Machine-Checked Semantic Session Typing

Jonas Kastberg Hinrichsen, Aarhus University

Joint work with
Daniël Louwrink, University of Amsterdam
Robbert Krebbers, Radboud University
Jesper Bengtson, IT University of Copenhagen

November 22, 2021 Aarhus University, Denmark

Agenda

- Session Types
- ► Semantic Typing (vs Syntactic Typing)
- Semantic Session Type System

Race conditions on shared resources (e.g. references)

► Potentially many program interleavings

Race conditions on shared resources (e.g. references)

▶ Potentially many program interleavings

Non-trivial memory models

- Strong memory Less optimisations
- Weak memory Unintuitive (/undefined) behaviour

Race conditions on shared resources (e.g. references)

Potentially many program interleavings

Non-trivial memory models

- Strong memory Less optimisations
- Weak memory Unintuitive (/undefined) behaviour

Typing disciplines

Race conditions on shared resources (e.g. references)

Potentially many program interleavings

Non-trivial memory models

- Strong memory Less optimisations
- ▶ Weak memory Unintuitive (/undefined) behaviour

Typing disciplines come with restrictions

Linear types - resources can only occur in one thread

Race conditions on shared resources (e.g. references)

Potentially many program interleavings

Non-trivial memory models

- Strong memory Less optimisations
- ▶ Weak memory Unintuitive (/undefined) behaviour

Typing disciplines come with restrictions

- Linear types resources can only occur in one thread
 - No concurrency

Principled way of writing concurrent programs

Principled way of writing concurrent programs

► Isolation of concurrent behaviour

Principled way of writing concurrent programs

- ▶ Isolation of concurrent behaviour
- Threads as services and clients

Principled way of writing concurrent programs

- ▶ Isolation of concurrent behaviour
- Threads as services and clients
- ▶ Used in Erlang, Elixir, Go, Java, Scala, F#, C#, and more

Principled way of writing concurrent programs

- Isolation of concurrent behaviour
- Threads as services and clients
- ▶ Used in Erlang, Elixir, Go, Java, Scala, F#, C#, and more

Message passing primitives

```
new_chan (), send c v, recv c
```

Principled way of writing concurrent programs

- Isolation of concurrent behaviour
- ► Threads as services and clients
- ▶ Used in Erlang, Elixir, Go, Java, Scala, F#, C#, and more

Message passing primitives

```
new_chan (), send c v, recv c 

Example: let (c, c') := new_chan () in fork {let x := recv c' in send c' (x + 2)}; send c 40; recv c
```

Principled way of writing concurrent programs

- Isolation of concurrent behaviour
- Threads as services and clients
- ▶ Used in Erlang, Elixir, Go, Java, Scala, F#, C#, and more

Message passing primitives

```
new_chan (), send c v, recv c
```

```
Example: let (c, c') := new_chan () in
fork {let x := recv c' in send c' (x + 2)};
send c 40; recv c
```

Many variants of message passing exist

We consider: asynchronous, order-preserving and reliable

Syntax

```
S ::= A.S | ?A.S | end | ...
```

$$A ::= \mathbf{Z} \mid \mathbf{1} \mid \text{chan } S \mid \dots$$

Syntax

Type example

chan (?Z.!Z.end)

Syntax

Type example

```
chan (?Z.!Z.end)
```

Usage

Syntax

Duality

$$S ::= A.S \mid$$
 $A.S \mid$
end $\mid \dots$

$$\overline{\frac{!A.S}{?A.S}} = ?A.\overline{S}$$

 $\overline{?A.S} = !A.\overline{S}$
 $\overline{end} = end$

```
A ::= \mathbf{Z} \mid \mathbf{1} \mid \text{chan } S \mid \dots
```

Type example

chan (?Z.!Z.end)

Usage

Syntax Duality $\overline{1A S} = ?A \overline{S}$ S ::= !A.S $\overline{?A.S} = !A \overline{S}$?A. S $\overline{\text{end}} = \text{end}$ end Rules $A ::= \mathbf{Z} \mid \mathbf{1} \mid \text{chan } S \mid \dots$ $\Gamma \vdash \text{new_chan}$ (): chan $S \times \text{chan } \overline{S} \dashv \Gamma$ Type example chan (?Z.!Z. end) **Usage**

Syntax Duality $\overline{1A S} = ?A \overline{S}$ S ::= !A.S $\overline{?A.S} = !A \overline{S}$?A. S $\overline{\mathrm{end}} = \mathrm{end}$ end Rules $A ::= \mathbf{Z} \mid \mathbf{1} \mid \text{chan } S \mid \dots$ $\Gamma \vdash \text{new_chan}$ (): chan $S \times \text{chan } \overline{S} \dashv \Gamma$ $\Gamma, x: \text{chan } (!A.S), y: A \vdash \text{send } x y: \mathbf{1} \dashv \Gamma, x: \text{chan } S$ Type example chan (?Z.!Z. end)

Usage

Syntax

$$S ::= A.S$$
 | ?A.S | end |.

$$A ::= \ \mathbf{Z} \mid \mathbf{1} \mid \mathtt{chan} \ S \mid \dots$$

Type example

chan (**?Z**. **!Z**. end)

Usage

c: chan S

Duality

$$\overline{\underline{!A.S}} = \underline{?A.\overline{S}}$$

 $\overline{?A.S} = \underline{!A.\overline{S}}$
 $\overline{end} = \underline{end}$

Rules

```
\Gamma \vdash \text{new\_chan} \ () : \text{chan} \ S \times \text{chan} \ \overline{S} \dashv \Gamma

\Gamma, x : \text{chan} \ (!A.S), y : A \vdash \text{send} \ x \ y : \mathbf{1} \dashv \Gamma, x : \text{chan} \ S

\Gamma, x : \text{chan} \ (?A.S) \vdash \text{recv} \ x : A \dashv \Gamma, x : \text{chan} \ S
```

Syntax

$$A ::= \mathbf{Z} \mid \mathbf{1} \mid \text{chan } S \mid \dots$$

Type example

chan (**?Z**. **!Z**. end)

Usage

c: chan S

Duality

$$\overline{\underline{!A.S}} = \underline{?A.\overline{S}}$$

 $\overline{?A.S} = \underline{!A.\overline{S}}$
 $\overline{end} = end$

Rules

 $\Gamma \vdash \text{new_chan}$ (): chan $S \times \text{chan } \overline{S} \dashv \Gamma$ $\Gamma, x : \text{chan } (!A. S), y : A \vdash \text{send } x \ y : \mathbf{1} \dashv \Gamma, x : \text{chan } S$ $\Gamma, x : \text{chan } (?A. S) \vdash \text{recv } x : A \dashv \Gamma, x : \text{chan } S$

Program example

$$\lambda c.$$
 let $x :=$ recv c in send c $(x + 2)$

Duality Syntax $\overline{AS} = ?A\overline{S}$ S ::= !A. S $\overline{?A.S} = !A \overline{S}$?A. S $\overline{\text{end}} = \text{end}$ end Rules $A ::= \mathbf{Z} \mid \mathbf{1} \mid \text{chan } S \mid \dots$ $\Gamma \vdash \text{new_chan}$ (): chan $S \times \text{chan } \overline{S} \dashv \Gamma$ $\Gamma, x: \text{chan } (!A.S), y: A \vdash \text{send } x y: \mathbf{1} \dashv \Gamma, x: \text{chan } S$ Type example Γ , x: chan $(?A, S) \vdash \mathbf{recv} \ x : A \dashv \Gamma$, x: chan S chan (?Z.!Z. end) Program example Usage $\Gamma \vdash \lambda c$. let $x := \operatorname{recy} c$ in send c(x+2): chan (?Z.!Z. end) $\rightarrow 1 \dashv \Gamma$ c: chan S

Session Types - The bigger picture

Active topic of research since 1993 Has been used to guarantee intricate properties

- Deadlock freedom
- Session fidelity
 - Programs behave according to a session type

Has been scaled to bigger problems

Multi-Party Session Types

Has been applied to industry-level languages

- C, Haskell, Java, OCaml, Rust, Scala
- ▶ https://groups.inf.ed.ac.uk/abcd/session-implementations.html

