Statistical Method Illustration - Testing

Daniel Shang

```
# Load the necessary packages
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.0.3
library(car)
## Warning: package 'car' was built under R version 4.0.3
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
library(ggplot2)
# Load the data, remove missing values (if any), and convert columns to proper formats
## based on the documentation of the dataset
data = read.csv('heart.csv', )
data_clean = na.omit(mutate_all(data,
                      ~ifelse(. %in% c("N/A", "null", "", NULL), NA, .)))
colnames(data_clean)[1] = 'age'
data_clean$sex = as.factor(data_clean$sex)
```

```
data_clean$cp = as.factor(data_clean$cp)
data_clean$fbs = as.factor(data_clean$fbs)
data_clean$restecg = as.factor(data_clean$restecg)
data_clean$exang = as.factor(data_clean$exang)
data_clean$slope = as.factor(data_clean$slope)
data_clean$ca = as.factor(data_clean$ca)
data_clean$thal = as.factor(data_clean$thal)
data_clean$target = as.factor(data_clean$target)
```

—- Parametric Statistical Test (One-Samples T-Test)

```
# Make a boxplot to get a basic understanding of the distribution of the data.

## Please note that the example is not strict with the assumptions and conditions
## required by the test. The sole purpose of the illustration is to show how to conduct
## the test in terms of coding. Assume that they the data set(s) meet all the necessary
## assumptions and requirements of the test to be conducted.

ggplot(data = data_clean, aes(x = age)) +
   geom_boxplot(fill = 'skyblue1') +
   geom_point(aes(y = 0)) +
   theme_hc() +
   theme(axis.text.y = element_blank(), axis.title.y = element_blank(),
        legend.position = 'none', plot.title = element_text(hjust = 0.5)) +
   labs(title = 'Boxplot showing the distribution of age with detailed data points')
```

Boxplot showing the distribution of age with detailed data points


```
# Calculate descriptive statistics
mean(data_clean$age)
## [1] 54.36634
sd(data_clean$age)
## [1] 9.082101
# For this example, I will test if the average age of the population is less than
## 53 with 99\% confidence level. With these, our null hypothesis is H0: mu = 53,
## and our alternative hypothesis is H1: mu != 53. Since the result shows a p-value
## of 0.009271, we can reject the null hypothesis with 99% confidence. Therefore,
## we are 99% confident that the average age of the population is not equal to 53.
t.test(data_clean$age, mu = 53, alternative = 'two.sided', conf.level = 0.99)
##
##
   One Sample t-test
## data: data_clean$age
## t = 2.6187, df = 302, p-value = 0.009271
## alternative hypothesis: true mean is not equal to 53
## 99 percent confidence interval:
## 53.01384 55.71883
## sample estimates:
## mean of x
## 54.36634
                 -- Parametric Statistical Test (Two-Sample T-Test) -
# In this example, I will conduct a independent 2-sample t-test. I will check whether
## the people in the two 'target' groups have the same age on average. With these,
## our null hypothesis is HO: mean age of target O group = mean age of target 1 group.
## Thus, the alternative hypothesis H1: the mean ages of the two groups differ.
## Please note that the example is not strict with the assumptions and conditions
## required by the test. The sole purpose of the illustration is to show how to conduct
## the test in terms of coding. Assume that they the data set(s) meet all the necessary
## assumptions and requirements of the test to be conducted.
ggplot(data = data_clean, aes(x = target, y = age)) +
 geom_boxplot(fill = 'gray50') +
  geom_point(aes(color = target)) +
 theme_hc() +
  labs(title = 'Box plot showing the age distribution of the two target groups') +
```

theme(plot.title = element_text(hjust = 0.5), legend.position = 'none')

Box plot showing the age distribution of the two target groups


```
##
## Welch Two Sample t-test
##
## data: data_clean$age by data_clean$target
## t = 4.0797, df = 301, p-value = 5.781e-05
## alternative hypothesis: true difference in means is not equal to 0
## 99 percent confidence interval:
## 1.496453 6.712506
## sample estimates:
## mean in group 0 mean in group 1
## 56.60145 52.49697
```

```
# To double check if the variances of the two target groups are indeed different, we ## can either calculate the variances of the two groups or conduct a Levene's test, ## which tests if the variances of datasets are equal. Since the variances are ## different and the test result shows a small p-value, we can reject the null
```

```
## hypothesis that the two groups' variances are equal.
var(data_clean$age[data_clean$target == 0])
## [1] 63.39474
var(data_clean$age[data_clean$target == 1])
## [1] 91.21493
leveneTest(data_clean$age~data_clean$target)
## Levene's Test for Homogeneity of Variance (center = median)
##
         Df F value
                     Pr(>F)
## group 1 7.9854 0.005031 **
##
         301
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
                   — Parametric Statistical Test (Paired T-Test) —
# In this example, I will conduct a paired t-test to examine the difference in
## means of the two population data sets. Since this example is for illustration
## purpose only, I randomly split the data into two groups pair them together
## Please note that the example is not strict with the assumptions and conditions
## required by the test. The sole purpose of the illustration is to show how to conduct
## the test in terms of coding. Assume that they the data set(s) meet all the necessary
## assumptions and requirements of the test to be conducted.
set.seed(123)
index_1 = sample(2, nrow(data_clean), replace = TRUE, prob = c(0.5, 0.5))
before_data = data_clean[index_1 == 1, ]
after_data = data_clean[index_1 == 2, ]
index_2 = sample(147, nrow(after_data), replace = TRUE)
after_data = after_data[index_2[1:147], ]
# Make a boxplot the to visualize the distributions of the two groups
```

