CompTIA Security+ (601) Study Notes

Help us keep supporting others in their cybersecurity career.

https://topmate.io/ken_underhill/927998

Contents

Compare and Contrast Information Security Roles	5
Compare and Contrast Security Control and Framework Types	6
Explain Threat Actor Types and Attack Vectors	7
Explain Threat Intelligence Sources	8
Assess Organizational Security with Network Reconnaissance Tools	10
Explain Security Concerns with General Vulnerability Types	12
Summarize Vulnerability Scanning Techniques	13
Explain Penetration Testing Concepts	15
Identifying Social Engineering and Malware	16
Compare and Contrast Social Engineering Techniques	16
Analyze Indicators of Malware-Based Attacks	18
Summarizing Basic Cryptographic Concepts	20
Compare and Contrast Cryptographic Ciphers	20
Summarize Cryptographic Modes of Operation	22
Summarize Cryptographic Use Cases and Weaknesses Cryptographic Concepts	24
Summarize Other Cryptographic Technologies	26
Implementing Public Key Infrastructure Implement Certificates and Certificate Authorities	28
Implement Certificates and Certificate Authorities	31
Implement PKI Management	33
Implementing Authentication Controls	34
Summarize Authentication Design Concepts	34
Implement Knowledge-Based Authentication	35
Implement Authentication Technologies	37
Summarize Biometrics Authentication Concepts	39
Implementing Identity and Account Management Controls	41
Implement Identity and Account Types	41
Implement Account Policies	43
Implement Authorization Solutions	45
Explain the Importance of Personnel Policies	47
Implementing Secure Network Designs	48
Implement Secure Network Designs	48

Imp	lement Secure Switching and Routing	.50
Imp	lement Secure Wireless Infrastructure	.52
Imp	lement Load Balancers	.54
Imp	lementing Network Security Appliances	.56
Imp	lement Firewalls and Proxy Servers	.56
Imp	lement Network Security Monitoring	.58
Sun	nmarize the Use of SIEM	.59
Imp	lementing Secure Network Protocols	.60
Imp	lement Secure Network Operations Protocols	.60
Imp	lement Secure Application Protocols	.62
Imp	lement Secure Remote Access Protocols	.63
Imp	lementing Host Security Solutions	.65
Imp	lement Secure Firmware	.65
Imp	lement Endpoint Security	.67
Ехр	lain Embedded System Security Implications	.69
Imp	lementing Secure Mobile Solutions Implement Mobile Device Management	.71
Imp	lement Secure Mobile Device Connections	.73
Sun	nmarizing Secure Application Concepts	.75
Ana	alyze Indicators of Application Attacks	.75
Ana	alyze Indicators of Web Application Attacks	.77
Sun	nmarize Secure Coding Practices Introduction to Secure Coding Practices:	.79
•	Understanding secure application development, deployment, and automation concepts.	.79
•	Integration of security into development processes for effective DevSecOps	.79
Sec	ure Coding Techniques:	.79
• dep	Emphasizing security considerations in new programming technologies before loyment.	.79
• fund	Modern development practices incorporate security development life cycles alongside ctionality and usability.	.79
•	Examples: Microsoft's SDL, OWASP SAMM, Security Knowledge Framework, and OWASF	כ
•	0 10	
Inpu	ut Validation:	.79
•	Key practice to mitigate attacks exploiting faulty input.	.79
•	Includes user data input, URLs, or HTTP headers.	.79

•	Mitigation involves documenting input methods and rejecting non-conforming input	79
Nor	malization and Output Encoding:	79
•	Normalization ensures input string conformity before processing.	79
•	Output encoding ensures safe re-encoding of strings for different contexts, preventing	70
	acks like XSS.	
Ser	ver-Side versus Client-Side Validation:	
•	Applications can perform validation locally (client-side) or remotely (server-side)	79
• con	Server-side validation is essential for comprehensive security, despite potential time straints.	79
Wel	b Application Security:	79
•	Focus on secure cookies and HTTP response header security options	79
•	Parameters for SetCookie header and security options for response headers	79
Dat	a Exposure and Memory Management:	79
•	Protecting privileged data transmission with cryptography	79
• vulr	Implementing error handling and structured exception handling to prevent code execution	
Sec	eure Code Usage:	79
•	Practices including code reuse, third-party libraries, SDKs, and stored procedures	.80
•	Monitoring and patching vulnerabilities in external code sources.	80
Unr	eachable Code and Dead Code:	.80
•	Identifying and removing unreachable code to maintain application integrity.	80
•	The importance of code maintenance and removal of dead code to prevent misuse	.80
Obf	uscation/Camouflage:	.80
•	Use of obfuscators to obscure code for security purposes, making reverse engineering	
diff	icult	80
Sta	tic and Dynamic Code Analysis:	80
•	Static code analysis for identifying vulnerabilities in source code.	.80
•	Human and dynamic analysis to identify runtime vulnerabilities and stress test	
• •	lications	
-	element Secure Script Environments	81
	nmarize Deployment and Automation Concepts Agile Methodologies and Continuous gration/Deployment:	.83
Imp	lementing Secure Cloud Solutions	85
Sur	nmarize Secure Cloud and Virtualization Services	85

Apply Cloud Security Solutions	87
Summarize Infrastructure as Code Concepts	89
Explaining Data Privacy and Protection Concepts	91
Explain Privacy and Data Sensitivity Concepts	91
Explain Privacy and Data Protection Controls	93
Performing Incident Response	95
Summarize Incident Response Procedures	95
Utilize Appropriate Data Sources for Incident Response	96
Apply Mitigation Controls	98
Explaining Digital Forensics	100
Explain Key Aspects of Digital Forensics Documentation	100
Explain Key Aspects of Digital Forensics Evidence Acquisition	102
Summarizing Risk Management Concepts	104
Explain Risk Management Processes and Concepts	104
Explain Business Impact Analysis Concepts	106
Implementing Cybersecurity Resilience	107
Implement Redundancy Strategies	107
Implement Backup Strategies	108
Implement Cybersecurity Resiliency Strategies	110
Explaining Physical Security	112
Explain the Importance of Physical Site Security Controls	112
Explain the Importance of Physical Host Security Controls	114

Compare and Contrast Information Security Roles

- Information Security Fundamentals: Information security (infosec) involves safeguarding data from unauthorized access, damage, or theft. It encompasses the principles of confidentiality, integrity, and availability (CIA triad), along with non-repudiation.
- Cybersecurity Framework: The National Institute of Standards and Technology (NIST) outlines five functions of cybersecurity: Identify, Protect, Detect, Respond, and Recover.

- Information Security Competencies: Professionals in security roles need diverse skills, such as risk assessment, system configuration, incident response, and business continuity planning.
- Information Security Roles and Responsibilities: Organizations establish security
 policies to protect sensitive data and resources. Roles may include security
 directors, managers, technical staff, and non-technical employees, each with
 specific responsibilities.
- Information Security Business Units: Security operations centers (SOCs) monitor and protect critical assets, while DevSecOps integrates security into the development process. Incident response teams handle security incidents.

Compare and Contrast Security Control and Framework Types

- Security Control Categories: Controls are categorized as Technical, Operational, and Managerial, based on how they are implemented.
- Functional Types of Security Controls: Controls are classified as Preventive,
 Detective, and Corrective based on their function in preventing, identifying, or mitigating security threats.

- Frameworks: Frameworks like NIST Cybersecurity Framework (CSF) and Risk Management Framework (RMF), ISO standards (27001, 27002, 31000), and Cloud Security Alliance resources provide guidelines for managing cybersecurity risks and compliance.
- Regulatory Compliance: Various regulations such as Sarbanes-Oxley Act (SOX), Federal Information Security Management Act (FISMA), and General Data Protection Regulation (GDPR) mandate security controls and privacy protection measures.
- Industry Standards: Industry-specific standards like Payment Card Industry Data Security Standard (PCI DSS) ensure secure handling of financial information.

Explain Threat Actor Types and Attack Vectors

Threat Actor Types and Attack Vectors:

Vulnerability, Threat, and Risk:

- Vulnerability: Weakness that could lead to a security breach.
- Threat: Potential for exploiting a vulnerability.
- Risk: Likelihood and impact of a threat actor exploiting a vulnerability.

Attributes of Threat Actors:

- Internal/External: Based on access permissions.
- Intent/Motivation: Goals and reasons for the attack.
- Level of Sophistication/Capability and Resources/Funding: Skills, resources, and funding available to the threat actor.

Hackers, Script Kiddies, and Hacktivists:

- Hackers: Individuals gaining unauthorized access to systems.
- Script Kiddies: Users using hacking tools without understanding.
- Hacktivists: Groups using cyber weapons for political agendas.

State Actors and Advanced Persistent Threats (APTs):

- Nation states using cyber weapons for military and commercial goals.
- APTs: Ongoing efforts to compromise network security using various techniques.

Criminal Syndicates and Competitors:

- Cybercrime overtaking physical crime in many countries.
- Criminal syndicates seeking financial profit through fraud and extortion.
- Competitors engaging in espionage for business advantage.

Insider Threat Actors:

- Internal actors with legitimate access, including employees and contractors.
- Malicious insiders intentionally abusing access for sabotage or financial gain.
- Unintentional insiders posing risks due to lack of awareness or carelessness.

Attack Surface and Attack Vectors:

- Attack surface: Points where a threat actor could exploit a vulnerability.
- Attack vectors: Paths used by threat actors to gain access.
- Various vectors include direct access, removable media, email, remote/wireless, supply chain, web/social media, and cloud.
- Sophisticated threat actors use multiple vectors in multi-stage campaigns.

Explain Threat Intelligence Sources

Threat Intelligence Sources:

Threat Research Sources:

• Security companies and researchers study modern cyber adversaries' tactics, techniques, and procedures (TTPs).

- Primary sources include security solution providers, academic institutions, and honeynets.
- The dark web serves as a primary source, using networks like TOR for anonymity.

Threat Intelligence Providers:

- Outputs include behavioral threat research, reputational threat intelligence, and threat data.
- Threat data is often packaged as feeds for integration with security information and event management (SIEM) platforms.
- Commercial models include closed/proprietary platforms, vendor websites, and public/private information sharing centers.

Other Threat Intelligence Research Sources:

- Academic journals, security conferences, Request for Comments (RFC), and social media provide additional sources.
- Open source intelligence (OSINT) includes services like AT&T Security,
 Malware Information Sharing Project (MISP), Spamhaus, and VirusTotal.

Tactics, Techniques, and Procedures (TTPs) and Indicators of Compromise (IoCs):

- TTPs describe adversary behavior, while IoCs are signs of successful or ongoing attacks.
- IoCs include unauthorized software/files, suspicious emails, registry/file system changes, unusual network usage, rogue hardware, service disruption, and unauthorized account usage.

Threat Data Feeds:

- Structured Threat Information eXpression (STIX) and Trusted Automated eXchange of Indicator Information (TAXII) enable automated feed sharing.
- Automated Indicator Sharing (AIS) by DHS facilitates threat intelligence sharing among companies.

Artificial Intelligence (AI) and Predictive Analysis:

- All and machine learning (ML) help process, correlate, and analyze security intelligence and CTI data.
- Predictive analysis aims to forecast attacks by identifying patterns and correlating data from various sources.

Assess Organizational Security with Network Reconnaissance Tools

Assessing Organizational Security:

• Reconnaissance is crucial for mapping potential attack surfaces.

- Network reconnaissance involves identifying nodes and connections in a network.
- Scans using both command-line and GUI topology discovery tools are necessary.
- Host configurations are reported using fingerprinting tools.
- Network traffic is captured and analyzed for security assessment.

Topography Discovery:

- Topology discovery, also known as "footprinting," involves scanning for hosts, IP ranges, and routes between networks.
- It helps in building an asset database and identifying unauthorized hosts or network configuration errors.
- Basic topology discovery tasks can be accomplished using command-line tools
 such as ipconfig, ifconfig, ping, and arp.

Route and Traceroute:

- route is used to view and configure the local routing table.
- tracert (Windows) and traceroute (Linux) report the round trip time for hops between the local host and a host on a remote network.
- pathping (Windows) provides statistics for latency and packet loss along a route over a longer period.

IP Scanners and Nmap:

- IP scanners like Nmap are essential for host discovery and identifying network connectivity.
- Nmap can use diverse methods for host discovery and can perform detailed port scans to identify running services.

Service Discovery with Nmap:

- Nmap can identify active IP hosts and network services they are running.
- It provides options for TCP SYN, UDP scans, and port range scanning.
- Service discovery helps in identifying operating systems, network services, and application software versions.

Packet Capture and Analysis:

- Packet capture utilities like tcpdump capture and analyze network traffic.
- Wireshark is a graphical packet capture and analysis utility with powerful display and filtering options.

Exploitation Frameworks:

- Frameworks like Metasploit are used for penetration testing and exploiting vulnerabilities identified during reconnaissance.
- Other exploitation frameworks target different kinds of vulnerabilities, such as fireELF for Linux hosts and RouterSploit for embedded systems.

Netcat:

- Netcat is a versatile tool for testing connectivity, port scanning, and establishing backdoor connections.
- It can be used to send and receive files and execute commands remotely.

Explain Security Concerns with General Vulnerability Types

Introduction to Security Concerns

- Effective security assessment involves understanding various vulnerability types.
- Evaluation of vulnerabilities helps prioritize assessment and remediation activities.

Software Vulnerabilities and Patch Management

- Software exploitation targets flaws in software code.
- Application vulnerabilities allow circumvention of security systems or application crashes.
- Vulnerabilities affect all types of code, including OS, firmware, and applications.
- Patch management is crucial to mitigate vulnerabilities, but improper management leaves systems vulnerable.

Zero-Day and Legacy Platform Vulnerabilities

- Zero-day vulnerabilities are exploited before developers can release patches.
- Legacy platforms lack security patch support and are highly vulnerable.

Weak Host Configurations

- Default settings and unsecured root accounts pose vulnerabilities.
- Open permissions and weak network configurations increase the attack surface.

Impacts from Vulnerabilities

- Vulnerabilities lead to data breaches, data loss, and identity theft.
- Financial and reputation impacts result from breaches and availability loss.
- Third-party risks highlight supply chain vulnerabilities and vendor management importance.

Vendor Management

- Vendor management involves assessing risks and ensuring security standards.
- System integration and outsourced code development pose specific challenges.

Data Storage

- Risks associated with granting vendor access and hosting data backups must be addressed.
- Precautions include data protection measures, monitoring, and compliance evaluation.

Cloud-Based versus On-Premises Risks

- Both cloud and on-premises environments face software and configuration vulnerabilities.
- Shared responsibility model in the cloud requires active security measures from both providers and consumers.

Summarize Vulnerability Scanning Techniques

Introduction to Security Assessments:

- Security assessments involve evaluating system security and compliance.
- Network reconnaissance identifies hosts, network topology, and open services/ports.

• Security assessments can include testing for vulnerabilities, logical weaknesses, and interviews.

Types of Security Assessments:

- Vulnerability assessment evaluates a system's security based on its configuration state.
- Threat hunting proactively searches for evidence of threats based on threat intelligence.
- Penetration testing involves attempting to intrude into systems to demonstrate weaknesses.

Network Vulnerability Scanners:

- Tools like Tenable Nessus and OpenVAS test network hosts for vulnerabilities.
- They compare scan results to configuration templates and lists of known vulnerabilities.
- Scanning phases include detection, probing for services, security configurations, etc.

Application and Web Application Scanners:

- These scanners, like Nikto, focus on specific attacks such as SQL injection and XSS.
- They may analyze source code and database security for unsecure programming practices.

Common Vulnerabilities and Exposures (CVE):

- CVE is a dictionary of vulnerabilities in published operating systems and applications.
- Each vulnerability is identified by a unique code and includes a description, references, and fix information.

Intrusive vs. Non-Intrusive Scanning:

- Intrusive scanning interacts directly with the target, consuming more network bandwidth.
- Non-intrusive scanning analyzes indirect evidence, like network traffic, with minimal impact.

Credentialed vs. Non-Credentialed Scanning:

- Credentialed scans have user access rights, allowing in-depth analysis.
- Non-credentialed scans lack access rights and provide a view exposed to unprivileged users.

False Positives, False Negatives, and Log Review:

- False positives are incorrect vulnerability identifications, while false negatives are missed vulnerabilities.
- Reviewing system and network logs can validate vulnerability reports.

Configuration Review:

- Vulnerability scans assess security controls and application settings against established benchmarks.
- Compliance scans compare systems against regulatory standards or best practices frameworks.

Threat Hunting:

- Threat hunting uses threat intelligence to proactively discover evidence of threats within the network.
- It involves advisory analysis, intelligence fusion, and defensive maneuvering to detect and respond to threats.

Explain Penetration Testing Concepts

- Penetration Testing Overview:
 - Penetration testing uses authorized hacking techniques to find weaknesses in security systems.
 - Also known as ethical hacking.
 - Steps involved: verifying threats, bypassing security controls, actively testing controls, exploiting vulnerabilities.
- Difference from Passive Vulnerability Assessment:

- Pen testing actively tests and exploits vulnerabilities.
- Provides a more intrusive assessment compared to passive vulnerability scanning.
- Rules of Engagement:
 - Specify permitted activities in security assessments.
 - Should be explicit in contractual agreements.
 - Concrete objectives and scope are necessary.
- Attack Profile:
 - Different sources and motivations for attacks.
 - Types: Black box, White box, Gray box testing.
 - Blind and double-blind tests also exist.
- Bug Bounty Programs:
 - Rewards for reporting vulnerabilities.
 - Crowd-sourcing detection of vulnerabilities.
 - Can be internal or open to public submissions.
- Exercise Types:
 - Red team: Offensive role.
 - Blue team: Defensive role.
 - White team: Sets rules and monitors the exercise.
- Passive and Active Reconnaissance:
 - Initial phase involves establishing a profile of the target.
 - Activities can be passive or active.
 - Techniques include OSINT, social engineering, footprinting, war driving, drones/UAVs.
- Pen Test Attack Life Cycle:
 - Reconnaissance followed by initial exploitation.
 - Techniques include persistence, privilege escalation, lateral movement, pivoting, actions on objectives, cleanup.
 - Cleanup involves removing backdoors and ensuring the system is not less secure than before the engagement.

Identifying Social Engineering and Malware

Compare and Contrast Social Engineering Techniques

Social Engineering Techniques:

Introduction to Social Engineering:

Adversaries use various techniques to compromise security systems.

 Social engineering involves eliciting information or actions from individuals, often referred to as "hacking the human."

Intrusion Scenarios:

- Creation of executable files to prompt users for passwords.
- Pretending to be someone else to obtain sensitive information.
- Triggering distractions like fire alarms to gain physical access.

Social Engineering Principles:

- Familiarity/Liking: Being affable and presenting requests as reasonable.
- Consensus/Social Proof: Exploiting social norms and polite behavior.
- Authority and Intimidation: Pretending to be a superior or using technical jargon.
- Scarcity and Urgency: Creating a sense of urgency to pressure targets.
- Impersonation and Trust: Pretending to be someone else to gain trust.

Dumpster Diving and Tailgating:

- Dumpster Diving: Searching through garbage for information.
- Tailgating and Piggy Backing: Unauthorized entry by following authorized personnel.

Identity Fraud and Invoice Scams:

- Identity Fraud: Impersonating someone to gain access or make transactions.
- Invoice Scams: Altering invoice details to redirect payments.

Phishing, Whaling, and Vishing:

- Phishing: Persuading users to interact with malicious resources.
- Whaling: Targeting high-level executives with tailored phishing attacks.
- Vishing: Conducting phishing attacks through voice channels.

Spam, Hoaxes, and Prepending:

- Spam: Unsolicited emails used for various attacks.
- Hoaxes: False security alerts combined with phishing attempts.
- Prepending: Adding misleading text to emails to appear legitimate.

Pharming and Credential Harvesting:

- Pharming: Redirecting users to malicious websites.
- Typosquatting: Registering domains similar to legitimate ones.
- Credential Harvesting: Stealing account credentials for various purposes.

Influence Campaigns:

- Major programs launched by adversaries to shift public opinion.
- Utilizes various tactics including disinformation and hacking, often via social media.

Analyze Indicators of Malware-Based Attacks

- Malware Classification:
 - Viruses and worms spread without user authorization, concealed within executable code or attached to other files.
 - Trojans masquerade as legitimate software installers, operating secretly without user consent.

- Potentially unwanted programs (PUPs)/Potentially unwanted applications (PUAs) are installed alongside desired software or bundled with new systems.
- Payload classifications include spyware, rootkit, remote access Trojan (RAT), and ransomware.

Computer Viruses:

- Types include non-resident/file infector, memory resident, boot, and script/macro viruses.
- Multipartite viruses use multiple vectors, and polymorphic viruses dynamically change code to evade detection.
- Computer Worms and Fileless Malware:
 - Worms replicate over networks without user intervention, consuming bandwidth and potentially crashing systems.
 - Fileless malware runs in memory, evading detection by not writing to disk, using lightweight shellcode, and utilizing legitimate system tools.
- Spyware and Keyloggers:
 - Spyware monitors application activity, captures screenshots, and redirects DNS.
 - Keyloggers record keystrokes to steal confidential information.
 - Tracking cookies, adware, and spyware are forms of unwanted code that facilitate monitoring.
- Backdoors and Remote Access Trojans (RATs):
 - Backdoors provide unauthorized access to a host, while RATs mimic remote control programs to operate covertly.
 - Compromised hosts may form botnets for various malicious purposes, such as DDoS attacks or cryptomining.

Rootkits:

- Rootkits conceal their presence on a system, often by exploiting vulnerabilities to gain administrative control.
- They can reside in firmware, surviving attempts to remove them by formatting drives and reinstalling the OS.
- Ransomware, Crypto-Malware, and Logic Bombs:
 - Ransomware extorts money from victims by blocking access to systems or encrypting files.
 - Crypto-malware encrypts data to demand ransom, while some variants hijack resources for cryptocurrency mining.
 - Logic bombs trigger malicious actions based on predetermined conditions, remaining undetected until activated.
- Malware Indicators:

- Indicators include changes in system behavior, anti-virus notifications, sandbox execution results, abnormal resource consumption, file system changes, and process analysis.
- Analyzing process behavior and network activity helps identify malware, which may attempt to evade detection by using legitimate tools and services.

Summarizing Basic Cryptographic Concepts Compare and Contrast Cryptographic Ciphers

- Cryptography Basics
 - Definition: The art of securing information by encoding it.

- Plaintext/Cleartext: Unencrypted message.
- Ciphertext: Encrypted message.
- Cipher: Algorithm used for encrypting and decrypting.
- Cryptanalysis: The study or practice of deciphering encrypted data.

Key Actors

- Alice: Message sender.
- Bob: Intended recipient.
- Mallory: Malicious attacker.
- Types of Cryptographic Algorithms
 - Hashing Algorithms: Used for data integrity. Produces a fixed-length output (hash) that is unique and one-way.
 - SHA (Secure Hash Algorithm): Strong, variable output sizes, e.g., SHA-256.
 - MD5 (Message Digest Algorithm 5): 128-bit digest, less secure, legacy compatibility.
 - Encryption Ciphers: Used for data confidentiality.
 - Symmetric Ciphers: Same key for encryption and decryption.
 - Asymmetric Ciphers: Pair of keys (public and private) used for encryption and decryption.

Hashing Algorithms

- Purpose: Ensure integrity of data.
- Operation: Converts input plaintext of any length to a fixed-length hash.
- Security Features: Collision-resistant, one-way function.
- Symmetric Encryption
 - Key: Same secret key used for both encryption and decryption.
 - Use Cases: Effective for large data encryption due to speed.
 - Security Concern: Key distribution and storage are critical.
 - Examples: Stream ciphers (encrypt data bit by bit), Block ciphers (encrypt fixed-size blocks of data).
- Asymmetric Encryption
 - Key Pair: Public key for encryption, private key for decryption.
 - Security: Public key can be shared without compromising security.
 - Use Cases: Secure message exchange, digital signatures.
 - Drawback: Higher computational overhead compared to symmetric encryption.
- Encryption Techniques
 - Substitution Cipher: Replaces elements of plaintext with ciphertext (e.g., ROT13).

- Transposition Cipher: Rearranges elements of plaintext to create ciphertext (e.g., Rail Fence Cipher).
- Key Concepts
 - Key Length and Keyspace: Longer keys provide stronger security.
 - Cryptographic Strength: Determined by key length, algorithm security, and resistance to cryptanalysis.
- Practical Applications
 - Password Verification: Using hashes to confirm password without storing plaintext.
 - File Integrity: Using hashes to verify file integrity post-transfer.
 - Confidential Communications: Using encryption to ensure that only intended recipients can access message content.

Summarize Cryptographic Modes of Operation

Overview of Modes of Operation

- Modes of operation define how cryptographic algorithms are applied to achieve security goals like confidentiality and integrity.
- Key to implementing security controls like digital signatures and transport encryption.

Digital Signatures

- Utilizes public key cryptography for authentication and hash functions for integrity.
- Process:
 - Sender hashes the message and encrypts the hash with their private key.
 - The encrypted hash (digital signature) is sent along with the message.
 - Recipient decrypts the signature using the sender's public key to obtain the hash.
 - Recipient hashes the received message and compares both hashes to verify integrity and authenticity.
- Digital signatures ensure data integrity and sender authenticity but do not provide confidentiality.
- Other algorithms like DSA and ECC can be used for digital signatures.

Digital Envelopes and Key Exchange

- Combines symmetric and asymmetric encryption to securely exchange keys.
- Process:
 - Sender encrypts the message with a symmetric key (session key).
 - Session key is then encrypted with the recipient's public key and sent along with the encrypted message.
 - Recipient decrypts the session key with their private key and then decrypts the message.
- Ensures secure key exchange and message confidentiality.

Digital Certificates and PKI

- Certificates verify ownership of public keys through a Certificate Authority (CA).
- Public Key Infrastructure (PKI) involves issuing and verifying certificates to establish trust.

Perfect Forward Secrecy (PFS)

- Uses ephemeral keys for each session to prevent past session compromise if private keys are later exposed.
- Implementations include DHE and ECDHE which use Diffie-Hellman key exchange methods.

Cipher Suites and Modes of Operation

- TLS uses cipher suites to negotiate security protocols including encryption, key exchange, and authentication methods.
- Example of modes:

- CBC (Cipher Block Chaining): Uses IV for uniqueness, requires padding.
- Counter Mode: Converts block cipher into a stream cipher using IV and counter, improves parallel processing, no padding required.

Authenticated Encryption

- Combines encryption and authentication in one step.
- Modes like AEAD provide integrity and authenticity checks in addition to encryption.
- Examples include AES-GCM and ChaCha20-Poly1305, preferred due to resistance against certain attacks like padding oracle attacks.

Summarize Cryptographic Use Cases and Weaknesses Cryptographic Concepts

- Cryptographic Primitives: Fundamental components like hash functions, symmetric and asymmetric ciphers.
- Cipher Suite: Combination of multiple cryptographic primitives used in cryptographic systems.

Use Cases of Cryptography

Authentication and Non-Repudiation:

- Encryption ensures sender authentication and message integrity.
- Non-repudiation ensures the sender cannot deny sending the message.
- Asymmetric encryption and public/private key pairs are used for these purposes.

Confidentiality:

- Ensures data remains private through encryption (data-at-rest and data-intransit).
- Symmetric ciphers (e.g., AES) handle bulk data encryption due to efficiency.
- Asymmetric encryption used for secure key exchange (e.g., digital certificates for public keys).

Integrity and Resiliency:

- Hashing algorithms verify data integrity by ensuring no tampering has occurred.
- Cryptography aids in designing secure control systems that are resilient to partial compromise.
- Cryptographic methods like message authentication codes (MACs) prevent man-in-the-middle attacks.

Weaknesses in Cryptographic Systems

- Performance Limitations:
 - Speed: Symmetric ciphers and hash functions are generally faster than asymmetric.
 - Latency: Critical in applications like secure protocols where handshake phases are involved.
 - Computational overheads vary across ciphers, affecting their suitability in resource-constrained environments.
- Key Management:
 - Distribution and storage of keys, particularly symmetric keys, pose security risks.
 - Private keys should be securely stored (e.g., in a TPM) and protected by user authentication.
- Algorithm Limitations:
 - Maximum data size limitations in asymmetric ciphers like RSA.
 - Efficiency issues when using asymmetric encryption for bulk data encryption.

Additional Points

- Obfuscation and Cryptography:
 - Used to make source code difficult to understand, but not practical for encryption due to execution constraints.
 - White box cryptography attempts have been broken; no secure commercial solutions available.
- Key Size and Security:
 - Larger key sizes generally provide better security but increase computational demands.
 - Cannot directly compare key sizes across different algorithms (e.g., ECC vs. RSA).

Practical Recommendations

- Deploy appropriate cryptographic controls based on use case requirements and environmental constraints.
- Ensure robust key management practices to safeguard cryptographic keys.
- Select cryptographic tools and protocols based on performance requirements and security needs.

Summarize Other Cryptographic Technologies

1. Quantum Computing

- Definition: Uses quantum mechanics to perform computational tasks far more efficiently than classical computers.
- Qubits: Basic unit of quantum information, can be in a state of 0, 1, or both simultaneously (superposition).
- Entanglement: Allows qubits to be interconnected such that the state of one (once measured) affects the state of another, no matter the distance.
- Computational Impact: Excel in solving problems like factoring large integers and discrete logarithm problems, which challenges the security of RSA and ECC.

2. Post-Quantum Cryptography

- Context: Refers to the cryptographic landscape when quantum computers are advanced enough to break current encryption methods.
- Quantum Threat: Modern encryption potentially vulnerable to quantum attacks.
- NIST's Role: Leading efforts to develop new cryptographic standards resistant to quantum computing attacks.

3. Cryptographic Agility

- Definition: The capability of an organization to quickly and efficiently switch between cryptographic algorithms without disrupting existing systems.
- Importance: Ensures that an organization can adapt to new cryptographic standards as threats evolve or new vulnerabilities are discovered.

4. Lightweight Cryptography

- Goal: Develop cryptographic solutions for devices with limited processing power and energy resources (e.g., IoT devices).
- NIST Initiative: Focus on creating efficient, compact, and quantum-resistant cryptographic protocols for low-power devices.

5. Homomorphic Encryption

- Purpose: Allows computation on encrypted data, enabling the data to remain secure even during processing.
- Use Case: Enables third parties to perform data analysis without ever having access to unencrypted data.
- Example: Analyzing encrypted logs of user activity without exposing individual identifiers.

6. Blockchain

- Mechanism: Utilizes cryptographic hashing to link blocks of data (transactions) ensuring integrity and verifiability.
- Decentralization: Maintains a distributed ledger across a peer-to-peer network, reducing the risk of centralized failure or attack.
- Transparency and Trust: Every transaction is visible to all network participants, promoting transparency and trust without the need for central authority.
- Applications: Beyond cryptocurrencies, potential uses include voting systems, identity verification, secure data storage, and more.

