Appendix E: Torsion calculations

	Maximum	Experience	Maximum	Experience	Experience	Rotational
	Torque	d	tangential	d tangential	d radial	speed
	[Nm]	Torque [Nm]	force [N]	force [N]	force [N]	[rad/s]
Gear 1 [12T]	3	0.941	450	148.228	53.95	14.537
Gear 2 [36T]	3.4	2.627	700	137.879	50.184	4.508
Gear 3 [24T]	3	2.627	300	206.819	75.276	4.508
Gear 4 [24T]	3	2.489	300	195.99	71.335	4.272
Gear 5 [12T]	3	2.489	450	391.98	142.669	4.272
Gear 6 [36T]	3.4	6.946	700	364	132.709	1.324
Gear 7 [24T]	1	6.946	580	546.923	199.064	1.324
Gear 8 [48T]	1.2	13.269	580	522.417	190.144	0.638
Gear 9 [48T]	1.2	12.922	580	508.74	185.166	0.621

Figure 1: Table from appendix C

The table above shows the summary torque calculated

Torsional shear stress

 We can state the torsional shear stress formula as:

TG

$$\tau_{\text{max}} = \frac{TC}{J}$$

$$J = \frac{\pi D^4}{32} (for solid bar)$$

 $\tau = applied \, Torque$

C = radius of the cross section

J = Polar moment of ineratia of the cross section

The above equation from "Mechanic of Materials" 11th edition, written by Russell C. Hibbeler will be used to determine shear strength

Shaft 1	
Given yield strength of the shaft:	$\sigma_{shaft_1}\!\coloneqq\!450~ extbf{MPa}$
Given maximum torque the shaft can withstand:	$T_{max_shaft1}\!\coloneqq\! 5 \; extbf{ extit{N}}\!\cdot\! extbf{ extit{m}}$
Radius of the cross section:	$c_{shaft_1} \coloneqq 1.59~m{mm}$
Polar moment of inertia of a square shaft:	$J_{shaft_1} \coloneqq rac{2 \cdot c_{shaft_1}^4}{6}$
	$J_{shaft_1}\!=\!2.13$ $m{mm}^4$
Maximum shear stress the shaft can withstand:	$ au_{max_shaft1} \coloneqq rac{T_{max_shaft1} \cdot c_{shaft_1}}{J_{shaft_1}}$
	$ au_{max_shaft1}\!=\!3.732~ extbf{\textit{GPa}}$
The shear strength that the shaft will ex experiencing from table 1	perience will be calculated using the torque it is
Shaft 1 experienced torque:	$T_{shaft1_ex}\!\coloneqq\!0.941~ extbf{ extbf{N}}\!\cdot\! extbf{m}$
Shaft 1 experienced shear stress:	$ au_{shaft1_ex} \coloneqq rac{T_{shaft1_ex} ullet c_{shaft_1}}{J_{shaft_1}}$
	$ au_{shaft1_ex}$ = 702.295 MPa

