ИНФОРМАЦИОННОТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЫСОКОТЕХНОЛОГИЧНЫХ СИСТЕМ

Материалы Всероссийской конференции с международным участием

 $Mосква, \ PУДH, \ 16-20 \ anpens \ 2018 \ г.$

УДК 004:007(063) ББК 32.81 И74 Конференция проводится в рамках реализации Программы повышения конкурентоспособности РУДН «5-100», проект М $2.4.1.\Pi1$ «Организация и проведение HTM, повышающих международный и всероссийский уровень признания ученых РУДН».

Организатор конференции: Российский университет дружбы народов Соорганизаторы конференции:

Московский технический университет связи и информатики (МТУСИ);

Институт проблем управления им. В. А. Трапезникова Российской академии наук (ИПУ РАН); Лаборатория информационных технологий Объединенного института ядерных исследований (ЛИТ ОИЯИ);

Федеральный исследовательский центр «Информатика и управление» Российской академии наук (ФИЦ ИУ РАН)

Программный комитет: Самуйлов К. Е., д.т.н., проф., РУДН — председатель программного комитета; Мележик В. С., д.ф.-м.н., ЛТФ ОИЯЙ, РУДН — сопредседатель программного комитета; Севастьянов Л. А., д.ф.-м.н., проф., PУДH — сопредседатель программного комитета; Чукарин А. В., к.ф.-м.н., доцент, РУДН — сопредседатель программного комитета; Гудкова И. А., к.ф.-м.н., доцент, РУДН — секретарь программного комитета; Андреев С. Д., к.т.н., РУДН, Tampere University of Теchnology, г. Тампере, Финляндия; Башарин Г. П., д.т.н., проф., РУДН; Боголюбов А. Н., д.ф.-м.н., проф., МГУ; Виницкий С. И., д.ф.-м.н., проф., ЛТФ ОИЯЙ; Вишневский В. М., д.т.н., проф., ИПУ РАН; Гайдамака Ю. В., д.ф.-м.н., доцент, РУДН; Гнатич М. М., проф., Pavol Jozef Šafárik University іп Коšісе, Словакия; Гольдштейн Б. С., д.т.н., проф., СПб ГУТ; Горшенин А. К., к.ф.-м.н., доцент, ФИЦ ИУ РАН; Дружинина О. В., д.ф.-м.н., проф., ФИЦ ИУ РАН; Ефимушкин В. А., к.ф.-м.н., доцент, ОАО «Интеллект Телеком»; Кореньков В.В., д.т.н., проф., ЛИТ ОИЯИ; Королькова А.В., к.ф.-м.н., доцент, РУДН; Крянев А.В., д.ф.-м.н., проф., НИЯУ «МИФИ»; Кулябов Д.С., к.ф.м.н., доцент, РУДН; Кучерявый А. Е., д.т.н., проф., СПб ГУТ; Кучерявый Е. А., к.т.н., проф., НИУ ВШЭ; Ланеев Е.Б., д.ф.-м.н., проф., РУДН; Мартикайнен О.Е., проф., Service Innovation Research Institute, г. Хельсинки, Финляндия; Назаров А. А., д.т.н., проф., ТГУ; Наумов В. А., проф., Service Innovation Research Institute, г. Хельсинки, Финляндия; Осипов Г. С., д.ф.-м.н., проф., ФИЦ ИУ РАН; Пузынин И. В., д.ф.-м.н., проф., ЛИТ ОИЯИ; Пшеничников А. П., к.т.н., проф., МТУСИ; Ромашкова О. Н., д.т.н., проф., МГПУ; Севастьянов А. Л., к.ф.-м.н., РУДН; Соченков И. В., к.ф.-м.н., РУДН, ФИЦ ИУ РАН; Степанов С. Н., д.т.н., проф., МТУСИ; Сущенко С. П., д.т.н., проф., ТГУ; Хачумов В. М., д.т.н., проф., ФИЦ ИУ РАН; Цирулев А. Н., д.ф.-м.н., проф., ТвГУ; Цитович И. И., д.ф.-м.н., доцент, ИППИ РАН; Чулуунбаатар О., д.ф.-м.н., ЛИТ ОИЯИ; Шоргин С. Я., д.ф.-м.н., проф., ФИЦ ИУ РАН; Щетинин Е. Ю., д.ф.-м.н., проф., СТАНКИН

Оргкомитет:

Председатель: Васильев С. А., к.ф.-м.н. (РУДН).

