Ingegneria Fisica

Fisica Sperimentale II /Fisica Sperimentale D – A.A. 2009-2010 Prova in Itinere/ Pre-Appello del 9/2/2010

1. Tra le armature di un condensatore piano è mantenuta una d.d.p. alternata $V = V_0$ sen ωt . Un sottile foglio di carta sul quale è distribuita una densità di carica uniforme σ è inserito tra le armature parallelamente ad esse. Esso si trova ad una distanza a da una armatura e b dall'altra. Considerando il foglio di carta come uno strato semplice di spessore trascurabile, determinare l'intensità del campo elettrico e della corrente di spostamento in due punti generici tra le armature rispettivamente da una parte e dall'altra del foglio

- 2. L'intensità media della radiazione solare sulla superficie terrestre vale 15.33 10^2 W/m². Supponendo che l'energia solare sia portata da un'onda piana incidente normalmente alla superficie terrestre, calcolare i valori massimi del campo elettrico E_0 e magnetico B_0 e la pressione esercitata sulla superficie.
- 3. Discutere le proprietà dei potenziali vettore e scalare per il campo elettromagnetico e ricavare le equazioni dei potenziali per onde elettromagnetiche in presenza di sorgenti.
- 4. Si considerino due sorgenti luminose monocromatiche S1 e S2, con lunghezza d'onda λ = 650 nm, polarizzate linearmente lungo la medesima direzione, aventi rispettivamnete intensità I_1 = I_0 e I_2 = α^2I_0 . Noto il profilo di intensità della figura di interferenza ottenuto su uno schermo posto a distanza L=3m, si calcolino:
 - a) Il coefficiente α ;
 - b) la distanza tra le due sorgenti.
 - (Si noti che nel grafico l'intensità è normalizzata rispetto all'intensità I_0).

