Repulsive Variational Gaussian Mixture Models

Omid S. Solari*

SOLARI@BERKELEY.EDU

Department of Statistics University of California, Berkeley

Yulun Wu*

YULUN_WU@BERKELEY.EDU

Department of Statistics University of California, Berkeley

James B. Brown

JBBROWN@LBL.GOV

Lawrence Berkeley National Laboratory and Department of Statistics University of California, Berkeley

Editor:

Abstract

tentative achievements:

- 1. True Gaussian mixture model
- 2. Bayesian repulsive priors
- 3. cluster single cell data and map them to body

Keywords: Gaussian Mixtures, Clustering, Variational Auto-Encoders

1. Introduction

- review use cases of gmms
- review uses in genomics specifically

2. Background

- review gaussian mixture models
- review vae
- introduce repulsive priors
- set up the use for single cell data

mention the shortcomings of GMVAE.

 $[\]ast.$ equally contributing authors, alphabetical order

3. Problem Statment

general definition of Gaussian mixture models

4. Model

4.1 Gaussian Mixture Variational Auto-Encoder

Dependency structure: (draw a graph)

4.1.1 Variational Lower Bound

$$\mathcal{L}_{ELBO} = \mathbb{E}_{q_{\phi}(\boldsymbol{v}_{latent}|\boldsymbol{v}_{observed})} \left[\log \frac{p_{\theta}(\boldsymbol{v}_{latent}, \boldsymbol{v}_{observed})}{q_{\phi}(\boldsymbol{v}_{latent}|\boldsymbol{v}_{observed})} \right]$$
(1)

4.1.2 Supervised

TODO: define notations

$$\mathcal{D}\left[q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) \parallel p_{\theta}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})\right] = -\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})}\left[\log \frac{p_{\theta}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})}\right] + \log p_{\theta}(\boldsymbol{x},\boldsymbol{y})$$

$$= -\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})}\left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) + \log p_{\theta}(\boldsymbol{z}|\boldsymbol{y}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})\right] \quad (2)$$

$$-\log \frac{p(\boldsymbol{y})}{q_{\phi}(\boldsymbol{y}|\boldsymbol{x})} - \log q_{\phi}(\boldsymbol{y}|\boldsymbol{x}) + \log p_{\theta}(\boldsymbol{x},\boldsymbol{y})$$

$$\mathcal{L}_{ELBO} = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] + \log q_{\phi}(\boldsymbol{y}|\boldsymbol{x}) - \mathcal{D} \left[q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) \parallel p_{\theta}(\boldsymbol{z}|\boldsymbol{y}) \right] - \left[q_{\phi}(\boldsymbol{y}|\boldsymbol{x}) \parallel p(\boldsymbol{y}) \right]$$
(3)

(Sometimes people add term $\alpha \log q_{\phi}(\boldsymbol{y}|\boldsymbol{x})$ to amplify classification loss.)

4.1.3 Unsupervised

$$\mathcal{D}\left[q_{\phi}(\boldsymbol{y}, \boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{y}, \boldsymbol{z}|\boldsymbol{x})\right] = -\mathbb{E}_{q_{\phi}(\boldsymbol{y}, \boldsymbol{z}|\boldsymbol{x})}\left[\log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{y}, \boldsymbol{z}|\boldsymbol{x})}\right] + \log p_{\theta}(\boldsymbol{x})$$
(4)

$$\mathcal{L}_{ELBO} = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] - \mathbb{E}_{q_{\phi}(\boldsymbol{y}|\boldsymbol{x})} \mathcal{D} \left[q_{\phi}(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{y}) \parallel p_{\theta}(\boldsymbol{z}|\boldsymbol{y}) \right] - \mathcal{D} \left[q_{\phi}(\boldsymbol{y}|\boldsymbol{x}) \parallel p(\boldsymbol{y}) \right]$$
(5)

4.1.4 Estimation and Propagation

Sampling estimation for q_{ϕ} : TODO

Understanding the back-propagation for unsupervised case: $\mathbb{E}_{q_{\phi}(\boldsymbol{y}|\boldsymbol{x})} \mathcal{D}\left[q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) \parallel p_{\theta}(\boldsymbol{z}|\boldsymbol{y})\right]$

Lemma 1 Latent prior model is a GMM with SGD update.

Proof note: scaling gradient through propagation, \sum_{y} , form of GMM model

Lemma 2 GMVAE reduces to VaDE in simple case.

Lemma 3 SGD update is implicitly an MLE.

4.2 Bayesian Repulsive Prior

find a nice drawing software for neural nets that allows depicting repulsion!

Lemma 4 some lemma or theorem on covariance repulsion! Use HSIC

4.3 Regularization

5. Experiments

5.1 Simulation

Simple MNIST is sufficient

5.2 Single Cell Clustering

Use The Human Cell Atlas data to show that 1. we can cluster them 2. with a simple linear transformation, those cells are mappable to their physical place! A cool picture ensues! Weinstein et al. (2013)

6. Conclusion

References

John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart, Cancer Genome Atlas Research Network, et al. The cancer genome atlas pan-cancer analysis project. *Nature genetics*, 45(10):1113, 2013.