Лекция 11

5. Численные методы многомерной оптимизации

5.1. Выпуклые множества и выпуклые функции

Пусть $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Множество

$$[\boldsymbol{x}, \boldsymbol{y}] = \{\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y} : \alpha \in [0, 1] \}$$

$$(1.1)$$

называется *отрезком*, соединяющим точки \boldsymbol{x} и \boldsymbol{y} .

Множество $X \subset \mathbb{R}^n$ называется *выпуклым*, если вместе с любыми точками \boldsymbol{x} и $\boldsymbol{y} \in X$ оно содержит и весь отрезок $[\boldsymbol{x}, \boldsymbol{y}]$.

Множество \mathbb{R}^n , очевидно, является выпуклым множеством. Пустое множество \varnothing считается выпуклым множеством.

T е о р е м а 1. Пусть I — любое, конечное или бесконечное, множество индексов, X_i $(i \in I)$ — выпуклые множества. Тогда их пересечение $X = \bigcap_{i \in I} X_i$ выпукло.

Доказательство. Пусть $X \neq \emptyset$ и $\pmb{x}, \pmb{y} \in X, \alpha \in [0,1]$. По определению пересечения для любого $i \in I$ имеем $\pmb{x}, \pmb{y} \in X_i$ и значит $\pmb{z} = \alpha \pmb{x} + (1-\alpha) \pmb{y} \in X_i$ так как X_i выпукло. Тогда $\pmb{z} \in \bigcap_{i \in I} X_i = X$, т. е. X выпукло.

Функция $f(\boldsymbol{x})$, заданная на выпуклом множестве $X \subset \mathbb{R}^n$, называется выпуклой, если для любых точек $\boldsymbol{x}, \boldsymbol{y} \in X$ и любого $\alpha \in [0,1]$ выполняется неравенство

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}). \tag{1.2}$$

Функция f(x) называется *строго выпуклой* если всех $\alpha \in (0,1)$ неравенство (1.2) выполняется как строгое.

T е о р е м а 2. Линейная комбинация выпуклых на выпуклом множестве X функций $f_i(\boldsymbol{x}),\ i=1,\ldots,\ m,\ c$ неотрицательными коэффициентами $\lambda_i,\ m.\ e.$

$$f(\boldsymbol{x}) = \sum_{i=1}^{m} \lambda_i f_i(\boldsymbol{x}), \quad \lambda_i \ge 0,$$

есть выпуклая на множестве X функция.

Доказательство. Для любых ${\pmb x}, {\pmb y} \in X, \, \alpha \in [0,1]$ имеем

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) = \sum_{i=1}^{m} \lambda_{i} f_{i}(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \leq$$

$$\leq \sum_{i=1}^{m} \lambda_{i}(\alpha f_{i}(\boldsymbol{x}) + (1 - \alpha)f_{i}(\boldsymbol{y})) = \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}),$$

т. е. выполняется (1.2). Значит, функция f(x) выпукла.

 ${
m Teopema~3.~}$ Пусть $f({\pmb x})-$ выпуклая функция, заданная в пространстве ${\mathbb R}^n.$ Тогда множество

$$X = \{ \boldsymbol{x} \in \mathbb{R}^n : f(\boldsymbol{x}) \le b \}$$

выпукло.

Доказательство. Пусть $\boldsymbol{x}, \boldsymbol{y} \in X$ и $\boldsymbol{z} = \alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{y}, \, \alpha \in [0,1]$. Из выпуклости функции $f(\boldsymbol{x})$ следует, что $f(\boldsymbol{z}) \leq \alpha f(\boldsymbol{x}) + (1-\alpha)f(\boldsymbol{y}) \leq b$, т. е. $\boldsymbol{z} \in X$ и множество X — выпукло.

Следствие. Пусть $f_i(x)$, $i=1,\ldots,m$, — выпуклые функции в \mathbb{R}^n . Тогда множество точек x, удовлетворяющих системе неравенств

$$f_i(\boldsymbol{x}) \leq b_i, \quad i = 1, \dots, m,$$

выпукло.

Доказательство. Это следует из теорем 3.1 и 3.3.

Приведём свойства выпуклых функций, играющих важную роль в вопросах минимизации.

