MTH20014 Mathematics 3B. Tutorial 12 (including problems for independent preparation for the final examination)

1. Classify the singularities of the following functions:

(a)
$$\frac{\sinh z}{z}$$
; (b) $\frac{z+1}{z^2}$; (c) $\frac{\cosh z}{z^3}$; (d) $e^{\frac{1}{z}}$.

2. Calculate the residues at the indicated poles

(a)
$$\frac{\cos z}{z}$$
, $z = 0$;

(b)
$$\frac{\ddot{z}}{\sin z}$$
, $z = \pi$;

(c)
$$\frac{1}{(1+z^2)^2}$$
, $z = i$.

- 3. Evaluate $\oint_C \frac{2z}{z^2+4} dz$, where C is the circle |z|=1, using a suitable path parameterisation.
- 4. Evaluate $\oint_C \frac{z^2 + 3iz 2}{z^3 + 9z} dz$, where C is the circle |z| = 1, using Cauchy's integral formula.
- 5. Use Cauchy's residue theorem to evaluate the following integrals along the circle |z|=4:

(a)
$$\oint_C \frac{2z}{z^2 + 4} dz$$
, (b) $\oint_C \frac{z^2 + 3iz - 2}{z^3 + 9z} dz$.

6. Use closed contour integration to evaluate

(a)
$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^2 + 6x + 10},$$

(b)
$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^2 + 4x + 13}.$$

7. Use integration along the unit circle |z| = 1 to evaluate

(a)
$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{3 + 2\cos\theta},$$

(b)
$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{4 + \sin\theta}.$$

Answers

- 2. (a) 1;

 - (b) $-\pi$; (c) $-\frac{i}{4}$.
- 3. 0.
- 4. $-\frac{4}{9}\pi i$.
- 5. (a) $4\pi i$,
 - (b) $2\pi i$.
- 6. (a) π ,
 - (b) $\frac{\pi}{3}$.
- 7. (a) $\frac{2\pi}{\sqrt{5}}$, (b) $\frac{2\pi}{\sqrt{15}}$.