ECE472

Deep Learning - Assignment 1

Yuval Epstain Ofek

September 9, 2020

Introduction

Linear regression on a noisy sinusoidal using a set of M Gaussian basis functions with learned location and scale parameters (μ, σ) was performed. Model parameters were learned using stochastic gradient descent. TensorFlow automatic differentiation tools were used in the completion of this assignment.

An M value of 2 (corresponding to a 2-curve Gaussian basis) was chosen after running the experiment a number of times. M=1 was too small to match the sinusoidal, while M>2 would have Gaussian basis curves that had very small weights. These curves with the low weights barely changed the output predicted , and I decided they were not needed. The 2 Gaussian curve basis can be seen in figure 1. The resulting prediction along with the original sinusoidal and the noisy samples can be seen in figure 2.

Figure 1: Gaussian Curve Basis Used to Generate Fit

Figure 2: Fit of Noisy Sinusoidal Samples using a Gaussian Basis

Appendix I- Python Code

```
\# -*- coding: utf-8 -*-
""" Deep Learning Assignment 1
Submit by Sept. 9, 10pm
tldr: Perform linear regression of a noisy sinewave
using a set of gaussian basis functions with learned
location and scale parameters. Model parameters are
learned with stochastic gradient descent. Use of
automatic differentiation is required. Hint: note
your limits!
,, ,, ,,
import numpy as np
import tensorflow as tf
import numpy.random as npr
import matplotlib.pyplot as plt
### parameters
N = 50
sigma noise = 0.1
M = 2
Nsteps = 350
step\_size = 0.015
seed = 5
class noisy_sine:
  def \underline{\quad} init\underline{\quad} (self, sig, N, seed = None):
    Generates a sinusoidal sin(2pix), where x in stored in x_rl
    and y in y rl. Then samples in uniformly with samples x and
    values y
     , , ,
    npr.seed(seed)
    self.x rl = np. linspace (0, 1, 1000)
    self.y rl = np.sin(np.pi*2*self.x rl)
    self.x = npr.uniform(size = (N,1))
    y = np. sin(np. pi*2*self.x) + npr. normal(size = (N,1))*sigma_noise
    self.y = y.reshape(-1)
```

```
class linregmodel:
 def ___init___(self, M,
               seed,
               step size,
               initializer = tf.keras.initializers.GlorotNormal):
    , , ,
    Initialize weights, means, standard of deviation,
    and b vectors according to the xavier normal
    initializer and return them in dicitonary params.
   M- number of gaussians to use (and therefore also
        weights, mean, and sds)
    initializer = initializer (seed)
   W = tf. Variable (initializer (shape=(1,M)), name = 'W')
   mu = tf. Variable (initializer (shape=(1,M)), name = 'mu')
    sig = tf. Variable (initializer (shape=(1,M)), name = 'sig')
   b = tf. Variable(initializer(shape=(1,1)), name = 'b')
    self.params = \{ W': W,
            'mu': mu,
            'sig':sig,
            'b':b}
    self.step_size = step_size
 def predict (self, X):
    Predicts the corresponding y's for the input
   X (N,1) given M gaussian curves with
    parameters from the params dict, and offsett b
    also from params
    gaussians = tf.math.exp(-tf.math.square(X-self.params['mu'])/
                             tf.math.square(self.params['sig']))
    y_hat = tf.reduce_sum(tf.multiply(gaussians,(self.params['W'])),
                           axis = 1) + self.params['b']
   return y hat
 def loss (self, x,y):
    Determines the loss of the predicted value
    compared to the actual y value. Loss function
    is 0.5(y-y^{2})**2.
   y hat = self.predict(x)
    return 0.5*(y-y_hat)**2
```

```
def step (self, x,y):
    A \ single \ step - predicting \ values, \ getting \ loss,
    E using the gradients of
    loss to update the parameters
    with tf.GradientTape(persistent=True) as tape:
      tape.watch(self.params)
      lss = self.loss(x,y)
    \#get gradients
    grads = tape.gradient(lss, self.params)
    \#return\ updated\ parameters
    self.params = \{k: val-grads[k] * self.step\_size for k,
                    val in self.params.items()}
  def get_params(self):
    returns formatted model parameters
    return (self.params ['W'].numpy()[0].reshape(1,-1),
             self.params['b'].numpy()[0][0],
             self.params['mu'].numpy()[0].reshape(1,-1),
             self.params['sig'].numpy()[0].reshape(1,-1)
    )
### Running the Experiment
data = noisy sine(sigma noise, N, seed)
x_tf = tf.convert_to_tensor(data.x, dtype=tf.float32)
y_tf = tf.convert_to_tensor(data.y, dtype=tf.float32)
model = linregmodel(M, seed, step_size)
for _ in range(Nsteps):
  for i in range (len(x_tf)):
    params = model.step(tf.gather(x_tf,i),tf.gather(y_tf,i))
x_{exp} = np. linspace (0, 1, 1000)
#formatting output
W, b, mu, sig = model.get_params()
#predicted curve
y_hat = np.sum(W^*np.exp(-(x_exp.reshape(-1,1) - mu)**2/
    (sig)^{**2}, axis =1) + b
### Plots
#plotting Basis
```

```
plt.figure
plt. figure (figsize = (15,7.5))
for i in range (M):
  plt.plot(x_exp, np.exp(-(x_exp - mu.reshape(-1,1)[i])**2/
                            (sig.reshape(-1,1)[i])**2))
plt.xlabel('x', fontsize=16)
h = plt.ylabel('y', fontsize=16)
h.set_rotation(0)
plt.title('Basis for Fit 1', fontsize=18)
plt.xlim(0,1)
plt.ylim (0,1)
plt.savefig('Basis_of_Fit.eps', format='eps')
plt.show()
\#plotting Fit
plt.figure
plt. figure (figsize = (15,7.5))
plt.plot(data.x_rl,data.y_rl,'c') #sine
plt.plot(data.x, data.y, 'o') #sampled noisy sine
plt . plot (x_exp, y_hat, 'r—')
plt.legend(['Original Sinusoidal',
             'Noisy Sinusoidal Samples',
             'Gaussian Fit'])
plt.xlabel('x', fontsize=16)
h = plt.ylabel('y', fontsize=16)
h.set_rotation(0)
plt.title('Fit 1', fontsize=18)
plt.xlim(0,1)
plt . ylim (-1.5, 1.5)
plt.savefig('Fit.eps', format='eps')
plt.show()
```