THE STRUCTURAL CHEMISTRY OF EMERGETIC COMPOUNDS(U)
NAVAL RESEARCH LAW MASHINGTON DC LAW FOR THE STRUCTURE
OF HATTER R GILARDI ET AL. 06 JUL 84 LSN-84-1
F/8 7/4 AD-A143 955 1/1 UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

•

ECI. RITY CLASSIFICATION C						
ΛD-	A143 95	TION PAGE	E	1	> \	
19. PEPORT SECURITY CLAS	A 143 33	ESTRICTIVE M	ARKINGS	110		
UNCLASSIFIED	· · · · · · · · · · · · · · · · · · ·			1,	·	
21 SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A				
25. DECLASSIFICATION/DOWNGRADING SCHED	uLS		for publi			;
23. 55652357.527		distribu	tion unlir	nited		;
3. PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5. MONITORING OR	GANIZATION R	EPORT N	UMBER(S)	
LSM-84-1		N/A				
62 NAME OF PERFORMING ORGANIZATION Lab. for Structure of	8b. OFFICE SYMBOL (If applicable)	7ª NAME OF MONIT		_		
Matter, Code 6030		Office of	Naval Rese	earcn		į
ec. ADDRESS (City, State and ZIP Code)		7b. ADDRESS (City,	State and ZIP Cod	ie)		
U.S. Naval Research Labora	tory	Dr. R. S.				
Washington, D. C. 20375		Office of Arlington				ł
			·	105.5		
ss. Name of funding/sponsoring Organization	ab. Office symbol (if applicable)	9. PROCUREMENT I	1	ENTRIC		\$
ONR	`	N00014-83	WR-30130	EM Y	AUG 6 1984	
ec ADDRESS (City, State and ZIP Code) Dept. Of the Navy		10. SOURCE OF FUR	DING NOS.		7	
Office of Naval Research		PROGRAM ELEMENT NO.	PROJECT NO.	7	AND AWORK Ü	NIT
Arlington, VA 22217				1		Š
11. TITLE (Include Sequeity Classification) The	_	61153N	RR024-02-	φ1	NR093-	069
Chemistry of Energetic Com	npounds					
12 PERSONAL AUTHOR(S) Richard Gilardi, Clifford	George and Je	rome Karle				•
13a. TYPE OF REPORT 13b. TIME CO		14. DATE OF REPOR	AT (Yr., Mo., Day) [19	5. PAGE COUNT	
The second secon	<u>/83_ το 12/31/</u> 8	3 7/6/	84		37	Č
OTIC FILE COPY	•					THE P.O. CO.
17. COSATI CODES	18 SUBJECT TERMS (C. Propellants,	ontinue on reverse if ne	cessary and identi	y by blo	ck nymber)	
FIELD GROUP SUB. GR.	Propellants, Molecular Me	Explosives	, x-ray D	ıttra	ction,	
	MOTECULAL ME	chanies				8
19 APSTRACT (Continue on where if persons and	identify by block number		-			
19. ABSTRACT (Continue on reverse If necessary and The molecular structures of	ten materials	developed	in ONR-sp	onsor	ed explosive	/ 3
propellant research are repo						
x-ray diffraction, and their and aza-adamantanes: 2-brown						
tetranitroadamantane and 2,4						
getic nitramines: 1,4-dinit						43
(3) Three HMX analogs: 1-ni						
dinitroso-3,3,7,7-tetranitro						,5~
diazacyclo-octane, and (4) (joicyclo-HMX. Using the mole						
accommodate nitro and nitra						r-
formed on two proposed hypo-	thetical targe	et compounds	, octanit	rocub	ane and hexa	
nitrohexa-aza-adamantane. (th mo	lecules are	
relatively unstrained, and	snould exist i	n stable fo	rms.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC						1
- -	T	21. ABSTRACT SECL	IRITY CLASSIFI	CATION		,
UNCLASSIFIED/UNLIMITED XX SAME AS RPT.		21. ABSTRACT SECU UNCLAS		CATION		A SAME
22a. NAME OF RESPONSIBLE INDIVIDUAL	DITIC USERS	UNCLAS	SIFIED	·	FICE SYMBOL	
	0 011C USERS 0	UNCLAS 22b. TELEPHONE NI (Include Area Co	SIFIED UMBER de)	·	FICE SYMBOL	

The Structural Chemistry of Energetic Compounds

ONR Annual Report

Jan 1 to Dec 31, 1983

Richard Gilardi, Clifford George, and Jerome Karle

Laboratory for the Structure of Matter

Code 6030

The Naval Research Laboratory

Washington, D.C. 20375

This document has been approved I republic release and sale; its distribution is unlimited.

84 08 03 094

Contents

		page
I.	Introduction	1
II.	Molecular structures from x-ray diffraction analyses.	2
	(a) Nitro- and aza-adamantanes	2
	(b) 1,4-dinitroglycoluril (DINGU)	9
	(c) 1,3,3-trinitroazetidine (TNAZ)	13
	(d) HMX analogs	16
	(e) Tetra-acetyl-bicyclo HMX	20
III.	Conformational energy analyses and model-building.	23
	(a) Octanitrocubane	23
	(b) Hexanitrohexa-aza-adamantane	28
IV.	References	32
٧.	Distribution	33

I. Introduction

This report summarizes the investigation of the molecular structure of a number of energetic materials or their precursors which are potentially useful in explosive or propellant formulation. The aims of this research are to determine or corroborate the exact chemical structure of newly developed materials, and to develop a library of structural parameters for groups occuring in energetic compounds. These structural parameters provide a basis for computationally modelling proposed target compounds by means of quantum chemistry and conformational energy analysis. Specific application is made in this report to the energy analyses of two proposed polynitro cage compounds, octanitrocubane and 2,4,6,8,9,10-hexanitrohexa-aza-adamantane.

(II) Molecular structures

a) Nitro- and aza- adamantanes

Adamantanes with nitro and aza substituents are potentially high density energetic compounds and are a class of compounds for which little structural information is available. X-ray diffraction analysis of compounds we have examined include: 2-bromo-2-nitroadamantane (BNA), 2,2-dinitro-adamantane (DNA)1, 1,3,5,7-tetranitroadamantane (TNA1)2, and 2,4,10-tribenzyl-2,4,10-triazaadamantane (TBTAA). Samples of BNA and DNA were provided by Dr. Baum of Fluorochem Inc. TNA1 was provided by Dr. Sollott of the U. S. Army Armament Research and Development Command, and TBTAA was provided by Dr. Nielsen at NWC, China Lake.

Molecular Geometry

The crystallographic data for each of the adamantane derivatives studied is listed in Table (1), with bond distances and valence angles for each given in Tables (2-4). In these materials the adamantane cage is only slightly distorted from expected values for both nitro and aza substituents. The carbon-nitrogen bond lengths seen in these compounds for C-NO₂ are significantly longer than a typical C-N single bond; the average C-N distances are 1.538, 1.557 and 1.528 A in BNA, DNA and TNAl respectively. In the non-nitro compound TBTAA, the average C-N distance at the pyramidally bonded amine nitrogen is 1.47 A, which is a typical single bond length.

