Sinais bidimensionais

· Podem ser expressos através da expressão:

$$e^{i(\alpha x + \beta y)} = e^{2\pi i(px + qy)},$$

where p and q are frequencies in the x and y directions. $f_{\alpha\beta}(x, y) = e^{i(\alpha x + \beta y)} = e^{i\alpha x}e^{i\beta y}$

 $=\cos(\alpha x+\beta y)+i\sin(\alpha x+\beta y)$

 $= \cos(\alpha x)\cos(\beta y) - \sin(\alpha x)\sin(\beta y)$ $+i(\sin(\alpha x)\cos(\beta y)+\cos(\alpha x)\sin(\beta y))$

Fourier

forward transform $S(k) = F\{s(x)\} = \int s(x)e^{-2\pi ikx} dx$

inverse transform $s(x) = F^{-1}{S(k)} = \int S(k)e^{2\pi ikx}dk$

sistema

· Um sistema transforma um sinal de entrada (i.e. excitação) em um sinal de saída (i.e. resposta)

$$s_0 = \mathcal{L}\{s_i\},$$

Sistemas lineares System response L: $s_o = L\{s_i\}$

• might be a function of time t or space x

$$s_o(t) = L\{s_i(t)\}$$
 or $s_o(x) = L\{s_i(x)\}$

Finding the mathematical relationship between in- and output is called modeling

Linear systems fulfill superposition principle: $L\{c_1s_1+c_2s_2\}=c_1L\{s_1\}+c_2L\{s_2\}\ \ \forall c_1,c_2\in\Re \\ \text{where } s_1,s_2 \text{ are arbitrary signals}$ • for example, consider an amplifier with gain A: $L\{c_1s_1+c_2s_2\}=A(c_1s_1+c_2s_2)$

$$= c_1 A s_1 + c_2 A s_2 = c_1 L \{s_1\} + c_2 L \{s_2\}$$

Sistemas não lineares

Muitos sistemas do mundo real possuem natureza não-linear

$$\mathcal{L}\{c_1s_1 + c_2s_2\} = (c_1s_1 + c_2s_2)^2 \neq (c_1s_1)^2 + (c_2s_2)^2$$

Porém podem ser aproximados por uma soma ponderada de sinais.

Invariância espacial e temporal

Time-invariance (shift-invariance = LSI): • properties of L do not change over time (spatial position), that is: $s_o(x) = L\{s_i(x)\}$ then $s_o(x-X) = L\{s_i(x-X)\}$

Sistema causal

- \Box A causal system is the one in which the output y(n) (g) a(u+v)=au+avat time n depends only on the current input x(n) at (h) 1u = utime n, and its past input sample values such as x(n-1), x(n-2),.... Otherwise, if a system output depends on future input values such as x(n+1), x(n+2), the system is noncausal.
- The noncausal system cannot be realized in real
- Determine whether the following systems are causal or not.

$$y(n) = 0.5x(n) + 2.5x(n-2)$$
, for $n \ge 0$

$$y(n) = 0.25x(n-1) + 0.5x(n+2) - 0.4y(n-1)$$
 for $n \ge 0$

Representação do sinal

To improve SNR, we use two coils, one aligned with the x-axis and one aligned with the y-axis (quadrature scheme)

· the detected signal can then be represented as follows

thus, coil x gives the real part and coil y the imaginary part of a complex-valued signal: $s(t) = Ae^{-T_2}e^{-i\omega_0 t}$

Definition: The Nyquist frequency is ½ the sampling frequency (1/Ts)
Frequencies above the Nyquist frequency appear

s aliases

as anases
No aliases appear if the function being sampled
has no frequencies above the Nyquist
frequency

Antialiasing Simple ide

Remove frequencies above the Nyquist frequency before sampling How? Filtering before sampling

Filtragem

Na conversão analógico → digital é necessário garantir que a rationers a managero y digital riccissario garanti que a entrada contenha apenas frequências representáveis, o que é feito por um filtro passa-baixa com frequência de corte $\frac{N}{2}$ Hz:

Rotações em 2D

Espaços vetoriais

The vector space \mathbb{R}^N consists of vectors \mathbf{x} of the form

$$\mathbf{x} = (x_1, x_2, \dots, x_N),$$
 (1.6)

where the x_k are all real numbers. Vector addition and scalar multiplication are defined component by component as

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_N + y_N), \quad c\mathbf{x} = (cx_1, cx_2, \dots, cx_N),$$

where $\mathbf{y}=(y_1,y_2,\ldots,y_N)$ and $c\in\mathbb{R}$. The space \mathbb{R}^N is appropriate when we work with sampled audio or other one-dimensional signals. If we allow the x_k in (1.6) and scalar c to be complex numbers, then we obtain the vector space \mathbb{C}^N . That \mathbb{R}^N or \mathbb{C}^N satisfy the properties of a vector space (with addition and scalar multiplication as defined) follows easily, with zero vector $\mathbf{0}=(0,0,\ldots,0)$ and additive inverse $(-x_1, -x_2, \ldots, -x_n)$ for any vector \mathbf{x} .

