Probability and Statistics II

Derek Li

Contents

1	Rev	iew of Probability	4
	1.1	Probability	4
	1.2	Expectation	4
	1.3	Indicator function	4
	1.4	Law of large number (LLN)	5
	1.5	Central limit theorem (CLT)	5
	1.6	Linear combination of Normal variables	5
	1.7	Z and χ^2 distribution	6
	1.8	t and \widetilde{F} distribution	6
2	Data	a Collection	7
	2.1	Population and sample	7
	2.2	Parameter and statistic	7
	2.3	Finite populations	7
	2.4	Infinite populations	8
	2.5	Simple random sampling	8
	2.6	Empirical CDF	8
	2.7	Density histogram	9
	2.8	Quantile/Percentile for population	9
	2.9	Boxplot	10
	2.10		10
3	Poir	nt Estimation	11
	3.1	Type of inference	11
	3.2	v -	11
	3.3		12
	3.4	Sampling distribution of an estimator	13

	3.5	Measuring quality of an estimator	14		
	3.6	Unbiasedness	15		
4	San	Sampling Distribution of S^2			
	4.1	Sample variance (S^2)			
	4.2	Sampling distribution of S^2 under Normal distribution	17		
	4.3	$\frac{X-\mu}{S/\sqrt{n}} \sim t_{(n-1)}$	18		
	4.4	$\chi^2_{(m)}$	19		
5	Pro	Properties of an Estimator: Consistency, Efficiency and Suf-			
	ficie	ency	2 0		
	5.1	Consistent estimator	20		
	5.2	Efficient estimator	21		
	5.3	Sufficient statistic	23		
6	Inte	erval Estimation	24		
	6.1	Confidence interval	24		
	6.2	CI for parameters of Normal distribution			
		6.2.1 CI for μ with σ^2 known			
		6.2.2 CI for μ with σ^2 unknown			
		6.2.3 CI for σ^2			
	6.3	CI for mean of a non-Normal distribution using CLT			
	6.4	Interpreting CI	25		
7	Tes	t of Hypothesis	27		
	7.1	Types of hypothesis			
	7.2	Two approaches of hypothesis testing			
		7.2.1 Critical region approach			
		7.2.2 <i>p</i> -value approach			
	7.3	Type-1, 2 error and power of a test			
	7.4	Test of hypothesis using CI	30		
8		elihood Ratio Test and Comparing Two Populations	31		
	8.1	Likelihood ratio test (LRT)	31		
	8.2	Constructing CI using LRT	32		
	8.3	Comparing two independent Normal population	33		
		8.3.1 Equality of two variances	33		
		8.3.2 Equality of two means with variances known	33		

		8.3.3 Equality of two means with variances unknown	34
	8.4	Comparing two population means (paired data)	34
	8.5	Comparing two populations using LRT	34
	8.6	Numerical example	
9	Mod	del Checking	37
	9.1	χ^2 goodness of fit test	37
	9.2	Discrepancy statistic	
	9.3	Residual and quantile/probability plots	
10	χ^2 T	est of Independence and Homogeneity	44
	10.1	Relationship among variables	44
		Relationship of two categorical variables	44
		10.2.1 χ^2 test of independence (X and Y are random)	44
		10.2.2 χ^2 test of homogeneity (X is deterministic)	46
11	Corr	relation Coefficient and Least Square Regression	48
	11.1	Relation among quantitative variables	48
	11.2	Least square regression	48
	11.3	Classical linear regression under Normal distribution	49
		11.3.1 Properties of estimators of regression parameters	50
		11.3.2 Confidence interval and t-test for β_2	51
		11.3.3 Sum of squares decomposition and ANOVA test	52
		11.3.4 Prediction and residual check	52
	11.4	Quantitative Y and categorical X	53

1 Review of Probability

1.1 Probability

- The probability measure P for each event A defined on sample space Ω satisfies the following properties:
 - $\circ P(A)$ is non-negative and $0 \le P(A) \le 1$.
 - $\circ P(A) = 0$ when A is empty.
 - $\circ P(A) = 1$ when A is the entire sample space Ω .
 - $\circ P$ is countably additive.

1.2 Expectation

- \bullet Expected value/mean/average of r.v. X is defined as
 - $\circ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx$, when X is continuous;
 - $\circ \mathbb{E}[X] = \sum_{i} x_i P(X = x_i)$, when X is discrete.
- Expectation is a *linear operator*: Let X and Y are two r.v.s., then $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$.

1.3 Indicator function

• If A is any event, define the *indicator function* of A, I_A to be the r.v. for all $s \in \Omega$,

$$I_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases} .$$

Example 1.1. We are rolling a dice and $A = \{2, 4, 6\}$.

Therefore, $\mathbb{E}[I_A] = \frac{1}{6}(0+1+0+1+0+1) = \frac{1}{2} = P(A)$.

1.4 Law of large number (LLN)

• Let $X_1, X_2, ..., X_i$ be a sequence of independent r.v.s. with $\mathbb{E}[X_i] = \mu$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then $\overline{X}_n \stackrel{P}{\longrightarrow} \mu$ as $n \to \infty$, i.e.,

$$\forall \varepsilon > 0, \lim_{n \to \infty} P(|\overline{X} - \mu| > \varepsilon) = 0.$$

• In naive words: Sample mean approaches the population mean as the sample size increases.

1.5 Central limit theorem (CLT)

• Suppose $X_1, X_2, ...$ is an i.i.d. sequence of r.v.s. each having finite mean μ and finite variance σ^2 . Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then as $n \to \infty$,

$$\overline{X}_n \xrightarrow{D} \mathcal{N}(\mu, \frac{\sigma^2}{n}) \text{ or } \frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{D} \mathcal{N}(0, 1).$$

 \circ In naive words: A r.v. can follow some distribution with mean μ and variance σ^2 . If we pick a fixed number of samples n and calculate the sample mean repeatedly, then those sample means will have a Normal distribution with mean μ and variance $\frac{\sigma^2}{n}$.

1.6 Linear combination of Normal variables

• Let $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ where i = 1, 2, ..., n. Let Y be a linear combination of all the X_i 's with

$$Y = a_1 X_1 + \dots + a_n X_n + b = \sum_{i=1}^{n} a_i X_i + b,$$

where
$$a_i, b \in \mathbb{R}$$
. Then $Y \sim \mathcal{N}\left(\sum_{i=1}^n a_i \mu_i + b, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$.

Example 1.2. Let $X_1 \sim \mathcal{N}(10, 2), X_2 \sim \mathcal{N}(20, 3), Y = 0.4X_1 + 0.6X_2$. Then $Y \sim \mathcal{N}(16, 1.4)$.

1.7 Z and χ^2 distribution

- Standard normal/ $\mathcal{N}(0,1)/Z$ distribution: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$.
- χ^2 distribution: Let $U = Z^2$, then $U \sim \chi^2_{(1)}$.
 - o Additive property: If $X \sim \chi^2_{(m)}, Y \sim \chi^2_{(n)}$, then $X + Y \sim \chi^2_{(m+n)}$.
 - $\circ \text{ If } X \sim \chi^2_{(m)}, \text{ then } \mathbb{E}[X] = m.$

1.8 t and F distribution

- t distribution: Let $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi^2_{(m)}$ be independent, then $\frac{Z}{\sqrt{U/m}} \sim t_{(m)}$.
- F distribution: Let $X \sim \chi^2_{(m)}, Y \sim \chi^2_{(n)}$ be independent, then $\frac{X/m}{Y/n} \sim F_{(m,n)}$.

2 Data Collection

2.1 Population and sample

- **Population** is a collection of all the subjects that have something in common.
- Sample is a subset of the population.
 - We use the sample to make inference about the unknown characteristics of our population.
 - The sample should be representative.

2.2 Parameter and statistic

- **Parameter** is a characteristic (summary) of the population. For example, mean (μ) , standard deviation (σ) , etc.
 - \circ We use θ to represent the parameter(s) of population. For example, $X \sim \mathcal{N}(\mu, \sigma^2)$, θ stands for both μ and σ .
- **Statistic** is any summary of the sample. For example, sample total $(\sum X_i)$, etc.
 - \circ When a statistic is used to estimate a parameter, it is called an estimator. For example, S is an estimator of σ .
 - $\circ T(X)$ is used to represent a statistic/estimator. For example, if we are dealing with sample mean, then $T(X) = \overline{X}$.
 - When we have observed a sample and calculate the value of an estimator, then that numerical value is called the estimate and we use lowercase letters to represent.

Parameter (θ)	Estimator (T)	Estimate (t)
μ	\overline{X}	\overline{x}
Unknown constant	Random variable	Known constant

2.3 Finite populations

• Let π represent individual subjects in a finite population Π . For each π , we have a real valued quantity $X(\pi)$.

• The population CDF.

$$F_X(x) = \frac{|\{\pi | X(\pi) \leqslant x\}|}{N},$$

where $N = |\Pi|$. Or,

$$F_X(x) = \frac{1}{N} \sum I_{(-\infty,x]}(X(\pi)) = \mathbb{E}[I_{(-\infty,x]}(X(\pi))].$$

 \circ In naive words: $F_X(x)$ is the proportion of elements in the population with their X measurement less or equal to x.

2.4 Infinite populations

• We use probability distributions to represent the population. Informally, we can think it as a limiting distribution of a finite population of size N when $N \to \infty$.

2.5 Simple random sampling

- With replacement:
 - \circ Every subject of the population will have the same probability $\frac{1}{N}$ of being selected in the sample in each draw.
 - Samples are independent.
- Without replacement:
 - Not independent.
 - $\circ P(B) = \frac{1}{N}, P(B|A) = \frac{1}{N-1}$. But if $N \to \infty$ and n << N, we have $P(B) \approx P(B|A)$, then samples are independent.

2.6 Empirical CDF

• Suppose we select a sample $\{\pi_1, ..., \pi_n\} \subset \Pi$, we can approximate the population CDF F_X by the *empirical CDF*

$$\widehat{F}_X(x) = \frac{\{|\pi_i|X(\pi_i) \leqslant x, i = 1, ..., n|\}}{n} = \frac{1}{n} \sum_{i=1}^n I_{(-\infty, x]}(X(\pi_i)).$$

• Assuming independence, then by LLN,

$$\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,x]}(X(\pi_i)) \xrightarrow{P} \mathbb{E}[I_{(-\infty,x]}(X(\pi_i))] = P(I_{(-\infty,x]}(X(\pi_i)))$$
$$= P(X(\pi_i) \leqslant x) = F_X(x).$$

2.7 Density histogram

• Suppose we have continuous variable X and can group X into intervals given by $(h_1, h_2], ..., (h_{m-1}, h_m]$. The **density histogram function**

$$h_X(x) = \begin{cases} \frac{|\{\pi | X(\pi) \in (h_i, h_{i+1}]\}|}{N(h_{i+1} - h_i)}, & x \in (h_i, h_{i+1}] \\ 0, & \text{otherwise} \end{cases}.$$

- o In naive words: In density histogram, the height of each of the bar is the relative frequency, divided by the corresponding length of the interval.
- \circ When the interval lengths $(h_{i+1} h_i)$ gets smaller and N gets bigger, we get a smooth function.

