Lesson 9

José M. Corcuera. University of Barcelona.

The Itô integral

• If $H \in \mathcal{S}$ (linear space of simple predictable process),

$$H_t = h_0 \mathbf{1}_{\{0\}} + \sum_{i=1}^n h_{i-1} \mathbf{1}_{(t_{i-1},t_i]}(t)$$
, h_{i-1} bounded and $\mathcal{F}_{t_{i-1}}$ -measurable.

$$0=t_0\leq t_1\leq ...\leq t_n=T$$
, we define

$$I(H) := \int_0^1 H_s dW_s := \sum_{i=1}^n h_{i-1}(W_{t_i} - W_{t_{i-1}})$$

José M. Corcuera. University of Barcelona.

The Itô integral

• If $H \in \mathcal{S}$ (linear space of simple predictable process),

$$H_t = h_0 \mathbf{1}_{\{0\}} + \sum_{i=1}^n h_{i-1} \mathbf{1}_{(t_{i-1},t_i]}(t)$$
, h_{i-1} bounded and $\mathcal{F}_{t_{i-1}}$ -measurable.

$$0=t_0\leq t_1\leq ...\leq t_n=T$$
, we define

$$I(H) := \int_0^1 H_s dW_s := \sum_{i=1}^n h_{i-1}(W_{t_i} - W_{t_{i-1}})$$

• Linear map from $\mathcal S$ to $\mathcal M$ (square integrable r.v.). I(H) is an isometry. If H and $L \in \mathcal S$,

The Itô integral

• If $H \in \mathcal{S}$ (linear space of simple predictable process),

$$H_t = h_0 \mathbf{1}_{\{0\}} + \sum_{i=1}^n h_{i-1} \mathbf{1}_{(t_{i-1},t_i]}(t)$$
, h_{i-1} bounded and $\mathcal{F}_{t_{i-1}}$ -measurable.

 $0 = t_0 \le t_1 \le ... \le t_n = T$, we define

$$I(H) := \int_0^T H_s dW_s := \sum_{i=1}^n h_{i-1}(W_{t_i} - W_{t_{i-1}})$$

• Linear map from $\mathcal S$ to $\mathcal M$ (square integrable r.v.). I(H) is an isometry. If H and $L \in \mathcal S$,

•

$$\langle I(H), I(L) \rangle_{\mathcal{M}} := \mathbb{E} \left(\int_0^T H_s dW_s \int_0^T L_s dW_s \right)$$

$$= \int_0^T \mathbb{E}(H_s L_s) ds := \langle H, L \rangle_{\mathcal{S}}$$

ullet Then we can extend the map from ${\mathcal S}$ to ${\mathcal H}$:

$$\mathcal{H} = \left\{ H, \mathsf{measurable} \; \mathsf{and} \; \mathbb{F} ext{-adapted with} \; \|H\|^2 := \int_0^T \mathbb{E}(H_s^2) \mathrm{d}s < \infty
ight\}$$

by

$$\int_0^T H_s dW_s = \mathbb{L}^2 - \lim_{n \to \infty} \int_0^T H_s^n dW_s$$

where $H^n \in \mathcal{S}$ and $\|H^n - H\|^2 \to 0$ when $n \to \infty$, since \mathcal{S} is dense in \mathcal{H} with the norm $\|\cdot\|$.

The indefinite Itô integral

The "corresponding" definition is

$$\int_0^t H_s dW_s = \int_0^T H_s \mathbf{1}_{[0,t]}(s) dW_s := I(H)_t,$$

for $H \in \mathcal{H}$.

Theorem

 $I(H)_t$, $0 \le t \le T$ is a martingale.

Proof.

If $H \in \mathcal{S}$, $I(H)_t = \sum_{i=1}^n h_{i-1}(W_{t_i \wedge t} - W_{t_{i-1} \wedge t})$ and it is a "martingale transform". If $H \in \mathcal{H}$, $\lim_{n \to \infty} I(H^n)_t \stackrel{\mathbb{L}^2}{=} I(H)_t$, then, by the Jensen inequality

$$\mathbb{E}\left(\left(\mathbb{E}\left(I(H)_{t}|\mathcal{F}_{s}\right)-I\left(H^{n}\right)_{s}\right)^{2}\right)$$

$$=\mathbb{E}\left(\left(\mathbb{E}\left(I(H)_{t}|\mathcal{F}_{s}\right)-\mathbb{E}\left(I(H^{n})_{t}|\mathcal{F}_{s}\right)\right)^{2}\right)$$

$$\leq\mathbb{E}\left(\mathbb{E}\left(\left(I(H)_{t}-I(H^{n})_{t}\right)^{2}\Big|\mathcal{F}_{s}\right)\right)$$

$$=\mathbb{E}\left(\left(I(H)_{t}-I(H^{n})_{t}\right)^{2}\right)\to0.$$

and by the a.s. uniqueness of the \mathbb{L}^2 -limit we have that $\mathbb{E}\left(I(H)_t|\mathcal{F}_s\right)=I(H)_s$, a.s.

The Doob inequality for continuous (square integrable) martingales establishes that

$$\mathbb{E}\left(\sup_{0\leq t\leq T}M_t^2\right)\leq 4\mathbb{E}\left(M_T^2\right)$$

and this implies that we have uniform \mathbb{L}^2 convergence to $(I(H)_t)_{0 \leq t \leq T}$, uniform convergence in probability (by Chebyshev) and there exist a subsequence that converges uniformly and almost surely to $I(H)_t$. Now, since, as we have seen above, $I(H^n)_t$ is a continuous process we can obtain a continuous version of $I(H)_t$. (a uniform limit of a sequence of continuous function is continuous).

Lemma

If $A \in \mathcal{F}_t$ for all $H \in \mathcal{H}$

$$\int_0^T \mathbf{1}_A H_s \mathbf{1}_{(t,T]}(s) \mathrm{d}W_s = \mathbf{1}_A \int_t^T H_s \mathrm{d}W_s.$$

Proof.

If $H \in \mathcal{S}$ it is obvious. Now if $H^n \in \mathcal{S} \xrightarrow{\mathbb{L}^2} H \in \mathcal{M}$ we have that

$$\int_0^T \mathbf{1}_A H_s^n \mathbf{1}_{(t,T]}(s) dW_s = \mathbf{1}_A \int_t^T H_s^n dW_s \xrightarrow{\mathbb{L}^2} \mathbf{1}_A \int_0^T H_s \mathbf{1}_{(t,T]}(s) dW_s$$

and by the uniqueness of the \mathbb{L}^2 -limit we have the result.

Theorem

Let τ be a stopping time then for all $H \in \mathcal{H}$

$$\int_0^{T\wedge\tau} H_s dW_s = \int_0^T H_s \mathbf{1}_{[0,\tau]}(s) dW_s.$$

Proof.

If τ is deterministic is obvious. If $\tau = \sum_{i=1}^n t_i \mathbf{1}_{A_i}$, where $\{A_i, i=1,...,n\}$ is a partition of Ω with A_i \mathcal{F}_{t_i} -measurable, we have that

$$\begin{split} &\int_0^{T\wedge\tau} H_s \mathrm{d}W_s \\ &= \sum_{i=1}^n \mathbf{1}_{A_i} \int_0^{t_i} H_s \mathrm{d}W_s = \sum_{i=1}^n \mathbf{1}_{A_i} \left(\int_0^T H_s \mathrm{d}W_s - \int_0^T H_s \mathbf{1}_{(t_i,T]}(s) \mathrm{d}W_s \right) \\ &= \int_0^T H_s \mathrm{d}W_s - \int_0^T H_s \sum_{i=1}^n \mathbf{1}_{A_i} \mathbf{1}_{(t_i,T]}(s) \mathrm{d}W_s \text{ (by the Lemma)} \\ &= \int_0^T H_s \mathrm{d}W_s - \int_0^T H_s \mathbf{1}_{(\tau,T]}(s) \mathrm{d}W_s = \int_0^T H_s \mathbf{1}_{[0,\tau]}(s) \mathrm{d}W_s \end{split}$$

(D) (A) (B) (B) (A)

Proof.

For arbitrary τ we can take $\tau_n := \sum_{k=0}^{2^n-1} \frac{(k+1)T}{2^n} \mathbf{1}_{\left\{\frac{kT}{2^n} < \tau \leq \frac{(k+1)T}{2^n}\right\}}$ then τ_n is a stopping time of the previous form and $\tau_n \downarrow \tau$, a.s., consequently, fixed ω ,

$$\int_0^{T\wedge\tau} H_s dW_s = \lim_{n\to\infty} \int_0^{T\wedge\tau_n} H_s dW_s = \lim_{n\to\infty} \int_0^T H_s \mathbf{1}_{[0,\tau_n]}(s) dW_s,$$

also, by the isometry property and by the dominated convergence theorem, we have

$$\mathbb{E}\left(\left(\int_0^T H_s \mathbf{1}_{[0,\tau]}(s) dW_s - \int_0^T H_s \mathbf{1}_{[0,\tau_n]}(s) dW_s\right)^2\right)$$

$$= \mathbb{E}\left(\int_0^T H_s^2 \mathbf{1}_{(\tau,\tau_n]}(s) ds\right) \underset{n \to \infty}{\longrightarrow} 0.$$

So $\int_0^T H_s \mathbf{1}_{[0,\tau]}(s) dW_s = \mathbb{L}^2 - \lim_{s \to \infty} \int_0^T H_s \mathbf{1}_{[0,\tau_n]}(s) dW_s$. Now, by the uniqueness of the limit in probability we obtain the result.

