Asymptotic Behavior f(t) is amyptotic to t means the following:

$$f(t) \sim t^2$$
 as $t \to 0$ means $t^{-2} f(t) \to 0$ as $t \to 0$

Equivalently, we write $f(t) = t^2 + o(t^2)$. Also, it could be the case:

$$f(t) = O(t^2)$$
 means $t^{-2}f(t)$ is bounded as $t \to 0$

1 Floating Point Arithmetic

A **Floating Point Number System** is a finite subset of the reals defined by $\mathbb{F}(b,K,m,M)$ where b is the base of the system, K is the number of digits, m is the smallest exponent representable and M is the largest exponent representable.

If $y \in \mathbb{F}(b, K, m, M)$, then

$$y = \pm (0.d_1 d_2 d_3 d_K)_b \times b^E, m \le M, d_1 \ne 0 \iff y = 0$$

1.1 Round-off Error

The error in representing $z \in \mathbb{R}$ by its nearest element in $\mathbb{F}(b, K, m, M)$. If $z \in \mathbb{R}$, then

$$fl(z) = \begin{cases} \pm (0.d_1 d_2 ... d_K)_b \times b^E & d_{k+1} < \frac{b}{2} \\ \pm \left[(0.d_1 d_2 ... d_K)_b + b^{-K} \right] \times b^E & d_{k+1} \ge \frac{b}{2} \end{cases}$$

Example IEEE Double precision (Used in MATLAB) is b=2 and K=52. In base 10, this is approximately $K\approx 16, m\approx -308,$ and $M\approx 308.$

1.2 Relative error in rounding

Let $y \in \mathbb{R}, y \neq 0$. $fl(y) \in \mathbb{F}(b, K, m, M)$. Assume $d_{k+1} \leq \frac{b}{2}$

$$|fl(y)| = (0.d_1d_2...d_K)_b \times b^E$$

The Relative error is

Rel error:
$$\frac{|y - fl(y)|}{|y|}$$

Since $|y|=(0.d_1d_2...d_kd_{k+1}...)_b \times b^E \geq (0.1)_b \times b^E = b^{E-1}$ and $|y-fl(y)|=(0.d_{k+1d_{k+2}...b} \times b^{E-k} \leq \frac{1}{2}b^{E-k}$ thus

Rel error:
$$\frac{|y - fl(y)|}{|y|} \le \frac{1}{2}b^{1-K} = \epsilon_{machine}$$

This Machine epsilon is the smallest representable number

Example In IEEE DP, b=2, and K=52, so machine $=2^{-52}\approx 2.2204\times 10^{-16}$

1.3 Error in Computation

1.3.1 Finite Difference Operators

Recall

$$f''(x) - \frac{1}{h^2} \left(f(x-h) - 2f(x) + f(x+h) \right) = -\frac{1}{12} h^2 f^{(4)}(\xi)$$

Assume the round off error e(x-h) is in the evaluation of function values $f(x-h) = \tilde{f}(x-h) + e(x-h)$

$$f''(x) - \frac{1}{h^2} \left(\tilde{f}(x-h) - 2\tilde{f}(x) + \tilde{f}(x+h) \right) = E_h = -\frac{1}{12} h^2 f^{(4)}(\xi) + \frac{1}{h^2} \left(e(x-h) - 2e(x) + e(x+h) \right)$$

$$|E_h| \le \frac{1}{12}h^2 \left| f^{(4)}(\xi) \right| + \frac{1}{h^2} \left(|e(x-h)| + |2e(x)| + |e(x+h)| \right)$$

 $\text{Assume } \left| f^{(4)}(\xi) \right| \leq M \text{ for } \xi \in [x-h,x+h] \text{ and assume } |e(x)| \leq \epsilon \text{ for } x \in [x-h,x+h].$

$$|E_h| \le \frac{1}{12}h^2M + \frac{1}{h^2}4\epsilon$$

The first term shrinks but the second term blows up as $h \to 0$. One hopes to find the minimum at

$$h_{optimal} = \left(\frac{48\epsilon}{M}\right)^{\frac{1}{4}}$$

We could take ϵ to be $\epsilon_{machine}$

2 Polynomial Approximations

2.1 Taylor Expansion Theorem

The Taylor series expansion for a function f centered at α evaluated at z is

$$f(z) = \sum_{k=0}^{\infty} a_k (z - \alpha)^k$$
 where $a_k = \frac{f^{(k)}(\alpha)}{k!}$

A Taylor polynomial is any finite truncation of this series:

$$f(z) = \sum_{k=0}^{N} a_k (z - \alpha)^k$$
 where $a_k = \frac{f^{(k)}(\alpha)}{k!}$

The Taylor series is the limit of the Taylor Polynomials, given that the limit exists.

Analytic Functions A function that is equal to its Taylor Series in an open interval (or open disc in the complex plane), is known as an **Analytic Function**

Maclaurin Series If the Taylor series or Polynomial is centered at the origin ($\alpha = 0$), then it is also a MacLaurin series.

2.1.1 Important Taylor Series

The Maclaurin series for $(x-1)^{-1}$ is

$$(x-1)^{-1} = 1 + x + x^2 + x^3 + \dots = \sum_{k=0}^{\infty} x^k$$

3 Numerical Linear Algebra

4 Solving Ax = b

4.1 Tridiagonal Solver

For a tridiagonal system of equations

$$A\vec{\mathbf{u}} = \vec{\mathbf{f}}, \qquad A \text{ tridiagonal}$$

take $b_1 = c_n = 0$ and

$$A = LU = \begin{pmatrix} a_1 & c_1 & & & \\ b_2 & a_2 & c_2 & & \\ & \ddots & \ddots & \ddots & \\ & & b_n & a_n \end{pmatrix} = \begin{pmatrix} 1 & & & & \\ \beta_2 & 1 & & & \\ & \ddots & \ddots & & \\ & & & \beta_n & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 & c_1 & & & \\ & \alpha_2 & c_2 & & \\ & & \ddots & \ddots & \\ & & & \alpha_n \end{pmatrix}$$

So to solve $LU\vec{\mathbf{u}} = \vec{\mathbf{f}}$

- 1. Solve $L\vec{\mathbf{v}} = \vec{\mathbf{f}}$ using Forward Substitution
- 2. Solve $U\vec{\mathbf{u}} = \vec{\mathbf{v}}$ using Backward Substitution

4.1.1 Pseudocode

INPUT: \vec{a} , \vec{b} , \vec{c} , \vec{f} , all length n LU decomposition:

$$\begin{array}{l} \alpha_1=a_1\\ \text{for } k=2 \text{ to } n\\ \beta_k=b_k\setminus\alpha_{k-1}\\ \alpha_k=a_k-\beta_kc_{k-1}\\ \text{end} \end{array}$$

Forward Substitution:

$$\begin{array}{l} v_1=f_1\\ \text{for } k=2 \text{ to } n\\ v_k=f_k-\beta_k v_{k-1}\\ \text{end}\\ \text{Backward Substitution:}\\ u_n=v_n \setminus \alpha_n\\ \end{array}$$

$$\begin{array}{l} u_n=v_n\setminus\alpha_n\\ \text{for } k=2\text{ to }n\\ j=(n+1)-k\\ u_j=(v_j-c_ju_{j+1})\setminus\alpha_j\\ \text{end} \end{array}$$

Operation count: O(n)

4.2 Spectral Decomposition Method

If $A \in \mathbb{C}^{m \times m}$ is Hermitian, we can do the following

1. Compute the spectral decomposition (not trivial when m is large)

$$A = UDU^*$$

2. Reform equation

$$A\vec{\mathbf{x}} = UDU^*\vec{\mathbf{x}} = \vec{\mathbf{b}}$$

So we see

$$\vec{\mathbf{x}} = \alpha_1 \vec{\mathbf{u}}_1 + \alpha_2 \vec{\mathbf{u}}_2 + \dots + \alpha_m \vec{\mathbf{u}}_m \implies U^* \vec{\mathbf{x}} = \vec{\alpha}$$

and

$$\vec{\mathbf{b}} = \beta_1 \vec{\mathbf{u}}_1 + \beta_2 \vec{\mathbf{u}}_2 + \dots + \beta_m \vec{\mathbf{u}}_m \implies \beta_k = \vec{\mathbf{u}}_k^* \vec{\mathbf{b}}$$

so

$$U^*\vec{\mathbf{b}} = \vec{\beta}$$
 and $D\vec{\alpha} = \vec{\beta} \implies \vec{\alpha} = D^{-1}\vec{\beta}$

but since $D_{ii}^{-1} = \frac{1}{\lambda_i}$,

$$\alpha_k = \frac{\vec{\mathbf{u}}_k^* \vec{\mathbf{b}}}{\lambda_k} \implies \vec{\mathbf{x}} = \sum_{k=1}^m \left(\frac{\vec{\mathbf{u}}_k^* \vec{\mathbf{b}}}{\lambda_k} \right) \vec{\mathbf{u}}_k$$

5 Finite Differences

Finite Differences seeks to approximate an ODE or PDE over a mesh or grid. The steps involved are:

- 1. Discretize the PDE using a difference scheme.
- 2. Solve the discretized PDE by iterating and/or time stepping.

5.1 Meshes

5.1.1 Uniform Meshes

Given a closed domain $\Omega = \bar{R} \times [0, t_F]$, we divide it into a $(J+1) \times (N+1)$ grid of parallel lines. Assume $\bar{R} = [0, 1]$. Given the mesh sizes $\Delta x = \frac{1}{7}, \Delta t = \frac{1}{N}$, a **mesh point** is

$$(x_j, t_n) = (j\Delta x, n\Delta t)$$
 $j = 0, ..., J$ $n = 0, ..., N$

and $x_0 = 0$, $x_n = 1$

An alternative convention uses a $(J+2)\times (N+2)$ grid with the mesh sizes $\Delta x=\frac{1}{J+1}, \Delta t=\frac{1}{N+1}.$ $x_0=0,$ $x_{n+1}=1$ are the boundary points. and

$$(x_j, t_n) = (j\Delta x, n\Delta t)$$
 $j = 0, ..., J+1$ $n = 0, ..., N+1$

We seek approximations to the solution at these mesh points, denoted by

$$U_i^n \approx u(x_i, t_n)$$

Where initial values are exact from the initial value function $u^0(x,t) = u(x,0)$

$$U_j^0 = u^0(x_j)$$
 $j = 1, ..., J - 1$

and boundary values are exact from the boundary value functions f(t) = u(0,t) and g(t) = u(1,t)

$$U_0^n = f(t_n)$$
 $U_J^n = g(t_n)$ $n = 1, 2, ...,$

5.2 Difference Coefficients

$$D_+, D_-$$

5.3 Explicit Scheme

A scheme is **explicit** if the solution at the next iteration (time level t_{n+1}) can be written as a single equation involving only previous time steps. This is, if it can be written in the form

$$U_j^{n+1} = \sum_{i} \sum_{k \le n} a_{i,k} U_i^k + b_{i,k} f_i^k$$

Example For the Heat Equation $u_t = u_{xx}$, using a forward difference in time and a centered difference in space, we get

$$U_j^{n+1} = U_j^n + \mu(U_{j+1}^n - 2U_j^n + U_{j-1}^n) \qquad \mu := \frac{\Delta t}{(\Delta x)^2}$$

Pseudocode:

At
$$n=0$$
, $U_j^0=u^0(x_j,0)$ for $n=1:N$
$$U_0^n=0, U_J^n=0$$
 for $j=1:(J-1)$
$$U_j^{n+1}=U_j^n+\mu(U_{j+1}^n-2U_j^n+U_{j-1}^n)$$
 end end

The **stability** of the problem depends on μ .

