L18 Normalization is a Good Idea Continued

Administrivia

I have Midterms if you didn't get it

Project Part 3 due next Tuesday March 29

Part 3 demos: March 28-April I

HW3: Due April 5

WARNING: SQLite is very permissive and lets you write bad SQL!

Let's order pizza

One type of meat, cheese, and vegetable

Pizza	Topping	Туре
I	Mozzarella	Cheese
I	Pepperoni	Meat
I	Olives	Vegetable
2	Mozzarella	Cheese
2	Sausage	Meat
2	Peppers	Vegetable

Key? (Pizza, Type)

Pizza: Dependencies?

Pizza	Topping	Туре
	Mozzarella	Cheese
	Pepperoni	Meat
	Olives	Vegetable
2	Mozzarella	Cheese
2	Sausage	Meat
2	Peppers	Vegetable

Topping → Type
Pizza, Type → Topping

Is this in BCNF?

Pizza: Decomposition?

Pizza	Topping
	Mozzarella
	Pepperoni
	Olives
2	Mozzarella
2	Sausage
2	Peppers

Topping	Туре
Mozzarella	Cheese
Pepperoni	Meat
Olives	Vegetable
Sausage	Meat
Peppers	Vegetable

Topping → Type

Pizza, Type → Topping: Lost this dependency!

(In SQL: Can't enforce one topping type)

BCNF in general

Decomposition may not preserve dependencies

In practice: additional checks may be needed e.g. join to enforce topping type constraint

3rd Normal Form (3NF)

Relax BCNF (e.g., BCNF⊆3NF)

```
F: set of functional dependencies over relation R for (X→Y) in F
Y is in X OR
X is a superkey of R
```

3rd Normal Form (3NF)

Relax BCNF (e.g., BCNF⊆3NF)

```
F: set of functional dependencies over relation R
    for (X→Y) in F
        Y is in X OR
        X is a superkey of R OR
        Y is part of a key in R
```

Is new condition trivial? NO! key is minimal Nice properties

lossless join ^ dependency preserving decomposition to 3NF always possible

Pizza: Dependencies?

Pizza	Topping	Туре
I	Mozzarella	Cheese
I	Pepperoni	Meat
I	Olives	Vegetable
2	Mozzarella	Cheese
2	Sausage	Meat
2	Peppers	Vegetable

Topping → Type
Pizza, Type → Topping

Is this in 3NF?

Pizza: Dependencies?

Topping \rightarrow Type Pizza, Type \rightarrow Topping

```
for (X→Y) in F
   Y is in X OR
   X is a superkey of R OR
   Y is part of a key in R
```

Victory! This is in 3rd Normal Form (Topping determines part of a key)

Wait, what just happened?

Redundancy is bad Functional dependencies (FD) useful to find duplication BCNF: No redundancy permitted! But may not be able to enforce FDs 3NF: Permits some duplication Can always decompose into 3NF

What's the point?

Improve our data design abilities
by
understanding redundancy

We're going to need some theory

Closure of FDs armstrong's axioms

Minimal FD Set

Principled Decomposition

BCNF & 3NF

Closure of FDs

```
If I know
Name → Bday and Bday → age
Then it implies
Name → age
```

An FD f' is implied by set F if f' is true when F is true F⁺: the closure of F is all FDs implied by F

Can we construct this closure automatically? YES

Closure of FDs

Inference rules called Armstrong's Axioms

```
Reflexivity if Y \subseteq X then X \rightarrow Y
```

Augmentation if
$$X \rightarrow Y$$
 then $XZ \rightarrow YZ$ for any Z

Transitivity if $X \rightarrow Y \& Y \rightarrow Z$ then $X \rightarrow Z$

These are sound and complete rules

sound doesn't produce FDs not in the closure

complete doesn't miss any FDs in the closure

Reflexivity: if $Y \subseteq X$ then $X \rightarrow Y$

```
A \rightarrow A

A, B \rightarrow A

X,Y,Z \rightarrow Y,Z
```

The "trivial" rule:

column always determines itself

a set of columns determines any subset of those columns

Augmentation if $X \rightarrow Y$ then $XZ \rightarrow YZ$ for any Z

If: $A \rightarrow B$

By reflexivity: $C \rightarrow C$

... so ... Stick them together? (informal)

 $A, C \rightarrow B, C$

Transitivity if $X \rightarrow Y \& Y \rightarrow Z$ then $X \rightarrow Z$

Informal: apply them in sequence

 $X \rightarrow Y$: if you know (x, y) then x always implies Y=y

 $Y \rightarrow Z$: if you know (y, z) then y always implies Z=z

Therefore, if you see (x), you know Y=y; and since you see y, you know Z=z

Closure of FDs

$$F = \{A \rightarrow B, B \rightarrow C, CB \rightarrow E\}$$

Is $A \rightarrow E$ in the closure?

 $A \rightarrow B$ given

 $A \rightarrow AB$ augmentation A

 $A \rightarrow BB$ apply $A \rightarrow B$

 $A \rightarrow BC$ apply $B \rightarrow C$

 $BC \rightarrow E$ given

 $A \rightarrow E$ transitivity

We're going to need some theory

Closure of FDs armstrong's axioms

Minimal FD Set

Principled Decomposition

BCNF & 3NF

Minimum Cover of FDs

Closures let us compare sets of FDs meaningfully

$$FI = \{A \rightarrow B, A \rightarrow C, A \rightarrow BC\}$$

$$F2 = \{A \rightarrow B, A \rightarrow C\}$$

FI equivalent to F2

If there's a closure (a maximally expanded FD), there's a minimal FD. Let's find it

Minimum Cover of FDs

I. Turn FDs into standard form decompose each FD so single attr on the right side

2. Minimize left side of each FD

for each FD, check if can delete left attr w/out changing closure given ABC \rightarrow D, B \rightarrow C can reduce to AB \rightarrow D, B \rightarrow C

3. Delete redundant FDs

check each remaining FD and see if it can be deleted e.g., in closure of the other FDs

2 must happen before 3!