Problems

1. Lack of feature-rich session type systems

- Polymorphism, recursion, and subtyping have been studied individually
- ▶ No session type systems that combines all three

Problems

1. Lack of feature-rich session type systems

- ▶ Polymorphism, recursion, and subtyping have been studied individually
- ▶ No session type systems that combines all three

2. No support for "racy" yet safe programs

- Session type systems enforce a strict ownership discipline of channel endpoints
- ▶ No way to type check safe sharing of channel endpoints

$$\lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\textbf{Z}. ?\textbf{Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

7

Problems

1. Lack of feature-rich session type systems

- ▶ Polymorphism, recursion, and subtyping have been studied individually
- No session type systems that combines all three

2. No support for "racy" yet safe programs

- Session type systems enforce a strict ownership discipline of channel endpoints
- No way to type check safe sharing of channel endpoints

$$\lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z.?Z. \text{end}) \multimap (Z \times Z)$$

3. Lack of mechanised soundness proofs for session type systems

- Few results exist for simpler systems
- ▶ None exist for more expressive systems

Key Idea

Semantic typing

Semantic typing [Milner, Ahmed, Princeton PCC project, RustBelt project]

- ▶ Type system defined in terms of language semantics
- Modernly defined in terms of a program logic
- Expressivity and soundness inherited from underlying logic
- Allows manually proving safe yet untypeable programs

Key Idea

Semantic typing using Iris

Semantic typing [Milner, Ahmed, Princeton PCC project, RustBelt project]

- ► Type system defined in terms of language semantics
- Modernly defined in terms of a program logic
- Expressivity and soundness inherited from underlying logic
- Allows manually proving safe yet untypeable programs

Iris [Iris project]

- ► Higher-order concurrent separation logic
- Mechanised in Coq, with tactic support

Key Idea

Semantic typing using Iris and Actris

Semantic typing [Milner, Ahmed, Princeton PCC project, RustBelt project]

- ► Type system defined in terms of language semantics
- Modernly defined in terms of a program logic
- Expressivity and soundness inherited from underlying logic
- Allows manually proving safe yet untypeable programs

Iris [Iris project]

- ► Higher-order concurrent separation logic
- Mechanised in Coq, with tactic support

Actris [Hinrichsen et al. POPL'20]

- ▶ **Dependent separation protocols:** Logical protocols inspired by session types
- Mechanised in Coq, with tactic support

- 1. Rich extensible type system for session types
 - ► Term and session type equi-recursion
 - ► Term and session type polymorphism
 - ► Term and (asynchronous) session type subtyping
 - Unique and shared reference types, copyable types, lock types

- 1. Rich extensible type system for session types
 - ► Term and session type equi-recursion
 - Term and session type polymorphism
 - ► Term and (asynchronous) session type subtyping
 - Unique and shared reference types, copyable types, lock types
- 2. Supports integrating safe yet untypeable programs, through manual proofs

- 1. Rich extensible type system for session types
 - ► Term and session type equi-recursion
 - Term and session type polymorphism
 - Term and (asynchronous) session type subtyping
 - Unique and shared reference types, copyable types, lock types
- 2. Supports integrating safe yet untypeable programs, through manual proofs
- 3. Full mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris/-/tree/cpp21)

Syntactic Typing vs. Semantic Typing

Syntactic Typing

In a syntactic type system

In a syntactic type system

► Types are defined as a closed inductive definition

In a syntactic type system

Types are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- ▶ Rules are defined as a closed inductive relation

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i$: **Z**

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i$: **Z**
- **▶** Type safety

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i$: **Z**
- **Type safety**: if $\vdash e : A$ then safe e

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i$: **Z**
- **Type safety**: if $\vdash e : A$ then safe e safe $e \triangleq \forall e'$. if $e \longrightarrow^* e'$ then $(e' \in Val)$ or $(\exists e'' . e' \longrightarrow e'')$

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i$: **Z**
- **Type safety**: if $\vdash e : A$ then safe e safe $e \triangleq \forall e'$. if $e \longrightarrow^* e'$ then $(e' \in Val)$ or $(\exists e'' . e' \longrightarrow e'')$
- ► Type safety is proven using progress and preservation

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- **Particle Rules** are defined as a closed inductive relation: ⊢ *i* : **Z**
- **Type safety**: if $\vdash e : A$ then safe e safe $e \triangleq \forall e'$. if $e \longrightarrow^* e'$ then $(e' \in Val)$ or $(\exists e'' . e' \longrightarrow e'')$
- ► Type safety is proven using progress and preservation
 - ▶ **Progress**: if $\vdash e : A$ then $(e \in Val)$ or $(\exists e'. e \longrightarrow e')$

- **Types** are defined as a closed inductive definition: $A := \mathbf{Z} \mid A_1 \times A_2 \mid \dots$
- **Particle Rules** are defined as a closed inductive relation: ⊢ *i* : **Z**
- **Type safety**: if $\vdash e : A$ then safe e safe $e \triangleq \forall e'$. if $e \longrightarrow^* e'$ then $(e' \in Val)$ or $(\exists e'' . e' \longrightarrow e'')$
- ► Type safety is proven using progress and preservation
 - ▶ **Progress**: if $\vdash e : A$ then $(e \in Val)$ or $(\exists e'. e \longrightarrow e')$
 - **Preservation**: if $\vdash e : A$ and $e \longrightarrow e'$ then $\vdash e' : A$

A semantic type system is defined in terms of the language semantics

A semantic type system is defined in terms of the language semantics

► **Types** defined as predicates over values

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

A semantic type system is defined in terms of the language semantics

Types defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 w_1) \land (A_2 w_2)$$

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

$$\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$$

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

▶ **Judgement** *defined* as safety-capturing evaluation

$$\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$$

Rules are proven as lemmas:

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

▶ **Judgement** *defined* as safety-capturing evaluation

$$\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$$

Rules are *proven* as lemmas: $\models i : \mathbf{Z}$

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

- ▶ Judgement defined as safety-capturing evaluation
 - $\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$
- ▶ **Rules** are *proven* as lemmas: $\models i : \mathbf{Z} \quad \leadsto \quad i \in \mathbb{Z}$

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

$$\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$$

- ▶ **Rules** are *proven* as lemmas: $\models i : \mathbf{Z} \quad \leadsto \quad i \in \mathbb{Z}$
- Semantic type safety

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

$$\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$$

- ▶ **Rules** are *proven* as lemmas: $\models i : \mathbf{Z} \quad \leadsto \quad i \in \mathbb{Z}$
- **Semantic type safety**: If $\models e : A$ then safe e

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

$$\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$$

- ▶ **Rules** are *proven* as lemmas: $\models i : \mathbf{Z} \quad \leadsto \quad i \in \mathbb{Z}$
- **Semantic type safety**: If $\models e : A$ then safe e
 - Consequence of the judgement definition

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow Prop

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 \ w_1) \land (A_2 \ w_2)$$

$$\models e : A \triangleq$$
 safe e and $\forall v$. if $e \longrightarrow^* v$ then $A v$

- ▶ Rules are *proven* as lemmas: $otin \mathbf{Z}$ $i \in \mathbb{Z}$
- ▶ Semantic type safety: If $\models e : A$ then safe e
 - Consequence of the judgement definition

A semantic type system is defined in terms of the language semantics

Types defined as predicates over values Type \triangleq Val \rightarrow iProp

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$
 $A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) \land (A_1 w_1) \land (A_2 w_2)$

$$\models e : A \triangleq \text{ safe } e \text{ and } \forall v. \text{ if } e \longrightarrow^* v \text{ then } A v$$

- ▶ Rule Replacing Coq's Prop with Iris's iProp implicitly threads the heap:
- **Sem ▶** similar to Type \triangleq Val \rightarrow Heap \rightarrow Prop
 - but also handles step-indexing and user-defined ghost state

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow iProp

Iris's weakest precondition (wp $e \{\Phi\}$):

