A Unifying Class of Algorithms for Semi-Streaming Bipartite Maximum Matching

Kheeran Naidu

University of Bristol kn16063@bristol.ac.uk

Joint work with Dr Christian Konrad

Overview

- Background
- Our Work
 - Algorithmic
 - Impossibility
- 3 Discussion

Definition

Definition

Definition

A Unifying Class of Algorithms

Definition

matching

maximal matching

Definition

matching

maximal matching

maximum matching

Definition

maximal matching

optimal matching

Esfandiari et al. [ICDMW16]

A **semi-incomplete matching** is an extended matching in bipartite graphs where the vertices of one bipartition allows for degree d > 1.

semi-incomplete matching

Definition

maximal matching

optimal matching

Definition

A **(bipartite)** matching is a subset of edges of a graph where every vertex has degree at most 1.

Finding a maximum (optimal) matching:

- exact algorithms exists, i.e. Hopcroft-Karp [SWAT71];
- require random access to the graph's edges (infeasible requirement for massive graphs).

Semi-Streaming Model

Feigenbaum et al. [ICALP04]

A graph with n vertices is presented to an algorithm as a stream of edges where the storage space of the algorithm is bounded by O(n polylog n).

- Only allows sequential access to the graph.
- Algorithms with space $O(n \text{ polylog } n) = O(n (\log n)^{O(1)})$.
- Ideally with few passes of the stream.

Two-Pass Bipartite Maximum (Optimal) Matching

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Two-Pass Bipartite Maximum (Optimal) Matching

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Note: Only strategy proven to work.

Two-Pass Bipartite Maximum (Optimal) Matching

Algorithmic:

Two-Pass Bipartite Maximum (Optimal) Matching

Algorithmic:

 unify the two dominant techniques; vertex subsampling and finding a semi-incomplete matching;

Two-Pass Bipartite Maximum (Optimal) Matching

Algorithmic:

- unify the two dominant techniques; vertex subsampling and finding a semi-incomplete matching;
- present a wider set of algorithms which contains the most recent state-of-the-art results;

Two-Pass Bipartite Maximum (Optimal) Matching

Algorithmic:

- unify the two dominant techniques; vertex subsampling and finding a semi-incomplete matching;
- present a wider set of algorithms which contains the most recent state-of-the-art results;
- find a novel meta algorithm that exactly achieves the current state-of-the-art $2-\sqrt{2}\approx\frac{1}{2}+0.085$ -approximation.

Two-Pass Bipartite Maximum (Optimal) Matching

Algorithmic:

- unify the two dominant techniques; vertex subsampling and finding a semi-incomplete matching;
- present a wider set of algorithms which contains the most recent state-of-the-art results;
- find a novel meta algorithm that exactly achieves the current state-of-the-art $2-\sqrt{2}\approx\frac{1}{2}+0.085$ -approximation.

Impossibility:

• In this class of algorithms, (the first pass finds only a maximal matching), no better than a $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in the semi-streaming model.

Related Work

	Algorithmic	Impossibility
one-pass	$\frac{1}{2}$ [ICALP04]	$\frac{1}{2} + 0.167$ [SODA12] $\frac{1}{2} + 0.132$ [SODA13] $\frac{1}{2} + 0.091$ [SODA21]
two-pass	$ \frac{1}{2} + 0.019 \text{ [APPROX12]} $ $ \frac{1}{2} + 0.083 \text{ [ICDMW16]} $ $ \frac{1}{2} + 0.063 \text{ [APPROX17]} $ $ \frac{1}{2} + 0.085 \text{ [MFCS18]} $ $ \frac{1}{2} + 0.085 $	$\frac{1}{2} + 0.167^1$

 $^{^1}$ where the first pass finds a maximal matching, i.e., at least a $\frac{1}{2}$ -approximation.

Overview

- Background
- Our Work
 - Algorithmic
 - Impossibility
- 3 Discussion

Overview

- Background
- Our Work
 - Algorithmic
 - Impossibility
- 3 Discussion

Class of algorithms:

- finds a maximal matching M (first-pass);

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Definition

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

The goal of the algorithm is to find the maximum (optimal) matching M^* .

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{Greedy}(\pi_G)$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G=e_1,e_2,...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A R F) he a hard-instance (worst Using the two dominant techniques: Let π subsample the inner vertices [APPROX12] [MFCS18] edges 2 run Greedy_d [ICDMW16] [APPROX17] order. First pass: • $M \leftarrow \text{Greedy}(\pi_G)$ M

— (A R F) he a hard-instance Let G_{r} (worst Using the two dominant techniques: Let π subsample the inner vertices [APPROX12] [MFCS18] edges 2 run Greedy_d [ICDMW16] [APPROX17] order. **First** semi-incomplete matching IVI

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

Second pass:

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{Greedy}(\pi_G)$

- subsample $M' \subseteq M$ with prob. p
- $S_I \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_{l} \leftarrow \text{Greedy}_{d}(S_{l} \cap \pi_{G})$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{GREEDY}_d(S_R \cap \pi_G)$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let $\pi_G = e_1, e_2, ...$ be a stream of its edges in adversarial (worst-case) order.

