89.Kal递归算法

2024年12月9日 20:06

Hot
$$\hat{\chi}_{k}$$
 = $\frac{1}{k}$ ($Z_1 + Z_2 + \cdots + Z_R$)

= $\frac{1}{k}$ ($Z_1 + Z_2 + \cdots + Z_{k-1}$) $+ \frac{1}{k}$ Z_k

= $\frac{1}{k}$ ($Z_1 + Z_2 + \cdots + Z_{k-1}$) $+ \frac{1}{k}$ Z_k

= $\frac{k-1}{k}$ $\hat{\chi}_{k-1}$ $+ \frac{1}{k}$ Z_k

= $\hat{\chi}_{k-1}$ $- \frac{1}{k}$ $\hat{\chi}_{k-1}$ $+ \frac{1}{k}$ Z_k
 $+ \frac{k}{k}$ $+ \frac{k$

$$\Rightarrow \qquad \boxed{\hat{\chi}_{k} = \hat{\chi}_{k-1} + \frac{1}{k} \left(z_{k} - \hat{\chi}_{k-1} \right)}$$

Recursive 亳归.

当前的估计值 = 上-次的估计值 + 条数 × (当前以)量值 - 上-次的估计值) Gain 卡尔曼增益/因改 Kk: Kalman

Error VA

估计误差。 "CEST Estimate 1til

测量凝 e_{MEA} Measurement iff

在 人时刻, 讨论:

D RESTRY >> RMEAR : KR -1 .

b-1 网的性计准差 k时的似是准差

1/2 1/2 + Zh - 1/2 = Zk

@ RESTRY & PMEAR KR >0

更相信这个测量值; Xk = Xk+1 下面一种情况的话,更相信我们的估计值

Step1: it \$ Kalman Gain Kk = PESTA-1 PERFA.

Step 2: it & xx = xx-1 + kx (Zx - xx-1)

Step 3. PAT PESTK = (1- KK) PESTK-1

-> 后面详细推导

2 = 40 mm lesto = 5mm

Z, = 5|mm PMEAR = 3mm

k	ZR	CMEAR	2k	KK	CESTR	1	
0			40		(5)	2	
1	(51)	(3)	46.875	0.625	1.875	4	
2	48	3	47.308	0.3846	1.154	6	
3						7 8	
k=1:	K _k =	5 = 0,1	125			9	
10.7	2.	5+5 = 40 + D	.625 (51 -	40) = 46.	875	11	-
	1000					13	:
	CEST	= (1-0	625) 5 = 1.8	3 15		14	-
1.3	V.	1.875	= 0.3846			16	
k=2	· kk	= 1.875+3	- 0.5846		201 221	4.7	
	2.	= 46.879	+ 0.3846 (48- 46.87	5) = 47.30	8 18	
	ees	7 = (1-	0.3841) 1.	875 = 1.1	54		

C D E F
e(MEAk) hati(x)k Kk e(E5Tk)
40 5
3 46.88 0.625 1.875
3 47.31 0.385 1.154
3 47.22 0.278 0.833
3 48.26 0.217 0.652
3 48.75 0.179 0.536
3 48.68 0.132 0.395
3 49.10 0.104 0.313
3 49.06 0.094 0.283
3 49.11 0.086 0.295
3 49.11 0.086 0.205
3 49.81 0.060 0.205
3 49.81 0.064 0.192
3 49.82 0.066 0.181

Kal数据融合

2024年12月9日

Kalman Filter Part 2. Doba Fusion, Covarince Matrix. State Space, Observation 卡尔曼晓波器, 数据融合, 协力差矩阵, 状态空间方程, 观测器

$$\frac{1}{2} = \frac{1}{2} + \frac{1}$$

求人使得 冠最小 ⇒ 搓 1/4m(2)量小

$$\int_{\frac{\pi}{2}}^{2} = Var(Z_{1} + k(Z_{2} - Z_{1})) = Var(Z_{1} - kZ_{1} + kZ_{2}) = Var((|-k)Z_{1} + kZ_{2})$$

$$= Var((|-k)Z_{1}) + Var(kZ_{2}) = (|-k)^{2} Var(Z_{1}) + k^{2} Var(Z_{2}) = (|-k|)^{2} \sigma_{1}^{2} + k^{2} \sigma_{2}^{2}$$

$$\frac{d\vec{G}_{k}^{2}}{dk} = 0 \qquad -2((-k)\vec{\nabla}_{k}^{2} + 2k\vec{\nabla}_{k}^{2} = 0 \qquad -\vec{\nabla}_{k}^{2} + k\vec{\nabla}_{k}^{2} = 0 \qquad k(\vec{\nabla}_{k}^{1} + \vec{\nabla}_{k}^{2}) = \vec{\Gamma}_{k}^{1}$$

$$k = \frac{\vec{\nabla}_{k}^{2}}{\vec{\nabla}_{k}^{2} + \vec{\nabla}_{k}^{2}} = \frac{2}{2^{2} + 4^{2}} = \frac{4}{4 + 16} = 0, 2$$

