

#### Introduction to Modern Statistics

Wenbin Guo Bioinformatics, UCLA

wbguo@ucla.edu

2025 Winter



#### Notation of the slides

- Code or Pseudo-Code chunk starts with " ➤ ", e.g.
   ➤ print("Hello world!")
- Link is underlined

- Important terminology is in **bold** font
- Practice comes with



### Agenda

- Day 1: Probability and Statistics basics
  - Uncertainty; Probability; Distribution
  - Descriptive statistics
- Day 2: Inference
  - Hypothesis testing and p-values
  - Permutation test and bootstrap
  - False discovery rate control
- Day 3: Modeling
  - Regression techniques
  - Model selection





### Day 2: Statistical inference

Wenbin Guo Bioinformatics IDP, UCLA

> wbguo@ucla.edu 2025 Winter

### Overview

#### Time

2-hour workshop (45min + 45min + practice/Q&A)

#### **Topics**

- ☐ Inferential statistics basics
- ☐ Hypothesis testing
- ☐ Permutation test
- □ Bootstrap
- Multiple test correction



Introduction to statistics

- **□**Concept
- □History
- □Importance

Uncertainty

- **□**Cause
- □Examples in real life
- ☐ How do we react with it







Probability

- □Events and sample space
- $\square$ Probability and its properties  $P(\mathbf{A}) = \frac{|\mathbf{A}|}{|\Omega|}$
- $\Box Conditional probability P(A | B) = \frac{P(AB)}{P(B)}$
- ■Bayes Theorem









#### **Distributions**

| Category   | Name              | Description                                                                                                                    |
|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Discrete   | Uniform           | equal probability to every integer between $a$ and b                                                                           |
|            | Bernoulli         | single trial with two possible outcomes with success rate $p$                                                                  |
|            | Binomial          | number of successes in $n$ independent Bernoulli trials                                                                        |
|            | Negative Binomial | number of failures before achieving $r$ successes                                                                              |
|            | Geometric         | number of trials needed to get the first success in a series of Bernoulli trials                                               |
|            | Hypergeometric    | the number of successes in a sample of size $n$ drawn without replacement from a population of size $N$ containing K successes |
|            | Poisson           | number of events occurring in a fixed interval of time or space                                                                |
| Continuous | Uniform           | equally probability to every value in an interval $[a,b]$                                                                      |
|            | Normal            | bell curve center around mean $\mu$ with standard deviation $\sigma$                                                           |
|            | t                 | Similar to Normal but with heavier tails                                                                                       |
|            | Chi-square        | models the sum of the squares of $k$ independent standard normal variables                                                     |
|            | F                 | compare variances between two groups                                                                                           |
|            | Exponential       | models the time between events in a Poisson process                                                                            |
|            | Beta              | model proportions and probabilities                                                                                            |







Descriptive statistics

- □Tendency
- □ Dispersion
- **□**Skewness
- **□** Distribution











# Inferential statistics

Use the part to learn about the whole

#### Inferential statistics

draw conclusions about the population based on sample data



#### Typical tasks

- □ Parameter estimation
- ☐ Hypothesis testing

Given a sample  $x_1,...,x_n \sim F$ , how do we infer F?

# Population vs samples

#### Use standard gaussian as an example





# Population vs samples

#### Use standard gaussian as an example





# Population vs samples

Use standard gaussian as an example





Sampling is random, so are the summary statistics (sample mean/sample variance)

# **Expectation and Variance**

#### **Population**

Mean:

$$E(X) = \sum_{i=1}^{\infty} x_i P(x_i) = \int_{-\infty}^{+\infty} x f(x) dx$$

Variance:

$$Var(X) = E[(X - E(X))^{2}]$$

#### **Samples**

Mean:

$$\frac{\sum_{i=1}^{n} x_i}{n}$$

Variance:

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Parameter: a property of the distribution



# Law of large numbers (LLN)

**5.6 Theorem** (The Weak Law of Large Numbers (WLLN)). If  $X_1, \ldots, X_n$  are IID, then  $\overline{X}_n \xrightarrow{P} \mu$ .

$$\mathbb{P}\left(|\overline{X}_n - \mu| > \epsilon\right) \le \frac{\mathbb{V}(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$



Diffusion is an example of the law of large numbers.

