# SEMANA 1: Espacio vectorial, Subespacio vectorial, Independecia lineal, Base, Dimensión

## (LABORATORIO CALIFICADO)

#### **ALUMNOS:**

- Escriba Flores, Daniel Agustin
- Palma Gongora, Yllari Fiorella

```
In [1]: #Importamos las Librerias necesarias para el trabajo
       # Tratamiento de datos
       # ==========
       import pandas as pd
       import numpy as np
       # Preprocesado y modelado
       from sklearn.decomposition import PCA
       from sklearn.pipeline import make_pipeline
       from sklearn.preprocessing import StandardScaler
       # Gráficos
       # ============
       import matplotlib.pyplot as plt
       # Configuración warnings
       # ===============
       import warnings
       warnings.filterwarnings('ignore')
```

#### PARTE A:

```
In [2]: #Leemos la base de datos
        data = pd.read_csv('comprar_alquilar.csv')
In [3]: #Verificamos que no cuente con valores nulos
        data.isnull().sum()
Out[3]: ingresos
        gastos_comunes 0
        gastos_otros 0
ahorros 0
vivienda
        estado_civil 0
hijos 0
        hijos
                         0
        trabajo
        comprar
        dtype: int64
In [4]: #creamos las variables gastos y financiar
        data['gastos'] = data['gastos_comunes'] + data['gastos_otros']+data['pago_coche']
        data['financiar'] = data['vivienda'] - data['ahorros']
        data
```

| Out[4]: |     | ingresos | gastos_comunes | pago_coche | gastos_otros | ahorros | vivienda | estado_civil | hijos | trabajo | con |
|---------|-----|----------|----------------|------------|--------------|---------|----------|--------------|-------|---------|-----|
|         | 0   | 6000     | 1000           | 0          | 600          | 50000   | 400000   | 0            | 2     | 2       |     |
|         | 1   | 6745     | 944            | 123        | 429          | 43240   | 636897   | 1            | 3     | 6       |     |
|         | 2   | 6455     | 1033           | 98         | 795          | 57463   | 321779   | 2            | 1     | 8       |     |
|         | 3   | 7098     | 1278           | 15         | 254          | 54506   | 660933   | 0            | 0     | 3       |     |
|         | 4   | 6167     | 863            | 223        | 520          | 41512   | 348932   | 0            | 0     | 3       |     |
|         | ••• |          |                |            |              |         |          |              |       |         |     |
|         | 197 | 3831     | 690            | 352        | 488          | 10723   | 363120   | 0            | 0     | 2       |     |
|         | 198 | 3961     | 1030           | 270        | 475          | 21880   | 280421   | 2            | 3     | 8       |     |
|         | 199 | 3184     | 955            | 276        | 684          | 35565   | 388025   | 1            | 3     | 8       |     |
|         | 200 | 3334     | 867            | 369        | 652          | 19985   | 376892   | 1            | 2     | 5       |     |
|         | 201 | 3988     | 1157           | 105        | 382          | 11980   | 257580   | 0            | 0     | 4       |     |

202 rows × 12 columns

In [5]: #Eliminamos Las 3 variables pedidas

data = data.drop(['gastos\_comunes', 'gastos\_otros', 'pago\_coche'],axis=1)
 data

