EE 2001 - DIGITAL SYSTEMS

1/16/2018

Note Title

out conversion between Objective: different number systems Real world signals are andoy in nature Wtoth Store Proceny Discrete h errors; more enform Hesia-D Birary × 2 4 binay → Hexa ÷ 2 (left) + 16 (left) Decinal x2 (81914) x 16 (57 14)

			11x163+6x16+5x16+15
Binary	Decimel	Hexa-D	1
0001		ı	(BLSF)
<i>∞</i> 19		2	= (46,687)
		3	- (+ 0, 03 ·) 10
		4	
		6	
		7	
		8	
		9	
	10	٨	
	11	B	
	12	c	
	13	D	
	14	<u> </u>	
1111	15	٤	

Lo: Carry out calculations involving signed binary

How de we sepresent signed numbers?

1 Byte -> 8 bits

Complementary

+20 -> 00010100 +++++++ Toggle 15 complent -> 11101011 (-20)

25 complent 3 11101100

Extra sign bit

5.9~

	Decimal	Sign 4	Signed 15 complements	Signed 25 complement	•
	<i>523.40.</i>	i againe	15 complement	2s complement	
	+ 3	0011	00 11	00 11	
	+2	0010	→ 00 10	→ 0010	
	+1	0001	→ 000 I	→ 000 ₁	
	•	0000	→ 0000	→ 000o	
O	- 0	1000	111	_	
	_ (1001	1110	1111	
	- 2	1010	1101	[[10	
	-3	1011	1100	101	
	-4	(1)100	(10 H	0100	

19/1/18

BOOLEAN ALGEBRA

Mathematical method met simplify circuits onlying primarily on Boolean algebra

JL	J	x .y	* +3	х	x'	
0	•	0		0	1	
0	1	0	l	l	o	
	0	0	1		NoT	
		1	1	_	_>	
OR						

Post of the oren

Post. 2 x+0 = x

X. | = x

Post. 5 (Iverse)

ンナン こし

x. x' = 0

Theorem 1

x+x = x

x.x = x ン・ソニ メッナ ロ

Theoren 2

x+1=1

x.0 = 0

= x (x+x')

ر عدد+عدد ک

Theorem 3 (x') = x
(Inolution)

= X.1 = XL

Post. 3, Commeting x+y=y+x

x4 = 4x

Th. 4 (Associative)

2+(4+2)=(2+4)+2

عربر ع = (عد الم ع

My2)

Post. 4 (Distribution)

x(4+2) = 24+x2

>c+ yz = (>c+) (>c+z)

Th. 5 (De Morgan)

(x+y)' = x'y'

(xy) = x'+y'

Th. 6 (Abrosption) set sky = se

2(3c+y) = 2

(b)
$$xy + x'z + yz = xy + x'z + yz(x+x')$$

= $xy + xyz + x'z + x'yz$
= $xy + x'z$

$$F'_{1} = (x'yz' + x'y'z)$$
 $F'_{2} = (x'yz' + x'y'z)$
 $F'_{3} = (x + y' + z)$
 $F'_{4} = (x + y' + z)$
 $F'_{5} = (x'yz' + x'y'z)$
 $F'_{5} = (x'yz' + x'y'z)$

22/1/19

LO: Express a Boolean function as Sum of Products/
Minterms

Or Product of Sums/Maxterms & Dud

* Consider Boolean function depending on 3 variables

(x, y, z)

			•	Product yielding	sum yielang
x	J	Z		Minterm	Marcterna
0	0	0		oc'y'z' (M.)	x+y+z (M)
0	0	1	1	sc' y' Z (m,)	x+y+2' (M,)
0	ı	0	0	se' y z' (m ₂)	x+y'+2 [M2]
0	ſ	l	0	אי ץ ב	oc + y' + z'
1	0	9	0	اربن کا .	x'+y+2:
J	0	١	0	x 7' ~ .	ヹ'+y+z' ,
t	ţ	O	0	oly Z'	x' + y' + z
ı	(1	0	ol y z	z'+j'+ z'

$$f_z = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

$$f_1' = (x+y+z').(x'+y+z).(x'+y'+z') = M_1M_4M_7$$

$$A = A(B+B') = AB+AB'$$

Can Nos be proprehed in maxterns?

