## Klasyfikatory

#### Zgromadzone dane

• Tabela

• Wiersze : Kolejne obserwacje

Kolumny: zmienna prognozowana (objaśniana) (Y)

zmienne objaśniające (X)

- Typy danych
  - Nominalne (binarne)
  - Porządkowe
  - Ciagłe
  - Braki danych

#### Braki danych

- Braki danych są jednym z najważniejszych problemów (i najczęstszych) na jaki możemy natrafić budując model.
- Aby móc im poprawnie przeciwdziałać musimy odpowiednio zbadać i zrozumieć strukturę zebranych danych.
- Mechanizmy
  - Mechanizm całkowicie losowy (MCAR: Missing completely at random)
  - Mechanizm losowy (MAR: Missing at random)
  - Mechanizm nielosowy (MNAR Missing not at random)
- Uwaga
  - Wybór procedury radzenia sobie z brakami danych zależy od typu modelu na którym pracujemy (np. szeregi czasowe).

#### Braki danych

- Jak sobie radzić?
- Usuwanie danych
  - Usuwanie wszystkich jednostek obserwacji z analiz
  - Usuwanie jednostek obserwacji z analiz parami
  - Usuwanie zmiennych
- Zastępowanie braków danych
  - Za pomocą statystyk (średniej/mediany/dominanty)
  - Za pomocą modelu
    - Imputacja nieparametryczna
    - Imputacja regresyjna
    - Metoda największej wiarygodności
    - Wielokrotne imputacje
- Traktowanie braku danych jako dodatkowej informacji, którą niesie ze sobą model
  - Traktujemy braki danych jako zmienne binarne szczególnie wygodne w przypadku zmiennych jakościowych

#### Zagadnienie klasyfikacji

- Binarna zmienna objaśniana
- Szukamy dowolnej funkcji zmiennych objaśniających f(x) takiej, że:

$$f(\mathbf{X}_1) > f(\mathbf{X}_2) \Leftrightarrow \Pr(Y_1 = 1) > \Pr(Y_2 = 1)$$

- Klasyczne modele w których zmienne objaśniane są wyrażalne liczbowo i nie posiadają braków danych
  - Regresja liniowa
  - Regresja logistyczna

#### Liniowy model prawdopodobieństwa

Standardowa postać funkcyjna:

$$f(X) = P(Y = 1|X)$$
  
= B<sub>0</sub> + B<sub>1</sub>x<sub>1</sub> + ··· + B<sub>n</sub>x<sub>n</sub>

- Uwagi
  - Funkcja może być dowolna (niekoniecznie liniowa)
  - Nie będziemy zajmowali się własnościami statystycznymi
- Sposób wyznaczania parametrów na podstawie n-elementowego zbioru uczącego:

$$\mathbf{a} = \arg\min_{\mathbf{a}} \left\{ \sum_{i=1}^{n} (y_i - f(\mathbf{X}_i))^2 \right\}$$

#### Liniowy model prawdopodobieństwa

$$P(Y = 1|X) = B_0 + B_1x_1 + \dots + B_nx_n$$



## Regresja logistyczna

Standardowa postać funkcyjna:

$$g(x) = B_0 + B_1 x_1 + \dots + B_n x_n$$
$$f(x) = P(Y = 1 | X) = \frac{\exp(g(X))}{1 + \exp(g(X))}$$

 Sposób wyznaczania parametrów na podstawie n-elementowego zbioru uczącego:

$$\mathbf{a} = \arg\max_{\mathbf{a}} \left\{ \sum_{i=1}^{n} y_i \ln(f(\mathbf{X})) + (1 - y_i) \ln(1 - f(\mathbf{X})) \right\}$$

## Regresja logistyczna

- Własności:
  - Zawsze w przedziale (0,1)
  - Można interpretować jako prawdopodobieństwo
- Iloraz szans jest równy funkcji bazowej g(X):

$$\ln(\frac{f(X)}{1 - f(X)}) = g(X)$$

- Uwaga
  - Zamiast dystrybuanty rozkładu logistycznego można użyć innej
  - Dla dystrybuanty standardowego rozkładu normalnego model nazywany jest probitowym

