

Informe Tarea 2 Algoritmo de Búsqueda de Ceros

Alumno: Bruno Quezada Profesore: Valentino González

Auxiliares: José Vines.

Jou-Hui Ho.

Fecha: 30 de septiembre de 2018

ÍNDICE

${\rm \acute{I}ndice}$

1.	Pregunta 1	2
	1.1. Introducción	
	1.2. Procedimiento	2
	1.3. Resultados	2
	1.4. Conclusiones y Discusión	2
	Pregunta 2	2
	2.1. Introducción	
	2.2. Procedimiento	
	2.3. Resultados	2
	2.4. Conclusiones y Discusión	2

1 PREGUNTA 1

1. Pregunta 1

1.1. Introducción

Para esta pregunta se solicita encontrar el largo de un cable entre 2 torres separadas por 20[m], con una caída de 7,5[m] en su punto medio. La ecuación que modela el la forma que adopta el cable es la catenaria definida como $Cat(x,x_0,\alpha)=\frac{\alpha}{2}(e^{\frac{x-x_0}{\alpha}}+e^{-\frac{x-x_0}{\alpha}})$. Para la resolución de este problema es necesario primero encontrar el α que cumpla las condiciones establecidas para el cable, esto se hará por medio de la definición de una función auxiliar, la cual se anula en un punto de interés, y se utilizará un algoritmo que busque las raíces de una función. Una vez encontrado α queda determinada la forma del cable y a través de la integración de $\int_0^{20} \sqrt{Cat'(x,x_0,\alpha)^2+1} dx$ se puede determinar su largo.

1.2. Procedimiento

Primero es necesario definir una función auxiliar adecuada que al anularse nos permita conocer el valor de α para este caso particular. Se utiliza $f(x,x_0,\alpha)=cat(x,x_0,\alpha)+7,5$ de modo que al evaluar en x=10 y $x_0=10$ se anule cuando el cable alcance los 7,5[m] de caída. En primera instancia se intentó utilizar el método de newton para encontrar el cero por su rápida convergencia, pero no es posible, ya

que al derivar la catenaria con respecto a α se obtiene: $\frac{d(cat)}{d\alpha} = \frac{x - x_0}{4\alpha} \left(e^{-2\frac{x - x_0}{\alpha}} - e^{2\frac{x - x_0}{\alpha}}\right)$ y al evaluar en x = 10 y $x_0 = 10$ la derivada se anula. Por lo tanto, se implementa el método de la bisección para resolver el problema.

Con un poco de álgebra es trivial reconocer que $\alpha = -7.5$ cumple las condiciones del problema así que el intervalo para la bisección se define entre [-5, -8].

Una vez encontrado α se procede a calcular el largo del cable, esto se logra a través de

1.3. Resultados

1.4. Conclusiones y Discusión

Universidad de Chile Facultad de Cs. Físicas y Matemáticas Departamento de Física Métodos Númericos : FI3104-1

13104-1 2 PREGUNTA 2

2. Pregunta 2

- 2.1. Introducción
- 2.2. Procedimiento
- 2.3. Resultados
- 2.4. Conclusiones y Discusión