

# EG91-Quecopen Hardware Design

# **LTE Module Series**

Rev. EG91-Quecopen\_Hardware\_Design\_V1.0

Date: 2019-01-21

Status: Released



Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

### **Quectel Wireless Solutions Co., Ltd.**

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

# Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

### For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

#### **GENERAL NOTES**

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

#### COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.



# **About the Document**

# **History**

| Revision | Date       | Author                | Description |
|----------|------------|-----------------------|-------------|
| 1.0      | 2019-01-21 | Lorry XU/<br>Rex WANG | Initial     |



# **Contents**

| Ab  | bout the Documentbout the Document                                 | 2  |
|-----|--------------------------------------------------------------------|----|
| Со  | ontents                                                            | 3  |
| Ta  | able Index                                                         | 5  |
| Fig | igure Index                                                        | 7  |
| 1   | Introduction                                                       | 9  |
|     | 1.1. Safety Information                                            | 10 |
| 2   | Product Concept                                                    | 11 |
|     | 2.1. General Description                                           | 11 |
|     | 2.2. Key Features                                                  | 12 |
|     | 2.3. Functional Diagram                                            | 15 |
|     | 2.4. Evaluation Board                                              | 16 |
| 3   | Application Interfaces                                             | 17 |
|     | 3.1. General Description                                           | 17 |
|     | 3.2. Pin Assignment                                                | 18 |
|     | 3.3. Pin Description                                               | 19 |
|     | 3.4. Operating Modes                                               | 27 |
|     | 3.5. Power Saving                                                  | 27 |
|     | 3.5.1. Sleep Mode                                                  | 27 |
|     | 3.5.1.1. USB Application with USB Remote Wakeup Function           | 28 |
|     | 3.5.1.2. USB Application with USB Suspend/Resume and RI Function . | 28 |
|     | 3.5.1.3. USB Application without USB Suspend Function              | 29 |
|     | 3.5.2. Airplane Mode                                               | 30 |
|     | 3.6. Power Supply                                                  | 30 |
|     | 3.6.1. Power Supply Pins                                           | 30 |
|     | 3.6.2. Decrease Voltage Drop                                       | 31 |
|     | 3.6.3. Reference Design for Power Supply                           | 32 |
|     | 3.6.4. Monitor the Power Supply                                    | 33 |
|     | 3.7. Power-on/off Scenarios                                        | 33 |
|     | 3.7.1. Turn on Module Using the PWRKEY                             | 33 |
|     | 3.7.2. Turn off Module                                             | 35 |
|     | 3.7.2.1. Turn off Module Using the PWRKEY Pin                      | 35 |
|     | 3.7.2.2. Turn off Module Using Related Software Command or API     | 35 |
|     | 3.7.3. Reset the Module                                            | 36 |
|     | 3.8. (U)SIM Interfaces                                             | 37 |
|     | 3.9. USB Interface                                                 | 40 |
|     | 3.10. UART Interfaces                                              | 42 |
|     | 3.11. PCM and I2C Interfaces                                       | 45 |
|     | 3.12. SPI Interface                                                | 48 |
|     | 3.13. ADC Interface                                                | 49 |
|     | 3.14. GPIOs                                                        | 49 |



|    | 3.15.   | Network Status Indication                              | 51 |
|----|---------|--------------------------------------------------------|----|
|    | 3.16.   | STATUS                                                 | 52 |
|    | 3.17.   | Behaviors of RI                                        | 53 |
|    | 3.18.   | USB_BOOT Interface                                     | 53 |
| 4  | GNSS    | Receiver                                               |    |
|    | 4.1.    | General Description                                    | 55 |
|    | 4.2.    | GNSS Performance                                       | 55 |
|    | 4.3.    | Layout Guidelines                                      | 56 |
| 5  | Anten   | na Interfaces                                          |    |
|    | 5.1.    | Main/Rx-diversity Antenna Interfaces                   |    |
|    | 5.      | 1.1. Pin Definition                                    | 57 |
|    | 5.      | 1.2. Operating Frequency                               |    |
|    | 5.      | 1.3. Reference Design of RF Antenna Interface          | 58 |
|    | 5.      | 1.4. Reference Design of RF Layout                     | 59 |
|    | 5.2.    | GNSS Antenna Interface                                 | 61 |
|    | 5.3.    | Antenna Installation                                   | 62 |
|    | 5.3     | 3.1. Antenna Requirement                               | 62 |
|    | 5.3     | 3.2. Recommended RF Connector for Antenna Installation | 63 |
| 6  | Electri | ical, Reliability and Radio Characteristics            |    |
|    | 6.1.    | Absolute Maximum Ratings                               | 65 |
|    | 6.2.    | Power Supply Ratings                                   | 65 |
|    | 6.3.    | Operation and Storage Temperatures                     |    |
|    | 6.4.    | Current Consumption                                    | 67 |
|    | 6.5.    | RF Output Power                                        |    |
|    | 6.6.    | RF Receiving Sensitivity                               | 71 |
|    | 6.7.    | Electrostatic Discharge                                | 72 |
|    | 6.8.    | Thermal Consideration                                  | 72 |
| 7  | Mecha   | anical Dimensions                                      | 75 |
|    | 7.1.    | Mechanical Dimensions of the Module                    | 75 |
|    | 7.2.    | Recommended Footprint                                  | 77 |
|    | 7.3.    | Design Effect Drawings of the Module                   | 78 |
| 8  | Storag  | ge, Manufacturing and Packaging                        |    |
|    | 8.1.    | Storage                                                |    |
|    | 8.2.    | Manufacturing and Soldering                            | 80 |
|    | 8.3.    | Packaging                                              | 81 |
| 9  |         | ndix A References                                      |    |
| 10 |         | ndix B GPRS Coding Schemes                             |    |
| 11 |         | ndix C GPRS Multi-slot Classes                         |    |
| 12 | Appen   | ndix D EDGE Modulation and Coding Schemes              | 90 |



# **Table Index**

| TABLE 1: FREQUENCY BANDS OF EG91-QUECOPEN MODULE                              | 12 |
|-------------------------------------------------------------------------------|----|
| TABLE 2: KEY FEATURES OF EG91-QUECOPEN MODULE                                 | 12 |
| TABLE 3: IO PARAMETERS DEFINITION                                             | 19 |
| TABLE 4: PIN DESCRIPTION                                                      | 20 |
| TABLE 5: MULTIPLEXING PIN FUNCTIONS OF EG91-QUECOPEN                          | 26 |
| TABLE 6: PULL-UP/PULL-DOWN RESISTANCE OF GPIOS                                | 27 |
| TABLE 7: OVERVIEW OF OPERATING MODES                                          | 27 |
| TABLE 8: PIN DEFINITION OF VBAT AND GND                                       | 30 |
| TABLE 9: PIN DEFINITION OF PWRKEY                                             | 33 |
| TABLE 10: PIN DEFINITION OF RESET_N                                           | 36 |
| TABLE 11: PIN DEFINITION OF (U)SIM INTERFACES                                 |    |
| TABLE 12: PIN DEFINITION OF USB INTERFACE                                     |    |
| TABLE 13: PIN DEFINITION OF MAIN UART INTERFACE                               | 42 |
| TABLE 14: PIN DEFINITION OF DEBUG UART INTERFACE                              | 43 |
| TABLE 15: PIN DEFINITION OF APPLICATION UART INTERFACE (MULTIPLEXED WITH SPI) | 43 |
| TABLE 16: LOGIC LEVELS OF DIGITAL I/O                                         | 43 |
| TABLE 17: PIN DEFINITION OF PCM AND I2C INTERFACES                            | 47 |
| TABLE 18: PIN DEFINITION OF SPI INTERFACE                                     | 48 |
| TABLE 19: PIN DEFINITION OF ADC INTERFACE                                     | 49 |
| TABLE 20: CHARACTERISTIC OF THE ADC                                           | 49 |
| TABLE 21: GPIO FUNCTION OF EG91-QUECOPEN PINS                                 |    |
| TABLE 22: LOGIC LEVELS OF DIGITAL I/O                                         | 50 |
| TABLE 23: PIN DEFINITION OF NETWORK STATUS INDICATOR                          | 51 |
| TABLE 24: WORKING STATE OF NETWORK STATUS INDICATOR                           | 51 |
| TABLE 25: PIN DEFINITION OF STATUS                                            | 52 |
| TABLE 26: DEFAULT BEHAVIORS OF RI                                             |    |
| TABLE 27: PIN DEFINITION OF USB_BOOT INTERFACE                                | 53 |
| TABLE 28: GNSS PERFORMANCE                                                    | 55 |
| TABLE 29: PIN DEFINITION OF RF ANTENNA                                        | 57 |
| TABLE 30: MODULE OPERATING FREQUENCIES                                        | 57 |
| TABLE 31: PIN DEFINITION OF GNSS ANTENNA INTERFACE                            | 61 |
| TABLE 32: GNSS FREQUENCY                                                      | 61 |
| TABLE 33: ANTENNA REQUIREMENTS                                                | 62 |
| TABLE 34: ABSOLUTE MAXIMUM RATINGS                                            | 65 |
| TABLE 35: POWER SUPPLY RATINGS                                                | 65 |
| TABLE 36: OPERATION AND STORAGE TEMPERATURES                                  | 66 |
| TABLE 37: EG91-E-QUECOPEN CURRENT CONSUMPTION                                 | 67 |
| TABLE 38: EG91-NA-QUECOPEN CURRENT CONSUMPTION                                | 69 |
| TABLE 39: GNSS CURRENT CONSUMPTION OF EG91-NA-QUECOPEN                        | 70 |
| TABLE 40: RF OUTPUT POWER                                                     |    |
| TABLE 41: EG91-E-QUECOPEN CONDUCTED RF RECEIVING SENSITIVITY                  | 71 |
| TABLE 42: EG91-NA-QUECOPEN CONDUCTED RF RECEIVING SENSITIVITY                 | 71 |



| TABLE 43: ELECTROSTATIC DISCHARGE CHARACTERISTICS | . 72 |
|---------------------------------------------------|------|
| TABLE 44: RECOMMENDED THERMAL PROFILE PARAMETERS  | . 80 |
| TABLE 45: RELATED DOCUMENTS                       | . 83 |
| TABLE 46: TERMS AND ABBREVIATIONS                 | . 83 |
| TABLE 47: DESCRIPTION OF DIFFERENT CODING SCHEMES | . 87 |
| TABLE 48: GPRS MULTI-SLOT CLASSES                 | . 88 |
| TABLE 49: EDGE MODULATION AND CODING SCHEMES      | 90   |



# Figure Index

| FIGURE 1: FUNCTIONAL DIAGRAM                                                      | 15 |
|-----------------------------------------------------------------------------------|----|
| FIGURE 2: PIN ASSIGNMENT (TOP VIEW)                                               | 18 |
| FIGURE 3: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP                           | 28 |
| FIGURE 4: SLEEP MODE APPLICATION WITH RI                                          | 29 |
| FIGURE 5: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION                         | 29 |
| FIGURE 6: POWER SUPPLY LIMITS DURING BURST TRANSMISSION                           | 31 |
| FIGURE 7: STAR STRUCTURE OF THE POWER SUPPLY                                      | 32 |
| FIGURE 8: REFERENCE CIRCUIT OF POWER SUPPLY                                       | 32 |
| FIGURE 9: TURN ON THE MODULE USING DRIVING CIRCUIT                                | 33 |
| FIGURE 10: TURN ON THE MODULE USING BUTTON                                        | 34 |
| FIGURE 11: POWER-ON SCENARIO                                                      |    |
| FIGURE 12: POWER-OFF SCENARIO                                                     |    |
| FIGURE 13: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT                  |    |
| FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON                           |    |
| FIGURE 15: RESET SCENARIO                                                         |    |
| FIGURE 16: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNEC |    |
|                                                                                   |    |
| FIGURE 17: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECT |    |
| FIGURE 18: REFERENCE CIRCUIT OF USB INTERFACE                                     |    |
| FIGURE 19: REFERENCE CIRCUIT WITH TRANSLATOR CHIP                                 |    |
| FIGURE 20: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT                              |    |
| FIGURE 21: PRIMARY MODE TIMING                                                    |    |
| FIGURE 22: AUXILIARY MODE TIMING                                                  |    |
| FIGURE 23: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC                  |    |
| FIGURE 24: REFERENCE CIRCUIT OF SPI INTERFACE WITH PERIPHERALS                    |    |
| FIGURE 25: REFERENCE CIRCUIT OF NETWORK STATUS INDICATOR                          |    |
| FIGURE 26: REFERENCE CIRCUIT OF STATUS                                            |    |
| FIGURE 27: REFERENCE CIRCUIT OF USB_BOOT INTERFACE                                |    |
| FIGURE 28: TIMING SEQUENCE FOR ENTERING INTO EMERGENCY DOWNLOAD MODE              |    |
| FIGURE 29: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE                              |    |
| FIGURE 30: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB                                |    |
| FIGURE 31: COPLANAR WAVEGUIDE DESIGN ON A 2-LAYER PCB                             |    |
| FIGURE 32: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GR    | ,  |
|                                                                                   |    |
| FIGURE 33: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GR    | ,  |
|                                                                                   |    |
| FIGURE 34:REFERENCE CIRCUIT OF GNSS ANTENNA                                       |    |
| FIGURE 35: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)                      |    |
| FIGURE 36: MECHANICALS OF U.FL-LP CONNECTORS                                      |    |
| FIGURE 37: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)                             |    |
| FIGURE 38: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE)         | 73 |



| FIGURE 39: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BACKSIDE OF CUSTOMERS' PCB) | )  |
|------------------------------------------------------------------------------------|----|
|                                                                                    | 74 |
| FIGURE 40: MODULE TOP AND SIDE DIMENSIONS                                          | 75 |
| FIGURE 41: MODULE BOTTOM DIMENSIONS (TOP VIEW)                                     | 76 |
| FIGURE 42: RECOMMENDED FOOTPRINT (TOP VIEW)                                        | 77 |
| FIGURE 43: TOP VIEW OF THE MODULE                                                  | 78 |
| FIGURE 44: BOTTOM VIEW OF THE MODULE                                               | 78 |
| FIGURE 45: REFLOW SOLDERING THERMAL PROFILE                                        | 80 |
| FIGURE 46: TAPE DIMENSIONS                                                         | 81 |
| FIGURE 47: REEL DIMENSIONS                                                         | 82 |
| FIGURE 48: TAPE AND REEL DIRECTIONS                                                | 82 |



# 1 Introduction

This document defines the EG91-Quecopen module and describes its air interface and hardware interface which are connected with customers' applications.

This document can help customers quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EG91-Quecopen module. Associated with application note and user guide, customers can use EG91-Quecopen module to design and set up mobile applications easily.



# 1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating EG91-Quecopen module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.



Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.



Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.



Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.



Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength.



The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.



In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.



# **2** Product Concept

# 2.1. General Description

Quecopen® is an application solution where the module acts as a main processor. With the development of communication technology and the ever-changing market demands, more and more customers have realized the advantages of Quecopen® solution. Especially, its advantage in reducing the product cost is greatly valued by customers. With Quecopen® solution, development flow for wireless application and hardware design will be simplified. Main features of Quecopen® solution are listed below:

- Simplifies the development of embedded applications, and shortens product development cycle
- Simplifies circuit design, and reduces product cost
- Decreases the size of terminal products
- Reduces power consumption
- Supports remote upgrade of firmware wirelessly
- Improves products' cost-performance ratio, and enhances products' competitiveness

EG91-Quecopen module is a baseband processor platform based on ARM Cortex A7 kernel. The maximum dominant frequency is up to 1.2GHz. Customers can use EG91-Quecopen module as the basis for development of Quecopen® applications.

EG91-Quecopen module is an embedded 4G wireless communication module with receive diversity. It supports LTE-FDD/WCDMA/GSM wireless communication, and provides data connectivity on LTE-FDD, DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA, EDGE and GPRS networks. It can also provide voice functionality <sup>1)</sup> to meet customers' specific application demands.

With a compact profile of 29.0mm × 25.0mm × 2.3mm, EG91-Quecopen can meet almost all requirements for M2M applications such as automotive, smart metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc.

EG91-Quecopen is an SMD type module which can be embedded into applications through its 106 LGA pads.

EG91-Quecopen is integrated with internet service protocols like TCP, UDP and PPP. Extended AT commands have been developed for customers to use these internet service protocols easily.

The following table shows the frequency bands of EG91-Quecopen module.



**Table 1: Frequency Bands of EG91-Quecopen Module** 

| Module  | LTE Bands<br>(with Rx-diversity) | WCDMA<br>(with Rx-diversity) | GSM           | GNSS <sup>2)</sup>               |
|---------|----------------------------------|------------------------------|---------------|----------------------------------|
| EG91-E  | FDD: B1/B3/B7/B8/B20/B28A        | B1/B8                        | 900/1800MHz   | Not supported                    |
| FG91-NA | FDD: B2/B4/B5/B12/B13            | B2/B4/B5                     | Not supported | GPS, GLONASS,<br>BeiDou/Compass, |
| 2001117 | 1 00. 02/04/00/012/010           | <i>B215</i> -1150            | Not supported | Galileo, QZSS                    |

# NOTES

- 1. <sup>1)</sup> EG91-Quecopen contains **Telematics** version and **Data-only** version. **Telematics** version supports voice and data functions, while **Data-only** version only supports data function.
- 2. <sup>2)</sup> GNSS function is optional.

# 2.2. Key Features

The following table describes the detailed features of EG91-Quecopen module.

Table 2: Key Features of EG91-Quecopen Module

| Feature            | Details                                                 |
|--------------------|---------------------------------------------------------|
| Power Supply       | Supply voltage: 3.3V~4.3V                               |
| Power Supply       | Typical supply voltage: 3.8V                            |
|                    | Class 4 (33dBm±2dB) for EGSM900                         |
|                    | Class 1 (30dBm±2dB) for DCS1800                         |
| Transmitting Dower | Class E2 (27dBm±3dB) for EGSM900 8-PSK                  |
| Transmitting Power | Class E2 (26dBm±3dB) for DCS1800 8-PSK                  |
|                    | Class 3 (24dBm+1/-3dB) for WCDMA bands                  |
|                    | Class 3 (23dBm±2dB) for LTE-FDD bands                   |
|                    | Support up to non-CA Cat 1 FDD                          |
| LTE Features       | Support 1.4MHz~20MHz RF bandwidth                       |
| LTE Fediules       | Support MIMO in DL direction                            |
|                    | LTE-FDD: Max 10Mbps (DL), Max 5Mbps (UL)                |
|                    | Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA |
|                    | Support QPSK, 16-QAM and 64-QAM modulation              |
| UMTS Features      | DC-HSDPA: Max 42Mbps (DL)                               |
|                    | HSUPA: Max 5.76Mbps (UL)                                |
|                    | WCDMA: Max 384Kbps (DL), Max 384Kbps (UL)               |



|                            | R99:<br>CSD: 9.6kbps                                                          |
|----------------------------|-------------------------------------------------------------------------------|
|                            | GPRS:                                                                         |
|                            | Support GPRS multi-slot class 33 (33 by default)                              |
|                            | Coding scheme: CS-1, CS-2, CS-3 and CS-4                                      |
|                            | Max 107Kbps (DL), Max 85.6Kbps (UL)                                           |
| GSM Features               | EDGE:                                                                         |
|                            | Support EDGE multi-slot class 33 (33 by default)                              |
|                            | Support GMSK and 8-PSK for different MCS (Modulation and Coding               |
|                            | Scheme)                                                                       |
|                            | Downlink coding schemes: CS 1-4 and MCS 1-9                                   |
|                            | Uplink coding schemes: CS 1-4 and MCS 1-9                                     |
|                            | Max 296Kbps (DL), Max 236.8Kbps (UL)                                          |
|                            | Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/NITZ/CMUX*/HTTPS*/                  |
|                            | SMTP*/MMS*/FTPS*/SMTPS*/SSL*/FILE* protocols                                  |
| Internet Protocol Features | Support PAP (Password Authentication Protocol) and CHAP (Challenge            |
|                            | Handshake Authentication Protocol) protocols which are usually used for       |
|                            | PPP connections                                                               |
|                            | Text and PDU modes                                                            |
| SMS                        | Point-to-point MO and MT                                                      |
| OIVIO                      | SMS cell broadcast                                                            |
|                            | SMS storage: ME by default                                                    |
| (U)SIM Interfaces          | Support 1.8V and 3.0V (U)SIM cards                                            |
| GPIO Interfaces            | Support 12 GPIOs that can be used for input and output, and 1 PMU GPIO        |
| Of 10 Interfaces           | that can only be used for output                                              |
|                            | Support one digital audio interface: PCM interface                            |
|                            | GSM: HR/FR/EFR/AMR/AMR-WB                                                     |
| Audio Features             | WCDMA: AMR/AMR-WB                                                             |
|                            | LTE: AMR/AMR-WB                                                               |
|                            | Support echo cancellation and noise suppression                               |
|                            | Used for audio function with external codec                                   |
|                            | Support 16-bit linear data format                                             |
| PCM Interface              | Support long frame synchronization and short frame synchronization            |
|                            | Support master and slave modes, but must be the master in long frame          |
|                            | synchronization                                                               |
|                            | Compliant with USB 2.0 specification (slave only); the data transfer rate can |
|                            | reach up to 480Mbps                                                           |
| LIOD I                     | Used for AT command communication, data transmission, GNSS NMEA               |
| USB Interface              | sentences output, software debugging, firmware upgrade and voice over         |
|                            | USB*                                                                          |
|                            | Support USB serial drivers for: Windows 7/8/8.1/10, Windows CE                |
|                            | 5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x/8.x, etc.       |



|                          | Main UART: Used for AT command communication only                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                          | Baud rates reach up to 3000000bps, 115200bps by default                                                                        |
|                          | Support RTS and CTS hardware flow control                                                                                      |
|                          | Debug UART:                                                                                                                    |
| UART Interface           | Used for Linux console and log output                                                                                          |
| UART Interface           | 115200bps baud rate                                                                                                            |
|                          | Application UART:                                                                                                              |
|                          | Multiplexed with pin 26~28 of SPI interface                                                                                    |
|                          | Used for communication and data transmission with peripherals                                                                  |
|                          | Baud rates reach up to 3000000bps, 115200bps by default                                                                        |
| Rx-diversity             | Support LTE/WCDMA Rx-diversity                                                                                                 |
|                          |                                                                                                                                |
| GNSS Features            | Gen8C Lite of Qualcomm                                                                                                         |
|                          | Protocol: NMEA 0183                                                                                                            |
| AT Commands              | Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands                                                         |
| Network Indication       | NETLIGHT pin for network activity status indication                                                                            |
| Antenna Interfaces       | Including main antenna interface (ANT_MAIN), Rx-diversity antenna (ANT_DIV) interface and GNSS antenna interface (ANT_GNSS) 1) |
|                          | Size: (29.0±0.15)mm × (25.0±0.15)mm × (2.3±0.2)mm                                                                              |
| Physical Characteristics | Package: LGA                                                                                                                   |
|                          | Weight: approx. 3.8g                                                                                                           |
|                          | Operation temperature range: -35°C ~ +75°C <sup>2)</sup>                                                                       |
| Temperature Range        | Extended temperature range: -40°C ~ +85°C 3)                                                                                   |
|                          | Storage temperature range: -40°C ~ +90°C                                                                                       |
| Firmware Upgrade         | USB interface or DFOTA*                                                                                                        |
| RoHS                     | All hardware components are fully compliant with EU RoHS directive                                                             |
|                          |                                                                                                                                |

# **NOTES**

- 1. 1) GNSS antenna interface is only supported on EG91-NA-Quecopen.
- 2. <sup>2)</sup> Within operating temperature range, the module is 3GPP compliant.
- 3. <sup>3)</sup> Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P<sub>out</sub> might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operation temperature levels, the module will meet 3GPP specifications again.
- 4. "\*" means under development.



# 2.3. Functional Diagram

The following figure shows a block diagram of EG91-Quecopen and illustrates the major functional parts.

- Power management
- Baseband
- DDR+NAND flash
- Radio frequency
- Peripheral interfaces



**Figure 1: Functional Diagram** 

**NOTE** 

<sup>1)</sup> GNSS antenna interface is only supported on EG91-NA-Quecopen.



# 2.4. Evaluation Board

Quectel provides a complete set of evaluation tools to facilitate the use and testing of EG91-Quecopen module. The evaluation tool kit includes the evaluation board (EVB), USB data cable, earphone, antenna and other peripherals.



# **3** Application Interfaces

# 3.1. General Description

EG91-Quecopen is equipped with 62-pin 1.1mm pitch SMT pads plus 44-pin ground/reserved pads that can be connected to customers' cellular application platforms. Sub-interfaces included in these pads are described in detail in the following chapters:

- Power supply
- (U)SIM interfaces
- USB interface
- UART interfaces
- PCM and I2C interfaces
- SPI interface
- ADC interface
- GPIO interfaces
- Status indication
- USB\_BOOT interface



# 3.2. Pin Assignment

The following figure shows the pin assignment of EG91-Quecopen module.



Figure 2: Pin Assignment (Top View)



# **NOTES**

- 1. 1) PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
- 2. Keep all RESERVED pins and unused pins unconnected.
- 3. GND pads should be connected to ground in the design.
- 4. Definition of pin 49 and 56 are different between EG91-E-Quecopen and EG91-NA-Quecopen.

# 3.3. Pin Description

The following tables show pin definition, multiplexing function and GPIO pull-up/down resistance of EG91-Quecopen.

