Corrigés des exercices Ensembles et applications

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Ensembles

Exercice 1. Echauffements I (\star)

Soit E un ensemble. Que dire de deux sous-ensembles A et B de E tels que $A \cup B = A \cap B$?

Solution de l'exercice 1.

Faire un dessin pour se convaincre que dans une telle situation, A = B. Montrons que c'est bien le cas. Pour ce faire, nous allons utiliser une technique très importante : la double inclusion. Le principe est d'utiliser l'équivalence suivante : A = B équivaut à $A \subseteq B$ et $B \subseteq A$. On peut donc montrer le second pour en déduire le premier.

Montrons que $A \subseteq B$. Par définition de l'inclusion, nous devons donc montrer que :

Pour tout $a \in A$, on a que $a \in B$.

Soit $a \in A$. Par définition de l'union, an a alors que $a \in A \cup B$. Or, $A \cup B = A \cap B$, donc $a \in A \cap B$. Par définition de l'intersection, on a alors $a \in B$. Conclusion: Pour tout $a \in A$, on a que $a \in B$, donc $A \subseteq B$.

Montrons que $B \subseteq A$. L'énoncé est symétrique en A et B, et $A \subseteq B$, donc $B \subseteq A$.

Conclusion : On a bien montré que $A \subseteq B$ et $B \subseteq A$, i.e A = B.

Exercice 2. Echauffements II (\star)

Soit E un ensemble et soient A, B et C trois parties de E telles que $A \cup B = A \cup C$ et $A \cap B = A \cap C$. Montrer que B = C.

Solution de l'exercice 2.

On procède à nouveau par double inclusion.

^{1.} vadim.lebovici@ens.fr

Montrons que $B \subseteq C$. Soit $b \in B$. On a alors que $b \in A \cup B$. Comme $A \cup B = A \cup C$, on a $b \in A \cup C$. Par définition de l'union, l y a alors deux possibilités :

1er cas: $b \in C$. on a ce qu'on voulait, $b \in C$.

2nd cas: $b \in A$. on a alors $b \in A \cap B = A \cap C$ et donc $b \in C$. Dans tous les cas, on a bien $b \in C$.

<u>Conclusion</u>: pour tous $b \in B$, on a $b \in C$, donc $B \subseteq C$.

Montrons que $C \subseteq B$. Le problème est symétrique en B et C et $B \subseteq C$, donc $C \subseteq B$.

Conclusion. On a montré que $B \subseteq C$ et $C \subseteq B$, donc B = C.

Exercice 3. Des parties (\star)

Soient E et F deux ensembles. Quelles relations d'inclusion y a-t-il entre :

- 1. $\mathcal{P}(E \cup F)$ et $\mathcal{P}(E) \cup \mathcal{P}(F)$?
- 2. $\mathcal{P}(E \cap F)$ et $\mathcal{P}(E) \cap \mathcal{P}(F)$?

Solution de l'exercice 3.

1. Montrons que $\mathcal{P}(E) \cup \mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$. Pour montrer qu'une union est incluse dans un ensemble, il suffit de montrer que chaque terme de l'union est inclus dans l'ensemble.

Montrons que $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$. Soit $A \in \mathcal{P}(E)$, montrons que $A \in \mathcal{P}(E \cup F)$. Pour tout $a \in A$, on a que $a \in E$, et donc $a \in E \cup F$, donc $A \subseteq E \cup F$, i.e. $A \in \mathcal{P}(E \cup F)$. Ceci étant vrai pour tout élément A de $\mathcal{P}(E)$, on a bien $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$.

Montrons que $\mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$. Comme E et F jouent des rôles symétriques et que $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$, on a également $\mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$.

