Machine Learning Gravitational Waveforms for Binary Neutron Star mergers

Jacopo Tissino

2021-09-10

Amplitudes

Phases

MLGW_BNS structure: training dataset generation

- Greedy adaptive downsampling fit;
- EOB waveform generation and downsampling;
- residuals from PN waveforms: $\Delta A = \log(A_{\rm EOB}/A_{\rm PN})$ and $\Delta \Phi = \Phi_{\rm EOB} \Phi_{\rm PN}$;
- PCA on the combined, downsampled, rescaled residuals;
- a NN learns the map $\theta \to PC_i\lambda_i^{\alpha}$;
- the hyperparameters of the NN and α are optimized case-by-case.

Residuals: amplitude

Residuals: phase

PCA mismatches

Hyperparameter optimization

Pareto-front Plot

Fidelity: nonspinning case

Fidelity: spinning case

Amplitude reconstruction residuals

Phase reconstruction residuals

Evaluation time: $f_0 = 20 \,\text{Hz}$

Evaluation time: $f_0 = 20 \,\text{Hz}$

Evaluation time: $f_0 = 20 \,\mathrm{Hz}$

Evaluation time: $f_0 = 10 \,\text{Hz}$

Evaluation time: $f_0 = 10 \,\text{Hz}$

Evaluation time: $f_0 = 10 \,\mathrm{Hz}$

Profiling the evaluation: 10⁴ interpolation points

Profiling the evaluation: 10⁶ interpolation points

Fourier transform issues

Fourier transform issues

Fourier transform issues

