Laboratório 01 Detecção de Bordas MC202 - Estruturas de Dados

16 de Agosto de 2018

1 Problema

O objetivo desta tarefa é implementar um detector de bordas de imagens utilizando o operador de Sobel. A detecção de bordas é um processo importante na análise de imagens, pois as bordas indicam áreas de interesse ou fronteiras entre objetos.

O operador de Sobel utiliza duas convoluções com filtros passa-alta para detectar bordas no sentido horizontal e vertical, depois combina os resultados da passagem desses filtros para gerar um mapa das bordas presentes na imagem.

1.1 Convolução

O processo de convolução sobrepõe um filtro sobre a matriz original, em que cada entrada sobreposta é multiplicada pela entrada do filtro correspondente. Os resultados das multiplicações são somados e geram uma entrada na matriz final. Na Figura 1.1, pode-se observar um exemplo de convolução.

		3.5.			D : 1 1: 1	
Matriz					Entrada Atual	Matriz Resultado
4	4	4	4	4		
4	8	8	8	8	0*4+(-1)*4+0*4	
4	8	16	16	16	+(-1)*4+5*8+(-1)*8	16
4	8	16	32	32	+0*4+(-1)*8+0*16=16	
4	8	16	32	32		
4	4	4	4	4		
4	8	8	8	8	0*4+(-1)*4+0*4	
4	8	16		16	+(-1)*8+5*8+(-1)*8	$16 ext{ } 4$
4	8	16	32	32	+0*8+(-1)*16+0*16=4	
4	8	16	32	32		
		:			į.	<u>:</u>
4	4	4	4	4		
4	8	8	8	8	0*16 + (-1)*16 + 0*16	16 4 4
4	8	16	16	16	+(-1)*16+5*32+(-1)*32	$4 \ 32 \ 8$
4	8	16	32	32	+0*15 + (-1)*32 + 0*32 = 64	4 8 64
4	8	16	32	32		

Figura 1: Exemplo de convolução.

1.2 Filtros

Os filtros de Sobel são mostrados na Figura 1.2, em que F_x detecta bordas na vertical e F_y detecta bordas na horizontal.

$$F_x = \begin{matrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{matrix} \qquad F_y = \begin{matrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{matrix}$$

Figura 2: Filtros de Sobel vertical e horizontal, respectivamente.

Para combinar os resultados, utiliza-se a Equação 1, que corresponde à aproximação do cálculo da magnitude do vetor gradiente naquele pixel.

$$z_{ij} = \sqrt{x_{ij}^2 + y_{ij}^2} \tag{1}$$

em que x_{ij} é a entrada da coluna i e linha j da matriz resultante da convolução da imagem original com o filtro F_x ; y_{ij} é semelhante, mas com a convolução sendo feita com o filtro F_y ; z_{ij} é a entrada da coluna i e linha j da matriz combinada.

1.3 Padding

Nos limites (margens) da imagem, utilizaremos a técnica de *cutting padding*, em que uma moldura formada de valores zeros é adicionada ao redor da imagem original, como ilustrado na Figura 1.3.

Figura 3: Exemplo de padding.

2 Entrada

O seu programa deve ler, da entrada padrão, valores de intensidade da imagem a ser processada. Todas as imagens terão dimensão 128×96 pixels. Os valores de intensidade são inteiros positivos.

3 Saída

O programa deve imprimir, na saída padrão, os valores de intensidade dos pixels da imagem gerada pelo operador de Sobel.

4 Exemplos de Entrada e Saída

Como exemplo, uma imagem menor do que a especificação da Seção 2 será utilizada para facilitar a visualização.

Entrada:

10 10 10 10 0 10 10 10 10 10 10 0 0 10 10 10 0 0 10 10 10 0 0 0 10 10 0 0 0 10 10 0 0

Saída:

- 40 40 14 44 51 0
- 31 42 42 31 0 0

3