How to count?

The "stars and bars" technique

Common types of examples to think about

From last week (boxed questions require a new technique!).

- (1) There are 11 distinct students in a classroom. In how many ways can we...
 - (a) choose 8 students and arrange them in a row.
 - (b) choose 8 students and place into two equal-sized rows <u>labelled</u> "Row 1" & "Row 2".
 - (c) choose 8 students and place them into two equal-sized unlabelled rows.
 - (d) choose 8 students to create a group.
 - (e) choose 8 students and place into equal-sized groups <u>labelled</u> "Group 1" & "Group 2".
 - (f) choose 8 students and place them into two equal-sized <u>unlabelled</u> groups.
- (2) There are 11 identical dimes in a coin bag. In how many ways can we...
 - (a) choose 8 dimes and arrange them in a row.
 - (b) choose 8 dimes to create a group.
 - (c) choose 8 dimes and give them to 3 people where some people might not get any.
 - (d) choose 8 dimes and give them to 3 people where each person gets at least one.
- (3) There are 11 types of coins in a coin bag (with an unlimited number of each type of coin). In how many ways can we...
 - (a) choose 8 coins and arrange them in a row.
 - (b) choose 8 coins and place them into two equal-sized rows <u>labelled</u> "Row 1" & "Row 2".
 - (c) choose 8 coins and place them into two equal-sized <u>unlabelled</u> rows.
 - (d) choose 8 coins to create a group.
 - (e) choose 8 coins and place into equal-sized groups <u>labelled</u> "Group 1" & "Group 2".
 - (f) choose 8 coins and place them into two equal-sized <u>unlabelled</u> groups.

Answers

(i) Answers

- (a) $11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4$.
- (b) $(11 \times 10 \times 9 \times 8) \times (7 \times 6 \times 5 \times 4)$.
- (c) $\frac{1}{2} \times (11 \times 10 \times 9 \times 8) \times (7 \times 6 \times 5 \times 4)$. Note: it is $\frac{1}{2}$ because we cannot distinguish between two <u>unlabelled</u> rows of the same length.
- (d) $\binom{11}{8}$ (by definition of binomial coefficient since objects are <u>distinct</u>).
- (e) $\binom{11}{4}\binom{7}{4}$ or $\binom{11}{8}\binom{8}{4}$.
- (f) $\frac{1}{2} \binom{11}{4} \binom{7}{4}$ or $\frac{1}{2} \binom{11}{8} \binom{8}{4}$. Note: it is $\frac{1}{2}$ because we cannot distinguish between two <u>unlabelled</u> groups of the same size.

(ii) Answers

- (a) 1 (because the objects are <u>identical</u>, hence, indistinguishable from one-another).
- (b) 1 (because the objects are identical, hence, indistinguishable from one-another).
- (c) $\binom{10}{2}$ (by stars and bars which we will soon learn!).
- (d) $\binom{7}{2}$ (by stars and bars; place bars in 7 slots between 8 stars).

(iii) Answers

- (a) 118 (in each of the eight slots of the row, we have 11 types that could occupy it and repetition of a type is allowed).
- (b) $11^4 \times 11^4 = 11^8$
- (c) $11^4 + \frac{1}{2}(11^4)(11^4 1)$ (case work: rows are identical plus rows are not identical).
- (d) $\binom{18}{10}$ or $\binom{18}{8}$ (stars and bars: there are 10 bars that separate stars/coins into 11 types).
- (e) $\binom{14}{10}\binom{14}{10}$ (stars and bars for each separate group)
- (f) $\binom{14}{10} + \frac{1}{2} \binom{14}{10} \left[\binom{14}{10} 1 \right]$ (case work: groups are identical plus groups are not identical).

How do we distribute identical items?

Question.

In how many ways can we distribute four (identical) dimes among three people?

Intuition. People are distinct (they have names).

