

Finite mixture distributions offer an alternative to mixed logit models
Assume mixing distribution is discrete with finite support, indep. other variables

Finite	mixture	distributions	offer	an	alternative to	mixed	logit	models	
	······×care	alstribations	01101	۵	arcernative to	mixed	106.0	models	

Assume mixing distribution is discrete with finite support, indep. other variables

Let π_s denote the population probability of being in the sth unobserved group

Finite mixture distributions offer an alternative to mixed logit models

The log likelihood integrates over unobserved groups:

Assume mixing distribution is discrete with finite support, indep. other variables

Let π_s denote the population probability of being in the sth unobserved group

Let π_s denote the population probability of being in the str unobserved group

Finite mixture distributions offer an alternative to mixed logit models Assume mixing distribution is discrete with finite support, indep. other variables Let π_s denote the population probability of being in the sth unobserved group

The log likelihood integrates over unobserved groups:

$$\ell\left(X,Z;\beta,\gamma,\pi\right) = \sum_{i=1}^{N} \log \left\{ \sum_{s} \pi_{s} \prod_{i} \left[\frac{\exp\left(X_{i}\left(\beta_{j} - \beta_{J}\right) + \gamma_{s}\left(Z_{ij} - Z_{iJ}\right)\right)}{\sum_{k} \exp\left(X_{i}\left(\beta_{k} - \beta_{J}\right) + \gamma_{s}\left(Z_{ik} - Z_{iJ}\right)\right)} \right]^{d_{ij}} \right\}$$

Need panel data for identification

Assume γ is stable over time

Need panel data for identification

Assume γ is stable over time

Finite mixture log likelihood:

$$\ell\left(X, Z; \beta, \gamma, \pi\right) = \sum_{i=1}^{N} \log \left\{ \sum_{s} \pi_{s} \prod_{t} \prod_{i} \left[\frac{\exp\left(X_{it} \left(\beta_{j} - \beta_{J}\right) + \gamma_{s} \left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it} \left(\beta_{k} - \beta_{J}\right) + \gamma_{s} \left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} \right\}$$

 $\ell\left(X,Z;\beta,\gamma,\pi\right) = \sum_{i=1}^{N} \log \left\{ \sum_{s} \pi_{s} \prod_{t} \prod_{i} \left[\frac{\exp\left(X_{it} \left(\beta_{j} - \beta_{J}\right) + \gamma_{s} \left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it} \left(\beta_{k} - \beta_{J}\right) + \gamma_{s} \left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} \right\}$

$$\ell\left(X,Z;\beta,\gamma,\pi\right) = \sum_{i=1}^{N} \log \left\{ \sum_{s} \pi_{s} \prod_{t} \prod_{i} \left[\frac{\exp\left(X_{it} \left(\beta_{j} - \beta_{J}\right) + \gamma_{s} \left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it} \left(\beta_{k} - \beta_{J}\right) + \gamma_{s} \left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} \right\}$$

$$i=1$$
 (s

 $\ell\left(X,Z;\beta,\gamma,\mu,\sigma\right) = \sum_{i=1}^{N} \log \left\{ \int \prod_{i} \prod_{i} \left[\frac{\exp\left(X_{it}\left(\beta_{j} - \beta_{J}\right) + \gamma\left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it}\left(\beta_{k} - \beta_{J}\right) + \gamma\left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} f\left(\gamma;\mu,\sigma\right) d\gamma \right\}$

$$\ell\left(X,Z;\beta,\gamma,\pi\right) = \sum_{i=1}^{N} \log \left\{ \sum_{s} \pi_{s} \prod_{t} \prod_{i} \left[\frac{\exp\left(X_{it} \left(\beta_{j} - \beta_{J}\right) + \gamma_{s} \left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it} \left(\beta_{k} - \beta_{J}\right) + \gamma_{s} \left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} \right\}$$

$$\ell\left(X,Z;\beta,\gamma,\mu,\sigma\right) = \sum_{i=1}^{N} \log \left\{ \int \prod_{i} \left[\frac{\exp\left(X_{it}\left(\beta_{j} - \beta_{J}\right) + \gamma\left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it}\left(\beta_{k} - \beta_{J}\right) + \gamma\left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} f\left(\gamma;\mu,\sigma\right) d\gamma \right\}$$

Key differences:

$$\ell\left(X,Z;\beta,\gamma,\pi\right) = \sum_{i=1}^{N} \log \left\{ \sum_{s} \pi_{s} \prod_{t} \prod_{j} \left[\frac{\exp\left(X_{it} \left(\beta_{j} - \beta_{J}\right) + \gamma_{s} \left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it} \left(\beta_{k} - \beta_{J}\right) + \gamma_{s} \left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} \right\}$$

Mixed logit panel data log likelihood:

$$\ell\left(X,Z;\beta,\gamma,\mu,\sigma\right) = \sum_{i=1}^{N} \log \left\{ \int \prod_{t} \prod_{j} \left[\frac{\exp\left(X_{it}\left(\beta_{j} - \beta_{J}\right) + \gamma\left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it}\left(\beta_{k} - \beta_{J}\right) + \gamma\left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} f\left(\gamma;\mu,\sigma\right) d\gamma \right\}$$
Key differences:

• discrete distribution allows for summation instead of integration

 $\ell(X, Z; \beta, \gamma, \pi) = \sum_{i=1}^{N} \log \left\{ \sum_{s} \pi_{s} \prod_{t} \prod_{i} \left[\frac{\exp(X_{it} (\beta_{j} - \beta_{J}) + \gamma_{s} (Z_{ijt} - Z_{iJt}))}{\sum_{k} \exp(X_{it} (\beta_{k} - \beta_{J}) + \gamma_{s} (Z_{ikt} - Z_{iJt}))} \right]^{d_{ijt}} \right\}$

 $\ell\left(X,Z;\beta,\gamma,\mu,\sigma\right) = \sum_{i=1}^{N} \log \left\{ \int \prod_{i} \left[\frac{\exp\left(X_{it}\left(\beta_{j} - \beta_{J}\right) + \gamma\left(Z_{ijt} - Z_{iJt}\right)\right)}{\sum_{k} \exp\left(X_{it}\left(\beta_{k} - \beta_{J}\right) + \gamma\left(Z_{ikt} - Z_{iJt}\right)\right)} \right]^{d_{ijt}} f\left(\gamma;\mu,\sigma\right) d\gamma \right\}$

LC UCC

• $f(\gamma; \mu, \sigma)d\gamma$ replaced with π_s