Probabilità e Statistica (Informatica) 2021/22, Foglio I

7 ottobre 2021 (aggiornato al 12 ottobre 2021)

Esercizio 1. Supponiamo di estrarre a caso cinque carte (una "mano") da un mazzo di carte da poker. Vi sono quindi 52 carte determinate dal loro seme (picche, fiore, quadro, cuore) e dal loro tipo $(2, \ldots, 10, J, Q, K, A)$. Le carte dal seme picche o fiore sono nere, le altre rosse. Si calcolino le probabilità delle seguenti combinazioni di cinque carte :

Si calcola come modello casi favorevoli/casi possibili Due carte dello stesso tipo: 1 - (47 5)/[(52 5)

(i) almeno due carte dello stesso tipo;

- (ii) un poker ("four of a kind"): quattro carte dello stesso tipo e una quinta carta; (13 scelgo 5 * 4^5) / 52 scelgo 5
- (iii) un full ("full house"): tre carte di un tipo e due carte di un altro tipo; 49 scelgo 3 * 47 scelgo 2 * 4 scelgo 2 * / 52 scelgo 5
- (iv) un full con una sola carta rossa. 26 scelgo 3 e 23 scelgo 2 / 52 scelgo 5
 La probabilità congiunta di A di B come scelta deve essere >= 2 e quindi è conveniente calcolarlo come complementare degli eventi A riceve tutti assi, B riceve tutti assi e A e B ricevono assi sapendo che 4 scelgo 2 è il fatto di ricevere 2 assi, 48 scelgo 11 le carte di A e 37 scelgo 11 le carte di B Esercizio 2. Distribuiamo le 52 carte di un mazzo da poker tra quattro giocatori A, B, C, D; ogni giocatore riceve quindi 13 carte. Si calcoli la probabilità che A o B (o entrambi) abbiano almeno due assi.

Calcolo concreto, di fatto si mette al numeratore il modello con e al denominatore il modello senza reinserimento (quindi binomiale ed ipergeometrica, poi risolvendo)

Esercizio 3. Per le estrazioni da un'urna come viste a lezione, si dimostri l'equivalenza asintotica tra i due schemi di estrazione. Più precisamente, per ogni $N \in \mathbb{N}$ si consideri un'urna contenente N palline di cui M_N rosse e $N-M_N$ verdi. Siano $n,k \in \mathbb{N}$ fissati. Indichiamo con c_N la probabilità di ottenere esattamente k palline rosse in n estrazioni con reinserimento dall'urna di N palline, ed indichiamo con s_N la probabilità di ottenere esattamente k palline rosse in n estrazioni senza reinserimento dall'urna di N palline (a patto che $N \geq n$). Supponendo che il limite

$$\lim_{N\to\infty}\frac{M_N}{N}\doteq p\in(0,1)$$

esista, si mostri che

$$\lim_{N \to \infty} c_N = \lim_{N \to \infty} s_N = \binom{n}{k} p^k (1-p)^{n-k}.$$

Perché devo avere 3 + 2 carte e le rosse sono la metà delle carte In questo esercizio, per dimostrare che è misura di probabilità, si nota che, avendo Dirac (funzione indicatrice tra 0 ed 1), necessariamente la serie delle misure * Dirac è compresa tra 0 ed 1. A questo punto è definita regolarmente anche la serie, in quanto compresa tra i limiti detti.

Esercizio 4. Sia Ω un insieme non-vuoto, e sia \mathcal{F} una σ -algebra in Ω . Siano $(a_n)_{n\in\mathbb{N}}\subset [0,1]$ una successione tale che $\sum_{n=1}^{\infty}a_n=1$ e $(x_n)_{n\in\mathbb{N}}\subseteq\Omega$ una successione arbitraria di elementi di Ω non necessariamente distinti. Definiamo una mappa \mathbf{P} su \mathcal{F} tramite

$$\mathbf{P}(A) \doteq \sum_{n=1}^{\infty} a_n \cdot \delta_{x_n}(A), \quad A \in \mathcal{F},$$

ove δ_x indica la misura di Dirac concentrata in x,cioè

$$\delta_x(A) \doteq
\begin{cases}
1 & \text{se } x \in A, \\
0 & \text{altrimenti,}
\end{cases}$$
 $A \in \mathcal{F}$.

Si dimostri che ${\bf P}$ così definita è una misura di probabilità su ${\cal F}$.

Si vede che ogni elemento ha la probabilità k, k-1, k-2, ecc...

Quindi la probabilità consegue come n / k -1, n / k-2 ... n/[k(n)]! che sarà r^n (omega, spazio campionario) dato che possiede esattamente quei k elementi. Questo risponde ad entrambe le richieste

Esercizio 5. a) Sia A un insieme finito non-vuoto con |A| = n. Sia $r \in \mathbb{N}$, e siano $k_1, \ldots, k_r \in \mathbb{N}_0$ tali che $k_1 + \ldots + k_r = n$. Si mostri che il numero delle partizioni di A in esattamente r parti con rispettivamente k_1, \ldots, k_r elementi è dato da

$$\frac{n!}{k_1! \cdot \ldots \cdot k_r!}.$$

b) Immaginiamo di disporre casualmente n oggetti in r cassetti. Siano $k_1, \ldots, k_r \in \mathbb{N}_0$ tali che $k_1 + \ldots + k_r = n$. Si calcoli la probabilità che k_1 oggetti finiscano nel primo cassetto, k_2 nel secondo,... e k_r nel r-esimo cassetto.

Esercizio 6. Sia $(\Omega, \mathcal{F}, \mathbf{P})$ uno spazio di probabilità, e siano $B \in \mathcal{F}$, $(A_n)_{n \in \mathbb{N}} \subset \mathcal{F}$. Si verifichino le seguenti implicazioni:

- (i) Se $\mathbf{P}(A_n) = 0$ per ogni $n \in \mathbb{N}$, allora $\mathbf{P}(\bigcup_{n=1}^{\infty} A_n) = 0$. serie di misure)
- (ii) Se $\mathbf{P}(A_n)=1$ per ogni $n\in\mathbb{N}$, allora $\mathbf{P}\left(\bigcap_{n=1}^{\infty}A_n\right)=1$. Si usa il complementare del precedente
- (iii) Se P(B) = 0, allora $P(B \cap A) = 0$ per ogni $A \in \mathcal{F}$. Se P(B) = 0, anche $P(A \cup B) = 0$ e quindi anche P(B disg. A)
- (iv) Se $\mathbf{P}(B)=1$, allora $\mathbf{P}(B\cap A)=\mathbf{P}(A)$ per ogni $A\in\mathcal{F}$. Si usa il complementare di B disg. A e la proprietà dell'almeno uno, quindi: 1 $\mathbf{P}(A)=1$ $\mathbf{P}($

Esercizio 7. Siano Ω_1 , Ω_2 due insiemi (non vuoti) al più numerabili. Poniamo $\Omega \doteq \Omega_1 \times \Omega_2$, e supponiamo di avere una misura di probabilità \mathbf{P} su $\mathcal{P}(\Omega)$. Definiamo la funzione $Q \colon \mathcal{P}(\Omega_1) \to [0,1]$ tramite

$$Q(A) \doteq \mathbf{P}(A \times \Omega_2), \quad A \subset \Omega_1.$$

É discreto in quanto P(Omega1 * Omega2) = 1 e diverso da 0 e la mis. indotta dalla densità discreta

- (i) Si dimostri che (Ω_1, Q) è uno spazio di probabilità discreto, usa la distr. di Poisson perché sempre positivo.
- (ii) Sia dia un esempio per Ω_1 , Ω_2 , \mathbf{P} in cui Ω_1 , Ω_2 siano insiemi numerabili infiniti.

Per gli infiniti, nozione di distr. uniforme; in questo modo, potenzialmente può assumere ogni numero dei due insiemi, essendo al più numerabili. É discreto prendendo per esempio Poisson di generico parametro lambda, essendo poi il prodotto determinato da Poisson stesso.

Avendo definito tutto come uniforme, la prob. uniforme è data dallo spazio campionario omega che comprende Omega1 e Omega2 di riferimento e viene data dalla divisione di questo per uno dei due spazi campionari

(iii) Supponiamo ora che Ω_1 , Ω_2 siano insiemi finiti e \mathbf{P} la probabilità uniforme. Si mostri che allora Q è la probabilità uniforme su Ω_1 .

Esercizio 8. Sia Ω un insieme finito, e sia $H:\Omega\to\mathbb{R}$ una funzione. Per $\beta>0$, definiamo una densità discreta su Ω attraverso

$$p_{\beta}(\omega) \doteq \frac{1}{Z_{\beta}} e^{-\beta H(\omega)}, \quad \omega \in \Omega,$$

dove Z_{β} è la costante di normalizzazione: $Z_{\beta} \doteq \sum_{\omega \in \Omega} e^{-\beta H(\omega)}$. Denotiamo con \mathbf{P}_{β} la misura di probabilità su $\mathcal{P}(\Omega)$ indotta da p_{β} . Poniamo

$$A \doteq \{\omega \in \Omega : H(\omega) \leq H(\tilde{\omega}) \text{ per ogni } \tilde{\omega} \in \Omega\}.$$

Per ogni $\omega \in \Omega$, si determinino

$$\lim_{\beta \to \infty} \mathbf{P}_{\beta}(\{\omega\}) \qquad \qquad \qquad \lim_{\beta \to 0+} \mathbf{P}_{\beta}(\{\omega\})$$
 Essendo misura di probabilità, la serie della misure della costante

Essendo misura di probabilità, la serie delle misure della costante di normalizzazione vale 1 e il limite tende ad 1/omega perché distr. uniforme su tutte le probabilità

 $\lim_{\beta \to 0+} \mathbf{P}_{\beta}(\{\omega\}).$ Qui invece si considera A complementare ed il limite tenderà ad 1/A perché la parte esponenziale è positiva. Negli altri casi varrà 0.

