

## MÁSTER EN PYTHON AVANZADO APLICADO AL DEPORTE

# Análisis CRISP-DM: NBA Machine Learning Sports Betting

Repositorio: https://github.com/kyleskom/NBA-Machine-Learning-Sports-Betting

## 1. Comprensión del Negocio

#### Contexto

El proyecto se enfoca en la aplicación de machine learning para predecir resultados de apuestas deportivas en la NBA, específicamente para determinar si apostar por encima o por debajo del spread establecido por las casas de apuestas.

#### Objetivos del Negocio

- Desarrollar un sistema predictivo que genere un retorno de inversión positivo en apuestas deportivas de la NBA.
- Identificar patrones no evidentes para el apostador promedio que puedan proporcionar una ventaja competitiva.
- Automatizar el proceso de recopilación de datos, análisis y predicción para facilitar la toma de decisiones.

#### Criterios de Éxito

- Precisión predictiva superior al 55-60% (umbral mínimo para obtener rentabilidad en apuestas deportivas).
- Retorno de inversión (ROI) positivo a largo plazo.
- Capacidad para actualizar y ajustar modelos con nuevos datos de temporada.

#### Evaluación de la Situación

- Recursos disponibles: Datos públicos de partidos de la NBA, estadísticas de equipos/jugadores, y líneas de apuestas históricas.
- Requisitos: Conocimientos en web scraping, preparación de datos, modelado predictivo y evaluación de resultados.
- Restricciones: La naturaleza dinámica y cambiante del deporte profesional, lesiones, cambios de plantilla, etc.
- Riesgos: Sobreajuste a datos históricos, cambios en las reglas del juego o en el mercado de apuestas.

## 2. Comprensión de los Datos

#### Fuentes de Datos

- Basketball Reference: Estadísticas históricas de partidos, equipos y jugadores de la NBA.
- Vegas Insider: Líneas de apuestas (spreads, totales) históricas.
- ESPN: Estadísticas complementarias y actualizadas.

#### Descripción de los Datos

#### El conjunto de datos incluye:

- Resultados históricos de partidos de la NBA (puntuaciones, ganador/perdedor).
- Estadísticas de equipos (ofensivas y defensivas).
- Métricas avanzadas (eficiencia, ritmo de juego, etc.).
- Líneas de apuestas (spreads, over/under).
- Registros de temporadas anteriores.

#### Exploración de los Datos

- Correlaciones entre estadísticas de equipo y resultados contra el spread.
- Patrones temporales (desempeño en back-to-backs, después de largas giras, etc.).
- Tendencias históricas de resultados sobre/bajo el spread.

#### Verificación de Calidad de Datos

- Datos faltantes en estadísticas históricas.
- Inconsistencias en los formatos de datos entre diferentes fuentes.
- Posibles errores en los datos scrapeados que requieren limpieza.

## 3. Preparación de los Datos

#### Selección de Datos

- Selección de características relevantes que incluyen estadísticas ofensivas y defensivas de equipos.
- Enfoque en datos de las últimas temporadas para capturar tendencias actuales.
- Inclusión de métricas avanzadas como eficiencia ofensiva/defensiva, ritmo de juego, etc.

#### Limpieza de Datos

- Manejo de valores faltantes (especialmente en estadísticas de jugadores lesionados).
- Estandarización de formatos entre diferentes fuentes de datos.
- Eliminación de duplicados y corrección de inconsistencias.

#### Construcción de Características

- Creación de características derivadas como:
  - Diferencial de eficiencia entre equipos
  - Métricas de descanso (días desde el último partido)
  - Tendencias recientes (últimos N partidos)
  - Desempeño histórico contra el spread

#### Integración de Datos

- Combinación de datos de múltiples fuentes para crear un conjunto de datos coherente.
- Sincronización temporal correcta entre estadísticas de equipos y líneas de apuestas.

#### Formateo de Datos

- Normalización de variables numéricas.
- Codificación de variables categóricas (equipos, ubicación, etc.).
- División en conjuntos de entrenamiento y prueba, asegurando la separación temporal correcta.

#### 4. Modelado

#### Selección de Técnicas de Modelado

El proyecto utiliza varios algoritmos de machine learning para la clasificación binaria:

- Regresión Logística (línea base)
- Random Forest
- Gradient Boosting
- SVM (Support Vector Machines)
- XGBoost

#### Diseño de Pruebas

- Validación cruzada con separación temporal para evitar data leakage.
- Evaluación de modelos en temporadas completas no vistas.
- Comparación de rendimiento entre diferentes algoritmos.

