Critical Design Review (CDR)

QPSK SDR over Optical Aurora Link with Forward Error Correction

JHU EN.525.743 Embedded Systems Development Lab Alex Wozneak — Fall 2025

Table of Contents

- 1. Project Description
- 2. Functional Overview
 - 2.1 Capabilities
 - 2.2 Limitations
- 3. System-Level Block Diagram
- 4. Implementation Details
 - 4.1 Transmit Path
 - 4.1.1 PRBS Generator
 - 4.1.2 Scrambler
 - 4.1.3 FEC Encoder
 - 4.1.4 Mapper
 - 4.1.5 Differential Encoder
 - 4.1.6 RRC Filter (TX)
 - 4.1.7 Preamble Inserter
 - 4.1.8 Packetizer
 - 4.1.9 Aurora TX
 - 4.2 Receive Path
 - 4.2.1 Aurora RX
 - 4.2.2 Depacketizer
 - 4.2.3 RRC Matched Filter (RX)
 - 4.2.4 Preamble Correlator
 - 4.2.5 Differential Decoder
 - 4.2.6 Slicer
 - 4.2.7 Impairment Injector
 - 4.2.8 FEC Decoder (Viterbi)
 - 4.2.9 Descrambler
 - 4.2.10 BER Counters
 - 4.2.11 SNR/EVM Estimator
 - 4.2.12 AMC FSM
 - 4.2.13 Constellation Snapshot
- 5. Interfaces
 - 5.1 Internal (PL)
 - 5.2 External (PS/Optical)

- 6. Software
 - 6.1 PS Software (PetaLinux + CLI)
 - 6.2 Host Tools (Python + Visualization)
- 7. Schedule & Development Plan
- 8. Risks & Mitigation
- 9. References
- 10. Appendix
 - 10.1 Draft AXI4-Lite Register Map
 - 10.2 Proposed Packet Header Bitfield
 - 10.3 Fixed-Point Scaling Notes
 - 10.4 Simulation Verification Plan

1. Project Description

This project implements a QPSK/BPSK software-defined radio (SDR) system over an optical Aurora 64B/66B link on the Alinx AXU5EVB-P (AMD/Xilinx Zynq UltraScale+ MPSoC). The design integrates:

- Forward error correction (FEC) via convolutional codes (K=7, rate-1/2).
- Adaptive modulation and coding (AMC) for switching between {BPSK+FEC, QPSK+FEC, QPSK}.
- Host-side data visualization (constellation and BER).
- Preamble-based timing recovery (non-iterative, frame-synchronous).

Primary objective: Demonstrate robust end-to-end optical SDR chain with hardware-accelerated PHY functions, host visualization, and BER evaluation.

Figure 2-1-1: ACU5EV Core Board (Front View)

2. Functional Overview

2.1 Capabilities

- QPSK/BPSK modulation/demodulation with RRC filtering.
- AMC FSM with SNR/EVM-based mode switching.
- Convolutional FEC encoding/decoding.
- Aurora optical loopback at 10.3125 Gb/s.
- Software registers for control/status.
- Constellation Plots + BER statistics.

2.2 Limitations

- Optical loopback only (no RF front-end).
- Only BPSK/QPSK modes.
- Hard-decision Viterbi only (soft decision out of scope).
- CLI-driven control (no GUI on PS).
- Snap-shot data visualization, not live stream

3. System-Level Block Diagram

4. Implementation Details

4.1 Transmit Path

4.1.1 PRBS Generator

Purpose:

Produce deterministic pseudo-random bits/bytes (PRBS) for bring-up, BER baselines, and end-to-end regression.

Description:

1. Control/Config (AXI4-Lite):

- o Software sets polynomial type (PRBS7/15/23/31), enables/disables output, writes seed, and optionally sets frame length (for TLAST).
- Status bits show whether seed was loaded, running, and counters (bytes/bits emitted).

2. LFSR Core (Shift Register):

- o A 31-bit shift register produces one pseudo-random bit each clock.
- o Feedback is the XOR of two taps chosen by the polynomial.
- o If seed=0, it auto-corrects to 1 to avoid lock-up.

3. Byte Packer (Optional):

- o If enabled, groups 8 bits into a byte (TDATA[7:0]).
- o First generated bit goes into bit 0 (little-endian within the byte).
- o If not enabled, just outputs single bits on TDATA[0].

4. Framing (Optional TLAST):

- o A counter tracks how many bytes have been sent in the current frame.
- o When the count reaches FRAME LEN BYTES-1, it asserts TLAST.
- Counter resets for the next frame.

5. AXI-Stream Interface (Output):

- o Provides TDATA, TVALID, TREADY, and optional TLAST.
- o If downstream deasserts TREADY, the generator stalls so the bitstream sequence is preserved (no skipped or duplicated bits).

Block Diagram:

Generalized LFSR structure below, taps will differ

POLYNOMIAL: $x^4 + x^3 + 1$

image source

Interfaces & Parameters:

- Clock/Reset: clk bb (baseband, e.g., 125 MHz), rst n (sync to clk bb).
- AXI4-Lite (control/status):
 - o CTRL: [0] enable, [3:1] poly_sel (PRBS7/15/23/31), [4] pack_bytes, [5] tlast en
 - SEED: load value (width = longest poly, zero-guarded)
 - o FRAME LEN BYTES: TLAST interval when tlast en=1
 - o STATUS: sticky running, seed_loaded, underrun_err (should never trip),
 frame_bytes_rem
- AXI-Stream (master):
 - o If bitstream mode: tdata[0] (bit), tvalid, tready, tlast (optional on byte boundaries)
 - o If byte-packed mode: tdata[7:0], MSB last per spec below, tvalid, tready, tlast on FRAME LEN BYTES-1
- Parameters (generics):
 - o G SUPPORT = {PRBS7, PRBS15, PRBS23, PRBS31} (can trim to 7/15/31)
 - o G DEFAULT POLY = PRBS31
 - o G_ENDIAN = LITTLE (bit 0 first into byte packer)

Micro-Architecture:

LFSR Polynomials & Taps

- PRBS7: $x^7 + x^6 + 1$ (taps: 6,5)
- PRBS15: $x^{15} + x^{14} + 1$ (14,13)
- PRBS23: $x^{23} + x^{18} + 1$ (22,17)
- PRBS31: $x^{31} + x^{28} + 1$ (30,27)

Use a single 31-bit shift register; shorter polynomials mask off upper bits. Guard against all-zero state (on SEED write, if zero \rightarrow force 1).

1. Core LFSR (1 bit/clk):

- o lfsr_next = {lfsr[N-2:0], feedback}
- o feedback = XOR(lfsr[tap_a], lfsr[tap_b])
- Output bit (before shift): prbs_bit = lfsr[0] (or MSB—just be consistent with your golden vectors)
- o When enable=0, hold state; when seed wr=1, load SEED & mask.

2. Bit \rightarrow Byte Packer (optional):

- o Shift in prbs bit each cycle; after 8 bits, present a byte on AXIS.
- o **Bit ordering (recommended):** first generated bit goes to bit 0 of tdata[7:0] (little-endian within the byte). Document this—your testbench and PC tools must match.
- o If downstream deasserts tready, **stall the entire generator** to avoid dropping/duplicating bits (valid/ready back-pressure).

3. Framing (optional TLAST):

- o Decrement frame_bytes_rem on each accepted byte.
- O Assert tlast on last byte; reload counter to FRAME_LEN_BYTES next cycle when tvalid & tready.
- o In bitstream mode, assert tlast every 8*frame Len bytes bits (or disable).

4. Throughput:

1 bit/clk → 125 Mb/s at 125 MHz. With byte packing, 1 byte/8 clks → 15.625 MB/s. Plenty for baseband testing.

5. Reset/Seed semantics:

- o On rst n=0: load a non-zero default seed (e.g., 0x1), clear counters/flags.
- o On SEED write: latch, and arm a one-shot seed_load that takes effect on next cycle when enable=0 (or immediately if you choose; just document).

Verification Plan:

- Golden vector match (per polynomial):
 - For each poly and a few seeds (e.g., 1, 0x5A, 0xACE1u), generate N=4096 bits in MATLAB/Python and compare bit-exact.
- **Packetizer loopback:** PRBS bytes → packetizer → depacketizer → scoreboarding vs generator's expected sequence (align on frame boundary).

Definition of Done (DoD):

- Bit-exact match to golden vectors for PRBS7/15/31 across multiple seeds.
- AXIS protocol clean under random back-pressure (assertions hold).
- Framing (tlast) aligns to configured byte length with no drift.
- Seed behavior deterministic and documented (including all-zero guard).

- Hardware capture round-trips with **0 mismatches** over ≥1 MB in both direct-to-DMA and Aurora-loopback paths.
- Resource/timing: comfortably meets baseband Fmax (≤125 MHz), LUT/FF trivial.

4.1.2 Scrambler

Purpose:

Randomize bit sequences to break up long runs of 0/1, reduce spectral lines, and whiten data before FEC and modulation. Provides deterministic, reversible scrambling for BER and regression testing.

Description:

1. Control/Config (AXI4-Lite):

- o Software selects polynomial (or bypass).
- o Enable/disable control.
- o Status: running flag, bypass flag.

2. LFSR Core:

- o Same principle as PRBS but used as scramble sequence generator.
- o XORs PRBS bit with input data bit each clock.
- o Configurable polynomial (default IEEE 802.3 $x^7 + x^4 + 1$).

3. Byte-Aligned Operation:

- o Data arrives as AXI-Stream bytes.
- o Each bit in the byte is XORed with the scrambler sequence in-order (bit 0 first).
- o Keeps byte/word alignment deterministic.

4. Bypass Mode:

- o AXI4-Lite control bit bypasses scrambling (data out = data in).
- o Useful for debug and regression.

5. AXI-Stream Interface (Input/Output):

- o Input: AXIS bytes (from PRBS or packetizer).
- Output: AXIS bytes scrambled.
- Fully back-pressure compliant (stalls scrambler state advancement until tvalid & tready).

- Clock/Reset: clk bb, rst n.
- AXI4-Lite (control/status):
 - o CTRL: [0] enable, [1] bypass, [3:2] poly sel
 - o STATUS: running, seed loaded
- AXI-Stream (slave → master):
 - o s axis tdata[7:0], s axis tvalid, s axis tready, s axis tlast
 - o m axis tdata[7:0], m axis tvalid, m axis tready, m axis tlast
- Parameters (generics):
 - o $G_{POLY} = \{x^{7}+x^{4}+1, x^{15}+x^{14}+1, ...\}$

o G ENDIAN = LITTLE (bit 0 scrambled first within byte)

Micro-Architecture:

1. Scrambler LFSR:

- o Generates one pseudo-random bit each cycle.
- o XOR applied per input bit.
- o Held stable if back-pressured.

2. Bitwise XOR Engine:

- o For each incoming byte, process 8 cycles.
- o OR implement an 8-bit parallel XOR for efficiency.

3. Bypass Path:

o Simple mux selects between scrambled data and pass-through.

4. State Handling:

- o On reset: load default seed (non-zero).
- Seed reload on AXI4-Lite write (like PRBS).

Verification Plan:

- RTL simulation/self-checking testbench
- II.A core
- PRBS \rightarrow Scrambler \rightarrow Descrambler \rightarrow compare with original PRBS stream.
- Mode switch (bypass enable/disable) → confirm expected behavior.

Definition of Done (DoD):

- Scrambler matches golden software reference sequence bit-for-bit.
- Bypass mode verified in sim + hardware.
- Back-pressure handling preserves correct sequence.
- Integration with descrambler yields original data (zero mismatches over 1 MB).

