4 α を $0 \leq lpha \leq rac{\pi}{2}$ を満たす実数とし,数列 $\{ heta_n\}$ を次式により定める。

$$\theta_1=0,\quad \theta_{n+1}= egin{cases} heta_n+lpha & (heta_n \leq rac{\pi}{2}$$
のとき) $heta_n-lpha & (heta_n > rac{\pi}{2}$ のとき) $heta_n = 1,\,2,\,3,\,\cdots)$

さらに数列 $\{x_n\}$ を次式により定める。

$$x_1 = 0$$
, $x_{n+1} = x_n + \left(\frac{1}{2}\right)^{n-1} \sin \theta_{n+1}$ $(n = 1, 2, 3, \dots)$

このとき,以下の問いに答えよ。

- (1) x_3 が最大となる α を求めよ。
- (2) $lpha=rac{\pi}{4}$ のとき,極限値 $\lim_{n o\infty}x_n$ を求めよ。
- (3) 極限値 $\lim_{n o \infty} x_n$ が最大となる lpha と,その極限値を求めよ。