2.8 Quantile/Percentile for population

- For $p \in [0,1]$, the pth quantile (100pth percentile) x_p , for the distribution with CDF F_X , is defined to be the **smallest number** x_p satisfying $p \leq F_X(x_p)$.
 - \circ When F_X is strictly increasing and continuous, x_p satisfies $F_X(x_p) = p$.
 - When X is discrete, $F_X(x_p) = p$ may not have a solution.
- Estimating quantiles: Suppose the sample is $(x_1, ..., x_n)$ and after ordering we have $x_{(1)} < \cdots < x_{(n)}, x_{(i)}$ is the $(\frac{i}{n})$ th quantile of the empirical distribution because $\hat{F}_X(x_{(i)}) = \frac{i}{n}$. The sample pth quantile is x_p whenever $\frac{i-1}{n} .$
 - Linear interpolation: $\widetilde{x}_p = x_{(i-1)} + n(x_{(i)} x_{(i-1)})(p \frac{i-1}{n})$.

Proof. We have
$$\frac{\widetilde{x}_p - x_{(i-1)}}{np - (i-1)} = \frac{x_{(i)} - x_{(i-1)}}{i - (i-1)}$$
.
Therefore, $\widetilde{x}_p = x_{(i-1)} + n(x_{(i)} - x_{(i-1)})(p - \frac{i-1}{n})$.

Example 2.1. -2.1 -0.3 0.4 1.2 1.5 2.1 2.2 3.3 4.0 5.0 First quantile = $Q_1 = \tilde{x}_{0.25} = x_{(2)} + 10(x_{(3)} - x_{(2)})(0.25 - \frac{2}{10}) = 0.05$ Third quantile = $Q_3 = \tilde{x}_{0.75} = x_{(7)} + 10(x_{(8)} - x_{(7)})(0.75 - \frac{7}{10}) = 2.75$ Inter quantile range = $IQR = Q_3 - Q_1 = 2.7$

• Median/Second quantile: We can use linear interpolation formula or

$$Q_2 = \widetilde{x}_{0.5} = \begin{cases} x_{(\frac{n+1}{2})}, & n \text{ is odd} \\ \frac{1}{2} (x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}), & n \text{ is even} \end{cases}.$$

2.9 Boxplot

- Draw a box using Q_1 and Q_3 as the sides and Q_2 as a line inside the box.
- Lower limit= $Q_1 1.5 \cdot IQR$, Upper limit= $Q_3 + 1.5 \cdot IQR$.
- Adjacent values are the two extreme data points that falls within the lower and upper limit.
- Whiskers are the vertical lines from the quantiles to the adjacent values.
- Values beyond the adjacent values are plotted with * and called outliers.
- If the variable is categorical, we use **bar charts**. Categories on x-axis and proportions on y-axis.

2.10 Choice of summary measures

- Choice of summary measures based on the skewness of the distribution
 - Mean and s.d. when distribution is symmetric.
 - \circ Median and IQR when distribution is skewed.

3 Point Estimation

3.1 Type of inference

- Estimation:
 - Point estimation: Based on the sample observations, calculating a particular value as an estimate of the parameter.
 - \circ Interval estimation: Calculating a range of values that is likely to contain θ .
- Hypothesis testing: Based on the sample, assess whether a hypothetical value θ_0 is a plausible value of the θ or not.

3.2 Method of moments estimation

- Let $X_1, ..., X_n$ be i.i.d. r.v.s. and let the kth **population moment** $\mu_k = \mathbb{E}[X^k], k$ th **sample moment** $\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.
- We use $\hat{\mu}_k$ as an estimator of μ_k .

Example 3.1. $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$. Find the method of moments estimator of λ .

Solution. We have
$$\lambda = \mathbb{E}[X] = \mu$$
, then $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{x}$.

Example 3.2. $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find the method of moments estimator of μ and σ^2 .

Solution. We have $\mu = \mathbb{E}[X], \sigma^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$ and thus

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{x},$$

and

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\overline{x})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{1}{n} n(\overline{x})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{x})^2.$$

- Summary of method:
 - \circ Express the lower order population moment(s) in terms of the parameter(s).
 - o Invert the expression(s) to express the parameter(s) in terms of the population moment(s).
 - Replace the population moment(s) using the sample moment(s).

3.3 Maximum likelihood estimation

- Suppose $X_1, ..., X_n$ has a joint density or mass function $f(x_1, ..., x_n | \theta)$ and we observe sample $X_1 = x_1, ..., X_n = x_n$. The *likelihood function* of $\theta, L(\theta) = f(x_1, ..., x_n | \theta)$.
 - \circ If X follows a discrete distribution, it gives the **probability of observing the sample** as a function of θ .
- If $X_1, ..., X_n$ are i.i.d. then $L(\theta) = \prod_{i=1}^n f_{\theta}(x_i)$.
 - $\circ L(\theta)$ is not a PDF or PMF of θ .
 - \circ Likelihood introduces a belief ordering on parameter space Ω . If $L(\theta_1) > L(\theta_2)$, the data is more likely to come from f_{θ_1} than f_{θ_2} .
 - \circ The value $L(\theta)$ is very small for every value of θ , so often we are interested in the *likelihood ratio* $\frac{L(\theta_1)}{L(\theta_2)}$.
- Maximum likelihood estimation (MLE): If we are interested in a point estimation of θ , a sensible choice will be to pick $\hat{\theta}$ that maximizes $L(\theta)$, i.e., $L(\hat{\theta}) \ge L(\theta), \forall \theta \in \Omega$.
 - Computation for MLE:
 - * Log-Likelihood function

$$l(\theta) = \ln(L(\theta)) = \ln\left(\prod_{i=1}^n f_{\theta}(x_i)\right) = \sum_{i=1}^n \ln(f_{\theta}(x_i)).$$

Since $\ln x$ is an injective increasing function of x > 0, then $L(\widehat{\theta}) \ge L(\theta), \forall \theta \in \Omega \text{ iff } l(\widehat{\theta}) \ge l(\theta).$

* Solve $\frac{\partial l(\theta)}{\partial \theta} = 0$ and $\hat{\theta}$ is the solution.

* Check if $\frac{\partial^2 l(\theta)}{\partial \theta^2}\Big|_{\theta=\hat{\theta}} < 0$.

Example 3.3. $X_1, ..., X_n \overset{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$. Find the MLE of λ .

Solution. We have $f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ and thus

$$L(\lambda) = \frac{e^{-n\lambda} \lambda_{i=1}^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}.$$

Therefore, $l(\lambda) = -n\lambda + \ln \lambda \sum_{i=1}^{n} x_i + C$. Let $\frac{\partial l(\lambda)}{\partial \lambda} = 0$, we have $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$.

- Properties of MLE:
 - * MLE is not unique.
 - * MLE may not exists.
- * The likelihood may not always be differentiable. For example, $X_1,...,X_n \stackrel{\text{i.i.d.}}{\sim} \text{Unif}[0,\theta], \widehat{\theta} = \max\{x_1,...,x_n\}.$
- * Invariance property of MLE: Let $\hat{\theta}$ be the MLE of θ and $\psi(\theta)$ be any injective function of θ defined on Ω , then $\psi(\hat{\theta})$ is the MLE of $\psi(\theta)$.
 - Some claims of MLE:
 - * MLE is asymptotically unbiased.
 - * MLE is function of sufficient statistic.
 - * MLE is consistent.
 - * MLE is asymptotically efficient.

3.4 Sampling distribution of an estimator

• An estimator (T) is a r.v. and if we repeat the sampling procedure and keep calculating T for each set of sample and finally draw a density histogram based on the T values, we get the sampling distribution of T.

• Assume $X_1, ..., X_n$ is an i.i.d. sequence of r.v.s., each having finite mean μ and finite variance σ^2 , then

$$\mathbb{E}[\overline{X}] = \mathbb{E}\left[\frac{1}{n}X_1 + \dots + \frac{1}{n}X_n\right] = \frac{1}{n}\mathbb{E}[X_1] + \dots + \frac{1}{n}\mathbb{E}[X_n]$$
$$= \frac{1}{n}n\mu = \mu,$$

and

$$\operatorname{Var}[\overline{X}] = \operatorname{Var}\left[\frac{1}{n}X_1 + \dots + \frac{1}{n}X_n\right] = \operatorname{Var}\left[\frac{1}{n}X_1\right] + \dots + \operatorname{Var}\left[\frac{1}{n}X_n\right]$$
$$= \frac{1}{n^2}\operatorname{Var}[X_1] + \dots + \frac{1}{n^2}\operatorname{Var}[X_n] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}.$$

Besides, $SE(\overline{X}) = \frac{\sigma}{\sqrt{n}}$. (**Standard error** is the standard deviation of an estimator)

 $\circ \overline{X}$ is a linear combination of $X_1, ..., X_n$.

 $\circ \mathbb{E}[\overline{X}] = \mu$ and $\operatorname{Var}[\overline{X}] = \frac{\sigma^2}{n}$ are regardless of the distribution of X.

3.5 Measuring quality of an estimator

- Let $\psi(\theta)$ be any real valued function of θ , suppose T is an estimator of $\psi(\theta)$. The most commonly used measurement of **accuracy** of an estimator is **mean squared error**, $MSE_{\theta}(T) = \mathbb{E}_{\theta}[(T \psi(\theta))^2]$.
 - \circ The smaller the value of $MSE_{\theta}(T)$, the more concentrated the sampling distribution of T is about the value $\psi(\theta)$.
 - \circ Since the true value of θ is unknown, often we evaluate the $MSE_{\theta}(T)$ at $\theta = \hat{\theta}$.
- $MSE_{\theta}(T) = Var_{\theta}[T] + (\mathbb{E}_{\theta}[T] \psi(\theta))^2$.

Proof.

$$MSE_{\theta}(T) = \mathbb{E}_{\theta}[(T - \psi(\theta))^{2}] = \mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T] + \mathbb{E}_{\theta}[T] - \psi(\theta))^{2}]$$
$$= \mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])^{2}] + \mathbb{E}_{\theta}[(\mathbb{E}_{\theta}[T] - \psi(\theta))^{2}] + 2\mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])(\mathbb{E}_{\theta}[T] - \psi(\theta))].$$

We know

$$\mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])(\mathbb{E}_{\theta}[T] - \psi(\theta))] = \mathbb{E}_{\theta}[T - \mathbb{E}_{\theta}[T]](\mathbb{E}_{\theta}[T] - \psi(\theta))$$
$$= (\mathbb{E}_{\theta}[T] - \mathbb{E}_{\theta}[T])(\mathbb{E}_{\theta}[T] - \psi(\theta)) = 0.$$

Besides,
$$\mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])^2] = \operatorname{Var}_{\theta}[T]$$
, and thus $\operatorname{MSE}_{\theta}(T) = \operatorname{Var}_{\theta}[T] + (\mathbb{E}_{\theta}[T] - \psi(\theta))^2$.

3.6 Unbiasedness

- The bias of an estimator T of $\psi(\theta)$ is given by $\mathbb{E}_{\theta}[T] \psi(\theta)$.
- When the bias of an estimator is zero, it is called unbiased, i.e., T is unbiased estimator of $\psi(\theta)$ when $\mathbb{E}_{\theta}[T] = \psi(\theta)$. In other words, T is unbiased if $\psi(\theta)$ is the mean of the sampling distribution of T.
- $MSE_{\theta}(T) = Var_{\theta}[T] + (Bias(T))^2$.
 - \circ For unbiased estimators, $MSE_{\theta}(T) = Var_{\theta}[T]$.
 - \circ If all the other properties are similar, then an unbiased estimator is preferred over a biased estimator.

