Projeto 4 - Redes Recorrentes

Guilherme Pereira Campos RA:163787 Lucas Oliveira Nery de Araújo RA:158882 Universidade Federal de São Paulo

I. RESUMO

Este projeto teve como objetivo treinar modelos *LSTM* para classificar séries temporais, onde o modelo recebe uma janela de dados e identifica sua categoria com base nos padrões observados. O objetivo escolhido para o projeto será classificar um segmento de ECG em categorias como **normal**, **arritmia** e outras.

Foram exploradas diferentes configurações de redes, ajustando a topologia das camadas *LSTM*, o número de neurônios e os mecanismos de regularização para otimizar a identificação de padrões temporais relevantes. O projeto demonstra a eficácia das redes *LSTM* na extração e análise de informações dinâmicas presentes em séries temporais.

II. DATASET

O MIT-BIH Arrhythmia é um dataset de série temporal contendo gravações de ECG de pacientes com diferentes tipos de arritmias. A tarefa é classificar os batimentos cardíacos com base nos sinais ao longo do tempo. Cada amostra consiste em segmentos de ECG rotulados, representando diferentes classes de batimentos. A ordem dos registros é essencial.

Foi feita a seguinte preparação nos dados:

1. Carregamento do Dataset

- O arquivo ECG (mit-bih-arrhythmia-database-1.0.0) foi carregado a partir do diretório do projeto utilizando a função wfdb.rdrecord() da biblioteca wfdb.
- O dataset contém sinais de ECG com informações de tempo e rótulos de classes que indicam tipos de arritmia ou a ausência delas.

2. Separação dos Conjuntos

- Os dados foram divididos em treinamento (80%) e teste (20%) utilizando a função train_test_split() do Scikit-learn.
- Distribuição final dos dados:

Treino: 8.000 amostrasTeste: 2.000 amostras

3. Normalização e Formatação dos Dados

- Os sinais de ECG foram convertidos para **float32** e normalizados, garantindo que os valores numéricos estivessem no formato adequado para o treinamento do modelo.
- A variável alvo (tipo de arritmia) foi convertida para representação categórica (classes conforme o sinal de ECG).

 Os dados de entrada foram remodelados para o formato adequado ao modelo LSTM, com uma dimensão adicional para representar as séries temporais.

4. Visualização dos Dados

 Foram exibidos 5 exemplos do conjunto de treino com seus respectivos rótulos (tipos de arritmia ou ausência), permitindo uma verificação visual dos padrões nas séries temporais de ECG antes do treinamento.

III. REDES RECORRENTES LONG SHORT-TERM MEMORY Definição

- A informação pode atingir um neurônio mais de uma vez.
- Característica principal: memória e ordem temporal.

Funcionamento

- O novo estado da rede depende tanto da entrada quanto do estado atual, ou seja, da memória associada ao estado interno (oculto) do modelo.
- As RNNs podem recordar características importantes dos sinais anteriores.

Rede Recorrente Padrão

 A saída h_t depende da entrada x_t e do próprio estado anterior da rede:

$$A_t = f_0(A_{t-1}, x_t)$$

$$h_t = q_0(A_t)$$

 Além da dependência espacial (fluxo camada a camada), as RNNs possuem dependência temporal do sinal.

Retropropagação

- Para calcular o gradiente de um neurônio, é necessário conhecer:
 - Os gradientes dos neurônios da camada posterior (dependência espacial, por exemplo, do neurônio de saída y).
 - Os gradientes dos neurônios da própria camada no instante posterior (dependência temporal).
- As equações envolvidas são:

$$\alpha^{t} = \phi(w_{x}x^{t} + w_{a}a^{t-1})$$
$$y^{t} = \phi(w_{y}a^{t})$$
$$\delta_{j} = f'(v_{j}) \sum_{k} \delta_{k}w_{kj}$$

- O processo de atualização é idêntico ao utilizado na retropropagação tradicional aplicada em redes MLP.
- Basicamente, o algoritmo é o mesmo, mudando apenas a forma de considerar as dependências.

Problemas com o Gradiente

- Explosão do gradiente: Dependendo da função de ativação, o valor do gradiente pode se tornar muito elevado, saturando (estourando) as sinapses. Uma abordagem simples é estabelecer um corte, fixando o valor máximo do gradiente.
- Desaparecimento do gradiente (vanishing): O gradiente pode se tornar ínfimo, impossibilitando o ajuste adequado dos pesos.
- Redes recorrentes padrão (como as unidades MCP e suas variações) podem sofrer desses problemas.

Long Short-Term Memory (LSTM)

- Uma célula LSTM é composta por três gates: de entrada, de saída e de esquecimento (*forget*).
- A célula LSTM possui dois sinais de memória:
 - c_t (memória de longo prazo, sinal interno)
 - a_t (memória de curto prazo, sinal externo)
- Os gates são:
 - Gate de entrada (ou de atualização): U
 - Gate de saída: O
 - Gate de esquecimento: F
- A célula é capaz de recordar sinais arbitrários do passado a partir da configuração dos gates, que controlam o fluxo de informação.
- Teoricamente, sinais podem ser mantidos por longos períodos.

