Spécialité: 3 LIC. HYDRAULQUE **Module**: Pompe et Station de Pompage

TD №6

Exercice

Un fabriquant d'une pompe centrifuge dispose en magasin de moteurs des puissances diverses dont la vitesse de rotation est 1450 tr/mn, il dispose également de roues de pompe de divers diamètre semblables entre elles, qui correspondent a une vitesse spécifique de 53 pour le rendement maximal.

Deux commandes lui sont adressées :

$$1^{\text{ere}}$$
 \longrightarrow $Q = 84 \text{ l/s}$ $H = 10\text{m}$
 2^{eme} \longrightarrow $Q = 61 \text{ l/s}$ $H = 64\text{m}$

Comment peut-il satisfaire les deux commendes?

Solution:

$$N_s = \frac{n\sqrt{Q}}{H^{\frac{3}{4}}}$$
 la vitesse spécifique

1^{ere} commande

 $N_s = \frac{1450\sqrt{0,084}}{10^{\frac{3}{4}}} = 74,73$ (il faut qu'en divise le débit pour avoir plusieurs pompes

semblables installer en parallèle et pour que N_s égale à 53)

$$N_s = 53 = \frac{1450\sqrt{\hat{Q}}}{10^{\frac{3}{4}}} \longrightarrow \hat{Q} = \frac{53^2 \ 10^{\frac{3}{2}}}{1450^2} = 0,042 \ \text{m}^3/\text{s}$$

 $\frac{Q}{\overline{Q}}$ = nombre de pompe en parallèle

$$P=\frac{0,084}{0,042}=2$$
 pompes en parallèle ($Q_n=Q_1+Q_2=0,084~m^3/s$) 2^{eme} commande

 $N_s = \frac{1450\sqrt{0,061}}{64^{\frac{3}{4}}} = 15,83$ (il faut qu'en divise la hauteur pour avoir plusieurs pompes

semblables installer en série et pour que N_s égale à 53)

$$N_S = 53 = \frac{1450\sqrt{0,061}}{\hat{H}^{\frac{3}{4}}} \longrightarrow \hat{H} = (\frac{1450\sqrt{0,061}}{53})^{\frac{4}{3}} = 12,69 \text{ m}$$

 $\frac{H}{\widehat{H}}$ = nombre de pompe en série

$$P = \frac{64}{12,69} = 5,04$$
 pompes en série (H_T=H₁+H₂..... +H₅ = 64 m)

La vitesse spécifique

La vitesse spécifique «Ns» est une expression pour toutes les pompes semblables fonctionnant en similitude mécanique, elle s'exprime généralement en tour par minute (tr/min) avec Q en (m3/s) et H en (m). La vitesse spécifique d'une pompe est donc la vitesse à laquelle tournerait la pompe semblable qui, en régime de fonctionnement homologue, débiterait 1m3/s à 1m

$$N_{S} = \frac{n\sqrt{Q}}{H^{\frac{3}{4}}}$$

Les valeurs de H et de Q correspondent au rendement maximal.

Fig1. Points au rendement maximal de calcul de la vitesse spécifique N_s

Pompes en série

On utilise donc des pompes en série pour atteindre de grandes hauteurs d'élévation. Elles fonctionnent à le même débit, chaque pompe à son hauteur. (Voir les équations (1) et (2))

Fig2. Pompes en série

$$Q_1=Q_2=....=Q_n$$
 (1)
 $H_T=H_1+H_2.....+H_n$ (2)

Soulignons que lorsque plusieurs pompes sont placées en série, seul le premier risque de manquer de pression à son entrée et de subir la cavitation. Il faut donc vérifier la condition de cavitation uniquement pour cette pompe.

Pompes en parallèle

Lorsque le débit de fonctionnement est insuffisant, on fait appel au montage des pompes en parallèle, les pompes aspirent séparément. Elles fonctionnent à la même hauteur, chaque pompe à son débit. (Voir les équations (3) et (4))

Fig3. Pompes en parallèle

$$\begin{aligned} Q_n &= Q_1 + Q_2 + \dots + Q_n \\ H_1 &= H_2 = H_3 \dots = H_n \end{aligned} \tag{3}$$

$$H_1 = H_2 = H_3 \dots = H_n$$
 (4)