Problem Set 6 Abstract Algebra I

Bennett Rennier barennier@gmail.com

January 15, 2018

Section 1.3

Ex 4 Compute the order of each of the elements in the following groups: (a) S_3 (b) S_4

Proof. Since $S_3 \subseteq S_4$, we only need to find the order of the elements of S_4 . The elements that don't have a 4 in them are the elements of S_3 .

- 1) |()| = 1
- 2) |(12)| = |(13)| = |(14)| = |(23)| = |(24)| = |(34)| = 2
- 3) |(123)| = |(132)| = |(142)| = |(124)| = |(134)| = |(143)| = |(234)| = |(243)| = 3
- 4) |(1234)| = |(1243)| = |(1324)| = |(1342)| = |(1423)| = |(1432)| = 4
- 5) |(12)(34)| = |(13)(24)| = |(14)(23)| = 2

These are all 24 elements of S_4 . All these elements can be proven to have this order by exercise 14, except for group 4, which can be easily checked.

Ex 13 Show that an element has order 2 in S_n if and only if its cycle decomposition is a product of commuting 2-cycles.

Proof. See next exercise.

Ex 14 Let p be a prime. Show that an element has order p in S_n if and only if its cycle decomposition is a product of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.

Proof. Let $a_i \in G$ be commuting cycles. Claim: $\left(\prod_{i \in I} a_i\right)^n = \prod_{i \in I} a_i^n$. Proof by induction: Let |I| = 1. Then the statement is trivial. Suppose the statement holds for all sets of cardinality n, and let |I| = n + 1. We see that $\left(\prod_{i \in I} a_i\right)^n = \left(a_k \cdot \prod_{i \in I \setminus \{k\}} a_i^n\right) = a_k$.

 $\left(\prod_{i\in I\setminus\{k\}}a_i\right)^n=a_k^n\cdot\prod_{i\in I\setminus\{k\}}a_i^n=\prod_{i\in I}a_i^n$. The second equality holds as the a_i commute with each other.

If σ is the product of commuting p-cycles, say a_i , then $\sigma^p = \left(\prod_{i \in I} a_i\right)^p = \prod_{i \in I} a_i^n = \prod_{i \in I} 1 = 1$. This, the order of σ divides p. Since the cycle decomposition is non-trivial, σ is not the identity. Thus, $|\sigma| = p$.

Let $|\sigma| = p$. We can decompose σ into disjoint, and thus commuting, cycles. Now suppose this decomposition contains a cycle a_k of order n, where $n \neq p$. We see that $1 = \sigma^p = \left(\prod_{i \in I} a_i\right)^p = \prod_{i \in I} a_i^p$. Since the a_i 's are disjoint, they can't be inverses of each other. Thus it must be that $a_i^p = 1$. This means that the order of a_i divides p. If a_i has order 1, then it must be the identity, so we can remove it and the product is still σ . Thus, each a_i must have order p.

Let $\sigma = (123)(45) \in S_n$ for $n \geq 5$. We see that its decomposition is into disjoint cycles of order 3 and 2. This proves that the result doesn't hold if p is not prime.

Section 3.2

Ex 14 Prove that S_4 does not have a normal subgroup of order 8 or a normal subgroup or order 3.

Proof. Suppose $N ext{ } ext{$\subseteq$ } G$ and |N| = 3. Since there are 8 elements of S_4 of order 3 (See Sec 1.3 Ex 4), there must be an element with order 3 that isn't in N, that is to say $xN \neq N$. But we see that $(xN)^3 = x^3N = eN = N$ since N is normal. This means the order of xN is either 1 or 3. It can't be 1, as we assumed that $xN \neq N$. It also can't be 3, as the order of G/N is 8, and thus the order of any element in G/N must divide 8. This proves that there is no normal subgroup of order 3.

Suppose $N \subseteq G$ and |N| = 8. Since there are 9 elements of S_4 of order 2 (See Sec 1.3 Ex 4), there must be an element with order 2 that isn't in N, that is to say $xN \neq N$. But we see that $(xN)^2 = x^2N = eN = N$ since N is normal. This means the order of xN is either 1 or 2. It can't be 1, as we assumed that $xN \neq N$. It also can't be 2, as the order of G/N is 3, and thus the order of any element in G/N must divide 3. This proves that there is no normal subgroup of order 8.

Ex 15 Let $G = S_n$ and for fixed $i \in \{1, 2, ..., n\}$ let G_i be the stabilizer of i. Prove that $G_i \simeq S_{n-1}$.

