房屋估價預測

國立政治大學統計碩二許振楡

- 1 資料敘述 ^{視覺化}
- 2 特徵工程 _{資料預處理、變數篩選}
- 3 **模型**建立及衡量結果

應變數

物件本身條件

物件外部環境

交易資訊

total_price分佈圖

偏度(skewness):24.84 峰度(kurtosis):945.307 資料為明顯的右偏分配 且具有極大的離群值

(連續型) total_floor, parking_area, parking_price, land_area, building_area

(名目型) building_material, building_type, building_use, parking way

(連續型) town_population, lat, Lon, village_income_median...

(名目型) city, town, village

(連續型) txn_dt, txn_floor, building_complete_dt

特徵工程

自變數

特徵工程

模型

畫出不同城市地理 位置及房價關係圖 可觀察到圖中右上 角的城市,有較多 高房價物件,左下 角以21號棕色城市 為附近房價較高的 地區

建物面積及房價成正向關係,不同縣市房價對面積斜率明顯不同,推測帶有地理位置資訊的變數可能會是重要特徵

資料預處理

資料敘述

1. 缺失值處理

- ▶ village income median與地緣相關,使用knn鄰近法以lat,lon,village做填補
- ➤ 計算與txn_floor相關係數較高的total_floor,building_material,building_ type,parking_way,building_complete_df做MCMC填補
- ▶ parking_area缺失值比例達95.16%, parking_price 缺失值佔77.84%,兩變數皆 有大量缺失值,且資料集中變數parking way可提供與停車相關的資訊,因此直接刪除

特徵工程

2.名目型變數 (無序) 先刪減類別,再做 虚擬變數

對房價具有相似分佈的類別進行合併以減少類別數量。以右圖5種**建物型態**對房價的盒狀圖為例,2號房價分佈較低,0,3及1,4分佈較接近,將該名目變數降為3類別,再以OneHot建立3個虛擬變數

建材及建物用途合併類別如右表,分別從8 類別降為5類別及10類別降為4類別

變數	原始類別	合併後類別
Building type	0, 3	0
	1, 3	1
	2	2
Building material	1, 8	1
	3, 11	3
	4	4
	7	7
	9, 10	10
Building use	0, 1, 2, 3, 7, 8	0
	4	4
	5, 10	5
	6	10

特徵工程

模型

3. 篩選變數降維

相關係數矩陣

➤ doc_Rate, master_Rate, bachelor_Rate, jobschool_rate, highschool_rate, junior_rate, elementary_rate e此類11個縣市的各級教育比例具有高度相關性

-00 ➤ born_rate,death_rate, marriage_rate,divorce_ rate為11個縣市描述人口增減婚 --04 姻的特徵

- -0.8

▶ 上述變數用來描述11個縣市的狀況, 為避免與city提供重疊資訊,將此 11個變數刪除

建模流程

資料敘述

特徵工程

特徵篩選

資料敘述

特徵工程

模型

- 學LightGBM為例,左圖以 變數作為節點次數繪圖,擔 任節點愈多次的變數視為 LightGBM 模型的重要特徵
- 建物面積,交易日期 為最 被頻繁使用的特徵,其他如 與鄰近特定類別的最短距離 也常被拿來當作樹節點
- ▶ 最終重要特徵的個數將會以 Grid Search篩選挑出

模型衡量

資料敘述

特徵工程

模型	5摺平均分數 (標準差)
GradientBoostingRegressor	4581.4(20.42)
XGBRegressor	4935.4(49.75)
LightGBM	3207.5(61.61)
Model_Assembling_1	5022.6(43.46)
Model_Assembling_2	5023.2(44.82)

平均分數最高,且標準差 相較其他模型偏低,屬於 較為穩健的模型

Score = round(Hit Rate, 4) $*10^4+(1-(1 if MAPE else MAPE))$

- ◆ Model_Assembling_1 : 將GBR, XGBR, LightGBM 預測出的Y值做平均
- ◆ Model_Assembling_2 : 計算各模型在訓練資料集mape,以mape倒數比例 (0.349,0.383,0.268)作為權重,對三模型預測 值權重加總