Lecture 10

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Reading: Oehlert Chapters 8, 13, 16; Dean-Voss-Draguljić Chapters 6, 10, 19

DSA 8020 Statistical Methods II March 14-18, 2022 Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

Factorial Designs

Split-Plot Designs

Whitney Huang Clemson University

Agenda

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

actorial Designs

plit-Plot Designs

Randomized Complete Block Designs

Pactorial Designs

- g known treatment level sizes n_1, n_2, \cdots, n_g with $\sum_{j=1}^g n_j = N$ (i.e., N experimental units in total)
- Completely random assignment of treatment levels to experimental units

A key assumption of CRD is that all experimental units are (approximately) homogeneous

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

Factorial Designs

Split-Plot Designs

• g known treatment level sizes n_1, n_2, \dots, n_g with $\sum_{i=1}^g n_i = N$ (i.e., N experimental units in total)

 Completely random assignment of treatment levels to experimental units

A key assumption of CRD is that all experimental units are (approximately) homogeneous

Question: What if this assumption is violated/unreasonable?

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

Factorial Designs
Split-Plot Designs

Randomized Complete Block Design (RCBD)

 The population of experimental units is divided into a number of relatively homogeneous sub-populations (blocks), and it is assumed that all experimental units within a given block are homogeneous

 Within each block, treatments are randomly assigned to experimental units such that each treatment occurs equally often (usually once) in each block ⇒ CRD within each block

 A key assumption in the analysis is that the effect of each level of the treatment is the same for each level of the blocking factor ⇒ additive assumption Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

actorial Designs

blocks

- y_{ij} is the measurement on the unit in block i that received treatment i
- $N = r \times q$ is the total number of experimental units

q is the number of treatment levels; r is the number of

- $\bar{y}_{.j} = \sum_{i=1}^{r} \frac{y_{ij}}{r}$ is the average of all measurements for units receiving treatment i
- $\bar{y}_{i.} = \sum_{j=1}^{g} \frac{y_{ij}}{g}$ is the average of all measurements for units in the i_{th} block
- $\bar{y}_{..} = \sum_{i=1}^{r} \sum_{j=1}^{g} \frac{y_{ij}}{N}$ is the average of all measurements

CLEMS#N UNIVERSITY

Randomized Complete Block Designs

racional Designs

Split-Plot Designs

• The model for an RCBD is:

$$Y_{ij} = \underbrace{\mu + \alpha_j}_{\mu_j} + \beta_i + \varepsilon_{ij}, \quad i = 1, \cdots, r, \quad j = 1, \cdots, g$$

where μ is the overall mean, α_j is the effect of treatment $j,\,\beta_i$ is the effect of block $i,\,$ and $\varepsilon_{ij}\stackrel{iid}{\sim}\mathrm{N}(0,\sigma^2)$ are random errors

 The effect of each level of the treatment is the same across blocks ⇒ no interaction between α's and β's Treatment sum of square:

$$SS_{trt} = \sum_{j=1}^{g} r(\bar{y}_{.j} - \bar{y}_{..})^2$$

Block sum of square:

$$SS_{blk} = \sum_{i=1}^{r} g(\bar{y}_{i.} - \bar{y}_{..})^2$$

Error sum of square:

$$SS_{err} = \sum_{i=1}^{r} \sum_{j=1}^{g} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2$$

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

actorial Designs

CLEMS#N

Randomized Complete Block Designs

Factorial Designs

Split-Plot Designs

Source	df	SS	MS	F statistic
Treatment	g-1	SS_{trt}	$MS_{trt} = \frac{SS_{trt}}{g-1}$	$F_{trt} = \frac{MS_{trt}}{MS_{err}}$
Block	r-1	SS_{blk}	MS_{blk} = $\frac{SS_{blk}}{r-1}$	$F_{blk} = \frac{MS_{blk}}{MS_{err}}$
Error	(g-1)(r-1)	SS_{err}	$MS_{err} = \frac{SS_{err}}{(g-1)(r-1)}$	
Total	N-1	SS_{tot}		

