Priority Queues and Heaps

Bùi Tiến Lên

2021

Contents

1. Binary Heaps

2. d-Heaps

3. Application

4. Workshop

Insert Key
Remove Max
Increase Key

d Hoone

Application

Simulation

Time-driven Simulation

Workshop

Priority queue applications

Event-driven simulation. (customers in a line, colliding particles)

Numerical computation. (reducing roundoff error)

Data compression. (Huffman codes)

Graph searching. (Dijkstra's algorithm, Prim's algorithm)

Number theory. (sum of powers)

Artificial intelligence. (A* search)

Statistics. (maintain largest M values in a sequence)

Operating systems. (load balancing, interrupt handling)

Discrete optimization. (bin packing, scheduling)

Spam filtering. (Bayesian spam filter)

d-Heap

d-Heap

Simula

Time-driven Simul

Simulation

Workshop

Priority queue

Concept 1

A **priority queue** is a data structure for maintaining a set S of elements, each with an associated value called a **key**. There are two kinds of priority queues: **max-priority queues** and **min-priority queues**.

Max-priority queue supports the following operations.

- INSERT(S, x): insert the element x into the set S or $S \leftarrow S \cup \{x\}$.
- Max(S): return the element of S with the largest key.
- Remove-Max(S): remove and return the element of S with the largest key.
- INCREASE-KEY(S, x, Δk): increase the value of element x's key by the Δk .

Insert Key
Remove Max

d Haana

d-Heaps

Simulation

Simulation

Event-driven

Workshop

Unordered and ordered array implementation

• A sequence of operations on a max-priority queue

operation	argument	return value	size	(con unor	tents dere							tents lered				
insert	Р		1	Р							Р						
insert	Q		2	Р	Q						Ρ	Q					
insert	É		3	Р	Q	Ε					Ε	Р	Q				
remove max	¢	Q	2	Р	É						Ε	Р	-				
insert	X	•	3	Р	Ε	Χ					Ε	Ρ	Χ				
insert	Α		4	Р	Ε	Χ	Α				Α	Ε	Ρ	Χ			
insert	М		5	Р	Ε	X	Α	M			Α	Ε	M	Р	X		
remove max	c	X	4	Р	Ε	Μ	Α				Α	Ε	Μ	Ρ			
insert	Р		5	Р	Ε	Μ	Α	Р			Α	Ε	Μ	Р	Р		
insert	L		6	Р	Ε	М	Α	Р	L		Α	Ε	L	Μ	Р	Р	
insert	Е		7	Р	Ε	M	Α	Р	L	Е	Α	Ε	Ε	L	М	Р	Р
remove max	c	Р	6	Ε	Μ	Α	Ρ	L	Ε		Α	Ε	Ε	L	Μ	Ρ	

Analysis

Challenge Implement all operations efficiently.

implementation	insert	remove max	max
unordered array	1	N	Ν
ordered array	Ν	1	1
goal			

Binary Heaps

- Insert Key
- Remove Max
- Increase Key

Binary Heans

Introduction

Concept 2

- Max heap: A tree is heap-ordered if the key in each node is larger than or equal to the keys in all of that node's children (if any)
- Min heap: A tree is heap-ordered if the key in each node is smaller than or equal to the keys in all of that node's children (if any)

Theorem 1

- Max heap: No node in a heap-ordered tree has a key larger than the key at the root
- Min heap: No node in a heap-ordered tree has a key smaller than the key at the root

Binary Heans

Binary heap representations

Concept 3

A binary heap data structure is a complete binary tree that can be represented by an array object.

- Complete binary tree is perfectly balanced, except for bottom level.
- Height of complete binary tree with N nodes is $log_2(N+1)$.

Binary Heaps

Insert Key
Remove Ma
Increase Key

d-Heap

Applica

Simulation

Time-driven Simula

Workshop

Binary heap representations (cont.)

• Array representation of a max binary heap.

