CS 498QC Final Project - Literature Review

"On the Hardness of Detecting Macroscopic Superpositions" by Scott Aaronson, Yosi Atia and Leonard Susskind

Wenqi He (wenqihe2)

November 27, 2023

Superposition and Mixture

Definition

Equal superpositions $|\psi\rangle$ and $|\phi\rangle$ of orthogonal states $|x\rangle$ and $|y\rangle$:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left|x\right\rangle + \frac{1}{\sqrt{2}} \left|y\right\rangle, \quad |\phi\rangle = \frac{1}{\sqrt{2}} \left|x\right\rangle - \frac{1}{\sqrt{2}} \left|y\right\rangle$$

$$|x\rangle = \frac{1}{\sqrt{2}} |\psi\rangle + \frac{1}{\sqrt{2}} |\phi\rangle, \quad |y\rangle = \frac{1}{\sqrt{2}} |\psi\rangle - \frac{1}{\sqrt{2}} |\phi\rangle$$

Definition

An *equal mixture* of $|x\rangle$ and $|y\rangle$, or equivalently, $|\psi\rangle$ and $|\phi\rangle$:

$$\rho_{\textit{mixed}} = \frac{1}{2} \left| x \right\rangle \left\langle x \right| + \frac{1}{2} \left| y \right\rangle \left\langle y \right| = \frac{1}{2} \left| \psi \right\rangle \left\langle \psi \right| + \frac{1}{2} \left| \phi \right\rangle \left\langle \phi \right|$$

Distinguishing

Definition

A **distinguisher** for $|\psi\rangle$ and $|\phi\rangle$ with bias Δ is a circuit U that accepts $|\psi\rangle$ with probability p and $|\phi\rangle$ with probability $p - \Delta$.

Specifically, we measure the first qubit after applying U and accept the state if the outcome is $|0\rangle$.

$$\begin{split} &\langle 0|\operatorname{tr}_{aux}\left(U\left|\psi\right\rangle\left\langle\psi\right|U^{\dagger}\right)\left|0\right\rangle = p \\ &\langle 0|\operatorname{tr}_{aux}\left(U\left|\phi\right\rangle\left\langle\phi\right|U^{\dagger}\right)\left|0\right\rangle = p - \Delta \end{split}$$

Distinguishing

Lemma

A distinguisher U for $|\psi\rangle$ and $|\phi\rangle$ also distinguishes them from an equal mixture of $|x\rangle$ and $|y\rangle$ with bias $\Delta/2$.

Proof:

$$\begin{split} &\langle 0|\operatorname{tr}_{aux}\left(U\rho_{mixed}U^{\dagger}\right)|0\rangle\\ &=\langle 0|\operatorname{tr}_{aux}\left(U\left(\frac{1}{2}\left|\psi\right\rangle\left\langle\psi\right|+\frac{1}{2}\left|\phi\right\rangle\left\langle\phi\right|\right)U^{\dagger}\right)|0\rangle\\ &=\frac{1}{2}\left\langle 0|\operatorname{tr}_{aux}\left(U\left|\psi\right\rangle\left\langle\psi\right|U^{\dagger}\right)|0\rangle+\frac{1}{2}\left\langle 0|\operatorname{tr}_{aux}\left(U\left|\phi\right\rangle\left\langle\phi\right|U^{\dagger}\right)|0\rangle\\ &=\frac{|a|^{2}+|c|^{2}}{2}=p-\frac{\Delta}{2} \end{split}$$

Swapping

Definition

A **swapper** of $|x\rangle$ and $|y\rangle$ with error ε is a unitary U that satisfies

"fidelity" of
$$U := \frac{|\langle y| \ U \ |x\rangle + \langle x| \ U \ |y\rangle|}{2} = 1 - \varepsilon$$
.

When $\varepsilon = 0$, either U or -U is a perfect swapper.

Definition

The **swap complexity** $S_{\varepsilon}(|x\rangle, |y\rangle)$ is the minimum number of gates needed for a swapper of $|x\rangle$ and $|y\rangle$ with error at most ε .

