© Министерство образования Республики Беларусь Учреждение образования «Республиканский институт контроля знаний»

РТ-2018/2019 гг. Этап III

Тематическое консультирование по физике

Вариант 2

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Механика. Основные понятия	А1. На бумажной ленте с помощью специального прибора через равные промежутки времени отметили положения пяти прямолинейно движущихся тел (см. рис.). Положения тела, которое двигалось равномерно, отмечены на ленте, номер которой: 1) 1; 2) 2; 3) 3; 4) 4; 5) 5	Для выполнения задания необходимо знать определение равномерного движения тела. Ответ: 5	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. — Минск: Народная асвета, 2015. — § 7
Механика. Графическое представление равномерного прямолинейного движения	А2. На рисунке приведён график зависимости координаты тела x от времени t . Соответствующий графику кинематический закон движения тела обозначен цифрой: 1) $x(t) = A + Bt$, где	Для выполнения задания необходимо уметь соотносить графическую информацию о механическом движении с символической формой записи кинематического закона равномерного прямолинейного движения. Решение: Сопоставим кинематический закон движения $x = A + Bt$, представленный в условии задачи, с формулой зависимости координаты тела от времени	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред.

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания [*]	Учебное издание**
	x, M $10,0$ $8,0$ $6,0$ $4,0$ $2,0$ 0 0 0 0 0 0 0 0 0	$x=x_0+v_xt$. Из сопоставления этих уравнений видно, что начальная координата тела $x_0=A$, а проекция скорости тела на ось Ox равна $v_x=B$. Согласно данным графика начальная координата тела $x_0=2.0$ м, а проекция скорости тела на ось Ox : $v_{1x}=\frac{x_1-x_0}{\Delta t_1};\ v_{1x}=\frac{6.0\ \text{M}-2.0\ \text{M}}{2.0\ \text{c}}=2.0\ \frac{\text{M}}{\text{c}}.$ Сопоставив полученые из графика начальную координату и проекцию скорости тела с их значениями, указанными в условии задачи, делаем вывод, что правильный ответ обозначен цифрой 3. Ответ: 3	А. А. Сокольского. — Минск : Народная асвета, 2015. — § 8

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Механика. Равномерное движение материальной точки по окружности. Угловая скорость	А3. Колесо равномерно вращается вокруг неподвижной оси. Если линейная скорость движения точки, расположенной на ободе колеса, в $k=2.5$ раза больше линейной скорости точки, находящейся ближе к оси вращения на $\Delta l=9.0$ см, то радиус R колеса равен: 1) 10 см; 2) 12 см; 3) 15 см; 4) 17 см; 5) 19 см	Для выполнения задания необходимо уметь рассчитывать кинематические характеристики тела при его равномерном движении по окружности, знать формулу $v = \omega R$, связывающую угловую скорость ω обращения тела с его линейной скоростью v . Решение: Согласно условию задачи $v_1 = \omega R$, $v_2 = \omega (R - \Delta l)$. Учитывая, что $v_1 = 2,5v_2$, находим: $R = \frac{2,5\Delta l}{1,5} = \frac{2,5\cdot 9,0\text{ см}}{1,5} = 15\text{ см}$. Ответ: 3	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. — Минск: Народная асвета, 2015. — § 14
Механика. Равнопеременное движение. Скорость, перемещение, координата, путь при равнопеременном движении. Импульс тела	А4. Тело массой $m = 1,0$ кг движется по горизонтальной поверхности вдоль оси Ox . Кинематический закон движения тела имеет вид $x(t) = A + Bt + Ct^2$, где $A = 4,0$ м, $B = -3,0\frac{\text{M}}{\text{c}}$, $C = 5,0\frac{\text{M}}{\text{c}^2}$. Модуль импульса тела в момент времени $t = 2,0$ с равен: 1) $10\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$; 2) $12\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$; 3) $14\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$; 4) $17\frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$;	M M	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. — Минск: Народная асвета, 2015. — § 12—13, 28

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
•	5) 20 κι· M c	$v_x = v_{0x} + a_x \Delta t = -3,0 \frac{\text{M}}{\text{c}} + 10,0 \frac{\text{M}}{\text{c}^2} \cdot 2,0 \text{ c} = 17,0 \frac{\text{M}}{\text{c}}.$ Поскольку модуль скорости $v = v_x$, то модуль импульса тела: $p = 1,0 \text{ кг} \cdot 17,0 \frac{\text{M}}{\text{c}} = 17 \frac{\text{кг} \cdot \text{M}}{\text{c}}.$ Ответ: 4	
Механика. Второй закон Ньютона	А5. Без груза автомобиль массой $M=6,0$ т начинает движение под действием равнодействующей силы \vec{F} с ускорением, модуль которого $a_1=0,30\frac{\rm M}{\rm c^2}$. Если после загрузки автомобиля под действием той же силы \vec{F} автомобиль трогается с места с ускорением, модуль которого $a_2=0,20\frac{\rm M}{\rm c^2}$, то масса m груза равна: 1) 2,0 т; 2) 3,0 т; 3) 4,0 т; 4) 5,0 т; 5) 6,0 т	Задание проверяет знание второго закона Ньютона и умение применять его в конкретной ситуации. Решение: Согласно второму закону Ньютона для ненагруженного автомобиля модуль равнодействующей силы: $F = Ma_1$, а для нагруженного автомобиля: $F = (M+m)a_2$. Тогда $(M+m)a_2 = Ma_1$. Следовательно, масса m груза равна: $m = M\left(\frac{a_1}{a_2} - 1\right)$. Численно: $m = 6,0$ т. $\left(\frac{0,30 \frac{M}{c^2}}{0,20 \frac{M}{c^2}} - 1\right) = 3,0$ т. Ответ: 2	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. — Минск: Народная асвета, 2015. — § 20

