

Schletter, Inc.		35° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, $P_s =$	14.43 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.2 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	2 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.4 -1.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.2 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer M11 Outer Location M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 M7 M11 Outer Outer N7 N15 M11 N7 Outer N15 N23 Location Outer Rear Struts M2 Outer Location M6 Inner Rear Reactions N8 Inner N8 N16 N16 Outer N16 N24 Location Outer M10 M10 Outer Outer M15 Inner M15 M16A

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	ProfiPlus	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>93</u>	in
$\Phi F_{ty STRONG-AXIS} =$	28.28	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.834	k-ft
$M_z =$	0.238	k-ft
$M_{y \text{ allowable}} =$	1.203	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>97%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = F _{ty} =	1.5x0.25 6061-T6 35 ksi
Φ =	0.90
S _y =	0.02 in^3
Ë =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
M _y =	0.006 k-ft
P _n =	0.056 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>14%</u>

A cross brace kit is required every 14 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>35.97</u>	<u>1903.94</u> k	
Compressive Load =	<u>1364.88</u>	<u>1415.96</u> k	
Lateral Load =	<u>5.58</u>	1298.80 k	
Moment (Weak Axis) =	0.01	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 28874.0 in-lbs Resisting Force Required = 962.47 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1604.11 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding 312.03 lbs Force = Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 780.08 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 312.03 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 Ballast Width

 22 in
 23 in
 24 in
 25 in

 P_{fta} = (145 pcf)(5 ft)(1.5 ft)(1.83 ft) =
 1994 lbs
 2084 lbs
 2175 lbs
 2266 lbs

ASD LC	1.0D + 1.0S				1.0D + 1.0W		1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W						
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	548 lbs	548 lbs	548 lbs	548 lbs	381 lbs	381 lbs	381 lbs	381 lbs	642 lbs	642 lbs	642 lbs	642 lbs	32 lbs	32 lbs	32 lbs	32 lbs
FB	372 lbs	372 lbs	372 lbs	372 lbs	607 lbs	607 lbs	607 lbs	607 lbs	696 lbs	696 lbs	696 lbs	696 lbs	-914 lbs	-914 lbs	-914 lbs	-914 lbs
F _V	74 lbs	74 lbs	74 lbs	74 lbs	574 lbs	574 lbs	574 lbs	574 lbs	479 lbs	479 lbs	479 lbs	479 lbs	-624 lbs	-624 lbs	-624 lbs	-624 lbs
P _{total}	2914 lbs	3005 lbs	3096 lbs	3186 lbs	2982 lbs	3072 lbs	3163 lbs	3253 lbs	3332 lbs	3423 lbs	3513 lbs	3604 lbs	315 lbs	369 lbs	424 lbs	478 lbs
M	466 lbs-ft	466 lbs-ft	466 lbs-ft	466 lbs-ft	491 lbs-ft	491 lbs-ft	491 lbs-ft	491 lbs-ft	674 lbs-ft	674 lbs-ft	674 lbs-ft	674 lbs-ft	736 lbs-ft	736 lbs-ft	736 lbs-ft	736 lbs-ft
е	0.16 ft	0.15 ft	0.15 ft	0.15 ft	0.16 ft	0.16 ft	0.16 ft	0.15 ft	0.20 ft	0.20 ft	0.19 ft	0.19 ft	2.34 ft	2.00 ft	1.74 ft	1.54 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	257.0 psf	255.3 psf	253.7 psf	252.2 psf	261.0 psf	259.1 psf	257.4 psf	255.8 psf	275.3 psf	272.8 psf	270.5 psf	268.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	378.9 psf	371.9 psf	365.4 psf	359.5 psf	389.5 psf	382.0 psf	375.2 psf	368.9 psf	451.7 psf	441.5 psf	432.2 psf	423.6 psf	713.8 psf	254.3 psf	185.5 psf	159.5 psf

Maximum Bearing Pressure = 714 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 247.6 \text{ ft-lbs}$

Resisting Force Required = 270.10 lbs S.F. = 1.67 Weight Required = 450.17 lbs

Minimum Width = 22 in in
Weight Provided = 1993.75 lbs

A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	SE.	
Width		22 in			22 in			22 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	91 lbs	230 lbs	86 lbs	279 lbs	770 lbs	274 lbs	27 lbs	67 lbs	25 lbs	
F _V	7 lbs	6 lbs	0 lbs	24 lbs	22 lbs	1 lbs	2 lbs	2 lbs	0 lbs	
P _{total}	2559 lbs	2698 lbs	2555 lbs	2629 lbs	3120 lbs	2624 lbs	748 lbs	789 lbs	747 lbs	
M	11 lbs-ft	9 lbs-ft	1 lbs-ft	41 lbs-ft	34 lbs-ft	4 lbs-ft	3 lbs-ft	3 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.02 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.31 ft	1.83 ft	1.83 ft	1.80 ft	1.81 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	
f _{min}	275.4 sqft	291.1 sqft	278.5 sqft	272.3 sqft	328.3 sqft	284.8 sqft	80.6 sqft	85.1 sqft	81.4 sqft	
f _{max}	283.1 psf	297.6 psf	278.9 psf	301.3 psf	352.4 psf	287.7 psf	82.7 psf	87.0 psf	81.5 psf	

Maximum Bearing Pressure = 352 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.050 k	Maximum Axial Load =	1.197 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>18%</u>	Utilization =	<u>21%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.789 k	Maximum Axial Load =	0.056 k
Maximum Axial Load = M8 Bolt Shear Capacity =	0.789 k 5.692 k	Maximum Axial Load = M10 Bolt Capacity =	0.056 k 8.894 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 33.11 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.662 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.083 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 93.00 \text{ in}$$

$$J = 0.255$$

$$242.167$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$C2 = \left(\frac{C_{c}}{c}\right)^{2}$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \\ \phi F_L &= 28.3 \text{ ksi} \end{split}$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 93.00 \text{ in}$$

$$J = 0.255$$

$$251.476$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_{L} = 28.2$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C \varphi$$

$$\phi F_L St = 28.3 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.203 \text{ k-ft}$$

43.2 ksi

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

0.871 k-ft

 $M_{max}Wk =$

Compression

 $\phi F_L =$

3.4.9

b/t =7.4

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 23.9$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi c [Bp-1.6Dp^*]$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

 $\phi F_L =$ 28.5 ksi

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

Rev. 11.10.2015

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 21.0529 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_1 = & 29.8 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\theta_{v}$$
 2

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

3.4.18

h/t = 4.29
$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$by = 217168 \text{ mm}^4$$

x =

Sy =

0.522 in⁴

0.457 in³

0.513 k-ft

29 mm

Compression 3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46

b/t = 24.46
S1 = 12.21
S2 = 32.70

$$\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

12.76 kips

3.4.10

Rb/t =

 $P_{max} =$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_{0} = 15$$

$$C_{0} = 15$$

$$S2 = \frac{k_{1}Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_{L} = 1.3\phi y Fcy$$

$$\phi F_{L} = 43.2 \text{ ksi}$$

$$\phi F_{L} St = 31.2 \text{ ksi}$$

$$\Delta F_{L} = 39958.2 \text{ mm}^{4}$$

3.4.18

h/t =

$$S1 = 36.9$$

 $m = 0.65$
 $C_0 = 15$
 $Cc = 15$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 39958.2 \text{ mm}^4$
 $\phi F_L = 15 \text{ mm}$
 $\phi F_L = 39958.2 \text{ mm}^4$
 $\phi F_L = 15 \text{ mm}$
 $\phi F_L = 15 \text{ mm}$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$\pi \sqrt{377}$$

S2^{*} = 1.23671

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{\text{max}} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$\left(Bc - \frac{\theta_{y}}{2}Fcy\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$M_{max}St = 0.404 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ Iy = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

0.450 k-ft

 $\phi F_L =$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$82^* = 1.23671$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 42.32 \text{ in}$$

$$J = 0.16$$

$$111.025$$

$$\left(Bc - \frac{\theta_{y}}{\theta_{b}} Fcy\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_1 = 30.0 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 Not Used Rb/t = 0.0

 $\phi F_L = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 30.0 \text{ ksi} \\ \text{lx} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{y} = & 15 \text{ mm} \\ \text{Sx} = & 0.163 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 0.406 \text{ k-ft} \end{array}$$

Weak Axis:

3.4.14

$$L_{b} = 42.32 \text{ in}$$

$$J = 0.16$$

$$111.025$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_{c} = \varphi b[Bc-1.6Dc]$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_L &= 30.0 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

 $Sy = 0.163 \text{ in}^3$

x =

 $M_{max}Wk =$

15 mm

0.450 k-ft

SCHLETTER

Compression

$$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.81475 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi \textbf{cc} = & 0.83406 \\ & \phi \textbf{F}_{L} = & (\phi \textbf{ccFcy})/(\lambda^2) \\ & \phi \textbf{F}_{L} = & 8.86409 \text{ ksi} \\ \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 8.86 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 4.45 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-40.249	-40.249	0	0
2	M16	Υ	-40.249	-40.249	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-37.962	-37.962	0	0
2	M16	V	-63.27	-63.27	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	75.924	75.924	0	0
2	M16	V	37.962	37.962	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	6.					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	249.347	2	315.934	2	005	15	0	15	0	1	0	1
2		min	-310.537	3	-444.603	3	205	1	0	1	0	1	0	1
3	N7	max	.028	3	425.548	1	105	15	0	15	0	1	0	1
4		min	182	2	17.884	15	-2.043	1	004	1	0	1	0	1
5	N15	max	.225	3	1049.908	1	.702	1	.001	1	0	1	0	1
6		min	-1.815	2	39.43	15	439	3	0	3	0	1	0	1
7	N16	max	942.904	2	1089.201	2	291	10	0	1	0	1	0	1
8		min	-999.079	3	-1464.568	3	-50.004	3	0	3	0	1	0	1
9	N23	max	.028	3	425.213	1	4.289	1	.007	1	0	1	0	1
10		min	182	2	18.051	15	.209	15	0	15	0	1	0	1
11	N24	max	249.924	2	320.575	2	50.314	3	.002	1	0	1	0	1
12		min	-310.659	3	-441.954	3	.029	10	0	12	0	1	0	1
13	Totals:	max	1439.994	2	3419.693	1	0	11						
14		min	-1619.994	3	-2126.537	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	275.719	1	.677	4	.571	1	0	15	0	12	0	1
2			min	-366.895	3	.159	15	025	3	001	1	0	1	0	1
3		2	max	275.853	1	.62	4	.571	1	0	15	0	12	0	15
4			min	-366.794	3	.146	15	025	3	001	1	0	1	0	4
5		3	max	275.988	1	.562	4	.571	1	0	15	0	15	0	15
6			min	-366.693	3	.132	15	025	3	001	1	0	1	0	4
7		4	max	276.123	1	.505	4	.571	1	0	15	0	15	0	15
8			min	-366.592	3	.119	15	025	3	001	1	0	1	0	4
9		5	max	276.258	1	.447	4	.571	1	0	15	0	1	0	15
10			min	-366.491	3	.105	15	025	3	001	1	0	3	0	4
11		6	max	276.393	1	.39	4	.571	1	0	15	0	1	0	15
12			min	-366.39	3	.092	15	025	3	001	1	0	3	0	4
13		7	max	276.528	1	.332	4	.571	1	0	15	0	1	0	15
14			min	-366.288	3	.078	15	025	3	001	1	0	3	0	4
15		8	max	276.663	1	.275	4	.571	1	0	15	0	1	0	15
16			min	-366.187	3	.065	15	025	3	001	1	0	3	0	4
17		9	max	276.797	1	.217	4	.571	1	0	15	0	1	0	15
18			min	-366.086	3	.051	15	025	3	001	1	0	3	0	4
19		10	max	276.932	1	.16	4	.571	1	0	15	0	1	0	15
20			min	-365.985	3	.037	12	025	3	001	1	0	3	0	4
21		11	max	277.067	1	.108	2	.571	1	0	15	0	1	0	15
22			min	-365.884	3	.015	12	025	3	001	1	0	3	0	4
23		12	max	277.202	1	.063	2	.571	1	0	15	0	1	0	15
24			min	-365.783	3	013	3	025	3	001	1	0	3	0	4
25		13	max	277.337	1	.018	2	.571	1	0	15	0	1	0	15
26			min	-365.682	3	047	3	025	3	001	1	0	3	0	4
27		14	max	277.472	1	016	15	.571	1	0	15	.001	1	0	15
28			min	-365.58	3	081	3	025	3	001	1	0	3	0	4
29		15	max	277.607	1	03	15	.571	1	0	15	.001	1	0	15
30			min	-365.479	3	128	4	025	3	001	1	0	3	0	4
31		16	max	277.742	1	043	15	.571	1	0	15	.001	1	0	15
32			min	-365.378	3	185	4	025	3	001	1	0	3	0	4
33		17	max		1	057	15	.571	1	0	15	.001	1	0	15
34			min	-365.277	3	243	4	025	3	001	1	0	3	0	4
35		18	max	278.011	1	07	15	.571	1	0	15	.001	1	0	15
36			min	-365.176	3	3	4	025	3	001	1	0	3	0	4
37		19	max	278.146	1	084	15	.571	1	0	15	.002	1	0	12

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC \	/-y Mome		z-z Mome	. LC
38			min	-365.075	3	358	4	025	3	001	1	0	3	0	4
39	M3	1	max	196.944	2	1.735	4	03	15	0	15	.002	1	0	4
40			min	-218.474	3	.408	15	661	1	0	1	0	15	0	12
41		2	max	196.874	2	1.558	4	03	15	0	15	.002	1	0	2
42			min	-218.526	3	.366	15	661	1	0	1	0	15	0	3
43		3	max	196.804	2	1.382	4	03	15	0	15	.002	1	0	2
44			min	-218.579	3	.325	15	661	1	0	1	0	15	0	3
45		4	max		2	1.205	4	03	15	0	15	.002	1	0	15
46			min	-218.631	3	.284	15	661	1	0	1	0	15	0	4
47		5	max	196.664	2	1.029	4	03	15	0	15	.002	1	0	15
48			min	-218.684	3	.242	15	661	1	0	1	0	15	0	4
49		6	max		2	.853	4	03	15	0	15	.002	1	0	15
50			min	-218.736	3	.201	15	661	1	0	1	0	15	0	4
51		7	max		2	.676	4	03	15	0	15	.001	1	0	15
52			min	-218.789	3	.159	15	661	1	0	1	0	15	0	4
53		8	max		2	.5	4	03	15	0	15	.001	1	0	15
54			min	-218.841	3	.118	15	661	1	0	1	0	15	001	4
55		9	max		2	.324	4	03	15	0	15	.001	1	0	15
56					3	.076	15	661	1	0	1	0	15	001	4
57		10	max		2	.147	4	03	15	0	15	0	1	0	15
58		10	min	-218.946	3	.035	12	661	1	0	1	0	15	001	4
59		11		196.244	2	.003	2	03	15	0	15	0	1	0	15
60			min	-218.999	3	054	3	661	1	0	1	0	15	001	4
61		12		196.174	2	048	15	03	15	0	15	0	1	0	15
62		12		-219.051	3	206	4	661	1	0	1	0	15	001	4
63		13	min		2	206 09	15	03	15	0	15	0	1	<u>001</u> 0	15
		13	max								1	0	15		
64		4.4	min	-219.104	3	382	4	661	1	0				001	4
65		14	max		2	131	15	03	15	0	15	0	1	0	15
66		4.5			3	558	4	661	1	0	1	0	15	001	4
67		15	max		2	173	15	03	15	0	15	0	1	0	15
68		10	min	-219.209	3	735	4	661	1	0	1	0	12	0	4
69		16		195.894	2	214	15	03	15	0	15	0	1	0	15
70		4.7	min	-219.261	3	911	4	661	1	0	1	0	12	0	4
71		17	max		2	255	15	03	15	0	15	0	15	0	15
72		4.0	min	-219.314	3	-1.087	4	661	1	0	1 1	0	1	0	4
73		18	max		2	297	15	03	15	0	15	0	15	0	15
74			min	-219.366	3	-1.264	4	661	1	0	1	0	1	0	4
75		19	max		2	338	15	03	15	0	15	0	15	0	1
76			min	-219.419	3	-1.44	4	661	1	0	1 1	0	1	0	1
77	M4	1	max	424.383	1	0	1	105	15	0	1	0	3	0	1
78				17.533		0	1	-2.199	1	0	1	0	2	0	1
79		2		424.448	1	0	1	105	15	0	1	00	12	0	1
80			min	17.552	15	0	1	-2.199	1	0	1	0	1	0	1
81		3	max	424.512	11	0	1	105	15	0	1	0	15	0	1
82			min	17.572	15	0	1	-2.199	1	0	1	0	1	0	1
83		4	max	424.577	1	0	1	105	15	0	1	0	15	0	1
84			min	17.591	15	0	1	-2.199	1	0	1	0	1	0	1
85		5	max	424.642	1	0	1	105	15	0	1	0	15	0	1
86			min	17.611	15	0	1	-2.199	1	0	1	0	1	0	1
87		6	max		1	0	1	105	15	0	1	0	15	0	1
88			min	17.63	15	0	1	-2.199	1	0	1	001	1	0	1
89		7		424.771	1	0	1	105	15	0	1	0	15	0	1
90			min	17.65	15	0	1	-2.199	1	0	1	001	1	0	1
91		8		424.836	1	0	1	105	15	0	1	0	15	0	1
92			min	17.669	15	0	1	-2.199	1	0	1	001	1	0	1
93		9	max		1	0	1	105	15	0	1	0	15	0	1
94			min	17.689	15	0	1	-2.199	1	0	1	002	1	0	1
						_									

