Problem Set 2

Haotian Deng

(SUFE, Student ID: 2023310114)

Problem 1. Consider a more general choice-based approach to demand: assume that there exists a choice correspondence x(p,w) defined on $\{B_{p,w}: p \gg 0, w > 0\}$. Assume that x(p,w) satisfies the weak axiom of revealed preference and Walras' law. Show the following generalized compensated law of demand: for any $p \gg 0, w > 0$ and $p' \gg 0$, if $x \in x(p,w)$ and $w' = p' \cdot x$, then $\lceil p' - p \rceil \cdot \lceil x' - x \rceil \leq 0$ for any $x' \in x(p',w')$.

Answer to Problem 1.

Since x(p,w) satisfies Walras' law, we have $\forall x \in x(p,w)$ s.t. $p \cdot x = w$. So we have $x \in x(p,w)$ and $w' = p' \cdot x$. We want to show that $px' \geq w$ for any $x' \in x(p',w')$. Assume that px' < w, thus $x' \in B_{p,w}$. By $x \in x(p,w)$, we have $x \succeq x'$. Now we have $w' = p' \cdot x$, so $x \in B_{p',w'}$. Since $x \succeq x'$, $x \in x(p',w')$. However, $x' \in x(p',w')$, contradicting to the WARP. So we have $px' \geq w$. $[p'-p] \cdot [x'-x] = p'x' - px' - p'x + px$. Since p'x' = p'x = w', $[p'-p] \cdot [x'-x] = px - px' = w - px' \leq 0$. Hence $[p'-p] \cdot [x'-x] \leq 0$ for any $x' \in x(p',w')$.

Problem 2. Show that the lexicographic preference relation (as defined in the lecture notes, on \mathbb{R}^2_+) is complete, transitive, strongly monotone and strictly convex.

Answer to Problem 2.

Assume $X = \mathbb{R}^2_+$ for any $x, y \in X$, let $x \succeq y$ if $x_1 > y_1$ or $x_1 = y_1$ and $x_2 \ge y_2$.

• complete

There are six relationships between x_1 and y_1 , x_2 and y_2 :

 $x_1 > y_1, x_2 \ge y_2$; $x_1 > y_1, x_2 < y_2$; $x_1 = y_1, x_2 \ge y_2$; $x_1 = y_1, x_2 < y_2$; $x_1 < y_1, x_2 \ge y_2$; $x_1 < y_1, x_2 < y_2$. Obviously, the three top relations suggest that $x \succeq y$, and the last three relations suggest that $y \succeq x$. Thus the lexicographic preference relation is complete.

• transitive

Consider $x \succeq y$ and $y \succeq z$, w.t.s. $x \succeq z$. $x \succeq y$ suggests that $x_1 > y_1$ or $x_1 = y_1$ and $x_2 \ge y_2$, while $y \succeq z$ suggests that $y_1 > z_1$ or $y_1 = z_1$ and $y_2 \ge z_2$. If $x_1 > y_1$ and $y_1 > z_1$, we have $x_1 > z_1$, thus $x \succeq z$; if $x_1 > y_1$ and $y_1 = z_1$, we also have $x_1 > z_1$, thus $x \succeq z$; if $x_1 = y_1$, $x_2 \ge y_2$ and $y_1 > z_1$, we have $x_1 > z_1$, thus $x \succeq z$; if $x_1 = y_1$, $x_2 \ge y_2$ and $y_1 = z_1$, $y_2 \ne z_2$, we have $x_1 = z_1$, $x_2 \ge z_2$, thus $x \succeq z$. So the lexicographic preference relation is transitive.

• strongly monotone

For any $x, y \in X$, $x \ge y$ and $x \ne y$, w.t.s. x > y. Assume to the contrary, $y \ge x$. By the definition of the lexicographic preference relation, we have $y_1 > x_1$ or $y_1 = x_1$ and $y_2 \ge x_2$. If $y_1 > x_1$, we have $y \ge x$; if $y_1 = x_1$ and $y_2 \ge x_2$, we also have $y \ge x$, contradicting to $x \ge y$ and $x \ne y$. Thus the lexicographic preference relation is strongly monotone.

