Part 2: Analysis

Question 1 (5 marks)

This question is about differentiation.

- (i) In one sentence explain the infinitesimal approach to differentiation and use it to show that $\frac{d(x^3)}{dx} = 3x^2$
- (ii) Using the chain rule, product rule and $d \sin x/dx = \cos x$, differentiate: $f(x) = x \sin x^2$

(5 marks)

Solution: In the infinitesimal approach you work out [f(x+dx)-f(x)]/dx and, when it is safe to do so, you set dx to zero[2 points]. For x^3 you expand $(x+dx)^3$ using the binomial theorem[1 point]. Finally[2 points]

$$f'(x) = \sin x^2 + 2x^2 \cos x^2$$

Question 2 (5 marks)

This question is about partial derivatives.

- (i) Write down the definition of $\partial f(x,y)/\partial x$ and of ∇f .
- (ii) If $f(x,y) = x \sin xy + y^2$, what is ∇f and what is the derivative along a unit vector in the (1,1) direction?

(5 marks)

Solution: So[1 point]

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

and[1 point]

$$\nabla f = (f_x, f_y)$$

or in the particular example[1 point]

$$\nabla f = (\sin xy + xy\cos xy, x^2\cos xy + 2y)$$

and the directional derivative is given by the sum of both terms divided by $\sqrt{2}[2 \text{ points}]$ (half marks for correct answer without the normalization).

Question 3 (5 marks)

This question is about complex numbers.

- (i) Write $z = \frac{1+2i}{2+i}$ in the form x + iy.
- (ii) Write $z = 1 + \sqrt{3}i$ in the polar form.
- (iii) The quaternions are a type of generalization of complex numbers. Instead of just i there are three imaginary numbers i, j and k, and these all square to minus one: $i^2 = j^2 = k^2 = -1$. In addition ijk = -1 and the numbers are anti-commutative: ij = -ji, jk = -kj and so on. Lots of other relationships can be derived from these rules, for example if you multiply ijk = -1 you get jk = i, or if you switch it jik = 1 and multiply by j you get ik = 1. If z = 1 + 3i + 2j, what are zi and iz?

(5 marks)

Solution: (i) Division gives z = (4+3i)/5[1 point], (ii) the polar form has length two and angle $\pi/3[2 \text{ points}]$ and (iii) zi = i - 3 + 2k [1 point] whereas iz = i - 3 - 2k[1 point].

Question 4 (5 marks)

This question is about differential equations.

- (i) In one sentence explain the difference between a homogeneous and an inhomogeneous differential equation.
- (ii) Solve $\frac{df}{dt} = 3f$ with f(0) = 4.
- (iii) Solve $\frac{df}{dt} = 3f + t$ with f(0) = 1.

(5 marks)

Solution: So a homogenous equation only has f and its derivative[1 point]. As for the examples, the first one is $f = 4 \exp(3t)[2 \text{ points}]$; the second one $f(t) = 10/9 \exp(3t) - t/3 - 1/9[2 \text{ points}]$

Question 5 (5 marks)

This question is about optimization. Briefly describe gradient flow.

(5 marks)

Solution: In gradient flow you minimize a function by moving a small distance in the direction opposite the gradient.[5 points]