Sistemas de Computação

Mestrado Integrado em Engenharia de Comunicações

2012/2013

Desempenho (I)

- Medidas de desempenho
 - Como se mede o desempenho de um sistema?
 - Qual a importância de medir o desempenho?
 - Para que serve?

Desempenho (II)

- Medidas de desempenho ou benchmarks
 - Objectivo: quantificar o desempenho de um sistema ou de componentes específicos de um computador
 - Importância:
 - Ajudam na comparação de sistemas e na avaliação da sua adequação a determinadas aplicações
 - Detectam, ou pelo menos indicam, deficiências na configuração do sistema que prejudicam o desempenho
 - A quantificação precisa do desempenho de determinados componentes só é possível mediante a utilização de equipamento especializado que os isole do restante equipamento
 - Alternativa é usar sistemas baseados em software que não sendo tão exactos como um banco de testes dedicado, podem dar boas indicações do desempenho

Desempenho (III)

- Tipos de medidas de desempenho
 - Sintéticas são utilizadas um conjunto de operações de baixo nível (instruções do processador, acessos a memória, etc.) que pretendem ser representativas das operações de baixo nível realizadas pelas aplicações comuns.
 - Baseadas em aplicações são executadas operações em aplicações reais (formatação de uma página, ordenação de registos, desenho de um gráfico a partir de um conjunto de dados)
- SPEC- Standard Performance Evaluation Corporation organização que estabelece normas de avaliação de medidas de desempenho

Desempenho (IV)

Desempenho da CPU

Tempo de CPU = № Ciclos do *Clock* x Período do *Clock* ou

Tempo de CPU = № Ciclos do *Clock* ÷ Frequência do *Clock*

- Optimizar (baixar) o tempo de CPU: diminuir o número de ciclos de clock e/ou aumentar a frequência do clock
- Nº de Ciclos de Clock = Nº de instruções x CPI (média de Ciclos de clock Por Instrução)

$$TempoCPU = \frac{N^{o} \, Instruçoes \times CPI}{FrequenciaClock}$$

- Nº de Instruções depende da organização da arquitectura
- CPI depende, sobretudo, de detalhes de implementação, incluindo:
 - organização da memória
 - · estrutura do processador
 - natureza do programa -> tipos distintos de instruções

Desempenho (V)

- Desempenho da CPU Métricas "clássicas"
 - MIPS (Million Instructions Per Second)
 - Para uma máquina em particular, mede apenas o número de instruções que são executadas, por unidade de tempo (não conta com o facto da arquitectura exigir programas maiores ou menores!)
 - · Varia entre diferentes programas, na mesma máquina
 - Mas é simples de entender: "máquinas rápidas MIPS elevados"
 - MIPS de pico assumindo um conjunto de instruções com CPI mínimo (irrealista)
 - MFLOPS (Million FLoting-point Operations Per Second)
 - Apenas aplicável a aplicações de cálculo científico

Desempenho (VI)

- Escolha de programas para avaliar desempenho
 - Workload conjunto de programas que um utilizador executa regularmente
 - Benchmarks conjunto de programas (workload) para avaliar o desempenho, e que o utilizador supõe representativos do workload real
 - Aplicações reais extraídas do domínio das aplicações numa determinada área
 - É possível viciar resultados, implementando optimizações específicas para certos benchmarks

Desempenho (VII)

Desempenho (VIII)

Performance Monitor do Windows

Desempenho (IX)

System Monitor do Linux

Desempenho (X)

- Software de medição de desempenho
 - SiSoftware Sandra
 - Inquisitor
 - PerformanceTest da PassMark software
 - PC Mark
 - 3D Mark
 - Bonnie++
 - **–** ...

Desempenho (XI)

- Razão qualidade/preço
 - A classificação máxima tanto pode ser atribuída a um sistema muito barato como a um muito caro
 - Revistas da especialidade usam, por vezes, as médias obtidas em várias subclassificações:
 - Desempenho
 - Relação qualidade/preço
 - Características

Desempenho (XII)

Características

- Garantia
- Processador tecnologia, calor gerado,...
- Placa mãe extras incluídos, estabilidade e capacidade de *overclocking*
- Memória quantidade (disponível e máxima) e qualidade
- Monitor tipo, dimensão e qualidade de imagem
- Placa gráfica extras (saída TV, entrada vídeo, interface digital, suporte para 2º monitor) e tecnologias suportadas (DirectX, OpenGL, etc.)
- Placa de som qualidade do som, API suportada (DirectSound, EAX, A3D,...)
- Disco rígido capacidade, barramento/interface, número de rotações, etc.
- Drives ópticas tipo (leitor/gravador de CDs/DVSs/BD), barramento/interface
- Conectividade externa portas USB, IEEE 1394, rede, etc.
- Rato e teclado ergonomia, tipo, qualidade global
- Colunas de som qualidade de som, número de satélites, subwoofer
- Outros componentes Placas TV, captura de vídeo, etc.
- Software fornecido Sistema operativo, antivírus, aplicações diversas
- Qualidade de construção e capacidade de actualização ou expansão qualidade da caixa, arrumação dos componentes, circulação de ar, número de slots/baias disponíveis
- Design