**Table 3: IO Parameters Definition** 

| Туре | Description                                                 |
|------|-------------------------------------------------------------|
| Al   | Analog input                                                |
| AO   | Analog output                                               |
| В    | Bidirectional digital with CMOS input                       |
| ВН   | High-voltage tolerant bidirectional digital with CMOS input |
| DI   | Digital input                                               |
| DO   | Digital output                                              |
| Н    | High level                                                  |
| Ю    | Bidirectional                                               |
| L    | Low level                                                   |
| OD   | Open drain                                                  |
| PD   | Pull down                                                   |
| PI   | Power input                                                 |
| РО   | Power output                                                |
| PU   | Pull up                                                     |



**Table 4: Pin Description** 

| Power Sup    | Power Supply                                                                          |     |                                         |                                                                                  |                                                                                   |  |  |
|--------------|---------------------------------------------------------------------------------------|-----|-----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Pin Name     | Pin No.                                                                               | I/O | Description                             | DC<br>Characteristics                                                            | Comment                                                                           |  |  |
| VBAT_BB      | 32, 33                                                                                | PI  | Power supply for module's baseband part | Vmax=4.3V<br>Vmin=3.3V<br>Vnorm=3.8V                                             | It must be able to provide sufficient current up to 0.8A.                         |  |  |
| VBAT_RF      | 52, 53                                                                                | ΡI  | Power supply for module's RF part       | Vmax=4.3V<br>Vmin=3.3V<br>Vnorm=3.8V                                             | It must be able to provide sufficient current up to 1.8A in a burst transmission. |  |  |
| VDD_EXT      | 29                                                                                    | РО  | Provide 1.8V for external circuit       | Vnorm=1.8V<br>I <sub>O</sub> max=50mA                                            | Power supply for external GPIO's pull up circuits. If unused, keep it open.       |  |  |
| GND          | 3, 31, 48,<br>50, 54, 55,<br>58, 59, 61,<br>62, 67~74,<br>79~82,<br>89~91,<br>100~106 |     | Ground                                  |                                                                                  |                                                                                   |  |  |
| Turn on/off  |                                                                                       |     |                                         |                                                                                  |                                                                                   |  |  |
| Pin Name     | Pin No.                                                                               | I/O | Description                             | DC<br>Characteristics                                                            | Comment                                                                           |  |  |
| PWRKEY       | 15                                                                                    | DI  | Turn on/off the module                  | V <sub>IH</sub> max=2.1V<br>V <sub>IH</sub> min=1.3V<br>V <sub>IL</sub> max=0.5V | The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.     |  |  |
| RESET_N      | 17                                                                                    | DI  | Reset signal of the module              | V <sub>IH</sub> max=2.1V<br>V <sub>IH</sub> min=1.3V<br>V <sub>IL</sub> max=0.5V | Pull-up to 1.8V internally. Active low. If unused, keep it open.                  |  |  |
| Status India | cation                                                                                |     |                                         |                                                                                  |                                                                                   |  |  |
| Pin Name     | Pin No.                                                                               | I/O | Description                             | DC<br>Characteristics                                                            | Comment                                                                           |  |  |
| STATUS       | 20                                                                                    | DO  | Indicate the module's operating status  | V <sub>OH</sub> min=1.35V<br>V <sub>OL</sub> max=0.45V                           | 1.8V power domain.<br>If unused, keep this<br>pin open.                           |  |  |



| NETLIGHT       | 21                            | DO  | Indicate the module's network activity status                                                                               | V <sub>OH</sub> min=1.35V<br>V <sub>OL</sub> max=0.45V                                                                     | 1.8V power domain. If unused, keep it open.    |
|----------------|-------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| USB Interface  | <b>e</b>                      |     |                                                                                                                             |                                                                                                                            |                                                |
| Pin Name       | Pin No.                       | I/O | Description                                                                                                                 | DC<br>Characteristics                                                                                                      | Comment                                        |
| USB_VBUS       | 8                             | PI  | USB connection detection                                                                                                    | Vmax=5.25V<br>Vmin=3.0V<br>Vnorm=5.0V                                                                                      | Typical: 5.0V  If unused, keep it open.        |
| USB_DP         | 9                             | Ю   | USB differential data bus (+)                                                                                               | Compliant with USB 2.0 standard specification.                                                                             | Require differential impedance of $90\Omega$ . |
| USB_DM         | 10                            | Ю   | USB differential data bus (-)                                                                                               | Compliant with USB 2.0 standard specification.                                                                             | Require differential impedance of $90\Omega$ . |
| (U)SIM Interfa | aces                          |     |                                                                                                                             |                                                                                                                            |                                                |
| Pin Name       | Pin No.                       | I/O | Description                                                                                                                 | DC<br>Characteristics                                                                                                      | Comment                                        |
| USIM_GND       | 47                            |     | Specified ground for (U)SIM card                                                                                            |                                                                                                                            | Connect to ground of (U)SIM card connector.    |
| USIM1_VDD      | 43                            |     |                                                                                                                             | For 1.8V (U)SIM:<br>Vmax=1.9V<br>Vmin=1.7V                                                                                 | Either 1.8V or 3.0V is                         |
| USIM2_VDD      | 87                            | PO  | Power supply for (U)SIM card                                                                                                | For 3.0V (U)SIM:<br>Vmax=3.05V<br>Vmin=2.7V<br>I <sub>O</sub> max=50mA                                                     | supported by the module automatically.         |
| USIM1_DATA     | 45                            |     |                                                                                                                             | For 1.8V (U)SIM:  V <sub>IL</sub> max=0.6V  V <sub>IH</sub> min=1.2V  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=1.35V |                                                |
| USIM2_DATA     | IO Data signal of (U)SIM card |     | For 3.0V (U)SIM:  V <sub>IL</sub> max=1.0V  V <sub>IH</sub> min=1.95V  V <sub>OL</sub> max=0.45V  V <sub>OH</sub> min=2.55V |                                                                                                                            |                                                |



| USIM1_CLK          | 46       |      |                                                                                    | For 1.8V (U)SIM:<br>V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                    |                                                                                                |
|--------------------|----------|------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| USIM2_CLK          | 84       | DO   | Clock signal of<br>(U)SIM card                                                     | For 3.0V (U)SIM:<br>V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=2.55V                                    |                                                                                                |
| USIM1_RST          | 44       |      | Decile                                                                             | For 1.8V (U)SIM:<br>V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                    |                                                                                                |
| USIM2_RST          | 85       | DO   | Reset signal of  (U)SIM card  For 3.0V  V <sub>OL</sub> max=  V <sub>OH</sub> min= |                                                                                                               |                                                                                                |
| USIM1_<br>PRESENCE | 42       | — DI | (U)SIM card                                                                        | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V                                                         | 1.8V power domain. If unused, keep it                                                          |
| USIM2_<br>PRESENCE | 83       |      | insertion detection                                                                | V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                                                          | open.                                                                                          |
| Main UART I        | nterface |      |                                                                                    |                                                                                                               |                                                                                                |
| Pin Name           | Pin No.  | I/O  | Description                                                                        | DC<br>Characteristics                                                                                         | Comment                                                                                        |
| RI                 | 39       | DO   | Ring indicator                                                                     | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.                                                    |
| DCD                | 38       | DO   | Data carrier detection                                                             | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.                                                    |
| CTS                | 36       | DO   | Clear to send                                                                      | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.                                                    |
| RTS                | 37       | DI   | Request to send                                                                    | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V | 1.8V power domain. If unused, keep it open.                                                    |
| DTR                | 30       | DI   | Data terminal ready.<br>Sleep mode control.                                        | $V_{IL}$ min=-0.3V<br>$V_{IL}$ max=0.6V<br>$V_{IH}$ min=1.2V<br>$V_{IH}$ max=2.0V                             | 1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open. |
| TXD                | 35       | DO   | Transmit data                                                                      | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it                                                          |
|                    |          |      |                                                                                    |                                                                                                               |                                                                                                |



|               |           |     |                                       |                                                                                                                                                                         | open.                                                                                                                     |
|---------------|-----------|-----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| RXD           | 34        | DI  | Receive data                          | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                                                           | 1.8V power domain. If unused, keep it open.                                                                               |
| Debug UART    | Interface |     |                                       |                                                                                                                                                                         |                                                                                                                           |
| Pin Name      | Pin No.   | I/O | Description                           | DC<br>Characteristics                                                                                                                                                   | Comment                                                                                                                   |
| DBG_TXD       | 23        | DO  | Transmit data                         | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                  | 1.8V power domain. If unused, keep it open.                                                                               |
| DBG_RXD       | 22        | DI  | Receive data                          | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                                                           | 1.8V power domain. If unused, keep it open.                                                                               |
| PCM Interfac  | е         |     |                                       |                                                                                                                                                                         |                                                                                                                           |
| Pin Name      | Pin No.   | I/O | Description                           | DC<br>Characteristics                                                                                                                                                   | Comment                                                                                                                   |
| PCM_DIN       | 6         | DI  | PCM data input                        | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V                                                           | 1.8V power domain. If unused, keep it open.                                                                               |
| PCM_DOUT      | 7         | DO  | PCM data output                       | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                                                                                  | 1.8V power domain. If unused, keep it open.                                                                               |
| PCM_SYNC      | 5         | Ю   | PCM data frame synchronization signal | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V<br>V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V | 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. |
| PCM_CLK       | 4         | Ю   | PCM clock                             | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V<br>V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V | 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. |
| I2C Interface |           |     |                                       |                                                                                                                                                                         |                                                                                                                           |



| Pin Name      | Pin No.                   | I/O | Description                                      | DC<br>Characteristics                                                                                         | Comment                                                                          |
|---------------|---------------------------|-----|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| I2C_SCL       | 40                        | OD  | I2C serial clock.<br>Used for external<br>codec. |                                                                                                               | An external pull-up resistor is required. 1.8V only. If unused, keep it open.    |
| I2C_SDA       | 41                        | OD  | I2C serial data.<br>Used for external<br>codec.  |                                                                                                               | An external pull-up resistor is required. 1.8V only. If unused, keep it open.    |
| SPI Interface |                           |     |                                                  |                                                                                                               |                                                                                  |
| Pin Name      | Pin No.                   | I/O | Description                                      | DC<br>Characteristics                                                                                         | Comment                                                                          |
| SPI_CLK       | 26                        | DO  | Clock signal of SPI interface                    | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.                                      |
| SPI_MOSI      | 27                        | DO  | Master output slave input of SPI interface       | V <sub>OL</sub> max=0.45V<br>V <sub>OH</sub> min=1.35V                                                        | 1.8V power domain. If unused, keep it open.                                      |
| SPI_MISO      | 28                        | DI  | Master input slave output of SPI interface       | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V | 1.8V power domain. If unused, keep it open.                                      |
| ADC Interfac  | е                         |     |                                                  |                                                                                                               |                                                                                  |
| Pin Name      | Pin No.                   | I/O | Description                                      | DC<br>Characteristics                                                                                         | Comment                                                                          |
| ADC0          | 24                        | AI  | General purpose analog to digital converter      | Voltage range:<br>0.3V to VBAT_BB                                                                             | If unused, keep it open.                                                         |
| RF Interface  |                           |     |                                                  |                                                                                                               |                                                                                  |
| Pin Name      | Pin No.                   | I/O | Description                                      | DC<br>Characteristics                                                                                         | Comment                                                                          |
| ANT_GNSS      | 49<br>(EG91-N/<br>Quecope |     | GNSS antenna pad                                 |                                                                                                               | 50Ω impedance.  If unused, keep it open.  The pin is defined as ANT_DIV on EG91- |



|            | 49<br>(EG91-E-<br>Quecopen)                                             | AI  | Receive diversity antenna pad                          |                                                                                                               | 50Ω impedance. If unused, keep it open.                                           |
|------------|-------------------------------------------------------------------------|-----|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ANT_DIV    | 56<br>(EG91-NA-<br>Quecopen)                                            | AI  | Receive diversity antenna pad                          |                                                                                                               | 50Ω impedance.  If unused, keep it open.  The pin is reserved on EG91-E-Quecopen. |
| ANT_MAIN   | 60                                                                      | Ю   | Main antenna pad                                       |                                                                                                               | 50Ω impedance                                                                     |
| Other Pins |                                                                         |     |                                                        |                                                                                                               |                                                                                   |
| Pin Name   | Pin No.                                                                 | I/O | Description                                            | DC<br>Characteristics                                                                                         | Comment                                                                           |
| AP_READY   | 19                                                                      | DI  | Application processor sleep state detection            | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V | 1.8V power domain. If unused, keep it open.                                       |
| USB_BOOT   | 75                                                                      | DI  | Force the module to enter into emergency download mode | V <sub>IL</sub> min=-0.3V<br>V <sub>IL</sub> max=0.6V<br>V <sub>IH</sub> min=1.2V<br>V <sub>IH</sub> max=2.0V | 1.8V power domain. It is recommended to reserve the test points.                  |
| RESERVED F | Pins                                                                    |     |                                                        |                                                                                                               |                                                                                   |
| Pin Name   | Pin No.                                                                 | I/O | Description                                            | DC<br>Characteristics                                                                                         | Comment                                                                           |
| RESERVED   | 1, 2,<br>11~14, 16,<br>18, 25, 51,<br>57, 63~66,<br>76~78,<br>88, 92~99 |     | Reserved                                               |                                                                                                               | Keep these pins unconnected.                                                      |

# NOTE

Keep all RESERVED pins and unused pins unconnected.