The C=NO₂ bond lengths and the O-N-O angles observed are consistent with the results of structural analysis of alicyclic nitro compounds³ which shows a correlation of these parameters; an increase in the O-N-O angle is generally accompanied by an increase in C-N bond length.

Packing

In all of these structures the intermolecular contacts are normal van der Waals' interactions. Nearest contacts in BNA and DNA are H···H' contacts in the range 2.36 to 2.52 A; no close O···O' or O···Br contacts occur. In TNAl, the nearest contacts are O(1)···H(9)' at 2.48 A and those in TBTAA are H···H' contacts at 2.49 A.

Table 1. Crystal Data for four nitro- & aza-adamantanes.

	BNA	DNA	TNAL	TBTAA
a(A)	6.583	6.586	7.874	9.542
ъ(A)	12.095	12.407	7.874	11.000
c(A)	13.024	12.916	10.552	21.843
	-	100.88°	_	95.24°
Vol(A3)	1037.0	1036.3	542.2	2283.1
Z	4	14	2	4
Mol. wt.	260.1	226.2	316.2	409.6
$d_{x}(mg/mm^{3})$	1.666	1.450	1.605	1.191
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ /n	P421c	P2 ₁ /c

2-BROMO-2-NITROADAMANTANE

2.2-DINITROADAMANTANE

Table (2)

Bond distances (A) and bond angles (deg.) for 2-bromo-2-nitroadamantane (I), and 2,2-dinitroadamantane (II). The e.s.d.'s are listed for each distance; all angle e.s.d.'s are 0.6° (I) and 0.3° (II).

Bon	d Distance		Bond Ar	ngle	
	(I)	(II)		(1)	(II)
C(1)-C(2)	1.528(8)	1.508(3)	C(2)-C(1)-C(8)	108.5	108.7
C(1)-C(8)	1.521(11)	1.530(5)	C(2)-C(1)-C(9)	109.4	108.0
C(1)-C(9)	1.517(10)	1.537(5)	C(8)-C(1)-C(9)	109.5	108.5
C(2)-C(3)	1.512(8)	1.511(5)	C(1)-C(2)-C(3)	110.6	112.3
C(3)-C(4)	1.527(9)	1.535(5)	C(2)-C(3)-C(4)	109.8	108.9
C(3)-C(10)	1.527(9)	1.536(5)	C(2)-C(3)-C(10)	107.9	107.5
C(4)-C(5)	1.548(10)	1.511(6)	C(4)-C(3)-C(10)	110.0	109.3
C(5)-C(6)	1.520(11)	1.528(6)	C(3)-C(4)-C(5)	109.2	110.4
C(5)-C(9)	1.525(9)	1.526(6)	C(4)-C(5)-C(6)	109.6	109.7
C(6)-C(7)	1.517(11)	1.533(6)	C(4)-C(5)-C(9)	109.0	109.2
C(7)-C(8)	1.528(9)	1.534(6)	C(6)-C(5)-C(9)	108.8	109.4
C(7)-C(10)	1.532(9)	1.526(6)	C(5)-C(6)-C(7)	110.8	109.2
C(2)-N(1)	1.538(7)	1.555(5)	C(6)-C(7)-C(8)	108.3	109.7
N(1)-O(1)	1.205(7)	1.206(4)	C(6)-C(7)-C(10)	110.2	110.5
N(1)-O(2)	1.195(6)	1.206(4)	C(8)-C(7)-C(10)	107.9	107.8
C(2)-Br	1.979(6)		C(1)-C(8)-C(7)	110.3	110.3
C(2)-N(2)	2007.0(0)	1.560(5)	C(1)-C(9)-C(5)	110.1	110.7
N(2)-0(3)		1.205(4)	C(3)-C(10)-C(7)	110.4	110.2
N(2)-0(4)		1.206(4)	C(1)-C(2)-N(1)	112.0	112.0
11(2) 0(1)			C(3)-C(2)-N(1)	111.4	111.4
			C(1)-C(2)-Br, N(2)	110.9	110.2
			C(3)-C(2)-Br,N(2)	111.2	111.4
			C(2)-N(1)-O(1)	118.0	118.2
			C(2)-N(1)-O(2)	117.2	116.9
			0(1)-N(1)-0(2)	124.7	124.8
			N(1)-C(2)-Br, N(2)	108.3	98.7

Table (3)

Bond distances (Å) and angles (deg.) for 1,3,5,7-tetranitroadamantane with e.s.d.'s in parentheses

Bond dista	nce	Bond angle	
C(1)-C(2)	1.528(3)	C(2)-C(1)-C(9)	111.5(2)
C(1)-C(9)	1.531(3)	c(8)-c(1)-c(9)	110.3(2)
C(1)-C(8)	1.539(3)	c(8)-c(1)-c(2)	110.9(2)
C(1)-N	1.529(3)	C(2)-C(1)-N	106.9(2)
0(1)-N	1.216(3)	C(8)-C(1)-N	108.0(2)
0(5)-1	1.203(3)	C(9)-C(1)-N	109.1(2)
		C(1)-N-O1	117.1(2)
		C(1)-N-02	118.8(3).
		01-N-02	124.1(3)
		C(1)-C(2)-C(3)	106.4(2)
		c(1)-c(9)-c(5)	106.6(2)

Table (4)

Bond distances (\mathring{A}) and valence angles (deg.) for TBTAA with e.s.d.'s in parentheses.

Bond distance	ces (cage)	Bond as	gles (cage)			
C(1)-N(2) C(1)-C(8) C(1)-C(9) N(2)-C(3) N(2)-C(11) C(3)-N(4) C(3)-N(10) N(4)-C(5) N(4)-C(12) C(5)-C(6) C(5)-C(9) C(6)-C(7) C(7)-C(8) C(7)-N(10) N(10)-C(13)	1.473(3) 1.535(4) 1.526(3) 1.456(3) 1.445(3) 1.472(3) 1.459(3) 1.482(3) 1.492(3) 1.524(4) 1.529(4) 1.534(3) 1.529(4) 1.529(4) 1.473(3) 1.475(3)	N(2)-C(1)-C(8) N(2)-C(1)-C(9) C(8)-C(1)-C(9) C(1)-N(2)-C(3) C(1)-N(2)-C(11) C(3)-N(2)-C(11) N(2)-C(3)-N(4) N(2)-C(3)-N(10) N(4)-C(3)-N(10) C(3)-N(4)-C(5) C(3)-N(4)-C(12) N(4)-C(5)-C(6) N(4)-C(5)-C(9) C(6)-C(5)-C(9)	111.4 106.5 109.9 110.0 113.5 114.2 110.2 111.0 111.2 108.9 112.1 112.9 106.7 112.1	C(5)-C(6)-C(7) C(6)-C(7)-C(8) C(6)-C(7)-N(10) C(8)-C(7)-N(10) C(1)-C(8)-C(7) C(1)-C(9)-C(5) C(3)-N(10)-C(7) C(3)-N(10)-C(13) C(7)-N(10)-C(13)	108.1 109.8 112.0 106.2 108.2 108.0 109.6 112.8 114.9	