Conclusion: On a montré que $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$ et $\mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$, donc

$$\mathcal{P}(E) \cup \mathcal{P}(F) \subseteq \mathcal{P}(E \cup F).$$

Montrons qu'en général, on a pas $\mathcal{P}(E \cup F) \subseteq \mathcal{P}(E) \cup \mathcal{P}(F)$. Pour cela, il faut que l'on exhibe un contre-exemple à cette proposition. Prenons $E = \{0\}$ et $F = \{1\}$. On a alors $E \cup F = \{0,1\}$ et donc :

$$\mathcal{P}(E) = \{\emptyset, \{0\}\},\$$

$$\mathcal{P}(F) = \{\emptyset, \{1\}\},\$$

$$\mathcal{P}(E) \cup \mathcal{P}(F) = \{\emptyset, \{0\}, \{1\}\},\$$

$$\mathcal{P}(E \cup F) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\},\$$

ce qui montre bien que dans cet exemple $\mathcal{P}(E) \cup \mathcal{P}(F) \neq \mathcal{P}(E \cup F)$.

2. Montrons que $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F)$. Pour A un ensemble, on a que $A \subseteq E \cap F$ équivaut $A \subseteq E$ et $A \subseteq F$, par définition de l'intersection. Autrement dit, on a équivalence entre $A \in \mathcal{P}(E \cap F)$ et $A \in \mathcal{P}(E) \cap \mathcal{P}(F)$, d'où le résultat.

Exercice 4. Différence symétrique (***)

Soient A et B deux parties d'un ensemble E. On appelle différence symétrique de A et B, et on note $A\Delta B$ l'ensemble défini par :

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

- 1. Faire un dessin, puis calculer $A\Delta B$ pour $A = \{0, 1, 2, 3\}$ et $B = \{2, 3, 4\}$.
- 2. Montrer que $A\Delta B = (A \setminus A \cap B) \cup (B \setminus A \cap B)$.
- 3. Supposons que $A\Delta B = A \cap B$. Montrer que $A = B = \emptyset$.
- 4. Soit $C \in \mathcal{P}(E)$. Montrer que $A\Delta B = A\Delta C$ si, et seulement si B = C.
- 5. Résoudre l'équation d'inconnue $X \in \mathcal{P}(E)$, $A\Delta X = \emptyset$.

Solution de l'exercice 4.

1. De beaux dessins sont disponibles sur la page wikipédia de la différence symétrique. Pour $A = \{0, 1, 2, 3\}$ et $B = \{2, 3, 4\}$, on a

$$A\Delta B = \{0, 1, 4\}.$$

2. Procédons par double-inclusion.

Montrons que $A\Delta B \subseteq (A \setminus A \cap B) \cup (B \setminus A \cap B)$. Soit $x \in A\Delta B$. Par définition, $x \in A \cup B$, donc $x \in A$ ou $x \in B$. Supposons d'abord que $x \in A$, l'autre cas étant symétrique. Par définition de la différence symétrique $x \notin A \cap B$, on a donc bien $x \in A \setminus A \cap B$. Par symétrie, si $x \in B$, on aura $x \in B \setminus A \cap B$.

<u>Conclusion</u>: On a montré que pour tout $x \in A\Delta B$, on a $x \in A \setminus A \cap B$ ou $x \in B \setminus A \cap B$, i.e $A\Delta B \subseteq (A \setminus A \cap B) \cup (B \setminus A \cap B)$.

Montrons que $(A \setminus A \cap B) \cup (B \setminus A \cap B) \subseteq A \Delta B$. La preuve est similaire.

3. Supposons $A\Delta B=A\cap B$. Pour montrer que $A=B=\emptyset$, il nous suffit de montrer que $A=\emptyset$, car A et B jouent des rôles symétriques. Montrons donc que $A=\emptyset$. Supposons par l'absurde qu'il existe $a\in A$. Deux cas sont alors possibles :

1er cas : $a \in B$. On a $a \in A \cap B = A\Delta B$. Or, par définition de la différence symétrique, $a \notin A \cap B$, une contradiction.

2nd cas: $a \notin B$. On a alors que $a \notin A \cap B$. Puisque $a \in A$, on a que $a \in A \cup B$, et donc $a \in A \triangle B$. Or, $A \triangle B = A \cap B$, donc $a \in A \cap B$, donc $a \in B$, une contradiction. Conclusion: Tous les cas mènent à une contradiction, c'est donc qu'il n'existe pas de $a \in A$, et donc $A = \emptyset$.

^{2.} Si vous n'êtes pas convaincu, prouvez-le, en prenant des éléments $a \in A$ et en montrant l'équivalence.

