Homework 1

Course: CO20-320241

16 September, 2019

Problem 1.1

Solution:

a)
$$10100_2 = 1 * 2^4 + 0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0 = 16 + 4 = 20$$

b)
$$11011011_2 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 128 + 64 + 16 + 8 + 2 + 1 = 219$$

c)
$$001001001_2 = 0 * 2^8 + 0 * 2^7 + 1 * 2^6 + 0 * 2^5 + 0 * 2^4 + 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0 = 64 + 8 + 1 = 73$$

d)
$$1111111111111_2 = 1 * 2^{11} + 1 * 2^{10} + 1 * 2^9 + 1 * 2^8 + 1 * 2^7 + 1 * 2^6 + 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0 = 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 4095$$

e)
$$75077_8 = 7 * 8^0 + 7 * 8^1 + 0 * 8^2 + 5 * 8^3 + 7 * 8^4 = 7 + 56 + 2560 + 28672 = 31295$$

f)
$$12101_3 = 1 * 3^0 + 0 * 3^1 + 1 * 3^2 + 2 * 3^3 + 1 * 3^4 = 1 + 9 + 54 + 81 = 145$$

g)
$$26601_7 = 1 * 7^0 + 0 * 7^1 + 6 * 7^2 + 6 * 7^3 + 2 * 7^4 = 1 + 294 + 2058 + 4802 = 7155$$

h)
$$431021_5 = 1 * 5^0 + 2 * 5^1 + 0 * 5^2 + 1 * 5^3 + 3 * 5^4 + 4 * 5^5 = 1 + 10 + 125 + 1875 + 12500 = 14511$$

Problem 1.2

Solution:

a)
$$4272_{10} = 1000010110000_2$$

Number	Divided by 2	Remainder
4272	2136	0
2136	1068	0
1068	534	0
534	267	0
267	133	1
133	66	1
66	33	0
33	16	1
16	8	0
8	4	0
4	2	0
2	1	0
1	0	1

$$C_{16} = 12_{10} = 1100_2$$

$$B_{16} = 11_{10} = 1011_2$$

$$A_{16} = 10_{10} = 1010_2$$

$$CBA_{16} = 1100101111010_2$$

c)
$$B8C_{16}$$

 $B_{16} = 11_{10}$
 $8_{16} = 8_{10}$
 $C_{16} = 12_{10}$
 $B8C_{16} = 11 * 16^2 + 8 * 16^1 * 12 * 16^0 = 2816 + 128 + 12 = 2956_2$
d) $29D816_{16}$
 $2_{16} = 2_{10}$
 $9_{16} = 9_{10}$
 $D_{16} = 13_{10}$
 $8_{16} = 8_{10}$
 $1_{16} = 1_{10}$
 $6_{16} = 6_{10}$
 $29D8_{16} = 2 * 16^3 + 9 * 16^2 + 13 * 16^1 + 8 * 16^0 = 8192 + 2304 + 208 + 8 = 10712_{10}$
e) $8CE_{16} + 1 = 8CF_{16} + 1 = 8D0_{16} + 1 = 8D1_{16} + 1 = 8D2_{16} + 1 = 8D3_{16}$

Problem 1.3

Solution:

a) 732_{10} $7_{10} = 0111_2$ $3_{10} = 0011_2$ $2_{10} = 0010_2$ $73210_{10} = 011100110010_{BCD}$

b) All invalid BCD codes are:

1010, 1011, 1100, 1101, 1110 and 1111

 $\begin{array}{l} \textbf{c)} \ 100101010110_{BCD} \\ 1001_2 = 9_{10} \\ 0101_2 = 5_{10} \\ 0110_2 = 6_{10} \\ 100101010110_{BCD} = 956_{10} \end{array}$

d)

 $109_{10} = 1101101_2$

Number	Divided by 2	Remainder
109	54	1
54	27	0
27	13	1
13	6	1
6	3	0
3	1	1
1	0	1

 $0110\ 1101_2 = 6D_{16}$

e)

 $77_{10} = 1001101_2$

Number	Divided by 2	Remainder	
77	38	1	
38	19	0	
19	9	1	
9	4	1	
4	2	0	
2	1	0	
1	0	1	

 $0100\ 1101_2 = 4D_{16}$

Problem 1.4

Solution:

- a) The logic function that provides a low output in response to one or more low inputs is: (iii) \mbox{AND}
- $\mbox{\bf b)}$ The logic function that provides a low output only when all inputs are low is: (i) OR

Problem 1.5 Solution:

The truth table for an AND gate with three inputs:

A	В	С	$A \wedge B \wedge C$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Problem 1.6

Solution:

the truth table for an OR gate with four inputs.

A	В	С	D	$A \lor B \lor C \lor D$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1