Chapter 4

The Processor

Introduction

- CPU performance factors
 - Instruction count
 - CPI and Cycle time
- We will examine two MIPS implementations
 - A single-cycle implementation
 - A pipelined version
- Simple subset, shows most aspects
 - Memory reference: I w, sw
 - Arithmetic/logical: add, sub, and, or, sl t
 - Control transfer: beq, j

Instruction Execution

- PC → instruction memory, fetch instruction
- Register numbers → register file, read registers
- Depending on instruction class
 - Use ALU to calculate
 - Arithmetic result
 - Memory address for load/store
 - Branch target address
 - Access data memory for load/store
 - PC ← target address or PC + 4

CPU Overview

Multiplexers

Control

Logic Design Basics

- Information encoded in binary
 - Low voltage = 0, High voltage = 1
 - One wire per bit
 - Multi-bit data encoded on multi-wire buses
- Combinational element
 - Operate on data
 - Output is a function of input
- State (sequential) elements
 - Store information

Combinational Elements

- AND-gate
 - Y = A & B

- Multiplexer
 - Y = S ? I1 : I0

$$Y = A + B$$

- Arithmetic/Logic Unit
 - Y = F(A, B)

Sequential Elements

- Register: stores data in a circuit
 - Uses a clock signal to determine when to update the stored value
 - Edge-triggered: update when Clk changes from 0 to 1

Sequential Elements

- Register with write control
 - Only updates on clock edge when write control input is 1
 - Used when stored value is required later

Clocking Methodology

- Combinational logic transforms data during clock cycles
 - Between clock edges
 - Input from state elements, output to state element
 - Longest delay determines clock period