4.1.3 FEC Encoder

Purpose:

Apply forward error correction (rate-1/2 convolutional code, K=7) to improve link robustness and enable BER below uncoded limits. Encodes input bitstream into redundant output stream for recovery at receiver.

Description:

1. Control/Config (AXI4-Lite):

- o Enable/disable encoder.
- Bypass mode for debug.

2. Convolutional Encoder Core:

- o Implements constraint length 7, generator polynomials (171, 133)8.
- o Input: 1 bit per cycle.
- o Output: 2 coded bits per input bit.

3. AXI-Stream Interface (Input/Output):

- o Input: AXIS bytes.
- o Output: AXIS symbols (packed as bytes/words).
- o Maintains alignment; back-pressure halts state machine.

4. Bypass Mode:

 \circ Output data = input data (rate = 1:1).

Block Diagram:

Interfaces & Parameters:

- Clock/Reset: clk_bb, rst_n.
- **AXI4-Lite:** enable, bypass.
- AXI-Stream:
 - o s axis tdata[7:0], s axis tvalid, s axis tready, s axis tlast
 - o m_axis_tdata[15:0] (2 bits per input bit, packed)
- Parameters (generics): K=7, RATE=1/2, POLY={171,133}

Micro-Architecture:

- 1. **Shift Register (6-bit state + input):** Maintains history for constraint length 7.
- 2. **XOR Networks:** Compute parity outputs from generator polynomials.
- 3. Output Formatter: Packs 2 coded bits into byte stream (AXIS aligned).
- 4. **Bypass Path:** Direct input \rightarrow output when bypass=1.

Verification Plan:

- Compare encoder output against MATLAB/poly2trellis/convenc golden vectors.
- Integration check: PRBS \rightarrow Encoder \rightarrow Viterbi (decoder) \rightarrow compare to PRBS.

- Hardware bring-up: capture encoded data → decode offline in MATLAB/Python → confirm bit-exact.
- Bypass mode: confirm 1:1 passthrough.

Definition of Done (DoD):

- Output matches MATLAB golden vectors for multiple seeds and input lengths.
- Clean AXIS protocol under stalls.
- Encoder + Viterbi roundtrip reproduces input with 0 mismatches over \geq 1 MB.
- Bypass mode confirmed.

4.1.4 Mapper

Purpose:

Map binary input bits into complex modulation symbols (BPSK or QPSK). Provides the digital baseband representation used for transmission over the optical Aurora link.

Description:

- 1. Control/Config (AXI4-Lite):
 - o Select modulation: BPSK or QPSK.
 - o Enable/disable module.
 - o AMC override option (force mode regardless of AMC FSM).
- 2. Mapping Logic:
 - o **BPSK:** maps $0 \rightarrow +1$, $1 \rightarrow -1$ (real axis only).
 - o **QPSK:** groups input bits into pairs; Gray-coded mapping to $\pm 1 \pm i1$ (normalized).
- 3. AXI-Stream Interface (Input/Output):
 - o Input: AXIS bits/bytes.
 - Output: AXIS symbols {I[15:0], Q[15:0]} fixed-point (Q1.15).
 - o Supports back-pressure with deterministic symbol alignment.
- 4. Bypass Mode:
 - o Optional passthrough (input bits \rightarrow I only).

Block Diagram:

```
AXIS (bits) → [Bit Grouping]

→ [Mapper: BPSK / QPSK LUT] → {I,Q} symbols (Q1.15) →

AXIS
```

- Clock/Reset: clk bb, rst n.
- **AXI4-Lite:** mode select, enable, bypass, AMC override.
- AXI-Stream:

- o s axis tdata[7:0], s axis tvalid, s axis tready, s axis tlast
- o m axis tdata[31:0] = {I[15:0], Q[15:0]}, plus tvalid/tready/tlast
- **Parameters (generics):** G_FIXEDPT=Q1.15, G_MAPPING={Gray-coded}.

- 1. **Bit Grouping:** Collects 1 bit (BPSK) or 2 bits (QPSK).
- 2. Mapping LUT: Simple combinational logic for symbol assignment.
- 3. **Output Formatter:** Expands to signed fixed-point {I,Q}.
- 4. **Bypass Mux:** Directly routes input bits if bypass enabled.

Verification Plan:

- Compare output symbols against MATLAB constellation tables.
- PRBS \rightarrow Mapper \rightarrow check that constellation matches expected points.
- Hardware bring-up: capture symbols → plot in Python (constellation snapshot).

Definition of Done (DoD):

- BPSK/QPSK mapping verified against MATLAB/NumPy golden vectors.
- Symbol alignment deterministic under stalls.
- Roundtrip with slicer reproduces input bits with 0 mismatches.
- AMC override correctly forces selected mode.

4.1.5 Differential Encoder

Purpose:

Encode information in **phase differences** so the RX can recover data despite constant carrier phase offsets.

Description:

- 1. Control/Config (AXI4-Lite): enable; mode = DBPSK (1 bit) or DQPSK (2 bits).
- 2. Core Function: keep previous output symbol; map input bits \rightarrow phase increment $(0^{\circ},90^{\circ},180^{\circ},270^{\circ})$; output = previous symbol \times e $^{\{j\Delta\phi\}}$.
- 3. **AXI-Stream:** In {I,Q} from Mapper; Out {I,Q} to RRC; honors back-pressure; propagates tlast.

Block Diagram:

```
AXIS {I,Q} \rightarrow [Phase Inc LUT] \rightarrow [Symbol State z^{-1}] \rightarrow [Complex Mult (prev × phase)] \rightarrow AXIS {I,Q}
```

- Clock/Reset: clk bb, rst n
- AXI4-Lite: enable, mode (DBPSK/DQPSK)
- **AXIS:** s_axis_tdata[31:0]={I,Q}, m_axis_tdata[31:0]={I,Q}, valid/ready/last
- Params: G FIXEDPT=Q1.15, G INIT SYM=(1,0) (reset state)

- 1. **Phase LUT:** maps input bits to unit phasors (Q1.15).
- 2. **State Reg:** previous output symbol; reset to (1,0).
- 3. **Complex Multiplier:** fixed-point multiply with rounding/saturation.
- 4. Control: advance only on tvalid && tready; propagate tlast.

Verification Plan:

- Compare DBPSK/DQPSK output vs MATLAB/NumPy golden vectors.
- Loop: PRBS \rightarrow Mapper \rightarrow DiffEnc \rightarrow (offline)DiffDec \rightarrow expect bit-exact.
- Hardware capture: plot Δ phase histogram; check only allowed increments.

Definition of Done (DoD):

- Golden-match for DBPSK/DQPSK; no overflow/saturation artifacts.
- AXIS clean under stalls; deterministic reset behavior.
- RX Differential Decoder recovers original bits losslessly.

4.1.6 RRC Filter (TX)

Purpose:

Apply **root-raised cosine** pulse shaping to limit bandwidth and control ISI before the link.

Description:

- 1. Control/Config (AXI4-Lite): enable/bypass; optional coeff reload.
- 2. Core Function: FIR with symmetric RRC taps (from rcosdesign), per-channel (I & Q). Optional 2× interpolation.
- 3. **AXI-Stream:** In {I,Q} from DiffEnc; Out {I,Q} to Preamble Inserter; back-pressure compliant; propagate tlast.

Block Diagram:

AXIS {I,Q}
$$\longrightarrow$$
 [FIR (RRC) for I] \bigcap [FIR (RRC) for Q] \longrightarrow AXIS {I,Q} [Bypass Mux]

- Clock/Reset: clk bb, rst n
- AXI4-Lite: enable, bypass, (opt) coeff wr
- **AXIS:** s_axis_tdata[31:0]={I,Q}, m_axis_tdata[31:0]={I,Q}, valid/ready/last
- Params: G TAPS=48-64, G ROLL OFF=0.25, G OSR=2, G FIXEDPT=Q1.15

- 1. **FIR Engines (I & Q):** Xilinx FIR Compiler IP; symmetric taps; internal scaling to avoid overflow; fixed latency L.
- 2. **Bypass Mux:** latency-aware path selection; tuser/tlast pipelined to match FIR latency.
- 3. Flow Control: counters advance only on tvalid && tready.

Verification Plan:

- Impulse/frequency response vs MATLAB RRC (within quantization).
- End-to-end eye opening improves post-filter; matched filter (RX) yields minimal ISI.
- Hardware capture: FFT of filtered symbols matches target roll-off.

Definition of Done (DoD):

- Response matches design; latency documented; no overflow.
- AXIS clean under stalls and bypass toggles.
- Matched TX/RX RRC produces expected ISI-free constellation at slicer.

4.1.7 Preamble Inserter

Purpose:

Insert a known symbol sequence at the start of each frame to enable RX timing acquisition (correlation-based frame sync) and provide a reference for EVM/SNR checks.

Description:

1. Control/Config (AXI4-Lite):

- o Enable/disable insertion; bypass option.
- o Select preamble length (e.g., 32/48/64 symbols).
- o Optional guard symbols after preamble (zeros or known pattern).
- o Optional tuser flagging for preamble samples.

2. Core Function:

- o On each frame start, output a ROM-stored complex preamble (I/Q) for N symbols.
- After the preamble (and optional guard), pass through payload symbols unchanged.
- o Honors AXIS back-pressure so insertion never overruns downstream.

3. AXI-Stream Interface (Input/Output):

o Input: AXIS {I[15:0], Q[15:0]} symbols (from RRC).

- o Output: AXIS {I[15:0], Q[15:0]} with preamble inserted at frame start.
- o tlast from upstream defines frame boundaries; tuser[0] optionally marks preamble.

Block Diagram (FSM):

- Clock/Reset: clk_bb, rst_n.
- AXI4-Lite: enable, bypass, preamble_len, guard_len, (opt) scale.
- AXI-Stream:
 - o In: s_axis_tdata[31:0]={I,Q}, s_axis_tvalid, s_axis_tready, s axis tlast.
 - Out: m_axis_tdata[31:0]={I,Q}, m_axis_tvalid, m_axis_tready, m axis tlast, (opt) m axis tuser[0]=preamble.
- Parameters (generics):
 - o G IQ FMT = Q1.15, G MAX LEN = 64, G GUARD MAX = 16.

o G PREAMBLE INIT[]: compiled-in default sequence (can be ROM-initialized).

Micro-Architecture:

- 1. **FSM:** IDLE (waiting for frame start) \rightarrow INSERT (emit N ROM symbols) \rightarrow GUARD (emit zeros or pattern) \rightarrow PAYLOAD (pass-through until tlast).
- 2. **ROM:** Dual-port or time-multiplexed ROM holding {I,Q} preamble samples.
- 3. Mux & Flow Control: Selects ROM vs payload; advances counters only on tvalid && tready.
- 4. **Frame Start Detect:** Uses upstream tlast (or a dedicated start signal) to arm the next preamble.
- 5. **Bypass Path:** Full pass-through with no timing modifications.

Verification Plan:

- Check correlation peak at RX using the chosen preamble (offline Python or FPGA correlator).
- Confirm N exact preamble symbols precede each payload frame; guard length honored.
- Back-pressure: stall during insertion and ensure no symbol duplication/loss.
- Bypass: output equals input; no added latency at frame boundaries.

Definition of Done (DoD):

- Exact N-symbol preamble inserted at every frame start; tuser flagging (if enabled) aligns with those samples.
- No AXIS protocol violations under stalls; payload boundaries preserved (tlast unchanged).
- Correlation in RX produces stable acquisition with deterministic offset.
- Bypass verified lossless.

4.1.8 Packetizer

Purpose:

Encapsulate payload data (preamble + symbols) into packets with headers for synchronization, mode identification, and error checking. Provides structure for framing over Aurora and enables depacketization at RX.

