MATH 404 Notes

Contents

1	General 1.1 Ideals 1.2 Maximal Ideals 1.3 Prime Ideals 1.4 Principal Ideals Generated by c 1.5 Principal Ideal Domains 1.6 Ring Automorphisms 1.7 Unital Ring Homomorphism 1.8 Kernels 1.9 Vector Spaces 1.10 Spanning Sets 1.11 Bases	3 3 3 3 3 4 4 4 4 4 4
2	Geometric Constructions 2.1 Algebraic Representation of Lines 2.2 Algebraic Representation of Circles 2.3 Constructible Points 2.4 Elementary Constructions 2.5 Constructible Numbers 2.6 Constructible Numbers in Subfields of ℝ 2.7 Constructible Real Numbers 2.8 Constructible Roots of Polynomials	5 5555666
3	3.12 Algebraic Extensions	10 11 12 12 12 13 13

	3.25 Finite Fields13.26 Magic Polynomials Over Finite Fields13.27 Prime Power Order Fields1	14
4	Galois Theory 1 4.1 Automorphism Groups 1 4.2 Fixed Fields 1 4.3 Galois Correspondence 1 4.4 Galois Extension 1 4.5 Fundamental Theorem of Galois Theory 1 4.6 Inverse Galois Conjecture 1	16 16 16
5	5.1 Radical Extensions	18 18 19 19

1 General

1.1 Ideals

A subring I of ring R is an ideal in R if $ra \in I$ and $ar \in I$ for all $r \in R$ and $a \in I$

- A proper ideal I in R satisfies $I \subset R$
- A subset *I* of a ring *R* is an ideal in *R* if and only if has the following properties
 - *I* is non-empty
 - If $a, b \in I$, then $a b \in I$
 - If $r \in R$ and $a \in I$, then $ra \in I$ and $ar \in I$

1.2 Maximal Ideals

Let R be a commutative ring with identity. Then ideal M in R is maximal if $M \subset R$ and the only ideals containing M are M and R

- There does not exist an ideal J such that $M \subset J \subset R$
- ullet i.e. M is as large as possible while being a proper subset of R

1.3 Prime Ideals

An ideal P in ring R is called prime if $bc \in P$ implies $b \in P$ or $c \in P$

- P is a prime ideal in ring R if and only if R/P is an integral domain
- Prime ideals in \mathbb{Z} are (p) where p is prime

1.4 Principal Ideals Generated by c

Let R be a commutative ring with identity and $c \in R$. Then $I = \{rc \mid r \in R\}$ is the principal ideal generated by c, denoted (c)

• If $(m) \subseteq (n)$, then $n \mid m$

1.5 Principal Ideal Domains

A principal ideal domain (PID) is an integral domain in which every ideal is principal

- An integral domain is a commutative ring with identity with no zero divisors
- If \mathbb{F} is a field, then \mathbb{F} is a principal ideal domain
- i.e. \mathbb{Z} , $\mathbb{F}[x]$, $\mathbb{Z}[i]$

1.6 Ring Automorphisms

A ring automorphism is an isomorphism from a ring to itself

• Let R be a ring. Then the set of all ring automorphisms from R to R forms a group under function composition, denoted $\operatorname{Aut}(R)$

1.7 Unital Ring Homomorphism

A ring homomorphism $\varphi: R \to S$ is unital if $\varphi(1_R) = 1_S$ where R and S are rings with identity

- Let F be a field, let R be any non-zero commutative ring with identity, and let $\varphi: F \to R$ be a unital ring homomorphism. Then φ is injective
- · All ring homomorphisms with field domains are unital
- A unital ring homomorphism φ induces an isomorphism $F \cong \varphi(F)$

1.8 Kernels

The kernel of a ring homomorphism $f: R \to S$ is $Ker(f) = \{r \in R \mid f(r) = 0_S\}$

- Ker(f) contains every element in the domain R that has 0 value in the co-domain S
- Ker(f) is an ideal in R
 - Given $a, b \in \text{Ker}(f)$, $a b \in \text{Ker}(f)$ since $f(a b) = f(a) f(b) = 0_S 0_S = 0_S$
 - Given $r \in R$ and $a \in \text{Ker}(f)$, $ra \in \text{Ker}(f)$ since $f(ra) = f(r) \cdot f(a) = f(r) \cdot 0_S = 0_S$
- $Ker(f) = \{0_R\}$ if and only if
 - f is injective
 - R is isomorphic to f(R)

1.9 Vector Spaces

Let F be a field. Then a vector space V over F is an additive abelian group equipped with a scalar multiplication such that for all $a, a_1, a_2 \in F$ and $v, v_1, v_2 \in V$

- $a(v_1 + v_2) = av_1 + av_2$
- $(a_1 + a_2)v = a_1v + a_2v$
- $a_1(a_2v) = (a_1a_2)v$
- $1_F v = v$

1.10 Spanning Sets

A set $\{v_1,...,v_n\}$ spans a vector space V over a field F if every element of V is a linear combination of $v_1,...,v_n$

