SFU



# PROJECT REPORT # 4

# ASSEMBLY LINE SPRAY PAINTER 6 DOF – SERIAL MANIPULATOR

Student Name: - Syed Imad Azeem Rizvi

Student Id: - 301297227

Report due date: 07th Dec' 20

MSE – 429 ADVANCED KINEMATICS FOR ROBOTICS SYSTEMS SCHOOL OF ENGINEERING SCIENCE SIMON FRASER UNIVERSITY

# Table of Contents

| Abstract                                 | 4  |
|------------------------------------------|----|
| Introduction                             | 5  |
| Design Specification                     | 5  |
| Inverse Kinematics                       | 7  |
| Kinematic Reconstruction Path Generation | 13 |
| Workspace Analysis                       | 16 |
| Path Generation                          | 16 |
| Trajectory Generation                    | 17 |
| Jacobian                                 | 21 |
| Singularity analysis                     | 22 |
| Link Modeling                            | 23 |
| Base                                     | 23 |
| Prismatic Joint                          | 24 |
| Revolute Joint 2                         | 24 |
| Revolute Joint 3                         | 24 |
| Revolute Joint 4                         | 25 |
| Revolute Joint 5                         | 25 |
| Revolute Joint 6                         | 25 |
| End Effector                             | 26 |
| Dynamics                                 | 26 |
| Simulation                               | 28 |
| Conclusion                               | 32 |
| References                               | 33 |
| Appendix                                 | 33 |
| 1. my_path                               | 33 |
| 2. P_xyz_abg                             | 35 |
| 3. Newton-Euler Recursive formulation    | 36 |
| 4. My_jacobian_symbolic                  | 37 |
| 5. Inertia_tensor                        | 40 |

# Table of Figures

| Figure 1 SolidWorks Layout            | 5 |
|---------------------------------------|---|
| Figure 2 MATLAB Layout                |   |
|                                       |   |
|                                       |   |
| Table of Tables                       |   |
| Table 1 Joints Information            | 5 |
| Table 2 Denavit-Hartenberg Parameters | 6 |

#### **Abstract**

This report is the combination of all 4 projects. It constitutes design specification and joints/links constraints of serial robot manipulators, Inverse Kinematics calculations with focus on kinematic reconstruction of the model, as well as Dynamic analysis of the manipulator. Based on rigid body conventions of the manipulator a hand calculation is performed to compute the inverse kinematics of the model. The kinematic reconstruction is performed with respect to the global origin of the model. The inverse kinematics is solved with specified path coordinates. A trajectory is generated for the spatial manipulator. The dynamic analysis is also conducted to finalize the report. At the end, conclusions will address the future improvement and recommendations in manipulator design and its application.

## Introduction.

This report is the continuation of the project that requires a kinematic reconstruction and inverse kinematics calculation as well as determining the workspace of the manipulator with path generation.

The fig 1 and fig 2 shows the MATLAB layout and solid works design of the manipulator.



Figure 2 MATLAB Layout

Figure 1 SolidWorks Layout

# **Design Specification**

| Joint | Type      | Constraints                 |
|-------|-----------|-----------------------------|
| 1     | Prismatic | $125 \ mm < P_1 < 775 \ mm$ |
| 2     | Revolute  | 90< θ <sub>2</sub> <270     |
| 3     | Revolute  | $45 < \theta_3 < 225$       |
| 4     | Revolute  | $0 < \theta_4 < 120$        |
| 5     | Revolute  | $0 < \theta_5 < 360$        |
| 6     | Revolute  | $0 < \theta_6 < 360$        |

Table 1 Joints Information

#### D-H Parameter

| i – 1 | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $\theta_i$ | i |
|-------|----------------|-----------|-------|------------|---|
| 0     | 0              | 0         | $d_1$ | 0          | 1 |

| 1 | +90 | 0 | 838.5mm | $\theta_2$ | 2  |
|---|-----|---|---------|------------|----|
| 2 | +90 | 0 | 0       | $\theta_3$ | 3  |
| 3 | -90 | 0 | 972mm   | $	heta_4$  | 4  |
| 4 | -90 | 0 | 0       | $	heta_5$  | 5  |
| 5 | +90 | 0 | 0       | $\theta_6$ | 6  |
| 6 | 0   | 0 | 945 mm  | 0          | ee |

Table 2 Denavit-Hartenberg Parameters

#### **Inverse Kinematics**

The following images show a detail hand calculation of the inverse kinematics for the manipulator.

[ 0, 0, 0, 1]

```
T 02 =
[c2, -s2, 0, 0]
[ 0, 0, -1, -d_2]
[s2, c2, 0, d_1]
[ 0, 0, 0, 1]
T 03 =
[c2*c3, -c2*s3, s2, 0]
[ -s3, -c3, 0, -d_2]
[c3*s2, -s2*s3, -c2, d 1]
[ 0, 0, 0, 1]
T 04 =
[c2*c3*c4 - s2*s4, - c4*s2 - c2*c3*s4, -c2*s3, -c2*d_4*s3]
         -c4*s3,
                            s3*s4, -c3, -d_2 - c3*d_4]
[c2*s4 + c3*c4*s2, c2*c4 - c3*s2*s4, -s2*s3, d_1 - d_4*s2*s3]
[
             0,
                               0, 0,
                                                     11
```



