CLIPPEDIMAGE = JP405139787A

PAT-NO: JP405139787A

DOCUMENT-IDENTIFIER: JP 05139787 A

TITLE: WORKING METHOD FOR PHOTOSENSITIVE GLASS

PUBN-DATE: June 8, 1993

INVENTOR-INFORMATION: NAME KONDO, YOSHIHIRO ONO, HIROKAZU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SEIKOSHA CO LTD

N/A

APPL-NO: JP03303443

APPL-DATE: November 19, 1991

INT-CL (IPC): C03C015/00;B41J002/16

ABSTRACT:

PURPOSE: To enable three-dimensional working by smoothing an etched surface and executing 2nd exposing from the etched surface.

CONSTITUTION: An excimer laser oscillator is arranged above a photosensitive glass plate 10 and the front surface 10a of the photosensitive glass plate is irradiated with an XeCl excimer laser via an exposing mask as a 1st exposing stage. A laser of a pulse oscillation control type including the sensitivity wavelength region of the photosensitive glass is used for the laser. The energy intensity per pulse of the laser is specified to 80mJ/cm SP>2 </SP> and the front surface is irradiated with about 2 pulses. The total exposure is specified to about 160mJ/cm SP>2 </SP>. Such glass plate is heat treated and etched, by which a groove part 12 is formed. An excimer laser oscillator 3 is disposed above and the laser is introduced to the side wall 12b of the groove part 12 via an optical fiber 4 and is exposed, by which the exposed part 13 is formed in a lateral direction. This part is heat treated and etched to form the groove part. The three-dimensional shape consisting of the groove part 12 in the thickness direction of the plate and the groove part in the direction

11/26/2002, EAST Version: 1.03.0007

perpendicular to this groove part is formed by etching.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP)·

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-139787

技術表示箇所

(43)公開日 平成5年(1993)6月8日

(51)Int.Cl.		識別配号	庁内整理番号	FΙ	
C 0 3 C	15/00	F	7003-4G		
D 4 1 1	0/10				

9012-2C

B41J 3/04

103 H

審査請求 未請求 請求項の数4(全 4 頁)

(21)出顯番号	特顯平3-303443	(71)出題人 000002381
		株式会社精工會
(22)出願日	平成3年(1991)11月19日	東京都中央区京橋2丁目6番21号
	•	(72)発明者 近藤 宜裕
		東京都墨田区太平四丁目1番1号 株式会
		社精工會內
		(72)発明者 大野 裕和
		東京都墨田区太平四丁目 1 番 1 号 株式会
		社精工會内
	·	(74)代理人 弁理士 松田 和子
-		
		·

(54) 【発明の名称 】 感光性ガラスの加工方法

(57)【要約】

【目的】 エッチング面を滑らかにし、エッチング面よ り第2の露光を行って三次元的な加工を可能にする。 【構成】 第1の露光工程として、感光性ガラス板10の 上方にエキシマレーザー発振器を配置して、XeClエ キシマレーザーを露光マスクを介して感光性ガラス板の 表面10aに照射する。レーザーは感光性ガラスの感度波 長域を含むパルス発振制御型のレーザーを用い、レーザ ーの1パルス当りのエネルギー強度を80mJ/cm² とし、 2パルス程度照射し、総露光量を160ml/cm²程度と した。これを熱処理、エッチングして溝部12を形成す る。第2の露光工程として、上方にエキシマレーザー発 振器3を配置し、光ファイバ4を介して溝部12の壁面12 bにレーザーを導入して露光し、横方向に露光部13を形 成する。これを熱処理、エッチングして溝部を形成す る。板厚方向の溝部12とこの溝部と直角方向の溝部との 三次元的な形状をエッチング加工により形成する。

11/26/2002, EAST Version: 1.03.0007

【特許請求の範囲】

【請求項1】 感光性ガラスをレーザーによって所定の パターンに露光する露光工程と、露光部を結晶化する熱 現像工程と、結晶部を除去するエッチング工程を経て、 上記感光性ガラスに上記パターンに対応した溝を形成す る加工方法であって、

上記露光工程は第1及び第2の露光工程を含み、少なく とも上記第1の露光工程は、上記露光手段として上記感 光性ガラスの感度波長域を含むパルス発振制御型のレー

上記第2の露光工程は、上記第1の露光工程による露光 部を現像し、エッチングした後のエッチング面より露光 するものであることを特徴とする感光性ガラスの加工方

【請求項2】 請求項1において、上記レーザーは、X eClエキシマレーザーであることを特徴とする感光性 ガラスの加工方法。

【請求項3】 請求項1または2において、上記第1の 露光工程の露光深さは、上記感光性ガラスを露光方向に 貫通しない深さであることを特徴とする感光性ガラスの 20 光工程の露光方向と異なる方向に、光学系を使用して露 加工方法。

【請求項4】 請求項1または2または3において、上 記第2の露光工程は、上記第1の露光工程の露光方向と 異なる方向に、光学系を使用して露光するものであるこ とを特徴とする感光性ガラスの加工方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、感光性ガラスをエッチ ングにより加工する方法に関する.

