<u>Função de Complexidade – Resolução</u> (E1, E2)

2025

1/24

Função de Complexidade – Resolução

Atividade 1

• Considere dois algoritmos, \underline{A} e \underline{B} , com complexidades $8n^2$ e n^3 , respectivamente. Qual o maior valor de n, para o qual o algoritmo \underline{B} é mais eficiente que o algoritmo \underline{A} ?

Função de Complexidade – Resolução

Resolução 1

Função Complexidade 8n²:

n	8n ²	
1	8	
2	32	
3	72	
4	128	
5	200	
6	288	
7	392	
8	512	
9	648	
10	800	
11	968	
12	1152	

Função de Complexidade - Resolução

Resolução 1

Função Complexidade *n*³:

n	n³	
1	1	
2	8	
3	27	
4	64	
5	125	
6	216	
7	343	
8	512	
9	729	
10	1000	
11	1331	
12	1728	

Resolução 1

Análise Gráfica:

Função de Complexidade - Resolução

Resolução 1

- Até um determinado valor de instância de entrada, o algoritmo <u>B</u> é melhor;
- A partir de um certo valor de n o algoritmo A fica melhor.

Função de Complexidade – Resolução

Resolução 1

• O ponto de equilíbrio ocorre quando $n^3 = 8n^2$

$$n^3 = 8n^2 => n^3 - 8n^2 = 0 => n^2 (n - 8) = 0 => n = 0$$
 ou $n - 8 = 0$

Portanto, o ponto de equilíbrio é n = 8, ou seja, o algoritmo B é mais eficiente até n = 7.

Função de Complexidade – Resolução

Atividade 2

- Um algoritmo tem complexidade 2n². Num certo computador, num tempo t, o algoritmo resolve um problema de tamanho 25. Imagine agora que se tenha disponível um computador 100 vezes mais rápido. Qual o tamanho máximo de problema que o mesmo algoritmo resolve no mesmo tempo t no computador mais rápido?
- Considere o mesmo problema para um algoritmo de complexidade 2^n .

Função de Complexidade - Resolução

Resolução 2a

Função de Complexidade 2n²:

n	2n ²	
1	2	
2	8	
3	18	
4	32	
5	50	
10	200	
25	1250	

Quantidade de Operações

Instância de Entrada (n)

Função de Complexidade – Resolução

Resolução 2a

- Analisando-se o comportamento da função de complexidade, pode-se afirmar que para n=25, são necessárias 1250 operações;
- Estas operações são executadas no computador antigo em um determinado tempo t;
- No computador novo as operações são executadas num total de 100 vezes mais rápidas;
- Assim, no computador novo, no mesmo tempo t, pode-se executar 1250*100 = 125.000 operações.

Prof. Calvetti

10/24

Função de Complexidade – Resolução

Resolução 2a

 Como o algoritmo é o mesmo, tanto no computador novo quando no antigo, a função de complexidade é a mesma:

$$f(n) = 2n^2$$

- Assim, no mesmo tempo t, o computador novo executa 125.000 operações, o que representa uma instância maior;
- Tem-se, então:

$$f(n) = 2n^2 => 125000 = 2n^2 =>$$

 $\Rightarrow 62500 = n^2 =>$
 $\Rightarrow n = 250$

Prof. Calvetti 11/24

Função de Complexidade – Resolução

Resolução 2a

Resposta:

• O tamanho máximo de problema que o mesmo algoritmo resolve no tempo *t*, no computador mais rápido, é *250*.

Observação:

 Embora o computador mais novo seja 100 vezes mais rápido, o tamanho do problema aumentou apenas 10 vezes, ou seja, de 25 para 250.

Função de Complexidade - Resolução

Resolução 2b

Função de Complexidade 2ⁿ:

Quantidade de Operações

n	2 ⁿ	
1	2	
2	4	
3	8	
4	16	
5	32	
10	1024	
25	33554432	

Instância de Entrada (n)

Prof. Calvetti 13/24

Função de Complexidade – Resolução

Atividade 2b

- Analisando-se o comportamento da função de complexidade, pode-se afirmar que para n=25, são necessárias 33.554.432 operações;
- Estas operações são executadas no computador antigo em um determinado tempo t;
- No computador novo as operações são executadas num total de 100 vezes mais rápidas;
- Assim, no computador novo, no mesmo tempo t, pode-se executar 33.554.423*100 = 3.355.443.200 operações.

Função de Complexidade – Resolução

Atividade 2b

 Como o algoritmo é o mesmo, tanto no computador novo quando no antigo, a função de complexidade é a mesma:

$$f(n) = 2^n$$

- Assim, no mesmo tempo t, o computador novo executa 3.355.443.200 operações, o que representa uma instância maior;
- Tem-se, então:

$$f(n) = 2^n => 2^n = 3.355.443.200 =>$$

 $\Rightarrow \log_2 2^n = \log_2 3.355.443.200 =>$
 $\Rightarrow n = 31$

Prof. Calvetti 15/24

Função de Complexidade – Resolução

Atividade 2b

Resposta:

• O tamanho máximo de problema que o mesmo algoritmo resolve no tempo *t*, no computador mais rápido, é *31*.

