ALJABAR LINIER _1 Matrik

Ira Prasetyaningrum

DEFINISI MATRIKS

Apakah yang dimaksud dengan Matriks?

kumpulan bilangan yang disajikan secara teratur dalam baris dan kolom yang membentuk suatu persegi panjang, serta termuat diantara sepasang tanda kurung.

NOTASI MATRIKS

- ☐ Nama matriks menggunakan huruf besar
- ☐ Anggota-anggota matriks dapat berupa huruf kecil maupun angka
- ☐ Digunakan kurung biasa atau kurung siku

$$A = \begin{pmatrix} -1 & 3 & 2 \\ 5 & 7 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & 3 & 2 \\ 5 & 7 & 6 \end{pmatrix} \qquad H = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Ordo matriks atau ukuran matriks merupakan banyaknya baris (garis horizontal) dan banyaknya kolom (garis vertikal) yang terdapat dalam matriks tersebut.

NOTASI MATRIKS

☐ Jadi, suatu matriks yang mempunyai m baris dan n kolom disebut matriks berordo atau berukuran m x n.

Notasi
$$A = (a_{ij})$$

☐ Memudahkan menunjuk anggota suatu matriks

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$
Dengan
$$i = 1,2,...,m$$

$$j = 1,2,...,n$$

MATRIKS

☐ Contoh : Matriks A merupakan matriks berordo 4x2

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 1 \\ 2 & 1 \\ 6 & -1 \end{bmatrix}$$

☐ Bilangan-bilangan yang terdapat dalam sebuah matriks dinamakan entri dalam matriks atau disebut juga elemen atau unsur.

NOTASI MATRIKS

Baris

Matriks berukuran m x n atau berorde m x n

MATRIKS BARIS DAN KOLOM

Matriks baris adalah matriks yang hanya mempunyai satu baris

$$C = \begin{bmatrix} 1 & 2 & 1 & 4 \end{bmatrix}$$

■ Matriks kolom adalah matriks yang hanya mempunyai satu kolom.

$$E = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

MATRIKS A = B

- □ Dua buah matriks A dan B dikatakan sama (A = B) apabila A dan B mempunyai jumlah baris dan kolom yang sama (berordo sama) dan semua unsur yang terkandung di dalamnya sama.
- ☐ aij = bij dimana
 - aij = elemen matriks A dari baris i dan kolom j
 - bij = elemen matriks B dari baris i dan kolom j
- $\Box A = B$ $A = \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} \quad \text{dan} \quad B = \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix}$
 - \Box A \neq B

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 1 & 5 \end{bmatrix} \quad \text{dan} \qquad B = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}$$

PENJUMLAHAN MATRIKS

- □ Apabila A dan B merupakan dua matriks yang ukurannya sama, maka hasil penjumlahan (A + B) adalah matriks yang diperoleh dengan menambahkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut.
- ☐ Matriks-matriks yang ordo/ukurannya berbeda tidak dapat ditambahkan.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \text{dan} \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{bmatrix}$$

PENJUMLAHAN MATRIKS

□ Contoh Soal

$$A = \begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -4 \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -2 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 4+3 & 2-4 \\ -1+2 & 3+1 \\ 2+1 & -2-2 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 7 & -2 \\ 1 & 4 \\ 3 & -4 \end{bmatrix}$$

PENGURANGAN MATRIKS

- □ A dan B adalah suatu dua matriks yang ukurannya sama, maka A-B adalah matriks yang diperoleh dengan mengurangkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut.
- ☐ Matriks-matriks yang ordo/ukurannya berbeda tidak dapat dikurangkan.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \text{dan} \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$A - B = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13} \\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23} \\ a_{31} - b_{31} & a_{32} - b_{32} & a_{33} - b_{33} \end{bmatrix}$$

PENGURANGAN MATRIKS

☐ Contoh:

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 4 & 0 \end{bmatrix} \qquad \begin{bmatrix} 3 & 4 & 2 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 1 - 1 & 0 - 1 & -1 - 1 \\ 2 + 1 & 2 - 2 & -3 - 4 \\ 3 - 3 & 4 - 4 & 0 - 2 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 0 & -1 & -2 \\ 3 & 0 & -7 \\ 0 & 0 & -2 \end{bmatrix}$$

- □Jika k adalah suatu bilangan skalar dan matriks A=(a_{ij}) maka matriks kA=(ka_{ij}) adalah suatu matriks yang diperoleh dengan mengalikan semua elemen matriks A dengan k.
- ☐Mengalikan matriks dengan skalar dapat dituliskan di depan atau dibelakang matriks.

