НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МЭИ"

Теоретические модели вычисления

ДЗ №1: Регулярные языки и конечные автоматы

Студент: Николаев Ю. С.

GitHub: @nikolaevje

Содержание

1	Построить конечный автомат, распознающий язык 1.1 $L = \{\omega \in \{a,b,c\}^* \mid \omega _c = 1\}$	2 2 2 4
	1.4 $L = \{\omega \in \{a, b\}^* \mid \omega\omega = \omega\omega\omega\}$	4
2	Построить конечный автомат, используя прямое произведение	5
	2.1 $L_1 = \{ \omega \in \{a, b\}^* \mid \omega _a \ge 2 \land \omega _b \ge 2 \}$	5
	2.2 $L_2 = \{\omega \in \{a, b\}^* \mid \omega \ge 3 \land \omega \text{ нечетное} \}$	7
	2.3 $L_3 = {\underline{\omega} \in \{a,b\}^* \mid \omega _a}$ четно $\wedge \omega _b$ кратно трем $}$	9
	$2.4 L_4 = L_3 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11
	2.5 $L_5 = L_2 \setminus L_3 = L_2 \wedge \overline{L_3}$ - и тут мне стало лень :(11
3	Построить минимальный ДКА по регулярному выражению	12
	$3.1 (ab+aba)^*a \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12
	3.2 $a(a(ab)^*b)^*(ab)^*$	13
	3.3 $(a + (a + b)(a + b)b)^*$	14
	3.4 $(b+c)((ab)^*c+(ba)^*)^*$	15
	3.5 $(a+b)^+(aa+bb+abab+baba)(a+b)^+$	16
4	Определить, является ли язык регулярным	17
	4.1 $L = \{(aab)^n b (aba)^m \mid n \ge 0, m \ge 0\}$	17
	4.2 $L = \{uaav \mid u \in \{a, b\}^*, v \in \{a, b\}^*, u _b \ge v _a\} \dots \dots$	17
	4.3 $L = \{a^m w \mid w \in \{a, b\}^*, 1 \le w _b \le m\}$	18
	4.4 $L = \{a^k w^m a^n \mid k = n \lor m > 0\} \ldots \ldots \ldots \ldots \ldots$	18
	4.5 $L = \{ucv \mid u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$	19
Сп	исок литературы	20

- 1 Построить конечный автомат, распознающий язык
- 1.1 $L = \{ \omega \in \{a, b, c\}^* \mid |\omega|_c = 1 \}$

1.2 $L = \{\omega \in \{a, b\}^* \mid |\omega|_a \le 2, |\omega|_b \ge 2, \}$ $|\omega|_a \le 2 \Rightarrow A_1 = \{\Sigma = \{a, b\}, Q_1 = \{1, 2, 3\}, 1, T_1 = \{1, 2, 3\}, \delta_1\}$

$$|\omega|_b \ge 2 \Rightarrow A_2 = \{\Sigma = \{a, b\}, Q_2 = \{1, 2, 3\}, 1, T_2 = \{3\}, \delta_2\}$$

Построим прямое произведение:

1.
$$\Sigma = \{a, b\}$$

$$2. \ \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

3.
$$S = \{(1,1)\}$$

5. δ

4.
$$T = \{(1,3), (2,3), (3,3)\}$$

 $A_1 \mid A_2 \mid a \mid b$

	1	1	21	12
	1	2	22	13
	1	3	23	13
	2	1	31	22
•	2	2	32	23
	2	3	33	23
	3	1	-	32
	3	2	-	33
	3	3	_	33

1.3
$$L = \{\omega \in \{a,b\}^* \mid |\omega|_a \neq |\omega|_b\}$$

Как мы помним из лекции, конечные автоматы - беспамятные у****ки. Собственно, этот пример требует запоминать количество символов. Невозможно построить автомат.

1.4
$$L = \{\omega \in \{a, b\}^* \mid \omega\omega = \omega\omega\omega\}$$

Существует единственное такое слово - пустое.

