A LOGIC FILE SYSTEM

YOANN PADIOLEAU and OLIVIER RIDOUX

IRISA / University of Rennes {padiolea,ridoux}@irisa.fr http://www.irisa.fr/LIS

USENIX ANNUAL TECHNICAL CONFERENCE, 2003

Plan

Motivations

(to combine navigation and querying in a file system)

Specification

$$(ls = ?, mv = ?, ...)$$

Implementation

(data structures and algorithm)

Evaluation

(time and space)

Related works

(file systems and alternative organizations)

Conclusion and further works

(refine logic and improve performance)

A toy example

to represent a collection of city maps

- a collection of cities Boston, Hamburg (Germany), Los Angeles, Miami, New York, San Diego, Washington
- a collection of descriptive attributes
 - to be a port, on the seaside,
 - to be in the USA,
 - a capital,
 - to be a art city, for music, or movie

A hierarchical organization

a meaning for cd USA, cd not USA, cd capital or movie, and cd port and USA?

Boolean organization

				₂ or		and		not
_		art	music	movie	port	seaside	USA	capital
	Boston.jpeg	Х	Х		X	Х	X	
Ø	LosAngeles.jpeg	X		X	Х	Х	Х	
	Miami.jpeg				Х	Х	X	
	Hamburg.jpeg				Х			
	SanDiego.jpeg				х	х	X	
I	Washington.jpeg						Х	x
	NewYork.jpeg	Х	Х		X	Х	X	

good for cd not USA and cd capital or movie but, not progressive enough for cd USA and cd port and USA

Observations

 hierarchical organizations are rigid (one path per object)

(cd a ; ls x)navigation is easy to understand

boolean organizations are flexible

(many queries yield the same answers)

 the relation between queries and answers is difficult to control (precision and recall) → merge navigation and querying in a file system

(as in hierarchical organizations) (as in boolean organizations)

(every tool benefits of it: from shells to multimedia players)

Specifications

based on a previous work on Logic Information Systems [Ferré&Ridoux, DOOD'2000]

(hence the name LISFS)

Important notions (1)

LISFS content

• a logic — $A \models B$ deduction rules and axioms

(ex.
$$a \land b \models a$$
 and $music \models art$)

 information — an attachment d (description) of a logic formula p (path) to every file o (object) of a collection \mathcal{F} (files)

p expresses the property of o

(ex. $d(SanDiego.jpeg) = port \land seaside \land USA$)

Important notions (2)

querying LISFS

paths are formulas

• extension — given a path p, the set all files that satisfy this property

$$ext(p) = \{o \in \mathcal{F} \mid d(o) \models p\}$$

 $ext(p) \approx \text{Is -R } p$

 $LosAngeles.jpeg \in ext(art) \text{ because}$ $d(LosAngeles.jpeg) = movie \land port \land USA \models movie \models art$

paths denote directories that denote extensions

(working directory \equiv working query)

Important notions (3)

navigating LISFS

• subdirectories — given a directory O, every directory O' such that $O' \subseteq O$

$$\textit{Dirs}(p) = \max_{\models} \{ p' \in \mathcal{L} \mid \emptyset \subsetneq \textit{ext}(p \land p') \subsetneq \textit{ext}(p) \}$$

$$(p' \text{ refines } p)$$

only largest subdirectories are relevant to navigation

(most relevant hints)

• to be a file of a directory — given a path p, to be in ext(p), and in the extension of no subdirectory

$$\mathit{Files}(p) = \mathit{ext}(p) - \bigcup_{p' \in \mathit{Dirs}(p)} \mathit{ext}(p')$$

$$Files(p) \cup Dirs(p) \approx ls p$$

LISFS organizations

 $movie \models art \quad music \models art \quad \dots$

						and			
Dirs -	art	music	movie	p	ort	seaside	U	SA	capital
Boston.jpeg	X	X			Х	X		Х	
LosAngeles.jpeg _	Х		Х		Х	X		Х	
Miami.jpeg					Х	X	l	Х	
Files Hamburg.jpeg					Х				
SanDiego.jpeg					X	X		Х	
Washington.jpeg								Х	Х
NewYork.jpeg	X	X			X	X		X	

A LISFS scenario

	mounting
	mount /dev/lisfs /lisfs/; cd /lisfs/
	taxonomy
%	mkdir art; cd art; mkdir music; mkdir movie;
	(adds $music \models art, \ldots$)
	context
%	cd seaside/USA/
%	cjpeg /local/maps/Boston.ppm > Boston.jpeg
	$(d(\textit{Boston.jpeg}) = \textit{seaside} \land \textit{USA})$
	updating
%	mv Boston.jpeg music/ $(d(Boston.jpeg) = music \land seaside \land USA)$
	navigating and querying
%	ls port / USA —→ art/ Miami.jpeg SanDiego.jpeg
%	Is USA —→ art/ port/ capital/
%	ls !USA —→ Hamburg.jpeg

Other semantic features

- views to focus on a range of properties
- a security model see article

Implementation

to implement the specification at a reasonable cost

basic principles

(to avoid calling \models)

- to represent relation d as a table and inverted table on disk
- to represent on disk a directed acyclic graph (DAG) of the properties (a taxonomy)
- to attach extensions to every vertex in the property DAG
 (extensions are computed when updating LISFS content)

Computing Files and Dirs

Evaluation

software — a user-level implementation, using PerIFS

 platform — Linux kernel 2.4, with a 2Ghz Pentium 4, 750Mb RAM, and a 40 Gb IDE disk.

