Optimal Contribution
Selection: Theoretical
Foundations and
Application in Genetic
Diversity Conservation

Dubravko Škorput
University of Zagreb Faculty of Agriculture
Division of Animal science

Introduction to Animal Breeding Selection

• Definition of selection

Traditional selection methods

 Objectives: genetic progress vs. diversity conservation

The Problem of Decreasing Genetic Diversity

- Inbreeding depression
- Loss of adaptive potential
- Example: indigenous breeds? Only?

What is Optimal Contribution Selection (OCS)?

• GOAL: BALANCE BETWEEN PROGRESS AND DIVERSITY

• KEY: EFFECTIVE POPULATION SIZE (NE)

History and Method Development

•James and McBride (1958)

Meuwissen (1997): formalization of OCS

Wooliams (2015)

Extensions of the method

Applied in dairy cattle, conventional pig breeding programmes

Basic OCS Concepts

 Genetic contribution of an individual • Inbreeding limitation through contribution optimization

Input Data for OCS

0								
Ĭ		1	2	3	4	5	6	
1	L	1,00	0,00	0,50	0,50	0,50	0,25	
2	2	0,00	1,00	0,50	0,00	0,25	0,625	
03	3	0,50	0,50	1,00	0,25	0,625	0,563	0
4	1	0,50	0,00	0,25	1,00	0,625	0,313	
5	5	0,50	0,25	0,625	0,625	1,125	0,688	
6	5	0,25	0,625	0,563	0,313	0,688	1,125	

• EBV

relationship matrix (A/G)

OCS Results

Selected individuals list

Their optimal contributions

Predicted progress and inbreeding

Comparison with Conventional Selection

Methods based on kinship, (BLUP, i.e.) tend to choose related animals

Genetic gain vs. long-term sustainability

OCS Application in Breed Conservation

 Population sustainability

Practical examples

Flexibility of OCS

Multiple objectives

 Constraints (e.g. minimum contribution, maximal relatedness)

Software Support

Gencont

EVA

AlphaMate

MoBPS

OptiSel

Genomic Data and OCS

USE OF G-MATRIX

• GREATER PRECISION

Advantages of OCS

Inbreeding control

Sustainable progress

Limitations and Challenges

Data requirements

• Practical implementation

Conclusion

 OCS as a tool for balancing breeding goals Pedigree based OCS – quality?

Genomic data based OCS

Discussion Questions

CAN OCS WORK
 WITHOUT GENOMIC DATA?

• ROLE OF BREEDERS AND INSTITUTIONS?