- **4.** Si B = C, alors il est clair que $A\Delta B = A\Delta C$. Supposons maintenant $A\Delta B = A\Delta C$, et montrons que B = C. A nouveau, nous allons procéder par double inclusion. **Montrons que** $B \subseteq C$. Soit $b \in B$. Il y a plusieurs possibilités :
 - 1. Si $b \in A$, alors il est dans $A \cap B$, et ne peut donc pas être dans $A\Delta B$. Comme $A\Delta B = A\Delta C$ par hypothèse, $b \notin A\Delta C$. Comme $b \in A$, c'est qu'il doit être dans $A \cap C$, et $b \in C$.
 - 2. Si $b \notin A$, alors il est dans $A \cup B \setminus A \cap B = A\Delta B = A\Delta C$. Donc $b \in A \cup C$, mais $b \notin A$, donc $b \in C$.

Dans tous les cas, $b \in C$. Ceci étant vrai pour tous $b \in B$, on a bien $B \subseteq C$. Montrons que $C \subseteq B$. L'énonce est symétrique en B et C, et $B \subseteq C$. Conclusion : B = C.

5. *On a que*

$$A\Delta A = A \cup A \setminus A \cap A = A \setminus A = \emptyset,$$

donc A est solution de l'équation. De plus, n'importe quelle partie X de E satisfaisant $A\Delta X=\emptyset$ satisferait $A\Delta X=A\Delta A$. Or, par la question précédente, on a dans ce cas X=A.

Conclusion: La seule solution de l'équation est la partie A.

2 Applications

Exercice 5. Gammes sur l'injectivité et la surjectivité (\star)

Soient X, Y et Z trois ensembles. Soient $f: X \to Y$ et $g: Y \to Z$ deux applications. Montrer que :

- 1. Injectivité
 - (a) Si f et g sont injectives, alors $g \circ f$ l'est aussi.
 - (b) La relation de subpotence est transitive, i.e. si $X \preceq Y$ et $Y \preceq Z$ alors $X \preceq Z$.
 - (c) Si $g \circ f$ est injective, alors f est injective.
 - (d) Donner un exemple où $g \circ f$ est injective et où g ne l'est pas.
- 2. Surjectivité
 - (a) Si f et g sont surjectives, alors $g \circ f$ l'est aussi.
 - (b) La relation de surpotence est transitive.
 - (c) Si $g \circ f$ est surjective, alors g est surjective.
 - (d) Donner un exemple où $g\circ f$ est surjective et où f ne l'est pas.
- 3. Si $g \circ f$ est surjective et g est injective, alors f est surjective.
- 4. Si $g \circ f$ est injective et f est surjective, alors g est injective.

5. La relation d'équipotence est transitive.

Solution de l'exercice 5.

- **1. (a)** Supposons que f et g sont injectives. Montrons que $g \circ f$ est injective. Soient donc $x \in X$ et $x' \in X$ tels que $g \circ f(x) = g \circ f(x')$ et montrons que x = x'. Comme g est injective, on a donc f(x) = f(x'). Comme f est injective, on a x = x'. Conclusion: Pour tous $x \in X$ et $x' \in X$ tels que $g \circ f(x) = g \circ f(x')$, on a x = x', i.e $g \circ f$ est injective.
- **1.** (b) Supposons que $X \leq Y$ et $Y \leq Z$, i.e il existe une injection $f: X \to Y$ et une injection $g: Y \to Z$. On pose alors $h = g \circ f: X \to Z$. Par la question 1.(a), cette application est injective car f et g le sont. Par définition, on a donc $X \leq Z$.
- **1.** (c) Supposons que $g \circ f$ est injective. Montrons que f est injective. Soient donc $x \in X$ et $x' \in X$ tels que f(x) = f(x') et montrons que x = x'. Comme f(x) = f(x') on peut appliquer g pour obtenir que g(f(x)) = g(f(x')). Or, $g \circ f$ est injective, ceci implique donc x = x'.

<u>Conclusion</u>: Pour tous $x \in X$ et $x' \in X$ tels que f(x) = f(x'), on a x = x', i.e f est injective.

1. (d) On pose:

$$f: \begin{array}{ccc} \{0,1\} & \rightarrow & \{0,1,2\} \\ x & \mapsto & x \end{array}$$

que l'on aurait pu écrire aussi moins efficacement :

$$\begin{array}{cccc} f: & \{0,1\} & \rightarrow & \{0,1,2\} \\ f: & 0 & \mapsto & 0 \\ & 1 & \mapsto & 1 \end{array}$$

ainsi que :

$$g: \begin{array}{ccc} \{0,1,2\} & \rightarrow & \{0,1\} \\ 0 & \mapsto & 0 \\ 1 & \mapsto & 1 \\ 2 & \mapsto & 1 \end{array}$$

On peut alors facilement vérifier que :

$$g \circ f: \begin{array}{ccc} \{0,1\} & \rightarrow & \{0,1\} \\ 0 & \mapsto & 0 \\ 1 & \mapsto & 1 \end{array}$$

Cette application est clairement injective (le vérifier si ce n'est pas clair). En revanche, g ne l'est pas : g(1) = g(2) alors que $1 \neq 2$.

^{3.} Noter que ceci est vrai parce que l'image d'un élément par une application est unique.

- **2.** (a) Supposons que f et g sont surjectives. Montrons que $g \circ f$ l'est aussi, i.e que pour tout $z \in Z$, il existe $x \in X$ tel que $g \circ f(x) = z$. Soit $z \in Z$. Comme g est surjective, il existe $y \in Y$ tel que z = g(y). Comme de plus f est surjective, il existe $x \in X$ tel que y = f(x). On a alors $z = g(y) = g(f(x)) = g \circ f(x)$. Conclusion: Pour tout $z \in Z$, il existe $x \in X$ tel que $z = g \circ f(x)$, i.e $g \circ f$ est surjective.
- **2.** (b) S'inspirer de 1. (b).
- **2.** (c) Supposons que $g \circ f$ est surjective. Montrons que g l'est. Soit $z \in Z$. Comme $g \circ f$ est surjective, il existe $x \in X$ tel que $z = g \circ f(x)$. On pose alors y = f(x). On a bien $z = g \circ f(x) = g(f(x)) = g(y)$. Conclusion: On a montré que pour tout $z \in Z$, il existe $y \in Y$ tel que z = g(y), i.e g est surjective.
- **2.** (d) On pose :

$$f: \begin{array}{ccc} \{0,1\} & \to & \{0,1,2\} \\ 0 & \mapsto & 0 \\ 1 & \mapsto & 1 \end{array}$$

ainsi que :

$$g: \begin{array}{ccc} \{0,1,2\} & \to & \{0,1\} \\ 0 & \mapsto & 0 \\ 1 & \mapsto & 1 \\ 2 & \mapsto & 1 \end{array}.$$

On peut alors facilement vérifier que :

On a alors que $g \circ f$ est clairement surjective alors que f ne l'est pas, puisque 2 n'est l'image d'aucun élément de $\{0,1\}$ par f.

- **3.** Montrons que f est surjective. Soit $y \in Y$. On pose $z = g(y) \in Z$. Comme $z \in Z$, et que $g \circ f$ est surjective, il existe $x \in X$ tel que $z = g \circ f(x)$, i.e g(y) = g(f(x)). Comme de plus g est injective, y = f(x).

 Conclusion: Pour tout $y \in Y$, il existe $x \in X$ tel que y = f(x), i.e f est surjective.
- **4.** Montrons que g est injective. Soient $y \in Y$ et $y' \in Y$ tels que g(y) = g(y'), montrons que y = y'. Comme f est surjective, il existe $x \in X$ tel que y = f(x) et

 $x' \in X$ tel que y' = f(x'). On a alors

$$g \circ f(x) = g(f(x))$$

$$= g(y)$$

$$= g(y')$$

$$= g(f(x'))$$

$$= g \circ f(x').$$

Or, $g \circ f$ est injective, donc x = x'. Ceci implique que f(x) = f(x'), i.e y = y'. <u>Conclusion</u>: Pour tous $y \in Y$ et $y' \in Y$ tels que g(y) = g(y'), on a y = y', i.e g est injective.

5. Utiliser les questions 1.(a) et 2.(a) pour montrer qu'une composée de bijections est une bijection puis s'inspirer de la question 1.(b).

Exercice 6. Une propriété en entraîne une autre (**)

Soit E un ensemble et soit $f: \mathcal{P}(E) \to \mathbb{R}$. On suppose que pour toutes parties A et B disjointes 4 de E, on a $f(A \cup B) = f(A) + f(B)$.

- 1. Montrer que $f(\emptyset) = 0$.
- 2. Montrer que pour toutes parties A et B de E telles que $A \subseteq B$, on a $f(B \setminus A) = f(B) f(A)$.
- 3. Montrer que pour toutes parties A et B de E, on a $f(A \cup B) = f(A) + f(B) f(A \cap B)$.

Solution de l'exercice 6.

- **1.** Comme $\emptyset \cap \emptyset = \emptyset$ (i.e le vide est disjoint de lui-même) et que $\emptyset \cup \emptyset = \emptyset$, on a $f(\emptyset) = f(\emptyset) + f(\emptyset) = 2f(\emptyset)$. Ceci implique donc $f(\emptyset) = 0$.
- **2.** Soient A et B deux parties de E telles que $A \subseteq B$. On peut décomposer : $B = (B \setminus A) \cup A$ avec $(B \setminus A) \cap A = \emptyset$ (le montrer si ce n'est pas clair). On a alors $f(B) = f(B \setminus A) + f(A)$, d'où le résultat.
- **3.** On peut décomposer $A \cup B$ en trois parties disjointes :

$$A \cup B = (A \setminus A \cap B) \cup (B \setminus A \cap B) \cup A \cap B$$

^{4.} i.e. telle que $A \cap B = \emptyset$

et ainsi calculer:

$$f(A \cup B) = f((A \setminus A \cap B) \cup (B \setminus A \cap B) \cup A \cap B)$$

$$= f(A \setminus A \cap B) + f((B \setminus A \cap B) \cup A \cap B)$$

$$= f(A \setminus A \cap B) + f(B \setminus A \cap B) + f(A \cap B)$$

$$= f(A) - f(A \cap B) + f(B) - f(A \cap B) + f(A \cap B)$$

$$= f(A) + f(B) - f(A \cap B).$$

Exercice 7. Fonctions caractéristiques $(\star\star\star)$

Soit A une partie d'un ensemble E. On lui associe l'application suivante :

$$E \rightarrow \{0,1\}$$

$$\mathbf{1}_A: \quad x \mapsto \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{sinon.} \end{cases}$$

- 1. (\star) Montrer que pour toutes parties A et B de E, les fonctions suivantes 5 sont les fonctions indicatrices de parties de E que l'on déterminera :
 - (a) $\mathbf{1}_B \mathbf{1}_A$, si $A \subseteq B$.
 - (b) ${\bf 1}_A \cdot {\bf 1}_B$.
 - (c) $\mathbf{1}_A + \mathbf{1}_B$, si A et B sont disjointes.
 - (d) $\mathbf{1}_A + \mathbf{1}_B \mathbf{1}_{A \cap B}$.
- 2. $(\star\star\star)$ Montrer que pour toutes parties A et B de E, on a On note $\mathcal{F}(E, \{0, 1\})$ l'ensemble des applications de E dans $\{0, 1\}$. Montrer que l'application :

$$f: \begin{array}{ccc} \mathcal{P}(E) & \rightarrow & \mathcal{F}(E, \{0, 1\}) \\ A & \mapsto & \mathbf{1}_A \end{array}$$

est une bijection. ⁶

3. $(\star\star\star\star)$ Application. Résoudre la question 4 de l'exercice 4 en ne faisant que des calculs de fonctions caractéristiques.

Solution de l'exercice 7.

1. (a), (b), (c) On a $\mathbf{1}_{B\setminus A} = \mathbf{1}_B - \mathbf{1}_A$ si $A \subseteq B$, $\mathbf{1}_{A\cap B} = \mathbf{1}_A \cdot \mathbf{1}_B$, et $\mathbf{1}_{A\cup B} = \mathbf{1}_A + \mathbf{1}_B$ si A et B sont disjointes. Les trois démonstrations étant similaires, on traite intégralement la première, et laissons les autres au lecteur ou à la lectrice. Soient donc A

^{5.} La somme de deux fonctions est définie ainsi : pour $x \in E$, $(\mathbf{1}_A + \mathbf{1}_B)(x) = \mathbf{1}_A(x) + \mathbf{1}_B(x)$, et les autres opérations sont définies de manière similaire.

^{6.} L'injectivité implique en particulier que, pour toutes parties A et B de E, on a A=B si, et seulement si $\mathbf{1}_A=\mathbf{1}_B$.

et B deux parties de E telles que $A \subseteq B$. On souhaite montrer que pour tout $x \in E$, $\mathbf{1}_{B \setminus A}(x) = \mathbf{1}_B(x) - \mathbf{1}_A(x)$. Soit $x \in E$.

1er cas : $x \in B \setminus A$. On a alors $\mathbf{1}_{B \setminus A}(x) = 1$. Comme $x \in B$, on a $\mathbf{1}_B(x) = 1$ et $\overline{\operatorname{comme}}\ x \notin A$, $\overline{\mathbf{1}_A(x)} = 0$. Ainsi, on a bien : $\mathbf{1}_B(x) - \mathbf{1}_A(x) = 1 - 0 = 1 = \mathbf{1}_{B \setminus A}(x)$. 2nd cas : $x \notin B \setminus A$. On a alors que $\mathbf{1}_{B \setminus A}(x) = 0$. De plus, il y a alors deux possibilités : ou bien $x \notin B$, ou bien $x \in A$. Si $x \notin B$, alors $\mathbf{1}_B(x) = 0$ et $x \notin A$ car $A \subseteq B$, donc aussi $\mathbf{1}_A(x) = 0$. Ainsi : $\mathbf{1}_B(x) - \mathbf{1}_A(x) = 0 - 0 = 0 = \mathbf{1}_{B \setminus A}(x)$. Si $x \in A$, alors aussi $x \in B$ car $A \subseteq B$. On aura donc $\mathbf{1}_B(x) - \mathbf{1}_A(x) = 1 - 1 = 0 = \mathbf{1}_{B \setminus A}(x)$. Conclusion : dans tous les cas, on a bien montré que pour tout $x \in E$, $\mathbf{1}_{B \setminus A}(x) = \mathbf{1}_B(x) - \mathbf{1}_A(x)$, i.e $\mathbf{1}_{B \setminus A} = \mathbf{1}_B - \mathbf{1}_A$.

1. (d) On a $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_{A \cap B}$. Pour le montrer, on utilise les questions précédentes et le fait que l'on peut décomposer $A \cup B$ en trois parties disjointes :

$$A \cup B = (A \setminus A \cap B) \cup (B \setminus A \cap B) \cup A \cap B.$$

2. On doit montrer que f est injective et surjective. Commençons par l'injectivité. On doit montrer que pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $\mathbf{1}_A = \mathbf{1}_{A'}$ on a A = A'. Soient donc $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $\mathbf{1}_A = \mathbf{1}_{A'}$. Procédons par double inclusion. Soit $a \in A$. On a alors $\mathbf{1}_A(a) = 1$. Or $\mathbf{1}_{A'}(a) = \mathbf{1}_A(a) = 1$ donc $a \in A'$ par définition de $\mathbf{1}_{A'}$. Ainsi, $A \subseteq A'$. Par symétrie, on a aussi que $A' \subseteq A$. Conclusion: on a montré que pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $\mathbf{1}_A = \mathbf{1}_{A'}$ on a A = A', i.e. f est injective.

Montrons que f est surjective. Soit $\alpha \in \mathcal{F}(E, \{0, 1\})$. Posons

$$A = \{x \in E \mid \alpha(x) = 1\} \in \mathcal{P}(E).$$

Montrons que $\alpha = \mathbf{1}_A = f(A)$. Soit $x \in E$. Si $x \in A$, alors $\mathbf{1}_A(x) = 1 = \alpha(x)$ par définition de A et de $\mathbf{1}_A$. Si $x \notin A$, alors $\mathbf{1}_A(x) = \alpha(x)$ par définition de A et de $\mathbf{1}_A$. Conclusion: on a montré que pour tout $\alpha \in \mathcal{F}(E, \{0, 1\})$, il existe $A \in \mathcal{P}(E)$ telle que $\alpha = f(A)$, i.e f est surjective.

