



# Final Project Presentation

Nomor Kelompok: Kelompok 6 Nama Mentor: Rauzan Sumara Nama:

- <Feri Irawansyah>
- <Achmad Raihan>

**Machine Learning Class** 

Program Studi Independen Bersertifikat Zenius Bersama Kampus Merdeka







- 1. Latar Belakang
- 2. Explorasi Data dan Visualisasi
- 3. Modelling
- 4. Kesimpulan





### Latar Belakang





### Latar Belakang Project

Sumber Data: Mobile Price Classification | Kaggle

Problem: Classification Tujuan:

- Mengetahui faktor yang memengaruhi kualitas smartphone.
- Menentukan *Machine Learning Model* terbaik dengan akurasi tinggi yang digunakan untuk Prediksi kualitas *smartphone*.





## Explorasi Data dan Visualisasi





### **Business Understanding**

- Smartphone merupakan salah satu perangkat elektronik dengan fungsi utama sebagai alat komunikasi.
- Perbedaan harga yang dirilis tiap perusahaan disebabkan karena perbedaan tujuan khusus dari spesifikasi smartphone.
- Berasarkan spesifikasinya, smartphone juga dibuat dengan tujuan khusus, seperti untuk bermain games, fotografi, dll.





### **Data Cleansing**

Pada kolom *px\_height* dengan nilai minimum 0, index ke 1481 terdapat kejanggalan sebagai berikut:

- Terdapat *smartphone* berada di peringkat ke 3/kualitas terbaik
- Tidak memiliki bluetooth
- Dan memiliki RAM yang cukup besar
- Memiliki battery power yang besar
- Nilai pada kolom sc\_width = 0

Tindakan terbaik yang dilakukan yaitu menghapus baris tersebut karena ambigunya informasi tersebut.





#### **Exploratory Data Analysis**

Terdapat 4 fitur yang memiliki korelasi diatas 10%, yaitu:

| Fitur         | Persentase |
|---------------|------------|
| RAM           | 91%        |
| Battery Power | 20%        |
| Pixel Width   | 16%        |
| Pixel Height  | 14%        |

Berdasarkan pendapat dari Jonathan Sarwono Direktur Penjaminan Mutu di *International Women University* dalam artikel <a href="http://www.databee.id/2020/12/jenis-uji-korelasi.html">http://www.databee.id/2020/12/jenis-uji-korelasi.html</a>, maka fitur tersebut akan dijadikan sebagai prediktor untuk prediksi kualitas *smartphone*.





#### **Exploratory Data Analysis**



Visualisasi untuk melihat adanya *outlier* berdasarkan distribusi dari 4 fitur tersebut.





### **Exploratory Data Analysis**



Visualisasi untuk melihat keseimbangan jumlah *target variable* pada kolom *Price Range* pada tiap tingkat kualitasnya.





## Modelling





Akurasi *Machine Learning Model* yang digunakan untuk prediksi kualitas *smartphone* tanpa melakukan *Exploratory Data Analysis* 

| Machine Learning Model             | Persentase Akurasi |
|------------------------------------|--------------------|
| Random Forest: Classifier          | 86%                |
| Decision Tree                      | 84%                |
| Support Vector Machine: Classifier | 87%                |





Akurasi *Machine Learning Model* yang digunakan untuk prediksi kualitas *smartphone* dengan melakukan *Exploratory Data Analysis* dan *Hyperparameter Tuning*.

| Machine Learning Model             | Persentase Akurasi |
|------------------------------------|--------------------|
| Random Forest: Classifier          | 90%                |
| Decision Tree                      | 88%                |
| Support Vector Machine: Classifier | 97%                |







Visualisasi akurasi *Machine Learning Model* dengan

melakukan *Exploratory Data Analysis* dan *Hyperparameter Tuning*.







Visualisasi akurasi *Machine Learning Model* dengan

melakukan *Exploratory Data Analysis* dan *Hyperparameter Tuning*.

#### **Evaluation**

Heatmap Confusion Matrix pada Random Forest: Classifier



Heatmap Confusion Matrix pada Support Vector Machine: Classifier







#### **Evaluation**

Pada *Heatmap Confusion Matrix Support Vector Machine:* Classifier, nilai prediksi melebihi kapasitas dari *data test* yang digunakan, dimana seharusnya berjumlah 400 smartphone, namun jika dilakukan perhitungan manual, hasilnya yaitu 402 dengan perhitungan berikut 99+1+2+87+4+3+97+5+2+102 = 402. Sedangkan, *Heatmap Confusion Matrix pada Random Forest: Classifier* berada dalam kondisi normal.





### Conclusion





Berdasarkan hasil analisis yang telah dilakukan, terdapat 4 faktor yang harus diperhatikan kepada calon pembeli*smartphone*. Hal tersebut disebakan karena akan memengaruhi kualitas *smartphone*, yaitu:

- RAM
- Battery Power
- Pixel Width
- Pixel Height





Berdasarkan evaluasi yang telah dilakukan, maka *Machine Learning Model* terbaik yang digunakan untuk prediksi kualitas *smartphone* yaitu *Random Forest: Classifier* dengan akurasi 90%.

# Terima kasih!

Ada pertanyaan?

