Variable Compleja: Taller 7

Nose de cuando del 2025

Universidad Nacional de Colombia

Cesar Augusto Gómez Sierra

Andrés David Cadena Simons

acadenas@unal.edu.co

Problema 1:

Definición: Sea $U \subseteq \mathbb{C}$ un abierto del plano complejo, f función definida sobre U y sea f(U) = V. Se dique que f es isomorfismo analítico si V es abierto y existe una función $g: V \to U$ tal que $f \circ g = Id_V$, $g \circ f = Id_U$.

Se dice que f es isomorfismo analítico local en z_0 , si existe un abierto U, $z_0 \in U$ y f es isomorfismo analítico sobre U.

Suponga $0 \in U$, sea f analítica en z = 0 y suponga que $f(z) = a_1z + a_2z^2 + a_3z^3 + \cdots$ con $a_1 \neq 0$. Probar que f es isomorfismo analítico local en z = 0.

Solución:

Note que por definición f es analítica en z=0, suponga D el disco de convergencia de f, luego f(0)=0, entonces suponga V_0^δ un disco de centro 0 y radio δ , contenido en \tilde{D} el disco de convergencia de g (inversa formal de f), luego suponga $g(V_0^\delta)\subseteq D$ (por continuidad). Sea $U_0=f^{-1}(V_0^\delta)=\{z\in D: f(z)\in V_0^\delta\}$, luego como f es continua, entonces U_0 es abierto, luego $f(U_0)=V_0^\delta$, $f\circ g=Id_{V_0^\delta}$, $g\circ f=Id_{U_0}$ y por ende f restringida a U_0 es un isomorfismo analítico, luego como $z\in U_0$, entonces f es un isomorfismo analítico local en 0.

Problema 2:

Definición: Sea $U \subseteq \mathbb{C}$ un abierto del plano complejo, f función definida sobre U. Se dice que f es una aplicación abierta si para todo abierto $U \subseteq \mathbb{C}$, entonces f(U) es abierto.

Sea f es analítica sobre un abierto U. Suponga que en cada punto $z_0 \in U$, f es no constante en un disco centrado en ese punto. Probar que f es una aplicación abierta.

Solución:

Note que como f es analítica sobre U, entonces podemos suponer que si tomamos $z_0 \in U$, entonces se satisface que:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Luego como f es no constante en cualquier disco de z_0 , entonces existe $m \ge 0$ tal que a_m es el primer coeficiente distinto de 0, luego se satisface que:

$$f(z) = a_m (z - z_0)^m + \sum_{n=m+1}^{\infty} a_n (z - z_0)^n$$

$$= a_m (z - z_0)^m \left(1 + \frac{1}{a_m} \sum_{n=m+1} a_n (z - z_0)^{n-m} \right)$$

$$= a_m (z - z_0)^m (1 + h(z))$$

Luego, supongamos un disco D de centro z_0 y radio ϵ tal que si tomamos $z \in D$, entonces $1 + h(z) \neq 0$, luego si evaluamos f sobre D, el término $a_m(z - z_0)^m$ lo llevará a otro disco y el factor 1 + h(z) al ser distinto de 0 solo dilatará y deformará el disco, por lo que podemos afirmar que f(D) es abierto.

Luego como z_0 es arbitrario en U, entonces se puede repetir el mismo procedimiento para cada $z \in U$, lo que nos permite concluir que f es una aplicación abierta en U.

Problema 3:

Sea f analítica sobre un abierto U y suponga que es inyectiva. Sea f(U)=V. Probar que $f:U\to V$ es un isomorfismo analítico.

Solución:

Note que como f es inyectiva y f(U)=V, entonces en particular $f:U\to V$ es biyectiva, ahora también sabemos que existe la serie de potencias $g=f^{-1}:V\to U$, por ende $f:U\to V$ es biyectiva, f^{-1} existe y además es analítica.

Problema 4:

Definición: Se dice que una función f es localmente constante en z_0 , si existe un disco abierto $D(z_0, r)$, tal que f es constante sobre D.

