

생체신호마이닝

wk01:

Introduction to PDM

Physiological Data Mining (PDM)

INJE University

2nd semester, 2023

Email: chaos21c@gmail.com

My ID

ID	성명
PDM01	강민석
PDM02	박미르
PDM03	송재윤
PDM04	정용철
PDM05	정종빈
PDM06	천윤서
PDM07	한유태
PDM08	현재진
PDM09	황해성

위의 id를 이용해서 github에 repo를 만드시오.

Mobile python

◎ JupyterLab · Python

TensorFlow.js

Getting Started

Tutorials & Guides

API Reference

FAO

TRY IT LIVE!

GITHUB

A JavaScript library for training and deploying ML models in the browser and on Node.js

Develop ML with JavaScript

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Run Existing Models

Use TensorFlow.js model converters to run pre-existing TensorFlow models right in the browser or under Node.js.

Retrain Existing Models

Retrain pre-existing ML models using sensor data connected to the browser, or other client-side data.

Python Tools

Python - numpy, matplotlib, pandas, ... Tensorflow

Pytorch

Spyder
Jupyter Notebook (Jupyter, VSCode)
Colab (Sagemaker, Kaggle notebook)

ChatGPT interpreter

Machine(Deep) learning with brain-AI chip

임상검사 minimi **EHR** 생체신호 건강관리 생체영상 유전자 진단/치료 문진 및 감정조절 진찰 생활습관

SNS

EHR: Tabular data \rightarrow ML-LR (DL-MLP)

• sklearn 라이브러리에는 당뇨병 환자들의 데이터가 기본적 으로 포함되어 있다.

sklearn.datasets.load_diabetes

sklearn.datasets.load_diabetes(*, return_X_y=False, as_frame=False, scaled=True)

Load and return the diabetes dataset (regression).

Samples total	442
Dimensionality	10
Features	real, $2 < x < .2$
Targets	integer 25 - 346

ML-LR: bmi,s5,s6 vs. target

Deep learning: CV model

ConvNet- Very deep neural network models

Deep learning: X-ray images

전이(전환) 학습 – Using ConvNet & training FCN

고재/참고도서

수업소개

파이썬 개발 환경인 Spyder와 구글 코랩(Colab)에서 파이썬 소스코드(*.py)와 jupyter 노우트북(*.ipynb)을 이용해서 데이터 마이닝을 강의한다. 데이터 코딩에 필수적인 numpy, pandas 모듈을 소개하고, 여러가지 데이터를 처리하는 방법을 소개한다. 처리되어 정돈된 일반 데이터, 생체정보 데이터를 matploylib, seaborn, plotly 등의 모듈을 이용해서 시각화한다. 생체정보 데이터, 영상데이터를 분류하는 tensrflow 등을 이용한 딥러닝을 소개하고 실습을 통하여 딥러닝을 익힌다. 수업 중 완성한 모든 소스 코드는 각자의 github repo에 저장하고 결과를 평가한다. 생체정보데이터를 이용한 프로젝트를 수행하고 평가를 받는다. ChatGPT를 파이썬 코드 작성과 수정에 이용해본다.

Spyder와 구글의 COLAB 환경에서 실습을 수행, 실습 결과는 github에 저장

성적평가기준

평가방법	평가비율(%)
중간고사	30%
기말고사	30%
과제	10%
프로젝트	30%

github.com/Redwoods/pdm

Lecture materials

References & good sites

- √ http://colab.research.google.com Colab
- √ http://www.github.com GitHub
- √ https://drive.google.com/drive/my-drive Google drive
- https://www.anaconda.com/distribution/
 Python download