We list every possibility:

Person 1	Person 2	Person 3
4	0	0
3	1	0
3	0	1
2	2	0
2	0	2
2	1	1
1	3	0
1	0	3
1	2	1
1	1	2
0	4	0
0	0	4
0	3	1
0	1	3
0	2	2

Person 1	Person 2	Person 3
****		l
***	*	
***		*
**	**	
**		' **
**	 *	*
*	 ***	
*		***
*	 **	*
*	 *	 **

	 ***	 *
	 *	 ***
	l de de	

Observations - Part 1

Person 1	Person 2	Person 3
4	0	0
3	1	0
3	0	1
2	2	0
2	0	2
2	1	1
1	3	0
1	0	3
1	2	1
1	1	2
0	4	0
0	0	4
0	3	1
0	1	3
0	2	2

Person 1	Person 2	Person 3
****	1	
***	· * i	
***	i i	*
**	**	
**	i i	**
**	i * i	*
*	***	
*	i i	***
*	**	*
*	i * i	**

	i i	****
	***	*
	* i	***
	i ** i	**

• Every possible of arrangement of four stars and two bars is accounted for.

There is a bijection between distributions and arrangements of four stars & two bars.

- Thus, it suffices to count the number of ways to arrange four stars and two bars!
- To count this, we need to choose the positions of the bars (or equivalently, the stars) in the row:

or equivalently, choose two spots for the bars choose four spots for the stars

• <u>Final answer:</u> $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$, or equivalently, $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$.

The stars and bars technique gives the following theorem.

Theorem

Let $n \geq 1$ and $m \geq 1$ be integers. The number of ways to partition n <u>identical</u> objects into m <u>labelled</u> groups is $\binom{n+m-1}{m-1}$, or equivalently, $\binom{n+m-1}{n}$.

Proof.

- Set up a bijection with arrangements of stars and bars (stars = objects).
- Because we want m groups, we require m-1 bars for the partition:

for m groups we need m-1 bars to act as separators

- We now arrange the n stars and m-1 bars in a row.
- There are a total of n + m 1 symbols to arrange.
- To count the number of arrangements, we choose the positions of the bars (or equivalently, the stars) in the row:

from
$$n+m-1$$
 spots, choose $m-1$ spots for the bars from $n+m-1$ spots, choose n spots for the stars

• There are $\binom{n+m-1}{m-1}$, or equivalently, $\binom{n+m-1}{n}$ arrangements.

Observations - Part 2

Person 1	Person 2	Person 3
4	0	0
3	1	0
3	0	1
2	2	0
2	0	2
2	1	1
1	3	0
1	0	3
1	2	1
1	1	2
0	4	0
0	0	4
0	3	1
0	1	3
0	2	2

Person 1	Person 2	Person 3
****	I	I
***	 *	
***	 	 *
**	 **	
**	 	 **
**	*	 *
*	 ***	
*	 	 ***
*	 **	 *
*	 *	 **

	***	*
	 *	 ***
	 **	 **

- Every possible way to write the number four as an <u>ordered</u> sum of three non-negative integers is accounted for (e.g., 4 + 0 + 0 = 4, 3 + 1 + 0 = 4, 3 + 0 + 1 = 4, 2 + 2 + 0 = 4, etc.).
- That is, the table lists every non-negative integer solution to:

$$x_1 + x_2 + x_3 = 4$$
 where $x_1, x_2, x_3 \ge 0$ (Eq. 1)

There is a bijection between solutions to Eq. 1 and arrangements of stars & bars.

Counting non-negative integer solutions

The stars and bars technique gives the following theorem.

Theorem

Let $n \ge 1$ and $m \ge 1$ be integers. The number of ways to write n as an <u>ordered</u> sum of m non-negative integers is $\binom{n+m-1}{m-1}$, or equivalently, $\binom{n+m-1}{n}$.

Proof. By stars and bars.

An equivalent formulation is the following.

