Examen B5/ASN: corrigé

Exercice 1 (9 points)

1. Déterminer la nature de la série de terme général $u_n = \frac{\sin(n)}{n^2}$. Justifier proprement.

Pour tout $n \in \mathbb{N}^*$, $|u_n| = \left| \frac{\sin(n)}{n^2} \right| \leqslant \frac{1}{n^2}$.

Or $\sum \frac{1}{n^2}$ converge, donc $\sum |u_n|$ converge. Ainsi, $\sum u_n$ converge absolument donc converge.

2. Déterminer la nature de la série de terme général $u_n = \frac{n^3}{3^{(n^2)}}$. Justifier proprement.

 $\text{Appliquons la règle de Cauchy}: \sqrt[n]{u_n} = \frac{n^{3/n}}{3^n}. \text{ Or } n^{3/n} = \exp\left(\frac{3}{n}\ln(n)\right) \xrightarrow[n \to +\infty]{} e^0 = 1 \text{ car } \frac{\ln(n)}{n} \xrightarrow[n \to +\infty]{} 0.$

Donc $\sqrt[n]{u_n} \sim \frac{1}{3^n} \xrightarrow[n \to +\infty]{} 0$. Comme $0 < 1, \sum u_n$ converge d'après la règle de Cauchy.

3. Déterminer la nature de la série de terme général $u_n = \frac{(-1)^n n}{e^n}$. Justifier proprement.

Appliquons la règle de d'Alembert à $\sum |u_n|$, qui est une série à termes strictement positifs.

$$\frac{|u_{n+1}|}{|u_n|} = \frac{n+1}{e^{n+1}} \times \frac{e^n}{n} = \underbrace{\frac{n+1}{n}}_{n \to +\infty} \times \frac{e^n}{e^{n+1}} \sim \frac{1}{e}$$

Donc $\lim_{n\to+\infty}\frac{|u_{n+1}|}{|u_n|}=\frac{1}{e}<1$ et $\sum |u_n|$ converge d'après la règle de d'Alembert.

Ainsi, $\sum u_n$ converge absolument donc converge.

Exercice 2 (6 points)

Soit $\alpha \in \mathbb{R}$. Le but de l'exercice est de déterminer la nature de $\sum \frac{\ln(n)}{n^a}$ en fonction de la valeur de α .

1. Montrer que pour tout $\beta < \alpha$, $\frac{\ln(n)}{n^{\alpha}} = o\left(\frac{1}{n^{\beta}}\right)$.

Pour tout $\beta < \alpha$, on a :

$$\frac{\frac{\ln(n)}{n^{\alpha}}}{\frac{1}{n^{\alpha}}} = n^{\beta} \times \frac{\ln(n)}{n^{\alpha}} = \frac{\ln(n)}{n^{\alpha-\beta}} \xrightarrow[n \to +\infty]{} 0$$

d'après les croissances comparées, car $\alpha - \beta > 0$. Donc $\frac{\ln(n)}{n^{\alpha}} = o\left(\frac{1}{n^{\beta}}\right)$.

2. En déduire que si $\alpha > 1$, $\sum \frac{\ln(n)}{n^{\alpha}}$ converge.

Si $\alpha > 1$, prenons pour β une valeur quelconque dans $]1, \alpha[$, par exemple $\beta = \frac{1+\alpha}{2}$. On a alors :

$$\frac{\ln(n)}{n^{\alpha}} = o\left(\frac{1}{n^{\beta}}\right) \quad \text{car } \beta < \alpha \\ \sum \frac{1}{n^{\beta}} \text{ converge} \quad \text{car } \beta > 1$$
 \right\rightarrow \sum_{n^{\alpha}} \text{converge}

3. Supposons maintenant que $\alpha \leq 1$. Quelle est alors la nature de $\sum \frac{\ln(n)}{n^{\alpha}}$?

Dans ce cas, pour tout n > e, $\ln(n) > 1 \Longrightarrow \frac{\ln(n)}{n^{\alpha}} > \frac{1}{n^{\alpha}} \geqslant 0$.

Or $\sum \frac{1}{n^{\alpha}}$ diverge, donc $\sum \frac{\ln(n)}{n^{\alpha}}$ diverge elle aussi.

Exercice 3 (9 points)

Considérons la série de terme général $u_n = \sqrt{n} \left(\left(1 + \frac{(-1)^n}{n} \right)^{3/2} - 1 \right)$.

