propositional logic & simple types

Freek Wiedijk

Type Theory & Coq 2024–2025 Radboud University Nijmegen

September 13, 2024

type systems and logics

teaser: a proof term for a proof

$$\lambda x: a \to b \to c. \ \lambda y: a \to b. \ \lambda z: a. \ xz(yz)$$

$$\frac{\begin{bmatrix} a \to b \to c^x \end{bmatrix} \quad \begin{bmatrix} a^z \end{bmatrix}}{b \to c} E \to \frac{\begin{bmatrix} a \to b^y \end{bmatrix} \quad \begin{bmatrix} a^z \end{bmatrix}}{b} E \to \frac{c}{a \to c} I[z] \to \frac{c}{(a \to b) \to a \to c} I[y] \to \frac{(a \to b \to c) \to (a \to b) \to a \to c}{(a \to b \to c) \to (a \to b) \to a \to c} I[x] \to \frac{c}{a \to c$$

many systems

one untyped lambda calculus

(last week: recap)

▶ many typed lambda calculi = type theories

Church-style variables explicitly typed

the systems in this course Coq!

 Curry-style assigning types to untyped terms (in one of Herman's lectures)

many logics

Curry-Howard correspondence

'propositions-as-types'

type systems in this course

logics \sim type systems

propositional logic $\sim \lambda \rightarrow =$ simply typed lambda calculus predicate logic $\sim \lambda P =$ dependently typed lambda calculus second order logic $\sim \lambda 2 =$ polymorphic lambda calculus higher order logic $\sim \lambda C = CC = Calculus$ of Constructions 'the logic of Coq' $\sim CIC = Calculus$ of Inductive Constructions

Δ

the lambda cube

the Barendregt cube eight PTSs = pure type systems

(not explicitly in Femke's course notes)

logic styles

natural deduction

$$B_1,\ldots,B_m\vdash A$$

introduction and elimination rules for each connective

$$\frac{\dots \vdash \dots}{\dots \vdash \dots \otimes \dots} I \qquad \qquad \frac{\dots \vdash \dots \otimes \dots}{\dots \vdash \dots} E$$

- ► Gentzen-Prawitz style: proof is a derivation tree
- ▶ Jaśkowski–Fitch style: proof consists of nested boxes/flags
- ▶ sequent calculus: LK & LJ $B_1, \ldots, B_m \vdash A_1, \ldots, A_n$ left and right rules for each connective

$$\frac{\ldots \vdash \ldots}{\ldots \otimes \cdots \vdash \ldots} L \qquad \qquad \frac{\ldots \vdash \ldots}{\ldots \vdash \cdots \otimes \cdots} R$$

► Hilbert-style $\vdash A$ axioms for each connective (and at most two rules)

defining a logic or type system

- syntax
 - terms
 - types
 - formulas
 - contexts
 - judgments

$$M, N ::= x \mid MN \mid \lambda x. M$$

- ▶ rules
 - ▶ logics: proof rules
 - type systems: typing rules

no rules for untyped lambda calculus

reduction

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$$

propositional logic

three propositional logics

- \blacktriangleright minimal propositional logic the logic that corresponds to simply typed lambda calculus only implication: \rightarrow
- ► constructive propostional logic all connectives: →, ∧, ∨, ¬, ⊥, ⊤
- classical propositional logic

$$\begin{array}{c} A \vee \neg A \\ \neg \neg A \to A \end{array}$$

propositional logic: syntax

formulas

$$A, B := a \mid A \rightarrow B \mid A \land B \mid A \lor B \mid \neg A \mid \top \mid \bot$$

