Contrôle de cours 1 (1 heure)

Nom:	Prénom :	Classe:
J.B. : Le barème est sur 2	0. Il y a en tout quatre questions de cours.	
Polynômes		
Cours 1 : divisib	ilité et division euclidienne (3 po	oints)
	suppose de plus que E n'est pas le polynôme nul. a mathématique de $E F$ ainsi qu'un exemple avec	E = 2X - 1 et F de degré 2.
2. (a) Énoncer soigneu	sement le théorème de la division euclidienne de ${\cal F}$	Γ par E .
(b) Trouver le quoti	ent et le reste de la division euclidienne de $F = X^3$	$x^3 - 3X^2 + 5X - 7$ par $E = X - 1$.
Cours 2 : racines	(6 points)	
es questions sont indépen	dantes.	
1. Soit $P \in \mathbb{R}[X]$ de de	egré strictement supérieur à 3. Mettre les symboles	$s \Longrightarrow, \longleftarrow$ ou \Longleftrightarrow à la place des pointillés.
a) 1 racine de P ·	$(X-1) P$. b) $(X-1)^2 P$ $P(1) =$	$(0 c) P(0) = 0 \cdot \cdots \cdot (X^2 - X) P$
	$a \in \mathbb{R}$ telle que $P(a) = P'(a) = P''(a) = 0$ et $P^{(3)}(a)$ cet énoncé est-il équivalent en termes de divisibilirit.	

;	3. Donner un exemple d'un polynôme de $\mathbb{R}[X]$, de degré 6 qui admet -1 comme racine d'ordre de multiplicité exactement 3 et tel que $P(0) = P'(0) = 0$. On ne vous demande pas de justifier.	
4. Soit $P(X) = X^3(X+2)^2(X^2-X-6)(X^2+X+1)$.		
	(a) Donner le degré de P en expliquant brièvement comment vous l'avez obtenu.	
	(a) Domice to degree de l'en empiriqueme sommente vous l'avez essenai	
	(b) Écrire P comme produit de polynômes irréductibles dans $\mathbb{R}[X]$ (justifier brièvement). Donner ensuite toutes les racines réelles de P .	
2	Équations différentielles	
Co	ours 3 (7 points)	
de p On 1	l'équation différentielle (E_0) $a(t)y'(t)+b(t)y(t)=0$ où a et b sont deux fonctions définies et continues sur \mathbb{R} . On suppose dus que la fonction a ne s'annule pas sur \mathbb{R} . note S_0 l'ensemble de toutes les solutions de (E_0) . professeur demande à un élève d'expliciter précisément l'ensemble S_0 au tableau. L'élève note alors :	
	$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & ke^{-F(t)} \end{array}, k \in \mathbb{R} \right\}$. Cette égalité est notée (*) par la suite.	
	1. Le professeur demande à l'élève d'être plus précis et d'écrire F en fonction de a et de b . Qu'écrit l'élève? Vous donnerez aussi F' en fonction de a et de b .	
	2. Nous cherchons à présent à démontrer ce théorème rigoureusement.	
•		
	(a) Soit $y_0 \in S_0$ une solution de (E_0) . On introduit la fonction dérivable sur $\mathbb{R} : z : t \longmapsto y_0(t)e^{F(t)}$. Calculer la dérivée de z sur \mathbb{R} . En déduire que z est une fonction constante et conclure sur la forme de y_0 .	

(b) Quelle inclusion de l'égalité (*) venez-vous de démontrer?
(c)) Montrer l'autre inclusion de l'égalité (\star) .
3 D	éveloppements limités
	s 4 (4 points)
	les développements limités au voisinage de 0 à l'ordre 3 de
1. <i>f</i>	$f(x) = e^x$
•	
	$(x) = \cos(x)$
3. h	$(x) = \sin(x)$
4. i($f(x) = \ln(1+x)$
•	