

Lab 6 CALCULUS FOR IT 501031

1 Exercises

Exercise 1: Write a program to generate n numbers in special sequences as follows

(a) Arithmetic sequence: $x_n = 4n + 1$

(c) Cubic sequence: $x_n = n^3$

(b) Geometric sequence: $x_n = 3^n$

(d) Fibonacci sequence: $x_n = x_{n-1} + x_{n-2}$

Exercise 2: Write a program to find the parameters of the corresponding sequences

(a) Given the sequence arithmetic sequence: 5, 20, 35, 50, 65, ... find d, a_n, a_{55} and which term equals 230?

(b) Given the geometric sequence: $120, 60, 30, 15, \frac{15}{2}, \dots$ find r, a_n, a_{10} and which term equals $\frac{15}{32}$

Hint:

• Definition of an Arithmetic sequence: $a_2 - a_1 = d$; $a_7 - a_6 = d$ and so on. Therefore, the n^{th} term of an arithmetic sequence is $a_n = a_1 + (n-1)d$

• Definition of a Geometric sequence: $r = \frac{a_2}{a_1}$; $r = \frac{a_9}{a_8}$ and so on. Therefore, the n^{th} term of a geometric sequence is $a_n = a_1(r)^{n-1}$

Exercise 3: Find the Taylor series expension of these function:

(a) f(x) = cos(x) at $x = \frac{\pi}{3}$ and the order is 6

(b) f(x) = ln(x) at x = 2 and the order is 10

(c) $f(x) = e^x$ at x = 3 and the order is 12

Exercise 4: Find the Maclaurin series expansion of these function:

(a) f(x) = cos(x) with the order is 6

(c) $f(x) = \frac{1}{1-x}$ with the order is 12

(b) $f(x) = e^x$ with the order is 12

(d) $f(x) = tan^{-1}(x)$ with the order is 12

Exercise 5: Find the limit of the following sequences:

(a)
$$\lim_{n \to \infty} \frac{4n^2 + 1}{3n^2 + 2}$$

(a)
$$\lim_{n \to \infty} \frac{4n^2 + 1}{3n^2 + 2}$$
 (c) $\lim_{n \to \infty} (\sqrt{2n + \sqrt{n}} - \sqrt{2n + 1})(e) \lim_{n \to \infty} \frac{n \sin \sqrt{n}}{n^2 + n - 1}$ (d) $\lim_{n \to \infty} (\sqrt{n^2 + 1} - n)$ (d) $\lim_{n \to \infty} \frac{3(5)^n - 2^n}{4^n + 2.5^n}$

(b)
$$\lim_{n \to \infty} (\sqrt{n^2 + 1} - n)$$

(d)
$$\lim_{n \to \infty} \frac{3(5)^n - 2^n}{4^n + 2.5^n}$$

Exercise 6: Determine whether the sequence converges or diverges:

(a)
$$a_n = 1 - (0.2)^n$$

(e)
$$a_n = e^{\frac{1}{n}}$$

(h)
$$a_n = tan(\frac{2n\pi}{1+8n})$$

(b)
$$a_n = \frac{n^3}{n^3 + 1}$$

$$(f) \ a_n = \sqrt{\frac{n+1}{9n+1}}$$

(i)
$$a_n = \frac{(2n-1)!}{(2n+1)!}$$

(c)
$$a_n = \frac{3 + 5n^2}{n + n^2}$$

(d) $a_n = \frac{n^3}{n + 1}$

(g)
$$a_n = \frac{(-1)^{n+1}n}{n+\sqrt{n}}$$

(j)
$$a_n = ln(2n^2 + 1) - ln(n^2 + 1)$$

Exercise 7: Find the first five terms of the sequence following:

(a)
$$a_n = 1 - (0.2)^n$$

(d)
$$a_n = \frac{1}{(n+1)!}$$

(b)
$$a_n = \frac{2n}{n^2 + 1}$$

(e)
$$a_1 = 1, a_{n+1} = 5a_n - 3$$

(c)
$$a_n = \frac{(-1)^{n-1}}{5^n}$$

(f)
$$a_1 = 2, a_{n+1} = \frac{a_n}{a_n + 1}$$

and show the result graphically

Exercise 8: Using a graph of the sequence to determine whether the sequence is convergent or divergent.

(a)
$$a_n = 1 - (\frac{-2}{e})^n$$

(d)
$$a_n = \frac{n^2 cos(n)}{(1+n^2)}$$

(b)
$$a_n = \sqrt{n} sin(\frac{\pi}{\sqrt{n}})$$

(e)
$$a_n = \frac{1.3.5...(2n-1)}{n!}$$

(c)
$$a_n = \sqrt{\frac{3+2n^2}{8n^2+n}}$$

(f)
$$a_n = \frac{1.3.5...(2n-1)}{(2n)^n}$$

Exercise 9: Determinate if the following series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} 4^n = 4 + 16 + 64 + 256 + 1024 + \dots$$

(a)
$$\sum_{n=1}^{\infty} 4^n = 4 + 16 + 64 + 256 + 1024 + \dots$$
 (b) $\sum_{n=1}^{\infty} \frac{5}{2^n} = \frac{5}{2^1} + \frac{5}{2^2} + \frac{5}{2^3} + \frac{5}{2^4} + \frac{5}{2^5} \dots$

Exercise 10: Write a program to find the i^{th} Fibonacci number in Fibonacci sequence. By

(a)
$$x_i = x_{i-1} + x_{i-2}$$

(b)
$$x_i = \frac{\phi^i - (1 - \phi)^i}{\sqrt{5}}$$
, where $\phi = 1.618034$ is Golden Ratio.

(c)
$$x_i = [x_{i-1}\phi]$$

Exercise 11: An employee has an initial salary of \$28000. The salary increase 3% per year. Use the n^{th} term $a_n = P[1+i]^n$ where P is the initial salary, i is the rate of increase in decimal, n is yearly term. Find a sequence of the first 3 years salaries.

Exercise 12: Write a program to illustrate Fractal sequences in Lindenmayer Systems (L-Systems). Where

- \bullet F: to represent the turtle moving forward by a certain distance d.
- +: to represent the turtle turning right by a certain angle α .
- -: to represent the turtle turning left by a certain angle.
- [Push current state of the turtle into a pushdown stack.
-] Pop a state from the stack, and make it the current state of the turtle. No line is drawn, although the position of the turtle may change. Show these Fractal sequences with n=5.
 - (a) axiom: $F \leftarrow F + F F + F$, if n = 0: $F, \alpha = 90^{\circ}, d = 2$
 - (b) axiom: $F \leftarrow F/+F/-F/$, if $n = 0 : F, \alpha = 45^{\circ}, d = 2$