

CENTRO UNIVERSITÁRIO INSTITUTO DE EDUCAÇÃO SUPERIOR DE BRASÍLIA - IESB

CURSO SUPERIOR DE TECNOLOGIA EM SEGURANÇA DA INFORMAÇÃO

IESB PROJETO INTEGRADOR - IMPLEMENTAÇÃO DE FIREWALL

Aluno: Diego de Sá Bachega

Professor: Eustáquio Mendes Guimarães

Brasília Novembro/2018

1.	VERSÕES DO DOCUMENTO
2.	INTRODUÇÃO3
3.	OBJETIVO
4.	JUSTIFICATIVA3
5.	DESENVOLVIMENTO
I.	REDES4
II.	AMBIENTE DE DESENVOLVIMENTO E PRODUÇÃO
III.	ESTAÇÕES DE TRABALHO
IV.	FIREWALL – LINHA DE DEFESA
V.	SERVIDORES
VI.	SERVIDOR MYSQL + APACHE
VII.	SERVIDOR FTP
6	REGISTROS DE LOGS
7	CONCLUSÃO
8	REFERÊNCIAS BIBLIOGRÁFICAS

1. Versões do documento

Versão	Data	Autor(es)	Histórico
1.0	21/Setembro/18	Diego	Pré-Projeto
2.0	Outubro/18*	Diego	Preparação do Ambiente Virtual
3.0	Novembro/18*	Diego	Instalação dos Servidores
4.0	Novembro/18*	Diego	Instalação do Firewall
5.0	23/Novembro/18	Diego	Entrega do Projeto

^{*}Não houve uma data exata, uma vez que o ambiente foi refeito varias vezes.

2. Introdução

Este projeto foi desenvolvido em uma máquina comum com processador Intel i7, 8Gb de memória Ram, com capacidade de 1 Tb de armazenamento em HD e um sistema Operacional Windows 10. Para controle, registro e versionamento de documentos e arquivos de configuração foi utilizada uma conta GitHub, link https://github.com/diegobachega/Projeto-Integrador-Implementacao-de-Seguranca.

No meio do projeto a máquina utilizada para construção foi substituída devido a falhas no processamento no dispositivo de armazenamento. O ambiente virtual foi migrado para um dispositivo HD Externo em uma máquina virtual instalada em um Intel Dual Core, 4Gb de Ram, com capacidade de 1 Tb, no qual foi finalizada toda arquitetura de rede projetada com um firewall do tipo Pfsense appliance..

3. Objetivo

Um Projeto de Segurança da Informação fornece informações essenciais para o gerenciamento da segurança da informação em empresas modernas que estão em constante evolução. Este projeto tem por objetivo a implementação de uma solução de segurança, do tipo Firewall, que pode ser aplicado em uma rede empresarial de pequeno porte para melhorar a proteção dos dados do negócio, reduzir custos com licenças e melhorar a performance da rede.

4. Justificativa

Um Firewall consiste em um filtro que controla todas as comunicações que passam de uma rede a outra, permitindo ou negando seu acesso a outra rede. Entre as várias ações de segurança capaz de implementação em um firewall pode-se citar o bloqueio de portas específicas, endereços IP, sites, ou mesmo pacotes de tipo/conteúdo específicos. Com esta solução, é possível simular no virtual box uma maneira de monitorar todo o tráfego que está entrando e saindo da rede corporativa evitando invasões, ataques e outros tipos de ameaças para a rede corporativa.

5. Desenvolvimento

O Linux, é um sistema operacional voltado tanto para uso comum quanto para o comercial, dentre suas principais características, podemos destacar o fato de ser um software livre, menos vulnerável a ataques e por apresentar diferentes modelos de implementação para infraestruturas diferentes. Durante o desenvolvimento do trabalho, foram encontradas poucas complicações com relação a usabilidade do Linux, ou melhor, não existe complexidade em usar o sistema em modo gráfico, as dificuldades estão ligadas aos momentos e circunstâncias que precisamos atualizar, instalar e configurar hardwares e softwares através de linhas de comando do terminal Linux.

