Metodi computazionali della Fisica A.A. 2009-2010 (P.L. Silvestrelli, psil@pd.infn.it)

Appunti lezioni (cartella "RISORSE") in: http://elearning.scienze.unipd.it/

Testi **consigliati**:

- •Barone et al., "Programmazione Scientifica" (Pearson)
- Crisanti, "yaC Primer, Parte II Applicazioni" (Aracne)

Testi <u>utili</u> (per consultazione):

- •Koonin-Meredith, "Computational Physics" (Addison-Wesley)
- •Landau-Paez, "Computational Physics" (Wiley)
- •**Press**, "*Numerical Recipes (in C++)*" (Cambridge University Press)
- •Thijssen, "Computational Physics" (Cambridge University Press)
- •Allen-Tildesley, "Computer Simulation of liquids" (Clarendon Press Oxford)

Esame: Relazioni scritte + colloquio

Metodi computazionali della Fisica A.A. 2009-2010

Scopo del corso:

- •Presentare alcuni algoritmi fondamentali
- •Mostrare la loro applicazione a casi di interesse fisico
- Fare **esperienze pratiche** in *Aula Informatica*.

Finalità:

- •Capire che la Fisica Computazionale è importante/indispensabile
- •Capire che è spesso possibile creare **propri** programmi per la ricerca
- •Avere un atteggiamento critico rispetto ai programmi già disponibili.

Metodi computazionali della Fisica A.A. 2009-2010

Scopo del corso:

- •Presentare alcuni algoritmi fondamentali
- •Mostrare la loro applicazione a casi di interesse fisico
- •Fare esperienze pratiche in Aula Informatica.

Il corso non è:

- •Un corso di progammazione
- •Un corso di informatica.

Linguaggio di programmazione:

Come linguaggio di programmazione si adotta il C++; chi lo desidera può utilizzare anche il C.

Consegna 5 relazioni (una per coppia):

Possibilmente (verrà **premiata la puntualità**; comunque **prima** dell'esame orale) :

- le *prime 2* entro il <u>9 novembre 2009</u>;
- le seconde 3 entro il 14 dicembre 2009.

N.B.: l'esame finale (<u>colloquio orale</u> sulle relazioni) è comunque <u>individuale</u>!

Struttura relazioni:

- breve <u>introduzione</u> teorica sul **problema fisico** trattato e sull'**algoritmo** numerico utilizzato;
- <u>risultati</u> ottenuti, eventualmente corredati da **tabelle** e **grafici** (ricordare le <u>unità di misura</u>!), opportunamente **commentati**;
- <u>listati</u> dei programmi utilizzati, mettendo in evidenza le parti **modificate** o **sviluppate**.

Informazioni esame:

- è necessario <u>iscriversi</u> all'esame, e consegnare <u>tutte</u> le relazioni (in <u>formato cartaceo</u>) con congruo anticipo (almeno alcuni giorni prima);
- l'esame orale consiste in un **colloquio** <u>sulle relazioni</u> presentate, con approfondimento sia di aspetti di <u>programmazione</u> sia riguardanti l'<u>applicazione</u> degli algoritmi a sistemi fisici;

• ORARIO RICEVIMENTO:

giovedì dalle ore 15.30 alle 17 (stanza 333 Dip. Di Fisica);

N.B.: l'esame è comunque <u>individuale</u>, dunque ognuno è responsabile di <u>ogni parte</u> delle relazioni!

Date appelli:

• 18 dicembre 2009 (ore 9)

• *8 gennaio 2010* (ore 9)

• 5 luglio 2010 (ore 9)

• 26 luglio 2010 (ore 9)

• 23 settembre 2010 (ore 9)

Accesso Aula Informatica (polo didattico):

L'accesso (la **frequenza** non è strettamente obbligatoria ma **caldamente consigliata...**) avviene (<u>2 studenti per terminale</u>) secondo il seguente orario (settimana di *sospensione* dal 2 al 6 novembre) :

- Martedì ore: 11.30-13.15 (I turno),
- Mercoledì ore: 11.30-13.15 (II turno) (al polo didattico, NON in aula LUF2!)

