Machine Learning Exercise 5

何舜成

2012011515

1. Show KKT condition is necessary condition and sufficient in some cases:

Proof:

A standard form of optimal problem can be described as follow

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, \dots, m$
 $h_i(x) = 0, i = 1, \dots, p$

where $x \in \mathcal{R}^n$ and the domian $\mathcal{D} = \bigcap_{i=0}^m \mathbf{dom} f_i \cap \bigcap_{i=1}^p \mathbf{dom} h_i$ not empty. And the optimal solution is p^* .

Define Lagrangian function

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

where λ and μ are called Lagrangian multiplier.

Define Lagrangian dual function

$$g(\lambda, \mu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu) = \inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x))$$

Suppose \tilde{x} is feasible to primal problem, then for all $\lambda \geq 0$ and μ

$$\sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \sum_{i=1}^{p} \mu_{i} h_{i}(x) \le 0$$

$$L(\tilde{x}, \lambda, \mu) = f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x) \le f_0(\tilde{x})$$

therefore

$$g(\lambda, \mu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu) \le L(\tilde{x}, \lambda, \mu) \le f_0(\tilde{x})$$

Consider the Lagrangian dual problem

$$max \quad g(\lambda, \mu)$$

 $s.t. \quad \lambda_i \ge 0, i = 1, \dots, m$

the dual problem is convex optimal problem. If (λ^*, μ^*) is the optimal solution and the target function reaches d^* at (λ^*, μ^*) , we easily get this inequality

$$d^* < p^*$$

and we call this weak duality. Likewise, if

$$d^* = p^*$$

holds true, we call this strong dualtiy.

In condition of strong duality and the existence of optimal solution x^* of primal problem, we have

$$f_0(x^*) = g(\lambda^*, \mu^*) \tag{1}$$

$$= \inf_{x} (f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \mu_i^* h_i(x))$$
 (2)

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \mu_i^* h_i(x^*)$$
 (3)

$$\leq f_0(x^*) \tag{4}$$

Therefore the inequalities are forced to be equal. We can infer

$$\left. \frac{\partial L(x, \lambda^*, \mu^*)}{\partial x} \right|_{x = x^*} = 0$$

from the third equation (supposing f_i and h_i are differentiable), and infer

$$\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0$$

or $\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$ from the fourth equation.

To conclude, if x^* and (λ^*, μ^*) are optimal solutions of the primal and dual problem respectively, and strong duality is sufficed, KKT condition

(1) x^* is primal feasible

$$f_i(x) \leq 0, i = 1, \cdots, m$$

$$h_i(x) = 0, i = 1, \cdots, p$$

(2) (λ^*, μ^*) are dual feasible

$$\lambda^* > 0, i = 1, \cdots, m$$

(3) complementary slackness

$$\lambda^* f_i(x^*) = 0, i = 1, \dots, m$$

(4) stationary

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \mu_i^* \nabla h_i(x^*) = 0$$

will hold true simultaneously. KKT condition is necessary.

KKT condition is also sufficient if

$$\left. \frac{\partial L(x, \lambda^*, \mu^*)}{\partial x} \right|_{x=x^*} = 0 \Rightarrow L(x^*, \lambda^*, \mu^*) = \inf_{x \in \mathcal{D}} (x, \lambda^*, \mu^*)$$

Proof:

Combining the condition above with the (4) equation in KKT condition, we get

$$g(\lambda^*, \mu^*) = L(x^*, \lambda^*, \mu^*)$$

According to other 3 conditions, we know

$$g(\lambda^*, \mu^*) = f_0(x^*)$$

Therefore we can infer x^* and (λ^*, μ^*) are optimal solutions of primal and dual problem respectively from weak duality. KKT condition is sufficient.

2. Give the dual problem of SVM when linear inseparable

Slackness variables are introduces when data are linear inseparable. The primal problem

$$min \quad \frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i$$

$$s.t. \quad y_i(w^T x_i + b) \ge 1 - \xi_i, \forall i \in [n]$$

$$\xi_i \ge 0, \forall i \in [n]$$

The Lagrangian function is

$$L(w, b, \xi, \alpha, r) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^n r_i \xi_i$$

for all $i \in [n], \alpha_i \geq 0, r_i \geq 0$.

Set the partial derivatives to zero, and we get

$$\frac{\partial L}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\frac{\partial L}{\partial \xi_i} = 0 \quad \Rightarrow \quad C - \alpha_i - r_i = 0, \forall i \in [n]$$

According to the previous exercise,

$$L(w, b, \xi, \alpha, r) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

Therefore the dual can be described as follow

$$max \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$s.t. \quad 0 \le \alpha_i \le C, \forall i \in [n]$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

3. Design an algorithm to calculate gradient of the loss function of neural network

Mathematical model of artificial neural network:

$$x^{l} = f(u^{l}), u^{l} = (W^{l-1})^{T} x^{l-1} + b^{l}$$

where l denotes the current layer with the output layer designated to be layer L and the input layer designated to be layer 1. Function $f(\cdot)$ is a nonlinear function (i.e. sigmoid or hyperbolic tangent). Define the loss function as

$$E(x^L,t)$$

where \boldsymbol{x}^L is the network output and t is the target output. Usually we choose

$$E(x^{L}, t) = \frac{1}{2}||t - x^{L}||^{2}$$

Since

$$E(x^{L}, t) = E(f((W^{L-1})^{T} x^{L-1}), t)$$

we can write the derivatives w.r.t. W^{L-1}

$$\frac{\partial E}{\partial W^{L-1}} = x^{L-1} (f'(u^L) \star \frac{\partial E}{\partial x^L})^T$$

where \star denotes elementwise multipying, and if we define

$$\delta^L = f'(u^L) \star \frac{\partial E}{\partial x^L}$$

we get

$$\frac{\partial E}{\partial W^{L-1}} = x^{L-1} (\delta^L)^T$$

If we calculate the δ term recursively

$$\delta^{l} = f'(u^{l}) \star ((W^{l})^{T} \delta^{l+1}), l = L - 1, \cdots, 2$$

it is easy to write

$$\frac{\partial E}{\partial W^l} = x^l (\delta^{l+1})^T, l = L - 2, \cdots, 1$$