Notas da Aula 4 – Representação de Números Negativos

- Até agora, lidamos somente com números positivos. Daqui por diante também trataremos os números negativos.
- A forma usual de representar um número é definir um conjunto de dígitos para indicar a magnitude e, antes do dígito mais significativo, utilizar o símbolo "+", para indicar se o número é positivo, ou o símbolo "-", para indicar se o mesmo é negativo.
- Note que a ausência do sinal também significa que o número em questão é positivo.
- Alguns exemplos são: +98, -57, 123, -13.
- Representação de magnitude e sinal: no caso de números binários, ao invés de usar os símbolos "+" ou "-", adiciona-se um bit mais significativo: 0 indica positivo e 1 indica negativo. Adiante, seguem exemplos de números inteiros representados com 8 bits, 7 deles para indicar a magnitude e o mais significativo para indicar o sinal:

$$(01010101)_2 = (+85)_{10}$$
 $(11010101)_2 = (-85)_{10}$
 $(01111111)_2 = (+127)_{10}$ $(11111111)_2 = (-127)_{10}$
 $(00000000)_2 = (+0)_{10}$ $(00000000)_2 = (-0)_{10}$

- Note que o zero tem duas representações.
- <u>Pergunta pertinente:</u> quais números podem ser representados em no sistema de magnitude e sinal, se tivermos a disposição 8 bits?
- Ora, pode-se representar números no intervalo de $-(2^{8-1}-1)=-127$ até $(2^{8-1}-1)=127$, ou seja, 127 números negativos, 127 positivos e 2 zeros, o que totaliza 256.
- Generalização necessária: na representação de magnitude e sinal, um número inteiro de n-bits pertence ao intervalo de $-(2^{n-1}-1)$ até $(2^{n-1}-1)$ e há duas formas de representar o zero.
- Contudo, não é fácil implementar somadores com essa forma de representação porque os sinais sempre devem ser comparados, antes de proceder com as magnitudes. Em geral, essas comparações introduzem complexidades ao circuito.
- <u>Número em complemento de base</u>: para representar números positivos e negativos, os sistemas digitais utilizam a operação de complemento de base, que, apesar de ser mais complicada do que simplesmente trocar um sinal (ou dígito), torna o cômputo de somas e subtrações adequada a implementação de circuitos lógicos. Ou seja, veremos em tópicos futuros que é mais fácil projetar somadores que operam com números em sistemas de complemento de base.

- Representação em complemento de base: nesse sistema, obtém-se o complemento de n-dígitos do número N ao fazer a seguinte subtração: $b^n N$, em que b é a base. Outra forma de obter esse número é complementar os dígitos de N individualmente e depois somar 1.
- Exemplo: complemento de base 10 do número 1849.

$$10^4 - 1849 = 8151$$

$$\overline{1849} + 1 = 8150 + 1 = 8151$$

- Exemplo: complemento de base 10 do número 2067.

$$10^4 - 2067 = 7933$$

$$\overline{2067} + 1 = 7932 + 1 = 7933$$

- Representação em complemento de 2: é a versão binária do complemento de base. No entanto, o bit mais significativo indica se o número é positivo ou negativo, ou seja, números positivos começam com 0 e números negativos começam com 1. Exemplos:

$$(17)_{10} = 00010001$$

$$\downarrow (complemento dígito a dígito)$$

$$11101110$$

$$+ \underline{\qquad \qquad } 1$$

$$11101111 \Rightarrow 11101111 = (-17)_{10}$$

$$(119)_{10} = 01110111$$

$$\downarrow (complemento dígito a dígito)$$

$$10001000$$

$$+ \underline{\qquad \qquad } 1$$

$$10001001 \Rightarrow 10001001 = (-119)_{10}$$

$$(0)_{10} = 00000000$$

$$\downarrow (complemento dígito a dígito)$$

$$11111111$$

$$+ \underline{\qquad \qquad } 1$$

$$1|00000000 \Rightarrow 00000000 = (0)_{10}$$

$$(-99)_{10} = 10011101$$

$$\downarrow (complemento dígito a dígito)$$

$$01100010$$

$$+ \underline{\qquad \qquad } 1$$

$$01100011 \Rightarrow 01100011 = (99)_{10}$$

$$(-127)_{10} = 10000001$$
 $\downarrow (complemento dígito a dígito)$
 01111110
 $+ 1 01111111 \Rightarrow 01111111 = (127)_{10}$
 $(-128)_{10} = 10000000$
 $\downarrow (complemento dígito a dígito)$
 01111111
 $+ 1 1 00000000 \Rightarrow 100000000 = (-128)_{10}$

