Definice

DEF Protor jevů $F \subset P(\Omega 0)$ pokud:

- $\emptyset \in F, \Omega \in F$
- Nechápu, co se děje

DEF Funkci $F:\Omega\to[0,1]$ nazýváme pravděpodobností, pokud:

- $P(\Omega) = 1$
- $P(A) \geq 0$
- $P(\bigcup_{i} A_i) = \sum_{i} P(A_i)$

 \mathbf{DEF} Pravděpodobnostní prostor je trojce (F,Ω,P) taková, že

- $\Omega \neq \emptyset$ je libovolná množina jevů
- $F \subset P(F)$
- \bullet P je pravděpodobnost

DEF Podmíněná pravděpodobnost, tj. pravděpodobnost Aza podmínky B $A,b\in F$ definujeme jako $P(A|B)=\frac{P(A\wedge B)}{P(B)}$

DEF Dva jevy jsou nezávyslé, pokud P(A|B) = P(A)P(B)

DEF Diskrétní náhodná veličina: Mějmé pravděpodobnostní protstor (F,Ω,P) . Pak diskkrétní veličina je taková funkce $X:\Omega\to R$, pro kterou platí, že $\{\omega\in\Omega:X(\omega)=x\}\subset F$

DEF Pravděpodobnostní funkce diskrétní náhodné veličiny je fuk
nce $p_X: R \to [0,1]$ taková, že $p_X(x) = P(\{X=x\})$