A. Calculer un pourcentage à partir d'une proportion

Exemple 1. Neuf personnes sur dix sont droitières. Quel pourcentage cela représente-t-il ?

$$\frac{9}{10}$$
 = 0,9 = 0,9 × 100 % = $\frac{90}{10}$ %

Exemple 2. Dans une ville comptant 80 000 habitants, 25 000 sont mineurs. Quel pourcentage cela représente-t-il ?

B. <u>Déterminer le coefficient multiplicateur d'une évolution</u>

1) A partir des valeurs initiale V_i et finale V_f

Définition. Le **coefficient multiplicateur** est le nombre qui, multiplié à la valeur initiale, donne la valeur finale. $c = \frac{v_f}{v_i}$

Exemple 1. La population d'une ville passe de 10 000 à 35 000 habitants. Quel est le coefficient multiplicateur ?

$$V_i = 10\ 000.$$
 $V_f = 35\ 000.$ $c = \frac{V_f}{V_i} = \frac{35\ 000}{10\ 000} = 3,5.$ Le coefficient multiplicateur est $c = 3,5$.

Exemple 2. La population d'une ville passe de 20 000 à 15 000 habitants. Quel est le coefficient multiplicateur ?

2) A partir d'un taux d'évolution t

Définition. Le **taux d'évolution** t est défini par la relation c = 1 + t

Exemple 3. La vitesse d'une voiture diminue de 60 %. Quel est le coefficient multiplicateur ?

$$t = -\frac{60}{100} = -0.6$$
 $c = 1 + t = 1 + (-0.6) = 1 - 0.6 = 0.4$. Le coefficient multiplicateur est $c = 0.4$.

Exemple 4. La vitesse d'une voiture augmente de 70 %. Quel est le coefficient multiplicateur ?

C. <u>Déterminer le taux d'une évolution</u>

1) En lisant l'énoncé

Exemple 1. Le prix d'un canapé diminue de 18 %. Quel est le taux d'évolution en %? t = -18 %

2) A partir des valeurs initiale V_i et finale V_f

Propriété.
$$t = \frac{V_f - V_i}{V_i}$$

Exemple 2. La population d'une ville passe de 10 000 à 35 000 habitants. Quel est le taux d'évolution en %?

$$V_i = 10\ 000.$$
 $V_f = 35\ 000.$ $t = \frac{V_f - V_i}{V_i} = \frac{35\ 000 - 10\ 000}{10\ 000} = 2,5 = 250\ \%.$ Le taux d'évolution est $t = 250\ \%.$

Exemple 3. La population d'une ville passe de 20 000 à 15 000 habitants. Quel est le taux d'évolution en %?

3) A partir d'un coefficient multiplicateur c

Propriété. t = c - 1

Exemple 4. La population d'une ville diminue de moitié. Quel est le taux d'évolution en pourcentage ?

$$c = \frac{1}{2} = 0.5$$
. Donc $t = c - 1 = -0.5 = -0.5 \times 100 \% = -50 \%$.

Le taux d'évolution est t = -50 %. La population a diminué de 50 %.

Exemple 5. La population d'une ville triple. Quel est le taux d'évolution en %?

D. Appliquer une évolution

1) À partir d'un coefficient multiplicateur

Propriété. $V_f = cV_i$

Exemple 1. Une télévision coute $600 \in$. Son prix triple. Quel est son nouveau prix ? c = 3. $V_f = 3 \times 600 = 1800 \in$

2) À partir d'un taux d'évolution

Méthode. On détermine le coefficient multiplicateur à partir du taux, puis on multiplie.

Exemple 2. Un t-shirt valant 20 € augmente de 30 %. Quel est son nouveau prix?

$$t = \frac{30}{100} = 0.3.$$

$$c = 1 + 0.3 = 1.3.$$

$$c=1+0$$
, $3=1$, 3 . $V_f=V_i imes c=20 imes 1$, $3=26$. Le nouveau prix est de 26 €

Exemple 3. Un train roulant à 250 km/h freine et diminue sa vitesse de 35 %. Quel est sa nouvelle vitesse ?

E. Annuler une évolution

1) À partir d'un coefficient multiplicateur

Méthode. On divise par le coefficient multiplicateur. $V_i = \frac{V_f}{c}$

Exemple 1. Une télévision coute $600 \in$. Son prix avait triplé. Quel était son prix initial ? c = 3. $V_i = \frac{600}{2} = 200 \in$

2) À partir d'un taux d'évolution

Méthode. On détermine le coefficient multiplicateur à partir du taux, puis on divise par le coefficient multiplicateur.

Exemple 2. Un iceberg a perdu 40 % de sa masse l'été dernier, et pèse aujourd'hui 3 000 kg. Combien pesait-il avant?

$$t = -\frac{40}{100} = -0.4.$$
 $c = 1 + t = 0.6.$ $V_i = \frac{V_f}{c} = \frac{3000}{0.6} = \frac{5000}{0.6} \, \text{kg}.$

Exemple 3. Un canapé coute 500 € TVA incluse. La TVA est à 20 % du prix initial. Quel est le prix avant la TVA ?

F. Calculer le coefficient multiplicateur global de plusieurs évolutions

Définition. Le **coefficient multiplicateur global** c_q associé à plusieurs évolutions est le produit des coefficients.

Exemple 1. Un prix augmente de 30 % puis baisse de 12 %. Quel est le coefficient multiplicateur global ?

$$c_1 = 1 + \frac{30}{100} = 1,3.$$
 $c_2 = 1 - \frac{12}{100} = 0,88.$ $c_g = c_1c_2 = 1,3 \times 0,88 = \frac{1,144}{100}.$

G. Calculer le taux d'évolution global de plusieurs évolutions

Définition. Le **taux d'évolution global** t_g associé à plusieurs évolutions est défini par $c_g=1+t_g$. **Méthode**. Pour calculer t_g , on calcule d'abord le coefficient global c_g puis on utilise $t_g=c_g-1$.

Exemple 1. Un prix augmente de 33 % puis baisse de 42 %. Quel est le taux d'évolution global en % ?

$$c_1=1+rac{33}{100}=1,33.$$
 $c_2=1-rac{42}{100}=0,58.$ $c_g=c_1c_2=0,7714.$ $t_g=c_g-1=-0,2286=-22,86\%$ Le prix a globalement diminué de 22,86 %.

Exemple 2. Le salaire d'Alice augmente de 10 % puis de 20 %. Quel est le taux d'évolution global en %?