- ▶ captures that safe e and $\forall v. e \longrightarrow^* v$ then Φv
- implicitly handles the heap and ghost state
- ▶ Judgement defined as safety capturing evaluation

$$\models e : A \triangleq \mathsf{wp} e \{A\}$$

- ▶ **Rules** are *proven* as lemmas: $\models i : \mathbf{Z} \quad \leadsto \quad i \in \mathbb{Z}$
- **Semantic type safety**: If $\models e : A$ then safe *e*
 - Consequence of the judgement definition

A semantic type system is defined in terms of the language semantics

Types defined as predicates over values Type \triangleq Val \rightarrow iProp

Iris's weakest precondition (wp $e \{\Phi\}$):

- ▶ captures that safe e and $\forall v. e \longrightarrow^* v$ then Φv
- implicitly handles the heap and ghost state
- Judgement defined as safety-capturing evaluation

$$\models e : A \triangleq wp e \{A\}$$

- ▶ **Rules** are *proven* as lemmas: $\models i : \mathbf{Z}$ \rightarrow $i \in \mathbb{Z}$
- **Semantic type safety**: If $\models e : A$ then safe e
 - Consequence of the judgement definition

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow iProp

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) * (A_1 w_1) * (A_2 w_2)$$

$$\models e : A \triangleq wp e \{A\}$$

- ► R Replacing regular conjunction (∧) with Iris's separation
- ➤ **S** conjunction (*) yields a substructural product type

 The separation conjunction (P * Q) states that P and Q hold for disjoint parts of the heap

A semantic type system is defined in terms of the language semantics

Types defined as predicates over values Type \triangleq Val \rightarrow iProp

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) * (A_1 w_1) * (A_2 w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} A \triangleq \lambda w. \ (w \in \mathsf{Loc}) * \exists v. \ (w \mapsto v) * (A v)$$

$$\models e : A \triangleq wp e \{A\}$$

- **Ru** The *points-to connective* $(\ell \mapsto v)$ asserts exclusive ownership of a
- **Se** location ℓ , stating that it holds the value v
 - Consequence of the judgement definition

A semantic type system is defined in terms of the language semantics

▶ **Types** defined as predicates over values Type \triangleq Val \rightarrow iProp

$$\mathbf{Z} \triangleq \lambda w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) * \triangleright (A_1 w_1) * \triangleright (A_2 w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} A \triangleq \lambda w. \ (w \in \mathsf{Loc}) * \exists v. \ (w \mapsto v) * \triangleright (A v)$$

- Adding Iris's later modality (\triangleright) allows modeling equi-recursive types using Iris's guarded recursion operator ($\mu X.A$)
- ▶ Rules are proven as lemmas: $\vdash i : \mathbf{Z} \quad \leadsto \quad i \in \mathbb{Z}$
- **Semantic type safety**: If $\models e : A$ then safe *e*
 - Consequence of the judgement definition

 $Session\ type\ rules\ warrant\ pre-\ and\ post-contexts:$

Session type rules warrant pre- and post-contexts:

$$\Gamma, x$$
: chan $(!A. S), y: A \vdash \text{send } x \ y: \mathbf{1} \dashv \Gamma, x$: chan S Γ, x : chan $(?A. S) \vdash \text{recv } x: A \dashv \Gamma, x$: chan S

Session type rules warrant pre- and post-contexts:

$$\Gamma, x$$
: chan $(!A. S), y: A \vdash \text{send } x \ y: \mathbf{1} \dashv \Gamma, x$: chan S Γ, x : chan $(?A. S) \vdash \text{recv } x: A \dashv \Gamma, x$: chan S

Semantic judgement with contexts:

$$\Gamma \vDash e : A \dashv \Gamma' \triangleq ?$$

Session type rules warrant pre- and post-contexts:

$$\Gamma, x: \text{chan } (!A.S), y: A \vdash \text{send } x \ y: \mathbf{1} \dashv \Gamma, x: \text{chan } S$$

 $\Gamma, x: \text{chan } (?A.S) \vdash \text{recv } x: A \dashv \Gamma, x: \text{chan } S$

Semantic judgement with contexts:

$$\Gamma \models \sigma \triangleq ?$$

$$\Gamma \models e : A = \Gamma' \triangleq ?$$

The *closing substitution* judgement ($\Gamma \vDash \sigma$) captures separate ownership of the type predicates in context Γ for the values in closing substitution σ .

- $ightharpoonup \Gamma \in \mathsf{List} \ (\mathsf{String} \times \mathsf{Type})$
- $ightharpoonup \sigma \in \mathsf{String} \xrightarrow{\mathsf{fin}} \mathsf{Val}$

Session type rules warrant pre- and post-contexts:

$$\Gamma, x$$
: chan $(!A.S), y: A \vdash \text{send } x \ y: \mathbf{1} \dashv \Gamma, x$: chan S Γ, x : chan $(?A.S) \vdash \text{recv } x: A \dashv \Gamma, x$: chan S

Semantic judgement with contexts:

The *iterated separating conjunction* (\bigstar) ensures that the resources of each variable are owned separately:

$$\bigstar_{y \in y_1 \dots y_n} \cdot \Phi y \triangleq \Phi y_1 * \dots * \Phi y_n$$

Session type rules warrant pre- and post-contexts:

$$\Gamma, x$$
: chan $(!A.S), y: A \vdash \text{send } x \ y: \mathbf{1} \dashv \Gamma, x$: chan S Γ, x : chan $(?A.S) \vdash \text{recv } x: A \dashv \Gamma, x$: chan S

Semantic judgement with contexts:

$$\Gamma \vDash \sigma \triangleq \underset{(x,A) \in \Gamma}{\bigstar} . \ A(\sigma(x))$$

$$\Gamma \vDash e : A \dashv \Gamma' \triangleq \forall \sigma. \ (\Gamma \vDash \sigma) \underset{\uparrow}{\bigstar} \text{wp } e[\sigma] \{w. (A w) * (\Gamma' \vDash \sigma)\}$$

The *separating implication* (-*) is used similarly to implication as:

$$\frac{P * Q \vdash R}{P \vdash Q \multimap R} \qquad \frac{P \land Q \vdash R}{P \vdash Q \Rightarrow F}$$

Semantic Typing – Typing Contexts

Session type rules warrant pre- and post-contexts:

$$\Gamma, x$$
: chan $(!A.S), y: A \vdash \text{send } x \ y: \mathbf{1} \dashv \Gamma, x$: chan S Γ, x : chan $(?A.S) \vdash \text{recv } x: A \dashv \Gamma, x$: chan S

Semantic judgement with contexts:

$$\Gamma \vDash \sigma \triangleq \bigstar_{(x,A)\in\Gamma} . \ A(\sigma(x))$$

$$\Gamma \vDash e : A \dashv \Gamma' \triangleq \forall \sigma. (\Gamma \vDash \sigma) \twoheadrightarrow \text{wp } e[\sigma] \{w. (A w) * (\Gamma' \vDash \sigma)\}$$

Inspired by the RustBelt project

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

```
Lemma ltyped_par \(\Gamma\) \(\Ga
             (\Gamma1 \models e1 : A1 \dashv \Gamma1') -* (\Gamma2 \models e2 : A2 \dashv \Gamma2') -*
             (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = | \Gamma 1' ++ \Gamma 2').
Proof.
             iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
             iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                        as "[H[1 H[2]".
            wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
             iIntros (w1 w2) "[[HA1 H\Gamma1'] [HA2 H\Gamma2']] !>".
            iSplitL "HA1 HA2".
            + iExists w1, w2. by iFrame.
            + iApply ctx_ltyped_app. by iFrame.
Qed.
```

```
Rule:
```

Proof:

Proof.

```
\Gamma_1 \models e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \models e_2 : A_2 \dashv \Gamma_2'
                                               \Gamma_1 \cdot \Gamma_2 \models (e_1 \mid\mid e_2) : (A_1 \times A_2) = \Gamma_1' \cdot \Gamma_2'
Lemma ltyped_par \(\Gamma\) \(\Ga
              (\Gamma1 \models e1 : A1 \dashv \Gamma1') -* (\Gamma2 \models e2 : A2 \dashv \Gamma2') -*
              (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = \Gamma 1' ++ \Gamma 2').
             iIntros (\forall \sigma_1. (\Gamma_1 \models \sigma_1) \twoheadrightarrow \mathsf{wp} \ e_1[\sigma_1] \{ w_1. (A_1 \ w_1) \ast (\Gamma_1' \models \sigma_1) \}) \twoheadrightarrow
            iDestruc as "[H] \forall \sigma_2. (\Gamma_2 \vDash \sigma_2) -* wp e_2[\sigma_2] \{w_2. (A_2 w_2) * (\Gamma_2' \vDash \sigma_2)\}) -* \forall \sigma. (\Gamma_1 \cdot \Gamma_2 \vDash \sigma) -* wp (e_1||e_2)[\sigma] \{w. (\exists w_1, w_2, w = (w_1, w_2) * (w_1, w_2, w = (w_2, w_2))\}
                                                                                                                                                                                                                                                                                                                                          (A_1 w_1) * (A_2 w_2)) *
              i Intros
                                                                                                                                                                                                                                                                                                                                  (\Gamma'_1 \cdot \Gamma'_2 \vDash \sigma)
             iSplitL
              + iExists wi, wz. by
              + iApply ctx_ltyped_app. by iFrame.
```

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma 1 \models e1 : A1 \dashv \Gamma 1') -* (\Gamma 2 \models e2 : A2 \dashv \Gamma 2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = | \Gamma 1' ++ \Gamma 2').
Proof.
           iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                       as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 H\Gamma1'] [HA2 H\Gamma2']] !>".
           iSplitL "HA1 HA2".
           + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
Qed.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : 1ttv \Sigma
\sigma: gmap string val
"He1" : \Gamma1 \vDash e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
"H\Gamma" : \Gamma1 ++ \Gamma2 \vDash \sigma
WP e1[\sigma] ||| e2[\sigma]
   \{\{ w, (A1 \times A2) w * \}
              (\Gamma 1' ++ \Gamma 2' \models \sigma) }}
```

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma 1 \models e1 : A1 \dashv \Gamma 1') -* (\Gamma 2 \models e2 : A2 \dashv \Gamma 2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = \Gamma 1' ++ \Gamma 2').
Proof.
           iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "HΓ")
                      as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 HF1) (He2 HF2)
           iIntros (w1 w2) "[[HA1 H\Gamma1'] [H
           iSplitL "HA1 HA2".
                                                                                                                                                                                                  \overline{(\Gamma_1 \models \sigma) * (\Gamma_2 \models \sigma)}
           + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
Qed.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : 1ttv \Sigma
\sigma: gmap string val
"He1" : \Gamma1 \vDash e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
"H\Gamma" : \Gamma1 ++ \Gamma2 \vDash \sigma
WP_e1[\sigma] | e2[\sigma]
   \{\{ w, (A1 \times A2) w * \}
              (\Gamma 1' ++ \Gamma 2' \models \sigma) }}
```

Rule:

```
\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}
```

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma 1 \models e1 : A1 \dashv \Gamma 1') -* (\Gamma 2 \models e2 : A2 \dashv \Gamma 2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = \Gamma 1' ++ \Gamma 2').
Proof.
            iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                       as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 H\Gamma1'] [HA2 H\Gamma2']] !>".
           iSplitL "HA1 HA2".
           + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
Qed.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : 1ttv \Sigma
\sigma: gmap string val
"He1" : \Gamma1 \vDash e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
 _____
"H\Gamma 1" : \Gamma 1 \models \sigma
"H\Gamma2" : \Gamma2 \models \sigma
WP e1[\sigma] ||| e2[\sigma]
   \{\{ w, (A1 \times A2) w *
             (\Gamma 1' ++ \Gamma 2' \models \sigma) }}
```

```
Rule:
```

```
\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}
```

 $(\forall \sigma_1. (\Gamma_1 \vDash \sigma_1) \twoheadrightarrow \mathsf{wp} \ e_1[\sigma_1] \{ w_1. (A_1 \ w_1) \ast (\Gamma_1' \vDash \sigma_1) \})$

```
(\forall \sigma_2. (\Gamma_2 \vDash \sigma_2) \twoheadrightarrow \text{wp } e_2[\sigma_2] \{ w_2. (A_2 w_2) * (\Gamma_2' \vDash \sigma_2) \})

FIGUL:

iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
```

iDestruct (ctx_ltyped_app with "H\Gamma")
as "[H\Gamma 1 H\Gamma 2]".
wp_apply (wp_par with "(He1 H\Gamma 1) (He2 H\Gamma 2)").

iIntros (w1 w2) "[[HA1 H Γ 1'] [HA2 H Γ 2']] !>".

"He2" : Γ 2 \models e2 : Λ 2 \dashv Γ 2'

"H Γ 1" : Γ 1 \models σ "H Γ 2" : Γ 2 \models σ

WP e1[σ] ||| e2[σ] {{ w, (A1 × A2) w * ([1' ++ [2' $\models \sigma$) }}

wp $e_1 \{ \Phi_1 \} * \text{wp } e_2 \{ \Phi_2 \} \twoheadrightarrow \text{wp } (e_1 \mid\mid e_2) \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \Phi_1 v_1 * \Phi_2 v_2 \}$

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma1 \models e1 : A1 \dashv \Gamma1') -* (\Gamma2 \models e2 : A2 \dashv \Gamma2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = \Gamma 1' ++ \Gamma 2').
Proof.
            iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                       as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 HΓ1'] [HA2 HΓ2']] !>".
           iSplitL "HA1 HA2".
           + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
Qed.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : 1tty \Sigma
\sigma: gmap string val
w1. w2 : val
"He1" : \Gamma1 \models e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
"HA1" : A1 w1
"H\Gamma1'" : \Gamma1' \vDash \sigma
"HA2" : A2 w2
"H\Gamma2'" · \Gamma2' \vDash \sigma
(A1 \times A2) (w1, w2) *
   (\Gamma 1' ++ \Gamma 2' \models \sigma)
```

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

Proof:

```
Lemma ltyped_par \(\Gamma\) \(\Ga
             (\Gamma 1 \models e1 : A1 \dashv \Gamma 1') -* (\Gamma 2 \models e2 : A2 \dashv \Gamma 2') -*
             (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = | \Gamma 1' ++ \Gamma 2').
Proof.
             iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
             iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                        as "[H[1 H[2]".
            wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 HΓ1'] [HA2 HΓ2']] !>".
            iSplitL "HA1 HA2".
            + iExists w1, w2. by iFrame.
             + iApply ctx_ltyped_app. by iF
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : lttv \Sigma
\sigma: gmap string val
w1. w2 : val
"He1" : \Gamma1 \models e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
"HA1" : A1 w1
"H\Gamma1'" : \Gamma1' \vDash \sigma
"HA2" : A2 w2
"H\Gamma2'" · \Gamma2' \vDash \sigma
(A1 \times A2) (w1, w2) *
   (\Gamma 1' + \Gamma 2' \models \sigma) \uparrow
```

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

Proof:

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma1 \models e1 : A1 \dashv \Gamma1') -* (\Gamma2 \models e2 : A2 \dashv \Gamma2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = \Gamma 1' ++ \Gamma 2').
Proof.
            iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                       as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 H\[Omega1']] [HA2 H\[Omega2']] !>".
           iSplitL "HA1 HA2".
           + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : lttv \Sigma
\sigma: gmap string val
w1. w2 : val
"He1" : \Gamma1 \models e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
"HA1" : A1 w1
"HA2" : A2 w2
(A1 \times A2) (w1, w2)
```

Lemma ltyped_par \(\Gamma\) \(\Ga

Rule:

```
\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}
```

Proof:

```
(Γ1 ⊨ e1 : A1 = Γ1') -* (Γ2 ⊨ e2 : A2 = Γ2') -*
(Γ1 ++ Γ2 ⊨ (e1 ||| e2) : (A1 * A2) = Γ1' ++ Γ2').