• Given any arbitrary element $v \in V$, there exists $\alpha_1, ..., \alpha_n \in F$ such that $v = \alpha_1 v_1 + ... + \alpha_n v_n$

1.11 Bases

A basis of a vector space *V* over a field *F* is a linearly independent spanning set of *V* over *F*

- A set $\{v_1,...,v_n\}$ is linearly independent if $\alpha_1v_1+...+\alpha_nv_n=0$ has only the trivial solution
- The dimension of V over F is the number of elements in any basis of V over F, denoted [V:F]
 - Any two bases of V over F have the same number of elements

2 Geometric Constructions

2.1 Algebraic Representation of Lines

Let $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ be distinct points in \mathbb{R}^2 . Then

$$L(P,Q) = \{(x,y) \in \mathbb{R}^2 \mid (x - x_P)(x_Q - x_P) = (y - y_P)(y_Q - y_P)\}$$

represents a straight line through P and Q

A line is constructible if P and Q are constructible points

2.2 Algebraic Representation of Circles

Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ be distinct points in \mathbb{R}^2 . Then

$$C(P,Q) = \{(x,y) \in \mathbb{R}^2 \mid (x-x_P)^2 + (y-y_P)^2 = (x_Q - x_P)^2 + (y_Q - y_P)^2 \}$$

represents a circle whose center is P and passes through Q

A circle is constructible if P and Q are constructible points

2.3 Constructible Points

A point $P \in \mathbb{R}^2$ is a constructible point if there exists a finite sequence of points $P_0,...,P_n \in \mathbb{R}^2$ where $P_0 = (0,0), P_1 = (1,0),$ and $P_n = P$ such that at least one of the following is true for all P_i with $i \geq 2$

- $P_i \in L(P_{i_1}, P_{i_2}) \cap L(P_{i_3}, P_{i_4})$ where $L(P_{i_1}, P_{i_2}) \neq L(P_{i_3}, P_{i_4})$
- $P_i \in C(P_{i_1}, P_{i_2}) \cap C(P_{i_3}, P_{i_4})$ where $P_{i_1} \neq P_{i_3}$
- $P_i \in L(P_{i_1}, P_{i_2}) \cap C(P_{i_3}, P_{i_4})$

where $0 \le i_1, i_2, i_3, i_4 \le i - 1$

2.4 Elementary Constructions

A construction is elementary if it can be accomplished using a compass and a straightedge

- Given a line L and a point P, we can construct a line L' such that $P \in L'$ and $L \perp L'$
- Given a line L and a point P, we can construct a line L' such that $P \in L'$ and $L \mid\mid L'$
- Given two lines $L(P_1,Q_1)$ and $L(P_2,Q_2)$, we can construct a point $P'\in L(P_2,Q_2)$ such that $d(P',P_2)=d(P_1,Q_1)$

2.5 Constructible Numbers

An element $r \in \mathbb{R}$ is a constructible number if $(r,0) \in \mathbb{R}^2$ is a constructible point

- A point $(x,y)\in\mathbb{R}^2$ is constructible if and only if $x,y\in\mathscr{C}$
- The set of constructible numbers $\mathscr C$ is a subfield of $\mathbb R$
 - Let a, b, c, d be constructible numbers with $c \neq 0$ and d > 0. Then

$$a+b$$
, $a-b$, ab , a/c , and \sqrt{d}

are constructible numbers

2.6 Constructible Numbers in Subfields of R

Let $P_i = (x_i, y_i) \in \mathbb{R}^2$ be points for $1 \le i \le 4$ such that $P_1 \ne P_2$ and $P_3 \ne P_4$. Let F be a subfield of \mathbb{R} containing $\{x_i, y_i\}_{1 \le i \le 4}$ and let $P = (x, y) \in \mathbb{R}^2$

- If $P \in L(P_1, P_2) \cap L(P_3, P_4)$ where $L(P_1, P_2) \neq L(P_3, P_4)$, then $x, y \in F$
- If $P \in L(P_1, P_2) \cap C(P_3, P_4)$, then there exists some $u \in F$ such that $x, y \in F(\sqrt{u})$
- If $P \in C(P_1, P_2) \cap C(P_3, P_4)$ and $P_1 \neq P_3$, then there exists some $u \in F$ such that $x, y \in F(\sqrt{u})$

Let [F(x,y):F] denote the number of elements in any basis of F(x,y) over F

- There always exists some $u \in F$ such that $x, y \in F(\sqrt{u})$
 - **-** $[F(\sqrt{u}):F] = 1$ if $\sqrt{u} ∈ F$
 - $[F(\sqrt{u}):F]=2$ if $\sqrt{u} \notin F$
- $F \subseteq F(x,y) \subseteq F(\sqrt{u})$ such that $[F(x,y):F] \in \{1,2\}$

If $\operatorname{char}(F) \neq 2$ and K/F is an extension of degree [K:F]=2, then K=F(u) for some $u \in K$ such that $u^2 \in F$

2.7 Constructible Real Numbers

For a real number $r \in \mathbb{R}$, the following are equivalent

- The number r is a constructible number
- · There exists a finite chain of fields

$$\mathbb{Q} = F_0 \subseteq ... \subseteq F_n \subseteq \mathbb{R}$$

such that $r \in F_n$ and $[F_i : F_{i-1}] = 2$ for all $1 \le i \le n$

2.8 Constructible Roots of Polynomials

- Let F be a subfield of $\mathbb R$ and $f(x) \in F[x]$. Suppose that $k \in F$ and $\sqrt{k} \notin F$. If $a + b\sqrt{k}$ is a root of f(x), then $a b\sqrt{k}$ is also a root of f(x)
- Let F be a subfield of a field K. Let $f(x), g(x) \in F[x]$ and $h(x) \in K[x]$. If f(x) = g(x)h(x), then h(x) is in F[x]
- Let f(x) be a cubic polynomial in $\mathbb{Q}[x]$. If f(x) has no roots in \mathbb{Q} , then f(x) has no constructible numbers as roots

3 Field Extensions

3.1 Fields

A field is a commutative ring with identity where all non-zero elements are units

· All fields are integral domains

3.2 Field Extensions

Let F be a subfield of a field K. Then K is a field extension of F, denoted K/F or $F \subseteq K$

• F is called the base of the extension

3.3 Field Embeddings

Let F and K be fields. Then the unital ring homomorphism $\varphi: F \to K$ is a field embedding

$$F \xrightarrow{\varphi} K$$

$$\cong \int \varphi(F)/K$$

$$\varphi(F)$$

- F is isomorphic to $\varphi(F)$
- K is a field extension of $\varphi(F)$

3.4 Field Construction

Let R be a commutative ring with identity and let I be an ideal of R

- I is a prime ideal if and only if the quotient ring R/I is an integral domain
- I is a maximal ideal if and only if the quotient ring R/I is a field

Let R be a PID and let f be an irreducible element in R

- Since (f) is irreducible, (f) is a maximal ideal
- Since (f) is a maximal ideal, R/(f) is a field

Let F be a field and let f(x) be an irreducible polynomial in F[x]. Then K = F[x]/(f(x)) is a field extension of F which contains a root of f(x)

• f(x) is irreducible if and only if it cannot be non-trivially factored such that f(x) = p(x)q(x), where p(x) and q(x) are polynomials of lesser degrees

3.5 Fraction Fields

Let R be an integral domain and let $S = R \times R \setminus \{0_R\} = \{(a,b) \mid a,b \in R,\ b \neq 0_R\}$. Then the fraction field of R, denoted $\operatorname{Frac}(R)$, is the set of equivalence classes of S

- $[a,b] = \{(c,d) \in S \mid (a,b) \sim (c,d)\} = \{(c,d) \in S \mid ad = cb\}$
- $[a, b] +_{Frac(R)} [c, d] = [ad + bc, bd]$
- $[a,b] \cdot_{\operatorname{Frac}(R)} [c,d] = [ac,bd]$
- Additive identity is $0_{\text{Frac}(R)} = [0_R, 1_R]$
- Multiplicative identity is $1_{Frac(R)} = [1_R, 1_R]$
- Frac(R) is a commutative ring with identity
- Fraction fields are analogous to numerical fractions in O

Let R be an integral domain. Then there exists an injective unital ring homomorphism $\xi:R\to \operatorname{Frac}(R)$ defined as $\xi(r)=[r,1_R]$

- The integral domain R is isomorphic to the integral domain $\{[r, 1_R] \mid r \in R\} \subseteq \operatorname{Frac}(R)$
- Let F be a field and $\varphi: R \to F$ be an injective unital ring homomorphism
 - Then there exists a field embedding $\varphi' : \operatorname{Frac}(R) \to F$ such that $\varphi = \varphi' \circ \xi$

3.6 Polynomial Fraction Fields

Let F be a field. Then $F(x) = F[x] \times F[x] \setminus \{0_{F[x]}\}$ is the fraction field of F[x]

- All fields are integral domains
- If F is an integral domain, then F[x] is also an integral domain

3.7 Residue Fields

Let R be a commutative ring with identity and let P be a prime ideal of R such that the quotient ring R/P is an integral domain. Then $\operatorname{Frac}(R/P)$ is the residue field of P

3.8 Field Characteristic

Let F be a field and let $\varepsilon_F : \mathbb{Z} \to F$ be the unique unital ring homomorphism between \mathbb{Z} and F. Then $\mathrm{Ker}(\varepsilon_F)$ is the characteristic of F, denoted $\mathrm{char}(F)$