4 Sampling Distribution of S^2

4.1 Sample variance (S^2)

- Population variance: $\sigma^2 = \mathbb{E}[(X \mu)^2]$, where $\mu = \mathbb{E}[X]$. If we have equally likely N data points in population, $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i \mu)^2$.
- $\sum_{i} (X_i \mu)^2 = \sum_{i} (X_i \overline{X})^2 + n(\overline{X} \mu)^2.$

Proof. We have

$$\sum_{i} (X_{i} - \mu)^{2} = \sum_{i} (X_{i} - \overline{X} + \overline{X} - \mu)^{2}$$

$$= \sum_{i} (X_{i} - \overline{X})^{2} + \sum_{i} (\overline{X} - \mu)^{2} + 2 \sum_{i} (X_{i} - \overline{X})(\overline{X} - \mu)$$

$$= \sum_{i} (X_{i} - \overline{X})^{2} + n(\overline{X} - \mu)^{2} + 2(\overline{X} - \mu) \sum_{i} (X_{i} - \overline{X}).$$

We know

$$\sum_{i} (X_i - \overline{X}) = \sum_{i} X_i - n\overline{X} = n\overline{X} - n\overline{X} = 0.$$

Therefore,

$$\sum_{i} (X_{i} - \mu)^{2} = \sum_{i} (X_{i} - \overline{X})^{2} + n(\overline{X} - \mu)^{2}.$$

• Biased and unbiased estimator of σ^2 : We have $\sum_i (X_i - \overline{X})^2 = \sum_i (X_i - \mu)^2 - n(\overline{X} - \mu)^2$, then we take expectation on both sides and have

$$\mathbb{E}\left[\sum_{i}(X_{i}-\overline{X})^{2}\right] = \mathbb{E}\left[\sum_{i}(X_{i}-\mu)^{2}\right] - \mathbb{E}\left[n(\overline{X}-\mu)^{2}\right]$$
$$= \sum_{i}\mathbb{E}[(X_{i}-\mu)^{2}] - n\mathbb{E}[(\overline{X}-\mu)^{2}]$$
$$= \sum_{i}\operatorname{Var}[X_{i}] - n\operatorname{Var}[\overline{X}]$$
$$= \sum_{i}\sigma^{2} - n\frac{\sigma^{2}}{n} = (n-1)\sigma^{2}.$$

Therefore, $\mathbb{E}\left[\frac{1}{n}\sum_{i}(X_{i}-\overline{X})^{2}\right] = \frac{n-1}{n}\sigma^{2}$, $\mathbb{E}\left[\frac{1}{n-1}\sum_{i}(X_{i}-\overline{X})^{2}\right] = \sigma^{2}$, i.e., $\frac{1}{n}\sum_{i}(X_{i}-\overline{X})^{2}$ is a biased estimator of σ^{2} , $\frac{1}{n-1}\sum_{i}(X_{i}-\overline{X})^{2}$ is an unbiased estimator of σ^{2} .

- \circ For Normal distribution, both method of moments and MLE gives $\frac{1}{n}\sum_{i}(X_{i}-\overline{X})^{2}$ as an estimator of σ^{2} .
- $\circ \frac{n-1}{n} \to 1$ as $n \to \infty$, i.e., for large n both estimators will produce similar estimate.

• We choose
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
.

4.2 Sampling distribution of S^2 under Normal distribution

• Though the expression of S^2 contains \overline{X} , they are independent. Besides, we can see a relation between S^2 and χ^2 distribution.

Theorem 4.1. Suppose
$$X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2), \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, then $\overline{X} \perp S^2$, and $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$.

Proof.

Lemma 1. Suppose $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2), U$ and V are two different linear combinations of the $X_i, \text{cov}[U, V] = 0$ iff $U \perp V$.

We know
$$\overline{X} = \frac{1}{n}X_1 + \dots + \frac{1}{n}X_n, X_1 - \overline{X} = (1 - \frac{1}{n})X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n$$

Besides,
$$\operatorname{cov}[\overline{X}, X_1 - \overline{X}] = \operatorname{cov}[\overline{X}, X_1] - \operatorname{cov}[\overline{X}, \overline{X}] = \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = 0.$$

Similarly, $\operatorname{cov}[\overline{X}, X_i - \overline{X}] = 0, \forall i = 1, ..., n.$

By the Lemma, we know $\overline{X} \perp X_i - \overline{X}$, and thus

$$\overline{X} \perp \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = S^2.$$

Since
$$\sum_{i} (X_i - \mu)^2 = \sum_{i} (X_i - \overline{X})^2 + n(\overline{X} - \mu)^2$$
, then

$$\frac{\sum_{i}(X_{i}-\mu)^{2}}{\sigma^{2}} = \frac{\sum_{i}(X_{i}-\overline{X})^{2}}{\sigma^{2}} + \frac{n(\overline{X}-\mu)^{2}}{\sigma^{2}},$$

i.e.,

$$\sum_{i} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \frac{(n-1)S^2}{\sigma^2} + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \right)^2.$$

Since $X_i \sim \mathcal{N}(\mu, \sigma^2)$, then $\frac{X_i - \mu}{\sigma} \sim \mathcal{N}(0, 1)$, and $\sum_i \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2_{(n)}$.

Since $\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$, and $\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2_{(1)}$. Besides, we have $S^2 \perp \overline{X}$, and therefore, we have

$$(1-2t)^{-\frac{n}{2}} = M_{\frac{(n-1)S^2}{2}}(t) \cdot (1-2t)^{-\frac{1}{2}},$$

i.e,
$$M_{\frac{(n-1)S^2}{\sigma^2}}(t) = (1-2t)^{-\frac{n-1}{2}}$$
, and thus $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$.

- The mean of a χ^2 distribution is its df, then by theorem, we have $\mathbb{E}\left[\frac{(n-1)S^2}{\sigma^2}\right] = n-1$, i.e., $\mathbb{E}[S^2] = \sigma^2$. Hence, S^2 is an unbiased estimator for σ^2 under Normal distribution.
- An example of $cov = 0 \Rightarrow independence$.

Example 4.1. $X \sim \mathcal{N}(0,1), Y = X^2, X$ and Y are dependent. However,

$$cov[X,Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[X^3] - \mathbb{E}[X]\mathbb{E}[X^2] = \mathbb{E}[X^3] = 0.$$

4.3
$$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

• We know $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}, \text{ and } \overline{X} \perp S^2, \text{ then}$

$$\frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{S / \sigma} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{(n-1)}.$$

4.4 $\chi^2_{(m)}$

- $\chi^2_{(m)} \sim \text{Gamma}\left(\frac{m}{2}, \frac{1}{2}\right)$.

 o Gamma distribution: $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$.
- $\frac{\chi_{(m)}^2}{m} = \frac{1}{m}(Z_1^2 + \dots + Z_m^2) = \frac{1}{m}\sum_{i=1}^m Z_i^2$, where $Z_i \sim \mathcal{N}(0,1)$. By LLN,

$$\frac{1}{m} \sum_{i=1}^{m} Z_i^2 \xrightarrow{P} \mathbb{E}[Z_i^2] = 1,$$

as $m \to \infty$.

•
$$t_{(m)} \xrightarrow{D} Z$$
, as $m \to \infty$.

5 Properties of an Estimator: Consistency, Efficiency and Sufficiency

5.1 Consistent estimator

- Let T_n be an estimator of parameter θ, T_n is said to be **consistent** (in probability) if $T_n \xrightarrow{P} \theta$, i.e., T_n converges to θ in probability.
 - \circ By LLN, $\overline{X} = \frac{1}{n} \sum X_i \stackrel{P}{\longrightarrow} \mathbb{E}[X_i]$ for any distribution. Hence, if $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, then \overline{X} is a consistent estimator of μ .
- **Slutsky's Lemma**: If we have two different sequences X_n and Y_n , $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$, $X_n Y_n \xrightarrow{P} XY$.
- Continuous Mapping Theorem: Let $X_n \stackrel{P}{\longrightarrow} X$ and $g(\cdot)$ be a continuous function, then $g(X_n) \stackrel{P}{\longrightarrow} g(X)$.
- S^2 is a consistent estimator of σ^2 .

Proof. We have

$$S^{2} = \frac{1}{n-1} \sum_{i} (X_{i} - \overline{X})^{2} = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i} (X_{i} - \overline{X})^{2} \right)$$
$$= \frac{n}{n-1} \left[\frac{1}{n} \left(\sum_{i} X_{i}^{2} - n \overline{X}^{2} \right) \right] = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i} X_{i}^{2} - \overline{X}^{2} \right).$$

Hence,
$$S^2 \xrightarrow{P} (1)(\mathbb{E}[X^2] - (\mathbb{E}[X])^2) = \sigma^2$$
.

- An estimator T_n is called **MSE consistent** if $MSE(T_n) \to 0$ as $n \to \infty$.
 - **Example 5.1.** For $\mathcal{N}(\mu, \sigma^2)$, $\mathrm{MSE}(\overline{X}) = \frac{\sigma^2}{n} \to 0$ as $n \to \infty$, and therefore \overline{X} is a MSE consistent estimator of μ .
 - \circ MSE consistent \Rightarrow Consistent (in probability).

5.2 Efficient estimator

• Let T_1 and T_2 be two different estimators of θ . **Efficiency** of T_1 relative to T_2 is defined as

 $\operatorname{eff}(T_1, T_2) = \frac{\operatorname{Var}[T_2]}{\operatorname{Var}[T_1]}.$

If eff $(T_1, T_2) > 1$, then T_1 has smaller variance and T_1 is more efficient.

- \circ This comparison is meaningful when T_1 and T_2 are both unbiased or both have the same bias.
- **Score Function** $S(\theta)$ is the derivative of the log-likelihood,

$$S(\theta) = \frac{\partial l(\theta)}{\partial \theta}.$$

For the r.v. $X, S(\theta|X=x) = \frac{\partial}{\partial \theta} \ln f_{\theta}(x)$. For an observed i.i.d. sample, it is written as $S(\theta|x_1, ..., x_n)$ with

$$S(\theta|x_1,...,x_n) = \frac{\partial}{\partial \theta} \sum_{i} \ln f_{\theta}(x_i) = \sum_{i} \frac{\partial}{\partial \theta} \ln f_{\theta}(x_i) = \sum_{i} S(\theta|x_i).$$

o If range of x does not involve θ , then $\mathbb{E}[S(\theta|X=x)]=0$, i.e., $\mathbb{E}[S(\theta|x_1,...,x_n)]=\sum_i\mathbb{E}[S(\theta|x_i)]=0$.

Proof. We have

$$\int_{x} f_{\theta}(x) dx = 1 \Rightarrow \frac{\partial}{\partial \theta} \int_{x} f_{\theta}(x) dx = 0,$$

i.e.,

$$\int_{x} \frac{\partial}{\partial \theta} f_{\theta}(x) dx = \int_{x} \frac{\partial}{\partial \theta} f_{\theta}(x) \cdot \frac{1}{f_{\theta}(x)} \cdot f_{\theta}(x) dx = \int_{x} \frac{\partial}{\partial \theta} \ln f_{\theta}(x) \cdot f_{\theta}(x) = 0.$$

Therefore,

$$\mathbb{E}[S(\theta)] = \int_{x} \frac{\partial}{\partial \theta} \ln f_{\theta}(x) \cdot f_{\theta}(x) dx = 0.$$

- **Fisher Information** $I(\theta) = \text{Var}[S(\theta|X)]$ is the amount of information that each observable r.v. X contains about θ . Information of a sample of size n is $\text{Var}[S(\theta|x_1,...,x_n)] = nI(\theta)$.
- Cramer-Rao Inequality: Let $X_1, ..., X_n$ be i.i.d. with density $f_{\theta}(x)$, $T(X_1, ..., X_n)$ be an unbiased estimator of θ , then under some assumptions on $f_{\theta}(x)$, $Var[T] \geqslant \frac{1}{nI(\theta)}$, $\frac{1}{nI(\theta)}$ is also known as the Cramer-Rao lower bound (CRLB).