Minimum Cover of FDs

 $A \rightarrow B, ABC \rightarrow E, EF \rightarrow G, ACF \rightarrow EG$

Standard form

 $A \rightarrow B$, $ABC \rightarrow E$, $EF \rightarrow G$, $ACF \rightarrow E$, $ACF \rightarrow G$

Minimize left side

 $A \rightarrow B$, $AC \rightarrow E$, $EF \rightarrow G$, $ACF \rightarrow E$, $ACF \rightarrow G$ reason: $AC \rightarrow E + A \rightarrow B$ implies $ABC \rightarrow E$

Delete Redundant FDs

 $A \rightarrow B$, $AC \rightarrow E$, $EF \rightarrow G$, $ACF \rightarrow E$, $ACF \rightarrow G$ reason: $ACF \rightarrow E$ implied by $AC \rightarrow E$, $EF \rightarrow G$

We're going to need some theory

Closure of FDs armstrong's axioms

Minimal FD Set

Principled Decomposition

BCNF & 3NF

Decomposition

Eventually want to decompose R into R₁...R_n wrt F

We've seen issues with decomposition.

Lost Joins: Can't recover R from $R_1...R_n$

Lost dependencies

Principled way of avoiding these?

Lossless Join Decomposition

join the decomposed tables to get exactly the original

e.g., decompose R into tables X,Y

$$\pi_{\times}(R) \bowtie \pi_{\times}(R) = R$$

Lossless wrt F if and only if F⁺ contains

 $X \cap Y \rightarrow X \text{ or } Y \cap X \rightarrow Y$

intersection of X,Y is a key for one of them

Lossless Join Decomposition

Lossless wrt F if and only if F⁺ contains

$$X \cap Y \rightarrow X \text{ or } Y \cap X \rightarrow Y$$

intersection of X,Y is a key for one of them

FDs: $A \rightarrow C, A \rightarrow B$

								Α	В	
Α	В	С	Α	В	E	3	С	i	2	
	2	I	I	2		2		5	3	4
5	3	4	5	3		3	4	9	2	6
9	2	6	0	2		2	6	I	2	6
								9	2	

Lossy! $AB \cap BC = B$ doesn't determine anything

Lossless Join Decomposition

Lossless wrt F if and only if F⁺ contains

$$X \cap Y \rightarrow X \text{ or } Y \cap X \rightarrow Y$$

intersection of X,Y is a key for one of them

FDs: $A \rightarrow C, A \rightarrow B$

Α	В	С	Α	В	
	2	I	l	2	
5	3	4	5	3	
9	2	6	9	2	

Α	С
I	l
5	4
9	6

	Α	В	С
	I	2	I
	5	3	4
	9	2	6

Dependency-preserving Decomposition

F_R = Projection of F onto R FDs X→Y in F⁺ s.t. X and Y attrs are in R Subset of F that are "valid" for R

If R decompose to X,Y.

FDs that hold on X,Y equivalent to all FDs on R $(F_X \cup F_Y)^+ = F^+$

Consider ABCD, C is key, $AB \rightarrow C$, $D \rightarrow A$ BCNF decomposition: BCD, DA $AB \rightarrow C$ doesn't apply to either table!

We're going to need some theory

Closure of FDs armstrong's axioms

Minimal FD Set

Principled Decomposition

BCNF & 3NF

BCNF

```
while BCNF is violated
R with FDs F<sub>R</sub>
if X→Y violates BCNF
turn R into R-Y & XY
```

```
ABCDE key A, D\rightarrowB, C\rightarrowD, BC\rightarrowA

DB, ACDE using D\rightarrowB

DB, CD, ACE using C\rightarrowD
```

uh oh, lost BC→A

Example

Branch, Customer, banker Name, Office BCNO

Name -> Branch, Office N -> BO

Customer, Branch -> Name CB -> N

Example

Branch, Customer, banker Name, Office BCNO

Name -> Branch, Office N -> BO

Customer, Branch -> Name CB -> N

CB is the key (determines everything)

BCNF

while BCNF is violated
R with FDs F_R

if X→Y violates BCNF

turn R into R-Y & XY

BCNO BC \rightarrow N, N \rightarrow BO NBO, CN using N \rightarrow BO

uh oh, lost $BC \rightarrow N$

3NF

 F^{min} = minimal cover of F Run BCNF using F^{min} for X \rightarrow Y in F^{min} not in projection onto $R_1...R_N$ create relation XY

BCNO BC \rightarrow N, N \rightarrow BO NBO, CN using N \rightarrow BO

3NF

 F^{min} = minimal cover of F Run BCNF using F^{min} for X \rightarrow Y in F^{min} not in projection onto $R_1...R_N$ create relation XY

BCNO BC \rightarrow N, N \rightarrow BO NBO, CN using N \rightarrow BO ... oops create BCN NBO, CN, BCN NBO, BCN ... Done N \rightarrow B is not BCNF is 3NF

Summary

Normal Forms: BCNF and 3NF

FD closures: Armstrong's axioms

Proper Decomposition

Summary

Accidental redundancy is really really bad Adding lots of joins can hurt performance

Can be at odds with each other

Normalization good starting point, relax as needed

People usually think in terms of entities and keys, usually ends up reasonable

What you should know

Purpose of normalization

Anomalies

Decomposition problems

Functional dependencies & axioms

3NF & BCNF

properties

algorithm