TRABALHO DE GRUPO 1

(T1) DE

DESENHO DE

ALGORITMOS 21/22:

LOGÍSTICA URBANA PARA

ENTREGA DE

MERCADORIAS

Grupo G58:

- Gabriel Augusto Rocco (up201800172)
- Guilherme Miguel de Lima Freire (up202004809)
- Rafael Azevedo Alves (up202004476)

Descrição do problema

Neste trabalho, pretende-se contribuir para uma inovação na distribuição de mercadorias de uma empresa tornando a sua operação o mais eficiente possível. Para a criação de algoritmos que permitam um desenvolvimento na distribuição, são nos transmitidas várias informações sobre o modo de funcionamento da empresa:

C 11	161 C341					
	A empresa tem o seu próprio armazém, onde recebe e mantém as mercadorias;					
	A empresa realiza dois tipos de serviços, nomeadamente a entrega normal e a entrega expresso;					
	A cada pedido de transporte estão associados o tipo de transporte contratado (normal ou expresso), o peso e o volume do pacote e o valor que a empresa recebe com a entrega do mesmo;					
	Para as entregas normais, a empresa recorre à subcontratação de estafetas, que utilizam as suas próprias viaturas para a realização de entregas;					
	Sobre cada estafeta sabemos a matrícula da viatura , o volume máximo e do peso máximo que pode transportar e o custo de transporte que será pago pela empresa;					
	Para as entregas expresso, a empresa possui um única viatura de capacidade unitária, capaz de transportar um pedido de cada vez, independentemente do seu volume ou peso;					
	Às entregas expresso está também associado um tempo estimado de entrega.					

Formalização

Dados de entrada:

- C = conjunto de carrinhas:
 - p_c peso máximo que a carrinha pode transportar;
 - v_c − volume máximo que a carrinha pode transportar;
 - a_c indica se a carrinha está atribuída;
- E = conjunto de encomendas:
 - p_e peso da encomenda;
 - v_e − volume da encomenda;

Variáveis de decisão:

- $\forall c \in C$:
 - o e_c conjunto dos índices das encomendas atribuídas à carrinha:
 - p_{ec} peso da encomenda;
 - v_{ec} volume da encomenda;
- Nc = número de carrinhas utilizadas;

Objetivo:

Minimizar Nc;

Sujeito a:

$$\forall c \in C, \forall e \in E_c : \sum_{e \in E_c} p_{ec} \leqslant p_c$$

$$\forall c \in C, \forall e \in E_c : \sum_{e \in E_c} v_{ec} \leqslant v_c$$

Descrição de Algoritmos Relevantes

O Cenário 1 tem como principal objetivo minimizar o número de estafetas para a entrega de todos os pedidos ou do maior número de pedidos, num dia. Para a realização deste cenário temos de ter em consideração que:

- Cada estafeta possui um peso e um volume máximo que pode ser transportado;
- Cada encomenda possui um peso e volume determinado;
- Nem o peso nem o volume das encomendas transportadas podem exceder a capacidade máxima de um estafeta.

Para a resolução deste problema foi aplicado um algoritmo ganancioso (greedy algorithm).

Análise de Complexidade

Complexidade Temporal

$$> O(3n + n^2).$$

Complexidade Espacial

Avaliação Empírica

Foram realizados testes com 3 ficheiros de 50 encomendas, 3 ficheiros de 100 encomendas, 2 ficheiros de 200 encomendas e o ficheiro original que foi dado com o enunciado do trabalho com cerca de 450 encomendas, e foram analisados os tempos de execução que se encontram no seguinte gráfico.

Formalização

Dados de entrada:

- C = conjunto de carrinhas:
 - p_c peso máximo que a carrinha pode transportar;
 - v_c volume máximo que a carrinha pode transportar;
 - c_c − custo da carrinha;
 - a_c indica se a carrinha está atribuída;
- E = conjunto de encomendas:
 - p_e peso da encomenda;
 - v_e − volume da encomenda;
 - r_e recompensa da encomenda;

Variáveis de decisão:

- $\forall c \in C$:
 - o e_c conjunto de encomendas atribuídas à carrinha:
 - p_{ec} peso da encomenda;
 - v_{ec} volume da encomenda;
 - r_{ec} recompensa da encomenda;
 - I_c lucro da carrinha;
- Lt = lucro total;

Objetivo:

• Max $\sum_{c \in C} l_c$

Sujeito a:

$$\forall c \in C : l_c \geqslant 0$$

$$\forall c \in C, \forall e \in E_c : \sum_{e \in E_c} p_{ec} \leqslant p_c$$

$$\forall c \in C, \forall e \in E_c : \sum_{e \in E_c} v_{ec} \leqslant v_c$$

$$\forall c \in C: l_c, e_c \in \mathbb{N}$$

$$l_t \in \mathbb{N}$$

Descrição de Algoritmos Relevantes

No que diz respeito ao Cenário 2, este tem como objetivo maximizar o lucro diário das distribuições fazendo uma correta atribuição das encomendas aos estafetas atendendo que:

- Cada estafeta cobra um determinado valor por dia;
- Por cada pedido entregue a empresa recebe uma recompensa;
- ☐ Cada estafeta tem um peso e um volume máximo que pode carregar.

Para a resolução deste problema foi aplicado um algoritmo ganancioso (greedy algorithm).

Análise de Complexidade

Complexidade Temporal

$$> O(3n + n^2).$$

Complexidade Espacial

Avaliação Empírica

Foram realizados testes com 3 ficheiros de 50 encomendas, 3 ficheiros de 100 encomendas, 2 ficheiros de 200 encomendas e o ficheiro original que foi dado com o enunciado do trabalho com cerca de 450 encomendas, e foram analisados os tempos de execução que se encontram no seguinte gráfico.

Formalização

No Cenário 3, o principal objetivo do problema abordado é **minimizar o tempo médio previsto das entregas expresso** a serem realizadas num dia. A prova de optimalidade para a resolução do mesmo pode ser apresentada da seguinte forma:

- \square Entregas expresso ordenadas por ordem de entrega: $i_1, i_2, ..., i_n$.
- \square Duração de cada entrega d_1, d_2, \dots, d_n , respetivamente.
- \square Instantes de conclusão das entregas a realizar é: $c_1=d_1$, $c_2=d_1+d_2$, ...
- \Box Se existir x > y tal que $d_x = d_y$, ao fazer uma troca de i_x e i_y na ordem das entregas diminui o tempo médio de conclusão das entregas.
- \square Logo, **o tempo médio de conclusão das entregas é minimizado** se as entregas forem ordenadas da seguinte forma: $d_1 \le d_2 \le \cdots \le d_n$.

Descrição de Algoritmos Relevantes

No Cenário 3, o principal objetivo do problema abordado é **minimizar o tempo médio previsto das entregas expresso** a serem realizadas num dia tendo em consideração vários fatores, tais como:

	A empresa	utiliza uma	única viatura	para as e	entregas expresso;
--	-----------	-------------	---------------	-----------	--------------------

- ☐ A viatura utilizada possui capacidade unitária e realiza entregas de um único pedido a cada viagem efetuada, independentemente do volume e peso da entrega;
- ☐ Cada pedido tem o seu tempo estimado de entrega;
- ☐ As entregas expresso têm um horário comercial de 8 horas (9:00 às 17:00) para serem entregues;
- A empresa deseja entregar o número máximo de pedidos de entregas expresso no dia.

Para a resolução deste problema foi aplicado um **algoritmo ganancioso (greedy algorithm)**. Este problema trata-se, então, de um problema de escalonamento para minimizar o tempo médio de conclusão.

Análise de Complexidade

Complexidade Temporal

$$\triangleright$$
 O(nlog(n) + 2n)

Complexidade Espacial

> O(n)

Avaliação Empírica

Foram realizados testes com 3 ficheiros de 50 encomendas, 3 ficheiros de 100 encomendas, 2 ficheiros de 200 encomendas e o ficheiro original que foi dado com o enunciado do trabalho com cerca de 450 encomendas, e foram analisados os tempos de execução que se encontram no seguinte gráfico.

Funcionalidades Extra

"Medir a eficiência da operação da empresa, em termos do quociente entre o número de pedidos efetivamente entregues e o número de pedidos recebidos num dia"

Para verificar o quociente entre o número de pedidos efetivamente entregues e o número de pedidos recebidos num dia, foram feitos os testes usando o ficheiro "encomendas.txt" que foi entregue juntamente com o enunciado do trabalho e verificou-se o seguinte:

- > Cenário 1 apresentou um quociente de valor 1.
- Cenário 2 apresentou um quociente de valor 0,728889.
- > Cenário 3 apresentou um quociente de valor 0,275556.

