Chapter 01 – Markov Decision Processes

Author: Gianmarco Scarano

gianmarcoscarano@gmail.com

1. Sequential Decision Making

In a World, we have an Agent which interacts with the environment at discrete timesteps (we call it t), by receiving observations o_t and reward r_t from the environment after taking an action a_t .

Such world can be visualized here on the right.

Plus, we each interaction of the agent generates a trajectory (or history), that is used by the agent to take action:

$$h_t = (o_0, a_0, r_1, o_1, a_1, ..., r_t, o_t, a_t)$$

Giving our last definition before defining the Markovian Model, we say that a state is a function of the history and it's typically hidden or unknown:

$$s_t = f(h_t)$$

2. Markovian Assumption & MDP

A state s_t is Markovian ONLY if given the present we are in right now, the future is independent of the past.

We can write this in a formula as follows: $P(s_{t+1}|s_t, a_t) = P(s_{t+1}|h_t, a_t)$

The " (s_t, a_t) " part, means that I just need (t-1, a-1) in order to get to the next state. I don't need history (Hence it's Markovian). I don't need any previous state. The formula above states "What is the probability of ending up in the next state, given the current state and the current action?"

Nonetheless, a state can always be Markovian by setting it equal to the history: $s_t = h_t$

The best case is when the current state is said to be fully observable, meaning that it corresponds to the latest observation, such that $s_t = o_t$

2.1 Markov Decision Process (MDP)

An MDP can be described as a set of states $S=(S_0,S_1,...,S_n)$ and a set of actions $A=(a_0,a_1,...,a_n)$ which could be for example "Left / Right / Up / etc".

We can directly look at its architecture on the right, which is auto-explicative:

Here, we are looking at a Sequential Decision Making (earlier chapter) under the Markov Assumption.

2.1.1 Transition Function

We introduce a new concept, which is really important, called TRANSITION FUNCTION (T), which is the probability of the next state given the current state and the current action. Generally, T is stochastic and not deterministic.

2.1.2 Reward

Generally, a reward r_t is a number/scalar representing a feedback and indicates how well an agent is doing at step t.

We indicate the reward as: R(s, a).

Cost is the inverse of the reward.

2.1.3 Deterministic MDP

When we deal with a deterministic approach, the probability of getting to the next state is always equal to 1. There is no way we can say that ending up in a state s has a higher probability than another state s'.

This example is called episodic, due to the fact that it actually finishes (orange circle).

2.1.4 Stochastic MDP

Recycling robot

s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	rsearch
high	search	low	$1 - \alpha$	rsearch
low	search	high	$1 - \beta$	-3
low	search	low	β	rsearch
high	wait	high	1	rwait
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	rwait
low	recharge	high	1	0
low	recharge	low	0	-

3. Policy, Infinite Horizon, Value/Q-Function, etc.

In this chapter, we'll the discuss the basics of Reinforcement Learning algorithms.

3.1 Policy

A policy π maps ALL the states $\{S\}$ into actions $\{A\}$ and determines how agents select actions.

It can be deterministic, meaning that an action is described as follows: $a = \pi(s)$ or it can be stochastic, meaning that there is uncertainty for the action the agent is going to take: $\pi(a|s)$ -> What is the probability of executing a certain action, given a certain state, following a certain policy π ?

3.2 Trajectory Probability

Here the question is, what is the probability of seeing a trajectory at time t according to a policy π starting from s_0 ?

$$\mathbb{P}^{\pi}(s_{0}, a_{0}, \dots s_{t}, a_{t}) = \pi(a_{0}|s_{0})p(s_{1}|s_{0}, a_{0})\pi(a_{1}|s_{1})p(s_{2}|s_{1}, a_{1})\dots p(s_{t}|s_{t-1}, a_{t-1})\pi(a_{t}|s_{t})$$

The $(s_0, a_0, \dots, s_t, a_t)$ part just after P^{π} is the trajectory at time t starting from s_0 . The π symbol at the top of P, means that we are following a certain policy.

Another way to compact this is to ask ourselves what is the probability of visiting a certain state (s, a) at time t according to a certain policy π and starting from s_0 ?

