第三章 形式语言与自动机 及其在NLP中的应用

No.95, Zhongguancun East Road

Beijing 100080, China

□ 树 (tree):

一个连通的无回路的无向图称为树(或称自由树)。

如果树中有一个结点被特别地标记,则这棵树被称之为<u>根树</u>,这个被特别标记的结点被称之为<u>根结</u>点。

父结点: A是B、C结点的父结点; C是D、E 结点的父结点。

子结点: B、C是A结点的子结点; D、E是C结点的子结点。

兄弟结点: B、C互为兄弟结点; D、E 互为兄弟结点。

宗成庆:《自然语言理解》讲义

2006-3-8

□ 字符串 (string)

字符串定义:假定 Σ 是字符的有限集合,它的每一个元素称之为字符。由 Σ 中字符相连而成的有限序列被称之为 Σ 上的字符串(或称符号串,或称链)。特殊地,不包括任何字符的字符串称为空串,记作 ϵ 。

<u>符号串的长度</u>:符号串中符号的个数。符号串x的长度用|x|表示。 $|\varepsilon|=0$ 。

包括空串的 Σ 上字符串的全体记为 Σ^* 。

□ 字符串操作

假定 Σ 是字符的有限集合 , x, y 是 Σ 上的符号串

(1) 字符串连接:则把y的各个符号写在x的符号之后得到的符号串称为x与y的连接,记作xy。

例如: $\Sigma=\{a, b, c\}, x=ab, y=cba\}$

那么, xy=abcba

• 设x是符号串,把x自身连接n次得到的符号串,即 z=xx...x (n个x), 称为x的n次方幂,记作 x^n 。

•<u>注意</u>: x⁰= ε

$$x^{n}=xx^{n-1}=x^{n-1}x (n\geq 1)$$

$$x^*=x^n (n \ge 0), x^+=x^n (n \ge 1)$$

例如:如果 x=a,则 $x^1=a$, $x^2=aa$, $x^3=aaa$,

如果 x=ab ,则 $x^0=\epsilon$, $x^3=ababab$

(2) 符号串集合的乘积

设A, B是符号串的集合,则A, B的乘积定义为:

$$AB = \{xy \mid x \in A, y \in B\}$$

相应地, $A^0 = \{\epsilon\}, A^n = A^{n-1}A = AA^{n-1}$

例如: 设A={aa, bb}, B={cc, dd, ee}, 则

AB={aacc, aadd, aaee, bbcc, bbdd, bbee}

 $A^2=\{aaaa, aabb, bbaa, bbbb\}$

(3) 闭包

如果V是字符表 Σ 上的字符串集合,那么,V 的闭包定义为: $V^* = V^0 \cup V^1 \cup V^2 \cup ...$

$$V^+ = V^1 \cup V^2 \cup ...$$
 (称为 V 的正闭包)

$$V^+ = V^*$$
 - $\{\epsilon\}$

例如: V = {a, b}

$$V^* = \{ \epsilon, a, b, aa, ab, bb, ba, aaa, ... \}$$

$$V^+ = \{a, b, aa, ab, ba, bb, aaa, ...\}$$

□ 正则表达式(简称正则式):

正则式对应于Σ上的一些子集(正则集),并通过递 归定义:

- 1)空集 ϕ 和空字符串 ϵ 是正则式,它们的正则集分别为 ϕ 和 $\{\epsilon\}$ 。
- 2) 任何 $x \in \Sigma$, x 是正则式,它对应的正则集是 $\{x\}$ 。
- 3) 如果X, Y是 Σ 上的正则式,并且它们对应的正则集分别为U, V , 那么,X|Y, $X \cdot Y$ 和 X^* 也是正则式,且它们对应的正则集分别为 $U \cup V$, $U \cdot V$ 和 U^* 。

例如: 假设 $\Sigma = \{0, 1\}$,那么,0和1都是正则表 达式。如果令x=0, y=1, 那么,

11, ...}

 $xy^* = 01^*$ 也是正则式,且它对应的正则集:

$$V=\{0, 01, 011, 0111, ...\}$$

$$x|y^* = \{x\} \cup U = \{0, \epsilon, 1, 11, 111, \dots\}$$

□正则表达式与有限状态图

正则表达式可以用有向图表示,图的结点是状态,有一个起始结点和一个终止结点。起始结点只有出边,终止结点用双圆圈表示。边上的符号表示从一个状态到另一个状态结点允许出现的字符,这种图称之为有限状态图。正则式01*对应的有限状态图为:

□ 栈 (stack)

