Содержание

B	веде	ние		3
1	Изучение поставленной задачи с помощью компьютерного моделирования			
				5
	1.1	Матем	матическая постановка исходной задачи	5
	1.2 Теория		я дифференциальных уравнений	
		с отклоняющимся аргументом		5
		1.2.1	Базовые понятия и определения	5
		1.2.2	Простейшая модель с запаздыванием	6
		1.2.3	Классификация моделей с отклоняющимся аргументом	8
		1.2.4	Метод шагов решения уравнений	
			с отклоняющимся аргументом	9
		1.2.5	Некоторые сведения о решениях линейных уравнений	
			с постоянными коэффициентами и постоянными	
			отклонениями аргумента	10
2	Аналитическое исследование			
	поставленной задачи			11
3	Результаты проведённого анализа			12
4	Приложение математического			
	моделирования для исследования			
	эко	номич	еских процессов	13
Зғ	Ваключение			
\mathbf{C}_{1}	Список литературы			

Введение

Данный дипломный проект посвящен изучению математических моделей теплопроводности с отклоняющимся аргументом.

Впервые дифференцаильные уравнения сначала с запаздывающим (а потом и с отклоняющимся) аргументом рассмотрел в А.Д.Мышкис в работе [6]). Другой пионерской работой в исследовании этого вопроса стала [17].

В последствии дифференциальные уравнения с отклоняющимся аргументом (также иногда называемые функционально-дифференциальными) нашли многочисленные приложения в различных вопросах автоматики, в теории колебаний, в ракетной технике, во многих вопросах физики, в некоторых задачах экономических, биологических и медицинских наук. Важность и разнообразие приложений резко повысили интерес к теории этих уравнений. В 60-х годах XX века появилось множество работ по данной тематике: в качестве примеров можно привести монографии Белммана, Данскина и Гликсберга [13], Беллмана и Данскина [14], Пинни [8], Красовского [5] и др.

Теория дифференциальных уравнений с отклоняющимся аргументом до сих пор находится в стадии становления и интерес к ней по-прежнему не угас. Значимыми работами современности по данной тематике стали [20] и [18].

В данной работе будет исследована устойчивость уравнения локального закона сохранения (Лиувилля) с малым запаздыванием τ :

$$\begin{cases} \rho_t(x,t) + div\bar{J}(x,t) = f(x,t), \\ \bar{J}(x,t+\tau) = -a^2 \nabla \rho(x,t) + \bar{V}(x,t)\rho(x,t) \end{cases}$$

Цель моего исследования – оценить, как небольшое отклонение по времени влияет на решения и их устойчивость для уравнений теплопроводно-

сти с отклоняющимся аргументом, а также сравненение моделей с отклонением и без. Также в данной работе будет приведена необходимая теория и представлены развитые численные методы решений дифференциальных уравнений с отклоняющимся аргументом.

Важным фактом является наличие именно малого запаздывания: в работе будет представлен переход от исходной модели к системе обыкновнных дифференциальных уравнений с малым параметром при старшей производной. Такие уравнения были рассмотрены в статьях Тихонова [9, 10], Васильвевой [1], в книге Васильевой и Бутузова [2]

В экономической части работы будет рассмотрена модель Блэка-Шоулза с запаздыванием по времени [15].

Изучение поставленной задачи с помощью компьютерного моделирования

1.1 Математическая постановка исходной задачи

Запишем общее уравнение непрерывности в дифференциальной форме:

$$\rho_t(\bar{x},t) + div\bar{J}(\bar{x},t) = f(\bar{x},t) \tag{1.1.1}$$

Оно представляет собой сильную (локальную) форму закона сохранения и выражает связь между потоком $\bar{J}(\bar{x},t)$ и концетрацией (температурой) $\rho(\bar{x},t)$.

Чтобы корректно поставить задачу решения (1.1.1) необходимо дополнить его ещё одним условием – в данной работе оно представлено **законом диффузии с конвекцией** с отклоняющимся аргументом:

$$\bar{J}(\bar{x}, t + \tau) = -a^2 \nabla \rho(\bar{x}, t) + \bar{V}(\bar{x}, t) \rho(\bar{x}, t)$$

$$\tag{1.1.2}$$

В дальнейшем уравнение (1.1.1) будет классифицировано с точки зрения теории дифференциальных уравнений с отклоняющимся аргументом. Предварительно приведем необходимую для исследования информацию.

1.2 Теория дифференциальных уравнений с отклоняющимся аргументом

1.2.1 Базовые понятия и определения

Дифференциальными уравнениями с отклоняющимся аргументом называются дифференциальные уравнения, в которые неизвестная функция и её проиводные входят, вообще говоря, при различных значениях аргумента.

