Kernel Paalure Mapping. Kernel Paalure Mapping. Kernel Paalure Mapping. Kernel Paalure Mapping. Kernel Paalure Mapping. $A \subseteq K_1 M M \subseteq $	18th Feb 2016	geotome geotome survivation)
ACONDARA ALBONDARA ALBONDARA A) = (x,2,12x,x), x,2) = (x,2,12x,x), x,2), (z,3,12z,z) Axz = (x,2,12x,x), x,2) Axz = (x,2,12x,x), x,2) Axz = (x,2,12x,x) Axz = (x,2x,x) Axz = (x,2x,x) Axz = (x,2x,x) Axz = (x,2x,x)	1,22) (42,47,42,12) - [4,000 4,23]	M2, M2) How det book How det proc How det proc How. How.
ALBONDIEW ALBONDIEW (1) (3) (1) (2) (1) (3) (1) (2) (1) (3) (1) (2) (1) (3) (2) (3) (1) (3) (3) (3) (3) (1) (3) (3) (3) (3) (3) (1) (3) (3) (3) (3) (3) (3) (1) (3) (3) (3) (3) (3) (3) (1) (3) (3) (3) (3) (3) (3) (3) (1) (3) (3) (3) (3) (3) (3) (3) (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	1,42,422,7 1,42),(22,422,72), 1,42),(22,422,	e space. = (x1, 2, 12, x1) = (x1, 2, 12, x1) +iplication me we we space 3 multiplica 3 multiplica 3 multiplica 4 x + x + x + x + x + x + x + x + x + x
TIE - 1 - 2 - 09 = 7 - 12 2	ADITYA CHAUTAM agaudam1 @ Ondrew 1) Kernel footure Mapp 1) $\lambda = (\lambda_1, \lambda_2)^T$ $\phi(\lambda) = (\lambda_1^2, \sqrt{2}\lambda)$ $\phi(\lambda) = \phi(\lambda), \phi(z)$	K(x, z) Z, z ER2 Mapping (m, to feature) (x, x, z) - x (x) (x, x, z) - x (x) (x, x, z) - x (x) Kindlory, for z multiple Multiply in feature Multiply in feature Loughoutery through Computery through Computer through Computer through Computer through Computery through Computer through Com

C) Maximising the leg liber hood

3. leg ((10; x,1y)) = 3(c - \frac{1}{2} \xeta \frac{14 - \frac{1}{4}(x,1w)}{2})^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{2} \xeta \frac{14}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1y)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1w)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1w)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{1}{4} - \frac{1}{4}(x,1w))^2}

3. leg ((10; x,1w)) = 3(c - \frac{1}{4} \xeta \frac{1}{4} - \frac{

3) y = f(x) + Eof which E_{1} $E_{2} \int_{y} \int_{y} |A - E_{1}|^{2} |A - E_{2}|^{2} |A - E_$

Regulanization.

L = $\frac{1}{2}$ [4]-wTx,12 (Original loss function)

L = $\frac{1}{2}$ [19-wTx,12 + $\frac{1}{2}$ [1w1]². (logs function with regular)

3)L = $\frac{1}{2}$ [19-wTx,12 + $\frac{1}{2}$ [1w1]². (logs function)

3)L = $\frac{1}{2}$ [19-wTx,12 + $\frac{1}{2}$ [1w1]². (logs function)

3)L = $\frac{1}{2}$ [19-wTx,12 + $\frac{1}{2}$ [1w1]². (logs function)

5) List Agorithm Is mose well to give and the weight outhough of date, and the weight outhors, as the penalised the weight outhors, in other light weighting the light regular of the spane matrix is the more wis set to zero watrix so, first more wis set to zero.

4.1) (togleste fearescion $4 \times^{\alpha/3} y_1 y_2$ 5. conditional liberihood

2) conditional liberihood $P(Y=P_0) = \frac{1}{1+e^{-\alpha}}$, where $\alpha = \sum_{i=1}^{N} x^i \cos(\frac{1}{1+e^{i\omega}}) = \frac{1}{1+e^{-\alpha}}$ (conditional liberihood $P(Y=P_0) = \frac{1}{1+e^{(\omega)} + \frac{1}{1+e^{(\omega)}}} = \frac{1}{1+e^{(\omega)} + \frac{1}{1+e^{i\omega}}} = \frac{1}{1+e^{(\omega)} + \frac{1}{1+e^{i\omega}}}$ (conditional liberihood $P(Y=P_0) = \frac{1}{1+e^{(\omega)} + \frac{1}{1+e^{(\omega)}}} = \frac{1}{1+e^{(\omega)}$

Another of results (Drogramming legistic regression)

1) The Acanoly of the taining set Encreased with the application of Regularization (lawbed=26).

Occurredy = 98.50 TS | Without regularization HMB classified Invege=15 | Without regularization that lassified Invege=15 | July La regularization the Mypothesis much better it reduce of the Mypothesis much better it reduce of the Mypothesis much better it regularization improves the everall acturacy of any training set.

Liberation test date, acturacy employed a little bit.

Hosewet-on test date, acturacy employed a little bit.