

TD 5 : ORDRES - GRAPHES CORRIGÉ DE QUELQUES EXERCICES

1. Ordres

Exercice 1. On considère la relation d'ordre \subset sur l'ensemble $E = \{1, 2, 3\}$.

1. Dessiner le diagramme de Hasse pour cette relation.

- 2. Quels sont les éléments minimaux, maximaux ? Élément minimal : ϕ ; Élément maximal : $\{1, 2, 3\}$
- 3. Donner le plus petit élément, s'il y a lieu.
 - Plus petit élément : ϕ
- 4. Donner le plus grand élément, s'il y a lieu. Plus grand élément : $\{1,2,3\}$

Exercice 2. Trouver le diagramme de Hasse pour la relation "plus grand ou égal à " dans l'ensemble $E = \{0, 1, 2, 3, 4, 5\}.$

Exercice 3. Proposer un tri topologique pour le graphe suivant :

Exemples de tri topologique (la liste n'est pas exhaustive) 1-9-2-4-7-3-8-5-6; 7-9-1-4-2-5-8-3-6; 1-9-2-4-5-7-3-8-6; 9-4-5-1-2-3-6-8-7; 7-4-5-9-1-2-8-3-6

2. Graphes

Exercice 4. Donner l'union des graphes A et C de l'exercice 7.

Exercice 5. Écrire la matrice d'incidence associée au graphe G = (V, E) tel que $V = \{1, 2, 3, 4\}$ et $E = \{e_1, e_2, e_3, e_4, e_5\}$, avec $e_1 = \{1, 2\}$, $e_2 = \{2, 3\}$, $e_3 = \{3, 1\}$, $e_4 = \{4, 1\}$ et $e_5 = \{4, 4\}$. Matrice d'incidence :

$$M = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

- 1. Que vaut la somme des éléments d'une colonne. Réponse : 2
- 2. Que représente la somme des éléments d'une ligne. Réponse : Le degré de chacun des sommets.

3. En déduire que dans un graphe non orienté G = (V, E), on a

$$\sum_{x \in V} d(x) = 2 |E|$$

Exercice 6. Soit G = (V, E) le graphe non orienté défini par : $V = \{a, b, c, d, e\}$ et $E = \{\{a, c\}, \{a, e\}, \{b, c\}, \{c, d\}, \{c, e\}, \{d, e\}\}.$

1. Représenter G.

2. Écrire sa matrice d'adjacence et sa liste d'adjacence.

$$M = \begin{pmatrix} a & b & c & d & e \\ a & 0 & 0 & 1 & 0 & 1 \\ b & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ d & 0 & 0 & 1 & 0 & 1 \\ e & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

3. Le graphe G est-il régulier ? Réponse : Non

Exercice 7. Vérifier si les graphes A et B, C et D sont isomorphes, respectivement.

Exercice 8. Déterminer si les graphes sont bipartis.

3. Exercices supplémentaires (livre de Rosen)

Exercices numéros 11, 15 (page 399) ; 26, 33, 34, 35, 41 (page 428)