Algebra 1A, lista 11.

Konwersatorium 16.01.2017, ćwiczenia 17.01.2017.

- 0S. Materiał teoretyczny: Twierdzenie o pierwiastach wymiernych wielomianu. Lemat Gaussa. Kryterium Eisensteina. Chińskie twierdzenie o resztach. Ideał w pierścieniu R. Ideał główny. Ideał generowany przez skończenie wiele elementów. Pierścień euklidesowy jest dziedziną ideałów głównych. Pierścień ilorazowy (definicja).
- 1S. Udowodnić, że następujące liczby rzeczywiste są niewymierne, odwołując się do twierdzenia o pierwiastkach wymiernych wielomianu (wzorując się na przykładzie z wykładu). $\sqrt[3]{2}$, $\sqrt[5]{25}$, $\sqrt[5]{\frac{2}{3}}$.
- 2. Rozłożyć podane wielomiany na czynniki nierozkładalne w podanych pierścieniach.
 - (a) $X^5 1 \le \mathbb{Q}[X]$
 - (b) $X^5 + 1 \le \mathbb{Z}_2[X]$
 - (c) $X^4 + 1 \le \mathbb{Z}_5[X]$
 - (d) $2X^3 + X^2 + 4X + 2 \le \mathbb{Q}[X]$
 - (e) $2X^3 + X^2 + 4X + 2 \le \mathbb{C}[X]$
 - (f) $X^4 9X + 3 \le \mathbb{Q}[X]$
 - (g) $X^3 4X + 1 \le \mathbb{Q}[X]$
 - (h) $X^8 16 \le \mathbb{C}[X]$
 - (i) $X^8 16 \le \mathbb{R}[X]$
 - (j) $X^8 16 \le \mathbb{Q}[X]$
 - (k) $X^8 16 \le \mathbb{Z}_{17}[X]$
 - 3. Czy dane wielomiany są nierozkładalne w podanym pierścieniu?
 - (a) $X^3 + X^2 + X + 1 \le \mathbb{Q}[X]$
 - (b) $3X^8 4X^6 + 8X^5 10X + 6 \le \mathbb{Q}[X]$
 - (c) $X^4 + X^2 6 \le \mathbb{Q}[X]$
 - (d) $4X^3 + 3X^2 + X + 1 \le \mathbb{Z}_5[X]$
 - (e) $X^5 + 15 \le \mathbb{Q}[X]$
 - (f) $X^4 2X^3 + X^2 + 1 \le \mathbb{R}[X]$
 - 4K. Rozwiązać w Z następujące układy kongruencji:
 - (a) $x \equiv 5 \pmod{7}$ i $x \equiv 4 \pmod{6}$
 - (b) $x \equiv 41 \pmod{65}$ i $x \equiv 35 \pmod{72}$
 - 5. Wyznacznik | 676 | 117 | 522 | 375 | 65 | 290 | jest dodatni i mniejszy od 100. Obliczyć ten 825 | 143 | 639 |

wyznacznik bez pomocy kalkulatora. Wsk: obliczyc wartość wyznacznika modulo 10 i modulo 11, a następnie użyć chińskiego twierdzenia o resztach.

- 6K. W następujących pierścieniach wyznaczyć wszystkie ideały.
- (a) $\mathbb{Z}_2 \times \mathbb{Z}_2$
- (b) \mathbb{Z}_{18}
- (c) Q
- (d) \mathbb{Z}_7

- (e) $\mathbb{C}[X]$
- (f) $\mathbb{Z}[i]$.
- 7. Załóżmy, że I,J są ideałami w pierścieniu R. Udowodnić, że $I\cap J$ oraz $I+J=\{i+j:i\in I,j\in J\}$ też są ideałami w R. Podać przykład, gdzie $I\cup J$ nie jest ideałem w R.
- 8. Wskazać generatory następujących ideałów w danych pierścieniach euklidesowych.
 - (a) (2) \cap (3) w \mathbb{Z}
 - (b) $(12) \cap (18) \le \mathbb{Z}$
 - (c) $(X^2 1) \cap (X + 1) \le \mathbb{Q}[X]$.

Zauważyć ogólną prawidłowość.

- 9. Wskazać generatory następujących ideałów w danych pierścieniach euklidesowych.
 - (a) $(2) + (3) \le \mathbb{Z}$
 - (b) $(9) + (12) \le \mathbb{Z}$
 - (c) $(X^2 + X + 1) + (X^2 + 1) \le \mathbb{Z}_2[X]$.

Zauważyć ogólną prawidłowość.