Reimplementación de la máquina abstracta MAPiCO

Alba Liliana Sarasti Campo Carlos Alberto Llano Rodriguez

Pontificia Universidad Javeriana - Cali

23 de enero de 2007

Caracteristicas:

Lenguaje de programación C (Estándar ANSI C99),

- Lenguaje de programación C (Estándar ANSI C99),
- 2 Estructuras de datos modularizadas y genericas (TAD's),

- Lenguaje de programación C (Estándar ANSI C99),
- Estructuras de datos modularizadas y genericas (TAD's),
- Area de memoria, procesos, lista de parametros dinamicos y colas, utilizan TAD's hechos en macros de C que disminuyen los tiempos de ejecución,

- Lenguaje de programación C (Estándar ANSI C99),
- 2 Estructuras de datos modularizadas y genericas (TAD's),
- Area de memoria, procesos, lista de parametros dinamicos y colas, utilizan TAD's hechos en macros de C que disminuyen los tiempos de ejecución,
- Registros genericos para almacenar cualquier tipo de dato,

- Lenguaje de programación C (Estándar ANSI C99),
- Estructuras de datos modularizadas y genericas (TAD's),
- Area de memoria, procesos, lista de parametros dinamicos y colas, utilizan TAD's hechos en macros de C que disminuyen los tiempos de ejecución,
- Registros genericos para almacenar cualquier tipo de dato,
- Configuración parametrizable por archivo o por instrucción,

- Lenguaje de programación C (Estándar ANSI C99),
- 2 Estructuras de datos modularizadas y genericas (TAD's),
- Area de memoria, procesos, lista de parametros dinamicos y colas, utilizan TAD's hechos en macros de C que disminuyen los tiempos de ejecución,
- Registros genericos para almacenar cualquier tipo de dato,
- Configuración parametrizable por archivo o por instrucción,
- Uso de plugins para cargar dinamicamente las instrucciones de la máquina,

- Lenguaje de programación C (Estándar ANSI C99),
- 2 Estructuras de datos modularizadas y genericas (TAD's),
- Area de memoria, procesos, lista de parametros dinamicos y colas, utilizan TAD's hechos en macros de C que disminuyen los tiempos de ejecución,
- Registros genericos para almacenar cualquier tipo de dato,
- Configuración parametrizable por archivo o por instrucción,
- Uso de plugins para cargar dinamicamente las instrucciones de la máquina,
- Facilidad para adicionar plugins a la maquina por medio de la configuración,

- Lenguaje de programación C (Estándar ANSI C99),
- 2 Estructuras de datos modularizadas y genericas (TAD's),
- Area de memoria, procesos, lista de parametros dinamicos y colas, utilizan TAD's hechos en macros de C que disminuyen los tiempos de ejecución,
- Registros genericos para almacenar cualquier tipo de dato,
- Configuración parametrizable por archivo o por instrucción,
- Uso de plugins para cargar dinamicamente las instrucciones de la máquina,
- Facilidad para adicionar plugins a la maquina por medio de la configuración,
- Facilidad para agregar instrucciones a los plugins actualizando el catalogo del plugin,

Caracteristicas:

 Posibilidad de las instrucciones de agregar o eliminar variables a la lista de parametros dinamicos en tiempo de ejecución,

- Posibilidad de las instrucciones de agregar o eliminar variables a la lista de parametros dinamicos en tiempo de ejecución,
- 2 Ejecución de instrucciones diferentes a las del calculo PiCO,

- Posibilidad de las instrucciones de agregar o eliminar variables a la lista de parametros dinamicos en tiempo de ejecución,
- 2 Ejecución de instrucciones diferentes a las del calculo PiCO,
- Cambio del sistema de restricciones modificando solamente la interfaz del store,

- Posibilidad de las instrucciones de agregar o eliminar variables a la lista de parametros dinamicos en tiempo de ejecución,
- 2 Ejecución de instrucciones diferentes a las del calculo PiCO,
- Cambio del sistema de restricciones modificando solamente la interfaz del store,
- Desarrollada bajo los estandares establecidos por GNU para el ordenamiento de proyectos lo que asegura la portabilidad de la máquina,

AssemblyMAPiCO

El Assembly MAPiCO es un programa que se encarga de traducir, un archivo fuente en formato texto a un archivo de salida en formato binario. Este archivo de salida contiene el código que MAPiCO ejecuta (bytecode).

