Correction du DM n°9 Préparation aux oraux

Exercice 1 — Voir correction dans les exercices du chapitre 11.

Exercice $2\star$ — Soient u_1, u_2, \ldots, u_p des endomorphismes d'un \mathbb{C} espace vectoriel de dimension finie non nul n. On suppose qu'ils commutent deux à deux. Montrer qu'il existe une base \mathcal{B} de \mathbb{E} telle que les matrices de u_1, u_2, \ldots, u_p dans \mathcal{B} de soient triangulaires supérieures. On dit que u_1, u_2, \ldots, u_p sont cotrigonalisables.

Un correction est donnée dans les exercices du chapitre 11. En voici une autre.

Soit $p \in \mathbf{N}^*$. Notons pour n entier naturel non nul, $\mathbf{P_n}$ la propriété :

Dans tout espace vectoriel sur \mathbf{C} de dimension n ou moins, p endomorphismes commutant entre eux sont cotrigonalisables.

- La propriété \mathbf{P}_1 est trivialement vraie, puisque des endomorphismes d'un espace vectoriel de dimension n sont cotrigonaLISÉS dans toute base de cet espace.
 - Soit $n \in \mathbf{N}^*$ tel que \mathbf{P}_n soit vraie.

Soit u_1, u_2, \ldots, u_p des endomorphismes d'un \mathbf{C} espace vectoriel \mathbf{E} de dimension finie non nulle n+1 qui entre eux commutent.

Choisissons une base \mathcal{B}_0 de \mathbf{E} . Pour tout endomorphisme f de \mathbf{E} , on désignera par f^* l'élément de $\mathcal{L}(\mathbf{E})$ dont la matrice dans \mathcal{B}_0 est $^{\mathrm{t}}(\mathrm{Mat}_{\mathcal{B}_0}(f))$ de \mathbf{E} .

Excluons le cas où les u_i sont tous des homothéties et où toute base trigonalise (et même diagonalise) tous ces endomorphismes. Et considéron,s quitte à renuméroter ces endomorphismes, que ${}^{\rm t}u_1$ ne soit pas une homothétie. Par ${\bf E}_{\lambda}$ nous désignerons un sous-espace propre de ${}^{\rm t}u_1$ associé à une valeur propre λ , espace, qui par hypothèse est de dimension n ou moins. L'existence d'un tel espace propre résulte de ce que le corps de base de ${\bf E}$ est ${\bf C}$.

On a immédiatement, puisque si deux matrices commutent leur transposées itou, que les endomorphismes $u_1^*, u_2^*, \ldots, u_p^*$ commutent entre eux, si bien que \mathbf{E}_{λ} est stable par ces endomorphismes. Désignant par v_i , l'endomorphisme induit sur \mathbf{E}_{λ} par u_i^* , pour $i=1,\ldots,p$, on a immédiatement que les v_i commutent et donc, par \mathbf{P}_n , on dispose d'une base $(\vec{\epsilon}_1, \ldots \vec{\epsilon}_k)$ de \mathbf{E}_{λ} qui trigonalise les v_i . Alors $\vec{\epsilon}_1$ est un vecteur propre commun à tous les v_i , donc un vecteur popre commun à $u_1^*, u_2^*, \ldots, u_p^*$.

Notons A le vecteur colonne coordonnées de $\vec{\epsilon}_1$ dans \mathcal{B}_0 . L'hyperplan H d'équation dans \mathcal{B}_0 ,

$$H: {}^{\mathrm{t}}AX = 0$$

est stable par $u_1, u_2,...,u_p$, en en effet, posant $M_i = \text{Mat}_{\mathcal{B}_0}(u_i)$, pour i = 1,...,p, on a pour tout $X \in \mathcal{M}_{n,1}(\mathbf{C})$

$${}^{\mathrm{t}}AX = {}^{\mathrm{t}}({}^{\mathrm{t}}M_{i}A)X = \lambda_{i}{}^{\mathrm{t}}AX,$$

en notant λ_i la valeur propre de u_i^* associé à $\vec{\epsilon}_1$.

