Data Transformation and Discretization

Hazim Fitri

2024-12-18

Contents

Data Transformation Techniques	2
Normalization	2
Min-Max Normalization	2
Z-score Normalization	5
Decimal Scaling	9
Normaling Data Distribution	11
Assessing Normality	13
Histogram & Boxplot	13
Normal Quantile Plot (Q-Q Plot)	14
Goodnes-of-fit test	15
Kolmogorov-Smirnov	15
Shapiro-Wilk	15
Anderson-Darling	16
Discretization	16
Unsupervised Learning	16
2 category	16
More than 2 category	18
Equal-width	18
Equal Frequency	21
Supervised Learning	21
Chi2	21
ChiMerge Algorithm	21
Top-down algorithm	21
Minimum Description Length Principle (MDLP)	22
Attribute formation	23
Smoothing	23

Data Transformation Techniques

Normalization

Min-Max Normalization

```
V = \frac{[X - min(X)] \times [new.max(X) - new.min(X)]}{max(X) - min(X)} + new.min(X)
```

```
dataAP3 <- read.csv('./Data/dataAP3.csv', header = T)
head(dataAP3)</pre>
```

```
##
     X Month Day_of_month Day_of_week ozone_ppm pressure_height.hPA Wind_speed.mph
## 1 1
                         1
                                             3.01
                                                                  5480
## 2 2
           1
                         2
                                     5
                                             3.20
                                                                  5660
                                                                                     6
## 3 3
                                     6
                         3
                                             2.70
                                                                  5710
                                                                                     4
## 4 4
                         4
                                     7
                                             5.18
                                                                  5700
                                                                                     3
           1
## 5 5
                                     1
                                             5.34
                                                                  5760
                                                                                     3
## 6 6
                                     2
           1
                                             5.77
                                                                  5720
     Temperature_Celcius Inversion_base_height.IBH Pressure_gradient.Psi.ft
## 1
                                                5000
## 2
                                                1601
                                                                            -14
## 3
                       40
                                                2693
                                                                            -25
## 4
                       45
                                                 590
                                                                            -24
## 5
                       54
                                                1450
                                                                             25
## 6
                       35
                                                1568
                                                                             15
     Inversion_temperature.ivC Visibility_pAerosol
                          30.56
## 2
                          46.94
                                                 300
## 3
                          47.66
                                                 250
## 4
                          55.04
                                                 100
## 5
                          57.02
                                                  60
## 6
                          53.78
                                                  60
```

```
dataAP3 = dataAP3[,-c(1)]
head(dataAP3)
```

```
Month Day_of_month Day_of_week ozone_ppm pressure_height.hPA Wind_speed.mph
## 1
                     1 4
        1
                                         3.01
                                                             5480
## 2
                                 5
                                         3.20
                                                                               6
        1
                                                             5660
## 3
        1
                    3
                                 6
                                        2.70
                                                             5710
                                                                               4
                     4
                                 7
                                                                               3
## 4
        1
                                        5.18
                                                             5700
## 5
                     5
                                 1
                                                                               3
        1
                                         5.34
                                                             5760
## 6
                     6
                                  2
                                                             5720
                                         5.77
     Temperature_Celcius Inversion_base_height.IBH Pressure_gradient.Psi.ft
## 1
                                              5000
## 2
                      38
                                              1601
                                                                        -14
## 3
                      40
                                              2693
                                                                        -25
## 4
                      45
                                                                        -24
                                               590
## 5
                     54
                                              1450
                                                                         25
## 6
                     35
                                                                         15
     Inversion_temperature.ivC Visibility_pAerosol
## 1
                                               200
                         30.56
```

##	2	46.94	300
##	3	47.66	250
##	4	55.04	100
##	5	57.02	60
##	6	53.78	60

We can plot histogram to see whether the data is normal or not.

