

IDENTIFICATION DU COMPORTEMENT D'UN SYSTEME PREDICTION DE LA STABILITE

NACELLE DE DRONE

1 Presentation

1.1 Objectifs

Les objectifs de ces deux séances de TP sont :

- analyser le système;
- ☐ identifier le comportement fréquentiel et temporel du système
- prédire les limites de la stabilité

1.2 Contexte pédagogique

Modéliser:

- Mod 2 : Proposer un modèle de connaissance et de comportement
- Mod 3 : Valider un modèle.

1.3 Évaluation des écarts

Au cours de ce TP on se préoccupera d'analyser les écarts entre les performances mesurées et les performances simulées.

Problématique : comment identifier le comportement d'un SLCI ?

Le compte rendu sera à faire sous forme d'un poster à effectuer sur le mini-tableau blanc.

2 MODELE DE COMPORTEMENT - IDENTIFICATION FREQUENTIELLE

Activité 1 : Coordinateur, Modélisateur, Expérimentateur

Decouvrir le fonctionnement (iu systeme.				
Valider un critère du cahier de	☐ Valider un critère du cahier des charges.				
Réaliser la chaîne fonctionnell	_				
- Realiser la chaine fonctionnen	c.				
Davis assaulta an main la avetèma se		to 1/2 - 200 - 1/3 - 200 1/4 - 1500 of			
Pour prendre en main le système, régler les correcteurs aux valeurs suivantes Kp = 800 ; Ki = 800, Kd = 1500 et					
observer le comportement de la nacelle pour une consigne de 10°.					
Synthèse					
Le coordinateur réalise la chaîne fonctionnelle du système.					
☐ Indiquer l'erreur statique et le temps de réponse à 5%.					
A adicated O .					
activité 2 :		6 11 1			
Expérimentateur	Modélisateur	Coordinateur			
Réaliser les relevés expérimentaux	Dans la feuille Excel, déterminer les	Dans le compte-rendu, donner le			
permettant de tracer le diagramme	formules permettant le tracé du	protocole expérimental permettant			
de Bode en boucle ouverte.	diagramme de Bode.	de tracer un diagramme de Bode.			
Remarque :					
☐ Les mesures se feront en bouc	do ouworto				
Les coefficients du correcteur	Seront tixes a kn=1 Kl=() Kd=()				
 Au moins 8 relevés avec des si 	nusoïdes de périodes comprises entre (

Synthèse

Le modélisateur et l'expérimentateur ajoutent le diagramme de Bode au compte-rendu.

Activité 3 : Coordinateur, Modélisateur, Expérimentateur

☐ Il faudra observer approximativement 5 à 10 périodes.

☐ En utilisant le diagramme de Bode, proposer une fonction de transfert en Boucle Ouverte du système.

Synthèse

Indiquer la FTBO retenue.

Activité 4 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant le diagramme de Bode expérimental, déterminer à partir de quel gain dans le Boucle ouverte le système devient instable (marge de gain nulle).
- ☐ Déterminer le gain Kp maxi permettant d'obtenir une marge de gain de 6dB.
- Renseigner ce gain dans le correcteur et vérifier l'instabilité en boucle fermée.

Synthèse

Donner le gain proportionnel à la limite de la stabilité.

3 MODELE DE COMPORTEMENT — IDENTIFICATION TEMPORELLE

Activité 5 :				
Expérimentateur	Modélisateur	Coordinateur		
Réaliser une réponse à un échelon en	Dans la feuille Excel, déterminer les	Dans le compte-rendu, donner le		
boucle fermée et relever les	formules permettant la détermination	protocole expérimental permettant		
grandeurs caractéristiques	des paramètres canoniques.	déterminer les paramètres		
nécessaires à une identification		canoniques.		
temporelle.				

_		
Pam	ara	HΔ
Rem	aı y	uc

- Afin de ne pas saturer la commande du moteur, il sera nécessaire d'avoir un mouvement de faible amplitude (échelon de 10°).
- ☐ Les coefficients du correcteur seront fixés à Ki=0, Kd=0.

Synthèse

Donner la fonction de transfert en boucle fermée identifié grâce à la réponse temporelle.

4 COMPARAISON DES MODELES

Activité 6 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant Matlab-Simulink :
 - implémenter la FTBO issue de la réponse fréquentielle et réaliser le bouclage ;
 - implémenter en parallèle al FTBF issue de la réponse temporelle.
- ☐ Réaliser la comparaison des deux modèles et commenter.

Synthèse

Réaliser une comparaison qualitative des 2 modèles et d'un essai sur une réponse indicielle.

5 INFLUENCE DES CORRECTEURS

5.1 Influence du correcteur proportionnel

Activité 7 : Coordinateur, Modélisateur, Expérimentateur

☐ En utilisant uniquement un correcteur proportionnel et en l'augmentant progressivement, analyser l'influence du gain proportionnel sur la réponse indicielle.

5.2 Influence du correcteur intégral

Activité 8 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant uniquement un gain proportionnel faible et en augmentant progressivement, le coefficient Ki, analyser l'influence sur la réponse indicielle.
- □ Pour cette activité on prendre **Kp=100**, **Kd=0**, **Ki=20** à **2000**.

5.3 Influence du correcteur dérivé

Activité 9 : Coordinateur, Modélisateur, Expérimentateur

- ☐ En utilisant uniquement un gain dérivateur en boucle ouverte, analyser l'effet du correcteur sur la phase.
- ☐ Pour cette activité on prendre **Kp=0**, **Kd=20**, **Ki=0**.

6 CONCLURE

Synthèse

- ☐ Comparer les 2 modèles avec un essai et analyser les écarts.
- ☐ Analyser l'influence des différents correcteurs.