ÔN TẬP GIẢI TÍCH 2A HỌC KỲ 1 - NĂM HỌC 2024-2025

Bài 1. Cho ánh xạ $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ xác định như sau

$$d(x,y) = \left| \sqrt{x^2 + 1}e^{2x} - \sqrt{y^2 + 1}e^{2y} \right|.$$

- a) Chứng minh (\mathbb{R}, d) là không gian metric.
- b) Chứng minh (\mathbb{R}, d) là không gian metric không đầy đủ.

Bài 2. Trong \mathbb{R}^2 , cho

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|,$$

với $x = (x_1, x_2)$ và $y = (y_1, y_2)$.

- a) Chứng minh rằng (\mathbb{R}^2, d) là không gian metric đầy đủ.
- b) Cho

$$D = \left\{ (u, v) \in \mathbb{R}^2 : u^2 + v^2 \le u + v + e^{-u^2 - v^2} \right\}.$$

Chứng minh D là tập compact trong (\mathbb{R}^2, d) .

Bài 3. Cho C([0,1]) là không gian các hàm $f:[0,1]\to\mathbb{R}$ liên tục. Cho $f\in C([0,1])$. Đặt:

$$||f||_1 = \int_0^1 x \cdot |f(x)| dx,$$
$$||f||_2 = \sup_{x \in [0,1]} x \cdot |f(x)|.$$

- a) Chứng minh $\|\cdot\|_1$ và $\|\cdot\|_2$ là các chuẩn trên $C\left([0,1]\right).$
- b) Cho $T: (C([0,1]), \|\cdot\|_2) \to (C([0,1]), \|\cdot\|_1)$ thỏa T(f)=f., Chứng minh T là ánh xạ tuyến tính và liên tục.
- c) Cho $f_n(x) = ne^{-nx}$. Tính $||f_n||_1$ và $||f_n||_2$.
- d) Hỏi f_n có hội tụ về 0 khi $n \to +\infty$ trong $(C([0,1]), \|\cdot\|_1)$ không? Giải thích?
- e) Hỏi f_n có hội tụ về 0 khi $n \to +\infty$ trong $(C([0,1]), \|\cdot\|_2)$ không? Giải thích?

Bài 4. Cho dãy hàm $\{f_n\}$ thỏa

$$f_n(x) = \frac{1+3nx}{4+2nx}.$$

- a) Chứng minh $\{f_n\}$ hội tụ điểm và hội tụ đều trên $[1; \infty)$.
- b) Chứng minh $\{f_n\}$ không hội tụ đều trên [0;1].

Bài 5. Cho dãy hàm xác định bởi

$$f_n(x) = \frac{nx}{2020 + n^2 x^2}, \quad x \in [0; 1], \quad n \in \mathbb{N}.$$

- a) Chứng minh rằng dãy hàm $\{f_n\}_{n\in\mathbb{N}}$ hội tụ từng điểm.
- b) Chứng minh rằng dãy hàm $\{f_n\}_{n\in\mathbb{N}}$ không hội tụ đều.

Bài 6. Ký hiệu C[0;1] là tập hợp tất cả các hàm số thực liên tục trên [0;1]. Cho ánh xạ $f:C[0;1]\to\mathbb{R}$ xác định bởi

$$f(x) = x(1), \quad x \in C[0; 1].$$

Chứng minh rằng fkhông liên tục trên không gian metric (C[0;1];d) với d được cho bởi

$$d(x;y) = \int_0^1 |x(t) - y(t)| dt, \quad x, y \in C[0; 1].$$