

Plan Chapitre 1 Généralités

Partie I - Internet

Partie II - une première communication

- Modélisation simpliste
- Illustration par exercice
- Discussion sur les limites/besoins/problèmes

Partie III - une autre communication

- Modélisation multi-réseau
- Illustration par exercice
- Discussion sur les limites/besoins/problèmes

• Des applications woodlap 1

1. GÉNÉRALITÉS LES APPLICATIONS EN CHIFFRES

- Des applications
- Des utilisateurs wooclap2

1. GÉNÉRALITÉS Les utilisateurs dans le monde 2019-2020

Plus de 4,7 Milliards

Plus de la moitié du

trafic sur mobile

[Wikipedia 2019]

- Des applications
- Des utilisateurs
- Définition? wooclap3

1. GÉNÉRALITÉS DESSINER INTERNET

- Des applications
- Des utilisateurs
- Une interconnexion de réseaux à l'échelle mondiale
- Et à l'origine? wooclap4

UN BRIN D'HISTOIRE

• Genèse:

- 1957 Spoutnik entraîne la création de l'ARPA (Advanced Research Projects Agency)
- 1967 Lancement du projet ARPANET
- 1969 ARPANET (4 machines)
- 1971 Premier mail (14 machines)
- 1972 Démonstration officielle (40 machines)

• Avènement:

- 1974 TCP/IP première proposition (Vinton Cerf & Robert Kahn)
- 1981 ARPANET (213 machines)
- 1983 TCP/IP protocoles officiels d'ARPANET
- 1983 DNS (562 machines)
- 1984 ARPANET (1024 machines)
- 1988 Internet worm de R Morris (10% de 60 000 machines)
- 1991 Gopher, World Wide Web
- 2001 125 888 197 machines répertoriées

2. COMMUNICATION TRÈS SIMPLE UN PEU DE VOCABULAIRE

- o Terme « générique »: le message
 - Ce que l'on veut envoyer à notre correspond
 - Plus précisément : la donnée de l'application envoyée à son/ses homologue(s)
- o Chaque technologie à ses propres noms
 - IP: Paquet
 - Réseaux locaux : Trame

2. COMMUNICATION TRÈS SIMPLE ELÉMENTS

o Modélisation de la communication

• Les notions:

- Temps d'émission
- Temps de propagation
- Taux d'utilisation du support

Les outils:

• Chronogramme

2. COMMUNICATION TRÈS SIMPLE APPLICATION NUMÉRIQUE

- o Combien de temps faut-il pour transmettre un message de A à B ? Avec quelle efficacité?
- Cas 1 un lien Ethernet:
 - L = 100 Kbit
 - C = 10 Mbit/s
 - V = 200~000 Km/s
 - d = 200 m
- Cas 2 un lien satellite:
 - L = 100 Kbit
 - C = 1 Mbit/s
 - V = 300~000 Km/s
 - d = 72~000~Km

Exercice

2. COMMUNICATION TRÈS SIMPLE CAS ETHERNET

$$t_e = \frac{L}{c} = \frac{100 \times 10^3}{10 \times 10^6} = 10ms$$

$$t_p = \frac{d}{v} = \frac{200}{200000 \times 10^3} = 1\mu s$$

2. COMMUNICATION TRÈS SIMPLE CAS SATELLITE

$$t_e = \frac{L}{c} = \frac{100 \times 10^3}{1 \times 10^6} = 100 ms$$

$$t_p = \frac{d}{v} = \frac{72000 \times 10^3}{300000 \times 10^3} = 240ms$$

wooclap5

2. COMMUNICATION TRÈS SIMPLE Qu'AVONS-NOUS APPRIS?

- Vocabulaire
 - Message
 - Débit
 - Temps d'émission
 - Temps de propagation
- Outil
 - Le chronogramme
- Eléments importants
 - Débit =/= vitesse de propagation
 - Les éléments binaires se déplacent sur le support (!)

2. COMMUNICATION TRÈS SIMPLE DISCUSSIONS

- Quels problèmes peut rencontrer notre application?
 - Spécifique au type d'équipements, d'OS, ...
 - Spécifique au type d'application (en direct ou non, données véhiculées, ...)
 - Spécifique au moyen de communication
- Quelles limites alors du mode message?
- Et les limites de notre modèle de communication?

3. Une communication à travers des réseaux Eléments

o Un réseau plus vaste

- Du message au paquet:
 - Découpe d'un message de 10Kbits en 5 paquets de 2Kbits
 - Combien de temps faut-il pour transmettre un message de A à B dans son intégralité?
 - Qu'observe t'on sur R_3 ?

Exercice

SOLUTION

$$t_{eacc \ge sA} = \frac{L}{c} = \frac{2 \times 10^3}{10 \times 10^6} = 0.2ms$$

$$t_{eacc \ge sB} = \frac{L}{c} = \frac{2 \times 10^3}{2 \times 10^6} = 1 ms$$

$$t_{eWAN} = \frac{L}{c} = \frac{2 \times 10^3}{1 \times 10^{10}} = 0.2 \mu s$$

$$t_p = \frac{d}{v} = \frac{100 \times 10^3}{200000 \times 10^3} = 0.5ms$$

3. Une communication à travers des réseaux Discussions (wooclap6)

- Quelles limites? Quels problèmes?
 - Lister les problèmes (wooclap 7)

• Lister les actions nécessaires (wooclap8)

Les classer

CONCLUSION LA NOTION DE PROTOCOLE

- o Communication entre des éléments
 - Illustration entre Alice et Bob
 - Alice et Bob doivent être d'accord sur la méthode pour procéder
 - Besoin de règles

o Définition d'un **protocole**

- Ensemble de règles : mécanismes et messages
- Qui régissent la communication entre des entités
- On parle par exemple de *protocole applicatif, de réseau...*
- Assez fréquemment le *protocole* prend le nom de l'application, du réseau, etc... (souvent par abus)

3. Une communication à travers des réseaux Illustration d'un problème

- Du message au paquet:
 - R1 envoie alternativement à R2 et R2'
 - Découpe d'un message de 10Kbits en 5 paquets de 2Kbits
 - Combien de temps faut-il pour transmettre un message de A à B dans son intégralité?
 - Qu'observe t'on sur B?

Exercice