FL Questions $\{n \in [1, ..., 13] \mid n\%3 == 2\}$

Алфавит, язык, грамматика (1)

Алфавит - набор символов $L\subseteq \Sigma^*$

Способы задания языка (2)

- 1) DFA
- 2) NFA
- 3) Regular expressions
- 4) КС грамматики

5)

Формальные грамматики (0)

Формальная грамматика - четверка G = (N, T, S, P)

Т - множество терминальных символов(алфавит)

N - множество нетерминальных символов(синтаксические категории)

 $S \in N$ - стартовый символ

Р - множество продукций

Определение продукций.

Преобразования грамматик (4)

1. Меняем стартовый символ

 $S \to \varepsilon | S'$

 $S \Rightarrow^* L(G) \setminus \varepsilon$

 ε -порождающий - это $A \in N$, если $A \Rightarrow^* \varepsilon$

2. Избавление от ε -порождающих

 $A \to \varepsilon$ - удаляем

Пусть было $A \to A_1...A_n$, из них $A_{i_1}...A_{i_k}$ - были эпсилон-порождающими, тогда фигачим 2^k переходов через |. Так как каждое из A-шек может как войти, так и не войти.

3. Удаление цепных продукций

Строим транзитивное замыкание графа

4. Удаление бесполезных нетерминалов

Удаляем непорождающие нетерминалы - те, из которых недостижимы слова.

Удаляем недостижимые из S нетерминалы

Нормальная форма Хомского, алгоритм СҮК (5)

Грамматика, для которой были выполнены преобразования из п.4 - грамматика в **нормальной форме Хомского Алгоритм Кока-Янгера-Касами**

 $M_{i,j,A}$ - верно ли, что $A \Rightarrow^* w_{i...j}, A \in N$

- 1) $i==j\Rightarrow M_{i,j,A}$ выводим ли итый символ строки из A
- 2) i < j Динамика обратно: перебираем все продукции из $A \to BC$, все разбиения подстроки $w_{i..j} = w_{i..k}w_{k+1...j}$, применяем "или"

Время работы $|G| \cdot |w|^3$

Вывод, дерево/лес вывода (8)