Acknowledgment: Almost all of these slides are based on Dave Patterson's CS152 Lecture Slides at UC, Berkeyley.

COMPUTER SYSTEMS ORGANIZATION

Timing Model and Register File Design -- Spring 2011 -- IIIT-H -- Suresh Purini

Sequential and Combinational Circuits

What's the difference between sequential and combinational circuits?

Combinational Logic Elements

° MUX

° ALU

Sequential Element: Negative Edge Triggered D-Flip Flop

4-bit Register

Sequential Element: Register

- Register
 - Similar to D Flip Flop except
 - N bit input and output
 - Write Enable input
 - Write Enable
 - 0: Data out will not change
 - 1: Data out will become Data In

Register File

Register File

Register File

Storage Element: Register File

- Register File consists of 32 registers
 - Two 32-bit output busses: busA and busB
 - one 32-bit input bus: busW
- Register is selected by
 - RA selects the register to put on busA
 - RB selects the register to put on busB
 - RW selects the register to be written via busW when Write Enable is 1
- Clock input (CLK)
 - The CLK input is a factor ONLY during write operation
 - During read operation, behaves as a combinational logic block
 - RA or RB valid => busA or busB valid after access time

Storage Element: Memory

- Memory
 - One input bus: Data In
 - One output bus: Data Out
- Memory word is selected by:
 - Address selects the word to put on Data Out
 - Write Enable = 1: address selects the memory word to be written via the Data In bus
- Clock input (CLK)
 - The CLK input is a factor ONLY during write operation
 - During read operation, behaves as a combinational logic block:
 - Address valid => Data Out valid after "access time."

Storage Element Timing Model – Negative Edge Triggered D-Flip Flop

- Setup Time: Input must be stable BEFORE the trigger clock edge.
- Hold Time: Input must be stable AFTER the trigger clock edge.
- Clock-to-Q time: Output cannot change instantaneously at the trigger clock edge.
 - Similar to delay in logic gates.

Clocking Methodology

- All storage elements are clocked by the same clock edge
- The combination logic block's:
 - Inputs are updated at each clock tick
 - All outputs MUST be stable before the next clock tick

Critical Path and Cycle Time

- Critical Path: Slowest path between any two storage devices
- Cycle time is a function of critical path
- More specifically, the cycle time must be greater than:
 - Clock-to-Q + Longest Path through the Combinational Logic+ Setup Time

Clock Skew's Effect on Cycle Time

☐ How to take care of Clock Skew?

We shall assume there is not Clock Skew.

Clock Skew

Source: http://www.ece.unm.edu/~jimp/vlsi/slides/chap5 2.html

How to Avoid Hold Time Violation?

- Hold time requirement:
 - Input to register must NOT change immediately after the clock tick.
- CLK-to-Q + Shortest Delay Path must be greater than Hold Time