CS430: Entity-Relationship Model (E-R model)

Dr. Chetan Jaiswal,
Department of Computer Science,
Truman State University
cjaiswal@truman.edu

Chapter 3

- Introduction to E-R model
- A Sample Database Application
- Entity Types, Entity Sets, Attributes, and Keys
- Relationship Types, Relationship Sets, Roles, and Structural Constraints
- Weak Entity Types
- Refining the ER Design for the COMPANY Database
- ER Diagrams, Naming Conventions, and Design Issues
- Relationship Types of Degree Higher than Two

Conceptual Database Design by E-R Model

- Requirements collection and analysis
 - ▶ Database designers interview prospective database users to understand and document data requirements
 - Result: data requirements
 - Functional requirements of the application

Database Modeling Process

Conceptual Database Design by E-R Model

Conceptual schema

- Conceptual design
- Description of data requirements
- Includes detailed descriptions of the entity types, relationships, and constraints
- Transformed from high-level data model into implementation data model

Conceptual Database Design by E-R Model

- Logical design or data model mapping
 - Result is a database schema in implementation data model of DBMS
- Physical design phase
 - Internal storage structures, file organizations, indexes, access paths, and physical design parameters for the database files specified

A Sample Database by E-R Model

COMPANY

- Result is a database schema in implementation data model of DBMS
- Employees, departments, and projects
- Company is organized into departments
- Department controls a number of projects
- ➡ Employee: store each employee's name, Social Security number, address, salary, sex (gender), and birth date
- Keep track of the dependents of each employee

A Sample Database by E-R Model

Entity Types, Entity Sets, Attributes, and Keys

- ER model describes data as
 - Entities
 - Relationships
 - Attributes

Entity

Entities

➡ Thing in real world with independent existence. It is also referred to as object. Example: Chair, Computer, Employee, etc.

Entity or Strong Entity

Exists independently. Ex: Employee

Weak entity

▶ Its existence depends on a strong entity to uniquely identify itself. Example: Dependent. Employee has dependent. If employee disappears then the dependent also disappears.

Attributes

Attributes

- Particular properties that describe entity
- Types of attributes
 - > Composite versus simple (atomic) attributes
 - Single-valued versus multivalued attributes
 - > Stored versus derived attributes
 - > NULL values
 - > Complex attributes

Atomic

Cannot be split into meaningful parts. Example: course grade, SSN, etc. SSN can be split into parts but a part will have no meaning.

Composite

◆ Can be split into more than one part and each part have some meaning. Example: Phone number. Can be split into three parts: area code, location code and the number.

- Single value
 - Can have only one value. Example: SSN.
- Multivalued
 - Can have more than one valid values for the same entity
 - ➡ Example: Phone number. An employee John can have more than one phone number.
 - > Stored versus derived attributes
 - > NULL values
 - Complex attributes

Derived

▶ Its value can be derived (compute) from another attribute value. Example: Age (derived) value can be computed from the date of birth.

Complex:

Multivalued = {}, Composite = (). One attribute may have both features.

Ex. A person can have more than one residence and each residence can have a single address and multiple phones.

```
:: {Address_phone( {Phone(Area_code,Phone_number)},
Address(Street_address(Number, Street, Apartment_number), City,
State, Zip) ) }
```

Key

- ◆ An attribute that uniquely identifies an entity. Example: SSN value uniquely identifies an employee or a person.
- ▶ No primary key concept like relational algebra in ER model
- ▶ Primary key is chosen during mapping from ER Model to Relational Schema

Entity Types, Entity Sets, Attributes, and Keys

CS430: Database Systems

Entity Types, Entity Sets, Attributes, and Keys

- Entity type
 - Collection (or set) of entities that have the same attributes

Value Set

- **Value sets** (or domain of values)
 - Specifies set of values that may be assigned to that attribute for each individual entity

Initial Conceptual Design of the COMPANY

ER Diagram

- 1. How attributes are represented?
- 2. How multivalued or composite are represented?
- 3. How entity type name is represented?

Figure 7.8

Preliminary design of entity types for the COMPANY database.

Some of the shown attributes will be refined into relationships.

