Unidad 01. Nociones básicas Esfuerzos cortantes, de aplastamiento y admisibles

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Análisis Estructural Básico

2023b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Gere and Goodno, 2012).

Interacción en las uniones pernadas

Acción de los esfuerzos cortantes y de aplastamiento

Por la acción de las cargas de tensión P, la barra y la horquilla presionarán contra el perno en compresión y se desarrollarán esfuerzos de contacto, llamados **esfuerzos de aplastamiento**. Además, la barra y la horquilla tienden a cortar el perno, es decir, pasar a través de él, y esta tendencia es resistida por los **esfuerzos cortantes** en el perno.

Figure: Conexión pernada en la cual el perno está cargado con un cortante doble.

Interacción en las uniones pernadas

Aplastamiento

Figure: Conexión pernada en la cual el perno está cargado con un cortante doble.

Esfuerzo de aplastamiento σ_b (bearing)

Esfuerzo normal de compresión dado por una fuerza de aplastamiento F_b que actúa en una superficie de contacto o aplastamiento A_b , de dos elementos.

$$\sigma_b = \frac{F_b}{A_b}$$

- El área de aplastamiento está definida como el área proyectada de una superficie curva de contacto.
- Importante en el análisis de conexiones en estructura metálica.

Michael Heredia Pérez (UNAL Mzl.) Unidad 01. Nociones básicas 2023b

4/13

1.7. Shear stress and strain 1.8. Allowable stress and allowable loads 1.9. Design for axial loads and direct shear. References

Interacción en las uniones pernadas

Corte

Figure: Conexión pernada en la cual el perno está cargado con un cortante doble.

Esfuerzo cortante promedio τ (average shear stress)

El esfuerzo cortante actúa tangentemente a la superficie del material (sección transversal). Será un promedio de la acción de la fuerza cortante V en el área de la sección transversal A:

$$\tau_{aver} = \frac{V}{A}$$

- Estamos calculando cortes directos, dados por la interacción directa entre dos materiales.
- Se pueden generar cortes indirectos, cuando los miembros están sometidos previamente a fuerzas de tracción, torsión y flexión.

Esfuerzo cortante y deformaciones angulares

La acción de los esfuerzos cortantes en un elemento generará distorsiones en los ángulos rectos de este, llamadas deformaciones angulares.

Deformación angular γ (shear strain)

Mide el cambio de ángulo entre dos caras que inicialmente eran ortogonales.

- Ángulos muy pequeños, medidos en radianes o grados.
- Diremos que en el punto s, el ángulo deformado es

$$\theta_s = \frac{\pi}{2} - \gamma$$

 El signo de la deformación (y esfuerzo) angular será una indicación de la apertura o cierre del ángulo de referencia en el elemento.

Figure: Elemento de material sujeto a esfuerzos de corte y deformaciones angulares

Elementos sometidos a cortante simple y doble

Cortante simple (1-corte)

La fuerza cortante V para el cálculo, es aquella transmitida por el perno a la placa, V=P. $\tau=P/A.$

Figure: Conexión pernada en la cual el perno está cargado con un cortante simple.

Figure: Falla en un tornillo por cortante simple.

Cortante doble (2-corte)

La fuerza cortante V para el cálculo, es un medio de la transmitida por el perno a las dos placas, V=P/2. $\tau=\frac{P}{24}$.

Figure: Conexión pernada en la cual el perno está cargado con un cortante doble.

Figure: Falla en un tornillo por cortante doble.

Ley de Hooke en cortante

- Las propiedades mecánicas a cortante se obtienen en ocasiones de ensayos a torsión.
- Existen diagramas esfuerzo-deformación a cortante, con forma similar pero magnitudes diferentes (τ y γ).
- Los módulos de elasticidad y límites por cortante son aproximadamente la mitad (0.5 a 0.6 veces) de aquellos a tracción, para un mismo material, aunque lo anterior no es norma.

Ley hook en cortante

$$\tau = G\gamma$$

G es el conocido **módulo de cortante**, de corte, módulo elástico de corte o módulo de rigidez. Y se relaciona con las otras propiedades, así:

$$G = \frac{E}{1(1+\nu)}$$

Esfuerzos admisibles y cargas admisibles

Factores de seguridad

Factores de seguridad

"La verdadera resistencia de una estructura debe exceder aquella requerida". La relación entre la resistencia verdadera o real, y la requerida, se llamará un factor de seguridad n:

$$n = \frac{\text{resistencia real}}{\text{resistencia requerida}} > 1$$

- La resistencia se puede medir mediante la capacidad de soporte de carga de una estructura o por el esfuerzo en el material.
- Buscamos n > 1 para prevenir la falla.
- La falla puede significar:
 - Fractura y derrumbe.
 - Incapacidad de responder a solictaciones.

Esfuerzos admisibles y cargas admisibles

Factores de seguridad

Los factores de seguridad serán dados por códigos de diseño, en Colombia por el **Reglamento Colombiano de Construcción Sismo Resistente NSR-10**. También, otras normas internacionales usualmente estadounidenses. Estos factores tienen en consideración, entre otros:

- Probabilidades e incertidumbres.
- Tipos de cargas (estáticas o dinámicas) y periodicidad.
- Desgaste y fatiga.
- Imprecisiones constructivas
- Variaciones en las propiedades de los materiales.
- Precisión de los métodos de análisis.
- Consecuencias de falla... etc.

Esfuerzos admisibles y cargas admisibles

El factor de seguridad se establece con respecto al esfuerzo de fluencia, obteniendo así un **esfuerzo admisible** (o permisible) que no debe ser excedido en ningún punto de la estructura:

$$esfuerzo admiisble = \frac{esfuerzo de fluencia}{factor de seguridad}$$

A tracción y corte:

$$\sigma_{ad} = \frac{\sigma_Y}{n_1}, \quad \tau_{ad} = \frac{\tau_Y}{n_2}.$$

• En ocasiones, se tienen factores de seguridad específicos para considerar los esfuerzos últimos: σ_U y τ_U .

La relación entre la carga admisible y el esfuerzo admisible dependerá del tipo de estructura, y será de la forma

$${\sf carga\ admisible} = ({\sf esfuerzo\ admisible})({\sf area})$$

• Barras a tracción o compresión sin pandeo:

$$P_{ad} = \sigma_{ad}A.$$

Pasadores en corte directo:

$$P_{ad} = \tau_{ad} A$$
.

• Para el aplastamiento:

$$P_{ad} = \sigma_{bad} A_b.$$

Diseño para cargas axiales y corte directo

• El diseño consiste en determinar las propiedades de una estructura en función de que esta soporte las cargas y cumpla con sus respectivas funciones.

$$\text{\'area requerida} = \frac{\text{carga transmitida}}{\text{esfuerzo admisible}}$$

- Además de rigidez y resistencia, se hablará de estabilidad como la abilidad de una estructura para resistir pandeos por cargas de compresión.
- En las etapas finales del diseño se hablará de optimización con criterio matemático.

Lectura

Capítulo 1, sección 1.9. Design for axial loads and direct shear de (Gere and Goodno, 2012)

Referencias

Gere, J. M. and Goodno, B. J. (2012). Mechanics of materials. Cengage learning.