

GRUNDLAGEN DER ELEKTROTECHNIK ET1

Teil 1b: Einführung in die Wechselspannungsrechnung

Graphik:

http://de.wikipedia.org/wiki/Stromnetz

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

1.9.1 Problemstellung

- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

PROBLEMSTELLUNG

Stromnetz versorgt Haushalte mit Wechselspannung

PROBLEMSTELLUNG

Kernfragen der Vorlesung

- 1. Was ist Wechselspannung?
- 2. Wie kann man sie messen?
- 3. Wie kann man sie verändern?

Man unterscheidet:

Gleichstrom

DC: Direct Current

Wechselstrom

AC: Alternating Current

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

WECHSELGRÖßEN

zeitlich veränderliche Größen in Kleinbuchstaben u, i, ...

$$P = const.$$

aber

$$p(t) = f(t)$$

Kurzform bei Spannung und Strom:

$$u(t) = u$$

$$i(t) = i$$

PERIODISCHE GRÖßEN

Periodische Funktion:

Schwingung:

Frequenz:

Scheitelwert u_S :

Amplitude \hat{u} :

wiederholt ihre Werte nach einer bestimmten Zeit T

periodischer Vorgang innerhalb der Periode T

$$f = \frac{1}{T}$$
 $[f] = \frac{1}{s} = 1 \text{ Hertz (1 Hz)}$

Anzahl der Schwingungen pro Sekunde

maximaler Wert des Signals

maximale Auslenkung um die Ruhelage

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

KENNGRÖßEN PERIODISCHER SCHWINGUNGEN

Die wesentlichen Kenngrößen neben Amplitude und Frequenz:

Mittelwert
 Frage: Um welchen Wert oszilliert die Spannung?

- 2. Gleichrichtwert Welcher Mittelwert ergibt sich nach Gleichrichtung?
- 3. Effektivwert Welche Gleichspannung führt zu der gleichen Leistung?

MITTELWERT \overline{u}

Arithmetisches Mittel von u von einer Periode

$$\bar{u} = \frac{1}{T} \int_{0}^{T} u \, dt$$

Integral = Fläche zwischen Kurve und x-Achse über eine Periode aber: Flächen unterhalb der x-Achse zählen negativ.

AUFGABE ZUM MITTELWERT

Berechnen Sie den Mittelwert für das folgende Signal:

$$\bar{u} = \frac{1}{T} \int_{0}^{T} u dt$$

Lösung:

GLEICHRICHTWERT $\overline{|u|}$

Arithmetisches Mittel des Absolutwertes von einer Periode

$$\overline{|u|} = \frac{1}{T} \int_{0}^{T} |u| dt$$

$$0$$

$$0.5$$

Gleichrichtwert = MiHel wert des gleich zeichkehen

WIRKLEISTUNG ALS MASSSTAB

• Frage:

Widerstände kann man für verschiedene Leistungen kaufen. Müssen wir dazu die maximal anfallende Spitzenleistung oder die durchschnittliche Leistung berücksichtigen?

• Wirkleistung PMittelwert der Momentanleistung p(t)

$$P = \bar{p} = \frac{1}{T} \int_{0}^{T} p(t) dt$$

IDEE DES EFFEKTIVWERTES (RMS)

Frage:

Welcher Gleichstrom erzeugt die gleiche Wärme in einem Widerstand, wie ein gegebener Wechselstrom?

AC:

$$p(t) = u(t) \cdot i(t) = u \cdot i = R \cdot i \cdot i = R \cdot \frac{1}{2}$$

$$\bar{p} = \frac{1}{T} \cdot \int_{0}^{T} P(t) dt = \frac{1}{T} \cdot \int_{0}^{T} \frac{1}{2} dt = R \cdot \frac{1}{T} \cdot \int_{0}^{T} \frac{1}{2} dt$$

$$p(t) = u(t) \cdot i(t) = u \cdot i = R \cdot i \cdot i = R \cdot \frac{1}{T} \cdot \int_{0}^{T} \frac{1}{2} dt$$

$$p(t) = u(t) \cdot i(t) = u \cdot i = R \cdot i \cdot i = R \cdot \frac{1}{T} \cdot \int_{0}^{T} \frac{1}{2} dt$$

$$p(t) = u(t) \cdot i(t) = u \cdot i = R \cdot i \cdot i = R \cdot \frac{1}{T} \cdot \int_{0}^{T} \frac{1}{2} dt$$

$$p(t) = u(t) \cdot i(t) = u \cdot i = R \cdot i \cdot i = R \cdot \frac{1}{T} \cdot \int_{0}^{T} \frac{1}{2} dt$$

$$p(t) = u(t) \cdot i(t) = u \cdot i = R \cdot i \cdot i = R \cdot \frac{1}{T} \cdot \int_{0}^{T} \frac{1}{2} dt$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) = u(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t) \cdot i(t)$$

$$p(t) = u(t) \cdot i(t$$

EFFEKTIVWERT (RMS VALUE)

