RESOLUCIÓ EXAMEN DE MICROONES PRIMAVERA 2009

PROBLEMA 1

El següent divisor de Wilkinson es connecta tal com indica la figura:

Els paràmetres [S] estan referits a Z_0 =50 Ω

- a) Calculeu la potència disponible del generador
- b) Calculeu el coeficient de reflexió a l'entrada de l'accés 2
- c) Calculeu la potència que entra al circuit per l'accés 2
- d) Potència dissipada a la càrrega de l'accés 1, a la càrrega de l'accés 3 y al divisor.

RESOLUCIÓ PROBLEMA 1

a) Calculeu la potència disponible del generador

$$P_{disp} = \frac{\left| V_g \right|^2}{8R_g} = 41,46mW$$

$$P_{disp}(dBm) = 16,2dBm$$

b) Calculeu el coeficient de reflexió a l'entrada de l'accés 2

$$\Gamma_{in}^{(2)} = \frac{b_2}{a_2}$$

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = -j \frac{\sqrt{2}}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ 0 \end{pmatrix}$$

on:
$$a_1 = \Gamma_1 b_1$$
, $\Gamma_1 = \frac{30-50}{30+50} = -\frac{1}{4}$

Per tant, les tres ones que surten seran igual a:

$$b_1 = -j\frac{\sqrt{2}}{2}a_2$$

$$b_2 = b_3 = -j\frac{\sqrt{2}}{2}a_1 = -j\frac{\sqrt{2}}{2}\left(-\frac{1}{4}\right)\left(-j\frac{\sqrt{2}}{2}a_2\right) = \frac{1}{8}a_2$$

Llavors,

$$\Gamma_{in}^{(2)} = \frac{b_2}{a_2} = \frac{1}{8}$$

c) Calculeu la potència que entra al circuit per l'accés 2

$$P_2 = \frac{1}{2}[|a_2|^2 - |b_2|^2] = \frac{1}{2}|a_2|^2[1 - |\Gamma_{in}|^2]$$

$$a_{2} = \frac{b_{s}}{1 - \Gamma_{g} \Gamma_{in}}$$

$$b_{s} = \frac{V_{g} \sqrt{Z_{0}}}{Z_{g} + Z_{0}} = \frac{\sqrt{50}}{25}$$

$$\Gamma_{g} = \frac{75 - 50}{75 + 50} = \frac{1}{5}$$

Llavors, substituint:

$$a_{2} = \frac{\frac{\sqrt{50}}{25}}{1 - \frac{1}{5} \cdot \frac{1}{8}} = \frac{8\sqrt{2}}{39}$$

$$P_{2} = \frac{1}{2} \left| \frac{8\sqrt{2}}{39} \right|^{2} \left[1 - \left| \frac{1}{8} \right|^{2} \right] = 41,42mW$$

$$P_{2}(dBm) = 16,17dBm$$

d) Potència dissipada a la càrrega de l'accés 1, a la càrrega de l'accés 3 y al divisor.

$$P_1 = \frac{1}{2}[|b_1|^2 - |a_1|^2] = \frac{1}{2}|b_1|^2[1 - |\Gamma_1|^2] = \frac{1}{2}\left|-j\frac{\sqrt{2}}{2}a_2\right|^2\left[1 - \left|\frac{1}{4}\right|^2\right] = 19,72mW$$

$$P_3 = \frac{1}{2}[|b_3|^2 - |a_3|^2] = \frac{1}{2}\frac{1}{64}|a_2|^2 = 0.65mW$$

I la potència dissipada és la diferència entre la que entra per la porta 2 i la que surt per aquestes dues portes:

$$P_{disip} = 41,42mW - 19,72mW - 0,65mW = 21,05mW$$

PROBLEMA 2

Considereu el biport de la figura 1.

a) Calculeu la seva matriu de paràmetres S referida a Z'_0 .

Fig. 1

- b) En el biport de la figura 2, quant ha de valer Z_s en funció de Z_0 i de Z_0' perquè el biport sigui equivalent al de la figura 1?
- c) Quant ha de valer Z_0' en funció de Z_0 perquè $Z_s = 2Z_o$? En aquest cas escriviu la matriu de paràmetres S del circuit de la fig. 1 referida a Z_0 .
- d) Si al port 1 del circuit de 3 ports de la figura 3 s'hi connecta un generador d'impedància interna Z_0 i 10~dBm de potència disponible, al port 2 una càrrega d'impedància Z_0 i al port 3 una càrrega que presenta un coeficient de reflexió $\Gamma_{L3}=0.5+j0.5$ referit a Z_0 , calculeu les potències lliurades pel generador a les càrregues dels ports 2 i 3.

<u>Suggeriment:</u> tingueu en compte l'equivalència entre els circuits de les figures 1 i 2.

Fig. 3

RESOLUCIÓ PROBLEMA 2

a) Calculeu la seva matriu de paràmetres S referida a Z'_0 .

Primer calculem [S] del biport constituït per la resistència Z_0 en referida a Z'_0 . Per això carreguem l'accés 2 del biport amb Z'_0 :

paral·lel

$$Z_{in} = \frac{Z_{0} Z'_{0}}{Z_{0} + Z'_{0}} \Rightarrow \underline{\underline{s}_{11}} = \frac{Z_{in} - Z'_{0}}{Z_{in} + Z'_{0}} = -\frac{Z'_{0}}{2Z_{0} + Z'_{0}} = \underline{\underline{s}_{22}}$$

$$Z'_{0} \qquad S_{21} = S_{12} = (1 + S_{11}) \frac{V_{2}}{V_{1}} = \{V_{2} = V_{1}\} = 1 - \frac{Z'_{0}}{2Z_{0} + Z'_{0}} = \frac{2Z_{0}}{2Z_{0} + Z'_{0}}$$

$$= \frac{2Z_{0}}{2Z_{0} + Z'_{0}}$$

Per passar a la matriu del circuit que demana l'enunciat tenim en compte que al port 1 tenim una línia de longitud elèctrica $\theta_1=\beta\frac{\lambda}{4}=\frac{2\pi}{\lambda}\frac{\lambda}{4}=\frac{\pi}{2}$, $\theta_2=\beta\frac{3\lambda}{4}=\frac{3\pi}{2}$, de manera que

$$\begin{split} \left[S\right] = & \begin{bmatrix} -\frac{Z_0'}{2Z_0 + Z_0'} e^{-2j\theta_1} & \frac{2Z_0}{2Z_0 + Z_0'} e^{-j(\theta_1 + \theta_2)} \\ \frac{2Z_0}{2Z_0 + Z_0'} e^{-j(\theta_1 + \theta_2)} & -\frac{Z_0'}{2Z_0 + Z_0'} e^{-2j\theta_2} \end{bmatrix} = \begin{cases} e^{-j2\theta_1} = e^{-j\pi} = -1 \\ e^{-j(\theta_1 + \theta_2)} = e^{-j2\pi} = 1 \\ e^{-j2\theta_2} = e^{-j3\pi} = -1 \end{cases} = \\ = & \begin{bmatrix} \frac{Z_0'}{2Z_0 + Z_0'} & \frac{2Z_0}{2Z_0 + Z_0'} \\ \frac{2Z_0}{2Z_0 + Z_0'} & \frac{Z_0'}{2Z_0 + Z_0'} \end{bmatrix} \end{split}$$

b) En el biport de la figura 2, quant ha de valer Z_s en funció de Z_0 i de Z_0' perquè el biport sigui equivalent al de la figura 1?

Busquem els paràmetres S referits a Z'_0 del biport de la figura 2, tot carregant l'accés 2 amb

$$Z_s$$

$$Z_0': Z_{in} = Z_s + Z_0' \Rightarrow s_{11} = \frac{Z_{in} - Z_0'}{Z_{in} + Z_0'} = \frac{Z_s}{\frac{Z_s + 2Z_0'}{Z_{in} + Z_0'}}$$
Igualem aquest paràmetre al s_{11} calculat a l'apartat anterior:

$$\frac{Z_s}{Z_s + 2Z_0'} = \frac{Z_0'}{2Z_0 + Z_0'} \text{ i a\"illant } Z_s \text{ trobem } \boxed{Z_s = \frac{Z_0'^2}{Z_0}}.$$

Podem comprovar que aquesta condició no tan sols garanteix que s_{11} és igual per a tots dos circuits, sinó que també fa que s_{21} prengui el mateix valor. Així doncs tots dos circuits són equivalents.

c) Quant ha de valer Z'_0 en funció de Z_0 perquè $Z_s = 2Z_o$? En aquest cas escriviu la matriu de paràmetres S del circuit de la figura 1 referida a Z_0 .

