10.2 微程序设计

一、微程序设计思想的产生

1951 英国剑桥大学教授 Wilkes

完成 一条机器指令 微操作命令n 微指令m人 00010010 一条机器指令对应一个微程序 存入 ROM 存储逻辑

二、微程序控制单元框图及工作原理

10.2

1. 机器指令对应的微程序

2. 微程序控制单元的基本框图

10.2

二、微程序控制单元框图及工作原理

3. 工作原理

3. 工作原理

(1) 取指阶段 执行取指微程序

$M \longrightarrow CMAR$

 $CM (CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成下条微指令地址 M+1

$Ad (CMDR) \longrightarrow CMAR$

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成下条微指令地址 M+2

$Ad (CMDR) \longrightarrow CMAR$

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

(2) 执行阶段 执行 LDA 微程序

10.2

OP(IR) →微地址形成部件 →CMAR (P → CMAR)

CM (CMAR) →CMDR

由 CMDR 发命令

形成而新微指令地址MAR

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

$$\begin{array}{c|c}
M (MAR) \longrightarrow MDR \\
P+1 & 0100 & \cdots & 0 & P+2
\end{array}$$

形成可解微指令地址MAR

 $CM(CMAR) \longrightarrow CMDR$

由 CMDR 发命令

形成で除跡指令地址MAR

 $(\mathbf{M} \longrightarrow \mathbf{CMAR})$

(3) 取指阶段 执行取指微程序

10.2

$M \longrightarrow CMAR$

CM (CMAR) → CMDR 由 CMDR 发命令

:

全部微指令存在 CM 中,程序执行过程中 只需读出

- 关键 ▶ 微指令的操作控制字段如何形成微操作命令
 - ▶ 微指令的 后续地址如何形成

三、微指令的编码方式(控制方式)

1. 直接编码(直接控制)方式

在微指令的操作控制字段中,

每一位代表一个微操作命令

某位为"1"表示该控制信号有效

2. 字段直接编码方式

10.2

将微指令的控制字段分成若干"段",

每段经译码后发出控制信号

每个字段中的命令是 互斥 的

缩短 了微指令 字长,增加 了译码 时间

3. 字段间接编码方式

10.2

4. 混合编码

直接编码和字段编码(直接和间接)混合使用

5. 其他

四、微指令序列地址的形成

- 1. 微指令的 下地址字段 指出
- 2. 根据机器指令的 操作码 形成
- 3. 增量计数器

$$(CMAR) + 1 \longrightarrow CMAR$$

4. 分支转移

操作控制字段 转移方式 转移地址 转移方式 指明判别条件 转移地址 指明转移成功后的去向

5. 通过测试网络

10.2

6. 由硬件产生微程序入口地址

第一条微指令地址 由专门 硬件 产生

中断周期 由硬件产生中断周期微程序首地址

7. 后续微指令地址形成方式原理图

五、微指令格式

10.2

- 1. 水平型微指令
 - 一次能定义并执行多个并行操作
- 如 直接编码、字段直接编码、字段间接编码、 直接和字段混合编码
- 2. 垂直型微指令

类似机器指令操作码 的方式

由微操作码字段规定微指令的功能

3. 两种微指令格式的比较

10.2

- (1) 水平型微指令比垂直型微指令并行操作能力强, 灵活性强
- (2) 水平型微指令执行一条机器指令所要的 微指令数目少,速度快
- (3) 水平型微指令 用较短的微程序结构换取较长的 微指令结构
- (4) 水平型微指令与机器指令 差别大

六、静态微程序设计和动态微程序设计

10.2

静态 微程序无须改变,采用 ROM

动态 通过 改变微指令 和 微程序 改变机器指令, 有利于仿真,采用 EPROM

七、毫微程序设计

1. 毫微程序设计的基本概念

微程序设计 用 微程序解释机器指令

毫微程序设计 用 毫微程序解释微指令

毫微指令与微指令 的关系好比 微指令与机器指令 的关系

2. 毫微程序控制存储器的基本组成 10.2

八、串行微程序控制和并行微程序控制

10.2

串行 微程序控制

取第i条微指令 执行第i条微指令 取第i+1条微指令 执行第i+1条微指令

并行 微程序控制

取第 i 条微指令	执行第 i 条微指令		
	取第 i+1 条微指令	执行第 i+1 条微指令	
		取第 i+2 条微指令	执行第 i+2 条微指令

九、微程序设计举例

10.2

1. 写出对应机器指令的微操作及节拍安排

假设 CPU 结构与组合逻辑相同

(1) 取指阶段微操作分析

3条微指令

 $T_0 \quad PC \longrightarrow MAR \qquad 1 \longrightarrow R$

 T_1 M (MAR) \longrightarrow MDR (PC) + 1 \longrightarrow PC

 T_2 MDR \longrightarrow IR OP(IR) \longrightarrow 微地址形成部件

若需考虑7如柳莓排这条微脂龄?