Proof.

iIntros "#He1 #He2 !>" (σ) "HΓ /=".

iDestruct (ctx_ltyped_app with "HΓ")

as "[HΓ1 HΓ2]".

wp_apply (wp_par with "(He1 HΓ1) (He2 HΓ2)").

iIntros (w1 w2) "[[HA1 HΓ1'] [HA2 HΓ2']] !>".

iSplitL "HA1 HA2".

+ iExists w1, w2. by iFrame.

+ iApply ctx_ltyped_app.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
                                                e1, e2 : expr
                                                A1, A2 : 1ttv \Sigma
                                                \sigma: gmap string val
                                                w1. w2 : val
                                                "He1" : \Gamma1 \models e1 : A1 \dashv \Gamma1'
                                                "He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
                                                "HA1" : A1 w1
                                                "HA2" : A2 w2
                                                (A1 \times A2) (w1, w2)
A_1 \times A_2 \triangleq \lambda w. \exists w_1, w_2. (w = (w_1, w_2)) * \triangleright (A_1 w_1) * \triangleright (A_2 w_2)
```

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma1 \models e1 : A1 \dashv \Gamma1') -* (\Gamma2 \models e2 : A2 \dashv \Gamma2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = \Gamma 1' ++ \Gamma 2').
Proof.
            iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                       as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 H\[Omega1']] [HA2 H\[Omega2']] !>".
           iSplitL "HA1 HA2".
          + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
Qed.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : 1ttv \Sigma
\sigma: gmap string val
w1. w2 : val
"He1" : \Gamma1 \models e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
"H\Gamma1'" · \Gamma1' \vDash \sigma
"H\Gamma2'" · \Gamma2' \models \sigma
\Gamma1' ++ \Gamma2' \models \sigma
```

Rule:

```
\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}
```

Proof:

Qed.

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma 1 \models e1 : A1 \dashv \Gamma 1') -* (\Gamma 2 \models e2 : A2 \dashv \Gamma 2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = \Gamma 1' ++ \Gamma 2').
Proof.
            iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                       as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 HΓ1'] [HA2 HΓ2']] !>".
           iSplitL "HA1 HA2".
                                                                                                                                                                                                                                                                                                   \Gamma_1 \cdot \Gamma_2 \vDash \sigma
           + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
```

```
\Gamma1, \Gamma1', \Gamma2, \Gamma2' : ctx \Sigma
e1, e2 : expr
A1, A2 : 1ttv \Sigma
\sigma: gmap string val
w1. w2 : val
"He1" : \Gamma1 \vDash e1 : A1 \dashv \Gamma1'
"He2" : \Gamma2 \vDash e2 : A2 \dashv \Gamma2'
"H\Gamma1'" · \Gamma1' \vDash \sigma
"H\Gamma2'" · \Gamma2' \models \sigma
\Gamma1' ++ \Gamma2' \models \sigma
```

 $(\Gamma_1 \vDash \sigma) * (\Gamma_2 \vDash \sigma)$

Rule:

$$\frac{\Gamma_1 \vDash e_1 : A_1 \dashv \Gamma_1' \qquad \Gamma_2 \vDash e_2 : A_2 \dashv \Gamma_2'}{\Gamma_1 \cdot \Gamma_2 \vDash (e_1 \mid\mid e_2) : (A_1 \times A_2) \dashv \Gamma_1' \cdot \Gamma_2'}$$

Proof:

```
Lemma ltyped_par \(\Gamma\) \(\Ga
            (\Gamma1 \models e1 : A1 \dashv \Gamma1') -* (\Gamma2 \models e2 : A2 \dashv \Gamma2') -*
            (\Gamma 1 ++ \Gamma 2 \models (e1 \mid | \mid e2) : (A1 * A2) = | \Gamma 1' ++ \Gamma 2').
Proof.
            iIntros "#He1 #He2 !>" (\sigma) "H\Gamma /=".
            iDestruct (ctx_ltyped_app with "H\(\Gamma\)")
                       as "[H[1 H[2]".
           wp_apply (wp_par with "(He1 H\(\Gamma\)1) (He2 H\(\Gamma\)2)").
            iIntros (w1 w2) "[[HA1 H\[Omega1']] [HA2 H\[Omega2']] !>".
           iSplitL "HA1 HA2".
           + iExists w1, w2. by iFrame.
           + iApply ctx_ltyped_app. by iFrame.
Qed.
```

No more subgoals.

Semantic Session Type System

ML-like language

$$e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{\underline{rec}} \ f \ x := e \mid e_1(e_2) \mid$$

ML-like language extended with state

$$e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x := e \mid e_1(e_2) \mid$$

$$\mathtt{ref} \ (e) \mid ! \ e \mid e_1 \leftarrow e_2 \mid$$
 (state)

ML-like language extended with state, concurrency

```
\begin{array}{c} e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \; f \; x := e \mid e_1(e_2) \mid \\ & \mathtt{ref} \; (e) \mid ! \; e \mid e_1 \leftarrow e_2 \mid \\ & e_1 \mid \mid e_2 \mid \mathtt{fork} \; \{e\} \mid \end{array} \tag{state}
```

ML-like language extended with state, concurrency, locks

```
\begin{array}{l} e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x := e \mid e_1(e_2) \mid \\ & \mathtt{ref} \ (e) \mid ! \ e \mid e_1 \leftarrow e_2 \mid \\ & e_1 \mid \mid e_2 \mid \mathtt{fork} \ \{e\} \mid \\ & \mathtt{new\_lock} \ () \mid \mathtt{acquire} \ e \mid \mathtt{release} \ e \mid \end{array} \qquad \text{(concurrency)} \end{array}
```

ML-like language extended with state, concurrency, locks, and message passing

```
\begin{array}{l} e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x := e \mid e_1(e_2) \mid \\ & \mathtt{ref} \ (e) \mid ! \ e \mid e_1 \leftarrow e_2 \mid \\ & e_1 \mid \mid e_2 \mid \mathtt{fork} \ \{e\} \mid \\ & \mathtt{new\_lock} \ () \mid \mathtt{acquire} \ e \mid \mathtt{release} \ e \mid \\ & \mathtt{new\_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots \end{array} \tag{message passing}
```

ML-like language extended with state, concurrency, locks, and message passing

```
\begin{array}{l} e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x := e \mid e_1(e_2) \mid \\ & \mathtt{ref} \ (e) \mid ! \ e \mid e_1 \leftarrow e_2 \mid \\ & e_1 \mid \mid e_2 \mid \mathtt{fork} \ \{e\} \mid \\ & \mathtt{new\_lock} \ () \mid \mathtt{acquire} \ e \mid \mathtt{release} \ e \mid \\ & \mathtt{new\_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots \end{array} \tag{\texttt{message passing}}
```

Message-passing is:

▶ Binary: Each channel have one pair of endpoints

ML-like language extended with state, concurrency, locks, and message passing

```
\begin{array}{l} e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x := e \mid e_1(e_2) \mid \\ & \mathtt{ref} \ (e) \mid ! \ e \mid e_1 \leftarrow e_2 \mid \\ & e_1 \mid \mid e_2 \mid \mathtt{fork} \ \{e\} \mid \\ & \mathtt{new\_lock} \ () \mid \mathtt{acquire} \ e \mid \mathtt{release} \ e \mid \\ & \mathtt{new\_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots \end{array} \tag{\texttt{message passing}}
```

Message-passing is:

- Binary: Each channel have one pair of endpoints
- Asynchronous: send does not block, two buffers per endpoint pair

ML-like language extended with state, concurrency, locks, and message passing

```
\begin{array}{l} e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x := e \mid e_1(e_2) \mid \\ & \mathtt{ref} \ (e) \mid ! \ e \mid e_1 \leftarrow e_2 \mid \\ & e_1 \mid \mid e_2 \mid \mathtt{fork} \ \{e\} \mid \\ & \mathtt{new\_lock} \ () \mid \mathtt{acquire} \ e \mid \mathtt{release} \ e \mid \\ & \mathtt{new\_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots \end{array} \tag{message passing}
```

Message-passing is:

- Binary: Each channel have one pair of endpoints
- Asynchronous: send does not block, two buffers per endpoint pair
- ▶ Affine: No close expression, channels are garbage collected

Session types as a new type kind:

```
Type_{\blacklozenge} \triangleq ?
!A. S \triangleq ?
?A. S \triangleq ?
end \triangleq ?
```

Session types as a new type kind:

```
Type_{\blacklozenge} \triangleq ?
!A. S \triangleq ?
?A. S \triangleq ?
end \triangleq ?
```

$$\mathsf{Type}_\bigstar \triangleq \mathsf{Val} \to \mathsf{iProp}$$
$$\mathsf{chan} \ S \triangleq \lambda w. ?$$

Session types as a new type kind:

```
Type_{\blacklozenge} \triangleq? Type_{\bigstar} \triangleq Val \rightarrow iProp! A. S \triangleq? chan S \triangleq \lambda w.? ? A. S \triangleq? end A. S \triangleq?
```

Needs to capture:

Exclusivity of channel endpoint ownership

Session types as a new type kind:

```
Type_{\blacklozenge} \triangleq? Type_{\bigstar} \triangleq Val \rightarrow iProp! A. S \triangleq? chan S \triangleq \lambda w.? ? end \triangleq?
```

Needs to capture:

- **Exclusivity** of channel endpoint ownership
- **Delegation** of resources

 $Session\ type-inspired\ protocols\ for\ functional\ correctness$

Session type-inspired protocols for functional correctness, describing exchanges of:

Logical variables

Session type-inspired protocols for functional correctness, describing exchanges of:

- Logical variables
- Physical values

Session type-inspired protocols for functional correctness, describing exchanges of:

- Logical variables
- Physical values
- ► Propositions / ownership

Session type-inspired protocols for functional correctness, describing exchanges of:

- Logical variables
- Physical values
- Propositions / ownership

	Dependent separation protocols	Session types
Example	$(x:\mathbb{Z})\langle x\rangle\{True\}.!(y:\mathbb{Z})\langle y\rangle\{y=x+2\}.$ end	?Z . !Z . end
Usage	$c \rightarrowtail \mathit{prot}$	c : chan S

Session type-inspired protocols for functional correctness, describing exchanges of:

- Logical variables
- Physical values
- Propositions / ownership

	Dependent separation protocols	Session types
Example	$(x:\mathbb{Z})\langle x\rangle\{True\}.!(y:\mathbb{Z})\langle y\rangle\{y=x+2\}.$ end	?Z . !Z . end
Usage	$c \rightarrowtail \mathit{prot}$	c : chan S

Program example:

$$\lambda c.$$
 let $x :=$ recv c in send c $(x + 2)$

Session type-inspired protocols for functional correctness, describing exchanges of:

- Logical variables
- Physical values
- Propositions / ownership

	Dependent separation protocols	Session types
Example	$(x:\mathbb{Z})\langle x\rangle\{True\}.!(y:\mathbb{Z})\langle y\rangle\{y=x+2\}.$ end	?Z . !Z . end
Usage	$c \rightarrowtail prot$	c : chan S

Program example:

$$(c \mapsto ?(x:\mathbb{Z}) \langle x \rangle \{ \text{True} \}. ! (y:\mathbb{Z}) \langle y \rangle \{ y = x+2 \}. \text{ end}) \twoheadrightarrow$$

wp $(\lambda c. \text{ let } x := \text{recv } c \text{ in send } c \text{ } (x+2)) \text{ } \{ \text{True} \}$

Session types as dependent separation protocols:

```
Type_{\blacklozenge} \triangleq? Type_{\bigstar} \triangleq Val \rightarrow iProp! A. S \triangleq? chan S \triangleq \lambda w.?
```

```
Dependent separation protocols:
```

Example: $?(x:\mathbb{Z})\langle x\rangle\{\mathsf{True}\}.!(y:\mathbb{Z})\langle y\rangle\{y=x+2\}.$ end

Usage: $c \rightarrow prot$

Session types as dependent separation protocols:

Dependent separation protocols:

Example: $?(x:\mathbb{Z})\langle x\rangle\{\mathsf{True}\}.!(y:\mathbb{Z})\langle y\rangle\{y=x+2\}.$ end

Usage: $c \rightarrow prot$

Semantic Session Types

Session types as dependent separation protocols:

Dependent separation protocols:

Example: $?(x:\mathbb{Z})\langle x\rangle\{\mathsf{True}\}.!(y:\mathbb{Z})\langle y\rangle\{y=x+2\}.$ end

Usage: $c \rightarrow prot$

Semantic Session Types

Session types as dependent separation protocols:

$$\mathsf{Type}_{\blacklozenge} \triangleq \mathsf{iProto} \qquad \mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$!A. S \triangleq !(v : \mathsf{Val}) \langle v \rangle \{Av\}. S \qquad \mathsf{chan} \ S \triangleq \lambda w. \ w \mapsto S$$

$$?A. S \triangleq ?(v : \mathsf{Val}) \langle v \rangle \{Av\}. S \qquad \mathsf{end} \triangleq \mathsf{end}$$

Dependent separation protocols:

Example: $?(x:\mathbb{Z})\langle x\rangle\{\mathsf{True}\}.!(y:\mathbb{Z})\langle y\rangle\{y=x+2\}.$ end

Usage: $c \rightarrow prot$

Rule:

```
\Gamma, x : \text{chan } (?A. S) \vDash \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

```
Lemma ltvped_recv Γ x A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
  iIntros (H\(\text{\text}\) (tx_lookup_perm) "!>".
  iIntros (\sigma) "H\Gamma /=". rewrite {1}H\Gammax /=.
  iDestruct (ctx_ltyped_cons with "H\Gamma") as
     (c H\sigma) "[Hc H\Gamma]".
  rewrite H\sigma.
  wp_recv (v) as "HA".
  iFrame "HA".
  iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

Rule:

```
\Gamma, x : \text{chan } (?A. S) \models \text{recv } x : A = \Gamma, x : \text{chan } S
Proof:
Lemma ltyped_recv \( \Gamma \) A S \( \S \)
    \Gamma !! x = Some (chan (<??> TX A; S))%lty \rightarrow
    \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
    iIntros (H\(\Gamma\)\%ctx_lookup_perm) "!>".
    iIntros (\sigma) "H\Gamma /=". rewrite {1}H\Gammax /=
    iDestruct (ctx_ltyped_cons with "HΓ") as
        (c H\sigma) "[Hc H\Gamma]".
    rewrite H\sigma.
    rewrite H\sigma.

wp_recv (v)

iFrame "HA"

\forall \sigma. (\Gamma, x : \text{chan } (?A. S) \models \sigma) \rightarrow *

wp (recv x)[\sigma] \{w. (Aw) * (\Gamma, x : \text{chan } S \models \sigma)\}
    iApply ctx_ltypea_cons, eauto with irrame.
 Qed.
```

Rule:

```
\Gamma, x : \text{chan } (?A. S) \vDash \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

```
Lemma ltvped_recv Γ x A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
  iIntros (HΓx%ctx_lookup_perm) "!>".
  iIntros (\sigma) "H\Gamma /=". rewrite {1}H\Gammax /=.
  iDestruct (ctx_ltyped_cons with "H\(Gamma\)") as
     (c H\sigma) "[Hc H\Gamma]".
  rewrite H\sigma.
  wp_recv (v) as "HA".
  iFrame "HA".
  iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

```
\Gamma: ctx \Sigma
x : string
A: ltty \Sigma
S: 1stv \Sigma
\sigma: gmap string val
"H\Gamma" : \Gamma.(x:chan (<??>TY A: S))
             \models \sigma
WP recv (\sigma(x))
   \{\{w, Aw*\}
       \Gamma, (x : chan S) \models \sigma }}
```

```
Rule:
```

Qed.