Pruebas y Resultados

Factorial:

Programa	Escenarios de Pruebas			
Factorial	Escenario 1	Escenario 2	Escenario 3	
	Máquina JAVA /	Máquina JAVA /	Máquina C /	
	Store JAVA	Store C	Store C	
0	80	32	0.0009	
1	104	34	0.003	
2	125	54	0.005	
3	182	56	0.008	
4	200	59	0.011	
5	215	66	0.014	
6	244	75	0.020	
7	274	81	0.023	

Factorial

SEND + MORE = MONEY

Programa	Escenarios de Pruebas			
SMM	Escenario 1	Escenario 2	Escenario 3	
	Máquina JAVA /	Máquina JAVA /	Máquina C /	
	Store JAVA	Store C	Store C	
TELL Y = 2	533	132	0.0690	

Los resultados para el Escenario 3 son los siguientes:

SEND + MORE = MONEY

N-REINAS

Programa	rama Escenarios de Pruebas		
NREINAS	Escenario 1	Escenario 2	Escenario 3
	Máquina JAVA /	Máquina JAVA /	Máquina C /
	Store JAVA	Store C	Store C
$TELL X_3 = 4$	199	83	0.0229

Los resultados para el Escenario 3 son los siguientes:

$$\begin{array}{cccc} X_1 & \text{in} & \{3,3\} \\ X_2 & \text{in} & \{1,1\} \\ X_3 & \text{in} & \{4,4\} \\ X_4 & \text{in} & \{2,2\} \end{array}$$

N-REINAS

Objetivos planteados vs resultados obtenidos de acuerdo al anteproyecto

 MAPiCO, es soportada por el cálculo lógico, correcto y formal PiCO

- MAPiCO, es soportada por el cálculo lógico, correcto y formal PiCO
- Al implementar la maquina en el lenguaje de programación C se garantizaron tiempos de ejecucion mucho mas eficientes,

- MAPiCO, es soportada por el cálculo lógico, correcto y formal PiCO
- Al implementar la maquina en el lenguaje de programación C se garantizaron tiempos de ejecucion mucho mas eficientes,
- Su diseño modular permite que ante cambios en el calculo PiCO las modificaciones solo se hagan del lado de los plugins y no deba modificarse la máquina abstracta,

- MAPiCO, es soportada por el cálculo lógico, correcto y formal PiCO
- Al implementar la maquina en el lenguaje de programación C se garantizaron tiempos de ejecucion mucho mas eficientes,
- Su diseño modular permite que ante cambios en el calculo PiCO las modificaciones solo se hagan del lado de los plugins y no deba modificarse la máquina abstracta,
- Debido a la forma de implementación, se puede implementar la funcionalidad de otra máquina en plugins y ejecutarlos en MAPiCO, la Máquina Abstracta LMAN podría implementarse bajo este criterio,

- MAPiCO, es soportada por el cálculo lógico, correcto y formal PiCO
- Al implementar la maquina en el lenguaje de programación C se garantizaron tiempos de ejecucion mucho mas eficientes,
- Su diseño modular permite que ante cambios en el calculo PiCO las modificaciones solo se hagan del lado de los plugins y no deba modificarse la máquina abstracta,
- Debido a la forma de implementación, se puede implementar la funcionalidad de otra máquina en plugins y ejecutarlos en MAPiCO, la Máquina Abstracta LMAN podría implementarse bajo este criterio,
- La alternativa de eliminación de variables planteada podría significar una mejora considerable en el rendimiento del *Store*,

Se realizaron todo tipo de pruebas sobre las estructuras de datos que utiliza MAPiCO garantizando el optimo rendimiento de la máquina.

- Se realizaron todo tipo de pruebas sobre las estructuras de datos que utiliza MAPiCO garantizando el optimo rendimiento de la máquina.
- 2 Las pruebas realizadas demostraron que:

- Se realizaron todo tipo de pruebas sobre las estructuras de datos que utiliza MAPiCO garantizando el optimo rendimiento de la máquina.
- 2 Las pruebas realizadas demostraron que:
 - El Escenario determinado por MAPICO JAVA y Store C es un 66 % más eficiente que el Escenario constituido por MAPICO JAVA y Store JAVA.

- Se realizaron todo tipo de pruebas sobre las estructuras de datos que utiliza MAPiCO garantizando el optimo rendimiento de la máquina.
- 2 Las pruebas realizadas demostraron que:
 - El Escenario determinado por MAPICO JAVA y Store C es un 66 % más eficiente que el Escenario constituido por MAPICO JAVA y Store JAVA.
 - El Escenario determinado por MAPICO C y Store C es un 99 % más eficiente que el Escenario constituido por MAPICO JAVA y Store JAVA.

