$0 \le \eta < 1$, η тем больше, чем ближе R_{RC} к C.

5.1.2. Модель дискретного канала без памяти (ДКБП).

Пусть $X \in A = \{a_1,...,a_n\}, Y \in B = \{b_1,...,b_m\}$ с вероятностями появления $p(a_k),p(b_j)$. Вход-выход канала описывается условными вероятностями $p(b_j/a_k) = P\{Y = b_j/X = a_k\}, \ j = 1,2,...,m, k = 1,2,...,n$. Граф такого канала связи имеет вид, изображенный на рисунке 5.1.

Рисунок 5.1. Граф ДКС без памяти.

Например, переход от a_1 к b_2 описывается вероятностью $p(b_2/a_1)$ и т.д.

Двоичный симметричный канал (ДСКС) является частным случаем ДКБП. У ДСКС $X \in \{0,1\}, Y \in \{0,1\}$, где X - набор возможных значений входа, Y - набор возможных значений выхода. Если канальный шум и другие нарушения вызывают статистически независимые ошибки при передаче двоичной последовательности со средней вероятностью p_{out} , то

$$P\{Y=0 \, / \, X=1\} = P\{Y=1 \, / \, X=0\} = p_{out}, \ P\{Y=1 \, / \, X=1\} = P\{Y=0 \, / \, X=0\} = 1 - p_{out}.$$

Рисунок 5.2. Граф ДСКС.

Пропускная способность ДСКС.

 $I(X,Y) = I_{\text{max}}(X,Y)$, если p(0) = p(1) = 0.5. Тогда по формулам (5.1), (5.2), (5.3) запишем:

$$C = \frac{1}{T_{H}} (H_{\text{max}}(Y) - H_{\text{max}}(Y/X)).$$
 (5.5)