CSC-591: Foundations of Data Science T/Th. 12:50-2:05pm. EBI-1005.

Ranga Raju Vatsavai

Chancellors Faculty Excellence Associate Professor in Geospatial Analytics
Department of Computer Science, North Carolina State University (NCSU)
Associate Director, Center for Geospatial Analytics, NCSU
&

Joint Faculty, Oak Ridge National Laboratory (ORNL)

W6: 9/29/15-10/1/15

NC STATI UNIVERSIT

Administrative

- Updated Weekly Schedule (on Moodle)
- 1st Midterm: 10/6/15
 - Review: 10/1/15 (important, don't miss)
- Additional Reading Materials
 - Logistic Regression, by Kleinbaum (Springer, Through NCSU Library)
 - Computing Primer for Applied Linear Regression,
 4ed, Using R. http://z.umn.edu/alrprimer

11/3/15

🗅 Raju Vatsava

Regression, So far

• Linear Regression

— Least Squares
• Correlation
• Regression Parameters
• Properties
• Significance of "r"
• Total Variation (explained + unexplained)
• Coefficient of Determination
• Standard Error of estimate, Prediction Interval
• Multiple Linear Regression
• Multiple Correlation Coefficient (R)
• Testing for significance of R

11/3/15

Regression As Classification • So far, regression as prediction • Today, regression as classification

Binary Classification Problems

- · Problems that have two outcomes
- True/False categorical outcomes
 - Had Fever/no fever
 - Had a disease/no disease
 - (mechanical) failed/not failed
 - Win/loss
- Dichotomized categorical outcomes
 - Yes/no
 - Agree/Disagree

11/3/15

Raju Vatsava

CSC-591

NC STATE UNIVERSITY

Recall That

- 0/1 Outcomes
 - Bernoulli outcomes
- Collection of exchangeable outcomes for same attribute (or covariate) data
 - Binomial outcome

11/3/15

Raju Vatsavai

Observations • Errors — Can't be normally distributed • Error variance is not constant — It depends on the level of X_i • Response variable is bounded 0 ≤ Pr ≤ 1

Few Definitions

- Outcome (Binary; 0/1): WF_i (Y_i)
- Probability (0, 1): $Pr(Y_i \mid X_{i,b_0}, b_1)$
- Odd (0, ∞): (1/(1- Pr())): $\frac{\Pr(Y_i | X_i, b_0, b_1)}{1 \Pr(Y_i | X_i, b_0, b_1)}$
- Log odds (- ∞ , ∞): $\log \frac{\Pr(Y_i \mid X_i, b_0, b_1)}{1 \Pr(Y_i \mid X_i, b_0, b_1)}$ (Logit)

11/3/15

Raju Vatsava

CSC E01 1

NC STATE

Linear vs. Logistic Regression

• Linear: $Y_i = b_0 + b_1 X_i + \varepsilon_i$

$$E[Y_i | X_i, b_0, b_1] = b_0 + b_1 X_i$$

• Logistic: $Pr(Y_i | X_i, b_0, b_1) = \hat{\pi}_i = \frac{e^{(b_0 + b_1 X_i)}}{1 + e^{(b_0 + b_1 X_i)}}$

11/3/15

🗅 Raju Vatsava

NC STATE

Fitted Logit Response Function

$$\hat{\pi}_i = \frac{e^{(b_0 + b_1 X_i)}}{1 + e^{(b_0 + b_1 X_i)}}$$

$$\hat{\pi}_{i} = \frac{e^{(b_{0} + b_{1}X_{i})}}{1 + e^{(b_{0} + b_{1}X_{i})}}$$
• Log Odds:
$$\hat{\pi}_{i}^{'} = \log_{e} \frac{\hat{\pi}_{i}}{1 - \hat{\pi}_{i}}$$

$$\hat{\pi}_i' = b_0 + b_1 X_i$$

11/3/15

In Summary

· The Logistic model

• In essence, z is an index that combines Xs

11/3/15

Epidemiology Example

- Let X₁, X₂, ..., X_k are observations on a group of subject at Time T₀
- For each of those observation, we also determined the disease status, as either 1 if "with disease" or 0 if "without disease".
- Objective
 - We wish to use this information to describe the probability that the disease will develop during a defined study period, say T_0 to T_1 , in a disease- free individual with independent variable values X_1 , X_2 , up to X_k , which are measured at T_0

11/3/15

© Raju Vatsava

CSC-591. 15

NC STATE UNIVERSITY

Epidemiology Example

$$P(D=1|X_1,X_2,\ldots,X_k)$$

= P(X)

Model formula:

$$P(\mathbf{X}) = \frac{1}{1 + e^{-(\alpha + \sum \beta_i X_i)}}$$

- Then, from observed data, we can estimate the parameters; b₀, b₁, b₂, ...b_k
- For a given patient, we can estimate the risk by simply plug-in the observations (X_i) into to model

11/3/15

Raju Vatsavai

Acknowledgements • G. James, et. al., Moore, et. al. • Kleinbaum, et. al.