boxplot(before data\$trestbps, after data\$trestbps)


```
# Make a scatter plot to further visualize the relationship between the pair.
## If there is no significant difference between the means of the groups, the points
## should be evenly distributed on each side of the red line, which is a line with
## an intercept of 0 and slope of 1 for reference purpose. Here, we see that relatively
## more points are distributed below the line, so the means of the groups may not be
## equal.
plot(before_data$trestbps, after_data$trestbps,)
abline(a = 0, b = 1, col = 'red')
```



```
# In this example, our null hypothesis is that the means for two groups are equal,
## while the alternative hypothsis is that they are not equal. According to the paired
## t-test result, we get a p-value of 0.03383 under a confidence level of 95%.
## Therefore, we reject the null hypothesis with 95% confidence and can reasonably
## conclude that means between the two groups are not equal.
t.test(before_data$trestbps, after_data$trestbps, mu = 0, alternative = 'two.sided', paired = TRUE, con
##
##
   Paired t-test
##
## data: before_data$trestbps and after_data$trestbps
## t = 2.1422, df = 146, p-value = 0.03383
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   0.3255737 8.0825895
## sample estimates:
## mean of the differences
```

Parametric Statistical Test (One-way ANOVA) —

4.204082

##

In this example, I will conduct a One-way Analysis of Variance test (ANOVA) to ## test if the 'thalach' means for the four 'cp' groups are the same. Therefore, the ## null hypothesis is that the means for the four groups are the same, while the

```
## alternative hypothesis is that the means for the four groups are different.

## Please note that the example is not strict with the assumptions and conditions
## required by the test. The sole purpose of the illustration is to show how to conduct
## the test in terms of coding. Assume that they the data set(s) meet all the necessary
## assumptions and requirements of the test to be conducted.

# First of all, plot a box plot to visualize the distribution.

ggplot(data = data_clean, aes(x = cp, y = thalach, fill = cp)) +
    geom_boxplot(show.legend = FALSE) +
    geom_point(show.legend = FALSE) +
    labs(title = 'Box plot showing the distribution of thalach for each cp group') +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_hc()
```

Box plot showing the distribution of thalach for each cp group


```
ANOVA1 = aov(data_clean$thalach ~ data_clean$cp)
ANOVA1
```

```
## Call:
## aov(formula = data_clean$thalach ~ data_clean$cp)
##
## Terms:
## data_clean$cp Residuals
## Sum of Squares 24029.83 134413.39
```

```
## Deg. of Freedom
                                       299
##
## Residual standard error: 21.20243
## Estimated effects may be unbalanced
# Based on both the box plot and the test result, we have evidence to conclude that
## the mean of 'thalach' of the four 'cp' groups are not equal.
summary(ANOVA1)
##
                  Df Sum Sq Mean Sq F value
                                              Pr(>F)
## data clean$cp
                  3 24030
                               8010
                                      17.82 1.15e-10 ***
                 299 134413
                                450
## Residuals
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# Specifically, to see which pair of 'cp' groups is different, we can use the TukeyHSD
## function.
TukeyHSD (ANOVA1)
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = data_clean$thalach ~ data_clean$cp)
##
## $'data_clean$cp'
##
             diff
                         lwr
                                   upr
## 1-0 21.8815385 12.881882 30.881195 0.0000000
## 2-0 15.0707339
                   7.622787 22.518681 0.0000019
## 3-0 15.4180602
                  3.111904 27.724216 0.0073153
## 2-1 -6.8108046 -16.531917 2.910308 0.2705765
## 3-1 -6.4634783 -20.264550 7.337594 0.6210076
## 3-2 0.3473263 -12.495870 13.190522 0.9998774
# Since the first three groups have a low p-value and the confidence interval does
## not include 0, we have evidence to conclude that the mean 'thalach' of 0 is
## different from that of 1, 2, and 3 cp groups.
plot(TukeyHSD(ANOVA1), las = 1)
```

95% family-wise confidence level

Differences in mean levels of data_clean\$cp

Monparametric Statistical Test (Kruskal Wallis Test)

In this example, I will conduct a Kruskal Wallis Test to test if the 'thalach'

means for the four 'cp' groups are the same. Therefore, the null hypothesis is ## that the means for the four groups are the same, while the alternative hypothesis ## is that the means for the four groups are different.