1. Trouver $(a,b) \in \mathbb{R}^2$ tel que, au voisinage de $+\infty$, $u_n = \frac{(-1)^n a}{\sqrt{n}} + \frac{b}{n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)$

Rappelons le développement limité en 0 à l'ordre 2 de $(1+x)^{3/2}$:

$$(1+x)^{3/2} = 1 + \frac{3}{2}x + \frac{\frac{3}{2}(\frac{3}{2}-1)}{2!}x^2 + o(x^2) = 1 + \frac{3x}{2} + \frac{3x^2}{8} + o(x^2)$$

Ainsi,

$$u_n = \sqrt{n} \left(1 + \frac{3}{2} \cdot \frac{(-1)^n}{n} + \frac{3}{8} \cdot \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) - 1 \right) = \frac{3}{2} \cdot \frac{(-1)^n}{\sqrt{n}} + \frac{3}{8} \cdot \frac{1}{n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)$$

Donc $a = \frac{3}{2}$ et $b = \frac{3}{8}$.

2. En déduire la nature de $\sum u_n$

Posons
$$u_n = v_n + w_n$$
 où $v_n = \frac{3}{2} \cdot \frac{(-1)^n}{\sqrt{n}}$ et $w_n = \frac{3}{8} \cdot \frac{1}{n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)$.

- $\sum v_n$ converge en vertu du CSSA. En effet, (v_n) est alternée, $(|v_n|) = \left(\frac{3}{2\sqrt{n}}\right)$ est décroissante et converge vers 0.
- Au voisinage de $+\infty$, $w_n \sim \frac{3}{8n^{3/2}} > 0$. Les séries $\sum w_n$ et $\sum \frac{3}{8n^{3/2}}$ sont donc de mêmes natures. Or $\sum \frac{3}{8n^{3/2}}$ est une série de Riemann convergente, donc $\sum w_n$ converge.

Finalement, $\sum u_n$ converge car c'est la somme de deux séries convergentes.

Exercice 4 : un peu de cours et une démonstration (8 points)

Soit (u_n) une suite alternée.

1. Rappeler la définition de «la suite (u_n) est alternée».

La suite (u_n) est alternée si pour tout $n \in \mathbb{N}$, $u_n \times u_{n+1} \leq 0$.

2. Énoncer le critère spécial des séries alternées sur la nature de $\sum u_n$.

Si la série répond aux trois conditions :

- (u_n) est alternée
- $(|u_n|)$ est décroissante
- (u_n) converge vers 0

alors $\sum u_n$ converge.

3. Démontrer cette propriété.

Si la suite (u_n) est alternée, alors il existe une suite (a_n) positive telle que

$$(u_n) = ((-1)^n a_n)$$
 ou $(u_n) = (-(-1)^n a_n)$

Quitte à remplacer (u_n) par $(-u_n)$, nous allons supposer que $(u_n) = ((-1)^n a_n)$. La suite positive (a_n) est en fait la suite $(|u_n|)$. D'après les hypothèses du théorème, elle est donc décroissante et converge vers 0.

Notons (S_n) la suite des sommes partielles de $\sum u_n$: pour tout $n \in \mathbb{N}$,

$$S_n = a_0 - a_1 + a_2 - a_3 + \dots + (-1)^n a_n$$

Dans une première étape, montrons que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.

(a) Monotonie de (S_{2n}) : cette suite contient les termes de rangs pairs de (S_n) . Le terme suivant S_{2n} est donc $S_{2(n+1)}$ S_{2n+2} . Ainsi, pour tout $n \in \mathbb{N}$:

$$\begin{cases} S_{2n} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} \\ S_{2(n+1)} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} \\ \hline S_{2(n+1)} - S_{2n} = -a_{2n+1} + a_{2n+2} \end{cases}$$

Mais comme (a_n) est décroissante, $-a_{2n+1} + a_{2n+2}$ est négatif. La suite (S_{2n}) est donc décroissante.

(b) Monotonie de (S_{2n+1}) : cette suite contient les termes de rangs impairs de (S_n) . Le terme suivant S_{2n+1} est donc $S_{2(n+1)+1} = S_{2n+3}$. Ainsi, pour tout $n \in \mathbb{N}$:

$$\begin{cases} S_{2n+1} &= a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} \\ S_{2(n+1)+1} &= a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} - a_{2n+3} \\ \hline S_{2(n+1)+1} - S_{2n+1} &= a_{2n+2} - a_{2n+3} \end{cases}$$

Mais comme (a_n) est décroissante, $a_{2n+2} - a_{2n+3}$ est positif. La suite (S_{2n+1}) est donc croissante.