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Механика. Давление. Гидростатическое давление	Аб. В два сосуда, имеющих разную площадь плоского горизонтального дна $(S_1 < S_2)$, налили воду. Уровень воды в сосудах одинаков (см. рис.). Давления $(p_1 \ \text{и} \ p_2)$ и модули сил давления $(F_1 \ \text{и} \ F_2)$ воды на дно первого и второго сосудов связаны соотношениями: 1) $p_1 = p_2$, $F_1 = F_2$; 2) $p_1 = p_2$, $F_1 > F_2$; 3) $p_1 < p_2$, $F_1 = F_2$; 4) $p_1 = p_2$, $F_1 < F_2$; 5) $p_1 > p_2$, $F_1 < F_2$ 1) 1; 2) 2; 3) 3; 4) 4; 5) 5	$T_1 \setminus T_2$. The drift of DC1 T_1 .	Физика: учеб. пособие для 7-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Ю. Д. Лещинский; под ред. Л. А. Исаченковой. — Минск: Нар. асвета, 2017. — § 28, 31

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Основы МКТ и термодинамики. Основные понятия	A7. Единицей количества вещества в СИ является: 1) 1 кг· моль; 2) 1 моль⁻¹; 3) 1 кг· м³; 4) 1	Для выполнения задания необходимо знать смысл понятия «количество вещества» и единицу этой величины в СИ. Ответ: 5	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 2
Основы МКТ и термодинамики. Уравнение Клапейрона – Менделеева	А8. В баллоне находится идеальный газ, давление которого $p=138$ кПа и температура $T=300$ К. Если число молекул газа $N=2,00\cdot10^{22}$, то объём V газа в баллоне равен: 1) 100 см 3 ; 2) 300 см 3 ; 3) 400 см 3 ; 4) 500 см 3 ; 5) 600 см 3	Для выполнения задания необходимо знать уравнение Клапейрона — Менделеева $pV=\frac{m}{M}RT$ и уметь применять его в конкретной ситуации. Решение: Согласно уравнению Клапейрона — Менделеева $pV=\frac{m}{M}RT=\frac{N}{N_A}RT$, откуда $V=\frac{NRT}{pN_A}$. Численно: $V=\frac{2,00\cdot 10^{22}\cdot 8,31\frac{\text{Дж}}{\text{моль}\cdot \text{K}}\cdot 300\text{ K}}{138\cdot 10^3 \text{Па}\cdot 6,02\cdot 10^{23} \text{моль}^{-1}}=600 \text{см}^3$. Ответ: 5	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 5

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Основы МКТ и термодинамики. Применение первого закона термодинамики к изопроцессам в идеальном газе	количество вещества которого постоянно, провели изобарный процесс (см. рис.). Изменение	Для выполнения задания необходимо знать и уметь применять первый закон термодинамики к изобарному процессу в идеальном газе. Решение: Согласно условию задачи с идеальным газом провели изобарный процесс $p = \text{const}$. Следовательно, давление газа не изменяется, а изменение внутренней энергии газа $\Delta U = \frac{3}{2} \nu R \Delta T$. Согласно графику температура газа увеличивается, следовательно, $\Delta U > 0$. Согласно графику увеличивается и объём газа. Тогда работа, совершённая силой давления газа при его переходе из состояния 1 в состояние 2, будет больше нуля, т. е. $A > 0$. Таким образом, верными будут соотношения: $\Delta U > 0$, $A > 0$. Ответ: 2	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск : Адукацыя і выхаванне, 2013. — § 11