T e o p e ma 4. Пусть <math>f(x) - выпуклая функция, заданная на выпуклом множестве <math>X. Тогда любой её локальный минимум на множестве X является одновременно и глобальным.

Доказательство. Предположим противное, т. е. пусть \boldsymbol{x}_0 — точка локального, а \boldsymbol{x}_* — точка глобального минимума $f(\boldsymbol{x})$ на множестве $X, \, \boldsymbol{x}_* \neq \boldsymbol{x}_0$ и $f(\boldsymbol{x}_0) > f(\boldsymbol{x}_*)$. Отсюда с учётом выпуклости функции имеем:

$$f(\alpha x_* + (1 - \alpha)x_0) \le \alpha f(x_*) + (1 - \alpha)f(x_0) < f(x_0).$$

При $\alpha \to +0$ точка $\boldsymbol{x} = \alpha \boldsymbol{x}_* + (1-\alpha)\boldsymbol{x}_0$ попадёт в сколь угодно малую окрестность точки \boldsymbol{x}_0 . Поэтому полученное неравенство $f(\boldsymbol{x}) < f(\boldsymbol{x}_0)$ противоречит предположению о том, что \boldsymbol{x}_0 — точка локального минимума.

T е о р е м а 5. Глобальный минимум строго выпуклой функции $f(\boldsymbol{x})$, заданной на на выпуклом множестве X, может достигаться лишь в единственной точке.

Доказательство. Предположим, что \boldsymbol{x}_1 и \boldsymbol{x}_2 — две различные точки глобального минимума. Из строгой выпуклости $f(\boldsymbol{x})$ следует, что для всех $\alpha \in (0,1)$ выполняется строгое неравенство

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2) = f_* = \min_{x \in X} f(x),$$

что противоречит предположению о том, что точки \boldsymbol{x}_1 и \boldsymbol{x}_2 — точки глобального минимума.

Функция $f(\boldsymbol{x})$, заданная в пространстве \mathbb{R}^n , называется *сильно выпуклой*, если существует такое число l>0 (константа сильной выпуклости), что для всех \boldsymbol{x} и $\boldsymbol{y} \in \mathbb{R}^n$ и любого $\alpha \in [0,1]$ выполняется неравенство:

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}) - \alpha(1 - \alpha) |l| \boldsymbol{x} - \boldsymbol{y}|^{2}.$$
 (1.3)

5.2. Выпуклые квадратичные функции

Функция вида

$$f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i x_j + \sum_{j=1}^{n} b_j x_j + c$$
 (2.1)

называется квадратичной функцией п переменных. Положив $a_{ij} = \alpha_{ij} + \alpha_{ji}$, получим симметрическую матрицу $A = (a_{ij})$, с помощью которой выражение (2.1) можно записать в другой форме

$$f(x) = \frac{1}{2} < Ax, x > + < b, x > + c$$
 (2.2)

где $\boldsymbol{b} = (b_1, \dots, b_n)^t \in \mathbb{R}^n$ — вектор коэффициентов b_j .

Пример 1. Функция

$$f(\mathbf{x}) = 2x_1^2 - 2x_1x_2 + 3x_1x_3 + x_2^2 - 2x_2x_3 + 4x_3^2 + x_1 - x_2 + 3x_3 + 5$$

является квадратичной. Запишем её матрицу A, вектор \boldsymbol{b} и коэффициент c из (2.2):

$$A = \begin{pmatrix} 4 & -2 & 3 \\ -2 & 2 & -2 \\ 3 & -2 & 8 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \quad c = 5.$$

Перечислим основные свойства квадратичных функций.

1. Для градиента квадратичной функции справедлива формула:

$$\nabla f(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b}. \tag{2.3}$$

Доказательство. Имеем

$$\frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n \alpha_{ij} x_i x_j = \frac{\partial}{\partial x_k} \left\{ \sum_{i=1}^n \alpha_{ii} x_i^2 + \sum_{i \neq j} \alpha_{ij} x_i x_j \right\} =$$

$$= 2\alpha_{kk}x_k + \sum_{i \neq k} (\alpha_{ik} + \alpha_{ki})x_i = 2\sum_{i=1}^n a_{ki}x_i = 2(A\mathbf{x})_k$$

Далее

$$\frac{\partial}{\partial x_k} \sum_{j=1}^n b_j x_j = b_k.$$

Следовательно, равенство (2.3) доказано.

