Final Report

Paul Poulsen

CSCE 340: Numerical Analysis I

Dr. Ziguo Zhong

December 11, 2013

#### Introduction

This report summarizes my application of the computational methods taught in this course toward solving the four projects. The tables of computed values can be found at the end of the report.

I chose to implement the various numerical methods using the C Programming Language. Each source file is a standalone program that implements the given numerical method according to the project specification. A makefile is included with each project, and can be run using:

\$ make all

### \$ make clean

The output of each executable is a series of comma-separated values that can be redirected to a csv file (with the exception of the Monte Carlo method, which just outputs a single value). From there, tables were imported into this report and styled.

#### Project 1

First, I rearranged Kepler's equation to:

$$f(x,y) = y - 0.9 \times \sin y - x = 0$$

This allows us to use the standard root-finding algorithms: bisection method, Newton's method, and secant method. Since x does not change value during an application of the bisection method, we can view Kepler's equation as:

$$f(y) = y - 0.9 \times \sin y - c = 0$$

where *c* is some constant that we will set for each value of x. For Newton's method, then, we use:

$$f'(y) = 1 - 0.9 \times \cos y$$

For each method, I applied the root-finding algorithm 30 times for equally spaced steps between x = 0 and  $x = \pi$ . The tolerance value (TOL) used for each method was  $1 \times 10^{-9}$  in an effort to provide accuracy around 8 decimal digits. For the bisection method, this tolerance will guarantee accuracy for 8 digits. However, for Newton's and the secant method, this only means the algorithm will cut off when the difference between one estimate and the next is below this tolerance.

For the bisection method, the starting bounds were a=1-TOL and  $b=\pi+TOL$ . I chose these values because all values of y would fall between 0 and  $\pi$ . For Newton's method, I chose a starting value  $p_0 = \pi/2$  for all x, as this was in the middle of the two extremes. And for the secant method, I would change the starting values to  $p_0 = x$ ;  $p_1 = x - TOL$ . These starting values helped avoid error at the upper and lower bounds while keeping execution time down. All methods ran until the tolerance value was reached (i.e. there was no cutoff at a certain step count).

The results for each method can be found at the end of the report.

### **Project 2**

The equation for a unit circle is:

 $v^2 + x^2 = 1$ 

If we rearrange this into a function y = f(x) we get a semicircle:



Then, if we plot y = x on top of the circle, we see that it cuts the first quadrant into two eighths of circles.



Since y = x intersects the circle in the first quadrant at  $\frac{\pi}{4}$  radians, we know  $x = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$  at the intersection. Thus:

Area of Circle = 
$$\pi = 8 \times Area$$
 of  $\frac{1}{8}$  Circle =  $8 \int_0^{1/\sqrt{2}} \left( \sqrt{1 - x^2} - x \right) dx$ 

Using this equation, I applied the Romberg algorithm as shown in class for a  $10 \times 10$  grid (as can be seen in the results. The first column represents the value of the integral approximated with

trapezoids. The first value is then a single trapezoid, while the tenth value is 2<sup>9</sup> trapezoids. Then, moving to the other columns, we smooth the trapezoids with Richardson's extrapolations.

### **Project 3**

To create the Initial Value Problem (IVP) for this project, I first utilized the first fundamental theorem of calculus, which (roughly) says:

$$If$$

$$F(x) = \int_{a}^{x} f(t)dt$$

$$Then$$

$$F'(x) = f(x)$$

Applied to this problem, I was able to convert the integral equation to:

$$f'(\varphi) = \sqrt{1 - \frac{1}{4}\sin^2\varphi}$$

And, from the original equation, we easily obtain our initial value:

$$f(0) = 0$$

For the Runge-Kutta method, this is especially easy since the resulting equation is only a function of one variable, as opposed to f(x,t). Thus, we only have to perform the adjustments to t (or, in this case,  $\varphi$ ), and  $K_2$  ends up being the same as  $K_3$ . The resulting table of values can be found at the end of the report.

