(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 December 2001 (13.12.2001)

PCT

(10) International Publication Number WO 01/93682 A1

(51) International Patent Classification⁷: 43/84, 43/713, 43/707, 43/74

A01N 43/54,

(74) Agent: BASTIAN, Werner; c/o Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).

(21) International Application Number: PCT/EP01/06389

(22) International Filing Date: 6 June 2001 (06.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 0014022.8 8 June 2000 (08.06.2000) GB

(71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

75) Inventors/Applicants (for US only): EBERLE, Martin [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). STIERLI, Daniel [CII/CII]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). PILLONEL, Christian [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CII-4058 Basel (CII). ZIEGLER, Hugo [CH/CH]; Im Bohnacker 15, CH-4108 Witterswil (CH).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

CM, HR, HO, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,

ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report
before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: N-PHENYL-4-(4-PYRIDYL)-2-PYRIMIDINEAMINE DERIVATIVES

01/93682 A1

(57) Abstract: The present invention relates to a method of protecting plants against attack or infestation by phytopathogenic organisms, such as nematodes or especially microorganisms, preferably fungi, bacteria and viruses, or combinations of two or more of these organisms, by applying at least one compound of the formula (I): wherein n is 0 or 1, R₁ is halogen, alkoxy, haloalkyl, haloalkoxy or alkyl, R₂ is hydrogen, halogen, alkyl, haloalkyl, alkoxy or haloalkoxy, each of R₃, R₄ and R₅ is,

independently of the others, hydrogen, lower alkyl or halogen, and R₆ is as defined in claim 1. The invention also relates to new compounds of formula (I), their preparation, use and compositions comprising said compound.

N-PHENYL-4-(4-PYRIDYL)-2-PYRIMIDINEAMINE DERIVATIVES

The present invention relates to a method of protecting plants against attack or infestation by phytopathogenic organisms, such as nematodes or especially microorganisms, preferably fungi, bacteria and viruses, or combinations of two or more of these organisms, by administering an N-phenyl-4-(4-pyridyl)-2-pyrimidineamine derivative as specified hereinafter to a part and/or to the site of a plant, the use of said derivative for protecting plants against said organisms and compositions comprising said derivative. It further relates to novel N-phenyl-4-(4-pyridyl)-2-pyrimidineamine derivatives, their preparation, their use as mentioned above and compositions comprising them.

Certain N-phenyl-4-(4-pyridyl)-2-pyrimidineamine derivatives have already been described in PCT applications WO 95/09851 and WO 95/09853, useful for example for treating tumours.

Surprisingly, it has now been found that these and the additional new N-phenyl-4-(4-pyridyl)-2-pyrimidineamine are effective in plant protection and related areas, showing advantageous properties in the treatment of plant diseases caused by organisms.

The N-phenyl-4-(4-pyridyl)-2-pyrimidineamine derivatives to be used according to the invention are those of the formula I,

$$R_3$$
 R_4
 N
 N
 R_1
 R_5

(1)

wherein

n is 0 or 1,

R₁ is halogen, alkoxy, haloalkyl, haloalkoxy or alkyl.

R₂ is hydrogen, halogen, alkyl, haloalkyl, alkoxy or haloalkoxy,

each of R_3 , R_4 and R_5 is, independently of the others, hydrogen, lower alkyl or halogen, and

R₆ is

- a) hydrazino, that is unsubstituted or one- to threefold substituted by optionally substituted alkyl and/or optionally substituted acyl,
- b) cyclohexylamino, tetrahydro-4H-pyranyl-4-amino, pyrrolidine-3-amino, 2- or 3-tetrahydrofurylamino, all optionally substituted by amino, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- c) piperazinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- d) morpholinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- e) oxazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- f) thiazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- g) imidazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- h) amino or mono- or di-(lower alkyl)amino wherein the lower alkyl moieties are unsubstituted or substituted by one or more (preferably 1 to 3, especially 1 or 2) substitutents independently selected from the group consisting of unsubstituted amino, N-mono- or N,Ndi-(lower alkyl)-amino, (lower alkoxy)-lower alk-oxy, lower alkoxycarbonylamino, hydroxylower alkoxycarbonylamino, lower alkoxy-lower alkoxycarbonylamino, morpholinyl, hydroxylower alkylamino, cyano, halogen, oxo, hydroximino, alkoximino, optionally substituted hydrazono, lower alkenyl, lower alkynyl, guanidyl, lower alkanoylamino, hydroxy-lower alkanoylamino, lower alkoxy-lower alkanoylamino, halo-lower alkanoylamino, lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, lower alkoxy-lower alkylaminocarbonylamino, amidino, di-lower-alkylamino-cyclohexyl, carboxy, lower alkoxycarbonyl, hydroxy-lower alkoxycarbonyl, lower alkoxy-lower alkoxycarbonyl, lower alkylcarbonyldioxy (= lower alkoxycarbonyloxy), hydroxy-lower alkoxycarbonyloxy, lower alkoxy-lower alkoxycarbonyloxy, lower alkanoyloxy, halo-lower alkanoyloxy, hydroxy-lower alkanoyloxy, lower alkoxy-lower alkanoyloxy, carbamoyl, N-mono- or N,N-di-lower alkylcarbamoyl, N-(hydroxy-lower alkyl)carbamoyl, N-lower alkyl-N-hydroxy-lower alkylcarbamoyl, N,N-di-(hydroxy-lower alkyl)-carbamoyl, N-hydroxy-carbamoyl, hydroxy, lower alkoxy, lower alkenyloxy, lower alkinyloxy, lower haloalkoxy, lower alkylthio, lower alkylsulfoxyl, lower alkylsulfonyl, lower alkoxysilyl, 4-tetrahydro-4H-pyranyl, 3-pyrrolidinyl, 2-

or 3-tetrahydrofuryl, 2- or 3-dihydrofuryl, piperazinyl, lower alkanoyl-piperazinyl (including formylpiperazinyl), optionally substituted heteroaryl and optionally substituted heteroaryloxy

- i) optionally substituted alkanoylamino, optionally substituted alkenoylamino, optionally substituted alkynoylamino, optionally substituted mono- or di-alkylaminocarbonylamino, optionally substituted mono- or di-alkylaminosulfonylamino, optionally substituted mono- or di-alkylaminosulfonylamino, optionally substituted mono- or di-alkylaminosulfonylamino,
- j) N-(optionally substituted alkyl)-N-(optionally substituted lower alkanoyl)-amino,
- k) N-(optionally substituted alkyl)-N-(optionally substituted alkoxycarbonyl)-amino,
- I) N-(optionally substituted alkyl)-N-(N´,N´-mono- or di-[optionally substituted alkyl]-aminocarbonyl)-amino, or
- m) N=C(R₇,R₈) wherein R₇ is hydrogen, alkyl, amino, mono- or di-alkylamino and R₈ is amino, mono- or dialkylamino or wherein R₇ and R₈, together with the binding carbon atom, form a saturated five- to seven-membered ring with 0, 1 or 2 ring nitrogen atoms that is optionally substituted by one or more substituents, preferably 1 to 3 substituents, especially lower alkyl; or a salt thereof.

The general symbols and expressions used above preferably are defined as below:

Halogen is fluorine, bromine, iodine or preferably chlorine.

Alkoxy is preferably C_1 - C_{16} alkoxy, more preferably C_1 - C_8 alkoxy, especially lower alkoxy, and is linear or branched. Lower alkoxy is preferably methoxy or ethoxy.

Haloalkyl is preferably C₁-C₁₆alkyl, more preferably C₁-C₈alkyl, especially lower alkyl, that is linear or branched and is substituted by one or more, for example in the case of halo-ethyl up to six, halogen atoms, especially fluorine. Preferred is trifluoromethyl or 2,2,2-trifluoroethyl.

Haloalkoxy is preferably C₁-C₁₆alkoxy, more preferably C₁-C₈alkoxy, especially lower alkoxy, that is linear or branched and that is substituted by one or more, for example in the case of halo-ethyl up to five, halogen atoms, especially fluorine; trifluoromethoxy and 1,1,2,2-tetrafluoroethoxy are especially preferred.

Alkyl - as a group per se se and as a structural element of other groups and compounds, such as alkylamino, alkanoylamino, alkanoyloxy, alkylthio, alkylsulfoxyl, alkylsulfoxyl - is preferably C₁-C₁₆alkyl, more preferably C₁-C₈alkyl, especially lower alkyl, and is linear i.e. methyl, ethyl, propyl, butyl, pentyl or hexyl, or branched one or more times, e.g. isopropyl, isobutyl, sec.-butyl, tert.-butyl, isopentyl, neopentyl or isohexyl. Lower alkyl is preferably methyl or ethyl.

Optionally substituted means that the respective moiety is unsubstituted (= bearing only hydrogen instead of a substitutent) or substituted by one or more, especially 1 to 3, substituents independently selected from the group consisting of amino, N-mono- or N,N-di-(lower alkyl)-amino, (lower alkoxy)-lower alk-oxy, lower alkoxycarbonylamino, hydroxy-lower alkoxycarbonylamino, lower alkoxy-lower alkoxycarbonylamino, morpholinyl, hydroxy-lower alkylamino, cyano, halogen, oxo bound to a carbon that is not directly bound to a heteroatom, hydroximino, alkoximino, optionally substituted hydrazono, lower alkenyl, lower alkynyl, guanidyl, lower alkanoylamino, hydroxy-lower alkanoylamino, lower alkoxy-lower alkanoylamino, halo-lower alkanoylamino, lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, lower alkoxy-lower alkylaminocarbonylamino, amidino, di-lower-alkylamino-cyclohexyl, carboxy, lower alkoxycarbonyl, hydroxy-lower alkoxycarbonyl, lower alkoxy-lower alkoxycarbonyl, lower alkylcarbonyldioxy (= lower alkoxycarbonyloxy), hydroxylower alkoxycarbonyloxy, lower alkoxy-lower alkoxycarbonyloxy, lower alkanoyloxy, halolower alkanoyloxy, hydroxy-lower alkanoyloxy, lower alkoxy-lower alkanoyloxy, carbamoyl, N-mono- or N,N-di-lower alkylcarbamoyl, N-(hydroxy-lower alkyl)carbamoyl, N-lower alkyl-Nhydroxy-lower alkyl-carbamoyl, N,N-di-(hydroxy-lower alkyl)-carbamoyl, N-hydroxy-carbamoyl, hydroxy, lower alkoxy, lower alkenyloxy, lower alkinyloxy, lower haloalkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower alkoxysilyl, 4-tetrahydro-4H-pyranyl, 3pyrrolidinyl, 2- or 3-tetrahydrofuryl, 2- or 3-dihydrofuryl, piperazinyl, lower alkanoyl-piperazinyl (including formylpiperazinyl), optionally substituted heteroaryl and optionally substituted heteroaryloxy (with the proviso that in the case of optionally substituted heteroaryl and optionally substituted heteroaryloxy a heteroaryl substituent is preferably not substituted by substituted heteroaryloxy). Preferred substituents are lower alkoxy, hydroxy and/or halogen, if not mentioned otherwise.

For example, substituents in the optionally substituted alkyl group are one or more substitutents independently selected from the group of substituents mentioned in the last paragraph.

Alkenyl - as a group per se se and as a structural element of other groups and compounds, such as alkenoylamino - is preferably C_2 - C_{16} -, more preferably C_2 - C_8 -, especially C_3 - C_8 -, very especially C_3 - C_7 -, for example C_3 - C_4 -alkenyl, and is either straight-chained, for example vinyl, 1-methylvinyl, allyl, 1-butenyl or 2-hexenyl, or branched, for example isopropenyl. Preferably (for reasons of chemical stability) the C-atoms in alkenyl that are bonded to a heteroatom (e.g. N, O or S) do not carry the double bond.

Alkynyl - as a group per se and as a structural element of other groups and compounds, such as alkynoylamino - is preferably C_2 - C_{16} -, more preferably C_2 - C_8 -, especially C_3 - C_8 -, very especially C_3 - C_7 -, for example C_3 - C_4 -alkenyl, and is either straight-chained, for example propargyl, 2-butynyl or 5-hexynyl, or branched, for example 2-ethynylpropyl or 2-propargylisopropyl. Preferably (for reasons of chemical stability) the C-atoms in alkynyl that are bonded to a heteroatom (e.g. N, O or S) do not carry the triple bond.

One- to threefold substituted hydrazino preferably carries one to three substituents independently selected from the group consisting of alkyl, haloalkyl, such as trifluoromethyl, hydroxyalkyl, such as 2-hydroxyethyl, hydroxymethyl or 1-hydroxymethyl-n-propyl, alkoxyalkyl, such as 2-methoxyethyl, ethoxymethyl or 1-methoxymethyl-n-propyl, and acyl. Optionally substitued alkyl is preferably as defined above.

Acyl is preferably C₁-C₁₆alkanoyl, more preferably lower alkanoyl, and is linear or branched. Lower alkanoyl is preferably formyl, acetyl or in a broader sense of the invention propionyl or butyryl.

Substitutents in the optionally substituted acyl group are preferably one or more substituents independently selected from halogen (more preferably fluorine), hydroxy or alkoxy (more preferably methoxy or ethoxy), e.g. in trifluoroacetyl or pentafluoropropionyl.

Substituted hydrazinyl is preferably hydroxy-lower alkyl-hydrazino; 2-hydroxyethyl is an especially preferred substituent of the hydrazino group.

Cyclohexyl-amino substituted by amino is preferably 2- or 4-amino-cyclohexyl-amino.

Piperazinyl is preferably 1-piperazinyl. As substituted piperazinyl, piperazinyl substituted by amino-lower alkyl is preferred, especially 4-(2-amino-ethyl)-piperazin-1-yl.

Morpholinyl is preferably 4-morpholinyl (= morpholino). Lower alkylamino R₆ substituted by morpholinyl is preferably 2-morpholin-4-yl-ethylamino. Substituted morpholinyl is preferably 3-alkyl- or 3,5-dialkylmorpholino, more preferably 3-methyl- or 3,5-dimethylmorpholino.

Formyl-piperazinyl is preferably 4-formyl-piperazinyl.

Lower alkyl that is substituted by unsubstituted mono- or di-(lower alkyl)-amino in mono- or di-(lower alkyl)-amino R₆ with one or (if two are present) both moieties substituted is preferably lower alkyl that is substituted by N—mono- or N,N-di-(lower alkyl)amino, preferably dimethylamino; preferred is lower alkylamino that is substituted by N-mono- or N,N-di-(lower alkyl)amino, most preferably 3-(dimethylamino)-1-methyl-n-propylamino.

Lower alkyl substituted by amino in mono- or di-(lower alkyl)-amino R_6 with one or (if two are present) both lower alkyl moieties substituted is preferably lower alkyl substituted by one or two amino groups; preferred is mono-lower alkyl that is substituted by one or more, especially 1 or 2, amino groups, especially 2-amino-ethylamino or 3-amino-n-propylamino. .

(Lower alkoxy)-lower alkoxy as substituent of a substituted lower alkyl moiety of mono- or di-(lower alkyl)-amino is preferably (methoxy)-methoxy.

A preferred di-(lower alkyl)amino R₆ wherein the lower alkyl moieties are substituted by (lower alkoxy)-lower alkoxy and lower alkoxy is N-(methoxymethyl)-N-{2-[(methoxy)-methoxy]-1-methyl}-amino.

Hydroxy-lower alkylamino is preferably hydroxy-lower alkyl that carries one or more, especially one or two, hydroxy groups, more preferably 2-hydroxy-ethylamino. Lower alkylamino

substituted by hydroxy-lower alkylamino is preferably 3-(2-hydroxy-ethyl-amino)-prop-1-yl-amino

Oxo is not bonded to a carbon atom that is bound to a heteroatom, such as nitrogen, sulfur or oxygen, in order to avoid overlap with acyl substituents.

Lower alkylamino-carbonylamino is preferably methylamino-carbonyl-amino.

Di-lower alkylamino is preferably dimethylamino.

Alkoximino is preferably C₁-C₁₆-, more preferably C₁-C₈-, most preferably lower alkoximino.

Optionally substituted hydrazono is preferably hydrazono or hydrazono substituted with one of the substituents defined above for "optionally substituted". Hydrazono or N-lower alkylhydrazono is preferred.

Lower alkyl substituted by hydroxy in mono- or di-(lower alkyl)-amino R₆ with one or (if two are present) both lower alkyl moieties substituted is preferably lower alkylamino that carries one or more hydroxy substituents, especially 1 or 2 hydroxy substituents, preferred is monolower alkyl-amino that is substituted by one or two hydroxy groups, especially 2- or 3-hydroxy-n-propylamino, 1,1-dimethyl-3-hydroxy-n-propylamino, 1-n-propyl-2-hydroxy-ethylamino, 1,1-dimethyl-2-hydroxy-ethylamino, 2-hydroxy-1-(hydroxy-methyl)-ethylamino, 2-hydroxy-1-methyl-ethylamino or 2-hydroxy-1-(sec-butyl)-ethylamino.

Lower alkyl substituted by lower alkoxy in mono- or di-lower alkylamino R_6 with one or (if two are present) both lower alkyl moieties substituted is preferably lower alkyl that is substituted by one or more, especially 1 or 2, lower alkoxy groups; preferred is mono-lower alkylamino R_6 wherein the lower alkyl moieties are substituted by lower alkoxy, especially 2-methoxy-ethylamino, 1-ethyl-2-methoxy-ethylamino, 2-methoxy-1-methyl-ethylamino, 2-methoxy-2-methyl-ethylamino, 1,1-dimethyl-2-methoxy-ethylamino, 1,1-dimethyl-3-methoxy-n-propyl-amino or 3-methoxy-propylamino.

Lower alkyl substituted by carboxy in mono- or di-lower alkylamino R_6 with one or (if two are present) both lower alkyl moieties substituted is preferably carboxymethyl.

Lower alkoxycarbonyl-amino is preferably ethoxycarbonyl-amino. Preferred is mono-lower alkylamino R_6 that is substituted by lower alkoxycarbonylamino, especially 3-[N-(ethoxy-carbonyl)-amino]-n-propylamino.

Lower alkyl substituted by cyano, guanidyl, lower alkanoyl-amino, lower alkylamino-carbonylamino, amidino, di-lower alkylamino-cyclohexyl, lower alkoxycarbonyl, carbamoyl, N-hydroxy-carbamoyl, piperazinyl, lower alkanoyl-piperazinyl, formylpiperazinyl, tetrahydro-4H-pyranyl-4-amino, pyrrolidine-3-amino, 2- or 3-tetrahydrofurylamino, optionally substituted heteroaryl or optionally substituted heteroaryloxy is preferably di- or tri-methyleneamino substituted by those substituents, the substituents preferably being in the ω-position. The same holds true for other substitutents of lower alkyl in substituted mono- or di-lower alkylamino that are not defined in more detail.

Heteroaryl (in the term heteroaryl and heteroaryloxy) is a cyclic aromatic group with one or two rings with a total of 5 to 12 ring members, 1 to 3 members of which are hetero atoms, preferably selected from the group consisting of oxygen, sulphur and nitrogen. 1 to 2 benzene rings may be condensed onto the heterocycle, whereby the binding to the residual molecule takes place either via the hetero or the benzene moiety. Preferably, heteroaryl is benzimidazolyl, benzisoxazolyl, benzisothiazolyl, benzocoumarinyl, benzofuryl, benzothiadiazolyl, benzothiazolyl, benzothiazolyl, benzothiazolyl, benzothiazolyl, benzoxazolyl, benzoxdiazolyl, quinazolinyl, quinolyl, quinoxalinyl, carbazolyl, dihydrobenzofuryl, furyl (especially 2- or 3-furyl), imidazolyl (especially 1-imidazolyl), indazolyl, indolyl, isoquinolinyl, isothiazolyl, isoxazolyl, methylenedioxyphenyl, ethylenedioxyphenyl, naphthyridinyl, oxazolyl, phenanthridinyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyrazolo[3,4-b]pyridyl, pyridyl (especially 2-, 3- or 4-pyridyl), pyrimidyl, pyrrolyl, tetrazolyl (especially tetrazol-1-yl), oxadiazolyl, thiadiazolyl, thiazolyl (especially 2-, 4- or 5-thiazolyl), thienyl (especially 2- or 3-thienyl), triazinyl (especially 1,3,5-triazinyl) and triazolyl (especially 1,2,4-triazol-1-yl). Furyl, pyridyl, imidazolyl and triazolyl are preferred.

The heteroaryl and heteroryloxy moiety may be substituted by one or more, preferably one to three identical or different substitutents selected from the group comprising halogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, halogen- C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy, halogen- C_1 - C_6 -alkylthio, halogen- C_1 - C_6 -alkylthio, C_1 - C_6 -alkyll, halogen- C_1 - C_6 -alkyll,

 C_1 - C_6 -alkylsulfinyl, halogen- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, halogen- C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkyl-carbonyl, halogen- C_1 - C_6 -alkylcarbonyl, carboxyl, C_1 - C_6 -alkoxy-carbonyl, halogen- C_1 - C_6 -alkoxy-carbonyl, aminocarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- $(C_1$ - C_6 -alkyl)-aminocarbonyl, whereby the alkyl groups may be identical or different, amino, C_1 - C_6 -alkylamino, di- $(C_1$ - C_6 -alkyl)-amino, NO₂, CN, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl.

Alkanoylamino is preferably C₁-C₁₆alkanoylamino, more preferably C₁-C₈alkanoylamino, most preferably lower alkanoylamino, especially formylamino, acetylamino, propionylamino, butanoylamino and pentanoylamino. Preferred substituents of the alkanoyl group are one or more, especially 1 to five, substituents independently selected from the group consisting of fluorine, hydroxy and methoxy. Especially preferred are trifluoroacetylamino and 2-hydroxy-propionylamino.

A five- to seven-membered ring with 0, 1 or 2 ring nitrogen atoms formed from R_7 and R_8 together with the binding carbon atom preferably has 2 ring nitrogen atoms that are immediately adjacent (= bound) to the binding carbon atom, for example forming an imidazolidin-2-ylidene, tetrahydropyrimidin-2-ylidene or hexahydro-1,3-diazepin-2-ylidene moiety, and is optionally substituted, especially unsubstituted or substituted by one to three lower alkyl moieties, especially methyl, etyhl, propyl or isopropyl, which may be bound to carbon or nitrogen ring atoms.

As substituents R_6 , those mentioned specifically in Table A given below and/or in the Examples are especially preferred and can be combined with the other moieties R_1 to R_5 in formula I.

Within the scope of this text, the term "lower" denotes radicals having up to and including 7, preferably up to and including 4, carbon atoms. Unless otherwise indicated in the context concerned, lower alkyl is preferably methyl or ethyl. In the case of alkenyl or alkinyl, "lower" means C₂-C₇-, more preferably C₃-C₇-, such as C₃-C₄-alkenyl or –alkinyl, and the double- or triple bond preferably does not start from a heteroatom, especially S, N or O, most especially one carrying a hydrogen, such as NH, OH or SH.

The compounds of formula I can form acid addition salts, for example with inorganic acids, such as hydrochloric acid, sulfuric acid or a phosphoric acid, or with suitable organic car-

boxylic or sulfonic acids, for example aliphatic mono- or di-carboxylic acids, such as trifluo-roacetic acid, acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, fumaric acid, hydroxymaleic acid, malic acid, tartaric acid, citric acid, oxalic acid or amino acids, such as arginine or lysine, aromatic carboxylic acids, such as benzoic acid, 2-phenoxybenzoic acid, 2-acetoxy-benzoic acid, salicylic acid, 4-aminosalicylic acid, aromatic-aliphatic carboxylic acids, such as mandelic acid or cinnamic acid, heteroaromatic carboxylic acids, such as nicotinic acid or isonicotinic acid, aliphatic sulfonic acids, such as methane-, ethane- or 2-hydroxy-ethane-sulfonic acid, or aromatic sulfonic acids, for example benzene-, ptoluene- or naphthalene-2-sulfonic acid. Mono, di- or, if other basic groups, such as amino or guanidyl groups, are present in the radical R₆, poly-acid addition salts can be formed.

