

Fondasi

Hendrik Santoso Sugiarto

IBDA4221 – Selected Topic in Computer Technology *Quantum Computing*

Capaian Pembelajaran

- Information Theory
- Complex Number

Information Theory

Bits pada Digital Computer

- Semua jenis informasi dapat direpresentasikan dalam bentuk paling sederhana dengan 2 simbols saja: 0 dan 1 (bit = binary digit)
- Contoh:
- Dalam sistem desimal:
 - Angka adalah kumpulan string dari kombinasi 10 digits (0,1,2,3,4,5,6,7,8,9)
 - 213 berarti $200 + 10 + 3 = (2 \times 10^2) + (1 \times 10^1) + (3 \times 10^0)$
- Dalam sistem binary:
 - Angka diekspresikan melalui kelipatan 2,4,8,16,32, ...
 - $213 = (1 \times 2^7) + (1 \times 2^6) + (0 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 11010101$
- Huruf, angka, symbol, teks dapat direpresentasika menggunakan system binary: https://www.ibm.com/docs/en/aix/7.2?topic=adapters-ascii-decimal-hexadecimal-octal-binary-conversion-table

byte

Aktivitas: Bermain Bits

- from qiskit_textbook.widgetsimport binary_widget
- binary_widget(nbits=5)

Menyimpan Bits

- Punched cards
 - Komputer awal menyimpan bits dengan melubangi kertas
 - Kertas dibagi menjadi banyak grid dan setiap grid merepresentasikan bit
 - 1 jika berlubang, 0 jika tidak ada lubang
- Compact disks

CD popular di tahun 80an dimana laser akan menyisir permukaan secara spiral

• 1 jika permukaan miring, 0 jika permukaan datar

Qubits pada Quantum Computer

- Qubit menyimpan informasi secara binary (seperti bit), hanya saja qubit memiliki sifat quantum
- 1-bit bernilai antara 1 atau 0
- 1-qubit bernilai 0 dan 1 sekaligus (dalam bentuk superposisi)
- 1-qubit dapat menyimpan informasi 2¹bit

•
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

•
$$|1\rangle = {0 \choose 1}$$

Menyimpan Qubits

- Electron orbitals
 - Apakah shell terisi electron atau tidak
- Spin
 - Apakah spin up atau down
- Polarized photon
 - Apakah photon terpolarisasi horizontal atau vertikal
- Superconducting Junction
 - Apakah arus berputar searah atau berlawanan jarum jam
- Topological Anyon ant matter
 - Apakah bersifat boson atau fermion

Diagram sirkuit

Komputasi: input → operation → output

• Proses ini dapat direpresentasikan dalam bentuk circuit diagram (input di kiri, output

di kanan, dan operasinya diantaranya)

• Operasi-operasi komputasi ini di sebut juga gates

iriputs		Output
Α	В	F
0	0	0
1	0	0
0	1	0
1	1	1

Innute Output

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	0
0	1	0
1	1	0

Output

.—	Inputs	
$\neg 1 $	Α	
	0	
	0	

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
4	4	4

EXCLUSIVE OR

© Copyright 2020 Calvin Institute of Technology. The information contained herein shall not be used, copied, published, quoted, and/or released without prior approval

Quantum Circuit

- Mirip seperti classical circuit, quantum circuit menerima input qubit dan melakukan operasi quantum untuk mengolahnya menjadi output qubit
- Pada quantum circuit, output tidak dapat diketahui secara langsung, tetapi harus diukur (measure) terlebih dahulu
- Qubit diproses dari paling atas (kanan): $|0011\rangle \rightarrow q_0=1$, $q_1=1$, $q_2=0$, $q_3=0$

Contoh: Sirkuit Penjumlahan

Binary addition

• Half adder 0+0

$$0+0 = 00$$
 $0+1 = 01$
 $1+0 = 01$
 $1+1 = 10$

Full adder

	1+1 = 10
S Half adder	A B Cin Cout
LVIN	© Copyright 2020 Calvin Institute of Technology.

Penjumlahan di Sirkuit Kuantum

- Bit kanan half-adder sama dengan XOR gate
- Bit kiri half-adder hanya teraktivasi jika keduanya 1 (Toffoli gate)

Aktivitas: Membuat Adder

Complex Number

Imaginary Number

N= { 1, 2, 5, 4, · · }

Z={ ···, -5, -4, -1, 0, 1, 2, 5, · · 5

• Descartes menyebutnya "imaginary" sebagai ejekan

•
$$x^2 = -1 \rightarrow no \ real \ solution$$

•
$$x = \pm \sqrt{-1}$$

•
$$i = \sqrt{-1}$$

•
$$i^2 = -1$$

10a= 3.5553.

$$\alpha = 0.3555...$$

Complex Number

$$z = a + bi$$

- If b = 0, then the complex number a + bi reduces to a
- If a=0, then the complex number a+bi reduces to bi (pure imaginary numbers)

