TD n°2: Transformée de Fourier et modulation

Transformée de Fourier : $g(t) = \int_{-\infty}^{+\infty} g(t) e^{-j2\pi f t} dt$

Transformée de Fourier inverse : G(f) TFI $g(t) = \int_{-\infty}^{+\infty} G(f) e^{j2\pi t f} df$

Pour effectuer un changement de variable lors d'une intégration il suffit de transformer les différents paramètres : u = f(t), $du = \frac{d f(t)}{dt} dt$, $t \in (a, b) = u \in (f(a), f(b))$

On choisit en pratique f(t) de manière à faire apparaître une intégrale plus simple ou connue en remplaçant t par $f^{-1}(u)$.

Définition du produit de convolution : $x(t)*y(t) = \int_{-\infty}^{+\infty} x(u)y(t-u)du$

Quelques propriétés de la distribution de Dirac :

Définition: fonction qui prend une valeur infinie en 0, et la valeur 0 partout ailleurs et dont

l'intégrale de $-\infty$ à $+\infty$ vaut 1 : $\int\limits_{-\infty}^{+\infty}\delta(t)dt=1$, de même $\int\limits_{-\infty}^{+\infty}\delta(t-t_0)dt=1$. La fonction est paire $\delta(f)=\delta(-f)$.

Multiplier cette distribution $\delta(t-t_0)$ par une autre fonction g a donc pour conséquence d'obtenir quelque chose de nul en dehors de $t=t_0$. Si l'on considère la fonction $t-g(t_0)$:

 $\delta(t-t_0)$. $g(t)=\delta(t-t_0)$. $g(t_0)$ Cette expression permet donc de simplifier beaucoup de calculs et de faire apparaître des constantes que l'on peut sortir des intégrales. On démontrera à l'aide de cela que :

- La transformée de Fourier de la distribution de Dirac est 1(toutes les fréquences présentes);
- La transformée de Fourier inverse de la fonction unité amène $\delta(f) = \int_{-\infty}^{+\infty} \mathrm{e}^{j2\pi t f} \, dt$ que l'on exploite très souvent sous la forme $\delta(f-f_0) = \int_{-\infty}^{+\infty} \mathrm{e}^{j2\pi t(f-f_0)} \, dt$ (raie à $f=f_0$);
- La distribution de Dirac est l'élément neutre de la convolution : $\delta(t)*f(t)=f(t)$;
- La distribution de Dirac retardée convoluée à une fonction retarde la fonction : $\delta(t-t_0)*f(t)=f(t-t_0)$.

g(t)	G(f)	g(t)	G(f)	g(t)	G(f)
$g(t-t_0)$			$G(f-f_0)$	$\delta(t)$	
$\cos(2\pi f_0 t)$		$\sin(2\pi f_0 t)$		$g^{(n)}(t)$	
x(t).y(t)		x(t)*y(t)			$G^{(n)}(f)$
$\prod_{rac{T}{2}}(t)$		$III_T(t)$		$oldsymbol{\Lambda}_T(t)$	

Démarche à suivre TD 2

Exercice 1:	suivre les étapes suivantes	pour résoudre les	questions du tableau :
-------------	-----------------------------	-------------------	------------------------

Transformée de Fourier de	$g(t-t_0)$	et transformée inverse de	$G(f-f_0)$:
manaramine de l'odrier de	5 (* *())		· () / ()/	•

- 1- Réciter les formules des transformées de Fourier directe et inverse, avec une fonction générique.
- 2- Remplacer par la fonction à étudier, ici une fonction avec un décalage temporel ou fréquentiel.

- 3- Effectuer un changement de variable $u=t-t_0$ ou $u=f-f_0$:
 - établir du en fonction de dt ou de df;
 - exprimer les bornes de u en fonction des bornes de t ou de f;
 - exprimer t ou f en fonction de u pour pouvoir les remplacer dans l'intégrale;
 - Remplacer tous les termes dans l'intégrale pour faire totalement disparaître t et f.
- 4- Extraire une constante de l'intégrale en exploitant la formule $e^{a+b} = e^a \cdot e^b$.
- 5- Reconnaître une intégrale connue (on rechangera u par t ou par f) vue au point 1.

