北京工业大学2018—2019学年第二学期 《高等数学(工)—2》期末考试试卷A卷

考试说明: <u>考试日期: 2019年6月11日; 考试时间: 95分钟; 考试方式: 闭卷</u>承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

承诺人:	学号:	班号:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0	
注: 本试卷共 <u>三</u> 大题, :	共 <u>6</u> 页, 满分100分, 考	试时必须使用卷后附加的统一
答题纸和草稿纸。		
卷	面 成 绩 汇 总 表(阅卷》	如师填写)

题 号	_	=	Ξ	总成绩
满 分	30	60	10	
得 分				

3. 函数 $u = \ln(x^2 + y^2 + z^2)$ 在点 M(1, 2, -2) 处的梯度 **grad** $u|_{M} =$ ______

4. 数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$ 是条件收敛、绝对收敛、还是发散? ______. $f(x) = \frac{1}{1+x}$ 5. 函数

第1页共6页

6. 求曲线 Γ : $x=1+e^t$, $y=2+e^{2t}$, $z=3+e^{3t}$ 在 t=0的切线方程为_____

_.

- 7. 已知曲线 $L: y = x^2 (0 \le x \le \sqrt{2})$, 则 $\int_{L} x ds =$ _______
- $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$ 9. 设 $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$, $f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2 + x^2, & 0 < x \le \pi \end{cases}$ 是其傅
- $\frac{x}{10}$, 平面 $\frac{y}{2}$ $\frac{y}{3}$ $\frac{z}{4}$ 在第一卦限部分的面积等于______.
 - 二、计算题:(本大题共 6小题,每小题10分,共60分)

得 分

11. 求旋转抛物面 $z = x^2 + y^2$ 上的点到平面 x + y - z = 2 的最短距离.

得分 $I = \int_{L} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $L = \frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ 其中 $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy,$ $\frac{1}{2} (2xy^3 - y^2 \cos x) dx + (1 - 2y \cos x$

 $\iint_{D} \sin \frac{\pi x}{2y} dxdy$ 13.计算二重积分: $\int_{D} \sin \frac{\pi x}{2y} dxdy$,其中 D 是由抛物线 $\int_{D} \sin \frac{\pi x}{2y} dxdy$,其中 $\int_{D} \sin \frac{\pi x}{2$

$$I = \iint\limits_{\Sigma} \frac{x dy dz - 2yz dz dx + (z+1)^2 dx dy}{\sqrt{x^2 + y^2 + z^2}}$$
 , 其中 Σ 为下半

面 $z = -\sqrt{1 - x^2 - y^2}$ 的下侧.

$$\sum_{n=0}^{\infty} (2n+1)x^n$$
 15. 求幂级数 $n=0$ 的收敛域及和函数.

得 分

16. 求微分方程 y"+2y+y=xe^x的通解.

三、证明题:(本大题共 2小题,每小题5分,共10分)

- 得 分
- 17. 设 $y=f(x+\lambda t)+g(x-\lambda t)$,其中 f,g二次可导,求证:

$$\frac{\partial^2 \mathbf{y}}{\partial t^2} = \lambda^2 \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}^2}.$$

- 得 分
- 18. 证明对任意正整数 $n_{, 方程} x^n + nx 1 = 0$ 有唯一正实根 x_n^{-1} ,且当

常数 $\lambda > 1$ 时.级数 p=1 收金