

CERTIFICATE OF EXPRESS MAIL

"Express Mail" mailing label number: EL378850975US

Date of Deposit: December 18, 2000

I hereby certify that this paper or fee is being deposited with the United States Postal Service

"Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to Box Patent Application, Assistant Commissioner for Patents, Washington, D. C. 20231

Catherine Vigil
Catherine Vigil

METHOD AND APPARATUS FOR DIGITAL FILM PROCESSING USING A SINGLE SCANNING STATION

Gregory G. Mooy

William D. Mapel

Robert S. Young, Jr.

This application claims the benefit of U.S. Provisional Application No. 60/174,040, filed December 30, 1999, and U.S. Provisional Application No. 60/174,189, filed December 30, 1999, the entire disclosures of which are hereby incorporated herein by reference.

TECHNICAL FIELD

The present invention relates generally to digital film development, and more particularly to a method and apparatus for scanning film multiple times using a single scanning station.

BACKGROUND OF THE INVENTION

10
521

Color photographic film generally comprises three layers of light sensitive material that are separately sensitive to red, green, and blue light. During conventional color photographic film development, the exposed film is chemically processed to produce dyes in the three layers with color densities directly proportional to the blue, green and red spectral exposures that were recorded on the film in response to the light reflecting from the photographed scene. Yellow dye is produced in the top layer, magenta dye in the middle layer, and cyan dye in the bottom layer, the combination of the produced dyes revealing the latent image. Once the film is developed, a separate printing process can be used to record photographic prints, using the developed film and photographic paper.

15

In contrast to conventional film development, digital film development systems, or digital film processing systems, have been proposed. One such system involves chemically

developing exposed film to form scene images comprised of silver metal particles or grains in each of the red, green, and blue recording layers of the film. Then, while the film is developing, it is scanned using electromagnetic radiation, such as light with one predominant frequency, preferably in the infrared region. In particular, as the film develops in response to 5 chemical developer, a light source is directed to the front of the film, and a light source is directed to the back of the film. Grains of elemental silver developing in the top layer (e.g., the blue sensitive layer) are visible from the front of the film by light reflected from the front source; however, these grains are substantially hidden from the back of the film. Similarly, 10 grains of elemental silver developing in the bottom layer (e.g., the red sensitive layer) are visible from the back of the film by light reflected from the back source; however these grains are substantially hidden from the front. Meanwhile, grains of elemental silver in the middle layer (e.g., the green sensitive layer) are substantially hidden from the light reflected from the front or back; however, these grains are visible by any light transmitted through the three layers, as are those grains in the other two layers. Thus, by sensing, for each pixel 15 location, light reflected from the front of the film, light reflected from the back of the film, and light transmitted through the film, three measurements can be acquired for each pixel. The three measured numbers for each pixel can then be solved for the three colors to arrive at three color code values for each pixel, and the plurality of colored pixels can then be printed or displayed to view the image.

If desired, such scanning of each image on the film can occur at multiple times during 200 the development of the film. Accordingly, features of the image which may appear quickly during development can be recorded, as well as features of the image which may not appear until later in the film development. The multiple digital image files for each image can then be combined to form a single enhanced image file.

25 While multiple scans can be created through the use of multiple scanning stations, such a system requires redundant hardware, which can add to the cost, complexity, and size of the system. While the film could be moved in forward and reverse through a single scanning station, such a solution involves time in switching from forward to reverse (in addition to associated equipment), as well as the complexity in aligning and combining 30 multiple digital image files, some of which were taken during forward movement and some

of which were taken during reverse movement. Accordingly, it is desirable to provide a digital film processing system with reduced expense, size, and/or complexity.

SUMMARY OF THE INVENTION

According to an embodiment of the invention, a method and apparatus for creating a single digital image file from multiple digital images is provided. A single imaging station is used to generate a plurality of digital images from a medium. Each digital image represents the same source image on the medium. The digital images are combined to create a single digital image which represents the source image. The medium can comprise developing film, and the imaging station can comprise a front source to apply radiation to the front of the film, a front sensor to sense radiation from the front of the film, a back source to apply radiation to the back of the film, and a back sensor to sense radiation from the back of the film.

