Homework 1 - CPSC 326 Solutions

Dang Phung

September 13, 2025

Question 1 (10 points)

Let $\Sigma = \{0, 1, a, b, c, d\}$ be an alphabet.

- What is $|\Sigma|$?
- What is $|\Sigma^*|$?
- What is $|\Sigma^+|$?
- What is $|\Sigma^* \Sigma^+|$?

Answer:

- $|\Sigma| = 6$ (the alphabet contains 6 symbols)
- $|\Sigma^*| = \infty$ (the Kleene closure contains all finite strings including the empty string)
- $|\Sigma^+| = \infty$ (the positive closure contains all finite non-empty strings)
- $|\Sigma^* \Sigma^+| = 1$ (the only element in Σ^* but not in Σ^+ is λ)

Question 2 (10 points)

Let the set $A = \{w \in \{a, b\}^* \mid |w| \le 2\}$. List the elements of the set A. **Answer:** $A = \{\lambda, a, b, aa, ab, ba, bb\}$

- Strings of length 0: λ
- Strings of length 1: a, b
- Strings of length 2: aa, ab, ba, bb

Question 3 (10 points)

```
Let A = \{1, 2, 3, ..., n\}. What is \bigcup_{i=1}^{n} A?

Answer: \bigcup_{i=1}^{n} A = A = \{1, 2, 3, ..., n\}

Since we are taking the union of A with itself n times, the result is just A.
```

Question 4 (10 points)

```
What is \mathcal{P}(\{a,b,c\})? What is |\mathcal{P}(\{a,b,c\}) - \mathcal{P}(\{a,b\})|?

Answer: \mathcal{P}(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}
\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}
\mathcal{P}(\{a,b,c\}) - \mathcal{P}(\{a,b\}) = \{\{c\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}
Therefore, |\mathcal{P}(\{a,b,c\}) - \mathcal{P}(\{a,b\})| = 4
```

Question 5 (10 points)

For sets A and B prove or disprove the following: A - B = B - A.

Answer: This statement is **false**. We disprove it with a counterexample: Let $A = \{1, 2\}$ and $B = \{2, 3\}$.

Then:

- $A B = \{1\}$ (elements in A but not in B)
- $B A = \{3\}$ (elements in B but not in A)

Since $\{1\} \neq \{3\}$, we have $A - B \neq B - A$. The equality A - B = B - A holds if and only if A = B.

Question 6 (10 points)

What is $\mathcal{P}(\emptyset)$? What about $\mathcal{P}(\{\emptyset\})$? **Answer:**

- $\mathcal{P}(\emptyset) = \{\emptyset\}$ (the power set of the empty set contains only empty set)
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$ (the power set contains the empty set and the set containing the empty set)

Question 7 (10 points)

Let $f: \mathbb{N} \to \mathbb{N}$ be a function defined as follows: f(x) = 2x.

 \bullet Is f a bijection? Why or why not?

• Let E denote the set of even natural numbers. Now consider f with the same definition but now $f: \mathbb{N} \to E$. Is f a bijection?

Answer:

- $f: \mathbb{N} \to \mathbb{N}$ is **not a bijection**. While f is one to one, it is not surjective because odd numbers like 1, 3, 5, etc., are never mapped to by f. For example, there is no $x \in \mathbb{N}$ such that f(x) = 1.
- $f: \mathbb{N} \to E$ is a bijection.
 - Injective: If $f(x_1) = f(x_2)$, then $2x_1 = 2x_2$, so $x_1 = x_2$.
 - Surjective: For any even number $y \in E$, we have y = 2k for some $k \in \mathbb{N}$, and f(k) = 2k = y.

Question 8 (10 points)

What is the error in the following proof that 1 = 2? Let a = b, for some a and b. Multiply both sides of the equation by a to get $a \cdot a = a \cdot b$. Now subtract b^2 from both sides to get $a^2 - b^2 = ab - b^2$. Now apply factoring and get (a + b)(a - b) = b(a - b). Divide each side of the equality by (a - b) to get a + b = b. Finally, let a and b both be 1 and thus a = b.

Answer: The error is when you divide both sides by (a-b). Since we started with a=b, we have a-b=0. Division by zero is undefined, making this step invalid. The algebraic steps up to (a+b)(a-b)=b(a-b) is correct, but we can't divide (a-b)=0 to show a+b=b.

Question 9 (10 points)

Let Σ be an alphabet.

- Prove or disprove the following: $\Sigma^+ \cup \emptyset = \Sigma^*$
- Is $\lambda \in \emptyset$?

Answer:

• The statement $\Sigma^+ \cup \emptyset = \Sigma^*$ is false.

 $\Sigma^+ \cup \emptyset = \Sigma^+$ (because union with the empty set doesn't change a set).

Also, $\Sigma^* = \Sigma^+ \cup \{\lambda\}$ (the Kleene closure includes the empty string).

Therefore, $\Sigma^+ \cup \emptyset = \Sigma^+ \neq \Sigma^*$ (unless $\Sigma = \emptyset$, which is a contradiction for it being an alphabet).

The correct statement would be: $\Sigma^+ \cup \{\lambda\} = \Sigma^*$

• No, $\lambda \notin \emptyset$. The empty set \emptyset contains no elements at all which also doesn't include λ .

Question 10 (10 points)

What is $\sum_{x \in \mathcal{P}(\{a,b,c\})} |x|$?
Answer:

- \emptyset : $|\emptyset| = 0$
- $\{a\}$: $|\{a\}| = 1$
- $\{b\}$: $|\{b\}| = 1$
- $\{c\}$: $|\{c\}| = 1$
- $\{a,b\}$: $|\{a,b\}| = 2$
- $\{a,c\}$: $|\{a,c\}| = 2$
- $\{b,c\}$: $|\{b,c\}| = 2$
- $\{a, b, c\}$: $|\{a, b, c\}| = 3$

Sum = 0 + 1 + 1 + 1 + 2 + 2 + 2 + 3 = 12