Special Applications: Face Recognition & Neural Style Transfer

②	Congratulations! You passed!				
	Grade received 100%	Latest Submission Grade 100%	To pass 80% or higher	Go to next item	
1.	Face verification and face re picture against one person's	-	ommon names given to the task of comparin	ng a new 1/1 point	
	False				
	○ True				
	Expand				
	Correct. This is the de	scription of face verification, b	out not of face recognition.		
2.	Why is the face verification p	problem considered a one-sho	ot learning problem? Choose the best answe	er. 1/1 point	
	Because of the sensiti	·	on't have a chance to correct it if the		
	Because we might have	ve only one example of the pers	son we want to verify.		
	Because we are trying	to compare to one specific per	rson only.		
	Because we have only network for verification	y have to forward pass the imag n.	ge one time through our neural		

	Correct Correct. One-shot learning refers to the amount of data we have to solve a task.	
3.	In order to train the parameters of a face recognition system, it would be reasonable to use a training set	1/1 point
٠.	comprising 100,000 pictures of 100,000 different persons.	1/1 point
	False	
	○ True	
	∠ [¬] Expand	
	 Correct Correct, to train a network using the triplet loss you need several pictures of the same person. 	
4.	In the triplet loss:	1/1 point
	$\max\left(\left\ f(A)-f(P) ight\ ^2-\left\ f(A)-f(N) ight\ ^2+lpha,0 ight)$	
	Which of the following are true about the triplet loss? Choose all that apply.	
	We want that $\ f(A) - f(P)\ ^2 < \ f(A) - f(N)\ ^2$ so the negative images are further away from the anchor than the positive images.	
	\checkmark Correct Correct. Being a positive image the encoding of P should be close to the encoding of $A\cdot$	
	igsim f(A) represents the encoding of the Anchor.	
	✓ Correct Correct. f represents the network that is in charge of creating the encoding of the images, and A represents the anchor image.	
	lpha is a trainable parameter of the Siamese network.	
	$oxedsymbol{oxed}$ A the anchor image is a hyperparameter of the Siamese network.	
	∠ ⁷ Expand	
		

5. Consider the following Siamese network architecture:

1/1 point

Which of the following do you agree with the most?

- The two neural networks depicted in the image have the same architecture, but they might have different parameters.
- The upper and lower neural networks depicted have exactly the same parameters, but the outputs are computed independently for each image.
- Although we depict two neural networks and two images, the two images are combined in a single volume and pass through a single neural network.
- This depicts two *different* neural networks with different architectures, although we use the same drawing.

✓ Correct

Correct. Both neural networks share the same weights, and each image passes through the neural network in an independent manner.

6.	Our intuition about the layers of a neural network tells us that units that respond more to complex features are more likely to be in deeper layers. True/False?	1/1 point
	○ False	
	True	
	∠ [¬] Expand	
	 Correct Correct. Neurons that understand more complex shapes are more likely to be in deeper layers of a neural network. 	
	Neural style transfer uses images Content C, Style S. The loss function used to generate image G is composed of which of the following: (Choose all that apply.)	1 / 1 point
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$igsep J_{style}$ that compares S and G .	
	✓ Correct Correct, in neural style transfer we are interested in the similarity between S and G, and the similarity between G and C.	
	$\bigvee J_{content}$ that compares C and G .	
	✓ Correct Correct, in neural style transfer we are interested in the similarity between S and G, and the similarity between G and C.	

	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	 ✓ Expand ✓ Correct Great, you got all the right answers. 	
8.	In the deeper layers of a ConvNet, each channel corresponds to a different feature detector. The style matrix $G^{[l]}$ measures the degree to which the activations of different feature detectors in layer l vary (or correlate) together with each other.	1/1 point
	○ False	
	\bigcirc Correct Yes, the style matrix $G^{[l]}$ can be seen as a matrix of cross-correlations between the different feature detectors.	

9.	In neural style transfer, which of the following better express the gradients used?	1 / 1 point
	\bigcirc ∂J	
	$\overline{\partial W^{[l]}}$	
	$\bigcirc \ rac{\partial J}{\partial S}$	
	$igotimes rac{\partial J}{\partial G}$	
	Neural style transfer doesn't use gradient descent since there are no trainable parameters.	
	∠ ⁷ Expand	
	⊘ Correct	
	Correct, we use the gradient of the cost function over the value of the pixels of the generated image.	
10.	. You are working with 3D data. The input "image" has size $64 imes64 imes64 imes3$, if you apply a convolutional layer	1/1 point
	with 16 filters of size $4 imes4 imes4$, zero padding and stride 2. What is the size of the output volume?	1/1 point
	\bigcirc 31 × 31 × 31 × 16.	
	\bigcirc 31 \times 31 \times 31 \times 3.	
	$\bigcirc \ \ 64 \times 64 \times 64 \times 3.$	
	$\bigcirc \ \ 61 \times 61 \times 61 \times 14.$	
	∠ ⁷ Expand	
	_Z Expand	
	\bigcirc Correct	
	Correct, we can use the formula $\lfloor \frac{n^{[l-1]}-f+2\times p}{s} \rfloor + 1 = n^{[l]}$ to the three first dimensions.	