12: Equivalence of RE and FA

Learning Outcomes: At the conclusion of the chapter, the student will be able to:

• Construct a finite automaton to accept the language denoted by a regular expression

For any regular expression r, there is a nondeterministic finite automaton that accepts the language denoted by r. Since nondeterministic and deterministic accepters are equivalent, regular expressions are associated precisely with regular languages. A constructive proof provides a systematic procedure for constructing an ϵ -NFA that accepts the language denoted by any regular expression.

1. Conversion of given RE to FA

The method is also known as Thompson's Construction

Basis of Construction:

(a) nfa accepts \emptyset . (b) nfa accepts $\{\lambda\}$. (c) nfa accepts $\{a\}$

Inductive steps:

(a) Given schematic representations for automata designed to accept $L(r_1)$ and (r_2) , an automaton to accept $L(r_1 + r_2)$ can be constructed as shown in following figure

(b) Given schematic representations for automata designed to accept $L(r_1)$ and (r_2) , an automaton to accept $L(r_1r_2)$ can be constructed as shown in following figure

(c) Given a schematic representation for an automaton designed to accept $L(r_1)$, an automaton to accept $L(r_1^*)$ can be constructed as shown in following figure

Example 12.1 Given the regular expression $r = (a + bb)^* (ba^* + \lambda)$, a nondeterministic FA to accept L(r) can be constructed systematically as follows

(a) M_1 accepts L (a + bb). (b) M_2 accepts L (ba* + λ).

Automaton accepts $L((a + bb)^* (ba^* + \lambda))$.

We can use Thompson's Construction to find out a Finite Automaton from a Regular Expression. We will reduce the regular expression into smallest regular expressions and converting these to NFA and finally to DFA.

Some basic RA expressions are the following –

Case 1 – For a regular expression 'a', we can construct the following FA –

Finite automata for RE = a

Case 2 – For a regular expression 'ab', we can construct the following FA –

Finite automata for RE = ab

Case 3 – For a regular expression (a+b), we can construct the following FA –

Finite automata for RE= (a+b)

Case 4 – For a regular expression (a+b)*, we can construct the following FA –

Finite automata for RE= (a+b)*

Method

Step 1 Construct an NFA with Null moves from the given regular expression.

Step 2 Remove Null transition from the NFA or convert it into its equivalent DFA.

Example 12.2

Convert the following RA into its equivalent DFA -1 (0+1)*0

Solution

We will concatenate three expressions "1", "(0 + 1)*" and "0"

NDFA with NULL transition for RA: 1(0 + 1)*0

Now we will remove the ϵ transitions. After we remove the ϵ transitions from the NDFA, we get the following –

NDFA without NULL transition for RA: 1(0+1)*0

It is an NFA corresponding to the RE -1 (0 + 1)* 0. If you want to convert it into a DFA, simply apply the method of converting ε -NFA to DFA (or NFA to DFA) as discussed in earlier chapters.