Math 335 Homework 1

Alexandre Lipson

January 19, 2025

Problem (1). Determine whether the following integrals converge.

$$i) \int_0^\infty x^2 e^{-x^2} dx$$

Using IBP, we see that the above integral becomes $-\frac{x}{2}e^{-x^2}\Big|_0^\infty - \int_0^\infty -\frac{1}{2}e^{-x^2} dx$.

The left term is zero as $\lim_{x\to\infty} -\frac{x}{2e^{x^2}} = 0$. The right term can be split into $\int_0^\infty e^{-x^2} dx$, which has no singularities and is finite; and $\int_1^\infty e^{-x^2} dx$, which converges by comparison with x^{-2} on $x\in[1,\infty)$. So (i) converges.

ii)
$$\int_3^\infty \frac{\sin 4x}{x^2 - x - 2} \, dx$$

Note that the integrand is less than $\frac{1}{x^2-x-2}=f(x)$. Let $g(x)=x^{-2}$.

Then,
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2}{x^2 - x - 2} = 1$$
.

Since $\int_3^\infty x^{-2} dx$ converges and the limit as $x \to \infty$ of the ratio of f and g is finite, then $\int f$ converges by the comparison theorem.

Since f converges and (ii) is bounded above by f, then (ii) converges as well.

iii)
$$\int_1^\infty \tan \frac{1}{x} dx$$

Note that $\forall \theta \in [0, \frac{\pi}{2}), \tan \theta > \theta$.

Therefore, for large x, say x > N, $\tan \frac{1}{x} > \frac{1}{x}$.

So, $\int_N^\infty \tan \frac{1}{x} dx > \int_N^\infty \frac{dx}{x}$. Thus, by comparison with x^{-1} , (iii) diverges.

1

Problem (2). Determine whether the following integrals converge.

i)
$$\int_{\frac{\pi}{2}}^{\pi} \cot x \, dx$$

Note that there is a singularity of cotangent at π . Around $x = \pi$, $\sin x \approx x - \pi$ and $\cos x \approx -1$.

So, $\cot x \approx \frac{1}{\pi - x}$, which means that, near $x = \pi$, $\cot x \approx O(\frac{1}{x})$, which diverges.

Thus, (i) diverges by comparison.

ii)
$$\int_0^1 \frac{dx}{x^{1/2}(x^2+x)^{1/3}}$$

We see that (ii) can also be expressed as $\int_0^1 \frac{dx}{x^{5/6}(x+1)^{1/3}}.$

Let $g(x) = \frac{1}{x^{5/6}}$. g converges on $x \in [0, 1]$.

Then,
$$\lim_{x \to \infty} \frac{x^{5/6}}{x^{5/6}(x+1)^{1/3}} = 0.$$

Since $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$ and g converges on the given interval, then, by the comparison test, (ii) converges as well.

iii)
$$\int_0^1 \frac{1 - \cos x}{\sin^3 2x} \, dx$$

Note that there is a singularity at zero, and this is the only such value given that the next root of sine occurs at $\frac{\pi}{2} > 1$.

Near x = 0, $\sin 2x \approx 2x$ and $1 - \cos x \approx \frac{x^2}{2}$.

So, the integrand is approximately $\frac{\frac{x^2}{2}}{(2x)^3} = \frac{1}{16x}$, which diverges at zero.

So, (iii) diverges by comparison.

Problem (3). Determine whether the following integrals converge.

i)
$$\int_0^\infty \frac{\sqrt{x}}{e^x-1} dx$$

Note that (i) has a singularity at zero.

So, we will split the integral into two regions $[0, \epsilon]$ and $[\epsilon, \infty)$.

Near x = 0, $e^x - 1 \approx x$, so $\frac{\sqrt{x}}{e^x - 1} = O(x^{-1/2})$, which converges on $[0, \epsilon]$.

For large $x \to \infty$,

$$\lim_{x\to\infty}\frac{\sqrt{x}}{e^x-1}\stackrel{LH}{=}\lim_{x\to\infty}\frac{\frac{1}{2}x^{-1/2}}{e^x}=0.$$

So, the integral of $[\epsilon, \infty)$ converges.

Since the integral converges on both subregions, then it converges on their union which was the given interval.

ii)
$$\int_0^\infty x^{-1/5} \sin(\frac{1}{x}) dx$$

First, we will split the integral into two regions [0,1] and $[0,\infty)$. Note that $|\sin(\frac{1}{x})| \leq 1$.

