

ECE 621 Signaling & Synchronization Fall 2020

I/O Channel Characteristics

Sameh A. Ibrahim
Ain Shams University
ICL

(Courtesy of S. Pamarti – UCLA, S. Palermo – TAMU, E. Alon – UCB, and W. Dally – Stanford)

Outline

Channel Components

- Wires (PCB traces, Co-axial cables, twisted pairs, ..etc.)
- IC Packages
- Vias
- Connectors

Channel Impairments

- Limited Bandwidth Loss
- Reflections
- Cross-Talk

Channel Representations

- Impulse Response
- S-Parameters
- Eye Diagram
- Time-Domain Reflectometry (TDR)

Chip-to-Chip Communication Channels

Short Range

- ICs on the same PCB
- The PCB could be within a multi-chip module

Long Range

- ICs on different PCBs
- PCBs connected through another board or a co-axial cable

Channel Complexity

Neglected for low data-rates, short lengths and simple architecture Otherwise

Example Wires

Cables

Coaxial Flat or Ribbon Twisted Pair Flex Circuit

PCB Traces

Strip-line

Gauge (AWG)	Wire Diameter (mils)	Wire Diameter (mm)	DC Resistance (×10 ⁻³ Ω/m) ^a	Maximum Current (A)	Attenuation at 1 GHz (dB/m)
000	409.6	10.404	0.203	175	0.02
0	324.9	8.252	0.322	125	0.03
4	204.3	5.189	0.815	70	0.04
6	162.0	4.115	1.297	50	0.06
8	128.5	3.264	2.061	35	0.07
10	101.9	2.588	3.277	25	0.09
12	80.81	2.053	5.210	20	0.11
14	64.08	1.628	8.268	15	0.14
18	40.30	1.024	20.95	5	0.22
20	31.96	0.8118	33.31	3	0.28
22	25.35	0.6439	52.95		0.35
24	20.10	0.5105	84.22		0.45
28	12.64	0.3211	213.0		0.71
30	10.03	0.2548	338.2		0.90
32	7.950	0.2019	538.4		1.13
34	6.310	0.1602	854.6	/ /	1.42
	led copper at 20' at frequency.	C.	AWG	$=-10\ln\left(\frac{A}{A}\right)$	<u>-</u>)

[Dally]

Туре	W	R	С	L
On chip	0.6µm	$150 k\Omega/m$	200pf/m	600nH/m
PC Board	150μm	$5\Omega/m$	100pf/m	300nH/m
24AWG pair	511µm	$0.08\Omega/m$	40pf/m	400nH/m

Wire Models

Model Types

- Ideal
- Lumped C, R, L
- RC transmission line
- LC transmission line
- RLGC transmission line

Condition for LC or RLGC model (vs RC)

$$f_0 \geq \frac{R}{2\pi L}$$

Basic Electrical Properties of Wires

Resistance

$$R = \frac{\rho L}{A}$$

Material	ρ (n Ω -m)
Ag	16
Cu	17
Au	22
Al	27

Capacitance

$$C = \frac{2\pi\varepsilon}{\log\left(\frac{r_o}{r_i}\right)}$$

Inductance

$$L = \frac{\varepsilon \mu}{C}$$

Wires/Cables as Transmission Lines

- Electromagnetic field propagation
- Per unit length,
 - R, L, and C are the resistance, inductance, and capacitance of the conductor structure
 - G represents loss in the dielectric between the conductors
- For a lossless transmission line, R = 0 and G = 0

IC Package Types

- Package needed to protect chips physically and thermally.
- Packaging pin count did not increase as on-chip aggregate bandwidth.
 - I/O constrained design
 - Higher data rate per pin
- Attachment to board

Through-hole	
Formed Leads	Pins
	• • • •
Surface-moun	t
J-leads Gull-wing	g Solder Balls