Compounds of formula I having acidic groups, for example a free carboxy group in the radical R_6 , can form metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example N-ethyl-piperidine or N,N'-dimethyl-piperazine.

Compounds of formula I that possess both acidic and basic groups can form internal salts.

The pyridine-N-oxides of formula I (n = 1) can form acid addition salts with strong acids, such as hydrochloric acid, nitric acid, phosphoric acid or sulfonic acids, such as benzene-sulfonic acid. The compounds of formula I with n = 1 are new and thus form an especially preferred embodiment of the invention, as their use and process of manufacture.

Formula I is meant to include all the possible isomeric forms, as well as mixtures, e.g. racemic mixtures, and any [E/Z] mixtures.

In view of the close relationship between the compounds of formula I in free form and in the form of their salts, including also salts that can be used as intermediates, for example in the purification of the compounds of formula I or in order to identify those compounds, hereinbefore and hereinafter any reference to the (free) compounds is to be understood as including also the corresponding salts, where appropriate and expedient.

Where hereinbefore and hereinafter reference is made that "compounds can be used according to the invention" or a "method for applying a compound of formula 1" or to "compounds to be used according to the invention, this refers to the fact that the invention relates to any one or more of

- (i) the use of a compound of the formula I, or a salt thereof, for protection of a plant against attack by a phytopathogenic organism or the treatment of a plant infested by a phytopathogenic organism, said use comprising the administration of a compound of the formula I or a salt thereof, or a composition comprising said compound or salt and a carrier material acceptable for agricultural purposes, to any one or more selected from the group consisting of a plant, a part of a plant, seeds and the locus of a plant:
- (ii) a method of protecting a plant against attack by a phytopathogenic organism and/or the treatment of a plant infested by a phytopathogenic organism, said method comprising administering a compound of the formula I or a salt thereof, or a composition comprising said compound or salt and a carrier material acceptable for agricultural purposes, to any one or more selected from the group consisting of a plant, a part of a plant, seeds and the locus of a plant, preferably if in need of such treatment;
- (iii) a process for protecting a plant against attack by a phytopathogenic organism and/or the treatment of a plant infested by a phytopathogenic organism, said process comprising administering a compound of the formula I or a salt thereof, or a composition comprising said compound or salt and a carrier material acceptable for agricultural purposes, to any one or more selected from the group consisting of a plant, a part of a plant, seeds and the locus of a plant; and/or
- (iv) a composition (useful) for protecting a plant against attack by a phytopathogenic organisms and/or the treatment of a plant infested by a phytopathogenic organism, said composition comprising a compound of the formula I or a salt thereof and a carrier material acceptable for agricultural purposes.

Any of these uses, methods, processes or compositions is meant as preferred part of the invention where the respective reference given above in citation marks is/are made.

In the preferred or more specific embodiments of the invention given above and below, the definitions given above can be used instead of more general terms, thus leading to preferred embodiments of the invention.

The compounds of formula I may be used preventatively and/or curatively in the agrarian sector and related fields as active ingredients for controlling plant pests. The active ingredients of formula I according to the invention are notable for their good activity even at low concentrations, for their good plant tolerance and for their environmentally friendly nature. They have very advantageous, especially systemic, properties and may be used to protect a plurality of cultivated plants. Using the active ingredients of formula I on plants or plant parts (fruit, flowers, leaves, stems, tubers, roots) of various crops, the pests appearing can be controlled or destroyed, whereby the parts of plants which grow later also remain protected, e.g. from phytopathogenic micro-organisms.

The compounds of formula I may additionally be used as a dressing to treat seeds (fruits, tubers, corms) and plant cuttings to protect against fungal infections and against phytopathogenic fungi occurring in the soil.

The compounds of formula I are effective for example against the following classes of related phytopathogenic fungi: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria); Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia); Ascomycetes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and Oomycetes (e.g. Phytophthora, Pythium, Plasmopara).

Target crops for the plant-protecting usage in terms of the invention are for example the following plant cultivars: cereals (wheat, barley, rye, oats, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pome, stone and berry fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); legumes (beans, lentils, peas, soya); oil crops (rape, mustard, poppy, olives, sunflowers, coconut, castor oil, cocoa, peanut); cucumber plants (squashes, cucumber, melons); citrus fruits (oranges, lemons, grapefruits, mandarines); vegetables (spinach, lettuce, asparagus, cabbage varieties, carrots, onions, tomatoes, potatoes, paprika); laurels (avocado, cinnamonium, camphor) and plants such as tobacco, nuts, coffee, aubergines, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamental plants.

Further areas of application for the active ingredients according to the invention are the protection of stores and material, where the storage matter is protected against putrescence and mould.

The compounds of formula I are used in unchanged form or preferably together with customary excipients in formulation techniques. To this end, they are conveniently processed in known manner e.g. into emulsion concentrates, coatable pastes, directly sprayable or diluable solutions, diluted emulsions, wettable powders, soluble powders, dusts or granules, e.g. by encapsulation into for example polymeric materials. As with the type of medium, the application processes, such as spraying, atomizing, dusting, scattering, coating or pouring are similarly chosen according to the desired aims and the prevailing conditions.

Suitable substrates and additives may be solid or liquid and are useful substances in formulation techniques, e.g. natural or regenerated mineral substances, dissolving aids, dispersants, wetting agents, tackifiers, thickeners, binding agents or fertilizers.

The compounds of formula I may be mixed with further active ingredients, e.g. fertilizers, ingredients providing trace elements or other plant protection compositions, especially further fungicides. In doing so, unexpected synergistic effects may occur.

Preferred additions to the mixture are:

Azoles, such as azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, tebuconazole, tetraconazole, triadimenol, triflumizole, triticonazole; pyrimidinyl carbinoles, such as ancymidol,fenarimol, nuarimol; 2-amino-pyrimidines, such as bupirimate, dimethirimol, ethirimol; morpholines, such as dodemorph, fenpropidine, fenpropimorph, spiroxamin, tridemorph; anilinopyrimidines, such as cyprodinil, mepanipyrim, pyrimethanil; pyrroles, such as fenpiclonil, fludioxonil; phenylamides, such as benalaxyl, furalaxyl, metalaxyl, r-metalaxyl, ofurace, oxadixyl; benzimidazoles, such as benomyl, carbendazim, debacarb, fuberidazole, thiabendazole;

dicarboximides, such as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone, vinclozoline;

carboxamides, such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide; guanidines, such as guazatine, dodine, iminoctadine;

strobilurines, such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, trifloxystrobin;

dithiocarbamates, such as ferbam, mancozeb, maneb, metiram, propineb, thiram, zineb, ziram;

N-halomethylthio, such as captafol, captan, dichlofluanid, fluoromides, folpet, tolyfluanid; Cu compounds, such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper, oxine-copper;

nitrophenol-derivatives, such as dinocap, nitrothal-isopropyl;

organo-p-derivatives, such as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos, tolclofos-methyl;

Various others, such as acibenzolar-S-methyl, anilazine, blasticidin-S, chinomethionate, chloroneb, chlorothalonil, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, dithianon, etridiazole, famoxadone, fenamidone, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, IKF-916, kasugamycin, methasulfocarb, pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxyfen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin.

One preferred method of application of an active ingredient of formula I or of an agrochemical composition containing at least one of these active ingredients is foliar application. The frequency and amount of application depend on the severity of the attack by the pathogen in question. However, the active ingredients I may also reach the plants through the root system via the soil (systemic action) by drenching the locus of the plant with a liquid preparation or by incorporating the substances into the soil in solid form, e.g. in the form of granules (soil application). In rice cultivations, these granules may be dispensed over the flooded paddy field. The compounds I may however also be applied to seed grain to treat seed material (coating), whereby the grains or tubers are either drenched in a liquid preparation of the active ingredient or coated with a solid preparation.

The compositions are produced in known manner, e.g. by intimately mixing and/or grinding the active ingredient with extenders such as solvents, solid carriers and optionally surfactants.

The agrochemical compositions normally contain 0.1 to 99 percent by weight, especially 0.1 to 95 percent by weight, of active ingredient of formula I, 99.9 to 1 percent by weight, especially 99.8 to 5 percent by weight, of a solid or liquid additive and 0 to 25 percent by weight, especially 0.1 to 25 percent by weight, of a surfactant.

Favourable application rates are in general 1 g to 2 kg of active substance (AS) per hectare (ha), preferably 10 g to 1 kg AS/ha, especially 20 g to 600 g AS/ha. For usage as a seed dressing, it is advantageous to use dosages of 10 mg to 1 g active substance per kg of seed grain.

While concentrated compositions are preferred for commercial usage, the end user normally uses diluted compositions.

The compositions may also contain further additives, such as stabilizers, anti-foaming agents, viscosity regulators, binding agents or tackifiers, as well as fertilizers or other active ingredients to achieve special effects.

Formulations may be prepared analogously to those described for example in WO 97/33890.

in the following, examples for test systems that demonstrate the efficiency of the compounds of the formula I (designated as "active ingredient"or "test compounds") in plant protection are provided:

Biological Assays

Assay B-1: Effect against *Puccinia graminis* on wheat (brownrust on wheat)

a) Residual protective activity

1 week old wheat plants cv. Arina are treated with the formulated testcompound (0.02 % active substance) in a spray chamber. Two days after application wheat plants are inoculated by spraying a spore suspension (1 \times 10⁵ uredospores/ml) on the test plants. After an

incubation period of 1 day at 20° C and 95% relative atmospheric humidity (r. h.) plants are kept for 9 days at 20° C and 60% r.h.in a greenhouse. The disease incidence is assessed 10 days after inoculation.

b) Systemic activity

An aqueous spray liquor prepared from the formulated testcompound (0.002 % active substance, based on the volume of soil) is poured onto wheat plants 5 days after sowing. Care is taken that the spray liquor does not come into contact with the above-ground parts of the plant. 48 hours later, the plants are inoculated with a spore suspension of the fungus. After an incubation period of 48 hours (95 to 100 % r.h. at 20° C), the plants are placed in a greenhouse at 20° C. 12 days after infection, the disease incidence is evaluated.

Assay B-2: Effect against *Phytophthora infestans* on tomatoes (late blight on potato) a) Residual protective activity

3 week old tomato plants cv. Roter Gnom are treated with the formulated testcompound (0.02 % active substance) in a spray chamber. Two day after application the plants are inoculated by spraying a sporangia suspension (2 x 10⁴ sporangia/ml) on the test plants. After an incubation period of 4 days at 18° C and 95% r. h. in a growth chamber the disease incidence is assessed.

b) Systemic activity

An aqueous suspension prepared from the formulated test compound (0.002 % active substance, based on the volume of soil) is poured onto tomato plants which have been cultivated for three weeks. Care is taken that the spray liquor does not come into contact with the above-ground parts of the plant. 48 hours later, the plants are inoculated with a sporangia suspension of the fungus. Evaluation of the disease incidence takes place 5 days after infection, during which period conditions of 90 to 100 % r.h. and 20° C are maintained.

Assay B-3: Effect against *Phytophthora infestans* / potato (late blight on potato) 5 week old potato plants cv. Bintje are treated with the formulated testcompound (0.02 % active substance) in a spray chamber. Two days after application the plants are inoculated by spraying a sporangia suspension (1.4 x 10⁵ sporangia/ml) on the test plants. After an incubation period of 4 days at 18° C and 95% r. h. in a growth chamber the disease inci-

dence is assessed.

Assay B-4: Effect against Plasmopara viticola on grapevine (grape downy mildew)

5 week old grape seedlings cv. Gutedel are treated with the formulated testcompound (0.02 % active substance) in a spray chamber. One day after application grape plants are inoculated by spraying a sporangia suspension (4 x 10⁴ sporangia/ml) on the lower leaf side of the test plants. After an incubation period of 6 days at 22° C and 95% r. h. in a greenhouse the disease incidence is assessed.

Assay B-5: Residual protective activity against *Venturia inaequalis* on apples (scab on apple)

4 week old apple seedlings cv. McIntosh are treated with the formulated testcompound (0.02 % active substance) in a spray chamber. One day after application apple plants are inoculated by spraying a spore suspension (4 x 10⁵ conidia/ml) on the test plants. After an incubation period of 4 days at 21° C and 95% r. h. the plants are placed for 4 days at 21° C and 60% r. h. in a greenhouse. After another 4 day incubation period at 21° C and 95% r. h. the disease incidence is assessed.

Assay B-6: Effect against Erysiphe graminis on barley (powdery mildew on barley)

a) Residual protective activity

Barley plants of approximately 8 cm height are sprayed to drip point with an aqueous spray liquor prepared from wettable powder of the active ingredient (0.02 % active substance), and dusted 3 to 4 hours later with conidia of the fungus. The infected plants are placed in a greenhouse at 22°. 12 days after infection, the fungal attack is evaluated.

b) Systemic activity

An aqueous spray liquor prepared from the formulated test compound (0.002 % active substance, based on the volume of soil) is poured onto barley plants of approximately 8 cm height. Care is taken that the spray liquor does not come into contact with the abouveground parts of the plant. 48 hours later, the plants are dusted with conidia of the fungus. The infected plants are placed in a greenhouse at 22° C. 12 days after infection, the disease incidence is evaluated.

Assay B-7: Botrytis cinerea / grape (botrytis on grapes)

5 week old grape seedlings cv. Gutedel are treated with the formulated testcompound (0.02% active substance) in a spray chamber. Two days after application grape plants are inoculated by spraying a spore suspension (1 x 10⁶ conidia/ml) on the test plants. After an incubation period of 4 days at 21° C and 95% r. h. in a greenhouse the disease incidence is assessed.

Assay B-8: Effect against Botrytis cinerea / tomato (botrytis on tomatoes)

4 week old tomato plants cv. Roter Gnom are treated with the formulated testcompound 0.02% active substance) in a spray chamber. Two days after application tomato plants are inoculated by spraying a spore suspension (1 x 10^5 conidia/ml) on the test plants. After an incubation period of 4 days at 20° C and 95% r. h. in a greenhouse the disease incidence is assessed.

Assay B-9: Effect against Pyricularia oryzae / rice (rice blast)

3 week old rice plants cv. Sasanishiki are treated with the formulated testcompound (0.02 % active substance) in a spray chamber. Two days after application rice plants are inoculated by spraying a spore suspension (1 x 10⁵ conidia/ml) on the test plants. After an incubation period of 6 days at 25° C and 95% r. h. the disease incidence is assessed.

Assay B-10: Effect against *Pyrenophora teres (Helminthosporium) / barley (net blotch on barley)*

1 week old barley plants cv. Regina are treated with a formulated testcompound (0.02 % active substance) in a spray chamber. Two days after application barley plants are inoculated by spraying a spore suspension (3 x 10⁴ conidia/ml) on the test plants. After an incubation period of 2 days at 20° C and 95% r.h. plants are kept for 2 days at 20° C and 60% r.h. in a greenhouse. The disease incidence is assessed 4 days after inoculation.

Assay B-11: Effect against Fusarium culmorum / wheat (fusarium head blight on wheat)

A conidia suspension of F. culmorum (7 x 10⁵ conidia/ml) is mixed with the formulated test compound (0.002 % active substance).. The mixture is applied into a pouch which has been equipped before with a filter paper. After the application wheat seeds (cv. Orestis) are

sown into the upper fault of the filter paper. The prepared pouches are then incubated for

11 days at approx. 10 - 18° C and a relative humidity of 100% with a light period of 14 hours. The evaluation is made by assessing the degree of disease occurrence in the form of brown lesions on the roots.

Assay B-12: Effect against Septoria nodorum / wheat (septoria leaf spot on wheat)

1 week old wheat plants cv. Arina are treated with a formulated test compound (0.02 % active substance) in a spray chamber. One day after application wheat plants are inoculated by spraying a spore suspension (5 x 10⁵ conidia/ml) on the test plants. After an incubation period of 1 day at 20° C and 95% r.h. plants are kept for 10 days at 20° C and 60% r.h.in a greenhouse. The disease incidence is assessed 11 days after inoculation.

Preferred among the compounds to be used according to the invention is a compound of the following tables.

Table 1

Compounds of the general formula I.1, in which R_1 is fluorine, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

$$\begin{array}{c|c}
R_{2} & N & R_{1} \\
\hline
(O)_{n} & R_{6} & (I)
\end{array}$$

Table 2

Compounds of the general formula I.1, in which R_1 is chlorine, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 3

Compounds of the general formula I.1, in which R_1 is bromine, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 4

Compounds of the general formula I.1, in which R_1 is trifluoromethyl, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 5

Compounds of the general formula I.1, in which R_1 is trifluoromethoxy, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 6

Compounds of the general formula I.1, in which R_1 is chlorodifluoromethoxy, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 7

Compounds of the general formula I.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 8

Compounds of the general formula I.1, in which R_1 is 1,1,2,2-tetrafluoroethoxy, R_2 and R_3 are hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 9

Compounds of the general formula I.1, in which R_1 is fluorine, R_2 is methyl, R_3 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 10

Compounds of the general formula I.1, in which R_1 is chlorine, R_2 is methyl, R_3 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 11

Compounds of the general formula I.1, in which R_1 is bromine, R_2 is methyl, R_3 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 12

Compounds of the general formula 1.1, in which R_1 is trifluoromethoxy, R_2 is methyl, R_3 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 13

Compounds of the general formula I.1, in which R_1 is chlorodifluoromethoxy, R_2 is methyl, R_3 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 14

Compounds of the general formula I.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 is methyl, R_3 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 15

Compounds of the general formula I.1, in which R_1 is 1,1,2,2-tetrafluoroethoxy, R_2 is methyl, R_3 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 16

Compounds of the general formula I.1, in which R_1 and R_3 are fluorine, R_2 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 17

Compounds of the general formula I.1, in which R_1 is chlorine, R_2 is hydrogen, R_3 is fluorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 18

Compounds of the general formula I.1, in which R_1 is bromine, R_2 is hydrogen, R_3 is fluorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 19

Compounds of the general formula 1.1, in which R_1 is trifluoromethoxy, R_2 is hydrogen, R_3 is fluorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 20

Compounds of the general formula I.1, in which R_1 is chlorodifluoromethoxy, R_2 is hydrogen, R_3 is fluorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 21

Compounds of the general formula I.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 is hydrogen, R_3 is fluorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 22

Compounds of the general formula I.1, in which R_1 is 1,1,2,2-tetrafluoroethoxy, R_2 is hydrogen, R_3 is fluorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 23

Compounds of the general formula l.1, in which R_1 and R_3 are chlorine, R_2 is hydrogen, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 24

Compounds of the general formula I.1, in which R_1 is fluorine, R_2 is hydrogen, R_3 is chlorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 25

Compounds of the general formula I.1, in which R_1 is bromine, R_2 is hydrogen, R_3 is chlorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 26

Compounds of the general formula I.1, in which R_1 is trifluoromethoxy, R_2 is hydrogen, R_3 is chlorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 27

Compounds of the general formula I.1, in which R_1 is chlorodifluoromethoxy, R_2 is hydrogen, R_3 is chlorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 28

Compounds of the general formula I.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 is hydrogen, R_3 is chlorine, n is 0, and R_6 corresponds in each case to one of the lines of Table A.

Table 29

Compounds of the general formula I.1, in which R₁ is 1,1,2,2-tetrafluoroethoxy, R₂ is hydro-

gen, R₃ is chlorine, n is 0, and R₆ corresponds in each case to one of the lines of Table A.

Table 30

Compounds of the general formula I.1, in which R_1 is fluorine, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 31

Compounds of the general formula I.1, in which R_1 is chlorine, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 32

Compounds of the general formula I.1, in which R_1 is bromine, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 33

Compounds of the general formula I.1, in which R_1 is trifluoromethyl, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 34

Compounds of the general formula I.1, in which R_1 is trifluoromethoxy, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 35

Compounds of the general formula I.1, in which R_1 is chlorodifluoromethoxy, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 36

Compounds of the general formula I.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 37

Compounds of the general formula I.1, in which R_1 is 1,1,2,2-tetrafluoroethoxy, R_2 and R_3 are hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 38

Compounds of the general formula I.1, in which R_1 is fluorine, R_2 is methyl, R_3 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 39

Compounds of the general formula I.1, in which R_1 is chlorine, R_2 is methyl, R_3 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 40

Compounds of the general formula I.1, in which R_1 is bromine, R_2 is methyl, R_3 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

<u>Table 41</u>

Compounds of the general formula I.1, in which R_1 is trifluoromethoxy, R_2 is methyl, R_3 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 42

Compounds of the general formula I.1, in which R_1 is chlorodifluoromethoxy, R_2 is methyl, R_3 is hydrogen, n is 1, and R_3 corresponds in each case to one of the lines of Table A.

Table 43

Compounds of the general formula I.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 is methyl, R_3 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 44

Compounds of the general formula I.1, in which R_1 is 1,1,2,2-tetrafluoroethoxy, R_2 is methyl, R_3 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 45

Compounds of the general formula I.1, in which R_1 and R_3 are fluorine, R_2 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 46

Compounds of the general formula I.1, in which R_1 is chlorine, R_2 is hydrogen, R_3 is fluorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 47

Compounds of the general formula I.1, in which R_1 is bromine, R_2 is hydrogen, R_3 is fluorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 48

Compounds of the general formula I.1, in which R_1 is trifluoromethoxy, R_2 is hydrogen, R_3 is fluorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 49

Compounds of the general formula I.1, in which R_1 is chlorodifluoromethoxy, R_2 is hydrogen, R_3 is fluorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 50

Compounds of the general formula I.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 is hydrogen, R_3 is fluorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 51

Compounds of the general formula I.1, in which R_1 is 1,1,2,2-tetrafluoroethoxy, R_2 is hydrogen, R_3 is fluorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 52

Compounds of the general formula I.1, in which R_1 and R_3 are chlorine, R_2 is hydrogen, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 53

Compounds of the general formula I.1, in which R_1 is fluorine, R_2 is hydrogen, R_3 is chlorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 54

Compounds of the general formula I.1, in which R_1 is bromine, R_2 is hydrogen, R_3 is chlorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 55

Compounds of the general formula I.1, in which R_1 is trifluoromethoxy, R_2 is hydrogen, R_3 is chlorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 56

Compounds of the general formula l.1, in which R_1 is chlorodifluoromethoxy, R_2 is hydrogen, R_3 is chlorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 57

Compounds of the general formula 1.1, in which R_1 is 2,2,2-trifluoroethoxy, R_2 is hydrogen, R_3 is chlorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table 58

Compounds of the general formula I.1, in which R_1 is 1,1,2,2-tetrafluoroethoxy, R_2 is hydrogen, R_3 is chlorine, n is 1, and R_6 corresponds in each case to one of the lines of Table A.

