

CORMORANT: COvaRiant MOleculaR Artificial Neural neTworks

[BMA, Hy & Kondor, NeurIPS 2019, arXiv:1906.04015]

N-Atom interactions

$$V(\mathbf{r}_{1}, \dots, \mathbf{r}_{N}) = \underbrace{\sum_{i} u_{1}(\mathbf{r}_{i}) + \sum_{i < j} u_{2}(\mathbf{r}_{i}, \mathbf{r}_{j}) + \sum_{i < j < k} u_{3}(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}) + \dots}_{\text{one-body}}$$

$$\underbrace{\sum_{i < j < k} u_{1}(\mathbf{r}_{i}) + \sum_{i < j < k} u_{2}(\mathbf{r}_{i}, \mathbf{r}_{j}) + \sum_{i < j < k} u_{3}(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}) + \dots}_{\text{three-body}}$$

- Goal: Build general architecture for learning physics
 - Exploits symmetries of problem
 - Exploits hierarchy of scales
 - Based upon intuition of N-Atom interactions

Inspiration: Multipoles expansion

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i,j} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Multiple moments "one-body":

$$Q_a^{\ell} = \sum_{i \in N(a)} q_i |\mathbf{r}_{ia}|^{\ell} Y^{\ell}(\hat{\mathbf{r}}_{ia})$$

$$V(\mathbf{R}) \sim Q^0 \cdot Y^0(\mathbf{R}) + Q^1 \cdot Y^1(\mathbf{R}) + Q^2 \cdot Y^2(\mathbf{R}) + \dots$$

Under rotations:

$$Q^{\ell} \to D^{\ell}(\mathbf{R})Q^{\ell}$$

Multiple energy "two-body" interaction

$$V = \frac{1}{4\pi\epsilon_0} \sum_{a,b} \sum_{\ell_1,\ell_2} \frac{Y^{\ell_1+\ell_2}(\mathbf{r}_{ab}) C_{\ell_1,\ell_2,\ell_1+\ell_2} Q_a^{\ell_1} \otimes Q_b^{\ell_2}}{|\mathbf{r}_{ab}|^{\ell_1+\ell_2+1}}$$

SO(3) Vectors: Generalized multipoles

Irreducible representation "irrep":

$$Q_i^{\ell} \to F_i^{\ell} \in \mathbb{C}^{2\ell+1,\tau_{\ell}}$$

Multiplicity (number of copies of irrep): τ_{ℓ}

Transforms covariantly as: $F^{\ell} \to D^{\ell}(\mathbf{R})F^{\ell}$

Generalizes multipoles, e.g., O-H dipole/quadrupole moment

Representation (list of irreps):

$$F_i = \bigoplus_{\ell} F_i^{\ell}$$

$$= \left(F_i^0, F_i^1, \dots, F_i^{\ell_{\text{max}}}\right)$$

Multiplicity of each SO(3) Vector:

$$au = \left(au_0, au_1, ..., au_{\ell_{\max}}\right)$$

Covariant operations on SO(3) Vectors

Clebsch-Gordan decomposition of two representations:

$$F_1 \otimes_{\operatorname{cg}} F_2 = \bigoplus_{c} \bigoplus_{\ell = |\ell_1 - \ell_2|}^{\ell_1 + \ell_2} C_{\ell_1, \ell_2, \ell} \cdot \left(F_{1, c}^{\ell_1} \otimes F_{2, c}^{\ell_2} \right)$$

- Multiplicity is treated as "channels": $\tau = (c, c, ..., c)$
- SO(3) vectors can be concatenated:

$$F_1 \oplus F_2 = \bigoplus_{\ell} (F_1^{\ell} \oplus F_2^{\ell})$$

SO(3) vectors can be mixed while preserving covariance

$$F \leftarrow \bigoplus_{\ell} F^{\ell} W^{\ell} \qquad W^{\ell} \in \mathbb{C}^{(\tau_{\text{out}}, \tau_{\text{in}})}$$

Recipe for a Cormorant

Goal: Build general architecture for learning covariant physics.