Package Type	Pin Count
Small Outline Package (SOP)	8 – 56
Quad Flat Package (QFP)	64 - 304
Plastic Ball Grid Array (PBGA)	256 - 420
Enhanced Ball Grid Array (EBGA)	352 - 896
Flip Chip Ball Grid Array (FC-BGA)	1089 - 2116

IC Package Model

Bondwires

- $L \sim 1 \text{ nH/mm}$
- Mutual inductance
- C_{couple} ~ 20 fF/mm

Package traces

- $L \sim 0.7 1 \text{ nH/mm}$
- Mutual inductance
- $C_{layer} \sim 80 90 \text{ fF/mm}$
- $C_{couple} \sim 40 \text{ fF/mm}$

PCB Vias

- Made by drilling a hole through the board which is plated with copper
 - Pads connect to signal layers/traces.
 - Clearance holes avoid power planes.
- Blind vias are better than through vias with respect to signal integrity as they are better impedance-controlled.

Coaxial-Type Vias

- Extra vias for ground connections
- Spacing used for impedance control

Connectors

- Connectors are used to transfer signals from board to board.
- Typical differential pair density ranges between 16 – 32 pairs/10mm.

Common Connectors

Typical frequencies where attenuation gets to 1 dB.

Connector type	Frequency Range
N-type (Neil)	11-18GHz
APC (sexless)	<18GHz
SMA (2.4mm air-gap)	<26GHz (26-50GHz)
SMB (snap on)	<3GHz
BNC (baby Neil)	<500MHz
D-Connector (RJ connectors)	<100MHz
Ribbon	<20MHz

Outline

Channel Components

- Wires (PCB traces, Co-axial cables, twisted pairs, ..etc.)
- IC Packages
- Vias
- Connectors

Channel Impairments

- Limited Bandwidth Loss
- Reflections
- Cross-Talk

Channel Representations

- Impulse Response
- S-Parameters
- Eye Diagram
- Time-Domain Reflectometry (TDR)

Channel Characteristics

- Flight time typically exceeds bit period in Gb/s signaling
- Consider 5 Gb/s signaling over a 6" PCB trace
 - Flight time is ~ 1ns. Bit period (1 UI) is 200 ps.
 - In any instant, five bits traveling on the channel.
- Channel cannot be considered lumped.
- Trace is modeled as transmission line.
- Effects include signal attenuation, reflection and crosstalk.

Loss Mechanisms: Dielectric Loss (1)

The parallel conductance causes signal attenuation.

$$\gamma\left(j\omega\right) = j\omega\sqrt{LC}\sqrt{\left(1-j\frac{G}{\omega C}\right)} \approx +\frac{1}{2}\underbrace{\left(\frac{G}{\omega C}\right)}_{\tan\delta}\omega\sqrt{LC} + j\omega\sqrt{LC}$$
 Loss tangent

The loss increases with transmission wire length.

$$\left|H_{D}\left(x,j\omega\right)\right|\triangleq\left|\frac{V\left(x,j\omega\right)}{V\left(0,j\omega\right)}\right|=\left|e^{-\gamma\left(j\omega\right)x}\right|=e^{-\alpha\left(\omega\right)x}=e^{-\frac{1}{2}x\omega\sqrt{LC}\tan\delta}$$

Loss Mechanisms: Dielectric Loss (2)

- Loss tangent can be approximated as a constant
 - Not true, but a reasonable approximation

$$\begin{aligned} & \text{Dielectric loss} = -20 \log_{10} \left| H_D \left(j 2 \pi f \right) \right| \\ &= \left(20 \pi f \sqrt{LC} \, \tan \delta \, \log_{10} e \right) x \, \text{ dB} \\ &= \left(20 \pi f \frac{\sqrt{\varepsilon_r}}{c} \tan \delta \, \log_{10} e \right) \, \text{ dB/meter} \end{aligned}$$

