Math 415 - Lecture 1 Introduction

Monday August 24 2015

• Textbook: Chapter 1.3, Chapter 2.2 (just the pages 78 and 79)

- Textbook: Chapter 1.3, Chapter 2.2 (just the pages 78 and 79)
- Suggested Practice Exercise: in Chapter 1.3, Exercise 1,3, 5,
 6, 11

- Textbook: Chapter 1.3, Chapter 2.2 (just the pages 78 and 79)
- Suggested Practice Exercise: in Chapter 1.3, Exercise 1,3, 5,
 6, 11
- Khan Academy Video: Matrices: Reduced Row Echelon Form
 1

Systems of Linear Equations

A linear equation is a equation of the form

$$a_1x_1 + \ldots + a_nx_n = b$$

where $a_1, ..., a_n, b$ are numbers and $x_1, ..., x_n$ are variables.

$$4x_1 - 5x_2 + 2 = x_1$$

$$4x_1 - 5x_2 + 2 = x_1$$
 | $3x_1 - 5x_2 = -2$ Linear.

$$4x_1 - 5x_2 + 2 = x_1$$
 | $3x_1 - 5x_2 = -2$ Linear.
 $x_2 = 2(\sqrt{6} - x_1) + x_3$

$$4x_1 - 5x_2 + 2 = x_1$$
 $3x_1 - 5x_2 = -2$ Linear.
 $x_2 = 2(\sqrt{6} - x_1) + x_3$ $2x_1 + x_2 - x_3 = 2\sqrt{6}$ Linear.

$$4x_1 - 5x_2 + 2 = x_1$$
 $3x_1 - 5x_2 = -2$ Linear.
 $x_2 = 2(\sqrt{6} - x_1) + x_3$ $2x_1 + x_2 - x_3 = 2\sqrt{6}$ Linear.
 $4x_1 - 6x_2 = x_1x_2$

$$4x_1 - 5x_2 + 2 = x_1$$
 $3x_1 - 5x_2 = -2$ Linear. $x_2 = 2(\sqrt{6} - x_1) + x_3$ $2x_1 + x_2 - x_3 = 2\sqrt{6}$ Linear. $4x_1 - 6x_2 = x_1x_2$ $4x_1 - 6x_2 = x_1x_2$ Not linear.

$$4x_1 - 5x_2 + 2 = x_1$$
 $3x_1 - 5x_2 = -2$ Linear.
 $x_2 = 2(\sqrt{6} - x_1) + x_3$ $2x_1 + x_2 - x_3 = 2\sqrt{6}$ Linear.
 $4x_1 - 6x_2 = x_1x_2$ $4x_1 - 6x_2 = \underline{x_1x_2}$ Not linear.
 $x_2 = 2\sqrt{x_1} - 7$

Which of the following equations are linear equations (or can be rearranged to become linear equations)?

This course will focus on linear equations.

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same set of variables, say, $x_1, x_2, ..., x_n$.

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same set of variables, say, $x_1, x_2, ..., x_n$.

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same set of variables, say, $x_1, x_2, ..., x_n$.

Definition

A **solution** of a linear system is a list $(s_1, s_2, ..., s_n)$ of numbers that makes each equation in the system true when the values $s_1, s_2, ..., s_n$ are substituted for $x_1, x_2, ..., x_n$, respectively.

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same set of variables, say, $x_1, x_2, ..., x_n$.

Definition

A **solution** of a linear system is a list $(s_1, s_2, ..., s_n)$ of numbers that makes each equation in the system true when the values $s_1, s_2, ..., s_n$ are substituted for $x_1, x_2, ..., x_n$, respectively.

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same set of variables, say, $x_1, x_2, ..., x_n$.

Definition

A **solution** of a linear system is a list $(s_1, s_2, ..., s_n)$ of numbers that makes each equation in the system true when the values $s_1, s_2, ..., s_n$ are substituted for $x_1, x_2, ..., x_n$, respectively.

Definition

The **solution set** of a system of linear equations is the set of all possible solutions of a linear system.

Two equations in two variables:

$$x_1 + x_2 = 1$$

- $x_1 + x_2 = 0$.

What is a solution for this system of linear equations?

Two equations in two variables:

$$x_1 + x_2 = 1$$

- $x_1 + x_2 = 0$.

What is a solution for this system of linear equations?

Add them.
$$2x_2 = 1 \implies x_2 = 5$$

Two equations in two variables:

$$x_1 + x_2 = 1$$

- $x_1 + x_2 = 0$.