[0002]

【従来の技術】従来、感光性ガラスにエッチングにより 加工を施し、インクジェットプリンタヘッドなど微細な 形状を形成する方法がある。この方法は、紫外線ランプ 等の光源により感光性ガラスの所望の部分を露光し(露 光工程)、感光性ガラスを500~700℃に加熱して 露光部を結晶化させ(熱現像工程)、結晶化した露光部 をエッチング液 (フッ化水素酸溶液) により溶解させて 除去する(エッチング工程)方法である。なお、紫外線 ランプとしては、高圧水銀ランプなどが用いられてい る.

[0003]

【発明が解決しようとする課題】従来の方法では、10 μm /min 程度の高速のエッチングで、かつ露光光源と してレーザーを用いると 2 μπ 程度の微細な加工も可能 であり、マイクロマシーンなどへの応用が期待されてい るが、上記の従来の方法では、孔や溝などの加工はでき たが、三次元的な複雑な形状の加工はできず、感光性ガ ラスの用途を狭める原因となっていた。

【0004】そこで本発明の目的は、三次元的な複雑な 形状の加工を可能にし、感光性ガラスの用途をマイクロ 50 の露光の際のXeCIエキシマレーザーの1パルス当り

マシーンなどへも広げることにある。

[0005]

【課題を解決するための手段】上記目的を達成するため に本発明の感光性ガラスの加工方法は感光性ガラスをレ ーザーによって所定のパターンに露光する露光工程と、 露光部を結晶化する熱現像工程と、結晶部を除去するエ ッチング工程を経て、上記感光性ガラスに上記パターン に対応した溝を形成する加工方法であって、露光工程は 第1及び第2の露光工程を含み、少なくとも第1の露光 10 工程は、露光手段として感光性ガラスの感度波長域を含 むパルス発振制御型のレーザーを用い、第2の露光工程 は、第1の露光工程による露光部を熱現像し、エッチン グした後のエッチング面より露光するものであることを 特徴としている。

【0006】上記のレーザーは、XeC!エキシマレー ザーが望ましい。

【0007】上記の第1の露光工程の露光深さは、感光 性ガラスを露光方向に貫通しない深さであってもよい。 【0008】更に、上記の第2の露光工程は、第1の露 光すると露光が容易になる。

【0009】図7に感光性ガラスの透過率と相対露光感 度を示す。例えば感光性ガラスの感度波長域の308nm の発振波長を持つXeClエキシマレーザを使用する場 合、図7からかわるように感光性ガラスの透過率は約3 0%である。よって感光性ガラス板の裏面に及ぶ総露光 量は表面の30%である。

【0010】よって裏面ではエッチングを受けやすい結 晶部を形成するのに必要な総露光量に違しない。

30 【0011】よって露光量を決定し所定の深さだけエッ チングを受けやすい結晶部を形成することができる。 【0012】感光性ガラスをレーザーで露光し熱現像し 露光部を結晶化し結晶部を非結晶部が露出するまでエッ チングすると、エッチング面が滑らかになり、第1のエ ッチングによるエッチング面より第2の露光を行って、 三次元的な形状を作ることが可能となった。

[0013]

【実施例】以下、図面を参照して本発明の実施例につい て説明する.図1に示すように、第1の露光工程では、

40 板厚2mmの感光性ガラス板10の表面10aを研磨し、 上方にレーザー発振器1を配置して、レーザー1aを露 光マスク2を介して感光性ガラス板の表面10aに照射 する。露光マスク2には感光性ガラス板10の表面に形 成される溝などの形状の露光パターン2aと、その他の 部分に遮光部2bとが形成してある.

【0014】使用されるレーザーとしては、感光性ガラ スの感度波長域150~400mを含むパルス発振制御 型のレーザーが選ばれ、この例では、308㎜の発振波 長を持つXeC1エキシマレーザーを使用した。またこ

のエネルギー強度は、80mJ/cm² とし、2パルス程度 照射し、総露光量を160mJ/cm2 程度与えた。

【0015】この照射によって感光性ガラス板10の表 面10 aには、露光パターン2 aに対応した露光部11 が形成されるが、この露光部11は絵露光量が少ないの で、感光性ガラス板10を露光方向に裏面10bまで貫 通するに至らず、所定の露光の深さまでに止まる。

【0016】図2に示すように、感光性ガラス板10を 500~700℃程度の高温に加熱し、露光部11を結 晶化する熱現像を行って、結晶部11aを形成する。結 10 晶部11aの下方は非結晶部11bである。

【0017】次に図3に示すように、この感光性ガラス 板10にフッ化水素酸(HF)6%溶液を25℃の液温 に保ったエッチング液を用いて、シャワー圧力3kgf/ c㎡でエッチングを行い、結晶部11aを溶解除去させ て溝部12を形成する。溝部12の底面12a及び壁面 12b, 12bは、いずれも非結晶部が露出した滑らか なエッチング面である.

【0018】次に図4に示すように、この滑らかなエッ を行う。感光性ガラス板10の上方に別のレーザー発振 器3を配置し、発射するレーザーを光ファイバ4により 所望の露光位置(この例では壁面12b)に導入する。 使用されるレーザーは上記と同じ308㎞の発振波長を 持つXeClエキシマレーザーで、1パルス当りのエネ ルギー強度は80mJ/cm²とし、2パルス程度照射し、 総露光量を160mJ/cm²程度与えた。第2の露光工程 の露光方向は、第1の露光工程の露光方向と直角方向で あり、この照射によって感光性ガラス板10に形成した 溝12の壁面12 bから、総露光量に対応した深さに露 30 光部13が形成されるが、総露光量が少ないので、所定 の深さまでに止まり、露光方向に所定の深さより違い部 分には露光部は形成されない。

【0019】図5に示すように、感光性ガラス板10を 500~700℃程度の高温に加熱し、露光部13を結 晶化する熱現像を行って、結晶部13aを形成する。結 晶部13aの右方は非結晶部13bである。

【0020】次に図6に示すように、上記と同様のエッ チングを行い、結晶部13aを溶解除去させて溝部14 を形成する。溝部14の底面14a及び周面14bは、 いずれも非結晶部が露出した滑らかなエッチング面であ る。すなわち2回の露光、熱現像、エッチングにより、 感光性ガラス板10の板厚方向の溝部12と、この溝部 12と直角方向の溝部14とが形成された。

【0021】第1及び第2のエッチング工程では、結晶 部11 aまたは13 aの下方または右方の非結晶部11 b. 13bもエッチングされるが、そのエッチング速度 は結晶部の20分の1程度であるので、このエッチング 深さをも予め考慮して総露光量を定めれば良い。

【0022】上記実施例においては、レーザーとしてX eClエキシマレーザーを用いているが、その他にもX e F (発振波長351m), K r F (発振波長248n a), ArF (発振波長193mm) エキシマレーザー、 N2 レーザー (発振波長337nm) 等を用いてもよく、 また、Nd *とYAG (イットリウム・アルミニウム・ ガーネット)とを混合したレーザー, 色素レーザー、K rイオンレーザー、Arイオンレーザーまたは銅蒸気レ ーザーの基本発振波長光を非線形光学案子などにより紫 外域に変換したレーザーを用いてもよい。

[0023]

【発明の効果】以上に説明したように、本発明では、感 光性ガラスを露光するのに感光性ガラスの感度波長域を 含むパルス発振制御型のレーザーが用いられるので、滑 らかなエッチング面が得られ、この滑らかなエッチング 面から所望の方向に第2の露光を行うことにより三次元 的な形状をエッチング加工により形成することが可能で チング面である壁面12bから露光する第2の露光工程 20 ある。レーザーが用いられるので総露光量の制御が容易 であり、総露光量を選択することによって、所望の露光 の深さにすることができ、底面、周面など全てのエッチ ング面に非結晶部が現れて滑らかな面なり、所望の位 置、所望の方向に溝を形成することができ、インクジェ ットプリンタヘッドのインク流路やマイクロマシーンの 加工などに極めて有効である。

【図面の簡単な説明】

【図1】本発明の第1の露光工程を示す正面図である。 【図2】同上の熱現像工程後の感光性ガラスの正面図で ある.

【図3】同上のエッチング工程後の感光性ガラスの断面 図である.

【図4】同上の第2の露光工程を示す正面図である.

【図5】同上の熱現像工程後の感光性ガラスの正面図で ある.

【図6】同上のエッチング工程後の感光性ガラスの断面 図である。

【図7】感光性ガラスの透過率と相対露光感度を示す特 性図である。

40 【符号の説明】

1 a	レーザー
4	光学系 (光ファイバ)
10	感光性ガラス板

11 第1の露光工程による露光部 12a, 12b 第1の露光工程による露光部のエ ッチング面

感光性ガラスの透過率と相対露光彪度

