第八章 群和环

第九节 子群及其证明 (2)

三. 子群的证明

证明方法

使用定义证明

注意:必须清晰、准确的理解定义

使用定理证明

注意:必须满足 定理的前提条件

用子群的定义证明:即证明运算在非空子集上满足封闭性、有幺元、子集中每个元素均可逆。

定理

设<G,★>是群,B是G的有限子集,如果★在 B上满足封闭性,则<B,★>是<G,★>的子群。

定理: 设<G,★>是群, B是G的有限子集, 如果★在 B上满足封闭性,则<B,★>是<G,★>的子群。

证明: (1)先证幺元 e∈B

任取 b∈B, 因为★在B上封闭, 所以对任意 i≥1 有 bi∈B, 因 i 可以取无穷多个值, 而 B 中元素个数有限, 所以必存在正整数 i,j (i < j),使得 $b^i = b^j$, j-i≥1,所以 b^{j-i}∈B。 因<G,★>是群,于是 b⁻¹、(bⁱ)⁻¹∈G,于是 b^{j-i} = b^j★ (b⁻¹)ⁱ= bⁱ★(bⁱ)⁻¹ = e,而 b^{j-i}∈B,所以e∈B。 定理: 设<G,★>是群,B是G的有限子集,如果★在B上满足封 闭性,则<B,★>是<G,★>的子群。

任意 b∈B,都有 证明 (2)再证B中每个元素均可逆← b-1 ∈ B.

任取 b∈B,由(1)知 b^{j-i} =e (j-i≥1)

- a) 如果 j-i=1, 则 b^{j-i}=b=e, 即 b⁻¹=b, 于是 b⁻¹∈B。
- b) 如果 j-i>1,有 b^{j-i-1}∈B,而 $b * b^{j-i-1} = b^{j-i-1} * b = b^{j-i} = e$, \$\mathbb{p} b^{-1} = b^{j-i-1}\$. 于是 b-1 ∈ B。

综上, <B,★>是<G,★>的子群。

例: 群<N₆,+₆>的运算表如右

图: $求 < N_6, +_6 > 的子群$ 。

解:根据上面定理,使得+6 运算封闭的子集可构成子群。 除了平凡子群 <{0},+6> 及 $<N_6,+_6>$ 外,考察子集 $H_1=\{0,3\},\ H_2=\{0,2,4\},\ 从运$ 算表知, +6运算在 H₁、 H₂ 上封闭,所以 <H₁,+₆>, <H₂, +₆> 是 <N₆,+₆> 的子群。

+6	0	1	2	3	4	5	
0	0	1	2	3	4	5	
1	1	2	3	4	5	0	
2	2	3	4		0	1	
3	3	4	5	0	1	2	
4	4	5	0	1	2	3	
5	5	0	1	2	3	4	

<H₂, +₆>运算表

第九节 结束