Description:

1. Control/Config (AXI4-Lite):

- o Enable/disable; bypass option.
- Header fields configurable: sync word, mode, sequence number, length, CRC, flags.

o Optional CRC enable/disable.

2. Core Function:

- o At frame start, insert fixed header fields before payload.
- o Append CRC (if enabled) at frame end.
- o Maintains sequence counter for debug and BER stats.
- o Back-pressure compliant; header/payload emitted only on tvalid && tready.

3. AXI-Stream Interface (Input/Output):

- o Input: AXIS {I,Q} symbols (preamble + payload).
- o Output: AXIS with header prepended and CRC appended.
- o tlast marks end of packet; tuser optionally flags header region.

Block Diagram (FSM):

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n.
- AXI4-Lite:
 - o CTRL: enable, bypass, crc en.
 - o CFG: sync word, mode field, base sequence number, header format.
- AXI-Stream:
 - o In: {I,Q}, valid/ready/last.
 - o Out: {I,Q}, valid/ready/last, optional tuser header flag.

Micro-Architecture:

- 1. **FSM:** IDLE \rightarrow HEADER \rightarrow PAYLOAD \rightarrow CRC \rightarrow IDLE.
- 2. **Header Generator:** Concatenates sync + mode + seq + length + flags.
- 3. **CRC Engine (optional):** Running CRC computed over header+payload.
- 4. Mux Logic: Select header, then payload, then CRC onto output stream.
- 5. **Sequence Counter:** Auto-incremented on each packet.
- 6. **Bypass Path:** Payload forwarded unchanged if bypass=1.

Verification Plan:

- Packet capture → parse header fields in Python → confirm sync/mode/seq/len match configuration.
- CRC check passes in software for enabled runs; disabled runs skip CRC field.
- Roundtrip (Packetizer → Depacketizer) reproduces payload exactly.
- Back-pressure: no dropped/duplicated symbols.

Definition of Done (DoD):

- Correct header inserted with configurable fields.
- CRC validated vs software golden.
- Payload integrity verified through Packetizer+Depacketizer loop.
- AXIS compliance under stalls.
- Bypass confirmed lossless.

4.1.9 Aurora TX

Purpose:

Serialize packetized baseband symbols and transport them across the optical link using Aurora 64B/66B protocol at 10.3125 Gb/s. Provides a lightweight, high-throughput PHY/MAC layer between FPGA and SFP+ optics.

Description:

1. Control/Config (AXI4-Lite):

- o Enable/disable channel.
- o Lane/polarity config.
- o Status: channel up, soft err, hard err.

2. Core Function:

- Uses Xilinx Aurora 64B/66B IP core.
- o Accepts AXIS packets from Packetizer.
- o Encodes into 64B/66B blocks, serializes via GTH transceiver.
- o Drives SFP+ module over 10.3125 Gb/s optical link.

3. AXI-Stream Interface (Input):

- o Input: AXIS {I,Q} packet stream.
- o Handshake compliant; back-pressure applied if Aurora not ready.

Interfaces & Parameters:

- Clock/Reset:
 - o clk aurora = 156.25 MHz (from recovered PLL).
 - o Async FIFO bridges between clk bb and clk aurora.
- **AXI4-Lite:** channel enable, lane config, error/status readback.
- AXI-Stream:
 - o In: {I,Q}, valid/ready/last.
- External:
 - o SFP+ cage, optical fiber.
- Parameters (generics):
 - o Lane width (e.g., 64b).
 - o GEARBOX factor for serialization.

Micro-Architecture:

- 1. Async FIFO (CDC): Buffers between baseband clock domain and Aurora core.
- 2. **Aurora Core (Xilinx IP):** Handles 64B/66B line coding, channel bonding, error detection.
- 3. **GTH Wrapper:** Serializes encoded stream to 10.3125 Gb/s.
- 4. Link Management: Monitors channel up, resets on error.

Verification Plan:

- Internal loopback: $TX \rightarrow RX$ within Aurora IP \rightarrow confirm payload integrity.
- ILA probes: channel up, error counters stable during run.
- Packetizer \rightarrow Aurora TX \rightarrow Aurora RX \rightarrow Depacketizer \rightarrow compare payloads.
- Hardware bring-up: capture decoded packets in DDR, check vs transmitted PRBS.

Definition of Done (DoD):

- Aurora link comes up (channel up=1) and stays stable.
- Internal loopback shows 0 packet mismatches.
- End-to-end payload integrity confirmed through Aurora link.

• Error counters remain 0 under normal conditions.

4.2 Receive Path

4.2.1 Aurora RX

Purpose:

Receive serialized packets from the optical link via Aurora 64B/66B protocol. Recovers clock, deserializes data, and outputs AXIS packet stream for downstream baseband processing.

Description:

1. Control/Config (AXI4-Lite):

- o Enable/disable channel.
- o Status: channel up, soft err, hard err.
- o Reset/retrain control.

2. Core Function:

- o Uses Xilinx Aurora 64B/66B IP core.
- o GTH transceiver recovers serial clock and data at 10.3125 Gb/s.
- o Aurora core decodes 64B/66B stream \rightarrow AXIS words.
- o Provides error detection signals for monitoring.

3. AXI-Stream Interface (Output):

- o Output: AXIS {I,Q} packetized symbols.
- o Propagates tlast to mark end of packet.
- o Back-pressure supported; upstream Aurora core applies stall.

Block Diagram:

- Clock/Reset:
 - o clk aurora = 156.25 MHz recovered.
 - o Async FIFO bridges Aurora domain → baseband domain.
- **AXI4-Lite:** enable, reset, status readback.
- AXI-Stream:
 - o Out: {I,Q} packet stream, valid/ready/last.
- External:
 - o SFP+ module input via OM3 fiber.
- Parameters (generics):
 - o Lane width (e.g., 64b).
 - o GEARBOX factor for description.

- 1. **GTH Receiver:** recovers clock/data at 10.3125 Gb/s and forwards to Aurora
- 2. **Aurora 64B/66B core** performs 66b block alignment using sync headers and error detection.
- 3. **Async FIFO:** Crosses from Aurora clock \rightarrow baseband clock.
- 4. **AXIS Interface:** Outputs clean packetized symbols to Depacketizer.

Verification Plan:

- Internal loopback (Aurora $TX \rightarrow RX$) confirms packet integrity.
- Monitor channel up stable, error counters remain 0.
- End-to-end: PRBS \rightarrow Packetizer \rightarrow Aurora TX \rightarrow RX \rightarrow Depacketizer \rightarrow compare with PRBS.
- Hardware capture: $0 \text{ mismatches over } \ge 1 \text{ MB}.$

Definition of Done (DoD):

- Link reliably establishes (channel up=1).
- AXIS packets emitted with correct framing and no corruption.
- Stable operation under long runs with no errors.
- End-to-end PRBS test through link passes with 0 mismatches.

4.2.2 Depacketizer

Purpose:

Parse incoming packets, validate the header/CRC, and recover the raw payload (preamble + symbols) for baseband RX processing.

Description:

- 1. **Control/Config (AXI4-Lite):** enable/bypass; expected sync word; CRC enable; (opt) drop-on-error vs pass-with-flag.
- 2. **Core Function:** detects sync, parses header (mode, seq, length, flags), checks CRC (if enabled), strips header/CRC, outputs payload only.
- 3. **AXI-Stream:** In: AXIS packets from Aurora RX. Out: AXIS payload stream with preserved tlast; optional tuser flags for header/preamble regions.

Block Diagram:

- Clock/Reset: clk_bb, rst_n
- AXI4-Lite: enable, bypass, crc_en, sync_word, (opt) drop_on_err, (opt) expected_mode
- AXI-Stream:
 - o In: s axis tdata[31:0]={I,Q}, tvalid, tready, tlast
 - Out: m_axis_tdata[31:0]={I,Q}, tvalid, tready, tlast, (opt)
 tuser[0]=header/preamble
- **Params:** header layout (field widths), CRC polynomial (default 0x1021)

- FSM: SEARCH_SYNC → READ_HDR → PAYLOAD → (CRC); advances only on tvalid && tready.
- 2. **Header Parser:** accumulates fixed header length; extracts mode/seq/len/flags.
- 3. Length/Seq Trackers: enforce payload length; (opt) track sequence gaps.
- 4. **CRC Engine (opt):** streaming CRC over header+payload; compares on trailer.
- 5. **Policy Mux:** drop or forward with error flag on header/CRC failure.
- 6. Bypass Path: pass input to output unchanged.

Verification Plan:

- Packetizer Aurora Depacketizer loop: payload equals original (0 mismatches).
- CRC enabled: software recompute matches hardware pass/fail; disabled path skips check.
- Error injection: bad sync/len/CRC → module raises flag and applies configured policy.
- Back-pressure: no symbol duplication/loss; tlast aligns with payload end.

Definition of Done (DoD):

- Correct sync detect and header parse across runs; payload recovered exactly.
- CRC check behavior correct; policy respected (drop vs flag).
- AXIS protocol clean under stalls; tlast preserved.
- Seamless loop with Packetizer (end-to-end integrity).

4.2.3 RRC Matched Filter (RX)

Purpose:

Apply receive-side root-raised cosine filtering matched to TX pulse shape to maximize SNR and minimize ISI before timing/phase recovery.

Description:

- 1. **Control/Config (AXI4-Lite):** enable/bypass; optional coeff reload; decimation/OSR select (if applicable).
- 2. **Core Function:** FIR with symmetric RRC taps (same roll-off as TX), per-channel on I and Q; optional decimation to symbol rate.

3. **AXI-Stream:** In {I,Q} from Depacketizer; Out {I,Q} to Preamble Correlator; honors back-pressure and propagates tlast.

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n
- AXI4-Lite: enable, bypass, (opt) coeff wr, (opt) osr sel
- AXIS: s_axis_tdata[31:0]={I,Q}, m_axis_tdata[31:0]={I,Q}, tvalid/tready/tlast
- Params: G TAPS=48-64, G ROLL OFF=0.25, G OSR=2, G FIXEDPT=Q1.15

Micro-Architecture:

• Dual FIR engines (I/Q) (Xilinx IP), fixed latency; optional decimator; latency-align tlast/tuser; bypass path with latency compensation.

Verification Plan:

- Impulse/frequency response ≈ MATLAB RRC; TX+RX cascade ≈ Nyquist.
- End-to-end constellation tightens after matched filtering.
- AXIS clean under stalls; bypass toggles safe.

Definition of Done (DoD):

- Response matches design within quantization; latency documented.
- Clean AXIS; improved EVM vs pre-filter capture.

4.2.4 Preamble Correlator

Purpose:

Detect the inserted preamble, establish frame/timing alignment, and provide a reliable strobe (and optional coarse CFO/phase estimate) for downstream demodulation.

Description:

- 1. **Control/Config (AXI4-Lite):** enable; threshold; preamble length; (opt) max offset search window; (opt) output tuser strobe.
- 2. **Core Function:** Sliding complex correlation of {I,Q} stream against stored preamble; find peak → emit sym_strobe and frame start index; (opt) compute peak phase for coarse rotation.
- 3. **AXI-Stream:** In {I,Q} from RX RRC; Out {I,Q} to Differential Decoder; tuser can mark symbol timing; tlast propagated.

Block Diagram:

Interfaces & Parameters:

- Clock/Reset: clk_bb, rst_n
- AXI4-Lite: enable, thresh, preamble len, (opt) win len, (opt) coarse rot en
- AXIS: s_axis_tdata[31:0]={I,Q}, m_axis_tdata[31:0]={I,Q}, tvalid/tready/tlast, (opt) tuser
- Params: G MAX LEN=64, fixed-point widths for correlator accumulation

Micro-Architecture:

• Complex MAC window with running sum; magnitude^2 comparator for peak; optional CORDIC/atan2 for peak phase; generates one-cycle sym_strobe and frame-start flag; hold-off to avoid multiple detections per frame.

Verification Plan:

- Inject known preamble \rightarrow single strong correlation peak at correct offset.
- Vary SNR \rightarrow verify detection probability vs threshold; false-alarm rate low.
- If coarse rotator enabled, measured residual phase \lt slicer decision angle.

Definition of Done (DoD):

- Deterministic, single detection per frame with correct alignment.
- Stable strobe aligning payload symbols; optional coarse rotation reduces phase error.
- Clean AXIS behavior; no payload corruption.

4.2.5 Differential Decoder

Purpose:

Recover bits from **phase differences** between successive symbols to remove absolute carrier phase ambiguity.

Description:

1. Control/Config (AXI4-Lite):

Enable/disable differential decoding.

Mode select: DBPSK (1 bit/sym) or DQPSK (2 bits/sym).

2. Core Logic:

Maintain a 1-symbol delay register for the previous received symbol.

Compute d[k] = y[k] * conj(y[k-1]).

Map the phase of d[k] to the nearest valid increment $(0, \pm 90, 180 \text{ deg})$.

Gray-decode that phase increment into 1 or 2 bits.

3. AXI-Stream Interface (Input/Output):

Input: AXIS symbols {I,Q} from RX RRC / Preamble Correlator.

Output (configurable): AXIS decision bits (packed) or AXIS {I,Q} of the differenced symbol for a downstream slicer.

Handshake: tvalid/tready/tlast.

Block Diagram:

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n.
- AXI4-Lite: mode select (DBPSK/DQPSK), enable.
- AXI-Stream:
 - o s axis $tdata[31:0] = \{I[15:0], Q[15:0]\}$
 - o m axis tdata[31:0] = {I[15:0], Q[15:0]}
 - Standard handshake signals.
- Parameters (generics): G FIXEDPT=Q1.15, G MODES={DBPSK, DQPSK}.

Micro-Architecture:

- Symbol Delay: FIFO/SRL holding the previous symbol.
- Complex Multiply: current * conjugate(previous).
- Phase Detector: quadrant/atan2-style decision to nearest allowed phase step.
- Gray Decoder: maps detected phase step to 1–2 bits.
- Reset Handling: initialize previous symbol to (1,0).

Verification Plan:

- Golden compare vs MATLAB/NumPy for DBPSK/DQPSK.
- Check delta-phi histograms show only allowed phase steps.
- Confirm decoded bits match TX bitstream in clean conditions.

Definition of Done (DoD):

• Bit-exact on golden vectors; stable under stalls; deterministic reset at frame boundaries.

4.2.6 Slicer

Purpose:

Make hard decisions on received constellation symbols, converting noisy {I,Q} values into estimated transmitted bits. Supports both **BPSK** and **QPSK** (**Gray-coded**) detection.

Description:

- 1. Control/Config (AXI4-Lite):
 - Mode select: BPSK or QPSK.
 - o Enable/disable; bypass (optional).
- 2. Core Function:
 - o **BPSK:** decision on the real axis ($I \ge 0 \rightarrow bit=0$; $I < 0 \rightarrow bit=1$).
 - o **QPSK:** quadrant-based Gray-coded mapping to 2 bits per symbol.
 - o Threshold at 0 for both I and Q.
- 3. AXI-Stream Interface (Input/Output):
 - o Input: AXIS {I,Q} symbols (from Differential Decoder).
 - o Output: AXIS bits (packed into bytes).
 - o Honors back-pressure; propagates tlast.

Block Diagram (QPSK Constellation):

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n.
- AXI4-Lite: mode (BPSK/QPSK), enable, bypass.
- AXI-Stream:
 - o In: s axis tdata[31:0]={I,Q}, tvalid/tready/tlast.
 - o Out: m axis tdata[7:0] (bits packed), tvalid/tready/tlast.
- Parameters (generics):
 - o G FIXEDPT=Q1.15.
 - o G ENDIAN=LITTLE (bit order within output byte).

Micro-Architecture:

- 1. **Decision Logic:** sign check on I (BPSK) or both I/Q (QPSK).
- 2. **Gray Decoder:** maps quadrants to bit pairs (00,01,11,10).
- 3. Bit Packer: groups decisions into 8-bit words.
- 4. **Bypass Mux:** optional passthrough of raw symbols.

Verification Plan:

- PRBS → Mapper → DiffEnc → RRC → ... → DiffDec → Slicer → compare bits vs PRBS golden.
- Constellation scatter with noise \rightarrow decisions land in correct bit bins.
- Hardware bring-up: capture slicer output, compare with transmitted PRBS stream.

Definition of Done (DoD):

- Correct Gray-coded mapping confirmed against golden.
- Deterministic bit packing and alignment.
- Clean AXIS protocol under stalls.
- Full TX \rightarrow RX loop recovers PRBS with 0 mismatches (no channel impairments).

4.2.7 Impairment Injector

Purpose:

Introduce controlled bit errors or bursts into the RX stream to validate **FEC performance** and BER counter operation under known error patterns.

Description:

- 1. Control/Config (AXI4-Lite):
 - o Enable/disable injector.
 - o Mode: random bit flips, fixed interval flips, or burst errors.
 - o Parameters: error probability (p), interval (N), burst length (L).
- 2. Core Function:

- o Monitors incoming bitstream.
- o Based on configuration, flips bits (XOR with error mask).
- o Burst errors applied by consecutive flips.

3. AXI-Stream Interface (Input/Output):

- o Input: AXIS bits (from Slicer).
- o Output: AXIS bits with impairments injected.
- o Fully back-pressure compliant; propagates tlast.

Block Diagram:

```
AXIS Bits → [Error Mask Generator: rand / counter / burst FSM]

→ [XOR with Incoming Bits] → AXIS Bits (impaired)
```

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n.
- AXI4-Lite:
 - o CTRL: enable, mode (random/fixed/burst).
 - o CFG: error prob, interval, burst len, seed.
- AXI-Stream:
 - o In: s axis tdata[7:0], tvalid/tready/tlast.
 - o Out: m axis tdata[7:0], tvalid/tready/tlast.
- Parameters (generics): RNG type (LFSR default), G ENDIAN=LITTLE.

Micro-Architecture:

- 1. **RNG Core:** LFSR or PRBS-based random generator.
- 2. Mask Logic: generates single-bit flip, periodic flip, or burst window.
- 3. **XOR Stage:** applies mask to incoming data bits.
- 4. **Bypass Path:** forwards data unchanged if disabled.

Verification Plan:

- Random mode: measure injected BER vs configured p \rightarrow matches expected rate.
- Interval mode: flips occur at exact N-th bit; burst mode: contiguous L-bit flips.
- End-to-end: PRBS → Encoder → Channel (with Injector) → Viterbi → compare BER vs baseline.

Definition of Done (DoD):

- Configurable impairment patterns injected correctly.
- BER counters reflect expected error rates.
- AXIS compliance under stalls.
- Bypass path confirmed lossless.

4.2.8 FEC Decoder (Viterbi)

Purpose:

Decode convolutionally encoded data (K=7, rate-1/2) using the Viterbi algorithm. Provides maximum-likelihood recovery of original bitstream, correcting errors introduced by the channel.

Description:

- 1. Control/Config (AXI4-Lite):
 - o Enable/disable decoder.
 - o Bypass mode for debug.
 - \circ Configurable traceback depth (default: 5–7 × K).
- 2. Core Function:
 - o Uses Xilinx Viterbi Decoder IP (hard-decision mode).
 - o Input: coded bitstream (2 bits per input symbol).
 - o Output: recovered 1-bit stream.
- 3. AXI-Stream Interface (Input/Output):
 - o Input: AXIS packed coded bits.
 - o Output: AXIS decoded bits (repacked into bytes).
 - o Fully back-pressure compliant.
- 4. Bypass Mode:
 - o Input data forwarded unchanged.

Block Diagram:

```
AXIS (coded bits) \rightarrow [Branch Metric Calc] \rightarrow [ACS / Trellis State Machine] \rightarrow [Survivor Memory] \rightarrow [Traceback Unit] \rightarrow AXIS (decoded bits)
```

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n.
- **AXI4-Lite:** enable, bypass, traceback depth.
- AXI-Stream:
 - o s_axis_tdata[15:0], s_axis_tvalid, s_axis_tready, s_axis_tlast
 - o m_axis_tdata[7:0], m_axis_tvalid, m_axis_tready, m_axis_tlast
- **Parameters (generics):** K=7, RATE=1/2, POLY={171,133}, TRACEBACK=42 (default).

Micro-Architecture:

- 1. **Branch Metric Unit:** Computes Hamming distance of received bits vs expected codewords.
- 2. Add-Compare-Select (ACS) Units: Update path metrics for all states.
- 3. Survivor Memory: Stores best paths.
- 4. Traceback Logic: Recovers most likely input sequence after delay.
- 5. **Bypass Path:** Simple passthrough mux.

Verification Plan:

- Golden vector comparison vs MATLAB vitdec.
- Integration: PRBS \rightarrow Encoder \rightarrow Viterbi \rightarrow compare to PRBS.
- Hardware bring-up: capture \rightarrow decode offline in MATLAB/Python \rightarrow confirm bit-exact.
- Bypass mode: confirm passthrough.

Definition of Done (DoD):

- Decoder output matches MATLAB golden vectors across multiple input sequences.
- Roundtrip (Encoder → Decoder) recovers original bitstream with 0 mismatches over ≥1 MB.
- Stable under back-pressure and configurable traceback depth.
- Bypass verified.

4.2.9 Descrambler

Purpose:

Invert the TX scrambling to recover the original bitstream before BER/FEC/metrics. Ensures deterministic, reversible whitening.

Description:

- 1. Control/Config (AXI4-Lite): enable/disable; bypass; polynomial select; seed load.
- 2. **Core Function:** generate scramble sequence (LFSR) and **XOR** with incoming bits (bit-for-bit inverse of TX).
- 3. **AXI-Stream:** In bits (from Viterbi or Slicer if uncoded); Out bits to BER/EVM; honors back-pressure; propagates tlast.

Block Diagram:

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n
- AXI4-Lite: enable, bypass, poly sel, seed
- AXIS: s axis tdata[7:0], m axis tdata[7:0], tvalid/tready/tlast
- Params: supported polynomials (e.g., 802.3 x⁷+x⁴+1), G ENDIAN=LITTLE

Micro-Architecture:

• LFSR advances only when tvalid && tready.

- 8-bit parallel XOR path (or serial 1-bit ×8 cycles) with deterministic bit order.
- Seed/zero-guard like TX; seed load when disabled for reproducibility.

Verification Plan:

- TX Scrambler \rightarrow RX Descrambler round-trip = original PRBS (0 mismatches).
- Bypass equals input; stalls preserve alignment; multiple polys/seeds match golden.

Definition of Done (DoD):

4.2.10 BER Counters

Purpose:

Measure bit-error rate by comparing recovered bits to a locally regenerated reference (PRBS or CRC-verified payload). Provides quantitative link quality for demo.

Description:

- 1. **Control/Config (AXI4-Lite):** enable/clear; mode select (PRBS-referenced vs CRC-gated payload); window length; optional auto-resync.
- 2. **Core Function:** align to reference, XOR received vs reference, accumulate **error_count** and **bit_count**; expose instantaneous and cumulative BER.
- 3. **AXI-Stream:** In bits after descrambler; optional sideband from depacketizer (frame boundaries) for alignment.

