

电机与拖动课件之五

异步电机

- 4.1 三相异步电动机的基本工作原理和结构
- 4.2 交流电机的绕组
- 4.3 交流电机绕组的感应电动势
- 4.4 交流电机绕组的磁动势
- 4.5 三相异步电动机的空载运行
- 4.6 三相异步电动机的负载运行
- 4.7 三相异步电动机的等效电路和相量图
- 4.8 三相异步电动机的功率平衡、转矩平衡

一、功率平衡

1、功率变换和传递过程

定分铜损耗

Pi-Pau, -Pie - Pem

三相异步电动机轴上带负载稳定运行时,功率变换和传递过程,可用T形等值电路来进行分析。

、功率平衡

2、公式

(1) 电动机从电源吸收的电功率P1 (有功功率)

$$P_1 = 3U_{1P}I_{1P}\cos\varphi_1 = \sqrt{3}U_{1L}I_{1L}\cos\varphi_1$$

 $P_{\text{Fe}} = 3R_{\text{m}}I_{10}^2$ 定子铁损 电磁功率 $P_{1} \rightarrow \begin{cases} P_{M} = 3E'_{20}I'_{2}\cos\varphi_{2} = 3I'_{2}^{2}\frac{R'_{2}}{s} \rightarrow \begin{cases} P_{Cu2} = 3R'_{2}I'_{2}^{2} = sP_{M} \\ P_{m} = 3(\frac{1-s}{s})R'_{2}I'_{2}^{2} = (1-s)P_{M} \end{cases}$ $P_{C_{11}} = 3R_{1}I_{1}^{2}$ 定子铜损

重要公式: $P_{\rm M}$: $P_{\rm m}$: $P_{\rm Cu2}$ = 1: (1-s): s

(2) 电动机轴上输出的机械功率P2 (有功功率)

转子铜损 (转差功率)

$$\begin{cases} P_{\text{Cu}2} = 3R_2' I_2'^2 = s P_{\text{M}} \\ P_{\text{m}} = 3(\frac{1-s}{s})R_2' I_2'^2 = (1-s)P_{\text{M}} \end{cases}$$
 机械功率

$$P_2 = P_{\rm m} - (P_{\rm mec} + P_{\rm s})$$

附加损耗

机械摩擦损耗

一、功率平衡

3、功率流程图

【例】一台三相50Hz绕线转子异步电动机,额定电压 $U_{1N}=380$ V,额定功率 $P_{N}=100$ kW,额定转速 $n_{N}=950$ r/min,在额定负载下运行时,机械功率损耗 $P_{mec}=1$ kW,忽略附加损耗。求额定运行时: $(1)s_{N};(2)P_{M};(3)P_{Cu2}$ 。

解: (1)额定转差率:由 n_N =950r/min可判断电机的同步转速 n_1 =1000r/min

$$S_{\rm N} = \frac{n_1 - n}{n} = \frac{1000 - 950}{1000} = 0.05$$

$$n_{i} = \frac{60f}{p} = \frac{60f}{p=3} = 1000 \text{ T/min.}$$

(2) 额定运行时的电磁功率 $P_{\rm M}$

由
$$P_{\rm M} = P_2 + P_{\rm mec} + P_{\rm Cu2}$$
, $P_{\rm Cu2} = s_{\rm N} P_{\rm M}$ 得:

$$P_{\rm M} = \frac{P_2 + P_{\rm mec}}{(1 - s_{\rm N})} = \frac{100 + 1}{1 - 0.05} \text{kW} = 106.3 \text{kW}$$

(3) 额定运行时转子的铜损耗 P_{Cu2} $P_{\text{Cu2}} = s_{\text{N}}P_{\text{M}} = 0.05 \times 106.3 \text{kW} = 5.3 \text{kW}$

二、转矩平衡

1. 电磁转矩公式

异步电动机的电磁转矩等于电磁功率PM除以同步角速度 $\Omega1$,其公式为:

$$T = \frac{P_{\rm M}}{\Omega_{\rm l}} = \frac{m_{\rm l}E_{\rm 20}'I_{\rm 2}'\cos\varphi_{\rm 2}}{\Omega_{\rm l}}$$

$$\Omega_{\rm l} = \frac{2\pi n_{\rm l}}{60} = \frac{2\pi f_{\rm l}}{p}$$

$$E_{\rm 20}' = 4.44f_{\rm l}N_{\rm l}k_{\rm Nl}\Phi_{\rm l}$$

$$\frac{4.44}{2\pi} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow T = \frac{pm_{\rm l}N_{\rm l}k_{\rm Nl}}{\sqrt{2}}\Phi_{\rm l}I_{\rm 2}'\cos\varphi_{\rm 2}$$

