A Tennis Match Performance Rating System using Logistic Regression of 32 Statistics

Aidan Sims

The Rating System

- Seek to use match statistics to quantify performance from 0-10
- Similar to passer rating and WhoScored Rating
- Use logistic regression
- Especially useful in high school and college, and doubles

Idea behind Model

- Want to rank a large corpus of data, figure out what leads to a high or low rank
 - Assign top to 10, bottom to 0.
- But that's not very simple
 - Considered RSVM, merge sort, other ranking techniques
- Key Idea: A higher ranked/rated performance should have a higher probability of winning
- Now just have to predict winning
 - Higher certainty is higher rate/rank

%	Serve	%	Serve
8.7%	Ace %	5.3%	Ace %
1.0%	Double Fault %	1.3%	Double Fault %
74.8%	1st Serve %	69.7%	1st Serve %
83.1%	1st Serve Won %	75.5%	1st Serve Won %
53.8%	2nd Serve Won %	60.9%	2nd Serve Won %
0.0%	Break Points Saved %	0.0%	Break Points Saved %
75.7%	Service Points Won %	71.1%	Service Points Won %
%	Return	%	Return
14.9%	1st Srv. Return Won %	23.6%	1st Srv. Return Won %
52.9%	2nd Srv. Return Won %	65.4%	2nd Srv. Return Won %
66.7%	Break Points Won %	100.0%	Break Points Won %
27.7%	Return Points Won %	37.0%	Return Points Won %
%	Total	%	Total
1.14	Points Dominance	1.28	Points Dominance
52.0%	Total Points Won %	53.5%	Total Points Won %
	Match Time		Match Time

Data

- Data from https://www.ultimatetennisstatistics.com/
- Training data from 2022 Montreal and Cincinnati ATP Masters
 - 110 matches so 220 data points
- Test data from 2022 ATP Finals
 - 15 matches so 30 data points
 - Plus fake matches to test corner cases

Data

 Store these statistics in a Python class

- Whether the player won (as a binary indicator)
- Ace Percentage (Aces per Service Point)
- Double Fault Percentage
- First Serve Percentage
- First Serve Win Percentage
- Second Serve Win Percentage
- Break Points Saved Percentage
- Service Points Won Percentage
- First Serve Return Points Won Percentage
- Second Serve Return Points Won Percentage
- Break Points Won Percentage
- Return Points Won Percentage
- Points Won Percentage (All points)
- · Aces per Service Game
- Double Faults per Second Serve
- Double Faults per Service Game
- Service In-Play Points Won
- · Points per Service Game
- Points Lost per Service Game
- Break Points per Service Game
- Service Games Won Percentage

- Service Games Lost per Set
- Return In-Play Points Won
- · Points per Return Game
- · Points Won per Return Game
- Return Games Won Percentage
- Winner Percentage (Winners per Point Won)
- Unforced Error Percentage (Unforced Errors per Point Lost)
- Forced Error Percentage
- Points Played at the Net Percentage
- Net Points Won Percentage
- Points Won at the Net Percentage (Net Points Won per

Point Won

- Average Second Serve Speed to First Serve Speed Ratio
- Average Serve Speed to Maximum Serve Speed Ratio
- Games Won Percentage

$$g(z) = \frac{1}{1 + e^{(-z)}}$$

Logistic Regression

- In a regression, we look at how each individual input (statistic) affects the output (% chance of winning)
 - "Logistic" constrains our output
- Have a set of weights which are initially 0
- For 900,000 times:
 - See how far off we are with prediction and error functions
 - Use calculus to see how we can update our model

$$h = g(X\theta)$$

$$J(\theta) = \frac{1}{m} \cdot \left(-y^T \log(h) - (1 - y)^T \log(1 - h)\right)$$

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x;\theta), y)$$

After running:

100 % accuracy on training data, 91% on test

Need to compress the sigmoid function by a factor of 500,000

- 86% on training data, 84% on test
- Average rating of 6.6

Results

To get rating, multiply by 10.

If output > 8.4, add .1

Otherwise, rating = $((x-5.8)/3)^3+2(x-8)+6.5$

Ace %: 11360.772800111796 1st Serve %: 4502.6193957814985 Return to Service Points Ratio: -366.73736830684794 Net Points Played %: -1233.4547197224801 Winner %: -1862.0304604789148 DF %: -5670.169724754847 Points Won at Net %: -6317.107819530779 Double Faults per Second Serve %: -12328.529493552753 Unforced Error %: -13627.35702253192 DFs per Service Game %: -40540.391441273365

Break Points faced per Service Game: -89646.83896531095 Points Lost per Service Game: -209633.195151262

Points per Service Game: -80998.84293565416

Forced Error %: 13959.012280759684

Testing

- For a "perfect match", a rating of 9.85 is given
 - For the opposite, a 0
- Model seems to reward good play well
- But it is hard to test the model exactly because ratings are subjective
- Need to test it for matches in progress

2023 Madrid Final (May 7th) Alcaraz d. Struff 6-4, 3-6, 6-3 Model: Alcaraz - 6.81 Struff 6.21

Next Steps

- Further testing is needed
- Either on data or on live matches
- Add as a feature into another project

```
Player A Player Ca
Sunday, May 7, 2023
                       Serving: Player A
                      ○ Yes ○ No
Who won the point?
                     O Player A O Player B
Who came to the net?
                    How was the point won?
  O Ace O Service Winner O Double Fault
FH Winner O BH Winner O FH Error O BH Error
Net Winner O Net Error
Player A Player B
Overview Serving Returning W/E & Net Acea/DF Total
                    - Ace %
                     Aces per Service Game
                     Aces per Set
                        Double Faults
                   0 Games Played
                  0 Games Won
                    - Games Won %
                     DFs per Service Game
                     DFs per Set
                         - Ace/DF Ratio
                          Play-by-Play
```

Thank you!