This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

PUB. NO.: 54-040569 [JP 54040569 A]
PUBLISHED: March 30, 1979 (19790330)
INVENTOR(s): ODATE MITSUO

NISHIUCHI TAIJI

APPLICANT(s): MITSUBISHI ELECTRIC CORP [000601] (A Japanese Company or

Corporation), JP (Japan)
.: 52-107459 [JP 77107459]
September 06, 1977 (19770906) APPL NO.:

FILED:

INTL CLASS: [2] H01L-023/48; H01L-021/58

JAPIO CLASS: 42.2 (ELECTRONICS — Solid State Components)

JOURNAL: Section: E, Section No. 113, Vol. 03, No. 61, Pg. 92, May 26, 1979 (19790526)

ABSTRACT

PURPOSE: To make excellent contact by pressure-holding an semiconductor element by interposing oil or grease containing powdery metal between the main electrode of the element and an external electrode.

(19日本国特許庁

11.特許出額公開

公開特許公報

昭54-40569

50Int. Cl.2 H 01 L 23/48 H 01 L 21/58 識別記号 52日本分類

99(5) C 11

厅内整理番号 《3公開》昭和54年(1979) 3 月30日

7357 -- 5 F

7357---5 F 発明の数 2 带在請求 未請求

(全 5 頁)

SP半導体装置およびその製造方法

创特

昭52-107459

②出

昭52(1977)9月6日

念発 明 者

大館光雄

伊丹市瑞原 4 丁目 1 番地 三 菱

重機株式会社北伊丹製作所內

電発 明 者 西内泰治

伊丹市瑞原 4 丁目 1 番地 三菱 電機株式会社北伊丹製作所内

三菱電機株式会社 70出 類 人

東京都千代田区丸の内二丁目 2

番3号

74代 理 人 弁理士 以野信一

外1名

止 塩 世 お よ び そ の 製 造 万 法

2 つの主電板と1 つ以上のp a 設合を備え 体案子。彼此半季体类子の各主发施化发发 熱的にそれぞれ加圧技能された外部電差から 1 成された原圧技術形学 4 体装置において、別む 導 年 弟 子 の 少 な く と も 1 つ の 主 写 絶 と 前 む 外 部 との間に召末全員を選入した油またはグリー スを介在させ加圧保持したことを特徴とする半導

2 つの主電柜と1つ以上のpa 扱合を増え た半導体者子。府紀半導体君子の各主電路に電気 的。然内にそれぞれ位圧は彼された外部電影から 森成された湿圧長装形半導体装置の製造方法に対 いて、食虻半導体者子の少なくとも1つの主電影 と前紀外部電袖との間に投末金銭を進入した油ま たはグリースを介任させ、おらかじめ最許加圧災 14 圧力以上の圧力を少なくとも1回以上加圧し、

その後、加圧を除々に乗じて放弃加圧は特圧力に して保持させることを特徴とする半導体発出の製

発明の評価な恩明

この発明は、半導体素子の主権機と、これに圧 皮された王竜崔体の外部県施関の電気料。然約後 放抵抗を減少させた半導体装置およびその製造方 止に回する 5 のである。

半事件共子の大名力化に伴い会員間。特に半事 体肃子の主延矩と、これに圧使される外部驾驶側 との異気的。熱的技法証法を減少させることが問 雌となる。これらの皮肤抵抗を減少させるには、 従来、半号体素子をラフピングして、平面皮、半 行度を向上させたり。半串体素子と外部電腦との 例に盛い金属、例えば鎖。金等の数を挿入したり、 圧皮力を大きくする方法が行われていた。 半4体 オチは1つ以上のpa 後合をもつたシリコン円数 と、それと熱影後染気の葉似した金属。例えばそ リプデン。タングステン円数等の支持数とな。7 ルミニクム等のわり材を用いて異変中。温元性が

び合金か行われ構成される。

ところで、半身体君子の火口径化化体い、半導 体書子の後ゃ85~100mにもなり、シリコン 双と支持数とわり付け。 合金を行つたとされ。ジ リコン仮の周兼局に大きなストレスが残り。それ が単写体書子の異気特性を風客したり、各材料の **熱脳快速によるパイノタル作用により、半導体ス** 子か大さく戻る等の開発が発生する。神に大口任 の半導体素子の高気管性を改善するためには、シ リコン牧のストレスを掘力発展する必要が生する。 ストレスを経滅させるためにはソリコン数の直径 および厚ふに適合させて、実持板の厚ふを薄くす ることにより解決することができる。しかしなか! **らこれは半冬体ネナの反りのより増大を出くごと** K なり。そのまま (ろう付け,合金先了) の状質 で圧壊力を加えて半季体常士と外部電差とを委放 させようとすると、シリコン板の反りを矯正する **迫役においてシリコン収内器のストレスの変態。** ひいてはシリコン数内部でのナラフクの発生を招

