Congratulations! You passed!

Grade received 91.66% To pass 80% or higher

Go to next item

Impact of Parameter Choices in RL

1	atest	Suhn	nissinr	Grade	91.66%
	Latest	SUDII	1122101	i Grade	31.00%

1.	Which of the following meta-parameters can be tuned to improve performance of the agent? Performance refers to the cumulative reward the agent would receive <i>in expectation</i> across different runs. (Select all that apply)	1/1 point
	Number of hidden-layer units in a neural network approximating the value function	
	○ Correct Correct. If the number of hidden units is too small, the representational capacity may be insufficient for learning good behavioural policies. On the other hand, a large number of hidden units could help to learn a good representation, but learning progress might be very slow due to the sheer number of parameters.	
	Random seed (for the random number generator)	
	The step size in the update rule of the learning algorithm (e.g., alpha in Q-learning)	
	Correct Correct. If the step size is too low, learning might be very slow. But if it is too high, there might be a lot of variance in the learning behaviour.	
	Exploration parameter (e.g., epsilon in e-greedy or the temperature tau in the softmax policy)	
	Correct Correct. We have to try different levels of exploration that the agent begins with, because different problems may require different extents of exploration. We do not know this beforehand.	
2.	Suppose a problem that you have formulated as an MDP has k continuous input dimensions. You are considering using tile coding as a function approximator. With T tilings and t tiles per dimension in each tiling, which of the following represent the resultant number of features? (Assume each tiling covers all k dimensions.)	1/1 point
	○ T·t/k○ T·t·k	
	kT^t● Tt^k	
	○ Correct Correct. The number of features for a single tiling are t^k, and there are T such tilings, resulting in T t^k features in total.	
3.	Which of the following statements regarding feature-construction methods are TRUE? (Select all that apply)	0/1 point
	The feature representation obtained using tile coding changes with time.	
	This should not be selected Incorrect. Tile coding does not have any trainable parameters, and hence the feature representation remains fixed.	

	discrimination.	
	Correct. Recall the <u>Tile coding lecture</u> from Course 3. Tile coding is computationally efficient: with the use of binary feature vectors in tile coding, the weighted sum of features that make up the approximate value function is trivial to compute. For d number of features, one simply computes the indices of the n <d active="" adds="" and="" approximator.<="" as="" be="" choice="" components="" corresponding="" dimensions="" exponentially,="" features="" function="" grows="" grows,="" however,="" might="" n="" networks="" neural="" number="" of="" required="" td="" the="" then="" tiles="" up="" vector.="" weight=""><td></td></d>	
	The feature representation obtained using neural networks changes with time.	
~	A simple implementation of tile coding leads to memory requirements that might be exponential in the number of features.	
(Correct Correct. But through methods like hashing, the memory requirements can often be reduced by large factors with little loss of performance. Check out Section 9.5.4 of Sutton and Barto's textbook for a discussion on this.	
ne	ue or False: Adding more hidden layers (of a fixed finite width) increases the representation capacity of neural twork. For example, if you have a single-hidden layer neural network with 16 units and nonlinear activations, then ding another layer of 16 units to get a neural network with two hidden layers can represent more functions.	1/1 point
•) True	
0) False	
(Correct Correct. With more hidden layers and nonlinear activation functions, the neural network can represent a larger class of nonlinear functions. 	
	ue or False: Adding more hidden layers to a neural network increases the number of parameters needed to be rrned.	1/1 point
•) True	
0) False	
(Correct Correct. More hidden layers leads to more parameters, which take more samples to train/learn	
. Wh	nich of the following statements regarding the exploration approach are TRUE? (Select all that apply)	1 / 1 point
	Both optimistic initial values and epsilon-greedy exploration can be easily used with neural networks, because they are simple exploration strategies.	
	A softmax policy is a limited strategy for exploration because it can only be used with action preferences and policy-gradient methods.	
~	Optimistic initial values are difficult to maintain when using neural networks as a function approximator.	
(Correct Correct. This is because changing one weight of a neural network affects the values of many state-action pairs. This makes it hard to maintain optimistic values for all of the state-actions pairs that haven't been tried yet.	
	Epsilon-greedy exploration is difficult to combine with neural networks.	

If tau is large, the agent's policy is more stochastic.				
	Correct Correct. For large tau, the policy is nearly uniformly random. Such a policy is more stochastic as compared to the near-greedy deterministic policies when tau is small.			
	□ Tau does not affect the exploration at all.☑ For very large tau, the agent's policy is nearly a uniformly-random policy.			
	 Correct Correct. For large tau, the differences between the action preferences/values become negligible. The resulting policy is nearly uniformly random. 			
	For very small tau, the agent mostly selects the greedy action.			
	Correct Correct. For small tau, the differences between the action preferences/values get exaggerated. As a result, the greedy action is picked more often.			
3.	Which of the following statements are true about activation functions? (Select all that apply)	1 / 1 point		
	The gradient of flat regions in the range of an activation function w.r.t. the input is zero.			
	⊙ Correct Correct. This follows from basic calculus and is the root cause of vanishing gradients in sigmoidal activation functions.			
	Linear activation functions (such as f(x)=x) have derivatives close to zero for inputs of large magnitude.			
	For inputs of large magnitude, the derivative of the sigmoid and tanh functions are close to zero.			
	Correct Correct. The gradient of these S-shaped functions w.r.t. the input is non-zero only in a small range around 0. For inputs of large magnitude, sigmoid and tanh activation functions 'saturate'.			
	Rectified Linear Units (ReLUs) are linear activation functions.			
э.	Consider you are using a neural network to approximate the action-value function of a reinforcement learning agent. You decide to use a neural network with two hidden layers. Now you want to choose the activation function for the hidden layers and the output layer. One option is to use a neural network with tanh activation functions in both hidden layers, and a linear activation in the output layer. Another option is to use a neural network with linear activations in both the hidden layers and the output layer. True or False: In both cases (option one and option two), the neural network can represent the same class of action-value functions.	1/1 point		
	TrueFalse			
	Correct Correct. A network comprised solely of linear activation functions can only represent linear functions. On the other hand, a network comprised of a combination of linear and nonlinear activation functions can represent some nonlinear functions.			

11. Suppose we want to find the optimal policy that obtains the maximum undiscounted return per episode in some task. We are using Expected Sarsa. With the rest of the meta-parameters fixed, we want to find the best setting of the stepsize that results in the best performance in this setting. In the following graph, the blue line represents how the performance measure varies with stepsize. Obviously, we do not have this information beforehand, and we are selecting a range of stepsizes to try out with our agent. Which of the following graphs best represent the range of stepsizes that should be tried out for a given experiment? (the orange points represent the selected stepsizes)

1 / 1 point

✓ Correct

Correct. We should test a sufficient range and number of values for every meta-parameter to increase the likelihood of finding the best setting of meta-parameters for our algorithms.

12. True or False: Epsilon-greedy exploration uses information from all the action values of a particular state when choosing a *non-greedy* action in that state.

1/1 point

False

O True

Correct
Correct. When a non-greedy action is to be picked, epsilon-greedy disregards all the action values and picks one of the actions randomly. On the other hand, the probability of picking an action with a softmax operator is proportional to the (exponentiated) value of that action.