Appunti Computability

Diego Oniarti

Anno 2024-2025

Contents

1	Macchina di Turing								
2	Multi-Tape Turing Machine								
3	Turing vs Universal Machines 3.1 Random-access Machine	3							
4	Uncomputabe machines 4.1 Halting Problem	5 5							
5	Recap 5.1 Insiemi 5.2 recursive 5.3 ricursively enumerable 5.4 coRE	6 6 6 7							
6	Ordering	8							
7	boh	8							
8	Busy beaver "game"	8							
9	2024-10-07	9							
10	Proprietà di una TM 10.1 Teorema di Rice	9 10							

1 Macchina di Turing

Una macchina di Turing è rappresentata da:

•
$$\Sigma = \{\sigma_0, \ldots, \sigma_{m-1}\}$$

- $Q = \{q_0, \dots, q_{n-1}\}$
- $q_o \in Q$ stato iniziale
- $f: \Sigma \times Q \to \Sigma \times Q \times \{\leftarrow, \rightarrow\}$

La funzione di transizione può essere definita come una tabella

1	$\lceil \rceil$		σ_0	 σ_n
		q_0		
Q		:		
		q_n		

Un altra rappresentazione per una macchina di Turing è quella della macchina a stati (come quelle viste in LFC). Gli stati corrispondono agli stati della macchina di Turnig, mentre le transizioni contengono il carattere letto, quello da scrivere, e la transizione.

NB. Come definiamo la funzione di transizione non è importante. Per la definizione di una macchina di Turnig basta che esista una funzione di transizione del tipo $f: \Sigma \times Q \to \Sigma \times Q \times \{\leftarrow, \rightarrow\}$

Non è necessario che la funzione di transizione sia totale.

Esempio Questa è la funzione di transizione per una macchina di Turing che inizia con un numero binario sul nastro e ci aggiunge 1.

		0	1
	$_, carry, \leftarrow$		
carry	$1, MSB, \leftarrow$	$1, MSB, \leftarrow$	$0, carry, \leftarrow$
MSB	$ _{\!\!\!\!-}, halt, ightarrow$	$0, MSB, \leftarrow$	$1, MSB, \leftarrow$

Esempio Ideiamo una macchina di Turing che inizia con un numero sul nastro. La macchina deve:

- creare una copia del numero letto
- scrivere questa copia a destra del numero dato
- lasciare il numero intoccato
- lasciare un 🗕 tra i due numeri

Una soluzione valida sarebbe questa, dove l'alfabeto è $\Sigma = \{ \neg, 0, 1, \hat{0}, \hat{1} \}$ e la

funzione di transizione è:

	_	0	1	Ô	î
next	$_, halt, \rightarrow$	$\hat{0}, first0, \rightarrow$	$\hat{1}, first1, \rightarrow$		
first1	$\lrcorner, scom1, \rightarrow$	$0, first1, \rightarrow$	$1, scom1, \rightarrow$		
scom1	$1, left, \leftarrow$	$0, scom1, \rightarrow$	$1, scom1, \rightarrow$		
first0	$\lrcorner, scom0, \rightarrow$	$0, first0, \rightarrow$	$1, scom 0, \rightarrow$		
scom0	$0, left, \leftarrow$	$0, scom 0, \rightarrow$	$1, scom 0, \rightarrow$		
left	$\Box, left, \leftarrow$	$0, left, \leftarrow$	$1, left, \leftarrow$	$0, next, \rightarrow$	$1, next, \rightarrow$

2 Multi-Tape Turing Machine

Per convenzione immaginiamo una macchina con un tape di input, uno di output, e gli altri sono per utilizza arbitrario.

Ogni tape ha un puntatore suo, e può decidere di muoverlo o lasciarlo intoccato. La funzione di transizione prende questa forma

$$f: \Sigma^t \times Q \to \Sigma^t \times Q \times \{\leftarrow, \downarrow, \to\}^t$$

dove l'apice t (numero di tape) indica che l'elemento è ripetuto t volte all'interno di una tupla.

La funzione quindi prende l'input di tutti i tape e lo stato corrente. Questo decide cosa scrivere in ogni tape, lo stato a cui muoversi, e la direzione in cui muovere ogni tape.

Multi-Tape vs Single Tape Una macchina di Turing con più tape può svolgere le stesse computazioni di una macchina a tape singolo. È solo più veloce a farlo.

3 Turing vs Universal Machines

Una differenza che rimane tra la macchina di Turing descritta e un computer come lo vediamo oggi è la seguente. Una macchina di Turing è hard coded per svolgere un singolo compito.

Possiamo quindi formalizzare una macchina di Turing U che sia universale? si.

L'input di U deve essere un encoding di una macchina m.

Prendiamo per esempio la macchina di Turing che aggiunge 1 ad un numero (vista in precedenza).

$$\begin{array}{c|ccccc} & \square & 0 & 1 \\ \hline 0 & \square, 1, \leftarrow & 0, 0, \to & 1, 0, \to \\ 1 & 1, H & 1, H & 0, 1, \leftarrow \end{array}$$

Possiamo definire un'albeto che ci permetta di descrivere questa tabella sotto forma di stringa.

$$\Sigma = \{ _, 1, 0, ', ', ; \}$$
 tabella = _, 1, 0; 0, 0, 1; 1, 0, 1; 1, , ; 1, , ; 0, 1, 0

Prendiamo cone conenzione che ogni cella sia definita da 3 simboli separati da virgole. Un simbolo mancante è interpretato come l'*Halting State*.

La macchina universale U è composta da:

- Un tape |m| che rappresenta la macchina m
- ullet Un tape s che rappresenta lo stato di m
- $\bullet\,$ Uno o più tape usati per l'esecuzione di m

nb. Come detto in Sec.2, questo piò essere svolto anche con una macchina a tape singolo.

L'esecuzione di m utilizzanto U richiede più step dell'esecuzione di m. Ma il numero di step di U scala linearmente con quello di m.

$$t(m,s) \le 2|s| + 1$$

$$t(U, \lfloor m \rfloor s) \le kt(m,s)$$

dove t(a, b) è il tempo di esecuzione della macchina a sull'input b.

3.1 Random-access Machine

Un computer moderno può essere devinito come una "random access machine" in quanto accede agli indirizzi di memoria in tempo costante, a differenza della macchina di Turing che deve scorrere il tape.

Questa è l'unica differenza tra i due tipi di macchine. Quella di Turing è "lenta".

Ogni altro aspetto di una CPU odierna può essere creato analogamente in una macchina di Turing (Pc, registri, memoria, etc..).

Nota sull'alfabeto

Abbiamo usato un alfabeto Σ di 5 caratteri per descrivere la Turing machine, ma potremmo rappresentare ogni simbolo con un numero binario a tre cifre. Questo ci permette di descrivere un programma come una stringa binaria.

4 Uncomputabe machines

Possiamo rapprsentare ogni possibile macchina di Turing e ogni può output in una tabella

$$UC: \Sigma^* \mapsto \{0, 1\}$$

$$UC(\alpha) = \begin{cases} 0 & m_{\alpha}(\alpha) = 1\\ 1 & \text{altrimenti} \end{cases}$$

 m_α macchina descritta dalla stringa α

Ora possiamo usare l'argomento della diagonale per creare una macchina UC che non sia computabile.

Thesis

$$\forall m \in TM \exists s \in \{0,1\}^* : m(s) \neq UC(s)$$

Sapevamo già che esistessero problemi non calcolabili. Questa è sono un'altra prova.

$$UC \in \{f : \Sigma^* \to \{0,1\}\}$$
 uncountable $\{TM\}$ countable

Congettura di Goldbach. Ogni numero maggiore di due può essere espresso come la somma di due numeri primi.

4.1 Halting Problem

Esiste una macchina $H(|M|, \epsilon)$ che so comporti così?

$$H(\lfloor M \rfloor, \epsilon) = \begin{cases} 1 & M(\epsilon) \text{ halts} \\ 0 & M(\epsilon) \text{ does not halt} \end{cases}$$

No. Se esiste
sese esisterebbe anche la macchina H^\prime con quiesto comportamento.

$$H'(\lfloor M \rfloor, \epsilon) = \begin{cases} 0 & H(\lfloor M \rfloor, \epsilon) == 1\\ \infty & H(\lfloor M \rfloor, \epsilon) == 0 \end{cases}$$

Il comportamento di $H(H'(\lfloor M \rfloor, \epsilon))$ non può poi essere definito.

NB! Questa non è la dimostrazione usata dal prof. Per quella chiedi in giro.

4.1.1 rambling

Halt non è ricorsiva. Halt è ricorsivamente enumerabile? Si. Basta usare il metodo "parallelo" diagonale visto in precedenza. (avanzare tutti i casi di uno step alla volta) faccio un backup

5 Recap

5.1 Insiemi

Abbiamo due modi di definire un subset ti tutte le stringhe.

$$s \subseteq \Sigma^*$$

$$f: \Sigma^* \to \{0,1\}$$

5.2 recursive

Un set è recursive se e solo se

$$s \in R \iff \exists m \ TM \ s.t. \forall x \in \Sigma^* \ m(x) = \begin{cases} 0 & x \notin s \\ 1 & x \in s \end{cases}$$

5.3 ricursively enumerable

Ci sono tre modi di definire RE.

• Un set è ricorsivamente enumerabile se:

$$s \in RE \iff \exists m \; TM \; s.t. \forall x \in \Sigma^* \; m(x) = \begin{cases} 1 & x \in s \\ \text{anything else} & x \not \in s \end{cases}$$

Anything Else include anche il non haltare mai.

$$\forall x \in \Sigma^* m(x) = \begin{cases} 1 & x \in s \\ \infty & x \notin s \end{cases}$$

• m scrive su un tape tutti e soli gli elementi di s.

Possiamo dimostrare che le 3 definizioni sono equivalenti.

- 2 \Longrightarrow 1: Triviale. $\infty \in$ Anything Else
- 1 \implies 2: Assumendo di avere una macchina m_1 , possiamo costruire una macchina m_2 .

$$m_2(x) = \begin{cases} 1 & m_1(x) = 1 \\ \infty & otherwise \end{cases}$$

Questa tecnica di prendere una macchina e modificarla per crearne un'altra è chiamata **riduzione**.

• 2 \implies 3: Assumiamo di avere m_2 .

```
queue \leftarrow empty
\forall x \in \Sigma^* :
queue.push \ (x, \text{init configuration of} \ m_2(x))
\forall (y, \text{configuration of} \ m_2(y)) \in q :
if \ \text{configuration is halted} :
\text{output} \ y
\text{remove from queue}(y, config)
else :
\text{advance configuration by one step}
```

Diagonale. Questo è a tutti gli effetti un ennesimo utilizza del metodo diagonale.

5.4 coRE

Un set è Co recursively enumerable (coRE) se il suo complementare è ricorsivamente enumerabile.

$$s \in RE \qquad m(x) = \begin{cases} 1 & x \in S \\ \text{anything else} & x \notin S \end{cases}$$

$$s \in coRE \qquad m(x) = \begin{cases} 0 & x \notin S \\ \text{anything else} & x \in S \end{cases}$$

$$s \in coRE \qquad \overline{m(x)} = \begin{cases} 0 & x \notin S \\ \infty & x \in S \end{cases}$$

Set. Dato il powerset di Σ^* (tutte le stringhe), RE e coRE sono due sottoinsiemi di $P(\Sigma^*)$. R (linguaggi ricorsivi) è l'intersezione di RE e

6 Ordering

Sia dato un linguaggio $L \subseteq \Sigma^*$ e un ordinamento <. Assumiamo che L sia ricorsivamente enumerabile ma non ricorsivo $L \in RE \setminus R$. Essendo L in RE, esiste una macchina m che produce tutti gli elementi di L. Possiamo provare che non esiste una macchina che li produce in ordine.

7 boh

$$HALT = \{(t, s) : m_t(s) \neq \infty\} \in RE \setminus R$$

 $HALT_{\epsilon} = \{t : m_t(\epsilon) \neq \infty\} \notin R$

Ipotiziamo per assurdo che H_{ϵ} sia ricorsiva.

$$H_{\epsilon}: \Sigma^* \to \{0, 1\}$$

$$t \mapsto \begin{cases} 1 & m_t(s) \text{ halts} \\ 0 & \text{otherwise} \end{cases}$$

AO! mi sono distratto e non ho seguito. Però la prova funziona per riduzione e contraddizione. Crea una macchina H che scrive un input e chiama H_{ϵ} mi pare

8 Busy beaver "game"

$$\begin{aligned} |\Sigma| &= n \\ |Q| &= m \\ halt \not\in Q \end{aligned}$$

Il numero di macchine possibili con questi parametri è $2n^2m(m+1)$. Si può vedere questo costruendo la tabella che definisce le transizioni della macchina.