Histogram of Ozone

now that we've seen that the data is not normal, we can try to normalize it using min-max technique.

```
min_ozone = min(dataAP3$ozone_ppm)
max_ozone = max(dataAP3$ozone_ppm)
v = ((dataAP3$ozone_ppm - min_ozone) * (1 - 0)) / (max_ozone-min_ozone)
head(v)
```

[1] 0.06146001 0.06655931 0.05314010 0.11969941 0.12399356 0.13553408

```
hist(v, col = 'bisque3')
```

Histogram of v

Try to make it in a function

```
mm = function (x, n.min, n.max) {
    min = min(x)
    max = max(x)
    mm.norm = ((x-min) * (n.max-n.min)/(max-min)) + n.min
    hist(mm.norm, col = 'aquamarine4')
    return(mm.norm)
}
new.dataAP3 = mm(dataAP3$ozone_ppm, 0, 1)
```

Histogram of mm.norm

Z-score Normalization

Zero-mean normalization

$$Z = \frac{X - \mu_x}{\sigma_x}$$

hist(dataAP3\$pressure_height.hPA, col = 'skyblue', main = 'Histogram of Pressure Height (hPA)', xlab =

Histogram of Pressure Height (hPA)


```
mean_hpa = mean(dataAP3$pressure_height.hPA)
sd_hpa = sd(dataAP3$pressure_height.hPA)
z_score_hpa = (dataAP3$pressure_height.hPA - mean_hpa) / sd_hpa
head(z_score_hpa)
```

[1] -2.58185122 -0.87803114 -0.40474779 -0.49940446 0.06853557 -0.31009112

hist(z_score_hpa, col = 'bisque3', main = 'Histogram of Normalize Data')

Histogram of Normalize Data

Try to make in in a function

```
z = function (x) {
  mean = mean(x)
  sd = sd(x)
  z = (x - mean)/sd
  hist(z, col = 'aquamarine4')
  return(z)
}
```

