FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

IMS - Modelování a simulace

Ohrev vody v rodinnom dome solárnym systémom.

2019

Juraj Holub (xholub40)

Matej Parobek (xparob00)

Obsah

1	Uvod	2
	1.1 Zdroje infromácií a autori práce	2
	1.2 Validácia navrhovaného modelu	
2	Rozbor navrhovaného systému a použitých technológií	2
	2.1 Postup požitý pre vytvorenie modelu	3
	2.2 Povod použitých technológií	3
3	Konceptuálny model	3
	3.1 Petriho sief	3
4	Architektúra programu	3
	4.1 Ročný cyklus	4
	4.2 Solárna energia	4
	4.3 Používanie programu	
5	Simulačné experimenty	5
	5.1 Experiment 1	5
	5.2 Experiment 2	
	5.3 Experiment 3	
	5.4 Experiment 4	
6	Záver	5
A	Tabuľkové hodnoty pre návrh solárnej tepelnej techniky	7

1 Úvod

Stavebníctvo má v dnešnej dobe veľký dopad na životné prostredie. Spôsob získavania tepelnej energie pre ohrev obytných objektov pomocou alternatívnych zdrojov produkuje nezanedbateľne menšie množstvo CO_2 spalín. Táto práca analyzuje systém na ohrev vody pomocou solárneho panelu, ktorý ohrieva zásobník s vodou. Výsledok práce je zhodnofenie dopadu získavania tepelnej energie zo solárnych panelov na životné prostredie oproti získavaniu tepla spaľovaním zemného plynu a vyhodnotenie efektívnosti navrhovaného systému.

1.1 Zdroje infromácií a autori práce

Postupy a výpočetné vzťahy pre návrh konkrétneho solárneho systému boli použité s odbornej publikácie [1] určenej projektantom solárnej techniky. Pre validáciu návrhu bola použitý konkrétny navhrhovaný projekt publikovaný v nasledujúcej práci [3]. Referenčný návrh vytvoril vedecký pracovník Energetického ústavu Fakulty strojního inženýrství VUT v Brne Ing. Ján Tuhovčák, Ph.D. ako záverečnú prácu a úspešne ju obhájil s klasifikáciou A. Simulačný model vytvorili Juraj Holub A Matej Parobek na základe týchto informácií.

1.2 Validácia navrhovaného modelu

Výsledky našeho návrhu sú korelované s ročným vyhodnotením z hľadiska energetických nárokov objektu, ktoré poskytuje referenčný návrh. Naše výsledky pre rovnaké časové obdobie sa zhodovali s týmito podkladmi. Z tohto hľadiska bol model vyhodnotený ako validný.

2 Rozbor navrhovaného systému a použitých technológií

V rodinnom dome je v prevádzke systém na ohrev vody pomocou zemného plynu s bežným kotlom. Denná spotreba teplej vody je približne 50 l na osobu. V rodinnom dome zo 4 obyvateľmi sa spotreba tepla na ohrev vody pohybuje okolo 3 700 kWh za rok. Spotreba je rovnomerná po celý rok, nezávislo od ročného obdobia. Naopak produkcia tepelnej energie pomocou solárnych panelov je závislá na ročnom období. Pre daný solárny panel a rodinný dom miestom v Brne je produkcia tepla pre jednotlivé kalendárne mesiace závislá od nasledujúcich faktorov:

- Počet dní v mesiaci.
- Objem zásobníka na vodu.
- Sklon solárnych panelov, ich plocha a orientácia (juh).
- Teoreticky dopadajúca slnečná energia (príloha A, obrázok 2).
- Pomerná dĺžka slnečného svitu (príloha A, obrázok 3).
- Stredná teplota vzduchu (príloha A, obrázok 4).
- Stredná intenzita slnečného žiarenia (príloha A, obrázok 5).

