SEMICONDUCTOR DEVICE

Patent number:

JP11330486

Publication date:

1999-11-30

Inventor:

ADACHI HIROKI; YAMAZAKI SHUNPEI

Applicant:

SEMICONDUCTOR ENERGY LAB

Classification: - international:

H01L23/52; H01L21/3205; H01L21/336; H01L29/786; H01L23/52; H01L21/02; H01L29/66; (IPC1-7):

H01L29/786; H01L21/3205; H01L21/336

- european:

Application number: JP19980152304 19980516 Priority number(s): JP19980152304 19980516

Report a data error here

Abstract of JP11330486

PROBLEM TO BE SOLVED: To anode-oxidize readily a wiring layer and enable high integration of a circuit by a method, wherein an oxide film is formed in two wiring layers composed of a metal film with each wiring layer partly removing to make an oxide come into contact with only the wiring layer, and one oxide film is laminated by making it come into contact with the other oxide film and the wiring layer. SOLUTION: A first metal film 101 is formed on a surface of an insulator 100 such as a glass substrate, etc., and a second metal film 102 such as aluminum, etc., is formed on this metal film 101. The second metal film 102 is patterned to form selectively a second wiring layer 103 on the first metal film 101, and each of a plurality of wires is isolated so that all the second wiring layers 103 are made to be electrically short-circuited with the first metal film. A voltage is applied to he first metal film 101 in an ethylene glycol solution containing a tartaric acid, and the second wiring layer 103 is anode-oxidized, and an anode oxide film 105 of the wiring layer 103 is formed on the surface. By the use of the anode oxide film 105 as a mask, an anode oxide 104 is etched to form a first wiring layer 106 for completing a wiring 110.

Data supplied from the esp@cenet database - Worldwide

Family list

3 family members for: JP11330486

Derived from 3 applications

1 SEMICONDUCTOR DEVICE

Inventor: ADACHI HIROKI; YAMAZAKI SHUNPEI Applicant: SEMICONDUCTOR ENERGY LAB

EC: IPC: H01L23/52; H01L21/3205; H01L21/336

(+7) **Publication info: JP11330486 A** - 1999-11-30

2 SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

Inventor: ADACHI HIROKI; YAMAZAKI SHUNPEI Applicant: SEMICONDUCTOR ENERGY LAB

EC: IPC: H01L29/786; H01L21/336; H01L29/66 (+

Publication info: JP11340471 A - 1999-12-10

3 Semiconductor device with metal-oxide conductors

Inventor: ADACHI HIROKI (JP); YAMAZAKI Applicant: SEMICONDUCTOR ENERGY LAB (US)

SHUNPEI (JP)

EC: H01L21/77T; G02F1/1362W; (+2) IPC: G02F1/1362; H01L21/77; H01L21/84 (+7

Publication info: US6396147 B1 - 2002-05-28

Data supplied from the *esp@cenet* database - Worldwide

(11)特許出願公開番号

特開平11-330486

(43)公開日 平成11年(1999)11月30日

(51) Int. Cl. ⁶ HO1L 29/786	識別記号	F I H01L 29/78		617	J		
21/3205		21/88		011	R		
21/336		29/78		612	С		
11, 000				616	Α		
				626	Z		
		審査請求	未請求	請求項の	の数26	FD	(全23頁)
(21)出願番号	特願平10-152304	(71)出願人	00015387				
			株式会社	:半導体工	ネルギ	一研究	所
(22) 出願日	平成10年(1998) 5月16日		神奈川県厚木市長谷398番地 (72)発明者 安達 広樹				
		(72)発明者					
			神奈川県	厚木市長	:谷398₹	番地 杉	k式会社半
			導体エネ	ルギー研	究所内		
		(72)発明者	山崎 舜	平			
			神奈川県	厚木市長	:谷398種	番地 杉	k式会社半
			導体エネ	ルギー研	究所内	l	

(54) 【発明の名称】半導体装置

(57) 【要約】

【課題】 陽極酸化用の電圧供給配線を形成せずに配線 を陽極酸化する。

【解決手段】 アルミニウムでなる第2の配線層103 は配線ごとに分離されて形成され、タンタルでなる金属 膜101によって電気的にショートされている。第1の 金属膜101に電圧を印加することによって、前記第2 の配線層103を陽極酸化して、その表面に配線層10 3の陽極酸化物膜(アルミナ膜)105を形成する。陽 極酸化物105をマスクにして、陽極酸化物104をエ ッチングして第1の配線層106を形成し、配線層10 3と106が積層した配線110が完成する。

【特許請求の範囲】

物膜と、

【請求項1】第1の金属膜でなる第1の配線層上に、第2の金属膜でなる第2の配線層を積層した積層構造を有する配線を備えた半導体装置であって、前記配線は、

前記第1の配線層の側面に接して形成された前記第1の 金属膜の酸化物膜と、

前記第2の配線層の側面に接して形成された前記第2の 金属膜の酸化物膜と、を有することを特徴とする半導体 装置。

【請求項2】第1の金属膜でなる第1の配線層上に、第 10 2の金属膜でなる第2の配線層を積層した積層構造を有 する配線を備えた半導体装置であって、前記配線は、

前記第1の配線層を酸化して形成された前記第1の酸化 物膜と、

前記第2の配線層を酸化して形成された前記第2の酸化 物膜と、を有し、

前記第2の配線層の下部は、前記第1の配線層のみに接 し、

前記第2の酸化物膜の下部は、前記第1の配線層及び前 記第1の酸化物膜とに接し、ていることを特徴とする半 20 導体装置。

【請求項3】第1の金属膜でなる第1の配線層上に、第2の金属膜でなる第2の配線層を積層した積層構造を有する配線を備えた半導体装置であって、前記配線は、前記第1の配線層を酸化して形成された前記第1の酸化

前記第2の配線層を酸化して形成された前記第2の酸化 物膜と、を有し、

前記第2の配線層と前記第2の酸化物膜との界面は、前記第1の配線層と前記第1の酸化物膜よりも内側にあることを特徴とする半導体装置。

【請求項4】請求項2又は3において、前記第1の酸化物膜において、前記第2の酸化物膜下部に存在する部分は外側に向って膜厚が徐々に増加していることを特徴とする半導体装置。

【請求項5】請求項2乃至4のいずれか1つにおいて、 前記第1の酸化物膜は、前記第2の酸化物膜側面よりも 外側に延びていることを特徴とする半導体装置。

【請求項6】請求項2乃至4のいずれか1つにおいて、 前記第1の酸化物膜は、前記第2の酸化物膜側面よりも 40 外側に延びており、

前記第1の酸化物膜の厚さは、前記第2の酸化物膜下部と、前記第2の酸化物膜側面よりも外側とで異なることを特徴とする半導体装置。

【請求項7】請求項2乃至4のいずれか1つにおいて、 前記第1の酸化物膜は、前記第2の酸化物膜側面よりも 外側に延びており、

前記第1の酸化物膜は、前記第2の酸化物膜側面よりも 外側で、膜厚が最大になる部分を有することを特徴とす る半導体装置。 【請求項8】請求項7において、

前記第1の酸化物膜は、前記膜厚が最大になる部分より も外側に、膜厚がほぼ均一になる領域を有することを特 徴とする半導体装置。

【請求項9】請求項2又は3において、

前記第1の酸化物膜は、前記第2の酸化物膜側面よりも 外側に延びており、

前記配線は、少なくとも1つの絶縁ゲート型トランジス 夕の活性層と重なっており、

1つの活性層上において、前記第1の酸化物膜は、前記 第2の酸化物膜側面よりも外側で膜厚が最大になる部分 を有することを特徴とする半導体装置。

【請求項10】請求項2乃至4のいずれか1つにおい て

前記第1の酸化物膜は、前記第2の酸化物膜側面よりも 外側に延びており、

前記配線は、少なくとも1つの絶縁ゲート型トランジス タの活性層と重なっており、

1つの活性層上において、前記第1の酸化物膜は、前記 第2の酸化物膜側面よりも外側に膜厚が最大になる部分 を有し、前記膜厚が最大になる部分よりも外側に膜厚が ほぼ均一になる領域を有することを特徴とする半導体装 置

【請求項11】請求項6乃至9のいずれか1つにおい ~

前記膜厚が最大になる部分の膜厚は、前記第1の配線層 の膜厚の2~4倍であることを特徴とする半導体装置。

【請求項12】請求項7乃至11のいずれか1つにおいて、

30 前記膜厚がほぼ均一になる領域の膜厚は、前記第1の配線層の膜厚の2~4倍であることを特徴とする半導体装置。

【請求項13】請求項2乃至12のいずれか1つにおいて、

前記配線は、島状絶縁膜上に形成され、

前記第1の酸化物膜側面は前記島状絶縁膜の側面にほぼ 一致することを特徴とする半導体装置。

【請求項14】第1の金属膜でなる第1の配線層上に、 第2の金属膜でなる第2の配線層を積層した積層構造を 有するゲート配線を有する絶縁ゲート型トランジスタを 複数有する半導体装置であって、

前記ゲート配線は、

前記第1の配線層を酸化して形成された前記第1の酸化物障と、

前記第2の配線層を酸化して形成された前記第2の酸化 物膜と、

を有し、

前記第1の酸化物膜は前記第2の酸化物膜よりも外側に 延びており、

50 前記第2の配線層と前記第2の酸化物膜との界面は、前

I

記第1の配線層と前記第2の酸化物膜よりも内側にある ことを特徴とする半導体装置。

【請求項15】請求項13において、

前記トランジスタの1つの活性層において、

ゲート絶縁膜を介してその上部に前記第1の酸化物膜だけが存在する領域には低濃度不純物領域が形成されていることを特徴とする半導体装置。

【請求項16】請求項14において、

前記ゲート配線は、少なくとも前記トランジスタの活性 層の1つと重なり、

当該活性層に対して、そのチャネル幅方向に前記第1の酸化物膜は前記第2の酸化物膜よりも外側に延びていることを特徴とする半導体装置。

【請求項17】請求項2乃至15のいずれか1つにおいて、

前記第1の酸化物膜は前記第1の金属膜を陽極酸化する ことにより形成され、

前記第2の酸化物膜は前記第2の金属膜を陽極酸化することにより形成され、たことを特徴とする半導体装置。

【請求項18】請求項2乃至17のいずれか1つにおい 20 て、

前記第1の金属膜と前記第2の金属膜は、陽極酸化速度 が異なることを特徴とする半導体装置。

【請求項19】請求項18において、

前記第1の酸化物膜と前記第2の酸化物膜は、同じ陽極酸化工程で形成されたことを特徴とする半導体装置。

【請求項20】請求項2乃至19のいずれか1つにおいて、

前記第1の金属膜の膜厚は $1\sim50$ nmであることを特徴とする半導体装置。

【請求項21】請求項2乃至20のいずれか1つにおいて、

前記第2の金属膜は、アルミニウムまたはアルミニウム を主成分とする材料でなることを特徴とする半導体装 置。

【請求項22】請求項2乃至21のいずれか1つにおいて、

前記第1の金属膜は、バルブ金属膜であることを特徴と する半導体装置。

【請求項23】請求項2乃至請求項22のいずれか1つ 40 において、

前記第1の金属膜は、Ta、Nb、Hf、Ti、Crのいずれか一種の金属元素を主成分とする材料、又はこれら金属元素を含有する合金で形成されることを特徴とする半導体装置。

【請求項24】請求項2乃至請求項22のいずれか1つ において、

前記第1の金属膜は、タンタルまたはタンタルを主成分とする材料でなることを特徴とする半導体装置。

【請求項25】請求項2乃至請求項24のいずれか1つ 50 ルミニウムを用い、ゲート電極を陽極酸化することによ

に記載の半導体装置は、表示装置、イメージセンサ、演 算集積回路、高周波モジュールのいずれかであることを 特徴とする半導体装置。

【請求項26】請求項25において、前記半導体装置は、前記表示装置を備えた、ビデオカメラ、スチルカメラ、プロジェクター、プロジェクションTV、ヘッドマウントディスプレイ、カーナビゲーション、パーソナルコンピュータ、携帯情報端末機器のいずれかであることを特徴とする半導体装置。

10 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アルミニウム材料で形成された配線を有する絶縁ゲート型トランジスタ等の半導体装置の構造及びその作製方法に関する。本発明の半導体装置は、薄膜トランジスタやMOSトランジスタなどの素子だけでなく、これら絶縁ゲート型トランジスタで構成された半導体回路を有する表示装置やイメージセンサ等の電子機器をも含むものである。

[0002]

30

【従来の技術】近年、絶縁性を有する基板上に形成された薄膜トランジスタ(以下、TFTと略記する)により画素マトリクス回路及び駆動回路を構成したアクティブマトリクス型液晶ディスプレイが注目を浴びている。液晶ディスプレイは0.5~2インチ程度のプロジェクター向けのものや、10~20インチ程度のノートパソコン向けのものまであり、主に小型から中型までの表示ディスプレイとして利用されている。

【0003】近年、液晶ディスプレイの大面積化が求められているが、大面積化すると画像表示部となる画素マトリクス回路の面積も大きくなり、これに伴ってマトリクス状に配列されたソース配線及びゲート配線等が長くなるため、配線抵抗が増大する。更に微細化の要求のために配線を細くする必要があり、配線抵抗の増大がより顕在化される。液晶ディスプレイでは、ソース配線及びゲート配線には、画素ごとにTFTが接続されており、画素数の増大に伴って寄生容量の増大も問題となる。更にパネルの大面積化に伴ってゲート信号の遅延が顕在化してくる。

【0004】この問題点を解消するため、ゲート配線として比抵抗の低いアルミニウムを主成分とする材料が用られている。アルミニウムを主成分とする材料でゲート配線、ゲート電極を形成することで、ゲート遅延時間を低くすることができ、高速動作させることができる。

【0005】また、従来、薄膜トランジスタをオフセット構造またはLDD(Light dopeddrain)構造とすることによって、オフ電流を小さくすることが試みられている。特許第2759415号公報において、本出願人はLDD構造の薄膜トランジスタを得る技術を開示している。上記特許掲載公報において、ゲート電極材料にアルミニウムを用い、ゲート電極を陽極酸化することによ

4

って、半導体層に自己整合的にLDD構造を形成する方 法が記載されている。図22を用いて、この方法を説明 する。

【0006】ガラス基板10に、酸化シリコン膜等の下地膜11が形成されている。下地膜11上には多結晶シリコン膜からなる活性層13を形成し、活性層13上にゲート絶縁膜14を形成する。次に、アルミニウム膜を形成しフォトレジストマスク16を用いてパターニングして、アルミニウムでなるゲート電極15を形成する。(図22(A))

【0007】ゲート電極15を陽極にして、電解溶液中でパターンを陽極酸化して、ポーラス(多孔質)アルミナ膜17を形成する。この状態では、マスク16によってゲート電極15の表面は遮られているため、ゲート電極15の側面だけにアルミナ膜17が形成される。(図22(B))

【0008】 フォトレジストマスク16を除去した後、 ゲート電極19を再び陽極酸化して、無孔質アルミナ膜 18を形成する。(図22 (C))

【0009】次にアルミナ膜17、18をマスクにして、ゲート絶縁膜14'をパターニングする。(図22 (D))

【0010】そして、多孔質アルミナ膜17を除去した後、プラズマドープ法によって、n型又はp型の導電型を付与する不純物を活性層13にドーピングする。ドーピングは2回に分けて実施する。1回目はゲート絶縁膜14'がマスクとして機能するように低加速度とし、ドーズ量は大きくする。2回目はゲート絶縁膜14'を不純物が通過するように、高加速度とする。他方、ドーズ量は小さくする。この結果、活性層13には、チャネル30形成領域20、ソース領域21、ドレイン領域22、低濃度不純物領域23、24が自己整合的に形成される。ドレイン領域22側の低濃度不純物領域24がLDD領域である。

【0011】しかしながら、陽極酸化処理を行うためには、陽極酸化する電極・配線を陽極酸化用の電圧供給配線に全て接続する必要がある。例えば上記特許掲載公報の技術をアクティブマトリクス型液晶パネルに応用した場合には、アクティブマトリクス回路や、ドライバ回路を構成する薄膜トランジスタのゲート電極・配線を電圧 40供給線に接続する必要がある。接続するためには、基板に電圧供給配線を形成することとなる。そのため余分なスペースが必要となる。

【0012】各ゲート電極・配線は電圧供給線によってショートされている構造となっている。陽極酸化処理後は電圧供給線や、この供給線との不要な接続部をエッチングによって除去して、各ゲート配線・電極を電気的に分離する。よって、エッチングのプロセスマージンをも考慮して、回路配置を設計しなくてはならない。

【0013】陽極酸化処理を用いてトランジスタを作製 50 者は、タンタル膜を電極にして、タンタル膜上にアイラ

するには、電圧供給線を形成するスペースと、エッチングマージン必要となり、回路の高集積化、基板面積の縮小化の障害となっている。また、配線としてアルミニウム材料使用したTFTでは、アルミニウム配線を形成した以降のプロセス温度が300~450℃であっても、TFTの動作不良が確認された。この動作不良の要因は様々に考えられる。特に、トップゲート型TFTの動作不良の多くは、ゲート電極で生ずるヒロック、ウィスカー等の突起物がゲート絶縁膜を突き抜けてチャネル形成10 領域へ到達したり、アルミニウム原子がゲート絶縁膜中に拡散したりしたことによって生じたゲート電極とチャネル間のショート(短絡)によるものである。

[0014]

【発明が解決しようとする課題】上述したように、配線 抵抗の点から、配線にアルミニウム材料を用いることが 望まれるが、アルミニウム材料を用いると、種々の問題 が生じてしまう。第1に、陽極酸化技術を利用すること によって、LDD構造の薄膜トランジスタを自己整合的 に作製することができる。しかしながら陽極酸化用の電 圧供給配線を形成する必要があるため、回路の高集積 化、基板面積の縮小化が阻まれている。

【0015】またに、アルミニウム原子の拡散やヒロックの発生によって、ゲート配線とチャネルとがショートしてしまい、TFTの動作不良が生じていた。

【0016】本発明は、上記の問題点を一挙に解決した 新規な配線構造を有する半導体装置に関するものであ る。本発明では、陽極酸化用の電圧供給配線を形成せず に、金属配線を陽極酸化する技術を提供する。

[0017]

【課題を解決するための手段】上述した問題点を解消するために、本発明の半導体装置は第1の金属膜でなる第1の配線層上に、第2の金属膜でなる第2の配線層を積層した積層構造を有する配線を備えた半導体装置であって、前記配線は、前記第1の配線層を酸化して形成された前記第1の酸化物膜と、前記第2の配線層を酸化して形成された前記第2の酸化物膜とを有し、前記第2の配線層の下部は、前記第1の配線層のみに接し、前記第2の酸化物膜の下部は、前記第1の配線層及び前記第1の酸化物膜に接していることを特徴とする。

【0018】本発明は、配線を配線構造とすることで、 第1の配線層によって第2の配線層を構成する材料が拡 散することを防止することにある。更に、本発明は、陽 極酸化用の電圧供給配線を形成せずに、第1及び第2の 配線層を陽極酸化することにある。即ち第1の配線層を 構成する第1の金属膜を陽極酸化用の配線とすることに よって、第2の配線層を陽極酸化することを可能にし た。

【0019】[本発明に至る過程] 以下に、図19~図21を用いて、本発明に至る過程を説明する。本発明 者は、タンタル膜を電極にして、タンタル膜上にアイラ ンド状にパターニングした複数のアルミニウムパターンが陽極酸化できるか否かを確認した。図194は実験手順ごとのアルミニウムパターンの断面図である。図20は図19の断面構造の部分拡大図である。図21は図20の断面構造を観察したSEM写真である。

【0020】《実験手順》 コーニングス社製1737 ガラス基板(5インチ平方)40上に、スパッタ法に て、厚さ20nmのタンタル(Ta)膜41、厚さ400 nmのアルミニウム(A1)膜42を積層した。そして、 アルミニウム膜42に陽極酸化装置のプローブを接続し 10 て、アルミニウム膜表面を陽極酸化して、バリア型の陽 極酸化物(Anodic Oxicide)膜49を形成した。またバ リア型陽極酸化物膜(以下バリアA.0.膜と表記する)は アルミナである。(図19(A))

【0021】陽極酸化条件は、電解溶液に3%の酒石酸を含むエチレングリコール溶液を用い、溶液温度30℃、到達電圧10V、電圧印可時間15分、供給電流10mA/1基板とした。この陽極酸化工程はレジストマスク50の密着性を向上するためである。この陽極酸化工程を、バリアA.0.膜49がA1膜42表面に形成されることから、マスク陽極酸化工程特開昭呼ぶこととする。

【0022】次に、レジストマスク50を形成して、A. 0. 膜49及びA1膜をエッチングし、A1膜でなるゲート配線のパターン43(以下、ゲートA143と表記する)を複数形成した。なお、ゲートA143は配線ごとに分離されて形成され、図19ではゲートA143は2つだけ図示した。

【0023】バリアA.0.膜49のエッチャントは、リン酸:硝酸:酢酸:水=85:5:5:5の割合で混合した溶液10リットルに対して、クロム酸溶液550グラ 30ム(クロム酸300グラム、水250グラム)を混合した酸を用いた。ここでは、このエッチャントをクロム混酸と呼ぶこととする。A1膜42のエッチャントにはリン酸、酢酸、硝酸、水を体積%で85:5:5:5の比で混合した酸(以下、この酸をアルミ混酸と呼ぶこととする)を用いた。(図19(B))

【0024】次に、レジストマスク50を残したまま、陽極酸化装置においてTa膜41に電圧を印可し、陽極酸化を行った。条件は、電解溶液に3%シュウ酸水溶液を用い、到達電圧8V、電圧印可時間40分、供給電流20mA/1基板とした。従来の陽極酸化方法ではこの陽極酸化条件では、通常アルミニウムパターン43の側面にポーラス型の陽極酸化物(ポーラスA.0.)膜44が形成される。そこで、この陽極酸化工程をサイド陽極酸化工程と呼ぶことにする。(図19(C))

【0025】次に、レジストマスク50を除去した後、 再び陽極酸化装置においてTa膜41に電圧を印可し、 陽極酸化を行った。条件は、電解溶液に電解溶液に3% の酒石酸を含むエチレングリコール溶液を用い、電解溶 液温度10℃、到達電圧80V、電圧印可時間30分、 供給電流 30 mA/1 基板とした。従来方法では、この陽極酸化条件では、ポーラスA. 0. 膜 44 を酒石酸が浸透して、ゲートA 143 表面が陽極酸化されて、バリア型の陽極酸化物(バリアA. 0.) 膜 46 が形成される。このことから、この陽極酸化工程をバリア陽極酸化工程と呼ぶことにする。バリアA. 0. 膜 46 は無孔質のアルミナである。(図 19 (D))

【0026】次に、上述したアルミ混酸によるウエットエッチングによって、ポーラスA.0. 膜 44 を除去した。(図 19 (E))

【0028】 $Ta 膜 41 のシート抵抗は初期状態(マスク陽極酸化前)では<math>100.1~\Omega/\Box$ cmであった。サイド陽極酸化工程終了後は $205.1~\Omega/\Box$ cmであり、バリア陽極酸化工程終了後のシート抵抗は測定装置の測定レンジの以上となった。装置の測定可能な最大値は $5000k~\Omega/\Box$ cmあるので、バリア陽極酸化工程終了後のシート抵抗は少なくとも $5000k~\Omega/\Box$ cm以上であるとみなせる。

【0029】サイド陽極酸化工程終了後、ガラス基板40を肉眼で観察してみると、Ta膜41の透明度が初期状態よりも増していた。このこととシート抵抗値から、シュウ酸によってTa膜41が若干酸化されていると推測される。なた、図21(A)のSEM写真からは、膜厚の変化がほとんどないことからも、Ta膜41ほとんどされていないことがわかる。さらに、Ta膜41に電圧を印加することによって、島状に分断されたゲートA143を陽極酸化して、ポーラスA.0.(多孔質のアルミナ)膜が形成されていることもみてとれる。

【0030】同様に、バリア陽極酸化工程終了後、ガラス基板40を肉眼で観察してみると、露出していたTa膜41は殆ど透明となっていた。これは、マスク陽極酸化工程で使用する酒石酸はタンタルをも陽極酸化するためであり、この部分のTa膜41は陽極酸化されてタンタルオキサイド膜(以下、Ta〇、膜と表記する)45に変成されていると推測される。

【0031】図21(B)のSEM観察写真によれば、ポーラスA.0.膜44下部及びその外側では、Ta膜41の膜厚が3倍程度となっていることからも、この部分ではTa膜41が陽極酸化されてTaO、膜45に変成されていることが分る。このことからもシート抵抗値が非常に大きくなることが理解できる。なお、簡単化のた

50 め、図19ではTa膜41とTaO、膜45の厚さは同

9

じにした。

【0032】しかしながら、タンタルオキサイドは絶縁物であるため、TaO、膜45が配線として機能するが問題となるが、バリア陽極酸化工程で、モニタしている電流値に大きな変動は見られなかことから、Ta膜41がTaO、膜45に変成されても、ゲートA143に電圧が印加されていると考えられる。これはTaO、膜45はシート抵抗値が非常に大きいが、化学量論比であるTa゚O。(五酸化タンタル)よりも酸素の含有量が小さいため、若干の導電性(半絶縁性)を示していると推10測される。この化学量論比からのずれは、TaO、膜45が陽極酸化によって形成されたことが大きく起因していると思われる。

【0033】そこで、バリア陽極酸化工程によって、ゲートA143を覆ってバリアA.0. 膜46が形成されているか否かを、SEMにより断面構造を確認した。(図20(C)、図21(C)参照)

【0034】図19(E)のエッチング工程はアルミ混酸を用いたが、アルミ混酸は多孔質アルミナ(ポーラスA.0.膜44)とアルミニウム双方をエッチングしてしま 20 う、他方無孔質アルミナ(バリアA.0.膜46)は殆どエッチングされない。よって、バリア陽極酸化工程でバリアA.0.膜46が十分に形成されていないと、ゲートA143も除去されてしまうこととなる。

【0035】図19(C)に示すSEM観察写真では、アルミ混酸でエッチング処理してもゲートA143が残存しているのが確認される。よって、マスク陽極酸化工程でアルミ混酸に耐えうるバリアA.0.膜46が形成されていると結論できる。本実験結果の条件では、バリアA.0.膜46の膜厚は100nm程度である。また、この工程で30はバリアA.0.膜46と49がほとんど一体化してしまっている。

【0037】また、図21(B)、(C)の写真を比較してみると、、A.0. 膜44と46がその上部にある領域と、これらA.0. 膜44、46がない領域とでは、TaO、膜45の膜厚分布が異なることがわかある。

【0038】バリア陽極酸化工程では、Ta膜41において、露出部分は直接に酒石酸が触れるため陽極酸化される。ポーラスA.0.膜44は多孔質であるため酒石酸が浸透する。よってポーラスA.0.膜44下部でもTa膜41の陽極酸化が進行し、同時にポーラスA.0.膜44側面でゲートA143の陽極酸化も進行する。

【0039】しかし、酒石酸による陽極酸化速度の違いにより、図20(B)に示すようにゲートA 143 とA. 0. 膜46 との界面は、Ta 膜41 とTa O,膜45 の内側にある。よって、バリアA. 0. 膜46 の下部は、Ta 膜41 とTa O,膜45 双方に接しており、ゲートA 14 3 の下部はTa 膜41 にのみに接することとなる。

【0040】 TaO、膜45とはバリアA.0.膜46は同じ陽極酸化工程で形成されるため、TaO、膜45とバリアA.0.膜46との界面とその近傍は、TaとA1の合金の酸化物となっていると考えられる。またTaO、膜45はバリアA.0.膜46を押上げるように形成されるため、バリアA.0.膜46を着性に優れる。また、バリアA.0.膜46とTa膜41の界面端部はTaO、膜45でよって塞がれた状態となっている。ゲートA143からA1が拡散するのを防ぐ効果が非常に高い。

【0041】そしてTaO、膜45の膜厚については、領域61で示すA.0.膜46下部では、Ta膜41に向ってその膜厚t1は徐々に薄くなっている。領域61からA.0.膜46外側に向って、膜厚は徐々に大きくなるが、ポーラスA.0.膜44下部において、部分62でその膜厚t2が最大になる。そして、部分62から外側に向って膜厚が徐々に薄くなって、領域63において膜厚t3がほぼ一定になる。

【0042】また、TaO、膜45のバリアA.0.膜46側面から外側に延びた部分は、ポーラスA.0.膜44が存在していた状態で、陽極酸化して形成されたものである。そのため、この部分のTaO、膜145の表層はポーラスA.0.膜44と反応して、TaとAlの合金の酸化化合物となっていると考えられる。

【0043】 TaO、膜45の膜厚についてまとめると、バリアA.0.膜46下部とポーラスA.0.膜44下部ではその膜厚値が異なる。バリアA.0.膜46下部ではTa膜41との界面から外側に向ってその膜厚は徐々に大きくなっている。また、ポーラスA.0.膜44下部では最大の膜厚t2をとる部分61と一定の膜厚t3をとる領域63が存在する。そして、A.0.膜44及び46がその上部にない領域は、一定の膜厚t3をとる領域63だけとなる。また、Taを酸化するとその膜厚は2~4倍程度となることから、膜厚t2、t3はTa膜41の2~4倍となる。

【0044】本発明の構成は以上の実験結果から得られた知見に基づくものである。本発明は、第1の金属膜上に、第2の配線層を配線ごとに電気的に分離して形成し、第1の金属膜によって複数の第2の配線層をショートさせた状態において、第1の金属膜に電圧を印可することで、第2の配線層を陽極酸化するものである。

【0045】上記構成において、上層の第2の配線層を主に電荷の通路として用いる、その膜厚を200~500nm程度とする。また第2の配線層を構成する金属膜をアルミニウム又はアルミニウムを主成分とする材料で形成することが好ましく、配線の低抵抗化が図れる。

40

【0046】また第1の金属膜としてバルブ金属を用いることができる。バルブ金属とは、アノード的に生成したバリアー型陽極酸化膜がカソード電流は流すがアノード電流は通さない、即ち弁作用を示す様な金属を指す。(電気化学便覧 第4版;電気化学協会編, p370, 丸善, 1985)。

【0047】バルブ金属膜であってアルミニウムよりも高融点な材料にはタンタル(Ta)、ニオブ(Nb)、ハフニウム(Hf)、ジルコニウム(Zr)、チタン(Ti)、クロム(Cr)等が挙げられる。また第1の 10 金属膜として、これらバルブ金属元素を含有する合金、例えばモリブデンタンタル(MoTa)を用いることができる。

【0048】特にタンタルはアルミニウムを主成分とする薄膜と同じ電解溶液で陽極酸化できることが確認されており、本発明に好適である。また、モリブデンタンタル(MoTa)の様なタンタル合金を用いることも可能である。さらに、これら金属材料はアルミニウムよりも高融点な材料であり、アルミニウムの元素の拡散を防止するブロッキング作用が奏する。

【0049】第1の金属膜の厚さは薄いほど好ましいが、第2の配線層の構成原子の拡散を防止するブロッキング層として機能するための膜厚が必要である。第1の金属膜の厚さは1nm厚以上、好ましくは5nm厚以上とする。

【0050】また、第1の金属膜の膜厚の上限としては50nm、好ましくは30nm程度と考えている。これは第1の酸化物は第1の金属膜を酸化して形成され、その厚さは第1の金属膜の2~4倍程度となる。よって、第1の金属膜の成膜や、第1の酸化物のエッチング等のスループ30ットを考慮すると、第1の金属膜の上限は50nm、好ましくは30nmとする。なお、第2の金属膜にアルミニウム膜を用い、その下層の第1の金属膜としてタンタル膜を用いた場合に、タンタル膜の厚さを20nm、50nmにした場合に、550℃で配線を熱処理しても、タンタル膜下層にアルミニウムが拡散していないことが確認されている。

【 $0\ 0\ 5\ 1$ 】以上のから第 $1\$ の金属膜の膜厚は $1\sim 5\ 0$ nm (好ましくは $5\sim 3\ 0$ nm、さらに好ましくは $5\sim 2\ 0$ nm) の範囲から選択することが好ましいと考える。 【 $0\ 0\ 5\ 2$ 】

【発明の実施の形態】 図1~図4を用いて本発明の実施形態を説明する。

【0053】〔実施形態1〕 図1は本実施形態の配線の作製工程を示す断面図である。絶縁物100表面上に、バルブ金属でなる第1の金属膜101を形成する。次に、第1の金属膜101上に接して、アルミニウムを主成分とする第2の金属膜102を形成する。(図1(A))

【0054】絶縁物100としては、ガラス基板や石英 50

基板などの絶縁性基板、これら基板上に形成された酸化 珪素膜等の下地膜、あるいは、半導体装置のゲート絶縁 膜や層間絶縁膜などが挙げられる。また、第2の金属膜 102としては、純アルミニウムだけでなく、Si、Sc等を数重量%添加したものや、Siなどの金属とのアルミニウム合金でもよい。

【0055】次に第2の金属膜102をパターニングして、第1の金属膜101上に第2の配線層103を選択的に形成する。第2の配線層103は複数の配線(図中では2つだけ図示した)ごとに分離され、全ての第2の配線層103は第10金属膜101によって電気的にショートされている。(図1(B))

【0056】次に。3%の酒石酸を含むエチレングリコール溶液中で第1の金属膜101に電圧を印加することによって、前記第2の配線層103を陽極酸化し、その表面に配線層103の陽極酸化物膜(バリア型アルミナ膜)105を形成する。タンタル膜のように酒石酸で陽極酸化される材料で第1の金属膜101形成した場合には、金属膜101の露出している部分は陽極酸化物104に変成される。陽極酸化物膜104は金属膜よりも厚くなるが簡単化ために、同じ膜厚で図示してある。(図1(C))

【0057】次に、陽極酸化物膜105をマスクにして、陽極酸化物104をエッチングして、第1の配線層106を形成し、配線110が完成する。(図1(D))

【0058】なお、第1の配線層106は、陽極酸化されずに残存した第1の金属膜101にほぼ対応対応するため、図1(C)の陽極酸化工程で、第1の配線層106が画定されたとみなすこともできる。

【0059】図21に示したように、第2の金属膜102は陽極酸化速度が第1の金属膜101よりも速いため、第2の配線層103と陽極酸化物膜105との界面は、第1の配線層106と陽極酸化物104の界面よりも内側にある。従って陽極酸化物103の下部は、第1の配線層106と陽極酸化物104双方に接しており、第2の配線層の下部は第1の配線層にのみに接することとなる。また、酸化物104の膜厚は外側に向って徐々に厚くなっている。

【0060】本実施形態では、第1の金属膜によって第2の配線層102全でをショートしたため、陽極酸化用の電圧供給線が不要になる。従って、陽極酸化工程後、エッチングによって電圧供給線から第2の配線層103を配線ごとに分断する工程が不要になる。よって、配線110の端部111の側面には、図2(C)に示すように陽極酸化物膜105及び104が存在するため、配線110の耐熱性が損われない。なお、111で示す端部以外であっても、配線110の側面は端部111と同じである。

【0061】他方、図2(B)に示すように、従来のア

ルミナ(陽極酸化物)層55で被覆されるアルミニウム配線50は陽極酸化用の電圧供給配線51に接続する必要がある。よって、陽極酸化工程後は、配線50を配線51から分断する必要があった。分断部分53の側面構造は図2(D)示すように、アルミニウム層54が露出される。この点で、本発明と従来の陽極酸化工程は区別できる。アルミニウム層54が露出されてしまうと、配線50の耐熱性が低下することになる。

【0062】〔実施形態2〕 図3は本実施形態の配線の作製工程を示す断面図である。本実施形態では、第1の酸化物が第2の酸化物側面よりも外側に延びるようにし、かつ配線を配線ごとに島状に分断された絶縁膜上に形成したものである。他の構成は実施形態1と同様である。

【0063】先ず、ガラス基板140上に、酸化珪素や窒化珪素等の絶縁膜148を形成する。絶縁膜148上に第1の金属膜としてTa膜141を形成する。次に、第1の金属膜141上に接して、第2の金属膜としA1膜142を形成する。3%の酒石酸を含むエチレングリコール溶液中で第1の金属膜141に電圧を印加することによって、A1膜142を陽極酸化して、その表面にバリア型の陽極酸化物(バリアA.0.)膜149を形成する。(図3(A))

【0064】陽極条件は、電解溶液に電解溶液に3%の酒石酸を含むエチレングリコール溶液を用い、電解溶液温度30℃、到達電圧10V、電圧印可時間15分、供給電流10mA/1基板とした。この陽極酸化工程はレジストマスク150の密着性を向上するためである。

【0065】次に、レジストマスク150を形成して、A.0.膜149及びA1膜142をエッチングし、配線ご 30とに分離されたA1膜でなる第2の配線層143を複数形成した。なお、図3では配線層143は2つだけ図示した。(図19(B))

【0066】次に、レジストマスク150を残したまま、陽極酸化装置においてTa膜141に電圧を印可し、陽極酸化を行った。条件は、電解溶液に3%シュウ酸水溶液、到達電圧8V、電圧印可時間40分、供給電流20mA/1基板とした。従来の陽極酸化方法ではこの陽極酸化条件では、通常アルミニウムパターン43の側面にポーラス型の陽極酸化物(ポーラスA.0.)膜144が形成される。(図19(C))

【0067】次に、レジストマスク150を除去した後、再び陽極酸化装置においてTa膜141に電圧を印可し、陽極酸化を行った。ポーラスA.0.膜144を酒石酸が浸透して、第2の配線層143表面が陽極酸化されて、バリア型の陽極酸化物(バリアA.0.)膜146が形成されまた、Ta膜141も選択的に陽極酸化されて、タンタルオキサイド(TaO、)膜145が形成される。バリアA.0.は無孔質のアルミナであり、バリアA.0.膜149と146は一体化される。また、陽極酸化され50

ずに残存したTa膜141が第1の配線層146として 画定する。

【0068】次に、A.O.膜144と146をマスクにしてエッチングして、絶縁膜148及びTaO、膜145を自己整合的に島状にパターニングした。最後に、ポーラスA.O.膜144をエッチによって除去し、配線が完成する。よって、配線は、配線ごとに島状に分離されたの絶縁膜148上に形成されている。(図3(D))

【0069】本実施形態の配線の断面図を図4に示す。 図3と図4とで同じ符号は同じ構成要素を示す。なお、 簡単化のため図3ではTa膜141とTaO,膜145 の厚さは同じにした。

【0070】本実施形態では、バリアA.0. 膜146側面 よりも外側に延びている。図21を用いて説明したよう に、本実施形態でもTaO,膜145は、バリアA.0. 膜146下部と、その外側部分ではではその膜厚値が異なる。バリアA.0. 膜146下部では第1の配線層146と の界面から外側に向ってその膜厚t11は徐々に大きくなる。

【0071】またTaO、膜145とはバリアA.0.膜146は同じ陽極酸化工程で形成されるため、TaO、膜145とバリアA.0.膜146の界面とその近傍はTaとA1の合金の酸化物となっていると考えられ、またTaO、膜45はバリアA.0.膜146を押上げるように形成され、バリアA.0.膜46とTa膜41の界面端部はTaO、膜45でよって塞がれた状態となり、またバリアA.0.膜をTa膜141に押しつける状態ともなっていると考えられる。よって、第2の配線層143からA1が拡散するのを防ぐ効果が非常に高い。

【0072】また、バリアA.0.膜146と第2の配線層との界面が、第1の配線層146とTaO、膜145の界面よりも内側にあることで、配線からアルミニウムが拡散の防止効果が高い。このことは、バリアA.0.膜146と第2の配線層との界面が、第1の配線層146とTaO、膜145の界面よりも外側や、一致している場合を想定すると、理解できる。この場合では、第2の配線層の下部では、第1の配線層146とTaO、膜145の界面からアルミニウムが拡散してしまうことが危惧される

【0073】本実施形態の構成では、第2の配線層14 3の下部は第1の配線層のみに接しているため、アルミニウムが拡散の防止効果が高くなる。

【0074】また、バリアA.0.膜146側面から外側に延びた部分は、ポーラスA.0.膜144下部に存在していた領域である。図20、図21で説明したように、TaO,膜145はポーラスA.0.膜44下部でには最大の膜厚t2をとる部分61と、部分161よりも外側に一定の膜厚t3をとる領域63が存在する。よって、本実施形態の配線においても、TaO, 膜145は、バリアA.0.膜側面から外側に延びた部分では、最大の膜厚t12をとる

部分162と、部分162の外側に一定の膜厚t13をとる領域163が存在する。また、Taを酸化するとその膜厚は $2\sim4$ 倍程度となることから、膜厚t12、t13は Ta 膜141(第1の配線層146)の $2\sim4$ 倍となる。

【0075】また、TaO、膜145バリアA.0.膜146側面から外側に延びた部分は、ポーラスA.0.膜144が存在していた状態で、陽極酸化して形成されたものである。そのため、この部分のTaO、膜145の表層はポーラスA.0.膜144と反応して、TaとAlの合金の10酸化化合物となっていると考えられる。

【0076】また、ポーラスA.0.膜144をエッチングマスクとすることによって、TaO、膜145と絶縁膜148は自己整合的にパターニングされるため、TaO、膜145の側面と絶縁膜148の側面はほぼ一致し、同一平面をなす。

【0077】また、本実施形態でも、陽極酸化工程後に配線を分断する必要がないので、配線層143、s146の側面が露出されることがないので、配線の耐熱性を損うことがない。

[0078]

【実施例】 以下、図5~図19を用いて、本発明の実施例を詳細に説明する。

【0079】 [実施例1] 本実施例は本発明をTFTに応用した例である。本発明の実施の形態について図4を用いて説明する。図5はTFTの概略の上面図を示す。

【0080】図5において、201はTFTの活性層、202、203は活性層101とソース電極又はドレイン電極とのコンタクト部(ソース/ドレインコンタクト30部)、204はゲート配線である。なお、ゲート配線204が活性層201と重なる部分は特にゲート電極と呼ぶこととする。また、205はゲート配線204と取り出し配線(図示せず)とのコンタクト部(ゲートコンタクト部)である。

【0081】図5をA-A'で切断した断面図を図6 (A)に示す。図6 (A)において、206は絶縁表面を有する基板であり、207は酸化シリコンでなる絶縁膜であり、その上に第1の配線層であるタンタル層(T a層)208と、第2の配線層であるアルミニウム層 (A 1層)209との積層構造でなるゲート配線204が設けられている。

【0082】また、図50TFT部をB-B'で切断した断面図を図6(B)に示す。また、図7に図6(B)において領域Cの部分拡大図を示す。図6において、214、215はそれぞれ導電膜からなるソース配線、ドレイン配線であり、図6(A)に示した取り出し配線213と同一材料で、同一層に形成される。

【0083】タンタル層208はアルミニウム層209 載されているが、実際には図5に示した様に一体であの成分物質がゲート絶縁膜207を通って活性層201 50 る。向かって左側のA1層209は最終的には活性層2

へと流出(拡散)することを防ぐブロッキング層としても機能する。この様なアルミニウムの拡散は熱処理や静電気による発熱によって、アルミニウム合金が流動性をもつことによって引き起こされる場合が考えられるが、アルミニウム膜の下地にバルブ金属膜を設けることでその様な拡散を防ぐことが可能である。

【0084】図8、図9を用いて、本実施例のTFTの作製工程を説明する。まず、絶縁表面を有する基板200として絶縁膜を表面に設けたガラス基板を用意する。他に熱酸化膜を形成したシリコン基板、石英基板、酸化シリコン膜を設けたセラミックス基板などを用いることができる。

【0085】次に、基板200上にTFTごとに、活性層201となる島状半導体層を形成する。図8では、活性層201は1つだけ示した。活性層201を酸化シリコンでなる絶縁膜207で覆う。(図8(A))

【0086】本実施例では特開平7-130652号公報記載の技術によって形成されたポリシリコン膜で活性層201を形成する。なお、ポリシリコン膜の形成方法はレーザーアニールを用いた方法など公知のあらゆる手段を用いることができる。また、 Si, Ge_{1-1} (0 < X < 1) で示されるシリコンゲルマニウム膜を用いても良い

【0087】次に、基板200上に厚さ20nmのタンタル 膜 (Ta膜) 231と、厚さ40nmの2wt% のスカンジウ ムを含有したアルミニウム膜(A1膜)232とを、ス パッタ装置において積層して成膜した。そして、AI膜 232に陽極酸化装置のプローブPを接触させて、電、 A1膜232の表面に薄いバリア型アルミナ膜(図示せ ず)を形成した。この陽極酸化工程はレジストマスク2 33の密着性を向上するためである。条件は、電解溶液 に電解溶液に3%の酒石酸を含むエチレングリコール溶 液を用い、電解溶液温度30℃、到達電圧10V、電圧 印可時間15分、供給電流10mA/1基板とした。そし て、レジストマスク233を形成する。(図8(B)) 【0088】図14に、陽極酸化装置250の概略図を 示す。陽極酸化装置は電源251、電解溶液253を入 れるための電解溶液槽252を備え、陰極(白金)25 4と陽極となる基板200が電源251に接続されてい る。基板200、陰極254とも電解溶液253に浸さ れる。基板200では装置250のプローブPがA1膜 232に接触される。

【0089】図示しないアルミナ膜をクロム混酸でエッチングし、次にアルミ混酸でアルミニウム膜をエッチングして、第2の配線層としてアルミニウム層(A1層)209を形成した。A1層209はゲート配線204の上層を構成するものである。なお、図8では向かって左側のA1層209とが分断して記載されているが、実際には図5に示した様に一体である。向かって左側のA1層209は最終的には活性層2

01と重なってTFTのゲート電極として機能する。また、向かって右側のA1層209は後に外部端子と接続するためのコンタクト部となる。

【0090】図10に図8(C)の状態のTFTの断面図と平面図を示す。図10(A)は平面図である。図10(B)は図10(A)のX-X'で切ったTFTのチャネル長方向の断面図である。図10(C)は図10(A)のY-Y'平面で切った断面図であり、チャネル幅方向のTFTの断面図に対応する。また図10(A)は図10(B)のY-Y'平面図で切った平面図である。なお、A1層209の平面形状は実際には、図5のゲート配線204と相似な形状であるが、矩形状に簡略化した。図10、図11においても、A1層209に関して同様である。

【0091】次に、レジストマスク233を残したまま、陽極酸化装置において、プローブ P を タンタル膜 231に接触させて、陽極酸化を行った。条件は、電解溶液に 3% シュウ酸水溶液(温度 10 $\mathbb C$)を用い、到達電圧 8 $\mathbb V$ 、電圧印可時間 40 $\mathcal O$ 、供給電流 20 $\mathbb O$ $\mathbb O$

【0092】レジストマスク233を除去した後、再び陽極酸化装置に250おいてTa 膜231に電圧を印可し、陽極酸化を行った。条件は、電解溶液に電解溶液に3%の酒石酸を含むエチレングリコール溶液を用い、電解溶液温度10 \mathbb{C} 、到達電圧80 \mathbb{V} 、電圧印可時間30 分、供給電流30 \mathbb{M} \mathbb

【0093】ポーラスA.0.膜234を酒石酸が浸透して、A1層209表面が陽極酸化されて、バリア型の陽極酸化物膜(バリアA.0.膜と記す)211が形成される。バリアA.0.膜211は無孔質アルミナ膜である。また、Ta膜231においては、露出している部分およびポーラスA.0.膜234が存在している部分も陽極酸化されて、タンタルオキサイド膜(以下TaO,膜と記す)210に変成される。残存したタンタル層(Ta層)208が第1の配線層として画定する。なお、TaO,膜210はTa膜231よりも厚くなるが、簡単化のため、図8中では同じ厚さに図示した。(図8(E))

【0094】図11に図8(E)の状態のTFTの断面図と平面図を示す。図11(B)は図11(A)のX-X'で切ったTFTのチャネル長方向の断面図である。図11(C)は図11(A)のY-Y'平面で切った断面図であり、チャネル幅方向のTFTの断面図に対応する。また図11(A)は図11(B)のY-Y'平面図で切った平面図である。図11に示すように、バリアA. 0.膜211側面から突出しているポーラスA. 0.膜234の膜厚tp及びバリアA. 0.膜211の膜厚tbはA1層209周囲で全て均一になる。

【0095】A.0. 膜211、234をマスクとして、TaOx 膜210と絶縁膜207をエッチングする。エッチングはCHF、ガスを用いたドライエッチング法により行う。(図8(F))

【0096】アルミ混酸によって。ポーラスA.0.膜234をエッチングによって除去する。この工程によって、Ta層208とA1層209が積層したゲート配線が204が完成する。(図9(A))

【0097】また、ゲート配線204の側面全てはTa 10 O, 膜210、バリアA.0.膜209で被覆された構造と なっている。TaO, 膜210はバリアA.0.膜209側 面よりも外側に延びている。

【0098】図12に図9(A)の状態のTFTの断面図と平面図を示す。図12(A)は平面図である。図12(B)は図12(A)のX-X)で切ったTFTのチャネル長方向の断面図である。図12(C)は図12(A)のY-Y)平面で切った断面図であり、チャネル幅方向のTFTの断面図に対応する。また図12(A)は図12(B)のY-Y)平面図で切った平面図である。図12に示すように、バリアA.0.膜211側面から延びているTaO、膜210の長さは膜厚tpに対応し、A1 層209 周囲全てで均一になる。

【0099】また、上述したようにTaO、膜210の膜厚は図7参照すると、少なくとも活性層201もしくは島状のゲート絶縁膜上において、領域261で示すA.0.膜236下部では、Ta 展231に向ってその膜厚B はに薄くなる。そして、B 210のB 0.膜210のB 0.膜211外側に延びた部分は、ポーラスB 0.膜234の下部に存在した領域である。よって、B 0.膜211の外側では、B 0.膜2は外側に向って徐々に大きくなり、る262で示す部分でその膜厚 B 1.22が最大になる。更に部分262から外側に向って膜厚が徐々に薄くなって、領域263において膜厚B 123 がほぼ一定になる。

【0101】またTaO、膜210とはバリアA.0.膜2 11は同じ陽極酸化工程で形成されるため、TaO、膜210はバリアA.0.膜211を押上げるように形成されている。そのため、バリアA.0.膜211とA1層208の界面端部はTaO、膜210でよって塞がれた状態となり、またバリアA.0.膜211をA1層209に押しつける状態ともなっていると考えられる。よって、A1層209からA1が拡散するのを防ぐ効果が非常に高い。【0102】次に、一導電性を付与する不純物イオンを

【0102】次に、一導電性を付与する不純物イオンを 活性層201に添加する。Nチャネル型TFTを作製す るにはリン又は砒素を添加し、Pチャネル型TFTを作 製するにはボロン又はガリウムを添加する。これら不純 物イオンの添加はイオンインプランテーション法、プラズマドーピング法、レーザードーピング法のいずれかの手段を用いれば良い。また、CMOS回路を構成する様な場合にはレジストマスクを利用して不純物イオンを打ち分ければ良い。

【0103】この工程は加速電圧を2度に分けて行う。 1度目は加速電圧を80keV程度と高めに設定し、2 度目は加速電圧を30keV程度と低めに設定する。こうすることで、1度目はTaOx 膜308と絶縁膜20 7の下にも不純物イオンが添加され、2度目はTaOx 膜210と絶縁膜207とがマスクとなって、その下には不純物イオンが添加されない。

【0104】この様な不純物イオンの添加工程により、TFTのチャネル形成領域、ソース領域222、ドレイン領域223、低濃度不純物領域(LDD領域)224、225が自己整合的に形成される。領域221は不純物が添加されなかった領域であって、チャネル形成領域およびオフセット領域形成される。なお、各不純物領域に添加される不純物イオンの濃度は実施者が適宜設定すれば良い。(図7、図9(B))

【0105】図7を参照すると、活性層201においてドレイン領域223 (ソース領域222)は、絶縁膜207及びTaO、膜210双方が存在していない領域に形成される。低濃度不純物領域225 (224)は、A.0.膜211の外側にあって、絶縁膜207及びTaO、膜210がその上部に存在する領域に形成される。チャネル形成領域221はバリTA.0.膜211がその上部に存在する領域に形成される。

【0106】チャネル形成領域221において、ゲート電極によって直接に電界が印加される実効的なチャネル 30形成領域はTa層208が存在する領域221aである。ゲート絶縁膜207を介してA.0.膜211及びTaO,膜210が存在する領域221bはゲート電極から印加される電界が小さい。そのため、領域221bの長さが広ければ実質的にオフセット領域として機能し、実質的なチャネル形成領域は領域221aのみとなる。

【0107】領域221bの長さはTaO、膜210が バリアA.0.膜211の下部に侵入している長さに対応するため、その長さの制御は、図8(E)に示す陽極酸化工程で決定される。即ち、バリアA.0.膜211の膜厚で 40 決定される。

【0108】ただし、領域221bの長さが小さいと、領域221bにも不純物が回り込み、低濃度不純物として機能することとなる。およそバリアA.0.膜が200nm以上あればドーピング時のマスクとして機能するため、領域221bをオフセット領域として機能させることができる。

【0109】なお、領域221bをオフセット領域として機能させる場合には、オン電流の低減が問題となる。 そのため、ゲート電極の駆動電圧10~50V程度のT 50

FTには、領域221bをオフセット領域として、主にオフ電流値を下げること優先にすればよい。他方、駆動電圧1.5~5V程度の低電圧の場合には、領域bの長さを短くして、低濃度不純物領域(LDD)として機能させ、オン電流値を上げることを優先にするとよい。

【0110】なお、低濃度不純物領域(LDD領域)224、225は、絶縁膜207とTaO、膜210を通過させて不純物を添加して形成されるため、TaO、膜210があまり厚いとスループットを低下させてしま5。また、低濃度不純物領域(LDD領域)224、225の不純物濃度が小さくなって所望の抵抗値を得ることができない場合も生ずる。

【0111】絶縁膜207が $50\sim100$ nm 程度の厚さであるため、TaOx 膜210は厚くとも100nm が限度である。Ta 膜231 は酸化されると約 $2\sim4$ 倍の厚さになることから、初期のTa 膜231 の膜厚は50nm以下とすることが好ましい。

【0112】不純物イオンの添加工程が終了したら、ファーネスアニール、ランプアニール、レーザーアニール 又はそれらを併用して熱処理を行い、添加された不純物イオンの活性化を行う。なお、アルミナ膜211の側面から突出しているタンタルオキサイド210膜にタンタル層が残存した場合には、低濃度不純物領域224、225にゲート配線によって電圧が印可されてしまうため、不都合である。そのため、添加工程終了後、400~600℃程度の温度で熱酸化して、残存したタンタル層を酸化してしまうとよい。

【0113】次に、酸化シリコン膜でなる層間絶縁膜212を 1μ mの厚さに形成する。次いで、層間絶縁膜212をパターニングしてコンタクトホールを形成する。これらコンタクトホール236~238の形成は次の様にして行う。

【0114】まず、橋本化成株式会社製のLAL500と呼ばれるエッチャントを用いて層間絶縁膜212をエッチングする。LAL500はフッ化アンモニウムとフッ化水素酸と水とを混合したバッファードフッ酸に数%の界面活性剤を添加したエッチャントである。勿論、他のバッファードフッ酸でも良い。

【0115】ここで用いるバッファードフッ酸は酸化シリコン膜を比較的に速い速度でエッチングできることが好ましい。層間絶縁膜212は1μmと厚いのでエッチングレートの速い方がスループットの向上につながる。 【0116】こうして層間絶縁膜212をエッチングした時点では、TFT部ではソース領域222、ドレイン

た時点では、TFT部ではソース領域222、ドレイン領域223が露出して、コンタクトホール236、237が完成する。ゲートコンタクト部ではバリアA.0.膜211が露出している。次にフッ化アンモニウムとフッ化水素酸と水とを2:3:150(体積%)で混合した薄いバッファードフッ酸を用いてエッチングを進行させ

【0117】このバッファードフッ酸ではシリコン膜、即ちソース領域222及びドレイン領域223は殆どエッチングされない。しかし、ゲートコンタクト部のバリアA.0.膜211はエッチングされ、その下のA1層209もエッチングされる。最終的には、Ta層208までエッチングが到達した時点でエッチングが止まり、コンタクトホール238が形成される。(図9(C))

【0118】 こうして図9(E)の状態が得られたら、 導電膜でなるソース配線214、ドレイン配線215を 形成し、同一材料でゲート配線204と電気的に接続さ 10 れる取り出し配線213を形成する。(図9(D))

【0119】本実施例では、ソース配線214、ドレイン配線215及び取り出し配線213を構成する導電膜として、チタン/アルミニウム合金/チタンからなる3層構造の配線を利用する。こうすることで、反応性の高いアルミニウム膜をチタンで保護しつつ、低抵抗な配線を実現することができる。勿論、本実施例に適用しうる導電膜はこれに限定されるものではない。

【0120】本実施例の構成では、コンタクトホール238を形成する際にTa層208がエッチングストッパ20一として機能するのでプロセスの制御性及びマージンが大幅に改善される。

【0121】即ち、従来問題となっていたオーバーエッチングの如きコンタクト不良を防ぐことができる。また、従来例で述べたクロム混酸の様に工業上の取扱いが困難なエッチャントを必要とせず、容易に管理できるバッファードフッ酸を使えるので、経済的である。

【0122】図13に、図9(D)の活性層201をチャネル幅方向(チャネル長と直交する方向)で切った図に対応する。また、図3にはゲートコンタクト部の断面部分の同時に図してある。

【0123】従来、多層配線において、層間絶縁膜212表面には、下部構造を反映した段差が生ずる。配線213はこのような段差部分に形成される異なり、従来、段差部での配線の分断が問題となっている。特にゲート配線とゲート絶縁膜による段差で、配線の分断が多く発生している。本実施例では、ゲート絶縁膜207表面周囲にTaO、膜210が形成されているため、ゲート配線204とゲート絶縁膜207との高さの差がが緩和されるため、特にゲート配線とゲート絶縁膜による段差240で、配線213が分断しにくくなる。

【0124】 [実施例2] 本発明の構成は、TFTに限らずシリコン基板を利用して形成されたMOSFETに対しても適用することが可能である。本発明をMOSFETに適用した場合の例を図15に示す。

【0125】図15において、301はシリコン基板、302はフィールド酸化膜、303はソース領域、304はドレイン領域、305は一対のLDD領域である。なお、それ以外の構造については、実施例1で説明した構造とほぼ同じであるので説明は省略する。また、MO50

SFETをウェル構造の内部に作製する様な構造としても良い。

【0126】この様に、本発明は配線同士のコンタクト構造に関する技術であるため、TFTに対してもMOSFETに対しても適用することができる。また、TFTやMOSFETの様な半導体装置だけでなく、陽極酸化膜で保護されたアルミニウム配線と異なる層に形成された導電膜とを電気的に接続する構造を必要とする場合に対して本発明を適用することは有効である。

【0127】 [実施例3] 実施例1ではNTFTを作製する場合を例にとって説明したが、本願発明をPTFTに対して適用できることは言うまでもない。なお、簡略にPチャネル型TFT(PTFT)の作製工程及び条件の1例を以下に示す。

【0128】まず、リンイオンを注入したソース及びドレイン領域にP型の導電性を付与する不純物イオン(ボロン)を添加する。ドーピングガスとして、水素で5%に希釈されたジボランを用いる。加速電圧は60~90 k V、ドーズ量は $1\times10^{13}\sim8\times10^{15}$ atoms / c m b とする。なお、ソース及びドレイン領域に注入されたボロンの濃度の最大値からリンイオンの濃度の最大値を引いた濃度が $3\times10^{19}\sim3\times10^{21}$ atoms / c m b とるようにドーズ量を調節することが重要である。この結果、ソース及びドレイン領域の導電型が反転してP型の不純物領域が形成される。なお、LDD領域の導電型も反転する工程としてもよい。

【0129】また、公知のCMOS技術を用いれば、N チャネル型TFTとPチャネル型TFTとを相補的に組 み合わせたCMOS回路を構成することも容易である。

【0130】本実施例では同一基板上にCMOS回路で構成された駆動回路とNチャネル型TFTで構成された画素マトリクス回路とを形成したアクティブマトリクス基板を作製した例を図16に示す。図16において、において、Nチャネル型TFT601、Pチャネル型TFT602はCMOS回路603を構成している。前述の様に公知のCMOS技術を用いれば実施例1とほぼ同様の工程で容易に実現できる。

【0131】また、画素マトリクス回路を構成する画素 TFT(本実施例ではNTFT)604は実施例1また は実施例3で説明した作製工程に多少の工程を足せば実 現できる。

【0133】なお、アクリルやポリイミドといった有機性樹脂膜はスピンコート法で形成する溶液塗布型絶縁膜

なので厚い膜を容易に形成できる上、非常に平坦な面を 得ることが可能である。そのため、1μm程度の膜厚を 高いスループットで形成することが可能であり、良好な 平坦面が得られる。

【0134】次に、第1の平坦化膜610上に遮光性導 電膜でなるブラックマスク611を形成する。また、ブ ラックマスク611の形成に先立って、第1の平坦化膜 610をエッチングして、最下層の窒化珪素膜のみを残 した凹部を形成しておく。

【0135】この様にしておくことで、凹部を形成した 10 部分ではドレイン電極とブラックマスクとが窒化珪素膜 のみを介して近接し、そこで補助容量612を形成す る。窒化珪素は比誘電率が高く、しかも膜厚が薄いので 大容量を確保しやすい。

【0136】ブラックマスク611を形成すると同時に 補助容量612を形成したら、第2の平坦化膜613を 1.5 μm厚のアクリルで形成する。補助容量612を形 成した部分は大きな段差を生じるが、その様な段差も十 分に平坦化できる。

【0137】最後に、第1の平坦化膜610及び第2の 20 平坦化膜613にコンタクトホールを形成し、透明導電 膜(代表的にはITO)からなる画素電極614を形成 する。こうして図16に示すアクティブマトリクス基板 が完成する

【0138】なお、画素電極614として反射性の高い 導電膜、代表的にはアルミニウムまたはアルミニウムを 主成分とする材料を用いれば、反射型AMLCD用のア クティブマトリクス基板を作製することもできる。