- 2 Построить конечный автомат, используя прямое произведение
- 2.1 $L_1 = \{ \omega \in \{a, b\}^* \mid |\omega|_a \ge 2 \land |\omega|_b \ge 2 \}$

Есть два автомата:

$$|\omega|_a \ge 2 \Rightarrow A_1 = \{\Sigma = \{a, b\}, Q_1 = \{1, 2, 3\}, 1, T_1 = \{3\}, \delta_1\}$$

$$|\omega|_b \ge 2 \Rightarrow A_2 = \{\Sigma = \{a, b\}, Q_2 = \{1, 2, 3\}, 1, T_2 = \{3\}, \delta_2\}$$

Прямое произведение:

1.
$$\Sigma = \{a, b\}$$

$$2. \ \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(3,3)\}$$

	A_1	A_2	a	b
	1	1	21	12
	1	2	22	13
	1	3	23	13
5. δ :	2	1	31	22
5. 0.	2	2	32	23
	2	3	33	23
	3	1	31	32
	3	2	32	33
	3	3	33	33

2.2
$$L_2 = \{\omega \in \{a,b\}^* \mid |\omega| \ge 3 \land |\omega| \text{ нечетное} \}$$

 $|\omega| \ge 3 \Rightarrow A_1 = \{\Sigma = \{a,b\}, Q_1 = \{1,2,3,4\}, S_1 = \{1\}, T_1 = \{4\}, \delta_1\}$

 $|\omega|$ нечетное $\Rightarrow A_2 = \{\Sigma = \{a,b\}, Q_2 = \{1,2\}, S_2 = \{1\}, T_2 = \{2\}, \delta_2\}$

Прямое произведение:

1.
$$\Sigma = \{a, b\}$$

$$2. \ \ Q = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2)\}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(4,2)\}$$

	A_1	A_2	a	b
	1	1	22	22
	1	2	21	21
	2	1	32	32
5. δ :	2	2	31	31
	3	1	42	42
	3	2	41	41
	4	1	42	42
	4	2	41	41

2.3
$$L_3 = \{\omega \in \{a,b\}^* \mid |\omega|_a$$
 четно $\wedge |\omega|_b$ кратно трем $\}$ $|\omega|_a$ четно $\Rightarrow A_1 = \{\Sigma = \{a,b\}, Q_1 = \{1,2\}, 1, T_1 = \{1\}, \delta_1\}$

 $|\omega|_b$ кратно 3 \Rightarrow $A_2 = \{\Sigma = \{a,b\}, Q_2 = \{1,2,3\}, 1, T_2 = \{1\}, \delta_2\}$

Прямое произведение:

1.
$$\Sigma = \{a, b\}$$

$$2. \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(1,1)\}$$

		A_1	A_2	a	b
		1	1	21	12
		1	2	22	13
5.	δ :	1	3	23	11
		2	1	11	22
		2	2	12	23
		2	3	13	21

2.4
$$L_4 = \overline{L_3}$$

 $\overline{L_3} = \{\Sigma_3, Q_3, S_3, Q_3 \setminus T_3, \delta_3\} \ Q_3 \setminus T_3 = 12, 13, 21, 22, 23$

2.5
$$L_5=L_2\setminus L_3=L_2\wedge \overline{L_3}$$
 - и тут мне стало лень :(

- 3 Построить минимальный ДКА по регулярному выражению
- $3.1 \quad (ab + aba)^*a$
 - 1. Строим НКА:

2. По НКА строим эквивалентный ДКА (алгоритм Томпсона):

$$3.2 \quad a(a(ab)^*b)^*(ab)^*$$

1. Строим НКА:

Получаем требуемый автомат по регулярному выражению $a(a(ab)^*b)^*$:

3.3
$$(a + (a+b)(a+b)b)^*$$

1. Строим НКА:

2. По НКА строим эквивалентный ДКА (на самом деле тут сразу видно, как построить ДКА):

$$3.4 \quad (b+c)((ab)^*c+(ba)^*)^*$$

Вроде как получилось сразу ДКА сделать:

 $(a+b)^+(aa+bb+abab+baba)(a+b)^+$ Построим НКА:

Сириус дай полбалла плиз! А я тебе мем с котиками :)

4 Определить, является ли язык регулярным

4.1
$$L = \{(aab)^n b (aba)^m \mid n \ge 0, m \ge 0\}$$

Мы беспамятные уб...