Proof. We know $\rho(Y, Z) = \frac{\text{cov}(Y, Z)}{\sqrt{\text{Var}[Y]\text{Var}[Z]}}$, which is bounded between -1 and 1. Then

$$\rho^2(T, S(\theta)) = \frac{\operatorname{cov}^2(T, S(\theta))}{\operatorname{Var}[T] \operatorname{Var}[S(\theta)]} \leqslant 1 \Rightarrow \operatorname{Var}[T] \geqslant \frac{\operatorname{cov}^2(T, S(\theta))}{\operatorname{Var}[S(\theta)]}.$$

For a sample of size n, $Var[S(\theta)] = nI(\theta)$.

Besides, $cov(T, S(\theta)) = \mathbb{E}[T \cdot S(\theta)] - \mathbb{E}[T]\mathbb{E}[S(\theta)] = \mathbb{E}[T \cdot S(\theta)]$. We know $\mathbb{E}[T] = \theta$, and thus

$$\int_{\mathbf{x}} Tf(\mathbf{x}) \, d^n \mathbf{x} = \theta \Rightarrow \int_{\mathbf{x}} T \frac{\mathrm{d}}{\mathrm{d}\theta} f(\mathbf{x}) \, d^n \mathbf{x} = \int_{\mathbf{x}} T \frac{\mathrm{d}}{\mathrm{d}\theta} f(\mathbf{x}) \cdot \frac{1}{f(\mathbf{x})} \cdot f(\mathbf{x}) \, d^n \mathbf{x} = 1.$$

Therefore,

$$\int_{\mathbf{x}} T \cdot S(\theta | \mathbf{x}) \cdot f(\mathbf{x}) \, d^n \mathbf{x} = \mathbb{E}[T \cdot S(\theta)] = 1.$$

Therefore, $cov(T, S(\theta)) = 1$.

Example 5.2. Calculate CRLB for Poisson(λ).

Solution. We have

$$l(\lambda) = -n\lambda + \sum_{i=1}^{n} X_i \ln \lambda + C,$$

then the Score Function is

$$S(\lambda) = \frac{\partial}{\partial \lambda} = -n + \frac{\sum_{i=1}^{n} X_i}{\lambda}.$$

Besides,

$$\frac{\partial^2 l}{\partial \lambda} = -\frac{1}{\lambda^2} \sum_{i=1}^n X_i,$$

and thus the Fisher Information is

$$-\mathbb{E}\left[\frac{\partial^2 l}{\partial \lambda^2}\right] = \frac{1}{\lambda^2} \mathbb{E}\left[\sum_{i=1}^n X_i\right] = \frac{n}{\lambda}.$$

Hence, CRLB = $\frac{\lambda}{n}$.

5.3 Sufficient statistic

- A statistic $T(X_1, ..., X_n)$ is said to be **sufficient** for θ if the conditional distribution of $X_1, ..., X_n$, given T = t, does not depend on θ .
- Factorization Theorem: $T(X_1,...,X_n)$ is said to be sufficient for θ if the joint probability function factors in the form

$$f(x_1,...,x_n|\theta) = g[T(x_1,...,x_n),\theta] \cdot h(x_1,...,x_n),$$

where $h(x_1, ..., x_n)$ is a function of sample observations only, and $g[T(x_1, ..., x_n), \theta]$ involves θ and the sufficient statistic T.

Example 5.3. Factorization theorem on Poisson(λ): We have

$$L(\lambda) = e^{-n\lambda} \lambda_{i=1}^{\sum_{i=1}^{n} x_i} \cdot \frac{1}{\prod_{i=1}^{n} x_i!} = g\left[\sum_{i=1}^{n} x_i, \lambda\right] \cdot h(x_1, ..., x_n).$$

Therefore, according to the factorization theorem, $T = \sum x_i$ is a sufficient statistic for λ .

•
$$\frac{(\hat{\theta}-\theta)}{\sqrt{1/nI(\theta)}} \sim \mathcal{N}(0,1).$$

6 Interval Estimation

6.1 Confidence interval

• An interval $C(X_1, ..., X_n) = (l(X_1, ..., X_n), u(X_1, ..., X_n))$ is a γ -confidence interval for $\psi(\theta)$ if $P_{\theta}[\psi(\theta) \in C(X_1, ..., X_n)] \geqslant \gamma, \forall \theta \in \Omega.\gamma$ represents the confidence level of the interval.

 \circ In naive words: We want two numbers which will have at least γ chance of containing the true parameter.

6.2 CI for parameters of Normal distribution

6.2.1 CI for μ with σ^2 known

• We know $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$, we can write

$$P\left[k_1 \leqslant \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leqslant k_2\right] \geqslant \gamma \Rightarrow P\left[\overline{X} - k_2 \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \overline{X} - k_1 \frac{\sigma}{\sqrt{n}}\right] \geqslant \gamma.$$

- k_1 and k_2 are quantiles of $\mathcal{N}(0,1)$ s.t. $P[k_1 \leq Z \leq k_2] \geqslant \gamma$.
- The sampling distribution is unimodal and symmetric around the mode, the middle γ part gives the shortest interval and thus $z_{\frac{1-\gamma}{2}}$ and $z_{\frac{1+\gamma}{2}}$ are preferred as the value of k_1 and k_2 . For example, if $\gamma = 0.95, k_1 = z_{0.025} = -1.96, k_2 = z_{0.975} = 1.96$.
- For $X_1, ..., X_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 known, the γ -CI of μ is

$$\left[\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right].$$

6.2.2 CI for μ with σ^2 unknown

- When σ^2 is unknown, we use S^2 as an estimator of σ^2 and we have $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t_{(n-1)}$.
- For $X_1, ..., X_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 unknown, the γ -CI of μ is

$$\left[\overline{X} - t_{\frac{1+\gamma}{2}(n-1)} \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{1+\gamma}{2}(n-1)} \frac{S}{\sqrt{n}}\right],$$

where $t_{\frac{1+\gamma}{2}(n-1)}$ is the $\frac{1+\gamma}{2}$ quantile of a $t_{(n-1)}$ distribution.

6.2.3 CI for σ^2

• We know $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$, we can write

$$P\left[\chi^{2}_{\frac{1-\gamma}{2}(n-1)} \leqslant \frac{(n-1)S^{2}}{\sigma^{2}} \leqslant \chi^{2}_{\frac{1+\gamma}{2}(n-1)}\right] \geqslant \gamma \Rightarrow P\left[\frac{(n-1)S^{2}}{\chi^{2}_{\frac{1+\gamma}{2}(n-1)}} \leqslant \sigma^{2} \leqslant \frac{(n-1)S^{2}}{\chi^{2}_{\frac{1-\gamma}{2}(n-1)}}\right] \geqslant \gamma.$$

- $\bullet \ \text{ For } X_1,...,X_n \overset{\text{i.i.d}}{\sim} \mathcal{N}(\mu,\sigma^2) \text{ , the } \gamma\text{-CI of } \sigma^2 \text{ is } \left[\frac{(n-1)S^2}{\chi^2_{\frac{1+\gamma}{2}(n-1)}} \leqslant \sigma^2 \leqslant \frac{(n-1)S^2}{\chi^2_{\frac{1-\gamma}{2}(n-1)}}\right].$
- Remark:
 - $\circ \chi^2$ is not a symmetric distribution (at least for lower df).
 - \circ The shape of χ^2 depends on its df.
 - \circ Using $\chi^2_{\frac{1+\gamma}{2}(n-1)}$ and $\chi^2_{\frac{1-\gamma}{2}(n-1)}$ as two ends may not result in the shortest length.

6.3 CI for mean of a non-Normal distribution using CLT

• The γ -CI of μ is $\left[\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right], \sigma^2$ may be unknown. • If σ^2 is unknown, we can use MLE to calculate $SE = \frac{\sigma}{\sqrt{n}}$.

Example 6.1. CI for λ when data follows Poisson(λ).

Solution. By CLT, $\frac{\overline{X}-\lambda}{\sqrt{\lambda/n}} \xrightarrow{D} \mathcal{N}(0,1)$, where $SE(\overline{X}) = \sqrt{\frac{\lambda}{n}}$. We know \overline{X} is the MLE of λ , then the estimated $SE = \sqrt{\frac{\overline{X}}{n}}$. Thus, the γ -CI for λ is $\left[\overline{X} - z_{\frac{1+\gamma}{2}}\sqrt{\frac{\overline{X}}{n}}, \overline{X} + z_{\frac{1+\gamma}{2}}\sqrt{\frac{\overline{X}}{n}}\right]$.

6.4 Interpreting CI

• For z and t interval, the sample mean \overline{X} is the midpoint of the lower and upper bound.

- Width of the interval = Upper bound–Lower bound. Half of the width is known as the **margin of error** (ME). CI: $[\overline{X} \pm ME]$.
 - $\circ \gamma \uparrow \Rightarrow$ Width of the interval \uparrow .
 - $\circ \sigma \text{ or } s \uparrow \Rightarrow \text{Width of the interval } \uparrow$.
 - o $n \uparrow \Rightarrow \text{Width of the interval} \downarrow$.
- Interpretation: If we keep taking samples (infinite times) and keep constructing γ -CIs, in $100\gamma\%$ of the cases, our CIs will capture the true value of the parameter.

7 Test of Hypothesis

7.1 Types of hypothesis

- **Null hypothesis**/ H_0 : The hypothesis that we want to test.
- Alternative hypothesis/ H_A/H_1 : The alternative values of the parameter of interest.
 - o Often this is what we are trying to prove as a researcher.
- *Simple hypothesis*: When a hypothesis involves only a single value from the parameter space.
- Composite hypothesis: When a hypothesis involves more than one values from the parameter space.
- In practice, often we test *simple null* hypothesis against *composite* alternative hypothesis.

7.2 Two approaches of hypothesis testing

7.2.1 Critical region approach

- Due to uncertainty, often we reject H_0 even though it could be true. We assign a preferably small predefined probability of making this mistake and call it *level of significance*, denoted by α .
- **Test statistic**, T(X), is a quantity that simultaneously serves few purposes:
 - It summarizes the sample data through an estimator.
 - \circ When H_0 is true, it has a known distribution.
 - \circ Under that distribution, it is possible to find some areas that has probability α .
- Critical region, $R_{\alpha}(T)$, is a region of the distribution of the test statistic s.t. we will reject H_0 if $T(X) \in R_{\alpha}(T)$. We need $P[T(X) \in R_{\alpha}(T)|H_0$ is true] = α .

- Testing $H_0: \mu = \mu_0$ when $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 known:
 - $\circ H_0 : \mu = \mu_0.$
 - $\circ T = \frac{\overline{X} \mu}{\sigma / \sqrt{n}}.$
 - o If H_0 is true, then $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$.
 - Rejection region: $\left(-\infty, z_{\frac{\alpha}{2}}\right) \cup \left(z_{1-\frac{\alpha}{2}}.\infty\right)$.

 - \circ Intuition: We reject the null hypothesis when the test statistic falls in the lower probability area of the distribution under the null. In naive words: If μ_0 is the true mean, then \overline{X} should not be too far from μ_0 .
 - \circ Note: We never say we accept H_0 . We failed to prove that H_0 is wrong $\Rightarrow H_0$ is right.
- Testing $H_0: \mu = \mu_0$ when $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 unknown:
 - $\circ T = \frac{\overline{X} \mu_0}{S/\sqrt{n}} \sim t_{(n-1)}.$
 - \circ Rejection region: $\left(-\infty, t_{\frac{\alpha}{2}(n-1)}\right) \cup \left(t_{1-\frac{\alpha}{2}(n-1)}, \infty\right)$.
- Testing $H_0: \sigma^2 = \sigma_0^2$ when $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$:

$$\circ T = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{(n-1)}^2$$

$$\circ \ R_{\alpha}(T) = \left(-\infty, \chi^2_{\frac{\alpha}{2}(n-1)}\right) \cup \left(\chi^2_{1-\frac{\alpha}{2}(n-1)}, \infty\right).$$

7.2.2 p-value approach

- p-value: It is the smallest level of significance at which H_0 would be rejected based on the observed data. Also, it is the probability of observing the result as or more extreme than that actually observed if H_0 is true. In naive words: p-value suggests how surprising the observed sample is if we assume H_0 to be true.
 - \circ Conventionally, we compare *p*-value to 0.01, 0.05 or 0.1.
 - \circ If p-value is less than a predefined cut-off, we reject $H_0.$

- For z-test, p-value = $2\left[1 \Phi\left(\left|\frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}\right|\right)\right]$.
- For t-test, p-value = $2\left[1 G\left(\left|\frac{\overline{X} \mu_0}{S/\sqrt{n}}\right|\right)\right]$, where G is the CDF of a $t_{(n-1)}$ distribution.

7.3 Type-1, 2 error and power of a test

- Definition
 - $\circ P[\text{Type} 1 \text{ error}] = \alpha = P[\text{Reject } H_0 | H_0 \text{ is true}].$
 - $\circ P[\text{Type} 2 \text{ error}] = \beta = P[\text{Fail to reject } H_0 | H_0 \text{ is false}].$
 - Power of a test = $1 \beta = P[\text{Reject } H_0 | H_0 \text{ is false}].$
- Graph analysis: Suppose we are testing two simple hypotheses, H_0 : $\mu = 1, H_1 : \mu = 4$, and there are no other options. The area shaded in red is type-1 error and in cyan is type-2 error.

Figure 7.1: $H_0: \mu = 1, H_1: \mu = 4$.

Example 7.1. Suppose we have $\mathcal{N}(\mu, \sigma^2)$ populations with unknown μ and $\sigma = 3$. We want to test $H_0: \mu = 1, H_1: \mu = 4$ at $\alpha = 0.05, n = 9$. Calculate β and $1 - \beta$.

Solution. We have $SE(\overline{X}) = \frac{\sigma}{\sqrt{n}} = 1$.

Therefore, under $H_0, \overline{X} \sim \mathcal{N}(1,1)$ and under $H_1, \overline{X} \sim \mathcal{N}(4,1)$. Hence, $R_{\alpha} = \frac{\overline{X}-1}{1} > z_{0.95} \Rightarrow \overline{X} > 2.645$.

Therefore,

$$1 - \beta = P[\overline{X} > 2.645 | H_1] = P\left[\frac{\overline{X} - 4}{1} > \frac{2.645 - 1}{1}\right] = 0.912,$$

and $\beta = 1 - 0.912 = 0.088$.

7.4 Test of hypothesis using CI

• Let $\alpha = 1 - \gamma$. Constructing a γ level CI for μ and checking whether μ_0 is inside or not is equivalent of testing the hypothesis of $\mu = \mu_0$ at $(1 - \gamma)$ level of significant.

8 Likelihood Ratio Test and Comparing Two Populations

8.1 Likelihood ratio test (LRT)

- General definition: Suppose we are testing $H_0: \theta \in \Omega_0, H_1: \theta \in \Omega_1$. Let $L(\theta)$ represents the likelihood function. The generalized likelihood ratio is defined as $\Lambda^* = \frac{\max\limits_{\theta \in \Omega_0} L(\theta)}{\max\limits_{\theta \in \Omega_1} L(\theta)}$. A small value of Λ^* provides evidence against H_0 .
- Special case: $\Lambda = \frac{\max\limits_{\theta \in \Omega_0} L(\theta)}{\max\limits_{\substack{\theta \in \Omega_0 \\ \theta \in \Omega}} L(\theta)} = \frac{\max\limits_{\theta \in \Omega_0} L(\theta)}{L(\widehat{\theta})}$, where $\widehat{\theta}$ is MLE of θ .
 - o If $\hat{\theta} \in \Omega_0$, then $\Lambda = 1 \Rightarrow$ we will not reject H_0 .
 - \circ If $\hat{\theta} \notin \Omega_0$, we look for the most likely θ value in Ω_0 and check if it does a good enough job as it is done by the MLE.
 - o Λ value closer to 0 will provide evidence against H_0 .

Theorem 8.1. Let $p = \dim \Omega$ be the number of free parameters in the whole parameter space, $d = \dim \Omega_0$ be the number of free parameters under the null, then we have $-2 \ln \Lambda \xrightarrow{D} \chi^2_{(p-d)}$, when H_0 is true.

Example 8.1. $(X_1,...,X_n) \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu,\sigma_0^2)$. Test $H_0: \mu = \mu_0$ at level of significance α .

Solution. We have
$$L(\mu) = (2\pi\sigma_0^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_0^2}\sum (X_i - \mu)^2\right]$$
.

Under
$$H_0, L(\mu_0) = (2\pi\sigma_0^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_0^2}\sum (X_i - \mu_0)^2\right].$$

We know $L(\mu)$ is maximized at \overline{x} and thus

$$L(\widehat{\mu}) = (2\pi\sigma_0^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_0^2} \sum_{i} (X_i - \overline{x})^2\right].$$

Therefore,

$$\Lambda = \frac{L(\mu_0)}{L(\widehat{\mu})} = \exp\left[-\frac{1}{2\sigma_0^2} \left(\sum (X_i - \mu_0)^2 - \sum (X_i - \overline{x})^2\right)\right]$$
$$= \exp\left[-\frac{1}{2\sigma_0^2} n(\overline{x} - \mu_0)^2\right].$$

Besides, p = 1, d = 0 and thus

$$-2\ln\Lambda = \frac{1}{\sigma_0^2}n(\overline{X} - \mu_0)^2 = \left(\frac{\overline{X} - \mu_0}{\sigma_0/\sqrt{n}}\right)^2 \sim \chi_{(1)}^2.$$

We reject H_0 if $-2 \ln \Lambda > \chi^2_{1-\alpha(1)}$.

• LRT for non-Normal distribution: LRT allows us to test hypothesis for non-Normal distributions since all we need is the likelihood function evaluated at θ_0 and $\hat{\theta}$.

Example 8.2. Suppose $X_i \sim \text{Exp}(\theta), \mathbb{E}[X] = \theta$. We test $H_0: \theta = 60, H_1: \theta \neq 60$. Besides, $n = 100, \overline{x} = 75$.

Solution. (Method 1) $L(\theta) = \frac{1}{\theta^n} \exp \left[-\frac{1}{\theta} \sum_{i=1}^n X_i \right]$ and the MLE is \overline{x} .

Therefore, $\Lambda = \left(\frac{\overline{x}}{\theta_0}\right)^n \exp\left[n(1-\frac{\overline{x}}{\theta_0})\right]$ and thus

$$-2\ln\Lambda = -2n\left(\ln\overline{x} - \ln\theta_0 + 1 - \frac{\overline{x}}{\theta_0}\right) \sim \chi_{(1)}^2.$$

Since $\theta_0 = 60$, n = 100, $\overline{x} = 75$, then $-2 \ln \Lambda = 5.37 > \chi^2_{0.95(1)} = 3.84$. Thus we reject H_0 at $\alpha = 0.05$.

(Method 2) If H_0 is true, then $-2 \ln \Lambda \sim \chi^2_{(1)}$ and p-value = $P(\chi^2_{(1)} > 5.37) = 0.02$.

8.2 Constructing CI using LRT

• Under H_0 , $-2 \ln \Lambda \xrightarrow{D} \chi^2_{(p-d)}$, we reject H_0 if $-2 \ln \Lambda > \chi^2_{1-\alpha(p-d)}$. Conversely, we will fail to reject if $-2 \ln \Lambda < \chi^2_{1-\alpha(p-d)}$. Thus, $(1-\alpha)$ level CI for θ is the interval of θ values for which $-2 \ln \Lambda \leqslant \chi^2_{1-\alpha(p-d)}$, i.e., $L(\theta) \geqslant L(\widehat{\theta}) \exp\left[-\frac{\chi^2_{1-\alpha(p-d)}}{2}\right]$.

8.3 Comparing two independent Normal population

8.3.1 Equality of two variances

- Suppose we have two independent Normal samples $X_1, ..., X_n \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, ..., Y_m \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. We want to test $H_0 : \sigma_X^2 = \sigma_Y^2$, and $H_1 : \sigma_X^2 \neq \sigma_Y^2$.
- We have $\frac{(n-1)S_X^2}{\sigma_X^2} \sim \chi_{(n-1)}^2, \frac{(m-1)S_Y^2}{\sigma_Y^2} \sim \chi_{(m-1)}^2$ and thus

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F_{(n-1,m-1)}.$$

Under H_0 , we have $\frac{S_X^2}{S_Y^2} \sim F_{(n-1,m-1)}$.

• The rejection region is $\left(-\infty, F_{\frac{\alpha}{2}(n-1,m-1)}\right) \cup \left(F_{1-\frac{\alpha}{2}(n-1,m-1)}, \infty\right)$.

8.3.2 Equality of two means with variances known

- We want to test $H_0: \mu_X = \mu_Y$, which is same to test $H_0: \mu_X \mu_Y = 0$.
- We have $\overline{X} \sim \mathcal{N}(\mu_X, \frac{\sigma_X^2}{n}), \overline{Y} \sim \mathcal{N}(\mu_Y, \frac{\sigma_Y^2}{m})$ and thus

$$\frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1).$$

Under H_0 , we have

$$\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1).$$

- The (1α) level CI is $\left[(\overline{X} \overline{Y}) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} \right]$ and check if 0 is inside or not. Or, the rejection region is $(-\infty, z_{\frac{\alpha}{2}}) \cup (z_{1-\frac{\alpha}{2},\infty})$. Or, calculate the p-value.
- If $\sigma_X = \sigma_Y = \sigma$, then under H_0 , we have $\frac{\overline{X} \overline{Y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1)$.

8.3.3 Equality of two means with variances unknown

- Suppose $\sigma_X = \sigma_Y = \sigma$.
- We have $\frac{\overline{X}-\overline{Y}}{\sigma\sqrt{\frac{1}{n}+\frac{1}{m}}} \sim \mathcal{N}(0,1)$, and

$$\frac{(n-1)S_X^2}{\sigma^2} + \frac{(m-1)S_Y^2}{\sigma^2} = \frac{1}{\sigma^2} [(n-1)S_X^2 + (m-1)S_Y^2]$$
$$\sim \chi_{(n-1)}^2 + \chi_{(n-1)}^2 = \chi_{(n+m-2)}^2.$$

Therefore,

$$\frac{\frac{\overline{X} - \overline{Y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{\frac{1}{\sigma^2} [(n-1)S_X^2 + (m-1)S_Y^2]/(n+m-2)}} \sim t_{(n+m-2)},$$

i.e.,

$$\frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{(n+m-2)},$$

where $S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$ is called the **pooled sample variance**.

