Essentials of Neuroradiology

Dr Shirom Rajeev Siriwardana MBBS(Kel) ,MD Radiology (Col)
Senior Lecturer and Consultant Radiologist
Faculty of Medicine,
Ragama

Glioma

- Commonest primary intra cranial tumours.
- Can cause severe neurological defects due to pressure effect to brain parenchyma in confined space.
- Major sub types
 - Astrocytoma- arise from Astrocytes
 - Oligodendroglioma-arise from Oligodendrocytes
 - Ependymoma-arise from Ependymal cells.

Glioma - Radiological features

- Skull X Ray may occasionally show calcification.
- CT and MRI Surrounding oedema, mass effect and significant enhancement with intravenous contrast.
- MRI is the investigation of choice, but CT is still widely used.
- Low grade gliomas –better prognosis
- High grade gliomas –carry a worse prognosis

Glioma - Radiological features

Meningioma

- Meningiomas are tumours that arise from meninges.
- They represent 15 20% of primary brain tumours
- Often discovered incidentally when CT or MRI is done
- **Benign, well defined lesions**, arising from any part of the meningeal covering of the brain.
- Frequent sites are the falx, parasagittal region and sphenoid wing.
- They usually grow slowly,
- CT and MRI show well defined lesions enhancing strongly and diffusely after intravenous contrast.

Meningioma

Cerebral metastases

- Metastases are some of the commonest malignant cerebral lesions,
- involve any part of the brain
- May be single or multiple.
- Multiple lesions are almost certainly metastases.
- Secondary to the brain are commonly from bronchial, breast and GIT neoplasms.

Metastases-Radiological features

- Metastases can be haemorrhagic, cystic or calcified and they may cavitate.
- Surrounding brain oedema is always present.
- After intravenous contrast, CT/MRI almost always shows enhancement
- Whole lesion or around the periphery.

Treatment:

- Palliative: dexamethasone reduces oedema and relieves headache;
 Radiotherapy.
- Surgical resection occasionally for a solitary metastasis.

Metastases-Radiological features

Posterior fossa tumours

"BEAM"

B: Brainstem glioma

E: Ependymoma

A: Astrocytoma (pilocytic) (85%)

M:Medulloblastoma

Posterior fossa tumours

- Posterior fossa consists Cerebellum, pons and medulla oblongata.
- Up to 75% brain tumors in children occur in posterior fossa
- Commonest posterior fossa tumour in adults –**metastasis** Eg: Lung/breast
- Commonest posterior fossa tumour in children- Pilocystic astrocytoma
- They may present with
 - Ataxia
 - Headache
 - Vomiting
 - Nystagmus
 - Cranial nerve dysfunction

Pilocystic astrocytoma - MRI

Large posterior fossa cystic lesion with contrast enhancing mural nodule

Brainstem Glioma-MRI

- Commonest variety is pontine glioma
- Very minimal contrast enhancement

Pituitary tumours

- Pituitary adenomas are usually benign
- Microadenoma < 1 cm in diameter, or macroadenomas > 1 cm.
- Prolactinoma is the most common pituitary tumour.
- Tumours are slow growing and penetrate and compress adjacent structures.
- Presenting features depend on
 - Type of hormone secreting
 - Compressive features

Pituitary tumours

Macroadenoma

Microadenoma

Cerebellopontine angle masses

C-P angle wedge-shaped cisternal space within the posterior fossa

Bounded by the petrous temporal bone laterally, the cerebellum and pons

medially.

Cerebellopontine angle

Cerebellopontine angle masses

Various types of masses arise in this angle.

"SAME"

- S Schwannoma (80%)
- A Aneurysm/Arachnoid cyst
- M Meningioma / Metastasis
- E Epidermoid/Ependymoma

Acoustic neuroma

- Presentation
 - Ipsilateral sensorineural hearing loss, balance disturbance, altered gait, tinnitus, vertigo, nausea, vomiting.
- Benign primary intracranial tumour from the myelin cells of the 8th nerve (vestibulo cochlear).
- MRI is the investigation of choice. CT may show winding of internal auditory canal
- Grows into the internal auditory canal and extends into the posterior fossa.