Binary Heans

Binary heap properties

- Largest key is a[0], which is root of max binary heap.
- Can use array indices to move through tree.

```
Parent(i)
      return \left| \frac{i-1}{2} \right|
LeftChild(i)
```

return 2i + 1

RIGHTCHILD(i) return 2i + 2

Promotion in a heap

- Scenario. Child's key becomes larger key than its parent's key. (violation)
 - To eliminate the violation:
 - Exchange key in child with key in parent.
 - Repeat until heap order restored.

```
UP-HEAP(a, i)
     while i > 0
           p \leftarrow \text{PARENT}(i)
           if a[i] > a[p]
                 SWAP(a, i, p)
                 i \leftarrow p
           else
                 return
```

Insertion in a heap

Insert. Add node at end, then percolate it up.

Cost. At most $\log_2 N + 1$ compares.

INSERT(a, k)

$$n \leftarrow a.size$$

 $a[n] \leftarrow k$
UP-HEAP(a, n)
 $a.size \leftarrow a.size + 1$

Example

• Given a max binary heap

Example (cont.)

• Insert key 66 into the heap

Example (cont.)

Swap 66 and 26

• Swap 66 and 65

d-Heaps

Simulation

Time-driven Simulat

Worksho

Demotion in a heap

- **Scenario**. Parent's key becomes smaller than one (or both) of its children's. (vilolation)
- To eliminate the violation:
 - Exchange key in parent with key in larger child.
 - Repeat until heap order restored.

```
DOWN-HEAP(a, i)

l \leftarrow \text{LEFTCHILD}(i)

r \leftarrow \text{RIGHTCHILD}(i)

largest \leftarrow i

if l < a.size and a[l] > a[largest] then largest \leftarrow l

if r < a.size and a[r] > a[largest] then largest \leftarrow r

if largest \neq i then

SWAP(a, i, largest)

DOWN-HEAP(a, largest)
```

- Remove-Max(a) $n \leftarrow a.size$

 - SWAP(a, 0, n-1)
 - Down-Heap(a, 0)
 - $a.size \leftarrow a.size 1$
 - **return** a[n-1] and delete a[n-1]

Delete the maximum in a heap

• Cost. At most $2 \log_2 N$ compares.

• **Delete max**. Exchange root with node at end, then sink it down.

Example

• Given a max binary heap

• Delete max : swap 63 and 13, delete 63

• Swap 13 and 65

• Swap 13 and 31

• Swap **13** and **20**

65

y Heaps _{Key}

Remove Max

d-Hear

Application

T: 1: 0:

Time-driven Simulat

Workshor

Analysis

implementation	insert	remove max	max
unordered array	1	N	Ν
ordered array	Ν	1	1
binary heap	$\log_2 extsf{N}$	$\log_2 extcolor{N}$	1

d-Heap

Simulation

Time-driven Simulat

Workshor

Increase Key

- To increase the value of a certain key inside the max-heap, we need to reach this key first. In ordinary heaps, we can't search for a specific key inside the heap.
- Therefore, we'll keep a **map** (**hash table**) beside the original array. This map will store the index of each key inside the heap.

```
Increase-Key(a, k, \Delta k, map)
i \leftarrow map[k]
map.Remove(k)
a[i] \leftarrow a[i] + \Delta k
map[a[i]] \leftarrow i
UP-Heap(a, 0, map)
```

d-Heaps

d-Heaps

Introduction

Concept 4

a d-heap is a heap, each node of which has d children.

• A min 3-heap

Insert Key
Remove Max

d-Heaps

Simulation

Time-driven Simulat

Workshop

Analysis

• A *d*-heap is much shallower than a binary heap

implementation	insert	remove max	max
unordered array	1	N	Ν
ordered array	Ν	1	1
binary heap	$\log_2 extcolor{N}$	$\log_2 extcolor{N}$	1
<i>d</i> -heap	$\log_d N$	$\log_d N$	1

Application

- Simulation
- Time-driven Simulation
- Event-driven Simulation

Insert Key Remove Max Increase Key

Application

Simulation

Time-driven Simulat Event-driven

Worksho

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Problem. *N* bouncing balls in the unit square.

- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Simulation

Bouncing balls

- Check for balls colliding with each other.
 - Physics problems: when? what effect?
 - CS problems: which object does the check? too many checks?

Time-driven Simulation

Time-driven simulation

Discretize time in quanta of size dt.

- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

Insert Key
Remove Max
Increase Key

d-Heap

Application

Time-driven Simulation

Event-driven

Worksho

Time-driven simulation (cont.)

Main drawbacks

- $\sim N^2/2$ overlap checks per time quantum.
- Simulation is too slow if dt is very small.
- May miss collisions if dt is too large. (if colliding particles fail to overlap when we are looking)

Insert Key
Remove Max
Increase Key

d-Hea

Applicati

Simulation

Event-driven Simulation

Workshop

Event-driven simulation

Change **state** only when something happens.

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle. When will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.

Event-driven Simulation

Particle-wall collision

prediction (at time t)

 $=(1-s-r_{y})/v_{y}$

Collision prediction and resolution.

- Particle of radius s at position (r_x, r_y) .
- Particle moving in unit box with velocity (v_x, v_y) .
- Will it collide with a vertical wall? If so, when?

Event-driven Simulation

Particle-particle collision prediction

Collision prediction

- Particle i: radius s_i , position (rx_i, ry_i) , velocity (vx_i, vy_i) .
- Particle *j*: radius s_i , position (rx_i, ry_i) , velocity (vx_i, vy_i) .

Event-driven Simulation

Particle-particle collision prediction (cont.)

Will particles i and i collide? If so, when?

$$\Delta t = \begin{cases} \infty & \text{if } \Delta v \Delta r \ge 0\\ \infty & \text{if } d < 0\\ -\frac{\Delta v \Delta r}{\Delta v \Delta v} & \text{otherwise} \end{cases}$$
 (1)

$$\sigma = \sigma_i + \sigma_j$$

$$d = (\Delta v \Delta r)^2 - (\Delta v \Delta v)(\Delta r \Delta r - \sigma^2)$$
(2)
(3)

$$d = (\Delta v \Delta r)^2 - (\Delta v \Delta v)(\Delta r \Delta r - \sigma^2)$$
(3)

where

$$\Delta v = (\Delta vx, \Delta vy) = (vx_i - vx_j, vy_i - vy_j)$$
 (4)

$$\Delta r = (\Delta rx, \Delta ry) = (rx_i - rx_j, ry_i - ry_j)$$
(5)

Particle-particle collision resolution

Event-driven Simulation

Collision resolution

• When two particles collide, how does velocity change?

$$vy'_i = vx'_j = vy'_j = vy'_$$

where

$$J = \frac{2m_i m_j (\Delta v \Delta t)}{\sigma(m_i + m_j)}$$

$$Jx = \frac{J\Delta rx}{J\Delta ry}$$

$$Jy = \frac{J\Delta ry}{\sigma(m_i + m_j)}$$

(6)

Insert Key
Remove Max
Increase Key

d-Hea

Applicat

Simulation

Event-driven

Worksh

Collision system: event-driven simulation main loop

Initialization

- Fill PQ with all *potential* particle-wall collisions. ("potential" since collision may not happen if some other collision intervenes)
- Fill PQ with all *potential* particle-particle collisions.

Main loop

- Delete the impending event from PQ (min priority = t).
- If the event has been invalidated, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.

Workshop

Event-driven Simulation	
Workshop	

Projects

Workshop

• Programming exercises in [Cormen, 2009, Sedgewick, 2002]

References

Cormen, T. H. (2009).

Introduction to algorithms.

MIT press.

Sedgewick, R. (2002).

Algorithms in Java, Parts 1-4, volume 1.

Addison-Wesley Professional.

Walls and Mirrors (2014).

Data Abstraction And Problem Solving with C++.

Pearson.