

What is claimed is:

1. A compound of Formula I or a pharmaceutically acceptable salt thereof:



5

**I**

wherein

- $\text{R}^1$  is selected from  $\text{C}_{1-10}\text{alkyl}$ ,  $\text{C}_{2-10}\text{alkenyl}$ ,  $\text{C}_{2-10}\text{alkynyl}$ ,  $\text{R}^5\text{R}^6\text{N-C}_{1-6}\text{alkyl}$ ,  
 $\text{R}^5\text{O-C}_{1-6}\text{alkyl}$ ,  $\text{R}^5\text{C(=O)N(-R}^6\text{)-C}_{1-6}\text{alkyl}$ ,  $\text{R}^5\text{R}^6\text{NS(=O)}_2\text{-C}_{1-6}\text{alkyl}$ ,  $\text{R}^5\text{CS(=O)}_2\text{N(-R}^6\text{)-C}_{1-6}\text{alkyl}$ ,  
 $\text{R}^5\text{R}^6\text{NC(=O)N(-R}^7\text{)-C}_{1-6}\text{alkyl}$ ,  $\text{R}^5\text{R}^6\text{NS(=O)}_2\text{N(R}^7\text{)-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{6-10}\text{aryl-C}_{1-6}\text{alkyl}$ ,  
 $\text{C}_{6-10}\text{aryl-C(=O)-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{3-10}\text{cycloalkyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{4-8}\text{cycloalkenyl-C}_{1-6}\text{alkyl}$ ,  
 $\text{C}_{3-6}\text{heterocyclyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{3-6}\text{heterocyclyl-C(=O)-C}_{1-6}\text{alkyl}$ ,  
 $\text{C}_{1-10}\text{hydrocarbyl amino}$ ,  $\text{R}^5\text{R}^6\text{N-}$ ,  $\text{R}^5\text{O-}$ ,  $\text{R}^5\text{C(=O)N(-R}^6\text{)-}$ ,  $\text{R}^5\text{R}^6\text{NS(=O)}_2\text{-}$ ,  
 $\text{R}^5\text{CS(=O)}_2\text{N(-R}^6\text{)-}$ ,  $\text{R}^5\text{R}^6\text{NC(=O)N(-R}^7\text{)-}$ ,  $\text{R}^5\text{R}^6\text{NS(=O)}_2\text{N(R}^7\text{)-}$ ,  $\text{C}_{6-10}\text{aryl}$ ,  $\text{C}_{6-10}\text{aryl-C(=O)-}$ ,  
 $\text{C}_{3-10}\text{cycloalkyl}$ ,  $\text{C}_{4-8}\text{cycloalkenyl}$ ,  $\text{C}_{3-6}\text{heterocyclyl}$  and  $\text{C}_{3-6}\text{heterocyclyl-C(=O)-}$ ,  
 $\text{C(=O)-}$ ; wherein said  $\text{C}_{1-10}\text{alkyl}$ ,  $\text{C}_{2-10}\text{alkenyl}$ ,  $\text{C}_{2-10}\text{alkynyl}$ ,  $\text{C}_{6-10}\text{aryl-C}_{1-6}\text{alkyl}$ ,  
 $\text{C}_{6-10}\text{aryl-C(=O)-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{3-10}\text{cycloalkyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{4-8}\text{cycloalkenyl-C}_{1-6}\text{alkyl}$ ,  
 $\text{C}_{3-6}\text{heterocyclyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{3-6}\text{heterocyclyl-C(=O)-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{1-10}\text{hydrocarbyl amino}$ ,  
 $\text{C}_{6-10}\text{aryl}$ ,  $\text{C}_{6-10}\text{aryl-C(=O)-}$ ,  $\text{C}_{3-10}\text{cycloalkyl}$ ,  $\text{C}_{4-8}\text{cycloalkenyl}$ ,  $\text{C}_{3-6}\text{heterocyclyl}$  or  
 $\text{C}_{3-6}\text{heterocyclyl-C(=O)-}$  used in defining  $\text{R}^1$  is optionally substituted by one or more  
 $\text{20 groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and -NR}^5\text{R}^6$ ;  
 $\text{R}^2$  is selected from  $\text{C}_{1-10}\text{alkyl}$ ,  $\text{C}_{2-10}\text{alkenyl}$ ,  $\text{C}_{2-10}\text{alkynyl}$ ,  $\text{C}_{3-10}\text{cycloalkyl}$ ,  $\text{C}_{3-10}\text{cycloalkyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{4-8}\text{cycloalkenyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{3-6}\text{heterocycloalkyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{4-8}\text{cycloalkenyl}$ ,  $\text{R}^5\text{R}^6\text{N-}$ ,  $\text{C}_{3-5}\text{heteroaryl}$ ,  $\text{C}_{6-10}\text{aryl}$  and  $\text{C}_{3-6}\text{heterocycloalkyl}$ , wherein  
 $\text{25 said C}_{1-10}\text{alkyl}$ ,  $\text{C}_{2-10}\text{alkenyl}$ ,  $\text{C}_{2-10}\text{alkynyl}$ ,  $\text{C}_{3-8}\text{cycloalkyl}$ ,  $\text{C}_{3-8}\text{cycloalkyl-C}_{1-6}\text{alkyl}$ ,  
 $\text{C}_{4-8}\text{cycloalkenyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{3-6}\text{heterocycloalkyl-C}_{1-6}\text{alkyl}$ ,  $\text{C}_{4-8}\text{cycloalkenyl}$ ,  $\text{C}_{3-5}\text{heteroaryl}$ ,  $\text{C}_{6-10}\text{aryl}$  or  $\text{C}_{3-6}\text{heterocycloalkyl}$  used in defining  $\text{R}^2$  is optionally  
 $\text{substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and -NR}^5\text{R}^6$ ;