Per informazioni (problemi account,...): http://www.fisica.unipd.it/calcolo/aula_info.html

N.B.: da macchine **Windows** si può collegarsi alle macchine **Linux** usando *ssh*: ad esempio, *ssh* 192.168.1.29

Accesso Aula Informatica (polo didattico). <u>Criterio suddivisione turni</u>:

Se *X* e *Y* sono le lettere **iniziali** dei due studenti componenti la coppia:

```
IF
(Xè tra A e M compresi) AND (Yè tra A e M compresi)
OR
(Xè tra N e Z compresi) AND (Yè tra N e Z compresi)
THEN
frequentano il I turno (Martedì 11.30-13.15)
ELSE
frequentano il II turno (Mercoledì 11.30-13.15)
ENDIF
```

Metodi computazionali della Fisica A.A. 2009-2010

I computers servono per risolvere problemi la cui difficoltà e/o complessità sono tali da renderli **intrattabili** con metodi analitici.

Fisica computazionale

Approccio teorico (modelli)

Simulazione come esperimento virtuale

Approccio generale:

02/10/2009

Precisione della macchina

Il modo in cui sono immagazzinati i numeri reali influisce sulla precisione dei calcoli.

Si definisce MACHINE PRECISION Def.

il massimo numero positivo ε_m che può essere sommato al numero immagazzinato come "1" senza cambiarlo:

$$\mathcal{E}_m + 1_c = 1_c$$
,

Immagazzinato nella memoria del computer

Per un generico numero x si ha quindi: $x_c = x(1+\varepsilon)$, $|\varepsilon| \le \varepsilon_m$

$$x_c = x(1+\varepsilon), \qquad |\varepsilon| \le \varepsilon_m$$

Dove $\varepsilon_m \cong 10^{-7}$ per singola precisione $\varepsilon_m \cong 10^{-16}$ per doppia precisione

Nota bene: ε_m non è il più piccolo numero immagazzinabile dalla macchina. Questo numero dipende dall'esponente, mentre ε_m dipende da quanti bits sono nella mantissa.

Ogni operazione aritmetica tra floating numbers comporta un'introduzione di un errore almeno pari a ϵ_m .

L'iterazione di operazioni aritmetiche comporta una propagazione ed un aumento di tale errore (errore di arrotondamento).

02/10/2009

Errori ed indeterminazioni nei calcoli

I computers non sono infinitamente precisi!!!

Errori di sintassi

Errori aleatori

Errori di troncamento

Fluttuazioni elettroniche, raggi cosmici ...

Per esempio sostituire una serie infinita con una somma finita oppure intervalli infinitesimi con intervalli finiti.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \cong \sum_{n=0}^{N} \frac{x^{n}}{n!} = e^{x} + E(x, N)$$

Errori di arrotondamento

Dovuti al fatto che ogni numero è rappresentato da un numero finito di bits.

$$2\left(\frac{1}{3}\right) - \frac{2}{3} = 2 \times 0.3333333 - 0.66666667 = -0.00000001 \neq 0.$$

Errori da sottrazione e da moltiplicazione

Un'operazione eseguita su un computer fornisce sempre una risposta approssimata in quanto la memoria del computer è finita. Gli errori si possono poi accumulare fino a rendere un programma instabile.

Errori da sottrazione:

$$a = b - c \qquad \Rightarrow \qquad a_{c} = b_{c} - c_{c},$$

$$a_{c} = b (1 + \varepsilon_{b}) - c (1 + \varepsilon_{c}),$$

$$\Rightarrow \qquad \frac{a_{c}}{a} = 1 + \varepsilon_{b} \frac{b}{a} - \frac{c}{a} \varepsilon_{c}.$$

Se a è piccolo
$$\Rightarrow$$
 $b \cong c$ e quindi $\frac{a_c}{a} = 1 + \varepsilon_a$, con $\varepsilon_a \cong \frac{b}{a} (\varepsilon_b - \varepsilon_c)$.

$$\frac{a_c}{a} = 1 + \varepsilon_a$$
, con $\varepsilon_a \cong \frac{b}{a} (\varepsilon_b - \varepsilon_c)$.

