Lemma 7.1 If $T \in \mathcal{L}(V)$ is normal, then null $T = null T^*$.

Proof. Assume that $T \in \mathcal{L}(V)$ is normal. Thus

$$x \in \text{null } T \iff Tx = 0$$

$$\iff \langle Tx, Tx \rangle = 0$$

$$\iff \langle T^*x, T^*x \rangle = 0$$

$$\iff T^*x = 0$$

$$\iff x \in \text{null } T^*,$$

so that null $T = \text{null } T^*$.

7.1 Make $\mathcal{P}_2(\mathbb{R})$ into an inner-product space by defining

$$\langle p, q \rangle = \int_0^1 p(x)q(x) \ dx.$$

Define $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ by $T(a_0 + a_1x + a_2x^2) = a_1x$.

- (a) Show that T is not self-adjoint.
- (b) The matrix of T with respect to the basis $(1, x, x^2)$ is

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

Solution.

(a) Suppose to the contrary that T is self-adjoint. Consider $x, 1 \in \mathcal{P}_2(\mathbb{R})$. Then we must have that $\langle T1, x \rangle = \langle T^*1, x \rangle = \langle 1, Tx \rangle$. But

$$\langle T1, x \rangle = \langle 0, x \rangle$$
$$= 0,$$

and

$$\begin{split} \langle 1, Tx \rangle &= \langle 1, x \rangle \\ &= \int_0^1 x \; dx \\ &= \frac{1}{2}, \end{split}$$

so that $\langle T1, x \rangle \neq \langle 1, Tx \rangle$; i.e., T is not self-adjoint.

- (b) Let N be the conjugate transpose of $\mathcal{M}(T)$. It is clear that $N = \mathcal{M}(T)$. We know that T is self-adjoint if and only if $\mathcal{M}(T) = \mathcal{M}(T^*)$ if and only if $N = \mathcal{M}(T^*)$. Since T is not self-adjoint it follows that $N \neq \mathcal{M}(T^*)$. This makes sense because the equality $N = \mathcal{M}(T^*)$ is guaranteed to be true (by Proposition 6.47) if $(1, x, x^2)$ is an orthonormal basis for $\mathcal{P}_2(\mathbb{R})$, but this is not the case since $\langle 1, x \rangle \neq 0$. So although we have that the matrix of T equals its conjugate transpose, it does not equal the matrix of T^* , so we have no contradiction.
- 7.4 Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that P is an orthogonal projection if and only if P is self-adjoint.

Proof. Let $P \in \mathcal{L}(V)$ such that $P^2 = P$.

 (\Longrightarrow) Suppose that P is an orthogonal projection. Then we have that $P=P_{U,U^{\perp}}$ for some subspace U of V. To prove that P is self-adjoint, we must show that $Px=P^*x$ for all $x \in V$. So let $v_1, v_2 \in V$. There exist unique $u_1, u_2 \in U$ and $u'_1, u'_2 \in U^{\perp}$ such that $v_1 = u_1 + u'_1$ and $v_2 = u_2 + u'_2$. Thus

$$\begin{split} \langle Pv_1 - P^*v_1, v_2 \rangle &= \langle Pv_1, v_2 \rangle - \langle P^*v_1, v_2 \rangle \\ &= \langle u_1, v_2 \rangle - \langle v_1, Pv_2 \rangle \\ &= \langle u_1, v_2 \rangle - \langle v_1, u_2 \rangle \\ &= \langle u_1, u_2 + u_2' \rangle - \langle u_1 + u_1', u_2 \rangle \\ &= \langle u_1, u_2 \rangle + \langle u_1, u_2' \rangle - \langle u_1, u_2 \rangle - \langle u_1', u_2 \rangle \\ &= \langle u_1, u_2' \rangle - \langle u_1', u_2 \rangle \\ &= 0 - 0 = 0. \quad [\text{Since } u_1, u_2 \in U, u_1', u_2' \in U^{\perp}] \end{split}$$

Since v_2 was arbitrary, we have that $\langle Pv_1 - P^*v_1, v_2 \rangle = 0$ for all $v_2 \in V$. Setting $v_2 = Pv_1 - P^*v_1$ gives us that $\langle Pv_1 - P^*v_1, Pv_1 - P^*v_1 \rangle = 0$, so that $Pv_1 - P^*v_1 = 0$; i.e., $Pv_1 = P^*v_1$. Thus P is self-adjoint.

 (\Leftarrow) Suppose that P is self-adjoint. We have that

null
$$P = (\text{range } P^*)^{\perp}$$
 [Proposition 6.46]
= $(\text{range } P)^{\perp}$ [P is self-adjoint],

so that every vector in null P is orthogonal to every vector in range P. It follows by Homework 5, Problem 6.17 that P is an orthogonal projection of V onto range P, with null space null P.