Bond distance (ring)

	<u>i = A</u>	i = B	<u>i = C</u>
C1(i)-C2(i) C1(i)-C6(i) C2(i)-C3(i) C3(i)-C4(i) C4(i)-C5(i) C5(i)-C6(i) C1(i)-C(11) C1(i)-C(12) C1(i)-C(13)	1.385(4) 1.383(3) 1.381(4) 1.388(4) 1.367(4) 1.373(4) 1.512(3)	1.383(4) 1.381(4) 1.368(5) 1.381(6) 1.373(5) 1.370(4) -	1.382(3) 1.384(4) 1.383(4) 1.369(5) 1.367(4) 1.393(4)
Angles (ring)	<u>A</u>	В	C
C2(i)-C1(i)-C6(i) C1(i)-C2(i)-C3(i) C2(i)-C3(i)-C4(i) C3(i)-C4(i)-C5(i) C4(i)-C5(i)-C6(i) C1(i)-C6(i)-C5(i)	118.8 120.8 119.7 119.3 121.3 120.3	118.4 120.8 120.0 119.8 119.7 121.2	117.9 121.1 121.1 119.5 120.4 120.6

(e.s.d.'s for all angles are 0.2°)

II.(b) 1,4-dinitroglycoluril (DINGU)

DINGU, a material provided by Dr. C. Coon of Lawrence Livermore Labs, is a nitramine explosive formed by condensing glyoxal and urea in a medium of concentrated nitric acid. The X-ray analysis provided confirmation of the formation of the 1,4 dinitro derivative and also afforded the opportunity to obtain the structural parameters for a nitramine group in a five membered ring, an environment not previously reported in any nitramine crystal structure. DINGU is of interest because of its high density. Although it is substituted with only 2 nitro groups, it is more dense than HMX, primarily because of its efficient packing.

Molecular Structure

Packing

DINGU crystallized in the triclinic $\overline{P1}$ space group with a = 6.407, b = 6.991, c = 9.249 A, α = 103.35, β = 101.61 and γ = 96.70°. The cell volume is 389.0 A³ with two molecules per cell which yields a calculated density of 1.982 mg/mm³. Table (5) gives the bond distances and angles.

The conformation of the molecule is folded-planar. One half of each molecule participates with other molecules in the crystal in an antiparallel stack mode of packing which involves no strong hydrogen bonding while the other halves of the molecules participate in inter-stack hydrogen bonding. Hydrogen bonding links the carbonyl group C(2)=0(2) to the amino N3-H3 of a symmetry related molecule and vice versa. The N(3)···O(2) distance is 2.906 A and the H(3)···O(2) distance is 1.95 A. In addition, there are several close contacts between the molecule and its symmetry mates. The carbonyl C(5)=0(5) and the C(2)=0(2) carbonyl on a symmetry related molecule have an $O(5)\cdot\cdot\cdot C(2)$ ' approach of 2.907 A, which is significantly less than the sum of the usual van der Waals' radii (3.1 A). Additional contacts

involving oxygen and hydrogen have approaches of 2.4 A which is less than the normal van der Waals 0... H contact of 2.6A.

It appears that the presence of carbonyls in this compound is essential to both modes of packing mentioned above. The close antiparallel stack involves tight intermolecular carbonyl approaches, and the hydrogen bonding involves carbonyl acceptors. The carbonyl group, which is generally considered non-energetic because it does not add to the heat of formation, may have a role in facilitating dense packing in energetic compounds. The structure and packing of the tetranitro analog of DINGU, TNGU, will be investigated in FY84 to further clarify this question. TNGU reportedly has a density significantly greater than 2.0 mg/mm³.

DINGU (1,4-dinitroglycouril) Bond Distances, Angles, Torsions

Table (5)

Dista	nces	(Angs	strom	s)							
N1	N1A	1.	369(6)	N4	N4 A	1.	386(6	()		
N1	C6A		475(7		C3A	N4		464(7	-		
N1	C2		406(7	-	N4	C5		423(7	-		
C2	02		214(7	•	C5	05		201(7	-		
C2	N3		346(7		C5	N6		346(8			
N3	C3A		442(7	•	N6	C6A		412(7	-		
иЗ	Н3		98(7)	•	N6	Н6		76(7)			
C3A	C6A		573(7)				• •			
C3A	нза		98(7)	•	C6A	H6A	1.	01(7)			
N1A	01A		233(6)	N4A	04B		229(6			
NIA	01B		206(6	-	N4A	04A		213(6			
Angle	es (de	egree	9)								
C2	N1	C64		115.2(C3A	N4		:5	114.5	
C2	NL	N1		124.8(C5	N4		14 A	125.5	
C6A	N1	N1	A	120.0(C3A	N4		14A	118.1	
N1	C2	02		127.7(-	N4	C5)5	126.5	-
N1	C2	N3		105.0(N4	C5		16	104.0	
02	C2	N3		127.3(N6	C5)5	129.5	
C2	N3	C34	A	115.4(5)	C5	N6		6A	116.4	
C2	N3	Н3		123(4)		C5	N6		16	118(6	
C3A	N3	н3		121(4)		C6A	N6		16	125(6	
М3	C3A	N4		111.9(-	N6	C6.		1	115.1	
173	C3A	C6.		104.4(5)	N6	C6.		:3A	104.5	
N3	C3A	Н3.		114(4)		N6	C6.		I6A	113(4	
N 4	C3A	C6.		99.7(4)	N1	C6.		3A	99.7	
N4	C3A			114(4)		N1	C6.		l6A	113(4	•
C6A	C3A	H3.		112(4)		C3A	C6.		16A	110(4	-
N1	N1A			114.6(N4	N4.		4B	113.9	
N1	NIA			119.2(N4	N4.)4A	118.5	
Ola	N1A	01	В	126.2(5)	04A	N4.	A C	4B	127.5	5(5)
Tors	ion A	ngles	(deg	rees)							
N1	C2	N3	C3A	-2.9	(6)	N4	C5	N6	C6A		7(7)
C2	N3	C3A	C6A	5.1	(7)	C5	N6	C6A	C3A	5.1	L(7)
N3	C3A	C6A	N1	-4.8	(6)	N6	C6A	C3A	N4	-8.3	3(6)
C3A	C6A	NI	C2	3.6	(6)	C6A	C3A	N4	C5	9.6	5(6)
C6A	N1	C2	N3	-0.8	(6)	C3A	N4	C5	N6	-7.]	1(6)

Note: Values reported in the left and right columns are related by a non-crystallographic mol. 2-fold symmetry axis.

II.(c) 1,3,3-Trinitroazetidine (TNAZ)

This dense (1.84 mg/mm³)* energetic compound, provided by Dr. Kurt Baum of Fluorochem Inc., contains a strained nitramine group and two additional nitro groups. The x-ray analysis provides model structural parameters for nitramines in four membered rings and nitro groups in crowded molecules.

Molecular Geometry

TNAZ crystallized in the orthorhombic space group Pbca, with a = $5.73^{\rm h}A$, b = 11.127A and c = 21.497A. The cell volume is $1370.0~A^3$ with 8 molecules per unit cell. The density at -30° C, the sample temperature during data collection, is $1.86~\rm mg/mm^3$. Bond distances and angles are given in Table (6) with the molecular geometry illustrated in Fig.(6). The azetidine ring is puckered with a dihedral angle, ϕ , (the angle between the C-C-C and C-N-C planes) of 13.6° . This may be compared with crystallographic data on other azetidine derivatives 5.6 for which ϕ varies from 0 to 14° , and also with the value ϕ = 33.1° for azetidine in the gas phase 7. The out-of-plane deformation angle of the ring nitrogen (the angle between the C-N-C plane and the N-N vector) is 39.4° which is larger than that normally observed in nitramines. An examination of the previous literature shows an average of 12.2° with a range of 0 to 35° for this angle. Orientation of the N-NO₂ is trans with respect to C(3), while the planes of the nitro groups bonded to C(3) are mutually perpendicular (torsion angle N7-C3-N6-O6A = 0.4°).

Packing.

TNAZ packs with no contacts closer than normal van der Waals' contacts. The nearest intermolecular contacts are N6 \cdots 07B' of 2.90A and 06A \cdots H4A of 2.58 A.

^{*} density at 20° C

 $\underline{\text{Table (6)}}$ $\underline{\text{1,3,3-Trinitroazetidine}} \text{ bond distances (A}^{\circ}) \text{ and angles (deg.) with}$ distance e.s.d.'s in parentheses. All bond angle e.s.d.'s are 0.5°.

Bond d	istance	Bond and	<u>ile</u>	Bond angl	<u>e</u>
N1-C2	1.484(10)	C2-N1-C4	95.1	C3-N6-06A	118.8
N1-C4	1.474(10)	C2-N1-N5	120.5	C3-N6-06B	115.2
N1-N5	1.351(9)	C4-N1-N5	122.4	06a-n6-06b	126.0
C2-C3	1.533(10)	N1-C2-C3	86.6	C3-N7-O7A	116.3
C3-C4	1.545(11)	C2-C3-C4	90.3	C3-N7-O7B	117.1
C3-N7	1.493(10)	C2-C3-N6	114.5	07A-N7-07B	126.6
C3-N6	1.516(10)	C2-C3-N7	116.2	Torsion a	ngle
N5-05A	1.217(8)	N6-C3-N7	105.5	C4-N1-C2-C3	-9. 6
N5-05B	1.222(8)	N6-C3-C4	114.2	N5-N1-C2-C3	-142.2
N6-06A	1.214(8)	N1-C4-C3	86.5	N7-C3-N7-06A	-0.4
N6-06B	1.222(8)	N1-N5-05A	118.4	N6-C3-N7-07A	89.2
N7-07A	1.216(8)	N1-N5-05B	116.3	C2-N1-N5-05A	-34.7
N7-07B	1.212(8)	05A-N5-05B	125.3	C4-N1-N5-O5B	29.0
				C4-C3-N6-06A	-129.2
Dih	edral angles			C2-C3-N6-06A	128.6
C2-C3-C4	plane / C2-N1	-C4 plane	13.6	C2-C3-N7-O7A	-38.8
C2-N1-C4	plane / N1-N5	vector	39.4	C2-C3-N7-O7B	143.0

II.(d) HMX Analogs

Three new HMX analogs, provided by the NSWC, 1,5-dinitroso-3,3,7,7-tetranitro-1,5-diazacyclooctane (I), 1-nitroso-3,3,5,7,7-pentanitro-1,5-diazacyclooctane (II), and 1,3,3,5,7,7-hexanitro-1,5-diazacyclooctane (III) were examined (in collaboration with Dr. H. Ammon of the U. of Md.) and their structures were determined⁸. While these materials are highly dense and energetic, they are not quite dense enough to surpass β -HMX as an explosive.

Molecular Structure

All of these molecules have a chair conformation similar to that of β-HMX. The packing and symmetry in these three crystals are identical, with each of the molecules lying on a center of symmetry at (1/2, 0, 0) coincident with the center of the eight membered ring. Molecule (II) is disordered with the occupancies of nitroso and nitramine consistent with that required for the expected symmetry. Overall similarity of the molecules is sufficiently good that only one set of bond distances and angles is provided, Table (8), and only one molecule shown in Fig. (7). The differences are at the amino-linked nitroso and nitro groups. As the oxygen substitution increases from (I) to (III) the N-N distance also increases. The N-N bond length in the NO/NO₂ disorder compound (II), 1.352 A, is near the mean of the other two [1.326 A in (I), and 1.366 A in (III)].

Packing

As the oxygen substitution increases from (I) to (III), a cell volume increase is expected to occur, reflecting the increase in the molecular volume. The cell dimensions <u>a</u> and <u>c</u> increase, however <u>b</u> decreases suggesting some extra intramolecular attraction directed along the b axis. An analysis

of the packing reveals a few 0...H contacts directed along b which decrease on going from (I) to (III). Quantum chemical calculations on β -HMX9 indicate that the hydrogens in HMX become quite strongly positive, and the nitro oxygens quite negative due to the electron-withdrawing nature of the nitro group. On going from nitroso to nitro substitution, the electron withdrawal increases and strengthens these attractive 0...H contacts, causing an actual shrinkage along the b axis.

	Tabl	Le (7)	
	(1)	(II)	<u>(III)</u>
a (A)	10.695	10.955	11.289
ъ (A)	10.607	10.418	10.205
c (A)	11.575	11.756	11.880
Vol (A3)	1313.1	1341.7	1368.6
Z	ц	4	4 .
Mol. wt.	352.2	368 •2	384.2
$d_{x}(mg/mm^{3})$	1.781	1.823	1.864
Space group	Pbca	Pbca	Pbca

FIG. (7)

DINITRO HEX ANALOG

Table 8.

Bond lengths (A°), bond angles (deg.), torsion angles (deg.)

and e.s.d.'s (in parentheses) for the dinitro HMX analog.

