

Preet Kanwal

Department of Computer Science & Engineering

Unit 2

Preet Kanwal

Department of Computer Science Engineering

Unit 2 - Pumping Lemma for Regular Languages

 \sum^* is the set of all strings over the alphabet $\sum = \{a,b\}$ \sum^* is the universal language where it has many finite languages and infinite languages as shown in figure.

Unit 2 - Pumping Lemma for Regular Languages

a*b* is language which contains any number of a's followed by any number of b's.

Unit 2 - Pumping Lemma for Regular Languages

Formal language is of two types.

- 1. finite language
- 2. infinite language with example shown in figure.

The regular languages can be finite or infinite languages and regular languages corresponds to

- DFA/NFA
- Regular grammar
- Regular Expression

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Is there any infinite language for which we cannot construct a Finite Automata?

That means, a language which is not regular?

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

PES UNIVERSITY

Let's look at an example:

Unit 2 - Pumping Lemma for Regular Languages

Let's look at an example:

Unit 2 - Pumping Lemma for Regular Languages

Let's look at an example:

$$S \rightarrow aS \mid F$$
 $F \rightarrow bF \mid \lambda$

Regularing

$$S \rightarrow aS \mid F$$
 $F \rightarrow bF \mid \lambda$

Regularinar

Unit 2 - Pumping Lemma for Regular Languages

Finite Acceptor or

Regular Grammar or

Regular Expression

???????????

Unit 2 - Pumping Lemma for Regular Languages

Basically,

There is no way to remember how many a's you have seen to compare with the upcoming b's!

The value of n could be anything!

We cannot come up with a FA that takes care of all n!

Unit 2 - Pumping Lemma for Regular Languages

Basically,

There is no way to remember here you have seen to compare with the Non-Regular! You have Definitely Non-Regular!

The value or in could be anything!

We cannot come up with a FA that takes care of all n!

Unit 2 - Pumping Lemma for Regular Languages

We cannot come up what a FA that takes care of all n!

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Limits of Finite Automata:

Finite States!

A finite automata can only "count"

that is,

It can maintain a counter, where different states correspond to different values of the counter.

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Languages which are not regular do not have a simple repeating pattern. Either they have no pattern at all or they have more than one pattern, with multiple patterns being correlated with each other. All of our mechanisms for dealing with regular languages - finite automata, RegEx and regular grammars are unable to deal with such languages.

Unit 2 - Pumping Lemma for Regular Languages

To understand the limitation of a finite number of states being able to handle only regular languages with their simple repeating pattern. We use the pigeonhole principle to show the languages are not regular.

Pigeonhole principle says that only n things at most can fit into n slots or holes.

The repeating pattern is handled by the loop in the finite automaton for the language.

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

if |w| >= n

we visit a set of states more than once

Unit 2 - Pumping Lemma for Regular Languages

The Pigeonhole Principle

Unit 2 - Properties of Regular Languages

The Pigeonhole Principle

There is a pigeonhole with more than 1 pigeon

Unit 2 - Properties of Regular Languages

The Pigeonhole Principle

There is a pigeonhole with more than 1 pigeon

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Visiting Multiple States:

- Let D be a DFA with n states.
- Any string w accepted by D that has length at least n must visit some state twice.
- Number of states visited is equal to the length of the string plus one.
- By the pigeonhole principle, some state is duplicated.
- The substring of w between those revisited states can be removed, duplicated, tripled, etc. without changing the fact that D accepts w.