Сопредседатели: Диваков Д. В., к.ф.-м.н. (РУДН); Острикова Д. Ю., к.ф.-м.н. (РУДН); Стрельцова О. И., к.ф.-м.н., с.н.с. (ЛИТ ОИЯИ).

Члены оргкомитета: Никитина Е.В., к.х.н., зам. декана по науке (РУДН); Малых М.Д., к.ф.-м.н. (РУДН); Демидова А.В., к.ф.-м.н. (РУДН); Тютюнник А.А. (РУДН)

И74 Информационно-телекоммуникационные технологии и математическое моделирование высокотехнологичных систем: материалы Всероссийской конференции с международным участием. Москва, РУДН, 16–20 апреля 2018 г. — Москва : РУДН, 2018. — 434 с. : ил.

ISBN 978-5-209-08641-3

[©] Коллектив авторов, 2018

⁽С) Российский университет дружбы народов, 2018

Содержание 3

Содержание

TD.			••	
Teonua	телетрафика	T/I	66	применения
TCOPIN	1 Colo I paquina	**	\sim	ii primenentina

Агеев К.А., Сопин Э.С. Разработка средства имитационного моделирования	
ресурсных систем массового обслуживания	17
Аду К.И., Маркова Е.В. Рекуррентный алгоритм для расчета показателей	
эффективности СМО с приборами, находящимися под влиянием случайной среды	20
Багаева Н.В. Анализ модели процесса обслуживания клиентов страховой ком-	
пании с ограниченным сроком действия договоров страхования	23
Богданова Е.В., Зарядов И.С., Милованова Т.А. Математическая модель	
системы с рекуррентным входящим потоком, повторным обслуживанием и обоб-	
щенным обновлением	26
Гольская А.А., Маркова Е.В., Дзантиев И.Л. Модель соты беспроводной	
М2М сети с равномерно распределенными на плоскости источниками заявок в ви-	
де СМО	29
Горшенин А.К. Об исследовании параметров метеорологических моделей на ос-	
нове паттернов	32
Дудин А. Н., Дудин С. А., Дудина О. С. Модели массового обслуживания	
для описания работы узлов беспроводных сенсорных сетей с самогенерацией энергии	35
Ибрагимов Б. Г., Гумбатов Р. Т., Ибрагимов Р. Ф. Исследование управления	
информационными и сетевыми ресурсами в мультисервисных сетях связи	38
Ибрагимов Б. Г., Керимов В. Р., Гаджизаде Н. К., Исаев А. М. Исследова-	
ние ресурсов в мультисервисных сетях связи на базе единого инфокоммуникаци-	
онного пространства	44
Карнаухова Е.А., Иванова Д.В., Маркова Е.В. Модель схемы распределе-	
ния радиоресурсов в сети LTE в виде СМО с ненадежными приборами и конечной	40
очередью	49
Крупко О.С., Москалева Ф.А., Ковальчуков Р.Н., Самуйлов А.К., Мол-	
чанов Д. А. Математическая модель звена доступа в сетях связи миллиметрового	E 9
диапазона для одноадресных и многоадресных соединений	52
Назаров А.А., Анисимова А.А. Асимптотический анализ второго порядка	F 4
двухфазной гибридной СМО	54
Никитина В.В., Хуракай Д.М. Об этапах интеллектуального анализа данных	
при построении и совершенствовании бизнес-процессов (Process Mining)	57
Орбелян Т. С., Зарядов И. С., Милованова Т. А. Система с выбором кратчай-	
шей очереди при поступлении заявок и максимальной очереди при обслуживании	60
заявок	60
	63
вой компании	05
ционных технологий для анализа показателей рейтинговой оценки вуза	65
Семёнова О.В., Буй Д.Т. Адаптивные дисциплины опроса в системах поллинга	00
и их имитационное моделирование	69
Синицын И.Э. Анализ вероятности успешного установления соединения по ра-	03
диоканалу случайного доступа с использованием виртуальных преамбул	72
Уанкпо Г. Ж.К., Козырев Д.В. Модель надёжности однородной системы пе-	12
редачи данных облегчённого резервирования с произвольным распределением вре-	
мени ремонта элементов	75
Халина В. А. Анализ временных показателей бизнес-процессов	78
Цурлуков В.В., Зарядов И.С., Милованова Т.А. К анализу системы массо-	
вого обслуживания с ресурсами, функционирующей в случайном окружении	81
seed, s pooj powini, qj miqionipj sonçon b ovij samosi onpj nomini	01
Сети связи следующего поколения: управление, качество,	
архитектура	
Абаев П.О., Царев А.С. Модель для анализа показателей эффективности ядра	
сети 5G с виртуализацией и гистерезисным управлением	87