Хотя уравнения с отклоняющимся аргументом по виду очень похожи на обыкновенные дифференциальные уравнения, факт отклонения аргумента усложняет их анализ.

Рассмотрим простейший пример

$$\dot{x}(t) = f(t, x(t), x(t - \tau)), \tag{1.2.1}$$

где au — положительная константа.

Для начала отметим, что для решения задачи Коши уже недостаточно задать одно начальное условие $x(t_0) = x_0$, ведь необходимо знать исходные значения на всем отрезке $[t_0 - \tau, t_0]$, т.е задать функцию $x_0(t)$, определенную на отрезке $[t_0 - \tau, t_0]$ – начальную функцию (в зарубежной литературе history function или initial function).

1.2.2 Простейшая модель с запаздыванием

Для примера рассмотрим две задачи Коши: одну для обыкновенного дифференциального уравнения, другую – для уравнения с отклонением по аргументу:

$$\begin{cases} x'(t) = x(t), & t > 0 \\ x(0) = 1 \end{cases}$$
 (1.2.2)

$$\begin{cases} y'(t) = y(t-1), & t > 0 \\ y(t) = 1, & -1 \le t \le 0 \end{cases}$$
 (1.2.3)

Методы решения подобных уравнений с запаздыванием будут рассмотрены в работе позже, а пока построим графики этих решений:

Наглядно видно, что решения различны. Позже будет приведено аналитическое решение задачи (1.2.3) и доказано, что y(t) всегда возрастает медленнее экспоненциального решения, т.е. x(t).

Также решение зависит от начальной функции: для примера рассмотрим такую задачу:

$$\begin{cases} y_h'(t) = y_h(t-1), & t > 0 \\ y_h(t) = 1 + t, & -1 \le t \le 0 \end{cases}$$
 (1.2.4)

Отметим, что $y_h(0) = y(0) = 1$.

Построим решения на одном графике:

Таким образом, начальная функция определяет характер решения задачи.

1.2.3 Классификация моделей с отклоняющимся аргументом

Рассотрим обобщенное уранвнения n-ого порядка с l отклонениями аргумента (вообще говоря, отклонение может быть непостоянным и зависеть, например, от значений самого аргумента).

$$x^{(m_0)}(t) = f(t, x(t), \dots, x^{(m_0-1)}(t), x(t-\tau_1(t)), \dots, \dots, x^{(m_1)}(t-\tau_1(t)), \dots, x(t-\tau_l(t)), \dots, x^{(m_l)}(t-\tau_l(t)))$$
(1.2.5)

Здесь $\tau_i(t) \geq 0$.

Каменским Г.А. была введена естественная классификация (1.2.5). Обозначим $\lambda=m_0-\max_{1\le i\le l}m_i$.

- 1. Если $\lambda > 0$, то такое уравнения называется уравнением с **запаздыва-** ющим аргументом;
- 2. Если $\lambda = 0$, уравнением **нейтрального типа**;
- 3. Если $\lambda < 0$, уравнением **опережающего типа**.

Вернемся к исходной задаче (1.1.1, 1.1.2):

$$\begin{cases}
\rho_t(\bar{x}, t) + div\bar{J}(\bar{x}, t) = f(\bar{x}, t), \\
\bar{J}(\bar{x}, t + \tau) = -a^2 \nabla \rho(\bar{x}, t) + \bar{V}(\bar{x}, t) \rho(\bar{x}, t)
\end{cases} (1.2.6)$$

Объединим в одно уравнение относительно $\rho(x,t)$:

$$\rho_t(\bar{x},t) - a^2 \Delta \rho(\bar{x},t-\tau) + \rho(\bar{x},t-\tau) div \bar{V}(\bar{x},t-\tau) + (\bar{V}(\bar{x},t-\tau), \nabla \rho(\bar{x},t-\tau))$$

$$(1.2.7)$$

Отметим, что дивергенция как дифференциальный оператор была применена по пространственным переменным barx. Из этого следует, что в левой части (1.2.7) не содержится производных по t и уравнение классифицируется как уравнение с запаздывающим аргументом при $\tau > 0$ и как опережающего типа при $\tau < 0$.