3. Soient A, B et C trois parties de E. Montrons que $A\Delta B = A\Delta C$ si, et seulement si B = C. Puisque f est injective, on a que pour toutes parties D et D' de E que

$$\mathbf{1}_D = \mathbf{1}_{D'} \Leftrightarrow D = D'.$$

On a donc que

$$A\Delta B = A\Delta C$$

équivaut à

$$\mathbf{1}_{A \wedge B} = \mathbf{1}_{A \wedge C}$$
.

De plus, par la question 1), on a :

$$\mathbf{1}_{A\Delta B} = \mathbf{1}_{(A\cup B)\setminus (A\cap B)}$$

$$= \mathbf{1}_{A\cup B} - \mathbf{1}_{A} \cdot \mathbf{1}_{B}$$

$$= \mathbf{1}_{A} + \mathbf{1}_{B} - 2 \cdot \mathbf{1}_{A} \cdot \mathbf{1}_{B}$$

$$= \mathbf{1}_{A}^{2} + \mathbf{1}_{B}^{2} - 2 \cdot \mathbf{1}_{A} \cdot \mathbf{1}_{B}$$

$$= (\mathbf{1}_{A} - \mathbf{1}_{B})^{2}.$$

où la troisième égalité vient du fait que $\mathbf{1}_A$ et $\mathbf{1}_B$ sont à valeurs dans $\{0,1\}$ et que $0^2=0$ et $1^1=1$. Ainsi, $A\Delta B=A\Delta C$ équivaut à :

$$(\mathbf{1}_A - \mathbf{1}_B)^2 = (\mathbf{1}_A - \mathbf{1}_C)^2.$$

Attention, ceci n'est équivalent à $\mathbf{1}_A - \mathbf{1}_B = \mathbf{1}_A - \mathbf{1}_C$ que si les deux côtés de cette dernière égalité sont de même signe. En fait, c'est toujours le cas. En effet, si $x \in A$, alors $\mathbf{1}_A(x) = 1$ et $\mathbf{1}_A(x) - \mathbf{1}_B(x) \ge 0$ car $\mathbf{1}_B(x) \in \{0,1\}$, idem on a $\mathbf{1}_A(x) - \mathbf{1}_C(x) \ge 0$. Si $x \notin A$, alors $\mathbf{1}_A(x) = 0$ et $\mathbf{1}_A(x) - \mathbf{1}_B(x) \le 0$ car $\mathbf{1}_B(x) \in \{0,1\}$ et encore $\mathbf{1}_A(x) - \mathbf{1}_C(x) \le 0$. On a donc bien dans tous les cas:

$$\mathbf{1}_A - \mathbf{1}_B = \mathbf{1}_A - \mathbf{1}_C.$$

Ce qui équivaut à :

$${\bf 1}_B = {\bf 1}_C,$$

et, comme f est injective, ceci équivaut à :

$$B = C$$

Exercice 8. Un classique (?)

Soit E un ensemble. Montrer qu'il n'existe pas de surjection E dans $\mathcal{P}(E)$.

Solution de l'exercice 8.

Soit $f: E \to \mathcal{P}(E)$. On pose alors:

$$A = \{ x \in E \mid x \not\in f(x) \} \in \mathcal{P}(E),$$

qui a bien un sens puisque $f(x) \subseteq E$ (c'est une partie de E). Montrons que A n'a pas d'antécédent par f. Supposons par l'absurde qu'il existe $z \in E$ tel que A = f(z). On a alors deux possibilités :

- ou bien $z \in A$ et alors $z \in f(z)$, donc $z \notin A$ par définition de A, ce qui est absurde,
- ou bien $z \notin A$ et alors $z \notin f(z)$, donc $z \in A$ par définition de A, ce qui est absurde.

Dans tous les cas, l'existence d'un antécédent de A par f est absurde, donc A n'a pas d'antécédent et f n'est pas surjective.