01 Ü Einführung

11. April 2016

Luke

```
• 1.1
```

- a)

- * Sterntopologie: Ein zentrales Element(Sternkoppler), jeder Rechner benötigt eine Leitung zu Sternkoppler $\to 5$
- b) Jeder mit Jedem = 4 + 3 + 2 + 1 = 10
- c)
 - * l(n) = n bei Sterntopologie
 - * $l(n) = \sum ... = (n * (n-1))/2$ bei vollvermaschter Topologie

- d

* LAN

- · Reichweite: 10m
- · Reaktionszeit: niedrig
- · Datenrate: hoch
- · Topologien: Sterntopologie

* MAN

- · Reichweite: 10km
- · Reaktionszeit: mittel
- · Datenrate: mittel
- · Topologien: hierarchische Topologie

* WAN

- · Reichweite: 100km 10.000km
- · Reaktionszeit: hoch
- · Datenrate: niedrig
- · Topologien: Vollvermaschte Topologie

• 1.2

- a) Dienst und Protokoll
 - * siehe Musterlösung
- b) OSI Schichtenmodell
 - * Schichtenmodell siehe Folie 1.8ff
 - * Protokoll:
 - · ist eine Sprache zur horizontalen Kommunikation zwischen Prozessen derselben Schicht auf verschiedenen Hosts
 - * Dienst
 - \cdot dient der vertikalen Kommunikation zwischen zwei Schichten auf einem Host
 - * Aufteilung des Bitstroms: Schicht 2 Sicherungsschicht
 - * Ende-zu-Ende Kommunkation: Schicht 4 Transportschicht
 - * Wegewahl: Schicht 3 Vermittlungsschicht
- c)
 - * keine inhaltliche Bearbeitung, sondern nur Informationsweiterleitung

• 1.3

- a)
 - * siehe Folie 1.15;
 - * Initiator (Prozess A), ...
 - * Responder (Prozess B), ...
- b)
 - * Zustände bestimmen
 - · idle
 - \cdot connected
 - · prepare(Initiator)
 - · prepare(Responder)
 - * Übergänge bestimmen (Knoten, Pfad, Knoten)
 - · (idle, conReq, prep(Init))
 - · (idle, ConInd, prep(Resp))
 - \cdot (prep(Resp), conRsp, connected)
 - · (prep(Init), conCnf, connected)
 - · (connected, dataRep/dataInd, connected)
 - · (prep(Resp)/prep(Init)/connected, disRep/disInd, idle)

- c)
 - * Ablaufdiagramm
 - \cdot c1) + zeitlicher Ablauf
 - \cdot c2) es werden n Diagramme benötigt
 - · c3) -
 - * Zustandsdiagramm
 - · c1) -
 - \cdot c2) + alle Abläufe in einem Diagramm darstellbar
 - $\cdot \ c3) +$
- 1.4
 - a) siehe Folie 1.10
 - * PDU(N) = SDU(N-1)
 - *IDU(N) = ICI(N) + SDU(N)
 - b) Seitenaufruf: http://www.heise.de/software
 - * httpRequest
 - \cdot GET/software/http/1.1
 - · Host: www.heise.de
 - * ICI
 - · ip: 193.99.144.85 port:80
 - * SDU
 - \cdot GET/software/http/1.1
 - · Host: www.heise.de
 - * IDU
 - \cdot ICI
 - · SDU
 - * TCP-PDU
 - · src:80, dest:80,...
 - · SDU
 - · Data
 - c)
 - * $b_0 = 125 \frac{Mbit}{s}$
 - * $b_1 = b_0 * 0, 8$

 - * $b_1 = b_0 * 0, 0$ * $b_2 = b_1 * \frac{(55+99)*0,01}{2}$ * $b_3 = b_2 * \frac{(57+99)*0,01}{2}$ * $b_4 = b_3 * \frac{(23+99)*0,01}{2} = 36, 4\frac{Mbit}{s}$

*
$$b_4 = b_{goodput}$$

* $b_{extra} = b_2 * \frac{(23+99)*0,01}{2} = 46,7 \frac{Mbit}{s}$

- $\bullet \ timo.schick@tu-dresden.de$
- THE END :) -