Para a construção e desenvolvimento do projeto foram utilizadas as seguintes ferramentas:

I. Redes

- Link Internet Fibra 100MB;
- Roteador Padrão Vivo;
- Roteador Secundário Intelbras

Tela Vivo Fibra (Fonte: Site www.minhaconexao.com.br)

Roteador1 192.168.15.1 (padrão da vivo)

Roteador 2 - IP 10.0.0.1

O roteador 2 ficou responsável por distribuir a internet (Wan) para o Firewall PfSense. O roteador 1(Vivo Fibra) distribui a internet para o roteador 2(Intelbras- usado nos testes) e para um terceiro roteador ligado direto na porta Lan do Modem Vivo. Esta configuração foi necessária para separar a rede doméstica da rede utilizada para o projeto, afim de evitar indisponibilidade na rede causada pelos testes. A configuração completa (telas) esta no Github.

II. Ambiente de Desenvolvimento e Produção

- Notebook Acer F5-573G Intel Core i7 2.7Ghz, 8Gb Ram W10;
- Desktop Intel Dual Core; 4Gb Ram, de 1TB HD e W10Home;
- HD Externo com capacidade de 1TB e outro com 750GB;
- Software Virtual Box 5.2.22;
- Oracle VM VirtualBox Extension Pack 5.2.20;
- Software Developer Kit (SDK) 5.2.22;
- Pacote Office:
- GitHub;
- HD Regenerator;
- MVDirSize;
- VMWare Player(testes);
- 7Zip;
- Outros.

virtual box

Observação: o Desktop W10 não fez parte do projeto devido a falta de recursos (CPU e RAM) para configura-lo.

Exibir informações básicas sobre o computador

Edição do Windows

Windows 10 Home Single Language

© 2018 Microsoft Corporation. Todos os direitos reservados.

Sistema

Fabricante: Acer

Modelo: Aspire F5-573G

Processador: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz

Memória instalada (RAM): 8,00 GB (utilizável: 7,87 GB)

Tipo de sistema: Sistema Operacional de 64 bits, processador com base em x64

Caneta e Toque: Nenhuma Entrada à Caneta ou por Toque está disponível para este vídeo

Suporte Acer

Site: Suporte online

Nome do computador, domínio e configurações de grupo de trabalho

Nome do computador: Nome completo do LAPTOP-FE00RKC4 LAPTOP-FE00RKC4

computador:

Descrição do computador:

Grupo de trabalho: WORKGROUP

Tela Acer

Exibir informações básicas sobre o computador

Edição do Windows

Windows 10 Home Single Language

© 2017 Microsoft Corporation. Todos os direitos reservados.

Sistema

Fabricante: Positivo Informatica S.A.

Modelo: Stile

Processador: Intel(R) Celeron(R) CPU J1800 @ 2.41GHz 2,42 GHz

Memória instalada (RAM): 4,00 GB (utilizável: 3,89 GB)

Tipo de sistema: Sistema Operacional de 64 bits, processador com base em x64

Caneta e Toque: Nenhuma Entrada à Caneta ou por Toque está disponível para este vídeo

Suporte Positivo Informatica S.A.

Site: Suporte online

Nome do computador, domínio e configurações de grupo de trabalho

Nome do computador: Nome completo do

DESKTOP-KACEEDQ
DESKTOP-KACEEDQ

computador:

Descrição do computador:

Grupo de trabalho: WORKGROUP

Tela Desktop

Ambiente de Produção e Desenvolvimento

lome	Data de modific	Tipo
01.10.18 Virtual 5.2.22	19/11/2018 10:05	Pasta de arquivo
01.11.18 Free Star Burner DVD	19/11/2018 10:23	Pasta de arquivo
01.11.18 Guiformat	19/11/2018 10:23	Pasta de arquivo
01.11.18 Linux Live Usb	19/11/2018 10:23	Pasta de arquivo
🔒 01.11.18 unetbootin-windows-661	19/11/2018 10:23	Pasta de arquivo
📙 02.11.18 Debian 9.5 Manual e ISOs	19/11/2018 10:32	Pasta de arquivo
	12/11/2018 22:57	Pasta de arquivo
04.11.18 MVDirSize	12/11/2018 22:57	Pasta de arquivo
29.10.18 DirSize	19/11/2018 09:41	Pasta de arquivo
29.10.18 VirtualBox Versão 4.3 (recuperaç	19/11/2018 09:51	Pasta de arquivo
Boot Linux Debian	19/11/2018 10:03	Pasta de arquivo
Menu Concatenado com Diversos Boots	19/11/2018 10:35	Pasta de arquivo
unetbootin	19/11/2018 10:35	Pasta de arquivo
7z1805-x64	18/11/2018 11:07	Aplicativo
Quick Access_Acer_2.01.3003_W10x64_A	11/11/2018 12:36	Arquivo ZIP do \
VirtualBoxSDK-5.2.22-126460	10/11/2018 22:03	Arquivo ZIP do \
📆 winrar-x64-550br-RATON	04/11/2018 13:04	Aplicativo

