LOAN DEFAULT PREDICTION ANALYSIS

Yashagra Sharma Cristina Segreda Abhishek Subbarayalu

EXECUTIVE SUMMARY

- Our Model predicts the Loan defaults from the bank
- Our Initial Analysis established that data set primarily
- Loan Default was segmented based on Gender and Age Group
- Number of Female defaulters are greater than Males, but the rate of defaulting is higher in male population
- ❖ Age between 25-40 tend to be the maximum defaulters
- Educated from University have higher propensity to default loans in education category

VARIABLES USED TO DEVELOP THE MODELS

N	B
Variable Name	Description
Limit_Bal	Amount of the given credit (NT dollar)
	Including individual consumer & family credit
Sex	Binary description of Sex
Education	Level of Education Attained
Marriage	Marital Status
Age	Age in years
Pay_(0-6)	History of Past Monthly Payments
Bill_Amt (1-6)	Amount of each bill, correlated with Pay
Pay_Amt (1-6)	Amount of each payment, correlates with Pay

OUR DATA SOURCES

- 30,000 Customers
- Included 23 Variables
- Most Common Sex Sample is Female
- 4 Type of Marital Category

EXPLORATORY DATA ANALYSIS

DATA SCRUBBING PROCESS

- Remove ID from Dataset
- Check the data type
- Check Missing Value in Numeric Variable or not.
- We did a mathematical Analysis of Numeric Variables
- Replace Missing Values
- Check Missing Values in Categorial Variables.

SEGMENTATION

SEX

STATUS RELATED TO AGE

K NEAREST NEIGHBOR

MODEL (KNN)

lar things exists in close proximity

The optimal k value usually is the square root of N, where N is the total number of samples

Simple and easy to implement

The algorithm may get significantly slower as the number of presectors increase

Uses a paramete ('
that refers to the
number of near of
neighbors to include

ARTIFICIAL NEURAL

NETWORK MODEL (ANN)

an brain s information

Learns by processing examples of puts with their roults

osed by artificial ons concertually different biological neurons

Neurons are organized in multiple layers

MODEL COMPARISON

kNN No

	Segmentation	kNN Cluster 0	kNN Cluster 1	kNN Cluster 2 k	NN Cluster 3	ANN	
Accuracy	77.90%	75.52%	80.68%	77.49%	75.66%	82.05%	
True Positive Rate	6.95%	10.86%	3.87%	7.53%	6.84%	84.53%	
False Positive Rate	1.69%	5.42%	1.36%	2.10%	2.65%	35.50%	
ROC	65.96%	61.95%	64.47%	65.41%	62.87%	76.50%	
Accuracy, True Positive Rate, False Positive Rate, and Specificity concludes that Neural Network is the best Model							

CONCLUSION

ANN is the model that shows the best results for predicting a loan default from a bank

Further analysis to be conducted is recommended to have income levels, occupation, and loan type.

RECOMMENDATION

TARGET AUDIENCE

Presentation title

 Women between 25 and 40 years old with university degree

NON-TARGET AUDIENCE

 People over 60 years old that have only high school education

THANK YOU

Q1: SLICE AND DICE

```
Q1.1 How many customers are in the sample?

In [11]: M bank.shape

Out[11]: (30000, 24)

There are 30,000 customers in the sample.
```

```
Q1.2 What is the most common sex in the sample?
Out[12]: 2
                18112
                11888
           Name: SEX, dtype: int64
        So we conclude that Male = 11888 and Female = 18112
In [13]: M male = 11888
           female = 18112
           common sex = female - male
           Total sex = female + male
           print (common sex)
           6224
```

The most common sex in this sample is females as there are 6,224

percentage_female = round((female/Total_sex)*100)
print("Percentage of Male " , percentage_male,"%")

print("Percentage of Female " , percentage_female,"%")

Q1: SLICE AND DICE

Q1.3 Which sex has the most defaults?

female no default = 14349

```
▶ bank male = bank[bank["SEX"] == 1]
In [15]:
             bank female = bank[bank["SEX"] == 2]
In [16]: ► #male count - 0 = No Default and 1 = Default
             bank male["default payment next month"].value counts()
   Out[16]: 0
                  9015
                  2873
             Name: default payment next month, dtype: int64
In [17]: ▶ male default = 2873
             male no default = 9015
             Total = male default + male no default
             Percentage default = (male default/Total)*100
             print("From a percentage prospective, male default rate :",Percentage default,"%" )
             From a percentage prospective, male default rate: 24.16722745625841 %
In [18]: ▶ #Female count - 0 = No Default and 1 = Default
             bank female["default payment next month"].value counts()
    Out[18]: 0
                  14349
                   3763
             Name: default payment next month, dtype: int64
          ▶ female default = 3763
In [19]:
```

Q1: SLICE AND DICE

Q1.4 How many distinct values does marriage take on?

