최소제곱법을 이용한 선형 회귀에 대해 다음 표와 주어진 식을 보고 물음에 답하시오.

x	x_0	x_1	 x_m
y	y_0	y_1	 y_m

$$\begin{array}{cccc} ax_0 + b & = y_0 \\ ax_1 + b & = y_1 \\ ax_2 + b & = y_2 \\ \vdots & \vdots \\ ax_m + b & = y_m \end{array} \Rightarrow \underbrace{\left[\begin{array}{c} x_0 & 1 \\ x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_m & 1 \end{array}\right]}_{A} \underbrace{\left[\begin{array}{c} a \\ b \\ \end{array}\right]}_{x} = \underbrace{\left[\begin{array}{c} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_m \end{array}\right]}_{b}$$

(1) A의 열 벡터가 독립이면 A^TA 는 symmetric positive definite 임을 보이시오.

(2)
$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ 일 때, $F(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ 라 하자. $\frac{\partial F}{\partial x}$ 와 $\frac{\partial F}{\partial y}$ 를 구하시오.

- (3) $\|v\|_2^2 = v^T v$ 라 할 때, ℓ_2 오차함수는 $\|Ax b\|^2$ 으로 나타낼 수 있다. 이때 최소제곱해 x^* 는 $A^T A x^* = A^T b$ 를 만족함을 보이시오.
- (4) A는 특잇값 분해(SVD)에 의해 $A = USV^T$ 이고 $A^+ = VS^+U^T$ 라 하자. 여기서 $(S)_{ii} \neq 0$ 일 때 $(S^+)_{ii} = 1/(S)_{ii}$ 를 만족하고 S가 $m \times n$ 행렬일 때 S^+ 는 $n \times m$ 행렬이다. 그러면 $x^+ = A^+b$ 는 최소제곱해임을 보이시오.

$$(2) F(x) = X^{T} A X = [XY] \begin{bmatrix} \alpha & b \\ b & c \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix}$$

$$= \begin{bmatrix} \alpha x + by & bx + cy \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha x^{2} + 2bxy + cy^{2} \end{bmatrix}$$

$$\frac{\partial F}{\partial x} = 2\alpha x + 2by = \begin{bmatrix} 2\alpha & 2b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\frac{\partial F}{\partial y} = 2cy + 2bx = \begin{bmatrix} 2b & 2c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$(4) \quad A = U S V^{T}$$

$$A \times = b$$

$$US V^{T} \times = b$$

$$X = V S^{T} U^{T} b$$

$$X = V S^{T} U^{T} b$$

$$X = A^{T} b$$

$$X = V S^{T} U^{T} b$$

$$X = A^{T} b$$

$$(US V^{T})^{T} (US V^{T}) (VS^{T} U^{T}) b = (US V^{T})^{T} b$$

$$(VS^{T} U^{T})^{T} (US V^{T})^{T} (US V^{T})^{T} b = (VS^{T} U^{T})^{T} b$$

$$(VS^{T} U^{T})^{T} b = (VS^{T} U^{T})^{T} b$$

$$(VS^{T} U^{T})^{T} b = (VS^{T} U^{T})^{T} b$$