

Adrian Zanoschi Gheorghe Iurea Gabriel Popa Petru Răducanu Ioan Șerdean

Bacalaureat 2024

MATEMATICĂ

M_mate-info

- _Teme recapitulative
- _ 65 de teste rezolvate, după modelul M.E.
- _ Breviar teoretic

Editura Paralela 45

Cuprins

Cuvânt-înainte		5
TEME RECAPITULATIVE		
	nunțuri	Soluții
Clasa a IX-a		,
1.1. Mulțimi și elemente de logică matematică		
1.2. Progresii		
1.3. Funcții. Funcția liniară		
1.4. Ecuația de gradul al II-lea. Funcția de gradul al II-lea		
1.5. Vectori		
1.6. Trigonometrie	19	239
1.7. Aplicații ale trigonometriei în geometrie	21	241
Clasa a X-a		
2.1. Radicali și logaritmi	24	243
2.2. Numere complexe	26	244
2.3. Functii	28	245
2.4. Ecuații și inecuații 2.5. Combinatorică	31	247
2.5. Combinatorică	34	250
2.6. Matematici aplicate. Probabilități	36	251
2.7. Geometrie analitică	38	253
2.8. Probleme recapitulative din materia claselor a IX-a – a X-a	41	254
Clasa a XI-a		
Clasa a XI-a 3.1. Permutări	48	256
3.2. Matrice	49	256
3.3. Determinanți		
3.4. Inversa unei matrice. Ecuații matriceale	56	259
3.5. Sisteme de ecuații liniare	58	261
3.6. Probleme de sinteză – algebră	62	263
3.7. Şiruri		
3.8. Şiruri date prin formule de recurență	70	268
3.9. Limite de funcții	73	270
3.10. Asimptote	76	272
3.11. Funcții continue	77	272
3.12. Derivata unei funcții	79	274
3.13. Teorema lui Fermat. Teorema lui Rolle. Teorema lui Lagrange	82	276
3.14. Regulile lui l'Hospital		
3.15. Rolul derivatelor de ordinul I și de ordinul al II-lea în studiul funcțiilor		
3.16. Reprezentarea grafică a funcțiilor		
3 17 Probleme de sinteză – analiză matematică		

10430
10730
11230
11531
12231
12531
13132
13532
13932
14333
14633
36
39

Teme recapitulative Clasa a IX-a

1.1. Mulțimi și elemente de logică matematică

- **1.** Se consideră intervalele A = (-4, 4] și B = (-2, 7). Determinați $(A \cap B) \cap \mathbb{Z}$.
- Ordonați crescător numerele $a = 2,5(1), b = \frac{5}{2}, c = 2,(51)$ și d = 2,51.
- Arătați că numărul $a = \left(\sqrt{168} + 4\sqrt{\frac{21}{2}} 6\sqrt{\frac{14}{3}}\right)\left(\sqrt{4\frac{2}{3}}\right)^{-1}$ este natural.
- Arătați că numărul $b = \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{8} + \sqrt{9}}$ este natural.
- Se consideră numerele $a = \sqrt{98} \sqrt{32} \sqrt{8}$ și $b = \sqrt{162} + \sqrt{18} + \sqrt{72}$. Calculați media aritmetică și media geometrică ale numerelor a și b
- Determinați numerele raționale a și b, știind că $\left(\sqrt{2} + \sqrt{6}\right)^2 = a b\sqrt{3}$.
- Demonstrați că, dacă $x \in [0, 51]$, atunci numărul $a = \sqrt{x + 49} + \sqrt{x + 625}$ se află în intervalul [32, 36].
- Fie $E(x, y) = \sqrt{x^2 2x + 5} + \sqrt{y^2 + 6y + 10}$, unde $x, y \in \mathbb{R}$. Arătați că $E(x, y) \ge 3$, pentru orice $x, y \in \mathbb{R}$.
- **9.** Stabiliți câte numere iraționale conține mulțimea $\{\sqrt{1}, \sqrt{2}, \sqrt{3}, ..., \sqrt{199}, \sqrt{200}\}$.

10. Calculați:

a)
$$\left\lceil \frac{5}{3} \right\rceil + \left\lceil -\frac{5}{2} \right\rceil$$
;

c)
$$\left[\sqrt{2}\right] + \left[\sqrt{3}\right] + \left[\sqrt{2} + \sqrt{3}\right];$$
 d) $\left\{\sqrt{2}\right\} + \left\{\sqrt{3}\right\} - \left\{\sqrt{2} + \sqrt{3}\right\}.$

d)
$$\{\sqrt{2}\}+\{\sqrt{3}\}-\{\sqrt{2}+\sqrt{3}\}$$

1.6. Trigonometrie

- **1.** Calculați: a) $\sin \frac{5\pi}{6}$; b) $\cos \frac{7\pi}{4}$; c) $tg \frac{5\pi}{3}$; d) $\cos \frac{7\pi}{6}$.
- **2.** Calculați: a) $\sin\left(-\frac{7\pi}{6}\right)$; b) $\cos\frac{117\pi}{4}$; c) tg $\frac{53\pi}{3}$; d) ctg $\left(\frac{1007\pi}{6}\right)$.
- **3.** Aflați $\cos a$, $\sin b$, $\sin(a+b)$ și $\cos(a-b)$, știind $\cot a \in \left(\frac{\pi}{2}, \pi\right)$, $b \in \left(\frac{3\pi}{2}, 2\pi\right)$, $\sin a = \frac{3}{5}$ și $\cos b = \frac{12}{13}$.
- **4.** Dacă $a \in \left(\frac{\pi}{2}, \pi\right)$ și $\cos a = -\frac{5}{13}$, calculați $\sin a$, $\sin 2a$ și $\cos 2a$.
- **5.** Fie $x \in \left(\frac{\pi}{2}, \pi\right)$ și $\cos 2x = -\frac{1}{2}$. Se $\operatorname{cer} \cos x$ și $\sin x$.
- **6.** Dacă $x \in \mathbb{R}$ pentru care $\sin x = \frac{1}{4}$, se cere $\sin 3x$.
- **7.** Fie $x \in \mathbb{R}$, astfel încât ctg x = 6. Calculați $\sin^2 x$.
- **8.** Dacă $t \in \left(0, \frac{\pi}{2}\right)$, astfel încât tg t + ctg t = 2, calculați sin 2t.
- **9.** Fie $t \neq \alpha \in \mathbb{R}$, astfel încât $\sin \alpha + t \cos \alpha = 1$.
 - a) Dacă t = 1, calculați tg 2α .
 - b) Dacă t = -1, calculați sin 2α .
- **10.** Calculați tg $\frac{a}{2}$, știind că sin $a = \frac{4}{5}$ și $a \in \left(0, \frac{\pi}{2}\right)$.
- **11.** Calculați: a) $\sin \frac{\pi}{12}$; b) $\cos 75^{\circ}$; c) tg 15°; d) $\cos \frac{11\pi}{12}$.
- **12.** Calculați $\frac{\sin 75^{\circ}}{\sin 15^{\circ}} \frac{\cos 75^{\circ}}{\cos 15^{\circ}}.$
- **13.** Fie $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$, astfel încât $\cos \alpha = -\frac{3}{5}$. Calculați $\cos\left(\frac{3\pi}{2} + \alpha\right) + \sin(\pi \alpha)$.
- **14.** Fie $a, b \in \mathbb{R}$, astfel încât $a b = \pi$. Arătați că are loc relația $\cos a \cdot \cos b \le 0$.
- **15.** Se consideră $a, b \in \mathbb{R}$, astfel încât $\sin a + \sin b = 1$ și $\cos a + \cos b = \frac{1}{2}$. Calculați $\cos(a b)$.

Clasa a X-a

2.1. Radicali si logaritmi

1. Arătați că:

Arătați că:
a)
$$2\sqrt{14} - \sqrt{\frac{7}{2}} - 5\sqrt{\frac{8}{7}} = \frac{1}{\sqrt{14}}$$
; b) $\sqrt{3} + \sqrt{11 - 6\sqrt{2}} - \sqrt{5 - 2\sqrt{6}} = 3$;

b)
$$\sqrt{3} + \sqrt{11 - 6\sqrt{2}} - \sqrt{5 - 2\sqrt{6}} = 3$$

c)
$$\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}} = 1+\sqrt{2}+\sqrt{3}$$
.

- **2.** Se consideră numerele $a = \sqrt{3 \sqrt{3}}$ și $b = \sqrt{3 + \sqrt{3}}$. Arătați că $\frac{1}{\sqrt{6}} \left(\frac{a}{b} + \frac{b}{a} \right) \in \mathbb{Q}$.
- **3.** Arătați că numărul $a = \sqrt{17 + 12\sqrt{2}} \sqrt{3 2\sqrt{2}} \sqrt{6 + 4\sqrt{2}} \in \mathbb{Q}$.
- **4.** Calculați $\left[\sqrt{2} 3\sqrt{3}\right]$ ([x] reprezintă partea întreagă a lui x).

a)
$$\sqrt[3]{2\sqrt{2}} - \sqrt{2}$$

5. Aduceți la o formă mai simplă:
a)
$$\sqrt[3]{2\sqrt{2}} - \sqrt{2}$$
;
b) $\sqrt{6} \cdot \sqrt[3]{18} : \sqrt[6]{\frac{3}{2}}$;
c) $\sqrt{\sqrt{2} - 1} \cdot \sqrt[4]{3 + 2\sqrt{2}}$;
d) $\sqrt{27} \cdot \sqrt{3\sqrt[3]{3}} \cdot \sqrt[3]{9\sqrt{3}}$.

c)
$$\sqrt{\sqrt{2}-1} \cdot \sqrt[4]{3+2\sqrt{2}}$$
;

d)
$$\sqrt{27} \cdot \sqrt{3\sqrt[3]{3}} \cdot \sqrt[3]{9\sqrt{3}}$$
.

- **6.** a) Aduceți la forma cea mai simplă: $E(x, y) = \sqrt[4]{\frac{x\sqrt[3]{y}}{y^2\sqrt{x}}} : \left(\frac{\sqrt[12]{y}}{\sqrt[8]{x}}\right)^7$, unde $x, y \in (0, +\infty)$.
 - b) Arătați că numărul $a = \sqrt[3]{\frac{4\sqrt[4]{27}}{\sqrt{3} \cdot \sqrt[3]{2}}} \cdot \frac{\sqrt[9]{16}}{\sqrt[3]{2}/3}$ este rațional.
- **7.** Se consideră $E(x) = x\sqrt[3]{x^2\sqrt{x}}$, unde $x \ge 0$. Calculați E(a), unde $a = \sqrt[1]{8}$.
- a) Fie $a = \sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2}$ şi $b = \sqrt[16]{2}$. Arătați că $a \cdot b$ este număr rațional.
 - b) Arătați că numărul $a = \sqrt{3 + \sqrt{5}} \cdot \sqrt[3]{\sqrt{5} 1} \cdot \sqrt[6]{7 3\sqrt{5}} \in \mathbb{Q}$.
- **9.** Determinați numărul natural k, dacă $(\sqrt[5]{x^3})^{7-k} \cdot \left(\frac{1}{x}\right)^k = x$, pentru orice x > 0.
- **10.** Ordonați crescător numerele:

a)
$$\sqrt{2}$$
, $\sqrt[3]{4}$ și $\sqrt[4]{5}$;

b)
$$\sqrt[3]{2\sqrt{2}}$$
, $\sqrt[4]{27\sqrt{3}}$ și $\sqrt[3]{4}$.

