Computability and Complexity COSC 4200

The Myhill-Nerode Theorem

The Relation \equiv_M

Let $A \subseteq \Sigma^*$ be a regular language, and let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for A with no inaccessible states.

M induces an equivalence relation \equiv_M on Σ^* defined by

$$x \equiv_M y \iff \delta^*(q_0, x) = \delta^*(q_0, y)$$

for all $x, y \in \Sigma^*$.

Besides the reflexive, symmetric, and transitive properties, \equiv_M satisfies a few other useful properties:

Besides the reflexive, symmetric, and transitive properties, \equiv_M satisfies a few other useful properties:

1 It is a *right congruence*: for all $x, y \in \Sigma^*$ and $a \in \Sigma$,

$$x \equiv_M y \Longrightarrow xa \equiv_M ya$$
.

Besides the reflexive, symmetric, and transitive properties, \equiv_M satisfies a few other useful properties:

1 It is a *right congruence*: for all $x, y \in \Sigma^*$ and $a \in \Sigma$,

$$x \equiv_M y \Longrightarrow xa \equiv_M ya$$
.

② It refines A: for all $x, y \in \Sigma^*$,

$$x \equiv_M y \Longrightarrow (x \in A \Leftrightarrow y \in A).$$

Besides the reflexive, symmetric, and transitive properties, \equiv_M satisfies a few other useful properties:

1 It is a *right congruence*: for all $x, y \in \Sigma^*$ and $a \in \Sigma$,

$$x \equiv_M y \Longrightarrow xa \equiv_M ya$$
.

2 It refines A: for all $x, y \in \Sigma^*$,

$$x \equiv_M y \Longrightarrow (x \in A \Leftrightarrow y \in A).$$

It is of finite index: it has only finitely many equivalence classes.

Myhill-Nerode Relations

Definition. Let $A \subseteq \Sigma^*$. An equivalence relation \equiv on Σ^* is called a *Myhill-Nerode relation* for A if it has the three properties from the previous slide: that is, it is a right congruence of finite index that refines A.

Myhill-Nerode Relations

Definition. Let $A \subseteq \Sigma^*$. An equivalence relation \equiv on Σ^* is called a *Myhill-Nerode relation* for A if it has the three properties from the previous slide: that is, it is a right congruence of finite index that refines A.

• We saw that every DFA M for A yields a Myhill-Nerode relation \equiv_M for A.

Myhill-Nerode Relations

Definition. Let $A \subseteq \Sigma^*$. An equivalence relation \equiv on Σ^* is called a *Myhill-Nerode relation* for A if it has the three properties from the previous slide: that is, it is a right congruence of finite index that refines A.

- We saw that every DFA M for A yields a Myhill-Nerode relation \equiv_M for A.
- We will now show that every Myhill-Nerode relation \equiv for A yields a DFA M_{\equiv} for A.

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

There are finitely many \equiv -classes since \equiv has finite index.

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

There are finitely many \equiv -classes since \equiv has finite index.

We define the DFA $M_{\equiv}=(Q,\Sigma,\delta,q_0,F)$ where

$$Q = \{ [x] \mid x \in \Sigma^* \}$$

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

There are finitely many \equiv -classes since \equiv has finite index.

We define the DFA $M_{\equiv}=(Q,\Sigma,\delta,q_0,F)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

There are finitely many \equiv -classes since \equiv has finite index.

We define the DFA $M_{\equiv}=(Q,\Sigma,\delta,q_0,F)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

There are finitely many \equiv -classes since \equiv has finite index.

We define the DFA $M_{\equiv}=\left(Q,\Sigma,\delta,q_{0},F\right)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

There are finitely many \equiv -classes since \equiv has finite index.

We define the DFA $M_{\equiv}=(Q,\Sigma,\delta,q_0,F)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Because \equiv is a right congruence, δ is well defined.

Let $A \subseteq \Sigma^*$ and let \equiv be an arbitrary Myhill-Nerode relation for A.

