

Winning Space Race with Data Science

Kelvin Mudita 16/10/2021

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

Data collection

Data wrangling

EDA with data visualization

EDA with SQL

Building an interactive map with Folium

Building a Dashboard with Plotly Dash

Predictive analysis (Classification)

Summary of all results

Exploratory data analysis results

Interactive analytics demo in screenshots

Predictive analysis results

Introduction

Project background and context

- The aim of the project is to determine if the Falcon 9 first stage will land successfully.
- The cost of launching the SpaceX Falcon 9 rocket is 62 million dollars.
- Alternative providers cost more than 165 million dollars to launch.
- The results of this project are usefull to alternative companies who wants to bid against SpaceX for a rocket launch.

Problems you want to find answers

- What are the factors that determines successful launching?
- What is the impact of these rocket factors on the success
- What conditions does SpaceX have to achieve to get the best results and ensure the best rocket success landing rate.

Methodology

Executive Summary

- Data collection methodology: SpaceX Rest API and Web Scrapping from Wikipedia
- Performed Data Wrangling Encoding data fields for Machine Learning and dropping irrelevant columns
- Performed EDA using visualization and SQ Plotting: Scatter Graphs, Bar Graphs to show relationships between variables to show patterns of data.
- Performed interactive visual analytics using Folium and Plotly Dash
- Performed predictive analysis using classification models How to build, tune, evaluate classification models

Data Collection

Data collection –SpaceX API

1 .Getting Response from API

```
simplified flow chart
```

```
spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url).json()
```

2. Converting Response to a .json file

```
response = requests.get(static_json_url).json()
data = pd.json_normalize(response)
```

3. Apply custom functions to clean data

getLaunchSite(data)
getPayloadData(data)
getCoreData(data)

getBoosterVersion(data)

4. Assign list to dictionary then dataframe

```
launch_dict = {'FlightNumber': list(data['flight_number']),
'Date': list(data['date']),
'BoosterVersion':BoosterVersion,
'PayloadMass':PayloadMass,
'Orbit':Orbit,
'LaunchSite':LaunchSite,
'Outcome':Outcome,
'Flights':Flights,
'GridFins':GridFins,
'Reused':Reused,
'Legs':Legs,
'LandingPad':LandingPad,
'Block':Block,
'ReusedCount':ReusedCount,
'Serial':Serial,
'Longitude': Longitude,
'Latitude': Latitude}
df = pd.DataFrame.from dict(launch dict)
```

5. Filter dataframe and export to flat file (.csv)

```
data_falcon9 = df.loc[df['BoosterVersion']!="Falcon 1"]
data_falcon9.to_csv('dataset_part_1.csv', index=False)
```

1 .Getting Response from HTML

page = requests.get(static_url)

2. Creating BeautifulSoup Object 🔶

soup = BeautifulSoup(page.text, 'html.parser')

3. Finding tables

Data collection – Web Scrapping

_ ' _ '

4. Getting column names

html tables = soup.find all('table')

```
column_names = []
temp = soup.find_all('th')
for x in range(len(temp)):
    try:
    name = extract_column_from_header(temp[x])
    if (name is not None and len(name) > 0):
        column_names.append(name)
    except:
    pass
```

5. Creation of dictionary

```
launch_dict= dict.fromkeys(column_names)

# Remove an irrelvant column
del launch_dict['Date and time ( )']

launch_dict['Flight No.'] = []
launch_dict['Launch site'] = []
launch_dict['Payload'] = []
launch_dict['Payload mass'] = []
launch_dict['Orbit'] = []
launch_dict['Customer'] = []
launch_dict['Launch outcome'] = []
launch_dict['Yersion Booster']=[]
launch_dict['Booster landing']=[]
launch_dict['Date']=[]
launch_dict['Time']=[]
```

6. Appending data to keys (refer) to notebook block 12

7. Converting dictionary to dataframe

df = pd.DataFrame.from_dict(launch_dict)

8. Dataframe to .CSV

```
df.to_csv('spacex_web_scraped.csv', index=False)
```

EDA with data visualization

Scatter Graphs:

Flight Number VS. Payload Mass Flight Number VS. Launch

Site Payload VS. Launch Site

Orbit VS. Flight Number Payload VS. Orbit Type

Scatter plots show how much one vvariable is

affected by another.

