Recommender Systems

Debapriyo Majumdar Indian Statistical Institute Kolkata

Recommender systems

Business

- How to increase revenue?
- How to recommend items customers like?

Customer

- Too many options.
- How to choose the right one?

Recommender systems

Apple Book Cover for iPad

Rs 4,999 (40% Off)

Rs 2,999

Apple Flip Cover for iPad

mini, iPad mini with Retina

Rs 3,000 (16% Off)

Rs 2,495

Apple Book Cover for iPad

Rs-4,499 (33% Off)

Rs 2,999

Apple Flip Cover for iPad Mini (Grey)

Apple Flip Cover for iPad

mini with Retina Display,

Rs 2,999 (20% Off)

Rs 2,399

Apple Book Cover for iPad

Rs 1,999

Rs-2,900 (31% Off)

Customers who viewed / bought this product also bought

Since you are looking at this, you may also look at ...

Recommender systems

Viewers who liked this movie also liked the other movies

Since you are looking at this page, you may also like...

The Recommendation Problem

- We have a set of users *U* and a set of items *S* to be recommended to the users.
- Let p be an utility function that measures the usefulness of item $s \in S$ to user $u \in U$, i.e.,

 $p: U \times S \rightarrow R$, where R is a totally ordered set (e.g., non-negative integers or real numbers in a range)

- Objective
 - Learn p based on the past data
 - Use p to predict the utility value of each item $s \in S$ to each user $u \in U$

Two main formulations

- Rating prediction: predict the rating score that a user is likely to give to an item that (s)he has not seen or used before
 - Rating on an unseen movie
 - In this case, the utility of item s to user u is the rating given to s by u
- Item prediction: predict a ranked list of items that a user is likely to buy or use

Approaches

Content-based recommendations:

 The user will be recommended items similar to the ones the user preferred in the past

Collaborative filtering (or collaborative recommendations):

 The user will be recommended items that people with similar tastes and preferences liked in the past

Hybrids: Combine collaborative and content-based methods

Content based recommendation

- Will user *u* like item *s*?
- Look at items similar to s; does u like them?
 - Similarity based on content
 - Example: a movie represented based on features as specific actors, director, genre, subject matter, etc
- The user's interest or preference is also represented by the same set of features (the <u>user profile</u>)
- Candidate item *s* is compared with the user profile of *u* in the same feature space
- Determine if *u* would like *s*, or
- Top k similar items are recommended

Collaborative filtering

- Collaborative filtering (CF): more studied and widely used recommendation approach in practice
 - k-nearest neighbor
 - association rules based prediction
 - matrix factorization
- Key characteristic: predicts the utility of items for a user based on the items previously rated by other like-minded users (thus, *collaborative*)

k nearest neighbor approach

- No model building
- Utilizes the entire user-item database to generate predictions directly, i.e., there is no model building.
- This approach includes both
 - User-based methods
 - Item-based methods

User based kNN CF

- Let the record (or profile) of the target user be *u* (represented as a vector), and the record of another user be *v*.
- The similarity between the target user, u, and a neighbor, v, can be calculated using the **Pearson's correlation coefficient**:

$$sim(u, v) = \frac{\sum_{i \in S} (r_{u,i} - \bar{r}_u)(r_{v,i} - \bar{r}_v)}{\sqrt{\sum_{i \in S} (r_{u,i} - \bar{r}_u)^2} \sqrt{\sum_{i \in S} (r_{v,i} - \bar{r}_v)^2}}$$

and compute V, is the set of k similar users based on this similarity

• Compute the rating prediction of item *i* for target user *u*

$$p(u,i) = \bar{r_u} + \frac{\sum_{v \in V} \operatorname{sim}(u,v) \times (r_{v,i} - \bar{r_v})}{\sum_{v \in V} |\operatorname{sim}(u,v)|}$$

Problems with user based CF

- The problem with the user-based formulation of collaborative filtering is the lack of scalability:
 - it requires the real-time comparison of the target user to all user records in order to generate predictions
- A variation of this approach that remedies this problem is called item-based CF

Item-based CF

• The item-based approach works by comparing items based on their pattern of ratings across users. The similarity of items *i* and *j* is computed as follows:

$$sim(i,j) = \frac{\sum_{u \in U} (r_{u,i} - \bar{r}_i)(r_{u,j} - \bar{r}_j)}{\sqrt{\sum_{i \in U} (r_{u,i} - \bar{r}_i)^2} \sqrt{\sum_{i \in U} (r_{u,j} - \bar{r}_j)^2}}$$

• After computing the similarity between items we select a set of k most similar items and generate a predicted value of user u's rating

$$p(u,i) = \frac{\sum_{j \in J} r_{u,j} \times \sin(i,j)}{\sum_{j \in J} |\sin(i,j)|}$$

where J is the set of k similar items

Association rule-based CF

- Transaction database: users, items
 - User → item: viewed, bought, liked
- Find association rules such as
 - Bought X, bought Y → Bought Z
 - Confidence and support (how strong is this association)
- Rank items based on measures such as confidence, subject to some minimum support
- Further reading: association rule mining