CS 201: ASSIGNMENT

Harshit Bansal(200428), Jaya Gupta (200471), Pratyush Gupta(200717)

December 1, 2021

1. Answer to question 1:

To prove: $\sum_{m=0}^{d} P_m(x_1, x_2,x_n) Q_{d-m}(x_1, x_2,x_n) = 0$ - (i)

- Consider any general term of the above sigma of the form $T = x_{i_1}^{p_1} x_{i_2}^{p_2}...x_{i_k}^{p_k}$ where $\Sigma p_i = d$. Such a term has **k** distinct variables $(x_1, x_2, ..., x_k)$.
- The maximum number of distinct variables any term of the above sigma(eq. i) can contain is d.
- Each term will be the product of two terms, one from P and the other from Q.
- If a term has k distinct variables, then the maximum n for which P_n can contribute is k because P_{k+1} will contribute k+1 distinct terms.
- Let the term contributed by the polynomial P have n distinct variables ($0 \le n \le k$). These variables will be drawn from the variables included in the term T, so the number of choices is $\binom{k}{n}$.
- The rest of the term will be uniquely produced by the polynomial Q.
- So the coefficient for this (when P chooses n distinct terms out of k from T) is $(-1)^n \binom{k}{n}$. $(0 \le n \le k)$.
- Coefficient of T in the above sigma (eq. (i)) is $\sum_{n=0}^{n=k} (-1)^n \binom{k}{n}$. This summation is 0 for all k. Hence the coefficient of every possible term will be 0.

2. Answer to question 2:

 $\alpha \in R$ and N is a natural number

To prove : $|q\alpha - p| \le \frac{1}{N}$ for some p, $q \in Z$

Let's divide the interval [0,1] in N segments of length 1/N i.e. $[0,\frac{1}{N}],[\frac{1}{N},\frac{2}{N}]$,, $[\frac{N-1}{N},1]$

Let's consider N numbers

Now, there are N + 1 numbers in the interval [0, 1] and the interval [0, 1] is divided in N segments. According to pigeon-hole principle, there exists a segment which contains at least two numbers.

 $l, k \in \mathbb{Z}$ and l > k such that

So
$$\exists n_l, n_k \in \{n_1, n_2,, n_{N+1}\}$$

 $|n_l - n_k| \leq \frac{1}{N}$
 $\Rightarrow |l\alpha - [l\alpha] - k\alpha + [k\alpha]| \leq \frac{1}{N}$
 $\Rightarrow |(l-k)\alpha - ([l\alpha] - [k\alpha])| \leq \frac{1}{N}$
Take $q = l - k$ and $p = [l\alpha] - [k\alpha]$
 $|q\alpha - p| \leq \frac{1}{N}$

3. Answer to question 3:

Case 1:No Swap

Define
$$g(m_i) = m_i \forall i$$

 $g(a_k) = a_k \& g(b_k) = b_k \text{ (given)}$

It can be clearly seen that if $(a_k, m_i) \in E$ then $(g(a_k), g(m_i)) = (a_k, m_i) \in E$. Similarly for b_k

Case 2: One Swap

- Take any (a_i, b_i) and swap it (All cases can be proved in the same way)
- Swap $(a_1, b_1) \Rightarrow g(a_1) = b_1 \& g(b_1) = a_1$
- Now lets find all possible combinations of $g(m_i)$ which are preferred by each (a_i, b_i)

Swap Cases					
	(a_1, b_1)	(a_2, b_2)	(a_3, b_3)		
$g(m_1)$	$m_3 m_4$	$m_1 m_3$	$m_1 m_4$		
$g(m_2)$	$\mid m_3 \mid m_4 \mid$	$\mid m_2 \mid m_4 \mid$	$m_2 m_3$		
$g(m_3)$	$m_1 m_2$	$\mid m_1 \mid m_3 \mid$	$m_2 m_3$		
$g(m_4)$	$\mid m_1 \mid m_2 \mid$	$\mid m_2 \mid m_4 \mid$	$m_1 m_4$		

Each entry in the table tells the possible value of $(g(m_i)$ for every pair (a_k, b_k) .

• From the above table it can be shown that there are no values of $g(m_i)$ that satisfies all the pairs (a_k, b_k) .

Case 3: Two swaps

- Take any two pairs of (a_i, b_i) and swap them (All other cases can be proved in the same way)
- Swap $(a_1, b_1) \Rightarrow g(a_1) = b_1 \& g(b_1) = a_1$
- Swap $(a_2, b_2) \Rightarrow g(a_2) = b_2$ & $g(b_2) = a_2$
- Now lets find all possible combinations of $g(m_i)$ which are preferred by each (a_i, b_i)

Swap Cases					
	(a_1, b_1)	(a_2, b_2)	(a_3, b_3)		
$g(m_1)$	$m_3 m_4$	$m_2 m_4$	$m_1 m_4$		
$g(m_2)$	$\mid m_3 \mid m_4 \mid$	$\mid m_1 m_3 \mid$	$m_2 m_3$		
$g(m_3)$	$\mid m_1 \mid m_2 \mid$	$\mid m_2 \mid m_4 \mid$	$m_2 m_3$		
$g(m_4)$	$\mid m_1 \mid m_2 \mid$	$\mid m_1 \mid m_3 \mid$	$m_1 m_4$		

Each entry in the table tells the possible value of $(g(m_i)$ for every pair (a_k, b_k) .