Bar Graph:

Mean VS. Orbit

A bar diagram helps to compare sets of data between different groups at a glance. The graph represents categories on one axis and a discrete value in the other.

Line Graph:

Success Rate VS. Year

Line graphs helps to show data variables and trends very clearly and can help to make predictions about the results of data not yet recorded

EDA with SQL

List of SQL queries

- SQL query to Display the names of the unique launch sites in the space mission.
- SQL query to Display 5 records where launch sites begin with the string 'KSC'
- SQL query to Display the total payload mass carried by boosters launched by NASA (CRS)
- SQL query to Display average payload mass carried by booster version F9 v1.1
- SQL query to List the date where the successful landing outcome in drone ship was achieved.
- SQL query to List the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- SQL query to List the total number of successful and failure mission outcomes
- SQL query to List the names of the booster versions which have carried the maximum payload mass.
- SQL query to List the records which will display the month names, successful landing outcomes in ground pad ,booster versions, launch_site for the months in year 2017
- SQL query to Rank the count of successful landing_outcomes

Build an Interactive Map with Folium

- To visualize the Launch Data into an interactive map.
- Latitude and Longitude Coordinates at each launch site were used. A Circle Marker around each launch site with a label of the name of the launch site was also added.
- The dataframe launch outcomes(failures, successes) was assigned to classes 0 and 1 with Green and Red markers on the map in a MarkerCluster()
- Using Haversine's formula the distance from the Launch Site to various landmarks was calculated to find various trends about what is around the Launch Site to measure patterns.
- Lines are drawn on the map to measure distance to landmarks.

Build a Dashboard with Plotly Dash

- The dashboard is built with Flask and Dash web framework.
 - Pie Chart showing the total launches by a certain site/all sites
 - display relative proportions of multiple classes of data.
 - size of the circle can be made proportional to the total quantity it represents.

Scatter Graph showing the relationship with Outcome and Payload Mass (Kg) for the different Booster Versions

- It shows the relationship between two variables.
- It is the best method to show you a non-linear pattern.
- The range of data flow, i.e. maximum and minimum value, can be determined.
- Observation and reading are straightforward.

Predictive analysis Classification

BUILDING MODEL

- Load our dataset into NumPy and Pandas
- Transform Data
- Split our data into training and test data sets
- Check how many test samples we have
- Decide which type of machine learning algorithms we want to use
- Set our parameters and algorithms to GridSearchCV
- Fit our datasets into the GridSearchCV objects and train our dataset.

EVALUATING MODEL

- Check accuracy for each model
- Get tuned hyperparameters for each type of algorithms
- Plot Confusion Matrix

IMPROVING MODEL

- Feature Engineering
- Algorithm Tuning

FINDING THE BEST PERFORMING CLASSIFICATION MODEL

- The model with the best accuracy score wins the best performing model
- In the notebook there is a dictionary of algorithms with scores at the bottom of the notebook.

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Flight Site

The more amount of flights at a launch site the greater the success rate at a launch site.

Payload Mass vs. Launch Site

The greater the payload mass for Launch Site CCAFS SLC 40 the higher the success rate for the Rocket.

Success rate vs. Orbit type

Flight Number vs. Orbit type

The LEO orbit the Success appears related to the number of flights

Payload vs. Orbit type

Heavy payloads have a negative influence on GTO orbits and positive on GTO and Polar LEO (ISS) orbits.

Launch success yearly trend

All launch site names

select DISTINCT Launch_Site from tblSpaceX

Using the word DISTINCT in the query means that it will only show Unique values in the Launch_Site column from tblSpaceX

Launch site names begin with 'CCA'

select TOP 5 * from tblSpaceX WHERE Launch_Site LIKE 'KSC%'

	Date	Time_UTC	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
0	19-02-2017	2021-07-02 14:39:00.0000000	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
1	16-03-2017	2021-07-02 06:00:00.0000000	F9 FT B1030	KSC LC-39A	EchoStar 23	5600	GT0	EchoStar	Success	No attempt
2	30-03-2017	2021-07-02 22:27:00.0000000	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GT0	SES	Success	Success (drone ship)
3	01-05-2017	2021-07-02 11:15:00.0000000	F9 FT B1032.1	KSC LC-39A	NROL-76	5300	LE0	NRO	Success	Success (ground pad)
4	15-05-2017	2021-07-02 23:21:00.0000000	F9 FT B1034	KSC LC-39A	Inmarsat-5 F4	6070	GTO	Inmarsat	Success	No attempt

Using the word **TOP 5** in the query means that it will only show 5 records from **tblSpaceX** and **LIKE** keyword has a wild card with the words **'KSC%'** the percentage in the end suggests that the Launch_Site name must start with KSC.

Total payload mass

select SUM(PAYLOAD_MASS_KG_) TotalPayloadMass from tblSpaceX where Customer = 'NASA (CRS)'", 'TotalPayloadMass

Using the function **SUM** summates the total in the column **PAYLOAD_MASS_KG_**The **WHERE** clause filters the dataset to only perform calculations on **Customer NASA (CRS)**

Average Payload Mass carried by booster version F9 v1.1

select AVG(PAYLOAD_MASS_KG_) AveragePayloadMass from tblSpaceX where Booster_Version = 'F9 v1.1'

Using the function AVG works out the average in the column PAYLOAD_MASS_KG_

The WHERE clause filters the dataset to only perform calculations on Booster_version F9 v1.1

First successful ground landing date

select MIN(Date) SLO from tblSpaceX where Landing_Outcome = "Success (drone ship)"

Date which first Successful landing outcome in drone ship was acheived.

06-05-2016

Using the function **MIN** works out the minimum date in the column **Date**

The WHERE clause filters the dataset to only perform calculations on Landing_Outcome Success (drone ship)

Successful drone ship landing with payload between 4000 and 6000

select Booster_Version from tblSpaceX where Landing_Outcome = 'Success (ground pad)' AND Payload_MASS_KG_ > 4000 AND Payload_MASS_KG_ < 6000

The WHERE clause filters the dataset to Landing_Outcome =Success (drone ship)

The AND clause specifies additional filter conditions Payload_MASS_KG_ > 4000 AND Payload_MASS_KG_ < 6000

Total Number of Successful and Failure Mission Outcomes

SELECT(SELECT Count(Mission_Outcome) from tblSpaceX where Mission_Outcome LIKE '%Success%') as Successful_Mission_Outcomes, (SELECT Count(Mission_Outcome) from tblSpaceX where Mission_Outcome LIKE '%Failure%') as Failure_Mission_Coutcomes

The LIKE '%foo%' wildcard shows that in the record the foo phrase is in any part of the string in the records for example.

PHRASE "(Drone Ship was a Success)" LIKE '%Success%' Word 'Success' is in the phrase the filter will include it in the dataset

Boosters maximum payload

SELECT DISTINCT Booster_Version, MAX(PAYLOAD_MASS _KG_) AS [Maximum Payload Mass] FROM tblSpaceX GROUP BY Booster_Version ORDER BY [Maximum Payload Mass] DESC

	Booster_Version	Maximum Payload Mass		
9	F9 B5 B1048.4	15600		
1	F9 B5 B1048.5	15600		
2	F9 B5 B1049.4	15600		
3	F9 B5 B1049.5	15600		
4	F9 B5 B1049.7	15600		
92	F9 v1.1 B1003	500		
93	F9 FT B1038.1	475		
94	F9 B4 B1045.1	362		
95	F9 v1.0 B0003	Ø		
96	F9 v1.0 B0004	Ø		
97 rows × 2 columns				

Using the word DISTINCT in the query means that it will only show Unique values in the Booster_Version column from tblSpaceX GROUP BY puts the list in order set to a certain condition. DESC means its arranging the dataset into descending order

2015 launch records

SELECT DATENAME(month, DATEADD(month, MONTH(CONVERT(date, Date, 105)), 0) - 1) AS Month, Booster_Version, Launch_Site, Landing_Outcome FROM tblSpaceX WHERE (Landing_Outcome LIKE N'%Success%') AND (YEAR(CONVERT(date, Date, 105)) = '2015')

Month	Booster_Version	Launch_Site	Landing_Outcome
January	F9 FT B1029.1	VAFB SLC-4E	Success (drone ship)
February	F9 FT B1031.1	KSC LC-39A	Success (ground pad)
March	F9 FT B1021.2	KSC LC-39A	Success (drone ship)
May	F9 FT B1032.1	KSC LC-39A	Success (ground pad)
June	F9 FT B1035.1	KSC LC-39A	Success (ground pad)
June	F9 FT B1029.2	KSC LC-39A	Success (drone ship)
June	F9 FT B1036.1	VAFB SLC-4E	Success (drone ship)
August	F9 B4 B1039.1	KSC LC-39A	Success (ground pad)
August	F9 FT B1038.1	VAFB SLC-4E	Success (drone ship)
September	F9 B4 B1040.1	KSC LC-39A	Success (ground pad)
0ctober	F9 B4 B1041.1	VAFB SLC-4E	Success (drone ship)
0ctober	F9 FT B1031.2	KSC LC-39A	Success (drone ship)
0ctober	F9 B4 B1042.1	KSC LC-39A	Success (drone ship)
December	F9 FT B1035.2	CCAFS SLC-40	Success (ground pad)

The function CONVERT converts NVARCHAR to Date. WHERE clause filters Year to be 2015

Rank success count between 2010-06-04 and 2017-03-20

SELECT COUNT(Landing_Outcome) FROM tblSpaceX WHERE (Landing_Outcome LIKE '%Success%') AND (Date > '04-06-2010') AND (Date < '20-03-2017')

Function COUNT counts records in column WHERE filters data LIKE (wildcard) AND (conditions) AND (conditions)

<Folium map screenshot 1>

We can see that the SpaceX launch sites are in the United States of America coasts. Florida and California

<Folium Map Screenshot 2>

<Dashboard screenshot 1>

We can see that KSC LC-39A had the most successful launches from all the sites

<Dashboard Screenshot 2>

KSC LC-39A achieved a 76.9% success rate while getting a 23.1% failure rate

<Dashboard screenshot 3>

Low Weighted Payload 0kg - 4000kg

Heavy Weighted Payload 4000kg - 10000kg

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

Classification Accuracy using training data

As you can see our accuracy is extremely close but we do have a winner its down to decimal places! using this function

bestalgorithm = max(algorithms, key=algorithms.get)

	Accuracy	Algorithm
0	0.653571	KNN
1	0.667857	Tree
2	0.667857	LogisticRegression


```
Best Algorithm is Tree with a score of 0.6678571428571429

Best Params is : {'criterion': 'gini', 'max_depth': 2, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'splitter': 'best'}
```

After selecting the best hyperparameters for the decision tree classifier using the validation data, we achieved 83.33% accuracy on the test data.

Confusion Matrix for the Tree

Examining the confusion matrix, we see that Tree can distinguish between the different classes. We see that the major problem is false positives.

CONCLUSIONS

- 1. The Tree Classifier Algorithm is the best for Machine Learning for this dataset
- 2. Low weighted payloads perform better than the heavier payloads
- 3. The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- 4. KSC LC-39A had the most successful launches from all the sites
- 5. Orbit GEO, HEO, SSO, ES-L1 has the best Success Rate