Table A

No.	R ₆	No.	R ₆
1.	NHNH ₂	15.	N(CH ₃)NH ₂
2.	NHNHCH ₃	16.	N(CH₃)NHCH₃
3.	NHNHCH₂CH₃	17.	N(CH₃)NHCH₂CH₃
4.	NHNH(CH ₂) ₂ CH ₃	18.	N(CH₃)NH(CH₂)₂CH₃
5.	NHNH(CH2)3CH3	19.	N(CH ₃)NH(CH ₂) ₃ CH ₃
6.	NHNHCH(CH ₃) ₂	20.	N(CH₃)NHCH(CH₃)₂
7.	NHNHC(CH ₃) ₃	21.	N(CH ₃)NHC(CH ₃) ₃
8.	NHN(CH ₃) ₂	22.	N(CH ₃)N(CH ₃) ₂
9.	NHN(CH ₂ CH ₃) ₂	23.	N(CH ₃)N(CH ₂ CH ₃) ₂
10.	$NHN[(CH_2)_2CH_3]_2$	24.	N(CH ₃)N[(CH ₂) ₂ CH ₃] ₂
11.	$NHN[(CH_2)_3CH_3]_2$	25.	$N(CH_3)N[(CH_2)_3CH_3]_2$
12.	$NHN[CH(CH_3)_2]_2$	26.	$N(CH_3)N[CH(CH_3)_2]_2$
13.	$NHN(CH_3)C(CH_3)_3$	27.	$N(CH_3)N(CH_3)C(CH_3)_3$
14.	NHN(CH₃)CH₂CH₃	28.	N(CH₃)N(CH₃)CH₂CH₃

No.	R ₆	No.	R ₆
29.	N(CH₂CH₃)NH₂	61.	N(CH ₃)N(CH ₂ CH ₃)CH ₂ CF ₃
30.	N(CH₂CH₃)NHCH₃	62.	N(CH ₃)N(CH ₂ CF ₃) ₂
31.	N(CH₂CH₃)NHCH₂CH₃	63.	N(CH₂CH₃)NHCH₂CF₃
32.	N(CH ₂ CH ₃)NH(CH ₂) ₂ CH ₃	64.	N(CH ₂ CH ₃)N(CH ₃)CH ₂ CF ₃
33.	N(CH₂CH₃)NH(CH₂)₃CH₃	65.	N(CH ₂ CH ₃)N(CH ₂ CH ₃)CH ₂ CF ₃
34.	N(CH ₂ CH ₃)NHCH(CH ₃) ₂	66.	N(CH ₂ CH ₃)N(CH ₂ CF ₃) ₂
35.	N(CH ₂ CH ₃)NHC(CH ₃) ₃	67.	N(CH ₂ CF ₃)NHCH ₂ CF ₃
36.	$N(CH_2CH_3)N(CH_3)_2$	68.	N(CH ₂ CF ₃)N(CH ₂ CF ₃) ₂
37.	$N(CH_2CH_3)N(CH_2CH_3)_2$	69.	N(CH ₂ CH ₂ OH)NH ₂
38.	$N(CH_2CH_3)N[(CH_2)_2CH_3]_2$	70.	N(CH₂CH₂OH)NHCH₃
39.	$N(CH_2CH_3)N[(CH_2)_3CH_3]_2$	· 71.	N(CH₂CH₂OH)NHCH₂CH₃
40.	$N(CH_2CH_3)N[CH(CH_3)_2]_2$	72.	N(CH ₂ CH ₂ OH)NH(CH ₂) ₂ CH ₃
41.	N(CH₂CH₃)N(CH₃)CH₂CH₃	73.	N(CH ₂ CH ₂ OH)NH(CH ₂) ₃ CH ₃
42.	N(CH ₂ CF ₃)NH ₂	74.	N(CH₂CH₂OH)NHCH(CH₃)₂
43.	N(CH₂CF₃)NHCH₃	75.	N(CH₂CH₂OH)NHC(CH₃)₃
44.	N(CH₂CF₃)NHCH₂CH₃	76.	N(CH ₂ CH ₂ OH)N(CH ₃) ₂
45.	N(CH ₂ CF ₃)NH(CH ₂) ₂ CH ₃	77.	N(CH ₂ CH ₂ OH)N(CH ₂ CH ₃) ₂
46.	N(CH ₂ CF ₃)NH(CH ₂) ₃ CH ₃	78.	$N(CH_2CH_2OH)N[(CH_2)_2CH_3]_2$
47.	N(CH ₂ CF ₃)NHCH(CH ₃) ₂	79.	$N(CH_2CH_2OH)N[(CH_2)_3CH_3]_2$
48.	N(CH₂CF₃)NHC(CH₃)₃	80.	N(CH ₂ CH ₂ OH)N[CH(CH ₃) ₂] ₂
49.	N(CH ₂ CF ₃)N(CH ₃) ₂	81.	N(CH ₂ CH ₂ OH)N(CH ₃)CH ₂ CH ₃
50.	N(CH ₂ CF ₃)N(CH ₂ CH ₃) ₂	82.	NHNHCH₂CH₂OH
51.	$N(CH_2CF_3)N[(CH_2)_2CH_3]_2$	83.	NHN(CH₃)CH₂CH₂OH
52.	$N(CH_2CF_3)N[(CH_2)_3CH_3]_2$	84.	NHN(CH ₂ CH ₃)CH ₂ CH ₂ OH
53.	$N(CH_2CF_3)N[CH(CH_3)_2]_2$	85 .	NHN(CH₂CH₂OH)₂
54.	N(CH ₂ CF ₃)N(CH ₃)CH ₂ CH ₃	86.	N(CH₃)NHCH₂CH₂OH
55.	NHNHCH₂CF₃	87.	N(CH ₃)N(CH ₃)CH ₂ CH ₂ OH
56.	NHN(CH₃)CH₂CF₃	88.	N(CH ₃)N(CH ₂ CH ₃)CH ₂ CH ₂ OH
57.	NHN(CH₂CH₃)CH₂CF₃	89.	N(CH ₃)N(CH ₂ CH ₂ OH) ₂
58.	NHN(CH₂CF₃)₂	90.	N(CH ₂ CH ₃)NHCH ₂ CH ₂ OH
59.	N(CH₃)NHCH₂CF₃	91.	N(CH ₂ CH ₃)N(CH ₃)CH ₂ CH ₂ OH
60.	N(CH₃)N(CH₃)CH₂CF₃	92.	N(CH ₂ CH ₃)N(CH ₂ CH ₃)CH ₂ CH ₂ OH

No.	R ₆	No.	R ₆
93.	N(CH ₂ CH ₃)N(CH ₂ CH ₂ OH) ₂	124.	NHNHCH₂OCH₃
94.	N(CH2CH2OH)NHCH2CH2OH	125.	NHNHCH₂OCH₂CH₃
95.	N(CH ₂ CH ₂ OH)N(CH ₂ CH ₂ OH) ₂	126.	NHN(CH₃)CH₂OH
96.	N(CH ₂ CH ₂ OCH ₃)NH ₂	127.	NHN(CH ₃)CH ₂ OCH ₃
97.	N(CH ₂ CH ₂ OCH ₃)NHCH ₃	128.	NHN(CH ₃)CH ₂ OCH ₂ CH ₃
98.	N(CH ₂ CH ₂ OCH ₃)NHCH ₂ CH ₃	129.	N(CH₃)NHCH₂OH
99.	$N(CH_2CH_2OCH_3)NH(CH_2)_2CH_3$	130.	N(CH ₃)NHCH ₂ OCH ₃
100.	$N(CH_2CH_2OCH_3)NH(CH_2)_3CH_3$	131.	N(CH ₃)NHCH ₂ OCH ₂ CH ₃
101.	$N(CH_2CH_2OCH_3)NHCH(CH_3)_2$	132.	N(CH ₃)N(CH ₃)CH ₂ OH
102.	$N(CH_2CH_2OCH_3)NHC(CH_3)_3$	133.	N(CH ₃)N(CH ₃)CH ₂ OCH ₃
103.	N(CH ₂ CH ₂ OCH ₃)N(CH ₃) ₂	134.	N(CH ₃)N(CH ₃)CH ₂ OCH ₂ CH ₃
104.	N(CH ₂ CH ₂ OCH ₃)N(CH ₂ CH ₃) ₂	135.	N(CH₂OH)NHCH₂OH
105.	$N(CH_2CH_2OCH_3)N[(CH_2)_2CH_3]_2$	136.	N(CH ₂ OCH ₃)NHCH ₂ OCH ₃
106.	$N(CH_2CH_2OCH_3)N[(CH_2)_3CH_3]_2$	137.	N(CH ₂ OCH ₂ CH ₃)NH-CH ₂ OCH ₂ CH ₃
107.	$N(CH_2CH_2OCH_3)N[CH(CH_3)_2]_2$	138.	N(CH ₂ OH)N(CH ₃)CH ₂ OH
108.	$N(CH_2CH_2OCH_3)N(CH_3)CH_2CH_3$	139.	N(CH ₂ OCH ₃)N(CH ₃)CH ₂ OCH ₃
109.	NHNHCH₂CH₂OCH₃	140.	N(CH ₂ OCH ₂ CH ₃)-
110.	NHN(CH ₃)CH ₂ CH ₂ OCH ₃		N(CH₃)CH₂OCH₂CH₃
111.	NHN(CH₂CH₃)CH₂CH₂OCH₃	141.	NHNHCH(CH₃)CH₂OH
112.	NHN(CH₂CH₂OCH₃)₂	142.	NHN(CH₃)CH(CH₃)CH₂OH
113.	N(CH ₃)NHCH₂CH₂OCH ₃	143.	N(CH₃)NHCH(CH₃)CH₂OH
114.	N(CH ₃)N(CH ₃)CH ₂ CH ₂ OCH ₃	144.	N(CH ₃)N(CH ₃)CH(CH ₃)CH ₂ OH
115.	N(CH ₃)N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃	145.	NHNHCH(CH₃)CH₂OCH₃
116.	N(CH ₃)N(CH ₂ CH ₂ OCH ₃) ₂	146.	NHN(CH₃)CH(CH₃)CH₂OCH₃
117.	N(CH ₂ CH ₃)NHCH ₂ CH ₂ OCH ₃	147.	N(CH₃)NHCH(CH₃)CH₂OCH₃
118.	N(CH ₂ CH ₃)N(CH ₃)CH ₂ CH ₂ OCH ₃	148.	N(CH ₃)N(CH ₃)CH(CH ₃)CH ₂ OCH ₃
119.	N(CH ₂ CH ₃)N(CH ₂ CH ₃)-	149.	NHNHCH(CH ₂ CH ₃)CH ₂ OH
	CH₂CH₂OCH₃	150.	NHN(CH ₃)CH(CH ₂ CH ₃)CH ₂ OH
120.	N(CH ₂ CH ₃)N(CH ₂ CH ₂ OCH ₃) ₂	151.	N(CH₃)NHCH(CH₂CH₃)CH₂OH
121.	N(CH2CH2OCH3)NH-CH2CH2OCH3	152.	N(CH ₃)N(CH ₃)-CH(CH ₂ CH ₃)CH ₂ OH
122.	N(CH ₂ CH ₂ OCH ₃)N-(CH ₂ CH ₂ OCH ₃) ₂	153.	NHNHCH(CH ₂ CH ₃)CH ₂ OCH ₃
123.	NHNHCH₂OH	154.	NHN(CH ₃)CH(CH ₂ CH ₃)CH ₂ OCH ₃

No.	R ₆	No.	R ₆
155.	N(CH ₃)NHCH(CH ₂ CH ₃)CH ₂ OCH ₃	181.	N[C(O)(CF ₂) ₂ CF ₃]NH-
156.	N(CH₃)N(CH₂CH₃)-		[C(O)(CF ₂) ₂ CF ₃]
	CH(CH₂CH₃)CH₂OCH₃	182.	NHN(CHO)₂
157.	NHN(CH₂CH₃)-	183.	NHN[C(O)CH₃]₂
	CH(CH₂CH₃)CH₂OH	184.	NHN[C(O)CH ₂ CH ₃] ₂
158.	N(CH₃)N(CH₂CH₃)-	185.	NHN[C(O)CH ₂ CH ₂ OCH ₃] ₂
	CH(CH ₂ CH ₃)CH ₂ OH	186.	NHN[C(O)CF ₃] ₂
159.	NHN(CH₂CH₃)-	187.	NHN[C(O)CF ₂ CF ₃] ₂
	CH(CH ₂ CH ₃)CH ₂ OCH ₃	188.	$NHN[C(O)(CF_2)_2CF_2]_2$
160.	N(CH ₃)N(CH ₂ CH ₃)-	189.	N(CH₃)NHCHO
	CH(CH₂CH₃)CH₂OCH₃	190.	N(CH ₃)NHC(O)CH ₃
161.	NHNHCHO	191.	N(CH ₃)NHC(O)CH ₂ CH ₃
162.	NHNHC(O)CH₃	192.	N(CH ₃)NHC(O)CH ₂ CH ₂ OCH ₃
163.	NHNHC(O)CH₂CH₃	193.	N(CH₃)NHC(O)CF₃
164.	NHNHC(O)CH₂CH₂OCH₃	194.	N(CH ₃)NHC(O)CF ₂ CF ₃
165.	NHNHC(O)CF ₃	195.	N(CH ₃)NHC(O)(CF ₂) ₂ CF ₃
166.	NHNHC(O)CF ₂ CF ₃	196.	N(CHO)NH(CH₃)
167.	NHNHC(O)(CF ₂) ₂ CF ₃	197.	N[C(O)CH₃]NH(CH₃)
168.	N(CHO)NH₂	198.	N[C(O)CH₂CH₃]NH(CH₃)
169.	N[C(O)CH₃]NH₂	199.	N[C(O)CH ₂ CH ₂ OCH ₃]NH(CH ₃)
170.	N[C(O)CH ₂ CH ₃]NH ₂	200.	N[C(O)CF ₃]NH(CH ₃)
171.	N[C(O)CH ₂ CH ₂ OCH ₃]NH ₂	201.	N[C(O)CF₂CF₃]NH(CH₃)
172.	$N[C(O)CF_3]NH_2$	202.	$N[C(O)(CF_2)_2CF_3]NH(CH_3)$
173.	N[C(O)CF ₂ CF ₃]NH ₂	203.	N(CHO)N(CH₃)(CHO)
174.	$N[C(O)(CF_2)_2CF_3]NH_2$	204.	$N[C(O)CH_3]N(CH_3)[C(O)CH_3]$
175.	N(CHO)NH(CHO)	205.	N[C(O)CH ₂ CH ₃]-
176.	$N[C(O)CH_3]NH[C(O)CH_3]$		N(CH₃)[C(O)CH₂CH₃]
177.	$N[C(O)CH_2CH_3]NH[C(O)CH_2CH_3]$	206.	N[C(O)CH ₂ CH ₂ OCH ₃]N(CH ₃)-
178.	N[C(O)CH₂CH₂OCH₃]NH-		[C(O)CH₂CH₂OCH₃]
	[C(O)CH ₂ CH ₂ OCH ₃]	207.	$N[C(O)CF_3]N(CH_3)[C(O)CF_3]$
179.	$N[C(O)CF_3]NH[C(O)CF_3]$	208.	N[C(O)CF ₂ CF ₃]-
180.	$N[C(O)CF_2CF_3]NH[C(O)CF_2CF_3]$		N(CH ₃)[C(O)CF ₂ CF ₃]

No.	R ₆	No.	R ₆
209.	N[C(O)(CF ₂) ₂ CF ₃]N(CH ₃)-	235.	N^
	[C(O)(CF ₂) ₂ CF ₃]		N NH _a
210.	N(CH₃)N(CHO)₂	236.	,
211.	N(CH ₃)N[C(O)CH ₃] ₂		N NH ₂
212.	N(CH ₃)N[C(O)CH ₂ CH ₃] ₂	237.	*
213.	N(CH ₃)N[C(O)CH ₂ CH ₂ OCH ₃] ₂		
214.	$N(CH_3)N[C(O)CF_3]_2$	238.	
215.	N(CH ₃)N[C(O)CF ₂ CF ₃] ₂	200.	
216.	$N(CH_3)N[C(O)(CF_2)_2CF_3]_2$		1
217.	N(CH₃)N(CH₃)CHO	239.	
218.	$N(CH_3)N(CH_3)C(O)CH_3$		n .
219.	N(CH₃)N(CH₃)C(O)CH₂CH₃		\sim
220.	$N(CH_3)N(CH_3)C(O)CH_2CH_2OCH_3$	240.	
221.	$N(CH_3)N(CH_3)C(O)CF_3$		
222.	N(CH ₃)N(CH ₃)C(O)CF ₂ CF ₃	241.	NH ₂
223.	$N(CH_3)N(CH_3)C(O)(CF_2)_2CF_3$	242.	NH(CH ₃)
224.	N(CHO)N(CH ₃) ₂	243.	NH(CH₂CH₃)
225.	N[C(O)CH ₃]N (CH ₃) ₂	244.	NH[(CH ₂) ₂ CH ₃]
226.	N[C(O)CH ₂ CH ₃]N (CH ₃) ₂	245.	NH[(CH ₂) ₃ CH ₃]
227.	N[C(O)CH ₂ CH ₂ OCH ₃]N (CH ₃) ₂	246.	NH[(CH ₂) ₄ CH ₃]
228.	$N[C(O)CF_3]N (CH_3)_2$	247.	NH[CH(CH ₃) ₂]
229.	$N[C(O)CF_2CF_3]N(CH_3)_2$	248.	NH[CH(CH ₂ CH ₃) ₂]
230.	$N[C(O)(CF_2)_2CF_3]N(CH_3)_2$	249.	NH[C(CH ₃) ₃]
231.	NH .	250.	NH[CH(CH₃)CH₂CH₃]
		251.	NH[CH ₂ CH(CH ₃) ₂]
232.	NH NH2	252.	N(CH ₃) ₂
	\bigcup	253.	NCH₃(CH₂CH₃)
233.	NH	254.	NCH ₃ [(CH ₂) ₂ CH ₃]
	NH ₂	255.	$NCH_3[(CH_2)_3CH_3]$
234.	ņ 📉	256.	NCH ₃ [(CH ₂) ₄ CH ₃]
	NH	257.	NCH ₃ [CH(CH ₃) ₂]
		258.	NCH ₃ [CH(CH ₂ CH ₃) ₂]
			· · · · · · · · · · · · · · · · · · ·

No.	R ₆	No.	R ₆
259.	NCH ₃ [C(CH ₃) ₃]	291.	NCH ₃ [(CH ₂) ₃ NH ₂]
260.	NCH₃[CH(CH₃)CH₂CH₃]	292.	NCH ₃ [CH(CH ₃)CH ₂ NH ₂]
261.	NCH ₃ [CH ₂ CH(CH ₃) ₂]	293.	NCH ₃ [CH(CH ₃)CH ₂ CH ₂ NH ₂
262.	NCH ₃ (CH ₂ CH ₃)	294.	NCH ₃ [CH(CH ₂ CH ₃)CH ₂ NH ₂]
263.	N(CH ₂ CH ₃) ₂	295.	NCH ₃ [CH(i-propyl)CH ₂ NH ₂]
264.	$NCH_2CH_3[(CH_2)_2CH_3]$	296.	NCH₃(CH₂CH₂NHCH₃)
265.	$NCH_2CH_3[(CH_2)_3CH_3]$	297.	NCH ₃ [(CH ₂) ₃ NHCH ₃]
266.	$NCH_2CH_3[(CH_2)_4CH_3]$	298.	NCH₃[CH(CH₃)CH₂NHCH₃]
267.	NCH ₂ CH ₃ [CH(CH ₃) ₂]	299.	NCH3[CH(CH3)CH2CH2NHCH3]
268.	NCH₂CH₃[CH(CH₂CH₃)₂]	300.	NCH₃[CH(CH₂CH₃)CH₂NHCH₃]
269.	$NCH_2CH_3[C(CH_3)_3]$	301.	NCH ₃ [CH(i-propyl)CH ₂ NHCH ₃]
270.	NCH ₂ CH ₃ [CH(CH ₃)CH ₂ CH ₃]	302.	NCH₃(CH₂CH₂N(CH₃)₂)
271.	NCH ₂ CH ₃ [CH ₂ CH(CH ₃) ₂]	303.	$NCH_3[(CH_2)_3N(CH_3)_2]$
272.	NH(CH₂CH₂NH₂)	304.	NCH ₃ [CH(CH ₃)CH ₂ N(CH ₃) ₂]
273.	$NH[(CH_2)_3NH_2]$	305.	$NCH_3[CH(CH_3)CH_2CH_2N(CH_3)_2]$
274.	NH[CH(CH ₃)CH ₂ NH ₂]	306.	$NCH_3[CH(CH_2CH_3)CH_2N(CH_3)_2]$
275.	NH[CH(CH ₃)CH ₂ CH ₂ NH ₂	307.	NCH ₃ [CH(i-propyl)CH ₂ N(CH ₃) ₂]
276.	NH[CH(CH ₂ CH ₃)CH ₂ NH ₂]	308.	NH[CH₂CH₂OCH₂OCH₃]
277.	NH[CH(i-propyl)CH ₂ NH ₂]	309.	NH[CH(CH ₃)CH ₂ OCH ₂ OCH ₃]
278.	NH(CH ₂ CH ₂ NHCH ₃)	310.	NH[CH2CH2OCH2OCH2CH3]
279.	NH[(CH₂)₃NHCH₃]	311.	NH[CH(CH₃)CH₂OCH₂OCH₂CH₃]
280.	NH[CH(CH₃)CH₂CH₂NHCH₃	312.	NH[CH(CH2CH3)CH2OCH2OCH3]
281.	NH[CH(CH ₃)CH ₂ NHCH ₃]	313.	NH[CH(CH ₂ CH ₃)CH ₂ O-
282.	NH[CH(CH₂CH₃)CH₂NHCH₃]		CH₂OCH₂CH₃]
283.	NH[CH(i-propyl)CH₂NHCH₃]	314.	NCH₃[CH₂CH₂OCH₂OCH₃]
284.	NH(CH ₂ CH ₂ N(CH ₃) ₂)	315.	NCH ₃ [CH(CH ₃)CH ₂ OCH ₂ OCH ₃]
285.	$NH[(CH_2)_3N(CH_3)_2]$	316.	NCH3[CH2CH2OCH2OCH3]
286.	NH[CH(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂	317.	NCH ₃ [CH(CH ₃)CH ₂ O-CH ₂ OCH ₂ CH ₃]
287.	NH[CH(CH ₃)CH ₂ N(CH ₃) ₂]	318.	NCH ₃ [CH(CH ₂ CH ₃)CH ₂ O-CH ₂ OCH ₃]
288.	NH[CH(CH₂CH₃)CH₂N(CH₃)₂]	319.	NCH₃[CH(CH₂CH₃)CH₂O-
289.	NH[CH(i-propyl)CH₂N(CH₃)₂]		CH₂OCH₂CH₃]
290.	NCH ₃ (CH ₂ CH ₂ NH ₂)	320.	NCH2OCH3[CH2CH2OCH2OCH3]
			-

