Głębokie uczenie w praktyce	Data: 16.06.2025			
Grupa PS2	Prowadzący: dr hab. inż. prof. PB Jacek Grekow			
Patryk Wójtowicz	- P Gaddin Gronom			

Dokumentacja projektu: DeathRiskAl

1. Opis danych uczących i wstępnej obórki danych

Zbiór danych wykorzystywany w projekcie pochodzi z pliku gold.csv i zawiera 44 000 rekordów, reprezentujących dane medyczne pacjentów. Klasa docelowa death jest binarna i opisuje ryzyko zgonu:

- Ø oznacza brak ryzyka,
- 1 oznacza wysokie ryzyko zgonu.

Rozkład klas był silnie niezbalansowany:

• Klasa 0: ~6 500 rekordów,

• Klasa 1: ~3 600 rekordów.

Wstępna obórka:

- Dane klasy 0 zostały oczyszczone z wartości odstających przy użyciu z-score (> 3.0).
- Klasa 1 została pozostawiona bez usuwania outlierów ze względu na jej niewielką liczebność.
- Następnie zastosowano skalowanie MinMaxScaler, a dane podzielono na zbiory:
 - trainval (90%)
 - o test (10%)

SMOTE:

Na zbiorze treningowym zastosowano technikę oversamplingu SMOTE w celu zbalansowania klas, co umożliwiło skuteczniejsze trenowanie modelu.

2. Opis konstrukcji sieci neuronowej

Model oparty jest na sieci neuronowej zbudowanej w TensorFlow i Keras. Przewidziano dwa warianty:

a) Model bazowy:

```
Input -> Dense(128, relu) -> Dropout(0.3)
-> Dense(128, relu) -> Dropout(0.3)
-> Dense(64, relu) -> Dropout(0.2)
-> Dense(16, relu) -> Dropout(0.2)
-> Dense(1, sigmoid)
```

b) Model strojony (KerasTuner):

Liczba warstw: od 2 do 5,Liczba neuronów: 32 do 256,

• Funkcje aktywacji: relu,

• Dropout: 0.0 do 0.5,

• Learning rate: 1e-4 do 1e-2.

Zapis konfiguracji najlepszego modelu dokonywany jest automatycznie do pliku best_hp.json.

3. Wpływ wariantów trenowania i budowy sieci na wyniki ewaluacji

a) Próg decyzyjny:

Zastosowano automatyczny dobór progu klasyfikacji na podstawie F1-score (0.0–1.0, krok co 0.01). Próg ten zapewnia maksymalizację trafności detekcji klasy 1.

b) SMOTE + klasy wagowe:

Zastosowanie SMOTE poprawiło recall i f1-score dla klasy 1 bez konieczności stosowania wysokich class_weight. W testach SMOTE był skuteczniejszy i bardziej stabilny niż samo użycie class_weight.

c) Strojenie hiperparametrów:

KerasTuner pozwolił uzyskać istotną poprawę F1-score (np. z ~0.83 do ~0.93) dla klasy 1. Najlepsze konfiguracje charakteryzowały się:

- 3 warstwami,
- 128 neuronami na warstwę,
- aktywacją relu,
- dropoutem 0.2–0.3,
- learning rate ~0.001.

4. Ewaluacja

Metryki obliczane są dla zbioru testowego przy użyciu optymalnego progu klasyfikacji:

- Accuracy,
- Precision,
- Recall,
- F1-score,

Raporty zapisywane są w formatach:

- CSV (test_predictions.csv, test_metrics.csv),
- PNG (wykres metryk),
- TXT (czytelna tabela metryk).

Przykładowe wyniki:

Najlepsze hiperparametry:

Dobrany threshold:

```
{"best_threshold": 0.72, "f1_score": 0.9288702928870293}
```

Metryki wykres:

📊 Classification Report on Test Data

Class	Ρ	Precision Recall			F1-sco	Support	
0	0.9	5 0.9	 98	0.97	73	31	·
1	0.9	9.0	90	0.93	37	71	
accuracy				0.95	11	02	
macro avo	9	0.96	0.94		0.95	1	102
weighted	avg	0.95	0.9	5	0.95	•	1102

Wykres strat treningu modelu:

Wykres strat tuningu modelu:

Struktura modelu:

