Una condición de no regularidad

U.D. Computaciór

Definicione:

de no

Teorema de Nerode

Una condición de no regularidad

U.D. Computación

DSIC - UPV

2017-18

Índice

Una condición de no regularidad

Computació

Definicione

Una Condicio de no regularidad

Teorema de Nerode

- Definiciones
- Una condición de no regularidad
- Teorema de Nerode

Una condición de no regularidad

U.D. Computació

Definiciones

Una Condició de no regularidad

Teorema de

■ Dado un AFD $A = (Q, \Sigma, \delta, q_0, F)$, se define el *lenguaje* por la derecha de $q \in Q$ como:

$$R_q = \{x \in \Sigma^* : \delta(q, x) \in F\}$$

■ Dado un lenguaje $L \subseteq \Sigma^*$ y un AFD $A = (Q, \Sigma, \delta, q_0, F)$ tal que L(A) = L, se dice que A es *reducido* si para todo $p, q \in Q$ tales que $p \neq q$ se cumple que $R_p \neq R_q$

Una condición de no regularidad

U.D. Computació

Definiciones

Una Condició de no regularidad

Teorema de Nerode

- Una relación R sobre A es una relación de equivalencia si:

 - $\forall x, y \in A (xRy \Rightarrow yRx) (simétrica).$
 - $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz) (transitiva).$
- Dada una relación de equivalencia R sobre A y dado un elemento $x \in A$, el conjunto $\{y \in A | xRy\}$ se dice clase de equivalencia de x y se representa por $[x]_R$.
- Dados A y R, el conjunto cuyos elementos son las diferentes clases de equivalencia de R se llama conjunto cociente de A por R y se representa por A/R.
- El cardinal de A/R se llama *índice* de la relación de equivalencia R. El índice es un entero positivo o infinito.

Una condición de no regularidad

U.D. Computació

Definiciones

Una Condició de no regularidad

Teorema de Nerode

L'equivalència de Nerode

Dado $L \subseteq \Sigma^*$, se define la *equivalencia de Nerode* R_L como:

$$x \equiv_{R_L} y \iff x^{-1}L = y^{-1}L$$

Se conoce también como la relación de equivalencia de los buenos finales inducida por L en Σ^*

Una condición de no regularidad

U.D. Computació

Definiciones

Una Condició de no regularidad

Teorema de Nerode Ejemplo de obtención de las clases de equivalencia de ${\it R}_{\it L}$

Sea $L = \{x \in \{a, b\}^* : |x|_b \le 1\}$

Una condición de no regularidad

U.D. Computació

Definiciones

Una Condició de no regularidad

Teorema de Nerode

Ejemplo de obtención de las clases de equivalencia de R_L

Sea
$$L = \{x \in \{a, b\}^* : |x|_b \le 1\}$$

■ Clase de λ : palabras que no contienen ninguna b, $[\lambda]_{R_t} = \{a\}^*$ Buenos finales: $\{a\}^* \cup \{a\}^* \{b\} \{a\}^*$

Una condición de no regularidad

U.D. Computació

Definiciones

Una Condició de no regularidad

Teorema de Nerode

Ejemplo de obtención de las clases de equivalencia de R_I

Siga
$$L = \{x \in \{a, b\}^* : |x|_b \le 1\}$$

- Clase de λ : palabras que no contienen ninguna b, $[\lambda]_{R_l} = \{a\}^*$ Buenos finales: $\{a\}^* \cup \{a\}^* \{b\} \{a\}^*$
- Clase de b: palabras que contienen una b, $[b]_{R_t} = \{a\}^* \{b\} \{a\}^*$ Buenos finales: $\{a\}^*$

Una condición de no regularidad

U.D. Computaciór

Definiciones

Una Condició de no regularidad

Teorema de Nerode

Ejemplo de obtención de las clases de equivalencia de R_L

Siga
$$L = \{x \in \{a, b\}^* : |x|_b \le 1\}$$

- Clase de λ : palabras que no contienen ninguna b, $[\lambda]_{R_l} = \{a\}^*$ Buenos finales: $\{a\}^* \cup \{a\}^* \{b\} \{a\}^*$
- Clase de b: palabras que contienen una b, $[b]_{R_L} = \{a\}^* \{b\} \{a\}^*$ Buenos finales: $\{a\}^*$
- Clase de bb: palabras que contienen como mínimo dos b, $[bb]_{R_I} = \{a\}^*\{b\}\{a\}^*\{b\}\{a,b\}^*$ Buenos finales: \emptyset

Una Condición de no regularidad (1/2)

Una condición de no regularidad

U.D. Computació

Definicione:

Una Condición de no regularidad

Teorema de Nerode ■ Si existe una secuencia infinita $(x_i)_{i\in\mathbb{N}}$ de palabras sobre Σ tales que $\forall i, j, i \neq j$ se cumple que:

$$\exists z \in \Sigma^* : x_i z \in L \ sii \ x_i z \notin L$$

entonces *L* no es regular *demostración*:

- Supongamos que *L* es regular y sea *A* un AFD reducido que acepta *L*.
- Para todo $i \neq j$, el lenguaje por la derecha del estado $\delta(q_0, x_i)$ es distinto al lenguaje por la derecha del estado $\delta(q_0, x_j)$
- Por lo tanto, de cumplirse la condición, *A* tendría infinitos estados

Una Condición de no regularidad (2/2)

Una condición de no regularidad

U.D. Computació

Definicione

Una Condición de no regularidad

Teorema de Nerode

- R_L es de índice infinito si y solo si existe una secuencia infinita $(x_i)_{i \in \mathbb{N}}$ de palabras sobre Σ tales que $\forall i, j, i \neq j$, se cumple que $\exists z \in \Sigma^* : x_i z \in L$ sii $x_j z \notin L$
- Por el resultado anterior, esta condición de no regularidad, se puede expresar como:

Una Condición de no regularidad (2/2)

Una condición de no regularidad

U.D. Computació

Definicione

Una Condición de no regularidad

Teorema de Nerode

- R_L es de índice infinito si y solo si existe una secuencia infinita $(x_i)_{i \in \mathbb{N}}$ de palabras sobre Σ tales que $\forall i, j, i \neq j$, se cumple que $\exists z \in \Sigma^* : x_i z \in L$ sii $x_j z \notin L$
- Por el resultado anterior, esta condición de no regularidad, se puede expresar como:

Dado un lenguaje $L \subseteq \Sigma^*$, si R_L es de índice infinito, entonces L no es regular

Teorema de Nerode

Una condición de no regularidad

U.D. Computació

Definiciones

Una Condició de no regularidad

Teorema de Nerode ■ Dado un lenguaje $L \subseteq \Sigma^*$, el lenguaje L es regular si y solo si L es de índice finito

demostración

- 1 Por la condición de no regularidad, se tiene que si L es regular, entonces R_I es de índice finito
- Supongamos que R_L es de índice finito, puede verse que L es regular dando un algoritmo de construcción de un AF que acepta L a partir de las clases de R_L :

$$A = (Q, \Sigma, \delta, q_0, F)$$
:

$$q_0 = [\lambda]_{R_L},$$

$$F = \{[u]_{R_L} | u \in L\} = L/R_L,$$