Calcul différentiel

13 mars 2019

Différentielle

1.1

Etudier la continuité, l'existence de dérivées partielles et la différentiabilité

a)
$$\frac{(\sin(x^2)+\sin(y^2))}{\sqrt{x^2+y^2}}$$

a)
$$\frac{(\sin(x^2) + \sin(y^2))}{\sqrt{x^2 + y^2}}$$

e) $(x^2 + y^2) \sin(\frac{1}{\sqrt{x^2 + y^2}})$

Prolongement.

Soit U un ouvert de \mathbb{R}^n et $f: U \to E$ une application continue. Soit $a \in U$. On suppose que f est différentiable sur $U \setminus \{a\}$ et que df(x) admet en a la limite L. Montrer que f est différentiable en a et que df(a) = L.

1.3

Soit $f: \mathbb{R}^p \to \mathbb{R}^q$ telle que $\forall x, y \quad ||f(x) - f(y)|| \leq ||x - y||^2$. Montrer que f est constante. On considère de même $f: \mathbb{Q}^p \to \mathbb{R}^q$ (resp. $f: \mathbb{R}^p \setminus \mathbb{Q}^p \to \mathbb{R}^q$) vérifiant la même condition. Que dire de f?

1.4

Soit A une partie fermé non vide de \mathbb{R}^n . On pose $f: x \mapsto d(x, A) = d_A(x)$. (i) Si f est différentiable en $x_0 \in \mathbb{R}^n \setminus A$, montrer:

$$\exists ! a \in A, \ d_A(x_0) = ||x_0 - a||_2, \ \nabla f(x_0) = \frac{x_0 - a}{||x_0 - a||_2}$$

(ii) Si A est convexe, montrer que f est C^1 sur $\mathbb{R}^n \setminus A$.

1.5

Soit U un ouvert de \mathbb{R}^n , $\varphi_1, \ldots, \varphi_k : U \to \mathbb{R}$. Soit $\psi(x) = \min \varphi_i(x)$. Montrer que si les φ_i sont continues, il en est de même de ψ . On suppose les φ_i de classe C^1 et soit $x_0 \in U$; trouver une condition nécessaire et suffisante pour que ψ soit différentiable en x_0 .

2 Dérivées partielles

2.1 Fractions rationnelles

Etudier le caractère C^2 de la fonction f définie par f(0,0)=0 et sinon par $f(x,y)=xy\frac{x^2-y^2}{x^2+y^2}$.

2.2 EDP

Résoudre l'équation aux dérivées partielles

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

où $f \in C^2(]0, +\infty[^2, \mathbf{R})$ en posant u = xy et v = x/y.

2.3

Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^m , $(m \geq 2)$ telle que $f(0) = \frac{\partial f}{\partial x_i}(0) = 0$, $(i = 1, \ldots, n)$. Soit $a_{ij} = (1/2) \frac{\partial^2 f}{\partial x_i \partial x_j}(0)$. Montrer qu'il existe des applications g_{ij} de classe C^{m-2} vérifiant $g_{ij} = g_{ji}$, $g_{ij}(0) = a_{ij}$ et $\forall x \quad f(x) = \sum_{i,j} g_{ij}(x) x_i x_j$.

3 Optimisation

3.1

On fixe deux éléments p, q de [0, 1]. Déterminer les valeurs possibles pour P(X = Y) lorsque X, Y sont des variables aléatoires sur un même espace probabilisé suivant les lois de Bernoulli de paramètres respectifs p et q.