1. Цель работы

Вычислить спектры сигналов (преобразование Фурье для каждого сигнала); построить графики, определить ширину полосы частот, занимаемой множеством BCGX сигналов. каждым сигналом И Вычислить последовательности сигналов (для нескольких различных последовательностей различной длины); сравнить со спектрами одиночных сигналов, объяснить ширину полосы частот, различие; определить занимаемой различными сигналов, сравнить значения между собой, последовательностями ЭТИ объяснить различие.

Вариант задания: ЧМ, 1. ${\rm f0 = 980 \; \Gamma u, \; f1 = 1180 \; \Gamma u}$

 $Vm = 300 \, \text{Бод}, \, Vinf = 300 \, \text{бит/c}$

2. Вывод выражений спектра отрезка гармоник

Имеется сигнал:

Спектр данного сигнала будет рассчитываться следующим образом:

– некоторая произвольная функция(огибающая)

По теореме о	свертке: $\square_{\square}(\square)$	$=\Box(\Box)\Box\Box(\Box),$, где □(□) □ □(□	\Box), \Box (\Box) \Box \Box (\Box)

– гармонический сигнал(несущая)

где,

Тогда получаем, что:

Рассмотрим функцию:

Подставим □(□) в формулу прямого преобразования Фурье:
Подставим в выражение (1.1) получившуюся формулу (1.2) и получим итоговое выражение преобразования Фурье для отрезка функции косинуса:
Теперь рассмотрим сигнал:
— некоторая произвольная функция(огибающая) — гармонический сигнал(несущая) По теореме о свертке: □ _s (□) = □(□) □ □(□), где □(□) □ □(□), □(□) □ □(□)
где, Аналогично выражениям (1.1) и (1.2) получаем:
(1.4)
Подставим значение спектра огибающего сигнала $\square(\square)$, определенное по формуле (1.5), в формулу (1.4) и получим итоговое выражение преобразования Фурье для отрезка функции синуса:
 3. Преобразование Фурье для сигнального множества Преобразование Фурье □_i(□) сигналов дискретной частотной модуляции □□(□), где i= 0q-1, выглядит следующим образом:

Амплитудные спектры сигналов дискретной фазовой модуляции будут определятся как модули функций \Box \Box (\Box).

Ширина полосы частот:

Рисунок 1 Амплитудные спектры сигналов

4. Вывод выражения спектра последовательности сигналов

Последовательность сигналов можно задать следующим образом:

Воспользуемся свойствами преобразования Фурье:

1) Задержка: $\square(\square-\square)=\square(\square)$ $\square^{-\square 2\square\square\square}$

Рисунок 2 Спектр последовательности длинной 2, заданной одним индексом

Рисунок 3 Спектр последовательности длинной 8, заданной одним индексом

5. Вывод

Фурье для отрезков гармоник сигналов косинуса и синуса. Было проведено преобразование Фурье для сигналов множества с фазовой модуляцией, определены их амплитудные спектры и ширина полосы частот. Так же была выведена формула преобразования Фурье для последовательностей сигналов, определен спектр для различных последовательностей, состоящих из сигналов множества, и построены соответствующий графики для нескольких различных последовательностей. Ширина полосы частот при сложении N одинаковых сигналов уменьшается в N раз.

В ходе данной лабораторной работы были выведены формулы преобразования

6. Код

```
clear all
clc
close all
nFig = 1; % Vi=300, Vm=300
T = 1/300;
A = 1;
F0 = 980;
F1 = 1180;
Ns = 1000;
df = (1 / T) / Ns;
f = 0:df:3600;%779
S1 = A*sinc((f-F0)*T)+sinc((f+F0)*T).*exp(-1j*pi*f*T);%579
S2 = A*sinc((f-F1)*T)+sinc((f+F1)*T).*exp(-1j*pi*f*T);%590
figure(nFig)
hold on
plot (f, abs(S1(:)))
plot (f, abs(S2(:)))
hold off
xlabel('f,gz')
ylabel('S(f)')
legend('S1')
N = 8;%Приблизительно уменьшается в n раз
S12 = zeros(1, length(f));
S22 = zeros(1, length(f));
for l = 1:N
S12 = S12 + S1.*exp(-1j*2*pi*(l-1)*f*T);
S22 = S22 + S2.*exp(-1j*2*pi*(l-1)*f*T);
end
figure();
hold on;
plot(f, abs(S12(:)));
plot(f, abs(S1));
hold off
xlabel('f,gz')
ylabel('S(f)')
legend('S1')
figure();
hold on;
plot(f, abs(S22(:)));
plot(f, abs(S2));
xlabel('f,gz')
ylabel('S(f)')
legend('S2')
```