We can easily sum it up and compress it to a simple formula which converts this question in a mathematical form:

$$\mathbb{P}^{\pi}_{t}(s,a;s_{0}) = \sum_{a_{0},s_{1},a_{1},...s_{t-1},a_{t-1}} \mathbb{P}^{\pi}(s_{0},a_{0},...s_{t}=s,a_{t}=a)$$

3.3 Infinite Horizon

So far, in our MDP we have $(S, A, T, R) \rightarrow$ State, Action, Transition Function, Reward

We have to think and reason about policy's long term-effects.

For doing this, we introduce a discount factor γ which is in range [0, 1).

 $\gamma=0$ means that I only care about immediate rewards.

 $\gamma = 1$ means that immediate and future rewards are equally important.

1 is excluded due to the fact that, being $\sum_{h=0}^{\infty} y^h$ (which we'll see in the next subchapter) a geometric series, it is equivalent to $\frac{1}{(1-y)}$ and so setting $\gamma=1$ for infinite tasks is a bad idea.

3.4 Value Function / Q-Function

The Value Function estimates the goodness of states and actions based on their values. It's also a nice way to compare different policies.

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots | s_{t}] = \mathbb{E}[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | s_{\theta} = s_{t}, a_{h} = \pi (s_{h}), s_{h+1} = [s_{h+1}, a_{h}]$$

Here, we can see that we compute the Expectation (\mathbb{E}_{π}) of each reward discounted by the reward gamma (γ). The expectation is more or less a weighted average of all possible probabilities. In this case probability of getting a reward at time ($t+1, t+2 \dots$) given a state S (s_t).

In this case if $\gamma = 0$, then we care only about current reward r_t (since $r_{t+1}, r_{t+2}, r_{t+3}$ etc. will be 0)

Here, we give the definition of Q-Function instead:

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{t}, a_{t}), a_{h+1} = \pi(s_{h}), s_{h+1} = \pi(s_{h})$$

The main difference from the Value function, is the following:

- Q Function:
 - o I take each possible action (IN THE CURRENT STATE) and ONLY starting from NEXT STATE, I will follow my policy π .
- Value Function:
 - \circ From the CURRENT STATE, I take an action "a" according to my policy and afterwards I will follow my policy π .

So, in the Q-Function what we do is that we have the flexibility of choosing any possible action and then following my policy. This is a way to compute which action leads me to the best reward.

While, in the Value function this doesn't happen, because we take only 1 action (a) and after that we'll follow the policy, so I'm not aware of what could happen if I choose any other action.

EXAMPLES:

<i>S</i> =	-0.1	-0.1	-0.1	+10 (G)
	-0.1	-0.1	-0.1	-0.1
	0	-0.1	-0.1	-0.1

$\pi_1 =$	1	1	1	1
	1	1	1	1
	1	1	1	1

\rightarrow	\rightarrow	\rightarrow	+
1	\rightarrow	\rightarrow	1
\rightarrow	1	\rightarrow	1

 $\pi_2 =$

$$y = 0.9$$

$$A = \{ \rightarrow \leftarrow \uparrow \downarrow \}$$

$$V^{\pi_1}(S_{0,0}) = 0 + 0.9 * (-0.1) + 0.9^2 * (-0.1) + 0.9^3 * (-0.1) + 0.9^4 * (-0.1) + 0.9^5 * (-0.1) + 0.9^6 * (-0.1) = -0.569$$

We stopped at 0.9^6 because we fixed the iteration. We should be doing this up to infinity or up to a fixed term.

$$V^{\pi_2}(S_{0,0}) = 0 + 0.9 * (-0.1) + 0.9^2 * (-0.1) + 0.9^3 * (-0.1) + 0.9^4 * (-0.1) + 0.9^5 * 10 + 0.9^6 * (-0.1) = 5.54$$

From here I already know something.

$$Q^{\pi_2}(S_{0,0},\uparrow) = 0 + 0.9 * (-0.1) + 0.9^2 * (-0.1) + 0.9^3 * (-0.1) + 0.9^4 * (-0.1) + 0.9^5 * 10 + 0.9^6 * (-0.1) = 5.54$$