En invoquant derechef \mathbf{P}_n on dispose d'une base $(\vec{e}_1, ... \vec{e}_n)$ de H qui trigonalise les endomorphismes induits sur H par les u_i . Complétons cette base de H en une base \mathcal{B} de \mathbf{E} (de quelconque façon), alors pour i = 1, ..., p,

$$\operatorname{Mat}_{\mathcal{B}}(u_i) = \begin{pmatrix} & t_1 \\ T & \cdot \\ & t_n \\ O_{1,n} & t_{n+1} \end{pmatrix},$$

où T est la matrice dans $(\vec{e}_1,...\vec{e}_n)$ de l'endomorphisme de H induit par (u_i) , que l'on sait triangulaire, et ${}^{\rm t}(t_1,...,t_{n+1})$ le vecteur colonne coordonnées dans \mathcal{B} de $u_i(\vec{e}_{n+1})$, notons que ${\rm Mat}_{\mathcal{B}}(u_i) \in \mathcal{T}_n^+(\mathbf{C})$.

La base \mathcal{B} est une base de cotrigonalisation de $u_1,...u_p$; d'où \mathbf{P}_{n+1} .

On vient, par récurrence, de prouver que des endomorphismes d'un C-espace vectoriel de dimension finie, qui commutent entre eux sont cotrigonalisables.

Exercice 3 — Soit Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ diagonalisable. Nous noterons $\lambda_1, \lambda_2, \ldots, \lambda_p$ ses p valeurs propres deux à deux distinctes et de multiplicité respectives m_1, m_2, \ldots, m_p . Montrer que l'ensemble des éléments de $\mathcal{M}_n(\mathbf{K})$ qui commutent avec A est un espace vectoriel dont on déterminera la dimension.

Notons \mathcal{C} le commutant de A. Les éléments de \mathbb{C}^n seront notés en colonne.

•Analyse —

Soit $M \in \mathcal{C}$. Comme M commute avec A les sous-espaces propres $\mathbf{E}_{\lambda_1}, \dots \mathbf{E}_{\lambda_p}$ de A, sont donc stables par M. Donc dans une base \mathcal{B} de \mathbf{E} adaptée à la décomposition $\mathbf{C}^n = \bigoplus_{i=1}^p \mathbf{E}_{\lambda_i}$, la matrice de l'endomorphisme de \mathbf{C}^n canoniquement associé à M est de la forme

$$\operatorname{diag}\left(M_{1},M_{2},..M_{p}\right),$$

où $M_i \in \mathcal{M}_{m_i}(\mathbf{C})$, en effet le caractère diagonalisable de A veut que la dimension de chaque \mathbf{E}_{λ_i} soit aussi la multiplicité de la valeur propre λ_i . Donc en notant P la matrice de passage de la base canonique \mathcal{B}_c à \mathcal{B} , on a montré que $\mathcal{C} \subset P\mathcal{D}P^{-1}$, où :

$$\mathcal{D} = \left\{ \operatorname{diag} \left(M_1, M_2, ... M_p \right), \forall i \in [1, p], M_i \in \mathcal{M}_{m_i}(\mathbf{C}) \right\}.$$

• Synthèse —

On a $A = P \operatorname{diag}(I_{m_1}, I_{m_2}, ..., I_{m_p}) P^{-1}$. Par produit par blocs, on montre que $\operatorname{diag}(I_{m_1}, I_{m_2}, ..., I_{m_p})$ commute avec tout élément de \mathcal{D} , donc : $P\mathcal{D}P^{-1} \subset \mathcal{C}$.

Finalement
$$C = P \{ \text{diag}(M_1, M_2, ...M_p), \forall i \in [1, p], M_i \in \mathcal{M}_{m_i}(\mathbf{C}) \} P^{-1}$$
.
L'application $\mathcal{M}_{m_1}(\mathbf{C}) \times \mathcal{M}_{m_2}(\mathbf{C}) \times ... \times \mathcal{M}_{m_p}(\mathbf{C}) \text{ dans } \mathcal{M}_n(\mathbf{C})$

$$(M_1, M_2, ..., M_p) \mapsto diag(M_1, M_2, ..., M_p)$$

est trivailement linéaire, l'examen de son noyau montre qu'elle est injective. Son image \mathcal{D} est donc un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{C})$ isomorphe à $\mathcal{M}_{m_1}(\mathbf{C}) \times \mathcal{M}_{m_2}(\mathbf{C}) \times ... \times \mathcal{M}_{m_p}(\mathbf{C})$. La conjugaison par P étant aussi un automorphisme de $\mathcal{M}_n(\mathbf{C})$ sur $\mathcal{M}_n(\mathbf{C})$ (d'automorphisme réciproque la conjugaison par P^{-1}), on a :