Sistema Operacional Utilizado

Debian é uma das distribuições Linux mais antigas e populares que começou nos anos 90 com um grupo pequeno de desenvolvedores de Software Livre e cresceu gradualmente para se tornar uma comunidade grande e bem organizada de desenvolvedores e usuários. O kernel do Linux e outros softwares livres importantes formam uma distribuição de software única chamada Debian GNU/Linux. Esta distribuição é composta por um grande número de pacotes de softwares. Cada pacote na distribuição contém executáveis, scripts, documentação e informações de configuração, e tem um mantenedor que é o principal responsável por manter o pacote atualizado, rastrear relatórios de bugs e comunicar-se com os colaboradores que juntos fazem um trabalho de rastreamento de erros e garantem que os problemas sejam encontrados, corrigidos e distribuídos de forma rápida e gratuita através das atualização automáticas.

Desde o início do projeto, o Debian foi escolhido devido a quantidade de manuais e materiais, por exemplo as videoaulas, que serviriam como guias, para desenvolvimento do projeto, com fácil acesso através da Internet.

A instalação apenas em modo script, através de dispositivo USB, mostrou-se vantajosa, em um primeiro momento, por ser uma pequena imagem de instalação e por ser baixada necessitando apenas de uma máquina com uma conexão de Internet. Mas apresentou muitas falhas durante o processo de configuração e instalação de pacotes adicionais para configuração do firewall IPTABLES, sendo difícil encontrar a solução dos problemas devido aos conhecimentos ainda serem limitados, proporcional ao tempo de convivência com o sistema.

Desta forma optou-se por trabalhar com as imagens maiores que contém a instalação completa, ou seja, juntas possuem mais pacotes que facilitam a instalação em máquinas sem a necessidade de conexão com a Internet tornando assim, este modelo ainda mais propício para quem precisa de uma máquina recheada..

Tela dos Arquivos utilizados

Observação: verificar a capacidade de processamento da máquina real na fase pré-projeto.

Configurações de Instalação

Os equipamentos do tipo Desktop e Servidores tiveram uma configuração inicial bem semelhante, através de Discos Virtuais. A principal diferença foi na utilização de um espaço maior no disco para que as três imagens ISO Debian 9 (DVD1, DVD2 e DVD3) fossem disponibilizadas para os servidores e apenas a imagem ISO DVD1 para configuração dos equipamentos desktops, uma vez que a proposta para esses equipamentos é serem mais leves. Mas, os servidores não conseguiram rodar em conjunto com os desktops, fazendo com que o projeto dos servidores retornasse para a instalação mais simples e muito mais leve, sem o ambiente gráfico, para não consumir os recursos necessários para processar o Debian Desktop1 Desktop2 e Desktop3 projetados nesta rede.

```
VG LVM debiandiego-vg, LV home - 4.4 GB Linux device-mapper (linear)
                             4.4 GB
                                        f
                                            ext4
                                                     /home
VG LVM debiandiego-vg, LV root - 2.1 GB Linux device-mapper (linear)
                             2.1 GB
                                       f
                                            ext4

    VG LVM debiandiego-vg, LV swap_1 - 532.7 MB Linux device-mapper (linear)

                          532.7 MB
                                       f
                                            swap
                                                     swap

    VG LVM debiandiego-vg, LV tmp - 260.0 MB Linux device-mapper (linear)

                          260.0 MB
                                        f
                                            ext4
                                                     /tmp

    VG LVM debiandiego-vg, LV var - 1.0 GB Linux device-mapper (linear)

                             1.0 GB
                                       f
                                                     /var
 SCSI1 (0,0,0) (sda) - 8.6 GB ATA VBOX HARDDISK
          #1 primária 254.8 MB
                                            ext2
    >
                                                     /boot
          #5 lógica
                             8.3 GB
```