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Электродинамика. Коэффициент полезного действия источника тока	А10. Если к источнику тока подключён только электродвигатель, то полезная работа тока равна: 1) теплоте, выделяемой внутри источника; 2) теплоте, выделяемой в обмотке электродвигателя; 3) механической работе, совершаемой электродвигателем; 4) теплоте, выделяемой в соединительных проводах; 5) теплоте, выделяемой в соединительных проводах и обмотке электродвигателя. 1) 1; 2) 2; 3) 3; 4) 4; 5) 5	Для выполнения задания необходимо различать понятия «полезная работа» и «совершённая (полная) работа». Решение: Для выполнения задания достаточно понимать, что полезная работа тока электродвигателя расходуется на механическую работу, совершаемую электродвигателем. Ответ: 3	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 23
Электродинамика. Закон Кулона. Электростатическое взаимодействие	А11. Три точечных заряда q_1 , q_2 и q_3 лежат в плоскости рисунка. Если результирующая сил, с	Для выполнения задания необходимо знать закон Кулона и правило сложения и разложения сил. Решение: Согласно условию задачи на заряд q_3 действуют силы со стороны полей, созданных зарядами q_1 и q_2 . По принципу суперпозиции эти силы действуют независимо. Вектор \vec{F} и \vec{F}_2 , где \vec{F}_1 и \vec{F}_2 — силы, действующие на заряд q_3 со стороны зарядов q_1 и q_2 соответственно.	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 16

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	которыми точечные заряды q_1 и q_2 действуют на отрицательный точечный заряд q_3 , равна \vec{F} (см. рис.), то для зарядов q_1 и q_2 справедливы(-о) соотношения(-е): $1) q_1 < 0, q_2 > 0;$ $2) q_1 > 0, q_2 < 0;$ $3) q_1 > q_2 > 0;$ $4) q_2 > q_1 > 0;$ $5) q_1 > 0, q_2 = 0$	Поскольку $r_{13}=r_{23},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Электродинамика. Работа и мощность электрического тока	А12. При напряжении U в спирали нагревательного элемента длиной l_1 ежесекундно выделяется количество теплоты Q_1 . После уменьшения длины спирали до $l_2 = \frac{l_1}{4}$ при том же напряжении U ежесекундно выделяемое в спирали количество теплоты Q_2 : 1) увеличится в 2 раза; 2) увеличится в 4 раза; 3) уменьшится в 4 раза; 5) не изменится	Для выполнения задания необходимо знать формулу работы тока $\left(A=Q=\frac{U^2}{R}\Delta t\right)$, формулу зависимости сопротивления проводника от его длины $\left(R=\rho\frac{l}{S}\right)$ и уметь применять их в конкретной ситуации. Решение: Начальное количество теплоты Q_1 , ежесекундно выделяемое нагревательным элементом (при постоянном напряжении источника тока) рассчитывается по формуле $Q_1=\frac{U^2}{R_1}\Delta t=\frac{U^2\cdot S}{\rho l_1}\Delta t$. После уменьшения длины спирали до $l_2=\frac{l_1}{4}$ количество теплоты, ежесекундно выделяемое в	Физика: учеб. пособие для 8-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Ю. Д. Лещинский, В. В. Дорофейчик; под ред. Л. А. Исаченковой. — Минск: Нар. асвета, 2018. — § 26

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Электродинамика. Действие магнитного поля на проводник с током. Закон Ампера	рис. a рис. b А13. Прямолинейный проводник с током I расположен в однородном магнитном поле перпендикулярно плоскости рисунка a . Направление силы Ампера \vec{F}_A , действующей на проводник с током, обозначено на рисунке b цифрой: 1) 1; 2) 2; 3) 3; 4) 4; 5) 5 А14. Сила тока в обмотке	спирали при том же напряжении U : $Q_2 = \frac{U^2}{R_2} \Delta t = \frac{U^2 \cdot 4S}{\rho l_1} \Delta t = 4Q_1$. Ответ: 2 Для выполнения задания необходимо знать и уметь применять правило левой руки для определения направления силы Ампера. Решение: Направление силы Ампера определяется правилом левой руки: если ладонь левой руки расположить так, чтобы линии вектора индукции магнитного поля входили в неё, а четыре вытянутых пальца направить по току в проводнике, то большой палец, отогнутый на 90°, покажет направление силы Ампера \vec{F}_A . Применив указанное правило, определим, что направление силы Ампера \vec{F}_A обозначено на рисунке b цифрой 1. Ответ: 1	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 31
Электродинамика. Энергия магнитного поля катушки с током	А14. Сила тока в обмотке соленоида $I = 2,40 \mathrm{A}$, а магнитный поток внутри соленоида $\Phi = 400 \mathrm{mB6}$. Энергия магнитного поля W_{M} соленоида равна: 1) 480 мДж; 2) 428 мДж;	Для выполнения задания необходимо уметь решать задачи на определение энергии магнитного поля катушки с током (соленоида). Решение: Формула энергии магнитного поля соленоида: $W_{\rm M} = \frac{\Phi I}{2}$. Числовое значение искомой величины:	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск : Адукацыя і выхаванне, 2013. — § 35