The \equiv -class of a string $x \in \Sigma^*$ is

$$[x] = \{ y \mid y \equiv x \}.$$

There are finitely many \equiv -classes since \equiv has finite index.

We define the DFA $M_{\equiv}=(Q,\Sigma,\delta,q_0,F)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Because \equiv is a right congruence, δ is well defined. Since \equiv refines A, we have $x \in A \Leftrightarrow [x] \in F$ for all $x \in \Sigma^*$.

For all $x, y \in \Sigma^*$, $\delta^*([x], y) = [xy]$.

For all
$$x, y \in \Sigma^*$$
, $\delta^*([x], y) = [xy]$.

Proof. By induction on y.

Base case.
$$y = \epsilon$$
:

$$\delta^*([x],\epsilon) = [x] = [x\epsilon].$$

For all
$$x, y \in \Sigma^*$$
, $\delta^*([x], y) = [xy]$.

Proof. By induction on y.

Base case. $y = \epsilon$:

$$\delta^*([x], \epsilon) = [x] = [x\epsilon].$$

Inductive hypothesis. Suppose $\delta^*([x], y) = [xy]$ holds for some string $y \in \Sigma^*$.

For all
$$x, y \in \Sigma^*$$
, $\delta^*([x], y) = [xy]$.

Proof. By induction on y.

Base case. $y = \epsilon$:

$$\delta^*([x], \epsilon) = [x] = [x\epsilon].$$

Inductive hypothesis. Suppose $\delta^*([x], y) = [xy]$ holds for some string $y \in \Sigma^*$.

$$\delta^*([x], ya)$$

For all
$$x, y \in \Sigma^*$$
, $\delta^*([x], y) = [xy]$.

Proof. By induction on y.

Base case. $y = \epsilon$:

$$\delta^*([x], \epsilon) = [x] = [x\epsilon].$$

Inductive hypothesis. Suppose $\delta^*([x], y) = [xy]$ holds for some string $y \in \Sigma^*$.

$$\delta^*([x], ya) = \delta(\delta^*([x], y), a)$$
 definition of δ^*

For all
$$x, y \in \Sigma^*$$
, $\delta^*([x], y) = [xy]$.

Proof. By induction on *y*.

Base case. $y = \epsilon$:

$$\delta^*([x], \epsilon) = [x] = [x\epsilon].$$

Inductive hypothesis. Suppose $\delta^*([x], y) = [xy]$ holds for some string $y \in \Sigma^*$.

$$\delta^*([x], ya) = \delta(\delta^*([x], y), a)$$
 definition of δ^*
= $\delta([xy], a)$ inductive hypothesis

For all
$$x, y \in \Sigma^*$$
, $\delta^*([x], y) = [xy]$.

Proof. By induction on y.

Base case. $y = \epsilon$:

$$\delta^*([x], \epsilon) = [x] = [x\epsilon].$$

Inductive hypothesis. Suppose $\delta^*([x], y) = [xy]$ holds for some string $y \in \Sigma^*$.

$$\delta^*([x], ya) = \delta(\delta^*([x], y), a)$$
 definition of δ^*
= $\delta([xy], a)$ inductive hypothesis
= $[xya]$ definition of δ

Recall \equiv is a Myhill-Nerode relation for A and $M_{\equiv} = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Theorem

$$L(M_{\equiv}) = A$$
.

Recall \equiv is a Myhill-Nerode relation for A and $M_{\equiv} = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Theorem

$$L(M_{\equiv}) = A.$$

$$x \in L(M_{\equiv}) \iff \delta^*([\epsilon], x) \in F$$
 definition of acceptance

Recall \equiv is a Myhill-Nerode relation for A and $M_{\equiv} = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Theorem

$$L(M_{\equiv}) = A$$
.

$$x \in L(M_{\equiv}) \iff \delta^*([\epsilon], x) \in F$$
 definition of acceptance $\iff [x] \in F$ Lemma

Recall \equiv is a Myhill-Nerode relation for A and

$$\textit{M}_{\equiv} = (\textit{Q}, \Sigma, \delta, \textit{q}_0, \textit{F})$$
 where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Theorem

$$L(M_{\equiv}) = A$$
.

$$x \in L(M_{\equiv}) \iff \delta^*([\epsilon], x) \in F$$
 definition of acceptance $\iff [x] \in F$ Lemma $\iff x \in A$ \equiv refines A

 $\mathsf{Recall} \equiv \mathsf{is} \ \mathsf{a} \ \mathsf{Myhill}\text{-}\mathsf{Nerode} \ \mathsf{relation} \ \mathsf{for} \ \mathit{A} \ \mathsf{and}$

$$\textit{M}_{\equiv} = (\textit{Q}, \Sigma, \delta, \textit{q}_0, \textit{F})$$
 where

- $Q = \{ [x] \mid x \in \Sigma^* \}$
- $q_0 = [\epsilon]$
- $F = \{ [x] \mid x \in A \}$
- $\delta([x], a) = [xa]$ for all $x \in \Sigma^*$ and $a \in \Sigma$

Theorem

$$L(M_{\equiv}) = A.$$

$$x \in L(M_{\equiv}) \iff \delta^*([\epsilon], x) \in F$$
 definition of acceptance $\iff [x] \in F$ Lemma $\iff x \in A$ \equiv refines A

Therefore
$$L(M_{\equiv}) = A$$
.

The following lemma states the mappings $M \to \equiv_M$ and $\equiv \to M_\equiv$ are inverses of each other, up to isomorphism of automaton.

The following lemma states the mappings $M \to \equiv_M$ and $\equiv \to M_\equiv$ are inverses of each other, up to isomorphism of automaton.

Lemma

• If \equiv is a Myhill-Nerode relation for A, and if we apply the construction $\equiv \rightarrow M_{\equiv}$ and then apply the construction $M_{\equiv} \rightarrow \equiv_{M_{\equiv}}$, the relation $\equiv_{M_{\equiv}}$ is identical to \equiv .

$$\equiv \rightarrow M_{\equiv} \rightarrow \equiv_{M_{\equiv}} = \equiv$$

The following lemma states the mappings $M \to \equiv_M$ and $\equiv \to M_\equiv$ are inverses of each other, up to isomorphism of automaton.

Lemma

• If \equiv is a Myhill-Nerode relation for A, and if we apply the construction $\equiv \rightarrow M_{\equiv}$ and then apply the construction $M_{\equiv} \rightarrow \equiv_{M_{\equiv}}$, the relation $\equiv_{M_{\equiv}}$ is identical to \equiv .

$$\equiv \rightarrow M_{\equiv} \rightarrow \equiv_{M_{\equiv}} = \equiv$$

② If M is a DFA for A with no inaccessible states, and if we apply the construction $M \to \equiv_M$ and then apply the construction $\equiv_M \to M_{\equiv_M}$, the resulting DFA M_{\equiv_M} is isomorphic to M.

$$M \to \equiv_M \to M_{\equiv_M} \cong M$$

Refining Relations

A relation \equiv_1 refines a relation \equiv_2 if

$$x \equiv_1 y \Rightarrow x \equiv_2 y$$
.

Refining Relations

A relation \equiv_1 refines a relation \equiv_2 if

$$x \equiv_1 y \Rightarrow x \equiv_2 y$$
.

• If \equiv_1 and \equiv_2 are equivalence relations, this says that all of \equiv_1 's equivalence classes are contained in equivalence classes of \equiv_2 .

Refining Relations

A relation \equiv_1 refines a relation \equiv_2 if

$$x \equiv_1 y \Rightarrow x \equiv_2 y$$
.

- If \equiv_1 and \equiv_2 are equivalence relations, this says that all of \equiv_1 's equivalence classes are contained in equivalence classes of \equiv_2 .
- If \equiv_1 refines \equiv_2 , then we say \equiv_2 is *coarser* than \equiv_1 .

Let $A\subseteq \Sigma^*$. We define an equivalence relation \equiv_A on Σ^* by

$$x \equiv_A y \iff (\forall z \in \Sigma^*) (xz \in A \Leftrightarrow yz \in A)$$

for all $x, y \in \Sigma^*$.

Lemma

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Proof. For any $x, y \in \Sigma^*$, we have

$$x \equiv_A y \Rightarrow (\forall z \in \Sigma^*) (xz \in A \Leftrightarrow yz \in A)$$

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Proof. For any $x, y \in \Sigma^*$, we have

$$x \equiv_{A} y \quad \Rightarrow \quad (\forall z \in \Sigma^{*}) \ (xz \in A \Leftrightarrow yz \in A)$$
$$\Rightarrow \quad (\forall a \in \Sigma) \ (\forall w \in \Sigma^{*}) \ (xaw \in A \Leftrightarrow yaw \in A)$$

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Proof. For any $x, y \in \Sigma^*$, we have

$$x \equiv_{A} y \Rightarrow (\forall z \in \Sigma^{*}) (xz \in A \Leftrightarrow yz \in A)$$
$$\Rightarrow (\forall a \in \Sigma) (\forall w \in \Sigma^{*}) (xaw \in A \Leftrightarrow yaw \in A)$$
$$\Rightarrow (\forall a \in \Sigma) xa \equiv_{A} ya,$$

so \equiv_A is a right congruence.

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Proof. For any $x, y \in \Sigma^*$, we have

$$x \equiv_{A} y \Rightarrow (\forall z \in \Sigma^{*}) (xz \in A \Leftrightarrow yz \in A)$$

$$\Rightarrow (\forall a \in \Sigma) (\forall w \in \Sigma^{*}) (xaw \in A \Leftrightarrow yaw \in A)$$

$$\Rightarrow (\forall a \in \Sigma) xa \equiv_{A} ya,$$

so \equiv_A is a right congruence.

To see that \equiv_A refines A, use $z = \epsilon$ in the definition of \equiv_A :

$$x \equiv_A y \Rightarrow (x \in A \Leftrightarrow y \in A).$$

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Proof continued. Let \equiv be any equivalence relation on Σ^* that is a right congruence refining A. We have

$$x \equiv y \Rightarrow (\forall z) \ xz \equiv yz$$
 (\equiv is a right congruence)

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Proof continued. Let \equiv be any equivalence relation on Σ^* that is a right congruence refining A. We have

$$\begin{array}{lll} x \equiv y & \Rightarrow & (\forall z) \ xz \equiv yz & (\equiv \text{is a right congruence}) \\ & \Rightarrow & (\forall z) \ (xz \in A \Leftrightarrow yz \in A) & (\equiv \text{refines } A) \end{array}$$

Let $A \subseteq \Sigma^*$ The relation \equiv_A is a right congruence refining A and is the coarsest such relation on Σ^* .

Proof continued. Let \equiv be any equivalence relation on Σ^* that is a right congruence refining A. We have

$$\begin{array}{lll} x \equiv y & \Rightarrow & (\forall z) \ xz \equiv yz & (\equiv \text{is a right congruence}) \\ & \Rightarrow & (\forall z) \ (xz \in A \Leftrightarrow yz \in A) & (\equiv \text{refines } A) \\ & \Rightarrow & x \equiv_A y, & (\text{definition of } \equiv_A) \end{array}$$

so \equiv_A is coarser than \equiv . \square

Let $A \subseteq \Sigma^*$. The following are equivalent:

- A is regular.
- 2 There exists a Myhill-Nerode relation for A.
- **3** The relation \equiv_A is of finite index.

Let $A \subseteq \Sigma^*$. The following are equivalent:

- A is regular.
- 2 There exists a Myhill-Nerode relation for A.
- 3 The relation \equiv_A is of finite index.

