Calcul différentiel Équations

différentielles

Question 1/15

Point d'équilibre

Réponse 1/15

 x_0 est un point d'équilibre de l'équation autonome x' = f(x) si $f(x_0) = 0$, et donc si $\gamma: t \mapsto x_0$ est une solution particulière

Question 2/15

Flot de l'équation y' = f(t, y)

Réponse 2/15

 $\varphi_f^{t,t_0}(y_0)$ est la valeur $\gamma(t)$ où $\gamma:I_f(t_0,y_0)\to E$ la solution maximale du problème de Cauchy avec $\gamma(t_0)=y_0$ Le flot est défini sur $D_f(t_0,t)=\{y_0\in U, (t_0,y_0)\in I\times U\wedge t\in I_f(t_0,y_0)\}$

Dans le cas autonome, on prend $t_0 = 0$

Question 3/15

Propriétés de R(s,t)

Réponse 3/15

$$R(s,t) \in \mathcal{L}(E) \qquad R(t,t) = \mathrm{id}_{\mathcal{L}(E)}$$

$$R(r,s) \circ R(s,t) = R(r,t)$$

$$r: s \mapsto R(s,t) \in \mathcal{C}^1(I,\mathcal{L}(E)) \text{ est l'unique}$$
solution au problème de Cauchy
$$\frac{\mathrm{d}r}{\mathrm{d}s}(s) = A(s) \circ r(s), \ r(t) = \mathrm{id}_{\mathcal{L}(E)}$$

$$(s,t) \mapsto R(s,t) \text{ est continuement dérivable et}$$

$$\frac{\partial R}{\partial t}(s,t) = A(s) \circ R(s,t) \text{ et}$$

$$\frac{\partial R}{\partial s}(s,t) = -R(s,t) \circ A(t)$$

Question 4/15

Théorème de Cauchy-Lipschitz non-linéaire

Réponse 4/15

Soit I un intervalle ouvert de \mathbb{R} et U un ouvert de E un Banach, $x:I\to E, f\in\mathcal{C}(I\times U,E)$ localement lipschitzienne par rapport à sa deuxième variable¹, pour toute condition initiale $(t_0, x_0) \in I \times E$, il existe une unique solution particulière locale $x: I \to E$ à l'équation $x' = f(t, x), x(t_0) = x_0$

^{1.} $\forall (t_0, x_0) \in I \times U, \exists c > 0, \exists V \subset I \times U \text{ voisinage de } (t_0, x_0), \forall ((t, x), (t, y)) \in V^2, \|f(t, x) - f(t, y)\| \le c \|x - y\|$

Question 5/15

Résolvante

Réponse 5/15

Si
$$R: I \times I \times E \longrightarrow E$$
 où x est l'unique $(t, t_0, x_0) \longmapsto x(t)$ solution telle que $x(t_0) = x_0$ $R(s, t): E \longrightarrow E$ est appelé résolvante $x \longmapsto R(s, t, x)$

de l'application x' = ax + b

Question 6/15

Théorème de Liouville sur le Wronskien

Réponse 6/15

$$W$$
 est dérivable et $W'(t) = \operatorname{tr}(A(t))W(t)$
 $W(t) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}(A(s)) ds\right)$

Question 7/15

Théorème de Cauchy-Lipschitz linéaire

Réponse 7/15

Soit I un intervalle ouvert de \mathbb{R} , $x:I \to E$, $A \in \mathcal{C}(I,\mathcal{L}(E))$, $B \in \mathcal{C}(I,E)$, pour toute condition initiale $(t_0,x_0) \in I \times E$, il existe une unique solution particulière globale $x:I \to E$ telle que $x(t_0) = x_0$

Question 8/15

Équilibre stable

Réponse 8/15

L'équilibre x_0 de x' = f(x) est asymptotiquement stable s'il existe $\varepsilon > 0$ tel que pour tout $y \in \mathcal{B}(x_0, \varepsilon)$, la solution définie par x(0) = y sur \mathbb{R}_+ converge vers x_0 $\mathcal{B}(x_0,\varepsilon)$ est appelé bassin d'attraction

Question 9/15

Point d'équilibre stable

Réponse 9/15

$$x_0$$
 est un point d'équilibre stable si pour tout $\varepsilon > 0$, il existe $h > 0$ tel que pour tout $y \in \mathcal{B}(x_0, h), \varphi^t(y) \in \mathcal{B}(x_0, h)$

Question 10/15

Solutions à x' = F(x) pour $F: E \to E$, k-lipschitzienne

Réponse 10/15

Soient T > 0 et $x_0 \in E$, alors l'équation x' = F(x) admet une unique solution telle que $x(0) = x_0$ et $x \in C^1([0, T], E)$ Une telle solution se prolonge en une solution

 $x \in \mathcal{C}^1(\mathbb{R}, E)$

Question 11/15

Propriété de semi-groupe du flot

Réponse 11/15

$$\varphi^{t_2,t_1} \circ \varphi^{t_1,t_0} = \varphi^{t_2,t_0}$$
$$\varphi^{t_0,t_0} = \mathrm{id}$$

Question 12/15

Wronskien

Réponse 12/15

$$W(t) = \det(R(t, t_0))$$
 est le wronskien de $X' = AX$
Les colonnes de $R(t, t_0)$ forment une base des solutions

Question 13/15

Formule de Duhamel

Réponse 13/15

La solution de
$$x' = Ax + B$$
 est donnée par
$$x(t) = R(t, t_0)x_0 + \int_{t_0}^t R(t, s)b(s) ds$$

Question 14/15

Solution maximale

Réponse 14/15

La solution au problème de Cauchy $y' = f(t, y), y(t_0) = y_0$ et maximale si son intervalle de définition est maximal pour l'inclusion

La solution maximale est unique

Question 15/15

Régularité du flot

Réponse 15/15

Si f est de classe \mathcal{C}^k et toutes les solutions sont globales, le flot est défini pour $(t, t_0, y_0) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d$ et $\varphi_f: (t, t_0, y_0) \to \varphi_f^{t, t_0}(y_0)$ est de classe \mathcal{C}^k