• strictly convex

Consider $y \succeq x$, $z \succeq x$ and $y \ne z$, w.t.s $\alpha y + (1-\alpha)z \succ x$. Let $w = \alpha y + (1-\alpha)z$, we have $w_1 = \alpha y_1 + (1-\alpha)z_1$ and $w_2 = \alpha y_2 + (1-\alpha)z_2$. If $y_1 > x_1$ and $z_1 > x_1$, we have $\alpha y_1 > \alpha x$ and $(1-\alpha)z_1 > (1-\alpha)x_1$. Thus we have $w_1 = \alpha y_1 + (1-\alpha)z_1 > \alpha x_1 + (1-\alpha)x_1 = x_1$, $w \succeq x$. Since $x \not\succeq w$ we have $w \succ x$. If $y_1 > x_1$ and $z_1 = x_1$, $z_2 \ge x_2$, we also have $w_1 > x_1$, thus $w \succeq x$. If $y_1 = x_1$, $y_2 \ge x + 2$ and $z_1 > x_1$, we also have $w_1 > x_1$, thus $w \succeq x$. If $y_1 = x_1$, $y_2 \ge x + 2$ and $z_1 = x_1$, we have $w_1 = x_1$ and $w_2 \ge x_2$, thus $w \succeq x$.

Problem 3. Let u be a utility function representing a preference relation \succeq . Show that u is strictly quasiconcave if and only if \succeq is strictly convex.

Answer to Problem 3.

u is strictly quasiconcave suggests that $u(\alpha y + (1 - \alpha)z) > \min\{u(y), u(z)\}$; and \succeq is strictly convex suggests that $\alpha y + (1 - \alpha)z > x$ for any $x, y, z \in X$ with $y \succeq x, z \succeq x$ and $y \neq z$.

• Only if part

Consider $u(\alpha y + (1 - \alpha)z) > \min\{u(y), u(z)\}$ and u(y) < u(z), we have $u(\alpha y + (1 - \alpha)z) > u(y)$ and $\alpha y + (1 - \alpha)z > y$. by $y \succeq x$ and transitivity, we have $\alpha y + (1 - \alpha)z > x$. Also, when u(z) < u(y), we have $\alpha y + (1 - \alpha)z > y$.

• If part

For any $x, y, z \in X$ with $y \succeq x$, $z \succeq x$ and $y \neq z$, we have $\alpha y + (1 - \alpha)z > x$, w.t.s $u(\alpha y + (1 - \alpha)z) > \min\{u(y), u(z)\}$. Assume to the contrary, $u(\alpha y + (1 - \alpha)z) \le \min\{u(y), u(z)\}$. If u(y) < u(z), we have $u(\alpha y + (1 - \alpha)z) < u(y)$, thus $y \ge \alpha y + (1 - \alpha)z$. Now we have $(1 - \alpha)y > (1 - \alpha)z$ and y > z, contradicting to u(y) < u(z). If u(y) > u(z), we also have $u(\alpha y + (1 - \alpha)z) > \min\{u(y), u(z)\}$.

Problem 4. Let u be a continuous utility function and x(p,w) be the corresponding Walrasian demand correspondence derived from utility maximization. Then x(p,w) can be considered as a choice correspondence defined on $\{B_{p,w}: p \gg 0, w > 0\}$.

- (a) Show that x(p, w) satisfies WARP.
- (b) Can x(p, w) be rationalized? Explain your answer.

Answer to Problem 4.