2.5. Combinatorică

- **1.** Care este cel mai mic număr natural n pentru care n! > 1000?
- **2.** a) Arătați că $\frac{1}{k!} \frac{1}{(k+1)!} = \frac{k}{(k+1)!}$, oricare ar fi $k \in \mathbb{N}^*$.
 - b) Calculați suma $S = \frac{1}{2!} + \frac{2}{3!} + ... + \frac{99}{100!}$ și arătați că S < 1.
- **3.** Calculați: a) $\frac{C_{20}^{10}}{C_{20}^{9}}$; b) $A_5^3 6C_5^3$; c) $A_4^3 A_3^2 C_4^2$.
- 4. Calculați:

a)
$$\frac{n! + (n+1)!}{(n+1)! - n!}$$
, $n \in \mathbb{N}$; b) $\frac{A_n^6 + A_n^5}{A_n^4}$, $n \in \mathbb{N}$, $n \ge 6$; c) $\frac{C_n^3}{C_n^3 + C_n^4}$, $n \in \mathbb{N}$, $n \ge 4$.

- **5.** Care este cel mai mare element din multimea $A = \{C_7^3, C_7^5, C_7^6\}$?
- **6.** Demonstrați că:

6. Demonstrați ca:
a)
$$C_{2n}^n = 2C_{2n-1}^n$$
, unde $n \in \mathbb{N}^*$; b) $C_{n+1}^4 = C_n^4 + C_n^3$, unde $n \in \mathbb{N}$, $n \ge 4$.
7. Rezolvați ecuațiile:
a) $C_x^2 + A_x^2 = 30$; b) $C_{2x-3}^2 = 3$;
c) $A_x^5 - 3A_x^4 = 21A_x^3$; d) $6 \cdot C_x^1 + 6 \cdot C_{x+2}^3 = 13C_{x+1}^2$; e) $A_{x-2}^2 + C_x^2 = 41$.
8. Rezolvați inecuațiile:
a) $C_x^{x-1} + C_{x-1}^{x-3} \le 9$; b) $(x+1)! - x! \le 100$; c) $C_n^3 \ge C_n^5$; d) $C_7^k \ge C_7^{k-1}$; e) $A_{x-1}^5 \le 12A_{x-1}^3$.

7. Rezolvați ecuațiile: a)
$$C_x^2 + A_x^2 = 30$$
;

b)
$$C_{2x-3}^2 = 3$$
;

c)
$$A_{11}^{5} - 3A_{11}^{4} = 21A_{11}^{3}$$
:

d)
$$6 \cdot C_{1}^{1} + 6 \cdot C_{2}^{3} = 13C_{2}^{2}$$
:

e)
$$A_{r-2}^2 + C_r^2 = 41$$
.

a)
$$C_x^{x-1} + C_{x-1}^{x-3} \le 9$$

b)
$$(x + 1)! - x! \le 100$$

c)
$$C_n^3 \ge C_n^5$$
:

d)
$$C_7^k \ge C_7^{k-1}$$

e)
$$A_{x-1}^5 \le 12A_{x-1}^3$$
.

- **9.** În câte moduri se poate forma un tren, având la dispoziție 6 vagoane?
- **10.** Câte numere de zece cifre distincte încep cu 20 și se termină cu 14?
- **11.** În câte moduri putem împărți 5 cărți la trei copii?
- 12. Dăm 3 cărți diferite la 5 copii, astfel încât niciun copil să nu primească mai mult de o carte. În câte moduri se poate face împărțirea?
- **13.** Un antrenor are la dispoziție 10 jucători. În câte moduri poate forma o echipă formată din 6 jucători?
- **14.** Într-o clasă sunt 22 de elevi, dintre care 12 sunt fete. Determinați în câte moduri se poate alege un comitet reprezentativ al clasei format din 3 fete și 2 băieți.
- **15.** Într-o clasă sunt 30 de elevi, dintre care 18 fete și 12 băieți. Alcătuim o echipă formată din 6 elevi care să conțină cel puțin 4 fete. În câte moduri putem forma echipa?
- **16.** Aflați numărul diagonalelor unui poligon convex cu 10 laturi.

2.8. Probleme recapitulative din materia claselor a IX-a – a X-a

Varianta 1

- **1.** Arătați că modulul numărului complex z = 5 12i este 13.
- **2.** Determinați coordonatele punctelor de intersecție dintre parabola asociată funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 5x + 6$ și axa Ox.
- **3.** Rezolvați în \mathbb{R} ecuația $3^x + 3^{x-1} + 3^{x-2} = 13$.
- **4.** Câte numere de două cifre se divid cu 4 sau cu 5?
- **5.** Scrieți ecuația dreptei ce trece prin A(1, 2) și este paralelă cu dreapta d: x + y + 1 = 0.
- **6.** Arătați că $\sin \frac{5\pi}{6} = \frac{1}{2}$.

Varianta 2

- **1.** Arătați că partea imaginară a numărului complex $z = \frac{1}{1+i}$ este $-\frac{1}{2}$.
- **2.** Determinați punctele de pe graficul funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x 1$ ale căror coordonate au același modul.
- **3.** Rezolvați în \mathbb{R} ecuația $\sqrt[3]{x+2} + 2 = 0$.
- **4.** Câte submulțimi ale mulțimii {1, 2, 3, 4, 5} conțin numărul 1?
- **5.** Arătați că vectorii $\vec{u} = 3\vec{i} + 2\vec{j}$ și $\vec{v} = -6\vec{i} 4\vec{j}$ sunt coliniari.
- **6.** În triunghiul ABC avem AB = 4, AC = 6 și $\angle A = 120^\circ$. Arătați că $BC = 2\sqrt{19}$.

Varianta 3

- **1.** Demonstrați că numărul $a = \sqrt{3 2\sqrt{2}} \sqrt{2}$ este întreg.
- **2.** Demonstrați că funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = x \frac{1}{x}$ este impară.
- **3.** Rezolvați în \mathbb{R} ecuația $3^{x^2-4x} = \frac{1}{27}$.
- **4.** Câte submulțimi cu trei elemente are mulțimea {0, 1, 2, ..., 10}?
- **5.** Aflați distanța de la punctul A(1, 3) la dreapta d: x 2y = 0.
- **6.** Dacă $a \in \left(\frac{\pi}{2}, \pi\right)$ și sin $a = \frac{5}{13}$, calculați tg a.

Clasa a XI-a

3.1. Permutări

- **1.** Se consideră permutările $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ și $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. Calculați $\sigma\tau$, $\tau\sigma$, σ^2 , τ^{-2} .
- **2.** Fie permutările $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$ și $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 3 & 1 \end{pmatrix}$. Calculați $(\sigma \tau)^{-1}$, σ^{-1} , τ^{-1} și arătați că $(\sigma \tau)^{-1} = \tau^{-1} \sigma^{-1}$.
- **3.** Se consideră permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \in S_4$. Calculați σ^{2009} .
- **4.** Se consideră permutările $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ și $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Determinați $x \in S_3$, știind că $\sigma x \tau = e$.
- **5.** Se consideră următoarele permutări de gradul patru:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}.$$

- a) Arătați că $\sigma^2 = \tau^2 = e$, $\sigma^{-1} = \sigma$, $\tau^{-1} = \tau$ și $\sigma \tau \neq \tau \sigma$.
- b) Determinați o permutare $\alpha \in S_4$, astfel încât $\alpha^{-1} \neq \alpha$.
- **6.** Se consideră permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$.
 - a) Calculați σ^3 .
 - b) Rezolvați ecuația $\sigma^{2009} \cdot x = e, x \in S_3$.
- 7. Fie $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \in S_3$ și $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \in S_3$.
 - a) Calculați στ și τσ.
 - b) Rezolvați ecuația $\sigma x = \tau$.
- **8.** Determinați semnul fiecăreia dintre următoarele permutări:

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}.$$

Enunturi • Clasa a XI-a

21. Fie matricele
$$A = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ și mulțimea $C(A) = \{X \in \mathcal{M}_2(\mathbb{R}) \mid XA = AX\}$.

a) Arătați că $B \in C(A)$.

b) Demonstrați că dacă
$$X \in C(A)$$
, atunci există $x, y \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}$. c)* Rezolvați ecuația $X + X^2 = A$ în $\mathcal{M}_2(\mathbb{R})$.

3.3. Determinanți

1. Fie matricea
$$A = \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
. Calculați $\det(I_2 + A + A^2 + A^3)$.

2. Fie matricea
$$A = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
. Rezolvați ecuația $\det(A - xI_2) = 0, x \in \mathbb{R}$.

3. Fie
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
. Arătați că $\det(X \cdot X^t) = (ad - bc)^2$.

4. Se consideră matricea
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

a) Arătați că
$$A^n = \begin{pmatrix} 1 & 0 \\ 2n & 1 \end{pmatrix}$$
, pentru orice $n \in \mathbb{N}^*$.

b) Calculați
$$\det(A) + \det(A^2) + ... + \det(A^{2017})$$
.
c) Calculați $\det(A + A^2 + ... + A^{2017})$.

c) Calculați
$$\det(A + A^2 + ... + A^{2017})$$
.

5. Se consideră mulțimea
$$G = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \middle| z, w \in \mathbb{C} \right\}.$$

a) Arătați că, dacă
$$A \in G$$
, astfel încât det $A = 0$, atunci $A = O_2$.

b) Demonstrați că, dacă
$$A, B \in G$$
 și $A \cdot B = O_2$, atunci $A = O_2$ sau $B = O_2$.

6. Calculați determinanții:
$$\Delta_1 = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{vmatrix}$$
, $\Delta_2 = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \\ 6 & 0 & 0 \end{vmatrix}$ și $\Delta_3 = \begin{vmatrix} 1 & -1 & 2 \\ 2 & 1 & 3 \\ -2 & 0 & 4 \end{vmatrix}$.

7. Se consideră matricea
$$A = \begin{pmatrix} a & a+1 & a+2 \\ b & b+1 & b+2 \\ 1 & 1 & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
. Arătați că:

$$\det(A) = (a - b)(a - 1)$$
 și calculați $\det(A - A^t)$.

3.7. Şiruri

1. Studiați monotonia șirului $(x_n)_{n\geq 1}$ dacă:

a)
$$x_n = \frac{n+1}{n}$$
;

b)
$$x_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$
;

c)
$$x_n = \frac{2^n}{n!}$$
;

d)
$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$
.

2. Studiați mărginirea șirului $(x_n)_{n\geq 1}$ al cărui termen general este:

a)
$$x_n = 1 + (-1)^n$$
;

b)
$$x_n = \frac{2^n + 3^n}{5^n}$$
;

c)
$$x_n = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^n$$
; d) $x_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$

d)
$$x_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$
.

3. Arătați că următoarele șiruri sunt divergente:

a)
$$a_n = \frac{(-1)^n \cdot n}{n+2}$$
;

b)
$$b_n = \sin \frac{n\pi}{2}$$
;

c)
$$c_n = n^2 - n$$
;

d)
$$d_n = 2^n - 3^n$$
.

