Introduction to Wireless and Mobile Networking

Lecture 2: Wireless PHY and Radio Propagation Model

Hung-Yu Wei National Taiwan University

Review and More Overview

What is special about "wireless"?

- Wireless channel
 - Electromagnetic
 - Channel variation
 Signal power attenuation

 Radio propagation model
 - Sharing wireless medium
- What will happen if we apply the same wired-line networking protocol in wireless environments?

What is special about "mobile"?

- User mobility → where are you now?!
 - Mobility management
 - Handoff
- Tradeoffs
 - Precision of user location
 - Time to find your exact location
 - Signaling overhead
 - · Cost of updating your location
 - Power consumption
 - Updating your location consumes battery power

How do you categorize technologies?

- Mobility speed
 - Static, pedestrian, vehicular, high-speed rail
- Range
 - 1m, 10m, 100m, 1km, 10km, satellite
- Radio environment
 - Open space or Obstacles on transmission path
- Design goal
 - Low power v.s. high throughput

Two campaigns of networks

- Computer network (Internet)
 - TCP, IP, HTTP, IEEE 802.11
 - Standardization: IETF (Internet Engineering Task Force)
 - · Internet drafts, RFC documents, Internet standards
- Telecommunications networks (telephony networks)
 - PSTN (your wireline telephony network)
 - SS7 (signaling network of PSTN)
 - Extend to GSM, 3G wireless telephony networks
 - Standardization: UMTS, 3GPP, 3GPP2
- Future trends
 - Confluence of these two types of networks
 - The boundary becomes more blurry

Overlay Networks

Cellular Network Evolution

Standards

- · IETF
 - TCP, IP, Mobile IP, HTTP, SIP
- 3*G*PP
 - UMTS, HSDPA, HSUPA, LTE (Long Term Evolution)
- 3*G*PP2
 - Cdma2000, Ultra Mobile Broadband (UMB)
- IEEE 802 (PHY/MAC)
 - 802.11 WLAN (wireless local area network)
 - 802.15 WPAN (wireless personal area network)
 - 802.16 WMAN (wireless metropolitan area network)
 - 802.20 (mobile wireless broadband access)
 - 802.21 (handoff over heterogeneous networks)
- · ITU

Basics of communications, capacity, and channels

Terminologies: BS & MS

- Base station (BS)
 - Access point (AP)
- Mobile station (MS)
 - SS (Subscriber station)
 - MT (mobile terminal)
 - MN (mobile node)
- Downlink
 - Forward link
 - BS→MS
- Uplink
 - Reverse link
 - MS→BS

Terminologies: cell and sector

- · Cell
 - Coverage area of a BS
- Sector
 - Partial area of a cell that is served by a directional antenna

Terminology: handoff

Handoff

- MS changes serving BS due to movement or radio channel variation

Radio Spectrum

Wireless Spectrum Regulation

- Wireless spectrum is regulated by governments
 - Regulation has significant impact on technology advancement and business development
 - Who should use the spectrum? How should it be used?
 - Auction for licenses (e.g. 36 license)
- Organization
 - NCC (Taiwan)
 - FCC (USA)

http://www.ntia.doc.gov/osmhome/allochrt.pdf

UNITED

STATES

FREQUENCY

ALLOCATIONS

THE RADIO SPECTRUM

Frequency and Wavelength

- c=λf
 - c: speed of light
 - λ: wavelength
 - f: frequency
- Example:
 - AM radio with frequency 1710 kHz
 - What's the wavelength? Ans: 175m
 - What's the period? Ans: 584 ns

dB

- · Decibels
 - $-10 \log_{10}(x)$
 - Power in decibels
 - · dB
 - Y dB=10 log₁₀ (x Watt)
 - Power ratio in decibels
 - · dB
 - Power P1, P2 in Watt
 - · 10 log₁₀ (P1/P2)
 - Example:
 - Input power 100W and output power 1W
 - · What's the power ratio in decibel? Ans: 20dB

dBm

· dBm

- Reference power is 1 mW
- 10 log₁₀ (Watts/10^-3)
- Example:
 - O dB= 30dBm=1 Watt