Theorem

Let $n \ge 1$ and $m \ge 1$ be integers. The number of non-negative (i.e., $x_i \ge 0$) integer solutions to $x_1 + x_2 + \cdots + x_m = n$ is $\binom{n+m-1}{m-1}$, or equivalently, $\binom{n+m-1}{n}$.

Proof. By stars and bars.

How do we distribute identical items with each group nonempty?

Question.

In how many ways can we distribute four (identical) dimes among three people so that every person gets at least one dime?

Intuition. People are distinct (they have names).

We list every possibility:

Person 1	Person 2	Person 3
2	1	1
1	2	1
1	1	2

Person 1		Person 2		Person
**		*		*
*	İ	**	i	*
*	İ	*	j	**

- In this case, not every arrangement of four stars and two bars is accounted for.
- We cannot have two adjacent bars or a bar in the end positions.
- How can we count the number of arrangements of four stars and two bars so that no two bars are adjacent and the end positions are not bars?
- We apply an "interlacing" or "weaving" technique where we first place all of the stars, and then place the bars between them.
- Since the end positions are occupied by stars, there are only three spaces available for the bars:
- Final answer: $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ (i.e., from the three empty spots, we select two for the bars).

Theorem

Let $n \ge 1$ and $m \ge 1$ be integers. The number of ways to partition n <u>identical</u> objects into m <u>labelled</u> groups so that every group is non-empty is $\binom{n-1}{m-1}$.

Proof.

- Set up a bijection with arrangements of stars and bars (stars = objects) where no two bars are adjacent and the end positions are not bars.
- Because we want m groups, we require m-1 bars for the partition:

group
$$1 \mid$$
 group $2 \mid$ group $3 \mid \cdots \mid$ group m for m groups we need $m-1$ bars to act as separators

- We now arrange the n stars and m-1 bars in a row with the restriction above.
- To count the number of such arrangements, first place the stars, then choose spots between them for the bars:

from n-1 empty spots, choose m-1 for the bars

• There are $\binom{n-1}{m-1}$ such arrangements.

Observations - Part 3

Person 1	Person 2	Person 3
2	1	1
1	2	1
1	1	2

Person 1	Person 2	Person 3
**	*	*
*	**	*
*	*	**

 Every possible way to write the number four as an <u>ordered</u> sum of three POSITIVE integers is accounted for:

$$2+1+1=4$$
 $1+2+1=4$
 $1+1+2=4$

• That is, the table lists **every** positive integer solution to:

$$x_1 + x_2 + x_3 = 4$$
 where $x_1, x_2, x_3 \ge 1$ (Eq. 2)

• There is a bijection between solutions to Eq. 2 and arrangements of stars & bars where no two bars are adjacent and the end positions are not bars.

Counting positive integer solutions

The stars and bars technique gives the following theorem.

Theorem

Let $n \ge 1$ and $m \ge 1$ be integers. The number of ways to write n as an <u>ordered</u> sum of m positive integers is $\binom{n-1}{m-1}$.

Proof. By stars and bars using interlacing/weaving.

An equivalent formulation is the following.

Theorem

Let $n \ge 1$ and $m \ge 1$ be integers. The number of positive (i.e., $x_i > 0$) integer solutions

to
$$x_1 + x_2 + \cdots + x_m = n$$
 is $\binom{n-1}{m-1}$.

Proof. By stars and bars using interlacing/weaving.

Example

How many integer solutions do each of the following have?

- (a) $x_1 + x_2 + x_3 + x_4 = 7$ with $x_i \ge 0$.
- (b) $x_1 + x_2 + x_3 + x_4 = 7$ with $x_i > 0$.
- (c) $x_1 + x_2 + x_3 + x_4 = 7$ with $0 \le x_i \le 9$.
- (d) $x_1 + x_2 + x_3 + x_4 \le 7$ with $0 \le x_i \le 9$.
- (e) $x_1 + x_2 + x_3 + x_4 \le 15$ with $x_i \ge -10$.
- (f) $x_1 + x_2 + x_3 + x_4 = 13$ with $0 \le x_i \le 9$.

Answers.