栈是一种线性表, $A=A_0,A_1,...,A_k,A_0$ 是栈底, A_k 是栈顶,当栈为空时, A_0 既是栈顶也是栈底。

宗成庆:《自然语言理解》讲义

2006-3-8

2006-3-8

□ 关于语言的定义

按照一定规律构成的句子和符号串的有限或无限的集合。

- Chomsky

语言可以被看成一个抽象的数学系统。

- 吴蔚天(1994)

- □ 语言描述的三种途径
 - ❖ 穷举法 —— 只适合句子数目有效的语言。
 - ❖ 语法描述 —— 生成语言中合格的句子。
- ◆ 自动机 —— 对输入的句子进行检验,区别哪些是语言中的句子,哪些不是语言中的句子。

□ 形式语言的直观意义

2006-3-8

形式语言是用来精确地描述语言(包括人工语言和自然语言)及其结构的手段。<u>形式语言学</u>也称<u>代数语言学</u>。

以重写规则 $\alpha \to \beta$ 的形式表示,其中, α , β 均为字符串。 <u>顾名思义</u>:字符串 α 可以被改写成 β 。一个初步的字符串通过不断地运用重写规则,就可以得到另一个字符串。通过选择不同的规则并以不同的顺序来运用这些规则,就可以得到不同的新字符串。

□ 形式语法的定义

形式语法是一个4元组 $G=(N,\Sigma,P,S)$, 其中 N 是非终结符的有限集合(有时也叫变量集或句法种类集); Σ 是终结符的有限集合, $N\cap\Sigma=\Phi$; $V=N\cup\Sigma$ 称总词汇表;P 是一组重写规则的有限集合: $P=\{\alpha\to\beta\}$,其中, α , β 是 V 中元素构成的串,但 α 中至少应含有一个非终结符号; $S\in N$,称为句子符或初始符。

例如: $G = (\{A, S\}, \{0, 1\}, P, S)$

2006-3-8

P: $S \rightarrow 0 A 1$ $0 A \rightarrow 00A1$ $A \rightarrow 1$

□ 推导的定义

设 $G=(N, \Sigma, P, S)$ 是一个文法, 在 $(N \cup \Sigma)^*$ 上定义 关系 \Rightarrow (直接派生或推导)如下:

如果 $\alpha\beta\gamma$ 是 $(N \cup \Sigma)^*$ 中的符号串,且 $\beta \to \delta$ 是 P 的产生式,那么 $\alpha\beta\gamma \Rightarrow \alpha\delta\gamma$ 。

用 $\stackrel{+}{\Rightarrow}$ (按非平凡方式派生)表示 $\stackrel{-}{\Rightarrow}$ 的传递闭包,也就是 $(N \cup \Sigma)$ *上的符号串 ξ_i 到 ξ_{i+1} 的 n ($n \ge 1$) 步推导或派生。

用 $\stackrel{*}{\underset{G}{\Rightarrow}}$ (派生)表示 $\stackrel{?}{\Rightarrow}$ 的自反和传递闭包,即由 $(N \cup \Sigma)^*$ 上的符号串 ξ_i 到 ξ_{i+1} 经过n ($n \ge 0$)步推导或派生。

如果清楚某个推导是文法 G 所产生的 , 则符号 $\stackrel{*}{\Longrightarrow}$ 或 $\stackrel{+}{\Longrightarrow}$ 中的 G 可以省略不写。

□ 最左推导、最右推导和规范推导

约定每步推导中只改写最左边的那个非终结符, 这种推导称为"最左推导"。

约定每步推导中只改写最右边的那个非终结符, 这种推导称为"最右推导"。

最右推导也称规范推导。

2006-3-8

例
$$3.1:G=(\{E,T,F\},\{a,+,*,(,)\},P,E)$$

P:
$$E \rightarrow E + T \mid T$$

$$T \rightarrow T^*F \mid F$$

$$F \rightarrow (E) \mid a$$

字符串 a+a*a 的两种推导过程:

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T*F$$

$$\Rightarrow$$
 a + F*F \Rightarrow a + a*F \Rightarrow a + a*a (**最左推导**)

$$E \Rightarrow E + T \Rightarrow E + T*F \Rightarrow E + T*a \Rightarrow E + F*a \Rightarrow E + a*a$$

$$\Rightarrow$$
 T +a*a \Rightarrow F + a*a \Rightarrow a + a*a (最右推导)

句型与句子

- 一些特殊类型的符号串为文法 $G=(N, \Sigma, P, S)$ 的句子形式(句型):
 - (1) S是一个句子形式;

