Analyse

Félix Yvonnet

28 septembre 2023

1 Analyse

1.1 Rappel de topologie

Un espace topologique est une paire (X, \mathbb{U}) , où X est un ensemble et $\mathbb{U} \subset P(X)$ est l'ensemble des ouverts satisfait :

- 1. $\emptyset X \in \mathbb{U}$
- 2. $\forall \mathcal{U} \subset \mathbb{U} \bigcup_{u \in \mathcal{U}} u \in \mathbb{U}$
- 3. $\forall u, v \in \mathbb{U} \ u \cap v \in \mathbb{U}$

Remarque. si $\mathcal{U} = \emptyset$ alors $\bigcap_{u \in \mathcal{U}} u = \emptyset$. En revanche l'intersection vide n'est pas définie

Remarque. Un fermé est le complémentaire d'un ouvert. \emptyset X sont fermés et les fermés sont stable par union finie et intersection quelconque

Définition 1. Soit $A\subset X$ où (X,\mathbb{U}) esp topo. On définit l'intérieur $\overset{\circ}{A}:=\bigcap_{\mathbb{F}\text{ fermé}A\subset F}F$

On note que
$$X \backslash \mathring{A} = \overline{X \backslash A}$$
 et $X \backslash \overline{A} = X \backslash \overline{A}$

1.2 Comparaison de topologies :

Définition 2. Soit X un ensemble muni des toppo \mathbb{U}, \mathbb{V} . On dit que \mathbb{U} est plus fine que \mathbb{V} si $\mathbb{U} \supset \mathbb{V}$

Exemple. la topo "finie" est définie par $\mathbb{U}=P(X)$, "grossière" par $\mathbb{U}=\{\emptyset,X\}$

Définition 3. X ens et $\mathbb{U}_0 \subset P(x)$. La topo \mathbb{U} engendrée par \mathbb{U}_0 est la plus grossière contenant \mathbb{U}_0 . $\mathbb{U} = \cap \{\mathbb{U}' \subset P(X) | \mathbb{U}' \text{ topo et } \mathbb{U}' \supset \mathbb{U}_0\}$. Bien une topo car intersect.

Remarque. Les éléments de \mathbb{U} sont X et les unions qcq d'intersections finies d'éléments de \mathbb{U}_0 . $u \in \mathbb{U}_0 \Leftrightarrow u = X \vee u = \cup \cap u_{ij}$

Définition 4. Une base d'ouverts sur un ens X est une partie $w_0 \subset P(X)$ tq (couverture) $\bigcup_{u \in \mathbb{U}_0} u = X$ et (stabilité par intersect) $\forall u, v \in \mathbb{U}_0, \ \forall x \in u \cap v \ \exists w \in \mathbb{U}_0 \ x \in w \ \text{et} \ w \subset u \cap v$

Proposition 1. La topo \mathbb{U} engendrée est une base d'ouvert \mathbb{U}_0 est constituée des unions qcq de \mathbb{U}_0

Preuve. On note que $X = \bigcup_{u \in \mathbb{U}_0} u$ est bien une union . . . Si $u, v \in \mathbb{U}_0$, on note $W_x \in \mathbb{U}_0$ tq $x \in W_x$ et $W_x \subset u \cap v$ pour tout $x \in u \cap v$. Alors $u \cap v = \bigcup_{x \in u \cap v} W_x$, puis $\bigcup_{i \in I} \bigcap_{1 \leq j \leq J(i)} u_{ij}$

S'écrivent comme réunion de la base d'ouverts

Exemple. (topo de l'ordre) : Soit (X, \leq) un ensemble totalement ordonné abec au moins 2 élems. On définit une base d'ouverts par les intervalles : $]-\infty,b[,]a,b[,]a,\infty[,a,b\in X]$

Preuve. Si $a < b \in X$ alors $X =]-\infty, b[\cup]a, \infty[$. De plus De plus $]\alpha, \beta[\cap]\delta, \gamma[=]\min, \max[$

Exemple. (topo produit): $(X_i, \mathbb{U}_i)_{i \in I}$ une famille d'espace topos, on def la topo prod par la base d'ouverts $\{\pi_{i \in I} u_i | \forall i \in I, u_i \in \mathbb{U}_i \text{ et } u_i = X_i \text{ sauf pour un nombre fini de } i \in I\}$

Exemple. Si $X_i = X, \forall i \in I$, alors $\pi_{i \in I} X = X^I$ est l'ensemble des fonctions de I dans X. La topo produit sur X^I correspond à la convergence simple. $f_n \to_{n \to \infty} f \Leftrightarrow \forall i \in I, \ f_n(i) \to f(i)$

1.3 Voisinages:

Définition 5. (X, \mathbb{U}) un espace topo et $x \in X$. Un voisinage V de x est une partie $V \subset X$ tq $\exists u \in \mathbb{U}, \ x \in u \land u \subset V$. De manière équivalente V vois de $x \Leftrightarrow x \in \mathring{V}$.

On note \mathcal{V}_x l'ensemble des voisinages de $x \in X$.

Définition 6 (Caractérisation de l'adhérence). $\forall A \subset X, \ \overline{A} = \{x \in X | \forall v \in \mathcal{V}_x, \ A \cap v \neq \emptyset\}$ aussi $\mathring{A} = \{x \in X | \exists v \in \mathcal{V}_x, \ v \subset A\}$

Définition 7. une partie $W_x \subset V_x$ est une base de voisinage ssi $\forall v \in V_x, \ \exists w \in W_x, \ w \subset v$

Définition 8. une topo \mathbb{U} de X est :

- 1. A base dénombrable de voisinages s
si tout point $x \in X$ admet une base dénombrable W_x de voisinage.
- 2. A <u>base dénombrable</u> si elle est engendrée par une base d'ouverts dénombrable.

Remarque. si (X, d) est un espace métrique et $x \in X$, alors $W_x = \{B(x, \frac{1}{n} | n \in \mathbb{N}^*\}$ est une base de vois

Remarque. Si (X,d) est un espace métrique admettant une suite $(x_n)_{n\in\mathbb{N}}$ dense, alors une base dénombrable d'ouverts est $\mathbb{U}_0 = \{B(x_n,r)|n\in\mathbb{N}\ r\in\mathbb{Q}\}$

Preuve. \mathbb{U}_0 recouvre bien X. Soit $x \in B(x_n,r) \cap B(x_n,s) = BB$ et $\varepsilon > 0 \in \mathbb{Q}$ tq $B(x,\varepsilon) \subset BB$. Soit $k \in \mathbb{N}$ tq $x_k \in B(x,\varepsilon/2)$. Alors $x \in B(x_k,\varepsilon/2) \subset B(x,\varepsilon/2+\varepsilon/2) = B(x,\varepsilon)$.

Par le même raisonnement, $\mathbb U$ contient les vois arbitrairement petits de tt pt. Donc c'est une base d'ouverts pour les topos de X.

Proposition 2. Soit (X, \mathbb{U}) à base dénombrable de voisinage. Alors $\forall A \subset X, \ \overline{A} = \{x \in X | \exists (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \ x_n \to x\}.$

Preuve. $(V_n)_{n\in\mathbb{N}}$ une base de voisinages de x, soit $x_n\in\underbrace{V_0\cap\cdots\cap V_n\cap A}_{\text{une }\cap\text{ finie de vois de }x\text{est un vois de }x}_{\text{une }\cap\text{ finie de vois de }x\text{est un vois de }x}$, $\forall n\in\mathbb{N}$ Alors $x_n\to x. (\Leftrightarrow \forall v\in V_x,\ \exists N, \forall n\geq N,\ x_n\in V).$

Proposition 3. Prop : soit (X, \mathbb{U}) esp topo à base dénombrable de voisinage et $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$. Alors toutes valeurs d'adhérence de (x_n) est la limite d'une sous suite.

On rappelle que $Adh((x_n)) = \bigcap_{N \in \mathbb{N}} \cup \{x_n | \bar{n} \geq N\}$.

Preuve. on note que $Adh(x_n) = \{x \in X | \forall v \in V_x, \{n \in \mathbb{N} | x_n \in V\} \text{ est in}^2 \text{fini}\}$. La preuve suite comme précédemment en choisissant (V_n) base de vois \searrow pour l'inclusion et $x_{\sigma(n)} \in V_x$ avec σ strict \nearrow .

1.4 Séparation :

Définition 9. Un espace topo est séparé ssi $\forall x,y\in X,\ x\neq y\Rightarrow \exists u,v\in \mathbb{U},\ x\in u,y\in v,u\cap v=\emptyset.$

Si (X, \mathbb{U}) est séparé, alors toute suite a au plus une limite (Haussdorff, T_2 .

Définition 10. Un espace (X, \mathbb{U}) satisfait l'axiome T_1 de Kolmogorov, ssi $\forall x \neq y \in X \ \exists u \in \mathbb{U}, \ x \in u \land y \notin u.$

Exemple. (topo T_1 mais pas T_2):

- $1.\ \mathbb{N}$ muni de topo cofinie : les fermés sont les ensembles finis
- 2. \mathbb{C}^d muni de la topo de Zariski : les fermés ont les ensembles algébriques $F = \{x \in \mathbb{C}^* | P_1(x) = \cdots P_n(x) = 0\} \ n \geq 0; \ P_1, \cdots, P_n \in \mathbb{C}[X]$

Exemple. La suite $(n)_{n\in\mathbb{N}}$ converge vers tous les points de \mathbb{N} pour la topo cofinie. En effet, soit $k\in\mathbb{N}$ et V un voisinage de k. Alors V contient tous les points sauf un nombre fini. Donc tous les termes de la suite à partir d'un certain rang.

De même, une suite de point qui n'est continue dans aucun ensemble algébrique propre converge vers tt point de \mathbb{C}^d pour Zariski.

1.5 Continuité:

Définition 11. Soit (X, \mathbb{U}) esp topo. Une application $f: X \to Y$ est continue en $x \in X$ ssi $\forall W \in V_{f(x)}, f^{-1}(W) \in V_x$. (ie $\forall W \in V_{f(x)}, \exists V \in V_x$, $f(V) \subset W$). f est continue $\overset{def}{\Leftrightarrow}$ pour tout $x \in X$, f est continue en x.

Définition 12. $(X, \mathbb{U}), (Y, \mathbb{V})$ esp topos et $f: X \to Y$. Sont équivalents :

- 1. f continue
- 2. $\forall V \in \mathbb{V} \ f^{-1}(V) \in \mathbb{U}$ (l'image réciproque d'un ouvert est un ouvert)
- 3. $\forall F$ fermé de Y, $f^{-1}(F)$ fermé de X. (recip fermé est fermé)
- 4. $\forall A \subset X, \ f(\overline{A}) \subset \overline{f(A)}$

Une composition de fcts continue est continue, l'image par une fonction continue d'une suite convergente est convergente.

Exemple. X un ensemble et $(f_i: X \to Y_i)$ une famille d'applications vers des espaces topos. On peut considérer la topo la moins fine qui les rend continue. Elle est engendrée par les $\{f^{-1}(U_i)|i\in I, U_i\in \mathbb{U}_i\}$.

1.6 Espace métrique

Définition 13. (X,d) espace métrique où $d:X\times X\to\mathbb{R}$ est application distance, ssi elle satisfait :

- 1. (Séparation) $\forall x, y \in X, \ d(x, y) \ge 0 \ (\text{et } d(x, y) = 0 \Leftrightarrow x = y).$
- 2. (Symétrie) $\forall Ax, y \in X, d(x, y) = d(y, x)$
- 3. (Inégalité triangulaire) $\forall x, y, z \in X, \ d(x, z) \leq d(x, y) + d(y, z)$

Définition 14. $\forall x \in X, \ \forall r > 0 \text{ on définit} :$

- $--B(x,r) := \{ y \in X | d(x,y) < r \}$
- $--B^f(x,r):=\{y\in X|d(x,y)\leq r\}$

Les topologies associées à un espace métrique est celle induite par la base d'ouverts $\{B(x,r)|x\in X, r>0\}$.

Définition 15. (X, \mathbb{U}) est séparable $\Leftrightarrow \exists A \subset X$ dénombrable $\overline{A} = X$ (X, \mathbb{U}) est séparé \Leftrightarrow il satisfait l'axiome T_2 .

On peut utiliser dans un espace métrique les caractérisations séquentielles de l'adhérence et sur les fonctions continues.

Définition 16. Un module de continuité est une aplication $x : \mathbb{R}^+ \to [0, \infty]$, tq $w(x) \to_{x \to 0} 0$

Soit (X, d_x) et (Y, d_y) des espaces métriques et $f: X \to Y$ est :

- continue en $x \in X$ ssi il existe w_x module de continuité tq $d_y(f(x), f(y)) \le w_x(d(x,y)), \forall y \in X$.
- uniformément continue ssi il existe w un module de continuité tq $d_y(f(x), f(y)) \le w(d(x,y)) \forall x,y \in X$.
- Lipschitzienne ssi $\exists C[w = CId], \ \forall x, y, d(f(x), f(y)) \leq Cd_x(x, y).$
- α -Holderienne[0 < α < 1] ssi $\exists C[w = Cr^2], \forall x, y, d_y(f(x), f(y)) \leq Cd_x(x, y)^2$.

Remarque. Si w est un module de continuité,

- $\tilde{w}(r) := \sup_{0 \leq s \leq r} w(s)$ est . . . croissant et $\tilde{w} \geq w$
- $\hat{w}(r)$; = $\frac{1}{2} \int_0^{2r} \tilde{w}(s) ds$ est . . . croissant et continue
- $--\hat{w}(r) \ge \tilde{w}(r) \ge w(r).$

1.7 Espaces vectoriels normalisés (evn)

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

Définition 17. une evn est une paire (E, ||||) où E est un \mathbb{K} espace vectoriel et |||| est une norme sur E. ||.|| satisfait :

— (Séparation) $\forall x \in E, ||x|| \ge 0$

- (Homogénéité) $\forall c \in E, \ \forall \lambda \in \mathbb{K}, \ \|\lambda x\| = \|\lambda\| \|x\|$
- (Inequality triangulaire) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$

On lui associe d(x, y) = ||x - y|| est la topologie associée.

Propriété 1. Soit E, F des evn, une application linéaire $u: E \to F$ est continue ssi $\exists C, \ \forall x \in E, \ \|u(x)\|_F \leq C\|x\|_E$ ie u est continue et linaire alors elle est lipschitzienne.

On note L(E,F) l'espace vectoriel des applications linéatire et continues de $E ext{ dans } F.$

C'est un evn pour la norme $||u|||_{L(E,F)} := \sup\{||u(x)||_F | x \in E, ||x||_E \le 1\}.$ En particulier $E^* = L(E, \mathbb{K})$ l'espace vectoriel des formes linéaires continues est aussi un evn.

Exemple. Soit (X,d) un espace métrique, alors $C_b(X,\mathbb{K})$ est un evn pour la norme $||f||_{\infty} := \sup ||f(x)||$. De même, pour $0<\alpha<1$ $C_b^\alpha(x)$ est un evn muni de la norme $\|f\|_{C^\alpha}:=$ $||f||_{\infty} + ||f||_{C^{\alpha}}$ où $||f||_{C^{\alpha}} := \sup \frac{||f(x) - f(y)||}{d(x,y)^{\alpha}}||.$

De même les fonctions Lipschitziennes.