说明:电磁转矩T的大小与主磁通 Φ 1及转子电流的有功分量 I_2 ' $cos \varphi$ 2 的乘积成正比,即电磁转矩是由气隙磁场与转子电流的有功分量共同作用产生的,揭示了电磁转矩的本质。

转矩平衡

转矩平衡方程式

转矩平衡方程式为:

省中机(发量的校展方面 T2=T+To

$$T = \frac{P_{\rm m}}{\Omega} = \frac{P_{\rm M}}{\Omega_1}$$

电磁转矩既可以用总机械功率除以机械角速度来计算 也可以用电磁功率除以同步角速度来计算。

$$\frac{1}{\Omega} = \frac{1}{2} + \frac{1}{1}$$

$$T = T_2 + T_0$$
电磁转矩 机械转矩 空载转矩 $P_m = (1-s)P_M = P_M$

忽略T0时, $T=T_2$

额定运行时,
$$T = T_{\rm N} = \frac{60P_{\rm N}}{2\pi n_{\rm N}} = 9.55 \frac{P_{\rm N}}{n_{\rm N}}$$

【例】 一台四极三相50Hz异步电动机, $U_N = 380$ V, $P_N = 10$ kW,电动机各损耗 $P_{Cu1} = 227$ W, $P_{Cu2} = 314$ W, $P_{mec} = 50$ W, $P_s = 200$ W。试求:(1)总机械功率 P_m ;(2)电磁功率 P_M ;(3)转差率 s_N ; (4)负载转矩 T_2 ; (5)空载转矩 T_0 ; (6)电磁转矩 T_0 .

解: (1) 总机械功率
$$P_{\rm m} = P_2 + P_{\rm mec} + P_{\rm s} = (10 + 0.05 + 0.2) = 10.25 \,\mathrm{kW}$$

(2) 电磁功率
$$P_{\rm M} = P_{\rm m} + P_{\rm Cu2} = (10.25 + 0.314) = 10.564 {\rm kW}$$

(3) 额定转差率
$$S_{\rm N} = P_{\rm Cu2}/P_{\rm M} = 0.314/10.564 = 0.03$$

额定转速
$$n_N = n_1(1 - s_N) = 1500 \times (1 - 0.03) = 1455 \text{r/min}$$

同步转谏
$$n_1 = 60 f_N / p = 60 \times 50 / 2 = 1500 r / min$$

(4) 负载转矩
$$T_2 = P_2/\Omega = 10 \times 10^3 / 2\pi \frac{1455}{60} = 65.7 \text{N.m.}$$

(5) 空载转矩
$$T_0 = P_0/\Omega = P_{\text{mec}} + P_{\text{s}}/\Omega = 250 / 2\pi \frac{1455}{60} = 1.64 \text{N.m.}$$

(6) 电磁转矩
$$T = T_2 + T_0 = 65.7 + 1.64 = 67.34$$
 N.m
$$T = P_{\rm M}/\Omega_1 = 10.564 \times 10^3 / 2\pi \frac{1500}{60} = 67.34$$
 N.m

工作特性: 指电源电压和频率为额定值的情况下, 定子电流、转速(或转差率)、功率因素、电磁转矩、效率与输出功率的关系。

1、定子电流特性 $I_1 = f(P_2)$

$$:: \dot{I}_1 = \dot{I}_{10} + (-I_2')$$

空载时
$$P_2 = 0 \Rightarrow \dot{I}_2 \approx 0 \Rightarrow \dot{I}_1 = \dot{I}_{10}$$

负载时
$$P_2 \uparrow \Rightarrow \dot{I}'_2 \uparrow \exists \dot{I}_{10}$$
不变 $\Rightarrow \dot{I}_1 \uparrow$

2、转速特性 $n=f(P_2)$

$$n = (1 - s)n_1$$

空载时
$$P_2=0 \Rightarrow n \approx n_1$$

负载时
$$P_2 \uparrow \Rightarrow T_2(T_L) \uparrow \xrightarrow{T-T_L = \frac{GD^2}{375} \frac{dn}{dt}} \rightarrow \frac{dn}{dt} \downarrow \Rightarrow n \downarrow$$

异步电动机的工作特性

3、转矩特性*T=f(P₂)*

稳态时
$$T = T_0 + T_2 \xrightarrow{T_2 = P_2/\Omega} T = T_0 + 9.55 P_2 / n$$

$$P_2 : 0 \sim P_N \Rightarrow n : n_1 \sim n_N \quad s_N$$
很小,近似认为 n 没变
$$\Rightarrow T = f(P_2)$$
近似一直线

4、功率因数特性 $\cos \varphi 1 = f(P_2)$

由等效电路可知异步电机为感性电路 $\Rightarrow \cos \varphi_1 < 1 \perp \varphi_1 > 0$

空载时
$$P_2$$
=0 \Rightarrow $\dot{I}_2' \approx 0$ $\xrightarrow{\dot{I}_1=\dot{I}_{10}+(-\dot{I}_2')}$ $\dot{I}_1 \approx \dot{I}_{10}$ $\xrightarrow{\dot{I}_{10}=\dot{I}_{10a}+\dot{I}_{10r}}$ $\cos \varphi_1$ 很小 $\approx 0.1 \sim 0.2$

加负载, $P_2 \uparrow \Rightarrow$ 定子电流有功分量 $\uparrow \Rightarrow \cos \varphi_1 \uparrow$

 $n, I_1, T, \eta, \cos \varphi_1$

异步电动机的工作特性

5、效率特性 $\eta = f(P_2)$

$$\eta = \frac{P_2}{P_1} = \frac{P_2}{P_2 + P_{\text{Fe}} + P_{\text{mec}} + P_{\text{Cu}1} + P_{\text{Cu}2} + P_{\text{s}}}$$

负载很小时

- 可变损耗很小
- · 负载从零开始增加时,总损耗增加较慢,*η*↑。

不变损耗=可变损耗时

• $\eta = \eta_{\text{max}}$

由额定负载继续增加

可变损耗增加很快, η↓

损耗:不变损耗 P_{Fe} + P_{mec} ; 可变损耗 P_{Cu1} + P_{Cu2} + P_{s}

异步电动机的工作特性

小结

(1) 电动机从电源吸收的电功率P1 (有功功率)

$$P_1 = 3U_{1P}I_{1P}\cos\varphi_1 = \sqrt{3}U_{1L}I_{1L}\cos\varphi_1$$

电磁功率

$$P_{\rm Fe} = 3R_{\rm m}I_{10}^2$$
 定子铁损 转子铜损(转差切率)
$$P_{\rm M} = 3E_{20}'I_2'\cos\varphi_2 = 3I_2'^2\frac{R_2'}{s} \rightarrow \begin{cases} P_{\rm Cu2} = 3R_2'I_2'^2 = sP_{\rm M} \\ P_{\rm m} = 3(\frac{1-s}{s})R_2'I_2'^2 = (1-s)P_{\rm M} \end{cases}$$
 和林功率

转子铜损 (转差功率)

$$\begin{cases} P_{\text{Cu}2} = 3R_2'I_2'^2 = sP_{\text{M}} \\ P_{\text{m}} = 3(\frac{1-s}{s})R_2'I_2'^2 = (1-s)P_{\text{M}} \end{cases}$$
 机械功率

'功率平衡

功

转 矩

平

衡与工作特性

重要公式: $P_{\rm M}$: $P_{\rm cu2}$ = 1: (1-s): s

功率流程

(2) 电动机轴上输出的机械功率P2 (有功功率) $P_2 = P_m - (P_{mec} + P_s)$

$$P_2 = P_{\rm m} - (P_{\rm mec} + P_{\rm s})$$

附加损耗

$$\frac{P_{\rm m}}{\Omega} = \frac{P_2}{\Omega} + \frac{P_{\rm mec} + P_{\rm s}}{\Omega}$$

$$T = T_2 + T_0$$
日磁转矩 机械转矩 空载转

$$\Omega_{1} \qquad \Omega_{1}$$

$$\Omega_{1} = \frac{2\pi n_{1}}{60} = \frac{2\pi f_{1}}{p}$$

$$E'_{20} = 4.44 f_{1} N_{1} k_{N1} \Phi_{1}$$

$$\frac{4.44}{2\pi} = \frac{1}{\sqrt{2}}$$

世級转矩常数
$$T = \frac{P_{\mathrm{M}}}{\Omega_{\mathrm{I}}} = \frac{m_{\mathrm{I}}E_{20}'I_{2}'\cos\varphi_{2}}{\Omega_{\mathrm{I}}}$$
 电磁转矩常数
$$\nabla T = \frac{P_{\mathrm{M}}}{\Omega_{\mathrm{I}}} = \frac{m_{\mathrm{I}}E_{20}'I_{2}'\cos\varphi_{2}}{\Omega_{\mathrm{I}}}$$
 电磁转矩 机械转矩 空载转矩
$$\nabla T = \frac{P_{\mathrm{M}}}{1} = \frac{2\pi n_{\mathrm{I}}}{60} = \frac{2\pi f_{\mathrm{I}}}{p}$$

$$E_{20}' = 4.44f_{\mathrm{I}}N_{\mathrm{I}}k_{\mathrm{N}\mathrm{I}}\Phi_{\mathrm{I}}$$

$$4.44 \qquad 1$$

- 1、定子电流特性 $I_1 = f(P_2)$
- 3、转矩特性*T=f(P*₂)
- 2、转速特性 $n=f(P_2)$ 4、功率因数特性 $\cos \varphi 1 = f(P_2)$
- 5、效率特性 $\eta = f(P_2)$

 P_2