Prestazioni sistemi codificati

Codici a blocco

Calcolo della probabilità di errore sulle parole di codice

Un codice a blocco C(k, n) con $d_{min} = 2t + 1$ è in grado di correggere fino a t errori.

- ▶ Una parola ricevuta $\mathbf{y} = \mathbf{x} + \mathbf{e}$ è errata quando il canale introduce un numero di errori maggiore di t.
- La probabilità di errore $P_w(e) = \Pr\{w(\mathbf{e}) > t\}$ si calcola

$$P_w(e) = \sum_{j=t+1}^n \binom{n}{j} p^j (1-p)^{n-j}$$

 $P_w(e)$ può essere lower-bounded dalla probabilità dell'evento più probabile: aver commesso t+1 errori

$$P_w(e) \approx \binom{n}{t+1} p^{t+1} (1-p)^{n-(t+1)}$$

Bound per il calcolo della probabilità di errore sul bit

Mentre la $P_w(e)$ si riesce a calcolare con precisione, nel caso del calcolo della probabilità di errore su bit codificato si deve per forza ricorrere ad approssimazioni.

- ► Il numero di bit errati in x dopo la decodifica dipende dal vettore di errore e e da come agisce la decodifica a sindrome, che, in presenza di un numero di errori maggiore di t, aggiunge altri errori a quelli introdotti dal canale.
- ► La decodifica a sindrome restituisce sempre una parola di codice, quindi ogni volta che al ricevitore c'è un errore nella decodifica i bit errati sono almeno d_{min} degli n trasmessi.
- ▶ In questo caso la $P_b(e)$ si approssima

$$P_b(e)pprox rac{d_{min}}{n}P_w(e)pprox rac{d_{min}}{n}inom{n}{t+1}p^{t+1}(1-p)^{n-(t+1)}. \endaligned$$

Confronto delle prestazioni tra sistemi codificati e non

La ridondanza introdotta dal codice comporta una maggiore 'spesa' energetica, infatti si utilizzano n bit codificati per trasmettere k bit di informazione.

▶ Il 'budget' energetico di *k* bit viene distribuito su *n* bit

$$kE_b = nE_{b,c} \implies E_{b,c} = \frac{k}{n}E_b$$

Confronto delle prestazioni tra sistemi codificati e non

La probabilità di errore sul bit per una BPSK non codificata è

$$P_b^{(BPSK)}(e) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

▶ Nel caso codificato bisogna considerare che la probabilità di errore *p* dipende dal valore di SNR dei bit codificati

$$\frac{E_{b,c}}{N_0} = \frac{k}{n} \frac{E_b}{N_0}$$

La probabilità $P_b(e)$ del codice in (1), va calcolata utilizzando

$$p = Q\left(\sqrt{\frac{2E_{b,c}}{N_0}}\right) = Q\left(\sqrt{2\frac{k}{n}\frac{E_b}{N_0}}\right). \tag{2}$$

Confronto delle prestazioni tra sistemi codificati e non

▶ Confronto delle prestazioni su canale Gaussiano di un sistema BPSK senza codifica con le prestazioni di un sistema codificato con codice di Hamming con m = 3 e m = 4.

Codici convoluzionali

Generatori per i codici convoluzionali

- La bontà di un codice convoluzionale dipende dalla sua d_{free}.
- ▶ La d_{free} dipende dai codici generatori, dal rate R = k/n e dalla constraint length L.
- ▶ Tipicamente i codici convoluzionali hanno k = 1 per limitare la complessità di codificatore e decodificatore.
- Fissato R e L i generatori ottimi sono quelli che massimizzano la d_{free} e posssono essere trovati tramite una ricerca esaustiva fra tutte le possibili $(2^L)^n = 2^{Ln}$ combinazioni.
- A causa della limitata complessità i codici convoluzionali a R=1/2 sono quelli più studiati.

Generatori ottimi per R = 1/2

Generatori ottimi (in ottale!) per codici convoluzionali a rate R=1/2 al variare della constraint length L e $d_{\rm free}$ corrispondente.

Constraint length	Generatori ottimi		Distanza libera	
L	\mathbf{g}_1	g ₂	d_{free}	
3	7	5	5	
4	17	15	6	
5	35	23	7	
6	75	53	8	
7	133	171	10	
8	371	247	10	
9	763	561	12	
10	1537	1131	12	

Puncturing per i codici convoluzionali

- In teoria, non c'è flessibilità nella scelta del rate dei codici convoluzionali che assume sempre valori del tipo R = 1/n.
- In realtà, la tecnica chiamata *puncturing* permette di costruire codici con rate maggiori partendo da un codice a rate R=1/n.
- ► Il puncturing consiste nel cancellare alcuni bit all'uscita del codificatore. I bit vengono cancellati secondo un pattern preciso, espresso da una puncturing table, condiviso con il ricevitore, che quindi conosce esattamente la posizione dei bit cancellati.

Puncturing per i codici convoluzionali

- ► Il trasmettitore e il ricevitore si accordano sui bit codificati da omettere attraverso la puncturing table, che contiene n righe (una per bit in uscita) e M colonne. La matrice contiene un certo numero P di '1' e un numero P – nM di '0'.
- Dopo il puncturing il rate del codice diventa

$$R' = \frac{1}{n} \frac{nM}{P} = \frac{M}{P}$$

Esempio con n = 2, M = 2, P = 3 con rate R' = 2/3.

			<i>M</i>	
				2/3 code
			$n \{(11)$	
data		1/2 code	" [(10 <i>)</i>	* T T T
	convolutional .			(Omitted)
	coder			

Puncturing per i codici convoluzionali

Tabella di puncturing per il codici convoluzionale a rate R=1/2, L=7 al variare della constraint length del rate R=M/P in uscita e $d_{\rm free}$ corrispondente.

Il puncturing ottimo è stato trovato con una ricerca esaustiva su tutti i possibili pattern.

Rate M/P	Puncturing matrix	d_{free}
1/2	1 1	10
2/3	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$	6
3/4	$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	5
5/6	$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$	4
7/8	1 0 0 0 1 0 1 1 1 1 0 1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 3

Esempio di traliccio dopo il puncturing

Traliccio del codice convoluzionale a rate R=2/3 ottenuto dal codice convoluzionale ottimo con R=1/2 e L=3 applicando la matrice di puncturing [11; 10].

I bit in corrispondenza del puncturing (marcati con una croce rossa) non vengono trasmessi e a al ricevitore non contribuiscono al calcolo delle metriche di ramo.

Bound per le prestazioni dei codici convoluzionali

Ad alti rapporti segnale-rumore si trova la seguente approssimazione

▶ BPSK codificata con decodifica hard

$$P_{\rm e}^{(b)} pprox Q\left(\sqrt{2rac{E_b}{N_0}rac{Rd_{free}}{2}}
ight)$$