

Submitted by, VIDYA V

PGPDSBA.O.2023.B 06.08.2023

CONTENTS

Case 1: Compactiv Data- Linear Regression 4 Read the data and do exploratory data analysis. Describe the data briefly. (Check the Data types, shape, EDA, 5 point summary). Perform Univariate, Bivariate Analysis, Multivariate Analysis. 2 Impute null values if present, also check for the values which are equal to zero. Do they 11 have any meaning or do we need to change them or drop them? Check for the possibility of creating new features if required. Also check for outliers and duplicates if there. 3 Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning. 4 Inference: Basis on these predictions, what are the business insights and 12 recommendations.

Case	2: Contraceptive method data- Logistic Regression, LDA, CART	15
1	Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, check for duplicates and outliers and write an inference on it. Perform Univariate and Bivariate Analysis and Multivariate Analysis.	15
2	Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis) and CART.	20
3	Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.	23
4	Inference: Basis on these predictions, what are the insights and recommendations.	26

List of Figures

Name	Page No.
Fig 1.1 Dataset Info	4
Fig.1.2. Data Description	5
Fig.1.3. Univariate Analysis- Numerical Columns	6-9
Fig.1.4. Univariate Analysis- Categorical Columns	9
Fig.1.5. Heatmap of fields	10
Fig.1.6. Multivariate Analysis	11
Fig.2.1. Info of Dataset	14
Fig.2.2. Data description	14
Fig.2.3. Univariate Analysis- Numerical Columns	15
Fig.2.4. Univariate Analysis- Categorical columns	16
Fig.2.5. Multivariate Analysis	17-18
Fig.2.6. Regularized Decision Tree (Pruned)	20
Fig.2.7. Logistic Regression scores	21
Fig.2.8. LDA scores	21
Fig.2.9. Regularized Decision Tree scores	22
Fig.2.10. Accuracy and scores comparison across models for Train and test Data	23
Fig.2.11. Confusion Matrix comparisons	23
Fig.2.13. ROC Curves across models for train and test data	24
Fig.2.14. AUC scores comparison	25

List of Figures

Name	Page No.
Table.1.1 Linear Regression- Performance Comparison	12
Table 2.1. Type I and II Error comparison across models	24

Case 1: Compactiv Data- Linear Regression

The comp-activ databases is a collection of a computer systems activity measures .

The data was collected from a Sun Sparcstation 20/712 with 128 Mbytes of memory running in a multi-user university department. Users would typically be doing a large variety of tasks ranging from accessing the internet, editing files or running very cpu-bound programs.

As you are a budding data scientist you thought to find out a linear equation to build a model to predict 'usr'(Portion of time (%) that cpus run in user mode) and to find out how each attribute affects the system to be in 'usr' mode using a list of system attributes.

