科目	-		
系 級		 	
學號			
姓 名	P49		

Method I: Series solutions about an ordinary point Cohb. 28 6.4)

When X = 0 is an "ordinary point of the ODE (Thatis,

It means

(1) We can find

Series

in the form of a poner

2 Each series converges

Example 1: Solve y"-xy =0

\$ observation: x=0 is

Step1: Express the Solution as a power series

Step 2: plug in the series to the ODE

Step 3: Match The coefficients to find the recurrence relation

Step4: Plug in the coefficients and obtain the general Solution

科目		
系 級		
學 號		
姓名	P50	

Example 2: Solve (1-x2) y"+2xy'+n(n+1) y=0 (ch6.4) (Legendre's equation of order n)

\$ Observation: X=0 is

<u>Step1:</u> Express the solution as a power series

Step 2: Plug in The series to the ODE

Step 3: Match the crefficients to find the recurrence relation

Step4: Plug in the coefficients and obtain the general solution $\mathcal{L} = C_0 \left[\left(- \frac{n(n+1)}{2} \right)^2 + \frac{n(n+1)}{2} \right]$ $+G[X-\frac{(N-1)(h+2)}{2}X^{3}+$

Remarks: About solutions of Legendre's equation

或	17	清	華	大	壆
_		/	$\overline{}$	/ \	

科目		
系 級		
學號		
姓名。	P51	

So for each integer n, we obtain an of Legendre's equation. These polynomials are called

ex: The first few order of

$$P_{o}(x) = \rightarrow \text{ the polynomial Solution of}$$
 $P_{1}(x) = \rightarrow n$
 $P_{2}(x) = P_{3}(x) = P_{4}(x) = P_{4}(x) = 0$

We can make a plot for Legendre polynomials:

2) Properties of Legendre polynomials:

科目		
系級		
學號	- III-	
姓 名	P52	

Method I : Sevies solutions about a regular singular point

When X=0 is a "regular singular point" of the ODE

(That is,

It means

(The cau find)

2) The convergence of the series can be determined

Example 1: Solve 3xy"+y'-y=0 \$ Observation:

by.

Step 1: Express the solution as

Step 2: Plugin The series to the ODE

4'=
4'=

Step3: March the coefficient from

 $3 \operatorname{Cor}(r-1) +$ $\Rightarrow r(3r-2) = 0$; This eq is called $r_1 = r_2 =$

科目	Name
系 級	
學 號	
姓名	P53

Step4: For each
$$r$$
,

For $r_1 = \frac{2}{3} \Rightarrow$

For $r_2 = 0 \Rightarrow$

Remarks:

- 1 In this example,
- (2) The indicial eq is obtained by matching the

 There is a general form of indicial eq (can be derived) as

 +(r-1)+

Example 2: Soire
$$x^2y'+xy'+(x^2-y^2)y=0$$
 CCh6.4)

(Bessel's equation of order y)

\$665ervation: