16. आनुवंशिकता व परिवर्तन

- > अनुवंश 💎 > आनुवंशिकता : लक्षणे व लक्षणांचे प्रकटीकरण
- मेंडेलचे आनुवांशिकतेचे सिद्धांत
 गुणसूत्रांच्या अपसामान्यतेमुळे होणारे रोग

- 1. तुमच्या वर्गातील सर्व मुले किंवा मुली सारखीच दिसतात का?
- 2. पुढील मुद्दयांना अनुसरून विचार करा व समानता व फरक यांची नोंद करा. (शिक्षकांनी यासाठी मदत करायची आहे.)

अ.क्र	व्यक्ती वैशिष्टे	तुम्ही स्वत:	आजोबा	आजी	वडील	आई
1	त्वचेचा रंग					
2	चेहऱ्याची ठेवण (गोल/लांबट)					
3	उंची					
4	डोळ्यांचा रंग					
5	हाताच्या अंगठ्याची ठेवण					

आपल्या आसपास निसर्गातील एकाच प्रजातीमध्ये खूप विविधता असते, हे आपण यापूर्वीच अभ्यासले आहे परंतु ही विविधता नेमकी कशामुळे निर्माण होते, याचा या पाठात आपण विचार करणार आहोत.

अनुवंश (Inheritance)

सजीवातील गुणधर्म एका पिढीतून दुसऱ्या पिढीत कसे उतरतात, याचा सामान्यपणे आणि मुख्यत्वे जनुकांचा (Genes) अभ्यास करणारी जीवशास्त्राची एक शाखा आहे या शाखेला आनुवंशिकीशास्त्र (Genetics) असे म्हणतात.

पुनरुत्पादनाच्या प्रक्रियेतून नवीन संतती निर्माण होते. या संततीचे काही सूक्ष्म भेद वगळता जनकांशी खूप साम्य दिसून येते. अलैंगिक पुनरुत्पादनाच्या प्रक्रियेने निर्माण होणाऱ्या सजीवांत भेद सूक्ष्म असतात. तर लैंगिक प्रजननाने पुनरुत्पादित होणाऱ्या सजीवातील भेद तुलनेने जास्त असतात.

- तुमच्या वर्गातील तुमच्या मित्रांच्या कानाच्या पाळीचे काळजीपूर्वक निरीक्षण करा.
- 2. आपण सर्वजण मनुष्यप्राणी असूनही सर्वांच्या रंगामध्ये कोणता फरक तुम्हाला आढळतो?
- 3. तुम्ही सर्व जण इयत्ता ९ वी मध्ये आहात पण एकाच वर्गात काही मुले उंच तर काहीजण कमी उंचीचे का आढळतात?

16.1 चेहऱ्यातील काही भेद

आनुवंशिकता (Heredity)

मातापित्याची शारीरिक किंवा मानसिक लक्षणे संततीमध्ये संक्रमित होण्याच्या प्रक्रियेस आनुवंशिकता म्हणतात. म्हणूनच कुत्र्याची पिल्ले कुत्र्यासारखीच, कबुतराची पिल्ले कबुतरासारखी तर मानवाची संतती मानवासारखीच असते.

आनुवंशिक लक्षणे व लक्षणांचे प्रकटीकरण (Inherited traits and Expression of traits)

सजीवांमध्ये विशिष्ट लक्षणे अथवा वैशिष्ट्ये कशी प्रकट होतात?

मातापिता व संतती यांच्यात खूपसे साम्य असले तरी लहानमोठे भेदही आढळतात. हे साम्य व भेद आनुवंशिकतेचेच परिणाम असतात. आनुवंशाची यंत्रणा काय असते व ती कशी काम करते ते पाहूया. पेशीअंतर्गत प्रथिन – संश्लेषणासाठी आवश्यक अशा माहितीचा साठा DNA मध्ये असतो. DNA च्या ज्या खंडामध्ये विशिष्ट प्रथिनासंबंधी सर्व माहिती साठवलेली असते, त्याला त्या प्रथिनासाठीचे 'जनुक' असे म्हणतात. या प्रथिनांचा सजीवांमधील लक्षणांशी काय संबंध असतो ते जाणून घेणे आवश्यक आहे.

हा मुद्दा अधिक स्पष्ट होण्यासाठी वनस्पतीची उंची या लक्षणाचा विचार करू. वनस्पतीमध्ये वृद्धीसंप्रेरके असतात हे आपल्याला माहीत आहे. वनस्पतींच्या उंचीतील वाढ ही वृद्धीसंप्रेरकांच्या प्रमाणावर अवलंबून असते.

वनस्पतीद्वारे निर्माण होणाऱ्या वृद्धीसंप्रेरकाचे प्रमाण संबंधित विकराच्या कार्यक्षमतेवरून ठरते. कार्यक्षम विकरे जास्त प्रमाणात संप्रेरके निर्माण करतात. ज्यामुळे वनस्पतींची उंची वाढते. पण जर विकरांची कार्यक्षमता कमी पडली तर संप्रेरके कमी प्रमाणात तयार होतात व वनस्पतीची वाढ खुंटते.

गुणसूत्रे (Chromosomes)

सजीवांच्या पेशीकेंद्रकात असणारा व आनुवंशिक गुणधर्म वाहून नेणारा घटक म्हणजे गुणसूत्र होय. तो मुख्यत्वे केंद्रकाम्ले व प्रथिने यांनी बनलेला असतो. गुणसूत्रे पेशी विभाजनाच्या वेळी सूक्ष्मदर्शकाखाली स्पष्ट दिसतात. आनुवंशिक गुणधर्माचा आराखडा सांकेतिक रूपात धारण करणाऱ्या जनुकाचे वास्तव्य याच घटकावर असते. प्रत्येक सजीवाच्या गुणसूत्रांची संख्या विशिष्ट असते.

प्रत्येक गुणसूत्र DNA चे बनलेले असते, व पेशी विभाजनाच्या मध्यावस्थेत ते दंडाकृती दिसते. प्रत्येक गुणसूत्रावर एक संकुचित भाग असतो. त्याला प्राथमिक संकोचन (Primary Constriction) किंवा गुणसूत्रबिंदू (Centromere) म्हणतात. यामुळे गुणसूत्राचे दोन भाग पडतात. प्रत्येक भागास गुणसूत्रभुजा म्हणतात. विशिष्ट गुणसूत्रांवरील गुणसूत्रबिंदूची जागा ठरावीक असते. त्यामुळे गुणसूत्रांचे चार प्रकार पडतात.

16.2 गुणसूत्राची रचना

परिसरातील विविध सजीवांतील गुणसूत्रांची संख्या.