PCT/EP01/06389

No.	R ₆	No.	R ₆
321.	NCH ₂ OCH ₃ [CH(CH ₃)CH ₂ O-	343.	NH(CH₂)₂CN
	CH₂OCH₃]	344.	NH(CH₂)₃CN
322.	NCH ₂ OCH ₃ [CH ₂ CH ₂ O-	345.	NH(CH₂)₄CN
	CH₂OCH₂CH₃]	346.	NHCH(CH₃)CN
323.	NCH₂OCH₅[CH(CH₃)CH₂O-	347.	NHCH(CH₃)CH₂CN
	CH₂OCH₂CH₃]	348.	NHCH(CH₂CH₃)CN
324.	NCH ₂ OCH ₃ [CH(CH ₂ CH ₃)CH ₂ O-	349.	NHCH(CH₂CH₃)CH₂CN
	CH₂OCH₃]	350.	NHCH(CH(CH₃)₂)CN
325.	NCH₂OCH₃[CH(CH₂CH₃)CH₂O-	351.	NHCH(CH(CH₃)₂)CH₂CN
	CH₂OCH₂CH₃]	352.	N(CH₃)CH₂CN
326.	NHCH₂CH₂NHCH₂CH₂OH	353.	N(CH ₃)(CH ₂) ₂ CN
327.	NHCH(CH₃)CH₂NHCH₂CH₂OH	354.	N(CH₃)(CH₂)₃CN
328.	NHCH(CH₂CH₃)CH₂NH-CH₂CH₂OH	355.	N(CH ₃)(CH ₂) ₄ CN
329.	NHCH(CH(CH ₃) ₂)CH ₂ NH-	356.	N(CH ₃)CH(CH ₃)CN
	CH₂CH₂OH	357.	N(CH₃)CH(CH₃)CH₂CN
330.	NHCH₂CH₂NH(CH₂)₃OH	358.	N(CH₃)CH(CH₂CH₃)CN
331.	NHCH(CH₃)CH₂NH(CH₂)₃OH	359.	N(CH₃)CH(CH₂CH₃)CH₂CN
332.	NHCH(CH2CH3)CH2NH-(CH2)3OH	360.	N(CH ₃)CH(CH(CH ₃) ₂)CN
333.	NHCH(CH(CH $_3$) $_2$)CH $_2$ NH-(CH $_2$) $_3$ OH	361.	N(CH₃)CH(CH(CH₃)₂)CH₂CN
334.	NHCH₂CH₂NHCH(CH₃)CH₂OH	362.	N(CH ₂ CN) ₂
335.	NHCH(CH₃)CH₂NH-CH(CH₃)CH₂OH	363.	N(CH ₂ CH ₂ CN) ₂
336.	NHCH(CH₂CH₃)CH₂NH-	364.	NHCH₂F
	CH(CH₃)CH₂OH	365.	NHCH₂CH₂F
337.	NHCH(CH(CH ₃) ₂)CH ₂ NH-	366.	NHCH₂CF₃
	CH(CH₃)CH₂OH	367.	NHCH₂CF₂CF₃
338.	NHCH₂CH₂NHCH₂CH(CH₃)OH	368.	N(CH₃)CH₂F
339.	NHCH(CH₃)CH₂NH-CH₂CH(CH₃)OH	369.	N(CH ₃)CH ₂ CH ₂ F
340.	NHCH(CH₂CH₃)CH₂NH-	370.	N(CH ₃)CH ₂ CF ₃
	CH₂CH(CH₃)OH	371.	N(CH ₃)CH ₂ CF ₂ CF ₃
341.	NHCH(CH(CH ₃) ₂)CH ₂ NH-	372.	N(CHO)CH₂F
	CH₂CH(CH₃)OH	373.	N(CHO)CH₂CH₂F
342.	NHCH₂CN	374.	N(CHO)CH ₂ CF ₃
			•

No.	R ₆	No.	R ₆
375.	N(CHO)CH ₂ CF ₂ CF ₃	407.	$N(CH_3)-(CH[CH(CH_3)_2]CH=C(CH_3)_2)$
376.	N(COCH₃)CH₂F	408.	NH(CH₂C≡CH)
377.	N(COCH₃)CH₂CH₂F	409.	NH(CH₂C≡CCH₃)
378.	N(COCH₃)CH₂CF₃	410.	NH(CH(CH₃)C≡CH)
379.	N(COCH ₃)CH ₂ CF ₂ CF ₃	411.	NH(CH(CH₃)C≡CCH₃)
380.	N(CH ₂ F) ₂	412.	NH(CH(CH₂CH₃)C≡CH)
381.	N(CH ₂ CH ₂ F) ₂	413.	NH(CH(CH₂CH₃)C≡CCH₃)
382.	N(CH ₂ CF ₃) ₂	414.	NH(CH[CH(CH₃)₂]C≡CH)
383.	N(CH ₂ CF ₂ CF ₃) ₂	415.	NH(CH[CH(CH ₃)₂]C≣CCH ₃)
384.	NH(CH₂CH=CH₂)	416.	N(CH₃)(CH₂C≣CH)
385.	NH(CH₂CH=CHCH₃)	417.	N(CH ₃)(CH ₂ C≡CCH ₃)
386.	NH(CH₂CH=C(CH₃)₂)	418.	N(CH₃)(CH(CH₃)C≡CH)
387.	NH(CH(CH ₃)CH=CH ₂)	419.	N(CH₃)(CH(CH₃)C≡CCH₃)
388.	NH(CH(CH ₃)CH=CHCH ₃)	420.	N(CH₃)(CH(CH₂CH₃)C≡CH)
389.	$NH(CH(CH_3)CH=C(CH_3)_2)$	421.	N(CH ₃)(CH(CH ₂ CH ₃)C≡CCH ₃)
390.	NH(CH(CH ₂ CH ₃)CH=CH ₂)	422.	N(CH₃)(CH[CH(CH₃)₂]C≡CH)
391.	NH(CH(CH ₂ CH ₃)CH=CHCH ₃)	423.	$N(CH_3)(CH[CH(CH_3)_2]C\equiv CCH_3)$
392.	NH(CH(CH ₂ CH ₃)CH=C(CH ₃) ₂)	424.	$N(CH_3)$ - $(CH[CH(CH_3)_2]C\equiv C(CH_3)_2)$
393.	NH(CH[CH(CH ₃) ₂]CH=CH ₂)	425.	NHCH₂CH₂NHC(O)H
394.	NH(CH[CH(CH ₃) ₂]CH=CHCH ₃)	426.	NHCH₂CH₂NHC(O)CH₃
395.	$NH(CH[CH(CH_3)_2]CH=C(CH_3)_2)$	427.	NHCH₂CH₂NH-
396.	N(CH ₃)(CH ₂ CH=CH ₂)		C(O)CH₂CH₃
397.	N(CH ₃)(CH ₂ CH=CHCH ₃)	428.	NHCH₂CH₂NH-
398.	$N(CH_3)(CH_2CH=C(CH_3)_2)$		C(O)CF ₃
399.	N(CH ₃)(CH(CH ₃)CH=CH ₂)	429.	NHCH₂CH₂NH-
400.	N(CH₃)(CH(CH₃)CH=CHCH₃)		C(O)(CH ₂) ₂ CH ₃
401.	$N(CH_3)(CH(CH_3)CH=C(CH_3)_2)$	430.	NHCH₂CH₂NH-
402.	N(CH ₃)(CH(CH ₂ CH ₃)CH=CH ₂)		C(O)CH₂OH
403.	$N(CH_3)(CH(CH_2CH_3)CH=CHCH_3)$	431.	NHCH₂CH₂NH-
404.	$N(CH_3)$ -($CH(CH_2CH_3)CH=C(CH_3)_2$)		C(O)CH₂OCH₃
405.	$N(CH_3)(CH[CH(CH_3)_2]CH=CH_2)$	432.	NHCH₂CH₂NH-
406.	N(CH ₃)(CH[CH(CH ₃) ₂]CH=CHCH ₃)		C(O)CH(CH ₃)OH

No.	R ₆	No.	R ₆
433.	NHCH₂CH₂NH-C(O)CH(CH₃)OCH₃	452.	NHCH(CH₃)CH₂NH-
434.	NHCH ₂ CH ₂ NH-C(O)CH ₂ CH(CH ₃)OH		C(O)CH ₃
435.	NHCH₂CH₂NH-	453.	NHCH(CH₃)CH₂NH-
	C(O)CH₂CH(CH₃)OCH₃		C(O)CH₂CH₃
436.	NHCH2CH2NH-C(O)CH(CH3)CH2OH	454.	NHCH(CH₃)CH₂NH-
437.	NHCH₂CH₂NH		C(O)CF ₃
	C(O)CH(CH₃)CH₂OCH₃	455.	NHCH(CH ₃)CH ₂ NH-C(O)(CH ₂) ₂ CH ₃
438.	NHCH2CH2CH2NHC(O)H	456.	NHCH(CH₃)CH₂NH-
439.	NHCH₂CH₂CH₂NH-		C(O)CH₂OH
	C(O)CH₃	457.	NHCH(CH3)CH2NH-C(O)CH2OCH3
440.	NHCH₂CH₂CH₂NH-	458.	NHCH(CH₃)CH₂NH-
	C(O)CH₂CH₃		C(O)CH(CH ₃)OH
441.	NHCH₂CH₂CH₂NH-	459.	NHCH(CH₃)CH₂NH-
	C(O)CF ₃		C(O)CH(CH ₃)OCH ₃
442.	NHCH2CH2CH2NH-C(O)(CH2)2CH3	460.	NHCH(CH₃)CH₂NH-
443.	NHCH₂CH₂CH₂NH-		C(O)CH₂CH(CH₃)OH
	C(O)CH₂OH	461.	NHCH(CH₃)CH₂NH-
444.	NHCH₂CH₂CH₂NH-		C(O)CH₂CH(CH₃)OCH₃
	C(O)CH₂OCH₃	462.	NHCH(CH₃)CH₂NH-
445.	NHCH2CH2CH2NH-C(O)CH(CH3)OH		C(O)CH(CH₃)CH₂OH
446.	NHCH2CH2CH2NH-	463.	NHCH(CH₃)CH₂NH-
	C(O)CH(CH ₃)OCH ₃		C(O)CH(CH₃)CH₂OCH₃
447.	NHCH₂CH₂CH₂NH-	464.	NHCH(CH₃)CH₂CH₂NH-
	C(O)CH₂CH(CH₃)OH		C(O)H
448.	NHCH2CH2CH2NH-	465.	NHCH(CH₃)CH₂CH₂NH-
	C(O)CH₂CH(CH₃)OCH₃		C(O)CH₃
449.	NHCH ₂ CH ₂ CH ₂ NH-	466.	NHCH(CH₃)CH₂CH₂NH-
	C(O)CH(CH ₃)CH ₂ OH		C(O)CH₂CH₃
450.	NHCH ₂ CH ₂ CH ₂ NH-	467.	NHCH(CH₃)CH₂CH₂NH-
	C(O)CH(CH₃)CH₂OCH₃		C(O)CF₃
451.	NHCH(CH₃)CH₂NHC(O)H	468.	NHCH(CH₃)CH₂CH₂NH-
			C(O)(CH₂)₂CH₃

No.	R ₆	No.	R ₆
469.	NHCH(CH₃)CH₂CH₂NH-C(O)CH₂OH	486.	NHCH(CH ₂ CH ₃)CH ₂ NH-
470.	NHCH(CH₃)CH₂CH₂NH-		C(O)CH ₂ CH(CH ₃)OH
	C(O)CH₂OCH₃	487.	NHCH(CH ₂ CH ₃)CH ₂ NH-
471.	NHCH(CH₃)CH₂CH₂NH-		C(O)CH ₂ CH(CH ₃)OCH ₃
	C(O)CH(CH₃)OH	488.	NHCH(CH ₂ CH ₃)CH ₂ NH-
472.	NHCH(CH ₃)CH ₂ CH ₂ NH-		C(O)CH(CH ₃)CH ₂ OH
	C(O)CH(CH ₃)OCH ₃	489.	NHCH(CH ₂ CH ₃)CH ₂ NH-
473.	NHCH(CH₃)CH₂CH₂NH-		C(O)CH(CH ₃)CH ₂ OCH ₃
	C(O)CH₂CH(CH₃)OH	490.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ NH-
474.	NHCH(CH ₃)CH ₂ CH ₂ NH-		C(O)H
	C(O)CH ₂ CH(CH ₃)OCH ₃	491.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ NH-
475.	NHCH(CH₃)CH₂CH₂NH-		C(O)CH ₃
	C(O)CH(CH₃)CH₂OH	492.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ NH-
476.	NHCH(CH ₃)CH ₂ CH ₂ NH-		C(O)CH ₂ CH ₃
	C(O)CH(CH₃)CH₂OCH₃	493.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ NH-
477.	NHCH(CH₂CH₃)CH₂NHC(O)H		C(O)CF ₃
478.	NHCH(CH₂CH₃)CH₂NH-	494.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ NH-
	C(O)CH ₃		C(O)(CH ₂) ₂ CH ₃
479.	NHCH(CH₂CH₃)CH₂NH-	495.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ NH-
	C(O)CH₂CH₃		C(O)CH₂OH
480.	NHCH(CH₂CH₃)CH₂NH-	496.	NHCH(CH2CH3)CH2CH2NH-
	C(O)CF₃		C(O)CH₂OCH₃
481.	NHCH(CH₂CH₃)CH₂NH-	497.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)(CH ₂) ₂ CH ₃		C(O)CH(CH₃)OH
482.	NHCH(CH₂CH₃)CH₂NH-	498.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)CH₂OH		C(O)CH(CH ₃)OCH ₃
483.	NHCH(CH₂CH₃)CH₂NH-	499.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)CH₂OCH₃		C(O)CH ₂ CH(CH ₃)OH
484.	NHCH(CH₂CH₃)CH₂NH-	500.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)CH(CH₃)OH		C(O)CH ₂ CH(CH ₃)OCH ₃
485.	NHCH(CH₂CH₃)CH₂NH-	501.	NHCH(CH2CH3)CH2CH2NH-
	C(O)CH(CH ₃)OCH ₃		C(O)CH(CH₃)CH₂OH

No.	R ₆	No.	R ₆
502.	NHCH(CH₂CH₃)CH₂CH₂NH-	518.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)CH(CH₃)CH₂OCH₃		C(O)CH₂CH₃
503.	NHCH(CH₂CH₂CH₃)CH₂NHC(O)H	519.	NHCH(CH2CH2CH3)CH2CH2NH-
5 0 4.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CF ₃
	C(O)CH ₃	520.	NHCH(CH2CH2CH3)CH2CH2NH-
505.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)(CH ₂) ₂ CH ₃
	C(O)CH ₂ CH ₃	521.	NHCH(CH2CH2CH3)CH2CH2NH-
506.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CH₂OH
	C(O)CF ₃	522.	NHCH(CH2CH2CH3)CH2CH2NH-
507.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CH₂OCH₃
	C(O)(CH₂)₂CH₃	523.	NHCH(CH2CH2CH3)CH2CH2NH-
508.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CH(CH ₃)OH
	C(O)CH₂OH	524.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ CH ₂ NH-
509.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CH(CH₃)OCH₃
	C(O)CH ₂ OCH ₃	525.	NHCH(CH2CH2CH3)CH2CH2NH-
510.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CH₂CH(CH₃)OH
	C(O)CH(CH ₃)OH	526.	NHCH(CH2CH2CH3)CH2CH2NH-
511.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ NH-		C(O)CH₂CH(CH₃)OCH₃
	C(O)CH(CH ₃)OCH ₃	527.	NHCH(CH2CH2CH3)CH2CH2NH-
512.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CH(CH₃)CH₂OH
	C(O)CH₂CH(CH₃)OH	528.	NHCH(CH2CH2CH3)CH2CH2NH-
513.	NHCH(CH₂CH₂CH₃)CH₂NH-		C(O)CH(CH₃)CH₂OCH₃
	C(O)CH ₂ CH(CH ₃)OCH ₃	529.	NHCH(CH(CH₃)₂)CH₂NHC(O)H
514.	NHCH(CH₂CH₂CH₃)CH₂NH-	530.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)CH(CH₃)CH₂OH		C(O)CH ₃
515.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ NH-	531.	NHCH(CH(CH ₃)₂)CH₂NH-
	C(O)CH(CH₃)CH₂OCH₃		C(O)CH ₂ CH ₃
516.	NHCH(CH2CH2CH3)CH2CH2NH-	532.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)H		C(O)CF ₃
517.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-	533.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)CH ₃		C(O)(CH ₂) ₂ CH ₃

No.	R ₆	No.	R ₆
534.	NHCH(CH(CH₃)₂)CH₂NH-	550.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-
	C(O)CH₂OH		C(O)CH(CH₃)OCH₃
535.	NHCH(CH(CH₃)₂)CH₂NH-	551.	NHCH(CH(CH₃)₂)CH₂CH₂NH-
	C(O)CH ₂ OCH ₃		C(O)CH₂CH(CH₃)OH
536.	NHCH(CH(CH₃)₂)CH₂NH-	552.	NHCH(CH(CH₃)₂)CH₂CH₂NH-
	C(O)CH(CH₃)OH		C(O)CH₂CH(CH₃)OCH₃
537.	NHCH(CH(CH₃)₂)CH₂NH-	553.	NHCH(CH(CH₃)₂)CH₂CH₂NH-
	C(O)CH(CH₃)OCH₃		C(O)CH(CH₃)CH₂OH
538.	NHCH(CH(CH₃)₂)CH₂NH-	554.	NHCH(CH(CH₃)₂)CH₂CH₂NH-
	C(O)CH₂CH(CH₃)OH		C(O)CH(CH₃)CH₂OCH₃
539.	NHCH(CH(CH₃)₂)CH₂NH-	555.	NHCH₂CH₂NHC(O)OCH₃
	C(O)CH(CH(CH ₃) ₂)OCH ₃	556.	NHCH₂CH₂NH-
540.	NHCH(CH(CH₃)₂)CH₂NH-		C(O)OCH ₂ CH ₃
	C(O)CH(CH₃)CH₂OH	557.	NHCH₂CH₂NH-
541.	NHCH(CH(CH ₃)₂)CH₂NH-		C(O)O(CH ₂) ₂ CH ₃
	C(O)CH(CH₃)CH₂OCH₃	558.	NHCH₂CH₂NH-
542.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-		C(O)OCH(CH ₃)OH
	C(O)H	559.	NHCH₂CH₂NH-C(O)OCH(CH₃)OCH₃
543.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	5 60 .	NHCH₂CH₂NH-
	C(O)CH ₃		C(O)OCH₂CH(CH₃)OH
544.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	561.	NHCH₂CH₂NH-
	C(O)CH₂CH₃		C(O)OCH₂CH(CH₃)OCH₃
545.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	562.	NHCH₂CH₂NH-
	C(O)CF ₃		C(O)OCH(CH₃)CH₂OH
546.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	563.	ŅHCH₂CH₂NH
	C(O)(CH ₂) ₂ CH ₃		C(O)OCH(CH₃)CH₂OCH₃
547.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	564.	NHCH ₂ CH ₂ CH ₂ NH-
	C(O)CH₂OH		C(O)OCH₃
548.	NHCH(CH(CH₃)₂)CH₂CH₂NH-	565.	NHCH₂CH₂CH₂NH-
	C(O)CH₂OCH₃		C(O)OCH₂CH₃
549.	NHCH(CH(CH₃)₂)CH₂CH₂NH-	566.	NHCH ₂ CH ₂ CH ₂ NH-C(O)O(CH ₂) ₂ CH ₃
	C(O)CH(CH₃)OH		

No.	R ₆	No.	R ₆
567.	NHCH₂CH₂CH₂NH-	583.	NHCH(CH₃)CH₂CH₂NH-
	C(O)OCH(CH ₃)OH		C(O)OCH₂CH₃
568.	NHCH₂CH₂CH₂NH-	584.	NHCH(CH3)CH2CH2NH-
	C(O)OCH(CH₃)OCH₃		C(O)O(CH ₂) ₂ CH ₃
569.	NHCH₂CH₂CH₂NH-	585.	NHCH(CH₃)CH₂CH₂NH-
	C(O)OCH₂CH(CH₃)OH		C(O)OCH(CH₃)OH
570.	NHCH₂CH₂CH₂NH-	586.	NHCH(CH₃)CH₂CH₂NH-
	C(O)OCH₂CH(CH₃)OCH₃		C(O)OCH(CH₃)OCH₃
571.	NHCH ₂ CH ₂ CH ₂ NH-	587.	NHCH(CH₃)CH₂CH₂NH-
	C(O)OCH(CH₃)CH₂OH		C(O)OCH₂CH(CH₃)OH
572.	NHCH ₂ CH ₂ CH ₂ NH-	588.	NHCH(CH3)CH2CH2NH-
	C(O)OCH(CH₃)CH₂OCH₃		C(O)OCH₂CH(CH₃)OCH₃
573.	NHCH(CH₃)CH₂NH-	589.	NHCH(CH3)CH2CH2NH-
	C(O)OCH₃		C(O)OCH(CH₃)CH₂OH
574.	NHCH(CH₃)CH₂NH-	590.	NHCH(CH3)CH2CH2NH-
	C(O)OCH₂CH₃		C(O)OCH(CH₃)CH₂OCH₃
575.	NHCH(CH₃)CH₂NH-	591.	NHCH(CH₂CH₃)CH₂NH-
	C(O)O(CH ₂) ₂ CH ₃		C(O)OCH ₃
576.	NHCH(CH₃)CH₂NH-	592.	NHCH(CH₂CH₃)CH₂NH-
	C(O)OCH(CH₃)OH		C(O)OCH₂CH₃
577.	NHCH(CH₃)CH₂NH-	593.	NHCH(CH₂CH₃)CH₂NH-
	C(O)OCH(CH ₃)OCH ₃		C(O)O(CH ₂) ₂ CH ₃
578.	NHCH(CH₃)CH₂NH-	594.	NHCH(CH₂CH₃)CH₂NH-
	C(O)OCH₂CH(CH₃)OH		C(O)OCH(CH₃)OH
579.	NHCH(CH₃)CH₂NH-	595.	NHCH(CH₂CH₃)CH₂NH-
	C(O)OCH₂CH(CH₃)OCH₃		C(O)OCH(CH₃)OCH₃
580.	NHCH(CH₃)CH₂NH-	596.	NHCH(CH₂CH₃)CH₂NH-
	C(O)OCH(CH₃)CH₂OH		C(O)OCH₂CH(CH₃)OH
581.	NHCH(CH₃)CH₂NH-	597.	NHCH(CH₂CH₃)CH₂NH-
	C(O)OCH(CH₃)CH₂OCH₃		C(O)OCH₂CH(CH₃)OCH₃
582.	NHCH(CH₃)CH₂CH₂NH-	598.	NHCH(CH₂CH₃)CH₂NH-
	C(O)OCH₃		C(O)OCH(CH₃)CH₂OH

No.	R ₆	No.	R_6
599.	NHCH(CH₂CH₃)CH₂NH-	615.	NHCH(CH₂CH₂CH₃)CH₂NH-
	C(O)OCH(CH ₃)CH ₂ OCH ₃		C(O)OCH₂CH(CH₃)OH
600.	NHCH(CH2CH3)CH2CH2NH-	616.	NHCH(CH₂CH₂CH₃)CH₂NH-
	C(O)OCH₃		C(O)OCH₂CH(CH₃)OCH₃
601.	NHCH(CH₂CH₃)CH₂CH₂NH-	617.	NHCH(CH₂CH₂CH₃)CH₂NH-
	C(O)OCH₂CH₃		C(O)OCH(CH₃)CH₂OH
602.	NHCH(CH₂CH₃)CH₂CH₂NH-	618.	NHCH(CH2CH2CH3)CH2NH-
	C(O)O(CH ₂) ₂ CH ₃		C(O)OCH(CH₃)CH₂OCH₃
603.	NHCH(CH₂CH₃)CH₂CH₂NH-	619.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)OCH(CH₃)OH		C(O)OCH₃
604.	NHCH(CH₂CH₃)CH₂CH₂NH-	620.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)OCH(CH₃)OCH₃		C(O)OCH₂CH₃
605.	NHCH(CH₂CH₃)CH₂CH₂NH-	621.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)OCH₂CH(CH₃)OH		C(O)O(CH ₂) ₂ CH ₃
606.	NHCH(CH₂CH₃)CH₂CH₂NH-	622.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)OCH₂CH(CH₃)OCH₃		C(O)OCH(CH₃)OH
607.	NHCH(CH₂CH₃)CH₂CH₂NH-	623.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-
	C(O)OCH(CH₃)CH₂OH		C(O)OCH(CH3)OCH3
608.	NHCH(CH₂CH₃)CH₂CH₂NH-	624.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)OCH(CH₃)CH₂OCH₃		C(O)OCH₂CH(CH₃)OH
609.	NHCH(CH₂CH₂CH₃)CH₂NH-	625.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)OCH₃		C(O)OCH₂CH(CH₃)OCH₃
610.	NHCH(CH₂CH₂CH₃)CH₂NH-	626.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)OCH₂CH₃		C(O)OCH(CH₃)CH₂OH
611.	NHCH(CH₂CH₂CH₃)CH₂NH-	627.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)O(CH ₂) ₂ CH ₃		C(O)OCH(CH ₃)CH ₂ OCH ₃
612.	NHCH(CH₂CH₂CH₃)CH₂NH-	628.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)OCH₂OCH₃		C(O)OCH₃
613.	NHCH(CH₂CH₂CH₃)CH₂NH-	629.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)OCH(CH₃)OH		C(O)OCH ₂ CH ₃
614.	NHCH(CH₂CH₂CH₃)CH₂NH-	630.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)OCH(CH₃)OCH₃		C(O)O(CH₂)₂CH₃

