ТЕХНОАТОМ: Продуктовая аналитика. А/В-тестирование

Лекция №1:

Основные понятия и физический смысл.

Математическое обоснование и значения для бизнеса

Познакомимся?

• Ты слышал о сплит-тестировании? Как соотносятся А/В-тесты и сплит-тесты?

• Что означает фраза "рассчитать А/В-тест"? Какие методы используются для таких расчётов?

• Что ты знаешь об основных понятиях и методах математической статистики? Мини-тест: https://forms.gle/QBcUrQp9ucs2AnzU9

• Любишь математику и python? ©

План лекции

- 1. A/B-тестирование: общая задача. Значение для бизнеса. Дизайн эксперимента. Контрольная и тестовые группы. Запуск и проверка хода эксперимента. Типы метрик.
- **2. Виды испытаний**. Зависимые и независимые испытания. Повторные испытания. Парные тесты. А/А-тесты. Обратные тесты.
- 3. Основы математической статистики. Виды распределений. Доверительные интервалы. Ошибки первого и второго рода.
- **4.** Проверка статистической значимости: p-value, α -уровень статистической значимости и $(1-\beta)$ или мощность критерия.
- **5.** Виды статистических критериев. Параметрические и непараметрические критерии.

1. **А/В-тестирование**: общая задача.

Общая задача . Значение для бизнеса

1. Цель: наукоёмкое тестирование, оценка запланированных или форс-мажорных изменений (оценка не "на глазок"); понять что изменилось и будет ли полезно нововведение; на какие метрики повлияет или уже повлияло, стоит ли его "катить" или "откатывать"; возможность протестировать изменение на небольшой аудитории и не просадить метрики;

2. Метод:

- 1. Разбить самостоятельно или рассмотреть уже разбитые кемто (природой или волею разработчиков ☺) группы: тестовую (что-то изменилось) и контрольную (всё по-прежнему);
- 2. Проверить, что выборки в группах не смещены относительно генеральной совокупности и друг друга и достаточны по объёму для распространения выводов на всю генеральную совокупность;
- 3. Продумать метрики, которые отражают суть влияния изменений и отвечают на вопросы менеджмента, рассчитать их;
- 4. Применить методы расчёта стат. значимости различий для метрик в выборках.

Общая задача . Значение для бизнеса

Общая задача . Значение для бизнеса

Значение для бизнеса: основные заказчики

- Маркетинг;
- Продукт;
- Монетизация;
- Операционный, финансовый и коммерческий отделы;
- Эксперименты с ML-моделями: ранжирование и соответствие запросу результатов в выдаче, рекомендации похожих, качество распознавания текста, голоса, изображений;
- Whatever else...

Дизайн эксперимента: предподготовка

- 1. Этап пред-подготовки и предварительного анализа: Выявление бизнес-целей проводимого эксперимента; Формулировка цели. Объём аудитории.
- 2. Формулировка гипотез. Например, гипотеза: замена блока с иконкой сервиса «Журнал» на сниппеты (блоки с фото и кратким содержимым) статей принесёт увеличение переходов в раздел «Журнала»;
- 3. Оценка финансовых рисков и стоимость проведения эксперимента преобладает ли возможный профит над фактическими затратами;
- 4. Исследование аудитории.
- 5. Пробуем оценить стоимость каждой гипотезы.

Дизайн эксперимента

- 1. Определение объема пользователей в эксперименте. Разбивка пользователей на контрольную и тестовую группу, оценка размеров групп и продолжительности проведения теста;
- 2. Выбор метрик исходя из бизнес-задачи;
- 3. Запуск и проверка хода эксперимента;
- 4. Техническая сторона вопроса: формирование предварительного ТЗ разработчикам, принципы разбиения пользователей на bucket'ы, составление схемы логирования.

Запуск и проверка хода эксперимента

2. Виды испытаний.