wherein R<sup>5</sup>, R<sup>6</sup> and R<sup>7</sup> are independently selected from -H, C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, and a divalent C<sub>1-6</sub>group that together with another divalent R<sup>5</sup>, R<sup>6</sup> or R<sup>7</sup> forms a portion of a ring;

- R<sup>3</sup> is selected from -H, C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl, C<sub>2-10</sub>alkynyl, C<sub>3-10</sub>cycloalkyl,  
5 C<sub>3-10</sub>cycloalkyl-C<sub>1-6</sub>alkyl, C<sub>4-8</sub>cycloalkenyl-C<sub>1-6</sub>alkyl, C<sub>3-6</sub>heterocycloalkyl,

 , and   
optionally substituted with one or more groups selected from C<sub>1-6</sub>alkyl, halogen, amino and C<sub>1-6</sub>alkoxy;

- each of R<sup>8</sup> and R<sup>9</sup> is independently selected from -H, C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl, C<sub>2-10</sub>alkynyl, C<sub>3-10</sub>cycloalkyl, C<sub>3-10</sub>cycloalkyl-C<sub>1-6</sub>alkyl, C<sub>3-6</sub>heterocyclyl, C<sub>6-10</sub>aryl,  
10 C<sub>3-6</sub>heterocyclyl-C<sub>1-6</sub>alkyl, C<sub>6-10</sub>aryl-C<sub>1-6</sub>alkyl, and a divalent C<sub>1-6</sub>group that together with another divalent group selected from R<sup>8</sup> and R<sup>9</sup> forms a portion of a ring,  
wherein said C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl, C<sub>2-10</sub>alkynyl, C<sub>3-10</sub>cycloalkyl, C<sub>3-10</sub>cycloalkyl-C<sub>1-6</sub>alkyl, C<sub>3-6</sub>heterocyclyl-C<sub>1-6</sub>alkyl, C<sub>6-10</sub>aryl-C<sub>1-6</sub>alkyl, or  
divalent C<sub>1-6</sub>group is optionally substituted by one or more groups selected from  
15 halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and -NR<sup>5</sup>R<sup>6</sup>; and  
R<sup>4</sup> is selected from -H, C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl, C<sub>2-10</sub>alkynyl, C<sub>3-10</sub>cycloalkyl,  
C<sub>3-10</sub>cycloalkyl-C<sub>1-6</sub>alkyl, and C<sub>4-8</sub>cycloalkenyl-C<sub>1-6</sub>alkyl.

