Notions de graphe, sommet, arête, degré d'un sommet, graphe connexe, composante connexe, listes d'adjacence, matrice d'adjacence, matrice d'incidence

Exercice 1

Soit G_1 le graphe dessiné ci-contre à droite.

- 1. Pour chaque sommet s_i de G_1 , donner le degré de s_i et la liste des voisins de s_i (la liste d'adjacence de s_i).
- 2. Quel est le degré minimum et le degré maximum de G_1 ?
- 3. Donner la matrice d'adjacence et la matrice d'incidence de G_1 .
- 4. Le graphe G_1 contient-il un cycle? Si oui, quel est le plus long cycle contenu dans G_1 ?
- 5. G_1 est un graphe connexe ou pas? Justifier.

Exercice 2

(*) Dessiner le graphe G_2 décrit par les listes d'adjacence ci-dessous. Donner la matrice d'adjacence et la matrice d'incidence de G_2 (on numérotera les arêtes suivant l'ordre lexicographique sur le couple de sommets extrémités).

1:2,3

2:1,3,4,5

3:1,2,5

4:2,5

5:2,3,4

Notions de boucle, arêtes parallèles, graphe simple

Exercice 3

- 1. Dessiner plusieurs graphes dont les sommets ont comme degrés 4, 3, 2, 1, 1, 1, 0, dont
 - au moins un graphe contenant une boucle,
 - au moins un graphe sans boucle mais contenant des arêtes parallèles, et
 - au moins un graphe simple.
- 2. Y a-t-il parmi vos graphes un sans cycle?
- 3. Quel est le nombre d'arêtes dans chacun de ces graphes? Peut-il exister un autre graphe avec les sommets de mêmes degrés, ayant un nombre d'arêtes différents? Justifier.
- (*) Proposer une suite d'entiers naturels telle qu'il existe un graphe non-simple ayant comme degrés les valeurs de la suite, mais il n'existe pas de graphe simple ayant comme degrés les valeurs de la suite.
- (*) Proposer une suite d'entiers naturels telle qu'il n'existe aucun graphe (simple ou pas) ayant comme degrés les valeurs de la suite.

Calcul avec des degrés, parité de degrés

Exercice 4

Montrer que dans un graphe la somme des degrés des sommets est un nombre pair. En déduire que tout graphe a un nombre pair de sommets de degré impair.

Exercice 5

(*) Dans un graphe connexe un isthme est une arête dont la suppression augmente le nombre de composantes connexes. Montrer qu'un graphe dont tous les sommets sont de degré pair ne possède pas d'isthme.

Exercice 6

Un graphe simple G a 15 arêtes, 3 sommets de degré 4, les autres étant de degré 3. Quel est le nombre de sommets du graphe G?

Exercice 7

(*) Est-il possible qu'un groupe de 9 personnes soit tel que chacun soit l'ami de 5 personnes exactement du groupe?

Manipulation formelle, démonstration directe, raisonnement par l'absurde

Exercice 8

Soit G un graphe ayant k composantes connexes. Soit u et v deux sommets non-adjacents de G. Soit G' le graphe obtenu à partir de G en ajoutant une nouvelle arête reliant u et v.

- 1. Montrer que si u et v sont dans la même composante connexe de G, alors G' contient un cycle qui passe par la nouvelle arête uv.
- 2. Montrer que si u et v sont dans la même composante connexe de G, alors G' a autant de composantes connexes que G.
- 3. Montrer que si u et v sont dans deux composantes connexes distinctes de G, alors le nombre de composantes connexes de G' est égal à k-1.
- 4. En déduire qu'en général, l'ajout d'une arête peut faire diminuer le nombre de composantes connexes d'un graphe d'au maximum une.

Exercice 9

L'objectif de cet exercice est de trouver une borne supérieure sur le nombre d'arêtes d'un graphe sans cycle.

Considérons un graphe G sans cycle. Soient e_1, e_2, \ldots, e_m les arêtes de G. Nous allons reconstruire G à partir d'un graphe sans arête en ajoutant les arêtes de G une par une.

- 1. Soit G_0 un graphe à n sommets avec aucune arête. Montrer que le nombre de composantes connexes de G_0 est égal à n, en explicitant la structure de chacune d'elles.
- 2. Pour i = 1, ..., m, soit G_i le graphe obtenu à partir de G_{i-1} en ajoutant l'arête e_i . (Observer que $G_m = G$.) En utilisant des énoncés de l'exercice précédent, montrer que les extrémités de e_i appartiennent à deux composantes connexes différentes de G_{i-1} .
- 3. En déduire que G_i a une composante connexe de moins par rapport à G_{i-1} .
- 4. Quel est le nombre de composantes connexes de G_i ? De G_m ? En déduire que le nombre d'arêtes maximum possible dans un graphe sans cycle est de n-1.
- (*) En déduire que, si un graphe G est sans cycle, alors, G est connexe si et seulement si m=n-1.
- 5. Sauriez-vous maintenant justifier la réponse à 3.2?