Bond dis	stances				
N(1)-C(2)	1.454(3)	N(2)-0(1)	1.224(3)	G(3)-N(f)	1.538(3)
N(1)-N(S)	1.366(2)	N(2)-0(2)	1.214(3)	N(3)-O(3)	1.205(3)
N(1)-C(4)	1.465(3)	C(3)-C(4)	1.533(3)	M(3)-O(7)	1.214(3)
c(2)-c(3)	1.530(3)	c(3)-n(3)	1.537(3)	N(4)-0(5)	1.219(3)
Bond Ar	ngles			$-\underline{N(4)-0(6)}$	<u>1.200(3)</u>
C(2)-N(1)-	1(2)	117.3(2)	C(4)-C	(3)-11(3)	109.6(2)
C(2)-N(1)-C	2(41)	121.7(2)	c(4)-c	(3)-N(4)	109.7(2)
C(4')-N(1)-	-M(S)	117.1(2)	N(3)-C	(3)-N(ħ)	101.4(1)
N(1)-C(2)-C	c(3)	113.1(2)	C(3)-N	(3)-0(3)	118.6(2)
N(1)-N(2)-	0(1)	116.4(2)	C(3)-N	(3)-0(4)	115.8(20
N(1)-N(2)-	0(2)	117.3(2)	0(3)-1	(3)-0(4)	125.6(20
0(1)-N(2)-	0(2)	126.2(2)	C(3)-N	(4)-0(5)	115.2(2)
c(2)-c(3)-	C(#)	115.7(2)	G(3)-W	(4)-0(6)	118.9(2)
c(2)-c(3)-	и(3)	110.2(2)	0(5)-N	(4)-0(6)	125.9(2)
c(2)-c(3)-	N(4)	109.2(1)	G(3)-0	(4)-N(1')	112.2(2)
Torsion	Angles				
C(4')-N(1)	-c(2)-c(3)	115.7(2)	C(2)-N(1)	-N(2)-O(1)	15.0(3)
N(1)-C(2)-	c(3)-c(4)	-30.7(3)	N(1)-C(2)	-C(3)-N(3)	94.3(2)
c(2)-c(3)-	C(4)-N(1')	-31.6(3)	N(1)-C(2)	-C(3)-N(4)	-155.1(2)
C(3)-C(4)-	N(1')-C(2')	115.9(2)	c(2)-c(3)	-N(3)-O(3)	-126.2(2)
c(3)-c(2)-	n(1)-n(2)	-87.1(2)	C(2)-C(3)	-N(3)-O(5)	-163.4(2)

^{*} The primed atoms are related to the original ones by a center of symmetry at 1/2,0,0 .

II.(e) Tetra-acetyl-bicyclo-HMX (TABHMX)

This material, provided by Dr. H. Adolph of NSWC, is not an energetic compound. Synthesis of this compound was undertaken since theoretical calculations indicated that this bicyclic backbone, when fully nitro substituted, is likely to yield higher densities than HMX. A tetra-nitro version of this compound would only differ from HMX by the added presence of a covalent bond bridging the central ring of HMX, and the loss of two methylene hydrogens. For this reason the energetic target compound is called 'bicyclo-HMX'.

Molecular Geometry

The material crystallizes in two different space groups, depending on solvent used. TABHMX1 was grown from CH₃OH and TABHMX2 from CH₃CN. The crystal data for each form is listed in Table (9). The molecular geometry of these forms is essentially identical, with differences in packing only. The Pca2₁ cell very closely resembles one-half of the Pbca cell. Both forms are racemic, but (1) is acentric, and (2) is centric. For that reason only one set of bond distances and angles are given, Table (10). Orientation of the two fused five membered rings with respect to one another is folded-planar. Least squares planes through each of the five-membered rings form a dihedral angle of 75.8°, with the average deviation of the atoms in each ring from its least squares plane being only ±0.1A. The orientations of the four acetyl groups are defined by the torsion angles: 017-C9-N2-C3 = 165.8°, 018-C10-N4-C3 = 15.0°, 019-C11-N6-C7 = 179.7° and 020-C12-N8-C7 = 13.4°.

Table 9. Crystal Data for Two Forms of TABHMX

	TABHMX1	TABHMX2
a. (A)	17.616	17.848
ъ (А)	9.724	7.738
c (A)	7•977	19.682
Vol. (A3)	1366.4	2718.2
Z	4	4
$d_x (mg/mm^3)$	1.372	1.379
Space group	Pca2 ₁	Pbca

Table 10. Bond distances (A°) and valence angles (deg.) with e.s.d.'s in parentheses for TABHMX2 from CH3CN solvent.

Bond	distances

C(1)-N(2) 1.443(4) C(1)-C(5) 1.544(4) C(1)-N(8) 1.463(3) N(2)-C(3) 1.451(4) N(2)-C(9) 1.366(4) C(3)-N(4) 1.469(4) N(4)-C(5) 1.468(4)	N(4)-C(10) C(5)-N(6) N(6)-C(7) N(6)-C(11) C(7)-N(8) N(8)-C(12) C(9)-C(13)	1.352(4) 1.449(4) 1.465(4) 1.364(4) 1.460(4) 1.352(4) 1.493(5)	C(9)-O(17) C(10)-C(14) C(10)-O(18) C(11)-C(15) C(11)-O(19) C(12)-C(16) C(12)-O(20)	1.219(4) 1.499(5) 1.219(4) 1.504(5) 1.221(4) 1.497(5) 1.226(4)
Bond angles				
N(2)-C(1)-C(5) N(2)-C(1)-N(8) C(5)-C(1)-N(8) C(1)-N(2)-C(3) C(1)-N(2)-C(9) N(2)-C(3)-N(4) C(3)-N(4)-C(5) C(3)-N(4)-C(10) C(5)-N(4)-C(10) C(1)-C(5)-N(6) C(1)-C(5)-N(6) C(1)-C(5)-N(6) C(5)-N(6)-C(7) C(5)-N(6)-C(11) C(7)-N(6)-C(11)	104.5(2) 112.8(2) 103.0(2) 108.5(2) 127.2(3) 121.2(3) 102.4(3) 111.0(2) 125.8(3) 121.1(3) 104.8(2) 103.1(2) 113.6(2) 101.1(2) 127.4(3) 119.5(3)	N(6)-C(7)-N C(1)-N(8)-C C(1)-N(8)-C C(7)-N(8)-C N(2)-C(9)-C C(13)-C(9)-C C(13)-C(10)-C N(4)-C(10)-C C(14)-C(10)-C N(6)-C(11)-C C(15)-C(11)-C N(8)-C(12)-C(16)-C(12)-C(16)-C(12)-C	2(7) 2(12) 2(12) 2(13) -0(17) -0(14) -0(18) -0(18) -0(19) -0(19) -0(19)	102.4(3) 113.0(2) 120.9(2) 126.0(3) 118.2(3) 119.5(3) 122.4(3) 117.5(3) 120.6(3) 121.9(3) 117.8(3) 120.3(3) 121.9(3) 117.4(3) 120.4(3) 122.2(3)

FIG.(8)

III. Conformational Energy Analysis and Model-Building

(a) Energy Analysis and Structure Prediction for Octanitrocubane

Using the MM2 molecular mechanics program, modified in this lab to accommodate nitro and nitramino groups, models of isolated molecules of cubane and octanitrocubane were constructed and energy minimized. Summarizing briefly, the calculations showed no evidence of strain due to nitro-addition in the resultant distances, angles, and inter-nitro approaches. The large strain inherent in the cubic cage formation remains, but is not increased or decreased appreciably by nitro addition. However, in octanitrocubane there are sixteen N-O dipoles, all pointing outwards from the center of the molecule. This adds a certain amount of electrostatic repulsion energy which is difficult to predict well, but is estimated to be about 3.5 kcal/per molecule for each nitro group. This is very close to the dipole-dipole repulsion energy (estimated by the same program) found in gem-dinitro alkanes, which are known stable compounds.