### **Project 4**

If the error is  $\frac{1}{\sqrt{m}}$  where m is the number of sample points, and we want accuracy up to 3 decimal places, then our error can be no greater that 0.0005. Thus:

$$0.0005 = \frac{1}{\sqrt{m}} \rightarrow m = 4,000,000$$

### Paul Poulsen Final Report 6

For each point, I generate random variables x and y such that  $0 \le x \le 1$  and  $0 \le y \le 1$ . Then, if  $x^2 + y^2 < 1$ , the point was considered inside the circle and I incremented n. After 4,000,000 points,  $\pi$  was estimated as  $\frac{n}{4,000,000} \times 4$ . The resulting values are provided at the end of the report.

## Results

# **Project 1**

### Bisection Method

| n  | х          | У          |  |  |  |  |
|----|------------|------------|--|--|--|--|
| 0  | 0.00000000 | 0.00000000 |  |  |  |  |
| 1  | 0.10833078 | 0.66047019 |  |  |  |  |
| 2  | 0.21666156 | 0.94734080 |  |  |  |  |
| 3  | 0.32499234 | 1.14441313 |  |  |  |  |
| 4  | 0.43332312 | 1.30069184 |  |  |  |  |
| 5  | 0.54165391 | 1.43314022 |  |  |  |  |
| 6  | 0.64998469 | 1.54978605 |  |  |  |  |
| 7  | 0.75831547 | 1.65511781 |  |  |  |  |
| 8  | 0.86664625 | 1.75192341 |  |  |  |  |
| 9  | 0.97497703 | 1.84206547 |  |  |  |  |
| 10 | 1.08330781 | 1.92685728 |  |  |  |  |
| 11 | 1.19163859 | 2.00726408 |  |  |  |  |
| 12 | 1.29996937 | 2.08401931 |  |  |  |  |
| 13 | 1.40830016 | 2.15769572 |  |  |  |  |
| 14 | 1.51663094 | 2.22875105 |  |  |  |  |
| 15 | 1.62496172 | 2.29755847 |  |  |  |  |
| 16 | 1.73329250 | 2.36442758 |  |  |  |  |
| 17 | 1.84162328 | 2.42961936 |  |  |  |  |
| 18 | 1.94995406 | 2.49335692 |  |  |  |  |
| 19 | 2.05828484 | 2.55583365 |  |  |  |  |
| 20 | 2.16661562 | 2.61721925 |  |  |  |  |
| 21 | 2.27494640 | 2.67766448 |  |  |  |  |
| 22 | 2.38327719 | 2.73730485 |  |  |  |  |
| 23 | 2.49160797 | 2.79626363 |  |  |  |  |
| 24 | 2.59993875 | 2.85465421 |  |  |  |  |
| 25 | 2.70826953 | 2.91258213 |  |  |  |  |
| 26 | 2.81660031 | 2.97014679 |  |  |  |  |
| 27 | 2.92493109 | 3.02744290 |  |  |  |  |
| 28 | 3.03326187 | 3.08456181 |  |  |  |  |
| 29 | 3.14159265 | 3.14159265 |  |  |  |  |

## Newton's Method

| n  | Х          | у          |  |  |  |
|----|------------|------------|--|--|--|
| 0  | 0.00000000 | 0.00000000 |  |  |  |
| 1  | 0.10833078 | 1.03263704 |  |  |  |
| 2  | 0.21666156 | 1.21956369 |  |  |  |
| 3  | 0.32499234 | 1.19760481 |  |  |  |
| 4  | 0.43332312 | 1.34233821 |  |  |  |
| 5  | 0.54165391 | 1.46035784 |  |  |  |
| 6  | 0.64998469 | 1.56586045 |  |  |  |
| 7  | 0.75831547 | 1.66390312 |  |  |  |
| 8  | 0.86664625 | 1.75640548 |  |  |  |
| 9  | 0.97497703 | 1.92327468 |  |  |  |
| 10 | 1.08330781 | 1.98310242 |  |  |  |
| 11 | 1.19163859 | 2.04517841 |  |  |  |
| 12 | 1.29996937 | 2.10889436 |  |  |  |
| 13 | 1.40830016 | 2.17356622 |  |  |  |
| 14 | 1.51663094 | 2.46134208 |  |  |  |
| 15 | 1.62496172 | 2.48188804 |  |  |  |
| 16 | 1.73329250 | 2.50855518 |  |  |  |
| 17 | 1.84162328 | 2.54053698 |  |  |  |
| 18 | 1.94995406 | 2.57711165 |  |  |  |
| 19 | 2.05828484 | 2.61763977 |  |  |  |
| 20 | 2.16661562 | 2.66155666 |  |  |  |
| 21 | 2.27494640 | 2.70836306 |  |  |  |
| 22 | 2.38327719 | 2.75761554 |  |  |  |
| 23 | 2.49160797 | 2.80891758 |  |  |  |
| 24 | 2.59993875 | 2.86191139 |  |  |  |
| 25 | 2.70826953 | 2.91627067 |  |  |  |
| 26 | 2.81660031 | 2.97169409 |  |  |  |
| 27 | 2.92493109 | 3.02789952 |  |  |  |
| 28 | 3.03326187 | 3.08461875 |  |  |  |
| 29 | 3.14159265 | 3.14159265 |  |  |  |

