Sheet 4

Solutions to be handed in before class on Friday (!) May 3

Problem 19 (Jordan–Chevalley decomposition). Let k be an algebraically closed field, and V a finite-dimensional vector space over it. We call an element $\varphi \in \operatorname{End}_k(V)$ semisimple if the roots of its minimal polynomial are all distinct, or equivalently if φ is diagonalisable.

- 1. If φ and ψ are commuting semisimple endomorphisms, then so are $\varphi + \psi$ and $\varphi \psi$. (1 point)
- 2. For $\varphi \in \operatorname{End}_k(V)$ there exists (unique!) φ_s and φ_n such that $\varphi = \varphi_s + \varphi_n$, with φ_s semisimple, φ_n nilpotent and φ_s and φ_n commute. (3 points)

Hint Decompose V into eigenspaces V_i on which φ has characteristic polynomial $(t-a_i)^{m_i}$. We wish to construct a polynomial f(t) which you will evaluate on φ , such that this polynomial satisfies the congruences

$$f(t) \equiv a_i \bmod (t - a_i)^{m_i}$$

$$f(t) \equiv 0 \bmod t.$$
(32)

Which properties does $f(\varphi)$ have, and how to continue from here?

Problem 20. Let D be a (not necessarily inner) derivation of a Lie algebra \mathfrak{g} . Construct a semidirect product $\mathfrak{g} \rtimes_f k$ (where k is the one-dimensional Lie algebra), such that D is the restriction to \mathfrak{g} of an inner derivation on the semidirect product. (2 points)

Problem 21. Let \mathfrak{g} be a Lie algebra. Let U, V, W be \mathfrak{g} -modules.

1. Give an isomorphism of \mathfrak{g} -modules

$$\operatorname{Hom}_k(U \otimes_k V, W) \xrightarrow{\sim} \operatorname{Hom}_k(U, \operatorname{Hom}_k(V, W)).$$
 (33)

(2 points)

2. Show that taking \mathfrak{g} -invariants gives an isomorphism of vector spaces

$$\operatorname{Hom}_{\mathfrak{q}}(U \otimes_k V, W) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{q}}(U, \operatorname{Hom}_k(V, W)).$$
 (34)

(2 points)

Problem 22. A *Borel subalgebra* of a Lie algebra is a maximal solvable Lie subalgebra. Consider $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$.

1. Show that the set ${\mathfrak b}$ of upper triangular matrices forms a Borel subalgebra.

(2 points)

- 2. Show that given any other Borel subalgebra \mathfrak{b}' of \mathfrak{g} there exists an element $g \in \mathrm{SL}_2(\mathbb{C})$ such that $g\mathfrak{b}'g^{-1} = \mathfrak{b}$. (2 points)
- 3. Let $\mathfrak b$ now denote any Borel subalgebra of $\mathfrak g$. Consider the natural representation of $\mathfrak b$ on $\mathbb C^2$. Show that there exists a unique one-dimensional subrepresentation $U_{\mathfrak b}$ of $\mathbb C^2$, such that the assignment $\mathfrak b\mapsto U_{\mathfrak b}$ defines a bijection

{Borel subalgebras of
$$\mathfrak{g}$$
} $\leftrightarrow \mathbb{P}^1(\mathbb{C})$. (35)

(2 points)