Viewing

From Object Space to Screen Space modeling camera transformation transformation world spade object space camera space projection viewport transformation transformation clip space screen space

Camera Transformation

From Object Space to Screen Space modeling camera transformation transformation world space object space camera space projection transformation viewport transformation screen space clip space

Viewing: Projection Plane

coordinate reference for obtaining a selected view of a 3D scene

Viewing: Camera Definition

- Similar to taking a photograph
- Involves selection of
 - Camera position
 - Camera direction
 - Camera orientation
 - "Window" (aperture) of camera

Viewing: Camera Definition

- Similar to taking a photograph
- Involves selection of
 - Camera position
 - Camera direction
 - Camera orientation

Orbiting Camera

- Often defined by
 - Target
 - Distance to target
 - Azimuth
 - Elevation

Viewing: Camera Transformation (1)

- View reference point
 - Origin of camera coordinate system
 - Camera position or look-at point

right-handed camera-coordinate system, with axes u, v, w, relative to worldcoordinate scene

Viewing: Camera Transformation (2)

- e ... eye position
- g ... gaze direction
 (positive w-axis points to the viewer)
- t ... view-up vector

$$w = -\frac{g}{||g||}$$

$$u = \frac{t \times w}{||t \times w||}$$

$$v = w \times u$$

Viewing: Camera Transformation (4)

$$\mathbf{M}_{\text{cam}} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_e \\ 0 & 1 & 0 & -y_e \\ 0 & 0 & 1 & -z_e \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

alternative calculation of $\mathbf{M}_{\mathsf{cam}}$ for aligning viewing system with world-coordinate axes using axis vectors

Viewing: Camera Transformation (3)

$$M_{cam} = R_z \cdot R_y \cdot R_x \cdot T$$

aligning viewing system with world-coordinate axes using translate-rotate transformations

Projection Transformation

From Object Space to Screen Space modeling camera transformation transformation world space object space camera space projection transformation viewport transformation screen space

clip space

Parallel Projection (Orthographic Projection)

3 parallel-projection views of an object, showing relative proportions from different viewing positions

Parallel vs. Perspective Projection

Parallel (Orthographic) Projection modeling camera transformation transformation world space object space camera space projection transformation viewport transformation screen space clip space

Projection Transformation (Orthographic)

- Assumption: scene in box $[1,r] \times [b,t] \times [f,n]$
- Orthographic camera looking in —Z direction
- Transformation to clip space $(l,b,f) \rightarrow (-1,-1,-1)$

Projection Transformation (Orthographic)

$$M_{orth} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parallel Projection (1)

viewing plane

viewing plane

orthographic
projection

viewing plane

oblique
projection

orientation of the projection vector –g

Viewport Transformation

From Object Space to Screen Space modeling camera transformation transformation world space object space camera space projection transformation viewport transformation screen space clip space

Viewport Transformation (1)

- Assumption: scene is in clip space!
- Clip space = [(-1, -1, -1), (1, 1, 1)]
- Orthographic camera looking in –z direction
- Screen resolution $n_x \times n_y$ pixels

Viewport Transformation (2)

can be done with the matrix

$$\begin{bmatrix} x_{\text{screen}} \\ y_{\text{screen}} \\ 1 \end{bmatrix} = \begin{bmatrix} n_x/2 & o & n_x/2 \\ o & n_y/2 & n_y/2 \\ o & o & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \xrightarrow{(-1,-1) \to (0,0)} (0,0)$$

this ignores the z-coordinate, but...

Viewport Transformation (3)

 ... we will need z later to remove hidden parts of the image, so we add a row and column to keep z

$$\begin{bmatrix} x_{\text{screen}} \\ y_{\text{screen}} \\ z \end{bmatrix} = \begin{bmatrix} n_x/2 & 0 & n_x/2 \\ 0 & n_y/2 & n_y/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 & z \end{bmatrix}$$

$$M_{\text{vp}}$$

From Object Space to Screen Space modeling camera transformation transformation world space object space camera space projection transformation viewport transformation screen space clip space

Viewing: Camera + Projection + Viewport

From Object Space to Screen Space modeling camera transformation transformation view orth College world s object space camera space projection transformation screen space clip space

Parallel vs. Perspective Projection

parallel projection: preserves relative proportions & parallel features (affine transform.)

perspective projection: center of projection, realistic views

- In the real world, objects exhibit perspective foreshortening: distant objects appear smaller
- The basic situation:

When we do 3-D graphics, we think of the screen as a 2-D window onto the 3-D world:

Equal-sized objects at different distances from view plane

The geometry of the situation is that of similar triangles.
View from above:

The geometry of the situation is that of similar triangles.
View from side:

• Desired result for a point $[x, y, z, 1]^T$ projected onto the view plane:

$$\frac{x'}{x} = \frac{d}{z} \qquad \frac{y'}{y} = \frac{d}{z}$$

$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d}$$
 $y' = \frac{d \cdot y}{z} = \frac{y}{z/d}$ $z' = d$

What could a matrix look like to do this?

A Perspective Projection Matrix

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

A Perspective Projection Matrix

Example:

$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Or, in 3-D coordinates:
- Problem with z?

$$\left(\frac{x}{z/d}, \frac{y}{z/d}, d\right)$$

A Perspective Projection Matrix

OpenGL's gluPerspective() command generates a slightly more complicated matrix:

$$\begin{bmatrix} \frac{f}{aspect} & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & \left(\frac{Z_{far} + Z_{near}}{Z_{near} - Z_{far}}\right) & \left(\frac{2 \times Z_{far} \times Z_{near}}{Z_{near} - Z_{far}}\right) \\ 0 & 0 & -1 & 0 \end{bmatrix}$$
where $f = \cot\left(\frac{fov_y}{2}\right)$

From Object Space to Screen Space modeling camera transformation transformation world space object space camera space projection transformation viewport transformation screen space clip space

Viewing: Camera + Projection + Viewport

