Modelling Action In Context

Action Recognition: Still Images vs Video

What defines "context" of actions?

- Person's pose
- What are surrounding objects
- What interaction with objects
- What other people

How to quantify context as action "cues"?

- Difficult to locate no fixed position
- Variable differs among instances of the same action class

Action Recognition as Multi-Instance Learning

- Learning to automatically select the most informative/relevant action cue for each individual instance of an action class
- Consider an action is described by
 - the presence of a person a primary region(s)
 - 2. the context a surrounding region(s) in proximity of the primary region, as most informative visual cues define the action of interest

"Multi-Instance Learning"

Why Multi-Instance Learning (MIL)

Bag -> An image

Instance -> A 'region' in the image

Label -> {'beach' 'not beach'}

http://www.adrhi.com/Waimanalo-Beach.jpg

Weak Labelling

MIL bag labelling:

A bag is positive if at least one of its instances is predicted to be positive.

A bag is negative if all its instances are predicted to be negative.

What is Multiple Instance Learning?

Instead of each sample (instance) individually labelled, the training data is set of labelled "bags" and each bag is given a label:

- A bag contains many instances (with unknown labels), e.g. a bag is an image.
- An instance in a bag is a feature vector, e.g. each instance is a part/region.
- Binary case: A bag is labeled as "positive" if AT LEAST ONE of its instances is positive; labelled "negative" if ALL its instances are negative.

Learning from Bags – Weakly Supervised Learning

Supervised learning

 Learn a classifier given a set of training samples X and corresponding label Y for every sample

$$X = \{x_1, ..., x_n\}, Y = \{y_1, ..., y_n\}$$

MIL: Weakly supervised learning

- Learn a classifier given multiple bags of samples and labels for the bags.
- Why "weakly" only a label for a bag without labelling every sample in the bag
- Learning with uncertain labels (noisy teacher) or weak labels (lazy teacher)

$$X_i = \{x_{i1},...,x_{in_i}\}, Y_i = 1 \text{ or } 0, \{y_{i1} = ?,...,y_{in_i} = ?\}$$

Objectives of Multiple Instance Learning

Given:

- A set of I bags
 - Labeled + or -

$$\mathbf{B} = \{B_1^+, ...B_i^+, B_{i+1}^-, ..., B_I^-\}$$

 \circ The i^{th} bag is a set of instance feature vectors J_i

in some feature space
$$B_i = \{x_{i1},...,x_{iJ_i}\}$$

Assignment of labels

$$B_i^+ \Rightarrow \exists j : label(x_{ij}) = 1$$

 $B_i^- \Rightarrow \forall j, label(x_{ii}) = 0$

Learning objective:

- Select/correlate instances (feature vectors) common to the positive bags that is not observed in the negative bags
- Model application:
 - Infer a concept (bag label) to labelling individual instances
 - Predict the class/concept of an unlabelled bag

R-CNN: Regions with CNN features

The main problems of R-CNN is slow, as it performs a ConvNet forward pass for each object proposal without sharing computation / sharing features – redundant in computing features many times over.

Fast R-CNN [Girshick et al, 2015]

- Sharing features for all region proposals
- The most time consuming remains to be selective search

R*CNN: Context Model for Action Recognition

[Gkioxari et al, 2015]

- Given image I, select the primary region to be the bounding box containing the person (red box) while region proposals define the set of candidate secondary regions (green boxes).
- For each action α , the most informative secondary region is selected (max operation) and its score is added to the primary. The softmax operation transforms scores into probabilities and forms the final prediction.

R*CNN: Context Model for Action Recognition

[Gkioxari et al, 2015]

candidates for the secondary region.

R*CNN: Context Model for Action Recognition

[Gkioxari et al, 2015]

AP (%)	Jumping	Phoning	Playing Instrument	Reading	Riding Bike	Riding Horse	Running	Taking Photo	Using Computer	Walking	mAP
RCNN	88.7	72.6	92.6	74.0	96.1	96.9	86.1	83.3	87.0	71.5	84.9
Random-RCNN	89.1	72.7	92.9	74.4	96.1	97.2	85.0	84.2	87.5	70.4	85.0
Scene-RCNN	88.9	72.5	93.4	75.0	95.6	98.1	88.6	83.2	90.4	71.5	85.7
R*CNN (0.0, 0.5)	89.1	80.0	95.6	81.0	97.3	98.7	85.5	85.6	93.4	71.5	87.8
R*CNN (0.2, 0.5)	88.1	75.4	94.2	80.1	95.9	97.9	85.6	84.5	92.3	71.6	86.6
R*CNN (0.0, 1.0)	89.2	77.2	94.9	83.7	96.7	98.6	87.0	84.8	93.6	70.1	87.6
R*CNN (0.2, 0.75)	88.9	79.9	95.1	82.2	96.1	97.8	87.9	85.3	94.0	71.5	87.9
R*CNN (0.2, 0.75, 2)	87.7	80.1	94.8	81.1	95.5	97.2	87.0	84.7	94.6	70.1	87.3

AP (average precision) on the PASCAL VOC Action 2012 val set. RCNN is the baseline approach, with the ground-truth region being the primary region. Random-RCNN is a network trained with primary the ground-truth region and secondary a random region. Scene-RCNN is a network trained with primary the ground-truth region and secondary the whole image. R^*CNN (l, u) is our system where l, u define the lower and upper bounds of the allowed overlap of the secondary region with the ground truth. R^*CNN (l, u, n_S) is a variant in which n_S secondary regions are used, instead of one.

Faster R-CNN [Ren et al, 2015]

Region Proposal Network:

- Takes an image as input and outputs rectangular object proposals.
- By sharing conv layers with the classifier network, the Region Proposal Network is faster than selective search method (200ms per image)

