Uvod u teoriju računarstva - Završni ispit 19.06.2012.

1.	$(3\ \mathrm{boda})$ Formalno definirajte postupak konstrukcije Mooreovog automata M.	g automata M' iz zadanog Mealyevog	
2.	(3 boda) Formalno definirati osnovni model Turingovog stroja. Navesti koje uvjete u odnosu na nedeterministički Turingov stroj zadovoljava linearno ograničeni automat.		
3.	$(3\ \mathrm{boda})$ Formalno opisati algoritam za izbacivanja mrtvih znakova iz konteksno-neovisne gramatike.		
4.	4. (3 boda) Neka je $T(L)$ skup svih onih Turingovih strojeva (TS) koji prihvaćaju jezik L, a w je niz čija prihvatljivost se ispituje Turingovim strojem. Koja od sljedećih tvrdnji (1-5) vrijedi za zadane scenarije prihvaćanja jezika (a-f):		
	Odgovor upišite na praznu liniju:		
	 (a) L je regularni jezik, niz w JEST u jeziku L (b) L je regularni jezik, niz w NIJE u jeziku L (c) L je rekurzivni jezik, niz w JEST u jeziku L (d) L je rekurzivni jezik, niz w NIJE u jeziku L (e) L je rekurzivno-prebrojiv jezik, niz w JEST u jeziku L (f) L je rekurzivno-prebrojiv jezik, niz w NIJE u jeziku L 	 (1) svaki TS iz skupa T(L) se zaustavlja (2) postoji barem jedan TS u skupu T(L) koji se zaustavlja, ali ne svaki (3) sigurno ne postoji niti jedan TS u skupu T(L) koji se zaustavlja (4) moguće je da ne postoji niti jedan TS u skupu T(L) koji se zaustavlja (5) zadanu klasu jezika nije moguće prihvatiti Turingovim strojem 	
5.	(3 boda) Kolika je sigurno dovoljna prostorna složenost determinističkog Turingovog stroja TS_1 koji prihvaća jezik L, ako je jezik L moguće prihvatiti determinističkim Turingovim strojem TS_2 vremenske složenosti $f(n)$? Obrazložite odgovor.		
6.	(3 boda) Definirati determinističko konačni automat koji opisuje tijek jednog gema igre tenis. U igri tenis sudjeluju dva igrača. Igrač pobjeđuje u gemu ako je osvojio barem ukupno 4 boda te ako je osvojio barem 2 boda više od protivnika. Ulazna abeceda za automat treba biti $\{bod_1, bod_2\}$, pri čemu bod_1 označava da je prvi igrač osvojio bod, a bod_2 da je drugi igrač osvojio bod. Prihvatljivim stanjima označiti sva stanja koja označavaju pobjedu nekog igrača.		

7. (3 boda) Konstruirajte $\varepsilon - NKA$ za lijevo-linearnu gramatiku:

$$\begin{array}{ccc} S & \rightarrow & Bac|Abba|ca \\ A & \rightarrow & c \\ B & \rightarrow & Cca|\varepsilon \\ C & \rightarrow & Cb|aa|b \end{array}$$

- 8. (3 boda) Konstruirati potisni automat koji praznim stogom prihvaća nizove oblika wuw^R , pri čemu vrijedi $w=(a+b)^+$, $u=(cd)^*$.
- 9. (3 boda) Konstruirati linearno ograničen automat koji prihvaća funkciju:

$$f(a) = \begin{cases} 1, & a \text{ je parni broj} \\ 0, & a \text{ je neparni broj} \end{cases}$$

pri čemu je prirodni broj a zapisan na traci kao niz uzastopnih znakova X. Na traci će uvijek biti zapisan broj a>0, a početni položaj glave je proizvoljan. Početak zapisa broja u traci je proizvoljan. Na primjer, početna konfiguracija trake može izgledati #BBBBXXXXXXXBBBBB\$, pri čemu je znak B oznaka prazne ćelije, a znakovi # i \$ graničnici trake. Na kraju rada automata u krajnjoj lijevoj ćeliji trake treba biti zapisan znak X ili ćelija treba biti prazna. Sve ostale ćelije trake automata trebaju biti prazne. **Napomena:** objasniti ideju rješenja i neformalno opisati zadatkekoje provode pojedine skupine prijelaza automata.

10. (3 boda) Konstruirati gramatiku neograničenih produkcija koja generira jezik $\{n\#w^n|n\in\mathbb{N} \text{ (prirodan broj) zapisan binarno bez vodećih nula, } w\in(a+b)^*\}$. Na primjer, neki nizovi u jeziku su: $110\#(w=\varepsilon)$, 10#aa(w=a), 10#abab(w=ab) i 11#bbabbabba(w=bba).