Analysis 9 - Getting a closer look at the clusters from the clusters from basic some WT only.

Purpose

This analysis is based off of lcmSOM_analysis4_072914.Rmd, where the original dataset was made. The top 25% of co-efficient of variation.

Questions

- 1. What type of gene co-expression patterns are found in this data?
- 2. Is there any cluster that is enriched in genes from the curated leaf gene list?
- 3. Are there GO categories that are enriched in the clusters?
- 4. If there are GO categories, what are the genes that are represented?

Caveats

1. While the standard deviation of expression of each gene in each tissue were from the reps were calculated, this was not used when creating the self organized map.

Analysis Set-up

Required Libraries

```
library(VennDiagram)
library(ggplot2)
library(reshape)
library(kohonen)
library(goseq)
library(GO.db)
library(knitr)
source("./clusterFunctions.R")
```

Upload that dataset:

```
genes25 <- read.csv("../data/analysis4.top25.csv")
head(genes25)</pre>
```

```
##
                     gene tf2ambr tf2aother tf2bmbr tf2bother tf2cmbr
## 1 3 Solyc00g005060.1.1
                          2.8122 1.388e-17 13.073
                                                      0.5228
                                                              0.1063
## 2 4 Solyc00g005070.1.1 16.1748 1.420e+01 158.811
                                                      4.4798 11.5423
## 3 8 Solyc00g005430.1.1 0.9591 1.563e+00 2.379
                                                      0.8714
                                                              0.7496
## 4 10 Solyc00g005840.2.1 13.5849 4.424e+01
                                            7.508
                                                     19.3277 10.4523
## 5 11 Solyc00g005880.1.1
                          1.8399 1.124e+00 61.639
                                                       2.0358
                                                              5.7112
## 6 12 Solyc00g006470.1.1 465.9812 2.906e+02 91.648 289.6609 250.5632
    tf2cother
                 wtambr wtaother
                                  wtbmbr wtbother
                                                     wtcmbr wtcother
## 1
       0.8377 3.495e-01
                         0.4027
                                  1.2847 1.388e-17
                                                     0.7016
                                                              6.511
## 2
       3.1077 1.719e+01
                         4.5236 12.6456 3.462e+00
                                                     4.1808
                                                             83.519
## 3
       0.4416 4.008e-02 0.8329 0.4097 1.358e+00
                                                    1.4743
                                                              0.946
```

```
29.7088 1.975e+01 14.0743 11.4830 8.351e+01 15.8112
                                                                13.882
                         2.1333
                                   2.9694 2.811e+00
                                                                 4.966
       1.7874 1.571e+00
                                                      1.9558
## 6 118.9511 2.456e+03 605.8620 108.0947 3.605e+02 499.4475 409.566
##
           sd average
## 1
      3.8807
               2.217 1.7506
## 2 46.7495 27.820 1.6804
      0.6226
               1.002 0.6214
## 4 21.3432
              23.611 0.9040
## 5 17.0906
               7.545 2.2651
## 6 638.1528 495.533 1.2878
genes25 <- genes25[,c(2,9:14)]
scale_data <- as.matrix(t(scale(t(genes25[c(2:7)]))))</pre>
pca <- prcomp(scale_data, scale=TRUE)</pre>
summary(pca)
## Importance of components:
                                       PC3
                                              PC4
                                                    PC5
##
                            PC1
                                 PC2
## Standard deviation
                          1.325 1.119 1.105 0.970 0.912 2.02e-15
## Proportion of Variance 0.293 0.209 0.204 0.157 0.138 0.00e+00
## Cumulative Proportion 0.293 0.501 0.705 0.862 1.000 1.00e+00
pca.scores <- data.frame(pca$x)</pre>
data.val <- cbind(genes25, scale_data, pca.scores)</pre>
head(data.val)
##
                           wtambr wtaother
                                            wtbmbr wtbother
                                                                wtcmbr
                   gene
## 1 Solyc00g005060.1.1 3.495e-01
                                   0.4027
                                            1.2847 1.388e-17
                                                                0.7016
## 2 Solyc00g005070.1.1 1.719e+01
                                   4.5236 12.6456 3.462e+00
                                                                4.1808
## 3 Solyc00g005430.1.1 4.008e-02
                                   0.8329
                                            0.4097 1.358e+00
                                                                1.4743
## 4 Solyc00g005840.2.1 1.975e+01 14.0743 11.4830 8.351e+01 15.8112
## 5 Solyc00g005880.1.1 1.571e+00
                                   2.1333
                                            2.9694 2.811e+00
                                                                1.9558
## 6 Solyc00g006470.1.1 2.456e+03 605.8620 108.0947 3.605e+02 499.4475
    wtcother wtambr wtaother wtbmbr wtbother wtcmbr wtcother
## 1
       6.511 -0.4822 -0.46066 -0.1039 -0.62353 -0.3398
                                                         2.0100 0.8529
## 2
      83.519 -0.1196 -0.52622 -0.2656 -0.56030 -0.5372
                                                         2.0089 0.8180
## 3
       0.946 -1.4636 -0.01919 -0.7901 0.93674 1.1493
                                                         0.1869 -1.0080
## 4
      13.882 -0.2374 -0.43921 -0.5314 2.03149 -0.3774 -0.4460 -1.3230
## 5
       4.966 -0.9589 -0.49543 0.1936 0.06336 -0.6416
                                                        1.8390 0.3961
## 6
     409.566 2.0022 -0.15634 -0.7372 -0.44270 -0.2805 -0.3854 0.6217
##
         PC2
                PC3
                         PC4
                                  PC5
                                              PC6
## 1 -1.6794 -0.7115 -0.10700 0.01075 2.220e-16
## 2 -1.8799 -0.2741 0.02502 -0.04351 -2.220e-16
## 3 0.8140 -1.3876 1.14932 -0.09713 3.331e-16
## 4 0.2193 0.7110 1.10255 1.45429 1.610e-15
## 5 -1.6693 -0.8672 -0.23448 0.90073 1.887e-15
## 6 0.1852 2.2867 0.39962 -0.66500 -2.942e-15
```

