Distribuição amostral

Parte 4

Prof.: Eduardo Vargas Ferreira

Distribuição amostral da média

Denominação	População	${f Amostra}$
Média	μ	$\overline{X} = \sum \frac{X_i}{n}$
Variância	σ^2	$S^2 = \sum \frac{\left(X_i - \overline{X}\right)^2}{(n-1)}$
Proporção	p	\hat{p}
Mediana	Q_2	q_2
Intervalo inter-quartil	$d_Q = Q_3 - Q_1$	$d_q = q_3 - q_1$
Função de densidade	f(x)	histograma
Função de distribuição	F(x)	$F_e(x)$

Distribuição amostral da média

	Denominação	População	${f Amostra}$			
	Média	μ	$\overline{X} = \sum \frac{X_i}{n}$			
	Variância	σ^2	$S^2 = \sum \frac{\left(X_i - \overline{X}\right)^2}{(n-1)}$			
	Proporção	p	\hat{p}			
Mediana		Q_2	q_2			
Intervalo inter-quartil		$d_Q = Q_3 - Q_1$	$d_q = q_3 - q_1$			
Função de densidade		f(x)	histograma			
Fu	nção de distribuição	F(x)	$F_e(x)$			

Distribuição amostral da média

ightharpoonup Vimos até agora que conhecendo a variância populacional, σ^2 , pelo TCL

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \sim N(0,1)$$

▶ Mas quando $X \sim N(\mu, \sigma^2)$, com σ^2 desconhecido, aproximamos essa quantidade através da variância amostral, S^2 , chegando em

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$
 em que $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

	Denominação	População	${f Amostra}$			
Média		μ	$\overline{X} = \sum \frac{X_i}{n}$			
	Variância	σ^2	$S^2 = \sum \frac{\left(X_i - \overline{X}\right)^2}{(n-1)}$			
Proporção		p	\hat{p}			
Mediana		Q_2	q_2			
Intervalo inter-quartil		$d_Q = Q_3 - Q_1$	$d_q = q_3 - q_1$			
Função de densidade		f(x)	histograma			
Função de distribuição		F(x)	$F_e(x)$			

Distribuição amostral para variância

Distribuição χ^2

► Se $X_i \sim N(\mu, \sigma^2)$, então

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$$
, em que $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.

- 1. Independência em tabelas de contingência.
- 2. Bondade de ajuste.
- 3. Razão de verossimilhanças.
- 4. Log-rank.
- ${\bf 5.} \quad {\bf Cochran-Mantel-Haenszel}.$

Tabela χ^2

rontos p	Jercentuais	ua uistiib	uiçao x	com area	s na calu	a un enta.					
ν/α	$\alpha = 0.995$	0.99	0.975	0.95	0.9	0.5	0.1	0.05	0.025	0.01	0.005
v = 1	0.000	0.000	0.001	0.004	0.016	0.455	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	1.386	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	2.366	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	3.357	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	4.351	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	5.348	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	6.346	12.017	14.067	16.013	18.475	20.278

7.344

13.362

15.507

17.535

20.090

21.955

3.490

Pontos porcontuais da distribuição y² com ároas na calda direita

2.180

2.733

1.344

1.646

8

Exemplo: bateria para celular

▶ Uma bateria de celular dura, em média, 60 horas com desvio-padrão de 4 horas. Selecionou-se aleatoriamente 7 baterias. Supondo normalidade na sua duração.

Qual a probabilidade da variância amostral ser maior do que 3.2 horas.

$$P[S^{2} > 3.2] = P\left[(n-1)\frac{S^{2}}{\sigma^{2}} > (n-1)\frac{3.2}{\sigma^{2}}\right]$$
$$= P\left[\chi^{2}_{7-1} > (7-1)\frac{3.2}{16}\right]$$
$$= P\left[\chi^{2}_{7-1} > 1.2\right]$$

Exemplo: bateria para celular

Pontos percentuais da	distribuição v2 com	ároas na calda diroita	

r Ontos	percentuais i	ad distill	uiçao x	com area	s na cata	a un enta.					
ν/α	$\alpha = 0.995$	0.99	0.975	0.95	0.9	0.5	0.1	0.05	0.025	0.01	0.005
v = 1	0.000	0.000	0.001	0.004	0.016	0.455	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	1.386	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	2.366	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	3.357	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	4.351	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	5.348	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	6.346	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	7.344	13.362	15.507	17.535	20.090	21.955

Exemplo: bateria para celular

▶ Uma bateria de celular dura, em média, 60 horas com desvio-padrão de 4 horas. Selecionou-se aleatoriamente 7 baterias. Supondo normalidade na sua duração.

Qual a probabilidade da variância amostral ser maior do que 3.2 horas.

$$P[S^{2} > 3.2] = P[(n-1)\frac{S^{2}}{\sigma^{2}} > (n-1)\frac{3.2}{\sigma^{2}}]$$

$$= P[\chi^{2}_{7-1} > (7-1)\frac{3.2}{16}]$$

$$= P[\chi^{2}_{7-1} > 1.2] \approx 0.975$$

Denominação	População	${\bf Amostra}$			
Média	μ	$\overline{X} = \sum \frac{X_i}{n}$			
Variância	σ^2	$S^2 = \sum \frac{\left(X_i - \overline{X}\right)^2}{(n-1)}$			
Proporção	p	\hat{p}			
Mediana	Q_2	q_2			
Intervalo inter-quartil	$d_Q = Q_3 - Q_1$	$d_q = q_3 - q_1$			
Função de densidade	f(x)	histograma			
Função de distribuição	F(x)	$F_e(x)$			

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

