期末考试题目:

● 使用状态方程(vdw, RK或PR)计算丙烷在 60C 时的饱和压强 Psat?

● 丙烷(C3)和正丁烷(nC4)混合物在20C时,液相中丙烷摩尔分数 x_1 =0.49, 求混合物的压力P=? 和气相中丙烷摩尔分数 y_1 =?

可参考EOS

- Van der Waals (1873)

•
$$P = \frac{RT}{v-b} - \frac{a}{v^2}$$
,
,where $a = \frac{27(RT_c)^2}{64P_c}$, $b = \frac{RT_c}{8P_c}$

- Redlich- Kwong (RK, 1949)

•
$$P = \frac{RT}{v-b} - \frac{a}{\sqrt{T}v(v+b)}$$
,

where $a = \frac{0.42748R^2T_c^{2.5}}{P_c}$, $b = \frac{0.08664RT_c}{P_c}$

Soave-Redlich-Kwong (SRK, 1972)

•
$$P = \frac{RT}{v-b} - \frac{a\alpha}{v(v+b)}$$
,
,where $\alpha = (1 + (0.48508 + 1.55171\omega - 0.15613\omega^2)(1 - \sqrt{T/T_c}))^2$

- Peng-Robinson(RR, 1976)

•
$$P = \frac{RT}{v-b} - \frac{a\alpha}{v(v+b)+b(v-b)}$$
,
,where $\alpha = (1 + \kappa(1 - \sqrt{T/T_c}))^2$, $\kappa = 0.37464 + 1.54226\omega - 0.26992\omega^2$

可参考数据: (1/2)

► A.1 CRITICAL CONSTANTS, ACENTRIC FACTORS, AND ANTOINE COEFFICIENTS:¹

The Antoine equation is of the form:
$$\ln(P^{\text{sat}} [\text{bar}]) = A - \frac{B}{T[K] + C}$$

TABLE A.1.1 Organic compounds

Formula	Name	$MW_{ m [g/mol]}$	$T_c\left[\mathrm{K} ight]$	P_c [bar]	ω	A	В	C	T_{\min}	$T_{ m mix}$
CH ₂ O	Formaldehyde	30.026	408	65.86	0.253	9.8573	2204.13	-30.15	185	271
CH ₄	Methane	16.042	190.6	46.00	0.008	8.6041	897.84	-7.16	93	120
CH ₄ O	Methanol	32.042	512.6	80.96	0.559	11.9673	3626.55	-34.29	257	364
C ₂ H ₄	Acetylene	26.038	308.3	61.40	0.184	9.7279	1637.14	-19.77	194	202
C_2H_3N	Acetonitrile	41.052	548	48.33	0.321	9.6672	2945.47	-49.15	260	390
C_2H_4	Ethylene	28.053	282.4	50.36	0.085	8.9166	1347.01	-18.15	120	182
C ₂ H ₄ O	Acetaldehyde	44.053	461	55.73	0.303	9.6279	2465.15	-37.15	210	320
C_2H_4O	Ethylene oxide	44.053	469	71.94	0.200	10.1198	2567.61	-29.01	300	310
$C_2H_4O_2$	Acetic acid	60.052	594.4	57.86	0.454	10.1878	3405.57	-56.34	290	430
$C_2H_4C_2$ C_2H_6	Ethane	30.069	305.4	48.74	0.099	9.0435	1511.42	-17.16	130	199
C_2H_6O	Ethanol	46.068	516.2	63.83	0.635	12.2917	3803.98	-41.68	270	369
	Propylene	42.080	365.0	46.20	0.148	9.0825	1807.53	-26.15	160	240
C ₃ H ₆	Acetone	58.079	508.1	47.01	0.309	10.0311	2940.46	-35.93	241	350 249
C ₃ H ₆ O		44.096	370.0	42.44	0.152	9.1058	1872.46	-25.16	164 285	400
C ₃ H ₈	Propane	60.095	536.7	51.68	0.624	10.9237	3166.38	-80.15 -34.30	215	290
C ₃ H ₈ O	1-Propanol	54.090	425	43.27	0.195	9.1525	2142.66	-34.30 -36.15	200	305
C_4H_6	1,3-Butadiene	56.106	435.6	42.05	0.202	9.1969	2210.71	-33.15	200	300
C_4H_8	cis-2-Butene	56.106	428.6	41.04	0.214	9.1975	2212.32	-57.15	260	385
C_4H_8	trans-2-Butene	88.105	523.2	38.30	0.363	9.5314	2790.50 2154.90	-34.42	195	290
$C_4H_8O_2$	Ethyl acetate	58.122	425.2	37.90	0.193	9.0580	2032.76	-33.15	187	280
C_4H_{10}	n-Butane	58.122	408.1	36.48	0.176	8.9179	3137.02	-94.43	288	404
C_4H_{10}	Isobutane	74.122	562.9	44.18	0.590	10.5958	2405.96	-39.63	220	325
$C_4H_{10}O$	n-Butanol	70.133	464.7	40.53	0.245	9.1444 9.2131	2477.07	-39.94	220	330
C_5H_{10}	1-Pentene	72.149	469.6	33.74	0.251	9.2131	2788.51	-52.36	280	377
C_5H_{12}	n-Pentane	78.112	562.1	48.94	0.212	9.8077	3490.89	-98.59	345	481
C_6H_6	Benzene	94.111	694.2	61.30	0.440	10.0546	3857.52	-73.15	340	500
C_6H_6O	Phenol	93.127	699	53.09	0.382	9.1325	2766.63	-50.50	280	380
C_6H_7N	Aniline	84.159	553.4	40.73	0.213	9.1323	2654.81	-47.30	240	360
C_6H_{12}	Cyclohexane	84.159	504.0	31.71	0.285	9.164	2697.55	-48.78	245	370
$C_6H_{12} \\ C_6H_{14}$	1-Hexene n-Hexane	84.139	507.4	29.69	0.296	5,2104			(Con	tinued)

de consult ThermoSolver, the text software.

