Freeway Problem

陈天垚

PPCA

高速公路规则

所有车都靠右行驶

当你是幾年的时候才能同左接

介绍

问题重述

高速公路规则

- 所有车都靠右行驶
- 当你要超车的时候才能向左换道

高速公路规则

- 所有车都靠右行驶
- 当你要超车的时候才能向左换道

高速公路规则

- 所有车都靠右行驶
- 当你要超车的时候才能向左换道

- 如何建模模拟在固定规则下高速公路车流情况?
- 如何评价一个公路规则的优劣?
- 还有更好的规则吗?
- 向右行使的国家的规则能够直接镜像对称到向左行驶的国家吗?

- 如何建模模拟在固定规则下高速公路车流情况?
- 如何评价一个公路规则的优劣?
- 还有更好的规则吗?
- 向右行使的国家的规则能够直接镜像对称到向左行驶的国家吗?

- 如何建模模拟在固定规则下高速公路车流情况?
- 如何评价一个公路规则的优劣?
- 还有更好的规则吗?
- 向右行使的国家的规则能够直接镜像对称到向左行驶的国家吗?

- 如何建模模拟在固定规则下高速公路车流情况?
- 如何评价一个公路规则的优劣?
- 还有更好的规则吗?
- 向右行使的国家的规则能够直接镜像对称到向左行驶的国家 吗?

- 如何建模模拟在固定规则下高速公路车流情况?
- 如何评价一个公路规则的优劣?
- 还有更好的规则吗?
- 向右行使的国家的规则能够直接镜像对称到向左行驶的国家吗?

- 一堆节点和一个时间轴
- 节点和节点之间有拓扑关系
- 每个时刻,每个节点观察周围节点的状态,调整自己在下一个时刻的状态
- 举例:细胞游戏、经济系统。

- 一堆节点和一个时间轴
- 节点和节点之间有拓扑关系
- 每个时刻,每个节点观察周围节点的状态,调整自己在下一个时刻的状态
- 举例:细胞游戏、经济系统。

总述

Step 1. 调整速度

Step 2. 调整位置

调整速度

- Step 1. 如果速度还没有达到预期,那么就加一格速度
- Step 2. 如果按照一定概率 pslow 减一格速度
- Step 3. 如果与前面车的距离太近,那么就减到安全速度

调整速度

Step 1. 如果速度还没有达到预期,那么就加一格速度

Step 2. 如果按照一定概率 pslow 减一格速度

Step 3. 如果与前面车的距离太近,那么就减到安全速度

调整速度

- Step 1. 如果速度还没有达到预期,那么就加一格速度
- Step 2. 如果按照一定概率 p_{slow} 减一格速度
- Step 3. 如果与前面车的距离太近,那么就减到安全速度

调整速度

- Step 1. 如果速度还没有达到预期,那么就加一格速度
- Step 2. 如果按照一定概率 pslow 减一格速度
- Step 3. 如果与前面车的距离太近,那么就减到安全速度

调整位置

• 位置 + 速度(乘单位时间间隔)

调整位置

• 位置 + 速度(乘单位时间间隔)

换道判断——向左换道

Condition 1. 速度还没有达到预期

Condition 2. 左前方的空间比前面的空间大

Condition 3. 与左后方的车距大于左后方的车速

换道判断——向左换道

Condition 1. 速度还没有达到预期

Condition 2. 左前方的空间比前面的空间大

Condition 3. 与左后方的车距大于左后方的车速

换道判断——向左换道

Condition 1. 速度还没有达到预期

Condition 2. 左前方的空间比前面的空间大

Condition 3. 与左后方的车距大于左后方的车速

换道判断——向左换道

Condition 1. 速度还没有达到预期

Condition 2. 左前方的空间比前面的空间大

Condition 3. 与左后方的车距大于左后方的车速

换道判断——向左换道

Condition 1. 速度还没有达到预期

Condition 2. 左前方的空间比前面的空间大

Condition 3. 与左后方的车距大于左后方的车速

换道判断——向右换道

Condition 1. 没有向左换道

Condition 2. 右前方的空间比前面的空间大

Condition 3. 与右后方的车距大于右后方的车速

● 符合以上条件后,按照一定概率 pright 进行换道

换道判断——向右换道

Condition 1. 没有向左换道

Condition 2. 右前方的空间比前面的空间大

Condition 3. 与右后方的车距大于右后方的车速

● 符合以上条件后,按照一定概率 pright 进行换道

换道判断——向右换道

Condition 1. 没有向左换道

Condition 2. 右前方的空间比前面的空间大

Condition 3. 与右后方的车距大于右后方的车速

• 符合以上条件后,按照一定概率 pright 进行换道

换道判断——向右换道

Condition 1. 没有向左换道

Condition 2. 右前方的空间比前面的空间大

Condition 3. 与右后方的车距大于右后方的车速

• 符合以上条件后,按照一定概率 pright 进行换道

换道判断——向右换道

Condition 1. 没有向左换道

Condition 2. 右前方的空间比前面的空间大

Condition 3. 与右后方的车距大于右后方的车速

• 符合以上条件后,按照一定概率 pright 进行换道

- 搜索六个方向汽车,稀疏图的话范围太大
- 考虑到搜索范围在车速之外就没有用了
- 设定一个值 out_of_sight,表示视线范围,稍微比最大车速 大一些
- 在 out_of_sight 范围之内搜索即可

- 搜索六个方向汽车,稀疏图的话范围太大
- 考虑到搜索范围在车速之外就没有用了
- 设定一个值 out_of_sight,表示视线范围,稍微比最大车速 大一些
- 在 out_of_sight 范围之内搜索即可

- 搜索六个方向汽车,稀疏图的话范围太大
- 考虑到搜索范围在车速之外就没有用了
- 设定一个值 out_of_sight,表示视线范围,稍微比最大车速 大一些
- 在 out_of_sight 范围之内搜索即可

- 搜索六个方向汽车,稀疏图的话范围太大
- 考虑到搜索范围在车速之外就没有用了
- 设定一个值 out_of_sight,表示视线范围,稍微比最大车速 大一些
- 在 out_of_sight 范围之内搜索即可

- 搜索六个方向汽车,稀疏图的话范围太大
- 考虑到搜索范围在车速之外就没有用了
- 设定一个值 out_of_sight,表示视线范围,稍微比最大车速 大一些
- 在 out_of_sight 范围之内搜索即可

效果

• 详见程序