Visualizing the PCA

```
p <- ggplot(data.val, aes(PC1, PC2))
p + geom_point()</pre>
```


Self Organizing Map - (6,6), large

```
#subset only the scaled gene expression values
head(scale_data)
```

```
set.seed(6)
som <- som(data=scale_data, somgrid(6,6,"hexagonal")) # This is where you change the size of the map
summary(som)</pre>
```

```
## som map of size 6x6 with a hexagonal topology.
## Training data included; dimension is 4618 by 6
## Mean distance to the closest unit in the map: 0.6737
```

Look at the SOM results

plot(som, type = "codes")

plot(som, type = "counts")

Counts plot

plot(som, type="dist.neighbours")

Neighbour distance plot

head(som\$codes)

wtambr wtaother wtbmbr wtbother wtcmbr wtcother

```
## [1,] -0.6421 -0.4993 0.6867 -0.7243 -0.4076
                                                  1.5866
## [2,] 1.3207 -0.6470 -0.5440 -0.8022 -0.3054
                                                  0.9778
## [3,] -0.7651 -0.7102 -0.3252 -0.5241 1.1543
                                                  1.1703
## [4,] -0.5398 -0.4355 -0.2816 -0.2866 1.8971 -0.3536
## [5,] -0.8752 -0.2259 0.6039 -0.6945 1.5552 -0.3635
## [6,] -0.4958 -0.4749 1.8671 -0.4565 -0.2819 -0.1580
som$data <- data.frame(som$data) #changed to dataframe to extract column names easier.
data.val2 <- cbind(data.val,som$unit.classif,som$distances)</pre>
#fix to one regex
data.val2$gene <- gsub("^(.*)[.].*", "\\1", data.val2$gene)
data.val2$gene <- gsub("^(.*)[.].*", "\\1", data.val2$gene)
head(data.val2)
##
                      wtambr wtaother wtbmbr wtbother wtcmbr wtcother
              gene
## 1 Solyc00g005060 3.495e-01 0.4027 1.2847 1.388e-17 0.7016
```

```
## 2 Solyc00g005070 1.719e+01 4.5236 12.6456 3.462e+00 4.1808
                                                                83.519
## 3 Solyc00g005430 4.008e-02 0.8329
                                      0.4097 1.358e+00
                                                        1.4743
                                                                  0.946
## 4 Solyc00g005840 1.975e+01 14.0743 11.4830 8.351e+01 15.8112
                                                                 13.882
## 5 Solyc00g005880 1.571e+00
                             2.1333
                                      2.9694 2.811e+00 1.9558
                                                                   4.966
## 6 Solyc00g006470 2.456e+03 605.8620 108.0947 3.605e+02 499.4475
                                                                 409.566
     wtambr wtaother wtbmbr wtbother wtcmbr wtcother
                                                         PC1
## 1 -0.4822 -0.46066 -0.1039 -0.62353 -0.3398 2.0100 0.8529 -1.6794
## 2 -0.1196 -0.52622 -0.2656 -0.56030 -0.5372 2.0089 0.8180 -1.8799
## 3 -1.4636 -0.01919 -0.7901 0.93674 1.1493 0.1869 -1.0080 0.8140
## 4 -0.2374 -0.43921 -0.5314 2.03149 -0.3774 -0.4460 -1.3230 0.2193
## 5 -0.9589 -0.49543 0.1936 0.06336 -0.6416 1.8390 0.3961 -1.6693
## 6 2.0022 -0.15634 -0.7372 -0.44270 -0.2805 -0.3854 0.6217 0.1852
        PC3
                 PC4
                         PC5
                                    PC6 som$unit.classif som$distances
## 1 -0.7115 -0.10700 0.01075 2.220e-16
                                                      8
                                                              0.13932
## 2 -0.2741 0.02502 -0.04351 -2.220e-16
                                                      7
                                                              0.15509
## 3 -1.3876 1.14932 -0.09713 3.331e-16
                                                     10
                                                              0.32634
## 4 0.7110 1.10255 1.45429 1.610e-15
                                                     31
                                                              0.09767
## 5 -0.8672 -0.23448 0.90073 1.887e-15
                                                     8
                                                              0.89742
## 6 2.2867 0.39962 -0.66500 -2.942e-15
                                                     30
                                                              0.08093
```

Upload the gene expression list.

#Figure out more elegent way.

```