2. Матрица Гессе квадратичной функции (2.2) совпадает с матрицей A:

$$f''(\boldsymbol{x}) = A. \tag{2.4}$$

Доказательство. Вычислим элемент матрицы Гессе:

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_l \, \partial x_k} = \frac{\partial}{\partial x_l} \left(\frac{\partial f(\mathbf{x})}{\partial x_k} \right) = \frac{\partial}{\partial x_l} \left(\sum_{i=1}^n a_{ki} x_i + b_k \right) = a_{kl}.$$

Равенство (2.4) доказано. ■

2. Квадратичной функция (2.2) с положительно определённой матрицей A сильно выпукла.

Доказательство.

 Π ример 2. Рассмотрим квадратичную функцию из примера 1. Матрица Гессе $f''(\boldsymbol{x}) = A$ — положительно определена, так как

$$\Delta_1 = 4 > 0; \ \Delta_2 = \begin{vmatrix} 4 & -2 \\ -2 & 2 \end{vmatrix} = 4 > 0; \ \Delta_3 = \det A = 22 > 0.$$

Следовательно, f(x) сильно выпукла по свойству **3** квадратичных функций.

5.3. Общие принципы *n*-мерной минимизации

Для численного решения задач безусловной минимизации:

$$f(\boldsymbol{x}) \to \min, \quad \boldsymbol{x} \in \mathbb{R}^n$$

разработано много алгоритмов, использующих итерационные процедуры вида

$$\boldsymbol{x}^{k+1} = \Phi(\boldsymbol{x}^k, \boldsymbol{x}^{k-1}, \dots, \boldsymbol{x}^0), \quad \boldsymbol{x}^0 \in \mathbb{R}^n, \tag{3.1}$$

позволяющие при определённых условиях построить последовательность $\{\boldsymbol{x}^k\}$ такую, что

$$\lim_{k \to \infty} f(\boldsymbol{x}^k) = \begin{cases} f_* = \min_{\mathbb{R}^n} f(\boldsymbol{x}), & X_* \neq \emptyset, \\ f_* = \inf_{\mathbb{R}^n} f(\boldsymbol{x}), & X_* = \emptyset, \end{cases}$$
(3.2)

где X_* — множество точек глобального минимума функции $f(\boldsymbol{x})$. Последовательность $\{\boldsymbol{x}^k\}$, удовлетворяющая требованию (3.2), называется минимизирующей для функции $f(\boldsymbol{x})$.

Минимизирующая последовательность может и не сходиться к точке минимума (см. пример 4.1.3). Важной характеристикой сходящихся минимизирующих последовательностей является $cxopocmb\ cxodumocmu$.

Последовательность $\{x^k\}$ сходится к точке x_* линейно (со скоростью геометрической прогрессии), если существует такое число $q \in (0,1)$, что выполняется неравенство

$$|\boldsymbol{x}^{k} - \boldsymbol{x}_{*}| \leq q |\boldsymbol{x}^{k-1} - \boldsymbol{x}_{*}| \tag{3.3}$$

Последовательность $\{ \boldsymbol{x}^k \}$ сходится к точке \boldsymbol{x}_* сверхлинейно, если

$$|\boldsymbol{x}^k - \boldsymbol{x}_*| \le q_k |\boldsymbol{x}^{k-1} - \boldsymbol{x}_*|, \quad q_k \to +0, \quad k \to \infty.$$
 (3.4)

Последовательность $\{ {m x}^k \}$ сходится к точке ${m x}_*$ с $\kappa {m Ba} \partial pamuчной скоростью,$ если существует константа C такая, что

$$\left| \boldsymbol{x}^{k} - \boldsymbol{x}_{*} \right| \leq C \left| \boldsymbol{x}^{k-1} - \boldsymbol{x}_{*} \right|^{2}. \tag{3.5}$$

Конкретный вычислительный процесс на основе (3.1), в котором может получаться, вообще говоря, бесконечная последовательность $\{x^k\}$, необходимо дополнять условием остановки (критерием окончания счёта). На практике часто пользуются следующими условиями:

$$\left| \boldsymbol{x}^{k+1} - \boldsymbol{x}^k \right| < \varepsilon_1, \tag{3.6}$$

$$\left| f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^k) \right| < \varepsilon_2,$$
 (3.7)

$$|\nabla f(\boldsymbol{x}^k)| < \varepsilon_3, \tag{3.8}$$

где ε_1 , ε_2 , ε_3 — заранее заданные параметры точности.

