

Audition CRCN CNRS – Concours n°06/02

Samir SI-MOHAMMED

Projet : Jumeaux Numériques pour des Réseaux Sans-fil Optimisés

Laboratoires d'accueil : ICube, LIG, IRISA

Profil

Fondamentaux

- Algorithmique
- Modélisation
- Développement Logiciel

Réseaux Sans-fil

- Multi-technologies
- Simulation
- **Expérimentation**

Intelligence Artificielle

- Optimisation
- Apprentissage automatique
- Apprentissage profond

Domaine de Recherche

* Réseau sans-fil : Interconnexion d'équipement finaux et passerelles, à l'aide de technologies de communication sans-fil

- Objectifs : Compromis entre performances, fiabilité et coût des communications
 - Énergie, coût financier, ressources radio, etc.
- Caractéristiques des réseaux sans-fil :
 - Variabilité du canal radio (atténuation, interférences, obstacles, etc.)
 - Ressources limitées partagées (accès concurrentiel, etc.)
 - Environnement dynamique (topologie, trafic, etc.)
 - → Difficulté de prédiction des performances du réseau
- Question de Recherche : Comment concevoir une modélisation précise des performances d'un réseau, en tenant compte de sa variabilité ?

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution : Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau
- Optimisation de Paramètres de Configurations

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution: Modélisation de Transmissions Radio

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

1 IEEE GLOBECOM

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution: Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau
- Optimisation de Paramètres de Configurations

ENS DE LYON

1 IEEE VTM

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

WATERLOC

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution : Modélisation de Transmissions Radio

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

1 IEEE GLOBECOM

1 IEEE VTM

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution: Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau
- Optimisation de Paramètres de Configurations

1 IEEE ICCCN

- 1 ACM LANC
- 1 IEEE ICC
- 1 Elsevier IoT Journal
- 1 Elsevier FGCS Journal

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

WATERLOO

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution: Modélisation de Transmissions Radio

de Strasbourg

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

1 IEEE GLOBECOM

1 IEEE VTM

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution: Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau
- Optimisation de Paramètres de Configurations

1 IEEE ICCCN

- 1 ACM LANC
- 1 IEEE ICC
- 1 Elsevier IoT Journal
 - 1 Elsevier FGCS Journal

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

1 IEEE IoT Journal

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution : Modélisation de Transmissions Radio

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

1 IEEE GLOBECOM

1 IEEE VTM

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution : Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau
- Optimisation de Paramètres de Configurations

1 IEEE ICCCN

- 1 ACM LANC
- 1 IEEE ICC
- 1 Elsevier IoT Journal
 - 1 Elsevier FGCS Journal

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

1 IEEE IoT Journal

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution: Modélisation de Transmissions Radio

- 1 CloT (demo)
- 1 AINA
- 1 IEEE IoT Journal (sub.)

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution : Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau

Optimisation de Paramètres de Configurations

1 IEEE GLOBECOM

- 1 IEEE VTM
- 1 IEEE ICCCN
- 1 ACM LANC
- 1 IEEE ICC
- 1 Elsevier IoT Journal
 - 1 Elsevier FGCS Journal

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

1 IEEE IoT Journal

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution : Modélisation de Transmissions Radio

- 1 CloT (demo)
- 1 AINA
- 1 IEEE IoT Journal (sub.)

* Problématique:

- > Comment obtenir une configuration optimisée pour un scénario donné?
 - Explosion combinatoire des paramètres
 - Ex : > 20,000 configurations pour la technologie **802.15.4**
 - Impact considérable sur les performances
 - Ex : Facteur d'étalement pour la technologie LoRa
 - → Autonomie énergétique de 1 à 10 ans et portée de 100 à 10,000 m

Verrou scientifique :

- Difficulté d'explorer efficacement l'espace des configurations
 - Curse of dimensionality
- → Hypothèses restrictives des modèles de la littérature
 - Contexte applicatif (topologie, trafic, etc.)

Si-Mohammed, et al. « NS+ NDT: Smart Integration of Network Simulation in Network Digital Twin, Application to IoT Networks ». Future Generation Computer Systems (2024).

Contribution : Modèle de Substitution

***** Fonctionnement:

- Échantillonnage de l'espace de configurations
- 2. Utilisation de modèles de Machine Learning (Régression)
- 3. Inférence sur l'ensemble exhaustif

[•] Si-Mohammed, et al. « NS+ NDT: Smart Integration of Network Simulation in Network Digital Twin, Application to IoT Networks ». Future Generation Computer Systems (2024).