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	424.965	1	0	1	105	15	0	1	0	15	0	1
96			min	17.708	15	0	1	-2.199	1	0	1	002	1	0	1
97		11	max	425.03	1	0	1	105	15	0	1	0	15	0	1
98			min	17.728	15	0	1	-2.199	1	0	1	002	1	0	1
99		12	max	425.095	1	0	1	<u>105</u>	15	0	1	0	15	0	1
100		40	min	17.747	15	0	1	-2.199	1	0	1	002	1	0	1
101		13	max	425.16	1	0	1	105	15	0	1	0	15	0	1
102		4.4	min	17.767	15	0	1	<u>-2.199</u>	1	0	1	002	1	0	1
103		14	max	425.224	1	0	1	105	15	0	1	0	15	0	1
104		15	min	17.786	15	0	1	-2.199	15	0	1	003	15	0	1
105		15	max	425.289 17.806	1 15	0	1	105		0	1	003		0	1
106 107		16	min	425.354		0	1	<u>-2.199</u> 105	15	0	1	<u>003</u> 0	15	0	1
107		10	max min	17.825	1 15	0	1	-2.199	1	0	1	003	1	0	1
109		17	max	425.418	1	0	1	- <u>-2.199</u> 105	15	0	1	<u>003</u> 0	15	0	1
110		17	min	17.845	15	0	1	-2.199	1	0	1	003	1	0	1
111		18	max		1	0	1	105	15	0	1	<u>003</u> 0	15	0	1
112		10	min	17.864	15	0	1	-2.199	1	0	1	003	1	0	1
113		19	max	425.548	1	0	1	105	15	0	1	<u>.000</u>	15	0	1
114		10	min	17.884	15	0	1	-2.199	1	0	1	004	1	0	1
115	M6	1	max	899.369	1	.682	4	.138	1	0	1	0	3	0	1
116			min	-1196.615	3	.16	15	137	3	0	15	0	11	0	1
117		2	max		1	.625	4	.138	1	0	1	0	3	0	15
118			min	-1196.514	3	.147	15	137	3	0	15	0	11	0	4
119		3	max	899.639	1	.567	4	.138	1	0	1	0	3	0	15
120			min	-1196.412	3	.133	15	137	3	0	15	0	15	0	4
121		4	max	899.774	1	.51	4	.138	1	0	1	0	3	0	15
122			min	-1196.311	3	.118	12	137	3	0	15	0	15	0	4
123		5	max	899.909	1	.452	4	.138	1	0	1	0	1	0	15
124			min	-1196.21	3	.096	12	137	3	0	15	0	15	0	4
125		6	max		1	.404	2	.138	1	0	1	0	1	0	15
126			min	-1196.109	3	.073	12	137	3	0	15	0	15	0	4
127		7	max		1	.36	2	.138	1	0	1	0	1	0	12
128			min	-1196.008	3	.051	12	137	3	0	15	0	12	0	4
129		8	max	900.313	1	.315	2	.138	1	0	1	0	1	0	12
130				-1195.907	3	.028	12	137	3	0	15	0	3	0	4
131		9	max		1	.27	2	.138	1	0	1	0	1	0	12
132		40	min		3	0	3	137	3	0	15	0	3	0	4
133		10		900.583	1	.225	2	.138	1	0	1	0	1	0	12
134 135		11	min	-1195.704	<u>3</u>	033	2	137	3	0	1 <u>5</u>	0	3	0	12
		11	max	900.718		.18		.138	3	0	15	0	3	0	2
136		12			3	066	2	137		0			1		
137 138		12		900.853	3	.136 1	3	.138 137	3	0	15	0 0	3	0 0	12
139		13		900.988	1	.091	2	137 .138	1	0	1	0	1	0	12
140		13		-1195.401	3	133	3	137	3	0	15	0	3	0	2
141		14		901.123	1	.046	2	.138	1	0	1	0	1	0	12
142		14		-1195.3	3	167	3	137	3	0	15	0	3	0	2
143		15		901.258	1	.001	2	.138	1	0	1	0	1	0	12
144		13		-1195.199	3	201	3	137	3	0	15	0	3	0	2
145		16		901.392	1	043	15	.138	1	0	1	0	1	0	12
146		10		-1195.097	3	234	3	137	3	0	15	0	3	0	2
147		17		901.527	1	056	15	.138	1	0	1	0	1	0	3
148				-1194.996	3	268	3	137	3	0	15	0	3	0	2
149		18		901.662	1	07	15	.138	1	0	1	0	1	0	3
150				-1194.895	3	301	3	137	3	0	15	0	3	0	2
151		19		901.797	1	083	15	.138	1	0	1	0	1	0	3
							-					•			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	. LC
152			min	-1194.794	3	352	4	137	3	0	15	0	3	0	2
153	M7	1	max	789.336	2	1.741	4	.025	3	0	2	0	2	0	2
154			min	-688.454	3	.409	15	004	10	0	3	0	3	0	3
155		2	max	789.266	2	1.564	4	.025	3	0	2	0	2	0	2
156			min	-688.507	3	.367	15	004	10	0	3	0	3	0	3
157		3	max	789.196	2	1.388	4	.025	3	0	2	0	2	0	2
158			min	-688.559	3	.326	15	004	10	0	3	0	3	0	3
159		4	max	789.126	2	1.212	4	.025	3	0	2	0	2	0	2
160			min	-688.612	3	.285	15	004	10	0	3	0	3	0	3
161		5	max	789.056	2	1.035	4	.025	3	0	2	0	2	0	15
162			min	-688.664	3	.243	15	004	10	0	3	0	3	0	3
163		6	max	788.986	2	.859	4	.025	3	0	2	0	2	0	15
164			min	-688.717	3	.202	15	004	10	0	3	0	3	0	3
165		7	max	788.916	2	.682	4	.025	3	0	2	0	2	0	15
166			min	-688.769	3	.16	15	004	10	0	3	0	3	0	4
167		8	max	788.846	2	.506	4	.025	3	0	2	0	2	0	15
168			min	-688.822	3	.118	12	004	10	0	3	0	3	001	4
169		9	max	788.776	2	.351	2	.025	3	0	2	0	2	0	15
170			min	-688.874	3	.049	12	004	10	0	3	0	3	001	4
171		10	max	788.706	2	.214	2	.025	3	0	2	0	2	0	15
172			min	-688.927	3	037	3	004	10	0	3	0	3	001	4
173		11	max		2	.076	2	.025	3	0	2	0	2	0	15
174			min	-688.979	3	14	3	004	10	0	3	0	3	001	4
175		12	max		2	047	15	.025	3	0	2	0	2	0	15
176			min	-689.032	3	243	3	004	10	0	3	0	3	001	4
177		13	max		2	089	15	.025	3	0	2	0	2	0	15
178		1.0	min	-689.084	3	376	4	004	10	0	3	0	3	001	4
179		14	max	788.426	2	13	15	.025	3	0	2	0	2	0	15
180			min	-689.137	3	552	4	004	10	0	3	0	3	001	4
181		15	max	788.356	2	172	15	.025	3	0	2	0	2	0	15
182		10	min	-689.189	3	729	4	004	10	0	3	0	3	0	4
183		16	max		2	213	15	.025	3	0	2	0	2	0	15
184		10	min	-689.242	3	905	4	004	10	0	3	0	3	0	4
185		17	max	788.216	2	254	15	.025	3	0	2	0	2	0	15
186		1 ' '	min	-689.294	3	-1.081	4	004	10	0	3	0	3	0	4
187		18	max		2	296	15	.025	3	0	2	0	2	0	15
188		10	min	-689.347	3	-1.258	4	004	10	0	3	0	3	0	4
189		19	max	788.076	2	337	15	.025	3	0	2	0	2	0	1
190		15	min	-689.399	3	-1.434	4	004	10	0	3	0	3	0	1
191	M8	1		1048.743	1	0	1	.846	1	0	1	0	15	0	1
192	IVIO			39.078		0	1	448	3	0	1	0	1	0	1
193		2		1048.808	1	0	1	.846	1	0	1	0	1	0	1
194			min	39.098	15	0	1	448	3	0	1	0	3	0	1
195		3		1048.872		0	1	.846	1	0	1	0	1	0	1
196		-	min	39.117	15	0	1	448	3	0	1	0	3	0	1
197		4		1048.937	1	0	1	.846	1	0	1	0	1	0	1
198		+	min	39.137	15	0	1	448	3	0	1	0	3	0	1
199		5		1049.002	1	0	1	.846	1	0	1	0	1	0	1
		- 5					1		3		1		3		1
200		6	min	1049.067	1 <u>5</u> 1	0	1	448 .846	1	<u> </u>	1	0	<u>ა</u> 1	0	1
201 202		0	min	39.176	15	0	1	448	3	0	1	0	3	0	1
203		7		1049.131			1				1	_			•
		/			1_	0	1	.846	3	0		0	3	0	1
204		0	min	39.195	15	0	1	448		0	1	0		0	1
205		8		1049.196		0	_	.846	1	0		0	1	0	1
206		_	min	39.215	15	0	1	448	3	0	1	0	3	0	1
207		9		1049.261	1	0	_	.846	1	0	_	0	1	0	1
208			min	39.234	15	0	1	448	3	0	1	0	3	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	1049.325	1	0	1	.846	1	0	1	0	1	0	1
210			min	39.254	15	0	1	448	3	0	1	0	3	0	1
211		11	max	1049.39	1	0	1	.846	1	0	1	0	1	0	1
212			min	39.273	15	0	1	448	3	0	1	0	3	0	1
213		12	max	1049.455	1	0	1	.846	1	0	1	0	1	0	1
214			min	39.293	15	0	1	448	3	0	1	0	3	0	1
215		13	max	1049.52	1	0	1	.846	1	0	1	0	1	0	1
216			min	39.312	15	0	1	448	3	0	1	0	3	0	1
217		14	max	1049.584	1	0	1	.846	1	0	1	0	1	0	1
218			min	39.332	15	0	1	448	3	0	1	0	3	0	1
219		15	max	1049.649	1	0	1	.846	1	0	1	.001	1	0	1
220			min	39.351	15	0	1	448	3	0	1	0	3	0	1
221		16	max	1049.714	1	0	1	.846	1	0	1	.001	1	0	1
222			min	39.371	15	0	1	448	3	0	1	0	3	0	1
223		17	max	1049.778	1	0	1	.846	1	0	1	.001	1	0	1
224			min	39.391	15	0	1	448	3	0	1	0	3	0	1
225		18	max	1049.843	1	0	1	.846	1	0	1	.001	1	0	1
226			min	39.41	15	0	1	448	3	0	1	0	3	0	1
227		19	max	1049.908	1	0	1	.846	1	0	1	.001	1	0	1
228			min	39.43	15	0	1	448	3	0	1	0	3	0	1
229	M10	1	max		1	.672	4	.005	3	.001	1	0	1	0	1
230			min	-342.624	3	.159	15	246	1	0	3	0	3	0	1
231		2	max	292.603	1	.615	4	.005	3	.001	1	0	1	0	15
232			min	-342.523	3	.145	15	246	1	0	3	0	3	0	4
233		3	max	292.738	1	.557	4	.005	3	.001	1	0	1	0	15
234			min	-342.421	3	.132	15	246	1	0	3	0	3	0	4
235		4	max		1	.5	4	.005	3	.001	1	0	1	0	15
236			min	-342.32	3	.118	15	246	1	0	3	0	3	0	4
237		5	max	293.008	1	.443	4	.005	3	.001	1	0	1	0	15
238			min	-342.219	3	.105	15	246	1	0	3	0	3	0	4
239		6	max		1	.385	4	.005	3	.001	1	0	1	0	15
240			min	-342.118	3	.091	15	246	1	0	3	0	3	0	4
241		7	max	293.278	1	.328	4	.005	3	.001	1	0	1	0	15
242			min	-342.017	3	.078	15	246	1	0	3	0	3	0	4
243		8	max	293.413	1	.27	4	.005	3	.001	1	0	1	0	15
244			min	-341.916	3	.064	15	246	1	0	3	0	3	0	4
245		9	max		1	.213	4	.005	3	.001	1	0	1	0	15
246			min	-341.815	3	.05	15	246	1	0	3	0	3	0	4
247		10	max		1	.155	4	.005	3	.001	1	0	1	0	15
248			min	-341.713	3	.037	15	246	1	0	3	0	3	0	4
249		11	max	293.817	1	.108	2	.005	3	.001	1	0	11	0	15
250			min		3	.023	15	246	1	0	3	0	3	0	4
251		12	max		1	.063	2	.005	3	.001	1	0	15	0	15
252			min	-341.511	3	.007	12	246	1	0	3	0	3	0	4
253		13			1	.019	2	.005	3	.001	1	0	15	0	15
254			min	-341.41	3	024	1	246	1	0	3	0	3	0	4
255		14	max		1	017	15	.005	3	.001	1	0	15	0	15
256			min	-341.309	3	075	4	246	1	0	3	0	1	0	4
257		15	max		1	031	15	.005	3	.001	1	0	15	0	15
258			min	-341.208	3	132	4	246	1	0	3	0	1	0	4
259		16	max		1	044	15	.005	3	.001	1	0	15	0	15
260		1	min		3	19	4	246	1	0	3	0	1	0	4
261		17	max		1	058	15	.005	3	.001	1	0	15	0	15
262			min	-341.005	3	247	4	246	1	0	3	0	1	0	4
263		18			1	071	15	.005	3	.001	1	0	15	0	15
264		10	min	-340.904	3	305	4	246	1	0	3	0	1	0	4
265		19	max		1	085	15	.005	3	.001	1	0	15	0	15
200		ΙŪ	πιαλ			.000	ΙU	.000	J	.001			LIU		<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]		/-y Mome	LC_	z-z Mome	. LC
266			min	-340.803	3	362	4	246	1	0	3	0	1	0	4
267	M11	1	max	196.674	2	1.739	4	.726	1	.001	1	0	3	0	4
268			min	-219.136	3	.409	15	0	3	0	15	002	1	0	12
269		2	max	196.604	2	1.563	4	.726	1	.001	1	0	3	0	1
270			min	-219.188	3	.367	15	0	3	0	15	002	1	0	3
271		3	max	196.534	2	1.386	4	.726	1	.001	1	0	3	0	1
272			min	-219.241	3	.326	15	0	3	0	15	002	1	0	3
273		4	max	196.464	2	1.21	4	.726	1	.001	1	0	3	0	15
274			min	-219.293	3	.284	15	0	3	0	15	002	1	0	3
275		5	max	196.394	2	1.034	4	.726	1	.001	1	0	3	0	15
276			min	-219.346	3	.243	15	0	3	0	15	002	1	0	4
277		6	max	196.324	2	.857	4	.726	1	.001	1	0	3	0	15
278			min	-219.398	3	.201	15	0	3	0	15	001	1	0	4
279		7	max	196.254	2	.681	4	.726	1	.001	1	0	3	0	15
280			min	-219.451	3	.16	15	0	3	0	15	001	1	0	4
281		8	max	196.184	2	.504	4	.726	1	.001	1	0	3	0	15
282			min	-219.503	3	.118	15	0	3	0	15	001	1	001	4
283		9	max	196.114	2	.328	4	.726	1	.001	1	0	3	0	15
284			min	-219.556	3	.077	15	0	3	0	15	0	1	001	4
285		10	max	196.044	2	.152	4	.726	1	.001	1	0	3	0	15
286			min	-219.608	3	.023	12	0	3	0	15	0	1	001	4
287		11	max		2	.006	1	.726	1	.001	1	0	3	0	15
288			min	-219.661	3	072	3	0	3	0	15	0	1	001	4
289		12	max	195.904	2	047	15	.726	1	.001	1	0	3	0	15
290		1-	min	-219.713	3	201	4	0	3	0	15	0	1	001	4
291		13	max	195.834	2	089	15	.726	1	.001	1	0	3	0	15
292		10	min	-219.766	3	377	4	0	3	0	15	0	1	001	4
293		14	max	195.764	2	13	15	.726	1	.001	1	0	3	0	15
294		17	min	-219.818	3	554	4	0	3	0	15	0	1	001	4
295		15	max	195.694	2	172	15	.726	1	.001	1	0	3	0	15
296		13	min	-219.871	3	73	4	0	3	0	15	0	2	0	4
297		16	max		2	213	15	.726	1	.001	1	0	3	0	15
298		10	min	-219.923	3	907	4	0	3	0	15	0	10	0	4
299		17	max	195.554	2	255	15	.726	1	.001	1	0	1	0	15
300		1 '	min	-219.976	3	-1.083	4	0	3	0	15	0	15	0	4
301		18	max	195.484	2	296	15	.726	1	.001	1	0	1	0	15
302		10	min	-220.028	3	-1.259	4	0	3	0	15	0	15	0	4
303		19	max	195.414	2	338	15	.726	1	.001	1	0	1	0	1
304		13	min	-220.081	3	-1.436	4	0	3	0	15	0	15	0	1
305	M12	1	max	424.048	1	0	1	4.612	1	0	1	0	2	0	1
306	IVIIZ			17.699		0	1	.209	15	0	1	0	3	0	1
307		2		424.113	1	0	1	4.612	1	0	1	0	1	0	1
308			min	17.719	15	0	1	.209	15	0	1	0	12	0	1
309		3	max		1	0	1	4.612	1	0	1	0	1	0	1
310			min	17.738	15	0	1	.209	15	0	1	0	15	0	1
311		4	max		1	0	1	4.612	1	0	1	.001	1	0	1
312		1	min	17.758	15	0	1	.209	15	0	1	0	15	0	1
313		5			1	0	1	4.612	1	0	1	.002	1	0	1
314		- O	max	17.777	15	0	1	.209	15	0	1	<u>.002</u>	15	0	1
		G	min		1	0	1	4.612	1	0	1	.002	1	0	1
315 316		6	max min	17.797	15	0	1	.209	15	0	1	<u>.002</u>	15	0	1
		7					1				1	.003			
317				424.436	1	0	1	4.612 .209	1	0	1		15	0	1
318		0	min	17.816	15	0	1		15	0		0		0	1
319		8	max		1	0		4.612	1	0	1	.003	1	0	1
320		0	min	17.836	15	0	1	.209	15	0		0	15	0	1
321		9	max		1	0	1	4.612	1	0	1	.003	1	0	1
322			min	17.855	15	0	1	.209	15	0	1	0	15	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
323		10	max	424.631	1	0	1	4.612	1	0	1	.004	1	0	1
324			min	17.875	15	0	1	.209	15	0	1	0	15	0	1
325		11	max	424.695	1	0	1	4.612	1	0	1	.004	1	0	1
326			min	17.895	15	0	1	.209	15	0	1	0	15	0	1
327		12	max	424.76	1	0	1	4.612	1	0	1	.005	1	0	1
328			min	17.914	15	0	1	.209	15	0	1	0	15	0	1
329		13	max	424.825	1	0	1	4.612	1	0	1	.005	1	0	1
330			min	17.934	15	0	1	.209	15	0	1	0	15	0	1
331		14	max	424.889	1	0	1	4.612	1	0	1	.005	1	0	1
332			min	17.953	15	0	1	.209	15	0	1	0	15	0	1
333		15	max	424.954	1	0	1	4.612	1	0	1	.006	1	0	1
334			min	17.973	15	0	1	.209	15	0	1	0	15	0	1
335		16	max	425.019	1	0	1	4.612	1	0	1	.006	1	0	1
336			min	17.992	15	0	1	.209	15	0	1	0	15	0	1
337		17	max	425.084	1	0	1	4.612	1	0	1	.007	1	0	1
338			min	18.012	15	0	1	.209	15	0	1	0	15	0	1
339		18	max	425.148	1	0	1	4.612	1	0	1	.007	1	0	1
340			min	18.031	15	0	1	.209	15	0	1	0	15	0	1
341		19	max	425.213	1	0	1	4.612	1	0	1	.007	1	0	1
342			min	18.051	15	0	1	.209	15	0	1	0	15	0	1
343	M1	1	max	161.565	1	342.711	3	-4.214	15	0	1	.182	1	0	2
344			min	7.316	15	-270.359	1	-92.103	1	0	3	.008	15	0	3
345		2	max	161.725	1	342.539	3	-4.214	15	0	1	.162	1	.059	1
346			min	7.365	15	-270.588	1	-92.103	1	0	3	.007	15	074	3
347		3	max	117.448	3	7.369	9	-4.19	15	0	12	.141	1	.116	1
348			min	-14.167	10	-28.049	2	-92.071	1	0	1	.006	15	147	3
349		4	max		3	7.178	9	-4.19	15	0	12	.121	1	.118	1
350			min	-14.033	10	-28.277	2	-92.071	1	0	1	.005	15	145	3
351		5	max	117.688	3	6.987	9	-4.19	15	0	12	.101	1	.121	2
352			min	-13.9	10	-28.506	2	-92.071	1	0	1	.005	15	143	3
353		6	max	117.808	3	6.797	9	-4.19	15	0	12	.081	1	.128	2
354			min	-13.766	10	-28.735	2	-92.071	1	0	1	.004	15	141	3
355		7	max	117.929	3	6.606	9	-4.19	15	0	12	.061	1	.134	2
356			min	-13.633	10	-28.963	2	-92.071	1	0	1	.003	15	139	3
357		8	max	118.049	3	6.416	9	-4.19	15	0	12	.041	1	.14	2
358			min	-13.499	10	-29.192	2	-92.071	1	0	1	.002	15	137	3
359		9	max	118.169	3	6.225	9	-4.19	15	0	12	.021	1	.147	2
360			min	-13.366	10	-29.421	2	-92.071	1	0	1	0	15	135	3
361		10	max	118.289	3	6.034	9	-4.19	15	0	12	.001	3	.153	2
362			min	-13.232	10	-29.65	2	-92.071	1	0	1	0	10	133	3
363		11		118.409	3	5.844	9	-4.19	15	0	12	0	12	.159	2
364			min	-13.099	10	-29.878	2	-92.071	1	0	1	019	1	13	3
365		12	max	118.529	3	5.653	9	-4.19	15	0	12	001	12	.166	2
366			min	-12.965	10	-30.107	2	-92.071	1	0	1	039	1	128	3
367		13	max		3	5.462	9	-4.19	15	0	12	003	12	.172	2
368			min	-12.832	10	-30.336	2	-92.071	1	0	1	059	1	126	3
369		14		118.769	3	5.272	9	-4.19	15	0	12	004	15	.179	2
370			min	-12.698	10	-30.565	2	-92.071	1	0	1	079	1	123	3
371		15		118.889	3	5.081	9	-4.19	15	0	12	005	15	.186	2
372			min	-12.565	10	-30.793	2	-92.071	1	0	1	099	1	121	3
373		16	max		2	141.617	2	-4.22	15	0	1	005	15	.191	2
374			min	2.627	15	-205.549	3	-92.599	1	0	12	12	1	117	3
375		17	max		2	141.389	2	-4.22	15	0	1	006	15	.16	2
376			min	2.675	15	-205.721	3	-92.599	1	0	12	14	1	072	3
377		18		-7.332	15	370.909	2	-4.326	15	0	3	007	15	.081	2
378		0	min	-161.142	1	-165.682	3	-95.056	1	0	2	16	1	036	3
379		19	max		15		2	-4.326	15	0	3	008	15	0	2
010		10	παλ	1.207	10	070.001		7.020	IU		J	.000	ı		

