a) Descriptive statistics and normality checks for magnesium values follow. The mean and median values are very close, with the median (50% point) being 19.5 and the mean being just slightly below that. There is a slight positive skew of .213 indicating a small tail to the right, but we should still be able to use the standard deviation as a measure of spread here. The standard deviation of 3.34 indicates about 95% of magnesium values would be expected to fall between about 12.8 and 26.2 if the data is roughly normal.

Variable: Magnesium

Moments					
N	178	178 Sum Weights			
Mean	19.4949438	Sum Observations	3470.1		
Std Deviation	3.33956377	Variance	11.1526862		
Skewness	0.21304689	Kurtosis	0.48794154		
Uncorrected SS	69623.43	Corrected SS	1974.02545		
Coeff Variation	17.1304098	Std Error Mean	0.25031089		

	Basic Statistical Measures					
Loca	Location Variability					
Mean	19.49494	Std Deviation	3.33956			
Median	19.50000	Variance	11.15269			
Mode	20.00000	Range	19.40000			
		Interquartile Range	4.30000			

From the following normality tests, we see no strong evidence that the magnesium values are far from normal. The Shapiro-Wilk test, specific to normality, is insignificant at a .05 level, as are the other 3 distributional goodness of fit tests. The histogram is very bell-shaped, and the probability plot is also pretty close to a straight line indicating that the data is close to normal. Based on these results, we would not reject normality and it would be fine to use tests that assume normality on the magnesium values as a whole.

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W 0.990225 Pr < W		0.2639			
Kolmogorov-Smirnov	D	0.063491	Pr > D	0.0793		
Cramer-von Mises	W-Sq = 0.072874 Pr > W-Sq > 0.072874 Pr		>0.2500			
Anderson-Darling	A-Sq	0.500758	Pr > A-Sq	0.2138		

b) Now we consider the magnesium values for each cultivar. For cultivar 1, the mean and median are lower than in the combined data, with the mean being 17 and the median slightly lower at 16.8. The skewness is about the same as before with a small positive value of .206. We can again trust the standard deviation as a measure of spread and find that it is smaller than in the overall sample, with a value of 2.55.

Normality is again not rejected, as the p-values for all tests of normality are greater than .05; the histogram is still fairly bell-shaped; and despite a little more deviation from a straight line in the probability plot, the plot is still pretty straight and demonstrates no reason for concern about a normality assumption.

Variable: Magnesium

Alcohol=1

Moments					
N	59	Sum Weights			
Mean	17.0372881	Sum Observations	1005.2		
Std Deviation	2.54632245	Variance	6.48375804		
Skewness	0.20588305	Kurtosis	1.19850312		
Uncorrected SS	17501.94	Corrected SS	376.057966		
Coeff Variation	14.9455854	Std Error Mean	0.33150295		

	Basic Statistical Measures					
Loca	Location Variability					
Mean	17.03729	Std Deviation	2.54632			
Median	16.80000	Variance	6.48376			
Mode	16.00000	Range	13.80000			
		Interquartile Range	2.80000			

Tests for Normality					
Test Statistic p Value					
Shapiro-Wilk	W 0.973147 Pr < W 0.				
Kolmogorov-Smirnov	D	0.104581	Pr > D	0.1059	
Cramer-von Mises	W-Sq	0.09571	Pr > W-Sq	0.1288	
Anderson-Darling	A-Sq	0.559479	Pr > A-Sq	0.1457	

Alcohol=1

Alcohol=1

For cultivar 2, the mean and median are just slightly above those for the overall sample. The skewness is a bit higher at .43, indicating a more noticeable right tail in the cultivar 2 distribution, but the skewness is still not terribly strong and using the standard deviation as a measure of spread should still be fine. The standard deviation is 3.35 is almost the same as for the overall sample.

The tests for normality all have p-values greater than .07. While the sample distribution is farther from normal that the overall sample and that for cultivar 1, we still do not see a statistically significant difference. The histogram again looks pretty bell-shaped and the probability plot reasonably straight, so we again determine a normality assumption is not unreasonable.

Variable: Magnesium

Alcohol=2

	Moments					
N	71	Sum Weights	71			
Mean	20.2380282	Sum Observations	1436.9			
Std Deviation	3.34977041	Variance	11.2209618			
Skewness	0.43078349	Kurtosis	1.22117379			
Uncorrected SS	29865.49	Corrected SS	785.467324			
Coeff Variation	16.5518616	Std Error Mean	0.39754461			

	Basic Statistical Measures					
Loca	Location Variability					
Mean	20.23803	Std Deviation	3.34977			
Median	20.00000	Variance	11.22096			
Mode	18.00000	Range 19.4000				
		Interquartile Range	4.00000			

Note: The mode displayed is the smallest of 2 modes with a count of 7.

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	W 0.968778 Pr < W			0.0740	
Kolmogorov-Smirnov	D	0.083016	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.099353	Pr > W-Sq	0.1152	
Anderson-Darling	A-Sq	0.690754	Pr > A-Sq	0.0722	

Alcohol=2

Alcohol=2

For cultivar 3, we see the highest mean and median values, roughly 1.5 to 2 higher than in the overall sample. We also see a positive skewness just slightly above the skewness of cultivar 2 and a standard deviation a little less than that for cultivar 1. If normality is not rejected, we can still use standard deviation as our measure of spread for cultivar 3.