Андреев С.Д. Прямое взаимодействие пользователей в мобильных социальных сетях	90
Бахтин А.А. Разработка протокола передачи данных в сетях MANET	93
в умном городе	96
Волков А.С., Солодков А.В., Баскаков А.Е., Муратчаев С.С. Разработка	
двухранговой помехоустойчивой системы радиосвязи на основе кодового разделе-	
ния каналов	98
Волков А.С., Лазарев А.В. Исследование и выбор помехоустойчивых кодов	
в соответствии с требованиями сетей мобильной связи пятого поколения	101
Волынец А.С., Гарибян А.А. Реализация модели случайного блуждания для	
описания движения объектов в ограниченном пространстве	104
Гайдамака А.А., Чухно Н.В., Чухно О.В. Алгоритм принятия решений с	
помощью вычислений со словами для задач большой размерности	107
Гольдштейн Б.С., Соколов Н.А. Задачи безопасности нормализуемого QoS	
в сетях следующего поколения	110
Гудкова И.А., Романовская Ю.А. Оценка производительности работы LSA	
на примере модели отдельно взятой соты	115
Дараселия А.В. Анализ механизмов повышения энергоэффективности облач-	
ных систем	118
Жданков А.Н., Гайдамака Ю.В. Об одном алгоритме моделирования движе-	
ния абонентов в беспроводной сети	121
Карачанская Е.В., Соседова Н.И. Разработка метода выявления аномалий	
сетевого трафика	124
Кименчежи В.В., Козырев Д.В. Имитационное моделирование мобильности	
участников соединения в гетерогенной сети беспроводной передачи данных с огра-	
ничением на пересечение границ и ненадежными объектами	127
Кутбитдинов С.Ш., Лохмотко В.В., Рудинская С.Р. Гармонизация пара-	
метров IMS методом взаимной оптимизации по критериям производительности и	
потерь	131
Макеева Е.Д., Харин П.А., Поляков Н.А., Маркова Е.В., Гудкова И.А.,	
Галинина О.С. Анализ установления соединения пар передатчик-приемник на	
mmWave	134
Мачнев Е. А., Бегишев В. О. Имитационное моделирование уличных точек до-	
ступа, функционирующие на миллиметровом диапазоне частот	137
Мацкевич И. А. Исследование наработки сенсорной сети полиграфического ком-	
бината до отказа	140
Половов М. П., Бесчастный В. А., Острикова Д. Ю., Гудкова И. А. Числен-	
ный анализ оптимальной скорости передачи данных в сети с технологией мульти-	
вещания методом перебора	143
Разгоняев В. А., Мокров Е. В., Самуйлов К. Е. Математическая модель сред-	
него времени передачи данных подвижным пользователям в сети LTE	146
Ромашкова О. Н., Самойлов В. Е. Определение дальности гарантируемой ра-	
диосвязи в беспроводных телекоммуникационных сетях стандарта IEEE 802.11	
с использованием программы ping	150
Савич В. Н., Бесчастный В. А., Острикова Д.Ю., Гудкова И.А. Модель	
мобильности в виде СЕМО с «пассивным» узлом	154
т 1	
Прикладные информационные системы и технологии	
Волков С.С. Система распознавания рукописных букв на основе нейронной сети	159
Григорьева Т.В., Жуков В.В. Перспективы применения кластерного анализа	
для реинжиниринга клинических бизнес-процессов	162
Жуков В.В., Аронов Д.А., Семушина С.Г., Моисеева Е.В. Примене-	
ние машины опорных векторов для предсказания возникновения рака молочной	
железы в мышиной модели	165
Зубрихина М.О., Молодченков А.И. Разработка метода поддержки принятия	
решений о выборе тактики хирургического лечения грыжи диска	168
Катрин А. В. Пример применения ОГАР	171