4. Calculați limita fiecăruia dintre următoarele șiruri, având termenul general:

a)
$$a_n = \frac{7n+3}{8n-2}$$

a)
$$a_n = \frac{7n+3}{8n-2}$$
; b) $b_n = \frac{n^2-n+2}{n+3}$; c) $c_n = \frac{n^2+1}{(n+1)^3}$;

c)
$$c_n = \frac{n^2 + 1}{(n+1)^3}$$

d)
$$d_n = \frac{(n-1)^2 - (n+1)^2}{2n+1}$$
; e) $e_n = \frac{1+2+...+n}{n^2+2}$; f) $f_n = \left(\frac{3n+1}{n+2}\right)^3$.

e)
$$e_n = \frac{1+2+...+n}{n^2+2}$$

$$f) f_n = \left(\frac{3n+1}{n+2}\right)^3$$

5. Calculați limita șirului cu termenul general a_n în fiecare dintre următoarele situații:

a)
$$a_n = \frac{\sqrt{n} + \sqrt[3]{n}}{n}$$

b)
$$a_n = \frac{3\sqrt{n} + 5}{2\sqrt{n} + 7}$$

a)
$$a_n = \frac{\sqrt{n} + \sqrt[3]{n}}{n}$$
; b) $a_n = \frac{3\sqrt{n} + 5}{2\sqrt{n} + 7}$; c) $a_n = \frac{\sqrt{n+2}}{1 + \sqrt[3]{n+1}}$;

d)
$$a_n = \sqrt{n^2 + 1} - 2n$$

d)
$$a_n = \sqrt{n^2 + 1} - 2n$$
; e) $a_n = \sqrt{3n + 1} - \sqrt{2n + 3}$; f) $a_n = \sqrt{n^2 + 1} - n\sqrt{n}$.

f)
$$a_n = \sqrt{n^2 + 1} - n\sqrt{n}$$

6. Calculați limita fiecăruia dintre următoarele șiruri având termenul general:

a)
$$a_n = \frac{\ln n + 3}{\ln n - 2}$$
;

b)
$$b_n = \ln(n+1) - \ln n$$

b)
$$b_n = \ln(n+1) - \ln n;$$
 c) $c_n = \frac{\ln(e^n + 1)}{n+1};$

d)
$$d_n = \frac{\ln(4^n + 1)}{\ln(2^n + 3)}$$
; e) $l_n = \frac{1 + \ln n^2}{2 + \ln n^3}$;

e)
$$l_n = \frac{1 + \ln n^2}{2 + \ln n^3}$$

$$f) f_n = n - \ln n.$$

3.16. Reprezentarea grafică a funcțiilor

1. Determinați coordonatele punctelor de intersecție a graficului funcției f cu axele de coordonate, dacă:

a)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 4x;$$
 b) $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x^2 - 3x + 2}{e^x + 1}.$

2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}, f(x) = -x^2 + 5, g: \mathbb{R}^* \to \mathbb{R}, g(x) = \frac{4}{x^2}$. Determinați punctele de intersecție a graficelor celor două funcții și rezolvați inecuația $g(x) \le f(x)$.

3. Reprezentați grafic funcțiile:

b)
$$g : \mathbb{R} \to \mathbb{R}, g(x) = x^3 - 3x + 2$$

4. Reprezentați grafic funcțiile:

Reprezentați grafic funcțiile:
a)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 3 + 2x - x^2;$$
 b) $g: \mathbb{R} \to \mathbb{R}, g(x) = x^3 - 3x + 2.$
Reprezentați grafic funcțiile:
a) $f: \mathbb{R}^* \to \mathbb{R}, f(x) = \frac{1}{x};$ b) $g: \mathbb{R} \setminus \{1\} \to \{\mathbb{R}\}, g(x) = \frac{x}{x-1}.$
Reprezentați grafic funcțiile:
a) $f: [0, +\infty) \to \mathbb{R}, f(x) = \sqrt{x+1} - \sqrt{x};$
b) $f: (\infty, 11 + 11, +\infty) \to \mathbb{R}, f(x) = x\sqrt{x^2-1}.$

5. Reprezentați grafic funcțiile:

b)
$$f: (-\infty, -1] \cup [1, +\infty) \to \mathbb{R}, f(x) = x\sqrt{x^2 - 1}.$$

- **6.** Reprezentați grafic funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+1)e^x$. Determinați mulțimea valorilor reale ale lui m pentru care ecuația f(x) = m are două soluții reale.
- **7.** Reprezentați grafic funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = (x^2 3)e^x$. Determinați valorile reale ale lui m, stiind că graficul funcției f intersectează dreapta de ecuație y = m ($m \in \mathbb{R}$) în exact trei puncte.
- **8.** Fie funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x-2}{\sqrt{x^2+1}}$.
 - a) Reprezentați grafic funcția f.
 - b) Câte soluții reale are ecuația $x 2 = m\sqrt{x^2 + 1}$, unde $m \in \mathbb{R}$?
- **9.** Reprezentați grafic funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = xe^{\frac{2}{x}}$
- **10.** Reprezentați grafic funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=\frac{\ln x}{x}$.
- **11.** Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = \frac{x^3 3x^2 + m}{x^2}$, unde $m \in \mathbb{R}$.
 - a) Determinați m, astfel încât funcția să admită un extrem local în x = 2.

Clasa a XII-a

4.1. Legi de compoziție

- **1.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 2^{x+y}$, oricare ar fi $x, y \in \mathbb{R}$.
 - a) Calculați 1001 o (-1001).
 - b) Rezolvați ecuația $x \circ x^2 = 64$.
 - c) Demonstrați că, dacă $(x \circ y) \circ z = 2^{z+1}$, atunci x = -y.
- **2.** Pe mulțimea numerelor reale se consideră legea de compoziție "o", definită prin $x \circ y = x + y + 11$, oricare ar fi $x, y \in \mathbb{R}$.
 - a) Arătați că $(x \circ y) \circ z = x \circ (y \circ z)$, oricare ar fi $x, y, z \in \mathbb{R}$.
 - b) Găsiți două elemente $a, b \in \mathbb{Q} \setminus \mathbb{Z}$ pentru care $a \circ b \in \mathbb{Z}$.
 - c) Determinați cel mai mare număr natural n, pentru care $1 \circ 2 \circ ... \circ n < 1000$.
- **3.** Pe mulțimea numerelor reale definim operația $x * y = x^2 4xy + 3y^2$.
 - a) Calculati 300 * 100.
 - b) Arătați că $(x * x) * y \ge 0$, oricare ar fi numerele reale $x \le y$.
 - c) Demonstrați că există o infinitate de numere iraționale a pentru care numărul a*1 este natural.
- **4.** Pe mulțimea numerelor reale definim operația $x \circ y = xy + 4x + 4y + 12$, oricare ar fi $x, y \in \mathbb{R}$.
 - a) Arătați că $(x \circ y) \circ z = x \circ (y \circ z)$, oricare ar fi $x, y, z \in \mathbb{R}$.
 - b) Calculati (−1000) ∘ (−999) ∘ ... ∘ 1000.
 - c) Rezolvați în \mathbb{R} ecuația $x \circ x \circ x \circ x = 12$.
- **5.** Pe mulțimea numerelor reale definim operația "o" prin $x \circ y = xy + \sqrt{2}(x+y) + 2 \sqrt{2}$, oricare ar fi $x, y \in \mathbb{R}$.
 - a) Demonstrați că $x \circ y = (x + \sqrt{2})(y + \sqrt{2}) \sqrt{2}$, pentru orice numere reale x și y.

- **18.** În $\mathcal{M}_2(\mathbb{Z}_3)$ considerăm matricele $A = \begin{pmatrix} \hat{1} & \hat{2} \\ \hat{2} & \hat{1} \end{pmatrix}$ și $I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$.
 - a) Calculați A^2 și A^3 .
 - b)* Determinați A^{2002} și A^{2003} .
 - c) Demonstrați că $A^n \neq I_2$, oricare ar fi $n \in \mathbb{N}^*$.
- **19.** Fie mulțimea de matrice $A = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{Z}_5 \right\}$.
 - a) Dați un exemplu de matrice nenulă din mulțimea A care are determinantul egal cu $\hat{0}$.
 - b) Arătați că există o matrice nenulă $M \in A$, astfel încât $\begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix} \cdot M = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}$.
 - c)* Rezolvați ecuația $X^2 = \begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix}$.
- **20.** Se consideră mulțimea $A = \left\{ \begin{pmatrix} a & \hat{0} & \hat{0} \\ \hat{0} & a & \hat{0} \\ b & c & a \end{pmatrix} \middle| a, b, c \in \mathbb{Z}_2 \right\}.$
 - a) Determinați numărul de elemente din A.
 - b) Arătați că, pentru orice $X \in A$, $X^2 = I_3$ sau $X^2 = O_3$.
 - c) Determinați numărul matricelor X din A care au proprietatea că $X^2 = O_3$.
- **21.** În mulțimea $\mathcal{M}_2(\mathbb{Z}_5)$ se consideră submulțimea $G = \left\{ \begin{pmatrix} x & y \\ \hat{2}y & x \end{pmatrix} \middle| x, y \in \mathbb{Z}_5 \right\}$.
 - a)* Arătați că, dacă $x,y\in\mathbb{Z}_5$ și $x^2-\hat{2}y^2=\hat{0}$, atunci $x=y=\hat{0}$.
 - b) Dacă $A, B \in G$, atunci $A + B \in G$ și $A \cdot B \in G$.
 - c) Dați exemplu de structură de corp cu 25 de elemente.

4.4. Polinoame

- **1.** Determinați polinomul f de gradul trei, cu coeficienți reali, pentru care f(1+i) = -1 + 2i si f(i) = 1 i.
- **2.** Se consideră polinomul $f = (X+1)^{10} + (X-1)^{10}$, cu forma algebrică $f = a_0 + a_1X + \dots + a_{10}X^{10}$.
 - a) Determinați suma coeficienților polinomului f.

- b) Calculați f(i) și deduceți că $a_0 + a_4 + a_8 = a_2 + a_6 + a_{10}$.
- c) Determinați coeficienții polinomului f.
- **3.** Determinați gradele polinoamelor f + g și fg în fiecare dintre cazurile:

a)
$$f = X^3 + X + 1$$
, $g = -X^3 - X - 1$, $f, g \in \mathbb{R}[X]$;

b)
$$f = \hat{2}X^2 + \hat{3}X + \hat{1}$$
, $g = \hat{2}X^2 + X + \hat{2}$, $f, g \in \mathbb{Z}_4[X]$.

- **4***. Determinați polinoamele $f, g \in \mathbb{Z}[X]$ cu grad(f) = 1, grad(g) = 2, în fiecare din următoarele cazuri:
 - a) $f \cdot g = X^3 X^2 5X + 2$;
- b) $g(f(X)) = X^2$.
- **5***. Arătați că polinomul $f \in \mathbb{C}[X]$ este element inversabil în inelul ($\mathbb{C}[X]$, +, ·) dacă și numai dacă f este constantă nenulă.
- **6.** Se consideră polinomul $f = \hat{4}X + \hat{1} \in \mathbb{Z}_8[X]$. Calculați f^2 și deduceți că polinomul f este element inversabil al lui $(\mathbb{Z}_8[X], +, \cdot)$.
- **7.** Determinați câtul și restul împărțirii polinomului *f* prin polinomul *g* în fiecare dintre următoarele cazuri:

a)
$$f = X^5 + 2X^3 - 3X + 2$$
, $g = X^2 + X + 1$, $f, g \in \mathbb{R}[X]$;

b)
$$f = 2X^4 - 2X^3 - 5X^2 - X$$
, $g = 2X^2 + 1$, $f, g \in \mathbb{R}[X]$;

c)
$$f = X^3 + X^2 + \hat{2}X + \hat{1}$$
, $g = \hat{3}X^2 + \hat{1}$, $f, g \in \mathbb{Z}_5[X]$;

d)
$$f = X^5 - 2X^3 + X - 3$$
, $g = X^2 - 2$, $f, g \in \mathbb{Z}[X]$;

e)
$$f = X^4 - (2+i)X^2 + X - i$$
, $g = X + i$, $f, g \in \mathbb{C}[X]$;

f)
$$f = X^3 + X^2 + X + \hat{2}$$
, $g = X + \hat{1}$, $f, g \in \mathbb{Z}_3[X]$.

- **8.** Determinați numerele reale a și b, știind că polinomul $f = X^3 + aX + b$ dă restul 2 la împărțirea prin X 1 și restul -4 la împărțirea prin X + 1.
- **9.** Împărțind polinomul f prin X 1 obținem restul 2, iar la împărțirea prin X + 1 obținem restul -4. Aflați restul împărțirii lui f prin $X^2 1$.
- **10.** Se consideră polinomul $f = (1 + X + X^2)^{1004}$, cu forma algebrică:

$$f = a_0 + a_1 X + \dots + a_{2008} X^{2008}$$

- a) Calculati f(-1).
- b) Arătați că $a_0 + a_1 + a_2 + ... + a_{2008}$ este număr întreg impar.
- c) Determinați restul împărțirii polinomului $f \ln X^2 1$.
- **11.** Determinați polinomul $f = X^4 + aX^3 + bX^2 + cX + d$ care prin împărțire la $X^2 3X + 1$, dă restul 2X + 1, iar prin împărtire la $X^2 1$ dă restul -2X + 2.