गुणसूत्रांचे प्रकार

गुणसूत्रांचे प्रकार पेशी विभाजनाच्या वेळी स्पष्टपणे दिसतात.

- 1. मध्यकेंद्री (Metacentric) या गुणसूत्रात गुणसूत्रबिंदू मध्यावर असतो व हे 'V' या इंग्रजी मुळाक्षरासारखे दिसतात. यात गुणसूत्र भुजा समान लांबीच्या असतात.
- 2. उपमध्यकेंद्री (Sub-metacentric) या गुणसूत्रात गुणसूत्रबिंदू मध्याच्या जवळपास असतो व हे 'L' या इंग्रजी मुळाक्षरासारखे दिसतात. यात एक गुणसूत्रभूजा दुसऱ्यापेक्षा थोडी छोटी असते.
- 3. अग्रकेंद्री (Acrocentric) या गुणसूत्रात गुणसूत्रबिंदू टोकाजवळ असतो. व हे 'j' या इंग्रजी मुळाक्षरासारखे दिसतात. यात एक गुणसूत्रभुजा खूपच मोठी व दूसरी खूपच छोटी असते.
- 4. अंत्यकेंद्री (Telocentric) या गुणस्त्रात गुणस्त्रबिंदू टोकाला असतो व हे 'i' या इंग्रजी मुळाक्षरासारखे दिसतात. यात एकच गुणस्त्र भूजा असते.

सामान्यतः कायिक पेशीत गुणसूत्रांच्या जोड्या असतात. या जोडीतील गुणसुत्रे आकार व रचनेने सारखी असल्यास त्यांना समजातीय गुणसूत्रे (Homologous Chromsomes) म्हणतात तर आकार व रचनेने सारखी नसल्यास त्यांस विजातीय गुणसूत्रे (Heterologous Chromosomes) म्हणतात. लैंगिक प्रजनन करणाऱ्या सजीवांत गुणसूत्रांची एक जोडी अन्य जोड्यांपेक्षा वेगळी असते. या जोडीतील गुणसूत्रांना लिंग गुणसूत्रे व अन्य गुणसूत्रांना अलिंगी गुणसूत्रे म्हणतात.

खाली काही सजीवांतील गुणसूत्रांची संख्या दिली आहे.

अ.क्र.	सजीव	गुणसूत्रांची संख्या		
1	खेकडा	200		
2	मका	20		
3	बेडूक	26		
4	गोलकृमी	04		
5	बटाटा	48		
6	मानव	46		

16.3 गुणसूत्र प्रकार

डी.एन.ए.(Deoxyribo Nucleic Acid)

गुणसूत्रे मुख्यत: डी.एन.ए.ची बनलेली असतात. इ.स. 1869 साली श्वेत रक्तपेशींचा अभ्यास करताना स्विस जीवरसायनशास्त्रज्ञ फ्रेड्रिक मिशर याने या आम्लाचा शोध लावला. प्रथम हे आम्ल फक्त केंद्रकात सापडले म्हणून याचे नाव केंद्रकाम्ल (Nuclic acid) ठेवण्यात आले. ते पेशीच्या इतर भागातही आढळते. डी.एन.ए. चे रेणू विषाणू, जीवाणूंपासून माणसांपर्यंत बहुतेक सर्व सजीवांत आढळतात. हे रेणू पेशींचे कार्य, वाढ व विभाजन (प्रजनन) नियंत्रित करतात म्हणून त्यांना प्रधान रेणू (Master Molecule) म्हणतात.

डी.एन.ए. रेणूची रचना सर्व सजीवांत सारखीच असते. इ.स. 1953 साली वॅटसन व क्रिक यांनी या रेणूच्या रचनेची प्रतिकृती तयार केली. या प्रतिकृतीत न्युक्लीओटाइडचे दोन समांतर धागे एकमेकांभोवती लपेटलेले असतात. यांस द्विसर्पिल (Double helix) रचना म्हणतात. या रचनेची तुलना पिळवटलेल्या लवचीक शिडीशी करता येईल.

डी.एन.ए. रेणूतील प्रत्येक धागा न्युक्लीओटाइड नावाच्या अनेक लहान रेणूंचा बनलेला असतो. नायट्रोजनयुक्त पदार्थ ॲडेनीन, ग्वानीन, सायटोसीन व थायमीन अशा चार प्रकारचे असतात. त्यापैकी ॲडेनीन व ग्वानीन यांना प्युरिन्स म्हणतात तर सायटोसीन व थायमीन यांना पिरिमिडीन्स म्हणतात.

न्युक्लीओटाइडच्या रचनेत शर्करेच्या एका रेणूला एक नायट्रोजनयुक्त पदार्थाचा रेणू व एक फॉस्फोरिक आम्लाचा रेणू जोडलेला असतो.

नायट्रोजनयुक्त पदार्थ चार प्रकारचे असल्यामुळे न्युक्लीओटाइडसुद्धा चार प्रकारचे असतात.

डी.एन.ए. च्या रेणूमध्ये न्युक्लीओटाइडची रचना साखळीसारखी असते. डी.एन.ए. चे दोन धागे म्हणजे शिडीच्या नमुन्यातील दोन खांब. प्रत्येक खांब आळीपाळीने जोडलेल्या शर्करेचा रेणू व फॉस्फिरिक आम्ल यांचे बनलेले असतात. शिडीची प्रत्येक पायरी म्हणजे हायड्रोजन बंधाने जोडलेली नायट्रोजनयुक्त पदार्थांची जोडी होय. नेहमीच ॲडेनीनची थायमीन बरोबर व ग्वानीनची सायोटोसीन बरोबर जोडी होते.

जनुक (Gene)

प्रत्येक गुणसूत्र एकाच डी.एन.ए. रेणूचे बनलेले असते. या डी.एन.ए. रेणूतील रेणूखंडांना जनुके (Genes) म्हणतात. डी.एन.ए. रेणूतील न्युक्लीओ-टाईडसच्या वैविध्यपूर्ण मांडणीमुळे भिन्न तन्हेची जनुके तयार होतात. ही जनुके एका ओळीत रचलेली असतात. जनुके पेशींच्या आणि शरीराच्या रचनेवर व कार्यावर नियंत्रण ठेवतात. तसेच ती अनुवंशिक लक्षणे मातापित्याकडून त्यांच्या संततीमध्ये संक्रमित करतात. म्हणून त्यांना अनुवंशिकतेचे कार्यकारी घटक म्हणतात. त्यामुळे माता पिता व त्यांची अपत्ये यांत पुष्कळसे साम्य आढळते. जनुकांमध्ये प्रथिनांच्या निर्मितीविषयक माहिती साठवलेली असते.