## Regresja logistyczna

#### • Probit:

$$P(Y = 1|X) = \Phi(B_0 + B_1x_1 + \dots + B_nx_n)$$

#### • Logit:

$$P(Y = 1|X) = \frac{e^{B_0 + B_1 x_1 + \dots + B_n x_n}}{1 + e^{B_0 + B_1 x_1 + \dots + B_n x_n}}$$

## Funkcja sigmoidalna



## Funkcja sigmoidalna



- Określenie tego w jaki sposób mierzyć błąd modelu i jaka jest jego najwyższa akceptowana wartość jest (prawie) zawsze koniecznym pierwszym krokiem.
- Przede wszystkim dlatego, że nierozerwalnie wiąże się z koniecznością zrozumienia jaki jest cel budowy danego modelu i przez to wpływa na to w jaki sposób ta budowa będzie przebiegała (jaki algorytm uczący zostanie wykorzystany, jak duży i jak skonstruowany będzie zbiór uczący, etc.).

Jest to szczególnie ważne gdy interesuje nas odpowiedź na pytanie:
 Jaki model powinniśmy wybrać?



#### Minimalizacja błędu uczenia



#### Minimalizacja błędu prognozy



#### **Bias-Variance Tradeoff**





Źródło: https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

- Abyśmy mogli odpowiednio ocenić, wyspecyfikować i wreszcie wybrać odpowiedni model musimy zastanowić się nad dwiema podstawowymi kwestiami:
  - Odpowiednią miarą jakości (metryką) modelu
  - Procedurą uczenia, oceny i wyboru modelu

Przykładowe metryki:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (G(x) - f(x))^{2}$$

$$MISE = E ||G - f||_{2}^{2} = E [\int (G(X) - f(x))^{2} dx]$$

#### Przykładowe metryki:

• Macierz klasyfikacji:

Klasa prawdziwa

Klasa prognozowana

|   | 1                      | 0                      |
|---|------------------------|------------------------|
| 1 | True positive<br>(TP)  | False positive<br>(FP) |
| 0 | False negative<br>(FN) | True negative<br>(TN)  |

#### Przykładowe metryki:

• Macierz klasyfikacji:

Klasa prawdziwa

Klasa prognozowana

|              | 1                      | 0                      |
|--------------|------------------------|------------------------|
|              |                        |                        |
| [f(X)>T] = 1 | True positive<br>(TP)  | False positive<br>(FP) |
| [f(X)>T] = 0 | False negative<br>(FN) | True negative<br>(TN)  |

Gdzie T nazywamy progiem odcięcia

#### Przykładowe metryki:

• Macierz klasyfikacji:

Klasa prawdziwa

Klasa prognozowana

|   | 1                      | 0                      |
|---|------------------------|------------------------|
| 1 | True positive<br>(TP)  | False positive<br>(FP) |
| 0 | False negative<br>(FN) | True negative<br>(TN)  |

Trafność (Accuracy): 
$$acc = \frac{TP+TN}{P+N}$$

#### Przykładowe metryki:

Macierz klasyfikacji:

Klasa prawdziwa

Klasa prognozowana

|   | 1                      | 0                      |
|---|------------------------|------------------------|
| 1 | True positive<br>(TP)  | False positive<br>(FP) |
| 0 | False negative<br>(FN) | True negative<br>(TN)  |

Czułość (Sensitivity – Recall – True Positive Rate):  $TPR = \frac{TP}{TP+FN}$ Specyficzność (Specifity – True Negative Rate):  $TNR = \frac{TN}{TN+FP}$ Precyzja (Precision – Positive Predictive Value):  $PPV = \frac{TP}{TP+FP}$ 

#### Przykładowe metryki:

• F - score:

$$F = \frac{2PPV*TPR}{PPV+TPR}$$

```
Czułość (Sensitivity – Recall – True Positive Rate): TPR = \frac{TP}{TP+FN}

Specyficzność (Specifity – True Negative Rate): TNR = \frac{TP}{TN+FP}

Precyzja (Precision – Positive Predictive Value): PPV = \frac{TP}{TP+FP}
```

#### Przykładowe metryki:

• Krzywa PR:



Czułość (Sensitivity – Recall – True Positive Rate):  $TPR = \frac{TP}{TP+FN}$ Specyficzność (Specifity – True Negative Rate):  $TNR = \frac{TP}{TN+FP}$ Precyzja (Precision – Positive Predictive Value):  $PPV = \frac{TP}{TP+FP}$ 

#### Przykładowe metryki:

• Krzywa ROC:



Czułość (Sensitivity – Recall – True Positive Rate):  $TPR = \frac{TP}{TP+FN}$ Specyficzność (Specifity – True Negative Rate):  $TNR = \frac{TP}{TN+FP}$ Precyzja (Precision – Positive Predictive Value):  $PPV = \frac{TP}{TP+FP}$ 

- Wybór metryki zależy bezpośrednio od tego czemu służyć ma tworzony model.
- Inaczej będziemy traktowali błąd w przypadku testów wykrywających występowanie ciężkiej choroby (np. raka) a inaczej w przypadku modelu klasyfikującego zdjęcia psów i kotów.
- Dodatkowo pomiar błędu zależeć może od wielu innych czynników (np. generowanego finansowego zysku/straty).

## 'Let's try that again...' iPhone X facial recognition fails at launch - video

https://www.theguardian.com/technology/video/2017/sep/12/apple-iphone-x-facial-recognition-face-id-fail-launch-video

• Ale:

## 'Let's try that again...' iPhone X facial recognition fails at launch - video

https://www.theguardian.com/technology/video/2017/sep/12/apple-iphone-x-facial-recognition-face-id-fail-launch-video

Ale:

# iPhone X racism row: Apple's Face ID fails to distinguish between Chinese users

https://www.mirror.co.uk/tech/apple-accused-racism-after-face-11735152

## Optymalizacja progu odcięcia

#### Przykładowe metryki:

• Macierz klasyfikacji:

Klasa prawdziwa

Klasa prognozowana

|              | 1                      | 0                      |
|--------------|------------------------|------------------------|
| [f(X)>T] = 1 | True positive<br>(TP)  | False positive<br>(FP) |
| [f(X)>T] = 0 | False negative<br>(FN) | True negative<br>(TN)  |

• Gdzie T nazywamy progiem odcięcia

## Optymalizacja progu odcięcia

Macierz klasyfikacji:

Klasa prawdziwa

Klasa prognozowana

|              | 1                      | 0                      |
|--------------|------------------------|------------------------|
| [f(X)>T] = 1 | True positive<br>(TP)  | False positive<br>(FP) |
| [f(X)>T] = 0 | False negative<br>(FN) | True negative<br>(TN)  |

Własność

$$\frac{\partial E(TP)}{\partial T} = -\frac{\partial E(FN)}{\partial T}$$

$$\frac{\partial E(FP)}{\partial T} = -\frac{\partial E(TN)}{\partial T}$$

Gdzie T nazywamy progiem odcięcia

#### Optymalizacja progu odcięcia

 Przypiszmy miarę efektu V(n)
 (np. mierzony pieniężnie koszt błędnej klasyfikacji):

- Klasa prognozowana
- [f(X)>T] = 1 V(TP) [f(X)>T] = 0 V(FN)

Klasa prawdziwa

0

V(FP)

V(TN)

- Kryterium oceny modelu:
  - oczekiwana wartość efektu
- Cel

$$V(TP) * E(TP) + V(FP) * E(FP) + V(FN) + E(FN) + V(TN) * E(TN) \rightarrow \max$$

Optimum

$$\frac{\partial E(FN)}{\partial T} / \frac{\partial E(TN)}{\partial T} = (V(TN) - V(FP)) / (V(TP) - V(FN))$$

Wybór T zależy od relatywnego kosztu błędu!

- Bardzo ważne jest też określenie jaka jest docelowa wartość błędu do której dążymy.
- W większości przypadków nie da się osiągnąć 100% trafności predykcji.

Błąd Bayesowski:  $\int_{x \in H_1} P(C_0|x)p(x)dx + \int_{x \in H_0} P(C_1|x)p(x)dx$ 

- Określenie wielkości akceptowalnego błędu zależy od kilku podstawowych czynników:
  - Przede wszystkim od tego czy możliwe jest dalsze zbieranie danych (im więcej danych tym potencjalnie niższego błędu predykcji możemy się spodziewać).
  - Oraz od tego czy ze względu na czas i koszty możliwe jest tworzenie bardzo złożonych modeli.

#### Przygotowanie danych

- Przygotowując dane do uczenia modelu klasyfikacyjnego należy pamiętać o podzieleniu zbiorów na 3 części:
  - Trenujący
  - Walidacyjny
  - Testowy

#### Przygotowanie danych



# Przygotowanie danych - skutki pominięcia zbioru walidacyjnego

- Y: binarna zmienna objaśniana
- X1, X2, X3, X4: losowe zmienne objaśniające niezależne między sobą; ze zmienną objaśnianą związana tylko zmienna X1
- 4 modele MNK oszacowane na zbiorze trenującym, za każdym razem dodawana kolejna jedna zmienna objaśniającą
- Wybrałem model o największej liczbie poprawnych klasyfikacji na zbiorze uczącym

| Model       | Uczący | Walidacyjny | Testowy |
|-------------|--------|-------------|---------|
| Stała+X1    | 64     | 64          | 63      |
| Stała+X1-X2 | 65     | 62          | 63      |
| Stała+X1-X3 | 65     | 62          | 62      |
| Stała+X1-X4 | 66     | 62          | 61      |

# Przygotowanie danych - skutki pominięcia zbioru testowego

- Y: binarna zmienna objaśniana
- X1, X2, ..., X100: losowe zmienne objaśniające niezależne między sobą i ze zmienną objaśnianą
- 100 modeli MNK oszacowane na zbiorze trenującym, za każdym razem wybierana jedna zmienna objaśniającą
- Wybrałem model o największej liczbie poprawnych klasyfikacji na zbiorze walidacyjnym
- Cztery najlepsze wyniki na zbiorze walidacyjnym (poprawny wynik to 50)

| Model     | Uczący | Walidacyjny | Testowy |
|-----------|--------|-------------|---------|
| Najlepszy | 57     | 66          | 56      |
| Drugi     | 54     | 65          | 50      |
| Trzeci    | 50     | 64          | 52      |
| Trzeci    | 50     | 64          | 53      |

#### Przygotowanie danych

- Podział na 3 zbiory jest intuicyjnym i prostym sposobem poprawnego szacowania modeli klasyfikacyjnych.
- Przykładowy podział:

Zbiór trenujący: 60% obserwacji
Zbiór walidacyjny: 20% obserwacji
Zbiór testowy: 20% obserwacji

- Ma jednak zasadniczą wadę, tracimy dużą część obserwacji na których nie możemy trenować naszego modelu
- Jest to szczególnie ważne gdy zbieranie danych jest drogie i praco- lub czasochłonne.
- Dlatego często korzystamy z alternatywnych metod podziału:
  - Bootstrap aggregating (bagging)
  - Walidacja krzyżowa (cross-validation)

- Problem:
  - Mamy zebrane dane ale jest ich za mało żeby przeprowadzić poprawnie procedurę uczenia.
  - Co możemy zrobić?

- Problem:
  - Mamy zebrane dane ale jest ich za mało żeby przeprowadzić poprawnie procedurę uczenia.
  - Co możemy zrobić?
- Bagging (Bootstrap aggregating) to prosta metoda, która pozwala nam obejść ten problem.

## Bootstrapping

- Bootstrapping to prosta technika pozwalająca nam na "generowanie" nowych danych bazując na tych, które już zebraliśmy.
- W najprostszym ujęciu polega ona na tworzeniu nowych zbiorów danych poprzez losowanie ze zwracaniem próbek ze zbioru który już mamy:



#### Bootstrapping

- Bootstrapping to prosta technika pozwalająca nam na "generowanie" nowych danych bazując na tych, które już zebraliśmy.
- W najprostszym ujęciu polega ona na tworzeniu nowych zbiorów danych poprzez losowanie ze zwracaniem próbek ze zbioru który już mamy:

```
1 2 3 6 7 8 10 22 12 33

U

22 2 6 6 2 12 33 33 7 1

1 2 3 6 2 8 8 12 7 3

1 2 1 7 2 7 8 10 22 12
```

#### Bootstrapping

- Wygenerowane w ten sposób zmienne losowe (prawie) zachowują się jakby były niezależne i o identycznym rozkładzie.
- Co więcej, przy odpowiednio dużym zbiorze danych możemy być pewni, że unikalnych obserwacji będzie wystarczająco dużo żeby odwzorowanie danych i jakość uczenia nie były zachwiane.

1 2 3 6 7 8 10 22 12 33

U

22 2 6 6 2 12 33 33 7 1

1 2 3 6 2 8 8 12 7 3

1 2 1 7 2 7 8 10 22 12

- Procedura baggingu jako swoją bazę wykorzystuje właśnie bootstrappowane dane.
- Dodaje do nich jednak kolejny poziom (agregację).