Block Diagram:

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n
- AXI4-Lite (status/ctrl): enable, clear, mode, window_len, aligned, bit_count, err_count, (opt) ber_q16_16
- AXIS In: s axis tdata[7:0], tvalid/tready/tlast, (opt) tuser.frame_start
- Params: supported PRBS polynomials; alignment depth; resync policy

Micro-Architecture:

- **Reference path:** PRBS LFSR seeded from known frame/seed OR CRC-gated "trusted payload" mode.
- **Aligner:** uses frame boundary and/or small slip search to lock bit phase; optional autoresync on high error burst.

• **Counters:** wide saturating counters; optional fixed-window latched snapshot for host read.

Verification Plan:

- Clean channel: BER→0; inject known error rates via Impairment Injector and verify measured BER ≈ expected (binomial tolerance).
- Resync behavior correct after intentional slip; windowed snapshots stable under backpressure.

Definition of Done (DoD):

- Accurate BER within statistical bounds over configured windows.
- Robust alignment/resync across frames; status readable without races.
- AXIS protocol clean; no impact on data path timing.

4.2.11 SNR/EVM Estimator

Purpose:

Compute signal quality metrics for diagnostics and AMC decisions: **per-frame EVM%**, **SNR** (**dB**), and optional symbol-error stats.

Description:

- 1. **Control/Config (AXI4-Lite):** enable; mode (BPSK/QPSK); window = per-frame or fixed-N symbols; (opt) decimation for stats rate.
- 2. Core Function: compare received decisions/symbols against ideal constellation; accumulate error power and signal power → derive EVM% and SNR dB; latch results per frame.
- 3. **AXI-Stream:** In {I,Q} (or post-slicer bits plus re-mapper to ideal); Out passes {I,Q} through unchanged; results readable via AXI-Lite.

Block Diagram:

```
AXIS {I,Q} \longrightarrow [Ideal Mapper (mode)] \longrightarrow [Error: e = x - x^] 
 \downarrow [Accumulators: \Sigma |e|^2, \Sigma |x^2|^2, count] \longrightarrow [EVM%, SNR dB] 
 \downarrow (Frame latch) \longrightarrow AXI-Lite status 
 \downarrow Pass-through AXIS {I,Q}
```

- Clock/Reset: clk bb, rst n
- AXI-Lite: enable, mode, win_len, evm_q16_16, snr_q8_8, sym_cnt, valid_flag, overflow
- AXIS: s_axis_tdata[31:0]={I,Q}, m_axis_tdata[31:0]={I,Q}, tvalid/tready/tlast

• Params: fixed-point widths for power sums; scale factors for Q1.15

Micro-Architecture:

- Ideal Mapper: regenerates reference constellation from slicer bits or mode select.
- Error Metrics: complex subtract $\rightarrow |e|^2$; reference power $|\hat{x}|^2$.
- Accumulators: wide, saturating; gated by tvalid&&tready; latch on tlast (frame).

Metrics:

Let $x^[k]$ be the ideal constellation point (from mode), x[k] the received symbol after equal processing.

- Error power: $\Sigma |e|^2 = \Sigma |x[k] x^[k]|^2$
- Ref power: $\Sigma | x^{\circ} |^2 = \Sigma | x^{\circ} [k] |^2$
- $EVM\% = 100 \cdot sqrt(\Sigma|e|^2 / \Sigma|x^2|^2)$
- SNR (dB) ≈ 10·log10 (Σ|x^|² / Σ|e|²)
 Latch results on frame tlast. Fixed-point accumulators sized to avoid overflow for max frame length.

Verification Plan:

- Noiseless run \rightarrow EVM \approx 0%, SNR $\rightarrow\infty$ (bounded by quantization).
- Inject AWGN at known Es/N0 \rightarrow measured SNR tracks within tolerance.
- Frame latching aligns with tlast; no counter rollovers for max frame.

Definition of Done (DoD):

- EVM/SNR within ± 0.5 dB (typ) vs MATLAB over representative SNRs.
- Stable per-frame reporting; AXI-Lite readable without race conditions.
- Zero impact to payload timing (transparent pass-through).

4.2.12 AMC FSM

Purpose:

Select **modulation and coding mode** (e.g., {BPSK+FEC, QPSK+FEC, QPSK}) based on measured link quality with hysteresis and dwell to avoid mode flapping.

Description:

- 1. **Control/Config (AXI4-Lite):** thresholds for EVM/SNR; hysteresis margins; min dwell frames; enable/disable AMC; manual override.
- 2. **Core Function:** consume per-frame metrics → evaluate thresholds → update mode subject to dwell/hysteresis → publish current mode to TX Mapper/FEC and RX expectations.

3. **Interfaces:** No AXIS data path; AXI-Lite + sideband outputs (mode bus, change interrupt).

Block Diagram (FSM):

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n
- AXI-Lite: enable, override_en, override_mode, thresholds, hysteresis, dwell_frames, status (current_mode, last_change_frame)
- Sideband Outputs: mode_out to TX Mapper/FEC and to RX controls;
 irq mode change

Micro-Architecture:

- Comparator Bank: compares metrics to up/down thresholds.
- FSM: applies hysteresis; only transitions after dwell frames satisfied.
- Override Mux: forces mode when enabled; logs reason codes.

Verification Plan:

- Sweep SNR across thresholds → verify transitions and no chatter (hysteresis).
- Dwell enforcement with oscillating SNR; override preempts FSM immediately.
- End-to-end: mode_out drives TX/RX consistently; no mismatches across a frame.

Definition of Done (DoD):

- Correct, stable mode transitions per configured thresholds and dwell.
- Override works and reports status; interrupts on change generated once per event.
- Clean handoff to TX/RX modules without pipeline hazards.

4.2.13 Constellation Snapshot

Purpose:

Capture periodic windows of {I,Q} symbols for host-side visualization (Python/pyqtgraph) without disturbing the data path.

Description:

- 1. **Control/Config (AXI4-Lite):** enable; trigger mode (periodic, manual, preamble-gated); decimation factor; capture length (samples).
- 2. Core Function: tap $\{I,Q\}$ stream \rightarrow decimate if configured \rightarrow write samples into BRAM FIFO \rightarrow AXI DMA burst to PS DDR \rightarrow UDP to host.
- 3. **AXI-Stream:** Non-intrusive snoop of {I,Q}; main stream continues unmodified.

Block Diagram:

```
AXIS {I,Q} \longrightarrow [Tap] \longrightarrow (opt) [Decimator] \longrightarrow [BRAM FIFO] \longrightarrow [AXI-DMA S2MM] \longrightarrow PS DDR \longrightarrow UDP \rightarrow Host (pyqtgraph)
```

Interfaces & Parameters:

- Clock/Reset: clk bb, rst n
- AXI-Lite: enable, trig mode, decim, cap len, status (busy, frames, dropped)
- AXI-Stream Tap: s_axis_tdata[31:0]={I,Q}, tvalid/tready/tlast (read-only tap)
- AXI-DMA: S2MM channel descriptors and completion flags (handled by PS software)
- **Params:** FIFO depth; max capture length; Q1.15 format

Micro-Architecture:

- Tap & Decimator: pick every N-th sample when decim>1; gate by preamble if selected.
- Capture Controller: finite state machine arms, counts samples, signals DMA start/stop.

• Flow Control: back-pressure never applied to main path; FIFO overflow flagged and capture aborted (status bit).

Verification Plan:

- Timing: trigger on preamble \rightarrow snapshots start within known latency.
- Data integrity: captured I/Q matches online stream (spot-checked); decimation factor honored.
- End-to-end: UDP viewer renders constellation; no effect on RX BER when capturing.

Definition of Done (DoD):

- Reliable capture with zero impact to main data path; overflow conditions reported.
- PS app receives buffers and plots constellations correctly.
- Configurable triggers/decimation operate as specified.

4.1 IP vs Custom RTL

Module	Туре	Notes
Transmit Path		
PRBS Generator	Custom RTL	AXI4-Lite ctrl, AXIS output; optional byte packer & TLAST
Scrambler	Custom RTL	LFSR XOR, byte-aligned
FEC Encoder	Custom RTL	Rate-1/2, K=7 convolutional (171,133) ₈
Mapper	Custom RTL	BPSK/QPSK Gray; Q1.15 output
Differential Encoder	Custom RTL	DBPSK/DQPSK; 1-symbol state
RRC Filter (TX)	Mixed (IP + RTL wrapper)	FIR Compiler IP datapath; RTL wrapper for bypass, latency align
Preamble Inserter	Custom RTL	ROM sequence, guard, tuser flagging
Packetizer	Custom RTL	Sync/mode/seq/len/CRC header insertion
Aurora TX	IP Core	Aurora 64B/66B with GTH; custom CDC/FIFO wrappers
Receive Path		
Aurora RX	IP Core	Aurora 64B/66B RX; async FIFO to baseband domain
Depacketizer	Custom RTL	Header parse, CRC check, error policy
RRC Matched Filter (RX)	Mixed (IP + RTL wrapper)	FIR Compiler IP; wrapper adds bypass/decimation
Preamble Correlator	Custom RTL	Sliding correlation, peak detect, optional coarse rotator
Differential Decoder	Custom RTL	Undo DBPSK/DQPSK
Slicer	Custom RTL	Hard decision; Gray decode; bit packer
Impairment Injector	Custom RTL	Random/interval/burst bit flips
FEC Decoder (Viterbi)	IP Core	Xilinx Viterbi Decoder IP, hard-decision
Descrambler	Custom RTL	Inverse of scrambler, LFSR XOR

BER Counters	Custom RTL	PRBS/CRC-referenced error count
SNR/EVM Estimator Custom RTL		Σ
AMC FSM	Custom RTL	Thresholds, hysteresis, dwell, override
Constellation Snapshot	Mixed (RTL + AXI DMA)	RTL tap/decimator + AXI DMA IP to PS DDR
	Support / Infi	rastructure / Debug
AXI DMA	IP Core	For constellation capture and host streaming
Clocking Wizard / MMCM	IP Core	125 MHz baseband, 156.25 MHz Aurora
AXI Interconnect / SmartConnect	IP Core	AXI4-Lite + AXIS fabrics
AXIS FIFOs / Clock Converters	IP Core	CDC & elasticity buffers
CRC Engine	Custom RTL	CRC-16-CCITT in Packetizer/Depacketizer (could use IP alternative)
ILA (debug)	IP Core	Debug only, not in final design

5. Interfaces

5.1 Internal (PL)

AXI4-Lite Control/Status Bus

- One AXI4-Lite slave per block (PRBS, Scrambler, Mapper, Packetizer, etc.).
- Runs in the baseband clock domain (clk bb, 125 MHz).
- Accessed from PS via AXI Interconnect.
- Each block includes:
 - o CTRL register with enable/bypass/mode bits.
 - o STATUS register with sticky flags (running, aligned, overflow).
 - o **Software reset bit**: writing 1 generates a synchronous one-shot reset inside the block, equivalent to hardware reset for that domain.

AXI-Stream Data Fabrics

- Complex streams: {I[15:0], Q[15:0]} (32-bit).
- Bitstream paths: 8-bit wide, byte-packed.
- All AXIS paths handshake with tvalid/tready/tlast.
- CDC boundaries bridged with Async FIFOs.

DMA / Memory Interfaces

- AXI DMA S2MM: constellation snapshot → PS DDR.
- Optional MM2S for playback/testing.

Debug/Observability

- ILA cores on Aurora TX/RX, PRBS loopback, and key AXIS buses.
- Optional debug FIFO for pre-FEC capture.

Clock/Frequency Plan:

Domain	Name	Freq (MHz)	Source / Notes
Baseband	clk_bb	125	MMCM from 25 MHz ref; drives PRBS, Mapper, FEC, RRC, AMC FSM, etc.
Aurora User	clk_aur	156.25	GTY QPLL; required for Aurora 64B/66B @ 10.3125 Gb/s.
AXI-Lite	clk_axi	100	PS→PL AXI interconnect. Default processing system clock domain.
Debug/ILA	clk_dbg	same as debug domain	Optional high-speed debug domain for ILA/VIO probes.

