Contents

1 Some useful stuff 1 1 3 3 Data structures 2.1 Cartesian Tree 3 Dynamic convex hull trick 3 2.34 4 2.5 Persistent Segment Tree 4 2.6 Ordered set and bitset 5 3 DP optimizations 5 3.1 Problem Statement 5 Divide and Conquer optimization 5 3.3 Knuth optimization 5 Geometry 4.1 Common tangents of two circles 5 Convex hull 3D in $O(n^2)$ 4.26 4.3 Minimal covering disk 6 4.4 Polygon tangent 7 4.6 Rotation matrix 2D 7 7 4.74.8 Draw svg pictures 7 Graphs 5.17 5.2Dinic's algorithm 8 General matching 5.38 5.4Hungarian algorithm Kuhn and Min Vertex Covering 5.55.6Numeric 11 6.1 Burnside's lemma 11 Chinese remainder theorem 6.2AND/OR/XOR convolution Counting size of the maximum general match-6.5Counting number of spanning trees 12 6.8 Taking by modullo (Inline assembler) 12 6.9 First solution of $(p + step \cdot x) \mod mod < l$. 6.10 Multiplication by modulo in long double . . 6.11 Numerical integration 6.16 Some integer sequences Strings

1 Some useful stuff

1.1 Fast I/O

```
#include <cassert>
#include <cstdio>
#include <algorithm>
/** Fast allocation */
#ifdef FAST_ALLOCATOR_MEMORY
int allocator_pos = 0;
char

¬ allocator_memory[(int)FAST_ALLOCATOR_MEMORY];

| inline void * operator new ( size_t n ) {
    char *res = allocator_memory + allocator_pos;
    allocator_pos += n;
    assert(allocator_pos <=
    (int)FAST_ALLOCATOR_MEMORY);
| return (void *)res;
| }
| inline void operator delete ( void * ) noexcept
//inline void * operator new [] ( size_t ) {
\rightarrow assert(0); }
//inline void operator delete [] ( void * ) {
\rightarrow assert(0); }
#endif
/** Fast input-output */
template <class T = int> inline T readInt();
inline double readDouble();
inline int readUInt();
inline int readChar(); // first non-blank
\hookrightarrow character
inline void readWord( char *s );
inline bool readLine( char *s ); // do not save
\hookrightarrow '\n'
inline bool isEof();
inline int getChar();
inline int peekChar();
inline bool seekEof();
inline void skipBlanks();
template <class T> inline void writeInt( T x,
\rightarrow char end = 0, int len = -1);
inline void writeChar( int x );
inline void writeWord( const char *s );
inline void writeDouble( double x, int len = 0 );
\rightarrow // works correct only for |x| < 2^{63}
inline void flush();
static struct buffer_flusher_t {
    ~buffer_flusher_t() {
        flush();
} buffer_flusher;
/** Read */
static const int buf_size = 4096;
```

```
static unsigned char buf[buf_size];
static int buf_len = 0, buf_pos = 0;
inline bool isEof() {
    if (buf_pos == buf_len) {
        buf_pos = 0, buf_len = fread(buf, 1,
   buf_size, stdin);
        if (buf_pos == buf_len)
            return 1;
    }
    return 0;
}
inline int getChar() {
    return isEof() ? -1 : buf[buf_pos++];
inline int peekChar() {
    return isEof() ? -1 : buf[buf_pos];
inline bool seekEof() {
    int c;
    while ((c = peekChar()) != -1 \&\& c <= 32)
        buf_pos++;
    return c == -1;
}
inline void skipBlanks() {
    while (!isEof() && buf[buf_pos] <= 32U)</pre>
        buf_pos++;
inline int readChar() {
    int c = getChar();
    while (c !=-1 \&\& c <= 32)
        c = getChar();
    return c;
}
inline int readUInt() {
    int c = readChar(), x = 0;
    while ('0' <= c && c <= '9')
        x = x * 10 + c - '0', c = getChar();
    return x;
}
template <class T>
inline T readInt() {
    int s = 1, c = readChar();
    T x = 0;
    if (c == '-')
        s = -1, c = getChar();
    else if (c == '+')
        c = getChar();
    while ('0' <= c && c <= '9')
        x = x * 10 + c - '0', c = getChar();
    return s == 1 ? x : -x;
}
inline double readDouble() {
    int s = 1, c = readChar();
```

```
double x = 0;
    if (c == '-')
        s = -1, c = getChar();
    while ('0' <= c && c <= '9')
        x = x * 10 + c - '0', c = getChar();
    if (c == '.') {
        c = getChar();
        double coef = 1;
        while ('0' <= c && c <= '9')
            x += (c - '0') * (coef *= 1e-1), c =
   getChar();
    }
    return s == 1 ? x : -x;
}
inline void readWord( char *s ) {
    int c = readChar();
    while (c > 32)
        *s++ = c, c = getChar();
    *s = 0;
}
inline bool readLine( char *s ) {
    int c = getChar();
    while (c != '\n' \&\& c != -1)
        *s++ = c, c = getChar();
    *s = 0:
    return c != -1;
}
/** Write */
static int write_buf_pos = 0;
static char write_buf[buf_size];
inline void writeChar( int x ) {
    if (write_buf_pos == buf_size)
        fwrite(write_buf, 1, buf_size, stdout),
   write_buf_pos = 0;
    write_buf[write_buf_pos++] = x;
}
inline void flush() {
    if (write_buf_pos) {
        fwrite(write_buf, 1, write_buf_pos,
   stdout), write_buf_pos = 0;
        fflush(stdout);
    }
}
template <class T>
inline void writeInt( T x, char end, int
→ output_len ) {
    if (x < 0)
        writeChar('-'), x = -x;
    char s[24];
    int n = 0;
    while (x \mid | !n)
        s[n++] = '0' + x \% 10, x /= 10;
    while (n < output_len)</pre>
        s[n++] = '0';
```

```
while (n--)
        writeChar(s[n]);
    if (end)
        writeChar(end);
}
inline void writeWord( const char *s ) {
    while (*s)
        writeChar(*s++);
}
inline void writeDouble( double x, int output_len
  ) {
   if (x < 0)
        writeChar('-'), x = -x;
    assert(x <= (1LLU << 63) - 1);
    long long t = (long long)x;
    writeInt(t), x -= t;
    writeChar('.');
    for (int i = output_len - 1; i > 0; i--) {
        x *= 10;
        t = std::min(9, (int)x);
        writeChar('0' + t), x -= t;
   }
   x *= 10;
    t = std::min(9, (int)(x + 0.5));
    writeChar('0' + t);
// 10M int [0..1e9)
// cin 3.02
// scanf 1.2
// cin sync_with_stdio(false) 0.71
// fastRead getchar 0.53
// fastRead fread 0.15
```

