Note operative IAS

di Mattia Garatti

Spazi di Lebesgue

Appartenenza a spazi di Lebesgue

Un'applicazione $f \in L^p(E, \mu; \mathbb{C})$ se e solo se

$$||f||_p < +\infty.$$

Se $p \neq \infty$, ciò corrisponde a richiedere $\int_E |f|^p d\mu < +\infty$, mentre se $p = \infty$ la richiesta è equivalente alla limitatezza q.o. di |f| in E, ovvero ess $\sup_E |f(x)| < +\infty$.

Osservazione Sia E un sottoinsieme di \mathbb{R}^n . Se n > 1 per studiare l'integrale posso cambiare coordinate o costruire disuguaglianze di controllo sfruttando una suddivisione intelligente del dominio di integrazione. Il caso n = 1 è invece il semplice studio di un integrale improprio di AMI.

Osservazione Potrebbe capitare che la sommabilità di f su E sia equivalente alla sommabilità di f su un sottoinsieme di E.

Osservazione Se f è continua su un compatto, Weierstrass assicura la limitatezza.

Convergenza forte in spazi di Lebesgue

Sia (f_h) una successione in $L^p(E,\mu;\mathbb{C})$. Diciamo che f_h converge fortemente in $L^p(E,\mu;\mathbb{C})$ a $f\in L^p(E,\mu;\mathbb{C})$ se

$$\lim_{h} ||f_h - f||_p = 0.$$

Osservazione (Come trovo f?) Calcoliamo f il limite puntuale q.o. Se $f \in L^p(E, \mu; \mathbb{C})$, faccio il test del limite; se $f \notin L^p(E, \mu; \mathbb{C})$ allora $f_h \nrightarrow f$ in $L^p(E, \mu; \mathbb{C})$, ma ciò non vuol dire che non esista il limite in $L^p(E, \mu; \mathbb{C})$ di (f_h) in quanto non c'è un'implicazione diretta tra le due convergenze.

Osservazione Se $p \neq \infty$, per calcolare il limite ho due tecniche: porto h fuori dall'integrale oppure porto il limite dentro l'integrale usando i Teoremi di Convergenza. Se $p = \infty$, potrebbe capitare che il sup sia in realtà un max.

Spazi di Hilbert

Proiezioni su convessi chiusi

Per applicare il Teorema della Proiezione dobbiamo verificare i seguenti fatti:

- 1. H di Hilbert, cioè normato e completo: solitamente è un fatto noto;
- 2. $C \subseteq H$ non vuoto: di solito è evidente;
- 3. C chiuso: possiamo operare per successioni¹ oppure mostrare che è il nucleo di un operatore lineare e continuo;
- 4. C convesso: basta verificare la disuguaglianza di convessità;

Verificato ciò siamo sicuri che esista una ed una sola proiezione $P_C f$ di $f \in H$ su C. In generale determinarla non è semplice, può essere necessario decomporre f in parti oppure utilizzare un po' di intuito definendo una funzione a tratti: una volta trovato un candidato per verificare che sia effettivamente l'elemento cercato basta usare la caratterizzazione

$$\begin{cases} P_C f \in C, \\ \operatorname{Re}(f - P_C f | c - P_C f) \le 0 \quad \forall \ c \in C. \end{cases}$$

Osservazione Se dimostro che C è un sottospazio vettoriale chiuso Y di H, in automatico è convesso e la caratterizzazione è più semplice

$$\begin{cases} P_C f \in Y, \\ (f - P_C f | y) = 0 \quad \forall \ y \in Y. \end{cases}$$

Vale inoltre il Teorema di Decomposizione Ortogonale: $Y^{\perp} \leq H$ e se Y è chiuso allora $H = Y \oplus Y^{\perp}$, $(Y^{\perp})^{\perp} = Y$ e $f = P_Y f + P_{Y^{\perp}} f$.

Osservazione Nel caso di un sottospazio vettoriale di dimensione finita Y, costruiamo una sua base ortonormale (e_1, \ldots, e_n) con il Metodo di Gram-Schmidt: se (v_1, \ldots, v_n) base qualsiasi di Y, poniamo $u_1 = v_1, u_2 = v_2 - P_{e_1}v_2, u_3 = v_3 - P_{e_1}v_3 - P_{e_2}v_3, \ldots$ e

$$e_1 = \frac{u_1}{\|u_1\|_H},$$
 $e_2 = \frac{u_2}{\|u_2\|_H},$ $e_3 = \frac{u_3}{\|u_3\|_H},$...

Allora

$$P_Y f = (f|e_1)e_1 + \dots (f|e_n)e_n.$$

 $^{^1}$ Se H è un L^2 , passare alle sottosuccessioni garantisce convergenza puntuale; un'altra possibilità è usare la continuità della norma.

In particolare se $Y = \langle e_1 \rangle$, allora

$$P_{e_1}f = (f|e_1)e_1.$$

Osservazione Se Y ha come proprietà caratteristica un numero finito di vincoli posso determinare Y^{\perp} in questo modo: prendo un generico elemento $g \in Y^{\perp}$ e alla condizione di appartenenza sottraggo una combinazione lineare dei vincoli (che sono degli zeri scritti in modo diverso), questo mi porta a costruire una funzione Φ parametrica che sta ancora in Y^{\perp} e quindi $g - \Phi \in Y^{\perp}$ per linearità. A questo punto basta mostrare che esistono valori dei parametri per cui $g - \Phi \in Y$ e dal Teorema di Decomposizione Ortogonale si ha subito $g = \Phi$.

Serie di Fourier

Sia $f \in L^2(]-\pi,\pi[\,;\mathbb{C})$. La Serie di Fourier associata ad f è

$$S_f(x) = \sum_{k \in \mathbb{Z}} \hat{f}_k e_k(x)$$

dove
$$e_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$$
 e $\hat{f}_k = (f|e_k)_2 = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$.

Teorema (di convergenza puntuale delle serie di Fourier) $Sia\ f: \mathbb{R} \to \mathbb{C}$ un'applicazione differenziabile a tratti e 2π – periodica. Allora per ogni $x \in \mathbb{R}$

$$S_f(x) = \frac{f(x^+) + f(x^-)}{2}$$

dove $f(x^{\pm}) = \lim_{\xi \to x^{\pm}} f(\xi)$. In particolare, $S_f(x) = f(x)$ nei punti dove f è continua.

Teorema (di convergenza uniforme delle serie di Fourier) Sia $f \in C^1(\mathbb{R}; \mathbb{C})$ e 2π – periodica. Allora S_f converge assolutamente, e quindi uniformemente, a f. In particolare, $f(x) = S_f(x)$.

Osservazione Per calcolare la somma di una serie numerica usando una Serie di Fourier di una certa funzione f si utilizza l'Uguaglianza di Bessel – Parseval

$$\sum_{k \in \mathbb{Z}} |\hat{f}_k|^2 = ||f||_2^2,$$

oppure si calcola la serie in un punto specifico: per la scelta del punto è utile osservare con attenzione la forma della somma della serie, se viene fornita.

Operatori Compatti

Studio di un operatore

Sia $T:(X_1,\|\ \|_1)\to (X_2,\|\ \|_2)$ un operatore tra spazi normati su $\mathbb{K}.$

Buona definizione dobbiamo mostrare che dominio e codominio sono ben posti rispetto all'azione dell'operatore.

Linearità dobbiamo mostrare che si comporta bene rispetto alle combinazioni lineari, ovvero

$$T(\lambda f + \mu q) = \lambda T f + \mu T q.$$

Se è un operatore integrale è banale.

Continuità se T è lineare basta mostrare la disuguaglianza di continuità

$$||Tf||_2 \le c||f||_1.$$

Compattezza dobbiamo mostrare che per ogni (f_h) in X_1 limitata, l'immagine attraverso l'operatore, (Tf_h) , ammette una sottosuccessione convergente. In generale non abbiamo risultati, affrontiamo alcuni casi:

- se l'immagine di T è un sottoinsieme di $(C(X; \mathbb{K}^n), || ||_{\infty})$, con X spazio metrico, compatto e non vuoto, per il Teorema di Ascoli Arzelà è sufficiente mostrare che $\{Tf_h : h \in \mathbb{N}\}$ è limitato ed equi uniformemente continuo.
- se T è lineare e continuo ed ha immagine di dimensione finita allora è compatto.
- se esiste (T_h) successione di operatori compatti tendente in norma operatoriale a T, dal fatto che $\mathcal{K}(X_1; X_2) \leq \mathcal{L}(X_1; X_2)$ chiuso, ho che T è compatto.