As we look at the normality tests, we see that Shapiro-Wilk is insignificant at a .05 level, Cramer-von Mises and Anderson-Darling are close to .05 but still insignificant at a .05 level, and Kolmogorov-Smirnov is very significant at a .05 level. We see the same story in the plots. The histogram is starting to skew away from the bell curve with some more concentrated weight on the left side, and the probability plot shows more dips and peaks around a straight line. This indicates that we are seeing more deviation from normality than before and this sample is approaching the point at which we would need to reject normality, but it will still be OK to assume normality when we perform tests on this data.

Variable: Magnesium

Alcohol=3

Moments					
N	48	Sum Weights	48		
Mean	21.4166667	Sum Observations	1028		
Std Deviation	2.25816093	Variance	5.09929078		
Skewness	0.46792981	Kurtosis	-0.5241882		
Uncorrected SS	22256	Corrected SS	239.666667		
Coeff Variation	10.5439421	Std Error Mean	0.32593746		

	Basic Statistical Measures					
Loca	Location Variability					
Mean	21.41667	Std Deviation	2.25816			
Median	21.00000	Variance	5.09929			
Mode	20.00000	Range	9.50000			
		Interquartile Range	3.00000			

Tests for Normality					
Test Statistic p Value					
Shapiro-Wilk	W 0.959762 Pr < W 0.0				
Kolmogorov-Smirnov	D	0.151453	Pr > D	< 0.0100	
Cramer-von Mises	W-Sq	0.124029	Pr > W-Sq	0.0515	
Anderson-Darling	A-Sq	0.729006	Pr > A-Sq	0.0545	

Alcohol=3

Alcohol=3

a) In Exercise 1, we found that normality was not unreasonable for magnesium values as a whole. Thus, we choose a one-sided t test to check whether cultivar 2 has a mean value significantly higher than 20. The p-value for that test is .2756, so we would not reject the null hypothesis that the population mean magnesium value for cultivar 2 is 20, and we conclude that the true population mean magnesium value for cultivar 2 is not significantly different from 20.

Variable: Magnesium

DF	t Value	Pr > t
70	0.60	0.2756

b) In Exercise 1, we concluded that magnesium values for cultivars 1 and 3 were each reasonably close to normal, and so we use a one-sided t test to see if magnesium levels are significantly higher in cultivar 3 than in cultivar 1 wines. From the folded F test, we conclude that the variances for the two populations are not significantly different, and it is fine to use the pooled estimate of variance for our t test. The hypothesis test is highly significant indicating that magnesium levels are significantly higher in cultivar 3 wines than in cultivar 1 wines. Though not asked for in the exercise, the pooled estimate of the difference indicates magnesium levels would be expected to be about 4.38 higher in cultivar 3 wines than in cultivar 1 wines.

Variable: Magnesium

41 1 1		3.4	050/ 63		CLID		CL Std
Alcohol	Method	Mean	95% CL Mean		Sta Dev	Dev	
1		17.0373	16.3737	17.7009	2.5463	2.1555	3.1115
3		21.4167	20.7610	22.0724	2.2582	1.8798	2.8285
Diff (1-2)	Pooled	-4.3794	-Infty	-3.5983	2.4216	2.1337	2.8000
Diff (1-2)	Satterthwaite	-4.3794	-Infty	-3.6078			

Variable: Magnesium

Method	Variances	DF	t Value	Pr < t
Pooled	Equal	105	-9.30	<.0001
Satterthwaite	Unequal	104.19	-9.42	<.0001

Equality of Variances						
Method	Num DF	Den DF	F Value	Pr > F		
Folded F	58	47	1.27	0.3970		

a) As we look at the normality checks for color intensity for cultivars 1 and 3, we start to see some conflicting results. For cultivar 1, Shapiro-Wilk is significant, but the other distributional tests are not. Looking at the histogram, the distribution does not look very normal, and in the probability plot the plot still looks to largely follow a straight line with some deviation at the edges. We should be a little cautious about assuming normality for cultivar 1 color intensities.

Variable: Color

Alcohol=1

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.955786	Pr < W	0.0315		
Kolmogorov-Smirnov	D	0.083413	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.067573	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.575064	Pr > A-Sq	0.1345		

Alcohol=1

Alcohol=1

For cultivar 3, all but Kolmogorov-Smirnov solidly reject normality. The histogram and probability plot also indicate a long right tail. We should clearly reject normality for cultivar 3.

Variable: Color

Alcohol=3

Tests for Normality						
Test	Sta	Statistic p V				
Shapiro-Wilk	W	0.887202	Pr < W	0.0002		
Kolmogorov-Smirnov	D	0.107623	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.144202	Pr > W-Sq	0.0276		
Anderson-Darling	A-Sq	1.09874	Pr > A-Sq	0.0067		

Alcohol=3

Alcohol=3

b) Having rejected normality for cultivar 3, we need to use a Wilcoxon rank sum test to compare color intensities for cultivar 1 and 3. Here the statistic is based on the sum for cultivar 3 and the left-sided test is highly significant indicating that color intensities for cultivar 3 are lower than for cultivar 1. We can also see this in the box plot as well. Consumers who prefer greater color intensity would tend to prefer cultivar 1 wines.

Wilcoxon Scores (Rank Sums) for Variable Color Classified by Variable Alcohol							
Alcohol N Scores Under H0 Std Dev Sco							
1	59	4367.0	3186.0	159.614423	74.016949		
3	48	1411.0	2592.0	159.614423	29.395833		
Average scores were used for ties.							

Wilcoxon Two-Sample Test				
Statistic	1411.0000			
Normal Approximation				
Z	-7.3959			
One-Sided Pr < Z	<.0001			
Two-Sided Pr > Z	<.0001			
t Approximation				
One-Sided Pr < Z	<.0001			
Two-Sided Pr > Z	<.0001			
Z includes a continuity correction of 0.5.				

a) From the scatter plots for the entire data set, there are no obvious nonlinear trends or concerning evidence of non-constant variance. The plots mostly look like very spread out points. Based on the plots, Pearson correlation will be fine here.

From the correlation matrix, we find 3 statistically significant correlations. The correlation between alkalinity and hue is statistically significant and has a positive estimate of .26. This indicates a small tendency for alkalinity to increase as hue increases. Alkalinity and magnesium have a higher positive correlation of .44, indicating a larger, but still small to moderate, tendency for those two variables to increase and decrease together. The correlation between magnesium and color is negative and fairly small in magnitude indicating a small tendency for one to increase as the other decreases.

Pearson Correlation Coefficients, N = 178 Prob > r under H0: Rho=0							
	Alcalinity Color Hue Magnesium						
Alcalinity	1.00000	0.00965 0.8983	0.25889 0.0005	0.44337 <.0001			
Color	0.00965 0.8983	1.00000	-0.02525 0.7380	-0.19733 0.0083			
Hue	0.25889 0.0005	-0.02525 0.7380	1.00000	0.01873 0.8040			
Magnesium	0.44337 <.0001	-0.19733 0.0083	0.01873 0.8040	1.00000			

b) Checking scatter plots for each cultivar, we see no concerning nonlinear trends or high variability of variances for any of the pairs of variables. We may notice, though, that linear trends are becoming more apparent for some variable pairs within cultivars. Pearson correlation should again be used for each cultivar.

Alcohol=1

Alcohol=2

Alcohol=3

Significant correlations within cultivars are noticeably different from what we saw in the combined sample. For cultivar 1, we see moderate statistically significant correlations between alkalinity and magnesium and between hue and color intensity.

Alcohol=1

Pearson Correlation Coefficients, N = 59 Prob > r under H0: Rho=0						
Alcalinity Color Hue Magnesiun						
Alcalinity	1.00000	-0.14547 0.2716	-0.12422 0.3486	0.54933 <.0001		
Color	-0.14547 0.2716	1.00000	0.42470 0.0008	-0.17363 0.1885		
Hue	-0.12422 0.3486	0.42470 0.0008	1.00000	-0.21095 0.1088		
Magnesium	0.54933 <.0001	-0.17363 0.1885	-0.21095 0.1088	1.00000		

For cultivar 2, there is only one statistically significant correlation, a moderate to strong positive correlation between alkalinity and magnesium.

Alcohol=2

Pearson Correlation Coefficients, N = 71 Prob > r under H0: Rho=0							
	Alcalinity Color Hue Magnesiun						
Alcalinity	1.00000	0.04296 0.7221	0.06025 0.6177	0.69526 <.0001			
Color	0.04296 0.7221	1.00000	-0.07376 0.5410	0.10884 0.3663			
Hue	0.06025 0.6177	-0.07376 0.5410	1.00000	-0.08586 0.4765			
Magnesium	0.69526 <.0001	0.10884 0.3663	-0.08586 0.4765	1.00000			

Cultivar 3's statistically significant correlations are similar to those for cultivar 1, but much stronger. There is a stronger positive relationship between hue and color and between magnesium and alkalinity for cultivar 3 wine than for cultivar 1 wines.

Alcohol=3

Pearson Correlation Coefficients, N = 48 Prob > r under H0: Rho=0							
Alcalinity Color Hue Magnesiu							
Alcalinity	1.00000	0.19383 0.1868	0.12515 0.3967	0.75852 <.0001			
Color	0.19383 0.1868	1.00000	0.68491 <.0001	0.26340 0.0705			
Hue	0.12515 0.3967	0.68491 <.0001	1.00000	0.16062 0.2755			
Magnesium	0.75852 <.0001	0.26340 0.0705	0.16062 0.2755	1.00000			

The only correlation consistent across all cultivars and in the sample as a whole is the positive relationship between alkalinity and magnesium, though the magnitude of that correlation varies by sampled group. The other statistically significant correlations for the overall sample are not seen within any of the cultivar subsamples; this can happen when there is a noticeable difference in variable magnitudes for the correlated variables across groups but not within groups.