Material	tan ō
FR4	0.035
Polyimide	0.025
GETEK	0.010
Teflon	0.001

Note:
$$\sqrt{LC} = \frac{\sqrt{\varepsilon_r \mu_r}}{c}$$
; $\mu_r = 1$ usually

- Loss increases linearly with wire length.
- Loss rolls off as 20 dB/decade (like a 1st order filter past its bandwidth)

Loss Mechanisms: Conductive Loss (1)

Finite conductivity of the conductors causes loss.

$$\gamma\left(j\omega\right)=j\omega\sqrt{LC}\sqrt{\left(1-j\frac{R}{\omega L}\right)}\approx+\frac{1}{2}\frac{R}{Z_{0}}+j\omega\sqrt{LC}$$

Again, loss increases with transmission wire length.

$$\left| H_C(x, j\omega) \right| = e^{-\alpha(\omega)x} = e^{-\frac{1}{2}\frac{R}{Z_0}x}$$

Loss Mechanisms: Conductive Loss (2)

- Conductivity decreases at high frequencies.
 - Called skin effect.
 - Current flows close to the surface in a thin layer.
 - Skin depth, δ , is the depth where the current has fallen to e^{-1} .
 - f_s is the frequency where δ is equal to r or h/2.

DC resistive loss =
$$10 \frac{R_{dc}}{Z_0} \log_{10} e$$
 dB/meter

Skin effect loss =
$$10 \frac{R_{dc}}{Z_0} \left(\frac{f}{f_s}\right)^{1/2} \log_{10} e$$
 dB/meter

Losses: Cable vs. PCB Trace

Reflection

- Suppose T-line is terminated by $Z_T \neq Z_0$.
- Forward wave will launch a backward traveling wave.
 - Backward wave starts at Z_T with the following time waveform

$$V_r(x_{\text{max}}, t) = \Gamma V_f(x_{\text{max}}, t), \text{ where } \Gamma = \frac{Z_T - Z_0}{Z_T + Z_0}$$

• The reflected current is also given by the reflection coefficient, Γ $I_r(x_{\max},t) = \Gamma I_f(x_{\max},t)$

Termination Examples

- The voltage drop at Z_T is $V_{T-line}(x_{max},t) = V_f(x_{max},t) + V_r(x_{max},t)$
- If $Z_T = Z_0$, $V_r(x_{max}, t) = 0$
 - $V_{T-line}(x_{max},t) = V_f(x_{max},t) + V_r(x_{max},t) = V_f(x_{max},t)$
 - Like an infinitely-long TL
- If $Z_T = 0$, $V_r(x_{max}, t) = -1 * V_f(x_{max}, t)$
 - $V_{T-line}(x_{max},t) = V_f(x_{max},t) + V_r(x_{max},t) = 0$
- If $Z_T = \infty$, $V_r(x_{max}, t) = V_f(x_{max}, t)$
 - $V_{T-line}(x_{max},t) = V_f(x_{max},t) + V_r(x_{max},t) = 2 * V_f(x_{max},t)$

TL Wave Reflections

 Multiple reflections are caused by the forward and backward waves reflecting at the source and load boundaries.

Lossy TL Wave Reflections

Loss in TLs reduce the effects of reflections significantly

Numerical Example of TL Reflections

$$V_i = 1V \left(\frac{50}{400 + 50} \right) = 0.111V$$

$$k_{rS} = \frac{400 - 50}{400 + 50} = 0.778$$

$$k_{rR} = \frac{1000 - 50}{1000 + 50} = 0.905$$

	Vwave	Vline	t
Vi1	0.111	0.111	0
Vr1	0.101	0.212	5
Vi2	0.078	0.290	10
Vr2	0.071	0.361	15
Vi3	0.055	0.416	20
Vr3	0.050	0.465	25
Vi4	0.039	0.504	30
Vr4	0.035	0.539	35
Vi5	0.027	0.566	40

Termination Schemes (1)

No Termination

- Little to absorb line energy
- Can generate oscillating waveform
- Line must be very short relative to signal transition time (n = 4 -6)
- Limited off-chip use