## Secant Method

| n  | х          | У          |  |  |  |
|----|------------|------------|--|--|--|
| 0  | 0.00000000 | 0.00000000 |  |  |  |
| 1  | 0.10833078 | 1.03263712 |  |  |  |
| 2  | 0.21666156 | 0.75296523 |  |  |  |
| 3  | 0.32499234 | 0.91093687 |  |  |  |
| 4  | 0.43332312 | 1.08647581 |  |  |  |
| 5  | 0.54165391 | 1.26028020 |  |  |  |
| 6  | 0.64998469 | 1.42136092 |  |  |  |
| 7  | 0.75831547 | 1.56544503 |  |  |  |
| 8  | 0.86664625 | 1.69237772 |  |  |  |
| 9  | 0.97497703 | 1.63560714 |  |  |  |
| 10 | 1.08330781 | 1.76588886 |  |  |  |
| 11 | 1.19163859 | 1.88462249 |  |  |  |
| 12 | 1.29996937 | 1.99263318 |  |  |  |
| 13 | 1.40830016 | 2.09109283 |  |  |  |
| 14 | 1.51663094 | 2.46134208 |  |  |  |
| 15 | 1.62496172 | 2.48188804 |  |  |  |
| 16 | 1.73329250 | 2.50855514 |  |  |  |
| 17 | 1.84162328 | 2.54053692 |  |  |  |
| 18 | 1.94995406 | 2.57711173 |  |  |  |
| 19 | 2.05828484 | 2.61763975 |  |  |  |
| 20 | 2.16661562 | 2.66155665 |  |  |  |
| 21 | 2.27494640 | 2.70836306 |  |  |  |
| 22 | 2.38327719 | 2.75761554 |  |  |  |
| 23 | 2.49160797 | 2.80891759 |  |  |  |
| 24 | 2.59993875 | 2.86191145 |  |  |  |
| 25 | 2.70826953 | 2.91627070 |  |  |  |
| 26 | 2.81660031 | 2.97169408 |  |  |  |
| 27 | 2.92493109 | 3.02789951 |  |  |  |
| 28 | 3.03326187 | 3.08461875 |  |  |  |
| 29 | 3.14159265 | 3.14159265 |  |  |  |

# **Project 2**

| 1 Toject 2  |             |             |             |             |             |             |             |             |             |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 2.828427124 |             |             |             |             |             |             |             |             |             |
| 746         |             |             |             |             |             |             |             |             |             |
| 3.059964873 | 3.137144123 |             |             |             |             |             |             |             |             |
| 438         | 002         |             |             |             |             |             |             |             |             |
| 3.120881408 | 3.141186919 | 3.141456439 |             |             |             |             |             |             |             |
| 255         | 860         | 651         |             |             |             |             |             |             |             |
| 3.136392314 | 3.141562616 | 3.141587663 | 3.141589746 |             |             |             |             |             |             |
| 542         | 637         | 089         | 001         |             |             |             |             |             |             |
| 3.140291076 | 3.141590663 | 3.141592533 | 3.141592611 | 3.141592622 |             |             |             |             |             |
| 550         | 886         | 702         | 014         | 249         |             |             |             |             |             |
| 3.141267164 | 3.141592527 | 3.141592651 | 3.141592653 | 3.141592653 | 3.141592653 |             |             |             |             |
| 509         | 162         | 380         | 248         | 414         | 444         |             |             |             |             |
| 3.141511275 | 3.141592645 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 |             |             |             |
| 368         | 654         | 553         | 588         | 589         | 589         | 590         |             |             |             |
| 3.141572308 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 |             |             |
| 662         | 093         | 589         | 590         | 590         | 590         | 590         | 590         |             |             |
| 3.141587567 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 |             |
| 335         | 559         | 590         | 590         | 590         | 590         | 590         | 590         | 590         |             |
| 3.141591382 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 | 3.141592653 |
| 025         | 588         | 590         | 590         | 590         | 590         | 590         | 590         | 590         | 590         |

