Test Tema 4 de Percepción

ETSINF, Universitat Politècnica de València, Marzo de 2020

Apellidos:	Nombre:	
------------	---------	--

Profesor: \square Jorge Civera \square Carlos Martínez

Cuestiones (0.25 puntos, 15 minutos, con apuntes)

B Dado el siguiente conjunto de prototipos en Σ^* donde $\Sigma = \{a.b\}$:

Indicar la clasificación por vecino más cercano de las muestras $y_1 = aba$ y $y_2 = bb$ usando como distancia el coste mínimo de edición asumiendo el mismo coste para las operaciones de inserción, borrado y sustitución.

- A) $y_1 \in C$ y $y_2 \in C$
- B) $y_1 \in C \text{ y } y_2 \in D$
- C) $y_1 \in D$ y $y_2 \in C$
- D) $y_1 \in D \ y \ y_2 \in D$
- D Sea X_c el conjunto de prototipos representante de la clase c y X^k el conjunto de los $k \in \mathbb{N}^+$ prototipos más próximos a \mathbf{y} , ¿cuál de las siguientes reglas de clasificación **no** es equivalente a la del clasificador k-NN?
 - A) $c^*(\mathbf{y}) = \arg\max_c |X^k \cap X_c|$
 - $B) c^*(\mathbf{y}) = \operatorname{arg\,min}_c \mid X^k X_c \mid$
 - C) $c^*(\mathbf{y}) = \arg\max_c \log |X^k \cap X_c|$
 - D) $c^*(\mathbf{y}) = \operatorname{arg\,min}_c \log |X^k \cup X_c|$
- A La distancia Mahalanobis-local:
 - A) No es una métrica (distancia)
 - B) Usa las varianzas de clase
 - C) Emplea diferencias absolutas entre componentes
 - D) Garantiza la propiedad simétrica

Test Tema 4 de Percepción

ETSINF, Universitat Politècnica de València, Marzo de 2020

Apellidos:	Nombre:	
------------	---------	--

Profesor: \Box Jorge Civera \boxtimes Carlos Martínez

Cuestiones (0.25 puntos, 15 minutos, con apuntes)

- $\boxed{\mathrm{B}}$ Sea la función $d: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ tal que $d(\mathbf{x}, \mathbf{y}) = \exp \sum_{i=1}^D (x_i y_i)^2$
 - A) Cumple la propiedad nula $(d(\mathbf{x}, \mathbf{y}) = 0 \leftrightarrow \mathbf{x} = \mathbf{y})$
 - B) Cumple la propiedad positiva $(d(\mathbf{x}, \mathbf{y}) \ge 0)$ $\exp = \mathbf{n}^{\circ} \operatorname{de} \operatorname{Euler}$
 - C) Cumple la propiedad nula y la positiva
 - D) No cumple ni la propiedad nula ni la positiva
- - A) $P^* \left(2 \frac{C}{C-1}P^*\right)$
 - B) $2P^*$
 - C) P^*
 - D) No se puede acotar inferiormente la probabilidad de error del clasificador NN
- B Cuando hablamos de los algoritmos de edición y condensado de prototipos, ¿cómo se podría resumir la aplicación de estos algoritmos utilizando la clasificación del algoritmo de vecinos más cercanos?
 - A) El algoritmo de edición elimina los prototipos mal clasificados y el de condensado también.
 - B) El algoritmo de edición elimina los prototipos mal clasificados, pero el de condensado mantiene los mal clasificadas.
 - C) El algoritmo de edición elimina los prototipos bien clasificados, pero el de condensado mantiene los mal clasificadas.
 - D) El algoritmo de edición elimina los prototipos bien clasificados y el algoritmo de condensado también.