Problemas Tema 2. Topología I Doble grado en ingeniería informática y matemáticas

Curso 2022-23

1.– Sea $f:(X,T)\to (Y,T')$ una aplicación entre dos espacios topológicos. Probar que son equivalentes:

- (1) f es continua.
- (2) $f^{-1}(B') \in T$ para todo elemento B' de una base \mathcal{B}' de T'.
- (3) $f^{-1}(S') \in T$ para todo elemento S' de una subbase S' de T'.

2.– Sea $f:(X,T)\to (Y,T')$ una aplicación entre dos espacios topológicos. ¿Es equivalente la continuidad de f a alguna de las dos siguientes propiedades?

- (1) $\overline{f^{-1}(C)} \subset f^{-1}(\overline{C})$ para todo $C \subset Y$.
- (2) $f^{-1}(\operatorname{int}(C)) \subset \operatorname{int}(f^{-1}(C))$ para todo $C \subset Y$.

3.– Sean f, g dos aplicaciones continuas de un espacio topológico (X, T) en (\mathbb{R}, T_u) . Probar que las aplicaciones suma f + g y producto $f \cdot g$ son aplicaciones continuas de (X, T) en (\mathbb{R}, T_u) .

4.- Se define la aplicación $f:(\mathbb{R},T_u)\to(\mathbb{R},T_u)$ por:

$$f(x) = \begin{cases} 0, & x \le 0, \\ 1, & x > 0. \end{cases}$$

Estudiar la continuidad de f en todos sus puntos.

5.- Una aplicación $f:(X,d)\to (Y,d')$ entre espacios métricos es *lipschitziana* si existe una constante K>0 tal que:

$$d'(f(x), f(y)) \leq K d(x, y), \quad \forall x, y \in X.$$

Probar que una aplicación lipschitziana es continua.

6.– Sea (X,d) un espacio métrico y $x \in X$. Probar que la aplicación $f:(X,d) \to (\mathbb{R},d_u)$ definida por f(z)=d(z,x) para todo $z \in X$ es lipschitziana. $(d_u$ es la distancia usual en \mathbb{R}).

7.– Sea (X,d) un espacio métrico y $A\subset X$. Probar que la aplicación $\delta_A:(X,d)\to(\mathbb{R},d_u)$ definida por:

$$\delta_A(z) = \inf \{ d(z, a) : a \in A \}$$

es lipschitziana y, por tanto, continua.

8.– Probar que las traslaciones son homeomorfismos de \mathbb{R}^n con la distancia usual.

9.– Probar que las bolas en \mathbb{R}^n con las distancias asociadas a las normas

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}, \quad ||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_{\infty} = \max\{|x_i| : i = 1, \dots, n\}$$

son homeomorfas.

- **10.** Probar que cualquier afinidad (aplicación afín y biyectiva) en \mathbb{R}^n es un homeomorfismo de \mathbb{R}^n con la topología usual.
- 11.- Probar que el cilindro

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$$

es homeomorfo al hiperboloide de una hoja

$$H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 + z^2\}.$$

Ambos conjuntos tienen la topología inducida por la topología ususal de \mathbb{R}^3 .

12.– Sean (X, T), (Y, T') espacios topológicos y $f: (X, T) \to (Y, T')$ una aplicación continua. Se define el grafo de f como el subconjunto G(f) de $X \times Y$ definido por:

$$G(f) = \{(x, f(x)) : x \in X\}.$$

Probar que (X, T) es homeomorfo a G(f) con la topología inducida en G(f) por la topología producto $T \times T'$.

13.– Sea $X = [0,1] \times [0,1]$ con la topología inducida por la usual de \mathbb{R}^2 . Se define la relación de equivalencia en X:

$$(x, y) R(x', y') \Leftrightarrow y = y', |x - x'| = 0, 1.$$

Probar que X/R es homeomorfo al cilindro $\mathbb{S}^1 \times [0,1]$.

- **14.** Sea (X, T) un espacio topológico. Probar que es Hausdorff si y sólo si el subconjunto $\Delta = \{(x, x) : x \in X\} \subset X \times X$ es cerrado en $(X \times X, T \times T)$.
- **15.** Sea $f,g:(X,T)\to (Y,T')$ dos aplicaciones continuas. Supongamos que (Y,T') es Hausdorff. Probar que:
 - (1) El conjunto $\{x \in X : f(x) = g(x)\}$ es cerrado en X.
 - (2) El grafo de f, $G(f) = \{(x, f(x)) : x \in X\}$, es cerrado en $X \times Y$.
 - (3) Si f y g coinciden en un conjunto denso de X, entonces f = g.