Ak solárna energia v danom mesiaci nepostačuje na pokrytie spotrebovaného tepla tak sa požadovaná energia získava sekundárnym zdrojom, ktorým je plynový kotol. Na druhej strane, prebitky solárnej energie sa v navrhovanom systéme vôbec nevyužívajú. Navrhovaný solárny systém neprodukuje žiadne spaliny CO₂. Naproti tomu, spaľovanie plynu produkuje 202g CO₂ spalín ¹ na 1 kWh vyprodukovaného tepla. Podľa referenčnej práce sú emisie spojené s vybudovaním solárneho systému porovnateľné s emisiami na vybudovanie pôvodného systému. S tohto dôvodu emisie spojené s vybudovaním systému táto práca neuvažuje.

¹Zdroj https://www.oplyne.info/ecology/porovnanie-produkcie-znecistujucich-latok...

2.1 Postup požitý pre vytvorenie modelu

Zo získaných vstupných informácií bol vytvorneý abstraktný model (IMS [2] slide 9.) vo forme Petriho siete (IMS [2] slide 123.). K nemu bol vytvorený ekvivalentný simulačný model (IMS [2] slide 44.) v programovacom jazyku C++ za použitia knihovny **SIMLIB**². Knihovna bola zvolená s ohľadom na zložitoť modelu. Použitie robustnejšej knihovny by vzhľadom na náročnosť abstraktného modelu bolo neprimerané. Táto knihovna poskytuje základné prostriedky pre diskrétne modelovanie (IMS [2] slide 44.) ako sú procesy (IMS [2] slide 121.) alebo obslužné linky (IMS [2] slide 138.) a to pomocou prostriedkov Objektovo Orientovaného Programovania (OOP).

2.2 Povod použitých technológií

Na vytvorenie Petriho siefe boli využité postupy preberané na predmete IMS [2] v kapitole *Diskrétní simulace*. Simulačný model bol implementovaný v jazyku C++ za použitia OOP abstrakcie a funkcionality zo štandardnej knihovny pre štandard z roku 2014. Program je prekladaný pomocou GNU C++ prekladača g++ ³ . Knihovnu SIMLIB je využívaná pod licenciou GNU LGLP ⁴ .

3 Konceptuálny model

Na základe rozboru navrhovaného systému bol vytvorený konceptuálny model (IMS [2] slide 48.) popísaný v tejto kapitole. Najmenšia časová jednotka v modeli je jeden deň. Takáto jednotka bola zvolená preto, že vyprodukované solárne zisky v systéme máme dostupné vždy pre časové obdobie jeden mesiac. Pre zmysluplné zhodnotenie výstupov musí model simulovať čas minimálne v rádoch rokov. Je tomu tak preto lebo na základe rozboru⁵ je návratnosť systému približne v období 35 rokov a menšie časové obdobie ako roky by teda neprinieslo hodnotné informácie.

Vyprodukovaná tepelná energia je reprezentovaná procesmi, kde 1 kWh tepla vyprodukovaná alebo spotrebovaná za deň je reprezentovaná jedným a viac procesmi (počet procesov definuje uživateľ). Väčšie množstvo procesov reprezentujúcich jednu jednotku tepelnej energie zvyšuje presnosť simulácie ale taktiež zvyšuje výpočetnú náročnosť.