1.2 Pragmas

2 Data structures

2.1 Cartesian Tree

```
}
pair<Node *, Node *> split(Node *&root, int x) {
  if (!root) {
    return {nullptr, nullptr};
  if (root->x < x) {
    auto t = split(root->r, x);
    root->r = t.first;
    update(root);
    return {root, t.second};
  auto t = split(root->1, x);
  root->1 = t.second;
  update(root);
  return {t.first, root};
}
Node *mergeTree(Node *a, Node *b) {
  if (!a || !b)
    return a ? a : b;
  if (a->y < b->y) {
    a->r = mergeTree(a->r, b);
    update(a);
    return a;
  }
 b->1 = mergeTree(a, b->1);
  update(b);
  return b;
void ins(Node *&root, int x) {
 Node *nn = new Node(x);
 auto a = split(root, x);
 root = mergeTree(mergeTree(a.first, nn),
   a.second);
void del(Node *&root, int x) {
  auto b = split(a.first, x);
```

2.2 Dynamic convex hull trick

```
const ll is_query = -(1LL << 62);

struct Line {
    | 11 m, b;
    | mutable function<const Line *()> succ;

    | bool operator<(const Line &rhs) const {
    | if (rhs.b != is_query)
    | | return m < rhs.m;
    | const Line *s = succ();
    | if (!s)
    | | return 0;
    | | l x = rhs.m;
    | return b - s->b < (s->m - m) * x;
    | }
};
```

```
struct HullDynamic : public multiset<Line> {
| bool bad(iterator y) {
| auto z = next(y);
 | if (y == begin()) {
 | | if (z == end())
| | return y->m == z->m && y->b <= z->b;
| | }
\mid auto x = prev(y);
| if (z == end())
| | return y->m == x->m && y->b <= x->b;
| | return (x->b - y->b) * (z->m - y->m) >= (y->b)
    -z->b) * (y->m - x->m);
| }
void insert_line(ll m, ll b) {
| | auto y = insert({m, b});
| y > succ = [=] { return next(y) == end() ? 0 :}
\rightarrow &*next(y); };
| | if (bad(y)) {
| | return;
| | }
| | while (next(y) != end() && bad(next(y)))
| | erase(next(y));
| | while (y != begin() && bad(prev(y)))
| | | erase(prev(y));
| }
| 11 eval(11 x) {
auto 1 = *lower_bound((Line){x, is_query});
| return 1.m * x + 1.b;
| }
};
```

2.3 Fenwick tree

```
struct FT {
vector<11> s;
| FT(int n) : s(n) {}
void update(int pos, 11 dif) { // a[pos] +=
\mid for (; pos < sz(s); pos \mid= pos + 1) s[pos] +=
   dif;
| }
| ll query(int pos) { // sum of values in [0,
\rightarrow pos)
| 11 res = 0;
| | for (; pos > 0; pos &= pos - 1) res +=
\rightarrow s[pos-1];
| return res;
| }
int lower_bound(ll sum) {// min pos st sum of
\rightarrow [0, pos] >= sum
| \ | \ | Returns n if no sum is >= sum, or -1 if
\hookrightarrow empty sum is.
\mid if (sum <= 0) return -1;
| | int pos = 0;
| | for (int pw = 1 << 25; pw; pw >>= 1) {
sum)
```

```
| | | pos += pw, sum -= s[pos-1];
| | }
| | return pos;
| }
};
```

2.4 Hash table

```
template <const int max_size, class HashType,</pre>

→ class Data,

| | | | const Data default_value>
struct hashTable {
HashType hash[max_size];
Data f[max_size];
| int size;
int position(HashType H) const {
| int i = H % max_size;
| | while (hash[i] && hash[i] != H)
| | | | i = 0;
| | return i;
| }
| Data &operator[](HashType H) {
| | assert(H != 0);
| int i = position(H);
| | if (!hash[i]) {
| | | hash[i] = H;
 | | f[i] = default_value;
   | size++;
 | }
| | return f[i];
| }
};
```

hashTable<13, int, int, 0> h;

2.5 Persistent Segment Tree

```
constexpr int N = 1e5 + 7;
struct Node {
  int x;
  int 1, r;
  Node *L, *R;
  int size() { return r - 1; }
  bool have(int i) { return l <= i && i < r; }</pre>
  void upd() { x = L->x + R->x; }
  Node() {}
  Node(int _x, int i) : x(_x), 1(i), r(i + 1),
→ L(nullptr), R(nullptr) {}
 Node(Node *_L, Node *_R) : L(_L), R(_R) {
→ upd(); }
} tree[N];
Node *upd(Node *t, int i, int x) {
  if (!t->have(i)) {
    return t;
  } else if (t->size() == 1) {
```

2.6 Ordered set and bitset

```
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
template <typename T> using ordered_set = tree<T,</pre>
→ null_type, less<T>, rb_tree_tag,

    tree_order_statistics_node_update>;

template <typename K, typename V> using

→ ordered_map = tree<K, V, less<K>,
   rb_tree_tag,
   tree_order_statistics_node_update>;
// HOW TO USE ::
// -- order_of_key(10) returns the number of
→ elements in set/map strictly less than 10
// -- *find_by_order(10) returns 10-th smallest
\rightarrow element in set/map (0-based)
bitset<N> a;
for (int i = a._Find_first(); i != a.size(); i =

    a._Find_next(i)) {
| cout << i << endl;
}
```

3 DP optimizations

3.1 Problem Statement

```
// x[] | sorted array of N points
// Question: min cost to cover them with K

⇒ segments (cost(seg)=len^2(seg))
int cost(int i, int j) {
    return (x[j] - x[i]) * (x[j] - x[i]);
}

// f[k][n] --- k segments, n first points
for (int k = 1; k <= K; k++)
    for (int n = 1; n <= N; n++)
        for (int i = 0; i < n; i++)
        f[k][n] = min(f[k][n], f[k - 1][i] +

⇔ cost(i, n));</pre>
```

3.2 Divide and Conquer optimization

```
// [l, r] -- count f[k][l..r]
// [L, R] -- i = L..R
```

```
void solve(int l, int r, int L, int R, int k) {
    if (1 > r) return;  // empty segment
    int m = (1 + r) / 2, opt = L;
    // find answer for f[k][m]
    for (int i = L; i <= min(R, m); i++) {
        int val = f[k - 1][i] + cost(i, m);
        if (val < f[k][m])
            f[k][m] = val, opt = i;
    }
    solve(1, m - 1, L, opt, k);
    solve(m + 1, r, opt, R, k);
}
for (int k = 1; k <= K; k++)
    solve(1, n, 0, n - 1, k);</pre>
```

3.3 Knuth optimization

4 Geometry

4.1 Common tangents of two circles

```
vector<Line> commonTangents(pt A, dbl rA, pt B,
\rightarrow dbl rB) {
vector<Line> res;
| pt C = B - A;
 dbl z = C.len2();
| for (int i = -1; i \le 1; i += 2) {
 | for (int j = -1; j \le 1; j += 2) {
| | | dbl r = rB * j - rA * i;
| | dbl d = z - r * r;
| \ | \ |  if (ls(d, 0))
| | | continue;
   | d = sqrt(max(0.01, d));
   | pt magic = pt(r, d) / z;
     pt v(magic % C, magic * C);
| | dbl CC = (rA * i - v % A) / v.len2();
| | pt 0 = v * -CC;
| | }
| }
return res;
}
// HOW TO USE ::
// --
          *D*---
// --
// --
// --
// --
        *...A...*
```

```
// -- *....* - - *....*

// -- *...* - -*...*

// -- *C*----*E*

// -- res = {CE, CF, DE, DF}
```

