Introduction to Numerical Analysis HW3

Yu Cang 018370210001

June 12, 2018

1 CANTOR'S SET

1.	•	f . As C_i is closed and C is the intersection of these closed sets, C is closed. lear that C is bounded. Thus, by Heine-Borel theorem, C is compact.	
2.	each As C If x a be a $x < z$ If x a	If. Suppose $x \in C_m$, $y \in C_n$ and $x < y$. There are 2^m subsets in C_m and the length of subset is $\frac{1}{3^m}$. Also, there are 2^n subsets in C_n and the length of each subset is $\frac{1}{3^n} \subset C_m \cap C_n$, suppose $m \le n$, there must exist a subset in C_n s.t. $x \in C_n$. and y lie in the same subset of C_n , with further division of the subset, there will gap between x and y , thus, there exists an element z lies in the gap and satisfies $z < y$. and y lie in different subsets of C_n , denoted as $C_{n,i}$ and $C_{n,j}$, it's obvious that such sets in the gap between $C_{n,i}$ and $C_{n,j}$ and satisfies $x < z < y$.	ıll es
3.	a)	0	
	b)	<i>Proof.</i> As there are 2^n subsets in C_n and the length of each subset is $\frac{1}{3^n}$, thus th Lebesgue measure of C_n is the sum of the Lebesgue measure of each closed subset. Thus $\lambda(C_n) = (\frac{2}{3})^n$.	
		As $C = \bigcap_{n=1}^{\infty} C_n$, then $\lambda(C) \le \lambda(C_n) = (\frac{2}{3})^n$, thus $\lambda(C) = 0$.	
4.	a)	<i>Proof.</i> As the end points of each subset in C_n is not removed in any subdivision thus C is not empty.	1,

b)
$$x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}, \text{ with } a_i \in \{0, 2\}$$
 (1.1)

- c) Consider the i-th digit in elemnet s_i , it will be possible to construct such an element that the i-th digit is different from that in s_i , thus s is not included in the original list.
- d) *Proof.* Suppose C is countable, express each $x \in C$ in ternary form, then each digit in x is either 0 or 2. Thus, the choice of each digit appears to be binary. Consider the i-th digit in elemnet x_i , it will be possible to construct such an element t, whose i-th digit is different from that in x_i (complementary). Thus t is not included in the original list, which implies the assumption fails.
- 5. Althouth *C* is uncountable, but the measure of its complement is 1, which is illustrated below, thus the measure of *C* is 0.

$$\lambda(C^{c}) = \frac{1}{3} + 2 * \frac{1}{9} + \dots$$

$$= \frac{1}{3} \sum_{i=0}^{\infty} {\binom{2}{3}}^{n}$$

$$= \frac{1}{3} \lim_{n \to \infty} \frac{1 - (2/3)^{n}}{1 - (2/3)} = 1$$
(1.2)

2 CANTOR'S FUNCTION

- 1. *Proof.* It's easy to verify that f_0 , f_1 are monotonically increasing continuous functions. Suppose f_n are still monotonically increasing continuous functions for n=k. For n=k+1, as f_{k+1} is only different from f_k on each closed subset of C_k , whose length is $\frac{1}{3^n}$ and is denoted as $I_{k,p}$ ($1 \le p \le 2^k$) here, it is left to prove that f_{k+1} remains monotonically increasing continuous on each $I_{k,p}$ after the construction process. Since f_k is linear on each $I_{k,p}$, and the recursive construction process doesn't change the values on each ending points, on which the values of f_k is denoted as a, b recursively, the subset of $I_{k,p}$ is valid and the value of f_{k+1} on the central part, whose length is $\frac{1}{3^{k+1}}$, is $\frac{a+b}{2}$. As the measure of the remaining parts of $I_{k,p}$ is not 0, the linear function connecting each ending points is obviously valid. Thus, the new function f_{k+1} is still monotonically increasing continuous.
- 2. *Proof.* Let $g_n(x) = |f_n(x) f(x)|$, then $g_n(x)$ is positive on C_n and 0 on other places. Further, $g_n(x)$ holds the same value on each closed subset of C_n . Given any $\xi > 0$, it is left to find N s.t. $g_n(x) < \xi$ when n > N. As $g_n(x)$ reaches its extream $\frac{1}{6} \frac{1}{3^n}$ at the $\frac{1}{3}$ and $\frac{2}{3}$ of each compact subset of C_n , thus, given any ξ

$$\frac{1}{6}\frac{1}{3^n} < \xi \tag{2.1}$$

which is equivalent to

$$n > \frac{\ln(\frac{1}{6\xi})}{\ln(3)} \triangleq N \tag{2.2}$$

and the target N is given as above.

- 3. a) *Proof.* As $f_c(x)$ is continous over [0,1], it is left to prove that a continous function on a compact is uniformly continous, which can be proved by contradiction. (the proof haven't figured out yet...)
 - b) *Proof.* For any $x \in (0,1] \cap C$, $f_c(x)$ can be expressed as below

$$f_c(x) = \sup\{f_c(y)|y < x, y \in [0,1] \setminus C\}$$
 (2.3)

Thus $f_c(x)$ is monotonically increasing.

- c) *Proof.* As $f_c(x)$ is constant on each segment dropped by C, thus $f'_c(x)$ is almost 0 everywhere.
- 4. *Proof.* Assume $f_c(x)$ is absolutely continous, then its Riemann integral exists, which can be expressed as

$$\int_0^1 f_c'(x)dx = f_c(1) - f_c(0) \tag{2.4}$$

However, the *LHS* of (2.4) is 0 as $f'_c(x)$ is 0 almost everywhere, while the *RHS* of (2.4) is 1. Thus its riemann integral doesn't exist, and therefore the assumption fails.

3 TAYLOR'S THEOREM

1. *Proof.* For n = 0, apply the fundamental theorem of calculus to f(x) and its derivatives, f(x) can be written as below. It's clear that the theorem is valid in such case.

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt$$
 (3.1)

Suppose the theorem is still valid for n = k, then f(x) can be written as

$$f(x) = \sum_{i=0}^{k} \frac{f^{i}(a)}{i!} (x - a)^{i} + \frac{1}{k!} \int_{a}^{x} (x - t)^{k} f^{(k+1)}(t) dt$$
 (3.2)

For n = k + 1, as $f^{(k+1)}$ is absolutely continous, apply the fundamental theorem of calculus to $f^{(k+1)}$, the second part of RHS of f(x) can be written as below

$$RHS_{2} = \frac{1}{k!} \int_{a}^{x} (x-t)^{k} [f^{(k+1)}(a) + \int_{a}^{t} f^{(k+2)}(u) du] dt$$

$$= \frac{f^{(k+1)}(a)}{k!} \int_{a}^{x} (x-t)^{k} dt + \frac{1}{k!} \int_{a}^{x} (x-t)^{k} \int_{a}^{t} f^{(k+2)}(u) du dt$$

$$= \frac{f^{k+1}(a)}{(k+1)!} (x-a)^{k+1} + \frac{1}{k!} \int_{a}^{x} (x-t)^{k} \int_{a}^{t} f^{(k+2)}(u) du dt$$
(3.3)

Let

$$g(t) = \int_{a}^{t} f^{(k+2)}(u) du$$
 (3.4)

RHS2 can be further expressed as

$$RHS_{2} = \frac{f^{k+1}(a)}{(k+1)!}(x-a)^{k+1} + \frac{1}{k!} \int_{a}^{x} (x-t)^{k} g(t) dt$$

$$= \frac{f^{k+1}(a)}{(k+1)!} (x-a)^{k+1} - \frac{1}{(k+1)!} \int_{a}^{x} g(t) d(x-t)^{k+1}$$

$$= \frac{f^{k+1}(a)}{(k+1)!} (x-a)^{k+1} - \frac{1}{(k+1)!} [(x-t)^{k+1} g(t)]_{a}^{x} - \int_{a}^{x} (x-t)^{k+1} g'(t) dt]$$
(3.5)

As g(a) = 0 and $g'(t) = f^{(k+2)}(t)$, RHS_2 can be simplified as

$$RHS_2 = \frac{f^{k+1}(a)}{(k+1)!}(x-a)^{k+1} + \frac{1}{(k+1)!} \int_a^x (x-t)^{k+1} f^{(k+2)}(t) dt$$
 (3.6)

Substitude (3.6) into (3.2), f(x) can be expressed as below when n = k + 1

$$f(x) = \sum_{i=0}^{k+1} \frac{f^{i}(a)}{i!} (x-a)^{i} + \frac{1}{(k+1)!} \int_{a}^{x} (x-t)^{k+1} f^{(k+2)}(t) dt$$

$$= \sum_{i=0}^{n} \frac{f^{i}(a)}{i!} (x-a)^{i} + \frac{1}{n!} \int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt$$
(3.7)

Thus the theorem is still valid when n is extended to k + 1.

2. *Proof.* It is left to prove that there exists $c \in [a, x]$ s.t.

$$\frac{1}{n!} \int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$
(3.8)

which is equal to

$$(n+1)\int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt = f^{(n+1)}(c)(x-a)^{n+1}$$
(3.9)

Denote $m = min(f^{(n+1)}(x))$ and $M = max(f^{(n+1)}(x))$, apply the first medium value theorem, there exists $c \in (m, M)$ s.t.

$$\int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt = f^{(n+1)}(c) \int_{a}^{x} (x-t)^{n} dt$$
 (3.10)

Thus, (3.9) is verified.

4 CONVERGENCE OF RATIONALS TO IRRATIONALS

1. Proof. As e can be written as

$$e = \sum_{i=0}^{\infty} \frac{1}{i!} \tag{4.1}$$

Suppose it is rational, then it can be written as below, where p, q are prime to each other.

$$e = \frac{p}{a} \tag{4.2}$$

Thus

$$p(q-1)! = q! \sum_{i=0}^{q} \frac{1}{i!} + q! \sum_{i=q+1}^{\infty} \frac{1}{i!}$$
(4.3)

Since both LHS and the first part of RHS are integers, the second part of RHS(denoted as RHS_2) should be an integer as well.// RHS_2 can be further expanded as below

$$RHS_{2} = \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \dots$$

$$< \frac{1}{q+1} + \frac{1}{(q+1)^{2}} + \frac{1}{(q+1)^{3}} + \dots$$

$$= \frac{1}{q} < 1$$
(4.4)

Therefore RHS_2 is not an integer as $RHS_2 > 0$. Thus the assumption fails, and e is irrational.

2. *Proof.* It's clear that u_n is increasing, and the limit is e, so the maximum distance between 2 element can be denoted as

$$d_{max} < e - (1 + \frac{1}{n})^n \tag{4.5}$$

For any $\xi > 0$, let $d_{max} < \xi$, it is satisfied when n > N, where N is the index of the first element s.t. $u_N > e - \xi$.

Thus u_n is a cauchy sequence converging to e.

3. No, as the limit of a rational sequence may not converging to a rational.