Cardinalidade de Conjuntos Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

9 de março de 2014

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis

Hilbert's Grand Hotel

Conjuntos Incontáveis

Resultados de Cardinalidade de Conjuntos

Exercícios

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis Hilbert's Grand Hotel

Conjuntos Incontáveis

Resultados de Cardinalidade de Conjuntos

Exercícios

Introdução

A cardinalidade de um conjunto refere-se seu número de elementos.

- Para conjuntos finitos, é fácil calcular...
- Para conjuntos infinitos, observam-se algumas peculiaridades.

Introdução

A cardinalidade de um conjunto refere-se seu número de elementos.

- Para conjuntos finitos, é fácil calcular...
- Para conjuntos infinitos, observam-se algumas peculiaridades.

Definição

Seja S um conjunto. Se existem exatamente n elementos distintos em S, onde $n \in \mathbb{Z}_+$, dizemos que S é um conjunto finito e que n é a cardinalidade de S. A cardinalidade de S é denotada por |S|.

Introdução

Mas e quando *S* é infinito?!

- Nesse caso, falamos em conjuntos contáveis ou incontáveis.
- Os conjuntos contáveis têm **mesma cardinalidade** que \mathbb{Z}_+ .

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis Hilbert's Grand Hotel Conjuntos Incontávei

Resultados de Cardinalidade de Conjuntos

Exercícios

Para conjuntos infinitos, a cardinalidade é comparativa, invés de absoluta.

Definição

Os conjuntos A e B têm **mesma cardinalidade** se e somente se existe uma função bijetora de A para B. Quando A e B têm mesma cardinalidade, escrevemos |A| = |B|.

Para conjuntos infinitos, a cardinalidade é comparativa, invés de absoluta.

Definição

Os conjuntos A e B têm **mesma cardinalidade** se e somente se existe uma função bijetora de A para B. Quando A e B têm mesma cardinalidade, escrevemos |A| = |B|.

Constatação:

Essa definição é baseada no Teorema de Bijeções que encontramos na leitura preparatória L04 (Funções).

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis Hilbert's Grand Hotel Conjuntos Incontáveis

Resultados de Cardinalidade de Conjuntos

Exercícios

Definição

Os conjuntos A e B têm **mesma cardinalidade** se e somente se existe uma função bijetora de A para B. Quando A e B têm mesma cardinalidade, escrevemos |A| = |B|.

Constatação:

Seja S um conjunto, se houver uma bijeção de S para \mathbb{Z}_+ , então S será contável.

Definição

Os conjuntos A e B têm **mesma cardinalidade** se e somente se existe uma função bijetora de A para B. Quando A e B têm mesma cardinalidade, escrevemos |A| = |B|.

Constatação:

Seja S um conjunto, se houver uma bijeção de S para \mathbb{Z}_+ , então S será contável.

Constatação:

O conjunto dos inteiros negativos \mathbb{Z}_- é infinito contável, pois f(n) = -n é um bijeção de \mathbb{Z}_+ em \mathbb{Z}_- .

Também podemos definir de forma relativa quando um conjunto tem MENOS elementos que outro.

Definição

Se existe uma função injetora de A para B, então, necessariamente, $|A| \leq |B|$. Além disso, se existe uma injeção de A para B, mas A e B tiverem cardinalidades diferentes, escrevemos |A| < |B|.

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis

Hilbert's Grand Hotel Conjuntos Incontáveis

Resultados de Cardinalidade de Conjuntos

Exercícios

- Denotamos a cardinalidade de \mathbb{Z}_+ e demais conjuntos contáveis por \aleph_0^{-1} .
- Para mostrar que um conjunto qualquer infinito é contável, devemos prover uma bijeção com Z₊.

¹Lê-se ℵ como "aleph", a primeira letra do alfabeto hebreu.

Exemplo

Mostre que o conjunto dos inteiros ímpares $\mathbb{Z}^{\mathbb{I}}$ é contável. **Solução**: Devemos exibir uma função bijetora $f: \mathbb{Z}^+ \to \mathbb{Z}^{\mathbb{I}}$. Considere a função

$$f(n)=2n-1$$

de \mathbb{Z}^+ para o conjunto dos inteiros ímpares.

Exemplo

Mostre que o conjunto dos inteiros ímpares $\mathbb{Z}^{\mathbb{I}}$ é contável. **Solução**: Devemos exibir uma função bijetora $f: \mathbb{Z}^+ \to \mathbb{Z}^{\mathbb{I}}$. Considere a função

$$f(n)=2n-1$$

de \mathbb{Z}^+ para o conjunto dos inteiros ímpares. Para mostrar que f é uma bijeção, devemos mostrar que f é (i) injetora e (ii) sobrejetora.

Exemplo

Mostre que o conjunto dos inteiros ímpares $\mathbb{Z}^{\mathbb{I}}$ é contável. **Solução** (CONT.):

(i) f é injetora.

Suponha que f(n) = f(m). Então temos que 2n - 1 = 2m - 1. Desenvolvendo a igualdade, percebemos que n = m e f é injetora.

Exemplo

Mostre que o conjunto dos inteiros ímpares $\mathbb{Z}^{\mathbb{I}}$ é contável. **Solução** (CONT.):

(i) f é injetora.

Suponha que f(n) = f(m). Então temos que 2n - 1 = 2m - 1. Desenvolvendo a igualdade, percebemos que n = m e f é injetora.

(ii) f é sobrejetora.

Suponha que t é um inteiro positivo ímpar. Logo, existe um número par 2k, para algum k, tal que t é 2k-1. Observe que 2k-1 é f(k), ou seja, t é imagem de algum k inteiro não negativo para qualquer t e f é sobrejetora.

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis

Hilbert's Grand Hotel

Conjuntos Incontáveis

Resultados de Cardinalidade de Conjuntos

Exercícios

O Grande Hotel é um modelo teórico que mostra um paradoxo.

• Suponha que o Grand Hotel (GH) tem \aleph_0 quartos...

O Grande Hotel é um modelo teórico que mostra um paradoxo.

• Suponha que o Grand Hotel (GH) tem № quartos...

PERGUNTA:

1. Como acomodar mais um hóspede?

O Grande Hotel é um modelo teórico que mostra um paradoxo.

• Suponha que o Grand Hotel (GH) tem № quartos...

PERGUNTA:

1. Como acomodar mais um hóspede?

Figura: O Grande Hotel de Hilbert e seus \aleph_0 quartos.

O Grande Hotel é um modelo teórico que mostra um paradoxo.

Suponha que o Grand Hotel (GH) tem ℵ₀ quartos...

PERGUNTA:

2. Como acomodar mais n hóspedes, onde $n \in \mathbb{Z}_+$?

O Grande Hotel é um modelo teórico que mostra um paradoxo.

Suponha que o Grand Hotel (GH) tem ℵ₀ quartos...

PERGUNTA:

3. Como acomodar mais um número contável ℵ₀ de hóspedes?

O Grande Hotel é um modelo teórico que mostra um paradoxo.

Suponha que o Grand Hotel (GH) tem ℵ₀ quartos...

PERGUNTA:

3. Como acomodar mais um número contável ℵ₀ de hóspedes?

Constatação:

Isso sugere que o conjunto dos Inteiros (\mathbb{Z}) é infinito contável, pois \mathbb{Z}_- é contável.

Exercício:

Mostre que o conjunto dos Inteiros (\mathbb{Z}) é infinito contável, ou seja, mostre uma bijeção de \mathbb{Z} para \mathbb{Z}_+ .

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis Hilbert's Grand Hotel

Conjuntos Incontáveis

Resultados de Cardinalidade de Conjuntos

Exercícios

Conjuntos Incontáveis

Um conjunto qualquer será incontável se ele não for contável.

Conjuntos Incontáveis

Um conjunto qualquer será incontável se ele não for contável.

Exemplo

Mostre que o conjunto dos Reais \mathbb{R} é incontável.