For EG91-Quecopen module, some pins have multi-function that can be used as GPIO or UART besides its' default function. The following table shows the alternate functions of these multiplexing pins.



Table 5: Multiplexing Pin Functions of EG91-Quecopen

| Pin Name           | Pin<br>No. | Model 1<br>(Default) | Model 2         | Model 3            | Reset 1) | Interrupt <sup>2)</sup> | Comment           |
|--------------------|------------|----------------------|-----------------|--------------------|----------|-------------------------|-------------------|
| PCM_CLK            | 4          | PCM_CLK              | GPIO_78         |                    | B-PD,L   | NO                      | BOOT_<br>CONFIG_8 |
| PCM_SYNC           | 5          | PCM_SYNC             | GPIO_79         |                    | B-PD,L   | YES                     | BOOT_<br>CONFIG_7 |
| PCM_DIN            | 6          | PCM_DIN              | GPIO_76         |                    | B-PD,L   | YES                     |                   |
| PCM_DOUT           | 7          | PCM_DOUT             | GPIO_77         |                    | B-PD,L   | NO                      |                   |
| AP_READY           | 19         | AP_READY             | GPIO_10         |                    | B-PD,L   | NO                      |                   |
| STATUS             | 20         | STATUS               |                 |                    | B-PD,L   | NO                      |                   |
| NETLIGHT           | 21         | NETLIGHT             | PMU_<br>GPIO_01 |                    | B-PD,L   | NO                      |                   |
| SPI_CLK            | 26         | SPI_CLK              | GPIO_23         | UART_CTS<br>_BLSP6 | B-PU,H   | NO                      | BOOT_<br>CONFIG_4 |
| SPI_MOSI           | 27         | SPI_MOSI             | GPIO_20         | UART_TXD<br>_BLSP6 | B-PD,L   | YES                     |                   |
| SPI_MISO           | 28         | SPI_MISO             | GPIO_21         | UART_RXD<br>_BLSP6 | B-PD,L   | YES                     |                   |
| RI                 | 39         | RI                   | GPIO_75         |                    | B-PD,L   | YES                     |                   |
| I2C_SCL            | 40         | I2C_SCL              | GPIO_7          |                    | B-PD,L   | NO                      |                   |
| I2C_SDA            | 41         | I2C_SDA              | GPIO_6          |                    | B-PD,L   | NO                      |                   |
| USIM1_<br>PRESENCE | 42         | USIM1_<br>PRESENCE   | GPIO_34         |                    | B-PD,L   | YES                     |                   |

# **NOTES**

- 1. The pin function in Model 2 and Model 3 takes effect only after software configuration.
- 2. 1) Please refer to *Table 3* for more details about the symbol description.
- 3. 2) YES means this pin can be used as a normal interrupt source or sleep wakeup interrupt source.
- 4. PMU\_GPIO\_XX means the GPIO is on PMU of Qualcomm chipset.
- 5. GPIO\_XX means the GPIO is on Qualcomm baseband chipset.
- 6. All BOOT\_CONFIG pins are prohibited to be pulled up to high level, even if pulled up to VDD\_EXT before startup.



Table 6: Pull-up/Pull-down Resistance of GPIOs

| Symbol | Description                  | Pin No.                      | Min | Тур | Max | Unit |
|--------|------------------------------|------------------------------|-----|-----|-----|------|
| $R_P$  | Pull-up&Pull-down resistance | 4~7, 19, 13,<br>26~28, 40~42 | 55  | 100 | 390 | kohm |

# 3.4. Operating Modes

The table below briefly summarizes the various operating modes referred in the following chapters.

**Table 7: Overview of Operating Modes** 

| Mode                             | Details                                                                                                                                                                                                              |                                                                                                                          |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Normal                           | Idle                                                                                                                                                                                                                 | Software is active. The module has registered on network, and it is ready to send and receive data.                      |  |  |  |
| Operation                        | Talk/Data                                                                                                                                                                                                            | Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate. |  |  |  |
| Minimum<br>Functionality<br>Mode | <b>AT+CFUN</b> command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid.                                         |                                                                                                                          |  |  |  |
| Airplane<br>Mode                 | AT+CFUN cor<br>function will be                                                                                                                                                                                      | mmand can set the module enter into airplane mode. In this case, RF invalid.                                             |  |  |  |
| Sleep Mode                       | In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally. |                                                                                                                          |  |  |  |
| Power Down<br>Mode               | In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_R and VBAT_BB) remains applied.            |                                                                                                                          |  |  |  |

# 3.5. Power Saving

# 3.5.1. Sleep Mode

EG91-Quecopen is able to reduce its current consumption to a minimum value during the sleep mode. The following sub-chapters describe the power saving procedures of EG91-Quecopen module.



#### 3.5.1.1. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met to let the module enter into sleep mode.

- Enable the sleep mode by the sleep and wakeup relevant APIs.
- Ensure the level of pins that configured as wakeup interrupt in *Table 5* are under none-wakeup status.
- The host's USB bus, which is connected with the module's USB interface, enters into suspend state.

The following figure shows the connection between the module and the host.



Figure 3: Sleep Mode Application with USB Remote Wakeup

- Sending data to EG91-Quecopen through USB will wake up the module.
- When EG91-Quecopen has a URC to report, the module will send remote wakeup signals via USB bus so as to wake up the host.

#### 3.5.1.2. USB Application with USB Suspend/Resume and RI Function

If the host supports USB suspend/resume, but does not support remote wakeup function, the RI signal is needed to wake up the host.

There are three preconditions to let the module enter into the sleep mode.

- Enable the sleep mode by the sleep and wakeup relevant APIs.
- Ensure the level of pins that configured as wakeup interrupt in *Table 5* are under none-wakeup status.
- The host's USB bus, which is connected with the module's USB interface, enters into suspended state.

The following figure shows the connection between the module and the host.





Figure 4: Sleep Mode Application with RI

- Sending data to EG91-Quecopen through USB will wake up the module.
- When EG91-Quecopen has a URC to report, RI signal will wake up the host.

# 3.5.1.3. USB Application without USB Suspend Function

If the host does not support USB suspend function, USB\_VBUS should be disconnected with an external control circuit to let the module enter into sleep mode.

- Enable the sleep mode by the sleep and wakeup relevant APIs.
- Ensure the level of pins that configured as wakeup interrupt in *Table 5* are under none-wakeup status.
- Disconnect USB\_VBUS.

The following figure shows the connection between the module and the host.



Figure 5: Sleep Mode Application without Suspend Function

Switching on the power switch to supply power to USB\_VBUS will wake up the module.



### **NOTE**

Please pay attention to the level match shown in dotted line between the module and the host. Please refer to *document [1]* for more details about EG91-Quecopen power management application.

# 3.5.2. Airplane Mode

When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways.

AT+CFUN command provides the choice of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode. RF function is disabled.

# **NOTES**

The execution of AT+CFUN command will not affect GNSS function.

# 3.6. Power Supply

#### 3.6.1. Power Supply Pins

EG91-Quecopen provides four VBAT pins dedicated to connect with an external power supply. There are two separate voltage domains for VBAT.

- Two VBAT\_RF pins for module's RF part.
- Two VBAT BB pins for module's baseband part.

The following table shows the details of VBAT pins and ground pins.

**Table 8: Pin Definition of VBAT and GND** 

| Pin Name | Pin No. | Description                              | Min. | Тур. | Max. | Unit |
|----------|---------|------------------------------------------|------|------|------|------|
| VBAT_RF  | 52, 53  | Power supply for module's RF part.       | 3.3  | 3.8  | 4.3  | V    |
| VBAT_BB  | 32, 33  | Power supply for module's baseband part. | 3.3  | 3.8  | 4.3  | V    |



|     | 3, 31, 48, 50,<br>54, 55, 58, 59, |        |   |   |   |   |
|-----|-----------------------------------|--------|---|---|---|---|
| GND | 61, 62, 67~74,                    | Ground | - | 0 | - | V |
|     | 79~82, 89~91,                     |        |   |   |   |   |
|     | 100~106                           |        |   |   |   |   |

# 3.6.2. Decrease Voltage Drop

The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks.



Figure 6: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about  $100\mu\text{F}$  with low ESR (ESR=0.7 $\Omega$ ) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT\_BB/VBAT\_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT\_BB trace should be no less than 1mm, and the width of VBAT\_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to avoid the damage caused by electric surge and ESD, it is suggested that a TVS diode with low reverse stand-off voltage  $V_{RWM}$ , low clamping voltage  $V_{C}$  and high reverse peak pulse current  $I_{PP}$  should be used. The following figure shows the star structure of the power supply.





Figure 7: Star Structure of the Power Supply

# 3.6.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +5V input power source. The typical output of the power supply is about 3.8V and the maximum load current is 3A.



**Figure 8: Reference Circuit of Power Supply** 



# 3.6.4. Monitor the Power Supply

Related software command or API can be used to monitor the VBAT\_BB voltage value.

### 3.7. Power-on/off Scenarios

## 3.7.1. Turn on Module Using the PWRKEY

The following table shows the pin definition of PWRKEY.

**Table 9: Pin Definition of PWRKEY** 

| Pin Name | Pin No. | Description            | DC Characteristics                                   | Comment                                                 |
|----------|---------|------------------------|------------------------------------------------------|---------------------------------------------------------|
| PWRKEY   | 15      | Turn on/off the module | V <sub>IH</sub> max=2.1V<br>V <sub>IH</sub> min=1.3V | The output voltage is 0.8V because of the diode drop in |
|          |         |                        | V <sub>IL</sub> max=0.5V                             | the Qualcomm chips                                      |

When EG91-Quecopen is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 500ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin outputs a high level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure.



Figure 9: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from the finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.





Figure 10: Turn on the Module Using Button

The power-on scenario is illustrated in the following figure.



Figure 11: Power-on Scenario



# **NOTE**

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.
- 2. PWRKEY can be pulled down directly to GND with a recommended 10K resistor if module needs to be powered on automatically and shutdown is not needed.

#### 3.7.2. Turn off Module

Either of the following methods can be used to turn off the module:

- Normal power-off procedure: Turn off the module using the PWRKEY pin.
- Normal power-off procedure: Turn off the module using related software command or API.

#### 3.7.2.1. Turn off Module Using the PWRKEY Pin

Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-off procedure after the PWRKEY is released. The power-off scenario is illustrated in the following figure.



Figure 12: Power-off Scenario

#### 3.7.2.2. Turn off Module Using Related Software Command or API

It is also a safe way to use software command or API interface to turn off the module, which is similar to turning off the module via PWRKEY pin.



# **NOTES**

- 1. In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or related software command, the power supply can be cut off.
- When turning off module with related software command or API, please keep PWRKEY at high level after the execution of power-off command. Otherwise the module will be turned on again after successful turn-off.

#### 3.7.3. Reset the Module

The RESET\_N pin can be used to reset the module. The module can be reset by driving RESET\_N to a low level voltage for 150ms~460ms.

Table 10: Pin Definition of RESET N

| Pin Name | Pin No. | Description      | DC Characteristics                                                               | Comment |
|----------|---------|------------------|----------------------------------------------------------------------------------|---------|
| RESET_N  | 17      | Reset the module | V <sub>IH</sub> max=2.1V<br>V <sub>IH</sub> min=1.3V<br>V <sub>IL</sub> max=0.5V |         |

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET\_N.



Figure 13: Reference Circuit of RESET\_N by Using Driving Circuit





Figure 14: Reference Circuit of RESET\_N by Using Button

The reset scenario is illustrated in the following figure.



Figure 15: Reset Scenario

#### **NOTES**

- 1. Use RESET\_N only when turning off the module by softwre shut down command and PWRKEY pin failed.
- 2. Ensure that there is no large capacitance on PWRKEY and RESET\_N pins.

# 3.8. (U)SIM Interfaces

EG91-Quecopen provides two (U)SIM interfaces, and only one (U)SIM card can work at a time. The (U)SIM1 and (U)SIM2 cards can be switched by related software command or API.

The (U)SIM interfaces circuitry meet ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards are supported.