特別の54-40569(2) き、異独特性を劣化させてしまう。これについて

さらにも1のを用いて及明する。

37.1 以は半導体装置の新加辺をボブッのである。 この风で1は平形ダイオード等の半導体業子であ り、pup* 独介を有するシリコン板 てがシリコン 数2を通貨するセリブデンからなる支持数3化プ ルミニクムーアルミニクムシリコン共基準 4化よ つてろう付けされ基盤されている。5はアルミニ クト黒背により形成されたアルミュクト電池であ り、以上で半毛体黒子1が裏底されている。この 半導体書子(は上。下に電気。私を取り出すため の別からなる思りの外部電腦をと思るの外部電腦 11とが起意され、圧後状態で保持される。では セラミックあるいはガラス等からなる単状色量体 であり、一方の点は云」の外部電影をに刻からな るダイヤフラムまかろう付けされ、他方の堪は鉄、 共ニッケル合金からなる店後リングまがろう付け されて、以上で気」の主意条体10が構成される。 店投リング12は毎2の外部電折11とろう付け される。13は藤茯部分を示す。以上で剝えの主

電遊体 1 4 が構成される。 1 5 は冷却フインである。

一般的には、5々の外部電影6,11は、平面 度、平行度は20 Am 以下で表面おらさは10 A m以下の加工が行われており、さらにニックル。 制、製、全ノッキが5 Am 位集されている。

この半導体装置を制立てるには、先ず第1の主電磁体10に半導体業子1を挿入し、次に第2の主電磁体14をかぶせて、不活性雰囲気中にできなの店換リング3、12をアークまたは低抗の定にて路機が行われて半導体装置が完成する。このように観立てられた半導体装置に、さらに由電線の外部に無よよび電気を取り出し、かつ、熱を冷却する冷却フィン15が圧使力とで圧倒される。

このように親戚された半導体装置は半導体案子1の大口径化ドより、報送のように半導体案子1のようも大きくなり圧使力Pによつて、反りが増延されることにより発生するショコン数2のストレスの増大ひいでは、クラックの発生により半導体素子1の電気特性が劣化し、ひどいときには減

環する単型が応ろ。また、反りを強正させうる圧 使力Pか不足した場合は約門特性が最くなり、単 場体業子1を劣化。緩壊させる。そのため従来は 第2四(a) に不丁半場体累了1を第2回(b)。(c)。 (d) のような方法において、これらの間域発生を 印えている。すなわち第2回(b) のようにランピ ングにより平向度、平行度を小さくするか。第2 M(c) のように表面に多かくて電気・熱伝導の良い金、製等の黄金属層を設ける。さらには第2回 (d) のように圧使力Pをα倍して大きくする等の 力圧である。

しかし、第2四(b)のように述い金属をラフビングすることは、その作業に必要な及い時間と、大きな政権投資が必要となり、さらにはカカとに役の増加につなかり、また、フツヒング級の中導体案子表面の汚染・線去に神経を使うことになる。次に、第2回(c)のように責金を履くなり、計科費の上昇につなかる。さらに、第2回(d)のように止敗力を大きくすることは中導体装置の表域的

強度の増加を作い、半導体装置の最近を火きくする結果となり好ましくない等。いずれの方広にも 手くの問題があつた。

この発明は、上述の点にかんかみなされたもの で、大さく及りの発生している半導体まチに小さ な圧炭力によつて、電気特性、熱特性を充分点足 させ、かつ半導体装置を異変する半導体まチのみ 主電場とこれに圧張する各々の外部電池とが支針 な装盤があられっスト。工程の増加。 量の大形化を伴わないよりにしたものである。以 下この発明について
風明する。

第1回はこの発明の一支達例を不寸新面別で、 第1回と同一符号は同一部分を不し、18は前配) 半導体素子1の大きな反り部に介在させた粉末会 減を混入した減またはダリースである。このよう に適またはグリースを介在させたとにより、第 に適またはグリースを介在させたにより、第 2回(a)。(b)。(c)で説明した误乗の不必合を ことごとく設立することができる。

第3回の半導体装置の制立では、半導体素子 1の主電機と各々の外部電池 6、11と装触する部

特間庁54—4月5 6月(3) 分のみの両面に強またはグリース 1 6 を簡単する。 この際、機能部以外の施分に簡をすることは、前 競技の問題から充分作業して行う 必要がある。次 に従来と同じように第1 の主電物体 1 0 に半導体 ま子 1 を挿入してから第2 の主電物体 1 4 をかぶ せて、各々の保護リング3。 1 2 の保護を打つた 快、両外部電池 6、 1 1 に冷却フィン 1 5 が正成 カピで圧使される。