Quindi, anche se $\varepsilon_b - \varepsilon_c$ è piccolo, viene moltiplicato da un numero molto grande rendendo ε_a grande!

02/10/2009

Evitare, quando possibile, troppe sottrazioni!

(1),(2) e (3) sono *matematicamente* equivalenti ma **non numericamente**!

Errori da moltiplicazione:

$$a = b \cdot c \qquad \Rightarrow \qquad a_{c} = b_{c} \cdot c_{c},$$

$$a_{c} = b \left(1 + \varepsilon_{b}\right) \cdot c \left(1 + \varepsilon_{c}\right),$$

$$\Rightarrow \qquad \frac{a_{c}}{a} = \left(1 + \varepsilon_{b}\right) \cdot \left(1 + \varepsilon_{c}\right) \cong 1 + \varepsilon_{b} + \varepsilon_{c}$$

Poichè ε_b e ε_c possono avere segno opposto, l'errore in a_c è talvolta maggiore e talvolta minore degli errori dei due moltiplicandi.

Si può mostrare che se ε ha segno casuale, dopo N moltiplicazioni:

$$\varepsilon_N \approx \sqrt{N} \varepsilon$$

Ci sono casi particolari in cui
$$\varepsilon_N \approx N \varepsilon$$
 o addirittura $\varepsilon_N \approx N!\varepsilon$

$$\varepsilon_N \approx N!\varepsilon$$

Errori degli algoritmi

Algoritmo:

- •Grandezza del passo h
- •Numero d'iterazioni N

Buon algoritmo se per:

$$\xrightarrow{h\to 0} \longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

$$\xrightarrow{N\to\infty}$$

soluzione esatta

Def. Errore di approssimazione di un algoritmo:

differenza tra il valore esatto e valore ottenuto dall'algoritmo

Errore totale
$$\Longrightarrow \mathcal{E}_{tot} = \mathcal{E}_{appro} + \mathcal{E}_{arrot}$$

Per
$$N=N_c>>1$$
 o per $h=h_c<<1$, è possibile che

$$\mathcal{E}_{
m arrot} > \mathcal{E}_{
m appro}$$

Errore totale

Supponiamo che:

$$\varepsilon_{\text{appro}} \cong \frac{\alpha}{N^{\beta}}$$

α,β: parametri empirici

e che gli errori di arrotondamento siano scorrelati tra loro durante il calcolo, cioè:

$$\varepsilon_{\text{arrot}} \cong \sqrt{N} \varepsilon_{\text{m}}$$
 Machine precision

$$\mathcal{E}_{\text{tot}} = \mathcal{E}_{\text{appro}} + \mathcal{E}_{\text{arrot}}$$

$$\cong \frac{\alpha}{N^{\beta}} + \sqrt{N} \mathcal{E}_{m}$$

Ci sarà un valore di N dove un errore diventa più grande dell'altro.

Esempio:
$$\alpha = 1$$
, $\beta = 2$

$$\alpha = 1$$
, $\beta = 2$

Supponiamo che:

$$\varepsilon_{\text{appro}} \cong \frac{1}{N^2}$$

$$\varepsilon_{\text{appro}} \cong \frac{1}{N^2} \longrightarrow \varepsilon_{\text{tot}} \cong \frac{1}{N^2} + \sqrt{N} \varepsilon_m$$

Valore estremale:

$$\frac{d\varepsilon_{tot}}{dN} = 0 \Rightarrow N^{\frac{5}{2}} = \frac{4}{\varepsilon_m}$$

E' un valore di minimo essendoci un massimo per N => infinito e N=0

Per un computer a 32-bit in singola precisione

$$\varepsilon_m \cong 10^{-7}$$

$$N^{\frac{5}{2}} \cong \frac{4}{10^{-7}} \Longrightarrow N \cong 1099,$$

$$N^{\frac{5}{2}} \cong \frac{4}{10^{-7}} \Rightarrow N \cong 1099,$$

$$\varepsilon_{tot} \cong \frac{1}{N^2} + \sqrt{N}\varepsilon_m = 8 \times 10^{-7} + 33 \times 10^{-7} \cong 4 \times 10^{-6}$$

