Лекция 3. Преоразование Фурье

1 Общая конструкция преобразования Фурье

Пусть есть топологическая группа G. Определелим характер $\gamma \in Hom(G, S^1), S^1 = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$), притом потребуем того, что γ — непрерывен.

Определение 1. Дуальная группа $\hat{G} = \{\gamma\}$ определена поточечным умножением характеров.

Теорема 1 (Понтрягина о двойственности). Если G — абелева топологическая группа, тогда $\hat{G} = G$.

При этом, если G — компактна, то \hat{G} — дискретна. Если G — дискретна, то \hat{G} — компактна.

Топологические группы с нестандартной топологией могут быть представлены как стандратные топологии на смежных классах G/H, H < G.

Упражнение 1. Можно ли придумать нестандартную топологию на конечной группе, которая не встречатеся среди стандартных групповых топологий?

Определение 2. Преобразование Фурье: $F:f(x)\mapsto \hat{f}(\gamma)=\int\limits_G f(x)\overline{\gamma(x)}d\mu,$ где μ — левая мера Хаара.

Характеры $\mathbb{R}: \gamma_t(x) = \exp(2\pi i t x), t \in \mathbb{R}, \ \hat{\mathbb{R}} = \mathbb{R}.$ Преобразование Фурье выглядит так: $\hat{f}(t) = \int\limits_{-\infty}^{\infty} f(x) \exp(-2\pi i t x) dx.$ Тор $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, его характеры $\gamma_t = \exp(2\pi i t x), t \in \mathbb{Z}$, дуальная группа

Тор $\mathbb{T}=\mathbb{R}/\mathbb{Z}$, его характеры $\gamma_t=\exp(2\pi itx), t\in\mathbb{Z}$, дуальная группа $\hat{\mathbb{T}}=\mathbb{Z}$. Преобразование Фурье: $\hat{f}(j)=\int\limits_0^1 f(x)\exp(-2\pi ijx)dx$.

Соответственно $\hat{\mathbb{Z}} = \mathbb{T}$, так как достаточно задать $\gamma(1) = \exp(2\pi i\alpha)$.

Для
$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$$
 характеры такие: $\gamma_j(x) = \exp(2\pi i \frac{jx}{n}), \hat{f}(j) = \sum_{x=0}^{n-1} f(x) \exp(-2\pi i \frac{jx}{n}).$

Упражнение 2. Топология на $\mathbb{Z}_{(2)}$ — односторонние двоичные последовательности со сложением. Проверить, что это компактная группа.

Упражнение 3. Преобразование Фурье на \mathbb{Z}_2^n .