A slightly more detailed analysis of the steric energy of cubane and octanitrocubane is provided by Table 11. Most of the strain for both molecules is in the angle-bending and torsional components. Obviously, within the cage eclipsed torsions and bond angles much smaller than tetrahedral are required for closure; somewhat less obviously, the addition of any exosubstituents is accompanied by large strain. Each substituent is torsionally eclipsed with three other substituents, and the cage-substituent bond angles are necessarily much larger than tetrahedral values. These components are roughly estimated by comparing the MM2 results for cubane with a cubane cage stripped of all hydrogens (Table 11).

In Table 11, the column labelled "van der Waals'" refers to direct electrodynamic forces between atoms which are not bonded to each other or to a common neighbor. At short distances, van der Waals' interactions are due to overlap of non-bonded electron distributions and can be massively repulsive; at longer distances, the van der Waals' potential in this program includes a weakly attractive term known as the dispersion energy. In octanitrocubane, the net van der Waals' contribution is attractive, for most of the non-bonded interatomic distances are larger than the usual van der Waals' "contact distances"; i.e., they are in the weakly attractive rather than the strongly repulsive region. These intramolecular distances (Table 12) are similar to the intermolecular distances usually observed in crystals of nitro and nitroamino compounds (RDX, HMX, tetranitroadamantane). The nitro group is actually subject to less intermolecular crowding in octanitrocubane than in HMX or RDX, because the cube formation draws the carbons away from the nitro oxygens. For example, in RDX intramolecular C...O distances from 2.63 to 2.68 A are observed; these are much shorter than any in the octanitrocubane model.

The molecular structure of octranitrocubane is pictured in Figure Nine. No symmetry was imposed during the molecular refinement, and random orientations were chosen for initial nitro orientations. Final structures which were essentially the same resulted from three independent minimizations. The final structure cannot have cubic symmetry, since a nitro is substituted on the 3-fold axis of the cube. To within a few degrees, all final conformation angles correspond to D_2 molecular symmetry, which consists of three two-fold axes of symmetry, one perpendicular to each face of the cube. This makes atoms 1, 3, 5 and 7 of the cube equivalent to each other, but slightly different from atoms 2, 4, 6 and 8 (which are equivalent to each other).

The nitro groups are rotated slightly from eclipsed torsions, so no mirrors exist, and no four-fold axes. In Figure Nine, the nitros on atoms 1, 3, 5 and 7 are approximately eclipsed with vertical cage bonds (average torsion = 14.3° , range $\pm 1^{\circ}$), while atoms 2, 4, 6 and 8 are nearly eclipsed with horizontal cage bonds (average torsion = 11.7° , range $\pm 1^{\circ}$).

Despite the slight differences in site symmetry, all bond distances between similar atoms were identical; these distances are C-C, 1.549A; C-N, 1.507A; and N-O, 1.205A. These distances are extremely dependent on the input potentials used, whereas the final conformational torsion angles are often more sensitive to the stereochemistry of the individual case, and only weakly potential-dependent. In this case, the potentials were fit to several nitroadamanane crystal structures; the C-C bond length may possibly be longer (1.56-1.59A) in any real cubane derivative.

The bond angles in the final structure are not unusual in any way.

Cage bond angles are in the range 89-91°. Exo-cage angles vary somewhat;

at each carbon atom there are three C-C-N angles which are 122.7°, 125.3°

and 127.6° to within 0.2°. The smallest bond angle is of the type C4-C1-N

(see Fig. 9). This slight reduction in bond angle seems to indicate that

the closest-approaching nitro groups, in this case on C1 and C4, are actually

attracting one another. The nitro groups are planar, with CNO angles of 117

+1° and ONO angles of 125.6 +0.1°.

Fig. 9.

Table 11. Steric Energy of Hypothetical
Nitro Cage Compounds (kcal/mole)

	Stretch	Bend	van der Waals	Torsion	Dipole	Total
Cubane-8H atoms	3.82	80.47	4.09	24.23	-	112.6
Cubane	3.18	133.77	2.54	38.01	-	177.5
Octanitrocubane	3,94	143.16	-4.58	38.19	-	180.7
Octanitrocubane 1.8 D. NO dipole	11	**	11	11	29.41	210.1
Hexa-nitro-hexa- aza adamantane	2.54	5.48	8.54	20.04	7.88	4.48

Table 12. Shortest Non-bonded Approaches in Octanitrocubane

Type	Number	Distance (A)	vdW Contact
N • • • • O	8	2.98	2.9
00	4	3.08	2.8
o•••c	8	3.02	3.1
0•••C	8	3.06	3.1

III.(b) Energy Analysis of Hexanitro-hexa-aza-adamantane

The energetic minimization of a molecular model of hexanitrohexa-aza-adamantane (HAZA) is underway. Two minimizations with the NRL-modified MM2 program were run to convergence. After a full analysis of the results, further runs may be necessary to corroborate that a global energy minimum was indeed found. However, some important questions are already answered by our minimized model. The main point proved by this model is that a reasonable three-dimensional model of HAZA can be built which contains no impossible (or even unlikely) distortions in bond distances, angles, or non-bonded approaches.

HAZA shows much more repulsion between nitro groups, and especially between cage atoms and nitro groups, than octanitrocubane. On the other hand these non-bonded approaches are not short enough to be unprecedented or infeasible; the intramolecular crowding is very similar to that observed in HMX & RDX (see below).

The current model of HAZA contains, as a result of the energy minimization, slightly nonplanar nitramine groups. In some compounds, such as trinitroazetidine, the amino nitrogen atom is almost tetrahedral, and thus the nitramine is decidedly nonplanar; in others, such as DINGU, the amino nitrogen and the nitramine group are almost completely planar. Our current results, using soft nitramine torsional potentials, indicate that the nitramines in HAZA bend about 9° out-of-plane. In HMX & RDX crystals, similar nitramine bends vary from 0 to 25° out-of-plane.

With nonplanar amino nitrogen atoms, the possibility of conformational isomerization arises. Each nitro group can be out-of-plane in one of two directions; all combinations of bends would seem to lead to the possibility

of 64 isomers. However, because of the high symmetry of the cage backbone, this large number reduces to only four energetically distinct types (i.e., neglecting mirror images which would be non-superimposable but equal in energy). These four isomers can be labelled by listing the 'axial' or 'equatorial' disposition of the three substituents on each of the four sixmembered rings in the cage. The four isomers which we found to be distinct are:

- (a) aaa/aae/aee/eee (no symmetry)
- (b) aaa/aee/aee/aee (possible 3-fold symmetry)
- (c) aae/aae/aee/eee (possible 3-fold symmetry)
- (d) aae/aae/eea/eea (possible 2-fold symmetry)

Our current HAZA model, shown in Fig. 10, has the asymmetric conformation (a). The starting model for the energy minimization was a 'neutral' conformation in which all nitramines were planar (neither axial nor equatorial). In future work, we will attempt to force a model to adopt some of the more symmetrical conformations (b-d), and see if any are significantly more or less strained than the current model.

The various components of the steric energy of HAZA are shown in Table 11. In contrast to octanitrocubane, there is little angle-bend strain. The torsional component is largely due to nitro-cage eclipsed bond interactions, as it was in the nitrocubane. The overall steric energy is considerably lower than for octanitrocubane; the only component which is larger is the van der Waals energy, and this is due to numerous short nitro···cage carbon interactions.