#### Construcción del Modelo

- Entrenamiento de modelos con hiperparámetros optimizados.
- Ensamblaje de modelos para mejorar la estabilidad de las predicciones.
- Implementación de pipeline de entrenamiento automatizado.

#### Evaluación del Modelo (técnica)

- Métricas de precisión, recall, F1-score.
- Curvas ROC y AUC para evaluar la capacidad discriminatoria.
- Análisis de la matriz de confusión para entender los patrones de error.

#### 5. Evaluación

#### Evaluación de Resultados

- Evaluación del rendimiento predictivo en partidos reales.
- Análisis de rentabilidad (retorno de inversión) bajo diferentes estrategias de apuestas.
- Comparación con benchmarks (líneas de Vegas, expertos, etc.).

#### Proceso de Revisión

- Revisión de características más influyentes en las predicciones.
- Identificación de patrones donde el modelo tiene mejor/peor desempeño.
- Análisis de errores sistemáticos.

#### Determinación de Próximos Pasos

- Refinamiento del modelo basado en nueva información.
- Expansión a otros mercados de apuestas (totales, moneyline, etc.).
- Implementación de técnicas avanzadas (deep learning, refuerzo, etc.).

## 6. Despliegue

#### Plan de Implementación

- Script automatizado para ejecutar predicciones diarias.
- Sistema de actualización de datos y reentrenamiento periódico.
- Interfaz simple para visualizar recomendaciones.

#### Plan de Monitoreo y Mantenimiento

- Seguimiento continuo del rendimiento del modelo.
- Actualización de los datos con nuevos partidos.
- Reentrenamiento programado con datos más recientes.

#### Informe Final

- Documentación del proceso completo.
- Resumen de hallazgos y recomendaciones.
- Potencial para futuras mejoras.

## Fortalezas, Debilidades y Mejoras por Fase CRISP-DM

## 1. Comprensión del Negocio

#### **Fortalezas**

- Objetivo de negocio claro y medible (predicción de apuestas deportivas con ROI positivo).
- Problema bien definido y acotado (predicción binaria: encima/debajo del spread).
- El dominio de aplicación (NBA) cuenta con abundantes datos públicos y estadísticas.

#### Debilidades

- Falta documentación explícita sobre la estrategia de apuestas (tamaño, frecuencia, gestión de bankroll).
- No se discuten las implicaciones legales y regulatorias de las apuestas deportivas.
- Ausencia de un análisis profundo del mercado de apuestas y sus ineficiencias.

#### Mejoras Propuestas

- Documentar una estrategia clara de apuestas incluyendo gestión de riesgo y bankroll.
- Incorporar un análisis de las casas de apuestas y sus diferencias (ventajas para el apostador).
- Definir criterios de confianza para las predicciones y umbrales para decidir cuándo apostar.
- Incluir un análisis FODA (fortalezas, oportunidades, debilidades y amenazas) del proyecto.

## 2. Comprensión de los Datos

#### **Fortalezas**

- Utilización de múltiples fuentes de datos complementarias.
- Inclusión de estadísticas avanzadas de la NBA.
- Capacidad de scraping automatizado para mantener datos actualizados.

#### **Debilidades**

- Falta un análisis exploratorio de datos (EDA) detallado y visual.
- No se documenta claramente la completitud y calidad de los datos recogidos.
- Ausencia de análisis de correlaciones entre variables y el resultado objetivo.

#### Mejoras Propuestas

- Implementar un EDA completo con visualizaciones de distribuciones y correlaciones.
- Crear un dashboard para el análisis visual de tendencias históricas.
- Documentar la estructura de datos, las fuentes y la frecuencia de actualización.
- Agregar análisis específicos sobre factores contextuales (lesiones, cambios de entrenador, etc.).

## 3. Preparación de los Datos

#### **Fortalezas**

- Automatización del proceso de recopilación y preparación de datos.
- Creación de características derivadas relevantes.
- Enfoque en datos recientes para capturar tendencias actuales.

#### Debilidades

- Falta de transparencia en el manejo de valores faltantes.
- No se documenta detalladamente la ingeniería de características.
- Ausencia de análisis de importancia de características.

#### Mejoras Propuestas

- Implementar técnicas avanzadas de imputación para valores faltantes.
- Documentar cada paso de transformación y limpieza de datos.
- Agregar características basadas en la dinámica de equipos y jugadores clave.
- Incorporar análisis de componentes principales (PCA) o selección automática de características.
- Considerar información contextual como rivalidades, partidos televisados, etc.