Volem $Z_s = \frac{{Z_0'}^2}{Z_0} = 2Z_0$, d'on clarament $Z_0' = \sqrt{2} Z_0$. Com que els circuits de les figures 1 i 2

són equivalents sota la condició de l'apartat b), la matriu de paràmetres S del circuit de la figura 1 quan $Z_0' = \sqrt{2}Z_0$ serà la mateixa que la del circuit de la figura 2 quan $Z_s = 2Z_0$.

Calculant-la referida a
$$Z_0$$
 trobem $\begin{bmatrix} S \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

d) Si al port 1 del circuit de 3 ports de la figura 3 s'hi connecta un generador d'impedància interna $Z_{\scriptscriptstyle 0}$ i 10~dBm de potència disponible, al port 2 una càrrega d'impedància Z_0 i al port 3 una càrrega que presenta un coeficient de reflexió $\Gamma_{L3} = 0.5 + j0.5$ referit a Z_0 , calculeu les potències lliurades pel generador a les càrregues dels ports 2 i 3.

Del resultat de la primera part de l'apartat c) està clar que el circuit de tres ports de la figura és equivalent a un divisor de Wilkinson. Així, a la càrrega adaptada del port 2 es dissiparan $P_{L2} = 10 - 3 = 7 \ dBm = 5 \ mW$

El mòdul del coeficient de reflexió de la càrrega del port 3 és $\left|\Gamma_{L3}\right| = \sqrt{\frac{1}{4} + \frac{1}{4}} = \frac{\sqrt{2}}{2}$. Per tant, la

potència que s'hi dissiparà és $P_{L3} = \frac{1}{2} P_{DISP} \left(1 - \left| \Gamma_{L3} \right|^2 \right) = 2.5 \ mW = 4 \ dBm$

PROBLEMA 3

Es dissenya un amplificador fent servir un transistor FET en configuració en font comuna a la freqüència de 4 GHz on S12=0.03 \angle 57° i \angle S21=76° referit a 50 Ω . Els cercles de guany de desadaptació constant d'entrada i sortida i de factor de soroll constant, considerant el transistor unilateral, són els representats en la carta de Smith adjunta. Considerant la topologia de la figura 1 es dissenya l'amplificador perquè presenti un guany de transferència de potència unilateral de 13.8 dB utilitzant una xarxa adaptadora d'entrada amb Γ_G =0.47 \angle 116° i de sortida Γ_I =0.83 \angle 56.7°.

- a) Obtingui els valors de S11, S22, |S21| del transistor i F de l'amplificador (raoni la resposta)
- b) Què pot afirmar sobre l'estabilitat del transistor? (justifiqui la resposta)
- c) Els valors de L i C

Al transistor se li afegeix una bobina de 5 nH en sèrie a la porta i s'utilitza tal com mostra la figura 2 en configuració de porta comuna. La nova matriu de paràmetres S del conjunt transistor-bobina és:

$$S' = \begin{bmatrix} 2.18 \angle - 35^{\circ} & 1.26 \angle 18^{\circ} \\ 2.75 \angle 96^{\circ} & 0.52 \angle 155^{\circ} \end{bmatrix}$$

Considerant la topologia de la figura 2 i la carta de Smith on es representa el cercla d'estabilitat per a | Fin|=1:

d) A la vista del cercle d'estabilitat de la carta de Smith adjunta raoni si | Γin|>1 ο |Γin|<1.

Figura 2.

 $Z_0=50\Omega$

Circles de guany de desadaptació i de soroll constants per a la configuració de la figura 1

RESOLUCIÓ PROBLEMA 3

a) Obtingui els valors de S11, S22, |S21| del transistor i F de l'amplificador (raoni la resposta)

De la Carta de Smith adjunta obtenim els valors de S11, S22, F, G_S i G_L

 S_{22} =0.73 \angle -54°, S_{11} =0.72 \angle -116°, F=3.5 dB, G_S =2.5 dB i G_L =3 dB

 $G_0 = G_{TU} - G_S - G_L = 8.3 \text{ dB} \rightarrow |S_{21}| = 2.6$

b) Què pot afirmar sobre l'estabilitat del transistor? (justifiqui la resposta)

 $|\Delta|$ =0.48 i k=1.19 \rightarrow El transistor és incondicionalment estable

c) Els valors de L i C

$$\overline{Z_1} = \frac{1}{1 + j\overline{B_1}} \Longrightarrow \overline{Z_S} = \overline{Z_1} + j\overline{X_1} = \frac{1}{1 + \overline{B_1}^2} + j\left(\overline{X_1} - \frac{\overline{B_1}}{1 + \overline{B_1}^2}\right)$$

$$\overline{B_1} = 1.04 \implies B_1 = 0.021 \implies C = \frac{B_1}{2\pi f} = 0.83 \ pF$$

$$\overline{X_1} = 1.02 \Longrightarrow X_1 = 51 \implies L = \frac{X_1}{2\pi f} = 2 nH$$

(Es pot fer amb la Carta de Smith)

d) A la vista del cercle d'estabilitat de la carta de Smith adjunta raoni si | Γin|>1 ο |Γin|<1.

