FYS2130 regneoppgaver uke 01

Klaudia Pawlak

27. Januar 2021

Oppgave 1. Les av koeffisientene

a) For å finne amplituden A og periodetiden T ser vi på den gitte svingningen. Vi markerer mål vi gjør for å finne disse parameterne, se figur 1.

Figur 1. Svingningen til oppgave 1 a)

Amplituden er legden mellom likevekstlinjen og den høyeste punktet. Periode er tiden det tar for svingningen for å komme til samme svingetilstand. Vi får derfor at amplituden A er 1, og at perioden T er 4.

Svar:

$$A = 1$$

$$T = 4$$

b) For å finne amplituden A og frekvensen f ser vi på den gitte svingningen. Vi vett at frekvensen er den inverse av perioden T, altså

$$f = \frac{1}{T}$$

Vi markerer mål vi gjør for å finne disse parameterne, se figur 2. Vi gjør det på samme måten som i forrige deloppgaven.

Figur 2. Svingningen til oppgave 1 b)

Her er amplituden A lik 3, og at perioden T lik $\frac{5}{4}$. Frekvensen blir derfor

$$f = \frac{1}{T} = \frac{1}{\frac{5}{4}} = \frac{4}{5}$$

Svar:

$$A = 3$$

$$f = \frac{4}{5}$$

c) Vinkelfrekvens sier noe om hvor raskt en legeme roterer seg. Vi vett at vinkelfrekvens ω er gitt ved

$$\omega = \frac{2\pi}{T}$$

Og at faseforskyvningen ϕ kan vi finne ut fra funksjonen

$$f(t) = A\cos(\omega t + \phi)$$

Vi markerer målene på figur 3.

Figur 3. Svingningen til oppgave 1 c)

d) Her er amplituden A lik 1, og at perioden T lik 4.5. Vinkelfrekvens vil derfor bli

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{4.5} = \frac{4}{9}\pi$$

Vi ser fra figuren at

$$f(0) = 0.25$$

Og faseforskyvningen ϕ vil derfor bli

$$f(0) = cos(\omega \cdot 0 + \phi) = cos(\phi) = 0.25$$
$$cos(\phi) = 0.25$$
$$\phi = arccos(0.25) = 1.32 \ rad$$

Svar:

$$\omega = \frac{4}{9}\pi$$

$$\phi = 1.32 \, rad$$

Oppgave 2. Enkel harmonisk bevegelse

a) Vi tegner opp systemet, se figur 4.

Figur 4. Frilegemediagram

Der \vec{F} er kontaktkraft fra fjæren til loddet og \vec{G} er gravitasjonskraft. Vi ser bort ifra luftmotstand.

Gravitasjonskraft \vec{G} er

$$\vec{G} = mg = -k\Delta x$$

Newtons andre lov (N2L) sier at

$$\vec{F} = ma$$

Dette gir oss at

$$\sum \vec{F} = mg - kx = ma = m\ddot{x}$$

Og at

$$mg - k(x + x_0) = m\ddot{x}$$

Setter at $x_0 = 0$:

$$mg - kx = m\ddot{x}$$

$$\ddot{x} = -\frac{-k}{m}x$$

b) Vi har at

$$x(t) = Asin(\omega t) + Bcos(\omega t)$$

$$\dot{x}(t) = \frac{dx}{dt} = \omega A cos(\omega t) - \omega B sin(\omega t)$$
$$\ddot{x}(t) = \frac{d^2x}{dt^2} = -\omega^2 A sin(\omega t) - \omega^2 B cos(\omega t) = -\omega^2 x(t)$$

Vi løser svingefrekvensen ω

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{8}{2}} = 2s^{-1}$$

Setter vi initialbetingelsene

$$x(0) = B = 0.4m$$

 $v(0) = \omega A = v_0 \to A = -\frac{2}{2} = -1\frac{m}{s^2}$

Da får vi

$$x(t) = -\sin(2t) + 0.4\cos(2t)$$

c) Den mekaniske energien til systemet er gitt som

$$E_f + E_k = \frac{1}{2}kx^2 + \frac{1}{2}m\dot{x}^2$$

$$= \frac{1}{2}k(A\sin(\omega t + \phi))^2 + \frac{1}{2}m(\omega A\cos((\omega t + \phi)))^2$$

$$= \frac{1}{2}kA^2\sin^2(\omega t + \phi) + \frac{1}{2}m\omega^2A^2\cos^2(\omega t + \phi)$$

$$= \frac{1}{2}kA^2\sin^2(\omega t + \phi) + \frac{1}{2}kA^2\cos^2(\omega t + \phi)$$

$$= \frac{1}{2}kA^2(\sin^2(\omega t + \phi) + \cos^2(\omega t + \phi)) = \frac{1}{2}kA^2 = \frac{1}{2}8 \cdot 1 = 4$$

Den mekaniske energien til systemet er bevart (energien er konstant).

d) Vi plotter løsningen av likningen i Python, og får

Formen på plottet er en ellipse.

e)

Oppgave 3. Fjærpendel og energifordeling

а

b) Vi har samme system som i forrige oppgave, derfor bruker vi samme utregninger videre (uten noe verdier eller initialbetingelser)

$$\sum_{k} \vec{F} = mg - kx = ma = m\ddot{x}$$
$$\ddot{x} = -\frac{-k}{m}x$$

Den potensielle energien til systemet er definert som

$$E_f = \frac{1}{2}kx^2$$

Siden

$$E_{tot} = E_f + E_k$$

Vi skal ha at

$$E_{tot} = \frac{1}{2}kA^2$$

Siden det er da vi får en maksimalutslag (hastighet v=0). Vi vil finne hvor stort er utslaget. Setter vi $E_k=\frac{1}{2}E_P$, og får

$$E_{tot} = E_f + E_k$$

$$E_{tot} = E_f + \frac{1}{2}E_f$$

$$E_{tot} = \frac{1}{2}kx^2 + \frac{1}{2}\left(\frac{1}{2}kx^2\right) \quad \blacksquare$$

$$E_{tot} = \frac{3}{2}kx^2$$

$$\frac{1}{2}kA^2 = \frac{3}{2}kx^2$$

$$x = \sqrt{\frac{A^2}{3}} = \frac{A}{\sqrt{3}} \quad \blacksquare$$

Oppgave 4. Sprettball

a) Vi tegner plottet og får

Figur 6.

b)

Figur 7.

c) Bevegelsen kan ikke beskrives med en sinusoidal kurven og kan derfor ikke kalles for harmonisk.

Oppgave 5. Masse i fjær

Vi vil finne tyngdekraften slik at vi kan sjekke hvilken planet vi er på. Vi vett at $\Delta L=1.85cm$. Siden den oscillerer 10 ganger på 4.44s, så for vi at

$$\omega \cdot 4.44 = 2\pi \cdot 10$$

$$\omega = \sqrt{\frac{k}{m}} = 2\pi \cdot \frac{10}{4.44}$$

$$\frac{k}{m} = \left(2\pi \cdot \frac{10}{4.44}\right)^2$$

Vi bruker Newtons første lov (N1L), og får at

$$mg = k\Delta L = 0$$

$$g = \frac{k}{m}\Delta L$$

$$g = \left(2\pi \cdot \frac{10}{4.44}\right)^2 \cdot 0.0185$$

$$g = \frac{3.70480m}{s^2}$$

På internettet finner vi at Merkur har samme tyngdekraften. Derfor vett vi at vi er på Merkur.