Histogram of z


```
##
     [1] -2.58185122 -0.87803114 -0.40474779 -0.49940446
                                                          0.06853557 -0.31009112
##
         0.35250558
                     0.35250558 -0.49940446 -0.49940446
                                                          0.16319224 -0.31009112
##
         0.06853557
                     0.25784891
                                 0.73113226
                                             1.10975895
                                                          0.82578894
                                                                      0.25784891
    Г137
    [19] -0.68871780 -0.31009112
                                 0.06853557 -0.21543444 -0.49940446 -0.97268781
                                 0.63647559 0.73113226
                                                          0.54181892
##
    [25] -0.68871780 0.25784891
                                                                      0.35250558
        0.44716225 0.63647559
                                 0.16319224 -0.78337447 -1.54062784 -3.24444791
##
    [37] -3.81238794 -2.58185122 -1.44597117 -2.48719455 -1.82459785 -0.49940446
##
##
    [43] -0.68871780 -0.49940446 -0.97268781 -1.35131450 -0.21543444
                                                                       0.16319224
     \begin{bmatrix} 49 \end{bmatrix} \quad 0.16319224 \quad -0.49940446 \quad -0.59406113 \quad -0.49940446 \quad -0.21543444 \quad -0.59406113 
##
    [55] -1.06734448 -0.31009112 -0.12077777 -0.12077777 -0.12077777 -0.78337447
    [61] -1.91925452 -2.67650789 -4.09635795 -3.14979124 -2.10856786 -1.44597117
##
##
     \begin{bmatrix} 67 \end{bmatrix} - 0.87803114 - 1.63528451 - 2.29788121 - 2.10856786 - 1.25665783 - 0.59406113 
##
    [73] 0.06853557 -0.12077777 0.25784891 0.35250558 0.06853557 -0.49940446
    [85] -0.31009112 -0.40474779 -1.44597117 -1.16200115 -0.59406113 -0.21543444
##
    [91] -0.40474779 -1.35131450 -0.68871780 -1.25665783 -3.14979124 -2.01391119
    [97] -1.54062784 -0.59406113 -1.91925452 -1.25665783 -1.16200115 -1.63528451
   [103] -1.82459785 -2.96047790 -2.58185122 -1.25665783 -2.86582123 -0.87803114
   [109] -0.68871780 0.06853557
                                 0.35250558 -0.31009112 -0.87803114 -0.40474779
    \begin{bmatrix} 115 \end{bmatrix} \quad 0.25784891 \quad -0.02612110 \quad -0.49940446 \quad -1.25665783 \quad -0.97268781 \quad -0.21543444 
   [121] 0.54181892 0.35250558 -0.12077777 -0.87803114 -0.59406113 -0.02612110
  [127] -0.68871780 -0.97268781 -0.21543444 -0.21543444 0.06853557
                                                                      0.73113226
         1.20441562 1.29907229
                                 0.92044561
                                             0.63647559
                                                          0.73113226
   [133]
   [139] \ -0.12077777 \ -0.40474779 \ -0.31009112 \ -0.40474779 \ -0.12077777 \ -0.31009112 
  [145] -0.59406113 -0.21543444 0.25784891 0.35250558 -0.02612110 -0.68871780
```

```
## [157] 0.06853557
                     0.16319224 -0.59406113 -0.97268781 -1.35131450 -1.72994118
## [163] -0.59406113
                     0.06853557
                                 0.54181892
                                             0.73113226
                                                        1.20441562
                                                                   1.01510228
                     1.10975895
                                 1.01510228
## [169]
         0.73113226
                                             0.44716225
                                                         0.44716225
                                                                    0.16319224
## [175]
         1.01510228
                     1.10975895
                                 1.10975895
                                             1.01510228
                                                         1.20441562
                                                                    1.10975895
## [181]
         1.01510228
                     0.73113226
                                 0.63647559
                                             0.63647559
                                                         1.01510228
                                                                    1.10975895
## [187]
         1.29907229
                                 1.29907229
                                             1.29907229
                                                         1.48838563
                     1.39372896
                                                                    1.39372896
                                 0.92044561
## [193]
         1.01510228
                     0.73113226
                                             0.73113226
                                                         0.44716225
                                                                    0.54181892
## [199]
         0.73113226
                     0.73113226
                                 0.82578894
                                             1.10975895
                                                         1.10975895
                                                                    0.92044561
## [205]
         1.01510228
                     1.39372896
                                 1.29907229
                                             1.20441562
                                                         1.29907229
                                                                    1.10975895
## [211]
         1.20441562 -0.21543444
                                 0.63647559
                                             0.25784891
                                                         0.16319224
                                                                    0.35250558
## [217]
         0.63647559
                     0.82578894
                                 0.44716225
                                             0.73113226
                                                         0.44716225
                                                                    0.82578894
## [223]
         0.44716225
                     1.48838563
                                 1.29907229
                                             1.10975895
                                                         0.25784891 -0.21543444
## [229]
         0.25784891 -0.02612110
                                 0.06853557 -0.21543444 -0.21543444
                                                                    0.35250558
## [235] -0.02612110
                                 1.29907229
                     1.20441562
                                             1.20441562
                                                         1.10975895
                                                                    1.39372896
## [241]
         1.58304230
                     1.67769897
                                 1.86701232
                                             1.86701232
                                                         1.39372896
                                                                    1.29907229
## [247]
         1.01510228
                     0.82578894
                                 0.44716225
                                             0.06853557
                                                         0.54181892
                                                                    0.92044561
## [253]
         1.01510228
                                 0.06853557
                                             1.01510228
                                                         0.73113226
                     1.10975895
                                                                    0.82578894
## [259]
         0.44716225 -0.68871780
                                 0.35250558
                                             0.73113226
                                                         0.54181892
                                                                    0.16319224
## [265]
         0.25784891 0.44716225
                                 0.16319224
                                             0.44716225
                                                        0.25784891
                                                                    0.35250558
## [271]
         0.16319224 -0.02612110 -1.06734448 -1.06734448 -0.97268781 -0.40474779
## [277]
         0.06853557
                     0.82578894
                                 1.20441562
                                             1.29907229
                                                         1.29907229
                                                                    1.29907229
## [283]
         1.29907229
                     0.92044561
                                 0.73113226
                                             0.73113226
                                                         1.01510228
                                                                    0.73113226
## [289]
                                 0.35250558 -0.21543444
         0.44716225
                     0.73113226
                                                         0.25784891 -0.12077777
## [295] -0.40474779 -0.59406113 -0.78337447
                                             0.06853557
                                                         0.63647559
                                                                    0.35250558
## [301]
         0.06853557
                     0.44716225
                                0.54181892 -0.02612110
                                                        0.82578894
                                                                    1.01510228
## [307]
         1.10975895 1.58304230
                                 1.39372896
                                             1.01510228
                                                        0.82578894
                                                                    0.82578894
## [313]
         0.92044561
                     0.54181892
                                 0.16319224 -0.40474779 -2.39253788 -0.87803114
                                             1.39372896
## [319] -0.49940446
                     0.54181892
                                1.01510228
                                                        0.92044561
                                                                    0.25784891
## [325] 0.35250558 0.25784891
                                 0.16319224 -0.02612110
                                                        0.25784891
                                                                    0.35250558
## [331] -0.02612110 -0.78337447
                                 0.06853557
                                             0.16319224
                                                        0.54181892
                                                                    0.54181892
## [337]
        1.10975895 0.73113226
                                0.06853557 -0.68871780
                                                        0.25784891
                                                                    0.54181892
## [343]
        0.06853557 -0.68871780 -0.02612110 0.35250558
                                                       0.16319224 -0.02612110
## [355] -0.68871780 -0.97268781 -0.40474779 -0.68871780 -1.16200115 0.16319224
## [361] 0.44716225 -0.21543444 -0.59406113 -0.97268781 -1.91925452 -0.68871780
```

