4 Линейные функционалы на нормированных пространствах

Пусть X – нормированное пространство. Заметим, что линейный функционал f, заданный на X, является частным случаем линейного оператора, действующего из X в $Y=\mathbb{R}$ или в $Y=\mathbb{C}$ (в зависимости от того, вещественно или комплексно пространство X). Поэтому для функционала f определены понятия непрерывности и ограниченности, введенные в параграфе 1.

Линейный функционал f ограничен тогда и только тогда, когда конечна его норма

$$||f|| = \sup_{\|x\|=1} |f(x)| = \sup_{x \neq 0} \frac{|f(x)|}{\|x\|}.$$

Заметим, что из определения нормы следует, что

$$|f(x)| \leqslant ||f|| ||x|| \quad \forall x \in X.$$

Понятию нормы линейного функционала можно дать простую геометрическую интерпретацию. Напомним, что каждому ненулевому линейному функционалу можно сопоставить гиперплоскость $M = \{x \in X \mid f(x) = 1\}$.

Найдем расстояние $d=\inf_{x\in M}\|x\|$ от этой гиперплоскости до точки x=0 в предположении, что f – ограниченный функционал.

Так как $|f(x)| \leq ||f|||x||$, то для $x \in M = \{f(x) = 1\}$ имеем

$$||x|| \geqslant \frac{1}{||f||} \Rightarrow d \geqslant \frac{1}{||f||}.$$

С другой стороны, в силу определения нормы функционала для всякого $\varepsilon > 0$ существует x_{ε} такой, что $\frac{|f(x_{\varepsilon})|}{\|x_{\varepsilon}\|} \geqslant \|f\| - \varepsilon$. Взяв $y_{\varepsilon} = \frac{1}{f(x_{\varepsilon})} x_{\varepsilon}$, получим

$$f(y_{\varepsilon}) = 1$$
 и $||y_{\varepsilon}|| \leqslant \frac{1}{||f|| - \varepsilon}$.

Отсюда

$$d = \inf_{f(x)=1} ||x|| \leqslant \frac{1}{||f|| - \varepsilon} \Rightarrow d \leqslant \frac{1}{||f||}.$$

Таким образом, норма нетривиального функционала f имеет простую геометрическую интерпретацию: $\|f\|=\frac{1}{d}$, где d – это расстояние от точки x=0 до гиперплоскости $M=\{x\in X\mid f(x)=1\}.$

Теорема Хана-Банаха в нормированных пространствах.

Теорема 4.1. (Теорема Хана - Банаха в нормированных пространствах.) Пусть f_0 - линейный ограниченный функционал, заданный на линейном многообразии $L \subset X$. Тогда существует продолжение f функционала f_0 на X такое, что $||f|| = ||f_0||_{na \ L}$.

Доказательство. Положим $k = ||f_0||_{\text{на } L}$ и p(x) = k||x||. Ясно, что

$$|f_0(x)| \leqslant p(x)$$
 на L

и p(x) – однородно-выпуклый функционал. Следовательно в силу теоремы Хана-Банаха для линейных пространств существует продолжение f функционала f_0 на X такое, что

$$|f(x)| \le p(x) = k||x|| \quad \forall x \in X.$$

Отсюда

$$\frac{|f(x)|}{\|x\|} \leqslant k = \|f_0\|_{\text{Ha }L} \Rightarrow \|f\| = \sup_{x \in X} \frac{|f(x)|}{\|x\|} \leqslant \|f_0\|_{\text{Ha }L}.$$

Так как $f(x) = f_0(x)$ на L, то

$$||f|| = \sup_{x \in X} \frac{|f(x)|}{||x||} \geqslant \sup_{x \in L} \frac{|f(x)|}{||x||} = ||f_0||_{\text{IIA }L} \Rightarrow ||f|| = ||f_0||_{\text{IIA }L}.$$

Теорема доказана.

Следствие 4.1. Для всякого ненулевого элемента $x_0 \in X$ существует заданный на X линейный непрерывный функционал f такой, что

$$||f|| = 1$$
 и $f(x_0) = ||x_0||_X$.

Доказательство. Определим на $L=\mathrm{span}\{x_0\}$ линейный функционал f_0 формулой $f_0(\alpha x_0)=\alpha\|x_0\|.$

Ясно, что

$$||f_0||_{\text{Ha }L} = \sup_{\alpha x_0, \ \alpha \neq 0} \frac{|\alpha| ||x_0||}{||\alpha x_0||} = 1.$$

В силу теоремы Хана-Банаха существует продолжение f функционала f_0 на пространство X такое, что ||f||=1.