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	3) 365 мДж; 4) 280 мДж; 5) 144 мДж	$W_{\rm M} = \frac{400 \cdot 10^{-3} {\rm B}6 \cdot 2,40 {\rm A}}{2} = 480 {\rm M} {\rm Дж}.$ Ответ: 1	
Механика. Механические волны. Длина волны	А15. Примерный диапазон спектра звуковых частот женского голоса (меццосопрано) — от $v_1 = 200~\Gamma$ ц до $v_2 = 1000~\Gamma$ ц. Отношение длин звуковых волн $\frac{\lambda_1}{\lambda_2}$, соответствующих границам этого диапазона, равно: 1) 0,25; 2) 0,5; 3) 1; 4) $\sqrt{2}$; 5) 5	Для выполнения задания необходимо знать определение понятия «длина волны». Решение: Согласно определению длина волны (λ) — это расстояние, на которое волна распространяется за время одного полного колебания,	Физика: учеб. пособие для 11-го кл. учреждений общ. сред. образования / В. В. Жилко, Л. Г. Маркович. – Минск: Нар. асвета, 2014. – § 5
Оптика. Дифракционная решётка	А16. Общее число N максимумов в спектре, образующемся при нормальном падении плоской монохроматической волны частотой $v = 6, 4 \cdot 10^{14} \Gamma$ ц на дифракционную решётку с периодом $d = 1$ мкм, равно: 1) 4; 2) 5; 3) 6; 4) 8; 5) 9	Для выполнения задания необходимо уметь решать задачи на применение формулы дифракционной решётки. Решение: Формула дифракционной решётки: $d\sin \phi = m\lambda = \frac{mc}{v}.$ Поскольку $\sin \phi \leq 1$, то $m_{\max} = \frac{dv}{c}$. При нахождении общего числа N дифракционных максимумов, которое можно наблюдать на экране с помощью данной дифракционной решётки, необходимо воспользоваться	Физика: учеб. пособие для 11-го кл. учреждений общ. сред. образования / В. В. Жилко, Л. Г. Маркович. – Минск: Нар. асвета, 2014. – § 14

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Основы квантовой физики. Уравнение Эйнштейна для фотоэффекта	задерживающем напряжении $ U_3 $ = 1,40 В. Длина волны λ	формулой: $N=2m_{\max}+1$. Следует знать, что данная формула учитывает одинаковое количество дифракционных максимумов по обе стороны от центрального и ещё один максимум – центральный. Численно: $N=2\cdot\frac{1\cdot10^{-6}\mathrm{M}\cdot6,4\cdot10^{14}\Gamma\mathrm{u}}{3\cdot10^8\frac{\mathrm{M}}{\mathrm{c}}}+1=2\cdot2+1=5$. Ответ: 2 Для выполнения задания необходимо знать уравнение Эйнштейна для внешнего фотоэффекта: $h\frac{c}{\lambda}=h\frac{c}{\lambda_{\mathrm{k}}}+e U_3 $. Решение: Согласно уравнению Эйнштейна $h\frac{c}{\lambda}=h\frac{c}{\lambda_{\mathrm{k}}}+e U_3 $. Откуда $\lambda=\frac{hc\lambda_{\mathrm{k}}}{hc+e U_3 \lambda_{\mathrm{k}}}$. Численно: $\lambda=\frac{6,63\cdot10^{-34}\mathrm{Дж\cdot c\cdot 3,00\cdot 10^8\frac{\mathrm{M}}{\mathrm{c}}\cdot340\cdot10^{-9}\mathrm{M}}{6,63\cdot10^{-34}\mathrm{Дж\cdot c\cdot 3,00\cdot 10^8\frac{\mathrm{M}}{\mathrm{c}}\cdot1,6\cdot10^{-19}\mathrm{Kn\cdot 1,40B\cdot 340\cdot 10^{-9}M}}=246\cdot10^{-9}\mathrm{m}=246\cdot10^{-$	Физика: учеб. пособие для 11-го кл. учреждений общ. сред. образования / В. В. Жилко, Л. Г. Маркович. – Минск: Нар. асвета, 2014. – § 27

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Атомное ядро и элементарные частицы. Закон радиоактивного распада	А18. График вависимости числа N нераспавшихся ядер от 50,0 времени t для некоторого образца радиоактивного изотопа изображён на рисунке. Период полураспада $T_{1/2}$ этого изотопа равен: 1) 10 мин; 2) 20 мин; 3) 30 мин; 4) 40 мин; 5) 60 мин	Для выполнения задания необходимо знать определение периода полураспада радиоактивного вещества, понимать его физический смысл и уметь считывать информацию с графика. Решение: Согласно определению периодом полураспада радиоактивного вещества называется промежуток времени, в течение которого распадается половина начального количества ядер атомов вещества. В соответствии с графиком половина ядер некоторого образца радиоактивного изотопа распадётся в течение промежутка времени $\Delta t = 30$ мин. Следовательно, $T_{1/2} = 30$ мин.	Физика: учеб. пособие для 11-го кл. учреждений общ. сред. образования / В. В. Жилко, Л. Г. Маркович. – Минск: Нар. асвета, 2014. – § 38
Механика. Движение тела под действием силы тяжести	В1. Тело брошено вертикально вверх с поверхности Земли с начальной скоростью \vec{v}_0 . Если на высоте $h=15\mathrm{m}$ оно побывало дважды с интервалом времени $\Delta t=2,0\mathrm{c}$, то модуль начальной скорости v_0 тела равен $\frac{\mathrm{m}}{\mathrm{c}}$	Для выполнения задания необходимо знать и уметь применять формулы для расчёта кинематических характеристик при равнопеременном прямолинейном движении тела, брошенного вертикально вверх. Решение: Сделаем рисунок к задаче. Рассмотрим движение тела. В верхней точке (точка C) мгновенная скорость $v=0\frac{M}{c}$. Поскольку время подъёма тела равно времени его падения, то тело падало от точки C до точки B в течение $t_1=\frac{\Delta t}{2}$, т. е. в течение одной секунды, и за это время оно прошло путь	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. — Минск: Народная асвета, 2015. — § 24

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	В2 При выполнении пиркового	$h_2=rac{gt^2}{2}=rac{10rac{ ext{M}}{c^2}ig(1,0\ ext{c}ig)^2}{2}=5,0\ ext{ м}.$ Тогда путь, пройденный телом от точки C до точки A : $s=h_2+h_1=20\ ext{ м}.$ Таким образом, модуль начальной скорости v_0 тела равен: $v_0=\sqrt{2gs}=\sqrt{2\cdot 10rac{ ext{M}}{c^2}\cdot 20\ ext{M}}=20rac{ ext{M}}{c}.$ Ответ: 20	Физика: учебник для 9-го кл.
Механика. Кинематика вращательного движения. Законы Ньютона	В2. При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке в горизонтальной плоскости с минимально возможной скоростью, модуль которой $v_{\min} = 18 \frac{M}{c}$. Если коэффициент трения между колёсами мотоцикла и поверхностью стенки $\mu = 0,25$, то радиус R цилиндра, по которому движется мотоциклист, равен дм	Для выполнения задания необходимо знать кинематику движения тела по окружности и уметь применять законы Ньютона. Решение: Сделаем рисунок к условию задачи. При движении по вертикальной стенке на мотоциклиста действуют: сила тяжести $m\vec{g}$, сила нормальной реакции \vec{N} , сила трения $\vec{F}_{\rm тp}$. Согласно второму закону Ньютона: $m\vec{g} + \vec{N} + \vec{F}_{\rm тp} = m\vec{a}$. $Ox: N = ma$; $Oy: F_{\rm тp} - mg = 0$. Поскольку мотоциклист движется по окружности, то центростремительное ускорение сообщает ему сила нормальной реакции $N = m\frac{v_{\rm min}^2}{R}$; $F_{\rm тp} = mg = \mu N$. Тогда искомый радиус окружности $R = \frac{\mu v_{\rm min}^2}{g}$.	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. — Минск: Народная асвета, 2015. — § 15, 20, 23

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	ВЗ. При движении со скоростью,	Численно: $R = \frac{0.25 \cdot \left(18 \frac{\text{M}}{\text{c}}\right)^2}{10 \frac{\text{M}}{\text{c}^2}} = 8.1 \text{ м} = 81 \text{ дм}.$ Ответ: 81 Для выполнения задания необходимо знать и понимать смысл	Физика: учебник для 9-го кл.
Механика. Механическая работа. Мощность. Коэффициент полезного действия	модуль которой $v = 36 \frac{\text{км}}{\text{ч}}$, полная развиваемая электровозом мощность $P = 65 \text{ кВт}$. Если модуль силы тяги электровоза $F = 5,2 \text{ кH}$, то коэффициент полезного действия электровоза равен %	коэффициента полезного действия, уметь решать задачи на расчёт механической работы и мощности. Решение: Согласно условию задачи коэффициент полезного действия электровоза $\eta = \frac{\Pi \text{олезная мощность}}{\Pi \text{олная мощность}} = \frac{Fv}{P} \cdot 100 \%.$ Численно: $\eta = \frac{5,2 \cdot 10^3 \text{H} \cdot 10 \frac{\text{M}}{\text{c}}}{65 \cdot 10^3 \text{BT}} \cdot 100 \% = 80 \%.$ Ответ: 80	учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский ; под ред. А. А. Сокольского. — Минск : Народная асвета, 2015. — § 30; Физика : учеб. пособие для 7-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Ю. Д. Лещинский ; под ред. Л. А. Исаченковой. — Минск : Нар. асвета, 2017. — § 37
Механика. Второй закон Ньютона. Закон сохранения энергии	поверхности, прикреплена	Для выполнения задания необходимо знать и уметь применять второй закон Ньютона и закон сохранения энергии. Решение: Согласно условию задачи работа, совершённая внешней силой \vec{F} , идёт на	Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред.