Exemple. Soit $\Omega \subset \mathbb{R}^d$ ouvert et $n \in \mathbb{N}$. $C_b^{\alpha}(\Omega)$ [underscore b pour bornée] est un evn pour la norme ...

 $C_b^n(\overline{\Omega})$ muni de la même norme est constitué des $f \in C_b^n(\Omega)$ tq $\partial_{\alpha} f$ s'étend continuellement à $\bar{\Omega}$. [Rem : on peut montrer qu'elles admettent une extension continue a une voisinage de x].

Si (X, μ) est un espace mesuré, on note $L^*(X, \mu) := \{f : X \to \mathbb{R} | f \text{ mesurable} \}/\tilde{}$ où $f g \Leftrightarrow f = g \mu$ -presque partout.

On définit $||f||_p := (\int ||f||^p)^{\frac{1}{p}}$ où $p \in [1, \infty[$. On a les evn L^p muni de $||.||_p$.

Preuve. L'homogénéité, la séparation et la mutabilité sont clairs. L'inégalité triangulaire est appelée inégalité de Minkowski :

Soit $p \in [1, \infty[, f, g \in L^p(X, \mathbb{K}) \text{ OPS } ||f||_p > 0, ||g||_p > 0, ||f||_p + ||g||_p = 1.$

Posons $F = \frac{f}{\|f\|_p}$ et $G = \frac{f}{\|g\|_p}$. Alors $\|f(x) + g(x)\|^p = \|(1 - \lambda)F(x) + \lambda G(x)\|$ pour $\lambda = \|g\|_p$. Le module est convexe et la fonction puissance est aussi convexe donc la composition l'est. Donc $||f(x)+g(x)|| \leq (1-\lambda)||F(x)||^p + \lambda ||G(x)||^p$. Donc tout va bien la suite en exercice :)

1.8 Espaces vectoriels topologiques localement convexes (ev+lc)

Définition 18. Un ev+lc est un \mathbb{K} -ev E muni d'une famille de semi normes $(\|.\|_i)_{i\in I}$ (pas la séparation). La topo associée est définie par la base d'ouverts de la forme $\{y \in E | \forall i \in I_0, ||x - y||_i < \varepsilon\}$ avec $x \in E, \varepsilon > 0$ et $I_0 \subset I$ fini.

Remarque. Une semi norme est une application $\|.\|: E \to \mathbb{R}$ positive et homogène, satisfaisant l'inégalité triangulaire. (pas de séparation).

Remarque. La topo n'est pas automatiquement séparée, cela doit lyre vérifié. Tout evn est un ev+lc avec une famille ($\|.\|_i$) réduite à l'élément $\|.\|.$

Proposition 4. une application linéaire $u: E \to E$, avec $E, (\|.\|_i)$ et $F, (\|.\|_j)$ est continue ssi $\forall j \in J, \exists I_0 \subset I, \exists C, \forall x \in E \|u(x)\|_j \leq C \sum_{i \in I_0} \|x\|_i$.

En particulier une forme linéaire $u: E \to \mathbb{K}$ est continue ssi $\exists I_0 \subset I$ fini, $\exists C, \ \forall x \in E \ \|u(x)\| \le C \sum_{i \in I_0} \|x\|_i.$

Preuve. Supp u continue, soit $j \in J$, on a le voisinage de $0: W := \{y \in J\}$ $E|\|y\|_i < 1$. On a u(0) = 0 par linéarité. Par continuité, il existe un voisinage V de 0 dans E tel que $u(V) \subset W$. V contient un élément de la base de voisinage donc $\exists \varepsilon > 0$, $\exists I_0 \subset I$ fini, $\{x \in E | \forall i \in I_0, \|x\|_i < \varepsilon\} \subset$

On a montré que : $(\forall i \in I_0, \ \|x\|_i < \varepsilon) \Rightarrow \|u(x)\|_j < 1$. En particulier : $(\sum_{i \in I_0} \|x\|_i) < \varepsilon \Rightarrow \|u(x)\|_j < \varepsilon$.

Par homogénéité : $\|u(x)\|_j \leq \varepsilon m^{-1} \sum_{i \in I_0} \|x\|_i$.

Réciproque: On montre la continuité en 0 (donc en tout point par linéarité).

On a u(0) = 0. Soit W un voisinage de 0 dans F. OPS $\exists J_0 \subset J$ fini

et $I_0(S)$ et I $C_j \sum_{j \in J_0} ||x||_j < C_j \eta ||I_j|| \le \varepsilon$

Propriété 2. Soit E un ev+lc muni d'une famille dénombrable de semi normes $(\|.\|_n)$. Alors la topo de E est maitrisable pour la distance d(x,y) = $\sum_{n\in\mathbb{N}}\min(2^{-n},\|x-y\|_n).$

Preuve. Montrons que les bases de voisinage de l'origine $(B_j(0,\varepsilon)_{\varepsilon>0})$ et

Freuve. Montrons que les bases de Volshage de l'origine $(D_j(0,\varepsilon)\varepsilon>0)$ et $\{x\in E|\forall i\in I_0,\ \|x\|_i<\eta\}, I_0 \text{ fini }\varepsilon\eta>0 \text{ sont équivalentes}.$ Soit $\varepsilon>0$ et N tq $2^{-N}<\varepsilon/3$. On considère $V=\{x\in E|\forall n< N,\ \|x\|_n<\frac{\varepsilon}{3N}\}$. Alors $\forall x\in V,\ d(x,0)<\sum_{n=0}^{N-1}\frac{\varepsilon}{3N}+\sum_{n=N}^{\infty}2^{-n}=\varepsilon/3+2^{-N}*2\leq\varepsilon.$ Réciproquement : $V=\{x\in E|\forall n\in I_0,\ \|x\|_n<\eta\}$. Alors $V\subset B(0,\varepsilon)$ où $\varepsilon=\min(2^{-N-1},\eta)$ et finalement $\forall x\in B(x,0),\ \forall n\leq N,\ \|x\|_n<\varepsilon\leq\eta.$

La topologie est engendrée par la base d'ouverts : $\{y \in E | \forall i \in I_0, |x-y|_i < 1\}$ ε } où $x \in E, I_0 \subset I$ est fini et $\varepsilon > 0$. Si on fixe x, on obtient une base de voisinage de x.

Lemme 1. Un ev+lc $(E, ||.||_i)$ est séparé ssi $\forall x \in E, (\forall i \in I, |x|_i = 0) \Rightarrow$ ssi $\forall x \in E \setminus \{0\}, \ \exists i \in I, \ |x|_i > 0.$

Preuve. — Si $\exists x \in E \setminus \{0\}, \forall i \in I, |x|_i = 0 \text{ alors } x \text{ appartient à une base}$ de voisinage de 0. $\{y \in E | \forall i \in I_0, |y|_i < \varepsilon\}$ pour même conditions qu'avant donc l'espace n'est pas séparé.

— Si $\forall z \in E \setminus \{0\}, \ |z|_i > 0$. Soit $x \neq y \in E$. Soit $i \in I$ tq $\underbrace{|x - y|_i} > 0$.

Alors $\{z \in E \mid z - x|_i < \varepsilon/2\}$ et $\{z \in E \mid z - y|_i < \varepsilon/2\}$ sont des voisinages distincts de x et y donc l'espace est séparé.

On abrège evtlc séparé en evtlcs.

Soit $(E, |.|_i)$) un evtlcs muni d'une famille dénombrable de semi normes.

