SCRITTI DI ALGEBRA 2

FABRIZIO CASELLI

Contents

09 Gennaio 2017	3
23 Gennaio 2017	4
10 Febbraio 2017	5
07 Giugno 2017	6
04 Luglio 2017	7
05 Settembre 2017	8
11 Gennaio 2018	9
6 Febbraio 2018	10
04 Giugno 2018	11
9 Luglio 2018	12
12 Settembre 2018	13
14 Gennaio 2019	14
12 Febbraio 2019	15
4 Giugno 2019	16
2 Luglio 2019	17
9 Settembre 2019	18
9 Gennaio 2020	19
28 Gennaio 2020	20
09 Gennaio 2023	21
23 Gennaio 2023	22
13 Febbraio 2023	23
05 Giugno 2023	24
27 Giugno 2023	25
12 Luglio 2023	26
11 Settembre 2023	27
Soluzioni 09 Gennaio 2017	28
Soluzioni 23 Gennaio 2017	30
Soluzioni 10 Febbraio 2017	32
Soluzione 07 Giugno 2017	34
Soluzioni 04 Luglio 2017	37
Soluzioni 11 Gennaio 2018	39
Soluzioni 06 Febbraio 2018	41

2

FABRIZIO CASELLI

Soluzioni 04 Giugno 2018	43
Soluzioni 14 Gennaio 2019	45
Soluzioni 09 Gennaio 2023	47
Soluzioni 23 Gennaio 2023	49
Soluzioni 13 Febbraio 2023	51
Soluzioni 12 Luglio 2023	5.9

Esercizio 1 Sia $f = X^4 + 6X^2 + 4$. Sia $K = \mathbb{Q}[\sqrt{5}]$, L il campo di spezzamento di f su \mathbb{Q} , e $\alpha \in L$ una radice di f.

- a. Mostrare che $K \subset L$.
- b. Scomporre f in fattori irriducibili in $\mathbb{Q}[X]$ e in K[X];
- c. Determinare il polinomio minimo di α^{-1} su \mathbb{Q} .
- d. Determinare $[L:\mathbb{Q}]$ (Suggerimento: quali elementi di un campo K ammettono radice quadrata in un'estensione quadratica $K[\sqrt{d}]$?)

Esercizio 2 Sia $A = \mathbb{Z}[\sqrt{3}].$

- a. Determinare l'inverso di $1+2\sqrt{3}$ in $\mathbb{Q}[\sqrt{3}]$. b. Mostrare che $1+2\sqrt{3}$ è associato a $8+5\sqrt{3}$ in A e che non è associato a $17+10\sqrt{3}$ in A.
- c. Mostrare che il gruppo $\mathcal{U}(A)$ degli invertibili di A contiene infiniti elementi.

Esercizio 3 Si consideri il sistema

$$\begin{cases} X^{19} = X \\ X^3 + 13X^2 + 48X + 36 = 0 \end{cases}$$

- a. Verificare che esistono esattamente quattro soluzioni distinte in \mathbb{Z}_{665} .
- b. Determinare esplicitamente almeno tre soluzioni.

Esercizio 1 Sia $f = X^4 - 8X^2 + 1$, K il campo di spezzamento di f su \mathbb{Q} e $L \subset \mathbb{C}$ il campo di spezzamento di f su $\mathbb{Q}[\sqrt{-2}]$.

- a. Verificare che se α è una radice di f anche α^{-1} lo è.
- b. Determinare $[K:\mathbb{Q}]$.
- c. Determinare $[L:\mathbb{Q}[\sqrt{-2}]]$.
- d. Determinare il campo di spezzamento di f su \mathbb{Z}_{11} .

Esercizio 2 Sia $A = \mathbb{Z}[\sqrt{-2}]$ e $\alpha = 20 - 5\varepsilon$.

- a. Determinare una scomposizione in fattori irriducibili di α .
- b. Mostrare che $A/(\alpha)$ ha un numero finito di ideali.
- c. Descrivere gli ideali massimali di $A/(\alpha)$.
- d. Quali campi possono essere ottenuti come quoziente di $A/(\alpha)$?

Esercizio 3 Sia A un dominio e Q il suo campo dei quozienti. Un sottoinsieme $S \subset A$ si dice moltiplicativo se $1 \in S$, $0 \notin S$ e S è chiuso rispetto al prodotto di A. Siano S, S' sottoinsiemi di A moltiplicativi.

a. Mostrare che

$$A_S = \left\{ \frac{a}{s} \in Q : a \in A, s \in S \right\}$$

è un sottoanello di Q.

- b. Mostrare che se $S \subset S'$ e ogni elemento di S' è un divisore di qualche elemento di S allora $A_S = A_{S'}$.
- c. Mostrare che se $A_S = A_{S'}$ allora ogni elemento di S' divide qualche elemento di S.

10 Febbraio 2017

Esercizio 1 Sia $\mathbb{L} = \mathbb{Q}[\sqrt{3}, \sqrt{7}].$

- a. Determinare una base di \mathbb{L} come \mathbb{Q} -spazio vettoriale.
- b. Stabilire se \mathbb{L} è il campo di spezzamento di un polinomio $f \in \mathbb{Q}[X]$.
- c. Determinare un elemento $\alpha \in \mathbb{L}$ tale che $\mathbb{L} = \mathbb{Q}[\alpha]$.
- d. Mostrare che se $\beta \in \mathbb{L}$ è tale che $\beta^2 \in \mathbb{Q}$ allora esistono $q \in \mathbb{Q}$ e $d \in \{1, 3, 7, 21\}$ tali che $\beta = q\sqrt{d}$.
- e. Determinare tutti i campi $\mathbb K$ tali che $\mathbb Q\subseteq\mathbb K\subseteq\mathbb L.$

Esercizio 2 Sia $A = \mathbb{Z}_6[X]$. Siano $f = \sum a_i X^i$ e $g = \sum b_j X^j$ polinomi in A di grado rispettivamente n e m tali che fg = 1.

- a. Supponiamo n + m > 0 e $a_n = 3$. Mostrare che $b_m = 2, 4$.
- b. Nelle ipotesi del punto [a.] mostrare che per ogni $k=0,1,\dots,\min(n,m)$ si ha $a_{n-k}=0,3$ e $b_{m-k}=0,2,4$.
- c. Dedurre che f = g = 1 oppure f = g = 5.
- d. Scrivere almeno tre elementi invertibili in $A[\sqrt{2}]$.

Esercizio 3 Sia A l'intersezione di tutti i sottoanelli di \mathbb{C} che contengono \mathbb{Z} e $\sqrt[3]{2}$.

- a. Mostrare che A è un sottoanello di \mathbb{C} .
- b. Mostrare che per ogni $\alpha \in A$ esistono unici $a, b, c \in \mathbb{Z}$ tali che $\alpha = a + b\sqrt[3]{2} + c\sqrt[3]{4}$.
- c. Descrivere esplicitamente l'ideale generato da $\sqrt[3]{2}$.
- d. Descrivere esplicitamente il quoziente $A/(\sqrt[3]{2})$.

07 GIUGNO 2017

Esercizio 1 Sia $K \subset L$ un'estensione di campi di caratteristica $\neq 2$, con [L:K]=2.

- a. Mostrare che esiste $\alpha \in L$ tale che $\alpha^2 \in K$ e $L = K[\alpha]$;
- b. Fissato un tale elemento α , mostrare che in generale il polinomio $X^4 \alpha^2$ può essere riducibile su K[X] (Sugg.: $K = \mathbb{Z}_3$);
- c. Mostrare che se $K \subset L \subseteq \mathbb{R}$ allora il polinomio $X^4 \alpha^2$ è irriducibile su K[X];
- d. Stabilire se esiste un campo $K \subset \mathbb{R}$ tale che $[\mathbb{R}:K]=2$;

Esercizio 2 Sia $q \in \mathbb{Q}$ e

$$A_q := \left\{ \left[\begin{array}{cc} a & b \\ qb & a \end{array} \right] : a, b \in \mathbb{Q} \right\}.$$

- a. Mostrare che $(A_q, +, \cdot)$, dove $+ e \cdot$ indicano le usuali operazioni di somma e prodotto tra matrici, è un anello (commutativo unitario) per ogni q.
- b. Mostrare che A_2 è un campo.
- c. Mostrare che A_4 non è un dominio.
- d. Descrivere esplicitamente l'ideale I di A_4 generato da $\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$.
- e. Mostrare che $A_4/I \cong \mathbb{Q}$.

Esercizio 3 Consideriamo le 7 possibili estensioni quadratiche di \mathbb{Z}_7 , i.e. $\mathbb{Z}_7[\sqrt{d}]$ al variare di $d \in \mathbb{Z}_7$.

- a. Per quali valori di d si ha che $\mathbb{Z}_7[\sqrt{d}]$ è un campo?
- b. Per quali valori di d si ha che $\mathbb{Z}_7[\sqrt{d}]$ contiene elementi con quadrato nullo?
- c. Per quali valori di d si ha che $\mathbb{Z}_7[\sqrt{d}]$ contiene almeno 3 elementi che al quadrato danno 1?
- d. Dare condizioni necessarie e sufficienti su $d, d' \in \mathbb{Z}_7$ affinché $\mathbb{Z}_7[\sqrt{d}] \cong \mathbb{Z}_7[\sqrt{d'}]$.

04 Luglio 2017

Esercizio 1 Sia K un campo e consideriamo il polinomio $f = 4X^5 - 3X^3 + 2X^2 \in K[X]$.

- a. Stabilire se K[X]/(f) è un dominio.
- b. Determinare, se esiste, un elemento $P \in K[X]/(f)$ nilpotente.
- c. Determinare, se esiste, l'inverso di P+1 in K[X]/(f), dove P è l'elemento determinato nel punto precedente.
- d. Sia A un dominio, $a, b \in A$ non nulli e non invertibili. Determinare un elemento nilpotente in $A/(a^2b)$.

Esercizio 2 Motivando le risposte, determinare il campo di spezzamento (e il suo grado) di $(X^2 - 2)(X^2 - 3)$

- a. su \mathbb{Q} ;
- b. su \mathbb{R}
- c. su \mathbb{F}_7
- d. su \mathbb{F}_9 ;
- e. su \mathbb{F}_{169} .
- f. su $\mathbb{Z}_5[\sqrt{3}]$.

Esercizio 3 Consideriamo il polinomio $f = aX^4 + bX + c \in \mathbb{Z}[X]$, con $a, b, c \in \mathbb{Z}$ tutti dispari.

- a. Determinare tutti i valori di a, b, c per cui $\mathbb{Q}[X]/(f)$ è un campo.
- b. Determinare tutti i valori di a, b, c per cui $\mathbb{Z}[X]/(f)$ è un campo.
- c. Determinare per quali valori di a, b, c l'elemento $aX^3 + b$ è invertibile in $\mathbb{Q}[X]/(f)$ e in tal caso determinarne l'inversa.
- d. (difficile) Determinare per quali valori di a, b, c l'elemento $aX^3 + b$ è invertibile in $\mathbb{Z}[X]/(f)$ e in tal caso determinarne l'inversa.

05 Settembre 2017

Esercizio 1 Sia A un anello. Per ogni ideale I di A poniamo

$$\sqrt{I} := \{ x \in A : \text{ esiste } n \in \mathbb{N} \text{ per cui } x^n \in I \}.$$

- a. Mostrare che $I \subset \sqrt{I}$:
- b. Mostrare che \sqrt{I} è ancora un ideale di A;
- c. Mostrare che $\sqrt{\sqrt{I}} = \sqrt{I}$;
- d. Per $A = \mathbb{Q}[X]$ e $I = (X^2)$ determinare \sqrt{I} .

Esercizio 2 Motivando le risposte, determinare un campo di spezzamento (e il suo grado) di X^4+2

- a. su \mathbb{Q} (Sugg.: mostrare in quest'ordine che $i, \sqrt{2}$ e $\sqrt[4]{2}$ appartengono al campo di spezzamento);
- b. su \mathbb{F}_3 ;
- c. su \mathbb{F}_4 ;
- d. su \mathbb{F}_5 .

Esercizio 3 Sia $A = \mathbb{Z}[\sqrt{-2}]$. Sia $\alpha = (1 + \varepsilon)^2$.

- (1) Determinare un elemento $\beta \in A$ tale che $N(\beta) < 9$ e $\beta \equiv 3 \mod (\alpha)$;
- (2) Mostrare che ogni elemento in $A/(\alpha)$ ha un rappresentante di norma < 9;
- (3) Dedurre che $A/(\alpha)$ ha al più 17 elementi;
- (4) Mostrare che $\varepsilon \equiv -4 \mod (\alpha)$;
- (5) Mostrare che 1, 2, 3, 4, 5, 6, 7, 8 non sono elementi di (α) .
- (6) Concludere che $A/(\alpha) \cong \mathbb{Z}_9$;

Esercizio 1 Vogliamo studiare il campo si spezzamento di $X^3 - \sqrt{2}$ sui campi $\mathbb{Q}[\sqrt{2}]$ e $\mathbb{Z}_{11}[\sqrt{2}]$.

- a. Determinare, se esistono, tutti i possibili omomorfismi $\phi: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}_7$;
- b. Utilizzare il punto precedente per stabilire se $X^3 \sqrt{2}$ è irriducibile su $\mathbb{Q}[\sqrt{2}]$;
- c. Determinare il grado del campo di spezzamento di $X^3 \sqrt{2}$ su $\mathbb{Q}[\sqrt{2}]$.

Esercizio 2 Consideriamo l'anello $A = \mathbb{Z}_{17}[\sqrt{2}]$.

- a. Stabilire se A è un dominio.
- b. Determinare quanti sono gli elementi invertibili di A.
- c. Mostrare che A possiede esattamente 4 classi di associatura.
- d. Determinare tutti i possibili quozienti di A.

Esercizio 3 Sia A l'anello $\mathbb{Q}[X]$ e consideriamo le sue estensioni quadratiche $A[\sqrt{X}]$, $A[\sqrt{X^2}]$ e $A[\sqrt{X^3}]$.

- a. Mostrare che $A[\sqrt{X}]$ è un dominio.
- b. Mostrare che $A[\sqrt{X^2}]$ non è un dominio.
- c. Mostrare che $A[\sqrt{X^3}]$ è un dominio ma non è un PID.
- d. Mostrare che $A[\sqrt{X}]$ è isomorfo ad A e quindi è un dominio euclideo.

6 Febbraio 2018

Esercizio 1 Consideriamo il seguente insieme A di matrici 3×3 :

$$A = \left\{ \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} : a, b, c \in \mathbb{Q} \right\}.$$

- a. Mostrare che A è un anello commutativo (con le usuali operazioni) ed un \mathbb{Q} -spazio vettoriale di dimensione 3;
- b. Mostrare che $I = \left\{ \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} : a+b+c=0 \right\} \in J = \left\{ \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix}, a \in \mathbb{Q} \right\}$
- sono ideali non banali di A.
 c. Determinare il nucleo dell'unico omomorfismo $\varphi: \mathbb{Q}[X] \to A$ tale che $\varphi(X) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (Suggerimento: calcolare $\varphi(X^3)$).
- d. Concludere che I e J sono gli unici ideali non banali di A.

Esercizio 2 Consideriamo il polinomio $f = X^5 - 3X^3 - 2X^2 - 1 \in \mathbb{Z}_7[X]$.

- a. Stabilire se f è irriducibile.
- b. Determinare il campo di spezzamento di f su \mathbb{Z}_7 .
- c. Determinare il campo di spezzamento di f su \mathbb{F}_{7^4} .
- d. Stabilire quante radici ammette f in \mathbb{F}_{7^5} .