* Résultat :

→ Configuration proche de l'optimale avec une division par 60 du nombre de simulations par rapport à une recherche exhaustive

Contributions:

- ✓ Méthode efficace d'exploration de l'espace de configurations
- ✓ Assouplissement des hypothèses sur le contexte applicatif

Perspective:

- Combinaison de l'approche avec des techniques de Clustering pour une optimisation plus affinée
 - Impact des configurations spécifique à chaque lien radio [1]

^[1] **S. Si-Mohammed** and F. Théoleyre. Data-Driven Prediction Models for Wireless Network Configuration. In 39th International Conference on Advanced Information Networking and Applications (AINA) (2025).

Problématique :

- > Comment modéliser la qualité des liens radio d'un réseau?
 - Dynamisme et hétérogénéité considérables

Verrou scientifique:

- Incapacité des modèles de simulation à capturer le dynamisme des liens
 - · Absence de variabilité des conditions radio dans les modèles de propagation

Si-Mohammed and Fabrice Théoleyre. "Towards Accurate, Data-Driven and Lightweight Digital Twins for Wireless Networks". Submitted to IEEE IoT Journal.

* Problématique:

- > Comment modéliser la qualité des liens radio d'un réseau?
 - Dynamisme et hétérogénéité considérables

Verrou scientifique :

- Incapacité des modèles de simulation à capturer le dynamisme des liens
 - · Absence de variabilité des conditions radio dans les modèles de propagation
- → Exemple : Réseau de monitoring en intérieur sur FIT IoT-Lab
 - 10 nœuds, 1 paquet par seconde, technologie 802.15.4

Si-Mohammed and Fabrice Théoleyre. "Towards Accurate, Data-Driven and Lightweight Digital Twins for Wireless Networks". Submitted to IEEE IoT Journal.

* Problématique:

- > Comment modéliser la qualité des liens radio d'un réseau?
 - Dynamisme et hétérogénéité considérables

Verrou scientifique :

- Incapacité des modèles de simulation à capturer le dynamisme des liens
 - · Absence de variabilité des conditions radio dans les modèles de propagation
- → Exemple : Réseau de monitoring en intérieur sur FIT IoT-Lab
 - 10 nœuds, 1 paquet par seconde, technologie 802.15.4

Si-Mohammed and Fabrice Théoleyre. "Towards Accurate, Data-Driven and Lightweight Digital Twins for Wireless Networks". Submitted to IEEE IoT Journal.

Contribution : Approche pilotée par les données

Fonctionnement:

- Durant l'entraînement :
 - Modélisation individuelle des liens
 - Entraînement des modèles sur les mesures de séries temporelles
- Durant le déploiement :
 - Recalibrage continu durant le déploiement
 - Choix dynamique du modèle à chaque étape de prédiction

Si-Mohammed and Fabrice Théoleyre. "Towards Accurate, Data-Driven and Lightweight Digital Twins for Wireless Networks". Submitted to IEEE IoT Journal.

* Résultat :

→ Prédictions plus précises par rapport aux modèles de simulation

Contributions:

- ✓ Modélisation individuelle des liens du réseau
 - Capture de l'hétérogénéité des liens radio
- ✓ Algorithme adaptatif pouvant capturer le dynamisme des liens
 - Compromis entre précision et complexité

Perspective:

- Assouplissement des hypothèses sur le trafic :
 - Fixe et identique sur les liens
 - Connu à l'avance

❖ Jumeaux Numériques (JN) : Approche visant à reproduire le comportement d'un système physique. Il existe deux familles de modèles : Basés sur la physique, et pilotés par les données [2].

❖ Dans un environnement réseau :

- La **détection** de changements dans l'environnement
- Le test de **configurations** avant le déploiement

→ Compromis entre la précision et la complexité des modèles

Objectifs:

- Concevoir des algorithmes/mécanismes pour développer un jumeau numérique précis et le moins coûteux possible
- Permettre l'optimisation automatique d'un réseau sans-fil sur l'ensemble de la pile réseau

[2] Rasheed, A., San, O., & Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access (2020).

Axe 1 : Réplique de réseaux sans-fil à l'aide de jumeaux numériques

Objectif: Efficacité et Fiabilité du processus de Réplication

Problématique :

- Comment développer des modèles capables, à faible coût, de :
 - Reproduire les performances d'un réseau sans-fil ?
 - Prédire ses performances futures ?

Verrou scientifique :

- Complexité des modèles basés sur la physique
 - Ray-tracing [3] précis mais coûteux
 - Environnement dynamique

[3] Valenzuela, Reinaldo. "A ray tracing approach to predicting indoor wireless transmission." IEEE 43rd vehicular technology conference (1993).

