

Analyse Numériques

Série d'exercices: Intégration numérique

Niveau : 3ème année Année universitaire : 2023-2024

1. Partie Synchrone

Exercice 1 On s'intéresse dans cet exercice à approcher l'intégrale

$$I = \int_{1}^{2} \cos(x^2) dx$$

- Donner une approximation de I en appliquant la méthode du rectangle à gauche en considérant 8 intervalles
- 2. Majorer l'erreur commise. On rappelle que l'erreur d'intégration $E_{Rg}^c(f)$ relative à la méthode composite des rectangles à gauche, pour le calcul approché de l'intégrale $I = \int_a^b f(t)dt$, où f est une fonction de classe C^1 sur $[a;b] \subset R$, est majorée par :

$$|E_{Rg}^c(f)| \le \frac{(b-a)^2}{2n} \max_{x \in [a,b]} |f'(x)|.$$

3. Quel pas de discrétisation maximal h^* faut-il choisir pour avoir une erreur d'intégration de I(f), par la méthode composite des rectangles à gauche composites, inférieure à 10^{-4} ?

Exercice 2 Soit g une fonction continue sur [-1;1]. On choisit deux points d'intégration $x_1 = -1, x_2 = \alpha$ où $\alpha \in]0;1[$. Pour approcher l'intégrale $I = \int_{-1}^{1} g(t)dt$, la formule de quadrature suivante est considérée :

$$I_q(g) = \sum_{j=1}^{2} \omega_j g(x_j) = \omega_1 g(-1) + \omega_2 g(\alpha)$$

- 1. Trouver les poids d'intégration ω_1 et ω_2 en fonction de α tels que la formule de quadrature soit de degré de précision supérieur ou égal à 1.
- 2. a) Trouver ensuite α tel que $I_q(g) = I = \int_{-1}^1 g(t)dt$ pour tout polynôme g de degré 2.
 - b) Vérifier que le degré de précision de la formule de quadrature $I_q(g)$ est 2.

Exercice 3 (Examen AN Juin 2022)

Soit f la fonction définie par :

$$f(x) = \frac{x}{\sqrt{x^2 + 1}}, \quad x \in \mathbb{R}.$$

- (1) a) (0.5 point) Justifier l'existence d'un unique polynôme $P_2 \in \mathbb{R}_2[X]$ qui interpole f en $x_0 = -1$, $x_1 = 0$ et $x_2 = 1$.
 - b) (1.5 points) Déterminer l'expression du polynôme P_2 par la méhode d'interpolation de Lagrange.
 - c) (1 point) Donner la valeur approximative de f(1/2), puis déduire l'erreur d'interpolation en ce point.

Dans la suite on s'intéresse à approcher l'intégrale suivante :

$$I(f) = \int_0^1 f(x)dx$$

- (2) a) (0.5 point) Calculer la valeur exacte de I(f).
 - b) (1 point) Calculer $I_p = \int_0^1 P_2(x) dx$, où P_2 est le polynôme trouvé dans la première question, puis déduire l'erreur d'intégration E_p pour cette méhode.
- (3) Soient g une fonction continue sur [0,1] et Q(g) la formule de quadrature suivante approchant l'intégrale I(g):

$$Q(g) = \alpha g(0) + (1 - \alpha)g(1)$$

- a) (0.5 point) Quelle méhode d'intégration numérique retrouve-t-on lorsque $\alpha=1$ puis lorsque $\alpha=0$.
- b) (1 point) Sachant que la formule Q(g) est exacte pour tous les polynômes de degré inférieur ou égal à 1, trouver la valeur de α .
- (4) (1 point) Pour $\alpha = \frac{1}{2}$, donner la valeur de Q(f) et déduire l'erreur d'intégration E_q pour cette méhode.
- (5) (1 point) Approcher l'intégrale I(f) par la méhode composite des trapèzes I_T en considérant un pas de discrétisation $h = \frac{1}{2}$, puis déduire l'erreur d'intégration E_T pour cette méthode.
- (6) (0.5 point) Comparer les trois méthodes Q(f), I_p et I_T en terme de précision. Justifier votre réponse.

2. Partie en Asynchrone

Exercice 4 Le but de cet exercice est de déterminer une approximation de la valeur $\ln(2)$. On considère la fonction $f:[-1;1] \longrightarrow \mathbb{R}$ définie aux points d'abscisses $-1;-\frac{1}{2};0;\frac{1}{2}$ et 1 par :

i	0	1	2	3	4
x_i	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
$f(x_i)$	$\frac{1}{2}$	$\frac{2}{5}$	$\frac{1}{3}$	$\frac{2}{7}$	$\frac{1}{4}$

On désigne par $I(f) = \int_{-1}^{1} f(x)dx$

- 1. Déterminer $I_T^c(f)$ la valeur approchée de I(f) par la formule composite des trapèzes, avec 4 sous intervalles de [-1;1].
- 2. Déterminer $I_S^c(f)$ la valeur approchée de I(f) par la formule composite de Simpson, avec 2 sous intervalles de [-1;1].

- 3. Sachant que $f(x) = \frac{1}{3+x}$, calculer la valeur exacte de I(f).
- 4. Calculer l'erreur d'intégration pour les deux approximations $I_T^c(f)$ et $I_S^c(f)$ de l'intégrale I(f). En déduire laquelle des deux méthodes qui approche le mieux la valeur de $\ln(2)$.

Exercice 5 Cet exercice porte sur l'approximation de l'intégrale $I(g) = \int_{-1}^{1} g(x)dx$ où g est une fonction continue sur l'intervalle [-1,1] à valeur dans \mathbb{R} .

On fixe $\omega \in]0,1]$ et on considère la méthode d'intégration numérique sur [-1,1] donnée par :

$$J_{\omega}(g) = \frac{4}{3}g\left(-\frac{\omega}{2}\right) + \frac{2}{3}g(\omega)$$

- 1. a. Montrer que la méthode numérique est exacte pour les polynômes de degré inférieur ou égal à 1 quel que soit ω .
 - b. Déterminer ω pour que la méthode d'intégration numérique est exacte pour les polynômes de degré inférieur ou égal à 2.
 - c. Quel est alors son degré d'exactitude?

 Pour la suite on prend la fonction g défine par

$$g(x) = xe^{x^2}, \ \forall x \in [-1, 1].$$

- 2. a. Justifier l'existence d'un unique polynôme $P_1 \in \mathbb{R}_1[X]$ qui interpole g en $x_0 = -1$, $x_1 = 1$,
 - b. Déterminer l'expression du polynôme P_1 par une méthode d'interpolation vue en cours.
 - c. Calculer $I_p(P_1) = \int_{-1}^1 P_1(x) dx$. Conclure.
- 3. Approcher l'intégrale I(g) par la méthode simple des trapèzes I_T .
- 4. Calculer l'erreur d'intégration E_J commise par J_ω