16.4 डी.एन.ए. (वॅटसन व क्रिक मॉडेल)

डी.एन.ए. – फिंगरप्रिंटिंग: प्रत्येक व्यक्तीत असलेल्या डी.एन.ए. च्या आराखड्याचा क्रम शोधला जातो. वंश ओळखण्यासाठी किंवा गुन्हेगाराला ओळखण्यासाठी याचा उपयोग होतो.

16.5 डी.एन.ए. रचना

तंत्रजानाची बिजे

इ.स.1990 मध्ये जगभरातील जनुक वैज्ञानिकांनी एकत्र येऊन 'मानवी जनुक प्रकल्प' हाती घेतला. जून 2000 मध्ये या प्रकल्पकर्त्यांनी आणि सेलेरा जिनोमिक्स कॉपोरेशन (अमेरिकेतील खाजगी उद्योग) यांनी संयुक्तपणे मानवी जनुकातील डी.एन.ए. रेणूचा संपूर्ण क्रम व आराखडा शोधून काढल्याचे घोषित केले. या प्रकल्पात मिळालेल्या माहितीवरून वैज्ञानिकांनी मानवी जनुकांची संख्या सुमारे 20,000 ते 30,000 असते हे निश्चित केले यानंतर वैज्ञानिकांनी अनेक सूक्ष्मजीवांतील जनुकांचा क्रम शोधला आहे. जीनोम संशोधनामुळे रोगकारक जनुके शोधता येतात. रोगकारक जनुके माहीत झाल्यास रोगाचे निदान करून योग्य इलाज करता येऊ शकतात.

संकेतस्थळ: www.genome.gov

आर.एन.ए.(Ribo Nucleic Acid)

आर.एन.ए. हे पेशीतील दुसरे महत्त्वाचे न्युक्लीक आम्ल होय. हे आम्ल रायबोज शर्करा, फॉस्फेटचे रेणू आणि ग्वानीन, सायटोसीन ॲडेनीन व युरॅसिल या चार नायट्रोजनयुक्त पदार्थांनी बनलेले असते. रायबोज शर्करा, फॉस्फेटचा रेणू आणि एक नायट्रोजनयुक्त पदार्थाचा रेणू यांच्या संयुगातून न्युक्लीक आम्लाच्या साखळीतील एक कडी म्हणजेच न्युक्लीओटाइड तयार होते. अशा अनेक कड्यांच्या जोडणीतून आर.एन.ए.चा महारेणू तयार होतो. त्यांच्या कार्यप्रणालीनुसार त्याचे तीन प्रकार आहेत.

- 1. **रायबोझोमल आर.एन.ए. (r RNA**) : रायबोझोम अंगकाचा घटक असलेला आर.एन.ए. चा रेणू होय. रायबोझोम प्रथिन संश्लेषणाचे काम करतात.
- 2. मेसेंजर आर.एन.ए. (mRNA) : पेशीकेंद्रामध्ये असलेल्या जनुकांमधील अर्थात डी.एन.ए. च्या साखळीवरील प्रथिनांच्या निर्मितीविषयीचा संदेश प्रथिनांची निर्मिती करणाऱ्या रायबोझोमपर्यंत नेणारा 'दत रेणू'.
- 3. ट्रान्सफर आर.एन.ए. (tRNA): mRNA वरील संदेशानुसार अमिनो आम्लाच्या रेणूंना रायबोझोमपर्यंत आणणारा आर.एन.ए.चा रेणू.

16.6 आर.एन.ए प्रकार

मेंडेल यांचे आनुवंशिकतेचे सिद्धांत

मातापित्याकडून संततीमध्ये समान प्रमाणात जनुकीय पदार्थ संक्रमित केले जातात. यावर लक्षणांच्या आनुवंशिकतेचे सिद्धांत आधारित आहेत. लक्षणांच्या अनुवंशात माता पित्याचा सहभाग समान असेल तर, संततीत कोणती लक्षणे आढळून येतील? मेंडेल यांनी याच दिशेने आपले संशोधन केले व अशा आनुवंशिकतेसाठी कारणीभूत असणाऱ्या प्रमुख सिद्धांताची मांडणी केली आहे. जवळ जवळ एक शतकापूर्वी त्यांनी करून पाहिलेले प्रयोग विस्मयकारक आहेत. मेंडेलचे सर्व प्रयोग वाटाण्याच्या झाडांमध्ये (Pisum sativum) आढळणाऱ्या दृष्य लक्षणांवर आधारित होते. ही लक्षणे पुढीलप्रमाणे.

16.7 वाटाण्याच्या झाडांची सात परस्परविरोधी दृश्य लक्षणे

परिचय शास्त्रज्ञांचा

ग्रेगर जोहान्स मेंडेल

(जन्म : 20 जुलै 1822, मृत्यु : 6 जानेवारी 1884)

ग्रेगर जोहान मेंडेल हा ऑस्ट्रीयन वैज्ञानिक होता. वाटाण्याच्या झाडांवर प्रयोग करून त्यांतील काही लक्षणांच्या आनुवंशिकतेचा त्याने अभ्यास केला. मेंडेलने असे दाखवून दिले की, या लक्षणांच्या आनुवंशात काही सिद्धांतांचे पालन केले जाते. हे सिद्धांत पुढे त्याच्याच नावाने प्रचलित झाले. मेंडेलने केलेल्या कामाचे महत्त्व इतरांना पटण्यासाठी 20 वे शतक उजाडावे लागले. या सिद्धांतांच्या पुनर्पडताळणीनंतर आज हेच सिद्धांत आधुनिक आनुवंशशास्त्राचा पाया ठरले आहेत.

माहीत आहे का तुम्हांला?

मानवामधील काही प्रभावी व अप्रभावी वैशिष्ट्ये

प्रभावी	अप्रभावी
दुमडणारी जीभ	न दुमडणारी जीभ
हातावर केस असणे	हातावर केस नसणे
काळे व कुरळे केस	भुरे व सरळ केस
कानाची मोकळी पाळी	कानाची चिकटलेली पाळी

मेंडेलच्या प्रयोगांचे निष्कर्ष स्पष्ट होण्यासाठी पुढील दोन प्रकारचे संकर विचारात घ्यावे लागतील.

मेंडेलचा एकसंकर संततीचा प्रयोग (Monohybrid Cross)

मेंडलेने जे प्रयोग केले त्यात विरुद्ध लक्षणांची एकच जोडी असलेल्या वाटाण्याच्या झाडांमध्ये संकर घडवून आणला. अशा प्रकारच्या संकराला एकसंकर म्हणतात.

एकसंकर गुणोत्तराचा अभ्यास करण्यासाठी आपण एक उंची हे लक्षण घेऊन उंच असणाऱ्या व बुटकी उंची असणाऱ्या वाटाण्याच्या झाडाचे उदाहरण घेऊ.

