Александра Игоревна Кононова

ТЕИМ

3 ноября 2023 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

Символ — элемент качественной информации $a \in A$ (множество A — алфавит).

Текст — последовательность $m \in A^+$ таких элементов.

На практике для всех алгоритмов, где алфавит может быть произвольным, символ кодирования = байт (так как в большинстве ЭВМ байт 8-битен — это 00...FF), **исходный текст** = **любой бинарный файл**, сжатый текст — тоже бинарный файл:

- использование в программе для ЭВМ символов меньших, чем байт неудобно;
- использование символов фиксированной разрядности больших, чем байт ⇒ слишком большой алфавит \Longrightarrow объёмные структуры данных для восстановления.
- использование в качестве символа кодирования печатного символа ASCII или koi8r/cp1251/dos/iso/maccyrillic не позволяет рассматривать в качестве исходного текста произвольный файл и приводит к труднодиагностируемым ошибкам;
- использование печатного символа UTF-8 (144 697 символов Unicode в 2023 г.) то же самое + проигрыш в объёме.

В книгах для наглядности используются обозначения A, B, ... и т. п. (маленький алфавит +визуальное отличие символа от индекса или частоты), но в программе это всё равно байты!

Идея арифметического кодирования

- **1** сообщение $C = c_1 c_2 \dots c_n$ соответствует вещественному числу (точке) $z \in [0; 1);$
- **2** точка z представляется в двоичной системе счисления.

Сколько бит требуется для полной записи $z \in [0; 1)$?

Сжатие:

- z сохраняется ровно с той точностью, чтобы восстановить nсимволов C (цикл масштабирования);
- $oldsymbol{2}$ при задании z учитываются частоты символов C.
 - В данной главе моделью является источник без памяти, $p(\xi_i) = const.$

Строка
$$D$$
-ичного алфавита $C = c_1 c_2 c_3 ...$ — точка $z = \overline{0, c_1 c_2 c_3 ...}_D$.

Двоичные цифры (биты) $b_1b_2b_3...$ дробной части двоичной записи того же числа $z=0,b_1b_2b_3..._2=\overline{0,c_1c_2c_3..._D}$ — код строки C.

- Любое значение $z \in [0,1)$ имеет бесконечное число цифр (часть их может быть 0) в любой CC; даже для конечного числа D-ичных цифр $0, c_1c_2c_3...c_{n,D}$ двоичное представление может быть бесконечно длинным \rightarrow округление;
- округление к ближайшему требует для корректного округления вычислить на одну цифру больше, чем надо \rightarrow округление к 0. ◆ロ → ◆ ● → ◆ き → を ● り へ ○

Геометрическая интерпретация кодирования без сжатия

Арифметическое сжатие (концепт)

- ① Бесконечная строка $c_1c_2...c_nc_{n+1}...$ символов T-ичного алфавита A соответствует вещественному числу (точке) бесконечной точности в диапазоне [0,1). Соответствие аналогично позиционной системе счисления по основанию T, но диапазон разбивается на T неравных частей пропорционально частотам символов.
- **②** Конечная строка из n символов $c_1c_2...c_n$ полуинтервал (ПИ) $[l_n, t_n) \subset ... \subset [l_1, t_1) \subset [0, 1)$; каждая его точка соответствует бесконечной строке, начинающейся с $c_1c_2...c_n \implies$ выбирается $z \in [l_n, t_n)$ с самым коротким двоичным представлением.
- **3** Полученная точка z представляется в двоичной системе счисления: $z = 0, b_1 b_2 ... b_m$. Исходное количество символов n + битовая строка $b_1b_2...b_m$ — код $c_1c_2...c_n$.

Сжимаем текст AABABA. Вероятность символа $A-\frac{2}{3}$, $B-\frac{1}{3} \Longrightarrow$ диапазон [0;1) делится 2:1.

- **1** Все строки ПИ [0,1): начинающиеся с A ПИ $[0,\frac{2}{3})$, начинающиеся с B ПИ $[\frac{2}{3},1)$.
- ② Строки A... ПИ $[l_1,t_1)=\left[0,rac{2}{3}
 ight)\subseteq [0,1)$: вторая $A\left[0,rac{4}{9}
 ight)$, вторая $B\left[rac{4}{9},rac{2}{3}
 ight)$ и т. д.

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения)

Геометрическая интерпретация арифметического сжатия

 $\mathsf{BAHAH} \to (5; 11010111) \hookrightarrow \mathsf{011}$ ac samples/banan realset integerset.pdf

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот Интервальное кодирование (реализация) Приведение частот (черновик)

Геометрическая интерпретация арифметического сжатия

Длина арифметического кода (концепт; целочисленный длиннее)

Вероятности: в данной главе везде моделью является источник без памяти, $p(\xi_i) = const$

Для строки
$$C=c_1c_2...c_n$$
 длина итогового ПИ $t_n-l_n=\Delta_n=p(c_1)\cdot p(c_2)\cdot ...\cdot p(c_n)=p(C)$

Если $\Delta_n\geqslant \frac{1}{2k}$, то $\exists z\in [l_n,t_n)$ не более k двоичных разрядов после запятой (м. б. короче):

$$\left|code(C)
ight|\leqslant k=\left\lceil\log_2\left(rac{1}{\Delta_n}
ight)
ight
ceil=\left\lceil\log_2\left(rac{1}{p(C)}
ight)
ight
ceil=\left\lceil I(C)
ight
ceil$$
 бит

Для
$$AABABA: \Delta_6 = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{2^4}{3^6} \approx 0,02 \gtrsim 2^{-6} \implies$$
 длина кода $\leqslant 6$ бит

20
$$A$$
 и 10 B (30 символов): $\Delta_{30} = \frac{2^{30}}{3^{30}} \approx 2^{-27,5} \implies \leqslant 28$ бит

Начиная с какого m сообщение из 2m A и m B кодируется гарантированно короче 3m бит?