geneList1 <- read.csv("../../06diffGeneExp/analysis/indvGenes/yasuCuratedGenes/pnas.1402835111.sd06.
#isolate the genes
genesOfInterest <- geneList1[,c(1,3)]
colnames(genesOfInterest) <- c("gene", "name")
names(genesOfInterest) #check
## [1] "gene" "name"</pre>
```

#This is a ridiculas around assigning if a gene is a curated gene!

```
data.val2$curated <- match(data.val2$gene, genesOfInterest$gene)
data.val2$curated <- gsub("[[:digit:]]+", "yes", data.val2$curated)
data.val2$curated[is.na(data.val2$curated)] <- "no"</pre>
```

Visualize the major clusters. Here are the leaf curated genes in PC space.

scale_colour_manual(values=c("#cccccc", "#33ff33")) +

head(data.val2)

theme_bw()

```
##
                      wtambr wtaother
                                        wtbmbr wtbother
                                                           wtcmbr wtcother
                                                           0.7016
## 1 Solyc00g005060 3.495e-01
                               0.4027 1.2847 1.388e-17
                                                                     6.511
## 2 Solyc00g005070 1.719e+01
                               4.5236 12.6456 3.462e+00
                                                           4.1808
                                                                    83.519
## 3 Solyc00g005430 4.008e-02 0.8329
                                       0.4097 1.358e+00
                                                          1.4743
                                                                     0.946
## 4 Solyc00g005840 1.975e+01 14.0743 11.4830 8.351e+01 15.8112
                                                                    13.882
## 5 Solyc00g005880 1.571e+00
                               2.1333
                                       2.9694 2.811e+00
                                                           1.9558
                                                                     4.966
## 6 Solyc00g006470 2.456e+03 605.8620 108.0947 3.605e+02 499.4475
                                                                   409.566
      wtambr wtaother wtbmbr wtbother wtcmbr wtcother
                                                           PC1
                                                                   PC2
## 1 -0.4822 -0.46066 -0.1039 -0.62353 -0.3398
                                               2.0100 0.8529 -1.6794
## 2 -0.1196 -0.52622 -0.2656 -0.56030 -0.5372
                                                2.0089 0.8180 -1.8799
## 3 -1.4636 -0.01919 -0.7901 0.93674 1.1493
                                               0.1869 -1.0080 0.8140
## 4 -0.2374 -0.43921 -0.5314 2.03149 -0.3774 -0.4460 -1.3230 0.2193
## 5 -0.9589 -0.49543 0.1936 0.06336 -0.6416
                                               1.8390 0.3961 -1.6693
## 6 2.0022 -0.15634 -0.7372 -0.44270 -0.2805 -0.3854 0.6217 0.1852
##
        PC3
                 PC4
                          PC5
                                     PC6 som$unit.classif som$distances
## 1 -0.7115 -0.10700 0.01075 2.220e-16
                                                        8
                                                                0.13932
                                                        7
## 2 -0.2741 0.02502 -0.04351 -2.220e-16
                                                                0.15509
## 3 -1.3876 1.14932 -0.09713 3.331e-16
                                                       10
                                                                0.32634
## 4 0.7110 1.10255 1.45429 1.610e-15
                                                       31
                                                                0.09767
## 5 -0.8672 -0.23448 0.90073 1.887e-15
                                                       8
                                                                0.89742
## 6 2.2867 0.39962 -0.66500 -2.942e-15
                                                       30
                                                                0.08093
##
     curated
## 1
         nο
## 2
         no
## 3
         no
## 4
         no
## 5
         no
## 6
         no
p <- ggplot(data.val2, aes(PC1, PC2, color = curated))</pre>
p + geom_point(size=I(5), alpha = 0.6) +
```