#### 4. Modelado

#### **Fortalezas**

- Uso de múltiples algoritmos de clasificación para comparar rendimiento.
- Implementación de validación cruzada temporal para evaluar correctamente.
- Capacidad para reentrenar modelos con nuevos datos.

#### Debilidades

- Falta de detalles sobre la optimización de hiperparámetros.
- No se exploran modelos más avanzados como redes neuronales o modelos de series temporales.
- Ausencia de ensamblaje de modelos para mejorar la estabilidad.

#### Mejoras Propuestas

- Implementar búsqueda sistemática de hiperparámetros (Grid Search, Random Search, Bayesiano).
- Explorar arquitecturas de deep learning para capturar patrones más complejos.
- Desarrollar modelos específicos por equipos o divisiones.
- Implementar técnicas de ensamblaje (stacking, blending) para mejorar la precisión.
- Considerar modelos de series temporales para capturar tendencias y estacionalidad.

### 5. Evaluación

#### **Fortalezas**

- Evaluación basada en métricas relevantes para el dominio (ROI, precisión predictiva).
- Capacidad para evaluar el rendimiento en datos históricos reales.

#### Debilidades

- Falta de backtesting exhaustivo con diferentes estrategias de apuestas.
- No se analizan los errores del modelo en profundidad.
- Ausencia de comparativas con benchmarks (expertos, líneas de consenso, etc.).

#### Mejoras Propuestas

- Implementar backtesting completo con simulación de apuestas reales.
- Analizar los errores del modelo por tipo de partido, equipos, condiciones, etc.
- Comparar el rendimiento con predictores humanos y otros modelos públicos.
- Desarrollar métricas de confianza para cada predicción.
- Crear visualizaciones de rendimiento a lo largo del tiempo.

## 6. Despliegue

#### **Fortalezas**

- Script automatizado para realizar predicciones.
- Capacidad para actualizar datos y reentrenar periódicamente.

#### Debilidades

- Interfaz de usuario limitada.
- Falta de integración con sistemas de seguimiento de apuestas.
- No se menciona la monitorización continua del rendimiento.

#### Mejoras Propuestas

- Desarrollar una interfaz web/móvil para visualizar predicciones y resultados.
- Implementar notificaciones automáticas para oportunidades de apuestas.
- Crear un sistema de seguimiento y registro de resultados.
- Desarrollar un dashboard para monitorizar el rendimiento del modelo en tiempo real.
- Implementar alertas para detectar cambios significativos en el rendimiento del modelo.

## Extensiones y Recomendaciones para el Proyecto NBA-ML-Betting

## Propuestas de Extensión

1. Expansión del Alcance Predictivo

#### **Mercados de Apuestas Adicionales**

- **Predicción de totales (over/under)**: Desarrollar modelos específicos para predecir si el total de puntos superará o quedará por debajo de la línea establecida.
- Apuestas de jugadores (prop bets): Crear modelos para predecir estadísticas individuales de jugadores (puntos, rebotes, asistencias).
- Apuestas de primer cuarto/primera mitad: Desarrollar modelos específicos para segmentos del partido.

#### **Ligas y Deportes Adicionales**

- Expandir la metodología a otras ligas de baloncesto (Euroliga, NCAA, WNBA).
- Adaptar el enfoque a otros deportes de equipo (NFL, MLB, NHL).

#### 2. Mejoras Técnicas

#### **Modelos Avanzados**

- Implementar arquitecturas de deep learning (LSTM, GRU) para capturar dependencias temporales.
- Explorar modelos de atención para identificar factores clave en cada predicción.
- Desarrollar modelos específicos por equipo o por tipo de partido.

#### Ingeniería de Características Avanzada

- Incorporar datos de rastreo (tracking data) si están disponibles.
- Desarrollar características basadas en análisis de redes para modelar interacciones entre jugadores.
- Incluir métricas de momentum y tendencias recientes con ponderación temporal.

#### 3. Integración y Automatización

#### Plataforma Integral

- Desarrollar una aplicación web/móvil completa con:
  - Dashboard de predicciones y resultados
  - Seguimiento de apuestas y rendimiento
  - o Alertas y notificaciones para oportunidades de apuestas
  - Visualización de tendencias y patrones

#### Automatización Avanzada

- Integración con APIs de casas de apuestas para obtener líneas en tiempo real.
- Sistema automatizado de colocación de apuestas basado en las predicciones y niveles de confianza.
- Reentrenamiento automático cuando el rendimiento cae por debajo de umbrales predefinidos.