Transformée de Fourier de $g^n(t)$ *et transformée inverse de* $G^n(f)$: 1- Réciter les formules des transformées de Fourier directe et inverse, avec une fonction générique. 2- Remplacer par la fonction à transformer, ici une dérivée n-ième. 3- Effectuer une intégration par parties pour faire apparaître la dérivée n-1 de la fonction : - Enoncer la formule d'intégration par parties ; - Choisir d'intégrer $g^n(t)$ et de dériver $e^{j2\pi ft}$, écrire les termes u u' v v'; - Remplacer dans la formule d'intégration par parties ; - Sortir les termes constants de l'intégrale et faire apparaître la formule $TF(g^{n-1}(t))$. 4- L'intégration par parties faisant apparaître deux termes, se restreindre à un certain type de fonctions pour en faire disparaître le premier.

5- Opérer par récurrence et généraliser la formule obtenue.

Transformée de Fourier de $\delta(t)$:

- 1- Réciter la formule de la transformée de Fourier directe, avec une fonction générique.
- 2- Remplacer par la fonction à transformer, ici la distribution de Dirac.
- 3- Exploiter la formule $\delta(t-t_0).g(t) = \delta(t-t_0).g(t_0)$ pour la fonction exponentielle.

- 4- Sortir de l'intégrale le terme constant que l'on a fait apparaître.
- 5- Reconnaître la définition de la distribution de Dirac et en déduire donc ce que vaut $TF(\delta(t))$.
- 6- Exprimer $TF^{-1}(1)=\delta(t)$ pour faire apparaître une formule très utile pour la suite.

Transformée de Fourier de $\sin(2\pi f_0 t)$ et $\cos(2\pi f_0 t)$:

- 1- Réciter la formule de la transformée de Fourier directe, avec une fonction générique.
- 2- Remplacer par la fonction à étudier, ici l'une des deux fonctions trigonométriques.

- 3- Décomposer les fonction cos et sin sous forme de somme et de différence de fonctions exponentielles.
- 4- Séparer en deux intégrales et regrouper les exponentielles en utilisant la formule $e^a \cdot e^b = e^{a+b}$.
- 5- Reconnaître des distributions de Dirac.
- 6- Dessiner les spectres des transformées de Fourier.

Transformée de Fourier de x(t)*y(t) :

- 1- Réciter la formule de la transformée de Fourier directe et du produit de convolution.
- 2- Remplacer par la fonction à étudier, ici un produit de convolution qui est une intégrale.
- 3- Echanger les intégrales : $\int_{t} \int_{u} \dots du dt$ est réorganisée en $\int_{u} \int_{t} \dots dt du$.

4- Reconnaître la Transformée de Fourier d'un signal décalé dans le temps et remplacer par la formule établie en tout début de TD.

5- Réorganiser la formule, sortir le terme qui ne dépend pas de la variable u

- 6- Reconnaître une seconde Transformée de Fourier.
- 7- Donner le résultat final.

Transformée de Fourier de x(t).y(t) :

- 1- Réciter la formule de la transformée de Fourier directe et du produit de convolution .
- 2- En raison de symétrie par rapport à la question précédente, on s'attend au résultat suivant :

 $TF(\mathbf{x}(t).\mathbf{y}(t)) = TF(\mathbf{x}(t)) * TF(\mathbf{y}(t))$. On fait alors la démonstration à l'envers en partant de ce résultat escompté en exprimant une triple intégrale :

- convolution $TF(\mathbf{x}(t))*TF(\mathbf{y}(t)) = \int_{-\infty}^{+\infty} \mathbf{X}(u) \cdot \mathbf{Y}(f-u) du$ car une TF dépend de f;
- X(u) est une TF donc s'exprime sous la forme d'une intégrale en fonction de t;
- Y(f-u) est une TF donc une intégrale dans laquelle la variable f a été remplacée par la variable f-u. On prendra une variable d'intégration différente t'.

3- Echanger les intégrales : $\int_{u} (\int_{t} \dots dt) (\int_{t'} \dots dt') du$ est réorganisée en $\int_{t} \int_{t'} \dots \int_{u} \dots du dt' dt$.

- 4- Reconnaître dans l'intégrale sur u une distribution de Dirac $\delta(t-t')$.
- 5- Exploiter la formule $\delta(t-t_0)$. $g(t)=\delta(t-t_0)$. $g(t_0)$ pour faire disparaître la variable t pour la fonction x(t).

6- Séparer les intégrales dépendantes de la variable t et de la variable t'.

- 7- Reconnaître la définition d'une distribution de Dirac.
- 8- Identifier l'expression de TF(x(t).y(t)).