Table 11: Pin Definition of (U)SIM Interfaces

| Pin Name           | Pin No. | I/O | Description                      | Comment                                                       |
|--------------------|---------|-----|----------------------------------|---------------------------------------------------------------|
| USIM1_VDD          | 43      | РО  | Power supply for (U)SIM1 card    | Either 1.8V or 3.0V is supported by the module automatically. |
| USIM1_DATA         | 45      | IO  | Data signal of (U)SIM1 card      |                                                               |
| USIM1_CLK          | 46      | DO  | Clock signal of (U)SIM1 card     |                                                               |
| USIM1_RST          | 44      | DO  | Reset signal of (U)SIM1 card     |                                                               |
| USIM1_<br>PRESENCE | 42      | DI  | (U)SIM1 card insertion detection |                                                               |
| USIM_GND           | 47      |     | Specified ground for (U)SIM card |                                                               |
| USIM2_VDD          | 87      | РО  | Power supply for (U)SIM2 card    | Either 1.8V or 3.0V is supported by the module automatically. |
| USIM2_DATA         | 86      | IO  | Data signal of (U)SIM2 card      |                                                               |
| USIM2_CLK          | 84      | DO  | Clock signal of (U)SIM2 card     |                                                               |
| USIM2_RST          | 85      | DO  | Reset signal of (U)SIM2 card     |                                                               |
| USIM2_<br>PRESENCE | 83      | DI  | (U)SIM2 card insertion detection |                                                               |

EG91-Quecopen supports (U)SIM card hot-plug via USIM\_PRESENCE (USIM1\_PRESENCE/USIM2\_PRESENCE) pin. The function supports low level and high level detection, and is disabled by default. Please refer to *document [2]* about **AT+QSIMDET** command for details.

The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.





Figure 16: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM\_PRESENCE unconnected. A reference circuit of (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.



Figure 17: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in customers' applications, please follow the criteria below in the (U)SIM circuit design:

- Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.



- Assure the ground trace between the module and the (U)SIM card connector short and wide. Keep
  the trace width of ground and USIM\_VDD no less than 0.5mm to maintain the same electric potential.
  Make sure the bypass capacitor between USIM\_VDD and USIM\_GND less than 1uF, and place it as
  close to (U)SIM card connector as possible. If the ground is complete on customers' PCB, USIM\_GND
  can be connected to PCB ground directly.
- To avoid cross-talk between USIM\_DATA and USIM\_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic
  capacitance should not be more than 15pF. The 0Ω resistors should be added in series between the
  module and the (U)SIM card to facilitate debugging. The 33pF capacitors are used for filtering
  interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM
  card connector.
- The pull-up resistor on USIM\_DATA line can improve anti-jamming capability when long layout trace
  and sensitive occasion are applied, and should be placed close to the (U)SIM card connector.

#### 3.9. USB Interface

EG91-Quecopen contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB\*. The following table shows the pin definition of USB interface.

**Table 12: Pin Definition of USB Interface** 

| Pin Name | Pin No. | I/O | Description                   | Comment                                        |
|----------|---------|-----|-------------------------------|------------------------------------------------|
| USB_DP   | 9       | Ю   | USB differential data bus (+) | Require differential impedance of $90\Omega$ . |
| USB_DM   | 10      | Ю   | USB differential data bus (-) | Require differential impedance of $90\Omega$ . |
| USB_VBUS | 8       | PI  | USB connection detection      | Typical: 5.0V                                  |
| GND      | 3       |     | Ground                        |                                                |

For more details about USB 2.0 specifications, please visit <a href="http://www.usb.org/home">http://www.usb.org/home</a>.

The USB interface is recommended to be reserved for firmware upgrade in customers' design. The following figure shows a reference circuit of USB interface.





Figure 18: Reference Circuit of USB Interface

A common mode choke L1 is recommended to be added in series between the module and customer's MCU in order to suppress EMI spurious transmission. Meanwhile, the  $0\Omega$  resistors (R3 and R4) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
  important to route the USB differential traces in inner-layer with ground shielding on not only upper
  and lower layers but also right and left sides.
- Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF.
- Keep the ESD protection components to the USB connector as close as possible.

#### **NOTES**

- 1. EG91-Quecopen module can only be used as a slave device.
- 2. "\*" means under development.



#### 3.10. UART Interfaces

EG91-Quecopen provides three UART interfaces: main UART interface, debug UART interface and application UART which is multiplexed with pin 26~28 of SPI interface.

The application UART means this UART interface can be controlled by custormers' application software and is used for communication and data transmission with peripherals such as MCU.

The following shows their features.

- The main UART interface supports 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps, 921600bps and 3000000bps baud rates, and the default is 115200bps. It supports RTS and CTS hardware flow control, and it is used for AT command communication only.
- The debug UART interface supports 115200bps baud rate. It is used for Linux console and log output.
- The application UART which multiplexed with SPI interface supports 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps, 921600bps and 3000000bps baud rates, and the default is 115200bps. The interface can be used for communication and data transmission with peripherals.

The following tables show the pin definition of the three UART interfaces.

**Table 13: Pin Definition of Main UART Interface** 

| Pin Name | Pin No. | I/O | Description            | Comment           |
|----------|---------|-----|------------------------|-------------------|
| RI       | 39      | DO  | Ring indicator         |                   |
| DCD      | 38      | DO  | Data carrier detection |                   |
| CTS      | 36      | DO  | Clear to send          | _                 |
| RTS      | 37      | DI  | Request to send        | 1.8V power domain |
| DTR      | 30      | DI  | Sleep mode control     | _                 |
| TXD      | 35      | DO  | Transmit data          | _                 |
| RXD      | 34      | DI  | Receive data           | _                 |
|          |         |     |                        |                   |



Table 14: Pin Definition of Debug UART Interface

| Pin Name | Pin No. | I/O | Description   | Comment           |
|----------|---------|-----|---------------|-------------------|
| DBG_TXD  | 23      | DO  | Transmit data | 1.8V power domain |
| DBG_RXD  | 22      | DI  | Receive data  | 1.8V power domain |

Table 15: Pin Definition of Application UART Interface (Multiplexed with SPI)

|          |         |     |                         | Description |                |  |
|----------|---------|-----|-------------------------|-------------|----------------|--|
| Pin Name | Pin No. | I/O | Function 1<br>(Default) | Function 2  | Function 3     |  |
| SPI_CLK  | 26      | DO  | SPI_CLK_BLSP6           | GPIO_23     | UART_CTS_BLSP6 |  |
| SPI_MOSI | 27      | DO  | SPI_MOSI_BLSP6          | GPIO_20     | UART_TXD_BLSP6 |  |
| SPI_MISO | 28      | DI  | SPI_MISO_BLSP6          | GPIO_21     | UART_RXD_BLSP6 |  |

# NOTE

SPI is a three-wire interface, so the application UART that multiplexing with SPI is also a three-wire interface.

The logic levels are described in the following table.

Table 16: Logic Levels of Digital I/O

| Parameter       | Min. | Max. | Unit |
|-----------------|------|------|------|
| $V_{IL}$        | -0.3 | 0.6  | V    |
| $V_{IH}$        | 1.2  | 2.0  | V    |
| V <sub>OL</sub> | 0    | 0.45 | V    |
| V <sub>OH</sub> | 1.35 | 1.8  | V    |

The module provides 1.8V UART interfaces. A level translator should be used if customers' application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design.





Figure 19: Reference Circuit with Translator Chip

Please visit <a href="http://www.ti.com">http://www.ti.com</a> for more information.

Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to the circuit design of solid line section, in terms of both module input and output circuit design. Please pay attention to the direction of connection.





Figure 20: Reference Circuit with Transistor Circuit



Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.

#### 3.11. PCM and I2C Interfaces

EG91-Quecopen provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes and one I2C interface:

- Primary mode (short frame synchronization, works as both master and slave)
- Auxiliary mode (long frame synchronization, works as master only)

In primary mode, the data is sampled on the falling edge of the PCM\_CLK and transmitted on the rising edge. The PCM\_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256KHz, 512KHz, 1024KHz or 2048KHz PCM\_CLK at 8KHz PCM\_SYNC, and also supports 4096KHz PCM\_CLK at 16KHz PCM\_SYNC.

In auxiliary mode, the data is also sampled on the falling edge of the PCM\_CLK and transmitted on the rising edge. The PCM\_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a 256KHz, 512KHz, 1024KHz or 2048KHz PCM\_CLK and an 8KHz, 50% duty cycle PCM\_SYNC.

EG91-Quecopen supports 16-bit linear data format. The following figures show the primary mode's timing relationship with 8KHz PCM\_SYNC and 2048KHz PCM\_CLK, as well as the auxiliary mode's timing relationship with 8KHz PCM\_SYNC and 256KHz PCM\_CLK.



Figure 21: Primary Mode Timing



Figure 22: Auxiliary Mode Timing

The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design.



Table 17: Pin Definition of PCM and I2C Interfaces

| Pin Name | Pin No. | I/O | Description                           | Comment                             |
|----------|---------|-----|---------------------------------------|-------------------------------------|
| PCM_DIN  | 6       | DI  | PCM data input                        | 1.8V power domain                   |
| PCM_DOUT | 7       | DO  | PCM data output                       | 1.8V power domain                   |
| PCM_SYNC | 5       | Ю   | PCM data frame synchronization signal | 1.8V power domain                   |
| PCM_CLK  | 4       | Ю   | PCM data bit clock                    | 1.8V power domain                   |
| I2C_SCL  | 40      | OD  | I2C serial clock                      | Require an external pull-up to 1.8V |
| I2C_SDA  | 41      | OD  | I2C serial data                       | Require an external pull-up to 1.8V |

Clock and mode can be configured by related software command or API, and the default configuration is master mode using short frame synchronization format with 2048KHz PCM\_CLK and 8KHz PCM\_SYNC.

The following figure shows a reference design of PCM interface with external codec IC.



Figure 23: Reference Circuit of PCM Application with Audio Codec

#### **NOTES**

- 1. It is recommended to reserve an RC (R=22 $\Omega$ , C=22pF) circuit on the PCM lines, especially for PCM\_CLK.
- 2. EG91-Quecopen works as a master device pertaining to I2C interface.



# 3.12. SPI Interface

SPI interface of EG91-Quecopen acts as the master only. It provides a duplex, synchronous and serial communication link with the peripheral devices. It is dedicated to one-to-one connection, without chip select signal. Its operation voltage is 1.8V with clock rates up to 50MHz.

The following table shows the pin definition of SPI interface.

**Table 18: Pin Definition of SPI Interface** 

| Pin Name | Pin No. | I/O | Description                                | Comment                                    |
|----------|---------|-----|--------------------------------------------|--------------------------------------------|
| SPI_CLK  | 26      | DO  | Clock signal of SPI interface              | 1.8V power domain If unused, keep it open. |
| SPI_MOSI | 27      | DO  | Master output slave input of SPI interface | 1.8V power domain                          |
| SPI_MISO | 28      | DI  | Master input slave output of SPI interface | 1.8V power domain                          |

The following figure shows a reference design of SPI interface with peripherals.



Figure 24: Reference Circuit of SPI Interface with Peripherals

# NOTE

The module provides 1.8V SPI interface. A level translator should be used between the module and the host if customer's application is equipped with a 3.3V processor or device interface.



# 3.13. ADC Interface

The module provides one analog-to-digital converter (ADC) interface. Related software command or API can be used to read the voltage value on ADC0 pin.

In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.

**Table 19: Pin Definition of ADC Interface** 

| Pin Name | Pin No. | Description                                 |
|----------|---------|---------------------------------------------|
| ADC0     | 24      | General purpose analog to digital converter |

The following table describes the characteristic of the ADC function.

Table 20: Characteristic of the ADC

| Parameter          | Min. | Тур. | Max.    | Unit |
|--------------------|------|------|---------|------|
| ADC0 Voltage Range | 0.3  |      | VBAT_BB | V    |
| ADC1 Voltage Range | 0.3  |      | VBAT_BB | V    |
| ADC Resolution     |      | 15   |         | bits |

#### **NOTES**

- 1. It is prohibited to supply any voltage to ADC pins when VBAT is removed.
- 2. It is recommended to use resistor divider circuit for ADC application.

# 3.14. GPIO Interfaces

EG91-Quecopen provides up to 13 multi-function pins that can be configured as GPIOs when the default function is not used. The following table shows the alternate GPIO function of EG91-Quecopen pins.



Table 21: GPIO Function of EG91-Quecopen Pins

| Pin Name       | Pin No. | Default Function | GPIO Function | Comment       |
|----------------|---------|------------------|---------------|---------------|
| PCM_CLK        | 4       | PCM_CLK          | GPIO_78       | BOOT_CONFIG_8 |
| PCM_SYNC       | 5       | PCM_SYNC         | GPIO_79       | BOOT_CONFIG_7 |
| PCM_DIN        | 6       | PCM_DIN          | GPIO_76       |               |
| PCM_DOUT       | 7       | PCM_DOUT         | GPIO_77       |               |
| AP_READY       | 19      | AP_READY         | GPIO_10       |               |
| NETLIGHT       | 21      | NETLIGHT         | PMD_GPIO_01   |               |
| SPI_CLK        | 26      | SPI_CLK          | GPIO_23       | BOOT_CONFIG_4 |
| SPI_MOSI       | 27      | SPI_MOSI         | GPIO_20       |               |
| SPI_MISO       | 28      | SPI_MISO         | GPIO_21       |               |
| RI             | 39      | RI               | GPIO_75       |               |
| I2C_SCL        | 40      | I2C_SCL          | GPIO_07       |               |
| I2C_SDA        | 41      | I2C_SDA          | GPIO_06       |               |
| USIM1_PRESENCE | 42      | USIM1_PRESENCE   | GPIO_34       |               |

# **NOTES**

- 1. The voltage domain of this pin is 1.8V, and attention should be paid to logic level when connecting to peripherals.
- 2. All BOOT\_CONFIG and FORCE\_USB\_BOOT pins are prohibited to be pulled up to high level, even pulled up to VDD\_EXT before startup.