Visualize by Cluster

Read in data used for GO enrichment analysis.

geneLength <- read.csv("../../07GO_enrichment/requisiteData/normalized_genes_length.csv")
cate <- read.table("../../07GO_enrichment/requisiteData/melted.GOTable.txt",header=TRUE)</pre>

Cluster 1

clusterVis(1)

clusterVis_PCA(1)

clusterVis_line(1)

Using gene, curated as id variables

clusterGO(1)

- ## Using manually entered categories.
- ## For 3061 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
- ## This was the default behavior for version 1.15.1 and earlier.
- ## Calculating the p-values...

[,1]

y <- genesInClust(1, data.val2, annotation)

[1] 125

#If value intersects with a leaf curated gene
intersect(y\$ITAG, genesOfInterest\$genes)

NULL

Cluster 2

clusterVis(2)

clusterVis_line(2)

Using gene, curated as id variables

clusterVis_PCA(2)

clusterGO(2)

- ## Using manually entered categories.
- ## For 3047 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).
- ## This was the default behavior for version 1.15.1 and earlier.
- ## Calculating the p-values...

[,1]

```
y <- genesInClust(20, data.val2, annotation)
```

[1] 125

kable(y)

```
##
##
## |ITAG
                    |AGI
                               gene_name
## |:--
## |Solyc00g014800 |NA
                               l NA
## |Solyc00g027120 |NA
                               l NA
## |Solyc00g036520 |NA
                               l NA
## |Solyc00g052540 |NA
                               | NA
## |Solyc00g166690 |NA
                               l NA
## |Solyc00g313030 |NA
                               | NA
## |Solyc01g010210 |NA
                               | NA
## |Solyc01g016630 |NA
                               INA
## |Solyc01g056770 |NA
                               | NA
## |Solyc01g057530 |NA
                               | NA
## |Solyc01g058430 |NA
                               | NA
## |Solyc01g066510 |AT5G49150 |Encodes a transmembrane domain containing protein expressed in sperm cel
## |Solyc01g081020 |AT4G37380 |pentatricopeptide (PPR) repeat-containing protein; similar to pentatrico
## |Solyc01g081290 |NA
## |Solyc01g097380 |AT1G60680 | A member of ARF GAP domain (AGD), A thaliana has 15 members, grouped int
## |Solyc01g097680 |NA
                               | NA
## |Solyc01g097690 |NA
                               | NA
                               l NA
## |Solyc01g106670 |NA
## |Solyc01g107960 |NA
                               l NA
## |Solyc01g109420 |AT4G36750 |quinone reductase family protein; similar to quinone reductase family pr
## |Solyc01g111480 |NA
## |Solyc01g111770 |AT4G38500 |similar to unknown protein [Arabidopsis thaliana] (TAIR:AT1G28240.1); si
## |Solyc02g025080 |NA
                               | NA
## |Solyc02g055330 |NA
                               | NA
## |Solyc02g063170 |NA
                               INA
## |Solyc02g065520 |NA
                               | NA
## |Solyc02g067200 |NA
                               INA
## |Solyc02g068840 |NA
                               | NA
## |Solyc02g069170 |NA
                               | NA
## |Solyc02g080350 |AT1G77170 |pentatricopeptide (PPR) repeat-containing protein; similar to binding [A
## |Solyc02g081130 |AT4G22140 |DNA binding; similar to bromo-adjacent homology (BAH) domain-containing
## |Solyc02g090730 |AT1G14870 |similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G35525.1); si
## |Solyc03g044030 |NA
                               l NA
## |Solyc03g044360 |NA
                               | NA
## |Solyc03g053030 |NA
                               | NA
## |Solyc03g062860 |NA
                               | NA
## |Solyc03g064010 |AT3G57830 |leucine-rich repeat transmembrane protein kinase, putative; similar to 1
## |Solyc03g078740 |NA
                               | NA
## |Solyc03g082420 |AT4G27670 |chloroplast located small heat shock protein.
## |Solyc03g082770 |NA
                               | NA
## |Solyc03g083740 |NA
                               | NA
```

```
## |Solyc03g093370 |NA
                               l NA
## |Solyc03g114570 |NA
                               INA
## |Solyc03g120950 |NA
                               | NA
## |Solyc03g123540 |AT1G54050 |17.4 kDa class III heat shock protein (HSP17.4-CIII); similar to AT-HSP1
## |Solyc04g005770 |AT2G02750 |pentatricopeptide (PPR) repeat-containing protein; similar to pentatrico
## |Solyc04g014940 |NA
## |Solyc04g015310 |NA
                               INA
## |Solyc04g039710 |NA
                               INA
## |Solyc04g076690 |NA
                               INA
## |Solyc04g078100 |NA
                               | NA
## |Solyc04g080170 |AT1G45160 |kinase; similar to protein kinase, putative [Arabidopsis thaliana] (TAIR
## |Solyc05g009970 |NA
                               l NA
