Sistemas Inteligentes Aplicados: Pré-processamento dos dados – Escalas

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Escala dos dados

	igualdade	ordem	soma / subtração	multiplicação / divisão
nominal	✓	X	X	X
ordinal	✓	✓	X	X
intervalar	✓	✓	✓	X
razão	✓	\checkmark	✓	✓

Escala dos dados (2)

	igualdade	ordem	soma / subtração	multiplicação / divisão
nominal	✓	X	X	X
ordinal	✓	✓	X	X
intervalar	✓	✓	✓	X
razão	√	✓	✓	✓

- Nominal (ou categórica): cidade, profissão, cor favorita, etc
- Podemos comparar a igualdade: a profissão de Maria é a mesma de João?
- Não podemos ordenar: Bombeiro vem antes ou depois de professor? Vermelho < amarelo?

Escala dos dados (3)

	igualdade	ordem	soma / subtração	multiplicação / divisão
nominal	✓	X	X	X
ordinal	✓	\checkmark	X	X
intervalar	✓	✓	✓	X
razão	✓	✓	√	\checkmark

- Ordinal: notas (A, B, C, D, E), dia da semana, tamanho (pequeno, médio e grande), etc
- Podemos comparar a igualdade e ordenar: a nota de Mateus é maior que a de Antônio?
- Não podemos somar: A + B? E E?

Escala dos dados (4)

	igualdade	ordem	soma / subtração	multiplicação / divisão
nominal	✓	X	X	X
ordinal	✓	✓	X	X
intervalar	✓	✓	✓	X
razão	√	✓	\checkmark	√

- Intervalar: temperatura (em Celsius), século (XIX, XX, XXI, etc)
 - Obs: temperatura se enquadra em outras categorias
- Podemos comparar a igualdade, ordenar e somar: 20 graus + 10 graus = 30 graus
- Não podemos multiplicar: o zero é relativo

Escala dos dados (5)

	igualdade	ordem	soma / subtração	multiplicação / divisão
nominal	✓	X	X	X
ordinal	✓	✓	X	X
intervalar	✓	✓	✓	X
razão	√	✓	\checkmark	\checkmark

- Razão: idade, peso, altura (em metros), temperatura (em Kelvins), entre outras
- Podemos comparar a igualdade, ordenar, somar e multiplicar
- Aqui o zero é absoluto

Escala dos dados (6)

- Qualitativos: nominal e ordinal
 - Também podem ser chamados de simbólicos
- Quantitativos: intervalar e razão
 - Também podem ser chamados de numéricos

Escala dos dados (6)

- Alguns algoritmos só reconhecem atributos qualitativos
- Outros só reconhecem quantitativos
- Conversões
 - Quantitativos → qualitativos (ordinal)
 - Qualitativo → quantitativo (intervalar)
 - Todos \rightarrow (0, 1) ou (-1, +1)

Escala dos dados (7)

- Nominais de 2 valores → intervalar
 - Eleitor: não, sim → 0 (não), 1 (sim)
- Nominais de 3 ou mais valores → intervalar (binarização)
 - Esporte: basquete, futebol ou polo
 - joga_basquete (0 ou 1),
 - joga_futebol (0 ou 1),
 - joga_polo (0 ou 1)
 - Atributos novos são mutualmente exclusivos

Escala dos dados (8)

- Convertendo: ordinais → intervalar
 - Segunda, terça, quarta, ... → 1, 2, 3, ...
 - A, B, C, ... \rightarrow 5, 4, 3, ...
- Intervalar → ordinal
 - 0-10 graus celsius: muito_frio
 - 10-20 graus: frio
 - 20-25 graus: agradável

Escala dos dados (9)

- Razão → ordinal
 - Até 20 palavras: pequeno
 - Até 200 palavras: médio
 - Mais de 200 palavras: grande
- Todas → [0, 1]
 - Converter para números primeiro, se necessário
 - Caso 1 regra de três: maior vira 1, menor vira 0
 - Caso 2 distribuição normal (gaussiana): subtrair a média e dividir pelo desvio padrão + ajustes

Discretização

- Em alguns casos, é difícil definir valores qualitativos ao converter atributos numéricos
- Soluções:
 - Análise gráfica manual
 - Algoritmos de discretização
 - Geralmente projetista precisa definir o número de categorias manualmente (pode ser um processo de tentativa e erro)