Solução: Devemos mostrar que é impossível construir uma bijeça \tilde{o} entre os dois. Para tal, podemos supor que $o \mathbb{R}$ é contável e buscar uma contradição.

Exemplo

Solução (CONT.): Suponha que \mathbb{R} é contável. Logo, o subconjunto dos reais entre 0 e 1 deve ser contável.

Exemplo

Solução (CONT.): Suponha que \mathbb{R} é contável. Logo, o subconjunto dos reais entre 0 e 1 deve ser contável. Por essa suposição, podemos listálos em alguma ordem

$$\begin{array}{l} r_1 = 0.d_{11}d_{12}d_{13}d_{14}...\\ r_1 = 0.d_{21}d_{22}d_{23}d_{24}...\\ r_1 = 0.d_{31}d_{32}d_{33}d_{34}...\\ r_1 = 0.d_{41}d_{42}d_{43}d_{44}...\\ \vdots \end{array}$$

onde d_{ij} é o j-ésimo dígito decimal do i-ésimo número real listado e cada $d_{ii} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

Exemplo

Solução (CONT.): Suponha que \mathbb{R} é contável. Logo, o subconjunto dos reais entre 0 e 1 deve ser contável. Por essa suposição, podemos listálos em alguma ordem

$$\begin{array}{l} r_1 = 0.d_{11}d_{12}d_{13}d_{14}...\\ r_1 = 0.d_{21}d_{22}d_{23}d_{24}...\\ r_1 = 0.d_{31}d_{32}d_{33}d_{34}...\\ r_1 = 0.d_{41}d_{42}d_{43}d_{44}...\\ \vdots \end{array}$$

onde d_{ij} é o j-ésimo dígito decimal do i-ésimo número real listado e cada $d_{ij} \in \{0,1,2,3,4,5,6,7,8,9\}$. Por exemplo, se $r_1 = 0.23794102...$, então $d_{11} = 2$, $d_{12} = 3$, $d_{13} = 7$, $d_{14} = 9$, etc.

Exemplo

Solução (CONT.): Considere então o número real

$$r = 0.d_1d_2d_3d_4...,$$

onde
$$d_i = 4$$
 se $d_{ii} \neq 4$ e $d_i = 5$ se $d_{ii} = 4$.

Exemplo

Solução (CONT.): Considere então o número real

$$r = 0.d_1d_2d_3d_4...,$$

onde $d_i = 4$ se $d_{ii} \neq 4$ e $d_i = 5$ se $d_{ii} = 4$.

A expansão decimal de r difere de cada outro número real entre 0 e 1 na i-ésima posição, mas r também pertence ao conjunto.

Exemplo

Solução (CONT.): Considere então o número real

$$r = 0.d_1d_2d_3d_4...,$$

onde $d_i = 4$ se $d_{ii} \neq 4$ e $d_i = 5$ se $d_{ii} = 4$.

A expansão decimal de r difere de cada outro número real entre 0 e 1 na i-ésima posição, mas r também pertence ao conjunto. Logo, a suposição de que os reais entre 0 e 1 poderiam ser listados deve ser falsa, uma contradição.

Diagonalização de Cantor

Exemplo

Solução (CONT.): Considere então o número real

$$r = 0.d_1d_2d_3d_4...,$$

onde $d_i = 4$ se $d_{ii} \neq 4$ e $d_i = 5$ se $d_{ii} = 4$.

A expansão decimal de r difere de cada outro número real entre 0 e 1 na i-ésima posição, mas r também pertence ao conjunto. Logo, a suposição de que os reais entre 0 e 1 poderiam ser listados deve ser falsa, uma contradição. Concluímos que o conjunto dos reais entre 0 e 1 é incontável e, consequentemente, o conjunto dos reais também o será.

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis Hilbert's Grand Hotel Conjuntos Incontávei

Resultados de Cardinalidade de Conjuntos

Exercícios

Resultados de Cardinalidade de Conjuntos

Teorema

Se A e B são conjuntos contáveis, então $A \cup B$ também é contável.

