

DSO 530 Microsoft Malware Prediction

Level-II

Mengtian (Monica) Hu

mengtiah@usc.edu

Problem Understanding & Data Description

Goal: Predict a Windows machine's probability of getting infected by malwares

Output: Probability of a machine attacked by malwares

Response variable: HasDetections indicating whether malware was detected

Predictors: 83 input fields including producer info, hardware info...

Data Description:

- Our training and testing data contains 100,000 records each
- The training data is balanced (50:50 Attacked: Unattacked), no resampling is needed

Data Cleaning

- Remove fields with high ratio of missing values (i.e. PuaMode), extremely imbalanced categorical fields (i.e. IsBeta), and strange numbers (i.e. Census_InternalBatteryNumberOfCharge)
- Categorical fields:

Missing values: treat missing categories as new groups Merge small groups (<100 items) into one group Mean-encode all categorical fields

Numerical fields:

Build supervised models using Bagging(DT) to predict missing values

Variable Creation

Create all interactive variables X_iX_i

Created about **2000** interactive variables out of all individual variables cleaned

- Create expert variables
- 1. primary_drive_c_ratio=Census_SystemVolumeTotalCapacity/Census_PrimaryDiskTotalCapacity
- **2. non_primary_drive_MB**=Census_PrimaryDiskTotalCapacity-Census_SystemVolumeTotalCapacit
- **3. aspect_ratio**=Census_InternalPrimaryDisplayResolutionHorizontal/Census_InternalPrimaryDisplayResolutionVertical
- **4.** ram_per_processor=Census_TotalPhysicalRAM/Census_ProcessorCoreCount
- **5. new_num_0**=Census_InternalPrimaryDiagonalDisplaySizeInInches/Census_ProcessorCoreCount
- **6.** new_num_1=Census_ProcessorCoreCount*Census_InternalPrimaryDiagonalDisplaySizeInInches

Variable Creation

Create all interactive variables X_iX_j

Created about **2000** interactive variables out of all individual variables cleaned

- Create expert variables
- 1. primary_drive_c_ratio=Census_SystemVolumeTotalCapacity/Census_PrimaryDiskTotalCapacity
- **2. non_primary_drive_MB**=Census_PrimaryDiskTotalCapacity-Census_SystemVolumeTotalCapacity
- **3. aspect_ratio**=Census_InternalPrimaryDisplayResolutionHorizontal/Census_InternalPrimaryDisplayResolutionVertical
- **4.** ram_per_processor=Census_TotalPhysicalRAM/Census_ProcessorCoreCount
- **5. new_num_0**=Census_InternalPrimaryDiagonalDisplaySizeInInches/Census_ProcessorCoreCount
- **6. new_num_1**=Census_ProcessorCoreCount*Census_InternalPrimaryDiagonalDisplaySizeInInches

Applied 2 different feature selection approaches

The Lasso

We applied Lasso to reduce some coefficient to zero

Results: $72 \rightarrow 65$ important variables

Best Subset Selection

We searched through 2^p models to find the best subset

Results: $72 \rightarrow 44$ important variables

66 Lasso Selection

HasTpm_risk

Firewall_risk
SmartScreen risk

Census FlightRing risk

Census_IsVirtualDevice_risk

AVProductStatesIdentifier_risk

Census_DeviceFamily_risk

EngineVersion_risk

RtpStateBitfield_risk

Wdft_IsGamer_risk

CountryIdentifier_risk

Census_MDC2FormFactor_risk

AppVersion_risk

Census OSBranch risk

Census_OSVersion_risk

Census_ProcessorModelIdentifier_risk

Census_OSEdition_risk

 $Census_ChassisTypeName_risk$

Processor risk

Census_PrimaryDiskTypeName_risk

leVerIdentifier

ram_per_processor

 $non_primary_drive_MB$

Census_PrimaryDiskTotalCapacity

Census_IsTouchEnabled_risk

SMode_risk

Census_OEMNameIdentifier_risk

LocaleEnglishNameIdentifier_risk

Census_IsAlwaysOnAlwaysConnectedCapable_risk

 $Census_OSInstallTypeName_risk$

GeoNameIdentifier_risk

SkuEdition_risk

OrganizationIdentifier_risk

UacLuaenable_risk

Census_PowerPlatformRoleName_risk

 $Census_GenuineStateName_risk$

Census_OSArchitecture_risk

aspect_ratio

Census_HasOpticalDiskDrive

Census OSSkuName risk

Census_ActivationChannel_risk

AVProductsEnabled

Census OSUILocaleIdentifier risk

Census_InternalPrimaryDiagonalDisplaySizeInInches

Census_ProcessorCoreCount

MegaPixels

Census OSBuildRevision

OsBuild

Census InternalPrimaryDisplayResolutionHorizonta

new_num_1

new_num_0

primary_drive_c_ratio

IsProtected_risk

Census_FirmwareManufacturerIdentifier_risk

AVProductsInstalled

Census_IsPortableOperatingSystem_risk

OsVer_risk

IsSxsPassiveMode_risk

OsPlatformSubRelease_risk

Wdft_RegionIdentifier_risk

Census_IsPenCapable_risk

Census_OSWUAutoUpdateOptionsName_risk

OsSuite_risk

ProductName_risk

Census_IsSecureBootEnabled_risk

44 Best Subset Selection

AVProductsInstalled

AVProductsEnabled

OsBuild

leVerIdentifier

Census_PrimaryDiskTotalCapacity

Census_TotalPhysicalRAM

Census_InternalPrimaryDiagonalDisplaySizeInInches

Census OSBuildNumber

EngineVersion_risk

AppVersion_risk

RtpStateBitfield_risk

AVProductStatesIdentifier_risk

CountryIdentifier_risk

GeoNameIdentifier_risk

LocaleEnglishNameIdentifier_risk

Processor risk

OsPlatformSubRelease_risk

IsProtected risk

SMode risk

SmartScreen_risk

Firewall_risk

Census_OEMNameIdentifier_risk

Census ProcessorModelIdentifier risk

Census_PrimaryDiskTypeName_risk

Census_ChassisTypeName_risk

Census PowerPlatformRoleName risk

Census_OSVersion_risk

Census OSArchitecture risk

Census_OSBranch_risk

Census_OSEdition_risk

Census OSSkuName risk

Census_OSInstallTypeName_risk

Census_OSUILocaleIdentifier_risk

Census_OSWUAutoUpdateOptionsName_risk

Census_GenuineStateName_risk

Census_ActivationChannel_risk

Census_FirmwareManufacturerIdentifier_risk

Census_IsVirtualDevice_risk

Census IsTouchEnabled risk

Wdft_IsGamer_risk

 $Wdft_RegionIdentifier_risk$

primary_drive_c_ratio

 $non_primary_drive_MB$

new num 0

Modeling

We applied 7 different models

- Lasso Logistic Regression
- Logistic Regression
- Extreme Gradient Boosting
- Ada Boosting
- Random Forest
- K Nearest Neighbors
- Deep Neural Network

Performance Comparison

The training/testing accuracy rate and AUC value of 7 models

Model	Training Accuracy	Testing Accuracy	AUC (Test)
Lasso Regression	63.11%	63.22%	0.69
Logistic Regression	53.53%	53.69%	0.56
Ada Boosting	64.07%	63.27%	0.63
XGBoost	66.75%	64.11%	0.70
Random Forest	64.27%	63.03%	0.63
6 Nearest Neighbors	67.07%	52.15%	0.52
Deep Neural Network	50.16%	49.98%	0.50

Final Approach

	XGBoost	
objective	"binary::logistic"	
max_depth	8	
nround	30	
early_stoppi ng	3	
num_parallel _tree	10	
subsample	0.8	
colsample_b ytree	0.8	
AUC	0.7017	

Business Interpretation

We summarize characteristics of the top two most risky groups:

Machines with the following Version of Defender:

```
"4.10.14393.0", "4.10.14393.1198", "4.10.14393.1593", "4.10.14393.1794", "4.10.209.0"
```

Have higher probability to be detected with malware.

- If a Virtual Machine is installed, the computer has higher probability be detected with malware.
- Computers with Monitor Size larger than 11 inches have higher probability be detected with malware.

Machines located in the following Country:

```
"104", "190", "95", "214", "100"
```

Have higher probability to be detected with malware.

 Computers with Census_OSArchitecture as "amd64" have higher probability to be detected with malware.

Useful Statistical Learning Insights and Extended Question

- Creating new variables based on business insights is better than creating possible interactive variables
- Building models to predict missing values such as screening resolution is better than using median value
- Before using mean encoding, it's better to take a look at the categorical variables and merge low frequent categories
- Simple model (logistic regression or KNN) and complex model (deep neural network) are not good choices in this case

Which kinds of Windows machines are safer to use?

Q & A