Algorytmy i struktury danych

Sortowanie i kopce

Przygotowanie do kolokwium

Przyjmując, że $tabA[] = \{1, 2, 3, 4, 5, 6, 7\}$ oraz $tabB[] = \{7, 6, 5, 4, 3, 2, 1\}$ i stosując algorytmy sortujące ściśle według procedur z pliku sort2023.cc wykonaj polecenia:

Zadanie 1

Ile dokładnie porównań (między elementami tablic) wykona insertion_sort(tabB), a ile insertion_sort(tabA)?

Przypadek optymistyczny

Dla tablicy posortowanej rosnąco o długości n, insertion_sort wykona n-1 porównań. insertion_sort dla tablicy tabA wykona 6 porównań. Złożoność czasowa: O(n)

Przypadek pesymistyczny

Dla tablicy posortowanej malejąco o długości n, insertion_sort wykona $\frac{n^2-n}{2}$ porównań. insertion_sort dla tablicy tabA wykona 21 porównań. Złożoność czasowa: $O(n^2)$

Zadanie 2

Ile co najwyżej porównań (między elementami tablic) wykona procedura scalająca merge dwie tablice n-elementowe?

Procedura scalająca dwie tablice n-elementowe merge wykona co najwyżej 2n-1 porównań w przypadku, gdy elementy tablic są posortowane naprzemiennie rosnąco. Złożoność czasowa procedury merge dla każdego przypadku: O(n)

```
void merge(int n, int k, double leftTable[], double rightTable[]) {
   int i = 0;
   int j = k;
   int l = 0;
   while (i < k && j < n)
        if (leftTable[i] <= leftTable[j])
            rightTable[l++] = leftTable[i++];
        else
            rightTable[l++] = leftTable[j++];

while (i < k)
        leftTable[---j] = leftTable[---k];

for (i = 0; i < j; i++)
        leftTable[i] = rightTable[i];
}</pre>
```

Zadanie 3

Jaka jest pesymistyczna złożoność czasowa procedury merge_sort? Odpowiedź uzasadnij.

Złożoność czasowa procedury merge_sort wynosi O(nlogn), ponieważ każde wywołanie procedury merge_sort dzieli tablicę na dwie części o połowie długości, a następnie wywołuje procedurę merge na tych dwóch częściach. Złożoność czasowa nie zależy od ilości elementów i tego jak są posortowane. Algorym merge_sort składa się z dwóch etapów: divide i merge.

Złożoność czasowa etapu divide wynosi O(n), ponieważ wykonujemy n-1 podziałów. Złożoność czasowa etapu merge wynosi O(nlogn), ponieważ wykonujemy lbn scaleń mając zawsze do dyspozycji n elementów.

Razem złożoność czasowa algorytmu merge_sort wynosi: O(n) + O(nlogn) = O(nlogn)

Dowód metodą rekurencji uniwersalnej:

$$T(n) = 2T(n/2) + O(n)$$
 $f(n) = n^{\log_2 2} = n$
Rozważamy drugi przypadek:
 $T(n) = O(n \log n)$

Zadanie 4

Ile co najwyżej porównań (między elementami tablicy) wykona procedura partition?

Procedura partition wykona co najwyżej n+1 porównań.

Zadanie 5

Jak jest średnia a jaka pesymistyczna złożoność quick_sort. Odpowiedź uzasadnij.

Średnia złożoność czasowa algorytmu quick_sort wynosi O(nlogn). pesymistyczna złożoność czasowa algorytmu quick_sort wynosi $O(n^2)$.

```
void quick_sort(double t[], int n)
{
    if (n > 1) {
        int k = partition(t, n);  // podziel na dwie czesci
            quick_sort(t, k);  // posortuj lewa
            quick_sort(t + k, n - k);  // posortuj prawa
    }
}
```