Source Termination

- Source output takes 2 steps up
- Used in moderate speed pointto-point connections

Termination Schemes (2)

Receiver Termination

- No reflection from receiver
- Watch out for intermediate impedance discontinuities
- Little to absorb reflections at driver

Double Termination

- Best configuration for minimum reflections
- Get half the swing relative to single termination
- Most common termination scheme for high performance serial links

Sources of Reflections

Z-Discontinuities

- PCB Z mismatch
- Connector Z mismatch
- Vias Z mismatch
- Device parasitics

Example Via Stubs

- Legacy backplanes have default straight vias
- Refined backplanes have expensive backdrilled vias

Minimizing Via Stubs

- Thinner PCBs
- Better vias
- But are expensive solutions

Cross-Talk

- Noise induced by one signal that interferes with another signal
- Capacitive coupling between onchip lines
- Capacitive and inductive coupling between off-chip lines
- Coupling over shared signal returns
- Near end cross-talk (NEXT) and far end cross-talk (FEXT)
- Disturbances on both voltage and current
- Can exceed signal at high frequencies.

Connectors and Cross-Talk

Calculated fron	n length
H → H'	200ps
G → G'	194ps
E → E'	151ps
D → D'	145ps
B → B'	108ps
$A \longrightarrow A'$	99ps

	NEXT	FEXT
	55 ps (20-80%)	55 ps (20-80%)
3	80ps (10-90%)	80ps (10-90%)
AB	4.4%	3.7%
DF	3.3%	2.6%
GH	3.3%	2.6%
JK	4.3%	3.5%

- Connectors have tight footprint constraints.
- Hard to match pairs.
- Big source of impedance discontinuities.
- But above all, a major source of cross-talk.

NEXT: To Do and Not To Do

Everything together

Outline

Channel Components

- Wires (PCB traces, Co-axial cables, twisted pairs, ..etc.)
- IC Packages
- Vias
- Connectors

Channel Impairments

- Limited Bandwidth Loss
- Reflections
- Cross-Talk

Channel Representations

- Impulse Response
- S-Parameters
- Eye Diagram
- Time-Domain Reflectometry (TDR)

Channel Pulse Response

$$y^{(1)}(t) = c^{(1)}(t) * h(t)$$

- TX pulse spreads in time as it travels
- through the channel.

 Channel's pulse response is used in time and domain simulations and link analysis.
- Many post-cursors and few pre-cursors exist due to spreading.
- **Spreading causes interference with** adjacent symbols (ISI).

Inter-Symbol Interference (ISI)

- ISI is caused by channel loss (dispersion) and reflections.
- Previous bits residual state can distort the current bit.
- ISI creates a deterministic jitter in received signal's zero crossings.
- Left uncompensated, ISI leads to increased BER.

Numerical Example

 $y^{(1)}(t)$ sampled relative to pulse peak:

[... 0.003 0.036 0.540 0.165 0.065 0.033 0.020 0.012 0.009 ...]

$$k = [... -2]$$

1

0

1

2

3

4

5

,

By Linearity: $y^{(0)}(t) = -1*y^{(1)}(t)$

Channel Data Stream Response

Channel S-Parameters

- S-Parameters are easy to measure.
 - Y, Z parameters need open and short conditions.
 - S-parameters are obtained with nominal termination.
- S₁₁ measures reflection from channel, port 2 matched.
- S₁₁ is known as return loss.
- S₂₁ measures fraction of signal delivered to matched load.
- S_{21} is known as insertion loss.

