1 A particle of mass m, travelling with speed u, collides with a stationary particle of mass M. The velocities of the two particles before and after the collision are shown.

Which vector diagram correctly shows the momenta before and after the collision?

2 Water flows out of a pipe and hits a wall.

When the jet of water hits the wall, it has horizontal velocity *v* and cross-sectional area *A*.

The density of the water is ρ . The water does not rebound from the wall.

What is the force exerted on the wall by the water?

- A $\frac{\rho V}{\Lambda}$
- $\mathbf{B} = \frac{\rho V}{\Delta}$
- **C** $\rho A v$
- **D** $\rho A v^2$

3 A stationary firework explodes into three pieces. The masses and the velocities of the three pieces immediately after the explosion are shown.

What are speed v_1 and speed v_2 ?

	$v_1 / \text{m s}^{-1}$	$v_2 / \mathrm{ms^{-1}}$
Α	4.0	4.0
В	9.2	9.2
С	14	14
D	16	16

A ball of mass $0.20 \,\mathrm{kg}$, travelling in the *x*-direction at a speed of $0.50 \,\mathrm{m \, s^{-1}}$, collides with a ball of mass $0.30 \,\mathrm{kg}$ travelling in the *y*-direction at a speed of $0.40 \,\mathrm{m \, s^{-1}}$.

The two balls stick together after the collision, travelling at an angle θ to the *x*-direction.

What is the value of θ ?

- **A** 39°
- **B** 40°
- \mathbf{C} 50°
- **D** 51°

1 Two balls, X and Y, move along a horizontal frictionless surface, as illustrated in Fig. 1.1.

Fig. 1.1 (not to scale)

Ball X has an initial velocity of $3.0\,\mathrm{m\,s^{-1}}$ in a direction along line AB. Ball Y has a mass of $2.5\,\mathrm{kg}$ and an initial velocity of $9.6\,\mathrm{m\,s^{-1}}$ in a direction at an angle of 60° to line AB.

The two balls collide at point B. The balls stick together and then travel along the horizontal surface in a direction at right-angles to the line AB, as shown in Fig. 1.2.

Fig. 1.2

(a) By considering the components of momentum in the direction from A to B, show that ball X has a mass of 4.0 kg.

Calculate the common speed V of the two balls after the collision.
$V = \dots m s^{-1} [2]$
Determine the difference between the initial kinetic energy of ball X and the initial kinetic energy of ball Y.
difference in kinetic energy =
[Total: 6]

2	(a)	State the law of conservation	n of momentum.	
				[2]
	(b)	Two particles A and B collid	e elastically, as illustrated	d in Fig. 2.1.
				y-direction V _A
		A B	x-direction -	A 60° x-direction
				v_{B}
		before collision		after collision
			Fig. 2.1	
		The initial velocity of A is 50	$0 \mathrm{ms^{-1}}$ in the <i>x</i> -direction	and B is at rest.
		The velocity of A after the collision is $v_{\rm B}$ at 30° to the x	collision is $v_{\rm A}$ at 60 $^{\circ}$ to the collinary collinary collinary at 60 $^{\circ}$ to the collinary coll	ne x-direction. The velocity of B after the
		The mass m of each particle	e is 1.67×10^{-27} kg.	
		(i) Explain what is meant I	by the particles colliding of	elastically.
			al momentum of A and B.	[1]
			momentum =	Ns [1]

(111)	collision	uie
	1. in the x-direction,	
	2. in the <i>y</i> -direction.	
		[2]
(iv)	Calculate the magnitudes of the velocities $v_{\rm A}$ and $v_{\rm B}$ after the collision.	

√ _A =	r	n s ⁻¹
∕ _B =	1	ms ⁻¹ [3]

[Total: 9]

3 (a) State Newton's second law of motion.

......

(b) A constant resultant force *F* acts on an object A. The variation with time *t* of the velocity *v* for the motion of A is shown in Fig. 3.1.

Fig. 3.1

The mass of A is 840 g.

Calculate, for the time t = 0 to t = 4.0 s,

(i) the change in momentum of A,

change in momentum = $.....kg m s^{-1}$ [2]

(ii) the force F.

F =N [1]

(c) The force F is removed at $t = 4.0 \, \text{s}$. Object A continues at constant velocity before colliding with an object B, as illustrated in Fig. 3.2.

Fig. 3.2

Object B is initially at rest. The mass of B is 730 g. The objects A and B join together and have a velocity of $4.7\,\mathrm{m\,s^{-1}}$.

(i) By calculation, show that the changes in momentum of A and of B during the collision are equal and opposite.

(ii)	Explain how the answers obtained in (i) support Newton's third law.
	[2]
(iii)	By reference to the speeds of A and B, explain whether the collision is elastic.
	[1]

[2]

[Total: 9]

4	(a)	State the principle of conservation of momentum.						
		[2						
	(b)	A stationary firework explodes into three different fragments that move in a horizontal plane as illustrated in Fig. 4.1.						
		\uparrow 7.0 m s ⁻¹						
		3.0 <i>M</i>						
A B								
		2.0 <i>M</i> 1.5 <i>M</i>						
		$6.0\mathrm{ms^{-1}}$ $8.0\mathrm{ms^{-1}}$						
		Fig. 4.1						
		The fragment of mass $3.0M$ has a velocity of $7.0\mathrm{ms^{-1}}$ perpendicular to line AB. The fragment of mass $2.0M$ has a velocity of $6.0\mathrm{ms^{-1}}$ at angle θ to line AB. The fragment of mass $1.5M$ has a velocity of $8.0\mathrm{ms^{-1}}$ at angle θ to line AB.						
		(i) Use the principle of conservation of momentum to determine θ .						
		θ=° [3]						