4.2 Convex hull 3D in $O(n^2)$

```
struct Plane {
| pt 0, v;
vector<int> id;
vector<Plane> convexHull3(vector<pt> p) {
vector<Plane> res;
| int n = p.size();
| for (int i = 0; i < n; i++)
|  | p[i].id = i;
| for (int i = 0; i < 4; i++) {
| vector<pt> tmp;
| | for (int j = 0; j < 4; j++)
| | if (i != j)
| | res.pb({tmp[0],
\rightarrow tmp[0]),
| | | | | {tmp[0].id, tmp[1].id, tmp[2].id}});
\mid if ((p[i] - res.back().0) \% res.back().v > 0)
← {
| | res.back().v = res.back().v * -1;
| | | swap(res.back().id[0], res.back().id[1]);
| | }
| }
vector<vector<int>> use(n, vector<int>(n, 0));
int tmr = 0;
| for (int i = 4; i < n; i++) {
| | int cur = 0;
| tmr++;
| | vector<pair<int, int>> curEdge;
| | for (int j = 0; j < sz(res); j++) {
| | | | if ((p[i] - res[j].0) % res[j].v > 0) {
| \ | \ | \ |  for (int t = 0; t < 3; t++) {
| \ | \ | \ | \ |  int u = res[j].id[(t + 1) % 3];
| | | | use[v][u] = tmr;
| | | | }
| | | }
| | }
| res.resize(cur);
| | for (auto x : curEdge) {
| | | if (use[x.S][x.F] == tmr)
| | | continue;
| | | res.pb({p[i], (p[x.F] - p[i]) * (p[x.S] - p[i])} |
\rightarrow p[i]), {x.F, x.S, i}});
| | }
| }
return res;
}
// plane in 3d
```

```
// (A, v) * (B, u) -> (O, n)

pt n = v * u;
pt m = v * n;
double t = (B - A) % u / (u % m);
pt O = A - m * t;
```

4.3 Minimal covering disk

```
pair<pt, dbl> minDisc(vector<pt> p) {
int n = p.size();
| pt 0 = pt(0, 0);
| dbl R = 0;
random_shuffle(all(p));
| for (int i = 0; i < n; i++) {
 | if (ls(R, (0 - p[i]).len())) {
| | | 0 = p[i];
| | R = 0;
| | | for (int j = 0; j < i; j++) {
| \ | \ | \ |  if (ls(R, (0 - p[j]).len())) {
| | | | | | 0 = (p[i] + p[j]) / 2;
 | | | | | R = (p[i] - p[j]).len() / 2;
   | | | for (int k = 0; k < j; k++) {
   | \ | \ | \ |  if (ls(R, (0 - p[k]).len())) {}
 | | | | | | Line 11((p[i] + p[j]) / 2,
→ p[j]).rotate());
| \ | \ | \ | \ | \ | \ | \ | Line 12((p[k] + p[j]) / 2,
→ p[j]).rotate());
   | \ | \ | \ | \ | \ 0 = 11 * 12;
   | | | | | | R = (p[i] - 0).len();
| | | | | }
| | | | }
| | | }
| | | }
| | }
| }
 return {0, R};
}
```

4.4 Polygon tangent

```
pt tangent(vector<pt>& p, pt 0, int cof) {
    int step = 1;
    for (; step < (int)p.size(); step *= 2);
    int pos = 0;
    int n = p.size();
    for (; step > 0; step /= 2) {
        int best = pos;
        if or (int dx = -1; dx <= 1; dx += 2) {
              int id = ((pos + step * dx) % n + n) % n;
              if ((p[id] - 0) * (p[best] - 0) * cof > 0)
              il | best = id;
              il | pos = best;
              }
              return p[pos];
}
```

4.5 Rotate 3D

```
// Rotate 3d point along axis on angle
* 2D
 *x' = x \cos a - y \sin a
 *y' = x \sin a + y \cos a
*/
struct quater {
| double w, x, y, z; // w + xi + yj + zk
| quater(double tw, const pt3 &v) : w(tw),
\rightarrow x(v.x), y(v.y), z(v.z) { }
| quater(double tw, double tx, double ty, double
\rightarrow tz) : w(tw), x(tx), y(ty), z(tz) { }
| pt3 vector() const {
| | return {x, y, z};
| }
| quater conjugate() const {
    return \{w, -x, -y, -z\};
| }
| quater operator*(const quater &q2) {
|  return \{ w * q2.w - x * q2.x - y * q2.y - z * \}
\rightarrow q2.z, w * q2.x + x * q2.w + y * q2.z - z *
    q2.y, w * q2.y - x * q2.z + y * q2.w + z *
    q2.x, w * q2.z + x * q2.y - y * q2.x + z *
    q2.w};
| }
};
pt3 rotate(pt3 axis, pt3 p, double angle) {
| quater q = quater(cos(angle / 2), axis *
\rightarrow sin(angle / 2));
| return (q * quater(0, p) *
    q.conjugate()).vector();
}
```

4.6 Rotation matrix 2D

Rotation of point (x, y) through an angle α in counterclockwise direction in 2D.

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

4.7 Sphere distance

```
double sphericalDistance(double f1, double t1,
  | double f2, double t2, double radius) {
  | double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
  | double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
  | double dz = cos(t2) - cos(t1);
  | double d = sqrt(dx*dx + dy*dy + dz*dz);
  | return radius*2*asin(d/2);
}
```

4.8 Draw svg pictures

```
| }
void line(point a, point b) {
| | a = a * sc, b = b * sc;
| | fprintf(out, "<line x1='%f' y1='%f' x2='%f'
   y2='\%f' stroke='black'/>\n", a.x, -a.y, b.x,
   -b.y);
| }
| void circle(point a, double r = -1, string col
   = "red") {
| r = sc * (r == -1 ? 0.3 : r);
| a = a * sc;
| | fprintf(out, "<circle cx='%f' cy='%f' r='%f'
   fill='%s'/>\n", a.x, -a.y, r, col.c_str());
void text(point a, string s) {
| a = a * sc;
| | fprintf(out, "<text x='%f' y='%f'
\rightarrow font-size='100px'>%s</text>\n", a.x, -a.y,
   s.c_str());
| }
 void close() {
  fprintf(out, "</svg>\n");
 fclose(out);
| | out = 0;
| }
| ~SVG() {
| | if (out) {
| }
 }
} svg;
```