<ロ > ←回 > ←回 > ← 巨 > 一豆 ● りへで

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

Степень сжатия на типичных данных на 1-10% лучше кода Хаффмана.

Не увеличивает размера исходных данных в худшем случае.

Для концепта арифметического сжатия необходимо представлять все границы ПИ

- $[0,1) \supseteq [l_1,t_1) \supseteq \ldots \supseteq [l_n,t_n) \ni z$ (дроби со знаменателем D^n) абсолютно точно.
 - **1** В двоичной СС конечно представимы только дроби со знаменателем 2^n , в десятичной — со знаменателем $2^n 5^k$ (так, непредставима $\frac{1}{3}$).
 - При округлении при кодировании и декодировании погрешность накапливается.
 - ullet При использовании float/double выполняется непредсказуемое округление +на ПИ [0,1) используется 30/62 бит в целом и 23/52 бита мантиссы.

Целочисленная реализация арифметического сжатия — интервальное кодирование:

- погрешность при декодировании должна накапливаться точно таким же образом, как при кодировании \implies исходную строку можно восстановить;
- начало будет похожим;

в интервальном кодировании некоторый фрагмент [a,b) вещественного ПИ [0,1)изображается в виде целочисленного ПИ [0,N); операции — целочисленные.

Некоторый фрагмент [a,b) вещественного полуинтервала (ПИ) [0,1) изображается в виде целочисленного ПИ [0,N)

$$[a,b) \to [0,N) \left([l_i,t_i) \subseteq [a,b) \subseteq [0,1) \right) \qquad N >> 4D^2, \ \frac{N}{4} \in \mathbb{N}$$

$$a \quad l_i \quad t_i \quad b \quad \in [0,1) \subset \mathbb{R}$$

$$b \quad \in [0,N) \subset \mathbb{N} \cup \{0\}$$

Рассматриваем вместо настоящих l_i и t_i из [0,1) их изображения на [0,N) (целые) — одной паре l_i и t_i могут соответствовать разные изображения l и t при рассмотрении разных [a,b).

Вначале [a,b)=[0,1), потом каждый раз при возможности уменьшается вдвое, чтобы изображающий $[l_i,t_i)$ целочисленный ПИ [l,t) не стал короче $\frac{N}{4}$.

Приближаем («микроскоп Ньютона») одну из половин $[a,b) \Longrightarrow$ новые изображения l и t масштабируются из старых изображений $(l_i,t_i\in\mathbb{R}$ недоступны).

Приведение частот (черновик)

Масштабирование (нормализация) и биты двоичного представления

приближаем часть ПИ $[L, L+\frac{N}{2}]$ — изображаемый ПИ [a,b] уменьшается вдвое, длины на изображении увеличиваются вдвое (масштабирование $x \to 2(x-L)$).

$$[a,b)=\left[0,rac{1}{2}
ight)=\left[0,0;0,1
ight)_2=\left[0,0;0,0(1)
ight)_2$$
: первый бит $z\in [l_i,t_i)\subseteq [a,b)$ всегда 0 $L=0$ 0 $\frac{N_2-2}{2}$ 0 $\frac{N_2-1}{2}$ 1 $\frac{N_2}{2}$ 1 $\frac{N_2-1}{2}$ 2 $\frac{N_2-1}{2}$ 2 $\frac{N_2-1}{2}$ 3 $\frac{N_2-1}{2}$ 3 $\frac{N_2-1}{2}$ 3 $\frac{N_2-1}{2}$ 4 $\frac{N_2-1}{2}$ 3 $\frac{N_2-1}{2}$ 4 $\frac{N_2-1$

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

> Интервальное кодирование (реализация) Приведение частот (черновик)

Цифровой микроскоп Ньютона

Масштабирование (нормализация) и биты двоичного представления

- Шаг масштабирования = бит выходного потока:
 - простейший случай (размер выходного файла наименьший; медленно; рассматривается ниже) — масштабирование выполняется при любой возможности, выходной поток битовый;
 - байтовый выходной поток масштабирование откладывается (увеличивается выходной файл; быстрее; необходимо $N \gg 256D^2$).
- Реализовать кодирование более-менее длинного сообщения без масштабирования невозможно.
- Схема масштабирований при декодировании должна быть точно такой же, как и при кодировании — иначе декодированное не совпадёт с исходным. Также должны совпадать и ν_i ($\implies D$ и ω_i), и N, и разрядность вычислений.

