例5. 设计一个自动贩售饮料机的逻辑电路

投币口每次只能投入一枚五角或一元的硬币。投入一元五角 钱硬币后,机器会自动给出一杯饮料;投入两元(两个一元) 硬币后,在给出饮料的同时找回一枚五角硬币

解:

输入: {投入 ¥ 1.0, A=1 **输出**: **出饮料**, Y=1 **投入** ¥ 0.5, B=1 **找钱**, Z=1

状态:

S₀:初始(未投币)

3个状态

S₁:投入¥0.5

S₂:投入¥1.0(一个¥1.0或两个¥0.5)

再投入 Ψ 0.5, 返回 S_0 , 输出 Y=1, Z=0

再投入¥ 1.0, 返回 S_0 , 输出 Y=1, Z=1 (找回 ¥ 0.5)

多输入,多输出

AB/YZ

A: ¥ 1.0

B:¥ 0.5

Y: 饮料

Z: 尝钱

>-1

 $S_1 : Y = 0.5$

 $S_2: Y=1.0$

S₀: 投入¥0.5, S₁ S₀: 投入¥1.0, S₂

S₁: 1 **分入¥ 0.5**, S₂

S₁: 投入¥ 1.0, S₀ 饮料

S₂: 投入¥ 0.5, S₀ 饮料

S₂: 投入¥ 1.0, S₀ 饮料 和 找钱

状态表

, , , , , , , , , , , , , , , , , , ,				
$A B Q_1^n Q_0^n$	\mathcal{Q}_1^{n+}	${}^{1}Q_{0}^{n}$	<i>t</i> + 1	Y Z
0 0 0 0	0	0	0	0
0 0 9 1	0	1	0	0
6 0 1 0	1	0	0	0
0 0 1 1	Φ	Φ	Φ	Φ
0.100	0	1	0	0
0 1 0 1	1	0	0	0
0 1 1 0	0	0	1	0
, , , , ,			_	_
0 1 1 1	Φ	Φ	Φ	Φ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ψ 1	Φ 0	$\frac{\Phi}{0}$	Φ 0
	_			
1 0 0 0	1	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	0 0	0	0
1 0 0 0 1 0 0 1 1 0 1 0	1 0 0	0 0 0	0 1 1	0 0 1
1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1	1 0 0 Ф	0 0 0 Ф	0 1 1 Ф	0 0 1 Ф
1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0	1 0 0 Ф	0 0 0 Ф	0 1 1 Ф	0 0 1 Ф

$$Q_1^{n+1} = BQ_0 + A\overline{Q}_1\overline{Q}_0 + \overline{AB}Q_1$$

$$Y = AQ_0 + AQ_1 + BQ_1$$

Q_0^{n+1} $Q_1^n Q_0^n$	В			0,
$Q_1^n Q_0^n$	00	01	<u> 11</u>	10
00	0	1	Φ	0
01	1	0	Φ	0
11	D	Ф	Ф	Ф
10	0	0	Φ	0

$$Q_0^{n+1} = B\overline{Q}_1\overline{Q}_0 + \overline{AB}Q_0$$

$$Z = AQ_1$$

用 D-FF

用 D-FF
$$D_{1} = BQ_{0} + A\overline{Q}_{1}\overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{1} \qquad Y = AQ_{0} + AQ_{1} + BQ_{1}$$

$$D_{0} = B\overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{0} \qquad Z = AQ_{1}$$

讨论: "11" 状态

A: ¥ 1.0

B: Y=0.5

Y: 饮料

Z: 找钱

$$D_{1} = BQ_{0} + A\overline{Q}_{1}\overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{1}$$