In generale la parte preponderante dell'errore è dovuta agli errori di arrotondamento

```
Ripasso elementi di programmazione in C++ ( esempio.cpp ) :
         Semplice programma in C++ che calcola, in
                                                                 commento
          maniera approssimata, \exp(x) come somma
          di una serie finita: (*/
                                     Direttive per il preprocessore
       #include <iostream>
       #include <cmath>
                                     (include files di header per utilizzare le librerie standard)
          int main() 
                                       → Rende visibili le definizioni del C++
             using namespace std;
             double x,esp.nfac,an;
                                          Dichiarazioni delle variabili
             int n,nmax;
                              tine di un'istruzione
       // legge i valori di input:
             cout << " inserisci nmax" << end
             cin >> nmax;
             cout << " inserisci x" << endl;</pre>
             cin >> x;
                          → Inizializzazione delle variabili
       // loop:
                                                                             Corpo della funzione
             for (n=0;n \le nmax;n++) \longrightarrow Istruzione per un ciclo, con n che va da nmax
       // calcola il fattoriale:
              if (n \le 1)
                                <u>Istruzione</u> condizionale
              else
               nfac*=n;
              an=n;
              esp=esp+pow(x,an)/nfac; funzione della libreria matematica
                              << esp << endl;
                                                                                        20
```

• Compilazione in ambiente Linux/Unix :

• text editor : emacs , vi , ...

• programma per fare grafici : gnuplot , xmgr , ...

g++ -o esempio esempio.cpp

./esempio

inserisci nmax

7

inserisci x

1.

esp = 2.71825

RISULTATO ESATTO:

e=2.718281828

Problema fisico: moto di un proiettile

Classico problema di cinematica (in 2D) del lancio di una massa in presenza di gravità e assenza di attrito: sull'asse x la velocità è costante, sull'asse y è uniformemente accelerata (a=-g); ad ogni istante t si può calcolare la **posizione** (x,y) della massa; il problema è concettualmente semplice ma **noioso** da risolvere manualmente...

02/10/2009

Esercizio: moto di un proiettile

Questo esercizio serve come **ripasso** del *linguaggio* C++ e delle *fasi essenziali* dell'approccio computazionale (*editare files, compilare, produrre grafici,...*) e <u>non</u> viene valutato ai fini del voto finale; **N.B.** <u>sarà comunque utile per l'esercizio successivo</u> !!!

Scrivere ed <u>utilizzare</u> un programma in C++ in modo che chieda i parametri **iniziali** del moto (l'angolo di lancio θ_0 , in *radianti*, e la velocità iniziale v_0) ed il tempo t dall'inizio del moto per cui calcolare la **posizione** che viene stampata come <u>risultato</u>.

Esercizio: moto di un proiettile

- <u>verificare</u>, in alcuni casi, che il programma dà risultati in accordo con i calcoli **analitici**, ad esempio: $v_0=50$ m/s, t=3 s, $\theta_1=25^\circ$, $\theta_2=45^\circ$;
- <u>modificare</u> il programma in modo che sia possibile fornire in input l'angolo in *gradi* e la velocità in *km/h*;
- <u>modificare</u> il programma in modo che sia possibile, fornendo la **massa** del corpo, calcolare l'energia **cinetica**, l'energia **potenziale** e l'energia **meccanica totale** (<u>verificare</u> la **conservazione** di quest'ultima!);
- <u>modificare</u> il programma in modo che sia possibile (**ciclo**) avere in output la posizione del corpo, in funzione del tempo, in un certo intervallo (*discretizzato*) di tempo (ad es. da θ a 10 s, con $\Delta t = 0.2 s$), così da poter fare un **grafico** (ad es. scrivendo i dati di output su di un file e poi usando *gnuplot*) che illustra la **traiettoria** (y(x)) del corpo.