Benchmarks data

all files have intrinsic system properties

(size, last modification time, owner, ...)

- Andrew benchmark the modified Andrew benchmark (× 10)
 (e.g., cd function:GXfind)
- MP3 files with properties extracted from meta-data, and
 subjective properties (e.g., cd excellent/disco; ls artist)
- Man pages with keywords extracted from section "apropos"
 (e.g., cd change; ls → directory, owner, . . .
 cd owner; ls → chown.1)

Synthesis of evaluation

disk space —

space overhead: 20 % for small files, and 0.20 % for large files space overhead per file: \approx 2 to 5 Kb

(naive marshalling, 50 attributes per file)

• cpu time —

creation time ratio LISFS / EXT2: \approx 4 to 34

(transducer parsing, 50 attributes per file)

total time ratio LISFS / EXT2: \approx 2 to 5

---- compatible with an interactive usage

Related works

- SFS [Gifford et al.], HAC [Gopal & Manber], BeFS [Giampaolo], Nebula [Bowman et. al], ...
 - --- no navigation in result of arbitrary query

(no computation of relevant subdirectories)

- formal concept analysis [Ganter & Wille, Lindig] intension, extension, subconcept ordering
- information retrieval co-occurrence lists, term suggestions, relevant informations, significant keywords, . . .

(mainly application level and visual interfaces)

→ no file system

(no genericity)

Conclusions

- a running alternative to hierarchical file systems
- a formally defined integration of query and navigation
- a generic service

(many types of files: JPEG, MP3, programs, text, ... and associated descriptions)

- a security model
- encouraging performances
- availability: http://www.irisa.fr/LIS

(Logic Information Systems)

Further works

• improve performances

(especially file creation)

• integrate a theorem-prover

(to express complex \models)

query/navigation inside files

(e.g., cd usenix-2003.tex@ cd section:3/!comment emacs usenix-2003.tex)

Semantics of LISFS operations

- readdir(path) lists Files(path) () Dirs(path) (Is path)
- lookup(name,path) checks name ∈ Files(path) () Dirs(path)
- create(name,path) adds d(name) = path(touch path/name)
- mkdir(name,path) adds $name \models path$ (mkdir path/name)
- file operations as usual (open, read, write, ...)

	Andrew	MP3	Man	remarks
total number/size of files	860/10 Mb	633/1772 Mb	11502/246 Mb	
total size of LISFS tables	2 Mb	3.1 Mb	43.3 Mb	
average number of at- tributes per file (intrin- sic/extrinsic)	26/23	36/20	21/24	≈ 50
total number of attributes	1686	3730	43442	
average file size	11.6 Kb	2799 Kb	21.4 Kb	
space overhead (per cent)	20 %	0.17 %	17.6 %	
average space over- head per file	2.3 Kb	4.9 Kb	3.7 Kb	pprox 2 to 5 Kb
average space over- head per attribute	1.2 Kb	0.84 Kb	1 Kb	≈ 1 Kb
average space over- head per attribute of file	47 bytes	87 bytes	84 bytes	pprox 80 bytes
remarks	many re- peated attributes	large files	many files	

	Andrew	MP3	Man		
remarks	many re- peated attributes	large files	many files		
average number of at- tributes per file	≈ 50				
space overhead (per cent)	20 %	0.17 %	17.6 %		
average space over- head per file		pprox 2 to 5 Kb			
average space over- head per attribute		pprox 1 Kb			
average space over- head per attribute of file	47	≈ 80	bytes		

Time

	Ext2 PerIFS		LISFS	LISFS	remarks	
		I GIII O	(transducer off)	(transducer on)	Temarks	
Mkdir	0.217s	0.986s	1.823s	3.703s		
Сору	1.359s	5.943s	13.212s	46.296s	creation	
Scan	2.506s	5.141s	5.348s	6.638s		
Read	3.548s	11.510s	11.119s	12.333s		
Make	16.896s	28.384s	36.182s	46.260s	compilation & creation	
Total	24.526s	51.964s	67.684s	115.230s		
MP3	2min28s	4min30s	5min	5min30s	creation & copy	
Man	22min	29min	44min	85min	indexing & creation	

Time ratios

	Ext2	PerIFS	LISFS (transducer off)	LISFS (transducer on)	remarks
Mkdir	1	4.5	8.4	17	
Сору	1	4.37	9.7	34	creation
Scan	1	2.05	2.13	2.65	
Read	1	3.24	3.13	3.48	
Make	1	1.68	2.14	2.74	compilation & creation
Total	1	2.12	2.76	4.7	a creation
MP3	1	1.8	2	2.2	creation & copy
Man	1	1.32	2	3.86	indexing & creation

Creation times

11502 man pages

Related works (file systems)

- SFS, Gifford et al. only content-based (virtual) directories
 (no means to move a file into a virtual directory)
- HAC, Gopal & Manber virtual directories are made real (can move a file where it does not belong)
- BeFS, Giampaolo non-standard interface
- Nebula, Bowman et. al a hierarchy of views
 (no real query/navigation integration)
- → no navigation in result of arbitrary query
 (no computation of relevant subdirectories)

Related works (non-hierarchical file systems)

- formal concept analysis, Ganter & Wille, Lindig intension, extension, subconcept ordering
- information retrieval co-occurrence lists, term suggestions, relevant informations, significant keywords, . . .

(mainly application level and visual interfaces)

→ no file system

(no genericity)