ASSIGNMENT 10

Data Visualization III

Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a boxplot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

```
In [2]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import plotly.express as px
         from sklearn.datasets import load iris
         import warnings
         warnings.filterwarnings("ignore")
In [5]: data = load_iris()
In [6]: df = pd.DataFrame()
         df[data['feature_names']] = data['data']
         df['label'] = data['target']
        df.head()
In [7]:
Out[7]:
            sepal length (cm)
                              sepal width (cm) petal length (cm) petal width (cm) label
                                                                              0.2
                                                                                     0
         0
                         5.1
                                           3.5
                                                            1.4
         1
                         4.9
                                           3.0
                                                                              0.2
                                                                                     0
                                                            1.4
         2
                         4.7
                                           3.2
                                                                              0.2
                                                                                     0
                                                            1.3
         3
                         4.6
                                           3.1
                                                            1.5
                                                                              0.2
                                                                                     0
         4
                         5.0
                                           3.6
                                                            1.4
                                                                              0.2
                                                                                     0
In [8]:
         df.shape
         (150, 5)
Out[8]:
In [9]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64
3	petal width (cm)	150 non-null	float64
4	label	150 non-null	int64

dtypes: float64(4), int64(1)

memory usage: 6.0 KB

In [10]: df.describe()

Out[10]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

In [11]: sns.heatmap(df.corr(), annot=True)
plt.show()

In [12]: sns.histplot(df["sepal length (cm)"], kde=True)
 plt.show()

In [13]: sns.histplot(df["sepal width (cm)"], kde=True)
plt.show()


```
In [14]: sns.histplot(df["petal length (cm)"], kde=True)
   plt.show()
```



```
In [15]: sns.histplot(df["petal width (cm)"], kde=True)
   plt.show()
```



```
In [22]: plt.figure(figsize=(8, 6))
    sns.boxplot(x='label', y='sepal length (cm)', data=df, palette='deep')
    plt.title("Sepal Length Distribution by Label")
    plt.show()
```



```
In [19]: sns.boxplot(x='label', y='sepal width (cm)', data=df, palette='deep')
   plt.title("Sepal Width Distribution by Label")
   plt.show()
```



```
In [24]: plt.figure(figsize=(8, 6))
    sns.boxplot(x='label', y='petal length (cm)', data=df, palette='deep')
    plt.title("Petal Length by Label")
    plt.show()
```



```
In [26]: plt.figure(figsize=(8, 6))
    sns.boxplot(x='label', y='petal width (cm)', data=df, palette='deep')
    plt.title("Petal Width by Label")
    plt.show()
```