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

380		Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC y	y-y Mome	LC	z-z Mome	
1882	380			min	-160.982	1		3	-95.056	1	0	2	181	1	0	3
1888	381	<u>M5</u>	1	max	350.884	1	1134.714	3	109	10	0	1	.005	1	0	
1884	382			min	13.807	12	-896.769	1	-44.871	3	0	3	0	10	0	2
385	383		2	max	351.044	1	1134.542	3	109	10	0	1	0	2	.194	1
1886	384			min	13.887	12	-896.998	1	-44.871	3	0	3	005	3	246	3
1887	385		3	max	370.079	3	5.957	9	5.202	3	0	3	0	2	.385	1
388	386			min	-69.69	2	-105.768	2	501	2	0	1	014	3	487	3
389	387		4	max	370.199	3	5.766	9	5.202	3	0	3	0	2	.395	1
1990	388			min	-69.53	2	-105.997	2	501	2	0	1	013	3	479	3
391	389		5	max	370.319	3	5.575	9	5.202		0	3	0	2	.406	
393	390			min	-69.37	2	-106.226	2	501	2	0	1	012	3	471	3
3934	391		6	max	370.439	3	5.385	9	5.202	3	0	3	0	2	.429	2
395	392			min	-69.21	2	-106.454	2	501	2	0	1	011	3	463	3
395	393		7	max	370.559	3	5.194	9	5.202	3	0	3	0	2	.452	2
396	394			min	-69.049	2	-106.683	2	501	2	0	1	01	3	456	3
9	395		8	max	370.679	3	5.004	9	5.202	3	0	3	0	2	.475	2
398	396			min	-68.889	2	-106.912	2	501	2	0	1	009	3	448	3
399	397		9	max	370.799	3	4.813	9	5.202	3	0	3	0	2	.498	2
Month Mont	398			min	-68.729	2	-107.141	2	501	2	0	1	008	3	44	3
401	399		10	max	370.92	3	4.622	9	5.202	3	0	3	0	10	.522	2
Mode	400			min	-68.569	2	-107.369	2	501	2	0	1	006	3	432	3
Horal Hora	401		11	max	371.04	3	4.432	9	5.202	3	0	3	0	10	.545	2
404	402			min	-68.409	2	-107.598	2	501	2	0	1	005	3	424	3
405	403		12	max	371.16	3	4.241	9	5.202	3	0	3	0	10	.568	2
406	404			min	-68.249	2	-107.827	2	501	2	0	1	004	3	416	3
407	405		13	max	371.28	3	4.051	9	5.202	3	0	3	0	10	.592	2
407	406				-68.088	2	-108.055	2	501	2	0	1	003	3	407	3
409	407		14	max	371.4	3	3.86	9	5.202	3	0	3	0	10	.615	2
410	408			min	-67.928	2	-108.284	2	501	2	0	1	002	1	399	3
411 16 max 302.867 2 590.827 2 5.186 3 0 1 0 12 .656 2 412 min 6.432 15 -647.675 3 544 2 0 15 002 1 378 3 413 17 max 303.027 2 590.598 2 5.186 3 0 1 .001 3 .528 2 414 min 6.481 15 -647.847 3 -544 2 0 15 .002 3 .265 2 415 18 max -14.711 12 1224.406 2 4.731 3 0 15 .002 3 .265 2 416 min -351.814 1 -546.283 3 -127 2 0 1 0 2 118 3 417 19 max 160.829 1	409		15	max	371.52	3	3.669	9	5.202	3	0	3	0	15	.639	2
Min G.432 15 -647.675 3 544 2 0 15 002 1 378 3	410			min	-67.768	2	-108.513	2		2	0	1	002	1	391	3
413 17 max 303.027 2 590.598 2 5.186 3 0 1 .001 3 .528 2 414 min 6.481 15 -647.847 3 544 2 0 15 001 1 237 3 415 18 max -14.711 12 1224.406 2 4.731 3 0 15 .002 3 .265 2 416 min -351.814 1 -546.111 3 127 2 0 1 0 2 -118 3 417 19 max -14.631 12 1224.178 2 4.731 3 0 15 .003 3 0 3 418 min -351.654 1 -546.283 3 -127 2 0 1 0 2 0 2 419 M9 1 max 160.829	411		16	max	302.867	2	590.827	2	5.186	3	0	1	0	12	.656	2
Hard	412			min	6.432	15	-647.675	3	544	2	0	15	002	1	378	3
415 18 max -14.711 12 1224.406 2 4.731 3 0 15 .002 3 .265 2 416 min -351.814 1 -546.111 3127 2 0 1 0 2118 3 417 19 max -14.631 12 1224.178 2 4.731 3 0 15 .003 3 0 3 418 min -351.654 1 -546.283 3 .127 2 0 1 0 2 0 2 419 M9 1 max 160.829 1 342.68 3 119.605 1 0 3008 15 0 2 420 min 7.28 15 -270.341 1 5.776 15 0 1181 1 0 3 421 2 max 160.99 1 342.509 3 119.605 1 0 3005 12 .059 1 422 min 7.329 15 -270.57 1 5.776 15 0 1155 1074 3 423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3	413		17	max	303.027	2	590.598	2	5.186	3	0	1	.001	3	.528	2
416 min -351.814 1 -546.111 3 127 2 0 1 0 2 118 3 417 19 max -14.631 12 1224.178 2 4.731 3 0 15 .003 3 0 3 418 min -351.654 1 -546.283 3 127 2 0 1 0 2 0 2 419 M9 1 max 160.829 1 342.68 3 119.605 1 0 3 008 15 0 2 420 min 7.28 15 -270.341 1 5.776 15 0 1 181 1 0 3 421 2 max 160.99 1 342.509 3 119.605 1 0 3 005 12 .059 1 422 3 3 15 -27	414			min	6.481	15	-647.847	3	544	2	0	15	001	1	237	3
417 19 max -14.631 12 1224.178 2 4.731 3 0 15 .003 3 0 2 418 min -351.654 1 -546.283 3127 2 0 1 0 2 0 2 0 2 419 M9 1 max 160.829 1 342.68 3 119.605 1 0 3008 15 0 2 420 min 7.28 15 -270.341 5.776 15 0 1181 1 0 3 421 2 max 160.99 1 342.509 3 119.605 1 0 3005 12 .059 1 422 min 7.329 15 -270.57 1 5.776 15 0 1181 1 0 3 059 1 423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3 .116 1 424 min -13.595 10 -28.057 2 1.882 12 0 12128 1147 3 425 4 max 117.863 3 7.159 9 87.247 1 0 1 .004 3 .118 1 426 min -13.461 10 -28.285 2 1.882 12 0 12099 1145	415		18	max	-14.711	12	1224.406	2	4.731	3	0	15	.002	3	.265	2
418 min -351.654 1 -546.283 3 127 2 0 1 0 2 0 2 419 M9 1 max 160.829 1 342.68 3 119.605 1 0 3 008 15 0 2 420 min 7.28 15 -270.341 1 5.776 15 0 1 181 1 0 3 421 2 max 160.99 1 342.509 3 119.605 1 0 3 005 12 .059 1 422 min 7.329 15 -270.57 1 5.776 15 0 1 155 1 074 3 423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3 .116 1 424 min -13.595 10	416			min	-351.814	1	-546.111	3	127	2	0	1	0	2	118	3
419 M9 1 max 160.829 1 342.68 3 119.605 1 0 3 008 15 0 2 420 min 7.28 15 -270.341 1 5.776 15 0 1 181 1 0 3 421 2 max 160.99 1 342.509 3 119.605 1 0 3 005 12 .059 1 422 min 7.329 15 -270.57 1 5.776 15 0 1 155 1 074 3 423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3 .116 1 424 min -13.595 10 -28.057 2 1.882 12 0 12 128 1 147 3 425 4 max 117.863 <td>417</td> <td></td> <td>19</td> <td>max</td> <td>-14.631</td> <td>12</td> <td>1224.178</td> <td>2</td> <td>4.731</td> <td>3</td> <td>0</td> <td>15</td> <td>.003</td> <td>3</td> <td>0</td> <td>3</td>	417		19	max	-14.631	12	1224.178	2	4.731	3	0	15	.003	3	0	3
420 min 7.28 15 -270.341 1 5.776 15 0 1 181 1 0 3 421 2 max 160.99 1 342.509 3 119.605 1 0 3 005 12 .059 1 422 min 7.329 15 -270.57 1 5.776 15 0 1 155 1 074 3 423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3 .116 1 424 min -13.595 10 -28.057 2 1.882 12 0 12 128 1 147 3 425 4 max 117.863 3 7.159 9 87.247 1 0 1 .004 3 .118 1 426 min -13.461 10 -28.285	418			min	-351.654	1	-546.283	3	127	2	0	1	0	2	0	2
421 2 max 160.99 1 342.509 3 119.605 1 0 3 005 12 .059 1 422 min 7.329 15 -270.57 1 5.776 15 0 1 155 1 074 3 423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3 .116 1 424 min -13.595 10 -28.057 2 1.882 12 0 12 128 1 147 3 425 4 max 117.863 3 7.159 9 87.247 1 0 1 .004 3 .118 1 426 min -13.461 10 -28.285 2 1.882 12 0 12 109 1 145 3 427 5 max 117.983 3 6.968 9 87.247 1 0 1 .005 3 .121		M9	1				342.68		119.605							2
422 min 7.329 15 -270.57 1 5.776 15 0 1 155 1 074 3 423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3 .116 1 424 min -13.595 10 -28.057 2 1.882 12 0 12 128 1 147 3 425 4 max 117.863 3 7.159 9 87.247 1 0 1 .004 3 .118 1 426 min -13.461 10 -28.285 2 1.882 12 0 12 109 1 145 3 427 5 max 117.983 3 6.968 9 87.247 1 0 1 .005 3 .121 2 428 min -13.328 10 -28.	420			min	7.28	15	-270.341	1	5.776	15	0	1	181	1	0	3
423 3 max 117.743 3 7.349 9 87.247 1 0 1 .004 3 .116 1 424 min -13.595 10 -28.057 2 1.882 12 0 12 128 1 147 3 425 4 max 117.863 3 7.159 9 87.247 1 0 1 .004 3 .118 1 426 min -13.461 10 -28.285 2 1.882 12 0 12 109 1 145 3 427 5 max 117.983 3 6.968 9 87.247 1 0 1 .005 3 .121 2 428 min -13.328 10 -28.514 2 1.882 12 0 12 09 1 143 3 429 6 max 118.103 3 6.777 9 87.247 1 0 1 .006 3 .128			2	max		1		3	119.605		0	3		12		
424 min -13.595 10 -28.057 2 1.882 12 0 12 128 1 147 3 425 4 max 117.863 3 7.159 9 87.247 1 0 1 .004 3 .118 1 426 min -13.461 10 -28.285 2 1.882 12 0 12 109 1 145 3 427 5 max 117.983 3 6.968 9 87.247 1 0 1 .005 3 .121 2 428 min -13.328 10 -28.514 2 1.882 12 0 12 09 1 143 3 429 6 max 118.103 3 6.777 9 87.247 1 0 1 .006 3 .128 2 430 min -13.194 10 -2						15		1		15	0	1		1		3
425 4 max 117.863 3 7.159 9 87.247 1 0 1 .004 3 .118 1 426 min -13.461 10 -28.285 2 1.882 12 0 12 109 1 145 3 427 5 max 117.983 3 6.968 9 87.247 1 0 1 .005 3 .121 2 428 min -13.328 10 -28.514 2 1.882 12 0 12 09 1 143 3 429 6 max 118.103 3 6.777 9 87.247 1 0 1 .006 3 .128 2 430 min -13.194 10 -28.743 2 1.882 12 0 12 071 1 141 3 431 7 max 118.223 3 6.587 9 87.247 1 0 1 .006 3 .134			3	max		3				1	0	1		3		
426 min -13.461 10 -28.285 2 1.882 12 0 12 109 1 145 3 427 5 max 117.983 3 6.968 9 87.247 1 0 1 .005 3 .121 2 428 min -13.328 10 -28.514 2 1.882 12 0 12 09 1 143 3 429 6 max 118.103 3 6.777 9 87.247 1 0 1 .006 3 .128 2 430 min -13.194 10 -28.743 2 1.882 12 0 12 071 1 141 3 431 7 max 118.223 3 6.587 9 87.247 1 0 1 .006 3 .134 2 432 min -13.061 10 -2						10										
427 5 max 117.983 3 6.968 9 87.247 1 0 1 .005 3 .121 2 428 min -13.328 10 -28.514 2 1.882 12 0 12 09 1 143 3 429 6 max 118.103 3 6.777 9 87.247 1 0 1 .006 3 .128 2 430 min -13.194 10 -28.743 2 1.882 12 0 12 071 1 141 3 431 7 max 118.223 3 6.587 9 87.247 1 0 1 .006 3 .134 2 432 min -13.061 10 -28.972 2 1.882 12 0 12 052 1 139 3 433 8 max 118.344 3 6.396 9 87.247 1 0 1 .007 3 .14			4	max							0			3	.118	