- On dit qu'elle est étagée si $\forall x \in E$, $(|x|_i)$ est croissante. On peut supposer, quitte à considérer $(|.|'_i)$ où $|x|'_i := \max_{n \le i} |x|_n$ qui définit la même topo.
- On a la base d'ouverts $B_N(x,\varepsilon) := \{ y \in E | \forall n \leq N, |y-x|_n < \varepsilon \} = \{ y \in E | \forall n \leq N, |y-x|_n < \varepsilon \}$ $E||y-x|'_N<\varepsilon\}$ où $x\in E, N\in\mathbb{N}, \varepsilon>0$.
- La topo est métrisable pour la distance $d(x,y) = \max_{n \in \mathbb{N}} \min(2^{-n}, |x-y|)$ $y|_n$).

On note que $B_d(n,\eta) = \{y \in E | \forall n \in \mathbb{N}, \min(2^{-n}, |x-y|_n) < \eta\} = \{y \in \mathbb{N}, \min(2^{-n}, |x-y|_n) < \eta\} = \{y \in \mathbb{N}, \min(2^{-n}, |x-y|_n) < \eta\}$ $E|\forall n \le |\log_2 \eta|, |x - y|_n < \varepsilon\}.$ En effet $2^{-n} \ge \eta \Leftrightarrow -n \log_2 \ge \log_2 \eta$.

On note que $B_d(x, \min(2^{-N}, \varepsilon)) \subset B_N(x, \varepsilon)$. $B_{||\log_2\eta||}(x,\eta) \subset B_d(x,\eta)$

Exemple. Fonctions non bornées :Soit $\Omega \subset \mathbb{R}^d$ ouvert et (Ω_i) une suite d'ouverts tq $\bigcup_{n\in\mathbb{N}} \Omega_n = \Omega$ et $\forall n \in \mathbb{N}, \ \overline{\Omega_n}$ \subset_C

Remarque. On peut poser $\Omega_n := \{x \in B(0,n) | \forall y \in \mathbb{R}^d \setminus \Omega, |x-y| > \frac{1}{n} \}.$

Pour tout $n \in \mathbb{N}, \alpha \in \mathbb{N}^d$ et $f: \Omega \to R$ assez régulière, on pose $|f|_{n,\alpha} :=$ $\sup\nolimits_{x\in\overline{\Omega_n}}|\partial_{\alpha}f(x)\text{ où }\partial_{\alpha_1,\cdots,\alpha_d}f:=\frac{\partial^{|\alpha|}f}{\partial_{\alpha_1}^{\alpha_1}\cdots\partial_{\alpha_d}^{\alpha_d}}\text{. Alors }\forall k\in\mathbb{N}, (C^k(\Omega),(|.|_{n,\alpha})_{n\in\mathbb{N}}^{|\alpha|\leq k})$ Est séparé et métrisable car $\mathbb{N} \times \mathbb{N}^d$ est dénombrable.

Exemple. Classe $D(\Omega)$ des fonctions test : Soit $\Omega \subset \mathbb{R}^d$ ouvert, $D(\Omega) =$ $\{f \in \mathcal{C}^{\infty}(\Omega) | \sup f \subset_C \Omega\}$

Pour tout $w \, eta \in C^0(\Omega, \mathbb{R}_+)$ on pose sur $f \in D(\Omega)$. $|f|_{w,\eta} := \sup_{x \in \Omega, \alpha < \eta(x)} |w(x)| |\partial^{\alpha} f(x)|$.

Alors $D(\Omega)$ est un ouvert et evtlc :).

L'espace $D^*(\Omega)$ des formes linéaires continues sur $D(\Omega)$ est appelé espace des distributions.

des distributions.
$$\forall \varphi \in D^*(\Omega), \ \exists w, \eta \in C^0(\Omega, \mathbb{R}^+), \ \forall f \in D(\Omega), \ | \underbrace{\varphi(f)}_{\text{parfois not} \in \langle \varphi, f \rangle_{D^* \times D}} | \leq \underbrace{|f|_{w,\eta}}_{\text{En principe, } C \max_{1 \leq i \leq I} |f|_{w_i,\eta_i}}_{\text{mais on peut se ramener à une seule}}$$
 Une distribution φ est d'ordre fini $k \in \mathbb{N}$ si $\exists w \in C^0(\Omega, \mathbb{R}_+), \ \forall f \in D(\Omega), \ |\varphi(f)| \leq$

Une distribution φ est d'ordre fini $k \in \mathbb{N}$ si $\exists w \in C^0(\Omega, \mathbb{R}_+), \forall f \in D(\Omega), |\varphi(f)| \leq$ $|f|_{w,k}$

Exemple. Distribution d'ordre fini :

- Masse de Dirac $\varphi(f) = f(0)$ est d'ordre 0
- Si $g \in L_{loc}(\Omega)$, alors $\varphi(f) := \int_{\Omega} fg$ est une distribution. Si $d=1,\, \varphi$ est d'ordre 1. En effet soit G une primitive de g s'annulant
 - Alors $\int_{t_0}^{t_1} f(t)g(t)dt = [fG]_{t_0}^{t_1} \int_{t_0}^{t_1} f'(t)G(t)dt$. On choisit t_0, t_1 tq $supp(f) \subset [t_0, t_1]$. Alors $|\varphi(f)| = \int_{t_0}^{t_1} |f'(t)| |G(t)| dt$ On pose $\eta = 1, w(t) = z(t) \sup |G(s)|$ (à vérifier)
- $\varphi(f) = f'(0)$ distrib d'ordre 1
- $\varphi(f) = \sum_{n \in \mathbb{N}} f^{(n)}(n)$ d'ordre ∞ avec $\eta = Id, w = Id$.
- Classe de Schwartz (compatible avec la transformée de Fourier et métrisable): on pose pour tout $n \in \mathbb{N}, \alpha \in \mathbb{N}^d, f \in C^{\infty}(\mathbb{R}^d), |f|_{n,\alpha} :=$ $\sup_{x\in\mathbb{R}^d}(1+|x|^2)^{\frac{n}{2}}|\partial_{\alpha}f(x)|$. Toutes les dérivées décroissent plus vite que n'importe quelle paissance négative. evtlc métrisable séparable...
- Topo faible est * faible : soit E un evtlc * la topo faible sur E est définie par les semi normes $x \in E \mapsto |l(x)|$ où $l \in E^*$. C'est la topo la plus faible qui rend les formes linéaire continue. La séparation nécessite de construire des formes linéaires et découle du théorème de Hahn-Banach. Pas métrisable (exo) sauf en dim finie.
- topo * faible sur E^* est def par la famille de semi normes $l \in E^* \mapsto$ |l(x)| est séparé (en effet pour $l \in E^*$ sur lequel toutes ces semi normes s'annulent alors l est la fonction nulle ie l = 0.) et pas métrisable sauf si dim finie.

Proposition 5. Métrisabilité de la boule unité pour la topo * faible : Soit E un evn séparable, soit (x_n) une suite dense dans $B'_E(0,1)$ et soit $B:=B'_{E^*}(0,1)$. Alors la topologie * faible sur B est métrisable poir la distance $d(u, v) := \max_n \min(2^{-n}, |u(x_n - v(x_n))|)$

Remarque. On pourrait remplacer B par n'importe quelle partie bornée de E^* .