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	между бруском и поверхностью $\mu = 0,4$. Если для медленного равномерного и прямолинейного перемещения бруска по поверхности на расстояние $l = 93$ см к свободному концу первоначально недеформированной пружины приложили горизонтальную силу, то работа A , совершённая этой силой, равна Дж	увеличение потенциальной энергии пружины и на работу по преодолению силы трения скольжения: $A = \Delta E_{_{\Pi}} + \left A_{_{Tp}}\right $. Сделаем рисунок к задаче. Как только $F_{_{\text{упр}}} = F_{_{\text{Тр, пок. max}}} = \mu N = \mu mg$, брусок сдвинется с места, т. е. $k\Delta x = \mu mg$, тогда $\Delta x = \frac{\mu mg}{k}$. Значит, $\Delta E_{_{\Pi}} = \frac{k\Delta x^2}{2}$, $\left A_{_{Tp}}\right = \mu mgl$. Следовательно, $A = \mu mg \left(\frac{\mu mg}{2k} + l\right).$ Численно: $A = 0, 4 \cdot 1, 2 \text{ кг} \cdot 10 \frac{M}{c^2} \cdot \left(\frac{0, 4 \cdot 1, 2 \text{ кг} \cdot 10 \frac{M}{c^2}}{2 \cdot 20 \frac{H}{M}} + 0,93 \text{ м}\right) = 5 \text{ Дж}.$ Ответ: 5	А. А. Сокольского. — Минск: Народная асвета, 2015. — § 20, 31–33
Основы МКТ и термодинамики. Работа и количество теплоты как меры изменения внутренней энергии	В5. В вертикально расположенном цилиндре, площадь основания которого $S = 300 \mathrm{cm}^2$, под гладким поршнем массой $m = 12 \mathrm{kr}$ находится газ объёмом $V_1 = 4,0 \mathrm{л}$ при температуре $T_1 = 286 \mathrm{K}$. Если атмосферное давление $p_0 = 0,10 \mathrm{MHz}$, то при изобарном повышении температуры газа на	\mathbf{i} \mathbf{j} \mathbf{i} \mathbf{j}	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 5, 10

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	$\Delta T = 15 \mathrm{K}$ работа A силы давления газа равна Дж	Таким образом, $A = \left(p_0 + \frac{mg}{S}\right) \frac{V_1 \Delta T}{T_1}$. Численно: $A = \left(0,10 \cdot 10^6 \Pi a + \frac{12 \mathrm{Kr} \cdot 10 \frac{\mathrm{M}}{\mathrm{c}^2}}{300 \cdot 10^{-4} \mathrm{m}^2}\right) \cdot \frac{4,0 \cdot 10^{-3} \mathrm{m}^3 \cdot 15 \mathrm{K}}{286 \mathrm{K}} = 22 \mathrm{Дж}.$	
Основы МКТ и термодинамики. Закон сохранения и превращения энергии	т, °С 70 60 50 40 30 20 10 0 10 10 10 10 10 10 10 10 10 10 10	Ответ: 22 Для выполнения задания необходимо уметь считывать информацию с рисунка, знать закон сохранения и превращения энергии и уметь применять его в конкретной ситуации. Решение: При нагревании шарика горячей жидкостью уравнение теплового баланса: $c_{\rm b} \cdot 2m_{\rm A} \cdot \Delta t_{\rm b} = c_{\rm A} \cdot m_{\rm A} \cdot \Delta t_{\rm a}$. Согласно рисунку $\Delta t_{\rm A} = 20^{\circ}{\rm C}$, $\Delta t_{\rm b} = 40^{\circ}{\rm C}$. Тогда искомая величина: $c_{\rm A} = \frac{2c_{\rm b} \cdot \Delta t_{\rm b}}{\Delta t_{\rm A}} = \frac{2\cdot 0.5\cdot 10^3}{20^{\circ}{\rm C}} \frac{\text{Дж}}{\text{кг· K}} \cdot 40^{\circ}{\rm C}$ Ответ: 2	Физика: учеб. пособие для 8-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Ю. Д. Лещинский, В. В. Дорофейчик; под ред. Л. А. Исаченковой. — Минск: Нар. асвета, 2018. — § 6; Физика: учебник для 9-го кл. учреждений общ. сред. образования / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. — Минск: Народная асвета, 2015. — § 32—33

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Основы МКТ и термодинамики. Циклические процессы. Коэффициент полезного действия цикла	в процессе теплообмена. Если удельная теплоёмкость вещества, из которого состоит шарик, $c_{\rm E}=0.5\frac{{\rm K} \slash {\rm K$	Для выполнения задания необходимо уметь решать задачи на определение коэффициента полезного действия цикла. Решение: Изобразим рассматриваемый циклический процесс на pV -диаграмме (см. рис.). Согласно диаграмме $1-2$ – процесс изохорного нагревания, т. е. газ получает количество теплоты Q_{12} ; $2-3$ – процесс изотермического расширения, т. е. газ получает количество теплоты Q_{23} ; $3-1$ – изобарное сжатие, т. е. газ отдаёт количество теплоты Q_{31} . По определению КПД цикла – это отношение работы A_{11} , совершённой газом за весь цикл, к количеству теплоты Q_{12} , полученному газом от нагревателя:	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск : Адукацыя і выхаванне, 2013. — § 12