Summary

- -P(dBW) = 10 log(P/1 Watt)
- -P(dBm) = 10 log(P/1 mWatt)

Gain and Attenuation in dB or dBm

- Gain/attenuation in dB
 - 10 log₁₀ (output power/input power)
 - Gain(dB)=Pout(dB)-Pin(dB)
 - Gain: Pout > Pin
 - Attenuation Pout<Pin
- Gain/attenuation in dBm
 - X(dBm)+Y(dB) = ??(dB)=??(dBm)
 - X(dBm)-Y(dB) = ??(dB)=??(dBm)
 - Example:
 - · Input power is 2dBm, system gain is 5dB
 - · What's the output power? Ans: 7dBm
 - Notice: is it dB or dBm?

Wireless communication system

- Antenna gain
 - Transmitter antenna
 - Receiver antenna
- Wireless channel attenuation

- Questions: how do you represent the relationships between P_{tx} and P_{rx} ?
 - in dB
 - in Watt

Signal-to-Noise ratio

· 5/N

- SNR= signal power(Watt)/noise power(Watt)
- Signal-to-Noise power ratio
- Relate to the performance of communications systems
 - Bit-error probability
 - Shannon capacity

SNR in dB

- $S/N(dB)=10 log_{10} (S/N power ratio)$
- 10 log₁₀ (signal power(Watt)/noise power(Watt))

Noise, Interference, SNR

SNR

- (signal power)/(noise power)
- Noise: thermal noise

SIR

- Signal-to-Interference
 - Sometimes known as C/I (carrier-to-interference ratio)
- (signal power)/(interference power)
- Interference: signals from other simultaneous communications

SINR

- Signal-to-Interference-Plus-Noise ratio
- (signal power)/(interference power+noise power)

Bandwidth

- B=f_{upper}-f_{lower}
 Carrier frequency: fc
- Example:
 - 802.11 2.4GHz ISM band (channel 1)
 - f_{upper}=2434 MHzf_{lower}=2412 MHz

 - fc=2423 MHz
 - B=22 MHz

Thermal Noise

- Thermal noise power
 - N=kT_NB
 - N: power in Watt
 - k: Boltzman's constant= 1.38*10^-23
 - T_N : temperature (degree Kelvin)
 - B: bandwidth of channel (Hz)

Bit Energy to Noise Ratio

· Eb/N₀

- Energy per bit over the noise power spectral density
- Related to SNR power ratio
- Independent of bandwidth

Relate Eb/No to SNR

- SNR=S/N (Watt/Watt)
- Eb=St_b
 - Eb: energy per bit (J)
 - S: signal power (carrier power) (W)
 - t_b: duration of a bit (s)
- Eb/ $N_0 = (S/N_0)^* t_b = (S/N_0)^* (1/f_b)$
- $\cdot N_0 = N/B$
 - N: total noise power (W)
 - B: bandwidth (Hz)
- $Eb/N_0=(S/N)(B/f_b)$

S/N (or Eb/N_0)

- To compare systems, generally they should have the same transmitted S/N (or Eb/N_0)
- The S/N (or Eb/N_0) at the input to the receiver will determine the system performance

Example

• Find the Eb/N_0 for a system operating at 2Mbps in a bandwidth of 1MHz. The carrier power is 0.1pW. The system noise temperature is 120K.

· Ans:

- $Eb/N_0 = (S/N)*(B/f_b)$
- $-(5/N)=(0.1*10^-12)/{(1.38*10^-23)(120)(1*10^6)}$
- $(B/f_b)=(1*10^6)/(2*10^6)$
- $Eb/N_0 = 30.2$
- $Eb/N_0(dB)=14.8dB$

Capture model

- SNR_{received} SNR_{threshold}
 - Minimum SNR requirement, given a target biterror-rate (or frame-error-rate)

Shannon Capacity

- Theoretical (upper) bound of communication systems
- $C=B*log_2(1+S/N)$
 - C: capacity (bits/s)
 - B: bandwidth (Hz)
 - S/N: linear Signal-to-Noise ratio
- How to evaluate the performance of a communication scheme?
 - How close to Shannon bound?
 - Spectral efficiency
 - · bit/s/Hz