5.4 Truncation Error

Example For our model problem (the Heat Equation), the trucation error is

$$T(x,t) := \frac{D_{+t}u(x,t)}{\Delta t} - \frac{D_x^2u(x,t)}{(\Delta x)^2}$$

So we see that since $u_t - u_{xx} = 0$,

$$T(x,t) = (u_t - u_{xx}) + \left(\frac{1}{2}u_{tt}\Delta t - \frac{1}{12}u_{xxxx}(\Delta x)^2\right) + \dots = \left(\frac{1}{2}u_{tt}\Delta t - \frac{1}{12}u_{xxxx}(\Delta x)^2\right) + \dots$$

If we truncate this Infinite Taylor series using $\eta \in (t,t+t\Delta t)$ and $\xi \in (x-\Delta x,x+\Delta x)$ and assume the boundry and initial data are consistent at the corners and are both sufficientl smooth, we can then estimate $|u_{tt}(x,\eta)| \leq M_{tt}$ and $|u_{xxx}(\xi,n)| \leq M_{xxxx}$, so it follows that

$$|T(x,t)| \le \frac{1}{2} \Delta t \left(M_{tt} - \frac{1}{6\mu} M_{xxxx} \right)$$

We can assume these bounds will hold uniformly over the domain. We see that

$$|T(x,t)| \to 0$$
 as $\Delta t, \Delta x \to 0 \ \forall \ (x,t) \in \Omega$

and this result is independent of any relaton between the two mesh sizes. Thus this scheme is **unconditionally consistent** with the differential equation.

Since |T(x,t)| will behave asymptotically like $O(\Delta t)$ as $\Delta t \to 0$, this scheme is said to have **first order accuracy**

Since $u_t = u_{xx}$, $u_{tt} = u_{xxxx}$ and so for $\mu = \frac{1}{6}$,

$$T(x,t) = \frac{1}{2}\Delta t \left(u_{tt} - \frac{1}{6\mu} u_{xxxx} \right) + O\left((\Delta t)^2 \right) = O\left((\Delta t)^2 \right)$$

and so the scheme is **second order accurate** for $\mu=\frac{1}{6}$ We can define notation: $T_j^n=T(x_j,t_n)$

5.5 Consistency

Does the difference scheme approximate the PDE as $\Delta x, \Delta t \to 0$? A scheme is consistent if

$$T(x,t) \rightarrow 0$$
 as $\Delta x, \Delta t \rightarrow 0$

- A scheme is **unconditionally consistent** if the scheme is consistent for any relationship between Δx and Δt
- A scheme is **conditionally consistent** if the scheme is consistent only for certain relationships between Δx and Δt

5.6 Accuracy

Take μ finite, so $(\Delta t)^{\frac{a}{b}} = \mu(\Delta x)^{\frac{c}{d}}$, so $(\Delta t)^{\alpha} = (\Delta t)^{ad} = \mu^{bd}(\Delta x)^{cb}$ and we have

$$|T(x,t)| = O(\Delta t^{\alpha})$$

- If $\alpha = 1$, the scheme is **first order accurate**.
- If $\alpha = 2$, the scheme is **second order accurate**.
- etc...
- The scheme is α -order accurate.

5.7 Convergence

A scheme is **convergent** if as $\Delta t, \Delta x \to 0$ for any fixed point (x^*, t^*) in the domain,

$$x_i \to x^*, t_n \to t^* \implies U_i^n \to u(x^*, t^*)$$

It suffices to show this for mesh points for sufficiently refined meshes, as convergence at all other points will follow from continuity of u(x,t). We suppose that we can find a bound for the error \bar{T} :

$$\left|T_{i}^{n}\right| \leq \bar{T} < \infty$$

We denote the error

$$e_i^n \coloneqq U_i^n - u(x_i, t_n)$$

Taking the difference between the scheme and $u(x_j,t^{n+1})$ in terms the truncation error and the exact solution at previous time steps yields the error at e_j^{n+1} . If the RHS of our difference scheme is represented by D, then

$$e_j^{n+1} = DU_j^n - \left(Du(x_j, t_n) + T(x_j, t_n)\Delta t\right) = De_j^n - T_j^n \Delta t$$

Choose μ such that the coefficients of the RHS are positive so that you may estimate $E^n \coloneqq \max\left\{\left|e_j^n\right|, j=0,...,J\right\}$ and so

$$E^{n+1} \leq E^n + \bar{T} \Delta t \text{ s.t. } E^0 = 0$$

and thus

$$E^n < n\bar{T}\Delta t$$
 $n = 0, 1, 2, \dots$

and considering the domain

$$E^n \le \bar{T}t_F$$
 $n = 0, 1, 2, ..., N$

and since $\bar{T} \to 0$ as $\Delta t, dx \to 0, E^n \to 0$

Example If we replace U_i^n with $u(x_i, t_n)$ in the definition of T_i^n we obtain

$$e_j^{n+1} = e_j^n + \mu D_x^2 e_j^n - T_j^n \Delta t$$

which is

$$e_{j}^{n+1} = (1-2\mu)e_{j}^{n} + \mu e_{j+1}^{n} + \mu e_{j-1}^{n} - T_{j}^{n} \Delta t$$

For $\mu \leq \frac{1}{2}$, define $E^n \coloneqq \max \left\{ \left| e_j^n \right|, j = 0, ..., J \right\}$ and so

$$|e_i^{n+1}| \le E^n + \bar{T}\Delta t \implies E^{n+1} \le E^n + \bar{T}\Delta t$$

Since $E^0 = 0$ (the initial values are exact), we have

$$E^n \leq n \bar{T} \Delta t = rac{1}{2} \Delta t \left(M_{tt} - rac{1}{6\mu} M_{xxxx}
ight) t_F
ightarrow 0$$
 as $t
ightarrow 0$

5.7.1 Refinement Path

A refinement path is a sequence of pairs of mesh sizes each which tends to zero

refinement path :=
$$\{((\Delta x)_i, (\Delta t)_i), i = 0, 1, 2, ...; (\Delta x)_i, (\Delta t)_i \rightarrow 0\}$$

We can specify particular paths by requiring certain relationships between the mesh sizes.

Examples $(\Delta t)_i \sim (\Delta x)_i$ or $(\Delta t)_i \sim (\Delta x)_i^2$

Theorem For the heat equation, $\mu_i = \frac{(\Delta t)_i}{(\Delta x)_i^2}$ and if $\mu_i \leq \frac{1}{2} \ \forall \ i$ and if for all sufficiently large values of i and the positive numbers n_i, j_i are such that

$$n_i(\Delta t)_i \to t > 0, j_i(\Delta x)_i \to x \in [0, 1]$$

and if $|u_{xxxx}| \leq M_{xxxx}$ uniformly on Ω , then the approximations $U_{j_i}^{n_i}$ generated by the explicit scheme for i=0,1,... converge to the solution u(x,t) of the differential equation uniformly in the region. This means that arbitrarily good accuracy can be attained by use of a sufficiently fine mesh.

5.8 Error: Fourier Analysis

Let

$$U_j^n = (\lambda)^n e^{ik(j\Delta x)}$$

where $\lambda(k)$ is known as the **amplification factor** of the **Fourier Node** U_j^n . Place this into the difference equation of your scheme and solve for λ . We then have another numerical approximation

$$U_j^n = \sum_{-\infty}^{\infty} A_m e^{-im\pi(j\Delta x)} \left(\lambda(k)\right)^n$$

which can be compared to the Fourier expansion approximating the exact solution.

Example For $U_{j}^{n} = U_{j}^{n} + \mu(U_{j+1}^{n} - 2U_{j}^{n} + U_{j-1}^{n})$, we see

$$\lambda(k) = 1 + \mu(e^{ik\Delta x} - 2 + e^{-ik\Delta x}) = 1 - 4\mu\sin^2\left(\frac{1}{2}k\Delta x\right)$$

So now

$$e^{-k^2 \Delta t} - \lambda(k) = \left(1 - k^2 \Delta t + \frac{1}{2} k^4 \Delta t (\Delta t)^2 - \ldots\right) - \left(1 - k^2 \Delta t + \frac{1}{12} k^4 \Delta t (\Delta x)^2 - \ldots\right) = \left(\frac{(\Delta t)^2}{2} - \frac{\Delta t (\Delta x)^2}{12}\right) k^4 - \ldots$$

Thus we have first order accuracy in general but second order accuracy if $(\Delta x)^2 = 6\Delta t$.

5.9 Stability

A scheme is **stable** if there exists a constant K such that

$$|(\lambda)|^n \le K, \qquad n\Delta t \le t_F, \ \forall \ k$$

That is, if the difference in the solutions of the DE and the numerical DE is bounded uniformly in the domain for any amount of time less than t_F . Thus

$$|\lambda(k)| \le 1 + K'\Delta t$$

This is necessary and sufficient.

5.10 Implicit Scheme

If the scheme cannot be written in a form that has U_j^{n+1} explicitly computed given values U_j^n , j=0,1,...,J, it is implicit. Implicit schemes involve more work but often have higher accuracy and/or stability, and thus much larger time steps allow us to reach the solution much more quickly.

Example

$$\frac{U_j^{n+1} - U_j^n}{\Delta t} = \frac{U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1}}{(\Delta x)^2}$$

which can be written as

$$\Delta_{-t}U_j^{n+1} = \mu \delta_x^2 U_j^{n+1} \qquad \mu = \frac{\Delta t}{(\Delta x)^2}$$

This involves solving a system of linear equations. However, Fourier analysis for the stability shows

$$\lambda = \frac{1}{1 + 4\sin^2\left(\frac{1}{2}k\Delta t\right)}$$

Since $\lambda < 1$ for any positive μ , this scheme is **unconditionally stable**

5.11 Other Conditions

If an equation obeys extra conditions such as a Maximum Principle, uniqueness condition, or a physical constraint, the numerical scheme must also obey such conditions else it may not converge.

6 Methods

6.1 Weighted Average θ method

Given two schemes, you can weight one θ and the other with $(1-\theta)$ and add them together. Then stability, covergence, and accuracy may depend on θ , and it can be chosen to

Example For the explicit and implicit first order accurate schemes for the heat equation are averaged, we have

$$U_j^{n+1} - U^n = \mu \left(\theta \delta_x^2 U_j^{n+1} + (1 - \theta) \delta_x^2 U_j^n \right)$$

 $\theta=0$ yields the explicit scheme and $\theta=1$ yields the implicit scheme.