【0139】また、図16では画素TFT604のゲー ト電極をダブルゲート構造としているが、シングルゲー 30 ト構造でも良いし、トリプルゲート構造等のマルチゲー ト構造としても構わない。

【0140】また、図16のアクティブマトリクス基板 の構造は本実施例の構造に限定されるものではない。本 発明の特徴はゲート配線の構成にあるので、それ以外の 構成については実施者が適宜決定すれば良い。例えば、 TFT601、603、604をボトムゲート型とする のは同業者であれば容易である。

【0141】[実施例4] 本実施例では本発明のTF Tを用いてAMLCDを構成した例について説明する。 ここで本実施例のAMLCDの外観を図17に示す。

【0142】図17(A)において、701はアクティ ブマトリクス基板であり、画素マトリクス回路702、 ソース側駆動回路703、ゲイト側駆動回路704が形 成されている。駆動回路はN型TFTとP型TFTとを 相補的に組み合わせたCMOS回路で構成することが好 ましい。また、705は対向基板である。

【0143】図17 (A) に示すAMLCDはアクティ ブマトリクス基板701と対向基板705とが端面を揃 えて貼り合わされている。ただし、ある一部だけは対向50 TV、ヘッドマウントディスプレイ、カーナビゲーショ

基板705を取り除き、露出したアクティブマトリクス 基板に対してFPC(フレキシブル・プリント・サーキ ット)706を接続してある。このFPC706によっ て外部信号を回路内部へと伝達する。

【0144】また、FPC706を取り付ける面を利用 してICチップ707、708が取り付けられている。 これらのICチップはビデオ信号の処理回路、タイミン グパルス発生回路、γ補正回路、メモリ回路、演算回路 など、様々な回路をシリコン基板上に形成して構成され る。図17(A)では2個取り付けられているが、1個 でも良いし、さらに複数個であっても良い。

【0145】また、図17(B)の様な構成もとりう る。図17(B)において図17(A)と同一の部分は 同じ符号を付してある。ここでは図17(A)でICチ ップが行っていた信号処理を、同一基板上にTFTでも って形成されたロジック回路709によって行う例を示 している。この場合、ロジック回路709も駆動回路7 03、704と同様にCMOS回路を基本として構成さ れる。

【0146】また、本実施例のAMLCDはブラックマ スクをアクティブマトリクス基板に設ける構成(BMo n TFT) を採用するが、それに加えて対向側にブラッ クマスクを設ける構成とすることも可能である。

【0147】また、カラーフィルターを用いてカラー表 示を行っても良いし、ECB(電界制御複屈折)モー ド、GH(ゲストホスト)モードなどで液晶を駆動し、 カラーフィルターを用いない構成としても良い。

【0148】また、特開昭8-15686 号公報に記載された 技術の様に、マイクロレンズアレイを用いる構成にして も良い。

【0149】 [実施例5] 本発明の構成は、AMLC D以外にも他の様々な電気光学装置や半導体回路に適用 することができる。

【0150】AMLCD以外の電気光学装置としてはE L (エレクトロルミネッセンス)表示装置やイメージセ ンサ等を挙げることができる。

【0151】また、半導体回路としては、ICチップで 構成されるマイクロプロセッサの様な演算処理回路、携 帯機器の入出力信号を扱う高周波モジュール(MMIC 40 など)が挙げられる。

【0152】この様に本発明は絶縁ゲイト型TFTで構 成される回路によって機能する全ての半導体装置に対し て適用することが可能である。

【0153】[実施例6]実施例4や5に示したAML CDは、様々な電子機器のディスプレイとして利用され る。なお、本実施例に挙げる電子機器とは、アクティブ マトリクス型液晶表示装置を搭載した製品と定義する。

【0154】その様な電子機器としては、ビデオカメ ラ、スチルカメラ、プロジェクター、プロジェクション ン、パーソナルコンピュータ(ノート型を含む)、携帯 情報端末(モバイルコンピュータ、携帯電話等)などが 挙げられる。それらの一例を図18に示す。

【0155】図18(A)は携帯電話であり、本体2001、音声出力部2002、音声入力部2003、表示装置2004、操作スイッチ2005、アンテナ2006で構成される。本発明は音声出力部2002、音声入力部2003、表示装置2004等に適用することができる。

【0156】図18(B)はビデオカメラであり、本体 102101、表示装置2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106で構成される。本発明は表示装置2102、音声入力部2103、受像部2106に適用することができる。

【0157】図18(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示装置2205で構成される。本発明は受像部2203、表示装置2205等に適用できる。

【0158】図18 (D) はヘッドマウントディスプレイであり、本体2301、表示装置2302、バンド部2303で構成される。本発明は表示装置2302に適用することができる。

【0159】図18(E)はリア型プロジェクターであり、本体2401、光源2402、表示装置2403、偏光ビームスプリッタ2404、リフレクター2405、2406、スクリーン2407で構成される。本発明は表示装置2403に適用することができる。

【0160】図18(F)はフロント型プロジェクター 30であり、本体2501、光源2502、表示装置2503、光学系2504、スクリーン2505で構成される。本発明は表示装置2503に適用することができる。

【0161】以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に適用することが可能である。また、他にも電光掲示盤、宣伝公告用ディスプレイなどにも活用することができる。

[0162]

【発明の効果】本発明では、また、陽極酸化用の電圧供 40 給配線を形成せずに、配線を陽極酸化することが可能になるため、電圧供給配線を形成するスペースや、電圧供給配線を分断するためのエッチングマージンなおどを考慮せずに回路設計が可能になる。よって、回路の高集積化や基板面積の縮小化が促進される。

[0163].

【図面の簡単な説明】

- 【図1】 配線の作製工程を示す断面図。(実施形態 1)
- 【図2】 配線の上面図と側面図。(実施形態1と従来例)
- 【図3】 配線の作製工程を示す断面図。(実施形態2)
- 【図4】 配線の拡大断面図。(実施形態2)
- 【図5】 TFTの上面図。(実施例1)
- 【図6】 ゲートコンタクト部とTFTの断面図。(実施例1)
- 【図7】 図6 (B) の部分拡大図。(実施例1)
- 【図8】 TFTの作製工程を示す断面図。(実施例1)
- 【図9】 TFTの作製工程を示す断面図。(実施例1)
- 【図10】 TFTの作製工程途中の平面図と、断面図 (実施例1)
- 【図11】 TFTの作製工程途中の平面図と、断面図) (実施例1)
 - 【図12】 TFTの作製工程途中の平面図と、断面図 (実施例1)
 - 【図13】 TFTの作製工程途中の平面図と、断面図 (実施例1)
 - 【図14】 陽極酸化装置の模式図。
 - 【図15】 MOS型トランジスタの断面図。 (実施例2)
 - 【図16】 アクティブマトリクス基板の断面図。(実施例3)
- 0 【図17】 AMLCD基板の斜視図。(実施例4)
 - 【図18】 半導体装置用いた電子機器の構成図。(実施例6)
 - 【図19】 陽極酸化工程の実験手順を示すアルミニウムパターンの断面図。
 - 【図20】 図19の断面構造の部分拡大図。
 - 【図21】 図20の断面構造を観察したSEM写真。
 - 【図22】 従来の陽極酸化工程を用いたTFTの作製工程を示す断面図。(従来例)

【符号の説明】

- 200 基板
- 201 活性層
- 204 ゲート配線
- 208 タンタル膜(Ta膜)
- 209 アルミニウム膜(A1膜)
- 210 タンタルオキサイド膜(TaO, 膜)
- 211 バリア型陽極酸化物膜 (バリアA.O.膜)

[図3]

[図7]

207かート絶縁膜 208:Ta層(第1の配線層) 209:Al層(第2の配線層) 210:TaOx膜(隔極酸化物膜) 211かリアA.O.膜(隔極酸化物膜)

221a チャネル形成領域 221b:オフセット領域 223ドレイン領域 225低濃度不純物領域

【図6】

200: 基板 201: 活性層 204: ゲート記録 207: 絶縁膜 208: Ta層 (第1の配線層) 209: アルニウル層(第2の記線層) 210: TaOx頃(第1の配線層の開極酸化物膜) 211: かリアAO、現(第2の配線層の陽極酸化物膜) 212: 層間絶線膜 213: 取り出し配線 214: ソース配線 215: ト・レク配線 221: 井秋形成領域 222: ソース領域 223: ト・レク領域 224、225: 低速度不純物領域

[図10]

【図8】

[図13]

チャネル幅方向の断面図

【図12】

【図14】

【図9】

【図17】

701:アクティブマトリクス基板 702:画茶マトリクス回路 703:ソース似駆動回路 704:ゲート側駆動回路 705:対向基板 708:FPC 707、708:ICチップ 709:ロジック回路

【図11】

【図15】

301: 沙コン基板 302: フィールド酸化膜 303: ソース領域 304: ドレイン領域 305: LDD領域

[図16]

610:第1の平坦化膜 611:ブラックマスク 612:補助容量 613:第2の平坦化膜 614:画素電極

[図18]

【図19】

[図20]

【図21】

図面代用写真

SEM観察写真(図面代用写真)

【図22】