Ниже будут рассматриваться вычислительные алгоритмы простейших процедур (3.1), основанные на рекуррентных формулах вида

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \, \mathbf{p}^k, \quad k = 0, 1, \dots,$$
 (3.9)

где \pmb{p}^k — направление поиска точки \pmb{x}^{k+1} из точки \pmb{x}^k , а число α_k — величина шага, которая выбирается так, чтобы выполнялось условие

$$f(\boldsymbol{x}^{k+1}) < f(\boldsymbol{x}^k). \tag{3.10}$$

Эти алгоритмы различаются способом построения вектора p^k и выбора шага α_k .

Будем говорить, что в итерационном процессе (3.9) производится ucчерпываю- $uu\ddot{u}$ $cnyc\kappa$, если величина шага α_k находится из решения одномерной задачи минимизации

$$\Phi_k(\alpha) \to \min, \quad \Phi_k(\alpha) = f(\mathbf{x}^k + \alpha \mathbf{p}^k).$$
 (3.11)

Таким образом, при исчерпывающем спуске на каждом шаге полностью реализуется возможность уменьшить значение целевой функции $f(\boldsymbol{x})$ при перемещении из точки \boldsymbol{x}^k в направлении \boldsymbol{p}^k . Величина шага α_k может быть найдена методами одномерной оптимизации.

Теорема 1. Для дифференцируемой в \mathbb{R}^n функции $f(\boldsymbol{x})$ в итерационном процессе (3.9) с выбором шага α_k в соответствии с (3.11) для всех $k \geq 1$ выполняется условие

$$\langle \nabla f(\boldsymbol{x}^{k+1}), \, \boldsymbol{p}^k \rangle = 0. \tag{3.12}$$

Доказательство. Запишем необходимое условие минимума функции одной переменной $\Phi_k(\alpha)$ из (3.11):

$$\frac{d\Phi_k(\alpha)}{d\alpha} = \sum_{j=1}^n \frac{\partial f(\boldsymbol{x}^{k+1})}{\partial x_j} \frac{dx_j^{k+1}}{d\alpha} = 0.$$

Учитывая, что $x_{j}^{k+1}=x_{j}^{k}+\alpha p_{j}^{k}$, получаем условие (3.12). \blacksquare

Свойство (3.12) позволяет в явном виде найти величину α_k для квадратичной функции.

Теорема 2. Для квадратичной функции

$$f(x) = \frac{1}{2} < Ax, x > + < b, x > + c$$

величина α_k исчерпывающего спуска в итерационном процессе (3.9) будет

$$\alpha_k = -\frac{\langle \nabla f(\boldsymbol{x}^k), \boldsymbol{p}^k \rangle}{\langle A\boldsymbol{p}^k, \boldsymbol{p}^k \rangle} = -\frac{\langle A\boldsymbol{x}^k + \boldsymbol{b}, \boldsymbol{p}^k \rangle}{\langle A\boldsymbol{p}^k, \boldsymbol{p}^k \rangle}$$
(3.13)

Доказательство. Умножив равенство (3.9) слева на матрицу A квадратичной функции $f(\boldsymbol{x})$ и прибавив к обеим частям вектор \boldsymbol{b} , получим:

$$A\boldsymbol{x}^{k+1} + \boldsymbol{b} = A\boldsymbol{x}^k + \boldsymbol{b} + \alpha_k A\boldsymbol{p}^k.$$

Учитывая, что $\nabla f(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b}$, имеем $\nabla f(\boldsymbol{x}^{k+1}) = \nabla f(\boldsymbol{x}^k) + \alpha_k A \boldsymbol{p}^k$. Подставляя выражение для $\nabla f(\boldsymbol{x}^{k+1})$ в равенство (3.12), получаем формулу (3.13).