Consideriamo $T:(X_1, \|\ \|_1) \to (X_2, \|\ \|_2)$ un operatore lineare e continuo tra spazi normati su \mathbb{K} .

Norma operatoriale ovvero

$$||T|| = \sup \{ ||Tf||_2 : f \in X_1, ||f||_1 \le 1 \}.$$

La disuguaglianza di continuità, se sharp, può essere utilizzata per avere una stima dall'alto della norma dell'operatore; per una stima dal basso bisogna esibire una f_0 ad hoc² tale che $||f_0||_1 \le 1$ e $||Tf_0||_2 = c$.

Consideriamo $T:(X,\|\ \|)\to (X,\|\ \|)$ un operatore lineare e continuo tra spazi normati su \mathbb{K} .

²Molte volte le funzioni caratteristiche sono utili.

Autovalori sono i $\lambda \in \mathbb{K}$ tali che $T - \lambda \operatorname{Id}$ non è iniettiva. Dobbiamo cercare per quali λ esistono soluzioni f non banali di $Tf = \lambda f$.

Spettro di un operatore compatto. Abbiamo due casi:

- se X ha dimensione finita, $\sigma(T)$ è un insieme finito costituito dagli autovalori di T.
- se X ha dimensione infinita, $\sigma(T) = \{0\} \cup \{\lambda_h : h \in \mathbb{N}\}$, dove (λ_h) è la successione infinitesima degli autovalori.

Osservazione Gli operatori compatti sono lineari e continui.

Utilizzo del Teorema dell'Alternativa di Fredholm

Teorema Siano X ed Y due spazi di Banach su \mathbb{K} , $J: X \to Y$ un'applicazione lineare, continua e biettiva e $K: X \to Y$ un operatore compatto. Posto L = J - K, valgono i seguenti fatti:

- (a) $\mathcal{N}(L)$ ha dimensione finita,
- (b) L è iniettiva se e solo se L è suriettiva.

Osservazione L'identità è un J ammissibile, per cui le equazioni del tipo x - Kx = y hanno una e una sola soluzione per ogni y oppure L non è iniettivo, ovvero Lx = 0 ha soluzioni non nulle.

Informazioni utili

- Se Ω ha dimensione finita e p < q, allora $L^q(\Omega) \subseteq L^p(\Omega)$.
- Se p < q, allora $l^p \subseteq l^q$.
- (Disuguaglianza di Young) Se $1 ed <math>a, b \ge 0$ allora $ab \le \frac{1}{p}a^p + \frac{1}{p'}b^{p'}$.
- (Disuguaglianza di Young pesata) Se $1 ed <math>a, b \ge 0$ allora per ogni $\varepsilon > 0$, esiste $c_{\varepsilon} > 0$ tale che $\lim_{\varepsilon \to 0} c_{\varepsilon} = +\infty$ e $ab \le \varepsilon a^p + c_{\varepsilon} b^{p'}$.
- Se $p \ge 1$ ed $a, b \ge 0$ allora $(a+b)^p \le 2^{p-1}(a^p + b^p)$.
- (Disuguaglianza di Holder) Se 1 \infty e $f \in L^p(E), g \in L^{p'}(E)$. Allora $fg \in L_1(E)$ e

$$\int_{E} |fg| \le \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}} \left(\int_{E} |g|^{p'}\right)^{\frac{1}{p'}}.$$

- (Disuguaglianza di Holder generalizzata) Siano f_1, \ldots, f_k tali che $f_i \in L^{p_i}(U)$ con $\frac{1}{p} = \sum_{i=1}^k \frac{1}{p_i} \leq 1$. Allora $f = f_1 \ldots f_k \in L^p(U)$ e $||f||_{L^p(U)} \leq ||f_1||_{L^{p_1}(U)} \ldots ||f_k||_{L^{p_k}(U)}$.
- Sia $1 \le p \le \infty$, $f \in L^p(E)$ e (f_h) in $L^p(E)$ tale che $||f_h f||_p \to 0$. Allora esistono $g \in L^p(E)$ e (f_{h_k}) tali che

$$\lim_{k} f_{h_k}(x) = f(x) \text{ q.o. in } E,$$

$$|f_{h_k}(x)| \leq g(x)$$
 q.o. in E .

• Sia $1 \le p \le \infty$, $f \in l^p$ e (f_h) in l^p tale che $||f_h - f||_p \to 0$. Allora $f_h(x) \to f(x)$ puntualmente.