Sea f es analítica sobre un abierto U, sea $z_0 \in U$ un máximo para |f| ($|f(z_0)| \ge |f(z)|$, para todo $z \in U$). Probar que f es localmente constante en z_0 .

Solución:

Como f es analítica sobre un abierto U desarrollemos la serie de potencias alrededor de z_0 :

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_1)^n$$

y por ende:

$$f(z_0) = a_0$$

ahora, razonando por contradicción, supongamos que f no es localmente constante en z_0 , entonces existe $m \ge 1$ tal que m es el mínimo entero positivo para el que $a_m \ne 0$, luego:

$$f(z) = a_0 + a_m (z - z_0)^m + \sum_{n=m+1}^{\infty} a_n (z - z_0)^n$$

luego como f no es constante en ninguna vecindad de z_0 , entonces si tomamos D un disco alrededor de z_0 y de radio ϵ se satisface que f es una aplicación abierta, luego existe un disco \tilde{D} de centro $f(z_0)$ y radio δ tal que $\tilde{D} \subseteq f(D)$, luego como $f(z_0) \in \tilde{D}$ siempre se puede encontrar un $z \in D$ tal que $|f(z_0)| < |f(z)|$, **CONTRADICCIÓN**, ya que z_0 es un máximo de |f|, luego podemos concluir que f tiene que ser localmente constante en z_0 .

Problema 5:

Sea f analítica sobre un abierto U, sea $z_0 \in U$ un máximo para Re(f) (parte real de f) ($Re(f(z_0)) > Re(f(z))$, para todo $z \in U$). Probar que f es localmente constante en z_0 .

Solución:

Note que $e^{f(z)}$ es analítica en U, además $|e^{f(z)}| = e^{Re(f(z))}$, luego la existencia de un máximo para Re(f) implica la existencia de un máximo para $e^{Re(f)} = |e^{f(z)}|$, que por el teorema anterior implicaría que si el máximo es z_0 , entonces $e^{f(z)}$ es localmente constante en z_0 y por ende f es localmente constante en z_0 .

Problema 6:

Sea f analítica sobre un abierto U, sea $z_0 \in U$ un máximo para Im(f) (parte imaginaria de f) $(Im(f(z_0)) > Im(f(z))$, para todo $z \in U$). Probar que f es localmente constante en z_0 .

Solución:

Note que $e^{-if(z)}$ es analítica en U, además $|e^{-if(z)}| = e^{Im(f(z))}$, luego la existencia de un máximo para Im(f) implica la existencia de un máximo para $e^{Im(f)} = |e^{-if(z)}|$, que por el teorema anterior implicaría que si el máximo es z_0 , entonces $e^{-if(z)}$ es localmente constante en z_0 y por ende f es localmente constante en z_0 .

Problema 7:

Sea $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_m z^m$ un polinomio no constante. Probar, existe z_0 tal que $f(z_0) = 0$.

Solución:

Razonemos por contradicción, suponga que $f(z) \neq 0$ para todo z, luego como f es analítica, entonces podemos pensar en la función $g = \frac{1}{f}$ y concluir a su vez que esta también es analítica, luego, como $f(z) \neq 0$, podemos pensar en algún w tal que $|f(w)| \leq |f(z)|$ para cualquier z, luego podemos concluir que $\left|\frac{1}{f(z)}\right|$ alcanza un máximo en w, luego se podría que $\frac{1}{f}$ es localmente constante en w, luego f es localmente constante en w, CONTRADICCIÓN, ya que f es un polinomio, luego podemos concluir que existe z_0 tal que $f(z_0) = 0$.

Problema 8:

Sea $f(z) = \sum_{n=0}^{\infty} a_n z^n,$ con radio de convergencia r. Probar:

• $g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ tiene el mismo radio de convergencia de f.