7 General Boundary Conditions

Boundary conditions like

$$u_x = \alpha(t)u + g(t) \qquad x = 0$$

Can be handled like

$$\frac{U_1^n - U^n)0}{\Delta x} = \alpha^n U_0^n + g^n \implies U_0^n = \beta^n U_1^n - \beta^n g^n \Delta t \qquad \beta^n = \frac{1}{1 + \alpha^n \Delta x}$$

Dirichlet conditions are trivial

$$u(0,t) = 0 \implies U_0^n = 0$$

$$D_x^2 y_i = D_+ D_- y_i = \frac{1}{h^2} (y_{i+1} - 2y_i + y_{i-1})$$

$$y_{i\pm 1} = y_i \pm hy_i' + \frac{1}{2}h^2y_i'' \pm \frac{1}{6}h^3y_i''' + \frac{1}{24}h^4y_i'''' \dots$$

$$D_x^2 y_i = \frac{1}{h^2} \left(y_i + h y_i' + h^2 y'' + \frac{1}{6} h^3 y_i''' + \frac{1}{24} h^4 y_i'''' - 2y_i + y_i - h y_i' + h^2 y'' - \frac{1}{6} h^3 y_i''' + \frac{1}{24} h^4 y_i'''' + \dots \right)$$

which simplifies to

$$D_x^2 y_i = y_i'' + O(h^2)$$

Let $u_i \approx y_i = y(x_i)$

$$u_{xx} + q(x)u = f(x)$$

with $u(0) = \alpha$ and $u(1) = \beta$ becomes

$$\frac{-1}{h^2} \left(u_{i+1} - 2u_i + u_{i-1} \right) + q_i u_i = f_i$$

or

$$\begin{cases} -u_2 + (2+h^2q_1)u_1 = h^2f_1 + \alpha & i = 1\\ -u_{i+1} + (2+h^2q_i)u_i - u_{i-1} = h^2f_i & 2 \le i \le n\\ (2+h^2q_n)u_n - u_{n-1} = h^2f_n + \beta & i = n \end{cases}$$

where $u_0 = \alpha$ and $u_{n+1} = \beta$ we must solve

$$A_{n}\vec{\mathbf{u}}_{n} = \begin{pmatrix} 2+h^{2}q_{1} & -1 & & & \\ -1 & 2+h^{2}q_{2} & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2+h^{2}q_{n} \end{pmatrix} \begin{pmatrix} u_{1} \\ \vdots \\ \vdots \\ u_{n} \end{pmatrix} = \begin{pmatrix} h^{2}f_{1}+\alpha \\ h^{2}f_{2} \\ \vdots \\ h^{2}f_{n}+\beta \end{pmatrix} = \vec{\mathbf{f}}_{n}$$

Note: A_n is tridiagonal and symmetric. We can solve this by using $A_n = LU$

$$L\vec{\mathbf{v}}_n = \vec{\mathbf{f}}_n \qquad U\vec{\mathbf{u}}_n = \vec{\mathbf{v}}_n$$

8 New Notes

9 Finite Difference Coefficients

9.1 Centered Differences

For the difference scheme for the α derivative of f,

$$f^{(\alpha)}(x_i) \approx D_h^{\alpha} f = \frac{1}{d} \frac{a_{i-4} f(x_{i-4}) + \dots + a_i f(x_i) + \dots + a_{i+4} f(x_{i+4})}{h^{\alpha}}$$

where d is the denominator to make the coefficients a_i integers. If we want the scheme to have accuracy β ,

$$f^{(\alpha)}(x_i) = D_h^{\alpha} f + O(h^{\beta})$$

Then the difference coefficients are given by

α	β	d	a_{i-4}	a_{i-3}	a_{i-2}	a_{i-1}	a_i	a_{i+1}	a_{i+2}	a_{i+3}	a_{i+4}
1	2	2				-1	0	1			
	4	12			1	-8	0	8	-1		
	6	60		-1	9	-45	0	45	-9	1	
	8	840	3	-32	168	-672	0	672	-168	32	-3
2	2	1				1	-2	1			
	4	12			-1	16	-30	16	-1		
	6	180		2	-27	270	-490	270	-27	2	
	8	5040	- 9	128	-1008	8064	-14350	8064	-1008	128	-9
3	2	2			-1	2	0	-2	1		
	4	8		1	-8	13	0	-13	8	-1	
	6	240	-7	72	-338	488	0	-488	338	-72	7
4	2	1			1	-4	6	-4	1		
	4	6		-1	12	-39	56	-39	12	-1	
	6	240	7	-96	676	-1952	2730	-1952	676	-96	7

9.2 Forward/Backwards Differences

For the difference scheme for the α derivative of f,

$$f^{(\alpha)}(x_i) \approx D_{\pm}^{\alpha} f = \frac{1}{d} \frac{a_i f(x_i) + \dots + a_{i \pm 4} f(x_{i \pm 4}) + \dots + a_{i \pm 8} f(x_{i \pm 8})}{h^{\alpha}}$$

where d is the denominator to make the coefficients a_i integers. If we want the scheme to have accuracy β ,

$$f^{(\alpha)}(x_i) = D_{\pm}^{\alpha} f + O(h^{\beta})$$

Then the difference coefficients are given by

α	β	d	a_i	a_{i+1}	a_{i+2}	a_{i+3}	a_{i+4}	a_{i+5}	a_{i+6}	a_{i+7}	a_{i+8}
1	1	1	∓1	± 1							
	2	2	∓3	± 4	∓ 3						
	3	6	∓11	± 18	∓ 9	± 2					
	4	12	∓ 25	± 48	∓ 36	± 16	∓ 3				
	5	60	∓ 137	± 300	∓ 300	± 200	∓ 75	± 12			
	6	60	∓ 147	± 360	∓ 450	± 400	∓ 225	± 72	∓ 10		
2	1	1	1	-2	1						
	2	1	2	-5	4	-1					
	3	12	35	-104	114	-56	11				
	4	12	45	-154	214	-156	61	-10			
	5	180	812	-3132	5265	-5080	2970	-972	137		
	6	180	938	-4014	7911	-9490	7389	-3616	1019	-126	
3	1	1	∓1	±3	= 3	1					
	2	2	= 5	± 18	∓ 24	± 14	∓ 3				
	3	4	∓ 17	± 71	∓ 118	± 98	∓ 41	± 7			
	4	8	+ 49	± 232	∓ 461	± 496	∓ 307	± 104	∓ 15		
	5	120	∓ 967	± 5104	∓ 11787	± 15560	∓ 12725	± 6432	∓ 1849	± 232	
	6	240	∓ 2403	± 13960	∓ 36706	± 57384	∓ 58280	± 39128	∓ 16830	± 4216	∓ 469
4	1	1	1	-4	6	-4	1				
	2	1	3	-14	26	-24	11	-2			
	3	6	35	-186	411	-484	321	-114	17		
	4	6	56	-333	852	-1219	1056	-555	164	-21	
	5	240	3207	-21056	61156	-102912	109930	-76352	33636	-8576	967

Part I

New Notes

10 Two Dimensional Problems

Given a problem

$$u_t = b(u_{xx} + u_{yy} \qquad \Omega = [0, X] \times [0, Y]$$

With initial conditions on Ω for t=0 and boundary conditions on $\partial\Omega$ So for a uniform grid mesh

$$U_{i,j}^{N} \approx u(x_i, y_j, t_n) = u(i\Delta x, j\Delta y, n\Delta t), i = 0, 1, ...I, j = 0, 1, ...J, n = 0, 1, ...N$$

Explicit Scheme

$$\frac{U_{i,j}^{n+1} - U_{i,j}^{n}}{\Delta t} = b \left(\frac{\delta_x^2 U_{i,j}^n}{\Delta x^2} + \frac{\delta_y^2 U_{i,j}^n}{\Delta y^2} \right)$$

Consistency

$$T_{ij}^{n} = \left(\frac{1}{2}\Delta t u_{tt} - \frac{1}{12}b\left(\Delta x^{2}u_{xxxx} + \Delta y^{2}u_{yyyy}\right)\right)_{ij}^{n} + \dots$$
$$T_{ij}^{n} \approx O(\Delta t + \Delta x^{2} + \Delta y^{2})$$

Stability

$$U_{ij}^n \approx (\lambda)^n e^{i(k_x i \Delta x + k_y i \Delta y)}$$

????

Convergence The error estimate

$$e_{ij}^{n} = U_{ij}^{n} - u_{ij}^{n}$$

$$U_{ij}^{n} = U_{ij}^{n} + b \left(\mu_{x} \delta_{x}^{2} U_{ij}^{n} + \mu_{y} \delta_{y}^{2} U_{ij}^{n}\right)$$

$$e_{y}^{n+1} = e_{y}^{n} + b \left(\mu_{x} \delta_{x}^{2} e_{ij}^{n} + \mu_{y} \delta_{y}^{2} e_{ij}^{n}\right) - \Delta t T_{ij}^{n}$$

$$\mu_{x} = b \frac{\Delta t}{\Delta x^{2}}, \mu_{y} = b \frac{\Delta t}{\Delta y^{2}}$$

10.0.1 θ Scheme

Accuracy is $O(\Delta t + \Delta x^2 + \Delta y^2)$, but if $\theta = \frac{1}{2}$ we have the Crank-Nicholson Scheme with accuracy $O(\Delta t^2 + \Delta x^2 + \Delta y^2)$.

This requires to solve a system

$$A\vec{\mathbf{U}}^{n+1} = \vec{\mathbf{b}}^n$$

Where $U^n i j$ is reshaped into a vector.

Modified Gram-Schmidt INPUT: $A \in \mathbb{C}^{m \times n}$ where $m \geq n$ and $\mathrm{rank}\,(A) = n$ OUTPUT: $\hat{Q} \in \mathbb{C}^{m \times n}$ orthogonal, $\hat{R} \in \mathbb{C}^{n \times n}$ upper triangular, where $A = \hat{Q}\hat{R}$

 $\begin{array}{l} \text{for i=1 to n r}_{ii} = \|\vec{\mathbf{a}}_i\| \ _2\vec{\mathbf{q}} = \frac{\vec{\mathbf{a}}_i}{r_{ii}} for j = i + 1 ton r_{ij} = \vec{\mathbf{q}}_i^* \vec{\mathbf{a}}_j \vec{\mathbf{a}}_j = \vec{\mathbf{a}}_j - r_{ij} \vec{\mathbf{q}}_i endendOperation count flops \\ \sum_{i=1}^n \sum_{j+1}^n (m + m - 1) + m + m = \sum_{i=1}^n \sum_{j+1}^n (4m - 1) = (4m - 1) \sum_{i=1}^n (n - i) = (4m - 1) (n^2 - \frac{1}{2}n^2) \\ \tilde{2}mn^2 (same asclassical GS) \end{array}$

- Modified GS performs better than Classical GS when there is roundoff error involved.
- Both run into issues with ill conditioned matrices.

The modified GS creates a sequence of matrices $\{R_n\}$

$$AR_1R_2...R_N = [\vec{\mathbf{q}}_1 \dots \vec{\mathbf{q}}_n] = \hat{Q}$$

$$\hat{R} = (R_1 R_2 ... R_N)^{-1} = R_N^{-1} ... R_2^{-1} R_1^{-1}$$

Triangular Orthogonalization: Post-multiplying A by a sequence of upper triangular matrices to produce an orthogonal matrix.

Householder Method: QR factorization Based on Orthogonal triangularization

$$Q_N...Q_2Q_1A = Q^{-1}A = R(fullQRfactorization)$$

Application of Least Squares: Approximating Data. Find a function f(x), typically a polynomial with unknown coefficients, that approximates ome data set (x_i, y_i) i = 1, 2, ..., N in the sense that $||f(\vec{\mathbf{x}}) - \vec{\mathbf{y}}||_2$ is minimized (we assume there is error in the data).

