Graph Coverage Web Application

Graph Information

Please enter your graph edges in the text box below. Put each edge in one line. Enter edges as pairs of nodes, separated by spaces.(e.g.: 1 3)	Enter initial nodes below (can be more than one), separated by spaces. If the text box below is empty, the first node in the left box will be the initial node.	Enter final nodes below (can be more than one), separated by spaces.		
1 2 1 3 3 4 3 5 5 6	1	2 4 13		

Test										
	Nodes	Edges	Edge-Pair	Simple Paths	Prime F	Paths				
Requirements:		_	_							
Test Paths:	Algorithm	1: Slowe	r, more test p	aths, shorter tes	t paths	Node C	Coverage	Edge Coverag	ge E	dge-Pair Coverage
rest ratiis.	Prime Pat	th Coverage	е							
	Algorithm	2: Faster,	fewer test pa	ths, longer test	paths	Edge C	Coverage	Edge-Pair Co	verage	
	Prime Pat	th Coverage	е							
	A 1 1.1	4 .		1 1 1			* 1	1 C		

Algorithm 1 is our original, not particularly clever, algorithm to find test paths from graph coverage test requirements. In our 2012 ICST paper, "Better Algorithms to Minimize the Cost of Test Paths," we described an algorithm that combines test requirements to produce fewer, but longer test paths (algorithm 2). Users can evaluate the tradeoffs between more but shorter test paths and fewer but longer test paths and choose the appropriate algorithm.

Other Tools: New Graph Data Flow Coverage Logic Coverage Minimal-MUMCUT Coverage

Share Graph: Share

19 test paths are needed for Prime Path Coverage

Test Paths	Test Requirements that are toured by test paths directly
[1,3,5,6,7,10,11,12,6,7,8,6,13]	[1,3,5,6,7,10,11,12], [6,7,10,11,12,6], [7,10,11,12,6,7], [10,11,12,6,7,8], [7,8,6,13], [6,7,8,6]
[1,3,5,6,7,8,6,7,10,11,12,6,13]	[6,7,10,11,12,6], [7,10,11,12,6,13], [1,3,5,6,7,8], [8,6,7,10,11,12], [7,8,6,7], [6,7,8,6]
[1,3,5,6,7,9,6,7,10,11,12,6,13]	[6,7,10,11,12,6], [7,10,11,12,6,13], [1,3,5,6,7,9], [9,6,7,10,11,12], [7,9,6,7], [6,7,9,6]
[1,3,5,6,7,10,12,6,7,10,11,12,6,13]	[1,3,5,6,7,10,12], [6,7,10,11,12,6], [7,10,11,12,6,13], [12,6,7,10,11,12], [6,7,10,12,6], [7,10,12,6,7], [10,12,6,7,10]
[1,3,5,6,7,10,11,12,6,7,10,11,12,6,13]	[1,3,5,6,7,10,11,12], [6,7,10,11,12,6], [7,10,11,12,6,13], [7,10,11,12,6,7], [12,6,7,10,11,12],

Node color: Initial Node, Final Node

	[11 12 6 7 10 11]
	[11,12,6,7,10,11], [10,11,12,6,7,10]
[1,3,5,6,7,10,11,12,6,7,9,6,13]	[1,3,5,6,7,10,11,12], [6,7,10,11,12,6], [7,10,11,12,6,7], [10,11,12,6,7,9], [7,9,6,13], [6,7,9,6]
[1,3,5,6,7,10,11,12,6,7,10,12,6,13]	[1,3,5,6,7,10,11,12], [6,7,10,11,12,6], [7,10,11,12,6,7], [10,11,12,6,7,10], [6,7,10,12,6], [7,10,12,6,13], [12,6,7,10,12]
[1,3,5,6,7,10,12,6,7,8,6,13]	[1,3,5,6,7,10,12], [6,7,10,12,6], [7,10,12,6,7], [10,12,6,7,8], [7,8,6,13], [6,7,8,6]
[1,3,5,6,13]	[1,3,5,6,13]
[1,3,5,6,7,8,6,7,10,12,6,13]	[1,3,5,6,7,8], [6,7,10,12,6], [7,10,12,6,13], [8,6,7,10,12], [7,8,6,7], [6,7,8,6]
[1,3,5,6,7,9,6,7,10,12,6,13]	[1,3,5,6,7,9], [6,7,10,12,6], [7,10,12,6,13], [9,6,7,10,12], [7,9,6,7], [6,7,9,6]
[1,3,5,6,7,10,12,6,7,10,12,6,13]	[1,3,5,6,7,10,12], [6,7,10,12,6], [7,10,12,6,13], [7,10,12,6,7], [12,6,7,10,12], [10,12,6,7,10]
[1,3,5,6,7,10,12,6,7,9,6,13]	[1,3,5,6,7,10,12], [6,7,10,12,6], [7,10,12,6,7], [10,12,6,7,9], [7,9,6,13], [6,7,9,6]
[1,3,5,6,7,8,6,7,8,6,13]	[1,3,5,6,7,8], [7,8,6,13], [7,8,6,7], [6,7,8,6], [8,6,7,8]
[1,3,5,6,7,9,6,7,8,6,13]	[1,3,5,6,7,9], [7,8,6,13], [7,9,6,7], [6,7,9,6], [6,7,8,6], [9,6,7,8]
[1,3,5,6,7,9,6,7,9,6,13]	[1,3,5,6,7,9], [7,9,6,7], [7,9,6,13], [6,7,9,6], [9,6,7,9]
[1,3,5,6,7,8,6,7,9,6,13]	[1,3,5,6,7,8], [7,8,6,7], [7,9,6,13], [6,7,9,6], [6,7,8,6], [8,6,7,9]
[1,3,4]	[1,3,4]
[1,2]	[1,2]
Test Paths	Test Requirements that are toured by

	test paths with sidetrips
[1,3,5,6,7,10,11,12,6,7,8,6,13]	[6,7,10,11,12,6], [7,10,11,12,6,13], [1,3,5,6,7,8], [6,7,8,6]
[1,3,5,6,7,8,6,7,10,11,12,6,13]	[1,3,5,6,7,10,11,12], [6,7,10,11,12,6], [7,8,6,13], [6,7,8,6]
[1,3,5,6,7,9,6,7,10,11,12,6,13]	[1,3,5,6,7,10,11,12], [6,7,10,11,12,6], [7,9,6,13], [6,7,9,6]
[1,3,5,6,7,10,12,6,7,10,11,12,6,13]	[1,3,5,6,7,10,11,12], [1,3,5,6,7,10,12], [6,7,10,11,12,6], [7,10,11,12,6,13], [6,7,10,12,6], [7,10,12,6,13]
[1,3,5,6,7,10,11,12,6,7,10,11,12,6,13]	[1,3,5,6,7,10,11,12], [6,7,10,11,12,6], [7,10,11,12,6,13]
[1,3,5,6,7,10,11,12,6,7,9,6,13]	[6,7,10,11,12,6], [7,10,11,12,6,13], [1,3,5,6,7,9], [6,7,9,6]
[1,3,5,6,7,10,11,12,6,7,10,12,6,13]	[1,3,5,6,7,10,11,12], [1,3,5,6,7,10,12], [6,7,10,11,12,6], [7,10,11,12,6,13], [6,7,10,12,6], [7,10,12,6,13]
[1,3,5,6,7,10,12,6,7,8,6,13]	[1,3,5,6,7,8], [6,7,10,12,6], [7,10,12,6,13], [6,7,8,6]
[1,3,5,6,13]	None
[1,3,5,6,7,8,6,7,10,12,6,13]	[1,3,5,6,7,10,12], [6,7,10,12,6], [7,8,6,13], [6,7,8,6]
[1,3,5,6,7,9,6,7,10,12,6,13]	[1,3,5,6,7,10,12], [6,7,10,12,6], [7,9,6,13], [6,7,9,6]
[1,3,5,6,7,10,12,6,7,10,12,6,13]	[1,3,5,6,7,10,12], [6,7,10,12,6], [7,10,12,6,13]
[1,3,5,6,7,10,12,6,7,9,6,13]	[1,3,5,6,7,9], [6,7,10,12,6], [7,10,12,6,13], [6,7,9,6]
[1,3,5,6,7,8,6,7,8,6,13]	[1,3,5,6,7,8], [7,8,6,13], [6,7,8,6]
[1,3,5,6,7,9,6,7,8,6,13]	[1,3,5,6,7,8], [7,9,6,13], [6,7,9,6], [6,7,8,6]
[1,3,5,6,7,9,6,7,9,6,13]	[1,3,5,6,7,9], [7,9,6,13], [6,7,9,6]
[1,3,5,6,7,8,6,7,9,6,13]	[1,3,5,6,7,9], [7,8,6,13], [6,7,9,6],

	[6,7,8,6]
[1,3,4]	None
[1,2]	None

Infeasible prime paths are:

None

List any infeasible sub paths in the box below. Enter sub paths

as strings of nodes, separated by commas.

Sub paths you mark as infeasible will **not** be used in any test paths.

Example: 3,4,7,1,2,3,4,7,1

Companion software to Introduction to Software Testing, Ammann and Offutt. Implementation by Wuzhi Xu, Nan Li, Lin Deng, and Scott Brown. © 2007-2017, all rights reserved. Last update: 22-Feb-2017