Theory of Computation: Ladner's Theorem

Ladner's Theorem

- Assuming $P \neq NP$, there exists a language $L \in NP$ that is neither in P nor NP-complete.
- For a function $H: \mathbb{N} \to \mathbb{N}$, $SAT_H = \{\phi 01^{nH(n)} | \phi \in SAT, |\phi| = n\}$.
- Will be looking at a specific function *H*.

Observations

• H(n) is a constant function: Then SAT_H is SAT with polynomial padding; So SAT_H is NP-complete - cannot be in P if $P \neq NP$.

Note: Any constant function will make *SAT_H* NP-complete.

2 H(n) tends to infinity as n tends to infinity: SAT_H cannot be NP-complete:

Then there is some $O(n^i)$ -time reduction from SAT, An n-length instance ϕ reduces to an $O(n^i)$ length instance of SAT_H of the form $\psi 01^{|\psi|^{H(|\psi|)}}$.

Equivalent instance ψ of SAT must be o(n) in length. Apply this reduction enough times to obtain a constant length equivalent instance of SAT \Longrightarrow SAT is in $P(\rightarrow\leftarrow)$.

Note: Any growing function will make input lengths of *SAT_H* long enough to check in polynomial time if the CNF-SAT part is satisfiable.

Observations contd.

- Will choose an H such that if $SAT_H \in P$ then H(n) = O(1), otherwise H(n) tends to infinity with n. Such a $SAT_H \in NP$ will be neither in P nor NP-complete.
- ② Suppose $SAT_H \in P$. Then $H(n) \le c$ for all n. By Observation 1, this implies P = NP.
- **③** Otherwise, suppose SAT_H is NP-complete. By Observation 2, this implies SAT ∈ P and that P = NP.

The function

- $H: \mathbb{N} \to \mathbb{N}$: H(n) is the smallest $i < \log \log n$ s.t $\forall x \in \{0,1\}^*, |x| \leq \log n$, DTM M_i outputs $SAT_H(x)$ within $i|x|^i$ steps. If no such i exists then $H(n) = \log \log n$.
- Well-defined: Definition only relies on strings of length $\log n$. H(n) can be computed in polynomial time.
- To prove: if $SAT_H \in P$ then H(n) = O(1), otherwise H(n) tends to infinity with n.

The function contd.

- H(n) is the smallest $i < \log \log n$ s.t $\forall x \in \{0,1\}^*, |x| \le \log n$, DTM M_i outputs $SAT_H(x)$ within $i|x|^i$ steps. If no such i exists then $H(n) = \log \log n$.

 To prove: if $SAT_H \in P$ then H(n) = O(1), otherwise H(n) tends to infinity with n.
- $SAT_H \in P \implies H(n) = O(1)$: Let M be a machine solving SAT_H in cn^c steps.
- M has infinite representations; there is a number $j \ge c$ s.t. $M = M_j$.
- For $n > 2^{2^j}$, by definition $H(n) \le j$. So H(n) = O(1).

The function contd.

- H(n) is the smallest $i < \log \log n$ s.t $\forall x \in \{0,1\}^*, |x| \le \log n$, DTM M_i outputs $SAT_H(x)$ within $i|x|^i$ steps. If no such i exists then $H(n) = \log \log n$.

 To prove: if $SAT_H \in P$ then H(n) = O(1), otherwise H(n) tends to infinity with n.
- Suppose H(n) does not tend to infinity with n There is some constant c s.t H(n) ≤ c for infinitely many n's
 ⇒ SAT_H ∈ P:
- There is an i s.t H(n) = i for infinitely many n's.
- Consider TM M_i . M_i must solve SAT_H in in^i time. Otherwise, if there is an input x where M_i gives the wrong answer, then $\forall n > 2^{|x|}$, $H(n) \neq i$ ($\rightarrow \leftarrow$).