EME5943 현대제어시스템

김종현 교수

State-space model

Difference equations

- Not continuously in time, but discrete instants of time
 - → Discrete-time system

$$\frac{dx}{dt} = f(x,u) \qquad \Rightarrow \qquad x[k+1] = f(x[k], u[k])$$

$$y = h(x, u)$$
 \Rightarrow $y[k] = h(x[k], u[k])$

Linear cases

State-space models

Simulation & Analysis

- Predicting evolution of system state from an initial condition
 - ✓ in closed form
 - ✓ through computer simulation
- Analyzing overall behavior of system without simulation

ex) mass-spring-damper system

State-space models

Simulation & Analysis

Stability of an equilibrium point

ex) Equation of motion of mass-spring-damper system with no input

$$\frac{dx}{dt} = \begin{pmatrix} x_2 \\ -\frac{c}{m}x_2 - \frac{k}{m}x_1 \end{pmatrix}$$

If the initial state of the system is away from the rest position, the system will return to the rest position eventually...

the rest position is asymptotically stable

Solving differential equations

ODEs

$$\frac{dx}{dt} = f(x, u) y = h(x, u)$$

$$u \in \mathbb{R}^p y \in \mathbb{R}^q$$

p = q = 1 \Rightarrow single-input, single-output (SISO) systems

Solution?

$$\frac{dx(t)}{dt} = F(x(t)) \quad \text{for all } t_0 < t < t_f \qquad \text{Many solutions}$$

Initial value problem

A unique solution

Solving differential equations

Lipschitz continuity

For guaranteeing existence & uniqueness

$$\frac{dx}{dt} = F(x)$$

$$||F(x) - F(y)|| < c||x - y||$$
 for all x, y

• Sufficient condition

$$\partial F/\partial x$$
 uniformly bounded for all x

$$\frac{dx}{dt} = x^2$$

$$\frac{dx}{dt} = 2\sqrt{x}$$

Phase portraits

- Plotting solution of differential equation
- Solutions (streamlines) from different initial conditions

Equilibrium points & Limit cycles

- Equilibrium points
 - ✓ Stationary conditions for the dynamics

state
$$x_e$$

$$\frac{dx}{dt} = F(x)$$

✓ How many?

현대제어시스템

Dynamic behavior (2)

Equilibrium points & Limit cycles

• Ex) Inverted pendulum

$$\frac{dx}{dt} = \begin{pmatrix} x_2 \\ \sin x_1 - cx_2 + u\cos x_1 \end{pmatrix}$$

open loop dynamics

Equilibrium points & Limit cycles

- Limit cycles
 - ✓ Stationary periodic solutions
 - ✓ Ex) Electronic oscillator

$$\frac{dx_1}{dt} = x_2 + x_1(1 - x_1^2 - x_2^2), \quad \frac{dx_2}{dt} = -x_1 + x_2(1 - x_1^2 - x_2^2)$$

Limit cycle

$$T > 0$$
 if $x(t+T) = x(t)$ for all $t \in \mathbb{R}$

To determine limit cycle

- analytical methods for second-order system
- generally, computational analysis

Definitions

Solution to a differential equation with initial condition *a*

Stable?

if other solutions that start near a stay close to x(t;a)

if for all
$$\varepsilon > 0$$
 there exists a $\delta > 0$

$$||b-a|| < \delta$$

if for all $\varepsilon > 0$ there exists a $\delta > 0$

$$||b-a|| < \delta$$
 \Rightarrow $||x(t;b)-x(t;a)|| < \varepsilon$ for all $t > 0$

If a solution is stable in this sense and the trajectories do not converge

An important special case

$$x(t;a) = x_e$$

the equilibrium point is stable

neutrally stable equilibrium point

In stability in the sense of Lyapunov,

$$x(t;b) \to x(t;a)$$

 $x(t;b) \to x(t;a)$ as $t \to \infty$ for b sufficiently close to a

stable for all initial conditions $x \in B_r(a)$ $B_r(a) = \{x : ||x - a|| < r\}$

$$B_r(a) = \{x : ||x - a|| < r\}$$

for all r > 0

Ex) Inverted pendulum

$$\frac{dx}{dt} = \begin{pmatrix} x_2 \\ \sin x_1 - cx_2 + u\cos x_1 \end{pmatrix}$$

open loop dynamics

$$x_e = \begin{pmatrix} \pm n\pi \\ 0 \end{pmatrix}$$

Stability of linear systems

$$\frac{dx}{dt} = Ax, \quad x(0) = x_0$$

determined by eigenvalues of system matrix

$$\lambda(A) = \{s \in \mathbb{C} : \det(sI - A) = 0\}$$
 characteristic polynomial

Ex) eigenvalue

$$Ax = sx$$
 $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ $x = \begin{bmatrix} 4 \\ -4 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Eigenvalue equation

$$Ax = sx$$

$$\lambda(A) = \{ s \in \mathbb{C} : \det(sI - A) = 0 \}$$

- Only depending on A
 - → Stability of the system

Stability of linear systems

Simple cases

Diagonal matrix

$$\frac{dx}{dt} = \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} x \qquad \Longrightarrow$$

$$\lambda(A) = \{ s \in \mathbb{C} : \det(sI - A) = 0 \}$$

$$\lambda_j \leq 0$$

$$\lambda_j < 0$$

Stability of linear systems

Diagonalization

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}, \quad AP = P \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

$$P = (\vec{\alpha}_1 \ \vec{\alpha}_2 \ \cdots \ \vec{\alpha}_n), \qquad A\vec{\alpha}_i = \lambda_i \vec{\alpha}_i \qquad (i = 1, 2, \cdots, n).$$
 $A\vec{\alpha}_i = Sx$

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{bmatrix}.$$

$$v_1 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}.$$

$$P = \begin{bmatrix} -1 & 0 & -1 \\ -1 & 0 & 0 \\ 2 & 1 & 2 \end{bmatrix}.$$

$$P^{-1}AP = \begin{bmatrix} 0 & -1 & 0 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -1 & 0 & 0 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\frac{dx}{dt} = Ax$$

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

transformed system is stable original system has the same type of stability

Theorem 5.1 (Stability of a linear system). The system

$$\frac{dx}{dt} = Ax$$

is asymptotically stable if and only if all eigenvalues of A have a strictly negative real part and is unstable if any eigenvalue of A has a strictly positive real part.

