Christian B. Mendl, Richard M. Milbradt

due: 23 June 2022 (before tutorial)

Exercise 8.1 (Schmidt decomposition and entanglement entropy)

Let $\psi \in \mathbb{C}^{m \cdot n}$ be a complex vector. We may interpret ψ as $m \times n$ matrix and compute its SVD, for which we use the convention $\psi = USV^T$ here, with isometries $U \in \mathbb{C}^{m \times k}$, $V \in \mathbb{C}^{n \times k}$ (such that $U^{\dagger}U = I$ and $V^{\dagger}V = I$), $k = \min(m, n)$ and $S = \operatorname{diag}(\sigma_1, \ldots, \sigma_k)$. (The V matrix appears without complex conjugation in the SVD.) As graphical diagram:

$$\psi = \underbrace{\begin{array}{c} U \\ V \end{array}}_{V} S$$

(a) Show that

$$\|\psi\|^2 = \sum_{j=1}^k \sigma_j^2.$$

Hint: Revisit the definition and properties of the Frobenius norm, or use the diagrammatic representation.

(b) The partial trace has been introduced in Exercise 5.1. Here the two subsystems have dimension m and n, respectively. Verify that

$$\operatorname{tr}_2[\psi \circ \psi^*] = US^2U^{\dagger}$$
 and $\operatorname{tr}_1[\psi \circ \psi^*] = VS^2V^{\dagger}$.

In part (b) we have thus found the spectral decompositions of the "reduced density matrices" defined as $\rho_1 = \operatorname{tr}_2[\psi \circ \psi^*]$ and $\rho_2 = \operatorname{tr}_1[\psi \circ \psi^*]$ (potentially omitting zero eigenvalues). One observes that ρ_1 and ρ_2 have the same (non-zero) eigenvalues $(\sigma_j^2)_{j=1,\dots,k}$. In the following, we assume that $\|\psi\| = 1$, such that $\sum_{j=1}^k \sigma_j^2 = 1$ according to (a).

In general, a density matrix ρ is a Hermitian, positive semidefinite matrix with normalization $tr[\rho] = 1$. The von Neumann entropy of ρ is defined as

$$S(\rho) = -\operatorname{tr}[\rho \log(\rho)],$$

with the logarithm interpreted as matrix function, and the convention $0 \log(0) = \lim_{x\to 0} x \log(x) = 0$.

In the present setting, the entanglement entropy between the two subsystems is defined as

$$\mathcal{S}_{\mathrm{ent}} = \mathcal{S}(\rho_1) = \mathcal{S}(\rho_2) = -\sum_{j=1}^k \sigma_j^2 \log(\sigma_j^2).$$

(You should convince yourself that $S(\rho_1)$ and $S(\rho_2)$ are indeed equal to the sum on the right.) Intuitively, the entanglement entropy measures how strongly the subsystems are intertwined.

(c) Which singular values $(\sigma_j)_{j=1,\dots,k}$ minimize and maximize the entanglement entropy, respectively, under the normalization condition $\sum_{j=1}^k \sigma_j^2 = 1$? (k should be regarded as given and fixed.)

Hint: The smallest possible entanglement entropy is zero. Regarding maximization, first consider the case k=2.

(d) Finally, we consider the case that ψ is represented in bond-canonical MPS form, for some $\ell \in \{1, \dots, d-1\}$:

Here the tensors A^j for $j=1,\ldots \ell$ are left-orthonormal, the tensors A^j for $j=\ell+1,\ldots,d$ are right-orthonormal, and S is the diagonal matrix of "bond" singular values. In the above setting, the first ℓ open (downward-pointing) legs form subsystem 1, and correspondingly the remaining legs subsystem 2. When denoting the dimensions of the open legs by n_1,\ldots,n_d , then $m=n_1\cdots n_\ell$ and $n=n_{\ell+1}\cdots n_d$. Show that the tensor $\psi_{\leq \ell}$ (interpreted as $m\times D_\ell$ matrix) and the transpose of $\psi_{\geq \ell+1}$ (interpreted as $D_\ell\times n$ matrix) are both isometries.

Remark: The bond-canonical MPS representation can thus be interpreted as SVD of ψ , where $\psi_{\leq \ell}$ plays the role of the above U and $\psi_{\geq \ell+1}^T$ the role of the above V. In particular, the "bond" singular values determine the entanglement entropy.

Exercise 8.2 (Canonical MPS forms)

The goal of this exercise is to covert a MPS into several canonical forms. We first revisit left-orthonormalization: compared to the lecture, one can bring the last tensor into left-orthonormal form, too, by introducing an additional trailing (dummy) tensor $A^{d+1} \in \mathbb{R}^{1 \times 1 \times 1}$, which absorbs the final R matrix. This R matrix is in $\mathbb{R}^{1 \times 1}$, since $D_d = 1$ and the diagonal entries of R are real-valued in general. The single entry of A^{d+1} is the overall (Frobenius) norm of the input MPS, and returned by the following algorithm. Note that the overall norm of the updated MPS is equal to 1 since all tensors are left-orthonormal.

Left-orthonormalization of a matrix product state

Input: list of MPS tensors $A^{\ell} \in \mathbb{C}^{n_{\ell} \times D_{\ell-1} \times D_{\ell}}$, $\ell = 1, \dots, d$ (with singleton bond dimensions $D_0 = D_d = 1$)

- 1. Define an additional (temporary) tensor $A^{d+1} \in \mathbb{R}^{1 \times 1 \times 1}$ with single entry 1
- 2. for $\ell = 1, ..., d$:
 Reshape A^{ℓ} into a $(n_{\ell}D_{\ell-1}) \times D_{\ell}$ matrix, and
 compute the ("economy-size") QR-decomposition $A^{\ell} = QR$ Update $D^{\ell} \leftarrow$ second dimension of Q, and $A^{\ell} \leftarrow$ reshape $(Q, (n_{\ell}, D_{\ell-1}, D_{\ell}))$ Absorb R into the next tensor: $A^{\ell+1} \leftarrow R$
- 3. In case the single entry of A^{d+1} is negative, flip the signs of A^d and A^{d+1}
- 4. **return** list of updated tensors $(A^{\ell})_{\ell=1,\dots,d}$, and the single entry of A^{d+1} (Frobenius norm of input MPS)

The Moodle page contains a Jupyter notebook template for this exercise, with placeholders for the following parts:

(a) Implement the above algorithm for left-orthonormalization in the function mps_orthonormalize_left(Alist)

Hint: For the QR-decompositions you can use np.linalg.qr(..., mode='reduced'). It is not necessary to store a list of virtual bond dimension D_{ℓ} , since these can be obtained from the dimensions of the NumPy arrays A^{ℓ} .

(b) Implement an analogous algorithm for right-orthonormalization in the function mps_orthonormalize_right(Alist)

Hint: Conceptually, this is the same algorithm as left-orthonormalization after left-right mirroring.

- (c) Implement the function mps_orthonormalize_center(Alist, j) for converting a MPS to site-canonical form with center at site j, such that all tensors to the left are left-orthonormal, and all tensors to the right are right-orthonormal. (The center tensor A^j needs not be of any normal form.)
- (d) Implement the function mps_orthonormalize_bond(Alist, j) to convert a MPS into bond-canonical form as discussed in Exercise 8.1(d) above. The function should return the list of "bond" singular values. Hint: You can first convert to site-canonical form with center at j, and then update the tensors A^{j} and A^{j+1} .
- (e) Finally, run the notebook using your implementations, ensuring that all consistency checks pass.