7. Steganography

- Definition: The practice of hiding messages or information within non-secret text or data.
- Techniques: Embedding hidden information in digital media, such as images or audio files, without noticeable changes to the original file.
- Detection and Creation Tools: Software designed either to embed information secretly or to detect hidden messages in digital files.

Implementing Public Key Infrastructure Implement Certificates and Certificate Authorities

Digital Certificates

- Definition: A digital certificate is a public assertion of identity validated by a Certificate Authority (CA).
- Uses: Certificates are issued for various purposes, including web server communication security and message signing.

2. Public and Private Key Usage

- Encryption: Public keys encrypt messages for confidentiality; only the corresponding private key can decrypt them.
- Authentication: Private keys create signatures to authenticate identity; the signature is verified using the public key.
- Security Risks: Vulnerable to man-in-the-middle attacks if the identity of the communicating party is not verified.

3. Public Key Infrastructure (PKI)

- Purpose: Ensures that public keys are indeed owned by the entities that claim them.
- Certificate Authorities (CAs): Entities that issue digital certificates and guarantee their validity.
- Trust Models:
 - Single CA: Simple but risky as compromise leads to system collapse.
 - Hierarchical: Root CA issues certificates to intermediate CAs, which then issue to end users, adding layers of security but still vulnerable at the root level.

4. Certificate Authorities (CAs)

- Roles: Issue certificates, verify identities, manage certificate and key lifecycles, maintain trust.
- Types:
 - Private CAs: Used within an organization.
 - *Public CAs*: Trusted across organizations and networks for broader communication security.
- Examples: IdenTrust, Digicert, Sectigo/Comodo, GoDaddy, GlobalSign.

5. PKI Trust Models

- Single CA Model: All users trust a single CA.
- Hierarchical Model: A root CA issues to intermediate CAs; reduces risk by distributing trust but retains a single point of failure.
- Online vs. Offline CAs: Offline CAs enhance security by reducing exposure to network threats.

6. Registration Authorities and Certificate Signing Requests (CSRs)

- RA Role: Facilitate the identity verification process and submit CSRs to CAs.
- CSR: A request filed by an entity to obtain a digital certificate, containing necessary identification and public key.

7. Digital Certificate Components

- Key Contents: Subject's public key, identity details, issuer details, and a digital signature by the CA.
- Standards: X.509 standard defines the structure of certificates; managed by the PKIX working group.
- Certificate Attributes:
 - Serial Number, Signature Algorithm, Issuer, Validity Dates, Subject Name, Public Key, Extensions.

8. Extensions and Attributes

- Subject Alternative Name (SAN): Preferred over Common Name (CN) for specifying the identity of the certificate subject.
- Common Name (CN): Historically used for server identification, now being replaced by more precise identifiers in SAN.

9. Implementation Considerations

- Security: Critical to maintain the integrity and confidentiality of the private key.
- Verification: CA must rigorously verify the identity of certificate applicants to maintain trust.
- Lifecycle Management: Includes issuing, renewing, and revoking certificates as needed.

Implement Certificates and Certificate Authorities

- Digital Certificates Overview:
 - Digital certificates assert identity and are validated by a Certificate Authority (CA).
 - They are crucial for secure communications and message signing.
- Public and Private Key Usage:
 - Public key encryption allows secure communication by sharing public keys for encryption and private keys for decryption.
 - Private keys are used to create signatures, ensuring message authenticity.
- Public Key Infrastructure (PKI):
 - PKI verifies the identities of public key owners through digital certificates issued by CAs.

 CAs ensure the validity of certificates and manage key and certificate lifecycle.

Certificate Authorities:

- CAs issue and guarantee certificates.
- Private CAs are for internal communications, while third-party CAs are for public or business-to-business communications.

PKI Trust Models:

- Single CA: One CA issues certificates; vulnerable to single point of failure.
- Hierarchical: Root CA issues certificates to intermediate CAs, reducing risk but still vulnerable.

Online vs. Offline CAs:

- Online CAs process requests, while offline CAs are disconnected from networks to mitigate risks.
- Registration Authorities and CSRs:
 - RAs handle identity checks and submit Certificate Signing Requests (CSRs) but don't issue certificates.
- Digital Certificates:
 - Wrapper for public keys, containing subject and issuer information, signed by a CA.
 - Based on X.509 standard, managed by PKIX working group.

Certificate Attributes:

- Serial number, signature algorithm, issuer, validity period, subject, public key, and extensions like SAN.
- Types of Certificate:
 - Domain Validation (DV) and Extended Validation (EV) for web servers, machine certificates, email/user certificates, code signing certificates, and root certificates.

Self-signed Certificates:

 Deployed by machines, web servers, or programs, but marked untrusted by OS or browser.

Implement PKI Management

PKI Management Overview:

- Security professionals often install and maintain PKI certificate services for private networks and manage certificates from public PKI providers.
- PKI installation, configuration, troubleshooting, and certificate revocation are essential tasks.

Certificate and Key Management:

- Key lifecycle stages: generation, certificate generation, storage, revocation, expiration/renewal.
- Key management can be centralized or decentralized.
- Critical vulnerability if not managed properly; compromised private keys endanger data confidentiality and authentication systems.

Key Recovery and Escrow:

- Root CA keys require stringent access controls.
- Key recovery mechanisms ensure encrypted data can be accessed if keys are lost.
- Escrow involves archiving keys with a third party for secure storage.

Certificate Expiration and Revocation:

- Certificates have limited durations, renewed before expiration.
- Keys can be archived or destroyed upon certificate expiration.
- Revoked certificates are invalid; suspension allows for re-enabling.

Certificate Revocation Lists (CRLs) and OCSP:

- CAs maintain CRLs listing revoked/suspended certificates.
- OCSP servers provide real-time certificate status checks.
- OCSP stapling and certificate pinning enhance security.

Certificate Formats and OpenSSL:

- Certificates encoded using DER or PEM.
- Various file extensions for certificates (.CER, .CRT, .PEM).
- OpenSSL commands for key and certificate management in Linux environments.

Certificate Issues and Troubleshooting:

- Common issues include certificate expiration, misconfiguration, and trust chain problems.
- Ensure proper key usage settings, subject name configuration, and time/date synchronization.
- Regularly audit certificate infrastructure for security compliance and validity.

Implementing Authentication Controls

Summarize Authentication Design Concepts

Authentication Overview:

- Authentication is crucial for securing network resources, involving various methods and mechanisms.
- Understanding identification and authentication technologies helps in selecting, implementing, and supporting appropriate security measures.

Identity and Access Management (IAM):

- IAM encompasses four main processes: identification, authentication, authorization, and accounting.
- Identification creates unique IDs, authentication verifies identities, authorization determines access rights, and accounting tracks authorized usage.

Authentication Factors:

- Something You Know: Passwords, passphrases, PINs, or swipe patterns.
- Something You Have: Smart cards, fobs, or USB tokens.
- Something You Are/Do: Biometrics like fingerprints or behavioral identifiers.

Authentication Design:

- Confidentiality, integrity, and availability are key considerations.
- Design must address context-specific needs, balancing security with usability.

Multifactor Authentication (MFA):

- Combines multiple authentication factors for enhanced security.
- Two-Factor Authentication (2FA) combines ownership factors with knowledge factors.
- Three-Factor Authentication adds an additional factor like location.

Authentication Attributes:

- Somewhere You Are: Location-based authentication using geographic or network location.
- Something You Can Do: Behavioral characteristics like gait or device interaction patterns.
- Someone You Know: Web of trust models where users vouch for each other's identities.

Implement Knowledge-Based Authentication

- Knowledge-Based Authentication Overview:
 - Knowledge-based authentication primarily involves password-based account access mechanisms.
 - Password-based authentication protocols are crucial, and supporting users with authentication issues is essential.
- Local, Network, and Remote Authentication:
 - Operating systems typically use password or PIN-based authentication.

- Authentication relies on cryptographic hashes stored in databases.
- Windows authentication involves local sign-in, network sign-in (Kerberos or NTLM), and remote sign-in (VPN or web portal).
- Linux authentication stores user account names in /etc/passwd and hashes in /etc/shadow. SSH is commonly used for network logins.
- Single Sign-On (SSO):
 - SSO allows users to authenticate once to a device and be authenticated to compatible application servers without re-entering credentials.
 - Kerberos framework provides SSO in Windows environments.
- Kerberos Authentication:
 - Kerberos is a single sign-on network authentication and authorization protocol.
 - It involves a Key Distribution Center (KDC), Authentication Service, and Ticket Granting Service.
 - Clients request services from application servers, authenticated by the KDC.
 - Kerberos operates on TCP or UDP port 88.
- PAP, CHAP, and MS-CHAP Authentication:
 - PAP and CHAP are authentication protocols developed for PPP.
 - PAP sends passwords in clear text, while CHAP uses encrypted challenges.
 - MS-CHAPv2 is Microsoft's implementation of CHAP, requiring encrypted tunnels for security.
- Password Attacks:
 - Attacks include plaintext/unencrypted, online, password spraying, and offline attacks.
 - Online attacks involve interacting directly with authentication services.
 - Offline attacks exploit captured password hashes.
 - Password spraying targets multiple accounts with common passwords.
 - Password crackers like Hashcat run primarily on Linux and use bruteforce, dictionary, and hybrid attacks.
- Authentication Management:
 - Users often adopt poor credential management practices, making networks vulnerable to breaches.
 - Password managers generate unique passwords for web accounts, reducing security risks.
 - Password managers can be implemented with hardware tokens or software apps.

Implement Authentication Technologies

Authentication and Authorization Design Concepts:

- Authentication technologies include ownership/possession factors.
- Multifactor authentication systems are deployed by many organizations.
- Smart cards and USB key fobs are commonly used for multifactor authentication.

Smart-Card Authentication:

- Smart-card authentication involves cryptographic information programmed onto a card with a secure chip.
- Components stored on the chip include the user's digital certificate, private key, and a personal identification number (PIN).
- For Kerberos authentication, the smart card's cryptoprocessor generates a Ticket Granting Ticket (TGT) request upon PIN entry, which is then transmitted to the authentication server (AS).

Key Management Devices:

- Public Key Infrastructure (PKI) usage in smart-card authentication requires secure handling of private keys.
- Technologies such as smart cards, USB keys, and Trusted Platform Modules (TPM) help generate key material securely.
- Hardware Security Modules (HSMs) are network appliances used for centralized PKI management, offering key storage, backup, and cryptographic functionalities.

Extensible Authentication Protocol/IEEE 802.1X:

- Extensible Authentication Protocol (EAP) allows various authentication methods, often involving digital certificates for secure authentication.
- IEEE 802.1X facilitates EAP methods for network access control, requiring authentication, authorization, and accounting (AAA) architecture components: supplicant, network access server (NAS), and AAA server.

Remote Authentication Dial-in User Service (RADIUS):

- RADIUS is used for network access control, where NAS devices forward authentication requests to AAA servers.
- RADIUS supports protocols like PAP, CHAP, and EAP for authentication.
- The workflow involves the NAS prompting for credentials, the supplicant submitting them, and the AAA server responding with acceptance or rejection.

Terminal Access Controller Access-Control System (TACACS+):

- TACACS+ is designed for centralizing logins for administrative accounts on network appliances.
- It offers advantages such as TCP-based communication, encryption of all data, and discrete authentication, authorization, and accounting functions.

Token Keys and Static Codes:

- OTP tokens like RSA SecurID generate passcodes based on time and a secret key.
- Other mechanisms, like FIDO U2F tokens, leverage public-private key pairs for authentication.

 OATH develops open and strong authentication frameworks, including HMAC-Based One-Time Password Algorithm (HOTP) and Time-Based One-Time Password Algorithm (TOTP).

2-Step Verification:

- Also known as out-of-band mechanisms, 2-step verification sends a software token to a user-controlled resource via SMS, phone call, push notification, or email.
- Though considered 2-factor authentication, intercepting the code within the timeframe could compromise security.

Summarize Biometrics Authentication Concepts

Biometric Authentication:

- Biometric authentication uses physiological or behavioral patterns for access.
- Enrollment involves scanning and converting biometric data into binary format.

 Scanning involves a sensor module acquiring the sample and a feature extraction module recording unique features.

Evaluation Metrics for Biometric Patterns:

- False Rejection Rate (FRR) measures legitimate users not recognized.
- False Acceptance Rate (FAR) measures interlopers accepted.
- Crossover Error Rate (CER) is where FRR and FAR meet, indicating system efficiency.
- Throughput, Failure to Enroll Rate (FER), cost, and user perception are also crucial considerations.

Fingerprint Recognition:

- Widely used physiologic biometric method due to simplicity and affordability.
- Vulnerable to spoofing, addressed by vein matching or vascular biometrics.

Facial Recognition:

- Records facial indicators, suffers from privacy concerns and relatively high error rates.
- Retinal and iris scans offer higher accuracy but are more complex and intrusive.

Behavioral Technologies:

- Behavioral biometrics analyze actions like typing, signature, or gait.
- Voice recognition, gait analysis, signature recognition, and typing are examples.
- Subject to higher error rates and can be troublesome to perform.

Other Biometric Applications:

- Biometric identification matches individuals to a database, useful for security alerts.
- Continuous authentication monitors user activity post-logon, enhancing security but currently in research phase.

Implementing Identity and Account Management Controls

Implement Identity and Account Types

Identity Management Controls:

- Digital identity represented by accounts, managed by network administrators.
- Cryptographic material may enhance identity security on public networks.

Certificates and Smart Cards:

- Public Key Infrastructure (PKI) manages digital identities via certificates.
- Certificates contain public keys and are signed by Certificate Authorities (CAs).
- Smart cards or USB keys store certificates and private keys for authentication.

Tokens and Identity Providers:

- Tokens enable single sign-on authentication, but susceptibility to capture exists.
- Identity providers provision user accounts and handle authentication requests.
- Federated identity management facilitates authentication across web-based services.

Background Checks and Onboarding Policies:

- HR policies include background checks and onboarding phases.
- Background checks verify identities and screen for potential risks.
- Onboarding integrates IT and HR functions to create secure user accounts and provide training.

Personnel Policies for Privilege Management:

- Separation of duties divides responsibilities to prevent abuse of power.
- Least privilege principle grants minimal necessary access rights to users.
- Job rotation and mandatory vacation policies mitigate insider threats and enhance accountability.

Administrator Accounts and Credential Management:

- Administrative accounts should be limited and secured to prevent unauthorized access.
- Default security groups and service accounts manage access to resources efficiently.
- Proper credential management, including password policies and multifactor authentication, is crucial for security.

Shared/Generic/Device Accounts and Credentials:

- Shared accounts pose risks to security and accountability, challenging password management.
- Credential policies for devices ensure secure access and configuration.
- Privilege Access Management tools help manage high-risk credentials effectively.

Secure Shell Keys and Third-Party Credentials:

- Secure Shell (SSH) keys are used for remote access and should be managed securely.
- Third-party credentials for vendor services or cloud apps require proper management to prevent breaches.

Implement Account Policies

Account Policies Overview

- Account policies enforce privilege management policies.
- They dictate what users can and cannot do, helping to enforce strong credential policies and manage risks from compromised accounts.
- Auditing and permission reviews aid in detecting suspicious behavior and security breaches.

Account Attributes

- A user account is defined by a unique security identifier (SID), name, and credential.
- Associated with a profile containing custom identity attributes like full name, email, contact number, and department.
- Profiles may support media like account pictures and provide storage for user-generated data files (home folder) and application settings.

Access Policies

- Accounts can be assigned permissions over files and network resources.
- Access policies determine rights like local/remote logins, software installation, and network configuration changes.
- Configured via Group Policy Objects (GPOs) in Windows Active Directory networks.

Account Password Policy Settings

- Password policies enforce rules on length, complexity, aging, reuse, and history.
- NIST guidance recommends allowing user-selected passwords between 8 and 64 characters and avoiding complexity rules.
- Aging policies should not be enforced; users should choose when to change passwords.
- Password hints should not be used for account recovery.

Account Restrictions

- Used to make compromising user security harder.
- Location-based policies restrict logins based on IP, subnet, VLAN, or OU.
- Geolocation mechanisms like IP address and location services help enforce geofencing and geotagging.

Time-Based Restrictions

 Establish authorized logon hours, maximum login duration, and detect risky logins based on travel time.

Account Audits

- Used to detect compromises or misuse.
- Audit logs track user actions, intrusions, and changes to resources and users.
- Regular auditing, recertification, and access control list reviews are essential.

Account Permissions

- Manage permissions to avoid authorization creep.
- Regularly audit group membership and access control lists.

Usage Audits

 Configure security logs to record key indicators and review for suspicious activity.

Account Lockout and Disablement

- Disable accounts manually to prevent login.
- Account lockout prevents login for a period, triggered by incorrect password attempts or expiration.
- Automatic lockouts can occur based on policy violations, expired accounts, or restricted time/location access.

Implement Authorization Solutions

- Discretionary Access Control (DAC):
 - Based on resource owner's primacy.
 - Owner has full control over the resource.
 - Widely implemented but weakest model.
 - Vulnerable to insider threats and compromised accounts.
- Role-Based Access Control (RBAC):
 - Adds centralized control to DAC.
 - Organizational roles defined, subjects allocated to roles.
 - Subjects gain rights implicitly through roles.
 - Non-discretionary, system owner reserves right to modify roles.
- File System Permissions:
 - Each object in file system has ACL.
 - ACL contains list of allowed accounts and permissions.
 - Order of ACEs important for determining effective permissions.
 - Permissions: Read (r), Write (w), Execute (x) for owner, group, others.
 - chmod command modifies permissions.
- Mandatory Access Control (MAC):
 - Based on security clearance levels.
 - Each object and subject granted clearance level (label).
 - Subjects permitted to access objects at or below their clearance level.
- Attribute-Based Access Control (ABAC):
 - Fine-grained access control.
 - Decisions based on combination of subject, object, and context attributes.
 - Allows policies like M-of-N control and separation of duties.
- Conditional Access:
 - Monitors account or device behavior.
 - Suspends account or requires re-authentication based on conditions.
 - Examples: User Account Control (UAC), sudo restrictions.
- Privileged Access Management (PAM):
 - Policies, procedures, and controls to prevent abuse of privileged accounts.
 - Identifies, documents, and manages privileged accounts and their credentials.
- Directory Services:
 - Store information about users, computers, security groups, services.
 - Based on LDAP, provides privilege management and authorization.
- Federation and Attestation:
 - Extends network accessibility beyond employees.

- Allows access to trusted accounts from different networks.
- Users provide attestation of identity to service providers.
- OAuth and OpenID Connect:
 - OAuth facilitates sharing resources between sites.
 - OpenID Connect adds authentication to OAuth, validates user presence.
 - OIDC implements special OAuth flows with defined token fields.

Explain the Importance of Personnel Policies

- Importance of Personnel Policies:
 - Human element significant attack surface, especially for social engineering.
 - Work with HR to formulate policies and deliver security awareness training.
- Operational Policies:
 - Include privilege/credential management, data handling, and incident response.
- Acceptable Use Policy (AUP):
 - Protects organization from misuse of equipment.
 - Forbids fraud, defamation, unauthorized hardware/software, snooping.
 - Guidelines must be reasonable and not interfere with job duties.
- Code of Conduct and Social Media Analysis:
 - Sets professional standards.
 - Addresses risks of social media/file sharing.
 - Communications made through organization's system likely monitored.
- Use of Personally Owned Devices:
 - Pose security threats, make file copying easy.
 - Endpoint management, data loss prevention help prevent device attachment.
 - Unauthorized personal software or shadow IT also risks security.
- Clean Desk Policy:
 - Prevents unauthorized access to sensitive information.
- User and Role-Based Training:
 - Essential for secure system.
 - Covers security policies, incident reporting, data handling, social engineering, etc.
 - Tailored training based on job roles.
- Diversity of Training Techniques:
 - Frame training in language relevant to users.
 - Use varied methods: workshops, one-on-one instruction, online training, etc.
- Phishing Campaigns:
 - Simulated phishing messages to users for training.
 - Follow-up training for users who respond.
- Capture the Flag (CTF):
 - Ethical hacker training or gamified competitions.
 - Participants complete challenges to discover flags representing threats/vulnerabilities.
- Computer-Based Training and Gamification:
 - Boosts security awareness.
 - Uses CBT with simulations, branching scenarios, and video game elements for engagement.

Implementing Secure Network Designs

Implement Secure Network Designs

- Importance of Secure Network Designs:
 - Ensures confidentiality, integrity, and availability of assets and services.
 - Mitigates vulnerabilities arising from weaknesses in network architecture.
 - Contributes to project improvements and recommendations.
- Common Weaknesses in Network Architecture:
 - Single points of failure.
 - Complex dependencies.
 - Sacrificing security for quick fixes.
 - Lack of documentation and change control.
 - Overdependence on perimeter security.
- Cisco's SAFE Architecture:
 - Defines network locations (PIN) and secure domains.
 - PIN includes campus networks, branch offices, data centers, and the cloud.
 - Each PIN can be protected with security controls and categorized into secure domains.
- Business Workflows and Network Architecture:
 - Network architecture supports business workflows.
 - Analyzing workflows (e.g., email) helps identify security needs.
 - Understanding data flow between network locations is crucial for secure design.
- Network Appliances:
 - Switches: Forward frames between nodes, establish network segments.
 - Wireless access points: Bridge between cabled networks and wireless clients.
 - Routers: Forward packets between networks based on IP addresses.
 - Firewalls: Filter traffic based on ACLs.
 - Load balancers: Optimize traffic distribution.
 - DNS servers: Host name records and perform name resolution.
- Routing and Switching Protocols:
 - Layer 2 forwarding occurs within the same broadcast domain.
 - Layer 3 forwarding (routing) occurs between different networks.
 - Protocols like ARP and IP are fundamental for addressing and routing.
- Network Segmentation:
 - Segregates hosts to restrict communication, often using VLANs.
 - Physical and logical segmentation ensures security between segments.
 - Helps enforce access control policies and improve network security.
- Network Topology and Zones:
 - Zones define areas with similar security configurations.
 - Segregation between zones enhances network security.
 - Examples include intranet, extranet, and Internet/guest zones.
- Demilitarized Zones (DMZ):

- Internet-facing hosts are placed in DMZs to protect the internal network.
- DMZs use firewalls and proxies to control traffic flow.
- Different DMZ topologies include screened subnet and triple-homed firewall.
- Implications of IPv6:
 - Requires management and security planning.
 - Should align with IPv4 topology and security configurations.
 - Exposes new attack vectors and requires careful monitoring and configuration.
- Other Secure Network Design Considerations:
 - Data center traffic includes both north-south and east-west traffic.
 - Zero trust and microsegmentation enhance network security beyond perimeter defenses.

Implement Secure Switching and Routing

- Implementing Secure Switching and Routing
- Exam Objectives Covered: 1.4, 3.1, 3.3
- Attacks at low-level networking functions can be effective; implement network designs ensuring confidentiality, integrity, and availability.
- Configure switches and routers with appropriate settings to enforce network access control mechanisms and ensure fault-tolerant paths.
- Man-in-the-Middle (MitM) and Layer 2 Attacks:
 - Focus on information gathering and eavesdropping on network traffic.
 - MitM attacks involve gaining a position between hosts to capture, monitor, and relay communication transparently.
- MAC Cloning:
 - Changes or spoofs hardware addresses, leading to security incidents or unreliable device identification.
- ARP Poisoning Attacks:
 - Use unsolicited ARP reply packets to update MAC:IP address cache tables with spoofed addresses, redirecting traffic to attackers.
- MAC Flooding Attacks:
 - Exhausts switch memory to disrupt MAC-based forwarding, turning the switch into a hub and facilitating sniffing attacks.
- Loop Prevention:
 - Spanning Tree Protocol (STP) organizes bridges into a hierarchy to prevent layer 2 loops.
- Broadcast Storm Prevention:
 - STP prevents broadcast storms by limiting broadcast traffic and detecting and closing loops.
- BPDU Guard:
 - Disables ports receiving Bridge Protocol Data Units (BPDUs) to prevent STP-related attacks.
- Physical Port Security and MAC Filtering:
 - Restricts access to switch ports and filters MAC addresses to prevent unauthorized connections.
- DHCP Snooping:
 - Inspects DHCP traffic to prevent MAC address spoofing and rogue DHCP servers.
- Network Access Control (NAC):

- IEEE 802.1X standard enables port-based network access control, authenticating devices before port activation.
- Route Security:
 - Protects against route injection and source routing attacks by controlling access and authentication in routing protocols.
- Vulnerabilities in routing include spoofed routing information, source routing, and software exploits in router operating systems.

Implement Secure Wireless Infrastructure

- Wireless Network Installation Considerations:
 - Ensure good coverage of authorized Wi-Fi access points.
 - Patchy coverage increases vulnerability to rogue and evil twin attacks.
 - 5 GHz band provides more space for non-overlapping channels.
 - Use bonded channels cautiously as they can increase interference risks.
- Wireless Access Point (WAP) Placement:
 - WAPs forward traffic to/from wired networks.
 - Each WAP has a unique MAC address (BSSID) and SSID for identification.
 - Operates in either 2.4 GHz or 5 GHz radio band with divided channels.
 - Avoid co-channel and adjacent channel interference by spacing channels widely.
- Site Surveys and Heat Maps:
 - Conduct site surveys to measure signal strength and channel usage.
 - Use Wi-Fi analyzer software to create heat maps indicating signal strength, channel usage, and overlap.
 - Optimize network design based on survey data by adjusting transmit power, changing channels, or adding/moving WAPs.
- Controller and Access Point Security:
 - Use wireless controllers for centralized management and monitoring.
 - Controllers ensure consistent configuration and enhance visibility of wireless deployment.
 - Secure access points physically and via secure management interfaces with strong administrative credentials.
- Wi-Fi Protected Access (WPA):
 - WPA replaces WEP and enhances security.
 - WPA2 uses AES cipher with CCMP for authenticated encryption.
 - WPA3 improves security with SAE, enhanced open, updated cryptographic protocols, and management protection frames.
- Wi-Fi Authentication Methods:
 - Personal authentication includes WPA2-PSK and WPA3-SAE.
 - Enterprise authentication utilizes IEEE 802.1X with EAP mechanisms for better security and accounting.
- Wi-Fi Protected Setup (WPS):
 - Automated setup process for Wi-Fi networks.
 - Vulnerable to brute force attacks; consider disabling or using alternative methods like Easy Connect (DPP).
- Rogue Access Points and Evil Twins:
 - Rogue APs pose security risks; detect through physical inspections or Wi-Fi analyzers.
 - Evil twins mimic legitimate APs; may intercept sensitive information.
- Disassociation and Replay Attacks:
 - Deauthentication and disassociation attacks disrupt connectivity.

- Replay attacks capture authentication data for unauthorized access.
- Mitigate with Management Frame Protection (MFP) and patching against known vulnerabilities like KRACK.
- Jamming Attacks:
 - Disrupt Wi-Fi networks with intentional interference.
 - Detect and mitigate interference using spectrum analyzers and configurable power level controls.

Implement Load Balancers

Introduction to Load Balancers:

- Load balancers are crucial for implementing secure network designs, especially in mitigating Denial of Service (DoS) attacks.
- They distribute client requests across available server nodes in a farm or pool, ensuring scalability, fault tolerance, and high availability.

Types of Load Balancers:

- Layer 4 Load Balancer:
 - Makes forwarding decisions based on IP address and TCP/UDP port values.
- Layer 7 Load Balancer (Content Switch):
 - Makes forwarding decisions based on application-level data, such as URLs or data types like video or audio streaming.

Scheduling Algorithms:

- Round Robin:
 - Simplest method, picks the next node in line for processing.
- Other methods include selecting nodes with the fewest connections or the best response time.
- Scheduling methods can be weighted based on administrator preferences or dynamic load information.

Health Checks and Probes:

- Load balancers use heartbeat or health check probes to verify the availability and load of each node.
- Layer 4 load balancers conduct basic connectivity tests, while layer 7 appliances can test application state.

Source IP Affinity and Session Persistence:

- Layer 4 approach that binds a client's session to the initial server node it connected to.
- Application-layer load balancers use persistence mechanisms like cookies to maintain session connections.

Clustering:

- Enables multiple redundant processing nodes to share data and accept connections, providing fault tolerance.
- Clustering ensures continuity of service by allowing connections to failover to working nodes if one node fails.

Active/Passive and Active/Active Clustering:

- Active/Passive:
 - One node is active while the other is passive, ensuring no performance degradation during failover.
- Active/Active:

• Both nodes process connections concurrently, maximizing hardware capacity but causing performance degradation during failover.

Application Clustering:

• Used to provision fault-tolerant application services, allowing session state data to be shared among cluster nodes.

Quality of Service (QoS):

- Prioritizes network traffic based on characteristics like bandwidth, latency, and jitter, primarily to support real-time applications like voice and video.
- Complex implementation involving application discovery, traffic marking, and prioritization mechanisms.
- QoS marking introduces potential for DoS attacks; trust boundaries must be established for legitimate traffic marking authorities.

Implementing Network Security Appliances

Implement Firewalls and Proxy Servers

Packet Filtering Firewalls

- Packet filtering: earliest type of network firewall.
- Configured using Access Control Lists (ACLs).
- Rules define specific packet types and actions.
- Can inspect IP packet headers for filtering.
- Filters based on IP address, protocol, port numbers.
- Stateless operation: each packet analyzed independently.
- Vulnerable to attacks spread over multiple packets.

Stateful Inspection Firewalls

- Track session information between hosts.
- Majority of firewalls incorporate stateful inspection.
- Session data stored in state table.
- Examines TCP handshake for new/established connections.
- Can detect anomalies and respond to attacks.
- Inspects both transport and application layers.

iptables

- Command line utility in many Linux distributions.
- Edits rules enforced by Linux kernel firewall.
- Works with chains for different types of traffic.
- Rules determine whether traffic is allowed or dropped.

Firewall Implementation

- Consider hardware or software implementation.
- Firewall Appliances: standalone hardware deployed at network edge.
- Routed vs. Bridged deployment.
- Router Firewall: filtering functionality as part of router firmware.

Application-Based Firewalls

- Host-based, application, and network operating system firewalls.
- Enforce packet filtering ACLs and protect specific applications.

Proxies and Gateways

- Proxy: application layer filtering, store-and-forward model.
- Forward Proxy Servers: protocol-specific outbound traffic.
- Transparent vs. non-transparent proxies.

Access Control Lists

- Configured on principle of least access.
- Rules processed top-to-bottom, most specific rules first.
- Implicit deny as default rule.
- Specify block or allow based on parameters.

Network Address Translation (NAT)

- Translates between private and public IP addresses.
- Types: static/dynamic source NAT, NAPT, destination NAT.
- IPv6 makes some NAT use cases redundant.

Virtual Firewalls

- Deployed in data centers and cloud services.
- Hypervisor-based, virtual appliance, multiple context.
- Support east-west security and microsegmentation.

Open-Source vs. Proprietary Firewalls

- Wholly proprietary, mostly proprietary, wholly open-source.
- Consider access to support, updates, and subscription-based features.

Implement Network Security Monitoring

- Network-Based Intrusion Detection Systems (NIDS):
 - IDS: Software tools for real-time analysis of network traffic or system logs.
 - NIDS: Captures traffic via packet sniffer (sensor), analyzes packets for malicious activity, and alerts via console/dashboard.
 - Examples: Snort, Suricata, Zeek/Bro.
 - Passive detection: Raises alerts/logs without blocking source host, doesn't slow traffic, undetectable by attackers.
- Sensor Placement and Connectivity:
 - Placement: Inside firewall or close to critical servers to capture malicious traffic.
 - Options:
 - SPAN/Mirror Port: Copies frames to sensor port but may drop frames under heavy load.
 - Passive TAP: Physically copies signal from cabling to monitor port, unaffected by load.
 - Active TAP: Signal regeneration, may require power backup.
- Network-Based Intrusion Prevention Systems (IPS):
 - Provides active response to matched threats, such as ending TCP sessions or blocking IPs.
 - Advanced measures: Throttling bandwidth, applying complex firewall filters, modifying packets.
 - Inline, wire-speed anti-virus scanning.
- Signature-Based Detection:
 - Analysis engine scans traffic with a set of rules or signatures.
 - Generates incident if traffic matches a pattern in the signature database.
 - Signatures need regular updates for latest threat protection.
- Behavior and Anomaly-Based Detection:
 - Recognizes baseline "normal" traffic and flags deviations.
 - Historical: Network Behavior and Anomaly Detection (NBAD) products.
 - Modern: Utilizes machine learning for improved detection.
 - UEBA and NTA products.
- Next-Generation Firewalls (NGFW) and Unified Threat Management (UTM):
 - NGFW: Application-aware filtering, user account-based filtering, IPS capabilities.
 - UTM: Centralizes multiple security controls into a single appliance.
 - Potential single point of failure, latency issues under heavy load.
- Content/URL Filters and Web Application Firewalls (WAF):
 - Content filters: Secure web gateway (SWG) for user-focused filtering rules.
 - WAF: Protects web servers from code injection and DoS attacks using application-aware processing rules and pattern matching.
 - Examples: ModSecurity, NAXSI, Imperva.

Summarize the Use of SIEM

- Log Data and Monitoring:
 - Security controls generate log data and alerts.
 - Essential for security assessments and incident response.
 - Includes packet capture, network monitors, and system logs.
- Security Information and Event Management (SIEM):
 - Aggregates traffic data and logs from various sources.
 - Includes logs from hosts, switches, routers, firewalls, IDS sensors, etc.
 - Enables reporting, alerting, and correlation of security events.
- SIEM Functionality:
 - Log Collection:
 - Agent-based: Install agent service on each host.
 - Listener/collector: Hosts push updates using syslog or SNMP.
 - Sensor: Collects packet captures and traffic flow data.
 - Log Aggregation:
 - Normalizes data from different sources for consistency and searchability.
 - Connectors or plug-ins interpret data from distinct systems.
 - Analysis and Reporting:
 - Correlates events to identify indicators of compromise (IOCs).
 - Supports reporting, often using AI and machine learning.
 - User and Entity Behavior Analytics (UEBA):
 - Tracks user and entity behavior across devices and services.
 - Relies on Al and machine learning to identify malicious behaviors.
- Security Orchestration, Automation, and Response (SOAR):
 - Addresses alert overload by automating incident response workflows.
 - Utilizes security and threat intelligence for automated analysis and enrichment.
- File Manipulation Commands:
 - cat Command:
 - Views contents of files, adds line numbers.
 - head and tail Commands:
 - Output first and last lines of a file, adjust default line count.
 - logger Command:
 - Writes input to system log or remote syslog server.
 - Regular Expressions and grep:
 - Used for string search and pattern matching in log files.
 - grep command searches text files using simple string matching or regex syntax.

Implementing Secure Network Protocols

Implement Secure Network Operations Protocols

- Network Address Allocation:
 - Utilizes static and dynamic allocation for routers, firewalls, and servers.
 - DHCP provides automatic address allocation, vulnerable to rogue DHCP attacks.
 - DHCP snooping port security feature mitigates rogue DHCP attacks.
- Domain Name Resolution:
 - DNS resolves FQDNs to IP addresses, distributed among name servers.
 - Vulnerable to domain hijacking, URL redirection, and DNS poisoning attacks.
- Uniform Resource Locator (URL) Redirection:
 - Redirects users to pages other than requested, often exploited for phishing.
 - Can be inserted via compromised servers or JavaScript.
- Domain Reputation:
 - Hijacked domains used for spam or malware distribution.
 - Monitoring tools like Talos Intelligence Reputation Center can detect misuse.
- DNS Poisoning:
 - Compromises DNS query process to redirect traffic.
 - Includes man-in-the-middle attacks, DNS client cache poisoning, and DNS server cache poisoning.
- DNS Security Extensions (DNSSEC):
 - Provides validation process for DNS responses, mitigating spoofing and poisoning attacks.
 - Establishes a chain of trust from root servers to subdomains.
- Secure Directory Services:
 - LDAP facilitates authentication and authorization, but plaintext transmissions are vulnerable.
 - Implements authentication mechanisms like SASL and LDAPS for secure access.
- Time Synchronization:
 - NTP synchronizes time-dependent applications over UDP on port 123.

- Vulnerable to lack of security mechanisms, but efforts like Network Time Security are addressing this.
- Simple Network Management Protocol (SNMP) Security:
 - Monitors network activity through agents and SNMP monitors.
 - Vulnerable to plaintext transmission, default community names, and lack of encryption.
 - SNMP v3 supports encryption and strong authentication for enhanced security.

Implement Secure Application Protocols

Importance of Security Concepts

- Security concepts are crucial in enterprise environments to protect sensitive data and ensure the integrity and availability of resources.
- Secure protocols are essential for maintaining the confidentiality of data, preventing unauthorized access, and mitigating various cyber threats.

2. Secure Implementation of Application Protocols

- Application protocols like HTTP, SMTP, POP3, IMAP, and SIP must be configured securely to ensure the safe transmission of data.
- Secure configuration involves implementing encryption, authentication, and authorization mechanisms.

3. Hypertext Transfer Protocol (HTTP)

- Foundation of web technology enabling clients to request resources from servers.
- Typically operates over TCP port 80.
- Supports stateless communication but can be extended for session management using cookies.
- HTTPS (HTTP Secure) uses Transport Layer Security (TLS) to encrypt data transmission, typically over port 443.

4. Transport Layer Security (TLS)

- Developed to secure HTTP communications.
- Uses digital certificates signed by trusted Certificate Authorities (CAs) for server authentication.
- TLS 1.3 enhances security by preventing downgrade attacks and simplifying cipher suites.
- Cipher suites define encryption and hashing algorithms used for secure communication.

5. API Considerations

- APIs are essential for creating and managing web applications.
- APIs should be secured using methods like OAuth and SAML, and API secrets must be effectively managed to prevent breaches.
- Monitoring API usage ensures that only authorized transactions occur.

6. Subscription Services

- Employees may require access to various subscription services, necessitating secure authentication mechanisms and single sign-on (SSO) solutions.
- Web feeds should be protected against vulnerabilities like XML injection attacks.

7. File Transfer Services

- Despite newer protocols, FTP remains popular for efficient file transfer.
- Secure FTP options include SSH FTP (SFTP) and FTP Over SSL (FTPS), which encrypt data transmission to prevent interception.

8. Email Services

 Secure protocols like SMTPS, POP3S, and IMAPS use encryption to protect email communication and authentication mechanisms to ensure secure access.

9. Voice and Video Services

- VoIP, web conferencing, and video teleconferencing require secure protocols like SIP and RTP to protect real-time data transmission.
- Encryption and authentication are essential to prevent interception and man-in-themiddle attacks.

Implement Secure Remote Access Protocols

1. Remote Access Architecture:

- Remote access involves connecting to a network through an intermediate network, commonly implemented using a VPN over the Internet.
- Administering remote access requires ensuring authorized user access and securing remote workstations and servers.
- VPNs establish secure tunnels for remote connections, ensuring privacy even over public networks.

2. VPN Deployment Models:

 Remote Access VPN: Clients connect individually to a VPN gateway, suitable for telecommuters and field employees. • Site-to-Site VPN: Connects two or more private networks automatically, exchanging security information between gateways.

3. Transport Layer Security VPN:

- TLS VPN (SSL VPN) establishes a secure connection over port 443, encrypting data and ensuring user authentication.
- OpenVPN and SSTP are examples of TLS VPN implementations, providing secure tunnels for network traffic.

4. Internet Protocol Security (IPSec):

- Operates at the network layer, providing confidentiality and integrity to IP packets.
- Utilizes AH (Authentication Header) and ESP (Encapsulation Security Payload) protocols for authentication and encryption.

5. IPSec Modes:

- Transport Mode: Secures communication between hosts, encrypting payload data.
- Tunnel Mode: Used for VPNs, encrypts the entire IP packet and adds a new IP header.

6. Internet Key Exchange (IKE):

- Handles authentication and key exchange for IPSec, ensuring mutual authentication and secure communication.
- Negotiates security associations and establishes secure channels between hosts.

7. Layer 2 Tunneling Protocol (L2TP) and IKE v2:

- L2TP/IPSec VPN combines L2TP for tunneling with IPSec for security, suitable for remote access.
- IKE v2 enhances IKE with EAP authentication and simplified setup, providing reliability and support for NAT traversal.

8. VPN Client Configuration and Always-On VPN:

- VPN clients require installation and configuration with VPN gateway details and authentication credentials.
- Always-On VPN establishes connections automatically when detecting trusted network connections.

9. Split Tunnel vs. Full Tunnel:

- Split tunnel directs Internet traffic directly, offering flexibility but potentially compromising security.
- Full tunnel routes all traffic through the VPN, providing better security but increasing overhead.

10. Remote Desktop and Secure Shell (SSH):

- Remote Desktop Protocol (RDP) and SSH provide secure remote access to desktops and terminals.
- SSH enables command-line access and secure file transfer, with various authentication methods and host key management.

Implementing Host Security Solutions

Implement Secure Firmware

1. Exam Objectives Covered:

- Analyze potential indicators to determine the type of attack.
- Implement host or application security solutions.
- Explain the importance of policies to organizational security.

2. Hardware Root of Trust (RoT):

- Secure subsystem providing attestation.
- Utilizes trusted platform module (TPM) for establishing RoT.
- TPM stores encryption keys, hashed passwords, and user identification.
- Supports owner concept and can be managed via tpm.msc console or group policy.

3. Boot Integrity:

- Unified Extensible Firmware Interface (UEFI) ensures boot integrity.
- Secure Boot prevents hijacking by verifying OS boot loader and kernel using digital certificates.
- Measured Boot uses TPM to check hashes of key system state data.
- Boot Attestation transmits boot log report signed by TPM for analysis.

4. Disk Encryption:

- Full Disk Encryption (FDE) encrypts entire drive contents.
- FDE keys stored securely in TPM or removable USB drive.
- Self-Encrypting Drives (SED) mitigate performance issues of FDE.

5. USB and Flash Drive Security:

- Firmware exploitation in external storage devices poses significant security risks.
- USB sticks can be vectors for malware infections.
- Careful consideration and user education necessary to mitigate risks.

6. Third-Party Risk Management:

- Importance of vetting supply chain vendors for proper implementation of security measures.
- Differentiation between vendor and business partner relationships.
- Need for ongoing assessment and management of third-party risks.

7. Organizational Security Agreements:

- Various types of agreements to formalize security responsibilities.
- Memorandum of understanding (MOU), Business partnership agreement (BPA), Nondisclosure agreement (NDA), Service level agreement (SLA), and Measurement systems analysis (MSA).
- Legal agreements are essential, but vigilance in ensuring supplier capability is equally important.

Implement Endpoint Security

1. Hardening:

- Process of configuring OS or applications securely.
- Balances security with access requirements and usability.
- Least functionality principle reduces attack surface.

2. Baseline Configuration and Registry Settings:

- Configuration baselines tailored for different system types.
- Registry stores configuration settings in Windows.
- Group Policy Objects (GPOs) apply settings to domain-joined computers.
- Baseline deviation reporting ensures configuration compliance.

3. Patch Management:

- Vulnerability scanners identify missing patches.
- Automated patch deployment needs cautious implementation.
- Enterprise patch management suites mitigate compatibility issues.
- Legacy and proprietary systems require alternative risk mitigation strategies.

4. Endpoint Protection:

- Configuration of endpoint protection essential for malware detection and prevention.
- Various tools include Antivirus (A-V), Host-Based Intrusion Detection/Prevention (HIDS/HIPS), Endpoint Protection Platform (EPP), Data Loss Prevention (DLP).
- Deployment involves agent software installation, policy assignment, testing, and monitoring.

5. Next-Generation Endpoint Protection:

- Focuses on behavioral and anomaly-based analysis.
- Endpoint Detection and Response (EDR) provides real-time visibility and containment.
- Managed Detection and Response (MDR) offers hosted security services.

6. Advanced Malware Tools:

- Analysis beyond automated scanners required for evasive malware.
- Sysinternals and sandboxing are common tools for advanced analysis.

•	Sandboxing isolates untrusted hosts/apps for testing in controlled environments.			

Explain Embedded System Security Implications

- Embedded Systems:
 - Definition: Complete computer systems designed for specific, dedicated functions.
 - Examples: From microcontrollers in medical devices to complex control systems in industrial plants.
 - Characteristics: Static environments with limited flexibility compared to PCs.
 - Security Implications: While static environments can be easier to protect, identifying and correcting security issues can be challenging.
- Cost, Power, and Compute Constraints:
 - Processor capability, system memory, and storage are limited in embedded systems.
 - Cost is a significant factor, driving resource provisioning to the minimum necessary level.
 - Power constraints are crucial, especially for battery-powered devices needing long operational lifespans.
- Crypto, Authentication, and Implied Trust Constraints:
 - Limited compute resources hinder traditional cryptographic technologies' usage.
 - The rise of network accessibility prompts the development of resourceefficient encryption methods.
 - Implied trust models are common in embedded networks due to the lack of explicit trust anchors like TPMs.
- Network and Range Constraints:
 - Network connectivity choices prioritize power-efficient data transfer with reliability and low latency.
 - Unlike Wi-Fi and 4G/5G, embedded systems emphasize power efficiency over maximizing data rates and range.
- Logic Controllers for Embedded Systems:
 - PLCs form the basis of embedded systems, often utilizing System on Chip (SoC) designs for efficiency and compactness.
 - FPGAs offer flexible hardware configuration, suitable for various applications without the cost of ASICs.
- Real-Time Operating Systems (RTOS):

- RTOS are essential for time-sensitive tasks in embedded systems, requiring stability, reliability, and predictable response times.
- Despite their design for stability, RTOS are still susceptible to CVEs and exploits.
- Embedded Systems Communications Considerations:
 - Adoption of standardized communication technologies is increasing, enhancing integration with IT networks.
 - OT networks and cellular networks serve different purposes, with considerations for power efficiency, reliability, and security.
- Specialized Systems for Facility Automation:
 - BAS integrates various control systems for building automation, emphasizing physical access control, HVAC, and fire control.
 - Vulnerabilities include process and memory vulnerabilities, plaintext credentials, and code injection via web interfaces.
- Security for Embedded Systems:
 - Network segmentation isolates embedded systems from corporate networks, reducing the risk of infection or exploitation.
 - Wrappers like IPSec can secure data in transit, mitigating risks associated with untrusted networks.
 - Firmware patching is challenging due to limited vendor support, manual update processes, and the need for uninterrupted service.

Implementing Secure Mobile Solutions Implement Mobile Device Management

Mobile Device Deployment Models:

- BYOD (Bring Your Own Device): Employees use their own devices meeting company requirements.
- COBO (Corporate Owned, Business Only): Devices owned and used exclusively for company purposes.
- COPE (Corporate Owned, Personally-Enabled): Company-supplied devices used for personal and work purposes.
- CYOD (Choose Your Own Device): Employees select devices from a list provided by the company.

Enterprise Mobility Management (EMM):

- EMM applies security policies to mobile devices and apps.
- Functions include Mobile Device Management (MDM) and Mobile Application Management (MAM).
- Unified Endpoint Management (UEM) extends management to various device types.

iOS in the Enterprise:

- Apple's iOS ecosystem requires app approval and distribution through Apple.
- Device Enrollment Program, Volume Purchase Program, and Developer Enterprise Program facilitate corporate control.

Android in the Enterprise:

- Android's open nature allows for vendor-specific versions and multiple app sources.
- Android Enterprise program and Samsung's KNOX facilitate EMM control.

Mobile Access Control Systems:

- Screen lock with authentication methods like PIN, password, or biometrics.
- Remote wipe feature to clear stolen devices.
- Full device encryption and management of external media.

Location Services and Geofencing:

- GPS and IPS used for geolocation.
- Geofencing controls device functions based on location.
- GPS tagging poses privacy concerns and risks.

Application Management and Content Management:

- Containerization isolates corporate apps and data.
- Content management prevents unauthorized data sharing.
- Trusted app sources and distribution channels ensure app security.

Rooting and Jailbreaking:

- Rooting (Android) and jailbreaking (iOS) bypass device restrictions.
- Carrier unlocking removes carrier restrictions.

•	 EMM/UEM detects rooted/jailbroken devices and protects enterprise data. 			

Implement Secure Mobile Device Connections

- Smartphones and tablets utilize cellular networks for calls and data access, less prone to monitoring.
- SS7 hack is a notable attack on telecoms networks.
- GPS triangulates device position using signals from satellites, while A-GPS uses cellular data.
- GPS signals can be jammed or spoofed.
- Wi-Fi and Tethering Connection Methods:
 - Mobile devices default to Wi-Fi for data; risks include open access points and rogue networks.
 - Personal Area Networks (PANs) enable connectivity with peripherals; peer-topeer functions should generally be disabled for security.
 - Ad hoc Wi-Fi connections establish peer-to-peer networks; Wi-Fi Direct allows one-to-one connections.
- Tethering and Hotspots:
 - Smartphones can share their Internet connection, either as hotspots (via Wi-Fi) or tethering (via USB or Bluetooth).
 - Such functionality may be disabled on enterprise networks to prevent security circumvention.
- Bluetooth Connection Methods:
 - Bluetooth enables PANs; known security issues include device discovery, authentication, and malware.
 - Bluejacking and bluesnarfing are potential risks.
- Infrared and RFID Connection Methods:
 - Infrared used for device control and sensors in smartphones.
 - RFID encodes information into passive tags; risks include skimming and injecting malicious code.
- Near Field Communications and Mobile Payment Services:
 - NFC facilitates short-range communication; vulnerabilities include eavesdropping and data corruption.
 - NFC is used for mobile payments with apps like Apple Pay, Google Pay, and Samsung Pay.
- USB Connection Methods:
 - Android and iOS devices connect to computers via USB for data transfer and firmware upgrades.
 - USB On The Go (OTG) allows ports to function as either host or device; potential abuses include malware spread and juice-jacking.
- SMS/MMS/RCS and Push Notifications:
 - Vulnerabilities in SMS/MMS and RCS could compromise security; push notifications can be targeted by attackers.
- Firmware Over-the-Air Updates:

- Updates to baseband firmware are crucial for security; vulnerabilities can be exploited through malicious base stations or firmware update processes.
- Microwave Radio Connection Methods:
 - Cellular networks use microwave radio links; P2P and P2M modes require encryption to mitigate interception risks.

Summarizing Secure Application Concepts

Analyze Indicators of Application Attacks

- Application Attacks Overview:
 - Application attacks target vulnerabilities in OS or application software.
 - Vulnerabilities can allow threat actors to execute arbitrary code or cause applications to crash.
 - Attacks can lead to data compromise, denial of service, or privilege escalation.
- Privilege Escalation:
 - Application attacks often aim for arbitrary code execution, allowing attackers to gain control over systems.
 - Privilege escalation involves gaining higher system privileges than initially assigned.
 - Types of privilege escalation:
 - Vertical: Accessing functions/data not meant for the user/application.
 - Horizontal: Accessing another user's functions/data.
 - Indicators: Detected through process logging, incident response, and endpoint protection agents.
- Error Handling:
 - Error messages can reveal vulnerabilities if they disclose sensitive information.
 - Examples of error messages include "Instruction could not be read or written" and "Process has encountered a problem."
- Improper Input Handling:
 - Input should be validated to ensure it matches expected data.
 - Attacks exploit improperly handled input, often through overflow or injection techniques.
- Overflow Vulnerabilities:
 - Overflow attacks involve submitting input that exceeds allocated memory space.
 - Types:
 - Buffer Overflow: Filling a buffer with excessive data to overwrite adjacent memory.
 - Integer Overflow: Causing the calculation of a value to exceed bounds, potentially leading to system compromise.
- Null Pointer Dereferencing and Race Conditions:
 - Dereferencing null pointers can lead to crashes or code execution.
 - Race conditions occur when events execute out of intended order, potentially leading to exploitation.
- Memory Leaks and Resource Exhaustion:
 - Failure to release memory can lead to resource exhaustion, causing system instability.

- Malicious processes may deliberately exhaust resources to disrupt services or escalate privileges.
- DLL Injection and Driver Manipulation:
 - DLL injection allows malware to force legitimate processes to load malicious DLLs.
 - Attackers exploit this technique to evade detection and move between processes.
- Pass the Hash Attack:
 - Involves harvesting cached credentials to authenticate to other systems.
 - Exploits legitimate network protocols like NTLM for lateral movement.
 - Difficult to detect as it leverages standard network behavior.

Analyze Indicators of Web Application Attacks

Web Application Attacks Analysis Study Notes:

Uniform Resource Locator (URL) Analysis:

- URLs encode actions or data for server submission.
- Malicious activities often exploit this vector.
- Understanding URL structure aids in identifying malicious intent.

HTTP Methods:

- HTTP session starts with client request to server.
- Key methods: GET, POST, PUT, DELETE, HEAD.
- Data submitted via URL or HTTP headers/body.

Percent Encoding:

- Allows submission of safe or unsafe characters in URLs.
- Misuse can obfuscate URLs or exploit server decoding weaknesses.
- Common characters and their percent encoding.

Application Programming Interface (API) Attacks:

- APIs automate services; must be secured (HTTPS).
- Common attacks: ineffective secrets management, lack of input validation, error message exposure, denial of service.

Replay Attacks:

- Session management essential for user identification.
- Vulnerable to replay attacks; tokens must be non-predictable.

Cross-Site Request Forgery (CSRF):

- Exploits authenticated user sessions.
- Attackers mimic user actions to perform unauthorized actions.

Clickiacking:

- Maliciously overlays trusted web pages to deceive users into clicking.
- Mitigation through HTTP response headers and proper page design.

SSL Strip:

- Intercepts HTTP requests and downgrades them to HTTP, capturing sensitive data.
- Mitigation through HSTS implementation.

Cross-Site Scripting (XSS):

- Exploits trust in user-generated content.
- Types: reflected, stored, DOM-based.
- Allows execution of malicious scripts in client browsers.

Structured Query Language (SQL) Injection Attacks:

- Exploits vulnerabilities in SQL queries to execute unauthorized commands.
- Can lead to data extraction, insertion, or system compromise.

Directory Traversal and Command Injection Attacks:

- Exploits flaws in file path handling to access restricted directories or execute unauthorized commands.
- Canonicalization attacks disguise malicious input.

Server-Side Request Forgery (SSRF):

- Causes server to execute arbitrary requests.
- Exploits lack of authentication between internal servers and weak input validation.

Summarize Secure Coding Practices

Introduction to Secure Coding Practices:

- Understanding secure application development, deployment, and automation concepts.
- Integration of security into development processes for effective DevSecOps.

Secure Coding Techniques:

- Emphasizing security considerations in new programming technologies before deployment.
- Modern development practices incorporate security development life cycles alongside functionality and usability.
- Examples: Microsoft's SDL, OWASP SAMM, Security Knowledge Framework, and OWASP Top 10.

Input Validation:

- Key practice to mitigate attacks exploiting faulty input.
- Includes user data input, URLs, or HTTP headers.
- Mitigation involves documenting input methods and rejecting nonconforming input.

Normalization and Output Encoding:

- Normalization ensures input string conformity before processing.
- Output encoding ensures safe re-encoding of strings for different contexts, preventing attacks like XSS.

Server-Side versus Client-Side Validation:

- Applications can perform validation locally (client-side) or remotely (server-side).
- Server-side validation is essential for comprehensive security, despite potential time constraints.

Web Application Security:

- Focus on secure cookies and HTTP response header security options.
- Parameters for SetCookie header and security options for response headers.

Data Exposure and Memory Management:

- Protecting privileged data transmission with cryptography.
- Implementing error handling and structured exception handling to prevent code execution vulnerabilities.

Secure Code Usage:

- Practices including code reuse, third-party libraries, SDKs, and stored procedures.
- Monitoring and patching vulnerabilities in external code sources.

Unreachable Code and Dead Code:

- Identifying and removing unreachable code to maintain application integrity.
- The importance of code maintenance and removal of dead code to prevent misuse.

Obfuscation/Camouflage:

 Use of obfuscators to obscure code for security purposes, making reverse engineering difficult.

Static and Dynamic Code Analysis:

- Static code analysis for identifying vulnerabilities in source code.
- Human and dynamic analysis to identify runtime vulnerabilities and stress test applications.

Implement Secure Script Environments

Exam Objectives Covered:

- 1.4 Analyze potential indicators associated with network attacks
- 3.2 Implement host or application security solutions
- 4.1 Use the appropriate tool to assess organizational security

Scripting for Security Automation:

- Scripts automate tasks, reducing errors and ensuring consistent configurations.
- Elements of a script include parameters, branching and looping statements, validation, error handlers, and unit tests.
- Popular scripting languages for automation: PowerShell, Python, JavaScript, Ruby, and Go.

Python Script Environment:

- Python uses indentation for block structure and colons to start blocks.
- Variables are assigned using the = operator.
- Functions are defined using the def keyword.
- Logic and looping statements include if, else, elif, for, and while.

PowerShell Script Environment:

- Preferred for Windows administration tasks and increasingly used by hackers.
- Cmdlets perform administrative tasks with a Verb-Noun naming convention.
- Supports branching and looping structures like switch and do statements.
- Case-insensitive and supports textual operators.

Execution Control:

- Implemented through allow lists (restrictive) or block lists (permissive).
- Code signing authenticates and ensures integrity of code.
- OS-based execution control includes Software Restriction Policies (SRP), AppLocker, and Windows Defender Application Control (WDAC).

Malicious Code Indicators:

Indicators include shellcode, credential dumping, lateral movement, and persistence.

- PowerShell indicators include specific cmdlets, bypassing execution policy, and system calls.
- Mitigation strategies include group policy restrictions, logging, and PowerShell version control.

Bash and Python Malicious Indicators:

- Linux exploits often target weak configurations or vulnerabilities in web applications.
- Common indicators include downloading tools, adding crontab entries, adding users, changing firewall rules, and executing reverse shells.

Macros and VBA:

- Macros in documents (e.g., Word, PDF) execute code and can be used maliciously.
- Visual Basic for Applications (VBA) is used in Microsoft Office documents.
- Mitigation involves disabling macros by default and user education.

Man-in-the-Browser Attack:

- Browser compromise allows attackers to intercept and manipulate browser activity.
- Attackers install malicious plug-ins or scripts or exploit vulnerabilities in websites to execute code on clients' browsers.

Summarize Deployment and Automation Concepts

Agile Methodologies and Continuous Integration/Deployment:

- Most organizations use Agile methodologies.
- Agile involves continuous integration, delivery, and deployment.
- Supports creation of secure development and staging environments.
- Utilizes provisioning and deprovisioning tools.
- DevSecOps Culture:
 - Combines development, security, and operations expertise.
 - Promotes automation for security tasks.
 - Automation completes administrative tasks without human intervention.
- Scalability and Elasticity:
 - Scalability ensures linear costs with increased users.
 - Elasticity handles changes in demand in real time, reducing costs during low demand.
- Secure Application Development Environments:
 - Security must be integral to the design process.
 - Software Development Life Cycle (SDLC) divides software creation into phases.
 - Two main SDLCs: waterfall model and Agile development.
- Quality Assurance (QA):
 - Testing to ensure compliance with requirements and expectations.
 - Driven by risk-based assessments and compliance factors.
- Development Environments:
 - Development, test/integration, staging, and production environments.
 - Each environment serves specific purposes in the SDLC.
- Secure Development Environments:
 - Segmented environments prevent connections outside the sandbox.
 - Each environment should match a secure configuration baseline.
 - Integrity measurement ensures environments match the baseline.
- Provisioning, Deprovisioning, and Version Control:
 - Provisioning deploys applications to target environments.
 - Deprovisioning removes applications from packages or instances.
 - Version control tracks iterations of software products.
- Continuous Integration (CI):
 - Developers commit and test updates often to reduce conflicts.
 - Automated test suite validates builds quickly.
- Continuous Delivery and Deployment:
 - Continuous delivery tests infrastructure supporting the app.
 - Continuous deployment makes changes to the production environment.

- Continuous Monitoring and Automated Courses of Action:
 - Continuous monitoring detects service failures and security incidents.
 - Automated actions can be configured based on monitoring results.
- Continuous Validation and Software Diversity:
 - Verification ensures compliance with design goals.
 - Validation determines if the application meets user requirements.
 - Software diversity includes compiled and interpreted code approaches.
 - Obfuscation techniques can make code difficult to detect as malicious.
 - Security by diversity can mitigate risks from less motivated threat actors.

Implementing Secure Cloud Solutions

Summarize Secure Cloud and Virtualization Services

- Cloud Computing Solutions:
 - Implement hybrid solutions combining public/private/community/hosted/onsite/offsite components.
 - Example: A travel organization may use a private cloud for most of the year but switch to a public cloud during peak demand periods.
 - Flexibility is a key advantage, but data risk implications must be understood when moving data between storage environments.
- Cloud Service Models:
 - Differentiated by ownership (public, private, hybrid, community) and level of complexity/pre-configuration.
 - Common models: Infrastructure as a Service (IaaS), Software as a Service (SaaS), Platform as a Service (PaaS).
- Infrastructure as a Service (laaS):
 - o Provision IT resources like servers, load balancers, and storage quickly.
 - Rent components on an as-needed basis from service providers.
 - Examples: Amazon EC2, Microsoft Azure Virtual Machines, Oracle Cloud, OpenStack.
- Software as a Service (SaaS):
 - Access software hosted on supplier's servers on a pay-as-you-go basis.
 - Eliminates need for purchasing software licenses.
 - Examples: Microsoft Office 365, Salesforce, Google G Suite.
- Platform as a Service (PaaS):
 - Provides servers, storage, and web application/database platform.
 - Requires developers to create software to run on the platform.
 - Examples: Oracle Database, Microsoft Azure SQL Database, Google App Engine.
- Anything as a Service (XaaS):
 - Reflects the idea that anything can be provisioned as a cloud service.
 - Includes Database as a Service, Network as a Service, etc.
 - Security considerations: Responsibilities vary between security in the cloud and security of the cloud.
- Security as a Service:
 - Includes consultants, Managed Security Services Providers (MSSP), Security as a Service (SECaaS).
 - Third-party support for improving security awareness and capabilities.
- Virtualization Technologies:

- Virtualization allows multiple operating systems to run simultaneously on a single computer.
- Components: Host hardware, Hypervisor/Virtual Machine Monitor (VMM), Guest operating systems/VMs.
- Two methods: Host-based (Type II hypervisor) and bare metal (Type I hypervisor).
- Virtual Desktop Infrastructure (VDI):
 - Uses VMs to provision corporate desktops, replacing traditional desktop computers.
 - o Thin client computers connect to VMs stored on company servers.
- Application Virtualization and Container Virtualization:
 - Application virtualization hosts applications on servers or streams them to clients for local processing.
 - Container virtualization enforces resource separation at the operating system level, supporting microservices and serverless architecture.
- VM Escape Protection:
 - Refers to malware jumping from a guest OS to another guest or to the host.
 - o Detection methods and implications for security.
- VM Sprawl Avoidance:
 - Treating each VM as a network host and implementing security policies and controls.
 - Challenges of VM sprawl and deployment of undocumented assets.
 - Use of Virtual machine life cycle management (VMLM) software and tight management procedures to avoid sprawl.

Apply Cloud Security Solutions

Secure Authentication and Authorization:

- Require strong multifactor authentication (MFA) for interactive logons.
- Use conditional authentication to deny or warn of risky account activity.
- Programmatic access to cloud services is enabled by assigning a secret key to the account, not the ordinary account credential.
- Secret keys must be securely transferred to the host and stored securely.

Cloud Compute Security:

- Cloud resources are abstracted from physical hardware through virtualization.
- Compute component provides process and system memory resources as required.
- Virtualization layer ensures dynamic resource allocation.
- Critical security considerations:
 - Container Security: Isolation through separate namespaces and control groups.
 - API Inspection and Integration: Monitoring requests, latency, error rates, and unauthorized endpoints.
 - Instance Awareness: Managing instances to avoid sprawl, configuring logging, and monitoring.

Cloud Storage Security:

- Cloud storage abstracts underlying hardware to provide required storage types.
- Performance metrics include IOPS.
- Permissions and Resource Policies: Configured to allow reads and writes only from authorized endpoints.
- Encryption: Equates to full disk encryption (FDE) on-premises, minimizes data loss risk.

High Availability:

- Cloud provides resilient services through redundancy and replication.
- Storage tiers include high availability (HA) with 99.99% uptime.
- Replication options: Local, regional, geo-redundant storage.

Cloud Networking Security:

- CSP establishes a virtualization layer for network isolation.
- Virtual Private Clouds (VPCs): Isolated networks, each with its own CIDR block and subnets.
- Public and Private Subnets: Configured with Internet gateways for public access.
- VPC Endpoints: Gateway and interface endpoints for private service access.

Cloud Firewall Security:

- Firewalls determine traffic acceptance or denial.
- Filtering based on packet headers and payload contents.
- Security Groups in AWS for packet filtering and segmentation.

Cloud Access Security Brokers (CASB):

- Mediate access to cloud services, provide visibility, enforce access controls.
- Implemented as forward proxy, reverse proxy, or API-based.

Next-Generation Secure Web Gateway:

- Combines functionalities of secure web gateway (SWG), data loss prevention (DLP), and CASB.
- Supports architecture defined as secure access service edge (SASE).

Summarize Infrastructure as Code Concepts

- Infrastructure as Code (IaC) concepts:
 - Virtualization and cloud computing enable continuous delivery models for automation and service integration.
 - Provisioning networks and hosts to support application services can be achieved through Infrastructure as Code.
- Service Integration and Microservices:
 - Traditional network architecture focused on server machines and intermediate network systems.
 - Virtualization reduces dependency on physical placement and operating systems.
 - Service-Oriented Architecture (SOA) emphasizes atomic services mapped to business workflows with clear input/output interfaces.
 - Microservices are highly decoupled, capable of independent development, testing, and deployment.
- Services Integration and Orchestration:
 - Orchestration tools automate sequences of tasks, such as provisioning and configuring VMs.
 - Orchestration requires proper sequencing, security credentials, and permissions.
 - Third-party orchestration platforms offer protection from vendor lock-in and support multi-cloud environments.
- Application Programming Interfaces (APIs):
 - APIs enable service integration, automation, and orchestration.
 - SOAP uses XML messaging with built-in error handling, while REST offers a looser architectural framework.
- Serverless Architecture:
 - Serverless design pattern runs applications as functions and microservices in the cloud
 - Billing is based on execution time, and services are provisioned dynamically.
 - Functions as a Service (FaaS) products include AWS Lambda, Google Cloud Functions, and Microsoft Azure Functions.
- Infrastructure as Code (IaC):
 - IaC replaces manual configuration with automation and orchestration, ensuring consistency and idempotence.
- Software-Defined Networking (SDN):
 - SDN abstracts network functions into control, data, and management planes.
 - SDN applications define policies implemented by a network controller, facilitating rapid deployment and automation.
- Software-Defined Visibility (SDV):
 - SDV collects real-time data about network traffic and host configurations for improved anomaly detection and incident response.
- Fog and Edge Computing:

- Fog computing places processing resources close to IoT sensors to address latency and bandwidth requirements.
- Edge computing incorporates fog computing concepts, focusing on edge devices, gateways, fog nodes, and cloud/data center layers for data processing and storage.

Explaining Data Privacy and Protection Concepts

Explain Privacy and Data Sensitivity Concepts

Privacy and Data Sensitivity Concepts:

- Importance of privacy and data sensitivity in enterprise security.
- o Policies and procedures are crucial alongside technical controls for compliance.
- Privacy considerations extend to agreements with external partners, suppliers, and customers.

• Privacy versus Security:

- Privacy focuses on personal data governance and compliance.
- Security ensures confidentiality, integrity, and availability (CIA) of data.
- Privacy policies involve identifying, securing, and managing access to personal data.

Information Life Cycle Management:

- Creation/collection: Data classification and tagging.
- Distribution/use: Access control for authorized users and third parties.
- o Retention: Archiving data for regulatory reasons.
- Disposal: Sanitizing media to remove data remnants.

• Data Roles and Responsibilities:

- Data owner: Ultimate responsibility for information asset confidentiality, integrity, and availability.
- o Data steward: Responsible for data quality and metadata.
- Data custodian: Manages storage system and access controls.
- Data Privacy Officer (DPO): Oversees management of personally identifiable information (PII).

Data Classifications:

- Public, Confidential, Critical classifications based on confidentiality.
- Proprietary, Personal, Sensitive classifications based on data type and sensitivity.

Data Types:

- Personally Identifiable Information (PII) includes unique identifiers and personal data.
- Customer Data, Health Information, Financial Information, and Government Data have specific privacy considerations.

Privacy Notices and Data Retention:

- Informed consent required for data collection and processing.
- Privacy notices describe data usage purposes and limitations.
- Data retention policies comply with business needs and legal regulations.

• Data Sovereignty and Geographical Considerations:

- Data sovereignty regulates processing and storage jurisdiction.
- Geographic access requirements ensure compliance with privacy laws across regions.

• Privacy Breaches and Data Breaches:

- Breaches result in reputation damage, identity theft, fines, and intellectual property theft.
- Escalation and public notification are essential steps in breach response.

• Data Sharing and Privacy Terms of Agreement:

 SLAs, ISAs, NDAs, and data sharing agreements establish security protocols and responsibilities between parties.

Explain Privacy and Data Protection Controls

Privacy and Data Protection Controls:

Data Protection:

- Data can be categorized into three states:
 - Data at rest: Stored in persistent storage media. Examples include financial information in databases, archived media, operational policies, etc.
 - Data in transit: Data being transmitted over a network, like website traffic or remote access traffic.
 - Data in use: Present in volatile memory like system RAM or CPU cache, such as documents open in applications or database data being modified.
- Encryption is a key mechanism to protect data at rest, in transit, and in use.
- Transport encryption protocols like TLS or IPSec safeguard data in transit.
- Trusted execution environment (TEE) mechanisms, like Intel Software Guard Extensions, encrypt data in memory to prevent unauthorized access.

Data Exfiltration:

- Unauthorized copying or retrieval of data from a system is termed data exfiltration.
- Methods include copying data to removable media, using network protocols like HTTP or FTP, communicating orally over phones or VoIP, or using pictures/videos of data.
- Mitigation involves encrypting data at rest, maintaining offsite backups, implementing
 access controls, restricting network channels, and educating users about document
 confidentiality and encryption.

Data Loss Prevention (DLP):

- DLP products automate discovery, classification, and enforcement of data protection rules.
- Components include policy server, endpoint agents, and network agents.
- DLP agents scan content in structured (e.g., databases) and unstructured (e.g., emails) formats, applying rules to prevent unauthorized viewing or transfer.
- Remediation mechanisms include alerts, blocking, quarantine, and tombstone actions.

Rights Management Services:

• Information Rights Management (IRM) in Microsoft Office suite restricts file permissions and forwarding, integrating with Active Directory Rights Management Services (RMS) or Azure Information Protection.

Privacy Enhancing Technologies:

- Data minimization principle ensures only necessary data is processed and stored.
- Deidentification methods like tokenization, aggregation, hashing, and salting protect privacy by removing or modifying identifying information.
- K-anonymity ensures data can't be linked to fewer than 'k' individuals, reducing reidentification risks.
- Deidentification methods are often implemented within database management systems (DBMS).

Performing Incident Response

Summarize Incident Response Procedures

Importance of Policies, Processes, and Procedures

- o Formal policies and procedures govern effective incident response.
- o Understanding and following procedures is crucial.

• Incident Response Process

 Follows a structured process: Preparation, Identification, Containment, Eradication, Recovery, Lessons learned.

• Cyber Incident Response Team (CIRT)

- Establishes policies, procedures, and resources for dealing with security breaches.
- Challenges include defining and categorizing incidents.

Communication Plan and Stakeholder Management

- Clear communication channels are vital.
- Ensure secure communication within the team.
- Manage stakeholder communications effectively.

Incident Response Plan (IRP)

- Lists procedures, contacts, and resources for responders.
- Develops profiles or scenarios of typical incidents.

Allocation of Resources

- Assess incidents based on severity and prioritize for remediation.
- Consider factors like data integrity, downtime, economic impact, scope, detection time, and recovery time.

Cyber Kill Chain Attack Framework

 Describes stages of an attack: Reconnaissance, Weaponization, Delivery, Exploitation, Installation, Command and control, Actions on objectives.

• Other Attack Frameworks

- MITRE ATT&CK: Provides database of known TTPs.
- Diamond Model of Intrusion Analysis: Analyzes intrusion events based on adversary, capability, infrastructure, and victim.

Incident Response Exercises

 Tabletop, Walkthroughs, Simulations help develop competencies and identify deficiencies.

Incident Response vs. Disaster Recovery and Business Continuity

 Incident response focuses on specific security incidents, distinct from disaster recovery and business continuity planning.

• Incident Response, Forensics, and Retention Policy

 Forensics procedures differ from incident response; retention policy crucial for retrospective incident handling.

Utilize Appropriate Data Sources for Incident Response

Analysis and Incident Identification:

- After notification, CIRT or responsible individuals must analyze the event.
- Determine if a genuine incident occurred and its priority level.
- Analysis involves identifying the incident type and affected data/resources.
- Incident management database should record event indicators, nature, impact, and investigator.
- Next phase is to decide an appropriate response.

Security and Information Event Management (SIEM):

- SIEM, coupled with an attack framework, helps locate indicators of malicious activity.
- SIEM parses network traffic and log data from various sources and normalizes information.
- Correlation rules in SIEM detect potential incidents by interpreting relationships between data points.
- Correlation rules use logical expressions (AND, OR) and operators (==, <, >, in) to match conditions.
- SIEM can be configured with a threat intelligence feed for associating network data with known threat actor indicators.
- Retention policies in SIEM enable historical data storage for incident and threat hunting.

SIEM Dashboards:

- Main source of automated alerts in SIEM.
- Provides console for day-to-day incident response.
- Dashboards can be customized for different purposes (e.g., incident handler's dashboard vs. manager's dashboard).

Sensitivity and Alerts:

- Challenges in operating SIEM include tuning system sensitivity to reduce false positives.
- False negatives occur when indicators that should raise alerts are ignored.
- Correlation rules assign criticality levels to matches: log only, alert, alarm.

Sensors:

- Sensors perform packet capture and intrusion detection.
- SIEM aggregates data from multiple sensors and log sources.

Trend Analysis:

- Detect patterns or indicators within a data set over time.
- Trend analysis applied to frequency, volume, or statistical deviation of events.

Logging Platforms:

- SIEM aggregates log data from network appliances and hosts.
- Log data can be collected using local agents or forwarding systems.
- Syslog provides open format, protocol, and server software for logging event messages.

Metadata:

- Properties of data created, stored, or transmitted.
- Useful in investigating incidents for establishing timeline and other types of evidence.
- Includes file, web, email, mobile metadata.

Network Data Sources:

- Analyzed at individual frame level or using traffic flow and protocol usage statistics.
- Protocol analyzer output and Netflow/IPFIX capture metadata and statistics about network traffic.
- sFlow measures traffic statistics using sampling at any OSI layer.

Apply Mitigation Controls

Mitigation Overview:

- Mitigation techniques are applied to contain, eradicate, and recover from malicious activity.
- Incident response balances eliminating intrusion without disrupting business workflows.

Incident Containment:

- No standard approach; varies based on scenario, tech, motivations, and severity.
- Consider loss control, countermeasures' costs, implications, and evidence preservation.
- Containment includes isolation-based or segmentation-based techniques.

Isolation-Based Containment:

- Remove affected components from the larger environment.
- Options include disconnecting host from network, VLAN routing, firewall rules, or disabling user accounts or services.
- Effective for containing damage and preventing further access.

Segmentation-Based Containment:

- Uses network technologies (VLANs, routing, firewalls) to isolate hosts.
- Can configure as sinkhole or honeynet for deceptive communication with attackers.
- Reverse engineering malware can aid in deception and attribution.

Incident Eradication and Recovery:

- Apply mitigation to remove intrusion tools and unauthorized changes.
- Recover systems to pre-incident state; ensure no similar attack vectors remain.
- Steps include system reconstitution, security control re-audit, and notifying affected parties.

Firewall and Content Filter Configuration Changes:

- Update rules to block known attack vectors.
- Apply egress filtering to prevent malware communication.
- Use URL, content filtering, and DNS restrictions to enhance security.

Data Loss Prevention (DLP) and Mobile Device Management (MDM):

- DLP restricts data copying; MDM controls smartphone features.
- Address misconfigurations or backdoors to prevent circumvention.

Certificate Management and Endpoint Configuration Changes:

- Revoke compromised certificates and update endpoint security configurations.
- Address vulnerabilities, weak configurations, and unauthorized changes.

Application Allow/Block Lists and Quarantine:

- Define policies for application execution control.
- Quarantine endpoints for analysis if mitigation fails.

Security Orchestration, Automation, and Response (SOAR):

- Automate incident response workflows using SOAR platforms.
- Create specific playbooks for different incident types; automate where possible.

Adversarial Artificial Intelligence:

- Adversarial AI manipulates systems by injecting noise or deceptive samples.
- Successful attacks depend on knowledge of target algorithms.
- Mitigation includes algorithm secrecy, filter development, and training systems to recognize adversarial examples.

Explaining Digital Forensics

Explain Key Aspects of Digital Forensics Documentation

- Digital Forensics Documentation:
 - Documentation is essential for collecting, preserving, and presenting valid digital proofs.
 - Mistakes or gaps in documentation can lead to evidence being dismissed.
 - Understanding key aspects of forensics documentation is crucial for effective assistance to investigators.
- Evidence, Documentation, and Admissibility:
 - Digital evidence, like DNA or fingerprints, is latent and must be interpreted using machines or processes.
 - Admissibility of digital evidence requires documentation showing how it was collected and analyzed without tampering or bias.
 - Due process ensures fairness in forensic investigations and trial proceedings, requiring procedural safeguards.

