



### **Cambridge Assessment International Education**

Cambridge International Advanced Level

| CANDIDATE<br>NAME |              |               |           |                     |                      |
|-------------------|--------------|---------------|-----------|---------------------|----------------------|
| CENTRE<br>NUMBER  |              |               |           | CANDIDATE<br>NUMBER |                      |
| FURTHER MAT       | HEMATICS     |               |           |                     | 9231/12              |
| Paper 1           |              |               |           | 00                  | ctober/November 2019 |
|                   |              |               |           |                     | 3 hours              |
| Candidates ansv   | wer on the C | Question Pa   | per.      |                     |                      |
| Additional Mater  | ials: Li     | st of Formula | ae (MF10) |                     |                      |

#### **READ THESE INSTRUCTIONS FIRST**

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.



International Education

| Coordinates | s of the centroid | or the region | cheloseu D | , c, me me | n – 1 aliu li | пс л-алів. |        |
|-------------|-------------------|---------------|------------|------------|---------------|------------|--------|
|             |                   |               |            |            |               |            | •••••  |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
| ••••••      | •••••             | ••••••        | •••••      | ••••••     | ••••••        | •••••      | •••••• |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
| ••••••      | •••••             | •••••         | •••••      | ••••••     | ••••••        | •••••      | •••••• |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             |                   |               | •          |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             | •••••             | •••••         |            |            |               | •••••      | •••••• |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             |                   | •••••         |            |            |               | •••••      | •••••  |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             |                   | •••••         | •••••      | ••••••     | •••••         | •••••      | •••••• |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
| •••••••     | •••••             |               | ••••••     | ••••••     | ••••••        | ••••••     | •••••• |
|             |                   | •••••         |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
| •           | •••••             |               | ••••••     | •          | •••••••       | ••••••     | •••••• |
|             |                   |               |            |            |               |            | •••••  |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             |                   |               | •••••      |            |               |            | •••••  |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |
|             | •••••             | •••••         | •••••      |            |               | •••••      |        |
|             |                   |               |            |            |               |            |        |
|             |                   |               |            |            |               |            |        |

| It is given that $y = \ln(ax + 1)$ , who for every positive integer $n$ , |                                                      |                               |     |
|---------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|-----|
|                                                                           | $\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = (-1)^{n-1}$ | $\frac{(n-1)!a^n}{(ax+1)^n}.$ | [6] |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      | •••••                         |     |
|                                                                           |                                                      | •••••                         |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |
|                                                                           |                                                      |                               |     |

| 3 | The integral $I_n$ ,          | where $n$ is a | positive in | iteger, is | defined by  |
|---|-------------------------------|----------------|-------------|------------|-------------|
| 9 | The integral I <sub>n</sub> , | where n is a   | positive in | iteger, is | aciliica by |

$$I_n = \int_{\frac{1}{2}}^1 x^{-n} \sin \pi x \, \mathrm{d}x.$$

| (i)          | Show that                                     |                |
|--------------|-----------------------------------------------|----------------|
|              | $n(n+1)I_{n+2} = 2^{n+1}n + \pi - \pi^2 I_n.$ | [5]            |
|              |                                               |                |
|              |                                               | •••••          |
|              |                                               |                |
|              |                                               | •••••          |
|              |                                               |                |
|              |                                               |                |
|              |                                               |                |
|              |                                               |                |
|              |                                               |                |
|              |                                               |                |
|              |                                               |                |
|              |                                               |                |
|              |                                               | •••••          |
| (;;)         | Find $I$ in terms of $\pi$ and $I$            | [2]            |
| (II <i>)</i> | Find $I_5$ in terms of $\pi$ and $I_1$ .      | [ <del>-</del> |
|              |                                               | •••••          |
|              |                                               | •••••          |
|              |                                               | •••••          |
|              |                                               | •••••          |
|              |                                               |                |
|              |                                               | •••••          |
|              |                                               |                |