```
\Gamma, x : \text{chan } (?A. S) \models \text{recv } x : A = \Gamma, x : \text{chan } S
                                                                            \Gamma: ctx \Sigma
                                                                            x : string
Proof:
                                                                            A : 1tty \Sigma
Lemma ltvped_recv Γ x A S :
                                                                            S: 1stv \Sigma
   \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
                                                                           \sigma: gmap string val
   \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
                                                                            "H\Gamma" : \Gamma.(x:chan (<??>TY A: S))
   iIntros (H\(\Gamma\)\%ctx_lookup_perm) "!>".
   iIntros (\sigma) "H\Gamma /=". rewrite [1] \Gamma
   iDestruct (ctx_ltype
                                                  \Gamma. x : A \models \sigma
                                                                                         τ(x))
      (c H\sigma) "[Hc H\Gamma]".
                                   \exists v. (\sigma(x) = v) * (\Gamma \models \sigma) * (A v)
   rewrite H\sigma.
                                                                                          : chan S) \models \sigma }}
   wp_recv (v) as "HA".
   iFrame "HA".
   iApply ctx_ltyped_cons; eauto with iFrame.
```

Rule:

```
\Gamma, x : \text{chan } (?A. S) \vDash \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

```
Lemma ltvped_recv Γ x A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
  iIntros (HΓx%ctx_lookup_perm) "!>".
  iIntros (\sigma) "H\Gamma /=". rewrite {1}H\Gammax /=.
  iDestruct (ctx_ltyped_cons with "H\Gamma") as
     (c H\sigma) "[Hc H\Gamma]".
  rewrite H\sigma.
  wp_recv (v) as "HA".
  iFrame "HA".
  iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

```
\Gamma : ctx \Sigma
x : string
A : 1tty \Sigma
S: 1stv \Sigma
\sigma: gmap string val
c : val
H\sigma : \sigma(x) = c
"Hc" : c \rightarrow (<??> TY A: S)
"H\Gamma" : \Gamma \models \sigma
WP recy c
   \{\{ w. Aw *
        \Gamma.(x : chan S) \models \sigma \}
```

Rule:

```
\Gamma, x : \text{chan } (?A. S) \vDash \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

```
Lemma ltvped_recv Γ x A S :
   \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  c \rightarrowtail ?\vec{x} : \vec{\tau} \langle v \rangle \{P\}. prot \twoheadrightarrow
   wp recv c \{ w. \exists (\vec{y} : \vec{\tau}). (w = v[\vec{y}/\vec{x}]) * 
                                          c \rightarrow prot[\vec{y}/\vec{x}] *
                                          P[\vec{v}/\vec{x}]
   rewrite H\sigma.
   wp_recv (v) as "HA".
   iFrame "HA".
   iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

```
\Gamma: ctx \Sigma
x : string
A: ltty \Sigma
S: 1stv \Sigma
\sigma: gmap string val
c : val
H\sigma : \sigma(x) = c
"Hc" : c \rightarrow (<??> TY A: S)
"H\Gamma" : \Gamma \models \sigma
WP recy c
   {{1\warphi, A w *
       \Gamma, (x : chan S) \models \sigma \}
```

Rule:

```
\Gamma, x : \text{chan } (?A. S) \vDash \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

```
Lemma ltvped_recv Γ x A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
  iIntros (HΓx%ctx_lookup_perm) "!>".
  iIntros (\sigma) "H\Gamma /=". rewrite {1}H\Gammax /=.
  iDestruct (ctx_ltyped_cons with "H\Gamma") as
     (c H\sigma) "[Hc H\Gamma]".
  rewrite H\sigma.
  wp_recv (v) as "HA".
  iFrame "HA".
  iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

```
\Gamma: ctx \Sigma
x : string
A : 1tty \Sigma
S: 1stv \Sigma
\sigma: gmap string val
c : val
H\sigma : \sigma(x) = c
v : val
"Hc" : c \rightarrow S
"H\Gamma" : \Gamma \models \sigma
"HA" : A v
Δ τ *
\Gamma.(x : chan S) \models \sigma
```

Rule:

```
\Gamma, x : \text{chan } (?A. S) \vDash \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

```
Lemma ltvped_recv Γ x A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
  iIntros (HΓx%ctx_lookup_perm) "!>".
  iIntros (\sigma) "H\Gamma /=". rewrite {1}H\Gammax /=.
  iDestruct (ctx_ltyped_cons with "H\Gamma") as
     (c H\sigma) "[Hc H\Gamma]".
  rewrite H\sigma.
  wp_recv (v) as "HA".
  iFrame "HA".
  iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

```
\Gamma: ctx \Sigma
x : string
A : 1tty \Sigma
S: 1stv \Sigma
\sigma: gmap string val
c : val
H\sigma : \sigma(x) = c
v : val
"Hc" : c \rightarrow S
"H\Gamma" : \Gamma \models \sigma
\Gamma.(x : chan S) \models \sigma
```

Rule:

```
\Gamma, x : \text{chan } (?A. S) \vDash \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

```
Lemma ltvped_recv Γ x A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
  iIntros (H\(\Gamma\)\%ctx_lookup_perm) "!>".
  iIntros (a) "HF /- " rounita S124Fr /-
                          \Gamma. x : A \models \sigma
  iDestr
  rewrit \exists v. (\sigma(x) = v) * (\Gamma \vDash \sigma) * (A v)
  wp_recv (v) as "HA".
  iFrame "HA".
  iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

```
\Gamma: ctx \Sigma
x : string
A : 1tty \Sigma
S: 1stv \Sigma
\sigma: gmap string val
c : val
H\sigma : \sigma(x) = c
v : val
"Hc" : c \rightarrow S
"H\Gamma" : \Gamma \models \sigma
\Gamma.(x : chan S) \models \sigma
```

Rule:

```
\Gamma, x : \text{chan } (A.S) \models \text{recv } x : A \dashv \Gamma, x : \text{chan } S
```

Proof:

```
Lemma ltvped_recv Γ x A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty \rightarrow
  \Gamma \models \text{recv } x : A = \text{ctx\_cons } x \text{ (chan S) } \Gamma.
Proof.
  iIntros (HΓx%ctx_lookup_perm) "!>".
  iIntros (\sigma) "H\Gamma /=". rewrite {1}H\Gammax /=.
  iDestruct (ctx_ltyped_cons with "H\Gamma") as
     (c H\sigma) "[Hc H\Gamma]".
  rewrite H\sigma.
  wp_recv (v) as "HA".
  iFrame "HA".
  iApply ctx_ltyped_cons; eauto with iFrame.
Qed.
```

No more subgoals.

Extensions

 $\textbf{Iris} \ \text{and} \ \textbf{Actris} \ \text{gives immediate rise to many type features}$

 $\textbf{Iris} \ \text{and} \ \textbf{Actris} \ \text{gives immediate rise to many type features}$

Product types	Separation conjunction (*)
---------------	----------------------------

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrow S)$

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrow S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrow S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto \nu)$
Session types	Actris dependent separation protocols $(c \rightarrow S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto \nu)$
Session types	Actris dependent separation protocols $(c \rightarrow S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrow S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols $(c \rightarrow S)$

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto \nu)$
Session types	Actris dependent separation protocols $(c \mapsto S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols $(c \rightarrowtail S)$
Recursion	Guarded step-indexed recursion (\triangleright , μ)

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrow S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols $(c \rightarrow S)$
Recursion	Guarded step-indexed recursion (\triangleright , μ)
Term polymorphism	Higher-order impredicative quantification (\forall, \exists)

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrowtail S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols $(c \rightarrowtail S)$
Recursion	Guarded step-indexed recursion (\triangleright , μ)
Term polymorphism	Higher-order impredicative quantification (\forall, \exists)
Session polymorphism	Higher-order impredicative protocols binders

Product types	Separation conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrowtail S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols $(c \rightarrowtail S)$
Recursion	Guarded step-indexed recursion (\triangleright , μ)
Term polymorphism	Higher-order impredicative quantification (\forall, \exists)
Session polymorphism	Higher-order impredicative protocols binders
Term subtyping	Predicates closed under wand $(\forall v. A_1 \ v \rightarrow A_2 \ v)$

Product types	Separation conjunction $(*)$
Unique references	Points-to connective $(\ell \mapsto v)$
Session types	Actris dependent separation protocols $(c \rightarrowtail S)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols $(c \rightarrow S)$
Recursion	Guarded step-indexed recursion (\triangleright , μ)
Term polymorphism	Higher-order impredicative quantification (\forall, \exists)
Session polymorphism	Higher-order impredicative protocols binders
Term subtyping	Predicates closed under wand $(\forall v. A_1 \ v \twoheadrightarrow A_2 \ v)$
Session subtyping	Actris 2.0 subprotocols (□)

Overview of Features - Definitions

Session choice:

```
Function types: A \multimap B \triangleq \lambda w. \forall v. \triangleright (A v) \twoheadrightarrow \text{wp } (w \ v) \{B\}

Shared references: \text{ref}_{\text{shr}} A \triangleq \lambda w. (w \in \text{Loc}) * \boxed{\exists v. (w \mapsto v) * \Box (A v)}

Copyable types: \text{copy } A \triangleq \lambda w. \Box (A w)
```

Copyable types:
$$copy A = \lambda w$$
. $\Box (Aw)$

$$\&\{\vec{S}\} \triangleq ?(I:\mathbb{Z}) \langle I \rangle \Big\{ I \in \mathsf{dom}(\vec{S}) \Big\}. \ \vec{S}(I)$$
Recursion: $\mu(X:k). \ K \triangleq \mu(X:\mathsf{Type}_k). \ K \qquad (K \text{ must be contractive in } X)$

 $\oplus \{\vec{S}\} \triangleq ! (I : \mathbb{Z}) \langle I \rangle \Big\{ I \in \mathsf{dom}(\vec{S}) \Big\}. \vec{S}(I)$

Polymorphism:
$$\forall (X : k). A \triangleq \lambda w. \forall (X : \mathsf{Type}_k). \mathsf{wp} \ w \ () \{A\}$$

$$\exists (X : k). A \triangleq \lambda w. \exists (X : \mathsf{Type}_k). \, \triangleright (A \, w) \\ !_{\vec{X} : \vec{k}} \, A. \, S \triangleq ! \, (\vec{X} : \mathsf{Type}_k)(v : \mathsf{Val}) \, \langle v \rangle \{A \, v\}. \, S \\ ?_{\vec{X} : \vec{k}} \, A. \, S \triangleq ? \, (\vec{X} : \mathsf{Type}_k)(v : \mathsf{Val}) \, \langle v \rangle \{A \, v\}. \, S$$

Term subtyping:
$$A <: B \triangleq \forall v. A \ v \twoheadrightarrow B \ v$$

Session subtyping: $S_1 <: S_2 \triangleq S_1 \sqsubseteq S_2$

Manual Typing Proofs

Recall the following example:

$$\lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Recall the following example:

$$\vdash \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (\texttt{Z} \times \texttt{Z})$$

Recall the following example:

$$\models \lambda c. (\texttt{recv } c \mid \mid \texttt{recv } c) : \texttt{chan } (?\texttt{Z}. ?\texttt{Z}. \texttt{end}) \multimap (\texttt{Z} \times \texttt{Z})$$

Recall the following example:

$$\models \lambda c. (\texttt{recv } c \mid \mid \texttt{recv } c) : \texttt{chan } (?\texttt{Z}. ?\texttt{Z}. \texttt{end}) \multimap (\texttt{Z} \times \texttt{Z})$$

The rule is just another lemma

Recall the following example:

$$\models \lambda c. (\texttt{recv}\ c \mid\mid \texttt{recv}\ c) : \texttt{chan}\ (?\texttt{Z}.?\texttt{Z}.\texttt{end}) \multimap (\texttt{Z} \times \texttt{Z})$$

The rule is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{v_1 \in \mathbb{Z}\}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{v_2 \in \mathbb{Z}\}.$$
 end) \twoheadrightarrow

$$\mathsf{wp} \; (\mathtt{recv} \; c \; || \; \mathtt{recv} \; c) \, \{ w. \, \exists w_1, \, w_2. \, (w = (w_1, w_2)) * \triangleright (w_1 \in \mathbb{Z}) * \triangleright (w_2 \in \mathbb{Z}) \}$$

Recall the following example:

$$\models \lambda c. (\texttt{recv } c \mid \mid \texttt{recv } c) : \texttt{chan } (?\texttt{Z}. ?\texttt{Z}. \texttt{end}) \multimap (\texttt{Z} \times \texttt{Z})$$

The rule is just another lemma proven by unfolding all type-level definitions

$$(c\rightarrowtail ?(v_1:\mathsf{Val})\langle v_1\rangle\{v_1\in\mathbb{Z}\}.\,?(v_2:\mathsf{Val})\langle v_2\rangle\{v_2\in\mathbb{Z}\}.\,\textbf{end})\twoheadrightarrow$$

$$\mathsf{wp} \; (\mathtt{recv} \; c \; || \; \mathtt{recv} \; c) \, \{ w. \, \exists w_1, \, w_2. \, (w = (w_1, w_2)) * \triangleright (w_1 \in \mathbb{Z}) * \triangleright (w_2 \in \mathbb{Z}) \}$$

Recall the following example:

$$\models \lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z. ?Z. \text{end}) \multimap (Z \times Z)$$

The rule is just another lemma proven by unfolding all type-level definitions

$$(c \mapsto ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{v_1 \in \mathbb{Z}\}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{v_2 \in \mathbb{Z}\}. end) \twoheadrightarrow$$

wp (recv
$$c \mid | \text{recv } c$$
) $\{w. \exists w_1, w_2. (w = (w_1, w_2)) * \triangleright (w_1 \in \mathbb{Z}) * \triangleright (w_2 \in \mathbb{Z})\}$

Recall the following example:

$$\models \lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z. ?Z. \text{end}) \multimap (Z \times Z)$$

The rule is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{v_1 \in \mathbb{Z}\}.?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{v_2 \in \mathbb{Z}\}. \, \mathbf{end}) \twoheadrightarrow \\ \mathsf{wp} \, (\mathsf{recv} \, c \mid\mid \mathsf{recv} \, c) \, \{w. \, \exists w_1, w_2. \, (w = (w_1, w_2)) * \, \triangleright (w_1 \in \mathbb{Z}) * \, \triangleright (w_2 \in \mathbb{Z})\}$$

And then using Iris's ghost state machinery!

Recall the following example:

$$\models \lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z. ?Z. \text{end}) \multimap (Z \times Z)$$

The rule is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{v_1 \in \mathbb{Z}\}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{v_2 \in \mathbb{Z}\}. \ \mathbf{end}) \twoheadrightarrow \\ \mathsf{wp} \ (\mathbf{recv} \ c \mid\mid \mathbf{recv} \ c) \{w. \ \exists w_1, w_2. \ (w = (w_1, w_2)) * \triangleright (w_1 \in \mathbb{Z}) * \triangleright (w_2 \in \mathbb{Z})\}$$

And then using Iris's ghost state machinery! Beyond the scope of this talk

Concluding Remarks

Summary

1. Feature-rich session type systems

- ▶ We combined polymorphism, recursion, (asynchronous) subtyping, and more
- By exploiting the expressivity of Iris and Actris

Summary

1. Feature-rich session type systems

- We combined polymorphism, recursion, (asynchronous) subtyping, and more
- By exploiting the expressivity of Iris and Actris

2. Support for "racy" yet safe programs

- ► We extend the type system with judgments for "racy" programs like $\Gamma \vDash \lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?\textbf{Z}. ?\textbf{Z}. \text{end}) \longrightarrow (\textbf{Z} \times \textbf{Z}) \dashv \Gamma$
- ▶ By unfolding the definitions and using Iris ghost mechanisms

Summary

1. Feature-rich session type systems

- We combined polymorphism, recursion, (asynchronous) subtyping, and more
- By exploiting the expressivity of Iris and Actris

2. Support for "racy" yet safe programs

- ► We extend the type system with judgments for "racy" programs like $\Gamma \models \lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?\textbf{Z}. ?\textbf{Z}. \text{end}) \multimap (\textbf{Z} \times \textbf{Z}) \dashv \Gamma$
- By unfolding the definitions and using Iris ghost mechanisms

3. Mechanised soundness proof of our results

- ► We mechanised it in Coq: https://gitlab.mpi-sws.org/iris/actris/-/tree/cpp21
- By building on top of Iris and Actris frameworks and libraries
- ► Artifact: https://zenodo.org/record/4322752