WO 01/93682

No.	R ₆	No.	R ₆
631.	NHCH(CH(CH ₃) ₂)CH ₂ NH-	647.	NHCH₂CH₂NH-
	C(O)OCH(CH₃)OCH₃		C(O)NHCH(CH₃)OH
632.	NHCH(CH(CH ₃) ₂)CH ₂ NH-	648.	NHCH2CH2NH-
	C(O)OCH₂CH(CH₃)OH		C(O)NHCH(CH₃)OCH₃
633.	NHCH(CH(CH ₃) ₂)CH ₂ NH-	649.	NHCH2CH2NH-
	C(O)OCH(CH(CH ₃) ₂)OCH ₃		C(O)NHCH₂CH(CH₃)OH
634.	NHCH(CH(CH₃)₂)CH₂NH-	650.	NHCH₂CH₂NH-
	C(O)OCH(CH₃)CH₂OH		C(O)NHCH₂CH(CH₃)OCH₃
635.	NHCH(CH(CH₃)₂)CH₂NH-	651.	NHCH₂CH₂NH-
	C(O)OCH(CH₃)CH₂OCH₃		C(O)NHCH(CH₃)CH₂OH
636.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	652.	NHCH2CH2NH
	C(O)OCH ₃		C(O)NHCH(CH₃)CH₂OCH₃
637.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	653.	NHCH₂CH₂CH₂NH-
	C(O)OCH ₂ CH ₃		C(O)NHCH₃
638.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	654.	NHCH2CH2CH2NH-
	C(O)O(CH₂)₂CH₃		C(O)NHCH₂CH₃
639.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	655.	NHCH₂CH₂CH₂NH-
	C(O)OCH(CH₃)OCH₃		C(O)NH(CH₂)₂CH₃
640.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	656.	NHCH₂CH₂CH₂NH-
	C(O)OCH ₂ CH(CH ₃)OH		C(O)NHCH(CH₃)OH
641.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	657.	NHCH ₂ CH ₂ CH ₂ NH-
•	C(O)OCH ₂ CH(CH ₃)OCH ₃		C(O)NHCH(CH ₃)OCH ₃
642.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	658.	NHCH₂CH₂CH₂NH-
	C(O)OCH(CH₃)CH₂OH		C(O)NHCH₂CH(CH₃)OH
643.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	659.	NHCH₂CH₂CH₂NH-
	C(O)OCH(CH₃)CH₂OCH₃		C(O)NHCH₂CH(CH₃)OCH₃
644.	NHCH₂CH₂NHC(O)NHCH₃	660.	NHCH₂CH₂CH₂NH-
645.	NHCH₂CH₂NH-		C(O)NHCH(CH₃)CH₂OH
	C(O)NHCH₂CH₃	661.	NHCH₂CH₂CH₂NH-
646.	NHCH₂CH₂NH-		C(O)NHCH(CH₃)CH₂OCH₃
	C(O)NH(CH₂)₂CH₃	662.	NHCH(CH₃)CH₂NH-
			C(O)NHCH₃

No.	R ₆	No.	R ₆
663.	NHCH(CH₃)CH₂NH-	679.	NHCH(CH ₃)CH ₂ CH ₂ NH-
	C(O)NHCH₂CH₃		C(O)NHCH(CH₃)CH₂OCH₃
664.	NHCH(CH₃)CH₂NH-	680.	NHCH(CH₂CH₃)CH₂NH-
	C(O)NH(CH₂)₂CH₃		C(O)NHCH ₃
665.	NHCH(CH₃)CH₂NH-	681.	NHCH(CH₂CH₃)CH₂NH-
	C(O)NHCH(CH₃)OH		C(O)NHCH₂CH₃
666.	NHCH(CH₃)CH₂NH-	682.	NHCH(CH₂CH₃)CH₂NH-
	C(O)NHCH(CH ₃)OCH ₃		C(O)NH(CH₂)₂CH₃
667.	NHCH(CH₃)CH₂NH-	683.	NHCH(CH2CH3)CH2NH-
	C(O)NHCH₂CH(CH₃)OH		C(O)NHCH(CH ₃)OH
668.	NHCH(CH₃)CH₂NH-	684.	NHCH(CH ₂ CH ₃)CH ₂ NH-
	C(O)NHCH ₂ CH(CH ₃)OCH ₃		C(O)NHCH(CH ₃)OCH ₃
669.	NHCH(CH₃)CH₂NH-	685.	NHCH(CH ₂ CH ₃)CH ₂ NH-
	C(O)NHCH(CH₃)CH₂OH		C(O)NHCH₂CH(CH₃)OH
670.	NHCH(CH ₃)CH ₂ NH-	686.	NHCH(CH ₂ CH ₃)CH ₂ NH-
	C(O)NHCH(CH ₃)CH ₂ OCH ₃		C(O)NHCH₂CH(CH₃)OCH₃
671.	NHCH(CH₃)CH₂CH₂NH-	687.	NHCH(CH ₂ CH ₃)CH ₂ NH-
	C(O)NHCH₃		C(O)NHCH(CH ₃)CH ₂ OH
672.	NHCH(CH ₃)CH ₂ CH ₂ NH-	688.	NHCH(CH2CH3)CH2NH-
	C(O)NHCH₂CH₃		C(O)NHCH(CH₃)CH₂OCH₃
673.	NHCH(CH₃)CH₂CH₂NH-	689.	NHCH(CH2CH3)CH2CH2NH-
	C(O)NH(CH ₂) ₂ CH ₃		C(O)NHCH ₃
674.	NHCH(CH ₃)CH ₂ CH ₂ NH-	690.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH(CH3)OH		C(O)NHCH₂CH₃
675.	NHCH(CH ₃)CH ₂ CH ₂ NH-	691.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH(CH3)OCH3		C(O)NH(CH ₂) ₂ CH ₃
676.	NHCH(CH ₃)CH ₂ CH ₂ NH-	692.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH₂CH(CH₃)OH		C(O)NHCH₂OCH₃
677.	NHCH(CH3)CH2CH2NH-	693.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH₂CH(CH₃)OCH₃		C(O)NHCH(CH₃)OH
678.	NHCH(CH ₃)CH ₂ CH ₂ NH-	694.	NHCH(CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH(CH₃)CH₂OH		C(O)NHCH(CH ₃)OCH ₃

No.	R ₆	No.	R ₆
695.	NHCH(CH₂CH₃)CH₂CH₂NH-	711.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH₂CH(CH₃)OH		C(O)NHCH(CH₃)OH
696.	NHCH(CH₂CH₃)CH₂CH₂NH-	712.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH₂CH(CH₃)OCH₃		C(O)NHCH(CH ₃)OCH ₃
697.	NHCH(CH₂CH₃)CH₂CH₂NH-	713.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)NHCH(CH₃)CH₂OH		C(O)NHCH₂CH(CH₃)OH
698.	NHCH(CH₂CH₃)CH₂CH₂NH-	714.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-
	C(O)NHCH(CH₃)CH₂OCH₃		C(O)NHCH₂CH(CH₃)OCH₃
699.	NHCH(CH₂CH₂CH₃)CH₂NH-	715.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)NHCH₃		C(O)NHCH(CH₃)CH₂OH
700.	NHCH(CH₂CH₂CH₃)CH₂NH-	716.	NHCH(CH2CH2CH3)CH2CH2NH-
	C(O)NHCH₂CH₃		C(O)NHCH(CH ₃)CH ₂ OCH ₃
701.	NHCH(CH₂CH₂CH₃)CH₂NH-	717.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NH(CH₂)₂CH₃		C(O)NHCH ₃
702.	NHCH(CH₂CH₂CH₃)CH₂NH-	718.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NHCH(CH₃)OH		C(O)NHCH₂CH₃
703.	NHCH(CH2CH2CH3)CH2NH-	719.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NHCH(CH ₃)OCH ₃		C(O)NH(CH ₂) ₂ CH ₃
704.	NHCH(CH₂CH₂CH₃)CH₂NH-	720.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NHCH₂CH(CH₃)OH		C(O)NHCH(CH ₃)OCH ₃
705.	NHCH(CH₂CH₂CH₃)CH₂NH-	721.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NHCH₂CH(CH₃)OCH₃		C(O)NHCH₂CH(CH₃)OH
706.	NHCH(CH₂CH₂CH₃)CH₂NH-	722.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NHCH(CH₃)CH₂OH		C(O)NHCH(CH(CH ₃) ₂)OCH ₃
707.	NHCH(CH₂CH₂CH₃)CH₂NH-	723.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NHCH(CH₃)CH₂OCH₃		C(O)NHCH(CH3)CH2OH
708.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-	724.	NHCH(CH(CH ₃) ₂)CH ₂ NH-
	C(O)NHCH ₃		C(O)NHCH(CH3)CH2OCH3
709.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-	725.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-
	C(O)NHCH₂CH₃		C(O)NHCH₃
710.	NHCH(CH₂CH₂CH₃)CH₂CH₂NH-	726.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-
	C(O)NH(CH ₂) ₂ CH ₃		C(O)NHCH₂CH₃

No.	R_6	No.	R ₆
727.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	745.	NHCH₂CH₂O-
	C(O)NH(CH₂)₂CH₃		C(O)CH(CH₃)CH₂OCH₃
728.	NHCH(CH(CH₃)₂)CH₂CH₂NH-	746.	NHCH₂CH₂CH₂OC(O)H
	C(O)NHCH(CH₃)OCH₃	747.	NHCH2CH2CH2OC(O)CH3
729.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	748.	NHCH ₂ CH ₂ CH ₂ O-
	C(O)NHCH₂CH(CH₃)OH		C(O)CH₂CH₃
730.	NHCH(CH(CH₃)₂)CH₂CH₂NH-	749.	NHCH ₂ CH ₂ CH ₂ OC(O)CF ₃
	C(O)NHCH₂CH(CH₃)OCH₃	750.	NHCH2CH2CH2OC(O)(CH2)2CH3
731.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ NH-	751.	NHCH₂CH₂CH₂OC(O)CH₂OH
	C(O)NHCH(CH₃)CH₂OH	752.	NHCH2CH2CH2O-
732.	NHCH(CH(CH₃)₂)CH₂CH₂NH-		C(O)CH₂OCH₃
	C(O)NHCH(CH₃)CH₂OCH₃	753.	NHCH ₂ CH ₂ CH ₂ O-C(O)CH(CH ₃)OF
733.	NHCH₂CH₂OC(O)H	754.	NHCH₂CH₂CH₂O-
734.	NHCH ₂ CH ₂ OC(O)CH ₃		C(O)CH(CH ₃)OCH ₃
735.	NHCH₂CH₂O-	755.	NHCH₂CH₂CH₂O-
	C(O)CH ₂ CH ₃		C(O)CH₂CH(CH₃)OH
736.	NHCH₂CH₂O-	756.	NHCH₂CH₂CH₂O-
	C(O)CF ₃		C(O)CH₂CH(CH₃)OCH₃
737.	NHCH ₂ CH ₂ O-	757.	NHCH2CH2CH2O-
	C(O)(CH ₂) ₂ CH ₃		C(O)CH(CH₃)CH₂OH
738.	NHCH₂CH₂O-	758.	NHCH ₂ CH ₂ CH ₂ O-
	C(O)CH₂OH		C(O)CH(CH ₃)CH ₂ OCH ₃
739.	NHCH₂CH₂O-	759.	NHCH(CH₃)CH₂OC(O)H
	C(O)CH ₂ OCH ₃	760.	NHCH(CH ₃)CH ₂ OC(O)CH ₃
740.	NHCH₂CH₂O-	761.	NHCH(CH3)CH2OC(O)CH2CH3
	C(O)CH(CH₃)OH	762.	NHCH(CH ₃)CH ₂ OC(O)CF ₃
741.	NHCH₂CH₂OC(O)CH(CH₃)OCH₃	763.	NHCH(CH ₃)CH ₂ OC(O)(CH ₂) ₂ CH ₃
742.	NHCH₂CH₂O-C(O)CH₂CH(CH₃)OH	764.	NHCH(CH₃)CH₂OC(O)CH₂OH
743.	NHCH ₂ CH ₂ O-	765.	NHCH(CH ₃)CH ₂ OC(O)CH ₂ OCH ₃
	C(O)CH₂CH(CH₃)OCH₃	766.	NHCH(CH₃)CH₂OC(O)CH(CH₃)OH
744.	NHCH₂CH₂O-C(O)CH(CH₃)CH₂OH	767.	NHCH(CH₃)CH₂O-
			C(O)CH(CH ₃)OCH ₃

