Part 20: Effect of feedback on distortion

Negative feedback can reduce the amount of distortion produced by an amplifier.

- 1) What is **distortion**? When output is <u>not</u> a magnified, but otherwise <u>exact copy</u> of input.
- 2) Why does negative feedback affect distortion?

DIFFICULT to explain! – we look at examples. First, look at the $\underline{\text{Voltage Transfer Curve}}$ (VTC) of an amp.

For LINEAR amp, VTC is

VTC
$$\equiv$$
 graph of v_o vs v_{in}

Real amps only approx linear because:

- 1. Transistors are <u>not</u> very linear devices
- 2. Output voltage swing is limited by supply rails

VTC of a real_op-amp looks like

For this op-amp, if v_{in} is a sinewave, output will be <u>distorted</u> – having flattened peaks

We should now define gain A_{ol} as

$$A_{ol} = \frac{dv_o}{dv_{in}}$$
 - ie as slope of $v_o vs v_{in}$ curve

- $\therefore A_{ol}$ varies with value of v_{in}

For a real op-amp, A_{ol} then varies as

If we use this op-amp with feedback then since

$$A_f \cong \frac{1}{\beta}$$
 provided T>> 1 (ie $A_{ol} \beta 1$)

Then A_f is **determined** by β in spite of variation of A_{ol} away from origin – we can plot A_f vs v_{in}

So provided, output is not too close to supply rails, distortion is much less (by a factor of 1 + T!) – gain A_f is **independent** of v_{in} until v_{in} close to X or X'.

Another example

The transistors constitute a class B 'push-pull' power amplifier.

During the positive half cycle: Q_2 is

OFF; Q_1 is ON

Provided $v_{oa} > 0.7V$

then output **follows** input ie $v_o = v_{oa} - 0.7$

During -ve half cycle, Q_1 is OFF;

 Q_2 is ON provided $v_{oa} < 0.7V$

output follows input ie. $v_o = v_{oa} + 0.7V$

R_g BFX85 (npn)

V_o Q1

BFX85 (npn)

V_g Alk

V_g Alk

Gain of 2X

Push-pull section

When $-0.7V < v_{oa} < +0.7V$ THERE IS NO OUTPUT

- both transistors are OFF
- we get "Cross-over Distortion".

So we expect (see opposite)

BUT if we reconnect amplifier, so that push-pull circuit is within feedback loop:

Something almost magical happens!

- output practically undistorted!

For this reason, look at op-amp output

-output jumps between -0.7V & +0.7V levels to force the push-pull amplifier through its "dead band" quickly. Input to push-pull is <u>pre-distorted</u> in order to compensate for the distortion produced by the push-pull. Not really magic – but a pretty smart idea…beat nature at its own game..