МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе № 8

по дисциплине «Машинное обучение»

Тема: Классификация (линейный дискриминантный анализ, метод опорных векторов)

Студенты гр. 6304	Григорьев И.С.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами классификации модуля Sklearn.

Ход работы

Загрузка данных

Датасет загружен в датафрейм. Вид данных представлен на рис. 1.

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Рисунок 1 – Исходные данные

Выделены данные и их метки, тексты меток преобразованы к числам. Выборка разбита на обучающую и тестовую *train_test_split*.

Линейный дискриминантный анализ

1. Проведена классификация наблюдений с помощью *LinearDiscriminantAnalysis*. Выявлено 3 неправильно классифицированных наблюдения. Параметры классификатора представлены в табл. 1. Атрибуты классификатора представлены в табл.2.

Таблица 1 – Параметры LinearDiscriminantAnalysis

Параметр	Описание
solver	 «svd»: Разложение по сингулярным числам. Не вычисляет ковариационную матрицу, поэтому рекомендуется для данных с большим количеством признаков. «lsqr»: Решение наименьших квадратов, можно комбинировать с параметром shrinkage. «eigen»: Разложение на собственные значения, можно комбинировать с параметром shrinkage.
shrinkage	 «auto»: Автоматическое сжатие по лемме Ледуа- Вольфа. float from [0, 1]
priors	Класс априорных вероятностей. По умолчанию пропорции классов выводятся из данных обучения.
n_components	Количество компонентов (<= min (n_classes - 1, n_features)) для уменьшения размерности. Если None, будет установлено значение min (n_classes - 1, n_features). Этот параметр влияет только на метод преобразования transform.
store_covariance	Если True, явно вычислить взвешенную ковариационную матрицу внутри класса, когда решатель — «svd». Матрица всегда вычисляется и сохраняется для других решателей.

tol	Абсолютный порог для того, чтобы единичное значение Х
	считалось значимым, используется для оценки ранга X.
	Измерения, единичные значения которых не значимы,
	отбрасываются. Используется только если решатель -
	«svd».

Таблица 2 – Атрибуты LinearDiscriminantAnalysis

Атрибут	Описание
coef_	Весовые вектора.
intercept_	Массив прерывания.
covariance_	Взвешенная внутриклассовая ковариационная матрица.
explained_variance_ratio_	Процент дисперсии, объясняемой каждым из выбранных компонентов. Если п_components не задано, то все компоненты сохраняются, а сумма объясненных дисперсий равна 1,0. Доступно только при использовании собственного решателя или «svd».
means_	Средние в классах.
priors_	Вероятности классов.
scalings_	Масштабирование объектов в пространстве, охватываемом центроидами классов. Доступно только для решателей «svd» и «eigen».
xbar_	Общее среднее. Присутствует, только если решатель - «svd».
classes_	Уникальные метки классов.

2. Точность классификации получена с помощью функции score() и составляет 98%.

3. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. График представлен на рис. 2.

Рисунок 2 – Классификация LinearDiscriminantAnalysis

4. Функция transform проецирует данные для максимизации разбиения классов. LDA пытается определить атрибуты, на которые приходится наибольшая разница между классами. В частности, LDA, в отличие от PCA, является контролируемым методом, использующим известные метки классов.

Рисунок 3 – Сравнение РСА и LDA

5. Работа классификатора исследована при различных параметрах solver, shrinkage. Результаты представлены на рис. 4-7.

Рисунок 4 — Классификация Linear Discriminant Analysis c svd solver

Рисунок 5 — Классификация *LinearDiscriminantAnalysis* с lsqr solver и shrinkage

Рисунок 6 – Классификация *LinearDiscriminantAnalysis* с eigen solver и shrinkage

Рисунок 7 — Классификация *LinearDiscriminantAnalysis* с lsqr solver без shrinkage

6. Заданы собственные значения априорных вероятностей классов, результаты представлены в табл. 3 и на рис. 8.

