MATHEMATICS-II (MA10002)

January 13, 2017

1.

- (a) Use Gamma function
- (c) put, $x = \sin \theta$, then use Beta function
- (e) put, $x^4 = u$, then use Beta function
- (g) integration by parts
- (i) put $x = \sin \theta$ use Beta function
- (k) put, $\ln \frac{1}{x} = z$, Use Gamma function

- (b) Use Gamma function
- (d) use Beta function
- (f) use Beta function
- (h) put, $x = a\cos^2\theta + b\sin^2\theta$
- (j) put, $x^r = z$ use Beta function
- (l) put, $x^n = z$ use Beta function

2. Given
$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
, $x > 0$, $y > 0$,

(a) put $t = \sin^2 \theta$

- (b) put $t = \frac{u}{u+1}$.
- (c) put $t = m^2$ in $\Gamma(x)\Gamma(y)$ and then $x = r\cos\theta$, $y = r\sin\theta$
- (d) $\beta(\frac{1}{2}, \frac{1}{2}) = \pi$

3.

- (a) put, $ax^n = z$
- (b) put, $\log \frac{1}{x} = t$.
- (c) $n^{-x} = e^{-x \log n}$, put $x \log n = z$
- 4. expand $\Gamma(m + \frac{1}{2})$
- 5. $\int_0^1 \frac{x^n + x^{-n}}{1 + x^2} dx = \int_0^\infty \frac{x^n}{1 + x^2} dx$, put $x^2 = u$.
- 6. put $x^n = a \tan^2 \theta$

7.

- (a) take 2 common
- (b) multiply 2. 4. 6, ..., (2m-2) and divide
- 8. $\log(1+\alpha)$, (Hint: Define a function $F(\alpha)$ differentiate w.r.to ' α ' and then integrate $F'(\alpha)$ w.r.to ' α ')

- 9. (i) Define a function F(b) differentiate w.r.to 'b' and then integrate F'(b) w.r.to 'b'
 - (ii) Define a function $F(\alpha, \beta)$ differentiate partially w.r.t ' α ' and ' β ' and then integrate $\frac{\partial^2 F(\alpha, \beta)}{\partial \beta \partial \alpha}$ w.r.t. β and α
 - (iii) Define a function $F(\alpha, \beta)$ differentiate partially w.r.t ' α ' and then integrate $\frac{\partial F(\alpha, \beta)}{\partial \alpha}$ w.r.t. α
- 10. (i) $t^6 + 2t^3 + 4/3$
- 11. (i) $F'(x) = \begin{cases} \frac{\sin \frac{\pi}{2}x}{x}, & x \neq 0 \\ \pi/2, & x = 0 \end{cases}$, (ii) $f'(x) = x(\pi/2 \log 2)$
- 12. No. Since $\frac{\partial f(x,t)}{\partial t}$ is not continuous function.
- 13. $\tan^{-1}(a/b)$ and $\pi/2$
- 14. (i) $\frac{1}{2}\log(1+\frac{a^2}{b^2})$ (ii) $\frac{1}{2}\log\left(\frac{a^2+b^2}{p^2+q^2}\right)$ (iii) $\frac{\sqrt{\pi}}{2}e^{-a^2}$