This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

9

5

ര

8

6,044,209.pn. or 5,859,776.pn. or 5,883,808.pn. or 5,764,528.pn. or 5,838,581.pn. or 5,446,6 USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB 5 and ((("resistor capacitor" or RC) with circuit\$1) or (victim\$1 with aggressor\$1) or (coupling USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB JSPAT; US-PGPUB; EPO; JPO; DERWENT; IBM_TDB **Databases** 5 and ("transition time" or "elmore delay" or "threshold voltage") **EAST SEARCH** 4 and ("resistor capacitor" or RC) with circuit\$1 with type\$1) ((integrated or digital) adj circuit\$1) with noise with model\$3 5 and (coupling with (resistance or capacitance or location)) 5 and (("resistor capacitor" or RC) with circuit\$1 with pi) 5 and ((sink and source) or (receiver and transmitter)) 5 and (lumped with capacitance\$1 with weight\$2) 5 and (("resistor capacitor" or RC) with circuit\$1) (integrated or digital) adj circuit\$1) with noise 26 and (noise with peak with threshold) and (capacitance\$1 with weight\$2) 5 and (lumped with capacitance\$1) 5 and (coupling with aggressor\$1) 5 and (victim\$1 with aggressor\$1) 5 and (noise with (peak or width)) 18 and (receiver and transmitter) 26 and (noise with "pulse width") 4 and (noise with "pulse width") 4 and (noise with model\$3) 5 and (coupling with victim) 5 and (noise with width) 5 and ("crosstalk noise") 18 and (sink and source) 24 and (path or branch) 31 and "elmore delay" 5 and ("RC delay") Search String 4 and "pi model" Jason Cong 13 and 14 11 and 12 2 8 0 8 0 8 47 09/823085 L13 L16 L17 L18 L19 L20 L21 29 Ξ 112 14 L23 L24 L25 L26 27 L30 L32

EAST SEARCH

131

200	5 50	5 S	500	2 2	2 0	8 8	500	2 2	% %	200	200	200	202	200	200	200	200	200	200	200	200	500	200	500	200		502	200	200	200	200	200	200	200	200
1 Method and apparatus for analyzing a source current waveform in a semiconductor integrated 1 Electromagnetic disturbance analysis method and apparatus and semiconductor device man.		-			-		Method of integrated circuit design checking using progressive individual network analysis	Method for simulating power supply noise in an on-chip temperature sensor	Dual-triggered electrostatic discharge protection circuit	Variable transconductane variable gain amplifier utilizing a degenerated differential pair	Current mode signal interconnects and CMOS amplifier Cell-hased noise characterization and evaluation	Method and apparatus for an asynchronous mulse logic circuit	Noise estimation for coupled RC interconnects in deep submicron integrated circuits	Method of forming an optical fiber interconnect through a semiconductor wafer	Method and apparatus for analyzing inductive effects in a circuit layout	Method for decoupling capacitor optimization for a temperature sensor design	Apparatus and methods for measuring noise in a device	Method and system for estimating jitter in a delay locked loop	Substrate-biased silicon diode for electrostatic discharge protection and fabrication method	Method for optimizing loop bandwidth in delay locked loops	Variable gain amplifier for low voltage applications	Method and system for predicting worst-case capacitive and inductive switching vector	System and method of determining the noise sensitivity characterization for an unknown circu	Optimization of loop bandwidth for a phase locked loop	System and interior for topology based floise estimation of submicron integrated circuit designoversion of a PCM signal into a LIDWM signal	Fully differential sampling circuit	Distributed constant type noise filter	Low-noise silicon controlled rectifier for electrostatic discharge protection	Low substrate-noise electrostatic discharge protection circuits with bi-directional silicon diode:	System and method for detecting an intruder using impulse radio technology	Substitute-blased silicon glode for electrostatic discharge protection and fabrication method. Raffery hark and an information properties device in which the house in the fact of the fac	Integrated design system and method for reducing and avoiding crosstalk	Voice-activated control for electrical device	Windowing scheme for analyzing noise from multiple sources	Compact system module with built-in thermoelectric cooling
US 20020147555 A1 US 20020147553 A1	US 20020130807 A1	US 20020050861 A1	US 20020047942 A1	US 20020022951 A1	US 20010041548 A1	US 20010025139 A1	US 6750515 B1	US 6748339 B2	US 6747501 B2	US 6/44320 B2	US 6732339 B2	US 6732336 B2	US 6732065 B1	US 6723577 B1	US 6718530 B2	US 6704680 B2	US 6693439 B1	US 6691291 B2	US 6690065 B2	US 6687881 B2	US 6684065 B2	US 66/5365 B2	US 66/5118 BZ	US 66/1863 BZ	US 6657566 B1	US 6653967 B2	US 6646523 B2	US 6633068 B2	US 6617649 B2	US 6614384 B2	US 6600243 B1	US 6594805 B1	US 6594630 B1	US 6587815 B1	US 6586835 B1