Парные тесты. Контрольная и тестовая группы. А/А-тесты. Обратные тесты

Тех. процесс:

Одномерная схема разбиения:

Примеры split-систем:

- Google FireBase, Google Optimize, Optimizely, VWO, внутренние разбивки AdJust;
- Собственные splitter'ы VK, YaSERP, Avito, OK, Mail.Ru;
- В nginx есть стандартный модуль для A/B тестирования: nginx.org/ru/docs/http/ngx_http_split_clients_module.html

Память аудитории:

Многомерная схема разбиения:

Одномерная cross-cxeма:

Обратные тесты:

изменение – на всех, предыдущую версию – на часть

Типы метрик

- Агрегированные метрики в рамках групп:
 - DAU, WAU, goal visits, app installs, app uninstalls,
 - Оборот, выручка (GMV), прибыль (revenue), costs,
- На пользователя (user-based):
 - CAC, CPU, LTV, goals per users, orders per user
- На сессию (visit-based):
 - Goals per session, session time, page depth per session, churn rate, отказы (доля сессий < 30 секунд),
- На целевое действие:
 - CPO, CPC, CPA, CPM, CPI по сути, ratio-метрики из 2-х агрегированных метрик: sum(costs)

sum(orders||clicks||actions||1000|clicks||installs)

Повторные испытания. Зависимые и независимые испытания

• Зависимые (связанные) испытания — череда событий, вероятность исхода каждого последующего из которых зависит от исхода предыдущих, или события, происходящие в связанных выборках. Связанные (зависимые, парные) выборки — выборки, в которых каждое наблюдение одной выборки неразрывно связано (находится в паре) с одним из наблюдений другой выборки.

Примеры: выборка без возвращения, попадание пользователя в обе экспериментальные группы — пользователь видит 2 разных типа выдачи в рамках одного эксперимента, зависимые выборки.

• **Независимые (независимые) испытания** — череда независимых событий, или события в выборках, в которых объекты исследования набирались независимо друг от друга.

Формула Бернулли: вероятность появления события определённое количество раз при любом числе независимых испытаний.

$$P_n^k = C_n^k p^k q^{n-k} = C_n^k p^k (1-p)^{n-k}$$
 , где $\ C_n^k = rac{n!}{k!(n-k)!}$

3. Основы математической статистики.

Основы математической статистики

$$ar x=rac{1}{n}\sum_{i=1}^n x_i=rac{1}{n}(x_1+\ldots+x_n)$$

- Среднеквадратичное отклонение:
- На основании смещённой оценки дисперсии:
- На основании несмещённой оценки:
- Математическое ожидание:
- Дисперсия генеральной совокупности:

$$S = \sqrt{rac{1}{n}\sum_{i=1}^n \left(x_i - ar{x}
ight)^2}.$$

$$S_0 = \sqrt{rac{n}{n-1}S^2} = \sqrt{rac{1}{n-1}\sum_{i=1}^n \left(x_i - ar{x}
ight)^2}$$

$$M[X] = \sum^\infty x_i \, p_i$$

$$\sigma_X^2 \ = \sum_{i=1}^n p_i (x_i - M[X])^2$$

Виды распределений. Нормальное распределение

Доверительные интервалы

Доверительный интервал -

интервал, в который попадают измеренные в эксперименте значения, соответствующие определенной установленной вероятности, называемой доверительной вероятностью.

Иными словами, интервальная оценка вероятности встретить значение x_i случайной величины в диапазоне от x_{lower_bound} до x_{upper_bound} .

Виды распределений. Распределение Бернулли и биномиальное распределение

На практике множество продуктовых и маркетинговых метрик имеет распределение подобного вида:

- Целевое действие, просмотр телефона,
- оформление заказа, оплата покупки,
- ушёл без заказа, бросил корзину,
- установка приложения, регистрация, sign-in в рамках сессии, периода, в рамках ЖЦ пользователя;
- продолжил движение по воронке/ушёл со страницы;
- etc.

Распределение Бернулли — дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, при заранее известной вероятности успеха или неудачи.

