Problem przeuczenia

Systemy uczące się - laboratorium

Mateusz Lango

Zakład Inteligentnych Systemów Wspomagania Decyzji Wydział Informatyki i Telekomunikacji Politechnika Poznańska

"Akademia Innowacyjnych Zastosowań Technologii Cyfrowych (Al Tech)", projekt finansowany ze środków Programu Operacyjnego Polska Cyfrowa POPC.03.02.00-00-0001/20

Rzeczpospolita Polska

Unia Europejska

Europejski Fundusz Rozwoju Regionalnego

Na ostatnich zajęciach: zasada MLE

Estymacja maksymalnej wiarygodności

$$\max \sum_{i=1}^n \ln P(\vec{x_i}, y_i)$$

Dwa rodzaje modeli statystycznego uczenia maszynowego:

- modele dyskryminacyjne P(y|x)
- modele generatywne P(x, y)

Cechy wielomianowe

Problem

Mając do dyspozycji regresję liniową obserwujemy, że linia prosta nie jest wystarczająca do zamodelowania wiedzy w danych. Co możemy zrobić? Podpowiedź: regresja liniowa jest liniowa w wagach (a nie cechach!)

Cechy wielomianowe

Regresja wielomianowa

Regresja ma postać:

$$h(x) = b + w_1x_1 + w_2x_2$$

ale poprzez sposób konstrukcji zbioru danych uzyskujemy:

$$h(x) = b + w_1 x_1 + w_2 x_1^2$$

Theorem (Stone'a-Weierstrassa)

Każdą funkcję ciągłą o wartościach rzeczywistych na przedziale domkniętym można przybliżyć jednostajnie z dowolną dokładnością wielomianami.

Problem dopasowania: czy więcej znaczy lepiej?

Ponieważ im więcej cech wielomianowych dodamy, tym lepiej możemy przybliżyć funkcję f(x) to wydaje się, że powinniśmy dodawać jak najwięcej cech, aby uzyskać jak najlepszy model.

Problem dopasowania: czy więcej znaczy lepiej? - cechy liniowe

Problem dopasowania: czy więcej znaczy lepiej? - cechy wielomianowe rzędu 10

Problem dopasowania: czy więcej znaczy lepiej? - cechy wielomianowe rzędu 20

Obrana strategia zdaje się działać...

Problem dopasowania: czy więcej znaczy lepiej?

Jednak problem uczenia jest w rzeczywistości trudniejszy: w próbce obecny jest szum.

$$f(x) + \epsilon$$

Problem dopasowania: czy więcej znaczy lepiej? cechy liniowe

Problem dopasowania: czy więcej znaczy lepiej? cechy wielomianowe rzędu 10

Błąd uczący zdecydowanie się poprawił względem modelu liniowego, jednak...

4 D > 4 B > 4 B > B = 990

Problem dopasowania: czy więcej znaczy lepiej? Porównane na wielu zbiorach

Dwa czynniki błędu

- błąd wynikający z ograniczeń klasy hipotez
 - jaki błąd popełnia hipoteza wybrana na podstawie wszystkich możliwych zbiorów uczących?
- błąd wynikający z trudności wybrania najlepszej hipotezy
 - jak bardzo model się zmieni przy zmianie danych uczących?
 - inaczej: jak bardzo model zamodelował charakterystykę próbki uczącej

Dekompozycja obciążenie-wariancja

Theorem (Dekompozycja obciążenie-wariancja)

$$\mathbb{E}[(\hat{f}(X) - f(X))^2] = \mathbb{D}^2[\hat{f}(X)] + [Bias(\hat{f}(X))]^2 + \mathbb{D}^2[\epsilon]$$

Dekompozycja obciążenie-wariancja

Dekompozycja obciążenie-wariancja

KNN: K=1 KNN: K=100

Diagnostyka modelu

Potrójny przetarg

W uczeniu maszynowym dochodzi do tzw. potrójnego przetargu:

- złożoność (ang. capacity) klasy hipotez
- wielkość zbioru uczącego
- błąd na nowych danych (uogólnianie)

Rozważmy jednowymiarowy zbiór danych przedstawiony na ilustracji. Zgodnie z modelem regresji logistycznej

$$h(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

gdzie w=1 i b=0. Czy to byłby ostateczny wynik uczenia zgodny z MLE?

