts young professionals to the blue economy.

6. Partnership and Collaboration

This initiative builds upon ongoing collaborations with international research institutions, including the **Alfred Wegener Institute (AWI, Germany)** and experts from the **ShrimpWiz project**, who develop Al solutions for shrimp welfare monitoring.

Together we aim to create a **digital ecosystem** where health, behavior, and environmental data merge into a single intelligent framework.

We are currently inviting partners — from universities, innovation hubs, and technology developers — to join this effort through **research collaboration or co-funded pilots**.

7. Looking Ahead

This is only the beginning.

The same principles that allow a camera to recognize shrimp behavior today will soon enable complete digital twins of aquaculture systems — where biology and technology coexist seamlessly.

At Vismar Aqua, we see a future where the farmer doesn't just measure water — **they understand the life inside it.**

∠ Contact

Vismar Aqua

Ukraine / Estonia

vismaraqua@gmail.com

wismar-aqua.com

whatsapp: +380675024730