Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Group 1030

Diskussion/Konklusion

Introduktion

Kloakker og rensningsanlæg Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark 51

Typisk opbygning af kloak ledning

Agenda

Group 1030

Introduktio

rensningsanlæg

Problem formulering

System beskrivel

0,01011110001111101

begrænsning

Modellering

Simulering

Struktur

Preisemani

Implemente

Kontrol

Lineariserin

MPC

nesultai

Diskussion/Konklusion

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formularing

System beskrivelse

System beskinds

Løsninger og hegrænsning

....

Modellering

Simularina

Struktur

Projeemann

Implementerin

Kontro

Lineariserin

Resultat

Diakunnian/Kankhunia

► Mekanisk rensning.

Agenda

Group 1030

Kloakker og rensningsanlæg

System beskrivelse

Modellering

Resultat

- ► Mekanisk rensning.
- Sandfang.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

1110000110111

Simulerii

Struktur

1 1010011101111

Implementen

Lineariserin

MPC

Resulta

- ► Mekanisk rensning.
- Sandfang.
- Primær rensning.

Agenda

Group 1030

Kloakker og rensningsanlæg

System beskrivelse

- Mekanisk rensning.
- Sandfang.
- Primær rensning.
- Sekundær rensning.

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simuleri

Struktu

Preissmann

impiementering

.....

MPC

Resulta

Diskussion/Konklusio

- Mekanisk rensning.
- Sandfang.
- Primær rensning.
- Sekundær rensning.
- Kemisk rensning.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellerin

Simulei

Droinomon

Implementerin

Implementerin

Kontrol

Linearisering

Resulta

Diskussion/Konklusion

Virksomheds besøg ved Fredericia Spildevand og Energi A/S.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellerin

0.....

Preissmann

Implementeri

Implementen

Lineariserir

Resulta

- ► Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninge

Modellering

Modellerin

Simulering

Struktur

Preissmani

Implementer

Kontro

Lineariserin

Daniella

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninge

Modellerin

WIOGCIICITI

Simulering

Struktur

Preissmann

Implementering

Kontro

Linearisering

MPC

nesulta

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - ► Problemer for aerobe bakterier
 - Andre forstyrelser

Problem formulering

Agenda

Group 1030

Problem formulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

....

Simulering

- ·

Preissman

Implementerin

Kontrol

Lineariserin

Resultat

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

troduktio

Kloakker og rensningsanlæg

System beskrivelse

Løsninger og

Modellerina

Modellerin

Cimularia

Struktur

Implementerin

.

......

MPC

Resulta

- Data fra industri.
- Flow profiler af beboelse og mindre industri.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Kontrol

Resultat

► Indsættelse af tank.

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninger

Modellering

....

011110101

Droinomon

Preissmann

Implementer

Kontro

Lineariserir

Resultat

- ► Indsættelse af tank.
- ► Afgrænse simulering til enkelt kemisk component.

Group 1030

troduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninger

Modellering

....

Simularin

Struktur

Preissmann

Implementer

...

Lineariserir

Resultat

Diskussion/Konklusio

Indsættelse af tank.

- ► Afgrænse simulering til enkelt kemisk component.
- ► Runde kloak rør.

4 modeller

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

.....

Struktur

Preissmann

Fielssillallii

mpiomonion

Lineariserin

Regulta

Diskussion/Konklusio

Kloak ledning.

- Transport af concentrat i kloak ledning.
- ► Sammenkobling af kloakledninger.
- ► Tank.

Group 1030

tradulation

Kloakker og rensningsanlæg

Problem formulering

System beskrivel

Løsninger og

bogiconomingor

Modellering

Simulerin

Struktur

Preissman

Implemente

Kontrol

Lineariserin

Diekussion/Konklusia

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formuler

System beskrivel

Løsninger og

Modellering

Modellerin

Struktur

Droinomonn

Preissmann

Implemente

KOHITOI

Lineariseri

Resultat

Diskussion/Konklusion

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

► Impuls ligning:

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) +$$

$$\frac{\partial h}{\partial x} + S_f - S_b = 0$$

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivel

Løsninger og

begrænsninger

Modellering

Simulering

Projesmann

Preissmann

Implementer

Kontro

Lineariserir

Resultat

Diskussion/Konklusion

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

► Impuls ligning:

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) +$$

$$\frac{\partial h}{\partial x} + S_f - S_b = 0$$

Approksimationer af momentum ligningen.

