# **Smart Agriculture Irrigation System**

#### **Team Members:**

- 1. Sadia Afrin Sraboni (221-15-5195)
- 2. Masud Mia (221-15-4837)
- 3. Mehzabin Nower (221-15-4688)
- 4.Mst Fatema Akter (221-15-6015)
- 5.Sifat Khan (221-15-5869)

#### **Abstract:**

In Bangladesh, most farmers still water their crops manually, which often wastes water and takes extra effort. Modern smart irrigation systems are available, but they are expensive and depend on the internet or GSM, which is not practical in many rural areas. In this project, we designed a low-cost, offline Smart Agriculture Irrigation System using ESP32, a soil moisture sensor, DHT11, a relay, and a small water pump. The pump turns on automatically when the soil becomes dry and stops when the soil has enough moisture. All data (temperature, humidity, and soil condition) is shown on an OLED display. The system is simple, affordable, and can help small farmers and gardeners save water and time.

### **Introduction:**

Irrigation is one of the most important tasks in farming, but in Bangladesh, most of it is still done manually. Farmers usually water their crops by guessing or by following a fixed schedule. This causes either too much water or too little water, both of which affect crop growth. Smart irrigation systems exist in other countries, but they mostly need the internet and are costly. We aimed to create a system that fits Bangladesh's reality: cheap, offline, and easy to use. With just a few sensors, a microcontroller, and a pump, our system can water crops on its own without internet. It also shows live data on a display so that farmers can see the condition of their soil and weather instantly.

## **Background Study:**

While studying, we found that most research on smart irrigation focuses on IoT and remote monitoring. For example, the IRJET paper (2021) shows a system where sensors send data to a mobile app through GSM/Wi-Fi, and the motor is controlled remotely. Although this works well in advanced setups, it costs more and always needs the internet. In Bangladesh, rural farmers cannot always afford GSM modules or Wi-Fi connections. They need something simpler—an offline system that just does the job. That gap in existing solutions motivated us to design a project that is practical and affordable.

### **Motivation:**

The motivation came from seeing how farmers around us struggle with irrigation. Many have to spend hours watering their crops, often at odd times of the day. We also noticed water being wasted because irrigation was not done at the right time. Expensive IoT systems are not realistic for small farmers here. So we thought—what if we build something small and smart that can do this job automatically without internet? This became the core inspiration for our project.

### **Contribution:**

Sadia Afrin Sraboni: Component collect, Circuit design, Literature review, and Report

writing

Masud Mia: Software coding, Connection and Presentation.

Mehzabin Nower: wire, block diagram and collecting water and plant.

Mst Fatema Akter: troubleshooting and collecting soil. Sifat Khan: Coding, Implementation and Documentation.

### Literature Review:

| Source                                | Approach                                                            | Limitation                              | Gap Identified                                         |
|---------------------------------------|---------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|
| THE SMART IRRIGATION SYSTEM USING IOT | IoT irrigation using GSM/Wi-Fi, mobile app                          | Internet dependency, high cost          | Not practical for rural Bangladesh                     |
| Automated Irrigation                  | GSM-based irrigation system that sends SMS alerts                   | High installation and maintenance costs | Small-scale farmers<br>cannot afford GSM<br>modules    |
| Smart Irrigation System               | Smart irrigation<br>with soil moisture<br>and weather<br>prediction | Complex algorithm, high cost            | Too sophisticated for small farms                      |
| System-IoT Based<br>Approach          | IoT-based smart irrigation system with remote monitoring            | Requires internet connectivity          | Not practical for rural areas with unreliable internet |

## **Objectives:**

Create a low-cost smart irrigation system that works without internet. Automatically turn on the pump when soil is dry and stop when soil is moist enough. Display real-time information on soil condition, temperature, and humidity on an OLED display.

Provide a practical system for small farmers and gardeners in Bangladesh.

## **Components Used:**

- ESP32
- ARDIUNO UNO
- Relay Module
- DHT11 Temperature & Humidity Sensor
- Soil Moisture Sensor
- OLED Display
- Rechargeable Battery
- Jumper Wires
- Breadboard
- Water Pipes
- DC Water Pump

## **Block Diagram:**



### FIG: Block Diagram

# Hardware Design:



FIG: Connection with Arduino

# **Software Design:**



### FIG: Workflow chart

We used Arduino IDE to write the code. The program constantly checks soil moisture. If the dryness level goes below a set threshold, the pump is turned ON, otherwise it is OFF. The OLED screen is refreshed to show current readings and pump status. Everything works offline, so there is no dependency on the internet.

## **Implementation:**

Step by step, we connected the ESP32 and Arduino with the sensors, relay, and OLED display. Then we uploaded our code and tested it. The system worked successfully—the pump turned on automatically when the soil dried and stopped when it was moist again. The OLED display showed all sensor readings clearly.



FIG: Smart Irrigation System

### **Results:** (Manual vs Auto ):

| Aspect      | Manual Irrigation     | Smart Auto Irrigation    |
|-------------|-----------------------|--------------------------|
| Water Usage | Often wasted          | Controlled and efficient |
| Labor       | Needs farmer presence | Fully automatic          |
| Accuracy    | Based on guess        | Based on sensor data     |
| Monitoring  | No feedback           | Real-time OLED data      |
| Reliability | Not always consistent | Reliable automation      |

Our test results showed that the smart system saves water, reduces farmer workload, and provides real-time useful data.

### **Challenges:**

Sensor Calibration: Different soils in Bangladesh (clay, sandy, loamy) gave different readings, so we had to adjust thresholds.

Power Supply: Keeping a stable supply for outdoor use was tricky. Coding & Debugging: As beginners, we faced errors in Arduino code.

Circuit Issues: Loose breadboard connections caused problems during testing.

Even though these were challenges, we learned a lot by solving them.

### **Future Scope:**

This project can be further expanded such as the app can suggest what type of crop can be produced in the field based on the soil type and the water resource used for irrigation, source of availability of seeds, organic manures to be used for the best yield, methods for preserving the produce till marketing and so on.

#### **Conclusion:**

We successfully built an offline smart irrigation system that is low-cost, simple, and practical for Bangladeshi farmers. It saves water, reduces human effort, and shows real-time information. Compared to existing IoT models like the IRJET system, our design is more suitable for Bangladesh because it avoids high cost and internet dependency. With future upgrades, this project can evolve into a complete smart farming solution that everyone—from small farmers to gardeners—can afford to use.

Once this idea gets implemented, we can save the water wasted unnecessarily. The various moisture, temperature, rainfall and humidity values are monitored using the various sensors. The moisture value is compared with the threshold, and the water pump is automated when the moisture value is lower than the threshold value. The information is sent to the user through the Android application. Thus, we can save our natural water bodies

for future generations.