**Project 3** 

| $\varphi$ | $f(\varphi)$ |
|-----------|--------------|-----------|--------------|-----------|--------------|-----------|--------------|-----------|--------------|
| 0         | 0            | 20        | 0.347059     | 40        | 0.684115     | 60        | 1.005816     | 80        | 1.313789     |
| 1         | 0.01745174   | 21        | 0.364217     | 41        | 0.700582     | 61        | 1.021495     | 81        | 1.328959     |
| 2         | 0.03490083   | 22        | 0.381348     | 42        | 0.71701      | 62        | 1.037138     | 82        | 1.344117     |
| 3         | 0.05234593   | 23        | 0.39845      | 43        | 0.733397     | 63        | 1.052746     | 83        | 1.359264     |
| 4         | 0.06978574   | 24        | 0.415524     | 44        | 0.749743     | 64        | 1.068321     | 84        | 1.374402     |
| 5         | 0.08721892   | 25        | 0.432569     | 45        | 0.766049     | 65        | 1.083863     | 85        | 1.389533     |
| 6         | 0.10464418   | 26        | 0.449582     | 46        | 0.782314     | 66        | 1.099374     | 86        | 1.404657     |
| 7         | 0.12206021   | 27        | 0.466564     | 47        | 0.798538     | 67        | 1.114853     | 87        | 1.419777     |
| 8         | 0.13946572   | 28        | 0.483513     | 48        | 0.814721     | 68        | 1.130303     | 88        | 1.434894     |
| 9         | 0.15685943   | 29        | 0.500429     | 49        | 0.830864     | 69        | 1.145724     | 89        | 1.450009     |
| 10        | 0.17424006   | 30        | 0.517311     | 50        | 0.846966     | 70        | 1.161117     | 90        | 1.465124     |
| 11        | 0.19160637   | 31        | 0.534158     | 51        | 0.863027     | 71        | 1.176484     |           |              |
| 12        | 0.20895711   | 32        | 0.55097      | 52        | 0.879049     | 72        | 1.191825     |           |              |
| 13        | 0.22629105   | 33        | 0.567745     | 53        | 0.89503      | 73        | 1.207142     |           |              |
| 14        | 0.24360698   | 34        | 0.584484     | 54        | 0.910972     | 74        | 1.222436     |           |              |
| 15        | 0.26090372   | 35        | 0.601185     | 55        | 0.926875     | 75        | 1.237708     |           |              |
| 16        | 0.27818008   | 36        | 0.617849     | 56        | 0.942739     | 76        | 1.252959     |           |              |
| 17        | 0.29543493   | 37        | 0.634474     | 57        | 0.958564     | 77        | 1.268192     |           |              |
| 18        | 0.31266712   | 38        | 0.65106      | 58        | 0.974352     | 78        | 1.283407     |           |              |
| 19        | 0.32987555   | 39        | 0.667607     | 59        | 0.990102     | 79        | 1.298605     |           |              |

**Project 4** 

| n  | $\widehat{\pi}$ |
|----|-----------------|
| 1  | 3.141770        |
| 2  | 3.143038        |
| 3  | 3.142262        |
| 4  | 3.142662        |
| 5  | 3.142370        |
| 6  | 3.140843        |
| 7  | 3.141611        |
| 8  | 3.140476        |
| 9  | 3.141270        |
| 10 | 3.143634        |