ArchSummit全球架构师峰会 北京站2015

APM在云服务选型过程中的应用分析

听云研发总监 – 杨金全

Geekbang》. 极客邦科技

整合全球最优质学习资源,帮助技术人和企业成长 Growing Technicians, Growing Companies

技术媒体

高端技术人员 学习型社交网络

实践驱动的 IT职业学习和服务平台

一线专家驱动的 企业培训服务

旧金山 伦敦 北京 圣保罗 东京 纽约 上海 San Francisco London Beijing Sao Paulo Tokyo New York Shanghai

2016年4月21-23日 | 北京:国际会议中心

主办方 **Geekbang**》. **InfoQ**®

优惠(截至12月27日) 现在报名,节省2040元/张,团购享受更多优惠

Magic Quadrant

Figure 1. Magic Quadrant for Application Performance Monitoring Suites

Source: Gartner (December 2015)

一段代码、几个妹纸...

客户投诉蜂拥而至...

我的应用怎么了...

500

We're sorry, but something went wrong.

We've been notified about this issue and we'll take a look at it shortly.

我的应用怎么了...

一般情况下,应用状态来源有.......

但你随时会面对.....

然后.....

议题

- 云时代变革
- 应用性能管理挑战
- 衡量指标
- 系统监控
- APM 端到端的应用性能管理
- 助力云选型
- 评测云服务
- 案例实践

云时代变革

云时代变革

云时代变革

用户体验至上

用户体验之要素

用户体验之影响因素

应用性能管理挑战

应用架构变革

- 系统复杂
- 分布式
- 异构
- 微服务
- 云+端

传统IT运维挑战

衡量指标

衡量指标

- 交互时间(用户感知)
 - 渲染时间
 - 首屏时间
- •响应时间(独占时间)
 - 网络层时间
 - 阻塞时间
 - 应用层时间
 - 数据库时间
 - NoSQL时间
 - API时间

- 吞吐率
 - rpm -- requests per minute
 - cpm-- calls per minute
- 错误率(可用性)
- 崩溃率
- CPU利用率
- 内存使用率
- 线程数量

监控(Monitor)

应用性能监控的必要性

- 网络、存储、系统负载、软件 Bug,任何一个点出现问题都有可能影响到整个系统的稳定运行
- 一个完善的系统监控方案要从两个方面帮助我们:
 - 不断检查各项服务的稳定性,出现问题第一时间通知相关人员
 - 记录系统、应用运行的各项指标,帮助运维人员全面掌握系统、应用运行状况, 从而做到防患于未然

集成监控工具

- Zabbix
- Nagios
- Ganglia
- ...

应用日志分析

现有监控弊端

- 信息孤立
- 配置复杂
- 非代码级
- •

APM - 端到端的应用性能管理

APM

Application Performance Management

对软件应用的性能和可用性进行监控和管理, 致力于发现和定位性能瓶颈和故障, 以保证应用达到预期的服务水平(SLA)

APM Conceptual Framework

Prioritizing Gartner's APM Model

Dimensions

Area of Focus

Potential Benefits

End User Experience

· Agentless (RUM) - [First]

APM value; 80% comes from the EUE Agentless is low risk (Port Mirroring)

Multiple Protocol Analytics
 Synthetic Probes & Robots

Quick Implementation < 2 Days
 Robots = Availability & low vol. trends

Runtime Application Architecture

Application Performance

Management

· Trans. Path Snapshots

· Bottom Up / Top Down

· Monitor Cloud Apps

Better service dependency mappings

 Understanding how network topologies interact with application architecture Change impact assessment

Business Transactions User-defined Transactions

URL / Page Definitions

· 8 to 12 high level groups

Meaningful SLAs to the Business Strengthen trust with Business Provides early warning trend reports

Deep Dive Component Monitoring

Middleware (App & Message)

Runtime (J2EE & .NET)

See 2nd Dimension ADDM

Better code reviews and resolution Increase accuracy of quality testing Faster RCA on performance slows downs

Analytics / Reporting · Collect Raw Data

Common Set of Metrics

Averages & Percentiles

Service Level Management Application Profiling (Building Baselines) Capacity Planning / Trending Analysis

为什么需要APM

ぬ。应用性能监测

- 应用运营阶段
- 复杂的生产环境
- 发布后

APM助力业务运维

• 真实用户的体验数字化

业务

网络

主机

运维

研发

CDN评估

- 1. 最终用户体验视角展现
- 2. 慢交互追踪解决卡顿
- 3. 崩溃轨迹回溯解决闪退
- 4. 行业对比(竞品分析)

全网监控业务流量传输

- 1. 应用流程和传输监测
- 2. 首屏时间评估,CDN评估
- 3. 在造成用户影响前报警
- 4. 行业对比(竞品分析)
- 应用实时性能监控
 - 1. 生产环境的性能展现
 - 2. 代码级监控和慢应用追踪
 - 3. 应用性能的诊断,追踪和优化依据

APM 实现方式

位置	方式	技术	侵入式	竞品对标	网络问题定位	全样本	代码级定位	服务监控
客户端	主动	基于自动化测试的拨测		0	0			
	被动	浏览器嵌码	0			0		i
		Agent自动嵌码	0		0	0	0	ļ
服务端	被动	旁路监听			0	0		0
		Agent自动嵌码	0			0	0	0

Agent 自动嵌码技术

```
Java
Bytecode/Instrumentation/ClassLoader

PHP
Opcode/Zend/Extensions/Xhprof

iOS
Hook/Swizzle
```

Android
Dalvik/Class Rewriting

.Net、Python、NodeJS、JavaScript...