Rozważmy jednowymiarowy zbiór danych przedstawiony na ilustracji. Zgodnie z modelem regresji logistycznej

$$h(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

gdzie w = 1.5 i b = 0. Czy to byłby ostateczny wynik uczenia zgodny z MLE?

Rozważmy jednowymiarowy zbiór danych przedstawiony na ilustracji. Zgodnie z modelem regresji logistycznej

$$h(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

gdzie w = 2.5 i b = 0. Czy to byłby ostateczny wynik uczenia zgodny z MLE?

Rozważmy jednowymiarowy zbiór danych przedstawiony na ilustracji. Zgodnie z modelem regresji logistycznej

$$h(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

gdzie w=10 i b=0. Czy to byłby ostateczny wynik uczenia zgodny z MLE?

Rozważmy jednowymiarowy zbiór danych przedstawiony na ilustracji. Zgodnie z modelem regresji logistycznej

$$h(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

gdzie $w \to \infty$ i b = 0. Czy to byłby ostateczny wynik uczenia zgodny z MLE?

Przykład regresji liniowej z cechami wielomianowymi

Regresja z cechami wielomianowymi 4-stopnia

$$w = [-1.1, 5, 0.95, 0.81]$$

Regresja z cechami wielomianowymi 20-stopnia w = [61.30, -23.29, 22.69, -26.33, 2.03, ...]

Pomysł: ograniczenie przestrzeni hipotez

Możemy do problemu najmniejszych kwadratów dodać dodatkowe ograniczenie:

$$\min_{w} \sum_{i=1}^{n} (h(x) - y)^2$$

Przy ograniczeniach:

$$\sum_{i=1}^d w_i^2 \le B$$

gdzie B to parametr metody - "budżet" na wartości wag.

Regresja grzbietowa

Po przekształceniach uzyskujemy:

$$\min_{w} \sum_{i=1}^{n} (h(x) - y)^{2} + \lambda \sum_{i=1}^{d} w_{i}^{2}$$

gdzie $\lambda \propto \frac{1}{B}$ jest parametrem metody.

Regresja LASSO

$$\min_{w} \sum_{i=1}^{n} (h(x) - y)^{2}$$
$$\sum_{i=1}^{d} |w_{i}| \leq B$$

Po przekształceniach:

$$\min_{w} \sum_{i=1}^{n} (h(x) - y)^{2} + \lambda \sum_{i=1}^{d} |w_{i}|$$

gdzie $\lambda \propto \frac{1}{B}$ jest parametrem metody.

Regresja LASSO - zaskakująca właściwość

Regresja grzbietowa

Regresja LASSO

ERM w praktyce

Zwykle modele uczące się zgodnie z ERM zawierają w funkcji celu dodatkowy term regularyzujący:

$$\underset{h}{\operatorname{arg \, min}} L(h(x), y) + \lambda \cdot Complexity(h)$$

gdzie L() to błąd na danych uczących a Complexity() to np.

- regularyzator L2 (regresja grzbietowa) $\sum_{i=1}^{d} w_i^2$
- regularyzator L1 (regresja LASSO) $\sum_{i=1}^{d} |w_i|$
- rozmiar drzewa decyzyjnego (pruning)
- "gibkość" rozkładu prawdopodobieństwa kontrolowana poprzez rozmywanie estymat¹
- ..

¹Schematy rozmywania estymat można często zapisać jako MAP

Dziękuję za uwagę!

Rzeczpospolita Polska Unia Europejska

Europejski Fundusz
Rozwoju Regionalnego