Направление вектора \boldsymbol{p} называется *направлением убывания* функции $f(\boldsymbol{x})$ в точке \boldsymbol{x} , если при всех достаточно малых $\alpha > 0$ выполняется неравенство $f(\boldsymbol{x} + \alpha \boldsymbol{p}) < f(\boldsymbol{x})$

Tеорема 3. Пусть функция $f(\boldsymbol{x})$ дифференцируема в точке \boldsymbol{x}^k . Если вектор \boldsymbol{p}^k удовлетворяет условию

$$<\nabla f(\boldsymbol{x}^k), \boldsymbol{p}^k><0,$$
 (3.14)

то направление вектора p^k является направлением убывания.

Доказательство. Из дифференцируемости функции $f(\boldsymbol{x})$ и условия (3.14) следует, что

$$f(\boldsymbol{x}^k + \alpha \boldsymbol{p}^k) - f(\boldsymbol{x}^k) = \langle \nabla f(\boldsymbol{x}^k), \alpha \boldsymbol{p}^k \rangle + o(\alpha) = \alpha \left(\langle \nabla f(\boldsymbol{x}^k), \alpha \boldsymbol{p}^k \rangle + \frac{o(\alpha)}{\alpha} \right) \langle 0 \rangle$$

при достаточно малых $\alpha > 0$. Таким образом, мы видим, что вектор \boldsymbol{p}^k задаёт направлением убывания функции $f(\boldsymbol{x})$.

Лекция 12

5.4. Метод (циклического) покоординатного спуска

Этот метод заключается в последовательной минимизации целевой функции $f(\boldsymbol{x})$ сначала по направлению первого базисного вектора \boldsymbol{e}^1 , затем второго — \boldsymbol{e}^2 и т. д. После окончания минимизации по направлению последнего базисного вектора \boldsymbol{e}^n цикл повторяется.

Опишем этот алгоритм.

- **0.** Выбрать $\mathbf{x} \in \mathbb{R}^n$, критерий достижения точности (например, (3.6) или (3.7)), величину $\mathbf{\epsilon}$. Найти $f(\mathbf{x})$, положить j=1.
 - 1. Решить задачу одномерной оптимизации

$$\Phi(\alpha) = f(\boldsymbol{x} + \alpha \boldsymbol{e}^j) \to \min, \quad \alpha \in \mathbb{R},$$

т. е. найти α_* . Положить $\hat{\boldsymbol{x}} = \boldsymbol{x} + \alpha_* \boldsymbol{e}^j$, вычислить $f(\hat{\boldsymbol{x}})$.

- **2.** Если j < n, то положить $\boldsymbol{x} = \hat{\boldsymbol{x}}, j = j+1$ и перейти к **1**, иначе перейти к **3**.
- **3.** Проверить условие достижения точности $|\boldsymbol{x} \hat{\boldsymbol{x}}| < \varepsilon$ или $|f(\boldsymbol{x}) f(\hat{\boldsymbol{x}})| < \varepsilon$. Если оно выполняется, то положить $\boldsymbol{x}_* = \hat{\boldsymbol{x}}, f_* = f(\hat{\boldsymbol{x}})$ и закончить поиск. Иначе положить $\boldsymbol{x} = \hat{\boldsymbol{x}}, f(\boldsymbol{x}) = f(\hat{\boldsymbol{x}}), j = 1$ и перейти к **1**.

Пример 1. Рассмотрим задачу

$$f(\boldsymbol{x}) = x_1^2 + x_2^2 \rightarrow \min, \ \boldsymbol{x} \in \mathbb{R}^2.$$

Линии уровня этой целевой функции — окружности с центром в начале координат. Выберем произвольную начальную точку \boldsymbol{x} , например $\boldsymbol{x}=(3,3)^t$. Очевидно, два шага исчерпывающего спуска сначала по направлению \boldsymbol{e}^1 , затем — \boldsymbol{e}^2 приведут в точку минимума $((3,3) \to (0,3) \to (0,0))$.

