

Basic Structures: Sets, Functions, Sequences, and Sums

Much of discrete mathematics is devoted to the study of discrete structures, used to represent discrete objects.

Many important discrete structures are built using sets.

The concept of a function is extremely important in discrete mathematics.

Introduce some important types of sequences, identify a sequence, develop formulae for certain types of summations

DEFINITION 1

A set is an unordered collection of objects, called *elements* or *members* of the set. A set is said to *contain* its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

Several ways to describe a set.

- 1. Roster method
- 2. Set builder
- 3. Venn diagram

N = {0, 1, 2, 3, ...}, the set of natural numbers
$$\mathbf{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$
, the set of integers $\mathbf{Z}^+ = \{1, 2, 3, ...\}$, the set of positive integers $\mathbf{Q} = \{p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, \text{ and } q \neq 0\}$, the set of rational numbers

R, the set of real numbers

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a, b) = \{x \mid a \le x < b\}$$

$$(a, b] = \{x \mid a < x \le b\}$$

$$(a, b) = \{x \mid a < x < b\}$$

Venn Diagram for the Set of Vowels.

 $\{N, Z, Q, R\}$

DEFINITION 2

Two sets are *equal* if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$. We write A = B if A and B are equal sets.

The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.

THE EMPTY SET

Subsets

2.1 Sets

DEFINITION 3

The set A is a *subset* of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$\forall x (x \in A \rightarrow x \in B)$$

Showing that A is a Subset of B To show that $A \subseteq B$, show that if x belongs to A then x also belongs to B.

Showing that A is Not a Subset of B To show that $A \not\subseteq B$, find a single $x \in A$ such that $x \notin B$.

Venn Diagram Showing that A Is a Subset of B.

Subsets

THEOREM 1

For every set S, $(i) \emptyset \subseteq S$ and $(ii) S \subseteq S$.

$$A \subset B$$
 if and only if

$$\forall x(x\in A\to x\in B) \land \exists x(x\in B\land x\not\in A)$$

Venn Diagram Showing that A Is a Subset of B.

Showing Two Sets are Equal To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$
 and $B = \{x \mid x \text{ is a subset of the set } \{a, b\}\}\$

Also note that $\{a\} \in A$, but $a \notin A$.

The Size of a Set

DEFINITION 4

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a *finite set* and that n is the *cardinality* of S. The cardinality of S is denoted by |S|.

Let A be the set of odd positive integers less than 10.

Let *S* be the set of letters in the English alphabet.

The null set

DEFINITION 5

A set is said to be *infinite* if it is not finite.

Power Sets

DEFINITION 6

Given a set S, the *power set* of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

What is the power set of the set $\{0, 1, 2\}$?

If a set has n elements, then its power set has 2^n elements.

What is the power set of the empty set?

What is the power set of the set $\{\emptyset\}$?

Cartesian Products

DEFINITION 7

The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its nth element.

$$(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$$

DEFINITION 8

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

$$A = \{1, 2\}$$
 and $B = \{a, b, c\}$

The Cartesian product $A \times B$ is

The Cartesian product $B \times A$ is

Note that the Cartesian products $A \times B$ and $B \times A$ are not equal,

Set Operations

$$A \cup B = \{x \mid x \in A \vee x \in B\}.$$

Identity

 $A \cap U = A$

 $A \cup \emptyset = A$

 $A \cup U = U$

 $A \cap \emptyset = \emptyset$

 $A \cup A = A$

 $A \cap A = A$

 $A \cup B = B \cup A$

 $A \cap B = B \cap A$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

 $A \cup (A \cap B) = A$

 $A \cap (A \cup B) = A$

 $A \cup \overline{A} = U$

 $A \cap \overline{A} = \emptyset$

 $\overline{(\overline{A})} = A$

Set Identities

Name Identity laws Domination laws Idempotent laws Complementation law Commutative laws $A \cup (B \cup C) = (A \cup B) \cup C$ Associative laws $A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributive laws $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ De Morgan's laws Absorption laws

Complement laws

De Morgan law $\overline{A \cap B} = \{x \mid x \notin A \cap B\}$

Distributive laws

Disc. Math. (FUDN-SP22-MAD101) 12 slides

$$\overline{B} = \{x \mid x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \}$$

$$\cap R$$

 $p \wedge T \equiv p$

 $p \vee \mathbf{F} \equiv p$

 $p \vee T \equiv T$

 $p \wedge F \equiv F$

 $p \lor p \equiv p$

 $p \wedge p \equiv p$

 $\neg(\neg p) \equiv p$

 $p \lor q \equiv q \lor p$

 $p \wedge q \equiv q \wedge p$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

 $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

 $\neg (p \land q) \equiv \neg p \lor \neg q$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

 $p \lor (p \land q) \equiv p$

 $p \land (p \lor q) \equiv p$

 $p \vee \neg p \equiv T$

 $p \land \neg p \equiv \mathbf{F}$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Logical Equivalences.

Identity laws

Domination laws

Idempotent laws

Double negation law

Commutative laws

 $= \{x \mid \neg(x \in (A \cap B))\}\$

$$B))\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}\$$

$$\in B$$
)

$$\in B)$$

$$\{ \in B \} \}$$

$$\in B$$
)

$$\in B$$

$$\in B)$$

$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}\$$

$$x \in B$$
);
 $\notin R$)

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$x \notin B$$

$$= \{x \mid x \in \overline{A} \lor \underline{x} \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

$$\cup \overline{B}$$

$$\cup \overline{B}$$

$$\cup B$$

$$\cup B$$

$$A \cup B$$

$$\cup D$$

$$1 \cup L$$

$$1 \cup L$$

De Morgan's laws

10

 $A \cup (A \cap B) = A$

 $A \cap (A \cup B) = A$

 $A \cup \overline{A} = U$

 $A \cap \overline{A} = \emptyset$

Identity Name $A \cap U = A$ Identity laws $A \cup \emptyset = A$ $A \cup U = U$ Domination laws $A \cap \emptyset = \emptyset$ $A \cup A = A$ Idempotent laws $A \cap A = A$ $\overline{(\overline{A})} = A$ Complementation law $A \cup B = B \cup A$ Commutative laws $A \cap B = B \cap A$ $A \cup (B \cup C) = (A \cup B) \cup C$ Associative laws $A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributive laws $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ De Morgan's laws $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$(A \cap B) \cup [B \cap ((C \cap D) \cup (C \cap \overline{D}))]$ $= (A \cap B) \cup [B \cap (C \cap (D \cup \overline{D}))]$ $= (A \cap B) \cup [B \cap (C \cap U)]$ $= (A \cap B) \cup (B \cap C)$ $= (B \cap A) \cup (B \cap C)$ $= B \cap (A \cup C)$ $\{\overline{C} \cup [A \cap (B \cap \overline{A})]\} \cup [(\overline{C} \cap A) \cup \overline{D}]$

Sets

Absorption laws

Complement laws

Computer Representation of Sets

First, specify an arbitrary ordering of the elements of U, for instance a_1, a_2, \ldots, a_n .

Represent a subset A of U with the bit string of length n, where the i^{th} bit in this string is 1 if a_i belongs to A and is 0 if a_i does not belong to A.

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{1, 3, 5, 7, 9\}$$

$$B = \{1, 2, 3, 4, 5\}$$

$$A \cap B = A \cap C = A \cap C = A$$