3.1 Petriho sief

Konceptuálny model reprezentovaný pomocou Petriho siete je priložený na obrázku 3.1. Stav (IMS [2] slide 123.) *Nový mesiac* má na začiatku jeden čakajúci proces. Tento proces okamžite prechádza do stavu *Začiatok mesiaca*, kde je pozdržaný presne 1 mesiac a následne sa vracia do stavu *Nový mesiac*. Prechod z *nového mesiaca* do *začiatok mesiaca* indukuje moment kedy v simulačnom čase začína nový kalendárny mesiac. Na začiatku nového mesiaca sa vygeneruje *m* procesov do stavu *Zdroj solárnej energie*, kde *m* je rovné množstvu kWh tepla vyprodukovaného v daný mesiac solárnym panelom. Táto energia sa rozloží na celý mesiac pomocou časovaného prechodu s rovnomerným rozložením (IMS [2] slide 89.) na intervale pokrývajúcom celý mesiac v jednotkách dňov. Následne každý proces reprezentujúci solárnu energiu prioritne prejde do stavu *Spotrebovaná solárna energia* a to práve vtedy ak ešte nebola pokrytá denná spotreba energie. Množstvo denne požadovanej energie určuje linka *Denná spotreba* s kapacitou *n*, kde *n* reprezentuje dennú spotrebu energie na ohrev vody. Procesy ktoré linku obsadia ju po 1 dni vždy uvoľnia. Ak je linka v daný deň už plne obsadená, tak proces prechádza do stavu *Prebytočná solárna energia*. Tento stav reprezentuje solárnu energiu, ktorá nemá byť ako využitá. Naopak ak v danom dni nebolo vyprodukované dostatočné množstvo solárnej energie na pokrytie dennej spotreby, tak na konci dňa na linke *Denná spotreba* ostáva nevyužitá voľná kapacita. Táto kapacita na konci dňa reprezentuje množstvo energie, ktoré nebolo dodané solárnym systémom a preto táto energia musela byť získaná spaľovaním zemného plynu.

4 Architektúra programu

Priebeh simulácie je veľmi závislý od simulačného času a to špecificky od mesiaca, ktorý je aktuálne simulovaný. Architektúra programu preto implementuje špeciálnu datovú štruktúru ktorá uchováva informácie o aktuálnom mesiaci

²Project SIMLIB: http://www.fit.vutbr.cz/ peringer/SIMLIB/.cs

³GNU project https://gcc.gnu.org/

⁴GNU Lesser General Public License https://www.gnu.org/licenses/lgpl-3.0.html

⁵Zdroj [3] viď. strana 41

Obrázek 1: Navrhnutý konceptuálny model vo forme Petriho siete.

v simulačnom čase. Tok jednej jednotky solárnej energie v priebehu mesiaca je simulovaný n procesmi, kde $n \ge 1$ (n určuje uživateľ). Každý takýto proces vznikne a zanikne v rámci jedného mesiaca. Množstvo aktuálne vygenerovaných procesov opäť závisí od aktuálneho mesiaca. Každý proces (na základe miesta v petriho sieti) pridáva v priebehu simulácie datá do datovej štruktúri, ktorá zaznamenáva štatistické informácie o priebehu simulácie. Po uplinutí simulačného času po ktorý mala simulácia bežať je zo získaných štatistík dopočítané potrebné množstvo energie vyprodukovanej spaľovaním zemného plynu, ceny za vykurovanie a vyprodukované emisie.

4.1 Ročný cyklus

Ako popisuje sekcia 3.1, miesto *Nový mesiac* je obsadené 1 procesom vždy na začiatku nového kalendárneho mesiaca. Toto chovanie zabezpečuje proces, ktorý sa vždy uspí na mesiac. Avšak jednotlivé mesiace v roku sa líšia počtom dní. Preto je v rámci celého programu dostupná datová štruktúra, ktorá uchováva aktuálne prebiehajúci mesiac roku, pričom na začiatku je iniciovaná prvým mesiacom každého kalendárneho roku. Pri vstupe do miesta *Nový mesiac*, tento proces vždy nastavený ďalší kalendárny mesiac v roku. Toto chovanie sa cyklicky opakuje po uplinutí roku. Táto štruktúra obsahuje pre každý mesiac príslušný počet dní a taktiež množstvo vyprodukovanej solárnej energie v danom mesiaci. Proces mesiaca sa teda vždy uspí na počet dní príslušný aktuálnemu mesiacu a zároveň vygeneruje príslušné množstvo procesov solárnej energie.