Decimal Scaling

[1] 5.48 5.66 5.71 5.70 5.76 5.72

```
pHnew = dataAP3$pressure_height.hPA/1000
head(pHnew)
```

```
hist(pHnew, col = 'bisque3')
```

Histogram of pHnew

Normaling Data Distribution

Positively skewed data

Negatively skewed data

dataAP3\$Visibility_pAerosol

```
[1] 200 300 250 100
                              60 100 250 120 120 120 150
                                                             40 200 250 200 200 150
##
                           60
    [19]
          10 140 250 200 150 140
                                   50
                                         0
                                            70 150 150 120
                                                             40 120
                                                                      6
##
    [37]
          60 350 250 350
                          300 300 300 200 100 250 200 200
                                                             40
                                                                  2 300 300 300 300
    [55] 300 150 150
                       80
                           40
                               40
                                   80 300 200 500 140 140 140 100 140 200 120
    [73] 300 150
                       50
                           70
                               17 140 140 300 200 250
                                                        80
                                                             60 100 150 150 200 100
    [91] 300 120 100 200 200 200 300 300
                                           250 120 140 200 140
                                                                 80 300 100 300 200
  [109] 120 100 120
                       60 120
                              100 100
                                        27
                                            40 140 150 100
                                                           100 120 150 100 120
   [127] 120 140 120
                       70
                           80
                                   40
                                        20
                                            17
                                                40
                                                    50
                                                        50
                                                            70
                                                                 80 120 120 100 120
                               70
   [145] 120 200 120
                       40
                           70 100 120 100 120
                                                70
                                                    80 100 100 120 120 120 150 140
   [163] 140 140 140
                           30
                                   80
                                        60 100 120 150 120 140 140 120 120
                       60
                               17
   [181] 140 150 120 120 140 100
                                   50
                                        40 100
                                                80 100
                                                        60
                                                             50
                                                                 70
                                                                     80
                                        70
                                                        80
  [199] 120 120 100
                       60
                           40
                               50
                                   40
                                            80
                                                80
                                                    80
                                                             80 100 120 150 200 150
  [217] 150 150 150 100 100 100
                                   30
                                        80
                                            70
                                                60 150 200 200 200 250 300
  [235] 150 300
                  30 100 100
                               17
                                   20
                                         4
                                            70
                                                30
                                                    70
                                                        60
                                                             40
                                                                 50
                                                                     70 140 100 120
   [253] 100
              70 150
                       50
                           70
                               40
                                   70 120 140 140 100
                                                        50
                                                             70
                                                                 40
                                                                     40 100 120 120
   [271] 140 120
                  70 150 200 200 200
                                       70
                                            40
                                                50
                                                    17
                                                        80 250 200
                                                                      2
                                                                         20
                                                                               7
                                                                                  30
   [289]
          50
              70
                  17
                       80
                           50
                               60
                                   60
                                        80
                                            50
                                                50
                                                    40
                                                         40
                                                           300
                                                                200 150 100 100
                 200 300 120
                                            20 200 120 300 200
   [307] 150 150
                               30 100
                                        50
                                                                 70 140 150
                                                                            200
              30
                        2
                               30
                                   60 150 100 250 150 200 200 200
   [325]
          40
                  30
                            0
                                                                     80
                                                                         60 300 200
## [343] 300
              50
                  40
                       70 150 150
                                   70 200 120 150 150 60
                                                           70 150 300 100
## [361] 140 200
                  70
                       40 100
```

