班级:	<i>肿 夕</i> .	兴旦
班級:	∀+ λ 1 •	子 与:
-///	/ L	3 3 •

北京航空航天大学计算机学院 2020~2021第二学期 操作系统期中测试

请将所有答案(包括判断、选择、填空)统一填写在试卷后面的答题纸部分,写清题号。

- 一、判断题(正确的打√,错误的打×,每题2分,共20分)
 - 1. 【 】中断处理程序是操作系统的重要组成部分,所以对中断的处理是在内核态下进行的。
 - 2. 【 】在分页存储系统中,页面大小可根据程序长度动态调整。
 - 3. 【 】如果有硬件提供相应支持,操作系统可以在虚拟内存管理中采用不同大小的物理页框。
 - 4. 【 】关中断因为操作方便,所以是多处理器系统中实现同步的主要手段。
 - 5. 【 】除初始化外,在信号量上只能执行P、V操作。
 - 6. 【 】页目录自映射的目的是为了节省4KB的虚拟内存空间。
 - 7. 【 】用户级线程是由用户空间的线程库创建而成的,所以它们只能在用户空间运行,不能做系统调用。
 - 8. 【 】管程是由编程语言提供的一种同步机制,它能够替代信号量实现进程同步, 但它本身的实现依赖于信号量。
 - 9. 【 】进程间的互斥是一种特殊的同步关系,通常采用信号量机制实现进程间的 同步和互斥。
 - 10. 【 】在程序链接的过程中,链接器通过 ELF 文件中的重定位表找到需要定位的符号。

二、单项选择题(每题2分,共20分)

- 1. 【 】以下一般不在PCB中记录的内容是:
 - A. 进程切换时程序计数器值
 - B. 进程打开文件列表
 - C. 进程的父进程PCB指针
 - D. 进程所执行程序在磁盘上的物理位置

班级:	姓名:	学号 :	

- 2. 【 】一个进程自身可以决定:
 - A. 从运行状态到阻塞状态
 - B. 从阻塞状态到运行状态
 - C. 从就绪状态到运行状态
 - D. 从阻塞状态到就绪状态
- 3. 【 】以下说法正确的是:
 - A. 虚拟内存地址空间可以大于物理地址空间,也可以小于物理地址空间
 - B. 采用页式内存管理, 页面尺寸越大越有助于提高系统性能和内存使用效率
 - C. 在页式内存管理体制下,缺页是由操作系统发起,由用户进程负责处理
 - D. 在段式内存管理体制下,要求用户程序和数据在物理内存中整体连续存放
- 4. 【】在操作系统中,以下过程通常不需要切换到内核态执行的是:
 - A. 通用寄存器清零
 - B. 系统调用
 - C. 执行IO指令
 - D. 修改中断向量
- 5. 【 】以下说法正确是:
 - A. 请求分页系统中,采用LRU页面置换策略比用二次机会页面策略总能产生更少的缺页次数;
 - B. 分页存储管理中,一个作业可以占用不连续的存储空间,而分段存储管理中一个作业则是占用连续的内存空间;
 - C. 虚拟内存管理可以有效的基础是内存访问的局部性:
 - D. 在一个页式内存管理系统中,为了提高内存的利用率,总可以通过使用较大的页面达到目的。
- 6. 【 】关于PV操作错误的是:
 - A. 信号量如果使用不当,可能导致死锁;
 - B. 如果信号量小于1,对信号量的P操作会将进程挂起;
 - C. S=7, 进程A, B任意顺序调用P(S)各一次, 那么S不一定是5;
 - D. 信号量能够解决任何进程同步问题。

