华东师范大学期末试卷 (A)

2007 —2008 学年第 二 学期

课程名称: 高等数学 A

学生姓名:	学	号:	
4 —/— H	 4	•	

课程性质:公共必修.

 二	=	四	五.	六	七	八	总分	阅卷人签名

- 一. 简答题 (5 分×7) 请大家做一遍,并提出意见.(考 A 卷,补考 B 卷)
 - 1. 求 $z = 2^{\tan \frac{x}{y}}$ 的全微分.
 - 2. 设函数 F 具有一阶连续偏导数,且 F(xy, yz, zx) = 0, 求. $\frac{\partial z}{\partial x}$
 - 3. 求曲面 $e^x + xy + 2z = 3$ 在点(0,1,1)处的切平面方程.
 - 4. 求 $\iint_{D} (3x^2 + 4x^2) dx dy$, 其中 $D: x^2 + y^2 \le 9$.
 - 5. 求 $\oint \frac{y^2 dx x^2 dy}{x^2 + y^2}$, 其中 L 为正向单位圆.
 - 6. 求 $\iint_{\Sigma} (x^2 + y^2 + z^2) ds$, 其中 $\Sigma \stackrel{\cdot}{\mathcal{L}} z = \sqrt{x^2 + y^2}$ 位于 $1 \le z \le 2$ 的部分.
 - 7. 设函数 $f(x) = \pi x + x^2$ 的付里叶级数为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, 求 b_3 的值.
- 二. 判断下列级数的敛散性 (5 分×3)

1.
$$\sum_{n=1}^{\infty} (e^{\frac{1}{n^2}} - 1)$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \left[\sqrt{2} + (-1)^n \right]^n$$

$$3.\sum_{n=1}^{\infty} \frac{\left(-1\right)^n n}{\sqrt{n^2+3}}$$

三. 求下列微分方程的通解. (5 分×3)

请提意见.(考 A 卷,补考 B 卷)

$$1. \quad xy' + y = 2\sqrt{xy}$$

2.
$$y'' = \frac{3x^2y'}{1+x^3}$$

3.
$$y'' - 4y = e^{2x}$$

四. 求 $\iint_{\Sigma} 4xzdydz - 2yzdzdx + (1-z^2)dxdy$, 其中 Σ 为 $z = 2x^2 + 2y^2$ $(0 \le z \le 2)$ 取下侧. (10 分)

五. 求级数
$$\sum_{n=1}^{\infty} (n+1)^2 x^n$$
 的和函数. (10 分)

六. 求一曲线,使其上任一点到原点的距离等于该点之切线在 x 轴上的截距. (9分)

七. 设 f(x) 具有二阶连续导数,满足 f(1)=1, f'(1)=2,且使曲线积分

$$\int_{L} y[xf'(x) + f(x)]dx - x^{2}f'(x)dy$$
 与路径无关. 求 $f(x)$. (6分)

华东师范大学期末试卷 (B)

2007 —2008 学年第 二 学期

课程名称: 高等数学 A

学生姓名:	学 号:	·
-------	------	---

专 业: _____ 年级/班级: 2007 级

课程性质:公共必修.

_	<u> </u>	111	四	五.	六	七	八	总分	阅卷人签名

- 一. 简答题 (5 分×7)
- 2. 设f具有二阶连续偏导数,且 $u = f(xy^2, \frac{x}{y^2})$,求 $\frac{\partial^2 u}{\partial x \partial y}$.

3. 求函数
$$z = 2x^2 + 3y^3$$
 在 (1,1) 点最大的方向导数.

4. 求
$$\iint_{D} e^{-x^2-y^2} dxdy$$
, 其中 D: $x^2 + y^2 \le 1$.

5. 求
$$\int_{L} x^2 ds$$
 其中 $L: y = -\sqrt{1-x^2}$.

6. 求
$$\iint_{\Sigma} z ds$$
,其中 Σ 为 $x+y+z=1$ 在第一象限的部分.

7. 求幂级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n} x^{2n}$$
 的收敛域.

二. 判断下列级数的敛散性.(5分×3)

1.
$$\sum_{n=1}^{\infty} \arcsin \frac{1}{3n+4}$$
.

$$2. \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}.$$

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 1}{n^2 + 3} \cdot \frac{1}{\sqrt{n}}.$$

三. 求下列微分方程的通解. (5 分×3)

请提意见.(考A卷,补考B卷)

1.
$$y^2 dx + y dy = x^2 y dy - dx$$
.

2.
$$(x\cos y + \cos x)y' - y\sin x + \sin y = 0$$
.

3.
$$y'' + 4y' + 4y = e^{-2x}$$

四. 求
$$\iint_{\Sigma} (y-x)dydz + (z-y)dzdx + (x-z)dxdy$$
 其中 $\Sigma \neq z = 2 - x^2 - y^2$ $(0 \le z \le 2)$ 的上侧.(10 分)

五. 将
$$f(x) = \arctan \frac{4+x^2}{4-x^2}$$
.展为 x 的幂级数. (10 分)

六.曲线 y = f(x) 满足 $yy'' - y'^2 = 0$,且此曲线过 (0,1) 点并在该点与 y = 2x + 1 相切. 求 f(x). (9 分)