Computació Numèrica

Laboratori 14. Equacions Diferencials amb Matlab

M. Àngela Grau Gotés

Departament de Matemàtiques Universitat Politècnica de Catalunya · BarcelonaTech.

29 de maig de 2018

drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

29 de maig de 2018

Índex

- Mètode d'Euler
- Mètode de Heun
- Mètode de Runge-Kutta
- Mètode de Runge-Kutta
- Matlab
- Referències

PVI

Del problema de valors inicials:

$$y(t)' = f(t, y(t))$$

$$y(a) = \alpha$$
(1)

calcular y(t) per a $t \in [a, b]$.

Discretització

Donat N prenem $t_i = a + ih$, per $i = 0, 1, 2, \dots, N$, amb $h = t_i - t_{i-1} = (b - a)/N$.

Mètode d'Euler

Mètode d'Euler

El mètode d'Euler construeix

$$\omega_i \approx y(t_i)$$

tal que

$$\omega_0 = \alpha
\omega_{i+1} = \omega_i + h f(t_i, \omega_i)$$
(2)

Fórmula de Taylor

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

Mètode d'Euler Modificat

Per $\omega_0 = \alpha$ el mètode ès:

$$w_{i} = \omega_{i} + \frac{h}{2} f(t_{i}, \omega_{i})$$

$$\omega_{i+1} = \omega_{i} + h f\left(t_{i} + \frac{h}{2}, w_{i}\right)$$
(3)

Tal que $\omega_i \approx y(t_i)$, i per tant, $\omega_N \approx y(b)$.

Aquest mètode és un mètode de Runge-Kutta de segon orde.

Mètode de Heun

Mètode d'Euler millorat

Per $\omega_0 = \alpha$ el mètode ès:

$$k_{1} = h f(t_{i}, \omega_{i})$$

$$k_{2} = h f(t_{i+1}, \omega_{i} + k_{1})$$

$$\omega_{i+1} = \omega_{i} + \frac{1}{2} (k_{1} + k_{2})$$
(4)

Tal que $\omega_i \approx y(t_i)$, i per tant, $\omega_N \approx y(b)$

Aquest mètode és conegut per mètode de Heun de segon orde.

Mètode de Heun de tercer ordre

Si $\omega_0 = \alpha$ el mètode ès:

$$k_{1} = h f(t_{i}, \omega_{i})$$

$$k_{2} = h f(t_{i} + \frac{h}{3}, \omega_{i} + \frac{k_{1}}{3})$$

$$k_{3} = h f(t_{i} + \frac{2h}{3}, \omega_{i} + \frac{2k_{2}}{3})$$

$$\omega_{i+1} = \omega_{i} + \frac{1}{4} (k_{1} + 3k_{3})$$
(5)

Tal que $\omega_i \approx y(t_i)$, i per tant, $\omega_N \approx y(b)$.

Mètode de Runge-Kutta

11 / 20

Mètode de Runge-Kutta de quart ordre

El mètode construeix $\omega_i \approx y(t_i)$ tal que

$$\omega_{0} = \alpha
k_{1} = h f(t_{i}, \omega_{i})
k_{2} = h f(t_{i} + \frac{h}{2}, \omega_{i} + \frac{k_{1}}{2})
k_{3} = h f(t_{i} + \frac{h}{2}, \omega_{i} + \frac{k_{2}}{2})
k_{4} = h f(t_{i+1}, \omega_{i} + k_{3})
\omega_{i+1} = \omega_{i} + \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$
(6)

Mètode de Runge-Kutta

Mètode de Runge-Kutta de quart ordre

El mètode construeix $\omega_i \approx y(t_i)$ tal que

$$\omega_{0} = \alpha
k_{1} = h f(t_{i}, \omega_{i})
k_{2} = h f(t_{i} + \frac{h}{2}, \omega_{i} + \frac{k_{1}}{2})
k_{3} = h f(t_{i} + \frac{h}{2}, \omega_{i} + \frac{k_{2}}{2})
k_{4} = h f(t_{i+1}, \omega_{i} + k_{3})
\omega_{i+1} = \omega_{i} + \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$
(7)

14 / 20

Matlab

Solucions amb Matlab

Para resolver el problema de valores iniciales

$$u' = \frac{1}{2}u, \qquad u(0) = \frac{1}{4},$$

basta escribir

>>
$$u = dsolve('Du = u/2', 'u(0) = 1/4')$$

Se obtiene

$$u = 1/4*exp(1/2*t)$$

es decir, la solución es

$$u(t) = \frac{1}{4} e^{t/2}$$

La solución se puede representar gráficamente usando ezplot; por ejemplo, en el intervalo [0,3].

Solucions amb Matlab

Para resolver numéricamente el poblema

$$\begin{cases} u' &= (0,7-0,01 \cdot u)u, \qquad t \in [0,10], \\ u(0) &= 20. \end{cases}$$

basta escribir el archivo de función

```
function du = f(t,u)
du = (0.7 - 0.01 * u) * u;
```

y luego ejecutar la orden

```
>> [t,u] = ode45('f',[0 10],20);
```

Solvers de Matlab

Solver	Solves These Kinds of Problems	Method
ode45	Nonstiff differential equations	Runge-Kutta
ode23	Nonstiff differential equations	Runge-Kutta
ode113	Nonstiff differential equations	Adams
ode15s	Stiff differential equations and DAEs	NDFs (BDFs)
ode23s	Stiff differential equations	Rosenbrock
ode23t	Moderately stiff differential equations and DAEs	Trapezoidal rule
ode23tb	Stiff differential equations	TR-BDF2
ode15i	Fully implicit differential equations	BDFs

Solvers de Matlab

Nonstiff problems:

- ode45: medium accuracy. Use most of the time.
- ode23: low accuracy. Use large error tolerances or moderately stiff problems.
- ode113: low to high accuracy.

• Stiff problems:

- ode15s: low to medium accuracy. Use if ode45 is slow.
- ode23s: low accuracy. Use large error tolerances.
- ode23t: low accuracy. Use for moderately stiff problems where you need a solution without numerical damping.
- ode23ts: low accuracy.

Ordinary differential equations

Guies de MATLAB

- MathWorks Documentation Center, Matlab Users's Guide online
- MathWorks Documentation Center, Matlab Functions's Guide online
- MathWorks Documentation Center, Matlab Users's Guide in pdf
- MathWorks Documentation Center, Tutorials