Arrange your messy dates : : CHEAT SHEET

Basics

The package functions offer the user both **flexibility** and more **precision** when dealing with **uncertain dates.** It implements the extended annotation standard for dates, the Extended Date/Time Format (EDTF), outlined in **ISO 8601-2_2019(E)** for R.

These include standardised annotation with:

- · "?" for date whose source is considered dubious
- · "~" for approximate date
- · "X" for unspecified date
- · "[]" for set of dates [2012-01-01, 2012-01-12] or ".." for ranges 2012-01-01..2012-01-12"

1. Coerce objects to `messydt` class

From three columns

make messydate(year, month, day)

Year	Month	Day
2007	2	17
2000	11	19
1998	12	6

Date	Class
2007-02-17	messydt
2000-11-19	messydt
1998-12-06	messydt

From one column

as_messydate(date)

These functions coerce different dates classes into 'messydt' class. This specific date class allows to apply the other package functions.

as.Date
POSIXct
POSIXIt
character

Date	Class
2007-XX-18	messydt
2020-09-22	messydt
2017-04-11	messydt
2021-04	messydt
2018	messydt
2021-01	messydt
2012-09-12~	messydt
2008-01-18?	messydt
2012-012012-0	messydt

2. Explore all possible dates

Contract from all possible dates to one

contract(messydate)

Expand to all possible dates

expand(messydate)

Once the uncertain dates are in `messydt` class, expand() transform the **single uncertain** date to all **possible dates.** If the date is one year (e.g. 2021), expand() will give all 365 possible dates.

2021-04" "2021-04-30"

"2021" **"**2021-01-01", "2021-01-02", "2021-01-03", ..., "2021-12-30", "2021-12-31"

3. Choose a date and coerce it from 'messydt' class

as.Date(as_messydate(date))

Coerce back to a **date**, **POSIXct** or **POSIXIt** class while choosing an exact value from all possible dates. It can be either the **minimum**, **maximum**, **mean**, **median**, or even the **mode** or a **random** value.

as.Date(as_messydate("2021-04"), min) --> "2021-04-01"

as.Date(as_messydate("2021-04"), max) == "2021-04-30"

as.Date(as_messydate("2021-04"), mean) --> "2021-04-16"

as.Date(as_messydate("2021-04"), median) - "2021-04-16"

as.Date(as_messydate("2021-04"), random) → "2021-04-11"

Other package functionalities

1) Some datasets contains arbitrary cut-off because the real date is unknown. This set of functions allows to indicate that these are approximations

Functions	
on_or_before(1918-01-01)	
on_or_after(2016-01-01)	
add_approximation(1917-01-01)	
add_uncertainty(2002-12-31)	

2) These functions allows to join two vectors of messydates in specific ways

md_intersect(messydates, messydates)

md_union(messydates, messydates)

md multiset(messydates, messydates)

V p

is_messydate(messydate)

4) Extract only the years, months or days from the vector of `messydt` class or get the level of precision of a messydate

3) The package contains several logical tests which check whether the object is in `messydt` class or if

one element is intersecting, similar to or part of a

year(messydates)

vector of messydates

precision(messydates)