Homework 14

2023年2月15日

记 u_{α} 为正态分布的上 α 分位数, $t_{n}(\alpha)$, $F_{m,n}(\alpha)$, $\chi_{n}^{2}(\alpha)$ 分别为自由度为n的t分布, 自由度为m, n的F分布,自由度为n的卡方分布的上 α 分位数. \bar{X} 为样本均值, $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$ 为样本方差.

4. 随机从一批钉子中抽取9枚, 测得其长度(单位: cm)为

2.15, 2.13, 2.10, 2.14, 2.15, 2.16, 2.12, 2.11, 2.13.

假设钉子长度服从正态分布,分别在下列两种情况下,求出总体均值的90%置信区间:

(1) $\sigma = 0.01$; (2) σ 未知.

Sol.

(1) σ 已知, 枢轴变量

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1),$$

只与 μ 和**X**有关,因此一个 $1-\alpha=90\%$ 置信区间为[$\bar{X}-u_{\alpha/2}\sigma/\sqrt{n}, \bar{X}+u_{\alpha/2}\sigma/\sqrt{n}$],代入数值, $\bar{X}=2.132, u_{\alpha/2}=1.65,$ 置信区间为[2.127, 2.138].

(2) σ未知, 枢轴变量

$$\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1},$$

因此 $1-\alpha$ 置信区间为[$\bar{X}-t_{n-1}(\alpha/2)S/\sqrt{n}, \bar{X}+t_{n-1}(\alpha/2)S/\sqrt{n}$],代入数值, $S=0.020, t_8(0.05)=1.86$,置信区间为[2.120, 2.145].

- 8. 假设(0.4,2.5,1.8,0.7)是来自总体X的简单随机样本. 已知 $Y = \ln X$ 服从正态 $N(\mu,1)$.
 - (1) 求X的数学期望a = E(X);
 - (2) 求µ的95%和90%置信区间;

(3) 求 a 的 95% 和 90% 置信区间.

Sol.

- (1) Y的概率密度函数为 $f_Y(y) = \frac{1}{\sqrt{2\pi}} exp\{-\frac{(y-\mu)^2}{2}\}$, 由密度变换公式, X的概率密度函数为 $f_X(x) = \frac{1}{\sqrt{2\pi}x} exp\{-\frac{(\ln x-\mu)^2}{2}\}I(x>0)$, 易得期望 $a=\exp(\mu+1/2)$.
- (2) $Y = \ln X$ 的样本为(-0.916,0.916,0.588,-0.357), $\bar{Y} = 0.0578$, $2(\bar{Y} \mu) \sim N(0,1)$, 因此 μ 的1- α 置信区间为 $[\bar{Y} u_{\alpha/2}/2, \bar{Y} + u_{\alpha/2}/2]$, $u_{0.025} = 1.96$, $u_{0.05} = 1.645$, μ 的95%置信区间为[-0.922, 1.038], 90%置信区间为[-0.765, 0.880].
- (3) 设 μ 的1 $-\alpha$ 置信区间[U, L],则a的1 $-\alpha$ 的置信区间为[$\exp(U+1/2)$, $\exp(L+1/2)$],因此a的95%置信区间为[0.656, 4.654], 90%置信区间为[0.767, 3.976]. 11. 一家企业更换了领导,采取了新的经营策略. 随机选取公司11种商品,更换经营策略前后一个季度的销量(单位:万元)如下,假设销量服从正态分布:

前	69.3	38.0	131.4	123.1	127.3	57.7	95.7	89.4	93.8	102.0	73.3
后	72.5	33.5	132.1	129.8	121.2	54.0	104.6	92.6	119.4	84.7	85.1

- (1) 求更换经营策略前平均销量的95%置信区间;
- (2) 求更换经营策略后平均销量的95%置信区间:
- (3) 求更换经营策略前后平均销量差异的95%置信区间。

Sol.

记 $\bar{X} = 91$ 和 $S_1^2 = 883.58$ 是之前的销量的样本均值和样本方差, $\bar{Y} = 93.59$ 和 $S_2^2 = 1011.89$ 是之后的样本均值和样本方差.

- (1) 方差未知, $\alpha = 0.05$, 1α 置信区间为[$\bar{X} S_1 t_{n-1}(\alpha/2)/\sqrt{n}$, $\bar{X} S_1 t_{n-1}(\alpha/2)/\sqrt{n}$], 代入数值得[71.03, 110.97].
- (2) 方差未知, $1-\alpha$ 置信区间为 $[\bar{Y}-S_2t_{n-1}(\alpha/2)/\sqrt{n}, \bar{Y}-S_2t_{n-1}(\alpha/2)/\sqrt{n}]$, 代入数值为[72.22, 114.96].
- (3) 记 $Z_i = X_i Y_i$, $\bar{Z} = -2.59$, $S_3^2 = 123.63$ 为 Z_1 , \cdots , Z_n 的样本方差, 则 1α 置信区间为[$\bar{Z} S_3 t_{n-1}(\alpha/2)/\sqrt{n}$, $\bar{Z} S_3 t_{n-1}(\alpha/2)/\sqrt{n}$], 代入数值为[-10.06, 4.88]

12. 试求第11题种,

- (1) 更换经营策略前销量方差的95%置信区间;
- (2) 更换经营策略后销量方差的95%置信区间;
- (3) 更换经营策略前后销量差方差的95%置信区间.

Sol.

- (1) 因为枢轴变量 $(n-1)S_1^2/\sigma_1^2 \sim \chi_{n-1}^2$,因此 σ_1^2 的 $1-\alpha$ 置信区间为[$(n-1)S_1^2/\chi_{n-1}^2(\alpha/2)$, $(n-1)S_1^2/\chi_{n-1}^2(1-\alpha/2)$],代入数值得 σ_1^2 的置信系数为95%的置信区间为[431.37,2721.25].
 - (2) 类似(1), 用 Y_1, \dots, Y_n , 得到 σ_2^2 的置信系数为95%的置信区间为[494.01, 3116.42].
- (3) 类似(1), 用 Z_1, \dots, Z_n , 前后销量差方差的置信系数为95%的置信区间为[60.36, 380.75].
- 17. 假设咏机器包装精盐的质量服从正态分布 $N(\mu, \sigma^2)$. 现从生产线上随机抽取10袋, 测得其质量(单位: g)为

501.5, 500.7, 492.0, 504.7, 483.0, 512.8, 504.0, 490.3, 486.0, 520.0.

试在下列两种情况下分别求总体方差的95%和90%置信区间:

(1) $\mu = 500$ g; (2) μ 未知.

Sol.

(1) $\mu = 500$ g, 记 $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 = 124.776$, 枢轴变量 $nS_n^2/\sigma^2 \sim \chi_n^2$, σ^2 的 $1 - \alpha$ 置信区间为 $[nS_n^2/\chi_n^2(\alpha/2), nS_n^2/\chi_n^2(1-\alpha/2)]$, 代入数值,

置信系数为95%的置信区间为[60.92,384.28], 置信系数为90%的置信区间为[68.16,316.67].

(2) μ 未知, 样本方差 $S^2=138.36$, 枢轴变量 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$, 代入数值,

置信系数为95%的置信区间为[65.46, 461.14], 置信系数为90%的置信区间为[73.60, 374.50].

- 31. 试求4题中, 分别在下列两种情况下, 这批钉子总体标准差的95%置信上限:
 - (1) $\mu = 2.12$; (2) $\mu \pm 3$ (2).

Sol.

- (1) $\[\text{记}S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2 = 0.0005, \ nS_n^2/\sigma^2 \sim \chi_n^2, \ \sigma^2$ 的 1α 置信上限为 $nS_n^2/\chi_n^2(1-\alpha) = 1.35 \times 10^{-3}, \ \sigma$ 的 1α 置信上限为 $\sqrt{nS_n^2/\chi_n^2(1-\alpha)} = 3.68 \times 10^{-2}.$
- (2) μ 未知时, $\alpha = 0.05$, σ^2 的 1α 置信上限为 $(n-1)S^2/\chi^2_{n-1}(1-\alpha) = 1.15 \times 10^{-3}$, σ 的 1α 置信上限为 $\sqrt{(n-1)S^2/\chi^2_{n-1}(1-\alpha)} = 3.40 \times 10^{-2}$. 常见错误汇总: (1) 均值方差算错; (2) 11.(3)认为前后方差相等; (3) 错误或者不好的枢轴变量; (4) 31题置信限算成置信区间的上界