Lineaire Algebra Huiswerk

Jasper Vos Huiswerkset 3 29 september 2025

Studentnr: s2911159

Opgave 3.4.6

Opgave 3.4.6(2)

Bewijs. Laat V een verzameling zijn van alle oneven functies van $\mathbb{R} \to \mathbb{R}$, waarbij V een deelruimte is op $\mathbb{R}^{\mathbb{R}}$.

Het nulelement

Te bewijzen: V bevat het nulelement, wat in dit geval de nulfunctie f_0 is. Zij $f_0 : \mathbb{R} \to \{0\}$ f(x) = 0, dan geldt voor alle $x \in \mathbb{R}$ dat:

$$f(-x) = 0$$
 en $-f(x) = -0 = 0$

Dit betekent dus dat V de nulfunctie f_0 bevat.

Gesloten onder optelling

Te bewijzen: $f, g \in V$ dan $f + g \in V$.

Zij $f, g \in V$ willekeurig gegeven dan geldt voor alle $x \in \mathbb{R}$ dat:

$$(f+g)(-x) = f(-x) + g(-x)$$
 (Definitie optellen functies)
= $-f(x) + -g(x)$ (Eigenschap oneven functie)
= $-(f(x) + g(x))$ (Distributiviteit in \mathbb{R})
= $-((f+g)(x))$ (Definitie optellen functies)

Hieruit volgt dus dat voor alle $x \in \mathbb{R}$ geldt (f+g)(-x) = -(f+g)(x), en dus $f+g \in V$.

Gesloten onder scalaire vermedigvuldiging

Te bewijzen: $f \in V$ en $\lambda \in \mathbb{R}$ dan $\lambda f \in V$.

Zij $f \in V$ en $\lambda \in \mathbb{R}$ dan:

$$\lambda f(-x) = -\lambda f(x)$$
 (Eigenschap oneven functie)

Dus voor elke $x \in \mathbb{R}$ geldt dat $\lambda f(-x) = -\lambda f(x)$, en dus $\lambda f \in V$.

Conclusie

Door te bewijzen dat V voldoet aan het nulelement, optelling en scalaire vermedigvuldiging hebben we bewezen dat V een deelruimte is van $\mathbb{R}^{\mathbb{R}}$.