Preuve. Soit $u \in B$ et un voisinage de u pour la distance $d_{|B \times B}$ de la forme $B_d(u,\eta) = \{ v \in B | \forall n \le |\log_2 \eta|, |u(x_n) - v(x_n)| < \varepsilon \}.$ **Réciproquement :** soit $u \in B$ et soit un voisinage de u pour * faible de la forme $\{v \in B | \forall 0 \le k \le K, \ | u(y_k) - v(y_k| < \varepsilon\}. \ \text{OPS} \ \|y_k\| \le 1 \ \text{quitte à cibsidérer} \ y_k/\alpha \ \text{et} \ \varepsilon\alpha. \ \text{Soit} \ n_0, \cdots, n_K \ \text{tels que} \ \|x_{n_k} - y_k\| \le \varepsilon/2 \ \text{avec} \ \alpha = \max(1, \max_{0 \le k \le K} \|y_k\|). \ \text{Soit} \ N := \max(n_0, \cdots, n_K \ \text{et} \ \eta = \min(2^{-N}, \varepsilon/2). \ \text{Alors} \ B_d(u, \eta) \cap B \subset \{v \in B | \forall n \le N, \ |v(x_n) - u(x_n)| < \varepsilon/3\} = V. \ \text{Soit} \ v \in V \ \text{et} \ k \le K \ \text{alors} \ |v(y_k) - u(y_k)| \le |v(y_k) - v(x_{n_k})| + |v(x_{n_k}) - u(x_{n_k})| + |u(x_{n_k}) - u(x_n)| \le \|v\|_{E^*} \|y_k - x_{n_k}\| \le 1 * \varepsilon/3 + \varepsilon/3 + 1 * \varepsilon/3 < \varepsilon \ \text{donc} \ V \subset V_0 \ \text{on a bien une base de voisinage fournie par la métrique.}$

2 Complétude

2.1 Critère de Cauchy

Une suite (x_n) dans un espace métrique (X,d) est de Cauchy ssi $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}, \ \forall p,q \geq N, \ d(x_p,x_q) \leq \varepsilon$. De manière équivalente : $d(x_p,x_q) \leq \varepsilon_{\min p,q}$ avec $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$.

Une suite de Cauchy:

- est toujours bornée : $d(x_0, x_n) \leq \varepsilon_0$
- admet au plus une valeur d'adhérence
- si elle a une valet d'adhérence alors elle converge vers celle ci

Toutes suites convergente est de Cauchy.

Définition 19. (X,d) est complet ssi toutes suites de Cauchy converge

Lemme 2. Soit (X, d) complet, ACX alors $(A, d_{|A \times A})$ est complet ssi A est borné

Remarque. — un evn complet est appelé un Banach.

— un evtlc complet pour la distance associée est appelé un Frichet.

Lemme 3. (Série dans un Banach) : Soit E evn, sont équivalents :

- E est complet
- toutes série (y_n) absolument convergente (ie $\sum_{n=1}^{\infty} ||y_n|| < \infty$) est convergente.

Preuve. Supp E complet, soit (y_n) le terme général d'une série absolument convergente. $x_N := \sum_{n \leq N} y_n$, $\varepsilon_n := \sum_{n > N} \|y_n\|$. Alors $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$ comme

reste d'une série sommable, et $\forall p \leq q, \ \|x_p - x_q\| = \|\sum_{r=p+1}^q y_r\| \leq \sum_{r=p+1}^q \|y_r\| \leq \varepsilon_p$ donc les sommes partielles satisfont le critère de Cauchy donc convergent. **Réciproquement :** si (x_n) de Cauchy, $\|x_p - x_q\| \leq \varepsilon_{\min p,q}$ où $\varepsilon_N \to 0$. Soit (N_k) strict croissante tq $\varepsilon_{N_k} \leq 2^{-k}$. Posons $y_k := x_{N_{k+1}} - x_{N_k}$. La série des y_k est sommable donc converge par hypothèse donc $\sum_{k < K} y_k = x_{N_k} - x_{N_0}$ converge. Donc x_n est une suite de Cauchy admettant une valeur d'adhérence donc converge.

2.2 Exemple d'espaces fonctionnels complets

Exemple. (Fonctions bornées) : soit (X, d) espace métrique E de Banach. Alors $C_h^0(X, E)$ est complet pour norme ∞ .

Preuve. Soit (f_n) de Cauchy. $|f_p(x) - f_q(x)| \le ||f_p - f_q||_{\infty} \le \varepsilon_{\min p,q}$. Donc $(f_n(x))$ de Cauchy et admet une limite $f_{\infty}(x)$. De plus $||f_p - f_{\infty}|| \le \varepsilon_p$. Enfin f_{∞} est continue (resp bornée) comme limite d'une suite de fonction continues.

Exemple. (Espaces L^p): soit $\in [1, \infty]$, (X, d) espace mesuré, alors L^p est complet.

Preuve. \exists classes d'équivalences modulo égalité pp. Soit (f_n) une série sommable. Posons $S_N(x):=\sum\limits_{n\leq N}|f_n(x)|$ et S_∞ la limite (possiblement ∞). Alors $\left(\int_X S_N(x)^p dx\right)^{\frac{1}{p}}=\|S_N\|_p\leq \sum\limits_{nn\leq N}\|f_n\|_p\leq C<\infty$. D'où $\int_X S_\infty(x)^p d\mu(x)=\lim\limits_{N}\int_X S_N(x)^p d\mu(x)\leq C^p<\infty$. Par leth de convergence monotone (Boffo Levi) car $S_N(x)\searrow S_oo(x)$. Donc $S_\infty<\infty$ pour $\mu pp\ x$. On pose alors $g_\infty(x):=\sum\limits_{n\in \mathbb{N}}f_n(x)$ qui est convergente $\mu pp\ x$. On pose aussi $g_N(x)$ la somme partielle. Alors $|g_\infty(x)-g_N(x)|\leq \sum\limits_{n>N}|f_n(x)|$ donc $\|g_\infty-g_N\|_p\to 0$.

Exemple. (Fonctions bornées) : soit $k \in \mathbb{N}$, $\Omega \subset \mathbb{R}^d$ ouvert, alors $C_b^k(\Omega)$ est un Banach pour la norme $||f|| := \sum_{|\alpha| < k} ||\partial_{\alpha} f||_{\infty}$.

Preuve. Soit (f_n) de Cauchy et $(f_n^{\alpha}) = \partial_{\alpha} f_n$. Alors c'est aussi de Cauchy dans $C_b^0(X)$ donc cv vers f^{α} . Soit $\alpha \in \mathbb{N}^d$ avec $|\alpha| < k \ x \in \Omega, \ 1 \le i \le d$. Justifions que $\partial/\partial_{x_i} f^{\alpha}(x) = f^{\alpha+e_i}(x)$ avec e_i la base canonique. Soit p > 0 tq $[x, x + pe_i] \subset \Omega$, alors $f_n^{\alpha}(x + pe_i) - f_n^{\alpha}(x) = \int_0^p f_n^{\alpha+e_i}(x + te_i)dt$ car $\frac{\partial}{\partial x_i} f_n^{\alpha} = f_n^{\alpha+e_i}$.

Par cv uniforme, on a pareil mais sans $f^{\alpha}(x+pe_i)-f^{\alpha}(x)=\int_0^p f^{\alpha}(x+te_i)dt$ continument dérivable / p.

Finalement
$$||f_n - f^0|| = \sum_{|\alpha| \le k} ||\partial_{\alpha} f_n - \partial_{\alpha} f^0|| = \sum ||f_n^{\alpha} - f^{\alpha}|| \xrightarrow[n \to +\infty]{} 0 \text{ car}$$

$$\partial_{\alpha} f^0 = f^{\alpha}.$$

Exemple. Soit Ω ouvert et $(\Omega_n \neq \emptyset)$ tq $\bigcup_{n \in \mathbb{N}} \Omega_n = \Omega$ et $\overline{\Omega} \subset_C \Omega_{n+1}$. Soit $k \in \mathbb{N} \cup \{\infty\}$, alors $\left(C^k(\Omega), (|.|_{n,\alpha})_{n \in \mathbb{N}}^{|\alpha| \leq k}\right)$ est un Fréchet.

Preuve. (cas $k = \infty$). Soit (f_n) de Cauchy. Soit $k' \in \mathbb{N}$ arbitraire (on prendrait $k' \leq k$ dans le cas $k < \infty$). Alors $(f_{n|\Omega_n}$ est une suite de Cauchy de C_b . Or elle admet une limite $g_n'^k$ sur Ω_n .