- <u>Pergunta pertinente</u>: quais números podem ser representados no sistema de complemento de 2, se tivermos a disposição 8 bits?
- Ora, pode-se representar números no intervalo de $-(2^{8-1}) = -128$ até $(2^{8-1} 1) = 127$, ou seja, 128 números negativos, 127 positivos e 1 zero, o que totaliza 256.
- Note que o número negativo $-(2^{n-1})$ não tem contrapartida positiva, o complemento de 2 dele é ele mesmo!
- Representação de complemento de base diminuída: nesse sistema, obtém-se o complemento de n-dígitos do número N ao fazer a seguinte subtração: $(b^n 1) N$, em que b é a base. Outra forma de obter esse número é complementar os dígitos de N individualmente.
- Exemplo: complemento de base 9 (base 10 diminuída) do número 1849.

$$(10^4 - 1) - 1849 = 8150$$
$$\overline{1}\overline{8}\overline{4}\overline{9} = 8150$$

- Exemplo: complemento de base 9 (base 10 diminuída) do número 2067.

$$(10^4 - 1) - 2067 = 7932$$
$$\overline{20}\overline{67} = 7932$$

- Representação em complemento de 1 (base 2 diminuída): é a versão binária do complemento de base diminuída. Porém, o bit mais significativo, como no caso do complemento de 2, também está associado com a interpretação de números positivos e negativos. Exemplos:

- <u>Pergunta pertinente</u>: quais números podem ser representados em um sistema de complemento de 1 se tivermos a disposição n-bits?

Ora você já sabe como responder!

- A tabela seguinte os números de 4 dígitos em quatro sistemas de representação diferentes: decimal, magnitude e sinal, complemento de 2 e complemento de 1:

Decimal	Magt.e Sinal	Compl. de 2	Compl. de 1
-8	-	1000	-
-7	1111	1001	1000
-6	1110	1010	1001
-5	1101	1011	1010
-4	1100	1100	1011
-3	1011	1101	1100
-2	1010	1110	1101
-1	1001	1111	1110
0	0000/1000	0000	0000/1000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111

- <u>Adição em complemento de 2:</u> se procede como uma adição convencional, apenas com o cuidado de usar a representação em complemento de 2. Exemplos:

0011	0110
+ <u>0100</u>	+ 1101
0111	1 0011
1110	0100
+ <u>1010</u>	+ 1001
1 1000	1101

- <u>Casos patológicos:</u> quando o resultado da soma extrapola o maior ou o menor número da representação, o resultado se torna inconsistente. Exemplos:

$$1101$$
 0101
+ 1010 + 0110
 $1|0111$ 1011
 1000 0111
+ 1000 + 0111
 $1|0000$ 1110

<u>Subtração em complemento de 2:</u> é possível proceder como uma subtração normal. No entanto, em complemento de 2 existe uma regra prática que torna a subtração em adição. Para isso, basta manter o minuendo, complementar o subtraendo e realizar a soma com um "vai 1" inicial. Exemplos:

$$0100$$
 0100
 -0011 $+ 1100$
 0001 $1|0001$
 0011 0011
 -1100 $+ 0011$
 1101 1101
 -1100 $+ 0011$
 0001 $1|0001$

- <u>Casos patológicos:</u> na subtração o resultado também se torna inconsistente quando o valor numérico extrapola o maior e o menor número da representação. Verifique alguns deles para exercitar.

- <u>Exercício proposto</u>: passe os números adiante para as representações de 8-bits em magnitude e sinal, complemento de 2 e complemento de1:

- Exercício proposto: construa uma tabela com a representação de complemento de 2 para números binários de 5 bits. Qual o maior e o menor número da tabela? Selecione dois números arbitrariamente e realiza a soma e a subtração deles. Veja se os resultados são consistentes. Repita esse último para outros números até que você esteja familiarizado com os números da tabela e com as operações de soma e subtração.
- Exercício proposto: a partir dos dois números hexadecimais fornecidos, verifique que o complemento de 16 de um número hexadecimal é equivalente ao complemento de 2 de sua representação binária. Verifique também que isso vale para o complemento de 15 e o complemento de 1.

F35B; B8D5