Proof. Let $I = \{1, \ldots, n\} \setminus \{i\}$, and let $\varphi : G_i \to S_I$ where $\varphi(\sigma) = \sigma \mid_I$, that is, σ restricted to I. We see that this is a permutation of I, as $\sigma(i) = i$. Given a permutation of I, we can extend it to $\{1, \ldots, n\}$, by letting $\sigma(i) = i$. It's easy to see that these two operations are inverses of each other. Thus, φ is a bijection. We also see that $\varphi(\sigma \circ \delta)(x) = (\sigma \circ \delta) \mid_I (x) = \sigma \mid_I (\delta \mid_I (x)) = \sigma \mid_I (\varphi(\sigma)(x)) = \varphi(\sigma)(\varphi(\delta)(x)) = (\varphi(\sigma) \circ \varphi(\delta))(x)$, where $x \in I$. Thus, φ is a bijective homomorphism, which means that it's a isomorphism. We've proven before that since |I| = n - 1, $S_I \simeq S_{n-1}$. Thus, $G_i \simeq S_I \simeq S_{n-1}$.

Ex 20 If A is an abelian group with $A \subseteq G$ and B is any subgroup of G prove that $A \cap B \subseteq AB$.

Proof. Let $x \in A \cap B$ and let $g = ab \in AB$. We see that $gxg^{-1} \in A$, as A is normal in G and $x \in A$ and $g \in AB \subseteq G$. We also see that $gxg^{-1} = abx(ab)^{-1} = abxb^{-1}a^{-1}$. We see that $bxb^{-1} \in A$, as A is normal in G and $x \in A$ and $b \in B \subseteq G$. Since A is abelian, this means that $abxb^{-1}a^{-1} = aa^{-1}bxb^{-1} = bxb^{-1} \in B$, as $b \in B$ and $x \in B$. Thus, for $g \in AB$ and $x \in A \cap B$, we see that $gxg^{-1} \in A \cap B$. This proves that $A \cap B \subseteq AB$.

Section 3.3

Ex 1 Let F be a finite field of order q and let $n \in \mathbb{Z}^+$. Prove that $|GL_n(F) : SL_n(F)| = q - 1$.

Proof. We know already that det: $GL_n(\mathbb{F}) \to \mathbb{F}$ is a homomorphism where $\ker \det = SL_n(\mathbb{F})$. Since for any nonzero $f \in \mathbb{F}$, $\det(A) = f$, where A is the matrix with f in the first entry, 1 in the rest of the diagonal, and 0 everywhere else. By definition no element of $GL_n(\mathbb{F})$ has determinant 0. Thus, $\operatorname{Im} \det = \mathbb{F}^{\times}$. Thus, by the First Isomorphism Theorem, $GL_n(\mathbb{F})/SL_n(\mathbb{F}) \simeq \mathbb{F}^{\times}$. Since the order of \mathbb{F}^{\times} is q-1, this means that $|GL_n(\mathbb{F})/SL_n(\mathbb{F})| = |GL_n(\mathbb{F})| : SL_n(\mathbb{F})| = q-1$.

Ex 2 Prove all parts of the Lattice Isomorphism Theorem.

Ex 3 Prove that if H is a normal subgroup of G of prime index p then for all $K \leq G$ either

- i) $K \leq H$ or
- ii) G = HK and $|K : K \cap H| = p$.

Proof. If $K \subseteq H$, then $K \leq H$. Assume that $K \not\subseteq H$. Let $k \in K \setminus H$. Thus, $kH \neq H$. Since [G:H]=p, this means that G/H is generated by any nonidentity element of G/H. Thus, $\langle kH \rangle = G/H$. Let $g \in G$. We see that $gH=(kH)^n=k^nH$ for some $n \in \{0,\ldots,p-1\}$. This means that $g(k^n)^{-1} \in H$, which shows that $gk^{-n}=h$ for some $h \in H$. This means that $g=hk^n \in HK$. This proves that G=HK.

Let $\varphi(w(K \cap H)) = wH \in G/H$, where $w \in K$. Let $w(K \cap H) = z(K \cap H)$. Then $wz^{-1} \in K \cap H$. Thus, $wz^{-1}H = H$, as $wz^{-1} \in H$. This means that wH = zH. This proves well-definedness. Let $\psi(wH) = w(K \cap H)$, again where $w \in K$. If wH = zH, then $wz^{-1} \in H$. wz^{-1} is in K as well, as both w and z are in K. Thus, $wz^{-1} \in H \cap K$, which means that $w(H \cap K) = z(H \cap K)$. This proves well-definedness. It's easy to see that these two functions are inverses. Thus, there is a bijection between the two sets. This proves that $[K:K \cap H] = [G:H] = p$.

Section 3.4

Ex 1 Prove that if G is an abelian simple group then $G \simeq Z_p$ for some prime p (do not assume G is a finite group).

Proof. Suppose G is abelian and simple. If G has a subgroup, then that subgroup is normal, as G is abelian. Since G is simple, it has no non-trivial normal subgroups, and thus, it can't have any non-trivial subgroups. Let $e \neq g \in G$, which must exist as the definition of simple means that |G| > 1. Then $\langle g \rangle$ is a subgoup. Since G has no non-trivial subgroups, then $\langle g \rangle$ must be $\{e\}$ or G itself. Since $g \neq e$, this means that $\langle g \rangle = G$. Thus, G is cyclic. Suppose |G| was not prime. Then |g| is not prime. Let jk be this quantity, where neither is equal to one. This means that $(g^j)^k = g^{jk} = 1$. Since |g| = jk, $g^j \neq e$, as jk is the least quantity with this property. Thus, $|g^j|$ is not 1 and divides k, which means that $1 < |g^j| < jk$. Thus, $1 < |\langle g \rangle| < jk$, which means that $\langle g^j \rangle$ is a proper non-trivial subgroup of G, which is a contradiction. Thus, |G| = p for some prime p. Since G is a cyclic group of order p, this means that $G \simeq Z_p$.