#### In summary:

- Sample mean converges to population mean as sample size increases
- LLN provides Implications for estimation and reliability

# Central limit theorem (CLT)

**5.8 Theorem** (The Central Limit Theorem (CLT)). Let  $X_1, \ldots, X_n$  be IID with mean  $\mu$  and variance  $\sigma^2$ . Let  $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ . Then

$$Z_n \equiv \frac{\overline{X}_n - \mu}{\sqrt{\mathbb{V}(\overline{X}_n)}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \leadsto Z$$

where  $Z \sim N(0,1)$ . In other words,



#### In summary:

- Distribution of sample means approaches normal distribution as sample size grows.
- CLT allows for hypothesis testing and constructing confidence interval using normal approximation.

### Let's do some practice!

➤ git clone <a href="https://github.com/wbvguo/qcbio-Intro2ModernStats.git">https://github.com/wbvguo/qcbio-Intro2ModernStats.git</a>



# Hypothesis testing

"To reject or not to reject, that is the question."



Wenbin Shakespeare A famous nobody

# Hypothesis testing

A process to determine if there is enough evidence to reject a null hypothesis

Procedure: left-tailed: ☐Frame the hypothesis  $area = \alpha$  $\circ$  Null hypothesis ( $H_0$ ): no difference/effect, ... critical  $\circ$  Alternative hypothesis ( $H_a$  or  $H_1$ ): there is an effect/difference, ... value right-tailed: ☐ Choose an appropriate Test Statistics area =  $\alpha$ □Calculate the statistical significance (*p*-value) critica value  $\square$ Compare to a significance level ( $\alpha$ ) two-tailed: ☐ Make decision: reject/not reject - Reject H<sub>o</sub>  $area = \alpha$ Do not reject H critical

value

value

Rejection Region for Null Hypothesis

# Let's see an example

Use gaussian distributions as an example

- ☐Frame the hypothesis
  - $\circ$  Null hypothesis ( $H_0$ ): two group have the same mean
  - $\circ$  Alternative hypothesis ( $H_a$ ): two group have the different mean



Dashed lines indicate sample means for Group 1 (blue) and Group 2 (red)



# Let's see an example

Use gaussian distributions as an example

- ☐Frame the hypothesis
  - $\circ$  Null hypothesis ( $H_0$ ): two group have the same mean
  - $\circ$  Alternative hypothesis ( $H_a$ ): two group have the different mean
- ☐ Choose an appropriate Test Statistics: t-test
- $\Box$ Calculate the statistical significance (p-value)
- $\Box$ Compare to a significance level ( $\alpha$ )
- ☐ Make decision: reject/not reject



Dashed lines indicate sample means for Group 1 (blue) and Group 2 (red)

```
t.test(samples_group1, samples_group2)
```

```
Welch Two Sample t-test
```

```
data: samples_group1 and samples_group2
t = -1.6104, df = 93.647, p-value = 0.1107
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.7511248   0.0783784
sample estimates:
   mean of x   mean of y
   -0.03567178   0.30070141
```

# Rethink about hypothesis testing

Reject: Why our goal is to reject? not to prove?

 Proving something to be true is difficult, proving something to be false is usually easier, as long as you can find a counter-example.

#### **Enough evidence:**

• Presumption of innocence: any defendant in a criminal trial is assumed

to be innocent until they have been proven guilty

In other words, hypothesis testing is conservative, we turn to not reject unless we have enough evidence



**Better Call Saul** 

### Fail to reject == the hypothesis is true?

#### No, this is not a binary world

Example: Clinical Trail for new drug

A clinical trial tests whether a new drug reduces blood pressure. The *p*-value for the difference between the drug and placebo group is **0.16**—greater than the conventional **0.05** threshold.

- The absence of evidence (failing to reject the null hypothesis)
   does not prove that the drug has no effect.
- The trial might have been underpowered (small sample size), lacking the data needed to detect a true effect.

In statistics, **failing to find evidence** does not imply **evidence of no effect**—it may simply reflect study limitations.

"Absence of evidence is not evidence of absence"





Carl Edward Sagan (1934-1996)

### Statistical tests

- Test mean:
  - □One group
  - ☐Two group
  - **□**Paired
  - ☐Multiple group

One-sample t-test



Two-sample t-test



$$t = \frac{(X - Y) - (\mu_1 - \mu_2)}{s_{\bar{X} - \bar{Y}}}$$
$$s_{\bar{X} - \bar{Y}}^2 = s_{\bar{X}}^2 + s_{\bar{Y}}^2$$

Independent samples



Paired samples



#### Statistical tests

- Test mean:
  - □One group
  - ☐Two group
  - □Paired
  - ☐Multiple group
- Test variance

Test distribution













20

30



### *p*-value

The p-value is the probability (under  $H_0$ ) of observing a value of the test statistic the same as or more extreme than what was actually observed.

- a measure of the evidence against H<sub>0</sub>
- the smaller the p-value, the stronger the evidence against  $H_0$ .