CDC Boundaries

- Async FIFOs bridge clk bb ↔ clk aur (Packetizer/Depacketizer).
- AXI Interconnect bridges clk axi ↔ clk bb.

Reset Strategy

- Global reset: All PL custom blocks can be synchronously reset by writing CTRL.GLOBAL_SW_RESET = 1 in the Global Reset/GPIO block (Appendix 10.1). This issues a one-shot reset pulse to every block's reset input, then auto-clears.
- **Per-block reset:** Each block also supports a local CTRL.SW_RESET bit in its own register map. This allows targeted resets without disturbing the full chain.
- **Aurora resets:** The Aurora TX/RX wrappers also accept resets via both the global tree and their own RETRAIN control bit for link-level retrain sequences.
- **AXI-Lite stability:** The AXI-Lite domain remains active during global reset, ensuring that software can reliably re-configure blocks after reset.

Note: tie GLOBAL_SW_RESET to each block's reset input (synchronously in clk_bb), and also OR it with the Aurora wrappers' local reset where appropriate. Keep the **AXI-Lite domain stable** during global reset so software can reliably deassert/verify.

5.2 External (PS/Optical)

Optical Link (Aurora over SFP+)

- **Physical:** SFP+ cages populated with 10GBASE-SR optical modules, connected via OM3 duplex LC fiber (1–3 m).
- **Protocol:** Aurora 64B/66B, single lane at 10.3125 Gb/s.
- Clocks: Refclk ~156.25 MHz from GTY QPLL, recovered at RX.

- **Signals:** All optical serialization/deserialization handled by Aurora IP and GTY transceivers; PL logic only sees AXI-Stream.
- Status/Debug: channel_up, soft_err, hard_err reported to PS via AXI4-Lite; optional Aurora ILA taps for bring-up.

PS Ethernet Interface

- **Purpose:** Used for UDP streaming of constellation snapshots and telemetry (BER/SNR/EVM/AMC state) to host PC.
- **Implementation:** Gigabit Ethernet from Zynq PS GEM MAC, routed to Linux (PetaLinux). C++ program handles UDP framing and sends to host.
- **Connection:** Direct link (Cat6 cable) or via switch; host runs Python + pyqtgraph for visualization.

PS UART / JTAG

- UART: USB-UART cable to PS console for Linux shell access and debug messages.
- **JTAG:** Used for FPGA programming and low-level debug during bring-up.

microSD Card

- **Purpose:** Boot media for PetaLinux image and configuration files.
- **Requirements:** ≥32 GB, UHS-I card recommended for reliability.

Resets and Control

- Hardware resets sourced from PS and exposed on board headers.
- **Software resets** triggered by AXI4-Lite control registers (per-block).
- Aurora link retrain controlled by PS register writes if channel errors are detected.

6. Software

6.1 PS Software (PetaLinux + CLI)

Purpose:

Provide a minimal software control layer running on the Processing System (PS) to configure PL blocks, arm captures, and dump results for host-side analysis. The emphasis is on simplicity and reproducibility.

Environment:

- PetaLinux (board boot image)
- User-space C/C++ programs compiled with GCC toolchain

- Access to PL registers via /dev/mem or UIO drivers
- Optional shell scripts to wrap common test flows

Core Responsibilities:

1. Configuration of AXI4-Lite Registers

- Set PRBS polynomial, scrambler bypass, modulation mode, FEC enable, preamble length, AMC thresholds, etc.
- o Provide **software reset** by writing to the CTRL.reset bit in each block.

2. Test Orchestration

- o Arm PRBS generator, packetizer, Aurora channel.
- o Loopback modes (internal or optical) selectable by register writes.
- o Start/stop a frame run via one command.

3. Capture Control

- Program Constellation Snapshot registers: destination DDR address, capture length, trigger mode.
- o Poll STATUS.done or interrupt flag.
- o Dump buffer to file (cap iq i16.bin) with a small user program.

4. Status / Telemetry

- Read EVM/SNR metrics, BER counters, and AMC state via AXI4-Lite STATUS registers.
- o Print results to console or append to a log file.

CLI Commands (conceptual format)

- sdr init Reset all blocks, apply default configuration.
- sdr prbs --poly 31 --seed 1 Configure PRBS generator.
- sdr mode --mod qpsk --fec on --diff dqpsk Set modem mode.
- sdr preamble --len 64 Configure preamble inserter.
- sdr start/sdr stop Enable or halt frame processing.
- sdr capture --len 16384 --out cap_iq_i16.bin Arm DMA capture, dump file to PS filesystem.
- sdr stats Print BER, SNR/EVM, AMC mode.

Implementation Notes:

- Access method: simplest is /dev/mem mapping to PL base addresses.
- Registers defined in **Appendix (10.1)**. Each block follows common layout (CTRL, STATUS, CFGx, RESULTx).
- File output: use standard Linux file I/O. Dump files to /run/media/mmcblk0p1/ (microSD) for easy transfer.
- Optional: Provide simple shell scripts to bundle sequences (e.g., run qpsk test.sh).

Acceptance Criteria:

• All major PL blocks configurable and resettable via CLI.

- Able to start/stop PRBS traffic and confirm Aurora link stability.
- Successfully capture ≥16k symbols to file and transfer to host PC.
- Correctly read and display BER/SNR/EVM counters from hardware.

6.2 Host Tools (Python + Visualization)

Purpose:

Provide simple, low-risk visualization of constellation data using offline snapshots. No networking is required. This functionality will be used for demonstration purposes as well as for debug.

Workflow Overview:

- 1. On the board, the Constellation Snapshot block captures N complex samples via AXI-DMA into DDR.
- 2. A tiny PS userspace tool dumps the interleaved int16 I/Q buffer to a file (e.g., cap iq i16.bin).
- 3. Copy the file to the host PC (microSD, SCP, or USB/serial).
- 4. Plot locally in Python or MATLAB.

File Format (documented for repeatability):

- Type: little-endian int16, interleaved I, Q, I, Q, ...
- Samples: N complex samples -> 2*N int16 values
- Scaling: Q1.15 fixed-point (full-scale approx ±32767)

Minimum Host Tooling:

- Python 3.x with numpy and matplotlib, or MATLAB R2024b+
- No GUI framework required (no PyQt/PySide); scripts are single-file

Python (constellation plot):

- Save as plot cap.py on the host.
- Usage: python plot cap.py cap iq i16.bin

```
import sys, numpy as np
import matplotlib.pyplot as plt

if len(sys.argv) < 2:
    print("usage: python plot_cap.py cap_iq_i16.bin"); sys.exit(1)

fn = sys.argv[1]

raw = np.fromfile(fn, dtype='<i2')  # little-endian int16</pre>
```

```
if raw.size % 2 != 0:
    raise RuntimeError("file length not even (I/Q pairs expected)")
iq = raw.reshape(-1, 2).astype(np.float32)
I, Q = iq[:, 0], iq[:, 1]

plt.figure()
plt.scatter(I, Q, s=2)
plt.gca().set_aspect('equal', 'box')
plt.title(f'Constellation: {fn}')
plt.xlabel('I'); plt.ylabel('Q'); plt.grid(True)
plt.show()
```

MATLAB (constellation plot):

- Save as plot_cap.m on the host.
- Usage: plot_cap('cap_iq_i16.bin')

```
function plot_cap(fname)
  fid = fopen(fname, 'rb');
  if fid < 0, error('cannot open %s', fname); end
  iq = fread(fid, [2, Inf], 'int16=>double'); fclose(fid);
  plot(iq(1,:), iq(2,:), '.'); axis equal; grid on;
  title(sprintf('Constellation: %s', fname));
  xlabel('I'); ylabel('Q');
end
```

Operational Notes:

- Capture size: 16k complex samples is a good default (fast to move, dense enough to see clusters).
- Transfer method: microSD is simplest; SCP is fastest if the board is on LAN.
- Versioning: include N, scaling (Q1.15), and modulation mode in the filename or a small sidecar .txt to avoid confusion (example: cap qpsk n16384 q115.bin).
- Reproducibility: seed the PRBS and document any RX processing (preamble align, differential decode) active during capture.

7. Materials & Tools

7.1 Hardware

- Alinx AXU5EVB-P (Zyng UltraScale+ MPSoC) board + 12 V PSU (obtained)
- 2× SFP+ 10GBASE-SR optical transceivers (e.g., FS brand)
- OM3 LC–LC duplex fiber patch (1–3 m)(fiber cable)
- microSD card (≥32 GB, UHS-I) for PetaLinux image
- USB-UART cable (board console)
- Ethernet (Cat6) cable for PS networking/UDP
- Cooling fan (over GTY area)

7.2 Software

FPGA / SoC tools

- o AMD/Xilinx Vivado 2023.2
- o AMD/Xilinx Vitis 2023.2
- o PetaLinux SDK (matching version; build on Ubuntu 20.04/22.04)

Embedded (board side)

- o PetaLinux image for AXU5EVB-P (PS Ethernet, UART enabled)
- o GCC/G++ toolchain in PetaLinux (for C++ UDP sender)
- o iperf/ethtool/net-tools (bring-up/debug)

Host PC (Windows) — Visualization & Debug

- o Python 3.11+
 - pyqtgraph, numpy, PySide6 (or PyQt6), struct/socket (std lib)
- o VS Code
- Wireshark (UDP sanity checks)

Analysis / Modeling

- MATLAB R2024b + Communications Toolbox (BER vs SNR, FEC golden vectors)
- o poly2trellis, convenc, vitdec, RRC tap design

■ IP cores (used in design)

Free AMD IP: Aurora 64B/66B, FIR Compiler (RRC Tx/Rx), DDS Compiler (NCO), Viterbi Decoder (LogiCORE IP), CORDIC/Rotator, AXI DMA, AXI Interconnect, Clocking Wizard, AXI-Stream FIFO, ILA/VIO

7. Schedule & Development Plan

Week	Focus Area	Milestones / Deliverables
W1	Bring-Up & PRBS	Repo + TCL automation finalized. Clocks/resets stable. PRBS generator verified vs golden vectors. Aurora IP example synthesized, loopback channel_up=1.
W2	Aurora Link Bring-Up	Aurora TX/RX wrappers integrated with async FIFOs. Optical loopback working at 10.3125 Gb/s. ILA confirms packet framing.
W3	Scrambler / Descrambler	RTL complete + testbenches. Loopback test PRBS → Scrambler → Descrambler matches bit-exact.
W4	Mapper + Differential Encoder	BPSK/QPSK mapping validated. DBPSK/DQPSK encoding verified vs MATLAB/NumPy golden. TX chain runs through Aurora with stable constellations.
W5	Preamble Inserter + Correlator	TX preamble insertion. RX sliding correlator detects peak reliably at correct offset. Symbol strobe gates payload correctly.
W6	FEC Integration	Convolutional encoder + Viterbi IP wrapper integrated. Golden vectors confirmed. BER counters measure injected error rates correctly.
W7	Metrics + AMC FSM	SNR/EVM estimator validated vs MATLAB. AMC FSM thresholds/hysteresis exercised in sim and hardware. Stable mode transitions proven.
W8	Constellation Capture & Demo Prep	Snapshot + AXI-DMA → DDR path validated. PS userspace dump tool produces cap_iq_i16.bin. Host plots constellations offline. End-to-end optical demo runs with BER/EVM sweeps logged. Demo scripts + report finalized.