Solución:

Sabemos que:

$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \frac{1}{r}$$

luego:

$$\lim_{n \to \infty} |na_n|^{\frac{1}{n}} = \lim_{n \to \infty} |n|^{\frac{1}{n}} |a_n|^{\frac{1}{n}}$$
$$= (1) \left(\frac{1}{r}\right)$$
$$= \frac{1}{r}$$

de lo que se puede concluir que el radio de convergencia de g es r.

 \bullet fes holomorfa en D(0,r) y f'(z)=g(z).

Solución:

Sea |z| < r y $\delta > 0$ tal que $|z| + \delta < r$. Sea $h \in \mathbb{C}$ tal que $|h| < \delta$, luego:

$$f(z+h) = \sum_{n=0}^{\infty} a_n (z+h)^n$$

= $\sum_{n=0}^{\infty} a_n (z^n + nz^{n-1}h + h^2 p_n(z,h))$

donde $p_n(z,h)$ es un polinomio con coeficientes en los enteros. Note que:

$$|p_n(z,h)| \le \left| \sum_{k=2}^n \binom{n}{k} \delta^{k-2} z^{n-k} \right|$$

$$\le \sum_{k=2}^n \binom{n}{k} \delta^{k-2} |z|^{n-k}$$

$$\le p_n(|z|, \delta)$$

Ahora:

$$f(z+h) - f(z) - \sum_{n=1}^{\infty} n a_n z^{n-1} h = h^2 \sum_{n=2}^{\infty} a_n p_n(z,h)$$

lo que implica:

$$\frac{f(z+h) - f(z)}{h} - \sum_{n=1}^{\infty} n a_n z^{n-1} = h \sum_{n=2}^{\infty} a_n p_n(z,h)$$

luego:

$$\lim_{h \to 0} \left| h \sum_{n=2}^{\infty} a_n p_n(z, h) \right| \le \lim_{h \to 0} |h| \left| \sum_{n=2}^{\infty} a_n p_n(z, h) \right|$$

$$\le \lim_{h \to 0} |h| \sum_{n=2}^{\infty} |a_n| p_n(|z|, \delta)$$

$$< 0$$

luego f es diferenciable y su derivada es g.

Solución:

Note que:

$$f^{(n)}(z) = \sum_{k=n}^{\infty} \left(\prod_{i=k-n+1}^{k} i \right) a_k(z)^{k-n}$$
$$= n! a_n + \sum_{k=n+1}^{\infty} \left(\prod_{i=k-n+1}^{k} i \right) a_k(z)^{k-n}$$

 $\lim_{k=n+1} \sqrt{i} = k-1$ luego $f^{(n)}(0) = n! a_n$, lo que implica $a_n = \frac{f^{(n)}(0)}{n!}$.

■ Sea $h(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$. Pruebe que tiene radio de convergencia r. (Note que h'(z) = f(z), h se le llama primitiva de f).

Solución:

Note que:

$$\begin{split} \lim_{n \to \infty} \left| \frac{a_{n-1}}{n} \right|^{\frac{1}{n}} &\leq \lim_{n \to \infty} \frac{|a_{n-1}|^{\frac{1}{n}}}{|n|^{\frac{1}{n}}} \\ &\leq \frac{\lim_{n \to \infty} |a_{n-1}|^{\frac{1}{n}}}{\lim_{n \to \infty} |n|^{\frac{1}{n}}} \\ &\leq \frac{\frac{1}{r}}{1} \\ &\leq \frac{1}{r} \end{split}$$

luego h(z) tiene radio de convergencia r.

Problema 9:

Si
$$f(z) = \sum_{n=1}^{\infty} \frac{z^{2n}}{(2n)!}$$
. Probar que $f''(z) = f(z)$.

Solución:

Usando resultados anteriores:

$$f''(z) = \sum_{n=2}^{\infty} (2n)(2n-1) \frac{z^{2n-2}}{(2n)!}$$
$$= \sum_{n=2}^{\infty} \frac{z^{2n-2}}{(2n-2)!}$$
$$= \sum_{n=1}^{\infty} \frac{z^{2n}}{(2n)!}$$
$$= f(z)$$

Problema 10:

Si
$$f(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(n!)^2}$$
. Probar que $z^2 f''(z) + z f'(z) = 4z^2 f(z)$.