| Out[5]: |     | ingresos | ahorros | vivienda | estado_civil | hijos | trabajo | comprar | gastos | financiar |
|---------|-----|----------|---------|----------|--------------|-------|---------|---------|--------|-----------|
|         | 0   | 6000     | 50000   | 400000   | 0            | 2     | 2       | 1       | 1600   | 350000    |
|         | 1   | 6745     | 43240   | 636897   | 1            | 3     | 6       | 0       | 1496   | 593657    |
|         | 2   | 6455     | 57463   | 321779   | 2            | 1     | 8       | 1       | 1926   | 264316    |
|         | 3   | 7098     | 54506   | 660933   | 0            | 0     | 3       | 0       | 1547   | 606427    |
|         | 4   | 6167     | 41512   | 348932   | 0            | 0     | 3       | 1       | 1606   | 307420    |
|         | ••• |          |         |          |              |       |         |         |        |           |
|         | 197 | 3831     | 10723   | 363120   | 0            | 0     | 2       | 0       | 1530   | 352397    |
|         | 198 | 3961     | 21880   | 280421   | 2            | 3     | 8       | 0       | 1775   | 258541    |
|         | 199 | 3184     | 35565   | 388025   | 1            | 3     | 8       | 0       | 1915   | 352460    |
|         | 200 | 3334     | 19985   | 376892   | 1            | 2     | 5       | 0       | 1888   | 356907    |
|         | 201 | 3988     | 11980   | 257580   | 0            | 0     | 4       | 0       | 1644   | 245600    |

202 rows × 9 columns

### **PARTE B**

```
In [6]: data1 = data[['ingresos','ahorros','vivienda','gastos','financiar']]
data1
```

| Out[6]: |                      | ingresos | ahorros | vivienda | gastos | financiar |  |  |  |
|---------|----------------------|----------|---------|----------|--------|-----------|--|--|--|
|         | 0                    | 6000     | 50000   | 400000   | 1600   | 350000    |  |  |  |
|         | 1                    | 6745     | 43240   | 636897   | 1496   | 593657    |  |  |  |
|         | 2                    | 6455     | 57463   | 321779   | 1926   | 264316    |  |  |  |
|         | 3                    | 7098     | 54506   | 660933   | 1547   | 606427    |  |  |  |
|         | 4                    | 6167     | 41512   | 348932   | 1606   | 307420    |  |  |  |
|         | •••                  |          |         |          |        |           |  |  |  |
|         | 197                  | 3831     | 10723   | 363120   | 1530   | 352397    |  |  |  |
|         | 198                  | 3961     | 21880   | 280421   | 1775   | 258541    |  |  |  |
|         | 199                  | 3184     | 35565   | 388025   | 1915   | 352460    |  |  |  |
|         | 200                  | 3334     | 19985   | 376892   | 1888   | 356907    |  |  |  |
|         | 201                  | 3988     | 11980   | 257580   | 1644   | 245600    |  |  |  |
|         | 202 rows × 5 columns |          |         |          |        |           |  |  |  |

```
In [7]: # Entrenando y escalando los datos
    pca_pipe = make_pipeline(StandardScaler(),PCA())
    pca_pipe.fit(data1)
    modelo_pca = pca_pipe.named_steps['pca']

In [8]: # convirtiendo el array a dataframe
    pd.DataFrame(data = modelo_pca.components_,columns = data1.columns,index = ['CP1','CP2','CP3','CP4',
Out[8]: ingresos ahorros vivienda gastos financiar
```

```
        CP1
        4.809684e-01
        0.454024
        0.529774
        1.531049e-01
        0.508359

        CP2
        2.656730e-01
        -0.068416
        -0.223026
        9.064812e-01
        -0.230843

        CP3
        3.730215e-01
        0.653946
        -0.361315
        -2.708149e-01
        -0.478875

        CP4
        7.476244e-01
        -0.594056
        -0.081290
        -2.854996e-01
        -0.006080

        CP5
        3.705110e-16
        -0.092917
        0.729686
        -1.734723e-16
        -0.677440
```

```
In [9]: # Porcentaje de varianza explicada acumulada
por_var_acum = modelo_pca.explained_variance_ratio_.cumsum()
print('Porcentaje de varianza explicada acumulada')
print(por_var_acum)

fig, ax = plt.subplots(nrows=1,ncols=1,figsize=(6,4))
ax.plot(np.arange(len(data1.columns)) + 1,por_var_acum, marker='o')

for x, y in zip(np.arange(len(data1.columns)) + 1, por_var_acum):
    label = round(y,2)
    ax.annotate(label,(x,y),textcoords="offset points",xytext=(0,10),ha='center')

ax.set_ylim(0,1.1)
ax.set_xticks(np.arange(modelo_pca.n_components_) + 1)
ax.set_title('Porcentaje de varianza explicada acumulada')
ax.set_ylabel('Componente principal')
ax.set_ylabel('Porcentaje de varianza acumulada');
```

]

Porcentaje de varianza explicada acumulada [0.61240781 0.82200126 0.95528763 1.



