浙江大学

2012 年攻读硕士学位研究生入学考试试题

XIV.	考试科目 _	工程光学基	5础		编号_841_	
	注意: 答	秦必须写在答	題纸上,写	百在试卷或章	草稿纸上均无	效。
	选择题(每题					
1.	0. 那么磁场强	会,在各向同性均度 H 同点同时刻60° c.180	的相位为	的光波,其电场	强度E某点某时	划的相位为
2.	在牛顿环装置。 a. 向外扩张	中, 若用平行光垂 b. 向中心收缩	直照明,则当 c. 不受影	透镜与平板间即响	缩小时,条纹将	
3.	下列条件不是一	干涉所必须的条件	的是			
		類率相同 振动方向相同			列长度	
4.	设线数 N1=60 栅其零级主极;	00 的光栅其零级3 大强度为 12,则 I	E极大强度为 I 2 / I1 为	1。在其它条件	相同时,线数 N2=	=1800 的光
	a. 1/9	b. 1/3	e. 1	d. 3	c. 9	
5.	根据菲涅尔衍 度为11。若没	射理论, 当只允许 有波带片时观察/	F中心第一、第 F上的亮度为 I	二、第三共三/ 2、則 11 / 12 为	个半波带通过时观	察屏上的亮
	a. 4	b. 2 c. 1	d. 1	/ 2	e. 1 / 4	
6.	为了观察原子	光谱的超精细结构	1, 应首选下列	哪一种分光系统	克?	
	a. 棱锭	b. 典型的	F-P干涉仪	c. 典型	的光栅	
7.	以直径为 D fi	的圆孔作为衍射受	限系统的出瞳	, 在相干光照明]时其截止频率为	$\rho_{\rm I}$,而用非
	相干光照明时	其截止频率为 ρ_2	$, \mathfrak{p}_1 \rho_2 / \rho_1$	h		
	a. 1/4	b. 1/2	c. 1	d. 2	e. 4	
8.	将一块光栅置 的空间频率为		7. 若在其頻谱	面上只允许-11	和+2 级频谱通过。	則其光栅缘
	a. 与原来相同	b. 为原来	的 3 倍 (为原来的2位	ž.	

a. e 光线 b. e 光波法线 c. e 光线和 e 光波法线
10. 为了检验自然光、圆偏振光、部分偏振光(圆偏振光+自然光),则在检偏器前插入一块 1/4 波片。当旋转检偏器一周,看到光强为两亮两半暗,则为
a. 自然光 b. 圆偏振光 c. 部分偏振光
11. 把一个 6 倍的望远镜系统倒过来,即原来的目镜作为物镜,物镜作为目镜。观察远处景物时,
a. $ \beta < 1$ b. $ \gamma > 1$ c. $ \beta > 1$ $\underline{\mathbb{H}} \Gamma < 1$ d. $ \alpha < 1$
12. 在照明系统和成像系统的匹配关系中,以下说法正确的有几个? ①照明系统的视场≥成像系统的视场 ②照明系统的相对孔径≥成像系统的相对孔径 ③光源经照明系统所成的像高≥成像系统的物高 ④照明系统的拉赫不变量≥成像系统的 拉赫不变量 ⑤照明系统的阿贝不变量≥成像系统的阿贝不变量
a.1个 b.2个 c.3个 d.4个
13. 在以下图形中选择一种棱镜系统,适合于在直筒望远镜中充当转像棱镜。
a b. c. d.
14. 对于两正薄透镜组合, 间距为 d, 以下说法正确的有?
①当d为第一透镜焦距时总焦距等于第一透镜焦距 ②当d为第一透镜焦距时总焦距为第二透镜焦距 ③当d为等时总焦距最大 ①当d为零时总光焦度最大 ⑤可以构成伽利略望远镜 ⑥可以构成开普勒望远镜 a.4 种 b.3 种 c.2 种 d.1 种
15. 某正常眼通过带有分划板的望远镜系统观察无穷远物体,然后把望远镜递给一近视眼,后者用此望远镜观察有限距离处的物体,应当
a. 物镜靠近分划板, 目镜远离分划板 b. 物镜远离分划板, 目镜远离分划板 c. 物镜靠近分划板, 目镜靠近分划板 d. 物镜远离分划板, 目镜靠近分划板
16. 若一直径为 10mm 的激光束从地球发射到月球表面时,其光斑直径约为 30km,地球和月球之间的距离为 384000km,如要使落到月球上的光斑直径变为 100 米左右,则地球上出射的激光束应扩束到直径多少左右?
a 1.5m h 2m e 3m d 10 m