1.2.4 Метод шагов решения уравнений

с отклоняющимся аргументом

Метод шагов – естественный метод решения уравнений с отклоняющимся аргуентом. Рассмотрим простейший пример:

$$x'(t) = f(t, x(t), x(t - \tau)), \quad \tau > 0$$
(1.2.8)

Поставим задачу Коши для него:

$$\begin{cases} x'(t) = f(t, x(t), x(t - \tau)), & t > 0, \\ x(t) = x_0(t), & -\tau \le t \le 0 \end{cases}$$
 (1.2.9)

Тогда на отрезке $[0, \tau]$:

$$\begin{cases} x'(t) = f(t, x(t), x_0(t - \tau)), & 0 \le t \le \tau, \\ x(0) = x_0(0) \end{cases}$$
 (1.2.10)

Отметим, что 1.2.11 – задача Коши уже для обыкновенного дифференциального уравнения. Предположим, что $x_1(t)$ – ее решение. Тогда на отрезке $[\tau, 2\tau]$:

$$\begin{cases} x'(t) = f(t, x(t), x_1(t - \tau)), & \tau \le t \le 2\tau, \\ x(\tau) = x_1(\tau) \end{cases}$$
 (1.2.11)

Продолжая подобные рассуждения, можно найти решение 1.2.9. Отметим, что решать можно как аналитически, так и численно.

К минусам этого метода можно отнести зависимость от величины отклонения и сложность адаптации к общему случаю зависимости запаздывания от аргумента.

1.2.5 Некоторые сведения о решениях линейных уравнений с постоянными коэффициентами и постоянными отклонениями аргумента

Рассмотрим линейное однородное уравнение с постоянными коэффициентами и постоянными отклонениями аргумента

$$\sum_{i=0}^{n} \sum_{j=0}^{l} a_{ij} x^{(i)} (t - \tau_j) = 0$$
 (1.2.12)

2 Аналитическое исследование поставленной задачи

3 Результаты проведённого анализа

4 Приложение математического моделирования для исследования экономических процессов

Заключение

Список литературы

- [1] Васильева А.Б., О дифференциальных уравнениях, содержащих малые параметры, Матем. сб., 31(73):3, 1952, 587–644.
- [2] Васильева А.Б., Бутузов В.Ф., Асимптотические методы в теории сингулярных возмущений, М.: Высшая школа, 1990.
- [3] Ерофеенко В.Т., Козловская И.С., Уравнения с частными производными и математические модели в экономике, М.: Едиториал УРСС, 2004.
- [4] Зверкин А.М., Каменский Г.А., Норкин С.Б., Эльсгольц Л.Э., Дифференциальные уравнения с отклоняющимся аргументом, УМН, 17:2(104), 1962, 77–164.
- [5] Красовский Н.Н., Некоторые задачи теории устойчивости движения, 1959.
- [6] Мышкис А.Д., Линейные дифференциальные уравнения с запаздывающим аргументом, Гостехиздат, М.–Л., 1951.
- [7] Мышкис А.Д., Эльсгольц Л.Э., Состояние и проблемы теории дифференциальных уравнений с отклоняющимся аргументом, УМН, 22:2(134), 1967, 21–57.
- [8] Пинни Э., Обыкновенные дифференциальные уравнения, М., ИЛ, 1961.
- [9] Тихонов А.Н., О зависимости решений дифференциальных уравнений от малого параметра, Мат.сб., 2 2(64), 1948, 193—204.
- [10] Тихонов А.Н., О системах дифференциальных уравнений, содержащих параметры, Мат.сб., 2 7(69), 1950, 147—156.

- [11] Эльсгольц Л.Э., Норкин С.Б. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом, М., Наука, 1971.
- [12] Филиппов А. Ф., Сборник задач по дифференциальным уравнениям.
 Изд. 5-е, М.: Наука, 1979.
- [13] Bellman R., Danskin J.M, Glicksberg I., A bibliography of the theory and application of differential-difference, renewal and related functional equations, The Rand Corporation RM-688, 1952.
- [14] Bellman R., Danskin J.M, The stability theory of differential-difference equations, Proc. Sympos. non-linear Circuit Anal, New York, 1953, 107-123.
- [15] Black, Fischer, Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81 (3), 1973: 637–654.
- [16] Friedman A. Hu B. The Stefan problem for a hyperbolic heat equation, Math. Anal. and Appl., V. 138, 1, 1989, 249–279.
- [17] Hahn W., Berichtuber Differential-Differenzengleichungen mit festen und Veranderlichen Spannen, Jahresber. Dtsch. Math. Ver. 57, 2, 1954, 55—84.
- [18] Kolmanovskii V.B., Myshkis A.D., Introduction to the theory and Applications of Functional Differential Equations, Kluver, Dordrecht, 1999.
- [19] Polyanin A.D., Zhurov A.I., A new method for constructing exact solutions to nonlinear delay partial differential equations, arXiv:1304.5473, 2013
- [20] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New-York, 1996