

SPIS TREŚCI

- 1. Użyte algorytmy
- 2. Wybrane hiperparametry
- 3. Wyniki
- 4. Wnioski

UŻYTE ALGORYTMY

- Las losowy
- Gradient boosting
- SVM

HIPERPARAMETRY DLA LASU LOSOWEGO

Dla lasu losowego rozważałyśmy następujące parametry dla metody Random Search:

- n_estimators, czyli liczba drzew decyzyjnych w lesie losowym,
- min_samples_split, czyli parametr informujący o minimalnej wymaganej liczbie obserwacji w danym węźle drzewa decyzyjnego, aby nastąpił podział węzła,
- warm_start, czyli parametr odpowiadający za to, czy w kolejnej iteracji używamy rozwiązania z
 poprzedniego dopasowania I do tego dokładamy kolejne drzewa (wartość True), czy dopasowujemy
 zupełnie nowy las (wartość False),
- max_depth, czyli maksymalna głębokość drzewa (najdłuższa ścieżka między węzłem korzenia a węzłem liścia),
- min_samples_leaf, czyli minimalna liczba próbek, które powinny być obecne w węźle liścia.

HIPERPARAMETRY DLA GRADIENT BOOSTING

Dla Gradient Boosting rozważałyśmy następujące parametry dla metody Random Search:

- n_estimators, czyli liczba drzew decyzyjnych w lesie losowym,
- subsample, czyli frakcja obserwacji, która ma zostać wykorzystana do dopasowania poszczególnych uczących się modeli,
- loss, czyli funkcja straty do optymalizacji,
- max_depth, czyli maksymalna głębokość drzewa (najdłuższa ścieżka między węzłem korzenia a węzłem liścia),
- min_samples_leaf, czyli minimalna liczba próbek, które powinny być obecne w węźle liścia.

HIPERPARAMETRY DLA SVM

Dla SVM rozważałyśmy następujące parametry dla metody Random Search:

- C, czyli parametr regularyzacji, gdzie siła regularyzacji jest odwrotnie proporcjonalna do C,
- kernel, czyli parametr określający typ jądra, jakie ma zostać użyte w algorytmie,
- gamma, czyli współczynnik jądra dla jąder typu "rbf", "poly" i "sigmoid",
- tol, czyli tolerancja dla kryterium zatrzymania.

STABILIZACJA RANDOM FOREST

Random Forest 1.00 0.95 0.90 mean score 0.85 0.80 0.75 dane 1 0.70 dane 2 dane 3 dane 4 0.65 15 5 10 20 25

Bayes optimization

Random search

STABILIZACJA GRADIENT BOOSTING

Bayes optimization

Random search

STABILIZACJA SVM

SVM 1.00 0.95 0.90 0.85 mean score 0.80 0.75 0.70 dane 1 dane 2 0.65 dane 3 dane 4 0.60 10 15 5 20 25 n iter

Bayes optimization

Random search

WYNIKI TESTÓW STATYSTYCZNYCH

${f Model}$	Dane	p-wartość (K-S)	p-wartość (Wilcoxon)
RandomForest	dane 1	0	0
RandomForest	dane 2	0.00004	0.0005
RandomForest	dane 3	0	0
RandomForest	dane 4	0	1.0
SVM	dane 1	0	0
SVM	dane 2	0	0.00005
SVM	dane 3	0	0.00382
SVM	dane 4	0	1
GradientBoosting	dane 1	0	0
GradientBoosting	dane 2	0.00192	0.0008
GradientBoosting	dane 3	0	0
GradientBoosting	dane 4	0	1

TUNOWALNOŚĆ ALGORYTMÓW

WNIOSKI

- Optymalizacja Bayesowska zbiega szybciej niż RandomizedSearchCV do optymalnego rozwiązania.
- Za pomocą opotymalizacji Bayesowskiej otrzymujemy średnio lepsze wyniki niż za pomocą RandomizedSearchCv.t
- Badając tunowalność algorytmów zaobserwowałyśmy, że w 3 na 6 przypadków tunowalność przyjęła wartość ujemną. Sugeruje to, że dokładność otrzymana za pomocą średnio najlepszej siatki była znacząco gorsza od wyników otrzymanych za pomocą najlepszej siatki.

DZIĘKUJEMY ZA UWAGĘ:)