# **BOBA Drink exploration in Bay Area**

#### Introduction: The problem

Bay Area in California knowing for attracting more talented individ uals from all over the world. The tech-culture expanding which brin g many different people and culture from all over the world into the Bay area. Boba is a new trending topic that is very popular in the Asian community. Boba is a type of gelly balls called pearl that served either hot or cold. Boba milk tea is basically as the name describing it. Mixing milk with tea, and add boba. However, there are already so many boba places in the Bay area, and it is difficult for us to know which one or where is the best location to get boba. So my project goal is to locate the boba shops within the bay a rea. Find out which city has the most shop. The consumer can naviga te to those shops or boba entrepreneur avoid a location with too many boba shops.

#### The Data

The solution for our problem would require the data consisted of: - Number of boba shop within the area - Boba shop rating and their location positions

```
In [1]: import pandas as pd
import io
import requests
import lxml
import numpy as np
import folium
from sklearn.cluster import KMeans
from pandas.io.json import json_normalize # tranform JSON file into a panda
from geopy.geocoders import Nominatim # convert an address into latitude an

from IPython.display import Image
from IPython.core.display import HTML

import matplotlib.cm as cm
import matplotlib.colors as colors
```

```
In [*]: # Hidden cell
```

```
In [3]: # Specify the location of our data point
        address = 'Sunnyvale, CA'
        geolocator = Nominatim(user_agent="foursquare_agent")
        location = geolocator.geocode(address)
        latitude = location.latitude
        longitude = location.longitude
        print('The geograpical coordinate of Bay area, California {}, {}.'.format(1
        The geograpical coordinate of Bay area, California 37.3688301, -122.03634
        96.
In [4]: # Generate a foursquare query for RESTAURANTS in the area
        search query = 'boba'
        radius = 2000000
        # url = 'https://api.foursquare.com/v2/venues/search?client id={}&client se
        # Get our result return from the foursqaure dbase
        results = requests.get(url).json()
        v=results['response']['venues'] # extract the result from json file
        dframe = json normalize(v) # normalize our result with json normalize func
        <ipython-input-4-9552f13398e9>:11: FutureWarning: pandas.io.json.json_nor
        malize is deprecated, use pandas.json normalize instead
          dframe = json normalize(v) # normalize our result with json normalize
        function
In [5]: # keep only columns that include venue name, and anything that is associate
        filtered_columns = ['name', 'categories'] + [col for col in dframe.columns
        dataframe filtered = dframe.loc[:, filtered columns]
        # function that extracts the category of the venue
        def get category type(row):
            try:
                categories list = row['categories']
            except:
                categories list = row['venue.categories']
            if len(categories list) == 0:
                return None
            else:
                return categories list[0]['name']
        # filter the category for each row
        dataframe filtered['categories'] = dataframe filtered.apply(get category ty
        # clean column names by keeping only last term
        dataframe filtered.columns = [column.split('.')[-1] for column in dataframe
        # dataframe filtered
```

```
In [6]: df = dataframe_filtered[['name', 'categories', 'address', 'lat', 'lng', 'posta
In [7]: df.head()
```

Out[7]:

|   | name                             | name categories address |                                  | lat       | Ing         | postalCode | formattedAddress                                     |           |
|---|----------------------------------|-------------------------|----------------------------------|-----------|-------------|------------|------------------------------------------------------|-----------|
| 0 | Boba Bar<br>Teahouse<br>& Eatery | Bubble Tea<br>Shop      | 310 S<br>3rd St                  | 37.332368 | -121.884731 | 95112      | [310 S 3rd St (at E<br>San Carlos St),<br>San Jose,  | 53cf2ef34 |
| 1 | Boba<br>Guys                     | Bubble Tea<br>Shop      | 855 El<br>Camino<br>Real<br>#120 | 37.438476 | -122.159122 | 94301      | [855 El Camino<br>Real #120, Palo<br>Alto, CA 94301] | 5c3518fd2 |
| 2 | Boba<br>Drive                    | Bubble Tea<br>Shop      | NaN                              | 37.403202 | -122.008931 | 94089      | [Sunnyvale, CA<br>94089]                             | 5c561c556 |
| 3 | Boba<br>Guys                     | Bubble Tea<br>Shop      | 1002<br>16th St                  | 37.766448 | -122.397042 | 94107      | [1002 16th St (at<br>Missouri St), San<br>Francisco, | 58d451f49 |
| 4 | Boba                             | Coffee<br>Shop          | 1710 N<br>Milpitas<br>Blvd       | 37.455524 | -121.910233 | 95035      | [1710 N Milpitas<br>Blvd, Milpitas, CA<br>95035]     | 4f32367a1 |