Assume $f(x)=a_0+a_1x+...+a_{n-1}x^{n-1}$ and $m\geq n$. Let $\vec{\mathbf{x}}_i^k=x_i^k$, $\vec{\mathbf{a}}_i=a_i$, and $\vec{\mathbf{b}}_i=y_i$ so

$$A \in \mathbb{R}^{n \times m}, A \coloneqq \left(\vec{\mathbf{1}}, \vec{\mathbf{x}}, \vec{\mathbf{x}}^2, ..., \vec{\mathbf{x}}^{n-1}\right), \qquad A\vec{\mathbf{a}} = \vec{\mathbf{b}}$$

Problem: Find $\vec{\mathbf{a}}$ such that $\|\vec{\mathbf{r}}\|_2 = \|\vec{\mathbf{y}} - A\vec{\mathbf{a}}\|_2$ is minimized.

10.1 Solution using Normal Equations

 A^*A is invertible as long as there are at least n distinct x_i s...that is $rank(A) = \min(n, quantity of distinct <math>x_i$'s). So we can simply use

$$\vec{\mathbf{a}} = (A^*A)^{-1}A^*\vec{\mathbf{v}}$$

10.1.1 Implementation: Solving Normal Equations

Solve Normal Equations via Cholesky Factorization $A^*A = R^*R$ since A^*A is Hermitian and if $rank(A^*A) = n$ it is positive definite.

- 1. Form A^*A , and $A^*\vec{\mathbf{b}}$ ($\sim mn^2$ flops)
- 2. Form Cholesky Facotrization $A^*A=R^*R$ ($\sim \frac{1}{3}n^3$ flops)
- 3. Solve $R^*\vec{\mathbf{y}} = A^*\vec{\mathbf{b}}$ via Forward substitution ($\sim n^2$ flops)
- 4. Solve $R\vec{\mathbf{a}} = \vec{\mathbf{y}}$ via Backward substitution ($\sim n^2$ flops)

Total operation count: $\sim mn^2 + \frac{1}{3}n^3$ flops

10.1.2 Implementation: QR Decomposition

- 1. Form reduced QR decomposition $A = \hat{Q}\hat{R}$ via Householder Triangularization ($\sim 2mn^2 \frac{2}{3}n^3$ flops)
- 2. Form $\vec{\mathbf{y}} = \hat{Q}^* \vec{\mathbf{b}} \ (\sim 2mn)$
- 3. Solve $\hat{R}\vec{a} = \vec{y}$ via Backward substitution ($\sim n^2$ flops)

Total operation count: $\sim 2mn^2 - \frac{2}{3}n^3$ flops

10.1.3 Implementation: Pseudoinverse via reduced SVD

- 1. Form the reduced SVD $A=\hat{U}\hat{\Sigma}V^*$ ($\sim 2mn^2+11n^3$ flops)
- 2. Compute $\vec{\mathbf{y}} = \hat{U}^* \vec{\mathbf{b}} \ (\sim 2mn \ \text{flops})$
- 3. Compute $\vec{\mathbf{z}} = \hat{\Sigma}^{-1} \vec{\mathbf{y}} \; (\sim n \; \text{flops})$
- 4. Compute $\vec{\mathbf{a}} = V\vec{\mathbf{z}} \ (\sim 2n^2 \ \text{flops})$

Total operation count: $\sim 2mn^2 + 11n^3$ flops

11 Normal Equations

Normal Equations

- A*A is Hermitian
- If $rank(A^*A) = n$ it is positive definite since $x^*A^*Ax = ||Ax||_2^2$ and Ax = 0 is only possible with $rank(A^*A) < n$.

12 Stability

12.1 Condition Numbers

Let $\vec{\mathbf{f}}: X \to Y$ be a continuous function. We say $\vec{\mathbf{f}}$ is well conditioned if small changes in $\vec{\mathbf{x}}$ result in small changes of $\vec{\mathbf{f}}(\vec{\mathbf{x}})$. That is if $\delta \vec{\mathbf{f}} = f(\vec{\mathbf{x}} + \delta \vec{\mathbf{x}}) - f(\vec{\mathbf{x}})$

• The Absolute condition Number is

$$\hat{\kappa} \coloneqq \lim_{\delta \to 0} \sup_{\|\delta \vec{\mathbf{x}}\| < \delta} \frac{\left\| \delta \vec{\mathbf{f}} \right\|}{\|\delta \vec{\mathbf{x}}\|}$$

or if $\vec{\mathbf{f}}$ is differentiable, let $J(\vec{\mathbf{x}})$ be the Jacobian matrix of $\vec{\mathbf{f}}$ and so

$$\hat{\kappa} = \|J(\vec{\mathbf{x}})\|$$

• The Relative Condition Number is

$$\hat{\kappa} \coloneqq \lim_{\delta \to 0} \sup_{\|\delta \vec{\mathbf{x}}\| \le \delta} \frac{\left\| \vec{\delta f} \right\|}{\left\| \vec{f} \right\|} \frac{\|\vec{\mathbf{x}}\|}{\|\delta \vec{\mathbf{x}}\|} = \frac{\|J(\vec{\mathbf{x}})\| \|\vec{\mathbf{x}}\|}{\left\| \vec{f} \right\|}$$

• The Condition Number of a Matrix

$$\kappa(A) = \|A\| \ \left\|A^{-1}\right\|$$

14

And if A is singular, $\kappa(A) = \infty$

Condition number facts

• If $A = A^*$ then one can show that the eigenvalues of $A + \delta A$ satisfy $|\delta \lambda| < ||\delta A||$.

NOTES: Jacobian Matrix

Theorem: Let $x \to f(x)$ be a problem with condition number $\kappa(x)$. Let $x \to \tilde{f}(x)$ be a backward stable algorithm. Then $\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = \kappa(x) O(()\epsilon_m)$ therefore a backward stable algorithm applied to a well conditioned problem is accurate.

Proof. \tilde{f} backward stable implies $\tilde{f}(x) = f(\tilde{x})$ for some \tilde{x} such that $\frac{\|x-\tilde{x}\|}{\|x\|} = O(()\epsilon_m)$.

$$\kappa(x) = \sup \frac{\|f(\tilde{x}) - f(x)\| \|x\|}{\|f(x)\| \|x - \tilde{x}\|}$$

So

$$\frac{\|f(\tilde{x}) - f(x)\|}{\|f(x)\|} \le \kappa(x) \frac{\left\|x - \tilde{f}(x)\right\|}{\|x\|} \le \kappa(x) O((\epsilon_m))$$

 $\text{Conditioning of } QR\text{: } A = QR\text{, } A + \delta A = (\hat{Q} + \delta Q)\hat{R}\text{, } \delta A = \delta \hat{Q}\hat{R}\text{ , } \|\delta Q\| \ \leq \|\delta A\| \ \left\|\hat{R}^{-1}\right\|$

$$\frac{\|\delta Q\|_2 \|A\|_2}{\|\delta A\|_2 \|\hat{Q}\|_2} \le \left\|\hat{R}^{-1}\right\|_2 \|A\|_2 = \kappa(A)$$

Householder in IEEE is backward stable. If \tilde{Q}, \tilde{R} are the results of applying Householder to A, Then \tilde{Q} is orthogonal, \tilde{R} is upper triangular, and $\tilde{Q}\tilde{R}=A+\delta A$ where $\frac{\|\delta A\|}{\|A\|}=O(()\epsilon_m)$. $\tilde{Q}\tilde{R}$ is the exact QR factorization of $A+\delta A$.

Backsubstitution is backwards stable. Solution in IEEE satisfies $(R+\delta R)\tilde{x}=\vec{\mathbf{b}}$ for some upper triangular δR such that $\frac{\|\delta R\|}{\|R\|}=O(()\epsilon_m)$.

Example: Least Squares. Given $A \in \mathbb{C}^{m \times n}$, $m \ge n$, rank (A) = n. $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$,

$$\|\vec{\mathbf{b}} - A\hat{x}\|_{2} = \min_{\vec{\mathbf{z}}} \|\vec{\mathbf{b}} - A\vec{\mathbf{x}}\|_{2}$$

 $\hat{x} = f(A, \vec{\mathbf{b}}), \, \kappa(A, b)$ is complicated but roughly speaking $\kappa(A, b) \sim \kappa(A)$.

NOTES Vandermonde Matrix (in polynomial stuff)?

4th order compact finite difference. We can improve the accuracy of

$$y_i'' = D_+ D_- y_i - \frac{h^2}{12} y_i^{(4)} + O((h^4))$$

by using $y^{(4)}(x) = (q(x)y)'' - f''(x)$

$$y_i'' = D_+ D_- y_i - \frac{h^2}{12} D_+ D_- ((qy)_i - f_i) + O(()h^4)$$

or

$$y_i'' = D_+ D_- \left(\left(1 - \frac{h^2}{12} q_i \right) y_i \right) + \frac{h^2}{12} D_+ D_- f_i + O(()h^4)$$

12.2 Gaussian Elimination

Reducing A to I via GE. For $A \in \mathbb{C}^{m \times m}$,

$$flops \sim \frac{4}{3}m^3$$

m columns, each column has O(()m) entries, and takes O(()m) multiplications and additions to zero out any given entry.

Direct methods for solving $A\vec{x} = \vec{b}$.

12.3 LU Facorization.

This is Gaussian Elimination where only adding multiples of rows to another are allowed

12.3.1 Goal

Find B such that BA = U where U is upper triangular.

12.3.2 Process

 B_1 eliminates all entries below a_{11} so B_1A has only zeros in the first column except a_{11} . Example: Assume for simplicity $a_{1,1} = 1$

$$B_1 = \begin{pmatrix} 1 & 0 \\ -a_{2,1} & 1 \\ -a_{3,1} & 0 & 1 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 1 & 0 \\ & 1 \\ & -a_{3,2} & 1 \end{pmatrix}$$

And so $B = B_n ... B_2 B_1$, so $B^{-1} = B_1^{-1} ... B_n^{-1}$, which turns out to be something like

$$\left(\begin{array}{ccc}
1 & 0 \\
a_{2,1} & 1 \\
a_{3,1} & a_{3,2} & 1
\end{array}\right)$$

Then B_2 eliminates the subdiagonal entries of the second column of B_1A .

General LU. Let $\vec{\mathbf{x}}$ denote the Kth column of A at step K, B_k chosen so that $\vec{\mathbf{x}}_k = (x_{1,K}, x_{2,K}, ..., x_{k+1,K}, ..., x_{n,K})$. Then choose $l_{jk} = \frac{x_{jk}}{x_{kk}}$ then

$$L_{i,j} = \begin{cases} l_{i,j} & i > j \\ 1 & i = j \\ 0 & i < j \end{cases}$$

Algorithm in notes.

12.3.3 Problem

Existence of LU factorization fails for some nonsingular matrices. Even for those that exist, stability is not guaranteed.

12.3.4 Efficiency

LU factorization operation count:

$$flops \sim \sum_{k=1}^{m-1} \sum_{j=k+1}^{m} \sum_{s=k}^{m} 2 \sim \sum_{k=1}^{m-1} \sum_{j=k+1}^{m} 2(m-k) \sim \sum_{k=1}^{m-1} 2(m-k)^2 \sim 2 \sum_{k=1}^{m-1} m^2 - 4m \sum_{k=1}^{m-1} k + 2 \sum_{k=1}^{m-1} k^2 \sim 2m^3 - 2m^3 + \frac{2}{3}m^3 \sim \frac{2}{3}m^3 = 2m^3 + 2m^3 + \frac{2}{3}m^3 = 2m^3 + 2$$

2x more efficient than QR or computing A^{-1} . Forward subs $L\vec{\mathbf{x}} = b$ costs

$$flops \sim m^2$$

Which is negligible for large m compared to cost of LU factorization. Backward subs $L\vec{\mathbf{x}} = b$ costs

$$flops \sim m^2$$

Which is negligible for large m compared to cost of LU factorization.