Содержание 5

Козловский А.Н., Жуков В.В. Вычисление апостериорных вероятностей в психопатологии на основе метаанализа медицинских публикаций	174 177
Крескин А. Д. Выявление источников заимствования для документа с использованием моделей дистрибутивной семантики	180
Кузнецов Е. А., Фомин М. Б. Проектирование многомерных информационных	100
систем с использованием методологии «Data Vault»	183
Лукин А.В. Построение системы проведения мета-анализа медицинских иссле-	
дований для получения ответа на клинический вопрос (на примере печеночной	
недостаточности)	186
Матвеева Е. А. Методы синтеза текстов на естественном языке в заданном стиле	
Молодченков А.И. Модуль базы знаний в системе управления здоровьем людей	192
Новикова Д. С. Разрешение неоднозначности авторства публикаций на основе коллекции документов поисковой системы Exactus Expert	195
Павлюкова А.В. Использование статистических характеристик сигнала в по-	190
строении аудиоидентификатора музыкальных произведений для поиска нечетких	
соответствий	198
Пальчевский А.И., Молодченков А.И. Разработка методов моделирования	
динамики изменения ишемической болезни мозга путем применения алгоритмов	
3d моделирования и морфинга изображений	201
Паршина К.С. Алгоритмы удаления невидимых линий при построении изобра-	20.4
жений трехмерных тел	204
цесса его обобщенной схеме	207
Салпагаров С. И., Гончаров Л. М., Мардашев А. М. Векторная задача о со-	201
четаниях на гиперграфах	210
Салпагаров С.И., Исаев Ю.Д. Оптимизационная модель распределения по-	
токов данных Р2Р-телевидения на гиперграфах	213
Сингх Л., Молодченков А. И. Разработка метода оценки близости пептидов	216
Скрынник К.В. Исследование метода классификации новостей на основе дис-	240
трибутивной семантики	219
Тханг Фам К., Копылов А., Тхао Чан Т. Т. Вычислительно эффективный ал-	222
горитм восстановления изображений с использованием полной вариации	222
строя БПЛА (плоский случай)	226
Храбров Р. Н., Фомин М. Б. Визуализация потока жидкости через тонкостен-	220
ный сосуд с переменным сечением	229
Чистова Е.В. Моделирование естественно-языковой коммуникации с помощью	
глубокого обучения	232
Ядринцев В.В., Соченков И.В. Полнотекстовый классификатор патентных	
документов	235
Янко Ю.Д. Проектрирование базы данных для системы автоматизации процесса	990
голосования	238
Распределённые, высокопроизводительные вычисления и	
аналитика больших данных	
, ,	
Адам Г., Беляков Д.В., Валя М., Гончаров П.В., Зрелов П.В., Кореньков	
В.В., Матвеев М.А., Подгайный Д.В., Стрельцова О.И. Виртуальные рабочие столы гетерогенного кластера HybriLIT	245
Башашин М. В., Земляная Е. В., Лукьянов К. В. Параллельная реализация	240
модели микроскопического оптического ядро-ядерного потенциала на основе тех-	
нологий MPI и OPENMP	248
Добрынин В. Н., Миловидова А. А., Соколов И. А. Оценка адекватности	
модели и объекта исследования	252
Дубнов Ю. А. Перекрестная энтропия для отбора признаков в задачах анализа	0
данных	257