## Method of analysis

- $\mbox{-}$  Use of folium map to locate all of the boba shop within the bay a rea
- Use of clustering analysis to seperate those the boba shop locati ons of clustering

```
In [138]: sanjose_map = folium.Map(location=[latitude, longitude], zoom_start=12)
          incidents = folium.map.FeatureGroup()
          for lat, lng, in zip(df.lat, df.lng):
              incidents.add_child(
                  folium.features.CircleMarker(
                       [lat, lng],
                       radius=5,
                      color='yellow',
                       fill=True,
                      fill_color='blue',
                      fill opacity=0.6
                  )
              )
          # add pop-up text to each marker on the map
          latitudes = df.lat
          longitudes = df.lng
          label = df.categories
          for lat, lng, label in zip(latitudes, longitudes, label):
              folium.Marker([lat, lng], popup=label).add_to(sanjose_map)
          # add incidents to map
          sanjose map.add child(incidents)
```

#### Out[138]:



```
In [139]: df.columns
Out[139]: Index(['name', 'categories', 'address', 'lat', 'lng', 'postalCode',
                  'formattedAddress', 'id', 'distance', 'city'],
                dtype='object')
In [140]: # set number of clusters
          kclusters = 4
          group cluster = df.drop(['name', 'categories', 'address', 'postalCode', 'form')
          # run k-means clustering
          kmeans = KMeans(n clusters=kclusters, random state=0).fit(group cluster)
          # check cluster labels generated for each row in the dataframe
          kmeans.labels
          # Insert k cluster as column into df
          df.insert(0, 'cluster label', kmeans.labels )
  In []: plt.plot(range(1,Kcluster),mean acc, 'g')
In [141]: map clusters = folium.Map(location=[latitude, longitude], zoom start=11)
          # set color scheme for the clusters
          x = np.arange(kclusters)
          ys = [i + x + (i*x)**2 \text{ for } i \text{ in } range(kclusters)]
          colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
          rainbow = [colors.rgb2hex(i) for i in colors array]
          # add markers to the map
          markers colors = []
          for lat, lon, poi, cluster in zip(df['lat'], df['lng'],df['city'],df['clust
              label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=
              folium.CircleMarker(
                   [lat, lon],
                  radius=5,
                  popup=label,
                  color=rainbow[cluster-1],
                  fill=True,
                  fill color=rainbow[cluster-1],
                  fill opacity=0.7).add to(map clusters)
```

#### In [142]: map\_clusters

Out[142]:



In [150]: cluster\_2 = df.loc[df['cluster label'] == 2]
 cluster\_2

Out[150]:

|    | cluster<br>label | name                                          | categories               | address                               | lat       | Ing         | postalCode | formattedAddres                                    |
|----|------------------|-----------------------------------------------|--------------------------|---------------------------------------|-----------|-------------|------------|----------------------------------------------------|
| 0  | 2                | Boba Bar<br>Teahouse &<br>Eatery              | Bubble Tea<br>Shop       | 310 S<br>3rd St                       | 37.332368 | -121.884731 | 95112      | [310 S 3rd St (at<br>San Carlos S<br>San Jose,     |
| 6  | 2                | Oh Boba                                       | Bubble Tea<br>Shop       | NaN                                   | 37.350555 | -121.944010 | NaN        | [Santa Clara, C.                                   |
| 7  | 2                | Boba Pub                                      | Coffee<br>Shop           | NaN                                   | 37.253480 | -121.901566 | NaN        | [San Jose, C.                                      |
| 9  | 2                | Bobaholics                                    | Bubble Tea<br>Shop       | 1055 E<br>Brokaw<br>Rd #40            | 37.384296 | -121.897496 | 95131      | [1055 E Brokaw F<br>#40, San Jose, C<br>9513       |
| 10 | 2                | Tiger Milk<br>Boba                            | Bubble Tea<br>Shop       | 72 N<br>Almaden<br>Ave                | 37.336055 | -121.894399 | 95110      | [72 N Almade<br>Ave, San Jose, C<br>9511           |
| 11 | 2                | Bob &<br>Karen's                              | None                     | NaN                                   | 37.310632 | -121.988374 | NaN        | [Californi                                         |
| 12 | 2                | WeBoba                                        | Bubble Tea<br>Shop       | 3030 El<br>Camino<br>Real             | 37.351721 | -121.981472 | 95051      | [3030 El Camir<br>Real, Santa Clar<br>CA 9505      |
| 13 | 2                | Cafe Boba                                     | Coffee<br>Shop           | 110 E<br>San<br>Fernando<br>St        | 37.335346 | -121.886551 | 95112      | [110 E Sa<br>Fernando St, Sa<br>Jose, CA 9511      |
| 14 | 2                | Boba Fitt                                     | Bubble Tea<br>Shop       | 1051 E<br>Capitol<br>Expy             | 37.301310 | -121.822820 | 95121      | [1051 E Capit<br>Expy, San Jos<br>CA 9512          |
| 16 | 2                | Boba Tea<br>Express                           | Café                     | 4100<br>Monterey<br>Hwy               | 37.279468 | -121.834097 | 95111      | [4100 Montere<br>Hwy (Marina), Sa<br>Jose, CA 9511 |
| 18 | 2                | Bob &<br>Steve's<br>Auto &<br>Truck<br>Repair | Automotive<br>Shop       | NaN                                   | 37.372134 | -121.908033 | NaN        | [San Jose, C.                                      |
| 19 | 2                | Oh My<br>Boba                                 | Bubble Tea<br>Shop       | NaN                                   | 37.392014 | -121.842310 | 95132      | [San Jose, C<br>9513                               |
| 21 | 2                | BOBATEANI                                     | Bubble Tea<br>Shop       | 75 E<br>Santa<br>Clara St             | 37.337212 | -121.889275 | 95113      | [75 E Santa Cla<br>St, San Jose, C<br>9511         |
| 24 | 2                | Simply<br>Boba                                | Bubble Tea<br>Shop       | 3005<br>Silver<br>Creek Rd<br>Ste 192 | 37.309512 | -121.813647 | 95121      | [3005 Silver Cree<br>Rd Ste 192, Sa<br>Jose, CA 95 |
| 25 | 2                | Bob and<br>Sue's                              | None                     | NaN                                   | 37.264193 | -121.927576 | NaN        | [San Jose, C.                                      |
| 26 | 2                | Pho 21 &<br>Boba 21                           | Vietnamese<br>Restaurant | NaN                                   | 37.319470 | -121.823760 | 95122      | [San Jose, C<br>9512                               |