Prova

Deixada como exercício.

Resultados de Cardinalidade de Conjuntos

Teorema

(Schröder-Bernstein) Se A e B são conjuntos tais que $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

Resultados de Cardinalidade de Conjuntos

Teorema

(Schröder-Bernstein) Se A e B são conjuntos tais que $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|. Em outras palavras, se há injeções de A para B e de B para A, então também é possível construir uma bijeção entre A e B.

Prova

Deixada como exercício.

Existem funções que não podem ser implementadas por computadores.

• Dado um conjunto contável qualquer S, o número de funções $f: S \to S$ é incontável.

- Dado um conjunto contável qualquer S, o número de funções
 f: S → S é incontável.
- O número de funções que podem ser escritas como programas de computador, porém, é contável, pois:
 - 1. Cada programa possível pode ser visto com uma string.

- Dado um conjunto contável qualquer S, o número de funções
 f: S → S é incontável.
- O número de funções que podem ser escritas como programas de computador, porém, é contável, pois:
 - 1. Cada programa possível pode ser visto com uma string.
 - 2. Podemos atribuir um número natural a cada string destas.

- Dado um conjunto contável qualquer S, o número de funções
 f: S → S é incontável.
- O número de funções que podem ser escritas como programas de computador, porém, é contável, pois:
 - **1.** Cada programa possível pode ser visto com uma string.
 - 2. Podemos atribuir um número natural a cada string destas.
 - Isso forma uma bijeção do conjunto de programas viáveis para os naturais.

Hipótese do Continuum

Pode-se mostrar que... $|\wp(\mathbb{Z}_+)| = |\mathbb{R}|$.

Hipótese do Continuum

Pode-se mostrar que... $|\wp(\mathbb{Z}_+)| = |\mathbb{R}|$.

- Seja S qualquer, $|S| < |\wp(S)|$ (Teorema por Cantor)
- Logo, $|\mathbb{Z}_+| < |\wp(\mathbb{Z}_+)|$
- Dado que $|\wp(S)| = 2^{|S|}$, temos $\aleph_0 < 2^{\aleph_0}$.

Hipótese do Continuum

Pode-se mostrar que... $|\wp(\mathbb{Z}_+)| = |\mathbb{R}|$.

- Seja S qualquer, $|S| < |\wp(S)|$ (Teorema por Cantor)
- Logo, $|\mathbb{Z}_+| < |\wp(\mathbb{Z}_+)|$
- Dado que $|\wp(S)| = 2^{|S|}$, temos $\aleph_0 < 2^{\aleph_0}$.

Definição

A Hipótese do Continuum sugere que não existe nenhum número cardinal entre \aleph_0 e 2^{\aleph_0} . Por essa razão, define-se $2^{\aleph_0} = \aleph_1$.

Outline

Introdução

Cardinalidade de Conjuntos Infinitos

Cardinalidade de Conjuntos Infinitos

Conjunto Contáveis Hilbert's Grand Hotel Conjuntos Incontávei

Resultados de Cardinalidade de Conjuntos

Exercícios

Exercícios

- 1. Determine se os conjuntos são finitos, infinitos contáveis ou incontáveis.
 - a) Os inteiros maiores que 10.
 - b) Os inteiros ímpares negativos.
 - c) Os números reais entre 0 e 2.
 - **d)** O conjunto $A \times \mathbb{Z}_+$, onde $A = \{2,3\}$.
 - e) Os inteiros múltiplos de 10.
- **2.** Mostre que o conjunto dos Inteiros (\mathbb{Z}) é infinito contável, ou seja, mostre uma bijeção de \mathbb{Z} para \mathbb{Z}_+ .
- **3.** Mostre que se A e B são conjuntos contáveis, então $A \cup B$ também é contável.
- 4. Prove o teorema de Schröder-Bernstein.
- **5.** Mostre que |(0,1)| = |(0,1]|. Dica: Utilize o teorema de Schröder-Bernstein.