Observação:

 Embora o computador mais novo seja 100 vezes mais rápido, o tamanho do problema aumentou apenas 1,24 vezes, ou seja, de 25 para 31.

Prof. Calvetti 16/24

Função de Complexidade – Resolução

Atividade 3

• Suponha que uma empresa utiliza um algoritmo de complexidade n^2 que, em um tempo t, na máquina disponível, resolve um problema de tamanho x. Suponha que o tamanho do problema a ser resolvido aumentou em 20%, mas o tempo de resposta deve ser mantido. Para isso, a empresa pretende trocar a máquina por uma mais rápida. Qual percentual de melhoria no tempo de execução das operações básicas é necessário para atingir sua meta, considerando-se a execução do mesmo algoritmo?

Suponha que no problema anterior, mantendo-se o mesmo algoritmo, ainda se queira reduzir em **50%** o tempo de resposta. Qual a melhoria esperada para a nova máquina?

Função de Complexidade – Resolução

Atividade 3

	Máquina Velha	
Qtde. de Operações	Tempo de cada Operação	Tempo Total
X ²	t_v	$tt_v = x^2. t_v$

Máquina Nova

Qtde. de Operações Tempo de cada Operação Tempo Total $(1.2x)^2 \hspace{1cm} t_n \hspace{1cm} tt_n = 1.44x^2. \ t_n$

Função de Complexidade – Resolução

Atividade 3

 O problema afirma que o <u>tempo total da máquina nova</u> deve ser igual ao tempo total da máquina velha;

$$\checkmark$$
 Assim, $tt_n = tt_v$

$$\checkmark$$
 Portanto, como: $\mathbf{tt_v} = \mathbf{x^2} \cdot \mathbf{t_v}$ e $\mathbf{tt_n} = \mathbf{1.44.x^2} \cdot \mathbf{t_n}$

$$\sqrt{\text{Teremos:}} x^2 \cdot t_v = 1.44 \cdot x^2 \cdot t_n$$

$$\checkmark$$
 Portanto: $t_v = 1.44 \cdot t_n$

$$\checkmark$$
 Assim: $t_v = 1.44 \cdot t_n => tv = 1.t_n + 0.44 t_n => t_v = t_n + 44/100 t_n$

A máquina velha é **44**% mais lenta que a nova, ou A máquina nova é **44**% mais rápida que a velha

Prof. Calvetti 19/24

Função de Complexidade – Resolução

Atividade 3

Máquina Velha

Qtde. de Operações Tempo de cada Operação Tempo Total

t,

 $tt_v = x^2 \cdot t_v$

Máquina Nova

Qtde. de Operações Tempo de cada Operação Tempo Total

(1.2x)²

 x^2

tn

 $tt_n = 1.44x^2. t_n$

Função de Complexidade – Resolução

Atividade 3

- ✓ O problema afirma que o tempo total da máquina nova deve ser <u>50% inferior</u> ao tempo total da máquina velha.
- Assim, tt_n = (50%) tt_v => tt_n = 0,5 tt_v
- \checkmark Portanto, como: $\mathbf{tt_v} = \mathbf{x^2} \cdot \mathbf{t_v}$ e $\mathbf{tt_n} = \mathbf{1,44.x^2} \cdot \mathbf{t_n}$
- $\sqrt{\text{Teremos: } 1,44.x^2.t_n} = 0,5.x^2.t_v$
- ✓ Portanto: **1,44.t**_n = **0.5.t**_v
- \checkmark Assim: 2,88. $t_n = t_v => t_v = t_n + 1,88. t_n => t_v = t_n + (188/100.) t_n$

A máquina velha é 188% mais lenta que a nova, ou A máquina nova é 188% mais rápida que a velha

Prof. Calvetti 21/24

Referências bibliográficas

- CORMEN, T.H. et al. Algoritmos: Teoria e Prática (Caps. 13). Campus. 2002.
- ZIVIANI, N. Projeto de algoritmos: com implementações em Pascal e C (Cap. 1). 2.ed.
 Thomson, 2004.
- FEOFILOFF, P. Minicurso de Análise de Algoritmos, 2010. Disponível em: http://www.ime.usp.br/~pf/livrinho-AA/
- DOWNEY, A.B. *Analysis of algorithms* (Cap. 2), Em: *Computational Modeling and Complexity Science*. Disponível em:

http://www.greenteapress.com/compmod/html/book003.html

- ROSA, J.L. Notas de Aula de Introdução a Ciência de Computação II. Universidade de São Paulo. Disponível em:

http://coteia.icmc.usp.br/mostra.php?ident=639

Referências bibliográficas

- GOODRICH, Michael T. et al: Algorithm Design and Applications. Wiley, 2015.
- LEVITIN, Anany. Introduction to the Design and Analysis of Algorithms. Pearson, 2012.
- SKIENA, Steven S. *The Algorithm Design Manual*. Springer, 2008.
- Série de Livros Didáticos. *Complexidade de Algoritmos.* UFRGS.
- BHASIN, Harsh. *Algorithms Design and Analysis*. Oxford University Press, 2015.
- FREITAS, Aparecido V. de 2022 Estruturas de Dados: Notas de Aula.
- CALVETTI, Robson 2015 Estruturas de Dados: Notas de Aula.

Prof. Calvetti 23/24

Aula 04

FIM