Legal Hold:

- Legal hold mandates the preservation of information relevant to a court case.
- Information subject to legal hold might be defined by regulators, litigation notices, or industry best practices.
- Chain of Custody:
 - Documentation ensures the integrity and proper handling of evidence from collection to presentation.
 - Chain of custody protects against accusations of evidence tampering or alteration.
- Digital Forensics Reports:
 - Summarize significant digital data contents and investigator analysis conclusions.
 - Ethical principles guide forensic analysis, emphasizing unbiased analysis and repeatability of methods.
- E-Discovery:
 - Filters relevant evidence from forensic examination data for use as trial evidence.
 - Tools assist in de-duplication, search, tagging, security, and disclosure of evidence.
- Video and Witness Interviews:
 - Document the crime scene with photographs, audio, and video recordings.
 - Interview witnesses to gather information and establish a clear understanding of the incident circumstances.
- Timelines:
 - Establish chronological order of events to create a verifiable narrative.

- Consider time stamp calculation methods, offsets between local and UTC time, and potential clock synchronization issues.
- Event Logs and Network Traffic:
 - Obtain event logs and network packet captures for investigation.
 - o Ensure accuracy and integrity of captured data, especially in SIEM environments.
- Strategic Intelligence and Counterintelligence:
 - Forensics aids in cybersecurity by detecting past or ongoing intrusions.
 - Counterintelligence analyzes adversary tactics to configure logging systems effectively.
 - Strategic intelligence informs risk management and security control provisioning for mature cybersecurity capabilities.

Explain Key Aspects of Digital Forensics Evidence Acquisition

- Evidence Acquisition in Digital Forensics:
 - Processes and tools are used to obtain digital evidence from computer hosts and networks.
 - Demonstration of how evidence was acquired and ensuring it's a true copy of the system state is crucial.
 - Familiarity with acquisition processes and tools enables effective assistance to investigators.
- Data Acquisition and Order of Volatility:
 - Acquisition involves obtaining a forensically clean copy of data from a device held as evidence.
 - Legality of search or seizure impacts BYOD policies and evidence admissibility.
 - Data is acquired in order of volatility, capturing evidence from more volatile to less volatile storage.
- Digital Forensics Software:
 - o Tools assist in acquisition, documentation, and analysis of digital evidence.
 - Commercial tools like EnCase Forensic, FTK, and open-source tools like Sleuth Kit and Volatility Framework are commonly used.
- System Memory Acquisition:
 - Volatile data in system memory is obtained through live acquisition or crash dumps.
 - Memory dumps capture processes, registry data, network connections, and encrypted data for analysis.
- Disk Image Acquisition:
 - Nonvolatile data from storage devices like HDDs, SSDs, and optical media is acquired.
 - Methods include live acquisition, static acquisition by shutdown, or pulling the plug to preserve storage devices.
- Preservation and Integrity of Evidence:
 - Evidence must conform to a valid timeline and be tightly controlled to prevent tampering.
 - Write blockers prevent alterations to data during acquisition, ensuring evidence integrity.
- Acquisition of Other Data:
 - Additional sources like network packet captures, cache, artifacts, and firmware may contain valuable forensic data.
 - Data recovery methods like file carving and snapshots are used to extract evidence.
- Digital Forensics for Cloud:
 - Cloud investigations face challenges due to the on-demand nature of services and jurisdiction issues.

0	Chain of custody and data sovereignty complexities require close coordination with cloud service providers (CSPs) for evidence retrieval.

Summarizing Risk Management Concepts

Explain Risk Management Processes and Concepts

- Risk Management Processes:
 - Identify mission essential functions
 - Focus on critical functions to prevent business failure
 - Identify critical systems and assets supporting these functions
 - Identify vulnerabilities
 - Analyze systems and assets for weaknesses
 - Identify threats
 - Identify potential threat sources and actors
 - Analyze business impacts
 - Assess likelihood of vulnerability activation
 - Evaluate impact on critical systems
 - Identify risk response
 - Determine countermeasures and assess cost
- Risk Types:
 - External
 - Threat actors and wider threats (e.g., natural disasters)
 - Internal
 - Risks from assets and workflows within the organization
 - Multiparty
 - Risks affecting multiple organizations, often from supplier relationships
 - o Intellectual Property (IP) Theft
 - Loss of valuable organizational data
 - Software Compliance/Licensing
 - Breaking EULA terms leading to fines
 - Legacy Systems
 - Risks from outdated systems lacking security updates
- Quantitative Risk Assessment:
 - Assign concrete values to risk factors
 - Calculate Single Loss Expectancy (SLE) and Annualized Loss Expectancy (ALE)
- Qualitative Risk Assessment:
 - Focus on identifying significant risk factors
 - Categorize assets and risks for simplicity
- Risk Management Strategies:
 - Inherent risk and security controls
 - Regulatory requirements and high-value assets
 - Threats with high likelihood and risk factors
- Risk Avoidance and Transference:
 - Avoiding risk-bearing activities or transferring risk to third parties

- Risk Acceptance and Appetite:
 - Accepting or tolerating certain risks based on cost or unavoidable delay
 - o Assessing institution-wide tolerance for residual risk
- Control Risk:
 - o Measure of security control effectiveness over time
- Risk Awareness:
 - o Articulate risk scenarios for clear understanding by stakeholders
- Risk Register:
 - o Documenting risk assessments comprehensively
 - o Sharing risk information among stakeholders

Explain Business Impact Analysis Concepts

- Business Impact Analysis (BIA) informs risk assessment by documenting workflows, critical assets, and systems.
- BIA assesses potential losses for various threat scenarios, aiding in quantifying losses from specific events like DDoS attacks.
- Business continuity planning (BCP) ensures critical workflows can continue despite adverse events, while continuity of operations planning (COOP) refers to similar activities in government agencies.
- Mission essential functions (MEF) are crucial functions that cannot be deferred, requiring continuous operation or immediate restoration in case of disruption.
- Primary business functions (PBF) support MEF but are not critical on their own.
- Metrics for MEF include Maximum Tolerable Downtime (MTD), Recovery Time Objective (RTO), Work Recovery Time (WRT), and Recovery Point Objective (RPO).
- Identification of critical systems involves compiling an inventory of business processes and supporting assets.
- Single Points of Failure (SPoF) are assets whose failure can disrupt entire workflows and can be mitigated through redundancy.
- Key performance indicators (KPIs) like Mean Time to Failure (MTTF), Mean Time Between Failures (MTBF), and Mean Time to Repair (MTTR) help assess asset reliability and recovery time.
- Disasters can be internal or external, person-made or environmental, with disaster recovery plans (DRPs) detailing procedures for system or site recovery.
- DRPs should identify scenarios, tasks, resources, responsibilities, and train staff, also addressing stakeholder communication and legal requirements.
- Functional recovery plans are assessed through walk-throughs, tabletop exercises, functional exercises, and full-scale exercises.

Implementing Cybersecurity Resilience

Implement Redundancy Strategies

- Risk assessments and business impact analysis identify vulnerable business processes, leading to the implementation of redundancy strategies to reduce risks.
- High availability, measured as the percentage of time a system is online over a defined period, is crucial for resilient systems.
- Scalability and elasticity allow systems to cope with rapid growth in demand, achieved through scaling out or scaling up resources.
- Fault tolerance ensures systems can continue providing service despite failures, often by provisioning redundancy for critical components.
- Power redundancy strategies include dual power supplies, managed power distribution units (PDUs), battery backups, uninterruptible power supplies (UPSs), and generators.
- Network redundancy techniques such as NIC teaming, switching and routing redundancy, and load balancers ensure continuous network operation.
- Disk redundancy, typically achieved through RAID configurations, ensures servers can keep functioning even if storage devices fail.
- Multipath I/O ensures controller redundancy and multiple network paths to storage devices, enhancing reliability.
- Data replication maintains exact copies of data at multiple locations, providing redundancy and ensuring data availability in case of disasters.
- Geographical dispersal and replication involve replicating data across physically distant sites to protect against natural disasters and ensure data consistency.
- Synchronous replication writes data to all replicas simultaneously, while asynchronous replication copies data to replicas at scheduled intervals.
- Cloud services offer built-in redundancy and replication, providing high availability without the need for expensive on-premises infrastructure.

Implement Backup Strategies

Backups and Retention Policy:

- Short-term retention for version control and malware recovery.
- Long-term retention for legal compliance or policy requirements.
- Determined by frequency of overwriting youngest media sets.

Backup Types:

- Full, incremental, and differential backups.
- Full backup: all selected data regardless of previous backups.
- Incremental backup: new and modified files since last backup.
- Differential backup: all new and modified files since last full backup.

Copy Backups:

- Made outside tape rotation system.
- Do not affect archive attribute.

Snapshots and Images:

- Snapshots for open file backup.
- Utilizes Volume Shadow Copy Service (VSS) in Windows.
- Images duplicate OS installation for quick redeployment.

Backup Storage Issues:

- Same confidentiality, integrity, and availability as live data.
- Encryption for data confidentiality on stolen media.

Offsite Storage:

- Plan for natural disasters.
- Distance consideration for offsite storage.
- High-bandwidth Internet and cloud storage options.

Online vs. Offline Backups:

- Online: Instant availability, vulnerable to ransomware.
- Offline: Better security, manual connection required.

3-2-1 Rule:

Three copies of data, across two media types, with one offline and offsite.

Backup Media Types:

- Disk, NAS, tape, SAN, and cloud.
- Advantages and disadvantages for different scenarios.

Restoration Order:

- Controlled restoration order to minimize service disruption.
- Power systems, network infrastructure, security appliances, servers, applications, clients.

Nonpersistence:

- Ensure artifacts from disaster are removed.
- Mechanisms: snapshot/revert, rollback, live boot media.
- Master image vs. automated build from template for provisioning.

Configuration Validation:

- Validate recovery solution at each layer.
- Dashboard for key indicators and compliance metrics.

Implement Cybersecurity Resiliency Strategies

- Importance of Security Concepts in an Enterprise Environment:
 - Effective site management and cybersecurity resilience rely on change control and configuration management.
 - Lack of updated documentation can lead to confusion, errors, and delays in incident response and disaster recovery.
 - Implementation of techniques like defense in depth and control diversity is crucial for resilient systems.
 - Deception and disruption tactics increase the cost of attacks, deterring threat actors.

Configuration Management:

- o Ensures ICT infrastructure components remain in a trusted state.
- Change control and management reduce the risk of service disruption from component changes.
- ITIL framework outlines elements of configuration management: service assets, Configuration Item (CI), baseline configuration, and Configuration Management System (CMS).

Asset Management:

- Tracks critical systems, components, and devices.
- o Involves collecting and analyzing information for informed decision-making.
- Asset identification and standard naming conventions improve consistency and automation.

• Internet Protocol (IP) Schema:

- Subnet division planning enhances firewall ACLs and security monitoring.
- Identifies IP address allocation methods and usage monitoring using IPAM software.

Change Control and Change Management:

- o Change control requests and approves changes in a planned manner.
- Reactive or proactive changes categorized based on impact and risk.
- Formal change management process involves RFC submission and approval.

Site Resiliency:

- Provisioning resiliency at the site level involves alternate processing or recovery sites.
- Failover techniques ensure redundant components maintain service availability.
- Site resiliency levels include hot, warm, and cold sites, each with varying deployment times and costs.

Diversity and Defense in Depth:

- Layered security improves cybersecurity resilience by providing control diversity.
- Technology, control, vendor, and crypto diversity reduce attack surface and increase attack cost.
- Active defense strategies like honeypots and honeyfiles lure attackers and gather threat intelligence.

Explaining Physical Security

Explain the Importance of Physical Site Security Controls

Importance of Physical Site Security Controls:

- Physical access to premises opens opportunities for rogue devices, disruption, or information observation.
- Security professionals need to install access and monitoring controls to protect against physical intrusion.

Physical Security Controls:

- Restrict and monitor access to specific areas or assets.
- Control access to buildings, equipment, server rooms, etc.
- Depend on access control fundamentals: Authentication, Authorization, Accounting.

Site Layout, Fencing, and Lighting:

- Locate secure zones deep within buildings.
- Use demilitarized zone (DMZ) design to separate public access areas.
- Employ signage, warnings, and camouflage to enhance security.
- Minimize traffic between zones and use one-way glass where necessary.
- Ensure high-traffic public areas have high visibility.

Barricades and Entry/Exit Points:

- Channel people through defined entry and exit points.
- Authenticate individuals at entry points.
- Use barricades like bollards and security posts to prevent vehicle attacks.

Fencing:

- Should be transparent, robust, and secure against climbing.
- Provides protection but may give buildings an intimidating appearance.

Lighting:

- Contributes to the perception of safety and security.
- Acts as a deterrent and aids surveillance.
- Design must consider overall light levels and avoid areas of shadow and glare.

Gateways and Locks:

- Secure gateways with locks, including physical, electronic, and biometric types.
- Consider the use of mantraps for critical areas.

Cable Locks:

• Attach to secure points on device chassis to prevent unauthorized access.

Physical Attacks against Smart Cards and USB:

- Vulnerable to cloning and skimming attacks.
- Risks vary depending on the type of smart card.

Alarm Systems and Sensors:

- Include circuit, motion, noise, proximity, and duress alarms.
- Suited for different areas and types of threats.

Security Guards and Cameras:

- Provide surveillance and deterrence.
- Guards offer visual presence and real-time response.
- CCTV offers continuous monitoring and recording.

Reception Personnel and ID Badges:

- Enforce challenge policies and standardize employee behavior.
- Maintain visitor logs and two-person integrity/control.
- ID badges are essential for building security and access control.

Explain the Importance of Physical Host Security Controls

1. Perimeter Defenses Not Enough:

- Perimeter defenses alone are insufficient for host security within a site.
- o Insider threats and potential breaches necessitate additional controls.

2. Secure Areas:

- Critical assets require higher access protection than general office areas.
- o Communications or server rooms are particularly vulnerable.
- Stringent access and surveillance controls are essential.
- Data centers require similar measures.

3. Air Gap/Demilitarized Zone (DMZ):

- Air-gapped hosts aren't connected to any network.
- Stringent physical access controls are crucial.
- DMZ serves the same purpose, monitored for intrusions.

4. Safes and Vaults:

- Safes store portable devices and media securely.
- Vaults are hardened against unauthorized entry.
- Vaults may be necessary for mission-critical assets.

5. Protected Distribution and Faraday Cages:

- Protected cabled networks mitigate eavesdropping and denial-of-service risks.
- Faraday Cages block signals from entering or leaving an area.

6. Heating, Ventilation, Air Conditioning (HVAC):

- Environmental controls prevent equipment overheating.
- HVAC systems maintain optimal temperature and humidity.
- Proper monitoring and maintenance are essential.

7. Hot and Cold Aisles:

- Design server rooms for efficient airflow.
- Utilize hot aisle/cold aisle arrangement.
- Secure cabling to prevent interference and air leaks.

8. Fire Detection and Suppression:

- o Implement mechanisms to detect and suppress fires.
- Different types of fire suppression systems are available.

9. Secure Data Destruction:

- Dispose of data securely to prevent unauthorized access.
- Media sanitization and remnant removal are crucial.
- Physical destruction or purging of data are common methods.

10. Data Sanitization Tools:

- Overwriting is a standard method for HDD sanitization.
- Secure Erase (SE) command for SATA and SAS drives.
- Instant Secure Erase (ISE) for self-encrypting drives (SEDs).