Ferienkurs Experimentalphysik 4 2011

Übung 1

1. Freie Wellenpakete (**)

- a) Betrachten Sie ein Elektron, das sich mit dem Impuls $p = \hbar k$ in x-Richtung bewegt. Wie lautet die zugehörige Wellenfunktion $\psi(t, x)$?
- b) Bestimmen Sie die Phasengeschwindigkeit der Elektronenwelle aus a), indem Sie eine Stelle fester Phase im Laufe der Zeit durch den Raum verfolgen. Wie verhält sich die Phasengeschwindigkeit $v_{\rm Ph}$ der Welle zur Geschwindigkeit $v_{\rm T}=p/m$ des Elektrons?
- c) Betrachten Sie nun ein Elektron, dessen Wellenfunktion durch eine kontinuierliche Überlagerung von ebenen Wellen der Form

$$\psi(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ A(k) e^{-i(\omega(k)t - kx)}$$

gegeben ist. Dabei sollen alle vorkommenden Wellenzahlen in dem Intervall $[k_0 - \Delta k, k_0 + \Delta k]$ liegen und gleich stark beitragen, d.h. $A(k) = A_0 = \text{const.}$ Berechnen Sie die Wellenfunktion zum Zeitpunkt t = 0.

d) Bei der Berechnung der Wellenfunktion des Elektrons aus c) für einen allgemeinen Zeitpunkt macht der nichtlineare Term $\omega(k)$ im Exponenten Probleme. Um $\psi(t,x)$ näherungsweise zu bestimmen, entwicklen Sie $\omega(k)$ um k_0 bis zur linearen Ordnung. Berechnen Sie nun das genäherte Integral für $\psi(t,x)$.

2. Linienspektren (**)

Sie beobachten zwei Linienspektren von Ein-Elektron-Systemen. Sie messen jeweils die drei größten und die kleinste Wellenlänge einer Serie.

Serie 1 [nm]	Serie 2 [nm]
468.135	484.282
320.012	250.964
273.072	173.271
204.854	23.332

- a) Um welche Systeme handelt es sich (beobachtetes Element und Grundzustand der beobachteten Serie)?
- b) Welche Übergänge wurden beobachtet?

3. Ortswellenfunktion, Wahrscheinlichkeitsinterpretation (*)

Die quantenmechanische Wellenfunktion eines Teilchens sei gegeben durch

$$\psi(x) = Nx e^{-a\frac{|x|}{2}}.$$

a) Bestimmen Sie den Normierungsfaktor N so, dass die Wellenfunktion auf Eins normiert ist, d.h. dass

$$\int_{-\infty}^{\infty} \mathrm{d}x \ |\psi(x)|^2 = 1$$

gilt und begründen Sie die Notwendigkeit von normierten Wellenfunktionen für die Wahrscheinlichkeitsinterpretation in der Quantenmechanik. Welche Einheit hat die Wellenfunktion?

b) Wie groß ist die Wahrscheinlichkeit das Teilchen am Ort x=0 zu finden? Wie groß ist die Wahrscheinlichkeit das Teilchen im Intervall [-1/a, 1/a] zu finden?

Hinweis: $x^n e^{-ax} = (-d/da)^n e^{-ax}$.

4. Potentialkasten (*)

Ein kräftefreies Teilchen befinde sich in einem Potential

$$V(x) = \begin{cases} 0 & \text{für } -\frac{a}{2} < x < \frac{a}{2} \\ \infty & \text{sonst} \end{cases}$$

in einem seiner stationären Zustände

$$\varphi_n(x) = \sqrt{\frac{2}{a}} \cos\left(\frac{n\pi x}{a}\right)$$

a) Zeigen Sie, dass diese Zustände normiert sind und bestimmen sie die Energieeigenwerte E_n . Welche Energie ist nötig um ein Elektron, das sich in einem
Potentialkasten der Breite 1 nm befindet, vom Grundzustand in den zweiten
angeregten Zustand anzuregen.

Hinweis: Masse des Elektrons $m_{\rm e}=9.11\cdot 10^{-31}~{\rm kg}=511~{\rm keV}/c^2$

2

- b) Berechnen Sie den Erwartungswert des Ortes x und des Impulsoperators \hat{p} für die stationären Zustände und interpretieren Sie die Ergebnisse.
- c) Berechnen Sie die Energieunschärfe $\Delta \hat{H}$ für die stationären Zustände und interpretieren Sie das Ergebnis.

d) Nehmen Sie nun an, das Potential hätte eine endliche Höhe. Was bedeutet dies qualitativ für das Teilchen?

Hinweis:
$$\int dx \cos^2(ax) = \frac{\sin(2ax)}{4a} + \frac{x}{2} + \text{const.}$$

5. Potentialbarriere (***)

Ein Teilchen mit Masse m und kinetischer Energie $E < V_0$ trifft von links auf eine Potentialbarriere der Form

$$V(x) = V_0 \Theta(x) \Theta(a - x) = \begin{cases} V_0 & \text{für } 0 < x < a \\ 0 & \text{sonst} \end{cases}$$

mit $V_0 > 0$.

- a) Wie lautet der Ansatz für die Wellenfunktion $\psi(x)$? Überlegen Sie sich dazu auch die physikalischen Randebedingungen, also aus welchen Anteilen die in den einzelnen Bereichen auftretenden Lösungen bestehen können. Skizzieren Sie das Potential und die Wellenfunktion.
- b) Ermitteln Sie die Bestimmungsgleichungen für die in der Wellenfunktion auftretenden Koeffizienten aus der Bedingung, dass die Wellenfunktion stetig differenzierbar sein soll. Sie sollen diese Bestimmungsgleichungen nicht lösen!
- c) Wie nennt man den hier auftretenden Effekt der sich aus der Wellenfunktion erkennen lässt? Erklären Sie diesen Effekt kurz.

Gehen Sie nun vom Fall $a \to \infty$ aus. Aus der Potentialbarriere wird somit eine Potentialschwelle

$$V(x) = V_0 \Theta(x) = \begin{cases} 0 & \text{für } x < 0 \\ V_0 & \text{für } x > 0 \end{cases}$$

- d) Wie lautet nun der Lösungsansatz? Bestimmen Sie die dabei auftretenden Koeffizienten und bestimmen Sie die Reflexionswahrscheinlichkeit R für den Fall $E = V_0/2$.
 - Hinweis: Die Resultate aus c) könnten nützlich sein. Die Reflexionswahrscheinlichkeit R ist das Betragsquadrat der Amplitude der reflektierten Welle.
- e) Wie lautet der Lösungsansatz für den Fall $E > V_0$? Was hat sich nun effektiv geändert? Bestimmen Sie die Reflexions- R und die Transmissionswahrscheinlichkeit T für den Fall $E = 9V_0/5$ und zeigen Sie dass R + T = 1 gilt.
 - Hinweis: Die Transmissionswahrscheinlichkeit ist das Betragsquadrat der Amplitude der transmittierten Welle multipliziert mit dem Quotient aus dem Wellenvektor der transmittierten Welle und dem Wellenvektor der reflektierten Welle.