The chaotic nature of faster gradient descent methods

Uri Ascher

Department of Computer Science University of British Columbia

ascher@cs.ubc.ca www.cs.ubc.ca/~ascher

with Kees van den Doel, Hui Huang, Benar Svaiter

Outline

Motivation

- Box constrained convex quadratic optimization
- Unconstrained gradient descent
- Artificial time
- Faster gradient descent examples
- Finite time regularization

Box constrained convex quadratic optimization

[Friedlander & van den Berg, '08; Figueiredo, Nowak & Wright, '07; Dai & Fletcher '05]:

To find sparse solutions for **compressed sensing** etc. consider

$$\min_{\mathbf{x}} \|\mathcal{A}\mathbf{x} - \mathbf{y}\|^2, \quad s.t. \ \|\mathbf{x}\|_1 \le tol,$$

i.e. minimize convex quadratic subject to box constraints, and use a **fast gradient descent** method.

Box constrained convex quadratic optimization

[Friedlander & van den Berg, '08; Figueiredo, Nowak & Wright, '07; Dai & Fletcher '05]:

To find sparse solutions for compressed sensing etc. consider

$$\min_{\mathbf{x}} \|\mathcal{A}\mathbf{x} - \mathbf{y}\|^2, \quad s.t. \ \|\mathbf{x}\|_1 \le tol,$$

- i.e. minimize convex quadratic subject to box constraints, and use a **fast gradient descent** method.
 - ?? But is there a fast gradient descent method ??

Unconstrained gradient descent

For the basic problem

$$A\mathbf{x} = \mathbf{b},$$

A symmetric positive definite,

well known that steepest descent (SD) is very slow, conjugate gradient (CG) much faster.

Gradient descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{r}_k, \quad \mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k.$$

Steepest and lagged steepest descent

Gradient descent $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{r}_k$, $\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k$.

Steepest descent

$$\alpha_k^{SD} = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{r}_k^T A \mathbf{r}_k} \equiv \frac{(\mathbf{r}_k, \mathbf{r}_k)}{(\mathbf{r}_k, A \mathbf{r}_k)}.$$

Claim: much faster to use non-monotonically convergent Lagged steepest descent (LSD) [Barzilai & Borwein, '88]

$$\alpha_k^{LSD} = \frac{(\mathbf{r}_{k-1}, \mathbf{r}_{k-1})}{(\mathbf{r}_{k-1}, A\mathbf{r}_{k-1})}.$$

Minimization and artificial time

Unconstrained minimization:

$$\min_{\mathbf{x}} f(\mathbf{x}), \quad \text{necessary } \nabla f(\mathbf{x}) = \mathbf{0}.$$

Minimization and artificial time

Unconstrained minimization:

$$\min_{\mathbf{x}} f(\mathbf{x}), \quad \text{necessary } \nabla f(\mathbf{x}) = \mathbf{0}.$$

Convex quadratic case:

$$f(\mathbf{x}) = \frac{1}{2}(\mathbf{x}, A\mathbf{x}) - (\mathbf{b}, \mathbf{x}), \quad \nabla f(\mathbf{x}) = A\mathbf{x} - \mathbf{b} = -\mathbf{r}.$$

Steepest descent: gradient descent with exact line search wrto f.

Minimization and artificial time

Unconstrained minimization:

$$\min_{\mathbf{x}} f(\mathbf{x}), \quad \text{necessary } \nabla f(\mathbf{x}) = \mathbf{0}.$$

Convex quadratic case:

$$f(\mathbf{x}) = \frac{1}{2}(\mathbf{x}, A\mathbf{x}) - (\mathbf{b}, \mathbf{x}), \quad \nabla f(\mathbf{x}) = A\mathbf{x} - \mathbf{b} = -\mathbf{r}.$$

Steepest descent: gradient descent with exact line search wrto f.