जनक पिढी (P_)

उंच उंची असणारी व बुटकी उंची असणारी झाडे संकरासाठी वापरण्यात आली. म्हणून ही जनक पिढी (P_1) होय. मेंडलने उंच व बुटक्या झाडांना अनुक्रमे प्रभावी व अप्रभावी असे शब्द वापरले. मेंडलने उंच झाडांना प्रभावी म्हटले, कारण पुढील पिढीतील सर्व झाडे उंच आली. बुटक्या झाडांना अप्रभावी हा शब्द वापरला कारण हे लक्षण पुढच्या पिढीत (F_1) आढळलेच नाही. हा प्रयोग 'पनेट स्क्वेअर' पद्धतीने खाली दिला आहे.

यावरून मेंडेलने असे प्रतिपादन केले की, लक्षणांच्या संक्रमणासाठी कारणीभूत ठरणारे घटक जोडीने आढळतात. आज आपण याच घटकांना जनुके म्हणून ओळखतो. प्रभावी जनुके इंग्रजी लिपीतील मोठ्या तर अप्रभावी जनुके छोट्या अक्षरांनी दर्शवली जातात. जनुके ही जोडीनेच आढळत असल्यामुळे उंच झाडांसाठी (TT) तर बुटक्या झाडांसाठी (tt) अशी अक्षरे वापरतात. ही जनुकांची जोडी युग्मक निर्मितीच्या वेळी विभक्त होते. यामुळे T घटक असणारे व t घटक असणारे असे दोन प्रकारचे युग्मक तयार होतात.

पहिली संतानीय पिढी (F₁)

या प्रयोगात मेंडेलला असे आढळले की पहिल्या संतानीय पिढीतील (F₁) सर्व झाडे उंच होती, परंतु F_1 पिढीतील उंच झाडे P_1 पिढीतील उंच झाडापेक्षा वेगळी आहेत कारण F, पिढीतील झाडांचे जनक उंच व बुटकी झाडे आहेत, हे मेंडेलने जाणले. F, पिढीतील निरीक्षणावरुन उंच झाडातील घटक बुटक्या झाडातील घटकांपेक्षा प्रभावी असतो असा निष्कर्ष मेंडेलने काढला. $F_{_{\parallel}}$ पिढीतील सर्व झाडे उंच असली तरी त्यांच्यात बुटक्या झाडांना कारणीभूत ठरणारे घटकही होते. म्हणजेच $\mathbf{F}_{_{1}}$ पिढीतील झाडांची स्वरूपविधा उंच असली तरी जनुकविधा मिश्र स्वरूपाची आहे. स्वरूपविधा म्हणजे सजीवांचे बाह्यरुप किंवा सजीवातील दृष्य वैशिष्ट्ये. उदा., उंच अथवा बुटकी झाडे तर जनुकविधा म्हणजे दृश्य लक्षणांसाठी कारणीभूत असलेली जनुकांची (घटकांची) जोडी. जनक पिढीतील उंच झाडांची जनुकविधा (TT) असून ती एकाच प्रकारची (T) युग्मके तयार करतात. F पिढीतील उंच झाडांची जनुकविधा (Tt) असून ती T व t अशा दोन प्रकारची युग्मके तयार करतात. यावरून आपण असे म्हणू शकतो की F₁ पिढीतील उंच झाडे व P₁पिढीतील उंच झाडे यांची स्वरूपविधा समान असली तरी जनुकविधा भिन्न आहे. मेंडेलने हा प्रयोग पुढे सुरू ठेवला व F, पिढीतील झाडांचे स्वफलन होऊ दिले. त्यातून दुसरी संतानीय पिढी F, तयार झाली.

दुसरी संतानीय पिढी (F3)

दुसऱ्या संतानीय पिढीत उंच व बुटकी अशा दोन्ही प्रकारची झाडे होती. मेंडेलच्या आकडेवारीनुसार एकूण 929 वाटाण्याच्या झाडांपैकी 705 झाडे उंच तर 224 झाडे बुटकी आली. म्हणजेच या झाडांचे स्वरूपविधा गुणोत्तर जवळपास 3 उंच : 1 बुटके तर जनुकीय गुणोत्तर 1TT:2Tt:1tt असे आहे. यावरून निष्कर्ष असा निघतो की स्वरूपाचा विचार करता F_2 पिढीतील झाडे दोन प्रकारची तर जनुकीय संकल्पनेनुसार तीन प्रकारची झाडे येतात. हे प्रकार तक्त्यात दर्शवले आहेत.

F ₂ शुद्ध प्रभावी TT - उंच झाडे	समयुग्मनजी
F ₂ शुद्ध अप्रभावी (tt) - बुटकी झाडे	समयुग्मनजी
F ₂ मिश्र प्रकारची (Tt) - उंच झाडे	विषमयुग्मनजी

मेंडेलची दिवसंकर संतती (Dihybrid cross)

द्विसंकरात विरोधी लक्षणांच्या दोन जोड्यांचा समावेश होतो. मेंडेलने एकापेक्षा जास्त लक्षणांच्या जोड्या एकाचवेळी वापरून संकरणाचे आणखी प्रयोग केले. यात गोल-पिवळ्या (RRYY) बीजांच्या झाडांचा सुरकुतलेल्या-हिरव्या (rryy) बीजांच्या झाडांशी संकर घडवून आणला. यात बीजाचा रंग व प्रकार अशा दोन लक्षणांचा समावेश आहे. म्हणूनच याला द्विसंकर म्हटले जाते.

जनक पिढी (P₁)

मेंडेलने गोल-पिवळी बीजे येणाऱ्या तसेच सुरकुतलेली-हिरवी बीजे येणाऱ्या वाटाण्याच्या झाडांची निवड केली आहे ती तक्त्याप्रमाणे.

मेंडेलचा द्विसंकर संततीचा प्रयोग

जनक पिढी P

स्वरूपविधा गोल व पिवळे वाटाणे सुरकुतलेले व हिरवे वाटाणे

जनुकविधा RRYY rryy

युग्मक RY ____ry

पहिली पिढी F₁ RrYy

(स्वरूपविधा: गोल, पिवळे वाटाणे)

जनक पिढी P₂ F1चे स्वयंपरागण

स्वरूपविधा गोल-पिवळे वाटाणे गोल-पिवळे वाटाणे

जनुकविधा RrYy RrYy

युग्मके RY, Ry, rY, ry RY, Ry, rY, ry

दुसरी पिढी F,

पुंयुग्मक	RY	Ry	rY	ry
स्त्रीयुग्मक				
RY	RRYY	RRYy	RrYY	RrYy
Ry	RRYy	RRyy	RrYy	Rryy
rY	RrYY	RrYy	rrYY	rrYy
ry	RrYy	Rryy	rrYy	rryy

 P_1 पिढीची युग्मके तयार होताना जनुकांची जोडी स्वतंत्ररीत्या वेगळी होते म्हणजेच RRYY झाडांपासून RR व YY अशी युग्मके तयार होत नाहीत तर फक्त RY प्रकारची युग्मके तयार होतात तसेच rryy झाडांपासून ry युग्मके तयार होतात. यावरून आपण असे म्हणू शकतो की युग्मकांमध्ये जनुकांच्या जोडीचे प्रतिनिधित्व त्यातील प्रत्येकी एका घटकाद्वारे होते.

जरा डोके चालवा.

स्वरूपविधा गुणोत्तर

- 1. गोल पिवळी -
- 2. सुरकुतलेली पिवळी -
- 3. गोल हिरवी
- 4. सुरकुतलेली हिरवी -गुणोत्तर = : : :

जनुकविधा गुणोत्तर

- RRYY -

गुणोत्तर

- = ::::::::
- 1. (RR) व (rr) यांचा एकसंकर दर्शवा व F_2 पिढीचे जनुकविधा व स्वरूपविधा गुणोत्तर लिहा.
- 2. F_1 पिढीमध्ये पिवळे गोल व हिरवे सुरकतलेले वाटाणे या लक्षणांपैकी फक्त पिवळे गोल वाटाणे हे लक्षणच का प्रकट झाले असावे?

एकसंकर प्रयोगांच्या निष्कर्षावरून द्विसंकर प्रयोगाच्या F_1 पिढीतील झाडांना पिवळे, गोल वाटाणे येतील अशी मेंडेलची अपेक्षा होती. त्याचे अनुमान बरोबरही होते. या वाटाण्याच्या झाडांची जनुकविधा YyRr असली तरी स्वरूपविधा मात्र पिवळ्या गोल बीया येणाऱ्या झाडांप्रमाणे होती, कारण पिवळा रंग हा हिरव्यापेक्षा प्रभावी व गोल आकार हा सुरकुतलेल्या आकारापेक्षा प्रभावी होता. द्विसंकर प्रयोगाच्या F_1 पिढीतील झाडांना दोन लक्षणांच्या समावेशामुळे द्विसंकरज म्हणतात.

 F_1 पिढीतील झाडे चार प्रकारची युग्मके तयार करतात. RY, Ry, rY, ry. यांपैकी RY व ry ही युग्मके P_1 युग्मकांप्रमाणेच आहेत.

 F_1 पिढीतील झाडांचे स्वफलन घडून येते तेव्हा दुसरी संतानीय पिढी (F_2) निर्माण होते. या पिढीतील संततीमध्ये लक्षणांचे संक्रमण कसे होते ते पृष्ठ क्र.187 वरील तक्त्यात थोडक्यात दर्शविले आहे व सूत्ररूपाने कसे मांडता येईल. त्याची कृती तक्त्याशेजारील चौकटीत दिली आहे. 4 प्रकारचे पुंयुग्मक व 4 प्रकारचे स्त्रीयुग्मक यांच्या संकरणातून ज्या 16 वेगवेगळ्या जुळण्या तयार होतात, त्या बुद्धिबळाच्या पटासारख्या चौकटी फलक आकृतीत (पृष्ठ क्र.187) दर्शवल्या आहेत. या फलकाच्या शीर्षस्थानी पुंयुग्मक असून कडेला स्त्रीयुग्मक आहेत. दुसऱ्या संतानीय पिढीच्या अभ्यासावर आधारित निरीक्षणे पृष्ठ क्र.187 वरील तक्त्याप्रमाणे येतील.

आनुवंशिक विकृती (Genetic disorder)

गुणसूत्रातील अपसामान्यतेमुळे किंवा जनुकातील उत्परिवर्तनामुळे निर्माण झालेले आजार म्हणजे आनुवंशिक विकृती होय. या विकृतीमध्ये गुणसूत्राचे आधिक्य किंवा कमतरता, गुणसूत्राच्या एखाद्या भागाचा लोप किंवा त्याचे स्थानांतरण अशा स्थितीचा समावेश होतो. दुभंगलेले ओठ, वर्णकहीनता यांसारखी शारीरिक व्यंगे आणि सिकलसेल ॲनेमिया, हिमोफिलिया यांसारखे शरीरिक्रयांतील दोष ही आनुवंशिक विकृतींची काही उदाहरणे आहेत.

माणसात 46 गुणसूत्रे ही 23 जोड्यांच्या स्वरूपात असतात. गुणसूत्रांच्या जोड्यांचा आकार आणि आकारमान यात विविधता असते. या जोड्यांना अनुक्रमांक दिलेले आहेत. गुणसूत्रांच्या 23 जोड्यापैकी 22 जोड्या अलिंगी गुणसूत्रांच्या असतात तर 1 जोडी लिंग गुणसूत्रांची असते. स्त्रियांमध्ये ही गुणसूत्रे 44 + xx अशी दाखवतात तर पुरुषांमध्ये 44 + xy अशी दाखवतात.

योहान मेंडेलने आपल्या प्रयोगात कारकांचे म्हणजेच जनुकांचे दोन प्रकार सांगितले आहेत. त्यासाठी त्याने प्रभावी व अप्रभावी असे शब्द वापरले आहेत.

मानवी पेशीतील गुणसूत्रांची संख्या, त्यांचे लिंगसापेक्ष प्रकार, त्यावर असणाऱ्या जनुकांचे प्रकार (प्रभावी, अप्रभावी) या बाबी विचारात घेतल्या तर आनुवंशिक विकृती कशा उद्भवतात आणि त्यांचे संक्रमण कसे होते, हे लक्षात येते.

16.8 मानवाच्या सामान्य गुणसूत्रांचा तक्ता

अ. गुणसूत्रांच्या अपसामान्यतेमुळे निर्माण होणाऱ्या विकृती

गुणसूत्रांच्या एकूण संख्येत बदल झाल्यास पुढील दोष उद्भवतात. अलिंगी गुणसूत्रांची संख्या कमी झाल्यास जन्मणारी संतती वांझ नसते. याउलट अर्भकाच्या एकूण गुणसूत्रांच्या संख्येत एखादी अलिंगी गुणसूत्रांची जोडी वाढली तर जन्मणाऱ्या बालकात शारीरिक किंवा मानसिक दोष निर्माण होतात आणि त्याचे आयुर्मानही कमी असते. यांतील काही विकृती पुढीलप्रमाणे आहेत.

