Predmet: Mataliza 1

Ukol: 11. Verze: 1.

Autor: David Napravnik

Prezdivka: DN

zadani

plocha utvaru ohraniceneho parabolo
u $y^2=\boldsymbol{x}$ a primkouy=x-2

reseni

nejdrive si problem obratime prohozenim x a y funkce se protinaji vx=-1 a x=2

$$\int x + 2 \, dx = \frac{x^2}{2} + 2x + C$$

$$\int_{-1}^{2} x + 2 \, dx = \frac{15}{2}$$

$$\int x^2 \, dx = \frac{x^3}{3} + C$$

$$\int_{-1}^{2} x^2 \, dx = 3$$

ohranicena plocha je velka $\frac{15}{2}-3=\frac{9}{\underline{2}}$

zadani

plocha utvaru ohraniceneho krivkou funkce $\ln x,$ osou xa primkou x=e

reseni

$$\int_{1}^{e} \ln x \, dx = x(\ln x - 1) + C$$
$$\int_{1}^{e} \ln x \, dx = 1$$

zadani

objem telesa vznikleho z utvaru b) rotaci kolem osy x

reseni

$$\int_{0}^{\pi} \pi(\ln(x))^{2} dx = \pi(2x - 2x\log(x) + x\log^{2}(x))$$
$$\int_{0}^{e} \pi(\ln(x))^{2} dx = \pi e$$

zadani

objem komoleho rotacniho kuzele s vyskou v a polomery podstav r a R

reseni

plocha 2D telesa:
$$vr + \frac{(R-r)*v}{2} = \frac{v(r+R)}{2}$$
 obtocime kolem osy y
$$\pi v(\frac{(r+R)}{2})^2$$