| 4 | The line $y =$ | = 2x + 1 | is an a | symptote | of the | curve ( | C with | equation |
|---|----------------|----------|---------|----------|--------|---------|--------|----------|
|---|----------------|----------|---------|----------|--------|---------|--------|----------|

$$y = \frac{x^2 + 1}{ax + b}.$$

| (i)  | Find the values of the constants $a$ and $b$ .                                               | [3]   |
|------|----------------------------------------------------------------------------------------------|-------|
|      |                                                                                              |       |
|      |                                                                                              |       |
|      |                                                                                              |       |
|      |                                                                                              |       |
|      |                                                                                              |       |
|      |                                                                                              |       |
|      |                                                                                              |       |
| (ii) | State the equation of the other asymptote of $C$ .                                           | [1]   |
|      |                                                                                              |       |
|      |                                                                                              |       |
| iii) | Sketch $C$ . [Your sketch should indicate the coordinates of any points of intersection with | h the |

5 Let 
$$S_N = \sum_{r=1}^N (5r+1)(5r+6)$$
 and  $T_N = \sum_{r=1}^N \frac{1}{(5r+1)(5r+6)}$ .

| (-/  | Use standard results from the List of Formulae (MF10) to show that $S = \frac{1}{2}N(25N^2 + 00N + 82)$ | [2]    |
|------|---------------------------------------------------------------------------------------------------------|--------|
|      | $S_N = \frac{1}{3}N(25N^2 + 90N + 83).$                                                                 | [3]    |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         | •••••• |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
| (ii) | Use the method of differences to express $T_N$ in terms of $N$ .                                        | [4]    |
| (11) | Ose the method of differences to express $T_N$ in terms of $T_N$ .                                      | [ד]    |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |
|      |                                                                                                         |        |

| (:::)          | Find 1: (N=3C, T)                               |
|----------------|-------------------------------------------------|
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| ( <b>iii</b> ) | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          | Find $\lim_{N\to\infty} (N^{-3}S_N T_N)$ . [2   |
| (iii)          | Find $\lim_{N \to \infty} (N^{-3}S_N T_N)$ . [2 |
| (iii)          |                                                 |

| 6 | 6 With $O$ as the origin, the points $A$ , $B$ , $C$ have position vec |                             |                                           |           |  |  |
|---|------------------------------------------------------------------------|-----------------------------|-------------------------------------------|-----------|--|--|
|   |                                                                        | $\mathbf{i} - \mathbf{j}$ , | $2\mathbf{i} + \mathbf{j} + 7\mathbf{k},$ | i - j + k |  |  |
|   | racpactivaly                                                           |                             |                                           |           |  |  |

$$i - j$$
,  $2i + j + 7k$ ,  $i - j + l$ 

respectively.

|       |         |        |        |        |        | AB.    |        |       |  |
|-------|---------|--------|--------|--------|--------|--------|--------|-------|--|
| ••••• |         |        |        |        |        |        |        | ••••• |  |
| ••••  |         |        |        |        |        |        |        |       |  |
| ••••  |         |        |        |        |        |        | •••••  |       |  |
|       |         |        |        |        |        |        |        | ••••• |  |
|       |         |        |        |        |        |        |        |       |  |
| ••••  |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
| ••••  | ••••••• | •••••• | •••••• | •••••• | •••••• | •••••• | •••••• | ••••• |  |
| ••••  |         | •••••  | •••••• | •••••• | •••••• | •••••  | •••••• | ••••• |  |
| ••••  |         | •••••  | •••••• | •••••• | •••••  | •••••  | •••••• | ••••• |  |
| ••••  |         | •••••  | •••••• | •••••• |        |        | •••••  | ••••• |  |
| ••••• |         |        | •••••  |        |        |        |        | ••••• |  |
|       |         |        |        |        |        |        |        |       |  |
| ••••  |         | •••••  | •••••  |        | •••••  |        | •••••  | ••••• |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |
|       |         |        |        |        |        |        |        |       |  |

| of the lines <i>OC</i> and <i>AB</i> | <b>5.</b> |        |       | [4 |
|--------------------------------------|-----------|--------|-------|----|
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
|                                      |           |        |       |    |
| •••••                                | •••••     | •••••• | ••••• |    |