1. डाउन्स सिंड्रोम किंवा मंगोलिकता (डाउन्स-संलक्षण : (46+ 1) 21व्या गुणसूत्राची त्रिसमसूत्री अवस्था)

गुणसूत्रातील अपसामान्यतेमुळे उद्भवणारी डाउन्स सिंड्रोम किंवा मंगोलिकता ही एक विकृती होय. ही विकृती मानवाच्या बाबतीत पहिल्यांदाच शोधलेली व वर्णन केलेली गुणसूत्रीय विकृती आहे. यात गुणसूत्ररचनेमध्ये एकूण 47 गुणसूत्रे दिसतात. या विकृतीला ट्रायसोमी 21 (एकाधिक द्विगुणितता 21) असेही म्हणतात. कारण या विकृतीत अर्भकाच्या शरीरातील सर्व पेशीमधे 21 व्या गुणसूत्राच्या जोडीबरोबर एक अधिकचे गुणसूत्र असते. त्यामुळे अशा अर्भकात 46 ऐवजी 47 गुणसूत्रे दिसतात. अशी बालके शक्यतो मितमंद व अल्पायुषी असतात. मानसिक वाढ खुंटणे, हे सर्वात जास्त ठळक वैशिष्ट्य आहे.

16.9 डाउन्स सिंड्रोम बाधित मूल

इतर वैशिष्ट्यांमध्ये कमी उंची, पसरट मान, चपटे नाक, आखुड बोटं, आडवी एकच हस्तरेखा, डोक्यावर विरळ केस, इत्यादींसोबतच यांचे अपेक्षित आयुर्मान 16 ते 20 वर्षे असते. यांच्या चेहऱ्याची ठेवण मंगोलियन व्यक्तींसारखी असते.

2. टर्नर सिंड्रोम (टर्नर- संलक्षण)

अलिंगी गुणसूत्रांप्रमाणे लिंग गुणसूत्रांतील अपसामान्यतेमुळे काही विकार उद्भवतात. टर्नर सिंड्रोम किंवा 44+X या विकारात एका X गुणसूत्रातील लैंगिकतेशी संबंधित भाग निकामी झालेला असल्याने एकच X गुणसूत्र कार्यरत असते किंवा जनकांकडून एकच X गुणसूत्र संक्रमित होते. अशा स्त्रियांमध्ये 44+XX या स्थितीऐवजी 44+X अशी स्थिती असते. अशा स्त्रियांमध्ये प्रजनेंद्रियांची वाढ पूर्ण झालेली नसल्यामुळे त्या प्रजननक्षम नसतात.

16.10 टर्नर सिंड्रोम बाधित मुलाचा हात

3. क्लाईनफेल्टर्स सिंड्रोम (क्लाईनफेल्टर्स संलक्षण) : 44+ XXY

पुरुषांमधील लिंग गुणसूत्रांतील अपसामान्यतेमुळे हा विकार उद्भवतो यात पुरुषांमध्ये 44+xy खेरीज x गुणसूत्र अधिक असल्यामुळे गुणसूत्रांची एकूण संख्या 44+xxy अशी होते. ज्या पुरुषांमध्ये गुणसूत्रे अशा स्वरूपात असतात ते पुरुष अल्पविकसित असतात आणि प्रजननक्षम नसतात. अशा प्रकारच्या विकृतीला क्लाईनफेल्टर्स सिंड्रोम असे म्हणतात.

राष्ट्रीय आरोग्य अभियान

राष्ट्रीय आरोग्य अभियानांतर्गत राष्ट्रीय ग्रामीण आरोग्य अभियान एप्रिल 2005 तर राष्ट्रीय शहरी आरोग्य अभियान 2013 पासून सुरू करण्यात आले आहे.

ग्रामीण आणि शहरी भागातील आरोग्य व्यवस्थेचे बळकटीकरण करणे, विविध आजार तसेच रोग यांवर नियंत्रण मिळवणे, आरोग्यविषयक जनजागृती करणे व विविध योजनांच्या माध्यमातून रुग्णांना अर्थसहाय्य्य देणे ही या अभियानाची प्रमुख उद्दिष्टे आहेत.

ब. एक जनुकीय उत्परिवर्तनामुळे होणारे रोग (एकजनुकीय विकृती)

एखाद्या सामान्य (निर्दोष) जनुकामध्ये उत्परिवर्तन होऊन त्याचे रूपांतर सदोष जनुकात होण्याने जे विकार उद्भवतात त्यांना एकजनुकीय विकृती म्हणतात. या प्रकारचे सुमारे 4000 हून अधिक मानवी विकार माहीत झालेले आहेत. सदोष जनुकांमुळे शरीरात जनुकांमार्फत होणारी उत्पादिते तयार होत नाहीत किंवा अत्यल्प प्रमाणात तयार होतात. या प्रकारचे चयापचयाचे जन्मजात विकार कोवळ्या वयात जीवघेणे ठरू शकतात. अशा प्रकारच्या रोगांची उदाहरणे हचिनसन्स रोग, टेसॅक्स रोग,गॅलेक्टोसेमीया, फेनिल किटोनमेह, सिकलसेल ॲनिमिया, (दात्रपेशी पांडूरोग) सिस्टीक फायब्रॉसिस (पुटी तंतुभवन), वर्णकहीनता, हीमोफेलिया, रातांधळेपणा, इत्यादी आहेत.

1. वर्णकहीनता (Albinism) वर्णकहीनता हा एक जनुकीय विकार आहे. या विकारामध्ये शरीर मेलॅनिन हे वर्णक(रंगद्रव्य) तयार करू शकत नाही. डोळे, त्वचा आणि केस यांना मेलॅनिन या तपिकरी रंगाच्या वर्णकामुळे रंग येत असतो. वर्णकहीन व्यक्तीची त्वचा निस्तेज आणि केस पांढरे असतात. डोळे सामान्यपणे गुलाबी असतात कारण परितारिका आणि दृष्टिपटल यांमध्ये वर्णक नसते.

16.11 वर्णकहीनता बाधित मुलाचे डोळे व केस

2. दात्रपेशी पांडूरोग (सिकलसेल ॲनिमिआ)

प्रथिने, डी.एन.ए, इत्यादींसारख्या रेणूच्या रचनेतील कोणत्याही अगदी थोडया बदलांचा परिणाम रोग किंवा विकार होण्यामध्ये होतो. हिमोग्लोबीन रेणूच्या रचनेतील सहावे अमिनो आम्ल म्हणजे ग्लुटामिक आम्ल होय. याची जागा वॅलीन या आम्लाने घेतल्यास हिमोग्लोबीनच्या रेणूंची रचना/आकार बदलतो. त्यामुळे लोहित रक्तकणिकांचा विवृत्ताकृती असलेला सामान्य आकार विळ्याच्या आकाराचा बनतो. या स्थितीला दात्रपेशी पांडूरोग असे म्हणतात. या विकाराने बाधित व्यक्तीमध्ये हिमोग्लोबीनची ऑक्सिजन वाहून नेण्याची कार्यक्षमता कमी होते.