如何实现APM public void xxoo() { long startTime = System.currentTimeMillis(); try { doXX(); doOO(); 3.上报指标名及性能 long endTime = System.currentTimeMillis(); long callTime = endTime - startTime;

} catch(Exception ex) {

throw ex;

APM.reportMetric("xxoo", callTime);

ex.getMessage(),

ex.getStacktrace());

APM.reportError("xxoo",

4.上报异常

助力云选型

评测说明

评测目标	• 同一应用在不同云上的用户体验对比
评测手段	• 听云Network主动测试+听云Server&听云Sys产品被动监测
评测环境	• 8家云满足网站应用的基本测试单元
评测周期	• 2015.08.22~2015.09.05

评测逻辑图

备注:听云Network模拟用户(所有客户端都是模拟实际用户部署在各地,不在公有云上。)

对应用首页和内容页进行访问,访问频次如下:

第一测试阶段: 20150822日00:00~20150827日00:00 UV/天: 3240 第二测试阶段: 20140827日00:00~20150905日00:00 UV/天: 6480

测试结果汇总

总结了各个公有云在不同运营商和不同区域的特点之后,下面我们就把每家公有云自身指标进行汇总,以此次测试中每家云的主要指标绘制成雷达图,让我们可以清晰的看到每家云每项指标情况。

用户体验类:首屏时间、总下载时间;
 应用端指标:首包时间、建连时间、网络层时间、基础页面下载速度
 后台综合指标:(Apdex指数 = (1 ×满意数量+ 0.5 ×可容忍数量)/总样本数,
 T=500)

所有雷达图以测试指标实际值标示,面积越大代表整体测试结果越优秀

测试结果

评测云服务

评测云服务 – 性能

性能一览

评测云服务 - 错误

案例分享

SQL性能问题分析 - 发现问题

SQL性能问题分析 - 追溯问题

SQL性能问题分析 - 定位问题

应用性能问题 – 发现问题

分层展示应用响应性能:

- 应用层时间: 应用代码排除其他服务的执行性能
- 数据库调用时间: SQL数据库访问性能(支持:Oracle, MySQL, SQL Server, DB2...)
- 外部服务时间: Web Service调用性能
- NoSQL响应时间: Memcache, Redis, MongoDB等 NoSQL服务的访问性能

应用性能问题 - 追溯问题 - 应用过程分解

应用性能问题 - 追溯问题 - 慢应用过程追踪

听云Server可以设置慢应用过程追踪阈值,当某一个应用过程的响应时间超过阈值时,系统会自动记录详细的性能追踪记录

应用性能问题 - 追溯问题 - 慢应用过程分解

应用性能问题 - 定位问题

分布式集群问题 - 应用多级拓扑 - 发现问题

分布式集群问题 - 应用多级拓扑 - 追溯及定位

应用过程慢追踪

应用: transaction client222

追踪时间: 2015-07-16 22:48:

服务器响应时间: 0.349 (s)

实例信息: JAVA:fengzhiyin-m

应用过程慢追踪

应用: transaction server

追踪时间: 2015-07-16 22:48:50

服务器响应时间: 0.297 (s)

实例信息: JAVA:fengzhiyin-mac.lan:18080

摘要	追踪详情	相关SQL						
展开所有	全部关闭							
分类					持续	时间(ms)	时间占比(%)	时间偏移量(ms)
▼ CoyoteAdapte	er.service				=	298	100.00	0
▼ CoyoteAd	apter.service				=	298	100.00	0
▼ WsFilter.doFilter			=	296	99.66	1		
▼ Htt	pServlet.service				=	296	99.66	1
	Jedis.get					2	0.67	1
	com.mchange.v2.d	3p0.impl.NewProxyS	Statement.execute		$Q \equiv$	10	3.37	3
MemcachedClient.get				2	0.67	13		
DBCollection.find				0	0.00	16		
•	$\qquad \qquad \blacktriangleright sun/net/www/protocol/http/HttpURLConnection.getInputStream$				= ⊚	13	4.38	16
•	sun/net/www/proto	col/http/HttpURLCon	nection.getInputStream		= ⊚	261	87.88	32
	sun/net/www/protocol/http/HttpURLConnection.connect				= ③	126	42.42	32
	java/net/HttpURLConnection.getResponseCode				③	0	0.00	292

问题管理及处理 - Alarm - 策略

问题管理及处理 - Alarm - 事件管理

警报过程(历史)
12-04 15:48	事件结束
12-04 15:48	发送解除报警邮件或短信: lens 解除警报
12-04 15:48	解除警报: len 错误率超过严重阈值35(%)
12-04 15:39	发送报警邮件或短信: lens-regi 触发警报
12-04 15:34	警报: lens-reg 错误率超过严重阈值35(%)
12-04 15:34	事件开始

APM价值

CTO / CIO

- 用户体验可量化
- · 建立用户体验为基准 的KPI体系
- 行业标准对比
- 提升客户满意度,降 低TCO

业务

- 得到真实用户的体验验
- 发现卡顿/闪退崩 溃,并快速解决, 留住客户
- 加快迭代和发版速度,增加用户粘度

产品/研发

- 提高迭代效率
- 生产环境下的代码 执行效率和问题定 位
- 保留现场,为解决问题提供足够信息

运维

- 业务级运维平台
- 提高运维价值
- 更清晰的责任界定
- 业务 / 研发 / 运维 的同平台监控和运 维

听云全景图

Thanks!

