Lecture 6 Edge Detection

COMP3204 & COMP6223 Computer Vision

What are edges and how do we find them?

Department of Electronics and Computer Science

Edge detection

U2's Edge can't detect edges

http://metro.co.uk/2015/05/15/the-edge-falls-off-the-edge-of-the-stage-in-spectacular-style-during-u2s-world-tour-5199503/

First order edge detection

First order edge detection

• vertical edges, Ex
$$\mathbf{E}\mathbf{x}_{x,y} = \left|\mathbf{P}_{x,y} - \mathbf{P}_{x+1,y}\right|$$

• horizontal edges, Ey
$$\mathbf{E}\mathbf{y}_{x,y} = \left|\mathbf{P}_{x,y} - \mathbf{P}_{x,y+1}\right|$$

• vertical and horizontal edges $\mathbf{E}_{x,y} = \left| 2 \times \mathbf{P}_{x,y} - \mathbf{P}_{x+1,y} - \mathbf{P}_{x,y+1} \right|$

First order edge detection

Template

2	-1
-1	0

Code

```
function edge = basic_difference(image)
for x = 2:cols-1 %address all columns except border
  for y = 2:rows-1 %address all rows except border
    edge(y,x)=abs(2*image(y,x)-image(y-1,x)-image(y,x-1));
  end
```


Edge detection maths

Taylor expansion for
$$f(x + \Delta x)$$
 $f(x + \Delta x) = f(x) + \Delta x \times f'(x) + \frac{\Delta x^2}{2!} \times f''(x) + O(\Delta x^3)$

By rearrangement
$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} - O(\Delta x)$$

This is equivalent to $\mathbf{E}\mathbf{x}\mathbf{x}_{x,y} = \left|\mathbf{P}_{x+1,y} - \mathbf{P}_{x-1,y}\right|$

Expand
$$f(x - \Delta x)$$
 $f(x - \Delta x) = f(x) - \Delta x \times f'(x) + \frac{\Delta x^2}{2!} \times f''(x) - O(\Delta x^3)$ B

If $\Delta x < 1$, this error is clearly smaller

Templates for improved first order difference

Edge Detection in Vector Format

$$M = \text{magnitude} = \sqrt{M_x^2 + M_y^2}$$

 $\theta = \text{direction} = tan^{-1} \left(\frac{M_y}{M_x}\right)$

$$\theta = \text{direction} = tan^{-1} \left(\frac{M_y}{M_x} \right)$$

Templates for Prewitt operator

ı			
	1	0	-1
	1	0	-1
	1	0	-1
·		(-) 1 <i>(</i> -	

1	1	1
0	0	0
-1	-1	-1

(b) *My*

Applying the Prewitt Operator

Templates for Sobel operator

1	0	-1
2	0	-2
1	0	-1

(a) *Mx*

1	2	1
0	0	0
-1	-2	-1

(b) *My*

Applying Sobel operator

Generalising Sobel

Averaging Window size
2 1 1
3 1 2 1
4 1 3 3 1
5 1 4 6 4

• Differencing Window size

2				1		-1			
3			1		0		-1		
4		1		1		-1		-1	
5	1		2		0		-2		- 3

Generalised Sobel

```
Generated by: averaging*(differencing)<sup>T</sup>
>> s=Sobel templates(5)
s(:,:,1) =
       8 0 -8 -4
      12 0 -12 -6
              0 -8 -4
     8
              0 -2 -1
```

COURSEWORK!!!!