Proposal: Variable Voltage Linear Power Supply

Team Wave Formers

August 25, 2024

Index No.	Name
220046R	Asuramuni S. Y.
220280D	Jayawardena H.D.S.S
220429U	Nimantha K.L.W.O.
220692R	Weragoda W.A.A.P.

Introduction

This proposal presents the design and implementation of a variable voltage linear power supply. The power supply is designed to provide a regulated DC output voltage ranging from 2V to 20V, with a maximum current output of 2.5A. A low-dropout (LDO) voltage regulator is employed to ensure stable operation and efficient power conversion.

Functionality

The proposed linear power supply functions by first converting high-voltage AC from the mains supply into a lower AC voltage via a transformer. This AC voltage is then rectified to produce DC, filtered to smooth out the waveform, and finally regulated to the desired output voltage.

Figure 1: Block diagram of the power supply operation.

Transformer

The power supply utilizes a step-down transformer to reduce the mains voltage (230 VAC) to a level suitable for rectification. A transformer designed for PCB use, such as the Triad Magnetics FP16-3000, would be appropriate for this application.

Figure 2: Transformer configuration for stepping down voltage.

Rectification

A full-wave bridge rectifier is employed to convert the AC voltage from the transformer into a pulsating DC voltage. The rectifier uses four diodes in a bridge configuration to ensure efficient conversion. The rectifier module should be selected based on its suitability for PCB design.

Filtering

To smooth the rectified DC voltage, a large electrolytic capacitor is used. This capacitor reduces the ripple voltage, providing a more stable DC output.

Voltage Regulation

The final stage involves regulating the smoothed DC voltage to the desired level. A low-dropout (LDO) voltage regulator, specifically the LD1085, is chosen due to its ability to handle up to 2.5A of current with minimal voltage drop.

Figure 3: Voltage regulator LD1085.

The output voltage can be varied using a 10-turn precision potentiometer, allowing fine adjustment from 2V to 20V.

Methodology

The construction of the power supply involves the following steps:

- 1. **Transformer Selection:** Choose a transformer that steps down the mains voltage to an appropriate level for rectification.
- 2. Rectifier Assembly: Construct the bridge rectifier circuit using high-efficiency diodes.
- 3. Filter Design: Select and connect a capacitor to smooth the rectified voltage.

- 4. **Regulation Circuit:** Implement the LD1085 voltage regulator circuit with appropriate heatsinking.
- 5. **Enclosure Design:** Assemble the components into a metal chassis for durability and heat dissipation.
- 6. **Testing:** Verify the output voltage range and load current capacity.

Micro-Products and Their Interconnections

The power supply is divided into several micro-products:

- Transformer Module: Steps down the AC voltage.
- Rectifier Module: Converts AC to DC.
- Filter Module: Smooths the DC voltage.
- Regulation Module: Provides a stable, adjustable output voltage.

The interconnections between these modules are illustrated in the block diagram (Figure 1).

Micro-Product Allocation

The tasks are allocated among team members as follows:

- Yehen Asuramuni: Transformer selection and rectifier assembly.
- Sineth Jayawaradhena: Enclosure design and final assembly.
- Oshadha Nimantha: Regulation circuit design and testing.
- Agrajith Pavithra: Filter design and implementation.