

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(An Autonomous Institute Affiliated to University of Mumbai)

End Semester Examination

November 2018

Max. Marks: 60

Duration: 180 Minutes

Class: TE

Semester: V

Course Code: IT54/CE55

Branch: Information Technology /Computer Engineering

Name of the Course: **Theoretical Computer Science**

SYNOPTIC

Question No.		Max. Marks
Q1	a. Convert PDA to CFG and simplify the CFG and describe the language it	08
	accepts. (solve any one)	
	(i). PDA is given by M= (q ₀ , q ₁ }, {0,1}, {0,1, z ₀ }, δ, q ₀ , z ₀ , €), transition	
	function δ is defined by:	
	$\delta (q_0, \in, z_0) \rightarrow \{(q_1, \in)\}$	
	$\delta (q_0, 0, z_0) \rightarrow \{(q_0, 0z_0)\}$	1
	$\delta (q_0, 0, 0) \rightarrow \{(q_0, 00)\}$	
	$\delta (q_0, 1, 0) \rightarrow \{(q_0, 10)\}$	
	$\delta (q_0, 1, 1) \rightarrow \{(q_0, 11)\}$	
	$\delta (q_0, 0, 1) \rightarrow \{(q_1, \in)\}$	
	$\delta (q_1, 0, 1) \rightarrow \{(q_1, \in)\}$	
	$\delta (q_1, 0, 0) \rightarrow \{(q_1, \in)\}$	
	$\delta (q1, \in, z_0) \rightarrow \{(q_1, \in)\}$	
	(ii). PDA is given by M= (q_0, q_1) , $\{0,1\}$, $\{z_0, x\}$, δ , q_0, z_0, ϕ) where δ is	
	defined by:	
	$\delta\left(q_{0},1,z_{0}\right)\rightarrow\left\{ \left(q_{0},xz_{0}\right)\right\}$	
	$\delta (q_0, 1, x) \rightarrow \{(q_0, xx)\}$	
	$\delta (q_0, 0, x) \rightarrow \{(q_1, x)\}$	
	$\delta (q_0, \in, z_0) \to \{(q_0, \in)\}$	
	$\delta\left(q_{1},1,x\right)\rightarrow\left\{ \left(q_{1},\epsilon\right)\right\}$	
	$\delta (q_1,0,z_0) \rightarrow \{(q_0,z_0)\}$	10.0
	Conversion from PDA to CFG:	
	Production rules for start symbol	1
	2. Production rule for push operation	1
	3. Production rule for pop operation	2
	Simplification of Grammar:	1
	Remove null production	1

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(An Autonomous Institute Affiliated to University of Mumbai)

	Removing non-generating symbol	1
	3. Removing unit production	1
	4. Language accepted by the Grammar	
	b. Construct the PDA for the following language	04
	L= {set of strings over alphabet {a, b} with exactly twice as many a's as b's}	
	 Define M = (Q, ∑, q0, i/p function, stack symbol, Z₀, F) 	1
	2. Transition Diagram	3
Q2	a. Design a Turing Machine accepting following language L= The language of all non-palindromes over {a, b}	08
	1. Define $M = (Q, \sum, q0, i/p \text{ function, } i/p \text{ tape symbol, } B, F)$	2
	2. Transition Diagram	3
	3. Transition function /table	2
	b. Write a short note on: Variants of a Turing machine (any two). Variant Turing machine 1	04
	4. Define M for the variant chosen.	1
	5. Working of modified Turing machine	1
	6. Variant Turing machine 27. Define M for the variant chosen.	1
	8. Working of modified Turing machine	1
Q3	a. Construct right-linear grammars for the following regular language (any one)	08
	(i). Students grades in an examination are represented with the letters {A, B, C, D, F}. A string such as ABFCAD indicated the grades obtained by a student in six different subjects. The grammar must generate only those strings that have at most three D's and no F's.	
	(ii). Strings over {a, b} where the last two symbols in each string are a reversal of the first two symbols (i.e., last symbol = first symbol and penultimate symbol = second symbol).	
	1. Construction of right-linear grammar	5
	2. Show with parsing with any sample string	3

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(An Autonomous Institute Affiliated to University of Mumbai)

	Explain PCP problem Justify with example	2
Q4	a. What are the limitations of Finite Automata.	04
	Limitation –	
	Type of language Finite automata can accept	1
	2. Comparison of FA with any higher-level machine.	3
	b. Construct the finite automaton DFA first and then convert it into Regular Expression for "strings over {a, b} with an odd number of a's and an odd number of b's."	08
	1. Define DFA	1
	2. Construction of DFA	4
	3. Show the conversion of DFA to Regular expression.	3
Q5		0
	 Define M=(Q, ∑, i/p function, o/p, o/p function, initial state) 	1
	2. State transition table and o/p function	2
	3. Transition diagram	1
* 8	4. Moore m/c to Mealy m/c conversion with justification	2
	b. Prove that following language is not regular	04
	(i). Odd palindromes over {a, b}, that is, WCW ^R , where C is a special	
	symbol making the midpoint of the string.	
	(ii). Binary string containing more 1s than 0s.	
	 Define pumping Lemma conditions Solution for L = (i) is not regular with justification 	0.
		3.
	Define pumping Lemma conditions	0.
	2. Solution for L = (ii) is not regular with justification	3.