- (a) Assume to the contrary, $x \in x(p, w)$, $y \notin x(p, w)$ and $y \in x(p', w')$. Since $y \in x(p', w')$, we have $u(y) \ge u(y')$ for any $y' \in B_{p',w'}$, thus we have $u(y) \ge u(x)$. By $x \in x(p, w)$ and $y \notin x(p, w)$, we have u(x) > u(y), contradicting to $u(y) \ge u(x)$. Thus x(p, w) satisfies WARP.
- (b) By the definition of x(p, w), we have $x \in x(p, w)$ that there doesn't exist $y \in B_{p,w}$ such that u(y) > u(x).
 - complete

For any $x_1, x_2 \in B_{p,w}$, if $x_1 \succeq x_2$, we have $u(x_1) \geqslant u(x_2)$. If $x_2 \succeq x_1$, we have $u(x_2) \geq u(x_1)$.

• transitive

Assume to the contrary, if $u(x_1) \ge u(x_2)$, $u(x_2) \ge u(x_3)$ and $u(x_1) < u(x_3)$. By

 $u(x_1) \ge u(x_2)$ and $u(x_2) \ge u(x_3)$, we have $x_1 \ge x_2$, $x_3 \ge x_3$, so $x_1 \ge x_3$. Thus, we have $u(x_1) \ge u(x_3)$, contradicting to $u(x_1) < u(x_3)$.

Problem 5. Let $u : \mathbb{R}^2_+ \to \mathbb{R}$ be a continuous utility function, and let v(p, w) be the corresponding indirect utility function.

- (a) Prove that for any price vector $p \gg 0$ and consumption bundle $x \in \mathbb{R}^2_+$ with $x \neq 0$, $v(p, p \cdot x) \geq u(x)$.
- (b) Given a consumption bundle $x \in \mathbb{R}^2_+$, $x \neq 0$, does there always exist a price vector $p \gg 0$ such that $v(p, p \cdot x) = u(x)$? If so, prove it. Otherwise provide a counterexample.

Answer to Problem 5.

- (a) Consider $w' = p \cdot x$, we have v(p, px) = v(p, w'). By w' = px, we have $x \in B_{p,w'}$. According to the definition of indirect utility function, we know for any $x \in B_{p,w'}$, $v(p, w') \ge u(x)$, so $v(p, px) \ge u(x)$.
- (b) In some cases, there doesn't exist a price vector $p \gg 0$ s.t. v(p,px) = u(x). Counterexample: When the utility function $u(x_1,x_2) = x_1$, which is continuous, to let v(p,px) = u(x), we have $\frac{P_1}{P_2} = \frac{\partial u(x^*)/\partial x_2}{\partial u(x^*)/\partial x_1} = \frac{0}{1} = 0$. In this case, we can not find a price vector that $p \gg 0$ satisfies v(p,px) = u(x).

Problem 6. For each of the following utility functions, derive the Hicksian demand and expenditure function, at prices $(p_1, p_2) \gg 0$ and utility u > 0.

(a)
$$u(x_1, x_2) = \min\{2x_1, 3x_2\}$$

(b)
$$u(x_1, x_2) = 3x_1 + 2x_2$$

(c)
$$u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}, \ \alpha > 0, \beta > 0$$

Answer to Problem 6.

(a)
$$u(x_1, x_2) = \min\{2x_1, 3x_2\}$$

If $2x_1 \le 3x_2$, $u(x_1, x_2) = 2x_1$, suppose that u is differentiable, the Lagrangian $\mathcal{L}(x, \lambda) = 2x_1$

 $p_1 x_1 + p_2 x_2 + \lambda (u - 2x_1)$. We have

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x_1} = p_1 - 2\lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial x_2} = p_2 = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} = u - 2x_1 = 0 \end{cases} \Rightarrow \begin{cases} \lambda = \frac{p_1}{2} \\ p_2 = 0 \\ x_1 = \frac{u}{2} \end{cases}$$

So the Hicksian demand is $h_1(p,u)=\frac{1}{2}u$, $h_2(p,u)\geqslant\frac{2}{3}h_1(p,u)$, the expenditure function is $p_1h_1(p,u)+p_2h_2(p,u)=\frac{1}{2}p_1u$. If $2x_1\geq 3_x2$, we have $u(x_1,x_2)=3x_2$, and the Lagrangian $\mathcal{L}(x,\lambda)=p_1x_1+p_2x_2+\lambda(u-3x_2)$, we have

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x_1} = p_1 = 0\\ \frac{\partial \mathcal{L}}{\partial x_2} = p_2 - 3\lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} = u - 3x_2 = 0 \end{cases} \Rightarrow \begin{cases} p_1 = 0\\ \lambda = \frac{1}{3}p_2\\ x_2 = \frac{1}{3}u \end{cases}$$

the Hicksian demand is $h_1(p,u) \ge \frac{3}{2}h_2(p,u)$, $h_2(p,u) = \frac{u}{3}$, and the expenditure function is $\frac{1}{3}p_2u$. So the Hicksian demand is:

$$\begin{cases} h_1(p,u) = \frac{1}{2}u, & h_2(p,u) \ge \frac{2}{3}h_1(p,u) \\ h_2(p,u) = \frac{1}{3}u, & h_1(p,u) \ge \frac{3}{2}h_2(p,u) \end{cases}$$

the expenditure function is:

$$\begin{cases} \frac{1}{2}p_1u & (x_2 \ge \frac{2}{3}x_1) \\ \frac{1}{3}p_2u & (x_1 \ge \frac{3}{2}x_2) \end{cases}$$

(b) $u(x_1, x_2) = 3x_1 + 2x_2$

The Lagrangian $\mathcal{L}(x,\lambda) = p_1x_1 + p_2x_2 + \lambda(u - 3x_1 - 2x_2)$, we have

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x_1} = p_1 - 3\lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial x_2} = p_2 - 2\lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} = u - 3x_1 - 2x_2 = 0 \end{cases} \Rightarrow \begin{cases} p_1 = 3\lambda \\ p_2 = 2\lambda \\ u = 3x_1 + 2x_2 \end{cases}$$

$$p_1 x_1 + p_2 x_2 = 3\lambda x_1 + 2\lambda x_2 = \lambda (3x_1 + 2x_2) = \lambda u = \frac{1}{3} p_1 u = \frac{1}{2} p_2 u$$

So the Hicksian demand function is $3h_1(p,u) + 2h_2(p,u) = u$ and the expenditure function is $\frac{1}{3}p_1u$ or $\frac{1}{2}p_2u$.

(c)
$$u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}, \ \alpha > 0, \beta > 0$$

The Lagrangian $\mathcal{L}(x,\lambda) = p_1 x_1 + p_2 x_2 + \lambda \left(u - x_1^{\alpha} x_2^{\beta}\right)$, we have

$$\left\{ \begin{array}{l} \frac{\partial \mathcal{L}}{\partial x_1} = p_1 - \alpha \cdot x_2^{\beta} \cdot \lambda x_1^{\alpha - 1} = 0 \\ \frac{\partial \mathcal{L}}{\partial x_2} = p_2 - \beta \cdot x_1^{\alpha} \cdot \lambda x_2^{\alpha - 1} = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} = u - x_1^{\alpha} x_2^{\beta} = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} p_1 = \alpha \cdot x_2^{\beta} \cdot \lambda x_1^{\alpha - 1} \\ p_2 = \beta \cdot x_1^{\alpha} \cdot \lambda x_2^{\beta - 1} \\ u = x_1^{\alpha} x_2^{\beta} \end{array} \right.$$

$$\frac{p_1}{p_2} = \frac{\alpha}{\beta} \cdot \frac{x_2^{\beta}}{x_1^{\alpha}} \cdot \frac{x_1^{\alpha - 1}}{x_2^{\beta - 1}} \Rightarrow x_2 = \frac{\beta p_1}{\alpha p_2} \cdot x_1$$