Chiamiamo $\Sigma(m)$ Il numero massimo di 1 che una macchina con m stati può mettere sul tape.

Poi chiamiamo S(m) il numero massimo di step che una macchina con m esegue prima di haltare.

Per entrambi consideriamo solo macchine che ricevono ϵ come input e hantano. S(m) non è computabile.

9 2024-10-07

$$(L,<) \subseteq (\Sigma^*,>)$$

$$L \in RE \setminus R$$

$$m_L$$

10 Proprietà di una TM

Una *Proprietà* di una Turing machine è una qualsiasi funzione binaria (decision function) sulla macchina.

$$HALT_{\epsilon}:TM\mapsto\{0,1\}$$

Un esempio è Halt. Altri sono:

- 1. m has 10 states (Computable)
- 2. m decides prime numbers (Specification)
- 3. m recognizes haltime TMs (Semantica)
- 4. m deecides halting TMs (Computable perché è sempre False. Triviale)

Riconoscere vs Decidere. Una macchina di Turing *Riconosce* qualcosa se conferma qualcosa ("risponde si"). Ma non ha un comportamento stabilito in caso contrario

Una macchina *Decide* qualcosa se risponde "si" o "no" in maniera definitiva

Quindi una proprietà "P" decide un set di Turing Machines.

$$P:TM\mapsto\{0,1\}$$

Triviale Una proprietà P è triviale se $P = \emptyset$ o P = TM

Specification Boh "¬"

Semantic Ogni macchina di Turing può essere vista come

$$m(s) = \begin{cases} 1 \\ \text{anything else} \\ \infty \end{cases}$$

Quindi possiamo dire che ogni macchina di Turing riconosce un linguaggio $L(m)=\{s\in\Sigma^*:m(s)=1\}$

Una proprietà è Semantica se.

$$\forall m_1, m_2 \in TM.L(m_1) = L(m_2) \implies P(m_1) = P(m_2)$$

Se le due macchine compiono lo stesso lavoro (riconoscono lo stesso linguaggio): O entrambe hanno la proprietà, o nessuna delle due la ha.

$$P(m) =$$
 "All strings recognized by m have an even length"

La macchina che riconosce solo la stringa vuota (ϵ) ha questa proprietà. Questo perché tutte le stringhe che vengono riconosciute da questa macchina (solo 1) hanno lunghezza 0, che è pari.

10.1 Teorema di Rice

Se una proprietà è sia semantica che non triviale allora è undecidable

Prova per assurdo Sia P semantica e non triviale. Deve esserci almeno una macchina m_p per cui la proprietà sia vera (altrimenti sarebbe triviale)

$$m_p \in TM \ s.t. \ P(m_p) = 1$$

Without loss of generality: $L(m) = \emptyset \implies P(m) = 0$ Le machcine che riconoscono l'insieme vuoto non hanno la proprietà P.

Supponiamo per assurdo che P sia decidibile. Quindi

$$\exists \mathcal{P} \in TM \ s.t. \ \forall m : \mathcal{P}(m) = P(m)$$

Esiste una macchina \mathcal{P} che decide la proprietà P.

Abbiamo poi la macchina $HALT: TM \times \Sigma^* \mapsto \{0,1\}$ che decide se una certa macchina halta con un certo input.

Prendiamo poi una macchina qualsiasi $n \in TM$. Ovviamente possiamo ottenere $\mathcal{P}(|n|)$. La macchina prende un input t e:

Algorithm 1: n

save t on a separate tape; Put s on the input tape; run m(s); restore original input t; run $m_v(t)$

$$P(m_{ms}) = \begin{cases} 0 & m(s) = \infty \\ m_p(t) & m(s) \neq \infty \end{cases}$$

$$m(s) = \infty \implies L(n_{ms}) = \emptyset$$

 $m(s) \neq \infty \implies L(n_{ms}) = L(m_p) \implies P(n_{ms} = P(m_p) = 1$

Quindi questa macchina risolverebbe l'halting problem. Questo è ovviamente assurdo e prova la tesi.