FMI, Info, Anul II, 2021-2022 Fundamentele Limbajelor de Programare

Seminar 3 Puncte fixe

Teorie pentru S3.1:

O mulțime parțial ordonată (mpo) este o pereche (M, \leq) unde $\leq \subseteq M \times M$ este o relație de ordine (i.e., reflexivă, antisimetrică, tranzitivă). O mulțime parțial ordonată (C, \leq) este completă (cpo) dacă C are prim element $\perp (\perp \leq x \text{ oricare } x \in C)$ și $\bigvee_n x_n$ există în C pentru orice lanț $x_1 \leq x_2 \leq x_3 \leq \ldots$

Fie (C, \leq_C) o mulţime parţial ordonată. Un element $a \in C$ este punct fix al unei funcţii $f: C \to C$ dacă f(a) = a. Un element $lfp \in C$ este cel mai mic punct fix al unei funcţii $f: C \to C$ dacă este punct fix şi pentru orice alt punct fix $a \in C$ al lui f avem $lfp \leq_C a$.

(S3.1) Care sunt punctele fixe ale următoarelor funcții? Indicați cel mai punct fix.

1)
$$f_1: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), f_1(Y) = Y \cup \{1\}.$$

2)
$$f_2: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), f_2(Y) = \begin{cases} \{1\} & \text{dacă } 1 \in Y \\ \emptyset & \text{altfel} \end{cases}$$
.

3)
$$f_3: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), f_3(Y) = \begin{cases} \emptyset & \text{dacă } 1 \in Y \\ \{1\} & \text{altfel} \end{cases}$$
.

Teorie pentru S3.2:

Fie (A, \leq_A) şi (B, \leq_B) mulţimi parţial ordonate. O funcţie $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

O clauză definită propozițională este o formulă care poate avea una din formele:

- -q (clauză unitate)
- $-p_1 \wedge \ldots \wedge p_k \to q$

unde q, p_1, \ldots, p_n sunt variabile propoziționale.

Fie S o mulțime de clauze definite propoziționale. Fie A mulțimea variabilelor propoziționale p_1, p_2, \ldots care apar în S și $Baza = \{p_i \mid p_i \in S\}$ mulțimea clauzelor unitate din S. Definim funcția $f_S : \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_S(Y) = Y \cup Baza \cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y, \ldots, s_n \in Y\}$$

(S3.2) Arătați că funcția f_S este monotonă.

Teorie pentru S3.3, S3.4 și S3.5:

Fie (A, \leq_A) şi (B, \leq_B) mulţimi parţial ordonate complete. O funcţie $f: A \to B$ este continuă dacă $f(\bigvee_n a_n) = \bigvee_n f(a_n)$ pentru orice lanţ $\{a_n\}_n$ din A. Observăm că orice funcţie continuă este crescătoare.

Pentru orice mulțime de clauze definite propoziționale S, funcția f_S este continuă.

Teorema 1 (Knaster-Tarski). Fie (C, \leq) o mulţime parţial ordonată completă şi $\mathbf{F}: C \to C$ o funcţie continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\bot)$$

este cel mai mic punct fix al funcției F.

(S3.3) Calculați cel mai mic punct fix pentru functia f_{S_i} , $i \in \{1, 2, 3\}$, pentru următoarele mulțimi de clauze definite propoziționale:

- 1) $S_1 = \{x_1 \land x_2 \to x_3, x_4 \land x_2 \to x_5, x_2, x_6, x_6 \to x_1\}.$
- 2) $S_2 = \{x_1 \land x_2 \to x_3, x_4 \to x_1, x_5 \to x_2, x_2 \to x_5, x_4\}.$
- 3) $S_3 = \{x_1 \to x_2, x_1 \land x_3 \to x_1, x_3\}.$