The Augmented Image Prior: Distilling 1000 Classes by Extrapolating from a Single Image

Plan

- Questions to research
- Problem statement
- Method
- Experiments and results
- Strengths & Weaknesses

Questions to research

- What exactly is required for arriving at semantic visual representations from random weights?
- What neural networks know about the world from their training distribution?

How well neural networks trained from a single datum can extrapolate to semantic classes?

Problem statement

How well neural networks trained from a single datum can extrapolate to semantic classes?

Training student-model via knowledge distillation **without** pretrained teacher's **source dataset**

Distilling 1000 Classes by Extrapolating from a Single Image

Distilling 1000 Classes by Extrapolating from a Single Image

0. Source datum

1 dense image

Distilling 1000 Classes by Extrapolating from a Single Image

1 dense image

1000 augmented pathes-images

Distilling 1000 Classes by Extrapolating from a Single Image

1 dense image

1000 augmented pathes-images

Teacher-student knowledge distillation

Single-image distillation framework:

1 dense image

1000 augmented pathes-images

Teacher-student knowledge distillation

What to conclude?

"Augmented image prior" hypothesis

Within the space of all possible images \mathcal{I} , a single real image $x \in \mathcal{I}$ and its augmentations $\mathcal{A}(x)$ can provide sufficient diversity for extrapolating to semantic categories in real images.

Back to method

Single-image distillation framework

Dataset generation Knowledge distillation

Dataset generation

1. Select good dense single image

(e) The "Animals" Image. Size: 1,300x600, JPEG: 267KB.

(d) The "City" Image. Size: 2,560x1,920, JPEG: 1.9MB.

Dataset generation

2. "Patchify" a single-image using augmentations

(a) Source image

(h) Patches

Transfer the knowledge of a pretrained teacher to a lower capacity student model

"Distribution-matching" objective that aims to mimic the teacher's output

"Distribution-matching" objective that aims to mimic the teacher's output: **KL divergence** between the student output and the teacher's output

"Distribution-matching" objective that aims to mimic the teacher's output: **KL divergence** between the student output and the teacher's output

$$\mathcal{L}_{\text{KL}} = \sum_{c \in \mathcal{C}} -p_c^t \log p_c^s + p_c^t \log p_c^t$$
c are the teachers' classes

student output p^s teacher's output p^t

"Distribution-matching" objective that aims to mimic the teacher's output: **KL divergence** between the student output and the teacher's output

$$\mathcal{L}_{\text{KL}} = \sum_{c \in \mathcal{C}} -p_c^t \log p_c^s + p_c^t \log p_c^t$$
c are the teachers' classes

student output p^s teacher's output p^t

$$p = \operatorname{softmax}(l/\tau)$$

$$\operatorname{logits} l$$

$$\operatorname{temperature} \tau$$

Experiments and results

					Distillat	ion
Teacher	Acc.	Student	Acc.	Full	Ours	$\Delta < 5\%$
○ VGG-19	93.28	VGG-16	92.42	92.84	92.14	✓
ResNet-56	93.77	ResNet-20	92.52	92.29	90.70	✓
WideR40-4	95.42	WideR16-4	95.20	95.00	93.32	✓
₹ WideR40-4	95.42	WideR40-4	95.42	94.36	94.14	\checkmark
WideR16-4	95.20	WideR40-4	95.42	94.30	94.02	✓
8 VGG-19	70.79	VGG-16	73.26	71.19	58.66	X
⊋ ResNet-56	70.99	ResNet-20	65.74	67.04	52.43	×
₹ WideR40-4	78.14	WideR16-4	75.56	76.26	68.69	×
WideR40-4	78.14	WideR40-4	78.14	75.54	73.80	\checkmark
WideR16-4	78.14	WideR40-4	75.56	76.29	74.08	✓

Student accuracy when **distilling** with **full training set** vs our **1-image** dataset

Visualizing neurons

Visualizing neurons

Noise for source datum

Distillation Image	dataset # Pixels		•
"Noise"	4.9M	69.30	19.50
"Universe"	4.8M	88.18	39.68
"Bridge"	1.1M	92.24	57.87
"City"	4.9M	93.13	64.85
"Animals"	2.8M	93.28	66.12

(a) The "Noise" Image. From uniform noise [0,255]. Size: 2,560x1,920, PNG: 16.3MB.

Choice of source image content is crucial

Distillation on synthetic data

Method outperforms several synthetic datasets

Data	C10
CIFAR-10	92.61
Fractals	33.26
StyleGAN	83.42
ZeroSKD	86.60
Ours	89.27

Strengths & Weaknesses

Strengths:

- Interesting and surprising results
- Paper covers a lot of datasets, architectures, and modalities

Weaknesses:

- We still need a "good" teacher which should be trained on a large dataset in this domain
- "Single image" is large high-resolution image with lots of detail, not the 32x32 CIFAR image

Sources

The Augmented Image Prior: Distilling 1000 Classes By Extrapolating

From a Single Image: https://arxiv.org/pdf/2112.00725.pdf