Aufgaben

Lizenz: Creative Commons CC0

Inhaltsverzeichnis

1 Analysis

1.1 Konvergenz

Aufgabe 1.1. Berechne

$$g = \lim_{x \to 0} \frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)}. \quad (\forall k \colon a_k \neq 0)$$

Lösung: Wegen $x \neq 0$ kann der Bruch mit $\frac{bx}{bx}$ erweitert werden. Damit ergibt sich

$$\frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)} = \underbrace{\left(\frac{bx}{\sin(bx)}\right)}_{\to 1} \underbrace{\left(\frac{a_1}{b} + \sum_{k=2}^{n} \frac{a_k}{b} x^{k-1}\right)}_{\to a_1/b}.$$

Nach den Grenzwertsätzen ist der gesamte Ausdruck konvergent, wenn die beiden Faktoren konvergent sind und g ist das Produkt der Grenzwerte der Faktoren. Somit ist $g=a_1/b$. \square

Verwende alternativ die Regel von L'Hôpital.

Aufgabe 1.2. Berechne

$$g = \lim_{x \to \frac{\pi}{2a}} \frac{1 - \sin(ax)}{(\pi - 2ax)^2}.$$
 $(a \neq 0)$

Lösung: Verwende die Substitution $x = \frac{\pi}{2a} - \frac{u}{a}$. Nun ist

$$\frac{1 - \sin(ax)}{(\pi - 2ax)^2} = \frac{1 - \sin(\frac{\pi}{2} - u)}{4u^2} = \frac{1 - \cos u}{4u^2}$$
$$= \frac{\frac{u^2}{2!} + \frac{u^4}{4!} + \dots}{4u^2} = \frac{1}{4} \left(\frac{1}{2!} + \frac{u^2}{4!} + \dots\right).$$

Wenn $x \to \pi/4$ geht, muss $u \to 0$ gehen.

Somit ist q = 1/8. \square

Verwende alternativ die Regel von L'Hôpital zweimal hintereinander.

Aufgabe 1.3. Bestimme

$$g = \lim_{x \downarrow 0} x^x.$$

Lösung: Es ist $x^x = \exp(x \ln x)$. Wegen der Stetigkeit von exp gilt nun

$$\lim_{x \to 0} \exp(f(x)) = \exp(\lim_{x \to 0} f(x)).$$

Nun ist

$$x \ln x = \frac{\ln x}{\frac{1}{x}}.$$

Mit der Regel von L'Hôpital ergibt sich

$$\lim_{x \downarrow 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \downarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \downarrow 0} \frac{x^2}{x} = \lim_{x \downarrow 0} x = 0.$$

Somit ist q = 1. \square

Aufgabe 1.4. Bestimme

$$g = \lim_{x \downarrow 0} x^{1/x}.$$

Lösung: Es ist $x^{1/x} = \exp(\frac{\ln x}{x})$. Nun gilt

$$\lim_{x\downarrow 0}\frac{\ln x}{x}\stackrel{\mathrm{L'H}}{=}\lim_{x\downarrow 0}\frac{1}{x}=-\infty=\lim_{x\downarrow -\infty}x.$$

Somit ist

$$g = \exp(\lim_{x \downarrow -\infty} x) = \lim_{x \downarrow -\infty} \exp(x) = 0.$$