Agenda

Group 1030

System beskrivelse

Modellering

Kontrol

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

Otendates

- .

rieissilidilli

12.

Lineariserin

Diekussien/Kenkl

Agenda

Group 1030

atroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementer

Kontrol

Lineariserin

Deside

Diskussion/Konklusion

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

► Afhænger af kendt A og Q.

Sammenkobling af kloak ledninger

Agenda

Group 1030

System beskrivelse

Modellering

Simulering

Resultat

► Flow:

$$Q_3 = Q_1 + Q_2$$

Sammenkobling af kloak ledninger

Agenda

Group 1030

Modellering

► Flow:

$$Q_3=Q_1+Q_2$$

Koncentrat:

$$C_3 = \frac{C_1 \cdot Q_1 + C_2 \cdot Q_2}{Q_1 + Q_2}$$

Group 1030

System beskrivelse

Modellering

Kontrol

Resultat

► Højde:

$$\frac{dh(t)}{dt} = \frac{1}{A} \left(Q_{in}(t) - u(t) \cdot \overline{Q} \right)$$

Group 1030

Modellerina

Højde:

$$\frac{dh(t)}{dt} = \frac{1}{A} \left(Q_{in}(t) - u(t) \cdot \overline{Q} \right)$$

Koncentrat:

$$\frac{\textit{dC}_{\textit{tank}}(t)}{\textit{dt}} = \frac{1}{\textit{A}} \left(\textit{C}_{\textit{in}}(t) \cdot \frac{\textit{Q}_{\textit{in}}(t)}{\textit{h}(t)} - \textit{C}_{\textit{tank}}(t) \cdot \frac{\textit{Q}_{\textit{out}}(t)}{\textit{h}(t)} \right)$$

Group 1030

System beskrivelse

Modellering

Simulering

Struktur

Kontrol

Resultat

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

Preissmann

Implementerin

...,

Lineariseri

Resultat

Diskussion/Konklusion

► Intialisering

► Opsætning af komponenter.

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

bogitoriaring

Modellering

Simulering

Struktur

rieissilialili

Implementerin

impiementerin

Lineariserin

Resultat

Diskussion/Konklusion

- Opsætning af komponenter.
- ► System i steady state.

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

bogiconoming

Modellering

Simulering

Struktur

roicemann

Implementering

Implementering

Kontrol

Lineariserin

Resulta

Diskussion/Konklusion

- Opsætning af komponenter.
- ► System i steady state.
- Simulering

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Madellada

Modellerin

Simulering

Struktur

reissmann

Implementerin

IIIpieilieilieili

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusion

- ► Opsætning af komponenter.
- ► System i steady state.
- Simulering
- ► Iterativ beregning af komponenterne

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellerin

1110000110111

Struktur

Struktur

Implementari

Implementerii

Kontrol

Linearisering MPC

Resultat

Diskussion/Konklusion

- Opsætning af komponenter.
- ► System i steady state.
- Simulering
- ► Iterativ beregning af komponenterne
- Gennemgang af resultat

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Struktur

Drojoomoon

1 1010011101111

implomenteri.

Lineariserin

Resultat

Diakussian/Kanklusian

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

bogiconoming

Modellering

0. . .

Preissmann

Implementor

Implementeri

Linearisering

Resultat

Diskussion/Konklusion

► Kinematisk bølge aproksimering.

► Fyldningsgrad kurve for rør.

Group 1030

atroduktion

Kloakker og

Problem formularing

System beskrivelse

Løsninger og

....

