Homework # 2 Answer Key

1)
$$\chi$$
 0.5 1 1.75 3
 $P(x=x)$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{a}$

These values can be calculated by measuring the height of the "jumps" in the cdf $F_{x}(x)$.

a) We can use the inverse coff method as follows:

$$F_{Y}(y) = P(Y \le y) = P(e^{\times} \le y)$$

= $P(X \le log(y)) = \int_{0}^{log(y)} 1 dx$

= log(y), For 1 < y < e

It follows that the paf of Y is

$$f_{\gamma}(y) = \frac{\partial}{\partial y} f_{\gamma}(y) = \frac{\partial}{\partial y} (109(y))$$

3) 4) We need to Find C so that the density integrates to 1. so, we solve

$$\int_{0}^{3} C(4x - 2x^{2}) dx = 1$$

$$\Rightarrow C\left[2x^{2}\right]^{3} - \frac{2}{3}x^{3}\Big|_{0}^{3} = 1$$

$$\Rightarrow 8 - \frac{16}{3} = \frac{1}{C} \Rightarrow \frac{8}{3} = \frac{1}{C} \Rightarrow C = \frac{3}{8}$$
b) $P(X > 1) = \int_{1}^{3} \frac{3}{8}(4x - 2x^{2}) dx$

$$= \frac{3}{8} \left[2x^{2}\right]^{3} - \frac{2}{3}x^{3}\Big|_{0}^{3} = \frac{3}{8} \left[6 - \frac{14}{3}\right]$$

$$= \frac{3}{8} \left[4 - \frac{16}{3} + \frac{2}{3}\right] = \frac{3}{8} \left[6 - \frac{14}{3}\right]$$

$$= \frac{3}{8} \left[4 - \frac{16}{3} + \frac{2}{3}\right] = \frac{3}{8} \left[6 - \frac{14}{3}\right]$$

We need to think about two possibilities

For each fixed p: either U p.

When U > p, the p will be on the left

stick, which will have densit length U.

However, when U < p, p will be on the

right stick, which will have length 1-U.

50, let Lp(U) = length of the stick

on which p lies. We have:

$$Lp(u) = \begin{cases} U, U > p \\ I-U, U$$

continued ... So, we just need E[Lp(U)]: E[Lp(u)] = 5 Lp(u) du $= p - \frac{1}{2}p^2 + \frac{1}{3} - \frac{1}{2}p^2$ $= \frac{1}{a} + P - P^2 = \left(\frac{1}{a} + P(1-P)\right)$ First we calculate the marginal pats fx (x) + $= e^{-x}, x \in (0, \infty)$ $= e^{-x}, x \in (0, \infty)$ = ae , y ∈ (o, ∞) Then, we use the law of total probability P(x < Y) = \ P(x < y | Y=y) fy (y) dy

$$= 2 \left[-\frac{1}{2} e \right] + \frac{1}{3} e \right]$$

$$= a \left[\frac{1}{2} - \frac{1}{3} \right] = a \left(\frac{1}{6} \right) = \frac{1}{3}$$

$$(5_0, P(X < Y) = \frac{1}{3})$$

First, note that
$$f_{x}(x) = 1$$
 $x \in (0,1)$

$$F_{x}(x) = x$$

 $F_{y}(y) = e^{-y}$
 $F_{y}(y) = 1 - e^{-y}$

Thus,
$$F_{\frac{1}{2}}(a) = F_{x+y}(a) = \int_{y} F_{x}(a-y) f_{y}(y) dy$$

= $\int_{y} (a-y)e^{-y} dy$ (*)

We have to be smart about the limits of integration have Monto that

and Y ~ Po(12) and they are independent,

continued --then X+Y ~ Po(1,+ 12). It Follows that $= \frac{\lambda_1 e \lambda_2 e^{-\lambda_1 - \lambda_2}}{(\lambda_1 + \lambda_2) e^{-\lambda_1 - \lambda_2}}$ P(X= x | X+ Y=n) = $= \left(\frac{\lambda_1}{\lambda_2}\right)^{\lambda} \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right) \left(\frac{\gamma}{\lambda}\right)$ $= \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-\chi} \left(\frac{\lambda_1}{\lambda_2}\right) \left(\frac{\chi}{\lambda_2}\right)$ which is the form of a Bin (n ditdz) random variable! Hence, (X | X + Y= 1 ~ Bin(n, 1+1) 8) Note: One can calculate these probabilities by investigating each of 36 total outcomes. I don't do this here, but the calculation (though long) is straight forward. Notes on computation: 1) X+Y is just a Gamma(1,2) random variable. This can be found using the

convolution formula.

	But the point of this exercise is to
	show that simulation can be used to
	and can be done pretty quickly.
MS/W	and can be done pretty quickly.
	3 strategy a turns out to be more efficient.
31 341	