Bonded distances predicted for HAZA by the MM2 calculation are:

C-N 1.484(5)A N-N 1.386(4)A C-H 1.115(1)A N-O 1.223(1)A

Predicted bond angles in HAZA are (to within $\pm 2^{\circ}$):

 NCN
 108°
 NCH
 112°

 CNC
 112.5°
 CNN
 118°

 ONO
 124.5°
 NNO
 118°

Each carbon atom of the cage has three nonbonded nitro oxygen neighbors at distances from 2.72 to 2.90A (usual van der Waals' distance is 3.1A). Each hydrogen atom is approached by three oxygen atoms at distances from 2.43 to 2.58A (van der Waals distance is 2.6A). This indicates that HAZA is slightly crowded, but is considerably less crowded than the known stable compounds RDX and HMX, in which shorter H···O contacts (2.19-2.30A) and C···O contacts (2.60-2.68A) were observed 10.11. However, the close H···O approaches in HAZA do indicate that further nitro-substitution of the tertiary carbon atoms will be almost certainly impossible.

HEXANITRO-HEXA-AZA-ADAMANTANE

REFERENCES

- 1. George, C. and Gilardi, R.; Acta Cryst. (1983) C39, 1674-1676.
- George, C. and Gilardi, R.; Acta Cryst. (1984) C40, 674-676.
- 3. Sadova, N.I. and Vilkov, V.L.; Usp. Khim. (1982) 51, 153-184.
- 4. Gilardi, R.; Acta Cryst. (1984), in preparation.
- 5. Towns, R.L. and Trefonas, L.M.; J. Amer. Chem. Soc. (1971) 93, 1761.
- McGandy, E.L., Berman, H.M., Burgner II, J.W. and Van Etten, R.L.;
 J. Amer. Chem. Soc. (1969) 91, 6173.
- 7. Mastryukov, V.S., Dorofeeva, O.V., Vilkov, L.V. and Hargittai, I.;
 J. Mol. Struct. (1976) 34, 99-112.
- 8. Ammon, H.L., Gilardi. R. and Bhattacharjee, S.K.; Acta Cryst. (1983) C39, 1680-1684.
- 9. Hariharan, P.C., Koski, W.S., Kaufman, J.J., Miller, R.S. and Lowrey, A.H.; Int. J. Quantum Chem. Symp. (1982) 16, 363-375.
- 10. Choi, C.S. and Prince, E.; Acta Cryst. (1972) B28, 2857-2862.
- 11. Choi, C.S. and Boutin, H.P.; Acta Cryst. (1970) B26, 1235-1240.

DISTRIBUTION

	Copies		Copies	
Dr. L. V. Schmidt Assistant Secretary of the Navy (R, E, and S) Room 5E 731	1 .	Dr. F. Roberto AFRPL MKPA Edwards Air Force, CA 93523	1	Ď
Pentagon Washington, DC 20350	•	Dr. L. H. Caveny Air Force Office of Scientific Research	1	,
Dr. A. L. Slafkosky Scientific Advisor Code RD-1 Commandant of the Marine Corps Washington, DC 20380	1	Directorate of Aerospace Sciences Bolling Air Force Base Washington, DC 20332		
Dr. Richard S. Miller Code 432 Office of Naval Research Arlington, VA 22217	10	Mr. Donald L. Ball Air Force Office of Scientific Research Directorate of Chemical Sciences Bolling Air Force Base	1	•
Dr. David Siegel	1	Washington, DC 20332		£.
Code 260 Office of Naval Research Arlington, VA 22217	-	Dr. John S. Wilkes, Jr. FJSRL/NC USAF Academy, CO 80840	1	•
Dr. R. J. Marcus Office of Naval Research Western Office 1030 East Green Street Pasadena, CA 91106	1	Dr. R. L. Lou Aerojet Strategic Propulsion Co. P.O. Box 15699C Sacramento, CA 95813	1	5
Dr. Larry Peebles Office of Naval Research East Central Regional Office 666 Summer Street, Bldg. 114-D	1	Dr. V. J. Keenan Anal-Syn Lab., Inc. P.O. Box 547 Paoli, PA 19301	1	Ű
Boston, MA 02210		Dr. Philip Howe DRDAR-BLT	1	
Dr. Phillip A. Miller Office of Naval Research San Francisco Area Office One Hallidie Plaza, Suite 601 San Francisco, CA 94102	1	Ballistic Research Laboratory U. S. Army Armament Munitions and Chemical Command Aberdeen Proving Ground, MD 21005		Þ
•	1	Mr. L. A. Watermeier DRDAR-BLI	1	•
Mr. Otto K. Heiney AFATL-DLDL Eglin Air Force Base, FL 32542	*	Ballistic Research Laboratory U. S. Army Armament Munitions and Chemical Command		
Mr. R. Geisler	1	Aberdeen Proving Ground, MD 21005		
MKP/MS24 AFRPL Edwards Air Force Base, CA 9352	3	Dr. W. W. Wharton DRSMI-RKL U. S. Army Missile Command Redstone Arsenal, AL 35898	1	ŧ

· ·	Copies		Copies
Dr. A. Faulstich Code MAT-0716 Office of Naval Technology Washington, DC 20360	1	Mr. G. F. Mangum Thiokol Corporation Huntsville Division Huntsville, AL 35807	1
Dr. E. Zimet Code MAT-0712 Office of Naval Technology Washington, DC 20360	1	Mr. E. S. Sutton Thiokol Corporation Elkton Division P.O. Box 241 Elkton, MD 21921	1
Mr. Joe McCartney Naval Ocean Systems Center San Diego, CA 92152	1	Dr. G. Thompson Thiokol Corporation Wasatch Division	1
Dr. S. Yamamoto Marine Sciences Division Naval Ocean Systems Center	1	MS 240, P.O. Box 524 Brigham City, UT 84302	
Dr. G. Bosmajian Applied Chemistry Division Naval Ship Research and Development Center Annapolis, MD 21401	1	Dr. T. F. Davidson Technical Director Thiokol Corporation Government Systems Group P.O. Box 9258 Ogden, UT 84409	1
Dr. H. Shuey Rohm and Haas Company Huntsville Defense Contract Office Arthur Murray Building	1	Dr. C. W. Vriesen Thiokol Elkton Division P.O. Box 241 Elkton, MD 21921	1 .
723-A Arcadia Circle Huntsville, AL 35801		U. S. Army Research Office Chemical and Biological Sciences Division	1
Dr. J. F. Kincaid KAMAN Sciences Suite 1200	1	P.O. Box 12211 Research Triangle Park, NC 27709	
1911 S. Jefferson Davis Highway Arlington, VA 22202		Dr. R. F. Walker DRDAR-LCE U. S. Army Armament Munitions	1
Mr. J. Culver (SP-27311) Strategic Systems Project Office Propulsion Unit	1	and Chemical Command Dover, NJ 07801	
Washington, DC 20376		Dr. R. G. Rhoades DRSMI-R	1 •
Mr. E. L. Throckmorton (SP-2731) Strategic Systems Project Office Room 1048	1	U. S. Army Missile Command Redstone Arsenal, AL 35898	•
Washington, DC 20376		Dr. W. D. Stephens Atlantic Research Corp.	1
Dr. D. A. Flanigan Thiokol Corporation Huntsville Division Huntsville, AL 35807	1	Pine Ridge Plant 7511 Wellington Road Gainesville, VA 22065	

