Probabilistic Model

- ➤ Uncertainty & Probability
- ➤Baye's rule
- ➤ Choosing Hypotheses- Maximum a posteriori
- Maximum Likelihood Baye's concept learning
- ➤ Maximum Likelihood of real valued function

Uncertainty

Cur main tool is the probability theory, which assigns to each sentence numerical degree of belief between 0 and 1

It provides a way of summarizing the uncertainty

Variable

- # Boolean random variables: cavity might be true or false
- # Discrete random variables: weather might be sunny, rainy, cloudy, snow
 - $\triangle P(Weather=sunny)$
 - $\triangle P(Weather=rainy)$
 - $\triangle P(Weather=cloudy)$
 - $\triangle P(Weather=snow)$
- ****** Continuous random variables: the temperature has continuous values

Where do probabilities come from?

Frequents:

From experiments: form any finite sample, we can estimate the true fraction and also calculate how accurate our estimation is likely to be

Subjective:

△ Agent's believe

Objectivist:

☐ True nature of the universe, that the probability up heads with probability 0.5 is a probability of the coin

- **#** Before the evidence is obtained; prior probability
 - $\triangle P(a)$ the prior probability that the proposition is true
 - $\triangle P(cavity) = 0.1$
- # After the evidence is obtained; posterior probability
 - $\triangle P(a|b)$
 - The probability of a given that all we know is b
 - $\triangle P(cavity|toothache) = 0.8$

Axioms of Probability

Zur Anzeige wird der QuickTime¹ Dekompressor "TIFF (Unkomprimier benötigt

(Kolmogorov's axioms, first published in German 1933)

All probabilities are between 0 and 1. For any proposition a $0 \le P(a) \le 1$

$$\Re P(true)=1$$
, $P(false)=0$

#The probability of disjunction is given by

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

#Product rule

$$P(a \land b) = P(a \mid b)P(b)$$

$$P(a \wedge b) = P(b \mid a)P(a)$$

Theorem of total probability

If events A_1, \ldots, A_n are mutually

exclusive with

$$\sum_{i=1}^{n} P(A_i) = 1$$

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

$$P(B) = \sum_{i=1}^{n} P(B, A_i)$$

Bayes Theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- $\Re P(h)$ = prior probability of hypothesis h
- $\Re P(D)$ = prior probability of training data D
- $\Re P(h/D)$ = probability of h given D
- # P(D/h) = probability of D given h

Choosing Hypotheses

#Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis h_{MAP}:

$$h_{MAP} = \arg\max_{h \in H} P(h|D)$$

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

 \Re If assume $P(h_i)=P(h_j)$ for all h_i and h_j , then can further simplify, and choose the

**** Maximum likelihood** (ML) hypothesis

$$h_{ML} = \arg\max_{h_i \in H} P(D|h_i)$$

Naïve Bayesian Classification

- #If i-th attribute is categorical:

 P(d_i|C) is estimated as the relative freq of samples having value d_i as i-th attribute in class C
- ℋ If i-th attribute is continuous:
 P(d_i|C) is estimated thru a Gaussian density function
- **#Computationally easy in both cases**

Play-tennis example: estimating

 $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	$P(\mathbf{cool} \mathbf{n}) = 1/5$
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 2/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

Naive Bayesian Classifier (II)

Given a training set, we can compute the probabilities

Outlook	Ρ	Ν	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			Windy		
hot	2/9	2/5	true	3/9	3/5
m ild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

Play-tennis example: classifying X

 \Re An unseen sample $X = \langle rain, hot, high, false \rangle$

```
\Re P(X|p) \cdot P(p) = P(rain|p) \cdot P(hot|p) \cdot P(high|p) \cdot P(false|p) \cdot P(p) = 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582
```

```
\Re P(X|n) \cdot P(n) = P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false|n) \cdot P(n) = 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286
```

Sample X is classified in class n (don't play)

The independence hypothesis...

- # ... makes computation possible
- # ... yields optimal classifiers when satisfied
- # ... but is seldom satisfied in practice, as attributes (variables) are often correlated.
- # Attempts to overcome this limitation:

Training dataset

Class:

C1:buys_computer='yes' C2:buys_computer='no'

Data sample:

X =
(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)</pre>

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: **Example**

 \mathbb{H} Compute $P(X|C_i)$ for each class

```
P(age=``<30" \mid buys\_computer=``yes") = 2/9=0.222\\ P(age=``<30" \mid buys\_computer=``no") = 3/5 = 0.6\\ P(income=``medium" \mid buys\_computer=``yes")= 4/9 = 0.444\\ P(income=``medium" \mid buys\_computer=``no") = 2/5 = 0.4\\ P(student=``yes" \mid buys\_computer=``yes)= 6/9 = 0.667\\ P(student=``yes" \mid buys\_computer=``no")= 1/5=0.2\\ P(credit\_rating=``fair" \mid buys\_computer=``yes")=6/9=0.667\\ P(credit\_rating=``fair" \mid buys\_computer=``no")=2/5=0.4\\ P(credit\_rating=``fair" \mid buys\_computer=``fair" \mid buys\_compute
```

X=(age<=30 ,income =medium, student=yes,credit_rating=fair)</pre>

$$P(X|C_i): P(X|buys_computer="yes") = 0.222 \times 0.444 \times 0.667 \times 0.0.667 = 0.044$$

$$P(X|buys_computer="no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$$

$$P(X|C_i)*P(C_i):$$
 $P(X|buys_computer="yes")*P(buys_computer="yes")=0.028$ $P(X|buys_computer="no")*P(buys_computer="no")=0.007$

X belongs to class "buys computer=yes"