5 Graphs

5.1 HLD

```
const int N = 1e5 + 7;
int n;
vector<int> g[N];
int sz[N];
int nxt[N];
int par[N];
int par_hld[N];
void dfs(int v, int last) {
    sz[v] = 1;
    nxt[v] = -1;
    par[v] = last;
    par_hld[v] = -1;
    for (int u : g[v]) {
        if (u != last) {
            dfs(u, v);
            sz[v] += sz[u];
            if (nxt[v] == -1 || sz[nxt[v]] <
    sz[u]) {
                nxt[v] = u;
        }
    }
    if (nxt[v] != -1) {
        par_hld[nxt[v]] = v;
```

```
}
}
vector<vector<int>>> hld;
int ind_tree[N];
int ind[N];
void build_hld() {
    dfs(0, 0);
    for (int v = 0; v < n; ++v) {
        if (par_hld[v] == -1) {
            int u = v;
            hld.push_back({});
            while (u != -1) {
                hld.back().push_back(u);
                u = nxt[u];
            reverse(hld.back().begin(),
    hld.back().end());
            for (int i = 0; i <
    hld.back().size(); ++i) {
                int u = hld.back()[i];
                ind_tree[u] = hld.size() - 1;
                ind[u] = i;
            }
        }
    }
}
```

5.2 Dinic's algorithm

```
const int N = 500;
const int M = 10000;
int n, m;
struct Edge {
    int v, u, c, f = 0;
    Edge() {}
    Edge(int v, int u, int c) : v(v), u(u), c(c)
    int cf() { return c - f; }
e[2 * M];
vector<int> g[N];
int s, t;
void add_edge(int v, int u, int c) {
    static int i = 0;
    e[i] = \{v, u, c\};
    g[v].push_back(i);
    e[i ^1] = \{u, v, 0\};
    g[u].push_back(i ^ 1);
    i += 2;
}
int df;
int dist[N];
bool bfs() {
    queue<int> q;
    q.push(s);
    fill(dist, dist + n, -1);
```

```
dist[s] = 0;
    while (!q.empty()) {
        int v = q.front();
        q.pop();
        for (int i : g[v]) {
            if (e[i].cf() >= df && dist[e[i].u]
    == -1) {
                 dist[e[i].u] = dist[v] + 1;
                 q.push(e[i].u);
            }
        }
    }
    return dist[t] != -1;
}
int ptr[N];
bool dfs(int v) {
    if (v == t) {
        return true;
    for (; ptr[v] < g[v].size(); ++ptr[v]) {</pre>
        int i = g[v][ptr[v]];
        if (dist[v] + 1 == dist[e[i].u] \&\&
   e[i].cf() >= df && dfs(e[i].u)) {
            e[i].f += df;
            e[i ^1].f = df;
            return true;
        }
    }
    return false;
}
void dinic() {
    const int K = 30;
    for (df = 1 << K; df >= 1; df >>= 1) {
        while (bfs()) {
            fill(ptr, ptr + N, 0);
            while (dfs(s)) {
            }
        }
    }
}
```

5.3 General matching

```
// COPYPASTED FROM E-MAXX
namespace general_matching {
  const int MAXN = 256;
  int n;
  vector<int> g[MAXN];
  int match[MAXN], p[MAXN], base[MAXN], q[MAXN];
  bool used[MAXN], blossom[MAXN];

int lca(int a, int b) {
  | bool used[MAXN] = {0};
  | for (;;) {
  | | a = base[a];
  | | used[a] = true;
  | | if (match[a] == -1)
  | | break;
  | | a = p[match[a]];
```

```
| }
| for (;;) {
| | b = base[b];
| | if (used[b])
| | return b;
| | b = p[match[b]];
| }
}
void mark_path(int v, int b, int children) {
| while (base[v] != b) {
| | blossom[base[v]] = blossom[base[match[v]]] =

    true;

| | p[v] = children;
| | children = match[v];
| v = p[match[v]];
| }
}
int find_path(int root) {
memset(used, 0, sizeof used);
| memset(p, -1, sizeof p);
| for (int i = 0; i < n; ++i)
| | base[i] = i;
| used[root] = true;
| int qh = 0, qt = 0;
| q[qt++] = root;
| while (qh < qt) {
|  | int v = q[qh++];
| | for (size_t i = 0; i < g[v].size(); ++i) {
| | int to = g[v][i];
| | if (base[v] == base[to] || match[v] == to)
| | | continue;
\rightarrow p[match[to]] != -1)) {
| | | int curbase = lca(v, to);
| | | memset(blossom, 0, sizeof blossom);
| | | mark_path(v, curbase, to);
| | | mark_path(to, curbase, v);
| \ | \ | \ |  for (int i = 0; i < n; ++i)
| | | base[i] = curbase;
   | | | | | | q[qt++] = i;
 | | | | | }
 | | | | }
| | | } else if (p[to] == -1) {
| | | | q[qt++] = to;
| | | }
| | }
| }
return -1;
}
```

```
vector<pair<int, int>> solve(int _n,

    vector<pair<int, int>> edges) {

| n = _n;
| for (int i = 0; i < n; i++)
| for (auto o : edges) {
 | g[o.first].push_back(o.second);
 g[o.second].push_back(o.first);
| memset(match, -1, sizeof match);
| for (int i = 0; i < n; ++i) {
| | if (match[i] == -1) {
| | int v = find_path(i);
| \ | \ | while (v != -1) {
| | | match[v] = pv, match[pv] = v;
| | | v = ppv;
| | | }
| | }
| }
vector<pair<int, int>> ans;
| for (int i = 0; i < n; i++) {
| | if (match[i] > i) {
| | ans.push_back(make_pair(i, match[i]));
| | }
| }
return ans;
} // namespace general_matching
```

5.4 Hungarian algorithm

```
// maximum bipartite matching problem for a
→ weighted graph.
namespace hungary {
const int N = 210;
int a[N][N];
int ans[N];
int calc(int n, int m) {
++n, ++m;
vector<int> u(n), v(m), p(m), prev(m);
| for (int i = 1; i < n; ++i) {
| | p[0] = i;
|  int x = 0;
vector<int> mn(m, INF);
vector<int> was(m, 0);
\mid \mid while (p[x]) {
| | | was[x] = 1;
| | |  int ii = p[x], dd = INF, y = 0;
| | | for (int j = 1; j < m; ++j)
| | | | int cur = a[ii][j] - u[ii] - v[j];
| | | | | mn[j] = cur, prev[j] = x;
| \cdot | \cdot | if (mn[j] < dd)
| \ | \ | \ | \ | \ | \ dd = mn[j], y = j;
| | | | }
| \ | \ | \ for (int j = 0; j < m; ++j) {
```

```
| | | | | u[p[j]] += dd, v[j] -= dd;
| | | }
| | | x = y;
| | }
| | while (x) {
| | p[x] = p[y];
| | x = y;
| | }
| }
| for (int j = 1; j < m; ++j) {
\mid \mid ans[p[j]] = j;
return -v[0];
}
// How to use:
//* Set values to a[1..n][1..m] (n <= m)
// * Run calc(n, m) to find minimum
//* Optimal\ edges\ are\ (i,\ ans[i])\ for\ i=1..n
// * Everything works on negative numbers
//
// !!! I don't understand this code, it's
\hookrightarrow copypasted from e-maxx
} // namespace hungary
```