The logic levels are described in the following table.

Table 22: Logic Levels of Digital I/O

| Parameter       | Min. | Max. | Unit |
|-----------------|------|------|------|
| V <sub>IL</sub> | -0.3 | 0.6  | V    |
| V <sub>IH</sub> | 1.2  | 2.0  | V    |



| V <sub>OL</sub> | 0    | 0.45 | V |
|-----------------|------|------|---|
| V <sub>OH</sub> | 1.35 | 1.8  | V |

# 3.15. Network Status Indication

The module provides one network indication pin: NETLIGHT. The pin is used to drive a network status indication LED.

The following tables describe the pin definition and logic level changes of NETLIGHT in different network status.

**Table 23: Pin Definition of Network Status Indicator** 

| Pin Name | Pin No. | I/O | Description                                   | Comment           |
|----------|---------|-----|-----------------------------------------------|-------------------|
| NETLIGHT | 21      | DO  | Indicate the module's network activity status | 1.8V power domain |

**Table 24: Working State of Network Status Indicator** 

| Pin Name | Logic Level Changes                    | Network Status           |
|----------|----------------------------------------|--------------------------|
|          | Flicker slowly (200ms High/1800ms Low) | Network searching        |
| NETLICHT | Flicker slowly (1800ms High/200ms Low) | Idle                     |
| NETLIGHT | Flicker quickly (125ms High/125ms Low) | Data transfer is ongoing |
|          | Always High                            | Voice calling            |

A reference circuit is shown in the following figure.





Figure 25: Reference Circuit of Network Status Indicator

# **3.16. STATUS**

The STATUS pin is set as the module's operation status indicator. It will output high level when the module is powered on. The following table describes the pin definition of STATUS.

**Table 25: Pin Definition of STATUS** 

| Pin Name | Pin No. | I/O | Description                            | Comment           |
|----------|---------|-----|----------------------------------------|-------------------|
| STATUS   | 20      | DO  | Indicate the module's operating status | 1.8V power domain |

A reference circuit is shown as below.



Figure 26: Reference Circuit of STATUS



#### 3.17. Behaviors of RI

Related software command or API can be used to configure RI behavior. The default RI behaviors can be changed by related software command. Please refer to **document [2]** for details.

No matter on which port URC is presented, URC will trigger the behavior of RI pin.

# NOTE

URC can be outputted from UART port, USB AT port and USB modem port through configuration via related software command or API. The default port is USB AT port.

The default behaviors of the RI are shown as below.

Table 26: Default Behaviors of RI

| State | Response                                          |
|-------|---------------------------------------------------|
| Idle  | RI keeps at high level                            |
| URC   | RI outputs 120ms low pulse when a new URC returns |

# 3.18. USB\_BOOT Interface

EG91-Quecopen provides a USB\_BOOT pin. Customers can pull up USB\_BOOT to VDD\_EXT before powering on the module, thus the module will enter into emergency download mode when powered on. In this mode, the module supports firmware upgrade over USB interface.

Table 27: Pin Definition of USB\_BOOT Interface

| Pin Name | Pin No. | I/O | Description                                            | Comment                                                           |
|----------|---------|-----|--------------------------------------------------------|-------------------------------------------------------------------|
| USB_BOOT | 75      | DI  | Force the module to enter into emergency download mode | 1.8V power domain.  It is recommended to reserve the test points. |

The following figures show a reference circuit of USB\_BOOT interface and timing sequence of entering into emergency download mode.





Figure 27: Reference Circuit of USB\_BOOT Interface



Figure 28: Timing Sequence for Entering into Emergency Download Mode

# NOTES

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.
- 2. When using MCU to control module to enter into the emergency download mode, follow the above timing sequence. It is not recommended to pull up USB\_BOOT to 1.8V before powering up the VBAT. Short the test points as shown in *Figure 27* can manually force the module to enter into download mode.



# **4** GNSS Receiver

# 4.1. General Description

EG91-Quecopen includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).

EG91-Quecopen supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default.

By default, EG91-Quecopen GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to *document [3]*.

#### 4.2. GNSS Performance

The following table shows GNSS performance of EG91-Quecopen.

**Table 28: GNSS Performance** 

| Parameter             | Description   | Conditions   | Тур.  | Unit |
|-----------------------|---------------|--------------|-------|------|
| Sensitivity<br>(GNSS) | Cold start    | Autonomous   | -146  | dBm  |
|                       | Reacquisition | Autonomous   | -157  | dBm  |
|                       | Tracking      | Autonomous   | -157  | dBm  |
| TTFF<br>(GNSS)        | Cold start    | Autonomous   | 34.6  | S    |
|                       | @open sky     | XTRA enabled | 11.57 | S    |
|                       | Warm start    | Autonomous   | 26.09 | S    |
|                       | @open sky     | XTRA enabled | 3.7   | S    |



|                    | Hot start<br>@open sky | Autonomous              | 1.8  | S |
|--------------------|------------------------|-------------------------|------|---|
|                    |                        | XTRA enabled            | 3.4  | S |
| Accuracy<br>(GNSS) | CEP-50                 | Autonomous<br>@open sky | <2.5 | m |

#### **NOTES**

- 1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes.
- 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock.
- 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command.

# 4.3. Layout Guidelines

The following layout guidelines should be taken into account in customers' design.

- Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
- Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be kept away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep the characteristic impedance for ANT\_GNSS trace as 50Ω.

Please refer to *Chapter 5* for GNSS antenna reference design and antenna installation information.



# **5** Antenna Interfaces

EG91-Quecopen antenna interfaces include a main antenna interface, an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface which is only supported on EG91-NA-Quecopen. The impedance of the antenna port is  $50\Omega$ .

# 5.1. Main/Rx-diversity Antenna Interfaces

#### 5.1.1. Pin Definition

The pin definition of main antenna and Rx-diversity antenna interfaces is shown below.

Table 29: Pin Definition of RF Antenna

| Pin Name                      | Pin No. | I/O | Description                   | Comment              |
|-------------------------------|---------|-----|-------------------------------|----------------------|
| ANT_MAIN                      | 60      | Ю   | Main antenna pad              | $50\Omega$ impedance |
| ANT_DIV<br>(EG91-E-Quecopen)  | 49      | Al  | Receive diversity antenna pad | 50Ω impedance        |
| ANT_DIV<br>(EG91-NA-Quecopen) | 56      | Al  | Receive diversity antenna pad | 50Ω impedance        |

# 5.1.2. Operating Frequency

**Table 30: Module Operating Frequencies** 

| 3GPP Band | Transmit  | Receive   | Unit |
|-----------|-----------|-----------|------|
| EGSM900   | 880~915   | 925~960   | MHz  |
| DCS1800   | 1710~1785 | 1805~1880 | MHz  |
| WCDMA B1  | 1920~1980 | 2110~2170 | MHz  |
| WCDMA B2  | 1850~1910 | 1930~1990 | MHz  |



| WCDMA B4     | 1710~1755 | 2110~2155 | MHz |
|--------------|-----------|-----------|-----|
| WCDMA B5     | 824~849   | 869~894   | MHz |
| WCDMA B8     | 880~915   | 925~960   | MHz |
| LTE-FDD B1   | 1920~1980 | 2110~2170 | MHz |
| LTE FDD B2   | 1850~1910 | 1930~1990 | MHz |
| LTE-FDD B3   | 1710~1785 | 1805~1880 | MHz |
| LTE FDD B4   | 1710~1755 | 2110~2155 | MHz |
| LTE FDD B5   | 824~849   | 869~894   | MHz |
| LTE-FDD B7   | 2500~2570 | 2620~2690 | MHz |
| LTE-FDD B8   | 880~915   | 925~960   | MHz |
| LTE FDD B12  | 699~716   | 729~746   | MHz |
| LTE FDD B13  | 777~787   | 746~756   | MHz |
| LTE-FDD B20  | 832~862   | 791~821   | MHz |
| LTE-FDD B28A | 703~733   | 758~788   | MHz |

# 5.1.3. Reference Design of RF Antenna Interface

A reference design of ANT\_MAIN and ANT\_DIV antenna pads is shown as below. A  $\pi$ -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default.



Figure 29: Reference Circuit of RF Antenna Interface



# NOTES

- 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the receiving sensitivity.
- 2. ANT\_DIV function is enabled by default.
- 3. Place the  $\pi$ -type matching components (R1/C1/C2, R2/C3/C4) as close to the antenna as possible.

#### 5.1.4. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as  $50\Omega$ . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, height from the reference ground to the signal layer (H), and the space between the RF trace and the ground (S). Microstrip and coplanar waveguide are typically used in RF layout to control characteristic impedance. The following figures are reference designs of microstrip or coplanar waveguide with different PCB structures.



Figure 30: Microstrip Line Design on a 2-layer PCB



Figure 31: Coplanar Waveguide Design on a 2-layer PCB





Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)



Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use an impedance simulation tool to control the characteristic impedance of RF traces as 50Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2\*W).

For more details about RF layout, please refer to **document [5]**.



# 5.2. GNSS Antenna Interface

The GNSS antenna interface is only supported on EG91-NA-Quecopen. The following tables show pin definition and frequency specification of GNSS antenna interface.

**Table 31: Pin Definition of GNSS Antenna Interface** 

| Pin Name                       | Pin No. | I/O | Description  | Comment       |
|--------------------------------|---------|-----|--------------|---------------|
| ANT_GNSS<br>(EG91-NA-Quecopen) | 49      | Al  | GNSS antenna | 50Ω impedance |

**Table 32: GNSS Frequency** 

| Туре    | Frequency      | Unit |
|---------|----------------|------|
| GPS     | 1575.42±1.023  | MHz  |
| Galileo | 1575.42±2.046  | MHz  |
| GLONASS | 1597.5~1605.8  | MHz  |
| BeiDou  | 1561.098±2.046 | MHz  |
| QZSS    | 1575.42        | MHz  |

A reference design of GNSS antenna is shown as below.



Figure 34:Reference Circuit of GNSS Antenna



# **NOTES**

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.

# 5.3. Antenna Installation

# 5.3.1. Antenna Requirement

The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.

**Table 33: Antenna Requirements** 

| Туре               | Requirements                                                         |
|--------------------|----------------------------------------------------------------------|
|                    | Frequency range: 1559MHz~1609MHz Polarization: RHCP or linear        |
|                    | VSWR: < 2 (Typ.)                                                     |
| GNSS <sup>1)</sup> | Passive antenna gain: > 0dBi                                         |
| GN33 /             | Active antenna noise figure: < 1.5dB                                 |
|                    | Active antenna gain: > 0dBi                                          |
|                    | Active antenna gain. > 00Bi Active antenna embedded LNA gain: < 17dB |
|                    | VSWR: ≤ 2                                                            |
|                    |                                                                      |
|                    | Efficiency : > 30%  Max Input Power: 50 W                            |
|                    | Input Impedance: 50Ω                                                 |
|                    | Cable insertion loss: < 1dB                                          |
| GSM/WCDMA/LTE      | (EGSM900, WCDMA B5/B8,                                               |
| G3W/WGDWA/LTL      | LTE B5/B8/B12/B13/B20/B28A)                                          |
|                    | Cable Insertion Loss: < 1.5dB                                        |
|                    | (DCS1800, WCDMA B1/B2/B4, LTE B1/B2/B3/B4)                           |
|                    | Cable insertion loss: < 2dB                                          |
|                    |                                                                      |
|                    | (LTE B7)                                                             |

#### **NOTE**

<sup>1)</sup> It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.



#### 5.3.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by HIROSE.



Figure 35: Dimensions of the U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.



Figure 36: Mechanicals of U.FL-LP Connectors



The following figure describes the space factor of mated connector.



Figure 37: Space Factor of Mated Connector (Unit: mm)

For more details, please visit <a href="http://www.hirose.com">http://www.hirose.com</a>.



# **6** Electrical, Reliability and Radio Characteristics

# 6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

**Table 34: Absolute Maximum Ratings** 

| Parameter               | Min. | Max. | Unit |
|-------------------------|------|------|------|
| VBAT_RF/VBAT_BB         | -0.3 | 4.7  | V    |
| USB_VBUS                | -0.3 | 5.5  | V    |
| Peak Current of VBAT_BB | 0    | 0.8  | A    |
| Peak Current of VBAT_RF | 0    | 1.8  | A    |
| Voltage at Digital Pins | -0.3 | 2.3  | V    |

# 6.2. Power Supply Ratings

**Table 35: Power Supply Ratings** 

| Parameter | Description            | Conditions                                                                  | Min. | Тур. | Max. | Unit |
|-----------|------------------------|-----------------------------------------------------------------------------|------|------|------|------|
| VBAT      | VBAT_BB and<br>VBAT_RF | The actual input voltages must stay between the minimum and maximum values. | 3.3  | 3.8  | 4.3  | V    |



|                   | Voltage drop during burst transmission         | Maximum power control level on EGSM900 |     |     | 400  | mV |
|-------------------|------------------------------------------------|----------------------------------------|-----|-----|------|----|
| I <sub>VBAT</sub> | Peak supply current (during transmission slot) | Maximum power control level on EGSM900 |     | 1.8 | 2.0  | А  |
| USB_VBUS          | USB connection detection                       |                                        | 3.0 | 5.0 | 5.25 | V  |

# 6.3. Operation and Storage Temperatures

The operation and storage temperatures are listed in the following table.