Thus we have $u=x_1^{\alpha+\beta}\beta^{\beta}p_1^{\beta}\cdot\alpha^{-\beta}\cdot p_2^{-\beta}$, so $x_1=\left(\frac{\alpha p_2}{\beta p_1}\right)^{\frac{\beta}{\alpha+\beta}}\cdot u^{\frac{1}{\alpha+\beta}}$, $x_2=\left(\frac{\alpha p_2}{\beta p_1}\right)^{-1}\cdot\left(\frac{\alpha p_2}{\beta p_1}\right)^{\frac{\alpha}{\alpha+\beta}}\cdot u^{\frac{\alpha+\beta}{\alpha+\beta}}=\left(\frac{\alpha p_2}{\beta p_1}\right)^{\frac{-\alpha}{\alpha+\beta}}\cdot u^{\frac{1}{\alpha+\beta}}$. The Hicksian demand function is:

$$\begin{cases} h_1(p,u) = \left(\frac{\alpha P_2}{\beta P_1}\right)^{\frac{\beta}{\alpha+\beta}} \cdot u^{\frac{1}{\alpha+\beta}} \\ h_2 \cdot (p,u) = \left(\frac{\alpha P_2}{\beta p_1}\right)^{\frac{-\alpha}{\alpha+\beta}} \cdot u^{\frac{\alpha}{\alpha+\beta}} \end{cases}$$

and the expenditure function is:

$$h_1(p,u) \cdot p_1 + h_2(p,u) \cdot p_2 = p_1 \cdot \left(\frac{\alpha p_2}{\beta p_1}\right)^{\frac{\beta}{\alpha+\beta}} \cdot u^{\frac{1}{\alpha+\beta}} + p_2 \cdot \left(\frac{\alpha p_2}{\beta p_1}\right)^{\frac{-\alpha}{\alpha+\beta}} \cdot u^{\frac{1}{\alpha+1}}$$

Problem 7. Suppose that the utility function u(x) is homogeneous of degree one. Show that for any $p \gg 0$, w > 0 and $\alpha > 0$,

$$x(p, \alpha w) = \left\{ x \in \mathbb{R}^L_+ : x = \alpha y, y \in x(p, w) \right\}$$

and

$$v(p, \alpha w) = \alpha v(p, w)$$

(Hint: in the first part you have to show the two sets are the same. That is, if $x \in x(p, w)$, then $\alpha x \in x(p, \alpha w)$, and if $x \in x(p, \alpha w)$, then $\frac{1}{\alpha}x \in x(p, w)$.)

Answer to Problem 7.

- $x(p, \alpha w) = \{x \in \mathbb{R}^L_+ : x = \alpha y, y \in x(p, w)\}$ Consider $x \in x(p, w)$, we have $u(x) \ge u(y)$ for any $y \in B_{p,w}$. Consider $z \ne \alpha x$ and $z \in x(p, \alpha w)$, which means $u(z) \ge u(\alpha x)$. Since u(x) is homogeneous of degree one, $u(\alpha x) = \alpha u(x)$ and $u\left(\frac{1}{\alpha}z\right) = \frac{1}{\alpha}u(z)$, we have $\frac{1}{\alpha}z \cdot p \le w$, $\frac{1}{\alpha}z \in B_{p,w}$, contradicting to $u(x) \ge u(y)$ for any $y \in B_{p,w}$. Thus if $x \in x(p, w)$, then $\alpha x \in x(p, \alpha w)$. Similarly, we can conclude that if $x \in x(p, \alpha w)$, then $\frac{1}{\alpha}x \in x(p, w)$.
- $v(p, \alpha w) = \alpha v(p, w)$ Let $v(p, \alpha w) = u(x)$, which means $x \in x(p, \alpha w)$, thus we have $\frac{1}{\alpha}x \in x(p, w)$, which means $v(p, w) = u(\frac{1}{\alpha}x) = \frac{1}{\alpha}u(x)$. Thus we can conclude that $v(p, \alpha w) = u(x) = \alpha \cdot \frac{1}{\alpha}u(x) = \alpha v(p, w)$.