Apuntes de clase

José Antonio de la Rosa Cubero

Presentaciones de grupos. Clasificación de los grupos de orden hasta $15\,$

Definición 1 (Relación de un grupo). Sea G un grupo generado por $\{x_1, \ldots, x_n\}$. Cualquier ecuación que satisfagan los generadores se llama una relación del grupo G.

Por ejemplo, en D_n , relaciones son:

- 1. $r^n = 1$.
- 2. $s^2 = 1$.
- 3. $sr = r^{-1}s$.
- 4. $r^i = r^{n-i}s$.

Definición 2 (Presentación de un grupo). Dar un grupo G finitamente generado, por generadores y relaciones es dar un conjunto de generadores S y un conjunto de relaciones R_i tales que cualquier otra relación de G entre los elementos de S (en particular la tabla de G) puede deducirse a partir de estas relaciones. Escribiremos:

$$G = \langle x_1, \dots, x_n | R_1, \dots, R_n \rangle$$

Definición 3 (Relaciones fundamentales). A las relaciones anteriores se les llama relaciones fundamentales.

Ejemplos:

1.
$$D_n = \langle r, s : r^n = 1, s^2 = 1, sr = r^{-1}s \rangle$$

$$2. \ C_n = \langle x : x^n = 1 \rangle$$

3.
$$K = \langle a, b : a^2 = 1, b^2 = 1, ab = ba \rangle$$

Teorema 1. Se verifica que todo grupo finitamente generado admite una presentación.

Teorema 2 (Teorema de Dyck). Sea G un grupo y sea

$$G = \langle x_1, \dots, x_n | R_1, \dots, R_m \rangle$$

una presentación de G.

Sea H un grupo y $a_1, \ldots, a_n \in H$ tal que las ecuaciones R_1, \ldots, R_m son válidas en H al sustituir x_i por a_i .

Entonces existe un único homomorfismo de grupos $f: G \longrightarrow H$ tal que $f(x_i) = a_i$.

Además, si $H = \langle a_1, \ldots, a_n \rangle$, entonces f es un epimorfismo.

Ejemplo:

$$Q_2 = \{\pm 1, \pm i, \pm j, \pm k\}$$

puede ser presentado como:

$$Q_2 = \langle i, j : i^4 = 1, j^2 = i^2, ji = i^{-1}j \rangle$$

En efecto, sea $G=\langle a,b:a^4=1,b^2=a^2,ba=a^{-1}b\rangle.$ Consideramos $i,j\in Q_2.$ Veamos que verifican esas relaciones:

$$i^{4} = (i^{2})^{2} = (-1)^{2} = 1$$

 $j^{2} = -1 = i^{2}$
 $ji = -k = (-i)j = i^{3}j = i^{-1}j$

Entonces, por el teorema de Dick, existe un único homomorfismo $f: G \longrightarrow Q_2$ tal que f(a) = i y f(b) = j. Además, puesto que $Q_2 = \langle i, j \rangle$, es un epimorfismo. Por el 1er teorema de isomorfía, $G/\ker(f) \cong Q_2$.

Veamos que f es un isomorfismo, es decir, que $\ker(f) = \{1\}$. Para ello, observemos que $|G| = 8 = |Q_2|$.

Tenemos que:

$$G=\langle a,b:a^4=1,b^2=a^2,ba=a^{-1}b\rangle$$

Sea $H = \langle a \rangle$, tenemos que $|H| = \operatorname{ord}(a) = 4$. Como $bab^{-1} = a^{-1}bb^{-1} = a^{-1} \in H$, luego $H \subseteq G$. Consideramos $G/H = \langle bH \rangle$. Como $(bH)^2 = b^2H = a^2H = H$, entonces el orden de $\operatorname{ord}(bH) = 2$. Entonces |G/H| = 2 y se tiene:

$$|G| = |G/H| |H| = 2 \cdot 4 = 8$$

Definición 4 (Grupo dicíclico). Para cada $k \ge 1$ se define el k-ésimo grupo dicíclico como el grupo presentado por:

$$Q_k = \langle a, b | a^{2k} = 1, b^2 = a^k, ba = a^{-1}b \rangle$$

Proposición 1. Tenemos que $Q_1 \cong C_4$, y que Q_2 es el grupo de los cuaternios. En general:

$$Q_k = \{a^i b^j : 0 \le i \le 2k - 1, 0 \le j \le 1\}$$

y por tanto $|Q_k| = 4k$.

Proposición 2. Para $k \geq 3$, existe un $N \leq Q_k$ tal que $Q_k/N \cong D_k$. Por tanto Q_k no es abeliano.