Here what I do is that in state 0,0 I replace the policy action (\rightarrow) with the action that I specified in the arguments: \uparrow

$$Q^{\pi_2}(S_{3,2},\uparrow) = 10 + 0.9 * 10 + 0.9^2 * (-0.1) + 0.9^3 * 10 + 0.9^4 * (-0.1) + 0.9^5 * 10 + 0.9^6 * (-0.1)$$

$$= 31.995$$

Here what I do is that I start in state 3,2 and I immediately replace the policy action (\leftarrow) with the action that I specified in the arguments: \uparrow

$$V^{\pi_2}(S_{3,2}) = 10 + 0.9 * (-0.1) + 0.9^2 * 10 + 0.9^3 * (-0.1) + 0.9^4 * 10 + 0.9^5 * (-0.1) + 0.9^6 * 10$$

= 29.75

4. Bellman Equation

In the Bellman Equation, a value of a certain state is expanded in terms of the current reward and the value of the next states according to the policy.

 $r \text{ here is function of s and } \pi(s)$ $V^{\pi}(s_t) = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t] = r_t + \gamma \mathbb{E}_{s, \sim p(.|s, \pi(s))}[V^{\pi}(s')]$

 $Q^{\pi}(s_t,a) = r_t + \gamma \mathbb{E}_{s,\sim p(.|s,a)}[V^{\pi}(s')]$

r here is function of s and a

As a result $V(s) = Q(s, \pi(s))$

We can see that the Value function of S_t is the Reward at the initial state $(r_t) + \gamma$ which multiplies the Expectation with respect to the transition function (so according to the policy!). That's why it's written that "r here is a function of S and $\pi(s)$ ".

In the Q function instead, the Expectation lives w.r.t to a certain action "a". For this reason, if I use the Q-Function with the policy, I'll end up in the Value function.

EXAMPLE:

Let's consider this situation with $\gamma = 0.9$ and the following V-table (which is given):

$$S_0=2\;;\;S_1=10\;;\;S_2=2\;;\;S_3=-10\;$$

Then:

 $V(S_0)_{MDP_2} = 0.1 \ (reward) + 0.9 \ (\gamma) * 10 \ (which comes from the V-table) = 9.1$

$$\begin{split} V(S_0)_{MDP_1} &= 0.1 \ (reward) + 0.9 \ (\gamma) * [0.1(prob \ of \ S_0) * \ 2 \ (V \ of \ S_0) + 0.2 \ (prob \ of \ S_1) \\ &* 10 \ (V \ of \ S_1) + 0.5 * 2 + 0.2 * (-10) = 1.18 \end{split}$$

4.1 Optimal Policy

Very simply, optimal policy states that for infinite horizon MDPs, there always exists a deterministic policy π^* such that:

$$V^{\pi^*}(s) \ge V^{\pi}(s) \,\forall \, s, \pi$$

Meaning that π^* dominates all other policies π in each state.

5. Bellman Optimality

Commenting this picture, we see that V^* is equal to choosing the best first action among the twos which maximizes that whole quantity at that state $(Q^*(s,a))$ and the difference with the Bellman Equation of subchapter 4 it's literally this.

However, though, one assumes that we know which is the optimal Value function in the next state.

As we can see from the bullet points, we compute the Q-function trying all actions (a' and a''), then we choose the best one.

5.1 Bellman Optimality (Theorem 1)

This theorem states that given $\hat{\pi} = argmax_a \ Q^*(s,a)$, we can show that $V^{\hat{\pi}} = V^*$

$$V^{*}(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, \sim p(.|s,a)} V^{*}(s')]$$

$$given \stackrel{\wedge}{\pi} = \operatorname{argmax}_{a} Q^{*}(s,a), \text{ we can show } V^{\hat{\pi}} = V^{*}$$

$$V^{*}(s) = r(s,\pi^{*}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\pi^{*}(s))} V^{*}(s')$$

$$\leq \max_{a} [r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^{*}(s')] = r(s,\widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\widehat{\pi}(s))} V^{*}(s')$$