- Se realizaron todo tipo de pruebas sobre las estructuras de datos que utiliza MAPiCO garantizando el optimo rendimiento de la máquina.
- 2 Las pruebas realizadas demostraron que:
 - El Escenario determinado por MAPICO JAVA y Store C es un 66 % más eficiente que el Escenario constituido por MAPICO JAVA y Store JAVA.
 - El Escenario determinado por MAPICO C y Store C es un 99 % más eficiente que el Escenario constituido por MAPICO JAVA y Store JAVA.
 - El Escenario determinado por MAPICO C y Store C es un 99 % más eficiente que el Escenario constituido por MAPICO JAVA y Store C.

 Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- 2 Cambiar el Sistema de Restricciones a uno mas genérico como GECODE - Generic Constraint Development Enviroment,

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- Cambiar el Sistema de Restricciones a uno mas genérico como GECODE - Generic Constraint Development Enviroment,
- Realizar pruebas funcionales de programas ejecutados desde Cordial y no solo desde MAPiCO, para comparar tiempos y resultados.

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- Cambiar el Sistema de Restricciones a uno mas genérico como GECODE - Generic Constraint Development Enviroment,
- Realizar pruebas funcionales de programas ejecutados desde Cordial y no solo desde MAPiCO, para comparar tiempos y resultados.
- Reutilizar la Máquina Abstracta MAPiCO para implementar otros cálculos como π o NTCC,

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- Cambiar el Sistema de Restricciones a uno mas genérico como GECODE - Generic Constraint Development Enviroment,
- Realizar pruebas funcionales de programas ejecutados desde Cordial y no solo desde MAPiCO, para comparar tiempos y resultados.
- Reutilizar la Máquina Abstracta MAPiCO para implementar otros cálculos como π ο NTCC,
- Implementar un Explorador de Restriciones similar al trabajo de grado Explorador de Cordial

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- ② Cambiar el Sistema de Restricciones a uno mas genérico como GECODE Generic Constraint Development Enviroment,
- Realizar pruebas funcionales de programas ejecutados desde Cordial y no solo desde MAPiCO, para comparar tiempos y resultados.
- Reutilizar la Máquina Abstracta MAPiCO para implementar otros cálculos como π ο NTCC,
- Implementar un Explorador de Restriciones similar al trabajo de grado Explorador de Cordial
- Implementar el Compilador PiCO MAPiCO tratando de optimizar la generación de variables,

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- 2 Cambiar el Sistema de Restricciones a uno mas genérico como GECODE Generic Constraint Development Enviroment,
- Realizar pruebas funcionales de programas ejecutados desde Cordial y no solo desde MAPiCO, para comparar tiempos y resultados.
- **1** Reutilizar la Máquina Abstracta MAPiCO para implementar otros cálculos como π o NTCC.
- Implementar un Explorador de Restriciones similar al trabajo de grado Explorador de Cordial
- Implementar el Compilador PiCO MAPiCO tratando de optimizar la generación de variables,
- Implementar un Garbage Collector dentro de MAPiCO,

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- Cambiar el Sistema de Restricciones a uno mas genérico como GECODE - Generic Constraint Development Enviroment,
- Realizar pruebas funcionales de programas ejecutados desde Cordial y no solo desde MAPiCO, para comparar tiempos y resultados.
- Reutilizar la Máquina Abstracta MAPiCO para implementar otros cálculos como π ο NTCC,
- Implementar un Explorador de Restriciones similar al trabajo de grado Explorador de Cordial
- Implementar el Compilador PiCO MAPiCO tratando de optimizar la generación de variables,
- Implementar un Garbage Collector dentro de MAPiCO,
- Implementar un cache de objetos,

- Implementar la alternativa de Eliminación de Variables en el Sistema de Restricciones,
- ② Cambiar el Sistema de Restricciones a uno mas genérico como GECODE Generic Constraint Development Enviroment,
- Realizar pruebas funcionales de programas ejecutados desde Cordial y no solo desde MAPiCO, para comparar tiempos y resultados.
- **1** Reutilizar la Máquina Abstracta MAPiCO para implementar otros cálculos como π o NTCC.
- Implementar un Explorador de Restriciones similar al trabajo de grado Explorador de Cordial
- Implementar el Compilador PiCO MAPiCO tratando de optimizar la generación de variables,
- Implementar un Garbage Collector dentro de MAPiCO,
- Implementar un cache de objetos,
- Implementar el soporte de hilos en la Máquina Abstracta MAPiCO.

GRACIAS!!!