Modellering

simuleri

Preissmann

Implemente

Implementer

Kontrol Lineariserir

MPC

Resultat

Diskussion/Konklusion

Preissmann iteration

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrive

Løsninger og

Modellering

Cincillania

Struktur

Preissmann

Implementer

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

Preissmann stabilitet

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

Modellering

Modellerin

Simulem

Preissmann

Implementeri

Implementen

Lineariserin

Resultat

Diskussion/Konklusion

Ubetinget stabilitet

Group 1030

System beskrivelse

Modellering

Preissmann

Kontrol

Resultat

► Indikation af præcision

Courant's tal

Agenda

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

Preissmann

Implementeri

Lineariserin

MPC

Resultat

Diskussion/Konklusion

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}} \cdot \Delta t}}{\Delta x}$$

Group 1030

ntroduktio

Kloakker og

Problem formulering

System beskrivel

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementer

IIIIpieiiieiitei

Kontrol Lineariseri

Resultat

Diskussion/Konklusion

Group 1030

Introduktion

Kloakker og rensningsanlæg

Problem formuler

System beskrivel

Løsninger og

begrænsning

Modellering

Otendatore

Preissmann

impiemente

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

Group 1030

System beskrivelse

Modellering

Implementering

Resultat

- Implementation
- Kontrol
- Resultater
- Diskussion
- ► Konklusion

Group 1030

ntroduktion

rensningsanlæg

Problem formulerin

System beskrivelse

_øsninger og

Modellering

.

Simulerin

Outun

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Group 1030

Implementering

Diskussion/Konklusion

1. Pipe

- længde [m]
- sektioner
- S_b (Hældning) [‰]
- $\triangle x = \text{Længde/Sektioner [m]}$
- Diameter [m]
- ► Theta
- $ightharpoonup Q_f[m^3/s]$
- Side inflow
- Placering i data

2. Tank

- ▶ Størrelse [m³]
- ► Højde [m]
- Areal = Size / Height [m²]
- ► Maximum outflow [m³/s]
- Placering i data

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Preissmann

Implementering

Implementeri

Kontrol

Lineariser MPC

Resultat

Diskussion/Konklusio

Rør specifikationer

Fields	length	= sections	⊞ Dx	⊞ Sb	⊞ d	H Theta	■ Qf	☐ side_inflow	data_location
1	700	35	20	0.0030	0.9000	0.6500	0.9730	0	1
2	303	15	20.2000	0.0030	0.9000	0.6500	0.9730	0	3
3	27	2	13.5000	0.0030	1	0.6500	1.2843	1	4
4	155	8	19.3750	0.0041	1	0.6500	1.5014	0	5
5	295	14	21.0714	0.0122	0.8000	0.6500	1.4386	0	6
6	318	15	21.2000	0.0053	0.9000	0.6500	1.2932	1	8

Group 1030

System beskrivelse

Modellering

Implementering

Resultat

► Tank specifikationer

Fields	size	height	area	Q_out_max	data_location
1	9	0 10	9	0.9730	2
2	9	0 10	9	1.2932	7

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

. . .

Charleton

Preissmann

FIEISSIIIdIIII

Implementering

Kontrol

Lineariserin

Resultat

Diskussion/Konklusio

► System specifikationer

Fields	type type	\coprod component	sections sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	4	39
4	'Tank'	1	1
5	'Pipe'	14	206
6	'Total'	21	282

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

. . . .

Otendeton

Preisemann

Implementering

Kontrol

KOHITOI

Lineariouri

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg

System heskrivels

Løsninger og

begrænsninger

Modellering

Oteraletane

Droinomor

Implementering

Kontrol

Lineariseri

Dogulto

Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg

System heskrivels

Løsninger og

begrænsninger

Modellering

Simularin

Struktur

Preissmann

Implementering

implementen

. . . .

Kontrol

Lineariseri

Dogulto

Dickussion/Konklusion

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Løsninger og

.....

Modellering

Simulering

Struktur

Preissmann

Implementering

implementaring

.....

Linearisering

Resulta

Diskussion/Konklusion

► Itererer igennem rør og tank for hvert tidsskridt

Group 1030

ntroduktio

rensningsanlæg

Problem formuleri

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulemin

Preissmann

Implementering

Kontrol

Lineariseri

Resultat

Diskussion/Konklusio

33

51

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Løsninger og

Modellerin

....

011110101

- .

Preissmann

Implementer

Kontro

Linearisering

MPG

Resulta

Diskussion/Konklusion

Linearisering af ulineær model

► Opstilles på state space form

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$

Group 1030

Modellerina

Linearisering

Diskussion/Konklusion

Priessmann scheme

Opsat på matrix og vektor form

$$\left[\underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{b}\right] \begin{bmatrix} h_{j+1}^{i+1} \\ h_{j+1}^{i+1} \end{bmatrix} =$$

$$- \left[\underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{c} \underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix} =$$

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellering

Cinnellania

Struktur

Preissmann

Implementer

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & b_1 & 0 & \cdots & 0 \\ 0 & a_1 & b_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & a_{m-1} & b_m \end{bmatrix}}_{\xi} \underbrace{\begin{bmatrix} h_0^{i+1} \\ h_1^{i+1} \\ h_2^{i+1} \\ \vdots \\ h_m^{i+1} \end{bmatrix}}_{x(k+1)} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ c_0 & d_1 & 0 & \cdots & 0 \\ 0 & c_1 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & c_{m-1} & d_m \end{bmatrix}}_{x(k)} \underbrace{\begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)}$$

 $-a_0$

 \overline{dQ}

 B_d

Group 1030

Introduktio

- Kloakker og rensningsanlæg
- Problem formuler

System beskrivel

Løsninger og

begrænsninger

Modellering

. . . .

Otendetore

Preissmann

Implemente

IIIIpioiiioiitoi

KOHITOI

Linearisering

Resulta

Diskussion/Konklusion

- ► e Forøgelse af højde i tank(inflow)
- ► f Reducering af højde i tank(Outflow)
- ► g Inflow i efterfølgende rør

$$= \underbrace{ \begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i+1} \\ h_{2,0}^{i+1} \\ h_{2,1}^{i+1} \end{bmatrix}}_{x(k+1)} }_{x(k+1)} + \underbrace{ \begin{bmatrix} d_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & c_{2,0} & d_{2,1} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i} \\ h_{2,0}^{i} \\ h_{2,1}^{i} \\ h_{2,1}^{i} \end{bmatrix}}_{x(k)} }_{B} + \underbrace{ \begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix} }_{B} \underbrace{ \begin{bmatrix} h_{0}^{i+1} \\ u_{tank} \end{bmatrix} }_{B}$$

Group 1030

System beskrivelse

Modellering

Kontrol

Linearisering

Resultat

► Samligning af ulineær og linear model

- System setup
- ► Sinus input

Type	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

Group 1030

Modellering

Kontrol

Linearisering

Resultat

Group 1030

System beskrivelse

Modellering

MPC

Cost function

- Afgrænset til at minimiere output variationer
- ▶ Constraints
 - ► Højde
 - Kontrol input
- ► Prediction model

Group 1030

Modellering

MPC

Bestemmelse af Prediction horizon

- Flow profiler
- ► Industri
- Begrænsning af Prediction horizon
- System setup
- ► Forstyrrelses input

Fields	type type	component	⊞ sections
1	'Pipe'	1	5
2	'Tank'	1	1
3	'Pipe'	1	5
4	'Total'	3	11

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formuleri

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simularina

Preissmann

Implemente

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusio

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementer

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

hearsensninger

Modellering

Simulerin

Struktur

Preissmar

Implementeri

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusio

Group 1030

ntroduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninge

Modellering

Modellerii

Simulering

Oli uktui

Preissmann

Implementeri

Kontro

Linearisering

Resultat

Diskussion/Konklusio

 System setup, efterligning af Fredericia

► Flow profiler

Type	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formuleri

System beskrivelse

Løsninger og

begrænsninger

Modellering

Cimularina

Struktur

1 1010011101111

Implementen

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

troduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Løsninger og

Modellering

Simulering

Desirence

1 1010011101111

Implementen

Kontrol

Lineariserir

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

System beskrivelse

Modellering

Simulering

Kontrol

Resultat

▶ Over dimensioneret tank

► Konstant output af tank

Group 1030

System beskrivelse

Modellering

Kontrol

Resultat

Group 1030

troduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

Preissmann

land bear and a

IIIpieilieille

Kontro

Linearisering

Resultat

Diskussion/Konklusion (50)

- ▶ Courant's tal
- ► Model reduction
- Wastewater of Aerobic/Anaerobic Transformations in Sewers (WATS)

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsning

Modellering

Cimularia

011110110

Preissmann

FIEISSIIIdiiii

Implementerin

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion (51

► Simulering

► MPC