Таблица 3 – Результаты классификации *LinearDiscriminantAnalysis*

Априорные вероятности классов	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
[0.38666667, 0.26666667, 0.34666667]	3	0.987
[0.15, 0.7, 0.15]	5	0.987

Рисунок 8 – Классификация *LinearDiscriminantAnalysis* с заданными априорными вероятностями

Метод опорных векторов

- 1. Проведена классификация наблюдений с помощью метода опорных векторов на тех же данных. Выявлено 4 неправильно классифицированных наблюдения.
- 2. Точность классификации получена с помощью функции score() и составляет 96%.

- 3. Атрибут *support*_ хранит индексы опорных векторов, support_vectors_ сами опорные вектора, n_support_ количество опорных векторов для каждого класса.
- 4. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. График представлен на рис. 9.

Рисунок 9 – Классификация *SVC*

5. Исследована работа метода опорных векторов при различных значениях параметров *kernel*, *degree*, *max_iter*. Результаты представлены в табл. 4-6.

Таблица 4 – Результаты классификации SVC

Тип ядра	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
linear	2	0.973
poly	6	0.987
rbf (default)	4	0.960
sigmoid	54	0.386

Таблица 5 — Результаты классификации SVC

Степень	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
1	5	0.960
2	6	0.960
3	6	0.987
4	5	0.987
5	3	0.987

Таблица 6 — Результаты классификации SVC

Количество итераций	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
Без ограничений	4	0.960
1	9	0.960
2	8	0.987
3	5	0.973
4	3	0.973
5	1	0.973
6	3	0.973

6. Классификация методами *NuSVC* и *LinearSVC* представлены на рис. 10-11.

Рисунок 10 – Классификация *NuSVC*

Рисунок 10 – Классификация LinearSVC

NuSVC подобен SVC, но использует параметр для управления количеством опорных векторов.

LinearSVC аналогично SVC с линейным ядром, но лучше масштабируется для большого числа выборок.

Выводы

В ходе лабораторной работы рассмотрены такие методы классификации модуля *Sklearn*, как *LinearDiscriminantAnalysis*, *SVC*, *NuSVC* и *LinearSVC*.