$$F = (F')' = (20, 2, 3)' = (m_0 + m_2 + m_3)'$$

$$= (M_0 + M_2 + M_3)'$$

$$= (M_0 + M_2 + M_3)'$$

$$= (M_0 + M_2 + M_3)'$$

Lo: Gate-level Minimization uing Karnayh na p 3 - variable Bookean function (A, B, c) F= 2(3,4,6,7) >ABC+ABC = Bc(A+A)AB'C' AB'C ABC (ABC')
(4) (5) (7) (6) F= BC + AC' F= 2 (0,2,4,5,6) A 00 01 F= AB' +Bc'+Bc' = B'(A+c')+Bc'

3 val
$$|x|^{-map}$$

3 of $|x|^{-map}$

3 of $|x|^{-map}$

2 of $|x|^{-map}$

2 square $|x|^{-map}$

2 square $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 square $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

4 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

4 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

2 $|x|^{-map}$

3 $|x|^{-map}$

4 $|x|^{-map}$

6 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-map}$

1 $|x|^{-ma$

$$F(x,y,z) = Z(1,2,5,6,7)$$

Simplify through (a) Sum of products (Minterm)

(b) Product of sums (Maxterns)

 $x = x^{2} = x^{2} + x^{2} + y^{2} = x^{2} + x^{2} + x^{2} + y^{2} = x^{2} + x^{2} + x^{2} + x^{2} = x^{2} + x^{2} + x^{2} + x^{2} = x^{2} = x^{2} + x^{2} + x^{2} + x^{2} = x^{2} = x^{2} = x^{2} + x^{2} + x^{2} = x^{2}$

Prime implicant -> product term obtained by combining
. Me mair. possible number of adj squares

- . Procedure: (1) Identify essential prime implicants
 - 2) Guer the senaining minterns
 - 3) Evene that there are no redundant terms

Don't care conditions.

* Some applications do not we all 16 4-6:t combinations

=> don't care conditions

3) can be used as 0 or 1 conveniently

$$F = \underbrace{Z(1, 3, 7, 11, 15)}$$

$$A = \underbrace{Z(0, 2, 5)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

$$A = \underbrace{Z(0, 1, 3, 4, 6, 9, 10, 11)}$$

5/2/17

NAND/NOR Inglementation:

- (1) Obtain a simplified Boolean function
- (2) Convert the function to NAND/NOR Rogic

$$F = \left[\left(A + B \right) \left(C + D \right) \in \right]' = \left(A + B \right)' + \left(C + D \right)' + \left(C' +$$

In penard,

AND-NOR GIN NAND-AND -> SOP

OR-NAND (67) NOR-OR -> POS

OR-NAND

AND - NOR

NOR-OR

MAND-AND

f = (f')' = (z + x'y + xy')' = (xy').(xy'z')

$$F = x'y'z' + 3Lyz'$$

 $= \left[\underbrace{(\mathcal{L} + \mathbf{y} + \mathbf{z})} \cdot (2\mathbf{L}' + \mathbf{y}' + \mathbf{z}) \right]'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{y} + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{y} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})'$ $= (\mathcal{L} + \mathbf{z})' + (\mathcal{L}' + \mathbf{z})' + (\mathcal{L}'$

MAND-AND

Esc-OR hates: Very meful for error letection/correction F = 3L + y = 3Lj + 3L'yX J F Zdertities: X + 0 = X 0 0 0 0 × 🗇 | = x | x + 3L = 0 X D 22 = 1 1 0 x + y' = si' + y = (st + y) F = A D B D C F = A D B D C D D F= AAB

AB CI	00	01	Ιī	10	
00	_O	0	0	0	
1 0		l	1	1	
	0	0	0	Q	
1 1		-			
0	l	1	l	١	
•					

ر ح	>			
AB	ಶಿಂ	01	\ (10
00	0	0	1	1
0 (I	l	0	0
1 1	0	0	(,
10	1		0	0

ری	Ð •	01	11	0	
AB	- 0	. 			
50	0	I	0	1	
Θļ	J	0	ı	0	
11	0	-	0		1
10	l	0	1	ဝ	

Parity Detection/ Correction: At transmitter C= x +y + 2 = P y z Parity (Even) 0 0 , - such that total 0 # 1 13 :1 even P= x + y + z 0

COMBINATIONAL LOGIC CIRCUITS

Design Procedure:

-) From the given spec., # of :nputs loutputs are determined, assign symbol
- 2) Derive he truk table that defines he required relationship between input and output
- 3) Obtain simplified Boolean fine. for each output
- 4) Doaw he logic Diagram & verify functionality