 $\underline{\mathcal{C}}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{C})$, isomorphe à $\mathcal{M}_{m_1}(\mathbf{C}) \times \mathcal{M}_{m_2}(\mathbf{C}) \times ... \times \mathcal{M}_{m_p}(\mathbf{C})$.

$$\overline{\mathrm{Donc}\,\dim(\mathcal{C})=\dim(\mathcal{M}_{m_1}(\mathbf{C})\times\mathcal{M}_{m_2}(\mathbf{C})}\times\ldots\times\mathcal{M}_{m_p}(\mathbf{C}))=\sum_{i=1}^p\dim(\mathcal{M}_{m_i}(\mathbf{C}))=\sum_{i=1}^pm_i^2.$$

Exercice 4 — Déterminer les solutions définies sur \mathbf{R} , à valeurs réelles du système différentiel suivant :

$$\begin{cases} \frac{d^2x}{dt^2} + 3\frac{dy}{dt} - 4x + 6y = 0, \\ \frac{d^2y}{dt^2} + \frac{dx}{dt} - 2x + 4y = 0. \end{cases}$$
(1)

On notera \mathbf{R}^n , pour tout entier $n \geq 1$ en colonne, et l'on posera $\mathbf{E} = \mathcal{C}^2(\mathbf{R}, \mathbf{R}^2)$ et $\mathbf{F} = \mathcal{C}^1(\mathbf{R}, \mathbf{R}^4)$.

Soit l'application

$$J: E \to \mathbf{F}; \begin{pmatrix} \phi \\ \psi \end{pmatrix} \mapsto \begin{pmatrix} \phi \\ \phi' \\ \psi \\ \psi' \end{pmatrix}$$

Clairement J est linéaire, injective (son noyau est trivialement....trivial) et induit un isomorphisme de l'espace vectoriel des solutions de (1) sur celui des solutions du système suivant :

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 4 & 0 & -6 & -3 \\ 0 & 0 & 0 & 1 \\ 2 & -1 & -4 & 0 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{pmatrix}$$

La fin de l'exercice est asinitrottante...

Exercice 5 — Soient A et A' et B des éléments de $\mathcal{M}_n(\mathbf{R})$ et M la matrice élément de $\mathcal{M}_{2n}(\mathbf{R})$, $\begin{pmatrix} A & B \\ 0_n & A' \end{pmatrix}$.

Montrer que si M est diagonalisable alors A et A' le sont. Corrigé en classe.

Exercice 6 — Déterminer les éléments A de $\mathcal{M}_n(\mathbf{R})$ tels que la matrice B suivante soit diagonalisable. $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$.

• Supposons que B soit diagonalisable. On dispose donc d'un polynôme P scindé à racines simples tel que $P(B) = O_{2n}$.

Le calcul montre que $B^2 = \begin{pmatrix} A^2 & 2A^2 \\ 0 & A^2 \end{pmatrix}$, $B^3 = \begin{pmatrix} A^3 & 3A^3 \\ 0 & A^3 \end{pmatrix}$ et suggère que :

$$\forall k \in \mathbf{N}, B^k = \begin{pmatrix} A^k & kA^k \\ 0 & A^k \end{pmatrix},$$

ce qu'une récurrence immédiate confirme.

Donc $P(B) = \begin{pmatrix} P(A) & (XP')(A) \\ 0 & P(A) \end{pmatrix}$. Donc $P(A) = O_n$ et $(XP)'(A) = O_n$. La première égalité donne que A est diagonalisable et que son spectre est inclus dans l'ensemble Ra(P) des racines de P, la seconde veut que :

$$\operatorname{sp}(A) \subset \operatorname{Ra}(XP') = \operatorname{Ra}(P') \cup \{0\}.$$

Mais comme P est à scindé à racines simples $Ra(P') \cap Ra(P) = \emptyset$. Donc le spectre de A est réduit à $\{0\}$, et, A étant diagonalisable, cette matrice est nulle.

