IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) Support comprising two essentially parallel surfaces for the detection of optically-active substances within an evanescent-field formed on the surface of the support, in which in at least one area a plane of said surface is inclined with respect to the plane of the support by an angle α_{wedge} from 10° to 85°.
- (original) Support according to claim 1, comprising at least
 preferably at least 100 areas.
- 3. (currently amended) Support according to claim 1—or—2, wherein said surface, at which the detection of the optically-active substances takes place is covered by a top plate.
- 4. (currently amended) Support according to one of claims 1 to $\frac{1}{3}$ claim 1, wherein α_{wedge} is between 15° and 75°, preferably between 25° and 65°.
- 5. (currently amended) Support according to one of claims 1 to $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 4. $\frac{1}{2}$ $\frac{1}{2}$

larger than 1.0 and smaller than 2.0, preferably between about 1.4 and 1.8.

- 6. (currently amended) Support according to one of claims 1 to 5claim 1, wherein within the area on said surface a second plane of the surface adjacent to the first inclined plane is inclined in such that a symmetrical pyramidal structure is formed.
- 7. (currently amended) Support according to one of claims 1 to 6claim 1, wherein at least one capture probe is attached to the surface of the inclined plane.
- 8. (currently amended) Support according to one of claims 1 to 7claim 1, wherein the capture probe is selected from the group comprising proteins, in particular antibodies, receptors, enzymes, signaling proteins or fragments thereof; peptides; polysaccharides, nucleic acids, in particular ssDNA, dsDNA and RNA; nucleic acid analogs, in particular PNA; and small molecules.
- 9. (currently amended) Support according to one of claims 1 to 8claim 1, wherein the support further comprises reagents and/or buffers.

- 10. (currently amended) Support according to one of claims 1

 to 9claim 1, wherein the support is an optical disc.
- 11. (currently amended) Kit comprising a support according to $\frac{1}{1}$ to $\frac{1}{1}$ and reagents and/or buffers.
- active substances within the evanescent-field formed at the surface of a support comprising: a) at least one light source emitting essentially monochromatic light of at least one wavelength, and b) at least one detector means, wherein the at least one light source is arranged in such that it is opposite to the surface of a support, where the detection of the optically-active substance occurs once the support is placed into the device.
- 13. (original) Device according to claim 12, wherein the detector means is arranged on the same side as the light source.
- 14. (currently amended) Device according to one of claims

 12 to 13claim 12, wherein the light source generates essentially monochromatic light.

- 15. (currently amended) Device according to one of claims

 12 to 14claim 12, comprising at least two light sources

 generating essentially monochromatic light of at least two

 different wavelengths.
- 16. (currently amended) Device according to one of claims

 12 to 15claim 12, wherein a filter is arranged within the light path of the light source.
- 17. (currently amended) Device according to $\frac{12 15}{\text{claim } 12}$, wherein an objective lens is used to focus the light of the light source on the support.
- 18. (original) Device according to claim 17, wherein a mask is placed in the light path between the light source and the mask, which essentially blocks all light directed at the support with an angle α_{NA} smaller than $\arcsin\left(n_{medium}/n_{support}\right)$ α_{wedge} .
- 19. (currently amended) Device according to one of claims

 12 to 18 claim 12, wherein the device further comprises a support

 according to one of claims 1 to 10.comprising two essentially

 parallel surfaces for the detection of optically-active

substances within an evanescent-field formed on the surface of the support, in which in at least one area a plane of said surface is inclined with respect to the plane of the support by an angle α_{wedge} from 10° to 85°.

- 20. (original) Device according to claim 19, wherein the support is an optical disc.
- 21. (currently amended) Device according to elaims 19 or $\frac{20 \, \mathrm{claim} \ 19}{20 \, \mathrm{claim} \ 19}$, wherein the wavelength of the light emitted from the light source, the angle α_{wedge} of the inclined plane(s) of the surface of the support α_{NA} of the light directed at the disc, n_{support} and n_{medium} is (are) selected in such that the depth d of an evanescent-field, which is formed in a medium comprising the optically active substance applied to the support is between 10 nm and 1 μm , preferably between about 20 nm and 200 nm.
- 22. (currently amended) Use of a support comprising two essentially parallel surfaces for the detection of optically-active substances within an evanescent-field formed on the surface of the support, in which in at least one area a plane of said surface is inclined with respect to the plane of the support by an angle α_{wedge} from 10° to 85° according to one of claims 1 to

10, a kit according to claim 11, and/or of a device according to one of claims 12 to 21 for the detection of at least one optically-active substance within the evanescent-field formed at a surface of the support.

- 23. (original) Use according to claim 22, wherein the optically-active substance is detected by fluorescence, optical scattering, and/or reflectance modulation.
- 24. (currently amended) Use according to claim 22—or 23, wherein the optically-active substance comprises a ligand labeled with a fluorescence label, a scattering label, and/or a reflectance modulator.
- 25. (currently amended) Use according to one of claims 22

 to 24claim 22, wherein the optically-active substance or the
 ligand is contained in blood, urine, sperm, vaginal secretion,
 stool, sputum, tissue, single cells, lymph and/or the contents of
 the gastrointestinal tract or derived thereof.
- 26. (currently amended) Use according to one of claims 22 to 25claim 22, wherein the binding or unbinding of the optically-active substance to the surface of the support is detected.