Concepts Related to Channel Capacity

- Data rate
 - rate at which data can be communicated (bps)
- Bandwidth
 - the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise
 - average level of noise over the communications path
- Error rate rate at which errors occur
 - Error
 - transmit 1 and receive 0
 - transmit 0 and receive 1

Shannon Capacity Formula

- Equation: $C = B \log_2(1 + SNR)$
- Represents theoretical maximum that can be achieved (in AWGN channel)
- In practice, only much lower rates achieved
 - Formula assumes white noise (thermal noise)
 - Impulse noise is not accounted for
 - Attenuation distortion or delay distortion not accounted for
 - · Additive
 - White
 - · Gaussian
 - Noise

Nyquist Bandwidth

- For binary signals (two voltage levels)
 - C = 2B
- With multilevel signaling
 - $-C = 2B \log_2 M$
 - · M = number of discrete signal or voltage levels

Example of Nyquist and Shannon Formulations

- Spectrum of a channel between 3 MHz and 4 MHz; $5 \text{NR}_{dB} = 24 \text{ dB}$
 - What's the SNR value?

- · Using Shannon's formula
 - What's the maximum capacity?

Example of Nyquist and Shannon Formulations

• Spectrum of a channel between 3 MHz and 4 MHz; $5 \text{NR}_{dB} = 24 \text{ dB}$

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

 $SNR_{dB} = 24 \text{ dB} = 10 \log_{10}(SNR)$
 $SNR = 251$

· Using Shannon's formula

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$$
Mbps

Example of Nyquist and Shannon Formulations

 How many signaling levels are required in modulation?

Example of Nyquist and Shannon Formulations

· How many signaling levels are required?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

Antennas: isotropic radiator

- Isotropic radiator: equal radiation in all directions
 - only a theoretical reference antenna
- Real antennas always have directive effects (vertically and/or horizontally)
- Radiation pattern: measurement of radiation around an antenna

ideal isotropic radiator

Antennas: directed and sectorized

Radio propagation model

Signal propagation

- Propagation in free space always like light (straight line)
- Receiving power proportional to 1/d² in free-space
- Receiving power additionally influenced by
- fading (frequency dependent)
- shadowing
- reflection at large obstacles
- refraction depending on the density of a medium
- scattering at small obstacles
- diffraction at edges

Wireless Channel

- - Delay Spread: Intersymbol interference (I
 - Doppler Shift [due to motion]
- Noise (SNR)
- Other users
 - Co-channel interference (CCI)
 - Adjacent-channel interference (ACI)
- · Time & Frequency synchronization

The Effects of Multipath Propagation

- Multiple copies of a signal may arrive at different phases
 - If phases add destructively, the signal level relative to noise declines, making detection more difficult
- Intersymbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit

Signal Propagation Ranges

Transmission range

- communication possible
- low error rate

Detection range

 detection of the signal possible, but communication may not be possible due to high error rate

Interference range

- signal may not be detected
- signal adds to the background noise

Radio Propagation Models

- Three components
 - Path-loss (long-term average)
 - Radio signal attenuation due to transmission over a certain distance
 - Depend on the distance
 - Shadowing (large time-scale variation)
 - Signal attenuation due to penetration of buildings and walls.
 - Log-normal distribution
 - Fading (small time-scale variation)
 - Due to multi-path transmission (reflection creates multiple radio paths)
 - · Rayleigh distribution, Rician distribution

Three-Part Propagation Model: Path Loss, Slow Shadow Fading, and Fast Rayleigh Fading

The effects of path loss, shadow fading and fading are essentially independent and multiplicative

