Angewandte Mathematik Folgen und Reihen

Dr. Marcel Ritter
Univ.-Prof. Dr. Matthias Harders
Sommersemester 2022

Einführungsfilme

@igs

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Folgen und Reihen
- Taylorreihe
- Fourierreihe

universit innsbrud

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Folgen und Reihen
- Taylorreihe
- Fourierreihe

Angewandte Mathematik für die Informatik – SS2022

Motivation

 Massenmittelpunkt (kontinuierliche, nicht konstante Masseverteilung, 3D)

$$\mathbf{x}_{CM} = \frac{1}{m} \int_{V} \mathbf{x} \rho(\mathbf{x}) dV \qquad m = \int_{V} \rho(\mathbf{x}) dV$$

Massenmittelpunkt (N Punktmassen, 3D)

$$\mathbf{x}_{CM} = \sum_{i=1}^{N} m_i \mathbf{x}_i / m \qquad m = \sum_{i=1}^{N} m_i$$

Massenmittelpunkt (zwei Punktmassen auf Stab, 1D)

$$x_{CM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

Angewandte Mathematik für die Informatik – SS2022

Motivation

- Auf starre Körper einwirkende externe Kräfte können Verschiebungen und Rotationen verursachen
- Ein freier starrer Körper rotiert nicht, wenn sich die Drehmomente bzgl. des Massemittelpunktes aufheben
- Eine Rotationsbewegung resultiert, wenn der Kraftangriffspunkt nicht mit dem Massemittelpunkt zusammenfällt

Angewandte Mathematik für die Informatik – SS2022

5

Motivation

"Buchstapel-Problem"

Angewandte Mathematik für die Informatik – SS2022

"Buchstapel-Problem"

$$i=1: d=\frac{L}{2}$$

Motivation

"Buchstapel-Problem"

$$i = 1: d_1 = \frac{L}{2}$$

Motivation

"Buchstapel-Problem" – Verhalten für N→∞

$$\lim_{N \to \infty} \sum_{i=1}^{N} \frac{L}{2i} = \lim_{N \to \infty} \frac{L}{2} \sum_{i=1}^{N} \frac{1}{i} = \frac{L}{2} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots \right) = \infty$$

Beweisskizze

(harmonische Reihe)

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots >$$

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots \to \infty$$

$$\frac{1}{2}$$

Angewandte Mathematik für die Informatik – SS2022

universit innsbruc

Motivation

MIP-Mapping in Computergrafik

@igs

Stufe

Angewandte Mathematik für die Informatik – SS2022

Motivation

MIP-Mapping in Computergrafik – Speicherbedarf

$$S = M + \frac{M}{4} + \frac{M}{4 \cdot 4} + \frac{M}{4 \cdot 4 \cdot 4} + \dots$$

$$= M \sum_{i=0}^{N} \frac{1}{4^{i}} \qquad \text{(geometrische Reihe)}$$

$$M \sum_{i=0}^{\infty} \frac{1}{4^{i}} = M \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}M$$

$$= M + \frac{1}{3}M$$

(Speicherbedarf 1/3 höher)

universit

Inhalt

- Einführung
- Folgen und Reihen
- Taylorreihe
- Fourierreihe

universit innsbruc

Angewandte Mathematik für die Informatik – SS2022

Zahlenfolgen

- Für die Menge M ist eine (Zahlen-)Folge aus M eine Abbildung $\varphi \colon \mathbb{N} \to M, \ n \to a_n = \varphi(n)$
- Schreibweisen: $(a_n)_{n\in\mathbb{N}}$, $(a_n)_{n\geq 0}$ oder nur (a_n) bzw. a_n
- Der Index muss nicht bei 0 oder 1 beginnen
- Folgen können endlich oder unendlich sein, und z.B. durch (Teil-)Aufzählung der Glieder dargestellt werden

$$(a_1, a_2, ..., a_n)$$
 $(a_1, a_2, a_3, ...)$

 Alternativ kann die Darstellung durch die Funktionsgleichung, als Rekursion oder als Algorithmus erfolgen

Angewandte Mathematik für die Informatik – SS2022

12

Zahlenfolgen – Beispiele

- Folge der Primzahlen (natürliche Zahlen > 1 mit genau zwei verschiedenen Teilern, d.h. 1 und die Zahl selber) (2,3,5,7,11,13,17,...)
- Fibonacci-Zahlen (durch Rekursion) $a_n = a_{n-1} + a_{n-2}, \quad n \ge 3, \quad a_1 = a_2 = 1$

$$(1,1,2,3,5,8,13,21,\ldots)$$

Fibonacci-Zahlen (durch Funktionsgleichung)

$$a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right) \qquad n \ge 1$$

Angewandte Mathematik für die Informatik – SS2022

• Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen einen Grenzwert (ist konvergent), wenn ab einem bestimmten Index n_0 alle Folgeglieder beliebig nahe beim Grenzwert liegen

$$\lim_{n\to\infty}a_n=a \Leftrightarrow \forall \varepsilon>0 \ \exists n_0\in \mathbb{N} \ \forall n>n_0 : |a_n-a|<\varepsilon$$

(Beispielfolge)

Angewandte Mathematik für die Informatik - SS2022

11

Konvergenz von Folgen

• Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen einen Grenzwert (ist konvergent), wenn ab einem bestimmten Index n_0 alle Folgeglieder beliebig nahe beim Grenzwert liegen

$$\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n > n_0 : |a_n - a| < \varepsilon$$

(Beispielfolge)

Angewandte Mathematik für die Informatik – SS2022

• Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen einen Grenzwert (ist konvergent), wenn ab einem bestimmten Index n_0 alle Folgeglieder beliebig nahe beim Grenzwert liegen

$$\lim_{n\to\infty}a_n=a \Leftrightarrow \forall \varepsilon>0 \ \exists n_0\in \mathbb{N} \ \forall n>n_0 : |a_n-a|<\varepsilon$$

(Beispielfolge)

Angewandte Mathematik für die Informatik – SS2022

14

Konvergenz von Folgen

■ Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen einen Grenzwert (ist konvergent), wenn ab einem bestimmten Index n_0 alle Folgeglieder beliebig nahe beim Grenzwert liegen

$$\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n > n_0 : |a_n - a| < \varepsilon$$

(Beispielfolge)

Angewandte Mathematik für die Informatik – SS2022

• Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen einen Grenzwert (ist konvergent), wenn ab einem bestimmten Index n_0 alle Folgeglieder beliebig nahe beim Grenzwert liegen

$$\lim_{n\to\infty}a_n=a \Leftrightarrow \forall \varepsilon>0 \ \exists n_0\in \mathbb{N} \ \forall n>n_0 : |a_n-a|<\varepsilon$$

Angewandte Mathematik für die Informatik - SS2022

4.4

Konvergenz von Folgen

• Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen einen Grenzwert (ist konvergent), wenn ab einem bestimmten Index n_0 alle Folgeglieder beliebig nahe beim Grenzwert liegen

$$\lim_{n\to\infty}a_n=a \Leftrightarrow \forall \varepsilon>0 \; \exists n_0\in \mathbb{N} \; \forall n>n_0\!:\! |a_n-a|<\varepsilon$$

Angewandte Mathematik für die Informatik – SS2022

- Eine Folge mit Grenzwert a = 0 wird Nullfolge genannt
- Konvergiert eine Folge gegen einen Grenzwert, dann ist dieser eindeutig bestimmt (d.h. höchstens ein Grenzwert existiert)
- Jede Teilfolge einer konvergenten Folge konvergiert gegen den Grenzwert der Folge
- Eine nicht konvergierende Folge nennt man divergent
- Beispiel:

$$a_n = (-1)^n = (1, -1, 1, -1, 1, -1, ...)$$
 (nicht konvergent)

Angewandte Mathematik für die Informatik - SS2022

1 [

Rechenregeln für Grenzwerte

■ Für konvergente Folgen (a_n) , (b_n) sowie eine Konstante $c \in \mathbb{R}$ gilt:

$$\begin{split} &\lim_{n\to\infty} c\cdot a_n = c\cdot \lim_{n\to\infty} a_n \qquad \text{(insbesondere } \lim_{n\to\infty} c = c \text{)} \\ &\lim_{n\to\infty} a_n \pm b_n = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n \\ &\lim_{n\to\infty} a_n\cdot b_n = \lim_{n\to\infty} a_n\cdot \lim_{n\to\infty} b_n \\ &\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} \qquad \text{(angenommen } \lim_{n\to\infty} b_n \neq 0 \text{)} \\ &\lim_{n\to\infty} \sqrt{a_n} = \sqrt{\lim_{n\to\infty} a_n} \qquad \qquad \lim_{n\to\infty} |a_n| = |\lim_{n\to\infty} a_n| \end{split}$$

Angewandte Mathematik für die Informatik – SS2022

Rechenbeispiel

■ Finde Grenzwert der Folge $(a_n)_{n\geq 1}$ $a_n = \frac{4n^4 + 2n^2 + 2}{7n^4 + 100n}$

$$\begin{split} &\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{4n^4 + 2n^2 + 2}{7n^4 + 100n} = \lim_{n\to\infty} \frac{n^4}{n^4} \frac{4 + 2/n^2 + 2/n^4}{7 + 100/n^3} \\ &= \frac{4 + \lim_{n\to\infty} 2/n^2 + \lim_{n\to\infty} 2/n^4}{7 + \lim_{n\to\infty} 100/n^3} = \frac{4 + 2 \cdot \lim_{n\to\infty} 1/n^2 + 2 \cdot \lim_{n\to\infty} 1/n^4}{7 + 100 \cdot \lim_{n\to\infty} 1/n^3} \\ &= \frac{4 + 0 + 0}{7 + 0} = \frac{4}{7} \qquad \text{(mit } \lim_{n\to\infty} \frac{1}{n^k} = 0, \quad k > 0\text{)} \end{split}$$

Angewandte Mathematik für die Informatik – SS2022

Reihen

• Eine (unendliche) Reihe ist eine Folge der Form $(z_m)_{m \in \mathbb{N}}$ jeweils mit Teil-/Partialsummen (für bestimme m)

$$z_m = \sum_{n=0}^{\infty} a_n$$

 Existiert ein Grenzwert a der Teilsummen, dann nennt man diesen den Wert der Reihe und schreibt

$$\lim_{m\to\infty} z_m = \lim_{m\to\infty} \sum_{n=0}^m a_n = \sum_{n=0}^\infty a_n = a$$

• Reihenkonvergenz ist somit gegeben durch Konvergenz der Folge der Partialsummen z_m

Angewandte Mathematik für die Informatik – SS202

Geometrische Reihen

- Konstanter Quotient zwischen Folgegliedern $q = \frac{a_{n+1}}{a_n}$
- Summe der ersten m Potenzen von $q \neq 1$

$$\sum_{k=0}^{m-1} q^k = 1 + q + q^2 + \dots + q^{m-1} = \frac{1-q}{1-q} \left(1 + q + q^2 + \dots + q^{m-1} \right)$$

$$= \frac{\left(1-q \right) + \left(q - q^2 \right) + \left(q^2 - q^3 \right) + \dots + \left(q^{m-1} - q^m \right)}{1-q} = \frac{1-q^m}{1-q}$$

Beispiele:

$$\sum_{k=0}^{4} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \left(1 - \frac{1}{32}\right) / \left(1 - \frac{1}{2}\right) = \frac{31}{16}$$

$$\sum_{k=0}^{3} 3^{k} = 1 + 3 + 9 + 27 = (1 - 81)/(1 - 3) = 40$$
Angewandte Mathematik für die Informatik – SS2022

Geometrische Reihen

• Konvergenzverhalten für |q| < 1

$$\lim_{m \to \infty} \sum_{k=0}^{m-1} q^k = \lim_{m \to \infty} \frac{1 - q^m}{1 - q} = \frac{1}{1 - q}$$

Beispiele:

$$\sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{1 - \frac{1}{2}} = 2$$

$$0.\overline{9} = 0.999... = \frac{9}{10} + \frac{9}{100} + ... = \frac{9}{10} \sum_{k=0}^{\infty} \frac{1}{10^k} = \frac{9}{10} \cdot \frac{1}{1 - \frac{1}{10}} = 1$$

Geometrische Reihen - Koch-Schneeflocke

 Fraktale Struktur, erzeugt z.B. mit Lindenmayer-System (Kurve stetig, aber nicht differenzierbar)

• Gesamtfläche (für Iterationen $n \to \infty$)

$$A_G = A_0 + 3\frac{A_0}{9} + 3 \cdot 4\frac{A_0}{9 \cdot 9} + 3 \cdot 4 \cdot 4\frac{A_0}{9 \cdot 9 \cdot 9} + \dots$$

$$= A_0 \left(1 + \frac{1}{3} \sum_{k=0}^{\infty} \left(\frac{4}{9} \right)^k \right) = A_0 \left(1 + \frac{1}{3} \cdot \frac{1}{1 - 4/9} \right) = A_0 \frac{8}{5}$$

• Länge Gesamtumfang (für Iterationen $n \to \infty$)

Angewandte Mathematik für die Informatik – SS2022

21

Quotientenkriterium

- Eine Reihe $\sum_{i=0}^{\infty} a_n$
 - ist absolut konvergent, wenn

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \qquad \qquad n \in \mathbb{N}$$

- ist divergent, wenn

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

Angewandte Mathematik für die Informatik – SS2022

Arithmetische Reihen

- Konstante Differenz zwischen Folgegliedern $d = a_{n+1} a_n$
- Beispiel Summe der ersten *n* natürlichen Zahlen

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{1}{2} 2 \cdot (1 + 2 + \dots + n) = \frac{1}{2} \binom{1 + 2 + \dots + n + 1}{1 + 2 + \dots + n} = \frac{1}{2} \binom{1 + 2 + \dots + n}{1 + 2 + \dots + n} =$$

$$\frac{1}{2} \underbrace{\binom{1+2+\ldots+n+}{n+(n-1)+\ldots+1}}_{n \text{ mal}} = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$$

(Gaußsche Summenformel)

Angewandte Mathematik für die Informatik – SS2022

22

Arithmetische Reihen

Weitere Beispiele

$$\sum_{k=1}^{n} k^{3} = 1^{3} + 2^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

(Summe erste n Kubikzahlen)

$$\sum_{k=1}^{n} 2k - 1 = 1 + 3 + 5 + \dots + (2n - 1) = n^{2}$$

(Summe erste n ungerade Zahlen)

@igs

Angewandte Mathematik für die Informatik – SS2022

Fakultät

• Produkt der ersten n natürlichen Zahlen (n > 0) ist die Fakultät von n

$$\prod_{k=1}^{n} k = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = n!$$
 0!=1

- Die Anzahl Permutationen (ohne Wiederholungen) einer *n*-elementigen Menge ist gegeben durch *n*!
- Beispiel:

$$M = \{A,B,C\}$$
; $|M| = n = 3$, somit $3! = 6$ Permutationen $P(M) = \{ABC, ACB, BAC, BCA, CAB, CBA\}$

Angewandte Mathematik für die Informatik - SS2022

25

Fakultät – Erweiterungen

■ Näherung für große *n* (Stirling-Formel)

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \qquad n \in \mathbb{N}$$

 Erweiterung auf reelle (und auch komplexe) Zahlen durch die Gammafunktion

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt \qquad x > 0$$

• Einige Eigenschaften

$$\Gamma(n+1) = n!$$
 $n \in \mathbb{N}$

$$x \cdot \Gamma(x) = \Gamma(x+1)$$
 $\Gamma(1) = 1$ $\Gamma(1/2) = \sqrt{\pi}$

@igs

Angewandte Mathematik für die Informatik – SS2022

Binomischer Lehrsatz

 Ermittlung der Potenzen eines Binoms (x + y) durch Ausmultiplizieren

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k \qquad n \in \mathbb{N}$$

Mit Binomialkoeffizienten gegeben als

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1}{\left(k \cdot (k-1) \cdot \dots \cdot 1\right) \left((n-k) \cdot (n-k-1) \cdot \dots \cdot 1\right)}$$
$$= \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k \cdot (k-1) \cdot \dots \cdot 2 \cdot 1} = \frac{n}{1} \cdot \frac{n-1}{2} \cdot \dots \cdot \frac{n-k+1}{k} \quad n \ge k$$

Angewandte Mathematik für die Informatik – SS2022

27

Binomialkoeffizienten

Eigenschaften

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{1} = \binom{n}{n-1} = n \qquad \text{Dreieck}$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \text{(Symmetrie)} \qquad \frac{1}{1} = \frac{n}{n-k} \qquad \frac{n=0}{n-1}$$

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1} \qquad \frac{1}{1} = \frac{n+1}{n-1} = \frac{n+1}{n-1}$$

Angewandte Mathematik für die Informatik – SS202

Binomialkoeffizienten

Eigenschaften

Binomialkoeffizienten

- Anzahl Möglichkeiten, k Elemente aus einer Menge von n Elementen auszuwählen (ohne Wiederholung)
- Herleitung:
 - Für das erste Element bestehen n Wahlmöglichkeiten, für das zweite (n-1), für das k-te (n-k+1), insgesamt also $n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$
 - Für jedes k-Tupel gibt es k! Permutationen der Elemente; da die Reihenfolge unerheblich ist, muss durch k! geteilt werden

$\frac{n\cdot (n-1)\cdot \ldots \cdot (n-k+1)}{k!} =$	n!	(n)
<u>k!</u>	$-\frac{1}{k!(n-k)!}$	(k)

Angewandte Mathematik für die Informatik – SS2022

Binomialkoeffizienten

- Anzahl Möglichkeiten, k Elemente aus einer Menge von n Elementen auszuwählen (ohne Wiederholung)
- Herleitung:
 - Für das erste Element bestehen n Wahlmöglichkeiten, für das zweite (n-1), für das k-te (n-k+1), insgesamt also $n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$
 - Für jedes k-Tupel gibt es k! Permutationen der Elemente; da die Reihenfolge unerheblich ist, muss durch k! geteilt werden

_		_		_	l
	•	•	•	•	
(5) (4)	= –	· 4 · 3		= 5	

$$\frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Angewandte Mathematik für die Informatik - SS2022

29

Binomialkoeffizienten

- Anzahl Möglichkeiten, k Elemente aus einer Menge von n Elementen auszuwählen (ohne Wiederholung)
- Herleitung:
 - Für das erste Element bestehen n Wahlmöglichkeiten, für das zweite (n-1), für das k-te (n-k+1), insgesamt also $n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$
 - Für jedes k-Tupel gibt es k! Permutationen der Elemente; da die Reihenfolge unerheblich ist, muss durch k! geteilt werden

$$\binom{5}{1} = \frac{5}{1} = 5$$

$$\frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

@igs

Angewandte Mathematik für die Informatik – SS2022

• Wachstum eines Vermögens über ein Jahr, bei Verzinsung in n Schritten mit (100/n)%

(Wachstum eines Startvermögens)

Angewandte Mathematik für die Informatik – SS2022

30

Exponentialfunktion

• Grenzwertverhalten der Folge $a_n = \left(1 + \frac{1}{n}\right)^n$

n	1	2	4	12	365	1000	10 000	100 000
a_n	2	2.25	2.441	2.613	2.714	2.7169	2.71814	2.71827

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \approx 2.7182818284$$
 (Eulersche Zahl)

Folgendarstellung der Exponentialfunktion

$$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

Angewandte Mathematik für die Informatik – SS202

Gemäß Binomischem Lehrsatz (für natürliche Zahl n)

$$\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{x}{n}\right)^k$$

■ Annahme: Exponentialfunktion kann auch als unendliche Summe ($n \to \infty$) dargestellt werden

$$e^{x} = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n + \dots$$

- Gesucht: unbekannte Koeffizienten c_i
- Bestimmung von c_0 durch Einsetzen x = 0

$$e^0 = 1 = c_0 + c_1 0 + c_2 0^2 + c_3 0^3 + \dots + c_n 0^n + \dots \Rightarrow c_0 = 1$$

Angewandte Mathematik für die Informatik – SS2022

22

Exponentialfunktion

■ Bestimmung von c_1 durch Einsetzen x = 0 in erste Ableitung

$$(e^{x})' = e^{x} = c_{1} + 2c_{2}x + 3c_{3}x^{2} + \dots + nc_{n}x^{n-1} + \dots$$

$$e^{0} = c_{1} + 2c_{2}0 + 3c_{3}0^{2} + \dots + nc_{n}0^{n-1} + \dots \implies c_{1} = 1$$

■ Bestimmung von c_n über n-te Ableitung

$$(e^{x})^{(2)} = 2c_{2} + 2 \cdot 3c_{3}x + \dots + (n-1)nc_{n}x^{n-2} + \dots \Rightarrow c_{2} = \frac{1}{2}$$

$$(e^{x})^{(3)} = 2 \cdot 3c_{3} + 2 \cdot 3 \cdot 4c_{4}x + (n-2)(n-1)nc_{n}x^{n-3} + \dots \Rightarrow c_{3} = \frac{1}{2 \cdot 3}$$

$$(e^{x})^{(n)} = n!c_{n} + 2 \cdot \dots \cdot (n+1)c_{n+1}x + \dots \Rightarrow c_{n} = \frac{1}{n!}$$

Angewandte Mathematik für die Informatik – SS202

Darstellung als unendliche Reihe

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Angewandte Mathematik für die Informatik – SS2022

34

Exponentialfunktion

Darstellung als unendliche Reihe

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Angewandte Mathematik für die Informatik – SS2022

Darstellung als unendliche Reihe

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Angewandte Mathematik für die Informatik – SS2022

34

Exponentialfunktion

Darstellung als unendliche Reihe

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Angewandte Mathematik für die Informatik – SS2022

Darstellung als unendliche Reihe

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Angewandte Mathematik für die Informatik – SS2022

2.4

Exponentialfunktion

Darstellung als unendliche Reihe

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Angewandte Mathematik für die Informatik – SS202

Darstellung als unendliche Reihe

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

Angewandte Mathematik für die Informatik – SS2022

2.4

Inhalt

- Einführung
- Folgen und Reihen
- Taylorreihe
- Fourierreihe

universite innsbruck

Angewandte Mathematik für die Informatik – SS2022

Potenzreihen

■ Eine reelle Potenzreihe ist ein Polynom vom "Grad ∞ " (für Veränderliche x) mit Koeffizienten $c_i \in \mathbb{R}$ sowie Entwicklungspunkt/Zentrum $a \in \mathbb{R}$

$$\sum_{k=0}^{\infty} c_k (x-a)^k = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$$

Potenzreihe mit Entwicklungspunkt 0

$$\sum_{k=0}^{\infty} c_k x^k = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n + \dots$$

■ Beispiel: die geometrische Reihe als Potenzreihe mit $c_i = 1$ und Entwicklungspunkt 0

$$\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + x^4 + \dots$$

Angewandte Mathematik für die Informatik - SS2022

35

Potenzreihen - Konvergenz

- Die Menge M, für die eine Potenzreihe konvergiert, ist deren Konvergenzintervall; dieses ist immer symmetrisch um den Entwicklungspunkt
- Die beiden Grenzen vom Intervall M können offen oder geschlossen sein, z.B.]a-R, a+R[oder [a-R, a+R], jeweils mit Konvergenzradius R>0
- Beispiel: die geometrische Reihe mit $c_i = 1$ konvergiert für $x \in M =]-1,1[$ und divergiert sonst
- Es kann R=0 sein, die Reihe konvergiert dann nur für x=a; oder $R=\infty$, dann konvergiert diese $\forall x\in\mathbb{R}$

Angewandte Mathematik für die Informatik – SS2022

Potenzreihen – Konvergenz

• Beispiel: Konvergenzintervall geometrische Reihe, a=0

M =]-1,1[

Angewandte Mathematik für die Informatik - SS2022

37

Differenzieren und Integrieren

- Potenzreihen können im Inneren des Konvergenzintervalls gliedweise differenziert und integriert werden
- Das Konvergenzintervall bleibt dabei erhalten

■ Beispiel:
$$\int \frac{1}{1-x} dx = -\ln(1-x) + C$$
 $|x| < 1$

$$\Rightarrow \ln(1-x) = -\int \frac{1}{1-x} dx + C = -\int 1 + x + x^2 + x^3 + \dots dx + C$$

$$=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\ldots+C=-\sum_{k=1}^{\infty}\frac{x^k}{k}+C$$
 $|x|<1$

sowie
$$\ln(1-0) = -\sum_{k=1}^{\infty} \frac{0^k}{k} + C \Rightarrow C = 0$$

Angewandte Mathematik für die Informatik – SS202

Differenzieren und Integrieren

lacktriangle Beispiel: Annäherung natürlicher Logarithmus, a=0

M =]-1,1[

 $f(x_0)$

@igs

Angewandte Mathematik für die Informatik – SS2022

39

g(x)

Approximation Glatter Funktionen

- Linearisierung von f in $x_0 = a$ $f(x) \approx g(x) = f(x_0) + f'(x_0)(x - x_0)$
- Herleitung über Hauptsatz der Integral-/Differentialrechnung $\int_{x}^{x} f'(\tilde{x})d\tilde{x} = f(\tilde{x})\Big|_{x_0}^{x} = f(x) f(x_0)$

$$\approx f(x_0) + \int_{x_0}^{x} f'(x_0) d\tilde{x} = f(x_0) + f'(x_0) \int_{x_0}^{x} d\tilde{x}$$

$$= f(x_0) + f'(x_0)(x - x_0)$$

Angewandte Mathematik für die Informatik

Approximation Glatter Funktionen

- Linearisierung von f' in $x_0 = a$ $f'(x) \approx f'(x_0) + f''(x_0)(x - x_0)$
- $f'(x) \approx f'(x_0) + f''(x_0)(x x_0)$

Angewandte Mathematik für die Informatik – SS2022

41

f(x)

 $f(x_0)$

Satz von Taylor

■ Die unendliche Taylorreihe einer glatten (n-mal differenzierbaren) Funktion $f: M \to \mathbb{R}$ im Punkt x_0 ist

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

• Das n-te Taylorpolynom an der Stelle $x = x_0 + h$

$$T_{f,n}(x) = T_{f,n}(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (h)^k$$
$$= f(x_0) + hf'(x_0) + \frac{h^2}{2} f''(x_0) + \dots + \frac{h^n}{n!} f^{(n)}(x_0)$$

• Mit wachsendem n nähert $T_{f,n}$ die Funktion f bei x_0 immer besser an

Angewandte Mathematik für die Informatik – SS2022

Taylorreihe – Beispiel

• Entwicklung von $f(x) = \sin x$, bei $x_0 = 0$ (in diesem speziellen Fall sprechen wir von einer Maclaurin-Reihe)

$$f^{(k)}(x) = (\sin x)^{(k)} = \sin\left(x + k\frac{\pi}{2}\right) \qquad k \in \mathbb{N}$$

$$f^{(k)}(0) = \begin{cases} 0 & k \text{ gerade} \\ -1^{(k-1)/2} & k \text{ ungerade} \end{cases}$$

$$\Rightarrow \sin x = f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\Rightarrow \cos x = (\sin x)' = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Angewandte Mathematik für die Informatik – SS2022

Taylorreihe – Beispiel

Entwicklung von $\sin x$

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

Angewandte Mathematik für die Informatik - SS2022

Entwicklung von $\sin x$

Angewandte Mathematik für die Informatik – SS2022

1

 $\sin x$

Rechenbeispiel

• Entwicklung bei $x_0 = 1$ von $f(x) = x^3 + 3x^2 + x$

$$f^{(1)}(x) = 3x^2 + 6x + 1$$
 $f^{(1)}(1) = 10$

$$=10$$
 $f^{(0)}(1)=5$

$$f^{(2)}(x) = 6x + 6$$
 $f^{(2)}(1)$

$$f^{(1)}(x) = 3x^{2} + 6x + 1 \qquad f^{(1)}(1) = 10 \qquad f^{(0)}(1) = 5$$

$$f^{(2)}(x) = 6x + 6 \qquad f^{(2)}(1) = 12$$

$$f^{(3)}(x) = 6 \qquad f^{(3)}(1) = 6 \qquad f^{(k)}(x) = 0, k \ge 4$$

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!} (x-1)^k = \frac{5}{0!} + \frac{10}{1!} (x-1) + \frac{12}{2!} (x-1)^2 + \frac{6}{3!} (x-1)^3$$

$$= 5 + 10x - 10 + 6x^2 - 12x + 6 + x^3 - 3x^2 - 3x - 1$$

$$= x^3 + 3x^2 + x$$

(die Taylorreihe eines Polynoms ist das Polynom selber)

Multivariate Taylorreihe

■ Beispiel: 2. Taylorpolynom der skalaren, 2-mal partiell differenzierbaren Funktion $f(x,y) = f(\mathbf{x})$, $\mathbb{R}^2 \to \mathbb{R}$, um den Entwicklungspunkt $\mathbf{a} = (a,b)$

$$T_{f,2}(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a})^{T} \nabla f(\mathbf{a}) + \frac{1}{2!} (\mathbf{x} - \mathbf{a})^{T} \mathbf{H}_{f}(\mathbf{a}) (\mathbf{x} - \mathbf{a})$$

bzw. mit ausgeschriebenen Termen

$$T_{f,2}(x,y) = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b) + \frac{1}{2!}\left((x-a)^2\frac{\partial^2 f}{\partial x^2}(a,b) + 2(x-a)\frac{\partial^2 f}{\partial x\partial y}(a,b)(y-b) + (y-b)^2\frac{\partial^2 f}{\partial y^2}(a,b)\right)$$

(quadratische Näherung von f bei \mathbf{a})

Angewandte Mathematik für die Informatik - SS2022

47

Rechenbeispiel

■ Entwicklung bei $\mathbf{a} = (1,1)$ von $f(x,y) = \frac{x-y}{x+y}$ $x \neq -y$

$$f(1,1) = 0$$
 $f_x = \frac{2y}{(x+y)^2}\Big|_{(1,1)} = \frac{1}{2}$ $f_y = \frac{-2x}{(x+y)^2}\Big|_{(1,1)} = -\frac{1}{2}$

$$f_{xx} = \frac{-4y}{(x+y)^3} \bigg|_{(1,1)} = -\frac{1}{2} \qquad f_{xy} = \frac{2(x-y)}{(x+y)^3} \bigg|_{(1,1)} = 0 \qquad f_{yy} = \frac{4x}{(x+y)^3} \bigg|_{(1,1)} = \frac{1}{2}$$

somit ist das 2. Taylorpolynom von f um ${\bf a}$

$$T_{f,2}(x,y) = (x-1)\frac{1}{2} - (y-1)\frac{1}{2} - (x-1)^2 \frac{1}{4} + (y-1)^2 \frac{1}{4}$$
$$= \frac{1}{4}(y^2 - x^2) + (x-y)$$

Angewandte Mathematik für die Informatik – SS202

Inhalt

- Einführung
- Folgen und Reihen
- Taylorreihe
- Fourierreihe

Angewandte Mathematik für die Informatik – SS2022

Fourierreihen

- Vorschau auf Fourier-Analyse (spätere Vorlesung)
- Eine periodische, stückweise stetige Funktion f auf dem Intervall $[-\pi, \pi]$ kann als Fourierreihe dargestellt werden

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k \cdot x) + b_k \sin(k \cdot x))$$

mit Koeffizienten

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(k \cdot x) dx, \quad k \ge 0$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(k \cdot x) dx, \quad k \ge 1$$

Angewandte Mathematik für die Informatik – SS2022

Fourierreihen

- An Stellen x, an denen f stetig ist, konvergiert die Reihe gegen den Funktionswert f(x)
- An Unstetigkeitsstellen konvergiert die Reihe gegen den Mittelwert aus links- & rechtsseitigem Grenzwert
- Die trigonometrischen Funktionen stellen die orthogonalen Basisfunktionen der Zerlegung dar

Fourierreihen

- Mit einer endlichen Anzahl Gliedern erhält man eine Approximation der Funktion (das trigonometrische Polynom)
- Beispiel: (fallende) Sägezahnschwingung

Gibbs'sches Phänomen

- An Unstetigkeitsstellen treten Überschwingungen ("Ringing artifacts") auf
- Durch Hinzufügen weiterer Summenglieder können diese nicht eliminiert werden

 Über-/Unterschwingungen entsprechen ca. 18% der Sprunghöhe

Einige Hilfreiche Weblinks

 On-Line Encyclopedia of Integer Sequences (OEIS) (kostenlose Online-Datenbank von gesammelten Folgen ganzer Zahlen)

http://oeis.org/?language=german

Angewandte Mathematik für die Informatik – SS2022

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	

Angewandte Mathematik für die Informatik – SS2022