Ex 2 Exhibit all 3 composition series for Q_8 . List the composition factors.

Proof. We see that i, j and k have order 4 and thus generate cyclic groups of order 4. Since $[Q_8 : \langle i \rangle] = 2$, then by additional problem A, $\langle i \rangle$ is normal in Q_8 . This group contains $\{-1, 1\}$, which is a group of order 2. Since $[\langle i \rangle : \{-1, 1\}] = 2$, again, $\{-1, 1\}$ must be norman in $\langle i \rangle$. The only subgroups of $\{-1, 1\}$ are trivial, so we're done. This gives the composition series $1 \leq \{-1, 1\} \leq \langle i \rangle \leq Q_8$. Since the index of each part of the chain is 2, the composition factors are all isomorphic to the unique group of order 2. Similarly, this can be done with $\langle j \rangle$ oo $\langle k \rangle$, which give the other two composition series, also with all the composition factors being the group of order 2.

Additional Problems

Ex A Let H be a subgroup of G and assume that [G:H]=2. Prove that H is a normal subgroup.

Proof. Since [G:H]=2, this means that H has two cosets. Denote them as H and H'. Let $g \in G$. If $g \in H$, then gH=H=Hg. If $g \notin H$, then $gH\neq H$, which means that gH=H'. By similar reasoning, Hg=H'. Thus, gH=H'=Hg. Since gH=Hg for all $g \in G$, this proves that H is normal.

Ex B Recall that a character of a group G is a group homomorphism $\alpha: G \to \mathbb{C}^{\times}$.

B1) Recall that G acts on X = G by the conjugation action given by $g.x = gxg^{-1}$. Given any $x \in X$, the conjugacy class of x is the orbit G.x. Prove that if α is a character, then it is constant on each conjugacy class. That is, if $x_1, x_2 \in X$ are in the same conjugacy class, then $\alpha(x_1) = \alpha(x_2)$.

Proof. B1) Let x_1, x_2 be in the same conjugacy class. That means that $x_1 = g_1.x$ and $x_2 = g_2.x$ for some $x, g_1, g_2 \in G$. This means that $\alpha(x_1) = \alpha(g_1.x) = \alpha(g_1.x) = \alpha(g_1xg_1^{-1}) = \alpha(g_1)\alpha(x)\alpha(x_2)^{-1}$. Since \mathbb{C}^{\times} is abelian, this means that $\alpha(x_1) = \alpha(x)$. By a similar argument, $\alpha(xstwo) = \alpha(x)$. Thus, $\alpha(x_1) = \alpha(x_2)$.

4

- **Ex** C C1) Prove that every transposition in S_n is an odd element.
- C2) If (a_1, \ldots, a_k) is a cycle in S_n , please give a method for determining if the cycle is an even or odd element. Of course, please prove your method always works.
- Proof. C1) Suppose every transposition was even. Let σ be a permutation. This means that it can be written as a product of transpositions, call them a_i . Since sgn is a homomorphism, this means that $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\prod_{i \in I} a_i) = \prod_{i \in I} \operatorname{sgn}(a_i) = \prod_{i \in I} 1 = 1$. This means that every element of S_n is even. As $\operatorname{ker} \operatorname{sgn} \neq S_n$. Thus, there must be an odd transposition, call it $\tau = (jk)$. Let $\sigma = (mn)$, be an arbitrary transposition. Let λ be the permutation that transposes m with j and n with k. We see then that $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\lambda \tau \lambda) = \operatorname{sgn}(\lambda) \operatorname{sgn}(\tau) \operatorname{sgn}(\lambda) = \operatorname{sgn}(\tau) \operatorname{sgn}(\lambda)^2 = -1$. Thus, every transposition must be odd.
- C2) Such a cycle is odd if k is even and even if k is odd. The proof is that this cycle can be rewritten as $(a_1a_k)(a_1a_{k-1})\dots(a_1a_2)$. This can be verified by seeing that a_1 goes to a_2 , and then there are no other cycles containing a_2 , so that's the final result. Also, for a_n , where $n \neq k$, it's transposed with a_1 , and then immediately transposed with a_{n+1} , which doesn't occur again in any of the other cycles. For a_k , it's transposed in the end with a_1 and that's it. Thus, this is the same cycle. Since sgn is a homomorphism and every transposition has an odd parity, we see that

$$sgn((a_1a_2...a_k)) = sgn((a_1a_k)(a_1a_{k-1})...(a_1a_2)) = (-1)^{k-1}$$

Since sgn is a well-defined homomorphism, this is the definitive parity of the cycle. This proves that if k is even, then the parity is odd and vice-versa.