		Course Handout
	Course details	
	Course	DR.ANIS AHMAD
	Coordinator	
	Faculty Name	Dr. Sanjeev Kumar
1	Programme	B.Tech.
_	Semester	II, Winter- 2021-22
	Section	14
	Course code	BBS01T1002
	Course Name	SEMICONDUCTOR PHYSICS
		chool of Computing Science and Engineering
2		lobally as a premier school for value-based education, multidisciplinary
	research and	
	Mission of the	School of Computing Science and Engineering
		strong foundation on fundamentals of SCSE through OB-TLP
	2. Establis	h state-of-the-art facilities for Analysis, Design and Implementation to
3	develop	sustainable ethical solutions
	3. Conduc	t multidisciplinary research for developing innovative solutions
		the students in group activity including that of professional bodies to
	develop	leadership and communication skills.
		lucational objectives (PEOs)
	PEO1	Graduates of Computer Science and Engineering will be globally
		competent and provide sustainable solutions for interdisciplinary
		problems as team players.
4	PEO2	Graduates of Computer Science and Engineering will engage in
		professional activities with ethical practices in the field of Computer
		Science & Engineering to enhance their own stature to contribute
	DEO2	society.
	PEO3	Graduates of Computer Science and Engineering will acquire
		specialize knowledge in trending technologies for research, innovation and product development.
	Programme ou	
	PO1	Engineering knowledge
	PO2	Problem analysis
	PO3	Design & Development of Solutions
	PO4	Investigation of Problem
	PO5	Modern tool usage
5	PO6	Engineer and society
	PO7	Environment& sustainability
	PO8	Ethics
	PO9	Individual & team work
	PO10	Communication
	PO11	Project management & finance
	PO12	Lifelong learning
6		pecifics outcome (PSO) (if any) -

	PSO1	To t	rain stud	ents in trendi	ing technologi	es like Machine	E Learning.			
					d Augmented					
	PSO2		-	evelop insights for problem solving in Data Analytics and aitous Computing.						
	Course outcom		1		letion of this c	course, students	will be able to:			
	CO1		Identify	the energy band	l in solids and ele	ectron occupation 1	probability			
	CO2			Understand the physics of semiconductor and develop the ability to choose the appropriate semiconductor for engineering applications						
7	CO3			e knowledge of tronic devices	diode to the dev	relopment of new a	and novel			
	CO4		applicati	ons and underst	and the basic cha	aracterization tech				
	CO5		constants		teristics using e		hysical quantities/ o and analyses the			
	Evaluation		Dura		Date	Nature of	Scale down			
	Component		tion	Marks	&Time	Component	Marks			
	CAT-1		90 mins	30	As per Academic Calendar	Closed Book				
	CAT-2		90 mins.	30	As per Academic Calendar	Closed Book	15			
8	CAT-3 / Presentation (Seminar/mini- project/poster)		5 -15 minut es/ stude nt	30	As per Academic Calendar	Open Book				
	(IA-1 to IA-4) Quiz / Assignm / surprising test etc.		10-20 mins for each	4 x 5 = 20	As per Academic Calendar	Closed Book				
	IA-5		During the sessio n	5	During the session	Co-Curricular Activity	10			
	IA-6		During the sessio n	5	During the session	Extra- Curricular Activity				
	End Term Examination (E	ETE)	180 mins.	50	As per Academic Calendar	Closed Book	25			
	Practical -IA (IA-1 to IA-		(Two Hours)	50	During lab class	Based on performance	25			

				1	1		
		/ Per					
		experi ment					
		One					
		experi		As per	Dry Erstamal		
	Practical-ETE	ment	15+10=25	Academic	By External	25	
		and		Calendar	Examination		
		viva-					
		voce					
9	List of teaching –lear						
	White board and class	ss discuss	sion/ PPTs pi	resentation			
10	Open hour for studer	nts:					
	Monday: 3.00P.M -5	5.00 PM					
11	Link address for cou	rse matei	rials:				
	http://lms.galgotiasu	niversity	.edu.in/my/				
12	Recommended list of	f e-books	s:				
	None						
14	Recommended list o	f mini pr	oiects / proie	cts/ technical	training etc:		
	None	Г	-J		8		
15	Students' Presentation	n:					
	As per schedule						
16	List of e-books:						
	None						
17	List of NPTEL/MOC	OCS/SW	AYAM/Cour	ses/Video:			
	Swayam- https://sw	ayam.go	ov.in/				
	NPTEL- https://onlinecourses.nptel.ac.in/						
			-				
18	Content beyond Syll	abus: Ba	sic postulates	s of quantum i	mechanics		
			= 				
19	List of mini projects/projects:						
	None						