- 7 The equation  $x^3 + 2x^2 + x + 7 = 0$  has roots  $\alpha$ ,  $\beta$ ,  $\gamma$ .
  - (i) Use the relation  $x^2 = -7y$  to show that the equation

$$49y^3 + 14y^2 - 27y + 7 = 0$$

| has roots $\frac{\alpha}{\beta\gamma}$ , $\frac{\beta}{\gamma\alpha}$ , $\frac{\gamma}{\alpha\beta}$ . | [4] |
|--------------------------------------------------------------------------------------------------------|-----|
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |
|                                                                                                        |     |

| (ii)  | Show that $\frac{\alpha^2}{\beta^2 \gamma^2} + \frac{\beta^2}{\gamma^2 \alpha^2} + \frac{\gamma^2}{\alpha^2 \beta^2} = \frac{5}{4}$ | <u>188</u> . [3]                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
| (iii) | Find the exact value of $\frac{\alpha^3}{\beta^3 \gamma^3} + \frac{\beta^3}{\gamma^3 \alpha}$                                       | $\frac{\gamma^3}{\alpha^3 \beta^3}.$ [2] |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |
|       |                                                                                                                                     |                                          |

**8** The matrix **M** is defined by

$$\mathbf{M} = \begin{pmatrix} 2 & m & 1 \\ 0 & m & 7 \\ 0 & 0 & 1 \end{pmatrix},$$

where  $m \neq 0, 1, 2$ .

| Find a matrix | P and a diagon | al matrix <b>D</b> s | such that M = | <b>PDP</b> <sup>-1</sup> . |       | [7 |
|---------------|----------------|----------------------|---------------|----------------------------|-------|----|
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            | ••••• |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |
|               |                |                      |               |                            |       |    |

© UCLES 2019

| (ii) | Find $\mathbf{M}^7 \mathbf{P}$ . [3] |
|------|--------------------------------------|
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |
|      |                                      |

| 9 | (i) | Hea da  | Moivre's | thoorom | to chow | that |
|---|-----|---------|----------|---------|---------|------|
| 9 | (1) | -Use de | worve's  | ineorem | to snow | tnat |

| (0              | $\sec^{\mathfrak{o}}\theta$                                                | [6]   |
|-----------------|----------------------------------------------------------------------------|-------|
| $\sec \theta =$ | $\frac{\sec^6\theta}{32 - 48\sec^2\theta + 18\sec^4\theta - \sec^6\theta}$ | . [6] |
|                 |                                                                            |       |
|                 |                                                                            |       |
| •••••           |                                                                            |       |
|                 |                                                                            |       |
| ••••••          |                                                                            |       |
|                 |                                                                            |       |
|                 | ••••••                                                                     | ••••• |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
| •••••           |                                                                            |       |
|                 |                                                                            |       |
|                 | ••••••                                                                     | ••••• |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |
|                 |                                                                            |       |

| $3x^6 - 36x^4 + 96x^2 - 64 = 0$ | $3x^{6}$ – | $36x^{4}$ | $+96x^{2}$ | -64 = 0 |
|---------------------------------|------------|-----------|------------|---------|
|---------------------------------|------------|-----------|------------|---------|

| in the form $\sec q\pi$ , where q is rational. | [5]                                     |
|------------------------------------------------|-----------------------------------------|
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                | •••••                                   |
|                                                | •••••                                   |
|                                                | •••••                                   |
|                                                | ••••••••••••••••••••••••••••••••••••••• |
|                                                |                                         |
|                                                | •••••                                   |
|                                                |                                         |
|                                                | •••••                                   |