- a, b, c, \ldots atomic propositions
 - later: propositional variables
- A, B, C, \ldots meta-variables for arbitrary formulas

implication associates to the right:

$$a \to b \to c \quad \text{means} \quad a \to (b \to c)$$

order of binding strength: $\neg > \land > \lor > \rightarrow$

$$a \vee \neg b \wedge c \rightarrow d$$
 means $(a \vee ((\neg b) \wedge c)) \rightarrow d$

the two rules of minimal propositional logic

the introduction and elimination rules of implication:

$$\begin{array}{c}
[A^x] \\
\vdots \\
\frac{B}{A \to B} I[x] \to \\
\hline
 & B \\
\hline
 & B
\end{array}$$

$$\begin{array}{c}
\vdots \\
A \to B \\
B
\end{array}$$

$$\begin{array}{c}
A \to B \\
B
\end{array}$$

in the introduction rule the assumption $\left[A^{x}\right]$ may be used an arbitrary number of times: zero, one or more

in the elimination rule the proof of $A\to B$ is on the left of the proof of A

example proof of minimal propositional logic

$$\begin{array}{c|c} \underline{[a \to b \to c^x] \quad [a^z]} \ E \to & \underline{[a \to b^y] \quad [a^z]} \ E \to \\ \\ \underline{\frac{b \to c}{a \to c}} \ E \to & \underline{\frac{c}{a \to c} I[z] \to} \\ \underline{\frac{c}{(a \to b) \to a \to c} I[y] \to} \\ \underline{\frac{(a \to b) \to a \to c}{(a \to b) \to a \to c} I[x] \to} \end{array}$$

constructive propositional logic: the other rules

variants of elimination rules

▶ what Coq's elim tactic implements for conjunction:

$$\begin{array}{ccc} \vdots & & \vdots \\ \underline{A \wedge B} & \underline{A \rightarrow B \rightarrow C} \\ \underline{C} & \end{array} E \wedge$$

often the disjunction elimination rule is:

$$\begin{array}{ccc}
 & [A^x] & [B^y] \\
\vdots & \vdots & \vdots \\
 & A \lor B & C & C \\
\hline
 & C & E[x,y] \lor
\end{array}$$

not what Coq's elim tactic implements for disjunction

example proof beyond minimal propositional logic

$$\frac{ \begin{bmatrix} a^y \end{bmatrix}}{b \vee a} Ir \vee \qquad \frac{ \begin{bmatrix} b^z \end{bmatrix}}{b \vee a} Il \vee \\ \frac{a \rightarrow b \vee a}{b \rightarrow b \vee a} I[y] \rightarrow \qquad \frac{b \vee a}{b \rightarrow b \vee a} I[z] \rightarrow \\ \frac{b \vee a}{a \vee b \rightarrow b \vee a} I[x] \rightarrow$$

alternative style: explicit assumption lists

syntax

$$\begin{array}{ll} A,B ::= a \mid A \to B \mid \dots & \text{formulas} \\ \Gamma ::= \cdot \mid \Gamma, A & \text{assumption lists} \\ \mathcal{J} ::= \Gamma \vdash A & \text{sequents} \end{array}$$

we do not write the dot and the comma after the dot still natural deduction, *not* sequent calculus

rules

$$\frac{\Gamma \vdash A}{\Gamma \vdash A} \text{ ass } \qquad \text{for } A \in \Gamma$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} I \to \qquad \frac{\Gamma \vdash A \to B}{\Gamma \vdash B} E \to \qquad \dots$$

the example proofs with explicit assumption lists

$$\begin{split} \overline{\Gamma_1 &:= a \to b \to c, \ a \to b, \ a} \\ & \frac{\overline{\Gamma_1 \vdash a \to b \to c}}{\Gamma_1 \vdash b \to c} \overset{\text{ass}}{\overline{\Gamma_1 \vdash a}} \overset{\text{ass}}{E \to} \frac{\overline{\Gamma_1 \vdash a \to b}}{\Gamma_1 \vdash b} \overset{\text{ass}}{E \to} \frac{\overline{\Gamma_1 \vdash a}}{E \to} \overset{\text{ass}}{E \to} \\ & \frac{\overline{\Gamma_1 \vdash b}}{\overline{\Gamma_1 \vdash c}} E \to \\ & \frac{\overline{a \to b \to c, \ a \to b \vdash a \to c}}{\overline{a \to b \to c \vdash (a \to b) \to a \to c}} \overset{I \to}{I \to} \\ & \frac{\overline{a \to b \to c \vdash (a \to b) \to a \to c}}{\overline{\vdash (a \to b \to c) \to (a \to b) \to a \to c}} \overset{\text{ass}}{I \to} \\ & \frac{\overline{a \lor b, \ a \vdash a}}{\overline{a \lor b, \ a \vdash b \lor a}} \overset{\text{ass}}{Ir \lor} \frac{\overline{a \lor b, \ b \vdash b}}{\overline{a \lor b, \ b \vdash b \lor a}} \overset{\text{ass}}{Il \lor} \\ & \frac{\overline{a \lor b, \ b \vdash b \lor a}}{\overline{a \lor b \vdash b \lor b}} \overset{I \to}{I \to b} \\ & \frac{\overline{a \lor b \vdash b \lor a}}{\overline{a \lor b \vdash b \lor b}} \overset{I \to}{I \to b} & E \lor \end{split}$$