Tomamos 3 componentes pues muestra un porcentaje de 96%

#### PARTE C

componentes\_principales

```
In [10]: # Realizamos el PCA Con los 3 componentes
                                       pca_pipe_final = make_pipeline(StandardScaler(),PCA(n_components = 3))
                                       pca pipe final.fit(data1)
                                       modelo_pca_final = pca_pipe_final.named_steps['pca']
In [11]: # convirtiendo el array a dataframe
                                       data2 = pd.DataFrame(data = modelo_pca_final.components_,columns = data1.columns,index = ['CP1','CP2
                                       data2
Out[11]:
                                                              ingresos
                                                                                                        ahorros
                                                                                                                                             vivienda
                                                                                                                                                                                             gastos
                                                                                                                                                                                                                             financiar
                                                            0.480968
                                                                                                     0.454024
                                                                                                                                             0.529774
                                                                                                                                                                                      0.153105
                                                                                                                                                                                                                               0.508359
                                        CP2 0.265673
                                                                                                   -0.068416
                                                                                                                                           -0.223026
                                                                                                                                                                                      0.906481
                                                                                                                                                                                                                           -0.230843
                                        CP3 0.373021
                                                                                                     0.653946 -0.361315 -0.270815 -0.478875
In [14]: #Obtenemos La combinacion para cada componente en funcion de las variables
                                       n=len(data2)
                                       for i in range(n):
                                                        print("CP{:.0f} = {:.6f}(ingresos) + {:.6f}(ahorros) + {:.6f}(vivienda) + {:.6f}(gastos) + {:.6f}
                                                                            format(i+1,data2['ingresos'][i],data2['ahorros'][i],data2['vivienda'][i],data2['gastos'][i]
                                 CP1 = 0.480968(ingresos) + 0.454024(ahorros) + 0.529774(vivienda)+ 0.153105(gastos) + 0.508359(financ
                                 iar)
                                 CP2 = 0.265673(ingresos) + -0.068416(ahorros) + -0.223026(vivienda) + 0.906481(gastos) + -0.230843(fingresos) + -0.23084(fingresos) + -0.23084
                                  \text{CP3} = 0.373021(\text{ingresos}) + 0.653946(\text{ahorros}) + -0.361315(\text{vivienda}) + -0.270815(\text{gastos}) + -0.478875(\text{fingresos}) + -0.478875(\text{fin
                                 anciar)
In [15]: # Finalmente, para actualizar los valores de las componentes principales extraemos los valores de la
                                       componentes_principales = pd.DataFrame(data = modelo_pca_final.transform(data1.values),columns=['CP1
```

|     | CP1           | CP2            | CP3            |
|-----|---------------|----------------|----------------|
| 0   | 415667.530576 | -170381.718668 | -277629.919090 |
| 1   | 662308.006563 | -278896.190348 | -484020.071651 |
| 2   | 334326.920556 | -133251.075558 | -203373.784666 |
| 3   | 686826.041473 | -287835.465676 | -491334.644298 |
| 4   | 363194.551824 | -148532.425636 | -244277.836221 |
| ••• |               |                |                |
| 197 | 378461.336161 | -160662.371780 | -291927.648611 |
| 198 | 292102.533391 | -121059.069655 | -209823.803238 |
| 199 | 402714.025752 | -167753.863454 | -285056.649172 |
| 200 | 392071.033607 | -165216.174604 | -293288.897706 |
| 201 | 268921.366297 | -112411.855355 | -201802.410856 |

202 rows × 3 columns

In [ ]

Out[15]: