Série 13

Exercice 1. Soit $P \subset \mathbb{R}^2$ un sous-ensemble du plan (une "figure"). Le groupe d'isometries de P, est l'ensemble

$$\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{P}} = \{ \varphi \in \operatorname{Isom}(\mathbb{R}^2), \ \varphi(\mathbf{P}) = \mathbf{P} \} \text{ avec } \varphi(\mathbf{P}) = \{ \varphi(P), \ P \in \mathbf{P} \}.$$

c'est a dire l'ensemble des isometries laissant ${f P}$ globalement invariant.

- 1. Montrer que $\text{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ est bien un groupe.
- 2. Soit $\psi \in \text{Isom}(\mathbb{R}^2)$, et $\psi(\mathbf{P})$ l'image de \mathbf{P} par cette isometrie. Calculer $\text{Isom}(\mathbb{R}^2)_{\psi(\mathbf{P})}$ en fonction de $\text{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ et ψ .

Exercice 2. Soit $\mathbf{P} = \{P_1, \dots, P_n\}$ un ensemble de $n \geq 3$ points qui ne sont pas tous alignes sur une meme droite et soit $\mathrm{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ son groupe d'isometries.

1. Soit ϕ une isometrie telle que

$$\forall i = 1, \dots, \phi(P_i) = P_i,$$

montrer que ϕ est l'identite.

2. Montrer que si ϕ, ψ sont des isometries (quelconques) telles que

$$\forall i = 1, \dots, \phi(P_i) = \psi(P_i),$$

alors $\phi = \psi$.

- 3. Montrer que le groupe $\text{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ est fini (on remarquera que tout element de ce groupe induit une permutation de l'ensemble \mathbf{P}); en particulier il est soit cyclique soit dihedral.
- 4. Que dire si n=2?
- 5. Montrer (avec un exemple simple) que si \mathbf{P} est un ensemble de points du plan, qui ne sont pas tous alignes et qui est infini alors $\mathrm{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ peut etre egalement infini.

Définition 1. Soit $n \ge 3$ un entier, un polygone generalise a n cotes $\mathbf{P} \subset \mathbb{R}^2$ est une reunion de segments (appeles cotes du polygone) de la forme

$$\mathbf{P} = \bigcup_{i=1\cdots n} [P_i P_{i+1}]$$

FIGURE 1 – Quel est mon groupe d'isometries?

avec

$$P_1, \cdots, P_n, P_{n+1} = P_1$$

un ensemble de n points distincts du plan (qu'on appelle sommets du polygone), tels que deux cotes consecutifs ne sont pas alignes. On notera

$$\mathbf{P} = [P_1 \cdots P_n].$$

Exercice 3. Soit **P** un polygone generalise. Montrer que $\mathrm{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ est fini.

Exercice 4 (Un processus de moyenne). Soit $G \subset \text{Isom}(\mathbb{R}^2)$ un groupe fini et $\mathbf{P} \subset \mathbb{R}^2$ un sous ensemble quelconque de \mathbb{R}^2 .

1. Montrer que le groupe d'isometries de l'ensemble

$$G(\mathbf{P}) := \bigcup_{g \in G} g(\mathbf{P}), \text{ avec } g(\mathbf{P}) = \{g(P), P \in \mathbf{P}\}$$

contient G.

- 2. Quel est la structure du groupe d'isometries de la figure ci-dessus?
- 3. Donner les parametres complexes de ses differents elements.
- 4. Au vu le la premiere question a partir de quel sous-ensemble cette figure a elle ete construite?