Radio Propagation Models

- Signal power at receiver: 3 components
 - Path-loss g(d)
 - Log-normal shadowing $10^{\frac{x}{10}}$
 - Rayleigh fading α^2

$$P_{R} = \alpha^{2} 10^{\frac{x}{10}} g(d) P_{T} G_{T} G_{R}$$

Path-loss

- Path-loss
 - Denoted as g(d)

$$\overline{P}_R = g(d)P_TG_TG_R$$

- Represent average values (local mean power of area within several meters) $g(d) \propto d^{-n}$
- In general received signal strength is proportional to d⁻ⁿ
 - n: path-loss exponent
 - k: constant
 - n=2 ~ 8 in typical propagation scenarios
 - n=4 is usually assumed in cellular system study
- Example: Free-space model
 - $P_r = (P_t G_t G_r \Lambda^2)/(16\pi^2 d^2) = (P_t G_t G_r)(\Lambda/4\pi d)^2$
 - Proportional to d⁻² (i.e. n=2)

Some more path-loss models

- Smooth transition model
- Two-ray-ground model
- Okumura-Hata model
- More models in telecom standard evaluation
 - E.g. 3GPP, IMT-2000, 802.16, EU WINNER project
 - Common ground to evaluate proposed schemes
 - Reflect the radio operation conditions (frequency, terminal speed, urban/rural)

Smooth transition model

- · Improvement over simple distance-power relationship $g(d) = d^{-n_1} \left(1 + \frac{d}{h}\right)^{-n_2}$
 - d-n
 - Typically, n is smaller value in near-field and is a greater value in far-field
 - Empirical measurement

$$g(d) = d^{-n_1} \qquad 0 \le d \le b$$

• Two-stage transition model $g(d) = d^{-n_1}(d/b)^{-n_2}$ $b \le d$

$$g(d) = d^{-n_1} (d/b)^{-n_2}$$
 $b \le d$

model	location	n1	n2	b(m)
Harley	Melbourne	1.5 to 2.5	3 to 5	150
Green	London	1.7 to 2.1	2 to 7	200-300
Pickhlotz	Orlando	1.3	3.5	90

Two-ray model

- 2 radio paths
 - LOS(line-of-sight)
 - NLOS(non-line-of-sight)
 - · Reflection from the ground
- Proof?
 - Sum the power of these 2 EM waves

Okumura-Hata model

- Model + measurement fit
- For macro-cellular network
 - Good fit for distance greater than 1km
 - 150-1500 MHz
- Practical use in cellular network planning
 - Extend by COST (European Cooperative for Scientific and Technical Research)
 - COST-231 model: suitable for urban microcells (1800-2000 MHz)

COST-231 path-loss model

Extend Hata model for PCS radio model in urban area

 $L(dB) = 46.3 + 33.9 \log f - 13.82 \log h_b - a(h_m) + [44.9 - 6.55 \log h_b] \log d + C_M$ where $\alpha(h_m) =$ correction factor for mobile antenna heights given in Hata model f is in MHz, h_b and h_m is in m, d is in km

• Large cities

$$C_M = 0 dB$$

• Small and medium size cities

$$C_M = 3 dB$$

Shadowing

- Shadowing is also known as shadow fading
- Received signal strength fluctuation around the mean value
 - Due to radio signal blocking by buildings (outdoor), walls (indoor), and other obstacles.
- Large time-scale variation
 - Signal fluctuation is much slower than multipath fading

Log-normal distribution

- If logarithm of a variable x follows normal distribution, then x follows log-normal distribution
- Log-normal distribution for shadowing model

• P.d.f
$$f(x) = \frac{1}{\sqrt{2\pi\sigma x}} \exp(\frac{-(\ln x - \mu)^2}{2\sigma^2})$$

Log-normal shadowing

- Path loss component indicates the "expected" signal attenuation at distance d
 - The actual signal attenuation at d depends on the environment. This is modeled with shadowing effect.
- Statistical model for shadowing
 - Received mean power of the radio signal fluctuates about the area-mean power with a log-normal distribution
 - Log-normal distribution (in Watt)
 - Normal distribution if measured in dB
- x is a zero-mean Gaussian variable with standard deviation σ dB. Typically, σ = 6~10 dB

$$P_R = \alpha^2 10^{\frac{x}{10}} g(d) P_T G_T G_R$$

$$P_R(dB) = \overline{P}_R(dB) + S$$

$$S \sim N(0, \sigma^2), \quad \sigma = 4 \sim 10 dB$$

Transmission range

Multi-path fading

- Multiple radio propagation paths
 - Might include LOS path or not
 - Multiple copies of received signals
 - · Different time delay
 - Different phase
 - · Different amplitude
- More severe in urban area or indoor
- Characterized by
 - Rayleigh or Rician distribution
 - Delay spread profile