- $\operatorname{Ker}(\varepsilon_F) = (\ell)$ where ℓ is either 0 or a positive prime
 - If char(F) = 0, then F is an extension of the field \mathbb{Q}
 - If char(F) = p, then F is an extension of the field \mathbb{F}_p
 - The prime subfield of F is the field that F is an extension of
 - The fields \mathbb{Q} , \mathbb{R} , \mathbb{C} have characteristic 0 and prime subfield \mathbb{Q}
- If K/F is a field extension, then char(K) = char(F)
- If $K \cong F$, then char(K) = char(F)
- If F and K are fields with a field embedding $\varphi: F \to K$, then $\operatorname{char}(F) = \operatorname{char}(K)$
- There exists an injective ring homomorphism $\varphi: \mathbb{Z}/\mathrm{Ker}(\varepsilon_F) \to F$
- $\mathbb{Z}/\mathrm{Ker}(\varepsilon_F)$ is an integral domain

3.9 Degree of a Field Extension

Let K/F be a field extension where K is a vector space over F. Then the degree of the extension K/F is the dimension of K as an F-vector space, denoted $[K:F]=\dim_F K$

- If [K:F] is finite, then K/F is a finite extension
- $[K:F] \ge 1$ for all field extensions K/F
- [K:F]=1 if and only if K=F

Let $F \subseteq K \subseteq L$ be field extensions

- If $V=\{v_1,...,v_n\}$ is an F-basis for K and $W=\{w_1,...,w_m\}$ is a K-basis for L, then $U=\{v_iw_j\mid 1\leq i\leq n,\ 1\leq j\leq m\}$ is an F-basis for L
 - V is an F-basis for K such that $V \subseteq K$ and W is a K-basis for L such that $W \subseteq L$
- [L:F] = [L:K][K:F]

3.10 Simple Extensions

Let K/F be a field extension and let S be a subset of K. Then F(S) is the intersection of all subfields of K that contain F and S

- Let $u_1, ..., u_n$ be elements of K. Then $F(u_1, ..., u_n)$ is the intersection of all subfields of K that contain $u_1, ..., u_n$
 - $F(u_1,...,u_n) = (F(u_1,...,u_{n-1}))(u_n)$
- F(S) is the smallest subfield of K that contains F and all elements of S
- If S is a finite set, then F(S) is a finitely generated extension of F
- If |S| = 1, then F(S) is a simple extension of F
- If $S \subseteq F$, then F = F(S)

3.11 Algebraic and Transcendental Elements

Let K/F be a field extension and let u be an element in K. Let $\varphi_u: F[x] \to K$ be the F-homomorphism defined as $\varphi(x)=i$

- If u is the root of some non-zero polynomial in F[x], then u is algebraic over F
 - Alternately, if φ_u is injective, then u is algebraic over F
- If u is not the root of any non-zero polynomial in F[x], then u is transcendental over F
 - Alternately, if φ_u is not injective, then u is transcendental over F

If u is transcendental over F, then there exists an F-isomorphism $\varphi:F(x)\to F(u)$ defined as $\varphi(x)=u$

3.12 Algebraic Extensions

Let K/F be a field extension where every element of K is algebraic over F. Then K/F is an algebraic extension

- · All finite extensions are algebraic extensions
- If $F(u_1,...,u_n)$ is a finitely generated extension field of F and each u_i is algebraic over F, then $F(u_1,...,u_n)$ is a finite-dimensional algebraic extension of F
- Let K/F be a field extension and let $E \subseteq K$ be the subset of elements of K that are algebraic over F. Then E is an algebraic extension of F
- Let $F\subseteq K\subseteq L$ be field extensions. If L/K and K/F are algebraic extensions, then L/F is an algebraic extension

3.13 Algebraic Closure

A field extension K/F is an algebraic closure of F if

- K/F is an algebraic extension
- K is algebraically closed such that every non-constant polynomial $f(x) \in K[x]$ has a root in K

For any field F, the following existence and uniqueness properties hold

- There exists an algebraic closure K/F of F
- Given two algebraic closures K_1/F and K_2/F of F, there exists an F-isomorphism $K_1 \cong K_2$

3.14 Minimal Polynomial

Let K/F be a field extension and let $u \in K$ be algebraic over F. Since F[x] is a PID, there exists a unique monic polynomial

$$m_{u,F} \in F[x]$$

such that $\ker(\varphi_u) = (m_{u,F})$ are ideals of F[x]. This is the minimal polynomial of u over F

- The minimal polynomial of an element $u \in F$ is the monic polynomial p(x) over a field F such that p(u) = 0
 - If u is a root of $g(x) \in F[x]$, then p(x) divides g(x)
- Let K/F be a field extension and let $u \in K$ be algebraic over F with minimal polynomial $m_{u,F} \in F[x]$. Then
 - There exists an *F*-isomorphism $F[x]/(m_{u,F}) \cong F(u)$
 - The set $\{1, u, ..., u^{\deg(m_{u,F})-1}\}$ is an F-basis of F(u)
 - $[F(u):F] = \deg(m_{u,F})$
- If u and v have the same minimal polynomial p(x) in F[x], then F(u) is isomorphic to F(v)
- Let $F_1 \subseteq F_2 \subseteq K$ be field extensions and let $u \in K$ be algebraic over F_1 . Then u is also algebraic over F_2 and $m_{u,F_2} \mid m_{u,F_1}$ in $F_2[x]$
 - $\deg(m_{u,F_2}) \leq \deg(m_{u,F_1})$
- The degree of u over F is given by $deg(m_{u,F})$

