Simple but longterm card-terminal authorization protocol based on one time passwords - sketch of protocol

Prerequisites

- Each card has a unique ID (*Card_{ID}*) and stores its current state (*ST*), which is simultaneously a symmetric key used for secure communication with the terminal.
- Terminal stores a mapping from card IDs to pair of their current and previous state. We assume that for a given card, the initial state of the card and the corresponding current state that terminal holds are the same (initial previous state stored by the terminal is taken at random).

Definitions

```
• I\mathcal{D} - card IDs space (\{0,1\}^{32})
```

```
• \mathcal{R} - challenges space (\{0,1\}^{64})
```

```
• \mathcal{K} - key space (\{0,1\}^{128} \times \{0,1\}^{256})
```

- Enc encryption (AES in CFB mode with 256b key)
- Dec decryption (AES in CFB mode with 256b key)
- ACRT acceptable card response time (exact value to be defined)
- *time*() function that returns current timestamp
- $f: I\mathcal{D} \to \mathcal{K} \times \mathcal{K}$ mapping from card IDs to pair of states (previous and the current one).

Authentication protocol (simple pre-shared key challenge-response authentication): If the protocol is executed successfully, terminal opens the door to the secure location.

ASN.1 Documentation

```
CardProtocol DEFINITIONS ::= BEGIN
    CardHello ::= SEQUENCE {
    cardId BIT STRING
    }

RandomChallenge ::= SEQUENCE challenge BIT STRING
    StageOne ::= SEQUENCE oldState BIT STRING
    StageTwo ::= SEQUENCE newState BIT STRING
    END
```

Terminal (f)	Transmission	Card $(Card_{ID}, ST)$
1.		
	$\leftarrow Card_{ID}$	
2. Take $r \in \mathcal{R}$ uniformly at random.		
Let $t := time()$		
	$\rightarrow r$	- ()
3.		$m_1 := Enc_{ST}(r)$
4 I at 4	$\leftarrow m_1$	
4. Let $t' := time()$. Check if $t' - t < ACRT$ (If not, show error mes-		
sage about card response being too long and		
abort.)		
abort.)		
Let $(k_{prev}, k_{curr}) := f(Card_{ID})$ and check		
if (1) $Dec_{k_{prev}}(m_1) = r$ or (2) $Dec_{k_{curr}}(m_1) = r$		
(If (1) is fulfilled, show warning that terminal		
and card got desynchronized. If none is ful-		
filled, show error message about card being in		
an incorrect state, suggesting that it may have		
been cloned and abort).		
Let $k_{good} \in \{k_{prev}, k_{curr}\}$ be the one that ful-		
filled one of the equalities.		
Take $k' \in \mathcal{K} \setminus \{k_{good}\}$ uniformly at random		
and update f so that $f(Card_{ID}) = (k_{good}, k')$.		
$m_2 := Enc_{k_{good}}(k')$		
m2. Zinckgood (N)	$\rightarrow m_2$	
5.		$ST := Dec_{ST}(m_2)$