Proof. $\bullet \Rightarrow \bullet$: Given a DFA M for A, the construction $M \to \equiv_M$ yields a Myhill-Nerode relation for A.

Let $A \subseteq \Sigma^*$. The following are equivalent:

- A is regular.
- 2 There exists a Myhill-Nerode relation for A.
- The relation \equiv_A is of finite index.

Proof. $\bullet \Rightarrow \bullet$: Given a DFA M for A, the construction $M \to \equiv_M$ yields a Myhill-Nerode relation for A.

② ⇒ ③: Let \equiv be a Myhill-Nerode relation for A. Then \equiv is a right congruence that refines A, so \equiv_A is coarser than \equiv by the Lemma. Since \equiv is of finite index, this implies \equiv_A is also of finite index.

Let $A \subseteq \Sigma^*$. The following are equivalent:

- A is regular.
- 2 There exists a Myhill-Nerode relation for A.
- The relation \equiv_A is of finite index.

Proof. $\bullet \Rightarrow \bullet$: Given a DFA M for A, the construction $M \to \equiv_M$ yields a Myhill-Nerode relation for A.

② ⇒ ③: Let \equiv be a Myhill-Nerode relation for A. Then \equiv is a right congruence that refines A, so \equiv_A is coarser than \equiv by the Lemma. Since \equiv is of finite index, this implies \equiv_A is also of finite index.

③ ⇒ ④: If \equiv_A is of finite index, then it is a Myhill-Nerode relation for A by the Lemma. The construction $\equiv_A \to M_{\equiv_A}$ produces a DFA for A. \square

Corollary

For any regular language A, the DFA M_{\equiv_A} is the minimal DFA for A.

Proof. If A is regular, then \equiv_A is a Myhill-Nerode relation for A. Also, it is the coarsest such relation: it has the fewest equivalence classes of any Myhill-Nerode relation for A. Therefore M_{\equiv_A} has the fewest states in a DFA for A. \square

We can use the Myhill-Nerode theorem to prove nonregularity.

Example. $A = \{0^n 1^n \mid n \ge 0\}$ is not regular.

We can use the Myhill-Nerode theorem to prove nonregularity.

Example. $A = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof. If $k \neq m$, then $0^k \not\equiv_A 0^m$ since

$$0^k1^k\in A \text{ and } 0^m1^k\not\in A.$$

We can use the Myhill-Nerode theorem to prove nonregularity.

Example. $A = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof. If $k \neq m$, then $0^k \not\equiv_A 0^m$ since

$$0^k 1^k \in A \text{ and } 0^m 1^k \notin A.$$

Therefore \equiv_A has infinitely many equivalence classes, at least one for each 0^k , $k \geq 0$. By the Myhill-Nerode Theorem, A is not regular. \square

Example. $B = \{0^{n^2} \mid n \ge 0\}$ is not regular.

Example. $B = \{0^{n^2} \mid n \ge 0\}$ is not regular. **Proof.** For any $0 \le k < j$, $0^{k^2} \not\equiv_B 0^{j^2}$ since $0^{k^2} 0^{2k+1} \in B$ and $0^{j^2} 0^{2k+1} \notin B$.

•
$$0^{k^2}0^{2k+1} \in B$$
 because $k^2 + 2k + 1 = (k+1)^2$.

Example. $B = \{0^{n^2} \mid n \ge 0\}$ is not regular.

Proof. For any $0 \le k < j$, $0^{k^2} \not\equiv_B 0^{j^2}$ since

$$0^{k^2}0^{2k+1} \in B \text{ and } 0^{j^2}0^{2k+1} \notin B.$$

- $0^{k^2}0^{2k+1} \in B$ because $k^2 + 2k + 1 = (k+1)^2$.
- $0^{j^2}0^{2k+1} \notin B$ because $j^2 < j^2 + 2k + 1 < j^2 + 2j + 1 = (j+1)^2$ implies $j^2 + 2k + 1$ is not a square.

Example.
$$B = \{0^{n^2} \mid n \ge 0\}$$
 is not regular.

Proof. For any
$$0 \le k < j$$
, $0^{k^2} \not\equiv_B 0^{j^2}$ since

$$0^{k^2}0^{2k+1} \in B \text{ and } 0^{j^2}0^{2k+1} \notin B.$$

- $0^{k^2}0^{2k+1} \in B$ because $k^2 + 2k + 1 = (k+1)^2$.
- $0^{j^2}0^{2k+1} \notin B$ because $j^2 < j^2 + 2k + 1 < j^2 + 2j + 1 = (j+1)^2$ implies $j^2 + 2k + 1$ is not a square.

Therefore \equiv_B has infinitely many equivalence classes, so B is not regular by the Myhill-Nerode Theorem. \square

Example.
$$F = \{a^m b^n c^l \mid m, n, l \ge 0 \text{ and if } m = 1 \text{ then } n = l\}$$

Recall that we showed F satisfies the conclusion of the Pumping Lemma. We can use the Myhill-Nerode Theorem to prove F is not regular.

Example.
$$F = \{a^m b^n c^l \mid m, n, l \ge 0 \text{ and if } m = 1 \text{ then } n = l\}$$

Recall that we showed F satisfies the conclusion of the Pumping Lemma. We can use the Myhill-Nerode Theorem to prove F is not regular.

Proof. For all
$$i < j$$
, $ab^i \not\equiv_F ab^j$ since

$$ab^ic^i\in A \text{ and } ab^jc^i \notin F.$$

Therefore \equiv_F has infinitely many equivalence classes, so F is not regular by the Myhill-Nerode Theorem. \square

Let A be a regular language and let $M = (Q, \Sigma, \delta, q_0, F)$ be the minimal DFA for A.

Recall that for every $x,y\in\Sigma^*$,

$$x \equiv_A y \text{ if } (\forall z \in \Sigma^*) (xz \in A \Leftrightarrow yz \in A)$$

and

$$x \equiv_M y \text{ if } \delta^*(q_0, x) = \delta^*(q_0, y).$$

Let A be a regular language and let $M = (Q, \Sigma, \delta, q_0, F)$ be the minimal DFA for A.

Recall that for every $x, y \in \Sigma^*$,

$$x \equiv_A y \text{ if } (\forall z \in \Sigma^*) \ (xz \in A \Leftrightarrow yz \in A)$$

and

$$x \equiv_M y \text{ if } \delta^*(q_0, x) = \delta^*(q_0, y).$$

From the proof of the Myhill-Nerode Theorem, we know that \equiv_A and \equiv_M are the same relation. In other words, the states of M "remember" the equivalence of x with respect to \equiv_A :

$$\delta^*(q_0, x)$$
 is essentially $[x]_A$.

• What is \equiv_A -equivalent to ϵ ?

Let $A = \{x00 \mid x \in \{0, 1\}^*\}.$

Recall $x \equiv_A y$ if $(\forall z \in \Sigma^*)$ $(xz \in A \Leftrightarrow yz \in A)$.

• What is \equiv_A -equivalent to ϵ ?

$$\bullet \ \epsilon \equiv_{\mathcal{A}} 1 \quad \epsilon \equiv_{\mathcal{A}} 11 \quad \epsilon \equiv_{\mathcal{A}} 01$$

• What is \equiv_A -equivalent to ϵ ?

- $\epsilon \equiv_A 1$ $\epsilon \equiv_A 11$ $\epsilon \equiv_A 01$
- $\epsilon \not\equiv_A 0 \ (\epsilon 0 \not\in A \text{ but } 00 \in A)$
- $\epsilon \not\equiv_A 00 \ (\epsilon \not\in A \text{ but } 00 \in A)$

- **1** What is \equiv_A -equivalent to ϵ ?
 - $\epsilon \equiv_A 1$ $\epsilon \equiv_A 11$ $\epsilon \equiv_A 01$
 - $\epsilon \not\equiv_A 0 \ (\epsilon 0 \not\in A \text{ but } 00 \in A)$
 - $\epsilon \not\equiv_A 00 \ (\epsilon \not\in A \text{ but } 00 \in A)$

$$[\epsilon]_{\mathcal{A}} = \{\epsilon\} \cup \{x \in \{0,1\}^* \mid x \text{ ends in } 1\}$$

= \{x \in \{0,1\}^* \| x \text{ does not end in } 0\}

- **1** What is $\equiv_{\mathcal{A}}$ -equivalent to ϵ ?
 - $\epsilon \equiv_A 1$ $\epsilon \equiv_A 11$ $\epsilon \equiv_A 01$
 - $\epsilon \not\equiv_A 0 \ (\epsilon 0 \not\in A \text{ but } 00 \in A)$
 - $\epsilon \not\equiv_A 00 \ (\epsilon \not\in A \text{ but } 00 \in A)$

$$[\epsilon]_{\mathcal{A}} = \{\epsilon\} \cup \{x \in \{0,1\}^* \mid x \text{ ends in } 1\}$$

= \{x \in \{0,1\}^* \ | x \text{ does not end in } 0\}

- **2** What is \equiv_A -equivalent to 0?
 - $0 \equiv_A 10$ $0 \equiv_A 1010$ $0 \equiv_A 0010$

- **1** What is \equiv_A -equivalent to ϵ ?
 - $\epsilon \equiv_A 1$ $\epsilon \equiv_A 11$ $\epsilon \equiv_A 01$
 - $\epsilon \not\equiv_A 0 \ (\epsilon 0 \not\in A \text{ but } 00 \in A)$
 - $\epsilon \not\equiv_A 00 \ (\epsilon \not\in A \text{ but } 00 \in A)$

$$[\epsilon]_{\mathcal{A}} = \{\epsilon\} \cup \{x \in \{0,1\}^* \mid x \text{ ends in } 1\}$$

= \{x \in \{0,1\}^* \| x \text{ does not end in } 0\}

- 2 What is \equiv_A -equivalent to 0?
 - $0 \equiv_A 10$ $0 \equiv_A 1010$ $0 \equiv_A 0010$
 - $0 \not\equiv_A 100 \ (0 \not\in A \text{ but } 100 \in A)$
 - $0 \not\equiv_A 1 (00 \in A \text{ but } 10 \not\in A)$

$$[0]_A = \{x \in \{0,1\}^* \mid x \text{ ends in exactly one } 0\}$$

- **1** What is \equiv_A -equivalent to ϵ ?
 - $\epsilon \equiv_A 1$ $\epsilon \equiv_A 11$ $\epsilon \equiv_A 01$
 - $\epsilon \not\equiv_A 0 \ (\epsilon 0 \not\in A \text{ but } 00 \in A)$
 - $\epsilon \not\equiv_A 00 \ (\epsilon \not\in A \text{ but } 00 \in A)$

$$[\epsilon]_{\mathcal{A}} = \{\epsilon\} \cup \{x \in \{0,1\}^* \mid x \text{ ends in } 1\}$$

= \{x \in \{0,1\}^* \| x \text{ does not end in } 0\}

- **2** What is \equiv_A -equivalent to 0?
 - $0 \equiv_A 10$ $0 \equiv_A 1010$ $0 \equiv_A 0010$
 - $0 \not\equiv_A 100 \ (0 \not\in A \text{ but } 100 \in A)$
 - $0 \not\equiv_A 1 (00 \in A \text{ but } 10 \not\in A)$

$$[0]_A = \{x \in \{0,1\}^* \mid x \text{ ends in exactly one } 0\}$$

- **3** What is \equiv_A -equivalent to 00?
 - $00 \equiv_A 100$ $00 \equiv_A 10100$ $00 \equiv_A 10000$