acos  $\theta_2 + b\sin\theta_2 = c$ Squaring on both sides  $a^2 cos^2 \theta_2 + b^2 sin^2 \theta_2 = c^2 - 2ab cos \theta_2 sin \theta_2$   $a^2 (1 - sin^2 \theta_2) + b^2 (1 - cos^2 \theta_2) = c^2 - 2ab cos \theta_2 sin \theta_2$   $a^2 - a^2 sin^2 \theta_2 + b^2 - b^2 cos^2 \theta_2 = c^2 - 2ab cos \theta_2 sin \theta_2$   $a^2 + b^2 - c^2 = (asin \theta_2 + bcos \theta_2)^2$   $a^2 + b^2 - c^2 = (asin \theta_2 + bcos \theta_2)^2$   $a sin \theta_2 + b as \theta_2 = \pm \pi a^2 + b^2 - c^2$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pg'   C2 dy 83<br>Py' = -d2 - C3 dy<br>Pz'   d1 - dy 8253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Py' = -dz - c3 dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [ 12' ] [ a1 - a48253 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P_{y'} = -d_2 - c_3 d_y \rightarrow (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $c_3 = -\frac{(Ry' + d_2)}{du}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100 <del>100</del> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dy .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # $O_2 = alan 2 \left(\frac{1}{4}\sqrt{1-\frac{(R_y'+d_z)^2}{dy^2}}, -\frac{(R_y'+d_z)^2}{dy^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dy^2 dy^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 1 3 1 4 6 1 1 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P_{x'} = c_2 d_4 s_3 \longrightarrow (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{11 c_2 = Px'}{dy s_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dy 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * $O_2 = a t a n 2 \left( + 7 1 - (P_{x'})^2, \frac{P_{x'}}{d_4 s_3} \right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (dus)2 dus2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (17-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P_{z'} = d_1 - d_4 s_2 s_3 \longrightarrow (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rz = 01 -04323 - 7(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A STATE OF THE STA | . 1 0-1 . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * da = P2' + d45253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Kinematic Reconstruction Path Generation

For this section of the report, the links and joints were aligned to be settled on the global origin of the reference frame on the MATLAB, to be animated when the get shape of the manipulator. Each part is to be associated to the reference frame that exerts or enable it to be in motion.

Below mention are the STL files for the project.





The picture above shows the kinematic reconstruction of the manipulator.

In the code, the path generation have 240 points in it and it moves on a continuous path.

## Workspace Analysis

For workspace model, kindly run the code attached in the zip file.



The hole in the middle of the workspace is due the length of fourth joint and translation of prismatic joint.

#### Path Generation

The path generation for the spray manipulator is paint 5 at 4 locations each. Therefore 20 circles in total.

$$plot_n = d_2 + d_4 * \cos(\theta_n)$$

The 1<sup>st</sup> set of 5 circles are plot at n=1,  $\theta_1 = 90$ Plot = 838.5 + 972\*cos(90) = 838.5 mm

The 2<sup>nd</sup> set of 5 circles are plot at n=2,  $\theta_2 = 60$ Plot = 838.5 + 972 \* cos (60) = 1324.5 mm

The 3<sup>rd</sup> set of 5 circles are plot at n=3,  $\theta_3 = 30$ Plot = 838.5 + 972 \* cos (90) = 1680.3 mm

The 4<sup>th</sup> set of 5 circles are plot at n=4,  $\theta_4 = 0$ Plot = 838.5 + 972 \* cos (90) = 1810.5 mm

By using the function my\_path & P\_xyz\_abg, the values of x, y, z, and alpha, beta, and gamma.

The my\_path function was used to compute the homogenous transforms for the matrices on the desired set of the values for joints. P\_xyz\_abg function was used to compute their respective x, y, z, and alpha, beta, and gamma for the end effector. The functions are provided in the appendix section below.

# **Trajectory Generation**

The following figure show the trajectory generation of the manipulator.



The above figure shows 4 circles (5 circles in each circle) in 3d. The XZ plane shows the 4 circles with the blue dot being the 4<sup>th</sup> one.

Below are the plots for each joints displacement, velocity and acceleration.









The below plot shows all the joint displacement all together.



The below plot shows all the joints velocities.



The below plot shows all the joints acceleration.



#### Jacobian

The jacobian was computed with the symbolic computation on matlab. The function in the appendix my\_jacobian\_symbolic computes all the symbolic variables.

```
A =
[\cos(th 2)*(d 4 + d 2*\cos(th 3)),
                                                        0, -d 4]
                                                         0,
          -d 2*cos(th_2)*sin(th_3),
                                                                0]
[\sin(\tanh 2)*(d 2 + d 4*\cos(\tanh 3)), d 4*\sin(\tanh 3),
                                                                0]
A det =
d 2*d 4^2*cos(th 2)*sin(th 3)^2
C =
[0, sin(th 4), cos(th 4)*sin(th 5)]
                                 -cos(th 5)]
[1,
[0, \cos(th 4), -\sin(th 4)*\sin(th 5)]
C \det =
sin(th 5)
J_3w =
[\cos(th_2)*(d_4 + d_2*\cos(th_3)),

[-d_2*\cos(th_2)*\sin(th_3),
                                 0, -d_4, 0,
                                                                  0]
                               0, 0,0,
                                                0,
                                                                  0]
[\sin(th_2)*(d_2 + d_4*\cos(th_3)), d_4*\sin(th_3), 0, 0,
                                                Ο,
                      0, sin(th_3), 0, 0, sin(th_4), cos(th_4)*sin(th_5)]
                           cos(th_3), 0, 1, 0, -cos(th_5)]
[
                       0,
                                  0,
                                     1, 0, cos(th_4), -sin(th_4)*sin(th_5)]
                       0,
```