Necessary condition may be considered as steady state for ODE:

$$\frac{d\mathbf{x}}{dt} = -\nabla f(\mathbf{x}).$$

Artificial time DE

$$\frac{d\mathbf{x}}{dt} = -\nabla f(\mathbf{x}).$$

Forward Euler discretization

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k).$$

Equivalent to gradient descent.

How to choose step size? What about absolute stability?

Faster gradient descent

$$u_t = \Delta u + 1 \quad 0 < x, y < 1, \ t \ge 0,$$

+ homogeneous Dirichlet BC.

Discretize in space on a uniform mesh and call unknowns $\mathbf{x} \in \mathbb{R}^m$. Apply forward Euler in time, stopping when $\|\mathbf{r}_k\| \leq 10^{-6} \|\mathbf{r}_0\|$.

$ \boxed{m} $	SD	CG
49	167	9
225	702	24
961	2,859	50
3969	11,517	100

Step (iteration) counts for the heat \Rightarrow Poisson equation

Faster gradient descent

$$u_t = \Delta u + 1 \quad 0 < x, y < 1, \ t \ge 0,$$

+ homogeneous BC.

Discretize in space on a uniform mesh and call unknowns $\mathbf{x} \in \mathbb{R}^m$. Apply forward Euler in time, stopping when $\|\mathbf{r}_k\| \leq 10^{-6} \|\mathbf{r}_0\|$.

\boxed{m}	SD	LSD	CG
49	167	40	9
225	702	72	24
961	2,859	240	50
3969	11,517	356	100

Step (iteration) counts for the heat \Rightarrow Poisson equation

LSD vs CG

CG clearly majorizes any gradient descent method, including LSD

LSD vs CG

CG clearly majorizes any gradient descent method, including LSD

unless matrix-vector products are performed inaccurately!

Example: replace the product $A\mathbf{v}$ for any given vector \mathbf{v} by $A(\mathbf{v} + 0.005/(1 + \mathbf{v}^2))$.

CG and LSD applied to a small perturbation of the model Poisson problem, m=961.

Smoothing and finite time regularization

Consider linear problem Jx = y, J constant and ill-conditioned.

Artificial time ODE

$$\frac{d\mathbf{x}}{dt} = -J^T(J\mathbf{x} - \mathbf{y}) \equiv \mathbf{b} - A\mathbf{x}.$$

Using SVD, regularization replaces singular values s_i^{-1} by $\omega(s_i^2)s_i^{-1}$, where

$$\omega(s) = 1 - e^{-ts}.$$

So, the effect of small singular values gets dampened while large ones remain almost intact for appropriate, **finite time**.

Filter functions

Exponential filter $\omega(s)=1-e^{-ts}$ and Tikhonov filter $\omega(s)=\frac{s}{s+\beta}$ for $t\beta=1/2$.

Question: Does this regularization effect still hold when ODE is approximately integrated with large steps? Is there an advantage in doing so?

Outline

- Motivation
- Linear positive definite systems
- Chaos
- Regularization effects of gradient descent / artificial time
- Conclusions

Outline

- Linear positive definite systems
 - Step size choices for gradient descent / forward Euler
 - Slowness of greedy algorithms
 - Faster step size selection

$$A\mathbf{x} = \mathbf{b}$$

Step size choices

$$\alpha_k^{SD} = \frac{\|\mathbf{r}_k\|^2}{\|\mathbf{r}_k\|_A^2}$$

Another greedy algorithm: exact line search wrto $\|\mathbf{r}\|^2$

$$\alpha_k^{OM} = \frac{(\mathbf{r}_k, A\mathbf{r}_k)}{(A\mathbf{r}_k, A\mathbf{r}_k)}.$$

Orthomin (OM) and SD combinations

$$\alpha_k^{SD} = \frac{\|\mathbf{r}_k\|^2}{\|\mathbf{r}_k\|^2_A},$$

$$\alpha_k^{OM} = \frac{\|\mathbf{r}_k\|^2_A}{\|A\mathbf{r}_k\|^2} = \frac{\|\mathbf{r}_k\|^2_A}{\|\mathbf{r}_k\|^2_{A^2}}.$$

Combinations:

$$\alpha_k^{SD/OM} = \begin{cases} \alpha_k^{SD} & \mathbf{k} \text{ even} \\ \alpha_k^{OM} & \mathbf{k} \text{ odd} \end{cases}.$$

Half lagged and relaxed steepest descent

Half lagged (HLSD)

Like LSD, a two-step method: use same α_{2j}^{SD} for next step: $\alpha_{2j+1}^{HLSD} = \alpha_{2j}^{HLSD}$.

