Raízes (ou Zeros) de Funções Reais

Prof. Jonathan Esteban Arroyo Silva

Departamento de Ciência da Computação Universidade Federal de São João del-Rei silva.jea@ufsj.edu.br

Sumário

Introdução

Métodos numéricos para achar raízes de funções reais

Método da Bisseção

Critério de parada e Ordem de convergência

Método do ponto fixo

Método de Newton

Método da Secante

Introdução

O problema a seguir:

$$ax^2 + bx + c = 0$$

sendo $a \in \mathbb{R}^*$, $b, c \in \mathbb{R}$, consiste em encontrar os valores de x para os quais a função:

$$f(x) = ax^2 + bx + c$$

seja zero, ou dito de forma simplificada, achar os zeros (ou raízes) da função f(x)

Afortunadamente, para este tipo de problema a solução é bastante conhecida.

No Brasil é chamada de fórmula de Bhaskara:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Porém, de modo geral, não podemos encontrar os zeros de uma função através de uma expressão fechada, tendo que recorrer a métodos aproximados.

Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é o de calcular (ou achar) as raízes de equações da forma:

$$f(x) = 0$$

sendo f(x) um polinômio em x ou uma função transcendente.

Exemplo

Sendo $f(x) = x^2 - 4\text{sen}(x) = 0$, visualmente é possível dizer onde estão localizadas as raízes

Curiosidade

No caso vetorial onde $\mathbf{f}:\mathbb{R}^n \to \mathbb{R}^n$, o problema consiste em encontrar o vetor \mathbf{x} tal que todas as componentes de $\mathbf{f}(\mathbf{x})$ são iguais a zero simultaneamente.

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} x_1^2 - x_2^2 + 0.2 \\ -x_1 + x_2^2 + 0.25 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Curiosidade

No caso vetorial onde $\mathbf{f}:\mathbb{R}^n \to \mathbb{R}^n$, o problema consiste em encontrar o vetor \mathbf{x} tal que todas as componentes de $\mathbf{f}(\mathbf{x})$ são iguais a zero simultaneamente.

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} x_1^2 - x_2^2 + 0.2 \\ -x_1 + x_2^2 + 0.25 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

O vetor solução é dado por $\mathbf{x} = [0.5 \ 0.5]^T$

Definição

Se $f:[a,b] \to \mathbb{R}$ é uma função dada, um ponto $\bar{x} \in [a,b]$ é um zero (ou raiz) de f se $f(\bar{x}) = 0$.

Nesta disciplina iremos trabalhar apenas com as raízes reais.

Definição

Um ponto $\bar{x} \in [a, b]$ é uma raiz de multiplicidade m da equação f(x) = 0 se $f(\bar{x}) = f'(\bar{x}) = \dots = f^{(m-1)}(\bar{x}) = 0$ e $f^{(m)}(\bar{x}) \neq 0$.

Exemplo

Sendo $f(x) = x^2 + 2x + 1 = (x + 1)^2$, a raiz será $\bar{x} = -1$ com multiplicidade m = 2, pois, sendo f'(x) = 2(x + 1), tem-se, f(-1) = 0, f'(-1) = 0 e $f''(-1) = 2 \neq 0$

Etapas

Pode-se dividir o processo de achar as raízes de funções reais em duas partes:

- Isolamento das raízes:
 - ightharpoonup Encontrar um intervalo [a, b] que contenha **apenas uma** raiz
 - Determinar uma aproximação inicial x_0 (ou mais de uma, dependendo do método)
- Aplicação do processo iterativo ou refinamento da aproximação:
 - Gerar uma sequência $\{x_0, x_1, \dots, x_k\}$ que convirja para a raiz exata \bar{x} de f(x) = 0

Teorema

Se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a,b], isto é, se $f(a) \cdot f(b) < 0$, então existe **pelo menos um** ponto $\bar{x} \in [a,b]$, tal que $f(\bar{x}) = 0$.

Exemplo I

Sendo f(x) = (x-1)(x-2)(x-3), sabemos que existem 3 raízes no intervalo [0,4].

É possível ver que no intervalo [0.5, 2.5] existem duas raízes, porém o Teorema anterior não é aplicável, o que isso significa?