Histogram of dataAP3\$Visibility_pAerosol


```
vis2 = sqrt(dataAP3$Visibility_pAerosol)
hist(vis2, col = 'bisque3')
```

Histogram of vis2

Assessing Normality

Histogram & Boxplot

```
par(mfrow=c(1,2))
hist(vis2, col = 'bisque3')
boxplot(vis2, col = 'bisque3')
```

Histogram of vis2

Normal Quantile Plot (Q-Q Plot)

```
qqnorm(vis2, col = 'bisque4')
```

Normal Q-Q Plot

Goodnes-of-fit test

Kolmogorov-Smirnov

 H_0 = The sample data follows a normal distribution H_1 = The sample data does not follow a normal distribution

```
ks.test(vis2, 'pnorm', mean = mean(vis2), sd = sd(vis2))

## Warning in ks.test.default(vis2, "pnorm", mean = mean(vis2), sd = sd(vis2)):
## ties should not be present for the one-sample Kolmogorov-Smirnov test

##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: vis2
## D = 0.099679, p-value = 0.001388
```

Shapiro-Wilk

alternative hypothesis: two-sided

 H_0 = The sample data is drawn from a normal distribution H_1 = The sample data is not normally distribution

shapiro.test(vis2)

```
##
## Shapiro-Wilk normality test
##
## data: vis2
## W = 0.983, p-value = 0.0002616
```

A = 2.177, p-value = 1.554e-05

Anderson-Darling

 H_0 = The sample data follows a normal distribution H_1 = The sample data does not follow a normal distribution

```
library(nortest)
ad.test(vis2)

##
## Anderson-Darling normality test
```

Discretization

data: vis2

Unsupervised Learning

This method need the knowledge of the industry and can be made manually for example like the financial class (B40, M40, T20)

```
library(infotheo)
data("USArrests")
attach(USArrests)
USArrests
```

2 category

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8
##	Hawaii	5.3	46	83	20.2
##	Idaho	2.6	120	54	14.2

```
## Illinois
                    10.4
                              249
                                        83 24.0
## Indiana
                     7.2
                              113
                                        65 21.0
## Iowa
                     2.2
                              56
                                        57 11.3
## Kansas
                                        66 18.0
                     6.0
                             115
## Kentucky
                     9.7
                              109
                                        52 16.3
## Louisiana
                    15.4
                             249
                                        66 22.2
## Maine
                     2.1
                              83
                                        51 7.8
## Maryland
                    11.3
                             300
                                        67 27.8
## Massachusetts
                     4.4
                             149
                                        85 16.3
                              255
                                        74 35.1
## Michigan
                    12.1
## Minnesota
                     2.7
                              72
                                        66 14.9
                              259
                                        44 17.1
## Mississippi
                    16.1
                                        70 28.2
## Missouri
                     9.0
                             178
## Montana
                     6.0
                                        53 16.4
                             109
## Nebraska
                     4.3
                             102
                                        62 16.5
## Nevada
                    12.2
                              252
                                        81 46.0
## New Hampshire
                              57
                                        56 9.5
                     2.1
## New Jersey
                     7.4
                             159
                                        89 18.8
## New Mexico
                    11.4
                             285
                                        70 32.1
## New York
                                        86 26.1
                    11.1
                              254
## North Carolina
                    13.0
                             337
                                        45 16.1
## North Dakota
                     0.8
                              45
                                        44 7.3
## Ohio
                     7.3
                             120
                                        75 21.4
## Oklahoma
                     6.6
                             151
                                        68 20.0
## Oregon
                     4.9
                             159
                                        67 29.3
## Pennsylvania
                     6.3
                             106
                                        72 14.9
## Rhode Island
                     3.4
                             174
                                        87 8.3
## South Carolina
                             279
                                        48 22.5
                    14.4
## South Dakota
                     3.8
                              86
                                        45 12.8
## Tennessee
                                        59 26.9
                    13.2
                             188
## Texas
                    12.7
                             201
                                        80 25.5
## Utah
                     3.2
                             120
                                        80 22.9
## Vermont
                     2.2
                              48
                                        32 11.2
## Virginia
                     8.5
                             156
                                        63 20.7
## Washington
                     4.0
                             145
                                        73 26.2
## West Virginia
                              81
                                        39 9.3
                     5.7
## Wisconsin
                     2.6
                              53
                                        66 10.8
## Wyoming
                     6.8
                              161
                                        60 15.6
cutoff = 10 # Need domain explanation
status_m = ifelse(Murder<10, 'Low Risk', 'High Risk')</pre>
head(status m)
```