2006-3-8

(2) 如果 $\alpha\beta\gamma$ 是一个句子形式,且 $\beta \rightarrow \delta$ 是 P 的产生式,则 $\alpha\delta\gamma$ 也是一个句子形式;

文法 G 的不含非终结符的句子形式称为 G 生成的句子。由文法 G 生成的语言 , 记作 L(G) , 指 G 生成的所有句子的集合。即: $L(G) = \{x \mid x \in \Sigma, S \underset{G}{\overset{*}{\Rightarrow}} x \}$

口正则文法

如果文法 $G=(N, \Sigma, P, S)$ 的 P 中的规则满足如下形式: $A \to B x$,或 $A \to x$,其中 $A, B \in N$, $x \in \Sigma$,则称该文法为正则文法(简写为 FSG)或称3型文法。(左线性正则文法)(如果 $A \to x B$,则该文法称为右线性正则文法。)

例
$$3.2: G = (N, \Sigma, P, S),$$

$$N = \{S, A, B\}, \qquad \Sigma = \{a, b\},$$

$$P: (a) S \rightarrow a A$$

(b)
$$A \rightarrow a A$$

(c)
$$A \rightarrow b b B$$

(d)
$$B \rightarrow b B$$

(e)
$$B \rightarrow b$$

$$L(G) = \{a^n b^m\}, n \ge 1, m \ge 3_{\circ}$$

□ 上下文无关文法

(CFG, context-free grammar)

如果 P 中的规则满足如下形式: $A \to \alpha$,其中 $A \in \mathbb{N}$, $\alpha \in (\mathbb{N} \cup \Sigma)^*$,则称该文法为上下文无关文法(CFG)或称 2 型文法。

例
$$3.3$$
: $G = (N, \Sigma, P, S)$,

$$N = \{S, A, B, C\}, \qquad \Sigma = \{a, b, c\},$$

P: (a)
$$S \rightarrow A B C$$

(c)
$$B \rightarrow b B \mid b$$

(b)
$$A \rightarrow a A \mid a$$

(d)
$$C \rightarrow B A \mid c$$

$$L(G) = \{a^n b^m a^k c^\alpha\}, n \ge 1, m \ge 1, k \ge 0, \alpha \in \{0, 1\}$$

口上下文有关文法

(CSG, context-sensitive grammar)

如果 P 中的规则满足如下形式: $\alpha A \beta \rightarrow \alpha \gamma \beta$, 其中 $A \in \mathbb{N}$, α , β , $\gamma \in (\mathbb{N} \cup \Sigma)^*$, 且 γ 至少包含一个字符,则称该文法为上下文有关文法(CSG)或称 1 型文法。

另一种定义:if $x \to y, x \in (\mathbb{N} \cup \Sigma)^+, y \in (\mathbb{N} \cup \Sigma)^*$, and $|y| \ge |x|$ 。

例
$$3.4$$
: $G = (N, \Sigma, P, S)$

$$N = \{S, A, B, C\},\$$

$$\Sigma = \{a, b, c\},\$$

P: (a)
$$S \rightarrow A B C$$

(b)
$$A \rightarrow a A \mid a$$

(c)
$$B \rightarrow b B \mid b$$

(d) B
$$\mathbb{C} \to \mathbb{B} \ \mathbf{c} \ \mathbf{c}$$

$$L(G) = \{a^n b^m c^2\}, n \ge 1, m \ge 1$$

□ 无约束文法(无限制重写系统)

如果 P 中的规则满足如下形式: $\alpha \rightarrow \beta$, α , β 是字符串,则称 G 为无约束文法,或称 0 型文法。

2006-3-8

显然,每一个正则文法都是上下文无关 文法,每一个上下无关文法都是上下文有关 文法,而每一个上下文有关文法都是 0 型 文法。即:

 $L(G0) \supseteq L(G1) \supseteq L(G2) \supseteq L(G3)$

□ 语言与文法类型的约定

如果一种语言能由几种文法所产生,则把这种语言 称为在这几种文法中受限制最多的那种文法所产生 的语言。

例
$$3.5: G = (\{S, A, B\}, \{a, b\}, P, S)$$

P:
$$S \rightarrow aB$$
 $S \rightarrow bA$ $A \rightarrow aS$ $A \rightarrow bAA$

$$A \rightarrow a$$
 $B \rightarrow bS$ $B \rightarrow aBB$ $B \rightarrow b$

G为上下文无关文法。

2006-3-8

$$L(G) = \{$$
等数量的a和b构成的链 $\}$

□ CFG 产生的语言句子的派生树表示

CFG $G=(N, \Sigma, P, S)$ 产生一个句子的派生树由如下 步骤构成:

- (1) 对于 $\forall x \in \mathbb{N} \cup \Sigma$ 给一个标记作为节点, S 作为树的 根节点。
- (2) 如果一个节点的标记为 A,并且它至少有一个除 它自身以外的后裔,则 $A \in N$ 。

2006-3-8

2006-3-8

(3) 如果一个节点的标记为 A , 它的 k (k > 0) 个直接后裔节点按从左到右的次序依次标记为 $A_1, A_2, ..., A_k$, 则 $A \to A_1, A_2, ..., A_k$ 一定是 P 中的一个产生式。

例如, $G = (\{S, A\}, \{a, b\}, P, S)$

P: $S \rightarrow bA$ $A \rightarrow bAA$ $A \rightarrow a$

G 所产生的一个句子 bbaa 可以由下面的 生树表示:

□上下文无关文法的二义性

2006-3-8

一个文法 G,如果存在某个句子有不只一棵分析树与之对应,那么称这个文法是二义的。

例: $G(E): E \rightarrow E + E | E * E | (E) | E - E | i$ 对于句子 i + i * i 有两棵对应的分析树。

2006-3-8

□ 语言与识别器的对应关系

识别器是有穷地表示无穷语言的另一种方法。每一个语言的句子都能被一定的识别器所接受。

语言类型	识别器类型
0 型	图灵机
1 型	线性带限自动机
2 型	下推自动机
3 型	有限自动机

□ 确定的有限自动机 (Definite Automata, DFA)

确定的有限自动机 M 是一个五元组:

$$M = (\Sigma, Q, \delta, q_0, F)$$

其中 , Σ 是输入符号的有穷集合;

2006-3-8

Q 是状态的有限集合; $q_0 \in Q$ 是初始状态;

F 是终止状态集合, $F \subseteq Q$;

 δ 是 Q 与 Σ 的直积 Q × Σ 到 Q (下一个状态) 的映射。它支配着有限状态控制的行为,有时也称为状态转移函数。

DFA 示意图

处在状态 $q \in Q$ 中的有限控制器从左到右依次从输入带上读入字符。开始时有限控制器处在状态 q_0 , 并注视 Σ^* 中一个链的最左符号。映射 $\delta(q,a) = q'(q,q' \in Q, a \in \Sigma)$ 表示在状态 q 时,若输入符号为 a , 则自动机进入状态 q' 并且将输入头向右移动一个字符。

□ 状态变换图

映射 $\delta(q, a) = q'$ 可以由状态变换图描述。

为了明确起见,终止状态用双圈表示,起始状态用有"开始"标记的箭头表示。

□ DFA 定义的语言

如果一个句子 x 使得有限自动机 M 有 $\delta(q_0, x) = p$, $p \in F$, 那么 , 称句子 x 被 M 接受。由 M 定义的语言 T(M) 就是被 M 接受的句子的全集。即:

$$T(M) = \{x \mid \delta(q_0, x) \in F\}$$

🗅 DFA 定义的语言

例 3.6:

链 x = 110101 被 M 接受.

T(M) = {含偶数个0和偶数 个1的链}

2006-3-8

□ 不确定的有限自动机 (Non-definite Automata, NFA)

不确定的有限自动机 M 是一个五元组 $M = (\Sigma, Q, \delta, q_0, F)$

其中 , Σ 是输入符号的有穷集合;

2006-3-8

Q 是状态的有限集合; $q_0 \in Q$ 是初始状态;

F 是终止状态集合, $F \subseteq Q$;

δ 是Q与Σ的直积 Q×Σ 到Q的幂集 2Q 的映射。

】NFA 与 DFA 的区别

NFA 与 DFA 的唯一区别是:在 NFA 中 $\delta(q, a)$ 是一个状态集合,而在 DFA 中 $\delta(q, a)$ 是一个状态。

□ NFA与 DFA 的关系

定理 3.1:设 L 是一个被 NFA 所接受的句子的集合,则存在一个 DFA,它能够接受 L。

(证明略,数学归纳法)

说明:由于 DFA 与 NFA 所接受的是同样的链集, 所以一般情况下无需区分它们,二者统称为有限自 动机 (Finite Automata, FA)。

□ 正则文法与有限自动机的关系

<u>定理 3.2</u>: 若 $G = (V_N, V_T, P, S)$ 是一个正则文

法,则存在一个有限自动机 $M = (\Sigma, Q, \delta, q_0, F)$,使

得:T(M) = L(G)。

□ 由 G 构造 M 的一般步骤:

- (1) 令 $\Sigma = V_T$, $Q = V_N \cup \{T\}$, $q_0 = S$, 其中 T 是一个新增加的非终结符。
- (2) 如果在 P 中有产生式 $S \rightarrow \varepsilon$, 则 $F = \{S, T\}$, 否则 $F = \{T\}$ 。
 - (3) 如果在 P 中有产生式 B \rightarrow a , B \in V_N , a \in V_T , \mathbb{D} , \mathbb{D} , \mathbb{D} \mathbb{D}

- (4) 如果在 P 中有产生式 $B \rightarrow aC$, $B, C \in V_N$, $a \in V_T$, 则 $C \in \delta(B, a)$ 。
- (5) 对于每一个 $a \in V_T$, 有 $\delta(T, a) = \phi_o$

例 3.8:给定正则文法 $G = (V_N, V_T, P, S)$, 其中, $V_N = \{S, B\}, V_T = \{a, b\}, P = \{S \rightarrow aB, B \rightarrow bS | aB | a\}$ 构造与 G 等价的 NFA。

(1) 设 NFA M = (Σ, Q, δ, q₀, F) , 根据上述步骤有:

$$\Sigma$$
 = V_T = $\{a,b\}$, $Q{=}V_N{\cup}\{\ T\ \}{=}\{S,B,T\}$, $q_0{=}S$, $F{=}\{\ T\ \}$

(2) 映射
$$\delta$$
为: δ (S, a)={B} (因为有规则 S \rightarrow aB)
$$\delta$$
(S, b) = ϕ

$$\delta(B, a) = \{B, T\}$$
 (因为有 $B \rightarrow aB, B \rightarrow a$)

$$\delta(B, b) = \{S\}$$
 (因为有 $B \rightarrow bS$)

$$\delta(T, a) = \phi$$

$$\delta(T, b) = \phi$$

等价的 NFA 的状态变换图为:

<u>定理 3.2</u>: 若 M= (Σ, Q, δ, q₀, F) 是一个有限自动机, 则存在正则文法 $G=(V_N, V_T, P, S)$ 使L(G) = T(M)。

由 M 构造 G 的一般步骤:

- (1) \diamondsuit $V_N = Q$, $V_T = \Sigma$, $S = q_0$;
- (2) 如果 $C \in \delta(B, a)$, $B, C \in Q$, $a \in \Sigma$, 则在 $P \mapsto$ 有产生式 $B \rightarrow aC$;
- (3) 如果 $C \in \delta(B, a)$, $C \in F$, 则在 P 中有产生式 $B \rightarrow a_0$

<u>结论</u>:对于任意一正则文法,总可以构造一个识别

器 —— DFA。

3.4 CFG与下推自动机

□下推自动机(Push-Down Automata, PDA)

PDA 可以看成是一个带有附加的下推存储器的有限自动机,下推存储器是一个栈。如下图所示:

3.4 CFG 与下推自动机

□ PDA 的定义

一个不确定的PDA可以表达成一个7元组:

$$M = (\Sigma, Q, \Gamma, \delta, q_0, Z_0, F)$$

其中, Σ 是输入符号的有穷集合;

Q 是状态的有限集合; $q_0 \in Q$ 是初始状态;

Γ 为下推存储器符号的有穷集合;

 $Z_0 \in \Gamma$ 为最初出现在下推存储器顶端的开始符号;

F 是终止状态集合, $F \subseteq Q$;

2006-3-8

 δ 是从 $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma$ 到 $Q \times \Gamma^*$ 的子集的映射。

3.4 CFG 与下推自动机

□ 映射关系 δ 的解释

映射关系 $\delta(q, a, Z) = \{(q_1, \gamma_1), (q_2, \gamma_2), ..., (q_m, \gamma_m)\}$

其中, $q_1, q_2, ..., q_m \in \mathbb{Q}, a \in \Sigma, Z \in \Gamma, \gamma_1, \gamma_2, ..., \gamma_m \in \Gamma^*$ 。

该映射的<u>意思是</u>:当PDA处于状态 q , 面临输入符号 a时 , 自动机将进入到 q_i , i=1,2,...,m 状态 , 并以 γ_i 来代替下推存储器 (栈) 顶端符号Z , 同时将输入头指向下一个字符 。当 Z 被 γ_i 取代时 , γ_i 的符号按照 从左到右的顺序依次从下向上推入到存储器。