Приложение А

Код программы на python

```
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model selection import train test split
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from sklearn.decomposition import PCA
# %%
data = pd.read csv('iris.data',header=None)
data
# %%
X = data.iloc[:,:4].to_numpy()
labels = data.iloc[:,4].to_numpy()
# %%
le = preprocessing.LabelEncoder()
Y = le.fit transform(labels)
# %%
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.5, random_state
# %%
clf = LinearDiscriminantAnalysis()
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum()) #количество наблюдений, который были неправильно опре
делены
clf.priors_
# %%
clf.score(X train, y train)
def plot_clf(clf, title=""):
    test_sizes = np.arange(0.05, 0.95, 0.05)
    wrong_results = []
    scores = []
    for test_size in test_sizes:
        X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size
, random_state=630405)
        y_pred = clf.fit(X_train, y_train).predict(X_test)
        wrong_results.append((y_test != y_pred).sum())
        scores.append(clf.score(X_test, y_test))
    fig, axs = plt.subplots(1, 2, figsize=(8, 4))
    axs[0].plot(test_sizes, wrong_results)
    axs[1].plot(test_sizes, scores)
    axs[0].set ylabel('Количество неправильно определенных наблюдений')
    axs[1].set ylabel('Точность классификации')
    axs[0].set_xlabel('Размер выборки')
    axs[1].set_xlabel('Размер выборки')
```

```
fig.suptitle(title)
    plt.tight_layout()
    plt.show()
plot_clf(LinearDiscriminantAnalysis(), 'LinearDiscriminantAnalysis')
# %%
target_names = ['setosa', 'versicolor', 'virginica']
y = y_{train}
pca = PCA(n_components=2)
X r = pca.fit(X train).transform(X train)
X r2 = clf.transform(X train)
plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
1w = 2
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
    plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw,
                label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA')
plt.figure()
for color, i, target name in zip(colors, [0, 1, 2], target names):
    plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=.8, color=color,
                label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('LDA')
plt.show()
test_sizes = np.arange(0.05, 0.95, 0.05)
wrong_results_1 = []
scores_1 = []
wrong_results_2 = []
scores_2 = []
wrong_results_3 = []
scores_3 = []
wrong results 4 = []
scores_4 = []
for test_size in test_sizes:
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, ra
ndom_state=630405)
    clf_1 = LinearDiscriminantAnalysis(solver='svd', shrinkage=None)
    y_pred = clf_1.fit(X_train, y_train).predict(X_test)
    wrong_results_1.append((y_test != y_pred).sum())
    scores_1.append(clf_1.score(X_test, y_test))
    clf_2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto')
    y_pred = clf_2.fit(X_train, y_train).predict(X_test)
    wrong_results_2.append((y_test != y_pred).sum())
    scores_2.append(clf_2.score(X_test, y_test))
    clf_3 = LinearDiscriminantAnalysis(solver='eigen', shrinkage='auto')
    y pred = clf 3.fit(X train, y train).predict(X test)
```

```
wrong_results_3.append((y_test != y_pred).sum())
    scores 3.append(clf 3.score(X test, y test))
    clf 4 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None)
    y_pred = clf_4.fit(X_train, y_train).predict(X_test)
    wrong_results_4.append((y_test != y_pred).sum())
    scores_4.append(clf_4.score(X_test, y_test))
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].plot(test_sizes, wrong_results_1)
axs[1].plot(test_sizes, scores_1)
axs[0].set_ylabel('Количество неправильно определенных наблюдений')
axs[1].set_ylabel('Точность классификации')
axs[0].set_xlabel('Размер выборки')
axs[1].set xlabel('Размер выборки')
fig.suptitle('svd solver')
plt.tight_layout()
plt.show()
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].plot(test_sizes, wrong_results_2)
axs[1].plot(test_sizes, scores_2)
axs[0].set_ylabel('Количество неправильно определенных наблюдений')
axs[1].set_ylabel('Точность классификации')
axs[0].set_xlabel('Размер выборки')
axs[1].set_xlabel('Размер выборки')
fig.suptitle('lsqr solver w/ auto shrinkage')
plt.tight layout()
plt.show()
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].plot(test_sizes, wrong_results_3)
axs[1].plot(test_sizes, scores_3)
axs[0].set_ylabel('Количество неправильно определенных наблюдений')
axs[1].set_ylabel('Точность классификации')
axs[0].set_xlabel('Размер выборки')
axs[1].set_xlabel('Размер выборки')
fig.suptitle('eigen solver w/ auto shrinkage')
plt.tight layout()
plt.show()
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].plot(test_sizes, wrong_results_4)
axs[1].plot(test sizes, scores 4)
axs[0].set_ylabel('Количество неправильно определенных наблюдений')
axs[1].set_ylabel('Точность классификации')
axs[0].set_xlabel('Размер выборки')
axs[1].set_xlabel('Размер выборки')
fig.suptitle('lsqr solver w/ no shrinkage')
plt.tight layout()
plt.show()
plot_clf(LinearDiscriminantAnalysis(priors=[0.15, 0.7, 0.15]), 'LinearDiscriminantAna
lysis w/ priors=[0.15, 0.7, 0.15]')
# %%
clf = LinearDiscriminantAnalysis(priors=[0.15, 0.7, 0.15])
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum()) #количество наблюдений, который были неправильно опре
делены
clf.priors
```

```
# %%
clf.score(X_train, y_train)
clf = svm.SVC()
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
clf = svm.SVC(kernel='linear')
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
# %%
clf = svm.SVC(kernel='sigmoid')
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
# %%
clf = svm.SVC(kernel='poly')
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
# %%
clf = svm.SVC(kernel='poly')
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
# %%
clf = svm.SVC(max_iter=6)
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
print(clf.support_vectors_)
print(clf.support_)
print(clf.n_support_)
plot_clf(svm.SVC(), 'SVC')
# %%
clf = svm.NuSVC()
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
# %%
clf = svm.LinearSVC()
y_pred = clf.fit(X_train, y_train).predict(X_test)
print((y_test != y_pred).sum())
print(clf.score(X_train, y_train))
# %%
plot_clf(svm.NuSVC(), 'NuSVC')
```

```
# %%
plot_clf(svm.LinearSVC(), 'LinearSVC')

# %%
plot_clf(svm.SVC(kernel='linear', max_iter=1), 'SVC kernel=linear')

# %%
plot_clf(svm.LinearSVC(max_iter=1), 'SVC kernel=linear')

# %%
```