11-级数

数项级数的概念和基本性质

级数收敛的必要条件:若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则:

$$\lim_{n o\infty}a_n=0$$

正项级数及其敛散性的判别法

收敛原理

正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛的充要条件是其部分和数列有上界。

p 级数

比较判别法

本身比较简单。

极限形式: 若 $\lim_{n o \infty} rac{a_n}{b_n} = l$,则

- $0 < l < +\infty$ 时,相同敛散性
- l=0 时, $\sum_{n=1}^{\infty}b_n$ 收敛 ~ $\sum_{n=1}^{\infty}a_n$ 收敛
- $l=+\infty$ 时, $\sum_{n=1}^{\infty}b_n$ 发散 ~ $\sum_{n=1}^{\infty}a_n$ 发散

比值判别法

$$\lim_{n o\infty}rac{a_n}{b_n}$$

积分判别法

若:

- 非负函数 f(x) 在 $[1,+\infty]$ 单调递减
- $a_n=f(n)$ 则正项级数 $\sum_{n=1}^{\infty}a_n$ 与反常积分 $\int_1^{\infty}f(x)dx$ 有相同的敛散性。

任意项级数及其敛散性的判别法

交错级数敛散性的判别法

形如: $\sum_{n=0}^{\infty} (-1)^{n-1} a_n$ $(a_n > 0)$ 的级数, 称为交错级数。

Leibniz 判别法

若交错级数 $\sum_{n=0}^{\infty} (-1)^{n-1} a_n \quad (a_n > 0)$ 满足:

- $0 < a_{n+1} \le a_n$
- $\lim_{n o\infty}a_n=0$ 则该级数收敛,且其余项级数满足 $|\sum_{k=n+1}^\infty (-1)^{k-1}a_k|\leq a_{n+1}$

Abel 判别法和 Dirichlet 判别法

讨论形如: $\sum_{n=0}^{\infty} (-1)^{n-1} a_n b_n$ 的级数的敛散性。

Abel 引理

设 a_n 为单调数列, $B_k = \sum_{i=1}^k b_i$,且 $|B_k| \leq M(k=1,2,\cdots)$,则

$$\left|\sum_{k=1}^n a_k b_k
ight| \leq M(|a_1|+2|a_n|).$$

Abel 判别法

数列 a_n 单调且有界,级数 $\sum_{n=0}^{\infty} b_n$ 收敛

Dirichlet 判别法

数列 a_n 单调且趋于 0 ,数列 b_n 的部分和 $\sum_{k=1}^\infty b_k$ 有界

函数项级数及其敛散性

幂级数

$$\sum_{n=0}^{\infty}a_nx^n$$

Abel 定理

- 若幂级数于 x_0 处收敛,则当 $|x|<|x_0|$ 时, $\sum_{n=0}^\infty a_n x^n$ 绝对收敛
- 若幂级数于 x_0 处发散,则当 $|x|>|x_0|$ 时, $\sum_{n=0}^\infty a_n x^n$ 发散

证明:

$$\lim_{n \to \infty} a_n x_0^n = 0 \tag{1}$$

$$|a_n x_0^n| \le M \tag{2}$$

$$|a_n x^n| < |a_n x_0^n \frac{x^n}{x_0^n}| \tag{3}$$

$$\leq M|\frac{x^n}{x_0^n}|\tag{4}$$

$$\lim_{n o\infty}a_nx_0^n=0$$

$$|a_nx_0^n|\leq M$$

$$|a_n x^n| < |a_n x_0^n rac{x^n}{x_0^n}| \leq M |rac{x^n}{x_0^n}|$$

收敛半径

系数模比值法

对幂级数 $\sum_{n=1}^{\infty}a_nx^n$,若 $\lim_{n o\infty}rac{a_{n+1}}{a_n}=
ho$,则

$$R = \begin{cases} 0 & \rho = +\infty \\ \frac{1}{\rho} & 0 < \rho < +\infty \\ +\infty & \rho = 0 \end{cases}$$

系数根比值法

对幂级数 $\sum_{n=1}^{\infty}a_nx^n$,若 $\lim_{n o\infty}\sqrt[n]{a_n}=
ho$,则

$$R = \begin{cases} 0 & \rho = +\infty \\ \frac{1}{\rho} & 0 < \rho < +\infty \\ +\infty & \rho = 0 \end{cases}$$