Величины и требования

Алфавит из T символов: $\xi_1, \xi_2, \dots \xi_T$, частоты $\nu_1, \nu_2, \dots \nu_T \in \mathbb{N}$, сортируются по убыванию $\nu_1 \geqslant \nu_2 \geqslant \ldots \geqslant \nu_T$. Деление пропорционально ν_j : $\begin{cases} \dot{\omega}_0 &=& 0, \\ \vdots \\ \omega_j &=& \omega_{j-1}+\nu_j, \\ \vdots \\ \omega_T &=& \omega_{T-1}+\nu_T. \end{cases}$

$$\omega_T = \omega_{T-1} + \nu_T.$$
 $\xi_1 = A$ $\xi_2 = D = \omega_T = \sum \nu_i - \pi$ делитель, не обязательно 2^κ

$$D=\omega_T=\sum_j
u_j$$
 — делитель, не обязательно 2^κ .
$$\frac{\xi_1=A}{\frac{\Delta\cdot\omega_0}{D}}=l \qquad \qquad \frac{\Delta\cdot\omega_1}{\frac{\Delta\cdot\omega_1}{D}} \stackrel{\Delta\cdot\omega_T}{=}=t$$

Изменение отрезка при чтении символа $c_i=\xi_j:\Delta=t-l,\; egin{cases} l\to l+rac{\Delta\cdot\omega_{j-1}}{D}\\ t\to l+rac{\Delta\cdot\omega_{j}}{D} \end{cases}$

новый [l,t) снова делится: в вещественном концепте — до исчерпания $c_1c_2\ldots c_n$; в целочисленной — пока не станет слишком маленьким (затем масштабирование).

Выбор N для кодирования: N : 4 (для масштабирования); расчёт без переполнения \Longrightarrow 1 $N \cdot D \leqslant \max(type)$; $\Delta > \frac{N}{4}$ дважды делится на символы \Longrightarrow 2 $N \gg 4D^2$. \Longrightarrow Выбор N для декодирования: деление на 2 всегда точно \implies \bigcirc $N=2^{\alpha}$, $\alpha\gg 1$

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот Интервальное кодирование (реализация)

Приведение частот (черновик)

Цифровой микроскоп Ньютона Величины и требования

Для вычислений требуется T ненулевых частот в порядке убывания ($\nu_1\geqslant \nu_2\geqslant \ldots\geqslant \nu_T$, $\sum \nu_j=D$); но хранить, как и для Хаффмана, нужно частоты всех 2^k возможных символов (k-битных байтов):

$$ec{
u} = \Big(
u(0),
u(1), ...,
u(2^k-1)\Big)$$
, из них T ненулевых и 2^k-T нулевых; $\sum_{j=0}^{2^k-1}
u(j) = D.$

Из файла длины n символов $\overrightarrow{count} = \left(count(0), count(1), ..., count(2^k - 1)\right); \sum_{j=0}^k count(j) = n.$

- **1** Для вычислений требуется $D^2 \ll \frac{N}{4} \implies$ частоты обязательно нормируются: $\begin{cases} \nu(0) + \nu(1) + \dots + \nu(2^k - 1) \approx D_{\text{желаемое}}, \\ \nu(0) : \nu(1) : \dots : \nu(2^k - 1) \approx count(0) : count(1) : \dots : count(2^k - 1), \end{cases}$ $\nu(i) \in \mathbb{N} \cup \{0\}.$
- 2 Арифметическое/интервальное кодирование принципиально не может записать символ с $u_i = 0$ ненулевые частоты не должны переходить в нулевые: $\nu(i) = 0 \Leftrightarrow count(i) = 0.$

<ロ > ←回 > ←回 > ← 巨 > 一豆 ● りへで

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот Интервальное кодирование (реализация) Приведение частот (черновик)

Выбор Джел

Пусть $u_1, \nu_2, \dots \nu_T \in \mathbb{N}$ (то есть ненулевые!), такие, что $\sum
u_j = D$:

- чем меньше D, тем точнее вычисления \Longrightarrow меньше размер сжатых данных;
- ullet но при слишком малых D менее точны $\nu(i): \nu(j) \approx count(i): count(j) \implies$ модель не соответствует исходному файлу \implies больше размер сжатых данных.
- **1** Если D < T, такие $\nu_1, \nu_2, \dots \nu_T \in \mathbb{N}$ вообще невозможны.
- **2** Если D = T, то $(\nu_1, \nu_2, \dots, \nu_T) = (1, 1, \dots, 1) \implies$ код фиксированной ширины.
- **③** Если D=2T, при равных частотах $(\nu_1, \nu_2, \dots, \nu_T) = (2, 2, \dots, 2)$; большие отклонения от count(i) : count(j) = 1 : 1 возможно отразить, малые нет. И т. д.: при равных частотах и D=4T $\vec{v}=(4,4,\ldots,4)$, при D=8T $(8,8,\ldots,8)$...

Для k-битного байта $T_{max} = 2^k$, в общем случае $D_{\text{жел}} \geqslant 8T_{max} = 8 \cdot 2^k = 2^{k+3}$.

Если частоты приведены к $\sum
u_j = D_{\mathsf{жел}} = 2^\kappa$, для записи u_j достаточно κ бит ($\kappa > k$, более байта):

- ullet либо $\exists i\colon
 u_i=2^\kappa$ и $\forall j
 eq i\colon
 u_i=0 \implies$ записывается $u_i=1$ и $u_i=0$ при i
 eq i $|code(c_1c_2...c_n)| = 0$ бит (вырожденный случай);
- либо $\forall j : \nu_i < 2^{\kappa} \implies$ все ν_i записываются κ битами.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆9.00

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот Интервальное кодирование (реализация) Приведение частот (черновик)

Выбор Джел

lacktriangle Соотношения всех частот немного искажаются, $D_{\mathsf{жел}} \geqslant T$:

$$x(j) = \begin{cases} 0, & count(j) = 0, \ (2^k - T) \text{ штук}; \\ \frac{(count(j) - 1) \cdot (D_{\mathsf{Men}} - T)}{n - T} + 1, \ count(j) > 0, \ T \text{ штук}; \end{cases}$$

$$\nu(j) = \mathrm{round}_{\sum} \left(x(j) \right).$$

В Соотношения меньших искажаются сильнее, $D_{\text{жел}} \geqslant 4T$:

$$x(j) = \begin{cases} 0, & count(j) = 0; \\ 1, & 1 \leqslant count(j) < \frac{3n}{2D_{\text{men}}}, \ T_1 \text{ wtyk}, \ \sum count = n_1; \\ \frac{count(j) \cdot (D_{\text{men}} - T_1)}{n - n_1}, & count(j) \geqslant \frac{3n}{2D_{\text{men}}}; \end{cases} \\ \nu(j) = \text{round}_{\sum} \left(x(j) \right).$$

Если округлять к ближайшему, $\nu(j)=\mathrm{round}\left(x(j)\right)$, то $\sum \nu(j) \approx D_{\mathsf{жел}}$ — не обязательно точно.

