Girish Chandar G

Ann Arbor, Michigan

OBJECTIVE

Motivated graduate student interested in pursuing Ph.D. in the domain of Computer Vision and Deep Learning focusing on Long-tailed recognition, Zero-shot learning, 3D reconstruction and generation. I have relevant academic knowledge and research experience pertaining to Deep Learning applications in Computer Vision and proficient in Python and use of deep learning frameworks like PyTorch and Tensorflow.

EDUCATION		
University of Michigan, Ann Arbor, MI, USA M.S. Electrical and Computer Engineering Indian Institute of Technology Gandhinagar, Gandhinagar, India B.Tech. Electrical Engineering (minor Computer Science)		Aug 2021 – Apr 2023 <i>GPA - 4/4</i> July 2016 – Aug 2020 <i>GPA - 8.98/10</i>
• Foundations for Computer Vision (A) • Matrix Methods for Machine Learning	• 3D Computer Vision • PyTorch, Tensorflow, MXNet	• Numpy, OpenCV, Sklearn, Pandas
Machine Learning (A) (A+)	 Deep Learning for Computer Vision (A) MATLAB, LabVIEW 	
POSITION		
Graduate Student Research Assistant Dr. Stella Yu, University of Michigan-Ann Arbor		May 2022 – August 2022
Research Intern NVIDIA		May 2022 - August 2022
Research Intern Zentron Labs 🗹		Oct 2020 – Aug 2021
INTERNSHIP		
• Implemented end-to-end deep learning model us • Better performance than existing algorithm in te	sing custom UNet as backbone for feature map extraction.	May 2022 - Aug 2022
 Auto Shape Detection in Machine Vision ☑ Zentron Labs Python (Numpy, OpenCV) Implemented Arc Detection algorithm that gives accuracies of 100% on simulated data and 80% on real data. Improved Line and Circle Detection accuracies from 65% to 90% 		Oct 2020 – Aug 2021
Optimization based Inverse Rendering O University of Texas Dallas PyTorch, MXNet, Numpy		May 2019 – July 2019
Implemented algorithm for 3D face reconstruction	on from 2D images.	, , ,
 3D Morphable Model (3DMM) used as aprori mesh for efficient inverse rendering. Microscopic Image Analysis O Clemson University LabVIEW Developed LabVIEW scripts for analyzing images from Magnetic Rotational Spectroscopy (MRS) experiment. PROJECTS 		May 2018 – July 2018
SAR-NeRF PyTorch • Research on modifying NeRF for 3D reconstruction from data obtained from radar.		Present
<u>Unsupervised Semantic Segmentation using Pseudo Attributes</u> <u>PyTorch</u> • Research focused on extracting mid-level attributes for unsupervised semantic segmentation.		Present
 Small NeRF PyTorch Implemented a modified version of NeRF to reduce training time and computational cost. Experimented with multiple architectures to determine the best approximation of the original NeRF. 		Apr 2022
 Co-Tuning for Transfer Learning on TACO Dataset ○ PyTorch Implemented and verified the novel transfer algorithm proposed in "Co-tuning for Transfer Learning". First team to implement co-tuning on TACO (Trash Annotations in Context) dataset. 		Dec 2021
Classification of Cancer Progression by Structuring Clinical Data Tensorflow • Developed a pavel model to predict the probability of cancer by structuring Electronic Health Records using N		Dec 2019

Developed a novel model to predict the probability of cancer by structuring Electronic Health Records using NLP techniques.

Explored MIMIC-III dataset extensively and verified its potential to be used for cancer prediction

Structured the clinical data using CliNER, and BioBERT embedding

Implemented algorithm to identify source camera from images.

Forensic Camera Model Classification using Local Binary Pattern | MATLAB

Implemented One vs All classification model using Local Binary Patterns as features.

• Created novel dataset to test the model.

Unsupervised Cross-Domain Image Transfer using GAN O | PyTorch Apr 2019

Apr 2018

Apr 2020

Implemented Encoder+GAN with modified loss and verified the results for cross-domain transfer between MNIST and SVHN.

Patch based Multi-View Stereopsis | Python (Numpy, OpenCV)

Normalized cuts and segmentation (Python (Numpy, OpenCV)

Apr 2019 Dec 2018

Face Detection using Eigenfaces | Python (Numpy, OpenCV)