

#### Instituto Federal de Educação, Ciência e Tecnologia do Ceará PPGER — PPGCC

#### Aula 7: Transformadas Wavelet

Processamento Digital de Imagens
Prof. Dr. Pedro Pedrosa

pedrosarf@ifce.edu.br

pedropedrosa.maracanav.ifce.edv.br

# Introdução

- A transformada wavelet tem recebido uma grande atenção devido a sua facilidade em comprimir, transmitir e analisar imagens;
- Em geral esta transformada está sendo usada em inúmeros campos como processamento de voz, ciência da terra, geofísica, física médica, astronomia e sensoriamento remoto.
  - A transformada wavelet expande um sinal através conjunto completo de funções de base com freqüência e duração limitada.





Figura 1: Exemplos de Funções *Wavelets* 

# Introdução

- O interesse cresceu principalmente devido a teoria multiresolução proposta por Mallat (1987).
- Esta teoria unifica e incorpora diferentes técnicas, podendo ser usada em vários domínios de conhecimento:
  - Codificação em Sub-bandas
  - Filtragem com filtros de quadratura espelhados
  - Processamento piramidal de imagens
- Ferramenta de análise espaço / frequência
  - A decomposição de um sinal com uma determinada função wavelet permite o tratamento da energia contida no sinal, em função tanto da dimensão espacial (ou tempo) como da escala da wavelet (freqüência).



### Wavelet x Fourier



Figura 2: Comparação entre *Wavelets* e Fourier



### **Fundamentos**

- Regiões com semelhantes textura e contraste combinadas formam objetos na imagem
- Resolução
  - Altas resoluções detectam objetos pequenos ou em baixo contraste
  - Baixas resoluções detectam objetos grandes ou de alto contraste
  - Para detectar diferentes objetos é necessário analisar várias resoluções (multi-resolução)
- Freqüência
  - Altas freqüências representam bordas
  - Baixas freqüências representam regiões homogêneas

## Regiões Importantes da Imagem



Processo de filtragem





- Processo de filtragem
  - Problema: Suponha que o sinal original tem 1000 amostras...
    - Com esse processo de filtragem, passamos a ter dois sinais cada um com 1000 amostras
    - Esse aumento na quantidade de dados não é interessante
    - Podemos pegar apenas uma em cada duas amostras dos sinais filtrados
      - Assim, ficaríamos apenas com as 1000 amostras
    - Essa é a idéia de Downsampling



Ou seja, ao invés de:



Temos agora:







Decomposição em múltiplos níveis







- O que a análise de wavelets faz é decompor um sinal
- O processo inverso é a reconstrução ou síntese do sinal



Componentes de um sinal reconstruído



$$S \approx A_1 + D_1$$
  
 $\approx A_2 + D_2 + D_1$   
 $\approx A_3 + D_3 + D_2 + D_1$ 

- Famílias de wavelets
  - Definem a forma da wavelet mãe
    - Haar
    - Daubechies
    - Biortogonal
    - Coiflets
    - Symlets
    - Shannon

# Pirâmide de imagens

A pirâmide é uma coleção de imagens com diferentes resoluções.

 A base representa a mais alta resolução e o topo representa a mais baixa resolução

Utilização

Machine Vision

Compressão

Figura 4: Estrutura de pirâmide de imagens

 $N \times N$ 





### Algoritmo de Decomposição Piramidal

#### Algoritmo

- Diminuir a resolução.
- Filtrar e depois sub-amostrar a imagem filtrada, formando a imagem de aproximação.
- Re-amostrar, utiliza um filtro de interpolação, formando a predição
- Calcular a diferença entre a predição e a original para calcular a imagem de detalhes.

#### **Filtros**

- Sem filtragem (causa aliasing nos níveis mais altos)
- Média
- Passa-baixa Gaussiano Algoritmo





# Pirâmide de Imagens





Figura 6: Duas Pirâmides e estatísticas: a) Gaussiana (aproximação) e Laplaciana (predição)

# Pirâmide de Imagens





Figura 7: Duas Pirâmides e estatísticas: a) Gaussiana (aproximação) e Laplaciana (predição)

### Transformada Haar

- É a função de base wavelet mais antiga e mais simples, também conhecida como função wavelet ortogonal.
- A transformada Haar é separável e simétrica e pode ser expressada pela matriz de transformação:

#### T = HFH

- Matrizes
  - F é a imagem N x N,
  - H é a Matriz de transformação (N x N)
  - T é a transformada (N x N)
- H contém as funções de bases, h<sub>k</sub>(z). Definidas sobre o espaço contínuo e fechado z.



### Transformada Haar

Para Gerar H:

$$h_k(z) = \frac{1}{\sqrt{N}} \begin{cases} 2^{p/2} & z \in [(q-1)/2^p, (q-0.5)/2^p) \\ -2^{p/2} & z \in [(q-0.5)/2^p, q/2^p) \\ 0 & \text{para outros valores de z.} \end{cases}$$

Onde

$$k \in [0, N-1] \Rightarrow N = 2^n \Rightarrow p \in [0, n-1]$$

$$q = \begin{cases} 0 \text{ ou } 1 & \text{se } p = 0 \\ 0 \text{ L } 2^p & \text{se } p \neq 0 \end{cases}$$

- Exemplo
- Para N = 4Valores de K:

| k   p   q |   |   |
|-----------|---|---|
| 0         | 0 | 0 |
| 1         | 0 | 1 |
| 2         | 1 | 1 |
| 3         | 1 | 2 |

Matriz

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{bmatrix}$$



#### Fundamentos Transformada Haar



Figura 13: Decomposição utilizando a transformada de Haar.





### Transformada Haar











Figura 14:

## Transformada Haar



- Exemplo utilizando Matlab
  - Comando no MatLab>> wavemenu
  - Link:

http://www.mathworks.com/help/wavelet/ref/wavemenu.html

- Exemplo utilizando OpenCv com Linguagem C
  - Link:

http://stackoverflow.com/questions/20071854/wavelet-transform-in-opency



#### Encaminhamentos

- Dúvidas?
- Próximo assunto
  - Processamento de Imagens Digitais Coloridas