

Elliptic Curve Cryptography

Ashkan Hosseinzadeh Namin

Research Centre for Integrated Microsystems Electrical and Computer Engineering

Outline

Available Public key Cryptographic Techniques

- Motivation
- Introduction
- Symmetric Key and Asymmetric key Cryptography
- RSA Cryptosystem
- El Gamal Cryptosystem

Elliptic Curve Cryptography

- Elliptic Curve Definition
- Point Addition and scalar multiplication
- Elliptic Curve cryptosystem
- Elliptic Curve Discrete Logarithm Problem
- Comparison between Public key Cryptosystems

Conclusions

Motivation

- 1976 Diffie and Hellman, first idea
- Efficient way to achieve secure data exchange between two unfamiliar parties
- RSA, El Gamal, ECC Cryptosystems
- With the same security level, smaller key size for ECC
- ECC implementations require less power, less memory
- Attractive for constrained devices like wireless devices and smart cards and handheld computers.

Introduction

- Cryptography: Greek word means Secret writing
 Scrambling of data so that only someone with the necessary key can
 unscramble it. Used for secure data transmission and storage.
- **Cryptanalysis**: Deals with the breaking of an encrypted data (scrambled data) to recover information
- Two main categories of cryptography
 - Symmetric Cryptography or Secret Key
 - Asymmetric Cryptography or Public Key

Symmetric Key Cryptography

- Alice and Bob agree on encryption method and a key
- Alice encrypts the message with the key and sends it to Bob
- Bob uses the same key to decrypt the message

Symmetric Key Cryptography

Advantages

- High speed and high throughput
- Short key size (> 128 bits)
- Extensive history

Disadvantages

- The key must be remain secret at both ends
- In a large network there are many key pairs to be managed (For n nodes $\underline{n \times (n-1)}$ keys are required).

Asymmetric Key Cryptography

- Bob generates a key which makes public.
- Bob uses his public key to determine a second key which is his private key and keeps it secret.
- Alice uses Bob's public key to encrypt a message for him.
- Bob uses his private key to decrypt this message

Asymmetric Key Cryptography

Advantages

- Only the private key must be kept secret
- Easier key administration on a network
- In a large network, number of keys is smaller than symmetric-key scenario (n pairs of keys).

Disadvantages

- Small throughput
- Larger Key size than symmetric-key encryption (160-1024 bits)
- Public key schemes have their security based on some hard mathematical problems
- Does not have as extensive a history (Started in 1970's)

Asymmetric Cryptography Techniques

- The concept was introduced in 1976 by Diffie and Hellman as an algorithm for key exchange (they didn't come up with a practical cryptographic system)
- Today three different cryptographic systems are considered both secure and efficient.
 - RSA (Based on integer factorization system)
 - El Gamal (based on discrete logarithm system)
 - Elliptic Curve (based on elliptic curve discrete logarithm problem)
- All these cryptographic systems rely on the difficulty of a mathematical hard problem for their security and modular arithmetic plays a central role in their implementations.

Asymmetric Cryptography Timeline

- In 1978, L.M Adleman, R.L. Rivest and A. Shamir propose the RSA encryption method as the first public key algorithm. This algorithm is currently the most widely used.
- In 1985, Taher El Gamal proposed the discrete logarithm problem. In 1991 Schnorr discovered a variant Gamal's work which offers more efficiency. U.S government Digital Signature Algorithm is based on this technique.
- In 1985, Neil Koblitz and Victor Miller independently proposed the Elliptic Curve Cryptosystem (ECC). ECC is the strongest public key cryptographic system known today.

RSA

- Bob chooses two primes p and q and calculates n=p×q
- Bob chooses e with $gcd(e,(p-1)\times(q-1))=1$
- Bob calculates d with d×e=1 (mod(p-1) ×(q-1))
- Bob makes n and e public, and keeps p,q,d secret
- Alice encrypts m as c=m^e (mod n)
- Bob decrypts by calculating m=c^d (mod n)

• $m = c^d = m^{(d \times e)} = m^{(1)} = m$ mod n

RSA

- RSA security relies on the difficulty of the Integer Factorization problem
- Integer Factorization problem: given a large prime number n=p×q factor n into it's prime numbers
- RSA efficiency rests on the speed of performing exponentiation modulo n.
- Up to 2003 the largest RSA modulus factored is a 530 bit binary number.

El Gamal

- Bob chooses prime p and a primitive root α and makes them public
- Bob also chooses a secret integer A and calculates $B=(\alpha)^A \mod p$
- Bob public key is (p, α, B) and his private key is A
- Alice chooses a random integer k and calculates $K=(\alpha)^k$
- Alice encrypts m as $C_1 = \alpha^K, C_2 = B^K \times m \mod p$
- Bob decrypts by calculating $C_2 \times (C_1)^{-A}$

• $\mathbf{m} = \mathbf{C}_2 \times (\mathbf{C}_1)^{-\mathbf{A}} = \mathbf{B}^{\mathbf{K}} \times \mathbf{m} \times (\mathbf{\alpha}^{\mathbf{K}})^{-\mathbf{A}} = (\mathbf{\alpha}^{\mathbf{A}})^{\mathbf{K}} \times \mathbf{m} \times (\mathbf{\alpha}^{\mathbf{K}})^{-\mathbf{A}} = \mathbf{m}$ mod p

El Gamal

- El Gamal security relies on the difficulty of the Discrete Logarithm problem.
- Discrete Logarithm problem :

Given pair g and y and prime number p such that $y = g^x \pmod{p}$ determine integer x

- El Gamal efficiency rests on the speed of performing modular exponentiation modulo p.
- Up to 2003 the largest DLP solved is a 397 bit binary number.