• It can be seen from the above table that g can be extended to automorphism with the following definition.

$$g(m_1) = m_4$$

$$g(m_2) = m_3$$

$$g(m_3) = m_2$$

$$g(m_4) = m_1$$

$$g(a_1) = b_1 \quad \& \quad g(b_1) = a_1$$

$$g(a_2) = b_2 \quad \& \quad g(b_2) = a_2$$

$$g(a_3) = a_3 \quad \& \quad g(b_3) = b_3$$

Case 4: Three swaps

- Swap $(a_1, b_1) \Rightarrow g(a_1) = b_1 \& g(b_1) = a_1$
- Swap $(a_2, b_2) \Rightarrow g(a_2) = b_2$ & $g(b_2) = a_2$
- Swap $(a_3, b_3) \Rightarrow g(a_3) = b_3$ & $g(b_3) = a_3$
- Now lets find all possible combinations of $g(m_i)$ which are preferred by each (a_i, b_i)

Swap Cases					
	(a_1, b_1)	(a_2,b_2)	(a_3, b_3)		
$g(m_1)$	$m_3 m_4$	$m_2 m_4$	$m_2 m_3$		
$g(m_2)$	$m_3 m_4$	$m_1 m_3$	$m_1 m_4$		
$g(m_3)$	$m_1 m_2$	$m_2 m_4$	$m_1 m_4$		
$g(m_4)$	$m_1 m_2$	$m_1 m_3$	$m_2 m_3$		

Each entry in the table tells the possible value of $(g(m_i))$ for every pair (a_k, b_k) .

• From the above table it can be shown that there are no values of $g(m_i)$ that satisfies all the pairs (a_k, b_k) .

Hence it is proved that g can be extended to automorphism if and only if the number of swaps are even.

4. Answer to question 4:

Given:
$$\phi: F_p \to F_p$$
 $\phi(x) = x^p$ $p \in \text{Prime Number}$ $(F_p = \{0, 1, 2, \dots, p-1\}, \bigoplus, \bigotimes)$ with arithmetic modulo p

• Elements of F_p are equivalence classes, so ϕ can be more explicity written as

$$\phi(x) = (x^p)\%p$$

For ϕ to be homomorphism:

$$\phi(x_1 \bigoplus x_2) = \phi(x_1) \bigoplus \phi(x_2)$$

$$\phi(x_1 \bigotimes x_2) = \phi(x_1) \bigotimes \phi(x_2)$$

where $x_1, x_2 \in F_p$

Some properties of modulo used: (% = modulo symbol)

(a)
$$([(p_1+p_2)\%p]^p)\%p = (p_1+p_2)^p \%p$$

(b)
$$([(p_1 * p_2)\%p]^p)\%p = (p_1 * p_2)^p \%p$$

(c) According to Fermat's Little theorem in modulo arithmetic

$$a^p\%p = a\%p$$

Proving ϕ is a homomorphism :

• Property 1

$$\phi(x_1 \bigoplus x_2) = \phi(x_1) \bigoplus \phi(x_2), \qquad x_1, x_2 \in F_p$$
$$(x_1 \bigoplus x_2)^p \% p = (x_1)^p \% p \bigoplus (x_2)^p \% p$$

According to Big Fermat's Little theorem

$$(x_1)^p \%p = x_1\%p$$

$$(x_1 \bigoplus x_2)^p \%p = ((x_1 + x_2)\%p)^p \%p = (x_1 + x_2)^p \%p = (x_1 + x_2)\%p$$
(Using property (a) and (c))
$$(x_1 + x_2)\%p = x_1\%p \bigoplus x_2\%p$$

Since $x_1, x_2 \in F_p$

$$x_1\%p = x_1$$
$$(x_1 + x_2)\%p = x_1 \bigoplus x_2$$
$$(x_1 + x_2)\%p = (x_1 + x_2)\%p$$

• Property 2

$$\phi(x_1 \otimes x_2) = \phi(x_1) \otimes \phi(x_2), \qquad x_1, x_2 \in F_p$$
$$(x_1 \otimes x_2)^p \% p = (x_1)^p \% p \otimes (x_2)^p \% p$$
$$((x_1 * x_2) \% p)^p \% p = (x_1)^p \% p \otimes (x_2)^p \% p$$

Using property (b) and (c)

$$(x_1 * x_2)^p \% p = (x_1) \% p \otimes (x_2) \% p$$
$$(x_1 * x_2) \% p = (x_1) \% p \otimes (x_2) \% p$$

Since $x_1, x_2 \in F_p$

$$x_1\%p = x_1$$
$$(x_1 * x_2)\%p = x_1 \otimes x_2$$
$$(x_1 * x_2)\%p = (x_1 * x_2)\%p$$

Hence proved that ϕ is a endomorphism