### Singularity analysis

$$|A_{det}| = d_2 * d_4^2 * \cos(\theta_2) * \sin^2(\theta_3)$$

Therefore  $|A_{det}|=0$  ,  $\theta_2=90$  , 270 ,  $\theta_3=0$  , 180 , 360

$$|C_{det}| = \sin(\theta_5)$$

Therefore  $|C_{det}|=0$  ,  $\theta_5=0,180,360$ 

Hence 
$$|J_{det}|=|A_{det}|*|\mathcal{C}_{det}|=0,~\theta_2=90\,,270\,,$$
  $\theta_3=0,180,360,~\theta_5=0,180,360$ 

The below plot is for inverse velocity.



The below plot is for forward velocity.



# Link Modeling

The following figure shows the inertia tensor for the manipulator parts. The function for the inertia tensor is in the appendix.

#### Base



```
Density = 0.0027 grams per cubic millimeter

Mass = 392900.6250 grams

Volume = 145518750.0000 cubic millimeters

Surface area = 2909006.6906 square millimeters

Center of mass: ( millimeters )

X = 0.0000

Y = -2.9020
Z = -213.1061
```

```
| Moments of inertia: (grams * square millimeters )
| Taken at the output coordinate system. | Ixx = 61017762234.37 | Ixy = 0.00 | Ixz = 0.00 | Iyx = 0.00 | Iyx = 0.00 | Iyx = 0.00 | Iyz = -513090703.13 | Izx = 0.00 | Izy = -513090703.13 | Izz = 18153025901.37 |
```

#### **Prismatic Joint**



```
Mass = 24585.53 grams

Volume = 9105751.16 cubic millimeters

Surface area = 328092.17 square millimeters

Center of mass: ( millimeters )

X = -0.32

Y = 11.61
Z = 0.00
```

Moments of inertia: ( grams \* square millimeters ) Taken at the output coordinate system.

| Ixx = 255250944.45 | Ixy = -416800.98 | Ixz = 0.00 | Iyx = -416800.98 | Iyz = 0.00 | Izx = 0.00 | Izz = 147359449.68

#### Revolute Joint 2



Mass = 13733.91 grams

Volume = 5086631.81 cubic millimeters

Surface area = 291105.35 square millimeters

Center of mass: ( millimeters )

X = 0.03

Y = 0.06

Z = 429.46

Moments of inertia: ( grams \* square millimeters )
Taken at the output coordinate system.

 lxx = 3376732460.01
 lxy = 17055.59
 lxz = 373203.14

 lyx = 17055.59
 lyy = 3377562192.85
 lyz = 637156.83

 lzx = 373203.14
 lzy = 637156.83
 lzz = 13761348.21

#### Revolute Joint 3



Mass = 11702.10 grams

Volume = 4334109.93 cubic millimeters

Surface area = 365867.98 square millimeters

Center of mass: ( millimeters )

X = 0.04

Y = -262.31

Z = -0.76

Moments of inertia: ( grams \* square millimeters )

Taken at the output coordinate system.

| bxx = 1484193151.37 | bxy = -8768.99 | bxz = -38887.17 |
| byx = -8768.99 | byz = 23920268.41 | byz = -427293.99 |
| bzx = -38887.17 | bzy = -427293.99 | bzz = 1470615861.95

#### Revolute Joint 4



```
Mass = 4283.77 grams
Volume = 1586582.41 cubic millimeters
Surface area = 139712.84 square millimeters
Center of mass: ( millimeters )
    X = 0.00
    Y = 0.07
   Z = 92.17
```

Moments of inertia: ( grams \* square millimeters ) Taken at the output coordinate system.

lxx = 78921407.33 lxy = -1.73Ixz = 3.94lyy = 73833198.42 lyz = 73237.31 lyx = -1.73Izx = 3.94Izz = 9922402.27 Izy = 73237.31

#### Revolute Joint 5



Mass = 4766.31 grams Volume = 1765298.84 cubic millimeters Surface area = 164318.73 square millimeters Center of mass: ( millimeters ) X = -0.10 Y = -44.46 Z = 2.02

Moments of inertia: ( grams \* square millimeters )

Taken at the output coordinate system.

lxy = -5173.52lxx = 44058687.33 Ixz = -41024.40lyy = 12304280.63 lyz = 63021.21 lyx = -5173.52Izx = -41024.40Izy = 63021.21 Izz = 36389912.58

#### Revolute Joint 6



Mass = 5901.84 grams Volume = 2185867.89 cubic millimeters Surface area = 141207.34 square millimeters Center of mass: ( millimeters ) X = 0.00Y = 0.06Z = 445.50

Moments of inertia: ( grams \* square millimeters )

Taken at the output coordinate system. lxy = 0.00lxx = 1286844631.76 1xz = 0.00lyy = 1286855956.51 lzy = 78000.83 lyx = 0.00lyz = 78000.83 Izx = 0.00Izz = 4397544.68

#### **End Effector**



```
Mass = 2922.39 grams

Volume = 1082365.79 cubic millimeters

Surface area = 180161.71 square millimeters

Center of mass: ( millimeters )

X = -0.32

Y = 0.52

Z = -94.50
```

## **Dynamics**

Dynamics analysis was conducted using Newton-Euler Recursive formulation. The outward iteration was computed first and was followed by the Inward Iteration. The code for computation is provided in section3 of the appendix.

