Chapter 10 The Internet

Nassau Community College CMP 110: Data Communications & the Internet Prof. Christopher R. Merlo cmeric@Docc.edu

i

An Introduction to the Internet

- The Internet was born on Sep. I, 1969 as the ARPANET
 - One computer at UCLA was connected to an AT&T carrier service network
- Four locations connected by end of 1969; thirteen sites by end of 1970

Brief History

- First international connection (to Norway, via UK) in 1973
- Cerf and Kahn develop TCP in 1973
 - Establish communication session between hosts
 - Acknowledge the safe arrival of packets, and arrange for retransmission
 - · Regulated flow of traffic between hosts

.

An Introduction to the Internet

- IP split off from TCP in 1978; responsible for host addressing
- ARPA had completely switched from NCP to TCP/IP by the end of 1982

Brief History

- Supervision of ARPANET changed from ARPA to Defense Communications Agency (DCA) in 1975
 - In the event of failure in the circuit-switched AT&T telephone network, the military could still use ARPANET

.

An Introduction to the Internet

- Supervision of ARPANET changed from ARPA to Defense Communications Agency (DCA) in 1975
 - Repercussions for academic researchers
 - Academic and research communities were comfortable with the open sharing of information and knowledge
 - Military personnel saw potential for compromise of security

Brief History

- MILNET split off from ARPANET in April 1983
 - ARPANET remained under military control, but became more and more civilian-dominated
- National Science Foundation's CSNET, a network of university Computer Science departments, was connected to ARPANET

.

An Introduction to the Internet

Brief History

- Emergence of PCs in the early I 980s led to demand for data sharing
- Based on the success of ARPANET and CSNET, the NSF continued to fund research into computers and networking

Ŕ

Brief History

 The NSF built five regional supercomputing centers, and linked them together into the NSFNET in 1985

9

- Brief History
 - NSFNET centers:
 - Princeton (John von Neumann Center)
 - UC San Diego (San Diego Supercomputer Center)
 - Illinois (National Center for Supercomputing Applications)
 - Cornell (Cornell Theory Center)
 - CMU & Pitt (Pittsburgh Supercomputing Center)

Brief History

- NSFNET was linked by T1 links by 1987
- ARPANET was officially taken off-line at the end of February 1990, replaced by NSFNET
 - · This ended military jurisdiction of the Internet

11

An Introduction to the Internet

- When NSFNET replaced ARPANET in 1990, commercial business activities were not allowed
- Several commercial TCP/IP networks were created that were not limited to academia and research
- These commercial backbones had grown so much by 1991 that NSF could begin to plan for a smooth transition to the private sector

Brief History

- NSF began turning Internet service over to private Internet service providers (ISPs) in 1994
- NSFNET was officially decommissioned in April, 1995, making the Internet a private commercial enterprise, maintained by carriers and ISPs

...

- Internet Governance
 - Internet Society (ISOC)
 - Formed in 1992
 - Created to expand financial support for Internet activities
 - Supports the publication activities of the IETF

- Internet Governance
 - Major Standards-Development Bodies
 - Internet Architecture Board (IAB)
 - Defining Internet architecture and keeping the pulse of long-range Internet issues
 - Internet Engineering Steering Group (IESG)
 - Handles technical management of IETF activities

15

- Internet Governance
 - Major Standards-Development Bodies
 - Internet Engineering Task Force (IETF)
 - Primary organization responsible for Internet standards development
 - Internet Research Task Force (IRTF)
 - Coordinates research activities involving Internet protocols, applications, and other Internet-related technologies; sponsored by ISOC and IETF

- Internet Governance
 - Internet Corporation for Assigned Names and Numbers (ICANN)
 - Non-profit corporation that works on the behalf of the US government
 - Responsible for the allocation of IP address space Assigns Internet protocol identifiers
 - Manages the top-level domains (TLDs) such as .com, .org, .net, etc.

