(A bit of) Advanced R

Part 3 - a tour of the tidyverse

Julien Chiquet

https://github.com/jchiquet/CourseAdvancedR

Université Paris Dauphine, Juin 2018

- 1 Introduction to tidy data and tidyverse
- 2 magrittr
- 3 tidyr
- 4 dplyr
- **5** tibble

References

Many ideas/examples inspired/stolen there:

R for data science (Wickham & Grolemund, 2016), http://r4ds.had.co.nz

Tidyverse website, https://www.tidyverse.org/

Prerequisites

Data Structures in base R

- 1 Atomic vector (integer, double, logical, character)
- Recursive vector (list)
- 3 Factor
- Matrix and array
- 6 Data Frame

R base programming

1 Control Statements 2. Functions 3. Functionals 4. Input/output 5. Rstudio API (application programming interface)

- 1 Introduction to tidy data and tidyverse
- 2 magrittr
- 3 tidyr
- 4 dplyr
- **5** tibble

Tidy data: motivation

Collected data are (never) under a proper canonical format

"Happy families are all alike; every unhappy family is unhappy in its own way." – Leo Tolstoy

"Tidy datasets are all alike, but every messy dataset is messy in its own way." – Hadley Wickham

Tidy data: what

First, a subjective question

What is the observation/statistical unit in your data?

Definition

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending on how rows, columns and tables are matched up with observations, variables and types. In tidy data:

- Each variable forms a column.
- Each observation forms a row.
- 3 Each type of observational unit forms a table.

tidy data: why?

Figure 1: Tidy data

- make manipulation, visualization and modelling easier
- a common structure for all packages
- a design philosophy for datat representation beyond R

Tidy vs non tidy: example I

print(tidyr::table3)

Tidy vs non tidy: example II

tidyr::table2

```
# A tibble: 12 x 4
##
     country
                 year type
##
      <chr>
                  <int> <chr>
                                        <int>
##
    1 Afghanistan 1999 cases
                                          745
    2 Afghanistan 1999 population
                                   19987071
##
##
    3 Afghanistan 2000 cases
                                         2666
   4 Afghanistan 2000 population 20595360
##
   5 Brazil
                   1999 cases
                                        37737
##
##
    6 Brazil
                   1999 population
                                    172006362
                                        80488
##
   7 Brazil
                   2000 cases
   8 Brazil
                   2000 population
                                   174504898
   9 China
                   1999 cases
                                       212258
  10 China
                   1999 population 1272915272
   11 China
                   2000 cases
                                       213766
  12 China
                   2000 population 1280428583
```

Tidy vs non tidy: example III

tidyr::table1

```
## # A tibble: 6 x 4
##
    country year cases population
    <chr>
               <int> <int>
##
                                <int>
  1 Afghanistan
               1999
                     745
                            19987071
  2 Afghanistan
                2000 2666
                            20595360
  3 Brazil
                1999
                      37737
                            172006362
## 4 Brazil
                2000
                      80488
                            174504898
## 5 China
                1999 212258 1272915272
## 6 China
                2000 213766 1280428583
```

data analysis process

Figure 2: scheme for data analysis process

- import: read / load the data
- tidy: formating (individuals/variables data frame)
- transform: suppression/creation/filtering/selection
- visualization: representation and validation
- model: statistical fits
- communication: diffusion (web/talk/article)

The tidyverse

Definition

- contraction of 'tidy' ("well arranged) and 'universe'.
- an opinionated collection of R packages designed for data science.
- all packages share an underlying design philosophy, grammar, and data structures

Phylosophy

allows the user to focus on the important statistical questions rather than focusing on the technical aspects of data analysis

Let's have a look I

Installation

```
install.packages("tidyverse")
```

Load

The core tidyverse loads ggplot2, tibble, tidyr, readr, purrr, stringr, forecats, dplyr and others in a fancy and unconflicted way.

library(tidyverse)

Packages roles and overview I

a modern re-imagining of the data frame

a set of functions that help you get to tidy data

a consistent set of verbs that solve the most common data manipulation challenges

Packages roles and overview II

a fast and friendly way to read rectangular data (like csv, tsv, and fwf)

a cohesive set of functions designed to make working with strings as easy as possible

a suite of useful tools that solve common problems with factors

Packages roles and overview III

a system for declaratively creating graphics, based on The Grammar of Graphics

enhances R's functional programming (FP) toolkit

offers a set of operators which make your code more readable

Data analysis with the tidyverse

Figure 3: Updated scheme for data analysis process

- 1 Introduction to tidy data and tidyverse
- 2 magrittr
- 3 tidyr
- 4 dplyr
- **5** tibble

- 1 Introduction to tidy data and tidyverse
- 2 magrittr
- 3 tidyr
- 4 dplyr
- **5** tibble

- 1 Introduction to tidy data and tidyverse
- 2 magrittr
- 3 tidyr
- 4 dplyr
- **5** tibble

- Introduction to tidy data and tidyverse
- 2 magrittr
- 3 tidyr
- 4 dplyr
- **5** tibble

References

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Wickham, H. (2014). *Advanced r.* CRC Press. Retrieved from http://adv-r.had.co.nz/

Wickham, H., & Grolemund, G. (2016). *R for data science: Import, tidy, transform, visualize, and model data.* "O'Reilly Media, Inc." Retrieved from http://r4ds.had.co.nz