Execute the matlab my\_jacobian\_symbolic function in the appendix for the inverse velocity and forward velocity analysis as well as force and moment analysis and homogenous and velocity transformation matrix. The symbolic computation is a long matrix even after being simplified as well.

```
%% Velocity Transformation Matrix
%Position Vector P ref_w->ee
R_06 = T_06(1:3,1:3);
P_6ee = T_6ee(1:3,4);

P_0eew = -R_06*P_6ee;

skew1 = [0 -P_0eew(3,1) P_0eew(2,1)
    P_0eew(3,1) 0 -P_0eew(1,1)
    -P_0eew(2,1) P_0eew(1,1) 0];

Tv = simplify([R_03 skew1*R_03; zeros(3) R_03])
```

#### %% Forward/Inverse Velocity Equations

```
%Forward Velocity
  syms q1 q2 q3 q4 q5 q6
  q = [q1 \ q2 \ q3 \ q4 \ q5 \ q6];
  vel_0ee = simplify(Tv*J_3w*q.')
  %Inverse Velocity
  syms v1 v2 v3 v4 v5 v6
  vel = [v1 \ v2 \ v3 \ v4 \ v5 \ v6];
  q_dot = simplify(inv(Tv)*inv_J_3w*vel.')
%% Force Transformation Matrix
  R_30 = R_03.;
  P_3eew = R_36*P_6ee;
  skew2 = [ 0 -P_3eew(3,1) P_3eew(2,1)
         P_3eew(3,1)
                         0 -P_3eew(1,1)
         -P_3eew(2,1)  P_3eew(1,1)
  Fv = simplify([R_30 zeros(3); skew2*R_30 R_30])
%% Inverse Static Force
  syms f1 f2 f3 m1 m2 m3
  f = [f1 \ f2 \ f3 \ m1 \ m2 \ m3];
  J_3wt = transpose(J_3w);
  torque = simplify(J_3wt*Fv*f.')
```

# Simulation

The following plots shows the simulations of the Dynamic analysis of the manipulator.

The below figure shows the Angular velocities plot against time.



The below figure shows the Angular acceleration plot against time.



The below figure shows the Linear acceleration plot against time.



The below figure shows the Linear acceleration COM plot against time.



The below figure shows the Inertial Force plot against time.



The below figure shows the Inertial Moment plot against time.



The below figure shows the Link Force plot against time.



The below figure shows the Link Moment plot against time.



The below figure shows the Torque plot against time.



#### Conclusion

Working on this whole project report also help in giving out an insight for inverse kinematics, and dynamic analysis that one may need to consider in precise motion control and a better understanding of various kinds of joints and their useability. In conclusion, I would like to say that this design is opened to change as when new parameters are available, for example when implying the trajectory path for the end effector each of the link will move according to it and therefore new design constraint will introduce, as there will be new workspace, that will result in change of SolidWorks design and enhance workspace ability of the manipulator. The re-construction part was a bit time consuming as it requires individual parts in SolidWorks to settle on the global origin of the reference plane, and then maps in such a manner that it joins its link connection or the joint connection that allows it moves in the free space. The inverse kinematics, dynamic analysis coding was challenging, and it gives an insight of how to apply the iterative approach for the end effector.

#### References

- 1. ABB Robotics Manufacturer & Supplier of Industrial Robots. (2020). Retrieved 5 October 2020, from https://new.abb.com/products/robotics
- 2. MSE Lecture Notes Flavio Firmani. September 2020.
- 3. What is a Robotic Manipulator? (2020). Retrieved 6 October 2020, from <a href="https://www.azorobotics.com/Article.aspx?ArticleID=138">https://www.azorobotics.com/Article.aspx?ArticleID=138</a>

# Appendix

These are the provided functions to code and compute the forward kinematics, inverse kinematics, trajectory, jacobian analysis and dynamic analysis of the manipulator.

