Repaso de probabilidades

1. Una variable aleatoria X tiene distribución $\Gamma\left(n,\lambda\right)$ si sus funciones de densidad y característica son

$$f_X(x) = \frac{\lambda^n}{\Gamma(n)} \cdot x^{n-1} e^{-\lambda x} I_{[0,\infty)}(x) \quad y \quad \varphi_X(t) = \frac{\lambda^n}{(\lambda - it)^n}.$$

Probar que:

- (a) $E(X) = n/\lambda$ y $V(X) = n/\lambda^2$.
- (b) Si a > 0, entonces $aX \sim \Gamma(n, \lambda/a)$.
- (c) Si $Y \sim \Gamma(m, \lambda)$ independiente de X, entonces $X + Y \sim \Gamma(n + m, \lambda)$.
- 2. (a) Si $Z \sim N(0,1)$, probar que $Z^2 \sim \Gamma(1/2,1/2)$. (Nota: Usar que $\Gamma(1/2) = \sqrt{\pi}$.)
 - (b) La distribución $\Gamma\left(n/2,1/2\right)$, para $n\in I\!\!N$, se denomina χ_n^2 (chi-cuadrado con n grados de libertad). Probar que si Z_1,\ldots,Z_n son v.a. independientes con distribución $N\left(0,1\right)$, entonces $\sum_{i=1}^n Z_i^2 \sim \chi_n^2$.
- 3. Una variable aleatoria X tiene distribución $\beta(r,s)$ si su función de densidad es

$$f_X(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \cdot x^{r-1} (1-x)^{s-1} I_{[0,1]}(x).$$

Probar que:

- (a) E(X) = r/(r+s) y $V(X) = rs/[(r+s)^2(r+s+1)]$.
- (b) Analizar el caso en que r = s = 1.
- 4. Una variable aleatoria X tiene distribución $\mathcal{C}\left(0,1\right)$ si sus funciones de densidad y característica son

$$f_X(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2}$$
 y $\varphi_X(t) = e^{-|t|}$.

- (a) Probar que X no tiene momentos finitos de ningún orden.
- (b) Si X_1, \ldots, X_n son independientes y tienen distribución $\mathcal{C}\left(0,1\right)$, mostrar que $\bar{X_n} \sim \mathcal{C}\left(0,1\right)$. ¿Vale la Ley de los Grandes Números?
- 5. (a) Sea X una v.a. con distribución $\mathcal{P}(\lambda)$. Encontrar la función característica de X.
 - (b) Si $X \sim \mathcal{P}(\lambda)$ e $Y \sim \mathcal{P}(\mu)$ independientes, demostrar que $X + Y \sim \mathcal{P}(\lambda + \mu)$.
 - (c) Probar que si $X \sim \mathcal{P}(\lambda)$ e $Y|X = x \sim Bi(x, p)$ entonces $Y \sim \mathcal{P}(\lambda p)$.
- 6. Sean $\{X_n\}_{n\geq 1}$ e $\{Y_n\}_{n\geq 1}$ sucesiones de variables aleatorias tales que $X_n\to X$ e $Y_n\to Y$ en probabilidad (o c.s., respectivamente). Probar que:
 - (a) X_n está acotada en probabilidad en ambos casos. También, si $X_n \xrightarrow{\mathcal{D}} X$, entonces X_n está acotada en probabilidad.
 - (b) Si $g:\mathbb{R}^2\to\mathbb{R}$ es continua, entonces $g(X_n,Y_n)\to g(X,Y)$ en probabilidad o c.s., respectivamente.

- 7. Sean $\{X_n\}_{n\geq 1}$ e $\{Y_n\}_{n\geq 1}$ sucesiones de v.a. tales que X_n está acotada en probabilidad e $Y_n \xrightarrow{\mathcal{D}} 0$, demostrar que $X_nY_n \xrightarrow{\mathcal{D}} 0$.
- 8. (Teorema de Slutsky) Sean $\{X_n\}_{n\geq 1}$ e $\{Y_n\}_{n\geq 1}$ sucesiones de v.a. y a una constante tales que $X_n \stackrel{\mathcal{P}}{\longrightarrow} a$ e $Y_n \stackrel{\mathcal{D}}{\longrightarrow} Y$. Probar que:
 - (a) $X_n + Y_n \xrightarrow{\mathcal{D}} a + Y$.
 - (b) $X_n Y_n \xrightarrow{\mathcal{D}} aY$.
- 9. (a) Probar que si $\sqrt{n}(X_n \mu) \xrightarrow{\mathcal{D}} X$ entonces $X_n \xrightarrow{p} \mu$
 - (b) Deducir la Ley Débil de los Grandes Números a partir del Teorema Central del Límite.
- 10. Sea $\{X_n\}_{n\geq 1}$ una sucesión de v.a. tales que

$$\sqrt{n}\left(X_n-\mu\right) \stackrel{\mathcal{D}}{\longrightarrow} N\left(0,\sigma^2\right).$$

Sea $g: \mathbb{R} \to \mathbb{R}$ tal que g es derivable, g' es continua en μ y $g'(\mu) \neq 0$.

(a) Demostrar que

$$\sqrt{n} \left(g\left(X_n \right) - g\left(\mu \right) \right) \stackrel{\mathcal{D}}{\longrightarrow} N \left(0, \sigma^2 g'\left(\mu \right)^2 \right).$$

(b) ¿Cuál sería la distribución asintótica de

$$n\left(g\left(X_{n}\right)-g\left(\mu\right)\right)$$

si $g'(\mu) = 0$ pero g'' es continua en μ y $g''(\mu) \neq 0$?

11. (Desigualdad de Jensen) Sea $\phi: I\!\!R \to I\!\!R$ una función convexa. Y sea X una variable aleatoria con esperanza finita probar que

$$E(\phi(X)) \ge \phi(E(X))$$

12. Sea X una variable aleatoria y sea m una mediana de X. Probar que

$$m = \arg\min_{c \in IR} E(|X - c|).$$

13. Un vector aleatorio $X \in \mathbb{R}^p$ tiene distribución $N_p(\mu, \Sigma)$, si su función de densidad es,

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \det(\Sigma)^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^t \Sigma^{-1} (\mathbf{x} - \mu)\right\}.$$

- (a) Probar que X_1, \ldots, X_p son independientes si y sólo si Σ es diagonal.
- (b) Probar que $\Sigma^{-1/2}(X \mu) \sim N_p(0, I_p)$.
- (c) Probar que si $Y \sim N_{p}\left(0, I_{p}\right)$ y $A \in \mathbb{R}^{pxp}$ entonces $AY + \mu \sim N_{p}\left(\mu, AA'\right)$.
- (d) Si $A \in \mathbb{R}^{q \times p}$ con $q \leq p$ e Y = AX, entonces $Y \sim N\left(A\mu, A\Sigma A'\right)$.

 Sugerencia: Considere la función característica del vector aleatorio definada como

$$\phi_X(t) = E(\exp\{i \ t'X\}) = E(\exp\{i \ \sum_{j=1}^p t_j X_j\})$$