Exemple. $C_b^{\infty}(\Omega)$ muni de $(\|.\|_n)_n$ où $\|f\|_n := \max_{|\alpha| < n} \|\partial_{\alpha} f\|_{\infty}$ est Fruchet.

Proposition 6. $\mathcal{D}_k(\Omega)$ où $k \subset_C \Omega$, compact et Ω ouvert. $\mathcal{D}_K(\Omega) := \{ f \in \mathcal{D}(\Omega) | supp(f) \subset K \}$ est un espace fermé de l'ensemble initial. De plus la topologie induite sur $\mathcal{D}_K(\Omega)$ par $(\mathcal{D}(\Omega), (|.|_{w,\eta})$ et $(C_b^{\infty}(\Omega), \cdots)$ est la même.

Preuve. Fermeture : Si $f_n \xrightarrow[n \to +\infty]{} f$ avec $f_n \in \mathcal{D}_{\alpha}(\Omega)$ pour la topo C_c^{∞} alors en particulier $f_n \xrightarrow[n \to +\infty]{} f$ uniformément donc $supp(f) \subset K$.

Posons $supp(f) := \overline{\{x \in \Omega | f(x) \neq 0\}}.$

Mêmes topologies suivantes : $||f||_n \leq |f_{w,\eta}|$ en prenant $w = 1, \eta = n$. $|f|_{w,\eta}| \leq C||f||_n, \forall f \in \mathcal{D}_K(\Omega)$, en prenant $C = \max_{x \in K} w(x)$, on peut borner les semi normes d'une famille par une cte x un max d'un nombre fini de semi normes de l'autre donc les mêmes topos.

Proposition 7. Soit φ une forme linéaire sur $\mathcal{D}(\Omega)$. Sont équivalent :

- φ est continue sur $\mathcal{D}(\Omega)$, ie $\exists w, \eta \in C^{\infty}(\Omega, \mathbb{R}^+), \ \forall f \in \mathcal{D}(\Omega), \ |\varphi(f)| \leq |f|_{w,\eta}$
- φ est continue sur $D_K(\Omega)$ ie $\forall K \subset_C \Omega$, $\exists w_k, \eta_K \in \mathbb{R}^+ \times \mathbb{N}$, $\forall f \in \mathcal{D}_K(\Omega)$, $|\varphi(f)| \leq w_K ||f||_{\eta_K}$

De plus, φ est d'ordre fini $k \in \mathbb{N}$ ssi on peut choisir $\eta = k$, de manière équivalente, $\eta_K = k, \forall K \subset_C \Omega$.

Remarque. On dit que $\mathcal{D}(\Omega)$ est la limite inductive des $\mathcal{D}_K(\omega)$

Lemme 4. (Quelques fonctions C^{∞})

- 1. La fonction $\psi_0: \mathbb{R} \to \mathbb{R}$ $x \mapsto 0 \text{ si } x < 0, e^{-\frac{1}{x}} \text{ sinon}$
- 2. La fonction $\psi_1 x \mapsto \int_0^x \psi_0(t) \psi_0(1-t) dt$ est C^{∞} , vaut 0 sur $]-\infty,0]$ vaut une constante sur $[1,\infty[$. $H:=\frac{\psi_1}{\psi_1(1)}$ est une application de la fonction de Heaviside
- 3. La fonction $\psi_2: x \in \mathbb{R}^d \mapsto \psi_0(1-\|x\|^2)$ est C^{∞} positive, radiale, à support égal à $B'_{\mathbb{R}^d}(0,1)$. Souvent utilisée comme noyau de convolution

pour régulariser les filtres.

4. Soit $K \subset_C U$, K compact, $U \subset \mathbb{R}^d$ ouvert. Alors $\exists \psi \in C^{\infty}(\mathbb{R}^d)$, $\psi = 1 \text{ sur } Ket \ supp(f) \subset U$

Preuve. 1. Classique

- 2. facile
- 3. facile
- 4. $\forall x \in K$, soit $r_x > 0$ tq $B(x, r_x) \subset U$. On extrait un sous recouvrement fini de $K \subset \bigcup_{x \in K} B(x, \frac{r_x}{3})$, noté $K \subset \bigcup_{1 \le i \le I} B(x_i, \frac{r_i}{3})$. Posons $\varphi(x) := \sum_{1 \le i \le I} \psi_2(\frac{x - x_i}{r_i/2})$. Alors $\psi_2(\frac{x - x_i}{r_i/2}) > 0$ sur $B(x_i, \frac{r_i}{3})$ et son support (supp) sur $B'(\cdots)$. Donc $\varphi > 0$ sur $\bigcup_{1 \le i \le I} B(x_i, \frac{r_i}{3}) \supset K$. $supp(\varphi) = \bigcup_{1 \le i \le I} B(x_i, \frac{r_i}{3}) \supset K$. $\bigcup_{1 \le i \le I} B'(x_i, \frac{r_i}{3}) \subset_C U.$ Par compacité, $\varepsilon := \min_{x \in K} \varphi(x)$ est strictement positif. On considère finalement $\psi := H \circ \varphi$. Où $H \in C^{\infty}(\mathbb{R}, \mathbb{R}), H = 0$ sur $]-\infty, 0],$

 $H = 1 \text{ sur } [\varepsilon, \infty[\text{ satisfait } supp(\psi) \subset supp(\varphi) \subset_C U \text{ et } \psi^{-1}([\varepsilon, \infty[) \supset$ $\varphi^{-1}([\varepsilon,\infty[.$

Lemme 5. Soit $f,g \in C^{\infty}(\mathbb{R}^d)$, $\alpha \in \mathbb{N}^d$ alors $\partial_{\alpha}(fg) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} \partial_{\beta} f \partial_{\alpha-\beta} g$ où $\binom{\alpha}{\beta} := \prod_{1 \le i \le d} \binom{\alpha_i}{\beta_i}$

Preuve. Cas où $\alpha=(n,0,\cdots,0)$ alors $\frac{\partial^n}{\partial x_1}(fg)=\sum\limits_{0\leq k\leq n}\binom{n}{k}\frac{\partial^k}{\partial x_i^k}f\frac{\partial^{n-k}}{\partial x_i^{n-k}}g$ par récurrence immédiate.

Passage de $(\alpha_1, \dots, \alpha_{k-1}, 0 \dots, 0) = \alpha_*$ à $(\alpha_1, \dots, \alpha_k, 0 \dots, 0)$. Récurrence

Sur h. $\partial_{\alpha}(fg) = \frac{\partial^{\alpha_k}}{\partial x_k^{\alpha_k}} = \sum_{\beta_* \leq \alpha_*} {\alpha_* \choose \beta_*} \cdots \text{ Par HR et linéarité de la dérivation.}$ Puis on utilise ${\alpha_0 \choose \beta_0} {\alpha_k \choose \beta_k} = {\alpha \choose \beta}$ et le résultat tombe.