$$\mathbb{R}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) | x_{i} \in \mathbb{R}, i = 1, 2, \dots, n\}$$
$$\mathbb{C}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) | x_{i} \in \mathbb{C}, i = 1, 2, \dots, n\}$$

Um espaço vetorial sobre $\mathbb R$ (ou $\mathbb C$) é um conjunto V munido das operações de soma (entre elementos de V) e multiplicação de elementos de V por escalares (em R ou em C) com as seguintes propriedades:

- 1. Fecho por adição: $\forall u,v \in V$ a soma u+vestá bem definida e pertence a
- 2. Fecho por multiplicação por escalar: $\forall u \in V$ e $\forall \alpha \in \mathbb{R}$ (ou $\forall \alpha \in \mathbb{C}$) temos αu bem definido e pertence a V;
- 3. A soma e o produto por escalar satisfazem as propriedades algébricas abaixo $\forall a, b \in \mathbb{R} \text{ (ou } \mathbb{C}) \text{ e } \forall u, v \in V$:
 - (a) u + v = v + u (comutatividade)
 - (b) (u + v) + w = u + (v + w) (associatividade)
 - (c) \exists um vetor $\mathbf{0}$ t.q. $u+\mathbf{0}=\mathbf{0}+u=u$ (elemento neutro da soma)
- (d) $\forall u \in V \ \exists$ um vetor wt.q. $u+w=\mathbf{0}$ (elemento inverso da soma)
- (e) (ab)u = a(bu)
- (f) (a+b)u = au + bu

$$M_{m,n}(\mathbb{R}) = \mathbb{R}^{m \times n} = \begin{cases} a_1 1 & \dots & a_1 n \\ a_2 1 & \dots & a_2 n \\ \vdots & \ddots & \vdots \\ a_n 1 & \dots & a_n n \end{cases} a_{i,j} \in \mathbb{R}, i = 1, \dots, m, j = 1, \dots, n$$
$$\begin{cases} (a_1 1 & \dots & a_1 n) \end{cases}$$

$$M_{m,n}(\mathbb{C}) = \mathbb{C}^{m \times n} = \begin{cases} \begin{pmatrix} a_1 1 & \dots & a_1 n \\ a_2 1 & \dots & a_2 n \\ \vdots & \ddots & \\ a_n 1 & \dots & a_n n \end{pmatrix} a_{i,j} \in \mathbb{C}, i = 1, \dots, m, j = 1, \dots, n \end{cases}$$

TABLE 1.1 Discrete Signal Models and Uses Notation Vector Space Description $\{\mathbf{x} = (x_1, \dots, x_N) : x_i \in \mathbb{R}\}$, finite sampled signals $\{\mathbf{x} = (x_1, \dots, x_N) : x_i \in \mathbb{C}\}, \text{ analysis of sampled signals}$ $L^{\infty}(\mathbb{N})$ or ℓ° $\{\mathbf{x} = (x_0, x_1, \ldots) : x_i \in \mathbb{R}, |x_i| \le M \text{ for all } i \ge 0\}$ bounded, sampled signals, infinite time $L^2(\mathbb{N})$ or ℓ^2 $\{\mathbf{x} = (x_0, x_1, \ldots) : x_i \in \mathbb{R} \text{ or } x_i \in \mathbb{C}, \sum_k |x_k|^2 < \infty\}$ sampled signals, finite energy, infinite tim $\{\mathbf{x} = (\dots, x_{-1}, x_0, x_1, \dots) : x_i \in \mathbb{R} \text{ or } x_i \in \mathbb{C}, \sum_k |x_k|^2 < \infty \}$ sampled signals, finite energy, bi-infinite time $L^2(\mathbb{Z})$ $M_{m,n}(\mathbb{R})$ Real $m \times n$ matrices, sampled rectangular images $M_{m,n}(\mathbb{C})$ Complex $m \times n$ matrices, analysis of images

$$\cos x = 1 \qquad -\frac{x^2}{2!} \qquad + \frac{x^4}{4!} \qquad -\frac{x^6}{6!} \qquad + \cdots$$

$$\sin x = \qquad x \qquad -\frac{x^3}{3!} \qquad + \frac{x^5}{5!} \qquad -\frac{x^7}{7!} + \cdots$$

$$i \sin x = \quad ix \qquad -i \frac{x^3}{3!} \qquad + i \frac{x^5}{5!} \qquad -i \frac{x^7}{7!} + \cdots$$

$$i^{ix} = \sum_{i = 1}^{ix} \frac{x^3}{3!} \qquad + \frac{x^4}{4!} \qquad + i \frac{x^5}{5!} \qquad -\frac{x^6}{6!} \qquad + \frac{x^7}{7!} + \cdots$$

$$\mathbf{E}_{N,k} = \begin{bmatrix} e^{2\pi i k 0/N} \\ e^{2\pi i k 1/N} \\ \vdots \\ e^{2\pi i k (N-1)/N} \end{bmatrix}, \ \mathbf{E}_{N,k}(m) = e^{2\pi i k m/N}$$