#### Recomendaciones Técnicas Detalladas

1. Mejoras en la Recopilación de Datos

```
# Ejemplo de mejora para el scraping de datos
def enhanced_data_scraper(season, include_advanced=True,
include_injuries=True):
    1111111
    Recopila datos mejorados con estadísticas avanzadas e información de
lesiones
    Args:
        season (int): Año de la temporada
        include_advanced (bool): Incluir métricas avanzadas
        include_injuries (bool): Incluir datos de lesiones
    Returns:
        pd.DataFrame: Datos completos de la temporada
    # Código para scraping básico
    base_data = scrape_basic_stats(season)
    # Añadir métricas avanzadas si se solicitan
    if include_advanced:
        advanced_data = scrape_advanced_stats(season)
        base_data = pd.merge(base_data, advanced_data, on=['team_id',
'game_id'])
    # Añadir información de lesiones si se solicita
    if include_injuries:
        injury_data = scrape_injury_reports(season)
        base_data = enrich_with_injuries(base_data, injury_data)
    return base_data
```

```
# Ejemplo de nuevas características para el modelo
def create enhanced features(df):
   Crea características avanzadas para mejorar el poder predictivo
   Args:
       df (pd.DataFrame): DataFrame con datos básicos
   Returns:
        pd.DataFrame: DataFrame con características adicionales
   # Momentum basado en últimos N partidos (ponderado por recencia)
   df['momentum score'] = calculate weighted momentum(df, window=10)
   # Fatiga basada en calendario y minutos jugados
   df['fatigue index'] = calculate fatigue index(df)
   # Métricas de desempeño contra el spread
   df['ats_performance_10g'] = calculate_ats_performance(df, window=10)
   # İndice de desajuste (matchup index) basado en estilos de juego
   df['style_mismatch_index'] = calculate_style_mismatch(df)
   # Ventaja de descanso relativa
   df['rest_advantage'] = df['days_rest'] - df['opponent_days_rest']
   # Tendencia de líneas (line movement)
   df['line movement'] = df['closing spread'] - df['opening spread']
    return df
```

#### 3. Evaluación Avanzada de Modelos

```
dict: Métricas de rendimiento de apuestas
    # Predicciones y probabilidades
    y_pred = model.predict(X_test)
    y prob = model.predict proba(X test)[:, 1] # Probabilidad de la clase
positiva
    # Simulación de apuestas
    results = []
    current_bankroll = bankroll
    bets_placed = 0
    for i in range(len(y_test)):
        # Solo apostar si la confianza supera el umbral
        confidence = max(y_prob[i], 1 - y_prob[i])
        if confidence >= confidence_threshold:
            prediction = y pred[i]
            actual = y test.iloc[i]
            odd = odds_test.iloc[i]
            # Calcular tamaño de apuesta (Kelly criterion simplificado)
            edge = calculate_edge(confidence, odd)
            bet_size = current_bankroll * unit_size * (edge / odd)
            bet_size = min(bet_size, current_bankroll * 0.05) # Limitar
riesgo máximo
            # Resultado de la apuesta
            if prediction == actual:
                profit = bet_size * (odd - 1)
                current bankroll += profit
                result = 'win'
            else:
                current_bankroll -= bet_size
                result = 'loss'
            results.append({
                'bet_number': bets_placed + 1,
                'confidence': confidence,
                'bet_size': bet_size,
                'result': result,
                'bankroll': current_bankroll
            })
            bets_placed += 1
    # Calcular métricas
    roi = (current_bankroll - bankroll) / bankroll
    win_rate = sum(1 for r in results if r['result'] == 'win') /
bets_placed if bets_placed > 0 else 0
    avg_bet_size = sum(r['bet_size'] for r in results) / bets_placed if
bets_placed > 0 else 0
    return {
```

```
'final_bankroll': current_bankroll,
'roi': roi,
'bets_placed': bets_placed,
'win_rate': win_rate,
'avg_bet_size': avg_bet_size,
'bet_history': results
}
```