768. NHCH(CH₃)CH₂O-C(O)CH₂CH(CH₃)OH 787. NHCH(CH₂CH₃)CH₂O-C(O)CH₂CH₃ 769. NHCH(CH₃)CH₂O-C(O)CH₂CH(CH₃)OCH₃ 788. NHCH(CH₂CH₃)CH₂O-C(O)CF₃ 770. NHCH(CH₃)CH₂O-C(O)CH₂OH₃ 789. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH₃ 771. NHCH(CH₃)CH₂O-C(O) 790. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH₃ 772. NHCH(CH₃)CH₂CH₂OC(O)H 791. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH₃ 773. NHCH(CH₃)CH₂CH₂O-C(O)CH₃ 792. NHCH(CH₃CH₃)CH₂O-C(O)CH₂OH₃ 774. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH₃ 793. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH₃ 775. NHCH(CH₃)CH₂CH₂O-C(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O-C(O)CH₃OH₃ 776. NHCH(CH₃)CH₂CH₂O-C(O)CH₂OH 794. NHCH(CH₂CH₃)CH₂O-C(O)CH₃OH₃OH₃OH₃OH₃OH₃OH₃OH₃OH₃OH₃OH₃OH₃OH₃OH	No.	R ₆	No.	R ₆
769. NHCH(CH₃)CH₂O- C(O)CH₂CH(CH₃)OCH₃ 788. NHCH(CH₃CH₃)CH₂O- C(O)CF₃ 770. NHCH(CH₃)CH₂O- C(O)CH(CH₃)CH₂OH 789. NHCH(CH₂CH₃)CH₂O- C(O)CH₂CH₃ 771. NHCH(CH₃)CH₂O- C(O)CH(CH₃)CH₂OCH₃ 790. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH 772. NHCH(CH₃)CH₂CH₂OC(O)H C(O)CH₂CCH₃ 773. NHCH(CH₃)CH₂CH₂O-C(O)CH₃CH₃ C(O)CH(CH₃)OH 774. NHCH(CH₃)CH₂CH₂O-C(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O- 775. NHCH(CH₃)CH₂CH₂O-C(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O- 776. NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)OCH₃ C(O)CH(CH₃)OCH₃ 777. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₃CH₃)CH₂O- 778. NHCH(CH₃)CH₂CH₂O- 796. NHCH(CH₃)CH₂O- 779. NHCH(CH₃)CH₂CH₂O- 796. NHCH(CH₃)CH₂O- 780. NHCH(CH₃)CH₂CH₂O- 797. NHCH(CH₃)CH₂O- 781. NHCH(CH₃)CH₂CH₂O- 798. NHCH(CH₃CH₃)CH₂O- 782. NHCH(CH₃)CH₂CH₂O- 798. NHCH(CH₃CH₃)CH₂CH₂O- 783. NHCH(CH₃)CH₂CH₂O- 799. NHCH(CH₃CH₃)CH₂CH₂O-	768.	NHCH(CH₃)CH₂O-	787.	NHCH(CH₂CH₃)CH₂O-
C(O)CH₂CH(CH₃)OCH₃ C(O)CF₃ 770. NHCH(CH₃)CH₂O- 789. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)CH₂OH C(O)(CH₂)₂CH₃ 771. NHCH(CH₃)CH₂O- 790. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH C(O)CH(CH₃)CH₂OCO)H C(O)CH₂COCH₃ C(O)CH₂COCH₃ 772. NHCH(CH₃)CH₂CH₂OC(O)CH₃ 792. NHCH(CH₃)CH₂O- 774. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH₃ C(O)CH(CH₃)OH 775. NHCH(CH₃)CH₂CH₂O-C(O)CF₃ 793. NHCH(CH₃)CH₂O- 776. NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)OCH₃ 777. NHCH(CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OCH₃ 777. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₃)OCH₃ 778. NHCH(CH₃)CH₂CH₂O- 796. NHCH(CH₃)OCH₃ 779. NHCH(CH₃)CH₂CH₂O- 797. NHCH(CH₃)CH₂OH 780. NHCH(CH₃)CH₂CH₂O- 797. NHCH(CH₂CH₃)CH₂O- 781. NHCH(CH₃)CH₂CH₂O- 797. NHCH(CH₂CH₃)CH₂O- 782. NHCH(CH₃)CH₂CH₂O- 798. NHCH(CH₂CH₃)CH₂O- 783. NHCH(CH₃CH₃)CH₂O- 799.		C(O)CH₂CH(CH₃)OH		C(O)CH ₂ CH ₃
770. NHCH(CH₃)CH₂O- 789. NHCH(CH₂CH₃)CH₂O- 771. NHCH(CH₃)CH₂O- 790. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH 772. NHCH(CH₃)CH₂OCO) 791. NHCH(CH₂CH₃)CH₂O-C(O)CH₂OH 773. NHCH(CH₃)CH₂CH₂OC(O)CH₃ 792. NHCH(CH₂CH₃)CH₂O- 774. NHCH(CH₃)CH₂CH₂O-C(O)CH₃CH₃ 792. NHCH(CH₂CH₃)CH₂O- 775. NHCH(CH₃)CH₂CH₂O-C(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O- 776. NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)OCH₃ 777. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₃)CH₃OH₂O- 778. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₃CH₃)CH₂O- 779. NHCH(CH₃)CH₂CH₂O- 796. NHCH(CH₃)CH₂O- 780. NHCH(CH₃)CH₂CH₂O- 797. NHCH(CH₃)CH₂O- 780. NHCH(CH₃)CH₂CH₂O- 797. NHCH(CH₃)CH₂CH₂O- 780. NHCH(CH₃)CH₂CH₂O- 798. NHCH(CH₂CH₃)CH₂O- 780. NHCH(CH₃)CH₃CH₂O- 799. NHCH(CH₂CH₃)CH₂CH₂O- 780. NHCH(CH₂CH₃)CH₂CH₂O- 799. NHCH(CH₂CH₃)CH₂CH₂O- 780.	769.	NHCH(CH₃)CH₂O-	788.	NHCH(CH₂CH₃)CH₂O-
C(O)CH(CH ₃)CH ₂ OH 771. NHCH(CH ₃)CH ₂ O- C(O)CH(CH ₃)CH ₂ OCH ₃ 772. NHCH(CH ₃)CH ₂ OCH ₃ 773. NHCH(CH ₃)CH ₂ CC(O)CH ₃ 774. NHCH(CH ₃)CH ₂ CC(O)CH ₃ 775. NHCH(CH ₂ CH ₃)CH ₂ CC(O)CH ₃ 776. NHCH(CH ₃)CH ₂ CH ₂ OC(O)CF ₃ 777. NHCH(CH ₃)CH ₂ CH ₂ OC(O)CF ₃ 778. NHCH(CH ₃)CH ₂ CH ₂ OC(O)CF ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)OCH 777. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ 777. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ 778. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ OCH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ OCH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ 781. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ C		C(O)CH ₂ CH(CH ₃)OCH ₃		C(O)CF ₃
771. NHCH(CH₃)CH₂O-GC(O)CH₂OH C(O)CH(CH₃)CH₂OCH₃ 791. NHCH(CH₂CH₃)CH₂O-GC(O)CH₂OH 772. NHCH(CH₃)CH₂CH₂OC(O)CH₃ 791. NHCH(CH₂CH₃)CH₂O-GC(O)CH₂OH₃ 773. NHCH(CH₃)CH₂CH₂OC(O)CH₃ 792. NHCH(CH₂CH₃)CH₂O-GC(O)CH₂OH₃ 774. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH₃ C(O)CH(CH₃)OH 775. NHCH(CH₃)CH₂CH₂O-C(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O-GC(O)CH₂OH 776. NHCH(CH₃)CH₂CH₂O-GC(O)CH₂OH C(O)CH₂CH(CH₃)OCH₃ 777. NHCH(CH₃)CH₂CH₂O-GC(O)CH₂OH 794. NHCH(CH₂CH₃)CH₂O-GC(O)CH₂OH 778. NHCH(CH₃)CH₂CH₂O-GC(O)CH₂OH 795. NHCH(CH₂CH₃)CH₂O-GC(O)CH₂CH(CH₃)OCH₃ 779. NHCH(CH₃)CH₂CH₂O-GC(O)CH₂CH(CH₃)CH₂O-GC(O)CH(CH₃)CH₂OH₂O-GC(O)CH(CH₃)CH₂OH₃ 796. NHCH(CH₂CH₃)CH₂O-GC(O)CH₃ 780. NHCH(CH₃)CH₂CH₂O-GC(O)CH₃ 798. NHCH(CH₂CH₃)CH₂O-GC(O)CH₃ 781. NHCH(CH₃)CH₂CH₂O-GC(O)CH₃ 799. NHCH(CH₂CH₃)CH₂CH₂O-GC(O)CH₃ 782. NHCH(CH₃)CH₂CH₂O-GC(O)CH₃ 800. NHCH(CH₂CH₃)CH₂CH₂O-GC(O)CH₃ 783. NHCH(CH₃CH₃)CH₂CH₂O-GC(O)CH₃ 801. NHCH(CH₂CH₃)CH₂CH₂O-GC(O)CF₃ 784. </td <td>770.</td> <td>NHCH(CH₃)CH₂O-</td> <td>789.</td> <td>NHCH(CH₂CH₃)CH₂O-</td>	770.	NHCH(CH₃)CH₂O-	789.	NHCH(CH₂CH₃)CH₂O-
C(O)CH(CH₃)CH₂OCH₃ 791. NHCH(CH₂CH₃)CH₂CO- 772. NHCH(CH₃)CH₂CH₂OC(O)H C(O)CH₂OCH₃ 773. NHCH(CH₃)CH₂CH₂OC(O)CH₃ 792. NHCH(CH₂CH₃)CH₂O- 774. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH₃ C(O)CH(CH₃)OH 775. NHCH(CH₃)CH₂CH₂O-C(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O- 776. NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)OH₃ 777. NHCH(CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OH 778. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₂CH₃)CH₂O- C(O)CH₂CH(CH₃)OCH₃ C(O)CH₂CH(CH₃)OCH₃ 779. NHCH(CH₃)CH₂CH₂O- 796. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)OH C(O)CH(CH₃)CH₂O- C(O)CH(CH₃)CH₂CH₂O- 797. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)CH₂CH₂O- 798. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)CH₂O- 798. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)CH₂O- 799. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OCH₃ C(O)CH₂CH₃ 783. NHCH(CH₃CH₂O- 799. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH₃ 800. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH₃ 801. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH₃ 802. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)(CH₂CH₃)CH₂CH₂O- C(O)CH(CH₂)CCH₃ 803. NH		C(O)CH(CH₃)CH₂OH		C(O)(CH ₂) ₂ CH ₃
772. NHCH(CH₃)CH₂CH₂COC(O)CH₃ 792. NHCH(CH₂CH₃)CH₂CO-COC(O)CH₂CH₃ 773. NHCH(CH₃)CH₂CH₂COC(O)CH₂CH₃ C(O)CH(CH₃)CH₂CH₂O-COC(O)CF₃ 774. NHCH(CH₃)CH₂CH₂O-COC(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O-COC(O)CH₂CH₃ 776. NHCH(CH₃)CH₂CH₂O-COC(O)CH₂CH C(O)CH(CH₃)OCH₃ 777. NHCH(CH₃)CH₂CH₂O-COC(O)CH₂CH C(O)CH₂CH(CH₃)CH₂O-COC(O)CH₂CH 778. NHCH(CH₃)CH₂CH₂O-COC(O)CH₂CH 795. NHCH(CH₂CH₃)CH₂O-COC(O)CH₂CH 779. NHCH(CH₃)CH₂CH₂O-COC(O)CH₂CH 796. NHCH(CH₂CH₃)CH₂O-COC(O)CH(CH₃)CH₂OH 780. NHCH(CH₃)CH₂CH₂O-COC(O)CH(CH₃)CH₂OH₃ 797. NHCH(CH₂CH₃)CH₂O-COC(O)CH(CH₃)CH₂OH₃ 781. NHCH(CH₃)CH₂CH₂O-COC(O)CH₂CH(CH₃)OCH₃ 798. NHCH(CH₂CH₃)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₂O-COC(O)CH₂CH₃ 800. NHCH(CH₂CH₃)CH₂CH₂O-COC(O)CF₃ 785. NHCH(CH₂CH₃)CH₂OC(O)H 802. NHCH(CH₂CH₃)CH₂CH₂O-COC(O)CH₃ 786. NHCH(CH₂CH₃)CH₂OC(O)CH₃ 803. NHCH(CH₂CH₃)CH₂CH₂O-COC(O)CH₃	771.	NHCH(CH₃)CH₂O-	790.	NHCH(CH ₂ CH ₃)CH ₂ O-C(O)CH ₂ OH
773. NHCH(CH₃)CH₂CH₂OC(O)CH₃ 792. NHCH(CH₃)CH₂O-Q 774. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH₃ C(O)CH(CH₃)OH 775. NHCH(CH₃)CH₂CH₂O-Q C(O)CH(CH₃)OCH₃ 776. NHCH(CH₃)CH₂CH₂O-Q C(O)CH(CH₃)OCH₃ 777. NHCH(CH₃)CH₂CH₂O-Q C(O)CH₂CH(CH₃)OH 778. NHCH(CH₃)CH₂CH₂O-Q 795. NHCH(CH₂CH₃)CH₂O-Q 779. NHCH(CH₃)CH₂CH₂O-Q 796. NHCH(CH₂CH₃)CH₂O-Q 779. NHCH(CH₃)CH₂CH₂O-Q C(O)CH(CH₃)CH₂O-Q C(O)CH(CH₃)CH₂O-Q 780. NHCH(CH₃)CH₂CH₂O-Q C(O)CH(CH₃)CH₂O-Q C(O)CH(CH₃)CH₂O-Q 781. NHCH(CH₃)CH₂CH₂O-Q 798. NHCH(CH₂CH₃)CH₂O-Q C(O)CH₂CH(CH₃)CH₂CH₂O-Q 782. NHCH(CH₃)CH₂CH₂O-Q C(O)CH₂CH(CH₃)CH₂CH₂O-Q C(O)CH₂CH₃ 783. NHCH(CH₃)CH₂CH₂O-Q R00. NHCH(CH₂CH₃)CH₂CH₂O-Q 784. NHCH(CH₃)CH₂CH₂O-Q R00. NHCH(CH₂CH₃)CH₂CH₂O-Q 785. NHCH(CH₃CH₃)CH₂CH₂O-Q R00. NHCH(CH₂CH₃)CH₂CH₂O-Q 786. NHCH(CH₂CH₃)CH₂CH₂O-Q R00. NHCH(CH₂CH₃)CH₂CH₂O-Q		C(O)CH(CH₃)CH₂OCH₃	791.	NHCH(CH₂CH₃)CH₂O-
774. NHCH(CH ₃)CH ₂ CH ₂ O-C(O)CH ₂ CH ₃ 775. NHCH(CH ₃)CH ₂ CH ₂ O-C(O)CF ₃ 776. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂) ₂ CH ₃ 777. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂) ₂ CH ₃ 778. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂) ₂ CH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ O- C(O)CH ₃ CH ₂ O- C(O)CH(CH ₃)OH 780. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)OCH ₃ 781. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₃ CH ₂ O- C(O)CH ₂ CH(CH ₃)OH 782. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OH 783. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ 784. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃	772.	NHCH(CH₃)CH₂CH₂OC(O)H		C(O)CH₂OCH₃
775. NHCH(CH₃)CH₂CH₂OC(O)CF₃ 793. NHCH(CH₂CH₃)CH₂O- 776. NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)OCH₃ C(O)(CH₂)₂CH₃ 794. NHCH(CH₂CH₃)CH₂O- 777. NHCH(CH₃)CH₂CH₂OC(O)CH₂OH C(O)CH₂CH(CH₃)OH 778. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₂CH₃)CH₂O- C(O)CH₂CH(CH₃)CH₂CH₂O- 796. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)CH₂CH₂O- 797. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)CH₂CH₂O- 798. NHCH(CH₂CH₃)CH₂O- C(O)CH₂CH(CH₃)OH 798. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OH₃ 799. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OCH₃ 800. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)CH₂CH₂O- C(O)CH₂CH₃ 801. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 785. NHCH(CH₃CH₃)CH₂COC(O)H 802. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 786. NHCH(CH₂CH₃)CH₂OC(O)CH₃ 803. NHCH(CH₂CH₃)CH₂CH₂O-	773.	NHCH(CH₃)CH₂CH₂OC(O)CH₃	792.	NHCH(CH ₂ CH ₃)CH ₂ O-
776. NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)OCH₃ C(O)(CH₂)₂CH₃ 794. NHCH(CH₂CH₃)CH₂O- 777. NHCH(CH₃)CH₂CH₂OC(O)CH₂OH C(O)CH₂CH(CH₃)OH 778. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₂CH₃)CH₂O- C(O)CH₂CH(CH₃)OCH₃ C(O)CH₂CH(CH₃)OCH₃ 779. NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂OH- C(O)CH(CH₃)OCH₃ 797. NHCH(CH₂CH₃)CH₂O- C(O)CH(CH₃)OCH₃ C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₃)OCH₂CH₂O- 798. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OH C(O)H 782. NHCH(CH₃)CH₂CH₂O- 799. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OCH₃ 800. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)CH₂OH- C(O)CH₂CH₃ 784. NHCH(CH₃)CH₂CH₂O- 801. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ C(O)CH(CH₃)CH₂CH₃OH₂OCH₀ 802. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 785. NHCH(CH₂CH₃)CH₂OC(O)CH₃ 803. NHCH(CH₂CH₃)CH₂CH₂O- 60)(CH₂)₂CH₃ 803. NHCH(CH₂CH₃)CH₂CH₂O-	774.	NHCH(CH ₃)CH ₂ CH ₂ O-C(O)CH ₂ CH ₃		C(O)CH(CH₃)OH
C(O)(CH ₂) ₂ CH ₃ 794. NHCH(CH ₂ CH ₃)CH ₂ O- 777. NHCH(CH ₃)CH ₂ CH ₂ OC(O)CH ₂ OH 778. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ 779. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)OH 780. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)OCH ₃ 7781. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)OCH ₃ 7782. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OH 782. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ 7783. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ 7784. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CO(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	775.	NHCH(CH₃)CH₂CH₂OC(O)CF₃	793.	NHCH(CH₂CH₃)CH₂O-
 777. NHCH(CH₃)CH₂CH₂OC(O)CH₂OH 778. NHCH(CH₃)CH₂CH₂O-	776.	NHCH(CH₃)CH₂CH₂O-		C(O)CH(CH ₃)OCH ₃
778. NHCH(CH₃)CH₂CH₂O- 795. NHCH(CH₂CH₃)CH₂O- C(O)CH₂CH(GH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)CH₂O- C(O)CH(CH₃)CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂O- C(O)CH(CH₃)CH₂O- NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₃O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OH C(O)CH₂CH₃O- C(O)CH₂CH₃O- NHCH(CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)CH₂CH₂O- C(O)CH₂CH₃O- C(O)CH₂CH(CH₃)CH₂O- C(O)CH₂CH₃O- C(O)CH₂CH₃O- NHCH(CH₃)CH₂CH₂O- C(O)CH₂CH₃ NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₂CH₃ 801. NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- 802. NHCH(CH₂CH₃)CH₂CH₂O- 785. NHCH(CH₂CH₃)CH₂OC(O)CH₃ 803. NHCH(CH₂CH₃)CH₂CH₂O- 786. NHCH(CH₂CH₃)CH₂OC(O)CH₃ 803. NHCH(CH₂CH₃)CH₂CH₂O-		C(O)(CH ₂) ₂ CH ₃	794.	NHCH(CH₂CH₃)CH₂O-
C(O)CH ₂ OCH ₃ C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₂ CH(CH ₃)OCH ₂ CH ₂ O- C(O)CH(CH ₃)OH C(O)CH(CH ₃)CH ₂ OH C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OH C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₃ C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₃ C(O)CH ₃ C(O)CH ₃ C(O)CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ O- C(O)CH ₃ CH ₂ CH ₂ O- C(O)CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ CH ₂ CH ₂ O-C(O)CF ₃ C(O)CH(CH ₃)CH ₂ CH ₂ OC(O)H C(O)(CH ₂)CH ₃ NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂)CH ₃ NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂)CH ₃ NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂)CH ₃ NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	777.	NHCH(CH₃)CH₂CH₂OC(O)CH₂OH		C(O)CH ₂ CH(CH ₃)OH
 779. NHCH(CH₃)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₂O-C(O)CH(CH₃)OH 780. NHCH(CH₃)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₃CH₂O-C(O)CH(CH₃)CH₂CH₃CH₂O-C(O)CH(CH₃)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)OH 781. NHCH(CH₃CH₂CH₂O-C(O)CH₂CH(CH₃)OH 782. NHCH(CH₃CH₂O-C(O)CH₃CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)OCH₃ 783. NHCH(CH₃)CH₂CH₂O-C(O)CH₃CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH₃CH₂O-C(O)CH₂CH₃CH₂O-C(O)CH₂CH₃CH₂O-C(O)CF₃ 784. NHCH(CH₃CH₃)CH₂CH₂O-SOC(O)CH₃CH₃CH₂CH₂O-C(O)CF₃C(O)CH₂CH₃CH₂CH₂O-C(O)CF₃C(O)CH₂CH₃CH₃CH₂CH₃CH₂CH₂O-C(O)CF₃C(O)CH₂CH₃CH₂CH₂O-C(O)CF₃CH₃CH₂CH₂CH₂O-C(O)CH₂CH₃CH₃CH₂CH₃CH₂CH₂O-C(O)CH₂CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂C	778.	NHCH(CH ₃)CH ₂ CH ₂ O-	795.	NHCH(CH₂CH₃)CH₂O-
C(O)CH(CH ₃)OH C(O)CH(CH ₃)CH ₂ CH ₂ O- 797. NHCH(CH ₂ CH ₃)CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OH 798. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OH C(O)H 799. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₃ C(O)CH ₃ NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ COC(O)H C(O)(CH ₂ CH ₃)CH ₂ CH ₂ O- (O)(CH ₂ CH ₃)CH ₂ CH ₂ O- NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- (O)(CH ₂ CH ₃)CH ₂ CH ₂ O- NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- (O)(CH ₂ CH ₃)CH ₂ CH ₂ O- NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- (O)(CH ₂ CH ₃)CH ₂ CH ₂ O- (O)(CH ₂ CH ₃)CH ₂ CH ₂ O- NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-		C(O)CH₂OCH₃		C(O)CH ₂ CH(CH ₃)OCH ₃
 780. NHCH(CH₃)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₃)CH₂CH₃ 781. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)OH 782. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)OCH₃ 783. NHCH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH₂CH(CH₃)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₂O-C(O)CH₂CH₂O-C(O)CH(CH₃)CH₂CH₂O-C(O)CH₂CH₃ 784. NHCH(CH₃CH₂O-C(O)CH₃ 785. NHCH(CH₂CH₃)CH₂CCH₂O-C(O)CH₃ 786. NHCH(CH₂CH₃)CH₂OC(O)CH₃ 787. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 7880. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 7880. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 7880. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 7880. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CF₃ 7880. NHCH(CH₂CH₃)CH₂CH₂O-C(O)CH₃ 	779.	NHCH(CH₃)CH₂CH₂O-	796.	NHCH(CH₂CH₃)CH₂O-
C(O)CH(CH ₃)OCH ₃ C(O)CH(CH ₃)CH ₂ OCH ₃ 781. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OH 782. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ 783. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ COC(O)H 786. NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-		C(O)CH(CH₃)OH		C(O)CH(CH₃)CH₂OH
 781. NHCH(CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OH C(O)CH₂CH(CH₃)OH C(O)CH₂CH(CH₃)OH C(O)CH₂CH(CH₃)OCH₂O- C(O)CH₂CH(CH₃)OCH₃ C(O)CH₃ NHCH(CH₂CH₃)CH₂CH₂O- C(O)CH₃ NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂OH C(O)CH₂CH₃ NHCH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₃)CH₂CH₂O- C(O)CH(CH₂CH₃)CH₂CH₂O- C(O)(CH₂CH₃ NHCH(CH₂CH₃)CH₂CH₂O- NHCH(CH₂CH₃)CH₂CO- C(O)(CH₂)2CH₃ NHCH(CH₂CH₃)CH₂CO- C(O)(CH₂)2CH₃ NHCH(CH₂CH₃)CH₂CO- C(O)(CH₂)2CH₃ NHCH(CH₂CH₃)CH₂CO- C(O)(CH₂)2CH₂O- C(O)(CH₂)2CH₂O- C(O)(CH₂CH₂O- C(O)(CH₂CH₂	780.	NHCH(CH₃)CH₂CH₂O-	797.	NHCH(CH ₂ CH ₃)CH ₂ O-
C(O)CH ₂ CH(CH ₃)OH C(O)H C(O)H C(O)H C(O)CH ₂ CH(CH ₃)CH ₂ CH ₂ O- C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₃ C(O)CH ₂ CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH C(O)CH ₂ CH ₃ C(O)CH ₂ CH ₃ C(O)CH ₂ CH ₃ C(O)CH ₂ CH ₃ C(O)CH ₂ CH ₂ O- C(O)CH ₂ CH ₃ C(O)CH(CH ₃)CH ₂ CO- C(O)CH ₂ CH ₃ C(O)CH(CH ₃)CH ₂ COC(O)H C(O)(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂ CH ₃)CH ₂ COC(O)CH C(O)(CH ₂ CH ₃ CH ₂ COC(O)CH		C(O)CH(CH ₃)OCH ₃		C(O)CH(CH₃)CH₂OCH₃
 782. NHCH(CH₃)CH₂CH₂O- C(O)CH₂CH(CH₃)OCH₃	781.	NHCH(CH₃)CH₂CH₂O-	798.	NHCH(CH₂CH₃)CH₂CH₂O-
C(O)CH ₂ CH(CH ₃)OCH ₃ C(O)CH ₂ CH(CH ₃)OCH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ OH C(O)CH ₂ CH ₃ NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ COC(O)H 801. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-C(O)CF ₃ NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- (O)CH(CH ₃)CH ₂ OCH ₃ 802. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂) ₂ CH ₃ C(O)(CH ₂) ₂ CH ₃ NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-		C(O)CH₂CH(CH₃)OH		C(O)H
783. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ OH 784. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ CH ₃ 801. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-C(O)CF ₃ 802. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂ CH ₃)CH ₂ COC(O)H 785. NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	782.	NHCH(CH₃)CH₂CH₂O-	799.	NHCH(CH₂CH₃)CH₂CH₂O-
C(O)CH(CH ₃)CH ₂ OH C(O)CH ₂ CH ₃ C(O)CH ₂ CH ₃ C(O)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ OCH ₃ 801. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-C(O)CF ₃ 802. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂ CH ₃)CH ₂ OC(O)H C(O)(CH ₂ CH ₃)CH ₂ CH ₃ NHCH(CH ₂ CH ₃)CH ₂ COC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-		C(O)CH₂CH(CH₃)OCH₃		C(O)CH₃
784. NHCH(CH ₃)CH ₂ CH ₂ O- C(O)CH(CH ₃)CH ₂ OCH ₃ 801. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-C(O)CF ₃ 802. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- C(O)(CH ₂) ₂ CH ₃ C(O)(CH ₂) ₂ CH ₃ 786. NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	783.	NHCH(CH₃)CH₂CH₂O-	800.	NHCH(CH₂CH₃)CH₂CH₂O-
C(O)CH(CH ₃)CH ₂ OCH ₃ 802. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O- 785. NHCH(CH ₂ CH ₃)CH ₂ OC(O)H C(O)(CH ₂) ₂ CH ₃ 786. NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-		C(O)CH(CH ₃)CH ₂ OH		C(O)CH₂CH₃
785. NHCH(CH ₂ CH ₃)CH ₂ OC(O)H C(O)(CH ₂) ₂ CH ₃ 786. NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	784.	NHCH(CH₃)CH₂CH₂O-	801.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-C(O)CF ₃
786. NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃ 803. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-		C(O)CH(CH₃)CH₂OCH₃	802.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-
(2 3) 2 3 (2) 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	785.	NHCH(CH₂CH₃)CH₂OC(O)H		C(O)(CH ₂) ₂ CH ₃
C(O)CH₂OH	786.	NHCH(CH ₂ CH ₃)CH ₂ OC(O)CH ₃	803.	NHCH(CH₂CH₃)CH₂CH₂O-
				C(O)CH₂OH

No.	R_6	No.	R ₆
304.	NHCH(CH₂CH₃)CH₂CH₂O-	820.	NHCH(CH2CH2CH3)CH2O-
	C(O)CH₂OCH₃		C(O)CH₂CH(CH₃)OH
305.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	821.	NHCH(CH2CH2CH3)CH2O-
	C(O)CH(CH ₃)OH		C(O)CH ₂ CH(CH ₃)OCH ₃
306.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	822.	NHCH(CH2CH2CH3)CH2O-
	C(O)CH(CH ₃)OCH ₃		C(O)CH(CH₃)CH₂OH
307.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	823.	NHCH(CH2CH2CH3)CH2O-
	C(O)CH ₂ CH(CH ₃)OH		C(O)CH(CH ₃)CH ₂ OCH ₃
808.	NHCH(CH₂CH₃)CH₂CH₂O-	824.	NHCH(CH2CH2CH3)CH2CH2O-
	C(O)CH₂CH(CH₃)OCH₃		C(O)H
309.	NHCH(CH₂CH₃)CH₂CH₂O-	825.	NHCH(CH2CH2CH3)CH2CH2O-
	C(O)CH(CH₃)CH₂OH		C(O)CH ₃
310.	NHCH(CH₂CH₃)CH₂CH₂O-	826.	NHCH(CH2CH2CH3)CH2CH2O-
	C(O)CH(CH₃)CH₂OCH₃		C(O)CH₂CH₃
311.	NHCH(CH2CH2CH3)CH2OC(O)H	827.	NHCH(CH2CH2CH3)CH2CH2O-
312.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-		C(O)CF ₃
	C(O)CH₃	828.	NHCH(CH2CH2CH3)CH2CH2O-
313.	NHCH(CH2CH2CH3)CH2O-		C(O)(CH ₂) ₂ CH ₃
	C(O)CH ₂ CH ₃	829.	NHCH(CH2CH2CH3)CH2CH2O-
314.	NHCH(CH₂CH₂CH₃)CH₂O-		C(O)CH₂OH
	C(O)CF ₃	830.	NHCH(CH2CH2CH3)CH2CH2O-
315.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-		C(O)CH ₂ OCH ₃
	C(O)(CH ₂) ₂ CH ₃	831.	NHCH(CH2CH2CH3)CH2CH2O-
316.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-		C(O)CH(CH ₃)OH
	C(O)CH₂OH	832.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ CH ₂ O-
317.	NHCH(CH₂CH₂CH₃)CH₂O-		C(O)CH(CH ₃)OCH ₃
	C(O)CH₂OCH₃	833.	NHCH(CH2CH2CH3)CH2CH2O-
18.	NHCH(CH₂CH₂CH₃)CH₂O-		C(O)CH₂CH(CH₃)OH
	C(O)CH(CH₃)OH	834.	NHCH(CH2CH2CH3)CH2CH2O-
19.	NHCH(CH₂CH₂CH₃)CH₂O-		C(O)CH₂CH(CH₃)OCH₃
	C(O)CH(CH₃)OCH₃	835.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ CH ₂ O-
			C(O)CH(CH₃)CH₂OH

No.	R ₆	No.	R ₆
836.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ CH ₂ O-	853.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
	C(O)CH(CH₃)CH₂OCH₃		C(O)CF ₃
837.	NHCH(CH(CH ₃) ₂)CH ₂ OC(O)H	854.	NHCH(CH(CH ₃)₂)CH₂CH₂O-
838.	NHCH(CH(CH ₃) ₂)CH ₂ OC(O)CH ₃		C(O)(CH ₂) ₂ CH ₃
839.	NHCH(CH(CH ₃) ₂)CH ₂ O-	855.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
	C(O)CH₂CH₃		C(O)CH₂OH
840.	NHCH(CH(CH ₃) ₂)CH ₂ OC(O)CF ₃	856.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
841.	NHCH(CH ₃) ₂)CH ₂ O-		C(O)CH₂OCH₃
	C(O)(CH ₂) ₂ CH ₃	857.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
842.	NHCH(CH(CH ₃) ₂)CH ₂ O-		C(O)CH(CH₃)OH
	C(O)CH₂OH	858.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
843.	NHCH(CH(CH₃)₂)CH₂O-		C(O)CH(CH ₃)OCH ₃
	C(O)CH₂OCH₃	859.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
844.	NHCH(CH ₃) ₂)CH ₂ O-		C(O)CH₂CH(CH₃)OH
	C(O)CH(CH ₃)OH	860.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
845.	NHCH(CH ₃) ₂)CH ₂ O-		C(O)CH₂CH(CH₃)OCH₃
	C(O)CH(CH₃)OCH₃	861.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
846.	NHCH(CH ₃) ₂)CH ₂ O-		C(O)CH(CH₃)CH₂OH
	C(O)CH₂CH(CH₃)OH	862.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-
847.	NHCH(CH(CH ₃) ₂)CH ₂ O-		C(O)CH(CH ₃)CH ₂ OCH ₃
	C(O)CH(CH(CH ₃) ₂)OCH ₃	863.	NHCH₂CH₂OC(O)OCH₃
848.	NHCH(CH ₃) ₂)CH ₂ O-	864.	NHCH₂CH₂OC(O)OCH₂CH₃
•	C(O)CH(CH₃)CH₂OH	865.	NHCH ₂ CH ₂ OC(O)O(CH ₂) ₂ CH ₃
849.	NHCH(CH(CH ₃) ₂)CH ₂ O-	866.	NHCH2CH2OC(O)OCH(CH3)OH
	C(O)CH(CH₃)CH₂OCH₃	867.	NHCH₂CH₂OC(O)OCH(CH₃)OCH₃
850.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	868.	NHCH2CH2O-C(O)OCH2CH(CH3)OH
	C(O)H	869.	NHCH ₂ CH ₂ O-
851.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-		C(O)OCH₂CH(CH₃)OCH₃
	C(O)CH₃	870.	NHCH ₂ CH ₂ O-C(O)OCH(CH ₃)CH ₂ OH
852.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	871.	NHCH ₂ CH ₂ O-
	C(O)CH ₂ CH ₃		C(O)OCH(CH ₃)CH ₂ OCH ₃
		872.	NHCH ₂ CH ₂ CH ₂ OC(O)OCH ₃

