We have seen three methods for solving the discrete Poisson problem $-\Delta p = f$ in a square with Dirichlet boundary conditions u = g for given functions f and g:

(1) Jacobi's method:

Given
$$p_{ij}^{(0)}$$
, $1 \le i \le I_{\max} - 1$, $1 \le j \le J_{\max} - 1$ then for $n = 0, 1, 2, ...$ for $i = 1$ to $I_{\max} - 1$ for $j = 1$ to $J_{\max} - 1$

$$p_{ij}^{(n+1)} = \frac{f_{ij} + \frac{p_{i+1,j}^{(n)} + p_{i-1,j}^{(n)}}{\Delta x^2} + \frac{(p_{i,j+1}^{(n)} + p_{i,j-1}^{(n)})}{\Delta y^2}}{\frac{2}{\Delta x^2} + \frac{2}{\Delta y^2}}.$$

(2) Gauss - Seidel method with the same initial guess

for
$$n = 0, 1, 2, \dots$$

for $i = 1$ to $I_{max} - 1$
for $j = 1$ to $J_{max} - 1$

$$p_{ij}^{(n+1)} = \frac{f_{ij} + \frac{p_{i+1,j}^{(n)} + p_{i-1,j}^{(n+1)}}{\Delta x^2} + \frac{(p_{i,j+1}^{(n)} + p_{i,j-1}^{(n+1)}}{\Delta y^2}}{\frac{2}{\Delta x^2} + \frac{2}{\Delta y^2}}$$

(3) Successive Over Relaxation:

Choose a relaxation parameter $\omega \neq 0$ and an initial guess as before. Then for $n=0,1,2,\ldots$

for
$$i = 1$$
 to $I_{max} - 1$
for $j = 1$ to $J_{max} - 1$

$$p_{ij}^{(n+1)} = (1 - \omega)p_{ij}^{(n)} + \frac{p_{i+1,j}^{(n)} + p_{i-1,j}^{(n+1)}}{\Delta x^2} + \frac{p_{i,j+1}^{(n)} + p_{i,j-1}^{(n)}}{\Delta y^2} \cdot \frac{2}{\Delta x^2} + \frac{2}{\Delta y^2}.$$

Note that when $\omega = 1$ we have Gauss-Seidel.

Assignment 1a:

I gave you a code called *sov.m*. But the title is misleading! It actually does Gauss-Seidel. Modify the code to implement SOR and run the code for $\omega = 1$, $\omega = 1.7$, $\omega = 2.7$, $I_{max} = J_{max} = 40$, and the boundary data etc from my code. Use 200 iterations.

Which choice of ω decreased the residual faster? Hand in your code and a graph of the residual for all three choices of ω on one axis (one will not converge - only graph a few iterates showing the residual growing, not all iterates).

Assignment 1b:

Let

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}.$$

Write down the iteration matrix G (see p. 325 of the book) when (a) Jacobi, (b) Gauss-Seidel and (c) SOR are used to solve $A\vec{x} = \vec{b}$. In each case calculate $||G||_{\infty}$ (choose $\omega = 1.5$ for SOR). You can use Matlab to help! Which method would converge faster in this case?