Cardinality

Let A be a finite set.

The cardinality of A, written |A|, is the number of distinct elements contained in A If A and B are disjoint finite sets, then $|A \cup B| = |A| + |B|$

Proof:

$$\mathsf{Let}\; |A| = n, |B| = m$$

Then there exist distinct $a_1, \ldots, a_n, b_1, \ldots, b_m$ such that $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$.

Since A and B are disjoint, we have $a_i \neq b_j$ for all $1 \leq i \leq n$ and $1 \leq j \leq m$

Then $A \cup B = \{a_1, \dots, a_n, b_1, \dots, b_m\}$, which are all distinct, so:

$$|A \cup B| = n + m = |A| + |B|$$

Let A and B be finite sets. $|A \cup B| = |A| + |B| - |A \cap B|$.

Proof: By the previous part, and a previous exercise:

$$|A| = |A \setminus B| + |A \cap B|$$

$$|B| = |B \setminus A| + |A \cap B|$$

$$|A \cup B| = |A \setminus B| + |A \cap B| + |B \setminus A|$$

SO

$$|A \cup B| = |A \setminus B| + |A \cap B| + |B \setminus A|$$

= $|A| - |A \cap B| + |A \cap B| + |B| - |A \cap B|$
= $|A| + |B| - |A \cap B|$

Cardinality of Sets

For any sets A,B, we define $A\approx B\triangleq \exists f:A\rightarrow B$ (f is a bijection)

Proposition

≈ satisfies the criteria of an equivalence relation.

Proof: We need to show that \approx is reflexive, symmetric and transitive.

The relation \approx is reflexive, as $Id_A : A \rightarrow A$ is a *bijection*.

To show that it is symmetric, $A \approx B$ implies that there is a bijection $f: A \rightarrow B$. By previous proposition, it follows that f has an inverse f^{-1} which is also a bijection. Hence $B \approx A$.

The fact that \approx is transitive follows from the fact that a composition of bijections is a bijection, as shown before. \square

(Dual) Cantor-Bernstein: If there exists injective (or surjective) functions $f:A\to B$ and $g:B\to A$, then $A\approx B$

Important Knowledge

$$IN \approx Z$$
 $IN \approx \{V \subseteq IN \mid \exists n \in IN \ (|V| = n)\}$ $IN \approx IN^2$ $IN \not\approx IN$ $IN \approx IN$

Proving $N pprox N^2$

We put the pairs in an infinite grid:

We visit each pair, and only once.

Proving $R pprox R^2$

Peano builds a surjection from [0,1] (the closed interval of reals between 0 and 1) to $[0,1]^2$ in steps:

etc. In the limit, this is a surjection onto $[0,1]^2$

We also know that g(x,y)=x is a surjection from $[0,1]^2$ to [0,1]; then by Cantor-Bernstein we get $[0,1]^2\approx [0,1]$

It is easy to show that [0,1]pprox R and thereby $Rpprox R^2$ and also Cpprox R

An Example

There is a natural *bijection* $f: (A \times B) \times C \rightarrow A \times (B \times C)$:

$$f(\langle a, b \rangle, c) = \langle a, \langle b, c \rangle \rangle$$

The function $g: A \times (B \times C) \rightarrow (A \times B) \times C$:

$$g(a, \langle b, c \rangle) = \langle \langle a, b \rangle, c \rangle$$

is the inverse of f; so $(A \times B) \times C \approx A \times (B \times C)$.

To be precise:

$$Left (x, y) = x$$

$$Right (x, y) = y$$

$$f(p, y) = \langle Left (p), \langle Right (p), y \rangle \rangle$$

$$g(x, p) = \langle \langle x, Left (p) \rangle, Right (p) \rangle$$

Another Example

Consider the set *Even* of even natural numbers.

There is a **bijection** between Even and N given by f(n)=2n

Not all functions from Even to N are bijections.

The function $g: Even \rightarrow N$ given by g(n) = n is **one-to-one** but **not onto**.

To show that $Even \approx N$, it is enough to show the existence of such a bijection.