Зуев М.И., Матвеев М.А., Подгайный Д.В., Стрельцова О.И., Торосян Ш.Г. HLIT-VDI – новый сервис IT-экосистемы гетерогенного кластера HybriLIT	
для работы с прикладным программным обеспечением	260
нов Р.Н. Интеграция облачных инфраструктур ЛИТ ОИЯИ и Астанинского филиала ИЯФ	262
Никольский И.М. Суперкомпьютерное моделирование функционирование беспроводной сенсорной сети в ситуации потери связи с базовой станцией	266
Рахмонова А.Р. Анализ производительности компьютерного моделирования физических процессов в системе длинных джозефсоновских переходов на кластере	
HybriLIT	269
тенко Ю.А. Разработка сервиса ВМ@N-Webapp для обработки и визуализации информации об эксперименте на фиксированной мишени ВМ@N	273
Математическое моделирование	
Аль-Натор М.С., Аль-Натор С.В. Оптимальная самофинансируемая много-	070
периодная портфельная стратегия с учетом комиссии	279
дачи трех тел	282
дью по алгоритму типа RED	285
знаванием номерных знаков	288
инфляции в современной России	291
кладным задачам	294
Информационно-математическая модель поддержки принятия решений по выводу из эксплуатации объектов использования атомной энергии	297
Будочкина С. А. О скобках Пуассона в пространствах B_u -потенциалов Буурулдай А.Э. О функции волатильности в модифицированной модели дис-	300
персии с постоянной эластичностью (CEV)	302
Христов И.Г., Христова Р.Д., Шарипов З.А. Моделирование дальнодействия тепловых изменений металла, облучаемого нанокластерами меди Велиева Т.Р., Завозина А.В., Королькова А.В. Определение коэффициентов гармонической линеаризации для детерминистической нелинейной системы с	305
управлением	308
кации амплитудно-частотных характеристик системы с управлением Геворкян М.Н., Демидова А.В., Демидова Т.С., Соболев А.А. Модели-	311
рование распространения сетевых червей с помощью стохастических дифференциальных уравнений	314
Геворкян М. Н., Демидова А. В., Королькова А. В., Кулябов Д. С., Гостев И. М. Проблемы реализации стохастических численных методов Рунге–Кутты	318
Гоголева С.Ю., Зайнетдинова Л.Г. Об одном итерационном методе для решения плохо обусловленных систем линейных алгебраических уравнений с разре-	
женными матрицами	321
модели биоимпедансометра	324
А. А. Обработка данных акселерометров мобильных устройств для классификации движений	326

Содержание 7

Демидова А.В., Дружинина О.В., Масина О.Н., Мияйлович Н., Ячимович М. Синтез и анализ многомерных математических моделей популяционной	
динамики	329
Денисенко А.П., Мингажитдинова Э.Ф., Петров В.А., Савин А.С., Хох-	
лов А.А. Оптимизация стоимости транзакций в блокчейне Etherium	333
Диваков Д.В., Севастьянов А.Л., Белов М.П. Постановка задачи расчета	
направляемых мод градиентного в поперечном направлении волновода	336
Древицкий А.С., Диваков Д.В., Котюков М.М. Задача символьно-	
численного расчета собственных значений вытекающих мод в регулярном одно-	
родном открытом волноводе	339
Егоров А.А. Исследование свойств жидкокристаллических волноводных структур	342
Зотова П. А., Жукова Л. В., Пяткина Д. А. Анализ востребованных форма-	
тов заданий для онлайн-курсов среди студентов разных учебных заведений	345
Касимов Ю. Ф., Тимербаев М.И. Оптимальные веса рисковых активов в ин-	
дексных портфелях постоянной пропорции	348
Коновалов М.Г., Разумчик Р.В. Управление марковской цепью с непрерыв-	
ным ограниченным множеством состояний, оптимизирующее стационарное рас-	
пределение цепи	351
Крянев А.В., Слива Д.Е., Матохин В.В. Характеристики неравномерности	
распределения ресурсов в экономических системах	355
Кузив Я. Ю. Комплекс программ для решения нелинейных дифференциальных	
уравнений в частных производных первого порядка	358
Кулябов Д.С., Геворкян М.Н., Королькова А.В. Численный анализ геомет-	0.01
ризованных уравнений Максвелла	361
Лесик П. А., Романов А. А., Чистотина Д. А. Об одной обратной задаче для	204
метагармонического уравнения	364
Лижненко Н.М., Морозова Д.А. Задача продолжения ньютоновского потен-	200
циала в цилиндре кругового сечения	366
Мысина Ю. А. Повышение пенсионного возраста и решение проблемы снижения	200
численности занятого населения	368
Пермякова Ю.С. Рыночные риски коммерческого банка: методы оценки и управления	371
Попков А.Ю. Метод генерации случайных векторов в заданными вероятност-	311
ными характеристиками	374
Пылаева А. Н. Моделирование ценообразования на рынке смартфонов	377
Пяткина Д. А., Матюшенко С. И., Зотова П. А., Казандаева А. П. Анализ	٠
цен на ноутбуки с помощью эконометрических моделей	381
Рассахан Н.Д., Щетинин Е.Ю. Оценка зависимостей тяжелых хвостов при	001
помощи аппарата копул для анализа осадков	384
Севастьянов Л. А., Васильева Д. Г. Стохастическая динамика роста популяций	
Талагаев Ю. В. Оценка состояния нелинейных сетевых систем управления, пред-	
ставленных нечеткими моделями Такаги-Сугено	390
Тевелева Е. А., Третьяков Н. П., Терлецкий А. Я. Применение фазового ана-	
лиза временных рядов для выделения макроэкономических циклов на примере	
динамики курсов валют	393
Третьяков Н. П., Кочанов А. А. Эффективное уравнение Шрёдингера для од-	
номерной системы с быстро осциллирующими граничными условиями	396
Шебанова К.В., Хамидуллина К.И. Устойчивое вычисление нормали к по-	
верхности, заданной приближенно	399
Чупритский В.К., Диваков Д.В. Моделирование прохождения световой вол-	
ны через открытый планарный волновод методом «ящика Дирихле»	401
Шорохов С.Г., Буурулдай А.Э. О модели локальной волатильности с гипер-	
болическим синусом	404
Шунин Е.В. Сравнение Online-Q и Experience Replay для обучения нейронной	
сети в мультиагентной среде	407
Щетинин Е.Ю. О некоторых свойствах непараметрических оценок коэффици-	
ентов увостовой зависимости	410

