Predicting Software Development Task Times

Rahul Sane Springboard Intro to Data Science

The Data

- Historical performance of software developers by task
- Spans 10 years and over 10,000 tasks
- Derek Jones: https://github.com/Derek-Jones/SiP_dataset

The Data

- Key columns:
 - TaskNumber
 - Summary
 - Category
 - SubCategory
 - Hours Estimate
 - HoursActual
 - DeveloperHoursActual

Modeling

- Response variable: HoursActual
- Base model using difference between HoursEstimate and HoursActual
- Four machine learning models:
 - 1. Linear model, HoursEstimate as only predictor
 - 2. Linear model, all predictors (inc. SubCategory and terms in Summary)
 - 3. Random forest model, HoursEstimate as only predictor
 - 4. Random forest model, all predictors

Model Performance

- Root-mean-square error (RMSE)
- Normalized root-mean-square error (NRMSE); expressed as percentage

Model Evaluation

Model	RMSE
Base	27.76
Model 1	19.78
Model 2	19.85
Model 3	20.42
Model 4	19.47

Model Evaluation

Model	RMSE	NRMSE
Model 1	19.78	5.39%
Model 2	19.85	5.41%
Model 3	20.42	5.57%
Model 4	19.47	5.31%

Model Evaluation

- All machine learning models outperform base model
- Simple linear model (Model 2) performed very well
- Model 4 (most complex) is best-performing
 - Most computationally expensive (2.5+ hour runtime)

Use Case

- Company that relies on internal softwares
- Improve developer workflows
- Improve project management
- Tighter possible timelines

Further Investigations

- Improve prediction accuracy
- Topic modeling based on summary terms
- Clustering using columns not used here
- Other ML models, inc. SVM and polynomial regression
- Need to avoid over-fitting with more complex models