Оптимизация метода сжатия страниц оперативной памяти в ядре Linux

Студент: Романов Алексей Васильевич Научный руководитель: Оленев Антон Александрович

Цель и задачи

<u>Цель работы</u> – исследование метода сжатия оперативной памяти в ядре Linux и разработка оптимизации этого метода.

Задачи:

- рассмотреть методы увеличения количества оперативной памяти;
- дать характеристику архитектурам ядер современных операционных систем;
- изучить подходы, структуры данных и API в ядре Linux, позволяющие управлять подсистемой памяти;
- описать работу модуля сжатия оперативной памяти в ядре Linux и разработать оптимизацию для него;
- спроектировать структуру программного обеспечения, реализующего оптимизацию модуля сжатия оперативной памяти;
- исследована производительность разработанной оптимизации метода сжатия страниц оперативной памяти.

Решение проблемы нехватки ОЗУ

	Стоимость	Скорость	Ограничение
Добавление планок ОЗУ	7 USD / ГБ	10 ГБ/с	1-2 ТБ
Использование вторичной памяти	0.047 USD / ГБ 0.1 USD / ГБ	60 МБ/с 500 МБ/с	1-2 ПБ
Сжатие данных в памяти	-	10 ГБ/с	Ограничено количеством текущего RAM

Подкачка страниц

• Виртуальная память – специальный механизм организации памяти, при котором процессы работают не с физическими адресами напрямую, а с виртуальными;

Модель памяти в ядре Linux

- Виртуальная память специальный механизм организации памяти, при котором процессы работают физическими адресами напрямую, а с виртуальными;
- struct page описание физической страницы памяти.

Модуль ядра zram

- zram блочное устройство в оперативной памяти;
- идентификатор страницы формируется из номера блочного устройства и смещения;
- может быть использоваться как и для системы подкачки, так и для ФС хранящихся в RAM;
- несжимаемые страницы хранятся в несжатом виде;
- возможность выбора алгоритма из пространства пользователя.

Схема взаимодействия zram, ядра и пользователя

Информационная энтропия

- Информационная энтропия мера неупорядоченности или неопределенности состояния некоторой системы, описываемой данными;
- для данных, размер которых известен, можно получить границу, насколько эти данные могут быть сжаты.

Формула Шеннона

$$H(x) = -K \sum_{i=1}^{n} p(x_i) log_2 p(x_i)$$

Формула Хартли

$$H(x) = -log_2(p_i)$$

Выбор порогового значения энтропии

	compressor_time	entropy_time	entropy	compress
0	192734	6693	11502	14.2222
1	565457	7364	16815	6.4341
2	2591472	6975	39072	3.8496
4	1417756	5680	51755	2.4380
3	1310464	5149	71668	1.8686

Результаты сравнения затраченного времени

Патч	Файл	Размер на входе, кб	Размер на выходе, кб	Коэф. сжатия
Да	pdf	397.464	396.535	1.002
Нет	pdf	397.464	395.870	1.004
Да	apk	421.340	327.992	1.284
Нет	apk	421.340	282.331	1.492
Да	tar	5.153.692	4.131.741	1.247
Нет	tar	5.153.692	4.117.655	1.251
Да	tar (/lib)	16.527.126	5.921.855	2.791
Нет	tar (/lib)	16.527.126	5.594.516	2.954

Результаты сравнения коэффициентов сжатия

Патч	Файл	Размер на входе, кб	Время сжатия, с	Кол-во инструкций
Да	pdf	397.464	0.572	4.641.658.347
Нет	pdf	397.464	2.098	17.187.405.320
Да	apk	421.340	1.632	13.055.231.312
Нет	apk	421.340	3.196	24.345.720.313
Да	tar	5.153.692	7.066	35.039.839.769
Нет	tar	5.153.692	11.955	76.763.123.464
Да	tar (/lib)	16.527.126	16.461s	71.366.805.304
Нет	tar (/lib)	16.527.126	21.872s	112.664.002.524

Заключение

Были выполнены задачи:

- рассмотрены методы увеличения количества оперативной памяти;
- дана характеристика архитектурам ядер современных операционных систем;
- изучены подходы, структуры данных и API в ядре Linux, позволяющие управлять подсистемой памяти;
- описана работу модуля сжатия оперативной памяти в ядре Linux и разработана оптимизацию для него;
- спроектирована структура программного обеспечения, реализующего оптимизацию модуля сжатия оперативной памяти;
- исследована производительность разработанной оптимизации метода сжатия страниц оперативной памяти.

Дальнейшее развитие

- вычисление порогового значения динамически, а не статически;
- интеграция разработанной оптимизации в качестве опции модуля zram в ядре Linux.