华中科技大学研究生课程考试试卷

课程名称:	数值分析		课程	烂别	<u>☑公共课</u> □专业课	考核形式	<u>□开卷</u> ☑闭卷
学生类别	研究生	_考试日期_	2013-5-23	_学生	上所在院系_		
学号		姓名		_任设	果教师		
一、填空(每题 3 分, 共 24 分)							
1. 已知√7:	= 2.64575131	106…,则非	其近似值 2.64	5751	3 有	位有效数	(字;通
过四舍五入得到其有四位有效数字的近似值为。							
2. 己知 $f(x) = 2x^2 - 1$,则 $f[1,2,3] =, f[1,2,3,4] =。$							
3. 当常数 <i>a</i> =	=, b=_	时, ma	$ x 4x^3 + ax$	与 [¹($(3x^2+b)^2 dx$	分别达到极	小。
4. 四个求积		-151		•0			
	阶代数精度。						
5. 设 $A = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix}, x = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$	2),则 <i> Ax </i> _。	。=,	con	$d(A)_1 = \underline{\hspace{1cm}}$	o	
6. 设步长为 h,应用 2 阶中点公式 $y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right)$ 求解							
$\begin{cases} y'(x) = \lambda \\ y(0) = 1 \end{cases}$	ly(x) ,则在节	点 $x_n = nh$	处的数值解	$y_n = $			_°
7. 对矩阵 A=	$\begin{bmatrix} 4 & 2 & -1 \\ 8 & 5 & -2 \\ 4 & -1 & 2 \end{bmatrix}$ 过	生行 LU 分解	4,则单位下3	三角阝	车		
L=		,上三:	角阵 U=			•	
8. 若求解方程	! x ² = 3 的简 ^{_1}	单迭代格式	$x_{k+1} = ax_k + \frac{1}{2}$	$\frac{b}{x_k}$ 在	E根 <i>x</i> * = √3	附近平方收	Z敛,则

- 二、(12分) 对函数 y = f(x), 已知 f(0) = f'(0) = 0, f(1) = f'(1) = 1.
 - (1) 试求过这 2 点的三次 Hermite 插值多项式 H₃(x), 并写出余项表达式;
 - (2) 如果还已知 f(2)=1, 求次数不超过 4 的插值多项式 $P_4(x)$ 。

三、(10 分) 求 $f(x) = \sqrt{x}$ 在[0, 1]上的一次最佳平方逼近多项式 P(x),并计算平方误差。四、(12 分) 利用 3 次 Legendre 正交多项式 $P_3(x) = (5x^3 - 3x)/2$ 构造三点 Gauss 型求积公式

$$\int_0^2 f(x)dx \approx A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2)$$

并问:

- (1) 所得求积公式的代数精度是多少?
- (2) 用所得求积公式计算 $\int_0^2 (x^4 + 3x^2 + 2x 1) dx$ 时截断误差是多少?

五、(12 分) 给定线性方程组
$$AX=b$$
,其中 $A=\begin{bmatrix}1&a\\4a&1\end{bmatrix}$, $X,b\in R^2$,

- (1) 求出使 Jacobi 迭代法和 G-S 迭代法均收敛的 α 的取值范围。
- (2) 当 $\alpha \neq 0$ 时,给出这两种迭代法的收敛速度之比。

六、(10 分) 设有
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
, 试构造形如

$$y_{n+1} = \alpha (y_n + y_{n-1}) + h (\beta_0 f_n + \beta_1 f_{n-1})$$

的二阶方法,并推导其局部截断误差首项。

七、(12 分)设有解方程12-3x+2 $\cos x$ =0的迭代法 x_{n+1} =4+ $\frac{2}{3}\cos x_n$,

- (1) 证明: $\forall x_0 \in R$,均有 $\lim_{n \to \infty} x_n = x^*$ (x^* 为方程的根);
- (2) 此迭代法的收敛阶是多少?
- (3) 试构造至少具有二阶收敛速度的迭代公式。

八、(8分) 若 n 阶方阵 A 为严格对角占优阵,证明解线性方程组 AX=b 的雅可比迭代收敛。