Homework 4: Pairs Trading of NVDA

學號: M11218014 姓名: 王士誠

1. 研究目標

運用 K-means 聚類(K-means Clustering)和階層式聚類(Hierarchical Clustering)方法尋找額外的 NVDA 交易配對候選股票·並與親和力傳播(Affinity Propagation Clustering)方法的結果進行比較分析。

2. 研究方法

- 1. 數據準備: 使用 S&P 500 股票數據(2018 年起),計算年化報酬率和波動率,並進行特徵標準化
- 2. 聚類方法應用:
 - o K-means 聚類 (K-means Clustering)
 - o 階層式聚類 (Hierarchical Clustering)
 - o 親和力傳播 (Affinity Propagation Clustering)
- 3. 配對選擇: 在 NVDA 所屬群組內進行共整合檢驗 (p 值 < 0.05)

3. 主要發現

3.1 NVDA 群組分配結果

K-means 聚類: Cluster 1 (包含 21 檔股票)
階層式聚類: Cluster 0 (包含 70 檔股票)
親和力傳播: Cluster 3 (包含 4 檔股票)

3.2 NVDA 配對發現結果

聚類方法	發現配對數	配對範例
K-means	1 組配對	(NVDA, AXON)
階層式聚類	2 組配對	(NVDA, NRG), (NVDA, GODY)
親和力傳播	1組配對	(NVDA, AXON)

• 所有方法合計獨特配對: 3 組配對

3.3 與 NVDA 配對的公司簡介

股票代碼	公司名稱	行業	主要業務	
AXON	Axon Enterprise Inc.	執法科技與 安全設備	電擊槍 (Taser)、隨身攝影機、雲端軟體 平台及數據分析服務	
NRG	NRG Energy Inc.	能源公用事 業	電力生產及銷售、可再生能源開發	
GODY	Godaddy Inc.	網域註冊及 網路服務	網域註冊、網站建置、雲端託管	

3.4 NVDA 特性分析

年化報酬率: 0.6032(高成長特性)波動率: 0.5156(高風險科技股特徵)

• 群組特性: 與其他高成長、高波動性科技股聚集

4. 對 NVDA 結果的分析與評論

4.1 為什麼這些聚類結果對 NVDA 具有合理性?

1. 科技板塊相關性:

- o NVDA 因共同市場因素與相似科技股聚集
- o 反映了投資者對科技創新的共同預期

2. 成長股特性:

- o 高報酬率和高波動性將 NVDA 歸類為成長導向公司
- o 與具有相似風險-報酬特性的股票形成群組

3. AI/半導體主題:

- o 近期 AI 熱潮創造了相關科技股的強相關性
- o AI 發展推動基礎建設需求
- o NVDA 作為 GPU 和 AI 領域領導者的市場地位

4. 市場情緒影響:

- o 科技股通常基於投資者情緒和板塊輪動而同步移動
- o 利率變化、監管政策等因素影響整個科技板塊

4.2 交易策略意涵

- 不同聚類方法捕捉到不同的市場關係層面
- K-means 提供基於距離的相似性(報酬/波動性特徵)
- 階層式聚類揭示嵌套的市場結構關係
- 多方法結合提供多樣化的配對選擇,有助於風險管理

5. 結論

多聚類方法成功識別了超越原始親和力傳播結果的額外 NVDA 配對候選股票。每種方法提供獨特見解:

• K-means: 基於風險-報酬特性的平衡群組

• 階層式聚類: 顯示市場結構的嵌套關係

• 親和力傳播: 自動偵測具有代表性樣本的自然群組