Chest X-Ray Classification with synthetic Data

By Ahmed Tarek & Ines Elgataa

TOPICS

Introduction Enhanced Conditional VAE

Dataset DDPM

Problem and solution Classifier

Conditional VAE Results

Introduction

This project leverages advanced generative modeling techniques, specifically Variational Autoencoders (VAEs), Enhanced VAEs, and Denoising Diffusion Probabilistic Models (DDPMs), to generate high-quality synthetic chest X-ray images. These generative models will be compared in their effectiveness for addressing the common yet challenging issue of class imbalance in medical imaging datasets..

Dataset

Chest X-ray Images (Pneumonia)

Source: Kaggle Chest X-ray Pneumonia Dataset

Description

The dataset contains chest X-ray images used for diagnosing pneumonia. It is structured into three subsets:

- Train: Primary training set.
- Test: Evaluation set for model validation.
- Val: Additional set for tuning hyperparameters and model validation.

Images are categorized into two distinct classes:

- Normal: Chest X-rays with no signs of pneumonia.
- Pneumonia: Chest X-rays exhibiting characteristics consistent with pneumonia.

The problem and our solution

Problem:

- PNEUMONIA: 3875 images

- NORMAL: 1341 images

Class imbalance in medical imaging datasets impacts diagnostic accuracy.

Solutions:

- Employ and compare three generative models (VAE, Enhanced VAE, and DDPM) to generate balanced synthetic chest X-rays.

Conditional VAE

Why Conditional VAE

Controlled Generation

By conditioning on your label *y* (e.g., "Normal"), your C-VAE can generate chest X-rays specific to that class, helping to balance your dataset.

When conditioning on an additional variable y (e.g., class label), both the encoder and decoder include y:

$$\ln p(x|y) \geq \underbrace{\mathbb{E}_{q_{\phi}(z|x,y)}[\ln p_{ heta}(x|z,y)]}_{ ext{Reconstruction Term}} - \underbrace{D_{ ext{KL}}(q_{\phi}(z|x,y) \, \| \, p_{ heta}(z|y))}_{ ext{Conditional Regularization}}$$

Thus the CVAE loss is:

$$\mathcal{L}_{ ext{CVAE}}(x,y) = -\mathbb{E}_{q_{\phi}(z|x,y)}[\ln p_{ heta}(x|z,y)] + D_{ ext{KL}}(q_{\phi}(z|x,y) \, \| \, p_{ heta}(z|y))$$

Conditional VAE Architecture

Conditional VAE Results

- VAE epoch 1

- VAE epoch 30

- VAE epoch 78

Enhanced Conditional VAE

This section defines and trains a more expressive Conditional Variational Autoencoder (**VAE**) that leverages:

- **Residual blocks** in the decoder for sharper image reconstruction.
- SSIM (Structural Similarity Index) as a secondary loss term to preserve image structure.
- β-VAE regularization.
- Early stopping

Residual blocks

Benefits of adding residual blocks:

- Enhanced feature learning
- Prevents vanishing gradients in deep networks
- Improves reconstruction quality and detail preservation

Residual blocks in the decoder

SSIM (Structural Similarity Index Measure)

- SSIM is a perceptual loss that evaluates image similarity based on **structure**, **contrast**, and **luminance** more **aligned with human visual perception** than MSE.
- Compared to **pixel-based losses**, SSIM ensures reconstructions look realistic and diagnostically useful.
- It's used to improve the structural fidelity of generated chest X-rays, especially to preserve features like **lung edges**, which are crucial for medical diagnosis.

Loss=Reconstruction Loss (e.g., MSE)+KL+λ·(1-SSIM)

SSIM (Structural Similarity Index Measure)

β -VAE

β -VAE regularization

- β is a hyperparameter to control the strength of the regularization term (KL divergence) in the loss function and scales the KL divergence term in the VAE loss:

Standard VAE Loss:

$$\mathcal{L}_{ ext{VAE}} = \mathbb{E}_{q(z|x)}[-\log p(x|z)] + ext{KL}(q(z|x)\|p(z))$$

β-VAE Loss:

$$\mathcal{L}_{eta ext{-VAE}} = \mathbb{E}_{q(z|x)}[-\log p(x|z)] + eta \cdot ext{KL}(q(z|x)\|p(z))$$

- When $\beta = 1$, this is just a normal VAE.
- When $\beta > 1$, you increase pressure on the model to align the latent distribution q(z|x) with the prior p(z), usually a standard Gaussian.