班级	:	学号	:
7.	【 】发生优先级倒置现象的相关边	程:	
	A. 高优先级进程会抢夺低优先级进	程所持有的资源;	
	B. 低优先级进程会被高优先级进程	延迟或阻塞;	
(C. 采用优先级置顶方法,就是将高	优先级进程的优先级调整	到最高;
	D. 采用优先级继承方法,就是让低	优先级进程继承原先高优	先级进程的优先级,
	以便低优先级进程尽快推进。		
8.	【 】以下说法正确是:		
	A. 用户级线程在切换时也需要陷入	.内核;	
	B. 内核级线程切换比用户级线程切	换效率高;	
	C. 用户级线程发生阻塞时,与其在	同一进程中的其他用户级	线程也将被阻塞;
	D. 不同内核级线程只能被调度到同]一个处理机上执行。	
9.	【 】以下说法 错误 的是:		
	A. fork()函数执行成功后系统中会增	9加1个进程;	
	B. Linux中,线程是进程实现资源共	宗享的一种方式;	
•	C. fork()函数的返回值等于0表示当	前进程是被创建的子进程:	:
	D. 执行fork()调用后可能有两种不同	司的返回值。	
	【 】下列说法 错误 的是:		
	A. 外存与CPU之间不存在直接的数	据通路;	
	B. CPU与cache和主存之间均有直接	访问通路;	
(C. 虚存机制对系统程序员不透明;		
	D. 主存未命中时系统的性能损失要	「小于cache未命中时的损失	Ė.
三、填	空题(每空1分,共20分)		
1.	在引入了线程的操作系统中, 进程	是资源分配的基本单位,:	线程是的基

2. 进程的三种基本状态中可与运行态双向相互转换的是: ____态。

本单位。

工厂人工	44. 欠	兴 旦.
班级:	姓名:	学号:

3. 分析以下C语言程序段:

```
#include <stdio.h>
int a = 100;
int b;
int main() {
    static int x;
    int y = 10;
    int *p = &y, *q = &b;
    printf("a=%d, b=%d, p=0x%x\n", a, b, p);
}
```

将上述程序编译成可执行文件,装载到0S时,在BSS段中分配存储空间的变量有:。

- 4. 一个进程要向另一个进程传送大量数据,如不考虑进程间的同步,效率最高的进程间通讯机制为____。
- 5. 一个进程被分配了4个页框。进程开始运行时页框为空,工作页面访问顺序依次为1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2, 3, 采用动态页面置换策略,理想情况下缺页数量下限为____。
- 6. 将一次仅允许一个进程访问的资源称为_____。
- 7. 如果在一个单处理器系统中总共有 n 个进程,则调度结束后,在就绪队列中的进程个数最多为 个。
- 8. 一个伙伴系统管理 1MB 内存, 地址从 0x00000 开始, 最小分配单位是 4KB。与起始地址为 0xff000 的分区互为伙伴的分区起始地址为: _____。
- 9. 任何时刻,管程中最多只能有______个活跃进程。
- 10. 可变分区存储分配算法中, ________算法总是挑选可以容纳作业的最大的空白区进行存储分配。

班级:	姓名:	学号:

四、存储管理(共15分)

一个 32 位的虚拟存储系统有两级页表, 其逻辑地址形式如下:

第一级页表(10位) 第二级页表(10位) 页内偏移(12位)

物理地址为32位,形式为:

物理页框号(20位)	页内偏移(12位)
------------	-----------

页表项(PTE)格式为:

20 位	12 位(为标志位)
物理页框号	第 0 位为有效位,如果为 0,表示 Invalid;如果为 1 表示 Valid。
	第 1 位为读写位, 如果为 0, 表示 Read Only; 如果为 1 表示 Read/Write。
	提示: 只考虑 0 和 1 位,不用管其他位。

请问:

- (1) 进程地址空间共多少字节? (3分)
- (2) 假设当前进程第一级页表的物理地址为 0x00200000,利用后面物理内存的信息,请在下表中写出以下指令的执行结果。(12分)

对于 Load 指令,如果成功执行,写出读入的数据(读取一个字节),否则写 Error;对于 Store 指令,如果成功执行,写 OK,否则写 Error。

指令	结果
Load [0x00001022]	
Store [0x00C07222]	
Store[0x00C005BF]	
Load [0x00003013]	
Load [0xFF80078F]	
Load [0xFFFFF005]	

班级:	姓名:	学号 :	

物理内存 (大尾端)