Addition

•
$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

•
$$(a + bi) - (c + di) = (a - c) + (b - d)i$$

1+1-1=1

Im I

Multiplication

•
$$k(a + bi) = (ka) + (kb)i$$

•
$$(a + bi)(c + di) = (ac - bd) + (ad + bc)i$$

z=a+bi

Re

Rotasi

- Bilangan kompleks a + bi bisa menyatakan fungsi rotasi sudut berapapun
 - f(z) = (a + bi)z
- Bilangan imajiner i menyatakan fungsi rotasi 90^{0}

•
$$f(z) = iz$$

$$3 = 2 \qquad f(3) = 2i$$

$$f(4(2)) = -2i$$

$$f(+(4(2))) = -2i$$

$$7 = 3i - 4$$

$$7 = 3i - 4$$

$$7 = 3i - 4$$

Uji Pemahaman

• Jika
$$A = \begin{bmatrix} 1 & -i \\ 1+i & 4-i \end{bmatrix} \operatorname{dan} B = \begin{bmatrix} i & 1-i \\ 2-3i & 4 \end{bmatrix}$$

- A + B =
- iA =
- AB =

$$A+B=\begin{bmatrix} 1+i & 1-2i \\ 3-2i & 8-i \end{bmatrix}$$
 $1 A = \begin{bmatrix} i & 1 \\ i-1 & 4i+1 \end{bmatrix}$

$$AB = \begin{bmatrix} 1 & -i & -i & | & & -i & | & & -i & | &$$

Complex Conjugates

• Jika $z = \underline{a + b}i$ maka complex conjugate dari z didefinisikan dengan $\bar{z} = a - bi$

•
$$\overline{z_1 + z_2} = \overline{(a_1 + a_2) + (b_1 + b_2)i} = (a_1 + a_2) - (b_1 + b_2)i = (a_1 - b_1i) + (a_2 - b_2i) = \overline{z_1} + \overline{z_2}$$

•
$$\overline{z_1 z_2} = \overline{(a_1 a_2 + a_2 b_1 i + b_2 a_1 i - b_1 b_2)} = (a_1 a_2 - b_1 b_2) - (a_2 b_1 + b_2 a_1) i = (a_1 - b_1 i)(a_2 - b_2 i) = \overline{z_1} \overline{z_2}$$

Im

•
$$z\bar{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$$

•
$$\overline{\overline{z}} = \overline{\overline{a + bi}} = \overline{a - bi} = a + bi = z$$

Polar Form

•
$$z = x + iy$$

•
$$r = |z|$$

•
$$x = rcos\theta$$
, $y = rsin\theta$

•
$$z = r(\cos\theta + i\sin\theta)$$

•
$$\theta = \arg z$$

•
$$z_1 z_2 = r_1 (\cos \theta_1 + i \sin \theta_1) r_2 (\cos \theta_2 + i \sin \theta_2) = r_1 r_2 [(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)] = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$

•
$$|z_1 z_2| = |z_1||z_2|$$

•
$$arg(z_1z_2) = arg(z_1) + arg(z_2)$$

Uji Pemahaman

- Buktikan bahwa $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{z_1}/\overline{z_2}$
- Buktikan bahwa $\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 \theta_2) + i \sin(\theta_1 \theta_2) \right]$

$$\frac{Z_1 = r_1(coso_1 + i sinb_1)}{Z_2 = r_2(coso_2 + i sinb_1)}$$

DeMoivre's Formula

- $z^n = r^n[\cos(\theta + \theta + \dots + \theta) + i\sin(\theta + \theta + \dots + \theta)] = r^n(\cos n\theta + i\sin n\theta)$
- Jika $r = 1 \rightarrow (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$ (2:3n = $r(\cos\theta + i\sin\theta)$)
- $\bar{z} = re^{-i\theta} = r(\cos \theta i\sin \theta)$
- $z_1 z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)} = r_1 r_2 [\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$
- $\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 \theta_2)} = \frac{r_1}{r_2} \left[\cos(\theta_1 \theta_2) + i \sin(\theta_1 \theta_2) \right]$

$$e^{i\pi} = \cos \pi_{-i} \sin \pi_{-i} = -1 + oi = -1$$

$$e^{i\pi} = -1$$

Euler Identity

• Deret Maclaurin
$$g(x) = \sum_{n=0}^{\infty} \frac{d^n f(0)}{dx^n} \frac{x^n}{n!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \to e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!}$$

• Euler Identity:

$$e^{i\pi} = -1$$

• Eksponensial matriks:

$$e^{i\gamma H} = \sum_{n=0}^{\infty} \frac{(i\gamma H)^n}{n!}$$

• Dimana H adalah sebuah matriks

Complex Vector Spaces

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

rector

- Dimana k_1, k_2, \dots, k_r adalah bilangan kompleks
- Sebuah vector $u \in C^n$ dapat ditulis secara notasi vector:

$$\boldsymbol{u} = (u_1, u_2, \dots, u_n)$$

Atau notasi matriks:

$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

$$u_1 = a_1 + b_1 i$$
, $u_2 = a_2 + b_2 i$, ..., $u_n = a_n + b_n i$

Complex inner product

$$\binom{1}{i}$$
 · $\binom{1}{-i}$ = $1+1=2$

• Complex euclidean inner product didefinisikan:

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 \overline{v_1} + u_2 \overline{v_2} + \dots + u_n \overline{v_n}$$

• Bandingkan dengan definisi:

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

• Identifikasi kelemahannya untuk kasus khusus u = (i, 1):

$$\mathbf{u} \cdot \mathbf{u} = 0$$

$$\binom{1}{i} \cdot \binom{1}{i} = 1 - 1 = 0$$

• Inner product dalam kuantum:

$$\langle v|u\rangle = (v_1^* \quad \dots \quad v_n^*) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = v_1^* u_1 + \dots + v_n^* u_n$$

• Dimana z^st adalah notasi kuantum untuk complex conjugate dari z

Uji Pemahaman

Misalkan:

•
$$u = (i, 1 + i, -2) \text{ dan } v = (2 + i, 1 - i, 3 + 2i)$$

•
$$u + v = (2 + U_1) 2 + U_1$$

•
$$i\mathbf{u} = (-1, -1, -21)$$

•
$$u \cdot v = (-i, 1-i, -2) \begin{pmatrix} 2+i \\ 1-i \end{pmatrix} = (-2i+1) + (-2i) + (-6-4i)$$

 $(1-i)(1-i) = 1-i-i-1$

Complex Outer Product

• Complex outer product didefinisikan:

$$\boldsymbol{u} \otimes \boldsymbol{v} = \begin{pmatrix} u_1 v_1 & \dots & u_1 v_n \\ \vdots & \ddots & \vdots \\ u_n \overline{v_1} & \dots & u_n \overline{v_n} \end{pmatrix}$$

Outer product dalam kuantum:

$$|u\rangle\langle v| = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} (v_1^* \quad \dots \quad v_n^*) = \begin{pmatrix} u_1v_1^* & \dots & u_1v_n^* \\ \vdots & \ddots & \vdots \\ u_nv_1^* & \dots & u_nv_n^* \end{pmatrix}$$

Conjugate Transpose

• Conjugate transpose (Hermitian transpose): $A^{\dagger} = \overline{A}^{T}$

- Sifat:
 - $(A^{\dagger})^{\dagger} = A$
 - $(kA)^{\dagger} = \overline{k}A^{\dagger}$
 - $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$
 - $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$

Unitary Matrices

AA-1 = I

• Sebuah matriks riil disebut orthogonal jika:

$$A^{-1} = A^T$$

• Sebuah matriks kompleks disebut unitary jika:

$$A^{-1} = A^{\dagger}$$

• Sebuah matriks kompleks disebut Hermitian jika:

$$A = A^{\dagger}$$

• Sebuah matriks kompleks disebut normal jika:

$$AA^{\dagger} = A^{\dagger}A$$

• Berdasarkan definisi diatas, maka Hermitian matriks adalah normal, dan unitary matriks adalah normal

Uji Pemahaman

Hermitian

$$A = A^{\dagger}$$

• Buktikan matriks Pauli-y $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ dan matriks Hadamard $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ adalah sebuah

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Linear Transformation

- Operasi matriks memproses suatu vector kompleks menjadi vektor kompleks lainnya $oldsymbol{v} = Aoldsymbol{u}$
- Unitary matriks memproses suatu wavefunction menjadi wavefunction lainnya

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

Eigenvalue dan Eigenvector

• Relasi dalam bentuk seperti ini:

Atau dalam notasi dirac:

$$A|v\rangle = \lambda|v\rangle$$
$$(A - I\lambda)|v\rangle = 0$$

- Dimana A adalah sebuah matriks dan λ adalah sebuah angka
- Solusi dari persamaan ini adalah:

$$\det(A - I\lambda) = 0$$

• Jika kita mempunyai relasi ini $A|v\rangle=\lambda|v\rangle$, maka relasi eksponensial eigen adalah:

$$e^{A}|v\rangle = \sum_{n=0}^{\infty} \frac{(A)^{n}|v\rangle}{n!} = \sum_{n=0}^{\infty} \frac{\lambda^{n}|v\rangle}{n!} = e^{\lambda}|v\rangle$$

Uji Pemahaman

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

• Temukan eigenvalue dan eigenvector dari matriks Pauli-z $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

$$\begin{vmatrix} A & V & = & \lambda & V \\ 0 & -1 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & -1 \end{vmatrix} = 0$$

Summary

- Bits: 0101100
- Gates: operasi terhadap bits
- Algoritma: kombinasi beberapa gates
- z = a + bi
- $\bar{z} = a bi$
- $z = r(\cos\theta + i\sin\theta)$
- Vektor kompleks: vektor dengan bilangan kompleks
- Eigen value \rightarrow observables (λ) dan eigen vector \rightarrow ket ($|\psi\rangle$)

Tuhan Memberkati

