Lesson #2: The Target Board & Class Software

Making it Real

- Install ARM9 tool chain and sample code from class CD
- Configure minicom
- Configure Host Networking
- Connect the Target
- Run sample program

Installing Class Files

- Insert CD ROM and mount (should automount)
- cd to your home directory
- Become root user su
 - Password:
- Execute
 /run/media/<your_user>/EmbeddedLinux/install_tools.sh or
- <your_mount_point>/install_tools.sh <your_mount_point>
- Exit root user shell
- Execute /run/media/<your_user>/EmbeddedLinux/install.sh or
- <your_mount_point>/install.sh <your_mount_point>

What Got Installed

- /opt/arm
 - Complete ARM9 cross tool chain
- /usr/local
 - eclipse Eclipse IDE
- /home
 - target_fs link to \$HOME/target_fs

Your Home Directory

- busybox-1.29.2 Busybox source tree
- target_fs root file system for target board
 - home/src sample source code
- linux-rpi-4.19.y kernel source tree
- boot boot partition from the micro SD card
- u-boot source tree for u-boot boot loader

Configure minicom

- As root user, run minicom -s
- Select Serial port setup
 - Serial Device (/dev/ttyUSB0)
 - Bps/Par/Bits (115200 8N1)
 - No flow control
- Select Modem and dialing
 - Remove Init string
 - Remove Reset string

Configure minicom II

- Select Screen and keyboard
 - Type "b" to change backspace behavior to DEL
 - Type "r" to turn on line wrap
- Select Save setup as dfl
- Exit minicom

Add your user to dialout group

- As root user edit /etc/group
 - Add your user name to the line that begins "dialout"
 - o dialout:x:18:<your_user_name>
 - Save file

root kwrite /etc/group

Configure Host Networking

Settings > System Settings > Network and Connectivity > Network Settings

Configure Host Networking 2

Configure NFS

- Edit /etc/exports (must be root)
 - Change <your_user_name> to your user name
 - Save
- In shell window as root:
 - o systemctl enable nfs-server.service
 - o systemctl start nfs-server.service
- If NFS not there:
 - o yum install nfs-utils

The Target Board

Specifications

- Quad core 1.2 GHZ Broadcom processor, 64-bit ARM Cortex A8
- 1 GB RAM
- Micro SD slot
- BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board
- 10/100 Ethernet port
- 4 USB 2.0 host ports, Type A
- Serial debug port, 3.3 volt signal levels
- Micro USB, primarily for power

Layout

Layout 2

- 1. 80x160 TFT display
- 2. Compass
- 3. Pushbuttons
- 4. LEDs
- 5. Buzzer
- 6. Analog to digital converter
- 7. Potentiometer connected to channel 0
- 8. 4-pin header for I2C bus
- 9. 4-pin header for UART
- 10. Double row power header: 3 pins 3V3, 3 pins GND
- 11. Socket for temperature transducer
- 12. Socket for IR receiver
- 13.3x10 pin header
 - 3 analog in
 - 7 digital I/O: 2 can be configured for PWM, 4 for SPI

Debug Serial Port

Black GND 1

Red +5V Not connected

White RX 3

Green TX 4

Changing Boot Parameters

- Pull micro SD card from R Pi
- Mount on workstation
 - o /run/media/<your_user>/boot
- Edit cmdline.txt
 - Change values for nfsroot= and ip= as appropriate

Connect and Power **Up Target**

- Connect the network cable and serial adapter
- Run minicom
- Plug in the power supply
- Target boots into Linux
- ssh root@192.168.15.50
- Try some shell commands

The target Linux enviroment

- Is /home
 - This is where our sample code is stored
- List the /proc directory
 - cat /proc/interrupts
- Is –I bin
 - o BusyBox!
- ifconfig
 - IP address was set by kernel command line

Our First Program

- On the workstation (from your home directory)
 - source /opt/arm/environment-setup-cortexa7t2hfneon-vfpv4-poky-linux-gnueabi
 - o echo \$CC
 - cd target_fs/home/src/pi-lib
 - o make
 - o cd ../led
 - o make

On the Target

- cd /home/src/pi-lib
- cp lib* /lib
- Idconfig
- cd ../led
- ./led

What's going on here?

Host

Target

Two Views of Embedded **Programming**

Review I

- Install class software
 - Cross build tools
 - Eclipse
 - Kernel source tree
 - Sample code
- Configure Workstation
 - Configure minicom

Review II

Configure Workstation (cont)

- Networking
 - Fixed IP address
 - NFS Server
 - Export directory

Target

- Fixed IP address specified on kernel command line
- Kernel booted from micro SD card
- Root file system mounted over NFS