According to another aspect of the invention, a digital film development system is provided, comprising a source, a sensor, and a transportation mechanism. The source is configured to apply radiation to a developing film strip, and the sensor is configured to sense radiation from the developing film strip. The transportation mechanism is adapted to move the developing film strip relative to the source and sensor multiple times in a continuous unidirectional path.

An advantage of at least one embodiment of the invention is that the size, cost, and/or complexity of a digital film development system is minimized.

Still other advantages of various embodiments will become apparent to those skilled in this art from the following description wherein there is shown and described exemplary embodiments of this invention simply for the purposes of illustration. As will be realized, the invention is capable of other different aspects and embodiments without departing from the scope of the invention. Accordingly, the advantages, drawings, and descriptions are illustrative in nature and not restrictive in nature.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the same will be better understood from the following

description taken in conjunction with the accompanying drawings in which like reference numerals indicate corresponding structure throughout the figures.

FIG. 1 is a perspective view of an exemplary digital film development system which can be used with the methods and apparatus of the present invention;

5 FIG. 2 illustrates the exemplary operation of the digital film development system of FIG. 1;

FIG. 3 is a side view of a modular digital film development system;

FIG. 4 is a side view of a re-circulating digital film development system, made in accordance with principles of the present invention; and

10 FIG. 5 is a side view of a circular digital film development system, made in accordance with principles of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

In general, the present invention relates to digital film processing system which has lower the cost, complexity, and/or size when compared to other digital film processing systems which utilize multiple imaging stations. In particular, a developing film strip is circulated through a single imaging station multiple times in order to obtain multiple digital images of each frame on the film at multiple film development times. The developing film can be circulated through the single imaging station in a continuous uni-directional path, or by attaching the film to a transport structure, such as a wheel, which is then rotated. For each frame on the developing film, the multiple digital images are combined to form a single digital image which represents the frame and which includes features which appear on the film at the various film development times.

FIG. 1 shows an improved digital film processing system 100. The system operates by converting electromagnetic radiation from an image to an electronic (digital) representation of the image. The image being scanned is typically provided on a photographic film media 112 which is being developed using chemical developer. In many applications, the electromagnetic radiation used to convert the image into a digital representation is infrared light; however, visible light, microwave and other suitable types of electromagnetic radiation may also be used to produce the digitized image. The scanning system 100 generally includes a number of optic sensors 102, which measure the intensity of electromagnetic energy passing through or reflected

by the developing film 112. The source of electromagnetic energy is typically a light source 110 which illuminates the film 112 containing the scene image 104 and 108 to be scanned, which are forming on the film during the film development. Radiation from the source 110 may be diffused or directed by additional optics such as filters or waveguides (not shown) and/or one or more lenses 106 positioned between the sensor 102 and the film 112 in order to illuminate the images 104 and 108 more uniformly.

Source 110 is positioned on the side of the film 112 opposite the optic sensors 102. This placement results in sensors 102 detecting radiation emitted from source 110 as it passes through the images 104 and 108 on the film 112. Another radiation source 111 can be placed on the same side of the film 112 as the sensors 102. When source 111 is activated, sensors 102 detect radiation reflected by the images 104 and 108. This process of using two sources positioned on opposite sides of the film being scanned is described in more detail below in conjunction with FIG. 2.

The optic sensors 102 are generally geometrically positioned in arrays such that the electromagnetic energy striking each optical sensor 102 corresponds to a distinct location 114 in the image 104. Accordingly, each distinct location 114 in the scene image 104 corresponds to a distinct location, referred to as a picture element, or "pixel" for short, in a scanned image, or digital image file, which comprises a plurality of pixel data. The images 104 and 108 on film 112 can be sequentially moved, or scanned relative to the optical sensors 102. The optical sensors 102 are typically housed in a circuit package 116 which is electrically connected, such as by cable 118, to supporting electronics for storage and digital image processing, shown together as computer 120. Computer 120 can then process the digital image data and display it on output device 105. Alternatively, computer 120 can be replaced with a microprocessor or controller and cable 118 replaced with an electrical connection.

Optical sensors 102 may be manufactured from different materials and by different processes to detect electromagnetic radiation in varying parts and bandwidths of the electromagnetic spectrum. For instance, the optical sensor 102 can comprise a photodetector that produces an electrical signal proportional to the intensity of electromagnetic energy striking the photodetector. Accordingly, the photodetector measures the intensity of electromagnetic radiation attenuated by the images 104 and 108 on film 112.

As previously described and as shown in FIG. 2, the embodiments of the present invention described herein can use duplex film scanning which refers to using a front source 216 and a back source 218 to scan a developing film 220 with radiation 217 and 219 respectively. The applied radiation 217 and 219 results in reflected radiation 222 from the front 226 and reflected radiation 224 from the back 228 of the film 220, as well as transmitted radiation 230 and 240 that passes through all layers of the film 220. While the sources 216, 218 may emit a polychromatic light (i.e., multi-frequency light), the sources 216, 218 can emit monochromatic light, such as infrared light for example. The resulting radiation 222, 224, 240, and 230 are referred to herein as front, back, front-through and back-through, respectively, and are further described below.

In FIG. 2, separate color layers are viewable within the film 220 during development of the red layer 242, green layer 244 and blue layer 246. More specifically, over a clear film base 232 are three layers 242, 244, 246 sensitive separately to red, green, and blue light, respectively. These layers are not physically the colors; rather, they are sensitive to these colors. In conventional color film development, the blue sensitive layer 246 would eventually develop a yellow dye, the green sensitive layer 244 a magenta dye, and the red sensitive layer 242 a cyan dye.

During chemical development of the film 220, such as by using a developer, layers 242, 244, and 246 are opalescent. Dark silver grains 234 developing in the top layer 246, (the blue source layer), are visible from the front 226 of the film by radiation 222, and slightly visible from the back 228 because of the bulk of the opalescent developer emulsion. Similarly, grains 236 in the bottom layer 242 (the red sensitive layer) are visible from the back 228 by reflected radiation 224, but are much less visible from the front 226. Grains 238 in the middle layer 244, the green sensitive layer, are only slightly visible to reflected radiation 222, 224 from the front 226 or the back 228. However, they are visible along with those in the other layers by transmitted radiation 230 and 240. By sensing radiation reflected from the front 226 and the back 228 as well as radiation transmitted through the developing film 220 from both the front 226 and back 228 of the film, each pixel in the film 220 yields four measured values, that may be mathematically solved for the three colors, red, green, and blue, closest to the original scene. For instance, a matrix transformation may be utilized as described in U.S. Patent No. 5,519,510, the entire disclosure of which is hereby incorporated herein by reference.

5 The front signal records the radiation 222 reflected from the illumination sources 216 in front of the developing film 220. The set of front signals for an image is called the front channel (F). The front channel principally, but not entirely, records the attenuation in the radiation from the source 216 due to the silver metal particles 234 in the top-most layer 246, which is the blue recording layer. The front channel also records some attenuation in the radiation which is due to silver metal particles 236, 238 in the red and green layers 242, 244.

10 The back signal records the radiation 224 reflected from the illumination sources 218 in back of the developing film 220. The set of back signals for an image is called the back channel (B). The back channel principally, but not entirely, records the attenuation in the radiation from the source 218 due to the silver metal particles 236 in the bottom-most layer 242, which is the red recording layer. Additionally, there is some attenuation which is recorded by the back channel which is due to silver metal particles 234, 238 in the blue and green layers 246, 244.

15 The front-through signal records the radiation 230 that is transmitted through the developing film 220 from the illumination source 218 in back of the film 220. The set of front-through signals for an image is called the front-through channel (T). Likewise, the back-through signal records the radiation 240 that is transmitted through the developing film 220 from the source 216 in front of the film 220. The set of back-through signals for an image is called the back-through channel (T). The front source 216 can be energized at a first instance in time to record the front signal and back-through signal, and the back source 218 can be energized at a separate instance in time to record the back signal and front-through signal. Both through channels record essentially the same image information since they both record attenuation of the radiation 230, 240 due to the silver metal particles 234, 236, 238 in all three red, green, and blue recording layers 242, 244, 246 of the film 220. Accordingly, one of the through channel signals can be disregarded.

20 Several image processing steps can then be used to convert the illumination source radiation information for each channel (B, F, and T) to the red, green, blue values similar to those procured by conventional scanners for each spot on the film 220. These steps are needed because the silver metal particles 234, 236, 238 that form during the development process are not spectrally unique in each of the film layers 242, 244, 246. These image processing steps are not performed when conventional scanners are used to scan film after it has been developed, because the dyes which are formed with conventional chemical color development of film make each film

layer spectrally unique. However, just as with conventional scanners, once initial red, green, and blue values are derived for each image, further processing of the red, green, and blue values is usually done to enhance, manipulate, display, and/or print the image.

The exemplary digital film development system shown in FIGS. 1 and 2 can produce multiple digital image files for the same frame, each image file having back, front, and through values according to the method described above. It is desirable to create multiple image files for the same frame at separate development times so that features of the image which appear at various development times can be recorded. During the film development process, the highlight areas of the image (i.e., areas of the film which were exposed to the greatest intensity of light) will develop before those areas of the film which were exposed to a lower intensity of light (such as areas of the film corresponding to shadows in the original scene). Thus, a longer development time will allow shadows and other areas of the film which were exposed to a low intensity of light to be more fully developed, thereby providing more detail in these areas. However, a longer development time will also reduce details and other features of the highlight areas of the image. Thus, in conventional film development, one development time must be selected and this development time is typically chosen as a compromise between highlight details, shadow details and other features of the image which are dependent on the duration of development. However, in the digital film development process of FIGS. 1 and 2, such a compromise need not be made, as digital image files for the same image can be created at multiple development times and combined to produce an enhanced image.

In particular, as shown in FIG. 3, multiple separable scanning modules (i.e., imaging stations or scanning stations) 302, 304, 306, and 308 can be utilized to produce the multiple digital image files of the same image. Each station 302, 304, 306, and 308 in the digital processing system 300 includes a front source 216, a back source 218, a front sensor 116F, and a back sensor 116B, which operate as described above with respect to FIGS. 1 and 2. In particular, with reference to FIGS. 2 and 3, the front sensor 116F detects reflected radiation 222 (generated by front source 216), and also transmitted radiation 230 (generated by the back source 218). Likewise, the back sensor 116B detects the reflected radiation 224 (generated by back source 218), and the transmitted radiation 240 (generated by the front source 216).

Referring now solely to FIG. 3, the stations 302, 304, 306, and 308 are serially connected to form the system 300. This exemplary digital film processing system 300 has a pipeline

configuration. Thus, the film travels in the direction 324 from the first station 302, to the second station 304, to the third station 306, to the fourth station 308.

The film 220 can be transported as a continuous strip through the stations 302, 304, 306, and 308 by a suitable film transportation or conveyance system, exemplary embodiments of which are described in more detail below. Because of the time lag between transportation of an image on the film 220 between the stations 302, 304, 306, and 308, each station scans and records a digital image file of a given image at a different development time during the development of the film.

For example, each image or frame on the film, such as frame F which resides between the points 312 and 314, could have developer applied thereto, such as by dispenser 310. The transportation system would then move the frame F to station 302, where a first digital image file is created, using two reflectance signals (a back reflectance signal and a front reflectance signal) and one transmission signal (a back-through signal or a front-through signal) as described above. The frame F would then be transported to station 304 where a second image file is created of the same frame, again using two reflectance signals and one transmission signal. However, because of the predefined time lag in transporting the frame F from the first station 302 to the second station 304, the frame would be scanned by the second station 304 at a later point in the development of the image on the frame F. Thus, some features of the image which might be appearing within the frame F during the development of the film 220 might be captured in the first data image file, but not in the second data image file, and vice versa.

The additional stations 306 and 308 can be connected into the system 300 to provide additional image data files for the frame F at additional development times of the frame. For example, after the second image data file is created for the frame F by the second station 304, a third image data file could be created for the frame F at a later development time by the third station 306 which would obtain two reflectance signals and one transmission signal. Similarly, a fourth image data file could be created by the fourth station 308 at the longest development time, also by obtaining two reflectance signals and one transmission signal. In this manner, four digital representations of the same frame image may be obtained at different development times, such as at 25%, 50%, 75%, and 100% of the total development time, for example. These four digital representations may then be aligned and combined with one another (i.e., stitched together) to form a composite digital representation of the image. This digital representation may

be viewed on a video monitor associated with a computer, or printed on a printer connected to computer (such as a laser printer or an ink jet printer) for instance.

As shown in FIG. 3, each station 302, 304, 306, and 308 can be separable from the system 300. Accordingly, although the system 300 is shown with four stations, the system can be easily provided with fewer than four or more than four stations as desired by the user. For instance, if the user desired a system with only three stations to save cost, the station 308 could be disconnected from the station 306 and removed from the system.