	Detail	academic calendar of lecture to	pics			
Lectu re No.	Date	Topics to be covered	Learning outcomes of each topic	Relate d Unit of syllab us	Total lecture in the Unit	Reference Chap./Sec. (Book)
1.		Brief Introduction to the Course including its importance to the students in their future career & applications in the profession, Evaluation/Grading pattern, Review (Preliminary topics), Name of Text Books and Reference Books etc.	Overview of course	Unit - 1	06	Course handout
2.		Quantum free electron theory , Fermi Dirac distribution function and Fermi level- part I	free electron theory	-		Chapter 6 of T5
3.		Quantum free electron theory , Fermi Dirac distribution function and Fermi level- part I	Fermi Dirac distribution function and Fermi level			Chapter 6 of T5
4.		Density of states	Density of states	-		Chapter 6 of T5
5.		Energy band in solids	Energy band in solids	-		Chapter 6 of T5
6.		E-K diagram and Brillouin zone,	Brillouin zone	-		Chapter 6 of T5
7.		Effective mass and concept of holes.	Effective mass			Chapter 6 of T5

8.	Types of semiconductor (Intrinsic and extrinsic) Fermi level in semiconductor	semiconductor types	UNIT 2	07	Chapter 2 of T2
9.	Effect of carrier concentration and temperature on fermi level	Effect of carrier concentration and temperature on fermi level			Chapter of T2
10.	Direct-indirect band gap semiconductors	direct-indirect band gap semiconductor s			Chapter of T2
11.	compound semiconductors	compound semiconductor s			Chapter2 of T2
12.	Conductivity and mobility	Conductivity and mobility			Chapter 2of T2
13.	Hall effect and applications	Hall effect			Chapter 10 of T5
14.	Concept in optical transitions in bulk semiconductors	Optical transitions	UNIT 3	09	Chapter4 of T2
15.	recombination process,	recombination process,			Chapter4 of T2
16.	Absorption and emission-process	Explanation for spontaneous emission- stimulated emission- transition rate			Chapter 4 of T2
17.	Theory of pn junction	p-n junction			Chapter 4 of T2
18.	Biasing of PN –Junction	p-n junction			Chapter 4 of T2

	Diode and V-I characteristics				
19.	optoelectronics devices-LEDs	LEDs	-		Chapter 9 of T2
20.	laser diode	laser diode	-		Chapter 9 of T2
21.	Basics of Photovoltaics- photovoltaic effect	Photovoltaics			Chapter of 9 T2
22.	Determination of efficiency of PV cell	Photovoltaics			Chapter 9 of T2
23.	Density of states in 2D – Quantum well	Quantum well	UNIT 4	08	Chapter 9 of T3
24.	Density of states in 1D (Quantum wire) and 0D (Quantum dots)	Quantum wire and Quantum dots			Chapter 9 of T3
25.	Nanomaterials and its properties, Classification of Nanomaterials.	Nanomaterials			Chapter 9 of T3
26.	Carbon nanowires and nanotubes	Carbon nanowires and nanotubes			Chapter 9 of T3
27.	Semiconductor nanomaterials	Semiconducto r nanomaterials			Chapter 9 of T3
28.	Graphene	Semiconducto r nanomaterials			Chapter 9 of T3

29.	Characterization techniques (basic ideas): Scanning Electron Microscopy	SEM		Chapter 3 of T3
30.	Transmission Scanning Electron Microscopy	TSEM		Chapter 3 of T3

Course Objectives:

- 1. To prepare students with fundamental knowledge of semiconductor physics.
- 2. To develop skills necessary for higher-level science and engineering courses

Text Books

- 1. J. Singh, Semiconductor optoelectronics, Physics and Technology, Mc-Graw –Hill Inc. 1995.
- 2. S.M. Sze, Semiconductor Devices: Physics and Technology, Wiley 2008.
- 3. Introduction to Nanotechnology C P Poole, Frank J. Owens, John Wiley & Sons, 2011, ISBN 978-81-265-1099-3.
- 4. B.Sc. Practical Physics by C.L Arora, S. Chand Limited.
- 5. S.O. Pillai, Solid State Physics, , New Age International (P) Ltd. Sixth edition ISBN-9788122427264 (2010).

