REPREZENTACJA WIEDZY

REALIZACJE SCENARIUSZY DZIAŁAŃ PROJEKT NR 5

Autorzy:
Robert Jakubowski
Hanna Dziegciar
Paweł Bielicki
Karol Bocian
Karol Dzitkowski
Mateusz Jankowski
Wiktor Ryciuk

Mariusz Ambroziak

Spis treści

1.	Opis zadania	3
2.	Opis języka akcji 2.1. Opis dziedziny	4 4
3.	Opis języka kwerend	6
4.	Algorytm wnioskowania	8
5.	Przykłady	9
Bi	bliografia	10

Opis zadania

TODO

Opis języka akcji

2.1. Opis dziedziny

2.2. Semantyka

Definicja 2.1. Semantyczną strukturą języka AL nazywamy system S=(H,O,E) taki, że:

- $H: F \times \mathbb{N} \longrightarrow \{0,1\}$ jest funkcją historii, pozwala ona stwierdzić, jaki stan ma pewny fluent w danej chwili czasu.
- $O: Ac \times \mathbb{N} \longrightarrow 2^F$ jest funkcją okluzji. Dla pewnej ustalonej akcji A i chwili czasu $t \in \mathbb{N}$ funkcja O(A,t) zwraca zbiór fluentów, na który akcja A ma wpływ, jeśli zostanie wykonana od czasu t-1 do t.
- $E \subseteq Ac \times \mathbb{N}$ jest relacją wykonań akcji. Para (A,t) należy do relacji E jeśli akcja A jest wykonana w czasie t. W naszym modelu zakładamy warunek sekwencyjności działań. Oznacza on, że tylko jedną akcje możemy wykonać w danym czasie tak, więc jeśli $(A,t) \in E$ oraz $(B,t) \in E$, to A=B.

Niech: A, B będą akcjami, f - fluentem, α, π - literałami, d - liczbą naturalną oraz $fl(\alpha)$ będzie zbiorem fluentów występujących w α . Wtedy dla zdań języka AL muszą być spełnione następujące warunki:

- Dla każdego wyrażenia $(A \ causes \ \alpha \ if \ \pi) \in D$ i dla każdego momentu w czasie $t \in \mathbb{N}$, jęzeli $H(\pi,t)=1$ oraz $(A,t) \in E$, wtedy $H(\alpha,t+1)=1$ i $fl(\alpha) \subseteq O(A,t+1)$.
- Dla każdego wyrażenia (A release f if π) \in D i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $(A,t)\in E$, wtedy $f\in O(A,t+1)$.
- Dla każdego wyrażenia (π triggers A) $\in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi, t) = 1$, wtedy $(A, t) \in E$.
- Dla każdego wyrażenia (A invokes B after d if π) \in D i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t) = 1$ oraz $(A,t) \in E$, wtedy $(B,t+d+1) \in E$.

Definicja 2.2. Niech S = (H, O, E) będzie strukturą języka AL, Sc = (OBS, ACS) będzie scenariuszem, oraz D domeną. Powiem, że S jest strukturą dla Sc zgodnym z opisem domeny D jeśli:

2.2. Semantyka 5

- Dla każdej obserwacji $(\alpha, t) \in OBS, H(\alpha, t) = 1$
- $ACS \subseteq E$

Definicja 2.3. Niech $O_1,O_2: X \longrightarrow 2^Y$, mówimy, że $O_1 \prec O_2$ jeżeli $\forall x \in X \ O_1(x) \subseteq O_2(x)$ oraz $O_1 \neq O_2$.

Definicja 2.4. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. Mowimy, że S jest O-minimalną strukturą, jeżeli nie istnieje struktura S' = (H', O', E') dla tego samego scenariusza i domeny taka, że $O' \prec O$.

Definicja 2.5. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. S będziemy nazywać modelem Sc zgodnym z opisem D jeżeli:

- S jest O-minimalny
- Dla każdego momentu w czasie $t \in \mathbb{N}$, $f \in F : H(f,t) \neq H(f,t+1) \subseteq O(A,t+1)$ dla pewnej akcji $A \in Ac$.
- Nie istnieje, żadna struktura S' = (H', O', E') dla Sc zgodna z opisem D która spełnia poprzednie warunki oraz taka, że $E' \subset E$.

Uwaga 2.1. Nie dla każdego scenariusza można ułożyć model. Mówimy, że scenariusz Sc jest zgodny jeśli istnieje do niego model zgodny z domeną D.

Opis języka kwerend

Zdefiniowany język akcji może być odpytywany przez poniżej zaprezentowany język kwerend, który zapewnia uzyskanie odpowiedzi TRUE/FALSE na następujące pytania:

- Q1. Czy podany scenariusz jest możliwy do realizacji zawsze/kiedykolwiek?
 - always/ever executable Sc Oznacza, że scenariusz Sc zawsze/kiedykolwiek jest możliwy do realizacji.
- Q2. Czy w chwili $t \geq 0$ realizacji podanego scenariusza warunek γ zachodzi zawsze/kiedykolwiek?
 - $always/ever\ \gamma\ at\ t\ when\ Sc$ Oznacza, że zawsze/kiedykolwiek w chwili t realizacji scenariusza Sc zachodzi warunek $\gamma.$
- Q3. Czy w chwili t realizacji scenariusza wykonywana jest akcja A?
 - performing A at t when Sc Oznacza, że zawsze w chwili t realizacji scenariusza Sc zachodzi akcja A.
- Q4. Czy podany cel γ jest osiągalny zawsze/kiedykolwiek przy zadanym zbiorze obserwacji OBS?
 - always/ever accesible γ when ScOznacza, że cel γ jest osiągalny zawsze/kiedykolwiek przy zadanym zbiorze obserwacji OBS przy realizacji scenariusza Sc.

Semantyka kwerend w języku

Niech Sc będzie scenariuszem, D niech będzie opisem domeny języka, wtedy powiemy, że kwerenda Q jest konsekwencją Sc zgodnie z D (ozn. Sc, $D \mid \approx Q$)

- \bullet zapytanie kwerendą Qpostaci γ at t when Sczwróci wynik TRUEjeśli dla każdego modelu S=(H,O,E)scenariusza Sczgodnego zDzajdzie $H(\gamma,t)=1$
- zapytanie kwerendą Q postaci performing~A~at~t~when~Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $(A,t)\in E$

• zapytanie kwerendą Q postaci $accesible~\gamma~when~Sc$ zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $\exists_{t\in NN}\exists_{A\in Ac}~\gamma\in O(A,t)$

jeśli warunek nie zajdzie program zwróci wartość FALSE.

Algorytm wnioskowania

TODO

Przykłady

TODO

Bibliografia

[1] Tytuł, Autorzy, Wydawnictwo, Miejsce i rok wydania