TANZANIAN WATER WELLS PROJECT

- A MODEL THAT PREDICTS THE STATUS OF A WELL BASED ON TRAINING DATA
- Presented by: Charles Otieno Aloo

Overview

Project Goal: Predict the operational status of waterpoints across Tanzania to enhance access to clean, potable water.

Data Source: Taarifa waterpoints dataset from DrivenData.

Business Impact: Improve decision-making for water resource management and maintenance planning.

Business and Data Understanding

- **Business Problem:** Unreliable water pumps hinder access to clean water, impacting health and livelihoods.
- **Data Sources:** The dataset includes details on waterpoint characteristics, geographic location, water quality, and management.

Key Features:

- Geographic data: Longitude, latitude, region.
- Waterpoint characteristics: Construction year, management type, extraction type.
- Outcome variable: Waterpoint status Functional, Functional needs repair, Non-functional.
- **Business Context:** Water access is critical in Tanzania. Timely maintenance of water pumps ensures uninterrupted water supply.

Data Description:

- 59,400+ waterpoints with attributes such as GPS coordinates, construction year, water quality, and management details.
- **Target Variable:** Operational status of the waterpoint (functional, functional needs repair, non-functional).
- **Features:** 40 features including numeric (e.g., amount_tsh, gps_height), categorical (e.g., funder, source), and date-based (date recorded).

Data Exploration

Summary of Findings:

- Most waterpoints are functional, but a significant number require repairs.
- Geographic distribution of waterpoints reveals regional disparities in functionality.

Key Insights:

- Older waterpoints are more likely to be nonfunctional.
- Management type and extraction method play a crucial role in determining functionality.

Data Exploration

Summary of Findings:

- Most waterpoints are functional, but a significant number require repairs.
- Geographic distribution of waterpoints reveals regional disparities in functionality.

Key Insights:

- Older waterpoints are more likely to be nonfunctional.
- Management type and extraction method play a crucial role in determining functionality.

Modeling

Data Preprocessing:

- Missing Data Handling: Used most frequent value imputation for missing values.
- Categorical Encoding: Applied Label Encoding to categorical features.
- **Feature Scaling:** Standardized features using StandardScaler.

Model Selection:

- Algorithm Used: Random Forest Classifier, chosen for its robustness and ability to handle complex interactions.
- Hyperparameter Tuning: Employed
 GridSearchCV for fine-tuning parameters (e.g.,
 n_estimators, max_depth).

Evaluation

Model Performance:

- Accuracy: 81.06% on validation set.
- **Confusion Matrix:** Visual representation showing true vs. predicted classifications.

Classification Report:

- **Precision:** High precision in predicting non-functional pumps.
- **Recall:** Good recall across all categories, with some room for improvement in "functional needs repair."
- **Best Model Parameters:** n_estimators=300, max_depth=30, min_samples_split=5.

Visuals:

- Confusion Matrix
- Class Distribution

Confusion Matrix functional - 5000 5917 445 90 4000 507 228 128 - 3000 2000 non functional 1037 33 - 1000 non functional functional functional needs repair Predicted Labels

Confusion Matrix

- The model performs well in identifying functional and non functional waterpoints, as indicated by the higher precision and recall scores for these classes.
- The model struggles more with predicting functional needs repair waterpoints, as shown by the lower precision and recall for this class.

Recommendations

- Maintenance Scheduling: Use predictions to prioritize maintenance for waterpoints flagged as "Functional needs repair."
- **Resource Allocation:** Focus on regions with a higher likelihood of non-functional waterpoints for resource allocation.
- Further Research: Investigate the impact of environmental factors on waterpoint functionality.
- **Operational Insights:** Focus maintenance efforts on regions with a higher concentration of non-functional waterpoints.
- Model Deployment: Integrate model predictions into resource management systems for real-time decision support.
- Future Enhancements: Incorporate additional data sources (e.g., weather patterns) to refine predictions.

Predicted Class Distribution 7000 6000 Number of Predictions 5000 4000 3000 2000 1000 functional functional needs repair non functional Classes

Predicted Class Distribution

Class 'functional': 7461 predictions

•

 Class 'functional needs repair': 351 predictions

•

 Class 'non functional': 4068 predictions