Mostafa Ghorbandoost

Applied Machine Learning Research Scientist

Location: Vancouver, British Columbia, Canada Email address: mos.ghorbandoost@gmail.com

Professional links: PersonalWebsite | LinkedIn | GoogleScholar | StackOverflow | GitHub

EXPERIENCE

• Applied Speech Machine Learning Research Scientist

Sep. 2021 - Dec. 2022

Sanas

Palo Alto, California, United States

- Accent Conversion: Devised novel real-time accent conversion methods based on CNNs, RNNs and made these models robust against noise and able to generalize well using pre-training and proper loss functions
- Voice Conversion: Designed a real-time voice conversion method using VQ-VAE and different concatenative and multiplicative speaker embedding strategies
- Speech Synthesis: Explored various neural nets to reconstruct speech spectrogram or waveform from prosodic features and self-supervised features e.g. Hu-BERT
- Vocoders: Experimented with modern GAN-based vocoders e.g. HiFi-GAN to perform high-quality speech spectrogram to waveform inversion
- Transformers: Used transformers to convert self-supervised discrete codes from one accent to another by correcting the codes in a similar way to a spell-checker
- Machine Learning Engineering: Organized and prepared data for machine learning models and evaluate their performance using objective and subjective measures

• Data Scientist

Dec. 2020 - Sep. 2021

Tehran, Iran

Tehran, Iran**

- **Probabilistic Price Estimation**: Designed a probabilistic regression model using LightGBM and NGBoost to estimate used cars' prices using their make, age, mileage, and body status with a confidence interval
- Robust Regression: Made use of Laplace and t-distribution and robust loss functions to make regression models robust against outliers
- Feature Engineering: Massively mined, manipulated and combined millions of adverts in order to build proper features from their attributes to train more accurate regression models

• Applied Industrial Machine Learning Research Scientist

Sep. 2017 - Dec. 2020

Mapna

Karaj, Iran

- Representation Learning: Used probabilistic ML methods e.g. beta-VAE to obtain meaningful and disentangled representations of plant's high dimensional sensor data for anomaly detection and fault classification
- Transfer Learning: Employed Domain Adversarial Neural Nets which is a type of GAN to adapt anomaly detection and fault classification models to unseen plants
- Continuous Domain Adaptation: Deployed Domain-invariant VAEs to isolate environmental factors like temperature from sensors and make it possible to compare sensor values in different seasons

• Applied NLP Machine Learning Research Scientist

May. 2017 - Sep. 2017

Kavosh

Tehran, Iran

- Multi-label Text Classification: Used RNNs to classify medical texts for the task of Automated Medical Coding to predict a patient's health issues based on their discharge diagnosis
- Word Embedding Models: Trained Skip-Gram and CBOW on thousands of medical texts to better suit the medical applications than pre-trained word2vecs

• Digital Designer

Oct. 2016 - May. 2017

Fana

 $Tehran,\ Iran$

• Forward Error Correction: Implemented Reed-Solomon error correction for Optical Transport Network to enhance the effective range of transmission using Verilog and Altera Stratix-V FPGAs

• Machine Learning Practitioner

Mar. 2016 - Oct. 2016

Freelancing

Tehran, Iran

- **Human Gesture Recognition**: Designed a system to classify sequences of 12 gestures captured through Microsoft Kinect using left-to-right Hidden Markov Models with high accuracy
- Speaker Verification: Devised a method to authenticate the identity of a person through his voice using speech spectral features and Universal Background Model which is a type of GMM

• Machine Learning Researcher

Multimedia Signal Processing Research Lab at Amirkabir University of Technology

Sep. 2012 - Jan. 2015 Tehran, Iran

- Voice Conversion: Explored different spectral features (MFCC, LSF, MCC) and combined them towards having a high-quality voice conversion system that is capable of being trained with a limited amount of training data
- Mixture Models: Employed a variety of mixture models from Bayesian GMMs to Mixture Density Networks to better capture the multi-modal nature of speech signal while doing regression
- Dynamic Bayesian Networks: Deployed dynamic linear Gaussian models (with Kalman filtering) to model sequential relationships in speech and convert the speech without loss of continuity

EDUCATION

• M.Sc. in Electrical Engineering, Communication Systems School of Electrical Engineering, Amirkabir University of Technology Sep. 2011 – Oct. 2013 Tehran, Iran

• B.Sc. in Electrical Engineering, Electronics

Sep. 2007 – Sep. 2011

School of Electrical Engineering, Amirkabir University of Technology

Tehran, Iran

AWARDS AND HONORS

• Ranked 193 among 122,000 Data Scientists

Data Science Q&A website | User: pythinker

Dec. 2022

• Winner of Bronze Medal

Stack Exchange Sep. 2006

National Physics Olympiad

Tehran, Iran

SOFTWARE SKILLS

Programming	Cloud Services	Database	Vesrion Control	Documentation
Python Bash	Google Cloud Platform	SQL	Git	LaTeX Markdown

Deep Learning	Machine Learning	Data Science	Plotting
PyTorch TensorFlow	Scikit-learn XGBoost	Pandas Numpy	Matplotlib Seaborn

JOURNAL PUBLICATIONS

- [1] Mostafa Ghorbandoost, V Saba, "Non-parallel training for voice conversion using background-based alignment of GMMs and INCA algorithm", IET Signal Processing 11.8, 2017. link
- [2] Mostafa Ghorbandoost, A Sayadiyan, M Ahangar, H Sheikhzadeh, A S Shahrebabaki, J Amini, "Voice conversion based on feature combination with limited training data", Speech Communication 67, 2015. link

Conference Proceedings

- [1] M Ahangar, **Mostafa Ghorbandoost**, S Sharma, M JT Smith, "Voice conversion based on a mixture density network", IEEE WASPAA, New Paltz, NY, USA, 2017. link
- [2] M Ahangar, Mostafa Ghorbandoost, H Sheikhzadeh, K Raahemifar, A S Shahrebabaki, J Amini, "Voice conversion based on state space model and considering global variance", IEEE ISSPIT, Greece, 2013. link
- [3] A S Shahrebabaki, J Amini, H Sheikhzadeh, **Mostafa Ghorbandoost**, N Faraji, "Reduced search space frame alignment based on Kullback-Leibler Divergence for voice conversion", NOLISP, Belgium, 2013. link

References

The list of references will be provided to recruiters on demand.