可参考数据: (2/2)

The state of the s	Van der Waals Equation of State
Pure species i	$\ln \varphi_i = \frac{b_i}{v_i - b_i} - \ln \left(\frac{(v_i - b_i)P}{RT} \right) - \frac{2a_i}{RTv_i}$
Species 1 in a binary mixture	$\ln \hat{\varphi}_1 = \frac{b_1}{v - b} - \ln \left(\frac{(v - b)P}{RT} \right) - \frac{2(y_1 a_1 + y_2 a_{12})}{RTv}$
Species i in a mixture	$\ln \hat{\varphi}_i = \frac{b_i}{v - b} - \ln \left(\frac{(v - b)P}{RT} \right) - \frac{2\sum_{k=1}^{\infty} y_k a_{ik}}{RTv}$
Table Tables all	Redlich-Kwong Equation of State
Pure species i	$\ln \varphi_i = z_i - 1 - \ln \left(\frac{(v_i - b_i)P}{RT} \right) - \frac{a_i}{b_i R T^{1.5}} \ln \left(1 + \frac{b_i}{v_i} \right)$
Species 1 in a binary mixture	$\ln \hat{\varphi}_1 = \frac{b_1}{b}(z-1) - \ln \left(\frac{(v-b)P}{RT}\right)$
	$+ rac{1}{bRT^{1.5}} igg[rac{ab_1}{b} - 2(y_1a_1 + y_2a_{12}) igg] \! \ln \! \left(1 + rac{b}{v} ight)$
Species i in a mixture	$\ln \hat{\varphi}_1 = \frac{b_1}{b}(z-1) - \ln \left(\frac{(v-b)P}{RT}\right) + \frac{1}{bRT^{1.5}} \left[\frac{ab_1}{b} - 2\sum_{k=1}^m y_k a_{ik}\right] \ln \left(1 + \frac{ab_1}{b}\right)$
to select it a money has a min on to	Peng–Robinson Equation of State
Pure species i	$\ln \varphi_i = z_i - 1 - \ln \left(\frac{(v_i - b_i)P}{RT} \right) - \frac{(a\alpha)_i}{2\sqrt{2}b_iRT} \ln \left[\frac{v_i + (1 + \sqrt{2})b_i}{v_i + (1 - \sqrt{2})b_i} \right]$
Species 1 in a binary mixture	$\ln \hat{\varphi}_1 = \frac{b_1}{b}(z-1) - \ln\left(\frac{(v-b)P}{RT}\right)$
	$+rac{alpha}{2\sqrt{2}bRT}iggl[rac{b_{1}}{b}-rac{2}{alpha}(y_{1}(alpha)_{1}+y_{2}(alpha)_{12})iggr] ext{ln}iggl[rac{v+(1+\sqrt{2})b}{v+(1-\sqrt{2})b}iggr]$
Species <i>i</i> in a mixture	$\ln \hat{\varphi}_i = \frac{b_i}{b}(z-1) - \ln \left(\frac{(v-b)P}{RT}\right)$
	$+rac{alpha}{2\sqrt{2}bRT}iggl[rac{b_i}{b}-rac{2}{alpha}\!\sum_{k=1}^m\!y_k(alpha)_{ik}iggr]\lniggl[rac{v+(1+\sqrt{2})b}{v+(1-\sqrt{2})b}iggr]$

例题二: 数值计算表参考

Values of the Iterative Bubble-point Calculation. The	Column Labeled n Represents
the Iteration Number.	

n	$\left\lceil rac{\mathrm{Jm^3}}{\mathrm{mol^2}} ight ceil$	$\left\lceil rac{b^v}{ ext{mol}} ight ceil$	$\left\lceil rac{v^v}{ m mol} ight ceil$	$\begin{bmatrix} v^1 \\ m^3 \end{bmatrix}$	â¢	$\hat{\boldsymbol{\varphi}}_{2}^{v}$	$\hat{m{arphi}}_{1}^{l}$	\hat{arphi}_2^l	11-	11a	$\sum y_i$	$P^{(k+1)}$ [bar]
			[LIJOI]	_mol_	$\hat{oldsymbol{arphi}}_1^v$	φ_2	$-\Psi_1$	Ψ2	y_1	<i>y</i> ₂		
1	0.238	4.40 10^{-5}	2.55 10^{-4}	1.59 10^{-4}	0.86	0.37	1.30	0.10	0,45	0.18	0.634	54.5
2	0.241	4.72 10 ⁻⁵	4.38 10 ⁻⁴	1.65 10 ⁻⁴	0.91	0.56	1.78	0.12	0.59	0.15	0.739	40.3
3	0.328	5.48 10 ⁻⁵	5.97 10 ⁻⁴	1.69 10 ⁻⁴	0.93	0.63	2.24	0.15	0.72	0.16	0.887	35.7
4	0.401	6.07 10^{-5}	6.49 10 ⁻⁴	1.70 10 ⁻⁴	0.94	0.61	2.47	0.16	0.79	0.19	0.971	34.7
5	0.433	6.32 10^{-5}	6.43 10 ⁻⁴	1.71 10 ⁻⁴	0.96	0.57	2.53	0.16	0.79	0.20	0.995	34.5
6	0.443	6.40 10 ⁻⁵	6.34 10 ⁻⁴	1.71 10^{-4}	0.96	0.56	2.54	0.16	0.79	0.21	0.999	34.5