# L5 APSC221 - Comparison Methods 1

Present Worth, Future Worth, Annual Worth, and Payback Period

Determining the feasibility of a project based on the costs and benefits, aka Resources vs Investments.

## **Key Assumptions in Comparison Methods**

- 1. Costs and benefits are measurable
- 2. Future cash flows are known in certainty
- 3. Cash flows are not affected by inflation (for now)
- 4. Taxes are not applicable (for now)
- 5. There are sufficient funds available unless specified
- 6. All investments have a first cost / cash outflow to start (not zero)

## **Project Relationships**

An independent project's expected cost/benefits do not depend on if another project is chosen.

Mutually exclusive (ME) projects are more realistic. Choosing one project from a pool of projects excludes the others.

Related, but not ME project's expected cost/benefits depend on if another project is chosen.

## Minimum Acceptable Rate of Return (MARR)

A minimum threshold to determine if a project is worth our time.

#### How to determine this rate?

- Weighted Average Cost of Capital (debt and equity) aka WACC
- Internal and External Rate of Return
- Risk Free Rates

## **Comparison Methods**

Take cash flows for project, shift to a common point, and determine, based on common-point value, if we want to take on this project or which project.

Because we are equating cash flows, all projects compared must have the same lifespan.

### Present Worth Method (PW) and Future Worth Method (FW)

Shift cash flows to present or end time.

PW < 0, costs are higher than benefits

PW = 0, this is the break-even point

PW > 0, benefits are outweighing costs

Projects are ME, and the goal is to maximize PW/FW.

## **Annual Worth/Annual Cost Method (AW/AC)**

For profits, maximize AW For costs, minimize AC

## **Independent PW Example**



## **Mutually Exclusive PW Example**

Aurora Air wants to replace its fleet of aircraft at the temporary base. The following 3 options were provided to

| them: | <u>Aircraft</u> | <u>Unit Cost</u> | Annual Savings |
|-------|-----------------|------------------|----------------|
|       |                 |                  |                |

| 737 MAX 7 | \$90 M | \$24.0M |
|-----------|--------|---------|
| A320neo   | \$108M | \$28.5M |
| CS300     | \$87M  | \$23.0M |

Assuming the same required return and time period as the temporary base, which aircraft should they choose?





## **Uneven Lifespan**

When comparing alternatives with unequal lifespans, we need a common basis for economic comparison:

#### 1. Repeated Lives Approach

Repeat each alternative's cash flow until they both span the **Least Common Multiple** of their lifespans.

### 2. Study Period Approach

Determine a specific study period and realize a salvage value at the end of the study. Requires that the costs/benefits are reasonably well distributed.

#### 3. Do an AW/AC Method

Convert the PW of each alternative to an equivalent uniform annual cost over its own lifespan.

Use: AW = Pw(A/P, i, n)

This simplifies the comparison to an annualized basis, regardless of lifespan.

## **Uneven Lifespan Example**

## Example - Uneven Lifespan



A plant has brass fittings which last 3 years and cost \$1200 and stainless-steel fittings which last 4 years and cost \$1500. Neither has a salvage value, and the required interest rate is 8%

Which is the more cost-effective fitting?

LCD=12

## **Payback Period**

Simplest method in judging a project's viability.

Number of years for the first cost to be recovered.

Period = First Cost / Annual Benefit.

If annual benefits are non constant, we can simplify the period:

First Cost = sum of Annual Benefits.

This method is very crude and ignores the time value of money.

We commonly use a hurdle period of 2-4 years. If payback period exceeds, the project is not viable.

## **Payback Period Example**

Of the 2 opportunities below, what is the payback period for each and what would be the recommendation?

|                 | Machine A | Machine B |
|-----------------|-----------|-----------|
| First cost      | \$15 000  | \$20 000  |
| Annual revenues | 9000      | 11000     |
| Annual costs    | 6000      | 8000      |
| Scrap value     | 1000      | 2000      |
| Service life    | 5 years   | 10 years  |

 $\frac{20t}{(1k-8t)} = 6.67$ 

$$PB = \frac{FC}{AB} = \frac{15R}{(9R-6k)} = 5$$