0040203 716/2 0040127 455/252.1 0040106 716/6 011115 455/252.1 0021010 702/65 0020919 342/28 0020905 341/143 20040420 438/31 20040406 716/6 20040309 702/130 20040217 324/613 20040210 716/6 0010927 600/301 0040615 713/401 0040615 257/357 0040608 702/136 20040601 330/254 20040518 326/86 20040504 716/4 20040504 716/1 0031202 341/53 0031125 341/172 0031111 333/184 0031014 257/355 0030902 257/355 0030826 257/355 0020502 330/254 0020425 348/731 040608 327/310 0020228 333/184 030729 307/150 030715 704/256 020221 703/16 040106 702/117 20030701 257/717 030701 703/13 030715 716/5 031230 716/6 031216 716/5 040504 703/2

	blood analyte monitoring unrough subcutaneous measurement
	Bipolar junction transistors for on-chip electrostatic discharge protection and methods thereof
	Structure and method for a high-performance electronic packaging assembly
US 6567773 B1	Use of static noise analysis for integrated circuits fabricated in a silicon-on-insulator process t
	System and method for analyzing simultaneous switching noise
	Method and device for determining a fault in a technical system
US 6546529 B1	Method for performing coupling analysis
US 6539527 B2	System and method of determining the noise sensitivity of an integrated circuit
US 6536022 B1	Two pole coupling noise analysis model for submicron integrated circuit design verification
6526191	Integrated circuits using optical fiber interconnects formed through a semiconductor wafer and
	Method and system to improve noise analysis performance of electrical circuits
US 6509796 B2	Variable transconductance variable gain amplifier utilizing a degenerated differential pair
	Method of analyzing crosstalk in a digital logic integrated circuit
65022	Method for simulating noise on the input of a static gate and determining noise on the output
	Method for verification of crosstalk noise in a CMOS design
6496370	Structure and method for an electronic assembly
	Cell-based noise characterization and evaluation
US 6493395 B1	Multi-carrier transmission systems
6480998	Iterative, noise-sensitive method of routing semiconductor nets using a delay noise threshold
	Multi-carrier transmission systems
US 6456649 B1	Multi-carrier transmission systems
US 6449753 B1	Hierarchical coupling noise analysis for submicron integrated circuit designs
US 6438174 B1	Multi-carrier transmission systems
US 6426680 B1	System and method for narrow band PLL tuning
US 6424034 B1	High performance packaging for microprocessors and DRAM chips which minimizes timing sk
US 6392296 B1	Silicon interposer with optical connections
63855	System and method for determining the desired decoupling components for power distribution
US 6378109 B1	Method of simulation for gate oxide integrity check on an entire IC
US 6363516 B1	Method for hierarchical parasitic extraction of a CMOS design
US 6363128 B1	Multi-carrier transmission systems
US 6281042 B1	Structure and method for a high performance electronic packaging assembly
US 6272465 B1	Monolithic PC audio circuit
US 6246774 B1	Wavetable audio synthesizer with multiple volume components and two modes of stereo posi
US 6219237 B1	Structure and method for an electronic assembly
US 6188344 B1	Signal processors
61776	High-speed logarithmic photo-detector
US 6150188 A	Integrated circuits using optical fiber interconnects formed through a semiconductor wafer and
61442	Low switching noise logic circuit
US 6117182 A	Optimum buffer placement for noise avoidance
61045	Low noise electrostatic discharge protection circuit for mixed signal CMOS integrated circuits
90609	Integrated circuits using optical waveguide interconnects formed through a semiconductor wa
	Low cost CMOS tester with high channel density

20030610 257/499
20030527 257/724
20030527 75/724
20030429 702/185
20030429 702/185
20030428 716/5
20030325 716/5
20030225 385/14
20030212 716/5
20030121 330/254
20030121 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
20021217 716/5
2002021 716/5
20020924 375/261
20020924 375/261
20020924 375/261
20020924 375/262
20020924 375/262
20020927 703/18
20020927 703/18
20020927 703/18
20020927 703/18
20020927 703/18
20020927 716/6
20010123 250/207
20000912 716/8
20000011 7326/27
20000011 438/31

Wavetable audio synthesizer with waveform volume control for eliminating zipper noise 20000516 381/104 Enhanced register array accessible by both a system microprocessor and a wavetable audio: 20000502 365/230.05	20000418	ay-based effects processing 20000404 381/61	ated circuit timing including noise 20000321 716/6	o interconnects 20000222 702/58	20000215 455/327	19991214	19991214 250/207	19990720	19980915	19980825	19980804	19980602	Wavetable audio synthesizer with waveform volume control for eliminating zipper noise 19980421 381/104		find fastest target 19971125 342/104	rcuit 19971028 703/3	tegrated circuit 19971007 713/322	integrated circuits 19970916 331/78	Wavetable audio synthesizer with low frequency oscillators for tremolo and vibrato effects 19970916 84/629	19970819	nprove target signal process 19961029	1 detecting false logic 1961022 716/4	tion of incorrect patrol speed display 19961015 342/176	between antenna and counting unit	ixer for even order harmonic suppression 19960618 342/104	_	19960514	19960102	19950926	Serial clock Holse it illustriation in a semiconductor memory integrated circuit naving a senal port 19931228 365/189.05 Circuit for elimination dicital poise or short pulses utilizing set/reset shift register	19920929	19920128			19890711	19890502	19880913 376/216	
	6052316 A	6047073 A	6041169 A	6029117 A	6026286 A	6002860 A	6002122 A	5926060 A Mirror I	5809466 A	5799111 A	5789799 A	5760634 A	5742695 A	5731674 A	5691724 A	5682336 A Simula	5675808 A	5668507 A	5668338 A	5659466 A	5570093 A	5568395 A	5565871 A	5563603 A	5528245 A	5525996 A	5517130 A	∢ •	2423093 A	5151612 A	5091699 A		5027089 A	4933973 A	4847903 A	4827427 A	US 4770842 A Common bus multinode sensor system	2000

Noise analysis method for electrical circuit, involves partitioning original multi-port circuit into r Node coupling voltage noise approximation method for evaluating netlist file uses resistance, Noise-reducing buffer insertion method for integrated circuit, involves modeling a data represi	
US 6523149 B US 6327542 B US 6117182 A	