Homework 7

Li Yunzhi

October 18, 2017

1 Prove using resolution that the above sentence entails G

Proof 1 First, we use resolution inference rules to prove that $(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G) \vdash G$

 $KBs: (A \lor B), (\neg A \lor C), (\neg B \lor D), (\neg C \lor G), (\neg D \lor G), \neg G$

Step 1: we choose clauses $(A \lor B)$ and $(\neg A \lor C)$, after we use resolution inference rules, we get a new $KBs: (B \lor C), (\neg B \lor D), (\neg C \lor G), (\neg D \lor G), \neg G$

Step 2: we choose clauses $(B \lor C)$ and $(\neg B \lor D)$, after we use resolution inference rules, we get a new $KBs: (C \lor D), (\neg C \lor G), (\neg D \lor G), \neg G$

Step 3 :we choose clauses $(C \vee D)$ and $(\neg C \vee G)$, after we use resolution inference rules, we get a new $KBs: (D \vee G), (\neg D \vee G), \neg G$

Step 4 :we choose clauses $(\neg D \lor G)$ and $(D \lor G)$, after we use resolution inference rules, we get a new $KBs: G, \neg G$

Step 5: we choose clauses G and $\neg G$, and we get an empty clause, then it shows that $(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G) \vdash G$

Finally, using the soundness of resolution we know that $(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G) \vDash G$

2 Number of semantically distinct 2-CNF clauses

Notice that we have n proposition symbols, so we have 2n different literals

- (1) Every clauses have 2 places to put literals in, so if we ignore the ordering of them, there are $C_{2n}^2 = 2n^2 n$ clauses which has two different literals
- (2) Notice that $(A \vee \neg A) \equiv (B \vee \neg B)$, so we have to remove them from these clauses until one of them left. And now the number of clauses is $2n^2 2n + 1$
- (3) Notice that $(A \vee A)$ is also a 2-CNF clause, we have to add 2n to the total number, then we reach the final number $2n^2 + 1$

3 Polynomial Time

Notice that every step we use resolution inference rules on two 2-CNF clauses, the result's size is at most 2, but the number of clauses has been reduced by 1. What's more, the number of clauses is $O(n^2)$, so it always terminates in time polynomial.

4 3-CNF

In section "Polynomial Time", we have proved that the set of 2-CNF clauses is closed which means that two 2-CNF clauses only generate a 2-CNF clause. And due to that, the size of the set of KBs is $O(n^2)$. However, when we try to use this method on 3-CNF clauses we will fail, because two 3-CNF clauses can generate a clause which length is 4, and then generate a clause which length is 5.... So, the length of clause in our KBs is O(n), which means the size of our KBs is $O(2^n)$, so we can use this proof on 3-CNF clauses.