Optimization Problems 1

Exercise 1: Regression

- (a) Show that ridge regression is a convex problem and compute its analytical solution (given the feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and the target vector $\mathbf{y} \in \mathbb{R}^n$).
- (b) When doing Bayesian regression we are interested in the posterior density $p_{\theta \mid \mathbf{X}, \mathbf{y}}(\boldsymbol{\theta}) \propto p_{\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}}(\mathbf{y}) p_{\theta}(\boldsymbol{\theta})$ where $p_{\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}}$ is the likelihood and p_{θ} is the prior density. Assume the observations are i.i.d. with $y_i \sim \mathcal{N}(\mathbf{x}_i^{\top} \boldsymbol{\theta}, 1)$ and the parameters are also i.i.d. with $\theta_j \sim \mathcal{N}(0, \sigma_w^2)$. Find the maximizer of the posterior density. What do you observe?
- (c) Find the prior density that would result in Lasso regression in b).
- (d) In the lecture you have learned that Ridge regression with regularization coefficient λ can be equivalently stated as solving $\min_{\boldsymbol{\theta}} \|(\mathbf{X}\boldsymbol{\theta} \mathbf{y})\|_2^2$ s.t. $\|\boldsymbol{\theta}\|_2 \leq t$. This means we can associate with every λ a t and hence we can treat t as a function of λ , i.e., $t : \mathbb{R}_{+,0} \to \mathbb{R}_{+,0}$

This means we can associate with every λ a t and hence we can treat t as a function of λ , i.e., $t : \mathbb{R}_{+,0} \to \mathbb{R}_{+,0}$, $\lambda \mapsto t(\lambda)$. Show that if $\lambda > 0$ and $\mathbb{X}^{\top}\mathbb{X}$ is non-singular then $\|\boldsymbol{\theta}_{\text{reg}}^*\|_2 = t(\lambda) < \|\boldsymbol{\theta}^*\|_2$ where $\boldsymbol{\theta}^*$ and $\boldsymbol{\theta}_{\text{reg}}^*$ are the minimzier of unregularized regression and the ridge regression, respectively.

Hint 1: For two non-singular matrices \mathbf{A}, \mathbf{B} for which $\mathbf{A} + \mathbf{B}$ is invertible it holds that $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1} \mathbf{B} (\mathbf{A} + \mathbf{B})^{-1}$

Exercise 2: Classification

- (a) In logistic regression, we model the conditional probability $\mathbb{P}(y=1|\mathbf{x}^{(i)}) = \frac{1}{1+\exp(-\theta^{\top}\mathbf{x}^{(i)})}$ of the target $y \in \{0,1\}$ given a feature vector $\mathbf{x}^{(i)}$. From this it follows that $\mathbb{P}(y=y^{(i)}|\mathbf{x}^{(i)}) = \mathbb{P}(y=1|\mathbf{x}^{(i)})^{y^{(i)}}(1-\mathbb{P}(y=1|\mathbf{x}^{(i)})^{1-y^{(i)}})$. With this derive the empirical risk \mathcal{R}_{emp} as shown in the lecture following the maximum likelihood principle. (Assume the observations are independent)
- (b) Show that \mathcal{R}_{emp} of a) is convex.
- (c) Show that the first primal form of the linear SVM with soft constraints $\min_{\boldsymbol{\theta},\boldsymbol{\theta}_0,\zeta^{(i)}} \frac{1}{2} \|\boldsymbol{\theta}\|_2^2 + C \sum_{i=1}^n \zeta^{(i)} \text{ s.t. } y^{(i)} \left(\boldsymbol{\theta}^\top \mathbf{x}^{(i)} + \boldsymbol{\theta}_0\right) \geq 1 \zeta^{(i)} \quad \forall i \in \{1,\ldots,n\} \text{ and } \zeta^{(i)} \geq 0 \quad \forall i \in \{1,\ldots,n\} \text{ and its second primal form } \min_{\boldsymbol{\theta},\boldsymbol{\theta}_0} \sum_{i=1}^n \max(1-y^{(i)}(\boldsymbol{\theta}^\top \mathbf{x}^{(i)} + \boldsymbol{\theta}_0),0) + \lambda \|\boldsymbol{\theta}\|_2^2 \text{ are equivalent. What is the functional relationship between } C \text{ and } \lambda$?
 - *Hint*: Try to insert the combined constraints into their associated objective.
- (d) Show that the second primal form of the linear SVM is a convex problem