Podemos concluir que o Cenário 1 é o que apresenta melhor quociente na relação pedidos recebidos/pedidos entregues e o Cenário 3 apresenta o pior quociente. Estes valores devem-se ao facto de no Cenário 1 a empresa possuir várias carrinhas para a entrega das encomendas enquanto que no Cenário 3 a empresa além de ter um horário comercial de 8 horas, possuía apenas uma carrinha para a entrega das encomendas e que apenas fazia uma entrega por viagem.

Solução algorítmica a merecer destaque

Algoritmo do Cenário 1

O método de ordenação que utiliza a soma de volume e peso mostrou-se melhor em praticamente todos os resultados. Havendo 5 casos em que ambas as formas mostraram os mesmos resultados. Ou seja, podemos concluir que ordenar as carrinhas e encomendas pela soma de peso e volume é mais eficiente.

Nota: O Primeiro Teste foi realizado com ficheiros nos seguintes intervalos:

Carrinhas: Peso Máximo e Volume Máximo: Entre 250 e 380

Encomendas: Peso e Volume: Entre 30 e 80

Num Segundo Teste foram utilizados valores mais altos para peso e volume das encomendas, com um intervalo de 20 a 40. Os valores das carrinhas se mantiveram iguais.

Percebemos que ambas as formas de ordenação mostraram resultados repetidos muito mais vezes, o que nos leva a entender que quanto maior a soma do peso e volume menor a eficiência e mais próximo este método fica do primeiro método em termos de resultado.

67 -> Somando peso e volume 71 -> Priorizando peso 51 -> Somando peso e volume 51 -> Priorizando peso 70 -> Somando peso e volume 73 -> Priorizando peso 53 -> Somando peso e volume 60 -> Priorizando peso 72 -> Somando peso e volume 63 -> Somando peso e volume 72 -> Priorizando peso 70 -> Priorizando peso 74 -> Somando peso e volume 59 -> Somando peso e volume 74 -> Priorizando peso 65 -> Priorizando peso 58 -> Somando peso e volume 62 -> Somando peso e volume 58 -> Priorizando peso 62 -> Priorizando peso 48 -> Somando peso e volume 53 -> Priorizando peso 63 -> Somando peso e volume 63 -> Priorizando peso 65 -> Somando peso e volume 68 -> Priorizando peso 83 -> Somando peso e volume 83 -> Priorizando peso 58 -> Somando peso e volume 66 -> Priorizando peso 69 -> Somando peso e volume 36 -> Somando peso e volume 69 -> Priorizando peso 41 -> Priorizando peso 46 -> Somando peso e volume 69 -> Somando peso e volume 50 -> Priorizando peso 69 -> Priorizando peso 50 -> Somando peso e volume 59 -> Somando peso e volume 50 -> Priorizando peso 59 -> Priorizando peso 49 -> Somando peso e volume 56 -> Priorizando peso 85 -> Somando peso e volume 85 -> Priorizando peso 34 -> Somando peso e volume 39 -> Priorizando peso 64 -> Somando peso e volume 44 -> Somando peso e volume 66 -> Priorizando peso 48 -> Priorizando peso 64 -> Somando peso e volume 61 -> Somando peso e volume 61 -> Priorizando peso 64 -> Priorizando peso

39 -> Somando peso e volume

Segundo Teste

Primeiro Teste

Principais dificuldades & Esforço de cada elemento

O grupo conseguiu executar todas as tarefas propostas para o trabalho em questão, implementando ainda a funcionalidade extra "Medir a eficiência da operação da empresa, em termos do quociente entre o número de pedidos efetivamente entregues e o número de pedidos recebidos num dia".

A principal dificuldade foi perceber qual o algoritmo que melhor se adequa aos diferentes cenários que tivemos de implementar para tentar obter a melhor solução possível para cada um.

Apesar das dificuldades encontradas podemos afirmar que após a realização do trabalho conseguimos perceber melhor cada um dos algoritmos estudados na disciplina de Desenho de Algoritmos, assim como a utilização dos diferentes tipos de algoritmos, e em que situações melhor se adequa o uso dos mesmos para melhorar o resultado que se pretende atingir.

O trabalho foi dividido de maneira igual por todos os elementos do grupo e todos contribuíram para o sucesso do mesmo.

• Gabriel Rocco: 33.3%

Guilherme Freire: 33.3%

Rafael Alves: 33.3%