

Thermodynamik III

Kältemaschinen und Wärmepumpen

HS 2021

Prof. Reza S. Abhari

Overview

Vorlesung		Übung/Beispiel	
Datum	Thema	Datum	Thema
09.11	Prozess des Energieaustausches	09.11	Geschwindigkeitsdreiecke
16.11	Dampfkraftprozesse	16.11	Rankine Zyklus
23.11	Gasarbeitsprozesse - Verbrennungsmotoren	23.11	Diesel / Otto Zyklus
30.11	Gasarbeitsprozesse - Gasturbinenprozesse	30.11	Brayton Zyklus
07.12	Gasarbeitsprozesse - Kombinierten Zyklen	07.12	Kombinierter Zyklus
14.12	Kältemaschinen und Wärmepumpen	14.12	Kältemaschine/Wärmepumpe
21.12	Kältemaschinen Oxyfuel, Carbon Capture and Storage	21.12	Wärmepumpe

5.1 Einleitung

- Zwei Haupttypen von Kältemaschinen und Wärmepumpen:
 - Kompressionskältemaschinen, Kompressionswärmepumpen
 - Absorptionskältemaschinen und Absorptionswärmepumpen
- Wichtig: Carnot-Prozess
- Umkehrung des Carnot-Wärmekraftprozesses ergibt den Carnot-Kältemaschinenprozess
- Kältemaschinenprozess ist linkslaufend

- Teilprozess 4 → 1 : Verdampfung
 - Arbeitsmittel tritt im Nassdampfzustand 4 in den Verdampfer ein, nimmt
 Wärme vom kalten Reservoir auf, verdampft teilweise
 - Temperatur und Druck bleiben beim Verdampfungsprozess konstant
- Teilprozess 1 → 2 : Kompression
 - Isentrope Kompression, bis zum Sättigungszustand 2 bei T_H
- Teilprozess 2 → 3 : Kondensation
 - Bei konstanter Temperatur und Druck gibt Arbeitsmittel im Kondensator
 Wärme ab, bis zur vollständigen Kondensation
- Teilprozess 3 → 4 : Expansion
 - Isentrope Expansion bis Zustand 4

– Leistungsziffer:

$$\varepsilon_{k \max} = \frac{\dot{Q}_K / \dot{m}}{\frac{\dot{W}_K}{\dot{m}} - \frac{\dot{W}_T}{\dot{m}}} = \frac{T_K (s_a - s_b)}{(T_H - T_K)(s_a - s_b)} = \frac{T_K}{(T_H - T_K)}$$

- Reale Prozesse:
 - Temperaturdifferenzen in Verdampfer und Kondensator

$$\varepsilon_k' = \frac{T_K'}{T_H' - T_K'}$$

- Verdichtung von Zweiphasenmischung nicht empfohlen, da Flüssigkeitstropfen den Kompressor beschädigen können
- Drossel anstelle von Turbine, da Turbinenarbeit sehr klein

5.2 Kaltdampf-Kompressionskältemaschine

Gebräuchlichste Kältemaschinen

– Verdampfung 4 → 1:

 Arbeitsmittel nimmt Wärme aus dem kalten Reservoir auf und verdampft. Kompression kann vollständig im Überhitzungsgebiet stattfinden. Zustand 1 ist meist überhitzt

$$\frac{\dot{Q}_K}{\dot{m}} = h_1 - h_2$$

- Kompression $1 \rightarrow 2$
 - adiabat irreversible Kompression bis zum Druck p₂

$$\frac{\dot{W}_K}{\dot{m}} = h_2 - h_1$$

isentroper Wirkungsgrad des Kompressors:

$$\eta_{Ks} = \frac{(\dot{W}_K/\dot{m})_S}{\dot{W}_K/\dot{m}} = \frac{h_{2S} - h_1}{h_2 - h_1}$$