## |Solyc05g010080 |NA
                               | NA
## |Solyc05g017870 |NA
                               l NA
## |Solyc05g039950 |NA
                               l NA
## |Solyc05g041600 |NA
                               | NA
## |Solyc05g050550 |NA
                               | NA
## |Solyc06g008800 |NA
                               l NA
## |Solyc06g036290 |AT5G52640 |Arabidopsis thaliana 81 kDA heat shock protein. Sequence analysis reveal
## |Solyc06g068700 |AT5G61790 |calnexin 1 (CNX1); Identical to Calnexin homolog 1 precursor (CNX1) [Ara
## |Solyc06g071380 |NA
                               | NA
## |Solyc06g073850 |NA
                               | NA
## |Solyc06g076420 |NA
                               | NA
                               INA
## |Solyc06g076590 |NA
## |Solyc06g076810 |NA
                               | NA
## |Solyc07g015770 |NA
                               INA
## |Solyc07g017550 |NA
                               | NA
## |Solyc07g017830 |NA
                               l NA
## |Solyc07g020780 |NA
                               | NA
                               l NA
## |Solyc07g021560 |NA
## |Solyc07g026760 |NA
                               l NA
## |Solyc07g032820 |NA
                               l NA
## |Solyc07g052870 |NA
                               | NA
## |Solyc07g054790 |NA
                               | NA
## |Solyc07g055170 |NA
                               | NA
## |Solyc07g063020 |NA
                               INA
## |Solyc07g064690 |AT1G29040 |similar to unknown protein [Oryza sativa (japonica cultivar-group)] (GB:
## |Solyc07g065060 |NA
                               | NA
## |Solyc07g065720 |NA
                               | NA
## |Solyc07g066500 |NA
## |Solyc08g007420 |AT4G17260 |L-lactate dehydrogenase, putative; similar to PMDH1 (PEROXISOMAL NAD-MAL
## |Solyc08g014390 |NA
## |Solyc08g023640 |AT4G21065 |binding; similar to pentatricopeptide (PPR) repeat-containing protein [A
## |Solyc08g075210 |NA
                               l NA
## |Solyc08g076010 |NA
                               | NA
## |Solyc08g076330 |NA
                               | NA
## |Solyc08g078080 |NA
                               | NA
## |Solyc09g008110 |NA
                               l NA
## |Solyc09g009140 |AT5G06680 |Encodes protein similar to yeast SCP98. Yeast SCP98 is essential for the
## |Solyc09g014620 |NA
                               | NA
## |Solyc09g042380 |NA
                               | NA
## |Solyc09g059490 |NA
                               | NA
## |Solyc09g075170 |AT3G62890 |binding; similar to binding [Arabidopsis thaliana] (TAIR:AT5G40405.1); s
## |Solyc09g082690 |AT3G22840 |Encodes an early light-inducible protein.
```

```
## |Solyc10g008880 |AT1G28520 |similar to unknown protein [Arabidopsis thaliana] (TAIR:AT2G42400.1); size
## |Solyc10g038050 |NA
                               INA
## |Solyc10g038070 |NA
                               INA
## |Solyc10g039300 |NA
                               | NA
## |Solyc10g049740 |AT1G05120 |SNF2 domain-containing protein / helicase domain-containing protein / RI
## |Solyc10g049960 |NA
                               | NA
## |Solyc10g054680 |NA
                               INA
## |Solyc10g078800 |NA
                               | NA
## |Solyc10g081570 |NA
                               INA
## |Solyc11g005240 |NA
                               | NA
## |Solyc11g008020 |AT5G03530 |ATRAB ALPHA (Arabidopsis Rab GTPase homolog C2a); GTP binding; similar t
## |Solyc11g008060 |NA
                               | NA
## |Solyc11g008380 |AT3G10370 |mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase. possibly
## |Solyc11g010220 |NA
## |Solyc11g011340 |AT4G39330 |mannitol dehydrogenase, putative; Identical to Probable mannitol dehydrogenase
## |Solyc11g030910 |NA
                               | NA
## |Solyc11g044680 |NA
                               | NA
## |Solyc11g065020 |NA
                               l NA
## |Solyc11g065650 |NA
                               | NA
## |Solyc11g071370 |AT1G05750 |PDE247 (PIGMENT DEFECTIVE 247); binding; similar to pentatricopeptide (P.
## |Solyc11g071740 |NA
                               | NA
## |Solyc11g071760 |NA
                               | NA
## |Solyc12g008610 |NA
                               | NA
## |Solyc12g010420 |NA
                               INA
## |Solyc12g036870 |NA
                               | NA
## |Solyc12g040330 |NA
                               INA
## |Solyc12g042630 |NA
                               | NA
## |Solyc12g056200 |AT4G11350 |similar to fringe-related protein [Arabidopsis thaliana] (TAIR:AT4G23490
## |Solyc12g056890 |NA
                               | NA
## |Solyc12g095870 |AT4G32830 |Encodes a member of a family of Ser/Thr kinases whose activities peak du
```