我吼,这协方差形式和线代中的旋转矩阵的形式不如出一辄嘛

3):	球员	身高	体重	年龄
	瓦尔迪	179	74	33
	奥巴梅扬	187	80	31
	萨拉赫	175	71	28
	手钩	180.3	75	307

$$A = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_2 \\ x_2 & y_2 & z_3 \\ x_3 & y_3 & z_3 \end{bmatrix}$$

$$P = \frac{1}{3} a^T a$$

$$\frac{1}{64} \quad \nabla_{\mathbf{x}}^{2} = \frac{1}{3} \left((179 - (80.3)^{2} + (187 - 180.3)^{2} + (175 - 180.3)^{2} \right) = 24.89$$

T2 = 4.22

かを Uxuy = 1 (119-1803)(74-76) + (187-180.3)(80-75)+ (175-180.3)(71-76))=18·7=5y0x

State
$$\chi_1 = \chi$$
 $\chi_2 = \dot{\chi}$
 $\chi_1 = \chi_1$
 $\chi_2 = \dot{\chi} = \frac{1}{\eta} \chi_1 - \frac{B}{m} \dot{\chi} - \frac{1}{m} \chi$
 $\chi_3 = \frac{1}{\eta} \chi_1 - \frac{B}{m} \chi_2 - \frac{1}{m} \chi_3$
 $\chi_4 = \frac{1}{\eta} \chi_1 - \frac{B}{m} \chi_2 - \frac{1}{m} \chi_3$
 $\chi_5 = \frac{1}{\eta} \chi_1 - \frac{B}{\eta} \chi_2 - \frac{1}{\eta} \chi_3$

We assure that $\chi_5 = \chi_1 = \chi_2 = \chi_3$

$$\begin{array}{c} PR = PR - k_{B}HR - PR HTKR + k_{B}HR + K_{R}KR \\ \hline + tr(k_{A}) + tr(k_{B}HR) + tr(k_{B}HR) + tr(k_{B}HR) \\ \hline \frac{d+(k_{A})}{dk_{A}} = 0 \\ \hline \frac{d+(k_{A})}{dk_{A}} = 0 \\ \hline \frac{d+(k_{A})}{dk_{A}} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR + H \\ RR + H \end{pmatrix} = 0 \\ \hline \begin{pmatrix} RR + H \\ RR$$

协方差矩阵的转置就等于它本身!

kal协方差

2025年2月8日 14:35

Kalman Filter Part 4. Priori/Posterrori Gror Covariance Matrix 误差切访差矩阵 卡尔曼 滤波器

$$\chi_{\mathbf{k}} = A \chi_{\mathbf{k}-1} + B U_{\mathbf{k}-1} + W_{\mathbf{k}-1}$$
 $\omega \sim \uparrow(o, a)$
 $Z_{\mathbf{k}} = H \chi_{\mathbf{k}} + V_{\mathbf{k}}$ $V \sim \uparrow(o, R)$

先验估计

$$2k = A\hat{x}_{k-1} + Bu_{k-1}$$

压缩估计

大珍是塘盖。 kr = Pr HT + R

预测 χ̂= Aλk-1 + Buk-1 0

松隆 k= K+1 BHT+R

tie みth A Pu = APu AT + Q ⑤ 上一次的满头切结

$$\chi_R = A\chi_{R-1} + BU_{R-1} + W_{R-1} - Z_R = H\chi_R + V_R$$

V~ \$(0.R)

先验估计

$$\hat{x}_{k} = \hat{A}\hat{x}_{k-1} + B\hat{u}_{k-1}$$

压能估计

$$\hat{\chi}_{\mathbf{k}} = \hat{\chi}_{\mathbf{k}} + \mathbf{k}_{\mathbf{k}} \left(\mathbf{z}_{\mathbf{k}} - H \hat{\chi}_{\mathbf{k}} \right)$$