Preuve. (Critère de continuité des distributions) : Soit (Ω_n) tq $\overline{\Omega_n} \subset_C$ Ω_{n+1} , tous ouvert et formant une partition de Ω . Soit (γ_n) tq $\gamma_n \in C^{\infty}$, $\gamma_n =$ 1 sur [?,?] et $supp(\gamma_n) \subset \Omega_n$. Supp (ii : $\mathcal{D}_K(\Omega) \cdots$). Soit w_n, η_n tq $\forall f \in \mathcal{D}(\Omega)$, $supp(f) \subset \overline{\Omega} \Rightarrow |\varphi(f)| \leq w_n ||f||_{\eta_n}$. Soit $f \in \mathcal{D}(\Omega)$. Alors $f = \overline{\Omega}$ $\sum_{n\in\mathbb{N}}^{=} f(\gamma_n - \gamma_{n+1} := \beta_n) \text{ avec } \gamma_{-1} = 0. \text{ De plus cette somme a un nombre fini}$ de termes non nuls. En effet, $\exists N, \ \forall n \geq N, \ supp(f) \subset \Omega_n$, par compacité de supp(f). Donc $\forall n \geq N+1, f(\underbrace{\gamma_n - \gamma_{n-1}}_{\text{nul sur } \overline{\Omega_{n-1}}}) = 0$ Par linéarité, $|\varphi(f)| \leq \sum_{n \in \mathbb{N}} |\varphi(f_{\beta_n})| \leq \sum_{n \in \mathbb{N}} w_n ||f\beta_n||_{\eta_n} \ (\text{car } supp(\beta_n) \subset \Omega_{n+1} \backslash \Omega_{n-1}) \leq \sum_{n \in \mathbb{N}} w_{n+1}$

$$\begin{split} \sup_{\alpha \leq \eta_{n+1}, x \in \Omega_{n+1} \backslash \Omega_{n-1}} |\partial_{\alpha}(f\beta_n)(x)| &\leq \sum_{n \in \mathbb{N}} \underbrace{w_{n+1}^{-}}_{\text{dépend des } \|\partial_{\alpha,\beta_n}\|} \sup \cdots (paseuletemps d'ecrire) \leq \\ \sup_{n \in \mathbb{N}, \alpha \leq \eta_{n+1}, x \in \Omega_{+1} \backslash \Omega_{n-1}} w_{n+1}^{-} |\partial_{\alpha}f(x)| \text{ avec } w_{+1}^{-} &:= C_{\alpha}(1+n)^{\alpha}w_{n+1}^{-} \\ &\leq |f|_{w,\eta} \text{ où } w, \eta \text{ vérifient } w(x) \geq w_n \text{ si } x \notin \Omega_{n-2}, \eta(x) \geq \eta_n \text{ si de même.} \\ \text{Par ex } w(x) &= \sum_{n \in \mathbb{N}}^{\infty} w_n (\underbrace{1-\gamma_{n-3}}_{\text{vaut } 1 \text{ hors de } \Omega_{n-2}}) & \Box \end{split}$$

Exemple. Soit (X, d) un espace métrique, w un module de continuité strictement positif hors de 0. Posons $\forall f \in C_b^{\infty}(X)$,

 $|f|_w = \sup_{x,y \in X} \frac{|f(x) - f(y)|}{w(d(x,y))}, ||f||_w := |f|_w + ||f||_{\infty}.$

Alors $\{f \in C_b^0(X) | ||f||_w < \infty\}$ est un Banach.

Cas particulier : fct Lipschitziennes bornées / Hölderienne bornées.

2.3 Prolongements:

Propriété 3. (Prolongement des fcts uniformément continues) : Soit X,Y des espaces métriques complets, $A \subset X$ une partie dense, $f:A \to Y$ uniformément continue. Alors f admet une unique extension continue $F:X \to Y$ (qui se trouve être uniformément continue).

Preuve. Construction: on def $f(x) := \lim f(x_n)$ où $x_n \in A$ et $x_n \to x$. $(x_n)cv \Rightarrow (x_n)$ est de Cauchy $\Rightarrow f(x_n)$ est de Cauchy $\Rightarrow f(x_n)cv$ **Bonne définition**: Si $x_n, y_n \to x, x$ alors $d(x_n, y_n) \to 0$ donc $d(f(x_n), f(y_n)) \to 0$ par uniforme continuité de f. Finalement $\lim f(x_n) = \lim f(y_n)$.

Continuité uniforme : supposons $x_n \to x, y_n \to y$ alors $d(\lim f(x_n), \lim f(y_n)) = \lim d(f(x_n), f(y_n)) \le \lim w(d(x_n, y_n)) = w(d(x, y))$. On peut supposer w continue donc le résultat tombe.

Unicité : parmi les fct continues, découle de la construction.

Remarque. (Extension de Tietze) : Si f uniformément continue sur $A \subset X$ qcq, on a toujours une extension à priori pas unique. OPS(on peut supposer) w croissant et sous additif. $F(x) := \inf_{y \in A} f(y) w(d(x, y))$

Remarque. En pratique X et Y sont souvent des Banach, f est une application linéaire continue de $A \subset X$ dense dans Y.

Propriété 4. (Complété d'un espace) : Soit (A, d) un espace métrique. Alors il existe (X, d) métrique, complet et une injection isométrique $i_A : A \to X$ tq $Im(i_A)$ est dense dans X. De plus X est unique à isométrie près.

Preuve. Existence : $X = \{\text{suites de Cauchy de }A\}/\sim \text{où }(x_n)\sim (y_n)\Leftrightarrow d(x_n,y_n)\to 0.$

Unicité : découle du résultat d'extension précédent :

Alors $\varphi: Im(i_A) \longrightarrow Im(\tilde{i_A})$ est une isométrie sur une partie dense de $x \longmapsto \tilde{i_A}(i_A^{-1}(x))$

X donc s'étend uniquement en une isométrie de $X \to \tilde{X}$

Point fixes de Picard

Propriété 5. Soit (X,d) métrique complet, $f:X\to X$, K-lipschitzienne avec K < 1 (ie contractante). Alors f a un unique point fixe x_* . De plus $\forall x_0 \in X, \ d(x_0, x_*) \leq \frac{d(x_0, f(x_0))}{1 - K}.$

Preuve. Unicité: Si x_* et $\tilde{x_*}$ sont des points fixes, $d(x_*, \tilde{x_*}) = d(f(x_*), f(\tilde{x_*})) \le$ $K \cdots < d(x_*, \tilde{x_*}) \text{ donc } d(x_*, \tilde{x_*}) = 0.$

Extension et estimation : soit $x_0 \in K$ puis $x_{n+1} = f(x_n)$ alors $d(x_n, x_{n+1}) \le$ $Kd(x_{n-1},x_n) \leq K^n d(x_0,x_1)$. Ainsi pour $p \leq q \cdots$ Donc (x_n) satisfait le critère de Cauchy donc cy vers une limite x_* . $d(x_N, x_*) \leq K^N \frac{d(x_0, x_1)}{1-K}$. Ainsi $d(x_*, f(x_*)) = \lim d(x_n, x_{n+1}) = 0.$

Remarque. (Stabilité) : Si f est K-lipschitzienne avec K < 1, si ||f| $g\|_{\infty} \leq \varepsilon \text{ et si } x_{\varepsilon} \text{ est un point fixe de } g, \text{ alors } d(\underbrace{x_{\varepsilon}}_{\text{pt fixe de } g}, \underbrace{x_{*}}_{\text{pt fixe de } f}) \leq$

Théorème 1. (Cauchy Lipschitz) : Soit $\Omega \subset \mathbb{R}^d$ ouvert. Soit $f : \mathbb{R}^+ \times \Omega \to \mathbb{R}^d$ \mathbb{R}^d continue et localement lipschitzienne en sa seconde variable ie $\forall T \geq$ $0, \ \forall K \subset_C \Omega, \ \exists C = C(T,K), \ \forall t \in [0,T], \ \forall x,y \in K, \ \|f(t,x) - f(t,y)\| \leq$ $C\|x-y\|$. Alors $\forall x \in \mathbb{R}$, il existe $t_* > 0$ et $u:[0,t_*] \to \Omega$ tq $u(0) = x_0$ et u'(t) = f(t, u(t)).

