

planetmath.org

Math for the people, by the people.

closure space

Canonical name ClosureSpace

Date of creation 2013-03-22 16:48:08 Last modified on 2013-03-22 16:48:08

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771)
Entry type Derivation
Classification msc 54A05

Defines closure topology

Call a set X with a closure operator defined on it a closure space.

Every topological space is a closure space, if we define the closure operator of the space as a function that takes any subset to its closure. The converse is also true:

Proposition 1. Let X be a closure space with c the associated closure operator. Define a "closed set" of X as a subset A of X such that $A^c = A$, and an "open set" of X as the complement of some closed set of X. Then the collection \mathcal{T} of all open sets of X is a topology on X.

Proof. Since $\emptyset^c = \emptyset$, \emptyset is closed. Also, $X \subseteq X^c$ and $X^c \subseteq X$ imply that $X^c = X$, or X is closed. If $A, B \subseteq X$ are closed, then $(A \cup B)^c = A^c \cup B^c = A \cup B$ is closed as well. Finally, suppose A_i are closed. Let $B = \bigcap A_i$. For each i, $A_i = B \cup A_i$, so $A_i = A_i^c = (B \cup A_i)^c = B^c \cup A_i^c = B^c \cup A_i$. This means $B^c \subseteq A_i$, or $B^c \subseteq \bigcap A_i = B$. But $B \subseteq B^c$ by definition, so $B = B^c$, or that $\bigcap A_i$ is closed.

 \mathcal{T} so defined is called the *closure topology* of X with respect to the closure operator c.

Remarks.

- 1. A closure space can be more generally defined as a set X together with an operator $cl: P(X) \to P(X)$ such that cl satisfies all of the Kuratowski's closure axioms where the equal sign "=" is replaced with set inclusion " \subseteq ", and the preservation of \varnothing is no longer assumed.
- 2. Even more generally, a closure space can be defined as a set X and an operator cl on P(X) such that
 - $A \subseteq cl(A)$,
 - $\operatorname{cl}(\operatorname{cl}(A)) \subseteq \operatorname{cl}(A)$, and
 - cl is order-preserving, i.e., if $A \subseteq B$, then $cl(A) \subseteq cl(B)$.

It can be easily deduced that $\operatorname{cl}(A) \cup \operatorname{cl}(B) \subseteq \operatorname{cl}(A \cup B)$. In general however, the equality fails. The three axioms above can be shown to be equivalent to a single axiom:

$$A \subseteq \operatorname{cl}(B)$$
 iff $\operatorname{cl}(A) \subseteq \operatorname{cl}(B)$.

- 3. In a closure space X, a subset A of X is said to be closed if $\operatorname{cl}(A) = A$. Let C(X) be the set of all closed sets of X. It is not hard to see that if C(X) is closed under \cup , then cl "distributes over" \cup , that is, we have the equality $\operatorname{cl}(A) \cup \operatorname{cl}(B) = \operatorname{cl}(A \cup B)$.
- 4. Also, $\operatorname{cl}(\varnothing)$ is the smallest closed set in X; it is the bottom element in C(X). This means that if there are two disjoint closed sets in X, then $\operatorname{cl}(\varnothing) = \varnothing$. This is equivalent to saying that \varnothing is closed whenever there exist $A, B \subseteq X$ such that $\operatorname{cl}(A) \cap \operatorname{cl}(B) = \varnothing$.
- 5. Since the distributivity of cl over \cup does not hold in general, and there is no guarantee that $cl(\emptyset) = \emptyset$, a closure space under these generalized versions is a more general system than a topological space.

References

[1] N. M. Martin, S. Pollard: Closure Spaces and Logic, Springer, (1996).