Autotuning: D-Optimal Designs

Pedro Bruel

May 3, 2018

Contents

1	Autotuning with D-Optimal Designs and Analysis of Variance					
2	Results 2.1 Comparing Strategies					
1	Autotuning with D-Optimal Designs and Analysis of Vari-					
	ance					
	1. Use optFederov to find 24 experiments for the full model:					
	$Y = y_component_number + 1/y_component_number + \\ vector_length + lws_y + 1/lws_y + \\ load_overlap + temporary_size + \\ elements_number + 1/elements_number + \\ threads_number + 1/threads_number$					
	2. Use aov to fit the full model, spending the 24 evaluations:					
	$time_per_pixel = y_component_number + 1/y_component_number + \\ vector_length + lws_y + 1/lws_y + \\ load_overlap + temporary_size + \\ elements_number + 1/elements_number + \\ threads_number + 1/threads_number$					
	3. Identify the most significant factors from the ANOVA summary. In this case, they are $vector_length$ and lws_y .					
	4. Use the fitted model to predict the best $time_per_pixel$ value in the entire dataset					
	5. Prune the dataset using the predicted best values for $vector_length$ and lws_y					
	6. Use optFederov to find 24 experiments for the pruned model. If there are less than or exactly 24 candidates, use the full candidate set.					
	$Y = y_component_number + 1/y_component_number + \\ load_overlap + temporary_size +$					

 $threads_number + 1/threads_number$

 $elements_number + 1/elements_number +$

7. Use **aov** to fit the pruned model, spending the 24 evaluations:

```
time\_per\_pixel = y\_component\_number + 1/y\_component\_number + \\ load\_overlap + temporary\_size + \\ elements\_number + 1/elements\_number + \\ threads\_number + 1/threads\_number
```

- 8. Identify the most significant factors from the ANOVA summary. In this case, they are <u>y_component_number</u> and <u>threads_number</u>.
- 9. Use the fitted model to predict the best time_per_pixel value in the entire dataset
- 10. Prune the dataset using the predicted best values for $y_component_number$ and $threads_number$
- 11. Use optFederov to find 24 experiments for the pruned model. If there are less than or exactly 24 candidates, use the full candidate set.

$$Y = load_overlap + temporary_size + \\ elements_number + 1/elements_number$$

12. Use **aov** to fit the pruned model, spending the 24 evaluations:

$$time_per_pixel = load_overlap + temporary_size +$$

$$elements \ number + 1/elements \ number$$

- 13. Identify the most significant factors from the ANOVA summary. In this case, it is elements number
- 14. Use the fitted model to predict the best time_per_pixel value in the entire dataset
- 15. Prune the dataset using the predicted best values for elements_number
- 16. Use optFederov to find 24 experiments for the pruned model. If there are less than or exactly 24 candidates, use the full candidate set.

$$Y = load_overlap + temporary_size$$

17. Use **aov** to fit the pruned model, spending the 24 evaluations:

$$time\ per\ pixel = load\ overlap + temporary\ size$$

- 18. Use the fitted model to predict the best time_per_pixel value in the entire dataset
- 19. Compare the predicted time per pixel with the global optimum

2 Results

2.1 Comparing Strategies

	DC	LHS	CC	CCD	C A	LM	DO	DODT	DOPTaov
	RS	гиз	GS	GSR	GA	LIVI	RQ	DOPT	DOPTAOV
Min.	1.00	1.00	1.00	1.00	1.00	1.01	1.01	1.38	1.01
1st Qu.	1.03	1.09	1.35	1.07	1.02	1.01	1.01	1.64	1.01
Median	1.08	1.19	1.80	1.19	1.09	1.01	1.01	1.64	1.01
Mean	1.10	1.17	6.46	1.23	1.12	1.02	1.02	1.68	1.01
3rd Qu.	1.18	1.24	6.31	1.33	1.19	1.01	1.01	1.64	1.01
Max.	1.39	1.52	124.76	3.16	1.65	3.77	2.06	2.91	1.08
Mean Pt.	120.00	98.92	22.17	120.00	120.00	119.00	119.00	120.00	54.85
Max Pt.	125.00	125.00	106.00	120.00	120.00	119.00	119.00	120.00	56.00

Table 1: Summary statistics