S-Parameter Channel Example (1)

[Peters, IEEE Backplane Ethernet Task Force]

S-Parameter Channel Example (2)

Cascading S-Parameters

Convert to ABCD matrix and cascade.

$$A = \frac{v_1}{v_2}\bigg|_{i_{2=0}} \quad B = \frac{v_1}{i_2}\bigg|_{v_{2=0}} \quad C = \frac{i_1}{v_2}\bigg|_{i_{2=0}} \quad D = \frac{i_1}{i_2}\bigg|_{v_{2=0}}$$

$$\begin{vmatrix} v_1 \\ i_i \end{vmatrix} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} \bullet \begin{vmatrix} v_2 \\ i_2 \end{vmatrix}$$

Converting Between S & ABCD Parameters

Relationships Between Two-Port S and ABCD Parameters^a

$$\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$$

$$\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} \frac{B - Z_n(D - A + CZ_n)}{B + Z_n(D + A + CZ_n)} & \frac{2Z_n(AD - BC)}{B + Z_n(D + A + CZ_n)} \\ \frac{2Z_n}{B + Z_n(D + A + CZ_n)} & \frac{B - Z_n(A - D + CZ_n)}{B + Z_n(D + A + CZ_n)} \end{bmatrix}$$

$$\frac{2Z_n(AD - BC)}{B + Z_n(D + A + CZ_n)}$$

$$\frac{B - Z_n(A - D + CZ_n)}{B + Z_n(D + A + CZ_n)}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$\frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{2S_{21}}$$

$$\frac{1}{Z_n}\frac{(1-S_{11})(1-S_{22})-S_{12}S_{21}}{2S_{21}}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{2S_{21}} & Z_n \frac{(1+S_{11})(1+S_{22})-S_{12}S_{21}}{2S_{21}} \\ \frac{1}{Z_n} \frac{(1-S_{11})(1-S_{22})-S_{12}S_{21}}{2S_{21}} & \frac{(1-S_{11})(1+S_{22})+S_{12}S_{21}}{2S_{21}} \end{bmatrix}$$

[Hall]

 $^{{}^{}a}Z_{n}$ is the termination impedance at the ports.

Impulse Response and S-Parameters (1)

$$Y(\omega) = H(\omega)X(\omega)$$
$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(t - \tau)x(\tau)$$
$$h(t) = F^{-1}\{H(w)\}$$

 Step 1: For ifft, produce negative frequency values and append to sparameter data in the following manner

$$S(-f) = S(f)^*$$

$$h(t) = F^{-1}\{S(\omega)\}$$

Impulse Response and S-Parameters (2)

 Can perform ifft now, but will get an impulse response with time resolution of

$$\frac{1}{2f_{\text{max}}} = \frac{1}{2(15\text{GHz})} = 33.3\text{ps}$$

 To improve response resolution, expand frequency axis and "zero pad". For 1ps resolution: zero pad to +/-500GHz

Impulse Response and S-Parameters (3)

 Now perform ifft to produce • impulse response

Can sanity check by doing fft on impulse response and comparing to measured data

Different Channels Examples

Channel Impulse Responses

Eye Diagrams

Eye Diagram Basics

This is a "1"

This is a "0"

Eye Opening - space between 1 and 0

With voltage noise

With timing noise

Loss-Less vs. Lossy Channel

- Loss-less ideal channel
- RX eye = TX eye
- Eye opening = 500 mV
- Clear zero crossing
- No ISI, no jitter

- 40" of FR4
- Data rate = 5 Gb/s
- Effect of attenuation only
- Eye opening = 130 mV
- Zero crossing jitter = 75 ps
- Reflection and cross-talk further close the eye

Eye Diagrams vs. Data Rate

Eye Diagrams vs. Channel

Attenuation and Eye Opening

For an attenuation A, Eye opening is reduced to

$$B = 2A - 1$$

- No eye opening at 50% attenuation
- Significant degradation of margins at lower levels of attenuation

Estimating the Worst-Case Eye (1)

 Can estimate worst-case eye height and data pattern from pulse response.

