Week 10 - Assignment 12.1

```
In [43]: #Exercise 12-1.
         #The linear model I used in this chapter has the obvious drawback that it is linear
         #there is no reason to expect prices to change linearly over time. We can add flexi
         #to the model by adding a quadratic term, as we did in "Nonlinear Relationships" on
         #page 133.
         #Use a quadratic model to fit the time series of daily prices, and use the model to
         #predictions. You will have to write a version of RunLinearModel that runs that qua
         #model, but after that you should be able to reuse code in timeseries.py to generat
         #predictions.
In [44]: import thinkstats2
         import thinkplot
         import numpy as np
         import pandas as pd
         import random
         import timeseries
         import statsmodels.formula.api as smf
In [45]: from os.path import basename, exists
         def download(url):
             filename = basename(url)
             if not exists(filename):
                 from urllib.request import urlretrieve
                 local, _ = urlretrieve(url, filename)
                 print("Downloaded " + local)
In [46]: download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/mj-clean.csv")
In [47]: transactions = pd.read_csv("mj-clean.csv", parse_dates=[5])
         transactions
```

Out[47]:		city	state	price	amount	quality	date	ppg	state.name	lat	
	0	Annandale	VA	100	7.075	high	2010- 09-02	14.13	Virginia	38.830345	-77.213
	1	Auburn	AL	60	28.300	high	2010- 09-02	2.12	Alabama	32.578185	-85.472
	2	Austin	TX	60	28.300	medium	2010- 09-02	2.12	Texas	30.326374	-97.771
	3	Belleville	IL	400	28.300	high	2010- 09-02	14.13	Illinois	38.532311	-89.983
	4	Boone	NC	55	3.540	high	2010- 09-02	15.54	North Carolina	36.217052	-81.687
	•••										
	147065	West Palm Beach	FL	140	28.300	high	2014- 05-13	4.95	Florida	26.669744	-80.127
	147066	Wilmington	ОН	30	3.540	medium	2014- 05-13	8.47	Ohio	39.463476	-83.844
	147067	Youngstown	ОН	100	10.000	medium	2014- 05-13	10.00	Ohio	41.086279	-80.664
	147068	Ypsilanti	MI	35	3.540	medium	2014- 05-13	9.89	Michigan	42.235261	-83.607
	147069	Yuma	AZ	20	3.540	medium	2014- 05-13	5.65	Arizona	32.700018	-114.526

147070 rows × 10 columns

OLS Regression Results

			_					
Dep. V	/ariable:		ppg	ı	R-squared	d:	0.455	
	Model:		OLS	Adj. I	R-squared	d:	0.454	
r	Method:	Least	Squares		F-statisti	c:	517.5	
	Date:	Sun, 19 F	eb 2023	Prob (F	-statistic): 4.576	e-164	
	Time:		01:29:33	Log-l	ikelihood	d: -1	497.4	
No. Obser	vations:		1241		AIC	C:	3001.	
Df Re	siduals:		1238		BIG	C:	3016.	
Df	Model:		2					
Covarian	се Туре:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	13.6980	0.067	205.757	0.000	13.567	13.829		
years	-1.1171	0.084	-13.326	0.000	-1.282	-0.953		
years2	0.1132	0.022	5.060	0.000	0.069	0.157	0.157	
Om	nibus: 4	9.112 I	Durbin-W	atson:	1.885			
Prob(Omn	ibus):	0.000 J a	rque-Ber	a (JB):	113.885			
	Skew:	0.199	Pro	b(JB):	1.86e-25			

Notes:

Kurtosis:

4.430

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

27.5

Cond. No.

```
In [51]: timeseries.PlotFittedValues(model, results,label=name)
thinkplot.Config(title="Fitted values", xlabel="Years", xlim=[-0.1, 3.8], ylabel="P
```

Fitted values


```
In [52]: years = np.linspace(0, 5, 101)
    thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name)
    timeseries.PlotPredictions(daily, years, func=RunQuadraticModel)
    thinkplot.Config(
        title="Predictions",
        xlabel="Years",
        xlim=[years[0] - 0.1, years[-1] + 0.1],
        ylabel="Price per gram ($)",
)
```


Years

Week 10 - Assignment 12.2

```
In [53]:
         #Exercise 12-2.
         #Write a definition for a class named SerialCorrelationTest that extends
         #HypothesisTest from "HypothesisTest" on page 102. It should take a series and a la
         #as data, compute the serial correlation of the series with the given lag, and then
         #the p-value of the observed correlation.
         #Use this class to test whether the serial correlation in raw price data is statist
         #nificant. Also test the residuals of the linear model and (if you did the previous
         #the quadratic model.
         def SerialCorr(series, lag=1):
In [54]:
             xs = series[lag:]
             ys = series.shift(lag)[lag:]
             corr = thinkstats2.Corr(xs, ys)
             return corr
In [55]: class SerialCorrelationTest(thinkstats2.HypothesisTest):
             def TestStatistic(self, data):
                 series, lag = data
                 test_stat = abs(SerialCorr(series, lag))
                 return test_stat
             def RunModel(self):
                 series, lag = self.data
```

```
permutation = series.reindex(np.random.permutation(series.index))
                 return permutation, lag
In [56]: name = "high"
         daily = data[name]
         series = daily.ppg
         test = SerialCorrelationTest((series, 1)) # serial correlation of the series with t
         pvalue = test.PValue() #p-value of the observed correlation
         test.actual, pvalue
Out[56]: (0.4852293761947381, 0.0)
In [57]: #Residuals of the Linear Model
         _, results = timeseries.RunLinearModel(daily)
         series = results.resid
         test = SerialCorrelationTest((series, 1))
         pvalue = test.PValue()
         test.actual, pvalue
Out[57]: (0.07570473767506262, 0.008)
In [58]: #Residuals of the quadratic model
         _, results = RunQuadraticModel(daily)
         series = results.resid
         test = SerialCorrelationTest((series, 1))
         pvalue = test.PValue()
         test.actual, pvalue
Out[58]: (0.056073081612899166, 0.048)
```