Сопряжения и нормы

Целые и рациональные числа

- 1. Докажите, что равенство $(x+y\sqrt{2})^2+(z+t\sqrt{2})^2=5+4\sqrt{2}$ не может выполняться ни при каких рациональных $x,\,y,\,z$ и t.
- 2. Докажите, что равенство $(5+3\sqrt{2})^m=(3+5\sqrt{2})^n$ не может выполняться ни при каких натуральных m и n .
- 3. Докажите, что при любых натуральных m, n существует натуральное k такое, что $(\sqrt{m} + \sqrt{m+1})^n = \sqrt{k} + \sqrt{k-1}$.
- 4. Найдите 1012-ую цифру после запятой числа $(2+\sqrt{3})^{2024}$.

Многочлены

- 5. Числа $x,y \in \mathbb{R}$ удовлетворяют равенству $x\sqrt{y^2+1}+y\sqrt{x^2+1}=\frac{3}{4}.$ Найдите все возможные значения выражения $\sqrt{x^2+1}\cdot\sqrt{y^2+1}+xy.$
- 6. Докажите, что если $(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1$, то x + y = 0.
- 7. Многочлен P(x) удовлетворяет равенству $(P(x))^2 = 1 + x + x^{100}Q(x)$, где Q некоторый многочлен; и P(0) = 1. Найдите коэффициент при x^{99} в многочлене $(P(x)+1)^{100}$.
- 8. Докажите, что для каждого натурального числа n существуют многочлены $f,g\in\mathbb{Z}[x]$ такие, что $\deg f=n$ и при всех $x\in\mathbb{R}$ верно равенство $(f(x))^2=(x^2-1)(g(x))^2+1$.
- 9. Докажите, что для каждого натурального числа n существуют ненулевые многочлены $P,Q \in \mathbb{Z}[x_1,x_2,\ldots,x_n]$, удовлетворяющие тождеству $(x_1+x_2+\ldots+x_n)P(x_1,x_2,\ldots,x_n)=Q(x_1^2,x_2^2,\ldots,x_n^2)$.

Упражнения

- 10. Докажите, что $v_2(|(1+\sqrt{3})^{2n+1}|)=n+1$ для каждого натурального n.
- 11. Существует ли многочлен $P \in \mathbb{Z}[x]$ такой, что $P(1+\sqrt{3})=2+\sqrt{3}$ и $P(3+\sqrt{5})=3+\sqrt{5}$?
- 12. Найдите все натуральные числа d, для которых найдутся многочлены $P,Q\in\mathbb{R}[x]$ такие, что $\deg P=d$ и при всех $x\in\mathbb{R}$ верно равенство $(P(x))^2+1=(x^2+1)\left(Q(x)\right)^2$.
- 13. Даны непостоянные приведённые многочлены P(x) и Q(x). Докажите, что сумма квадратов коэффициентов многочлена P(x)Q(x) не меньше суммы квадратов свободных членов P(x) и Q(x).
- 14. Пусть a_1, \ldots, a_n натуральные числа. Докажите, что $\sqrt{a_1} + \ldots + \sqrt{a_n}$ натуральное число, только если каждое $a_i, i = \overline{1, n}$, полный квадрат.