$$= r(s,\widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\widehat{\pi}(s))} [r(s',\pi^{*}(s')) + \gamma \mathbb{E}_{s'' \sim P(s',\widehat{\pi}(s'))} V^{*}(s'')]$$

$$\leq r(s,\widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\widehat{\pi}(s))} [r(s',\widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s',\widehat{\pi}(s'))} V^{*}(s'')]$$

$$\leq r(s,\widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\widehat{\pi}(s))} [r(s',\widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s',\widehat{\pi}(s'))} [r(s'',\widehat{\pi}(s'')) + \gamma \mathbb{E}_{s''' \sim P(s'',\widehat{\pi}(s''))} V^{*}(s''')]]$$

$$\leq \mathbb{E}[r(s,\widehat{\pi}(s)) + \gamma r(s',\widehat{\pi}(s')) + \dots] = V^{\widehat{\pi}}(s)$$

$$SAPIENZA$$
University of Roma

Commenting this picture as well, if I know the argument of the max function of $V^*(s) \rightarrow r(s, a) + \gamma$ etc. (which is essentially Q*(s,a)) -> and I take the action that maximizes the reward right now, what we get is the optimal policy.

Now, given that $\hat{\pi}$ is the policy that chooses the action which maximizes my Q-function I want to prove that $V^*(s) \leq V^{\hat{\pi}}(s)$.

For accomplishing this, we see in the 2nd row that the max operation + its argument gets directly replaced by the quantity on the right -> $r(s, \hat{\pi}(s) \ etc.)$. This is due to the fact that we know that $\hat{\pi}$ is that one policy which maximizes the Q-function (which is written just below the sub-chapter 5). That's why instead of writing $(r(s, a) \ etc.)$ we write $r(s, \hat{\pi}(s) \ etc.)$ -> Because the maximization is given by the policy $\hat{\pi}$.

Now, very simply if we keep on expanding this for all the states and weighting it through the expectation, we prove that $V^*(s) = V^{\hat{\pi}}(s)$.

5.2 Bellman Optimality (Theorem 2)

For any V, if
$$V(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V(s')]$$
 for all s, then $V(s) = V^*(s)$

We need to check if $|V(s) - V^*(s)| = \left| \max_{a} (r(s,a) + \gamma \mathbb{E}_{s \sim P(s,a)} V(s')) - \max_{a} (r(s,a) + \gamma \mathbb{E}_{s \sim P(s,a)} V^*(s')) \right|$

$$\leq \max_{a} \left| (r(s,a) + \gamma \mathbb{E}_{s \sim P(s,a)} V(s')) - (r(s,a) + \gamma \mathbb{E}_{s \sim P(s,a)} V^*(s')) \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s,a)} \left| V(s') - V^*(s') \right|$$

$$\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s,a)} \left(\max_{a'} \gamma \mathbb{E}_{s'' \sim P(s',a')} \left| V(s'') - V^*(s'') \right| \right)$$
At infinity, this goes to zero
$$\leq \max_{a_1,a_2,\dots,a_{k-1}} \gamma^k \mathbb{E}_{s_k} |V(s_k) - V^*(s_k)|$$

$$\leq \max_{a_1,a_2,\dots,a_{k-1}} \gamma^k \mathbb{E}_{s_k} |V(s_k) - V^*(s_k)|$$

$$\leq \max_{a_1,a_2,\dots,a_{k-1}} \gamma^k \mathbb{E}_{s_k} |V(s_k) - V^*(s_k)|$$

By commenting this, in order to check if $V(s) = V^*(s)$, there is just one way: the difference of the norm is equal to $0 \to |V(s) - V^*(s)| = 0$

We simply expand both V(s) and $V^*(s)$ at the first step.

At the second step, by using a simple property of the norms we take out the max operation and cancel out r(s, a).

At the third step, I take out γ which multiplies the expectation (since they are equal for both terms).

At the very end, I do the maximum of all the possible actions and since $\gamma \in [0,1]$ gets elevated to k (which is the number of times I did this iteration), this goes to zero (since we are in an Infinite Horizon setting), proving that the difference between $|V(s) - V^*(s)|$ is indeed 0.