No.	R ₆	No.	R ₆
873.	NHCH ₂ CH ₂ CH ₂ OC(O)OCH ₂ CH ₃	892.	NHCH(CH ₃)CH ₂ CH ₂ O-
874.	NHCH ₂ CH ₂ CH ₂ O-C(O)O(CH ₂) ₂ CH ₃	002.	C(O)O(CH ₂) ₂ CH ₃
875.	NHCH ₂ CH ₂ CH ₂ O-C(O)OCH(CH ₃)OH	893.	NHCH(CH ₃)CH ₂ CH ₂ O-
876.	NHCH ₂ CH ₂ CH ₂ O-	000.	C(O)OCH(CH ₃)OH
	C(O)OCH(CH ₃)OCH ₃	894.	NHCH(CH ₃)CH ₂ CH ₂ O-
877.	NHCH ₂ CH ₂ CH ₂ O-		C(O)OCH(CH ₃)OCH ₃
	C(O)OCH₂CH(CH₃)OH	895.	NHCH(CH ₃)CH ₂ CH ₂ O-
878.	NHCH₂CH₂CH₂O-		C(O)OCH₂CH(CH₃)OH
	C(O)OCH ₂ CH(CH ₃)OCH ₃	896.	NHCH(CH ₃)CH ₂ CH ₂ O-
879.	NHCH₂CH₂CH₂O-		C(O)OCH ₂ CH(CH ₃)OCH ₃
	C(O)OCH(CH₃)CH₂OH	897.	NHCH(CH ₃)CH ₂ CH ₂ O-
880.	NHCH₂CH₂CH₂O-		C(O)OCH(CH₃)CH₂OH
	C(O)OCH(CH₃)CH₂OCH₃	898.	NHCH(CH ₃)CH ₂ CH ₂ O-
881.	NHCH(CH₃)CH₂OC(O)OCH₃		C(O)OCH(CH ₃)CH ₂ OCH ₃
882.	NHCH(CH₃)CH₂OC(O)OCH₂CH₃	899.	NHCH(CH₂CH₃)CH₂OC(O)OCH₃
883.	NHCH(CH ₃)CH ₂ O-C(O)O(CH ₂) ₂ CH ₃	900.	NHCH(CH ₂ CH ₃)CH ₂ O-
884.	NHCH(CH₃)CH₂O-		C(O)OCH₂CH₃
	C(O)OCH(CH₃)OH	901.	NHCH(CH ₂ CH ₃)CH ₂ O-
8 8 5.	NHCH(CH₃)CH₂O-		C(O)O(CH₂)₂CH₃
	C(O)OCH(CH ₃)OCH ₃	902.	NHCH(CH ₂ CH ₃)CH ₂ O-
886.	NHCH(CH₃)CH₂O-		C(O)OCH(CH₃)OH
	C(O)OCH₂CH(CH₃)OH	903.	NHCH(CH₂CH₃)CH₂O-
887.	NHCH(CH₃)CH₂O-		C(O)OCH(CH ₃)OCH ₃
	C(O)OCH ₂ CH(CH ₃)OCH ₃	904.	NHCH(CH₂CH₃)CH₂O-
888.	NHCH(CH₃)CH₂O-		C(O)OCH₂CH(CH₃)OH
	C(O)OCH(CH₃)CH₂OH	905.	NHCH(CH ₂ CH ₃)CH ₂ O-
889.	NHCH(CH₃)CH₂O-		C(O)OCH₂CH(CH₃)OCH₃
	C(O)OCH(CH ₃)CH ₂ OCH ₃	906.	NHCH(CH₂CH₃)CH₂O-
890.	NHCH(CH₃)CH₂CH₂O-		C(O)OCH(CH₃)CH₂OH
	C(O)OCH₃	907.	NHCH(CH₂CH₃)CH₂O-
891.	NHCH(CH₃)CH₂CH₂O-		C(O)OCH(CH₃)CH₂OCH₃
	C(O)OCH₂CH₃		

No.	R ₆	No.	R ₆
908.	NHCH(CH₂CH₃)CH₂CH₂O-	924.	NHCH(CH₂CH₂CH₃)CH₂O-
	C(O)OCH₃		C(O)OCH₂CH(CH₃)OCH₃
909.	NHCH(CH₂CH₃)CH₂CH₂O-	925.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-
	C(O)OCH₂CH₃		C(O)OCH(CH₃)CH₂OH
910.	NHCH(CH₂CH₃)CH₂CH₂O-	926.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-
	C(O)O(CH₂)₂CH₃		C(O)OCH(CH₃)CH₂OCH₃
911.	NHCH(CH₂CH₃)CH₂CH₂O-	927.	NHCH(CH2CH2CH3)CH2CH2O-
	C(O)OCH(CH₃)OH		C(O)OCH₃
912.	NHCH(CH₂CH₃)CH₂CH₂O-	928.	NHCH(CH2CH2CH3)CH2CH2O-
	C(O)OCH(CH3)OCH3		C(O)OCH₂CH₃
913.	NHCH(CH₂CH₃)CH₂CH₂O-	929.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ CH ₂ O-
	C(O)OCH₂CH(CH₃)OH		$C(O)O(CH_2)_2CH_3$
914.	NHCH(CH₂CH₃)CH₂CH₂O-	930.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ CH ₂ O-
	C(O)OCH ₂ CH(CH ₃)OCH ₃		C(O)OCH(CH₃)OH
915.	NHCH(CH₂CH₃)CH₂CH₂O-	931.	NHCH(CH2CH2CH3)CH2CH2O-
	C(O)OCH(CH₃)CH₂OH		C(O)OCH(CH₃)OCH₃
916.	NHCH(CH₂CH₃)CH₂CH₂O-	932.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ CH ₂ O-
	C(O)OCH(CH₃)CH₂OCH₃		C(O)OCH₂CH(CH₃)OH
917.	NHCH(CH₂CH₂CH₃)CH₂O-	933.	NHCH(CH₂CH₂CH₃)O-
	C(O)OCH ₃		C(O)OCH₂CH(CH₃)OCH₃
918.	NHCH(CH₂CH₂CH₃)CH₂O-	934.	NHCH(CH₂CH₂CH₃)CH₂CH₂O-
	C(O)OCH₂CH₃		C(O)OCH(CH₃)CH₂OH
919.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-	935.	NHCH(CH2CH2CH3)CH2CH2O-
	C(O)O(CH ₂) ₂ CH ₃		C(O)OCH(CH₃)CH₂OCH₃
920.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-	936.	NHCH(CH(CH ₃) ₂)CH ₂ O-
	C(O)OCH₂OCH₃		C(O)OCH ₃
921.	NHCH(CH₂CH₂CH₃)CH₂O-	937.	NHCH(CH ₃) ₂)CH ₂ O-
	C(O)OCH(CH ₃)OH		C(O)OCH₂CH₃
922.	NHCH(CH ₂ CH ₂ CH ₃)CH ₂ O-	938.	NHCH(CH(CH ₃) ₂)CH ₂ O-
	C(O)OCH(CH₃)OCH₃		C(O)O(CH₂)₂CH₃
923.	NHCH(CH₂CH₂CH₃)CH₂O-	939.	NHCH(CH ₃) ₂)CH ₂ O-
	C(O)OCH₂CH(CH₃)OH		C(O)OCH(CH₃)OCH₃

No.	R ₆	No.	R ₆
940.	NHCH(CH(CH ₃) ₂)CH ₂ O-	960.	NHCH₂C(O)OCH(CH₃)CH₂OH
	C(O)OCH₂CH(CH₃)OH	961.	NHCH₂C(O)OCH(CH₃)CH₂OCH₃
941.	NHCH(CH(CH ₃) ₂)CH ₂ O-	962.	NHCH₂C(O)NH₂
	C(O)OCH(CH(CH ₃) ₂)OCH ₃	963.	NHCH₂C(O)NHOH
942.	NHCH(CH(CH ₃)₂)CH₂O-	964.	NHCH₂C(NH)NH₂
	C(O)OCH(CH₃)CH₂OH	965.	NHCH₂C(O)NHCH₃
943.	NHCH(CH(CH ₃) ₂)CH ₂ O-	966.	NHCH₂C(O)NHCH₂CH₃
	C(O)OCH(CH₃)CH₂OCH₃	967.	NHCH₂C(O)NH(CH₂)₂CH₃
944.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	968.	NHCH₂C(O)NHCH(CH₃)OH
	C(O)OCH₃	969.	NHCH₂C(O)NHCH(CH₃)OCH₃
945.	NHCH(CH(CH₃)₂)CH₂CH₂O-	970.	NHCH₂C(O)NHCH₂CH(CH₃)OH
	C(O)OCH₂CH₃	971.	NHCH₂C(O)NHCH₂CH(CH₃)OCH₃
946.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	972.	NHCH₂C(O)NHCH(CH₃)CH₂OH
	$C(O)O(CH_2)_2CH_3$	973.	NHCH₂C(O)NHCH(CH₃)CH₂OCH₃
947.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	974.	NHCH₂C(O)N(CH₃)₂
	C(O)OCH(CH ₃)OCH ₃	975.	NHCH₂C(O)N(CH₂CH₃)₂
948.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	976.	NHCH(CH₃)COOH
	C(O)OCH₂CH(CH₃)OH	977.	NHCH(CH₃)C(O)OCH₃
949.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	978.	NHCH(CH₃)C(O)OCH₂CH₃
	C(O)OCH₂CH(CH₃)OCH₃	979.	NHCH(CH₃)C(O)O(CH₂)₂CH₃
950.	NHCH(CH(CH ₃) ₂)CH ₂ CH ₂ O-	980.	NHCH(CH₃)C(O)OCH(CH₃)OH
	C(O)OCH(CH₃)CH₂OH	981.	NHCH(CH₃)C(O)OCH(CH₃)OCH₃
951.	NHCH(CH ₃) ₂)CH ₂ CH ₂ O-	982.	NHCH(CH₃)C(O)OCH₂CH(CH₃)OH
	C(O)OCH(CH ₃)CH ₂ OCH ₃	983.	NHCH(CH₃)C(O)-
952.	NHCH₂COOH		OCH₂CH(CH₃)OCH₃
953.	NHCH₂C(O)OCH₃	984.	NHCH(CH₃)C(O)OCH(CH₃)CH₂OH
954.	NHCH₂C(O)OCH₂CH₃	985.	NHCH(CH₃)C(O)-
955.	NHCH ₂ C(O)O(CH ₂) ₂ CH ₃		OCH(CH₃)CH₂OCH₃
956.	NHCH₂C(O)OCH(CH₃)OH	986.	NHCH(CH₃)C(O)NH₂
957.	NHCH₂C(O)OCH(CH₃)OCH₃	987.	NHCH(CH₃)C(O)NHOH
958.	NHCH₂C(O)OCH₂CH(CH₃)OH	988.	NHCH(CH₃)C(NH)NH₂
959.	NHCH₂C(O)OCH₂CH(CH₃)OCH₃	989.	NHCH(CH₃)C(O)NHCH₃

991. 992. 993. 994.	NHCH(CH ₃)C(O)NHCH ₂ CH ₃ NHCH(CH ₃)C(O)NH(CH ₂) ₂ CH ₃ NHCH(CH ₃)C(O)NHCH(CH ₃)OH NHCH(CH ₃)C(O)NHCH(CH ₃)OCH ₃ NHCH(CH ₃)C(O)- NHCH ₂ CH(CH ₃)OH NHCH(CH ₃)C(O)- NHCH ₂ CH(CH ₃)OCH ₃ NHCH ₂ CH(CH ₃)OCH ₃	1017. 1018. 1019. 1020. 1021.	NHCH ₂ CH ₂ C(O)NHCH(CH ₃)OH NHCH ₂ CH ₂ C(O)NHCH(CH ₃)OCH ₃ NHCH ₂ CH ₂ C(O)-NHCH ₂ CH(CH ₃)OH NHCH ₂ CH ₂ C(O)- NHCH ₂ CH(CH ₃)OCH ₃ NHCH ₂ CH(CH ₃)OCH ₃ NHCH ₂ CH ₂ C(O)-NHCH(CH ₃)CH ₂ OH NHCH ₂ CH ₂ C(O)- NHCH(CH ₃)CH ₂ OCH ₃
992. 993. 994.	NHCH(CH ₃)C(O)NHCH(CH ₃)OH NHCH(CH ₃)C(O)NHCH(CH ₃)OCH ₃ NHCH(CH ₃)C(O)- NHCH ₂ CH(CH ₃)OH NHCH(CH ₃)C(O)- NHCH ₂ CH(CH ₃)OCH ₃	1018. 1019. 1020. 1021.	NHCH ₂ CH ₂ C(O)-NHCH ₂ CH(CH ₃)OH NHCH ₂ CH ₂ C(O)- NHCH ₂ CH(CH ₃)OCH ₃ NHCH ₂ CH ₂ C(O)-NHCH(CH ₃)CH ₂ OH NHCH ₂ CH ₂ C(O)-
993. 994. 995.	NHCH(CH ₃)C(O)NHCH(CH ₃)OCH ₃ NHCH(CH ₃)C(O)- NHCH ₂ CH(CH ₃)OH NHCH(CH ₃)C(O)- NHCH ₂ CH(CH ₃)OCH ₃	1019. 1020. 1021.	NHCH ₂ CH ₂ C(O)- NHCH ₂ CH(CH ₃)OCH ₃ NHCH ₂ CH ₂ C(O)-NHCH(CH ₃)CH ₂ OH NHCH ₂ CH ₂ C(O)-
994. 995.	NHCH(CH3)C(O)- NHCH2CH(CH3)OH NHCH(CH3)C(O)- NHCH2CH(CH3)OCH3	1020. 1021.	NHCH₂CH(CH₃)OCH₃ NHCH₂CH₂C(O)-NHCH(CH₃)CH₂OH NHCH₂CH₂C(O)-
995.	NHCH2CH(CH3)OH NHCH(CH3)C(O)- NHCH2CH(CH3)OCH3	1021.	NHCH ₂ CH ₂ C(O)-NHCH(CH ₃)CH ₂ OH NHCH ₂ CH ₂ C(O)-
995.	NHCH(CH ₃)C(O)- NHCH₂CH(CH ₃)OCH ₃	1021.	NHCH₂CH₂C(O)-
	NHCH ₂ CH(CH ₃)OCH ₃		- · ·
			NHCH(CH-)CH-OCH
	NHCH(CH₃)C(O)-		
996.		1022.	NHCH ₂ CH ₂ C(O)N(CH ₃) ₂
	NHCH(CH₃)CH₂OH	1023.	NHCH ₂ CH ₂ C(O)N(CH ₂ CH ₃) ₂
997.	NHCH(CH₃)C(O)-	1024.	NHCH₂OCH₃
	NHCH(CH₃)CH₂OCH₃	1025.	NHCH₂OCH₂CH₃
998.	$NHCH(CH_3)C(O)N(CH_3)_2$	1026.	NHCH₂O(CH₂)₂CH₃
999.	NHCH(CH₃)C(O)N(CH₂CH₃)₂	1027.	NHCH₂OCH(CH₃)₂
1000.	NHCH₂CH₂COOH	1028.	NHCH₂OCH₂OCH₃
1001.	NHCH₂CH₂C(O)OCH₃	1029.	NHCH₂CH₂OH
1002.	NHCH2CH2C(O)OCH2CH3	1030.	NHCH₂CH₂OCH₃
1003.	$NHCH_2CH_2C(O)O(CH_2)_2CH_3$	1031.	NHCH ₂ CH ₂ OCH ₂ CH ₃
1004.	NHCH₂CH₂C(O)OCH(CH₃)OH	1032.	NHCH₂CH₂O(CH₂)₂CH₃
1005.	NHCH₂CH₂C(O)OCH(CH₃)OCH₃	1033.	NHCH₂CH₂OCH(CH₃)₂
1006.	NHCH2CH2C(O)OCH2CH(CH3)OH	1034.	NHCH₂CH₂OCH₂OCH₃
1007.	NHCH₂CH₂C(O)-	1035.	NHCH₂CH₂CH₂OH
	OCH₂CH(CH₃)OCH₃	1036.	NHCH₂CH₂CH₂OCH₃
1008.	NHCH2CH2C(O)OCH(CH3)CH2OH	1037.	NHCH2CH2CH2OCH2CH3
1009.	NHCH ₂ CH ₂ C(O)-	1038.	NHCH₂CH₂CH₂O(CH₂)₂CH₃
•	OCH(CH₃)CH₂OCH₃	1039.	NHCH ₂ CH ₂ CH ₂ OCH(CH ₃) ₂
1010.	NHCH₂CH₂C(O)NH₂	1040.	NHCH₂CH₂CH₂OCH₂OCH₃
1011.	NHCH₂CH₂C(O)NHOH	1041.	NHCH(CH₃)OCH₃
1012.	NHCH2CH2C(NH)NH2	1042.	NHCH(CH₃)OCH₂CH₃
1013. 1	NHCH₂CH₂C(O)NHCH₃	1043.	NHCH(CH ₃)O(CH ₂) ₂ CH ₃
1014.	NHCH₂CH₂C(O)NHCH₂CH₃	1044.	NHCH(CH₃)OCH(CH₃)₂
1015. I	NHCH₂CH₂C(O)NH(CH₂)₂CH₃	1045.	NHCH(CH₃)OCH₂OCH₃

No.	R ₆	No.	R ₆
1046.	NHC[(CH ₃) ₂]OCH ₃	1075.	NHCH(CH(CH₂CH₃)CH₃)-
1047.	NHC[(CH ₃) ₂]OCH ₂ CH ₃		OCH₂OCH₃
1048.	$NHC[(CH_3)_2]O(CH_2)_2CH_3$	1076.	NHCH(CH₂CH₂CH₃)OCH₃
1049.	$NHC[(CH_3)_2]OCH(CH_3)_2$	1077.	NHCH(CH₂CH₂CH₃)OCH₂CH₃
1050.	NHC[(CH ₃) ₂]OCH ₂ OCH ₃	1078.	NHCH(CH2CH2CH3)O(CH2)2CH3
1051.	NHCH(CH₂CH₃)OCH₃	1079.	NHCH(CH₂CH₂CH₃)OCH(CH₃)₂
1052.	NHCH(CH₂CH₃)OCH₂CH₃	1080.	NHCH(CH2CH2CH3)OCH2OCH3
1053.	NHCH(CH ₂ CH ₃)O(CH ₂) ₂ CH ₃	1081.	NHCH(CH₃)CH₂OH
1054.	NHCH(CH ₂ CH ₃)OCH(CH ₃) ₂	1082.	NHCH(CH₃)CH₂OCH₃
1055.	NHCH(CH₂CH₃)OCH₂OCH₃	1083.	NHCH(CH₃)CH₂OCH₂CH₃
1056.	NHCH(CH₂OH)OCH₃	1084.	NHCH(CH ₃)CH ₂ O(CH ₂) ₂ CH ₃
1057.	NHCH(CH₂OH)OCH₂CH₃	1085.	NHCH(CH ₃)CH ₂ OCH(CH ₃) ₂
1058.	NHCH(CH ₂ OH)O(CH ₂) ₂ CH ₃	1086.	NHCH(CH₃)CH₂OCH₂OCH₃
1059.	NHCH(CH ₂ OH)OCH(CH ₃) ₂	1087.	NHCH(CH₂CH₃)CH₂OH
1060.	NHCH(CH₂OH)OCH₂OCH₃	1088.	NHCH(CH₂CH₃)CH₂OCH₃
1061.	NHCH(CH2OCH3)OCH3	1089.	NHCH(CH₂CH₃)CH₂OCH₂CH₃
1062.	NHCH(CH ₂ OCH ₃)OCH ₂ CH ₃	1090.	NHCH(CH ₂ CH ₃)CH ₂ O(CH ₂) ₂ CH ₃
1063.	NHCH(CH ₂ OCH ₃)O(CH ₂) ₂ CH ₃	1091.	NHCH(CH ₂ CH ₃)CH ₂ OCH(CH ₃) ₂
1064.	NHCH(CH ₂ OCH ₃)OCH(CH ₃) ₂	1092.	NHCH(CH2CH3)CH2OCH2OCH3
1065.	NHCH(CH ₂ OCH ₃)OCH ₂ OCH ₃	1093.	NHC[(CH ₃) ₂]CH ₂ OH
1066.	NHCH[CH(CH ₃) ₂]OCH ₃	1094.	NHC[(CH ₃) ₂]CH ₂ OCH ₃
1067.	NHCH[CH(CH ₃) ₂]OCH ₂ CH ₃	1095.	NHC[(CH3)2]CH2OCH2CH3
1068.	NHCH[CH(CH ₃) ₂]O(CH ₂) ₂ CH ₃	1096.	$NHC[(CH_3)_2]CH_2O(CH_2)_2CH_3$
1069.	NHCH(CH(CH ₃) ₂]OCH(CH ₃) ₂	1097.	NHC[(CH ₃) ₂]CH ₂ OCH(CH ₃) ₂
1070.	NHCH[CH(CH ₃) ₂]OCH ₂ OCH ₃	1098.	NHC[(CH ₃) ₂]CH ₂ OCH ₂ OCH ₃
1071.	NHCH(CH(CH₂CH₃)CH₃)OCH₃	1099.	NHCH(CH₂OH)CH₂OH
1072.	NHCH(CH(CH ₂ CH ₃)CH ₃)-OCH ₂ CH ₃	1100.	NHCH(CH₂OH)CH₂OCH₃
1073.	NHCH(CH ₂ CH ₃)CH ₃)-	1101.	NHCH(CH₂OH)CH₂OCH₂CH₃
	O(CH ₂) ₂ CH ₃	1102.	NHCH(CH₂OH)CH₂O(CH₂)₂CH₃
1074.	NHCH(CH ₂ CH ₃)CH ₃)-	1103.	NHCH(CH₂OH)CH₂OCH(CH₃)₂
	OCH(CH ₃) ₂	1104.	NHCH(CH₂OH)CH₂OCH₂OCH₃
		1105.	NHCH(CH ₂ OCH ₃)CH ₂ OH