Пример 2. Рассмотрим задачу

$$f(\mathbf{x}) = 5x_1^2 + 8x_1x_2 + 5x_2^2 \rightarrow \min, \ \mathbf{x} \in \mathbb{R}^2...$$

Ниже приведены результаты 5 итераций алгоритма покоординатного спуска.

	x_1	x_2	$f(\boldsymbol{x})$
0	5	5	450
1_1	-4	5	45
1_2	-4	3.2	28.8
2_1	-2.56	3.2	18.432
2_2	-2.56	2.048	11.79648
3_1	-1.6384	2.048	7.54975
3_2	-1.6384	1.31072	4.83183
4_1	-1.04858	1.31072	3.09238
4_2	-1.04858	0.83886	1.97912
5_1	-0.67109	0.83886	1.26664
5_2	-0.67109	0.53687	0.81065

5.5. Метод градиентного спуска

Все итерационные процессы вида

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha_k \nabla f(\boldsymbol{x}^k), \quad \alpha_k > 0, \quad k = 0, 1, \dots,$$
 (5.1)

в которых направление движения совпадает с антиградиентом функции, называются градиентными методами и отличаются друг от друга способами выбора шага α_k .

Существуют много различных способов выбора α_k , но наиболее распространены два: первый называется методом с дроблением шага и связан с проверкой на каждой итерации некоторого неравенства; во втором производится исчерпывающий спуск — метод наискорейшего спуска.

Рассмотрим процесс (5.1). Первая проблема, которая возникает при его реализации, — это выбор шага α_k . Достаточно малый шаг α_k обеспечит убывание функции, т. е. выполнение неравенства

$$f(\mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)) < f(\mathbf{x}^k),$$
 (5.2)

но может привести к неприемлемо большому количеству итераций, необходимых для достижения точки минимума. С другой стороны, слишком большой шаг может вызвать неожиданный рост функции (невыполнение условия (5.2)) либо привести к колебаниям около точки минимума.

Пример 1. Рассмотрим задачу минимизации функции $f(x) = ax^2$, где a — некоторое положительное число. Тогда формула (5.1) принимает вид

$$x^{k+1} = x^k - \alpha_k \cdot 2ax^k = (1 - 2\alpha_k a)x^k.$$

Очевидно, что при постоянном шаге α_k соответствующий процесс будет сходиться, если $0 < \alpha_k < 1/a$, и расходиться для $\alpha_k > 1/a$. Если положить $\alpha_k = 1/a$, то $x_1 = -x_0$, $x_2 = x_0$, $x_3 = -x_0$ и т. д. Процесс будет расходящимся.

В методе градиентного спуска с дроблением шага величина α_k выбирается так, чтобы было выполнено следующее неравенство:

$$f(\mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)) - f(\mathbf{x}^k) \le -\varepsilon \alpha_k |\nabla f(\mathbf{x}^k)|^2,$$
 (5.3)

где $0 < \varepsilon < 1$ — произвольно выбранная постоянная (одна и та же для всех итераций). Очевидно, что требование (5.3) на выбор шага более жёсткое, чем условие (5.3), но имеет тот же смысл: функция должна убывать от итерации к итерации.

Процесс (5.1) с выбором шага, удовлетворяющего неравенству (5.3), протекает следующим образом. Выбираем число $\alpha > 0$, одно и то же для всех итераций. На k-й итерации проверяем выполнение неравенства (5.3) при $\alpha_k = \alpha$. Если оно выполнено, полагаем $\alpha_{k+1} = \alpha$ и переходим к следующей итерации. Если нет, то шаг α_k дробим до тех пор, пока оно не выполнится. Геометрически градиентный спуск с дроблением шага изображен на рисунке. Здесь изображены линии уровня функции $f(\boldsymbol{x})$, имеющей минимум в точке x_* , причём $C_1 > C_2 > C_3 > \ldots$, и некоторая зигзагообразная траектория $x_0x_1\ldots x_k$, ортогональная в каждой точке x_0, x_1, \ldots, x_k соответствующим линиям уровня и приводящая из начальной точки x_0 в точку минимума x_* .

5.6. Метод наискорейшего спуска

Процесс, на каждой итерации которого шаг выбирается из условия минимума функции $f(\boldsymbol{x})$ в направлении движения, т.е.

$$f(\mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)) = \min_{\alpha \ge 0} f(\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k)),$$
(6.1)

называется методом наискорейшего спуска. В этом варианте градиентного спуска на каждой итерации требуется решать задачу одномерной минимизации. Разумеется, этот способ выбора α_k сложнее, чем рассмотренные в предыдущем пункте.