Transformée de Fourier de $\prod_{\frac{T}{2}}(t)$:

1- Réciter la formule de la transformée de Fourier directe avec une fonction générique.

2- La fonction Porte étant définie par morceaux, couper l'intégrale définie sur $]-\infty;+\infty[$ en trois intégrales sur $]-\infty;-\frac{T}{2}]$ $[\frac{-T}{2};\frac{T}{2}]$ $[\frac{T}{2};+\infty[$ où la fonction porte est définie facilement.

3- Effectuer le calcul de chaque intégrale.

4- Exprimer le résultat sous la forme d'un sinus cardinal.

5- En multipliant par une amplitude $\frac{1}{T}$ et en faisant tendre T vers 0, retrouver $TF(\delta(t))$.

Transformée de Fourier de $\mathop{{\it III}}_{\it T}(t)$:

- 1- Réciter la formule de la transformée de Fourier directe avec une fonction générique :
- 2- Exprimer la fonction Peigne de Dirac sous la forme d'une somme infinie de distribution de Dirac.

3- Décomposer en série de Fourier cette fonction périodique en appliquant la méthode du TD1:
- Réciter les formules de la reconstitution en série de Fourier et des coefficients C_n
- Remplacer dans la formule des C_n la fonction générique par la somme du point 2-)
 Echanger les symboles somme et intégrale.
 Trouver pour quelle valeur de n l'intégrale est non nulle.
– En déduire la valeur de C_n .
4- Injecter la reconstitution en série de Fourier dans la formule de la transformée de Fourier.
5- Echanger à nouveau les symboles somme et intégrale.
6- Reconnaître des distributions de Dirac au niveau des intégrales.
7- Exprimer la transformée de Fourier du Peigne sous la forme d'un peigne de Dirac.

Transformée de Fourier de $\Lambda_{T}(t)$:

- 1- Réciter la formule de la transformée de Fourier directe avec une fonction générique.
- 2- La fonction Triangle étant définie par morceaux, couper l'intégrale définie sur $]-\infty;+\infty[$ en quatre intégrales sur les domaines $]-\infty;-T]$ [-T;0] [0;T] $[T;+\infty[$.Exprimer pour les domaines du milieu ce que vaut la fonction en utilisant les valeurs clefs suivantes : La fonction vaut 0 en t=T et en t=T et vaut 1 en t=0

- 3- Calculer rapidement les intégrales pour les domaines extrêmes.
- 4- Utiliser des intégrations par parties pour faire disparaître les termes en $(1-\frac{t}{T})$ et $(1+\frac{t}{T})$ en les dérivant.

6- Après calcul regrouper les termes exponentiels pour faire apparaître un cos .

7- Utiliser une formule de trigonométrie $1-\cos(2x)=2\sin^2 x$ pour faire apparaître un sin puis une fonction *sinc* :

Transformée de $g(t-t_0)$: $G_{\Delta}(f) = \int_{-\infty}^{\infty} g(t-t_0) e^{-j2\pi f t} dt$, on choisit le changement de variable simple : $u=t-t_0$ d'où on déduit les paramètres suivants : $t=u+t_0$ et d t=d u , les bornes restent inchangées : $t \in (-\infty, +\infty)$ Le calcul donne alors :

$$G_{\Delta}(f) = \int_{-\infty}^{+\infty} g(u) e^{-j2\pi f(u+t_0)} du = \int_{-\infty}^{+\infty} g(u) e^{-j2\pi f u} e^{-j2\pi f t_0} du = e^{-j2\pi f t_0} \int_{-\infty}^{+\infty} g(u) e^{-j2\pi f u} du$$

car $e^{a+b} = e^a$. e^b et on sort un terme constant (qui ne contient pas la variable d'intégration).

On obtient:
$$g(t-t_0) = e^{-j2\pi f t_0} G(f)$$
 sachant que $g(t) = G(f)$

Transformée de $G(f-f_0)$: $g(t) = \int_0^+ G(f-f_0) e^{j2\pi t f} df$, on choisit le changement de les bornes restent inchangées : $f \in (-\infty, +\infty)$ Le calcul donne alors :

$$g(t) = e^{-j2\pi f_0 t} \int_{-\infty}^{+\infty} G(u) e^{-j2\pi t u} du$$
 car $e^{a+b} = e^a * e^b$ et on peut sortir un terme constant.