428 min -13.328 10 -28.514 2 1.882 12 0 12 09 1 143 3 429 6 max 118.103 3 6.777 9 87.247 1 0 1 .006 3 .128 2 430 min -13.194 10 -28.743 2 1.882 12 0 12 071 1 141 3 431 7 max 118.223 3 6.587 9 87.247 1 0 1 .006 3 .134 2 432 min -13.061 10 -28.972 2 1.882 12 0 12 052 1 139 3 433 8 max 118.344 3 6.396 9 87.247 1 0 1 .007 3 .14 2 434 min -12.928 10 -29.2 2 1.882 12 0 12 033 1 137 3						10		2		12	0	12		1		
429 6 max 118.103 3 6.777 9 87.247 1 0 1 .006 3 .128 2 430 min -13.194 10 -28.743 2 1.882 12 0 12 071 1 141 3 431 7 max 118.223 3 6.587 9 87.247 1 0 1 .006 3 .134 2 432 min -13.061 10 -28.972 2 1.882 12 0 12 052 1 139 3 433 8 max 118.344 3 6.396 9 87.247 1 0 1 .007 3 .14 2 434 min -12.928 10 -29.2 2 1.882 12 0 12 033 1 137 3			5	max		3		9				1		3	.121	
430 min -13.194 10 -28.743 2 1.882 12 0 12 071 1 141 3 431 7 max 118.223 3 6.587 9 87.247 1 0 1 .006 3 .134 2 432 min -13.061 10 -28.972 2 1.882 12 0 12 052 1 139 3 433 8 max 118.344 3 6.396 9 87.247 1 0 1 .007 3 .14 2 434 min -12.928 10 -29.2 2 1.882 12 0 12 033 1 137 3				min	-13.328	10	-28.514	2		12	0	12	09	1	143	3
431 7 max 118.223 3 6.587 9 87.247 1 0 1 .006 3 .134 2 432 min -13.061 10 -28.972 2 1.882 12 0 12 052 1 139 3 433 8 max 118.344 3 6.396 9 87.247 1 0 1 .007 3 .14 2 434 min -12.928 10 -29.2 2 1.882 12 0 12 033 1 137 3			6	max		3								3	.128	
432 min -13.061 10 -28.972 2 1.882 12 0 12 052 1 139 3 433 8 max 118.344 3 6.396 9 87.247 1 0 1 .007 3 .14 2 434 min -12.928 10 -29.2 2 1.882 12 0 12 033 1 137 3											0	12				
433 8 max 118.344 3 6.396 9 87.247 1 0 1 .007 3 .14 2 434 min -12.928 10 -29.2 2 1.882 12 0 12033 1137 3			7	max	118.223	3	6.587	9	87.247		0	1	.006	3	.134	
434 min -12.928 10 -29.2 2 1.882 12 0 12033 1137 3	432			min	-13.061	10	-28.972	2	1.882	12	0	12	052	1	139	3
			8	max	118.344	3	6.396	9		1	0	1	.007	3	.14	2
435 9 max 118.464 3 6.206 9 87.247 1 0 1 .007 3 .146 2				min	-12.928	10		2		12		12		•	137	
			9	max	118.464	3	6.206	9	87.247				.007	3	.146	
436 min -12.794 10 -29.429 2 1.882 12 0 12014 1135 3	436			min	-12.794	10	-29.429	2	1.882	12	0	12	014	1	135	3

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	118.584	3	6.015	9	87.247	1	0	1_	.008	3	.153	2
438			min	-12.661	10	-29.658	2	1.882	12	0	12	0	2	133	3
439		11	max	118.704	3	5.824	9	87.247	1	0	1	.023	1	.159	2
440			min	-12.527	10	-29.886	2	1.882	12	0	12	.001	15	13	3
441		12	max	118.824	3	5.634	9	87.247	1	0	1	.042	1	.166	2
442			min	-12.394	10	-30.115	2	1.882	12	0	12	.002	15	128	3
443		13	max	118.944	3	5.443	9	87.247	1	0	1	.061	1	.172	2
444			min	-12.26	10	-30.344	2	1.882	12	0	12	.003	15	126	3
445		14	max	119.064	3	5.252	9	87.247	1	0	1	.08	1	.179	2
446			min	-12.127	10	-30.573	2	1.882	12	0	12	.004	15	123	3
447		15	max	119.184	3	5.062	9	87.247	1	0	1	.099	1	.186	2
448			min	-11.993	10	-30.801	2	1.882	12	0	12	.005	15	121	3
449		16	max	95.194	2	141.372	2	87.83	1	0	15	.119	1	.191	2
450			min	2.736	15	-206.069	3	1.883	12	0	1	.005	15	117	3
451		17	max	95.354	2	141.143	2	87.83	1	0	15	.138	1	.16	2
452			min	2.785	15	-206.241	3	1.883	12	0	1	.006	15	072	3
453		18	max	-7.319	15	370.911	2	92.609	1	0	2	.158	1	.081	2
454			min	-160.803	1	-165.678	3	2.269	12	0	3	.007	15	036	3
455		19	max	-7.271	15	370.682	2	92.609	1	0	2	.179	1	0	2
456			min	-160.643	1	-165.85	3	2.269	12	0	3	.008	15	0	3
457	M13	1	max	119.933	1	269.87	1	-7.28	15	0	2	.181	1	0	1
458			min	5.777	15	-342.669	3	-160.806	1	0	3	.008	15	0	3
459		2	max	119.933	1	190.299	1	-5.592	15	0	2	.059	1	.252	3
460			min	5.777	15	-241.572	3	-123.401	1	0	3	.003	15	198	1
461		3	max	119.933	1	110.728	1	-3.903	15	0	2	.002	3	.416	3
462			min	5.777	15	-140.475	3	-85.997	1	0	3	031	1	328	1
463		4	max	119.933	1	31.158	1	-2.215	15	0	2	002	12	.493	3
464			min	5.777	15	-39.377	3	-48.593	1	0	3	089	1	389	1
465		5	max	119.933	1	61.72	3	526	15	0	2	003	12	.484	3
466			min	5.777	15	-48.413	1	-11.188	1	0	3	115	1	381	1
467		6	max	119.933	1	162.817	3	26.216	1	0	2	004	12	.387	3
468			min	5.777	15	-127.983	1	.435	12	0	3	109	1	305	1
469		7	max	119.933	1	263.914	3	63.621	1	0	2	003	12	.203	3
470			min	5.777	15	-207.554	1	2.073	12	0	3	07	1	161	1
471		8	max	119.933	1	365.011	3	101.025	1	0	2	.002	2	.052	1
472		0	min	5.777	15	-287.125	1	3.711	12	0	3	0	3	067	3
473		9	max	119.933	1	466.109	3	138.429	1	0	2	.104	1	.334	1
474		9	min	5.777	15	-366.695	1	5.349	12	0	3	.004	12	425	3
475		10	max	119.933	1	567.206	3	175.834	1	0	2	.239	1	.684	1
476		10		5.777	15	-446.266	1		12	0	3	.009	12	87	3
		11	min		1	366.695	1	6.987		_			-		1
477		11	max				2	-5.176	12	0	<u>3</u>	.1	1	.334	2
478		12	min	4.215	15	-466.109	3	-137.688	12	0	3	.001	12	425 .052	3
479		12	max	92.462	1	287.125	1	-3.538 -100.284		0	2		2		3
480		10	min	4.215	15	-365.011	3			0		004	3	067	
481		13		92.462	1	207.554	1	-1.9	12	0	3	003	15	.203	3
482		4.4	min	4.215	15	-263.914	3	-62.88	1	0	2	073	1_	161	1
483		14	max	92.462	1	127.983	1	262	12	0	3	005	15	.387	3
484		4.5	min	4.215	15	-162.817	3	-25.475	1	0	2	111	1_	305	1
485		15	max	92.462	1	48.413	1	11.929	1	0	3	005	15	.484	3
486		4.0	min	4.215	15	-61.72	3	.562	15	0	2	117	1	381	1
487		16	max	92.462	1	39.377	3	49.334	1	0	3	004	12	.493	3
488			min	4.215	15	-31.158	1_	2.251	15	0	2	09	1_	389	1
489		17	max	92.462	1	140.475	3	86.738	1	0	3	0	12	.416	3
490			min	4.215	15	-110.729	1	3.939	15	0	2	032	1	328	1
491		18		92.462	1	241.572	3	124.142	1	0	3_	.059	1	.252	3
492			min	4.215	15	-190.299	1	5.628	15	0	2	.003	15	198	1
493		19	max	92.462	1	342.669	3	161.547	1	0	3	.182	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	1	Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC			z-z Mome	LC
494			min	4.215	15	-269.87	1	7.316	15	0	2	.008	15	0	3
495	M16	1	max	-2.267	12	370.959	2	-7.271	15	0	3	.179	1_	0	2
496			min	-92.214	1	-165.885	3	-160.661	1	0	2	.008	15	0	3
497		2	max	-2.267	12	261.598	2	-5.582	15	0	3	.056	1	.122	3
498			min	-92.214	1	-117.091	3	-123.257	1	0	2	.003	15	272	2
499		3	max	-2.267	12	152.236	2	-3.894	15	0	3	001	12	.202	3
500			min	-92.214	1	-68.297	3	-85.852	1	0	2	034	1	45	2
501		4	max	-2.267	12	42.875	2	-2.205	15	0	3	004	12	.239	3
502			min	-92.214	1	-19.503	3	-48.448	1	0	2	092	1	534	2
503		5	max	-2.267	12	29.291	3	517	15	0	3	005	15	.235	3
504			min	-92.214	1	-66.486	2	-11.043	1	0	2	117	1	524	2
505		6	max	-2.267	12	78.085	3	26.361	1	0	3	005	15	.189	3
506			min	-92.214	1	-175.847	2	.65	12	0	2	111	1	42	2
507		7	max	-2.267	12	126.879	3	63.765	1	0	3	003	15	.101	3
508			min	-92.214	1	-285.208	2	2.288	12	0	2	072	1	221	2
509		8	max	-2.267	12	175.673	3	101.17	1	0	3	.001	2	.071	2
510			min	-92.214	1	-394.569	2	3.926	12	0	2	003	3	03	3
511		9	max	-2.267	12	224.467	3	138.574	1	0	3	.102	1	.458	2
512			min	-92.214	1	-503.93	2	5.564	12	0	2	.002	12	202	3
513		10	max	-4.325	15	-13.527	15	175.979	1	0	15	.238	1	.939	2
514		10	min	-94.71	1	-613.291	2	-11.121	3	0	2	.01	12	416	3
515		11	max	-4.325	15	503.93	2	-5.792	12	0	2	.103	1	.458	2
516			min	-94.71	1	-224.467	3	-138.234	1	0	3	.004	12	202	3
517		12	max	-4.325	15	394.569	2	-4.153	12	0	2	.004	2	.071	2
518		12	min	- 4.323 -94.71	1	-175.673	3	-100.83	1	0	3	.001	9	03	3
519		13		- 94.71 -4.325	15	285.208	2	-2.515	12		2	003	12	.101	3
		13	max				3		1	0			1		
520		14	min	-94.71	1	-126.879		-63.426 877	12	0	2	071	12	221	3
521		14	max	-4.325	15	175.847	2			0		005		.189	
522		4.5	min	-94.71	1_	-78.085	3	-26.021	1	0	3	11	1_	42	2
523		15	max	-4.325	15	66.486	2	11.383	1	0	2	005	12	.235	3
524		4.0	min	-94.71	1_	-29.291	3	.53	15	0	3	116	1_	524	2
525		16	max	-4.325	15	19.503	3	48.788	1	0	2	003	12	.239	3
526		47	min	-94.71	1_	-42.875	2	2.219	15	0	3	09	1_	534	2
527		17	max	-4.325	15	68.297	3	86.192	1	0	2	0	12	.202	3
528		4.0	min	-94.71	1_	-152.236	2	3.907	15	0	3	032	1_	45	2
529		18	max	-4.325	15	117.091	3	123.596	1	0	2	.058	_1_	.122	3
530		1.0	min	-94.71	1_	-261.598	2	5.596	15	0	3	.003	15	272	2
531		19	max	-4.325	15	165.885	3	161.001	1	0	2	.181	_1_	0	2
532			min	-94.71	1	-370.959	2	7.284	15	0	3	.008	15	0	3
533	M15	1	max	0	2	2.713	4	.036	3	0	1	0	1_	0	1
534			min		3	0	2	03	1	0	3	0	3	0	1
535		2	max		2	2.412	4	.036	3	0	1	0	1_	0	2
536			min	-54.68	3	0	2	03	1	0	3	0	3	001	4
537		3	max		2	2.11	4	.036	3	0	1	0	_1_	0	2
538			min		3	0	2	03	1	0	3	0	3	002	4
539		4	max		2	1.809	4	.036	3	0	1	0	_1_	0	2
540			min	-54.831	3	0	2	03	1	0	3	0	3	003	4
541		5	max		2	1.507	4	.036	3	0	1	0	_1_	0	2
542			min	-54.907	3	0	2	03	1	0	3	0	3	004	4
543		6	max		2	1.206	4	.036	3	0	1	0	_1_	0	2
544			min	-54.982	3	0	2	03	1	0	3	0	3	005	4
545		7	max	0	2	.904	4	.036	3	0	1	0	3	0	2
546			min	-55.058	3	0	2	03	1	0	3	0	1	005	4
547		8	max		2	.603	4	.036	3	0	1	0	3	0	2
548			min	-55.133	3	0	2	03	1	0	3	0	1	005	4
549		9	max		2	.301	4	.036	3	0	1	0	3	0	2
550			min		3	0	2	03	1	0	3	0	1	006	4

