VIP Cheatsheet: Machine Learning Tips

Afshine AMIDI and Shervine AMIDI

August 12, 2018

Metrics

Given a set of data points $\{x^{(1)},...,x^{(m)}\}$, where each $x^{(i)}$ has n features, associated to a set of outcomes $\{y^{(1)},...,y^{(m)}\}$, we want to assess a given classifier that learns how to predict y from x.

Classification

In a context of a binary classification, here are the main metrics that are important to track to assess the performance of the model.

□ Confusion matrix – The confusion matrix is used to have a more complete picture when assessing the performance of a model. It is defined as follows:

Predicted class

		+	_	
Actual class	+	TP True Positives	FN False Negatives Type II error	
	-	FP False Positives Type I error	TN True Negatives	

□ Main metrics – The following metrics are commonly used to assess the performance of classification models:

Metric	Formula	Interpretation	
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model	
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	How accurate the positive predictions are	
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample	
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Coverage of actual negative sample	
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Hybrid metric useful for unbalanced classes	

□ ROC – The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by varying the threshold. These metrics are are summed up in the table below:

Metric	Formula	Equivalent
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN} + \mathrm{FP}}$	1-specificity

 \square AUC – The area under the receiving operating curve, also noted AUC or AUROC, is the area below the ROC as shown in the following figure:

Regression

 \square Basic metrics – Given a regression model f, the following metrics are commonly used to assess the performance of the model:

Total sum of squares	Explained sum of squares	Residual sum of squares
$SS_{\text{tot}} = \sum_{i=1}^{m} (y_i - \overline{y})^2$	$SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$	$SS_{res} = \sum_{i=1}^{m} (y_i - f(x_i))^2$

 \Box Coefficient of determination – The coefficient of determination, often noted R^2 or r^2 , provides a measure of how well the observed outcomes are replicated by the model and is defined as follows:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

 \square Main metrics – The following metrics are commonly used to assess the performance of regression models, by taking into account the number of variables n that they take into consideration:

Mallow's Cp	AIC	BIC	Adjusted R^2
$\frac{\mathrm{SS}_{\mathrm{res}} + 2(n+1)\widehat{\sigma}^2}{m}$	$2\left[(n+2)-\log(L)\right]$	$\log(m)(n+2) - 2\log(L)$	$1 - \frac{(1 - R^2)(m - 1)}{m - n - 1}$

Model selection

 \square Vocabulary – When selecting a model, we distinguish 3 different parts of the dataset as follows:

- Training set: this is the part of the dataset on which the model is trained.
- <u>Validation set</u>: also called hold-out, development set or dev set, it is used to assess the performance of the previously trained model.
- <u>Test set</u>: once the model has been chosen, it is trained on the training+validation set and tested on the unseen test set.

 \square Cross-validation – Cross-validation is a method that is used to select a model that does not rely on the initial training set too much. The most commonly used method is called k-fold cross-validation and splits the training data into k folds to validate the model on one fold while training the model on the k-1 other folds, all of this k times. The error is then averaged over the k folds and is named cross-validation error.

□ Regularization – The regularization procedure aims at avoiding the model to overfit the data and thus deals with high variance issues. The following table sums up the different types of commonly used regularization techniques:

LASSO	Ridge	Elastic Net
- Shrinks coefficients to 0 - Good for variable selection	Makes coefficients smaller	Tradeoff between variable selection and small coefficients
$ \theta $	$ \theta _2 \leqslant 1$	$(1-\alpha) \theta _1 + \alpha \theta _2^2 \leqslant 1$
$ \ldots + \lambda \theta _1$	$ \ldots + \lambda \theta _2^2$	$ \dots + \lambda \left[(1 - \alpha) \theta _1 + \alpha \theta _2^2 \right] $ $ \lambda \in \mathbb{R}, \alpha \in [0, 1] $
$\lambda \in \mathbb{R}$	$\lambda \in \mathbb{R}$	$\lambda \in \mathbb{R}, \alpha \in [0,1]$

 \square Model selection – Train model on training set, then evaluate on the development set, then pick best performance model on the development set, and retrain all of that model on the whole training set.

Diagnostics

 \square Bias – The bias of a model is the difference between the expected prediction and the correct model that we try to predict for given data points.

 \square Variance – The variance of a model is the variability of the model prediction for given data points.

□ Bias/variance tradeoff – The simpler the model, the higher the bias, and the more complex the model, the higher the variance.

	Underfitting	Just right	Overfitting
Symptoms	- High training error - Training error close to test error - High bias	- Training error slightly lower than test error	- Low training error - Training error much lower than test error - High variance
Regression			My
Classification			
Deep learning	Error Validation Training Epochs	Error Validation Training Epochs	Validation Training Epochs
Remedies	- Complexify model - Add more features - Train longer		- Regularize - Get more data

 \square Error analysis – Error analysis is analyzing the root cause of the difference in performance between the current and the perfect models.

□ Ablative analysis – Ablative analysis is analyzing the root cause of the difference in performance between the current and the baseline models.