8.4 Comparing two population means (paired data)

- In many practical setting, the samples are paired and thus the observations are not independent.
- We want to test $H_0: \mu_X \mu_Y = 0, H_1: \mu_X \mu_Y \neq 0.$
 - \circ If we use $\overline{X} \overline{Y}$, $Var[\overline{X} \overline{Y}]$ will contain a covariance term.
 - o To simplify, define $D = X Y \Rightarrow \mu_D = \mu_X \mu_Y$, and thus

$$\frac{\overline{D}}{S_D/\sqrt{n}} \sim t_{(n-1)}.$$

8.5 Comparing two populations using LRT

• Suppose we have two independent Normal samples: $X_1, ..., X_n \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, ..., Y_m \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, where σ_X^2 and σ_Y^2 are known. We want to test $H_0: \mu_X = \mu_Y$ by LRT.

 \circ We have two unknown parameters μ_X, μ_Y . Under $H_0, \mu_X = \mu_Y = \mu$, then we have one unknown parameter.

• We have

$$L(\mu_X, \mu_Y) = (2\pi\sigma_X^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_X^2} \sum_{i=1}^n (X_i - \mu_X)^2\right] (2\pi\sigma_Y^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_Y^2} \sum_{i=1}^n (Y_i - \mu_Y)^2\right],$$

and $\hat{\mu}_X = \overline{X}, \hat{\mu}_Y = \overline{Y}.$

 \circ Under H_0 , we have

$$L(\mu) = (2\pi\sigma_X^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_X^2} \sum_{i=1}^n (X_i - \mu)^2\right] (2\pi\sigma_Y^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_Y^2} \sum_{i=1}^n (Y_i - \mu)^2\right],$$

and to find the MLE of μ , we have

$$l(\mu) = C - \frac{1}{2\sigma_X^2} \sum_{i} (X_i - \mu)^2 - \frac{1}{2\sigma_Y^2} \sum_{i} (Y_j - \mu)^2.$$

Hence,

$$\partial_{\mu}l = \frac{1}{\sigma_X^2}\sum(X_i - \mu) + \frac{1}{\sigma_Y^2}\sum(Y_j - \mu) = \frac{1}{\sigma_X^2}(n\overline{X} - n\mu) + \frac{1}{\sigma_Y^2}(m\overline{Y} - m\mu).$$

Let $\partial_{\mu}l = 0$, we have

$$\widehat{\mu} = \frac{\frac{1}{\sigma_X^2/n}}{\frac{1}{\sigma_X^2/n} + \frac{1}{\sigma_X^2/m}} \overline{X} + \frac{\frac{1}{\sigma_Y^2/m}}{\frac{1}{\sigma_X^2/n} + \frac{1}{\sigma_Y^2/m}} \overline{Y}.$$

 \circ Hence, $-2\ln\Lambda = -2\ln\frac{L(\hat{\mu})}{L(\hat{\mu}_X,\hat{\mu}_Y)}$ and under $H_0, -2\ln\Lambda \sim \chi^2_{(1)}$.

8.6 Numerical example

Example 8.3. $(4, 10, 10, 4, 6, 8, 8, 3, 4, 4) \stackrel{\text{i.i.d.}}{\sim} \text{Pois}(\lambda)$. Test $H_0: \lambda = 5$.

Solution. (Method 1) $L(\lambda) = \frac{e^{-n\lambda}\lambda^{\sum x_i}}{\prod x_i!}$. Since $n = 10, \lambda_0 = 5, \hat{\lambda} = \overline{x} = 6.1$, then we have

$$\Lambda = \frac{e^{-50}5^{61}}{e^{-61}(6.1)^{61}} = 0.3231, -2\ln\Lambda = 2.2598.$$

Since $\chi^2_{0.95(1)} = 3.841459, -2 \ln \Lambda < \chi^2_{0.95(1)}$, then we fail to reject H_0 .

(Method 2) If H_0 is true, then $-2 \ln \Lambda \sim \chi^2_{(1)}$. Thus, p-value = $P[\chi^2_{(1)} > 2.2598] = 0.13 > 0.05$.

Example 8.4. (Rice, pp.425, B) $\overline{x}_A = 80.02, \overline{x}_B = 79.98, s_{x_A} = 0.024, s_{x_B} = 0.031$, and σ_A, σ_B are unknown.

Solution. We have
$$s_p^2 = \frac{12(0.024)^2 + 7(0.031)^2}{19}, s_p \sqrt{\frac{1}{n} + \frac{1}{m}} = 0.012.$$

The test statistic is $T=3.3333, t_{0.975(19)}=2.093$. Since $T>t_{0.975(19)},$ we reject H_0 . The 95% CI for $\mu_{x_A}-\mu_{x_B}$ is $\left[\left(\overline{x}_A-\overline{x}_B\pm t_{0.975(19)}s_p\sqrt{\frac{1}{n}+\frac{1}{m}}\right)\right]=[0.015,0.065]$.

Example 8.5. (Week 8 slide, pp. 32) Let X and Y represent the before and after measurements of 10 participants. Check whether the drink changes the blood sugar level or not.

Solution. We have $\overline{d} = 4.47, s_d = 3.545106$.

The test statistic is $T = \frac{\bar{d}}{s_d/\sqrt{n}} = 3.987294, t_{0.975(9)} = 2.262$. Since $T > t_{0.975(9)}$, we reject H_0 . Besides, the rejection region is $(-\infty, -2.262) \cup (2.262, \infty)$.

9 Model Checking

9.1 χ^2 goodness of fit test

- The test is used to assess whether or not a *categorical random variable* W, which takes finite values $\{1, 2, ..., k\}$, has a specified probability measure P.
 - \circ When we have discrete r.v. which takes infinitely many values, we partition the possible values into k categories.
 - \circ When we have a continuous r.v., we partition the real line into k sub-intervals.
 - \circ Naturally, the counts of these k categories form a *multinomial* distribution.

Theorem 9.1. Let $X_1, ..., X_k$ be the observed counts of category 1, 2, ..., k respectively. We can write $(X_1, ..., X_k) \sim \text{Multinomial}(n, p_1, ..., p_k)$, where $p_1, ..., p_k$ are known, and we have

$$\mathbb{E}[X_i] = np_i, \operatorname{Var}[X_i] = np_i(1 - p_i).$$

The test statistic T is

$$X^{2} = \sum_{i=1}^{k} \frac{(X_{i} - np_{i})^{2}}{np_{i}} \xrightarrow{D} \chi^{2}_{(k-1)}.$$

Or we can say

$$X^{2} = \sum_{i=1}^{k} \frac{(\text{Observed count of } i - \text{Expected count of } i)^{2}}{\text{Expected count of } i} \xrightarrow{D} \chi_{(k-1)}^{2}.$$

Proof. (For the simple case, i.e., k = 2). We have

$$\begin{split} X^2 &= \sum_{i=1}^2 \frac{(X_i - np_i)^2}{np_i} = \frac{(X_1 - np_1)^2}{np_1} + \frac{(X_2 - np_2)^2}{np_2} \\ &= \frac{(X_1 - np_1)^2}{np_1} + \frac{(n - X_1 - n(1 - p_1))^2}{np_2} = \frac{(X_1 - np_1)^2}{np_1} + \frac{(X_1 - np_1)^2}{np_2} \\ &= \frac{(X_1 - np_1)^2}{n} \left(\frac{1}{p_1} + \frac{1}{p_2}\right) = \left(\frac{X_1 - np_1}{\sqrt{np_1p_2}}\right)^2 \xrightarrow{D} \chi^2_{(1)}. \end{split}$$

• It is recommended to ensure that $\mathbb{E}[X_i] = np_i \ge 1, \forall i$.

Example 9.1. Suppose we have 10000 random numbers generated from a Uniform[0, 1] distribution. After dividing them into 10 equal length bins, we test if these numbers look uniform or not.

\overline{i}	1	2	3	4	5	6	7	8	9	10
x_i	993	1044	1061	1021	1017	973	975	965	996	955

Solution. If the numbers are really from a Uniform[0, 1] distribution then expected counts for each cell is $10000 \cdot \frac{1}{10} = 1000$, so we have

\overline{i}	1	2	3	4	5	6	7	8	9	10
x_i	993	1044	1061	1021	1017	973	975	965	996	955
$\hat{x_i}$	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000

The test statistic is $X^2 = \frac{(993-1000)^2}{1000} + \cdots + \frac{(955-1000)^2}{1000} = 11.056$. The *p*-value is 0.27189, and thus we fail to reject the statement that these number are from a Uniform[0, 1] distribution. In naive words, they look uniform, and the code for *p*-value is:

$$1 \left[1 - \mathbf{pchisq}(11.056, 9) \right]$$

Or:

Remark. Since we divided the range [0,1] into 10 bins and we know it is uniform, p_k 's are all 0.1, which are constants and do not need to be estimated using any of the sample observations.

Theorem 9.2. If $p_1, ..., p_k$ are **unknown**, then we need to estimate them. In this case $(X_1, ..., X_k) \sim \text{Multinomial}(n, p_1(\theta), ..., p_k(\theta))$. After estimating θ by $\hat{\theta}$, the test statistic is

$$X^{2} = \sum_{i=1}^{k} \frac{(X_{i} - np_{i}(\widehat{\theta}))^{2}}{np_{i}(\theta)} \xrightarrow{D} \chi^{2}_{(k-1-\dim\Omega)},$$

where dim Ω represents the number of parameters needed to be estimated based on the data in order to calculate the p_i 's.

Example 9.2. Suppose life-lengths of light bulbs (Y_i) follows an Exponential (β) , where β is unknown. We have the partitions as

$$(0,1], (1,2], (2,3], (3,\infty).$$

Based on the sample of size n = 30, the observed counts are 5, 16, 8, 1. We test H_0 : The true model is Exponential(β).

Solution. First, we find the MLE for β . If the life-lengths of the 30 bulbs are available, then

$$L(\beta) = \beta^{30} \exp\left[-\beta \sum y_i\right] \Rightarrow \hat{\beta} = \frac{1}{\overline{y}}.$$

If all we have is the counts of Y_i 's that fall into those four partitions, we can define

$$L(\beta) = (1 - e^{-\beta})^5 (e^{-\beta} - e^{-2\beta})^{16} (e^{-2\beta} - e^{-3\beta})^8 (e^{-3\beta})^1,$$

where $(1-e^{-\beta}) = P(Y_i \in (0,1])$, similarly the other terms. For instance,

$$p_2 = \int_1^2 \beta e^{-\beta x} dx = e^{-\beta} - e^{-2\beta}.$$

Thus, we have $\hat{\beta} = 0.603535$, and

$$p_1 = 0.453125,$$

 $p_2 = 0.247803,$
 $p_3 = 0.135517,$
 $p_4 = 0.163555.$

The expected counts are 13.59375, 7.43409, 4.06551, 4.90665, respectively.