Please note that the example is not strict with the assumptions and conditions
required by the test. The sole purpose of the illustration is to show how to conduct
the test in terms of coding. Assume that they the data set(s) meet all the necessary
assumptions and requirements of the test to be conducted.

Based on the test result, we can see a small p-value and therefore reject the null ## hypothesis that the mean 'thalach' for the four 'cp' groups are the same.

kruskal1 = kruskal.test(data_clean\$thalach ~ data_clean\$cp)
kruskal1

##
Kruskal-Wallis rank sum test
##
data: data_clean\$thalach by data_clean\$cp
Kruskal-Wallis chi-squared = 48.216, df = 3, p-value = 1.916e-10

— Nonparametric Statistical Test (Wilcoxon Rank-Sum Test) —

```
# In this example, I will use the Wilcoxon Rank-Sum Test to test if the median
## 'chol' of the two target groups is different. Since Wilcoxon Rank-Sum does
## not assume known distribution, the equality of the median tested can be used
## to compare the distribution of the two groups we are comparing. For example,
## if we reject the null hypothesis that says the medians are equal, we know that
## the distribution of one group is shifted either to the left or right, thereby
## different means. Based on both the chart and the test, we can reject the null
## hypothesis that the medians of the two datasets are the same, with 95% confidence.
## Please note that the example is not strict with the assumptions and conditions
## required by the test. The sole purpose of the illustration is to show how to conduct
## the test in terms of coding. Assume that they the data set(s) meet all the necessary
## assumptions and requirements of the test to be conducted.
ggplot(data = data_clean, aes(x = chol, fill = target)) +
  geom_density(alpha = 0.5) +
  geom_vline(xintercept = c(median(data_clean$chol[data_clean$target == 0]),
                            median(data_clean$chol[data_clean$target == 1]))) +
  labs(title = 'Density plot showing the distribution of chol in two target groups') +
  theme(plot.title = element_text(hjust = 0.5)) +
  theme hc()
```

Density plot showing the distribution of chol in two target groups


```
##
## Wilcoxon rank sum test with continuity correction
## data: data_clean$chol by data_clean$target
## W = 12980, p-value = 0.03572
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
    0.9999428 22.9999605
## sample estimates:
## difference in location
##
                 11.99999
               Nonparametric Statistical Test (Wilcoxon Signed Rank Test) -
# In this example, I will conduct a Wilcoxon Signed Rank Test to compare the median
## difference, or distribution difference, of two population that are paired. Therefore,
## the null hypothesis is that the medians of the two data sets are the same, while
## the alternative hypothesis is that they are different. According to the test result,
## we get a p-value of 0.08047. Therefore, we fail to reject the null hypothesis with
## 95% confidence level and reasonably conclude that the medians of the two groups are
## not significantly different.
## Please note that the example is not strict with the assumptions and conditions
## required by the test. The sole purpose of the illustration is to show how to conduct
## the test in terms of coding. Assume that they the data set(s) meet all the necessary
## assumptions and requirements of the test to be conducted.
wilcox.test(before_data$trestbps, after_data$trestbps, mu = 0, alternative = 'two.sided', paired = TRUE
##
## Wilcoxon signed rank test with continuity correction
## data: before_data$trestbps and after_data$trestbps
## V = 5775.5, p-value = 0.08047
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -0.4999988 7.9999972
## sample estimates:
## (pseudo)median
##
         3.999952

    Chi-Square Test-

# In this example, I will conduct a Chi-Square Test on two categorical variables,
## 'sex' and 'cp,' to see if the occurrence of one category is independent from
## the occurrence of another category. Therefore, the null hypothesis is that the
## two variables are independent, while the alternative hypothesis is that the two
## variables are dependent
## Please note that the example is not strict with the assumptions and conditions
## required by the test. The sole purpose of the illustration is to show how to conduct
## the test in terms of coding. Assume that they the data set(s) meet all the necessary
```

assumptions and requirements of the test to be conducted.

```
table1 = table(data_clean$cp, data_clean$sex)
table1
##
##
        0
##
       39 104
##
       18 32
##
       35 52
         4 19
ggplot(data = data_clean, aes(x = cp)) +
  geom_bar(data = data_clean, stat = 'count', aes(fill = sex), position = 'dodge') +
  labs(title = 'Bar chart comparing the count of cp for each sex group for each cp') +
  theme(plot.title = element_text(hjust = 0.5)) +
  theme_hc()
```

Bar chart comparing the count of cp for each sex group for each cp

Based on both the graph and the test result, we fail to reject the null hypothesis
and conclude that the 'sex' and 'cp' variables are dependent.
chisq.test(table1, correct = TRUE)

```
##
## Pearson's Chi-squared test
##
## data: table1
## X-squared = 6.8221, df = 3, p-value = 0.07779
```