[1] "High Risk" "High Risk" "Low Risk" "Low Risk" "Low Risk" "Low Risk"

```
# alternative way
cut(USArrests$Murder,
    breaks = c(min(USArrests$Murder), 10, max(USArrests$Murder)),
    labels = c('Low Risk', 'High Risk'))
```

[1] High Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk ## [8] Low Risk High Risk High Risk Low Risk Low Risk High Risk Low Risk ## [15] Low Risk Low Risk Low Risk High Risk Low Risk High Risk Low Risk

```
## [22] High Risk Low Risk High Risk Low Risk Low Risk Low Risk High Risk
## [29] Low Risk Low Risk High Risk High Risk High Risk <NA>
                                                                 Low Risk
## [36] Low Risk Low Risk Low Risk High Risk Low Risk High Risk
## [43] High Risk Low Risk Low Risk Low Risk Low Risk Low Risk
## [50] Low Risk
## Levels: Low Risk High Risk
library(car)
More than 2 category
## Warning: package 'car' was built under R version 4.4.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.4.2
status_den = Recode(UrbanPop, "0:50 = 'Low Density';
                              51:70 = 'Moderate Density';
                              else = 'High Density'")
head(status_den)
## [1] "Moderate Density" "Low Density"
                                           "High Density"
                                                              "Low Density"
## [5] "High Density"
                         "High Density"
# alternative way
assault_status = discretize(Assault, 'equalwidth', 4)
unique(assault_status)
Equal-width
##
    Х
## 1 3
## 3 4
## 4 2
## 7 1
head(assault_status)
##
   Х
## 1 3
## 2 3
## 3 4
## 4 2
## 5 4
## 6 3
```


hist(assault_status\$X)

Histogram of assault_status\$X


```
barplot(table(discretize(Assault, 'equalfreq', 4)$X))
```


Equal Frequency

Supervised Learning

```
library(discretization)
data(iris)
iris2 = chi2(iris, alp=0.05)$Disc.data
head(iris2)
```

Chi2

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
                            3
## 2
                1
                            2
                                         1
                                                     1 setosa
## 3
                            2
                1
                                         1
                                                        setosa
## 4
                1
                            2
                                         1
                                                     1 setosa
## 5
                            3
                                                     1 setosa
## 6
                1
                            3
                                                     1 setosa
```

${\bf ChiMerge~Algorithm}$

Top-down algorithm

Minimum Description Length Principle (MDLP) Add: kmeans

```
datalocal = read.csv('./Data/dataLocal.csv', sep = ';')
head(datalocal)
     dataL1 dataL2
##
## 1
       27.2
              55.5
## 2
       28.8
              58.3
## 3
       37.8
              41.0
       30.4
              35.1
## 4
## 5
       30.6
              65.4
## 6
       38.6
              61.3
par(mfrow=c(1,2))
hist(datalocal[,1], col = 'bisque3')
hist(datalocal[,2], col = 'bisque3')
```

Histogram of datalocal[, 1]

Histogram of datalocal[, 2]


```
model = kmeans(datalocal[,1], 3)
km = as.factor(model$cluster)
hist(model$cluster, col = km)
```

Histogram of model\$cluster

Attribute formation

- Linear transformation
- Encoding
 - One-hot encoding
 - Ordinal encoding
 - Target encoding
 - Frequency encoding
- Rank transformation
- Box-cox transformation
- Polynomial approximation transformation
- Non-polynomial approximation transformation
- Wavelet transformation

Smoothing