Hall	Ad de	. u	ح ح	—	ے ک
	エヘ	_	Ó w		
	<u> </u>	7	C		S = 2y'+3i'y = 20y
	0	0	0	0	
					z **** s
	0	1	O	J	
					y - 1
	1	0	0	ſ	C = 24
	l	1	ſ	0	

•

= xy + z (x@y)

S=
$$x \oplus y \oplus z$$
 $C = xy + z (x \oplus y)$

HA

HA

 $x \oplus y \oplus z$
 $z = z \oplus z \oplus z$
 $z = z \oplus z$
 $z =$

Reduce delay
$$\Rightarrow$$
 Carry Look Ahead \Rightarrow is Carry Look Ahead \Rightarrow is Carry Look Ahead \Rightarrow is \Rightarrow S_t = P_t \Rightarrow C_t \Rightarrow S_t = P_t \Rightarrow C_t \Rightarrow C_t = A_t B_t \Rightarrow C_t = A_t B_t \Rightarrow C_t = G_t + P_t C_t

Co → input carry

$$C_{1} = G_{0} + P_{0}C_{0} \qquad Carry Look Ahard$$

$$C_{2} = G_{1} + P_{1}C_{1} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}G_{0}$$

$$C_{4} = G_{3} + P_{3}C_{3}$$

=> All carries determined

Similtaneously

Speed gained at No

experse of allticol

hardware

BCD Aller: How to all two decinals? (11) -> (1000) BCD (5), → (50 10 1) BC > C= K+2,2,+2,2, Zz 2 00 01 11 10 0 1

Binary Subtractor

$$(49)_{10} \rightarrow (00110001)_{2} \rightarrow -(49)_{10} \rightarrow (11001111)_{2}$$

$$(29)_{10} \rightarrow (00011101)_{2} \rightarrow -(29)_{10} \rightarrow (1110001)_{2}$$

$$+29 \rightarrow 00011101$$

$$-49 \rightarrow 11001111$$

$$(11101100)_{2} \rightarrow -(00010100)_{2}$$

$$-(20)_{10}$$

4-6:1 have two unsigned binary numbers (A, B) Bz Az B3 A3 A-B M=0(A+9) **B=**0**(48** FA FA FA S-pla-of M=1 (A-8) B+1=B' = $c_3\Theta \zeta_4 S_3$ overflow (a) (1) → over flow $(+70)_{10} \rightarrow (01000110)_{10} \rightarrow (10111010)_{2}$ (+80) 10 -> (01010000) 2 (-80) => (10110000)2.

(+150), (-150), (-150), (-150), (-150), (-150)

Lets comider 4-bit binary numbers → Overflow (1) (0) 1000 4= 5 2 (b) M A B 3) ovefbw + 1001 0 1000 1001 + + (1)0001 (-8), (-7), (-15), (-15), (-15) **-00**--√= 0 1 1100 1000 A > 1100 2(c) =) no overflow $(-4)_{10} (-8)_{1}$ (+4),0 = 0100

Binary Multiplier:

Multiplicand (B) -> B, Bo

Multiplier (A) -> A, A.

A.B. A.B.

A, B, A, B.

A,B, A,B+AB, A,B.

c3 c2 C, C0

⇒

JxK AND gotes

$$B \rightarrow K b:ts$$

(J-1) K-5it adders

Magnitude Comparator:

$$A = A_3 A_2 A_1 A_0$$

$$\Rightarrow \triangleright -$$

$$(A=B) = A_3 = B_3 \times_3 \times_4 = A_t B_t + A_t' B_t' \quad 0 \quad 0 \quad 1$$

$$A_2 = B_2 \times_2 \quad (x_0 x_1 x_2 x_3) = 1 \quad 0 \quad 0$$

$$A_1 = B_1 \times_4 \quad AND \quad qate \quad (11)$$

$$(A > B)$$
 = $A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_2'$

$$(A < B) = A'_3 B_3 + 3 C_3 A'_2 B_2 + X_3 X_2 A'_1 B_1 + X_3 X_2 X_1 A'_0 B_0$$

Decoders:

N coled inputs
$$\rightarrow$$
 2° magne outputs

Typically deployed with ENABLE (0 or i)

Active Active

Encoder:

2° inputs - noutputs

Multipleners:

Tr: - State aate:

Boolean Function Implementation:

$$F(x,y,z) = \sum_{i,j} 1, 2, 6, 7$$

n-variables -> n-1 select bits, 2ⁿ⁻¹ inputs

_>	L	7	Z	F
	0	0	0	0 F=Z
	0	0	1	1
	O	I	ଚ	1 F= 2'
	O	t	. (,	0
	l	Ð	0	0 F=0
	ı	0	t	0
		l	0	1 F=1
	(l	ſ	1, 1, 2,

Contract 2-4 Rine decolor ω / Active HIGH Enable

Le win two such decolors, contract 3x8 decoder

Realize $f(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC}$ $g(A,B,C) = ABC + \overline{ABC} + \overline{ABC}$

A	B	E	D.	D,	$\mathcal{D}_{\mathbf{z}}$	D ₃	
~ ×	×	O	Ð	0	0	0	
0	•	1	ı	0	Ð	9	
O	1	ı	0	1	0	9	
11	0				1		£
	1	1	0	٥	٥	1	

Sequential Circulis

Flop- Flops: 0/8 Comb. flip-flip Negative trigger Positive trigger Edge Triggered D Flip-Flop: (Negative trigger) D Latch DLtdn (slave) when clx > 0, Q > Y (Muber) En cak+1, Y+D

Clock

clk > 0, Q > Y=D

LO: Analyze clocked segmential circuits Firste State Machines

Ex: Jic Flip-flop ckb.

Present State	Input	Next State A B	Flig-flig inputs (=8) (Bx') (x') (A(P)) JA KA JB KB
A B	~	A B	JA NA JE B
<u>(6)</u> 0	0	0 1	0 0 1 0
0 0	1	0 0	0 0 0 1
			· ·
0 1	0	1 1	1 1 1 0 .
0 (1	1 0	1 0 0 1
10	0	1 1	0 0 1 1
1 0	l	1 0	0 0 0 0
	0	0 0	
	1	1 1	1 0 0 0
			\.
	<u> </u>	0	
Kel	Cook		
	(00)		
	0		0
		S IX	\overrightarrow{a}
	(01)	1) stal

Design of Sequential Circuits ving flip-flips: Present Input Newt Output
AB 34 AB Y Da = Ax+Bx Do = Ax+Bx y=AB

Shift Register

Copying contents of one 4-bit shift register to another

	Shift	<u> </u>	Registe	/ A	Shif	Ree	:ste-	B	
	·		•		·				
Initial.	1	0	١	1	0	0	(0	
After 7,	,	•	/	N.		0	0	,	
715 V	l	1	0-	l	- ,				
After 72		1	1	0	1	1	0	0	
•									
After 3	0	1	1	1	Đ	Ì	I	0	
ብ ሌ		0	1	1		0	ı	7	
4	•	_			·				

Universal Shift Register:

9/3/18 Serial Adders:

Need to load two broamy numbers (4-6:t) mough a shift register and store the sun in the other shift register.

Serial Se B
$$\frac{3}{1}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{$

State Table

Present State	Zook,	Neut State	SwM	Flip-flap inputs
Q	ىد ح	Q	ے	Jo Ka
0	0 0	0	0	o x
0	0 1	0	1	o ×
0	1 0	0		0 ×
0	()	l	0	ı ×
	0 0	0		x 1
ı	0 1	1	0	x 0
(1 0	1	0	× 0
	1 1	1)	× o

Counters:

Ripple (Flip-flop transitions

Binary Counter

Synchronous (clock is directly applied

for all he flipfless)

ı

12/3/18 Lo: Design synchronous counters using flip-flops Escample: Synchronan combe uny JK fly-flop COUNT Q(1+1) J K ENAGLE 0 (a/t) 0 0 Ex: 0 111 toggled when 1 000 laurer fills COUNTER UP - A3 A2 A, A° (Dony Est: 0100 Higher bits 0011 are bygled when for COUNTER bils are CILIK (+ve or -ve triggered) UP/DOWN COUNTER:

BCD Counter: (7 flip-flog)

	Proj	ent	Sta	t e	^	Jent	S tat	L	Output	FQ.6	flor	: ^ }	mp	
	A3	A	A,	A _o	/	1 ₃ A ₂	A	A	9	TAS	TAZ	·TA	Tho	
									0	_		_	•	
0	0	0	9	0	•	0 0	9	Î	0	0	0	0		
•		•							· · · · · · · · · · · · · · · · · · ·					
· 9		·.	0	,	4	o 0	٥	0	· 	-	Ð	0	1	
٦	ľ	-		•					•	•				
	7			7	AI =	A' A	_		$T_{A2} = A_1 A_2$		A2 = /	A, A	+ A A A	Ð
	(A _o =	· (1,	Aı	'.3	•		h2 1 3			<u>J</u>		
									y = A, A.					