First pass:

• $M \leftarrow \text{GREEDY}(\pi_G)$

- subsample $M' \subseteq M$ with prob. p
- $S_L \leftarrow E \cap A_{out} \times B(M')$
- $S_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(S_L \cap \pi_G)$
- $M'_R \leftarrow \text{Greedy}_d(S_R \cap \pi_G)$

Main Theorem (Proof Outline)

A _{out} ●	B _{ii}
•	•
•	•
•	•
•	•
•	•
•	•
•	•

Main Theorem (Proof Outline)

Setup:

any bipartite graph G = (A, B, E)
 with a maximum (optimal)
 matching M*;

```
-----
-----
----
-----
----
----
```

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

Proof:

• $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

```
A_{out}
  ____
  -----
  -----
  ____
  ----
  ____
d = 3, p = 0.67
```

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

$$\mathbb{E}[|M_{B'}^*|] \le (1 + \frac{p}{d})\mathbb{E}[|M|]$$

Setup:

- any bipartite graph G = (A, B, E)with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{GREEDY}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in $M_{R'}^*$ are blocked?

$$p \cdot |M^*| \le (1 + \frac{p}{d})\mathbb{E}[|M|]$$

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?

Setup:

- any bipartite graph G = (A, B, E) with a maximum (optimal) matching M^* ;
- subsample $B' \subseteq B$ with prob. p;
- $M \leftarrow \text{Greedy}_d$.

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY_d, how many edges in M^{*}_{B'} are blocked?
- Formalised using Wald's Equation.

$$\mathbb{E}[|M|] \ge \frac{dp}{d+p} \cdot |M^*|$$

Analysis:

We find at least $(\frac{1}{2} + \frac{p}{d+p} - \frac{p}{2d}) \cdot |M^*|$ edges in our final matching.

$$\mathbb{E}_{M'}[|M'_L|] = \frac{dp}{d+p} \cdot |M_L^*|$$

Overview

- Background
- Our Work
 - Algorithmic
 - Impossibility
- 3 Discussion

Proving Impossibility Results

Two-Party Communication Setup

Proving Impossibility Results

Two-Party Communication Setup

Goal:

• to bound the size of the message from Alice to Bob needed to output a large matching.

Outline:

Outline:

Outline:

Outline:

Outline:

- A family of graphs constructed from very dense Rusza-Szemeredi (RS) graphs.
- ② Prove that a $(\frac{2}{3} + \epsilon)$ -approx requires $N^{1+\Omega(\frac{1}{\log \log N})} \supset O(N \text{ polylog } N)$ space.

Two-Pass Impossibility Proof

Class of algorithms:

- finds a maximal matching M (first-pass);
- increases the size of the matching M (second-pass).

Two-Pass Impossibility Proof

Goal: Give both Alice and Bob knowledge of a maximal matching without affecting the difficulty of the problem.

Goal: Give both Alice and Bob knowledge of a maximal matching without affecting the difficulty of the problem.

Outline:

 We extend [SODA12]'s construction a family of RS graphs.

Goal: Give both Alice and Bob knowledge of a maximal matching without affecting the difficulty of the problem.

- We extend [SODA12]'s construction a family of RS graphs.
- Do dense RS graphs contain perfect matchings?

Goal: Give both Alice and Bob knowledge of a maximal matching without affecting the difficulty of the problem.

- We extend [SODA12]'s construction a family of RS graphs.
- Do dense RS graphs contain perfect matchings?
- Find a near-perfect matching of size $N \epsilon' N$

Goal: Give both Alice and Bob knowledge of a maximal matching without affecting the difficulty of the problem.

- We extend [SODA12]'s construction a family of RS graphs.
- Do dense RS graphs contain perfect matchings?
- Find a near-perfect matching of size $N \epsilon' N$

Goal: Give both Alice and Bob knowledge of a maximal matching without affecting the difficulty of the problem.

- We extend [SODA12]'s construction a family of RS graphs.
- Do dense RS graphs contain perfect matchings?
- Find a near-perfect matching of size $N \epsilon' N$

Goal: Give both Alice and Bob knowledge of a maximal matching without affecting the difficulty of the problem.

- We extend [SODA12]'s construction a family of RS graphs.
- Do dense RS graphs contain perfect matchings?
- Find a near-perfect matching of size $N \epsilon' N$
- $(\frac{2}{3} + \epsilon)$ -approx requires space $N^{1+\Omega(\frac{1}{\log \log N})} \supset O(N \text{ polylog } N)$.

Overview

- Background
- Our Work
 - Algorithmic
 - Impossibility
- 3 Discussion

 Our set algorithms unifies the dominant techniques used to tackle the two-pass bipartite maximum matching problem, achieving the current state-of-the-art.

- Our set algorithms unifies the dominant techniques used to tackle the two-pass bipartite maximum matching problem, achieving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.

- Our set algorithms unifies the dominant techniques used to tackle the two-pass bipartite maximum matching problem, achieving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.

- Our set algorithms unifies the dominant techniques used to tackle the two-pass bipartite maximum matching problem, achieving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.

- Our set algorithms unifies the dominant techniques used to tackle the two-pass bipartite maximum matching problem, achieving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.
- Our hard-instance graph proves that our analysis is tight.

- Our set algorithms unifies the dominant techniques used to tackle the two-pass bipartite maximum matching problem, achieving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.
- Our hard-instance graph proves that our analysis is tight.
- We reduced the gap of possibility with this class of algorithms to [0.585, 0.667].

Open Questions

- Can we extend other one-pass impossibility results to improve the two-pass bound? I.e. Kapralov's [SODA21].
- Is there a way to do better by finding more than just a maximal matching in the first-pass?
- Can we beat a $\frac{1}{2}$ -approximation in just one-pass?

Thank You