There are 4 Distinct Value for Marriage

Q2: HISTOGRAMS

Q2.1 HOW IS BILL_AMT1 DISTRIBUTED BY SEX?

Q2: HISTOGRAMS

Q2.2 DOES THERE APPEAR TO BE ANY RELATIONSHIP BETWEEN DEFAULT AND AGE?

Q3.1 Build a model of default using kNN. Randomly partition the data into a training set (70%) and a validation set (30%). What value of k did you decide to use and why?

used k = 95, that is the root square of n

Q3.2 Score the validation data (predict) using the model. Produce a confusion table and an ROC for the scored validation data.

Q3.3 From the confusion table calculate the following metrics: accuracy, misclassification rate, true positive rate, false positive rate, specificity, precision, and prevalence?

	kNN No Segmentation
Accuracy	77.90%
Missclassification Rate	22.12%
True Positive Rate	6.95%
False Positive Rate	1.69%
Specificity	98.31%
Precision	54.26%
Prevalence	2.87%
ROC	65 96%

Q3.4 Use k-means clustering to segment the customers on AGE. What value of k did you decide to use and why?

Q3.5 Build a model of default using kNN for each segment. Randomly partition the data into a training set (70%) and a validation set (30%) for each segment. What value of k did you decide to use and why?

Q3.6 Score the validation data (predict) using the models. Produce a confusion table for the scored validation data for each segment. How do they compare?

Q3.7 From the confusion tables for each segment calculate the following metrics: accuracy, misclassification rate, true positive rate, false positive rate, specificity, precision, and prevalence. How do they compare?

		bana charach		kana charae	bana charac
Ц		KININ Cluster 0	Kiviv Cluster 1	KININ Cluster 2	Kiviv Cluster 5
	Accuracy	75.52%	80.68%	77.49%	75.66%
П	Missclassification Rate	24.48%	19.32%	22.51%	24.34%
	True Positive Rate	10.86%	3.87%	7.53%	6.84%
	False Positive Rate	5.42%	1.36%	2.10%	2.65%
	Specificity	94.58%	98.64%	97.90%	97.35%
	Precision	37.12%	40.00%	51.11%	44.83%
	Prevalence	6.66%	1.83%	3.33%	3.66%
I	ROC	61.05%	64.47%	65.41%	62.97%

Q3.8 Produce an ROC curve for each AGE segment and report the AUCs.

Q4: NEURAL NETWORK MODEL

Q4.1 Build a model of default using ANN. Randomly partition the data into a training set (70%) and a validation set (30%).

```
Q4.1 Build a model of default using ANN. Randomly partition the data into a training set (70%) and a validation set (30%).
In [42]: ► #Neural Network setup
             newX = bank.drop(columns=['default payment next month'])
             y = bank["default payment next month"]
             x train, x test, y train, y test = train test split(newX, y, test size=0.30, random state=0)
             scaler = StandardScaler().fit(x train)
             x train = scaler.transform(x train)
             x test = scaler.transform(x test)
In [43]: ▶ #Define ANN model
             ANNmodel = Sequential()
             ANNmodel.add(Dense(10, activation='relu', input shape=(len(newX.columns),)))
             ANNmodel.add(Dense(6, activation='relu'))
             ANNmodel.add(Dense(1, activation='sigmoid'))
```

Q4: NEURAL NETWORK MODEL

Q4.2 Score the validation data (predict) using the model. Produce a confusion table and an ROC for the scored validation data.

Q4: NEURAL NETWORK MODEL

Q4.3 From the confusion table calculate the following metrics: accuracy, misclassification rate, true positive rate, false positive rate, specificity, precision, and prevalence

		ANN
	Accuracy	82.05%
	Missclassification Rate	17.90%
	True Positive Rate	84.53%
	False Positive Rate	35.50%
	Specificity	64.49%
	Precision	94.37%
	Prevalence	78.45%
		76 500/

Q5: COMPARE MODELS

		kNN No Segmentation	kNN Cluster 0	kNN Cluster 1	kNN Cluster 2	kNN Cluster 3
	Accuracy	77.90%	75.52%	80.68%	77.49%	75.66%
	Missclassification Rate	22.12%	24.48%	19.32%	22.51%	24.34%
I	True Positive Rate	6.95%	10.86%	3.87%	7.53%	6.84%
	False Positive Rate	1.69%	5.42%	1.36%	2.10%	2.65%
	Specificity	98.31%	94.58%	98.64%	97.90%	97.35%
	Precision	54.26%	37.12%	40.00%	51.11%	44.83%
	Prevalence	2.87%	6.66%	1.83%	3.33%	3.66%
	ROC	65.96%	61 95%	64 47%	65.41%	62.87%