07.07.2020.

ISPIT IZ PREDMETA RAČUNARSKE MREŽE

- 1. Ako se koristi selektivna retransmisija sa n-bitnim rednim brojevima, maksimalna veličina prozora je:
 - (a) 2^{n}
 - (b) $2^{(n-1)}$
 - (c) $2^n 1$
 - (d) $2^{(n-2)}$

Obrazloženje: Pošto je veličina polja za numeraciju poruka n, postoji 2ⁿ različitih rednih brojeva poruka. Da bi se razlikovali duplikati poruka kod selektivne retransmisije, velečina prozora može biti njaviše polovina, tj 2⁽ⁿ⁻¹⁾.

2. Zadata je mreža sa pet čvorova: N1 do N5, kao što je prikazano na slici

Mreža koristi Distance Vector Routing algoritam. Svaka veza je dvosmerna i simetrična i cena veze je ista u oba smera. Trenutno ruteri N1 do N5 imaju sledeće vrednosti vektora rastojanja (distance vectors)

N1:(0, 1, 7, 8, 4)

N2:(1, 0, 6, 7, 3)

N3:(7, 6, 0, 2, 6)

N4:(8, 7, 2, 0, 4)

N5:(4, 3, 6, 4, 0)

U svakoj rundi ruteri razmenjuju svoje vektore rastojanja sa svojim susedima. Između dve runde došlo je do promene cene veze itmeđu N2 i N3 sa 6 na 2. Između dve runde svaka promena cene veze uzrokuje da se promeni samo cena veze u čvorovima koji su incidentni sa datim linkom. Kako će izgledati novi vektor rastojanja u čvoru N3 nakon razmene vektora sa susedima?

- (A) (3, 2, 0, 2, 5)
- (B) (3, 2, 0, 2, 6)

- (C) (7, 2, 0, 2, 5)
- (D) (7, 2, 0, 2, 6)

Dati ktatko obrazloženje za zaokruženi odgovor.

Obrazloženje: U sledećoj rundi svaki čvor će poslati i primiti DV (vektore rastojanja) svojim susedima i od svojih suseda i ažurirati svoj vektor nakon toga. N3 će primiti (1, 0, 2, 7, 3) od N2 i :(8, 7, 2, 0, 4) od N4 i ažuriraće svoj vektor na (3,2,0,2,5).

- 3. Sledeće tvrdnje se odnose na Link State algoritam. Označiti šta je od sledećeg tačno ili netačno i dati kratko obrazloženje (jednu rečenicu)
 - a. Link state algoritam mora da koristi Dijstrin algoritam za nalaženje najkraćeg puta Netačno. Može se koristiti bilo koji algoritam za određivanje najkraćeg puta
 - b. Ruter nikad ne može da primi duplikat link state paketa (izuzev ako je došlo do greške)

Netačno. Pošto se koristi bujica moguće je primiti duplikate LS paketa.

- c. Link state algoritam može imati problem brojanja do beskonačnosti
 - Netačno. Link state je upravo uveden da bi se eliminisao problem brojanja do beskonačnosti kod DV algoritma.
- 4. Dva računara, C1 i C2 su konfigurisana na sledeći način. C1 ima IP adresu 203.197.2.53 i subnetmask 255.255.128.0. C2 ima IP adresu 203.197.75.201 i subnetmask 255.255.192.0. Šta je od sledećeg tačno
 - (A) I C1 i C2 misle da su u istoj mreži
 - (B) C2 misli da je C1 u istoj mreži, ali C1 misli da je C2 u drugoj mreži
 - (C) C1 misli da je C2 u istoj mreži, a C2 da je C1 u drugoj mreži
 - (D) I C1 i C2 misle da se nalaze u različitim mrežama.

Obrazloženje:

Network Id za C1 = bitwise '&' od IP od C1 i subnet mask od C1

= (203.197.2.53) & (255.255.128.0)

= 203.197.0.0

C1 vidi network ID od C2 kao bitwise '&' od IP od C2 i subnet mask od C1

= (203.197.75.201) & (255.255.128.0)

= 203.197.0.0

što je isto kao i Network Id od C1.

Network Id od C2 = bitwise '&' od IP od C2 i subnet mask od C2

= (203.197.75.201) & (255.255.192.0)

=203.197.64.0

C2 vidi network ID od C1 kao bitwise '&' od IP od C1 i subnet mask od C2

= (203.197.2.53) & (255.255.192.0)

=203.197.0.0

što je različito od Network Id od C2.

- 5. Na transpornom nivou se koristi TCP protokol, verzija Reno. Veličina prozora zagušenja je u startu (trenutak T=1) jednaka 2 MSS (maximum segment size), a prag sporog starta 8 MSS. Pretpostavimo da je u trenutku T=5 nastupio time out. Kolika je veličina prozora zagušenja u trenutku T=10:
 - (A) 8 MSS
 - (B) 14 MSS
 - (C) 7 MSS
 - (D) 12 MSS

Obrazloženje: U trenutku T=3 dostiže se prag sporog starta, pa nakon toga prozor zagušenja linearno raste. To znači da će u trenutku T=5 prozor zagušenja biti 10, a pošto tada nastupa time out, prozor zagušenja će se u sledećem trenutku postaviti na početnu vrednost, tj na 2, a nova vrednost praga sporog starta će biti polovina od trenutne vrednosti tj. 10/2 =5. U trenutku T=6 prozor zagušenja će biti 2, u T=7 će biti 4, u T=8 je premašen prag sporog starta pa se prozor povećava linearno, tj. ima vrednost 5, u T=9 biće 6, a u T=10 imaće vrednost 7.

Predmetni nastavnik