Probabilidad Parcial II - Ejercicio 3

Rubén Pérez Palacios Lic. Computación Matemática Profesor: Dr. Ehyter Matías Martín González

15 de noviembre de 2020

Problemas

- 1. Una sucesión de vectores aleatorios $\{\vec{X}_n\}$ converge en distribución a otro vector aleatorio \vec{X} ssi $F_{\vec{X}_n}(\vec{x})$ converge a $F_{\vec{X}}(\vec{x})$ para todo \vec{x} en el que $F_{\vec{X}}$ es continua (según la distancia euclidiana).
 - a) (70 pts.) Demuestre que si $\{\vec{X}_n\}$ es una sucesión de vectores aleatorios tales que convergen en distribución a \vec{X} , entonces cada entrada de $\{\vec{X}_n\}$ converge a la correspondiente entrada de \vec{X} . ¿Se cumple el recíproco?

Por el Teorema 8.1 tenemos que para todo función g acotada y continua se cumple que $\vec{X}_n \stackrel{d}{\to} X$ si y sólo si

$$E\left[g\left(\vec{X}_n\right)\right] \xrightarrow{E} \left[\left(g(X)\right)\right],$$

ahora sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y acotada, y $h(\vec{X}) = \left(\vec{X}\right)_i$ la proyección del vector a la i-esima componente la cual es una función continua, por lo que $f \circ h$ es un función continua y acotada. Si tomamos $g = f \circ h$ entonces

$$E\left[f\left(h\left(\vec{X}_{n}\right)\right)\right] = E\left[f\left(g\left(\vec{X}\right)\right)\right],$$

por lo tanto concluimos

$$E\left[f\left(\left(\vec{X}_{n}\right)_{i}\right)\right] = E\left[f\left(\left(\vec{X}\right)_{i}\right)\right].$$

El recíproco no es cierto ya que si tomamos $X_n = X = -Y_n = Y$ una sucesión de variables aleatorias donde $X \sim Y \sim N(\mu, \sigma)$, entonces

$$X_n + Y_n \sim Z$$

donde Z es una variable degenerada en 0. Por lo tanto (X_n, Y_n) no converge a (X, Y).

b) (30 pts.) Sea $\vec{X} \sim N_d(\mu\vec{1}, \sigma^2 I_d)$. Halle la distribución de \overline{X}_d condicionada a máx $\{X_1, \dots, X_d\}$ - mín $\{X_1, \dots, X_d\}$.