Examen la algebră ¹ an I, sem. I 3.02.2022

Numele şi prenumele
Grupa
$\Gamma = \text{numărul de litere al primului nume} = \dots$
$\Omega = \text{numărul de litere al primului prenume} = \dots$

Subiectul I. Pe mulțimea \mathbb{Z} definim relația binară

$$x \sim y \iff 2 \mid x + y$$
.

- 1. Să se arate că " \sim " este o relație de echivalență pe \mathbb{Z} . (3 pct.)
- 2. Dați exemplu de 5 numere întregi care se găsesc în relația \sim cu Γ și determinați clasa de echivalență a lui Ω în raport cu \sim . (4 pct.)
- 3. Arătați că mulțimea factor \mathbb{Z}/\sim admite o structură de grup și că aceasta este unică până la un izomorfism (de grupuri). (2 pct.)

Subjectul II.

- 1. Calculați ordinul elementului $(\overline{17}, \widehat{7})$ din grupul $(\mathbb{Z}_{\Gamma-2} \times \mathbb{Z}_{\Omega+14}, +)$. (3 **pct.**)
- 2. Conţine grupul factor $(\mathbb{Q}/\mathbb{Z}, +)$ elemente de ordin infinit? Este $(\mathbb{Q}/\mathbb{Z}, +)$ un grup ciclic? (4 pct.)
- 3. Fie Λ cel mai mic element al multimii

$$\{x \in \mathbb{N} \mid \Omega \le x \le \Gamma + 32 \text{ si } x \mid \Gamma + 32\}.$$

Dați exemplu de o relație de echivalență \sim pe $\mathbb{Z}_{\Gamma+32}$ astfel încât mulțimea factor $\mathbb{Z}_{\Gamma+32}/_{\sim}$ să fie un grup cu Λ elemente în raport cu operația indusă de operația de adunare de pe $\mathbb{Z}_{\Gamma+32}$. (2 pct.)

La fiecare subiect, înlocuiți Γ și Ω cu valorile specificate mai sus! (Exemplu: dacă numele este Vasilescu Ștefan Alexandru considerați peste tot $\Gamma=9$ și $\Omega=6$.)

Toate răspunsurile trebuie justificate. Fiecare subiect trebuie scris pe foi separate.

Timp de lucru $2\frac{1}{2}$ ore. Succes!

¹Toate subjectele sunt obligatorii.

Subiectul III. Se consideră permutarea

- 1. Descompuneți σ în produs de cicluri disjuncte și în produs de transpoziții. (4 pct.)
- 2. Aflați signatura lui σ și calculați $\sigma^{2022+\Gamma}$. (3 pct.)
- 3. Există permutări $\tau \in S_{10}$ cu proprietatea că

$$\tau^{\Omega} \circ \sigma \circ \tau^{-\Omega} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{pmatrix}^{\Gamma}?$$
 (2 pct.)

Subiectul IV. Fie $I=(X-\Gamma,\Omega)$ idealul din $\mathbb{Z}[X]$ generat de $X-\Gamma$ și $\Omega.$

- 1. Să se dea exemplu de polinom din I şi de un polinom din $\mathbb{Z}[X]$ care nu este în I. Justificați. (2 pct.)
- 2. Să se verifice dacă $(X \Gamma + \Omega 1) \subseteq I$. Justificați. (2 pct.)
- 3. Să se arate că $\varphi : \mathbb{Z}[X] \to \mathbb{Z}_{\Omega}$ definit prin $\varphi(f) = \widehat{f(\Gamma)}, f \in \mathbb{Z}[X],$ este un morfism surjectiv de inele unitare. Calculați $\operatorname{Ker}(\varphi)$ și aplicați teorema fundamentală de izomorfism pentru inele lui φ . (3 pct.)
- 4. Determinați numărul divizorilor lui zero, al elementelor inversabile, al elementelor nilpotente și respectiv al elementelor idempotente din inelul $A = \frac{\mathbb{Z}[X]}{(X-\Gamma,\Omega)}$. (2 pct.)