- Activations are SO(3)-Vectors F_i
 - Use CG, mixing, concatenation

- Construct from general operations involving n=1, 2, 3, ... Clebsch-Gordan operations.
 - We call these "interactions"

$$F_i^{s+1} = \left(\bigoplus_{n=1}^{\infty} \Phi_i^{(n)} \left(\left\{ F_j^s \right\} \right) \right) \cdot W$$

N-Atom interactions

- We base our Cormorant on n-atom interactions.
- Define interactions between an atom i and its neighbors $\{F_j\}$
- Must be permutation invariant for $j_k \neq i$
- Allow for a (learnable) transition amplitude $\Upsilon^{(n)}_{j_kj_{k+1}}$

$$\Phi_{i}^{(n)}\left(\left\{F_{j}\right\}\right) = \bigoplus_{\substack{j_{1}, \dots, j_{n} = i \\ j_{1}, \dots, j_{n} \in \mathcal{S}_{i} \ j_{1}, \dots, j_{n} \in \mathcal{S}_{i}}} \sum_{\substack{n-1 \\ k=0}} \left(\Upsilon_{j_{k}j_{k+1}}^{(n)} \otimes F_{j_{k+1}}\right)$$

Cormorant architecture (simplified)

Aggregation (one-body):

$$F_i^{(\mathrm{ag})} \leftarrow \sum_j \Upsilon_{ij} \otimes_{\mathrm{cg}} F_j$$

Identity (one-body):

$$F_i^{(\mathrm{id})} \leftarrow F_i$$

Non-linearity (two-body):

$$F_i^{(cg)} \leftarrow F_i \otimes_{cg} F_i$$

Concatenation and mixing:

$$F_i^{(\text{out})} \leftarrow (F_i^{(\text{ag})} \oplus F_i^{(\text{id})} \oplus F_i^{(\text{cg})}) \cdot W$$

Network: Iterate this several times

Experimental results: MD-17 and QM-9

Table 1: Mean absolute error of various prediction targets on QM-9 (left) and conformational energies (in units of kcal/mol) on MD-17 (right). The best results within a standard deviation of three Cormorant training runs (in parenthesis) are indicated in bold.

Cormorant			SchNet	NMP	WaveScatt
$\alpha ({ m bohr}^3)$	0.085	(0.001)	0.235	0.092	0.160
$\Delta \epsilon (eV)$	0.061	(0.005)	0.063	0.069	0.118
ε _{HOMO} (cV)	0.034	(0.002)	0.041	0.043	0.085
ϵ_{LUMO} (cV)	0.038	(0.008)	0.034	0.038	0.076
μ (D)	0.038	(0.009)	0.033	0.030	0.340
C_v (cal/mol K)	0.026	(0.000)	0.033	0.040	0.049
G(eV)	0.020	(0.000)	0.014	0.019	0.022
H (eV)	0.021	(0.001)	0.014	0.017	0.022
R^2 (bohr ²)	0.961	(0.019)	0.073	0.180	0.410
U (cV)	0.021	(0.000)	0.019	0.020	0.022
U_0 (eV)	0.022	(0.003)	0.014	0.020	0.022
ZPVE (meV)	2.027	(0.042)	1.700	1.500	2.000

	Cormorant	DeepMD	DTNN	SchNct	GDML	sGDML
Aspirin	0.098	0.201	_	0.120	0.270	0.190
Benzene	0.023	0.065	0.040	0.070	0.070	0.100
Ethanol	0.027	0.055	_	0.050	0.150	0.070
Malonaldehyde	0.041	0.092	0.190	0.080	0.160	0.100
Naphthalene	0.029	0.095	_	0.110	0.120	0.120
Salicylic Acid	0.066	0.106	0.410	0.100	0.120	0.120
Toluene	0.034	0.085	0.180	0.090	0.120	0.100
Uracil	0.023	0.085	_	0.100	0.110	0.110

SchNet: [Schütt, et al, 2017]

NMP: [Gilmer, et al, 2017]

WaveScatt: [Eickenberg, et al, 2018]

DeepMD: [Zhang, et al, 2017]

DTNN: [Schütt, et al, 2017]

GDML: [Chmiela, et al, 2017]

sGDML: [Chmiela, et al, 2018]