Classification Assignment

Problem Statement

A requirement from the Hospital, Management asked us to create a predictive model which will predict the Chronic Kidney Disease (CKD) based on the several parameters.

Recognition Based On The Problem Statement

- From the given problem statement it identified that to predict the Chronic Kidney Disease from the given problem statement
- For the provided Data set, the Machine Learning Classification can be used to predict the Chronic Kidney Disease.
- Dataset contains 399 rows and 25 columns
- Dataset contains nominal data so it is pre-processed

Machine Learning Models

Decision Tree

<pre>print(clf_report)</pre>				
	precision	recall	f1-score	support
0	0.91	0.91	0.91	85
1	0.84	0.84	0.84	49
accuracy			0.88	134
macro avg	0.87	0.87	0.87	134
weighted avg	0.88	0.88	0.88	134
	precision	recall	f1-score	support

```
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test,grid.predict_proba(x_test)[:,1])
0.8713085234093638
```

Support Vector Classification

```
print(clf_report)
           precision recall f1-score
                                      support
                0.00
                        0.00
                                0.00
                                          51
         0
         1
               0.62
                        1.00
                                0.76
                                          82
                                0.62
                                         133
   accuracy
              0.31 0.50
                               0.38
                                         133
  macro avg
weighted avg 0.38 0.62 0.47
                                          133
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test,classifier.predict_proba(x_test)[:,1])
0.2551410808225729
```

Random Forest

<pre>print(clf_report)</pre>						
	precision	recall	f1-score	support		
0	1.00	0.98	0.99	51		
1	0.99	1.00	0.99	82		
accuracy			0.99	133		
macro avg	0.99	0.99	0.99	133		
weighted avg	0.99	0.99	0.99	133		
<pre>from sklearn.metrics import roc_auc_score roc_auc_score(y_test,classifier.predict_proba(x_test)[:,1])</pre>						
0.9997608799617408						

Logistic Regression

	precision	recall	f1-score	support	
0	0.90	0.90	0.90	51	
1	0.94	0.94	0.94	82	
accuracy			0.92	133	
macro avg	0.92	0.92	0.92	133	
weighted avg	0.92	0.92	0.92	133	
<pre>from sklearn.metrics import roc_auc_score roc_auc_score(y_test,classifier.predict_proba(x_test)[:,1])</pre>					
roc_auc_score(y_test,classifier.predict_proba(x_test)[:,1]) 0.9820659971305594					

Navie's Baye's

	precision	recall	f1-score	support
0	0.94	1.00	0.97	51
1	1.00	0.96	0.98	82
accuracy			0.98	133
macro avg	0.97	0.98	0.98	133
eighted avg	0.98	0.98	0.98	133
	metrics impo (y_test,clas	_	_	a(x_test)[:,1

K-nearest Neighbor

```
print(clf_report)
             precision recall f1-score support
          0
                 0.61
                           0.86
                                    0.72
                                               51
                 0.89
                           0.66
                                    0.76
          1
                                               82
                                    0.74
                                              133
   accuracy
                                    0.74
  macro avg
                0.75
                          0.76
                                              133
weighted avg
                 0.78
                           0.74
                                    0.74
                                              133
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test,classifier.predict_proba(x_test)[:,1])
0.7967479674796748
```

CONCLUSION

Model	roc_auc_score	Over all accuracy
Support vector mechanics	0.2551410808225729	0.62
Decision Tree	0.929220468675275	0.92
Random Forest	0.9997608799617408	0.99
Logistic Regression	0.9820659971305594	0.92
K-nearest neighbor	0.7967479674796748	0.74
Navie's Baye's	1.0	0.98

Result

Random forest machine model has a good level of accuracy and roc_auc_score for the provided dataset.