For the first interval, let $y = \frac{1}{x}$. So $x \to 0 \implies y \to \infty$. Then, $x = \frac{1}{y}$ and $dx = -\frac{1}{y^2} dy$.

So,

$$\int_0^1 x^{-1/5} \sin\left(\frac{1}{x}\right) dx = \int_\infty^1 y^{1/5} \sin y \left(-\frac{1}{y^2}\right) dy$$
$$= \int_1^\infty y^{-9/5} \sin y \, dy,$$

which converges by comparison with $y^{-9/5}$ (given that the sine term is bounded) on $y \in [1, \infty)$ because $\frac{9}{5} > 1$.

For the second interval, since the sine term is bounded by one, then $|x^{-1/5}\sin(\frac{1}{x})| \le x^{-\frac{1}{5}}$.

Therefore the second interval converges on [0,1] by comparison with $x^{-\frac{1}{5}}$ since $\frac{1}{5} < 1$.

Since (ii) converges on both subintervals, then it also converges on their union.

iii)
$$\int_{-\infty}^{\infty} \frac{e^x}{e^x + x^2} \, dx$$

We will split the integral of (iii) into two regions about x = 0. We will now show that the integral over the positive interval diverges.

For large x, $\frac{e^x}{e^x + x^2} = 0(1)$. In particular, using the Taylor expansion of e^x , we see that $\forall x > 0, e^x > x^2 \implies \frac{e^x}{e^x + x^2} > \frac{e^x}{2e^x} = \frac{1}{2}$.

Then, for large $x \ge N$, $\int_N^\infty \frac{e^x}{e^x + x^2} dx > \int_N^\infty \frac{dx}{2} = \infty$.

Since (iii) diverges on the positive subinterval, then (iii) diverges across the union of both subintervals.

Problem (4). Let $f_p(x) = x^{-1} (\log x)^{-p}$ with p > 0.

a) Given $p, \epsilon > 0$, show for large x,

$$x^{-1-\epsilon} < f_p(x) < x^{-1}.$$

$$\forall x > e, \, \forall p > 0, \, (\log x)^p > 1 \implies f_p(x) = x^{-1}(\log x)^{-p} < x^{-1}.$$

With the same qualifications, $\lim_{\epsilon \to 0} x^{\epsilon} = 1 < \log x^{p} \implies f_{p}(x) = x^{-1}(\log x)^{-p} < \lim_{\epsilon \to 0} x^{-1-\epsilon}$.

b) For which p does $\int_2^\infty f_p(x) dx$ converge?

Let $u = \log x$. So, $e^u = x$ and $e^u du = dx$.

Then, the above integral becomes $\int_{\log 2}^{\infty} e^{-u} u^{-p} e^{u} du = \int_{\log 2}^{\infty} u^{-p} du$, which converges when p < 1.

Problem (5). Let f(x) = 1 on $[n, n + 2^{-n}]$ for $n \in \mathbb{Z}_{>0}$ and f(x) = 0 elsewhere.

a) Show $\int_0^\infty f(x) dx$ converges to one, yet $f(x) \not\to 0$ as $x \to \infty$.

The integral of f can actually be expressed using a sum, since the area under the graph of f consists of rectangles with height one and with 2^{-n} , which is the length of each interval where f(x) = 1.

Thus, by the explicit formula for the geometric series, $\int_0^\infty f(x) dx = \sum_1^\infty 2^{-n} = \sum_0^\infty \left(\frac{1}{2}\right)^n - 1 = \frac{1}{1 - \frac{1}{n}} - 1 = 1$.

b) Modify f to a function g such that $\int_0^\infty g(x) dx$ converges yet g is not bounded as $x \to \infty$.

If we desire g to be unbounded, then we will need to shrink the intervals where $g \neq 0$ so that the increasing value of g has a proportionally decreasing contribution to the final integral.

Let
$$g(x) = \begin{cases} x, & \forall n \in \mathbb{Z}_{>0}, \ x \in [n, n + \frac{1}{2^n n}], \\ 0, \text{ otherwise.} \end{cases}$$

So, $\int_0^\infty g(x) dx \approx \sum_1^\infty 2^{-n} \cdot \frac{n}{n}$, which converges as seen above.

Furthermore, we can create an inequality by considering that each nth interval will have a value of g less than n + 1. This gives

$$\int_0^\infty g(x) \, dx < \sum_1^\infty 2^{-n} \left(\frac{n+1}{n} \right) < \infty.$$

So the integral of g converges while g grows without bound.