Cluster 3

Ambr in WT is higher than in tf2 and the WT genes in this cluster have a tight pattern.

clusterVis(3)

clusterVis_line(3)

Using gene, curated as id variables

clusterGO(3)

^{##} Using manually entered categories.

^{##} For 3087 genes, we could not find any categories. These genes will be excluded.

To force their use, please run with use_genes_without_cat=TRUE (see documentation). ## This was the default behavior for version 1.15.1 and earlier.

Calculating the p-values...

[,1]

Cluster 4 - Photosynthetic Genes.

clusterVis(4)

clusterVis_line(4)

Using gene, curated as id variables

clusterGO(4)

- ## Using manually entered categories.
- ## For 3079 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).

 $\mbox{\tt \#\#}$ This was the default behavior for version 1.15.1 and earlier. $\mbox{\tt \#\#}$ Calculating the p-values...

[,1]

y <- genesInClust(4, data.val2, annotation)

[1] 125

Cluster 5

Upregulation of BOther, whith many GO categories

clusterVis(5)

clusterVis_line(5)

Using gene, curated as id variables

clusterGO(5)

^{##} Using manually entered categories.

^{##} For 3044 genes, we could not find any categories. These genes will be excluded.

^{##} To force their use, please run with use_genes_without_cat=TRUE (see documentation).

 $\mbox{\tt \#\#}$ This was the default behavior for version 1.15.1 and earlier. $\mbox{\tt \#\#}$ Calculating the p-values...

