Galois Theory: GAL #07

Due on Apr 08, 2022 at 11:59pm

Prof Matyas Domokos Section 11

Xianzhi

2023

HW07

 $\mathrm{Apr}\ 08,\ 2022$

Exercise 11.4.2

Exercise 11.4.6

Exercise 11.4.8

Problem 1

Exercise 11.4.2 Show that $f \in K[X]$ (where K is a subfield of \mathbb{C}) has a root in a radical extension of K $\iff f$ has an irreducible factor p in K[X] such that $Gal_K(p)$ is solvable.

Soln:

"⇐"

Assume f has irreducible factor p such that $Gal_K(p)$ is solvable. Then apply Galois's theorem, \exists a radical extension L of K contain all roots of p, so L must contain at least one root of p, call it α . Since p is a factor of f, α is also a root of f. Thus, f has a root α in radical extension L.

Assume $f \in K[X]$ has a root α in a radical extension L of K. Thus, $L = K(\beta_1, \beta_2, \dots, \beta_m)$ with β_1, \dots, β_m a radical sequence.

Let $p = m_K^{\alpha}$, then p is automatically an irreducible factor of f, since α is a root of f.

We want to show all the roots of p are in some radical extension of K, but the radical extension we have, L, is not normal, so we modify it. Since

$$\beta_i^{n_i} \in K(\beta_1, \dots, \beta_{i-1}) \tag{1}$$

The sequence β_i has corresponding sequence $n_i \in \mathbb{N}$, let

$$L' = K(\beta_1, \zeta_{n_1}, \beta_2, \zeta_{n_2}, \dots, \beta_m, \zeta_{n_m})$$
(2)

where ζ_{n_i} is a primitive n_i th root of unity.

Since we obtain L' by adjoin β_i and ζ_{n_i} , we join all the roots of the polynomial

$$X^{n_i} - \beta_i^{n_i} \tag{3}$$

at each step, so at each step we obtain a splitting field, and since we are in \mathbb{C} , L' is a splitting field, hence a normal extension of K, thus, since $\alpha \in L \subset L'$, all the roots of $p = m_K^{\alpha}$ are in L', so \exists radical extension L' containing all the roots of $p \implies Gal_K(p)$ is solvable by Galois's thm.

Comment from instructor: The way you try to extend L to get a normal extension of K is not correct, see the following exercise: a normal extension of a normal extension is not necessarily normal. Instead, we gave a proof in class that the normal closure of a radical extension is normal.

Problem 2

Exercise 11.4.6 Suppose that L:K and M:L are normal extensions. Does it follow that M:K is a normal extension?

Soln:

We observe that degree 2 extensions are normal, since by a previous exercise, degree 2 extension is obtained by adding "a square root," so we add the other root too.

$$L = K(\alpha), \alpha \notin K, \alpha^2 \in K, \alpha \in L. \tag{4}$$

$$[L:K] = 2 \tag{5}$$

Take irreducible polynomial that has α as a root, assume β is another root.

$$X^2 + aX + b \quad a, b \in K \tag{6}$$

then

$$\alpha + \beta = -a$$
 by Vieta's theorem (7)

$$\alpha\beta = b \tag{8}$$

so if $\alpha \in L$, then $\beta = -a - \alpha \in L$.

Thus consider

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[2]{3}) \subseteq \mathbb{Q}(\sqrt[4]{3}) \tag{9}$$

and we claim that both extensions are degree 2 extension, and thus normal.

$$[\mathbb{Q}(\sqrt[2]{3}):\mathbb{Q}] = 2 \text{ since } m_{\mathbb{Q}}^{\sqrt[2]{3}} = X^2 - 3$$
 (10)

$$\left[\mathbb{Q}(\sqrt[4]{3}):\mathbb{Q}\right] = 4 \text{ since } m_{\mathbb{Q}}^{\sqrt[4]{3}} = X^4 - 3 \tag{11}$$

(12)

and both polynomial are irreducible by Eisenstein. Now, by Tower Law,

$$\left[\mathbb{Q}(\sqrt[4]{3}):\mathbb{Q}(\sqrt[2]{3})\right] = 2\tag{13}$$

But $\mathbb{Q}(\sqrt[4]{3}):\mathbb{Q}$ is not normal. X^4-3 has (non-real) complex roots $i\sqrt[4]{3}, -i\sqrt[4]{3}$ not in $\mathbb{Q}(\sqrt[4]{3})$. And we are done.