The Hardness of Detecting (Macroscopic) Superpositions

Theorem (Distinguishability ↔ Swappability)

The circuit complexity of distinguishing $|\psi\rangle$ and $|\phi\rangle$ from an equal mixture of $|x\rangle$ and $|y\rangle$ with bias Δ is the same as the circuit complexity of swapping $|x\rangle$ and $|y\rangle$ with fidelity 2Δ , i.e., $\mathcal{S}_{1-2\Delta}(|x\rangle, |y\rangle)$.

Corollary

When building an effective swapper for two orthogonal macroscopic states $|x\rangle$ and $|y\rangle$ is infeasible, it would also be infeasible to distinguish an equal superposition of $|x\rangle$ and $|y\rangle$ from an equal mixture of $|x\rangle$ and $|y\rangle$, which means it's technologically impossible to prepare or even observe such superpositions.

Distinguishability → Swappability

Theorem

If we can construct a distinguisher A for $|\psi\rangle$ and $|\phi\rangle$ with bias Δ , then with black-box access to A and A^{\dagger} and one additional gate, we can construct a swapper for $|x\rangle$ and $|y\rangle$ with fidelity Δ .

Distinguishability → Swappability: Perfect Case

Suppose we have a perfect distinguisher *A*:

$$A |\psi\rangle = |0\rangle |g_0(\psi)\rangle, \quad A |\phi\rangle = |1\rangle |h_1(\phi)\rangle$$

Then

$$A|x\rangle = A\left(\frac{|\psi\rangle + |\phi\rangle}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}\left(|0\rangle |g_0(\psi)\rangle + |1\rangle |h_1(\phi)\rangle\right)$$

$$A|y\rangle = A\left(\frac{|\psi\rangle - |\phi\rangle}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}\left(|0\rangle |g_0(\psi)\rangle - |1\rangle |h_1(\phi)\rangle\right)$$

$$Z_0A|x\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle |g_0(\psi)\rangle - |1\rangle |h_1(\phi)\rangle\right) = A|y\rangle$$

$$Z_0A|y\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle |g_0(\psi)\rangle + |1\rangle |h_1(\phi)\rangle\right) = A|x\rangle$$

Circuit $U = A^{\dagger} Z_0 A$ is a perfect swapper:

$$U\left|x\right\rangle = A^{\dagger}Z_{0}A\left|x\right\rangle = \left|y\right\rangle, \quad U\left|y\right\rangle = A^{\dagger}Z_{0}A\left|y\right\rangle = \left|x\right\rangle.$$

Distinguishability → Swappability

Proof: Suppose we have a distinguisher *A* for $|\psi\rangle$ and $|\phi\rangle$, such that

$$A |\psi\rangle = a |0\rangle |g_0(\psi)\rangle + b |1\rangle |g_1(\psi)\rangle$$

$$A |\phi\rangle = c |0\rangle |h_0(\phi)\rangle + d |1\rangle |h_1(\phi)\rangle$$

where

$$|a|^2 = p, \quad |c|^2 = p - \Delta,$$

then

$$\langle y | U | x \rangle = \langle y | A^{\dagger} Z_{0} A | x \rangle = -\Delta + \frac{1}{2} \left[ac \left(C_{0} - C_{0}^{*} \right) + bd \left(C_{1} - C_{1}^{*} \right) \right]$$

$$\langle x | U | y \rangle = \langle x | A^{\dagger} Z_{0} A | y \rangle = -\Delta + \frac{1}{2} \left[ac \left(C_{0}^{*} - C_{0} \right) + bd \left(C_{1}^{*} - C_{1} \right) \right]$$

$$\frac{|\langle y | U | x \rangle + \langle x | U | y \rangle|}{2} = \Delta$$

Swappability → Distinguishability

Theorem

If we can construct a swapper for $|x\rangle$ and $|y\rangle$ with fidelity Δ , then with black-box access to a controlled $e^{i\theta}U$ gate and two additional gates, we can construct a distinguisher for $|\psi\rangle$ and $|\phi\rangle$ with bias Δ .