However, the system of FIG. 3 requires multiple scanning stations to take multiple images from the same frame at the various development times. In contrast, FIG. 4 is an exemplary digital film development system, made in accordance with principles of the present invention, which reduces the number of scanning stations required, and thereby reduces the size, cost and complexity of the system of FIG. 3. The system of FIG. 4 can still create multiple digital image files of a frame during multiple development times of that frame, but uses only a single scanning station. More specifically, each frame of the film can be scanned at spaced development times by the station 304 by recirculating the film 220 through the station in a unidirectional process. The film moves in the forward direction, and a first scan of a first frame can be taken, a first scan of a second frame taken, etc., until the end of the film has been reached. Then, the film can be looped back, or recirculated, through the station 304, and a second scan of the first frame can be taken, a second scan of the second frame taken, etc. Thus, after the first scan of the first frame has been taken, the first frame will have time to develop, but this time will not be wasted, as the station 304 will be taking other first scans of other frames on the film. This exemplary system and process requires no requires no time or equipment to reverse the film, and no processing steps for interpreting data scanned in reverse.

After all scans are taken for all frames, the first and second scans for the first frame can be digitally stitched together to form the final image for the first frame. Likewise, the first and second scans for the second frame can be digitally stitched together to form the final image for the second frame, and so on. A new film strip to be developed can then be entered into the station 304 through opening 330 and the old strip removed. The film may be transported in any of a variety of manners, such as by using motors, belts, wheels, etc. As shown, the station 304 can include a front source 216 and front sensor 116F, and a back source 218 and back sensor 116B, which operate in a manner similar to the sources and sensors described above with respect

to FIGS. 1-3. The sensors 116F and 116B can be configured as a row of sensors such that rows or columns of each frame are scanned sequentially by moving the frame across the row of sensors. The accumulated data taken from the various rows or columns of the frame forms the digital image.

FIG. 5 illustrates an alternative to the system of FIG. 4. As shown in this exemplary embodiment, a film transport wheel 410 can be provided and the film 220 can be supplied from an input reel or canister 414 and secured or placed on the outer surface 411 of the wheel 410. The wheel can then be rotated, such as by using a motor 412, or other rotary driver, to move the film 220 past the scanning station 406 where scanning of the film takes place at a variety of development times. The developer can be applied to the film using a dispenser or coater 310.

Accordingly, in the exemplary configuration of FIG. 5, a particular frame on the film 220 has developer applied by the dispenser 310, and the first scanning of that frame does not begin until the frame is rotated along the wheel 410 to the scanning station 406. Further rotation of the wheel 410 allows other frames on the film to be scanned for the first time by the station 406. The wheel 410 can continue to be rotated 360 degrees from the time the first frame was scanned by the station 406, until the first frame reaches the station a second time, at which time a second scan of the first frame can be taken. Additional scans of the other frames may be taken as well. Once all scans have been taken, the film can be wound on a take-up reel 416. Accordingly, as shown in FIG. 5, a single scanning station 406 can be used to take multiple digital images of the same frame, and these digital images can be combined to form a single enhanced image. Such a station 406 can include a front source 216 and front sensor 116F, and a back source 218 and back sensor 116B, as discussed above with respect to FIGS. 1-3.

The foregoing descriptions of the exemplary embodiments of the invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and modifications and variations are possible and contemplated in light of the above teachings. While a number of exemplary and alternate embodiments, methods, systems, configurations, and potential applications have been described, it should be understood that many variations and alternatives could be utilized without departing from the scope of the invention. For example, although it is mentioned that the film is moved or recirculated through the imaging station, it is contemplated

that the imaging station could be moved instead. In other words, movement of the film relative to the imaging station can be accomplished by moving the film and/or the imaging station. Moreover, although a variety of potential configurations and components have been described, it should be understood that a number of other configurations and components could be utilized without departing from the scope of the invention.

Thus, it should be understood that the embodiments and examples have been chosen and described in order to best illustrate the principals of the invention and its practical applications to thereby enable one of ordinary skill in the art to best utilize the invention in various embodiments and with various modifications as are suited for particular uses contemplated.

Accordingly, it is intended that the scope of the invention be defined by the claims appended hereto.

10

5

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284