Problem (6). Let $f(x) = x^2(x - \sin x)$ and $g(x) = (e^x - 1)(\cos 2x - 1)^2$.

a) Compute T_5 at $x_0 = 0$.

With the fifth order Taylor polynomial of sine, $\sum_{j=0}^{5} \frac{(-1)^{j} x^{2j+1}}{(2j+1)!}$,

$$T_5(f) = x^2 \left(x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} \right) \right)$$
$$= \frac{x^5}{3!} - \frac{x^7}{5!} + \frac{x^9}{7!} - \frac{x^{11}}{9!} + \frac{x^{13}}{11!}.$$

Then, using the expansions of cosine and the exponential function,

$$T_5(g) = \left(\sum_{0}^{5} \frac{x^k}{k!} - 1\right) \left(\sum_{0}^{5} \frac{(-1)^k (2x)^{2k}}{(2k)!} - 1\right)^2$$
$$= \left(\sum_{0}^{5} \frac{x^k}{k!}\right) \left(\sum_{1}^{5} \frac{(-1)^k (2x)^{2k}}{(2k)!}\right)^2.$$

Since each of the leading terms in both sums if one, then we can expand the above to,

$$\left(x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}\right) \left(-2x^2 + \frac{2x^4}{3} - \frac{(2x)^6}{6!} + \frac{(2x)^8}{8!} - \frac{(2x)^{10}}{10!}\right).$$

b) Use (a) to find $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ without L'Hopital.

To consider $x \to \infty$, we will use the largest order terms.

From
$$f$$
, this is $\frac{x^{13}}{11!}$. From g , this is $\frac{x^5}{5!} \left(-\frac{(2x)^{10}}{10!} \right) = \frac{-2^{10}x^{15}}{5!10!}$

So $\frac{f}{g} = O(\frac{1}{x^2})$, which goes to zero as $x \to \infty$. Thus, $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$ as well.

Problem (7). Estimate $\int_0^1 e^{-x^2} dx$ with error less than 10^{-3} .

Let
$$g(x) = e^{-x} = \sum_{0}^{\infty} \frac{(-1)^n x^n}{n!} = P_k(x) + R_k(x)$$
.

Corollary 2.61 $\implies \forall x \in [0, 1],$

$$|R_k(x)| \le \left(\sup_{x \in [0,1]} g^{(k+1)}(x)\right) \frac{x^{k+1}}{(k+1)!}$$

$$\le \left(\sup_{x \in [0,1]} e^{-x}\right) \frac{x^{k+1}}{(k+1)!}$$

$$\le \frac{1}{(k+1)!}.$$

Then,

$$\left| \int_0^1 \left(e^{-x^2} - P_k(x^2) \right) dx \right| \le \int_0^1 |R_k(x^2)| dx$$

$$\le \int_0^1 \frac{dx}{(k+1)!}$$

$$= \frac{1}{(k+1)!}$$

$$< 10^{-3}.$$

Since $(k+1)! \ge 10^3 \implies k \ge 7$, then we must use a Taylor polynomial of at least order seven.

Plugging in to a calculator, we see that $\int_0^1 e^{-x^2} dx \approx 0.7468$.

Problem (8). Let $f \in C^k(I)$ with $a \in I$ open.

$$\forall i \in [1, k-1], \ f^{(i)}(a) = 0. \quad f^{(k)}(a) \neq 0..$$

Use Corollary 2.60 to show

i) k even $\implies f$ attains local extrema at a where

$$f^{(k)}(a) < 0 \implies \max \text{ at } a$$

 $f^{(k)}(a) > 0 \implies \min \text{ at } a.$

ii) k odd $\implies f$ has no local extrema.

Since all derivatives except for the kth are zero, and $P_{a,k}(h)$ then

$$P_{a,k}(h) = f(a) + \frac{f^{(k)}(a)}{h!}h^k$$
$$f(a+h) = f(a) + \frac{f^{(k)}(a)}{h!}h^k + R_{a,k}(h)$$
$$\frac{f(a+h) - f(a)}{h^k} = \frac{f^{(k)}(a)}{k!} + \frac{R_{a,k}(h)}{h^k}.$$

Since $f \in C^k(I)$, then by Corollary 2.60,

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h^k} = \frac{f^{(k)}(a)}{k!} + 0.$$

So these terms must have the same signs.

With k even, then $h^k > 0$. Then, $f^{(k)}(a) < 0 \implies f(a) > f(a+h) \implies f(a)$ is a local max, and same with the local min.

With k odd, then h^k changes signs when approaching $h \to 0$, so f(a) is not a local extrema.