Effektivwert des Stroms:

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i^2 dt}$$

Effektivwert der Spannung:

$$U = \sqrt{\frac{1}{T} \int_{0}^{T} u^2 dt}$$

BESTIMMUNG DES EFFEKTIVWERTES

- 1. Quadrieren
- 2. Mittelwert
- 3. Wurzel

$$U = \sqrt{\frac{1}{T} \int_{0}^{T} u^2 dt}$$

BESTIMMUNG DES EFFEKTIVWERTES

Bestimmen Sie den Effektivwert des folgenden Signals:

$$U = \sqrt{\frac{1}{T} \int_{0}^{T} u^2 dt}$$

Lösung:

A. 0,00 V

B. 1,00 V

C. 1,41 V

D. 2,00 V

WOZU IST DER EFFEKTIVWERT GUT?

- Periodische Funktionen durch den Effektivwert beschrieben
- ⇒Formeln aus der Gleichstromanalyse nutzbar

Beispiel zur Ermittlung einer Leistung in R aus Spannung:

$$P = \mathcal{U}^{Q}/\mathcal{R}$$

⇒ Wir kommen ohne Integralrechnung aus!

$$R = 1552$$

$$\Rightarrow P = u^2/R$$

Wenn bei Wechselspannungsgrößen keine weiteren Angaben stehen, handelt es sich um den Effektivwert.

SPITZE-TAL-WERT UND SCHEITELWERT

Zwei weitere Kenngrößen werden wir im Labor verwenden:

Spitze-Tal-Wert (peak-to-peak value) u_{pp}

- (laut DIN, aber gebräuchlich ist der Begriff Spitze-Spitze-Wert)
- Differenz zwischen Maximum und Minimum in einer Periode

Scheitelwert (peak value oder crest value) $u_{\mathcal{S}}$ (manchmal auch \hat{u})

Maximaler Betrag der Größe in einer Periode

AUFGABE ZU SPITZE-TAL- UND SCHEITELWERT

- a) Bestimmen Sie den Spitze-Spitze-Wert und Scheitelwert.
- b) Wie groß ist der Mittelwert des Signals?

Lösung

A.
$$u_{pp} = 2.5 V$$

B.
$$u_{nn} = 1.5 V$$

C.
$$u_s = 1.5 V$$

D.
$$u_{s} = -1 V$$

$$\mathsf{E.} \ \, \bar{u} \ \, = 0 \, V$$

F.
$$\bar{u} = 0.05 V$$

VERHÄLTNISZAHLEN FÜR SIGNALFORM

Scheitelfaktor (Crest factor) k_S

Formfaktor F (auch k_F)

 $\frac{u_S}{U}$

 $\frac{U}{\overline{|u|}}$

Aufgabe:

Bestimmen Sie den Scheitelfaktor und Formfaktor für eine Gleichspannung von 1 V.

Lösung

A. $k_S = 1,414$

B. $k_S = 1$

C. F = 0.707

0. F = 1

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

1.9.4 SINUSFÖRMIGE GRÖßEN

$$u = \hat{u} \sin(\omega t + \varphi_0)$$

mit:

$$\frac{3}{7} = \frac{3}{2}$$

Hier:
$$\hat{u} = 1V$$

 $T = 20 \text{m/s} \Rightarrow 1 = 1 \text{h} = 50 \text{h}, \text{m} = 314 \text{s}^{1}$
 $\varphi_0 = 0$

verzögert:
$$\varphi_0 = -45 = -\frac{\pi}{4}$$

SINUSFÖRMIGE GRÖßEN

Es sei das folgende Sinussignal gegeben: $i = \hat{i} \sin \omega t$

- 1. Wie groß ist der Mittelwert?
- 2. Wie groß ist der Effektivwert?
- Gesucht: Effektivwert Gleichstrom I, der in einem Widerstand R die gleiche Leistung $P_{DC} = UI = RI^2$ umsetzt, wie der Wechselstrom
- Lösung über $I = \sqrt{\frac{1}{T} \cdot \int_0^T i^2 dt} = \sqrt{\frac{1}{T} \left[\int_0^T i^2 dt \right]} \sqrt{\frac{1}{T}} \sqrt{\frac{1}{T}}$

EXKURS: TRIGONOMETRISCHE FORMELN

Einfachere Schreibweise für sin² ohne Exponent?