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

EE4	Member	Sec	1	Axial[lb]							LC	y-y Mome		I -	
551		10	max	0	2	0	1	.036	3	0	<u>1</u>	0	3	0	2
552		4.4	min	-55.284	3	0	1	03	1	0	3	0	1	006	4
553		11	max	0	2	0	2	.036	<u>3</u>	0	1	0	3	0	2
554		12	min	-55.36	3	301	4	03	3	0	3	0	1	006	4
555		12	max	0 -55.435	2	603	2	.036	<u> </u>	0	<u>1</u> 3	0	<u>3</u>	005	2
556		12	min		3		4	03	3	0	<u>ာ</u> 1	0			4
557 558		13	max	<u>0</u> -55.511	3	904	2	.036 03	<u> </u>	0	3	0	1	005	4
		1.1	min		2	904 0	2	.036	3	_	<u>ာ</u> 1	0			_
559		14	max	0 -55.586	3		4		<u>3</u>	0		0	3	0	2
560 561		15	min	_ -33.366 _ ()	2	-1.206 0	2	03 .036	3	0	<u>3</u> 1	0	3	005 0	2
562		10	max min	-55.662	3	-1.507	4	03	1	0	3	0	1	004	4
563		16	max	-55.002 0	2	0	2	.036	3	0	1	0	3	0	2
564		10	min	-55.738	3	-1.809	4	03	1	0	3	0	1	003	4
565		17	max	- <u>55.756</u> 0	2	0	2	.036	3	0	1	0	3	003	2
566		17	min	-55.813	3	-2.11	4	03	1	0	3	0	1	002	4
567		18	max	0	2	0	2	.036	3	0	<u> </u>	0	3	0	2
568		10	min	-55.889	3	-2.412	4	03	1	0	3	0	1	001	4
569		19	max	<u>-55.669</u> 0	2	0	2	.036	3	0	<u> </u>	0	3	0	1
570		19	min	-55.964	3	-2.713	4	03	1	0	3	0	1	0	1
571	M16A	1	max	-1.073	10	2.713	4	.02	1	0	3	0	3	0	1
572	IVITOA		min	-55.36	3	.638	15	014	3	0	2	0	1	0	1
573		2	max	989	10	2.412	4	.02	<u> </u>	0	3	0	3	0	15
574				-55.285	3	.567	15	014	3	0	2	0	1	001	4
575		3	min	905	10	2.11	4	.02	<u> </u>	0	3	0	3	0	15
576		3	max min	-55.209	3	.496	15	014	3	0	2	0	1	002	4
577		4	max	822	10	1.809	4	.02	1	0	3	0	3	0	15
578		4	min	-55.134	3	.425	15	014	3	0	2	0	1	003	4
579		5	max	738	10	1.507	4	.02	<u> </u>	0	3	0	3	0	15
580		5	min	-55.058	3	.354	15	014	3	0	2	0	1	004	4
581		6	max	654	10	1.206	4	.02	1	0	3	0	3	004	15
582		-	min	-54.983	3	.283	15	014	3	0	2	0	1	005	4
583		7	max	57	10	.904	4	.02	<u> </u>	0	3	0	3	001	15
584			min	-54.907	3	.213	15	014	3	0	2	0	1	005	4
585		8	max	486	10	.603	4	.02	1	0	3	0	3	001	15
586			min	-54.832	3	.142	15	014	3	0	2	0	1	005	4
587		9	max	402	10	.301	4	.02	1	0	3	0	3	001	15
588			min	-54.756	3	.071	15	014	3	0	2	0	1	006	4
589		10	max	318	10	0	1	.02	1	0	3	0	3	001	15
590		10	min	-54.681	3	0	1	014	3	0	2	0	1	006	4
591		11	max	234	10	071	15	.02	1	0	3	0	3	001	15
592			min	-54.605	3	301	4	014	3	0	2	0	1	006	4
593		12	max	15	10	142	15	.02	1	0	3	0	3	001	15
594		12	min	-54.53	3	603	4	014	3	0	2	0	1	005	4
595		13	max	066	10	213	15	.02	1	0	3	0	2	001	15
596		'	min	-54.454	3	904	4	014	3	0	2	0	3	005	4
597		14	max	.018	10	283	15	.02	1	0	3	0	1	001	15
598			min	-54.378	3	-1.206	4	014	3	0	2	0	3	005	4
599		15	max	.102	10	354	15	.02	1	0	3	0	1	0	15
600		'	min	-54.303	3	-1.507	4	014	3	0	2	0	3	004	4
601		16	max	.186	10	425	15	.02	1	0	3	0	1	0	15
602		'	min	-54.227	3	-1.809	4	014	3	0	2	0	3	003	4
603		17	max	.269	10	496	15	.02	1	0	3	0	1	0	15
604			min	-54.152	3	-2.11	4	014	3	0	2	0	3	002	4
605		18	max	.353	10	567	15	.02	<u> </u>	0	3	0	1	0	15
606		'0	min	-54.076	3	-2.412	4	014	3	0	2	0	3	001	4
607		19	max	.437	10	638	15	.02	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-54.001	3	-2.713	4	014	3	0	2	0	3	0	1

