Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 25

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard A3.

Mark:

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$S: \mathbb{R}^4 \to \mathbb{R}^3$$
 where $S(\vec{e}_1) = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$, $S(\vec{e}_2) = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$, $S(\vec{e}_3) = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}$, and $S(\vec{e}_4) = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$,

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 where $T(\vec{e_1}) = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $T(\vec{e_2}) = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$, and $T(\vec{e_3}) = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$.

Standard A4.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 8x - 3y - z \\ y + 3z \\ -7x + 3y + 2z \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T.

Additional Notes/Marks