2. A compound as claimed in claim 1, wherein

- 20 R<sup>1</sup> is selected from C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, phenyl-C<sub>1-4</sub>alkyl, C<sub>3-10</sub>cycloalkyl-C<sub>1-4</sub>alkyl, C<sub>4-6</sub>cycloalkenyl-C<sub>1-4</sub>alkyl, C<sub>3-10</sub>heterocyclyl-C<sub>1-4</sub>alkyl, C<sub>6-10</sub>aryl, C<sub>3-10</sub>cycloalkyl, C<sub>3-10</sub>heterocyclyl and C<sub>4-6</sub>cycloalkenyl, wherein said C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, phenyl-C<sub>1-4</sub>alkyl, C<sub>3-10</sub>cycloalkyl-C<sub>1-4</sub>alkyl, C<sub>4-6</sub>cycloalkenyl-C<sub>1-4</sub>alkyl, C<sub>3-10</sub>heterocyclyl-C<sub>1-4</sub>alkyl, C<sub>6-10</sub>aryl, C<sub>3-10</sub>cycloalkyl, C<sub>3-10</sub>heterocyclyl and  
25 C<sub>4-6</sub>cycloalkenyl used in defining R<sup>1</sup> is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and -NR<sup>5</sup>R<sup>6</sup>;

- R<sup>2</sup> is selected from C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>3-6</sub>cycloalkyl, C<sub>3-6</sub>cycloalkyl-C<sub>1-4</sub>alkyl, C<sub>4-6</sub>cycloalkenyl-C<sub>1-4</sub>alkyl, C<sub>3-6</sub>heterocycloalkyl-C<sub>1-4</sub>alkyl, C<sub>4-6</sub>cycloalkenyl, C<sub>3-5</sub>heteroaryl, R<sup>5</sup>R<sup>6</sup>N-, and phenyl, wherein said C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>3-6</sub>cycloalkyl, C<sub>3-6</sub>cycloalkyl-C<sub>1-4</sub>alkyl, C<sub>4-6</sub>cycloalkenyl-C<sub>1-4</sub>alkyl,

$C_{3\text{-}6}$ heterocycloalkyl- $C_{1\text{-}4}$ alkyl,  $C_{4\text{-}6}$ cycloalkenyl,  $C_{3\text{-}5}$ heteroaryl,  $R^5R^6N$ -, and phenyl used in defining  $R^2$  is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and  $-NR^5R^6$ ;

$R^3$  is selected from  $-H$ ,  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl,  $C_{3\text{-}6}$ cycloalkyl,  $C_3$ .

- 5      $\begin{array}{c} R^8 \\ | \\ \text{---} \\ R^9-N-\text{---} \\ | \\ \text{---} \end{array}$      and      $\begin{array}{c} R^8 \\ | \\ \text{---} \\ O-\text{---} \\ | \\ \text{---} \end{array}$      optionally substituted with one or  
more groups selected from  $C_{1\text{-}6}$ alkyl and halogen;  
each of  $R^8$  and  $R^9$  is independently selected from  $-H$ ,  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl,  
 $C_{3\text{-}6}$ cycloalkyl,  $C_{3\text{-}6}$ cycloalkyl- $C_{1\text{-}6}$ alkyl,  $C_{3\text{-}6}$ heterocycl and  $C_{3\text{-}6}$ heterocycl- $C_{1\text{-}6}$ alkyl, wherein said  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl,  $C_{3\text{-}6}$ cycloalkyl,  $C_{3\text{-}6}$ cycloalkyl- $C_{1\text{-}6}$ alkyl,
- 10     $C_{3\text{-}6}$ heterocycl,  $C_{3\text{-}6}$ heterocycl- $C_{1\text{-}6}$ alkyl and a divalent  $C_{1\text{-}6}$ group that together  
with another divalent group selected from  $R^8$  and  $R^9$  forms a portion of a ring,  
wherein said  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl,  $C_{3\text{-}6}$ cycloalkyl,  $C_{3\text{-}6}$ cycloalkyl- $C_{1\text{-}6}$ alkyl,  $C_3$ .  
 $C_{3\text{-}6}$ heterocycl and  $C_{3\text{-}6}$ heterocycl- $C_{1\text{-}6}$ alkyl, wherein said  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl,  $C_{3\text{-}6}$ cycloalkyl,  $C_{3\text{-}6}$ cycloalkyl- $C_{1\text{-}6}$ alkyl,  $C_{3\text{-}6}$ heterocycl,  $C_{3\text{-}6}$ heterocycl- $C_{1\text{-}6}$ alkyl or  
15    divalent  $C_{1\text{-}6}$ group are optionally substituted by one or more groups selected from  
halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and  $-NR^5R^6$ ; and  
 $R^4$ ,  $R^5$  and  $R^6$  are independently selected from  $-H$  and  $C_{1\text{-}3}$ alkyl.

3.    A compound as claimed claim 1,

- 20    wherein  $R^1$  is selected from  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl, phenyl- $C_{1\text{-}4}$ alkyl,  
 $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}4}$ alkyl,  $C_{4\text{-}6}$ cycloalkenyl- $C_{1\text{-}4}$ alkyl,  $C_{6\text{-}10}$ aryl,  $C_{3\text{-}10}$ cycloalkyl,  
 $C_{3\text{-}6}$ heterocycloalkyl- $C_{1\text{-}4}$ alkyl, and  $C_{4\text{-}6}$ cycloalkenyl, wherein said  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl, phenyl- $C_{1\text{-}4}$ alkyl,  $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}4}$ alkyl,  $C_{4\text{-}6}$ cycloalkenyl- $C_{1\text{-}4}$ alkyl,  $C_{6\text{-}10}$ aryl,  $C_{3\text{-}10}$ cycloalkyl,  $C_{3\text{-}6}$ heterocycloalkyl- $C_{1\text{-}4}$ alkyl, and  $C_{4\text{-}6}$ cycloalkenyl used in  
25    defining  $R^1$  is optionally substituted by one or more groups selected from halogen,  
methoxy, ethoxy, methyl, ethyl, hydroxy, and  $-NR^5R^6$ ;

$R^2$  is selected from  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl,  $C_{3\text{-}6}$ cycloalkyl and  $C_{3\text{-}6}$ cycloalkyl- $C_{1\text{-}4}$ alkyl, wherein said  $C_{1\text{-}6}$ alkyl,  $C_{2\text{-}6}$ alkenyl,  $C_{3\text{-}6}$ cycloalkyl and  $C_{3\text{-}6}$ cycloalkyl- $C_{1\text{-}4}$ alkyl used in defining  $R^2$  is optionally substituted by one or more groups selected  
30    from halogen, methoxy, ethoxy, methyl, ethyl, hydroxy and  $-NR^5R^6$ ;

$R^3$  is selected from  $C_{2-6}$ alkyl,  $C_{3-6}$ heterocycloalkyl and  $R^9-N(R^8)$  optionally substituted with one or more  $C_{1-6}$ alkyl, and;

- wherein said  $C_{3-6}$ heterocycloalkyl contain at least one nitrogen ring atom and the radical of  $C_{3-6}$ heterocycloalkyl is located on the at least one nitrogen ring atom,
- 5 and wherein each of  $R^8$  and  $R^9$  is independently selected from -H,  $C_{1-6}$ alkyl, morpholinyl- $C_{1-3}$ alkyl, pyrrolidinyl- $C_{1-3}$ alkyl, and piperidinyl- $C_{1-3}$ alkyl, wherein said  $C_{1-6}$ alkyl, morpholinyl- $C_{1-3}$ alkyl, pyrrolidinyl- $C_{1-3}$ alkyl, and piperidinyl- $C_{1-3}$ alkyl are optionally substituted by one or more groups selected from halogen, methoxy, ethoxy, methyl, ethyl, hydroxy and  $-NR^5R^6$ ; and
10.  $R^4$ ,  $R^5$  and  $R^6$  are independently selected from -H and  $C_{1-3}$ alkyl.

4. A compound as claimed in claim 1, wherein

$R^1$  is selected from cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl, 4,4-difluorocyclohexanemethyl, cyclohexylethyl, cyclopentylethyl, tetrahydropyranylmethyl, tetrahydrofuranyl methyl, 1-piperidinylethyl, N-methyl-2-piperidinyl-methyl and benzyl;

15.  $R^2$  is selected from t-butyl, n-butyl, 2-methyl-2-butyl, isopentyl, 2-methoxy-2-propyl, 2-hydroxy-propyl, trifluoromethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, 1-cyclopropyl-ethyl, 1-methyl-propyl, 1,1-dimethyl-propyl, 1,1-dimethyl-3-buten-1-yl, 20 ethyl, and 2-propyl;

$R^3$  is  $C_{2-5}$ alkyl and  $R^8R^9N-$ , wherein  $R^8$  and  $R^9$  are independently selected from -H, and  $C_{1-3}$ alkyl.

5. A compound selected from:

25.  $N-[2\text{-}tert\text{-}Butyl\text{-}1\text{-}(cyclohexylmethyl)\text{-}1H\text{-}benzimidazol\text{-}5\text{-}yl}\text{-}N,N',N'$ -trimethylsulfamide;

$N-[2\text{-}tert\text{-}Butyl\text{-}1\text{-}(cyclohexylmethyl)\text{-}1H\text{-}benzimidazol\text{-}5\text{-}yl}\text{-}N',N'\text{-}diethyl\text{-}N$ -methylsulfamide;

- N-[1-(cyclohexylmethyl)-2-(1,1-dimethylpropyl)-1*H*-benzimidazol-5-yl]-*N,N*-dimethyl-sulfamide;
- 5      *N*-[2-*tert*-Butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]-  
*N*-methylbutane-1-sulfonamide;
- 10     *N*-[2-*tert*-Butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]-  
*N*-methyl-2-pyrrolidin-1-ylethane sulfonamide;
- 15     *N*-[2-*tert*-Butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]-  
*N*-methyl-2-piperidin-1-ylethane sulfonamide;
- 20     *N*-[2-*tert*-Butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]-  
2-[(2-hydroxyethyl)amino]-*N*-methylethane sulfonamide;
- 25     2-(2-Aminoethoxy)-*N*-[2-*tert*-butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]-*N*-methylethane sulfonamide;
- 30     *N*-{2-*tert*-Butyl-1-[(4,4-difluorocyclohexyl)methyl]-1*H*-benzimidazol-5-yl}-  
*N*-methylbutane-1-sulfonamide;
- N*-{2-*tert*-Butyl-1-[(4,4-difluorocyclohexyl)methyl]-1*H*-benzimidazol-5-yl}-  
*N*-methyl-2-piperidin-1-ylethane sulfonamide and pharmaceutically acceptable  
salts thereof.

6. A compound according to any one of claims 1-5 for use as a medicament.
7. The use of a compound according to any one of claims 1-5 in the manufacture  
5 of a medicament for the therapy of pain.
8. The use of a compound according to any one of claims 1-5 in the manufacture  
of a medicament for the treatment of anxiety disorders.
- 10 9. The use of a compound according to any one of claims 1-5 in the manufacture  
of a medicament for the treatment of cancer, multiple sclerosis, Parkinson's disease,  
Huntington's chorea, Alzheimer's disease, gastrointestinal disorders and  
cardiovascular disorders.
- 15 10. A pharmaceutical composition comprising a compound according to any one  
of claims 1-5 and a pharmaceutically acceptable carrier.
11. A method for the therapy of pain in a warm-blooded animal, comprising the  
step of administering to said animal in need of such therapy a therapeutically effective  
20 amount of a compound according to any one of claims 1-5.
12. A method for preparing a compound of Formula I,

**I**

- 25 comprising the step of reacting a compound of Formula II,



II

with a compound of  $R^2C(=O)X$ , in the presence of a base and optionally a coupling reagent, followed by treatment by an acid;

wherein

- 5        X is selected from Cl, Br, F and OH;
- $R^1$  is selected from  $C_{1-10}$ alkyl,  $C_{2-10}$ alkenyl,  $C_{2-10}$ alkynyl,  $R^5R^6N-C_{1-6}$ alkyl,  $R^5O-C_{1-6}$ alkyl,  $R^5C(=O)N(-R^6)-C_{1-6}$ alkyl,  $R^5R^6NS(=O)_2-C_{1-6}$ alkyl,  $R^5CS(=O)_2N(-R^6)-C_{1-6}$ alkyl,  $R^5R^6NC(=O)N(-R^7)-C_{1-6}$ alkyl,  $R^5R^6NS(=O)_2N(R^7)-C_{1-6}$ alkyl,  $C_{6-10}$ aryl- $C_{1-6}$ alkyl,  $C_{6-10}$ aryl- $C(=O)-C_{1-6}$ alkyl,  $C_{3-10}$ cycloalkyl- $C_{1-6}$ alkyl,  $C_{4-8}$ cycloalkenyl- $C_{1-6}$ alkyl,  $C_{3-6}$ heterocyclyl- $C_{1-6}$ alkyl,  $C_{3-6}$ heterocyclyl- $C(=O)-C_{1-6}$ alkyl,
- 10       $C_{1-10}$ hydrocarbyl amino,  $R^5R^6N-$ ,  $R^5O-$ ,  $R^5C(=O)N(-R^6)-$ ,  $R^5R^6NS(=O)_2-$ ,  $R^5CS(=O)_2N(-R^6)-$ ,  $R^5R^6NC(=O)N(-R^7)-$ ,  $R^5R^6NS(=O)_2N(R^7)-$ ,  $C_{6-10}$ aryl,  $C_{6-10}$ aryl- $C(=O)-$ ,  $C_{3-10}$ cycloalkyl,  $C_{4-8}$ cycloalkenyl,  $C_{3-6}$ heterocyclyl and  $C_{3-6}$ heterocyclyl- $C(=O)-$ ; wherein said  $C_{1-10}$ alkyl,  $C_{2-10}$ alkenyl,  $C_{2-10}$ alkynyl,  $C_{6-10}$ aryl- $C_{1-6}$ alkyl,
- 15       $C_{6-10}$ aryl- $C(=O)-C_{1-6}$ alkyl,  $C_{3-10}$ cycloalkyl- $C_{1-6}$ alkyl,  $C_{4-8}$ cycloalkenyl- $C_{1-6}$ alkyl,  $C_{3-6}$ heterocyclyl- $C_{1-6}$ alkyl,  $C_{3-6}$ heterocyclyl- $C(=O)-C_{1-6}$ alkyl,  $C_{1-10}$ hydrocarbyl amino,  $C_{6-10}$ aryl,  $C_{6-10}$ aryl- $C(=O)-$ ,  $C_{3-10}$ cycloalkyl,  $C_{4-8}$ cycloalkenyl,  $C_{3-6}$ heterocyclyl or  $C_{3-6}$ heterocyclyl- $C(=O)-$  used in defining  $R^1$  is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and  $-NR^5R^6$ ;
- 20       $R^2$  is selected from  $C_{1-10}$ alkyl,  $C_{2-10}$ alkenyl,  $C_{2-10}$ alkynyl,  $C_{3-10}$ cycloalkyl,  $C_{3-10}$ cycloalkyl- $C_{1-6}$ alkyl,  $C_{4-8}$ cycloalkenyl- $C_{1-6}$ alkyl,  $C_{3-6}$ heterocycloalkyl- $C_{1-6}$ alkyl,  $C_{4-8}$ cycloalkenyl,  $R^5R^6N-$ ,  $C_{3-5}$ heteroaryl,  $C_{6-10}$ aryl and  $C_{3-6}$ heterocycloalkyl, wherein said  $C_{1-10}$ alkyl,  $C_{2-10}$ alkenyl,  $C_{2-10}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{3-8}$ cycloalkyl- $C_{1-6}$ alkyl,  $C_{4-8}$ cycloalkenyl- $C_{1-6}$ alkyl,  $C_{3-6}$ heterocycloalkyl- $C_{1-6}$ alkyl,  $C_{4-8}$ cycloalkenyl,  $C_3$ sheteroaryl,  $C_{6-10}$ aryl or  $C_{3-6}$ heterocycloalkyl used in defining  $R^2$  is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and  $-NR^5R^6$ ;
- 25      wherein  $R^5$ ,  $R^6$  and  $R^7$  are independently selected from  $-H$ ,  $C_{1-6}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl, and a divalent  $C_{1-6}$ group that together with another divalent  $R^5$ ,  $R^6$  or  $R^7$  forms a portion of a ring;
- 30       $R^3$  is selected from  $-H$ ,  $C_{1-10}$ alkyl,  $C_{2-10}$ alkenyl,  $C_{2-10}$ alkynyl,  $C_{3-10}$ cycloalkyl,  $C_{3-10}$ cycloalkyl- $C_{1-6}$ alkyl,  $C_{4-8}$ cycloalkenyl- $C_{1-6}$ alkyl,  $C_{3-6}$ heterocycloalkyl,