• Réciproquement pour $A = O_n$, B est diagonali-sable et -sée.

B est diagonalisable si et seulement si A est nulle.

Exercices 7 — ENDOMORPHISMES SEMI-SIMPLES —

L'exercice est corrigé dans les feuilles d'exercice du chapitre sur la réduction.

Exercice 8 —

1. Donner une condition nécessaire portant sur la parité de l'élément n de \mathbb{N}^* , pour qu'il existe une matrice M élément de $\mathcal{M}_n(\mathbf{R})$ qui vérifie :

$$M^2 + 2M + 5I_n = 0_n.$$

- 2. Cette condition est-elle suffisante?
- 1. Soit le polynôme $P:=X^2+2P+5$. Comme P est annulateur pour M, le spectre complexe de M est inclus dans l'ensemble $\mathrm{Rac}(P)$ des racines complexes de P. Or $\mathrm{Rac}(P)=\{\lambda,\bar{\lambda}\}$, avec $\lambda=1+2\mathrm{i}$, et comme le polynôme caractéristique de M est réel, M admet nécessairement comme valeur propre λ ET $\bar{\lambda}$ avec la même multiplicité m. Donc n=2m c'est dire que n est pair.
- 2. Supposons n pair. Ce nombre s'écrit : n = 2m, avec $m \in \mathbb{N}^*$.

MÉTHODE 1
$$\overline{}$$
 Posons $A = \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix}$, et $M = \operatorname{diag}(\underline{A}, \underline{A}, ..., \underline{A})$, notons que $\chi_A = P$. et donc, par le

théorème de Cayley-Hamilton,

$$P(M) = \operatorname{diag}(\underbrace{\chi_A(A), \chi_A(A), ..., \chi_A(A)}_{m}) = \operatorname{diag}(O_2, O_2, ..., O_2) = O_n.$$

MÉTHODE 2 —

On préfère à la matrice compagon A l'élément B de $\mathcal{M}_2(\mathbf{R})$, $B := |\lambda| R_\theta$ où θ sera un argument de λ . La matrice B, comme A à pour spectre $\{\lambda, \bar{\lambda}\}$ et donc P comme polynôme caractéristique.

Les deux méthodes s'accordent à montrer que la réciproque est vraie.

Exercice 9 ** — Soit u un endomorphisme d'un \mathbf{C} -espace vectoriel \mathbf{E} de dimension finie n, non nulle. Soit $Q \in \mathbf{C}[x]$. On suppose que Q(u) est diagonalisable et que Q'(u) est inversible. Montrer que u est diagonalisable.

Comme Q(u) et u commutent, tout espace propre de Q(u) est stable par u. Mais le caractère diagonalisable de Q(u) veut que \mathbf{E} soit la somme directe des sous-espaces propres de Q(u). Donc si, pour tout espace propre de Q(u), l'endomorphisme induit par u sur ce dernier est diagonalisable, alors u sera diagonalisable 1 .

Soit $\lambda \in \operatorname{sp}(u)$ \mathbf{E}_{λ} l'espace propre de Q(u) associé à λ et v l'endomorphisme qu'induit u sur celui-ci. Posons $R := Q - \lambda$ de sorte que R soit annulateur pour v. Si R est simplement scindé, alors v est diagonalisable. Sinon soit α une racine multiple de R. Donc R et R' s'écrivent donc

$$R = (X - a)S; R' = Q' = (X - a)T,$$

où S et T, sont éléments de $\mathbf{C}[X]$. L'inversibilité de Q'(u), exige celle de Q'(v) qui à son tour impose celle de v-aid. Donc puisque

$$0_{\mathcal{L}(E_{\lambda})} = R(v) = (v - aid)S(v),$$

Le polynôme S est annulateur pour v.

^{1.} La réciproque est vraie, mais sans intérêt ici.

Par ailleurs R' = (x - a)S' + S, donc $S'(v) = (v - aid)^{-1}R'(v)$, et donc S'(v) est inversible comme produit de deux tels endomorphismes de \mathbf{E}_{λ} . Bref S satisfait les même hypothèses que R et la multiplicité de a comme racine de S est inférieur de 1 à celle de a vu comme racine de R. En itérant le processus et en l'appliquant à chaque racine multiple de R on construit un polynôme anulateur de v simplement scindé. Donc v est diagonalisable.