[Friedlander, Martinez, Molina & Raydan, '99; Raydan & Svaiter, '02]

• ω -relaxed (SD(ω))

$$\alpha_k = \omega \alpha_k^{SD}$$

for a fixed parameter $0 < \omega < 1$.

\boxed{m}	SD	LSD
49	167	40
225	702	72
961	2,859	240
3969	11,517	356

$ \boxed{m} $	SD	OM	LSD
49	167	169	40
225	702	696	72
961	2,859	2,811	240
3969	11,517	11,279	356

\boxed{m}	SD	OM	SD/OM	LSD
49	167	169	46	40
225	702	696	88	72
961	2,859	2,811	276	240
3969	11,517	11,279	878	356

\boxed{m}	SD	OM	SD/OM	SD(0.9)	LSD
49	167	169	46	52	40
225	702	696	88	136	72
961	2,859	2,811	276	290	240
3969	11,517	11,279	878	824	356

\boxed{m}	SD	OM	SD/OM	SD(0.9)	LSD	HLSD
49	167	169	46	52	40	59
225	702	696	88	136	72	67
961	2,859	2,811	276	290	240	142
3969	11,517	11,279	878	824	356	590

It's not true that:

- A fast method must be multi-step
- A fast method must be non-monotonic
- LSD works because it's a secant approximation

$ \boxed{m} $	SD	OM	SD/OM	SD(0.9)	LSD	HLSD
49	167	169	46	52	40	59
225	702	696	88	136	72	67
961	2,859	2,811	276	290	240	142
3969	11,517	11,279	878	824	356	590

Step size dynamics

Step size sequences for A = diag(20, 10, 2, 1)

Step size dynamics

Step size sequences for heat \Rightarrow Poisson eqn example, m=225. Note large violation of forward Euler stability limit.

Slowness of the greedy algorithms

Denote eigenvalues of A by $\lambda_1 > \lambda_2 > \cdots > \lambda_m > 0$.

Case of constant (uniform) step size

Theorem Barring special initial conditions, the fastest reduction in residual norm towards steady state using forward Euler with a constant step size is obtained using the step size

$$\alpha^* = \frac{2}{\lambda_1 + \lambda_m}.$$

For this step size the number of steps required to reduce the residual error by a constant amount is proportional to the condition number $\kappa = cond(A) = \frac{\lambda_1}{\lambda_m}$.

Residuals' contraction

Indeed, write iteration in terms of residual:

$$\mathbf{r}_{k+1} = (I - \alpha_k A) \mathbf{r}_k.$$

Assume wlog a diagonal A. Then

$$r_i^{(k+1)} = (1 - \alpha_k \lambda_i) r_i^{(k)}.$$

So

$$r_m^{(k+1)} = (1 - \alpha^* \lambda_m) r_m^{(k)} = \left(\frac{\lambda_1 - \lambda_m}{\lambda_1 + \lambda_m}\right) r_m^{(k)} = \left(\frac{\kappa - 1}{\kappa + 1}\right) r_m^{(k)}.$$

Slowness of the greedy algorithms cont.

Case of variable step size

Theorem Barring special initial conditions:

- 1. For SD there are constants satisfying $\frac{2}{\beta_0^{-1}+\beta_1^{-1}}=\alpha^*$ such that as $j\to\infty,\,\alpha_{2j}\to\beta_0$; $\alpha_{2j+1}\to\beta_1$.
- 2. Similarly for OM.

[Akaike, '59]

Faster step size selection

Both one-step and multi-step strategies can yield faster convergence. Payment: **non-monotonic convergence**.

