Creating advanced plots with ggplot2

Data visualization in R

Data visualization is an essential part in the data analysis process:

R's plotting packages enable customized graphs and the extension of the extens

	same
Base R Graphics/grDevices	Built-in plotting functionalities in R base
Ggplot2	"Grammar of Graphics": build your plot from various layers
Lattice	Provides functionalities for producing Trellis graphics
Plotly	Create Interactive Web Graphics via "plotly.js"

Why use ggplot2 instead of Base R

- ggplot2 is based on the "Grammar of Graphics":
 - Provides a schema for data visualization by breaking up graphs into semantic components such as scales and layers.

```
myPlot <- ggplot() + geom_point() + ...</pre>
```

Alternatively, add the layers step by step to a variable:

myPlot <- ggplot ()

myPlot <- ggplot ()
myPlot <- myPlot + geom_point()</pre>

Used to create more flexible plots than in Base R.

Why use ggplot2 instead of Base R

- ggplot2 is based on the "Grammar of Graphics":
 - Provides a schema for data visualization by breaking up graphs into semantic components such as scales and layers.

```
myPlot <- ggplot() + geom point() + ..</pre>
```

Alternatively, add the layers step by step to a variable: myPlot <- ggplot ()</pre>

myPlot <- myPlot + geom point()</pre>

Used to create more flexible plots than in Base R.

Why use ggplot2 instead of Base R

- ggplot2 is based on the "Grammar of Graphics":
 - Provides a schema for data visualization by breaking up graphs into semantic components such as scales and layers.

```
myPlot <- ggplot() + geom_point() + ...</pre>
```

Alternatively, add the layers step by step to a variable:

myPlot <- ggmlot ()

myPlot <- ggplot ()
myPlot <- myPlot + geom_point()</pre>

Used to create more flexible plots than in Base R.

How to plot **Steps**

- Choose the plot type
- Find the appropriate R function
- Transform data
- Improve aesthetic features of mensor as last unit
- Save plot

Step 1: Choose the plot type Decide the best way to convey the information

- What do you want to show?
 - A single variable?
 - The relationship between multiple variables?
- Is your data continuous or discrete?

Step 2: Find the function Plotting a <u>single</u> variable

Step 2: Find the function Plotting two variables

Continuous Continuous

geom point()

geom_smooth()

geom quantile()

Continuous Discrete

geom bar()

geom violin()

geom boxplot()

geom_jitter()

Step 2: Find the function Plotting <u>two</u> variables

Continuous Continuous

Continuous Discrete

geom_boxplot()

geom_jitter()

Step 3: Transform data Some graphs might require transformed data input

It is quite rare that you can plot your data right away, i.e. certain plots have requirements on how the data should look like.

Lecture 7 Unit

- In most cases it is necessary to transform your data before plotting it.
- Examples:
 - Transform times and dates for generation of month or years
 - Group data for better overview
 - Logarithmic transformations for nicer distributions

Step 4: Create the plot Example 1: Create a histogram

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15.11.2005	1	199.95	107.00	127998739
172951	29.08.2008	1	199.95	108.00	128888288
120621	19.10.2007	1	99.95	49.00	125375247
149236	14.11.2005	1	39.95	18.95	127996226
149236	12.06.2007	1	79.95	35.00	128670302

ggplot(myData, aes(PurchAmount)) + geom_histogram()

Histogram

Step 4: Create the plot Example 1: Create a histogram

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15.11.2005	1	199.95	107.00	127998739
172951	29.08.2008	1	199.95	108.00	128888288
120621	19.10.2007	1	99.95	49.00	125375247
149236	14.11.2005	1	39.95	18.95	127996226
149236	12.06.2007	1	79.95	35.00	128670302

ggplot(myData, aes(PurchAmount)) + geom_histogram()
Histogram

Step 4: Create the plot Example 1: Flip the coordinates of the histogram

Step 4: Create the plot Example 2: Create a scatterplot

Custome	TransDate	Quantity	PurchAmount	Cost	TransID
14933	2 15.11.2005	1	199.95	107.00	127998739
17295	1 29.08.2008	3 1	199.95	108.00	128888288
12062	1 19.10.2007	1	99.95	49.00	125375247
14923	6 14.11.2005	1	39.95	18.95	127996226
14923	6 12.06.2007	' 1	79.95	35.00	128670302

Step 5: Improve aesthetic features of the plot Plot title


```
ggplot(myData, aes(PurchAmount))
+ geom_histogram() +
  ggtitle("Histogram of Purchase
   Amount")
```

Add title


```
ggplot(myData, aes(x=PurchAmount,
   y =Cost)) + geom_point() +
   ggtitle("Costs by
   Purchase Amount")
```

Step 5: Improve aesthetic features of the plot Axis labels

ggplot(myData, aes(PurchAmount))+
 geom_histogram() + ... +
 xlab("Purchase Amount")


```
ggplot(myData, aes(x=PurchAmount,
   y =Cost)) + geom_point() + ... +
   xlab("Purchase Amount") +
   ylab("Costs")
```


Step 5: Improve aesthetic features of the plot Change point size and color

