Trapping and imaging of single atom in the present of light shift

Yichao Yu May 26, 2016 Ni Group/Harvard

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

2/7

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

$$\beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

$$\beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Atom	Cs			Na
λ_{trap}	922	935	970	700
β_{cycle}	2	1	0.6	-1

Cs single atom loading

λ_{trap}	922	935	970
Loading	0	≈ 50	≈ 50

Cs single atom imaging

3/7

- Alternate between resonant and trap light
- Switching at 1 − 3MHz
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at 1 − 3MHz
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at 1 3MHz
- Being able to load single
 Na atom

Conclusion

- Measured the effect of light shift on loading and imaging of single atom
- Overcome the light shift by alternating trapping and resonant light to achieve loading of single Na atom.

5/7