#### 1. my\_path

```
function path_mat = my_path()
path_mat=zeros(6,240);
for j=1:length(path_mat(1,:))
  if (j>=1 && j<=30)
    path_mat(1,j)=150+10*j;
    path_mat(2,j)=3*j;
    path_mat(3,j)=3*j;
    path_mat(4,j)=0;
    path_mat(5,j)=-3*j;
    path_mat(6,j)=12*j;
    if (path_mat(6,j)>180)
       path_mat(6,j)=12*j-360;
    end
  elseif (j>=31 && j<=60)
    path_mat(1,j)=450;
    path_mat(2,j)=90+12*(j-30);
    if (path_mat(2,j)>180)
       path_mat(2,j)=90+12*(j-30)-360;
    path_mat(3,j)=90;
    path_mat(4,j)=0;
    path_mat(5,j)=-90;
    path_mat(6,j)=0;\%12*(j-30);
  elseif (j>=61 && j<=90)
    path_mat(1,j)=450;
    path_mat(2,j)=90;
```

```
path_mat(3,j)=90-(j-60);
  path_mat(4,j)=0;
  path_mat(5,j)=-90+(j-60);
  path_mat(6,j)=0;
elseif (j>=91 && j<=120)
  path_mat(1,j)=450;
  path_mat(2,j)=90+12*(j-90);
  if (path_mat(2,j)>180)
    path_mat(2,j)=90+12*(j-90)-360;
  end
  path_mat(3,j)=60;
  path_mat(4,j)=0;
  path_mat(5,j)=-60;
  path_mat(6,j)=0;\%12*(j-90);
elseif (j>=121 && j<=150)
  path_mat(1,j)=450;
  path_mat(2,j)=90;
  path_mat(3,j)=60-(j-120);
  path_mat(4,j)=0;
  path_mat(5,j)=-60+(j-120);
  path_mat(6,j)=0;
elseif (j>=151 && j<=180)
  path_mat(1,j)=450;
  path_mat(2,j)=90+12*(j-150);
  if (path\_mat(2,j)>180)
    path_mat(2,j)=90+12*(j-150)-360;
  path_mat(3,j)=30;
  path_mat(4,j)=0;
  path_mat(5,j)=-30;
  path_mat(6,j)=0;%12*(j-150);
elseif (j>=181 && j<=210)
  path_mat(1,j)=450;
  path_mat(2,j)=90;
  path_mat(3,j)=30-(j-180);
  path_mat(4,j)=0;
  path_mat(5,j)=-30+(j-180);
  path_mat(6,j)=0;
else
  path_mat(1,j)=450;
  path_mat(2,j)=90;
  path_mat(3,j)=0;
  path_mat(4,j)=0;
```

```
path_mat(5,j)=0;
    path_mat(6,j)=6*(210-j);
 end
end
    2. P_xyz_abg
D=my_path;
for i=1:length(D(1,:))
  %DH parameters (CHANGE BASED ON THE JOINT VARIABLE)
  T_01 = tmat(alpha0, a0, D(1,i), theta1);
  T_12 = tmat(alpha1, a1, d2, D(2,i));
  T_23 = tmat(alpha2, a2, d3, D(3,i));
  T_34 = tmat(alpha3, a3, d4, D(4,i));
  T_45 = tmat(alpha4, a4, d5, D(5,i));
  T_56 = tmat(alpha5, a5, d6, D(6,i));
  T_6ee = tmat(alpha6, a6, dee, thetaee);
  %Forward Kinematics
  T_02 = T_01*T_12;
  T_03 = T_02*T_23;
  T_04 = T_03*T_34;
  T_05 = T_04*T_45;
  T_06 = T_05*T_56;
  T_0ee = T_06*T_6ee; %Homogeneous Tranforms
  %Position and Rotation matrices of frames
  R_01 = T_01(1:3,1:3); P_01 = T_01(1:3,4);
  R_02 = T_02(1:3,1:3); P_02 = T_02(1:3,4);
  R_03 = T_03(1:3,1:3); P_03 = T_03(1:3,4);
  R_04 = T_04(1:3,1:3); P_04 = T_04(1:3,4);
  R_05 = T_05(1:3,1:3); P_05 = T_05(1:3,4);
  R_06 = T_06(1:3,1:3); P_06 = T_06(1:3,4);
  R_0ee = T_0ee(1:3,1:3); P_0ee = T_0ee(1:3,4);
  % final position
  Px(1,i)=P_06(1,1);
  Py(1,i)=P_06(2,1);
  Pz(1,i)=P_06(3,1);
  r11=R_06(1,1);
  r21=R_06(2,1);
```

```
r31=R_06(3,1);
  r32=R_06(3,2);
  r33=R_06(3,3);
  %beta
  sb = -r31; cb = sqrt(1.00000000000001-sb^2);
  beta(:,i) = [atan2d(sb,cb) atan2d(sb,-cb)];
  %alpha
  sa = r21; ca = r11;
  sa1 = r21/cosd(beta(1,i)); ca1 = r11/cosd(beta(1,i));
  sa2 = r21/cosd(beta(2,i)); ca2 = r11/cosd(beta(2,i));
  alpha(:,i) = [atan2d(sa,ca) \ atan2d(sa,-ca) \ atan2d(sa1,ca1) \ atan2d(sa2,ca2)];
  %gamma
  sg = r32; cg = r33;
  sg1 = r32/cosd(beta(1,i)); cg1 = r33/cosd(beta(1,i));
  sg2 = r32/cosd(beta(2,i)); cg2 = r33/cosd(beta(2,i));
  gamma(:,i)=[atan2d(sg,cg) atan2d(-sg,-cg) atan2d(sg1,cg1) atan2d(sg2,cg2)];
end
```