Configurações de Hardware

```
root@debiandiego:~# hostnamectl
Static hostname: debiandiego
Icon name: computer-vm
Chassis: vm
Machine ID: 4dcb9193ac964240aa2fd722baee7be6
Boot ID: 80e03385ea304903ad586f9bcddad494
Virtualization: oracle
Operating System: Debian GNU/Linux 9 (stretch)
Kernel: Linux 4.9.0–7–amd64
Architecture: x86–64
root@debiandiego:~#
```

Configurações de Software

```
root@debiandiego:~# systemd–analize
–bash: systemd–analize: comando não encontrado
root@debiandiego:~# systemd–analyze
Startup finished in 3.637s (kernel) + 7.854s (userspace) = 11.492s
root@debiandiego:~# _
```

Tempo de Carregamento do Sistema: 11,49 segundos

Configurações Utilizadas

Root 123456 / Nome usuário: diegobachega ou diego ou debiandiego

Tela do usuário root

Tela do usuário diegobachega

Adaptadores de Rede

Duas placas de Redes habilitadas

III. Estações de Trabalho

Para configurar os desktops, foram projetadas 3 estações, com aplicações voltadas para a área administrativa da empresa fictícia. Um conjunto importante e comuns para quem trabalha em escritórios, é o pacote office. Assim, na empresa fictícia as três maquinas possuem a suíte instalada LibreOffice, que até já vem embarcado no Debian 9 Stretch (DVD1 .ISO).

Tela suíte LibreOffice

Além desse pacote, algumas configurações e aplicações OpenSource podem facilitar o dia a dia da empresa. E buscando trazer um pouco desta realidade para o projeto foram feitas configurações de melhoria como a atualização dos repositórios (sources.list) e adicionalmente foram instalados os seguintes programas:

Desktop1 - Principal

Desktop1 - Console VB

Desktop1 - Compartilhamento de Arquivos

Desktop 2 - Principal

Desktop 2 - Console VB

Desktop 2 - Compartilhamento de Arquivos

Desktop 3 - Principal

Desktop 3 - Console VB

Desktop 3 - Compartilhamento de Arquivos

IV. Firewall - Linha de Defesa

Foi escolhido o Firewall Pfsense(Versão Free 2.4.4 64bits) por ser um software livre, baseado em FreeBSD, adaptado tanto para o seu uso como roteador como firewall. De maneira resumida, ele é um appliance com muitos recursos prontos para serem instalados e já vem embarcado nele uma série opções como o controle avançado de banda, VPN, autenticação Radius, balanceamento de link dentre outras.

Passo a Passo par a Instalação do Firewall

- ✓ Download do arquivo com a arquitetura AMD64 (64-bit).
- ✓ Software 7-zip, para descompactar a iso;

Rede

- ✓ Para instalação do Appliance, foi criada uma máquina virtual com nome Pfsense2 configurado para FreeBSD;
- ✓ Nas configurações de Rede, o Adaptador1 ficou configurado em modo bridge e o 2 ficou como rede interna;

Adaptador 2

✓ Por fim, as maquinas Servidor1 e Servidor2, Desktop1, Desktop2 e Desktop3 foram conectadas a rede interna com toda conexão passando pelo Firewall.

Observação: A instalação do PfSense só foi concluída depois de muito pesquisar, testar e errar até acertar.

Tela PfSense Pastas

Tela Pfsense Login

Pela Máquina Real (IP 192.168.1.254) redirecionado para 10.0.0.101 Acessando pelas Máquinas Virtuais (Desktop 1, 2 ou 3 - Rede Interna) IP 10.0.0.101

Tela PfSense1 Inicial

Percentual de Protocolos UDP e TCP

IPs de Destino	Pontos de dados	Pontos de dados	
192.168.1.254	1	694	
8.8.4.4	3	67	
10.0.0.101		15	
186.215.92.82		29	
10.0.0.255		23.	

