0.1 Good Algebra Problems

Problem 0.1.1. Let A be a set of $n \ge 2$ positive integers, and let $f(x) = \sum_{a \in A} x^a$. Prove that there exists a complex number z with |z| = 1 and $|f(z)| = \sqrt{n-2}$.

Problem 0.1.2. Does there exist positive reals a_0, a_1, \ldots, a_{19} , such that the polynomial $P(x) = x^{20} + a_{19}x^{19} + \ldots + a_1x + a_0$ does not have any real roots, yet all polynomials formed from swapping any two coefficients a_i, a_j has at least one real root?

Problem 0.1.3. Determine if there exists a (three-variable) polynomial P(x, y, z) with integer coefficients satisfying the following property: a positive integer n is not a perfect square if and only if there is a triple (x, y, z) of positive integers such that P(x, y, z) = n.

Problem 0.1.4. Carl chooses a functional expression E which is a finite nonempty string formed from a set x_1, x_2, \ldots of variables and applications of a function f, together with addition, subtraction, multiplication (but not division), and fixed real constants. He then considers the equation E = 0, and lets S denote the set of functions $f: \mathbb{R} \to \mathbb{R}$ such that the equation holds for any choices of real numbers x_1, x_2, \ldots Let X denote the set of functions with domain \mathbb{R} and image exactly \mathbb{Z} . Can Carl choose his functional equation such that |S| = 1 and $S \subseteq X$?

Problem 0.1.5. Given a set S of n variables, a binary operation \times on S is called simple if it satisfies $(x \times y) \times z = x \times (y \times z)$ for all $x, y, z \in S$ and $x \times y \in \{x, y\}$ for all $x, y \in S$. Given a simple operation \times on S, any string of elements in S can be reduced to a single element, such as $xyz \to x \times (y \times z)$. A string of variables in S is called full if it contains each variable in S at least once, and two strings are equivalent if they evaluate to the same variable regardless of which simple \times is chosen. For example xxx, xx, and x are equivalent, but these are only full if n = 1. Suppose T is a set of strings such that any full string is equivalent to exactly one element of T. Determine the number of elements of T.

Problem 0.1.6. Consider solutions to the equation

$$x^2 - cx + 1 = \frac{f(x)}{g(x)},$$

where f and g are polynomials with nonnegative real coefficients. For each c > 0, determine the minimum possible degree of f, or show that no such f, g exist.

Problem 0.1.7. Determine whether or not there exist two different sets A, B, each consisting of at most 2011^2 positive integers, such that every x with 0 < x < 1 satisfies the following inequality:

$$\left| \sum_{a \in A} x^a - \sum_{b \in B} x^b \right| < (1 - x)^{2011}.$$

Problem 0.1.8. We say that a function $f : \mathbb{R}^k \to \mathbb{R}$ is a metapolynomial if, for some positive integers m and n, it can be represented in the form

$$f(x_1, \dots, x_k) = \max_{i=1,\dots,m} \min_{j=1,\dots,n} P_{i,j}(x_1, \dots, x_k),$$

where $P_{i,j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

Problem 0.1.9. Let n be a fixed integer with $n \geq 2$. We say that two polynomials P and Q with real coefficients are block-similar if for each $i \in \{1, 2, ..., n\}$ the sequences

$$P(2015i), P(2015i-1), \dots, P(2015i-2014)$$
 and $Q(2015i), Q(2015i-1), \dots, Q(2015i-2014)$

are permutations of each other.

(a) Prove that there exist distinct block-similar polynomials of degree n + 1. (b) Prove that there do not exist distinct block-similar polynomials of degree n.