#### 3. Newton-Euler Recursive formulation

Position=[Px; Py; Pz; alpha; beta; gamma];

```
%Outward iteration
  for j=1:6
    if (j==1) % Prismatic
       ang_v = Rot_t(:,k:3*j)*omega;
       ang_a = Rot_t(:,k:3*j)*omega_dot;
       lin_a =
Rot\_t(:,k:3*j)*(cross(omega\_dot,Pos(:,j))+cross(omega\_cross(omega,Pos(:,j)))+v\_dot)+cross(2*omega,Velocity(j,i)*Z)+Acceleration(j,i)*Z;
    else % Revolute
       ang_v = Rot_t(:,k:3*j)*omega+Velocity(j,i)*Z;
       ang\_a = Rot\_t(:,k:3*j)*omega\_dot+cross(Rot\_t(:,k:3*j)*omega,Velocity(j,i)*Z) + (Acceleration(j,i)*Z);
       lin\_a = Rot\_t(:,k:3*j)*(cross(omega\_dot,Pos(:,j)) + cross(omega,cross(omega,Pos(:,j))) + v\_dot);
    end
    lin\_a\_COM = cross(ang\_a,P\_G(:,j+1)) + cross(ang\_v,cross(ang\_v,P\_G(:,j+1))) + lin\_a;
    F_{inertial} = mass(j+1)*lin_a_COM;
     N_inertial = Inertia(:,k:3*j)*ang_a+cross(ang_v,Inertia(:,k:3*j)*ang_v);
     omega = ang_v;
```

```
omega\_dot = ang\_a;
  v_{dot} = lin_a;
  k=k+3;
end
mat\_ang\_v(:,i) = ang\_v;
mat\_ang\_a(:,i) = ang\_a;
mat\_lin\_a(:,i) = lin\_a;
mat_lin_a_COM(:,i) = lin_a_COM;
mat_F_inertial(:,i) = F_inertial;
mat_N_inertial(:,i) = N_inertial;
k=1;
% Inward Iteration
for m = 6:-1:1
  link_f = mat_F_inertial(:,i)+Rot(:,(3*m)+1:kk)*f_i;
  link\_n = mat\_N\_inertial(:,i) + Rot(:,(3*m) + 1:kk)*m\_i + cross(P\_G(:,m+1),mat\_F\_inertial(:,i)) + cross(Pos(:,m+1),Rot(:,(3*m) + 1:kk)*f\_i);
  if (m==1) % Prismatic
     tau = link_f.'*Z;
  else % Revolute
     tau = link_n.'*Z;
  end
  f_i = link_f;
  m_i = link_n;
  kk = kk - 3;
mat_link_f(:,i) = link_f;
mat_link_n(:,i) = link_n;
mat_tau(:,i) = tau;
kk=21;
```