特殊情况下, $\delta(q, \epsilon, Z)=\{(q_1, \gamma_1), (q_2, \gamma_2), ..., (q_m, \gamma_m)\}$ 时,输入头位置不移动,只用于处理下推存储器内部的操作,叫作" ϵ 移动"。

3.4 CFG 与下推自动机

□ 符号约定

设有序对 $(q,\gamma), q \in Q, \gamma \in \Gamma^*$, 对于 $a \in (\sum \cup \{\varepsilon\}), \beta \in \Gamma^*, Z \in \Gamma$ 如果 $(q',\beta) \in \delta(q,a,Z), q', q \in Q$, 则表达式 $a: (q, Z\gamma) \mid_{M} (q', \beta\gamma)$

表示根据下推自动机的状态变换规则,输入a能使下推 自动机 M 由格局 (q, Z_Y) 变换到格局 (q', β_Y) , 或称

 $a: (q, Z\gamma) \mid_{M} (q', \beta\gamma)$ 为合法转移。零次或多次合法转

移记为: $a: (q, Z\gamma) \mid_{\mathbf{M}}^{*} (q', \beta\gamma)$ M 可以省略不写。

□下推自动机接受的语言

下推自动机 M 所接受的语言定义为:

$$T(M) = \{x | x: (q_0, Z_0) \mid_{M}^{*} (q, \gamma), \gamma \in \Gamma^*, q \in F \}$$

3.4 CFG 与下推自动机

例 3.9 下推自动机 $M = (\Sigma, Q, \Gamma, \delta, q_0, Z_0, F)$ 接受语言

$$L=\{wcw^{R}|w\in\{a,b\}^{*}\}$$
, 其中, $Q=\{0,1\}, \Sigma=\{a,b,c\},$

$$\Gamma = \{A, B\}$$
 , $q_0 = 0$, $Z_0 = \#$, $F = \{1\}$, δ 定义如下:

- 1) $\delta(0, a, \varepsilon) \mid_{\overline{M}} \{(0, A)\}$ 2) $\delta(0, b, \varepsilon) \mid_{\overline{M}} \{(0, B)\}$
- 3) $\delta(0, c, \varepsilon) \mid_{\overline{M}} \{(1, \varepsilon)\}$ 4) $\delta(1, a, A) \mid_{\overline{M}} \{(1, \varepsilon)\}$
- 5) $\delta(1, b, B) \mid_{\overline{M}} \{(1, \epsilon)\}$

3.4 CFG 与下推自动机

对于输入 abbcbba 下推自动机 M 的处理步骤为:

状态	输入	栈	运用的规则
0	abbcbba	#	-
0	bbcbba	A #	1
0	bcbba	BA#	2
0	cbba	BBA#	2
1	bba	BBA#	3
1	ba	BA#	5
1	a	A #	5
1	3	#	4

□ 图灵机的理解

给定字符串 α 存放于输入/输出带上,开始时图灵机 M 处于状态 q_0 ,它的读/写头扫描着 α 的最左字符。根据转移函数 δ 的定义,即对于目前状态以及正扫描着的字符,M 改变当前状态、读/写头扫描的字符,以及读写/头的位置。

□ 图灵机与有限自动机的区别

图灵机可以通过其读/写头改变输入带的字符。

宗成庆:《自然语言理解》讲义

□ 图灵机的定义

一个图灵机 T 可以表达成一个6元组:

$$M = (\Sigma, Q, \Gamma, \delta, q_0, F)$$

其中, Σ 是输入/输出带上字符的有穷集合;

Q是状态的有限集合; $\Gamma = \Sigma \cup \{B\}, B$ 为空白字符;

 $q_0 \in Q$ 是初始状态; F 是终止状态集, F $\subseteq Q$;

 δ 是从 Q× Σ 到 Q× Σ × {R, L, S} 子集的映射。R,

L, S分别表示右移一格、左移一格和停止不动。

□ 图灵机的解释

图灵机 T 的一个格局可以定义为 (q, α, i) , 其中, $q \in Q$, α 是字符串, 且 $\alpha \in \Sigma$, i 是整数,表示 T 的读/写头到 α 左端的距离。图灵机 T 通过如下转移动作引起格局变化:

假设 $(q, A_1A_2...A_n, i)$, $1 \le i \le n+1$ 是当前 T 的格局 , (1) 如果 $\delta(q, A_i) = (p, X, R)$, $1 \le i \le n$, 那么 , T 的基本运行 (即指定为 T 的基本移动) 可以表示为:

$$(q, A_1A_2...A_n, i) |_{T} (p, A_1A_2...A_{i-1}XA_{i+1}...A_n, i+1)$$

即 T 的读/写头在 i 位置写入符号 X ,并将读/写头向右移动一个位置。

宗成庆:《自然语言理解》讲义

(2) 如果 δ (q, A_i) = (p, X, L), $2 \le i \le n$, 那么, (q, A₁A₂...A_n, i) | (p, A₁A₂...A_{i-1}X)A_{i+1}...A_n, (i-1))