**Table 36: Operation and Storage Temperatures** 

| Parameter                      | Min. | Тур. | Max. | Unit |
|--------------------------------|------|------|------|------|
| Operation Temperature Range 1) | -35  | +25  | +75  | °C   |
| Extended Temperature Range 2)  | -40  |      | +85  | °C   |
| Storage Temperature Range      | -40  |      | +90  | °C   |

# **NOTES**

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. <sup>2)</sup> Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P<sub>out</sub> might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operation temperature levels, the module will meet 3GPP specifications again.



# **6.4. Current Consumption**

The values of current consumption are shown below.

Table 37: EG91-E-Quecopen Current Consumption

| Parameter         | Description        | Conditions                        | Тур. | Unit |
|-------------------|--------------------|-----------------------------------|------|------|
|                   | OFF state          | Power down                        | 13   | uA   |
|                   |                    | AT+CFUN=0 (USB disconnected)      | 1.1  | mA   |
|                   |                    | GSM DRX=2 (USB disconnected)      | 2.0  | mA   |
|                   |                    | GSM DRX=5 (USB suspended)         | 1.9  | mA   |
|                   |                    | GSM DRX=9 (USB disconnected)      | 1.3  | mA   |
|                   | Sleep state        | WCDMA PF=64 (USB disconnected)    | 1.7  | mA   |
|                   | oicep state        | WCDMA PF=64 (USB suspended)       | 2.1  | mA   |
|                   |                    | WCDMA PF=512 (USB disconnected)   | 1.1  | mA   |
|                   |                    | LTE-FDD PF=64 (USB disconnected)  | 2.1  | mA   |
|                   |                    | LTE-FDD PF=64 (USB suspended)     | 2.6  | mA   |
| I <sub>VBAT</sub> |                    | LTE-FDD PF=256 (USB disconnected) | 1.4  | mA   |
|                   |                    | GSM DRX=5 (USB disconnected)      | 19.0 | mA   |
|                   |                    | GSM DRX=5 (USB connected)         | 29.0 | mA   |
|                   |                    | WCDMA PF=64 (USB disconnected)    | 19.0 | mA   |
|                   | Idle state         | WCDMA PF=64 (USB connected)       | 29.0 | mA   |
|                   |                    | LTE-FDD PF=64 (USB disconnected)  | 19.0 | mA   |
|                   |                    | LTE-FDD PF=64 (USB connected)     | 29.0 | mA   |
|                   |                    | EGSM900 4DL/1UL @32.67dBm         | 260  | mA   |
|                   | GPRS data transfer | EGSM900 3DL/2UL @32.59dBm         | 463  | mA   |
|                   |                    | EGSM900 2DL/3UL @30.74dBm         | 552  | mA   |



|  |            | EGSM900 1DL/4UL @29.26dBm        | 619 | mA |
|--|------------|----------------------------------|-----|----|
|  |            | DCS1800 4DL/1UL @29.2dBm         | 165 | mA |
|  |            | DCS1800 3DL/2UL @29.13dBm        | 267 | mA |
|  |            | DCS1800 2DL/3UL @29.01dBm        | 406 | mA |
|  |            | DCS1800 1DL/4UL @28.86dBm        | 467 | mA |
|  |            | EGSM900 4DL/1UL PCL=8 @27.1dBm   | 163 | mA |
|  |            | EGSM900 3DL/2UL PCL=8 @27.16dBm  | 274 | mA |
|  |            | EGSM900 2DL/3UL PCL=8 @26.91dBm  | 383 | mA |
|  | EDGE data  | EGSM900 1DL/4UL PCL=8 @26.12dBm  | 463 | mA |
|  | transfer   | DCS1800 4DL/1UL PCL=2 @25.54dBm  | 136 | mA |
|  |            | DCS1800 3DL/2UL PCL=2 @25.68dBm  | 220 | mA |
|  |            | DCS1800 2DL/3UL PCL=2 @25.61dBm  | 306 | mA |
|  |            | DCS1800 1DL/4UL PCL=2 @25.41dBm  | 396 | mA |
|  |            | WCDMA B1 HSDPA CH10700 @22.29dBm | 507 | mA |
|  | WCDMA data | WCDMA B1 HSUPA CH10700 @21.79dBm | 516 | mA |
|  | transfer   | WCDMA B8 HSDPA CH3012 @22.47dBm  | 489 | mA |
|  |            | WCDMA B8 HSUPA CH3012 @21.98dBm  | 482 | mA |
|  |            | LTE-FDD B1 CH18300 @22.98dBm     | 685 | mA |
|  |            | LTE-FDD B3 CH19575 @23.23dBm     | 698 | mA |
|  | LTE data   | LTE-FDD B7 CH21100 @23.46dBm     | 723 | mA |
|  | transfer   | LTE-FDD B8 CH21625 @23.35dBm     | 655 | mA |
|  |            | LTE-FDD B20 CH24300 @23.41dBm    | 723 | mA |
|  |            | LTE-FDD B28A CH27360 @23.16dBm   | 660 | mA |
|  | GSM        | EGSM900 PCL=5 @32.5dBm           | 258 | mA |
|  | voice call | DCS1800 PCL=0 @29.23dBm          | 159 | mA |
|  |            |                                  |     |    |



| WCDMA      | WCDMA B1 CH10700 @23.06dBm | 555 | mA |
|------------|----------------------------|-----|----|
| voice call | WCDMA B8 CH3012 @23.45dBm  | 535 | mA |

Table 38: EG91-NA-Quecopen Current Consumption

| Parameter  | Description | Conditions                        | Тур. | Unit |
|------------|-------------|-----------------------------------|------|------|
|            | OFF state   | Power down                        | 13   | uA   |
|            |             | AT+CFUN=0 (USB disconnected)      | 1.0  | mA   |
|            |             | WCDMA PF=64 (USB disconnected)    | 2.2  | mA   |
|            |             | WCDMA PF=64 (USB suspended)       | 2.5  | mA   |
|            | Sleep state | WCDMA PF=512 (USB disconnected)   | 1.4  | mA   |
|            |             | LTE-FDD PF=64 (USB disconnected)  | 2.6  | mA   |
|            |             | LTE-FDD PF=64 (USB suspended)     | 2.9  | mA   |
|            |             | LTE-FDD PF=256 (USB disconnected) | 1.7  | mA   |
|            | Idle state  | WCDMA PF=64 (USB disconnected)    | 14.0 | mA   |
| 1          |             | WCDMA PF=64 (USB connected)       | 26.0 | mA   |
| $I_{VBAT}$ |             | LTE-FDD PF=64 (USB disconnected)  | 15.0 | mA   |
|            |             | LTE-FDD PF=64 (USB connected)     | 26.0 | mA   |
|            |             | WCDMA B2 HSDPA CH9938 @22.45 dBm  | 569  | mA   |
|            |             | WCDMA B2 HSUPA CH9938 @21.73 dBm  | 559  | mA   |
|            | WCDMA data  | WCDMA B4 HSDPA CH1537 @23.05 dBm  | 572  | mA   |
|            | transfer    | WCDMA B4 HSUPA CH1537 @22.86 dBm  | 586  | mA   |
|            |             | WCDMA B5 HSDPA CH4407 @23 dBm     | 518  | mA   |
|            |             | WCDMA B5 HSUPA CH4407 @ 22.88 dBm | 514  | mA   |
|            | LTE data    | LTE-FDD B2 CH1100 @23.29 dBm      | 705  | mA   |
|            | transfer    | LTE-FDD B4 CH2175 @23.19 dBm      | 693  | mA   |



|                     | LTE-FDD B5 CH2525 @23.39 dBm  | 601 | mA |
|---------------------|-------------------------------|-----|----|
|                     | LTE-FDD B12 CH5060 @23.16 dBm | 650 | mA |
|                     | LTE-FDD B13 CH5230 @23.36 dBm | 602 | mA |
|                     | WCDMA B2 CH9938 @23.34 dBm    | 627 | mA |
| WCDMA<br>voice call | WCDMA B4 CH1537 @23.47 dBm    | 591 | mA |
|                     | WCDMA B5 CH4357 @ 23.37 dBm   | 536 | mA |
|                     |                               |     |    |

Table 39: GNSS Current Consumption of EG91-NA-Quecopen

| Parameter                   | Description           | Conditions                  | Тур. | Unit |
|-----------------------------|-----------------------|-----------------------------|------|------|
| I <sub>VBAT</sub><br>(GNSS) | Searching (AT+CFUN=0) | Cold start @Passive Antenna | 53   | mA   |
|                             |                       | Hot Start @Passive Antenna  | 50   | mA   |
|                             |                       | Lost state @Passive Antenna | 53   | mA   |
|                             | Tracking (AT+CFUN=0)  | Open Sky @Passive Antenna   | 32   | mA   |

# 6.5. RF Output Power

The following table shows the RF output power of EG91-Quecopen module.

**Table 40: RF Output Power** 

| Frequency            | Max.         | Min.     |
|----------------------|--------------|----------|
| EGSM900              | 33dBm±2dB    | 5dBm±5dB |
| DCS1800              | 30dBm±2dB    | 0dBm±5dB |
| EGSM900 (8-PSK)      | 27dBm±3dB    | 5dBm±5dB |
| DCS1800 (8-PSK)      | 26dBm±3dB    | 0dBm±5dB |
| WCDMA B1/B2/B4/B5/B8 | 24dBm+1/-3dB | <-49dBm  |
|                      |              |          |



LTE-FDD B1/B2/B3/B4/B5/B7/ B8/B12/B13/B20/B28A

23dBm±2dB

<-39dBm

# **NOTE**

In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

# 6.6. RF Receiving Sensitivity

The following tables show the conducted RF receiving sensitivity of EG91-Quecopen module.

Table 41: EG91-E-Quecopen Conducted RF Receiving Sensitivity

| Frequency          | Primary    | Diversity | SIMO      | 3GPP      |
|--------------------|------------|-----------|-----------|-----------|
| EGSM900            | -108.6dBm  | NA        | NA        | -102dBm   |
| DCS1800            | -109.4 dBm | NA        | NA        | -102dbm   |
| WCDMA B1           | -109.5dBm  | -110dBm   | -112.5dBm | -106.7dBm |
| WCDMA B8           | -109.5dBm  | -110dBm   | -112.5dBm | -103.7dBm |
| LTE-FDD B1 (10M)   | -97.5dBm   | -98.3dBm  | -101.4dBm | -96.3dBm  |
| LTE-FDD B3 (10M)   | -98.3dBm   | -98.5dBm  | -101.5dBm | -93.3dBm  |
| LTE-FDD B7 (10M)   | -96.3dBm   | -98.4dBm  | -101.3dBm | -94.3dBm  |
| LTE-FDD B8 (10M)   | -97.1dBm   | -99.1dBm  | -101.2dBm | -93.3dBm  |
| LTE-FDD B20 (10M)  | -97dBm     | -99dBm    | -101.3dBm | -93.3dBm  |
| LTE-FDD B28A (10M) | -98.3dBm   | -99dBm    | -101.4dBm | -94.8dBm  |

Table 42: EG91-NA-Quecopen Conducted RF Receiving Sensitivity

| Frequency | Primary | Diversity | SIMO      | 3GPP      |
|-----------|---------|-----------|-----------|-----------|
| WCDMA B2  | -110dBm | -111dBm   | -112.5dBm | -104.7dBm |



#### 6.7. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the module's electrostatic discharge characteristics.

**Table 43: Electrostatic Discharge Characteristics** 

| Tested Points          | Contact Discharge | Air Discharge | Unit |
|------------------------|-------------------|---------------|------|
| VBAT, GND              | ±5                | ±10           | KV   |
| All Antenna Interfaces | ±4                | ±8            | KV   |
| Other Interfaces       | ±0.5              | ±1            | KV   |

#### 6.8. Thermal Consideration

In order to achieve better performance of the module, it is recommended to comply with the following principles for thermal consideration:

 On customers' PCB design, please keep placement of the module away from heating sources, especially high power components such as ARM processor, audio power amplifier, power supply, etc.



- Do not place components on the opposite side of the PCB area where the module is mounted, in order to facilitate adding of heatsink when necessary.
- Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as to ensure better heat dissipation performance.
- The reference ground of the area where the module is mounted should be complete, and add ground vias as many as possible for better heat dissipation.
- Make sure the ground pads of the module and PCB are fully connected.
- According to customers' application demands, the heatsink can be mounted on the top of the module, or the opposite side of the PCB area where the module is mounted, or both of them.
- The heatsink should be designed with as many fins as possible to increase heat dissipation area.
   Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and module/PCB.