А, тут все ок. Тогда просто построим ДКА:

- 4.2 $L = \{uaav \mid u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$
 - 1. Рассмотрим отрицание языка $\Rightarrow \overline{L}=\{uaav|u\in\{a,b\}^*,v\in\{a,b\}^*,|u|_b<|v|_a\}$
 - 2. Фиксируем $n \in \mathbb{N}$.
 - 3. Берем $w = b^n aaa^n$
 - 4. |w| = 2(n+1) > n
 - 5. Рассмотрим разбиение:

$$x = b^{n-l}$$

$$y = b^l$$

$$|xy| = n; \ 0 < l < n \Rightarrow |y| \ge 1$$

$$z = aaa^n$$

- 6. $\forall i\geq 0: xy^iz\in \overline{L}$ не выполняется, так как уже при $i\geq 2\Rightarrow |b^{n-l}b^{2l}|=n+l>n.$
- 7. Делаем вывод, что язык нерегулярный, так как его отрицание не является регулярным.

- 4.3 $L = \{a^m w \mid w \in \{a, b\}^*, 1 \le |w|_b \le m\}$
 - 1. Рассмотрим отрицание языка $\Rightarrow \overline{L} = \{a^m w | w \in \{a,b\}^*, |w|_b > m\}$
 - 2. Фиксируем $n \in N$.
 - 3. Берем $w = a^n b^n$
 - 4. |w| = 2n > n
 - 5. Рассмотрим разбиение:

$$x = a^l$$

$$y = a^k$$

$$|xy| = l + k \le n; \ |y| \ge 1$$

$$z = a^{n-l-k}b^n$$

- 6. $\forall i \geq 0 : xy^iz \in \overline{L}$ не выполняется, так как уже при $i \geq 2 \Rightarrow |a^la^{ik}a^{n-l-k}b^n=a^{n+k(i-1)}b^n| \Rightarrow |b^n|=|w|_b=n < m=(n+k).$
- 7. Делаем вывод, что язык нерегулярный, так как его отрицание не является регулярным.
- $4.4 \quad L = \{a^k w^m a^n \mid k = n \vee m > 0\}$
 - 1. Фиксируем $n \in N$.
 - 2. Bepen $w = a^{n-1}ba^n$
 - 3. $|w| = 2n \ge n$
 - 4. Рассмотрим разбиение:

$$x = a^{n-1-l}$$

$$y = a^j b$$

$$|xy| = l + j + 1 \le n; \ |y| = j + 1 \ge 1$$

$$z = a^n$$

- 5. $\forall i \geq 0: xy^iz \in L$ не выполняется, так как при $i \geq 2 \Rightarrow |a^{n-1-l}(a^jb)^2a^n| = |a^{n-1-l+2j}b^2a^n| \Rightarrow n-1-l+2j=k \neq n.$ При $i=0 \Rightarrow m=0$
- 6. То есть $k \neq n$ и m = 0, делаем вывод, что язык нерегулярный.

4.5
$$L = \{ucv \mid u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$$

- 1. Фиксируем $n \in \mathbb{N}$.
- 2. Берем $w = a^n ca^{2n}$
- 3. $|w| = 3n + 1 \ge n$
- 4. Рассмотрим разбиение:

$$\begin{split} x &= a^{n-l} \\ y &= a^l \\ |xy| &= n-l+l = n \leq n; \ |y| = l \geq 1 \\ z &= ca^{2n} \end{split}$$

- 5. $\forall i\geq 0: xy^iz\in L$ не выполняется, так как при i=2 и $l=n\Rightarrow a^{n-l}a^{2l}=a^{n+l}=a^{2n}\Rightarrow u=v^R.$
- 6. Делаем вывод, что язык нерегулярный.

Список литературы

- [1] Документация Graphviz [Электронный pecypc]. URL:
 https://graphviz.org/documentation/
- [2] Вики-конспекты ИТМО [Электронный ресурс]. URL: https://neerc. ifmo.ru/wiki/