5.5 Kuhn and Min Vertex Covering

```
// Left: 0..n-1, Right: 0..m-1
int n, m;
vector<vector<int>>> gl, gr;
bool dfs_kuhn(int u, vector<int> &pairR,
→ vector<int> &color, int c) {
    color[u] = c;
    for (auto v : gl[u]) {
        if (pairR[v] == -1) {
            pairR[v] = u;
            return true;
        }
    }
    for (auto v : gl[u]) {
        if (color[pairR[v]] != c &&
    dfs_kuhn(pairR[v], pairR, color, c)) {
            pairR[v] = u;
            return true;
        }
    }
    return false;
}
vector<int> kuhn_matching() {
    vector<int> pairR(m, -1);
    vector<int> color(n, 0);
    for (int u = 0; u < n; ++u) {
        dfs_kuhn(u, pairR, color, u + 1);
    }
    return pairR;
}
```

```
void dfs_min_vertex_covering(int u, vector<int>
visited[u] = true;
    for (auto v : gl[u]) {
        if (!visited[pairR[v]]) {
           dfs_min_vertex_covering(pairR[v],
   pairR, visited);
       }
    }
}
pair<vector<int>, vector<int>>

→ min_vertex_covering() {
   vector<int> pairR = kuhn_matching();
    vector<bool> is_paired_left(n, false);
   for (auto &u : pairR) {
       if (u != -1) {
           is_paired_left[u] = true;
    }
    vector<bool> visited(n, false);
    for (int u = 0; u < n; ++u) {
        if (!is_paired_left[u] && !visited[u]) {
           dfs_min_vertex_covering(u, pairR,
   visited);
       }
    }
    vector<int> res_left, res_right;
    for (int u = 0; u < n; ++u) {
       if (!visited[u]) {
           res_left.emplace_back(u);
    }
    for (int v = 0; v < m; ++v) {
       if (pairR[v] != -1 && visited[pairR[v]])
           res_right.emplace_back(v);
       }
    return {res_left, res_right};
}
```

5.6 Mincost

```
const int N = 107;
const int M = 1007;
const int INF = 1e9 + 7;

struct Edge {
    int v, u, c, f, w;
    int cf() { return c - f; }

    Edge() {}
    Edge(int v, int u, int c, int f, int w) :
        v(v), u(u), c(c), f(f), w(w) {}
};

int n, m;
Edge edges[2 * M];
vector<int> g[N];
```

```
void add_edge(int v, int u, int c, int w) {
    static int i = 0;
    g[v].push_back(i);
    g[u].push_back(i + 1);
    edges[i] = \{v, u, c, 0, w\};
    edges[i + 1] = \{u, v, 0, 0, -w\};
}
int dist[N];
bool in_q[N];
void spfa(int start) {
    fill(dist, dist + n, INF);
    fill(in_q, in_q + n, false);
    dist[start] = 0;
    queue<int> q({start});
    in_q[start] = true;
    while (!q.empty()) {
        int v = q.front();
        q.pop();
        in_q[v] = false;
        for (int i : g[v]) {
            Edge e = edges[i];
            if (e.cf() && dist[e.u] > max(-INF,
    dist[e.v] + e.w)) {
                dist[e.u] = max(-INF, dist[e.v] +
    e.w);
                if (!in_q[e.u]) {
                    q.push(e.u);
                    in_q[e.u] = true;
            }
        }
    }
}
bool used[N];
int cnt_dfs = 0;
int dfs(int v, int t, int f) {
    ++cnt_dfs;
    if (v == t) {
        return f;
    used[v] = true;
    for (int i : g[v]) {
        Edge e = edges[i];
        if (e.cf() && !used[e.u] && dist[v] + e.w
    == dist[e.u]) {
            int nxt_f = dfs(e.u, t, min(f,
    e.cf()));
            if (nxt_f) {
                edges[i].f += nxt_f;
                edges[i ^ 1].f -= nxt_f;
                return nxt_f;
            }
        }
    return 0;
```

```
}
int phi[N];
void johnson(int start) {
    fill(dist, dist + n, INF);
    priority_queue<pair<int, int>,

    vector<pair<int, int>>,
                   greater<pair<int, int>>>
        q;
    dist[start] = 0;
    q.push({dist[start], start});
    while (!q.empty()) {
        int v = q.top().second;
        int d = q.top().first;
        q.pop();
        if (d == dist[v]) {
            for (int i : g[v]) {
                Edge e = edges[i];
                if (e.cf() && dist[e.u] >
    dist[e.v] + e.w + phi[v] - phi[e.u]) {
                    assert(e.w + phi[v] -
    phi[e.u] >= 0);
                    dist[e.u] = dist[e.v] + e.w +
    phi[v] - phi[e.u];
                    q.push({dist[e.u], e.u});
            }
        }
    }
}
void mincost(int s, int t) {
    // TODO: delete all negative cycles
    spfa(s);
    copy(dist, dist + n, phi);
    while (dfs(s, t, INF)) {
        johnson(s);
        for (int v = 0; v < n; ++v) {
            dist[v] += phi[v];
            phi[v] = dist[v];
        fill(used, used + n, false);
    }
}
```

6 Numeric

6.1 Burnside's lemma

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |St(g)|$$

St(g) denote the set of elements in X that are fixed by g, i.e. $St(g) = \{x \in X | gx = x\}$.

6.2 Chinese remainder theorem

AND/OR/XOR convolution 6.3

```
// Transform to a basis with fast convolutions of
    the form c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y] ,
// where \oplus is one of AND, OR, XOR.
// The size of a must be a power of two.
void FST(vector<int> &a, bool inv) {
| int n = szof(a);
| for (int step = 1; step < n; step *= 2) {
| | for (int i = 0; i < n; i += 2 * step) {
| | | for (j = i; j < i + step; ++j) {
| | | | int &u = a[j], &v = a[j + step];
| | | | tie(u, v) =
        | inv ? pii(v - u, u) : pii(v, u + v); //
\hookrightarrow AND
| | | | inv ? pii(v, u - v) : pii(u + v, u); //
\hookrightarrow OR
| | | | | pii(u + v, u - v); // XOR
| | | }
| | }
| }
| if (inv)
| | for (int &x : a)
| | | x /= sz(a); // XOR only
}
vector<int> conv(vector<int> a, vector<int> b) {
| FST(a, 0);
| FST(b, 0);
| for (int i = 0; i < szof(a); ++i) {
    a[i] *= b[i];
| }
| FST(a, 1);
 return a;
```

Counting size of the maximum general matching

In order to find a size of the maximum matching:

1. Build Tutte matrix. $(x_{ij} \text{ are random numbers})$

$$A_{ij} = \begin{cases} x_{ij} & \text{if edge } (i,j) \text{ exists and } i < j \\ -x_{ij} & \text{if edge } (i,j) \text{ exists and } i > j \\ 0 & otherwise \end{cases}$$

- 2. The size of the maximum matching equals to the size of the maximum independent set divided by 2.
- 3. $(A^{-1})_{ii} \neq 0$ iff edge (i,j) belongs to some complete matching.