÷	Copies		Copies
Dr. A. W. Barrows DRDAR-BLP Ballistic Research Laboratory U. S. Army Armament Munitions and Chemical Command	1	Dr. Jack Linsk Code Org. 83-10, Bldg. 154 Lockheed Missiles and Space Co. P.O. Box 504 Sunnyvale, CA 94088	1
Aberdeen Proving Ground, MD 2100 Dr. C. M. Frey Chemical Systems Division P.O. Box 358 Sunnyvale, CA 94086	1	Dr. B. G. Craig NSP/DOD, MS-245 Los Alamos National Laboratory P.O. Box 1663 Los Alamos, NM 87545	1
Professor F. Rodriguez Cornell University School of Chemical Engineering Olin Hall, Ithaca, NY 14853	1	Dr. R. L. Rabie WX-2, MS-952 Los Alamos National Laboratory P.O. Box 1663 Los Alamos, NM 87545	1
Defense Technical Information Center DTIC-DDA-2 Cameron Station Alexandria, VA 22314	12	Dr. R. Rogers WX-2 Los Alamos National Laboratory P.O. Box 1663 Los Alamos, NM 87545	1
Dr. Rocco C. Musso Hercules Aerospace Division Hercules Incorporated Allegheny Ballistic Laboratory P.O. Box 210	1	Mr. R. Brown Code 330 Naval Air Systems Command - Washington, DC 20361	1
Washington, DC 21502 Dr. Ronald L. Simmons Hercules, Inc. AFATL/DLDL	1	Dr. H. Rosenwasser AIR-310C Naval Air Systems Command Washington, DC 20361	1
Eglin Air Force Base, FL 32542 Dr. E. H. Debutts Hercules, Inc. Baccus Works	1	Mr. B. Sobers Code 350 Naval Air Systems Command Washington, DC 20361	1
P.O. Box 98 Magna, UT 84044 Dr. James H. Thacher Hercules, Inc. Baccus Works P.O. Box 98	1	Dr. L. R. Rothstein Assistant Director Naval Explosives Development Engineering Department Naval Weapons Station Yorktown, VA 23691	1
Magna, UT 84044 Mr. Theodore M. Gilliland Johns Hopkins University Applied Physics Laboratory Chemical Propulsion Information Johns Hopkins Road Laurel, MD 20810	1 Agency	Dr. Lionel Dickinson Code D Naval Explosive Ordnance Disposal Technology Center Indian Head, MD 20640	1

•	•			
	Copies		<u>Copies</u>	
Mr. C. L. Adams Code PM4 Naval Ordnance Station Indian Head, MD 20640	1	Mr. Lee N. Gilbert Code 3205 Naval Weapons Center China Lake, CA 93555	1	
Mr. S. Mitchell Code 5253 Naval Ordnance Station Indian Head, MD 20640	1	Dr. E. Martin Code 3858 Naval Weapons Center China Lake, CA 93555	1	•
Dr. William Tolles Dean of Research Naval Postgraduate School Monterey, CA 93940	1	Mr. R. McCarten Code 3272 Naval Weapons Center China Lake, CA 93555	1	•
Code 6100 Naval Research Laboratory Washington, DC 20375	1 .	Dr. A. Nielsen Code 385 Naval Weapons Center China Lake, CA 93555	1	•
Dr. J. Schnur Code 6510 Naval Research Laboratory Washington, DC 20375	1	Dr. R. Reed, Jr Code 388 Naval Weapons Center China Lake, CA 93555	1)
Mr. R. Beauregard Code SEA-64E NC3, Room 11E08 Naval Sea Systems Command Washington, DC 20362	1	Dr. L. Smith Code 3205 Naval Weapons Center China Lake, CA 93555		j
Mr. G. Edwards Code SEA-62R32 CP6, Room 806 Naval Sea Systems Command Washington, DC 20362	1	Dr. B. Douda Code 5042 Naval Weapons Support Center Crane, IN 47522	1	<u>.</u>
Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, PA 19112	1	Dr. R. Kelly Munitions Directorate Propellants and Explosives Defence Equipment Staff British Embassy 3100 Massachusetts Avenue	1	•
Mr. C. M. Christensen Code SEA-62R2 CP6, Room 806 Naval Sea Systems Command Washington, DC 20362	1	Washington, DC 20008 Captain S. Shackelford AFRPL/LKLR Edwards Air Force Base, CA 93523	1	· ,•
Dr. R. Derr Code 388 Naval Weapons Center China Lake, CA 93555	1	Dr. Merrill K. King Atlantic Research Corporation 5390 Cherokee Avenue Alexandria, VA 22314	1	•

<u>.</u>	Copies		Copies
Dr. David C. Sayles Ballistic Missile Defense Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807		Dr. R. A. Rhein Code 3244 Naval Weapons Center China Lake, CA 93555	1
Dr. Kurt Baum Fluorochem, Inc. 680 South Ayon Avenue Azusa, CA 91702	1	Dr. B. David Halpern Polysciences, Inc. Paul Valley Industrial Park Warrington, PA 18976	1
Professor J. H. Boyer University of Illinois Department of Chemistry Box 4348	· 1	Dr. Karl O. Christe Rockwell International 6633 Canoga Avenue Canoga Park, CA 91304	1
Chicago, IL 60680 Dr. Joyce J. Kaufman The Johns Hopkins University Department of Chemistry Baltimore, MD 21218	1	Dr. M. B. Frankel Rockwell International Rocketdyne Division 6633 Canoga Avenue Canoga Park, CA 91304	1
Dr. C. Coon University of California Lawrence Livermore National Labora P.O. Box 808	1 tory	Dr. D. L. Ross SRI International 333 Ravenswood Avenue Menlo Park, CA 94025	1
Livermore, CA 94550 Professor Richard A. Reinhardt Naval Postgraduate School	1.	Mr. Ed van Ribbink Space Ordnance Systems 25977 San Canyon Road Canyon Country, CA 91351	1
Physics and Chemistry Department Monterey, CA 93940 Dr. J. Karle	1	Mr. M. Baron (SP-27314) Strategic Systems Project Office Washington, DC 20376	1
Code 6030 Naval Research Laboratory Washington, DC 20375		Dr. G. M. Clark Department 4410 Aerojet Solid Propulsion Co.	1
Dr. R. Atkins Code 3852 Naval Weapons Center China Lake, CA 93555	1	Sacramento, CA 95813	
Dr. May L. Chan Code 3244 Naval Weapons Center China Lake, CA 93555	1		
Dr. T. B. Joyner Code 3264 Naval Weapons Center China Lake, CA 93555	1		

, T_p