Olimpiada Națională de Matematică Etapa Națională, Timișoara, 20 aprilie 2017

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a 8-a

Problema 1. Demonstrați următoarele afirmații:

- a) Dacă ABCA'B'C' este o prismă dreaptă și $M \in (BC)$, $N \in (CA)$, $P \in (AB)$ sunt astfel încât A'M, B'N și C'P sunt perpendiculare două câte două și concurente, atunci prisma ABCA'B'C' este regulată.
- b) Dacă ABCA'B'C' este o prismă regulată și $\frac{AA'}{AB} = \frac{\sqrt{6}}{4}$, atunci există $M \in (BC)$, $N \in (CA)$, $P \in (AB)$ astfel încât dreptele A'M, B'N și C'P să fie perpendiculare două câte două și concurente.

Problema 2. Arătați că pentru orice număr natural $n \geq 3$, există numerele naturale nenule x_1, x_2, \ldots, x_n , diferite două câte două, astfel încât $\{2, n\} \subset \{x_1, x_2, \ldots, x_n\}$ și

$$\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} = 1.$$

Problema 3. Fie $n \in \mathbb{N}$, $n \geq 2$, şi $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ numere reale pozitive astfel încât

$$\frac{a_1}{b_1} \le \frac{a_2}{b_2} \le \ldots \le \frac{a_n}{b_n}.$$

Determinați cea mai mare valoare a numărului real c pentru care este satisfăcută inegalitatea

$$(a_1 - b_1 c)x_1 + (a_2 - b_2 c)x_2 + \ldots + (a_n - b_n c)x_n \ge 0$$

pentru orice $x_1, x_2, \ldots, x_n > 0$ cu $x_1 \le x_2 \le \ldots \le x_n$.

Soluție. Notând $y_1 = x_1$, $y_{k+1} = x_{k+1} - x_k$, pentru $k \in \{1, 2, ..., n-1\}$, avem $x_k = y_1 + y_2 + ... + y_k$, cu $y_1 > 0$, $y_k \ge 0$, $\forall k = \overline{2, n}$.

Arătăm că, reciproc, pentru orice $c \leq \frac{a_1 + a_2 + \ldots + a_n}{b_1 + b_2 + \ldots + b_n}$ are loc inegalitatea cerută, deci aceasta este valoarea maximă căutată a lui c.

Avem
$$c \le \frac{a_1 + a_2 + \ldots + a_n}{b_1 + b_2 + \ldots + b_n} \le \frac{a_2 + a_3 + \ldots + a_n}{b_2 + b_3 + \ldots + b_n} \le \ldots \le \frac{a_n}{b_n}$$
.

Într-adevăr, inegalitatea $\frac{a_k+a_{k+1}+\ldots+a_n}{b_k+b_{k+1}+\ldots+b_n} \leq \frac{a_{k+1}+\ldots+a_n}{b_{k+1}+\ldots+b_n}$ se scrie echivalent

 $a_k(b_{k+1}+\ldots+b_n) \le b_k(a_{k+1}+\ldots+a_n)$ şi rezultă din inegalitățile

$$\frac{a_k}{b_k} \le \frac{a_{k+1}}{b_{k+1}}, \frac{a_k}{b_k} \le \frac{a_{k+2}}{b_{k+2}}, \dots, \frac{a_k}{b_k} \le \frac{a_n}{b_n}.$$
3p

Problema 4. Fie $a, b, c, d \in [0, 1]$. Demonstrați inegalitatea

$$\frac{a}{1+b} + \frac{b}{1+c} + \frac{c}{1+d} + \frac{d}{1+a} + abcd \le 3.$$

Solutie.

$$\frac{a}{1+b} + \frac{b}{1+c} + \frac{c}{1+d} + \frac{d}{1+a} + abcd \le \frac{a}{1+abcd} + \frac{b}{1+abcd} + \frac{c}{1+abcd} + \frac{d}{1+abcd} + abcd = \frac{a+b+c+d}{1+abcd} + abcd.$$
2p

Folosind succesiv inegalitatea $x+y \le 1+xy, \ \forall x,y \in [0,1]$ (echivalentă cu $(1-x)(1-y) \ge 0$), avem $a+b+c+d \le 1+ab+1+cd=ab+cd+2 \le 1+abcd+2=abcd+3$3p

Notând $x = abcd \in [0, 1]$, este suficient să demonstrăm că $1 + \frac{2}{1+x} + x \le 3$, ceea ce revine la $2 + x^2 + x \le 2x + 2$, deci la $x^2 \le x$.