IPs Destino

Portas de Origem	Pontos de dados
TCP/443: https	23
UDP/137: netbios-ns	16
UDP/138: netbios-dgm	7
UDP/33991	2
TCP/56894	2
Other	2954

IPs Origem

Portas Destino

Ações BloqueadosxPermitidos

Diagnósticos / Atividades do Sistema

```
Atividade da CPU
last pid: 43534; load averages: 0.29, 0.51, 0.59 up 0+00:48:43
121 processes: 3 running, 184 sleeping, 14 waiting
Mem: 58M Active, 63M Inact, 81M Wired, 16M Buf, 759M Free
  PID USERNAME PRI NICE SIZE RES STATE TIME KCPU COMMAND
   11 root
                   155 ki31 0K
                                          16K RUN 43:46 100.00% [idle]
                                  0K 240K swapin 0:31 0.00% [kernel{swapper}]
                  -16 - 0K 240K swapin 0:31 0.00% [kernel{swapper}]
-92 - 0K 240K - 0:19 0.00% [kernel{emð taskq}]
    e root
    @ root
  316 root
                 52 0 91720K 36724K accept 0:10 0.00% php-fpm: pool nginx (php-fpm){php-fpm}
73647 root
                   24 0 91464K 36416K piperd 0:10 0.00% php-fpm; pool nginx (php-fpm){php-fpm}
-92 - 0K 240K - 0:10 0.00% [kernel{emz taskq}]
8 root -92 - 0K 240K - 9:00 0.00% php-fpm: pool nginx (php-fpm)

12 root -60 - 0K 224K MAIT 0:06 0.00% [intr{swi4: clock (0)}]

33817 root 20 0.13352K 8124K kqread 0:06 0.00% nginx: worker process (nginx)

79406 root 20 0.6400K 2556K select 0:04 0.00% // usr/sbin/syslogd -s -c -c -1 /var/dhcpd/va
                  52 0 91464K 36184K accept 0:03 0.00% php-fpm; pool nginx (php-fpm){php-fpm}
26873 root
    7 root
                  -16 - 0K 16K -
                                                       0:02 0.00% [rand_harvestq]
16562 zabbix 20 0 10956K 7344K select 0:01 0.00% zabbix_agentd: listener $3 [waiting for con 23033 root 20 0 6900K 2324K nanslp 0:01 0.00% [dpinger{dpinger}]
23033 root 20 0 6900K 2324K manslp 0:01 0.00% [dpinger{dpinger}] 60781 root 52 20 6068K 2596K wait 0:01 0.00% /bin/sh /var/db/rrd/updaterrd.sh
19672 root 28 9 6698K 2369K bpf 9:01 0.00% /usr/local/sbin/filterlog -i pflog0 -p /usr
                   -16 - 0K 16K pftm 0:01 0.00% [pf purge]
-16 - 0K 32K - 0:01 0.00% [cam{donequ
   6 root
4 root
                                                         9:91 9.98% [cam{doneq9}]
```

Diagnóstico

Monitoramento Processador

V. Servidores

Este projeto ilustra, a instalação dois servidores Debian 9 Strech, voltados para uma empresa fictícia. Somados, os dois servidores possuem a capacidade de compartilhamento, proteção do sistema de segurança e monitorização do sistema.

Arquitetura de rede do projeto

(proposta para uma empresa fictícia 1 Firewall, 2 Servidores (Arquivos e Zabbix) e 3 Desktops.

VI. Servidor MySql + Apache

Este Servidor foi projeto para o Zabbix, que é uma solução Open Source, e que pode ser utilizada para monitorar toda a infraestrutura de rede e aplicações. Neste projeto seu objetivo será detectar anormalidades no Firewall, disparando alertas em telas, armazenando os dados em banco de dados MySQL para que possam ser gerados gráficos e painéis de acompanhamento e que mostrem informações de comportamento do Firewall Pfsense.

BD Name: zabbix_db User Name: zabbix_usr

Rede do Servidor

IP 192.168.15.252

Observação: Pela Máquina Real (IP 192.168.1.252) redirecionado para pfsense:8080zabbix

Pfsense CPU Jump

Utilização de CPU Pfsense

Uso de memória - Pfsense

Uso de Disco do Pfsense

Network Pfsense

VII. Servidor FTP

Foi criado um servidor de arquivos com o Samba, que utiliza o protocolo SMB (Server Message Block). Este protocolo é utilizado para o compartilhamento de arquivos na rede. A transferência de dados em redes de computadores envolve a transferência dos arquivos, em uma rede empresarial, serve para o acesso aos sistemas de arquivos internos, podendo ser utilizado também por equipamentos como relógios de ponto eletrônico, impressoras ou scanners de rede.