Residual norms and step size sequences.

Outline

- Motivation
- Linear positive definite systems
- Chaos
- Regularization effects of gradient descent / artificial time in applications
- Conclusions

Outline

Chaos

- Sensitivity to initial guess
- Lyapunov exponents
- $SD(\omega)$: perils of greed and chaos around the corner
- LSD and HLSD

Sensitivity to initial guess

\boxed{m}	\mathbf{x}_0	CG	SD	LSD	LSD(2)	HLSD	SD(0.8)
49	(a)	10	341	71	69	87	113
	(b)	10	341	77	62	85	120
225	(a)	33	1414	141	179	152	279
	(b)	32	1414	215	151	143	290
961	(a)	71	5721	412	279	313	585
	(b)	70	5721	441	417	377	535
3969	(a)	143	22979	797	712	732	1331
	(b)	143	22979	976	567	828	1459

Iteration counts for the model Poisson problem using gradient descent with different step size choices for initial vectors (a) $\mathbf{x}_0 = \mathbf{0}$ and (b) $\mathbf{x}_0 = 10^{-3} \cdot \mathbf{1}$.

Iteration counts for LSD with a perturbation in a plane of extent 10^{-3} . Brighter color corresponds to higher iteration number.

Lyapunov exponents

May assume $A = diag(\lambda_1, \dots, \lambda_m)$.

Define Akaike probability function

$$p_i = r_i^2 / ||\mathbf{r}||^2, \quad i = 1, \dots, m.$$

Consider Jacobian J_k of transformation $\mathbf{p}_{k+1} \leftarrow \mathbf{p}_k$, then define Lyapunov exponent as limit of μ_K , where

$$J^{(K)} = J_{K-1} \cdots J_1 J_0, \quad \mu_K = \frac{1}{K} \log \left[\rho(J^{(K)}) \right].$$

Lyapunov exponents μ for various methods applied to the model Poisson problem with and m=49.

$SD(\omega)$

- $\omega = 1$: step sizes tend to two-cycle; stable; slow.
- $\omega = 0.9$: chaotic dynamical system (even though "close" to SD, converges Q-linearly, clearly one-step, and "dampens" SD); much faster.

Recall for diagonal $A = diag(\lambda_i)$

$$\gamma_k^{SD} = 1/\alpha_k^{SD} = \frac{\sum_i \lambda_i r_i^2}{\sum_i r_i^2} = \sum_i \lambda_i p_i, \quad \alpha_k = \omega \alpha_k^{SD}$$
$$r_i^{(k+1)} = (1 - \alpha_k \lambda_i) r_i^{(k)}, \quad i = 1, \dots, m.$$

- If p_i are roughly equal then $\lambda_1 p_1$ (or the first few) dominate, so $\alpha_k^{SD} \sim 1/\lambda_1$.
- The corresponding step is effectively a **smoother**: reduces high frequency (large-eigenvalue) residuals much more than low-frequency ones. This effect may be repeated over a few steps.
- The **usual** case: the high frequency residuals become so small that other frequencies factor in, so a much larger step size α_k^{SD} is obtained. The ensuing step is unstable, increasing high frequency probabilities p_i . This closes a chaotic cycle.
- The **unusual** case: with SD the high frequency $\lambda_1 p_1$ always dominates. In the limit p_1 and p_m alternate (maintaining roughly same order of magnitude) and $p_i \approx 0$ for the rest. Thus chaos (and good news) are avoided.

LSD and HLSD

Gradient descent iteration:

$$\mathbf{r}_{k-1} = c(A - \gamma_{k-1}I)^{-1}\mathbf{r}_k.$$

Consider as an inverse power iteration for A using the shift γ_{k-1} .

Therefore, \mathbf{r}_{k-1} better than \mathbf{r}_k approximating the eigenvector associated with the eigenvalue λ_i closest to γ_{k-1} .

LSD not only chaotic, also γ_k is closer than γ_{k-1} to the eigenvalue. "Hence" more effective than one-step methods such as relaxed SD.

