Template name	Silica template						Imprinted polymer ^b				
	% C	ΔC (%)	% N	ΔN (%)	$egin{array}{c c} D_S^{\ a} \ \hline (\mu mol/m^2) \ \hline \Delta C & \Delta N \end{array}$		% C	% N	$\frac{S^{c}}{(m^{2}/g)}$	V_p^c (mL/g)	d _p ^c (nm)
APS-Si	4.28	4.11	1.65	1.65	3.85	4.00	-	-	-	-	_
BOC-Gly- Si	17.04	11.49	3.28	1.63	4.88	4.00	53.2	0.20	132	0.24	4.0
H-Gly-Si	6.24	0.69	2.21	0.56	0.84	1.17	51.5	0.24	145	0.41	7.4
FMOC- Phe-Gly-Si	16.44	10.25	2.93	0.72	1.17	1.81	59.3	0.26	166	0.27	4.5
H-Phe-Gly- Si	11.91	5.67	2.97	0.76	1.63	1.69	58.5	0.39	204	0.58	5.4
FMOC- Phe-Si	16.02	10.47	1.78	0.13	1.20	0.27	56.3	0.23	149	0.58	7.4
H-Phe-Si	9.94	4.39	1.91	0.26	1.23	0.54	55.3	0.15	200	0.53	8.2
FMOC- Phe//Si	-	-	-	_	-	-	56.7	0.80	205	0.37	5.1

Table 1 Characterization of the modified silica particles and the imprinted polymer beads by microanalysis and nitrogen sorption isotherms. Area density (D_S) of immobilised ligand was calculated based on the change in carbon (ΔC) or nitrogen (ΔN) content versus the preceding step. For example for ΔN : $D_S=m_N/(M_NS)$, where $m_N=\Delta N\%/(100-\Delta N\%M_w/M_N)$, $M_w=$ molecular weight of the coupled ligand, $M_N=$ weight of nitrogen per mole of coupled ligand and S= surface area of the silica support ($S=350m^2/g$).

Solid phase synthesis

Polymer containing surface imprints complementary to ligand

FIG.