 $\operatorname{round}_{\sum}$ с сохранением суммы: $\nu(j) = |x(j)|$, $\Delta_{\nu} = D_{\mathsf{жел}} - \sum \nu(j) -$ целое и $\Delta_{\nu} = \sum \{x(j)\} \leqslant T$; $\Delta_{
u}$ раз ищем j с наибольшим $\{x(j)\}$ и заменяем u(j) o
u(j) + 1, $\{x(j)\} o 0$; в итоге $\sum
u(j) = D_{\mathsf{жел}}$.

Целочисленное, x(j) вида $\frac{u(j) \cdot D}{U}$: $\nu(j) = \left| \frac{u(j) \cdot D}{U} \right|$; вместо $0 \leqslant \{x(j)\} < 1$ целое $0 \leqslant (u(j) \cdot D)\%U < U$.

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот Интервальное кодирование (реализация) Приведение частот (черновик)

Выбор Джел Приведение $\sum count(j) = n$ к $\sum \nu(j) = D_{\mathbf{жел}}$

Приведение (А) и (В)

Пусть $D_{\text{жел}} = 2^6 = 64$ и $\overrightarrow{count} = (0, 3, 1, 46, 47, 1, 0, 2), n = \sum count(j) = 100$; ненулевых частот T = 6, $y(j) = |x(j)|, \quad r(j) \sim \{x(j)\}, \quad \nu(j)$ округлены с сохранением суммы и $\widetilde{\nu}(j)$ к ближайшему.

Приведение (A):
$$D_{\mathsf{жел}} - T = 58$$
, $n - T = 94$:
$$\begin{cases} count(j) = 0 \colon \ y(j) = 0, & r(j) = 0; \\ count(j) > 0 \colon \ y(j) = \left\lfloor \frac{(count(j) - 1) \cdot (D_{\mathsf{жел}} - T)}{n - T} \right\rfloor + 1, \ r(j) = \left((count(j) - 1) \cdot (D_{\mathsf{жел}} - T) \right) \% \Big(n - T \Big). \end{cases}$$

Приведение (B):
$$\frac{3n}{2D_{\mathbf{жen}}} \approx 2,3 \implies$$
 значений $1 \leqslant count(j) < \frac{3n}{2D_{\mathbf{жen}}}$ в массиве $T_1=3$, их сумма $n_1=4$:
$$\begin{cases} count(j)=0; & y(j)=0, & r(j)=0; \\ 1 \leqslant count(j) < \frac{3n}{2D_{\mathbf{xen}}}; & y(j)=1, & r(j)=0; \\ \frac{3n}{2D_{\mathbf{xen}}} \leqslant count(j); & y(j)=\left\lfloor \frac{count(j)\cdot(D_{\mathbf{xen}}-T_1)}{n-n_1} \right\rfloor, & r(j)=\left(count(j)\cdot(D_{\mathbf{xen}}-T_1) \right)\% \Big(n-n_1\Big). \end{cases}$$

	j									\sum / Δ_{ν}
(A)	$r_A(j)$	0	22	0	72	36	0	0	58	
	$y_A(j)$	0	2	1	28	29	1	0	1	62 (2)
	$\nu_A(j)$	0	2	1	29	29	1	0	2	64
	$\widetilde{ u_A}(j)$	0	2	1	29	29	1	0	2	64

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

$$D_{\mathsf{жел}} = 64$$
 и $\overrightarrow{count} = (0, 45, 30, 46, 47, 30, 0, 40)$, $n = \sum count(j) = 238_{10} = 356_8$, ненулевых $T = 6$.

j	0	1	2	3	4	5	6	7	\sum
r(j)	0	0	58	58	116	58	0	174	
1 Непосредственное (A) $\overrightarrow{count} o \vec{\nu}$: $y(j)$	0	12	8	12	12	8	0	10	$62 \ (\Delta_y = 2)$
$\overline{ u(j)}$	0	12	8	12	13	8	0	11	64
$\overline{\widetilde{ u}(j)}$	0	12	8	12	13	8	0	11	64

Разрядность $\nu(j)$ больше байта \implies массив частот объёмнее, чем для Хаффмана.

2 Вначале для записи в файл (A) \overrightarrow{count} к однобайтовым \vec{u} : $\vec{u} = (0, 7, 5, 7, 7, 5, 0, 6), \sum u(j) = 37$; 6 15 15 0 11 затем (A) $\vec{u} \rightarrow \vec{\nu}$: y(j)12 12 62 ($\Delta_y = 2$) 8 12 8 0 10 12 12 9 12 9 0 10 $\overline{\widetilde{\nu}(j)}$ 12 8 12 12 8 0 10 62

В файл: 0356, 07577506 и код по $\vec{v}=(0,12,9,12,12,9,0,10)$ (или по $\tilde{\vec{v}}$ — как реализовано).

Две перенормировки \implies модель хуже подходит файлу \implies больше размер; для 8-битного байта менее выражено, но на некоторых файлах код Хаффмана эффективнее целочисленной реализации АС. 4□ > 4回 > 4 回 > 4 回 > 1 回 9 Q (P)

> Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

> > Интервальное кодирование (реализация) Приведение частот (черновик)

Задачи для семинаров и вопросы

- lacktriangle Найдите возможные пары $N=2^{lpha}$ и $D_{
 m xeq}=2^{\kappa}$ для алфавита из октетов (8-битных байтов IBM PC), $T_{\rm max} = 2^8 = 256$ и а) 32-битной арифметики (все пары), б) 64-битной арифметики (граничные).
- **2** Оцените максимально возможное $\frac{\nu_{\text{max}}}{2}$ для октетов и $D_{\text{жел}} \in \{2T, 4T, 8T, 16T\}$. $\nu_{\rm min}$
- 3 Рассчитайте $\vec{\nu}$ при равных частотах, а также максимально возможное $\frac{
 u_{\max}}{2}$ для октетов и $D_{\max}=2^{16}$. $\nu_{\rm min}$
- Пусть байт=октет, а $D_{\rm жел}=2^{12}=16T_{\rm max}$. В общем случае для $\nu(j)$ требуется полтора октета, но во многих случаях достаточно одного: примерно равные частоты всех байтов — $\nu \approx \frac{2^{12}}{2\pi c} = 16$; печатных ASCII-символов $\frac{2^{12}}{95} \approx 40$ для ненулевых; строчной латиницы $\frac{2^{12}}{25} \approx 160$ для ненулевых. Как без дополнительных служебных полей понять при чтении массива из 256 октетов с младшими частями $\nu(j)$ — достаточно их или позже должны следовать $\frac{4}{8} \cdot 256 = 128$ октетов с 256 4-битными старшими частями $\nu(j)$?

Реализуемо ли предложенное для $D_{\text{жел}} = 2^{11}$ или 2^{10} ?

 $oldsymbol{0}$ Как выгоднее сохранять частоты октетов — 8-разрядными $(\max
u_i = 2^8 - 1)$ с перенормировкой перед расчётом или готовыми κ -разрядными $(\sum \nu_j = 2^{\kappa}, \ \kappa > 8)$? Обоснуйте ответ.

Выбор Джел

<ロ > → □ > → □ > → □ > → □ → ○ へ ○

Сжатие \Diamond БАНАН \hookrightarrow 011 ac samples/banan realset integerset.pdf

Входной поток: символы $C = c_1 c_2 \dots c_n$, выходной — биты $B = b_1 b_2 b_3 \dots b_m$

- $0 \ l = 0, t = N,$ бит зарезервировано $\beta = 0,$ позиция символа i = 0
- $lacksymbol{1}$ чтение (++i) символа $C o c_i = \xi_j$: $\Delta = t-l, \; egin{cases} l o l + rac{\Delta \cdot \omega_{j-1}}{D}, \ t o l + rac{\Delta \cdot \omega_j}{D} : \end{cases}$ авост при t=l.
- ② масштабирование $l,t: \begin{cases} l \to 2(l-L) \\ t \to 2(t-L) \end{cases}$ и запись бита b, пока возможно (м.б. неск.): $\left[\frac{b\cdot N}{2},\frac{(b+1)\cdot N}{2}\right),b\in\{0,1\}\to[0,N)\text{ и запись }b\to B\left(b\underbrace{\overline{bb}\ldots\overline{b}}_{\beta}\to B,\,\beta\to0\right)$ $\left[\frac{N}{4},\frac{3N}{4}\right)\to[0,N)$ и $++\beta$
- $oldsymbol{3}$ если достигнуто i=n- запись 1 o B $\left(1\underbrace{00\ldots 0}_{\mathcal{B}} o B
 ight)$ и завершение;
 - иначе переход к шагу 🚺
- Полученное $z \in [0,1)$ соответствует бесконечно длинной строке $c_1c_2\ldots c_nc_{n+1}c_{n+2}\ldots \to$ необходимо сохранить исходную длину n.
- **2** Поточный вариант ν_i и ω_i пересчитываются.

Распаковка

Символов — n, входной поток — биты $B = b_1 b_2 b_3 \dots b_m 000 \dots$ выходной поток — символы $C = c_1 c_2 \dots c_n$.

- **1** $0 = \lambda = 0, t = \tau = N$. № бита k = 0. № символа i = 0
- lack lack чтение (++k) бита $B o b_k$: $\delta= au-\lambda, \ \begin{cases} \lambda o\lambda+rac{\delta\cdot b_k}{2},\ au o\lambda+rac{\delta\cdot (b_k+1)}{2}. \end{cases}$
- **2** получение и запись символа, если возможно: $\Delta = t l, \ j \in \{1, \dots, T\}$

$$\exists j: [\lambda, \tau) \subseteq \left[l + \frac{\Delta \cdot \omega_{j-1}}{D}, \ l + \frac{\Delta \cdot \omega_{j}}{D} \right) \qquad \Longrightarrow \qquad ++i, \ \xi_{j} \to C, \ \begin{cases} l \to l + \frac{\Delta \cdot \omega_{j-1}}{D} \\ t \to l + \frac{\Delta \cdot \omega_{j}}{D} \end{cases}$$

- **3** масштабирование l, λ, τ, t , пока возможно (м. б. несколько раз): $[l,t)\subseteq [L,L+\frac{N}{2})\Longrightarrow [L,L+\frac{N}{2})\to [0,N)$ (не влияет на выходной поток); когда уже невозможно — переход к шагу 2
- **4** если достигнуто i = n завершение, иначе переход к шагу **1**

 $N=2^{\alpha} \implies$ чтение бита точно \implies на шаге \bigcirc читаем сразу несколько бит (при k=0 читаем lpha бит), чтобы получить ПИ вида $\lambda,\lambda+1$

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот Интервальное кодирование (реализация)

Приведение частот (черновик)

Распаковка

Д. Ватолин, целочисленный цикл (отрезки)

Выше в целочисленной реализации рабочий диапазон рассматривался как полуинтервал $[l,t), l \leq z < t,$ где t — невключаемая верхняя граница.

