Assessment Schedule - 2014

Physics: Demonstrate understanding of aspects of wave behaviour (90938)

Evidence Statement

Question	Achievement	Merit	Excellence
ONE (a)(i) & (ii)	ONE correct description given in part (i) or part (ii). Eg: • A wave is a disturbance (that travels from one location to another). • Waves transmit energy.	Waves transmit energy without carrying / transmitting matter. / Moving matter the entire distance	
(b)	(i) The correct directions are given. \longleftrightarrow OR (ii) The correct wavelength is calculated. There are 3 wavelengths in 2.7 m. $\lambda = \frac{2.7}{3} = 0.90 \text{ m}$ (m not required)	(i) The correct direction are given. $\leftarrow \rightarrow$ AND (ii) The correct wavelength is calculated. There are 3 wavelengths in 2.7 m. $\lambda = \frac{2.7}{3} = 0.90 \text{ m}$ (m not required)	
(c)	Speed of the wave in water is calculated correctly. Ie: $v = f\lambda = 10 \times 10^3 \times 0.153$ = 1530 m s ⁻¹ OR Calculated distance halved.	Speed of the wave in water is calculated correctly BUT Distance between the cliff and the transmitter is incorrectly calculated as 826 m (but not halved to get 413 m). OR Speed of the wave is incorrectly calculated using f with wrong/no multiplier of Hz to calculate the distance between the cliff and the transmitter is as, eg 0.413 m, 4.13 m, etc. OR $d = 413$ (with no unit or incorrect unit)	Distance between the cliff and the transmitter is correctly calculated. $v = f\lambda = 10 \times 10^3 \times 0.153$ $= 1530 \text{ m s}^{-1}$ $d = \frac{v \times t}{2} = \frac{1530 \times 0.54}{2}$ $= \frac{826}{2}$ $= 413 \text{ m}$ (correct unit required)

(d)	(i) At least two complete waves drawn with decreasing amplitude (irrespective of	(i) At least two complete waves with same wavelength AND decreasing amplitude.	(i) Exactly two complete waves with same wavelength AND decreasing amplitude.
	wavelength).		
	OR (ii) Wave loses energy.	OR (ii) Wave loses energy due to friction so amplitude is reduced. OR Energy is spread out over larger area so amplitude is reduced.	AND (ii) The wave loses energy due to friction/energy is spread out over a larger area which reduces the intensity of the wave so the amplitude becomes smaller.

N0	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence	1a	2a	3a	4a	2m	3m	1e	2e

Question	Achievement	Merit	Excellence
TWO (a)	Diagram shows diffraction of sound wave – with diffraction towards Shelley ONLY.	Diagram shows diffraction of sound wave – with diffraction towards Shelley ONLY clearly showing no change in wavelength.	
(b)	Identifies wavelength as a key factor, eg lower wavelength diffract more than shorter wavelength. OR Low frequency waves have a longer wavelength.	Low frequency waves have a longer wavelength. AND Diffraction is more pronounced with longer wavelengths (higher frequencies) than a with shorter wavelengths (higher frequencies).	Low frequency waves have a longer wavelength . AND Diffraction is more pronounced with longer wavelengths (higher frequencies) than a with shorter wavelengths (higher frequencies). SO The longer wavelengths bend enough / sufficiently / more waves reach Shelley (but the short wavelengths do not).
(c)	High frequency reaches Shelley as well as low frequencies. OR The sound heard from reflection is louder / clearer. OR Sounds of all frequencies will get to Shelley by reflection.	The sound heard from reflection is louder/clearer because she now hears both the reflected AND diffracted waves. OR Sounds of all frequencies will get to Shelley by reflection so she hears the high frequency sound louder/clearer than before.	

(d) The amplitude of the The amplitude of the waves The amplitude of the waves stays (about) the stays (about) the same/both same / both decrease / one decreases and one waves stays (about) the decrease / one decreases and one same / both decrease / stays the same one decreases and one stays the same stays the same AND AND OR The change in direction The change in direction of a The change in direction of a reflected wave is of a reflected wave is reflected wave is abrupt / abrupt / complete / bounces (back) and the a complete / bounces (back) and abrupt / complete / diffracted wave spreads out/bends bounces (back) and the a the a diffracted wave spreads out diffracted wave spreads / bends. out / bends. AND One of the 4 ideas is explained, eg: • The change in direction of a reflected wave is abrupt / complete as the law of reflection is i = r.

N0	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence	1a	2a	3a	4a	2m	3m	1e	2e

Question	Achievement	Merit	Excellence
THREE (a)	Either of: • Refraction • Dispersion		
(b)	(i) Top ray labelled as the red and 4th ray labelled as green.	(i) Top ray labelled as the red and 4th ray labelled as green.	
	OR (ii) Light with different wavelengths /frequencies disperses / refracts by different amounts / different angles / travels at different speeds in glass.	AND (ii) Different coloured light waves have different wavelengths / frequencies. AND Different wavelengths / frequencies refract by different amounts /travel at different speed in glass.	
(c)	(i) Total internal reflection.	(i) Total internal reflection.	(i) Total internal reflection.
	 OR ONE of: The ionised layer is optically less dense than the air above the Earth's surface. The angle of incidence of B is greater than the critical angle (for this boundary). The angle of incidence of A must be less than the critical angle. 	 AND TWO of: The ionised layer is optically less dense than the air above the Earth's surface. The angle of incidence of B is greater than the critical angle (for this boundary). The angle of incidence of A must be less than the critical angle. 	 AND THREE of: The ionised layer is optically less dense than the air above the Earth's surface. The angle of incidence of B is greater than the critical angle (for this boundary). The angle of incidence of A must be less than the critical angle.

(d) ONE idea:

 Correct refracted ray OR apparent position is drawn on diagram (tracing back of ray does not need to be shown).

- The Sun appears to be in a different position than where it really is in the morning.
- The Sun appears to be in the same position as it really is at mid-day.

TWO of three ideas:

 Correct refracted ray AND apparent position is drawn on diagram(tracing back of ray does not need to be shown).

- As the Sun rises it gets closer to its true position.
- The Sun appears to be in the same position as it really is at mid-day.

ALL ideas correct:

 Correct refracted ray AND apparent position is drawn on diagram(tracing back of ray does need to be shown).

- In the morning so the Sun is seen furtherest from its true position in the sky.
- As the Sun rises it gets closer to its true position.
- At mid-day the angle of incidence is zero / light travels along the normal / there is no refraction so the Sun appears in its true position.

N0	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence	1a	2a	3a	4a	2m	3m	1e	2e

Cut Scores

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 6	7 – 13	14 – 19	20 – 24