या स्थितीत अनेकदा लोहित रक्तकणिकांची गुठळी तयार होते आणि त्या नाश पावतात. परिणामी रक्तवाहिन्यांमध्ये अडथळा निर्माण होतो आणि अभिसरण संस्था, मेंदू, फुफ्फुसे, वृक्क, इत्यादींना हानी पोहचते. सिकलसेल आजार आनुवंशिक आहे. गर्भधारणेच्या वेळी जनुकीय बदलांमुळे हा आजार होतो. आई आणि वडील दोघेही सिकलसेलग्रस्त किंवा वाहक असल्यास त्यांच्या अपत्यांना हा आजार होऊ शकतो. त्यामुळे समाजातील सिकलसेल वाहक किंवा सिकलसेलग्रस्त व्यक्तींनी आपापसात विवाह टाळावा.

सिकलसेल आजाराने बाधित व्यक्तीचे प्रकार

- 1. सिकलसेल वाहक व्यक्ती (AS)कॅरियर
- 2. सिकलसेल ग्रस्त/पिडित व्यक्ती (SS) सफरर सिकलसेल रोग्याची ओळख व लक्षणे

हातापायावर सूज येणे, सांधे दुखणे, असह्य वेदना होणे, सर्दी व खोकला सतत होणे, अंगात बारीक ताप राहणे, लवकर थकवा येणे, चेहरा निस्तेज दिसणे, हिमोग्लोबीनचे प्रमाण कमी होणे.

माहीत आहे का तुम्हांला?

महाराष्ट्रात सिकलसेल ॲनिमिआचे सुमारे 2.5 लाखापेक्षा जास्त रुग्ण असून सुमारे 21 जिल्हे सिकलसेल आजाराने जास्त प्रभावित आहेत. यात विदर्भातील 11 जिल्ह्यांचा समावेश होतो.

सर्व जण रक्त तपासणी करूया ! सिकलसेल आजारावर नियंत्रण मिळवूया!

16.12 सिकलसेल

सिकलसेल हा आजार पुढील प्रकारे होतो.

संकेत चिन्हे AA = सामान्य (Normal), AS = वाहक (Carrier), SS = पिडित (Sufferer)

अ.क्र	पुरुष	स्त्री	सिकलसेल अपत्य निर्मिती
1	AA	AA	आई व वडील दोघेही सामान्य असतील तर सर्व अपत्ये निरोगी जन्मास येतील.
2	AA किंवा	AS किंवा	आई व वडील यांपैकी एक सामान्य व एक वाहक असल्यास 50% अपत्ये सामान्य
	AS	AA	तर 50% अपत्ये ही वाहक जन्माला येतील.
3	AA किंवा	SS किंवा	आई व वडील यांपैकी एक सामान्य व एक पीडित असल्यास सर्व अपत्ये वाहक
	SS	AA	होतील.
4	AS	AS	आई व वडील दोघेही वाहक असल्यास 25% सामान्य, 25% पीडित व 50%
			वाहक अपत्ये जन्माला येतील.
5	AS किंवा	SS किंवा	आई व वडील यापैकी एक वाहक व एक पीडित असल्यास 50% वाहक व 50%
	SS	AS	पीडीत अपत्ये जन्मास येतील.
6	SS	SS	आई व वडील दोघेही पीडित असल्यास सर्व अपत्ये पीडित जन्मास येतील.

सिकलसेल निदान – राष्ट्रीय आरोग्य अभियान अंतर्गत सर्व जिल्हा रूग्णालयांत सिकलसेल निदानासाठी असणारी सोल्युबिलिटी टेस्टची सुविधा आहे. तसेच ग्रामीण व उपजिल्हा रूग्णालयात यासाठी इलेक्ट्रोफोरेसीस ही निश्चित निदानाची चाचणी करण्यात येते.

उपाययोजना

- 1. हा आजार प्रजोत्पादन या एकाच माध्यमातून प्रसारित होतो. म्हणून लग्नापूर्वी किंवा लग्नानंतर वधू आणि वर दोघांनीही तपासणी करून घ्यावी.
- 2. सिकलसेल वाहक / पीडित व्यक्तीने दुसऱ्या वाहक/ पीडित व्यक्तीशी लग्न टाळावे.
- 3. सिकलसेल आजारी व्यक्तीने दररोज एक फॉलिक ॲसिडची गोळी सेवन करावी.

16.13 सिकलसेल बाधित मुलाचा हात

क. तंतूकणिकीय विकृती

तंतुकणिकेतील डी.एन.ए रेणूतील जनुकेही उत्परिवर्तनाने सदोष होऊ शकतात. भ्रूण विकसित होताना अंडपेशीकडूनच तंतूकणिका येत असल्याने या प्रकारे उद्भवणारे विकार फक्त मातेकडूनच संततीला मिळतात. लेबेरची आनुवंशिक चेताविकृती हे तंतूकणिकीय विकृतीचे उदाहरण आहे.

ड. बहुजनुकीय उत्परिवर्तनामुळे होणाऱ्या विकृती (बहुघटकीय विकृती)

काही वेळा एकापेक्षा जास्त जनुकांमध्ये बदल घडून आल्यामुळे विकृती उद्भवतात. अशा बहुतेक विकारांत गर्भावस्थेतील अर्भकावर आजूबाजूच्या पर्यावरणातील घटकांचा परिणाम घडल्यामुळे विकारांची तीव्रता वाढते. अनेक सामान्यपणे आढळणाऱ्या विकृती या प्रकारच्या आहेत. जसे दुभंगलेले ओठ, दुभंगलेली टाळू, जठराचे संकोचन, पाठीच्या कण्यातील दोष इत्यादी. याखेरीज मधुमेह, रक्तदाब, हृदयविकार, दमा, अतिस्थुलता हे विकारही बहुघटकीय आहेत. बहुघटकीय विकृती मेंडेलच्या आनुवंशिकतेच्या आकृतिबंधाशी तंतोतंत जुळत नाहीत. पर्यावरण, जीवनशैली, आणि अनेक जनुकांतील दोष यांच्या संयुक्त गुंतागुंतीच्या परिणामातून त्या उद्भवतात.