4.2 Solárna energia

Proces reprezentujúci solárnu energiu sa po svojom vzniku uspí a to na dobu vygenerovanú generátorom pseudonáhodných čísel (IMS [2] slide 167.) s rovnomerným rozložením R(0, b-1), kde b je počet dní v aktuálnom mesiaci. Takto sa spotreba energie rovnomerne rozloží na celý mesiac. Keď je proces aktívny, pokúsi sa obsadiť jedno miesto v linke Denná spotreba. Linka má kapacitu rovnú celkovej dennej spotrebe energie na ohrev vody. Ak je linka dostupná, tak ju proces obsadí, uspí sa na 1 deň a následne uvoľní linku a zanikne.

4.3 Používanie programu

Simuláčný čas programu vždy začína v čase 0 a jeho dĺžku môže uživateľ nastaviť v rokoch. Ďalej môže uživateľ nastaviť množstvo spotrebovanej solárnej energie za rok a to v jednotkách kWh. Taktiež môže uživateľ stanoviť

množstvo procesov reprezentujúcich 1 kWh tepelnej energie. Uživateľom sa doporučuje voľiť množstvo procesov na základe mesačnej spotreby. Mesačné pohyby energie v systéme sú v rádoch stoviek kWh. Cena a emisie pre menšie jednotky tepelnej energie sú zanedbateľne malé. Napríklad pre mesačne vyprodukovaných 500.4 kWh (s voľbou 1 proces na 1 kWh tepla) vznikne 500 procesov. Ak by sme chceli reprezentovať energiu o ešte o jeden rád presnejšie (10 procesov na 1 kWh) tak by pre 500.4 kWh vzniklo 5004 procesov. Výpočetná náročnosť by teda vzrástla 10-násobne ale výpočet by bol presnejší len o 0.4 kWh čo znamená, že výpočet sa spresní približne o 2%.

Program sa dá preložiť spustením priloženého Makefile a následne spustiť:

```
./ims-project -y 30 -e 3700 -p 6
```

Argument –y definuje počet odsimulovaných rokov, argument –e definuje ročnú spotrebu energie a –p množstvo procesov na 1 kWh energie.

5 Simulačné experimenty

V tejto sekcii sa zhodnotí dopad produkcie tepelnej energie zo solárnych panel na životné prostredie v porovnaní s energiou získanou spaľovaním zemného plynu. Na vytvorený model sa aplikovalo niekoľko experimentov s cieľom zistiť koľko ročnú investíciu predstavuje využitie tohto systému.

5.1 Experiment 1

pustíme to na 1 rok a overíme validitu modelu

5.2 Experiment 2

pustíme to na rozne vela rokov a budeme sledovat navratnost v case

5.3 Experiment 3

zvýšime množstvo vyproduk energ a sledujeme v čase

5.4 Experiment 4

znížime množstvo vyproduk energ a sledujeme v čase

6 Záver

Reference

- [1] Cihelka, J. Solární tepelná technika. Praha: T. Malina, první vydání, 1994, ISBN 80-900759-5-9.
- [2] Petr Peringer, M. H. Modelovani a simulace. Poslední modifikace September 2019 [vid. 2019-11-09]. URL https://www.fit.vutbr.cz/study/courses/IMS/public/prednasky/IMS.pdf
- [3] Tuhovčák, J. Solární systém. 2010, vedoucí bakalářské práce Ing. Libor Chroboczek. URL https://www.vutbr.cz/studenti/zav-prace?zp_id=28601

A Tabuľkové hodnoty pre návrh solárnej tepelnej techniky

Obrázek 2: Teoreticky možná energia dopadajúca za deň na plochu v jednotlivých mesiacoch.

Obrázek 3: Pomerná doba slnečného svitu.

Obrázek 4: Stredná teplota v dobe slne č ného svitu v jednotlivých mesiacoch.

Obrázek 5: Stredná intenzita slnečného žiarenia v jednotlivých mesiacoch.