425

Авторский указатель

УДК 004.4

Численный анализ геометризованных уравнений Максвелла

Д. С. Кулябов *† , М. Н. Геворкян * , А. В. Королькова *

* Кафедра прикладной информатики и теории вероятностей Российский университет дружбы народов ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198 † Лаборатория информационных технологий Объединённый институт ядерных исследований ул. Жолио-Кюри, д. 6, Дубна, Московская область, Россия, 141980

 $Email: \verb|kulyabov_ds@rudn.university|, gevorkyan_mn@rudn.university|, korolkova_av@rudn.university| \\$

В работе показано применение метода характеристик к уравнению эйконала, записанного для линз Максвелла и Люнеберга. Уравнение эйканала преобразовано к системе из четырех ОДУ. Полученная система решена стандартными численными методами. Описаны детали подхода к численному моделированию и построены изображения траекторий лучей и фронтов волн.

Ключевые слова: уравнение эйконала; линза Люнеберга; линза Максвелла; метод характеристик; Julia.

1. Введение

Уравнение эйконала связывает волновой и геометрических подход к описанию оптических явлений. Оно выводится из уравнений Максвелла без токов и зарядов и при условии гармонических электромагнитных волн вне проводящей изотропной среде [1]. Будем рассматривать проекцию лучей на плоскость Oxy и в этом случае уравнение эйконала сводится к двумерному виду:

$$\begin{cases} \left(\frac{\partial u(x,y)}{\partial x}\right)^2 + \left(\frac{\partial u(x,y)}{\partial y}\right)^2 = n^2(x,y), & (x,y) \in \mathbb{R}^2, \\ u(x,y) = \varphi(x,y), & (x,y) \in \mathbb{R}^2, \end{cases}$$

где $\mathbf{r} = (x, y, z)^T$ — радиус-вектор, $\varphi(\mathbf{r})$ — граничное условие, $n(\mathbf{r})$ — показатель преломления среды. Функция $u(\mathbf{r})$ является вещественной скалярной функцией и имеет физический смысл времени, ее часто называют эйконалом.

Для решения данного уравнения применим метод характеристик [2–4]. В результате уравнение в частных производных первого порядка сведется к системе из четырех обыкновенных дифференциальных уравнений первого порядка путем замены $p_1 = \frac{\partial u}{\partial x}, \; p_2 = \frac{\partial u}{\partial y}$:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{p_1}{n^2}, & \text{ начальные условия} \\ \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{p_2}{n^2}, & x(t)|_{t=0} = x_0, \\ \frac{\mathrm{d}p_1}{\mathrm{d}t} = \frac{1}{n}\frac{\partial n}{\partial x}, & y(t)|_{t=0} = y_0, \\ \frac{\mathrm{d}p_2}{\mathrm{d}t} = \frac{1}{n}\frac{\partial n}{\partial y}, & p_1(t)|_{t=0} = c_2 n(x_0, y_0), \\ \frac{\mathrm{d}p_2}{\mathrm{d}t} = \frac{1}{n}\frac{\partial n}{\partial y}. & p_2(t)|_{t=0} = c_2 n(x_0, y_0). \end{cases}$$

Рассмотрим теперь показатели преломления среды для линз Люнеберга и Максвелла и опишем особенности численного моделирования этих линз.

