Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2019 EE3CO12 / EX3CO12 Power System-II

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated Answers of

	-	should be writt			o, c or d.	3 01
Q.1	i.	OLTC in tran	smission line	is used for-		1
		(a) Real power	er control	(b) Reactive	e power control	
		(c) Power ang	gle control	(d) None of	these	
	ii.	Y bus is a -				1
		(a) Sparse ma	trix	(b) Dense m	atrix	
		(c) Unity mat	rix	(d) None of	these	
	iii.	Power flow e	quations are -			1
		(a) Linear alg	ebraic	(b) Non-Lin	ear algebraic	
		(c) Linear Dif	fferential	(d) Non-Lin	ear Differential	
	iv.	* *			ts incremental transmission	1
		loss is -	•	•		
		(a) 1.0	(b) -1.0	(c) Zero	(d) None of these	
	v.	Time constan	nt of a pow	er system, wh	nen compared to a speed	1
		governor is	•	,	1 1	
		(a) Less	(b) More	(c) Same	(d) None of these	
	vi.	` /	` /	r system contro		1
		(a) Active po		(b) Reactive		
		(c) Both (a) a		(d) None of	1	
	vii.	General meth	` /	` '		1
	, 11.	(a) Use of tap	_			_
		(b) Synchrono				
		(c) Static capa		13		
		(d) All of thes				
		(u) An or the	SC .		~	

P.T.O.

[3]

Assuming that the generators are operating at 50 Hz at no load							
now would a load of 750MW is shared? What is the system							
frequency? Assume free governor action.							

Q.5	i.	Define the static VAR systems.	3
	ii.	Explain any one method of voltage control with diagram at load bus.	7
OR	iii.	Explain static excitation system for alternator with block diagram.	7
Q.6		Attempt any two:	
	i.	Derive and explain Swing equation.	5
	ii.	Derive equal Area Criteria for transient stability analysis.	5
	iii.	A 60 Hz, 4 pole turbo generator rated 100MVA, 13.8 KV has inertia	5
		constant of 10 MJ/MVA.	
		(a) Find stored energy in the rotor at synchronous speed.	
		(b) If the input to the generator is suddenly raised to 60 MW for an	
		electrical load of 50 MW, find rotor acceleration.	

Marking Scheme EE3CO12 / EX3CO12 Power System-II

Q .1	i.	OLTC in transmission line is used for-			
	ii.	(b) Reactive power control Y bus is a -		1	
		(a) Sparse matrix			
	iii.	Power flow equations are -		1	
		(b) Non-Linear algebraic			
	iv.	If the penalty factor of a plant is u	nity, its incremental transmission	1	
		loss is -			
		(c) Zero		4	
	v.	Time constant of a power system	m, when compared to a speed	1	
		governor is			
	vi.	(b) More The frequency of the newer system	controls the	1	
	V1.	The frequency of the power system (a) Active power	controls the -	1	
	vii.	General methods of voltage control	are -	1	
	V11.	(d) All of these			
	viii.	The voltage at the bus can be con	trolled by the injection of	1	
	VIII.	power of the correct sign.	aroned by the injection of	•	
		(b) Reactive			
	ix.	For a turbo alternator of 100 MV.	A. the inertia constant is 5. The	1	
		value of inertia constant for 50 MVA alternator will be –			
		(c) 10			
	х.	For stable operation, the normal va	alue of power angle (δ) normally	1	
		lies between -			
		(a) $0 \text{ to } 30^0$			
Q.2	i.	Regulating Transformers.		3	
		Definition	1.5 marks		
		Classification	1.5 marks		
	ii.	Formation of Y bus matrix in po	wer systems using the Singular	7	
		Transformation method.			
		Diagram	2 marks		
		Explanation	2 marks		
		Derivation	3 marks		

OR	iii.	Develop a general model for a tap changing transformer				
		Diagram	2 marks			
		Explanation	2 marks			
		Derivation	3 marks			
Q.3	i.	Types of buses used in load flow studio	es.	3		
		1 mark for each	(1 mark * 3)			
	ii.	Newton Raphson method for load flow	study	7		
		Explanation	2 marks			
		Equations	3 marks			
		Two Advantages 0.5 mark for each (0.	5 mark * 2)			
			1 mark			
		Two disadvantages 0.5 mark for each ((0.5 mark * 2)			
			1 mark			
OR	iii.	Calculate the extra cost incurred in Rs/	hr for equal generation	7		
		Economic solution	4 marks			
		Calculate the extra cost	3 marks			
Q.4	i.	Load frequency control	1.5 marks	3		
		Concept of control area	1.5 marks			
	ii.	Explanation	2 marks	7		
		Equations	3 marks			
		Block diagram.	2 marks			
OR	iii.	How would a load of 750MW is s	hared? What is the system	7		
		frequency? Assume free governor action	on.			
		Equations	5 marks			
		Solution	2 marks			
Q.5	i.	Define the static VAR systems.		3		
		Explanation	2 marks			
		Diagram	1 mark			
	ii.	Any one method of voltage control with diagram at load bus.				
		Explanation	4 marks			
		Diagram	3 marks			
OR	iii.	iii. Static excitation system for alternator with block diagram.				
		Explanation	4 marks			
		Diagram	3 marks			

Q.6 Attempt any two: i. Swing equation. 5 Derivation 3 marks Explanation 2 marks Equal Area Criteria for transient stability analysis. 5 Derivation 4 marks Diagram 1 mark (a) Stored energy in the rotor at synchronous speed. 5 2 marks (b) If the input to the generator is suddenly raised to 60 MW for an electrical load of 50 MW, find rotor acceleration. 3 marks