Effects of multi-path signals

- Multiple copies of a signal may arrive at different phases
 - If phases add destructively, the signal level relative to noise declines, making detection more difficult
- Intersymbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit

Multipath Propagation

 Signals can take many different paths between sender and receiver due to reflection, scattering, diffraction

- Positive effects of multipath:
 - Enables communication even when transmitter and receiver are not in LOS conditions - allows radio waves effectively to go through obstacles by getting around them, thereby increasing the radio coverage area
 - By proper processing of the multipath signals, with smart or adaptive antennas, you can substantially increase the usable received power
 - With multiple antennas you capture energy that would otherwise be absorbed by the atmosphere and you can compensate for fades --- since it is highly unlikely that a signal will experience severe fading at more than one antenna

Negative effects of small-scale fading

- Time dispersion or delay spread: signal is dispersed over time due signals coming over different paths of different lengths. This causes interference with "neighboring" symbols, this is referred to as Inter Symbol Interference (ISI)
- The signal reaches a receiver directly and phase shifted (due to reflections) as a distorted signal depending on the phases of the different paths; this is referred to as Rayleigh fading, due to the distribution of the fades. Rayleigh fading creates fast fluctuations of the received signal.
- Random frequency modulation due to Doppler frequency shifts on the different paths. Doppler shift is caused by the relative velocity of the receiver to the transmitter, leads to a frequency variation of the received signal.

Delay spread and coherent bandwidth

Reminder

- duality property of signals in time-domain and frequency domain

- Time domain
 - multi-path delay spread
- Frequency domain
 - coherent bandwidth Bc
 - Highly correlated signals among these frequency components

Power Delay Profile

• In order to compare different multi-path channels, the time dispersive power profile is treated as an (non-normalized) pdf from which the following are computed

Mean delay:
$$\overline{\tau} = \frac{\sum_{k} \alpha_{k}^{2} \tau_{k}}{\sum_{k} \alpha_{k}^{2}}$$
, Mean square delay: $\overline{\tau}^{2} = \frac{\sum_{k} \alpha_{k}^{2} \tau_{k}^{2}}{\sum_{k} \alpha_{k}^{2}}$
The RMS Delay Spread: $\sigma_{\tau} = \sqrt{\overline{\tau^{2}} - (\overline{\tau})^{2}}$ (2.25)

 Typical values of rms delay spread are on the order of microseconds in outdoor mobile radio channels [GSM specifies a maximum delay less than 20µs] and on the order of nanoseconds in indoor radio channels

Example (Power delay profile)

$$\bar{\tau} = \frac{(1)(5) + (0.1)(1) + (0.1)(2) + (0.01)(0)}{[0.01 + 0.1 + 0.1 + 1]} = 4.38 \mu s$$

$$\bar{\tau}^2 = \frac{(1)(5)^2 + (0.1)(1)^2 + (0.1)(2)^2 + (0.01)(0)^2}{[0.01 + 0.1 + 0.1 + 1]} = 21.07 \mu s^2$$

$$\sigma_{\tau} = \sqrt{21.07 - (4.38)^2} = 1.37 \mu s \qquad \text{Delay spread}$$

Rayleigh fading

- "Amplitude" follows Rayleigh distribution
- · How to derive it?
 - Add several scaled and delayed versions of a sinusoid function

$$P_{R} = \alpha^{2} 10^{\frac{x}{10}} g(d) P_{T} G_{T} G_{R}$$

Rician Fading

- Some types of scattering environments have a LOS (ling-of-sight) component
 - In addition to the NLOS scattered components
 - LOS dominant path may significantly decrease the depth of fading

$$p_r(x) = \frac{x}{\sigma^2} e^{-\frac{(x^2 + s^2)}{2\sigma^2}} I_0(\frac{xs}{\sigma^2}) \qquad x \ge 0$$

where
$$s^2 = m_I^2(t) + m_O^2(t)$$

and the zero order Bessel function of the first kind $I_0(x)$ is defined by

$$I_0(x) = \frac{1}{2\pi} \int_0^{2\pi} e^{-x\cos\theta} d\theta$$

 The Rician factor, K, is defined as the ratio of the specular (LoS) power to the scattered power

$$K = \frac{\text{power in the dominant (specular) path}}{\text{power in the scattered paths}} = \frac{s^2}{2\sigma^2}$$

Rician Fading

• When K=0, the channel exhibits Rayleigh fading and for K $\rightarrow \infty$ there is no fading and the channel is Gaussian.

