Netty与传统IO对比

传统IO分析:

以下数据均为512m堆内存下,30s压测的结果

类型	并发数	总连接 数	每秒平 均连接 数	最大响 应时间	最小响 应时间	平均响应 时间
Socket 单线程	40	978	31.4	1361ms	122ms	1247.5ms
	80	956	30.8	6879ms	191ms	2462.1ms
Socket 多线程	40	33195	1094.9	201ms	20ms	31.4ms
	80	65748	2160.3	571ms	20ms	30.7ms
Socket 线程池	40	34035	1100.7	141ms	19ms	30.6ms
	80	33095	1092.7	627ms	23ms	67.7ms

- 1.从上面的数据分析可以得知socket在单线程的情况下,平均响应时间很长而且连接数也比较少,但是对于资源的占用是最少的;
- 2.多线程的情况下连接数与响应时间都还好,但是会很耗费资源;
- 3.相对来说在BIO的情况下,线程池无疑是一个较好的选择,能够合理的分配内存等资源,也能保证在高并发下的RTS。

Netty分析:

以下数据均为512m堆内存下,30s压测的结果

类型	并发数	总连接 数	每秒平 均连接 数	最大响 应时间	最小响 应时间	平均响应 时间
Netty	40	231339	7410.8	221ms	0ms	0.1ms
	80	142605	4580.1	221ms	0ms	2.6ms

1.从上面的数据可以看出整体的连接数非常高,但是与传统IO的区别在于并发数的增高并不会导致连接数的增加,反而会减少,连接时间自然就会降低,而且并发越大响应时间会好一些。