Tópicos de Matemática Discreta

— prova escrita — 24 de novembro de 2012 — duração: 2 horas — —

exercício 1. Considere as fórmulas $\varphi:(p\Rightarrow q)\Rightarrow r\in\psi:p\vee q\vee r$.

- (a) [1.5 valores] Diga, justificando, se a seguinte afirmação é verdadeira: Se r é uma proposição falsa então φ é falsa, independentemente dos valores lógicos das proposições p e q.
- (b) [1 valor] Determine uma fórmula logicamente equivalente a ψ que não contenha o conectivo \vee .

exercício 2. Considerando que p representa a proposição $\exists_{y \in A} : \forall_{x \in A}, \ y^3x + x = 0$

- (a) [1.5 valores] Verifique se p é verdadeira para $A = \{-3, -1, 0, 9\}$ e para $A = \mathbb{N}$.
- (b) [1.5 valores] Indique em linguagem simbólica, sem recorrer ao símbolo de negação, uma proposição equivalente à negação de p.

exercício 3. [1.5 valores] Prove que se n e m são inteiros tais que 12n-40m=20 e $m\neq 1$, então $n\neq 5$.

exercício 4. Considere os conjuntos

$$A = \{\{1,5\}, 1,5\}, \quad B = \{1,5\} \text{ e } C = \{x^2 + 2 : x \in \mathbb{Z} \land x^2 \in B\}.$$

- (a) [1 valor] Determine C.
- (b) [1.5 valores] Determine $(A \setminus B) \times \mathcal{P}(C)$.
- (c) [1 valor] Indique se $\{1,5\} \in A \cap \mathcal{P}(A)$.

exercício 5. Dê exemplo de conjuntos A, B e/ou C tais que

- (a) [1 valor] $(1, 2) \in A \times B \text{ mas } (2, 1) \notin A \times B$.
- (b) [1 valor] $A \cup B = A \cap B$.
- (c) [1 valor] $A \setminus (B \cup C) = \emptyset$, $A \setminus B \neq \emptyset$ e $A \setminus C \neq \emptyset$.

exercício 6. Sejam A, B e C conjuntos não vazios. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.

- (a) [1.5 valores] Se $(C \setminus A) = (C \setminus B)$ então A = B.
- (b) [1.5 valores] $\mathcal{P}(\mathbb{N}) = \mathcal{P}(P) \cup \mathcal{P}(I)$, onde P é o conjunto dos naturais pares e I é o conjunto dos naturais ímpares.
- (c) [1.5 valores] Se $A \cup B = A \cup C$ então $(A \cup C) \setminus B = A \setminus B$.

exercício 7. [2 valores] Mostre que $2^n \ge 3n^2$ para todo o natural $n \ge 8$.