Universitat Politècnica de Catalunya Departament d'Enginyeria Elèctrica

Doctoral Thesis

Aggregated flexibility services for distribution network operation

Íngrid Munné Collado

Thesis advisors:

Dra. Monica Aragues Penalba (UPC, Spain)

Dr. Andreas Sumper (UPC, Spain)

Examination Committee:

Prof. XXXXXXX (XXXXXX)

Prof. XXXXXX (UPC, Spain)

Prof. XXXXXXX (XXXXXX)

Thesis reviewers:

Prof. XXXXX (XXXXX)

Prof. XXXXXXX (XXXXXX)

Barcelona, May 2021

Universitat Politècnica de Catalunya Departament d'Enginyeria Elèctrica Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments Av. Diagonal, 647. Pl. 2 08028, Barcelona

Copyright © Íngrid Munné Collado, 2020

Cover design: Marta Bellés Petit First printing, December 2020 "Oh, how much is left to learn" $Ziggy\ Alberts$

To Sílvia, Joan and Jèssica.

This thesis has been supported by the Universitat Politècnica de Catalunya and CITCEA through the following projects and other entities:

- EMPOWER Local electricity retail markets for prosumer smart grid power services project. This project received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 646476.
- INVADE Smart system of renewable energy storage based on integrated EVs and batteries to empower mobile, distributed and centralised energy storage in the distribution grid. This project received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 731148.
- BD4OPEM This research is being supported by the European Union's Horizon 2020 Research and Innovation program under the project "Big Data for Open Innovation Energy Marketplace BD4OPEM" (Grant no. 872525).
- The European Institute of Innovation & Technology (EIT) InnoEnergy Ph.D. School
- Danish Tehenical University (DTU), Denmark.

Abstract

Storytelling PhD

- What is the current situation?
 - Energy Transition Clean Energy Package
 - Increase on electricity consumption
 - decomissioning of nuclear power plants
 - Importance on society awareness on sustainability, as well as prices in some countries for access to electricity - What is our current carbon footprint?
- What are the problems that we identify?
 - some of the solutions for the energy transition can lead to congestion in distribution networks, due to the placement of DERs in MV and LV networks.
 - Are we sure that DERs are completely sustainable? Are we really sure that smart grids are completely sustainable, in each and every country?

Possible solutions

- Enhance the development of carbon-free technologies by implementing sustainable solutions Assessment of the environmental impact of electricity production by means of LCA to help in the development of energy policies and planning, as well as including LCA in end-user optimization for achieving lower carbon footprints.
- Deployment of demand-side flexibility services by means of endusers flexible assets.

• Thesis contributions

- Assessment tool for evaluating the environmental impact of electricity markets using hourly LCA, by means of Life Cycle Assessment
- Definition of Flexibility: Characterization, modeling, implementation and evaluation

 Possible use cases of demand-side flexibility: Flexibility services for DSOs.

Contents

Lis	List of Figures					
Lis	t of	Tables	(vii			
1	Intr	oduction	1			
	1.1	Smart grids	1			
		1.1.1 Distributed Energy Resources	1			
	1.2	Distribution networks: challenges	1			
	1.3	Electricity markets	1			
	1.4	Regulation framework and new agents in the energy transition	1			
		1.4.1 Local electricity markets	1			
	1.5	Sustainability of smart grids and DERs	1			
	1.6	Objectives and scope	2			
	1.7	Thesis related work and activities	3			
	1.8	Thesis outline	4			
2	The	Potential Role of Flexibility for Sustainable Energy Transition	5			
	2.1	Environmental Assessment of Smart Grids	5			
	2.2	LCA Applied on Electricity Production	5			
		2.2.1 Peak-Hourly Life Cycle Assessment (PH-LCA) Met-				
		hodology	5			
		2.2.2 Goal and Scope	5			
		2.2.3 Life Cycle Inventory	5			
		2.2.4 Life Cycle Impact Assessment	5			
	2.3	Case Study: INVADE H2020 project Pilot-Sites Electricity				
		Grid Mixes	5			
	2.4	Discussion	5			
	2.5	Conclusion	5			
3	Flex	cibility Services	7			
	3.1	The importance of flexibility	7			
	3.2	Regulatory framework for flexibility provision	7			
	-	3.2.1 Flexibility definition	7			