1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the Data types, shape, EDA, 5-point summary). Perform Univariate, Bivariate Analysis, Multivariate Analysis.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8192 entries, 0 to 8191
Data columns (total 22 columns):
    Column
            Non-Null Count Dtype
             -----
            8192 non-null
    lread
                              int64
    lwrite 8192 non-null int64
1
    scall 8192 non-null int64
sread 8192 non-null int64
 2
 3
4
    swrite 8192 non-null int64
    fork 8192 non-null
 5
                             float64
    exec 8192 non-null rchar 8088 non-null wchar 8177 non-null
                             float64
6
                              float64
7
                              float64
8
9
    pgout
              8192 non-null
                              float64
                             float64
10 ppgout
              8192 non-null
                              float64
11 pgfree
              8192 non-null
                              float64
              8192 non-null
12
    pgscan
                              float64
13
    atch
              8192 non-null
                              float64
 14 pgin
              8192 non-null
                              float64
    ppgin
              8192 non-null
15
           8192 non-null
8192 non-null
                              float64
16 pflt
17 vflt
                              float64
                              object
18 runqsz
             8192 non-null
                              int64
 19 freemem
              8192 non-null
                              int64
 20 freeswap 8192 non-null
 21 usr
              8192 non-null
                              int64
dtypes: float64(13), int64(8), object(1)
```

Fig.1.1 Dataset info

\$	count \$	unique 🗢	top ‡	freq \$	mean 🕏	std ≑	min 🗢	25% \$	50% ♦	75% ♦	max 🗢
Iread	8192.0	NaN	NaN	NaN	19.56	53.35	0.0	2.0	7.0	20.0	1845.0
Iwrite	8192.0	NaN	NaN	NaN	13.11	29.89	0.0	0.0	1.0	10.0	575.0
scall	8192.0	NaN	NaN	NaN	2306.32	1633.62	109.0	1012.0	2051.5	3317.25	12493.0
sread	8192.0	NaN	NaN	NaN	210.48	198.98	6.0	86.0	166.0	279.0	5318.0
swrite	8192.0	NaN	NaN	NaN	150.06	160.48	7.0	63.0	117.0	185.0	5456.0
fork	8192.0	NaN	NaN	NaN	1.88	2.48	0.0	0.4	0.8	2.2	20.12
exec	8192.0	NaN	NaN	NaN	2.79	5.21	0.0	0.2	1.2	2.8	59.56
rchar	8192.0	NaN	NaN	NaN	194879.85	239332.57	0.0	31606.5	122035.0	265394.75	2526649.0
wchar	8192.0	NaN	NaN	NaN	95727.39	140772.42	0.0	22846.75	46434.5	106037.0	1801623.0
pgout	8192.0	NaN	NaN	NaN	2.29	5.31	0.0	0.0	0.0	2.4	81.44
ppgout	8192.0	NaN	NaN	NaN	5.98	15.21	0.0	0.0	0.0	4.2	184.2
pgfree	8192.0	NaN	NaN	NaN	11.92	32.36	0.0	0.0	0.0	5.0	523.0
pgscan	8192.0	NaN	NaN	NaN	21.53	71.14	0.0	0.0	0.0	0.0	1237.0
atch	8192.0	NaN	NaN	NaN	1.13	5.71	0.0	0.0	0.0	0.6	211.58
pgin	8192.0	NaN	NaN	NaN	8.28	13.87	0.0	0.6	2.8	9.76	141.2
ppgin	8192.0	NaN	NaN	NaN	12.39	22.28	0.0	0.6	3.8	13.8	292.61
pflt	8192.0	NaN	NaN	NaN	109.79	114.42	0.0	25.0	63.8	159.6	899.8
vflt	8192.0	NaN	NaN	NaN	185.32	191.0	0.2	45.4	120.4	251.8	1365.0
runqsz	8192	2	Not_CPU_Bound	4331	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freemem	8192.0	NaN	NaN	NaN	1763.46	2482.1	55.0	231.0	579.0	2002.25	12027.0
freeswap	8192.0	NaN	NaN	NaN	1328125.96	422019.43	2.0	1042623.5	1289289.5	1730379.5	2243187.0
usr	8192.0	NaN	NaN	NaN	83.97	18.4	0.0	81.0	89.0	94.0	99.0

Fig.1.2. Data Description

- There are 8192 datapoints and 22 fields in the given dataset
- All the fields are numerical, except for 'runqsz' which has two categories- CPU bound and Non-CPU-bound
- The field 'usr', which is the percentage of time the CPU runs in user mode, is the target variable for the linear regression
- The fields 'rchar' and 'wchar' have NaN values. These represent the number of characters transferred during system read and write calls.
- Based on domain knowledge, it is plausible that either of these can be 0, but not both 0 for a given datapoint. So, for further analysis, we choose to impute with 0. As the number is very limited when compared to the depth of the dataset (119 in 8192), the choice is justified.
- There are no bad values in the dataset
- Some fields have outliers
- There are no duplicate values
 - 1.1. EDA

Fig.1.3 Univariate Analysis- Numerical Columns

Fig.1.4. Univariate Analysis- Categorical Column

Fig.1.5 Heatmap of fields

- Univariate analysis of numerical fields:
 - o All fields have outliers and hence are skewed
 - The 'freeswap' field has a bimodal distribution
- Univariate analysis of categorical field:
 - o There are more instances of 'Not CPU Bound' than 'CPU Bound'
- Bivariate Analysis:
 - Few fields like pflt, vflt and fork, pgout and ppgout, pgscan and pgfree exhibit a very strong correlation
 - However, none of the fields have a very strong correlation to the target variable- usr

Fig.1.6. Multivariate Analysis

Impute null values if present, also check for the values which are equal to zero. Do they
have any meaning or do we need to change them or drop them? Check for the
possibility of creating new features if required. Also check for outliers and duplicates if
there.

- The fields 'rchar' and 'wchar' have NaN values. These represent the number of characters transferred during system read and write calls.
- Based on domain knowledge, it is plausible that either of these can be 0, but not both 0 for a given datapoint. So, on further exploration we find that atleast one of these is non zero for all datapoints. So, as such, there is no missing data and hence are imputed with 0
- There are no bad values in the dataset
- Some fields have outliers and have been treated with IQR approach
- There are no duplicate values
- Feature engineering:
 - The features of the given dataset were combined as per the formulae below to derive new features:
 - Total io: Total IO Activity = Iread + Iwrite
 - Total_disk_io : Total_Disk_IO = sread + swrite
 - Total_pg: Total_Page_Activities = pgout + ppgout + pgfree + pgscan + atch + pgin + ppgin + pflt + vflt
 - Total proc: Total Process Activities = fork + exec
 - Disk mem usage: Total Disk Memory Usage = freemem + freeswap
 - Total scalls: Total System Calls = scall + fork + exec
 - Char total: Total Characters Transferred = rchar + wchar
 - Io scall ratio: Total io/Total scalls

- Total pg faults= pflt+vflt
- 3. Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.

For the sake of analysis- 2 different approaches were adopted, based on which 2 different models were built

Model 1: Without feature Engineering **Model 2**: With Feature Engineering

Performance		MODEL	1- No Fea	iture Eng	ineering		IV	ODEL 2-	With Fe	ature en	gineerin	g
Metric	Metric Scikit learn Linear			nodels	Post-V	IF drop		learn		nodels	Post-V	IF drop
	Regre		U	LS			Linear Regression		O	LS		
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
R	0.786	0.793	0.786	0.797	0.963	0.967	0.779	0.785	0.779	0.788	0.961	0.963
square/Score												
Adj R square	-	-	0.785	0.795	0.963	0.967	-	-	0.778	0.787	0.961	0.963
RMSE	4.546	4.357	219	19			4.620	4.436	21	19		

Table.1.1 Linear Regression- Performance Comparison

Observations:

- Comparison between Models:
 - o Model 1, i.e., the model without feature engineering performs better in all aspects
- Comparison Between Methods:
 - Sklearn linear Regressions have better RMSE for both the models, but statsmodels OLS have better R square values
- Variance Influence factor analysis:
 - For both the models, after analyzing the most factor that most influences variance and dropping, the R square and adjusted R square values made a significant jump.
 - The difference of the R square and adjusted R square values before and after dropping the factor of most influence was 0.18.
 - However, beyond this, the r square and adjusted r square values showed no improvement for subsequent dropping of the most influential factors.
- 4. Inference: Basis on these predictions, what are the insights and recommendations.

Linear Equation- sklearn

