Week 9

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

II tempo oggi in Piacenza Lunedi, 02 Dicembre 2019								
	13:00	14:00	16:00	18:00	20:00	21:00	22:00	
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud	
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C	
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C	
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %	
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa	

Relative humidity at the moment $\phi=90\%$

Total air pressure P=101.9kPa

The temperature in Kelvins = 7 C = 230K

Using the psychrometric chart, we see that:

The humidity ratio ie, the absolute humidity $\omega = 0.0055$

The wet bulb temperate is $T_{wb}=6\mathcal{C}$

$$\omega = \frac{0.622P_v}{P_a} = \frac{0.622P_v}{P - P_v} = 0.0055$$

Introduce P=101.9kPA into the equation

$$P_{v} = 0.893 \ kPA$$

$$\phi = \frac{m_v}{m_g} = 90\%$$

For ideal gases $m=\frac{PV}{R_{sp}T}$ We know that Rsp=0.4615

Introduce the pressure of water vapor $P_v = 0.893 kPa$

The volume of Aula A = V

$$m_v = \frac{0.893V}{0.4615 * 230} = 8.41 * 10^{-3}V$$

$$m_g = \frac{m_v}{90\%} = 9.34 * 10^{-3} V$$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

								BRINDIS	il, Italy						WMO#:	163200	
		40.65N	Long:		Elev	10	StdP	101.2		Time Zone:	1.00 (EU\	W)	Period:	86-10	WBAN:	99999	
	Annual He	eating and H	lumidificat	ion Design C	onditions												
	Coldest	Heatin	ng DB			nidification D	P/MCDB and				Coldest mon				/PCWD		
	Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	WS 0.4	4% MCDB	WS 1	% MCDB	MCWS	6% DB PCWD		
	(a)	99.6% (b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(I)	(m)	(n)	(o)	l	
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		
(1)	2	2.9	4.1	-5.1	2.5	1.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Dehu	umidificatio	on, and Entha	alpy Desig	n Conditions	;										
	Hottest	Hottest Month		.4%		DB/MCWB	2	ev.		4%	Evaporation	WB/MCDE		%	MCWS/ to 0.4		
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB U.	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
(2)			52.0					24.0			20.0			20.0			(2)
		0.444		Dehumidific		ICDB and HF	₹	001		_	***		y/MCDB			Hours	
	DP	0.4% HR	MCDB	DP	1% HR	MCDB	DP	2% HR	MCDB	Enth	4% MCDB	Enth 1	% MCDB	Enth 2	% MCDB	8 to 4 &	
																12.8/20.6	1
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Annual Desig	gn Conditi	ons													
	Ext	reme Annual	ws	Extreme			Annual DB					turn Period					
				Max		ean	Standard			years		years		years	n=50		
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Task 2:

Noc=2

Height=2.5m2

Conditioned Floor Area=200m2

Internal Gains:

$$\dot{Q}_{igsensible} = 136 + 2.2A_{cf} + 22N_{oc}$$
$$= 136 + 2.2(200) + 22(2)$$
$$= 620W$$

$$\dot{Q}_{iglatent} = 20 + 0.22A_{cf} + 12N_{oc}$$
$$= 20 + 0.22(200) + 12(2)$$
$$= 88W$$

Infiltration:

First I must calculate how much the maximum flow rate of air is

To find leakage area:

Table 3 Unit	Leakage	Areas
--------------	---------	-------

Construction	Description	A_{ul} , cm ² /m ²	
Tight	Construction sur specialist	pervised by air-sealing	0.7
Good	Carefully sealed knowledgeable	l construction by e builder	1.4
Average	Typical current	production housing	2.8
Leaky	Typical pre-197	0 houses	5.6
Very leaky	Old houses in or	riginal condition	10.4
Situation		Include	Exclude
	mbination (e.g., ling without attic)	Gross surface area	
Ceiling or wall	adjacent to attic	Ceiling or wall area	Roof area
Wall exposed to	o ambient	Gross wall area (including fenestra- tion area)	
	o unconditioned (e.g., garage or	Common wall area	Exterior wall area
Floor over oper	n or vented	Floor area	Crawlspace wal

Crawlspace wall area Floor area

Above-grade basement Floor area

Aul (GOOD CONSTRUCTION)=1.4 cm2/m2

Floor over conditioned or

semiconditioned basement

Aes=Awall+Aroof= 200+144 = 344m2

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6cm2$$

The cooling temperature in Brindisi is $T_{cooling}=24\,^{\circ}\mathrm{C}$ and heating temperature $T_{heating}=20\,^{\circ}\mathrm{C}$ in Brindisi

$$\Delta T_{cooling} = 31.1^{\circ}\text{C} - 24^{\circ}\text{C} = 7.1^{\circ}\text{C} = 7.1K$$

$$\Delta T_{heating} = 20^{\circ}\text{C} - (-4.1)^{\circ}\text{C} = 24.1^{\circ}\text{C} = 24.1K$$

$$DR=7.1^{\circ}\text{C} = 7.1K$$
 Given that $IDF_{heating} = 0.073 \frac{L}{s.cm^2}$
$$IDF_{cooling} = 0.033 \frac{L}{s.cm^2}$$

$$\dot{V}_{infiltration\ heating} = A_L IDF$$

$$= 481.6 \times 0.073 = 35.157 \frac{L}{S}$$

$$\dot{V}_{infiltration\ cooling} = A_L IDF$$

$$= 481.6 \times 0.033 = 15.89 \frac{L}{S}$$

$$\dot{V}_{ventilation} = 0.05A_{cf} + 3.5(N_{br} + 1)$$

$$= 0.05 \times 200 + 3.5 \times 2 = 17 \frac{L}{S}$$

$$\dot{V}_{inf-ventilation\ heating} = 35.157 + 17 = 52.157 \frac{L}{S}$$

$$\dot{V}_{inf-ventilation\ cooling} = 15.89 + 17 = 32.893 \frac{L}{S}$$

Given that Csensible=1.23, Clatent=3010, $\Delta\omega_{cooling}$ =0.0039

$$\dot{Q}_{inf-ventilation\,cooling\,sensible} = C_{sensible}\dot{V}\Delta T_{cooling} = 1.23\times32.893\times7.1 = 287.25W$$

$$\dot{Q}_{inf-ventilation\,heating\,sensible} = C_{sensible}\dot{V}\Delta T_{heating} = 1.23 \times 52.157 \times 24.1 = 1546.09W$$

$$\dot{Q}_{inf-ventilation\,cooling\,latent} = C_{latent} \dot{V} \Delta \omega_{cooling} = 3010 \times 32.893 \times 0.0039 = 386.13 W$$