Случайная величина X имеет распределение Бернулли, если она принимает всего два значения: 1 и 0 с вероятностями p и $q \equiv 1 - p$ соответственно. Таким образом:

$$P(X=1) = p,$$

 $P(X=0) = q.$

Виды распределений. Распределение Бернулли и биномиальное распределение

Биномиальное распределение — распределение количества k «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p. Случайную величину, распределенную по закону биномиального распределения, интерпретируют как число успехов k в серии из k одинаковых независимых испытаний Бернулли с вероятностью успеха k в каждом испытании

Мат.ожидание:

$$M(X) = np,$$

Дисперсия

$$D(X) = npq,$$

Ср.-кв. отклонение:

$$\sigma(X) = \sqrt{npq}.$$

$$P_n^k = C_n^k p^k q^{n-k} = C_n^k p^k (1-p)^{n-k}$$
 , где $C_n^k = rac{n!}{k!(n-k)!}$

Виды распределений. Экспоненциальное распределение и γ -распределение

Экспоненциальное (показательное) распределение

Например, retention на N-ый день после первого захода с РК; кол-во просмотров объявления на N-ый день; органический retention после установки

 γ (гамма)-распределение

Например, пользователи по частоте заказов или их кол-ву за период; кол-во установок на N-ый день начала РК

Ассиметричные и мультимодальные распределения

Правая ассиметрия:

- пик правее;
- короткий хвост;
- среднее смещено к голове графика;

Примеры: запуск нового сервиса, раздела, фичи (долго раскачивается)

Левая ассиметрия:

- пик левее;
- длинный хвост;
- среднее смещено к хвосту;

Примеры: аудитория, визиты, кол-во заходов при высоком churn rate в сервисе; СТR рекламного баннера во времени – затухает с большим кол-вом повторных показов

Би-модальное распределение: загруженность метро и общественного транспорта, траффик (пробки) на дорогах – утром и вечером;

Мультимодальное распределение: активность пользователей в социальных сетях с мобильного – утром и вечером в транспорте, днём за обедом

4. Проверка статистической значимости.

Уровень значимости и мощность критерия на гистограмме

α-уровень - пороговый уровень статистической значимости; вероятность ошибочно отклонить нулевую гипотезу.

β-уровень - вероятность ошибочного не отклонения нулевой гипотезы об отсутствии различий.

Мощность (критерия) - вероятность (правильного) отбрасывания нулевой гипотезы, т. е. отбрасывания (непринятия) нулевой гипотезы в случае, когда на самом деле верна альтернативная гипотеза.

 H0 – основная гипотеза (о сходстве):

 $\mu(A) == \mu(B);$

• **H1** — **альтернативная** гипотеза (о различии):

 $\mu(A) != \mu(B);$

#027

α-уровень статистической значимости

С-уровень - пороговый уровень статистической значимости; вероятность ошибочно отклонить нулевую гипотезу — вероятность **ошибки І-го рода** «Ложная тревога».

Стандартный: 0,05

Высокий: 0,01

Низкий: 0,1

#028

Мощность критерия (1-β)

β-уровень - вероятность ошибочного не отклонения нулевой гипотезы об отсутствии различий – вероятность **ошибки II-го рода** «Пропуск цели».

Мощность (критерия) $(1-\beta)$ - вероятность (правильного) отбрасывания нулевой гипотезы, т. е. отбрасывания (непринятия) нулевой гипотезы в случае, когда на самом деле верна альтернативная гипотеза.

р-значение

p-значение — рассчитанная в ходе статистического теста вероятность ошибочного отклонения нулевой гипотезы **H0**.

Иными словами, вероятность получить такое же или более экстремальное значение статистики (среднего арифметического, медианы и др.), по сравнению с ранее наблюдаемым, при условии, что **H0** верна.

More likely observation

P-value

Very un-likely observations

Observed data point

Set of possible results

H0 отклонена: p-value < α -level

H0 принята: p-value $\geq \alpha$ -level

5. Виды статистических критериев.

