2024 年上海市高等学校信息技术水平考试试卷

二三级 区块链技术及应用(A场)

(本试卷考试时间 150 分钟)

一、单选题 (本大题 15 道小题 ,每小题 3 分,共 45 分),从下面题目给出的 $A \times B \times$
C、D 四个可供选择的答案中选择一个正确答案。
1不是区块链的数据组织特色。
A. 利用哈希函数计算数据块特征,并利用特征进行关联的链块式结构
B. 利用数字签名保护交易数据
C. 利用易于验证的树状结构防止数据被篡改
D. 使用集中式服务器管理和控制数据
2. 根据参与组织的不同特点,可将区块链分为三类。不属于该分类的是。
A. 私有链
B. 联盟链
C. 许可链
D. 公有链
3. 比特币所使用的数字签名算法是
A. DES
B. RSA
C. SHA256
D. ECDSA
4
A. 共识机制
B. 分布式账本
C. 智能合约
D. 数字签名
5. 在比特币中,大多数需要向用户展示的数据都使用 Base58Check 编码,下面不属于其作
用的是。
A. 实现数据加密
B. 避免字符混淆
C. 使用版本前缀标识数据的类型
D. 实现错误校验机制,增强了传输数据的安全性
6. 对于以太坊中的外部账户,其记录的字段中
A nonce 估
A. nonce 值
B. 余额

C. 存储 D. 合约代码哈希
7. 以太坊最初使用
A. PoW (Proof of Work) B. PoS (Proof of Stake) C. DPoS (Delegated Proof of Stake) D. PBFT (Practical Byzantine Fault Tolerance)
8. PoS(权益证明)共识机制中,出块的概率与相关。 A. 节点的网络带宽 B. 节点拥有的数字货币数量 C. 节点的 CPU 性能 D. 节点的内存大小
9. 作为第二代区块链系统,以太坊提供一个非常重要的功能。
A. 准入门槛 B. 智能合约 C. 匿名信息 D. 点对点支付
10. 在基于链式结构的分布式账本系统中,如果同时收到两份合法的账本,应。
A. 保留本次挖矿手续费最高的交易分支作为主账本 B. 保留交易时间最早的分支作为主账本,但是保留其它分支 C. 保留交易时间最新的分支作为主账本 D. 保留当前最长分支作为主账本
11. 区块链智能合约的自动执行是由
12. 如下代码定义了ERC20代币合约接口,说法正确的是。 // SPDX-License-Identifier: MIT pragma solidity ^0.8.0;
<pre>interface IERC20 { event Transfer(address indexed from, address indexed to, uint256 value);</pre>

```
event Approval(address indexed owner, address indexed spender,
uint256 value);
   function totalSupply() external view returns (uint256);
   function balanceOf(address account) external view returns (uint256);
   function transfer(address to, uint256 amount) external returns
(bool);
   function allowance(address owner, address spender) external view
returns (uint256);
   function approve(address spender, uint256 amount) external returns
(bool);
   function transferFrom(address from, address to, uint256 amount)
external returns (bool);
   function name() external view returns (string memory);
   function symbol() external view returns (string memory);
   function decimals() external view returns (uint8);
}
A. 实现该接口的合约代码只能包含 2 个事件
B. 实现该接口的合约代码不能包含更多变量
C. 实现该接口的合约代码可以包含更多的事件和函数
D. 实现该接口的合约代码可以省略某些事件和函数
13. 关于以下代码,说法正确的是
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.3;
contract c1 {
   uint public i = 0;
   function kill() public {
      while (true) {
          i += 1;
A. 程序存在语法错误
B. 程序不存在语法错误, 但无法通过编译
C. 程序可以通过编译, 但无法初始化
D. 程序可以运行
14. 关于以下代码,说法正确的是
function add(uint256 a, uint256 b) public returns (uint256) {
   uint256 c = a + b;
   return c;
}
```

A. 代码存在语法错误 B. 代码不存在语法错误,但无法通过编译 C. 代码运行结果可能 c <a D. 代码运行结果 c>=a</a
15. 关于以下代码,说法正确的是。 // SPDX-License-Identifier: MIT pragma solidity ^0.8.3; contract c1 { uint public x = 1; function addToX(uint y) public pure returns (uint) { return x + y; }
} }
A. 代码存在语法错误 B. addToX 函数只能在当前合约内访问 C. 代码尝试修改了状态变量(State) D. 代码尝试修改了本地变量(Local) 二、填空题 (本大题 5 道小题 ,每空 3 分 ,共 30 分)。 1. 己知某区块链节点算力相同,且最多包含 19 个不诚实节点,则在采用 Pow 共识协议的情况下,该区块链的节点总数不低于
建一棵默克尔树。若轻节点需要证明某笔交易是否存在于该默克尔树中,除该笔交易本身的哈希值和默克尔树根外,需要向全节点请求
3. 在以太坊中,某个交易的Gas Price是0.000015Ether,允许支付的最大手续费为3.1Ether,已知合约中执行一次transaction操作的Gas消耗为G _{transaction} =21000,执行一次newaccount操作的Gas消耗为G _{newaccount} =25000,已知该交易执行了4次newaccount操作,还
能够最多执行次transaction操作,执行完后还剩下Ether
手续费。
4. 如果用户 A 拥有一个 5 比特币的 UTXO 和一个 2 比特币的 UTXO, A 想买用户 B 的一个 6 比特币的物品,此时这笔交易的输入就是 7 个比特币的 2 个 UTXO, 当不考虑手续费时,输出时返回一个给 A 账户的
5. PBFT 算法的核心是三阶段共识流程,分别为、、提交阶段。

第 4 页, 共 8 页 39 (模拟卷)

三、操作题

(本大题2道小题,第一小题10分,第二小题20分,共30分)

1、【Solidity合约改错题】

本合约是为了宠物购买的DAPP所准备的,具体要求参见注释,合约程序代码中有三处错误,请分析源代码(C:\素材\p1. pdf),找出错误行并修正错误。

注意:

将错误代码行号和错误原因保存在"C:\KS\p1答案.txt"中,仅在横线之间填入所编写的若干语句;语句可能为多行时请自行换行,请勿改动其余部分。

2、【Solidity合约填空题】

本合约程序代码中有四处内容缺失(行号55, 105, 118-120, 141),请分析源代码(C:\素材\p2. pdf),根据缺失部分的注释要求补全代码内容,依赖的源文件在C:\素材\依赖的sol合约\。

注意:

将缺失部分代码保存在"C:\K\$\p2答案.txt"中,仅在横线之间填入所编写的若干语句,语句可能为多行时请自行换行,请勿改动其余部分。

四、综合分析题

(本大题2道小题,第一小题15分,第二小题30分,共45分)

1、【场景分析】

请针对指定的场景进行分析,完成所需的步骤。

通过区块链记录学习经历,可以构建学生的终身学习档案,以下是一个实际的应用场景: 学校或培训机构记录学生学习经历,包括学习内容、考试成绩等;

第三方机构记录学生竞赛、公益活动等经历;

证书颁发机构通过学习经历发放对应的资格证书;

学生生成简历,内容由区块链背书,投递给指定的企业;

第 5 页, 共 8 页 39 (模拟卷)

企业收取简历,通过区块链验证真实性,简化背调流程;

如图所示:

步骤一:请设计组织、用户间合作方式,选择合适的链架构,并说明理由;

步骤二: 请分析参与场景的角色、分析设计身份管理模式(公私钥/证书等),并说明理由; 步骤三: 请分析场景中出现的数据,选择合适的数据存储模式,讨论隐私保护需求;

注意:

将填空内容保存在"C:\KS\p3答案.txt"中,仅在横线之间填入答案内容,请勿改动文档的其 他部分。

2、【区块链架构设计】

请阅读如下材料,完成项目的区块链架构设计,在答题纸中填写完成所需步骤。(题目 描述场景为模拟场景,并不准确对应现实场景)

为了解决企业生产资金问题,多个机构组建联盟展开合作,当前有7个机构加入联盟: 企业1 (ent1),企业2 (ent2),企业3 (ent3),税务机构(tax1),银行1 (bank1),银行2 (bank2), 政府数据中心 (data1)。

现在制订如下规则:

- 1. 企业记录经营情况记录,记录企业间往来信息;
- 2. 企业间往来信息需要经过往来企业认可;
- 3. 税务机构记录企业纳税情况:
- 4. 银行在获得合理证明资料后,可以给企业提供贷款;
- 5. 企业在申请贷款时,授权必要数据给银行,其他机构不可以访问相关数据;
- 6. 银行获取经营情况记录(企业自身背书),往来信息(多方背书),纳税情况(税务机 构背书),判断合理性,为企业提供贷款;

根据已知信息,数据包括:

- 1. 经营情况记录,由企业记录;
- 2. 企业间往来信息,由参与企业确认有效性;
- 3. 企业纳税情况,由税务机构记录。

本联盟区块链基于Hyperledger Fabric构建,每个有记录权限的组织各创建2个节点, 由政府数据中心承担排序节点工作。

所有机构仅可访问自己记录的数据以及被授权访问的数据。

系统中已设计如下的智能合约,若不能满足题目要求,请自行增加并说明:

- 1. 处理经营情况记录的 CCEntRecord;
 - 2. 处理企业纳税情况的 CCTax。

注意:

- (1)请注意题目要求,除要求填空的位置之外,请勿改动文档的其他部分;
- (2)将填空内容保存在"C:\KS\p4答案.txt"中,仅在横线之间填入答案内容。

第 7 页, 共 8 页 39 (模拟卷)

