Theorem 2.1.1 — Logical Equivalences (Epp page 35)

Given any statement variables p, q, and r, a tautology \mathbf{t} , and a contradiction \mathbf{c} , the following logical equivalences hold:

$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
$\sim (\sim p) \equiv p$	
$p \wedge p \equiv p$	$p \lor p \equiv p$
$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \vee q) \equiv \sim p \wedge \sim q$
$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
\sim t \equiv c	\sim c \equiv t
	$(p \land q) \land r \equiv p \land (q \land r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \land \mathbf{t} \equiv p$ $p \lor \sim p \equiv \mathbf{t}$ $\sim (\sim p) \equiv p$ $p \land p \equiv p$ $p \lor \mathbf{t} \equiv \mathbf{t}$ $\sim (p \land q) \equiv \sim p \lor \sim q$ $p \lor (p \land q) \equiv p$

Table 2.3.1 — Rules of Inference (Epp, page 60)

Modus ponens	$p \rightarrow q$		Disjunctive syllogism	$p \lor q$ $p \lor q$
	p			$ \sim q \sim p$
	$\therefore q$			$ \therefore p \qquad \therefore q$
Modus tollens	$p \rightarrow q$		Hypothetical syllogism	$p \rightarrow q$
	$\sim q$			$q \rightarrow r$
	$\therefore \sim p$			$\therefore p \to r$
Disjunctive addition	p	q	Dilemma, or	$p \lor q$
	$\therefore p \lor q$	$\therefore p \lor q$	Proof by division	$p \rightarrow r$
Conjunctive simplification	$p \wedge q$	$p \wedge q$	into cases	$q \rightarrow r$
	$\therefore p$	$\therefore q$		$ \therefore r$
Conjunctive addition	p		Contradiction rule	$\sim p \rightarrow \mathbf{c}$
	q			$ \therefore p$
	$\therefore p \land q$			
Closing conditional	p (a	ssumed)	Closing conditional	p (assumed)
world without	q (d	lerived)	world with	$ q \wedge \sim q \text{ (derived)}$
contradiction	$\therefore p \to q$		contradiction	.∴~p

Other Logical Equivalences and Rules of Inference

Definition of imp	olication:	$\mid p \to q \equiv \sim p \vee$	q	$ \mid \sim (p \to q) \equiv p \land \sim q $	
Contrapositive r	ule:	$p \to q \equiv \sim q -$	$\rightarrow \sim p$		
Definition of bice	onditional:	$p \leftrightarrow q \equiv (p \rightarrow$	$q) \wedge (q \to p)$		
Negation of quar	ntifiers:	$\sim (\forall x \ P(x)) \equiv$	$\exists x \sim P(x)$		
Universal	$\forall x \in D, P(x) \to Q(x)$		Universal	$\forall x \in D, P(x) \to Q(x)$	
modus ponens:	$P(a)$ where $a \in D$		modus tollens:	$\sim Q(a)$ where $a \in D$	
	$\therefore Q(a)$			$\therefore \sim P(a)$	
Universal	$\forall x \in D, P(x)$		Existential	$\exists x \in D, P(x)$	
instantiation:	$\therefore P(a) \text{ where } a \in D$		instantiation*:	$\therefore P(a) \text{ where } a \in D$	
Universal	$P(a)$ where $a \in D$		Existential	$P(a)$ where $a \in D$	
generalization*:	$\therefore \forall x \in D, P(x)$		generalization:	$\therefore \exists x \in D, P(x)$	

^{*}Remember the special circumstances required for the rules marked by the stars.