$\Box[C]=k[A]=[A]k$

$$A = \begin{bmatrix} 3 & 8 \\ 5 & 1 \end{bmatrix} \longrightarrow 4A = \begin{bmatrix} 4*3 & 4*8 \\ 4*5 & 4*1 \end{bmatrix} \longrightarrow 4A = \begin{bmatrix} 12 & 32 \\ 20 & 4 \end{bmatrix}$$

Sifat-sifat perkalian matriks dengan skalar:

```
k(B+C) = kB + kC

k(B-C) = kB-kC

(k_1+k_2)C = k_1C + k_2C

(k_1-k_2)C = k_1C - k_2C

(k_1.k_2)C = k_1(k_2C)
```

Contoh:

$$A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}$$

 $A = \begin{vmatrix} 0 & 1 \\ 2 & -1 \end{vmatrix}$ $B = \begin{vmatrix} 3 & 4 \\ 1 & 1 \end{vmatrix}$ dengan k = 2, maka

K(A+B) = 2(A+B) = 2A+2B

$$2(A+B) = 2*\begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix} + \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{pmatrix}) = 2*\begin{bmatrix} 3 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ 6 & 0 \end{bmatrix}$$

$$2A + 2B = 2 * \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} + 2 * \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} 6 & 8 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ 6 & 0 \end{bmatrix}$$

Contoh:

$$C = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$

 $C = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ dengan k1 = 2 dan k2 = 3, maka

TERBUKTI

(k1+k2)C = k1.C + k2.C

$$(k_1 + k_2) * C = (2+3) * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = 5 * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 10 & -5 \end{bmatrix}$$

$$(k_1 * C + k_2 * C) = (2) * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} + (3) * \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} 3 & 3 \\ 6 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 10 & -5 \end{bmatrix}$$

PERKALIAN MATRIKS

- □ Perkalian matriks dengan matriks pada umumnya tidak bersifat komutatif.
- ☐ Syarat perkalian adalah jumlah banyaknya kolom pertama matriks sama dengan jumlah banyaknya baris matriks kedua.
- ☐ Jika matriks A berukuran mxn dan matriks B berukuran nxp maka hasil dari perkalian A*B adalah suatu matriks C=(c_{ij}) berukuran mxp dimana

PERKALIAN MATRIKS

☐ Contoh:

$$A = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$A * B = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} (3 * 3) + (2 * 1) + (1 * 0) \end{bmatrix} = \begin{bmatrix} 11 \end{bmatrix}$$

$$B * A = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} * \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3*3 & 3*2 & 3*1 \\ 1*3 & 1*2 & 1*1 \end{bmatrix} = \begin{bmatrix} 9 & 6 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0*3 & 0*2 & 0*1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

PERKALIAN MATRIKS

- ☐ Apabila A merupakan suatu matriks persegi, maka $A^2 = A.A$; $A^3=A^2.A$ dan seterusnya
- □ Apabila AB = BC maka tidak dapat disimpulkan bahwa A=C (tidak berlaku sifat penghapusan)
- □ Apabila AB = AC belum tentu B = C
- □ Apabila AB = 0 maka tidak dapat disimpulkan bahwa A=0 atau
 B=0
- □ Terdapat beberapa hukum perkalian matriks :
- 1. A(BC) = (AB)C
- 2. A(B+C) = AB+AC
- 3. (B+C)A = BA+CA
- 4. A(B-C)=AB-AC
- 5. (B-C)A = BA-CA
- 6. A(BC) = (aB)C = B(aC)
- 7. AI = IA = A

PERPANCKATAN MATRIKS

Sifat perpangkatan pada matriks sama seperti sifat perpangkatan pada bilangan-bilangan untuk setiap a bilangan riil, dimana berlaku:

 $A^2 = A A$

 $A^3 = A^2 A$

 $A^4 = A^3 A$

 $A^5 = A^4 A$; dan seterusnya

PERPANGKATAN MATRIKS

Tentukan hasil A² dan A³

$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$A^{2} = AxA = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$

$$A^{3} = AxA^{2} = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} -5 & 3 \\ 6 & -2 \end{bmatrix}$$

PERPANGKATAN MATRIKS

Tentukan hasil 2A² + 3A³

$$A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$2A^{2} = 2 \cdot \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ -4 & 4 \end{bmatrix}$$

$$3A^{3} = 3 \cdot \begin{vmatrix} -5 & 3 \\ -2 & 2 \end{vmatrix} = \begin{vmatrix} -15 & 9 \\ -6 & 6 \end{vmatrix}$$

$$2A^{2} + 3A^{3} = \begin{bmatrix} 6 & -2 \\ -4 & 4 \end{bmatrix} + \begin{bmatrix} -15 & 9 \\ -6 & 6 \end{bmatrix} = \begin{bmatrix} -9 & 7 \\ -10 & 10 \end{bmatrix}$$

JENIS -JENIS MATRIKS

■ Matriks bujursangkar (persegi) adalah matriks yang berukuran n x n

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}$$

■ Matriks nol adalah matriks yang setiap entri atau elemennya adalah bilangan nol

$$O_{3x2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Sifat-sifat dari matriks nol:

- -A+0=A, jika ukuran matriks A = ukuran matriks 0
- -A*0=0, begitu juga 0*A=0.

JENIS -JENIS MATRIKS

■ Matriks Diagonal adalah matriks persegi yang semua elemen diatas dan dibawah diagonalnya adalah nol. Dinotasikan sebagai D.

Contoh:

$$D_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

■ Matriks Skalar adalah matriks diagonal yang semua elemen pada diagonalnya sama

$$D_{3x3} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

JENIS -JENIS MATRIKS

■ Matriks Identitas adalah matriks skalar yang elemen-elemen pada diagonal utamanya bernilai 1.

Sifat-sifat matriks identitas :
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A*I = A$$

$$I*A = A$$

- Matriks Segitiga Atas adalah matriks persegi yang elemen di bawah diagonal utamanya bernilai nol
- Matriks Segitiga Bawah adalah matriks persegi yang elemen di atas diagonal utamanya bernilai nol

$$A = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 2 & 5 & 1 \end{bmatrix}$$