9. 当光从各向同性媒质射向各向异性媒质时,在界面上发生折射,此时满足折射定律的有 o

光线,同时有

17. 下面哪些因素直接影响单模模激光器的输出频率选择:					
a. 工作物质的增益特性和输出镜的透射光谱位置					
b. 谐振腔的形状					
e. 谐振腔的腔长和工作物质的增益特性					
d. 谐振腔的反射率大小					
18. 半导体激光器的发射波长基本上由材料的带隙能量(禁带宽度)决定,其波长λ和带质量 Eg 的关系是:	枕				
$\lambda < \frac{hc}{E_g}$ $\lambda = \frac{E_g}{h}$ b.					
$\lambda = \frac{hc}{E_g} \qquad \lambda > \frac{hc}{E_g}$					
19. 在一个激光谐振腔内部加入一个倾斜的透明平板玻璃,其主要目的是为了:					
a. 增加谐振腔的光程 b. 选择谐振频率					
c. 输出偏振光					
d. 转折光路					
20. 侧向出光的半导体激光器,投射到远处时的光斑形状为 a. 圆形					
b. 椭圆形,椭圆长轴平行 PN 结的界面					
c. 椭圆形, 椭圆长轴垂直 PN 结的界面 d. 正方形					
21. 当激光谐振腔内激光开始振荡时,激光的输出光强将逐渐增大,此时增益介质的增益系 将发生什么变化:	数				
a. 逐渐增大,最后稳定在某一恒定值,出现饱和现象					
b. 先增大, 然后减小到某一恒定值					
c. 逐渐降低,最后趋向于0					
d. 逐渐降低到某一恒定值					
二、填空题(每空1分,共10分)					
1. 用一负透镜和一正透镜组合成一个对远物成实像正光焦度的系统,正透镜靠近像面,当	4=				
者距离逐渐增大时,总焦距变1A,如果像面大小一定,则对无穷远物成像的视场角	变				
1B,					
2. 对于单薄透镜,当孔径光阑位于2A时不产生畸变,位于2B时产生负畸变。	0 93				
3. 写出以下点列图对应的像差名称: 图(a)表示3A,图(b)表示3B,图(c)表示3C_	_°				

显微镜物镜放大倍率越大,焦距越___4A___,景深越__4B__; 135 相机镜头焦距越长,景深越___4C__。

三、作图题(12分)

- 1. (4分)画出施密特棱镜的展开图。
- 2. (8分)图示光学系统由两个海透镜和之间的孔径光阑组成,图中已画出一条平行于光轴的光线路径和有限距离处物 AB的位置和大小。试画出:(1)由 B点入射的主光线,(2)由 B点入射的上光线(或下光线)(要求由物面画到像面),(3)像的位置和大小。(请先把原图按原来大小、比例画在答题纸上再行作图)

四、(14分)一平面电磁波, 其在均匀介质中传播时电场强度可表示为:

 $\vec{E}(x, y, z, t) = (E_x \vec{x} - \sqrt{3} \vec{y} + \sqrt{5} \vec{z}) \exp[i(x + \sqrt{3} y + \sqrt{5} z - 6 \times 10^8 t) \times 10^6]$ V/m . If ϕ

 \vec{x} , \vec{y} , \vec{z} 分别是直角坐标系的三个单位坐标方向矢量,x,y,z 为坐标变量,t 为时间变量。 求该平面电磁波的:①振动周期:②此均匀介质中的波长:③传播方向单位矢量(cos a ,cos β , cos γ);④传播速度(相速):⑤该均匀介质的折射率:⑥电场强度 \vec{E} 的 x 方向电场分量 E_x :

⑦磁感强度 \vec{B} 的振幅 $|\vec{B}|$ 。(有单位的均应写出单位,题目中未注明单位的均为标准国际单位)。