

Setup

Box of atoms m

n =
$$rac{N}{V}
ightarrow r_0 pprox n^{-1/3}$$
 $\lambda_T = rac{h}{\sqrt{2m\pi k_B T}}$

dimensionless quantity $n\lambda_T^3$ or λ_t/r_0

if we fixed the density n, then there must exist low tempreture T_{deq} when $\lambda_T pprox r_0$.

Analysis

- For $T>T_{deg}$: Classical regime $\to U/N \propto \frac{3}{2}k_BT$, where Tempreature sets the energy scale.
- For SHO where $E_n=(n=\frac{1}{2}\hbar\omega_0)$:
 - \circ Occupancy up to high n s.t. $E_n pprox n\hbar\omega_0 pprox k_B T$
 - \circ Average Occupancy of a particular level < 1 where $n(E) pprox e^{-eta(E-\mu)}$
 - \circ We then must have $\sum_i n(E_i)=N$, and $\mu(T)=k_BT\ln(n\lambda_T^3)=k_BT\ln(rac{T_{deg}}{T})^{3/2}=-rac{3}{2}k_BT\ln(rac{T}{T_{deg}})$
- For T=0, the overlap comes from **Quantum Statistics** instead of other physical potential interactions. Thus our Hamiltonian is still $H=\sum_i \frac{p_i^2}{2m}$
 - \circ For SHO with Fermeions, we have $n_i=0,1,H=(N+1/2)\hbar\omega$, and there is only one accessible microstate so S=0, and $\mu=rac{E_{n+1}-E_N}{N+1-N}=(N+rac{3}{2})\hbar\omega_0pprox N\hbar\omega_0$
- For $T < T_{deg}$, we will derive that

$$\circ \ \ n^F(E_i) = rac{1}{e^{eta(E_i - \mu) + 1}}$$
 , and $\sum_i n^F(E_i) = N$

Distribution function $n^{F,B}(E)$

Start with the Grand Paritition Function T,V,μ

For a microstate, we must have $H=\sum_i E_j n_j$ and $N=\sum_j n_j$ Where $n_j=0,1$ for Fermions, $n_j\in[0,\infty)$ for Bozons

We then write our partition function

$$Z = \sum_N \sum_{n_j} e^{-eta[E-\mu N]}$$
, where $< N > = rac{1}{eta} rac{1}{Z} (rac{\partial Z}{\partial \mu})_{T,V}$

Then, we can follow theese steps to solve for physical systems exactly:

- Simplify for noninteracting particles
- include Fermi or Bozon statistics

To be proven:

•
$$\langle N
angle = \sum_i rac{1}{e^{eta(E_i-\mu)+1}}$$
 for Fermions • $\langle N
angle = \sum_i rac{1}{e^{eta(E_i-\mu)-1}}$ for Bozons

•
$$\langle N
angle = \sum_i rac{1}{e^{eta(E_i - \mu) - 1}}$$
 for Bozons