Problem 3

Exercise 11.4.8 Find a degree 6 irreducible polynomial $f \in \mathbb{Q}[X]$ whose Galois group is isomorphic to S_3 . Soln:

 X^6+3 is a degree 6 irreducible polynomial $f\in\mathbb{Q}[X]$ Let L be splitting field of X^6+3 over \mathbb{Q} , then

$$\Gamma(L:\mathbb{Q}) \cong S_3 \tag{14}$$

We claim

$$L = \mathbb{Q}(\sqrt[6]{-3}, \zeta),\tag{15}$$

where ζ is a primitive 6th root of unity.

$$\zeta = \frac{1}{2} + \frac{\sqrt{3}}{2}i\tag{16}$$

since $(\sqrt[6]{-3})^3 = \sqrt[2]{-3} = i\sqrt[2]{3}$ and

$$\zeta = \frac{1}{2} + \frac{1}{2} (\sqrt[6]{-3})^3 \in \mathbb{Q}(\sqrt[6]{-3}) \tag{17}$$

Thus, $L = \mathbb{Q}(\sqrt[6]{-3})$.

 $[L:\mathbb{Q}]=6$ since $m_{\mathbb{Q}}\sqrt[6]{-3}=X^6+3$ is irreducible by Eisenstein. Then, since L is splitting field over \mathbb{Q} , $L:\mathbb{Q}$ is Galois extension. so $|\Gamma(L:\mathbb{Q})|=6$.

Let $a := \sqrt[6]{-3}$

Then $\phi \in \Gamma(L:\mathbb{Q})$ need to take a to some other root $\zeta^{k_{\phi}}a$ for $0 \leq k_{\phi} \leq 5$.

Up to isomorphism, there are only 2 group of order 6, \mathbb{Z}_6 and $D_3 \cong S_3$.

Thus, suffice to show $\Gamma(L:\mathbb{Q})$ is not abelian.

Suffice to show $\Gamma(L:\mathbb{Q})$ has a subgroup that is not normal.

Consider

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{-3}) \subseteq \mathbb{Q}(\sqrt[6]{-3}) \tag{18}$$

$$[\mathbb{Q}(\sqrt[3]{-3}):\mathbb{Q}] = 3 \text{ since } m_{\mathbb{Q}}\sqrt[3]{-3} = X^3 + 3$$
 (19)

is irreducible by Eisenstein. But $\mathbb{Q}(\sqrt[3]{-3})$ is not normal over \mathbb{Q} , since X^3+3 has roots $\omega \cdot \sqrt[3]{-3}$ and $\omega^2 \cdot \sqrt[3]{-3}$ for $\omega = (-1 + i\sqrt{3})/2$.

$$\omega \cdot \sqrt[3]{-3} \notin \mathbb{Q}(\sqrt[3]{-3}) \iff \omega \notin \mathbb{Q}(\sqrt[3]{-3}) \tag{20}$$

since $[\mathbb{Q}(\omega):\mathbb{Q}]=2$, and ω is root of X^2+X+1 .

2/3 so $\omega \notin \mathbb{Q}(\sqrt[3]{-3})$

 $\implies \mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{-3})$ not normal, by Galois correspondence,

$$L := \mathbb{Q}(\sqrt[6]{-3}) \tag{21}$$

$$\Gamma(L:\mathbb{Q}(\sqrt[3]{-3}))$$
 not normal in $\Gamma(L:\mathbb{Q})$ (22)

so $\Gamma(L:\mathbb{Q})\cong S_3$. And we are done.