Eine Woche, ein Beispiel 10,20 Schur functor: basic formulas

Main reference:

[FH]: Willian Fulton and Joe Harris. Representation Theory. A First Course.

[Hall]: Brian Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate Texts in Mathematics. Cham: Springer International Publishing, 2015.

In this document, char k = 0, $V \in Vect_k$.

Schur fctor helps us to decompose $V^{\otimes k}$ by S_k gp action. $S^{\lambda}V$ generalize Sym^kV & Λ^kV . Moreover,

$$Rep(GL(V)) = Rep(A_{n-1}) \qquad n = dim V$$

$$S^{\lambda}V = \mathcal{L}(\lambda)$$

Here, λ has many expressions, e.g. partitions

weights

$$\lambda = \frac{1}{2\omega_1 + \omega_2}$$

- 1. dimension
- 2. $S^{\lambda}(V \oplus W)$ and ...

1. dimension

It can be computed from the Weyl dimension formula:

$$dim_{x} \mathcal{L}(\lambda) = \frac{\prod_{\alpha \in \Delta^{+}} (\lambda + \rho, \alpha)}{\prod_{\alpha \in \Delta^{+}} (\rho, \alpha)}$$

$$\frac{\mathcal{L}(\lambda) e^{rep}(A_{n-1})}{\lambda = \sum_{m_{1} \neq \infty_{1}} (m_{1}-1) \cdots (m_{n-1}+1) (m_{1}+m_{2}+2) (m_{2}+m_{3}+2) \cdots \cdots (\sum_{m_{1}+n-1})}{1 \cdots 1}$$

$$\frac{1 \cdots 1}{n-1 \text{ many}} \frac{2 \cdot 2 \cdot \cdots \cdot (\sum_{m_{1}+n-1})}{n-1}$$

$$= \frac{\prod_{1 \leq i < j \leq n} \frac{\lambda_{i} - \lambda_{j} + j - i}{j - i} [FH, Thm 6.3 (1)]}{\prod_{1 \leq i < j \leq n} \frac{n - i + j}{h_{ij}} [FH, Ex 6.4]}$$

Following [Hall Example 10.23],

$$\Delta^{+} = \begin{cases} \sum_{\alpha_{i} \neq \alpha_{i}} \sum_{\alpha_{i} \neq \alpha_{i}}$$

These would be enough to explain the first equality above.

E.g. When $\lambda = (3,1) = \square = 2\omega_1 + \omega_2$,

$$dim_{\mathcal{K}} \mathcal{I}(\lambda) = \frac{(2+1)(1+1)(0+1)\cdots(2+1+2)(1+0+2)(0+0+2)\cdots(2+1+6n-1)}{1 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot \dots \cdot (2+1+6n-1)}$$

$$= \frac{(2+1)(1+1)}{1 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 2 \cdot \dots \cdot (2+1+6n-1)}$$

$$= \left(\frac{2+1}{1} \cdot \frac{3+2}{2} \cdot \frac{3+3}{3} \cdot \frac{00 \cdot 3+n-1}{n-1}\right) \cdot \left(\frac{1+1}{1} \cdot \frac{1+2}{2} \cdot \frac{(+3)}{3} \cdot \dots \cdot \frac{(+n-2)}{n-2}\right)$$

$$= \frac{(n-1)h(n+1)(n+2)}{1 \cdot 4 \cdot 2 \cdot 1}$$

$$= \frac{(n-1)h(n+1)(n+2)}{1 \cdot 4 \cdot 2 \cdot 1}$$

2. $S^{\lambda}(V \oplus W)$ and ...

E.g.
$$(\bigvee \oplus \bigvee)^{\otimes^2} = \bigvee^{\otimes^2} \oplus (\bigvee \otimes \bigvee)^{\oplus^2} \oplus \bigvee^{\otimes^2}$$

 $Sym^2(\bigvee \oplus \bigvee) = Sym^2\bigvee \oplus \bigvee \otimes \bigvee \oplus Sym^2\bigvee \bigoplus \bigwedge^2(\bigvee \oplus \bigvee) = \Lambda^2\bigvee \oplus \bigvee \otimes \bigvee \oplus \bigvee^{\otimes^2}$

With the help of [FH,Ex 6.11], we can get the following tables:

	2+0	1+1	0 + 2
	H	□⊗□	8
B	El	□⊗□	Ð

	3+0	2+1	1+2	0+3
		[]⊗□	□⊗□	Ш
Ð	F			F
E	6	∃⊗□	□⊗日	[]

	4+0	3+1	2+2	• • •
Ш		Ⅲ ⊗ □		
H	田		8 8 8 8 8 8	
田	田	₽ ∞□	□ ⊗ □□ ⊗ □	•
F	F	日8日	□ H □ □ H □ □ H □ H □ H □ H □ H □ H □ H	•
		日⊗□	日8日	

	5+0	4+1	3+2	1.1.1
			田⊗田	
- HIII	HII.	Ⅲ ⊗□ 田 ⊗□	五月日 888 11日日	
	毌	田8日	4年日 888 00日	
F	F		〒⊗日 日⊗日 日⊗日 日⊗日	
F	甲	田 8 8 0 1	BB	
F	f	里 🛭 🔊 🗆	日 日 日 日 日 日 日	
		[⊗ □	E⊗B	