## 4. My\_jacobian\_symbolic

```
%% Parameters

% 1) Link Lengths (mm)
a_0 = 0; a_3 = 0;
a_1 = 0; a_4 = 0;
a_2 = 0; a_5 = 0;
a_ee = 0;

% 2) Link Twists (deg)
alpha_0 = 0; alpha_3 = -90;
alpha_1 = +90; alpha_4 = +90;
alpha_2 = +90; alpha_5 = +90;
alpha_ee = 0;
```

```
% 3) Link Offsets (mm)
syms d_1 d_2 d_4 d_ee
d_3 = 0;
d_5 = 0;
d_6 = 0;
% 4) Joint Angles (deg)
syms th_2 th_3 th_4 th_5 th_6
th_1 = 0;
th_ee = 0;
%% MATRICES
T_01 = [cos(th_1)]
                                                                           \sin(th_1)*(-1)
                                                                                                                           0
                                                                                                                                                          a_0
      sin(th_1)*cosd(alpha_0) cos(th_1)*cosd(alpha_0) sind(alpha_0)*(-1) d_1*sind(alpha_0)*(-1)
      sin(th\_1)*sind(alpha\_0) cos(th\_1)*sind(alpha\_0) cosd(alpha\_0) \\ \qquad d\_1*cosd(alpha\_0)
T_12 = [\cos(th_2)]
                                                                          \sin(th_2)*(-1)
                                                                                                                                                          a_1
      \sin(th_2)*\cos(alpha_1)\cos(th_2)*\cos(alpha_1)\sin(alpha_1)*(-1)d_2*\sin(alpha_1)*(-1)d_2
      sin(th\_2)*sind(alpha\_1) cos(th\_2)*sind(alpha\_1) cosd(alpha\_1) \\ \qquad d\_2*cosd(alpha\_1)
                                                                                           1];
T_23 = [\cos(th_3)]
                                                                          \sin(th_3)*(-1)
                                                                                                                          0
                                                                                                                                                          a_2
      sin(th_3)*cosd(alpha_2) cos(th_3)*cosd(alpha_2) sind(alpha_2)*(-1) d_3*sind(alpha_2)*(-1)
      sin(th_3)*sind(alpha_2) cos(th_3)*sind(alpha_2) cosd(alpha_2) d_3*cosd(alpha_2)
                                                                                                                                                         a_3
T 34 = [\cos(th 4)]
                                                                          \sin(th \ 4)*(-1)
                                                                                                                           0
      sin(th\_4)*cosd(alpha\_3) cos(th\_4)*cosd(alpha\_3) sind(alpha\_3)*(-1) d\_4*sind(alpha\_3)*(-1) d_4*sind(alpha\_3)*(-1) d_5*(-1) d_5*(-1) d_5*(-1) d_5*(-1) d_5*(-1) d_5*(-1) d_5*(-1) d_5*(
      sin(th_4)*sind(alpha_3) cos(th_4)*sind(alpha_3) cosd(alpha_3) d_4*cosd(alpha_3)
                                                                                           11:
T_45 = [\cos(th_5)]
                                                                          \sin(th_5)*(-1)
                                                                                                                           0
      sin(th_5)*cosd(alpha_4) cos(th_5)*cosd(alpha_4) sind(alpha_4)*(-1) d_5*sind(alpha_4)*(-1)
      sin(th\_5)*sind(alpha\_4) cos(th\_5)*sind(alpha\_4) cosd(alpha\_4) \\ \qquad d\_5*cosd(alpha\_4)
                                                                                           1];
T_56 = [\cos(th_6)]
                                                                          \sin(th_6)*(-1)
      sin(th\_6)*cosd(alpha\_5)*(-1) d\_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha\_5)*(-1) d_6*sind(alpha
      sin(th\_6)*sind(alpha\_5) cos(th\_6)*sind(alpha\_5) cosd(alpha\_5) \qquad d\_6*cosd(alpha\_5)
                                0
                                                                                           1];
T_6ee = [cos(th_ee)]
                                                                             \sin(th_e)*(-1)
                                                                                                                                                                a_ee
      sin(th_ee)*cosd(alpha_ee) cos(th_ee)*cosd(alpha_ee) sind(alpha_ee)*(-1) d_ee*sind(alpha_ee)*(-1)
      sin(th\_ee)*sind(alpha\_ee) cos(th\_ee)*sind(alpha\_ee) cosd(alpha\_ee) \\ \qquad d\_ee*cosd(alpha\_ee)
                                                                                          11:
%% Forward Kinematics
%Position and Rotation matrices of matrices.
R_01 = T_01(1:3,1:3); P_01 = T_01(1:3,4);
R_12 = T_12(1:3,1:3); P_12 = T_12(1:3,4);
R_23 = T_23(1:3,1:3); P_23 = T_23(1:3,4);
R_34 = T_34(1:3,1:3); P_34 = T_34(1:3,4);
R_45 = T_45(1:3,1:3); P_45 = T_45(1:3,4);
R_56 = T_56(1:3,1:3); P_56 = T_56(1:3,4);
R_6ee = T_6ee(1:3,1:3); P_6ee = T_6ee(1:3,4);
%Homogeneous Tranforms, Position vectors and Rotation matrices of frames.
T_02 = T_01*T_12;
                                                         R_02 = T_02(1:3,1:3); P_02 = T_02(1:3,4);
T_03 = T_02*T_23;
                                                            R_03 = T_03(1:3,1:3); P_03 = T_03(1:3,4);