Johnson Counter:

K 6:ts -> 21K d:st.y~ shake

	$C_0 \sim C_0 \sim J_0$	
Seg #	Fleffer ofes	AND gate
	0 0 0 0	A'E'
2	1000	A 6'
3	1100	8 c'
4	1 1 1 0	د 3'
5	1 1 (1	AE
6	0 1 1 1	A'B
7	0 0 1 1	B'د
8	0 0 0 1	ے' 3

Electrically Example · Rom -> Hard-wired trum take / look-p table (Elber W) Addren Multiplering * Decoder w/ K inpub haddren 2 words -> 2 AND gates w/ K inputs per gate * Two-knewwood addressing - Coincident Decolog 1x words 1024 AND > 10 bit w/ 10 ryme addrewy 2) aldrewy (> 64 AND 4 5 inputs

SRAM

DRAM

Flifflop

toanistre + Capacity

6 toanistres

4x more denty

3 4x more capacity

4x Memory

3 4x Ren cost

Addren

multipleary

Lower power consumption

Read only Menny (ROM)

-> Only READ

$$A_5 = \angle (1, 2, \dots, 31)$$

Rom > mintern generater

(kook...p table)

 I_4 I_3 I_2 I_4 I_5 A_7 A_8 A_9 A_9

•

Escaple

to accept a 3-5it number and output a binary number ceptal to square of the input number

1	. muls			Decimb					
A	A,	A_	B	84	Вз	B	В,	B	
0	0	0	0	0	0	٥	0	0	0
0	O	1	0	9	0	0	ອ	1)
0		0	0	Ð	ව		Ð	၁	4
6			0	0	1	Ð	0	1	q
1	0	0	0		0	0	B	o	14
	. 0	1	0	ſ	l	0	D]	25
•	·	0		0	Ð		B	0	34
		7		1	0	0	٥	1	1 49

Truk Table for Rom

Example Desper a 3-bit counter which counts in the server a $001 \rightarrow 011 \rightarrow 010 \rightarrow 111 \rightarrow 101 \rightarrow 001$.

		Pres	ent SI	iate		Nex	t st.	te		Ç	-D.p-F	ره م	put	'	
		Q ₂	Q,	Q,		Q	Q,	ଏ			• •			J, K,	
		0	0							×	×	Х	*	××	
	hured states	O	0	1		0	1	1		0	×	J	X	X O	
V	· rob	0	1	0		l	(0		J	×	×	Ð	x Q	
9	المال	Ō		J		0		0		0	×	×	Ð	χı	
		T	D	อ						×	×	×	×	××	
			Ð)		0	0	1		×		0	Х	X o	
			1	o		t	1	1		×	0	×	0	Ι×	
			1			l	0			X	0	X	1	O K	
	- 1						ion;to	•			<u>. 1</u>				
	Touk		J K	- 6	2(++1)	- (Chle	(Q(t)	Q (t-		J K	_		
	-Cabler	•	0 6	,	Q(t)		صبت		0	→ 0		X			
			0 1		0				0	→ (1	X			
			(t				Ι.	→ 0	X	1			
			1	, }	Q'(t)				, .	->	×	0			
	•		•						•			-	•	•	

•

•

$$J_{\bullet} = Q_{2}$$
 $K_{\bullet} = \overline{Q}_{2}Q$

Programmable Logic Devices:

•

for
$$F_1 = AB' + Ac + A'Bc'$$
 $A = AB' + Ac + A'Bc'$
 $A = AB' + Ac + A'Bc'$
 $AB = AB' + Ac + Bc'$
 $AB = AB' +$

Size of PLA # of inputs (n) -> buffer/invertiers of 21x K connections between

of product (K) -> AND or many

term

of outputs (M) -> OR

of outputs (M) -> OR

AND & DR away m concitors allocated w/ Typical -> 16, 45, 8 ile AND o/e $f_1 = \{ (0, 1, 2, 4) \}$ $f_2 = \{ (0, 5, 6, 7) \}$ F = AB+AC+ A'B'c'

Pol.	工	put	7	Outp	دالمد
Term	A	'ဇ	C	F,(c)	f_(r)
AB	1	1		l	1
AL	1	_	,	l	1
Bc	_	l	1		+.
A'B'c'	0	0	0	-	1

Programmable Array Logic (PAL):