Тот же самый диапазон можно представить как отрезок $[l,h],\ l\leqslant z\leqslant h,$ где h = t - 1 — включаемая верхняя граница.

Реализовать кодирование и декодирование можно как для полуинтервалов $[l,t)/[\lambda,\tau)$, так и для отрезков $[l,h]/[\lambda,\chi]$, но все соотношения будут различаться (см. следующий лист)!

Основные соотношения для t и h

$$[l,t) = [l,h] \iff h = t-1 \iff t = h+1$$
 Полуинтервал $[l,t)$, $l \leqslant z < t$ Отрезок $[l,h]$, $l \leqslant z \leqslant h$ Длина
$$\Delta = t-l \qquad \delta = \tau - \lambda \mid \Delta = h-l+1 \qquad \delta = \chi - \lambda + 1$$
 Чтение символа ξ_j или бита b
$$\begin{cases} l \rightarrow l + \frac{\Delta \cdot \omega_{j-1}}{D}, \\ t \rightarrow l + \frac{\Delta \cdot \omega_{j-1}}{D}, \end{cases}$$
 авост при $t = l$
$$\begin{cases} l \rightarrow l + \frac{\Delta \cdot \omega_{j-1}}{D}, \\ t \rightarrow l + \frac{\Delta \cdot (b+1)}{D}, \end{cases}$$
 $\begin{cases} \lambda \rightarrow \lambda + \frac{\delta \cdot b}{2} \\ \tau \rightarrow \lambda + \frac{\delta \cdot (b+1)}{2} \end{cases} \end{cases}$
$$\begin{cases} \lambda \rightarrow \lambda + \frac{\delta \cdot b}{2} \\ \chi \rightarrow \lambda + \frac{\delta \cdot (b+1)}{2} - 1 \end{cases}$$
 Масштабирование $[L, L + \frac{N}{2}) \rightarrow [0, N), \ L \in \{0, \frac{N}{4}, \frac{N}{2}\} \end{cases}$
$$[l,t) \subseteq [L, L + \frac{N}{2}) \iff \begin{cases} L \leqslant l \\ t \leqslant L + \frac{N}{2} \end{cases}$$

$$\begin{cases} l \rightarrow 2(l-L) \\ h \rightarrow 2(h-L) + 1 \end{cases}$$

$$2t-1 = 2(h+1)-1 = 2h+1$$

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

Основные соотношения для t и hД. Ватолин, целочисленный цикл (отрезки)

Интервальное кодирование (реализация) Приведение частот (черновик)

Д. Ватолин, целочисленный цикл (отрезки)

```
1 \ 1[0] = 0; \ h[0] = 65535; \ i = 0; \ delitel = b[c_last];
 2 First_qtr = (h[0] + 1)/4; Half = First_qtr*2; Third_qtr = First_qtr*3;
 3 bits_to_follow = 0; // масштабирований [First_qtr; Third_qtr)
 4 while (not DataFile.EOF()) {
     c = DataFile.ReadSymbol(); i++; // Кодируемый символ
    j = IndexForSymbol(c); // и его номер в алфавите
    l[i] = l[i-1] + b[j-1]*(h[i-1] - l[i-1] + 1)/delitel;
    h[i] = l[i-1] + b[j]*(h[i-1] - l[i-1] + 1)/delitel - 1;
     for(;;) {
                         // Варианты масштабирования
      if (h[i] < Half) // [1; h] лежит в [0; Half)
10
11
        bits_plus_follow(0);
12
      else if (l[i] >= Half) { // [l; h] лежит в [Half, max)
13
        bits_plus_follow(1);
14
        l[i] -= Half; h[i] -= Half;
15
16
       else if ((l[i] >= First_qtr) && (h[i] < Third_qtr)) {</pre>
17
        bits to follow++:
18
        l[i] -= First_qtr; h[i] -= First_qtr;
19
      } else break;
20
      l[i] += l[i]; h[i] += h[i] + 1; // масштабирование *2
21
22 }
```

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

Д. Ватолин, целочисленный цикл (отрезки), запись бита (bits plus follow)

```
1 void bits_plus_follow (int bit)
2 {
3
    CompressedFile.WriteBit(bit);
    for(; bits_to_follow > 0; bits_to_follow--)
4
       CompressedFile.WriteBit(!bit);
5
6 }
  bits_to_follow = \beta — количество масштабирований из средней
  половины \left[\frac{1}{4}; \frac{3}{4}\right) \to \left[0; 1\right) подряд
```

Дмитрий Ватолин, МГУ, Media data compression. Сжатие без потерь

МИЭТ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie

При $D=2^{\kappa}$ вычисления точнее \implies либо код немного короче, либо $D^2 < \frac{N}{\delta}$ вместо \ll : нужно найти $\vec{\nu}$ с $\sum \nu(j) = D_{\text{жел}}$, где $D_{\text{жел}} = 2^{\kappa} \geqslant 2^{k+2}$ определено на этапе разработки алгоритма; $\overrightarrow{count} = \left(count(0), count(1), ..., count(2^k - 1)\right)$, $\sum count(j) = n$ — из исходного файла.