Axe 1 : Réplique de réseaux sans-fil à l'aide de jumeaux numériques

Approche:

- 1. Employer des approches pilotées par des données expérimentales
- 2. Modéliser chaque famille de liens radio

Originalité :

- ✓ Capture du l'évolution du réseau (comparé aux GNN [4])
- ✓ Réduction de la complexité (comparé au Ray Tracing [5])
- ✓ Capture des relations entre liens (comparé à [6])

Défis scientifiques :

- Métrologie
 - → Métriques actives/passives, frugalité, etc.
- Groupement de liens
 - → Clustering hiérarchique dynamique
 - → Métriques statistiques + relatives au déploiement

^[4] Ferriol-Galmés, M. et al. « RouteNet-Fermi: Network modeling with graph neural networks. » IEEE/ACM transactions on networking (2023).

^[5] Ruah, C. et al. « Calibrating wireless ray tracing for digital twinning using local phase error estimates. » IEEE Transactions on Machine Learning in Communications and Networking (2024).

^[6] Si-Mohammed et Fabrice Théoleyre. "Towards Accurate, Data-Driven and Lightweight Digital Twins for Wireless Networks". Submitted to IEEE IoT Journal.

Axe 2 : Optimisation de réseaux sans-fil à l'aide de jumeaux numériques

Objectif: Optimisation du réseau selon l'évolution de l'environnement

Problématique :

- Comment assurer la précision des modèles pour des scénarios inexplorés ?
 - What-if scenarios (protocole, topologie, etc. différents)

Verrou scientifique :

- Difficulté de généralisation précise des modèles de simulation
 - Relations complexes entre propagation, topologie, trafic, etc.

Axe 2 : Optimisation de réseaux sans-fil à l'aide de jumeaux numériques

Approche:

Création de modèles agnostiques à travers des campagnes de mesures

* Originalité:

- ✓ Optimisation continue sur l'ensemble de la pile réseau
 - → Changement de protocole à la volée, topologie etc.

Défis scientifiques :

- Aspect agnostique des modèles de prédiction
 - → Usage de données récoltées pour la généralisation [7]
 - → Généralisation de domaines/Transfer Learning [8,9]
- Déclenchement de reconfigurations
 - → Détection d'instabilité, gains/coût, etc.

^[7] S. Si-Mohammed and F. Théoleyre. Data-Driven Prediction Models for Wireless Network Configuration. In 39th International Conference on Advanced Information Networking and Applications (AINA) (2025).

[9] M. Akrout et al., Domain Generalization in Machine Learning Models for Wireless Communications: Concepts, State-of-the-Art, and Open Issues. IEEE Comm. Surveys & Tutorials (2023).

^[8] G. Blanchard et al., Generalizing from several related classification tasks to a new unlabeled sample. Advances in neural information processing systems (2011).

Intégration aux laboratoires d'accueil

Laboratoire ICube

Thématiques

- Réseaux sans-fil
 - > Fabrice Théoleyre
 - > Julien Montavont
 - ➤ Thomas Noel
- Métrologie
 - Pascal Mérindol
 - > Jean-Romain Luttringer

Encadrement

- **Ghinwa Ismail** (thèse)

Plateformes expé.

- SLICES-FR
- Testbed 5G

Apport personnel

- Simulation
- Apprentissage automatique

Laboratoire LIG

- Convergence de thématiques de recherche :
 - Réseaux IoT : Martin Heusse, Franck Rousseau

Laboratoire IRISA

- Convergence de thématiques de recherche :
 - Réseaux IoT et 5G : Yassine Hadjadj-Aoul, César Viho

Synthèse

Contributions passées :

- Exploration efficace de l'espace de configurations avec des hypothèses applicatives assouplies
- Modélisation individuelle et adaptative des liens du réseau, capturant leur dynamisme

Projet de recherche :

- 1. Axe 1 (~ 3 ans):
 - Méthodologie systématique de conception de jumeaux numériques
 - Amélioration de la précision et la frugalité de la métrologie
 - Affinement de la modélisation du réseau (famille de liens)
- 2. Axe 2 (~ 3-5 ans) :
 - Amélioration de la précision de la généralisation des modèles
 - Optimisation automatique sur l'ensemble de la pile réseau

Récapitulatif de Candidature

- Projet : Jumeaux Numériques pour des Réseaux Sans-fil Optimisés
- **Laboratoires : ICube**, LIG, IRISA

Publications Int.

