

Exact Solutions > Nonlinear Partial Differential Equations > Second-Order Parabolic Partial Differential Equations > Schrodinger Equation with a Power-Law Nonlinearity

2.
$$i\frac{\partial w}{\partial t} + \frac{\partial^2 w}{\partial x^2} + A|w|^{2n}w = 0$$
.

Schrodinger (Schrödinger) equation with a power-law nonlinearity. Here, w is a complex functions of real variables x and t; A and n are real numbers, $i^2 = -1$.

1°. Solutions:

$$w(x,t) = C_1 \exp\left\{i \left[C_2 x + (A|C_1|^{2n} - C_2^2)t + C_3\right]\right\},$$

$$w(x,t) = \pm \left[\frac{(n+1)C_1^2}{A\cosh^2(C_1 n x + C_2)}\right]^{\frac{1}{2n}} \exp[i(C_1^2 t + C_3)],$$

$$w(x,t) = \frac{C_1}{\sqrt{t}} \exp\left[i\frac{(x+C_2)^2}{4t} + i\left(\frac{AC_1^{2n}}{1-n}t^{1-n} + C_3\right)\right],$$

where C_1 , C_2 , and C_3 are arbitrary real constants.

- 2°. There is a self-similar solution of the form $w = t^{-1/(2n)}u(\xi)$, where $\xi = xt^{-1/2}$.
- 3°. For other exact solutions, see the nonlinear Schrodinger equation of general form with $f(u) = Au^{2n}$.

References

Ablowitz, M. J. and Segur, H., Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1981.

Akhmediev, N. N. and Ankiewicz, A., Solitons. Nonlinear Pulses and Beams, Chapman & Hall, London, 1997.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Nonlinear Partial Differential Equations*, Chapman & Hall/CRC, Boca Raton, 2004.

Schrodinger Equation with a Power-Law Nonlinearity

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/npde/npde1402.pdf