		-/														
Address	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F
00000000	0E	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
00000010	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D
···.																
00001010	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
00001020	40	03	41	01	30	01	31	03	00	03	00	00	00	00	00	00
00001030	00	11	22	33	44	55	66	77	88	99	AA	ВВ	CC	DD	EE	FF
00001040	10	01	11	03	31	03	13	00	14	01	05	03	16	01	17	00
•••.																
00002030	10	01	11	00	12	03	67	03	11	03	00	00	00	00	00	00
00002040	02	20	03	30	04	40	05	50	01	60	03	70	08	80	09	90
00002050	10	00	31	01	10	03	31	01	12	03	30	00	10	00	10	01
···.																
00004000	30	00	31	01	11	01	33	03	34	01	35	00	43	38	32	79
00004010	50	28	84	19	71	69	39	93	75	10	58	20	97	49	44	59
00004020	23	03	20	03	00	01	62	08	99	86	28	03	48	25	34	21
···.																
00100000	00	00	10	65	00	00	40	67	00	00	30	00	00	00	40	07
00100010	00	00	50	03	00	00	00	00	00	00	00	00	00	00	00	00
···.																
00103000	11	22	00	67	55	66	77	88	99	AA	BB	CC	DD	EE	FF	00
00103010	22	33	44	55	66	77	88	99	AA	BB	CC	DD	EE	FF	00	01
···.																
001FE000	04	15	00	00	48	59	70	7B	8C	9D	AE	BF	D0	E1	F2	03
001FE010	10	15	00	67	10	15	10	67	10	15	20	67	10	15	30	67
···.																
001FF000	00	00	00	00	00	00	00	65	00	00	10	67	00	00	00	00
001FF010	00	00	20	67	00	00	30	67	00	00	40	67	00	00	50	07
···.																
001FFFF0	00	00	00	00	00	00	00	00	10	00	00	67	00	10	30	67
···.																
00200000	00	10	00	07	00	10	10	07	00	10	20	07	00	10	30	07
00200010	00	10	40	07	00	10	50	07	00	10	60	07	00	10	70	07
00200020	00	10	00	07	00	00	00	00	00	00	00	00	00	00	00	00
···.																
00200FF0	00	00	00	00	00	00	00	00	00	1F	E0	07	00	1F	F0	07
···.																

班级:	姓名:	学号:	

五、页表自映射(5分)

- 一个32位的虚拟存储系统有两级页表,其逻辑地址中,第22到31位是第一级页表,12位到21位是第二级页表,页内偏移占0到11位。一个进程的地址空间为4GB,如果从0xAC000000开始映射4MB的页表,请:
 - (1) 给出一级页表的起始虚拟地址; (2分)
 - (2) 给出一给出一级页表中映射自己的表项的虚拟地址。(注意B代表字节,一个32位地址占4字节)(3分)

六、进程管理:信号量基础(8分)

信号量可以实现进程或者线程之间的互斥和同步关系。

(1) 为了避免因"抖动"而降低性能,某软件服务限制了所允许的线程数最多为N,每个线程的处理逻辑如下。请用信号量机制实现对线程数的控制。(本小题3分)while(1)

```
{
    get-a-thread().run();
}
```

(2) 三个线程t₁, t₂ 和t₃的执行顺序和伪代码如下图所示,请用信号量机制实现三个线程之间的同步关系。要求:定义信号量,并在给定伪代码中的适当位置添加基于信号量的同步控制逻辑。(本小题5分)

班级:	州力	学号:
近级 :	姓名:	子 勺:

七、进程管理: 词频统计问题(共12分)

词频统计是实现搜索引擎等系统的重要任务之一。有若干网页爬虫线程A、若干统计网页中关键词词频的线程B和若干词频统计结果读取线程C。其中,A类线程负责爬取网页,将网页信息存储为本地文件,同时将网页文件信息写入到一个大小为N的缓冲区队列buf_queue_pages; B类线程从buf_queue_pages中读取网页文件的路径信息,然后从文件中读取网页内容,进一步对每个网页中的关键词及其出现的频率进行统计,最终得到一组<keyword, frequency>的二元组(例如: <'software', 35>、<'system', 15>),并将二元组与数据库keyword_freq中的统计结果进行累加合并,用累加后的结果更新keyword_freq; C类线程不断地从keyword_freq中读取各关键词最新的词频统计信息,交给各类下游任务进行处理; B类线程访问keyword_freq时优先于C类线程。先于请结合学过的生产者-消费者、读者-写者问题的解决思路,用信号量实现以上三类线程之间的同步/互斥逻辑,尽量提高并发性能。