Cálculo

— folha 9 —

2015'16 — Integrais impróprios.

1. Estude os seguintes integrais impróprios

(a)
$$\int_2^{+\infty} \frac{1}{x-1} \, dx$$

(d)
$$\int_{1}^{+\infty} x^{2} dx$$

(g)
$$\int_{e}^{+\infty} \frac{1}{x \ln x} dx$$

(b)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$

(e)
$$\int_{1}^{+\infty} \frac{1}{x^2} dx$$

(h)
$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx$$

(c)
$$\int_{2}^{+\infty} \frac{1}{x^2 - 1} dx$$

(f)
$$\int_{1}^{+\infty} \cos(\pi x) dx$$

2. Mostre que o integral abaixo é convergente se r<-1 e divergente se $r\geq -1$

$$\int_{1}^{+\infty} x^{r} \, dx$$

(Sug.: comece por estudar o caso r = -1.)

3. Considere o integral divergente

$$\int_{1}^{+\infty} \frac{1}{x} dx.$$

Qual será o volume do sólido de revolução gerado pela região definida por $y=rac{1}{x}$ com $x\geq 1$ e o eixo das abcissas em torno deste eixo? Comente.

4. Mostre que o integral abaixo é convergente se r > 0 e divergente se $r \le 0$.

$$\int_{0}^{+\infty} e^{-rx} dx$$

(Sug.: comece por estudar o caso r = 0.)

5. Seja $\mathcal R$ a região definida por $y=e^{-x}$ com $x\geq 0$ e o eixo das abcissas.

- (a) Esboce \mathcal{R} .
- (b) Calcule, se possível, a área de \mathcal{R} .
- (c) Encontre, se possível, volume do sólido de revolução gerado por ${\mathcal R}$
 - i. em torno de $\boldsymbol{x}\boldsymbol{x}$
 - ii. em torno de yy
- (d) Determine, se possível, o comprimento da curva que limita \mathcal{R} superiormente.

6. Indique, justificando, se cada um dos seguintes integrais é convergente ou divergente.

(a)
$$\int_{0}^{+\infty} e^{-x} \cos \sqrt{x} \ dx;$$
 (b)
$$\int_{0}^{+\infty} e^{-|x|} \ dx.$$

(b)
$$\int_{-\infty}^{+\infty} e^{-|x|} dx.$$

(Sug.: escreva o integral como soma de dois integrais.)

7. Seja f uma função tal que

$$\lim_{c \to +\infty} \int_{-c}^{c} f(x) dx = 0.$$

O que se pode, nestas condições, dizer sobre

$$\int_{-\infty}^{\infty} f(x) dx?$$

8. Estude a natureza dos seguintes integrais

(a)
$$\int_0^1 \frac{1}{x} \, dx$$

(c)
$$\int_0^1 \ln x \, dx$$

(e)
$$\int_{1}^{2} \frac{1}{\sqrt{x-1}} \, dx$$

(b)
$$\int_0^1 \frac{1}{1-x} \, dx$$

(d)
$$\int_0^1 x \ln x \, dx$$

(f)
$$\int_{-3}^{1} \frac{1}{x^2 - 4} \, dx$$

- **9.** Considere a função $f(x) = \frac{e^{-x}}{\sqrt{x}}$.
 - (a) Indique o domínio de f.
 - (b) Estude a natureza do integral

$$\int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} \, dx.$$