Counting number of spanning trees

In order to count number of spanning trees:

- 1. Build the Laplacian matrix. That is difference between the degree matrix and the adjacency matrix.
- 2. Delete any row and any column of this matrix.
- 3. Calculate it's determinant.

6.6 Some formulas

- $\bullet \ \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$
- $\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$
- $\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$
- $\bullet \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$

Miller-Rabin primality test 6.7

```
// assume p > 1
bool isprime(ll p) {
| const int a[] = {2, 3, 5, 7, 11, 13, 17, 19,
\rightarrow 23, 0};
| 11 d = p - 1;
 int cnt = 0;
 while (!(d & 1)) {
| d >>= 1;
| cnt++;
| }
| for (int i = 0; a[i]; i++) {
 | if (p == a[i]) {
   return true;
| | }
| | if (!(p % a[i])) {
| | return false;
| | }
| }
| for (int i = 0; a[i]; i++) {
| | 11 cur = mpow(a[i], d, p); // a[i] ^ d (mod
\hookrightarrow p)
| | if (cur == 1) {
| | continue;
| | }
| | bool good = false;
| | for (int j = 0; j < cnt; j++) {
  | | if (cur == p - 1) {
  | | good = true;
| | break;
| | | }
| | cur = mult(cur, cur);
| | }
| | if (!good) {
| | return false;
| | }
 }
 return true;
}
```

Taking by modullo (Inline assembler) 6.8

```
inline void fasterLLDivMod(ull x, uint y, uint
| uint xh = (uint)(x \Rightarrow 32), xl = (uint)x, d, m;
#ifdef __GNUC__
asm(
```

```
| | : "=a" (d), "=d" (m)
| | : "d" (xh), "a" (xl), "r" (y)
| );
#else
__asm {
 mov edx, dword ptr[xh];
| | mov eax, dword ptr[x1];
| | div dword ptr[y];
| | mov dword ptr[d], eax;
| | mov dword ptr[m], edx;
| };
#endif
out_d = d; out_m = m;
}
```

First solution of $(p + step \cdot x) \mod mod < l$

```
// returns value of (p + step * x), i.e. number
\rightarrow of steps x = (ans - p) / step (mod mod)
int smart_calc(int mod, int step, int 1, int p) {
| if (p < 1) {
| | return p;
| }
| int d = (mod - p + step - 1) / step;
| int np = (p + d * step) % mod;
| if (np < 1) {
return np;
| }
int res = smart_calc(step, mod % step, 1, 1 +
\rightarrow step - 1 - np);
| return 1 - 1 - res;
```

Multiplication by modulo in long double 6.10

```
ll mul(ll a, ll b, ll m) { // works for MOD 8e18
| 11 k = (11)((long double)a * b / m);
| 11 r = a * b - m * k;
| if (r < 0)
| r += m;
| if (r >= m)
 | r -= m;
 return r;
}
```

Numerical integration 6.11

```
function<dbl(dbl, dbl, function<dbl(dbl)>)> f =
→ [&](dbl L, dbl R, function dbl(dbl) g) {
| const int ITERS = 1000000;
| dbl ans = 0;
| dbl step = (R - L) * 1.0 / ITERS;
| for (int it = 0; it < ITERS; it++) {
 double xl = L + step * it;
 \mid double xr = L + step * (it + 1);
| dbl x1 = (xl + xr) / 2;
| dbl x0 = x1 - (x1 - x1) * sqrt(3.0 / 5);
| dbl x2 = x1 + (x1 - x1) * sqrt(3.0 / 5);
|  ans += (5 * g(x0) + 8 * g(x1) + 5 * g(x2)) /
   18 * step;
| }
```

```
return ans;
};
```

Pollard's rho algorithm 6.12

```
namespace pollard {
using math::p;
vector<pair<11, int>> getFactors(11 N) {
vector<1l> primes;
| const int MX = 1e5;
| const | | MX2 | MX | (11) MX;
| assert(MX <= math::maxP && math::pc > 0);
| function<void(ll)> go = [&go, &primes](ll n) {
| | for (ll x : primes)
| | | while (n % x == 0)
| | | n /= x;
| | if (n == 1)
| | return;
 \mid if (n > MX2) {
   | auto F = [\&](11 x) {
 | | | | ll k = ((long double)x * x) / n;
 | | | 11 r = (x * x - k * n + 3) \% n;
| | | return r < 0 ? r + n : r;
| | | };
| | | 11 x = mt19937_64()() \% n, y = x;
| \ | \ | \ const int C = 3 * pow(n, 0.25);
| \ | \ | \ | \ x = F(x), y = F(F(y));
 | | | if (x == y)
 | | | continue;
   |  | 11 delta = abs(x - y);
     | ll k = ((long double)val * delta) / n;
     | val = (val * delta - k * n) % n;
     | if (val < 0)
   | | if (val == 0) {
   | | | | ll g = __gcd(delta, n);
   | return;
     | if ((it & 255) == 0) {
| | | | if (g != 1) {
| | | | | go(g), go(n / g);
| | | | }
| | | }
| | | }
| | }
| | primes.pb(n);
∣ };
| 11 n = N;
| for (int i = 0; i < math::pc && p[i] < MX; ++i)
| | if (n % p[i] == 0) {
```

```
| | while (n % p[i] == 0)
| | }
| go(n);
| sort(primes.begin(), primes.end());
vector<pair<11, int>> res;
| for (ll x : primes) {
| | int cnt = 0;
 | while (N % x == 0) {
| | cnt++;
| | | N /= x;
| | }
| res.push_back({x, cnt});
| }
return res;
}
} // namespace pollard
```

6.13 Polynom division and inversion

```
poly inv(poly A, int n) // returns A^-1 mod x^n
| assert(sz(A) && A[0] != 0);
A.cut(n);
| auto cutPoly = [](poly &from, int 1, int r) {
 poly R;
 R.v.resize(r - 1);
| | for (int i = 1; i < r; ++i) {
| | }
| | return R;
∣ };
| function<int(int, int)> rev = [&rev](int x, int
\rightarrow m) -> int {
| | if (x == 1)
| return (1 - rev(m \% x, x) * (11)m) / x + m;
| };
| poly R({rev(A[0], mod)});
| for (int k = 1; k < n; k <<= 1) {
\mid poly AO = cutPoly(A, 0, k);
| | poly A1 = cutPoly(A, k, 2 * k);
| poly H = AO * R;
\mid H = cutPoly(H, k, 2 * k);
| | poly R1 = (((A1 * R).cut(k) + H) * (poly({0}))
   - R)).cut(k);
\mid R.v.resize(2 * k);
| | forn(i, k) R[i + k] = R1[i];
| }
return R.cut(n).norm();
pair<poly, poly> divide(poly A, poly B) {
\mid if (sz(A) < sz(B))
```

```
| | return {poly({0}), A};
| auto rev = [](poly f) {
| reverse(all(f.v));
| return f;
| };
| poly q =
| | rev((inv(rev(B), sz(A) - sz(B) + 1) *

    rev(A)).cut(sz(A) - sz(B) + 1));
| poly r = A - B * q;
| return {q, r};
}
```