Esercizio 9. Sia (Ω, \mathbf{P}) uno spazio di probabilità discreto, e sia $B \subseteq \Omega$ tale che $\mathbf{P}(B) > 0$. Poniamo

$$\mathbf{P}(A|B) \doteq \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}, \quad A \subseteq \Omega.$$

Si verifichi che $(\Omega, \mathbf{P}(\cdot|B))$ è uno spazio di probabilità discreto. Inoltre, sia dia un esempio di uno spazio di probabilità discreto (Ω, \mathbf{P}) ed eventi $A_1, A_2, B \subseteq \Omega$ tali che $\mathbf{P}(B) > 0$, $\mathbf{P}(A_1|B) > \mathbf{P}(A_1)$ e $\mathbf{P}(A_2|B) < \mathbf{P}(A_2)$.

Qui si tratta di scegliere i valori giusti per dimostrarli, ad esempio quelli del prof: P(B) = 3/4; P(A) = 1/2 e poi calcolarsi tutto il resto

Esercizio 10. Si verifichi se esiste o meno uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbf{P})$ con eventi $A, B, C \in \mathcal{F}$ tali che

$$\begin{split} \mathbf{P}(A) &= \frac{5}{12}, \quad \ \mathbf{P}(B) = \frac{1}{3}, \quad \ \mathbf{P}(C) = \frac{1}{4}, \\ \mathbf{P}(A|B) &= \frac{1}{3}, \quad \mathbf{P}(A|C) = \frac{1}{3}, \quad \mathbf{P}(B|C) = \frac{1}{2}, \quad \mathbf{P}(A \cup B \cup C) = \frac{2}{3}. \end{split}$$

Si hanno tutti i dati, quindi basta calcolare e verificare P(A U B U C) data da P(A) + P(B) + P(C) - P(A disg. B) - P(A disg. C) - P(B disg. C) e verificare che corrisponde proprio a 2/3

Esercizio 11. Sia $\Omega \doteq \{0,1\}^3$, e sia **P** la misura uniforme su Ω . Poniamo

$$\begin{split} A &\doteq \{\omega \in \Omega : \omega_3 = 0\}, \\ C &\doteq \{(0,0,0), (0,1,0), (1,0,0), (1,0,1)\}. \end{split}$$

Si calcolino le probabilità delle varie intersezioni e si determinino le relazioni di indipendenza tra $A,\ B,\ C.$ Si dia poi un'interpretazione di questi eventi in termini dell'esperimento aleatorio del lancio di tre monete.

Esercizio 12. Sia $q \in (0,1)$. Definiamo la funzione $p: \mathbb{N} \to [0,1]$ mediante

$$p(k) \doteq q(1-q)^{k-1}, \quad k \in \mathbb{N}.$$

Si verifichi che p è una densità discreta su $\mathbb{N} = \{1, 2, 3, \ldots\}$. Sia \mathbf{P} la misura di probabilità su $\mathcal{P}(\mathbb{N})$ indotta da p. Si dimostri che per ogni $n, m \in \mathbb{N}_0$,

$$\mathbf{P}\left(\left\{k\in\mathbb{N}:k>n+m\right\}\big|\left\{k\in\mathbb{N}:k>m\right\}\right)=\mathbf{P}\left(\left\{k\in\mathbb{N}:k>n\right\}\right).$$

Di quale proprietà e di quale distribuzione si tratta?

La distribuzione in questione è la distribuzione geometrica e la proprietà è quella di assenza di memoria

Esercizio 13 (Problema 3.38 in Ross, "Probabilità e Statistica", terza edizione). "Due palline vengono tinte con vernice nera o dorata, ciascuna con probabilità 1/2 e indipendentemente l'una dall'altra. Esse vengono poi inserite in un'urna.

- (a) Supponi di sapere per certo che la vernice dorata sia stata usata (e quindi vi è almeno una pallina di questo colore). Calcola la probabilità condizionata che entrambe le palline siano dorate. P(B|A) = 1/3 con P(A) = 3/4, P(B) = 1/4 e P(C) = 1/2 da cui P(A disg. B) = 1/4 e P(C disg. B) = 1/4
- (b) Supponi adesso che l'urna venga scossa violentemente, e ne esca una pallina dorata. Qual è la probabilità condizionata che anche l'altra pallina lo sia? P(B|C)=1/2
- (c) Spiega come mai nei due punti precedenti hai ottenuto lo stesso numero /
 un numero diverso." Sono due diverse probabilità quelle considerate e la probabilità condizionata
 si basa sul calcolo di prob. separate le une dalle altre

Infine, si scelga una spazio di probabilità (Ω, \mathbf{P}) discreto che rappresenti l'esperimento aleatorio descritto sopra, e si definiscano gli eventi d'interesse come sottoinsiemi di Ω .

Lo spazio sarà discreto ed uniforme tale da ottenere questi risultati; per dire che gli eventi sono dei sottoinsiemi, basta scriverlo come coppie (quindi palline dorate, palline nere, palline nere e dorate o palline dorate e nere).

Contatto: Markus Fischer (fischer@math.unipd.it)