There are two hypothesis tests in an RCBD:

- $\begin{array}{ll} \bullet \quad H_0: \alpha_j = 0 \qquad \qquad j = 1, \cdots, g \\ H_a: \alpha_j \neq 0 \qquad \qquad \text{for some } j \\ \text{Test Statistic: } F_{trt} = \frac{MS_{trt}}{MS_{err}}. \text{ Under } H_0, \\ F_{trt} \sim F_{df_1 = g-1, df_2 = (g-1)(r-1)} \end{array}$
- H_0 : The means of all blocks are equal H_a : At least one of the blocks has a different mean Test Statistic: $F_{blk} = \frac{MS_{blk}}{MS_{err}}$. Under H_0 , $F_{blk} \sim F_{df_1=r-1,df_2=(g-1)(r-1)}$

You have data from r=5 batches on each of the g=3 drying processes. Your measurements are the compressive strength of the cylinder in a destructive test. (So there is an economic incentive to learn as much as you can from a well-designed experiment.)

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

	Batch						
Treatment	1	2	3	4	5	Trt Sum	
A	52	47	44	51	42	236	
В	60	55	49	52	43	259	
C	56	48	45	44	38	231	
Batch Mean	168	150	138	147	123	726	

The primary null hypothesis is that all three drying techniques are equivalent, in terms of compressive strength.

The secondary null is that the batches are equivalent (but if they are, then we have wasted power by controlling for an effect that is small or non-existent). Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

Factorial Designs

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

CLEMS#N

Randomized Complete Block Designs

Factorial Designs
Split-Plot Designs

```
Response: x
          Df Sum Sq Mean Sq F value
               89.2
                      44.60 7.6239
trt
bl k
           4 363.6
                      90.90 15.5385
Residuals
           8 46.8
                       5.85
             Pr(>F)
          0.0140226 *
trt
b1k
          0.0007684
```

Analysis of Variance Table

Interpretation?

What If We Ignore the Block Effect?

Suppose we had not blocked for batch. Then the data would be:

Treatment		Trt Sum
A	52, 47, 44, 51, 42	236
В	60, 55, 49, 52, 43	259
C	56, 48, 45, 44, 38	231

This is the same as before except now we ignore which batch the observation came from. Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

Factorial Designs

CLEMS#N

Randomized Complete Block Designs

Split-Plot Designs

```
Analysis of Variance Table
```

Response: x

Df Sum Sq Mean Sq F value Pr(>F)

trt 2 89.2 44.6 1.3041 0.3073

Residuals 12 410.4 34.2

We fail to reject the null $H_0: \mu_A = \mu_B = \mu_C$ if we ignore the block effect

⇒ Using blocks gave us a more powerful test!

Assessing the Additivity Assumption: Interaction Plot

"Parallel lines" ⇒ No interaction occurs

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

actorial Designs

The Battery Design Experiment (Example 5.1, Montgomery, 6th Ed)

An engineer would like to study what effects do material type and temperature have on the life of the battery he designed. the engineer decides to test three plate materials at three temperature levels:

Material	Temperature (°F)						
Type	15		70		125		
1	130	155	34	40	20	70	
ı	74	180	80	75	82	58	
2	150	188	136	122	25	70	
2	159	126	106	115	58	45	
3	138	110	174	120	96	104	
ა 	168	160	150	139	82	60	

This design is called a 32 factorial design

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Block Designs

actorial Designs

The effects model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk},$$

$$i = 1, \dots, a, \ j = 1, \dots, b, \ k = 1, \dots, n$$

- a: the number of levels in the factor A
- b: the number of levels in the factor B
- $(\alpha\beta)_{ij}$: the interaction between α_i and β_j
- $\sum_{i=1}^{a} \alpha_i = \sum_{j=1}^{b} \beta_j = \sum_{i=1}^{a} (\alpha \beta)_{ij} = \sum_{j=1}^{b} (\alpha \beta)_{ij} = 0$
- abn is the total number of the observations