6.14 Polynom roots

```
const double EPS = 1e-9;
double cal(const vector<double> &coef, double x)
| double e = 1, s = 0;
| for (double i : coef) s += i * e, e *= x;
return s;
int dblcmp(double x) {
\mid if (x < -EPS) return -1;
\mid if (x > EPS) return 1;
return 0;
double find(const vector<double> &coef, double 1,
→ double r) {
int sl = dblcmp(cal(coef, 1)), sr =

    dblcmp(cal(coef, r));
| if (sl == 0) return 1;
| if (sr == 0) return r;
| for (int tt = 0; tt < 100 && r - 1 > EPS; ++tt)
← {
\mid double mid = (1 + r) / 2;
int smid = dblcmp(cal(coef, mid));
| | if (smid == 0) return mid;
\mid if (sl * smid < 0) r = mid;
| else 1 = mid;
| }
| return (1 + r) / 2;
}
vector<double> rec(const vector<double> &coef,
\rightarrow int n) {
vector<double> ret; //
\rightarrow c[0]+c[1]*x+c[2]*x^2+...+c[n]*x^n, c[n]==1
| if (n == 1) {
 ret.push_back(-coef[0]);
 return ret;
| }
vector<double> dcoef(n);
| for (int i = 0; i < n; ++i) dcoef[i] = coef[i +
\rightarrow 1] * (i + 1) / n;
| double b = 2; // fujiwara bound
| for (int i = 0; i \le n; ++i) b = max(b, 2 *
\rightarrow pow(fabs(coef[i]), 1.0 / (n - i)));
```

```
vector<double> droot = rec(dcoef, n - 1);
| droot.insert(droot.begin(), -b);
droot.push_back(b);
| for (int i = 0; i + 1 < droot.size(); ++i) {
int sl = dblcmp(cal(coef, droot[i])), sr =

→ dblcmp(cal(coef, droot[i + 1]));
\mid if (sl * sr > 0) continue;
| ret.push_back(find(coef, droot[i], droot[i +
→ 1]));
| }
| return ret;
}
vector<double> solve(vector<double> coef) {
int n = coef.size() - 1;
while (coef.back() == 0) coef.pop_back(), --n;
| for (int i = 0; i <= n; ++i) coef[i] /=

    coef[n];

return rec(coef, n);
}
```

6.15 Simplex method

```
struct simplex_t {
vector<vector<double>> mat;
int EQ, VARS, p_row;
vector<int> column;
void row_subtract(int what, int from, double x)
| | for (int i = 0; i <= VARS; ++i)
| }
void row_scale(int what, double x) {
| | for (int i = 0; i <= VARS; ++i)
| }
void pivot(int var, int eq) {
| | row_scale(eq, 1. / mat[eq][var]);
\mid for (int p = 0; p <= EQ; ++p)
| | | row_subtract(eq, p, mat[p][var]);
| | column[eq] = var;
| }
void iterate() {
| | while (true) {
| | | int j = 0;
| | | if (j == VARS)
| | | break;
| | |  int arg_min = -1;
```

```
| | | for (int p = 0; p != EQ; ++p) {
| | | | continue;
| | | double newlim = mat[p][VARS] / mat[p][j];
 | | | if (newlim < lim)
| | | | lim = newlim, arg_min = p;
| | | }
| | | throw "unbounded";
| | pivot(j, arg_min);
| }
| simplex_t(const vector<vector<double>>& mat_):
→ mat(mat_) {
| | for (int i = 0; i < SZ(mat); ++i) // fictuous
\hookrightarrow variable
   mat[i].insert(mat[i].begin() + SZ(mat[i]) -
  1, double(0));
| EQ = SZ(mat), VARS = SZ(mat[0]) - 1;
| column.resize(EQ, -1);
| | p_row = 0;
| | for (int i = 0; i < VARS; ++i) {
| \ | \ | for (p = p_row; p < EQ and abs(mat[p][i]) <
| | |  if (p == EQ)
| | | continue;
| | column[p_row] = i;
| | | for (p = 0; p != EQ; ++p)
| | | | row_subtract(p_row, p, mat[p][i]);
| | }
| | for (int p = p_row; p < EQ; ++p)
| | | throw "unsolvable (bad equalities)";
| | if (p_row) {
 | | int minr = 0;
| | for (int i = 0; i < p_row; ++i)
| | | if (mat[i][VARS] < mat[minr][VARS])
| | | mat.push_back(vector<double>(VARS + 1));
| \ | \ | \ | \ mat[EQ][VARS - 1] = -1;
| | | for (int i = 0; i != p_row; ++i)
| \ | \ | \ | \ | \ mat[i][VARS - 1] = -1;
```

```
| | | | throw "unsolvable";
| | | for (int c = 0; c != EQ; ++c)
| | | | if (column[c] == VARS - 1) {
| | | | | | | int p = 0;
| \ | \ | \ | \ | while (p != VARS - 1 and
\rightarrow abs(mat[c][p]) < eps)
| | | ++p;
| | | | | pivot(p, c);
| | | | }
| | | for (int p = 0; p != EQ; ++p)
| | | | mat[p][VARS - 1] = 0;
| | | mat.pop_back();
| | | }
| | }
| }
| double solve(vector<double> coeff,

    vector<double>& pans) {

| | auto mat_orig = mat;
| | auto col_orig = column;
| | coeff.resize(VARS + 1);
| mat.push_back(coeff);
| | for (int i = 0; i != p_row; ++i)
| | row_subtract(i, EQ, mat[EQ][column[i]]);
| iterate();
| | auto ans = -mat[EQ][VARS];
| | if (not pans.empty()) {
| | for (int i = 0; i < EQ; ++i) {
| | | assert(column[i] < VARS);</pre>
| | | pans[column[i]] = mat[i][VARS];
| | | }
| | }
| | mat = std::move(mat_orig);
| | column = std::move(col_orig);
| return ans;
| }
double solve_min(vector<double> coeff,
→ vector<double>& pans) {
| | for (double& elem: coeff)
| \ | \ | elem = -elem;
| return -solve(coeff, pans);
| }
};
```

6.16 Some integer sequences

Bell numbers:						
n	B_n	n	B_n			
0	1	10	115975			
1	1	11	678570			
2	2	12	4213597			
3	5	13	27 644 437			
4	15	14	190899322			
5	52	15	1382958545			
6	203	16	10480142147			
7	877	17	82 864 869 804			
8	4 140	18	682 076 806 159			
9	21147	19	5832742205057			