What is a solution for this system of linear equations?

Add them.
$$2x_2 = 1 \implies x_2 = 5$$

Plug into first equation.
$$x_1 + .5 = 1 \implies x_1 = .5$$

Two equations in two variables:

$$x_1 + x_2 = 1$$

- $x_1 + x_2 = 0$.

What is a solution for this system of linear equations?

Add them.
$$2x_2 = 1 \implies x_2 = 5$$

Plug into first equation. $x_1 + .5 = 1 \implies x_1 = .5$

 $(x_1, x_2) = (.5, .5)$ is the only solution.

Does every system of linear equation have a solution?

$$x_1-2x_2=-3$$

$$2x_1 - 4x_2 = 8$$
.

Does every system of linear equation have a solution?

$$x_1 - 2x_2 = -3$$
$$2x_1 - 4x_2 = 8.$$

Multiply first equation by 2. $2x_1 - 4x_2 = -6$

Does every system of linear equation have a solution?

$$x_1 - 2x_2 = -3$$
$$2x_1 - 4x_2 = 8.$$

Multiply first equation by 2. $2x_1 - 4x_2 = -6$ Subtract from second equation. 0 = 14

Does every system of linear equation have a solution?

$$x_1 - 2x_2 = -3$$
$$2x_1 - 4x_2 = 8.$$

Multiply first equation by 2. $2x_1 - 4x_2 = -6$ Subtract from second equation. 0 = 14

The equation 0 = 14 is always false, so no solutions exist.

How many solutions are there to the following system?

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

How many solutions are there to the following system?

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

Multiply first equation by 2. $2x_1 + 2x_2 = 6$

How many solutions are there to the following system?

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

Multiply first equation by 2. $2x_1 + 2x_2 = 6$ Add to second equation. 0 = 0

How many solutions are there to the following system?

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

Multiply first equation by 2. $2x_1 + 2x_2 = 6$

Add to second equation. 0 = 0

Any value of x_1 works. $x_2 = 3 - x_1$. Infinitely many solutions.

This is all there is:

This is all there is:

This is all there is: A linear system has either

one unique solution or

This is all there is: A linear system has either

one unique solution or no solution or

Theorem

This is all there is: A linear system has either

one unique solution or no solution or infinitely many solutions

$$x_1 + x_2 = 1$$
 $x_1 - 2x_2 = -3$ $x_1 + x_2 = 3$ $-x_1 + x_2 = 0.$ $2x_1 - 4x_2 = 8.$ $-2x_1 - 2x_2 = -6$

$$x_1 + x_2 = 1$$

- $x_1 + x_2 = 0$.

$$x_1 - 2x_2 = -3$$
$$2x_1 - 4x_2 = 8.$$

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

$$x_1 + x_2 = 1$$

- $x_1 + x_2 = 0$.

$$x_1 - 2x_2 = -3$$
$$2x_1 - 4x_2 = 8.$$

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

$$x_1 + x_2 = 1$$
$$-x_1 + x_2 = 0.$$

$$x_1-2x_2=-3$$

$$2x_1 - 4x_2 = 8.$$

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

$$x_1 + x_2 = 1$$

- $x_1 + x_2 = 0$.

$$x_1 - 2x_2 = -3$$

$$2x_1 - 4x_2 = 8$$
.

$$x_1 + x_2 = 3$$
$$-2x_1 - 2x_2 = -6$$

(The numbers in the graphs are not quite right.)

Take away: Whenever you have a linear system with n equations, then the set of solutions of this system is precisely the intersection of the sets of solutions of each of the n equations on its own.

Strategies for solving systems of linear equations

Strategies for solving systems of linear equations

Two systems are **equivalent** if they have the same solution set.

The general strategy is to replace one system with an equivalent system that is easier to solve.

Example

Consider

$$\begin{array}{rcl}
x_1 & - & 2x_2 & = & -1 \\
-x_1 & + & 3x_2 & = & 3
\end{array}$$

The general strategy is to replace one system with an equivalent system that is easier to solve.

Example

Consider

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$R2
ightarrow R2 + R1 \quad egin{array}{cccccc} x_1 & - & 2x_2 & = & -1 \\ 0 & + & x_2 & = & 2 \end{array}$$

The general strategy is to replace one system with an equivalent system that is easier to solve.