即 T 的读/写头在 i 位置写入符号 X , 并将读/写头向左移动一个位置,但不超出输入带的左端。

(3) 如果 i = n+1,读写头超出原字符串的右端,读到的是空白符号 B,此时如果有 $\delta(q, B) = (p, X, R)$,那么

$$(q, A_1A_2...A_n, n+1) \vdash_{\mathsf{T}} (p, A_1A_2...A_nX, n+2)$$

而如果 $\delta(q, B) = (p, X(L)), 则:$

$$(q, A_1A_2...A_n, n+1) \vdash_{T} (p, A_1A_2...A_nX, n)$$

图灵机接受的语言

2006-3-8

由图灵机T 所接受的语言定义为:

$$L(T) = \{ \alpha | \alpha \in \Sigma^*, (q_0, \alpha, 1) \mid_{T}^{\star} (q, \beta, i), q \in F, \beta \in \Gamma^* \}$$

给定一个识别语言 L 的图灵机 T, 不失一般性, 我们假定每当输入被接受时, T 就停机, 即没有下一个动作。另一方面, 对于未接受的链, T 可能不停机。

□ 定理

定理 3.3 如果 L 是一个由 0 型文法产生的语言,则 L 可被一个图灵机所接受。

定理 3.4 如果 L 可被一个图灵机所接受 ,则 L 是一个由 0 型文法产生的语言。

□ 线性带限自动机

线性带限自动机是一个确定的单带图灵机。其读写头不能超越原输入带上字符串的初始和终止位置。即线性带限自动机的存储空间被输入符号串的长度所限制。

定义:一个线性带限自动机 M 可以表达成一个6元

组: $M = (\Sigma, Q, \Gamma, \delta, q_0, F)$

2006-3-8

其中, Σ 是输入/输出带上字符的有穷集合;

Q 是状态的有限集合; $q_0 \in Q$ 是初始状态;

Γ是输入带上符号的有穷集;

F 是终止状态集合, $F \subseteq Q$;

 δ 是从 Q × Γ 到 Q × Γ × {R, L} 子集的映射。 Σ 包括两个特殊符号 # 和 \$, 分别表示输入链的左端和右端结束标志。

□ 线性带限自动机所接受的语言

线性带限自动机 M 的格局,以及两个格局之间的关系 $|_{M}$ 的定义与图灵机的相同。唯一不同的是对读写头位置的限制。在线性带限自动机中,对于读写头超出输入字符串长度范围时,转移动作没有定义。

线性带限自动机 M 接受的语言:

$$L(M) = \{\alpha | \ \alpha \in (\Sigma - \{\#, \$\})^*, \ (q_0, \#\alpha\$, \ 1) \mid_{\overline{M}}^{\star} (q, \beta, i), \ q \in F, \ \beta \in \Gamma^* \ \}$$

对于任何 $q \in Q$, $A \in \Gamma$, 如果映射 $\delta(q, A)$ 包含的成员不超过一个,则线性带限自动机是确定的。

□<u>定理 3.5</u>:如果 L 是一个前后文有关语言,则 L 由一个不确定的线性带限自动机所接受。反之,如果 L 被一个线性带限自动机所接受,则 L 是一个前后文有关语言。

主要区别: 各类自动机的主要区别是它们能够使 用的信息存储空间的差异:有限状态自动机只能用状 态来存储信息;下推自动机除了可以用状态以外,还 可以用下推存储器(栈);线性带限自动机可以利用 状态和输入/输出带本身。因为输入/输出带没有"先进 后出"的限制,因此,其功能大于栈;而图灵机的存 储空间没有任何限制。

3.6 各类自动机的区别与联系

<u>识别语言的能力</u>:有限自动机等价于正则文法; 下推自动机等价于上下文无关文法;线性带限自动机 等价于上下文有关文法,图灵机等基于0型文法。

□ 有限自动机用于英语单词拼写检查

[Oflazer, 1996]

