Definition 3.2.1

If a number is not rational, then it is irrational.

Definition 3.2.1

If a number is not rational, then it is irrational.

The discovery of irrational numbers can be traced back to ancient Greece.

Example 3.2.2 (Pythagorean or Hippasus, 500 BC)

 $\sqrt{2}$ is irrational.

Definition 3.2.1

If a number is not rational, then it is irrational.

Example 3.2.2 (Pythagorean or Hippasus, 500 BC)

 $\sqrt{2}$ is irrational.

Proof. Suppose $\sqrt{2}$ is rational and can be expressed by the reduced fraction $\frac{a}{b}$. Then we have

$$\frac{2}{1} = 2 = \frac{a^2}{b^2}.$$

But since a, b are coprime, the right-hand side is reduced. Hence, by the uniqueness of reduced fraction expression, we must have $2 = a^2$ and $1 = b^2$. But this is impossible: 2 is not a perfect square.

Theorem 3.2.3 (Irrationality of roots)

Let $\frac{a}{b}$ be a reduced fraction and n is an integer $\geqslant 2$. Then $\sqrt[n]{\frac{a}{b}}$ gives rational values if and only if both a and b are perfect n-th power (i.e. there are integers c, d such that $a = c^n$ and $b = d^n$.)

Theorem 3.2.3 (Irrationality of roots)

Let $\frac{a}{b}$ be a reduced fraction and n is an integer $\geqslant 2$. Then $\sqrt[n]{\frac{a}{b}}$ gives rational values if and only if both a and b are perfect n-th power (i.e. there are integers c, d such that $a = c^n$ and $b = d^n$.)

Proof. The "if" part is clear. Let's prove the "only if" part. Suppose our number α can be expressed as a reduced fraction $\frac{c}{d}$. Then

$$\frac{c^n}{d^n} = (\frac{c}{d})^n = \alpha^n = \frac{a}{b}.$$

By the uniqueness of reduced fraction expression, we must have $a = c^n$ and $b = d^n$.

Another useful result is the following criterion:

Theorem 3.2.4 (Rational root theorem)

Let $\frac{a}{b}$ be a reduced fraction expressing a root of a polynomial

$$P(T) = c_n T^n + \cdots + c_1 T + c_0 \qquad (c_i \in \mathbb{Z}).$$

Then $a \mid c_0$ and $b \mid c_n$.

Theorem 3.2.4 (Rational root theorem)

Let $\frac{a}{b}$ be a reduced fraction expressing a root of a polynomial

$$P(T) = c_n T^n + \cdots + c_1 T + c_0 \qquad (c_i \in \mathbb{Z}).$$

Then $a \mid c_0$ and $b \mid c_n$.

Proof. Substitute $\frac{a}{b}$ into the polynomial,

$$c_n(\frac{a}{b})^n + \cdots + c_1(\frac{a}{b}) + c_0 = 0.$$

We thus have

$$c_n a^n + c_{n-1} a^{n-1} b + \dots + c_1 a b^{n-1} + c_0 b^n = 0.$$

Then we must also have $a \mid c_0 b^n$ and $b \mid c_n a^n$. Since a, b are coprime, we have $a \mid c_0$ and $b \mid c_n$.

Definition 3.2.5

A complex number α is algebraic if it is a root of a nonzero integer polynomial. Namely, there are integers c_0, \dots, c_n such that

$$c_n \alpha^n + \cdots + c_1 \alpha + c_0 = 0.$$

Otherwise, we say α is transcendental.

Definition 3.2.5

A complex number α is algebraic if it is a root of a nonzero integer polynomial. Namely, there are integers c_0, \dots, c_n such that

$$c_n \alpha^n + \cdots + c_1 \alpha + c_0 = 0.$$

Otherwise, we say α is transcendental.

Example 3.2.6

1. Rational numbers are algebraic. Indeed, if $\frac{a}{b}$ is a fraction expressing our rational number α , then α is a root of bT - a.

Definition 3.2.5

A complex number α is algebraic if it is a root of a nonzero integer polynomial. Namely, there are integers c_0, \dots, c_n such that

$$c_n \alpha^n + \cdots + c_1 \alpha + c_0 = 0.$$

Otherwise, we say α is transcendental.

Example 3.2.6

- 1. Rational numbers are algebraic. Indeed, if $\frac{a}{b}$ is a fraction expressing our rational number α , then α is a root of bT a.
- 2. *n*-th roots of rational numbers are algebraic. Indeed, $\sqrt[n]{\frac{a}{b}}$ is a root of $bT^n a$.

Example 3.2.7

 $2\sqrt{2} + \sqrt{3}$ is algebraic.

Proof. Let $\alpha = 2\sqrt{2} + \sqrt{3}$. We want to find an integer polynomial P(T) such that $P(\alpha) = 0$.

$$\alpha = 2\sqrt{2} + \sqrt{3}$$

our definition

Example 3.2.7

 $2\sqrt{2} + \sqrt{3}$ is algebraic.

Proof. Let $\alpha = 2\sqrt{2} + \sqrt{3}$. We want to find an integer polynomial P(T) such that $P(\alpha) = 0$.

$$\alpha = 2\sqrt{2} + \sqrt{3}$$

$$\alpha - \sqrt{3} = 2\sqrt{2}$$

our definition separate the roots

Example 3.2.7

 $2\sqrt{2} + \sqrt{3}$ is algebraic.

Proof. Let $\alpha = 2\sqrt{2} + \sqrt{3}$. We want to find an integer polynomial P(T) such that $P(\alpha) = 0$.

$$\alpha = 2\sqrt{2} + \sqrt{3}$$

$$\alpha - \sqrt{3} = 2\sqrt{2}$$

$$\alpha^2 - 2\sqrt{3}\alpha + 3 = 8$$

our definition separate the roots square both sides

Example 3.2.7

 $2\sqrt{2} + \sqrt{3}$ is algebraic.

Proof. Let $\alpha = 2\sqrt{2} + \sqrt{3}$. We want to find an integer polynomial P(T) such that $P(\alpha) = 0$.

$$\alpha = 2\sqrt{2} + \sqrt{3}$$

$$\alpha - \sqrt{3} = 2\sqrt{2}$$

$$\alpha^2 - 2\sqrt{3}\alpha + 3 = 8$$

$$\alpha^2 - 5 = 2\sqrt{3}\alpha$$

our definition
separate the roots
square both sides
separate the roots

Example 3.2.7

 $2\sqrt{2} + \sqrt{3}$ is algebraic.

Proof. Let $\alpha = 2\sqrt{2} + \sqrt{3}$. We want to find an integer polynomial P(T) such that $P(\alpha) = 0$.

$$\alpha = 2\sqrt{2} + \sqrt{3}$$

$$\alpha - \sqrt{3} = 2\sqrt{2}$$

$$\alpha^2 - 2\sqrt{3}\alpha + 3 = 8$$

$$\alpha^2 - 5 = 2\sqrt{3}\alpha$$

$$\alpha^4 - 10\alpha^2 + 25 = 12\alpha^2$$

our definition
separate the roots
square both sides
separate the roots
square both sides

Example 3.2.7

 $2\sqrt{2} + \sqrt{3}$ is algebraic.

Proof. Let $\alpha = 2\sqrt{2} + \sqrt{3}$. We want to find an integer polynomial P(T) such that $P(\alpha) = 0$.

$$\alpha = 2\sqrt{2} + \sqrt{3} \qquad \text{our definition}$$

$$\alpha - \sqrt{3} = 2\sqrt{2} \qquad \text{separate the roots}$$

$$\alpha^2 - 2\sqrt{3}\alpha + 3 = 8 \qquad \text{square both sides}$$

$$\alpha^2 - 5 = 2\sqrt{3}\alpha \qquad \text{separate the roots}$$

$$\alpha^4 - 10\alpha^2 + 25 = 12\alpha^2 \qquad \text{square both sides}$$

Therefore, $\alpha^4 - 22\alpha^2 + 25 = 0$. Namely, α is a root of the integer polynomial $T^4 - 22T^2 + 25$.

Corollary 3.2.8

 $2\sqrt{2} + \sqrt{3}$ is irrational.

Proof. Suppose for the sake of contradiction that $2\sqrt{2} + \sqrt{3}$ can be expressed by the reduced fraction $\frac{a}{b}$.

Corollary 3.2.8

 $2\sqrt{2} + \sqrt{3}$ is irrational.

Proof. Suppose for the sake of contradiction that $2\sqrt{2} + \sqrt{3}$ can be expressed by the reduced fraction $\frac{a}{b}$.

Then since it is a root of integer polynomial $T^4 - 22T^2 + 25$, by the Rational Root Theorem, we must have $a \mid 25$ and $b \mid 1$. Therefore, the fraction $\frac{a}{b}$ can only be one of the following:

$$\pm 25, \pm 5, \pm 1.$$

Corollary 3.2.8

 $2\sqrt{2} + \sqrt{3}$ is irrational.

Proof. Suppose for the sake of contradiction that $2\sqrt{2} + \sqrt{3}$ can be expressed by the reduced fraction $\frac{a}{b}$.

Then since it is a root of integer polynomial $T^4 - 22T^2 + 25$, by the Rational Root Theorem, we must have $a \mid 25$ and $b \mid 1$. Therefore, the fraction $\frac{a}{b}$ can only be one of the following:

$$\pm 25, \pm 5, \pm 1.$$

Note that $2 < 2\sqrt{2} < 3$ since 4 < 8 < 9, and that $1 < \sqrt{3} < 2$ since 1 < 3 < 4. Thus, $3 < 2\sqrt{2} + \sqrt{3} < 5$. But none of above falls in this interval, which is a contradiction.