|    | cluster<br>label | name                             | categories         | address                   | lat       | Ing         | postalCode | formattedAddres                           |
|----|------------------|----------------------------------|--------------------|---------------------------|-----------|-------------|------------|-------------------------------------------|
| 27 | 2                | OooH Boba<br>Tea and<br>Desserts | Dessert<br>Shop    | 1783 E<br>Capitol<br>Expy | 37.309635 | -121.810071 | 95121      | [1783 E Capit<br>Expy, San Jos<br>CA 9512 |
| 28 | 2                | Joy Boba<br>Tea                  | Bubble Tea<br>Shop | 1783 E<br>Capitol<br>Expy | 37.309663 | -121.810100 | 95121      | [1783 E Capit<br>Expy, San Jos<br>CA 9512 |

# **Cluster result**

In comparison with other county and city within the area, We can observe San Jose attracted majority of the boba locations

```
In [151]: sanjose map = folium.Map(location=[latitude, longitude], zoom_start=12)
          map_feature = folium.map.FeatureGroup()
          for lat, lng, in zip(cluster_2.lat, cluster_2.lng):
              map feature.add child(
                  folium.features.CircleMarker(
                       [lat, lng],
                      radius=5,
                      color='yellow',
                      fill=True,
                      fill_color='blue',
                      fill opacity=0.6
                  )
              )
          # add pop-up text to each marker on the map
          latitudes = list(df.lat)
          longitudes = list(df.lng)
          labels = list(df.name)
          for lat, lng, label in zip(cluster_2.lat,cluster_2.lng, df.categories):
              folium.Marker([lat, lng], popup=label).add_to(sanjose map)
          # add incidents to map
          sanjose map.add child(map feature)
```

#### Out[151]:



# CLuster with most Boba shop and what are those shop

#### **Tiger Milk Tea**

#### The last one doesnt look too promising because it only have 2 rating

```
In [154]: boba_shop_in_SJ = cluster_2[cluster_2['city'] == 'San Jose'].city.count()
boba_shop_in_SJ

Out[154]: 15

In [155]: boba_shop_in_Bay = df.city.count()
boba_shop_in_Bay

Out[155]: 29

In [156]: percentage_boba_sj = (boba_shop_in_SJ/boba_shop_in_Bay) * 100
percentage_boba_sj

Out[156]: 51.724137931034484
```

## **Discussion**

By using folium and K-mean cluster analysis, we was able to figure out which region within the Bay area contain the most boba shop. We also check out two of those boba shop within the San Jose city which is a variable of cluster 0. We can see that Tiger Milk Tea have higher rating and also have more information about price.

## **Conclusion**

There is a total of 29 boba shops in the Bay area, and 15 of these boba shops located in San Jose City. That is 52% if the boba shop locate in San Jose. SO, for those boba lover considering moving to the Bay Area, I would highly recommend for you to stay near San Jose.