Swappability \rightarrow Distinguishability: Perfect Case ($\theta = 0$)

If the input state is $|\psi\rangle$: Before controlled U, the state is

$$|+\rangle |\psi\rangle = \frac{1}{2} (|0\rangle |x\rangle + |0\rangle |y\rangle + |1\rangle |x\rangle + |1\rangle |y\rangle)$$

After controlled *U*, the state is

$$\frac{1}{2} \left(\ket{0} \ket{x} + \ket{0} \ket{y} + \ket{1} \ket{y} + \ket{1} \ket{x} \right) = \ket{+} \ket{\psi}$$

If the input state is $|\phi\rangle$: Before controlled *U*, the state is

$$\ket{+}\ket{\phi} = \frac{1}{2} \left(\ket{0}\ket{x} - \ket{0}\ket{y} + \ket{1}\ket{x} - \ket{1}\ket{y} \right)$$

After controlled *U*, the state is

$$\frac{1}{2}(\ket{0}\ket{x}-\ket{0}\ket{y}+\ket{1}\ket{y}-\ket{1}\ket{x})=\ket{-}\ket{\phi}$$

Swappability → Distinguishability

Proof: Suppose *U* satisfies

$$U|x\rangle = a|y\rangle + c|x\rangle + f|w\rangle$$

$$U|y\rangle = b|x\rangle + d|y\rangle + g|z\rangle$$

where $|a+b|/2=\Delta$. The probabilities of accepting $|\psi\rangle$ and $|\phi\rangle$ are

$$\Pr_{\psi}(\ket{+}) = rac{1}{2} + rac{1}{4}\Re\left(e^{i heta}(a+b+c+d)
ight) \ \Pr_{\phi}(\ket{+}) = rac{1}{2} + rac{1}{4}\Re\left(e^{i heta}(-a-b+c+d)
ight).$$

The bias is

$$\mathsf{Pr}_{\psi}(\ket{+}) - \mathsf{Pr}_{\phi}(\ket{+}) = rac{\Re(e^{i heta}(a+b))}{2} \leq rac{\ket{a+b}}{2} = \Delta$$

The equality is achieved when we set $\theta = -\arg(a+b)$.

Tightness

Theorem

For any $0 \le \Delta \le 1$, there exist a pair of orthogonal n-qubit states $|x\rangle$ and $|y\rangle$ and a swapper U of size O(1) that swaps them with fidelity Δ , but to build a swapper with fidelity $\Delta + \omega \left(0.5^{n/3} \sqrt{\log n}\right)$ requires $\omega \left(2^{n/3}\right)$ gates.

Corollary

For any $0 \le \Delta \le 1$, there exist a pair of n-qubit states $|\psi\rangle$ and $|\phi\rangle$ and a distinguisher A of size O(1) that distinguishes them with bias Δ , but to build a distinguisher with bias $\Delta + \omega \left(0.5^{n/3} \sqrt{\log n}\right)$ requires $\omega \left(2^{n/3}\right)$ gates.

Summary

For any two orthogonal states $|x\rangle$ and $|y\rangle$ and

$$|\psi\rangle = \frac{1}{\sqrt{2}}|x\rangle + \frac{1}{\sqrt{2}}|y\rangle, \quad |\phi\rangle = \frac{1}{\sqrt{2}}|x\rangle - \frac{1}{\sqrt{2}}|y\rangle$$

$$\begin{array}{c} \text{distinguishing } |\psi\rangle \text{ and } |\phi\rangle \\ \text{with bias } \Delta + \omega \left(0.5^{n/3}\sqrt{\log n}\right) & \longrightarrow \\ \text{with error } 1 - \left(\Delta + \omega \left(0.5^{n/3}\sqrt{\log n}\right)\right) \\ \text{potentially} \\ \omega \left(2^{n/3}\right) & & & \\ \text{distinguishing } |\psi\rangle \text{ and } |\phi\rangle \\ \text{with bias } \Delta & \longrightarrow \\ \end{array} \begin{array}{c} O(1) \\ \text{swapping } |x\rangle \text{ and } |y\rangle \\ \text{with error } 1 - \Delta \\ \end{array}$$

Tightness: Background

Lemma

For random n-qubit states $|x\rangle$ and $|y\rangle$, $Pr(|\langle x | y \rangle| \ge \varepsilon) \le e^{-\varepsilon^2(2^n-1)}$.