$$D_{0} = B\overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{0}$$

$$Y = AQ_{0} + AQ_{1} + BQ_{1}$$

$$Z = AQ_{1}$$

答 AB = 00 (无输入), $Q_1Q_0 = 11$, 电路不能自启动

若*AB* = 01 或 10, 电 路可以自启动, 但找钱 系统出错

方案1: 电路初始工作时,首先将 $\overline{R}_{\mathrm{D}}$ 设置为低电平,电路状态从 "00" 开始

方案2:修改电路状态图

状态衰

$A B Q_1^n Q_0^n$	Q_1^n	$\overline{Q}^{+1}Q$	n+1 0	YZ
0 0 0 0	0	0	0	0
0 0 9 1	0	1	0	0
6.010	1	0	0	0
0 0 1 1	1	1	0	0
	0	1	0	0
0 1 0 0 0 1	1	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	0
0 1 1 0	0	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	1	0	0	0
1 0 0 1	0	0	1	0
1 0 1 0	0	0	1	1
1 0 1 1	1	0	0	0
1 1 0 0	Ф	Φ	Φ	Φ
1 1 0 1	Φ	Φ	Φ	Φ
1 1 1 0	Φ	Φ	Φ	Φ
1 1 1 1	Φ	Φ	Φ	Φ

§6.4 计数器 Counter

• 计数器的功能

记录*CLK* 个数的电路,可以用采计数、分频,此外还可以对系统定时、顺序控制

· 计数器的分类

时钟控制: 异步, 同步

计数功能: 加法计数, 减法计数, 可逆计数

数制:二进制计数器,非二进制计数器(任意进制计

数器)

例1. 异步计数器时序电路

例2. 同步计数器时序电路

 Q_0 每来一个CLK脉冲翻转一次

 Q_1 只有当 Q_0 为1时翻转,其余保持

 Q_2 只有当 Q_1 、 Q_0 同时为1时翻转,其余保持

$$\Gamma$$
 触发器的状态方程 $Q^{n+1} = TQ^n + \overline{T}Q^n$

当
$$T=1$$
时 $Q^{n+1}=\overline{Q^n}$ 当 $T=0$ 时 $Q^{n+1}=Q^n$

§ 6.4.1 集成计数器 74161

74161: 二进制同步模16加法计数器,异步清0功能

计数器74161 电路

符号

TEEE

数据输入 $D_3 D_2 D_1 D_0$

异步清零 CLR

控制端 $ENT(ET, CT_T)$ $ENP(EP, CT_p)$

预置端 \overline{LOAD} (\overline{LD})

进位输出 RCO(CO)

74161 功能表

CLR	ĪD	ENT	ENF	P CLK	$D_0 D_1 D_2 D_3$	功能
0	X	X	X	X	XXXX	Direct set 0
1	0	X	X	†	$D_0D_1D_2D_3$	Load 预置
		0 X			X X X X X X X X	保持 <i>RCO</i> =0
		$\frac{\Lambda}{1}$				M-16 汀数

$$RCO = ENT \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0$$

计数时, ENT = 1:

当 $Q_3Q_2Q_1Q_0 = 11111$ 时,RCO = 1 其他討刻,RCO = 0

$$Q_3Q_2Q_1Q_0 = 0000$$

 $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0$

74161 IEEE 符号

例1. 用 74161 实现模11加法计数器

方法1: 预置归0法 (\overline{LD})

$$ENT = ENP = 1$$
, $\overline{CLR} = 1$, $D_3D_2D_1D_0 = 0000$

最大状态 1010 最大状态中1端连入一个与非门

输出 $\rightarrow L\overline{D}$

$$0 \rightarrow 9$$
, 与非门 = 1. (\overline{LD} =1), 计数

 10^{th} *CLK* 到来, $Q_3Q_2Q_1Q_0$ =1010, \overline{LD} =0

 11^{th} *CLL* 到来, $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0 = 0000$

方法 2: 预置补数法

0000~1111 16 个状态

0000~1010 11 **个状态** 5 (0101) ~ 15 (1111) 11 个状态

状态图

与非门 → CLR

状态图

虚线部分:不稳定状态

方法1较优,用 \overline{LD} 端归0

例 2. 用74161 设计模 24 计数器

两个 74161 最大状态: 23 (10111)。

00000

例 3. 求下图计数器电路的模值

终点: 01010100 = 84

补数: 01001010 = 74

M = 84 - 74 + 1 = 11