Outline

- Motivation
- Linear positive definite systems
- Chaos
- Regularization effects of gradient descent / artificial time
- Conclusions

Outline

- Regularization effects of gradient descent / artificial time in applications
 - Image denoising and deblurring in 2D
 Hui Huang
 - Shape optimization in 3D for EIT and DC resistivity
 Kees van den Doel

Image denoising in 2D

Find w(x, y) that cleans given image b(x, y).

(k) True image

(I) Given b = with 20% noise

Cameraman 256×256 with noise added.

Image deblurring in 2D

Find w(x, y) that sharpens given image b(x, y).

(m) True image

(n) MOTION blur

Boat 256×256 blurred.

Huber function regularization

Tikhonov: $\min \frac{1}{2} ||Jw - b||^2 + \beta R(w)$.

$$R(w) = \int_{\Omega} \rho(|\nabla w|)$$

Use the Huber function

$$\rho(s) = \begin{cases} s, & s \ge \gamma, \\ s^2/(2\gamma) + \gamma/2, & s < \gamma \end{cases} \Rightarrow$$

$$R_w(w) \leftarrow -\nabla \cdot \left(\min\{\frac{1}{\gamma}, \frac{1}{|\nabla w|}\} \nabla w \right)$$

Selecting the switching parameter

Choose γ wisely:

- 1. Letting $\gamma \to \infty$ obtain least squares (LS)
- 2. Determine adaptively, close to **total variation** (TV)

$$\gamma = \frac{h}{|\Omega|} \int_{\Omega} |\nabla w|.$$

"Our Huber" [Ascher, Haber & Huang, '06]

Gradient descent method

Necessary condition for Tikhonov minimum

$$G(w) \equiv J^{T}(Jw - b) + \beta R_{w} = \mathbf{0}.$$

Gradient descent method

Necessary condition for Tikhonov minimum

$$G(w) \equiv J^T(Jw - b) + \beta R_w = \mathbf{0}.$$

Iteration

$$w_{k+1} = w_k - \alpha_k \left(J^T (Jw_k - b) + \beta \hat{R}(w_k) w_k \right), \quad k = 0, 1, 2, \dots,$$

$$R_w(w) = \hat{R}(w) \cdot w$$
.

Step size selection

Compare the two step size choices obtained by freezing nonlinearities:

SD:
$$\alpha_k = \frac{(G(w_k))^T G(w_k)}{(G(w_k))^T (J^T J + \beta \hat{R}(w_k)) G(w_k)}$$
,
LSD: $\alpha_k = \frac{(G(w_{k-1}))^T G(w_{k-1})}{(G(w_{k-1}))^T (J^T J + \beta \hat{R}(w_{k-1})) G(w_{k-1})}$.

Image deblurring in 2D

(o) MOTION blur

(p) 33 LSD or 113 SD iters

TYPE = 'MOTION', LEN = 15, THETA = 30, $\eta = 1$, $\beta = 10^{-4}$.

Image deblurring in 2D

Roughly 1.3 sec per iter for 256×256 images.

(q) True image

(r) DISK blur

(s) 99 SD or 26 LSD iters

TYPE = 'DISK', RADIUS = 5,
$$\eta=1$$
, $\beta=10^{-4}$.

Other related denoising and deblurring methods

- For denoising can use rough tolerance results to switch to another method.
- For deblurring in presence of much noise can try a splitting approach.

In both cases not too many SD iterations are required, and LSD advantage is limited.

Shape optimization in 3D for EIT and DC resistivity

Forward problem:

$$\nabla \cdot (\sigma \nabla u_j) = q_j, \quad j = 1, \dots, s,$$
$$\frac{\partial u_j}{\partial \nu}|_{\partial \Omega} = 0.$$

Domain $\Omega = [0, 1]^3$.

Predict data by measuring field at specified locations:

$$F(w) = (F_1, \dots, F_s)^T, \quad w = \log \sigma.$$

A 2D picture

[van den Doel, Ascher & Pai, '08]

Shape optimization

[van den Doel & Ascher, '07]

Assume w(x, y, z) can take only one of two values at each (x, y, z).