3.15 Computing [K:F]

Given an extension K/F, the degree [K:F] can be computed as [K:F(u)][F(u):F] as follows

- 1. Find some monic polynomial $f(x) \in F[x]$ such that f(u) = 0
 - Then u is algebraic over F
- 2. Prove that f(x) is irreducible
 - Then $m_{u,F} = f(x)$ such that $[F(u):F] = \deg(f(x))$

We can show that a monic polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible as follows

- 1. Check for roots using the rational roots theorem
 - This shows that f(x) is irreducible only when deg(f(x)) = 2 or 3
- 2. Use Eisenstein's criterion
 - This may require a change of coordinates, where f(x) is replaced by f(x+n) for some $n\in\mathbb{Z}$
- 3. Consider the image $\bar{f}(x) \in \mathbb{F}_p[x]$ for a carefully chosen p
 - If $\bar{f}(x)$ is irreducible in $\mathbb{F}_p[x]$, then f(x) is irreducible in $\mathbb{Q}[x]$
- 4. Brute force
 - This may be reasonable if many of the coefficients of f(x) are 0

3.16 Additional Theorems

• Let K/F be a field extension and let $u_1, ..., u_n \in K$ be algebraic over F. Then

$$[F(u_1, ..., u_n) : F] = [F(u_1, ..., u_n) : F(u_1, ..., u_{n-1})] ... [F(u_1, u_2) : F(u_1)] [F(u_1) : F]$$

= $\deg(m_{u_n, F(u_1, ..., u_{n-1})}) \cdot ... \cdot \deg(m_{u_2, F(u_1)}) \cdot \deg(m_{u_1, F})$

- Let F be a field with $\operatorname{char}(F) \neq 2$ and let $a,b \in F$ be elements such that a,b,ab are not squares in F. For any K/F containing $\sqrt{a},\sqrt{b},\sqrt{ab}$, the set $\{1,\sqrt{a},\sqrt{b},\sqrt{ab}\}$ is linearly independent over F such that $[F(\sqrt{a},\sqrt{b}):F]=4$
- Let K/F be a field extension and let $u_1,u_2\in K$ be algebraic over F. Let $d_1=\deg(m_{u_1,F})$ and $d_2=\deg(m_{u_2,F})$. Then $[F(u_1,u_2):F]=d_1d_2$ if $\gcd(d_1,d_2)=1$

3.17 Splitting Functions

Let K/F be a field extension and let $f(x) \in F[x]$ be a monic polynomial. Then f(x) splits over the field K if there exists elements $u_1,...,u_n \in K$ such that $f(x)=(x-u_1)...(x-u_n)$ in K[x]

3.18 Splitting Fields

Let F be a field and let $f(x) \in F[x]$ be a polynomial. Then a splitting field of f(x) over F is an extension K/F such that

- f(x) splits over K
- $K = F(u_1, ..., u_n)$
- If $F \subseteq E \subseteq K$ and f(x) splits over E, then E = K

K is the smallest extension field that contains all the roots of f(x)

- Let F be a field and let $f(x) \in F[x]$ be a non-constant polynomial with $\deg(f(x)) = n$. Then there exists a splitting field K of f(x) over F such that $[K:F] \leq n!$
- Let F be a field, let $f(x) \in F[x]$ be a polynomial, and let K/F be a splitting field of f(x) over K. For any extension $F \subseteq E \subseteq K$, the extension K/E is a splitting field of f(x) over E
- Let F be a field and p(x) be an irreducible polynomial in F[x]. Then F[x]/p(x) is an extension field of F that contains a root $\alpha = [x]$ of p(x)

3.19 Extension Lemma

Let $\phi: F_1 \to F_2$ be an isomorphism of fields. For i=1,2, let K_i/F_i be a field extension and let $u_i \in K_i$ be algebraic over F_i with minimal polynomial $m_{u_i,F_i} \in F_i[x]$. If $\phi(m_{u_1,F_1}) = m_{u_2,F_2}$, then there exists a unique isomorphism $\phi': F_1(u_1) \to F_2(u_2)$ such that $\phi'(u_1) = u_2$ and ϕ' extends ϕ

• Any two splitting fields of a polynomial in F[x] are isomorphic

3.20 Normal Extensions

An algebraic extension K/F is a normal extension if whenever an irreducible polynomial $f(x) \in F[x]$ has a root in K, then it splits over K

- K/F is a normal extension if the minimal polynomial $m_{u,F} \in F[x]$ splits over K for every $u \in K$
- Let K/F be a finite extension. Then the following are equivalent
 - The extension K/F is a splitting field for some polynomial $f(x) \in F[x]$
 - The extension K/F is a normal extension

3.21 Derivatives

Let F be a field and let $f(x) = \sum_{i=0}^{n} a_i x^i$ be a polynomial in F[x]. Then $f'(x) = \sum_{i=1}^{n} i \cdot a_i x^{i-1}$ is the derivative of f(x)

- If $c \in F$ and $f(x) \in F[x]$, then $(c \cdot f(x))' = c \cdot f'(x)$
- If $f(x), g(x) \in F[x]$, then (f(x) + g(x))' = f'(x) + g'(x)
- If $f(x), g(x) \in F[x]$, then (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)

3.22 Separable Polynomials

Let F be a field and let f(x) be a polynomial in F[x] of degree n. Then f(x) is separable if there exists an extension K/F such that f(x) splits over K and f(x) has n distinct roots

- Let $f'(x) \in F[x]$ be the derivative of f(x). Then f(x) is separable if and only if gcd(f(x), f'(x)) = 1
- Let $f(x) \in F[x]$ be a monic irreducible polynomial. Then f(x) is separable if and only if f'(x) is non-zero

3.23 Separable Elements

Let K/F be a field extension and let $u \in K$ be algebraic over F. Then u is a separable element over F if its minimal polynomial $m_{u,F} \in F[x]$ is a separable polynomial

- An algebraic extension K/F is a separable extension if every element $u \in K$ is separable over F
- Let F be a field of char(F) = 0. Then
 - Every irreducible polynomial $f(x) \in F[x]$ is separable
 - Every algebraic extension K/F is a separable extension

3.24 Primitive Element Theorem

Let K/F be a finite separable extension. Then there exists some $u \in K$ such that K = F(u)

- Let K/F be an extension of finite fields. Then there exists some $u \in K$ such that K = F(u)
- Given K = F(v, w)

Let $m_{v,F} \in F[x]$ and $m_{v,F} \in F[x]$ be the minimal polynomials of v and w respectively Let $v_1, ..., v_m$ be the roots of $m_{v,F}$ and let $w_1, ..., w_n$ be the roots of $m_{w,F}$

Then
$$F(v,w) = F(u)$$
 for some $u = v + cw$ with $c \notin \left\{ \frac{v_i - v_1}{w_1 - w_j} \;\middle|\; 1 \leq i \leq m, \; 1 < j \leq n \right\}$

- It is usually the case that we can choose c=1 such that F(u)=F(v+w)

3.25 Finite Fields

Let F be a field. Then F is finite if F contains a finite number of elements

- If F is a finite field, then char(F) = p for some prime p
- If F is a finite field, then $|F|=p^n$ where $p=\operatorname{char}(F)$ and $n=[F:\mathbb{F}_p]$
- Let F be a field of char(F) = p. For any positive integer n, the subset

$$F' = \{ u \in F \mid u^{(p^n)} = u \}$$

is a subfield of F

- Let p be a prime and let n be a positive integer. Then there exists a field F of order p^n
 - If F_1, F_2 are both fields of order p^n , then $F_1 \cong F_2$
- Let F be a finite field where $p = \operatorname{char}(F)$ and let $n \in \mathbb{Z}^+$. Then $(a+b)^{(p^n)} = a^{(p^n)} + b^{(p^n)}$
- Let K/F be an extension of finite fields. Then the extension K/F is normal and separable
- Let K be a field and let $G \subseteq K^{\times}$ be a finite subgroup. Then G is cyclic

3.26 Magic Polynomials Over Finite Fields

- Let p be a prime. Then the polynomial $x^{(p^n)} x \in \mathbb{F}_p[x]$ is separable
 - If $m \mid n$, then $\left(x^{(p^m)} x\right) \mid \left(x^{(p^n)} x\right)$
- Let F be a finite field where p = char(F). Then the following are equivalent
 - $|F| = p^n$
 - The extension F/\mathbb{F}_p is a splitting field of $x^{(p^n)}-x$ over \mathbb{F}_p
 - The extension F/\mathbb{F}_p is exactly the set of roots of $x^{(p^n)}-x$
- Let p be a prime. For any positive integer n, there exists a monic irreducible polynomial $f(x) \in \mathbb{F}_p[x]$ of degree $\deg(f(x)) = n$
- Let p be a prime. Then for any positive integer n the following holds

$$x^{(p^n)} - x = \prod_{d|n, f(x) \in M_d} f(x)$$

in $\mathbb{F}_p[x]$, where M_d is the set of monic irreducible polynomials of degree d in $\mathbb{F}_p[x]$

3.27 Prime Power Order Fields

The field \mathbb{F}_{p^n} of order p^n is unique up to isomorphism

- If $|F|=p^n$, then $F\cong \mathbb{F}_{p^n}$
- $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$ if and only if $m \mid n$

4 Galois Theory

4.1 Automorphism Groups

Let K be a field. Then the set of field automorphisms $\varphi: K \to K$ is denoted $\operatorname{Aut}(K)$

- Aut(K) is a group under function composition
- Let K/F be a field extension. Then an automorphism $\varphi \in \operatorname{Aut}(K)$ is an F-automorphism if $\varphi(a) = a$ for all $a \in F$
- Let K/F be a field extension. Then

$$\operatorname{Aut}(K/F) = \{ \varphi \in \operatorname{Aut}(K) \mid \varphi(a) = a \text{ for all } a \in F \}$$

is the set of F-automorphisms of K

- Aut(K/F) is a subgroup of Aut(K)
- Let K/F be a field extension and let $\varphi \in \operatorname{Aut}(K/F)$. If $u \in K$ is a root of $f(x) \in F[x]$, then $\varphi(u) \in K$ is also a root of f(x)
- Let $f(x) \in F[x]$ be monic irreducible over F and let K/F be the splitting field of f(x) over F. If $u, v \in K$ are two roots of f(x), then there exists some $\varphi \in \operatorname{Aut}(K/F)$ such that $\varphi(u) = v$
- Let K/F be a field extension with $K=F(u_1,...,u_n)$ for some $u_1,...,u_n\in K$ and let $\varphi_1,\varphi_2\in \operatorname{Aut}(K/F)$. If $\varphi_1(u_i)=\varphi_2(u_i)$ for all i=1,...,n, then $\varphi_1=\varphi_2$
- If K/F is a finite extension, then Aut(K/F) is a finite group
- Let F be a field, let $f(x) \in F[x]$ be a polynomial, and let K/F be a splitting field of f(x) over F. If there are n distinct roots of f(x) in K, then there is an injective group homomorphism

$$\operatorname{Aut}(K/F) \to S_n$$

where S_n is the symmetric group of degree n

- $|\operatorname{Aut}(K/F)| \le n!$
- Let F be a field, let $f(x) \in F[x]$ be a polynomial, and let K/F be a splitting field of f(x) over F. Then

$$|\operatorname{Aut}(K/F)| \leq [K:F]$$

- If f(x) is separable, then $|\operatorname{Aut}(K/F)| = [K:F]$
- Let K be a field and let $\varphi_1,...,\varphi_n\in \operatorname{Aut}(K)$ be distinct automorphisms of K. Then $\{\varphi_1,...,\varphi_n\}$ is linearly independent over K
- Let K be a field, let $\varphi_1,...,\varphi_n \in \operatorname{Aut}(K)$ be automorphisms, and let $G \subseteq \operatorname{Aut}(K)$ be the subgroup generated by the φ_i . Then

$$K^G = \{ a \in K \mid \varphi_i(a) = a \text{ for all } i = 1, ..., n \}$$

is a subfield of K

4.2 Fixed Fields

Let K be a field and let $G \subseteq Aut(K)$ be a subgroup. Then the fixed field of G is given by

$$K^G = \{ a \in K \mid \varphi(a) = a \text{ for all } \varphi \in G \}$$

- K^G is a subfield of K
- Let K be a field and let G be a finite subgroup of Aut(K). Then
 - The extension K/K^G is a finite extension and its degree is $[K:K^G]=|G|$
 - The extension ${\cal K}/{\cal K}^G$ is separable and normal

4.3 Galois Correspondence

Let K be a field. Then there exists functions

```
f: \{\text{subgroups of } \operatorname{Aut}(K)\} \to \{\text{subfields of } K\} \text{ defined by } f(G) = K^G g: \{\text{subfields of } K\} \to \{\text{subgroups of } \operatorname{Aut}(K)\} \text{ defined by } g(F) = \operatorname{Aut}(K/F)
```

where G is a subfield of $\operatorname{Aut}(K)$ and F is a subfield of K

- If $G_1 \subseteq G_2$ are two subgroups of $\operatorname{Aut}(K)$, then $K^{G_2} \subseteq K^{G_1}$
- If $F_1 \subseteq F_2$ are two subgroups of K, then $\operatorname{Aut}(K/F_2) \subseteq \operatorname{Aut}(K/F_1)$
- Let F be a subfield of a field K. Then $F \subseteq (f \circ g)(F)$ such that $F \subseteq K^{\operatorname{Aut}(K/F)}$
- Let G be a subgroup of $\operatorname{Aut}(K)$. Then $G \subseteq (g \circ f)(G)$ such that $G \subseteq \operatorname{Aut}(K/K^G)$
- If K/F is a finite extension, then $|\mathrm{Aut}(K/F)| \leq [K:F]$
- If $G \subseteq \operatorname{Aut}(K)$ is a finite subgroup, then $G = \operatorname{Aut}(K)$

4.4 Galois Extension

Let K/F is a finite extension. Then the following are equivalent

- K/F is separable and normal
- K is the splitting field of a separable polynomial $f(x) \in F[x]$
- |Aut(K/F)| = [K : F]
- $F = K^{\operatorname{Aut}(K/F)}$

K/F is a Galois extension if it satisfies the above conditions

4.5 Fundamental Theorem of Galois Theory

Let K/F be a Galois extension. Then the following properties hold

- The Galois correspondence functions f,g satisfy $f\circ g=g\circ f=Id$
- A subgroup $G \subseteq \operatorname{Aut}(K/F)$ is a normal subgroup if and only if K^G/F is a normal extension
- If $F \subseteq E \subseteq K$ are field extensions and E/F is normal, then

$$\operatorname{Aut}(K/F) / \operatorname{Aut}(K/E) \cong \operatorname{Aut}(E/F)$$

where $\operatorname{Aut}(K/F) / \operatorname{Aut}(K/E)$ is a quotient group

- There exists a bijection between the set of all intermediate fields of K/F and the set of all subgroups of ${\rm Aut}(K/F)$
- An intermediate field E is a normal extension of F if and only if ${\rm Aut}(K/E)$ is a normal subgroup of ${\rm Aut}(K/F)$

4.6 Inverse Galois Conjecture

For every finite group G, there exists a Galois extension K/\mathbb{Q} such that $\operatorname{Aut}(K/\mathbb{Q}) \cong G$

5 Solvability

5.1 Radical Extensions

Let K/F be a finite extension. Then K/F is a radical extension if there exists a chain of fields

$$F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t = K$$

such that there exists some $u_i \in F_i$ where $F_i = F_{i-1}(u_i)$ and some positive power of u_i is in F_{i-1} for all i = 1, ..., t

- If $F_1 \subseteq F_2 \subseteq F_3$ are field extensions such that F_3/F_2 and F_2/F_1 are radical, then F_3/F_1 is radical
- If K/F is a field extension such that $K=F(u_1,...,u_t)$ for some $u_1,...,u_t\in K$ and some positive power of u_i is in F for all $1\leq i\leq t$, then K/F is radical

5.2 Solvability By Radicals

Let $f(x) \in F[x]$. Then f(x) is solvable by radicals if there exists a radical extension K/F such that f(x) splits over K

5.3 Roots of Unity Group

Let F be a field and let $\mu_n(F) = \{ \xi \in F \mid \xi^n = 1_F \}$ be the set of all n^{th} roots of unity in F. Then $\mu_n(F)$ is a subgroup of F^{\times} of order at most n

- If $|\mu_n(F)| = n$, then $n \neq 0$ in F such that either $\operatorname{char}(F) = 0$ or $\operatorname{char}(F) \nmid n$
- If $n \neq 0$ in F, then there exists an extension K/F such that $|\mu_n(K)| = n$

5.4 Primitive Roots of Unity

Let $\xi \in \mu_n(F)$ be an n^{th} root of unity. Then ξ is a primitive root of unity if $|\xi| = n$

- $|\xi| = n$ if and only if $\xi^n = 1_F$ and $\xi^i \neq 1_F$ for all $1 \leq i < n$
- If F is a field and K/F is an extension containing a primitive n^{th} root of unity $u \in K$, then F(u)/F is a Galois radical extension of F and $\operatorname{Aut}(F(u)/F)$ is an abelian group
 - K/F is not necessarily a field extension
- If F is a field containing a primitive n^{th} root of unity and K/F is a field extension such that K=F(u) for some $u\in K$ with $u^n\in F$, then K/F is a Galois radical extension and $\operatorname{Aut}(K/F)$ is an abelian group
- If F is a field of $\mathrm{char}(F)=0$ and K/F is a radical extension, then there exists an extension L/K such that L/F is a Galois radical extension

5.5 Solvable Groups

Let G be a finite group. Then G is a solvable group if there exists a chain of subgroups

$$\{e\} = G_0 \subseteq G_1 \subseteq \dots \subseteq G_n = G$$

such that the group G_{i-1} is a normal subgroup of G_i and the quotient G_i/G_{i-1} is abelian for all i=1,...,n

- If G is a solvable group, then any subgroup of G is a solvable group
- If G is a solvable group and $f:G\to H$ is a group homomorphism, then f(G) is a solvable group
- If G is a finite simple non-abelian group, then G is not solvable
- For any $n \ge 5$, the symmetric group S_n is not solvable
- If F is a field of $\mathrm{char}(F)=0$ and K/F is a Galois radical extension, then $\mathrm{Aut}(K/F)$ is a solvable group

5.6 Galois Groups

Let $f(x) \in F[x]$ be a polynomial and let K/F be a splitting field of f(x) over F. Then the automorphism group $\operatorname{Aut}(K/F)$ is the Galois group of f(x)

5.7 Galois' Criterion

Let F be a field of $\operatorname{char}(F)=0$ and let $f(x)\in F[x]$ be a polynomial. Then f(x) is solvable by radicals if and only if the Galois group of f(x) is a solvable group

• Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of $\deg(f(x)) = n$ for some $n \geq 5$. If the Galois group of f(x) is S_n , then f(x) is not solvable by radicals

5.8 Additional Theorems

• Let G be a subgroup of S_n that contains an n-cycle and a 2-cycle. Then $G = S_n$