Hence, the test statistic is $X^2 = \frac{(5-13.59375)^2}{13.59375} + \cdots = 22.22$. The *p*-value is 0.000015, and thus we reject H_0 , i.e., we have strong evidence that Exponential(β) is not the true model for these data and the code for *p*-value is:

 $1 \mid 1 - \mathbf{pchisq}(22.22, 2)$

Remark. Since we estimate β using given data, we loose 1 extra degrees of freedom, and thus it is $\chi^2_{(2)}$.

9.2 Discrepancy statistic

- Suppose $(X_1, ..., X_n)$ is believed to be from f_{θ} with $\theta \in \Omega$. **Discrepancy statistic**, D(X) is a function that takes the samples observations and maps it to \mathbb{R} . It measures the deviation from the model under consideration. A large value of D(X) implies a deviation has occurred.
 - \circ In test of hypothesis sense, we assess whether D(X) lies in the region of low probability of its distribution when the model is correct.
 - \circ Restriction: When the model is correct, D must have a single distribution, i.e., the distribution of D cannot depend on θ .
 - \circ A statistic D whose distribution under the model does not depend upon θ is called **ancillary**, i.e., if $(X_1, ..., X_n) \sim f_{\theta}$, then D(X) has the same distribution for every $\theta \in \Omega$.
 - * Being ancillary does not mean D can be used as a discrepancy statistic. If D is constant, then it is ancillary, but not useful for model checking.

Example 9.3. Suppose $(X_1, ..., X_n) \sim \mathcal{N}(\mu, \sigma_0^2), X_i$'s are independent. Define $R_i = X_i - \overline{X}$. For instance,

$$X_1 - \overline{X} = X_1 - \frac{1}{n}(X_1 + \dots + X_n) = (1 - \frac{1}{n})X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n.$$

Thus.

$$\mathbb{E}[X_1 - \overline{X}] = \mathbb{E}[X_1] - \mathbb{E}[\overline{X}] = \mu - \mu = 0,$$

and

$$Var[X_{1} - \overline{X}] = cov[X_{1} - \overline{X}, X_{1} - \overline{X}]$$

$$= cov \left[(1 - \frac{1}{n})X_{1} - \frac{1}{n}X_{2} - \dots - \frac{1}{n}X_{n}, (1 - \frac{1}{n})X_{1} - \frac{1}{n}X_{2} - \dots - \frac{1}{n}X_{n} \right]$$

$$= (1 - \frac{1}{n})\sigma_{0}^{2},$$

Therefore, $R_i \sim \mathcal{N}(0, (1-\frac{1}{n})\sigma_0^2)$. The discrepancy statistic

$$D(R) = \frac{1}{\sigma_0^2} \sum_{i=1}^n R_i^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{(n-1)}^2$$

If D(r) represent the observed value of D based on the current sample, then we can calculate the p-value.

9.3 Residual and quantile/probability plots

• Residual plot: Since $R_i \sim \mathcal{N}(0, (1 - \frac{1}{n}\sigma_0^2))$, we can define **standardized residual**

 $r_i^* = \frac{x_i - \overline{x}}{\sqrt{(1 - \frac{1}{n})\sigma_0^2}}.$

If the true model is $\mathcal{N}(\mu, \sigma_0^2)$, then our expectation is that r_i^* 's will behave like values from a $\mathcal{N}(0, 1)$.

- \circ Plotting $r_1^*, ..., r_n^*$ against (1, ..., n).
- \circ The points should be clustered around zero.
- \circ The points should lie in (-3, 3).
- They should look random (should not depict any pattern).

Example 9.4. Points in Figure 9.2 satisfies the conditions above. Some of points in Figure 9.3 are outside (-3, 3), indicating longer tail. Most of points in Figure 9.4 are on positive side, indicating right skewed.

Figure 9.2: A plot of the standardized residuals for a sample of 100 from an $\mathcal{N}(0,1)$ distribution.

• Quantile/Probability plots: Suppose (X_i) is believed to be from $\mathcal{N}(\mu, \sigma^2)$. Let $X_{(i)}$ represent the *i*-th order statistic. We have

$$\mathbb{E}[X_{(i)}] = \mu + \sigma \cdot \Phi^{-1}\left(\frac{i}{n+1}\right),\,$$

where Φ^{-1} is the inverse CDF of $\mathcal{N}(0,1)$.

Figure 9.3: A plot of the standardized residuals for a sample of 100 from $X = (\sqrt{3})^{-1}Z$, where $Z \sim t_{(3)}$.

Figure 9.4: A plot of the standardized residuals for a sample of 100 from an Exponential(1) distribution.

Let x_j correspond to the order statistic $x_{(i)}$, then $\Phi^{-1}\left(\frac{i}{n+1}\right)$ is the **Normal score** of x_j . If we plot the points $\left(x_{(i)}, \Phi^{-1}\left(\frac{i}{n+1}\right)\right)$, they should lie approximately on a straight line with intercept μ and slope σ .

Example 9.5. Suppose we want to assess whether or not the following data set can be considered a sample of sample of size n = 10 from some Normal distribution:

 $2.00 \ \ 0.28 \ \ 0.47 \ \ 3.33 \ \ 1.66 \ \ 8.17 \ \ 1.18 \ \ 4.15 \ \ 6.43 \ \ 1.77$

The order statistics and associated Normal scores are

i	1	2	3	4	5
$x_{(i)}$	0.28	0.47	1.18	1.66	1.77
$\Phi^{-1}\left(\frac{i}{n+1}\right)$	-1.34	-0.91	-0.61	-0.35	-0.12
•	0				4.0
1	0	7	8	9	10
$\frac{1}{x_{(i)}}$	2.00	3.33	$\frac{8}{4.15}$	$\frac{9}{6.43}$	8.17

10 χ^2 Test of Independence and Homogeneity

10.1 Relationship among variables

- Variables X and Y are **related variables** if there is any change in the conditional distribution of Y, given X = x, as x changes.
 - **Example 10.1.** Assume $Y \sim \mathcal{N}(10, 2)$ when X = 1 and $Y \sim \mathcal{N}(12, 2)$ when X = 0. Since the mean changes, any probability we calculate for Y will be different based on the value of X. Similarly, the variance of Y can be function of X as well. In this case, we can say X and Y are related, which means they are not independent.
- Often, we think of Y as the **dependent variable** (depending on X) and X as the **independent variable** (free to vary). Also, Y is called the **response variable** and X is called the **predictor variable**.

10.2 Relationship of two categorical variables

• Assume we have two categorical variables and we want to check whether X and Y are related or not. Assume Y is the response and X is the predictor. X, Y has a, b number of categories respectively.

10.2.1 χ^2 test of independence (X and Y are random)

- Notation:
 - \circ Let i=1,2,...,a be the a categories of X and j=1,2,...,b be the b categories of Y.
 - o Let f_{ij} be the number of samples corresponding to *i*th category of X and jth category of Y. We have $\sum_{i=1}^{a} \sum_{j=1}^{b} f_{ij} = n$.
 - \circ Let F_{ij} be the population count of the (i, j)th cell.
 - \circ Let $\theta_{ij} = P(X = i, Y = j)$, i.e., the proportion of elements in the population with X = i and Y = j. We can write

$$(F_{11}, F_{12}, ..., F_{ab}) \sim \text{Multinomial}(n, \theta_{11}, \theta_{12}, ..., \theta_{ab}).$$

Let θ_{i} be the marginal probability P(X = i) and $\theta_{.j}$ be the marginal probability P(Y = j).

• We want to test H_0 : There is no relationship between X and $Y \Rightarrow X \perp Y$.

o If
$$X \perp Y$$
, then $P(X=i,Y=j) = P(X=i)P(Y=j)$, i.e., under $H_0, \theta_{ij} = \theta_{i}, \theta_{ij}$, and thus

$$(F_{11}, F_{12}, ..., F_{ab}) \sim \text{Multinomial}(n, \theta_{1}, \theta_{1}, \theta_{1}, \theta_{1}, \theta_{2}, ..., \theta_{a}, \theta_{b}).$$

• Test statistic and corresponding distribution:

o MLE of
$$\theta_i$$
 will be $\hat{\theta}_{i.} = \sum_{j=1}^{b} \frac{f_{ij}}{n}$ and MLE of $\theta_{.j}$ will be $\hat{\theta}_{.j} = \sum_{i=1}^{a} \frac{f_{ij}}{n}$.

$$\circ X^{2} = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{(f_{ij} - n\hat{\theta}_{i}, \hat{\theta}_{.j})^{2}}{n\hat{\theta}_{i}, \hat{\theta}_{.j}} \xrightarrow{D} \chi^{2}_{(a-1)(b-1)}.$$

$$*df = k-1-\dim\Omega = ab-1-[(a-1)+(b-1)] = (a-1)(b-1).$$

Example 10.2. We have a table:

	Y = 1	Y = 2	Y = 3	Y = 4
X = N	17	11	11	14
X = C	17	9	8	7
X = S	12	13	19	28

Under the null hypothesis of independence, the MLE's are given by

$$\hat{\theta}_{.1} = \frac{46}{166}, \hat{\theta}_{.2} = \frac{33}{166}, \dots$$

Then the estimated expected counts $n\hat{\theta}_{i}\hat{\theta}_{.j}$ are given by the following table.

	Y = 1	Y = 2	Y = 3	Y = 4
X = N	14.6867	10.5361	12.1325	15.6446
X = C	11.3614	8.1506	9.3855	12.1024
X = S	19.9518	14.3133	16.4819	21.2530

Thus, $T = X^2 = \frac{(17-14.6867)^2}{14.6867} + \cdots + \frac{(28-21.2530)^2}{21.2530} = 11.7223$ and df = (a-1)(b-1) = 6. Thus p-value is 0.0685. Therefore, at 5% significance level, we do not have enough evidence to conclude that X and Y are dependent.

The code is:

1 | chisq.test(
$$\mathbf{rbind}(\mathbf{c}(17,11,11,14), \mathbf{c}(17,9,8,7), \mathbf{c}(12,13,19,28)))$$

10.2.2 χ^2 test of homogeneity (X is deterministic)

- **Homogeneity** means the distributions of Y calculated for different category of X are all homogeneous, i.e., fixing the total number of each category of X in advance. X is not random anymore.
- Notation:
 - \circ Let n_i be the marginal total of X=i category. We have $\sum_i n_i = n$. Marginal totals of all categories of X are fixed beforehand.
 - \circ Instead of joint probabilities, we have bunch of conditional probabilities. Let $\theta_{j|X=i} = P(Y=j|X=i)$.
- We want to test $H_0: \theta_{j|X=1} = \theta_{j|X=2} = \cdots = \theta_{j|X=a} = \theta_j$.
- Test statistic and corresponding distribution:

$$\circ$$
 MLE of θ_j will be $\hat{\theta}_j = \sum_{i=1}^a \frac{f_{ij}}{n}$.

$$\circ X^{2} = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{(f_{ij} - n_{i}\hat{\theta}_{j})^{2}}{n_{i}\hat{\theta}_{j}} \xrightarrow{D} \chi^{2}_{(a-1)(b-1)}.$$

Example 10.3. Of 279 participants in the study, 140 received a placebo and 139 received vitamin C. We have a table:

	No cold	Cold
Placebo	31	109
Vitamin C	17	122

Under the null hypothesis of independence, the MLE's are given by

$$\hat{\theta}_1 = \frac{48}{279} = 0.1720, \hat{\theta}_2 = \frac{231}{279} = 0.8280.$$

Then the estimated expected counts $n_i \hat{\theta}_j$ are given by the following table.

	No cold	Cold
Placebo	24.08	115.92
Vitamin C	23.908	115.092

Thus, $T = X^2 = \frac{(31-24.08)^2}{24.08} + \frac{(109-115.92)^2}{115.92} + \frac{(17-23.908)^2}{23.908} + \frac{(122-115.092)^2}{115.092} = 4.8124$ and df = (a-1)(b-1) = 1. Thus p-value is 0.0283. Therefore, at 5% significance level, we will reject the null hypothesis, i.e., there is relationship between taking vitamin C and the incidence of the common cold.

Remark. For χ^2 test of independence and homogeneity, we have an easy calculation of expected counts:

$$E_{ij} = \frac{i \text{th row total} \cdot j \text{th column total}}{\text{Grand total}}.$$

11 Correlation Coefficient and Least Square Regression

11.1 Relation among quantitative variables

- Suppose we have quantitative variables X and Y. Let $(x_1, ..., x_n)$ and $(y_1, ..., y_n)$ be two corresponding data vectors. A visual display of these two vectors can be done by drawing a **scatter plot** that suggests the direction and magnitude of **correlation** between X and Y.
- **Pearson correlation coefficient** (r) measures the linear relationship between two variables, where $r \in [-1, 1]$. If r = -1, it is perfect negative correlation. If r = 1, it is perfect positive correlation. If r = 0, it is zero correlation.
 - \circ **Geometric definition** of $r: r = \cos \theta$, where θ is the angle between n dimensional vector X and Y. Note: X and Y has to be centered.

11.2 Least square regression

- Let $\hat{y} = b_1 + b_2 x$ is the equation of the hypothetical line that we thought is going throw the points, then $(y_i b_1 b_2 x_i)$ is the deviation of y_i from the line.
- Least square regression if finding the line that minimizes sum of the squared deviations:

$$\sum_{i=1}^{n} (y_i - b_1 - b_2 x_i)^2.$$

 \circ For b_1 : Let

$$\frac{\partial}{\partial b_1} \sum (y_i - b_1 - b_2 x_i)^2 = -2 \sum (y_i - b_1 - b_2 x_i) = 0.$$

Then we have

$$\sum y_i - nb_1 - b_2 \sum x_i = 0 \Rightarrow b_1 = \overline{y} - b_2 \overline{x}.$$

 \circ For b_2 : Let

$$\frac{\partial}{\partial b_2} \sum (y_i - b_1 - b_2 x_i)^2 = 0.$$

Then we have

$$\sum (y_i - b_1 - b_2 x_i) x_i = \sum (x_i y_i - b_1 x_i - b_2 x_i^2)$$

$$= \sum x_i y_i - (\overline{y} - b_2 \overline{x}) n \overline{x} - b_2 \sum x_i^2$$

$$= \sum x_i y_i - n \overline{x} \overline{y} + b_2 n \overline{x}^2 - b_2 \sum x_i^2$$

$$= \sum (x_i - \overline{x})(y_i - \overline{y}) - b_2 \sum (x_i - \overline{x})^2 = 0,$$

i.e.,

$$b_2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

11.3 Classical linear regression under Normal distribution

- Assumptions:
 - $\circ (Y_i|X_i=x_i) \sim \mathcal{N}(\beta_1+\beta_2x_i,\sigma^2).$
 - \circ Y_i 's are independent.
- Likelihood function:

$$L(\beta_1, \beta_2, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_1 - \beta_2 x_i)^2\right].$$

For any given σ^2 , $L(\beta_1, \beta_2, \sigma^2)$ will be maximized when residual sum of squares are minimized. Therefore,

$$\widehat{\beta}_1 = b_1 = \overline{y} - b_2 \overline{x},$$

$$\widehat{\beta}_2 = b_2 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}.$$

• Interpretation of regression parameters: β_1 represents the expected value of Y when X = 0 and β_2 represents the change in expected value of Y for one unit increase in X.

11.3.1 Properties of estimators of regression parameters

Property 11.1. Suppose Y is r.v., and x is treated as fixed constant, then we have

$$B_{1} = \overline{Y} - B_{2}\overline{x},$$

$$B_{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})Y_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} - \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})\overline{Y}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})Y_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}.$$

Thus, B_1, B_2 is a linear combination of Y_i 's, and both follow Normal distribution.

Property 11.2. B_1 and B_2 are unbiased estimators of β_1 and β_2 .

Proof. We have

$$\mathbb{E}[B_2] = \mathbb{E}\left[\frac{\sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2}\right],$$

where

$$\mathbb{E}[(Y_i - \overline{Y})] = \beta_1 + \beta_2 x_i - \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^n Y_i\right] = \beta_1 + \beta_2 x_i - \frac{1}{n} \sum_{i=1}^n (\beta_1 + \beta_2 x_i)$$
$$= \beta_2 (x_i - \overline{x}).$$

Thus

$$\mathbb{E}[B_2] = \frac{\sum_{i=1}^n (x_i - \overline{x})\beta_2(x_i - \overline{x})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \beta_2,$$

and

$$\mathbb{E}[B_1] = \mathbb{E}[\overline{Y} - B_2 \overline{x}] = \beta_1.$$

Property 11.3.
$$Var[B_2] = \frac{\sigma^2}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}$$
.

Proof. We have
$$B_2 = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})Y_i}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}$$
, then

$$\operatorname{Var}[B_2] = \operatorname{Var}\left[\frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})Y_i}{\sum\limits_{i=1}^{n}(x_i - \overline{x})^2}\right] = \frac{1}{\left(\sum\limits_{i=1}^{n}(x_i - \overline{x})^2\right)^2} \sum_{i=1}^{n} \operatorname{Var}[(x_i - \overline{x})Y_i]$$

$$= \frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})^2 \operatorname{Var}[Y_i]}{\left(\sum\limits_{i=1}^{n}(x_i - \overline{x})^2\right)^2} = \frac{\sigma^2}{\sum\limits_{i=1}^{n}(x_i - \overline{x})^2}.$$

11.3.2 Confidence interval and t-test for β_2

• The unbiased estimator of σ^2 is

$$S^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - b_{1} - b_{2}x_{i})^{2},$$

and thus

$$\frac{(n-2)S^2}{\sigma^2} \sim \chi^2_{(n-2)}.$$

Then we have

$$\frac{B_2 - \beta_2}{\sqrt{\sigma^2 / \sum_{i=1}^n (x_i - \overline{x})^2}} / \sqrt{\frac{S^2}{\sigma^2}} = \frac{B_2 - \beta_2}{\sqrt{S^2 / \sum_{i=1}^n (x_i - \overline{x})^2}} \sim t_{(n-2)}.$$

Therefore, the γ level CI for β_2 is

$$\[B_2 \pm t_{\frac{1+\gamma}{2}(n-2)} \sqrt{\frac{S^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}} \].$$

• Now we can test $H_0: \beta_2 = 0$, i.e., there is no relationship between X and Y.

Sum of squares decomposition and ANOVA test

- Sum of squares decomposition:
 - \circ Total sum of square $TSS = \sum_{i=1}^{n} (y_i \overline{y})^2$.
 - \circ TSS can be written as the sum of two terms:
 - (1) Regression sum of square $RSS = b_2^2 \sum_{i=1}^{n} (x_i \overline{x})^2$.
 - (2) Error/Residual sum of square $ESS = \sum_{i=1}^{n} (y_i b_1 b_2 x_i)^2$.
- Coefficient of determination and correlation coefficient:
 - \circ Coefficient of determination is defined as $R^2 = \frac{RSS}{TSS}.$ R^2 is the proportion of variation in Y that can be explained by the model. For simple linear regression, $r^2 = R^2$.

Example 11.1. If $R^2 = 0.98$, then 98% variation in Y can be explained by the model.

• ANOVA table: another way of testing $H_0: \beta_2 = 0$.

Source	df	Sum of Square (SS)	Mean SS = SS/df
\overline{X}	1	$b_2^2 \sum (x_i - \overline{x})^2$	$b_2^2 \sum (x_i - \overline{x})^2$
Error	n-2	$\sum (y_i - b_1 - b_2 x_i)^2$	s^2
Total	n-1	$\sum (y_i - \overline{y})^2$	_

Therefore,
$$F = \frac{RSS/1}{ESS/(n-2)} \sim F_{(1,n-2)}$$
. The code for *p*-value is: $1 - \mathbf{pf}(F, \mathbf{df}_{-1}, \mathbf{df}_{-2})$

$$1 \mid 1 - \mathbf{pf}(F, \mathbf{df}_{-1}, \mathbf{df}_{-2})$$

Prediction and residual check 11.3.4

• Prediction: For X = x, predicted Y will be $\hat{y} = b_1 + b_2 x$. If the value x is within the range of the observed values of X, this prediction is called *interpolation*. If the value x is OUTSIDE the range, this prediction is called *extrapolation*.

- Residuals: For all observed X values we calculate predicted value \hat{y} . Residual corresponding to ith observation is $(y_i \hat{y}_i)$. A positive residual indicates an under-prediction and a negative residual indicates an over-prediction.
 - Standardized residual plots: check model assumptions.
 - (1) Plot of standardized residuals against observed X values: the points should be clustered around zero (checking zero mean of the residuals) and look random (checking if the residuals are independent of X or not).
 - (2) Normal probability plot of the standardized residuals: the points should lie on 1 45-degree line (checking the normality assumption).

The code for a simple linear model:

```
 \begin{array}{ll} 1 & x = c(\dots) \\ 2 & y = c(\dots) \\ 3 & m = lm(y^x) \\ 4 & summary(m) \\ 5 & anova(m) \\ 6 & qqnorm(m\$residuals) \end{array}
```

11.4 Quantitative Y and categorical X

• *Dummy variable* is one that takes the value 0 or 1 to indicate the absence or presence of some categorical effect that may be expected to shift the outcome.

Example 11.2. Let $X_m = 1$ if male and $X_m = 0$ if female. Let $X_f = 1$ if female and $X_f = 0$ if male. We have:

Y	Sex(X)	X_m	X_f
10	Male	1	0
12	Male	1	0
8	Female	0	1
9	Female	0	1
	• • •	• • •	

Form the Normality assumption, we have $Y|X \sim \mathcal{N}(\beta_1 X_m + \beta_2 X_f, \sigma^2)$, and hence $\mathbb{E}[Y|X] = \beta_1 X_m + \beta_2 X_f$, $\mathbb{E}[Y|X = \text{Male}] = \beta_1$, $\mathbb{E}[Y|X = \text{Male}]$

Female] = β_2 . So β_1 is the population mean of Y for male and β_2 is the population mean of Y for female.

A common hypothesis that is tested is $H_0: \beta_1 = \beta_2 \Rightarrow \beta_1 - \beta_2 = 0$, i.e., there is no difference in mean of Y between male and female, or there is no relationship between X and Y.

Another method: Assume $Y|X \sim \mathcal{N}(\beta_1 + \beta_2 X_f, \sigma^2)$, then $\mathbb{E}[Y|X = \text{Male}] = \beta_1, \mathbb{E}[Y|X = \text{Female}] = \beta_1 + \beta_2$. Thus, $\mathbb{E}[Y|X = \text{Female}] - \mathbb{E}[Y|X = \text{Male}] = \beta_2$, and β_2 gives us the difference mean of the two groups. If $\beta_2 = 0$, there is no difference between the groups, i.e., X and Y are not related.

• If X has more than two categories, number of dummy variables needed and number of corresponding β 's will increase. We will compare the means by comparing two of them at a time, which is called *multiple comparisons*.