100

- Internet Governance
 - Internet Corporation for Assigned Names and Numbers (ICANN)
 - Provides management functions for the domain name system (DNS)'s root servers
 - Vint Cerf is a former chairman of the board of directors

- The Origin of the Domain Name System
 - In the early days, each ARPANET host stored a hosts file in hosts, txt
 - Each time the ARPANET grew, each host's hosts.txt file grew
 - File was centralized at the Stanford Research Institute, which would propagate changes to all hosts

19

Accessing Information on the Internet

- The Origin of the Domain Name System
 - In the early days, each ARPANET host stored a hosts file in hosts, txt
 - Each new host on the network necessitated broadcast traffic
 - There were obvious limits on the scalability of this system

- The Origin of the Domain Name System
 - In 1983, Paul Mockapetris and Jon Postel created and tested a distributed database of host names and IP addresses
 - DNS was first described in RFD 882 and 883; current specification in RFC 1034 and 1035

41

Accessing Information on the Internet

- The Origin of the Domain Name System
 - Security, implementation, and administrative details updated in RFC 1535, 1536, and 1537
 - When a site adds a host, DNS distributes the host's information to other DNS servers around the network

The Origin of the Domain Name System

 Other hosts on other networks then access these distributed DNS servers remotely to resolve host names to IP addresses

99

Accessing Information on the Internet

Name Servers

- DNS servers are generally located in pairs at each local, regional, and national ISP
- The client computer, called the "resolver", generates a resolve request and sends it to the IP address of the ISP's DNS server
- If the DNS server can resolve the request, it does so; otherwise, the request travels up the DNS hierarchy

Name Servers

- DNS servers are configured to communicate with at least one other DNS server
- DNS servers can cache requests for a configurable amount of time

25

Accessing Information on the Internet

Internet Domains

- The Root Domain serves as the top of the domain name hierarchy
 - The Top-Level Domains (TLDs) exist to organize all the assigned names
 - .com was originally intended for business presence
 - rush.com, espn.com, amazon.com

Internet Domains

- Other top-level domains exist for other organizational units
 - .edu for educational institutions like ncc.edu, molloy.edu, or uvm.edu
 - Other TLDs include .org, .net, .mil

49

Accessing Information on the Internet

Internet Domains

- More recent additions include country-code TLDs like .ie, .it, .uk, etc., and new organization types like .museum, .info, etc.
- The maximum amount of layers under any TLD is 126
- Domain names must be no longer than 255 characters (excluding dots); each part of a domain name is limited to 64 characters

- Internet Protocols
 - Address Resolution Protocol (ARP)
 - Dynamic Host Configuration Protocol (DHCP)
 - User Datagram Protocol (UDP)
 - iSCSI

44

Accessing Information on the Internet

- Internet Protocols
 - Many application-layer protocols
 - HTTP and FTP/SFTP/SCP
 - Telnet and SSH
 - SMTP, POP3, and IMAP4
 - Real-Time Streaming Protocol (RTSP)
 - IM protocols such as XMPP and SIMPLE

- Remember those five supercomputing centers connected by the NSF in the 1990s?
 - They were connected by the NSFNET
 - NSFNET was decommissioned in April 1995, and was replaced by privately-run TCP/IP backbones
 - At the same time, NSF launched a new network backbone called vBNS

31

- Very High-Speed Backbone Network Service (vBNS)
 - Connected the five supercomputing centers, government agencies, and research institutions with high-speed connections
 - Came to be called the Next-Generation Internet initiative, funded by the US government
 - Still operated by MCI; no longer funded by NSF

• Internet2

- Created by 34 US universities in 1996
- Not a network infrastructure per se; it's a consortium of universities, government, and businesses to build and test advanced applications and technologies

99

The Future of the Internet

Internet2

 Incorporated in 1997 under the University Consortium for Advanced Internet Development (UCAID)

Internet2

- The Abilene Project is the actual physical communications network that supports Internet2
 - Went live in February, 1999 on 2.4 Gbps OC-48 lines
 - Upgraded to 10 Gbps OC-192 in 2004
 - Not interconnected with the public Internet