(c) Étude de $S_{2n+1} - S_{2n}$: pour tout $n \in \mathbb{N}$,

$$\begin{cases}
S_{2n} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} \\
S_{2n+1} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} \\
\hline
S_{2n+1} - S_{2n} = -a_{2n+1}
\end{cases}$$

Comme (a_n) converge vers 0, $(S_{2n+1} - S_{2n})$ converge aussi vers 0

Ainsi, les suites (S_{2n}) et (S_{2n+1}) sont adjacentes. Elles convergent donc toutes les deux et admettent une même limite $\ell \in \mathbb{R}$. Mais alors,

$$\left.\begin{array}{ccc}
S_{2n} & \xrightarrow[n \to +\infty]{} & \ell \\
S_{2n+1} & \xrightarrow[n \to +\infty]{} & \ell
\end{array}\right\} \Longrightarrow S_n \xrightarrow[n \to +\infty]{} \ell$$

Ce qui montre que (S_n) converge et donc que $\sum u_n$ converge.

Exercice 5 (8 points)

Considérons la série $\sum \frac{1}{\sqrt{n}}$ et la suite (S_n) de ses sommes partielles.

1. Quelle est la nature de $\sum \frac{1}{\sqrt{n}}$? Que peut-on dire de la limite de (S_n) en $+\infty$?

C'est une série de Riemann avec $\alpha = \frac{1}{2} \le 1$. La série est donc divergente. Comme de plus elle est à termes positifs,

2. Le but des questions suivantes est d'étudier le comportement de (S_n) au voisinage de $+\infty$. Pour cela, on considère la série $\sum v_n$ de terme général

$$v_n = \frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right)$$

et la suite (T_n) de ses sommes partielles.

(a) Rappeler le développement limité à l'ordre 2 en 0 de $\sqrt{1+x}$ et en déduire celui de $\sqrt{1-x}$.

$$\sqrt{1+x} = (1+x)^{1/2} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + o(x^2) = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)$$

En remplaçant x par -x, on obtient : $\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{2} + o(x^2)$

(b) Trouver un équivalent de v_n et en déduire que $\sum v_n$ converge. Dans la suite, on notera $\ell = \sum_{n=1}^{+\infty} v_n$.

On a :
$$v_n = \frac{1}{\sqrt{n}} - 2\sqrt{n} \left(1 - \sqrt{1 - \frac{1}{n}}\right)$$
.

D'après la question précédente, on peut donc écrire :

$$v_n = \frac{1}{\sqrt{n}} - 2\sqrt{n} \left(1 - \left(1 - \frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \right) \right)$$

$$= \frac{1}{\sqrt{n}} - 2\sqrt{n} \left(\frac{1}{2n} + \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \right)$$

$$= \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n}} - \frac{1}{4n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)$$

$$= -\frac{1}{4n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)$$

Ainsi,
$$v_n \sim -\frac{1}{4n^{3/2}} < 0.$$

 $\sum v_n$ a donc même nature que $\sum -\frac{1}{4n^{3/2}}$, qui est une série de Riemann convergente. Ainsi, $\sum v_n$ converge.

(c) Soit $n \in \mathbb{N}^*$. Exprimer T_n en fonction de S_n et de n.

$$T_{n} = \underbrace{\frac{1}{\sqrt{1}} - 2\left(\sqrt{1} - \sqrt{0}\right)}_{v_{1}} + \underbrace{\frac{1}{\sqrt{2}} - 2\left(\sqrt{2} - \sqrt{1}\right)}_{v_{2}} + \dots + \underbrace{\frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right)}_{v_{n}}$$

$$= \underbrace{\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}}_{S_{n}} \underbrace{-2\left(\sqrt{1} - \sqrt{0}\right) - 2\left(\sqrt{2} - \sqrt{1}\right) - \dots - 2\left(\sqrt{n} - \sqrt{n-1}\right)}_{-2\sqrt{n} \text{ (par télescopage)}}$$

Ainsi,
$$T_n = S_n - 2\sqrt{n}$$
.

(d) En déduire que $S_n \sim 2\sqrt{n}$.

On sait d'une part, d'après 2.b., que (T_n) converge vers une limite $\ell \in \mathbb{R}$. On peut donc écrire $T_n = \ell + o(1)$.

D'autre part, d'après 2.c., $S_n = 2\sqrt{n} + T_n$.

Finalement,
$$S_n = 2\sqrt{n} + \underbrace{\ell + o(1)}_{o(\sqrt{n})} \Longrightarrow S_n \sim 2\sqrt{n}$$
.