Esercizio 3 Consideriamo l'estensione quadratica A di \mathbb{Z}_3 data da $A = \mathbb{Z}_3[\sqrt{2}]$.

- a. Mostrare che A è il campo con 9 elementi;
- b. Determinare tutti i generatori di A^* ;
- c. Considerando l'ulteriore estensione quadratica $B=A[\sqrt{2}]$ stabilire se B è un campo;
- d. Stabilire se esiste un ideale I di B tale che $B/I \cong \mathbb{F}_9$.

04 Giugno 2018

Esercizio 1 Sia $f = X^2 + X + 1 \in \mathbb{Q}[X]$ e

$$A = \Big\{ \frac{g}{h}: \, g,h \in \mathbb{Q}[X], \, f \not| h \Big\}.$$

- a. Verificare che A è un anello;
- b. Determinare gli elementi invertibili di A;
- c. Mostrare che A ha un solo ideale massimale I;
- d. Stabilire se il campo A/I è un'estensione finita di \mathbb{Q} .

Esercizio 2 Siano $\alpha, \beta \in \mathbb{Z}[i]$ tali che $MCD(N(\alpha), N(\beta)) = 10$. Poniamo $I = (\alpha, \beta)$.

- a. Mostrare che I è generato da un elemento la cui norma è un divisore di 10;
- b. Stabilire se I può essere uguale a $\mathbb{Z}[i]$;
- c. Stabilire se I può essere massimale;
- d. Stabilire quanti elementi può avere l'anello $\mathbb{Z}[i]/I$.

Esercizio 3 Sia K un'estensione di \mathbb{Q} .

- a. Mostrare che se $[K:\mathbb{Q}]=2$ allora esiste $f\in\mathbb{Q}[X]$ tale che K è un campo di spezzamento per f.
- b. Supponiamo che K sia il campo di spezzamento di un polinomio irriducibile f di grado 3. Sia $\varphi: K \to \mathbb{C}$ un omomorfismo tale che $\varphi(a) = a$ per ogni $a \in \mathbb{Q}$ e α una radice di f. Mostrare che anche $\varphi(\alpha)$ è una radice di f. Dedurre che $\varphi(K) \subseteq K$;
- c. Mostrare che se $K = \mathbb{Q}[\sqrt[3]{2}]$ allora non esiste un polinomio f tale che K sia un campo di spezzamento per f su \mathbb{Q} .

9 Luglio 2018

Esercizio 1 Consideriamo l'anello $A = \mathbb{Z}[X]$.

- a. Mostrare che per ogni $n \geq 2$ l'ideale (X, n) non è principale.
- b. Posti I = (X, 2) e J = (X, 3) mostrare che IJ = (X, 6).
- c. Mostrare che $IJ \neq \{ab \mid a \in I, b \in J\}$.

Esercizio 2 Consideriamo l'anello $A = \mathbb{Z}[\sqrt{10}].$

- a. Determinare tutti i possibili omomorfismi $A \to \mathbb{Z}_2$
- b. Determinare tutti gli ideali I di A tali che $A/I \cong \mathbb{Z}_3$.
- c. Per ogni primo p mostrare che esistono al più due ideali I di A tale che $A/I \cong \mathbb{Z}_p$.
- d. Stabilire se \mathbb{F}_{49} è un quoziente di A.

Esercizio 3 Sia $f = X^3 + X^2 + 1 \in \mathbb{Z}_2[X]$ e α una radice di f in una qualche estensione di \mathbb{F}_2 .

- a. Mostrare che $K = \mathbb{Z}_2[\alpha]$ ha 8 elementi. Scelta una base di K su \mathbb{Z}_2 esprimere gli elementi $\alpha(\alpha+1)^2$ e $(\alpha^2+1)^2$ come combinazione lineare degli elementi di questa base.
- b. Dato un polinomio $g \in K[X]$ irriducibile di grado 4 sia β una radice di g e $L = K[\beta]$. Quanti elementi ha L?
- c. Quanti sono i campi F tali che $K \subset F \subset L$?
- d. Stabilire se β è un generatore del gruppo L^* .

12 Settembre 2018

Esercizio 1

- a. Siano A_1,\ldots,A_n anelli non banali e $A=A_1\times\cdots\times A_n$. Mostrare che esistono
- $a_1, \ldots, a_n \in A$ non nulli tali che $a_1 + \cdots + a_n = 1 \in A$ e $a_1^2 = a_1, \ldots, a_n^2 = a_n$. b. Sia ora B un anello e supponiamo che esistano $b_1, \ldots, b_n \in B$ non nulli tali che $b_1 + \cdots + b_n = 1 \in B$ e $b_1^2 = b_1, \ldots, b_n^2 = b_n$. Mostrare che $b_i B$ è un sottoanello di B per ogni $i = 1, \ldots, n$.
- c. Mostrare che esistono n anelli non non banali B_1, \ldots, B_n tali che $B \cong B_1 \times \cdots \times B_n$.

Esercizio 2 Si considerino gli anelli $A = \mathbb{Z}_3[X]/(X^2 + X + 2)$ e $B = \mathbb{Z}_3[Y]/(Y^2 + 2Y + 2)$.

- a. Mostrare che A e B sono \mathbb{Z}_3 -spazi vettoriali isomorfi e stabilire un isomorfismo esplicito tra essi.
- b. Mostrare che A e B sono anelli isomorfi e stabilire un isomorfismo esplicito tra essi.
- c. Mostrare che A e B sono campi isomorfi e stabilire un isomorfismo esplicito tra essi.

Esercizio 3 Sia $L = \{ f \in \mathbb{Q}(X) : f(X) = f(X^{-1}) \}.$

- a. Mostrare che L è un campo.
- b. Mostrare che $\varphi: \mathbb{Q}(X) \to L$ dato da $\varphi(f) = f(X + X^{-1})$ è un omomorfismo (iniettivo) di campi.
- c. (*) Mostrare che $\varphi : \mathbb{Q}(X) \to L$ è anche suriettivo.

Esercizio 1. Sia $\mathbb{D} = \mathbb{Z}[1/10] = \{\frac{a}{10^n} : a, n \in \mathbb{Z}\}.$

- a. Mostrare che $\mathbb D$ ùn sottoanello di $\mathbb R$ che $\mathbb D$ è l'insieme dei numeri reali che ammettono un'espressione decimale finita.
- b. Dato un ideale I di \mathbb{D} sia a un generatore dell'ideale $I \cap \mathbb{Z}$ di \mathbb{Z} . Mostrare che a è anche un generatore di I e dedurre che \mathbb{D} è un PID.
- c. Descrivere gli elementi invertibili di \mathbb{D} .
- d. Determinare, se esiste, MCD(0.42, 38500) in \mathbb{D} .

Esercizio 2 Consideriamo il polinomio $F = X^4 + 2$.

- a. Mostrare che F é irriducibile in $\mathbb{Z}[X]$.
- b. Dato un polinomio $G \in \mathbb{Z}[X]$, $G \notin (F)$, mostrare che l'ideale (F, G) contiene un polinomio non nullo di grado < 4.
- c. Mostrare che l'ideale (F,G) contiene una costante non nulla.
- d. Determinare un polinomio $G \notin (F)$ e tale che (F, G) è un ideale massimale.
- e. Determinare un polinomio $H \notin (F)$ e tale che (F, H) non è un ideale massimale.

Esercizio 3 Siano $a, b \in \mathbb{Z}$ dispari tali che $a^3 = b^2 + 4$.

- a. Mostrare che se p è primo allora p non divide b + 2i.
- b. Mostrare che MCD(b+2i, b-2i) = 1 in $\mathbb{Z}[i]$.
- c. Dedurre che b + 2i e b 2i sono associati a due cubi in $\mathbb{Z}[i]$.
- d. Mostrare che gli invertibili di $\mathbb{Z}[i]$ sono dei cubi e dedurre che anche b+2i e b-2i sono cubi in $\mathbb{Z}[i]$.

12 Febbraio 2019

Esercizio 1. Sia $\pi_5 = 1 + 2i \in \mathbb{Z}[i]$ e consideriamo l'insieme di numeri complessi

$$A = \left\{ \frac{\alpha}{\beta} : \alpha, \beta \in \mathbb{Z}[i], \beta \notin (\pi_5) \right\}.$$

- a. Mostrare che A è un anello con le usuali operazioni di somma e prodotto;
- b. Determinare gli elementi invertibili di A;
- c. Stabilire se gli ideali di A generati rispettivamente da π_5 e da 7 sono massimali.
- d. Determinare un ideale proprio non massimale I di A e determinare il nucleo dell'unico omomorfismo $\mathbb{Z} \to A/I$.

Esercizio 2 Sia K un campo e consideriamo il polinomio $F=X^2+Y^2+Z^2\in K[X,Y,Z].$

- a. Mostrare che se K ha caratteristica 2 allora F è riducibile.
- b. Se $car(K) \neq 2$ consideriamo il campo L = K(Y, Z). Mostrare che F è irriducibile in L[X].
- c. Concludere che se $\operatorname{car}(K) \neq 2$ allora F è irriducibile in K[X,Y,Z].

Esercizio 3 Consideriamo il polinomio

$$F = X^9 + 3X^8 + 5X^3 - 3X^2 + 3X + 17 \in \mathbb{Z}[X].$$

Per ogni primo p denotiamo $\rho_p:\mathbb{Z}[X]\to\mathbb{Z}_p[X]$ la riduzione modulo p di un polinomio.

- a. Mostrare che il polinomio X^3-X-1 è irriducibile in $\mathbb{Z}_3[X]$ e verificare che $\rho_3(F)=(X^3-X-1)^3$.
- b. Mostrare che il polinomio X^4+X+1 è irriducibile in $\mathbb{Z}_2[X]$ e verificare che $\rho_2(F)=(X+1)(X^4+X+1)^2$.
- c. Dedurre che il polinomio F è irriducibile in $\mathbb{Z}[X]$ e quindi anche in $\mathbb{Q}[X]$.

4 GIUGNO 2019

Esercizio 1 Sia $A = \mathbb{Z}[\sqrt{10}]$.

- a. Mostrare che $I = \{a + b\sqrt{10} : 2|a, 2|b\}$ è un ideale di A.
- b. Stabilire se I è un ideale massimale.
- c. Che anello è A/I?
- d. Determinare un ideale non banale J di I e descrivere l'anello quoziente I/J.

Esercizio 2 Consideriamo l'anello $A = \mathbb{Z}[\sqrt{5}].$

- a. Scrivere i quadrati in \mathbb{Z}_5 e dedurre che non esistono elementi di norma ± 2 in A.
- b. Mostrare che 2 non è associato né a $3 + \sqrt{5}$ né a $3 \sqrt{5}$ in $\mathbb{Z}[\sqrt{5}]$.
- c. Dedurre che $\mathbb{Z}[\sqrt{5}]$ non è un dominio a fattorizzazione unica.

Esercizio 3 Siano $f = X^3 - X - 1$ e $g = X^3 - X + 1$ polinomi in $\mathbb{F}_3[X]$.

- a. Determinare i campi di spezzamento di f e di g si \mathbb{F}_3 .
- b. Determinare esplicitamente, se esiste, un isomorfismo

$$\varphi: \mathbb{F}_3[X]/(f) \to \mathbb{F}_3[X]/(g)$$

2 Luglio 2019

Esercizio 1 Sia $n \in \mathbb{Z}$, $n \neq 0$, e $A = \mathbb{Z}[X]/(nX - 1)$.

- a. Mostrare che esiste un anello A' isomorfo ad A tale che $A \subseteq \mathbb{Z} \subseteq \mathbb{Q}$;
- b. Per quali valori di n si ha $\mathbb{Z} = A'$?
- c. Mostrare che A é un dominio a fattorizzazione unica.
- d. Piú in generale, mostrare che se B é un dominio a fattorizzazione unica e $0 \neq b \in B$ allora B/(bX-1) é ancora un dominio a fattorizzazione unica.

Esercizio 2 Consideriamo la funzione $\rho: \mathbb{Z} \to \mathbb{Z}$ data da

$$\rho(m) = n \Longleftrightarrow 2^n \le |m| < 2^{m+1}$$

per ogni $m \neq 0$, e $\rho(0) = -1$.

- a. Determinare q ed r con $\rho(r) < 3$ tali che 45 = q(-11) + r.
- b. Mostrare che ρ é una valutazione euclidea su \mathbb{Z} .
- c. Mostrare se a=qb+r con $\rho(r)<\rho(b)$ allora |r|<|b| ma non é vero il viceversa.

Esercizio 3 Sia $f = X^5 - 5X^3 + 5 \in \mathbb{Q}[X]$

- a. Mostrare che f é irriducibile.
- b. Mostrare che f ha tre radici reali e due complesse coniugate.
- c. Dedurre che il campo di spezzamento di f su $\mathbb Q$ ha grado divisibile per 10

$$\varphi: \mathbb{F}_3[X]/(f) \to \mathbb{F}_3[X]/(g)$$

9 Settembre 2019

Esercizio 1. Si consideri l'anello $A = \mathbb{Z}[X,Y]/(2XY-1)$.

- a. Stabilire se 2 é invertibile in A.
- b. Mostrare che 2XY 1 é irriducibile in $\mathbb{Z}[X, Y]$.
- c. Dedurre che A é un dominio.
- d. Stabilire se le classi in Adegli elementi $X,\,X^2Y,\,2X^2-XY$ sono irriducibili

Esercizio 2 Consideriamo l'anello $A = \mathbb{Z}[i]/(2+i)$

- a. Stabilire se A é un dominio euclideo;
- b. Determinare, se esiste, un omomorfismo di anelli $\mathbb{Z}_{25} \to A$;
- c. determinare se esiste, un omomorfismo di anelli, $\mathbb{F}_{25} \to A.$

Esercizio 3 Consideriamo il polinomio $P = x^5 + 2x^4 + 2x^3 - x^2 - 2x - 2 \in \mathbb{Q}[X]$ e sia K il campo di spezzamento di P su \mathbb{Q} .

- a. Stabilire se il polinomio P é irriducibile.
- b. Determinare il grado dell'estensione $[K:\mathbb{Q}]$.
- c. Determinare, se esiste, un elemento $\alpha \in K$ tale che $K = \mathbb{Q}[\alpha]$.

Esercizio 1. Sia $A = \mathbb{Z}[2/3]$ l'intersezione di tutti i sottoanelli di \mathbb{Q} che contengono sia \mathbb{Z} che $\frac{2}{3}$.

- a. Determinare il gruppo $\mathcal{U}(A)$ degli elementi invertibili di A
- b. Stabilire se $(\mathcal{U}(A),\cdot)$ è isomorfo al gruppo $(\mathbb{Z},+)$
- c. Stabilire se esiste un omomorfismo $\varphi: A \to \mathbb{Z}_6$.
- d. Determinare un omomorfismo $\psi: A \to \mathbb{Z}_7$.
- e. Stabilire se l'ideale $\ker \psi$ è massimale.
- f. Stabilire se l'ideale $\ker \psi$ è principale.

Esercizio 2 In $\mathbb{Z}[i]$ consideriamo l'elemento $\alpha = -4 + 7i$.

- a. Determinare la fattorizzazione in irriducibili si α .
- b. Determinare la cardinalità di $A = \mathbb{Z}[i]/(\alpha)$.
- c. Mostrare che A è prodotto cartesiano di due campi.
- d. Stabilire se esiste un omomorfismo $A \to \mathbb{Z}_n$ per qualche n.

