DEVOIR SURVEILLÉ Nº 8

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 —

Partie I -

 $\mathbb{R}[X]$ étant l'espace vectoriel des polynômes à coefficients réels, on désigne par E le sous-espace de $\mathbb{R}[X]$ ayant pour éléments les polynômes P tels que

$$\int_0^1 P(t)dt = 0$$

On appellera D l'endomorphisme de $\mathbb{R}[X]$ associant à tout polynôme P sa dérivée P' et d la restriction de D à E.

- 1. a. Montrer que d est un isomorphisme de E sur $\mathbb{R}[X]$. On désignera par φ l'isomorphisme réciproque $\varphi = d^{-1}$.
 - **b.** Montrer que pour $(P,Q) \in \mathbb{R}[X]^2$, $P = \phi(Q)$ si et seulement si P' = Q et $P \in E$.
- 2. Deux questions pour éviter d'écrire des âneries par la suite.
 - a. Pour $P \in \mathbb{R}[X]$, a-t-on toujours $\Phi(P)(0) = \Phi(P(0))$?
 - **b.** Pour $P \in \mathbb{R}[X]$, a-t-on toujours $\Phi(P)(1-X) = \Phi(P(1-X))$?
- 3. On considère la suite $(B_n)_{n\in\mathbb{N}}$ dans $\mathbb{R}[X]$ définie par $B_0=1$ et par la relation de récurrence :

$$\forall n \in \mathbb{N}, B_{n+1} = \phi(B_n)$$

 B_{n+1} est donc l'unique polynôme de E tel que $B'_{n+1} = B_n$.

- **a.** Expliciter B_1 et B_2 .
- **b.** Vérifier que pour tout entier n supérieur ou égal à 2, on a $B_n(0) = B_n(1)$.
- 4. A tout $n \in \mathbb{N}$, on associe le polynôme P_n défini par :

$$P_n(X) = (-1)^n B_n(1-X)$$

- a. Pour tout $n \in \mathbb{N}$, exprimer P'_{n+1} en fonction de P_n .
- **b.** Montrer que pour tout $n \in \mathbb{N}$, $P_{n+1} = \phi(P_n)$.
- c. En déduire que $B_n(1-X)=(-1)^nB_n(X)$ pour tout $n\in\mathbb{N}.$
- **5.** Dans cette question, p désigne un entier naturel non nul. Pour tout $n \in \mathbb{N}$, on pose :

$$Q_n = p^{n-1} \sum_{k=0}^{p-1} B_n \left(\frac{X+k}{p} \right)$$

a. Montrer que $Q_{n+1} = \phi(Q_n)$ pour tout $n \in \mathbb{N}$.

b. En déduire que l'on a, pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}^*$:

$$B_n = p^{n-1} \sum_{k=0}^{p-1} B_n \left(\frac{X+k}{p} \right)$$

6. A tout $n \in \mathbb{N}$, on associe le polynôme R_n défini par :

$$R_n = B_{n+1}(X+1) - B_{n+1}(X)$$

- a. Démontrer que l'on a $R'_{n+1}=R_n$ pour tout $n\in\mathbb{N}.$
- **b.** Déterminer $R_n(0)$ pour tout $n \in \mathbb{N}^*$.
- c. Déterminer le polynôme R_n pour tout $n \in \mathbb{N}$.
- d. En déduire que pour tout couple (m, n) d'entiers strictement positifs, on a :

$$\sum_{k=1}^{m} k^{n} = n! \left(B_{n+1}(m+1) - B_{n+1}(1) \right)$$

Partie II -

Les notations étant celles de la première partie, on pose $b_n = B_n(0)$ pour tout $n \in \mathbb{N}$. On rappelle que $B'_{n+1} = B_n$ pour tout $n \in \mathbb{N}$.

- 1. a. Démontrer que l'on a, pour tout $n \in \mathbb{N}$: $B_n = \sum_{k=0}^n b_{n-k} \frac{X^k}{k!}$.
 - **b.** En déduire que la suite (b_n) est définie par la relation de récurrence :

$$\forall n \in \mathbb{N}^*, \ b_n = -\sum_{k=1}^n \frac{b_{n-k}}{(k+1)!}, \qquad \text{avec } b_0 = 1$$

- c. Montrer que pour tout $m \in \mathbb{N}^*$, on a $b_{2m+1} = 0$.
- 2. On souhaite utiliser les résultats de ${\bf I.5}$ pour déterminer diverses valeurs de ${\bf B_n}$.
 - **a.** Soit $n \in \mathbb{N}$. Montrer que :

$$B_n\left(\frac{1}{2}\right) = \frac{b_n\left(1-2^{n-1}\right)}{2^{n-1}}$$

b. Soit n un entier naturel pair. Donner les expressions en fonction de n et b_n de :

$$B_n\left(\frac{1}{3}\right) \qquad \qquad B_n\left(\frac{1}{4}\right) \qquad \qquad B_n\left(\frac{1}{6}\right)$$

- 3. On se propose de démontrer que, pour tout $m \in \mathbb{N}^*$, B_{2m} s'annule une unique fois sur l'intervalle $\left]0,\frac{1}{2}\right[$ en un réel que l'on appellera θ_m . On illustrera son propos à l'aide de tableaux de variation.
 - **a.** Vérifier qu'il existe au moins un entier $\mathfrak{m} \in \mathbb{N}^*$ tel que la fonction $(-1)^{\mathfrak{m}}B_{2\mathfrak{m}-1}$ soit strictement positive sur $\left]0,\frac{1}{2}\right[$ (inutile de chercher très loin).
 - **b.** Soit m un tel entier. Étudier les variations de la fonction $(-1)^m B_{2m}$ sur $\left[0,\frac{1}{2}\right]$. En déduire que B_{2m} s'annule une unique fois sur $\left]0,\frac{1}{2}\right[$.
 - $\mathbf{c.} \ \ \mathrm{De} \ \mathrm{cette} \ \mathrm{\acute{e}tude}, \ \mathrm{\acute{e}\acute{e}\acute{d}uire} \ \mathrm{que} \ \mathrm{la} \ \mathrm{fonction} \ (-1)^{m+1} B_{2m+1} \ \mathrm{est} \ \mathrm{strictement} \ \mathrm{positive} \ \mathrm{sur} \ \Big] 0, \frac{1}{2} \Big[.$

- d. Justifier alors la proposition énoncée au début de la question.
- e. Vérifier que pour tout $\mathfrak{m} \in \mathbb{N}^*$, $\theta_{\mathfrak{m}}$ appartient à l'intervalle $\left]\frac{1}{6},\frac{1}{4}\right[$.
- 4. a. Calculer pour tout $m \in \mathbb{N}$ le maximum de $|B_{2m}|$ sur $\left[0, \frac{1}{2}\right]$.
 - $\mathbf{b.} \ \mathrm{En} \ \mathrm{d\acute{e}duire} \ \mathrm{que} : \sup_{t \in [0,1]} |B_{2m}(t)| = |b_{2m}|.$

Partie III -

Dans cette partie, on s'intéresse au calcul effectif des polynômes B_n à l'aide de Python. Un polynôme sera représenté par la liste de ses coefficients rangés par ordre de degré croissant. Par exemple, le polynôme $3X^3 - 4X^2 + 7X - 2$ sera représenté par la liste [-2,7,-4,3].

- 1. Écrire une fonction integrale d'argument un polynôme P et renvoyant $\int_0^1 P(t) dt$.
- 2. Écrire une fonction primitive d'argument un polynôme P et renvoyant l'unique polynôme Q tel que Q' = P et Q(0) = 0.
- 3. A l'aide des fonctions des questions III.1 et III.2, écrire une fonction phi d'argument un polynôme P et renvoyant $\phi(P)$.
- 4. Écrire une fonction B d'argument un entier naturel n et renvoyant la liste des polynômes B_0, B_1, \ldots, B_n .