#### Typically,

| p-value | evidence                            |
|---------|-------------------------------------|
| < .01   | very strong evidence against $H_0$  |
| .0105   | strong evidence against $H_0$       |
| .0510   | weak evidence against $H_0$         |
| > .1    | little or no evidence against $H_0$ |



#### True or false?



- large p-value is strong evidence in favor of  $H_0$ .
  - False
- The p-value is the probability that the null hypothesis is true
  - False
- "p = 0.05 means there's a 95% chance  $H_0$  is true"
  - False

### p-value distribution when $H_0$ is true

$$Pr(P < p) = Pr(F^{-1}(P) < F^{-1}(p))$$

$$= Pr(T < t)$$

$$\equiv p;$$

p-value follows uniform distribution under the Null

Can use this rationale to diagnostic

- Histogram of p-values
- Quantile-Quantile plot (QQ plot)



### Examine *p*-value distribution



### Decision errors

#### We use statistics to make decisions





#### Decision errors

#### But the decisions can be wrong...

- ☐ Reject the null when it's true
- ☐ Fail to reject the null when it's not true







### Decision errors and asymmetry classification



Put one type of error under control while minimizing the other one





# Permutation and Bootstrap

Computer Age Statistical Inference

#### Permutation test

Resampling without replacement



#### Procedure

- ☐ Define the hypothesis
- Define the test statistics
- □ Randomly permute the data
- ☐ Calculate the test statistics for each permutation
- □ Compare the observed test statistics with the permuted test statistic distribution



$$p = \frac{\sum_{i=1}^{B} I(\Delta \theta^{(i)} > t)}{B}$$

#### Take sex\_discrimination data as an example

**Table 11.1:** Summary results for the sex discrimination study.

|        | decision |              |       |
|--------|----------|--------------|-------|
| sex    | promoted | not promoted | Total |
| male   | 21       | 3            | 24    |
| female | 14       | 10           | 24    |
| Total  | 35       | 13           | 48    |

We can clearly see that %promotion is higher in male population, but how to get the significance?

Take sex\_discrimination data as an example



Repeat the shuffling many times

### Take sex\_discrimination data as an example



| Pros:                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------|
| □ <b>Distribution-free</b> : No assumptions about data distribution (non-parametric); Works well with skewed or non-normal data. |
| □Flexible: Applicable to a wide range of test statistics (mean, median, correlation, etc.).                                      |
| □Easy to implement: Simple concept based on resampling.                                                                          |
|                                                                                                                                  |
| Cons:                                                                                                                            |
| □Computationally intensive: Requires a large number of resamples for accurate p-values, especially with large datasets.          |
| □Randomization required: Assumes data can be randomly shuffled                                                                   |
| □Limited interpretability: p-values are purely empirical, with no direct parameter estimation                                    |

### Resampling with replacement





## Confidence interval with bootstrapping



## Confidence interval with bootstrapping





### Two-sample bootstrap



# Multiple testing correction

## Threshold on p-values for significant discoveries



Remember that *p*-value is uniform distributed under the null, small p-values can arise due to chance

# False discovery rate



Genes with p-value < 0.05 which are actually not significant, it was just by chance that they got p-value < 0.05

$$FDR = \frac{False positives}{All significant results}$$



All significant genes (p-value < 0.05)

THE FALSE DISCOVERY RATE (FDR) IS THE PROPORTION OF FALSE POSITIVES AMONG ALL SIGNIFICANT RESULTS



Test 20 objects to see if they are associated with beach





# p-value adjustment method

• Bonferroni correction: reject  $H_0$  if  $p_i \leq \frac{\alpha}{m}$ 

• Benjamini-Hochberg procedure (one of the most cited stats paper, ~114k)

Step 1: Considering we have m p-values, each obtained from a single test:  $p_1, p_2, ..., p_m$ , we order the p-values in increasing order:

$$p_{(1)} \le p_{(2)} \le \dots \le p_{(m-1)} \le p_{(m)}$$

and denote their corresponding null hypotheses as:

$$H_{(1)}, H_{(2)}, ..., H_{(m-1)}, H_{(m)}$$

Step 2: Find integer k as the largest i such that:  $p_{(i)} \leq \frac{i}{m} \alpha$ . Then we reject all  $H_{(i)}$  for which  $i \leq k$ .

# Comparison







Significance threshold:

p-adj < 0.05



0.05 \* 15 = 0.75 objects falsely significant (falsely associated with the beach)

Association with the beach

Significant
Not significant

--- False positive

# Let's do some practice!



# Thanks

Q & A