

Complexidade de Algoritmos

Prof. Rafael Alceste Berri rafaelberri@gmail.com

Prof. Diego Buchinger diego.buchinger@outlook.com

Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Algoritmos com Inteiros Grandes

Algoritmos com Inteiros Grandes

Até esse momento temos considerado **constante** a complexidade de operações como: **adição**, **subtração**, **multiplicação**, **divisão**, **módulo** e **comparação**.

Mas o que acontece quando essas operações envolvem números cujo o tamanho, em **número de bits**, é muito maior que a **palavra do processador** (atualmente 32 ou 64 bits)?

Um primeiro modelo de soma entre números inteiros não limitados a palavra do processador poderia ser similar ao método que utilizamos para somar números decimais:

Processador de 1 bit

n1 (238)		0	0	1	1	1	0	1	1	1	0
n2 (379)	+	0	1	0	1	1	1	1	0	1	1
soma		1	0	0	1	1	0	1	0	0	1

Quantos passos são necessários para calcular uma soma entre números de **k** dígitos?

Contudo, um processador consegue trabalhar com palavras de tamanho p — ou seja — em apenas uma única operação ele soma dois números que tenham no máximo p bits

Processador de 8 bits

1 => (*carry* entre suboperações)

n1 (238)		0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	0
n2 (379)	+	0	0	0	0	0	0	0	1	0	1	1	1	1	0	1	1
soma		0	0	0	0	0	0	1	0	0	1	1	0	1	0	0	1

Qual é o maior valor de *carry*? Espaço adicional – pior caso

De forma genérica

Adição de 2*p* bits, onde *p* é o tamanho da palavra do processador:

Assim, quando o número de bits (*k*) do número for próximo ao tamanho da palavra do processador teremos uma complexidade de tempo constante O(1)

E quando o tamanho do número (k) for significativamente superior à palavra do processador, ou quando **k for variável**?

$$p = 32 / k = 64$$
 \rightarrow serão necessárias 2 operações

$$p = 32 / k = 480$$
 \rightarrow serão necessárias 15 operações

$$p = 32 / k = 4992$$
 \rightarrow serão necessárias 156 operações

O(k/p) onde p é uma constante

Assim, podemos considerar que a adição de grandes números tem complexidade O(k), onde k é o número de bits do maior número.

Soma de inteiros: O(k)

Mas quanto vale k em relação aos números utilizados na soma?

R: o número de bits de *n*

$$379 (n) \Rightarrow 101111011 (k)$$

Como fazemos para sair do 379 e chegar no valor em binário?

$$k = \log n$$

$$O(k) = O(\log n)$$

Um primeiro modelo de multiplicação seria realizar somas sucessivas de um valor:

$$x = 8$$

$$y = 5$$

$$5 \times 8$$

$$8 + 8 + 8 + 8 + 8$$

$$y \text{ vezes}$$

Note que o tamanho de *r* também aumenta, assim como a complexidade da soma. Contudo esse aumento não ocorre em todas as operações

Sendo *k* o número de bits de x, qual a complexidade de tempo para este algoritmo?

$$O(k) + O(k) + ... + O(k)$$
y vezes

Considerando que x e y tem o mesmo número k de bits, qual a complexidade de tempo para este algoritmo?

$$k = log y (= log x)$$
$$y = 2^k$$

$$O(y * k) = O(y * log y)$$

Logo:
$$O(2^k * k) = O(2^k)$$

Um segundo modelo seria similar ao método que utilizamos para multiplicar números na base decimal:

12		1010	(10)
X 215	_	X 1101	(13)
60	(multiplica por 5, desloca 0)	1010	(multiplica por 1, desloca 0)
12	(multiplica por 1, desloca 1)	0000	(multiplica por 0, desloca 1)
24	(multiplica por 2, desloca 2)	1010	(multiplica por 1, desloca 2)
2580		1010	(multiplica por 1, desloca 3)
		10000010	(130)


```
bigInt mul( bigInt x, bigInt y ){
  bigInt r;
  if (y == 0) return 0;
  r = mul(x, y >> 1) // r = x * (y/2)
  if ( par(y) )
      return r << 1; // return 2*r
  else
    return x + r << 1; // return x+2*r
}</pre>
Deslocamento de bits: O(?)
```

Sendo k o número de bits de x e y, qual a complexidade de tempo para este algoritmo?


```
bigInt mul( bigInt x, bigInt y ){
  bigInt r;
  if (y == 0) return 0;
  r = mul(x, y >> 1) // r = x * (y/2)
  if ( par(y) )
      return r << 1; // return 2*r
  else
    return x + r << 1; // return x+2*r
    Deslocamento de bits: O(k)</pre>
```

Sendo k o número de bits de x e y, qual a complexidade de tempo para este algoritmo?

Sendo k o número de bits de x e y, qual a complexidade de tempo para este algoritmo?

São feitas k somas de complexidade O(k), logo:

$$k * O(k) = O(k^2)$$

ou $O(\log^2 n)$

Será que tem como fazer melhor?

Existe um método que utiliza a abordagem de divisão e conquista para realizar a multiplicação.

$$xy = 2^k x_L y_L + 2^{\frac{k}{2}} (x_L y_R + x_R y_L) + x_R y_R$$

onde: x_L e y_L = parte esquerda do número (binário)

 x_R e y_R = parte direita do número (binário)

$$xy = 2^{n} x_{L} y_{L} + 2^{n/2} (x_{L} y_{R} + x_{R} y_{L}) + (x_{R} y_{R})$$

```
bigInt mul( bigInt x, bigInt y){
   bigInt xl, xr, yl, yr, p1, p2, p3, p4;
   int n = max(x.size(), y.size()); // número de bits do maior número
   if (n == 1) return x*y; // se número de bits for 1 (retorna 1 se x = 1 e y = 1).
   xl = leftMost(x, n/2); xr= rightMost(x, n/2); // bits mais a esquerda e mais a direita.
   yl = leftMost(y, n/2); yr = rightMost(y, n/2);
   p1 = mul(xl, yl);
   p2 = mul(xl, yr);
   p3 = mul(xr, yl);
   p4 = mul(xr, yr);
   return (p1 << n) + (p2 << (n/2)) + (p3 << (n/2)) + p4;
```

Sendo *k* o número de bits de x e y, qual a complexidade de tempo para este algoritmo?

$$T(k) = 4*T(k/2) + O(k)$$

Será que tem como fazer melhor?

$$xy = 2^{n} x_{L} y_{L} + 2^{n/2} (x_{L} y_{R} + x_{R} y_{L}) + (x_{R} y_{R})$$

```
bigInt mul( bigInt x, bigInt y){
   bigInt xl, xr, yl, yr, p1, p2, p3;
   int n = max( x.size(), y.size() ); // número de bits do maior número
   if (n == 1) return x*y; // se numéro de bits for 1 (retorna 1 se x = 1 e y = 1).
   xl = leftMost(x, n/2); xr= rightMost(x, n/2); // bits mais a esquerda e mais a direita.
   yl = leftMost(y, n/2); yr = rightMost(y, n/2);
   p1 = mul(xl, yl);
   p2 = mul(xl+xr, yl+yr);
   p3 = mul(xr, yr);
   return (p1 << n) + ((p2 - p1 - p3) << (n/2)) + p3;
```

Sendo *k* o número de bits de x e y, qual a complexidade de tempo para este algoritmo?

$$T(k) = 3*T(k/2) + O(k)$$

Será que tem como fazer melhor?

Sendo *k* o número de bits de x e y, qual a complexidade de tempo para este algoritmo?

$$T(k) = 3*T(k/2) + O(k)$$

Será que tem como fazer melhor?

Sim, de acordo com Cormen et al (2002) existe um algoritmo que tem complexidade **O**(**k** log(**k**) log(log(**k**)))

Exercícios

Calcule qual a complexidade da função de recorrência abaixo usando teorema mestre e o método da substituição:

$$T(k) = 3*T(k/2) + O(k)$$

 $T(1) = 1$

Escreva um algoritmo de divisão para inteiros grandes. Determine o melhor e pior caso para esta operação e analise a sua complexidade de tempo.