Example

Consider

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$R2 \rightarrow R2 + R1 \quad \begin{array}{cccc} x_1 & - & 2x_2 & = & -1 \\ 0 & + & x_2 & = & 2 \end{array}$$

$$x_2 = 2$$
, so $x_1 = 3$.

Matrix Notation

Matrix Notation

Matrix Notation

Matrix Notation

Coefficient Matrix

$$\begin{array}{rcrrr} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array}$$

Coefficient Matrix

$$\begin{array}{rcrrr} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array}$$

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

Coefficient Matrix

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

Coefficient Matrix

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ -1 & 3 & 3 \end{array}\right]$$

Coefficient Matrix

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

$$\begin{array}{rcl} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array}$$

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ -1 & 3 & 3 \end{array}\right]$$

$$R2 \rightarrow R2 + R1$$

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ 0 & 1 & 2 \end{array}\right]$$

Coefficient Matrix

$$\begin{array}{rcrrr} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array}$$

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

$$\begin{array}{rcrrr} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array}$$

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ -1 & 3 & 3 \end{array}\right]$$

$$R2 \rightarrow R2 + R1$$

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ 0 & 1 & 2 \end{array}\right]$$

$$R1 \rightarrow R1 + 2R2$$

$$\left[\begin{array}{cc|c} 1 & 0 & 3 \\ 0 & 1 & 2 \end{array}\right]$$

Coefficient Matrix

$$\begin{array}{rcrrr} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array}$$

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

$$\begin{array}{rcrrr} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array}$$

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ -1 & 3 & 3 \end{array}\right]$$

$$R2 \rightarrow R2 + R1$$

$$\left[\begin{array}{cc|c} 1 & -2 & -1 \\ 0 & 1 & 2 \end{array}\right]$$

$$R1 \rightarrow R1 + 2R2$$

$$\left[\begin{array}{cc|c} 1 & 0 & 3 \\ 0 & 1 & 2 \end{array}\right]$$

An elementary row operation is one of the following

An **elementary row operation** is one of the following (Replacement) Add a multiple of one row to another row,

An elementary row operation is one of the following

(Replacement) Add a multiple of one row to another row,

(Interchange) Interchange two rows, or

An **elementary row operation** is one of the following

(Replacement) Add a multiple of one row to another row,

(Interchange) Interchange two rows, or

(Scaling) Multiply all entries in a row by a nonzero constant.

An **elementary row operation** is one of the following

(Replacement) Add a multiple of one row to another row,

(Interchange) Interchange two rows, or

(Scaling) Multiply all entries in a row by a nonzero constant.

An **elementary row operation** is one of the following

(Replacement) Add a multiple of one row to another row,

(Interchange) Interchange two rows, or

(Scaling) Multiply all entries in a row by a nonzero constant.

Definition

Two matrices are **row equivalent**, if one matrix can be transformed into the other matrix by a sequence of elementary row operations.

An **elementary row operation** is one of the following

(Replacement) Add a multiple of one row to another row,

(Interchange) Interchange two rows, or

(Scaling) Multiply all entries in a row by a nonzero constant.

Definition

Two matrices are **row equivalent**, if one matrix can be transformed into the other matrix by a sequence of elementary row operations.

An **elementary row operation** is one of the following

(Replacement) Add a multiple of one row to another row,

(Interchange) Interchange two rows, or

(Scaling) Multiply all entries in a row by a nonzero constant.

Definition

Two matrices are **row equivalent**, if one matrix can be transformed into the other matrix by a sequence of elementary row operations.

Theorem

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Example

Solve the following system (or show there is no solution):

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$-4x_1 + 5x_2 + 9x_3 = -9$$

Solution: (29, 16, 3)

Check: Is (29, 16, 3) a solution of the **original** system?

$$x_1 - 2x_2 + x_3 = 0$$

 $2x_2 - 8x_3 = 8$
 $-4x_1 + 5x_2 + 9x_3 = -9$

Solution: (29, 16, 3)

Check: Is (29, 16, 3) a solution of the **original** system?

Two Fundamental Questions (Existence and Uniqueness)

Two Fundamental Questions (Existence and Uniqueness)

There are two fundamental question about linear equation:

(1) Is the system consistent? (I.e. does a solution exist?)

There are two fundamental question about linear equation:

- (1) Is the system consistent? (I.e. does a solution exist?)
- (2) If a solution exists, is it **unique**? (I.e. is there one only one solution?)