(ii) Calculate the ratio

kinetic energy of fragment of mass 2.0M kinetic energy of fragment of mass 1.5M.

ratio =[2]

[Total: 7]

5	(a)	State the pri	nciple of con	servation of ı	nomentum.				
								re	
	(b)	Ball A moves	-					a stationary ball E	-
						4.	.0 kg (A)	6.0 m s ⁻¹	
		A		(B)	initial pa of ball	ath Ā <-	ζθ √30°		
		4.0 kg		12kg			12kg B	3.5 m s ⁻¹	
		befo	ore collision			after coll	lision		
			Fig. 5.1			Fig. 5.2 ((not to scale)		
		The balls co Ball A has ve	llide and the	s ⁻¹ at an ang	as shown in le of θ to the θ	direction o	of its initial path n of the initial		
			sidering the c ball A, calcul	-	f momentum	at right-ar	ngles to the dir	rection of the initia	al
					heta :	=		° [3	3]

(ii)	Use your answer in (i) to show that the initial speed v of ball A is $12\mathrm{ms^{-1}}$. Explain your working.
	[2]
(iii)	By calculation of kinetic energies, state and explain whether the collision is elastic or inelastic.
	[3]
	[Total: 10]

6 A small remote-controlled model aircraft has two propellers, each of diameter 16 cm. Fig. 6.1 is a side view of the aircraft when hovering.

Fig. 6.1

Air is propelled vertically downwards by each propeller so that the aircraft hovers at a fixed position. The density of the air is $1.2 \, \text{kg} \, \text{m}^{-3}$. Assume that the air from each propeller moves with a constant speed of $7.6 \, \text{m} \, \text{s}^{-1}$ in a uniform cylinder of diameter 16 cm. Also assume that the air above each propeller is stationary.

(a) Show that, in a time interval of 3.0 s, the mass of air propelled downwards by **one** propeller is 0.55 kg.

[3]

- (b) Calculate:
 - (i) the increase in momentum of the mass of air in (a)

increase in momentum = Ns [1]

(ii) the downward force exerted on this mass of air by the propeller.

force = N [1]

(c)	Stat	te:
	(i)	the upward force acting on one propeller
		force = N [1]
	(ii)	the name of the law that explains the relationship between the force in (b)(ii) and the force in (c)(i).
		[1]
(d)	Det	ermine the mass of the aircraft.
		mass = kg [1]
(e)	air d	rder for the aircraft to hover at a very high altitude (height), the propellers must propel the downwards with a greater speed than when the aircraft hovers at a low altitude. Suggest reason for this.
		[1]
(f)	rota of 2	en the aircraft is hovering at a high altitude, an electric fault causes the propellers to stop ting. The aircraft falls vertically downwards. When the aircraft reaches a constant speed $2\mathrm{ms^{-1}}$, it emits sound of frequency $3.0\mathrm{kHz}$ from an alarm. The speed of the sound in the s $340\mathrm{ms^{-1}}$.
	Det airc	ermine the frequency of the sound heard by a person standing vertically below the falling raft.
		frequency = Hz [2]
		[Total: 11]

7	(a)	State Newton's thin	d law of motion.			
	(b)	A block X of mass <i>n</i> in Fig. 7.1.			ontal frictionless surfac	
	mass	speed 5v	Y	mass m_{γ}	speed v X Y	
			Fig. 7.1		Fig. 7.2	, , ,
		The two blocks stick	together and then	move with commo	h a stationary block Y n speed v , as shown in	
		(i) Use conservation	on of momentum to	show that the ratio	$\frac{m_{\rm Y}}{m_{\rm X}}$ is equal to 4.	
						[2]
		/!!\	41			

total kinetic energy of X and Y after collision total kinetic energy of X and Y before collision

((iii)	State the value	of the ratio in	(ii) for a	perfectly	/ elastic	collision

(c) The variation with time *t* of the momentum of block X in (b) is shown in Fig. 7.3.

Fig. 7.3

Block X makes contact with block Y at time $t = 20 \,\text{ms}$.

- (i) Describe, qualitatively, the magnitude and direction of the resultant force, if any, acting on block X in the time interval:
 - 1. t = 0 to t = 20 ms

.....

2. $t = 20 \,\text{ms}$ to $t = 40 \,\text{ms}$.

.....

[3]

(ii) On Fig. 7.3, sketch the variation of the momentum of block Y with time t from t = 0 to t = 60 ms.

[Total: 14]

8 A ball X moves along a horizontal frictionless surface and collides with another ball Y, as illustrated in Fig. 8.1.

Fig. 8.1 (not to scale)

Fig. 8.2 (not to scale)

Ball X has mass 0.300 kg and initial velocity $v_{\rm X}$ at an angle of 60.0° to line AB. Ball Y has mass 0.200 kg and initial velocity 6.00 m s⁻¹ at an angle of 60.0° to line AB. The balls stick together during the collision and then travel along line AB, as illustrated in Fig. 8.2.

(a) (i) Calculate, to three significant figures, the component of the initial momentum of ball Y that is perpendicular to line AB.

component of momentum = kg m s⁻¹ [2]

(ii) By considering the component of the initial momentum of each ball perpendicular to line AB, calculate, to three significant figures, $v_{\rm X}$.

 $v_{\rm X} = \dots m \, {\rm s}^{-1} \, [1]$

(iii) Show that the speed of the two balls after the collision is $2.4 \,\mathrm{m \, s^{-1}}$.