IDE Assignment

Mohamed Hamdan

August 2022

Problem Statement - A sequential circuit has a single input x and a single output z. The input signal x can occur in groups of 1, 2 and 3 pulses. If x=1 for one clock period, the output z will be 1 for three clock periods before returning to the starting state. If x=1 for two clock periods, the output z will be 1 for two clock periods before returning to the starting state. If x=1 for three clock periods, the output z will be 1 for a single clock periods, the output z will be 1 for a single clock period before returning to the starting state. Construct a state diagram and implement your design with D F F s . The circuit when designed acts as a pulse width adjuster.

Hardware

Components

Component	Value	Count
Arduino	uno	1
Flip Flop	7474	2
LED	Red	1
Resistor	220ohm	1
Jumper wires	-	as required

the input at clock-3 of the previous cycle. In order to keep track of the number of ones in the input sequence X and to output the proper values at Z (determined by the entry state), the remaining 7 states (3-9) are required.

Since the state diagram uses 10 states, the design requires 4 DFFs. Let the present state be denoted by $\mathbf{P} = P_3 P_2 P_1 P_0$ and the next state as $\mathbf{S} = S_3 S_2 S_1 S_0$ with X as input and Z as output.

Figure 1: State diagram for pulse width adjuster

Connections

The following connections are to be read as IC-Name-IC-pin no:Arduino-pin no :

- IC7447(1) (1:5.5V), (2:8), (3:13), (4:5.5V), (5:2), (6:None), (7:Gnd), (8:None), (9:3), (10:5.5V), (11:13), (12:9), (13:5.5V), (14:5.5V)
- IC7447(2) (1:5.5V), (2:10), (3:13), (4:5.5V), (5:4), (6:None), (7:Gnd), (8:None), (9:5), (10:5.5V), (11:13), (12:11), (13:5.5V), (14:5.5V)

Connect LED to pin 12 of arduino with the 220ohm resistor in series. Use pin 6 of arduino to input X.

State Diagram

The state diagram shown in 1 can be understood easily by grouping the states according to the clock pulse number. Consider one cycle of the state machine to contain three clock pulses numbered 1, 2 and 3. The states 0, 1 and 2 in the clock-1 group are the entry states to produce the Z values for the successive 2 clock pulses (clock-2 and clock-3). Distinct entry states are necessary in order to remember the input sequence of the previous cycle. While entering into any of these three states, the Z value for clock-1 is already determined by

Truth table

P_3	P_2	P_1	P_0	\boldsymbol{X}	S_3	S_2	S_1	S_0	Z
0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	1	1	0
0	0	0	1	0	0	1	0	0	1
0	0	0	1	1	0	0	1	1	1
0	0	1	0	0	0	1	1	0	1
0	0	1	0	1	0	1	0	1	1
0	0	1	1	0	1	0	0	0	0
0	0	1	1	1	0	1	1	1	0
0	1	0	0	0	1	0	0	1	0
0	1	0	0	1	1	0	0	0	0
0	1	0	1	0	1	0	0	0	1
0	1	0	1	1	0	1	1	1	1
0	1	1	0	0	1	0	0	1	1
0	1	1	0	1	1	0	0	0	1
0	1	1	1	0	0	0	0	1	1
0	1	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	1	0	1
1	0	0	0	1	0	0	0	1	1
1	0	0	1	0	0	0	0	0	0
1	0	0	1	1	0	0	1	0	1
1	0	1	0	0	X	X	X	X	X

P_3	P_2	P_1	P_0	X	S_3	S_2	S_1	S_0	Z
1	0	1	0	1	X	X	X	X	X
1	0	1	1	0	X	X	X	X	X
1	0	1	1	1	X	X	X	X	X
1	1	0	0	0	X	X	X	X	X
1	1	0	0	1	X	X	X	X	X
1	1	0	1	0	X	X	X	X	X
1	1	0	1	1	X	X	X	X	X
1	1	1	0	0	X	X	X	X	X
1	1	1	0	1	X	X	X	X	X
1	1	1	1	0	X	X	X	X	X
1	1	1	1	1	X	X	X	X	X

Boolean expressions

The boolean expressions for ${\bf S}$ and Z are:

$$\begin{split} S_3 &= P_2 P_0' + P_2 P_1' X' + P_2' P_1 P_0 X' \\ S_2 &= P_2' P_1 P_0' + P_2' P_1 X + P_3' P_2' P_1' X' + P_2 P_1' P_0 X \\ S_1 &= P_2' P_0 X + P_1' P_0 X + P_3 P_0' X' + P_3' P_2' P_1' X + P_2' P_1 P_0' X' \\ S_0 &= P_3' P_2' X + P_2' P_0' X + P_2 P_0' X' + P_2 P_1 X' + P_3' P_1' P_0 X \\ Z &= P_1 P_0' + P_2 P_0 + P_3 P_0' + P_3 X + P_3' P_1' P_0 \end{split}$$

Software

Make the connections and connect the arduino to the PC via USB. In the location of choice, type the below commands

- $1. \ \, svn \ \, co \ \, https://github.com/Muhammed-Hamdan/iithfwc-2022-23/trunk/fwc-avr_gcc/avr_gcc_assignment$
- 2. cd ide_assignment
- 3. pio run
- 4. pio run t upload