

## AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice:

# Równania nieliniowe

Laboratorium 3

Przemysław Lechowicz

### 1. Funkcje testowe

Zaimplementowane zostały funkcje testowe wraz z ich przedziałami.

```
double f1_x0 = (3.0 / 2.0) * M_PI;
double f1_x1 = 2.0 * M_PI;

double f1(double x) {
    return cos(x) * cosh(x) - 1;
}

double f2_x0 = 0.0;
double f2_x1 = M_PI_2;

double f2(double x) {
    return (1 / x) - tan(x);
}

double f3_x0 = 1.0;
double f3_x1 = 3.0;

double f3(double x) {
    return pow(2, -x) + pow(M_E, x) + 2*cos(x)-6;
}
```

Miejsce zerowe funkcji  $f_1(x)$  w przedziale  $[\frac{3}{2}\pi,2\pi]$  wynosi około 4.73004074486270. Miejsce zerowe funkcji  $f_2(x)$  w przedziale  $[0,\frac{\pi}{2}]$  wynosi około 0.860333589019380 Miejsce zerowe funkcji  $f_3(x)$  w przedziale [1,3] wynosi około 1.82938360193385

#### 2. Metoda bisekcji

Zaimplementowana została metoda bisekcji, przyjmująca: krańce przedziału, funkcję, której miejsce zerowe obliczamy oraz wartość dopuszczalnego błędu bezwzględnego, a zwracająca strukturę zawierającą wynik i ilość iteracji.

```
solution bisection(double p, double q, double (fun)(double), double precision) {
    if (fun(p) * fun(q) >= 0) {
        throw std::invalid_argument("Wrong interval");
    int operations=0;
    double m = p;
    while ((q - p) >= precision) {
        m = (p + q) / 2;
        if (fun(m) == 0.0) {
            break;
        }
        else if (fun(m) * fun(p) < 0) {
            q = m;
        }
        else {
            p = m;
        operations++;
    }
    solution s;
    s.result = m;
    s.operations = operations;
    return s;
}
```

Dla każdej z funkcji i dla dokładności  $10^{-7}$  funkcja obliczyła następujące miejsca zerowe:

```
4.7300410 dla funkcji f_1 0.8603333 dla funkcji f_2 1.8293829 dla funkcji f_3
```

Są to wyniki poprawne, dlatego przyjmuję, że zaimplementowana funkcja działa poprawnie. Następnie dla każdej z funkcji została obliczona wymagana liczba operacji do uzyskania dokładności na poziomie  $10^{-7}$ ,  $10^{-15}$  oraz  $10^{-33}$ . wyniki zostały przedstawione w tabeli poniżej:

|            | Funkcja 1 | Funkcja 2 | Funkcja 3 |
|------------|-----------|-----------|-----------|
| $10^{-7}$  | 21        | 21        | 21        |
| $10^{-15}$ | 48        | 48        | 48        |

Dla dokładności  $10^{-33}$  nie udało się obliczyć wymaganej liczby iteracji, gdyż dokładność przekracza dokładność typu double oraz long double.

Wykres funkcji  $f_1$  wygląda następująco:



W celu obliczenia k pierwszych pierwiastków tej funkcji należy zdefiniować odpowiednie przedziały [a,b], w których występują pierwiastki (tj. takie a i b, że f(a)\*f(b)<0), i uruchomić w tych przedziałach algorytm bisekcji.

W tym celu można ustalić dowolny  $\epsilon>0$ , oraz krańce przedziału, tj. a=0 i  $b=a+\epsilon$ . Dopóki warunek f(a)\*f(b)<0 nie jest spełniony, należy do prawego krańca przedziału dodawać  $\epsilon$ . Jeśli jest spełniony, należy uruchomić algorytm bisekcji, który wyznaczy dokładny pierwiastek. Następnie przypisujemy a=b oraz  $b=b+\epsilon$  i powtarzamy powyższe kroki aż do uzyskania k pierwiastków.

Należy jednak dobrać odpowiednie  $\epsilon$ , ponieważ gdy  $\epsilon$  będzie za duży mogą wystąpić błędy w wyznaczaniu pierwiastków np. gdy w przedziale  $[a,a+\epsilon]$  będzie występował pierwiastek, ale  $f(a)*f(a+\epsilon)>0$ .

#### 3. Metoda Newtona

Zaimplementowana została metoda Newtona, przyjmująca: wartość, od której metoda zaczyna iterować, funkcję, której miejsce zerowe obliczamy, wartość dopuszczalnej różnicy między dwoma kolejnymi iteracjami oraz maksymalna liczba iteracji.

```
solution newtonMethod(double x, double fun(double), double epsilon, int max)
{
    double h = fun(x) / derivFunc(fun, x);
    double oldX = x;
    int operations = 0;
    do
    {
        oldX = x;
        x = x - fun(x) / derivFunc(fun, x);
        operations++;
    } while (abs(x - oldX) >= epsilon && operations <max);
    solution s;
    s.result = x;
    s.operations = operations;
    return s;
}</pre>
```

Dla każdej z funkcji, dla podanego lewego krańca przydziału i dla dokładności  $10^{-7}$  funkcja obliczyła następujące miejsca zerowe:

```
4.7300407 \; \mathrm{dla} \; f_1 -\mathrm{nan(ind)} \; \mathrm{dla} \; f_2 1.8293836 \; \mathrm{dla} \; f_3 Natomiast dla prawego krańca: 4.7300407 \; \mathrm{dla} \; f_1 1.5707963 \; \mathrm{dla} \; f_2
```

Zauważamy, że funkcja podała złe odpowiedzi w obu przypadkach dla funkcji  $f_2$ . Dzieje się tak, ponieważ pierwszym krokiem algorytmu jest wyliczenie wartości funkcji w punkcie  $x_0$  - w obu przypadku jest to niemożliwe, ponieważ w pierwszym przypadku dzielimy przez 0, w drugim obliczamy  $tg(\frac{\pi}{2})$ .