- Programmable AND array + fixed OK array

$$\omega = \angle (2, 12, 13)$$

$$x = \angle (7, 8, 9, 10, 11, 12, 13, 14, 15)$$

$$y = \angle (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$$

After
$$\omega = ABc' + A'B' \subset D'$$
 $S:M^{D} \cap M^{D}$
 $X = A + B \subset D$
 $X = A'B + CD + B'D'$
 $X = ABc' + A'B' \subset D' + Ac'D' + A'B' \subset D$
 $X = ABc' + A'B' \subset D' + A'B' \subset D$

. Postud Tern	AND A B	c D m	Outputs
	()	0	$\omega = ABC' + A'B'CD'$
2	0 0	1 0 -	
<u> </u>			y.
5			
			7

**.

1-bit Full adder ving 3 WOE AND-OR PAL

Touth Table

x 1 + x'y	×	Y	C:\	NUZ	Cost	
	0	0	0	0	0	
SUM = X DY D Cin	0	Ð			0	
•	0		0	1	0	
= (x@7) Cin	0	1	<u> </u>	0		
+ (x @ y) 'C:~		0	0	ı	0	
	(0	1	0	1	
Cour = Cin (×€1)	1	1	0	0	1	
"+×Y			l		l	

2.6it Magnibel comparator wing 3 WIDE AND-OR PAL

13/4/18 LO: Segnent: I PAL/PLA Design

4

Fir Darign 3-bit UP counter which counts when input = 1 in same state when input = 0 wins sequential PA Present State Input Next State $\mathcal{Q}_{2}^{\dagger}$ $\mathcal{Q}_{1}^{\dagger}$ $\mathcal{Q}_{2}^{\dagger}$ Q Q . Q 0 0 0 0 0 0 $Q_2^+ = Q_2 Q_0^+ + Q_2 Q_1^+$ 0 + 9, 2,+ 8, 6, 8, 2 0 0 0, = 0, 0, + 0, x + 0,00 × 0 0 Q Qo = Qo'x+ Qox'

Esti Design 1101 Sequence detection ung PAL

SPLD -> Sequented (Single) Programmable Logic
Devices

CPLD -> Complex Prog. Logic Derice

FPGA

ASMD Chart Design Example:

Datapah unit consiste of two J-K fly-flops E&F one 4-bit counter A3.A2.A, A3 A signal START initiates the systemis operation by clearing he counter A and flip-flop f At each subsequent about pulse, the courter is incremented by 1 unitil he speration stops Counter bits Az and Az determine he segmenan l'operation. -> IP A=0. E is cleared to 0 and the court continue If $A_2 = 1$, E is set to 1; then if $A_3 = 0$ could antinue ounter stops on next class place

					Outputs		
	Ps		Inp	26		Set-F Set-F incr.Af	
	Sombol	G, G.	Start	A ₂ A ₃	a,t	4	いた。
_		0 0	0	××	0	0	0 0 0 0
	S_:dle	၀ ဝ	1	× ×	0	1	00010
_							
		0 1	×	0 X	0	1	0 1 0 0 1
	5-1	0 1	×	1 0	0	1	10001
		0 (×	, , ,	1		10001
-	_		_			. ' _	
	C 2	1	•	x y	0	0	00100
	5-2		×	X X			
)			
						•	

Agyndmenous Sequential circuits.

Race Conditions

[0

Non-critical rece condition

$$Y = (x,y)' x_{2}$$

$$= (x,y)' x_{2}$$

$$= (x,y)' x_{2}$$

$$= x'_{1}x_{2} + y'_{2}x_{2}$$

$$= x'_{1}x_{2} + y'_{2}x_{2}$$

$$= y \rightarrow \text{stable state}$$

R	
Y= Q	
5 72	U
	ε
V (6.)'. 0	0
Y= ((S+y) + R)	1

Q Q'

	SR	,				
ч	> ^	00	01	11	10	$\Upsilon = (S+\gamma)R' = SR'+\gamma R'$
7				2		
	0	9	0	0	-	C:tico
	1	(1)	0	0		rece => Needs to be avoided
	l		,			
				T		SR = 0
			7	r ca	_ / /	→ 00

Analysis of asynchronous say. Circuit w/ SR Latch:

I Final state goes to 01 inteal of 00

Implementation Example.

$$S = \chi_1 \chi_2^1$$

Excitation table

y -	→ Y	SR		
0	. 0	0	×	
Ð	1	1	0	
	0	0	-1	
1	ı	X	0	