simply typed lambda calculus

the S combinator

untyped

typed: Curry-style

$$\frac{\lambda xyz. xz(yz)}{(\lambda x. (\lambda y. (\lambda z. ((xz)(yz)))))}$$

typed: Church-style

$$\lambda x: a \to b \to c. \ \lambda y: a \to b. \ \lambda z: a. \ xz(yz)$$

Coq syntax

```
fun x : a -> b -> c => fun y : a -> b => fun z : a =>
    x z (y z)
fun (x : a -> b -> c) (y : a -> b) (z : a) => x z (y z)
```

BHK interpretation

Brouwer-Heyting-Kolmogorov

 \sim Curry-Howard correspondence constructive 'meaning' of the logical connectives

connection between proofs and lambda calculus

```
\begin{array}{lll} \operatorname{proof} \ \operatorname{of} \ A \to B &=& \operatorname{function} \ \operatorname{from} \ \operatorname{proofs} \ \operatorname{of} \ A \ \operatorname{to} \ \operatorname{proofs} \ \operatorname{of} \ B \\ \operatorname{proof} \ \operatorname{of} \ A \lor B &=& \operatorname{either} \ \operatorname{a} \ \operatorname{proof} \ \operatorname{of} \ A, \ \operatorname{or} \ \operatorname{a} \ \operatorname{proof} \ \operatorname{of} \ B \\ \operatorname{proof} \ \operatorname{of} \ \top &=& \operatorname{proof} \ \operatorname{of} \ A \to \bot \\ \operatorname{proof} \ \operatorname{of} \ \bot &=& \operatorname{does} \ \operatorname{not} \ \operatorname{exist} \end{array}
```

proof of $a \wedge b \rightarrow b \wedge a$ is

a function that inputs a pair $\langle x,y\rangle$, and returns $\langle y,x\rangle$ with x a proof of a and y a proof of b

$$\lambda p: a \wedge b. \langle \pi_2 p, \pi_1 p \rangle$$

different names for the same type theory

same set of well-typed terms

simply typed lambda calculus: syntax and rules

syntax

$$\begin{array}{lll} A,B ::= a \mid A \to B & \text{types} \\ M,N ::= x \mid MN \mid \lambda x : A.M & \text{preterms} \\ \Gamma ::= \cdot \mid \Gamma, x : A & \text{contexts} \\ \mathcal{J} ::= \Gamma \vdash M : A & \text{judgments} \end{array}$$

rules

$$\frac{}{\Gamma \vdash x : A} \qquad \text{for } (x : A) \in \Gamma$$

$$\frac{\Gamma,\,x:A\vdash M:B}{\Gamma\vdash(\lambda x:A.M):A\to B} \qquad \qquad \frac{\Gamma\vdash F:A\to B \qquad \Gamma\vdash M:A}{\Gamma\vdash FM:B}$$

well-typedness

 $\Gamma \vdash M : A \text{ is derivable } \Longrightarrow M \text{ is well-typed}$

well-typed preterms are called terms

example type derivation

$$\lambda f: a \to b. \, \lambda x: a. \, fx$$

$$\frac{f:a\rightarrow b,\,x:a\vdash f:a\rightarrow b\qquad f:a\rightarrow b,\,x:a\vdash x:a}{f:a\rightarrow b,\,x:a\vdash fx:b}\\ \frac{f:a\rightarrow b,\,x:a\vdash fx:b}{f:a\rightarrow b\vdash (\lambda x:a.\,fx):a\rightarrow b}\\ \vdash (\lambda f:a\rightarrow b.\,\lambda x:a.\,fx):(a\rightarrow b)\rightarrow a\rightarrow b}$$

