DERIVING KNOWLEDGE FROM DATA AT SCALE

Lecture 02

Drew Bryant, Ph.D

Lecture overview

- Review ideas from tidy data
- Practical data exploration
- Intro to tree-based models
- Evaluating and comparing models
- Assignment and Capstone overview

Tidy data

in practice

Tidy data

• Let's try it together in a notebook

Decision trees

How do they grow?

Decision trees

- Basic tree-building algorithm:
 - Split node to (optimally) decrease entropy
 - Recursively repeat until leaves contain a single example
- Tree-based prediction algorithm:
 - Follow the attribute split decisions until you hit a leaf node
 - The predicted label is the label of the leaf example, or majority vote of the leaf (if >1 example in leaf node)

Entropy

Computing entropy over a set of examples with k classes

$$H(S) = -\sum_{i=1}^{k} p_i log_2 p_i$$

Information gain

Computing info gain over a set of examples with k classes

$$Gain(S, A) = H(S) - \sum_{v \in A} |S_v| / |S| * H(S_v)$$

$$H(S) = -\sum_{i=1}^{k} p_i log_2 p_i$$

Should we play golf?

	outlook	temperature	humidity	windy	play?
0	sunny	hot	high	False	N
1	sunny	hot	high	True	N
2	overcast	hot	high	False	Υ
3	rain	mild	high	False	Υ
4	rain	cool	normal	False	Υ
5	rain	cool	normal	True	N

all examples

argmax info_gain(examples, attribute)

attributes: outlook, temperature, humidity, windy

$$Gain(S, A) = H(S) - \sum_{v \in A} |S_v| / |S| * H(S_v)$$

Let's try it

Jumping over to Jupyter...

Scaling up

We're going to need a bigger dataset

Level-wise training

- Select the splits for all nodes at the same level of the tree simultaneously
- Reduces the number of passes over the dataset exponentially: we make one pass for each level, rather than one pass for each node in the tree
- Leads to significant savings in I/O, computation and communication.

Approximate quantiles

- Single machine implementations typically use sorted unique feature values for continuous features as split candidates for the best split calculation
- Finding sorted unique values is an expensive operation over a distributed dataset
- Spark MLLib uses quantiles for each feature as split candidates: tradeoff for improving decision tree performance without significant loss of accuracy.

Bin-wise computation

- Best split computation discretizes features into bins
- Those bins are used for computing sufficient statistics for splitting
- Precompute the binned representations of each instance, saving computation on each iteration

Building models

Theory and practice

Model building flow

- Define objective
- Access and understand the data
- Pre-process the data
- Feature and/or target construction
- Train/test split
- Feature selection
- Model training
- Model evaluation
- Model assessment and comparison

Evaluating models

- TPR, FPR, acceptance threshold
- Accuracy, sensitivity, specificity
- Precision/Recall
- AUC (binary class)
- Confusion matrix (multi-class)
- Avoiding leakage

Comparing tree-based models

- Build N different trees (randomized feature selection vs "optimal" for example)
- Compare the perf of these trees
- Let's try it!

Deploying models

Productionalize your predictions

Model deployment

- How to package your model for deployment
- Using your model for batch prediction
- Publishing your model as a prediction API endpoint for online inference
- Next time: work through examples of this in the cloud (AWS, GCP)

Model monitoring

- Monitor input (queries) and output (prediction) distributions for skew relative to training set
- Alert and re-train as necessary (or on a schedule)

Capstone project

Details...

Capstone project: Instacart

https://www.kaggle.com/c/instacart-market-basket-analysis

First assignment: wine model

- See files uploaded to resource section
- We'll walk through getting started a bit

Questions?