

40th IEEE International Conference on Data Engineering Utrecht, Netherlands | 13th - 17th May

Dynamic Data Layout Optimization with Worst-case Guarantees

Kexin Rong^{1,3}, Paul Liu², Sarah Ashok Sonje¹, Moses Charikar² Georgia Tech¹, Stanford University², VMware Research³

Data partition as a basic unit for storage

Partition 1

host

metric

time

Data layout: $f(row_id) \rightarrow partition_id$

Data layouts affect query performance

Partition-level metadata

Part	min(time)	max(time)	min(host)	max(host)
1	2015	2015	server1	server5
2	2016	2019	server1	server5
3	2019	2020	server1	server5

SELECT * FROM tbl WHERE time = 2015

SELECT * FROM tbl WHERE host = server2

Workload-aware layouts maximize data skipping

Example: Qd-tree [1]

- Use workload predicates to partition data
- Efficient for target query workloads
- Performance degrades when workload changes

Data Partitions

[1] Z. Yang, et al. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD 2020.

Challenge: dealing with workload changes

Option 1: Change layout

Reorganization cost +

Query cost -

Option 2: Do nothing

Reorganization cost

Query cost +

Problem Setup

system dependent parameter

Objective: minimize total cost = query + $\alpha \cdot \#$ reorgs

Input: unknown sequence of queries

Output: when and how to reorganize

Current practices

Based on rules and heuristics

- Snowflake ^[1]: monitor "clustering depth" (#partitions that overlap at the same point)
- SAT ^[2]: monitor the ratio of actual query selectivity and data skipping rate
- No guarantee on performance

Based on future workload behaviors

- MTO [3]: can run q more queries from the same distribution before the next workload shift
- Assumptions on workload distribution

Our idea: leveraging online algorithms

Specifically, we adapt classic algorithms for Metrical Task Systems^[1]

- Does NOT rely on assumptions of future workload
- Provide guarantees in the form of competitive ratio

$$\sup_{I} \frac{cost(online\ algorithm)}{cost(offline\ algorithm)}$$

e.g., a single data layout optimized for the entire workload

[1] A. Borodin, N. Linial, and M. E. Saks, "An optimal on-line algorithm for metrical task system," J. ACM, vol. 39, no. 4, pp. 745–763, 1992.

Key Challenge: working with a dynamic state space

State Space S:

MTS:

- Assume a fixed set S of candidate data layouts
- Competitive ratio $\sim \log(|S|)$

In practice:

 As new queries are processed, new layouts are generated on the fly

Our contribution: Introduce a dynamic variant of MTS (D-UMTS), and an algorithm that solves it with a tight competitive ratio $\sim \log(|S_{max}|)$

OREO Overview

Candidate Data Layouts

^{*} Reorganization happens in a separate background process and does not block queries

Reorganizer: how to switch?

The classic algorithm of Borodin, Linial, and Saks^[1]

Counter

- For each query q: increase counter for S_i by $c(q, s_i)$
 - $c(q, s_i)$: % tables read
- When a counter is full (>= α), randomly switch to a state whose counter is not full

Reorganizer: how to switch?

The classic algorithm of Borodin, Linial, and Saks^[1]

- For each query q: increase counter for S_i by $c(q, s_i)$
 - $c(q, s_i)$: % tables read
- When a counter is full (>= α), randomly switch to a state whose counter is not full

A phase ends when all counters are full. Reset all counters to 0

Reorganizer: how to switch?

Handling dynamic state space:

- Insert: delay until next phase
- Delete: set counter to full

Other enhancements

Non-uniform transition distribution

Theorem. The modified algorithm solves D-UMTS with competitive ratio $2H(|S_{max}|) \le 2(1 + \log |S_{max}|)$.

Layout Manager: which layouts to use?

generate_layout(D, Q, k):

- D: a sample of datasets
- Q: a sliding window of recent queries
- k: # total partitions

Selectively admit new layouts

- competitive ratio $\sim \log(|S_{max}|)$
- Only admit a new layout to the state space if it's different enough from all existing ones

Evaluation: End-to-end Time in Spark

[1] M. Daum et al., "Tasm: A tile-based storage manager for video analytics, ICDE 2021

Evaluation: End-to-end Time in Spark

Dataset

• TPC-H* (sf=100)

Workload

- 30k queries
- 20 templates

Metric:

• query + reorganization time

Evaluation: End-to-end Time

Up to 32% improvement over a static data layout optimized for the entire workload

Evaluation: Gap to Offline Optimal

More experiments in the paper

Additional workloads:

• TPC-DS, production workload from an internal data platform

Detailed analysis

- Effect of reorganization cost α
- Sliding window vs reservoir sampling

• ...

Conclusion and Future Works

ORFO

- MTS with dynamic state space
- Up to 32% improvement in combined query and reorganization time compared to using a single, optimized data layout for the entire workload

Assumptions and limitations

- Static dataset
- Workload change rate

Future work

- Non-uniform MTS
- Additional storage budget for hosting multiple data layouts

Code: https://github.com/d2i-lab/oreo