Now we want to extent the Itô integral to the set of processes

$$ilde{\mathcal{H}} = \left\{ H, ext{measurable and } \mathbb{F} ext{-adapted with } \int_0^T H_s^2 \mathrm{d}s < \infty, ext{ a.s.}
ight\}.$$

Consider the sequence of stopping times

$$\tau_n := \inf \left\{ 0 \leq t \leq T, \int_0^t H_s^2 \mathrm{d} s = n \right\}, \ \tau_n = T \ \text{if this set is empty. Note}$$
 that
$$\tau_n(\omega) = T \ \text{on the set} \ A_n = \left\{ \int_0^T H_s^2 \mathrm{d} s < n \right\} \ \text{and that} \ A_n \uparrow \Omega \backslash \mathcal{N}$$
 for all $H \in \tilde{\mathcal{H}}$.

Then we define, for $H \in \tilde{\mathcal{H}}$,

$$I(H)_{t}(\omega) := \left(\lim_{k\to\infty}\int_{0}^{t}H_{s}\mathbf{1}_{[0,\tau_{k}]}(s)\mathrm{d}W_{s}\right)(\omega).$$

Note that $\left\|H_s\mathbf{1}_{[0,\tau_k]}(s)\right\| \leq k$, that is $H_s\mathbf{1}_{[0,\tau_k]}(\cdot) \in \mathcal{H}$. We can see that this limit is well define for all ω w.p.1. Let ω be in A_n , then $\tau_n(\omega) = T$ and we have that

$$I(H)_{t}(\omega) := \left(\lim_{k\to\infty} \int_{0}^{t\wedge\tau_{n}(\omega)} H_{s} \mathbf{1}_{[0,\tau_{k}]}(s) dW_{s}\right)(\omega)$$

$$= \left(\lim_{k\to\infty} \int_{0}^{t} H_{s} \mathbf{1}_{[0,\tau_{n}]}(s) \mathbf{1}_{[0,\tau_{k}]}(s) dW_{s}\right)(\omega)$$

$$= \left(\lim_{k\to\infty} \int_{0}^{t\wedge\tau_{k}(\omega)} H_{s} \mathbf{1}_{[0,\tau_{n}]}(s) dW_{s}\right)(\omega).$$

$$= \left(\int_{0}^{t} H_{s} \mathbf{1}_{[0,\tau_{n}]}(s) dW_{s}\right)(\omega).$$

and if m>n and ω is in A_n (then $\tau_n(\omega)=T$), since $\tau_m>\tau_n$

$$\left(\int_0^t H_s \mathbf{1}_{[0,\tau_m]}(s) dW_s\right)(\omega) = \left(\int_0^{t \wedge \tau_n(\omega)} H_s \mathbf{1}_{[0,\tau_m]}(s) dW_s\right)(\omega) \\
= \left(\int_0^t H_s \mathbf{1}_{[0,\tau_n]}(s) \mathbf{1}_{[0,\tau_m]}(s) dW_s\right)(\omega) \\
= \left(\int_0^t H_s \mathbf{1}_{[0,\tau_n]}(s) dW_s\right)(\omega).$$

and the limit is defined in a consistent way.

Finally this integral is an extension of the previous integral: if $H \in \mathcal{H}$ and $\omega \in A_n$

$$I(H)_{t}(\omega) = \left(\int_{0}^{t} H_{s} \mathbf{1}_{[0,\tau_{n}]}(s) dW_{s}\right)(\omega)$$

$$= \left(\int_{0}^{t \wedge \tau_{n}(\omega)} H_{s} dW_{s}\right)(\omega) = \left(\int_{0}^{t \wedge T} H_{s} dW_{s}\right)(\omega)$$

$$= \left(\int_{0}^{t} H_{s} dW_{s}\right)(\omega).$$

The process $I(H)_t$, $0 \le t \le T$ is a local martingale!!: take the sequence $(\tau_n)_{n \ge 1}$ defined above, then

$$I(H)_{t \wedge \tau_n} = \left(\lim_{k \to \infty} \int_0^{t \wedge \tau_n(\omega)} H_s \mathbf{1}_{[0,\tau_k]}(s) dW_s\right)$$
$$= \left(\lim_{k \to \infty} \int_0^t H_s \mathbf{1}_{[0,\tau_n]}(s) \mathbf{1}_{[0,\tau_k]}(s) dW_s\right)$$
$$= \left(\int_0^t H_s \mathbf{1}_{[0,\tau_n]}(s) dW_s\right).$$

and since $H.\mathbf{1}_{[0,\tau_n]}(\cdot) \in \mathcal{H}$ we have that $I(H)_{\cdot \wedge \tau_n}$ is a martingale.