12.4 PLU factorization: PA = LU

Every nonsingular $A \in \mathbb{C}^{n \times n}$ has a PLU factorization.

12.5 Cholesky Factorization

LU decomposition for symmetric positive definite matrices.

Banded matrices Zero above a certain superdiagonal and/or zero below a certain subdiagonal.

- p is the number of superdiagonals
- q is the number of subdiagonals
- $0 \le p, q, \le m 1$
- The Bandwidth is w=p+q+1 so $1 \leq w \leq 2m-1$

Claim: If A has an LU decomposition then zeros are preserved. That is, if A = LU, then U has p superdiagonals and L has q superdiagonals and zero beyond.

For fixed p, q, and $m \to \infty$, the operation count of LU is $O((ms^2) << O((ms^3))$ where $s = \max(p, q)$

If the matrix is sparse, A=sparse(m,m)

Sometimes you could have bands of zero within the bandwidth. This algorithm will fill in these zeros.

Claim: The PA=LU decomposition then the amount of non-zeros generally decreases. If A has bandwidth w, then L has bandwidth w=q+1 but U will have bandwidth w=p+q+1

Symmetric Positive Definite Matrices $A \in \mathbb{C}^{m \times m}$, $A = A^*$, and $\vec{\mathbf{x}}^* A \vec{\mathbf{x}} > 0$ for all $\vec{\mathbf{x}} \neq 0$.

Example -y'' = f with second order central finite difference approximation.

$$A = (diag(-1, -1) + 2I + diag(-1, 1))/h^{2}$$

We see that

$$\vec{\mathbf{x}}^* A \vec{\mathbf{x}} = \vec{\mathbf{x}}^* \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ \vdots \\ -x_{m-1} + 2x_m \end{pmatrix} = 2x_1 \bar{x}_1 - x_2 \bar{x}_1 - x_1 \bar{x}_2 + 2x_2 \bar{x}_2 - \bar{x}_2 x_3 + \dots$$

Note $|x_i - x_{i-1}|^2 = \bar{x}_i x_i - \bar{x}_{i-1} x_i - \bar{x}_i x_{i-1} + \bar{x}_{i-1} x_{i-1}$ thus

$$\vec{\mathbf{x}}^* A \vec{\mathbf{x}} = |x_1|^2 + |x_m|^2 + \sum_{i=2}^m |x_i - x_{i-1}|^2$$

So $\vec{\mathbf{x}}^* A \vec{\mathbf{x}} \geq 0$ but if $\vec{\mathbf{x}}^* A \vec{\mathbf{x}} = 0$, then

$$|x_1| = 0 \implies x_1 = 0 \implies x_2 = 0 \implies \dots \implies x_m = 0$$

Example $-\nabla \phi = f$. So $-\phi_{,x,x} + \phi_{,y,y} = f$ on $D \subset \mathbb{R}^2$. Using Lexicographic ordering,

$$4 - 10 - 14 - 10 - 1 - 1004 - 10 - 1 - 10 - 14 - 10 - 1(u_1, u_2, ..., u_9)^T = (h^2 f_{11}, f_2 f_{21}, ..., f_{33})^T + BC$$

A is block tridiagonal. A is symmetric and positive definite. A is positive definite if and only if eigenvalues of A are all positive. The N^2 eigenvalues of

$$\lambda^{p,q} = \frac{2}{h^2} \left((1 - \cos(p\pi h)) + (1 - \cos(q\pi h)) \right)$$

So $\lambda^{p,q} > 0$ for p, q = 1, 2, ..., N

Cholesky Factorization (modified LU for SPD(symmetric positive definite)) Let $A \in \mathbb{C}^{n \times n}$ be SPD

$$A = \left(\begin{array}{cc} a_{11} & \vec{\mathbf{w}}^* \\ \vec{\mathbf{w}} & B \end{array}\right)$$

Where $B \in \mathbb{C}^{(m-1)\times(m-1)}$ is SPD and $\vec{\mathbf{w}} \in \mathbb{C}^{(m-1)}$. $a_1 1 = \vec{\mathbf{e}}_1^* A \vec{\mathbf{e}}_1 > 0$. We perform the first step of Gaussian elimination

$$\begin{split} A &= \left(\begin{array}{cc} 1 & \vec{\mathbf{0}}^* \\ a_{11}^{-1} \vec{\mathbf{w}} & I \end{array} \right) \left(\begin{array}{cc} a_{11} & \vec{\mathbf{w}}^* \\ \vec{\mathbf{0}} & B - \frac{\vec{\mathbf{w}}\vec{\mathbf{w}}^*}{a_{11}} \end{array} \right) \\ &= \left(\begin{array}{cc} 1 & \vec{\mathbf{0}}^* \\ a_{11}^{-1} \vec{\mathbf{w}} & I \end{array} \right) \left(\begin{array}{cc} a_{11} & \vec{\mathbf{0}}^* \\ \vec{\mathbf{0}} & B - \frac{\vec{\mathbf{w}}\vec{\mathbf{w}}^*}{a_{11}} \end{array} \right) \left(\begin{array}{cc} 1 & a_{11}^{-1} \vec{\mathbf{w}}^* \\ \vec{\mathbf{0}} & I \end{array} \right) \\ &= \left(\begin{array}{cc} \sqrt{a_{11}} & \vec{\mathbf{0}}^* \\ \sqrt{a_{11}}^{-1} \vec{\mathbf{w}} & I \end{array} \right) \left(\begin{array}{cc} 1 & \vec{\mathbf{0}}^* \\ \vec{\mathbf{0}} & B - \frac{\vec{\mathbf{w}}\vec{\mathbf{w}}^*}{a_{11}} \end{array} \right) \left(\begin{array}{cc} \sqrt{a_{11}} & \sqrt{a_{11}}^{-1} \vec{\mathbf{w}}^* \\ \vec{\mathbf{0}} & I \end{array} \right) \\ &= R_1^* A_2 R_1 \end{split}$$

Properties

- Every SPD $A \in \mathbb{C}^{n \times n}$ has a unique Cholesky Factorization.
- The Bandwidth is preserved. If A has bandwidth w = 2p + 1, then R has bandwidth p + 1.
- · No need for pivoting.
- Algorithm is backwards stable for Ax = b. $\tilde{R}^*\tilde{R} = A + \delta A$ where $\frac{\|\delta A\|}{\|A\|} = O(()\epsilon_{machine})$ for some $\delta A \in \mathbb{C}^{n \times n}$. Cholesky gives us \tilde{x} that satisfies $(A + \delta A)\tilde{x} = b$.

Usage:

To solve Ax=b, obtain $A=R^*R$. Then solve $R^*\vec{\mathbf{y}}=b$ via Forward subs, and $R\vec{\mathbf{x}}=\vec{\mathbf{y}}$ via Backward subs. Claim: $A_2=(R_1^*)^{-1}AR_1^{-1}$ is SPD thus $B-\frac{\vec{\mathbf{w}}\vec{\mathbf{w}}^*}{a_{11}}$ is SPD. Proof:

• Symmetric:

$$A_2^* = (R_1^*)^{-1} A R_1^{-1} = A_2$$

Positive Definite

$$\vec{\mathbf{x}}^* A_2 \vec{\mathbf{x}} = \vec{\mathbf{x}}^* (R_1^*)^{-1} A R_1^{-1} \vec{\mathbf{x}} = (R_1^{-1} \vec{\mathbf{x}}) A (R_1^{-1} \vec{\mathbf{x}}) = \vec{\mathbf{y}}^* A \vec{\mathbf{y}} > 0$$

• $B - \frac{\vec{\mathbf{w}}\vec{\mathbf{w}}^*}{a_{11}}$ is SPD. We repeat the Cholesky step m times

$$A = R_1^*A_2R_1 = R_1^*R_2^*A_3R_2R_1 = \ldots = (R_1^*R_2^*\ldots R_m^*)I(R_m\ldots R_1) = R^*IR = R^*R$$

Operation Count:

$$flops \sim \sum_{k=1}^{m} \sum_{j=(k+1)}^{m} \sum_{s=j}^{m} 2 = \sum_{k=1}^{m} \sum_{j=(k+1)}^{m} 2(m-j+1) = \sum_{k=1}^{m} \sum_{n=1}^{m-k} 2n = \sum_{k=1}^{m} (m-k)^2 = m^3 - 2m \left(\frac{1}{2}m^2\right) + \frac{1}{3}m^3 = \frac{$$

Thus this is twice as efficient as LU.

13 Numerical Eigenvalue Problems

Let $A \in \mathbb{C}^{m \times m}$. The eigenvalue problem is

$$A\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}, \qquad \vec{\mathbf{x}} \neq 0$$

MISSING NOTES THURS 10

• Phase 1: Reduce A to upper Hessenberg form via unitary similarity transformations. $A \in \mathbb{C}^{m \times m}$ implies in 2m-1 steps we can get our H matrix

$$Q_{m-2}Q_{m-3}...Q_2Q_1AQ_1Q_2...Q_{m-3}Q_{m-2} = Q^*AQ = H$$

• Phase 2: Iterate to reveal eigenvalues of H.

Operation count: 1st inner loop: $\sum\limits_{k=1}^{m-2}4(m-k)^2\sim\frac{4}{3}m^3$

2nd inner loop: $\sum\limits_{k=1}^{m-2}4m(m-k)\sim 4m\frac{m^2}{2}=2m^3$

Total= $\frac{10}{3}m^3$

The algorithm is backwards stable with conditioning cond(A)

If A is Hermitian, then H is Hermitian.

$$A - A^* = QHQ^* - QH^*Q^* = Q(H - H^*)Q^* = 0$$

Therefore H is tridiagonal. In this case, a simplified algorithm is possible, reducing the operation count to $\frac{4}{3}m^3$.

Phase 2 For remainder of discussion, assume $A \in \mathbb{R}^{n \times n}$ and $A^T = A$, thus $A = QDQ^T$.

 $\{\lambda_i\}$ are real, and eigenvectors $\{\vec{\mathbf{q}}_i\}$ are orthonormal.