CS430: Database Systems

How normal people see relationships

How database engineers see relationships

Relationship Types, Relationship Sets, Roles, and Structural Constraints

Relationship

- When an attribute of one entity type refers to another entity type
- Represent references as relationships not attributes

Relationship Types, Sets, and Instances

- Relationship type R among n entity types E₁, E₂, ..., En
 - ▶ Defines a set of associations among entities from these entity types
- \blacksquare Relationship instances r_i
 - \rightarrow Each r_i associates n individual entities $(e_1, e_2, ..., e_n)$
 - \rightarrow Each entity e_i in r_i is a member of entity set E_i

Relationship Degree

- Degree of a relationship type
 - Number of participating entity types
 - Binary, ternary
- Relationships as attributes
 - Think of a binary relationship type in terms of attributes

CS430: Database Systems

Relationship Degree

Figure 7.10
Some relationship instances in the SUPPLY ternary relationship set.

Role Names and Recursive Relationships

Role names

➡ Role name signifies role that a participating entity plays in each relationship instance

Recursive relationships

- Same entity type participates more than once in a relationship type in different roles
- Must specify role name

Role Names and Recursive Relationships

CS430: Database Systems

- Cardinality ratio for a binary relationship
 - **▶** Specifies maximum number of relationship instances that entity can participate in (for ex. DEPARTMENT:EMPLOYEE, works for binary relationship has cardinality ratio 1:N)
 - **→** Can be 1:1, 1:N, N:1, M:N. Is below 1:1 or 1:N?

How about this?

Participation constraint

- Specifies whether existence of entity depends on its being related to another entity
- Types: total and partial

Participation constraint

- ➡ Specifies whether existence of entity depends on its being related to another entity
- Types: total and partial
- ➡ If company policy says: every employee must work for a department, in other words employee entity can exist only if it participates in WORKS_FOR relationship instance, also called total participation.
- ➡ Every entity in total set of employee entities must be related to department entity via WORKS_FOR, also called existence dependency.

Participation constraint

- ▶ Lets say, EMPLOYEE and DEPARTMENT related through MANAGES relationship.
- ➡ We do not expect every employee to manage a department, thus the participation of EMPLOYEE in the MANAGES relationship type is partial.
- Some or part of the set EMPLOYEE entities are related to some department entity via MANAGES

Cardinality ratio and participation constraint together called structural constraint of a relationship type.

In ER, total participation = double line partial participation = single line

Entity Types

- Weak Entity types: Do not have key attributes of their own
 - ▶ Identified by being related to specific entities from another entity type
 - Identifying relationship: Relates a weak entity type to its owner
 - Always has a total participation constraint
- Strong entity types: Do have a key attribute

Entity Types

Weak Entity types:

- -Not every total participation/existence dependency results in a weak entity type. Ex. DRIVER_LICENSE cannot exist without PERSON, but it has its own key, not a weak entity type
- -DEPENDENT:EMPLOYEE a N:1 relationship. Two dependents can have same credentials, they are identified only after determining the particular employee entity

Refining the ER Schema of the COMPANY Database

- Change attributes that represent relationships into relationship types
- Determine cardinality ratio and participation constraint of each relationship type

CS430: Database Systems

ER Model, Naming Conventions, and Design Issues

CS430: Database Systems

Proper Naming of Schema Constructs

- Choose names that convey meanings attached to different constructs in schema
- Nouns give rise to entity type names
- Verbs indicate names of relationship types
- Choose binary relationship names to make ER diagram readable from left to right and from top to bottom

Alternative Notations for ER Diagrams

Specify structural constraints on relationships

- ➡ Replaces cardinality ratio (1:1, 1:N, M:N) and single/double line notation for participation constraints
- Associate a pair of integer numbers (min, max) with each participation of an entity type E in a relationship type R, where 0 ≤ min ≤ max and max ≥ 1
- ▶ It means for each entity e in E, e must participate in at least min and at most max relationship instances in R, at any point of time.
- Min = 0, partial participation.
- → Min>0, total participation
- Use either cardinality ratio/single/double line or (min,max)

ER Diagram

CS430: Database Systems

Alternative Notations for ER Diagrams

CS430: Database Systems

References

http://www.ischool.drexel.edu/faculty/song/courses/info605/appendix/AppendixA.PDF

http://www.csc.lsu.edu/~chen/pdf/english.pdf

http://www.csc.lsu.edu/~chen/pdf/framework.pdf

CS430: Database Systems

a. All employees have a minimum of 1 phone and a maximum of 5 phones. Also only some departments have (contains) phones.

b. Only a few employees report to a supervisor and some employees are not assigned to any department.

c. A maximum of 5 departments and a minimum of 0 (Zero) departments contains phone and no employee has a phone.

d. Modify the schema (provide all missing information) if: *All employees work in all departments, all departments contain all the phones, and no employee report to a supervisor.*