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
содержания	совершённая силой давления газа при изотермическом расширении, равна кДж	$\eta = \frac{A_{_{\rm II}}}{Q_{_{\rm II}}} = \frac{A_{_{\rm II}}}{Q_{_{12}} + Q_{_{23}}}.$ Принимая во внимание, что $T_2 = T_3 = 2T_1$, для рассматриваемого цикла $A_{_{\rm II}}$ равна: $A_{_{\rm II}} = \left(\frac{3}{2} \nu R \left(T_2 - T_1\right) + A_{_{23}}\right) - \left(\frac{3}{2} \nu R \left(T_3 - T_1\right) + \nu R \left(T_3 - T_1\right)\right) = A_{_{23}} - \nu R T_1.$ Следовательно, $\eta = \frac{A_{_{23}} - \nu R T_1}{Q_{_{12}} + Q_{_{23}}} = \frac{A_{_{23}} - \nu R T_1}{\frac{3}{2} \nu R \left(T_2 - T_1\right) + A_{_{23}}} = \frac{A_{_{23}} - \nu R T_1}{\frac{3}{2} \nu R T_1}.$ Отсюда искомая величина $A_{_{23}} = \frac{\nu R T_1 \left(3\eta + 2\right)}{2\left(1 - \eta\right)}.$ Численно:	
		$A_{23} = \frac{2,4 \text{ моль} \cdot 8,31 \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \cdot 355 \text{ K} (3 \cdot 0,18 + 2)}{2 \cdot (1 - 0,18)} = 11 \text{ кДж}.$ Ответ: 11	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Оптика. Прямолинейность распространения света	В8. Мальчик ростом $h=1,8\mathrm{M}$ идёт прямолинейно со скоростью, модуль которой $v=3,6\frac{\mathrm{KM}}{\mathrm{q}}$, по направлению к вертикальному столбу, на котором установлен уличный фонарь. В некоторый момент времени длина тени мальчика $s_1=2,1\mathrm{M}$. Если через промежуток времени $\Delta t=2,4\mathrm{c}$ длина его тени $s_2=1,5\mathrm{M}$, то высота H , на которой находится фонарь, равна дм	Проверяется умение решать задачи по геометрической оптике. Решение: Сделаем рисунки к задаче. Рассмотрим положения мальчика по отношению к уличному фонарю для двух моментов времени (a) — начальное положение, b) — конечное положение). Расстояния от мальчика до фонарного столба связаны между собой уравнением: $l_2 = l_1 - v\Delta t$ (1). Из подобия треугольников на каждом из рисунков следует: $\frac{H}{h} = \frac{s_1 + l_1}{s_1}$ (2), $\frac{H}{h} = \frac{s_2 + l_2}{s_2}$ (3). Решая совместно (1) — (3), получим: $H = h\left(1 + \frac{v\Delta t}{s_1 - s_2}\right)$. Численно: $H = 1, 8 \cdot \left(1 + \frac{0}{2,1} \cdot \frac{1}{1} \cdot \frac{0}{1} \cdot \frac{1}{1} \cdot \frac{0}{1} \cdot \frac{1}{1} \cdot $	Физика: учеб. пособие для 11-го кл. учреждений общ. сред. образования / В. В. Жилко, Л. Г. Маркович. — Минск: Нар. асвета, 2014. — § 13

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

	T		
Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Электродинамика. Потенциал электростатическо го поля точечного заряда. Напряжённость электростатического поля	В9. Два точечных заряда $q_1 = 1 \text{нКл}$ и $q_2 = -10 \text{нКл}$ находятся на расстоянии $l = 55 \text{см}$ друг от друга. Если в точке, лежащей на отрезке, соединяющем заряды, потенциал электростатического поля ф равен нулю, то модуль напряжённости E электростатического поля в этой точке равен $\frac{\kappa B}{M}$	Для выполнения задания необходимо уметь решать задачи на расчёт напряжённости и потенциала электростатического поля с использованием принципа суперпозиции. Решение: Сделаем рисунок к задаче. Пусть $x-$ расстояние от заряда q_1 до точки A (см. рис.). Из условия равенства потенциала нулю в точке A имеем: $\phi=k\frac{q_1}{x}-k\frac{ q_2 }{l-x}=0$, откуда $x=\frac{q_1l}{q_1+ q_2 }$, $l-x=\frac{ q_2 l}{q_1+ q_2 }$. Напряжённость результирующего электростатического поля в этой точке: $E=k\frac{q_1}{x^2}+k\frac{ q_2 }{(l-x)^2}=k\frac{\left(q_1+ q_2 \right)^3}{l^2q_1 q_2 }$. Численно: $E=9\cdot 10^9\frac{\text{H}\cdot\text{M}^2}{\text{K}\pi^2}\cdot\frac{\left(1\cdot 10^{-9}\text{K}\pi+10\cdot 10^{-9}\text{K}\pi\right)^3}{\left(0,55\text{M}\right)^2\cdot 1\cdot 10^{-9}\text{K}\pi\cdot 10\cdot 10^{-9}\text{K}\pi}=4\cdot 10^3\frac{\text{B}}{\text{M}}=4\frac{\text{K}\text{B}}{\text{M}}.$ Ответ: 4	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 15–16
Электродинамика. Закон Ома для полной цепи. Заряд конденсатора	В10. Конденсатор подключён к источнику постоянного тока. Если после параллельного подключения резистора сопротивлением $R=0,01$ кОм к этому конденсатору заряд конденсатора уменьшился в	Для выполнения задания необходимо уметь рассчитывать заряд конденсатора, знать закон Ома для полной цепи и уметь применять его в конкретной ситуации. Решение: Проанализируем схемы электрических цепей (рис. a) и b)). Для схемы a) заряд \mathcal{E} a	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск : Адукацыя і выхаванне, 2013. —

