

Analysis of Cosmic-Ray Anisotropy A HAWC and IceCube Collaboration

Juan Carlos Díaz Vélez, Riya Kore, Ferris Wolf Paolo Desiati UW-Madison

8 Dec, 2023

The IceCube Observatory

The IceCube Observatory

The HAWC Observatory

The HAWC Observatory

A large-scale ~TeV cosmic ray anisotropy at the level of 10⁻³ has been observed and measured over the last few decades as well as a small-scale structures of angular size from 10° to 30° with an amplitude of 10⁻⁴.

A number of observatories in the North and only IceCube in the southern hemisphere.

The IceCube and HAWC Data Sets

Individual experiments have provided partial sky coverage that limits the interpretation of the results. This first full-sky combined observation at the same energy is done with two observatories covering most of the celestial sphere.

	IceCube	HAWC
Hemisphere	Southern	Northern
Latitude	-90∘	19°
Detection method	muons produced by CR	air showers produced by CR and γ
Field of view	-90°/-20°, ~4 sr (same sky over 24h)	-30° /68° , ~2 sr (8 sr observed)/24 h
Detector trigger rate	2.5 kHz	25 kHz

E_med=10 (-3.31, +37.3) E_med=38.5 (-9.23, +185) E_med=98.2 (-18.2, +557)

Overlap Region

Method for measuring CR anisotropy

1

Build a binned data map using the equatorial coordinates of the events

2

Construct a "reference" map by integrating acceptance over 24 hours.

Time-scrambling:

$$(\theta, \phi, t) \to (\alpha, \delta) \quad (\theta, \phi, t') \to (\alpha', \delta')$$

LLH:

$$\mathcal{L}(n|I,\mathcal{N},\mathcal{A}) = \prod_{r} rac{(\mu_{ au i})^{n_{ au i}} e^{-\mu_{ au i}}}{n_{ au i}!}$$
 ,

M. Ahlers et al 2016 ApJ 823 10

3

Correlate pixels to increase sensitivity to different angular scales

Relative Intensity

$$\delta I(\alpha, \delta)_i = \frac{N(\alpha, \delta)_i - \langle N \rangle (\alpha, \delta)_i}{\langle N \rangle (\alpha, \delta)_i}$$

4

Calculate relative differences between data and reference with significance.

$$s_i = \sqrt{2} \left\{ N_i \log \left[\frac{1+\alpha}{\alpha} \left(\frac{N_i}{N_i + N_o} \right) \right] + N_o \log \left[(1+\alpha) \left(\frac{N_o}{N_i + N_o} \right) \right] \right\}^{1/2}$$

Li, T. P. & Ma, Y. Q. 1983, ApJ 272

5

Calculate statistical significance for each pixel

Combined IceCube-HAWC

Partial sky-coverage

Multipole components are subject to crosstalk caused by partial sky coverage since there is a degeneracy between different *e*-modes.

A purely dipole can result in an artificial quadrupole due to partial sky coverage.

A. U. Abeysekara et al 2019 ApJ 871 96

Overlapping Region

- Plotting it in a graph format helps us find the statistical compatibility of the two relative intensities
- We used the Chi squared test to find this compatibility
- Bins 2 & 3 had a value of 1.06 and 1.89 respectively.

Thank you