Calculem Γ_L de la xarxa adaptadora de sortida

$$\Gamma_1 = \Gamma_{co} e^{-j4\pi 0.346} = -0.36 + j0.93 \Rightarrow \overline{Y_1} = -j1.45$$

$$\overline{Y_2} = 1 - j1.45 \Rightarrow \Gamma_2 = -0.34 + j0.47 \Rightarrow \Gamma_L = \Gamma_2 e^{-j4\pi 0.319} = 0.59 \angle -104^{\circ}$$
 $\overline{Z_L} = 0.4 - j0.7$

(Es pot fer amb la Carta de Smith)

Situant Γ_L a la Carta de Smith on és el cercle d'estabilitat i com $|S_{11}| > 1$ podem afirmar que: $|\Gamma_{in}| > 1$

PROBLEMA 4

La figura representa un filtre passa-banda realitzat en guia d'ona WR90 per a una freqüència central de 11,2~GHz. Les dimensions són les següents: a=22,86~mm, $d_1=d_4=9,67~mm$, $d_2=d_3=6,63~mm$.

- a) A partir de les dimensions anteriors, determineu les reactàncies normalitzades dels diafragmes. a la freqüència central del filtre
- b) Determineu les longituds l_1 , l_2 i l_3 .
- c) Determineu les constants d'inversió.
- d) Sabent que el filtre té una resposta Chebyscheff amb un arrissat de $0,5\,dB$, trobeu les freqüències límit de la banda de pas tenint en compte que per a filtres en guia l'ample de banda relatiu ve donat per $w=\frac{\lambda_{g1}-\lambda_{g2}}{\lambda_{g0}}$, amb $\lambda_{g0},\lambda_{g1}$ i λ_{g2} les longituds d'ona en la guia a les freqüències central, límit inferior de la banda de pas i límit superior de la banda de pas respectivament. i $\lambda_{g0}=\sqrt{\lambda_{g1}\lambda_{g2}}$

Notes:

Circuit equivalent d'un diafragma en guia:

Longitud d'ona en una guia rectangular: $\lambda_g = \frac{c}{\sqrt{f^2 - \left(\frac{c}{2a}\right)^2}}$

Inversor d'impedància

$$\phi = \beta \ell = \frac{1}{2} \operatorname{arctg} \frac{2}{\overline{B}} \qquad |\overline{B}| = \frac{1 - \overline{K}^2}{\overline{K}}$$

Elements del prototip passa-baix per a filtres de Chebyscheff amb arrissat de $0,5\ dB$ dins de la banda pas:

ELEMENT VALUES FOR TCHEBYSCHEFF FILTERS HAVING
$$g_0 = 1$$
, $\omega_1' = 1$
Cases of $n = 1$ to 10

OF n	s 1	8 ₂	8 3	8 4	8 5	g ₆	87	8 8	89	8 10	s ₁₁
					0.5 db	ripple		-			
1 2 3 4 5 6 7 8 9	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451 1.7504 1.7543	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754	1.0000 0.8419 1:2296 1.3137 1.3444 1.3590 1.3673 1.3725	1.9841 1.7058 2.4758 2.6381 2.6964 2.7239 2.7392	1.0000 0.8696 1.2583 1.3389 1.3673 1.3806	1.9841 1.7372 2.5093 2.6678 2.7231	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239	1.0000 0.8842	1.9841

Relacions entre constants d'inversió i elements del prototip passa-baix:

$$\overline{K}_{01} = \sqrt{\frac{\pi \, w}{2 \, \omega_1' g_1}} \; , \; \; \overline{K}_{ii+1} = \frac{\pi \, w}{2 \, \omega_1' \sqrt{g_i g_{i+1}}} \; , \; \; \overline{K}_{nn+1} = \sqrt{\frac{\pi \, w}{2 \, \omega_1' \, g_n \, g_{n+1}}} \; , \; \text{amb} \; \; n \; \; \text{l'ordre del filtre}$$