このように超立てられた半年体装置に由または
デリース18を増布した以外に従来のものと同じ
である。しかしながら、図じ圧接力Pにおいては。
・
装置の接触無反抗、接触電気延及値に従来に比
べて各410%と尾少した。 第5回に第4回(a)。
(b)。(c)のそれぞれの熱反反と最電圧降下の調 協を示す。さらに、皮燥無正及値はよび接触電気 近気値を減少させるには、第4回に示した工程を 行えばよい。

ずなわち、易も四(a)は風立てられたままの圧 度力P=0のときである。易も四(b)は最終力圧 圧装力P'の 1.1 毎以上の圧装力つまりα・P'(α

は 1.1以上の改字)をかけたときである。 さらに 第 4 間 (c) は、放好加圧圧使力 Pのときであるか、 第 4 間 (b) の α・P' より圧力をは々に乗じたもの であり、この圧使力 P' で半導体 受質の動作が行われる。ここでいう圧使力 P' は 9 9 な/ cm² 以下であり、 αは 半導体 累子1 の 口ほと 反り、 各々の外 都 電 衛 6 、 1 1 の 材 質 、 熱 処理 および 表 血 状 型 ・ ノッキの 種 類 等によって 次 められる 定 数 で あるが 支 験によれば 2 5 以上は 越 えなかつた。

次に油またはグリース16の状態を放明すると、
第 6 図 (a) では半導体素 チ 1 と 3 々の外配電 物 6 。
1 1 図には、油またはグリース16が存在し、第 4 図 (c) ではな々に圧力α・P'を減じて放弃性を たかった ではなない 半導体 ま チ 1 の及りが 非性を 形により 6 とり、半導体 ま チ 1 と 3 々の外配 電 を 6 。 1 1 図に 型間がより、 立面部 大 2 の に 2 が 9 ース1 6 の でも 3 か でも 3 か で 5 の に 3 か な 3 な 4 に 5 か に 3 か に

減少した。この状況を第5回に示す。また油また はグリース16中に入れる粉末金属の包子の大き さと、胎弦以後、脳電圧降下の関係を第6回に示 す。

すなわち、第5日において、展報は熱低以と数 電圧時下を示し、複雑は典定圧力である。田様! は熱並は、田田!は期電圧時下の圧力に対する変 化を変わしている。

また写 6 図は機能に粉末変異の粒子性をとり、 服物はも 5 図と同じく熱紙以と期電圧降下をとつ たもので、歯離 1 は熱低以、曲線 1 は線電圧降下 を表わす。 第 6 図における粉末変異はよくなまさ れたアルミニクム粉を用いたか。 実験では比較的 よかく、かつ、破度 H v 4 0 以下の制、インジウム、動、 動、 重鉛等の単一 変異または 総合変異で も 3 しつかえないことが判制している。この実験 より、粉末金属の粒子の低は、 半導体 果子の成り の 1 / 1 0 以下であれば、大きな効果が得られる。 なお、上出実現例では平形ダイエードについて

なお、上北東海外では平形ダイオードについて 区別したか。この発明はこれに展送されるもので なく、サイリスタ、トライアング、トランジスタ 多の平形、スタッド形のキも体界をあらば用でき ろことはいうまでもない。

以上是明したようにこの発明によれば、単単体 ま子と外部場所との世間力を小さくすることがで さ、単単体装置に冷却体を取付ける環境の小形化 されることはいうまでもなく。最終回圧圧硬力が 小さいために単導体素子の及りを無理に無逆する でしたがないので、単導体素子を構成するシリコン 取の外類部に対ける疲労の素値によるクラフクも防 け、電気的特性の劣化が発生しない単導体装置が 場合れる利益がある。

4. 図当の関単な説明

31回は従来の単導体装置の新面別、第2回(a) ~(d)は31回の単導体素子の反りを改善させる 従来の方法の及明図、第1回はこの発明の一実施 例を示す単導体装置の販面図、第4回は適圧力に よる単導体素子外部電極調の適またはグリースの 連触状態の説明図、第5回は、第4回の過程にお 特別17.54-1056974) ける電気・筋質性の関係は、男子のは由またはグ リースには入される粉末を異なり(アルミニウム)と電気・筋料性の関係のである。

の中、1は半球体系を、2はシリコン数、3は 支持数、4はアルミニクムーアルミニクムシリコ ン氏品層、5はアルミニクム電源、6は第1の外 思葉源、7は環状過級体、8はダイヤフラム、3 12は店はリング、10は第1の正電条体、11 は君よの外部電源、13は店の部分、14は第2 の主電車体、15はカロフイン、16は由または ブリースである。なお、04中の同一符号は同一ま たは相当部分を示す。

代殊人。其 野 信 一 (外1名)