- Procedura baggingu jako swoją bazę wykorzystuje właśnie bootstrappowane dane.
- Dodaje do nich jednak kolejny poziom (agregację).

• Z n elementowego zbioru tworzymy k m elementowych zbiorów na których szacujemy k modeli. Naszą predykcją będzie ich uśredniony wynik:



- Zaletą baggingu jest to, że szacujemy wiele modeli na różnych danych jednocześnie, dzięki czemu zmniejszamy wyraźnie wariancję końcowego oszacowania.
- Agregacja polega na:
  - Uśrednianiu wyników (w przypadku regresji):

$$\widehat{\mathcal{M}} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{M}_i$$

• Głosowaniu większościowym (w przypadku klasyfikacji):

$$\widehat{\mathcal{M}} = \underset{l}{\operatorname{argmax}}[|\mathcal{M}_i = l|]$$

- Walidacja krzyżowa (cross-validation) jest metodą pozwalającą na szacowanie i agregację wielu modeli bez konieczności tworzenia nowych zbiorów danych.
- W najpopularniejszym przypadku k-krotnej walidacji krzyżowej (k-fold cross-validation):

- Walidacja krzyżowa (cross-validation) jest metodą pozwalającą na szacowanie i agregację wielu modeli bez konieczności tworzenia nowych zbiorów danych.
- W najpopularniejszym przypadku k-krotnej walidacji krzyżowej (k-fold cross-validation):
  - ullet Zaczynamy od losowego podzielenia n elementowego zbioru na k równych części.

- Walidacja krzyżowa (cross-validation) jest metodą pozwalającą na szacowanie i agregację wielu modeli bez konieczności tworzenia nowych zbiorów danych.
- W najpopularniejszym przypadku k-krotnej walidacji krzyżowej (k-fold cross-validation):
  - ullet Zaczynamy od losowego podzielenia n elementowego zbioru na k równych części.
  - Następnie szacujemy model na k-1 częściach, a jedną wykorzystujemy do wyznaczenia błędu oszacowania.

- Walidacja krzyżowa (cross-validation) jest metodą pozwalającą na szacowanie i agregację wielu modeli bez konieczności tworzenia nowych zbiorów danych.
- W najpopularniejszym przypadku k-krotnej walidacji krzyżowej (k-fold cross-validation):
  - ullet Zaczynamy od losowego podzielenia n elementowego zbioru na k równych części.
  - Następnie szacujemy model na k-1 częściach, a jedną wykorzystujemy do wyznaczenia błędu oszacowania.
  - Procedurę powtarzamy dopóki każda z części nie zostanie raz wykorzystana do oceny modelu:

- Walidacja krzyżowa (cross-validation) jest metodą pozwalającą na szacowanie i agregację wielu modeli bez konieczności tworzenia nowych zbiorów danych.
- W najpopularniejszym przypadku k-krotnej walidacji krzyżowej (k-fold cross-validation):
  - ullet Zaczynamy od losowego podzielenia n elementowego zbioru na k równych części.
  - Następnie szacujemy model na k-1 częściach, a jedną wykorzystujemy do wyznaczenia błędu oszacowania.
  - Procedurę powtarzamy dopóki każda z części nie zostanie raz wykorzystana do oceny modelu:

- Walidacja krzyżowa (cross-validation) jest metodą pozwalającą na szacowanie i agregację wielu modeli bez konieczności tworzenia nowych zbiorów danych.
- W najpopularniejszym przypadku k-krotnej walidacji krzyżowej (k-fold cross-validation):
  - ullet Zaczynamy od losowego podzielenia n elementowego zbioru na k równych części.
  - Następnie szacujemy model na k-1 częściach, a jedną wykorzystujemy do wyznaczenia błędu oszacowania.
  - Procedurę powtarzamy dopóki każda z części nie zostanie raz wykorzystana do oceny modelu:

- Metody walidacji krzyżowej możemy podzielić na:
  - Wyczerpujące:
    - Leave-one-out
    - Leave-p-out
  - Niewyczerpujące:
    - k-krotna walidacja krzyżowa
    - Monte Carlo cross-validation
- Walidacja krzyżowa może też być stratyfikowana jeżeli wymaga tego od nas struktura zbioru danych.