Es gilt: $\sin^2 x = \frac{1}{2} - \frac{1}{2} \cos 2x$ (siehe z.B. http://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie)

2.4 SINUSFÖRMIGE GRÖßEN → EFFEKTIVWERT

Es folgt mit: $\sin^2 x = \frac{1}{2} - \frac{1}{2} \cos 2x$

$$I = \hat{\mathbf{i}} \cdot \sqrt{\frac{1}{T}} \cdot \int_{0}^{T} \sin^{2}(\omega t) dt = \hat{\mathbf{i}} \cdot \sqrt{\frac{1}{T}} \cdot \int_{0}^{T} \left[\frac{1}{2} - \frac{1}{2} \cos(2\omega t) \right] dt$$

$$= \hat{\mathbf{i}} \cdot \sqrt{\frac{1}{T}} \cdot \left[\int_{0}^{T} \frac{1}{2} dt - \int_{0}^{T} \frac{1}{2} \cos(2\omega t) dt \right] = \hat{\mathbf{i}} \cdot \sqrt{\frac{1}{T}} \cdot \left[\frac{1}{2} \cdot \frac{1}{2} \cdot$$

SINUSFÖRMIGE GRÖßEN

Mittelwert

$$\bar{\iota} = \frac{1}{T} \int_{0}^{T} i(t) dt = 0$$

Effektivwert

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i(t)^{2} dt} = \frac{1}{\sqrt{2}} \hat{\imath}$$

$$M = 230V$$
 $V = 1/N$
 $V = 1/N$

ganz analog gilt dies für sinusförmige Spannungen!!

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

GLEICHANTEIL UND WECHSELANTEIL

Beispiel:

hier:
$$u = 4V$$

 $hier: u = 3V$
 $\omega = - T = 1 ms = 9001s$
 $f = 1000 | f = 2 \cdot T | f = - \cdot \cdot$
 $4 = 180^{\circ} V T$

u(4) = 4V+3V·Sim(2TI 1000 H2.++180')

Ausgangssignal: $u(t) = \bar{u} + u_{\sim} = \bar{u} + \hat{u} \cdot \sin(\omega t + \varphi)$

wobei:

u: Gleich anhil / Milholw
u: Wechselanteil

û: Amplitude des

Wechselanteils

DER WAHRE EFFEKTIVWERT - TRMS

True RMS = Effektivwert unter Berücksichtigung von Gleich- und Wechselspannungsanteil

Der True RMS-Wert U ergibt sich aus dem Gleichanteil \bar{u} und dem Effektivwert des Wechselanteils U_{\sim} wie folgt:

$$U = \sqrt{\frac{1}{T}} \int_{0}^{T} u^{2} dt = \sqrt{\frac{1}{T}} \int_{0}^{T} (\bar{u} + u_{\sim})^{2} dt = \sqrt{\bar{u}^{2} + U_{\sim}^{2}}$$

BEISPIEL ZU TRMS-BERECHNUNG

Bestimmung des wahren Effektivwertes des abgebildeten Signals:

$$u(t) = 1V + 1V\sin(\omega t)$$

1. Bestimmung des Gleichanteils

$$\bar{u} = 4 \vee$$

2. Bestimmung des Effektivwertes des Wechselanteils U_{\sim}

$$U_{\sim} = \frac{\hat{u}}{|v|} = \frac{1}{|v|} = \frac{9}{7}07$$

3. Bestimmung des TRMS

$$U = \sqrt{\bar{u}^2 + U_{\sim}^2} = \sqrt{(|v|^2 + (o_1 + o_2 + v_1)^2)^2} = 1/22 V$$

UNECHTER EFFEKTIVWERT

Was zeigt ein Drehspulinstrument für $u = \hat{u} \sin \omega t$

a) bei Wechselspannung

b) bei Wechselspannung nach Gleichrichtung:

Wie kann man dies Nutzen, um den Effektivwert anzuzeigen?

UNECHTER EFFEKTIVWERT

Messtechnisch kostengünstige Alternative für Meßgeräte (nicht TRMS-fähige Multimeter, s.a. Laborversuch)

- 1. interne Gleichrichtung des Wechselsignals
- 2. Bestimmung des Mittelwertes (Gleichrichtwert)
- 3. Berechnung des RMS über Formfaktor für Sinusspannung
- 4. Anzeige des Wertes $U = k_F |\bar{u}|$ als RMS

AUFGABE: FORMFAKTOR BEI SINUSSIGNAL

$u(t) = u \cdot sim(\omega +)$

Wie groß ist der Formfaktor k_F bei einem Sinussignal?