Total Loss=Reconstruction Loss (e.g., MSE)+ β *KL+ λ · (1–SSIM)

Early stopping

- Early stopping is a technique used during training to prevent overfitting and save some resources while training. It monitors the model's performance, and when performance stops improving for a specified number of epochs (patience).
- In our project we added patience = 3.

Enhanced Conditional VAE Results

- VAE epoch 1

- VAE epoch 30

- VAE epoch 78

DDPM (Denoising Diffusion Probabilistic Model)

CNN Classifier

Dimension Flow: $[1,64,64] \rightarrow [16,64,64] \rightarrow [16,32,32] \rightarrow [32,32,32] \rightarrow [32,16,16] \rightarrow [8192] \rightarrow [128] \rightarrow [2]$

Legend: Conv2d (3×3 kernel, padding=1) ReLU Activation MaxPool2d (2×2, stride=2) Flatten Fully Connected Task: Binary Classification Classes: Normal/Pneumonia

Architecture Details:

- · Input: 64×64 grayscale X-ray images
- Conv1: 1→16 channels, maintains spatial size
- · Conv2: 16→32 channels, maintains spatial size
- · MaxPool: Reduces spatial dimensions by half
- FC1: 8192→128 neurons with ReLU
- FC2: 128→2 neurons (classification output)
- Total Parameters: ~1M parameters

Key Features:

- · Simple and fast architecture
- · Suitable for medical imaging
- · Binary classification output
- · Progressive downsampling
- ReLU activations
- · Efficient parameter usage

DDMP and CNN results

Epoch 1 done.
Epoch 2 done.
Epoch 3 done.
Accuracy: 0.7420
Precision: 0.7101
Recall: 0.9923
F1: 0.8278
Confusion matrix:
[[76 158]
[3 387]]

To address the class imbalance in the chest X-ray dataset, we used a **DDPM** (**Denoising Diffusion Probabilistic Model**) to generate synthetic images of the minority class ("Normal").

These synthetic images were combined with the real data to create a more balanced training set.

We then trained a **CNN classifier** on the augmented dataset (real + DDPM synthetic) and evaluated its performance on the real test set.

CNN classifier with VAE data

Training classifier on original dataset Epoch 1/5, Loss: 0.2045 Epoch 2/5, Loss: 0.1022 Epoch 3/5, Loss: 0.0884 Epoch 4/5, Loss: 0.0681 Epoch 5/5, Loss: 0.0598 Accuracy on test set: 0.7484 Training classifier on VAE-augmented dataset Epoch 1/5, Loss: 0.2599 Epoch 2/5, Loss: 0.1167 Epoch 3/5, Loss: 0.0811 Epoch 4/5, Loss: 0.0598 Epoch 5/5, Loss: 0.0500 Accuracy on test set: 0.7532

True: Normal Orig Pred: Pneumonia VAE Pred: Pneumonia

True: Normal Orig Pred: Pneumonia VAE Pred: Pneumonia

True: Normal Orig Pred: Pneumonia VAE Pred: Pneumonia

True: Normal Orig Pred: Pneumonia VAE Pred: Pneumonia

CNN classifier with Enhanced VAE data

```
Training classifier on original dataset
Epoch 1/5, Loss: 0.2057
Epoch 2/5, Loss: 0.1214
Epoch 3/5, Loss: 0.0859
Epoch 4/5, Loss: 0.0738
Epoch 5/5, Loss: 0.0624
Original Accuracy: 0.8301
Class 0 (Normal) - Precision: 0.9507, Recall: 0.5769, F1: 0.7181
Class 1 (Pneumonia) - Precision: 0.7946, Recall: 0.9821, F1: 0.8784
Training classifier on VAE-augmented dataset
Epoch 1/5, Loss: 0.2178
Epoch 2/5, Loss: 0.0868
Epoch 3/5, Loss: 0.0569
Epoch 4/5, Loss: 0.0397
Epoch 5/5, Loss: 0.0300
VAE-Augmented Accuracy: 0.7837
Class 0 (Normal) - Precision: 0.9091, Recall: 0.4701, F1: 0.6197
Class 1 (Pneumonia) - Precision: 0.7535, Recall: 0.9718, F1: 0.8488
```


True: Pneumonia

True: Normal Orig: Normal VAE: Normal

Orig: Normal

Challenges & Issues Encountered

- Severe Class Imbalance
- Computational Constraints
- Small Subsets for Debugging
- Quality of Synthetic Images
- Checkerboard Artifacts
- Posterior Collapse in VAEs (If the latent space was too large or the KLD loss weight too strong, the VAE decoder produced only black or blank images.)
- Hyperparameter Tuning
- No Direct Evaluation Metrics for Generators

Thank you.