4.9. Proprietăți ale integralei Riemann

1. Demonstrați că:

a)
$$-1 \le \int_0^1 \sin(x^2 + x + 1) dx \le 1$$
; b) $1 \le \int_0^1 e^{x^2} dx \le e$.

b)
$$1 \le \int_0^1 e^{x^2} dx \le e$$
.

2. Demonstrați că:

a)
$$1 \le \int_{1}^{2} \sqrt{x^2 - x + 1} \, dx \le \sqrt{3}$$

a)
$$1 \le \int_{1}^{2} \sqrt{x^{2} - x + 1} \, dx \le \sqrt{3}$$
; b) $\frac{\sqrt{3}}{2} \le \int_{0}^{1} \sqrt{x^{2} - x + 1} \, dx \le 1$.

- **3.** Fie $f: [0, 1] \to \mathbb{R}, f(x) = \frac{e^x}{x+1}$. Arătați că $1 \le \int_0^1 f(x) dx \le e 1$.
- **4.** Pentru fiecare $n \in \mathbb{N}$ se consideră $I_n = \int_e^{e^2} \frac{\ln^n x}{x} dx$. Folosind faptul că $1 \le \ln x \le 2$, oricare ar fi $x \in [e, e^2]$, demonstrați că $1 \le \frac{2^{n+1} - 1}{n+1} \le 2^n$, oricare ar fi $n \in \mathbb{N}$.
- **5.** Se consideră funcția $f: [0, +\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x+1}$. Arătați că, dacă a > 0, atunci $\frac{1}{a+2} \le \int_a^{a+1} f(x) dx \le \frac{1}{a+1}.$
- **6.** Fie funcția $f:[1, +\infty) \to \mathbb{R}, f(x) = \frac{1}{x(x+1)(x+2)}$. Arătați că $\int_1^x f(t)dt \le \frac{x-1}{6}$,
- **7.** a) Arătați că $2^x x \ln 2 1 \ge 0$, oricare ar fi $x \in \mathbb{R}$.

b) Arătați că
$$\int_0^1 2^{x^2} dx \ge 1 + \frac{\ln 2}{3}$$
.

8. a) Arătați că $e^x \ge x + 1$, pentru orice $x \in \mathbb{R}$.

b)* Arătați că
$$\frac{1}{e} \le \int_0^1 e^{-x^2} dx \le \frac{\pi}{4}$$
.

9*. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x - 1 + \frac{x^2}{2}$. Stabiliți semnul funcției, apoi demonstrați că $\int_0^1 \cos x^2 dx \ge \frac{9}{10}$.

Teste pentru Bacalaureat, după modelul M.E.

Testul 1

Subjectul I (30 de puncte)

- (5p) 1. Calculați $\left[\sqrt{2022}\right] 4 \cdot \left\{-\frac{1}{4}\right\}$ ([x] = partea întreagă a numărului real x, $\{x\}$ = = partea fracționară a numărului real x).
- (5p) **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2}{1+2^x}$. Calculați S = f(-2) + f(-1) ++ f(0) + f(1) + f(2).
- (5p) **3.** Rezolvați în \mathbb{R} ecuația $2x \sqrt{x-1} = 3$.
- (5p) 4. Determinați numărul elementelor mulțimii A, știind că are exact 11 submulțimi cu cel mult două elemente.
- (5p) 5. În reperul cartezian xOy se consideră dreapta d de ecuație 3x + y 1 = 0. Arătați că punctele A(2, 5) și B(-4, 3) sunt simetrice față de dreapta d.
- (5p) 6. Arătați că $\operatorname{ctg} \frac{\pi}{8} \operatorname{tg} \frac{\pi}{8} = 2$.

Subiectul al II-lea

(30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & -3 \\ 2 & a & 1 \end{pmatrix}$, unde a este un număr real.
- (5p) a) Verificați că det (A(a)) = a + 5.
- (5p) b) Determinați $a \in \mathbb{R}$, astfel încât inversa matricei A(a) să fie matricea B =
- (5p) c) Determinați matricea $X \in \mathcal{M}_{1,3}(\mathbb{R})$, știind că $X \cdot A(-4) = C$, unde C este matricea $(-1 \ 0 \ 1)$.

- **2.** Pe mulțimea numerelor complexe se definește legea de compoziție $z_1 * z_2 =$ $=z_1+z_2+\frac{z_1+z_2}{2}$, pentru orice $z_1,z_2\in\mathbb{C}$.
- **(5p)** a) Verificați dacă (1+i)*(1-i)=3.
- (5p) b) Demonstrați că mulțimea $M = \{x + i \mid x \in \mathbb{R}\}$ este parte stabilă a lui \mathbb{C} față de legea "*".
- (5p) c) Arătați că pentru o infinitate de numere complexe z, (-2 + 3i) * z este număr real.

Subiectul al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x x$.
- **(5p)** a) Calculați $\lim_{x \to +\infty} \frac{f(x)}{f(x+1)}$.
- (5p) b) Arătați că f are un singur punct de extrem.
- (5p) c) Demonstrați că dreapta y = (e 1)x este tangentă graficului funcției f.
- **2.** Se consideră funcția $f:(0,\infty) \to \mathbb{R}, f(x) = x^2 \frac{\ln x}{x}$. **(5p)** a) Verificați că $\int_1^2 \left(f(x) + \frac{\ln x}{x} \right) dx = \frac{7}{3}$.
- (5p) b) Determinați $a \in (1, \infty)$, știind că $\int_1^a (x^2 f(x)) dx = \frac{1}{2}$.
- (5p) c) Demonstrați că orice primitivă a funcției f pe (0, 1) este strict monotonă.

Testul 2

Subjectul I

- (5p) 1. Arătați că numerele $\log_3 8$, $\sqrt{6}$, $\log_{\sqrt{2}} 3$ sunt în progresie geometrică.
- (5p) 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$. Determinați semnul produsului $P = f(\sqrt{2}) \cdot f(\sqrt{3}) \cdot f(\sqrt{5})$.
- (5p) 3. Rezolvați în mulțimea numerelor reale ecuația $2^{2x+1} 2^x = \sqrt{2}(2^{x+1} 1)$.
- (5p) **4.** Determinați valorile întregi ale lui x pentru care $C_7^{x-1} \ge 2C_7^x$.
- (5p) 5. În reperul cartezian xOy se consideră punctele A(2, 4), B(8, 1) și C(0, 1). Arătați că punctul H(2, 5) este ortocentrul triunghiului ABC.
- (5p) 6. Determinați $x \in (0, \pi)$, știind că $\sin x \cdot \cos \left(\frac{\pi}{3} 2x\right) = \cos x \cdot \sin \left(2x \frac{\pi}{3}\right)$.

Subjectul al II-lea

(30 de puncte)

1. Se consideră sistemul $\begin{cases} ax - y - z = -4 \\ 2x + ay + 4z = 25, a \in \mathbb{R} \text{ și } A \text{ matricea sistemului.} \\ x + y + 3z = 18 \end{cases}$

(5p) a) Arătați că det $A = 3a^2 - 3a$.

(5p) b) Determinați $a \in \mathbb{R}$, dacă sistemul are soluție unică.

(5p) c) Pentru a = 1 determinați numărul soluțiilor (x_0, y_0, z_0) ale sistemului cu x_0, y_0, z_0 numere naturale.

2. Pe \mathbb{R} se definește legea $x * y = 2x + 2y - \frac{xy}{2} - 4$, pentru orice $x, y \in \mathbb{R}$.

(5p) a) Arătați că $x * y = 4 - \frac{1}{2}(x-4)(y-4)$, pentru orice $x, y \in \mathbb{R}$.

(5p) b) Arătați că e = 2 este elementul neutru al legii date.

(5p) c) Stabiliți dacă (\mathbb{R} , *) are o structură de grup.

Subjectul al III-lea

(30 de puncte)

1. Se consideră funcția $f: (-1, \infty) \to \mathbb{R}, f(x) = 2x + 1 - \ln(x + 1)$.

(5p) a) Calculați $\lim_{x\to 0} \frac{f(x)-1}{x}$.

(5p) b) Demonstrați că oricare două tangente la graficul funcției sunt secante.

(5p) c) Arătați că graficul funcției f nu intersectează axa Ox.

2. Se consideră funcția $f: (-1, \infty) \to \mathbb{R}, f(x) = \frac{e^x}{x+1}$.

(5p) a) Arătați că $\int_0^1 \frac{xe^x}{f(x)} dx = \frac{5}{6}$.

(5p) b) Calculați $\int_{1}^{2} \left(f(x) - \frac{e^{x}}{(x+1)^{2}} \right) dx$.

(5p) c) Demonstrați că $\int_1^3 f(x)dx \ge e \ln 2$.

Subjectul I (30 de puncte)

- (5p) 1. Se consideră numărul complex $z = \frac{1-i}{1+i}$. Arătați că z^{12} este număr real.
- **(5p) 2.** Aflați numărul real m pentru care graficul funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx + 4$ intersectează axa Ox în două puncte distincte.
- (5p) 3. Rezolvați în mulțimea numerelor reale ecuația $\lg^2 x 3\lg x + 2 = 0$.
- (5p) **4.** Fie x un număr real nenul. Determinați rangul termenului, din dezvoltarea binomului $\left(x^2 + \frac{1}{\sqrt[3]{x}}\right)^{16}$, care îl conține pe x^4 .
- **(5p) 5.** În reperul cartezian xOy se consideră vectorii $\overrightarrow{AB} = 4\overrightarrow{i} + 3\overrightarrow{j}$ și $\overrightarrow{BC} = \overrightarrow{i} \overrightarrow{j}$. Determinați numărul real m, știind că $\overrightarrow{AC} = (m+1)\overrightarrow{i} + (m-2)\overrightarrow{j}$.
- **(5p) 6.** Arătați că $\sin \frac{\pi}{12} \cdot \sin \frac{5\pi}{12} = \frac{1}{4}$.

Subiectul al II-lea

(30 de puncte)

1. Se consideră matricea $A(m, n) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & m & m^2 \\ 1 & n & n^2 \end{pmatrix}$ și sistemul de ecuații

 $\begin{cases} x + y + z = 1 \\ x + my + m^2 z = m^3 \text{, unde } m \text{ si } n \text{ sunt numere reale.} \\ x + ny + n^2 z = n^3 \end{cases}$

- **(5p)** a) Arătați că $\det(A(m, n)) = (m-1)(n-1)(n-m)$.
- (5p) b) Rezolvați sistemul, dacă $m \neq 1, n \neq 1$ și $m \neq n$.
- (5p) c)* Demonstrați că, dacă sistemul are soluția (-1, 1, 1), atunci cel puțin două dintre numerele 1, m, n sunt egale.
 - **2.** Fie x_1, x_2, x_3 rădăcinile complexe ale polinomului $f = X^3 3X^2 + mX + n$, unde m și n sunt numere reale.
- **(5p)** a) Arătați că $x_1^2 + x_2^2 + x_3^2 = 9 2m$.
- **(5p)** b) Determinați m și n, știind că $x_1 = x_2 = x_3$.
- **(5p)** c) Pentru m = 1 și n = -3, descompuneți polinomul f în factori ireductibili în $\mathbb{C}[X]$.

Subjectul al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x^2 + 2x + m)e^x$, unde m este un parametru real.
- (5p) a) Determinați m, știind că f'(0) = 4.
- (5p) b) Demonstrați că, pentru m = 2, funcția f este strict crescătoare.
- (5p) c) Determinați ecuația asimptotei orizontale spre $-\infty$ la graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{1+x^2}$ și numărul $I_n = \int_0^1 \frac{x^n}{f(x)} dx$, unde n este un număr natural nenul.
- (5p) a) Calculați $\int_{0}^{1} 2xf(x)dx$.
- (5p) b) Calculați $\int_{0}^{1} f(x) \cdot f'(x) dx$.
- (5p) c) Demonstrați că $nI_n = \sqrt{2} (n-1)I_{n-2}$, pentru orice număr natural $n, n \ge 3$.

Testul 10

Subiectul I

(30 de puncte)

- (5p) 1. Arătați că numărul $a = \log_7 1001 \log_7 143 + \sqrt[3]{27}$ este pătratul unui număr natural.
- **(5p) 2.** Dacă g este inversa funcției de gradul întâi $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x 1$, calculați g(21).
- (5p) **3.** Rezolvați în mulțimea numerelor reale ecuația |2x-1| = |x+7|.
- (5p) 4. Calculați probabilitatea ca, alegând un număr oarecare de trei cifre, produsul cifrelor acestuia să fie număr impar.
- **(5p) 5.** În reperul cartezian xOy se consideră vectorii $\vec{u} = 6\vec{i} \vec{j}$ și $\vec{v} = 8\vec{i} + 48\vec{j}$. Determinați măsura, în radiani, a unghiului format de vectorii \vec{u} și \vec{v} .
- (5p) 6. Demonstrați că, dacă ctg x = 2, ctg y = 3 și $x, y \in \left(0, \frac{\pi}{2}\right)$, atunci $x + y = \frac{\pi}{4}$.

Subjectul I (30 de puncte)

- (5p) 1. Fie $(a_n)_{n\geq 1}$, o progresie aritmetică astfel încât $a_3=3$ și $a_7=15$. Calculați a_1+a_9 .
- **(5p) 2.** Determinați numărul real m pentru care punctul A(m, 2) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 2x + 3$.
- (5p) **3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{5-x} = 3x 1$.
- (5p) 4. Într-o clasă sunt 12 elevi, dintre care 5 sunt fete. Aflați în câte moduri se poate alege un comitet reprezentativ al clasei format din 3 fete și 2 băieți.
- **(5p) 5.** În reperul cartezian xOy se consideră punctele A(1, 2), B(5, 6) și C(-1, 1). Determinați ecuația înălțimii duse din vârful C în triunghiul ABC.
- **(5p) 6.** Calculați cos 70° + cos 110°.

Subjectul al II-lea

(30 de puncte)

1. Se consideră matricea $A(m) = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ m & 1 & 1 \end{pmatrix}$ și sistemul

$$\begin{cases} x - y + z = 2\\ x + 2y - z = 3\\ mx + y + z = 4m + 1 \end{cases}, m \in \mathbb{R}.$$

- (5p) a) Arătați că det A(m) = 5 m.
- (5p) b) Arătați că pentru m = 5 sistemul nu are soluție.
- (5p) c) Determinați numerele naturale m, știind că sistemul are o soluție (x_0, y_0, z_0) formată din numere naturale.
 - **2.** Pe mulțimea numerelor reale definim legea x * y = 6x + 6y 2xy 15, pentru orice $x, y \in \mathbb{R}$.
- **(5p)** a) Arătați că $e = \frac{5}{2}$ este elementul neutru al legii date.
- (5p) b) Verificați că legea "*" este asociativă.
- (5p) c) Rezolvați ecuația $x * x * x = x, x \in \mathbb{R}$.

Subjectul al III-lea

(30 de puncte)

1. Se consideră funcțiile $f, g: (1, +\infty) \to \mathbb{R}, f(x) = x - 1 - x \ln x$ și $g(x) = \frac{\ln x}{2}$.

- **(5p)** a) Arătați că f(x) < 0, pentru orice $x \in (1, +\infty)$.
- (5p) b) Demonstrați că funcția g este strict descrescătoare.
- **(5p)** c) Arătați că $(\sqrt{2})^{\sqrt{3}-1} > (\sqrt{3})^{\sqrt{2}-1}$.
 - **2.** Pentru fiecare număr natural nenul *n* se consideră numărul $I_n = \int_1^e \ln^n x dx$.
- (5p) a) Calculați I_1 .
- **(5p)** b) Demonstrați că $I_n = e nI_{n-1}$, pentru orice număr natural $n \ge 2$.
- **(5p)** c) Arătați că $I_3 = 6 2e$.

Subiectul I (30 de puncte)

- (5p) 1. Calculați suma primilor cinci termeni ai unei progresii geometrice $(b_n)_{n \ge 1}$, stiind că $b_1 = 1$ și $b_2 = -2$.
- (5p) **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x$. Calculați $(f \circ f)(2)$.
- (5p) 3. Rezolvați în mulțimea numerelor reale ecuația $2^{x+2} 2^{x-1} = 28$.
- (5p) **4.** Se dă dezvoltarea $\left(2\sqrt{x} + \frac{3}{x}\right)^6$, x > 0. Determinați termenul independent de x.
- (5p) 5. Se consideră un triunghi ABC și punctul M astfel încât $\overrightarrow{BM} = 2\overrightarrow{MC}$. Determinați numerele reale x, y, știind că $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$.
- (5p) 6. Fie $a \in \left(\pi, \frac{3\pi}{2}\right)$ astfel încât sin $a = -\frac{4}{5}$. Calculați $tg\frac{a}{2}$.

Subjectul al II-lea (30 de puncte)

- **1.** Se consideră funcția $f_A: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}), f_A(X) = AXA^{-1}$, unde $A \in \mathcal{M}_2(\mathbb{R})$ și A este inversabilă.
- (5p) a) Calculați $f_A(I_2)$.
- (5p) b) Arătați că f_A este o funcție bijectivă.
- **(5p)** c) Arătați că $f_A(X \cdot Y) = f_A(X) \cdot f_A(Y)$, pentru orice $X, Y \in \mathcal{M}_2(\mathbb{R})$.
 - **2.** Se consideră polinomul $f = X^4 3X^2 + 2X + 3 \in \mathbb{R}[X]$, având rădăcinile complexe x_1, x_2, x_3, x_4 .
- (5p) a) Determinați restul împărțirii lui f prin polinomul X-3.
- (5p) b) Arătați că f nu are rădăcini raționale.
- **(5p)** c) Arătați că $x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}\right) = -8$.

Subjectul I (30 de puncte)

- (5p) 1. Scrieți sub formă trigonometrică numărul complex z = -2i.
- (5p) **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = X^2 4X + 5$. Comparați numerele $f(\sqrt{2})$ și $f(\sqrt{3})$.
- (5p) 3. Rezolvați în mulțimea numerelor reale ecuația $\log_x (x+2) = 2$.
- (5p) 4. Stabiliți câte numere naturale de trei cifre se pot forma folosind cifre din mulțimea {0, 1, 2, 3}.
- (5p) 5. În reperul cartezian xOy se consideră punctele A(2, 1) și B(-3, 2). Determinați coordonatele simetricului punctului B față de punctul A.
- **(5p) 6.** În triunghiul ABC avem: AB = 6, AC = 8 și $\angle BAC = 120^\circ$. Calculați lungimea laturii BC.

Subjectul al II-lea

(30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1 & 1 & x \\ m & -1 & 1 \\ x & 1 & -1 \end{pmatrix}, A(x) \in \mathcal{M}_3(\mathbb{R}).$
- **(5p)** a) Dacă m = 2, arătați că det $A(x) = x^2 + 3x + 2$.
- **(5p)** b) Dacă m = 2, demonstrați că există valori ale lui $x \in \mathbb{R}$ pentru care matricea A(x) nu este inversabilă.
- (5p) c) Demonstrați că, oricare ar fi $m \in \mathbb{R}$, există valori ale lui $x \in \mathbb{R}$ pentru care matricea A(x) nu este inversabilă.
 - **2.** Se consideră inelul (\mathbb{Z}_8 , +, ·).
- (5p) a) Arătați că elementele inversabile ale acestui inel sunt $\hat{1}, \hat{3}, \hat{5}$ și $\hat{7}$.
- **(5p)** b) Dacă $a \in \mathbb{Z}_8$ este element inversabil, arătați că ecuația $\hat{2}x = a$ nu are soluții în \mathbb{Z}_8 .
- (5p) c) Dacă $b \in \mathbb{Z}_8$ este element neinversabil, arătați că ecuația $\hat{2}x = b$ are exact două soluții $x \in \mathbb{Z}_8$.

Subjectul al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x x$.
- (5p) a) Calculati $f'(x), x \in \mathbb{R}$.
- (5p) b) Determinați intervalele de monotonie ale funcției f.
- **(5p)** c) Demonstrați că $\sqrt[100]{e} > \frac{101}{100}$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x^2 + 1}$.
- (5p) a) Calculați $\int_0^1 f^2(x) dx$.
- (5p) b) Calculați $\int_0^1 x f(x) dx$.
- (5**p**) c)* Fie Γ suprafața cuprinsă între graficul funcției f, asimptota oblică spre +∞ la graficul funcției f și dreptele cu ecuațiile x = 0 și x = 1. Determinați aria suprafeței Γ.

Subjectul I (30 de puncte)

- (5p) 1. Arătați că numărul $a = \log_3 2 \log_9 4$ este întreg.
- (5p) **2.** Arătați că, pentru orice număr real m, parabola $y = x^2 + mx m^2 1$ intersectează axa Ox în două puncte.
- (5p) 3. Rezolvați în mulțimea numerelor reale ecuația $2^x + 2^{2-x} = 5$.
- (5p) 4. Aflați câte numere naturale de trei cifre au suma cifrelor egală cu 25.
- **(5p) 5.** În reperul cartezian xOy se consideră punctul A(1, 2) și dreapta d: y = x 1. Calculați distanța de la punctul A la dreapta d.
- **(5p) 6.** Triunghiul ABC are lungimile laturilor AB = 9, BC = 10 și CA = 11. Calculați aria triunghiului.

Subjectul al II-lea

(30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & 1 & 1-x \\ 0 & -1 & 0 \\ 1-x & 1 & x \end{pmatrix}, x \in \mathbb{R}.$
- **(5p)** a) Arătați că det A(2) = -3.
- (5p) b) Determinați $x \in \mathbb{R}$, dacă $A(x) \cdot A(1-x) = A(0) \cdot A(1)$.
- (5p) c) Determinați valorile întregi ale lui x pentru care A(x) este inversabilă și inversa are toate elementele numere întregi.
 - **2.** Se consideră polinomul $f = 6X^4 X^3 X + 6 \in \mathbb{R}[X]$.
- (5p) a) Arătați că polinomul $g = 3X^2 + 4X + 3$ divide polinomul f.
- (5p) b) Demonstrați că polinomul f nu are rădăcini reale.
- (5p) c) Arătați că toate rădăcinile polinomului f au modulele egale cu 1.

Subiectul I (30 de puncte)

- (5p) 1. Dacă z = -4 + i, calculați modulul numărului $\overline{z} 2z$.
- **(5p) 2.** Determinați coordonatele punctelor de intersecție a graficelor funcțiilor $f, g : \mathbb{R} \to \mathbb{R}, f(x) = x^2 2x + 2, g(x) = x + 2.$
- (5p) **3.** Rezolvați în mulțimea numerelor reale ecuația $\left(\frac{1}{2}\right)^{x-4} = \sqrt{8^x}$.
- (5p) **4.** Fie mulțimea $A = \{0, 2, 4, 6, 7, 9\}$. Câte submulțimi ale mulțimii A au trei elemente și conțin cel puțin un număr impar?
- (5p) 5. În reperul cartezian xOy se consideră punctele A(2, 4) și B(4, 2). Calculați distanța de la punctul O la drepta AB.
- (5p) 6. Demonstrați că $\frac{1+\sin 2x}{1+\cos 2x} = \frac{1}{2}(1 + \operatorname{tg} x)^2$, pentru orice număr real $x, x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$.

Subjectul al II-lea

(30 de puncte)

1. Se consideră sistemul $3x + y + mz = 0, m \in \mathbb{R}$ și matricea A = x + 2y - z = 0

$$= \begin{pmatrix} 2 & -1 & -1 \\ 3 & 1 & m \\ 1 & 2 & -1 \end{pmatrix}.$$

- **(5p)** a) Arătați că det (A) = -5m 10.
- (5p) b) Determinați numărul real m, dacă sistemul are soluție unică.
- (5p) c) Pentru m = -2, determinați soluția (x_0, y_0, z_0) a sistemului, știind că $x_0 + 2y_0 + 3z_0 = 20$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy 2x + 3y.
- (5p) a) Arătați că legea * nu este asociativă.
- (5p) b) Determinați numerele reale x pentru care (x + 1) * x = 1.
- **(5p)** c)* Arătați că există numerele $a, b \in \mathbb{Q} \setminus \mathbb{Z}$ astfel încât $a * b \in \mathbb{N}$.

Teste pentru Bacalaureat, după modelul M.E.

Subjectul al III-lea

(30 de puncte)

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 3x^2 + 4$.

- (5p) a) Calculați $\lim_{x\to 3} \frac{f(x)-f(3)}{x-3}$.
- (5p) b) Determinați punctele de extrem local ale funcției f.
- **(5p)** c) Comparați numerele $a = f\left(\frac{11}{12}\right)$ și $b = f\left(\frac{12}{13}\right)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x}{\sqrt{x^2 + 1}}$
- **(5p)** a) Arătați că $\int_{1}^{2} \frac{1}{f^{2}(x)} dx = \frac{3}{2}$.
- **(5p)** b) Calculați aria cuprinsă între graficul funcției $g : [0, 1] \to \mathbb{R}$, g(x) = f(x) și axa Ox.
- (5p) c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}, g(x) = f(x)$.

Testul 59

Subjectul I

(30 de puncte)

- (5p) 1. Verificați dacă numărul $a = \lg\left(1 \frac{1}{2}\right) + \lg\left(1 \frac{1}{3}\right) + \dots + \lg\left(1 \frac{1}{10}\right)$ este întreg.
- (5p) **2.** Se consideră mulțimile $A = \{x \in \mathbb{R} \mid x^2 + x + m = 0\}$ și $B = \{x \in \mathbb{R} \mid x^2 + mx + 1 = 0\}$. Determinați $m \in \mathbb{R}$ dacă $A \cap B = \{1\}$.
- **(5p) 3.** Fie ABC un triunghi dreptunghic în A, cu AB = 4 și $\angle C = 30^\circ$. Dacă M este mijlocul laturii BC, calculați $\overrightarrow{AM} \cdot \overrightarrow{AB}$.
- **(5p) 4.** Notăm cu F mulțimea funcțiilor $f: \{1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5\}$. Determinați probabilitatea ca alegând o funcție f din F aceasta să fie injectivă.
- (5p) 5. În reperul cartezian xOy se consideră punctul A(2, -3) și dreapta d de ecuație 2x 3y + 4 = 0. Determinați ecuația perpendicularei din A pe dreapta d.
- (5p) 6. Dacă $x \in \left(0, \frac{\pi}{2}\right)$ și ctg x tg x = 2, calculați tg 2x.

Soluții

Clasa a IX-a

1.1. Mulțimi și elemente de logică matematică

1. $\{-1, 0, 1, 2, 3, 4\}$. 2. b < d < a < c. 3. $a = 6 \in \mathbb{N}$. 4. $b = 2 \in \mathbb{N}$. 5. $a = \sqrt{2}$, $b = 18\sqrt{2}$, $m_a = \frac{19\sqrt{2}}{2}$, $m_g = 6$. 6. a = 8, b = -4. 7. $\sqrt{x + 49} \in [7, 10]$, $\sqrt{x + 625} \in [25, 26] \Rightarrow a \in [32, 36]$, $\forall x \in [0, 51]$. 8. $E(x, y) = \sqrt{(x - 1)^2 + 4} + \sqrt{(y + 3)^2 + 1} \ge \sqrt{4} + \sqrt{1} = 3$, $\forall x, y \in \mathbb{R}$. 9. 186. 10. a) -2; b) 0; c) 5; d) 1. 11. a) $x \in \{-3, 7\}$; b) $x \in \{-3, 5\}$; c) $x \in \{-1, 5\}$; d) x = -1. 12. a) $x \in \{-1, 2\}$; b) $x \in (-\infty, -7] \cup [1, +\infty)$. 13. 100. 14. E(x) = 0, $\forall x \in \mathbb{R}$. 15. $|2x - 3| + 2|x - 1| = |2x - 3| + |2x - 2| = |2x - 3| + |2 - 2x| \ge |2x - 3 + 2 - 2x| = 1$, $\forall x \in \mathbb{R}$. 16. $x^2 + 3x + 3 = |x + 3| = |x + 3|$

1.2. Progresii

1. $a_1 = 5$. 2. $a_1 = -1$. 3. Fie r rația progresiei; atunci $a_1 + 2r = 5$ și $a_1 + 4r = 9$. Rezultă $a_1 = 1$ și r = 2. Prin urmare, $S_7 = \frac{(a_1 + a_7)7}{2} = 49$. 4. 2007 este al 402-lea termen al progresiei. 5. x = 6. 6. Este suma primilor 11 termeni ai unei progresii aritmetice cu primul termen 1 și rația 3; avem că $S_{11} = \frac{(1+31)\cdot 11}{2} = 176$. 7. Termenii sumei formează o progresie aritmetică în care $a_1 = 1$, r = 4. Dacă notăm cu m numărul de termeni, atunci $n = a_m = a_1 + r(m-1)$, deci n = 4m - 3. Astfel, $231 = S_m = \frac{m(4m-2)}{2} = 2m^2 - m$ și cum $m \in \mathbb{N}^*$, obținem că m = 11, apoi n = 41. 8. $a_{n+1} - a_n = 3$, $\forall n \in \mathbb{N}^*$, deci (a_n) este progresie aritmetică de rație r = 3 și $a_1 = 1$. Apoi

29. Cum $\sin B = 1$, rezultă că $\not = 8$ 0°. Avem că $\sin A = \frac{BC}{AC}$, deci AC = 8. Aria triunghiului ABC este egală cu $8\sqrt{3}$. **30.** $S_{ABCD} = AB \cdot AD \cdot \sin \not = BAD = 24\sqrt{2}$. **31.** a) Cum $A + B = \pi - C$, rezultă că $\frac{\operatorname{tg} A + \operatorname{tg} B}{1 - \operatorname{tg} A \cdot \operatorname{tg} B} = -\operatorname{tg} C$, deci $\operatorname{tg} A + \operatorname{tg} B + \operatorname{tg} C = \operatorname{tg} A \cdot \operatorname{tg} B \cdot \operatorname{tg} C$; b) $\operatorname{tg}(A + B) = \frac{\operatorname{tg} A + \operatorname{tg} B}{1 - \operatorname{tg} A \cdot \operatorname{tg} B} = -1$, deci A + B = 135°. Rezultă că $\operatorname{tg} C = 1$. Altfel: Folosind relația de la a), obținem că $\operatorname{tg} C = 1$, deci C = 45°.

Clasa a X-a

2.1. Radicali și logaritmi

1. b) Observăm că $\sqrt{11-6\sqrt{2}} = 3-\sqrt{2}$ și $\sqrt{5-2\sqrt{6}} = \sqrt{3}-\sqrt{2}$; c) Se ridică la pătrat în ambii membri. **2.** Avem: $\frac{1}{\sqrt{6}} \cdot \left(\frac{a}{b} + \frac{b}{a}\right) = \frac{1}{\sqrt{6}} \left(\frac{3-\sqrt{3}}{\sqrt{6}} + \frac{3+\sqrt{3}}{\sqrt{6}}\right) = 1 \in \mathbb{Q}$. **3.** a = 2. **4.** Se arată că $-4 < \sqrt{2} - 3\sqrt{3} < -3$, deci $\left[\sqrt{2} - 3\sqrt{3}\right] = -4$. **5.** a) 0; b) 6; c) 1; d) 27. **6.** a) $E = \frac{x}{y}$; b) $a = \frac{2}{3}$. **7.** Cum $E(x) = x^{\frac{11}{6}}$ și $a = 2^{\frac{3}{11}}$, rezultă $E(a) = \sqrt{2}$. **8.** a) $a = \sqrt[16]{2^{15}}$, deci $a \cdot b = 2$; b) a = 2. **9.** k = 2. **10.** a) Aducând radicalii la ordin comun rezultă $\sqrt{2} < \sqrt[4]{5} < \sqrt[3]{4}$; b) $\sqrt[3]{2\sqrt{2}} < \sqrt[3]{4} < \sqrt[4]{27\sqrt{3}}$. **11.** a) Avem: $a^2 = 9 + 2\sqrt{14}$ și $b^2 = 9 + 2\sqrt{18}$, deci a < b; b) Cum $a = \frac{1}{\sqrt{13} + \sqrt{12}}$ și $b = \frac{1}{\sqrt{12} + \sqrt{11}}$, rezultă a < b. **12.** Aducem la același ordin, deci a > b. **13.** a) $\frac{7}{2}$; b) -3; c) $\frac{7}{3}$; d) $\frac{13}{6}$; e) $\frac{1}{2}$. **14.** c < a < b. **15.** a) a = 1; b) b = -1. **16.** a) 2; b) -24; c) 3; d) 1. **17.** a) 3; b) 2. **18.** a) 2; b) 0; c) 0. **19.** a) $a = \frac{1}{2}$; b) Fie $\log_2 3 = x$; atunci $a = (3 + x) \cdot (5 + x) - (6 + x)(2 + x) = 3 \in \mathbb{Q}$; c) -3. **20.** a = 3. **21.** a) $\log_3 5$; b) 2; c) $\log_{0.3} 2$; d) -1; e) $\log_3 5$. **22.** a) Cum 1 < 2 < 3, rezultă $0 < \log_3 2 < 1$; b) Cum $3 < 4 < \sqrt{27}$, rezultă $1 < \log_3 4 < \frac{3}{2}$; c) Se arată că $\log_3 4 < \frac{3}{2} < \log_4 9$, deci $\log_3 4 < \log_4 9$. **23.** a) Inegalitatea este echivalentă cu $2\sqrt{2} < 3 < 4$; b) Folosind a), avem a > 2 și $a < 2 + \frac{2}{3}$, deci [a] = 2. **24.** $\log_{12} 18 = \frac{2 + \log_3 2}{1 + 2\log_3 2} = \frac{2 + a}{1 + 2a}$. **25.** Din $\log_{40} 100 = a$

Clasa a XII-a

4.1. Legi de compozitie

1. a) 1; b) Ecuația este $2^{x+x^2} = 2^6$, adică $x^2 + x - 6 = 0$ și de aici x = 2 sau x = -3; c) Avem că $(x \circ y) \circ z = 2^{2^{x+y}+z}$; din $2^{2^{x+y}+z} = 2^{z+1}$, rezultă că $2^{x+y} = 1$, deci x + y = 0. **2.** b) $a = \frac{1}{4}$, $b = \frac{3}{4}$; c) Prin inducție, $x_1 \circ x_2 \circ \ldots \circ x_n = x_1 + x_2 + \ldots + x_n + (n-1) \cdot 11$, $\forall x_1, x_2, \ldots, x_n \in \mathbb{R}$ și $\forall n \in \mathbb{R}$ $\in \mathbb{N}^*$. Rezultă că $1 \circ 2 \circ \ldots \circ n = \frac{n(n+1)}{2} + 11(n-1) < 1000$. Cum *n* este maxim, atunci n = 34. **3.** a) 0; b) Cum x * x = 0, $\forall x \in \mathbb{R}$, rezultă că $(x * x) * y = 3y^2 \ge 0$, $\forall y \in \mathbb{R}$; c) Avem a * 1 = $= a^2 - 4a + 3 = (a - 2)^2 - 1$. Pentru orice $n \in \mathbb{N}$ astfel încât n + 1 nu este pătrat perfect, luăm $a = 2 + \sqrt{n+1}$. Astfel, găsim o infinitate de valori ale lui $a \in \mathbb{R} \setminus \mathbb{Q}$, pentru care $a * 1 = n \in \mathbb{N}$. **4.** a) Folosind faptul că $x \circ y = (x+4)(y+4) - 4$, avem că $x \circ (y \circ z) = (x \circ y) \circ z = (x+4)(y+4) - 4$ (x+4)(z+4)-4, $\forall x, y, z \in \mathbb{R}$; b) Observăm că $x \circ (-4) = (-4) \circ y = -4$, $\forall x, y \in \mathbb{R}$ (numărul -4 este element absorbant pentru operația "∘"). Atunci (-1000) ∘ (-999) ∘ ... ∘ 1000 = = $[(-1000) \circ ... \circ (-5)] \circ (-4) \circ [(-3) \circ ... \circ 1000] = x \circ (-4) \circ y = -4 \circ y = -4$; c) Ecuația se scrie sub forma $(x+4)^4-4=12$. Cum $x \in \mathbb{R}$, rezultă că $(x+4)^2=4$, cu soluțiile $x_1=-2$ sau $x_2 = -6.$ 5. b) Dacă $x, y \in I$, atunci $x + \sqrt{2} > 0$ și $y + \sqrt{2} > 0$, deci $x \circ y > -\sqrt{2}$, adică $x \circ y \in I$; c) Observăm că operația este asociativă. Atunci $\left(-\frac{\sqrt{11}}{\sqrt{1}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{2}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right) = \left|\left(-\frac{\sqrt{11}}{\sqrt{1}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right)\right| = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right) = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right)\right| = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right) = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right)\right| = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right) = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{23}}{\sqrt{13}}\right) = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left(-\frac{\sqrt{12}}{\sqrt{13}}\right) = \left|\left(-\frac{\sqrt{11}}{\sqrt{11}}\right) \circ \left(-\frac{\sqrt{12}}{\sqrt{12}}\right) \circ ... \circ \left$ $\circ \dots \circ \left(-\frac{\sqrt{19}}{\sqrt{9}} \right) \right] \circ \left(-\sqrt{2} \right) \circ \left| \left(-\frac{\sqrt{21}}{\sqrt{11}} \right) \circ \left(-\frac{\sqrt{22}}{\sqrt{12}} \right) \circ \left(-\frac{\sqrt{23}}{\sqrt{13}} \right) \right| = \left[a \circ \left(-\sqrt{2} \right) \right] \circ b = \left(-\sqrt{2} \right) \circ b = -\sqrt{2} \ .$ **6.** a) $(x + i)(y + i) - i = xy + ix + iy - 1 - i = x \circ y$; b) Demonstrăm inductiv, folosind a); c) Ecuația este $(x+i)^4 - i = 1 - i$, deci $(x+i)^4 = 1$, de unde $x+i \in \{-1, 1, i, -i\}$, adică $x \in$ $\in \{-1-i, 1-i, 0, -2i\}$. 7. a) $x \circ y = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; capacitate exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) = y \circ x$; b) De exemplu, observăm că $2 \circ (3 \circ 4) = (x-4)(y-4) =$ = 8, însă $(2 \circ 3) \circ 4 = 0$; c) Avem (m-4)(n-4) = 7, cu soluțiile $(m, n) \in \{(5, 11); (11, 5); (3, -3); (11, 5); (11,$ (-3,3)}. **8.** a) $(x \circ y) \circ z = x \circ (y \circ z) = \sqrt[3]{x^3 + y^3 + z^3}$, $\forall x, y, z \in \mathbb{R}$; b) e = 0; c) $x_1 = x_0 \sqrt[3]{2}$, $x_2 = x_0 \sqrt[3]{2}$ = $x_0\sqrt[3]{3}$, $x_3 = x_0\sqrt[3]{4} \in \mathbb{R} \setminus \mathbb{Q}$. 9. b) $e = \frac{7}{2}$; c) Se demonstrează prin inducție matematică. **10.** a) Pentru orice $x, y \in (-\infty, 0)$, avem că $x * y \in (-\infty, 0)$, deci * este lege de compoziție pe G; c) Fie $e \in G$ un eventual element neutru; atunci $\frac{xe}{x+e} = x$, $\forall x \in G$, sau încă $xe = x^2 + xe$, $\forall x \in G$, fals. Rezultă că legea nu are element neutru. 11. a) Observăm că $x \circ y = e^{3 \ln x \ln y} > 0$,

Teste pentru Bacalaureat, după modelul M.E.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

Testul 1

I. 1. 41. **2.** 5. **3.** x = 2. **4.** 4 elemente. **5.** $AB \perp d$ și mijlocul $M(-1, 4) \in d$. **6.** $\operatorname{ctg} \frac{\pi}{8} - \operatorname{tg} \frac{\pi}{8} = 1$

$$= \frac{\cos^2 \frac{\pi}{8} - \sin^2 \frac{\pi}{8}}{\sin \frac{\pi}{8} \cos \frac{\pi}{8}} = \frac{2\cos \frac{\pi}{4}}{\sin \frac{\pi}{4}} = 2. \text{ II. 1. b) } A^{-1}(a) = B \Leftrightarrow A(a) \cdot B = I_3. \text{ Rezultă } a = -4;$$

sin 8 cos 8 sin 4
c)
$$X = C(A(-4))^{-1} = CB = (16 9 -4)$$
. 2. b) Dacă $x + i$ și $y + i \in M$, atunci $(x + i) * (y + i) = \frac{3(x+y)}{2} + i \in M$; c) $z = a - 3i$, $a \in \mathbb{R}$. III. 1. a) $\frac{1}{e}$; b) $A(0, 1)$ este punct de minim;

c) Dreapta este tangentă graficului funcției f în punctul M(1, e - 1). **2.** b) $\int_{1}^{a} (x^{2} - f(x)) dx = \int_{1}^{a} \frac{\ln x}{x} dx = \frac{1}{2} \ln^{2} a = \frac{1}{2} \Rightarrow a = e$; c) Fie F o primitivă a lui f pe (0, 1). Cum F'(x) = f(x) > 0

(deoarece $\ln x < 0$), rezultă că F este strict crescătoare pe (0, 1).

 $\operatorname{deci} \int_{1}^{3} f(x) dx \ge \int_{1}^{3} \frac{e}{x+1} dx = e \ln(x+1) \Big|_{1}^{3} = e \ln 2.$

Testul 2

I. 1.
$$\log_3 8 \cdot \log_{\sqrt{2}} 3 = 3\log_3 2 \cdot 2\log_2 3 = 6 = (\sqrt{6})^2$$
. 2. $f(\sqrt{2}) < 0$; $f(\sqrt{3}) < 0$; $f(\sqrt{5}) > 0$.

3. $x = -1$ și $x = \frac{1}{2}$. 4. $x \in \{6, 7\}$. 5. $BH \perp AC$ și $CH \perp AB$. 6. $x = \frac{\pi}{3}$. II. 1. b) det $A \neq 0 \Rightarrow a \in \mathbb{R} \setminus \{0, 1\}$; c) Pentru $a = 1$ sistemul este compatibil simplu nedeterminat cu soluțiile $(7 - \alpha, 11 - 2\alpha, \alpha), \alpha \in \mathbb{R}$. Obținem soluții formate din numere naturale pentru $\alpha \in \{0, 1, 2, ..., 5\}$, deci 6 soluții. 2. c) Se verifică ușor că "*" este asociativă, are element neutru $e = 2$ și orice $x \neq 4$ este inversabil. Rezultă că $(\mathbb{R}, *)$ nu este grup. III. 1. a) 1; b) Fie că în $A(a, f(a))$ și $B(b, f(b))$ tangentele nu sunt secante, deci sunt paralele. Rezultă $f'(a) = f'(b) \Rightarrow a = b$, fals; c) Folosind șirul lui Rolle, ecuația $f(x) = 0$ nu are soluții. 2. b) $\int_1^2 \left(f(x) - \frac{e^x}{(x+1)^2} \right) dx = \int_1^2 \left(\frac{e^x}{x+1} - \frac{e^x}{x+1} \right) dx = \int_1^2 \left(\frac{e^x}{x+1} - \frac{e^x}{x+1} - \frac{e^x}{x+1} \right) dx = \int_1^2 \left(\frac{e^x}{x+1} - \frac{e^x}{x+1} - \frac{e^x}{x+1} \right) dx = \int_1^2 \left(\frac{e^x}{x+1} - \frac{e^x}{x+1} - \frac{e^x}{x+1} \right) dx = \int_1^2 \left(\frac{e^x}{x+1} - \frac{e^x}{x+1} - \frac{e^x}{x+1} \right) dx = \int_1^2 \left(\frac{e^x}{x+1} - \frac{e^x}{x+1} - \frac{e^x}{x+1} \right) dx = \int_1^2 \left(\frac{e^x}{x+1} - \frac{e$

dacă $f'(x_0) = 0$, deci $x_0 \in \{-1, 1\}$. Ecuațiile tangentelor căutate sunt y = 3 și y = -1. **2.** a) $I_1 = \frac{1}{4}$; b) $I_n - I_{n+1} = \int_0^1 x^n (1-x) \ln(1+x) dx \ge 0$, $n \in \mathbb{N}^*$; c) $I_n \le I_1 = \frac{1}{4}$, pentru orice $n \in \mathbb{N}^*$.

Testul 40

I. 1. $a = 3 \in \mathbb{N}$. 2. A(2, 1). 3. $x \in \{-1, 0, 1, 2\}$. 4. $C_5^2 \cdot C_5^3 = 100$. 5. $a \in \{-5, 3\}$. 6. $\operatorname{tg} B = \frac{3}{4}$.

II. 1. a) Se arată că $A^2B = BA^2$; c) Pentru orice $X \in M$, avem: $A^2X = XA^2 \Leftrightarrow (5A - 5I_2)X = X(5A - 5I_2) \Leftrightarrow AX - X = XA - X \Leftrightarrow AX = XA$. 2. b) $x \in [-1, 2]$; c) Ecuația $x \circ y = 7$ este echivalentă cu ecuația (x - 1)(y - 1) = 2 ale cărei soluții sunt (-1, 0), (0, -1), (2, 3) și (3, 2).

III. 1. a) $\lim_{x \nearrow 1} f(x) = \lim_{x \searrow 1} f(x) = f(1) = 2$; b) $f_s'(1) = 1 \neq -1 = f'd(1)$; c) Funcția f are maximul absolut f(1) = 2, $\operatorname{deci} f(x) + f(x^2) + f(x^3) \le 3f(1) = 6$, $x \in \mathbb{R}$. 2. a) $I_1 = 1$; b) $I_3 = \frac{2}{3}$; c) Integrând, de la 0 la $\frac{\pi}{2}$, inegalitatea $\sin^{n+1} x \le \sin^n x$, $x \in \left[0, \frac{\pi}{2}\right]$, $n \in \mathbb{N}^*$, obținem $I_{n+1} \le I_n$, $n \in \mathbb{N}^*$.

Testul 41

I. 1. $z = 2\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$. **2.** f este descrescătoare pe (-∞, 2), deci $f(\sqrt{2}) > f(\sqrt{3})$. **3.** $S = \{2\}$. **4.** $3 \cdot 4 \cdot 4 = 48$. **5.** B'(7, 0). **6.** $2\sqrt{37}$. **II. 1.** b) Pentru $x \in \{-2, -1\}$, det A(x) = 0, deci A(x) nu este inversabilă; c) det $A(x) = x^2 + (m+1)x + m$; ecuația $x^2 + (m+1)x + m = 0$ are discriminantul $\Delta = (m-1)^2$ și $(m-1)^2 \ge 0$, $\forall m \in \mathbb{R}$, deci vor exista valori ale lui x pentru care det A(x) = 0. **2.** c) Dacă $b = \hat{0}$, atunci $S = \{\hat{0}, \hat{4}\}$; dacă $b = \hat{2}$, atunci $S = \{\hat{1}, \hat{5}\}$; dacă $b = \hat{4}$, atunci $S = \{\hat{2}, \hat{6}\}$; dacă $b = \hat{6}$, atunci $S = \{\hat{3}, \hat{7}\}$. **III. 1.** a) $f'(x) = e^x - 1$, $x \in \mathbb{R}$; b) f este descrescătoare pe (-∞, 0] și crescătoare pe [0, +∞); c) Din $f\left(\frac{1}{100}\right) > f(0)$, obținem că $\sqrt[100]{e} > \frac{100}{100}$. **2.** a) $\frac{4}{3}$; b) $\frac{2\sqrt{2} - 1}{3}$; c) Asimptota oblică spre +∞ la graficul funcției f are ecuația y = x. Cum $\sqrt{x^2 + 1} > x$, oricare ar fi $x \in \mathbb{R}$, avem $A(\Gamma) = \int_0^1 \left(\sqrt{x^2 + 1} - x\right) dx = \frac{\ln(1 + \sqrt{2}) + \sqrt{2} - 1}{3}$.

Testul 42

I. 1. $a = 0 \in \mathbb{Z}$. 2. $\Delta = 5m^2 + 4 > 0$, oricare ar fi $m \in \mathbb{R}$. 3. $S = \{0, 2\}$. 4. 6 numere. 5. $\sqrt{2}$. 6. $30\sqrt{2}$. **II.** 1. b) x = 0 sau x = 1; c) A(x), $A^{-1}(x) \in \mathcal{M}_3(\mathbb{R}) \implies \det A(x)$, $\det A^{-1}(x) \in \mathbb{Z}$. Cum $A(x) \cdot A^{-1}(x) = I_3 \implies \det A(x) \cdot \det A^{-1}(x) = 1 \implies \det A(x) = 1$ sau $\det A(x) = -1 \implies 1 - 2x = 1$ sau

Considerăm funcția $g:(1,+\infty)\to\mathbb{R},\,g(x)=\ln\frac{x+2}{x}-\ln\frac{x+1}{x-1}+1.$ Cum $\lim_{x\to 1\atop x\to 1}g(x)=-\infty$ și

 $\lim_{x\to+\infty} g(x) = +\infty$, rezultă că există $c \in (1, +\infty)$ astfel încât g(c) = 0. **2.** a) Dacă F este o primitivă a funcției f, atunci $F'(x) = f(x) \le 0$, $\forall x \in [1, 3]$, deci F este descrescătoare; b) 3 ln 3 – 4; c) Obținem ecuația $a^3 - 6a^2 + 9a - 2 = 0$, $a \in (1, 3)$. Soluția este a = 2.

Testul 57

I. 1. 64. 2. $2\sqrt{2}$. 3. x = 8. 4. Sunt 90 de numere de două cifre; 22 se divid cu 4, 19 se divid cu 5, 4 se divid cu 4 și cu 5. Divizibile cu 4 sau cu 5 sunt 37 de numere. Probabilitatea cerută este egală cu $\frac{37}{90}$. 5. 3. 6. -3. II. 1. c) $\mathcal{A}_{AOC_n} = \frac{3}{2}|2n-3|$ și este minimă pentru n = 1 sau n = 2.

2. a) 8; c) De exemplu,
$$A = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}$$
, $B = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}$. **III.** 1. a) Avem $f'(x) = \frac{3}{4} \Leftrightarrow x = 0$, $x = 4$. Punctele căutate sunt $A\left(0, -\frac{7}{2}\right)$; $B\left(4, \frac{3}{2}\right)$; b) $(-\infty, -3] \cup [1, +\infty)$; c) e^{-3} . 2. a) $\frac{5}{12}$; c) $A = \int_{-2}^{1} |f(x) - g(x)| dx = \int_{-2}^{1} (-x + 2 - x^2) dx = \frac{9}{2}$.

Testul 58

I. 1. 5. **2.** A(0, 2); B(3, 5). **3.** $\frac{8}{5}$. **4.** 16. **5.** $3\sqrt{2}$. **II. 1.** b) $m \neq -2$; c) (3, 1, 5). **2.** a) De exemplu, $(0*1)*2 \neq 0*(1*2)$; b) x = -3 sau x = 1; c) Fie $n \in \mathbb{N}$, $a*b = n \Rightarrow a = \frac{n-3b}{b-2}$. Alegem $n \in \mathbb{N}$, $b \in \mathbb{Q} \setminus \mathbb{Z}$, astfel încât $a \in \mathbb{Q} \setminus \mathbb{Z}$; de exemplu, n = 0, $b = \frac{1}{3}$, $a = \frac{3}{5}$. **III. 1.** a) 9; b) A(0, 4) punct de maxim, B(2, 0) punct de minim; c) $\frac{11}{12} < \frac{12}{13}$; $\frac{12}{12}$, $\frac{12}{13} \in [0, 2]$. Cum f este strict descrescătoare pe [0, 2], rezultă că a > b. **2.** b) $\sqrt{2} - 1$; c) $\pi\left(1 - \frac{\pi}{4}\right)$.

Testul 59

I. 1.
$$a = -1$$
. 2. $m = -2$. 3. 8. 4. $\frac{6 \cdot 5 \cdot 4}{6^3} = \frac{5}{9}$. 5. $3x + 2y = 0$. 6. 1. II. 1. a) det $(2I_2 - 3A) = -17 \neq 0$; c) Inductiv, $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$, cu a_n , b_n , c_n , $d_n > 0$. 2. a) $e = 4$; c) $x = 3$. III. 1. a) $\frac{1}{3}$;

Breviar teoretic

1. ALGEBRĂ

1.1. Formule de calcul prescurtat

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}; \ a^{2} - b^{2} = (a - b)(a + b); \ (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac; (a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}; \ a^{3} \pm b^{3} = (a \pm b)(a^{2} \mp ab + b^{2}); a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1}); \ n \in \mathbb{N}, \ n \ge 2.$$

1.2. Sume remarcabile

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2};$$

$$\sum_{k=1}^{n} k^{2} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6};$$

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}.$$

1.3. Modulul unui număr real

Definiție.
$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Proprietăți: 1) $|x| \ge 0$, $\forall x \in \mathbb{R}$; 2) $|x| = 0 \Leftrightarrow x = 0$; 3) $|x \cdot y| = |x| \cdot |y|$, $\forall x, y \in \mathbb{R}$;

4) $|x:y| = |x|: |y|, \ \forall \ x, y \in \mathbb{R}, y \neq 0; 5) \ |x+y| \leq |x| + |y|, \ \forall \ x, y \in \mathbb{R};$ egalitatea are loc dacă și numai dacă $xy \geq 0$; 6) $|x| \leq a \Leftrightarrow x \in [-a, a], a > 0$; 7) $|x| \geq a \Leftrightarrow x \in (-\infty, -a] \cup [a, +\infty), a > 0$.

1.4. Partea întreagă și partea fracționară

Definiție. Partea întreagă a unui număr real x este cel mai mare număr întreg, mai mic sau egal cu x și se notează cu [x]. Partea fracționară (zecimală) a unui număr real x se notează cu $\{x\}$ și este definită astfel: $\{x\} = x - [x]$.

Proprietăți: 1) $[x] \in \mathbb{Z}$ și $\{x\} \in [0, 1), \forall x \in \mathbb{R}$; 2) $[x] \le x < [x] + 1, \forall x \in \mathbb{R}$;

3) [x+k] = [x] + k, $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$; 4) $\{x+k\} = \{x\}$, $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$.

sunt: $x_P = \frac{x_A + kx_B}{1 + k}$, $y_P = \frac{y_A + ky_B}{1 + k}$. Coordonatele centrului de greutate G al triunghiului ABC sunt $x_G = \frac{x_A + x_B + x_C}{3}$, $y_G = \frac{y_A + y_B + y_C}{3}$.

2.2. Vectori în plan

Fie $\{O, \vec{i}, \vec{j}\}$ o bază ortonormată asociată unui reper cartezian ortogonal din plan. *Vectorul* de poziție al punctului $A(x_A, y_A)$ este $\vec{r_A} = x_A \vec{i} + y_A \vec{j}$. Coordonatele vectorului \overrightarrow{AB} sunt $(x_B - x_A, y_B - y_A)$, adică $\overrightarrow{AB} = (x_B - x_A)\overrightarrow{i} + (y_B - y_A)\overrightarrow{j}$. Suma vectorilor $\overrightarrow{u}(a,b)$ și $\overrightarrow{v}(a',b')$ este $(\vec{u} + \vec{v})(a + a', b + b')$. Produsul dintre vectorul $\vec{v}(a,b)$ și scalarul t este $(t \cdot \vec{v})(ta,tb)$ Panta direcției vectorului $\vec{v}(a,b)$ este $m_{\vec{v}} = \frac{b}{a}$, iar a vectorului \overline{AB} este $m_{\overline{AB}} = \frac{y_B - y_A}{x_B - x_A}$. Condiții de paralelism (coliniaritate) pentru vectorii $\vec{u}(a,b)$ și $\vec{v}(a',b')$: $\vec{u} \parallel \vec{v} \Leftrightarrow (\exists) t \in \mathbb{R}$ astfel încât $\vec{u} = t \cdot \vec{v} \iff \frac{a}{a'} = \frac{b}{b'} \iff m_{\tilde{u}} = m_{\tilde{v}}$.

2.3. Produsul scalar a doi vectori

Produsul scalar al vectorilor
$$\vec{u}$$
 și \vec{v} este numărul real:
$$\vec{u} \cdot \vec{v} = \begin{cases} |\vec{u}| \cdot |\vec{v}| \cdot \cos \not< (\vec{u}, \vec{v}), \text{ dacă } \vec{u} \neq \vec{0} \text{ și } \vec{v} \neq \vec{0} \\ 0, \text{ dacă } \vec{u} \neq \vec{0} \text{ sau } \vec{v} \neq \vec{0} \end{cases}$$
. Dacă $\vec{u} = a\vec{i} + b\vec{j}$ și $\vec{v} = a'\vec{i} + b'\vec{j}$, atunci
$$\vec{u} \cdot \vec{v} = aa' + bb' \text{ Condiții de perpendicularitate pentru vectorii } \vec{u}(a,b) \text{ și } \vec{v}(a',b') \text{: } \vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0 \Leftrightarrow aa' + bb' = 0$$
. Măsura unghiului dintre doi vectori nenuli se poate afla cu ajutorul formulei $\cos \not< (\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{aa' + bb'}{\sqrt{a^2 + b^2} \cdot \sqrt{a'^2 + b'^2}}$.

2.4. Teoreme remarcabile în triunghi

Teorema lui Thales: Dacă M și N sunt puncte pe laturile AB, respectiv AC ale triunghiului *ABC*, atunci dreptele *MN* și *BC* sunt paralele dacă și numai dacă $\frac{AM}{MB} = \frac{AN}{NC}$.

Teorema bisectoarei: Semidreapta AD, $D \in (BC)$, este bisectoare a triunghiului ABC dacă și numai dacă $\frac{BD}{DC} = \frac{AB}{AC}$.

Teorema lui Menelaus: Pe dreptele suport BC, CA, AB ale laturilor triunghiului ABC se consideră punctele M, N, respectiv P (două puncte pe laturi și al treilea pe prelungirea laturii