Mason Competitive Cyber

Forensics in the real world

- Digital Forensics (branch of Forensic science)
 - Computer Forensics
 - Mobile Device Forensics
 - Diff = integrated communication system + proprietary storage systems
 - Network Forensics
 - Database Forensics
- Gather data, analyze data, investigate devices, recover data found in devices, etc.
- Incident Response / SOC analyst
- Often involved with the criminal justice system
 - Providing evidence for a trial
- Tools often used
 - EnCase collection, analysis, & reporting
 - FTK (Forensic Toolkit) file discovery and volume replication
 - Helix non-destructive forensic analysis
 - Cracking tools cracking encrypted media
 - Other proprietary tools I don't know about, probably

Forensics in the CTF world

- Imbedded files
 - Extraction of files within other files
 - *Iterative compression*
- Fixing files
 - Magic bytes, PNG chunking, file formats, etc
- Traffic/Packet analysis
 - PCAPs, PCAPs, PCAPs, and PCAPs
 - Chall could ask you just about anything about PCAPs
- ------Warning: Baby making area -----------------
- Steganography
 - Image or audio
 - LSB, changing color planes
 - spectrogram, mp3->morse
- Cracking
 - Tip: Reduce key space before brute forcing
 - Encrypted pdfs, hashes, plain passwords
 - WPA cracking from PCAPs

Forensics in the CTF world

- Imbedded files
 - Binwalk, foremost (scalpel), other tool you find on github, or manually
- Fixing files
 - Hex editors (Bless, Hexedit, HXd, etc)
 - Pngcheck
- Traffic/Packet analysis
 - Wireshark or tcpdump
- ------Warning: Baby making area -------
- Steganography
 - Stegsolve, zsteg, steghide, sonic visualizer, morse code audio decoder,
- Cracking
 - John the Ripper
 - Hashcat
 - Airmon-ng

Wireshark

- What is it and what is it used for?
 - Protocol analyzer
 - Analyzing protocols
 - Completely passive tools
 - No injection or packet manipulation
- What can you do with wireshark?
 - Capture live packet data from a network interface
 - Analyze said packet data
 - Gather information on potential attack
- How is it used in a CTF?
 - Often you will be given a .pcap file
 - It's your job to sift through it efficiently to find various things
 - IOCs
 - Web page content
 - Files transmitted
 - Literally anything else

Cracking

- Scale is the only difference between real world cracking and CTF cracking
 - Single cpu vs a cluster of high-performing-specifically-built GPUs
- Identification
- Check other sources first
- Decrease key space is best as possible
- Compute how
- Sit back and hope

MD2 128 bits
MD4 128 bits
MD5 128 bits
MD6 Up to 512 bits
RIPEMD-128 128 bits
RIPEMD-160 160 bits
RIPEMD-320 320 bits
SHA-1 160 bits
SHA-224 224 bits

SHA-256 256 bits SHA-384 384 bits SHA-512 512 bits

SHA-3 (originally known as Keccak) arbitrary

Tiger 192 bits Whirlpool 512 bits

SIGN OS ophcrack

Proud Sponsors

Thank you to these organizations who give us their support:

It can be done™

CH 9][Elapsed: 4 s][2007-03-24 16:58][WPA handshake: 00:14:6C:7E:40:80

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

00:14:6C:7E:40:80 39 100 51 116 14 9 54 WPA2 CCMP PSK teddy

BSSID STATION PWR Lost Packets Probes

00:14:6C:7E:40:80 00:0F:B5:FD:FB:C2 35 0 116