设 X 为拼写错误的字符串,其长度为 m , Y 为 X 对应的正确的单词(答案),其长度为 n。则 X 和 Y 的编辑距离 ed(X[m], Y[n])为:从字符串 X 转换到 Y 需要的插入、删除、替换和交换两个相邻的基本单位(字符)的最小个数。如:

ed (recoginze, recognize) = 1

ed (sailn, failing) = 3

2006-3-8

一个确定的有限状态机 R 定义为:

$$R = (Q, A, \delta, q_0, F)$$

其中,Q表示状态集; A表示输入字符集;

$$\delta: Q \times A \to Q$$

$$q_0 \in Q$$
 为起始状态;

$$F \subseteq Q$$
 为终止状态集;

如果 $L \subseteq A^*$ 表示有限状态机 R 接受的语言,t > 0 为编辑距离的阈值,那么,一个字符串 $X[m] \notin L$ 能够被 R 识别的条件是存在非空集合:

 $C = \{Y[n] | Y[n] \in L \quad and \quad ed(X[m], Y[n]) \le t\}$

宗成庆:《自然语言理解》讲义

2006-3-8

说明:蓝色 节点表示终 结节点,下 同。

对于某一字符串 X,搜索与之编辑距离最短的 单词(路径)。


```
即: cuted(X[m],Y[n]) = min\{ed(X[i],Y[n])\}
其中, l = \max(1, n - t), u = \min(m, n + t)。
例如:t=2, X= repriser (m=7), Y= repo(n=4) , 那么:
       l = \max \{1, 4-2\} = 2; u = \min \{7, 4+2\} = 6
       cuted (reprier, repo) = \min \{ed \text{ (re, repo)} = 2,
                                    ed (rep, repo) =1,
                                    ed (repr, repo) =1,
                                    ed (reprt, repo) = 2,
                                    ed (reprise, repo) = 3} = 1
```


宗成庆:《自然语言理解》讲义

2006-3-8

□有限自动机用于英语单词形态分析

[Allen, 1995]

英语单词形态变化非常普遍,例如:

eat: eats, eating, ate, eaten

happy: happier, happiest

2006-3-8

seed?

说明:在实际应用中,除了有限状态机以外,我们还常常使用有限状态转换机(finite state transducer, FST)的概念。粗略地讲,有限状态转换机与有限自动机(或有限状态机)的区别在于:FST在完成状态转移的同时产生一个输出,而FA(或FSM)只实现状态转移,不产生任何输出。

可转换的形式:

2006-3-8

happier → happy + er happiest →happy + est

一般地,具有相同的前缀或词根,词缀不同的单词可以共用一个有限状态转移机,共享其中的某些状态节点。如:tie, ties, trap, traps, try, tries, to, torch, torches, toss, tosses 等。

□ 有限自动机用于词性标注 [Roche, 1995]

(1) 词汇标注 (lexical tagger)

- DAG: directed acyclic graph

2006-3-8

ads nns
bag nn, vb
bagged vbn, vbd
bayed vbn, vbd
bids nns

NLPR, CAS

(2) FSTs: 词性上下文约束规则

A B PRETAG C

如果前一个词性标注是C,那么,将A转换成B。

本章小结

- □ 几个基本概念
 - ▶ 树,字符串,字符串操作
 - > 正则表达式,有限状态图
- □ 形式文法
 - > 4 种形式文法的定义和相互关系
 - ▶ 文法识别的语言(推导)

2006-3-8

本章小结

- □ 关于自动机(Automata)
 - ▶ 4种自动机的定义和区别
 - > 自动机识别语言的能力
 - > 文法与自动机的关系
- □ 有限自动机与状态转移机的应用
 - > 英文单词拼写检查
 - > 英文单词形态分析
 - > 词性标注

习题

- 3-1. 构造上下文无关文法用以产生:
 - (a) 有相同数目的 0 和 1 的所有 0, 1 符号串。
 - (b) $\{a_1 a_2 \dots a_n a_n \dots a_2 a_1 | a_i \in \{0,1\}, 1 \le i \le n\}_{\circ}$
- 3-2. 有以下文法:G = ({S,B,C},{a,b,c},P,S),其中:

 $P: S \rightarrow aSBC \mid abC$

 $CB \rightarrow BC$

 $bB \rightarrow bb$

 $bC \rightarrow bc$

 $cC \rightarrow cc$

求 L(G)=?

习题

3-3. 设文法 G 由如下规则定义:

 $S \rightarrow AB$

 $A \rightarrow Aa|bB$

 $B \rightarrow a|Sb$

给出下列句子形式的派生树:

- (1) baabaab (2) bBABb
- 3-4. 写一个程序模拟一个确定性的 PDA。
- 3-5. 写一个程序以正则文法 G 作为输入,构造 G 相 应的有限自动机。

Thanks

