Krzysztof Pszeniczny nr albumu: 347208 str. 1/1 Seria: 1

1 Zadanie

Równoważność będzie spełniona, gdy albo oba człony są prawdziwe, albo oba są fałszywe. Tak więc wynikowy zbiór będzie sumą dwóch zbiorów:

Pierwszy z nich składa się z punktów spełniających y > |x|, $x^2 + y^2 \ge 2^2$ oraz $y \le 3$. Oznacza to, że punkty te leżą ostro nad wykresem wartości bezwzględnej, na zewnątrz lub na brzegu kołem o promieniu 2 i środku w (0,0), a także leżą poniżej lub na prostej y=3. Na rysunku jest to zbiór zielony.

Drugi z nich składa się z punktów spełniających $y \le |x|$, ale niespełniających choć jednego z warunków: $x^2 + y^2 \ge 2^2$, $y \le 3$. Są to więc punkty leżące na lub pod wykresem wartości bezwzględnej, i leżące ściśle wewnątrz koła o promieniu 2 i środku w (0,0) (zbiór czerwony) lub leżące ściśle nad prostą y=3 (zbiór niebieski).

Należy jeszcze zwrócić uwagę na punkty brzegowe: żaden z punktów $(3,3), (-3,3), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ ani $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ nie należy do szukanego zbioru.

2 Zadanie

2.1 Wynikanie w lewo

Udowodnimy najpierw wynikanie w lewo. Załóżmy więc, że $A \subseteq C \cup B$ oraz $A \cap B \cap C = \emptyset$.

2.1.1 Zawieranie w lewo

Dowód. Udowodnimy najpierw zawieranie w lewo. Załóżmy bowiem, że $x \in C \cup B$. Wtedy mamy trzy przypadki:

Przypadek $x \in C \land x \in B$: Wtedy musi zajść $x \notin A$, bo $A \cap B \cap C = \emptyset$. Mamy wtedy, że $x \in B \setminus A$, a więc x jest elementem zbioru $(A \setminus C) \cup (C \setminus B) \cup (B \setminus A)$.

Przypadek $x \in C \land x \notin B$: Wtedy $x \in C \setminus B$, a więc znów $x \in (A \setminus C) \cup (C \setminus B) \cup (B \setminus A)$.

Przypadek $x \notin C \land x \in B$: Wtedy gdyby $x \in A$, to oczywiście $x \in A \setminus C$, zaś gdyby $x \notin A$, to $x \in B \setminus A$. W obu przypadkach $x \in (A \setminus C) \cup (C \setminus B) \cup (B \setminus A)$.

2.1.2 Zawieranie w prawo

Dowód. Załóżmy, że $x \in (A \setminus C) \cup (C \setminus B) \cup (B \setminus A)$. Wtedy musi zajść przynajmniej jeden z przypadków:

Przypadek $x \in A \setminus C$: Na mocy założenia, że $A \subseteq C \cup B$, uzyskujemy, że $x \in B$, gdyż $x \in A \land x \notin C$. Stąd $x \in C \cup B$.

Przypadek $x \in C \setminus B$: Wtedy trywialnie $x \in C$, a więc $x \in C \cup B$.

Przypadek $x \in B \setminus A$: Wtedy trywialnie $x \in B$, a więc $x \in C \cup B$.

2.2 Wynikanie w prawo

Dowód. Załóżmy teraz, że prawdą jest, że $(A \setminus C) \cup (C \setminus B) \cup (B \setminus A) = C \cup B$.

Załóżmy nie wprost, że istnieje $x \in A \cap B \cap C$. Wtedy $x \notin A \setminus C$, $x \notin C \setminus B$, $x \notin B \setminus A$, a jednak $x \in C \cup B$, quod est absurdum. Stąd $A \cap B \cap C = \emptyset$.

Załóżmy teraz nie wprost, że istnieje $x \in A$ takie, że $x \notin C \cup B$. Wtedy oczywiście $x \notin B$, $x \notin C$. Jednak wtedy $x \in A \setminus C$, skąd $x \in (A \setminus C) \cup (C \setminus B) \cup (B \setminus A)$, jednak $x \notin C \cup B$, quod est absurdum. Stąd $A \subseteq B \cup C$. Łącząc powyższe, uzyskujemy prawą stronę równoważności.