35

The Future of the Internet

Internet2

- There exist many Internet2 Working Groups that support advanced service, application, and technology development, including:
 - Campus Bandwidth Management
 - Digital Video
 - Integrated Infrastructure for Instant Messaging
 - IPv6 and more

- Internet Protocol Version 6 (IPv6)
 - Why?
 - The need to provide IP addresses to a growing number of devices
 - Next-generation business applications
 - · Growing use of mobile and wireless devices
 - Increased exposure of data as it is transmitted across the Internet

0.00

- Internet Protocol Version 6 (IPv6)
 - Why?
 - We are running out of IPv4 addresses
 - . This problem is partially solved by NAT and DHCP
 - However, NAT does not allow client devices to provide interactive services to the rest of the network
 - An IPv4-based solution to that problem is a significant challenge; implementing IPv6 will probably be easier

- Internet Protocol Version 6 (IPv6)
 - Why?
 - IPv4 does not scale well to large amounts of mobile devices; results in inefficient routing of network traffic
 - This problem is solved by IPv6's autoconfiguration feature
 - Security is an add-on feature to IPv4 (through IPSec); security is built in to IPv6

99

- Internet Protocol Version 6 (IPv6)
 - IPv6 Addresses
 - An IPv6 address is 128 bits long (compare to 32 bits in an IPv4 address)
 - The address is broken into eight 16-bit sections

- Internet Protocol Version 6 (IPv6)
 - IPv6 Addresses
 - For simplicity's sake, each 16-bit section is represented by four hexadecimal digits
 - 0 through 9, and then A through F (A = 10, B = 11, etc.)
 - Example IPv6 address: FE80:0000:0000:0000:ABCD:FF32:030C:1234

41

- Internet Protocol Version 6 (IPv6)
 - IPv6 Addresses
 - There are no classes of IPv6 addresses; the first bits are the Global Routing Prefix bits
 - These are followed by subnet ID bits, and then Interface ID bits, derived from the MAC address

- Internet Protocol Version 6 (IPv6)
 - IPv6 Addresses
 - FE80:0000:0000:0000:ABCD:FF32:030C:1234 can be abbreviated a couple of ways
 - Remove leading zeros to create FE80:0:0:0:ABCD:FF32:30C:1234
 - Represent a string of zeros with two colons, such as FE80::ABCD:FF32:30C:1234 (This can only be done once per address)

43

- Internet Protocol Version 6 (IPv6)
 - IPv6 Addresses
 - FE80::ABCD:FF32:030C:1234/10, with that "/10" at the end, means that the first ten bits are the global routing bits (this is called prefix notation)

- Internet Protocol Version 6 (IPv6)
 - Types of IPv6 Addresses
 - Unicast addresses identify individual, unique network interfaces
 - Network cards
 - Wireless access points
 - Switch ports or router ports

45

- Internet Protocol Version 6 (IPv6)
 - Types of IPv6 Addresses
 - Global Unicast addresses are unique across the entire IPv6 Internet
 - Start with bits 001
 - Each group of bits 4-16, 25-48, and 49-64 represent different organizational bodies like the ISP, or are assigned locally
 - The last 64 bits comprise the interface portion

- Internet Protocol Version 6 (IPv6)
 - Types of IPv6 Addresses
 - An anycast address is a unicast address that is assigned to more than one interface
 - Imagine a network with access to the Internet through many routers
 - Each router can be configured with the same anycast address, used as a destination by the internal machines
 - No one really cares which router sends data out to the Internet.

-

- Internet Protocol Version 6 (IPv6)
 - Types of IPv6 Addresses
 - A link-local unicast address can be used on a network that doesn't require routing
 - Addresses must start with bits 1111 1111 10
 - Multicast addresses can be used to send packets to groups of interfaces

- Internet Protocol Version 6 (IPv6)
 - Types of IPv6 Addresses
 - The loopback address in IPv6 is 0000:0000:0000:0000:0000:0000:0000
 - Which can be abbreviated as #1
 - Analogous to the IPv4 loopback address 127.0.0.1

49

