ST. FRANCIS INSTITUTE OF TECHNOLOGY Mount Poinsur, SVP Road, Borivali (W), Mumbai – 400103

TUTORIAL NO.3

SUBJECT: B.E.E

TOPIC: SUPERPOSITION THEOREM

1. Find the value of the current flowing through the 8Ω resistance using Superposition Theorem. (May 19)(8 m)

Ans. $I_{8\Omega} = 0.319A(\downarrow)$.

. 2. Find the value of the current flowing through the 4Ω resistance using Superposition Theorem. (May 19)(7 m)

Ans. $I_{4\Omega} = 1.162A(\leftarrow)$.

3. Find the value of the current I_X using Superposition Theorem. (Dec 18)(8 m)

Ans. $I_X = 0.961 A(\to)$.

t. Find the value of the current flowing through the 5Ω resistance using Superposition Theorem. (Dec 18)(7 m)

Ans. $I_{5\Omega} = 0.93A(\cdot \cdot)$.

 \neq . Find V_1 using Superposition Theorem. (May 18)(8 m)

Ans. $V_1 = 14.062V$.

6. Find the value of the current flowing through the R_1 resistance using Superposition Theorem. (May 17)(8 m)

Ans. $I_{1\Omega} = 2A(\leftarrow)$.

State Superposition Theorem. Find I_X using superposition theorem without using source transformation. (Dec 17)(12 m)

Ans. $I_X = 5A(\rightarrow)$.

8. Find the value of the current flowing through the 10Ω resistance using Superposition Theorem. (Dec 17)(7 m)

Ans. $I_{10\Omega} = 1.034 A(\downarrow)$.

9. Find the value of the current flowing through the 20Ω resistance using Superposition Theorem. (May 17)(8 m)

Ans. $I_{20\Omega} = 1.25 A(\downarrow)$.

10. Obtain current in 1Ω by using superposition theorem. (Dec 16)(10 m)

Ans. $I_{1\Omega} = 0.34375 A(\downarrow)$.

1]. Using Superposition theorem, voltage across $4k\Omega$.(May 16)(7 m)

Ans. $V_{4k\Omega} = 28V$.

12. Find the value of the current flowing through the 9Ω resistance using Superposition Theorem. (Dec 16)(7 m)

Ans. $I_{9\Omega} = 0.8627 A(\to)$.

1 My - - + +

13. Find the value of the current flowing through the 30Ω resistance using Superposition Theorem. (Dec 15)(7 m)

Ans. $I_{30\Omega} = 2.5354A(\leftarrow)$.

14. For the above diagram, find voltage V_{AB} using superposition theorem. (Dec 14)(3 m)

Ans. $V_{AB} = 16V$.

Find the value of the current flowing through the 5Ω resistance using Superposition Theorem.(Dec 14)(7 m)

Ans. $I_{5\Omega} = 3.4A(\downarrow)$.

16. Find the current through $R_L = 2\Omega$ resistor by superposition theorem.(May 13)(7 m)

Ans. $I_{2\Omega} = 0.5A(\downarrow)$.

17. Find the current through 3Ω resistor by superposition theorem. (Dec 12)(7 m)

Ans. $I_{3\Omega} = 1.098A$.

18. Find the current through 1Ω resistor by superposition theorem.(Dec 12)(7 m)

Ans. $I_{1\Omega} = 1.9688 A(\downarrow)$.