Esercizio 3 Sia $K = \mathbb{Q}[\sqrt[3]{3}]$.

- a. Determinare $[K:\mathbb{Q}]$ e una base di K come \mathbb{Q} -spazio vettoriale.
- b. Determinare tutti i campi L tali che $\mathbb{Q} \subseteq L \subseteq K$.
- c. Mostrare che l'identità è l'unico automorfismo di K.
- d. Dedurre che K non è un campo di spezzamento di un polinomio su \mathbb{Q} .

Esercizio 1. Siano A e B due anelli (commutativi unitari) di caratteristica m, n rispettivamente, con $m, n \geq 0$ (eventualmente si può risolvere l'esercizio con $A = \mathbb{Z}_m$ e $B = \mathbb{Z}_n$ dove poniamo per convenzione $\mathbb{Z}_0 = \mathbb{Z}$).

- a. Determinare la caratteristica di $A \times B$.
- b. determinare, se esiste, un anello che non é un dominio di caratteristica 5.
- c. determinare la caratteristica di A^A .
- d. sia I un ideale di A. Mostrare che la caratteristica di A/I divide la caratteristica di A.

Esercizio 2 Sia $A = \mathbb{Z}[i]$.

- a. Mostrare che l'ideale I = (X, 5) di A[X] non è principale;
- b. Detto J = (X,3) sia

$$S = \{ab : a \in I, b \in J\}$$

- e stabilire se gli elementi 5X, 3X, X appartengono ad S.
- c. Stabilire se S è un ideale di A[X] (potrà essere utile il punto precedente).
- d. Mostrare che IJ = (X, 15).

Esercizio 3 Stabilire se

- a. $\mathbb{Z}_5[\sqrt{2}]$ è isomorfo a $\mathbb{Z}_5[\sqrt{3}]$;
- b. $\mathbb{F}_{25}[\sqrt{2}]$ è isomorfo a $\mathbb{F}_{25}[\sqrt{3}]$ (sugg.: determinare quante radici ha il polinomio X^2-2 in $\mathbb{F}_{25}[\sqrt{3}]$).
- c. $\mathbb{F}_{125}[\sqrt{2}]$ è isomorfo a $\mathbb{F}_{125}[\sqrt{3}]$;
- d. $\mathbb{Q}[\sqrt{2}]$ è isomorfo a $\mathbb{Q}[\sqrt{3}]$.

Esercizio 1

- a. Sia $f \in \mathbb{Q}[X]$ irriducibile con deg f = 3 e L il suo campo di spezzamento. Mostrare che se $[L:\mathbb{Q}]=3$ allora f ha tre radici reali distinte.
- b. Sia ora $f = X^3 X^2 2X + 1 \in \mathbb{Q}[X]$. Mostrare che f é irriducibile. c. Sia α una radice reale di f e sia $\beta = \alpha^2 \alpha 1$. Mostrare che $\alpha \neq \beta$.
- d. Mostrare che β é una radice di f.
- e. Detto L il campo di spezzamento di f concludere che $[L:\mathbb{Q}]=3$.

Esercizio 2 Sia $A = \mathbb{Z}[\sqrt{-2}].$

- a. Sia $n \in \mathbb{Z}$, n > 0. Mostrare che n é irriducibile in A se e solo se n é un numero primo e non é della forma $n = a^2 + 2b^2$, con a, b interi.
- b. Ŝia p un numero primo tale che $p=a^2+2b^2=c^2+2d^2$, con a,b,c,d>0. Mostrare che a = c e b = d.
- c. Determinare quali n con $1 \le n \le 10$ sono irriducibili in A.
- d. Sia $\alpha \in A$ tale che $N(\alpha)$ sia divisibile per 3. Mostrare che α é riducibile.
- e. Determinare la fattorizzazione in irriducibili di $-11 + 5\varepsilon$ (dove $\varepsilon^2 = -2$).

Esercizio 3

- a. Stabilire quanti e quali sono gli omomorfismi di anelli $\phi: \mathbb{Z}_{/6} \to \mathbb{Z}_{/3}$.
- b. Determinare quanti sono gli omomorfismi $\varphi: \mathbb{Z}_{/6}[X] \to \mathbb{Z}_{/3}[X]$.
- c. Consideriamo l'ideale di $\mathbb{Z}_{6}[X]$ dato da $I=(X^{2},3)$. Determinare la cardinalitá di $\mathbb{Z}_{/6}[X]/I$.
- d. Stabilire se $\mathbb{Z}_{6}[X]/I$ é un dominio
- e. Stabilire se $\mathbb{Z}_{6}[X]/I$ é isomorfo ad un'estensione quadratica di un anello noto.

Esercizio 1 Consideriamo il polinomio $f = X^4 - 2X^2 - 2 \in \mathbb{Q}[X]$

- a. Mostrare che f é irriducibile e determinare le sue radici;
- b. dette α e β due radici di f con $\alpha \neq \pm \beta$ mostrare che $K_1 = \mathbb{Q}[\alpha] \neq K_2 = \mathbb{Q}[\beta]$;
- c. mostrare che $K_1 \cap K_2 = \mathbb{Q}[\sqrt{3}]$.
- d. mostrare che $\mathbb{Q}[\alpha, \beta]$ é un'estensione di grado 8 di \mathbb{Q} .
- e. mostrare che l'estensione $\mathbb{Q}[\alpha, \beta]/\mathbb{Q}[\sqrt{3}]$ é un'estensione normale il cui gruppo di Galois é $\mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$.

Esercizio 2 Sia $A = \mathbb{Z}[i]$. Per ogni $p \equiv 1 \mod 4$ indichiamo con $\pi_p = a + bi$ l'unico elemento di A tale che $N(\pi_p) = p$ con 0 < a < b.

- a. Determinare π_{41} e $c \in \mathbb{Z}$ tale che $4c \equiv 1 \mod 41$;
- b. mostrare che $\varphi: \mathbb{Z}[i] \to \mathbb{Z}_{/41}$ dato da $\varphi(x+iy) = [x+5cy]_{41}$ è un omomorfismo di anelli:
- c. mostrare che ker $\varphi = (\pi_{41})$
- d. concludere che $A/(\pi_{41}) \cong \mathbb{Z}_{/41}$
- e. generalizzando i punti precedenti mostrare che per ogni primo $p \equiv 1 \mod 4$ si ha $\mathbb{Z}[i]/(\pi_p) \cong \mathbb{Z}_{/p}$.

Esercizio 3 Sia $\omega \in \mathbb{C}$ una radice primitiva terza dell'unitá e $A = \{a + b\omega : a, b \in \mathbb{Z}\}.$

- a. Mostrare che A é un sottoanello di \mathbb{C} ;
- b. mostrare che $\overline{a+b\omega}=a-b-b\omega$ (dove la barra indica il coniugio complesso) e determinare la norma complessa di un generico elemento $a+b\omega \in A$;
- c. sia $c \in \mathbb{Z}$ tale che $c \in (2 5\omega)$: mostrare che 39|c;
- d. mostrare che il sottoanello fondamentale di $A/(2-5\omega)$ é $\mathbb{Z}_{/39}$;
- e. stabilire se $2-5\omega$ é primo in A.

13 Febbraio 2023

Esercizio 1 Sia A un anello unitario. Un ideale I di A si dice primo se per ogni $x, y \in A$ tali che $xy \in I$ si ha $x \in I$ oppure $y \in I$.

- a. mostrare che un ideale massimale é sempre un ideale primo;
- b. sia $Nil(A) = \{a \in A : a^n = 0 \text{ per qualche } n > 0\}$ l'insieme degli elementi nilpotenti di A. Mostrare che Nil(A) é un ideale di A;
- c. mostrare che se I é un ideale primo di A allora $Nil(A) \subseteq I$;
- d. determinare $Nil(\mathbb{Z}_{/6})$ e $Nil(\mathbb{Z}_{/8})$;
- e. mostrare che $Nil(A/Nil(A)) = \{0\}$

Esercizio 2 Sia $K \subseteq L \subseteq \mathbb{C}$ un'estensione di campi, $f \in K[X]$ irriducibile e L il campo di spezzamento di f. Siano α, β radici di f e G = Gal(L/K);

- a. richiamando un risultato visto mostrare che esiste $\tau \in G$ tale che $\tau(\alpha) = \beta$;
- b. usando il punto (a) mostrare che i sottogruppi $Gal(L/K[\alpha])$ e $Gal(L/K[\beta])$ di G sono coniugati tra loro (due sottogruppi H, K di un gruppo G si dicono coniugati se esiste $g \in G$ tale che $g^{-1}Hg = K$);
- c. dedurre che se G é abeliano allora $K[\alpha] = K[\beta]$;
- d. concludere che se G é abeliano allora $L = K[\alpha]$;
- e. mostrare con un esempio che senza l'ipotesi "G abeliano" non é detto che $L = K[\alpha]$.

Esercizio 3

- a. Mostrare che se $\cos \alpha$ e $\cos \beta$ sono costruibili con riga e compasso allora lo é anche $\cos(\alpha + \beta)$.
- b. Sia $\omega = e^{\frac{2\pi i}{9}}$. Determinare $[\mathbb{Q}[\omega] : \mathbb{Q}]$ e dedurre che $\cos(40^\circ)$ non é costruibile con riga e compasso;
- c. mostrare che con riga e compasso é possibile costruire $\cos(9^{\circ})$ e $\cos(30^{\circ})$;
- d. usare (a) e (c) per mostrare che é possibile costruire cos(3°);
- e. mostrare che, per n > 0, $\cos(n^{\circ})$ é costruibile con riga e compasso se e solo se n é un multiplo di 3.

24

05 Giugno 2023

Esercizio 1 Sia A un dominio d'integritá e I un ideale di A tale che A/I sia a sua volta un dominio d'integritá. Consideriamo l'insieme dei "simboli"

$$B = \left\{ \frac{x}{y} : \, x, y \in A, \, y \notin I \right\}$$

e consideriamo su B la relazione \sim data da

$$\frac{x}{y} \sim \frac{x'}{y'}$$
 se $xy' = x'y$.

- a. mostrare che \sim é una relazione d'equivalenza su B;
- b. mostrare che l'insieme quoziente B/\sim ha in modo naturale una struttura di anello;
- c. determinare gli elementi invertibili di B/\sim ;
- d. mostrare che gli elementi non invertibili formano un ideale e spiegare perché questo é l'unico ideale massimale di B/\sim ;
- e. con $A = \mathbb{Z}$ e $I = p\mathbb{Z}$ descrivere esplicitamente l'anello B/\sim .

Esercizio 2 Sia $\alpha = -3 + 9i \in \mathbb{Z}[i]$ e poniamo $A = \mathbb{Z}[i]/(\alpha)$.

- a. fattorizzare α in irriducibili;
- b. stabilire se A é un dominio;
- c. stabilire se A contiene elementi nilpotenti;
- d. determinare il sottoanello fondamentale di A;
- e. stabilire se A contiene piú di 30 elementi.

Esercizio 3 Sia $\alpha \in \mathbb{C}$ un numero algebrico di grado 3 su \mathbb{Q} .

- a. Determinare il grado di α^2 su \mathbb{Q} ;
- b. mostrare che il grado di α^3 é 1 o 3: mostrare un esempio in cui α^3 ha grado 1 e un esempio in cui ha grado 3;
- c. supponiamo inoltre che $\mathbb{Q}[\alpha]$ sia un'estensione di Galois di \mathbb{Q} e siano β e γ le altre due radici del polinomio minimo di α . Mostrare che $\alpha^2 + \beta^2 + \gamma^2 \in \mathbb{Q}$ (sugg.: ricordare che $\mathbb{Q} = \mathbb{Q}[\alpha]^G$ dove $G = Gal(\mathbb{Q}[\alpha]/\mathbb{Q})$;
- d. determinare $[Q[\alpha\beta]:\mathbb{Q}];$
- e. Sia $\delta \in \mathbb{C}$ tale che $\mathbb{Q}[\alpha] \neq \mathbb{Q}[\delta]$. Mostrare che $\mathbb{Q}[\alpha] \ncong \mathbb{Q}[\delta]$.

27 GIUGNO 2023

Esercizio 1. Sia $f = X^3 - 2$ e F il campo di spezzamento di f su \mathbb{Q} .

- a. Determinare $[F:\mathbb{Q}]$;
- b. determinare se esiste un elemento $\alpha \in \mathbb{C}$ tale che $F = \mathbb{Q}[\alpha]$;
- c. determinare il polinomio minimo di α su \mathbb{Q} ;
- d. dato un campo $K \subseteq \mathbb{C}$ sia L il campo di spezzamento di f su K: mostrare che [L:K] é un divisore di 6;
- e. per d = 1, 2, 3, 6 determinare, se esiste, un campo K_d tale che il campo di spezzamento L_d per f su K_d soddisfi $[L_d : K_d] = d$.

Esercizio 2 Consideriamo i seguenti sottoinsiemi di $\mathbb{Z}[X]$

$$I = \{ f \in \mathbb{Z}[X] : \tilde{f}(0) \notin \text{pari} \}, \ J = \{ f \in \mathbb{Z}[X] : \tilde{f}(0) \notin \text{multiplo di 3} \}$$

(dove \tilde{f} indica la funzione polinomiale associata ad f).

- a. Mostrare che I e J sono ideali di $\mathbb{Z}[X]$;
- b. stabilire se I e J sono ideali massimali;
- c. stabilire se I e J sono ideali coprimi;
- d. determinare esplicitamente l'ideale prodotto IJ;
- e. determinare esplicitamente l'ideale quoziente $\mathbb{Z}[X]/IJ$.

Esercizio 3

Dato un anello A e un sottoinsieme $I \subseteq A$ poniamo $\sqrt{I} = \{x \in A : \exists n > 0 \text{ tale che } x^n \in I\}$. Sia inoltre $\varphi : A \to B$ un omomorfismo di anelli.

- a. Mostrare che se I é un ideale di A allora \sqrt{I} é ancora un ideale di A;
- b. mostrare che $\varphi(\sqrt{I}) \subseteq \sqrt{\varphi(I)}$;
- c. mostrare che se φ é suriettiva e ker $\phi \subseteq I$ allora $\sqrt{\varphi(I)} = \varphi(\sqrt{I})$;
- d. Sia $A=B=\mathbb{Z}[X],\, \varphi(f(X)=f(X^2),\, I=(X^3).$ Determinare \sqrt{I} e $\varphi(I).$
- e. Nelle stesse notazioni del pnuto precedente determinare $\varphi(\sqrt{I})$ e $\sqrt{\varphi(I)}$.

12 Luglio 2023

Esercizio 1. Siano $\alpha = \sqrt[5]{3}$, e $\varepsilon = e^{\frac{2\pi i}{5}}$ una radice primitiva quinta dell'unitá.

- a. Determinare il polinomio minimo di α e il polinomio minimo di ε ;
- b. mostrare che $\mathbb{Q}[\varepsilon] = \mathbb{Q}[\varepsilon^2];$
- c. mostrare che $L = \mathbb{Q}[\alpha, \varepsilon]$ é un'estensione normale di \mathbb{Q} ;
- d. mostrare che se $\sigma \in Gal(L/\mathbb{Q})$ ha ordine 5 allora $\sigma(\varepsilon) = \varepsilon$;
- e. concludere che $\mathbb{Q}[\varepsilon]$ é l'unica estensione di grado 4 di \mathbb{Q} contenuta in L.

Esercizio 2 Siano A_1 e A_2 due anelli non banali e $R = A_1 \times A_2$.

- a. Mostrare che R non é un dominio d'integritá;
- b. mostrare che se I_1 e I_2 sono rispettivamente ideali di A_1 e A_2 allora $I_1 \times I_2$ é un ideale di R;
- c. mostrare che se I é un ideale di R allora esistono I_1 e I_2 ideali rispettivamente di A_1 e A_2 tali che $I = I_1 \times I_2$;
- d. quanti sono gli ideali di $\mathbb{Z}_{/90}$?
- e. stabilire se $(A_1 \times A_2)/(I_1 \times I_2) \cong A_1/I_1 \times A_2/I_2$.

Esercizio 3 Sia A un anello unitario e consideriamo l'insieme

$$R(A) = \left\{ \begin{pmatrix} a & b \\ -3b & a \end{pmatrix} : a, b \in A. \right\} \subset M_{2,2}(A).$$

- a. mostrare che R(A) é un anello unitario rispetto alle usuali operazioni di somma e prodotto di matrici;
- b. mostrare che $R(\mathbb{R})$ é un campo;
- c. mostrare che $R(\mathbb{Z}_{/5}) \cong \mathbb{F}_{25}$;
- d. stabilire quanti sono gli elementi invertibili di $R(\mathbb{Z}_{/7})$;
- e. mostrare che $R(\mathbb{Z}_{/7}) \cong \mathbb{Z}_{/7}[\sqrt{4}]$.

11 Settembre 2023

Esercizio 1. Siano A, B anelli unitari con A sottoanello di B. Dire se le seguenti affermazioni sono vere o false spiegandone la motivazione

- a. se B é un campo allora anche A é un campo;
- b. se A é un campo di caratteristica 0 allora anche B é un campo;
- c. se A é un campo e B é uno spazio vettoriale di dimensione finita su A allora B é un campo.
- d. se A é un dominio euclideo allora anche B lo é
- e. se B é un UFD allora anche A lo é.

Esercizio 2 Sia L/K un'estensione finita con [L:K]=4 e $\gamma\in L$ tale che $L=K[\gamma]$.

- a. mostrare che per ogni $\alpha \in L$ l'applicazione $f_{\alpha}: L \to L$ data da $f_{\alpha}(\beta) = \alpha\beta$ per ogni $\beta \in L$ é un endomorfismo di L come K-spazio vettoriale. É anche un omomorfismo di anelli?
- b. descrivere una base di L come K-spazio vettoriale;
- c. scrivere la matrice M_{γ} associata a f_{γ} rispetto alla base determinata nel punto precedente (in funzione dei coefficienti del polinomio minimo di γ);
- d. mostrare che $det(XI f_{\gamma}) \in K[X]$ é il polinomio minimo di γ su K;
- e. per quali $\alpha \in L$ si ha che $\det(XI f_{\alpha})$ é il polinomio minimo di α su K?

Esercizio 3

- a. sia A un anello e $a \in A$ nilpotente. Mostrare che 1 + a é invertibile e dedurre che la somma di un invertible e un nilpotente é sempre invertibile;
- b. dare un esempio di un polinomio invertibile di grado 1 in $\mathbb{Z}_{/4}[X]$;
- c. sia ora $f = a_0 + a_1 X + \cdots + a_n X^n \in A[X]$ invertibile e $g = b_0 + b_1 X + \cdots + b_m X^m$ l'inverso di f (con n > 0, $a_n, b_m \neq 0$). Mostrare che a_0 é invertibile;
- d. mostrare che $a_n^{r+1}b_{m-r}=0$ per ogni $r\leq m$ e dedurre che a_n é nilpotente
- e. concludere dai punti precedenti che a_1, \ldots, a_n sono tutti nilpotenti.

Soluzioni 09 Gennaio 2017

Esercizio 1 a. Se α è una radice di f abbiamo $\alpha^4 + 6\alpha^2 + 4 = 0$ da cui $\alpha^2 = -3 \pm \sqrt{5}$ e quindi $\pm \sqrt{5} = \alpha^2 + 3 \in L$ perché $\alpha \in L$.

- b. Osserviamo che f non ha radici reali (e in particolare non ha radici in K o in \mathbb{Q}) e quindi in $\mathbb{R}[X]$ si fattorizza nel prodotto di due polinomi irriducibili di secondo grado: questa fattorizzazione è data da $f = (X^2 + 3 + \sqrt{5})(X^2 + 3 \sqrt{5})$. Questa fattorizzazione è valida anche in K[X] (chiaramente i due polinomi rimangono irriducibili in K[X]. Osserviamo che f non può avere una fattorizzazione in $\mathbb{Q}[X]$ come prodotto di due polinomi di secondo grado irriducibili, altrimenti questa sarebbe una fattorizzazione in K[X] (o in $\mathbb{R}[X]$) contraddicendo la precedente e quindi f è irriducibile in $\mathbb{Q}[X]$.
- c. Siccome f è irriducibile su \mathbb{Q} , α ha grado 4 su \mathbb{Q} e quindi anche α^{-1} ha grado 4 (questo perché, ad esempio, $\mathbb{Q}[\alpha] = \mathbb{Q}[\alpha^{-1}]$). Abbiamo quindi $\alpha^4 + 6\alpha^2 + 4 = 0$ e dividendo per α^4 otteniamo $1 + 6\alpha^{-2} + 4\alpha^{-4} = 0$ e quindi α^{-1} è radice del polinomio $1 + 6X^2 + 4X^4$ da cui il polinomio minimo di α^{-1} è $X^4 + \frac{3}{2}X^2 + \frac{1}{4}$.
- d. Sia α una radice di $X^2+3+\sqrt{5}$. Abbiamo che $\mathbb{Q}[\sqrt{5},\alpha]\subseteq L$ e vogliamo mostrare che in realtà vale l'uguaglianza. Per questo è sufficiente mostrare che $\mathbb{Q}[\sqrt{5},\alpha]$ contiene una radice di $X^2+3-\sqrt{5}$. E infatti $2/\alpha$ è una radice di $X^2+3-\sqrt{5}$. Questo deriva dal fatto che se $d=-3-\sqrt{5}$ e $d'=-3+\sqrt{5}$ abbiamo dd'=4 e quindi d'=4/d e quindi una radice quadrata di d' è data da $2/\alpha$.

Un altro modo di vedere questo fatto (seguendo più fedelmente il suggerimento) è il seguente. Se K è un campo e d non è un quadrato in K consideriamo l'estensione $K[\sqrt{d}]$. Ci chiediamo quali elementi di K sono quadrati in $K[\sqrt{d}]$. Abbiamo $(a+b\varepsilon)^2 = a^2 + b^2 d + 2ab\varepsilon$. Questo quadrato sta in K se e solo se a=0 oppure b=0. Nel primo caso otteniamo elementi del tipo a^2 nel secondo del tipo $b^2 d$. Nel nostro caso ci chiediamo quindi se d' è della forma $b^2 d$ o, equivalentemente, se d'/d è un quadrato di K e abbiamo già osservato che $d'/d = 4/d^2$, che è chiaramente un quadrato.

Esercizio 2

a. Abbiamo, posto $\alpha = 1 + 2\sqrt{3}$

$$\alpha^{-1} = \frac{\bar{\alpha}}{N(\alpha)} = \frac{1 - 2\sqrt{3}}{-11} = -\frac{1}{11} + \frac{2}{11}\sqrt{3}.$$

- b. Osserviamo che i 3 elementi hanno tutti la stessa norma in valore assoluto (condizione necessaria affinchè possano essere associati). Due elementi sono associati se il loro rapporto (in $\mathbb{Q}[\sqrt{3}]$) è invertibile in A. Abbiamo $8+5\sqrt{3}/\alpha=2+\sqrt{3}$ (che è invertibile in A avendo norma 1), mentre $17+10\sqrt{3}/\alpha=\frac{43}{11}+\frac{24}{11|\sqrt{3}}$ (che non sta in A).
- c. L'elemento $2 + \sqrt{3}$ ottenuto nel punto b. è invertibile (ha norma 1). Essendo un numero reale diverso da > 1 tutte le sue potenze sono distinte e saranno tutte invertibili in A.

Esercizio 3

Osserviamo che $665 = 5 \cdot 7 \cdot 19$ e quindi dobbiamo risolvere il sistema modulo 5,7 e 19 per il teorema cinese del resto.

Il polinomio $X^3 + 13X^2 + 48X + 36$ si fattorizza nella forma $(X + 1)(X + 6)^2$ in $\mathbb{Z}[X]$ e quindi anche in $\mathbb{Z}_p[X]$ per ogni primo p. Risolviamo quindi il sistema nei tre moduli 5,7,19. – Modulo 5

La seconda equazione diventa $(X+1)^3$ e quindi l'unica soluzione è -1. Questa chiaramente soddisfa anche la prima equazione.

- Modulo 7

La seconda equazione ha soluzione -1 e -6=1 e queste chiaramente soddisfano la prima equazione.

- Modulo 19

La seconda equazione ha soluzione -1 e -6 e osservando che ogni elemento di \mathbb{Z}_{19} soddisfa la prima equazione (per il piccolo Fermat) concludiamo che sono entrambe accettabili.

Otteniamo quindi 4 soluzioni combinando le varie possibilità modulo 5,7 e 19: (-1,-1,-1), (-1,1,-6),(-1,-1,-6), (-1,1,-1) . Le prime due triple danno le soluzioni -1 e -6 che già conoscevamo dalla fattorizzazione di $X^3+13X^2+48X+36$. La terza tripla dà il sistema

$$\begin{cases} X \equiv -1 \mod 35 \\ X \equiv -6 \mod 19 \end{cases}$$

da cui X = -1 + 35k e quindi $-1 + 35k \equiv -6 \mod 19$. Osservando che $35 = -3 \mod 19$ e moltiplicando per 6 l'equazione otteniamo $-6 - 18k = 2 \mod 19$ e quindi -6 + k = 2 e infine k = 8. Concludiamo che $X = -1 + 35 \cdot 8 = 279$ è la terza soluzione.

L'altra soluzione si può calcolare analogamente e dovrebbe essere 379.

Soluzioni 23 Gennaio 2017

Esercizio 1

a. Basta osservare che $\alpha^4 f(\alpha^{-1}) = f(\alpha)$ e quindi se α è radice anche α^{-1} lo è. b. Verifichiamo che f è irriducibile su \mathbb{Q} . Senz'altro non ha radici (le uniche possibili sono ± 1) e se proviamo a fattorizzarlo in $\mathbb{Z}[X]$ otteniamo

$$X^4 - 8X^2 + 1 = (X^2 + aX \pm 1)(X^2 - aX \pm 1)$$

da cui $\pm 2 - a^2 = -8$ che non ammette soluzione in \mathbb{Q} .

Dal punto precedente, e osservando che f è biquadratico, abbiamo che se α è una radice allora $-\alpha$, α^{-1} e $-\alpha^{-1}$ sono radici. Queste sono tutte distinte in quanto $\alpha \neq 0, \pm 1, \pm i$ e quindi sono tutte le radici di f. Ne segue che

$$K = \mathbb{Q}[\alpha, -\alpha, \alpha^{-1}, -\alpha^{-1}] = \mathbb{Q}[\alpha]$$

e quindi $[K:\mathbb{Q}]=4$ perché f è il polinomio minimo di α .

c. Osserviamo ora che $K \subset \mathbb{R}$. Cercando infatti le radici di f (sfruttando il fatto che è biquadratico) otteniamo $\pm \sqrt{4 \pm \sqrt{15}}$ che sono tutte reali. Osserviamo ora che

$$L = K[\sqrt{-2}]$$

e quindi che [L:K]=2 visto che K, essendo reale, non può contenere $\sqrt{-2}$. Concludiamo che $[L:\mathbb{Q}]=8$ e quindi $[L:\mathbb{Q}[\sqrt{-2}]]=4$ sfruttando la moltiplicatività del grado delle estensioni (lemma della torre).

d. Su \mathbb{Z}_{11} il polinomio f si fattorizza nel seguente modo:

$$f = (X^2 - 2)(X^2 - 6)$$

e osserviamo che 2 e 6 non sono quadrati in \mathbb{Z}_{11} . Ricordando che \mathbb{F}_{11^2} contiene le radici quadrate di tutti gli elementi di \mathbb{Z}_{11} abbiamo che il campo di spezzamento è proprio \mathbb{F}_{121} . **Esercizio 2**

a. Abbiamo $\alpha = 5(4 - \varepsilon)$ e osserviamo che 5 è irriducibile perchè non esistono elementi di norma 5. Abbiamo inoltre $N(4 - \varepsilon) = 18$ e quindi i possibili divisori di $4 - \varepsilon$ devono avere norma che divide 18. Di norma 2 abbiamo solo ε (e associati) e proviamo a vedere se ε è un divisore di $4 - \varepsilon$. Abbiamo

$$(4-\varepsilon)\frac{(-\varepsilon)}{2} = -1 - 2\varepsilon$$

e quindi $(4 - \varepsilon) = \varepsilon(-1 - 2\varepsilon)$. Proviamo quindi a fattorizzare $(-1 - 2\varepsilon)$ che ha norma 9. Gli elementi di norma 3 sono $1 - \varepsilon$ e $1 + \varepsilon$) (e associati). Proviamo a vedere se $1 - \varepsilon$ divide $(-1 - 2\varepsilon)$: otteniamo $-1 - 2\varepsilon = (1 - \varepsilon)^2$ e quindi la fattorizzazione in irriducibili di α è

$$\alpha = 5\varepsilon (1 - \varepsilon)^2.$$

b. $A/(\alpha)$ è un anello finito (ogni classe ha un rappresentante di norma minore di $N(\alpha)$ e chiaramente esistono un numero finito di elementi che hanno norma minore di $N(\alpha)$) e quindi ha un numero finito di ideali. In alternativa possiamo anche descrivere questi ideali esplicitamente: sappiamo che gli ideali di un quoziente $A/(\alpha)$ sono dati da $J/(\alpha)$ dove J è un ideale di A che contiene (α) . Ne segue che J é generato da un divisore di α e questi

sono in numero finito (e sono 1, 5, ε , $1 - \varepsilon$, $(1 - \varepsilon)^2$, 5ε , $5(1 - \varepsilon)$, $\varepsilon(1 - \varepsilon)$, e α).

c. Gli ideali massimali sono dati dagli ideali massimali che contengono α : sono quindi quelli generati dai fattori irriducibili di α e sono quindi

$$\frac{(5)}{(\alpha)}, \frac{(\varepsilon)}{(\alpha)}, \frac{(1-\varepsilon)}{(\alpha)}.$$

d. Un quoziente A/I di un anello è un campo se e solo se I è massimale. Nel nostro esempio abbiamo che i possibili campi sono

$$\frac{A/(\alpha)}{(5)/(\alpha)} \cong \frac{A}{(5)} \cong \mathbb{F}_{25}$$

dove abbiamo usato il terzo teorema di omomorfismo e il fatto che questo campo ha caratteristica 5 (infatti 5=0) e/o che ha 25 elementi: infatti, in questo quoziente, $a+b\varepsilon=a'+b\varepsilon$ se e solo se $a\equiv a'$ e $b\equiv b'\mod 5$. Similmente si ottengono gli altri due possibili quozienti

$$\frac{A/(\alpha)}{(\varepsilon)/(\alpha)} \cong \frac{A}{(\varepsilon)} \cong \mathbb{Z}_2$$

 \mathbf{e}

$$\frac{A/(\alpha)}{(1-\varepsilon)/(\alpha)}\cong\frac{A}{(1-\varepsilon)}\cong\mathbb{Z}_3.$$

Esercizio 3 a. Basta mostrare che

- A_S è un sottogruppo additivo di Q: infatti $0 = \frac{0}{1} \in A_S$. Se $\frac{a}{s} \in A_S$ anche il suo opposto $\frac{-a}{s} \in A_S$ e se $\frac{a}{s}, \frac{a'}{s'} \in A_S$ allora $\frac{a}{s} + \frac{a'}{s'} = \frac{as' + a's}{ss'} \in A_S$.
- $1 = \frac{1}{1} \in A_S$ perché $1 \in S$;
- A_S è chiuso rispetto al prodotto: se $\frac{a}{s}, \frac{a'}{s'} \in A_S$ allora $\frac{a}{s} \cdot \frac{a'}{s'} = \frac{aa'}{ss'} \in A_S$.

b. Si ha chiaramente $A_S \subset A_{S'}$ perché $S \subset S'$. Mostriamo l'inclusion opposta e sia quindi $\frac{a}{s'} \in A_{S'}$ per ipotesi sappiamo che esistono $s \in S$ e $b \in A$ tali che s = bs' ma allora

$$\frac{a}{s'} = \frac{ab}{s} \in A_S.$$

c. Sia $s' \in S'$. Per ipotesi abbiamo che $\frac{1}{s'} \in A_S$ per cui esistono $a \in A$ e $s \in S$ tali che $\frac{1}{s'} = \frac{a}{s}$ da cui s'a = s e quindi s' divide s.

Soluzioni 10 Febbraio 2017

Esercizio 1 a. Sappiamo che $\{1,\sqrt{3}\}$ è una base di $\mathbb{Q}[\sqrt{3}]$ su \mathbb{Q} . Osserviamo inoltre che $\sqrt{7} \notin Q[\sqrt{3}]$ e quindi $\{1,\sqrt{7}\}$ è una base di \mathbb{L} su $\mathbb{Q}[\sqrt{3}]$. Per il teorema sulla base di un'estensione di un'estensione deduciamo che una base di \mathbb{L} su \mathbb{Q} è data da $\{1,\sqrt{3},\sqrt{7},\sqrt{21}\}$.

- b. Basta considerare $f=(X^2-3)(X^2-7)$. Le sue radici sono $\pm\sqrt{3}$ e $\pm\sqrt{7}$ da cui il cui campo di spezzamento di f è $\mathbb{Q}[\sqrt{3},-\sqrt{3},\sqrt{7},-\sqrt{7}]=\mathbb{L}$.
- c. Basta porre $\alpha = \sqrt{3} + \sqrt{7}$. Infatti $\mathbb{Q}[\alpha] \subseteq \mathbb{L}$ per ovvie ragioni. Per l'inclusione opposta consideriamo $\alpha^3 = 10 + 9\sqrt{7} + 21\sqrt{3}$ da cui $\alpha^3 10 9\alpha = 12\sqrt{3}$ e quindi $\sqrt{3} \in \mathbb{Q}[\alpha]$ e quindi anche $\sqrt{7} = \alpha \sqrt{3} \in \mathbb{Q}[\alpha]$.
- d. Ogni elemento $\beta \in \mathbb{L}$ si scrive nella forma $a+b\sqrt{7}$ con $a,b \in \mathbb{Q}[\sqrt{3}]$. Se $\beta^2 \in \mathbb{Q}$ abbiamo $a^2+7b^2+2ab\sqrt{7} \in \mathbb{Q}$ da cui ab=0 e $a^2+7b^2 \in \mathbb{Q}$. Se a=0 abbiamo $b^2 \in \mathbb{Q}$ e se b=0 abbiamo $a^2 \in \mathbb{Q}$. Nel primo caso $b=r+\sqrt{3}s$ con $r,s \in \mathbb{Q}$ e deduciamo che r=0 e quindi $\beta=b\sqrt{7}=s\sqrt{21}$, oppure s=0 e otteniamo $\beta=r\sqrt{7}$. Nel secondo caso avremmo $\beta=t+v\sqrt{3}$ con $t,v \in \mathbb{Q}$ da cui $\beta=t \in \mathbb{Q}$ oppure $\beta=v\sqrt{3}$.
- e. Se \mathbb{K} è un campo intermedio tra \mathbb{Q} ed \mathbb{L} allora \mathbb{K} è della forma $\mathbb{K}[\gamma]$ con $\gamma \in \mathbb{L}$, γ di grado 2. Ora, se il discriminante del polinomio minimo di γ è Δ abbiamo $\mathbb{K}[\gamma] = \mathbb{K}[\sqrt{\Delta}]$. Per il punto precedente abbiamo che $\sqrt{\Delta} = q\sqrt{d}$ e quindi

$$\mathbb{K} = \mathbb{Q}[\gamma] = \mathbb{Q}[\sqrt{\Delta}] = \mathbb{Q}[q\sqrt{d}] = \mathbb{Q}[\sqrt{d}].$$

Abbiamo quindi che le estensioni intermedie sono $\mathbb{Q}[\sqrt{3}]$, $\mathbb{Q}[\sqrt{7}]$, $\mathbb{Q}[\sqrt{21}]$.

Esercizio 2 a. Il coefficiente di X^{n+m} in fg è a_nb_m . Siccome n+m>0 tale coefficiente deve essere 0 e quindi, sapendo che $a_n=3$, abbiamo $b_m=0,2,4$. Ma $b_m\neq 0$ perché g ha grado m.

b. Procediamo per induzione su k. Il caso k=0 è stato risolto nel punto precedente. Osserviamo che n+m-k>0 e quindi il coefficiente di fg di grado n+m-k deve annullarsi. Tale coefficiente è dato da:

$$a_n b_{m-k} + a_{n-1} b_{m-(k-1)} + \dots + a_{n-(k-1)} b_{m-1} + a_{n-k} b_m = 0 \in \mathbb{Z}_6.$$

Per ipotesi induttiva tutti i termini intermedi si annullano e quindi otteniamo

$$a_n b_{m-k} + a_{n-k} b_m = 0 \in \mathbb{Z}_6.$$

Siccome il primo addendo è 0 o 3 lo stesso deve accadere al secondo e siccome $b_m = 2, 4$ l'unica possibilità è che a_{n-k} sia 0 o 3. Similmente siccome il secondo addendo è 0,2,4 lo stesso deve accadere al primo addendo e siccome $a_n = 3$ abbiamo che necessariamente $b_{m-k} = 0, 2, 4$.

- c. Supponiamo per assurdo n+m>0. Siccome $a_nb_m=0$ e sia a_n che b_m sono diversi da 0, almeno uno dei due deve essere 3 e possiamo suppore $a_n=3$. Per il punto precedente abbiamo che tutti i coefficienti di f sono multipli di 3 o tutti i coefficienti di g sono multipli di 2. In ogni caso otteniamo un assurdo perché 2 e 3 non sono invertibili. Deduciamo che f e g hanno grado 0 e quindi f=g=1 oppure f=g=5.
- d. Gli elementi invertibili di $A\sqrt{2}$ sono tutti gli elementi di norma invertibile, cioè 1 o 5

per il punto precedente. Un elemento generico $f + g\sqrt{2}$ è quindi invertibile se e solo se

$$f^2 - 2g^2 = 1, 5 \in \mathbb{Z}_6[X].$$

Ad esempio tutti gli elementi con f = 1 e g polinomio con tutti i coefficienti divisibili per 3 sono invertibili.

Esercizio 3 a. L'intersezione di una famiglia non vuota di sottoanelli è sempre un sottoanello: tutte le verifiche sono banali. Basta quindi osservare che esiste un sottoanello di \mathbb{C} che contiene sia \mathbb{Z} che $\sqrt[3]{2}$ e questo è proprio \mathbb{C} .

b. Sia $B = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{C}\}$. Si verifica facilmente che B è un sottoanello di \mathbb{C} che chiaramente contiene sia \mathbb{Z} che $\sqrt[3]{2}$ e quindi è uno degli anelli che andiamo ad intersecare per ottenere A. Basta ora osservare che ogni sottoanello che contiene sia \mathbb{Z} che $\sqrt[3]{2}$ contiene anche B. Infatti un tale anello contiene anche $\sqrt[3]{2} = \sqrt[3]{4}$ e quindi contiene tutti gli elementi che si ottengono facendo somme e prodotti di elementi in \mathbb{Z} , $\sqrt[3]{2}$ e $\sqrt[3]{4}$ e quindi in particolare tutti gli elementi di B.

L'unicità viene ad esempio dal fatto che A è contenuto in $\mathbb{Q}[\sqrt[3]{2}]$ che è un \mathbb{Q} -spazio vettoriale con base $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$.

c. Abbiamo

$$(\sqrt[3]{2}) = \{\alpha\sqrt[3]{2} : \alpha \in A\} = \{\sqrt[3]{2}(a+b\sqrt[3]{2}+c\sqrt[3]{4}), a, b, c1 \in \mathbb{Z}\} = \{2c+a\sqrt[3]{2}+b\sqrt[3]{4}, a, b, c \in \mathbb{Z}\}.$$

d. Dal punto precedente abbiamo che l'omomorfismo

$$\varphi:A\to\mathbb{Z}_2$$

dato da $\varphi(a+b\sqrt[3]{2}+c\sqrt[3]{4})=a\in\mathbb{Z}_2$ ha per nucleo $(\sqrt[3]{2})$ e quindi, essendo suriettivo, abbiamo

$$\frac{A}{(\sqrt[3]{2})} \cong \mathbb{Z}_2.$$

Soluzione 07 Giugno 2017

Esercizio 1 a. Se $\beta \in L \setminus K$ allora $L = K[\beta]$. Il polinomio minimo di β su K avrà grado 2 e sarà quindi del tipo

$$X^2 + 2bX + c$$

con $b, c \in K$. Ma allora $(\beta + b)^2 = b^2 - c$ e quindi basterà porre $\alpha = \beta + b$. In altre parole stiamo prendendo come α una radice quadrata del discriminante del polinomio minimo di β .

b. In \mathbb{Z}_3 abbiamo bisogno di un elemento che non sia un quadrato già in \mathbb{Z}_3 : l'unico tale elemento è -1 e in effetti prendendo $L = \mathbb{Z}_3[\sqrt{-1}]$ otteniamo un'estensione quadratica ma il polinomio

$$X^4 + 1 = (X^2 + X - 1)(X^2 - X - 1)$$

non è irriducibile in \mathbb{Z}_3 .

c. Se K e L sono campi reali, senza perdita di generalità assumiamo $\alpha > 0$ e abbiamo

$$X^4 - \alpha^2 = (X^2 - \alpha)(X^2 + \alpha)$$

in L[X] e in questa fattorizzazione il polinomio $X^2 + \alpha$ è irriducibile. In K[X] il polinomio $X^4 + \alpha^2$ non ha radici (altrimenti conterrebbe una radice quadrata di α^2). Se fosse il prodotto di due polinomi irriducibile disecondo grado in K[X] uno dei due dovrebbe essere necessariamente $X^2 + \alpha$ per la compatibilità delle fattorizzazioni e questo è assurdo perché $\alpha \notin K$.

d. Un tale campo non può esistere. Supponiamo per assurdo che esista un tale K. Per il punto a. avremmo un elemento $\alpha \in \mathbb{R}$ (che possiamo assumere > 0) tale che $\mathbb{R} = K[\alpha]$. Per il punto c. il polinomio $X^4 - \alpha^2$ è irriducibile e quindi estendendolo con una sua radice (ad esempio $\sqrt{\alpha}$) otterremmo un'estensione di grado 4 di K. Ma $\sqrt{\alpha} \in \mathbb{R}$ che è un'estensione di grado 2, e questa è una contraddizione.

Esercizio 2

a. A è contenuto nell'anello delle matrici a coefficienti in \mathbb{Q} . Il fatto che A sia un sottogruppo additivo è evidente (o di facile verifica). La matrice identità appartiene ad A e quindi l'unica proprietà da verificare è che A è chiuso rispetto al prodotto. Si ha

$$\left[\begin{array}{cc} a & b \\ qb & a \end{array}\right] \cdot \left[\begin{array}{cc} a' & b' \\ qb' & a' \end{array}\right] = \left[\begin{array}{cc} aa' + qbb' & ab' + ba' \\ q(ab' + ba') & aa' + qbb' \end{array}\right]$$

da cui si evince che il prodotto è un'operazione binaria su A commutativa.

b. Dobbiamo mostrare che con q=2 ogni matrice non nulla ammette inversa in A, cioè, visto come funziona il prodotto nel punto precedente, che dati $a,b\in\mathbb{Q}$ non entrambi nulli esistono $a',b'\in\mathbb{Q}$ tali che

$$\begin{cases} aa' + 2bb' = 1\\ ab' + ba' = 0 \end{cases}$$

E questo sistema ammette (un'unica) soluzione in \mathbb{Q} per il teorema di Rouché-Capelli visto che la matrice dei coefficienti ha determinante $a^2 - 2b^2 \neq 0$.

c. Procedendo in modo analogo al caso precedente dobbiamo risolvere il sistema

$$\begin{cases} aa' + 4bb' = 0\\ ab' + ba' = 0 \end{cases}$$

Una possibile soluzione è data da a = a' = 2, b = -b' = 1 e infatti

$$\left[\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array}\right] \cdot \left[\begin{array}{cc} 2 & -1 \\ -4 & 2 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

d. Abbiamo che l'ideale I generato da $\begin{bmatrix}2&1\\4&2\end{bmatrix}$ è costituito da tutti i multipli (in A_4 !) di questa matrice per cui abbiamo

$$\begin{split} I &= \left\{ \left[\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array} \right] \cdot \left[\begin{array}{cc} a & b \\ 4b & a \end{array} \right] : a, b \in \mathbb{Q} \right\} \\ &= \left\{ \left[\begin{array}{cc} 2(a+2b) & a+2b \\ 4(a+2b) & 2(a+2b) \end{array} \right] : a, b \in \mathbb{Q} \right\} \\ &= \left\{ \left[\begin{array}{cc} 2c & c \\ 4c & 2c \end{array} \right] : c \in \mathbb{Q} \right\} \end{split}$$

e. Vista la forma degli elementi di I consideriamo la funzione $\varphi: A_4 \to \mathbb{Q}$ data da

$$\varphi \left[\begin{array}{cc} a & b \\ 4b & a \end{array} \right] = a - 2b.$$

Si ha chiaramente che φ è un omomorfismo di gruppi additivi. Vediamo che è anche un omomorfismo di anelli unitari. Intanto manda 1 in 1. Inoltre

$$\varphi\left(\left[\begin{array}{cc}a&b\\4b&a\end{array}\right]\cdot\left[\begin{array}{cc}a'&b'\\4b'&a'\end{array}\right]\right) = \varphi\left[\begin{array}{cc}aa'+4bb'&ab'+ba'\\4(ab'+ba')&aa'+qbb'\end{array}\right]$$
$$= aa'+4bb'-2(ab'+ba')$$
$$= (a-2b)(a'-2b')$$
$$= \varphi\left[\begin{array}{cc}a&b\\4b&a\end{array}\right]\varphi\left[\begin{array}{cc}a'&b'\\4b'&a'\end{array}\right]$$

Esercizio 3

a. Sappiamo che $\mathbb{Z}_7[\sqrt{d}]$ è un campo se e solo se d non è un quadrato in \mathbb{Z}_7 . I quadrati in \mathbb{Z}_7 sono 0,1,2,4 e quindi $\mathbb{Z}_7[\sqrt{d}]$ è un campo se e solo se $d \in \{3,5,6\}$.

b. Consideriamo il generico elemento $a + \varepsilon b \in \mathbb{Z}_7[\sqrt{d}]$. Abbiamo

$$(a+b\varepsilon)^2 = a^2 + db^2 + 2ab\varepsilon.$$

Questo è 0 se e solo se $a^2 + db^2 = 0$ e 2ab = 0. Soluzioni non banali si ottengono solo con d = 0 e infatti in questo caso abbiamo $\varepsilon^2 = 0$.

c. Similmente al punto precedente dobbiamo risolvere il sistema

$$\begin{cases} a^2 + db^2 = 1\\ 2ab = 0 \end{cases}$$

Per d = 3, 5, 6 non possiamo avere 3 soluzioni perché abbiamo dei campi.