- Worst-case "1" is summation of a "1" pulse with all negative non k=0 pulse responses.
- Worst-case "0" is summation of a "0" pulse with all positive non k=0 pulse responses.

$$s_1(t) = y_0^{(1)}(t) + \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(d_k)}(t - kT)\Big|_{y(t-kT)<0}$$

$$s_0(t) = y_0^{(0)}(t) + \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(d_k)}(t - kT)\Big|_{y(t-kT)>0}$$

Estimating the Worst-Case Eye (2)

Worst case eye height is s₁(t)-s₀(t).

$$s(t) = s_{1}(t) - s_{0}(t) = \left(y_{0}^{(1)}(t) - y_{0}^{(0)}(t)\right) + \left(\sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(d_{k})}(t - kT)\Big|_{y(t-kT) < 0} - \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(d_{k})}(t - kT)\Big|_{y(t-kT) > 0}\right)$$

$$Because \ y_{0}^{(0)}(t) = -1\left(y_{0}^{(1)}(t)\right)$$

$$s(t) = 2\left(y_{0}^{(1)}(t) + \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(1)}(t - kT)\Big|_{y(t-kT) < 0} - \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(1)}(t - kT)\Big|_{y(t-kT) > 0}\right)$$

$$"1" \text{ pulse worst-case "1" edge}$$

$$"1" \text{ pulse worst-case "0" edge}$$

• If symmetric "1" and "0" pulses, then only positive pulse response is needed.

Worst-Case Eye Example 1

$$y_0^{(1)}(t) = 0.540$$

$$\sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(1)} (t - kT) \Big|_{y(t-kT)<0} = -0.007$$

$$\sum_{k=-\infty}^{\infty} y^{(1)} (t - kT) \Big|_{y(t-kT)>0} = 0.389$$

$$s(t) = 2(0.540 - 0.007 - 0.389) = 0.288$$

Worst-Case Eye Example 2

$$y_0^{(1)}(t) = 0.426$$

$$\sum_{k=-\infty}^{\infty} y^{(1)}(t-kT)\Big|_{y(t-kT)<0} = -0.053$$

$$\sum_{k=-\infty}^{\infty} y^{(1)}(t-kT)\Big|_{y(t-kT)>0} = 0.542$$

$$s(t) = 2(0.426 - 0.053 - 0.542) = -0.338$$

Time-Domain Reflectometer (TDR)

- TDR consists of a fast step generator and a high-speed oscilloscope
- TDR operation
 - Outputs fast voltage step onto channel
 - Observe voltage at source, which include reflections
 - Voltage magnitude can be converted to impedance
 - Impedance discontinuity location can be determined by delay
- Only input port access to characterize channel (vs. VNA)

TDR Impedance Calculation

$$k_r(t) = \frac{V_r(t)}{V_i} = \frac{Z_T(t) - Z_0}{Z_T(t) + Z_0}$$

$$Z_{T}(t) = Z_{0}\left(\frac{1 + k_{r}(t)}{1 - k_{r}(t)}\right) = Z_{0}\left(\frac{V_{i} + V_{r}(t)}{V_{i} - V_{r}(t)}\right) = Z_{0}\left(\frac{V(t)}{2V_{i} - V(t)}\right)$$

If
$$V_{\text{STEP}} = 1V \Rightarrow V_i = 0.5\text{V}$$

$$Z_T(t) = Z_0 \left(\frac{V(t)}{1V - V(t)} \right)$$
 $Z_T(x) = Z_T \left(t = \frac{2x}{v} \right)$

TDR Waveforms (Open & Short)

Open termination

Short termination

TDR Waveforms (Matched & Unmatched)

Matched termination

Unmatched termination

TDR Waveforms (C & L Discontinuity)

Shunt C discontinuity

Series L discontinuity

Spike depends on rise time

$$\frac{\Delta V}{V} = \left(\frac{\tau}{t_r}\right) \left[1 - e^{\left(-\frac{t_r}{\tau}\right)}\right]$$

Rise-Time Degradation

- Upstream elements (Ls & Cs) low-pass the signal resulting in a longer rise-time.
- This affects the reflections from down-stream elements.
 - Slow rising edge
 - Spread out response
 - L & C responses do not go full swing.
- This makes it
 - Hard to extract L and C values.
 - Impossible to measure very small discontinuities.
 - But if the TDR cannot see them, neither can the signal.

