

Enabling Data-Driven Optimisation of Healthcare Clinics with Privacy-respecting Radar Technology

Yaman Kalaji, Duncan Wilson, and Steven Gray

Yaman Kalaji

- Research Assistant at the Connected Environments lab, UCL
- BSc Computer Engineering
- MSc Connected Environments
- Radar CPD Course (Prof. Hugh & Prof. Matt)
- Entrepreneur (two startups, last in RTLS supply chains)

Centre for Advanced Spatial Analysis

Research themes:

- Built environments
- Smart cities
- City modelling & simulation
- Urban systems

UCL East campus – East London

Connected Environments Lab

https://connected-environments.org/

Research themes:

Internet of Things, Smart Buildings, Sensor Networks, Spatial & Edge AI, Digital Twins, Building Management Systems...

Introduction

Pop-up eye clinics

Patient waiting space

Diagnosis cubicle

Aims and research question

Ophthalmology had **5.5 million** visits for 2020-21 (NHS Digital, 2021)

NHS waiting list in England has gone up to a record high at **7.75 million**(BBC News, 2023)

How to decrease patient backlog?

What are the clinic factors that affect patient backlog?

First Phase

HERCULES Project

First Phase: Tracking patients

at Brent Cross 1, London

On behalf of The HERCULES Consortium Funded by the NIHR Biomedical Research Centre at Moorfields Eye Hospital

Phase 1: Tracking patients

Ubisense Tracking tags

Ultra Wideband [Time-Difference-of-Arrival (TDoA) - Angle-of-Arrival (AoA)]

Spatiotemporal data of patient journeys (with 4 clinic layouts iterations)

Phase 1: Tracking patients

Single Glaucoma patient journey

Phase 1: Tracking patients

Challenges:

- Only 50% of patients accepted carrying a tracking tag
- Not a repeatable process, intrusive

Second Phase

HERCULES Project

Second Phase: Occupancy and Environmental performance

at Brent Cross 2, London

On behalf of The HERCULES Consortium Funded by the NIHR Biomedical Research Centre at Moorfields Eye Hospital

Brent Cross 2 floorplan

Brent Cross 2 floorplan

Types of cubicles:

- 1. VA: Visual Acuity
- 2. VF: Visual Field
- 3. Photos
- 4. Scans
- 5. Cataract VA
- 6. Consultants
- 7. Staff

Patient cases:

- 1. Retina
- 2. Glaucoma
- 3. Cataract
- 4. Kerataconus

COACH - Connected Occupancy and Clinic Health

DF Robot mmWave Radar -24GHz Human Presence Detection Sensor

Sensors inside **COACH** unit

Wall/Ceiling mounting

Sensor holders

Main box

- Based on Arm® Cortex®-M0 32-bit
 SAMD21 Arduino IDE compatible
- Custom PCB
- Open-source

3D Printed & manufactured in the CE lab

Having a radar inside.. what could go wrong?

- Heating challenges
- Multi-sensor interference.

Brent Cross, London

20Deployed COACH units

Wi-Fi connected ~50% Ceiling mounted ~50% Wall mounted

Since Feb/2024

Wall-mounted COACH

Ceiling-mounted COACH

Infrastructure

26

Grafana dashboard

Challenged related to the used radar module:

mmWave penetration

mmWave radar detecting an OCT fan

No micro-Doppler filtering

Cubicle utilisation on 12-4-2024

Challenges:

- Wall penetration control:
 No raw data accessible from the chosen 24GHz mmWave radar module (thus no Range-Doppler plots).
- Moving parts inside machines:
 Classifying Doppler/micro-Doppler signatures was not possible.

Third Phase (My PhD project)

User journey data will come from the indoor radar network

Indoor radars under test

Texas Instruments IWR6843 - $60 \rightarrow 64$ GHz PCB Antenna – MIMO, FMCW ~ £230

Infineon BGT60TR13C - 60GHz AoP – MIMO, FMCW ~ £200

Minew MS72SF1 - 60GHz AoP – MIMO, FMCW ~ £15

DreamBoards
DreamHAT+ Radar (Infineon)
~£100

Ongoing experiments

Texas Instruments IWR6843 standard demo

End goal?

- Edge computing
 Radar mesh network.
- Track & count individuals between cubicles.
- Utilising the unlicensed
 1.9 GHz band for comms

 (DECT NR+)

PhD project at

Thank you for listening

Yaman Kalaji yaman.kalaji@ucl.ac.uk