Resposta - Exemplo I

Significa apenas que os intervalos utilizados não permitem que utilizemos o Teorema.

Ao definir os intervalos como a seguir:

o Teorema garante que em cada um deles exista **pelo menos** uma raiz, como observou-se no gráfico.

Exemplo II

Defina um intervalo para achar a raiz positiva (não nula) de $f(x) = \left(\frac{x}{2}\right)^2 - \operatorname{sen}(x)$

Exemplo II

Defina um intervalo para achar a raiz positiva (não nula) de $f(x) = \left(\frac{x}{2}\right)^2 - \text{sen}(x)$

Possível resposta: [1.5, 2.5]

Exemplo III

Encontre um intervalo de tamanho unitário em que haja ao menos uma raiz para $f(x) = \sqrt{x} - 5e^{-x} = 0$ de modo que $x \ge 0$

Exemplo III

Encontre um intervalo de tamanho unitário em que haja ao menos uma raiz para $f(x) = \sqrt{x} - 5e^{-x} = 0$ de modo que $x \ge 0$ A partir da seguinte tabela:

X	f(x)	sinal
0	-5.0	<0
1.0	-0.839397205857	<0
2.0	0.73753714619	>0

é possível ver que, sendo f(x) contínua no intervalo [1,2], pelo Teorema há ao menos uma raiz.

Teorema

Sob as hipóteses do teorema anterior, se f'(x) existir e preservar o sinal em [a,b], então o intervalo contém um único zero de f(x).

Exemplo

É possível garantir que exista apenas uma raiz para a função $f(x) = \sqrt{x} - 5e^{-x} = 0$ no intervalo [1,2]?

Exemplo

È possível garantir que exista apenas uma raiz para a função $f(x) = \sqrt{x} - 5e^{-x} = 0$ no intervalo [1,2]? **Resposta**: Sim, pois f(x) é **contínua** nesse intervalo, $\mathbf{f(1)} \cdot \mathbf{f(2)} < \mathbf{0}$ e $f'(x) = \frac{1}{2\sqrt{x}} + 5e^{-x} > 0, \forall x > 0$, ou seja, f'(x) existe e preserva o sinal.

Com esse segundo Teorema, temos as ferramentas suficientes para realizar a primeira parte do processo de achar as raízes de funções reais que é o **Isolamento das raízes**:

- \triangleright Encontrar um intervalo [a, b] que contenha **apenas uma** raiz
- Determinar uma aproximação inicial x₀ (ou mais de uma, dependendo do método)

Método da Bisseção

Pelo primeiro Teorema, se f(x) tem sinais opostos em x = a e x = b, então f(x) tem no mínimo uma raiz em [a, b], no método da bisseção é feito o seguinte procedimento:

- ► Calcula-se o ponto médio do intervalo: $x_1 = \frac{a+b}{2}$
- Se $f(a) \cdot f(x_1) < 0$, então f(x) tem uma raiz em $[a, x_1]$, pelo que repetimos o procedimento neste novo intervalo
- Se $f(a) \cdot f(x_1) > 0$, então f(x) tem uma raiz em $[x_1, b]$, uma vez que f(a) e f(b) tem sinais opostos, e repetimos o procedimento neste novo intervalo

Algoritmo

```
\begin{array}{l} \text{Para } k = 1,\; 2, \ldots, \; \text{faça:} \\ x_k \leftarrow \; (a+b)/2 \\ \text{Se } f(a) \cdot f(x_k) \; < \; 0 \; \text{então:} \\ b \leftarrow \; x_k \\ \text{Senão:} \\ a \leftarrow \; x_k \end{array}
```

Exemplo I

Aplicando o método para $f(x) = \sqrt{x} - 5e^{-x} = 0$ no intervalo [1, 2] com alguns passos iterativos temos a tabela a seguir:

k	a	b	x_k	f(x)
1	1.0	2.0	1.5	0.10909407064943988
2	1.0	1.5	1.25	-0.3144899955510556
3	1.25	1.5	1.375	-0.09159403906787489
4	1.375	1.5	1.4375	0.011353785350889156
5	1.375	1.4375	1.40625	-0.039448573664487174
6	1.40625	1.4375	1.421875	-0.013882136918039523
7	1.421875	1.4375	1.4296875	-0.0012231854840827339

Exemplo II

► Link para exemplo interativo

Critério de parada

Na prática a sequência de soluções aproximadas é interrompida quando seus valores satisfizerem a pelo menos um dos seguintes critérios:

$$|x_k - x_{k-1}| \le \epsilon$$
 (Erro absoluto)
$$\left| \frac{x_k - x_{k-1}}{x_k} \right| \le \epsilon$$
 (Erro relativo)
$$|f(x_k)| \le \epsilon$$

sendo ϵ a precisão ou tolerância fornecida como parâmetro para o processo iterativo.