```
 usr = (-0.05420 * Iread) + (0.04506 * Iwrite) - (0.00076 * scall) + (0.00228 * sread) - (0.00495 * swrite) - (0.14707 * fork) - (0.23054 * exec) - (0.00000 * rchar) - (0.00000 * wchar) - (0.45885 * pgout) + (0.03462 * ppgout) + (0.04065 * pgfree) + (0.00000 * pgscan) + (0.51061 * atch) + (0.00700 * pgin) - (0.05910 * ppgin) - (0.03145 * pflt) - (0.00639 * vflt) - (0.00053 * runqsz) + (0.00001 * freemem) + (1.84976 * freeswap)
```

Observations and Inferences:

- Based on the above equation, it can be inferred that the variables- freeswap, atch, and pgout contribute most to the percentage of time spent in usr mode, and hence are the most significant
- Variables with positive coefficients (e.g., `lwrite`, `sread`, `ppgout`, `pgfree`, `atch`, `pgin`, `freemem`, `freeswap`) have a positive impact on the target variable `usr`. An increase in these variables is associated with an increase in the portion of time that CPUs run in user mode.
- Variables with negative coefficients (e.g., `lread`, `scall`, `swrite`, `fork`, `exec`, `pgout`, `ppgin`, `pflt`, `vflt`, `runqsz`) have a negative impact on the target variable `usr`. An increase in these variables is associated with a decrease in the portion of time that CPUs run in user mode.
- Some input variables have zero coefficients ('rchar', 'wchar', 'pgscan'). This indicates that changes in these variables do not significantly impact the target variable.

Case 2: Contraceptive dataset- Logistic Regression, LDA and CART

1. Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, check for duplicates and outliers and write an inference on it. Perform Univariate and Bivariate Analysis and Multivariate Analysis.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1473 entries, 0 to 1472
Data columns (total 10 columns):
     Column
                                Non-Null Count
                                                Dtype
___
     -----
    Wife age
                                1402 non-null
                                                float64
 0
    Wife education
                                1473 non-null
                                                object
 1
    Husband education
                                1473 non-null
                                                object
     No of children born
                                1452 non-null
                                                float64
    Wife religion
 4
                                1473 non-null
                                                object
 5
     Wife Working
                                1473 non-null
                                                object
     Husband Occupation
                                                int64
                                1473 non-null
    Standard of living index
                                                object
 7
                                1473 non-null
     Media exposure
                                                object
 8
                                1473 non-null
     Contraceptive method used 1473 non-null
                                                object
dtypes: float64(2), int64(1), object(7)
memory usage: 115.2+ KB
```