$$\frac{\Gamma, \ x:A \vdash M:B}{\Gamma \vdash x:A} \quad \frac{\Gamma, \ x:A \vdash M:B}{\Gamma \vdash (\lambda x:A.M):A \to B} \quad \frac{\Gamma \vdash F:A \to B \quad \Gamma \vdash M:A}{\Gamma \vdash FM:B}$$

proofs versus type derivations: type derivation

$$\cfrac{f:a\rightarrow b,\,x:a\vdash f:a\rightarrow b}{f:a\rightarrow b,\,x:a\vdash x:a}$$

$$\cfrac{f:a\rightarrow b,\,x:a\vdash fx:b}{f:a\rightarrow b\vdash (\lambda x:a.\,fx):a\rightarrow b}$$

$$\vdash (\lambda f:a\rightarrow b.\,\lambda x:a.\,fx):(a\rightarrow b)\rightarrow a\rightarrow b$$

$$\cfrac{a\rightarrow b,\,a\vdash a\rightarrow b}{a\rightarrow b,\,a\vdash a} \cfrac{ass}{a\rightarrow b,\,a\vdash a} \cfrac{E\rightarrow b}{a\rightarrow b\vdash a\rightarrow b} \cfrac{I\rightarrow b}{I\rightarrow b}$$

proofs versus type derivations: proof

$$\begin{split} \frac{[a \rightarrow b^{\it f}] \quad [a^{\it x}]}{\frac{b}{a \rightarrow b} \, I[\it x] \rightarrow} E \rightarrow \\ \frac{\frac{b}{a \rightarrow b} \, I[\it x] \rightarrow}{(a \rightarrow b) \rightarrow a \rightarrow b} \, I[\it f] \rightarrow \\ \\ \frac{\overline{a \rightarrow b, \, a \vdash a \rightarrow b} \, \, ass}{\frac{a \rightarrow b, \, a \vdash a}{a \rightarrow b, \, a \vdash b} \, I \rightarrow} \underbrace{\frac{a \rightarrow b, \, a \vdash b}{a \rightarrow b \vdash a \rightarrow b} \, I \rightarrow}_{\vdash \, (a \rightarrow b) \rightarrow a \rightarrow b} \, I \rightarrow \end{split}$$

proofs versus type derivations: proof term

$$\frac{[a \to b^{f}] \quad [a^{x}]}{\frac{b}{a \to b} I[x]} E \to \frac{b}{(a \to b) \to a \to b} I[f] \to$$

$$\lambda f: a \to b. \lambda x: a. fx$$

Curry-Howard correspondence

 $\begin{array}{cccc} \text{propositions} & \text{types} \\ & \text{implications} & \longleftrightarrow & \text{function types} \\ \\ & \text{proof rules} & & \text{proof terms} \\ & \text{introduction rules} & \longleftrightarrow & \text{lambda abstraction} \\ & \text{elimination rules} & \longleftrightarrow & \text{function application} \\ & \text{assumption rule} & \longleftrightarrow & \text{variables} \\ \end{array}$

how to read proof terms

$$M := (\lambda f : a \to b, \lambda x : a, fx) : (a \to b) \to a \to b$$

this proof term M is a function that takes as its first argument a proof of $a \to b$ called f and as its second argument a proof of a called x and then maps those to a proof of a

the argument f is itself a function that maps proofs of a to proofs of b (conform the BHK-interpretation)

 \boldsymbol{x} is an inhabitant of the type \boldsymbol{a} which corresponds to the proposition \boldsymbol{a}

to get a proof of b, the function f is applied to x and the result of that application then is the result of M