7.6 Prove that if $T \in \mathcal{L}(V)$ is normal, then

range
$$T = \text{range } T^*$$
.

Proof. Assume that $T \in \mathcal{L}(V)$ is normal. We have that

range
$$T = (\text{null } T^*)^{\perp}$$
 [Proposition 6.46]
 $= (\text{null } T)^{\perp}$ [Lemma 7.1]
 $= \text{range } T^*,$ [Proposition 6.46]

which is what we wanted to prove.

7.7 Prove that if $T \in \mathcal{L}(V)$ is normal, then

null
$$T^k = \text{null } T$$
 and range $T^k = \text{range } T$

for every positive integer k.

Proof. We shall first proceed by induction on k to show that null $T^k = \text{null } T$.

Base Case. k = 1. It follows trivially that null $T^1 = \text{null } T$.

Inductive Hypothesis. Suppose that null $T^n = \text{null } T$ for some positive integer n.

Now we shall show that null $T^{n+1} = \text{null } T$. We have that

$$x \in \text{null } T \Longrightarrow x \in \text{null } T^n$$
 [Inductive Hypothesis]
 $\Longrightarrow T^n x = 0$
 $\Longrightarrow T(T^n x) = T(0) = 0$
 $\Longrightarrow T^{n+1} x = 0$
 $\Longrightarrow x \in \text{null } T^{n+1},$

so that null $T \subseteq \text{null } T^{n+1}$. Now let $x \in \text{null } T^{n+1}$. By Problem 7.6, we know that range $T = \text{range } T^*$; thus $Tx = T^*y'$ for some $y' \in V$. Now

$$x \in \text{null } T^{n+1} \Longrightarrow T^{n+1}x = 0$$

$$\Longrightarrow TT^n x = 0$$

$$\Longrightarrow \langle TT^n x, T^{n-1} y' \rangle = 0$$

$$\Longrightarrow \langle T^n x, T^* T^{n-1} y' \rangle = 0$$

$$\Longrightarrow \langle T^n x, T^{n-1} T^* y' \rangle = 0$$

$$\Longrightarrow \langle T^n x, T^{n-1} T x \rangle$$

$$\Longrightarrow \langle T^n x, T^{n-1} T x \rangle$$

$$\Longrightarrow \langle T^n x, T^n x \rangle = 0$$

$$\Longrightarrow T^n x = 0$$

$$\Longrightarrow x \in \text{null } T^n$$

$$\Longrightarrow x \in \text{null } T,$$
[Inductive Hypothesis]

so that null $T^{n+1} \subseteq \text{null } T$. We have thus shown that null $T = \text{null } T^{n+1}$. It follows by Mathematical Induction that null $T^k = \text{null } T$ for each positive integer k. Let m be a positive integer. Observe that T^m is also normal; thus

range
$$T^m = (\text{null } (T^m)^*)^{\perp}$$
 [Proposition 6.46]
 $= (\text{null } T^m)^{\perp}$ [Lemma 7.1]
 $= (\text{null } T)^{\perp}$ [null $T^m = \text{null } T$]
 $= \text{range } T^*$ [Proposition 6.46]
 $= \text{range } T$, [Problem 7.6]

which is what we wanted to show.

7.9 Prove that a normal operator on a complex inner-product space is self-adjoint if and only if all its eigenvalues are real.

Proof. Let $T \in \mathcal{L}(V)$ be normal, where V is a complex inner-product space.

- (\Longrightarrow) Suppose that T is self-adjoint. It follows by Proposition 7.1 that all the eigenvalues of T are real.
- (\iff) Suppose that all the eigenvalues of T are real. Note that if u is an eigenvector of T with eigenvalue λ , then by Corollary 7.7, we have that $T^*u = \overline{\lambda}u$. To show that T is self-adjoint, we must show that $Tx = T^*x$ for all $x \in V$. So let $y \in V$. By the Spectral Theorem, V has an orthonormal basis $(v_1, \ldots v_n)$ consisting of eigenvectors of T. Let λ_i be the eigenvalue corresponding to v_i . We know that $y = a_1v_1 + \cdots + a_nv_n$ for some unique scalars. Thus

$$Ty = T(a_1v_1 + \dots + a_nv_n)$$

$$= a_1Tv_1 + \dots + a_nTv_n$$

$$= a_1\lambda_1v_1 + \dots + a_n\lambda_nv_n$$

$$= a_1\overline{\lambda_1}v_1 + \dots + a_n\overline{\lambda_n}v_n$$

$$= a_1T^*v_1 + \dots + a_nT^*v_n$$

$$= T^*(a_1v_1 + \dots + a_nv_n)$$

$$= T^*y,$$
[Eigenvalues of T are real]

so that $T = T^*$.