则取指操作需 3 条微指令

OP(IR) ─微地址形成部件 ──CMAR

(2) 取指阶段的微操作及节拍安排

10.2

考虑到需要 形成后续微指令的地址

- $T_0 \quad PC \longrightarrow MAR \qquad 1 \longrightarrow R$
- T_1 Ad (CMDR) \longrightarrow CMAR
- T_2 M (MAR) \longrightarrow MDR (PC)+1 \longrightarrow PC
- T_3 Ad (CMDR) \longrightarrow CMAR
- T_4 MDR \longrightarrow IR OP(IR) \longrightarrow 微地址形成部件
- T_5 OP(IR) \longrightarrow 微地址形成部件 \longrightarrow CMAR

(3) 执行阶段的微操作及节拍安排

10.2

考虑到需形成后续微指令的地址

- 非访存指令
 - ① CLA指令

$$T_0 \longrightarrow AC$$

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

② COM 指令

$$T_0 \longrightarrow AC$$

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

取指微程序的入口地址 M

由微指令下地址字段指出

③ SHR 指令

10.2

$$T_0$$
 L(AC) \longrightarrow R(AC) AC₀ \longrightarrow AC₀
 T_1 Ad(CMDR) \longrightarrow CMAR

④ CSL 指令

$$T_0$$
 R (AC) \longrightarrow L (AC) AC₀ \longrightarrow AC_n
 T_1 Ad (CMDR) \longrightarrow CMAR

⑤ STP 指令

$$T_0$$
 0 \longrightarrow G
$$T_1 \qquad \text{Ad (CMDR)} \longrightarrow \text{CMAR}$$

• 访存指令

10.2

```
⑥ ADD 指令
```

```
T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow R

T_1 Ad (CMDR) \longrightarrow CMAR

T_2 M (MAR) \longrightarrow MDR

T_3 Ad (CMDR) \longrightarrow CMAR

T_4 (AC)+(MDR) \longrightarrow AC

T_5 Ad (CMDR) \longrightarrow CMAR
```

⑦ STA 指令

```
T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow W

T_1 Ad (CMDR) \longrightarrow CMAR

T_2 AC \longrightarrow MDR

T_3 Ad (CMDR) \longrightarrow CMAR

T_4 MDR \longrightarrow M (MAR)

T_5 Ad (CMDR) \longrightarrow CMAR
```

⑧ LDA 指令

10.2

 T_0 Ad (IR) \longrightarrow MAR $1 \longrightarrow$ R

 T_1 Ad (CMDR) \longrightarrow CMAR

 $T_2 \qquad M (MAR) \longrightarrow MDR$

 T_3 Ad (CMDR) \longrightarrow CMAR

 $T_A \qquad MDR \longrightarrow AC$

 T_5 Ad (CMDR) \longrightarrow CMAR

• 转移类指令

10.2

⑨ JMP 指令

$$T_0$$
 Ad (IR) \longrightarrow PC

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

⑩ BAN 指令

$$T_0 = A_0 \cdot Ad (IR) + \overline{A}_0 \cdot (PC) \longrightarrow PC$$

$$T_1$$
 Ad (CMDR) \longrightarrow CMAR

全部微操作 20个 微指令 38条 2. 确定微指令格式

10.2

- (1) 微指令的编码方式 采用直接控制
- (2) 后续微指令的地址形成方式 由机器指令的操作码通过微地址形成部件形成 由微指令的下地址字段直接给出
- (3) 微指令字长

由 20 个微操作

确定 操作控制字段 最少 20 位

由 38 条微指令

确定微指令的下地址字段为6位

微指令字长 可取 20 + 6 = 26 位

(4) 微指令字长的确定

10.2

38条微指令中有19条

是关于后续微指令地址 → CMAR

若用 Ad (CMDR) 直接送控存地址线

则 省去了输至 CMAR 的时间,省去了 CMAR

同理 OP(IR) → 微地址形成部件 → 控存地址线

可省去19条微指令,2个微操作

$$38 - 19 = 19$$
 $20 - 2 = 18$

下地址字段最少取 5 位 操作控制字段最少取 18 位

10.2

考虑留有一定的余量

2015/10/12

取操作控制字段

(6) 定义微指令操作控制字段每一位的微操作

0 1 2 23 24 ... 29

3. 编写微指令码点

10.2

微程序 名称	微指令 地址 (八进制)	微指令 (二进制代码)														
				-	操作	控制	字月					下	地址	字段	r. Z	
取指		0	1	2	3	4	•••	10	•••	23	24	25	26	27	28	29
	00	1	1								0	0	0	0	0	1
	01			1	1						0	0	0	0	1	0
	02					1					×	×	×	×	X	X
CLA	03										0	0	0	0	0	0
COM	04										0	0	0	0	0	0
ADD	10		1					1			0	0	1	0	0	1
	11			1							0	0	1	0	1	0
	12										0	0	0	0	0	0
LDA	16		1					1			0	0	1	1	1	1
	17			1							0	1	0	0	0	0
	20										0	0	0	0	0	0

$$PC \xrightarrow{0} MAR \qquad 1 \xrightarrow{1} R$$

$$M(MAR) \xrightarrow{2} MDR \qquad (PC)+1 \xrightarrow{3} PC$$

$$MDR \xrightarrow{4} IR$$

$$Ad(IR) \xrightarrow{10} MAR$$