## 中国科学技术大学 2024 年 11 月 16 日 8:30 - 10:30

## 2024秋量子力学(A)期中考试

## 注意事项:

- 1. 本次考试为开卷考试;
- 2. 分数取 6 道题中得分最高的 5 题之和,每道题满分 20 分.

## 解答题

1. 已知矩阵  $\mathbf{A}, \mathbf{B} \in \mathbb{C}^N$  可逆,且矩阵  $(\mathbf{A} - \lambda \mathbf{B})$  也可逆,其中  $\lambda \in \mathbb{R}$  是一个小的实数,现在 考虑对  $(\mathbf{A} - \lambda \mathbf{B})^{-1}$  展开,即存在矩阵  $\mathbf{C}_n$  使得下式成立:

$$(\mathbf{A} - \lambda \mathbf{B})^{-1} = \sum_{n=0}^{\infty} \lambda^n \mathbf{C}_n$$

求  $\mathbf{C}_n$  的具体形式. 注意,这里  $\lambda$  是一个"小的实数"并不是要求做近似处理,而是保证  $(\mathbf{A} - \lambda \mathbf{B})^{-1}$  在展开后的求和形式下收敛.

2. 考虑一个在磁场中运动的自旋  $\frac{1}{2}$  粒子,磁场方向始终沿 z 正方向,但随时间变化,满足下面关系:

$$\boldsymbol{B}(t) = B(t)e_z, \ B(t) = \beta t, \ \beta > 0$$

已知当 t=0 时粒子的状态为

$$|\psi(0)\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle$$

其中  $|0\rangle$ ,  $|1\rangle$  为  $\sigma_z$  的本征态,即  $|0\rangle = |z+\rangle$ ,  $|1\rangle = |z-\rangle$ . 求: 在粒子的 Bloch 向量演化一周后,粒子作为一个量子系统的整体相位差、动力学相以及几何相.

3. 考虑一个  $4 \times 4$  的矩阵 U:

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{\mathrm{i}}{\sqrt{2}} & -\frac{\mathrm{i}}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

- (1) 证明 U 是一个酉矩阵;
- (2) 一个双值量子系统处于混合态, 其密度矩阵表示为:

$$\rho = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix}$$

已知该量子系统的 Bloch 向量为  $\mathbf{r} = (r_x, r_y, r_z)$ , 证明:

$$\begin{pmatrix} 1 \\ r_x \\ r_y \\ r_z \end{pmatrix} = \sqrt{2}U \begin{pmatrix} \rho_{11} \\ \rho_{12} \\ \rho_{21} \\ \rho_{22} \end{pmatrix}$$

4. 一个三能级系统的 Hamilton 量可以表示成如下形式:

$$H = -\lambda(|e_1\rangle\langle e_2| + |e_2\rangle\langle e_3| + |e_3\rangle\langle e_1|) + \text{H.C.}$$

其中  $\{|e_i\rangle\}, i=1,2,3$  是  $\mathbb{C}^3$  的一组基, H.C. 表示前面项的厄密共轭项.

- (1) 求该系统的能级和能量本征态;
- (2)已知 t=0 时系统处于  $|e_1\rangle$  的状态,求系统在演化过程中状态什么时候回到  $|e_1\rangle$ ?(允许相因子有差异)

5. 已知一个双自旋  $\frac{1}{2}$  粒子组成的量子系统的状态为

$$|\Psi\rangle = \alpha |00\rangle + \beta |11\rangle$$

其中  $\alpha,\beta\in\mathbb{R}$  且  $\alpha^2+\beta^2=1$ . 对系统总的 x 方向上的自旋角动量  $S_x$  进行测量,求测量结果为 0 的概率.

6. 现在对 Mach-Zehnder 干涉仪做一些改动,将第一个分束器 BS 改为极化分束器 PBS. "极化"原本是光学的概念,这里我们只是做一个名词上的借用. 极化分束器对粒子的作用为: 在粒子通过极化分束器时,只有自旋状态为  $|0\rangle$  的粒子能从水平方向通过,即路径为  $|H\rangle$ ; 只有自旋状态为  $|1\rangle$  的粒子能从竖直方向通过,即路径为  $|1\rangle$ .



图 1: 将 Mach-Zehnder 干涉仪的第一个分束器改为极化分束器 (polarizing beam splitter)

现在考虑一个入射时自旋状态为

$$|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle$$

的粒子进入上述改动后的 MZ 干涉仪,逐步写出粒子在干涉仪中的变换,并求出最终在  $D_0$  上观测到现象的概率.