Bei einem sinusförmigen Signal ohne Gleichanteil gilt: $\overline{|u|} = \frac{2}{\pi} \cdot \hat{\mathbf{u}}$

Wie groß ist der zugehörige Formfaktor $F = \frac{U}{|u|}$?

Lösung:

A. ´

B. 1,11 🗸

C. 1,41

VORSICHT: DAS GIBT ES AUCH IM LABOR!

Keine echte Messung des Effektivwertes z.B. bei MetraHit 15S

Wann funktioniert das?

Wie können Sie einfach testen, ob ein Messgerät eine echte Effektivwert-Messung durchführt?

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

RECHTECKFÖRMIGE SIGNALE

Periodendauer

Dauer des High-Pegels

Dauer des low-Pegels

| 5 m 5 | 15 m 5 | 15

$$a = \frac{t_{on}}{T}$$
: Tastverhältnis

$$a = \frac{5ms}{20ms} = \frac{1}{9}$$

BESTIMMUNG DER ZEITKONSTANTEN u in V 0.5 -0.5 ---0 10 15 Anschaltdauer > 30 6 in this hard Ausschaltdauer < 10% Low Level Anstiegszeit (rise time) }

Abfallzeit (fall time)

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

DIGITALES MULTIMETER

Wichtige Meßfunktionen

Position 1: Spannungsmessung

Parallel zur Quelle, Gerät ist hochohmig

Dies ist die Grundeinstellung bei der Inbetriebnahme und beim Wegräumen!

Position 2: Strommessung

Strom fließt durch das Meßgerät durch.

Meßgerät verhält sich wie ein Kurzschluß.

Position 3: Widerstandsmessung

Meßgerät nutzt eingebaute Batterie und

treibt Strom durch den Widerstand.

Nie in einer Schaltung messen, Widerstand muss direkt angeschlossen werden.

DIGITALES MULTIMETER

Aufgabe: Benennen Sie die Betriebsart und ermitteln Sie die angezeigte Größe für das Signal.

Position 1: M. He wit bleich antail

Wert:

Position 2: True - RMS (Wahn Etheliant)

Wert: $M = \sqrt{u^2 + u^2} = \sqrt{1/(1 + (0, 107))^2} = \sqrt{215} \sqrt{u}$ Position 3: RMS vom We (hse anter)

Wert: $\sqrt{1} = \sqrt[3]{1} = \sqrt[4]{1} = \sqrt[4]{1} = \sqrt[4]{1}$

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

WECHSELSPANNUNGSLEISTUNG

Bei **ohmscher Last** an einer Quelle (kein Kondensator, keine Spule, kein Motor, ...) dann Leistungsberechnung wie im Gleichstromfall mit Effektivwerten:

$$P = UI$$
 (Definition der Leistung)
 $U = RI$ (Ohmsches Gesetz)

$$\Rightarrow P = R \cdot \perp^2 = \sqrt[4]{R}$$

WECHSELSPANNUNGSLEISTUNG

Anwendungsbeispiel: Wasserkocher

Leistungsangabe auf Typenschild P = 2300 W / Netzspannung U = 230 V(x = 3341610 W <

$$\psi$$
 ψ

a) Welcher Strom fließt während des Betriebs?

b) Wie groß ist der Widerstand der Heizspirale?

$$P = \frac{12}{R} \approx R = \frac{12}{R} = 23\Omega$$

c) Wie lange dauert es, bis 1 Liter Wasser kocht? Es gelte für die Wärmeenergie $Q = m c \Delta T$ mit Masse von 1 I Wasser m:

Temperaturdifferenz und ΔT :

c = 4.182 Ws/(gK)

Dirt Devil spezifische Wärmekapazität von Wasser

TEIL1.9: EINFÜHRUNG WECHSELSPANNUNGSRECHNUNG

- 1.9.1 Problemstellung
- 1.9.2 Wechselgrößen
- 1.9.3 Kenngrößen für periodische Schwingungen
- 1.9.4 Sinusförmige Größen
- 1.9.5 Gleichanteil und Wechselanteil
- 1.9.6 Rechteckförmige Signale
- 1.9.7 Messinstrumente
- 1.9.8 Wechselspannungsleistung an ohmscher Last
- 1.9.9 Idealer Transformator

PROBLEMSTELLUNG

Beispielrechnung:

a) Wie groß muss ein Vorwiderstand sein, damit eine 12 V, 20 W Halogenleuchte an einer 230 V Wechselspannung betrieben werden kann?

b) Welche Verlustleistung entsteht am Widerstand?

a)
$$T = \frac{9}{4} = \frac{200}{12V}$$
 $R = \frac{218V}{5/3A} = 130,852$

Transformation ist bessen?