Cerebellopontine angle masses

Acoustic neuroma

Meningioma

Arachnoid cyst

Cerebral atrophy-Radiological features

- Irreversible loss of brain substance results in enlargement of the CSF spaces ventricles, basal cisterns, cerebral and cerebellar sulci.
- Ventricular dilatation may also be noted in hydrocephalus.
- However, in hydrocephalus, the ventricles dilate with relatively normal sulci, whereas in atrophy there is usually both ventricular and sulcal enlargement seen.

Cerebral atrophy-Radiological features

Stroke

- Stroke is a clinical diagnosis that refers to a sudden onset focal neurological deficit due to vascular origin.
- It is divided into two broad categories
 - Ischemic stroke (80%)
 - Hemorrhagic stroke (15%)
- Hemorrhage may be due to hypertension or other secondary causes such as vascular malformations.

Cerebral infarct (Ischemic Stroke)

- Infarction of the brain results from absent cerebral circulation from thrombosis or an embolic event.
- Clinically presents as a stroke.
- Predisposing factors include a **family history, hypertension, diabetes** and the many causes of **atherosclerotic disease or emboli**.
- Symptoms and signs vary depending on the site and size of infarction.
- Transient ischaemic attack (TIA) produces a focal neurological deficit in which complete recovery of function occurs within 24 hours.
- A stroke is one in which the neurological deficit persists.

CT in Stroke

CT - advantage -

- Widely available
- Gold standard for hemorrhage.
 - (Hemorrhage on MR images can be confusing.)
- On CT 60% of infarcts are seen within 3-6 hrs and virtually all are seen in 24 hours.
- Early infarcts and lacular infarcts may be missed

CT in Stroke

Infarction Hemorrhage Early infarction Hemorrhagic infarction

CT in infartcs

PICA AICA SCA

MRI in infarcts

- On T2W and FLAIR sequences -infarction is seen as high signal Hyperintense (White).
- These sequences detect 80% of infarctions before 24 hours.

Diffusion Weighted Imaging (DWI)

- DWI is the most sensitive sequence for stroke imaging.
- High intensity on DWI indicates an infarction
- Sensitive in very early infarctions

CT –Early infarction

DWI–Early infarction

Haemorrhage

Intra-axial haemorrhage

- intracerebral haemorrhage
- basal ganglia haemorrhage
- lobar haemorrhage
- pontine haemorrhage
- cerebellar haemorrhage

Extra-axial haemorrhage

- extradural haemorrhage (EDH)
- subdural haemorrhage (SDH)
- subarachnoid haemorrhage (SAH)
- intraventricular haemorrhage (IVH)

- CT scan is almost always the first imaging modality used to assess suspected intracranial hemorrhage.
- Fortunately acute blood is markedly hyperdense (White) compared to brain parenchyma.
- Therefore nicely visualized

CT-Intracerebral haemorrhage (ICH)

CT-Extra-axial haemorrhage -SDH

- Subdural hemorrhage (SDH) is a collection of blood accumulating in the subdural space
- Potential space between the dura and arachnoid
- SDH can happen in any age group, is mainly due to head trauma
- CT scans are usually sufficient to make the diagnosis.
- SDH due to stretching and tearing of bridging cortical veins.

Subdural hemorrhage (SDH)

Extradural hemorrhage (EDH)

- Collection of blood between the inner surface of the skull and outer layer of the dura
- Associated with head trauma and frequently associated skull fracture.
- The source of bleeding is usually arterial, most commonly from a torn middle meningeal artery.(MMA)
- Typically bi-convex (or lentiform) in shape

© Lineage Lucy

Extradural hemorrhage (EDH)

Subarachnoid hemorrhage (SAH)

- Presence of blood within the subarachnoid space
- Thunderclap headache described as a sudden-onset headache that is the worst headache of their life.
- It is often associated with photophobia and meningism

Subarachnoid hemorrhage (SAH)

Intraventricular hemorrhage (IVH)

- MRI is more sensitive than CT to very small amounts of blood, especially in the posterior fossa.
- Remember not to confuse with choroid plexus calcifications in CT

Case Studies