IV. Modelos

A biblioteca utilizada para implementar o VAE (Variational Autoencoder) neste projeto será o *TensorFlow* (https://www.tensorflow.org), um framework amplamente utilizado para aprendizado profundo.

A. Primeiro modelo LSTM

O primeiro modelo *LSTM* foi configurado para processar sequências de sinais de ECG com 100 timesteps e aprender padrões temporais associados às diferentes classes de arritmias. A arquitetura inclui três camadas *LSTM* com 64, 32 e 16 neurônios, respectivamente, todas utilizando a ativação *tanh*.

Para evitar *overfitting* e melhorar a generalização, cada camada *LSTM* é seguida por uma camada *Dropout* com taxa de 20%. A última camada é totalmente conectada (*Dense*) com ativação *softmax*, responsável por classificar os sinais em suas respectivas categorias.

O modelo será treinado por 20 épocas utilizando o otimizador *Adam* e a função de perda *categorical crossentropy*.

A figura abaixo conta com o *plot_model*, que permite visualizar a arquitetura do modelo de forma gráfica, exibindo a conexão entre as camadas.

Arquitetura do Primeiro Modelo LSTM

1) Histórico de perda durante o treinamento: A perda durante o treinamento e validação do modelo mede o quão bem as previsões se ajustam aos dados reais, sendo calculada pela função de custo definida na compilação. No caso deste modelo LSTM, a perda utilizada é a categorical crossentropy, que mede a discrepância entre as distribuições de probabilidade predita e real. Essa função é comumente usada em problemas de classificação multiclasse e é definida pela equação:

$$H(p,q) = -\sum_{i=1}^{n} p_i \log q_i$$

onde p_i é a distribuição real das classes e q_i é a distribuição predita pelo modelo.

Durante o treinamento, espera-se que essa perda diminua, indicando que o modelo está aprendendo a classificar corretamente os padrões do ECG. Além disso, a métrica de acurácia acompanha o percentual de acertos. Se a perda de validação permanecer próxima à de treinamento, significa que o modelo generaliza bem sem *overfitting*.

Apesar da configuração relativamente simples, o primeiro modelo *LSTM* apresentou um desempenho satisfatório na classificação dos sinais de ECG. Com apenas três camadas *LSTM* e um total de 112 neurônios, o modelo conseguiu aprender padrões temporais relevantes e distinguir diferentes classes de arritmias de forma eficaz.

A utilização da ativação *tanh* nas camadas *LSTM*, aliada à regularização via *Dropout*, contribuiu para um treinamento estável e uma boa generalização. A acurácia obtida nos dados demonstra que, mesmo com uma arquitetura enxuta, o modelo foi capaz de capturar informações essenciais do sinal e realizar previsões coerentes com os rótulos verdadeiros, atingindo uma acurácia de **0.9623**.

Foram realizados exemplos de previsão aleatórios, onde foram selecionados 3 exemplos do conjunto de teste e plotados os sinais de *ECG* comparando o rótulo real com a previsão do modelo, evidenciando a capacidade do sistema em identificar corretamente as classes.

B. Segundo modelo LSTM

O segundo modelo *LSTM* foi configurado para processar sequências de sinais de ECG com 100 timesteps, ampliando a capacidade de aprendizado e generalização. Em vez de três camadas, essa arquitetura possui o dobro de camadas

e neurônios, sendo composta por seis camadas *LSTM* com 128, 64, 32, 16, 8 e 4 neurônios, respectivamente, todas utilizando a ativação *tanh*. Para evitar *overfitting* e melhorar a generalização, cada camada *LSTM* é seguida por uma camada *Dropout* com taxa de 40% (o dobro dos 20% do primeiro modelo). A última camada é uma camada *Dense* com ativação *softmax*, responsável por classificar os sinais em suas respectivas categorias. O modelo será treinado por 40 épocas utilizando o otimizador *Adam* e a função de perda *categorical_crossentropy*.

Arquitetura do Segundo Modelo LSTM

Apesar do aumento na complexidade, o segundo modelo *LSTM*, com seis camadas e um maior número total de neurônios, apresentou desempenho inferior na classificação dos sinais de ECG. Embora a arquitetura tenha sido projetada para capturar padrões temporais mais sutis, o aumento do *dropout* e da profundidade da rede pode ter dificultado a generalização, resultando em treinamento instável e menor acurácia. Esses resultados sugerem que, para esse problema específico, uma configuração mais simples pode ser mais eficaz na extração de informações essenciais do sinal.

A acurácia obtida pelo segundo modelo foi de **0.87**. Além disso, foram realizados exemplos de previsão aleatória, nos quais foram selecionados 3 segmentos do conjunto de teste e comparados os rótulos reais com as previsões do modelo, evidenciando a capacidade, embora reduzida, do sistema em classificar os sinais de ECG.

V. CONCLUSÃO

Este projeto demonstrou a eficácia das redes *LSTM* na classificação de séries temporais, especificamente sinais de ECG. Foram testadas diferentes arquiteturas, variando a profundidade, o número de neurônios e a regularização.

Os resultados indicaram que a configuração mais simples obteve melhor desempenho, com acurácia superior e maior estabilidade no treinamento. A análise de previsões aleatórias reforçou essa conclusão, evidenciando que modelos mais profundos nem sempre resultam em melhor generalização.