Contents

		3.2.2 Local Flexibility Markets	7
	3.3	Flexibility definition	7
		3.3.1 market oriented	7
		3.3.2 System oriented	7
	3.4	Mathematical formulation for flexibility definition	7
	3.5	Discussion	7
	3.6	Conclusion	7
4	Agg	regated Flexibility Forecast	g
	4.1	Introduction	6
		4.1.1 Use cases/Business models for flexibility services and	
		flexibility forecast	6
		4.1.2 Literature review on flexibility forecast	S
		4.1.3 Contribution	6
	4.2	Algorithms proposed	6
	4.3	Methodology	10
		4.3.1 Datasets	10
	4.4	Load Categorization and Flexibility definition	10
		4.4.1 Mathematical formulation	10
		4.4.2 Simulation	10
	4.5	Results	10
	4.6	Discussion	10
	4.7	Conclusions	10
5	OPF	for Congestion management in MV distribution networks	11
	5.1	Introduction	11
		5.1.1 Use cases/Business models for congestion management	11
		5.1.2 Standards and protocols for flexibility provision betwe-	
		en aggregators and DSOs	11
		5.1.3 Literature review on congestion management tools -	
		OPF	11
		5.1.4 Contribution	11
	5.2	Mathematical formulation for Flexibility request calculation .	11
	5.3	Methodology	12
		5.3.1 Datasets - Network Data	12
		5.3.2 Mathematical formulation	12
		5.3.3 Simulation	12
	5.4	Results	12
	5.5	Discussion	12
	F 6	Conclusions	10

Contents

6	Conclusions						
	6.1	General conclusions	13				
	6.2	Contributions	13				
	6.3	Future work	13				
Α	A Publications						

List of Figures

List of Tables

Introduction

Explicar el problema al qual ens estem adreçant

1.1 Smart grids

1.1.1 Distributed Energy Resources

1.2 Distribution networks: challenges

1.3 Electricity markets

incloure aqu \tilde{A} cap \tilde{A} tol del llibre de local and micro power markets? Power market fundamentals

1.4 Regulation framework and new agents in the energy transition

entregable que vam fer amb el pau Plana TFG

1.4.1 Local electricity markets

incloure aqu \tilde{A} cap \tilde{A} itol del llibre de local and micro power markets? Power market fundamentals

1.5 Sustainability of smart grids and DERs

Explicacio sobre que entenem per sostenibilitat. Quina relacio hi ha entre sostenibilitat i smart grids local markets

1.6 Objectives and scope

1.7 Thesis related work and activities

1.8 Thesis outline

The Potential Role of Flexibility for Sustainable Energy Transition

- 2.1 Environmental Assessment of Smart Grids
- 2.2 LCA Applied on Electricity Production
- 2.2.1 Peak-Hourly Life Cycle Assessment (PH-LCA) Methodology
- 2.2.2 Goal and Scope
- 2.2.3 Life Cycle Inventory
- 2.2.4 Life Cycle Impact Assessment
- 2.3 Case Study: INVADE H2020 project Pilot-Sites Electricity Grid Mixes
- 2.4 Discussion
- 2.5 Conclusion

Flexibility Services

3.1 The importance of flexibility

3.2 Regulatory framework for flexibility provision

3.2.1 Flexibility definition

incloure aqui la definicio que vam treballar amb el pau Plana de segons qui vol la flex com es la definicio

3.2.2 Local Flexibility Markets

3.3 Flexibility definition

incloure aqui la idea de diferents definicions de flexibilitat

- 3.3.1 market oriented
- 3.3.2 System oriented

3.4 Mathematical formulation for flexibility definition

incloure aqui idea review hussain sobre flexibility review

- 3.5 Discussion
- 3.6 Conclusion

Aggregated Flexibility Forecast

4.1 Introduction

RESEARCH QUESTION: Feina que estic fent a DTU

4.1.1 Use cases/Business models for flexibility services and flexibility forecast

4.1.2 Literature review on flexibility forecast

4.1.3 Contribution

- non-intrusive approach
- less data required (15 kHz for NILM algorithms). Here we can work with 1 minute data
- no submetering (only main smart meter data)
- total aggregated load forecast
- from the total load forecast, we forecast the flexibility UP and flex DOWN, as well as the INFLEXIBLE load
- flexible capacity band (power band) forecast

4.2 Algorithms proposed

- Hidden Markov Model
- combinatorial optimization
- Factorial hidden markov model?

