

STANDARD 10

COMPUTER SCIENCE

UNIT 01

CHAPTER 01

ALGORITHM FOR PROBLEM SOLVING

- 1. Define programming.
- The method of writing the instructions A: to solve the given problem is called programming.
- 2. What are the two types of programming techniques?
- A: The two types of programming techniques are
 - (a) Procedural Programming
 - (b) Object-Oriented Programming
- 3. What is procedural programming?
- Procedural programming is a program-A: ming technique in which variables are identified and instructions are written using the variables in the correct sequence to get the required result.
- 4. What is object-oriented programming?
- Object-oriented programming is a pro-A: gramming technique based on concept of objects which have data related to a person or item.
- 5. What is an algorithm?
- A: The step-by-step instructions required to solve any problem is called an algorithm.
- 6. Define flowchart.
- A: Flowchart is a diagrammatic representation of an algorithm.
- 7. Explain different symbols used in a flowchart.

The different symbols used in the A: flowchart are

nowchart are			
Symbol, Name	Function		
Start, Stop	The ellipse shape indicates the beginning (START) and ending (STOP) of the flowchart.		
[] Input, Output	The parallelogram shape represents the input and output instructions.		
Processing	A rectangle shape represents the processing step.		
Decision Box	The rhombus shape indicates a point where a decision is to be made.		
Flow of Control	Flow lines with arrow heads indicate the flow of operation, i.e., the exact sequence in which the instructions are to be executed.		
(A) Connector	A connector symbol represents a jump point, indicating that the process continues to another part of the flowchart.		

- What are the advantages of writing algo-8. rithms.
- The advantages of writing algorithms A: are
 - (a) Clarity: Provides a clear step-by-step approach to solving problems.
 - (b) Efficient Problem-Solving: Breaks down complex issues into manageable steps.
 - (c) Optimization: Helps improve time and space efficiency.
 - (d) Documentation: Acts as a reference for explaining the solution.
 - (e) Testing and Debugging: Makes it easier to test and debug code.

- 9. What are the advantages of drawing flowcharts?
- A: The advantages of drawing flowcharts are
 - (a) Clarity: Flowcharts provide a clear, visual representation of processes.
 - (b) Simplifies Complex Processes: Breaks down complex processes into simple, manageable steps.
 - (c) Documentation: Serves as a permanent record of processes for reference, training, and troubleshooting.
 - (d) Standardizes Procedures: Ensures consistency in performing tasks across teams or departments.
 - (e) Facilitates Debugging: Makes it easier to trace errors in algorithms or processes.
- 10. Differentiate between algorithm and flow-chart.

A:

HOW-CHart.			
Algorithm	Flowchart		
(a)Written in tex-	(a)Diagrammatic,		
tual form using	using symbols		
logical state-	like rectangles, di-		
ments.	amonds, and ar-		
	rows.		
(b)Describes the	(b)Represents the		
logic of a solution	logic visually		
in written lan-	through flow sym-		
guage.	bols.		
(c) Requires un-	(c)Easier to un-		
derstanding of	derstand for both		
programming or	technical and		
logic.	non-technical us-		
	ers.		
(d) Can be more	(d)Simplifies		
detailed and may	complex pro-		
involve complex	cesses into a vis-		
pseudocode.	ual flow of steps.		
(e)Used in algo-	(e)Used in pro-		
rithm design, pro-	cess documenta-		
gramming, and	tion, decision-		
problem-solving.	making, and pro-		
	gramming.		

11. Write the algorithm and draw the flowchart to exchange the values of two variables.

Algorithm: A:

Step 1: Start

Step 2: Input two numbers

A and B

Step 3: Print A and B

Step 4: A = A + B

Step 5: B = A - B

Step 6: A = A - B

Step 7: Print A and B

Step 8: Stop

KANGLO

Draw the flowchart and write the algorithm to find the sum of first n natural numbers. 12.

A:

Write the algorithm and draw the flowchart to find the factorial of a given number. 13.

Algorithm: A:

Step 1: Start

Step 2: Input the number N

Step 3: Set fact = 1 and count = 1

Step 4: fact = fact * count

Step 5: count = count + 1

Step 6: If count <= N, go to Step 4 else go to Step 7

Step 7: Print fact

Step 8: Stop

14. Write the algorithm and draw the flowchart to convert decimal number to binary equivalent.

Algorithm: A:

Step 1: Start

Step 2: Input the number N

Step 3: Divide the number by 2 and find the remainder, then store the remainder in an arrav.

Step 4: Divide the number by 2.

Step 5: Repeat the above two steps until the number is greater than zero.

Step 6: Print the array in reverse order to get the binary representation of the number.

Step 7: Stop

15. Write the algorithm and draw the flowchart to reverse digits of an integer.

Algorithm: A:

Step 1: Start

Step 2: Input the number N

Step 3: Set Reverse = 0

Step 4: If N > 0, go to step 5 else go to step 7

Step 5: Reverse = (Reverse *10) + (N % 10)

Step 6: N = N / 10 and go to Step 4

Step 7: Print Reverse

Step 8: Stop

16. Write the algorithm and draw the flowchart to find the GCD/HCF of two integers.

A: Algorithm:

- Step 1: Start
- Step 2: Input two numbers A and B
- Step 3: If A > B, go to Step 5, else go to Step 4
- Step 4: Set num = B, den =A and go to Step 6
- Step 5: Set num = A and den = B
- Step 6: rem = num % den
- Step 7: If rem != 0, go to Step 8, else go to Step 10
- Step 8: Set num = den and den = rem
- Step 9: rem = num % den, go to Step 7
- Step 10: Set GCD = den
- Step 11: Print GCD
- Step 12: Stop

17. Write an algorithm and draw the flowchart to test the primeness of an integer.

A: Algorithm:

Step 1: Start

Step 2: Input the number N

Step 3: Set count = 0 and i = 1

Step 4: If I <= N go to Step 6, else go to Step 8

Step 5: If N % i = 0 go to Step 6, else go to Step 7

Step 6: count = count + 1

Step 7: i = i + 1 and go to Step 4

Step 8: If count = 2, go to Step 9, else go to Step 10

Step 9: Print "Number is prime" and go to Step 11

Step 10: Print "Number is not prime"

Step 11: Stop

18. Write the algorithm and draw the flowchart to check whether a number is Palindrome or not.

Flowchart:

A: Algorithm

- Step 1: Start
- Step 2: Input the number N
- Step 3: original = N
- Step 4: Set rev = 0
- Step 5: If N > 0, go to Step 6, else go to Step 8
- Step 6: rev = (rev * 10) + (N % 10)
- Step 7: N = N / 10 and go to Step 5
- Step 8: If rev = original, go to Step 9, else go to Step 10
- Step 9: Print "The number is palindrome" and go to Step 11
- Step 10: Print "The number is not palindrome"
- Step 11: Stop

19. Write an algorithm and draw the flowchart to generate and print the Fibonacci series 0 1 1 2 3 5 8 ... n.

A: Algorithm:

Step 1: Start

Step 2: Input the number N

Step 3: Set a = 0, b = 1 and I = 2

Step 4: Print a and b

Step 5: I = I + 1

Step 6: If I <= N, go to Step 7, else go to Step 10

Step 7: $next_term = a + b$

Step 8: Print next_term

Step 9: Set a = b and $b = next_term$ and go to

Step 5

Step 10: Stop