Extraction Procedure

Identify regions of the TDR plot as

- Flat region transmission line
- Bump up inductor
- Bump down capacitor

Starting at source

- Determine value of Z & t_d, L, or C for nearest element.
- Simulate to validate and determine new t_{r.}
- Iterate as needed to get the value right.
- Move on to the next element.
- There is no need for models with more resolution than the fastest rise time.

Example TDR Trace

Same Waveform with 200 ps Edge

Channel Summary

- Untreated received eye is closed, or almost closed
- How can it be opened?
 - Characterize channel & compensate for it at TX/RX.
 - Use signaling schemes that best match channel. (NRZ)
 - Use coding to relax constraints. (8b/10b)
 - How to quantize performance?

Bit-Error Rate (BER)

- System overall performance is best described by BER.
- BER = # of erroneous bits / total number of bits.
- At multiple Gb/s rates, the BER requirement for most I/O communication standards is 10⁻¹² or smaller.
- BER are measured using BERT.
- BERT consists of a pattern generator and error detector.
- Pseudo random binary sequence (PRBS) is the most common bit sequence used in BERTs to mimic a trulyrandom sequence.
- PRBS are generated by linear-feedback shift registers (LFSR).

Link Performance Using BERT

N	Polynomial	Period	N	Polynomial	Period
31	Y31+Y28+1	231-1	7	Y7+Y6+1	27-1
23	Y ²³ +Y ¹⁸ +1	223-1	3	Y3+Y1+1	23-1
15	Y15+Y14+1	215-1			

Bathtub Curve

- Shows the BER as a function of the sampling time.
- Determines the horizontal eye opening of the eye diagram.
- Heavily dependent on the system jitter.
- How can we predict this from the beginning?

Traditional Approach

Borrowed from computer systems

- Built to be "error free" (10-20)
- Worst-case analysis

Voltage/Time (VT) Budget

- Also called link Budget
- Deterministic (Bounded) error sources [Cross-talk, residual-ISI, reflections, supply and reference noise, TX offsets, RX offsets and sensitivity] add in the same direction.
- Random (Unbounded) error sources [Thermal and flicker noise] add in rms.
- V & T completely separated.

Traditional Voltage Budget Example

- $BER = \frac{1}{2}erfc\left(\frac{h}{\sqrt{2}\sigma}\right)$
- $h = Swing \sum DN$
- Swing determined by residual ISI (worst case eye)
- DN = deterministic noise
- σ is obtained by rms addition.

Sign	al Swing	400	mV
Vni	Rx offset + sensitivity	50	mV
	Uncancelled PS noise	20	mV
	Total Vni	70	mV
Kn	Crosstalk	10	%
	Reflections	10	%
	Total	20	%
	KnVs	80	mV
	Vn = Vni + KnVs	150	mV

Issues with Traditional Approach

- Worst-case analysis is not realistic, especially with large number of residual-ISI taps.
- Voltage and timing cannot be treated separately for modern links.
- Modern approach
 - Uses noise and ISI statistics
 - Integrates timing noise with voltage noise
 - Needs mapping from time to voltage

Assignment 1

- Assignment is due on 16/03/19 at 10 AM.
- Use the through channel s-parameters "channel.s4p" to provide the following plots:
 - AC magnitude and phase (i.e., s21) from 0 Hz to 20 GHz.
 - Time-domain pulse response at 8 Gb/s indicating symbol-spaced sample values.

Assignment 1 (Contd.)

- The figure shown is a model for a 1-inch FR4 trace that can be cascaded for longer traces.
- Provide the input and output eye diagram for a 6-inch FR4 trace using an 8-Gb/s PRBS source with 0.5 $\rm V_{\rm pp}$ swing.
- Estimate the worst-case eye opening and compare it to the simulated eye.