- **1** What is \equiv_A -equivalent to ϵ ?
 - $\epsilon \equiv_A 1$ $\epsilon \equiv_A 11$ $\epsilon \equiv_A 01$
 - $\epsilon \not\equiv_A 0 \ (\epsilon 0 \not\in A \text{ but } 00 \in A)$
 - $\epsilon \not\equiv_A 00 \ (\epsilon \not\in A \text{ but } 00 \in A)$

$$[\epsilon]_{\mathcal{A}} = \{\epsilon\} \cup \{x \in \{0,1\}^* \mid x \text{ ends in } 1\}$$

= \{x \in \{0,1\}^* \| x \text{ does not end in } 0\}

- **2** What is \equiv_A -equivalent to 0?
 - $0 \equiv_A 10$ $0 \equiv_A 1010$ $0 \equiv_A 0010$
 - $0 \not\equiv_A 100 \ (0 \not\in A \text{ but } 100 \in A)$
 - $0 \not\equiv_A 1 (00 \in A \text{ but } 10 \not\in A)$

$$[0]_A = \{x \in \{0,1\}^* \mid x \text{ ends in exactly one } 0\}$$

- **3** What is \equiv_A -equivalent to 00?
 - $00 \equiv_A 100$ $00 \equiv_A 10100$ $00 \equiv_A 10000$
 - $00 \not\equiv_A 10 \ (00 \in A \text{ but } 10 \not\in A)$
 - $00 \not\equiv_A 001 \ (00 \in A \text{ but } 001 \not\in A)$

- **1** What is \equiv_A -equivalent to ϵ ?
 - $\epsilon \equiv_A 1$ $\epsilon \equiv_A 11$ $\epsilon \equiv_A 01$
 - $\epsilon \not\equiv_A 0 \ (\epsilon 0 \not\in A \text{ but } 00 \in A)$
 - $\epsilon \not\equiv_A 00 \ (\epsilon \not\in A \text{ but } 00 \in A)$

$$[\epsilon]_{\mathcal{A}} = \{\epsilon\} \cup \{x \in \{0,1\}^* \mid x \text{ ends in } 1\}$$

= \{x \in \{0,1\}^* \| x \text{ does not end in } 0\}

- ② What is \equiv_A -equivalent to 0?
 - $0 \equiv_A 10$ $0 \equiv_A 1010$ $0 \equiv_A 0010$
 - $0 \not\equiv_A 100 \ (0 \not\in A \text{ but } 100 \in A)$
 - $0 \not\equiv_A 1 (00 \in A \text{ but } 10 \not\in A)$

$$[0]_A = \{x \in \{0,1\}^* \mid x \text{ ends in exactly one } 0\}$$

- **3** What is \equiv_A -equivalent to 00?
 - $00 \equiv_A 100$ $00 \equiv_A 10100$ $00 \equiv_A 10000$
 - $00 \not\equiv_A 10 \ (00 \in A \text{ but } 10 \not\in A)$
 - $00 \not\equiv_A 001 \ (00 \in A \text{ but } 001 \not\in A)$

$$[00]_A = \{x \in \{0,1\}^* \mid x \text{ ends in two or more 0's}\}$$

Example

$$A = \{x00 \mid x \in \{0,1\}^*\}$$

Equivalence classes for \equiv_M and \equiv_A :

$$[\epsilon]_{M} = \{x \mid \delta^{*}(q_{0}, x) = q_{0}\} = \epsilon \cup (0 \cup 1)^{*}1 = \{x \mid x \text{ does not end in } 0\} = [\epsilon]_{A}$$

$$[0]_{M} = \{x \mid \delta^{*}(q_{0}, x) = q_{1}\} = 0 \cup (0 \cup 1)^{*}10 = \{x \mid x \text{ ends in exactly one } 0\} = [0]_{A}$$

$$[00]_{M} = \{x \mid \delta^{*}(q_{0}, x) = q_{2}\} = (0 \cup 1)^{*}00 = \{x \mid x \text{ ends in at least two } 0^{*}s\} = [00]_{A}$$

$$A = [00]_A$$
 and $A^c = [\epsilon]_A \cup [0]_A$

