Lineær algebra (LA)

anden del af kurset i beregningsteknik

Aalborg Universitet

Troels B. Sørensen

tbs@es.aau.dk

LINEÆR ALGEBRA

MM 5: Fredag 24. marts 2023

kl. 08.15 i B2-107

Emner: Diagonalisering, fortsat

Kanonisk form, afslutning Komplekst vektorrum Matrixers taxonomi Unitære systemer

Evt. anvendelseseksempel (MIMO transmission)

Læsning: [EK] s. 346 – 351, 607 – 618 (komplekse tal)

Sætninger om isometriske matrixer

1.

En reel kvadratisk matrix er orthogonal HOKH søjlevektorerne (og dermed også rækkevektorerne) udgør et orthonormalt system.

$$A^{T}A = I$$

$$A A^{T} = I$$

 $A^{T}A = I$ orthonormalitet af rækker/søjler $A A^{T} = I$ orthogonalitet $A^{T} = A^{-1}$

dratisk matrix er unitær orerne (og dermed også

τωκκενεκιοιεπιε) udgør et unitært system.

$$U^{T*}U = I$$
 rækker/søjler unitært system

HOKH= hvis og kun hvis

Sætninger om isometriske matrixer

2.

En komplex kvadratisk matrix er unitær HOKH søjlevektorerne (og dermed også rækkevektorerne) udgør et unitært system.

$$U U^{T*} = I$$
 unitær matrixbetingelse $U^{T*} = U^{-1}$

HOKH= hvis og kun hvis

Taxonomi for normale (kvadratiske) matrixer

Reel matrix	Kompleks matrix	Generel	Normal ⁽²⁾	Egenværdier
Symmetrisk	Hermitesk			
	(diagonal er reel)	Selvadjungeret ⁽¹⁾	Ja	Reelle (inkl. 0)
$A^{T} = A$	$A^{*T} = A$			
Skævsymmetrisk	Skævhermitesk			
(diagonal = 0)	(diagonal imaginær eller 0)	Skævadjungeret	Ja	Imaginære (inkl. 0)
_				
$A^{T} = -A$	$A^{*T} = -A$			
Ortogonal	Unitær			
$(\Delta A = \pm 1)$	$(\Delta A = 1)$	Isometrisk	Ja	Absolut værdi 1
$A^{T} = A^{-1}$	$\boldsymbol{A}^{*T} = \boldsymbol{A}^{-1}$			

- (1) Den (komplekst) konjugerede transponerede, A*T, kaldes for den adjungerede til A (og deraf betegnelsen selvadjungeret i dette tilfælde); mere formelt kaldes den komplekst konjugerede transponerede for den hermitesk adjungerede, hvor hermitesk adjungering er analogt til kompleks konjugering.
- (2) En normal matrix er en (generelt) kompleks kvadratisk matrix der kommuterer med sin adjungerede, dvs. opfylder $A^{*T}A = AA^{*T}$.

Egenværdier i det komplekse plan:

SIMILARITET

Unitær ækvivalens

 og A er unitært ækvivalente, hvis der findes en unitær matrix U:

$$\hat{A} = U^{-1}AU$$

Hvis U består af egenvektorer for A diagonaliserer den A

Unitær diagonaliserbarhed

En kvadratisk matrix er unitært diagonalisabel HOKH den er en normal matrix

$$D = U^{-1}AU$$

En matrix er diagonalisabel HOKH den algebraiske multiplicitet er lig med den geometriske multiplicitet for alle egenværdier.

HOKH= hvis og kun hvis

Egenbaser og diagonalisenna

Sætning: En normal mætnix har en egenbæse det er et unitært system å en Hemetoski, skævhemætisk og unitær mætnix har derfer en unitær egenbæse E Ch

Sætning: En maturx \(\bar{A}\) er unitært diagonaliserbar HOKH \(\bar{A}\) er normal \((\bar{A}\bar{A}^*)^{-1} = \bar{A}^*(\bar{A})\)

D= J-1AJ hvor J indeholder Á egenvelsterer (vnitært system) og JJ*T = J*TJZ]

Enhver normal matrix kan alts & diagonaliseres med en uniter matrix dannet af matrixens egen-vekterer. Det gælder specielt ved adshilte egen-vardier, men også med repeterede. Generelt kræner vi at den algebraishe multiplicatet er lig den geame-tiske multiplicatet er lig den geame-tiske multiplicatet er alle egenvardier ma = Ma.

Bomærk at diagonalisennen med en unter egenbase er knyttet til æt Ā er normal:

\[\hat{A}\hat{A}^*T = \hat{A}^*T\hat{A} \]

alts\hat{e} en mætnix san kommuterer med sm

adjongerede (kompleks kanjugerede branspare-

Da de komplekse kvadratiske mætriker er generalisennger af de rælle og da de ælle er normæle (jf. taxanomien), gælder det også for den kvadratiske rælle mætrik A æt den kan diagonaliseres at en orthogonal mætrik I hvis søfevekterer

odgør en orthonormel bæse. F. elss. gælder at

 \widehat{A} symmetrisk $\langle -\rangle$ $\widehat{A} = \widehat{U}\widehat{S}\widehat{U}^{-1}$ hvor \widehat{U} er orthogonal/normal dus, $\widehat{U}\widehat{U}^{T} = \widehat{U}^{T}\widehat{S} = \widehat{T}$,