- **1** Если $n = D_{\text{жел}}$, приведение не требуется: $\nu(i) = count(i)$ для всех.
- **2** Если $n < D_{\mathsf{wen}}$: для count(j) = 0 записываем $\nu(j) = 0$; осталось T штук ненулевых частот $count(j) \geqslant 1$:
- рассчитываем нецелые $x(j) = \frac{count(j)}{n} \cdot D_{\mathsf{жел}} > count(j) \geqslant 1; \quad \sum x(j) = D_{\mathsf{жел}};$
- ullet округляем x(j) до целых с сохранением суммы: $\nu(j) = \operatorname{round}_{\Sigma} \left(x(j) \right)$. Нулевые count(j)=0 можно и по общему правилу: $x(j)=\frac{count(j)}{\pi}\cdot D_{\mathsf{жел}}=0$ — целые $\implies \nu(j)=0$.
- **3** Если $n > D_{\mathsf{жел}}$, то может быть $x(j) = \frac{count(j)}{2} \cdot D_{\mathsf{жел}} < 1 \implies$ дополнительное искажение. Как и для нормировки на максимум (для Хаффмана), есть два способа:
- искажение всех соотношений $\nu(i): \nu(j) \approx count(i): count(j)$ понемногу (A);
- более точное $\nu(i): \nu(j) \approx count(i): count(j)$ для больших частот, а для малых $\nu(i): \nu(j) = 1:1$ (B).

<ロ> <問> < 置> < 置> < 置> < 置 > の< で

Нормировка на точную сумму

Здесь и далее $z(j) = round_{\sum} \left(x(j) \right)$ — округление набора значений с сохранением суммы:

- есть T штук нецелых x(j) с целой суммой $\sum x(j) = D$, необходимо получить T штук целых z(j)
- точно сохранив сумму: $\sum z(j) = D$; • максимально сохранив значения: $z(j) \approx x(j)$.
- **1** y(j) = |x(j)| (округляем все значения вниз);
- $oxed{Q}$ $\Delta_y = D_{\mathsf{жел}} \sum y(j)$ (рассчитываем, сколько не хватает до D); Δ_y целое; $\Delta_y = \sum \{x(j)\} \leqslant T$;
- lacktriangle упорядочиваем значения по убыванию дробной части исходных $\{x(i)\}$:
- для первых Δ_u штук z(j) = y(j) + 1 (x(j) с самыми большими дробными частями округляем вверх);
- для остальных z(j) = y(j)(остальные — с меньшими дробными частями — округляем вниз). (Альтернативный 3 без пересортировок: Δ_n раз ищем j с наибольшим $\{x(j)\}$ и заменяем $y(j) \to y(j) + 1$, $\{x(j)\} \to 0$; после завершения Δ_y замен полагаем z(j) = y(j)).
 - Полученные таким образом z(j): \bullet целые; \bullet $z(j) \approx x(j)$; \bullet $\sum z(j) = \sum y(j) + \Delta_y = D$;
- ullet если $\forall j \colon x(j) \geqslant a$ для какого-либо $a \in \mathbb{Z}$, то и $\forall j \colon z(j) \geqslant a$;
- ullet если среди x(j) есть R штук целых все они сохранят значение при округлении: z(j)=x(j).

Целочисл., x(j) вида $\frac{u(j)\cdot D}{U}$: сразу $y(j)=\left\lfloor \frac{u(j)\cdot D}{U}\right\rfloor$; вместо $0\leqslant \{x(j)\}<1$ целое $0\leqslant (u(j)\cdot D)\%U< U$

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот Интервальное кодирование (реализация)

Приведение частот (черновик)

Округление с сохранением суммы

- Приведение (A) аналогично round $\left(\frac{count(i)-1}{\max(count)-1}\cdot (Max-1)\right)+1$ для нормировки на максимум:
- ① Для count(j)=0 записываем $\nu(j)=0 \implies$ осталось $T\leqslant 2^k$ ненулевых значений:
- $count(j) \ge 1$, $\sum count(j) = n$;
- ullet необходимо привести к $u(j)\geqslant 1$ с суммой $\sum
 u(j)=D_{\mathsf{жел}}.$
- ② Рассмотрим значения u(j) = count(j) 1, тогда $u(j) \geqslant 0$, $\sum u(j) = \sum (count(j) 1) = n T$; будем приводить к $\theta(j) = \nu(j) 1$, $\theta(j) \geqslant 0$, $\sum \theta(j) = \sum (\nu(j) 1) = D_{\mathsf{жел}} T$: $x(j) = \frac{u(j)}{n T} \cdot (D_{\mathsf{жел}} T) \qquad \Longrightarrow \qquad \theta(j) = \mathrm{round}_{\sum} \left(x(j) \right) \qquad \Longrightarrow \qquad \nu(j) = \theta(j) + 1.$

Так как $\operatorname{round}_{\sum}$ проще реализовать на массиве «без дыр», а целочисленные значения сохраняются:

«Целочисленная дробная часть» $r(j) = \{x(j)\} \cdot (n-T), \quad 0 \leqslant r(j) < (n-T)$: $\begin{cases} count(j) = 0; & y(j) = 0, & r(j) = 0; \\ count(j) > 0; & y(j) = \left\lfloor \frac{(count(j)-1) \cdot (D_{\texttt{men}} - T)}{n-T} \right\rfloor + 1, \quad r(j) = \left((count(j)-1) \cdot (D_{\texttt{men}} - T) \right) \% \left(n-T \right). \end{cases}$

Применимо и для $n\leqslant D_{\mathsf{жел}}$, при этом $1\to 1$; результат отличается от $\mathrm{round}_{\sum}\left(\frac{count(j)}{n}\cdot D_{\mathsf{жел}}\right)$.