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

we visit a set of states more than once which means,

there exists a loop in our Automata (within these n states)

if we pump that loop 0 or more no. of times,

the resultant string will always be in the language

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

There exists 3 parts to a string w:

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

There exists 3 parts to a string w:

Unit 2 - Pumping Lemma for Regular Languages

Let's take an example of infinite regular language ab*c

There exists 3 parts to a string w:

 $y \neq \epsilon$ that is |y| >= 1

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

w = abbbc |w| = 5 > n

n = 3

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >=1 and |xy| <= n

w = abbbc|w| = 5 > n

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >=1 and |xy| <= n

w = abbbc|w| = 5 > n

n =3

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

$$|w| >= n$$

There exists a break up of the string in three parts w = xyz such that |y| >= 1 and |xy| <= n, for every i >= 0,

xyⁱz belongs to L

w = abbbc |w| = 5 > n

n =3

w = abc x = a y = b z = c

Unit 2 - Pumping Lemma for Regular Languages

The Pumping property States,

For every Regular language L, (infinite)

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

$$|w| >= n$$

There exists a break up of the string in three parts w = xyz s uch that |y| >= 1 and |xy| <= n, for every i >= 0,

xyⁱz belongs to L

w = abbbc |w| = 5 > n

n =3

$$w = abc$$

 $x = a$

$$y = b$$

$$z = c$$

for i>=0, abⁱc is in lang ab*c

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

For every Regular language L,

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >= 1 and |xy| <= n,

for every $i \ge 0$,

xyⁱz belongs to L

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

For every Regular language L,

there exists n where n is the # states in Finite Automata for L

For every string w that belongs to L such that,

There exists a break up of the string in three parts w = xyz such that |y| >= 1 and |xy| <= n,

for every i >= 0, xyⁱz belongs to L Replace
For every ----> ♥
There exists ---->
∃
belongs to ----> ∈

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

- **▼** Regular language L,
- **=** n where n is the # states in Finite Automata for L
- \forall string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$\forall$$
 i >= 0, $xy^iz \subseteq L$

```
Replace
For every ----> ♥
There exists ---->
∃
belongs to ----> ∈
```

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

- **▼** Regular language L,
- **∃** n where n is the # states in Finite Automata for L
- \forall string $\mathbf{w} \subseteq \mathbf{L}$ such that,

- \exists w = xyz such that |y| >= 1 and |xy| <= n,
- \forall i >= 0, $xy^iz \subseteq L$

To Prove a lang is Non-Regular

~Pumping Property

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

- Regular language L,
- In where n is the # states in Finite Automata for
- \forall string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$\forall$$
 i >= 0, $xy^iz \subseteq L$

To Prove a lang is Non-Regular

~Pumping Property

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages (infinite)

Pumping Property

In where n is the # states in Finite Automata for

$$\forall$$
 string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$xy^iz \in L$$

To Prove a lang is Non-Regular

~Pumping Property

a language L which is claimed to be regular,

n where n is the # states in Finite Automata for L

 \exists string $w \subseteq L$ such that,

 \forall w = xyz such that |y| >= 1 and |xy| <= n,

$$\exists i >= 0,$$

A

This contradicts the claim made, hence proving that the language is not regular

Unit 2 - Pumping Lemma for Regular Languages

A

For Regular Languages (infinite)

Pumping Property

In where n is the # states in Finite Automata for

$$\forall$$
 string $\mathbf{w} \subseteq \mathbf{L}$ such that,

 \exists w = xyz such that |y| >= 1 and |xy| <= n,

$$\forall$$
 i >= 0,

$$xy^iz \in L$$

To Prove a lang is Non-Regular

~Pumping Property

Unit 2 - Pumping Lemma for Regular Languages

To Prove a lang is Non-Regular

~Pumping Property

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Procedure to prove a language is Not regular:

- 1. Assume the opposite: L is regular
- 2. Use Pumping Lemma to obtain a contradiction

It suffices to show that only one string gives a contradiction

3. Thereby proving L is not regular

Unit 2 - Pumping Lemma for Regular Languages

Procedure to prove a language is Not regular:

- 1. Assume the opposite: L is regular
- 2. Use Pumping Lemma to obtain a contradiction

String must be chosen appropriately

It suffices to show that only one **String** gives a contradiction

3. Thereby proving L is not regular

Unit 2 - Pumping Lemma for Regular Languages

For Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Pumping lemma as a game

Unit 2 - Pumping Lemma for Regular Languages

Pumping lemma is a game between

You vs. Adversary

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Adversary

Claims L is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Claims L is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Adversary
Claims L is regular

There are n states in my automata for L

The loop is xyⁱz

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Find some i, so that the resultant string is not in L

Adversary

Claims L is regular

The are n states in my automata for L

The loop is xyⁱz

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Okay! here is the string w
from L such that
|w| >= n
Could you tell me where is
the loop in your machine?

