Пензенский государственный университет Кафедра «Вычислительная техника»

ОТЧЕТ

по лабораторной работе № 10 по дисциплине: "Арифметические и логические основы вычислительной техники" на тему: "Формы представления функций булевой алгебры"

Выполнили: студенты группы 20ВВ2

Принял: xxxxxxxxxxxxx.

XXXXXXXXXXXXXX

Лабораторное задание:

- 1. Построить табличное задание булевых функций для выходов преобразователя D-кодов в соответствие с заданным вариантом.
- 2. Перейти от табличного задания булевых функций к их аналитической записи.
- 3. Проверить правильность перехода к аналитической записи моделированием в среде Electronics Workbench v5.12.

N₂	вход	выход	
варианта	преобразователя	преобразователя	
3	2241	8421	

Ход работы

1. Построили табличное задание булевых функций для выходов преобразователя D-кодов.

D	\mathbf{X}_{1}	\mathbf{X}_2	X ₃	X ₄
0	0	0	0	0
1	0	0	0	1
2	0	1	0	0
3	0	1	0	1
4	0	0	1	0
5	0	0	1	1
6	0	1	1	0
7	0	1	1	1
8	1	1	1	0
9	1	1	1	1

D	\mathbf{Y}_1	\mathbf{Y}_2	Y ₃	Y ₄
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

2. Перешли к аналитической записи функций и выполнили проверку в среде Electronics Workbench v5.12.

Совершенные конъюнктивные нормальные формы:

 $Y_1 = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor x_3 \lor \neg x_4)$ $\land (x_1 \lor x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)$

 $Y_2 = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor x_3 \lor \neg x_4) \land \\ \land (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)$

 $Y_3 = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4) \land \\ \land (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)$

 $Y_4 = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4)$ $\land (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4)$

Совершенные дизъюнктивные нормальные формы:

 $Y_1 = (x_1 \land x_2 \land x_3 \land \neg x_4) \lor (x_1 \land x_2 \land x_3 \land x_4)$

 $Y_2 = (\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4) \vee (\neg x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge x_2 \wedge x_3 \wedge x_4)$

 $Y_3 = (\neg x_1 \land x_2 \land \neg x_3 \land \neg x_4) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land x_2 \land x_3 \land \neg x_4) \lor (\neg x_1 \land x_2 \land x_3 \land x_4)$

 $Y_4 = (\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land \neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_2 \land$

Вывод: Получили навыки в построении табличное задание булевых функций для выходов преобразователя D-кодов, переходе к каноническим формам задания булевых функций. Познакомились со средой Electronics Workbench, где выполнили проверку полученных аналитических записей.