Zadanie 6

Jaka jest złożoność funkcji buildheap? Przeprowadź dowód - uzasadnij swoją odpowiedź.

```
void sift down(double t[], int n, int i)
    Przesiej element t[i] w dol kopca:
    t[2*i+1] - lewe dziecko t[i]
    t[2*i+2] - prawe dziecko t[i]
    jesli ktores z dzieci jest wieksze od t[i]:
    \stackrel{\circ}{-} zamien t [ i ] z tym dzieckiem miejscami
    - sprawdz ponownie t[i] w nowym miejscu
   int k = i;
   double x = t[i];
    // x mniejszy od wiekszego syna
    while (((k + k + 2) < n & k t (k - 1) < t (k) | -k < n) & k x < t (k))
       t[i] = t[k];
       i = k;
    t[i] = x;
}
void build_max_heap(double t[])
```

Złożoność czasowa funkcji buildheap wynosi O(n). Dowód:

Na każdym poziomie oprócz ostatniego, węzły mogą mieć maksymalnie dwójkę dzieci: lewe i prawe. Dlatego przesiewając, porównujemy maksymalnie dwa razy. Ostatni poziom drzewa to n/2 węzłów. Węzły te nie mają potomków, zatem nie możemy przesiewać. Poziom wyżej to n/4 węzłów. Maksymalnie można wykonać 1 przesianie, ponieważ węzeł na tym poziomie może mieć tylko dzieci. Poziom wyżej to n/8 węzłów. Węzły te mają maksymalnie dzieci i potomka. Maksymalnie można wykonać 2 przesiania, etc. Ilość porównań sift_down to ciąg:

$$2(\frac{n}{2} \cdot 0 + \frac{n}{4} \cdot 1 + \frac{n}{8} \cdot 2 + ...)$$

Po przekształceniu wzory widoczne jest to, że składa się z on nieskończonych ciągów geometrycznych. Jeśli chcemy policzyć sumę tych ciągów, to możemy użyć wzoru na sumę nieskończonego ciągu geometrycznego. Można to zrobić pod warunkiem, Jeśli ciąg jest zbieżny. Iloczyn q wynosi 1/2, zatem

spełniony jest warunek o zbieżności ciągu. Wzór na sumę wyrazów nieskończonego ciągu geometrycznego to:

$$S = \frac{a}{1-q}$$

Ilość porównań wykonywanych przez funkcję sift_down opisana jest za pomocą poniższego wzoru.

$$2\sum_{i=1}^{h-1} \frac{n}{2^{i+1}} \cdot i$$

$$2(\frac{n}{4} \cdot 1 + \frac{n}{8} \cdot 2 + \frac{n}{16} \cdot 3 + \frac{n}{32} \cdot 4 + \dots)$$

$$\frac{n}{2}(\frac{1}{1} + \frac{2}{2} + \frac{3}{4} + \frac{4}{8} + \dots)$$

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{\frac{1}{1}}{1 - \frac{1}{2}} = 2$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

$$\frac{1}{4} + \frac{1}{8} + \dots = 0.5$$

$$\frac{1}{8} + \dots = 0.25$$

$$\frac{n}{2} \cdot \frac{2}{1 - \frac{1}{2}} = \frac{n}{2} \cdot 4 = 2n = O(n)$$

Zadanie 11

Czy ciąg {23, 17, 14, 6, 13, 10, 1, 5, 7, 12} jest kopcem?

Ciąg nie jest kopcem, ponieważ węzeł o wartości 7 nie spełnia warunku kopca. Niespełnionym warunkiem kopca jest to, że dziecko nie może być większe od swojego rodzica.

Zadanie 12

Zilustruj działanie procedury buildheap dla ciągu 5,3,17,10,84,19,6,22,9. Narysuj na kartce wygląd tablicy/kopca po każdym wywołaniu procedury przesiej.

```
{5, 3, 17, 10, 84, 19, 6, 22, 9}
{5, 3, 17, 22, 84, 19, 6, 10, 9}
{5, 3, 19, 22, 84, 17, 6, 10, 9}
{5, 84, 19, 22, 3, 17, 6, 10, 9}
{84, 5, 19, 22, 3, 17, 6, 10, 9}
{84, 22, 19, 5, 3, 17, 6, 10, 9}
{84, 22, 19, 10, 3, 17, 6, 5, 9}
```