T_04 = T_03*T_34;
                                                           R_04 = T_04(1:3,1:3); P_04 = T_04(1:3,4);
T_05 = T_04*T_45;
                                                            R_05 = T_05(1:3,1:3); P_05 = T_05(1:3,4);
T_{-}06 = T_{-}05*T_{-}56;
                                                          R_06 = T_06(1:3,1:3); P_06 = T_06(1:3,4);
T_0ee = T_06*T_6ee; R_0ee = T_0ee(1:3,1:3); P_0ee = T_0ee(1:3,4);
T_36 = T_34*T_45*T_56; R_36 = T_36(1:3,1:3); P_36 = T_36(1:3,4);
\%\% Jacobian (ref_J_w) ref = 3, w = 4
% Joint Direction
% Main Arm
R_33 = eye(3);
```

```
Z_33 = R_33(:,3);
R_32 = R_23.;
Z_32 = R_32(:,3);
R_31 = (R_12*R_23).';
Z_31 = R_31(:,3);
%Wrist
Z_34 = R_34(:,3);
R_35 = R_34*R_45;
Z_35 = R_35(:,3);
R_36 = R_34*R_45*R_56;
Z_36 = R_36(:,3);
% Positions vectors
T_14 = T_12*T_23*T_34;
p_1w = T_14(1:3,4);
P_31w = R_31*p_1w;
T_24 = T_23*T_34;
p_2w = T_24(1:3,4);
P_32w = R_32*p_2w;
p_3w = T_34(1:3,4);
P_{33}w = R_{33}*p_{3w};
P_34w = [0\ 0\ 0]';
P_35w = [0\ 0\ 0]';
P_{36w} = [0\ 0\ 0]';
% Cross Products
e1 = cross(Z_31,P_31w);
e2 = cross(Z_32,P_32w);
e3 = cross(Z_33,P_33w);
e4 = cross(Z_34, P_34w);
e5 = cross(Z_35,P_35w);
e6 = cross(Z_36,P_36w);
% Matrices & Singularities
lin_vel = [e1 \ e2 \ e3 \ e4 \ e5 \ e6];
ang_vel = [zeros(3,1) Z_32 Z_33 Z_34 Z_35 Z_36];
J_3w = simplify([lin_vel; ang_vel]);
B = simplify(J_3w(4:6,1:3));
B_{det} = simplify(det(B));
zero_J = simplify(J_3w(1:3,4:6));
zero\_J\_det = det(zero\_J);
A = simplify(J_3w(1:3,1:3));
A_{det} = simplify(det(A));
C = simplify(J_3w(4:6,4:6));
C_{det} = simplify(det(C));
J_det = simplify(A_det*C_det);
inv_J_3w = simplify([inv(A) zeros(3); -inv(C)*B*inv(A) inv(C)]);
%% Velocity Transformation Matrix
%Position Vector P ref_w->ee
R_06 = T_06(1:3,1:3);
P_6ee = T_6ee(1:3,4);
P_0eew = -R_06*P_6ee;
skew1 = [0 -P_0eew(3,1) P_0eew(2,1)]
  P_0eew(3,1) 0 -P_0eew(1,1)
  -P_0eew(2,1) P_0eew(1,1) 0];
Tv = simplify([R_03 \text{ skew}1*R_03; zeros(3) R_03])
```

```
%% Forward/Inverse Velocity Equations
  %Forward Velocity
  syms q1 q2 q3 q4 q5 q6
  q = [q1 \ q2 \ q3 \ q4 \ q5 \ q6];
  vel_0ee = simplify(Tv*J_3w*q.')
  %Inverse Velocity
  syms v1 v2 v3 v4 v5 v6
  vel = [v1 \ v2 \ v3 \ v4 \ v5 \ v6];
  q_{dot} = simplify(inv(Tv)*inv_J_3w*vel.')
%% Force Transformation Matrix
  R_30 = R_03.;
  P_3eew = R_36*P_6ee;
               0 -P_3eew(3,1) P_3eew(2,1)
  skew2 = [
         P_3eew(3,1)
                         0 -P_3eew(1,1)
         -P_3eew(2,1) P_3eew(1,1)
  Fv = simplify([R_30 zeros(3); skew2*R_30 R_30])
%% Inverse Static Force
  syms f1 f2 f3 m1 m2 m3
  f = [f1 \ f2 \ f3 \ m1 \ m2 \ m3];
  J_3wt = transpose(J_3w);
  torque = simplify(J_3wt*Fv*f.')
     5. Inertia_tensor
function [mass,P_G,Inertia] = inertia_tensor
%% Parameters (units grams and milimeter)
material\_density = 0.0027;
u1 = 0.001;
u2 = 1.0*10^{-6};
u3 = 1.0*10^{-9};
%Base
mass_b = 392900.625;
P_gb = [0.000 -2.9020 -213.1061]';
I_bxx = 61017762234.37; I_bxy = 0.00; I_bxz = 0.00;
I_byy = 64782384916.99; I_byz = -513090703.13;
I_bzz = 18153025901.37;
I_base = [I_bxx - I_bxy - I_bxz]
  -I_bxy I_byy -I_byz
  -I_bxz -I_byz I_bzz];
% Joint 1
mass_1 = 24585.53;
P_g1 = [-0.32 \ 11.61 \ 0.00]';
I_1xx = 255250944.45; I_1xy = -416800.98; I_1xz = 0.00;
I_1yy = 291346050.24; I_1yz = 0.00;
I_1zz = 147359449.68;
I_1 = [I_1xx - I_1xy - I_1xz]
  -I_1xy I_1yy -I_1yz
  -I_1xz -I_1yz I_1zz];
% Joint 2
mass_2 = 13733.91;
P_g2 = [0.03 \ 0.06 \ 429.46]';
```

```
I_2xx = 3376732460.01; I_2xy = 17055.59; I_2xz = 373203.14;
I_2yy = 33775621925.85; I_2yz = 637156.83;
I_2zz = 13761348.21;
I_2 = [I_2xx - I_2xy - I_2xz]
  -I_2xy I_2yy -I_2yz
  -I_2xz -I_2yz I_2zz];
% Joint 3
mass_3 = 11702.10;
P_g3 = [0.04 - 262.31 - 0.76]';
I_3xx = 1484193151.37; I_3xy = -8768.99; I_3xz = -38887.17;
I_3yy = 23920268.41; I_3yz = -427293.99;
I_3zz = 1470615861.95;
I_3 = [I_3xx - I_3xy - I_3xz]
  -I_3xy I_3yy -I_3yz
  -I_3xz -I_3yz I_3zz];
% Joint 4
mass_4 = 4283.77;
P_g4 = [0.00\ 0.07\ 92.17]';
I_4xx = 78921407.33; I_4xy = -1.73; I_4xz = 3.94;
I_4yy = 73833198.42; I_4yz = 73237.31;
I_4zz = 9922402.27;
I_4 = [I_4xx - I_4xy - I_4xz]
  -I_4xy I_4yy -I_4yz
  -I_4xz -I_4yz I_4zz];
% Joint 5
mass_5 = 4766.31;
P_g5 = [-0.10 - 44.46 \ 2.02]';
I_5xx = 44058687.33; I_5xy = -5173.52; I_5xz = -41024.40;
I_5yy = 12304280.63; I_5yz = 63021.21;
I_5zz = 36389912.58;
I_5 = [I_5xx - I_5xy - I_5xz]
  -I_5xy I_5yy -I_5yz
  -I_5xz -I_5yz I_5zz];
% Joint 6
mass_6 = 5901.84;
P_g6 = [0.00\ 0.06\ 445.50]';
I_6xx = 1286844631.76; I_6xy = 0.00; I_6xz = 0.00;
I_6yy = 1286855956.51; I_6yz = 78000.83;
I_6zz = 4397544.68;
I_6 = [I_6xx - I_6xy - I_6xz]
  -I_6xy I_6yy -I_6yz
  -I_6xz -I_6yz I_6zz];
% End-Effector
mass_ee = 2922.39;
P_gee = [-0.32 \ 0.52 \ -94.50]';
I_{eexx} = 30809463.03; I_{eexy} = -427.46; I_{eexz} = 41553.77;
I_{eeyy} = 126675054.21; I_{eeyz} = -167410.43;
I_{eezz} = 96690996.71;
I_ee = [I_eexx - I_eexy - I_eexz]
```

```
-I_eexy I_eeyy -I_eeyz
-I_eexz -I_eeyz I_eezz];
```

#### % Matrix

mass = [mass\_b, mass\_1, mass\_2, mass\_3, mass\_4, mass\_5, mass\_6, mass\_ee];%\*u1; P\_G = [P\_gb, P\_g1, P\_g2, P\_g3, P\_g4, P\_g5, P\_g6, P\_gee];%\*u2; Inertia = [I\_base, I\_1, I\_2, I\_3, I\_4, I\_5, I\_6, I\_ee];%\*u3;