Example

Is this system consistent? If so, is the solution unique?

$$x_1 - 2x_2 + x_3 = 0$$

 $2x_2 - 8x_3 = 8$
 $-4x_1 + 5x_2 + 9x_3 = -9$

This is sufficient to see that the system is consistent and unique. Why?

This is sufficient to see that the system is consistent and unique. Why?

The last row determines x₃ uniquely.

This is sufficient to see that the system is consistent and unique. Why?

- The last row determines x₃ uniquely.
- Knowing x_3 , the second row determines x_2 uniquely.

This is sufficient to see that the system is consistent and unique. Why?

- The last row determines x_3 uniquely.
- Knowing x_3 , the second row determines x_2 uniquely.
- Knowing x_2 and x_3 , the first row determines x_1 uniquely.
- So, exactly one possible solution (x_1, x_2, x_3) .

Example

Is this system consistent?

$$\underset{R1\leftrightarrow R2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 5 & -7 & 9 & 0 \end{array} \right]$$

$$\underset{R1\leftrightarrow R2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 5 & -7 & 9 & 0 \end{array} \right]$$

$$\xrightarrow{R3 \to R3 - 5R1} \left[\begin{array}{ccc|c}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 3 & -6 & 5
\end{array} \right]$$

$$\xrightarrow{R1 \leftrightarrow R2} \begin{bmatrix} 1 & -2 & 3 & | & -1 \\ 0 & 3 & -6 & | & 8 \\ 5 & -7 & 9 & | & 0 \end{bmatrix}$$

$$\xrightarrow{R3 \to R3 - 5R1} \begin{bmatrix} 1 & -2 & 3 & | & -1 \\ 0 & 3 & -6 & | & 8 \\ 0 & 3 & -6 & | & 5 \end{bmatrix}$$

$$\xrightarrow{R3 \to R3 - R2} \begin{bmatrix} 1 & -2 & 3 & | & -1 \\ 0 & 3 & -6 & | & 8 \\ 0 & 0 & 0 & | & -3 \end{bmatrix}$$

$$\xrightarrow{R1 \leftrightarrow R2} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 5 & -7 & 9 & 0 \end{bmatrix}$$

$$\xrightarrow{R3 \to R3 - 5R1} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 0 & 3 & -6 & 5 \end{bmatrix}$$

$$\xrightarrow{R3 \to R3 - R2} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

Equation notation of triangular form:

$$x_1$$
 $-2x_2$ $+3x_3$ = -1
 $3x_2$ $-6x_3$ = 8
 0 = -3

Equation notation of triangular form:

$$x_1$$
 $-2x_2$ $+3x_3$ = -1
 $3x_2$ $-6x_3$ = 8
 0 = -3

The original system is inconsistent!

Example

For what values of h will the following system be consistent?

$$\left[\begin{array}{cc|c} 3 & -9 & 4 \\ -2 & 6 & h \end{array}\right]$$

$$\begin{bmatrix} 3 & -9 & | & 4 \\ -2 & 6 & | & h \end{bmatrix}$$

$$\xrightarrow[R1 \to \frac{1}{3}R1]{} \begin{bmatrix} 1 & -3 & | & \frac{4}{3} \\ -2 & 6 & | & h \end{bmatrix}$$

$$\begin{bmatrix} 3 & -9 & | & 4 \\ -2 & 6 & | & h \end{bmatrix}$$

$$\xrightarrow[R1 \to \frac{1}{3}R1]{} \begin{bmatrix} 1 & -3 & | & \frac{4}{3} \\ -2 & 6 & | & h \end{bmatrix}$$

$$\xrightarrow[R2 \to R2 + 2R1]{} \begin{bmatrix} 1 & -3 & | & \frac{4}{3} \\ 0 & 0 & | & h + \frac{8}{3} \end{bmatrix}$$

$$\begin{bmatrix}
3 & -9 & | & 4 \\
-2 & 6 & | & h
\end{bmatrix}$$

$$\xrightarrow[R1 \to \frac{1}{3}R1]} \begin{bmatrix}
1 & -3 & | & \frac{4}{3} \\
-2 & 6 & | & h
\end{bmatrix}$$

$$\xrightarrow[R2 \to R2 + 2R1]} \begin{bmatrix}
1 & -3 & | & \frac{4}{3} \\
0 & 0 & | & h + \frac{8}{3}
\end{bmatrix}$$

System is consistent if and only if $h = -\frac{8}{3}$.