Algebraic Theory I: Homework III

Thomas Fleming

Thu 14 Oct 2021 11:07

Solution (1).

Lemma 0.1. Automorphisms preserve maximality of subgroups. Let $\varphi:G\to G$ be an automorphism and let M< G be a maximal subgroup. Suppose $\varphi(M)=M'$ is not maximal. That is, there is a \overline{M}' such that $M'<\overline{M}'<\overline{M}'< G$. Then, we find

$$\varphi^{-1}\left(\overline{M}'\right) = \varphi^{-1}\left(M' \cup \left(\overline{M}' \setminus M'\right)\right)$$
$$= \varphi^{-1}\left(M'\right) \cup \varphi^{-1}\left(\overline{M}' \setminus M'\right)$$
$$= M \cup \{\varphi^{-1}\left(m\right) : m \in \overline{M}' \setminus M'\}$$
$$> M.$$

Furthermore, $\overline{M}' < G$ by assumption, hence $M < \overline{M}' < G$. $\cancel{4}$.

Solution (2). *Proof.* Now, let $\alpha: G \to G$ be an automorphism of G and denote $\alpha(M) = M'$. Then, we see

$$\alpha \left(\Phi \left(G \right) \right) = \alpha \left(\bigcap_{\substack{M < G \\ M \text{ is maximal}}} M \right)$$

$$= \bigcap_{\substack{M < G \\ M \text{ is maximal}}} \alpha \left(M \right)$$

$$= \bigcap_{\substack{M < G \\ M \text{ is maximal}}} M'$$

Then, as M' is maximal and α is an injection, we see if $N \neq M$ are both maximal subgroups, we have $\alpha(N) \neq \alpha(M)$, hence

$$\{M: \underset{M \text{ is maximal}}{M < G}\} = \{M': \underset{M \text{ is maximal}}{M < G}\}.$$

So, we have

$$\alpha\left(\Phi\left(G\right)\right) = \bigcap_{\substack{M < G \\ M \text{ is maximal}}} M' = \bigcap_{\substack{M < G \\ M \text{ is maximal}}} M = \Phi\left(G\right).$$

Solution (3).

Solution (4).

Solution (5).