Solución:

Calculemos f' y f'':

$$f'(z) = \sum_{n=1}^{\infty} (2n) \frac{z^{2n-1}}{(n!)^2}$$
$$f''(z) = \sum_{n=1}^{\infty} (2n)(2n-1) \frac{z^{2n-2}}{(n!)^2}$$

luego:

$$z^{2}f''(z) + zf'(z) = \sum_{n=1}^{\infty} (2n) \frac{z^{2n}}{(n!)^{2}} + \sum_{n=1}^{\infty} (2n)(2n-1) \frac{z^{2n}}{(n!)^{2}}$$

$$= \sum_{n=1}^{\infty} 4n^{2} \frac{z^{2n}}{(n!)^{2}}$$

$$= 4z^{2} \sum_{n=1}^{\infty} \frac{z^{2n} - 2}{((n-1)!)^{2}}$$

$$= 4z^{2} \int_{n=0}^{\infty} \frac{z^{2n}}{(n!)^{2}}$$

$$= 4z^{2} f(z)$$

Problema 11:

Sea $f(z) = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \cdots$. Mostrar que $f'(z) = \frac{1}{z^2 + 1}$.

Solución:

Note que:

$$f(z) = \sum_{k=0}^{\infty} \frac{z^{2n+1}}{2n+1} (-1)^n$$

Luego:

$$f'(z) = \sum_{0}^{\infty} \frac{(2n+1)(z^{2n})}{2n+1} (-1)^{n}$$
$$= \sum_{0}^{\infty} z^{2n} (-1)^{n}$$
$$= \sum_{0}^{\infty} (-z^{2})^{n}$$
$$= \frac{1}{z^{2}+1}$$

Problema 12:

Si
$$J(z) = \sum_{0}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{z}{2}\right)^{2n}$$
. Probar $z^2 J''(z) + z J'(z) + z^2 J(z) = 0$.

Solución:

Calculemos zJ' y z^2J''

$$zJ'(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{(2n)}{2^{2n}} z^{2n}$$
$$z^2 J''(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{(2n)(2n-1)}{2^{2n}} z^{2n}$$

Ahora sumemos:

$$z^{2}J''(z) + zJ'(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n!)^{2}} \frac{(2n)(2n)}{2^{2n}} z^{2n}$$

$$= -\sum_{n=0}^{\infty} \frac{(-1)^{n}4(n+1)^{2}}{2^{2n+2}((n+1)!)^{2}} z^{2n+2}$$

$$= -\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}} z^{2} \left(\frac{z}{2}\right)^{2n} = -z^{2}J(z)$$

Problema 13:

Para k entero positivo, sea $J_k(z)=\sum_0^\infty \frac{(-1)^n}{n!(n+k)!}\left(\frac{z}{2}\right)^{2n+k}$. Probar:

$$z^{2}J_{k}''(z) + zJ_{k}'(z) + (z^{2} - k^{2})J_{k}(z) = 0.$$

Solución:

Dada la función:

$$J_k(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+k)!} \left(\frac{z}{2}\right)^{2n+k},$$

calculamos sus derivadas y productos:

$$\begin{split} zJ_k'(z) &= \sum_{n=0}^\infty \frac{(-1)^n}{n!(n+k)!} (2n+k) \left(\frac{z}{2}\right)^{2n+k} \\ z^2 J_k''(z) &= \sum_{n=0}^\infty \frac{(-1)^n}{n!(n+k)!} \cdot (2n+k) (2n+k-1) \left(\frac{z}{2}\right)^{2n+k}. \end{split}$$

Sustituyendo en la ecuación:

$$z^{2}J_{k}''(z) + zJ_{k}'(z) + (z^{2} - k^{2})J_{k}(z),$$

obtenemos: