1)

I.A. $0,1 \in AF: 0$ und 1 sind Teil der Aussagenlogischen Formeln $x \in AF:$ Jede atomare Formel x ist eine Aussagenlogische Formel

 $\neg x \in AF$: Eine Negation ist eine Aussagenlogische Formel

I.S. Wenn x und y Teil der Aussagenlogischen Formeln sind, so sind es auch $\neg x$, $\neg y$, $(x \land y)$, $(x \lor y)$ und $(x \to y)$

2)

a)

A	¬A	(A*¬A)	
1	0	0	
0	1	0	

Kein Modell

b)

Α	В	¬A	¬B	A + B	¬A * ¬B	$(A + B) * (\neg A * \neg B)$
0	0	1	1	0	1	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
1	1	0	0	1	0	0

Kein Modell

c)

Α	В	¬Α	A + B	$\neg A + B$	$(A+B)^*(\neg A+B)$
0	0	1	0	1	0
1	0	0	1	0	0
0	1	1	1	1	1
1	1	0	1	1	1

Ein Modell!

d)

Α	В	¬Α	¬B	A + B	$\neg A + \neg B$	$(A + B) * (\neg A + \neg B)$
0	0	1	1	0	1	0
1	0	0	1	1	1	1
0	1	1	0	1	1	1
1	1	0	0	1	0	0

Ein Modell!

```
4)
a)
(0,0,0) (1,2,3) (0,1,1) (1,0,1)
b)
plus(0,0,0).
plus(s(0),s(s(0)),s(s(s(0))))
plus(o,s(0),s(o))
plus(s(0),o,s(o))
```

Um alle natürlichen Zahlen zu beschreiben, benötigt es unendlich viele Relationen. Gleiches gilt für Fakten.

b)

c)

c)

f(g(c),d)

heightTree: term \rightarrow Höhe heightTree (0) = 0 heightTree (a) = height++, fur alle Konstanten a heightTree(X) = height++, fur alle Variablen X heightTree (f(f(a), X)) = height++