Санкт-Петербургский государственный политехнический университет Петра Великого

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабораторная работа

Модуляция и выборка (квантование)

Выполнил студент гр. 3530901/80201 И.С. Иванов

Преподаватель: Н.В. Богач

Санкт-Петербург 2021

Содержание

1	Упражнение №1	5
2	Упражнение №2	6
3	Упражнение №3	7
4	Выводы	13

Список иллюстраций

1	Полученный сигнал
2	Спектр сигнала
3	Применение фильтра
4	Применение функции sample
5	Применения сглаживания
6	Масштабирование спектра
7	Результат 11

Листинги

1	Считывание сигнала	7
2	Уменьшение частоты дискретизации	8
3	Применение фильтра	8
4	Функция sample	9
5	Применения sample	g

1 Упражнение №1

В первом упражнении необходимо изучить примеры из файла chap11. ipynb.

Все примеры были запущены и изучены.

2 Упражнение №2

В втором упражнении необходимо просмотреть ролик Криса "Монти" Минтгомери - "D/A and A/D | Digital Show and Tell".

В результате просмотра данного видеоролика была получена информация, почему аналоговое аудио в приемлемых пределах человеческого слуха воспроизводится с идеальной точностью с использованием 16-битного цифрового сигнала 44.1 кГЦ.

3 Упражнение №3

В третьем упражнении необходимо применить фильтр низких частот к примеру "Соло на барабане" до выборки. После чего снова с помощью фильтра НЧ удалить спектральные копии, которые вызваны выборкой.

Считаем файл.

```
from thinkdsp import read_wave

wave = read_wave('Sounds/263868_kevcio_amen-break-a-160-bpm.wav')
wave.normalize()
wave.plot()
```

Листинг 1: Считывание сигнала

Рис. 1: Полученный сигнал

Получим спектр.

Рис. 2: Спектр сигнала

Уменьшим частоту дискретизации в 3 раза.

```
factor = 3
framerate = wave.framerate / factor
cutoff = framerate / 2 - 1
```

Листинг 2: Уменьшение частоты дискретизации

Применим фильтр сглаживания для удаления частот выше новой частоты.

```
spectrum.low_pass(cutoff)
spectrum.plot()
```

Листинг 3: Применение фильтра

Рис. 3: Применение фильтра

Теперь напишем функцию sample, которая будет имитировать процесс выборки.

```
from thinkdsp import Wave

def sample(wave, factor):
    ys = np.zeros(len(wave))
    ys[::factor] = np.real(wave.ys[::factor])
    return Wave(ys, framerate=wave.framerate)
```

Листинг 4: Функция sample

Проверим функцию.

```
filtered = spectrum.make_wave()
sampled = sample(filtered, factor)
sampled_spectrum = sampled.make_spectrum(full=True)
sampled_spectrum.plot()
```

Листинг 5: Применения sample

Рис. 4: Применение функции sample

На спектре имеются спектральные копии. Необходимо убрать их применив фильтр сглаживания.

Рис. 5: Применения сглаживания

Масштабируем спектр.

Рис. 6: Масштабирование спектра

Проверим разницу между спектром до и после фильтрации.

Между спектрами нет большой разницы. Функция max_diff выводит результат 1.8189894035458565e-12, подтверждая это.

Посмотрим на сигнал.

Рис. 7: Результат

По полученным результатам можно сделать вывод, что разница между интерполированной и фильтрованной волной очень мала.

4 Выводы

В результате выполнения данной лабораторной работы были получены знания об амплитудной модуляции. Амплитудная модуляция играет важную роль в радиосвязи. Также была изучена теорема о выборках, которая является важнейшей в цифровой обработке сигналов. Также были получены навыки их применения.