Rayleigh Quotient Given $\vec{\mathbf{x}} \in \mathbb{R}^m$, find a value $\hat{\alpha} \in \mathbb{R}$ such that

$$\left\|A\vec{\mathbf{x}} - \hat{\alpha}\vec{\mathbf{x}}\right\|_2 = \min_{\alpha} \left\|A\vec{\mathbf{x}} - \alpha\vec{\mathbf{x}}\right\|_2$$

$$\|A\vec{\mathbf{x}} - \hat{\alpha}\vec{\mathbf{x}}\|_2 = (A\vec{\mathbf{x}} - \hat{\alpha}\vec{\mathbf{x}})^T(A\vec{\mathbf{x}} - \hat{\alpha}\vec{\mathbf{x}}) = \vec{\mathbf{x}}^TA^2\vec{\mathbf{x}} - 2\hat{\alpha}\vec{\mathbf{x}}^TA\vec{\mathbf{x}} + \hat{\alpha}^2\vec{\mathbf{x}}^*\vec{\mathbf{x}}$$

Taking the derivative with respect to α and setting to zero we get

$$-2\vec{\mathbf{x}}^T A \vec{\mathbf{x}} + 2\hat{\alpha} \vec{\mathbf{x}}^T \vec{\mathbf{x}} = 0 \implies \hat{\alpha} = \frac{\vec{\mathbf{x}}^T A \vec{\mathbf{x}}}{\vec{\mathbf{x}}^T \vec{\mathbf{x}}} = R_A(\vec{\mathbf{x}})$$

(Rayleigh Quotient)

Error Estimate: (Taylor Series)

$$R_A(\vec{\mathbf{x}}) = R_A(q_j) + \nabla R_A(q_j) \cdot (\vec{\mathbf{x}} - \vec{\mathbf{q}}_j) + O(()) \|\vec{\mathbf{x}} - \vec{\mathbf{q}}_j\|^2$$

$$\nabla R_A(\vec{\mathbf{x}}) = \nabla \left(\frac{\vec{\mathbf{x}}^T A \vec{\mathbf{x}}}{\vec{\mathbf{x}}^T \vec{\mathbf{x}}} \right) = \frac{\vec{\mathbf{x}}^T \vec{\mathbf{x}} \nabla (\vec{\mathbf{x}}^T A \vec{\mathbf{x}}) - (\vec{\mathbf{x}}^T A \vec{\mathbf{x}}) \nabla (\vec{\mathbf{x}}^T \vec{\mathbf{x}})}{(\vec{\mathbf{x}}^T \vec{\mathbf{x}})^2}$$

Since $\nabla(\vec{\mathbf{x}}^T\vec{\mathbf{x}}) = \nabla(x_1^2 + \ldots + x_m^2) = 2\vec{\mathbf{x}}^T$ and $\nabla(\vec{\mathbf{x}}^TA\vec{\mathbf{x}}) = 2(A\vec{\mathbf{x}})^T$

$$\nabla R_A(\vec{\mathbf{x}}) = \frac{2}{\vec{\mathbf{x}}^T \vec{\mathbf{x}}} \left((A\vec{\mathbf{x}})^T - R_A(\vec{\mathbf{x}}) \vec{\mathbf{x}}^T \right)$$

Thus for an orthonormal eigenvector q_i ,

$$\nabla R_A(\vec{\mathbf{q}}_i) = 2 \left(\lambda_i \vec{\mathbf{q}}_i - \lambda_i \vec{\mathbf{q}}_i^T \right) = 0$$

So we conclude

$$R_A(\vec{\mathbf{x}}) = \lambda_i + O(()) \|\vec{\mathbf{x}} - \vec{\mathbf{q}}_i\|^2$$

Method 1: Power method Assume $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_m|$. Start with vector $\vec{\mathbf{w}}^{(0)} \in \mathbb{R}^m$.

$$w^{(0)} = \alpha_1 \vec{\mathbf{q}}_1 + \dots + \alpha_m \vec{\mathbf{q}}_m$$

$$Aw^{(0)} = \alpha_1 A \vec{\mathbf{q}}_1 + \dots + \alpha_m A \vec{\mathbf{q}}_m = \alpha_1 \lambda_1 \vec{\mathbf{q}}_1 + \dots + \alpha_m \lambda_m \vec{\mathbf{q}}_m$$

Assume this is $\approx \alpha_1 \lambda_1 \vec{\mathbf{q}}_1$ (that $\lambda_1 >> \lambda_i, i > 1$). Improved guess is $\vec{\mathbf{w}}^{(1)} = A \vec{\mathbf{w}}^{(0)}$. Iterating, $\vec{\mathbf{w}}^{(n)} = A \vec{\mathbf{w}}^{(n-1)}$

$$\vec{\mathbf{w}}^{(n)} = \alpha_1 A^n \vec{\mathbf{q}}_1 + \dots + \alpha_m A^n \vec{\mathbf{q}}_m = \alpha_1 \lambda_1^n \vec{\mathbf{q}}_1 + \dots + \alpha_m \lambda_m^n \vec{\mathbf{q}}_m \approx \alpha_1 \lambda_1^n \vec{\mathbf{q}}_1$$

Theorem: Suppose $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_m|$ and $q_1^T v^{(0)} \ne 0$. The power iteration after k steps produces an approximate eigenvector eigenvalue pair that satisfies

$$\left\| \vec{\mathbf{v}}^{(k)} - \pm \vec{\mathbf{q}}_1 \right\|_2 = O(()) \left| \frac{\lambda_2}{\lambda_1} \right|^k, \qquad \left| \lambda^{(k)} - \lambda_1 \right| = O(()) \left| \frac{\lambda_2}{\lambda_1} \right|^{2k}$$

Proof. $\vec{\mathbf{v}}^{(0)} = \alpha_1 \vec{\mathbf{q}}_1 + ... + \alpha_m \vec{\mathbf{q}}_m$.

$$\vec{\mathbf{v}}^{(k)} = \beta_k A^k \vec{\mathbf{v}}^0 = \beta_k A^k \left(\alpha_1 \vec{\mathbf{q}}_1 + \ldots + \alpha_m \vec{\mathbf{q}}_m \right) = \beta_k \alpha^1 \lambda_k^1 \left(\vec{\mathbf{q}}_1 + \ldots + \frac{\alpha_m}{\alpha_1} \left(\frac{m}{\lambda_1} \right)^k \vec{\mathbf{q}}_m \right) \to \beta_k \alpha^1 \lambda_k^1$$

Thus $\|\vec{\mathbf{v}}^{(k)}-(\pm q_1)\|=O(())\left|rac{\lambda_2}{\lambda_1}\right|^k$. Also

$$\lambda^{(k)} = R_A(\vec{\mathbf{v}}^{(k)}) = R_A(\vec{\mathbf{q}}_i) + O(()||(k) - (\pm \vec{\mathbf{q}}_1)||^2) = \lambda_1 + O(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k})$$

Limitations of Power Iteration

Only gives largest eigenvalue λ_1 $\vec{\mathbf{v}}^{(k)}, \lambda^{(k)}$ converge only linearly:

$$\lim_{n \to \infty} \frac{\|\vec{t}(k+1) - (\pm \vec{\mathbf{q}}_1)\|}{\|\vec{t}(k) - (\pm \vec{\mathbf{q}}_1)\|} = c \left| \frac{\lambda_2}{\lambda_1} \right|, 0 < c < 1$$

which is very slow if $\frac{\lambda_2}{\lambda_1}$ is close to 1.

13.1 Shifted Inverse Iteration

Applying the Power Iteration Method to A^{-1} yields an approximation to $\frac{1}{|\lambda_m|}$ and $\vec{\mathbf{q}}_m$. Applying the Power Iteration Method to $(A-\mu I)^{-1}$, which has eigenvalues $(\lambda_j-\mu)^{-1}$ and eigenvectors q_j , yields approximation to $(\lambda_k-\mu)^{-1}$ and q_k where $|\lambda_k-\mu|=\min_j|\lambda_j-\mu|$.

Suppose λ_J is the eigenvalue closest to μ and λ_K is the next closest.

$$|\lambda_J - \mu| < |\lambda_K - \mu| \le |\lambda_i - \mu| \ \forall \ i \ne j$$

Assume $q_J^T \vec{\mathbf{v}}^{(0)} \neq 0$. The shifted inverse iteration produces approximations that satisfy $\|\vec{\mathbf{v}}^{(k)} - (\pm \vec{\mathbf{q}}_J)\| = O(\left(\left|\frac{\lambda_J - \mu}{\lambda_K - \mu}\right|^K\right)) \|\lambda^{(k)} - \lambda_J\| = O(\left(\left|\frac{\lambda_J - \mu}{\lambda_K - \mu}\right|^{2K}\right))$

Proof. Proof: same as power iteration $\lambda_1 \to \frac{1}{\lambda_J - \mu}$, $\lambda_2 \to \frac{1}{\lambda_K - \mu}$ We still have linear convergence, but the constant c depends on μ so we may have faster convergence.

Note. Accuracy of the linear solver of $(A-\mu I)\vec{\mathbf{w}}=\vec{\mathbf{v}}$ depends on $\kappa(A-\mu I)$ but for good guesses of μ this could be huge. However, if this is solved by a backwards stable algorithm, then $\|\vec{\mathbf{w}}-\tilde{w}\|=\kappa(A-\mu I)O(()\epsilon_{machine})$. Therefore if μ is close to λ_J then error $\|\vec{\mathbf{w}}-\tilde{w}\|$ could be large. However, even if this is the vase, $\vec{\mathbf{v}}^{(k)}=\frac{\vec{\mathbf{w}}}{\|\vec{w}\|}$ is still a good approximation to $\vec{\mathbf{q}}_J$ since we only need the direction.

Proof. $(A - \mu I)\vec{\mathbf{w}} = \vec{\mathbf{v}}$ and $(A - \mu I)\tilde{w} = \tilde{v}$, so

$$(A - \mu I)(\vec{\mathbf{w}} - \tilde{w}) = \vec{\mathbf{v}} - \tilde{v} = \alpha_1 \vec{\mathbf{q}}_1 + \dots + \alpha_m \vec{\mathbf{q}}_m$$

$$\vec{\mathbf{w}} - \tilde{w} = \alpha_1 (A - \mu I)^{-1} (\vec{\mathbf{v}} - \tilde{v}) = \alpha_1 (\lambda_1 - \mu)^{-1} \vec{\mathbf{q}}_1 + \dots + \alpha_m (\lambda_1 - \mu)^{-1} \vec{\mathbf{q}}_m$$

Therefore $\vec{\mathbf{w}} - \tilde{w} \approx \alpha_J (\lambda_J - \mu)^{-1} \vec{\mathbf{q}}_J$. The bulk of the error in $\vec{\mathbf{w}}$ is in the direction of $\vec{\mathbf{q}}_J$ so $\vec{\mathbf{v}}^{(k)} = \frac{\tilde{w}}{\|\tilde{w}\|_2}$ is a good approximation to $\vec{\mathbf{q}}_J$.