PE PE E [PE ERT]

= A /k+ + BUR-1 + WR-- All-1 - BUKT = A (xk-1 - 2/k+) + Wk-1

= Aek-1 + WK-1

= E[(Aek++Wk+1) ((Aek+)+(Wk+1))]

= E[(Aen + We-1) (en AT + we-T)]

= [[[[A e R - | e - | A] + [A e R - | e - | e - | e - | A] + [[[w - | e -

PR = APRIAT +Q

使用卡尔曼滤波器估计状态变量的值

子及以

规:

$$\hat{\chi}_{k} = A\hat{\chi}_{k-1} + Buk-1$$

tseethte Pr = APMAT +Q 上一次的误差协差

后经估计 X = X + km(Zk-H Xm)

更新选t加差 Pk= (I-KkH) R-

PR = PR - KRHPR - PRHTKR KRHPRHTKRT + KARKET

KRHPRHT+R)KRT

KRHPRHT+R)KRT

PRHTHIR (HPHT+R) by

105.kal二维实例

2025年2月8日 14:52 Example:

States: > 礼:位置 社:速度

不确定性

AT=1 不确定

经置: Xi,k = Xi,k-1 + X2,k-1 + Wi,k-1

速度: X2,R= X2,R-1 + W2,R-1

采样时间 AT 比别与k-1时刻的问题

W·过程噪声 Process Noise

p(w) ~ N(0, Q)

期 1 协能矩阵

Kalman Fifter Part 5. An Example 卡尔曼谑波器 : 2D 例か

宏码 . Data Fusion .

Z1 = 6.5 mm V1 = 0.2mm 最优估计 至=? Z2 = 7.3 mm (2 = 0.4 mm

Zuk = Xuk + Vuk

p(v)~ N(0,R)

皴

 $\overline{Z}_{1,k} = \chi_{1,k} + V_{2,k}$

Q矩阵	R矩阵	A矩阵	H矩阵	单位矩阵
1.00 0	0.10 0	1 1	3 0	1 0
0 1.00	0 0.10	0 1	0 1	O 0 1

 $\hat{\chi}_{k}^{-} = A\hat{\chi}_{k-1}$

P= = APk-1 AT +Q

1 + Kk (Zk-H /k)

Pk = (I - kkH) Pk

kal扩展滤波器

2025年2月8日 16:21

Kalman Fifter Parth Extended Kalman Filter (EKF) 甘展卡尔曼谑波器:

Revisit Linear System

$$\chi_{k} = A\chi_{k-1} + B\chi_{k+1} + \chi_{k-1}$$

 $Z_k = H_{k+1} + V_k$

预测

$$\stackrel{\mathcal{H}}{\mathcal{A}_{k}} \stackrel{\mathcal{H}}{\mathcal{A}_{k-1}} = A \stackrel{\mathcal{H}}{\mathcal{A}_{k+1}} + B u_{k-1}$$

$$P_{k}^{-} = A P_{k-1} A^{T} + Q$$

松工

$$K_{k} = \frac{P_{k}^{T}H^{T}}{HP_{k}^{T}H^{T} + R}$$

此前的案例是符合线性的

First
$$\chi_k^2 = \lambda_k^2 + k_R(2k - H\chi_k^2)$$

 $P_k = (I - k_R H) P_k^2$

线性化: Linearization

$$f(x) = f(\lambda_0) + \frac{\partial f}{\partial x} (\lambda - \lambda_0)$$

条汽店误差, 无法 石真实气按性化. $\chi_{R} = \int (\hat{\chi}_{R-1}, \mathcal{U}_{R-1}, \mathcal{U}_{R-1}) + \int (\hat{\chi}_{R-1}, \mathcal{U}_{R-1}, \mathcal{U}_{R-1}) + \hat{\chi}_{R-1} + \hat{\chi}_{R-1} + \hat{\chi}_{R-1} + \hat{\chi}_{R-1} + \hat{\chi}_{R-1}$

Operating Point.

Zk = Zk + H (Xk - Xk) + VVK

X1 = X1 + SIM X = 51 X = X1 = f.

$$P(W) \sim N(0, Q) \qquad E(ax) = aE(x)$$

$$P(Ww) \sim N(0, wQW^{T}) \qquad Var(ax) = a^{2}Var(x)$$

$$P(Vuw) \sim N(0, wQW^{T}) \qquad Var(ax) = a^{2}Var(x)$$

$$\frac{1}{2} \frac{1}{2} \frac{$$