 Most channels can be characterized as either Rayleigh, Rician, or Gaussian --- with Rician being the most general case --- the Rician pdf

is shown below.

The Rice pdf for several values of $K\,^{\psi}$

Rician Fading Profiles for a Mobile at 90

Doppler Shift

- The motion of the mobile introduces a Doppler (or frequency) shift into the incident plane wave and is given by
 - $f_D = f_m \cos \theta_n$ Hz
 - where $f_m = v/\lambda$ is the maximum Doppler shift that occurs when $\theta = 0$. Waves arriving from the direction of motion will experience a positive shift, while those arriving from the opposite direction will experience a negative shift.

Doppler Shift Spectrum

- For isotropic 2-dimensional scattering and isotropic scattering
- The power spectrum of the received signal is limited in range to f_m about the carrier frequency)

Effect of Doppler Shift

Time-frequency duality

- The Doppler effect produces frequency dispersion (an increase in the bandwidth occupancy)
- This is equivalent to time-selective fading in the received signal

· Coherence Time

- Doppler frequency shift (frequency domain) could be represented as coherence time (time domain) Tc
- Represent the time duration that channel is stable
- If symbol time is smaller than Tc, it is called slow fading. Otherwise it is fast fading.

Types of fading

- Summary: Fading (based on multipath time delay spread)
 - Signal is correlated or not (time)
 - Channel frequency response depends on frequency or not (frequency)
 - 1. Flat Fading
 - BW of signal < BW of channel
 - Delay spread < Symbol period
 - 2. Frequency Selective (non-flat) Fading
 - BW of signal > BW of channel
 - · Delay spread > symbol period
- Summary: Fading (based on Doppler spread)
 - Channel varies faster or slower than signal symbol (time)
 - High or low frequency dispersion (frequency)
 - 1. Slow Fading
 - Low Doppler spread
 - · Coherence time > Symbol period
 - Channel variations slower than baseband signal variations
 - 2. Fast Fading
 - · High Doppler spread
 - Coherence time < symbol period (time selective fading)
 - Channel variations faster than baseband signal variations

Small scale fading

Summary of radio propagation and mitigations

- Shadowing
 - Problem: received signal strength
 - Mitigation:
 - increase transmit power
 - · Reduce cell size
- Fast fading
 - Problem: error rate (BER, FER, PER)
 - Mitigation:
 - Interleaving
 - Error correction coding
 - Frequency hopping
 - Diversity techniques
- Delay spread
 - Problem: ISI and error rates
 - Mitigation:
 - Equalization
 - Spread spectrum
 - · OFDM
 - Directional antenna

How to create propagation models?

- General ray-tracing method (simulation)
 - 3D building database with topography
 - Multiple ray-tracing with propagation effects (reflection, diffraction, LOS path, scattering, etc)
 - Might consider building material (steel, concrete, brick, etc)
- Empirical method
 - On-site measurement
 - Curve-fitting
 - Could be combined with ray-tracing method

Real world example

Review question?

- In which case do you expect better propagation condition?
 - Indoor or outdoor
 - With LOS or NLOS
 - Fixed or mobile user

What's your propagation environment?

- Surroundings
 - Indoor, outdoor, street, open-area
- LOS or NLOS
 - Line-of-sight or not?
- Design choices?
 - Coding, modulation
 - Re-transmission (ARQ-Automatic Repeat-reQuest)
 - QoS requirement (at different layers)
 - Data rate requirement
 - BER (bit-error-rate)
 - FER (frame-error-rate)
 - Depend on BER and frame size