2. Линза Люниберга

Линза Люниберга представляет собой сферическую линзу радиуса R с центром в точке (X_0,Y_0) (рассматриваем проекцию на плоскость Oxy) с коэффициентом преломления следующего вида:

$$n(x,y) = \begin{cases} n_0 \sqrt{2 - \left(\frac{r}{R}\right)^2}, & r \leqslant R, \\ n_0, & r > R, \end{cases}$$

где $r(x,y)=\sqrt{(x-X_0)^2+(y-Y_0)^2}$ — расстояние от центра линзы до произвольной точки (x,y) плоскости. Из формулы следует, что коэффициент n непрерывно меняется от $n_0\sqrt{2}$ до n_0 , начиная от центра линзы и заканчивая ее границей. Коэффициент преломления среды вне линзы постоянен и равен n_0 . Обычно полагают $n_0=1$.

3. Линза Максвелла

Линза Максвелла также представляет собой сферическую линзу радиуса R с центром в точке (X_0,Y_0) (рассматриваем проекцию на плоскость Oxy) с коэффициентом преломления следующего вида:

$$n(x,y) = \begin{cases} \frac{n_0}{1 + \left(\frac{r}{R}\right)^2}, & r \leqslant R, \\ n_0, & r > R. \end{cases}$$

4. Численное моделирование

Численное моделирование уравнений для линз Максвелла (рис. 1) и Люнеберга (рис. 2) было осуществлено с помощью классических методов Рунге–Кутты с постоянным шагом сетки. Выбор методов именно с постоянным шагом обоснован необходимостью построения фронтов волн. Для этого необходимо иметь значения точек траекторий разных лучей для одних и тех же моментов времени, что невозможно в случае применения методов с коррекцией шага (даже в случае полной выдачи).

Рис. 1. Ход лучей внутри линзы Максвелла при точечном источнике и $n_0 = 1$

Рис. 2. Ход лучей внутри линзы Люнеберга при точечном источнике и $n_0 = 1$

Заключение

В работе представлена программная реализация решения уравнения эйконала для случая линз Люнеберга и Максвелла. Результаты визуализированны в виде траекторий лучей, проходящих через линзы и в виде фронтов электромагнитных волн.

Благодарности

Публикация подготовлена при поддержке программы РУДН «5-100» и при финансовой поддержке РФФИ в рамках научного проекта РФФИ 16-07-00556.

Литература

- 1. Борн М., Вольф Э. Основы оптики. Москва : Наука, 1973.
- 2. Иванов Д. И., Иванов И. Э., Крюков И. А. Алгоритмы приближенного решения некоторых задач прикладной геометрии основанные на уравнении типа Гамильтона-Якоби // Журнал вычислительной математики и математической физики. 2005. Т. 45, № 8. С. 1345–1358.
- 3. Кабанихин С. И., Криворотько О. И. Численное решение уравнения эйконала // Сибирские электронные математические известия. 2013. С. 28–34.
- 4. Москаленский Е. Д. О нахождении точных решений двумерного уравнения эйконала // Сибирский журнал вычислительной физики. 2009. Т. 12, № 2. С. 201–209.

UDC 004.4

Numerical Analysis of Geometrized Maxwell Equations

D. S. Kulyabov*†, M. N. Gevorkyan*, A. V. Korolkova*

* Department of Applied Probability and Informatics Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation † Laboratory of Information Technologies Joint Institute for Nuclear Research 6 Joliot-Curie, Dubna, Moscow region, 141980, Russian Federation

Email: kulyabov_ds@rudn.university, gevorkyan_mn@rudn.university, korolkova_av@rudn.university

This paper shows the application of geometric methods of electrodynamics to the calculation of optical devices, such as lenses Maxwell and Luneberg. The eikonal equation, which was transformed to the ODE system by the method of characteristics, is considered. The resulting system is written for the case of Maxwell and Luneberg lenses and solved by standard numerical methods. Describes the implementation details and images of the trajectories of rays and fronts of the waves.

Key words and phrases: eikonal equation; Luneberg lens; Maxwell lens; characteristics method; Julia.