Lógica Modal

Mario R. F. Benevides

21 de setembro de 2007

Resumo

Neste texto apresentamos um resumo dos conceitos básicos de uma lógica modal

1 Linguagem

1.1 Alfabeto modal sobre Φ

Dado um conjunto Φ de símbolos proposicionais, $\Phi = \{p, q, ...\}$, o alfabeto modal sobre Φ é constituído por: cada um dos elementos de Φ ; o símbolo \bot (absurdo); os conectivos lógicos \to (implicação), \land (conjunção) e \lor (disjunção); os operadores modais \Box (necessidade) e \diamondsuit (possibilidade); e os parênteses, como símbolos auxiliares.

1.2 Linguagem modal induzida pelo alfabeto modal sobre Φ

A linguagem modal induzida pelo alfabeto modal sobre Φ é definida indutivamente da seguinte forma:

$$\varphi ::= p \mid \bot \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \neg \varphi \mid \Box \varphi \mid \Diamond \varphi$$

2 Semântica

2.1 Frames

Um frame é um par F = (W, R) onde W é um conjunto não-vazio de estados e R é uma relação binária em W dita relação de acessibilidade. Diz-se que $w_2 \in W$ é acessível a partir de $w_1 \in W$ se, e somente se, $(w_1, w_2) \in R$.

⇒: Inserir figura de um frame/grafo

2.2 Modelos

Um modelo sobre o conjunto Φ é um par M=(F,V) onde F=(W,R) é um frame e V é uma função de Φ no conjunto das partes de W, que faz corresponder a todo símbolo proposicional $p \in \Phi$ o conjunto de estados nos quais p é satisfeito, i.e., $V: \Phi \longmapsto Pow(W)$.

 \implies : Inserir exemplo

2.3 Satisfação

Seja M=(F,V) um modelo e $w\in W$ um estado. A notação $M,w\models\varphi$ indica que a fórmula φ é satisfeita pelo modelo M no estado w, o que é definido indutivamente como:

- $M, w \models p \text{ sse } w \in V(p)(\forall p \in \Phi)$
- $M, w \not\models \bot$
- $M, v \models \neg \varphi \text{ iff } M, v \not\models \varphi,$
- $M, w \models \varphi \Rightarrow \varphi'$ sse $M, w \nvDash \varphi$ ou $M, w \models \varphi'$
- $M, w \models \varphi \land \varphi'$ sse $M, w \models \varphi$ e $M, w \models \varphi'$
- $M, w \models \varphi \lor \varphi'$ sse $M, w \models \varphi$ ou $M, w \models \varphi'$
- $M, w \models \Box \varphi$ sse $M, w' \models \varphi, \forall w' \in W | (w, w') \in R$

• $M, w \models \Diamond \varphi$ sse $\exists w' \in W | (w, w') \in R$ and $M, w' \models \varphi$

 \implies : Inserir exemplo

2.4 Validade

- 1. φ é **verdadeira em um modelo** M, $M \models \varphi$, sse φ é verdadeira em todos os estados de M;
- 2. φ é **válida em um frame** F, $F \models \varphi$, sse φ é verdadeira em todos os modelos M baseados em F;
- 3. φ é **válida numa clásse de frames** \mathcal{F} , $\mathcal{F} \models \varphi$, sse φ válida em todos os frames $F \in \mathcal{F}$.

Lema 1. : $\mathcal{F} \models \Box(\varphi \rightarrow \psi) \rightarrow \Box\varphi \rightarrow \Box\psi$, onde \mathcal{F} é a classe de todos os frames.

Prova. 1. Suponha, por contradição, que existe um modelo $\mathcal{M}=(\mathcal{F},V)$ com um mundo possível $w\in W$ tal que

$$(\mathcal{M}, w) \not\models \Box(\varphi \to \psi) \to \Box\varphi \to \Box\psi$$

Então,

- (1) $\mathcal{M}, w \models \Box(\varphi \to \psi)$ e
- (2) $\mathcal{M}, w \not\models \Box \varphi \rightarrow \Box \psi$
- (1) se e somente se $\forall w' \in W$, se $wR_{\alpha}w'$ então (3) $\mathcal{M}, w' \models (\varphi \to \psi)$.
- (2) se e somente se (4) $\mathcal{M}, w \models \Box \varphi$ e (5) $\mathcal{M}, w \not\models \Box \psi$.
- (4) se e somente se $\forall w' \in W$, se $wR_{\alpha}w'$ então (6) $\mathcal{M}, w' \models \varphi$.

De (3) e (6) e pela definição de satisfação, $\forall w' \in W$, se $wR_{\alpha}w'$ então $\mathcal{M}, w' \models \psi$, mas isto é se e somente se $\mathcal{M}, w \models \Box \psi$. O que contraria (5).