$\begin{array}{c} \text{R}^9 \\ | \\ \text{R}^8-\text{N}-\text{x}- \end{array}$ ,  $\begin{array}{c} \text{R}^8 \\ | \\ \text{N}-\text{z}- \\ | \\ \text{OR}^9 \end{array}$ , and  $\begin{array}{c} \text{R}^8 \\ | \\ \text{O}-\text{z}- \end{array}$   
optionally substituted with one or more  
groups selected from C<sub>1-6</sub>alkyl, halogen, amino and C<sub>1-6</sub>alkoxy;

- each of R<sup>8</sup> and R<sup>9</sup> is independently selected from -H, C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl,  
C<sub>2-10</sub>alkynyl, C<sub>3-10</sub>cycloalkyl, C<sub>3-10</sub>cycloalkyl-C<sub>1-6</sub>alkyl, C<sub>3-6</sub>heterocyclyl, C<sub>6-10</sub>aryl,  
 5 C<sub>3-6</sub>heterocyclyl-C<sub>1-6</sub>alkyl, C<sub>6-10</sub>aryl-C<sub>1-6</sub>alkyl, and a divalent C<sub>1-6</sub>group that together  
with another divalent group selected from R<sup>8</sup> and R<sup>9</sup> forms a portion of a ring,  
wherein said C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl, C<sub>2-10</sub>alkynyl, C<sub>3-10</sub>cycloalkyl, C<sub>3-10</sub>cycloalkyl-  
C<sub>1-6</sub>alkyl, C<sub>3-6</sub>heterocyclyl, C<sub>6-10</sub>aryl, C<sub>3-6</sub>heterocyclyl-C<sub>1-6</sub>alkyl, C<sub>6-10</sub>aryl-C<sub>1-6</sub>alkyl, or  
divalent C<sub>1-6</sub>group is optionally substituted by one or more groups selected from  
 10 halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and -NR<sup>5</sup>R<sup>6</sup>; and  
R<sup>4</sup> is selected from -H, C<sub>1-10</sub>alkyl, C<sub>2-10</sub>alkenyl, C<sub>2-10</sub>alkynyl, C<sub>3-10</sub>cycloalkyl,  
C<sub>3-10</sub>cycloalkyl-C<sub>1-6</sub>alkyl, and C<sub>4-8</sub>cycloalkenyl-C<sub>1-6</sub>alkyl.