Elliptic Curve Definition

• An Elliptic Curve is the graph of equation of the form

$$y^2 = x^3 + ax + b$$

(we assume that the curve has no multiple roots $4a^3+27b^2\neq0$)

When we are working with real Numbers graph E has one of the two possible forms (it can have one real root or three real roots).

Elliptic Curve Point Addition

- if (x,y) satisfy the elliptic curve equation then p=(x,y) is a point on the elliptic curve
- Suppose P₁ and P₂ are both points on the elliptic curve then
 P₁ + P₂ is always another point on the elliptic curve which is defined as

Draw a line through P_1 and P_2 (if $P_1 = P_2$ take the Tangent line). The line intersects the curve in a third Point. Reflect that point through the x-axis to find $P_3 = P_1 + P_2$

Elliptic Curve Point Addition

- For curve $y^2 = x^3 + ax + b$
- Point Addition $P(x_1,y_1) \neq Q(x_2,y_2)$

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2 \qquad y$$

$$y_3 = (\frac{y_2 - y_1}{x_2 - x_1}) \times (x_1 - x_3) - y_1$$

• Point Doubling $P(x_1,y_1)$

$$x_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1$$

$$y_3 = (\frac{3x_1^2 + a}{2y_1}) \times (x_1 - x_3) - y_1$$

Elliptic Curve Scalar Multiplication

- Scalar multiplication is the dominant computation part of ECC
- It computes k×P for a given point P and integer k.
- $Q = k \times P = (P + P + ... + P)$ ((k-1) addition)
- There are different methods for speeding up this process, The most common one is the Binary Method (also called Double and Add Method)

For
$$i = 0$$
 to n-1

If $b_i=1$ then $Q = Q + P$
 $P = P + P$
End

$$K = \sum_{i=0}^{n-1} b_i * 2^i$$
$$b_i = 0,1$$

Elliptic Curve & Finite Field

•Elliptic curve calculations are usually defined over finite field

The finite field is prime field GF(P)

The elements are $\{0,1,2,...,p-1\}$ all operations are modulo p

The finite field is a binary polynomial field GF(2^m)

The elements are binary polynomials
all operations are modulo 2

$$x = a_{m-1}X^{m-1} + a_{m-2}X^{m-2} + ... + a_1X + a_0$$
 $a_i = \{0,1\}$

Defining the curve over Binary Field will speed up the calculations

Elliptic Curve Cryptosystem

- Bob chooses the curve E and pint P on the curve
- Bob chooses integer d and calculates Q=d×P and makes it public
- Alice maps the plaintext m to point M on curve
- Alice chooses a random integer k
- Alice encrypts M as $C_1 = k \times P$, $C_2 = M + k \times Q$
- Bob decrypts by calculating $M=C_2$ $d\times k\times P$

• $\mathbf{M} = \mathbf{C}_2 - \mathbf{d} \times \mathbf{k} \times \mathbf{P} = \mathbf{M} + \mathbf{k} \times \mathbf{Q} - \mathbf{d} \times \mathbf{k} \times \mathbf{P} = \mathbf{M} + \mathbf{k} \times \mathbf{Q} - \mathbf{d} \times \mathbf{Q} = \mathbf{M}$

(Elliptic curves, points on them and mapping formats are standardized)

Elliptic Curve Discrete Logarithm Problem

- Elliptic Curve security relies on the difficulty of the Elliptic Curve Discrete Logarithm problem (ECDLP)
- Elliptic Curve Discrete Logarithm problem:
- ECDLP is the inversion to scalar multiplication and defined as Given points Q and P, find the integer k such that $Q = K \times P$
- ECC efficiency rests on the speed of calculating k×P for some integer k and a point P on the curve.

Up to 2003 the largest ECDLP solved is a 109 bit prime field binary number.

Comparison between Public Key Cryptosystems

Secure system: It is generally accepted that 10¹² MIPS years represents reasonable security at this time.

MIPS year: computing time of one year on a machine capable of performing one million instructions per second.

Comparison between Public Key Cryptosystems

- To achieve reasonable security **today**, RSA and DSA (El Gamal) should employ a 1024 modulus, while a 160 bit modulus should be sufficient for ECC.
- The security gap between the systems grows as the key size grows. For example a 300 bit ECC provides the same security as a 2000 bit RSA or DSA
- Shorter keys reduce storage space for keys and faster computation speed which makes ECC suitable for constrained applications where computational power and bandwidth is limited.

Conclusions

- Information security through public key cryptography is required for electronic transactions for unfamiliar parties
- Three different approaches are RSA, El Gamal and ECC
- ECC offers the highest security (strength per bit)
- Security gap between systems grows as the key size grows
- ECC is suitable for constrained applications such as smart cards, tokens, wireless communication devices