Envelope Member Section Deflections

	siope ivicini	. · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on Dene		10									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.011	2	.017	1	-7.033e-5	15	NC	3	NC	3
2			min	004	3	011	3	0	3	-1.541e-3	1	4010	2	2451.642	1
3		2	max	.003	1	.01	2	.016	1	-6.719e-5	15	NC	3	NC	3
4			min	004	3	011	3	0	3	-1.473e-3	1	4387.587	2	2629.789	1
5		3	max	.003	1	.009	2	.015	1	-6.406e-5	15	NC	1	NC	3
6		Ŭ	min	003	3	01	3	0	3	-1.404e-3	1	4838.714	2	2840.938	1
7		4	max	.002	1	.008	2	.014	1	-6.092e-5	15	NC	1	NC	3
8		_	min	003	3	01	3	0	3	-1.336e-3	1	5381.435	2	3092.805	
9		5	max	.002	1	.007	2	.013	1	-5.779e-5	15	NC	1	NC	3
10		J	min	003	3	009	3	0	3	-1.268e-3	1	6039.899	2	3395.693	
		6			1				1		•	NC	1	NC	
11		6	max	.002	3	.006	3	<u>.011</u> 0	3	-5.465e-5	<u>15</u>				3
		7	min	003		009				-1.2e-3	1_	6846.93	2	3763.597	
13		7	max	.002	1	.005	2	.01	1	-5.151e-5	<u>15</u>	NC	1	NC 4045 044	3
14			min	003	3	008	3	0	3	-1.131e-3	1_	7847.996	2	4215.911	1
15		8	max	.002	1	.005	2	.009	1	-4.838e-5	15	NC	1	NC 1700 110	2
16			min	002	3	008	3	0	3	-1.063e-3	_1_	9107.469	2	4780.142	1
17		9	max	.002	1	.004	2	.008	1	-4.524e-5	<u>15</u>	NC	_1_	NC	2
18			min	002	3	007	3	0	3	-9.948e-4	1_	NC	1_	5496.384	1
19		10	max	.001	1	.003	2	.007	1	-4.211e-5	<u>15</u>	NC	<u>1</u>	NC	2
20			min	002	3	007	3	0	3	-9.265e-4	1	NC	1	6425.023	1
21		11	max	.001	1	.003	2	.006	1	-3.897e-5	15	NC	1	NC	2
22			min	002	3	006	3	0	3	-8.582e-4	1	NC	1	7660.615	1
23		12	max	.001	1	.002	2	.005	1	-3.583e-5	15	NC	1	NC	2
24			min	001	3	005	3	0	3	-7.9e-4	1	NC	1	9358.492	1
25		13	max	0	1	.002	2	.004	1	-3.27e-5	15	NC	1	NC	1
26			min	001	3	005	3	0	3	-7.217e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	.003	1	-2.956e-5	15	NC	1	NC	1
28			min	001	3	004	3	0	3	-6.535e-4	1	NC	1	NC	1
29		15	max	0	1	<u>.00+</u>	2	.002	1	-2.643e-5	15	NC	1	NC	1
30		10	min	0	3	003	3	0	3	-5.852e-4	1	NC	1	NC	1
31		16		0	1	<u>003</u> 0	2	.001	1	-2.329e-5	15	NC	1	NC	1
32		10	max	0	3	002	3	0	3	-2.329e-3 -5.169e-4	1	NC NC	1	NC NC	1
		17	min			<u>002</u> 0						NC NC	•	NC NC	1
33		17	max	0	1		2	0	1	-2.015e-5	<u>15</u>		1		
34		40	min	0	3	002	3	0	12	-4.487e-4	1_	NC	1_	NC NC	1
35		18	max	0	1	0	2	0	1	-1.702e-5	15	NC	1	NC	1
36		10	min	0	3	0	3	0	12	-3.804e-4	1_	NC	1_	NC	1
37		19	max	0	1	0	1	0	1	-1.091e-5	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-3.122e-4	1_	NC	1_	NC	1
39	M3	1_	max	0	1	0	1	0	1	1.496e-4	_1_	NC	_1_	NC	1
40			min	0	1	0	1	0	1	5.348e-6	12	NC	1	NC	1
41		2	max	0	3	0	2	0	12	1.819e-4	1_	NC	1_	NC	1
42			min	0	2	0	3	0	1	7.923e-6	12	NC	1	NC	1
43		3	max	0	3	0	2	0	12	2.141e-4	1	NC	1	NC	1
44			min	0	2	002	3	001	1	9.635e-6	15	NC	1	NC	1
45		4	max	0	3	0	2	0	12	2.464e-4	1	NC	1	NC	1
46			min	0	2	003	3	001	1	1.113e-5	15	NC	1	NC	1
47		5	max	0	3	0	2	0	3	2.787e-4	1	NC	1	NC	1
48			min	0	2	004	3	001	1	1.262e-5	15	NC	1	NC	1
49		6	max	0	3	0	2	0	3	3.11e-4	1	NC	1	NC	1
50			min	0	2	004	3	001	1	1.411e-5	15	NC	1	NC	1
51		7		0	3	004 0	2	<u>001</u> 0	3	3.433e-4	1 <u>15</u> 1	NC NC	+	NC NC	1
UUI			max	U	J	U		U	J	J.4338-4		INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
52			min	0	2	005	3	0	1	1.56e-5	15	NC	1	NC	1
53		8	max	0	3	.001	2	0	3	3.756e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	2	006	3	0	1	1.709e-5	15	NC	1	NC	1
55		9	max	.001	3	.001	2	0	3	4.079e-4	1_	NC	1_	NC	1_
56			min	0	2	007	3	0	2	1.858e-5	15	NC	1	NC	1
57		10	max	.001	3	.002	2	0	1	4.402e-4	1_	NC	1_	NC	1
58			min	001	2	007	3	0	15	2.007e-5	15	NC	1	NC	1
59		11	max	.001	3	.002	2	.001	1	4.725e-4	1	NC	1	NC	1
60			min	001	2	008	3	0	15	2.156e-5	15	NC	1	NC	1
61		12	max	.002	3	.003	2	.002	1	5.048e-4	1	NC	1_	NC	1
62			min	001	2	008	3	0	15	2.305e-5	15	NC	1	NC	1
63		13	max	.002	3	.004	2	.003	1	5.371e-4	1	NC	1	NC	1
64			min	001	2	008	3	0	15	2.454e-5	15	NC	1_	NC	1
65		14	max	.002	3	.004	2	.004	1	5.694e-4	1	NC	1	NC	1
66			min	002	2	009	3	0	15	2.603e-5	15	NC	1	NC	1
67		15	max	.002	3	.005	2	.005	1	6.016e-4	1	NC	1	NC	2
68			min	002	2	009	3	0	15	2.752e-5	15	8562.915	2	8830.284	1
69		16	max	.002	3	.006	2	.006	1	6.339e-4	1	NC	1	NC	2
70			min	002	2	009	3	0	15	2.901e-5	15	7263.734	2	7367.217	1
71		17	max	.002	3	.007	2	.007	1	6.662e-4	1	NC	1	NC	2
72			min	002	2	009	3	0	15	3.05e-5	15	6257.501	2	6309.596	1
73		18	max	.002	3	.008	2	.008	1	6.985e-4	1	NC	1	NC	2
74			min	002	2	009	3	0	15	3.2e-5	15	5469.185	2	5518.985	1
75		19	max	.002	3	.01	2	.009	1	7.308e-4	1	NC	3	NC	2
76			min	002	2	009	3	0	15	3.349e-5	15	4846.022	2	4913.097	1
77	M4	1	max	.002	1	.012	2	0	15		12	NC	1	NC	3
78			min	0	15	011	3	007	1	-1.167e-3	1	NC	1	2722.666	
79		2	max	.002	1	.012	2	0	15		12	NC	1	NC	3
80			min	0	15	01	3	007	1	-1.167e-3	1	NC	1	2970.244	1
81		3	max	.002	1	.011	2	0	15	-5.113e-5	12	NC	1	NC	3
82			min	0	15	01	3	006	1	-1.167e-3	1	NC	1	3264.898	1
83		4	max	.002	1	.01	2	0	15		12	NC	1	NC	3
84			min	0	15	009	3	005	1	-1.167e-3	1	NC	1	3619.046	
85		5	max	.002	1	.01	2	0	15	-5.113e-5	12	NC	1	NC	2
86			min	0	15	008	3	005	1	-1.167e-3	1	NC	1	4049.605	
87		6	max	.001	1	.009	2	0	15		12	NC	1	NC	2
88			min	0	15	008	3	004	1	-1.167e-3	1	NC	1	4580.105	
89		7	max	.001	1	.008	2	0	15			NC	1	NC	2
90			min	0	15	007	3	004	1	-1.167e-3	1	NC	1	5244.061	1
91		8	max	.001	1	.008	2	0	15			NC	1	NC	2
92			min	0	15	007	3	003		-1.167e-3		NC		6090.556	
93		9	max	.001	1	.007	2	0		-5.113e-5		NC	1	NC	2
94			min	0	15	006	3	003	1	-1.167e-3	1	NC	1	7193.839	
95		10	max	.001	1	.006	2	0	15	-5.113e-5		NC	1	NC	2
96		- 10	min	0	15	005	3	002	1	-1.167e-3	1	NC	1	8670.645	
97		11	max	0	1	.006	2	0	15	-5.113e-5	12	NC	1	NC	1
98			min	0	15	005	3	002	1	-1.167e-3	1	NC	1	NC	1
99		12	max	0	1	.005	2	0	15		12	NC	1	NC	1
100		12	min	0	15	004	3	001	1	-1.167e-3	1	NC	1	NC	1
101		13	max	0	1	.004	2	0	15	-5.113e-5		NC	1	NC	1
102		13	min	0	15	004	3	001	1	-1.167e-3	1	NC	1	NC	1
103		14	max	0	1	.003	2	<u>001</u> 0	15		•	NC	1	NC	1
104		14	min	0	15	003	3	0	1	-1.167e-3	1	NC	1	NC	1
105		15		0	1	.003	2	<u> </u>	15		12	NC NC	1	NC NC	1
106		10	max	0	15	003	3	0	1	-1.167e-3	1	NC NC	1	NC NC	1
107		16		0	1	.002	2	0	15			NC NC	1	NC NC	1
		10	max												
108			min	0	15	002	3	0	1	-1.167e-3	<u>1</u>	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
109		17	max	0	1	.001	2	0	15		12	NC	_1_	NC	1_
110			min	0	15	001	3	0	1	-1.167e-3	1	NC	1	NC	1
111		18	max	0	1	0	2	0	15	-5.113e-5	12	NC	_1_	NC	1_
112			min	0	15	0	3	0	1	-1.167e-3	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-5.113e-5	12	NC	1	NC	1
114			min	0	1	0	1	0	1	-1.167e-3	1	NC	1	NC	1
115	M6	1	max	.009	1	.039	2	.005	1	3.493e-4	3	NC	3	NC	2
116			min	013	3	036	3	004	3	1.512e-6	10	1099.747	2	8079.769	1
117		2	max	.009	1	.036	2	.005	1	3.374e-4	3	NC	3	NC	2
118			min	012	3	034	3	004	3	6.146e-7	10	1176.997	2	8784.209	1
119		3	max	.008	1	.034	2	.004	1	3.254e-4	3	NC	3	NC	2
120			min	011	3	032	3	004	3	-2.83e-7	10	1265.535	2	9617.218	1
121		4	max	.008	1	.031	2	.004	1	3.135e-4	3	NC	3	NC	1
122			min	01	3	03	3	003	3	-3.24e-6	2	1367.606	2	NC	1
123		5	max	.007	1	.029	2	.004	1	3.016e-4	3	NC	3	NC	1
124			min	01	3	028	3	003	3	-6.585e-6	2	1486.104	2	NC	1
125		6	max	.007	1	.026	2	.003	1	2.897e-4	3	NC	3	NC	1
126			min	009	3	026	3	003	3	-9.931e-6	2	1624.814	2	NC	1
127		7	max	.006	1	.024	2	.003	1	2.777e-4	3	NC	3	NC	1
128			min	008	3	024	3	003	3	-1.328e-5	2	1788.782	2	NC	1
129		8	max	.006	1	.021	2	.002	1	2.658e-4	3	NC	3	NC	1
130			min	008	3	022	3	002	3	-1.662e-5	2	1984.889	2	NC	1
131		9	max	.005	1	.019	2	.002	1	2.539e-4	3	NC	3	NC	1
132			min	007	3	02	3	002	3	-1.997e-5	2	2222.765	2	NC	1
133		10	max	.005	1	.017	2	.002	1	2.419e-4	3	NC	3	NC	1
134			min	006	3	018	3	002	3	-2.331e-5	2	2516.308	2	NC	1
135		11	max	.004	1	.015	2	.001	1	2.3e-4	3	NC	3	NC	1
136			min	006	3	016	3	002	3	-2.666e-5		2886.355	2	NC	1
137		12	max	.004	1	.013	2	.001	1	2.181e-4	3	NC	3	NC	1
138			min	005	3	014	3	001	3	-3.e-5	2	3365.627	2	NC	1
139		13	max	.003	1	.011	2	0	1	2.061e-4	3	NC	3	NC	1
140			min	004	3	012	3	001	3	-3.335e-5	2	4008.626	2	NC	1
141		14	max	.003	1	.009	2	0	1	1.942e-4	3	NC	3	NC	1
142			min	003	3	01	3	0	3	-3.67e-5	2	4913.41	2	NC	1
143		15	max	.002	1	.007	2	0	1	1.823e-4	3	NC	3	NC	1
144		10	min	003	3	008	3	0	3	-4.004e-5	2	6276.019	2	NC	1
145		16	max	.002	1	.005	2	0	1	1.703e-4	3	NC	1	NC	1
146		10	min	002	3	006	3	0	3	-4.339e-5		8553.766	2	NC	1
147		17	max	.001	1	.003	2	0	1	1.584e-4	3	NC	1	NC	1
148		- '	min	001	3	004	3	0	3	-4.673e-5	2	NC	1	NC	1
149		18	max	0	1	.002	2	0	1	1.465e-4		NC	1	NC	1
150		10	min	0	3	002	3	0	3	-5.008e-5		NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.345e-4	3	NC	1	NC	1
152		13	min	0	1	0	1	0	1	-5.342e-5		NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.536e-5	2	NC	1	NC	1
154	1017		min	0	1	0	1	0	1	-6.409e-5		NC	1	NC	1
155		2	max	0	3	.002	2	0	3	2.114e-5	2	NC	1	NC	1
156			min	0	2	002	3	0	2	-4.643e-5		NC	1	NC	1
157		3	max	0	3	.003	2	0	3	2.034e-5	<u> </u>	NC	1	NC	1
158		3	min	0	2	003	3	0	2	-2.878e-5		NC NC	1	NC NC	1
159		4	max	.001	3	004 .005	2	0	3	2.038e-5	<u>ာ</u> 1	NC NC	1	NC NC	1
		4		001	2	005 007	3	0	2			9612.452	2	NC NC	1
160		5	min		3	.007	2	.001	3	-1.113e-5		NC	1	NC NC	1
161 162		J	max	.002	2		3	001 0	2	2.041e-5	1_	7252.888	2	NC NC	1
		6	min	002		009				7.772e-7	<u>15</u>				
163		6	max	.002	3	.008	2	.001	3	2.418e-5	<u>3</u>	NC 5900.067	3	NC NC	1
164		7	min	002	2	011	3	0	1	9.132e-7		5809.967	2	NC NC	1
165		7	max	.003	3	.01	2	.001	3	4.183e-5	3	NC	3	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					LC
166			min	003	2	013	3	0	1	7.904e-8	2	4827.446	2	NC	1
167		8	max	.003	3	.011	2	.002	3	5.948e-5	3	NC	3	NC	1
168			min	003	2	014	3	0	1	-4.134e-6	2	4110.229	2	NC	1
169		9	max	.003	3	.013	2	.002	3	7.714e-5	3	NC	3	NC	1
170		10	min	004	2	016	3	0	1	-8.347e-6	2	3561.002	2	NC	1
171		10	max	.004	3	.015	2	.002	3	9.479e-5	3	NC	3_	NC NC	1
172		44	min	004	2	018	3	001	1	-1.256e-5	2	3125.786	2	NC NC	1
173		11	max	.004	3	.017	2	.002	3	1.124e-4	3_	NC	3	NC NC	1
174		40	min	005	2	019	3	001	1	-1.677e-5	2	2772.176	2	NC NC	1
175		12	max	.005	3	.019 021	3	.002	3	1.301e-4 -2.099e-5	2	NC 2479.472	2	NC NC	1
176 177		13	min	005 .005	3	.021	2	001 .002	3		3	NC	3	NC NC	1
178		13	max	006	2	022	3	002	1	1.477e-4 -2.52e-5	2	2233.76	2	NC NC	1
179		14	max	.006	3	.023	2	.002	3	1.654e-4	3	NC	3	NC NC	1
180		14	min	006	2	023	3	002	1	-2.941e-5	2	2025.282	2	NC	1
181		15	max	.006	3	.025	2	.002	3	1.831e-4	3	NC	3	NC	1
182		10	min	007	2	025	3	002	1	-3.363e-5	2	1846.946	2	NC	1
183		16	max	.007	3	.027	2	.002	3	2.007e-4	3	NC	3	NC	1
184		10	min	007	2	026	3	002	1	-3.784e-5	2	1693.443	2	NC	1
185		17	max	.007	3	.03	2	.002	3	2.184e-4	3	NC	3	NC	1
186			min	008	2	027	3	002	1	-4.205e-5	2	1560.698	2	NC	1
187		18	max	.007	3	.032	2	.002	3	2.36e-4	3	NC	3	NC	1
188			min	008	2	028	3	002	1	-4.627e-5	2	1445.519	2	NC	1
189		19	max	.008	3	.034	2	.002	3	2.537e-4	3	NC	3	NC	1
190			min	009	2	029	3	003	1	-5.048e-5	2	1345.369	2	NC	1
191	M8	1	max	.005	1	.045	2	.003	1	-7.936e-6	10	NC	1	NC	2
192			min	0	15	035	3	001	3	-2.128e-4	1	NC	1	7238.476	1
193		2	max	.005	1	.042	2	.002	1	-7.936e-6	10	NC	1	NC	2
194			min	0	15	033	3	001	3	-2.128e-4	1	NC	1	7891.824	1
195		3	max	.004	1	.04	2	.002	1	-7.936e-6	10	NC	1_	NC	2
196			min	0	15	031	3	001	3	-2.128e-4	1_	NC	1	8669.639	
197		4	max	.004	1	.037	2	.002	1	-7.936e-6	10	NC	_1_	NC	2
198			min	0	15	029	3	001	3	-2.128e-4	1_	NC	1_	9604.708	1
199		5	max	.004	1	.035	2	.002	1	-7.936e-6	10	NC	_1_	NC	1
200		_	min	0	15	027	3	0	3	-2.128e-4	_1_	NC	_1_	NC	1
201		6	max	.004	1	.032	2	.002	1	-7.936e-6	<u>10</u>	NC	_1_	NC	1
202			min	0	15	025	3	0	3	-2.128e-4	1_	NC	1_	NC	1
203		7	max	.003	1	.03	2	.001	1	-7.936e-6	<u>10</u>	NC	1	NC NC	1
204			min	0	15	023	3	0	3	-2.128e-4	1_	NC	_1_	NC NC	1
205		8	max	.003	1	.027	2	.001	1		<u>10</u>	NC NC	1_	NC NC	1
206			min	0	15	021	3	0		-2.128e-4		NC NC	1	NC NC	1
207		9	max	.003	1	.025	2	.001	1	-7.936e-6		NC	1	NC	1
208		10	min	0	15	02	2	0	3	-2.128e-4	1_	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.002	15	.022 018	3	<u> </u>	3	-7.936e-6 -2.128e-4	1	NC NC	1	NC NC	1
211		11	min max	.002	1	.02	2	0	1	-2.126e-4 -7.936e-6		NC NC	1	NC NC	1
212		11	min	0	15	016	3	0	3	-7.930e-0 -2.128e-4	1	NC	1	NC	1
213		12	max	.002	1	.017	2	0	1	-7.936e-6		NC	1	NC	1
214		12	min	0	15	014	3	0	3	-2.128e-4	1	NC	1	NC	1
215		13	max	.002	1	.015	2	0	1		10	NC	1	NC	1
216		13	min	0	15	012	3	0	3	-2.128e-4	1	NC	1	NC	1
217		14	max	.001	1	.012	2	0	1	-7.936e-6		NC	1	NC	1
218		17	min	0	15	01	3	0	3	-2.128e-4	1	NC	1	NC	1
219		15	max	.001	1	.01	2	0	1	-7.936e-6	10	NC	1	NC	1
220		'	min	0	15	008	3	0	3	-2.128e-4	1	NC	1	NC	1
221		16	max	0	1	.007	2	0	1	-7.936e-6	•	NC	1	NC	1
222		1.0	min	0	15	006	3	0	3	-2.128e-4	1	NC	1	NC	1
									_	UU T			_		