Theorem If $\vec{\mathbf{v}}^{(0)} \in \mathbb{R}^m$ is sufficiently close to the eigenvector $\vec{\mathbf{q}}_J \in \mathbb{R}^m$ then Rayleigh Quotient Iteration produces approximations that satisfy $\|\vec{\mathbf{v}}^{(k)} - (\pm \vec{\mathbf{q}}_J)\| = O(\|\vec{\mathbf{v}}^{(k)} - (\pm \vec{\mathbf{q}}_J)\|^3) |\lambda^{(k+1)}| = O(()|\lambda^{(k)} - \lambda_J|^3)$

Proof. Proof: $(A - \lambda^{(k)}I)\vec{\mathbf{w}} = \vec{\mathbf{v}}^{(k)}$

$$\vec{\mathbf{w}} = (A - \lambda^{(k)}I)^{-1}\vec{\mathbf{v}}^{(k)}$$

$$= (A - \lambda^{(k)}I)^{-1}(\vec{\mathbf{q}}_J + \vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J)$$

$$(A - \lambda^{(k)}I)^{-1}\vec{\mathbf{q}}_J = \frac{1}{\lambda_J - \lambda^{(k)}}\vec{\mathbf{q}}_J$$

$$\vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J \approx \vec{\mathbf{q}}_K$$

$$(A - \lambda^{(k)}I)^{-1}\vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J \approx \frac{1}{\lambda_K - \lambda^{(k)}}(\vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J) \approx \frac{1}{\lambda_K - \lambda^{(k)}}(\vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J)$$

$$\vec{\mathbf{w}} \approx \frac{1}{\lambda_J - \lambda^{(k)}} \vec{\mathbf{q}}_J + \frac{1}{\lambda_K - \lambda^{(k)}} (\vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J)$$

$$\vec{\mathbf{v}}^{(k+1)} = \frac{\vec{\mathbf{w}}}{\|\vec{\mathbf{w}}\|_2} \approx \vec{\mathbf{q}}_J + \frac{\lambda_J - \lambda^{(k)}}{\lambda_K - \lambda^{(k)}} (\vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J)$$

$$(\vec{\mathbf{v}}^{(k+1)} - \vec{\mathbf{q}}_J) \approx \frac{\lambda_J - \lambda^{(k)}}{\lambda_K - \lambda^{(k)}} (\vec{\mathbf{v}}^{(k)} - \vec{\mathbf{q}}_J)$$

$$= O(() \left| \lambda_J - \lambda^{(k)} \right| \|\vec{\mathbf{v}}(k) - \vec{\mathbf{q}}_J)$$

but $\left|\lambda_J-\lambda^{(k)}\right|=O(()\left\|\ddot{\mathbf{r}}(k)-\ddot{\mathbf{q}}_J\right\|^2)$ from RQ Taylor series, which implies

$$\left\| \vec{\mathbf{v}}^{(k+1)} - \vec{\mathbf{q}}_J \right\| = O(() \left\| \vec{\mathbf{r}}(k) - \vec{\mathbf{q}}_J \right\|^3)$$

Thus $\left|\lambda^{(k+1)} - \lambda_J\right| = O(()\left\|\vec{\mathbf{v}}^{k+1} - \vec{\mathbf{q}}_J\right\|^2) = O(()\left\|\vec{\mathbf{v}}^k - \vec{\mathbf{q}}_J\right\|^6) = O(()\left|\lambda^{(k)-\lambda_J}\right|)$ Operation count (cost of 1 iteration)

 $\begin{array}{ccc} Full Matrix & Tridiagonal \\ \text{Power} & O(()m^2) \text{(Matrix Vector Multiply)} & O(()m) \\ \text{Inverse} & O(()m^2) \text{(Precomputed Cholesky)} & O(()m) \\ \text{Rayleigh} & O(()m^3) \text{(Cholesky each time)} & O(()m) \end{array}$

Therefore we can use the phase 1 reduction (which is $O(()m^3)$ to improve efficiency) Note: Algorithms so far allow us to compute only a single eigenvalue at a time.

13.1.1 QR Algorithm

$$\begin{split} A^{(k)} &= R^{(k)}Q^{(k)}, \qquad R^{(k)} &= (Q^{(k)})^TA^{(k-1)}\\ A^{(k)} &= (Q^{(k)})^TA^{(k-1)}(Q^{(k)}) \end{split}$$

This is a similarity transformation, so it will have the same eigenvalues. As $k \to \infty$,

$$A^{(k)}
ightarrow egin{cases} D & A ext{ is normal} \ T & ext{otherwise} \end{cases}$$

Theorem: Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric such that $A = Q\Lambda Q^T$ is the spectral decomposition where $|\lambda_1|>|\lambda_2|>...>|\lambda_m|>0$ so $\det(\Delta_k(Q))\neq 0$ for k=1,2,...m. Then $A^{(k)}\to D$ as $k\to\infty$.

Proof. Proof:

$$A^{(k)} = \bar{Q}^{(k)} A (\bar{Q}^{(k)})^T$$

, $\bar{Q}^{(k)}=Q^{(1)}...Q^{(k)}$ Therefore we need to prove that $\bar{Q}^{(k)}\to Q$ as $k\to\infty$ because then $A^{(k)}\to Q^TAQ=D$.

$$A = A^{(0)} = Q^{(1)}R^{(1)}, A^2 = Q^{(1)}R^{(1)}Q^{(1)}R^{(1)} = Q^{(1)}A^{(1)}R^{(1)}$$

since $R^{(1)}Q^{(1)} = A^{(1)} = Q^{(2)}R^{(2)}$.

$$A^2 = Q^{(1)}Q^{(2)}R^{(2)}R^{(1)}, \qquad A^3 = Q^{(1)}Q^{(2)}Q^{(3)}R^{(3)}R^{(2)}R^{(1)}$$

so by the above definitions, $A^k = \bar{(Q^{(k)})^T} \bar{R}^{(k)}$ but

$$A^k = \left[A^k \vec{\mathbf{e}}_1, ..., A^k \vec{\mathbf{e}}_m \right]$$

This simulates power iteration. Let $\vec{\mathbf{e}}_1 = \alpha_{11}\vec{\mathbf{q}}_1 + ... + \alpha_{1m}\vec{\mathbf{q}}_m$ where $\{q_i\}$ are the columns of Q. Take the dot product of this with $\vec{\mathbf{q}}_1$, $\vec{\mathbf{q}}_1^T \vec{\mathbf{e}}_1 = \alpha_{11} = \vec{\mathbf{e}}_1^T \vec{\mathbf{q}}_1 = det(\Delta_1(Q)) \neq 0$ Therefore $\alpha_{11} \neq 0$. So

$$\frac{1}{\alpha_{11}}\vec{\mathbf{e}}_1 = \vec{\mathbf{q}}_1 + \dots + \frac{\alpha_{1m}}{\alpha_{11}}\vec{\mathbf{q}}_m$$

Multiplying by A^k ,

$$\frac{1}{\alpha_{11}}A^{k}\vec{\mathbf{e}}_{1} = \lambda_{1}^{k}\vec{\mathbf{q}}_{1} + \ldots + \frac{\alpha_{1m}}{\alpha_{11}}\lambda_{m}^{k}\vec{\mathbf{q}}_{m}$$

This becomes

$$\frac{1}{\alpha_{11}} \frac{\vec{r}_{11}^{(k)}}{\lambda_1^k} \vec{\mathbf{q}}_1^{(k)} = \vec{\mathbf{q}}_1 + \ldots + \frac{\lambda_m^k}{\lambda_1^k} frac\alpha_{1m}\alpha_{11} \vec{\mathbf{q}}_m$$

So $\vec{\mathbf{q}}_1^{(k)} \to \vec{\mathbf{q}}_1$ as $k \to \infty$. Now,

$$\begin{split} \vec{\mathbf{e}}_2 &= \alpha_{21} \left(\frac{1}{\alpha_{11}} \vec{\mathbf{e}}_1 - \left(\frac{\alpha_{12}}{\alpha_{11}} \vec{\mathbf{q}}_2 + \ldots + \frac{\alpha_{1m}}{\alpha_{11}} \vec{\mathbf{q}}_m \right) \right) + \alpha_{22} \vec{\mathbf{q}}_2 + \ldots \\ \vec{\mathbf{e}}_2 &= \frac{\alpha_{22}}{\alpha_{11}} \vec{\mathbf{e}}_1 + \frac{\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21}}{\alpha_{11}} \vec{\mathbf{q}}_2 + \tilde{\alpha}_{23} \vec{\mathbf{q}}_3 + \ldots + \tilde{\alpha}_{2m} \vec{\mathbf{q}} + \ldots + \tilde{\alpha}_{2m} \vec{\mathbf{q}}_m \end{split}$$

$$\frac{\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21}}{\alpha_{11}} = \frac{1}{\alpha_{11}}\det\left(\left(\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array}\right)\right) = \frac{1}{\alpha_{11}}\det\left(\left(\begin{array}{cc} \vec{\mathbf{q}}_1^T\vec{\mathbf{e}}_1 & \vec{\mathbf{q}}_2^T\vec{\mathbf{e}}_1 \\ \vec{\mathbf{q}}_1^T\vec{\mathbf{e}}_2 & \vec{\mathbf{q}}_2^T\vec{\mathbf{e}}_2 \end{array}\right)\right) = \det(\Delta_2(Q)) \neq 0$$

Multiplying by A^K , etc. as before gives us that $Q^{(k)} \to Q$ as $k \to \infty$. One can procede inductively.

Note

- $A^{(0)}$ is tridiagonal from Phase 1.
- $A^{(k)}$ is also tridiagonal for any finite k.
- As $k \to \infty$, off diagonal elements converge to 0.
- 3. Deflation: If $|A_{j,j+1}| < \epsilon$, then set $A^{(k)} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$. $A_1 \in \mathbb{R}^{j \times j}$, $A_2 \in \mathbb{R}^{(m-j) \times (m-j)}$. Then continue iterating on A_1 and A_2 independently.
- 4. Accelerate by shifting

$$Q^{(k)}R^{(k)} = A^{(k-1)} - \mu^{(k)}I$$

Where $\mu^{(k)}$ is usually chosen to be $A_{mm}^{(k)}$ To recreate A, use

$$= A^{(k-1)} = Q^{(k)}R^{(k)} + \mu^{(k)}I$$

13.2 Iterative Schemes for Ax = b

Given an interative scheme where A = M + N,

$$M\vec{\mathbf{x}}^{(k+1)} = N\vec{\mathbf{x}}^{(k)} + b$$

Thus if we have the amplification matrix $G = M^{-1}N$,

$$\vec{\mathbf{e}}^{(k+1)} = G\vec{\mathbf{e}}^{(k)}$$

By induction, $\vec{e}^{(k+1)} = G^k \vec{e}^{(0)}$. Perform the spectral decomposition of G,

$$\vec{\mathbf{e}}^{(k)} = R\Gamma^K R^{-1} \vec{\mathbf{e}}^{(0)}$$

If $\Gamma = \operatorname{diag}(\gamma_1,...,\gamma_n)$ with $|\gamma_1| \geq ... \geq |\gamma_m|$ then we have convergence if $|\gamma_1| < 1$. since then $G^K \to 0$ as $k \to \infty$.

13.2.1 Jacobi Iteration

$$M = D, N = D - A \implies G = I - D^{-1}A$$

Say we are considering the discrete Laplacian operator problem $-\Delta u = f$. For this situation, $G = I - \frac{h^2}{2}A$ so A and G have the same eigenvectors and the eigenvalues are related by

$$\gamma_p = 1 - \frac{h^2}{2}\lambda_p = 1 - \frac{h^2}{2}\frac{2}{h^2}(1 - \cos(p\pi h)) = \cos(p\pi h)$$

 $\gamma_1=\cos(\pi h)=1-\frac{1}{2}\pi^2h^2+\mathcal{O}(h^4).$ Therefore $\rho(G)<1\ \forall\ h>0$ but $\rho(G)\to 1$ as $h\to 0.$ Since this converges quadratically at $h\to 0$, we expect slow convergence for the scheme. How many iterations will we need?

$$\left\| \vec{\mathbf{e}}^{(k)} \right\| \approx \epsilon \left\| \vec{\mathbf{e}}^{(0)} \right\| \implies \rho^k = \epsilon \implies k \approx \frac{\log(\epsilon)}{\log(\rho)}$$

How do we choose ϵ ? Our error for $A\vec{\mathbf{u}} = \vec{\mathbf{f}}$ is $O(()h^2)$, so take $\epsilon \approx ch^2$

$$k = \frac{\log(c) + 2\log(h)}{\log(\rho)} \approx \frac{\log(c) + 2\log(m+1)}{-\frac{1}{2}\pi^2(m+1)^2} \sim \frac{4}{\pi^2}m^2\log(m) = O((m^2\log(m))$$

The total work is $O(()m^3\log(m))$.

