Translational Mechanics Symbols Used in This Book

Symbols that are **boldfaced** refer to vector quantities that have both a magnitude and a direction. Symbols that are *italicized* refer to quantities with only a magnitude. Symbols that are neither are usually units.

Symbol	Quantity
a, a	acceleration
ag	free-fall acceleration (acceleration due to gravity)
d, <i>d</i>	displacement
$\mathbf{F}\Delta t$	impulse
$\mathbf{F}_{\mathbf{g}}, F_{\mathbf{g}}$	gravitational force (weight)
$\mathbf{F_k}$, F_k	force of kinetic friction
$\mathbf{F_n}$, F_n	normal force
$\mathbf{F}_{\mathbf{net}}$, F_{net}	net force
$\mathbf{F}_{\mathbf{R}}$, F_R	force of air resistance
$\mathbf{F_s}$, F_s	force of static friction
$\mathbf{F}_{\mathbf{s,max}}, F_{s,max}$	maximum force of static friction
h	height
k	spring constant
KE	kinetic energy
KE_{trans}	translational kinetic energy
MA	mechanical advantage
ME	mechanical energy (sum of all kinetic and potential energies)
μ_k	(Greek mu) coefficient of kinetic friction
$\mu_{\scriptscriptstyle S}$	(Greek mu) coefficient of static friction
P	power
p, p	momentum
PE	potential energy
PE _{elastic}	elastic potential energy
PE_g	gravitational potential energy
r	separation between point masses
v, <i>ν</i>	velocity or speed
W	work
$W_{friction}$	work done by a frictional force (or work required to overcome a frictional force)
W_{net}	net work done
$\Delta \mathbf{x}, \Delta x$	displacement in the x direction
Δy , Δy	displacement in the <i>y</i> direction