Inverse problem: Recover w from measured data b.

Shape optimization

[van den Doel & Ascher, '07]

Assume w(x, y, z) can take only one of two values at each (x, y, z).

Inverse problem: Recover w from measured data b.

Thus, shape optimization.

A level set approach

$$w = \chi(\psi), \quad e.g.$$

$$\chi(s) = \frac{w_I - w_{II}}{2} \tanh(s/h) + \frac{w_I + w_{II}}{2}.$$

Thus, sharpening happens at each iteration l across the 0- level set of $\psi_l(x,y,z)$.

Dynamic regularization

Damped Gauss-Newton for

$$\min_{\psi} \frac{1}{2} \sum_{j=1}^{s} ||F_j(w(\psi)) - b_j||^2$$

yields iteration

$$\left(\sum_{j=1}^{s} \hat{J}_j^T \hat{J}_j\right) \delta \psi = -\tau \sum_{j=1}^{s} \hat{J}_j^T (F_j(w(\psi)) - b_j)$$

where

$$\hat{J} = \frac{\partial F}{\partial \psi} = \frac{\partial F}{\partial w} \frac{\partial w}{\partial \psi}.$$

Dynamic regularization

Outer iteration: for l = 0, 1, ... do

$$\left(\sum_{j=1}^{s} \hat{J}_{j}^{T} \hat{J}_{j}\right) \delta \psi = -\sum_{j=1}^{s} \hat{J}_{j}^{T} \left(F_{j}(w(\psi_{l})) - b_{j}\right),$$

$$\psi_{l+1} = \psi_{l} + \tau \delta \psi$$

Inner iteration (for a singular system): a fixed number of preconditioned gradient descent (PSD or PLSD) or conjugate gradient PCG iterations.

Use discrete Laplacian as preconditioner for $\delta \psi$.

Experiments

Setups and RESINVM3D from [Pidilsecky, Haber & Knight, '07]

$$\nabla \cdot (e^w \nabla u_j) = q_j, \quad j = 1, \dots, s,$$
$$\frac{\partial u_j}{\partial \nu}|_{\partial \Omega} = 0,$$

discretized on a staggered grid

- 1. Surface electrodes, $w_I = -2.3, w_{II} = -5.3, s = 41, 3\%$ noise
- 2. Subsurface electrodes, 3% noise
- 3. Subsurface electrodes and receivers, 1% noise

(v) Level set, 16^3 grid.

Y position (m)

(u) L_2 -method, 32^3 grid.

(w) Level set, 32^3 grid.

PSD, PCG and PLSD

Inner iteration counts and number of PDE solves = $s*2*iters_{in}*iters_{out}$. For $iters_{in} = 1$ all three methods coincide.

Outline

- Motivation
- Linear positive definite systems
- Chaos
- Regularization effects of gradient descent / artificial time
- Conclusions

Conclusions

- Faster gradient descent methods yield chaotic dynamical systems.
- For unconstrained quadratic both one-step and two-step gradient descent methods can converge significantly faster than steepest descent (although normally not as fast as CG).
- Greedy algorithms SD and OM are inherently slow.
- There is still room for a better convergence theory for the faster gradient descent variants.

Conclusions

- Occasionally some advantage can be gained by using LSD or some other faster method rather than SD as a smoother or regularizer.
- LSD or HLSD yield worthwhile advantage over SD when more than, say, 12 SD steps are required for an essentially quadratic minimization.
- Overall, the practical gains from LSD or HLSD do not appear to be huge, although they may be significant.

References

- U. Ascher, K. van den Doel, H. Huang and B. Svaiter, "Gradient descent and fast artificial time integration", M2AN (2009).
- K. van den Doel and U. Ascher, "The chaotic nature of faster gradient descent methods", 2010.
- H. Huang and U. Ascher, "Faster gradient descent and the efficient recovery of images", 2008.