- Kondensation $2 \rightarrow 3$
 - Wärmeabfuhr an das warme Reservoir, normalerweise die Umgebung.
 Zustand 3 meist unterkühlt: $T_3 < T_{3'}$

$$\frac{\dot{Q}_H}{\dot{m}} = h_2 - h_3$$

- Expansion $3 \rightarrow 4$
 - Im Drosselventil dehnt sich das Kühlmittel bis zum Verdampfungsdruck aus, wobei

$$h_3 = h_4$$

Zustand 4 liegt im Nassdampfgebiet

– Leistungsziffer:

$$\varepsilon_K = \frac{\dot{Q}_K / \dot{m}}{\dot{W}_K / \dot{m}} = \frac{h_1 - h_4}{h_2 - h_1}$$

5.3 Kühlmittel

- Häufigste Kühlmittel: Halogen-Kohlen-Wasserstoffe
 - z.B. Freon 12 oder Dichlor-Difluormethan
 - zerstören Ozonschicht, werden daher heute nicht mehr eingesetzt
- Halogen-freie Kühlmittel:
 - Freon-13a (CF₂CFCF₃, Tetrafluoräthan)
 - Ammoniak (NH₃)
- Hohe Drücke im Kondensator und sehr tiefe Drücke im Verdampfer unerwünscht
- Chemische Stabilität, Giftigkeit, Umweltverträglichkeit, korrosive Eigenschaften, Beschaffungskosten

p-h-Diagramm

5.4 Mehrstufige Kältemaschinen

- Für sehr tiefe Temperaturen ist ein hohes Druckverhältnis p_{Kondens}
 / $p_{Verdampf}$ nötig, das wiederum Exergieverluste vergrössert
- Deshalb: Zwei- oder mehrstufiger Betrieb
- Zweistufiger Betrieb durch Hintereinanderschaltung von zwei Prozessen
- Kopplung der beiden Prozesse durch Zwischen-Wärmetauscher
- Leistungsziffer:

$$\varepsilon_{K} = \frac{\dot{Q}_{K}}{\dot{W}_{KA} + \dot{W}_{KB}}$$

5.5 Absorptions - Kältemaschine

- Kühlmittel und Absorptionsmittel werden im Absorber gemischt
- Flüssige Mischung wird auf höheren Druck gepumpt, was weniger
 Arbeit benötigt
- Durch eine Wärmequelle werden Kühlmittel und Absorptionsmittel wieder getrennt
- Reines Kühlmittel tritt in den Kondensator ein
- Absorptions-Systeme:
 - Ammoniak/Wasser
 - Wasser/Lithium-Bromid

5.6 Wärmepumpen

- Für Heizung oder industrielle Prozesse
- Im linkslaufenden Carnot-Prozess wird Q_H betrachtet
- Leistungsziffer:

$$\varepsilon_{WP\,\mathrm{max}} = \frac{\dot{Q}_H / \dot{m}}{\left(\dot{W}_K - \dot{W}_T\right) / \dot{m}} = \frac{T_H}{T_H - T_K}$$

- Luftwärmepumpen: Umgebungsluft als Wärmequelle
- Zusatzheizung bei tiefen Temperaturen (0° C)
- Oder: Grundwasser als Wärmequelle, da diese Temperatur auch im Winter relativ konstant ist
- Dampf-Kompressionswärmepumpe
 - bestehend aus: Kompressor, Kondensator, Drossel, Verdampfer
 - Wärmequellen: Umgebungsluft, Wasser aus Seen und Flüssen,
 Erdwärme, Sonnenkollektoren, Abwärme von anderen Prozessen

$$\varepsilon_{WP} = \frac{\dot{Q}_H / \dot{m}}{\dot{W}_K / \dot{m}} = \frac{h_2 - h_3}{h_2 - h_1} > 1$$

Luft-Wärmepumpe

- Arbeiten im Heizungs- und Kühlmodus durch Umschaltventil
- Heizungsmodus: innerer Wärmetauscher arbeitet als Kondensator, äusserer als Verdampfer
- Kühlungsmodus: innerer Wärmetauscher arbeitet als Verdampfer, äusserer als Kondensator