Fig.2.1. Info of dataset

\$	count \$	unique 🕏	top \$	freq 🕏	mean 🕏	std 🕏	min 🕏	25% 💠	50% \$	75% 💠	max 🗢
Wife_age	1326.0	NaN	NaN	NaN	32.56	8.29	16.0	26.0	32.0	39.0	49.0
Wife_ education	1393	4	Tertiary	515	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Husband_education	1393	4	Tertiary	827	NaN	NaN	NaN	NaN	NaN	NaN	NaN
No_of_children_born	1372.0	NaN	NaN	NaN	3.29	2.4	0.0	1.0	3.0	5.0	16.0
Wife_religion	1393	2	Scientology	1186	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Wife_Working	1393	2	No	1043	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Husband_Occupation	1393.0	NaN	NaN	NaN	2.17	0.85	1.0	1.0	2.0	3.0	4.0
Standard_of_living_index	1393	4	Very High	618	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Media_exposure	1393	2	Exposed	1284	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Contraceptive_method_used	1393	2	Yes	779	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Fig.2.2 Data description

- Wife_age, No_of_children_born contains null values
- Of these, it is possible for the Number of children to be 0, hence need not be imputed
- There are blank values present in No of children born. These are imputed with mode of the field
- There were 80 duplicate records, which were removed.
- No_of_children field has outliers, but not very significant

2.1. EDA

Fig.2.3. Univariate analysis- Numerical columns

Fig.2.4. Univariate analysis- categorical columns

- The age of wife is almost normally distributed
- There are a few outliers in the Number of children born field
- Most women are educated, with the highest number of women having completed teritiary education
- The husband_education field also has maximum values in teritiary education field, with only a very low count of uneducated males.
- Most have upto 4 children. However, the data also shows people having more than 10 children. These might be genuine, or bad values.
- Most women adopt scientology as religion
- Most of the women are ot working
- A majority of the husbands have occupation -3
- This data has high counts of people having high or very high standard of living index
- Most of these people are media exposed
- most of these people have used contraceptive methods

Fig.2.5. Multivariate Analysis

- No discernable patterns emerge from the scatter plots
- Some minor correlation detected between the status and usage of contraceptives
- 2. Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis) and CART.

The following equations are obtained after the application of logistic regression and LDA respectively:

log(contraceptive usage)=-0.425 - 0.077 * Wife_age + 0.567 * Wife_education - 0.048 * Husband_education + 0.308 * No_of_children_born - 0.265 * Wife_religion - 0.065 * Wife_working + 0.069 * Husband occupation + 0.158 * Standard of living index + 0.314 * Media exposure

contraceptive_usage= 0.286- 0.075 * Wife_age + 0.572 * Wife_education - 0.057 *
Husband_education + 0.297 * No_of_children_born - 0.287 * Wife_religion - 0.071 * Wife_working +
0.069 * Husband_occupation + 0.158 * Standard_of_living_index + 0.299* Media_exposure

Fig 2.6. Regularized Decision Tree(Pruned)

Logistic Regression Score 1.0

Confusion Matrix:

[[91 93] [55 179]]

Classification Report:

Classificatio	precision	recall	f1-score	support
0	0.62	0.49	0.55	184
1	0.66	0.76	0.71	234
accuracy			0.65	418
macro avg	0.64	0.63	0.63	418
weighted avg	0.64	0.65	0.64	418

Fig.2.7. Logistic regression scores

LDA Score 1.0

Confusion Matrix:

[[89 95] [52 182]]

Classification Report:

	precision	recall	f1-score	support
Ø	0.63	0.48	0.55	184
1	0.66	0.78	0.71	234
accuracy			0.65	418
macro avg	0.64	0.63	0.63	418
weighted avg	0.65	0.65	0.64	418