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.005	2	0	1	-7.936e-6	10	NC	1	NC	1
224			min	0	15	004	3	0	3	-2.128e-4	1	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-7.936e-6	10	NC	1	NC	1
226			min	0	15	002	3	0	3	-2.128e-4	1	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-7.936e-6	10	NC	1	NC	1
228			min	0	1	0	1	0	1	-2.128e-4	1	NC	1	NC	1
229	M10	1	max	.003	1	.011	2	0	3	1.261e-3	1	NC	3	NC	1
230			min	004	3	011	3	002	1	-3.21e-4	3	4011.422	2	NC	1
231		2	max	.003	1	.01	2	0	3	1.195e-3	1	NC	3	NC	1
232			min	003	3	011	3	002	1	-3.105e-4	3	4389.222	2	NC	1
233		3	max	.003	1	.009	2	0	3	1.129e-3	1	NC	3	NC	1
234			min	003	3	01	3	002	1	-2.999e-4	3	4840.62	2	NC	1
235		4	max	.003	1	.008	2	0	3	1.063e-3	1	NC	1	NC	1
236			min	003	3	01	3	002	1	-2.893e-4	3	5383.69	2	NC	1
237		5	max	.002	1	.007	2	0	3	9.968e-4	1	NC	1	NC	1
238			min	003	3	009	3	002	1	-2.788e-4	3	6042.606	2	NC	1
239		6	max	.002	1	.006	2	0	3	9.308e-4	1	NC	1	NC	1
240			min	003	3	009	3	002	1	-2.682e-4	3	6850.234	2	NC	1
241		7	max	.002	1	.005	2	0	3	8.648e-4	1	NC	1	NC	1
242			min	002	3	008	3	002	1	-2.576e-4	3	7852.097	2	NC	1
243		8	max	.002	1	.005	2	0	3	7.989e-4	1	NC	1	NC	1
244			min	002	3	008	3	002	1	-2.471e-4	3	9112.658	2	NC	1
245		9	max	.002	1	.004	2	0	3	7.329e-4	1	NC	1	NC	1
246			min	002	3	007	3	002	1	-2.365e-4	3	NC	1	NC	1
247		10	max	.002	1	.003	2	0	3	6.669e-4	1	NC	1	NC	1
248			min	002	3	007	3	001	1	-2.259e-4	3	NC	1	NC	1
249		11	max	.001	1	.003	2	0	3	6.01e-4	1	NC	1	NC	1
250			min	002	3	006	3	001	1	-2.154e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	5.35e-4	1	NC	1	NC	1
252			min	001	3	006	3	0	1	-2.048e-4	3	NC	1	NC	1
253		13	max	.001	1	.002	2	0	3	4.691e-4	1	NC	1	NC	1
254			min	001	3	005	3	0	1	-1.942e-4	3	NC	1	NC	1
255		14	max	0	1	.001	2	0	3	4.031e-4	1	NC	1	NC	1
256			min	0	3	004	3	0	1	-1.837e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	0	3	3.371e-4	1	NC	1	NC	1
258			min	0	3	003	3	0	1	-1.731e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	2.712e-4	1	NC	1	NC	1
260			min	0	3	003	3	0	1	-1.625e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	2.052e-4	1	NC	1	NC	1
262			min	0	3	002	3	0	1	-1.52e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.392e-4	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-1.414e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	7.326e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-1.308e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	6.255e-5	3	NC	1	NC	1
268			min	0	1	0	1	0	1	-3.638e-5	1	NC	1	NC	1
269		2	max	0	3	0	2	0	11	4.288e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-9.885e-5	1	NC	1	NC	1
271		3	max	0	3	0	2	0	2	2.322e-5	3	NC	1	NC	1
272			min	0	2	002	3	0	3	-1.613e-4	1	NC	1	NC	1
273		4	max	0	3	0	2	0	10	3.551e-6	3	NC	1	NC	1
274			min	0	2	003	3	0	3	-2.238e-4	1	NC	1	NC	1
275		5	max	0	3	0	2	0	10	-1.092e-5	12	NC	1	NC	1
276			min	0	2	004	3	001	3	-2.863e-4	1	NC	1	NC	1
277		6	max	0	3	0	2	0	15	-1.584e-5	15	NC	1	NC	1
278			min	0	2	005	3	002	1	-3.487e-4	1	NC	1	NC	1
279		7	max	0	3	0	2	0	15	-1.88e-5	15	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
280			min	0	2	005	3	002	1	-4.112e-4	1	NC	1	NC	1
281		8	max	0	3	0	2	0	15		15	NC	_1_	NC	1
282			min	0	2	006	3	003	1	-4.737e-4	1_	NC	1_	NC	1
283		9	max	.001	3	.001	2	0	15	-2.472e-5	<u>15</u>	NC	_1_	NC	1
284		10	min	0	2	007	3	004	1_1_	-5.362e-4	1_	NC	1_	NC	1
285		10	max	.001	3	.002	2	0	15	-2.768e-5	<u>15</u>	NC	1	NC	2
286		4.4	min	001	2	007	3	006	1_	-5.986e-4	1_	NC NC	1_	8203.085	1
287		11	max	.001	3	.002	2	0	15	-3.064e-5	<u>15</u>	NC NC	1	NC	2
288		40	min	001	2	008	3	007	1	-6.611e-4	1_	NC NC	1_	6714.762	1
289		12	max	.002	3	.003	3	0 008	15	-3.36e-5	<u>15</u>	NC NC	1	NC 5637.325	2
290 291		13	min	001 .002	3	008	2		1 1 5	-7.236e-4	1_	NC NC	1	NC	2
291		13	max	001	2	.004 008	3	0 01	15	-3.656e-5 -7.861e-4	<u>15</u>	NC NC	1	4831.982	1
293		14		.002	3	008 .004	2	<u>01</u> 0	15	-7.861e-4 -3.951e-5	1_	NC NC	1	NC	2
294		14	max min	002	2	009	3	011	1	-8.485e-4	<u>15</u> 1	NC NC	1	4214.427	1
295		15	max	.002	3	.005	2	0	15	-4.247e-5	15	NC	1	NC	3
296		10	min	002	2	009	3	012	1	-9.11e-4	1	8573.683	2	3730.996	1
297		16	max	.002	3	.006	2	0	15	-4.543e-5	15	NC	1	NC	3
298		10	min	002	2	009	3	014	1	-9.735e-4	1	7272.13	2	3346.189	1
299		17	max	.002	3	.007	2	0	15	-4.839e-5	15	NC	1	NC	3
300			min	002	2	009	3	015	1	-1.036e-3	1	6264.216	2	3035.767	1
301		18	max	.002	3	.008	2	0	15	-5.135e-5	15	NC	1	NC	3
302			min	002	2	009	3	017	1	-1.098e-3	1	5474.687	2	2782.728	1
303		19	max	.002	3	.009	2	0	15	-5.431e-5	15	NC	3	NC	3
304			min	002	2	009	3	018	1	-1.161e-3	1	4850.633	2	2574.888	1
305	M12	1	max	.002	1	.012	2	.015	1	1.148e-3	1	NC	1	NC	3
306			min	0	15	011	3	0	15	5.468e-5	15	NC	1	1313.289	1
307		2	max	.002	1	.012	2	.013	1	1.148e-3	1	NC	1	NC	3
308			min	0	15	01	3	0	15	5.468e-5	15	NC	1	1432.271	1
309		3	max	.002	1	.011	2	.012	1	1.148e-3	1_	NC	1_	NC	3
310			min	0	15	01	3	0	15	5.468e-5	15	NC	1	1573.897	1
311		4	max	.002	1	.01	2	.011	1	1.148e-3	1_	NC	_1_	NC	3
312			min	0	15	009	3	0	15	5.468e-5	15	NC	1_	1744.137	1
313		5	max	.002	1	.01	2	.01	1	1.148e-3	_1_	NC	_1_	NC	3
314			min	0	15	009	3	0	15	5.468e-5	15	NC	_1_	1951.124	1
315		6	max	.001	1	.009	2	.009	1	1.148e-3	1_	NC	_1_	NC	3
316		_	min	0	15	008	3	0	15	5.468e-5	15	NC	1_	2206.167	1
317		7	max	.001	1	800.	2	.008	1	1.148e-3	1_	NC	1	NC	3
318			min	0	15	007	3	0	15	5.468e-5	15	NC	_1_	2525.377	1
319		8	max	.001	1	.008	2	.007	1	1.148e-3	1_	NC NC	1_	NC 0000 040	3
320			min		15	007	3	0		5.468e-5			1	2932.348	
321		9	max	.001	1	.007	2	.006	1	1.148e-3	1_	NC NC	1	NC	3
322		10	min	0	15	006	2	0	15	5.468e-5 1.148e-3	<u>15</u>	NC NC	<u>1</u> 1	3462.767	1
323		10	max	.001	1 15	.006	3	.005 0	1 1 5		15	NC NC	1	NC 4172.743	2
324 325		11	min max	0	1	005 .006	2	.004	1 <u>5</u>	5.468e-5 1.148e-3	<u>15</u> 1	NC NC	1	NC	2
326		11	min	0	15	005	3	<u>.004</u>	15	5.468e-5	15	NC	1	5154.694	
327		12	max	0	1	.005	2	.003	1	1.148e-3	1	NC	1	NC	2
328		12	min	0	15	004	3	<u>.003</u>	15		15	NC	1	6569.849	
329		13	max	0	1	.004	2	.002	1	1.148e-3	1	NC	1	NC	2
330		13	min	0	15	004	3	0	15	5.468e-5	15	NC	1	8720.67	1
331		14	max	0	1	.003	2	.002	1	1.148e-3	1	NC	1	NC	1
332		17	min	0	15	003	3	0	15	5.468e-5	15	NC	1	NC	1
333		15	max	0	1	.003	2	.001	1	1.148e-3	1	NC	1	NC	1
334		10	min	0	15	002	3	0	15	5.468e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	1.148e-3	1	NC	1	NC	1
336		<u>,</u>	min	0	15	002	3	0	15	5.468e-5	15	NC	1	NC	1
					. •				- 10	31 1000 0			_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	1.148e-3	1_	NC	1	NC	1
338			min	0	15	001	3	0	15	5.468e-5	15	NC	1	NC	1
339		18	max	0	1	0	2	0	1	1.148e-3	1	NC	1	NC	1
340			min	0	15	0	3	0	15	5.468e-5	15	NC	1	NC	1
341		19	max	0	1	0	1	0	1	1.148e-3	1	NC	1	NC	1
342			min	0	1	0	1	0	1	5.468e-5	15	NC	1	NC	1
343	M1	1	max	.01	3	.027	3	.002	3	2.208e-2	1	NC	1	NC	1
344			min	009	2	024	2	006	1	-2.791e-2	3	NC	1	NC	1
345		2	max	.01	3	.016	3	.001	3	1.048e-2	1	NC	4	NC	2
346			min	009	2	015	2	013	1	-1.383e-2	3	4780.778	2	6584.853	
347		3		.01	3	.007	3	<u>013</u> 0	3	-1.726e-5	12	NC	4	NC	2
		-	max		2		2								
348		4	min	009		005		017	1	-9.079e-4	1_	2454.309	2	3994.039	
349		4	max	.009	3	.003	1	0	3	-1.213e-5	12	NC	4_	NC	3
350		_	min	009	2	002	3	02	1	-7.843e-4	_1_	1717.451	2	3306.194	
351		5	max	.009	3	.01	2	0	3	-7.003e-6	12	NC	5	NC	3
352			min	009	2	008	3	02	1	-6.608e-4	1_	1361.525	2	3176.267	1
353		6	max	.009	3	.016	2	0	3	-7.543e-7	3	NC	5_	NC	3
354			min	009	2	014	3	019	1	-5.372e-4	1_	1158.958	2	3401.028	1
355		7	max	.009	3	.021	2	0	3	6.904e-6	3	NC	5	NC	2
356			min	009	2	018	3	017	1	-4.137e-4	1	1034.992	2	4054.055	1
357		8	max	.009	3	.025	2	0	3	1.456e-5	3	NC	5	NC	2
358			min	009	2	021	3	014	1	-2.902e-4	1	958.511	2	5576.636	1
359		9	max	.009	3	.027	2	0	3	2.222e-5	3	NC	5	NC	1
360		Ť	min	009	2	023	3	01	1	-1.666e-4	1	915.006	2	NC	1
361		10	max	.009	3	.028	2	0	3	2.988e-5	3	NC	5	NC	1
362		10	min	009	2	024	3	005	1	-4.308e-5	1	897.862	2	NC	1
363		11	max	.009	3	.027	2	<u>003</u> 0	3	8.046e-5	1	NC	5	NC	1
			_		2		3	001	1						1
364		40	min	009		023				4.087e-6	<u>15</u>	905.278 NC	2	NC NC	•
365		12	max	.009	3	.026	2	.003	1	2.04e-4	1_		5_	NC cooo coo	2
366		10	min	009	2	021	3	0	15	9.692e-6	15	939.628	2	6309.092	1
367		13	max	.009	3	.022	2	.006	1	3.275e-4	1_	NC T	5	NC	2
368			min	009	2	018	3	0	15	1.53e-5	15	1008.74	2	4401.202	
369		14	max	.009	3	.017	2	.008	1	4.511e-4	_1_	NC	_5_	NC	3
370			min	009	2	014	3	0	15	2.09e-5	15	1130.452	2	3616.9	1
371		15	max	.009	3	.01	2	.01	1	5.746e-4	1_	NC	4_	NC	3
372			min	009	2	008	3	0	15	2.651e-5	15	1346.341	2	3336.246	1
373		16	max	.009	3	.002	1	.009	1	6.584e-4	1_	NC	4	NC	3
374			min	009	2	002	3	0	15	3.034e-5	15	1756.301	1	3442.383	1
375		17	max	.009	3	.006	3	.007	1	2.349e-5	3	NC	4	NC	2
376			min	009	2	008	2	0	15	-2.03e-4	1	2469.426	1	4133.839	1
377		18	max	.009	3	.014	3	.003	1	1.5e-2	2	NC	2	NC	2
378			min	009	2	02	2	0		-6.835e-3		4772.44	1	6787.143	
379		19	max	.009	3	.023	3	0	3	3.039e-2	2	NC	1	NC	1
380		10	min	009	2	032	2	004	1	-1.382e-2	3	5850.789	2	NC	1
381	M5	1	max	.031	3	.088	3	.002	3	1.602e-6	3	NC	1	NC	1
382	IVIO		min	035	2	083	2	007	1	5.472e-8	10	3474.446	3	NC NC	1
		2													
383		2	max	.031	3	.054	3	.003	3	9.62e-5	3	NC	5	NC NC	1
384			min	035	2	05	2	006	1	-5.222e-5	1_	1418.769	2	NC NC	1
385		3	max	.03	3	.022	3	.004	3	1.889e-4	3_	NC 707.004	5_	NC NC	1
386			min	035	2	<u>018</u>	2	005	1	-1.045e-4	1_	727.894	2	NC	1
387		4	max	.03	3	.01	2	.005	3	1.818e-4	3	NC	5_	NC	1
388			min	035	2	005	3	005	1	-9.986e-5	1_	508.784	2	NC	1
389		5	max	.03	3	.034	2	.005	3	1.747e-4	3	NC	5	NC	1
390			min	035	2	028	3	004	1	-9.526e-5	1	402.897	2	NC	1
391		6	max	.03	3	.054	2	.006	3	1.676e-4	3	NC	15	NC	1
392			min	035	2	046	3	004	1	-9.066e-5	1	342.599	2	NC	1
393		7	max	.03	3	.071	2	.006	3	1.605e-4	3	NC	15	NC	1
			,												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				LC
394			min	035	2	06	3	003	1	-8.606e-5	1	305.663	2	NC	1
395		8	max	.03	3	.083	2	.006	3	1.534e-4	3	NC	15	NC	1
396			min	035	2	07	3	003	1	-8.146e-5	1_	282.836	2	NC	1
397		9	max	.03	3	.091	2	.005	3	1.462e-4	3	NC	15	NC	1
398		10	min	035	2	07 <u>5</u>	3	003	1	-7.686e-5	1_	269.8	2	NC	1
399		10	max	.03	3	.095	2	.005	3	1.391e-4	3	NC 004.504	<u>15</u>	NC NC	1
400		44	min	035	2	077	3	002	1	-7.226e-5	1_	264.584	2	NC NC	1
401		11	max	.03	3	.093	2	.005	3	1.32e-4	3_	NC OCC C40	15	NC NC	1
402		40	min	035	2	074	3	002	1	-6.766e-5	1	266.648	2	NC NC	1
403		12	max	.03 035	3	.087	3	.004 002	3	1.249e-4	<u>3</u>	NC	<u>15</u> 2	NC NC	1
405		13	min	.029	3	<u>068</u> .075	2	.002	3	-6.306e-5 1.178e-4	3	276.693 NC	15	NC NC	1
406		13	max min	034	2	058	3	002	1	-5.845e-5	<u> </u>	297.045	2	NC NC	1
407		14	max	.029	3	.058	2	.002	3	1.107e-4	3	NC	15	NC NC	1
408		14	min	034	2	044	3	002	1	-5.385e-5	1	333.021	2	NC	1
409		15	max	.029	3	.035	2	.003	3	1.036e-4	3	NC	5	NC	1
410		13	min	034	2	027	3	002	1	-4.925e-5	1	397.068	2	NC	1
411		16	max	.029	3	.007	1	.002	3	9.19e-5	3	NC	5	NC	1
412		10	min	034	2	006	3	003	1	-5.418e-5	1	523.931	2	NC	1
413		17	max	.029	3	.019	3	.001	3	-1.209e-5	15	NC	5	NC	1
414			min	035	2	028	2	003	1	-2.859e-4	1	848.461	1	NC	1
415		18	max	.029	3	.046	3	0	3	-6.218e-6	15	NC	5	NC	1
416			min	034	2	068	2	003	1	-1.465e-4	1	1669.064	3	NC	1
417		19	max	.029	3	.074	3	0	3	-3.953e-8	15	NC	3	NC	1
418			min	034	2	111	2	003	1	-3.37e-7	3	1669.669	2	NC	1
419	M9	1	max	.01	3	.027	3	.002	3	2.791e-2	3	NC	1	NC	1
420			min	009	2	024	2	008	1	-2.208e-2	1	NC	1	NC	1
421		2	max	.01	3	.016	3	0	3	1.38e-2	3	NC	4	NC	2
422			min	009	2	015	2	002	1	-1.076e-2	1	4781.965	2	7630.805	1
423		3	max	.01	3	.006	3	.003	1	3.566e-4	1_	NC	4	NC	2
424			min	009	2	005	2	0	3	-4.872e-5	3	2454.934	2	4739.502	1
425		4	max	.01	3	.003	1	.005	1	2.522e-4	1_	NC	4	NC	3
426			min	009	2	002	3	0	3	-5.495e-5	3	1717.886	2	4018.775	
427		5	max	.009	3	.01	2	.005	1	1.478e-4	_1_	NC	5_	NC	3
428			min	009	2	009	3	002	3	-6.119e-5	3	1361.852	2	3987.548	1
429		6	max	.009	3	.016	2	.004	1	4.346e-5	1_	NC	5_	NC	3
430			min	009	2	014	3	002	3	-6.743e-5	3	1159.214	2	4483.57	1
431		7	max	.009	3	.021	2	.002	1	4.602e-6	10	NC 1007 100	5	NC	2
432			min	009	2	018	3	003	3	-7.367e-5	3	1035.196	2	5818.243	
433		8	max	.009	3	.025	2	0	2		10	NC OFFI 670	5	NC occo occ	2
434			min		2	021	3	003		-1.653e-4				9660.225	
435		9	max	.009	3	.027	2	0		-1.241e-5			5	NC NC	1
436		10	min	009	2	023	2	004	1 1 5	-2.697e-4	1_	915.13	2	NC NC	1
437		10	max	.009	3	.028	3	0	1	-1.714e-5		NC	5	NC	_
438 439		11	min max	009 .009	3	024 .027	2	008 0	15	-3.741e-4 -2.187e-5	1_	897.948 NC	<u>2</u> 5	9636.138 NC	2
440		11	min	009	2	023	3	011	1	-4.784e-4	1	905.321	2	7020.478	
441		12	max	.009	3	.026	2	<u>011</u> 0	15			NC	5	NC	2
442		12	min	009	2	021	3	015	1	-5.828e-4	1	939.615	2	4601.91	1
443		13	max	.009	3	.022	2	<u>015</u> 0	15			NC	5	NC	2
444		13	min	009	2	018	3	017	1	-6.872e-4	1	1008.645	2	3594.259	
445		14	max	.009	3	.017	2	<u>017</u> 0	15		_	NC	5	NC	3
446		14	min	009	2	014	3	019	1	-7.916e-4	1	1130.216	2	3135.042	
447		15	max	.009	3	.01	2	<u>019</u> 0	15		15	NC	4	NC	3
448		13	min	009	2	008	3	019	1	-8.96e-4	1	1345.82	2	2999.984	
449		16	max	.009	3	.002	1	0	15		•	NC	4	NC	3
450		1	min	009	2	002	3	018	1	-9.685e-4		1756.169	1	3173.028	
100			1111111	.000	_	.002		.010		0.0000 4		1100.100		0170.020	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

454	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
451		17	max	.009	3	.006	3	0	15	6.344e-5	3	NC 0400 004	4	NC	2
452		40	min	009	2	008	2	<u>015</u>	1_	-2.84e-4	1	2469.261	1_	3878.542	1
453		18	max	.009	3	.014	3	0	15	6.88e-3	3	NC 4770.400	2	NC 0.450.05	2
454		40	min	009	2	02	2	01	1	-1.512e-2	2	4772.132	1_	6452.25	1
455		19	max	.009	3	.023	3	0	3	1.382e-2	3	NC F077 FF4	1	NC NC	1
456	MAO	1	min	009	2	032	2	002	3	-3.039e-2	2	5877.551	2	NC NC	1
457	M13	1	max	800.	3	.027	3	.01	2	3.942e-3 -3.722e-3	3	NC NC	1_	NC NC	
458		2	min	002	1	024	2	009	1	4.942e-3	2	NC NC	1_		3
459			max	.008	3	.305	3	.057		-4.702e-3	3		<u>5</u>	NC	3
460 461		3	min	002 .008	1	<u>242</u> .532	3	.001 .146	10	5.942e-3	3	667.951 NC	<u>၂</u> 15	3023.002 NC	3
462		3	max	002	3	422	1	.007	15	-5.683e-3	2	367.862	3	1239.809	1
463		4	min	.008	1	<u>422</u> .674	3	.222	1	6.942e-3	3	NC	15	NC	3
464		4	max	002	3	535	1	.01	15	-6.663e-3	2	287.511	3	823.347	1
		-			1		•			7.942e-3		NC		NC	3
465 466		5	max	.007 002	3	<u>.713</u> 566	3	<u>.26</u> .012	15	-7.644e-3	2	271.089	<u>15</u> 3	705.233	1
467		6	min	.002	1	.652	3	.248	1	8.941e-3	3	NC	15	NC	5
468		0	max	002	3	519	1	.012	15	-8.624e-3	2	297.498	3	737.42	1
469		7		.007	1	<u>519</u> .511	3	. <u>.012</u> .19	1	9.941e-3		NC	<u>5</u>	NC	5
		-	max		3		1			-9.604e-3	3	383.889			1
470 471		8	min	002 .007	1	409 .329	3	<u>.009</u> .102	1 <u>5</u>	1.094e-2	3	NC	<u>3</u> 5	957.72 NC	5
471		0	max	002	3	267	1	003	10	-1.058e-2	2	614.642	3	1743.79	1
473		9	max	.002	1	.163	3	003 .029	3	1.194e-2	3	NC	5	NC	2
474		9	min	002	3	138	2	029 017	2	-1.157e-2	2	1363.716	3	8981.911	4
474		10		.007	1	.088		.031	3	1.294e-2	3	NC	4	NC	1
476		10	max min	002	3	083	2	035	2	-1.255e-2	2	3048.853	3	7376.22	2
477		11		.007	1	.163	3	.036	3	1.194e-2	3	NC	5	NC	2
478		- 11	max	002	3	138	2	017	2	-1.157e-2	2	1363.714	3	7129.554	3
479		12	max	.007	1	.329	3	<u>017</u> .11	1	1.094e-2	3	NC	5	NC	5
480		12	min	002	3	267	1	003	10	-1.059e-2	2	614.641	3	1623.512	1
481		13	max	.006	1	.511	3	.199	1	9.944e-3	3	NC	5	NC	5
482		13	min	002	3	409	1	.01	10	-9.605e-3	2	383.889	3	913.866	1
483		14	max	.006	1	.652	3	.257	1	8.945e-3	3	NC	15	NC	15
484		17	min	002	3	519	1	.012	15	-8.624e-3	2	297.498	3	710.867	1
485		15	max	.002	1	.713	3	.268	1	7.946e-3	3	NC	15	NC	15
486		13	min	002	3	566	1	.013	15	-7.644e-3	2	271.089	3	683.244	1
487		16	max	.006	1	.674	3	.228	1	6.947e-3	3	NC	15	NC	5
488		10	min	002	3	534	1	.011	15	-6.664e-3	2	287.511	3	799.291	1
489		17	max	.006	1	.532	3	.15	1	5.948e-3	3	NC	15	NC	3
490		- ' '	min	002	3	422	1	.007	15	-5.683e-3	2	367.862	3	1202.657	1
491		18	max	.002	1	.305	3	.06	1	4.949e-3		NC	5	NC	3
492		10	min	002	3	242	1	.001	10	-4.703e-3		667.95	3	2915.221	1
493		19	max	.002	1	.027	3	.01	3	3.95e-3	3	NC	1	NC	1
494		10	min	002	3	024	2	009	2	-3.723e-3		NC	1	NC	1
495	M16	1	max	.002	1	.023	3	.009	3	4.74e-3	2	NC	1	NC	1
496	10110		min	0	3	032	2	009	2	-3.297e-3	3	NC	1	NC	1
497		2	max	.002	1	.161	3	.061	1	6.005e-3	2	NC	5	NC	3
498			min	0	3	336	2	.001	10	-4.119e-3		613.328	2	2847.492	1
499		3	max	.002	1	.274	3	.152	1	7.27e-3	2	NC	15	NC	3
500		Ĭ	min	0	3	583	2	.007	15	-4.94e-3	3	337.581	2	1188.278	1
501		4	max	.002	1	.346	3	.23	1	8.534e-3	2	NC	15	NC	5
502			min	0	3	738	2	.011	15	-5.762e-3		263.559	2	794.523	1
503		5	max	.002	1	.368	3	.268	1	9.799e-3	2	NC	15	NC	15
504			min	0	3	782	2	.013		-6.584e-3		248.049	2	682.173	1
505		6	max	.003	1	.341	3	.256	1	1.106e-2	2	NC	15	NC	15
506		Ť	min	0	3	718	2	.012		-7.406e-3	3	271.336	2	712.777	1
507		7	max	.003	1	.275	3	.197	1	1.233e-2	2	NC	5	NC	5
		•							•						

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	567	2	.01	15	-8.227e-3	3	347.938	2	921.351	1
509		8	max	.003	1	.189	3	.108	1	1.359e-2	2	NC	5	NC	5
510			min	0	3	<u>371</u>	2	003	10	-9.049e-3	3	549.017	2	1653.762	1
511		9	max	.003	1	11	3	.033	3	1.486e-2	2	NC	5	NC NC	2
512		10	min	0	3	192	2	<u>017</u>	2	-9.871e-3	3	1165.414	2	7754.225	3
513		10	max	.003	1	.074	3	.029	3	1.612e-2	2	NC	4	NC	1
514			min	0	3	<u>111</u>	2	034	2	-1.069e-2	3	2376.333	2	7434.622	2
515		11	max	.003	1	11	3	.029	3	1.486e-2	2	NC	5	NC	2
516		40	min	0	3	192	2	016	2	-9.87e-3	3	1165.414		8253.683	
517		12	max	.003	1	.189	3	.105	1	1.359e-2	2	NC 540.047	5	NC 4004 000	5
518		10	min	0	3	371	2	003	10	-9.047e-3	3	549.017	2	1694.382	1
519		13	max	.003	1	.275	3	.193	1	1.233e-2	2	NC	5	NC NC	5
520		4.4	min	0	3	<u>567</u>	2	.009	15	-8.224e-3	3	347.938	2	939.273	1
521		14	max	.003	1	.341	3	.252	1	1.106e-2	2		15	NC NC	5
522		4.5	min	0	3	<u>718</u>	2	.012	15	-7.402e-3	3	271.336	2	725.873	1
523		15	max	.004	1	.368	3	.263	1	9.8e-3	2		<u>15</u>	NC OCT	12
524		40	min	0	3	782	2	.012	15	-6.579e-3	3	248.049	2	695.27	1
525		16	max	.004	1	.346	3	.225	1	8.536e-3	2		15	NC	5
526		4-	min	0	3	738	2	.011	15		3	263.559	2	811.892	1
527		17	max	.004	1	.274	3	.148	1	7.271e-3	2		15	NC	3
528		40	min	0	3	583	2	.007	15	-4.934e-3	3	337.581	2	1220.999	1
529		18	max	.004	1	.161	3	.058	1	6.007e-3	2	NC 040,000	5	NC	3
530		40	min	0	3	336	2	.001	10	-4.111e-3	3	613.329	2	2964.032	1
531		19	max	.004	1	.023	3	.009	3	4.742e-3	2	NC	1_	NC	1
532	1445	4	min	0	3	032	2	009	2	-3.288e-3	3	NC	1_	NC	1
533	M15	1	max	0	1	0	1	0	1	3.992e-4	3	NC NC	1	NC NC	1
534			min	0	1	0	1	0	1	-6.539e-5	2	NC NC	1_	NC NC	1
535		2	max	0	3	006	15	.001	1	9.369e-4	3_	NC 405.4.000	5	NC	1
536			min	0	10	024	4	0	3	-6.325e-4	2	4354.283	4	NC NC	1
537		3	max	0	3	011	15	.004	1	1.475e-3	3		<u>15</u>	NC NC	1
538		4	min	0	10	046	4	004	3	-1.2e-3	2		4_	NC NC	1
539		4	max	0	3	016	15	.008	1	2.012e-3	3		<u>15</u>	NC 7000 007	4
540		-	min	0	10	067	4	008	3	-1.767e-3	2	1520.131	4_	7093.337	3
541		5	max	0	3	02	15	.013	1	2.55e-3	3		<u>15</u>	NC 4077 CO4	4
542			min	0	10	086	4	013	3	-2.334e-3	2	1186.174	4_	4677.631	3
543		6	max	0	3	024	15	.018	1	3.088e-3	3		15	NC 0447,000	4
544		7	min	0	10	103	4	019	3	-2.901e-3	2	998.291	4_	3417.063	
545		7	max	0	3	027	15	.024	1	3.626e-3	3_		15	NC	4
546			min	0	10	116	4	026	3	-3.468e-3	2	885.304	4_	2677.623	
547		8	max	0	3	029	15	.029	1	4.163e-3	3		15	NC 2211.778	4
548			min	0	10	126	4	031							
549		9	max	0	3	031	15	.034	1	4.701e-3	3		<u>15</u>	NC 4000 F4	4
550		40	min	0	10	132	4	037	3	-4.602e-3	2	780.996	4	1906.51	3
551		10	max	0	3	031	15	.038	1	5.239e-3	3		<u>15</u>	NC	4
552		11	min	0	10	134	4	041 .04	3	-5.169e-3	2	769.449	4	1704.918 NC	
553		11	max	0	3	031	15		1	5.776e-3	3		<u>15</u>	1577.099	4
554		40	min	0	10	132	4	044	3	-5.736e-3	2	780.996	4		
555		12	max	0	3	03	15	.041	1	6.314e-3	3		<u>15</u>	NC	5
556		40	min	0	10	126	4	045	3	-6.304e-3	2	817.495	4_	1508.246	
557		13	max	0	3	027	15	.04	1	6.852e-3	3		<u>15</u>	NC	5
558		4.4	min	0	10	116	15	043	3	-6.871e-3	2	885.304	4	1494.167	3
559		14	max	.001	3	024	15	.036	1	7.39e-3	3		<u>15</u>	NC 4544 522	4
560		4.5	min	0	10	<u>103</u>	4	039	3	-7.438e-3	2	998.291	4	1541.523	
561		15	max	.001	3	02	15	.03	1	7.927e-3	3		<u>15</u>	NC 1674.20	4
562		40	min	0	10	087	4	032	3	-8.005e-3	2		4	1674.39	3
563		16	max	.001	3	016	15	.021	1	8.465e-3	3		<u>15</u>	NC 1057.074	4
564			min	0	10	068	4	021	3	-8.572e-3	2	1520.131	4	1957.974	3

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	011	15	.008	1	9.003e-3	3	9426.102	15	NC	4
566			min	001	10	047	4	006	3	-9.139e-3	2	2215.746	4	2596.738	3
567		18	max	.001	3	006	15	.014	3	9.541e-3	3	NC	5	NC	4
568			min	001	10	025	4	016	2	-9.706e-3	2	4354.283	4	4624.833	3
569		19	max	.001	3	.005	2	.038	3	1.008e-2	3	NC	1	NC	1
570			min	001	10	003	9	039	2	-1.027e-2	2	NC	1	NC	1
571	M16A	1	max	0	10	.001	2	.011	3	2.984e-3	3	NC	1	NC	1
572			min	001	3	002	9	011	2	-2.786e-3	2	NC	1	NC	1
573		2	max	0	10	006	15	.005	1	2.865e-3	3	NC	5	NC	2
574			min	001	3	024	4	002	10	-2.666e-3	2	4354.283	4	9223.654	1
575		3	max	0	10	011	15	.014	1	2.746e-3	3	9426.102	15	NC	4
576			min	001	3	047	4	003	3	-2.545e-3	2	2215.746	4	5214.73	1
577		4	max	0	10	016	15	.02	1	2.628e-3	3	6466.856	15	NC	4
578			min	001	3	068	4	008	3	-2.425e-3	2	1520.131	4	3962.723	1
579		5	max	0	10	02	15	.025	1	2.509e-3	3	5046.154	15	NC	4
580			min	001	3	087	4	011	3	-2.304e-3	2	1186.174	4	3418.949	1
581		6	max	0	10	024	15	.028	1	2.39e-3	3		15	NC	4
582			min	001	3	103	4	013	3	-2.184e-3	2	998.291	4	3179.844	1
583		7	max	0	10	027	15	.029	1	2.272e-3	3	3766.209	15	NC	4
584			min	0	3	116	4	014	3	-2.064e-3	2	885.304	4	3118.756	1
585		8	max	0	10	029	15	.028	1	2.153e-3	3	3477.739	15	NC	4
586			min	0	3	126	4	014	3	-1.943e-3	2	817.495	4	3192.074	1
587		9	max	0	10	031	15	.027	1	2.035e-3	3	3322.468	15	NC	4
588			min	0	3	131	4	013	3	-1.823e-3	2	780.996	4	3393.333	1
589		10	max	0	10	031	15	.024	1	1.916e-3	3	3273.347	15	NC	4
590			min	0	3	133	4	012	3	-1.702e-3	2	769.449	4	3742.397	1
591		11	max	0	10	031	15	.021	1	1.797e-3	3	3322.468	15	NC	4
592			min	0	3	131	4	01	3	-1.582e-3	2	780.996	4	4289.57	1
593		12	max	0	10	029	15	.017	1	1.679e-3	3	3477.739	15	NC	4
594			min	0	3	125	4	008	3	-1.462e-3	2	817.495	4	5134.789	1
595		13	max	0	10	027	15	.014	1	1.56e-3	3	3766.209	15	NC	3
596			min	0	3	116	4	006	3	-1.341e-3	2	885.304	4	6476.83	1
597		14	max	0	10	024	15	.01	1	1.441e-3	3	4246.872	15	NC	2
598			min	0	3	103	4	004	3	-1.221e-3	2	998.291	4	8743.387	1
599		15	max	0	10	02	15	.006	1	1.323e-3	3	5046.154	15	NC	1
600			min	0	3	086	4	002	3	-1.1e-3	2	1186.174	4	NC	1
601		16	max	0	10	016	15	.003	1	1.204e-3	3		15	NC	1
602			min	0	3	067	4	0	3	-9.8e-4	2	1520.131	4	NC	1
603		17	max	0	10	011	15	.001	9	1.086e-3	3		15	NC	1
604			min	0	3	046	4	0	10	-8.596e-4	2	2215.746	4	NC	1
605		18	max	0	10	006	15	0	3	9.67e-4	3	NC	5	NC	1
606			min	0	3	024	4	0	2	-7.392e-4	2	4354.283	4	NC	1
607		19	max	0	1	0	1	0	1	8.484e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-6.188e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.