Amendments to Claims

This listing of claims will replace all prior revisions and listings of claims in this application.

Listing of Claims

1

1-20. (Cancelled)

21. (Previously Presented) A method comprising:

generating a phase-shift keved optical signal; and

propagating the phase shift keyed optical signal through a semiconductor optical amplifier in deep saturation, wherein -4dBm < P_{IN} < 4dBm such that an optical signal exhibiting a regulated, -amplified optical power is produced;

wherein the amplified optical power is regulated to a saturation output power such that ΔP_{OUT} (dB)/ ΔP_{Dd} (dB) of the optical amplifier is less than 0.25, wherein P_{OUT} is the power of the optical signal output from the amplifier, and P_{DN} is the power of the optical signal input into the amplifier.

22. (Previously Presented) A method for optical limiting amplification comprising:

inputting a phase-shift keyed optical signal having a data independent intensity profile into a semiconductor optical amplifier in a deep saturation regime wherein -4dBm < $P_{\rm IN}$ < 4dBm such that an optical signal exhibiting a regulated, amplified optical power is produced and output, wherein $\Delta P_{\rm OUT}({\rm dB})' \Delta P_{\rm IN}({\rm dB})$ is less than 0.25, where $P_{\rm OUT}$ is the power of the optical signal output from the amplifier, and $P_{\rm IN}$ is the power of the optical signal input into the amplifier.

23. (Previously Presented) An optical signal processor apparatus comprising:

a semiconductor optical amplifier device adapted to operate in deep saturation wherein $-4dBm < P_{\rm IN} < 4dBm$ and to receive an RZ-DPSK optical signal having an amplitude-shift

- keyed optical label portion, such that the optical label portion of the signal is removed upon propagation through the semiconductor optical amplifier device;
- wherein $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ is less than 0.25, where P_{OUT} is the power of the optical signal output from the amplifiers, and P_{IN} is the power of the optical signal input into the amplifiers.
- 24. (Previously Presented) An optical communication system for transmitting multi-channel phaseshift keyed optical signals comprising:
 - a plurality of semiconductor optical amplifiers,
 - wherein the system is adapted to transmit the optical signals such that the plurality of semiconductor optical amplifiers operate in a deep saturation regime wherein -4dBm < $P_{\rm IN} < 4dBm$ so as to provide optical power equalization of a plurality of channels of the multi-channel optical signals.
 - wherein $\Delta P_{OLT}(dB)/\Delta P_{IN}(dB)$ is less than about 0.25, where P_{OLT} is the power of the optical signal output from the amplifiers, and P_{IN} is the power of the optical signal input into the amplifiers.
- 25. (Previously Presented) An apparatus comprising:
 - a means for generating a phase-shift keyed optical signal; and
 - a means for propagating the optical signal through a semiconductor optical amplifier in deep saturation wherein -4dBm $< P_{IN} < 4dBm$ to regulate the amplified optical power;
 - wherein $\Delta P_{OUT}(dB)/\Delta P_{IN}(dB)$ is less than 0.25, where P_{OUT} is the power of the optical signal output from the amplifiers, and P_{IN} is the power of the optical signal input into the amplifiers.