TRANSFORMATOR: DIE BESSERE ALTERNATIVE

Transformation von Wechselspannungen

SMD-Signalübertrager für Ethernet

Zündspule im Auto

PROBLEMSTELLUNG

Transformation auf verschiedene Spannungspegel erforderlich

27 kV durch Generator380 kV für Stromtransport10 kV ins Transportnetz400 V Drehstrom für Haushalte

Graphik: http://de.wikipedia.org/wiki/Stromnetz

TRANSFORMATOR → FUNKTION

Spule erzeugt magnetisches Feld

Abb.: Zylinderspule [www.phynet.de]

Feldänderung induziert elektrische Spannung

TRANSFORMATOR -> FUNKTION

Idee: Kombination von zwei Spulen

magnetisch gekoppelte Spulen bilden einen Transformator Eisenkern führt die magnetischen Feldlinien

TRANSFORMATOR → BERECHNUNG

Es gilt das Induktionsgesetz für jede der beiden Spulen:

 $u = N \cdot \frac{d\Phi}{dt}$

N: Anzahl der Windungen der Spule

Ф: magnetischer Fluss

idealer Transformator

$$\Rightarrow$$
 magnetischer Fluß in beiden Spulen identisch $\Phi_1 = \Phi_2$ $u_1 = N_1 \frac{d\Phi_1}{dt}$ und $u_2 = N_2 \frac{d\Phi_2}{dt}$ mit $\Phi_1 = \Phi_2$ $\Rightarrow \frac{u_1}{dt} = 0.2$

Spannungstransformation idealer Transformator: $\frac{U_1}{U_2} = \frac{N_1}{N_2} = \ddot{u}$

 U_1 : Primärspannung; U_2 : Sekundärspannung

 N_1 : Windungszahl der Primärwicklung; N_2 : Windungszahl der Sekundärwicklung

ü: Übertragerverhältnis

TRANSFORMATOR → BERECHNUNG

Berechnung des Stromverhältnisses:

$$P_1 = U_1 I_1 P_2 = U_2 I_2$$

idealer Transformator:

$$P_1 = P_2 \implies U_1 I_1 = U_2 \mathcal{I}_2$$

Strom am Transformator:
$$\frac{U_1}{U_2} = \frac{I_2}{I_1}$$

Hinweis: Transformator arbeitet nur bei Wechselspannung! (ohne Magnetfeldänderung keine Induktion)

2.9 TRANSFORMATOR → AUFGABE

Aufgabe:

Ein Smartphone wird bei 5 V mit 2 A geladen. Das Ladegerät ist für eine Netzspannung von 230 V ausgelegt und besteht aus einem Transformator und einem Gleichrichter, der als vereinfachende Annahme über eine Sekundärspannung von 5V verfügt.

Wie groß ist die Stromaufnahme des Netzteils?

$$\frac{U_1}{U_2} = \frac{I_2}{I_1} \Rightarrow I_1 = I_2 \cdot \frac{U_2}{U_1} = 43.4 \text{mA}$$

Lösung:

A. 2 A

B. 434 mA

C. 43,4 mA

WAS SIE MITNEHMEN SOLLEN ...

- Kenngrößen von Wechselgrößen definieren und bestimmen können Scheitelwert, Spitze-Tal-Wert
- Kenngrößen periodischer Funktionen definieren und berechnen können Periode, Frequenz, Amplitude, Formfaktor, Gleichrichtfaktor
- Effektivwert RMS einer sinusförmigen Wechselspannung berechnen $U = \sqrt{U}$
- Gleichanteil, Wechselanteil und TRMS berechnen können $U = \sqrt{\bar{u}^2 + \bar{u}_1^2}$
- Kenngrößen von Rechtecksignalen definieren und bestimmen können Periodendauer, Tastverhältnis, Rise time, Fall time
- Messen mit dem Multimeter Spannungsmessung, Strommessung, Widerstandsmessung Betriebsarten: DC, AC, Gesamt
- Leistungsberechnung bei Wechselspannung an ohmscher Last
- Idealer Transformator
 Spannungs- , Stromverhältnis, Übertragungsfaktor berechnen können