Nejvzácnější hmyzák (Pučmeloud)

Po domě Paka~Blangkona~ běhá N~ hmyzáků, očíslovaných od 0~ do N-1.~ Každý hmyzák má ${\bf typ},$ což je celé číslo mezi 0~ a $10^9~$ (včetně). Více hmyzáků může mít stejný typ.

Předpokládejme, že hmyzáky seskupíme podle typu. Četnost **nejhojnějšího** typu hmyzáků definujeme jako počet hmyzáků ve skupině s největším počtem hmyzáků. Analogicky, četnost **nejvzácnějšího** typu hmyzáků definujeme jako počet hmyzáků ve skupině s nejmenším počtem hmyzáků.

Předpokládejme například, že po domě běhá 11 hmyzáků, jejichž typy jsou postupně [5,7,9,11,11,5,0,11,9,100,9]. V tomto případě je četnost **nejhojnějšího** typu rovna 3 a skupiny s největším počtem hmyzáků mají typy 9 a 11, každá z nich obsahuje 3 hmyzáky. Četnost **nejvzácnějšího** typu je rovna 1. Skupiny s nejmenším počtem hmyzáků mají typy 7, 0 a 100, každá z nich obsahuje 1 hmyzáka.

Pak Blangkon nezná typ žádného hmyzáka. Má však přístroj s jedním tlačítkem, který umí změřit nějaké informace o typech hmyzáků. Na začátku je ten přístroj prázdný. *Pak Blangkon* může provádět operace následujících tří typů:

- 1. Přemístit hmyzáka do přístroje.
- 2. Vyndat hmyzáka z přístroje.
- 3. Zmáčknout tlačítko na přístroji.

Každý typ operace může *Pak Blangkon* provést nejvýše 40 000krát.

Kdykoliv *Pak Blangkon* zmáčkne tlačítko, přístroj mu zobrazí četnost **nejhojnějšího** typu hmyzáků v přístroji. Tedy ze všech typů hmyzáků vybere ten, který má v přístojí nejvyšší četnost, a zobrazí počet hmyzáků tohoto typu uvnitř přístroje.

Vaším úkolem je s pomocí přístroje určit četnost **nejvzácnějšího** typu mezi všemi N hmyzáky v Pakově~Blangkonově~domě. V některých podúlohách váš počet bodů bude záviset na největším počtu operací stejného typu, které provedete (viz sekce Podúlohy).

Implementační detaily

Implementujte následující funkci:

int min_cardinality(int N)

- *N*: počet hmyzáků.
- Tato funkce by měla vrátit četnost **nejvzácnějšího** typu hmyzáků mezi všemi N hmyzáky v *Pakově Blangkonově* domě.
- Tato funkce bude volána právě jednou.

V rámci této funkce můžete volat následující funkce:

```
void move_inside(int i)
```

- i: index hmyzáka, kterého chcete přemístit do přístroje. Hodnota i musí být mezi 0 a N-1 (včetně).
- Pokud tento hmyzák již uvnitř přístroje je, volání nic neudělá, ale i tak se započítá do limitu.
- Tato funkce může být zavolána nejvýše $40\ 000$ krát.

```
void move_outside(int i)
```

- i: index hmyzáka, kterého chcete vyndat z přístroje. Hodnota i musí být mezi 0 a N-1 (včetně).
- Pokud tento hmyzák již vně přístroje je, volání nic neudělá, ale i tak se započítá do limitu.
- Tato funkce může být zavolána nejvýše $40\ 000\ krát.$

```
int press_button()
```

- Tato funkce vrátí četnost **nejhojnějšího** typu hmyzáků v přístroji. Tedy ze všech typů hmyzáků vybere ten, který má v přístojí nejvyšší četnost, a zobrazí počet hmyzáků tohoto typu uvnitř přístroje.
- Tato funkce může být zavolána nejvýše 40 000 krát.
- Grader není adaptivní. To znamená, že typy všech N hmyzáků jsou určeny již předtím, než je zavolána funkce min_cardinality.

Příklad

Uvažujme situaci, kdy po domě běhá 6 hmyzáků, jejichž typy jsou postupně [5,8,9,5,9,9]. Funkce min_cardinality je závolána následovně:

```
min_cardinality(6)
```

Tato funkce může volat move_inside, move_outside, a press_button následovně.

Volání	Návratová hodnota	Hmyzáci v přístroji	Typy hmyzáků v přístroji
		{}	
<pre>move_inside(0)</pre>		{0}	[5]
<pre>press_button()</pre>	1	{0}	[5]
move_inside(1)		$\{0,1\}$	[5,8]
press_button()	1	$\{0,1\}$	[5,8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
<pre>press_button()</pre>	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
<pre>press_button()</pre>	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
<pre>press_button()</pre>	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

V tuto chvíli máme dostatečné množství informací k tomu, abychom usoudili, že četnost nejvzácnějšího typu hmyzáků je 1, funkce min_cardinality by tudíž měla vrátit 1.

V tomto případě je funkce move_inside zavolána právě 7krát, move_outside jednou a press_button je zavolána 6krát.

Omezení

• $2 \le N \le 2000$

Podúlohy

- 1. (10 bodů) $N \leq 200$
- 2. (15 bodů) $N \leq 1000$
- 3. (75 bodů) Žádná další omezení.

Pokud v rámci kteréhokoli provádění funkce min_cardinality nebudou volání funkcí move_inside, move_outside nebo press_button splňovat podmínky uvedené v sekci

Implementační detaily, anebo návratová hodnota min_cardinality bude nesprávná, dostanete za příslušnou podúlohu 0 bodů.

Nechť q je ${\bf maximum}$ z následujících tří hodnot: počet volání move_inside, počet volání move_outside a počet volání press_button.

V podúloze 3 můžete získat částečné body. Nechť m je největší hodnota $\frac{q}{N}$ přes všechna volání funkce min_cardinality v podúloze 3. Váš počet bodů za tuto podúlohu pak bude spočítán pomocí následující tabulky:

Podmínka	Body		
20 < m	0 (v CMS se zobrazíjako "Output isn't correct")		
$6 < m \leq 20$	$\frac{225}{m-2}$		
$3 < m \le 6$	$81-rac{2}{3}m^2$		
$m \leq 3$	75		

Ukázkový grader

Nechť T je pole obsahující N celých čísel, kde T[i] je typ hmyzáka číslo i.

Ukázkový grader přečte vstup v následujícím formátu:

- řádek 1: *N*
- řádek $2: T[0] T[1] \dots T[N-1]$

Pokud grader detekuje porušení protokolu, výstup graderu bude Protocol Violation: <MSG>, kde <MSG> je jedno z následujících:

- invalid parameter: při volání move_inside nebo move_outside neleží hodnota i mezi 0 a N-1 (včetně).
- too many calls: počet volání **některé** z funkcí move_inside, move_outside či press_button překročil 40 000.

Jinak má výstup ukázkového graderu následující formát:

- řádek 1: návratová hodnota min_cardinality
- řádek 2: *q*