Принцип принятия и отвержения гипотезы

Виды статистических критериев по исследуемой метрике

Критерии согласия (проверка соответствия распределения метрики в выборке определенному виду эталонному распределению):

- 1) Критерий Колмогорова-Смирнова;
- 2) х2-Критерий Пирсона (хи-квадрат);
- 3) Критерий Шапиро-Уилкса;

Критерии сдвига (проверка равенства групп):

- 1) Т-Критерий Стьюдента;
- 2) Т-Критерий Уилкоксона;
- 3) U-Критерий Манна-Уитни;

Критерии однородности (например, проверки на равенство дисперсий):

- 1) Критерий Бартлетта;
- 2) Критерий Левена

Виды статистических критериев по применяемому алгоритму

Параметрические — основаны на конкретном типе распределения:

- 1) Т-Критерий Стьюдента;
- 2) Z-критерий Фишера;
- 3) F-критерий Фишера;
- 4) х2-критерий Пирсона;

Непараметрические – не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности (ранговые критерии):

- 1) Т-Критерий Уилкоксона;
- 2) U-Критерий Манна-Уитни;
- 3) Критерий Колмогорова;
- 4) Q-Критерий Розенбаума

Практическая часть

Python Style-guide

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
11 11 11
-*- Annotation: -*-
shebang-line and encoding derictive:
PEP 394: The "python" Command on Unix-Like Systems
https://www.python.org/dev/peps/pep-0394/
PEP 263: Defining Python Source Code Encodings
https://www.python.org/dev/peps/pep-0263/
11 11 11
```

Python Scientific Libraries

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
11 11 11
-*- Annotation: -*-
numpy - is a library for working with linear algebra forms:
numpy is a basis of pandas, scipy and sklearn data structures and types
11 11 11
```

Непрерывное распределение: определение и boxplot

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
from time import time
import matplotlib.pyplot as plt
import numpy as np
# 1) set random seed as current timestamp = seconds from 1970-01-01 00:00:00
np.random.seed(int(time()))
# 2) np.random.rand(n) returns 1-dimensional np.array()
# of n values distributed uniformly over [0, 1)
series = (np.random.rand(50)*100).astype(int)
pd.Series(series).plot.box()
```

Непрерывное распределение с выбросами: диаграмма размаха и гистограмма

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
from time import time
import matplotlib.pyplot as plt
                                                              -50
import numpy as np
                                                             -100
                                                             0.016
np.random.seed(int(time()))
                                                             0.014
                                                             0.012
                                                            ≥ 0.010
distribution = (np.random.rand(50) *100).astype(int)
                                                            g 0.008
                                                             0.006
center = np.ones(5) * 50
                                                             0.004
high outliers = (np.random.rand(10)*200).astype(int)
                                                             0.002
                                                             0.000
low outliers = (np.random.rand(10)*-100).astype(int)
series = np.concatenate((distribution, center, high outliers, low outliers))
pd.Series (series).plot.hist(bins = 50)
```

Домашнее задание

ABT-1

#040

10 баллов

Срок сдачи: **25.11.2020**

Полезные ссылки и литература в помощь:

- Татьяна Мелехина: «Лекции по теории вероятностей и математической статистике»
- Wes McKinney: "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython"
- https://pandas.pydata.org/
- https://matplotlib.org/
- https://jupyter.org/

Домашнее задание: АВТ. Правила сдачи

- 1. Оформление решения производится в **Jupyter Notebook** на сервисе **Google Colab**: https://colab.research.google.com/.
- 2. В качестве **решения** присылайте, пожалуйста, **ссылку на NoteBook**, созданный на сервисе, с комментариями, вопросами и результатами работы в рамках MarkDown Text Field;
- 3. Для доступа к сервису необходимо **зарегистрировать** Google Account на свою почту и указать **ФИО** так же, как указанно у Вас в профиле на учебном портале проекта Texнoaтoм@Mail.Ru.

Домашнее задание: АВТ-1

- 1. Сгенерируйте 1000 значений в диапазоне от 5 до 105 методом random() и сохраните их в структуру pandas. Series(). Какой вид имеет распределение и почему именно такой? Что нужно сделать, чтобы распределение изменило форму?
- 2. Постройте гистограмму при помощи matplotlib. Рассчитайте основные статистические метрики для выборки вручную и в python (подсказка: полезно будет рассчитать частоту, с которой встречаются значения).
- 3. Проведите аналогичные расчёты при помощи встроенных методов класса pandas. Series().
- 4. Результат работы пришлите в формате IPython Jupyter Notebook.

Spoiler: statistical significance, statistical significance everywhere...