Remarque. Une propriété $P: \mathcal{P}(\Omega) \to \{\text{Vrai, Faux}\}\ \text{est satisfaite localement}$ ssi tout point $x \in \Omega$ admet un voisinage $V \in \mathcal{V}_x$ tq P(V) est vrai. Si Ω est localement compact (vrai si $\Omega \subset \mathbb{R}^d$), (tt pt admet une base de voisinage compact) et $(P(A) \wedge P(B)) \Rightarrow P(A \cup B), (P(A) \wedge B \subset A)$ $A)) \Rightarrow P(B)$ alors P est satisfaite localement ssi elle est satisfaite sur tout compact.

Preuve. Preuve de l'existence dans CL : Soit $r_0 > 0$ tq $B'(x_0, r_0) \subset \Omega$. Soit t0 > 0 alors f est bornée par C^{∞} sur $[0, t_*] \times B'(x_0, r_0)$ et f est C_{lip} lipschitzienne sur le même intervalle.

Définissions $t_1 > 0$ tq $C_{\infty}t_1 < r_0$ et $C_{lip}t_1 < 1$. Posons $X = C^0([0,t_1],B'(x_0,r_0))$ complet. $F: X \to X$ tq $F(u) = F_u: [0,t_1] \to B'(x_0,r_0)$ avec $F_u(t) =$

 $\begin{aligned} x_0 + \int_0^{t_1} C_\infty ds &\leq t_1 C_\infty \leq r_0. \\ \text{Caractère contractant} : \forall u, v \in X, & \|F_u(t) - F_v(t)\| \leq \int_0^{t_1} \|f(s, u(s)) - f(s, v(s))\| ds &\leq \int_0^{t_1} C_{lip} \|u(s) - v(s)\| ds \leq C_{lip} t_1 \|u - v\|_\infty. \\ \text{Donc les conditions} \\ \text{du point fixe de Picard sont réunies. } F \text{ admet un point fixe qui est par} \end{aligned}$

contraction C^1 et par dérivation est solution du pb de Cauchy :)

Remarque. Le pt fixe de Picard implique aussi la stabilité par rapport aux conditions initiales. Cependant on le montre en général en utilisant le lemme de Gronwall, un peu plus précis

Lemme 6. Gronwall: Soit $f \in C^0([0,T],\mathbb{R}^+)$ et $A,B \geq 0$ tq $\forall t \in [0,T], f(t) \leq$ $A\underbrace{\int_0^t f(s)ds}_{+B} + B. \text{ Alors } f(t) \le Be^{-At}.$

Preuve. On a $F'(t) = Af(t) \le AF(t)$ donc $\left(F(t)e^{-At}\right)' = \left(F' - AF\right)e^{-At} \le 0$. Donc $F(t)e^{-At}$ est décroissante en t. Donc $F(t)e^{-At} \le F(0) = B$. Donc $f(t) \le F(t) \le Be^{-At}$

Propriété 6. (Stabilité dans CL) : Sous les hypothèses $f: R \times \Omega \to \mathbb{R}^d$ continue, localement lipschitzienne selon la seconde variable. Soit $u,v \in$ $C^1([0,T],K)$ solution de u'(t)=f(t,u(t)) où $K\subset_C\Omega$. Alors ||u(t)-u'(t)| $|v(t)| \le e^{Ct} ||u(0) - v(0)||$ avec C = C(T, K) constante de Lipschitz.

Preuve. $\|u(t) - v(t)\| = \|\int_0^t (u'(s) - v'(s))ds + (u(0) - v(0)\| \text{ car } u(t) = u(0) + \int_0^t u'(s)ds. \text{ Donc } \leq \|\int_0^t (f(s, u(s)) - f(s, v(s)))ds\| + \underbrace{\|u(0) - v(0)\|}_{=:B}$ $\leq \widehat{C} \int_0^t \|u(s) - v(s)\|ds + B \text{ le résultat s'obtient par Gronwall appliqué}$

Exemple. (EDO avec retard): Il existe une unique solution $\nu \in C^1([0,1],\mathbb{R})$

Preuve. On cherche un point fixe de $F: X \to X$ définit comme avant. $|F_u(t)| \le 1 + \int_0^{\frac{1}{2}} 4 = 3$ donc F bien def et F_u positive. $|F_u(t) - F_v(t)| \le \int_0^{\frac{1}{2}} |u(t - t^2) - v(t - t^2)| dt \le \frac{1}{2} ||u - v||_{\infty}$

$$|F_u(t) - F_v(t)| \le \int_0^{\frac{1}{2}} |u(t - t^2) - v(t - t^2)| dt \le \frac{1}{2} ||u - v||_{\infty}$$

Exemple. Soit $k \in C^0([0,1]^2,]-1,1[)$ et $\varphi \in C^0([0,1],\mathbb{R})$ alors il existe

une unique sol de
$$u(t) = \int_0^1 \underbrace{k(s,t)}_{\leq K < 1} \underbrace{\frac{u(s)}{1+u^2(s)}}_{r \mapsto \frac{r}{1+r^2} \text{ est lipschitzienne}} ds.$$
 D'où $|F_u(t) - F_v(t)| \leq K \|u-v\|_{\infty}$ et F est contractante sur cette topologique.

2.5 Théorème de Baire

Lemme 7. (fermés emboités) : Soit (X,d) un espace métrique complet et (F_n) une suite de fermés de X tq $F_{n+1} \subset F_n$ et $diam(F_n) \to 0$. $diam(F_n) := \sup_{x,y \in F_n} d(x,y)$. Alors $\bigcap_{n \in \mathbb{N}} F_n = \{x_*\}$ pour un certain $x_* \in X$.

Preuve. Soit $x_n \in F_n$ arbitraire. Alors $\forall N, \forall p, q \geq N, d(x_p, x_q) \leq diam(F_N)$. donc (x_n) est de Cauchy. Sa limite x_* appartient à chaque disque F_n par fermeture donc $x_* \in \cap F_n$. De plus si $y_* \in \cap F_n$ alors $\forall n, d(x_n, y_*) \leq diam(F_n) \to 0$ donc $x_* = y_*$.

Théorème 2. Baire : Soit (X, d) mesuré et (U_n) une suite d'ouverts denses. Alors $\bigcap_{n \in \mathbb{N}} U_n$ est dense.

Preuve. Soit $x_0 \in X$, $\varepsilon_0 > 0$ arbitraire. $B(x_0, \varepsilon_0)$, rencontre U_0 par densité en un point x_1 . Soit ε_1 tq $\varepsilon_1 \leq \varepsilon_0/2$ et $B'(x_1, \varepsilon_1) \subset U_0 \cap B(x_0, \varepsilon_0)$ qui est ouvert.

On construit alors par récurrence $x_{n+1} \in B(x_n, \varepsilon_n) \cap U_n$ vérifiant $\varepsilon_{n+1} \le \varepsilon_n/2$ et $B'(x_{n+1}, \varepsilon_{n+1}) \subset U_n \cap B(x_n, \varepsilon_n)$. Or $B'(x_{n+1}, \varepsilon_{n+1})$ suite de fermés emboités de diamètre $\le 2\varepsilon_n \to 0$.

Soit $x_* \in \bigcap_{n \in \mathbb{N}} B'(x_n, \varepsilon_n)$ par th
 des fermés emboités, alors $\forall n \in \mathbb{N}, \ x_* \in B'(x_{n+1}, \varepsilon_{n+1}) \subset U_n$. Donc on a bien la densité de $\cap U_n$.

Exemple. Soit (q_k) une énumération de \mathcal{O} posons $U_x := \bigcup]q_k - \frac{1}{nk^2}, q_k + \frac{1}{nk^2}[$ Alors $Leb(U_n) \leq \sum_{k \geq 1} \frac{2}{nk^2} = \frac{\pi^2}{3n}$. Ainsi $\cap U_n$ est une intersection d'ouverts denses mais de mesure nulle.