Scalable Multi-Party Computation Protocols for Machine Learning in the Honest-Majority Setting

Fengrun Liu, Xiang Xie, Yu Yu

Machine Learning and Privacy

Product Recommendation

Image Processing

Language Model: generate human-like responses

More data —> Better models

Privacy-preserving Machine Learning (PPML)

How about MPC Protocols for arbitrary n parties?

General-purpose MPC: [DN07] [DPSZ12] [SPDZ] [Mascot] ...

Scalability from Shamir's Secret Sharing

Two Obstacles in Oblivious Inference on a Neural Network

- Decimal number
- Non-linear function

$$DReLU(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$Max(a,b) = ReLU(a - b) + b$$

Decimal Multiplications in Integer Ring $\mathbb{Z}_{2\ell}$

• Represent an integer $\bar{x} \in [-2^{\ell-1}, 2^{\ell-1})$

$$x = \bar{x} \pmod{2^{\ell}} = \begin{cases} \bar{x}, & \bar{x} \ge 0\\ 2^{\ell} - \bar{x}, & \bar{x} < 0 \end{cases}$$

(2's complement)

Represented **Integers**

 $\in \mathbb{Z}_{2\ell}$

$$c = a \times b$$

2d = 32 bits

 $\in \mathbb{Z}_{2\ell}$ $\bar{c} = \bar{a} \times \bar{b}$

shift the bits down by *d* positions and fill the top *d* bits with MSB of *c*

• Truncation on c: performing $\bar{c}/2^d$

 $\in \mathbb{Z}_{2\ell}$ $\bar{c}/2^d$ Trunc(c)filled with MSB d = 16 bits

Decimal Multiplications in Mersenne Field \mathbb{F}_p $(p=2^\ell-1)$

Represented • Represent an integer $\bar{x} \in (-2^{\ell-1}, 2^{\ell-1})$ $\ell = 64$ bits **Integers** $x = \bar{x} \pmod{2^{\ell} - 1} = \begin{cases} \bar{x}, & \bar{x} \ge 0 \\ 2^{\ell} - 1 - \bar{x}, & \bar{x} < 0 \end{cases}$ MSB is the sign bit $c = a \times b$ • Truncation on c: performing $\bar{c}/2^d$ 2d = 32 bits Truncation in $\mathbb{F}_{2^{\ell}-1}$ = Truncation in $\mathbb{Z}_{2^{\ell}}$ Trunc(c)

filled with MSB

d = 16 bits

shift the bits down by d positions and fill the top d bits with MSB of c

Previous Truncation Protocol with A Large Gap

Preprocess: a pair ([r], [Trunc(r)]) where $r \leftarrow \mathbb{F}_{2\ell-1}$

Online:

1.
$$[a] = [x] + [r]$$

- 2. Reveal *a*
- 3. $[\operatorname{Trunc}(x)] = \operatorname{Trunc}(a) [\operatorname{Trunc}(r)]$

A Large Gap!!

only holds w.h.p. for small $x < 2^{\ell} - 1$

For example, we have a = x + r in \mathbb{F}_{2^9-1} .

incorrect sign bit: falsely indicates the result is negative

filled with the incorrect sign bit

For example, we have a = x + r in \mathbb{F}_{2^9-1} .

Expected Truncation:

(Actual Result)

filled with the correct sign bit

positive overflow happen

```
Preprocess: a triple ( [r], [Trunc(r)], [MSB(r)] ) where r \leftarrow \mathbb{F}_{2\ell-1}
```

Online: for positive input $x \in [0, 2^{\ell-1})$

1-bit Gap

1.
$$[a] = [x] + [r]$$

- 2. Reveal *a*
- 3. $[e] = (1 [MSB(r)]) \cdot MSB(a)$

e = 1 indicating positive overflow happens

4. $[\text{Trunc}(x)] = \text{Trunc}(a) - [\text{Trunc}(r)] + [e] \cdot (2^{\ell-d} - 1)$

holds for any $x \in [0, 2^{\ell-1})$ representing positive numbers

$$[DN07] \qquad \qquad ----$$

$$(\langle r \rangle, [Trunc(r)], [MSB(r)])$$

1-round Fixed-point Multiplication Protocol with Only 1-bit Gap

Non-linear Function via Bitwise Comparison

arithmetic comparison (x < 0)

$$DReLU(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Fact: MSB(x) = LSB(2x) holds in odd rings

1.
$$y = 2x + r$$

2. Reveal y

3. LSB(2a) = LSB(y)
$$\oplus$$
 LSB(r) \oplus (y_B < r_B) public secret

bitwise comparison

* **Prefix-OR** involves
$$\ell$$
 multiplications: $b_j = \bigvee_{i=1}^J a_i$ for $j = 1, ..., \ell$

Round-Efficient Prefix-OR Protocol via Prefix-AND

Online Complexity of [NO07]: 5 rounds

* Prefix-OR: compute $b_j = \bigvee_{i=1}^{J} a_i$ for $j = 1, ..., \ell$

Online Complexity of Prefix-Mult[BB89]: 1 round

* Prefix-AND: compute $b_j = \bigwedge_{i=1}^{J} a_i$ for $j = 1, ..., \mathcal{E}$

- 1. locate the first 1-bit's position
- 2. set all the following bits to 1 by OR operation

Dual Problem

- 1. locate the first 0-bit's position
- set all the following bits to 0 by AND (zero out all the following bits)

Other Building Blocks

Round Complexity in Online Phase

Performance: Oblivious Inference

Stimulate 3-63 parties on 11 servers

LAN: 15Gb/s, delay 0.3ms

WAN: 100Mb/s, delay 40ms

online runtime (s) from 3PC to 63PC in the LAN setting

Performance: Oblivious Inference

Stimulate 3-63 parties on 11 servers

LAN: 15Gb/s, delay 0.3ms

WAN: 100Mb/s, delay 40ms

online runtime (s) from 3PC to 63PC in the WAN setting

The End, Questions?