Critério de parada - observações

- É importante sempre limitar a quantidade de iterações, ou seja, fornecer um k_{final} ou k_{maximo}
- Em relação à precisão fornecida, normalmente tomamos $\epsilon=10^{-m}$ onde m é o número de casas decimais que queremos corretas no resultado
- A utilização do erro relativo é o mais adequado dentre os três citados acima

Ordem de convergência

Um indicador importante sobre o desempenho do método é a rapidez da sequência de aproximações $\{x_0,x_1,\ldots,x_k\}$ em convergir para a raiz exata \bar{x}

Definição

Uma sequência $\{x_k|k\geq 0\}$ é dita convergir com ordem $p\geq 1$ para um ponto \bar{x} se:

$$|\bar{x} - x_k| \le c|\bar{x} - x_{k-1}|^p, \ k \ge 0$$

para uma constante c > 0

Ordem de convergência - observações

Sendo c < 1, dizemos que:

- ightharpoonup se p=1 a convergência é linear
- ▶ se 1
- se p = 2 a convergência é quadrática

Problemas de ponto fixo

Antes de falar do próximo método numérico, é necessário apresentar alguns conceitos:

Definição

O **ponto fixo** de uma determinada função $g : \mathbb{R} \to \mathbb{R}$ é o valor x que satisfaz:

$$x = g(x)$$

Problemas de ponto fixo - observações

Muitos métodos iterativos para resolver este tipo de problema utilizam uma função de iteração da forma:

$$x_k = g(x_{k-1})$$

- sendo que os pontos fixos de g também são solução para a equação f(x)=0
- Para uma determinada equação f(x) = 0, pode existir mais de um problema de ponto fixo equivalente x = g(x) com distintos g

Exemplo

Dado $f(x) = x^2 - x - 2$, é equivalentes resolver f(x) = 0 a resolver os seguinte problemas de ponto fixo:

$$g(x) = x^2 - 2$$

$$ightharpoonup g(x) = \sqrt{x+2}$$

$$g(x) = 1 + 2/x$$

$$ightharpoonup g(x) = \frac{x^2 + 2}{2x - 1}$$

Exemplo

Dado $f(x) = x^2 - x - 2$, é equivalentes resolver f(x) = 0 a resolver os seguinte problemas de ponto fixo:

$$g(x) = x^2 - 2$$

$$ightharpoonup g(x) = \sqrt{x+2}$$

$$g(x) = 1 + 2/x$$

$$g(x) = \frac{x^2 + 2}{2x - 1}$$

Entretanto nem todas estas expressões são adequadas para uma função de iteração

Convergência do método de ponto fixo

Para que um problema de ponto fixo x = g(x), seja adequado para a aplicação de métodos iterativos, ele precisa satisfazer os seguintes critérios:

- ightharpoonup g(x) e g'(x) devem ser continuas num intervalo I contendo a raiz procurada
- $|g'(x)| < 1, \forall x \in I$

Método do ponto fixo

Após definir uma função de iteração g(x), uma aproximação inicial adequada x_0 (no intervalo I), a precisão ϵ e o numero máximo de iterações k_{\max} :

Algoritmo

Inicializar a variável

$$\texttt{k} \; \leftarrow \; \texttt{1}$$

Enquanto o critério de parada não for satisfeito, faça:

$$x_k \leftarrow g(x_{k-1})$$

$$\texttt{k} \; \leftarrow \; \texttt{k} \; + \; 1$$

Exemplo I

Dado $f(x) = x^2 - x - 2$, considerando I = [1.5, 2.5] (uma vez que a raiz exata é $\bar{x} = 2.0$), verifique se a função de iteração $g(x) = x^2 - 2$, satisfaz os critérios de convergência do método do ponto fixo.

Exemplo I

Dado $f(x) = x^2 - x - 2$, considerando I = [1.5, 2.5] (uma vez que a raiz exata é $\bar{x} = 2.0$), verifique se a função de iteração $g(x) = x^2 - 2$, satisfaz os critérios de convergência do método do ponto fixo.

- ▶ Uma vez que g'(x) = 2x, sabemos que g(x) e g'(x) são contínuas em I
- Porém $\max_{x \in I} |2x| > 1$, logo, o método do ponto fixo não converge para essa escolha da função de iteração

Exemplo II

Verifique se a função de iteração $g(x) = \sqrt{x+2}$, satisfaz os critérios de convergência do método do ponto fixo do problema anterior.

Exemplo II

Verifique se a função de iteração $g(x) = \sqrt{x+2}$, satisfaz os critérios de convergência do método do ponto fixo do problema anterior.

- ► Uma vez que $g'(x) = \frac{1}{2\sqrt{x+2}}$, sabemos que g(x) e g'(x) são contínuas em I
- ▶ Como $\max_{x \in I} \left| \frac{1}{2\sqrt{x+2}} \right| = 0.267 < 1$, logo, o método do ponto fixo converge para essa escolha da função de iteração

Exemplo II - Implementação

Link para exemplo interative

Método de Newton

- ▶ O método de Newton é obtido utilizando $g(x) = x \frac{f(x)}{f'(x)}$ como função de iteração para o Método de ponto fixo
- Possui ordem de convergência igual a 2, em condições ideais
- ▶ É o método clássico mais utilizado para este tipo de problemas

Algoritmo

Inicializar a variável

$$k \leftarrow 1$$

Enquanto o critério de parada não for satisfeito, faça:

$$x_k \leftarrow x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$$

$$k \leftarrow k + 1$$

Resolva
$$f(x) = x^2 - x - 2 = 0$$
, considerando $I = [1.5, 2.5]$.

Resolva $f(x) = x^2 - x - 2 = 0$, considerando I = [1.5, 2.5].

- Das informações necessárias para utilizar o método de Newton, falta apenas explicitar que f'(x) = 2x 1
- Tem-se então a fórmula de iteração:

$$x_k = x_{k-1} - \frac{x_{k-1}^2 - x_{k-1} - 2}{2x_{k-1} - 1}$$

Exemplo - Implementação

Link para exemplo interativo

Método da Secante

- ▶ O método da secante é obtido utilizando a aproximação $f'(x_{k-1}) \approx \frac{f(x_{k-1}) f(x_{k-2})}{x_{k-1} x_{k-2}}$ para a derivada de f(x) no método de Newton
- Possui ordem de convergência super linear
- ightharpoonup É recomendado quando não se tem uma expressão explícita ou muito complexa para f'(x)

Algoritmo

Inicializar a variável

$$k \leftarrow 1$$

Enquanto o critério de parada não for satisfeito,

faça:

aça:

$$x_k \leftarrow \frac{x_{k-2} \cdot f(x_{k-1}) - x_{k-1} \cdot f(x_{k-2})}{f(x_{k-1}) - f(x_{k-2})}$$

 $k \leftarrow k + 1$

Resolva $f(x) = x^2 - x - 2 = 0$, considerando I = [1.5, 2.5].

Resolva $f(x) = x^2 - x - 2 = 0$, considerando I = [1.5, 2.5].

A fórmula de iteração é dada por:

$$x_k = \frac{x_{k-2} \cdot (x_{k-1}^2 - x_{k-1} - 2) - x_{k-1} \cdot (x_{k-2}^2 - x_{k-2} - 2)}{(x_{k-1}^2 - x_{k-1} - 2) - (x_{k-2}^2 - x_{k-2} - 2)}$$

Exemplo - Implementação

Link para exemplo interativo

Conclusão I

Foram abordados os seguintes assuntos:

- Apresentação do problema de achar raízes de funções reais
- As etapas para a aplicação dos métodos numéricos
 - Isolamento das raízes
 - Aplicação do processo iterativo
- O método da Bisseção
- Apresentação dos conceitos de Critério de parada e Ordem de convergência

Conclusão II

- O método do ponto fixo
- O método de Newton
- O método da Secante