8. Risks & Mitigation

Risk	Mitigation
INION	Pilitgation

Aurora bring-up fails or is unstable	Start with Aurora internal loopback example; verify clocks/GTY settings early; use ILAs to monitor channel_up and AXIS traffic.
Clocking / CDC issues	Insert async FIFOs at domain boundaries; review with RTL simulation under random stalls; check timing closure reports.
AXI-Stream protocol bugs (back- pressure, TLAST alignment)	Self-checking RTL testbenches with random stall injection; add assertions; observe tvalid/tready/tlast with ILAs in hardware.
FEC integration errors	Use MATLAB golden vectors for convolutional encode/decode; verify with RTL simulation before hardware; confirm BER gain in loopback tests.
Metrics (BER/EVM/SNR) inaccurate	Cross-check against MATLAB/Python post-processing; validate with injected impairments in simulation; compare hardware results to software references.
AMC FSM unstable (flapping or wrong transitions)	Add hysteresis and dwell timers; verify FSM transitions with RTL simulation sweeps; log state transitions via ILAs and PS reads.
Resource / timing closure problems	Target moderate baseband clock (125 MHz); pipeline long datapaths; check incremental synthesis results early.
Schedule risk / integration delays	Keep internal loopback path as fallback for end-to-end validation; prioritize risky blocks (Aurora, DMA) early.

9. References

- Alinx Technology. (2023). AXU5EVB-P User Manual and Schematics. Retrieved from https://www.en.alinx.com/Product/SoC-Development-Boards/Zynq-UltraScale-plus-MPSoC/AXU5EVB-P.html
- AMD/Xilinx. (2023). Aurora 64B/66B LogiCORE IP Product Guide (PG074). San Jose, CA: Advanced Micro Devices, Inc.
- AMD/Xilinx. (2023). Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085). San Jose, CA: Advanced Micro Devices, Inc.
- AMD/Xilinx. (2023). FIR Compiler LogiCORE IP Product Guide (PG149). San Jose, CA: Advanced Micro Devices, Inc.
- AMD/Xilinx. (2023). Viterbi Decoder LogiCORE IP Product Guide (PG109). San Jose, CA: Advanced Micro Devices, Inc.
- AMD/Xilinx. (2023). Clocking Wizard LogiCORE IP Product Guide (PG065). San Jose, CA: Advanced Micro Devices, Inc.
- MathWorks. (2024). Communications Toolbox Documentation (poly2trellis, convenc, vitdec, rcosdesign, awgn). Retrieved from https://www.mathworks.com/help/comm
- Proakis, J. G. (2008). Digital Communications (5th ed.). New York, NY: McGraw-Hill.
- Sklar, B. (2001). Digital Communications: Fundamentals and Applications (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

- Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260–269. https://doi.org/10.1109/TIT.1967.1054010
- PetaLinux Tools Documentation (https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/embedded-software/petalinux-sdk.html)
- Alinx AXU5EV-P Github: https://github.com/awozjhu/AXU4EV-P_AXU5EV-P/tree/master
- Python docs: socket (UDP), PySide/PyQt; pyqtgraph documentation (real-time plotting). (https://docs.python.org/3/)

10. Appendix

10.1 Draft AXI4-Lite Register Map

10.1.1 Common layout (per block, offsets from that block's BASE)

Offset	Name	R/W	Description	
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET (self-clears), [6:4] MODE, [7] START, [15] CLEAR (counters) — bits unused by a given block are ignored	
0x04	STATUS	R/W1C	[0] RUNNING, [1] ALIGNED/LOCKED (if applicable), [2] OVERFLOW, [3] UNDERFLOW, [4] ERROR, [8] DONE (for one-shot ops)	
80x0	CFG0	R/W	Block-specific configuration (e.g., lengths, thresholds)	
0x0C	CFG1	R/W	Block-specific configuration	
0x10	CFG2	R/W	Block-specific configuration	
0x14	CFG3	R/W	Block-specific configuration	
0x18	RESULT0	RO	Latched result (e.g., counters/metrics)	
0x1C	RESULT1	RO	Latched result	
0x20	RESULT2	RO	Latched result	
0x24	RESULT3	RO	Latched result	

Notes:

10.1.2 Base addresses

Block	BASE
Global Reset / GPIO	0xA001_6000
PRBS Generator	0xA000_0000
Scrambler / Descrambler	0xA000_1000 / 0xA000_7000
FEC Encoder	0xA000_2000

^{*} SW_RESET asserts the block's internal reset for ≥1 clk_bb cycle, then auto-clears. Works even if ENABLE=0.

^{*} START is used by one-shot engines (e.g., capture) and can share the CTRL word with ENABLE.

^{*} CLEAR zeroes counters/accumulators synchronously at the next safe boundary (e.g., frame end).

Mapper (TX)	0xA000_3000
Differential Encoder (TX)	0xA000_4000
RRC Filter TX / RX	0xA000_5000 / 0xA000_9000
Preamble Inserter (TX)	0xA000_6000
Packetizer / Depacketizer	000A_000_8000 / 00A000_A000
Aurora TX / RX (status wrap)	0xA000_B000 / 0xA000_C000
Preamble Correlator (RX)	0xA000_D000
Differential Decoder (RX)	0xA000_E000
Slicer	0xA000_F000
Impairment Injector	0xA001_0000
Viterbi (IP wrapper)	0xA001_1000
BER Counters	0xA001_2000
SNR/EVM Estimator	0xA001_3000
AMC FSM	0xA001_4000
Constellation Snapshot	0xA001_5000

10.1.3 Block-specific fields

Note: Register Access Abbreviations (R/W column):

R = Read-only **W** = Write-only

R/W = Read/Write

RO = Read-only (same as R, but used for emphasis on results/counters)

R/W1C = Readable, Write-1-to-Clear (writing 1 clears that bit, writing 0 has no effect)

Global Reset / GPIO (BASE:

0xA001_6000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] GLOBAL_SW_RESET (one-shot, self-clears)
0x04	GPIO_OUT	R/W	32 user outputs (LEDs, test selects, optional Aurora retrain line)
0x08	GPIO_IN	RO	32 user inputs
0x0C	STATUS	RO	Optional sticky flags (impl-defined)

PRBS Generator (BASE: 0xA000_0000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [2] SW_RESET, [6:4] MODE
0,00	CINE	11/7/	(0=PRBS7,1=15,2=23,3=31), [15] CLEAR
0x04	STATUS	R/W1C	[0] RUNNING, [2] OVER/UNDERFLOW (diag), [8] DONE
0.04	SIAIUS	K/WIC	(frame)
80x0	SEED (CFG0)	R/W	31:0 seed (0 coerced to 1)
0x0C	FRAME_LEN_BYTES (CFG1)	R/W	TLAST interval (byte-packed mode)
0x18	BYTE_COUNT (RESULT0)	RO	Accepted bytes
0x1C	BIT_COUNT (RESULT1)	RO	Accepted bits

Scrambler (BASE: 0xA000_1000) / Descrambler (BASE: 0xA000_7000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [6:4] MODE (poly select)
0x04	STATUS	R/W1C	[0] RUNNING, [2] OVERFLOW (should be 0)
80x0	SEED (CFG0)	R/W	Non-zero seed
0x0C	CFG1	R/W	Impl-specific (e.g., bit order)

FEC Encoder (BASE: 0xA000_2000)

1 = 0 = 1110 = 1111				
Offset	Name	R/W	Description	
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [6:4] MODE (future puncture)	
0x04	STATUS	R/W1C	[0] RUNNING	
0x18	OUT_BITS (RESULT0)	RO	Encoded bits sent	
0x1C	IN_BITS (RESULT1)	RO	Input bits consumed	

Mapper (TX) (BASE: 0xA000_3000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [6:4] MODE (0=BPSK,1=QPSK), [8] AMC_OVERRIDE
0x04	STATUS	R/W1C	[0] RUNNING, [2] OVERFLOW (should be 0)

Differential Encoder (TX) (BASE: 0xA000_4000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [2] SW_RESET (prev ← (1,0)), [6:4] MODE (0=DBPSK,1=DQPSK)
0x04	STATUS	R/W1C	[0] RUNNING

RRC Filter TX (BASE: 0xA000_5000) / RX (BASE: 0xA000_9000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET
0x04	STATUS	R/W1C	[2] OVERFLOW, [8] DONE (coeff reload)
80x0	CFG0	R/W	Coeff set ID / scale
0x0C	CFG1	R/W	OSR/decimation (RX)
0x10	CFG2	R/W	Reserved
0x14	CFG3	R/W	Reserved

Preamble Inserter (TX) (BASE: 0xA000_6000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [7] START (arm next frame)

0x04	STATUS	R/W1C	[8] DONE (insert finished)
0x08	PREAMBLE_LEN (CFG0)	R/W	Symbols (32–64)
0x0C	GUARD_LEN (CFG1)	R/W	Symbols
0x10	FLAGS (CFG2)	R/W	Bit0: mark tuser on preamble

Packetizer (BASE: 0xA000_8000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [8] CRC_EN
0x04	STATUS	R/W1C	[0] RUNNING, [4] ERROR
80x0	SYNC_WORD (CFG0)	R/W	16-bit sync (placed in header)
0x0C	MODE_DEFAULT (CFG1)	R/W	Mode field default
0x10	SEQ_BASE (CFG2)	R/W	Start sequence
0x14	HEADER_FMT (CFG3)	R/W	Field widths/flags

Aurora TX / RX Status Wrappers (BASE: 0xA000_B000 / 0xA000_C000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [8] RETRAIN (pulse Aurora reset)
0x04	STATUS	R/W1C	[0] CHANNEL_UP, [1] SOFT_ERR, [2] HARD_ERR
0x18	SOFT_ERR_CNT (RESULT0)	RO	Soft errors
0x1C	HARD_ERR_CNT (RESULT1)	RO	Hard errors

Depacketizer (BASE: 0xA000_A000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [8] CRC_EN, [9] DROP_ON_ERR
0x04	STATUS	R/W1C	[4] ERROR, [8] DONE (packet)
80x0	EXPECTED_SYNC (CFG0)	R/W	16-bit
0x0C	EXPECTED_MODE (CFG1)	R/W	Mode mask/expectation

Preamble Correlator (RX) (BASE: 0xA000_D000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [2] SW_RESET, [7] START (arm detect)
0x04	STATUS	R/W1C	[0] PEAK_FOUND, [1] STROBE_ACTIVE
80x0	PREAMBLE_LEN (CFG0)	R/W	Symbols (32–64)
0x0C	THRESHOLD (CFG1)	R/W	Compare value
0x10	WIN_LEN (CFG2)	R/W	Search window
0x18	PEAK_IDX (RESULT0)	RO	Peak index
0x1C	PEAK_MAG2 (RESULT1)	RO	Peak magnitude^2

Differential Decoder (RX) (BASE: 0xA000_E000)

Offset Name R/W	Description
-----------------	-------------

0x00	CTRL	R/W	[0] ENABLE, [2] SW_RESET (prev ← (1,0)), [6:4] MODE (0=DBPSK,1=DQPSK)
0x04	STATUS	R/W1C	[0] RUNNING, [4] ERROR (invalid phase bin, diag)

Slicer (BASE: 0xA000_F000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [6:4] MODE (0=BPSK,1=QPSK)
0x04	STATUS	R/W1C	[0] RUNNING
0x18	BIT_PACKED_COUNT (RESULT0)	RO	Output bytes produced

Impairment Injector (BASE: 0xA001_0000)

Offset	Name R/W		Description	
0x00	0x00 CTRL		[0] ENABLE, [2] SW_RESET, [6:4] MODE	
0,00	STILL	R/W	(0=OFF,1=RANDOM,2=INTERVAL,3=BURST)	
0x04	STATUS	R/W1C	[0] RUNNING	
0x08	ERR_PROB_ppm (CFG0)	R/W	0-1e6 ppm	
0x0C	INTERVAL_N (CFG1)	R/W	Flip every N bits	
0x10	BURST_LEN (CFG2)	R/W	Contiguous flips	
0x14	SEED (CFG3)	R/W	RNG seed	
0x18	APPLIED_COUNT (RESULT0)	RO	Total flips applied	