NT 1 11 11 11 11 11 11 11 11 11 11 11 11								
Numbers with many divisors:								
$x \leq$	x	d(x)						
20	12	6						
50	48	10						
100	60	12						
1000	840	32						
10 000	9 240	64						
100 000	83 160	128						
10^{6}	720 720	240						
10^{7}	8 648 640	448						
10^{8}	91 891 800	768						
10^{9}	931 170 240	1 344						
10^{11}	97 772 875 200	4032						
10^{12}	963 761 198 400	6 720						
10^{15}	866 421 317 361 600	26 880						
10^{18}	897 612 484 786 617 600	103 680						

Partitions of n into unordered summands							
n	a(n)	n	a(n)	n	a(n)		
0	1	20	627	40	37 338		
1	1	21	792	41	44583		
2	2	22	1002	42	53 174		
3	3	23	1255	43	63261		
4	5	24	1575	44	75 175		
5	7	25	1958	45	89 134		
6	11	26	2436	46	105558		
7	15	27	3 010	47	124754		
8	22	28	3718	48	147273		
9	30	29	4565	49	173525		
10	42	30	5604	50	204226		
11	56	31	6842	51	239 943		
12	77	32	8 349	52	281 589		
13	101	33	10143	53	329931		
14	135	34	12310	54	386155		
15	176	35	14883	55	451276		
16	231	36	17977	56	526823		
17	297	37	21637	57	614 154		
18	385	38	26015	58	715220		
19	490	39	31185	59	831 820		
100	190 56	69 292	2				

7 Strings

7.1 Aho-Corasick

```
const int N = 1e6 + 7;
const int A = 26;
```

```
struct Node {
   int nxt[A];
   int term;
   int par;
   int par_c;
   int go[A];
   int suf;
   int sup;
   Node() {
       fill(nxt, nxt + A, -1);
       term = 0;
       par = -1;
       par_c = -1;
       fill(go, go + A, -1);
       suf = -1;
       sup = -1;
   }
} trie[N];
int root = 0, sz_t = 1;
void add(string s) {
   int v = root;
   for (int i = 0; i < (int)s.size(); ++i) {</pre>
       s[i] -= 'a';
       if (trie[v].nxt[s[i]] == -1) {
           trie[v].nxt[s[i]] = sz t:
           trie[sz_t] = Node();
           trie[sz_t].par = v;
           trie[sz_t].par_c = s[i];
           ++sz_t;
       }
       v = trie[v].nxt[s[i]];
   ++trie[v].term;
}
vector<int> order;
void build() {
   order.clear();
   order.push_back(root);
   queue<int> q;
   for (int i = 0; i < A; ++i) {
       int u = trie[root].nxt[i];
       if (u != -1) {
           trie[root].go[i] = u;
           q.push(u);
       } else {
           trie[root].go[i] = root;
       }
   while (!q.empty()) {
       int v = q.front();
       q.pop();
       order.push_back(v);
       if (trie[v].par == root) {
           trie[v].suf = root;
       } else {
           trie[v].suf =
   }
```

```
trie[v].sup =
            (trie[trie[v].suf].term ? trie[v].suf
   : trie[trie[v].suf].sup);
        for (int i = 0; i < A; ++i) {
            int u = trie[v].nxt[i];
            if (u != -1) {
                trie[v].go[i] = u;
                q.push(u);
            } else {
                trie[v].go[i] =
    trie[trie[v].suf].go[i];
            }
        }
    }
}
int go(string s) {
    int v = root;
    for (int i = 0; i < (int)s.size(); ++i) {
        v = trie[v].go[s[i] - 'a'];
    }
    return v;
}
```

Manacher's algorithm

```
// returns vector ret of length (|s| * 2 - 1),
// ret[i * 2] -- maximal length of palindrome
\hookrightarrow with center in i-th symbol
// ret[i * 2 + 1] -- maximal length of
\rightarrow palindrome with center between i-th and (i +
→ 1)-th symbols
vector<int> find_palindromes(string const& s) {
string tmp;
| for (char c : s) {
| tmp += c;
| tmp += '!';
| }
tmp.pop_back();
| int c = 0, r = 1;
vector<int> rad(szof(tmp));
\mid rad[0] = 1;
| for (int i = 1; i < szof(tmp); ++i) {
| | if (i < c + r) {
| | | rad[i] = min(c + r - i, rad[2 * c - i]);
| | }
| | while (i - rad[i] >= 0 && i + rad[i] <

    szof(tmp) && tmp[i - rad[i]] == tmp[i +
\rightarrow rad[i]]) {
| | }
| | if (i + rad[i] > c + r) {
| | c = i;
| | }
| }
| for (int i = 0; i < szof(tmp); ++i) {
| | if (i % 2 == 0) {
```

```
| | | rad[i] = rad[i] / 2 * 2;
| | }
| return rad;
}
```

7.3 Min Cyclic Shift O(n)

```
string min_cyclic_shift(string s) {
s += s;
int n = s.size();
| int i = 0, ans = 0;
| while (i < n / 2) {
\mid ans = i;
 | int j = i + 1, k = i;
| | while (j < n \&\& s[k] <= s[j]) {
\mid \cdot \mid \cdot \text{ if } (s[k] < s[j])
| | | | k = i;
| | else
| | | ++k;
| | }
\mid while (i <= k) i += j - k;
return s.substr(ans, n / 2);
}
```

7.4 Suffix array + LCP

```
vector<int> build_suffarr(string s) {
| int n = szof(s);
auto norm = [&](int num) {
 | if (num >= n) {
| | return num - n;
| | }
| return num;
| };
vector<int> classes(s.begin(), s.end()),

    n_classes(n);

vector<int> order(n), n_order(n);
iota(order.begin(), order.end(), 0);
vector<int> cnt(max(szof(s), 128));
| for (int num : classes) {
| | cnt[num + 1]++;
| for (int i = 1; i < szof(cnt); ++i) {
   cnt[i] += cnt[i - 1];
| }
| for (int i = 0; i < n; i = i == 0 ? 1 : i * 2)
← {
| | for (int pos : order) {
| | n_order[cnt[classes[pp]]++] = pp;
| | }
\mid  int q = -1;
| | pii prev = \{-1, -1\};
| | for (int j = 0; j < n; ++j) {

    classes[norm(n_order[j] + i)]};
```

```
| | | ++q;
| | | }
| | | n_classes[n_order[j]] = q;
| | }
| | swap(n_classes, classes);
| | swap(n_order, order);
| }
return order;
void solve() {
string s;
| cin >> s;
| s += "$";
auto suffarr = build_suffarr(s);
vector<int> where(szof(s));
| for (int i = 0; i < szof(s); ++i) {
 where[suffarr[i]] = i;
vector<int> lcp(szof(s));
| int cnt = 0;
| for (int i = 0; i < szof(s); ++i) {
\mid if (where[i] == szof(s) - 1) {
| | cnt = 0;
 | continue;
| | }
\mid cnt = max(cnt - 1, 0);
int next = suffarr[where[i] + 1];
| | while (i + cnt < szof(s) && next + cnt <
\Rightarrow szof(s) && s[i + cnt] == s[next + cnt]) {
| | }
   lcp[where[i]] = cnt;
 }
```