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	n = 1,4 раза, то внутреннее сопротивление r источника тока равно Ом	конденсатора $q_1 = C \mathcal{E}$ (1). Если параллельно конденсатору подключён резистор (см. схему b)), то через него будет течь ток, величина которого по закону Ома для полной цепи $I = \frac{\mathcal{E}}{R+r}$. Поскольку при этом напряжение на резисторе $U = IR = \frac{\mathcal{E}R}{R+r}$ равно напряжению на конденсаторе, то в схеме b) заряд конденсатора равен: $q_2 = CU = \frac{C\mathcal{E}R}{R+r}$ (2). По условию задачи $q_2 = \frac{q_1}{n}$. Тогда из (1) и (2) следует, что $\frac{C\mathcal{E}R}{R+r} = \frac{C\mathcal{E}}{n}$, откуда: $r = R(n-1) = 0,01$ кОм $(1,4-1) = 4$ Ом. Ответ: 4	§ 20, 23
Электродинамика. Закон электромагнитной индукции	В11. Квадратную рамку со стороной $a = 23 \mathrm{cm}$, изготовленную из проволоки сопротивлением $R = 0,10 \mathrm{Om}$, поместили в однородное магнитное поле перпендикулярно линиям индукции. Модуль вектора магнитной индукции $B = 5,0 \mathrm{mTn}$. Если за промежуток времени $\Delta t = 0,10 \mathrm{c}$ рамку	Для выполнения задания необходимо знать и уметь применять закон электромагнитной индукции. Решение: Применим закон электромагнитной индукции к ситуации, описанной в условии задачи: $\mathscr{E}_{\text{инд}} = -\frac{\Delta \Phi}{\Delta t} = -\frac{BS\left(\cos\alpha_2 - \cos\alpha_1\right)}{\Delta t}, \text{где}$ $\alpha_1 = 0^\circ, \alpha_2 = 180^\circ.$ Тогда с учётом закона Ома $I = -\frac{BS\left(\cos\alpha_2 - \cos\alpha_1\right)}{R\Delta t}.$	Физика: учеб. пособие для 10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 34

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	повернули вокруг одной из её сторон на угол $\alpha = 180^{\circ}$, то средняя сила тока в рамке равна мА	$I = -\frac{5,0 \cdot 10^{-3} \text{Тл} \cdot \left(0,23 \text{м}\right)^2 \left(\cos 180^\circ - \cos 0^\circ\right)}{0,10 \text{Ом} \cdot 0,10 \text{с}} = 53 \text{мA}.$ Ответ: 53 Для выполнения задания необходимо уметь решать задачи на движение	Физика: учеб. пособие для
Электродинамика. Работа сил электростатического поля. Движение заряженной частицы в магнитном поле	начальную скорость $v_0 = 0,0\frac{\rm M}{\rm C}$, прошла ускоряющую разность потенциалов $U = 104\rm B$ и влетела в область взаимно перпендикулярных однородных электростатического ($\vec{E} = {\rm const}$) и магнитного ($\vec{B} = {\rm const}$) полей, где двигалась равномерно и прямолинейно со скоростью, перпендикулярной как к вектору \vec{E} , так и к вектору \vec{B} . Отношение заряда альфа-частицы к её массе $\frac{q}{m} = 48\frac{\rm MKn}{\rm kr}$. Если модуль напряжённости электростатического поля $E = 2,0\frac{\rm kB}{\rm m}$, то модуль индукции B магнитного поля равен м T л	Численно: $B = \frac{2,0 \cdot 10^3 \frac{\text{B}}{\text{м}}}{\sqrt{2 \cdot 48 \cdot 10^6 \frac{\text{Кл}}{\text{кг}} \cdot 104 \text{B}}} = 20 \text{ мТл}.$	10-го кл. учреждений общ. сред. образования / Е. В. Громыко, В. И. Зенькович, А. А. Луцевич. — Минск: Адукацыя і выхаванне, 2013. — § 16, 32

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.

* Предлагается одно из возможных решений задания. Ответы к заданиям даны с учётом правил заполнения бланка ответов.

^{**} На национальном образовательном портале (<u>www.adu.by</u>) в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) размещены электронные версии учебных изданий.