RESOLUCIÓN PROBLEMA 4

a) A partir de les dimensions anteriors, determineu les reactàncies normalitzades dels diafragmes, a la frequència central del filtre

A la freqüència central del filtre:
$$\lambda_{g0} = \frac{c}{\sqrt{f_0^2 - \left(\frac{c}{2a}\right)^2}} = 33,04mm$$

Per tant:

$$\overline{X}_{01} = \overline{X}_{34} \approx \frac{22,86}{33,05} \text{tg}^2 \left(\frac{\pi - 9,67}{2 - 22,86} \right) = 0,424$$

$$\overline{X}_{12} = \overline{X}_{23} \approx \frac{22,86}{33,05} \text{tg}^2 \left(\frac{\pi - 6,63}{2 - 22,86} \right) = 0,166$$

b) Determineu les longituds l_1 , l_2 i l_3 .

$$\beta \ell = \frac{1}{2} \operatorname{arctg} \frac{2}{\overline{B}} \to \ell = \frac{\lambda_{g0}}{4\pi} \operatorname{arctg} \frac{2}{\overline{B}}$$

$$\ell_{01} = \ell_{34} = -1,85mm$$

$$\ell_{12} = \ell_{23} = -0,843mm$$

Llavors,

$$\ell_1 = \ell_3 = \frac{\lambda_{g0}}{2} + \ell_{01} + \ell_{12} = 18,83mm$$

$$\ell_2 = \frac{\lambda_{g0}}{2} + 2\ell_{12} = 14,839mm$$

c) Determineu les constants d'inversió.

$$\left| \overline{B} \right| = \frac{1 - \overline{K}^2}{\overline{K}} \Rightarrow \overline{K}^2 + \left| \overline{B} \right| \overline{K} - 1 = 0 \Rightarrow$$

$$\overline{K} = \frac{-\left| \overline{B} \right| \pm \sqrt{\left| \overline{B} \right|^2 + 4}}{2} \Rightarrow \begin{cases} \overline{K}_{01} = \overline{K}_{34} = 0,367 \\ \overline{K}_{12} = \overline{K}_{23} = 0,162 \end{cases}$$

d) Sabent que el filtre té una resposta Chebyscheff amb un arrissat de $0,5\,dB$, trobeu les freqüències límit de la banda de pas tenint en compte que per a filtres en guia l'ample de banda relatiu ve donat per $w=\frac{\lambda_{g1}-\lambda_{g2}}{\lambda_{g0}}$, amb $\lambda_{g0},\lambda_{g1}$ i λ_{g2} les longituds d'ona en la guia a les freqüències central, límit inferior de la banda de pas i límit superior de la banda de pas respectivament. i $\lambda_{g0}=\sqrt{\lambda_{g1}\lambda_{g2}}$

El filtre té tres cavitats, per tant és d'ordre 3. De la taula, $g_1 = g_3 = 1,5963,\ g_2 = 1,0967$ i $g_4 = 1$

De
$$\overline{K}_{01} = \sqrt{\frac{\pi w}{2 \omega_1' g_1}}$$

Aïllem
$$w = \frac{\overline{K}_{01}^2 2 g_1}{\pi} = 0.137$$

Tenim
$$w=rac{\lambda_{g1}-\lambda_{g2}}{\lambda_{g0}}$$
 amb $\lambda_{g0}=\sqrt{\lambda_{g1}\lambda_{g2}}$

Per tant,

$$w = \frac{\lambda_{g1} - \frac{\lambda_{g0}^{2}}{\lambda_{g1}}}{\lambda_{g0}} = \frac{\lambda_{g1}^{2} - \lambda_{g0}^{2}}{\lambda_{g0}\lambda_{g1}} \Rightarrow$$

$$\lambda_{g1} = \frac{\lambda_{g0}w + \sqrt{\lambda_{g0}^{2}w^{2} + 4\lambda_{g0}^{2}}}{2} = 35,39mm$$

$$\lambda_{g1}^{2} = \frac{c^{2}}{f_{1}^{2} - \left(\frac{c}{2a}\right)^{2}} \Rightarrow f_{1} = c\sqrt{\frac{1}{\lambda_{g1}^{2}} + \frac{1}{(2a)^{2}}} = 10,7GHz$$

$$\lambda_{g2} = \frac{\lambda_{g0}^{2}}{\lambda_{g1}} = 30,86mm$$

$$f_{2} = c\sqrt{\frac{1}{\lambda_{g2}^{2}} + \frac{1}{(2a)^{2}}} = 11,7GHz$$