Viterbi (IP Wrapper) (BASE:

0xA001_1000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [1] BYPASS, [2] SW_RESET, [6:4] TRACEBACK_SEL
0x04	STATUS	R/W1C	[0] RUNNING, [2] OVERFLOW (should be 0)

BER Counters (BASE: 0xA001_2000)

Offset	t Name R/W		Description
0x00	CTRL	R/W	[0] ENABLE, [2] SW_RESET, [6:4] MODE (0=PRBS-ref,1=CRC-
0,00	GINE	11/ //	gated), [15] CLEAR
0x04	STATUS	R/W1C	[0] ALIGNED
80x0	PRBS_POLY (CFG0)	R/W	Match TX
0x0C	WINDOW_LEN_BITS (CFG1)	R/W	Measurement window
0x18	BIT_COUNT (RESULT0)	RO	Bits compared
0x1C	ERR_COUNT (RESULT1)	RO	Errors counted
0x20	BER_Q16_16 (RESULT2)	RO	Fixed-point BER

SNR / EVM Estimator (BASE: 0xA001_3000)

Offset	Name R/W Description		Description
0x00	CTRL	R/W	[0] ENABLE, [2] SW_RESET, [6:4] MODE (0=BPSK,1=QPSK), [15] CLEAR
0x04	STATUS	R/W1C	[0] VALID (latched), [1] OVERFLOW
80x0	WIN_LEN_SYMS (CFG0)	R/W	Symbols per frame/window
0x18	EVM_Q16_16 (RESULT0)	RO	EVM% fixed-point
0x1C	SNR_Q8_8 (RESULT1)	RO	SNR dB fixed-point
0x20	SYM_COUNT (RESULT2)	RO	Symbols accumulated

AMC FSM (BASE: 0xA001_4000)

Offset	Name	R/W	Description
0x00	CTRL	R/W	[0] ENABLE, [2] SW_RESET, [8] OVERRIDE_EN, [6:4] OVERRIDE_MODE
0x04	STATUS	R/W1C	CURRENT_MODE (bits[2:0])
80x0	THRESH_UP (CFG0)	R/W	SNR/EVM up thresholds
0x0C	THRESH_DOWN (CFG1)	R/W	Down thresholds
0x10	DWELL_FRAMES (CFG2)	R/W	Min frames per state
0x18	TIME_IN_STATE (RESULT0)	RO	Frames spent in current
0x1C	SWITCH_COUNT (RESULT1)	RO	Total transitions

Constellation Snapshot (BASE: 0xA001_5000)

Offset	Name	R/W	W Description		
0x00	CTRL	R/W	[0] ENABLE/ARM, [2] SW_RESET, [7] START (one-shot), [15] CLEAR		
0x04	STATUS	R/W1C	[0] BUSY, [1] DONE, [2] DROPPED		
0x08	DST_ADDR_L (CFG0)	R/W	DDR phys addr (low)		
0x0C	DST_ADDR_H (CFG1)	R/W	DDR phys addr (high)		
0x10	CAP_LEN_SYMS (CFG2)	R/W	Complex samples to capture		
0x14	DECIM (CFG3)	R/W	Decimation factor		
0x18	FRAMES_CAPT (RESULT0)	RO	Successful captures		

10.2 Proposed Packet Format

Overview:

Each packet encapsulates one SDR frame (preamble + payload). The header provides synchronization, mode, and length; an optional CRC protects integrity. The payload is complex baseband symbols ($\{I[15:0], Q[15:0]\}, Q1.15$).

Field	Bits	Description
Sync Word	16	Fixed pattern (default 0xA5A5) for header alignment

Header Length	8	Length of header in bytes (excluding sync + CRC)
Mode	4	Modulation/FEC mode: 0=BPSK+FEC, 1=QPSK+FEC, 2=QPSK uncoded
Flags	4	[0]=CRC_EN, [1]=Preamble present, [2]=Reserved, [3]=Reserved
Sequence Number	16	Incrementing per frame; wraps at 2^16
Payload Length	16	Number of {I,Q} symbols in payload (excluding preamble)
Reserved	16	Reserved for future use (e.g., pilot index)
CRC-16-CCITT (optional)	16	Covers header + payload when CRC_EN=1

Packet Format:

[Header (96 b)] | [Preamble (M × 32 b, fixed ROM seq)] | [Payload (N × 32 b)] | [CRC (16 b, only if CRC_EN=1)]

Header (96 bits)	Preamble (Mx32 bits)	Payload (Nx32 bits)	CRC (16 bits)
------------------	----------------------	---------------------	---------------

Header: (96 bits)

Field	Sync	Hlen	Mode/Flags	Seq	PayloadLen	Reserved
Bits	16	8	8	16	16	32

Payload Format: (32 × N bits)

Pair#	0		1		•••	N	
32-Bit IQ Pair	10	Q0	l1	Q1	•••	IN	QN
Bits	16	16	16	16	•••	16	16

Total header size: 12 bytes (96 bits). If CRC is enabled, 2 additional bytes (16 bits) are appended at the packet end.

Payload Section:

• **Preamble:** Fixed sequence of 32–64 complex symbols, inserted at the start of every frame by the Preamble Inserter. Each symbol is {I[15:0], Q[15:0]} in Q1.15.

 Data symbols: Variable length, as specified in the header. Each symbol is {I[15:0], Q[15:0]} in Q1.15.

Trailer Section:

• **CRC (optional):** 16-bit CRC-16-CCITT appended at the end of the payload when CRC EN=1.

Alignment:

- Entire packet is transmitted over AXI-Stream with tvalid/tready.
- tlast asserted at end of CRC (if CRC enabled) or at end of payload (if CRC disabled).
- Packet order is always: Header → Preamble → Data → (CRC if enabled).

10.3 Fixed-Point Scaling Notes

Fixed-Point Format Primer:

Throughout this design, numeric signals are expressed in **Q-format notation**. A label such as **Qm.n** means the number has **m integer bits** (not including the sign) and **n fractional bits**.

- $\mathbf{Q1.15} = \mathbf{signed} \ 16$ -bit number, 1 integer bit + 15 fractional bits.
 - Range ≈ -1.0 to +0.99997
 - Resolution $\approx 3 \times 10^{-5}$
 - Example: $0.75 \times 2^{15} = 24,576 \rightarrow \text{stored as } 0 \times 6000$
- $\mathbf{Q2.30} = \text{signed } 32\text{-bit number}$, 2 integer bits + 30 fractional bits.
 - Range ≈ -4.0 to +3.99999
 - Resolution $\approx 9 \times 10^{-10}$
 - Example: $0.75 \times 2^{30} \approx 805,306,368 \rightarrow \text{stored as } 0 \times 30000000$

This convention makes scaling explicit and allows deterministic hardware/software comparison.

Constellation Symbols:

- {I,Q} represented in **Q1.15** signed fixed-point (16-bit).
- Symbol amplitudes ± 1.0 map to ± 32767 .

PRBS / Scrambler / Descrambler:

• Operate on raw bits (AXI-Stream bytes). No fixed-point math.

Mapper:

- BPSK: {+32767, -32767} on I, Q=0.
- QPSK: $\{\pm 23170, \pm 23170\}$ (scaled $\sqrt{\frac{1}{2}}$ so unit power).

Differential Encoder/Decoder:

- Complex multiply in Q1.15.
- Saturating arithmetic with rounding.
- Reset state initialized to (32767, 0).

RRC Filters (TX/RX):

- FIR Compiler IP with 16-bit inputs/outputs.
- Coefficients pre-scaled to keep peak magnitude < 1.0.
- Internal accumulation width \ge 32 bits; output truncated/rounded to Q1.15.

Preamble Inserter / Correlator:

- Preamble stored in Q1.15 ROM.
- Correlator accumulators \ge 32 bits to avoid overflow on 64-symbol windows.

SNR/EVM Estimator:

- Error power accumulation in Q2.30 or wider.
- Ratios reported in fixed-point: EVM as Q16.16 (%), SNR as Q8.8 (dB).

BER Counters:

- 32-bit bit count and err count.
- Optional Q16.16 BER register for host convenience.

10.4 Simulation Verification Plan

Unit-Level Tests:

- **PRBS Generator:** Match against MATLAB/NumPy golden sequences (PRBS7/15/23/31). Verify TLAST intervals.
- Scrambler/Descrambler: Round-trip = original PRBS. Toggle bypass mid-frame.
- Mapper + Slicer: PRBS→Mapper→Slicer recovers original bits in noiseless sim. Check BPSK/QPSK Gray mapping.
- Differential Encoder/Decoder: Golden compare vs MATLAB DBPSK/DQPSK. Histograms show allowed $\Delta \phi$ only.
- **FEC Encoder/Decoder:** Encode PRBS → inject random errors → decode; match MATLAB vitdec results.
- **Preamble Inserter/Correlator:** Correlator peak aligns to known offset; single detection per frame.
- **RRC Filters:** Impulse/frequency response matches MATLAB within quantization error.

System-Level Tests (Sim):

- End-to-End Loopback (No Errors): PRBS → full TX chain → RX chain → recovered PRBS. Expect 0 mismatches.
- **Impairment Injection:** Inject controlled BER; verify counters measure expected BER within binomial tolerance.
- CRC / Packetizer/Depacketizer: Bad header/CRC injected → depacketizer flags error, respects drop/forward policy.
- **Back-Pressure:** Randomize tready in testbench; confirm no symbol duplication/loss; TLAST alignment preserved.
- **Metrics:** AWGN channel model at known Es/N0; measured SNR/EVM within ±0.5 dB vs MATLAB reference.
- **AMC FSM:** Sweep SNR across thresholds; confirm hysteresis and dwell timers behave as configured; FSM transitions logged once per event.

10.5 Petalinux Build & Setup Notes

TBD (TODO)

10.6 Acronyms

Acronym	Meaning
AMC	Adaptive Modulation and Coding
API	Application Programming Interface
AXI	Advanced eXtensible Interface
AXIS	AXI-Stream (AXI streaming protocol)
BER	Bit Error Rate
BPSK	Binary Phase-Shift Keying
CDC	Clock Domain Crossing
CLI	Command-Line Interface
CRC	Cyclic Redundancy Check
DDR	Double Data Rate (memory)
DMA	Direct Memory Access
DQPSK	Differential Quadrature Phase-Shift Keying
EVM	Error Vector Magnitude
FEC	Forward Error Correction
FIR	Finite Impulse Response
FSM	Finite State Machine
GTY	GigaTransceiver (high-speed serial transceiver in UltraScale+)
ILA	Integrated Logic Analyzer
IP	Intellectual Property (core)
LUT	Lookup Table

LFSR	Linear Feedback Shift Register
MPSoC	Multiprocessor System-on-Chip
PL	Programmable Logic
PS	Processing System
PRBS	Pseudo-Random Binary Sequence
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase-Shift Keying
ROM	Read-Only Memory
RRC	Root Raised Cosine (filter)
RTL	Register-Transfer Level
SCP	Secure Copy Protocol
SDR	Software-Defined Radio
SFP+	Small Form-Factor Pluggable, 10 Gb/s
SNR	Signal-to-Noise Ratio
SW_RESET	Software Reset
TBD	To Be Determined
TLAST	AXI-Stream signal marking end of frame
UART	Universal Asynchronous Receiver-Transmitter
UDP	User Datagram Protocol
UIO	Userspace I/O (Linux device access)
VHDL	VHSIC Hardware Description Language
VIO	Virtual Input/Output (debug IP)