Definitions

Definition 0.1. We say that a subtour B, is a backbone of the instance \mathcal{I} if for every non-singleton set $S \in \mathcal{L}$. B crosses S i.e. $\delta(S) \cap B \neq \emptyset$.

The pair (\mathcal{I}, B) is called the vertebrate pair.

Definition 0.2. For an instance \mathcal{I} we say that a subtour B a quasi-backbone if

$$2\sum_{S\in\mathcal{L}^*} y_S \leqslant (1-\delta) \operatorname{value}(\mathcal{I}) \tag{1}$$

where \mathcal{L}^* is the set of all $S \in \mathcal{L}$ that are not crossed by B.

Here we note that a quasi-backbone may not be a backbone and vice-versa especially if majority of value(\mathcal{I}) is concentrated on singleton laminar sets in \mathcal{L} .¹

Finding a Quasi-Backbone

Lemma 0.1. Given an irreducible instance \mathcal{I} , we can construct a quasi-backbone B such that it crosses all maximal non-singleton sets in \mathcal{L} and $w(B) \leq (\alpha_{NW} + 3) \text{value}(\mathcal{I})$.

Proof. Let \mathcal{L}_{\max} be the set of all maximal sets in \mathcal{L} and \mathcal{I}' be the instance obtained by contracting each set in \mathcal{L}_{\max} . The instance \mathcal{I}' is node weighted and to find a subtour B' in \mathcal{I} we find a tour T in \mathcal{I}' using α_{NW} approx algorithm for Node-Weighted ATSP and lift it. From Lemma ?? and Fact ?? we know that $w_{\mathcal{I}}(B') \leq w_{\mathcal{I}'}(T) \leq \alpha_{NW} \text{value}(\mathcal{I}') \leq \alpha_{NW} \text{value}(\mathcal{I})$ and that B' crosses all maximal non-singleton laminar sets but, we still need to ensure that it crosses at least $\delta \text{value}(\mathcal{I})$ of sets. For this we modify B' to get our quasi-backbone B as follows:

- Let u^S, v^S be the first entry and exit vertex for S in B' respectively and, u_{\max}^S, v_{\max}^S be the vertices corresponding to $D_{\max}(S)$.
- Replace the u^S-v^S path by the path P composed of the shortest paths² from u^S to u^S_{\max} to v^S_{\max} to v^S , from Lemma ?? $w(P)\leqslant 3\text{value}_{\mathcal{I}}(S)$

As S is irreducible, with this modification we automatically satisfy our last requirement while only increasing the weight by at most 3value(\mathcal{I}).

Obtaining a Vertebrate Pair

Now we would like to find a way to convert a quasi-backbone into a backbone and then use it, along with an approximation algorithm for ATSP on vertebrate pair to approximate ATSP on irreducible instances

Theorem 0.1. Given an irreducible instance \mathcal{I} , Algorithm 1 returns a Tour of \mathcal{I} of cost no more than ρ value(\mathcal{I}) where, $\rho = \frac{\kappa + \eta(\alpha_{NW} + 3)}{1 - 2(1 - \delta)}$.

Proof.

$$w(F) \leq w(T') \leq \kappa \text{value}(\mathcal{I}) + \eta(\alpha_{NW} + 3) \text{value}(\mathcal{I})$$

 $w(F) \leq (\kappa + \eta(\alpha_{NW} + 3)) \text{ value}(\mathcal{I})$

¹While the backbones we construct will also be quasi-backbones but our future reductions do not use this fact.

²These paths exists as $u^S, u_{\text{max}}^S \in S_1$ and $v^S, v_{\text{max}}^S \in S_l$.

```
Input: Irreducible ATSP (A_{irr})

Input: Irreducible instance \mathcal{I} = (G, \mathcal{L}, x, y)
Algorithm A for ATSP on vertebrate pair that returns a tour of cost at most \kappa \text{value}(\mathcal{I}') + \eta w(B).

1 Use Lemma 0.1 to obtain a quasi-backbone B.

2 L_{\text{max}}^* \leftarrow \text{all non-singleton maximal sets in } \mathcal{L}^*.

3 for each \ S \in \mathcal{L}_{\text{max}}^* do

4 | Find T_S \leftarrow A_{irr}(\mathcal{I}[S]).

5 | Use T_S to find F_S for which S is contractible.

6 end

7 \mathcal{I}' = \text{Instance obtained by contracting every } S \in \mathcal{L}_{\text{max}}^*.

8 T' \leftarrow A(\mathcal{I}', B) and T \leftarrow \text{lift of } T'.

9 return T \cup (\cup_{S \in \mathcal{L}_{\text{max}}^*} F_S)
```

$$\begin{split} w(F_S) &\leqslant w_{\mathcal{I}[S]}(T_S) \leqslant \rho \text{value}(\mathcal{I}[S]) \\ w(F_S) &\leqslant 2\rho \text{value}_{\mathcal{I}}(S) \\ \bigcup_{S \in \mathcal{L}_{\text{max}}^*} w(F_S) &\leqslant 2\rho \left(1 - \delta\right) \text{value}(\mathcal{I}) \end{split} \qquad - \text{ As all } S \text{ are disjoint and, from 1 as } B \text{ was a quasi-backbone.} \end{split}$$

$$Cost(\mathcal{I}) = w(F) + \bigcup_{S \in \mathcal{L}_{\max}^*} w(F_S)$$

$$\leq (\kappa + \eta(\alpha_{NW} + 3)) \operatorname{value}(\mathcal{I}) + 2\rho (1 - \delta) \operatorname{value}(\mathcal{I}) \qquad \text{Substituting } \rho \text{ and } \delta = 0.75.$$

$$Cost(\mathcal{I}) \leq \rho \operatorname{value}(\mathcal{I})$$