Геометрическая интерпретация метода наискорейшего спуска представлена на рисунке. В этом методе, в отличие от обычного градиентного спуска, направление движения из точки x_k касается линии уровня в точке x_{k+1} . Последовательность точек $x_0, x_1, \ldots, x_k, \ldots$ зигзагообразно приближается к точке минимума x_* , причём звенья

этого зигзага ортогональны между собой. В самом деле, шаг α выбирается из условия минимизации по α функции

$$\varphi(\alpha) = f(\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k)),$$

и поэтому

$$\frac{d\varphi(\alpha_k)}{d\alpha} = -\nabla f(\boldsymbol{x}^{k+1})\nabla f(\boldsymbol{x}^k) = 0.$$

Таким образом, направления спуска на двух последовательных итерациях взаимно ортогональны.

 Π р и м е р 1. Рассмотрим функцию $f(\boldsymbol{x}) = x_1^2 + 100x_2^2$ и используем метод наискорейшего спуска для решения задачи её минимизации из начальной точки $\boldsymbol{x}^0 = (1,1)^t$. Имеем

	x_1	x_2	$f(\boldsymbol{x})$	$\nabla f(\boldsymbol{x})$
0	1	1	101	200.01
1	0.9899990	-0.0000990	0.9800990	1.9800970
2	0.00970397	0.00970396	0.00951085	1.9408890
3	0.00960692	$-9.6069 \cdot 10^{-7}$	0.00009229	0.0192148

5.7. Метод Ньютона

Пусть функция $f(\boldsymbol{x})$ дважды дифференцируема в \mathbb{R}^n . Тогда для неё можно записать разложение по формуле Тейлора в окрестности точки \boldsymbol{x}^k :

$$f(\mathbf{x}) = f(\mathbf{x}^k) + \langle f'(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{1}{2} \langle f''(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + o(|\mathbf{x} - \mathbf{x}^k|^2).$$
 (7.1)

Отсюда видно, что повеление функции $f(\boldsymbol{x})$ с точностью до величины порядка $o(|\boldsymbol{x}-\boldsymbol{x}^k|^2)$ может быть описано квадратичной функцией

$$\Phi_k(\mathbf{x}) = \frac{1}{2} \langle f''(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k), (\mathbf{x} - \mathbf{x}^k) \rangle + \langle f'(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + f(\mathbf{x}^k).$$
 (7.2)

Минимизируем функцию $\Phi_k(\boldsymbol{x})$ вместо $f(\boldsymbol{x})$. Найдём её точку минимума \boldsymbol{x}^{k+1} из условия $\Phi_k'(\boldsymbol{x})=0$:

$$\Phi'_k(\mathbf{x}) = f''(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) + f'(\mathbf{x}^k) = 0.$$
(7.3)

Пусть матрица Гессе $f''(\boldsymbol{x})$ положительно определена при всех $\boldsymbol{x} \in \mathbb{R}^n$ и, следовательно, невырождена (det $f''(\boldsymbol{x}) > 0$). Тогда существует обратная матрица $[f''(\boldsymbol{x})]^{-1}$. Отметим, что квадратичная функция (7.2) с положительно определённой матрицей $f''(\boldsymbol{x}^k)$ сильно выпукла и уравнение (7.3) определяет единственную точку глобального минимума функции $\Phi_k(\boldsymbol{x})$. Умножим слева обе части равенства (7.3) на матрицу $[f''(\boldsymbol{x}^k)]^{-1}$ и найдём точку минимума \boldsymbol{x}^{k+1} квадратичной функции (7.2), аппроксимирующей $f(\boldsymbol{x})$ в окрестности точки $\boldsymbol{x} = \boldsymbol{x}^k$:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - [f''(\mathbf{x}^k)]^{-1} \cdot f'(\mathbf{x}^k), \quad k = 0, 1 \dots$$
 (7.5)

Итерационный процесс (7.5), начатый из произвольной точки $\mathbf{x}^0 \in \mathbb{R}^n$, называется методом Ньютона минимизации функции многих переменных.

Очевидно, что для квадратичной функции с положительно определённой матрицей A применение метода Ньютона обеспечивает получение точки глобального минимума ровно за один шаг из любой точки $\boldsymbol{x}^0 \in \mathbb{R}^n$.

Недостатком метода Ньютона является необходимость вычисления и обращения матрицы Гессе на каждой итерации.