Coq

the example

```
one = fun (f : a \rightarrow b) (x : a) => f x
Parameter a b : Prop.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           : (a \rightarrow b) \rightarrow a \rightarrow b
Lemma one:
                                      (a \rightarrow b) \rightarrow a \rightarrow b.
intros f x.
apply f.
apply x.
Qed.
Check one.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \frac{\begin{bmatrix} a \to b^f \end{bmatrix} \quad \begin{bmatrix} a^x \end{bmatrix}}{\frac{b}{a \to b}} \xrightarrow{I[x] \to} \frac{1}{(a \to b) \to a \to b} \xrightarrow{I[f] \to} \frac{1}{a \to b} \xrightarrow{I[f] \to a \to b} \frac{1}{a \to b} \xrightarrow{I[f] \to b} \xrightarrow{I[
Print one.
                                                                                                                                                                                                                                                                                                                                                                                             (\lambda f: a \to b, \lambda x: a, fx): (a \to b) \to a \to b
```

example with disjunction

```
Parameter a b : Prop.
Lemma two :
   a \/ b -> b \/ a.
intros [y|z].
- right.
   apply y.
- left.
   apply z.
Qed.
```

$$\underbrace{ \frac{\left[a^y \right]}{b \vee a} \, Ir \vee}_{ \left[a \vee b^x \right] } \quad \underbrace{ \frac{\left[b^z \right]}{b \vee a} \, Il \vee}_{ \left[b \vee a \right]} \underbrace{ I[z] \rightarrow}_{ \left[b \vee a \right]} \underbrace{ I[z] \rightarrow}_{ \left[b \vee a \right]} \underbrace{ I[x] \rightarrow}_{ \left[b \vee a \right]}$$

example with conjunction

```
Parameter a b : Prop.

Lemma three :
   a /\ b -> b /\ a.
intros [y z].
split.
   - apply z.
   - apply y.

Qed.
```

$$\frac{\begin{bmatrix} b^z \end{bmatrix} \quad \begin{bmatrix} a^y \end{bmatrix}}{b \wedge a} I \wedge \\ \frac{b \wedge a}{b \rightarrow b \wedge a} I[z] \rightarrow \\ a \rightarrow b \rightarrow b \wedge a} I[y] \rightarrow \\ \frac{b \wedge a}{a \wedge b \rightarrow b \wedge a} I[x] \rightarrow \\ \end{bmatrix}$$

tactics for proof rules

 $I \rightarrow I \neg$ intro intros $E \rightarrow E \neg$ apply exact apply ass $E \land E \lor E \bot$ elim destruct intros with pattern $I \wedge$ split $Il \lor$ left $Ir \lor$ right $I \top$ apply I I : True

bullets

structure tactic scripts according to subgoals

related bullets need to match:

```
- -- etc.
+ ++ +++ +++ etc.
* ** *** *** etc.
```

intro patterns

only works with intros, not with intro the pattern needs to match the shape of assumptions

```
\begin{array}{ccc} \text{goal} & \text{tactic} \\ A \to G & \text{intros HA.} \\ A \to B \to G & \text{intros HA HB.} \\ A \land B \to G & \text{intros [HA HB].} \\ A \lor B \to G & \text{intros [HA | HB].} \\ A \lor (B \land C) \to D \to G & \text{intros [HA | [HB HC]] HD.} \end{array}
```

apply

the number n of antecedents of H may be zero H not only a variable, may be an arbitrary term

$$\frac{\mathbf{H}:A_1\to\cdots\to A_n\to B}$$
 goal $B\xrightarrow{\text{apply H}}$ new goals A_1,\ldots,A_n

$$\frac{[A_1 \to \cdots \to A_n \to B^H] \qquad A_1}{A_2 \to \cdots \to A_n \to B} \xrightarrow{E} \xrightarrow{A_2} \xrightarrow{E} \\
\vdots \\
\frac{A_{n-1} \to A_n \to B}{A_n \to B} \xrightarrow{A_{n-1}} \xrightarrow{E} \xrightarrow{A_n} \xrightarrow{E} \xrightarrow{E}$$

$$H: A_1 \to \cdots \to A_n \to B \otimes C$$

elim and destruct eliminate the connective \otimes which leaves the goal unchanged but also generate extra subgoals A_1,\dots,A_n

logic	type theory	Coq
introduction rules	lambda abstraction	intro
elimination rules	function application	apply
introduction rules	(in three weeks)	(various)
elimination rules	(in three weeks)	elim

for more about the tactics read the Coq manual!

table of contents

contents

type systems and logics propositional logic simply typed lambda calculus Coq table of contents