Fig. 2.8. LDA scores

Regularized DTC Model Score 1.0

Confusion Matrix:

[[100 84] [47 187]]

Classification Report:

C1433111	caci	precision	recall	f1-score	support
	0	0.68	0.54	0.60	184
	1	0.69	0.80	0.74	234
accur	acy			0.69	418
macro	avg	0.69	0.67	0.67	418
weighted	avg	0.69	0.69	0.68	418

Fig.2.9. Regularized Decision Tree scores

Observations- Regularized Decision Tree:

- The output of the model is a pruned tree
- There are 10 levels
- 1 feature has a coefficient of 0- Wife_religion, and 2 have coefficients close to 0- Wife_working, Media_exposure.
- 3. Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

Train data:									
					Test data:				
Logistic Regr									
	precision	recall	f1-score	support	Logistic Reg				
						precision	recall	f1-score	support
0	0.65	0.50	0.57	430					
1	0.67	0.79	0.72	545	0	0.62	0.49	0.55	184
					1	0.66	0.76	0.71	234
accuracy			0.66	975				1	
macro avg	0.66	0.64	0.64	975	accuracy			0.65	418
weighted avg	0.66	0.66	0.65	975	macro avg	0.64	0.63	0.63	418
					weighted avg	0.64	0.65	0.64	418
LDA:			50		LDA:				
	precision	recall	f1-score	support		precision	recall	f1-score	support
	0.55	0.40	0.55	430		p			
0	0.66 0.66	0.48	0.56	430	0	0.63	0.48	0.55	184
1	0.66	0.81	0.73	545	1	0.66	0.78	0.71	234
			0.66	975					
accuracy	0.66	0.64	0.64	975 975	accuracy			0.65	418
macro avg weighted avg	0.66	0.66	0.65	975 975	macro avg	0.64	0.63	0.63	418
weighted avg	0.00	0.00	0.05	9/5	weighted avg	0.65	0.65	0.64	418
CART-Decision	n Tree- regul	arized:			CART-Decision	n Tree- regul	larized:		
	precision	recall	f1-score	support	CART DECISION	precision		f1-score	support
	•					p. cc1510	, , , ,	12 300.0	Suppor c
0	0.78	0.62	0.69	430	0	0.68	0.54	0.60	184
1	0.74	0.86	0.80	545	1	0.69	0.80	0.74	234
accuracy			0.76	975	accuracy			0.69	418
macro avg	0.76	0.74	0.75	975	macro avg	0.69	0.67	0.67	418
weighted avg	0.76	0.76	0.75	975	weighted avg	0.69	0.69	0.68	418

Fig.2.10. Accuracy and scores comparison across models for Train and test Data

- Train Data:
 - o CART is better in terms of accuracy- 0.76 against 0.66 for LDA and Logistic Regression
 - CART also gives better F1 scores for both the classes (0.69 and 0.80) as against LDA (0.56 and 0.73) and Logistic regression (0.57 and 0.72)
- Test Data:
 - o CART is better in terms of accuracy- 0.69 against 0.65 for LDA and Logistic Regression
 - CART also gives better F1 scores for both the classes (0.60 and 0.74) as against LDA and Logistic regression (0.55 and 0.71)

Fig.2.11. Confusion Matrix comparisons

	Logistic R	egression	L	DA .	CART- Re	Test 84		
	Train	Test	Train	Test	Train	Test		
Type I Error	215	93	223	96	162	84		
Type II Error	115	55	106	52	76	47		

Table 2.1. Type I and II Error comparison across models

- From the above, it can be inferred that CART model outperforms the other two

Fig.2.13. ROC Curves across models for train and test data

Train Data: AUC Scores: Test Data: AUC Scores:

Logistic Regression: 0.704 Logistic Regression: 0.691

LDA: 0.703 LDA: 0.69

Regularized DTC: 0.833 Regularized DTC: 0.733

Fig.2.14. AUC scores comparison

Observations:

- From the graphs and scores above, it can be inferred that of the three models, CART gives better fit in both train and test sets.

4. Inference: Basis on these predictions, what are the insights and recommendations.

Summary:

- For the given dataset, the performance of LDA and logistic regression were similar. However, CART gave better results
- This can be an indication of a non-linear relation between the predictors and target
- Based on the equations derived from LDA and logistic regression, the features that create maximum separability are Wife_education, Media_exposure and Number_of_children_born
- Hence, in order to improve contraceptive usage these actors could be targeted