ANOVA Table

Source	df	SS	MS	F
Factor A	a-1	SS_A	$MS_A = \frac{SS_A}{a-1}$	$F = \frac{MS_A}{MS_E}$
Factor B	b-1	SS_B	$MS_B = \frac{SS_B}{b-1}$	F = $\frac{\mathrm{MS}_B}{\mathrm{MS}_E}$
Interaction	(a-1)(b-1)	SS_{AB}	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	F = $\frac{\mathrm{MS}_{AB}}{\mathrm{MS}_{E}}$
Error	ab(n-1)	SS_E	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	abn - 1	SS_T		

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Block Designs

actoriai Designs

```
CLEMS N
```

Randomized Complete Block Designs

actorial Designs

phil-i lot Designs

```
lm <- lm(y ~ temp * material, data = dat)
anova(lm)
...</pre>
```

Analysis of Variance Table

```
Response: y
```

```
Df Sum Sq Mean Sq F value Pr(>F)
temp 2 39119 19559.4 28.9677 1.909e-07 ***
material 2 10684 5341.9 7.9114 0.001976 **
temp:material 4 9614 2403.4 3.5595 0.018611 *
Residuals 27 18231 675.2
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interaction Plot

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Randomized Complete Block Designs

Factorial Designs

An Example of Split-Plot Design

Suppose we wish to determine the effects of two fertilizers ("A" and "B") and two irrigation methods ("1" and "2") on yield.

Treatments: Fertilizer types and irrigation methods

Experimental Unit: a small region

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

Block Designs

actorial Designs

Randomized Complete Block Designs, Factorial Designs, and Split-Plot Designs

CLEMS#N UNIVERSITY

Randomized Complete Block Designs

i actoriai Designs

Split-Flot Designs

Suppose we wish to determine the effects of two fertilizers ("A" and "B") and two irrigation methods ("1" and "2") on yield.

Treatments: Fertilizer types and irrigation methods

Experimental Unit: a small region

 $Y_{ijk} = \mu + \alpha_i + \delta_{k(i)} + \beta_j + \alpha\beta_{ij} + \varepsilon_{k(ij)},$ $i = 1, \cdots, a, \ j = 1, \cdots, b, \ k = 1, \cdots, n$

- μ : overall mean
- α_i: effect of i_{th} level of the whole-plot factor
- β_j : effect j_{th} split-plot factor
- (αβ)_{ij}: joint effect of i_{th} level of the whole-plot factor and j_{th} split-plot factor
- $\delta_{k(i)} \sim N(0, \sigma_{\delta}^2)$ and $\varepsilon_{k(ij)} \sim N(0, \sigma_{\varepsilon}^2)$: the whole-plot and the split-plot level random errors

ANOVA Table

Randomized
Complete Block
Designs, Factorial
Designs, and
Split-Plot Designs

Randomized Complete Block Designs

-actorial Designs

Source	df	SS	MS	F
Factor A	a – 1	SS_A	$MS_A = \frac{SS_A}{a-1}$	$F = \frac{MS_A}{MS_{E_1}}$
Error 1	a(n-1)	SS_{E_1}	$MS_{E_1} = \frac{SS_{E_1}}{a(n-1)}$	
Factor B	b-1	SS_B	$MS_B = \frac{SS_B}{b-1}$	$F = \frac{MS_B}{MS_{E_2}}$
Interaction	(a-1)(b-1)	SS_{AB}	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F = \frac{MS_{AB}}{MS_{E_2}}$
Error 2	a(b-1)(n-1)	SS_{E_2}	$MS_{E_2} = \frac{SS_{E_2}}{a(b-1)(n-1)}$	
Total	abn - 1	SS_T		