- (a) By the theorem, $\begin{pmatrix} 7+4-1\\4-1 \end{pmatrix} = \begin{pmatrix} 10\\3 \end{pmatrix}$.
- (b) By the theorem, $\begin{pmatrix} 7-1\\4-1 \end{pmatrix} = \begin{pmatrix} 6\\3 \end{pmatrix}$.
- (c) **Observation:** x_i can not take on values larger than 7.

Therefore, (c) is the same as the number of solutions to

$$x_1 + x_2 + x_3 + x_4 = 7$$
 with $x_i \ge 0$

which we found in (a) to be $\binom{7+4-1}{4-1} = \binom{10}{3}$.

(d)
$$x_1 + x_2 + x_3 + x_4 \le 7$$
 with $0 \le x_i \le 9$.

- Observation: x_i can not take on values larger than 7.
- Therefore, (d) is the same as the number of solutions to

$$x_1 + x_2 + x_3 + x_4 \le 7 \text{ with } x_i \ge 0$$
 (Eq. 1)

- To solve this, we "add slack" (a common technique in linear optimization).
- We add a new variable x_5 so that we can bump up the left side to be equal to 7:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 7 \text{ with } x_i \ge 0$$
 (Eq. 2)

- Both Eq. 1 and Eq. 2 have the SAME number of solutions! (why?)
- Therefore, applying the theorem to Eq. 2, the answer is $\binom{7+5-1}{5-1} = \binom{11}{4}$.

(e)
$$x_1 + x_2 + x_3 + x_4 \le 15$$
 with $x_i \ge -10$.

- We introduce new variables to translate the problem to nonnegative solutions.
- Let $y_i = x_i + 10$ (so that $y_i \ge 0$ since $x_i \ge -10$).
- With this substitution, we now want the number of solutions to:

$$(y_1-10)+(y_2-10)+(y_3-10)+(y_4-10)\leq 15$$
 with $y_i\geq 0$

or equivalently

$$|y_1 + y_2 + y_3 + y_4 \le 55 \text{ with } y_i \ge 0$$
 (Eq. 1)

Now "add slack":

$$y_1 + y_2 + y_3 + y_4 + y_5 = 55$$
 with $y_i \ge 0$ (Eq. 2)

- Both Eq. 1 and Eq. 2 have the **SAME** number of solutions! (why?)
- Therefore, applying the theorem to Eq. 2, the answer is $\binom{55+5-1}{5-1} = \binom{59}{4}$.

(f)
$$x_1 + x_2 + x_3 + x_4 = 13$$
 with $0 \le x_i \le 9$.

- This problem is different from (c) since we could have $x_i > 9$ for some i.
- Technique: First count the number of solutions to

$$x_1 + x_2 + x_3 + x_4 = 13$$
 with $x_i \ge 0$

(which is $\binom{13+4-1}{4-1}$) then **subtract** the solutions that violate the $x_i \leq 9$ property (i.e., those with $x_i \geq 10$ for some $1 \leq i \leq 4$).

- Observe that if a component, say x_1 , is at least 10, then all other components must be at most 9 in order to get a sum of 13.
- This give four cases:
- Case 1. $x_1 \ge 10$
 - Let $y_1 = x_1 10$ (so that $y_1 \ge 0$) and substitute to get $(y_1 + 10) + x_2 + x_3 + x_4 = 13$ with $y_1, x_2, x_3, x_4 \ge 0$ or equivalently $y_1 + x_2 + x_3 + x_4 = 3$ with $y_1, x_2, x_3, x_4 \ge 0$

This has
$$\binom{3+4-1}{4-1} = \binom{6}{3}$$
 solutions.

- The other three cases where either $x_2 \ge 10$, $x_3 \ge 10$ or $x_4 \ge 10$ are identical to the first case and each has $\binom{6}{3}$ solutions.
- Therefore, the original equation in (f) has $\binom{13+4-1}{4-1}-4\binom{6}{3}$ solutions.