

SURVIVABILITY OF NON-ESTABLISHED TREES – SUMMER STUDY

August 30,2024

*This is an excerpt from a larger study completed on tree survivability. The following analysis was contributed by Gabrielle Abernethy.

Tree Survivability – Rooting Area

- Tree Condition is compared against rooting area in two scenarios: vaulted and non-vaulted trees.
- Non-vaulted trees include all other planting location types: planting beds, back of walks, boulevards, medians, parks
- Vaulted tree subsurface types include tree pits, tree trenches and soil cells.
- Default rooting areas defined for the three types of vaults.

Rooting Area – COC guidelines

New 2024 development guidelines for minimum rooting area in 1m depth: 10m², 20m² and 30m² for small, medium and large species, respectively.

Most trees planted in ~1m depth.

Table 4-2: Suggested Tree Soil Volume Calculation

Soil Volume Calculation for All Trees			
Soil Volume	Canopy Volume Cubic	Soil Volume	
	Meters	Cubic Meters	
Small	< 500	10	
Medium	500 - 700	20	
Large	> 700	30	
Calculation			
Canopy Volume = (π(Canopy Radius)^2) * (Height - 2 meters)			

3

Rooting Area – Soil Cells

- Eau Claire redevelopment plan used as analogy to get relative planting dimensions expected from a soil cell install 1.25m deep.
- This particular example is designed for 3 plum trees (MATURE_SIZE = SMALL) in a 15m X 3m area soil cell. We assume each tree has access to 10mx3m or 2/3 of the rooting area.
- A default of 30m² is accessible. This aligns with the required soil volumes for large species trees.

Rooting Area – Soil Cells

TREES IN SOIL CELLS UNDER CIP CONCRETE

SCALE: 1:25

Calgary Rooting Area – Soil Cells

Rooting Area – Tree Trench

SQUARE TREE GRATE AND TREE TRENCH LAYOUT

PLAN • 1:30

16 Ave development plan used as analogy. Depth is 1 m. Rooting area is assumed to have overlap. $1.25mx10m = 12.5m^2$. Adequate for small sized trees. Moderately adequate for medium trees.

Rooting Area – Tree Trench

16 Ave development plan used as analogy. Depth is 1 m. Rooting area is assumed to have overlap. 1.25mX10m = 12.5m². Adequate for small sized trees. Moderately adequate for medium trees.

Calgary

Rooting Area – Vaults

TGF 24×24 38mm Angle Frame View Drawing

TGF 36×36 25mm Straight Angle Frame

View Drawing

TGF 36×36 25mm Angle Frame **View Drawing**

TGF 48 25mm Round Angle

Trojan Industries

used for vaults.

area of 1.56m²

product specifications

Maximum dimension of

1.25x1.25m and 1m

assumed for rooting

View Drawing

TGF 48×36 38mm Angle Frame View Drawing

Frame

View Drawing

TGF 48×48 25mm Straight Angle Frame

View Drawing

TGF 48×48 38mm Angle Frame

View Drawing

TGF 48×48 44mm Angle

View Drawing

TWF 304 48×36 2 Piece **View Drawing**

View Drawing

TWF 406 48×36 2 Piece

TWF 406 48×36

TWF 406 48×48 2 Piece

9

Rooting Area – Vaults

TREE WELL FRAME

TWF-406 4848

Trojan Industries product specifications used for vaults. Maximum dimension of 1.24x1.24m and 1m assumed for rooting area of 1.54m².

TROJAN INDUSTRIES INC.

CALGARY • EDMONTON, ALBERTA

Vault Default Rooting Area **Summary**

Туре	Default Rooting Area Assigned	
Soil Cell	30 m ²	
Tree Trench	12.5 m ²	
Vault	1.54 m ²	

Optimal Rooting Area: Non-Vaulted Trees

DBH of mature species identified as 75th percentile of all public trees categorized by genus.

Optimal Rooting Area: Non-Vaulted Trees

Where there are notable 'medium' and 'large' species creating a large spread in the data, i.e. poplars, maples, and birch, the data is further refined.

Optimal Rooting Area: Non-Vaulted Trees

Table 1. Guidelines for determining tree protection zone radius for healthy, structurally sound trees (adapted from Matheny and Clark, 1998, and the British Standards Institute).

Species Tolerance to Construction Damage (from Appendix A)	Relative Tree Age	TPZ Multiplication Factor
High	Young Mature Overmature	6 8 12
Medium	Young Mature Overmature	8 12 15
Low	Young Mature Overmature	12 15 18

Source: Fite, K. & Smiley, E.T. (2016). *Best Management Practices - Managing Trees During Construction* (2nd Edition). International Society of Arboriculture.

The TPZ multiplication factor for low tolerance, overmature trees is used as a measure for optimal rooting area because in many urban settings, trees will stifle rooting to streets, sidewalks, driveways, etc. and extend further to pervious areas.

Optimal Rooting Area: Non-Vaulted Trees

GIS workflow:

- Genus 75th percentile DBH is multiplied by TPZ of 18 to derive optimal rooting radius and area.
- Impervious surfaces removed.
- Remaining percent of rooting area calculated.

Optimal Rooting Area: GIS workflow

Vaulted and non-vaulted tree points and percentage of optimal rooting areas are combined for all study trees.

Comparison of Rooting Area to Tree Condition

(Inadequate is 0-20%), (Moderately Adequate >20-40%) and (Adequate >40%)

Mean Tree Condition vs Rooting Area

- 2285 Trees were surveyed to have Adequate rooting area
- 165 Trees were surveyed as Moderately Adequate
- 124 Trees were surveyed as Inadequate

Calgary Vault Types

19