 $1.8293836 \text{ dla } f_3$ 

Zastosuję jednak drobną zmianę, dodając do lewego krańca przedziału wartość  $10^{-6}$ , a odejmę tę wartość od prawego krańca.

Po tej modyfikacji metoda Newtona prawidłowo oblicza miejsce zerowe funkcji  $f_2$ .

Następnie porównuję ilość iteracji, które musi wykonać metoda Newtona, z ilością iteracji metody bisekcji.

Pomiary dla dokładności  $10^{-7}$ :

|                | Funkcja 1 | Funkcja 2 | Funkcja 3 |
|----------------|-----------|-----------|-----------|
| Bisekcja       | 21        | 21        | 21        |
| Metoda Newtona | 6         | 20        | 6         |

Pomiary dla dokładności  $10^{-15}$ :

|                | Funkcja 1 | Funkcja 2 | Funkcja 3 |
|----------------|-----------|-----------|-----------|
| Bisekcja       | 48        | 48        | 48        |
| Metoda Newtona | 8         | 21        | 7         |

Możemy zauważyć, że w każdym przypadku metoda Newtona potrzebowała mniej iteracji aby obliczyć miejsce zerowe danej funkcji.

Metoda Newtona ma ograniczenia związane z pochodną danej funkcji. Metoda bisekcji jest wolniejsza, ale nie ma żadnych ograniczeń.

W naszym przypadku metoda Newtona działała błędnie, ponieważ krańce przedziału  $f_2$  nie należały do dziedziny.

#### 4. Metoda siecznych

Zaimplementowana została metoda siecznych, przyjmująca: krańce przedziału, funkcję, której miejsce zerowe obliczamy, wartość dopuszczalnej różnicy między dwoma kolejnymi iteracjami oraz maksymalna liczba iteracji.

```
solution secantMethod(double x1, double x2, double fun(double), double
precision, int maxiterations) {
    if (fun(x1) * fun(x2) > 0.0f)
   {
        throw std::invalid argument("Wrong interval");
   }
   double x = x1;
    double xn1 = x1;
    double xn = x2;
    int iterations = 0;
    double oldX;
    do {
        oldX = x;
        x = xn - ((fun(xn) * (xn - xn1)) / (fun(xn) - fun(xn1)));
        xn1 = xn;
        xn = x;
        iterations++;
    } while (abs(x - oldX) > precision && iterations < maxiterations);</pre>
    solution s;
    s.iterations = iterations;
    s.result = x;
    return s;
}
```

Dla każdej z funkcji, dla podanych krańców przedziałów i dla dokładności  $10^{-7}$  funkcja obliczyła następujące miejsca zerowe:

```
4.7300407 dla f1
-nan(ind) dla f2
1.8293836 dla f3
```

Jak możemy zauważyć, dla funkcji  $f_2$  metoda podobnie jak przy metodzie Newtona - podaje wynik - nan. Przyczyna jest identyczna jak w metodzie Newtona.

Ponownie zastosuję zmianę, dodając do lewego krańca przedziału wartość  $10^{-6}$ ,, a odejmę tę wartość od prawego krańca.

Po tej modyfikacji metoda siecznych prawidłowo oblicza miejsce zerowe funkcji  $f_2$ 

Następnie porównuję ilość iteracji, które musi wykonać metoda siecznych, z ilością iteracji bisekcji i metody Newtona.

Pomiary dla dokładności  $10^{-7}$ :

|                  | Funkcja 1 | Funkcja 2 | Funkcja 3 |
|------------------|-----------|-----------|-----------|
| Bisekcja         | 21        | 21        | 21        |
| Metoda Newtona   | 6         | 20        | 6         |
| Metoda siecznych | 5         | 6         | 9         |

Pomiary dla dokładności  $10^{-15}$ :

|                  | Funkcja 1 | Funkcja 2 | Funkcja 3 |
|------------------|-----------|-----------|-----------|
| Bisekcja         | 48        | 48        | 48        |
| Metoda Newtona   | 8         | 21        | 7         |
| Metoda siecznych | 7         | 7         | 11        |

Możemy zauważyć, że prawie dla każdego przypadku metoda siecznych potrzebowała najmniej iteracji. Jedynie dla  $f_3$  lepsza okazywała się metoda Newtona, może to jednak mieć związek z faktem, że dla  $f_3$  przedział był największy.

Różnica między metodą Newtona, a metodą siecznych polega na tym, że metoda Newtona wykorzystuje pochodną do obliczenia linii stycznej, podczas gdy metoda siecznych wykorzystuje przybliżenie liczbowe pochodnej w oparciu o dwa punkty.

W naszym przypadku metoda siecznych działała błędnie, ponieważ krańce przedziału  $f_2$  nie należały do dziedziny.