4.3 Methodology

4.3.1 Datasets

Synthetic Data - Load Profile Generator

Real Data - Pecan Street Dataport

4.4 Load Categorization and Flexibility definition

- 4.4.1 Mathematical formulation
- 4.4.2 Simulation
- 4.5 Results
- 4.6 Discussion
- 4.7 Conclusions

OPF for Congestion management in MV distribution networks

5.1 Introduction

RESEARCH QUESTION: INCLOURE FEINA DEL PAPER DEL CIRED

- NUVVE Congestion management
- pilot estabanell INVADE BD4OPEM
- altres pilots

5.1.1 Use cases/Business models for congestion management

incloure aqui diagrama interaccio de l'INVADE-CIRED Possibilitat d'incloure els use cases que estem fent pel BD4OPEM

5.1.2 Standards and protocols for flexibility provision between aggregators and DSOs

OPENADR - USEF?

- 5.1.3 Literature review on congestion management tools OPF
- 5.1.4 Contribution
- 5.2 Mathematical formulation for Flexibility request calculation
 - OPF (Python)

5.3 Methodology

- 5.3.1 Datasets Network Data
- 5.3.2 Mathematical formulation
- 5.3.3 Simulation
- 5.4 Results
- 5.5 Discussion
- 5.6 Conclusions

Conclusions

- 6.1 General conclusions
- 6.2 Contributions
- 6.3 Future work

Appendix A

Publications

Included in the thesis

Published journal papers

J2 P. Olivella-Rosell, P. Lloret-Gallego, Í. Munné-Collado, R. Villafafila-Robles, A. Sumper, S. Ottesen, J. Rajasekharan, B. Bremdal, "Local flexibility market design for aggregators providing multiple flexibility services at distribution network Level," *Energies*, vol. 11, no. 4, p. 822, Apr. 2018. doi: 10.3390/en11040822

Submitted journal papers

J4 flexibility review hussain

Conference papers

- C1 I. Munné-Collado, P. Lloret-Gallego, P. Olivella-Rosell, R. Villafafila-Robles, S. Ø. Ottesen, R. Gallart-Fernandez, V. Palma-Costa, A. Sumper, "System architecture for managing congestions in distributions grids using flexibility," 25th International Conference on Electricity Distribution, June 2019.
 - conference sara LCA

Book chapters

- BC1 Í. Munné-Collado, P. Olivella-Rosell, A. Sumper, "Power Market Fundamentals," in A. Sumper (ed) Micro and Local Power Markets, John Wiley & Sons, pp. 1-35, 2019. doi: 10.1002/9781119434573.ch1
- BC2 Í. Munné-Collado, E. Bullich-Massagué, M. Aragüés-Peñalba, P. Olivella-Rosell "Local and Micro Power Markets," in A. Sumper (ed) Micro and

Local Power Markets, John Wiley & Sons, pp. 37-97, 2019. doi: 10.1002/9781119434573.ch2

Not included in the thesis

Published journal papers

- J3 Í. Munné-Collado, F. M. Aprà, P. Olivella-Rosell, R. Villafafila-Robles, A. Sumper, "The potential role of flexibility during peak hours on greenhouse gas emissions: a life cycle assessment of five targeted national electricity grid mixes," *Energies*, vol. 12, no. 23, Nov. 2019. doi: 10.3390/en12234443
- J4 review sara big data
- J5 review hussain

Submitted journal papers

Conference papers

• kejrwejr

Local conferences

Published papers

Conference presentations

Supervised bachelor and master thesis

- **T1** F. Aprà, "Environomical analysis of peak hours electricity production in targeted European countries", June 2019.
- **T2** K.,Beehuspoteea, "Impact factors of heat generation units for zoned temperature controlled in office buildings", June 2019.
- **T3** A. Quattrone, "Development of flexibility device models for a microgrid laboratory test", June 2019.
- **T4** N. Condorelli, "Evaluation and forecast of CO2 emissions in the electricity sector for European targeted countries" March 2020.

- **T5** P. Plana, "Analysis of measures to increment the share of renewable energy in distribution grids" April 2020.
- **T6** A. Bové Salat, "Optimal scheduling of flexible assets under a HEMS for prosumers' economic savings" June 2020.
- T7 M. Ferran, "Power flow tool for active distribution grids and flexibility analysis", June 2020.

Published technical reports

- TR7 E. F. Bødal, P. Crespo-del-Granado, H. Farahmand, M. Korpås, P. Olivella-Rosell, I. Munné-Collado, P. Lloret-Gallego, "INVADE Deliverable 5.1 Challenges in distribution grid with high penetration of renewables," June 2017. doi: 10.5281/zenodo.853271
 - entregables INVADE LCA?
 - entregables EMPOWER LCA?