Problem 9

We give the example that $A_n = \{x | x \in (0, \frac{1}{2^n})\}, n = 1, 2,$ proof:

Since

$$\frac{1}{2^{n+1}}<\frac{1}{2^n}$$

We know

$$(0, \frac{1}{2^{n+1}}) \subseteq (0, \frac{1}{2^n})$$

So,

$$A_{n+1} \subseteq A_n, \ n = 1, 2, \dots$$

We assume that $\bigcap_{n=1}^{\infty} A_n \neq \phi$, so there is one real number $y \in \bigcap_{n=1}^{\infty} A_n$. It is for any $n, y \in A_n$. If $y \leq 0, y \notin (0, \frac{1}{2})$, so $y \notin A_1$, the **assumption** is not valid.

If y > 0,

we set $n_0 = \lceil \log_2^{\frac{1}{y}} \rceil + 1$, Then,

$$\log_{2}^{\frac{1}{y}} < n_{0}$$

$$\frac{1}{y} < 2^{n_{0}}$$

$$\frac{1}{2^{n_{0}}} < y$$

$$y \notin (0, \frac{1}{2^{n_{0}}})$$

$$y \notin A_{n_{0}}$$

So the **assumption** is not valid.

It means that there is not one real number $x \in \bigcap_{n=1}^{\infty} A_n$, and $\bigcap_{n=1}^{\infty} A_n = \phi$ The proof is complete.

The exmple $A_n = \{x | x \in (0, \frac{1}{2^n})\}, n = 1, 2, ...$ has the stated property.