[,1]

y <- genesInClust(5, data.val2, annotation)

[1] 125

Cluster 6

clusterVis(6)

clusterVis_line(6)

Using gene, curated as id variables

clusterGO(6)

- ## Using manually entered categories.
- ## For 3056 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).

 $\mbox{\tt \#\#}$ This was the default behavior for version 1.15.1 and earlier. $\mbox{\tt \#\#}$ Calculating the p-values...

[,1]

Cluster 7

clusterVis(7)

clusterVis_line(7)

Using gene, curated as id variables

clusterGO(7)

^{##} Using manually entered categories.

^{##} For 3126 genes, we could not find any categories. These genes will be excluded.

^{##} To force their use, please run with use_genes_without_cat=TRUE (see documentation).

 $\mbox{\tt \#\#}$ This was the default behavior for version 1.15.1 and earlier. $\mbox{\tt \#\#}$ Calculating the p-values...

[,1]

Cluster 8

clusterVis(8)

clusterVis_line(8)

Using gene, curated as id variables

clusterGO(8)

- ## Using manually entered categories.
- ## For 3356 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).

 $\mbox{\tt \#\#}$ This was the default behavior for version 1.15.1 and earlier. $\mbox{\tt \#\#}$ Calculating the p-values...

[,1]

Cluster 9

clusterVis(9)

clusterVis_line(9)

Using gene, curated as id variables

clusterGO(9)

^{##} Using manually entered categories.

^{##} For 3014 genes, we could not find any categories. These genes will be excluded.

^{##} To force their use, please run with use_genes_without_cat=TRUE (see documentation).

[,1]

Cluster 10

clusterVis(10)

clusterVis_line(10)

clusterGO(10)

^{##} Using manually entered categories.

^{##} For 3042 genes, we could not find any categories. These genes will be excluded.

^{##} To force their use, please run with use_genes_without_cat=TRUE (see documentation).

[,1]

y <- genesInClust(10, data.val2, annotation)

[1] 125

Cluster 11

clusterVis(11)

clusterVis_line(11)

clusterGO(11)

- ## Using manually entered categories.
- ## For 2999 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).

[,1]

y <- genesInClust(11, data.val2, annotation)

[1] 125

clusterVis(12)

clusterVis_line(12)

clusterGO(12)

^{##} Using manually entered categories.

^{##} For 3025 genes, we could not find any categories. These genes will be excluded.

^{##} To force their use, please run with use_genes_without_cat=TRUE (see documentation).

[,1]

y <- genesInClust(12, data.val2, annotation)

[1] 125

clusterVis(13)

clusterVis_line(13)

clusterGO(13)

- ## Using manually entered categories.
- ## For 3071 genes, we could not find any categories. These genes will be excluded.
- ## To force their use, please run with use_genes_without_cat=TRUE (see documentation).

[,1]

y <- genesInClust(13, data.val2, annotation)

[1] 125

clusterVis(14)

clusterVis_line(14)

clusterGO(14)

^{##} Using manually entered categories.

^{##} For 2991 genes, we could not find any categories. These genes will be excluded.

^{##} To force their use, please run with use_genes_without_cat=TRUE (see documentation).

This was the default behavior for version 1.15.1 and earlier. ## Calculating the p-values...

[,1]

y <- genesInClust(14, data.val2, annotation)

[1] 125

Conclusions

I need to write something that looks at the statistical difference in tissue between each genotype. In order to do that I have to subset based on tissue and do a t-test? Do I need to correct for multiple testing? Ideally what information do I want from these clusters?

- 1. I want clusters that are enriched in leaf genes. Maybe I could just color special for leaf genes?
- 2. Significant differences between genotype at each tissue.

How much intersect is there between my genes and the curated gene list?

```
length(intersect(data.val2$gene, genesOfInterest$gene) ) #777
```

[1] 77

Only 51? Is that right? Double check. Are there only 51 leaf curated genes differentially expressed? Maybe I need to be looking at a larger subset. 25% co-efficient of variation. In lcmSOM_analysis4_072914.Rmd, I looked into this a bit more.

#From lcmSOM_analysis4_072914.Rmd intersect(genesOfInterest\$gene, countData\$X) #There are only 217 leaf curated genes in the normalized r intersect(genesOfInterest\$gene, data.val.allGenes25\$gene) # There are only 77 which are in the top 25% #There are 51 which overlap with the DE genes.

I have to make a decision between