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 1 \\ 1 & -2 & -2 \\ 2 & 3 & \theta \end{pmatrix}.$$

| (i) (a)    | Find the rank of <b>A</b> when $\theta \neq -1$ .  | [3] |
|------------|----------------------------------------------------|-----|
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
| <b>(b)</b> | Find the rank of <b>A</b> when $\theta = -1$ .     | [1] |
|            |                                                    |     |
|            |                                                    |     |
|            |                                                    |     |
| Consider   | r the system of equations                          |     |
|            | x + 5y + z = -1,                                   |     |
|            | x - 2y - 2z = 0,<br>$2x + 3y + \theta z = \theta.$ |     |
| (ii) Sol   | ve the system of equations when $\theta \neq -1$ . | [3] |
|            |                                                    |     |
|            |                                                    |     |

|                                                                                                                                            | •••••                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            |                                                |
|                                                                                                                                            |                                                |
|                                                                                                                                            |                                                |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            |                                                |
|                                                                                                                                            |                                                |
|                                                                                                                                            |                                                |
| Find the general solution when $\theta = -1$ .                                                                                             | [3]                                            |
|                                                                                                                                            |                                                |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            | •••••                                          |
| Show that if $\theta = -1$ and $\phi \neq -1$ then $\mathbf{A}\mathbf{x} = \begin{pmatrix} -1 \\ 0 \\ \phi \end{pmatrix}$ has no solution. | [2]                                            |
|                                                                                                                                            |                                                |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            | •••••                                          |
|                                                                                                                                            |                                                |
|                                                                                                                                            | Find the general solution when $\theta = -1$ . |

11 Answer only **one** of the following two alternatives.

# **EITHER**

It is given that  $w = \cos y$  and

$$\tan y \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2\tan y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \mathrm{e}^{-2x}\sec y.$$

| (i)  | Show that                                                                                                                                        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $\frac{d^2w}{dx^2} + 2\frac{dw}{dx} + w = -e^{-2x}.$ [4]                                                                                         |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
| (ii) | Find the particular solution for y in terms of x, given that when $x = 0$ , $y = \frac{1}{3}\pi$ and $\frac{dy}{dx} = \frac{1}{\sqrt{3}}$ . [10] |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |

| •••     |
|---------|
| •••     |
| <br>••• |
| •••     |
|         |
| •••     |
| •••     |
|         |
|         |
| <br>    |
|         |
|         |
| •••     |
| •••     |
| <br>••• |
| <br>••• |
|         |
| •••     |
|         |
| •••     |
| <br>    |
|         |
|         |
| •••     |
| <br>••• |
| •••     |
|         |

OR

The curves  $C_1$  and  $C_2$  have polar equations, for  $0 \le \theta \le \frac{1}{2}\pi$ , as follows:

$$C_1 : r = 2(e^{\theta} + e^{-\theta}),$$
  
 $C_2 : r = e^{2\theta} - e^{-2\theta}.$ 

The curves intersect at the point *P* where  $\theta = \alpha$ .

| (i) | Show that $e^{2\alpha} - 2e^{\alpha} - 1 = 0$ . Hence find the exact value of $\alpha$ and show that the value of $r$ at $P$ is $4\sqrt{2}$ . |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |
|     |                                                                                                                                               |

| (11)  | Sketch $C_1$ and $C_2$ on the same diagram.                                                 | [3]             |
|-------|---------------------------------------------------------------------------------------------|-----------------|
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
| (iii) | Find the area of the region enclosed by $C_1$ , $C_2$ and the initial line, giving your ans | swer correct to |
|       | 3 significant figures.                                                                      | [5]             |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             | •••••           |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             | •••••           |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             | ••••••          |
|       |                                                                                             |                 |
|       |                                                                                             | •••••           |
|       |                                                                                             |                 |
|       |                                                                                             | •••••           |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             |                 |
|       |                                                                                             | ••••••          |
|       |                                                                                             |                 |
|       |                                                                                             |                 |

# **Additional Page**

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |
|                                                                                                                                 |  |  |  |

# **BLANK PAGE**

## **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.