Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής ΠΜΣ «Ερευνητικές Κατευθύνσεις στην Πληροφορική» Παράλληλη και Κατανεμημένη Υπολογιστική Επεξεργασία 2019-20

Τα Μοντέλα του Υλικού

(Αρχιτεκτονικά στοιχεία παράλληλων υπολογιστών)

http://mixstef.github.io/courses/pms-parcomp/

Μ.Στεφανιδάκης

Η ταξινόμηση κατά Flynn (1972)

- Single Instruction Single Data (SISD)
 - Ο παραδοσιακός υπολογιστής χωρίς κανένα είδος παραλληλίας
 - Το κλασσικό «μοντέλο von Neumann»
 - Κάθε εντολή εκτελείται σειριακά σε μια μοναδιαία ποσότητα δεδομένων
 - Μία και μοναδική λειτουργία σε κάθε χρονική στιγμή
 - Η απόδοση των εφαρμογών εξαρτάται από την ταχύτητα
 της επεξεργασίας

Η ταξινόμηση κατά Flynn (συνέχεια)

- Single Instruction Multiple Data (SIMD)
 - Η ίδια λειτουργία (εντολή) εκτελείται σε πολλαπλά δεδομένα παράλληλα
 - Το υλικό διαθέτει έναν και μοναδικό Program Counter και πολλαπλές μονάδες εκτέλεσης πράξεων
 - Τα περισσότερα εμπορικά συστήματα σήμερα διαθέτουν κάποια χαρακτηριστικά SIMD (αλλά όχι μόνον)
 - 4, 8 ή 16 μονάδες εκτέλεσης (εντολές streaming σε συμβατικές ΚΜΕ)
 - Χιλιάδες μονάδες εκτέλεσης (streaming cores σε GPUs)
 - Υπερυπολογιστές (υψηλό κόστος)
 - Εξειδικευμένοι vector processors (ευρείς αγωγοί δεδομένων, από τη μνήμη έως τους καταχωρητές και τις μονάδες υπολογισμού)

SIMD: ποια η χρήση του;

- Επαναληπτικές δομές (for loops)
 - for (i=0;i<n;i++) a[i] += b[i];</pre>
 - Γίνεται for (i=0;i<n;i+=4) a[i..i+3] += b[i..i+3];
 - Τι συμβαίνει όταν έχουμε αποκλίνουσα εκτέλεση;
 - Όταν π.χ. κάποια a[i] υπολογίζονται διαφορετικά

όλα τα α[i]: προηγούμενη λειτουργία

όλα τα ζυγά α[i]: λειτουργία 1

όλα τα μονά α[i]: λειτουργία 2

όλα τα α[i]: επόμενη λειτουργία

- Κάποιες παράλληλες βαθμίδες απενεργοποιούνται (GPUs)
- Συχνά περιγράφεται ως SIMT (single instruction multiple "thread")

Η ταξινόμηση κατά Flynn (συνέχεια)

• Multiple Instruction Multiple Data (MIMD)

- Εεχωριστές ακολουθίες εντολών εκτελούνται σε ξεχωριστές ομάδες δεδομένων
 - Πολλαπλές ΚΜΕ που εκτελούν ανεξάρτητα προγράμματα
- Πολλαπλοί επεξεργαστικοί κόμβοι
 - Επεξεργαστές πολλών πυρήνων (Multicores)
 - Συνδυασμοί CPU + GPU/άλλων συνεπεξεργαστών στο ίδιο σύστημα
 - Κατανεμημένα συστήματα, συνδεδεμένα με κάποιο είδος δικτύου
- Τι σημαίνει ο όρος SPMD (simple program/process multiple data);
 - Δεν σχετίζεται με την ταξινόμηση του Flynn
 - Μοντέλο παράλληλου προγραμματισμού όπου το ίδιο πρόγραμμα αναπτύσσεται στους κόμβους ενός ΜΙΜD συστήματος
 - Διαφοροποίηση με βάση π.χ. ένα id

Συστήματα κοινής μνήμης

Shared Memory Systems

- Συστήματα MIMD όπου όλοι οι επεξεργαστικοί κόμβοι
 «βλέπουν» μια κοινή και ενιαία μνήμη
 - Οι επεξεργαστές βρίσκονται μέσα σε μοναδικό ενιαίο σύστημα
- Οι εκτελούμενες παράλληλες διεργασίες
 - Έχουν πρόσβαση στα διαμοιραζόμενα δεδομένα
 - Και χρησιμοποιούν την κοινή μνήμη για συγχρονισμό
- Οι κρυφές μνήμες και η συνοχή των δεδομένων
 - Όταν διαφορετικοί επεξεργαστικοί κόμβοι (με διαφορετικές κρυφές μνήμες) τροποποιούν τα ίδια δεδομένα
 - Τα πιο πρόσφατα δεδομένα μπορούν να βρίσκονται σε διαφορετική κρυφή μνήμη
 - Ειδικά πρωτόκολλα σε υλικό για την παρακολούθηση της θέσης των δεδομένων

Είδη κοινής μνήμης

- Uniform Memory Access (UMA)
 - Η κοινή μνήμη είναι φυσικά ενιαία
 - Όλοι οι επεξεργαστικοί κόμβοι την προσπελαύνουν με το ίδιο κόστος
 - Το σχήμα αυτό είναι γνωστό και ως Symmetric Multiprocessor (SMP)
 - Η σύνδεση με την κύρια μνήμη αποτελεί σημείο συνωστισμού
- Non-Uniform Memory Access (NUMA)
 - Κάθε επεξεργαστής του συστήματος έχει τη δική του τοπική μνήμη
 - Για τις υπόλοιπες μνήμες βασίζεται στην ενδο-επικοινωνία μεταξύ επεξεργαστών
 - Υπάρχει και εδώ ο μηχανισμός διατήρησης της συνοχής των δεδομένων μεταξύ κρυφών μνημών
 - Όσο κάθε επεξεργαστής επικοινωνεί με τη «δική» του μόνο τοπική μνήμη,
 ο συνωστισμός είναι ελάχιστος

Συστήματα κατανεμημένης μνήμης

Distributed memory systems

- Αποτελούνται από ανεξάρτητα επεξεργαστικά συστήματα διασυνδεμένα μέσω ενός δικτύου
- Το σχήμα περιλαμβάνει πολύ διαφορετικά συστήματα
 - Εμπορικούς υπολογιστές με διαδικτυακή διασύνδεση
 - Υπολογιστικούς κόμβους με εξειδικευμένη διασύνδεση
- Δεν υπάρχει η έννοια της «ενιαίας» και «κοινής» μνήμης
 - Τα διαμοιραζόμενα δεδομένα πρέπει να μεταφέρονται ανάμεσα στους κόμβους μέσω μηνυμάτων
 - Message passing APIs

Βιβλιογραφία

- Michael McCool, James Reinders, and Arch Robison. 2012. Structured Parallel Programming: Patterns for Efficient Computation (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Peter Pacheco. 2011. An Introduction to Parallel Programming (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- John L. Hennessy and David A. Patterson. 2003. Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.