Acesso ao Servidor - IP 192.168.1.253

Configuração de Rede: Interna

Acessando o Compartilhamento de Arquivos SMB://192.168.1.253/

Acessando o Compartilhamento após reiniciar a máquina.

Acesso ao Servidor através da maquina real (fora do VirtualBox)

Compartilhamento criado para a empresa fictícia

6 Registros de Logs

Todos os registros foram anexados no https://github.com/diegobachega/Projeto-Integrador-Implementacao-de-Seguranca. Para a análise da evolução, a maioria dos logs antigos foram inseridos no Github após a conclusão do projeto. Isso ocorreu porque os sistemas foram refeitos várias vezes e a maioria desses logs apresentam as configurações que não deram certo.

7 Conclusão

Inicialmente, foi feito um estudo para apresentação do pré-projeto, com definição de cronograma básico com as etapas que seriam seguidas e uma definição da arquitetura a ser apresentada. Esta entrega foi feita através do GitHub em 21/09/18.

A construção do projeto foi a segunda fase, feita sob a supervisão do professor através dos reportes de versionamento via GitHub. Os reportes de versionamentos foram feitos em 21/09, 22/10, 24/10, 07/11, 18/11 e 19/11. O aplicativo GitHub desktop estava apresentado erros de upload devido ao tamanho limitado de arquivos. Por isso, optou-se por fazer o upload dos arquivos direto no site.

Durante o desenvolvimento do projeto, ocorreram diversos problemas que foram resolvidos caso a caso. Um exemplo foi o aplicativo pré-instalado BlueStacks que derrubou o Virtual Box, corrompendo o programa de tal forma que só foi possível reinstala-lo depois de formatar o computador Acer. Outra dificuldade foi encontrar a configuração correta de rede, desde o roteador da operadora, que bloqueia e derruba automaticamente redes virtuais, até os servidores e as estações de trabalho devidamente instalados na rede interna com o firewall na borda, com a rede passando por ele.

A metodologia utilizada foi unificada com pesquisas em arquivos de outras matérias IESB concluídas durante este curso de segurança, fóruns, sites e videoaulas. O sistema operacional era diferente do padrão utilizado e não se possuía domínio sobre as tecnologias necessárias para construção do projeto. Neste contexto, houve diversos obstáculos que foram superados com investimentos em novos hardwares, tempo e estudo, como por exemplo, a baixa capacidade de processamento do computador Acer que desencadeou em lentidão na rede, deixando a construção onerosa, reduzindo a velocidade de evolução até chegar a parar devido a corrupção de arquivos no HD. A reconstrução só foi possível com a aquisição de outro dispositivo, para evitar passar muito tempo sem progressos.

O projeto foi concluído com sucesso em 22/11/2018, e ficou composto por dois servidores, um para compartilhamento de arquivos e outro para monitoramento do firewall com a solução Zabbix, ambos com Debian sem interface gráfica. As 3 estações de trabalho foram testadas uma a uma, devido a falta de recursos de

processamento para liga-las ao mesmo tempo. O appliance virtual firewall PfSense funcionou corretamente durante o período de testes, conforme relatórios postados.

A idéia é que este projeto será reaproveitado para uso pessoal. Os dois servidores virtuais ficarão em uma arquitetura nova, voltado para o uso caseiro, redesenhada de tal forma que será possível ser acessada pelo celular.

8 Referências Bibliográficas

Sites

- www.blogopcaolinux.com.br/2017/06/Guia-de-instalacao-do-Debian-9-Stretch.html;
- www.haulaead.thinkific.com/courses/take/curso-gratis-servidor-linux;
- https://www.pfsense.org/download;
- https://www.debian.org
- https://www.blogopcaolinux.com.br
- https://www.vivaolinux.com.br
- http://www.minhaconexao.com.br
- https://sempreupdate.com.br/instalandozabbix-server-4-0-no-debian-9-strech