Par la remarque préliminaire u est donc diagonalisable.

Exercice 10 Soit M un élément de $\mathcal{M}_n(\mathbf{C})$.

- 1. On suppose que pour tout entier m strictement positif, $Tr(M^m) = 0$. Montrer que M est nilpotente.
- 2. On suppose que $\operatorname{Tr}(M^m) \underset{m \to +\infty}{\to} 0$. Montrer que les valeurs propres de M sont toutes de module inférieur strictement à 1.
- 1. Vu en cours.

2.

Exercice 11 —

- 1. A quelle condition une matrice de permutation d'ordre $n \geq 2$ est-elle diagonalisable dans \mathbf{R} .
- 2. * Soient un entier $n \geq 2$ et σ un élément de S_n groupe symétrique d'ordre n. Déterminer les polynômes minimal et caractéristique de P_{σ} dans $\mathcal{M}_n(\mathbf{C})$.
- 1. Soit $\sigma \in S_n$, notons P_{σ} la matrice de permutation associée.
 - Supposons P_{σ} diagonaisable dans $\mathcal{M}_n(\mathbf{R})$.

Notons N l'ordre de σ , qui ce trouve être celui de P_{σ} en raison du caractère isomorphique de $S_n \to \mathcal{P}_n$; $\phi \mapsto P_{\phi}$ (\mathcal{P}_n est le groupe des matrices de permutation.). Le polynôme $X^N - 1$ est annulateur pour P_{σ} , donc le spectre de M est inclus dans \mathbf{U}_N , ensemble des racines de $X^N - 1$.

Mais comme P_{σ} est diagonalisable $\underline{\text{dans } \mathbf{R}} : \operatorname{sp}(P_{\sigma}) \subset \mathbf{U}_N \cap \mathbf{R} = \{1, -1\}.$

Donc soit P_{σ} est l'identité, soit elle est semblable à une matrice diagonale ayant sur la diagonale des -1 et éventuellement un ou plusieurs 1, selon que son spectre se réduise à $\{1\}$ ou non.

Dans le permier cas $\sigma = \mathrm{id}_{\{1,\dots,n\}}$ dans le second, les cycles à support disjoints qui interviennent dans la décomposition de σ sont tous des transpositions et on a :

$$\sigma = \tau_1 \circ \tau_2 \circ \dots \circ \tau_k$$

où $\tau_1, ... \tau_k$ sont des transpositions à supports disjoints.

• La réciproque est évidente, puisque P_{σ} est soit l'identité, soit un élément d'ordre 2 et à ce titre est annulé par le polynôme $X^2 - 1$ simplement scindé sur \mathbf{R} .

Une matrice de permutation est diagonalisable dans $\mathcal{M}_n(\mathbf{R})$ si et seulement si la permutation qu'elle représente est l'identité ou un produit de transpositions à supports disjoints.

2. Dans la suite nous confondrons un p-cycle c de S_n et le p-uplet $(a_1, ..., a_p)$ qui le représente. Introduisons par ailleurs pour tout $p \in [2, n]$ la matrice

$$J_p := \begin{pmatrix} 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & & 0 \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

 J_p est la matrice de permutation d'ordre p associée au p-cycle (1,2,3,...p-1,p) de $[\![1,p]\!]$. Notons dès à présent que ce cycle étant d'ordre p, le polynôme X^p-1 est annulateur pour J_p . Par ailleurs pour tout $q \in [\![1,p-1]\!]$ et tout polynôme Q de degré q, $Q(J_p)(E_1)$ est une combinaison linéaire de $(E_2,E_3,....E_{q+1})$ (en convenant, le cas échéant que $E_{n+1}=E_1$). Donc la liberté de la base canonique interdit à Q d'être annulateur pour J_p , laissant à X^p-1 le rôle de polynôme minimal, et donc aussi de polynôme caractéristique puisque ces deux polynômes partagent le même degré, sont tous deux unitaires et que le premier divise le second (Cayley-Hamilton), bref :

$$\chi_{J_p} = \mu_{J_p} = X^p - 1. \tag{2}$$

Remarque. La matrice J_p est une matrice compagnon.)