Find some i, so that the resultant string is not in L

Adversary

Claims L is regular

The are n states in my automata for L

The loop is xyⁱz

Unit 2 - Pumping Lemma for Regular Languages

You

The role

You won!

GAME OVER

Adversary

laims L is regular

e are n states in my

Okay! Gimme the states in your machi

Okay! here is the st from L such th $|\mathbf{w}| >= \mathbf{n}$

Could you tell me w

the loop in your machine?

automata for L

The loop is xyⁱz

Okay! but for some i, the resultant string is not in L

Unit 2 - Pumping Lemma for Regular Languages

Using Pumping lemma prove that the language aⁿbⁿ is not regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Adversary

Claims $L = a^n b^n$ is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims $L = a^n b^n$ is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10

Now tell me where is the loop in your automata?

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop? aaaaaabbbbbbb

Pump up, $i=2 \rightarrow a^5ababb^5 \notin L$

 $a^5(ab)^ib^5$

Unit 2 - Pumping Lemma for Regular Languages

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop? agaaaabbbbbbbb

Pump down, i=0 \rightarrow a⁶b⁵ \notin L Pump up, i=2 \rightarrow a⁶b⁷ \notin L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

aaaaaabbbbbb

```
Pump down, i=0 \rightarrow a^{6}b^{7}
i=1 \frac{doesn't help!!}{a^{6}(b)^{i}b^{5}}
```

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop? aaaaaabbbbbbb

For every break up possible we got some i that will result in a string \(\begin{aligned}
 & to L \)

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10

Now tell me where is the loop in your automata?

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

We saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10Now tell me where is the

loop in your automata?

Okay! but for some i, nothing worked out!

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

We saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string a^6b^6

|w| >= 10

Now tell me where is the loop in your automata?

Okay! but for some i, nothing worked out!

Adversary

Claims $L = a^n b^n$ is regular

There are 10 states in my automata for L

We saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the states in your machi

okay! I'll choose the a⁶b⁶

|w| >= 10

Now tell me where is the loop in your automata?

Okay! but for some i, nothing worked out!

Adversary

 $ns L = a^n b^n is regular$

e are 10 states in my automata for L

e saw and explored different possibilities where the loop could be

Unit 2 - Pumping Lemma for Regular Languages

Using Pumping lemma prove that the language of palindromes www over {a,b}* is not regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Adversary

Claims L = ww is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L = ww is regular

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

Adversary

Claims L = ww is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

You

The role

Okay! Gimme the no. of states in your machine for L

okay! I'll choose the string $a^n a^n$

 $|\mathbf{w}| >= \mathbf{n}$

Now tell me where is the loop in your automata?

Adversary

Claims L = ww is regular

There are n states in my automata for L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a..aa...a..aa..a

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a.aa...a.aa...a

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a..aa..aa..a

aⁿ⁻²(aa)ⁱaⁿ

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

Let's Pump down, i=0

```
= a^{n-2}a^n
= a^{n-2}a^2a^{n-2}
= a^{n-1}a^{n-1}
```

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

$$a...a..aa..aa..aa..aa..a$$
 $a^{n-2}(aa)^ia^n$

Let's Pump up, i=3

- $= a^{n-2}(aa)^3a^n$
- $= a^{n-2}(a^2)^3a^n$
- $= a^{n-2}a^6a^n$
- $= a^{n-2}a^4a^2a^n$
- $= a^{n-2+4}a^{n+2}$
- $= a^{n+2}a^{n+2}$

Automata Formal Languages and Logic Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

a...a..aa..a..a..a

 $a^{n-2}(aa)^{i}a^{n}$

Pump up or Pump down, resultant string will always belong to L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

Pump up or Pump down, resultant string will always belong to L

Unit 2 - Pumping Lemma for Regular Languages

Where is the loop?

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724