Следствие доказано.

Следствие 4.2. Пусть L – линейное многообразие в X и элемент $x_0 \in X$ расположен на расстоянии d>0 от L. Тогда существует заданный на X линейный непрерывный функционал f такой, что:

- 1) $f(x) = 0 \quad \forall x \in L;$
- 2) $f(x_0) = 1$;
- 3) ||f|| = 1/d.

Доказательство. Возьмем $L_0 = L + \mathrm{span}\{x_0\}$. Для $x \in L_0$ имеем

$$x = y + \alpha x_0, \quad y \in L.$$

Положим $f_0(x) = \alpha$. Ясно, что $f_0(x) = 0$ для всех $x \in L$. Кроме того, $f_0(x_0) = 1$. Далее,

$$|f_0(x)| = |\alpha| = \frac{||x||}{||y/\alpha + x_0||} \le \frac{||x||}{d},$$

так как

$$d = \inf_{z \in L} ||x_0 - z|| \le ||x_0 - y/(-\alpha)||.$$

Следовательно f_0 – непрерывный функционал.

Заметим, что d – расстояние от гиперплоскости $L+x_0=\{x\in L_0\mid f_0(x)=1\}.$ Поэтому $\|f_0\|_{\mathrm{Ha}\ L_0}=1/d.$

В силу теоремы Хана-Банаха существует продолжение f функционала f_0 на X такое, что ||f|| = 1/d.

Следствие доказано.

Опр. Совокупность линейных непрерывных функционалов, заданных на пространстве X и равных нулю на подпространстве L, называется aннулятором этого подпространства и обозначается L^{\perp} .

Следствие 4.3. (Лемма об аннуляторе) Для всякого замкнутого собственного подпространства L в X существует нетривиальный линейный непрерывный функционал f такой, что

$$f(x) = 0 \quad \forall \, x \in L.$$

Доказательство. Достаточно заметить, что из замкнутости L и условия $L \neq X$ следует существование $x_0 \in X, x_0 \notin L$ и воспользоваться предыдущим следствием.

Отделимость выпуклых множеств.

В следующих двух теоремах X – вещественное нормированное пространство.

Теорема 4.2. (Теорема об отделимости выпуклых множеств)

Пусть M и N – непересекающиеся выпуклые множества в X, причем int $M \neq \emptyset$. Тогда существует нетривиальный линейный непрерывный функционал, разделяющий M и N.

Доказательство. Так как int $M \subset M$, то в силу теоремы об отделимости выпуклых множеств в вещественных линейных пространствах существует нетривиальный линейный функционал f, разделяющий множества M и N.

Докажем, что f – ограниченный функционал. Действительно,

$$\sup_{x \in M} f(x) \leqslant \inf_{y \in N} f(y).$$

Взяв $x_0 \in \text{int } M$, получим

$$f(x) \leqslant c_0 \quad \forall \, x \in \overline{B}_{\varepsilon}(x_0)$$

Отсюда для произвольного $x \in X$, ||x|| = 1 имеем

$$f(x) = \frac{1}{\varepsilon} (f(x_0 + \varepsilon x) - f(x_0)) \leqslant \frac{1}{\varepsilon} (c_0 - f(x_0)) = C.$$

Таким образом,

$$\sup_{\|x\|=1} f(x) \leqslant C \Rightarrow \sup_{\|x\|=1} |f(x)| \leqslant C \Rightarrow \|f\| \leqslant C.$$

Теорема доказана.

Теорема 4.3. (Теорема Мазура) Пусть A – замкнутое выпуклое мноэкество в X и $x_0 \in X \setminus A$. Тогда существует линейный непрерывный функционал, строго разделяющий A и $\{x_0\}$.

Доказательство. Положим N=A и $M=\overline{B}_{\varepsilon}(x_0)$, где ε достаточно мало. В силу теоремы 4.2 существует нетривиальный линейный непрерывный функционал такой, что

$$\sup_{x \in \overline{B}_{\varepsilon}(x_0)} f(x) \leqslant \inf_{y \in A} f(y).$$

Покажем, что

$$f(x_0) < \inf_{y \in A} f(y).$$

Действительно, так как функционал f нетривиальный, то существует элемент $e \in X, \|e\| = 1$ и f(e) > 0. Тогда

$$f(x_0) < f(x_0) + \varepsilon f(e) = f(x_0 + \varepsilon e) \leqslant \sup_{x \in \overline{B}_{\varepsilon}(x_0)} f(x) \leqslant \inf_{y \in A} f(y).$$

Теорема доказана.