Décomposons σ en produit de cycles à support disjoints, $\sigma = c_1 c_2 ... c_k$. Notons $a_1, ... a_h$ les éventuels élément de $[\![1,n]\!]$ laissés invariants par sigma.

Soit ϕ la permutation de [1, n] définie, avec l'identification signalée, par :

$$(\phi(1), \phi(2), ..., \phi(n)) = (a_1, ..., a_h, c_1, c_2,c_k).$$

La matrice de l'endomorphisme de $\mathcal{M}_{n,1}(\mathbf{R})$ canoniquement associé à P_{σ} dans la base $(E_{\phi}(1), E_{\phi(2)}, ..., E_{\phi(n)})$ est :

$$P' = \operatorname{diag}(I_h, J_{d_1}, J_{d_2}, ..., J_{d_k}),$$

où pour i = 1, ...k, on désigne par d_i la taille du cycle c_i . On a donc que P' est semblable à P_{σ}

Remarque. on a même $P_{\sigma} = P_{\phi^{-1}}P'P_{\phi}$. Par (2).

$$\chi_{P_{\sigma}} = \chi_{P'} = \chi_{I_h} \chi_{J_{d_1}} \chi_{J_{d_2}} ... \chi_{J_{d_k}} = (X - 1)^h (X^{d_1} - 1)(X^{d_2} - 1)...(X^{d_k} - 1).$$

Un calcul par blocs montre que le polynôme minimal de P' donc de P_{σ} annule I_h , J_{d_1} , $J_{d_2},...,J_{d_k}$, il est donc divisible par X^h et $(X^{d_1}-1), (X^{d_2}-1),...,(X^{d_k}-1)$, qui sont les polynôme minimaux respectifs de I_h , $J_{d_1}, J_{d_2},...,J_{d_k}$. C'est donc un multiple commun de ces k+1 polynômes. Notons M le PPCM de ces polynômes On vient de prouver que M divise $\mu_{P_{\sigma}}$. Comme tout multiple commun de $(X^{d_1}-1), (X^{d_2}-1),...,(X^{d_k}-1)$ annule $I_h, J_{d_1}, J_{d_2},...,J_{d_k}$, il annule P' et donc est divisible par $\mu_{P_{\sigma}}$, en particulier $\mu_{P_{\sigma}}$ divisons donc M. Concluons :

$$\underline{M=\mu_{P_{\sigma}}}.$$

Exercice 12

- 1. Soit M un élément de $M_n(\mathbf{R})$. On note μ sont polynôme minimal et $\mu_{\mathbf{C}}$ sont polynôme minimal lorsqu'on considère M comme comme un élément de $\mathcal{M}_n(\mathbf{C})$. Montrer que $\mu = \mu_{\mathbf{C}}$.
- 2. ** Soit M un élément de $M_n(\mathbf{Q})$. On note $\mu_{\mathbf{Q}}$ son polynôme minimal et $\mu_{\mathbf{R}}$ son polynôme minimal lorsqu'on considère M comme comme un élément de $\mathcal{M}_n(\mathbf{R})$. Montrer que $\mu_{\mathbf{Q}} = \mu_{\mathbf{R}}$.
- 1. La conjugaison étént un automorphisme du corps ${\bf C}$, la conjugaison de l'égalité matricielle $O_n=\mu_{\bf C}(M)$ donne :

$$O_n = \bar{O}_n = \overline{\mu_{\mathbf{C}}(M)} = \bar{\mu_C}(\bar{M}) = \bar{\mu_C}(M),$$

car M est à coefficients réels. Donc $\bar{\mu}_{\mathbf{C}}$ est anulateur pour M, unitaire de même degré que $\mu_{\mathbf{C}}$, c'est donc $\mu_{\mathbf{C}}$. On a donc $\mu_{\mathbf{C}} \in \mathbf{R}[X]$. Donc comme ce dernier polynôme est annulateur μ divise μ_C .

Mais d'une autre côté comme μ est aussi un élément de $\mathbf{C}[X]$ annulateur pour M, on a : $\mu_{\mathbf{C}}$ divise μ .

Comme μ_C et sont unitaires et, par ce qui précède, associés, $\mu = \mu_C$.

2. Cf. colles