Reference Books

- 6. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., 2007.
- 7. Introduction to Nanoscience and Nanotechnology, KK Chattopadhyay, A N Banerjee, Phi Learning Pvt Ltd., New Delhi, 2012, ISBN-978-81-203-3608-7.
- 8. Nanotechnology Science Innovation & Opportunity, Lynn E Foster, Pearson publication, 2008, ISBN-9788131711187.
- 9. Nouredine Zettili, Quantum Mechanics: concepts and applications, 2nd Edition, Wiley, UK, 2009
- 10. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, Asia Publishing House

CONTENTS

Unit 1 Quantum and Band Theory of electron

6 hrs

Quantum free electron theory, Fermi Dirac distribution function and Fermi level, density of states, Energy band in solids, E-K diagram and Brillouin zone, effective mass, concept of holes.

Unit 2 Semiconductor 8 hrs

Types of semiconductor, Fermi level in semiconductor, effect of carrier concentration and temperature on fermi level, direct-indirect band gap semiconductors, compound semiconductors, Conductivity and mobility, recombination process, Hall effect and applications.

Unit 3 Applications of Diodes

8 hrs

Concept in optical transitions in bulk semiconductors- absorption process, recombination process, explanation for spontaneous emission-stimulated emission-transition rate, theory of p-n junction, p-n junction diode and its I-V characteristics, optoelectronics devices-LEDs, laser diode, Basics of Photovoltaics- photovoltaic effect, Determination of efficiency of PV cell

Unit- 4 Low Dimension Physics and Nanomaterials

10 hrs

Density of states in 0D, 1 D and 2D –Low dimensional systems: Quantum well, Quantum wire, Quantum dots, Nanomaterials and its properties, Classification of Nanomaterials, Carbon nanowires and nanotubes, Semiconductor nanomaterials, Graphene, Characterization techniques (basic ideas): Scanning Electron Microscopy and Transmission Scanning Electron microscopy

Continuous Assessment Pattern:

Mode/ Category	Internal Assessment (IA)	CAT	End Term Exam (ETE)	Total Marks (100)
Theory	10	15	25	50
Practical / Laboratory	25	-	25	50

Course Outcomes: After the completion of this course, students will be able to:

CO1	Identify the energy band in solids and electron occupation probability
CO2	Understand the physics of semiconductor and develop the ability to choose the appropriate semiconductor for engineering applications
CO3	Apply the knowledge of diode to the development of new and novel optoelectronic devices
CO4	Utilize the knowledge of the low dimensional/ nano materials for engineering applications and understand the basic characterization techniques
CO5	Apply the knowledge of physics to determine the physical quantities/ constants, diode characteristics using experimental set up and analyses the results with maximum accuracy.

Course outcomes (COs) and Program Outcome (POs) Mapping for the course

			Mapping of Course Outcomes with Program outcomes (POs)										
			(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low										
1	COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	CO1	2	2		-	-	-	-	-	-	-		-
	CO2	3	2	-	-	-	-	-	-	-	-	-	-
	CO3	3	2	-		-	-	-	-		-	-	-
	CO4	3	2	-	-	-	-		-	-	-	-	-
	CO ₅	3	2		-	-	-	-	-	3	-	-	-
3	Cate gory						Basic Scie	nces (BS)					
4	Appr oval												

Compliance report

		School of B	asic an	d Applied Sciences			
Programm	B.Tech						
e							
Programm							
e Chair							
	•	Compliance	e report	t of course handout			
Sl No	Course code	Course title	Secti on	Taught by faculty	Course coordinator	Course handout Submiss ion date	Rem arks by PC if any
1.	BBS01T1002	SEMICONDUCT		DR. SANJEEV	Dr Anis	08/03/20	
		OR PHYSICS		KUMAR	Ahmad	22	

Signature of PC;	Signature of Dean:

Review by IQAC: