Opcje amerykańskie i modelowanie funkcji kontynuacji

2022-12-15

Wstęp

Projekt jest ćwiczeniem z wyceny opcji metodą Monte Carlo. Przedstawiamy przykłady numeryczne dla algorytmów wyceny opcji amerykańskich, opisanych w [1], w rozdziale 8.6 pt. "Regression-Based Methods and Weights".

Opcje amerykańskie - optymalne stopowanie

Znajdźmy wartość V_0 opcji w chwili $t_0 = 0$. Niech h_i oznacza zdyskontowaną wypłatę z opcji w chwili t_i , zwaną też wewnętrzną wartością (*intrinsic value*) opcji. Ponieważ opcję amerykańską możemy w każdej chwili zrealizować (otrzymując h_i) lub czekać, jej wartość jest nie mniejsza od wartości wewnętrznej.

Zdyskontowana wartość $V_i(X_i)$ opcji w chwili t_i na rynku znajdującym się w stanie X_i (w ogólności, X_i jest wektorem zawierającym ceny instrumentów, losowe stopy procentowe r, poziom zmienności rynku σ , itd.), jest dana równaniem rekurencyjnym (patrz [1], równania (8.6)-(8.7)):

$$V_m(x) = h_m(x), V_i(x) = \max\{h_i(x), C_i(x)\}, \quad 0 \le i \le m-1, \text{gdzie} \quad C_i(x) = E[V_{i+1}(X_{i+1}) \mid X_i = x].$$

Powyższe wzory definiują obwiednię Snella $V_i(X_i)$ ciągu $h_i(X_i)$, czyli najmniejszy nadmartyngał dominujący funkcję wypłaty. Z teorii optymalnego stopowania (p. [2], dodatek F.2, Twierdzenie 3) wiadomo, że

$$V_0(X_0) = Eh_{\tau^*}(X_{\tau^*}) = \sup_{\tau \in \Theta} Eh_{\tau}(X_{\tau}),$$

gdzie Θ jest zbiorem wszystkich momentów stopu o wartościach w zbiorze $\{0,1,\ldots,m\}$.

Programowanie dynamiczne

Implementacje rozwiązań układu równań (1) zazwyczaj odnoszą się do jego równoważnej postaci, gdzie funkcje \tilde{h}_i oraz \tilde{V}_i nie są zdyskontowane (patrz [1], równania (8.4)-(8.5)):

$$\tilde{V}_m(x) = \tilde{h}_m(x), \quad \tilde{V}_i(x) = \max\{\tilde{h}_i(x), E[D_{i,i+1}(X_{i+1})\tilde{V}_{i+1}(X_{i+1}) \mid X_i = x]\}, \quad 0 \le i \le m - 1.$$
 (2)

Szukamy wtedy $\tilde{V}_0(X_0) = V_0(X_0)$. Czynnik $D_{i,i+1}$ jest współczynnikiem dyskonta pomiędzy momentem t_{i+1} a t_i , czyli wartością, w momencie t_i , jednego dolara wypłacanego w przyszłej chwili t_{i+1} . Dla prostego modelu ze stałą stopą procentową r, jest to po prostu $\exp(-r(t_{i+1} - t_i))$.

Równoważność sfomułowań (1) i (2) można zobaczyć, jeśli zauważymy, że

$$V_i = \exp(-rt_i)\tilde{V}_i, \qquad h_i = \exp(-rt_i)\tilde{h}_i.$$

Zaletą sformułowania (2) jest to, że funkcja wypłaty \tilde{h}_i jest zazwyczaj niezależna od indeksu i.

Wyznaczymy dwa estymatory, "górny" \hat{V} i "dolny" \hat{v} :

$$E\hat{V}_0 \ge V_0(X_0) \ge E\hat{v}_0.$$

Metoda regresji - model funkcji kontynuacji

Metody oparte na regresji zakładają, że funkcja kontynuacji C_i jest kombinacją liniową pewnych funkcji bazowych:

$$E[D_{i,i+1}(X_{i+1})\tilde{V}_{i+1}(X_{i+1})|X_i = x] = \sum_{r=1}^{M} \beta_{ir}\psi_r(x).$$

Gdy ustalimy funkcje bazowe (przykładowy wybór funkcji bazowych przedstawimy poniżej), współczynniki kombinacji liniowej będzie można przybliżać, używając wartości funkcji w punktach siatki $(X_{ij}, X_{i+1,j})$, dla $j=1,\ldots,b$. W praktyce, dokładne wartości \tilde{V}_{i+1} są nieznane - zamiast nich używamy wartości przybliżonych \hat{V}_{i+1} .

Dlaczego regresja liniowa jest tu pomocna? Otóż, jak wiadomo ze statystyki, funkcja r(t) = E(Y|X=t) minimalizuje błąd średniokwadratowy $E[(Y-r(X))^2]$. W tym wypadku, minimalizujemy

$$E[(D_{i,i+1}(X_{i+1})V_{i+1}(X_{i+1}) - C_i(X_i))^2].$$

Ponieważ mamy b prób par $(X,Y)=(X_i,X_{i+1})$, więc staramy się zminimalizować (p. funkcja 'lm' w R):

$$\frac{1}{b} \sum_{i=1}^{b} \left(D_{i,i+1}(X_{i+1,j}) \hat{V}_{i+1}(X_{i+1,j}) - \sum_{r=1}^{M} \hat{\beta}_{ir} \psi_r(X_{i,j}) \right)^2.$$

Podsumowując, realizujemy następujący algorytm.

- 1. Symulujemy bniezależnych trajektori
i $\{X_{1j},\dots,X_{mj}\},\ j=1,\dots,b,$ łańcucha Markowa.
- 2. W węzłach końcowych, definiujemy $\hat{V}_{mj} = \tilde{h}_m(X_{mj}), \ j = 1, \dots, b.$
- 3. Stosujemy indukcję wsteczną: dla każdego $i=m-1,\ldots,1$:
 - 1. dla danych wartości przybliżonych $\hat{V}_{i+1,j}, j=1,\ldots,b$, używamy regresji liniowej ('lm') do wyznaczenia przybliżonych współczynników $\hat{\beta}_{ir}$ kombinacji liniowej;
 - 2. definiujemy

$$\hat{V}_{ij} = \max \left\{ \tilde{h}_i(X_{ij}), \hat{C}_i(X_{ij}) \right\}, \quad j = 1, \dots, b,$$

gdzie

$$\hat{C}_i(x) = \sum_{r=1}^{M} \hat{\beta}_{ir} \psi_r(x).$$

4. Obliczamy $\hat{V}_0 = (\hat{V}_{11} + \ldots + \hat{V}_{1b})/b$.

Wariant powyższego algorytmu ("LSM"), proponowany przez Longstaffa i Schwartza w [3], polega na modyfikacji punktu 3.2 algorytmu, do postaci:

$$\hat{V}_{ij} = \begin{cases} \tilde{h}_i(X_{ij}), & \tilde{h}_i(X_{ij}) \ge \hat{C}_i(X_{ij}); \\ D_{i,i+1}(X_{i+1,j})\hat{V}_{i+1,j}, & \tilde{h}_i(X_{ij}) < \hat{C}_i(X_{ij}). \end{cases}$$

Estymator dolny - stopowanie nieoptymalne

Zauważmy, że po wyznaczeniu współczynników $\hat{\beta}_{ir}$ dysponujemy pewnym przybliżeniem funkcji kontynuacji $\hat{C}_i(x)$, dla każdego kroku czasowego i oraz dla każdego stanu rynku x. Pozwala nam to zdefiniować nieoptymalny moment stopu τ następująco:

$$\tau = \min\{i : \tilde{h}_i(X_i) \ge \hat{C}_i(X_i)\},\$$

czyli jako pierwszy moment, w którym opłaca się bardziej zrealizować opcję, niż ją zachować (kontynuować). Ów nieoptymalny moment stopu daje nam w wyniku estymator dolny, jako:

$$\hat{v} = D_{0,\tau}(X_{\tau})\tilde{h}_{\tau}(X_{\tau}),$$

zdyskontowaną wypłatę w chwili τ , gdzie współczynnik dyskonta w prostym modelu ze stałą stopą procentową r, wynosi

$$D_{0,\tau}(X_{\tau}) = \exp(-r\tau).$$

Przykład: amerykańska opcja maksimum

Rozważmy rynek ze stałą stopą procentową r oraz dwoma aktywami, których ceny, S^1 i S^2 , ewoluują niezależnie, zgodnie z geometrycznym ruchem Browna, z parametrami: $r=0.05,~\delta=0.1~(\delta$ to stopa dywidendy) oraz zmiennością $\sigma=0.2$. Mamy więc stan rynku, który jest dwuwymiarowym wektorem:

$$X_i = (S^1(t_i), S^2(t_i)).$$

Procesy S^k , k = 1, 2, spełniają więc równania:

$$dS^k = (r - \delta)dt + \sigma dW^k, \qquad k = 1, 2,$$

gdzie procesy Wienera W^1, W^2 są niezależne; co modelujemy w
g schematu Eulera (pisząc S_i^k zamiast $S^k(t_i)$):

$$S_{i+1}^k = S_i^k \exp((r - \delta - \frac{1}{2}\sigma^2)dt + \sigma\sqrt{dt}Z_i^k), \qquad k = 1, 2, \quad Z_0^1, Z_0^2, Z_1^1, Z_1^2, \dots$$
 niezal. o jednakowym rozk. $N(0, 1)$.

Niech ponadto niezdyskontowaną funkcją wypłaty będzie

$$\tilde{h}_i(X_i) = (\max\{S_i^1, S_i^2\} - K)_+.$$

Weźmy $S_0^1 = S_0^2$ oraz K = 100, zaś T = 3. Przypuśćmy, że opcję można zrealizować w dziewięciu terminach (jest to więc opcja bermudzka, tj. pośrednia między amerykańską - którą można realizować w dowolnej chwili - a europejską):

$$t_i = i/3, \qquad i = 1, 2, \dots, 9.$$

Cena dokładna tej opcji wynosi (około):

$$V_0 = \begin{cases} 13.9, & \text{gdy } S_0^1 = S_0^2 = 100, \\ 8.08, & \text{gdy } S_0^1 = S_0^2 = 110, \\ 21.34, & \text{gdy } S_0^1 = S_0^2 = 90. \end{cases}$$

Jako funkcje bazowe ψ_r wybieramy funkcje cen S^k , tj. wybieramy różne zestawy funkcji $\psi_r(x)$, pamiętając, że nasz stan rynku jest dwuwymiarowy: $x = (x_1, x_2)$. Bierzemy b = 4000. Odchylenie standardowe wszystkich trzech estymatorów: \hat{V} , dolnego \hat{v} oraz estymatora LSM, wyznaczamy na podstawie 100 replikacji każdego z nich.

Listy funkcji bazowych w tej tabeli, należy rozumieć następująco. Funkcje bazowe (w pierwszym wierszu tabeli) 1, S_i , S_i^2 , S_i^3 oznaczają, że bierzemy M=7 funkcji ψ_r :

$$\psi_1(x_1, x_2) = 1, \psi_2(x_1, x_2) = x_1, \quad \psi_3(x_1, x_2) = x_2, \psi_3(x_1, x_2) = x_1^2, \quad \psi_4(x_1, x_2) = x_2^2, \psi_5(x_1, x_2) = x_1^3, \quad \psi_6(x_1, x_2) = x_2^3.$$

Basis Functions	Regression	Low	LSM
$1, S_i, S_i^2, S_i^3$	15.74	13.62	13.67
$1,S_i,S_i^2,S_i^3,S_1S_2$	15.24	13.65	13.68
$1, S_i, S_i^2, S_i^3, S_1S_2, \max(S_1, S_2)$	15.23	13.64	13.63
$1,S_i,S_i^2,S_i^3,S_1S_2,S_1^2S_2,S_1S_2^2$	15.07	13.71	13.67
1, S_i , S_i^2 , S_i^3 , S_1S_2 , $S_1^2S_2$, $S_1S_2^2$, $\tilde{h}(S_1, S_2)$	14.06	13.77	13.79
$1,S_i,S_i^2,S_1S_2,\tilde{h}(S_1,S_2)$	14.08	13.78	13.78

Table 8.1. Price estimates for an American option on the maximum of two assets. The true price is 13.90. Each estimate has a standard error of approximately 0.025.

Natomiast wyniki naszej implementacji metody regresji są następujące.

Wyniki porównawcze, dla $S_0^k = 90$ oraz 110, zawarte są w [1] w tabeli 8.2, poniżej (90 z lewej, 110 z prawej):

Regression	Low	LSM	Regression	Low	LSM
9.49	7.93	7.92	24.52	20.79	21.14
9.39	7.97	7.87	23.18	21.02	21.15
9.44	7.98	7.87	22.76	20.98	21.02
9.25	7.95	7.87	22.49	21.08	21.15
8.24	8.01	7.95	21.42	21.25	21.20
8.27	7.99	7.99	21.38	21.26	21.16

Table 8.2. Price estimates for out-of-the-money (left) and in-the-money (right) American option on the maximum of two assets. True prices are 8.08 and 21.34. Each estimate has a standard error of approximately 0.02–0.03.

W tym wypadku, odpowiednie wyniki naszej implementacji metody regresji są następujące.

Literatura

[1] Paul Glasserman, Monte Carlo Methods in Financial Engineering, Springer 2003

- [2] J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, Wyd. 4. SCRIPT, Warszawa, 2010
- [3] Longstaff, F.A., and Schwartz, E.S. (2001) Valuing American options by simulation: a simple least-squares approach, $Review\ of\ Financial\ Studies\ 14:113-147.$