Discretização (2)

- Análise gráfica manual
 - Exemplo para dois atributos com 4 grupos e 2 outliers

Discretização (3)

- Algoritmos de discretização
 - Vários exemplos: k-means, IRD entre outros
 - Dois tipos:
 - Supervisionados
 - Não supervisionados

Discretização (4)

- Algoritmos de discretização supervisionados
 - Têm acesso a exemplos rotulados
 - Por exemplo: 5° = muito frio; 15° = frio; 25° = agradável; ...
 - Tentar achar pontos de corte que maximizem a pureza dos dados
 - Limitação: pontos que são bem separados em duas ou mais dimensões podem não ser em uma

Discretização (5)

- Algoritmos de discretização não supervisionados
 - Algoritmos mais simples
 - Larguras iguais: dividir intervalo dos valores pelo número de grupos desejados
 - Frequência: mesmo número de instâncias em cada grupo
 - Aplicar algoritmo de agrupamento

Discretização (6)

Pré-processamento de dados: conversão entre escalas

Atributos quantitativos: normalização

- Atributos normalmente n\u00e3o tem intervalos de valores parecidos
- Um atributo cujos valores variam muito se sobressai sobre os demais
 - Distâncias euclidianas o favorecem

Atributos quantitativos: normalização (2)

- Atributos normalmente n\u00e3o tem intervalos de valores parecidos
- Ex.: expectativa de vida e PIB per Capita

Atributos quantitativos: normalização (3)

- PIB per Capta é uma medida imperfeita quando a desigualdade social é alta
 - Pequenas variações nele alteram bastante as distâncias entre as instâncias
 - Enquanto grandes variações na expectativa de vida praticamente não afetam as distâncias
- Eixo x₁ varia muito mais que eixo x₂:
 x₁ domina ou mascara x₂

Atributos quantitativos: normalização (4)

- Solução: transformar os eixos para que variações sejam similares
 - Opção 1: normalizar entre zero e um
 - Maior valor vale 1; menor vale 0; demais são obtidos por regra de três
 - Opção 2: normalizar por média e desvio padrão
 - Forçar dados a terem média 0 e desvio 1

Atributos quantitativos: normalização (5)

- Outras opções:
 - In(x), log(x)
 - 1/x, √x
 - |x|, seno(x)
- Log é particularmente interessante para variações muito altas
 - Ex.: aplicado a faturamento bruto, agrupa empresas em pequenas, médias e grandes

Atributos quantitativos: normalização (6)

- Antes de aplicar uma transformação
 - Verificar se a ordem precisa ser mantida:
 1/x: (1, 2, 3, 4) → (1, 0.5, 0.33, 0.25)
 - O que acontece no intervalo entre 0 e 1? $\sqrt{0.25} = 0.5$

Conversões avançadas

- Atributos nominais com muitos valores:
 - São custosos
 - Abordagem tradicional leva a vetores muito esparsos
 - Solução: usar conhecimento do domínio e aplicar atributos alternativos

Conversões avançadas (2)

- Exemplo: atributo país com 195 possíveis valores
- Usar 7 atributos alternativos
 - Continente (nominal): 7 valores possíveis
 - PIB: 1 valor
 - População: 1 valor
 - IDH: 1 valor
 - Temperatura média anual: 1 valor

Conversões avançadas (3)

- Tradução: alguns formatos de dados podem ser difíceis de lidar para alguns algoritmos
 - Data: converter para inteiro
 - Hora: converter para inteiro
 - Rua: converter para CEP
 - Etc

Exercícios

1. Converter atributos abaixo no intervalo [0, 1]

Febre	Enjôo	Mancha	Dor	Diagnóstico
baixa média alta alta baixa média	sim não sim não não não	pequena média grande pequena grande sem	ACBADC	doente saudável doente saudável doente

Exercícios

- 2. Para a base Iris:
 - (a) aplicar discretização não-supervisionada
 - (b) aplicar discretização supervisionada
 - (c) normalizar dados entre [0, 1] via regra de três (normalize)
 - (d) normalizar dados entre [-3, 3] via distribuição normal (standardize)

Pontos chaves

- Conversão entre escalas
- Discretização
- Conversões avançadas

Agradecimentos/referências

Notas de aula do Prof. André de Carvalho (USP)