The following shows two kinds of heatsink designs for reference and customers can choose one or both of them according to their application structure.



Figure 38: Referenced Heatsink Design (Heatsink at the Top of the Module)





Figure 39: Referenced Heatsink Design (Heatsink at the Backside of Customers' PCB)

### NOTES

- 1. The module offers the best performance when the internal BB chip stays below 105°C. When the maximum temperature of the BB chip reaches or exceeds 105°C, the module works normal but provides reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip temperature reaches or exceeds 115°C, the module will disconnect from the network, and it will recover to network connected state after the maximum temperature falls below 115°C. Therefore, the thermal design should be maximally optimized to make sure the maximum BB chip temperature always maintains below 105°C. Customers can execute related software command or API to get the maximum BB chip temperature from the returned value.
- 2. For more detailed guidelines on thermal design, please refer to document [6].



### **7** Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm. The tolerances for dimensions without tolerance values are ±0.05mm.

#### 7.1. Mechanical Dimensions of the Module



Figure 40: Module Top and Side Dimensions





**Figure 41: Module Bottom Dimensions (Top View)** 



### 7.2. Recommended Footprint



Figure 42: Recommended Footprint (Top View)

**NOTE** 

For easy maintenance of the module, please keep about 3mm between the module and other components in the host PCB.



### 7.3. Design Effect Drawings of the Module



Figure 43: Top View of the Module



Figure 44: Bottom View of the Module

**NOTE** 

These are design effect drawings of EG91-Quecopen module. For more accurate pictures, please refer to the module that you get from Quectel.



# 8 Storage, Manufacturing and Packaging

#### 8.1. Storage

EG91-Quecopen is stored in a vacuum-sealed bag. It is rated at MSL 3, and its storage restrictions are listed below.

- 1. Shelf life in vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
  - Mounted within 168 hours at the factory environment of ≤30° C/60%RH.
  - Stored at <10% RH.</li>
- 3. Devices require bake before mounting, if any circumstances below occurs:
  - When the ambient temperature is 23°C±5°C and the humidity indicator card shows the humidity is >10% before opening the vacuum-sealed bag.
  - Device mounting cannot be finished within 168 hours at factory conditions of ≤30° C/60%RH.

If baking is required, devices may be baked for 8 hours at 120°C±5°C.

#### **NOTE**

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (120°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.



#### 8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.15mm~0.18mm. For more details, please refer to **document [4]**.

It is suggested that the peak reflow temperature is 240°C~245°C, and the absolute maximum reflow temperature is 245°C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.



Figure 45: Reflow Soldering Thermal Profile

**Table 44: Recommended Thermal Profile Parameters** 

| Factor                                       | Recommendation |
|----------------------------------------------|----------------|
| Soak Zone                                    |                |
| Max slope                                    | 1 to 3°C/sec   |
| Soak time (between A and B: 150°C and 200°C) | 60 to 120 sec  |



| Reflow Zone                 |               |
|-----------------------------|---------------|
| Max slope                   | 2 to 3°C/sec  |
| Reflow time (D: over 220°C) | 40 to 60 sec  |
| Max temperature             | 240°C ~ 245°C |
| Cooling down slope          | 1 to 4°C/sec  |
| Reflow Cycle                |               |
| Max reflow cycle            | 1             |

### 8.3. Packaging

EG91-Quecopen is packaged in a vacuum-sealed bag which is ESD protected. The bag should not be opened until the devices are ready to be soldered onto the application.

The reel is 330mm in diameter and each reel contains 250pcs modules. The following figures show the packaging details, measured in mm.



Figure 46: Tape Dimensions



Figure 47: Reel Dimensions



Figure 48: Tape and Reel Directions



## 9 Appendix A References

**Table 45: Related Documents** 

| SN  | Document Name                                                | Remark                                                                                                                          |
|-----|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| [1] | Quectel_EC2x&EG9x&EM05_Power_Management_<br>Application_Note | Power Management Application Note for EC25, EC21, EC20 R2.0, EC20 R2.1, EG95, EG91 and EM05                                     |
| [2] | Quectel_EG9x_AT_Commands_Manual                              | AT Commands Manual for EG95 and EG91                                                                                            |
| [3] | Quectel_EC25&EC21_GNSS_AT_Commands_<br>Manual                | GNSS AT Commands Manual for EC25 and EC21 modules                                                                               |
| [4] | Quectel_Module_Secondary_SMT_User_Guide                      | Module Secondary SMT User Guide                                                                                                 |
| [5] | Quectel_RF_Layout_Application_Note                           | RF Layout Application Note                                                                                                      |
| [6] | Quectel_LTE_Module_Thermal_Design_Guide                      | Thermal design guide for LTE modules including EC25, EC21, EC20 R2.0, EC20 R2.1, EG91, EG95, EG25-G, EP06, EG06, EM06 and AG35. |

**Table 46: Terms and Abbreviations** 

| Abbreviation | Description                                 |  |
|--------------|---------------------------------------------|--|
| AMR          | Adaptive Multi-rate                         |  |
| bps          | Bits Per Second                             |  |
| CHAP         | Challenge Handshake Authentication Protocol |  |
| CS           | Coding Scheme                               |  |
| CSD          | Circuit Switched Data                       |  |
| CTS          | Clear To Send                               |  |
| DC-HSPA+     | Dual-carrier High Speed Packet Access       |  |
|              |                                             |  |



| DFOTA | Delta Firmware Upgrade Over The Air     |  |
|-------|-----------------------------------------|--|
| DL    | Downlink                                |  |
| DTR   | Data Terminal Ready                     |  |
| DTX   | Discontinuous Transmission              |  |
| EFR   | Enhanced Full Rate                      |  |
| ESD   | Electrostatic Discharge                 |  |
| FDD   | Frequency Division Duplex               |  |
| FR    | Full Rate                               |  |
| GMSK  | Gaussian Minimum Shift Keying           |  |
| GSM   | Global System for Mobile Communications |  |
| HR    | Half Rate                               |  |
| HSPA  | High Speed Packet Access                |  |
| HSDPA | High Speed Downlink Packet Access       |  |
| HSUPA | High Speed Uplink Packet Access         |  |
| I/O   | Input/Output                            |  |
| Inorm | Normal Current                          |  |
| LED   | Light Emitting Diode                    |  |
| LNA   | Low Noise Amplifier                     |  |
| LTE   | Long Term Evolution                     |  |
| MIMO  | Multiple Input Multiple Output          |  |
| MO    | Mobile Originated                       |  |
| MS    | Mobile Station (GSM engine)             |  |
| MT    | Mobile Terminated                       |  |
| PAP   | Password Authentication Protocol        |  |
| PCB   | Printed Circuit Board                   |  |
|       |                                         |  |



| PDU                 | Protocol Data Unit                         |  |
|---------------------|--------------------------------------------|--|
| PPP                 | Point-to-Point Protocol                    |  |
| PMD                 | Power Management Device                    |  |
| QAM                 | Quadrature Amplitude Modulation            |  |
| QPSK                | Quadrature Phase Shift Keying              |  |
| RF                  | Radio Frequency                            |  |
| RHCP                | Right Hand Circularly Polarized            |  |
| Rx                  | Receive                                    |  |
| SMS                 | Short Message Service                      |  |
| TDD                 | Time Division Duplexing                    |  |
| TX                  | Transmitting Direction                     |  |
| UL                  | Uplink                                     |  |
| UMTS                | Universal Mobile Telecommunications System |  |
| URC                 | Unsolicited Result Code                    |  |
| (U)SIM              | (Universal) Subscriber Identity Module     |  |
| Vmax                | Maximum Voltage Value                      |  |
| Vnorm               | Normal Voltage Value                       |  |
| Vmin                | Minimum Voltage Value                      |  |
| V <sub>IH</sub> max | Maximum Input High Level Voltage Value     |  |
| V <sub>IH</sub> min | Minimum Input High Level Voltage Value     |  |
| V <sub>IL</sub> max | Maximum Input Low Level Voltage Value      |  |
| V <sub>IL</sub> min | Minimum Input Low Level Voltage Value      |  |
| V <sub>I</sub> max  | Absolute Maximum Input Voltage Value       |  |
| V <sub>I</sub> min  | Absolute Minimum Input Voltage Value       |  |
| V <sub>o</sub> ax   | Maximum Output High Level Voltage Value    |  |
|                     |                                            |  |



| V <sub>OH</sub> min | Minimum Output High Level Voltage Value |
|---------------------|-----------------------------------------|
| V <sub>OL</sub> max | Maximum Output Low Level Voltage Value  |
| V <sub>OL</sub> min | Minimum Output Low Level Voltage Value  |
| VSWR                | Voltage Standing Wave Ratio             |
| WCDMA               | Wideband Code Division Multiple Access  |



## 10 Appendix B GPRS Coding Schemes

**Table 47: Description of Different Coding Schemes** 

| Scheme                       | CS-1 | CS-2 | CS-3 | CS-4 |
|------------------------------|------|------|------|------|
| Code Rate                    | 1/2  | 2/3  | 3/4  | 1    |
| USF                          | 3    | 3    | 3    | 3    |
| Pre-coded USF                | 3    | 6    | 6    | 12   |
| Radio Block excl.USF and BCS | 181  | 268  | 312  | 428  |
| BCS                          | 40   | 16   | 16   | 16   |
| Tail                         | 4    | 4    | 4    | -    |
| Coded Bits                   | 456  | 588  | 676  | 456  |
| Punctured Bits               | 0    | 132  | 220  | -    |
| Data Rate Kb/s               | 9.05 | 13.4 | 15.6 | 21.4 |



### 11 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Table 48: GPRS Multi-slot Classes

| Multislot Class | Downlink Slots | Uplink Slots | Active Slots |
|-----------------|----------------|--------------|--------------|
| 1               | 1              | 1            | 2            |
| 2               | 2              | 1            | 3            |
| 3               | 2              | 2            | 3            |
| 4               | 3              | 1            | 4            |
| 5               | 2              | 2            | 4            |
| 6               | 3              | 2            | 4            |
| 7               | 3              | 3            | 4            |
| 8               | 4              | 1            | 5            |
| 9               | 3              | 2            | 5            |
| 10              | 4              | 2            | 5            |
| 11              | 4              | 3            | 5            |
| 12              | 4              | 4            | 5            |
| 13              | 3              | 3            | NA           |
| 14              | 4              | 4            | NA           |



| 15 | 5 | 5 | NA |
|----|---|---|----|
| 16 | 6 | 6 | NA |
| 17 | 7 | 7 | NA |
| 18 | 8 | 8 | NA |
| 19 | 6 | 2 | NA |
| 20 | 6 | 3 | NA |
| 21 | 6 | 4 | NA |
| 22 | 6 | 4 | NA |
| 23 | 6 | 6 | NA |
| 24 | 8 | 2 | NA |
| 25 | 8 | 3 | NA |
| 26 | 8 | 4 | NA |
| 27 | 8 | 4 | NA |
| 28 | 8 | 6 | NA |
| 29 | 8 | 8 | NA |
| 30 | 5 | 1 | 6  |
| 31 | 5 | 2 | 6  |
| 32 | 5 | 3 | 6  |
| 33 | 5 | 4 | 6  |
|    |   |   |    |



# 12 Appendix D EDGE Modulation and Coding Schemes

**Table 49: EDGE Modulation and Coding Schemes** 

| Coding Scheme | Modulation | Coding Family | 1 Timeslot | 2 Timeslot | 4 Timeslot |
|---------------|------------|---------------|------------|------------|------------|
| CS-1:         | GMSK       | /             | 9.05kbps   | 18.1kbps   | 36.2kbps   |
| CS-2:         | GMSK       | /             | 13.4kbps   | 26.8kbps   | 53.6kbps   |
| CS-3:         | GMSK       | /             | 15.6kbps   | 31.2kbps   | 62.4kbps   |
| CS-4:         | GMSK       | /             | 21.4kbps   | 42.8kbps   | 85.6kbps   |
| MCS-1         | GMSK       | С             | 8.80kbps   | 17.60kbps  | 35.20kbps  |
| MCS-2         | GMSK       | В             | 11.2kbps   | 22.4kbps   | 44.8kbps   |
| MCS-3         | GMSK       | A             | 14.8kbps   | 29.6kbps   | 59.2kbps   |
| MCS-4         | GMSK       | С             | 17.6kbps   | 35.2kbps   | 70.4kbps   |
| MCS-5         | 8-PSK      | В             | 22.4kbps   | 44.8kbps   | 89.6kbps   |
| MCS-6         | 8-PSK      | A             | 29.6kbps   | 59.2kbps   | 118.4kbps  |
| MCS-7         | 8-PSK      | В             | 44.8kbps   | 89.6kbps   | 179.2kbps  |
| MCS-8         | 8-PSK      | A             | 54.4kbps   | 108.8kbps  | 217.6kbps  |
| MCS-9         | 8-PSK      | A             | 59.2kbps   | 118.4kbps  | 236.8kbps  |