The probability is *doubly* exponentially small in *n*.

Lemma

For random n-qubit states $|x\rangle$ and $|y\rangle$, the probability that we can construct a circuit U such that $\langle y|U|x\rangle \geq \varepsilon$, for some ε of order $O(0.5^{n/3}\sqrt{\log n})$, using only $O(2^{n/3})$ gates from a universal gate set of size $n^{O(1)}$, is $0.5^{O(2^{n/3}\log n)}$.

The probability is still *doubly* exponentially small in *n*.

Tightness: Proof (1/3)

If we randomly sample 8 states $\{\psi_0, \psi_1, \cdots \psi_7\}$ from $\mathbb{C}^{2^{n-3}}$, they will be pairwise *almost* orthogonal with high probability. We could make them orthogonal by adding 3 index qubits, i.e.

$$\left|\bar{k}\right\rangle = \left|k\right\rangle \otimes \left|\psi_{k}\right\rangle, k \in \left\{0, 1\right\}^{3}.$$

Based on $\{ig|ar{k}ig>\}$ we can construct a orthonormal basis of \mathbb{C}^{2^n} .

Tightness: Proof (2/3)

For the following two orthogonal states:

$$\begin{split} |x\rangle &= \sqrt{a-b} \left(\frac{1}{2} \sum_{k=0}^{3} \left| \bar{k} \right\rangle \right) + \sqrt{b} \left(\frac{|\bar{4}\rangle + |\bar{5}\rangle}{\sqrt{2}} \right) + \sqrt{c} \, |\bar{6}\rangle \\ |y\rangle &= \sqrt{a-b} \left(\frac{1}{2} \sum_{k=0}^{3} i^{k} \left| \bar{k} \right\rangle \right) + \sqrt{b} \left(\frac{|\bar{4}\rangle - |\bar{5}\rangle}{\sqrt{2}} \right) + \sqrt{c} \, |\bar{7}\rangle \, , \end{split}$$

the following swapper of size O(1) achieves fidelity (a + b)/2:

$$U = \left(\sum_{k=0}^{3} i^{k} |k\rangle \langle k| + |4\rangle \langle 4| - |5\rangle \langle 5| + |6\rangle \langle 6| + |7\rangle \langle 7|\right) \otimes \mathbb{I}_{2^{n-3}}$$

Tightness: Proof (3/3)

Consider any swapper U of size $O\left(2^{n/3}\right)$ and its representation in a basis where $\left\{\left|\bar{k}\right.\right\rangle\right\}$ are the first 8 basis vectors. Let V be identical to U in the first 8 \times 8 entries and 0 everywhere else. V achieves the same fidelity as U:

$$a' = \langle y | U | x \rangle = \langle y | V | x \rangle, \quad b' = \langle x | U | y \rangle = \langle x | V | y \rangle$$

For any $i \neq j$, with an overwhelming probability,

$$\left|\left\langle \overline{i}\right|V\left|\overline{j}\right\rangle \right|=O\left(0.5^{n/3}\log n\right),$$

which means that

$$V = \sum_{k=0}^{7} \beta_k e^{i\theta_k} \left| \bar{k} \right\rangle \left\langle \bar{k} \right| \pm O\left(0.5^{n/3} \log n\right), \text{ where } 0 \leq \beta_k \leq 1.$$

Therefore,

$$\left|a'+b'\right| \le |a+b| + O\left(0.5^{n/3}\log n\right)$$