Арифметическое сжатие (концепт)
Интервальное кодирование (базовые положения)
Приведение частот
Интервальное кодирование (реализация)

Приведение частот (черновик)

Округление с сохранением суммы (A) $\sum count(j) = n$ к $\sum \nu(j) = D_{\mathbf{жел}} \geqslant T$, искажение всех частот

(B) $\sum count(j) = n$ к $\sum \nu(j) = D_{\mathsf{жел}} \geqslant 4T$, все малые частоты в 1

Приведение (B) — аналогично $\operatorname{round}\left(\frac{\operatorname{count}(i)}{\max(\operatorname{count})}\cdot \operatorname{Max}\right)$: для больших $\nu(j) \approx \frac{\operatorname{count}(j)}{\pi} \cdot D_{\mathsf{жел}}$, при $\frac{1}{2} < \frac{count(j)}{n} \cdot D_{\mathsf{жел}} < \frac{3}{2} \left(\frac{1}{2} \cdot \frac{n}{D_{\mathsf{wen}}} < count(j) < \frac{3}{2} \cdot \frac{n}{D_{\mathsf{wen}}} \right) \nu(j) \approx 1$; при меньшем принудительно 1.

- lacktriangle Для count(j)=0 записываем $u(j)=0 \implies$ осталось $T\leqslant 2^k$ ненулевых $count(j), \sum count(j)=n$.
- ② Для $1\leqslant count(j)<\frac{3n}{2D_{\max}}$ записываем $\nu(j)=1$ (пусть их $T_1\leqslant T$ штук и $\sum count(j)=n_1\leqslant n$).

При этом $T_1 < T$ и $n_1 < n$ (если $T_1 = T$, то $n = \sum count(j) < \sum \frac{3n}{2D_{m+1}} = T \cdot \frac{3n}{2D_{m+1}}$, но $D_{\mathsf{жел}} \geqslant 4T$).

③ Оставшиеся $T-T_1$ частот с $\sum count(j)=n-n_1$ приводим к $\sum \nu(j)=D_{\mathsf{жел}}-T_1$.

$$x(j) = \begin{cases} 0, & count(j) = 0, \\ 1, & 1 \leqslant count(j) < \frac{3n}{2D_{\mathsf{men}}}, \\ \frac{count(j) \cdot (D_{\mathsf{men}} - T_1)}{n - n_1}, & count(j) \geqslant \frac{3n}{2D_{\mathsf{men}}}; \end{cases} \Longrightarrow \nu(j) = \operatorname{round}_{\sum} \Big(x(j) \Big).$$

При $D_{\mathsf{жел}}\geqslant 4T$ в третьем случае $\frac{count(j)\cdot(D_{\mathsf{жел}}-T_1)}{n-n_1}>\frac{\frac{3n}{2D_{\mathsf{жел}}}\cdot(D_{\mathsf{жел}}-T)}{n}=\frac{3}{2}\cdot\left(1-\frac{T}{D_{\mathsf{wen}}}\right)\geqslant \frac{9}{8}>1.$

Применимо и для $n \leqslant D_{\mathsf{жел}}$, при этом $1 \to 1$; отличается от $\mathrm{round}_{\sum} \left(\frac{count(j)}{n} \cdot D_{\mathsf{жел}} \right)$ и от (A).

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

Приведение (A) и (B): $n < D_{xen}$

Пусть $D_{\mathsf{жел}} = 2^6 = 64$ и $\overrightarrow{count} = (0, 3, 1, 16, 17, 1, 0, 2), n = \sum count(j) = 40$; ненулевых частот T = 6:

Приведение (B):
$$\frac{3n}{2D_{\text{жел}}} \approx 0.9 \implies$$
 значений $1 \leqslant count(j) < \frac{3n}{2D_{\text{жел}}}$ нет, $T_1 = n_1 = 0$

$$\begin{cases} & count(j) = 0: & y(j) = 0, & r(j) = 0; \\ 1 & \leqslant count(j) < \frac{3n}{2D_{\mathbf{men}}}: & y(j) = 1, & r(j) = 0; \\ \frac{3n}{2D_{\mathbf{men}}} \leqslant count(j): & y(j) = \left\lfloor \frac{count(j) \cdot (D_{\mathbf{men}} - T_1)}{n - n_1} \right\rfloor, & r(j) = \left(count(j) \cdot (D_{\mathbf{men}} - T_1) \right) \% \left(n - n_1 \right). \\ j & \mid \mathbf{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \mid \sum \end{cases}$$

J	_	1		-		5	-			
r(j)	0	32	24	24	8	24	0	8		$\Delta_y = D_{жел} - \sum y = 3$
y(j)	0	4	1	25	27	1	0	3	61	$\Delta_y = D_{жел} = \sum_{i} y = 3$
$\overline{\nu(i)}$	0	5		26					64	-

Арифметическое сжатие (концепт) Интервальное кодирование (базовые положения) Приведение частот

(B) $\sum count(j) = n$ к $\sum \nu(j) = D_{\mathsf{жел}} \geqslant 4T$, все малые частоты в 1 Приведение (A) и (B): $n < D_{жел}$