A similar analysis can be performed for $m = N^d$ where N is the number of grid points in each coordinate direction. The total work turns out to be $O((N^{d+2}\log(N)))$.

13.2.2 Gauss Seidel

$$M = L + D, N = U \implies G = (L + D)^{-1}R$$

 $\rho(G) = 1 - \pi^2 h^2 + O(()h^4)$ as $h \to 0$. Therefore this takes half as many iterations as Jacobi. Still ttoal work $O(()m^3\log(m)$.

13.2.3 Successive Over-Relaxation (SOR)

Idea: $\vec{\mathbf{u}}^{(k+1)}$ is closer to $\vec{\mathbf{u}}$ than $\vec{\mathbf{u}}^{(k)}$ is to $\vec{\mathbf{u}}$, but not by much. That is, GS moves $\vec{\mathbf{u}}^{(k)}$ in the right direction but not far enough.

$$A=D+L+U, M=\frac{1}{\omega}(D-\omega L), N=\frac{1}{\omega}((1-\omega)D+\omega U)$$

Theorem: Ostrowski. If $A \in \mathbb{R}^{n \times n}$ is SPD, and $D - \omega L$ is nonsingular, then SOR converges for all $0 < \omega < 2$

For our standard u'' = f BVP,

(Stage 1)
$$u_i^{GS} = \frac{1}{2}(\vec{\mathbf{u}}^{(k+1)} + \vec{\mathbf{u}}^{(k)} + h^2 f_i)$$

(Stage 2)
$$u_i^{(k+1)} = u_i^{(k)} + \omega(\vec{\mathbf{u}}_i^{GS} - \vec{\mathbf{u}}^{(k)})$$

Think of $\vec{\mathbf{u}}_i^{GS} - \vec{\mathbf{u}}^{(k)}$ as the direction and ω is the step size, starting from $u_i^{(k)}$. For our model problem,

$$\omega_{optimal} = \frac{2}{1 + \sin(\pi h)} \approx 2 - 2\pi h \implies \rho_{optimal} = \omega_{optimal} - 1 \approx 1 - 2\pi h$$

So $ho_{optimal} o 1$ as h o 0, but much more slowly than GS or Jacobi. $K_{optimal} = O(()N\log(N))$ in any dimension. The total work is $O(()N^{d+1}\log(N))$.

13.3 Descent Methods

Consider $\phi: \mathbb{R}^m \to \mathbb{R}$ defined by

$$\phi(\vec{\mathbf{u}}) = \frac{1}{2}\vec{\mathbf{u}}^T A \vec{\mathbf{u}} - b^T \vec{\mathbf{u}}$$

where $A \in \mathbb{R}^{n \times n}$ is SPD. Solve $A\vec{\mathbf{u}} = b$

Claim: ϕ has a unique global minimizer, $\vec{\mathbf{u}}^*$, that satisfies $A\vec{\mathbf{u}}=^*b$.

Proof: ϕ is quadratic in $u_1,...,u_m$. Thus $\lim_{\|\vec{\mathbf{u}}\|\to\infty}\phi(\vec{\mathbf{u}})=+\infty$ because $\vec{\mathbf{u}}^TA\vec{\mathbf{u}}>0$.

$$\phi(\vec{\mathbf{u}}) = \frac{1}{2} \sum_{i=1}^{m} u_i \left(\sum_{j=1}^{m} a_{ij} u_j \right) - \sum_{i=1}^{m} b_i u_i$$

$$\frac{\partial \phi}{\partial u_k} = \frac{1}{2} \left(\sum_{j=1}^m a_{kj} u_j + \sum_{i=1}^m u_i a_{ik} \right) - b_k = 0$$

But since $a_{ik} = a_{ki}$,

$$\frac{\partial \phi}{\partial u_k} = \left(\sum_{j=1}^m a_{kj} u_j\right) - b_k = (A\vec{\mathbf{u}} - \vec{\mathbf{b}})_k = 0$$

Therefore $\vec{\mathbf{u}}^*$ such that $A\vec{\mathbf{u}}^* = b$ is the only critical point. By positive definiteness, it is the unique global minimizer.

So our strategy will be to (starting with a guess $\vec{\mathbf{u}}^{(0)}$) form the sequence $\left\{\vec{\mathbf{u}}^{(k)}\right\}_{k=0}$ by chooseing a search direction $\vec{\mathbf{d}}^{(k)}$ and a step size $\alpha^{(k)}$ such that

$$\vec{\mathbf{u}}^{(k+1)} = \vec{u}^{(k)} - \alpha^{(k)} \vec{\mathbf{d}}^{(k)}$$

Where $\alpha^{(k)}$ is chosen to minimize $\phi(\vec{u}^{(k)} - \alpha^{(k)}\vec{\mathbf{d}}^{(k)})$ with respect to $\alpha^{(k)}$.

13.3.1 Steepest Descent

The direction of steepest descent of a surface is $-\nabla \phi(\vec{\mathbf{u}}^{(k)})$. This turns out to be the residual:

$$-\nabla\phi(\vec{\mathbf{u}}^{(k)}) = A\vec{\mathbf{u}}^{(k)} - \vec{\mathbf{b}} = -\vec{\mathbf{r}}^{(k)}$$

To find the step size,

$$\alpha^{(k)} = \operatorname*{argmin}_{\text{}} \alpha] \phi(\vec{u}^{(k)} + \alpha^{(k)} \vec{\mathbf{r}}^{(k)})$$

This is done via

$$\phi(\vec{\mathbf{u}} + \alpha \vec{\mathbf{r}}) = \frac{1}{2} \vec{\mathbf{u}}^T A \vec{\mathbf{u}} - \vec{\mathbf{u}}^T b + \alpha \left(\vec{\mathbf{r}}^T A \vec{\mathbf{r}} - \vec{\mathbf{r}}^T b \right) + \frac{1}{2} \alpha^2 \left(\vec{\mathbf{r}}^T A \vec{\mathbf{r}} \right)$$

Taking the derivative with respect to α

$$\alpha \left(\vec{\mathbf{r}}^T A \vec{\mathbf{r}} \right) = \vec{\mathbf{r}}^T \vec{\mathbf{b}} - \vec{\mathbf{r}}^T A \vec{\mathbf{u}} = \vec{\mathbf{r}}^T (\vec{\mathbf{b}} - A \vec{\mathbf{u}}) = \vec{\mathbf{r}}^T \vec{\mathbf{r}}$$

So $\alpha = \frac{\vec{\mathbf{r}}^T \vec{\mathbf{r}}}{\vec{\mathbf{r}}^T A \vec{\mathbf{r}}}$ thus

$$\alpha^{(k)} = \frac{(\vec{\mathbf{r}}^{(k)})^T \vec{\mathbf{r}}^{(k)}}{(\vec{\mathbf{r}}^{(k)})^T A \vec{\mathbf{r}}^{(k)}}, \qquad \vec{\mathbf{d}} = -\vec{\mathbf{r}}$$

Note

$$\vec{\mathbf{r}}^{(k)} = \vec{\mathbf{b}} - A\vec{\mathbf{u}}^{(k)} = \vec{\mathbf{b}} - A(\vec{\mathbf{u}}^{(k-1)} + \alpha^{(k-1)}\vec{\mathbf{r}}^{(k-1)}) = \vec{\mathbf{r}}^{(k-1)} - \alpha^{(k-1)}A\vec{\mathbf{r}}^{(k-1)})$$

Note: Since A is SPD, level curves of ϕ are hyper-ellipses centered at $\vec{\mathbf{u}}^*$.

Convergence: For m=2, matrices with higher eccentricity $\frac{\lambda_1}{\lambda_2}$ will take more iterations.

13.3.2 Conjugate Gradient

Guaranteed to converge to the solution in m steps.

Consider m=2. Start with an initial guess and arbitrary search direction $\vec{\mathbf{d}}^{(0)}$, we want $\vec{\mathbf{d}}^{(1)}=\vec{\mathbf{u}}^*-\vec{\mathbf{u}}^{(1)}$ give $\vec{\mathbf{d}}^{(0)}=\vec{\mathbf{u}}^{(1)}-\vec{\mathbf{u}}^{(0)}$. Claim $\vec{\mathbf{d}}^{(1)},\vec{\mathbf{d}}^{(0)}$ are A-othogonal $(\vec{\mathbf{d}}^{(0)})^TA\vec{\mathbf{d}}^{(1)}=0$.

Proof. $\vec{\mathbf{d}}^{(0)}$ is tangent to a level curve of ϕ $\vec{\mathbf{u}}^{(1)}$. $\nabla \phi(\vec{\mathbf{u}}^{(1)}) = A\vec{\mathbf{u}}^{(1)} - \vec{\mathbf{b}} = -\vec{\mathbf{r}}^{(1)}$. $\vec{\mathbf{r}}^{(1)}$ is orthogonal to $dr^{(0)}$: $(\vec{\mathbf{d}}^{(0)})^T \vec{\mathbf{r}}^{(1)} = 0$.

$$\vec{\mathbf{r}}^{(1)} = \vec{\mathbf{b}} - A\vec{\mathbf{u}}^{(1)} = A\vec{\mathbf{u}}^* - A\vec{\mathbf{u}}^{(1)} = A\vec{\mathbf{d}}^{(1)}$$

Thus $(\vec{\mathbf{d}}^{(0)})^T \vec{\mathbf{r}}^{(1)} = (\vec{\mathbf{d}}^{(0)})^T A \vec{\mathbf{d}}^{(1)} = 0.$

Idea: At each step, pick a search direction so that $d^{(k)}$ and $d^{(k-1)}$ are A-orthogonal.

$$d^{(k)} = -r^{(k)} + \beta^{(k)}d^{(k-1)}$$

Choose $\beta^{(k)}$ so that $\vec{\mathbf{d}}^{(k)}$ and $d^{(k-1)}$ are A-orthogonal.

$$\beta^{(k)} = \frac{(\vec{\mathbf{r}}^{(k)})^T A \vec{\mathbf{d}}^{(k-1)}}{(\vec{\mathbf{d}}^{(k-1)})^T A d^{(k-1)}} = \dots = \frac{(\vec{\mathbf{r}}^{(k)})^T \vec{\mathbf{r}}^{(k)}}{(\vec{\mathbf{r}}^{(k-1)})^T \vec{\mathbf{r}}^{(k-1)}}$$

Optimal step size

$$\alpha^{(k)} = \underset{[}{\operatorname{argmin}} \alpha] \phi(\vec{\mathbf{u}}^{(k)} + \alpha r^{(k)} - \alpha \beta d^{(k-1)}) = \frac{(\vec{\mathbf{d}}^{(k)})^T \vec{\mathbf{r}}^{(k)}}{(\vec{\mathbf{d}}^{(k)})^T A \vec{\mathbf{d}}^{(k)}}$$

Note: $A \in \mathbb{R}^{n \times n}$ is SPD. Converges in m steps to exact solution. Converses to $\|\vec{\mathbf{r}}\| < \epsilon$ in $O(()\sqrt{\kappa(A)})$. Poisson in 2D: $\kappa(A) = O(()h^{-2}) = O(()N^2)$. Iterations will be O(()N)