तंबाखू सेवन व पेशींची अनियंत्रित वाढ (कर्करोग) सहसंबंध

बऱ्याचशा व्यक्ती तंबाखूचा वापर धूम्रपान करण्यासाठी आणि चघळण्यासाठी करताना दिसतात. कोणत्याही स्थितीतील तंबाखूजन्य पदार्थ हे कर्करोग निर्माण करतात. विडी, सिगारेटच्या धूम्रपानामुळे पचनक्रियेस हानी पोहोचते. त्यामुळे घशात जळजळ होते आणि खोकला येतो. अतिधूम्रपानामुळे वारंवार अस्थिरता निर्माण होते. बोटांमध्ये कंप निर्माण होतो. कोरड्या खोकल्यामुळे झोपेत अडथळा निर्माण होतो. तसेच आयुर्मान कमी होणे, दीर्घकालिन ब्राँकायटिस, फुफ्फुस, तोंड, स्वरयंत्र, ग्रासनली, स्वादुपिंड, मूत्राशय यांचा कर्करोग, परिहृदरोग यांसारखे आजार उद्भवतात.

धूम्रपानाचे वाईट परिणाम तंबाखूमधील 'निकोटीन' या घटकामुळे होतात. निकोटीनचा मध्यवर्ती आणि परिघीय चेतासंस्थेवर दुष्परिणाम होतो. यामुळे धमन्या टणक होतात. म्हणजेच धमनी काठिण्यता येऊन रक्तदाब वाढतो.

तंबाखूच्या धूरामध्ये पायरिडिन, अमोनिया, अल्डीहाइड फुरफ्युरॉल, कार्बन मोनॉक्साइड, निकोटीन, सल्फरडायऑक्साइड यांसारखी धोकादायक संयुगे असतात. यामुळे अनियंत्रित पेशी विभाजन उद्भवते. तंबाखूचा धूर सूक्ष्म कार्बनच्या कणांनी पुर्णपणे भरलेला असतो. यामुळे फुफ्फुसातील निरोगी ऊतीचे रूपांतर काळपट रंगाच्या ऊतींच्या पुंजामध्ये होते. यामुळे कर्करोग होतो. तंबाखू व तंबाखूजन्य पदार्थ चघळत असताना त्यातील रसाचा बराचसा भाग शरीरात शोषला जातो. तंबाखूच्या अतिसेवनाने ओठ, जीभ यांचा कर्करोग, दृष्टिदोष व चेताकापरे होऊ शकतात. म्हणून कर्करोगापासून शरीर संरक्षित ठेवायचे असेल तर धूम्रपान व तंबाखू तसेच तंबाखूजन्य पदार्थांचे सेवन टाळावे.

तंबाखूसेवन विरोधात पथनाट्य/नाटिका बसवून सादर करा व तंबाखूविरोधी मोहिमेत सहभागी व्हा.

स्वाध्याय 💐

 कंसात दिलेल्या पर्यायांपैकी योग्य पर्याय निवडून वाक्ये पूर्ण करा.

(आनुवंश, लैंगिक प्रजनन, अलैंगिक प्रजनन, गुणसूत्रे, डी.एन.ए, आर.एन.ए, जनुक)

- अ. आनुवंशिक लक्षणे मात्यापित्यांकडून त्यांच्या संततीमध्ये संक्रमित करतात म्हणून...... ना आनुवंशिकतेचे कार्यकारी घटक म्हणतात.
- आ. पुनरुत्पादनाच्या प्रक्रियेने निर्माण होणाऱ्या सजीवांत सूक्ष्म भेद असतात.
- इ. सजीवांच्या पेशीकेंद्रकात असणारा व आनुवंशिक गुणधर्म वाहून नेणारा घटक म्हणजे...... होय.
- ई. गुणसूत्रे मुख्यत: नी बनलेली असतात.
- पुनरुत्पादनाच्या प्रक्रियेने निर्माण होणाऱ्या सजीवांतील भेद जास्त असतात.

2. स्पष्टीकरण लिहा.

- अ. मेंडेलची एकसंकर संतती कोणत्याही एका संकरादवारे स्पष्ट करा.
- आ. मेंडेलची द्विसंकर संतती कोणत्याही एका संकरादवारे स्पष्ट करा.
- इ. मेंडेलची एकसंकर व द्विसंकर संतती यातील फरकांचे मुददे लिहा.
- ई. जनुकीय विकार असलेल्या रुग्णाबरोबर राहण्याचे टाळणे योग्य आहे का?

3. पुढील प्रश्नांची उत्तरे तुमच्या शब्दात लिहा.

- अ. गुणसूत्रे म्हणजे काय हे सांगून त्याचे प्रकार स्पष्ट करा.
- आ. डी.एन.ए. रेणूची रचना स्पष्ट करा.
- इ. डी.एन.ए फिंगर प्रिटिंगचा कशाप्रकारे उपयोग होऊ शकेल याबाबत तुमचे मत व्यक्त करा.
- ई आर.एन.ए. ची रचना, कार्य व प्रकार स्पष्ट करा.
- उ. लग्नापूर्वी वधू व वर या दोघांनी रक्ततपासणी करणे का गरजेचे आहे ?

- 4. थोडक्यात माहिती लिहा.
 - अ. डाऊन्स सिंड्रोम/ मंगोलिकता
 - आ. एकजनुकीय विकृती
 - इ. सिकलसेल ॲनिमिआ लक्षणे व उपाययोजना

अ, ब व क गटांचा परस्परांशी काय संबंध आहे?

अ	ब	क
लेबेरची	44 + xxy	निस्तेज त्वचा, पांढरे केस
आनुवंशिक		
चेताविकृती		
मधुमेह	45 + x	पुरुष प्रजननक्षम नसतात
वर्णकहीनता	तंतूकणिका	स्त्रिया प्रजननक्षम नसतात
	विकृती	
टर्नर सिंड्रोम	बहुघटकीय	भ्रूण विकसित होताना ही
	विकृती	विकृती निर्माण होते
क्लाईनफेल्टर्स	एकजनुकीय	रक्तातील ग्लुकोजच्या
सिंड्रोम	विकृती	पातळीवर परिणाम

6. सहसंबंध लिहा

- अ. 44 + X : टर्नर सिंड्रोम : : 44 + XXY :
- आ. 3:1 एकसंकर :: 9:3:3.....
- इ. स्त्रियाः टर्नर सिंड्रोम ::पुरूष:

7. आनुवंशिक विकृतीच्या माहितीच्या आधारे ओघतक्ता तयार करा.

``	आनुव	गिशक 	विकृत	fl .	

उपक्रम:

- अ. डी.एन.ए रेणूची प्रतिकृती बनवून माहिती सादर करा.
- आ. तंबाखूसेवन व कर्करोग याबाबत करावयाचे प्रबोधन यावर एक Power Point Presentation तयार करून त्याचे सादरीकरण करा.

