Lineare Algebra 2 Hausaufgabenblatt Nr. 12

Jun Wei Tan*

 $Julius\hbox{-}Maximilians\hbox{-}Universit\"at \ \ W\"urzburg$

(Dated: January 25, 2024)

Problem 1. Betrachten Sie die komplexen 3×3 -Matrizen

$$A_{1} = \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & 3 & -i \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix}, A_{3} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

Welche der Matrzen sind positiv, welche sogar positiv definit?

Proof. Wir berechnen das Spektrum von A_1 . Es gilt für das charakteristiches Polynom

$$P(\lambda) = \det(A_1 - \lambda I) = -\lambda^3 + 12\lambda^2 - 36\lambda.$$

Die Nullstellen bzw. Eigenwerte sind $\lambda = 0$ und $\lambda = 6$. Dann ist A_1 positiv. Weil $\lambda = 0$ ein Eigenwert ist, ist $\det(A_1) = 0$ und A_1 ist nicht invertierbar.

 A_2 ist nicht positiv, weil $A_2 \neq A_2^*$.

Wir berechnen noch einmal das Spektrum von A_3 . Es gilt für das charakteristische Polynom.

$$P_3(\lambda) = \det(A - \lambda I) = -x^3 + 8x^2 - 13x + 2.$$

Die Nullstellen sind x=2 und $x=3\pm 2\sqrt{2}$, also A_3 ist positiv. Da 0 kein Nullstelle ist, ist $\det(A_3)\neq 0$ und A_3 ist invertierbar, also A ist positiv definit.

Problem 2. Betrachten Sie den unitären Vektorraum \mathbb{C}^n mit dem Standardskalarprodukt.

(a) Sei $A \in M_n(\mathbb{C})$ selbstadjungiert und $A = U^{-1}DU$, wobei U eine invertierbare Matrix und D eine Diagonalmatrix sind. Sei $P_i = U^{-1}M_iU$ mit Diagonalmatrix M_i , sodass

$$(M_i)_{kk} = \begin{cases} 1 & D_{kk} = \lambda_i \\ 0 & \text{sonst.} \end{cases}$$

gilt. Zeigen Sie, dass P_i eine Orthogonalprojektion auf den Eigenraum von λ_i ist.

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) Bestimmen Sie den Positivteil $(A_i)_+$, den Negativteil $(A_i)_-$ und den Absolutbetrag $|A_i|$ für i=1,2 der folgenden Matrizen

$$A_{1} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 0 & 3 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2i \\ 0 & 0 & 2i & 0 \end{pmatrix}.$$

Proof. (a) $P_i^2 = U^{-1}M_iUU^{-1}M_iU = U^{-1}M_i^2U = U^{-1}M_iU = P_i$. Sei v ein Eigenvektor mit Eigenwert λ . D.h. $Uv = e_i$ für eine geeignete Basisvektor e_i . Dann ist $(M_j)_{kk}Uv = 0$, wenn j einen anderen Eigenwert entspricht. Dann ist im P_i der Eigenraum mit Eigenwert λ_i .

Da A selbstadjugiert und daher normal ist, sind die Eigenräume orthogonal, und P_i ist ein Orthogonalprojektor.

(b) Wir berechnen die Eigenvektoren und Eigenwerte von den Matrizen. Für A_1 sind die Eigenwerte 2, 2 und -1. Die Eigenvektoren sind (-1,0,1) und (-1,2,-1) bzgl. des Eigenwerts 2 und (1,1,1) bzg. des Eigenwerts -1.

Dann diagonalisieren wir A_1 :

$$U = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
$$A_1 = U \operatorname{diag}(2, 2, -1) U^{-1}$$

Dann ist das Positivteil Udiag $(2,2,0)U^{-1}$, oder

$$(A_1)_+ = \frac{1}{3} \begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{pmatrix}.$$

und

Der Betrag ist

$$|A_1| = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}.$$

Ähnlich sind die Eigenwerte von $B \pm 3$ und ± 2 . Die Eigenvektoren sind

$$EW = -3 : (-1, 1, 0, 0)^{T}$$

$$EW = 3 : (1, 1, 0, 0)^{T}$$

$$EW = -2 : (0, 0, i, 1)$$

$$EW = 2 : (0, 0, -i, 1)$$

Dann definieren wir

$$U_2 = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & i & -i \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Es gilt $A_2 = U_2 \operatorname{diag}(-3, 3, -2, 2)U_2^{-1}$. Das Positivteil ist durch $A_2 = U_2 \operatorname{diag}(0, 3, 0, 2)$ definiert und

$$(A_2)_+ = \begin{pmatrix} 3/2 & 3/2 & 0 & 0 \\ 3/2 & 3/2 & 0 & 0 \\ 0 & 0 & 1 & -i \\ 0 & 0 & i & 1 \end{pmatrix}.$$

Das Negativteil ist ähnlich

$$(A_2)_- = \begin{pmatrix} -3/2 & 3/2 & 0 & 0\\ 3/2 & -3/2 & 0 & 0\\ 0 & 0 & -1 & -i\\ 0 & 0 & i & -1 \end{pmatrix}.$$

Der Betrag ist

$$|A_2| = \operatorname{diag}(3, 3, 2, 2).$$

Problem 3. Beweisen oder widerlegen Sie:

(a) Eine obere Dreiecksmatrix ist nie orthogonal.

- (b) Sei V ein unitärer Vektorraum. Ein Endomorphismus A ist genau dann normal, wenn $\|Av\| = \|A^*v\|$ für alle $v \in V$ gilt.
- *Proof.* (a) Falsch. Die Identität diag(1, 1, ..., 1) ist eine obere Dreiecksmatrix und jedoch orthogonal.

Problem 4. Sei V ein endlich-dimensionaler euklidischer oder unitärer Vektorraum. Sei weiter $\operatorname{End}_{sa}(V) \subset \operatorname{End}(V)$ die Teilmenge der selbstadjungierten Endomorphismen auf V. Für $A, B \in \operatorname{End}_{sa}(V)$ definieren wir $A \leq B$, falls B - A ein positiver Endomorphismus ist.

- (a) Zeigen Sie, dass $\operatorname{End}_{sa}(V)$ ein reeller Unterraum von $\operatorname{End}(V)$ ist.
- (b) Zeigen Sie, dass für $\lambda, \mu \geq 0$ und $A, B, C, D \in \text{End}_{sa}(V)$ mit $A \leq B$ und $C \leq D$ folgt, dass

$$\lambda A + \mu C \le \lambda B + \mu D$$

gilt.

(c) Zeigen Sie, dass für alle $A \leq B$

$$CAC^* < CBC^*$$

für alle $C \in \text{End}(V)$ gilt.

- (d) Zeigen Sie, dass für $A \geq 0$ und $\lambda > 0$ der Endomorphismus $A + \lambda$ invertierbar ist.
- (e) Betrachten Sie $V=\mathbb{C}^2$ mit Standardskalarprodukt und

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Zeigen Sie, dass $0 \le A \le B$ gilt. Zeigen Sie, dass $A^2 \le B^2$ nicht gilt.

Proof. (a) Linearität von die adjungierte Endomorphismus:

$$(\lambda_1 A + \lambda_2 B)^* = (\lambda_1 A)^* + (\lambda_2 B)^*$$

$$= \lambda_1^* A^* + \lambda_2^* B^*$$

$$= \lambda_1 A^* + \lambda_2 B^*$$

$$= \lambda_1 A + \lambda_2 B$$

$$A, B \text{ selbstadjugiert}$$

(b) Es gilt

$$\lambda B + \mu D - (\lambda A + \mu C)$$
$$= \lambda (B - A) + \mu (D - C)$$

Da sowohl B-A als auch D-C positiv sind, ist die lineare Kombination auch positiv. Die Behauptung folgt.

- (c) Es gilt $CBC^* CAC^* = C(B-A)C^*$. Sei $v \in V$. Es gibt dann $w \in W$, so dass $\langle v, C(B-A)C^*v \rangle = \langle w, (B-A)w \rangle$. Dies ist definiert genau durch $w = C^*v$. Da B-A positiv ist, ist das innere Produkt auch immer positiv.
- (d) Ein Endomorphismus ist genau dann invertierbar, wenn 0 kein Eigenwert ist. Da $A \geq 0$, besitzt A nichtnegative Eigenwerte. Wir zeigen: Sei $\lambda_1 \geq 0$ ist genau dann Eigenwert von A, wenn $\lambda_1 + \lambda$ Eigenwert von $A + \lambda$ ist.

Sei zunächst λ_1 Eigenwert von A. Es gilt

$$\det(A + \lambda - (\lambda_1 + \lambda)) = \det(A - \lambda_1)$$
$$= 0$$

Dann ist $\lambda + \lambda_1$ Eigenwert von $A + \lambda$. Sei umgekehrt $\lambda_1 + \lambda$ Eigenwert von $A + \lambda$. Es gilt dann

$$\det(A - \lambda_1) = \det(A - \lambda_1 + \lambda - \lambda)$$
$$= \det(A + \lambda - (\lambda_1 + \lambda))$$
$$= 0$$

Dann ist λ_1 Eigenwert von A.

Weil $\lambda > 0$, sind die Eigenwerte alle strikt positiv. Dann ist 0 kein Eigenwert, und $A + \lambda$ ist invertierbar.

(e)
$$B - A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Die Eigenwerte sind 2 und 0, also B-A ist positiv. Es gilt

$$B^2 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$$

 $\quad \text{und} \quad$

$$A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Dann ist

$$B^2 - A^2 = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}.$$

Die Eigenwerte von $B^2 - A^2$ sind $3 \pm \sqrt{10}$. Aber $3 - \sqrt{10} < 0$, also $B^2 - A^2$ ist nicht positiv.