#### 4. Visualización de Resultados e Insights

```
# Ejemplo de visualización de rendimiento de apuestas
def visualize_betting_performance(performance_results):
   Crea visualizaciones del rendimiento de las apuestas
   Args:
       performance_results (dict): Resultados de la simulación de
apuestas
   import matplotlib.pyplot as plt
   import seaborn as sns
   # Configuración de estilo
   sns.set style('whitegrid')
   plt.figure(figsize=(14, 10))
   # Gráfico de evolución del bankroll
   plt.subplot(2, 2, 1)
   bankroll_data = [r['bankroll'] for r in
performance_results['bet_history']]
    bet_numbers = [r['bet_number'] for r in
performance_results['bet_history']]
   plt.plot(bet_numbers, bankroll_data, linewidth=2)
   plt.title('Evolución del Bankroll', fontsize=14)
   plt.xlabel('Número de Apuesta', fontsize=12)
   plt.ylabel('Bankroll ($)', fontsize=12)
   # Gráfico de distribución de confianza
   plt.subplot(2, 2, 2)
   confidence_data = [r['confidence'] for r in
performance_results['bet_history']]
    results = [1 if r['result'] == 'win' else 0 for r in
performance_results['bet_history']]
   plt.scatter(confidence_data, results, alpha=0.6)
   plt.title('Confianza vs. Resultado', fontsize=14)
   plt.xlabel('Confianza del Modelo', fontsize=12)
   plt.ylabel('Resultado (1=Win, 0=Loss)', fontsize=12)
   # Histograma de retornos por apuesta
   plt.subplot(2, 2, 3)
   wins = [r for r in performance_results['bet_history'] if r['result']
```

```
== 'win'l
    losses = [r for r in performance results['bet history'] if r['result']
== 'loss'l
    win sizes = [w['bet size'] for w in wins]
    loss sizes = [-l['bet size'] for l in losses]
    plt.hist([win sizes, loss sizes], bins=20, label=['Ganancias',
'Pérdidas'l)
    plt.legend()
    plt.title('Distribución de Ganancias/Pérdidas', fontsize=14)
    plt.xlabel('Monto ($)', fontsize=12)
    plt.ylabel('Frecuencia', fontsize=12)
    # Métricas clave
    plt.subplot(2, 2, 4)
    plt.axis('off')
    plt.text(0.1, 0.9, f"ROI: {performance results['roi']:.2%}",
fontsize=16)
    plt.text(0.1, 0.8, f"Apuestas Totales:
{performance_results['bets_placed']}", fontsize=16)
    plt.text(0.1, 0.7, f"Tasa de Victoria:
{performance_results['win_rate']:.2%}", fontsize=16)
    plt.text(0.1, 0.6, f"Tamaño Promedio de Apuesta:
${performance_results['avg_bet_size']:.2f}", fontsize=16)
    plt.text(0.1, 0.5, f"Bankroll Final:
${performance_results['final_bankroll']:.2f}", fontsize=16)
    plt.tight_layout()
    plt.savefig('betting_performance.png', dpi=300)
    plt.show()
```

## Recomendaciones de Implementación

- 1. Enfoque de Desarrollo Iterativo
  - 1. Fase 1: Mejorar la recopilación y preparación de datos.
    - Implementar scraping más robusto y completo.
    - Desarrollar pipeline de limpieza y transformación avanzada.
  - 2. Fase 2: Optimizar los modelos predictivos.
    - o Comparar sistemáticamente diferentes algoritmos.
    - o Implementar optimización de hiperparámetros automatizada.
    - o Desarrollar ensamblaje de modelos.
  - 3. Fase 3: Crear sistema de evaluación y simulación.
    - Implementar backtesting con estrategias de apuestas realistas.
    - o Desarrollar métricas de evaluación específicas para apuestas.

- 4. Fase 4: Desarrollar interfaz y automatización.
  - o Crear dashboard para visualización de predicciones y resultados.
  - o Implementar sistema de alertas y notificaciones.
  - Automatizar el flujo completo (datos → predicción → recomendación).

#### 2. Validación y Pruebas

- Realizar pruebas con apuestas simuladas (paper trading) durante al menos una temporada completa.
- Implementar gradualmente con apuestas de montos pequeños para validar el rendimiento real.
- Establecer procesos de validación continua y ajuste de modelos.

### 3. Consideraciones Éticas y Legales

- Investigar y cumplir con las regulaciones locales sobre apuestas deportivas.
- Implementar prácticas de juego responsable (límites, alertas, etc.).
- Documentar transparentemente las limitaciones del modelo y los riesgos asociados.

## Conclusión

El proyecto "NBA-Machine-Learning-Sports-Betting" tiene un sólido fundamento técnico y un objetivo claro, pero puede beneficiarse significativamente de las mejoras propuestas en todas las fases del proceso CRISP-DM. Con la implementación de estas recomendaciones, el sistema podría evolucionar desde un proyecto experimental hacia una herramienta robusta y potencialmente rentable para la toma de decisiones en apuestas deportivas.







