Universidad Industrial de Santander - Escuela de Física Introducción a la Física (Asorey-Sarmiento-Pinilla)

Evaluación Diagnóstica - 2014

Importante:

Este examen se realiza sólo por motivos diagnósticos. El resultado no afectará la nota final del curso

Opcional: Si usted desea conocer su diagnóstico, por favor indique su nombre:

- 1. Factorice los siguientes polinomios
 - a) $x^2 6x + 9$:
 - b) $24x^2 + 16x + 2$:
 - c) $81x^2 9y^2$:
 - *d*) $18x^4y^3 + 18x^4y^4 + 12x^3y^4 + 12x^2y^5$
- 2. Calcule

a)
$$\frac{5}{3} + \frac{2}{7} - \frac{1}{9} = ? \tag{1}$$

$$\left(\frac{x}{3}\right)\left(\frac{5}{x}\right)\left(\frac{8}{5}\right) = ? \tag{2}$$

$$\frac{\left(\frac{8}{3}\right)}{\left(\frac{6}{5}\right)} = ? \tag{3}$$

$$\frac{\frac{4x}{3y^3}}{\frac{12x^2}{9x}} = ? \tag{4}$$

- 3. Resuelva las siguientes ecuaciones:
 - a) $\frac{3x}{4} + 1 = 7\frac{(x-2)}{6}$
 - b) $x^2 + 2x = 8$
 - c) 3(4-x)+2x=9-4(x-2)+3x+1
- 4. Responda: Juan tiene en total 136 monedas de \$50, \$100 y \$200. ¿Cuánto dinero tiene si las monedas de \$50 son la mitad de las de \$200, y estas a su vez son el quíntuplo de las monedas de \$100?
- 5. Calcule:
 - a) el volumen de una semiesfera de radio r = 2 m
 - b) el volumen de un paralelepípedo de base cuadrada de 3 cm de base y 5 cm de altura
 - c) el volumen de un cilindro de r = 1 m y altura h = 7 m

- 6. Sea un triángulo rectángulo con hipotenusa $h=10\,\mathrm{cm}$ y uno de los ángulos mide $\alpha=30^\circ$. Dibuje el triángulo y calcule la longitud del cateto opuesto y del cateto adyacente.
- 7. Sean $\mathbf{v}_1 = (3, -2, 1), \mathbf{v}_2 = (-2, 1, 2) \text{ y } \mathbf{v}_3 = (0, 0, 0)$. Responda:
 - a) ¿Cuál es la dimensión de los vectores \mathbf{v}_i ?
 - b) Dibuje el vector ${\bf v}_2$. Indique la dirección y y el sentido del vector. Luego, calcule su módulo $v_2\equiv |{\bf v}_2|$
 - c) Obtenga gráfica y analíticamente el vector $\mathbf{v}_s = \mathbf{v}_1 + \mathbf{v}_2$
 - *d*) Obtenga gráfica y analíticamente el vector $\mathbf{v}_r = \mathbf{v}_1 \mathbf{v}_2$
 - *e*) Calcule el producto escalar $\mathbf{v}_1 \cdot \mathbf{v}_2$ y $\mathbf{v}_1 \cdot \mathbf{v}_3$