Per d=0 abbiamo anche solo le soluzioni banali ± 1 .

Per d=1 abbiamo le soluzioni non banali $\pm \varepsilon$.

Per d=2 abbiamo le soluzioni non banali $\pm 2\varepsilon$.

Per d=4 abbiamo le soluzioni non banali $\pm 3\varepsilon$.

d. Di ottengono campi per $d=\{3,5,6\}$ e questi sono i somorfi perché sono campi finiti con la stessa cardinalità. L'estensione con d=0 non è isomorfa alle altre per il punto b. (è l'unica con un elemento che al quadrato dà 0. Le estensioni con d=1,2,4 sono isomorfe tra di loro e gli isomorfismi si ottengono sfruttando il punto c. e in particolare abbiamo che $(a+b\sqrt{1})\mapsto (a+2b\sqrt{2})$ è un isomorfismo tra $\mathbb{Z}[\sqrt{1}]$ e $\mathbb{Z}[\sqrt{2}]$ e che $(a+b\sqrt{1})\mapsto (a+3b\sqrt{4})$ è un isomorfismo tra $\mathbb{Z}[\sqrt{1}]$ e $\mathbb{Z}[\sqrt{4}]$.

Soluzioni 04 Luglio 2017

Esercizio 1

- a. K[X]/(f) non è un dominio in quanto $X^2 \cdot (4X^3 3X + 2) = 0$ per cui X^2 è un divisore dello zero (osserviamo che $X^2 \neq 0 \in K[X]/(f)$ perché X^2 non può essere multiplo
- b. Abbiamo $(4X^4-3X^2+2X)^2=0$ per cui $4X^4-3X^2+2X$ è nilpotente. c. Siccome $P^2=0$ abbiamo $(P+1)(P-1)=P^2-1=-1$ e quindi l'inverso di P+1 è $-P + 1 \operatorname{cioe} -4X^5 + 3X^3 - 2X^2 + 1$.
- d. Basta considerare ab. Tale elemento non è un multiplo di a^2b , altrimenti avremmo $a^2bx = ab$ da cui, siccome siamo in un dominio e quindi vale la legge di cancellazione, avremmo ax = 1 e quindi a sarebbe invertibile. Quindi $ab \neq 0 \in A/(a^2b)$, ma $(ab)^2 = 0$ e quindi ab è nilpotente.

- a. Su \mathbb{Q} il polinomio f non ha radici. Iniziamo estendendo con una radice di X^2-2 , cioè con $\sqrt{2}$: otteniamo $\mathbb{Q}[\sqrt{2}]$ che è un'estensione di grado 2. Si vede facilmente che in $\mathbb{Q}[\sqrt{2}]$ non ci sono soluzioni di X^2-3 per cui dobbiamo effettuare un'ulteriore estensione di grado 2. Il campo di spezzamento è quindi $\mathbb{Q}[\sqrt{2},\sqrt{3}]$ che ha grado 4 su \mathbb{Q} .
 - b. Su \mathbb{R} il polinomio si spezza giá e quindi il campo di spezzamento è \mathbb{R} stesso.
- c. Su $\mathbb{F}_7=\mathbb{Z}_7$ abbiamo che X^2-2 si spezza già, mentre X^2-3 non ha soluzioni: dobbiamo quindi effettuare un'estensione di grado 2, ottenendo \mathbb{F}_{49} .
- d. \mathbb{F}_9 è un'estensione di grado 2 del campo finito \mathbb{Z}_3 e sappiamo quindi dalla teoria che contiene tutte le radici dei polinomi (irriducibili) di grado 2 su Z₃. In particolare contiene sicuramente le radici di X^2-2 e di X^2-3 per cui il campo di spezzamento è \mathbb{F}_9 stesso.
 - e. f. Lo stesso argomento del punto d. permette di concludere.

- a. La riduzione di f in $\mathbb{Z}_2[X]$ è $X^4 + X + 1$ e si verifica facilmente che tale polinomio è irriducibile in $\mathbb{Z}_2[X]$ per cui f è irriducibile in $\mathbb{Q}[X]$ e quindi $\mathbb{Q}[X]/(f)$ è sempre un campo, quali che siano a, b, c (purché tutti dispair!)
- b. Viceversa $\mathbb{Z}[X]/(f)$ non è mai un campo: consideriamo infatti l'elemento 2: se fosse invertibile avremmo un polinomio P tale che $2P = 1 \in \mathbb{Z}[X]/(f)$ e quindi 2P = 1 + Qf. Riducendo questa identità in $\mathbb{Z}_2[X]$ avremmo Qf = -1 che è chiaramente assurda visto che f non è di certo invertibile in $\mathbb{Z}_2[X]$.
- c. Per il punto a. è sempre invertibile. L'inversa si trova facilmente considerando che $X(aX^3+b)=-c\in\mathbb{Q}[X]$ e quindi l'inversa di (aX^3+b) è $-\frac{1}{c}X$.
- d. Quanto visto nel punto c. vale anche in questo caso se $c=\pm 1$ e quindi in questo caso il polinomio è invertibile e l'inversa è $-\frac{1}{c}X = -cX$. Se $c \neq \pm 1$ l'esercizio si complica assai.
 - Se $aX^3 + b$ è invertibile allora f è primitivo. Infatti, se f non fosse primitivo, sia d > 1 un divisore comune di a, b, c; abbiamo che $d \neq 0 \in \mathbb{Z}[X]/(f)$ e che quindi d è un divisore dello 0 in $\mathbb{Z}[X]/(f)$, in quanto $d \cdot \frac{f}{d} = 0$. Ne segue che $aX^3 + b$ è un multiplo di un divisore dello 0 e quindi non può essere invertibile.
 - Se $aX^3 + b$ è invertibile allora c|a. Sfruttiamo il fatto che se $P \in \mathbb{Z}[X]$ è un qualunque polinomio allora è possibile effettuare la divisione con resto di aP per f

in $\mathbb{Z}[X]$ e quindi abbiamo che aP è congruo modulo f ad un polinomio a coefficienti interi di grado al più 4. Supponiamo ora che aX^3+b sia invertibile in $\mathbb{Z}[X]/(f)$ e sia P un polinomio a coefficienti interi che rappresenta una sua inversa. Allora la classe del polinomio aP si può rappresentare con un polinomio Q di grado al più 3. Abbiamo quindi che $\frac{1}{a}Q$ è l'inverso di aX^3+b in $\mathbb{Q}[X]/(f)$ ed ha grado al più 3 e quindi $\frac{1}{a}Q=-\frac{1}{c}X$ e quindi $Q=-\frac{a}{c}X$. Siccome Q ha coefficienti interi abbiamo che c|a

• Infine, se f non è primitivo e a è multiplo di c allora $aX^3 + b$ è invertibile. Infatti in tali ipotesi abbiamo che b è primo con c e quindi esistono due interi b' e h tali che bb' + ch = 1 e un intero k tale che a = kc. Abbiamo in questo caso

$$-\frac{1}{c}X + \frac{b'}{c}(kcX^4 + bX + c) = -\frac{1}{c}X + kb'X^4 + \frac{1}{c}X - hX + b' = kb'X^4 - hX + b'$$
e quindi quest'ultimo è l'inverso di $aX^3 + b$ in $\mathbb{Z}[X]/(f)$.

Soluzioni 11 Gennaio 2018

Esercizio 1

a. Ricordando che esiste un unico omomorfismo $\mathbb{Z} \to A$ per ogni anello A rimane da individuare le possibili immagini di $\sqrt{2}$. L'immagine di $\sqrt{2}$ deve essere un elemento che al quadrato dà 2 (perché ϕ è un omomorfismo) e quindi le uniche possibilità sono 3,4. Abbiamo quindi due possibili omomorfismi

$$\phi_1(a+b\sqrt{2}) = a+3b$$

$$\phi_2(a+b\sqrt{2}) = a+4b.$$

È immediato verificare che sono entrambi omomorfismi.

- b. Sia $\varphi : \mathbb{Z}[\sqrt{2}][X] \to \mathbb{Z}_7[X]$ l'unico omomorfismo che estende ϕ_1 e tale che $\varphi(X) = X$. Se $X^3 \sqrt{2}$ è riducibile in $\mathbb{Z}[\sqrt{2}]$ lo sarebbe anche la sua immagine $X^3 3 \in \mathbb{Z}_7[X]$: ma questo polinomio è irriducibile non avendo radici. Siccome $\mathbb{Z}[\sqrt{2}]$ è euclideo e quindi a fattorizzazione unica possiamo applicare il lemma di Gauss e concludere che $X^3 \sqrt{2}$ è irriducibile anche in $(\mathbb{Q}[\sqrt{2}])[X]$.
- c. Se α è una radice reale di $X^3 \sqrt{2}$ abbiamo che $[\mathbb{Q}[\sqrt{2}, \alpha] : \mathbb{Q}[\sqrt{2}]] = 3$ per il punto precedente. Tuttavia questo campo non può contenere tutte le radici di $X^3 \sqrt{2}$ perché è un campo reale e quindi è necessario effettuare un'altra estensione di grado 2. Il campo di spezzamento ha quindi grado 6.

Esercizio 2

- a. Osserviamo che $6 + \varepsilon$ ha norma 0 e quindi A non è un dominio.
- b. Gli elementi invertibili sono quelli che hanno norma invertibile: siccome l'anello dei coefficienti è un campo è più semplice calcolare quelli non invertibili, cioè quelli di norma 0. Sia quindi $\alpha = a + b\varepsilon$ tale che $N(\alpha) = 0$; abbiamo

$$N(\alpha) = a^2 - 2b^2 = a^2 - (6b)^2 = (a+6b)(a-6b).$$

per cui $N(\alpha)=0$ se e solo se $a=\pm 6b$: gli elementi che soddisfano questa condizione sono 33 (due scelte per a per ogni valore di $b\neq 0$) e quindi gli invertibili sono 17^2-33 .

c. Una classe è formata da 0 e una classe dagli elementi invertibili. Le altre due classi sono date da

$$C_1 = \{a + \varepsilon b : a = 6b, a \neq 0\}$$

e

$$C_2 = \{a + \varepsilon b : a = -6b, a \neq 0\}.$$

d. Vediamo i possibili ideali di A.

Osserviamo che un ideale è necessariamente unione di classi di associatura. Se un ideale I contiene un invertibile allora I=A e quindi $A/I=\{0\}$. Se I contiene sia un elemento di C_1 che di C_2 allora sia C_1 che C_2 e quindi un invertibile e quindi ricadiamo nel caso precedente. Le uniche possibilità rimaste sono $C_1 \cup \{0\}$, $C_2 \cup \{0\}$ e $\{0\}$ e questi sono effettivamente ideali. Se $I=C_1 \cup \{0\}$ allora A/I è un campo (perché I è massimale) con 17 elementi...

- a. Basta mostrare che nessun elemento non nullo ha norma nulla. Se $N(f+\varepsilon g)=0$ con $f,g\in A$ abbiamo $f^2=Xg^2$ non è possibile perché X avrebbe molteplicità pari in f^2 e dispari in Xg^2 (se questi sono nulli).
- b. Infatti l'elemento $X \varepsilon$ ha norma mulla.
- c. Per mostare che $A[\sqrt{X^3}]$ è un dominio si procede come nel punto (a). Per mostrare che non è un PID è sufficiente mostrare, ad esempio, che l'ideale $(X, \sqrt{X^3})$ non è principale oppure che $X^3 = X \cdot X \cdot X = \varepsilon^2$ ammette due distinte scomposizioni in irriducibili
- d. Basta osservare che $A[\sqrt{X}]$ altri non è che l'anello dei polinomi a coefficienti in $\mathbb Q$ nella variabile \sqrt{X} e infatti si verifica facilmente che l'applicazione $\varphi:A[\sqrt{X}]\to A$ data da
- $\varphi(a_0+a_1X+\cdots+a_nX^n+\varepsilon(b_0+b_1X+\cdots+b_mX^m))=a_0+a_1X^2+\cdots+a_nX^{2n}+X(b_0+b_1X^2+\cdots+b_mX^{2m})$ è un isomofismo di anelli.

Soluzioni 06 Febbraio 2018

Esercizio 1

a. Si ha chiaramente che A è il sottospazio dello spazio vettoriale di tutte le matrici 3×3 generato dalle 3 matrici

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right], \ \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right], \ \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right].$$

Siccome queste 3 matrici sono linearmente indipendenti abbiamo che A è un \mathbb{Q} -spazio vettoriale di dimensione 3 e in particolare un gruppo abeliano rispetto alla somma. La matrice identità appartiene ad A e quindi rimane da verificare solo che A è chiuso e commutativo rispetto al prodotto. Si ha

$$\begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} \cdot \begin{bmatrix} \alpha & \beta & \gamma \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{bmatrix} = \begin{bmatrix} \tilde{a} & \tilde{b} & \tilde{c} \\ \tilde{c} & \tilde{a} & \tilde{b} \\ \tilde{b} & \tilde{c} & \tilde{a} \end{bmatrix}$$

con $\tilde{a} = a\alpha + b\gamma + c\beta$, $\tilde{b} = a\beta + b\alpha + c\gamma$ e $\tilde{c} = a\gamma + b\beta + c\alpha$ per cui A è chiusio rispetto al prodotto. Osservando la simmetria di $\tilde{a}, \tilde{b}, \tilde{c}$ rispetto alle due terne (a, b, c) e (α, β, γ) abbiamo anche la commutatività del prodotto.

b. Sia I che J sono chiaramente sottospazi vettoriali di A per cui basta verificare la proprietà di "assorbimento" rispetto al prodotto. Per I basta osservare che

$$\tilde{a} + \tilde{b} + \tilde{c} = (a+b+c)(\alpha+\beta+\gamma)$$

per cui se a+b+c=0 allora $\tilde{a}+\tilde{b}+\tilde{c}=0$. Per J osserviamo invece che se a=b=c allora $\tilde{a}=\tilde{b}=\tilde{c}=a(\alpha+\beta+\gamma)$. Che siano non banali è evidente.

c. Abbiamo

$$\varphi(X) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ \varphi(X^2) = \varphi(X)^2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \ \varphi(X^3) = \varphi(X)^3 = I$$

. Segue che φ è suriettiva e quindi

$$\mathbb{Q}[X]/\ker(\varphi) \cong A;$$

di conseguenza $\ker(\varphi)$ è generato dal un polinomio di grado 3. Ma $X^3-1 \in \ker(\varphi)$ e concludiamo che $\ker(\varphi) = (X^3-1)$. Oppure, avendo osservato che $X^3-1 \in \ker(\varphi)$ abbiamo che il nucleo di φ è necessariamente generato da un divisore di X^3-1 , ma nessun divisore proprio di X^3-1 sta nel nucleo...

d. Dall'isomorfismo del punto precedente basta osservare che $\mathbb{Q}[X]/(X^3-1)$ ha esattamente due ideali non banali. Ma gli ideali di questo quoziente sono generati dai divisori non banali di X^3-1 che sono X-1 e X^2+X+1 e sono quindi 2.

a. Effettuando il raccoglimento parziale per f abbiamo

$$X^{5} - 3X^{3} - 2X^{2} - 1 = X^{3}(X^{2} - 3) - 2(X^{2} - 3) = (X^{3} - 2)(X^{2} - 3)$$

per cui f è riducibile in $\mathbb{Z}_7[X]$. Osserviamo anche che i due fattori X^2-3 e X^3-3 sono irriducibili non avendo radici.