- 4 Journaux + 1 soumis
- 5 Conférences
- 1 Demo

Transfert technologique

- SIFRAN StackNet
- WT-Tool

Collaborations Internationales

- University of Waterloo, Canada
- University at Buffalo, USA

TPC & Reviews

- **TPC:** IEEE ISCC 2024/2025, ICNP (Posters/Demos), IEEE VTC 2025
- Reviews: IEEE Comm. Magazine, IEEE Access, ICC, ICNC, ITU Journal of FET, Adhoc Net. Computer Net., Computer Comm.

Encadrement/Enseignement

- 1 Doctorat (depuis Nov. 2024)
- 1 Stage M1
- 1 Stage L2
- 2 TER (M1) + 3 en cours
- 137h (CM/TD/TP)

Merci pour votre attention

Problème : Trouver la configuration C^* qui optimise les métriques de performance.

$$C^* = \arg\max_{C_i \in \mathcal{C}} F(C_i) \tag{1}$$

$$F(C_i) = MADM((f_1(C_i), f_2(C_i), ..., f_m(C_i)), C)$$
 (2)

avec:

- $ightharpoonup C_i$: Configuration avec paramètres (p_1,\ldots,p_n) , où $p_i\in\mathbb{N}$.
- \triangleright \mathcal{C} : Ensemble des configurations possibles.
- $ightharpoonup F(C_i)$: Vecteur de métriques (ex: débit, latence, etc.).
- ► MADM : Méthode de scoring multicritères (*e.g.*, **TOPSIS**)

Si-Mohammed, et al. « NS+ NDT: Smart Integration of Network Simulation in Network Digital Twin, Application to IoT Networks ». Future Generation Computer Systems, 2024.

Les prédictions sont faites plusieurs intervalles à l'avance, de façon récursive

Processus:

L'évaluation se fait selon l'intervalle de prédiction :

* Résultats:

* Résultats:

- ✓ Précision dans la prédiction à court et long terme
- / Efficacité de la modélisation individuelle de chaque lien radio
- ✓ Précision de l'approche adaptative par rapport à l'approche fixe (mais accroissement linéaire de la complexité)

[•] Si-Mohammed et Fabrice Théoleyre. "Towards Accurate, Data-Driven and Lightweight Digital Twins for Wireless Networks". Submitted to IEEE IoT Journal.

Positionnement International

Compétiteurs Majeurs :

- Northeastern University (Colloseum [10]), USA
 - Plateforme d'émulation à large échelle
- Virginia Tech (NEWS group), USA
 - Focus sur des architectures haut-niveau
- **INESC TEC, Portugal**
 - Peu d'intérêt sur les capacités de généralisation

INESCTEC

Projets Européens :

- PREDICT-6G [11] (2024-2026, 4 millions EUR)
- 6GTWIN [12] (2023-2025, 6 millions EUR)
 - Les deux projets sont dédiés à la 6G

^[10] Villa, D., Tehrani-Moayyed, M., Robinson, C. P., Bonati, L., Johari, P., Polese, M., & Melodia, T. (2024). Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation. IEEE Transactions on Mobile Computing.

^[11] https://cordis.europa.eu/project/id/101095890

^[12] https://cordis.europa.eu/project/id/101136314

Projets annexes

Simulation No-Code de réseaux sans-fil (WTTool)

- Prof. Filippo Malandra
 - Nicholas Accurso, Samir Si-Mohammed, Diptangshu De, and Filippo Malandra. « WTTool: A Visual Web-based Topology Generator and 5G Network Simulator with ns-3 (demo) », Accepted in CloT 2024 2024 Conference on Cloud and Internet of Things 2024.

Encadrements en cours

- Ghinwa Ismail, Doctorante (dir. : F. Théoleyre): Digital Twins for efficient 5G Networks
 - Usage de la plateforme Colloseum [13] (https://colosseum.sites.northeastern.edu/)
- Léo Piveteau-Wernert, étudiant M1 (TER) : Différence entre l'expérimentation et l'émulation des réseaux 802.15.4
 - Focus sur le protocole CSMA/CA sur le FIT IoT-Lab et Cooja
- Pierre Matter, étudiant M1 (TER) : Étude de l'impact des technologies de communication sur l'optimisation distribuée
 - Collaboration avec Prof. Adedoyin Inaolaji à University at Buffalo
- Tuna Acikbas, étudiant M1 (TER, avec P. Parrend): Analyse dynamique de Malware
 - Évaluation d'un protocole de détection des logiciels malveillants

[13] Villa, D., Tehrani-Moayyed, M., Robinson, C. P., Bonati, L., Johari, P., Polese, M., & Melodia, T. (2024). Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation. IEEE Transactions on Mobile Computing.