Practice Final

Problem 1

- (a) Find the Thevenin equivalent model between A and B.
- (b) If we were to place a 1.5 Ω resistor between A and B in the circuit above, what is the current through that resistor (measured from A to B)?

Problem 2

- (a) Find v(t) for $t \ge 0$.
- (b) Sketch the waveform of v(t) for $t \ge 0$.

Problem 3

Find the steady-state response of i(t).

Problem 4

- (a) Find the values of the mesh current phasors, I_1 , I_2 , and I_3 (in polar form).
- (b) Find the complex power $\underline{supplied}$ by V_S .

Problem 5

A load $(R_L + K_L)$ is connected to a power distribution network consisting of a resistor, inductor, capacitor and AC voltage source. The load itself includes a resistor R_L in series with a mystery element K_L , where K_L is either a capacitor or an inductor. The goal is to maximize the average power delivered to the load.

- (a) Determine the values of R_L and K_L for the circuit that cause maximum power transfer to the load.
- (b) Determine the mystery element (a capacitor or an inductor; and its value).
- (c) Calculate the maximum power transferred to the load.