

Факултет за информатички науки и компјутерско инженерство $\Phi UHK U$

ДИГИТАЛНО ПРОЦЕСИРАЊЕ НА СЛИКА

Тема:

Изработија: Стефан Лазаревски 226079 Ана Марија Краус 226135

Ментор: проф. д-р Ивица Димитровски

\uparrow

Содржина

Вовед	Краток опис на целта и примената на апликацијата
Преглед на концепт	Набројување и опис на функционалностите
Технолошки компоненти	Опис на користените бибилиотеки и останати технологии
Метод 1	Автоматско одземање
Метод 2	Одземање со избор на квадрат
Метод 3	Одземање со избор на четка
Метод 4	Одземање на видео позадина во реално време
Метод 5	Додавање на позадина на одредена слика
Користена литература	Референци и документации

Вовед

Што е?

Нашата апликација е Desktop GUI алатка изградена со Python и Tkinter која овозможува одземање на позадина од статични слики и видео во реално време користејќи повеќе методи.

Инспирација

Инспирирана е од потребата за едноставни, лесни за користење алатки што овозможуваат напредна обработка на слики без скап професионален софтвер.

Цел

Целта е да се изолира предниот план со елиминирање на неважни визуелни информации, со што се подобрува видливоста и употребливоста на објектот.

Преглед на концепт

Апликацијата нуди 4 методи за одземање на позадина:

01 Автоматско одземање

02 Избор на квадрат

03 Избор на четка

04 Видео позадина во реално време

Исто така нуди и функционалност за:

05 Додавање на позадина на одредена слика

01 Автоматско одземање

- ❖ Овој метод користи длабок невронски модел од rembg библиотеката базиран на U2-Net за автоматско препознавање и отстранување на позадината од сликата.
- ❖ Не бара никаква корисничка интеракција, што го прави идеален за брзи и квалитетни резултати на едноставни или добро осветлени фотографии.

output_image = remove(img_data)

Основната операција што ја отстранува позадината

02

Избор на квадрат

- ❖ Корисникот рачно селектира правоаголен регион околу предметот на интерес, а grabCut алгоритмот врз основа на оваа селекција ја анализира текстурата и бојата за да ја одземи позадината.
- Овој метод е лесен за употреба и многу ефикасен кога објектот има јасна граница со позадината.

cv2.EVENT_LBUTTONDOWN
почетна точка на
правоаголникот

cv2.EVENT_MOUSEMOVE визуелна селекција во реално време cv2.EVENT_LBUTTONUP завршување на селекцијата

1. Избор на слика

2. Избор на метод 2: Square Select

4. Исцртување на правоаголникот околу посакуваниот дел

5. Внес на "Q"

6. Резултат

Избор на четка

❖ Овој метод овозможува корисникот интерактивно да го обележи предметот со "цртање" преку глувче, што овозможува селекција на сложени форми или деликатни рабови.

cv2.grabCut(img, mask, rect: None, bgdModel, fgdModel, iterCount: 10, cv2.GC_INIT_WITH_MASK)

 Алгоритмот grabCut ја активира ова наредба за интелигентно одделување на предметот од позадината врз основа на маската што ја обележал корисникот.
 Алгоритамот користи статистички модели за да ја прошири селекцијата и прецизно ги детектира рабовите на предметот, дури и ако формата е сложена.

4. Прилагодување на големината на четката Brush Size: 16

5. Исцртување на

посакуваниот дел

3. Притискање **Apply**

2. Избор на метод 2: Square Select

04 Видео позадина во реално време

- ❖ Преку активирање на камерата, овој метод користи Selfie Segmentation модел од MediaPipe за да врши реална сегментација на објектот во секоја видео рамка.
- Позадината се заменува во реално време користејќи вештачка интелигенција која го препознава човекот на видеото. Со секој нов кадар, MediaPipe ја генерира маската, а остатокот од сликата се заменува со нова позадина

output_image = np.where(condition[:, :, None], frame, resized_background)

Оваа линија врши пиксел-по-пиксел замена каде што луѓето се зачувуваат, а останатиот дел од слика се заменува со нова позадина.

1. Избор на слика за позадина

2. Избор на метод **4**: **Real-time** видео

Download Image

3. Притискање Apply
1. Избор на слика за

позадина

4.Резултат: Приказ на **real-time** видео со посакуваната позадина

5. Видео поток трае се додека корисникот не внесе "Q"

05

Додавање на позадина на одредена слика

- ❖ Методот комбинира 2 слики: една слика од преден план со транспарентна позадина и уште една слика како позадина.
- Се користи алфа-блендирање за да се спојат двете слики на природен начин заменувајќи ја алфа транспарентноста на предниот план со позадината (другата слика).

background

Select new or upload new background

\uparrow

Пример:

\uparrow

Пример:

5. Краен резултат

Користена литература

+

https://www.geeks for geeks.org/background-subtraction-open cv/

https://docs.python.org/3/library/tkinter.html

 $https://ai.google.dev/edge/mediapipe/solutions/vision/face_detector/python$

https://learnopencv.com/background-subtraction-with-opencv-and-bgs-libraries/

https://pillow.readthedocs.io/en/stable/reference/ImageTk.html

