Inference of User Interests from Multiple Social Networks

Steven Kester Yuwono (A0080415N) Choo Jia Le (A0116673A)

Twitter: JSON format

No	Features	Descriptions
1	Text	The content of the tweet
2	Retweets	The number of retweet for this particular tweet
3	Timezone	The timezone of the user's location when this tweet is posted
4	Friends Count	The number of users this account is following (AKA their "followings")
5	Followers Count	The number of followers this account currently has.
6	Favourites Count	The number of tweets this user has favorited in the account's lifetime.
7	User ID	ID of the person posting this tweet

Facebook: Plain Text, contains many unnecessary words

<u>Timothy Nichols changed his profile picture.</u> <u>Share 9 people like this. Remove</u> Lisa Nichols Well how did ya like being fired? Hahaha <u>1 July 25 at 2:21am Remove</u> Timothy Nichols Haha. Well said <u>July 25 at 2:32am Remove</u> Trudy Patterson Boy I wish I would have done that a long time ago. <u>1 July 25 at 9:</u> <u>28pm</u>"

After removal using regular expressions

Lisa Nichols Well how did ya like being fired? Hahaha Timothy Nichols Haha. Well said Trudy Patterson Boy I wish I would have done that a long time ago.

LinkedIn: HTML Format. Detect each section of the profile.

No	Section Title	Descriptions
1	Full Name	Full name of the user
2	Location	Geographical location
3	Current Position	The position currently held
4	Summary	The summary paragraph/text
5	Skills	List of skills acquired
6	Current Experience	Current job roles and description
7	Past Experiences	A list of past job roles and descriptions
8	Honors and Awards	List of honors and awards attained
9	Organizations	List of organizations which the user belongs to
10	Interests	List of interests

Preprocessing of Data:

- l. Tokenization
- 2. Convert all words to lowercase
- 3. Removed url links with regex
- 4. Removed stopwords
- 5. Topic Modelling using LDA (Latent Dirichlet Allocation)
 - a. MALLET toolkit

- Early fusion
- Late fusion + Genetic Algorithm
 - Assigned weight to the confidence score with respect to each class in each source
 - The weight is learned by using **Genetic Algorithm**.

- Learning the model using SVM
- There is an unbalanced dataset problem.
 - o 20% of negative training dataset and 80% positive training dataset,
 - the classifier's positive-class prediction value will be very close to 80%.
- Hence uses <u>minority-oversampling technique</u>

Evaluation

- **P@K:** the proportion of the top K recommended interests that are correct
- **S@K:** the mean probability that a correct interest is captured within the top K recommended interests.
- **R@K:** the proportion correct number of predicted interests (in the top K) out of the actual number of interests for that particular user

Results

Number of Topics	5	10	20	35	50	100	200	300	1000
Facebook P@5	0.356	0.367	0.339	0.360	0.343	0.355	0.332	0.348	0.333
Facebook R@5	0.257	0.265	0.245	0.260	0.248	0.257	02.40	0.252	0.241
Facebook S@5	0.947	0.907	0.887	0.887	0.867	0.907	0.893	0.887	0.927
LinkedIn P@5	0.251	0.244	0.392	0.492	0.489	0.501	0.476	0.497	0.489
LinkedIn R@5	0.181	0.176	0.284	0.356	0.354	0.363	0.344	0.360	0.354
LinkedIn S@5	0.693	0.713	0.940	0.953	0.933	0.933	0.940	0.967	0.960
Twitter P@5	0.392	0.449	0.440	0.423	0.409	0.413	0.415	0.403	0.420
Twitter R@5	0.284	0.325	0.318	0.306	0.296	0.299	0.300	0.291	0.304
Twitter S@5	0.913	0.927	0.940	0.940	0.913	0.927	0.913	0.893	0.860

Classifier's performance with respect to number of topics (LDA)

Results

Using Genetic Algorithm to train:

Facebook Weight	LinkedIn Weight	Twitter Weight	Late Fusion P@5	Late Fusion R@5	Late Fusion S@5
24.753	695.971	141.733	0.476	0.344	0.947
25.392	964.318	285.489	0.473	0.342	0.947
37.385	784.276	224.330	0.472	0.341	0.947
3.470	340.835	129.659	0.472	0.341	0.947

Late Fusion Best Weights

Result

K =	1	2	3	4	5	6	7	8	9	10	Ave
FB-P@K	0.307	0.300	0.318	0.330	0.355	0.368	0.354	0.358	0.360	0.350	0.340
LI-P@K	0.440	0.483	0.513	0.500	0.501	0.493	0.485	0.467	0.456	0.431	0.477
Tw-P@K	0.527	0.477	0.438	0.413	0.413	0.416	0.408	0.399	0.391	0.403	0.428
EF-P@K	0.433	0.417	0.364	0.360	0.375	0.397	0.405	0.401	0.401	0.395	0.395
LF-P@K	0.453	0.490	0.487	0.473	0.476	0.458	0.456	0.438	0.426	0.406	0.456

Overall P@K

Result

K =	1	2	3	4	5	6	7	8	9	10	Ave
FB-R@K	0.044	0.087	0.138	0.191	0.257	0.319	0.359	0.415	0.469	0.506	0.278
LI-R@K	0.064	0.140	0.223	0.289	0.363	0.428	0.491	0.540	0.593	0.623	0.375
Tw-R@K	0.076	0.138	0.190	0.239	0.299	0.361	0.413	0.462	0.509	0.582	0.327
EF-R@K	0.063	0.121	0.158	0.208	0.271	0.344	0.410	0.464	0.522	0.572	0.313
LF-R@K	0.066	0.142	0.211	0.274	0.344	0.397	0.462	0.506	0.554	0.587	0.354

Overall R@K

Result

K =	1	2	3	4	5	6	7	8	9	10	Ave
FB-S@K	0.307	0.540	0.687	0.813	0.907	0.940	0.973	0.980	0.993	1.000	0.814
LI-S@K	0.440	0.733	0.887	0.927	0.933	0.967	0.973	0.987	0.993	0.993	0.883
Tw-S@K	0.527	0.667	0.787	0.827	0.927	0967	0.980	0.993	1.000	1.000	0.867
EF-S@K	0.433	0.640	0.740	0.820	0.900	0.947	0.947	0.960	0.987	0.987	0.836
LF-S@K	0.453	0.760	0.900	0.940	0.947	0.960	0.980	1.000	1.000	1.000	0.894

Overall S@K

Results

K=	5	10
Bigram FB-P@K	0.368	0.353
Bigram LI-P@K	0.485	0.452
Bigram TW-P@K	0.412	0.413
Bigram EF-P@K	0.325	0.382
Bigram LF-P@K	0.465	0.406
Unigram FB-P@K	0.355	0.350
Unigram LI-P@K	0.501	0.431
Unigram TW-P@K	0.413	0.403
Unigram EF-P@K	0.375	0.395
Unigram LF-P@K	0.476	0.406

Bigram and Unigram Comparison

Conclusion

- **LinkedIn** is the most useful source, followed by Twitter, and then Facebook.
- 100 is the best number of topic for topic modelling in this case.
- Late-Fusion's performance is limited by the performance of the best source
 - Very difficult to outperform all the three sources significantly
- Noise (words that are not important) in the data causes a drop in the performance of the classifier
- Bigram was explored and found to be not very useful in this task
- LinkedIn performs the best overall, followed by Late-Fusion and, Twitter.