- b. Se α è una radice di X^2-3 nel campo di spezzamento abbiamo $\mathbb{Z}_7[\alpha]=\mathbb{F}_{7^2}$ e se β è una radice di X^3-2 abbiamo $\mathbb{Z}_7[\beta]=\mathbb{F}_{7^3}$. Per l'unicitá dei sottocampi di data cardinalità di un campo finito abbiamo che $\mathbb{Z}_7[\beta]$ contiene tutte le radici di X^3-3 e quindi il campo di spezzamento sarà il campo finito più piccolo che contiene \mathbb{F}_{7^2} e \mathbb{F}_{7^3} , cioè \mathbb{F}_{7^6} .
- c. Abbiamo in questo caso $\mathbb{F}_{7^{12}}$.
- d. In \mathbb{F}_{7^5} non esistono radici di f perché \mathbb{F}_{7^5} non ha sottocampi isomorfi a \mathbb{F}_{7^2} o a \mathbb{F}_{7^3} .

- a. Sappiamo già che $A = \{x + \varepsilon y : , x, y \in \mathbb{Z}_3 \text{ ha } 3^2 = 9 \text{ elementi. Per dimostrare che è un campo basta osservare ce 2 non è un quadrato in } A.$
- b. Il gruppo A^* è ciclico di ordine 8 per cui ha $\phi(8)=4$ generatori. Osservando che $1,-1,\varepsilon e-\varepsilon$ hanno ordine rispettivamente 1,2,4,4 abbiamo che i generatori sono proprio gli altri 4 elementi, cioè $\pm 1 \pm \varepsilon$.
- c. $B = \{a + b\eta, a, b \in A\}$ dove η soddisfa $\eta^2 = 2$. Tuttavia B non è un campo perché 2 è un quadrato in A: infatti $2 = \varepsilon^2$.
- d. Basta mostrare che esiste un omomorfismo suriettivo $\varphi: B \to A$. Un tale omomorfismo è dato da

$$\varphi(a+b\eta) = a + b\varepsilon.$$

Soluzioni 04 Giugno 2018

Esercizio 1

- a. A è un sottoinsieme di $\mathbb{Q}(X)$ il campo delle frazioni di $\mathbb{Q}[X]$ per cui è sufficiente verificare le seguenti proprietà:
 - $0 = \frac{0}{1} \in A;$
 - Se $\frac{g}{h}, \frac{g'}{h'} \in A$ allora $\frac{g}{h} \frac{g'}{h'} = \frac{gh' g'h}{hh'} \in A$. Infatti, siccome f è irriducibile, $f \not | hh'$.

 - Se $\frac{g}{h}, \frac{g'}{h'} \in A$ allora $\frac{g}{h} \frac{g'}{h'} = \frac{gg'}{hh'} \in A$. Infatti, siccome f è irriducibile, $f \not| hh'$.
- b. Mostriamo che

$$\mathcal{U}(A) = \{ \frac{g}{h} : f \not| g, h \}.$$

Infatti, se $\frac{g}{h} \in \mathcal{U}(A)$ allora esiste $\frac{g'}{h'} \in A$ tale che $\frac{gg'}{hh'} = 1$, cioè gg' = hh'. Siccome $f \not hh'$ allora $f \not gg'$ e quindi $f \not g$. Viceversa, se $f \not g, h$ allora chiaramente $\frac{g}{h}$ è invertibile essendo il suo inverso $\frac{h}{q} \in A$.

- c. $I = \{\frac{fg}{h}: f / h\}$ è un ideale. I è l'unico massimale perché gli elementi che non stanno in A sono precisamente gli elementi invertibili.
- d. In A/I abbiamo f=0 e quindi ... $\frac{g}{h}$ si può scrivere nella forma aX+b e quindi abbiamo un'estensione finita di \mathbb{Q} .

Esercizio 2

- a. Sia $\gamma = MCD(\alpha, \beta)$. Dalla teoria sappiamo che $I = (\gamma)$. E siccome $\gamma | \alpha, \beta$, dalla moltiplicatività della norma abbiamo $N(\gamma)|N(\alpha),N(\beta)|$ e quindi $N(\gamma)|MCD(N(\alpha),N(\beta))|$
- b. Questo accade se solo se γ è invertibile e dobbiamo capire se questo è possibile. Esiste un unico elemento a meno di associati, cioè 1+i, di norma 2 e quindi 1+idivide sia α che β . Di conseguenza 1+i divide γ e quindi γ non è invertibile.
- c. Dal punto precedente I può essere massimale se e solo se $\gamma = 1 + i$ (sempre a meno di associati). Questo può capitare se $\alpha = (1+i)(1+2i)$ e $\beta = (1+i)(1-2i)$. In questo caso le condizioni sono tutte soddisfatte.
- d. Da punti precedenti abbiamo solo 3 possibilità:
 - $\gamma = 1 + i$ e in questo caso $\mathbb{Z}[i]/I \cong \mathbb{Z}_2$;
 - $\gamma = (1+i)(1+2i)$ (ad esempio se $\alpha = \beta = (1+i)(1+2i)$). In questo caso, usando ad esempio il teorema cinese del resto abbiamo

$$\mathbb{Z}[i]/I \cong \frac{\mathbb{Z}[i]}{(1+i)} \times \frac{\mathbb{Z}[i]}{1+2i} \cong \mathbb{Z}_2 \times \mathbb{Z}_5 \cong \mathbb{Z}_{10}.$$

• $\gamma = (1+i)(1-2i)$ (ad esempio se $\alpha = \beta = (1+i)(1-2i)$). Come nel caso precedente $\mathbb{Z}[i]/I \cong \mathbb{Z}_{10}$.

- a. Sia $\alpha \in K \setminus \mathbb{Q}$. Allora α è algebrico di grado 2 su \mathbb{Q} e sia quindi f il suo polinomio minimo. Se β è l'altra radice di f abbiamo $\beta \in \mathbb{Q}[\alpha]$ e quindi $K = \mathbb{Q}[\alpha] = \mathbb{Q}[\alpha, \beta]$ è il campo si spezzamento di f su \mathbb{Q} .
- b. Se $f = a_0 + a_1 X + a_2 X^2 + X^3$ è il polinomio minimo di α abbiamo

$$0 = \varphi(0) = \varphi(a_0 + a_1\alpha + a_2\alpha^2 + \alpha^3) = a_0 + a_1\varphi(\alpha) + a_2\varphi(\alpha)^2 + \varphi(\alpha)^3$$

dove abbiamo usato le proprietà di omomorfismo di φ e il fatto che $\varphi(a) = a$ per ogni $a \in \mathbb{Q}$. Ne segue che $\varphi(\alpha)$ é anche una radice di f.

Siccome K è generato su $\mathbb Q$ dalle radici di f concludiamo che $\varphi(K)\subseteq K$.

c. Sia β una radice non reale di X^3-2 . Sappiamo dalla teoria che $\varphi: \mathbb{Q}[\sqrt[3]{2}] \to \mathbb{Q}[\beta]$ dato da

$$\varphi(a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{2}^2) = a_0 + a_1\beta + a_2\beta^2$$

è un isomorfismo di anelli (campi, in questo caso). Questo φ contraddice il punto (b.) in quanto $\varphi(K) \not\subseteq K$ e quindi K non può essere un campo di spezzamento.

Soluzioni 14 Gennaio 2019

Esercizio 1.

- a. Possiamo sempre assumere che l'esponente di 10 al denominatore sia ≥ 0 . Abbiamo

• $1 = \frac{1}{10^0} \in \mathbb{D}$. • $\frac{a}{10^n} - \frac{b}{10^m} = \frac{10^m a - 10^n b}{10^{n+m}} \in \mathbb{D}$; • $\frac{a}{10^n} \frac{b}{10^m} = \frac{ab}{10^{n+m}}$ e quindi \mathbb{D} è un sottoanello di \mathbb{Q} . La seconda parte segue osservando che un numero reale α ha espressione decimale finita se e solo se esiste $n \geq 0$ tale che $\alpha 10^n \in \mathbb{Z}$.

- b. Sia I un ideale di \mathbb{D} e sia a tale che $I \cap \mathbb{Z} = \{ka : k \in \mathbb{Z}\}$. Mostriamo che $I = \{qa : q \in \mathbb{D}\}\$ con la doppia inclusione.
 - \supseteq : Sia $\frac{b}{10^n} \in I$: allora $b = \frac{b}{10^n} 10^n \in I \cap \mathbb{Z}$ e quindi esiste $k \in \mathbb{Z}$ tale che b = ka e
- quindi $\frac{b}{10^n} = \frac{k}{10^n} a \in \{qa : q \in \mathbb{D}\}. \subseteq : \text{ ovvia.}$ c. Mostriamo che $\mathcal{U}(\mathbb{D}) = \{\frac{2^h 5^k}{10^n} : h, k \geq 0\}.$ Infatti $\frac{2^h 5^k}{10^n} \frac{2^k 5^h}{10^k + h n} = 1$ e quindi $\frac{2^h 5^k}{10^n}$ è invertibile. Viceversa, se $\frac{a}{10^n}$ è invertibile allora esistono $b \in m$ tali che $ab = 10^{n+m}$ e quindi gli unici divisori primi possibili di a sono 2 e 5.
- d. Vediamo la scomposizione in fattori irriducibili. Abbiamo $0.42 = \frac{2}{100} \times 3 \times 7$ e $38500 = 500 \times 7 \times 11$ da cui, osservando che $\frac{2}{100}$ e 500 sono invertibili e che 3, 7 e 11 sono irriducibili e non associati tra loro, il MCD è 7.

Esercizio 2

- a. Segue da Eisenstein con p=2.
- b. Possiamo effettuare la divisione euclidea di G per F perché F è monico e quindi abbiamo G = qF + r con $\deg r < 4$ e $r \in (F, G)$.
- c. $F \in G$ sono coprimi in $\mathbb{Q}[X]$ per il lemma di Gauss. Allora esistono $A, B \in \mathbb{Q}[X]$ tali che AF + BG = 1. Se n è il mcm di tutti i denominatori che compaiono nei polinomi A e B abbiamo quindi $(nA)F + (nB)G = n \in (F, G)$.
- d. Scegliendo G = X abbiamo I = (F, G) = (2, X), l'ideale contenente tutti i polinomi con termine noto pari. I é massimale perché l'unico ideale contenente I e un qualunque polinomio con termine noto dispari è $\mathbb{Z}[X]$.
- e. Scegliendo $H=X^2$ abbiamo $J=(X^2,F)$ è un ideale non massimale perché strettamente contenuto in I (ad esempio non può contenere X).

Esercizio 3

- a. Se p|b+2i allora $p|b \in p|2$ e queste condizioni sono incompatibili perché b è dispari.
- b. Sia $\alpha \in \mathbb{Z}[i]$ irriducibile tale che $\alpha|b+2i$. Abbiamo
 - $-\alpha \neq 1+i$ perché b+2i ha norma dispari.
 - $-\alpha \neq p \text{ con } p \equiv 3 \mod 4 \text{ per il punto precedente.}$
 - se $\alpha=\pi_p, \bar{\pi}_p$ con $p\equiv 1 \mod 4$ mostriamo che α non divide b-2i. Altrimenti $\bar{\alpha}|\overline{b-2i}=b+2i$ e quindi p|b+2i contraddicendo il punto precedente.

Concludiamo che b+2i e b-2i non possono avere fattori irriducibili in comune e quindi MCD(b+2i, b-2i) = 1.

- c. Sia α un fattore irriducibile di b+2i. Allora α compare con molteplicità 3k in a^3 . Siccome b+2i e b-2i sono coprimi abbiamo che α compare con molteplicità 3k anche in b+2i. Ogni fattore di b+2i compare quindi con molteplicità multipla di 3 e quindi, a meno di associati é un cubo.
- d. Gli invertibili di $\mathbb{Z}[i]$ sono ± 1 , $\pm i$ e quindi sono dei cubi. Se $b+2i=uz^3$ con u invertibile allora, siccome u è un cubo, abbiamo che anche b+2i è un cubo.

Soluzioni 09 Gennaio 2023

Esercizio 1

- (a) Siccome deg f é dispari esiste una radice $\alpha \in \mathbb{R}$ di f. Il campo $\mathbb{Q}[\alpha]$ é un'estensione di grado 3 ed é contenuta in un campo di spezzamento di f. Siccome tale campo ha anche grado 3 abbiamo che $\mathbb{Q}[\alpha]$ é un campo di spezzamento di f e quindi le radici sono tutte reali. Le radici sono distinte perché f é irriducibile su un campo di caratteristica 0.
- (b) La riduzione di f in $\mathbb{Z}_{/2}[X]$ é $X^3 + X^2 + 1$ che é irriducibile (perché non ha radici). f é quindi irriducibile anche su \mathbb{Q} .
 - (c) $\beta \neq \alpha$ perché $\{1, \alpha, \alpha^2\}$ é una base di $\mathbb{Q}[\alpha]$
- (d) Con Ruffini otteniamo $f=(X-\alpha)(X^2+(\alpha-1)X+\alpha^2-\alpha-2)$. Mostriamo quindi $\beta^2+(\alpha-1)\beta+\alpha^2-\alpha-2=0$. Abbiamo $\alpha^3=\alpha^2+2\alpha-1$ da cui $\alpha^4=\alpha(\alpha^2+2\alpha-1)=\alpha^3+2\alpha^2-\alpha=3\alpha^2+\alpha-1$ da cui deduciamo

$$\beta^2 = -\alpha + 2$$

 \mathbf{e}

$$\alpha\beta = \alpha - 1$$

e concludiamo quindi

$$\beta^{2} + (\alpha - 1)\beta + \alpha^{2} - \alpha - 2 = 0.$$

- (e) Siccome $\mathbb{Q}[\alpha]$ contiene le due radici α e β di f necessariamente contiene la terza e quindi $\mathbb{Q}[\alpha]$ é il campo di spezzamento di f.
- Esercizio 2 (a) Sia n irriducibile in A. Se n non fosse un numero primo una sua fattorizzazione non banale in \mathbb{Z} sarebbe una fattorizzazione non banale in A. Inoltre, se fosse $n=a^2+2b^2=(a+b\sqrt{-2})(a-b\sqrt{-2})$ questa sarebbe anche una fattorizzazione non banale di n in A: entrambi i fattori hanno infatti la stessa norma \sqrt{n} e quindi non sono invertibili

Viceversa, se n = p é un numero primo sia $p = \alpha \beta$ una fattorizzazione in A. Se questa é non banale allora $N(\alpha) = N(\beta) = p$ e quindi, se $\alpha = a + b\sqrt{-2}$ avremmo $p = a^2 + 2b^2$;

- (b) abbiamo $p = (a+b\sqrt{-2})(a-b\sqrt{-2}) = (c+d\sqrt{-2})(c-d\sqrt{-2})$. Siccome A é un ED é anche un UFD e quindi queste due fattorizzazioni in irriducibili (tutti i fattori hanno norma p) devono coincidere a meno dell'ordine e di associati. Ma siccome gli elementi invertibili di A sono solo ± 1 abbiamo che $a = \pm c$ e $b = \pm d$: siccome tutti i numeri coinvolti sono positivi il risultato segue.
- (c) Basta considerare i numeri primi: $2 = 0^2 + 2 \cdot 1^2$ non é irriducibile, $3 = 1^2 + 2 \cdot 1^2$ nemmeno. 5 e 7 sono invece irriducibili perché non si possono scrivere nella forma $a^2 + 2b^2$.
- (d)abbiamo $3 = (1 + \sqrt{-2})(1 \sqrt{-2}) = 3|N(\alpha) = \alpha\bar{\alpha}$. Siccome $1 + \sqrt{-2}$ ha norma 3 é irriducibile e quindi primo e quindi é un divisore di α o di $\bar{\alpha}$. Nel primo caso concludiamo, nel secondo deduciamo che $(1 \sqrt{-2})$ é un divisore di α (osservando che il coniugio é un automorfismo di A.
- $(e)\alpha = -11 + 5\varepsilon$ ha norma $9\cdots 19$. Per il punto precedenti α é divisibile per $1 + \varepsilon$ o per 1ε , ma non per entrambi, altrimenti i suoi coefficienti sarebbero divisibili per 3. Di

conseguenza é divisibile per $(1+\varepsilon)^2$ o per $(1-\varepsilon)^2$. Vediamo: moltiplichiamo α per l'inverso di $(1+\varepsilon)^2$ (nel campo dei quozienti): abbiamo

$$\alpha(1+\varepsilon)^{-2} = (-11+5\varepsilon)\frac{(1-\varepsilon)^2}{9} = \frac{1}{9}(-11+5\varepsilon)(-1-2\varepsilon) = \frac{1}{9}(31+17\varepsilon) \notin A.$$

evidentemente l'altra possibilitá é quella giusta:

$$\alpha(1-\varepsilon)^{-2} = (-11+5\varepsilon)\frac{(1+\varepsilon)^2}{9} = \frac{1}{9}(-11+5\varepsilon)(-1+2\varepsilon) = \frac{1}{9}(-9-27\varepsilon) = -1-3\varepsilon \in A$$
e quindi abbiamo la fattorizzazione

$$\alpha = (1 - \varepsilon)^2 (-1 - 3\varepsilon).$$

Esercizio 3

- (a) Un omomorfismo ϕ é tale che $\phi(1) = 1$ e quindi l'unica possibilitá é $\phi([a]_6) = [a]_3$ che chiaramente é ben posta perché 3|6.
 - (b) Questi sono infiniti perché $\varphi(X)$ puó essere scelto arbitrariamente
- (c) Abbiamo che I é costituito dai polinomi con termine e coefficiente di primo grado multiplo di 3. Di conseguenza ogni classe ha un rappresentante della forma aX + b con a, b = 0, 1, 2. D'altra parte, per la descrizione di I abbiamo [aX + b] = [a'X + b'] se e solo se $a \equiv a' \mod 3$ e $b \equiv b' \mod 3$ e quindi questi rappresentanti stanno tutti in classi distinte. Di conseguenza abbiamo esattamente 9 elementi in questo quoziente
 - (d) Non é un dominio perche $[X] \cdot [X] = [0]$ ma $[X] \neq [0]$.
- (e) L'unica possibilitá é che $A = \mathbb{Z}_{/6}[X]/I$ sia una estensione quadratica di $\mathbb{Z}_{/3}$ il fatto che $X^2 = 0$ in A ci suggerisce che questa estensione sia $\mathbb{Z}_{/3}[\sqrt{0}]$. Infatti se consideriamo l'omomorfismo

$$\varphi: \mathbb{Z}_{/6}[X] \to \mathbb{Z}_{/3}[\sqrt{0}]$$

dato sulle costanti da $\varphi([a]_6) = [a]_3$ e tale che $\varphi(X) = \varepsilon$ possiamo osservare che questo omomorfismo é suriettivo e che $ker(\varphi) = I$ e il risultato segue dal primo teorema di omomorfismo.

Soluzioni 23 Gennaio 2023

Esercizio 1

(a) Il polinomio f é irriducibile per il criterio di Eisenstein. Le radici sono $\pm \sqrt{1+\sqrt{3}}$ e $\pm i\sqrt{\sqrt{3}-1}$.

(b) Prendiamo $\alpha = \sqrt{1+\sqrt{3}}$ e $\beta = i\sqrt{\sqrt{3}-1}$. Si ha $K_1 \neq K_2$ perché il primo é un campo reale, il secondo no

(c) $K_1 \cap K_2$ é un'estensione di grado al piú 2 di \mathbb{Q} (perché K_1 e K_2 hanno grado 4 e l'intersezione é propria per il punto precedente). Bata quindi mostrare che $\sqrt{3} \in K_1 \cap K_2$. Questo segue dal fatto che $\alpha^2 - 1 = \sqrt{3}$ e $-\beta^2 + 1 = \sqrt{3}$

(d) Dal punto (b) sappiamo che $\mathbb{Q}[\alpha, \beta]$ é un'estensione di grado almeno 2 di K_1 . D'altra parte β , per il punto precedente, soddisfa il polinomio

$$X^2 + \sqrt{3} - 1 \in K_1[X]$$

e quindi $\mathbb{Q}[\alpha, \beta]$ é un'estensione di grado 2 di K_1 . Il risultato segue dal lemma della torre.

 $(e)\mathbb{Q}[\alpha,\beta]$ é un'estensione normale perché é il campo di spezzamento di f (su \mathbb{Q} , ma anche su $K_1 \cap K_2$). Il gruppo di Galois ha quindi ordine 4 e siccome abbiamo almeno due campi intermedi K_1 e K_2 il gruppo di Galois ha almeno due sottogruppi proprio e quindi é necessariamente il gruppo di Klein $\mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$.

Esercizio 2

(a) Si ha $\pi_{41} = 4 + 5i$ perché $4^2 + 5^2 = 41$ e c = -10.

(b) Basta mostrare che $(5c)^2 \equiv -1 \mod 41$. In alternativa l'unica verifica da fare é la moltiplicativitá

(c) Abbiamo $\varphi(\pi_{41}) = [4 - 5 \cdot 10 \cdot 5]_{41} = [0]_{41}$ per cui $\pi_{41} \in \ker \varphi$. D'altra parte π_{41} é irriducibile e quindi l'ideale (π_{41}) é massimale e quindi $\ker(\varphi)$ coincide on (π_{41}) non potendo essere tutto A.

(d) Questo segue direttamente dal primo teorema di omomorfismo: φ é suriettiva perché $\mathbb{Z}_{/41}$ é generato da 1.

(e) Sia $\pi_p = a + ib$, quindi tale che $a^2 + b^2 = p$ e sia c un intero tale che $ac \equiv 1 \mod p$. Osserviamo che $(bc)^2 = p^2c^2 - a^2c^2 \equiv -1 \mod p$ per cui l'omomorfismo $\varphi : A \to \mathbb{Z}_{/p}$ dato da $\varphi(x+iy) = [x+bcy]_p$ é ben definito. Osserviamo che $\pi_p \in \ker \varphi$: infatti

$$\varphi(\pi_p) = a + cb^2$$

che moltiplicata per a dá $a^2 + b^2 \equiv 0 \mod p$. Il risultato segue ancora dal teorema di omomorfismo.

Esercizio 3 (a) bisogna solo mostrare che A é chiuso rispetto al prodotto: questo deriva direttamente dal fatto che $1 + \omega + \omega^2 = 1$ e quindi $\omega^2 = -1 - \omega$;

(b) abbiamo $\overline{\omega} = \omega^2 = -1 - \omega$ e quindi

$$\overline{a+b\omega} = a+b(-1-\omega) = a-b-b\omega$$

e quindi

$$N(a+b\omega) = (a+b\omega)(\overline{a+b\omega}) = a^2 + b^2 - ab$$

(c) dal punto precedente abbiamo $N(2-5\omega)=39$ per cui se $c\in(2-5\omega)$ esiste $\alpha\in A$ tale che

$$c = (2 - 5\omega)\alpha$$

e passando alle norme abbiamo

$$c^2 = 39N(\alpha)$$

dove $N(\alpha)$ é anche un numero intero. Da questo deriva 39|c;

- (d) Dal punto precedente abbiamo che se $c=0\in A/(2-5\omega)$ allora c é un multiplo di 39. D'altra parte $39=0\in A/(2-5\omega)$ per cui la caratteristica di $A/(2-5\omega)$ é proprio 39.
- (e) abbiamo $(2-5\omega)|39=3\cdot 13$. Se $2-5\omega$ fosse primo avremmo $(2-5\omega)|3$ oppure $(2-5\omega)|13$, a entrambe le condizioni sono impossibili per la moltiplicativitá delle norma.

Soluzioni 13 Febbraio 2023

Esercizio 1

- a. Sia I massimale e $x, y \in A$ tali che $xy \in I$. Allora nel quoziente A/I abbiamo [x][y] = [0] e siccome il quoziente é un campo (e quindi un dominio) abbiamo [x] = 0 oppure [y] = 0, cioé $x \in I$ oppure $y \in I$.
- b. Siano $x, y \in A$ nilpotenti, diciamo $x^n = e y^m = 0$. Allora $(x y)^{m+n} = 0$ e $(ax)^n = 0$ per ogni $a \in A$. Nil(A) é quindi un ideale.
- c. Sia $a \in Nil(A)$ e quindi $a^n = 0$. Per definizione di ideale primo, siccome $a \cdot a^{n-1} = 0 \in I$ abbiamo $a \in I$ oppure $a^{n-1} \in I$. Il risultato segue quindi per induzione.
- d. Abbiamo $Nil(\mathbb{Z}_{/6}) = \{[0]_6\}$ e $Nil(\mathbb{Z}_{/8}) = ([2]_8)$.
- e. Se $[a] \in Nil(A/Nil(A))$ allora esiste n tale che $[a]^n = [a^n] = [0]$ cioé abbiamo a^n nilpotente. Ma se a^n é nilpotente anche a lo é e quindi [a] = [0].

Esercizio 2

- a. L é campo di spezzamento per f sia su $K[\alpha]$ che su $K[\beta]$. Identificando questi ultimi con l'isomorfismo $\phi: K[\alpha] \to K[\beta]$ che fissa gli elementi di K e manda α in β abbiamo, per il teorema di unicitá dei campi di spezzamento, che esiste un isomorfismo $\tau: L \to L$ che ristretto a $K[\alpha]$ sia ϕ .
- b. Basterà mostrare che se $h \in Gal(L/K[\alpha])$ allora $\tau h \tau^{-1} \in Gal(L/K[\beta])$ e per questo basta mostrare che $\tau h \tau^{-1}$ fissa β . Infatti:

$$\tau h \tau^{-1}(\beta) = \tau h(\alpha) = \tau(\alpha) = \beta.$$

- c. Se G é abeliano allora $Gal(L/K[\alpha]) = Gal(L/K[\beta])$ e quindi, per la corrispondenza di Galois, $K[\alpha] = K[\beta]$.
- d. Sostituendo β con una qualunque altra radice di f abbiamo che $K[\alpha]$ contiene tutte le radici di f e quindi $L = K[\alpha]$.
- e. Basta scegliere $f = X^3 2$ (irriducibile per Eisenstein) con $K = \mathbb{Q}$. Sicuramente $\mathbb{Q}[\sqrt[3]{2}]$ non puó essere il campo di spezzamento perché non contiene le radici non reali di f.

- a. Ricordando che i numeri costruibili formano un campo chiuso rispetto all'estrazione di radice quadrata abbiamo che $\sin(\alpha) = \pm \sqrt{1 \cos^2 \alpha}$ e $\sin \beta$ sono costruibili. Di conseguenza anche $\cos(\alpha + \beta)$ é costruibile.
- b. $[\mathbb{Q}[\omega] : \mathbb{Q}] = \phi(9) = 6$ che non é potenza di 2 e quindi ω non é costruibile e di conseguenza neanche la sua parte reale che é $\cos(40^\circ)$.

- c. $\cos(30^\circ) = \frac{\sqrt{3}}{2}$ é chiaramente costruibile. Ricordando che il pentagono é costruibile possiamo costruire l'angolo di 72° e quindi, bisecandolo tre volte, otteniamo l'angolo di 9°. In alternativa basta osservare che $\phi(40) = \phi(5)\phi(8) = 16$ é una potenza di 2.
- d. Possiamo costruire cos(9+9) e quindi anche cos(27) e quindi anche cos(30-27)
- e. Se n é multiplo di 3 possiamo costruire $\cos(n^{\circ})$ per i punti a. e d.. Supponiamo ora di poter costruire $\cos(n^{\circ})$ con n non multiplo di 3. Allora se $n \equiv \pm 1 \mod 3$ possiamo costruire $\cos(\pm 1^{\circ}) = \cos(1^{\circ})$. Ma allora potremmo costruire anche $\cos(40^{\circ})$, assurdo.

Soluzioni 12 Luglio 2023

Esercizio 1.

- a. Il polinomio minimo di α é X^5-3 (irriducibile per Eisenstein), mentre il polinomio minimo di ε é il quinto polinomio ciclotomico $\phi_5(X)=1+X+X^2+X^3+X^4$.
- b. É chiaro che $\varepsilon^2 \in \mathbb{Q}[\varepsilon]$. Osserviamo inoltre che $\varepsilon = \varepsilon^6 = (\varepsilon^2)^3$ per cui $\varepsilon \in \mathbb{Q}[\varepsilon^2]$.
- c. Le radici di X^5-3 sono $\alpha \varepsilon^i$, $i=1,\ldots,5$ per cui si verifica direttamente per doppia inclusione che L é il campo di spezzamento di X^5-3 su $\mathbb Q$ per cui é anche un'estensione normale;
- d. Siccome σ permuta le radici del polinomio minimo di ε abbiamo che $\sigma(\varepsilon) = \varepsilon^i$ per qualche i = 1, 2, 3, 4. L'ipotesi ci fornisce $\varepsilon = \sigma^5(\varepsilon) = \varepsilon^{i^5}$ per cui $i^5 \equiv 1 \mod 5$ da cui si deduce i = 1;
- e. Sia H un sottogruppo del gruppo di Galois di ordine 5. Necessariamente H é generato da un elemento σ di ordine 5 e il campo L^H é un'estensione di grado 4 di \mathbb{Q} . Dal punto precedente abbiamo $\mathbb{Q}[\varepsilon] \subseteq L^H$. Per motivi di gradi abbiamo l'uguaglianza.

Esercizio 2

a. Siano a_1 e a_2 elementi non nulli di A_1 e A_2 . Allora

$$(a_1,0)\cdot(0,a_2)=(0,0)$$

per cui $A_1 \times A_2$ non é un dominio.

b. Se $(x_1, x_2), (y_1, y_2) \in I_1 \times I_2$ allora

$$(x_1, x_2) - (y_1, y_2) = (x_1 - x_2, y_1 - y_2) \in I_1 \times I_2$$

per cui $I_1 \times I_2$ é un sottogruppo additivo. Inoltre per ogni $(a_1,a_2) \in A_1 \times A_2$ abbiamo $(a_1,a_2) \cdot (x_1,x_2) = (a_1x_1,a_2x_2) \in I_1 \times I_2$.