No. R ₆	No. R ₆
1106. NHCH(CH₂OCH₃)CH₂OCH₃	1136. NHCH(CH₃)CH₂CH₂OCH₃
1107. NHCH(CH ₂ OCH ₃)CH ₂ OCH ₂ CH ₃	1137. NHCH(CH₃)CH₂CH₂OCH₂CH₃
1108. NHCH(CH ₂ OCH ₃)CH ₂ O-(CH ₂) ₂ CH ₃	1138. NHCH(CH₃)CH₂CH₂O(CH₂)₂CH₃
1109. NHCH(CH ₂ OCH ₃)CH ₂ OCH(CH ₃) ₂	1139. NHCH(CH₃)CH₂CH₂OCH(CH₃)₂
1110. NHCH(CH ₂ OCH ₃)CH ₂ OCH ₂ OCH ₃	1140. NHCH(CH₃)CH₂CH₂OCH₂OCH₃
1111. NHCH₂CH(CH₃)OH	1141. NHCH(CH₂CH₃)CH₂CH₂OH
1112. NHCH₂CH(CH₃)OCH₃	1142. NHCH(CH₂CH₃)CH₂CH₂OCH₃
1113. NHCH₂CH(CH₃)OCH₂CH₃	1143. NHCH(CH₂CH₃)CH₂CH₂O-CH₂CH₃
1114. NHCH₂CH(CH₃)O(CH₂)₂CH₃	1144. NHCH(CH₂CH₃)CH₂CH₂O-
1115. NHCH₂CH(CH₃)OCH(CH₃)₂	(CH₂)₂CH₃
1116. NHCH₂CH(CH₃)OCH₂OCH₃	1145. NHCH(CH₂CH₃)CH₂CH₂O-CH(CH₃)₂
1117. NHCH₂CH(CH₂CH₃)OH	1146. NHCH(CH₂CH₃)CH₂CH₂O-CH₂OCH₃
1118. NHCH₂CH(CH₂CH₃)OCH₃	1147. NHC[(CH₃)₂]CH₂CH₂OH
1119. NHCH₂CH(CH₂CH₃)OCH₂CH₃	1148. NHC[(CH₃)₂]CH₂CH₂OCH₃
1120. NHCH₂CH(CH₂CH₃)O(CH₂)₂CH₃	1149. NHC[(CH₃)₂]CH₂CH₂OCH₂CH₃
1121. NHCH ₂ CH(CH ₂ CH ₃)OCH(CH ₃) ₂	1150. NHC[(CH₃)₂]CH₂CH₂O(CH₂)₂CH₃
1122. NHCH ₂ CH(CH ₂ CH ₃)OCH ₂ OCH ₃	1151. NHC[(CH ₃) ₂]CH ₂ CH ₂ OCH(CH ₃) ₂
1123. NHCH₂CH(CH₂OH)OH	1152. NHC[(CH₃)₂]CH₂CH₂OCH₂OCH₃
1124. NHCH₂CH(CH₂OH)OCH₃	1153. NHCH(CH₂OH)CH₂CH₂OH
1125. NHCH₂CH(CH₂OH)OCH₂CH₃	1154. NHCH(CH ₂ OH)CH ₂ CH ₂ OCH ₃
1126. NHCH₂C(CH₂OH)(CH₂OH)O-	1155. NHCH(CH₂OH)CH₂CH₂OCH₂CH₃
(CH₂)₂CH₃	1156. NHCH(CH ₂ OH)CH ₂ CH ₂ O-(CH ₂) ₂ CH ₃
1127. NHCH₂CH(CH₂OH)OCH(CH₃)₂	1157. NHCH(CH₂OH)CH₂CH₂O-CH(CH₃)₂
1128. NHCH₂CH(CH₂OH)OCH₂OCH₃	1158. NHCH(CH ₂ OH)CH ₂ CH ₂ O-CH ₂ OCH ₃
1129. NHCH₂CH(CH₂OCH₃)OH	1159. NHCH(CH ₂ OCH ₃)CH ₂ CH ₂ OH
1130. NHCH₂CH(CH₂OCH₃)OCH₃	1160. NHCH(CH₂OCH₃)CH₂CH₂OCH₃
1131. NHCH₂CH(CH₂OCH₃)OCH₂CH₃	1161. NHCH(CH ₂ OCH ₃)CH ₂ CH ₂ O-CH ₂ CH ₃
1132. NHCH₂CH(CH₂OCH₃)O-	1162. NHCH(CH₂OCH₃)CH₂CH₂O-
(CH₂)₂CH₃	(CH₂)₂CH₃
1133. NHCH ₂ CH(CH ₂ OCH ₃)OCH(CH ₃) ₂	1163. NHCH(CH ₂ OCH ₃)CH ₂ CH ₂ O-
1134. NHCH₂CH(CH₂OCH₃)OCH₂OCH₃	CH(CH₃)₂
1135. NHCH(CH₃)CH₂CH₂OH	

No.	R ₆	No.	R ₆
1164.	NHCH(CH ₂ OCH ₃)CH ₂ CH ₂ O-	1191.	NHCH(CH₂OCH₃)CH(CH₃)O-
	CH₂OCH₃		CH₂CH₃
1165.	NHCH(CH ₃)CH(CH ₃)OH	1192.	NHCH(CH₂OCH₃)CH(CH₃)O-
1166.	NHCH(CH ₃)CH(CH ₃)OCH ₃		(CH ₂)₂CH ₃
1167.	NHCH(CH₃)CH(CH₃)OCH₂CH₃	1193.	NHCH(CH₂OCH₃)CH(CH₃)O-
1168.	NHCH(CH ₃)CH(CH ₃)O(CH ₂) ₂ CH ₃		CH(CH ₃) ₂
1169.	NHCH(CH ₃)CH(CH ₃)OCH(CH ₃) ₂	1194.	NHCH(CH₂OCH₃)CH(CH₃)O-
1170.	NHCH(CH₃)CH(CH₃)OCH₂OCH₃		CH₂OCH₃
1171.	NHCH(CH₂CH₃)CH(CH₃)OH	1195.	N(CH ₃)CH ₂ OCH ₃
1172.	NHCH(CH₂CH₃)CH(CH₃)OCH₃	1196.	N(CH ₃)CH ₂ OCH ₂ CH ₃
1173.	NHCH(CH ₂ CH ₃)CH(CH ₃)O-CH ₂ CH ₃	1197.	N(CH ₃)CH ₂ O(CH ₂) ₂ CH ₃
1174.	NHCH(CH₂CH₃)CH(CH₃)O-	1198.	N(CH ₃)CH ₂ OCH(CH ₃) ₂
	(CH₂)₂CH₃	1199.	N(CH ₃)CH ₂ OCH ₂ OCH ₃
1175.	NHCH(CH₂CH₃)CH(CH₃)O-	1200.	N(CH ₃)CH ₂ CH ₂ OH
	CH(CH ₃) ₂	1201.	N(CH ₃)CH ₂ CH ₂ OCH ₃
1176.	NHCH(CH ₂ CH ₃)CH(CH ₃)O-	1202.	N(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃
	CH₂OCH₃	1203.	$N(CH_3)CH_2CH_2O(CH_2)_2CH_3$
1177.	NHC[(CH ₃) ₂]CH(CH ₃)OH	1204.	N(CH ₃)CH ₂ CH ₂ OCH(CH ₃) ₂
1178.	$NHC[(CH_3)_2]CH(CH_3)OCH_3$	1205.	N(CH ₃)CH ₂ CH ₂ OCH ₂ OCH ₃
1179.	NHC[(CH ₃) ₂]CH(CH ₃)OCH ₂ CH ₃	1206.	N(CH ₃)CH ₂ CH ₂ CH ₂ OH
1180.	$NHC[(CH_3)_2]CH(CH_3)O(CH_2)_2CH_3$	1207.	N(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃
1181.	$NHC[(CH_3)_2]CH(CH_3)OCH(CH_3)_2$	1208.	N(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
1182.	NHC[(CH ₃) ₂]CH(CH ₃)OCH ₂ OCH ₃	1209.	$N(CH_3)CH_2CH_2CH_2O(CH_2)_2CH_3$
1183.	NHCH(CH₂OH)CH(CH₃)OH	1210.	N(CH ₃)CH ₂ CH ₂ CH ₂ OCH(CH ₃) ₂
1184.	NHCH(CH₂OH)CH(CH₃)OCH₃	1211.	N(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₂ OCH ₃
1185.	NHCH(CH₂OH)CH(CH₃)OCH₂CH₃	1212.	N(CH ₃)CH(CH ₃)OCH ₃
1186.	NHCH(CH ₂ OH)CH(CH ₃)O-	1213.	N(CH ₃)CH(CH ₃)OCH ₂ CH ₃
	(CH₂)₂CH₃	1214.	N(CH ₃)CH(CH ₃)O(CH ₂) ₂ CH ₃
1187.	NHCH(CH ₂ OH)CH(CH ₃)O-CH(CH ₃) ₂	1215.	N(CH ₃)CH(CH ₃)OCH(CH ₃) ₂
1188.	NHCH(CH₂OH)CH(CH₃)O-CH₂OCH₃	1216.	N(CH ₃)CH(CH ₃)OCH ₂ OCH ₃
1189.	NHCH(CH₂OCH₃)CH(CH₃)OH	1217.	N(CH ₃)CH(CH ₂ OH)O(CH ₂) ₂ CH ₃
1190.	NHCH(CH₂OCH₃)CH(CH₃)OCH₃	1218.	N(CH ₃)CH(CH ₂ OH)OCH(CH ₃) ₂

No.	R ₆	No.	R ₆
1219.	N(CH ₃)CH(CH ₂ OH)OCH ₂ OCH ₃	1248.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-
1220.	N(CH₃)CH(CH₂OCH₃)OCH₃		CH₂OCH₃
1221.	N(CH₃)CH(CH₂OCH₃)OCH₂CH₃	1249.	N(CH₃)CH₂CH(CH₃)OH
1222.	N(CH ₃)CH(CH ₂ OCH ₃)O-(CH ₂) ₂ CH ₃	1250.	N(CH₃)CH₂CH(CH₃)OCH₃
1223.	N(CH ₃)CH(CH ₂ OCH ₃)OCH(CH ₃) ₂	1251.	N(CH ₃)CH ₂ CH(CH ₃)OCH ₂ CH ₃
1224.	N(CH ₃)CH(CH ₂ OCH ₃)OCH ₂ OCH ₃	1252.	$N(CH_3)CH_2CH(CH_3)O(CH_2)_2CH_3$
1225.	N(CH₃)CH(CH₃)CH₂OH	1253.	N(CH₃)CH₂CH(CH₃)OCH(CH₃)₂
1226.	N(CH ₃)CH(CH ₃)CH ₂ OCH ₃	1254.	N(CH ₃)CH ₂ CH(CH ₃)OCH ₂ OCH ₃
1227.	N(CH ₃)CH(CH ₃)CH ₂ OCH ₂ CH ₃	1255.	N(CH₃)CH₂CH(CH₂CH₃)OH
1228.	N(CH ₃)CH(CH ₃)CH ₂ O(CH ₂) ₂ CH ₃	1256.	N(CH ₃)CH ₂ CH(CH ₂ CH ₃)OCH ₃
1229.	N(CH ₃)CH(CH ₃)CH ₂ OCH(CH ₃) ₂	1257.	N(CH ₃)CH ₂ CH(CH ₂ CH ₃)OCH ₂ CH ₃
1230.	N(CH ₃)CH(CH ₃)CH ₂ OCH ₂ OCH ₃	1258.	N(CH ₃)CH ₂ CH(CH ₂ CH ₃)O-
1231.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ OH		(CH₂)₂CH₃
1232.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ OCH ₃	1259.	N(CH ₃)CH ₂ CH(CH ₂ CH ₃)O-CH(CH ₃) ₂
1233.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ OCH ₂ CH ₃	1260.	N(CH ₃)CH ₂ CH(CH ₂ CH ₃)O-CH ₂ OCH ₃
1234.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ O-	1261.	N(CH₃)CH₂CH(CH₂OH)OH
	(CH ₂) ₂ CH ₃	1262.	N(CH₃)CH₂CH(CH₂OH)OCH₃
1235.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ O-CH(CH ₃) ₂	1263.	N(CH ₃)CH ₂ CH(CH ₂ OH)OCH ₂ CH ₃
1236.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ O-CH ₂ OCH ₃	1264.	N(CH₃)CH₂CH(CH₂OH)(CH₂OH)-
1237.	N(CH₃)CH(CH₂OH)CH₂OH		O(CH ₂) ₂ CH ₃
1238.	N(CH ₃)CH(CH ₂ OH)CH ₂ OCH ₃	1265.	N(CH ₃)CH ₂ CH(CH ₂ OH)-OCH(CH ₃) ₂
1239.	N(CH ₃)CH(CH ₂ OH)CH ₂ OCH ₂ CH ₃	1266.	N(CH ₃)CH ₂ CH(CH ₂ OH)O-CH ₂ OCH ₃
1240.	N(CH ₃)CH(CH ₂ OH)CH ₂ O-(CH ₂) ₂ CH ₃	1267.	N(CH ₃)CH ₂ CH(CH ₂ OCH ₃)OH
1241.	N(CH ₃)CH(CH ₂ OH)CH ₂ O-CH(CH ₃) ₂	1268.	N(CH ₃)CH ₂ CH(CH ₂ OCH ₃)OCH ₃
1242.	N(CH ₃)CH(CH ₂ OH)CH ₂ O-CH ₂ OCH ₃	1269.	N(CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-CH ₂ CH ₃
1243.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ OH	1270.	N(CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-
1244.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ OCH ₃		(CH ₂) ₂ CH ₃
1245.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-CH ₂ CH ₃	1271.	N(CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-
1246.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-		CH(CH ₃) ₂
	(CH₂)₂CH₃	1272.	N(CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-
1247.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-		CH₂OCH₃
	CH(CH ₃) ₂	1273.	N(CH ₃)CH(CH ₃)CH ₂ CH ₂ OH
	•	~.	() () () () () () () () () ()

No.	R ₆	No.	R ₆
1274.	N(CH ₃)CH(CH ₃)CH ₂ CH ₂ OCH ₃	1296.	N(CH₃)CH(CH₂OH)CH₂CH₂O-
1275.	$N(CH_3)CH(CH_3)CH_2CH_2OCH_2CH_3$		CH₂OCH₃
1276.	N(CH₃)CH(CH₃)CH₂CH₂O-	1297.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ CH ₂ OH
	(CH₂)₂CH₃	1298.	N(CH ₃)CH(CH ₂ OCH ₃)-CH ₂ CH ₂ OCH ₃
1277.	N(CH ₃)CH(CH ₃)CH ₂ CH ₂ O-CH(CH ₃) ₂	1299.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ CH ₂ O-
1278.	N(CH ₃)CH(CH ₃)CH ₂ CH ₂ O-CH ₂ OCH ₃		CH₂CH₃
1279.	N(CH₃)CH(CH₂CH₃)CH₂CH₂OH	1300.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ CH ₂ O-
1280.	N(CH₃)CH(CH₂CH₃)CH₂CH₂OCH₃		(CH ₂) ₂ CH ₃
1281.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1301.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ CH ₂ O-
	CH₂CH₃		CH(CH ₃) ₂
1282.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1302.	N(CH ₃)CH(CH ₂ OCH ₃)CH ₂ CH ₂ O-
	(CH ₂) ₂ CH ₃		CH₂OCH₃
1283.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1303.	N(CH ₂ CH ₃)CH ₂ OCH ₃
	CH(CH ₃) ₂	1304.	N(CH ₂ CH ₃)CH ₂ OCH ₂ CH ₃
1284.	N(CH ₃)CH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1305.	N(CH ₂ CH ₃)CH ₂ O(CH ₂) ₂ CH ₃
	CH₂OCH₃	1306.	N(CH ₂ CH ₃)CH ₂ OCH(CH ₃) ₂
1285.	$N(CH_3)C[(CH_3)_2]CH_2CH_2OH$	1307.	N(CH ₂ CH ₃)CH ₂ OCH ₂ OCH ₃
1286.	$N(CH_3)C[(CH_3)_2]CH_2CH_2OCH_3$	1308.	N(CH ₂ CH ₃)CH ₂ CH ₂ OH
1287.	$N(CH_3)C[(CH_3)_2]CH_2CH_2O-CH_2CH_3$	1309.	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
1288.	N(CH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-	1310.	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃
	(CH₂)₂CH₃	1311.	N(CH ₂ CH ₃)CH ₂ CH ₂ O(CH ₂) ₂ CH ₃
1289.	$N(CH_3)C[(CH_3)_2]CH_2CH_2O-CH(CH_3)_2$	1312.	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH(CH ₃) ₂
1290.	N(CH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-	1313.	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₂ OCH ₃
	CH₂OCH₃	1314.	N(CH₂CH₃)CH₂CH₂CH₂OH
1291.	N(CH₃)CH(CH₂OH)CH₂CH₂OH	1315.	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃
1292.	N(CH ₃)CH(CH ₂ OH)CH ₂ CH ₂ OCH ₃	1316.	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
1293.	N(CH₃)CH(CH₂OH)-	1317.	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ O-(CH ₂) ₂ CH ₃
	CH₂CH₂OCH₂CH₃	1318.	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ O-CH(CH ₃) ₂
1294.	N(CH₃)CH(CH₂OH)CH₂CH₂O-	1319.	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ O-CH ₂ OCH ₃
	(CH₂)₂CH₃	1320.	N(CH₂CH₃)CH(CH₃)OCH₃
1295.	N(CH ₃)CH(CH ₂ OH)CH ₂ CH ₂ O-		N(CH ₂ CH ₃)CH(CH ₃)OCH ₂ CH ₃
	CH(CH ₃)₂		N(CH ₂ CH ₃)CH(CH ₃)O(CH ₂) ₂ CH ₃
			·

No.	R ₆	No.	R ₆
1323.	N(CH ₂ CH ₃)CH(CH ₃)OCH(CH ₃) ₂		N(CH ₂ CH ₃)CH(CH ₂ OH)CH ₂ O-
	N(CH ₂ CH ₃)CH(CH ₃)OCH ₂ OCH ₃		CH₂CH₃
1325.	N(CH ₂ CH ₃)CH(CH ₂ OH)O-(CH ₂) ₂ CH ₃	1348.	N(CH₂CH₃)CH(CH₂OH)CH₂O-
1326.	N(CH ₂ CH ₃)CH(CH ₂ OH)O-CH(CH ₃) ₂		(CH₂)₂CH₃
1327.	N(CH ₂ CH ₃)CH(CH ₂ OH)O-CH ₂ OCH ₃	1349.	N(CH ₂ CH ₃)CH(CH ₂ OH)CH ₂ O-
1328.	N(CH₂CH₃)CH(CH₂OCH₃)OCH₃		CH(CH ₃) ₂
1329.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)O-CH ₂ CH ₃	1350.	N(CH ₂ CH ₃)CH(CH ₂ OH)CH ₂ O-
1330.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)O-		CH₂OCH₃
	(CH ₂) ₂ CH ₃	1351.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)CH ₂ OH
1331.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)O-	1352.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-CH ₃
	CH(CH ₃) ₂	1353.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-
1332.	N(CH₂CH₃)CH(CH₂OCH₃)O-		CH₂CH₃
	CH₂OCH₃	1354.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-
1333.	N(CH₂CH₃)CH(CH₃)CH₂OH		(CH₂)₂CH₃
1334.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ OCH ₃	1355.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-
1335.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ OCH ₂ CH ₃		CH(CH ₃) ₂
1336.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ O-	1356.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)CH ₂ O-
	(CH₂)₂CH₃		CH₂OCH₃
1337.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ O-CH(CH ₃) ₂	1357.	N(CH₂CH₃)CH₂CH(CH₃)OH
1338.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ O-CH ₂ OCH ₃	1358.	N(CH ₂ CH ₃)CH ₂ CH(CH ₃)OCH ₃
1339.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)CH ₂ OH	1359.	N(CH ₂ CH ₃)CH ₂ CH(CH ₃)OCH ₂ CH ₃
	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)CH ₂ OCH ₃	1360.	N(CH ₂ CH ₃)CH ₂ CH(CH ₃)O-
1341.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)CH ₂ O-		(CH ₂) ₂ CH ₃
	CH₂CH₃	1361.	N(CH ₂ CH ₃)CH ₂ CH(CH ₃)O-CH(CH ₃) ₂
1342.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)CH ₂ O-	1362.	N(CH ₂ CH ₃)CH ₂ CH(CH ₃)O-CH ₂ OCH ₃
	(CH₂)₂CH₃	1363.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ CH ₃)OH
1343.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)CH ₂ O-	1364:	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ CH ₃)OCH ₃
	CH(CH ₃)₂	1365.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ CH ₃)O-
1344.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)CH ₂ O-		CH ₂ CH ₃
	CH₂OCH₃	1366.	N(CH₂CH₃)CH₂CH(CH₂CH₃)O-
	N(CH₂CH₃)CH(CH₂OH)CH₂OH		(CH₂)₂CH₃
1346.	N(CH₂CH₃)CH(CH₂OH)CH₂OCH₃		

No.	R ₆	No.	R ₆
1367.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ CH ₃)O-	1386.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ O-
	CH(CH₃)₂		CH₂OCH₃
1368.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ CH ₃)O-	1387.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)-CH ₂ CH ₂ OH
	CH₂OCH₃	1388.	N(CH₂CH₃)CH(CH₂CH₃)-
1369.	N(CH₂CH₃)CH₂CH(CH₂OH)OH		CH₂CH₂OCH₃
1370.	N(CH₂CH₃)CH₂CH(CH₂OH)OCH₃	1389.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)-
1371.	N(CH₂CH₃)CH₂CH(CH₂OH)O-		CH₂CH₂OCH₂CH₃
•	CH₂CH₃	1390.	N(CH₂CH₃)CH(CH₂CH₃)-
1372.	N(CH ₂ CH ₃)CH ₂ C(CH ₂ OH)(CH ₂ OH)O		CH₂CH₂O(CH₂)₂CH₃
	-(CH ₂) ₂ CH ₃	1391.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)-
1373.	N(CH₂CH₃)CH₂CH(CH₂OH)-		CH₂CH₂OCH(CH₃)₂
	OCH(CH₃)₂	1392.	N(CH₂CH₃)CH(CH₂CH₃)-
1374.	N(CH₂CH₃)CH₂CH(CH₂OH)O-		CH₂CH₂OCH₂OCH₃
	CH₂OCH₃	1393.	N(CH ₂ CH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ OH
1375.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ OCH ₃)OH	1394.	N(CH ₂ CH ₃)C[(CH ₃) ₂]-CH ₂ CH ₂ OCH ₃
1376.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-CH ₃	1395.	N(CH ₂ CH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-
1377.	N(CH₂CH₃)CH₂CH(CH₂OCH₃)O-		CH₂CH₃
	CH₂CH₃	1396.	N(CH ₂ CH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-
1378.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-		(CH₂)₂CH₃
	(CH₂)₂CH₃	1397.	N(CH ₂ CH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-
1379.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-		CH(CH₃)₂
	CH(CH ₃) ₂	1398.	N(CH ₂ CH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-
1380.	N(CH ₂ CH ₃)CH ₂ CH(CH ₂ OCH ₃)O-		CH₂OCH₃
	CH₂OCH₃	1399.	N(CH ₂ CH ₃)CH(CH ₂ OH)-CH ₂ CH ₂ OH
1381.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ OH	1400.	N(CH₂CH₃)CH(CH₂OH)-
1382.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ OCH ₃		CH₂CH₂OCH₃
1383.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ O-	1401.	N(CH₂CH₃)CH(CH₂OH)-
	CH₂CH₃		CH₂CH₂OCH₂CH₃
1384.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ O-	1402.	N(CH₂CH₃)CH(CH₂OH)-
	(CH₂)₂CH₃		CH ₂ CH ₂ O(CH ₂) ₂ CH ₃
1385.	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ O-	1403.	N(CH₂CH₃)CH(CH₂OH)-
	CH(CH₃)₂		CH ₂ CH ₂ OCH(CH ₃) ₂

No.	R ₆ .	No.	R ₆
1404.	N(CH ₂ CH ₃)CH(CH ₂ OH)-		N(CH ₂ OCH ₃)CH ₂ CH ₂ CH ₂ O-
	CH ₂ CH ₂ OCH ₂ OCH ₃		CH₂OCH₃
1405.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)-	1428.	N(CH₂OCH₃)CH(CH₃)OCH₃
	CH₂CH₂OH	1429.	N(CH ₂ OCH ₃)CH(CH ₃)OCH ₂ CH ₃
1406.	N(CH ₂ CH ₃)CH(CH ₂ OCH ₃)-		N(CH ₂ OCH ₃)CH(CH ₃)O-(CH ₂) ₂ CH ₃
	CH₂CH₂OCH₃		N(CH₂OCH₃)CH(CH₃)OCH(CH₃)₂
1407.	N(CH₂CH₃)CH(CH₂OCH₃)-	1432.	N(CH ₂ OCH ₃)CH(CH ₃)OCH ₂ OCH ₃
	CH₂CH₂OCH₂CH₃	1433.	N(CH ₂ OCH ₃)CH(CH ₂ OH)O-
1408.	N(CH₂CH₃)CH(CH₂OCH₃)-		(CH₂)₂CH₃
	CH ₂ CH ₂ O(CH ₂) ₂ CH ₃	1434.	N(CH ₂ OCH ₃)CH(CH ₂ OH)O-
1409.	N(CH₂CH₃)CH(CH₂OCH₃)-		CH(CH ₃) ₂
	CH ₂ CH ₂ OCH(CH ₃) ₂	1435.	N(CH ₂ OCH ₃)CH(CH ₂ OH)O-
1410.	N(CH₂CH₃)CH(CH₂OCH₃)-		CH₂OCH₃
	CH ₂ CH ₂ OCH ₂ OCH ₃	1436.	N(CH ₂ OCH ₃)CH(CH ₂ OCH ₃)OCH ₃
1411.	N(CH ₂ OCH ₃)CH ₂ OCH ₃	1437.	N(CH2OCH3)CH(CH2OCH3)O-
1412.	N(CH ₂ OCH ₃)CH ₂ OCH ₂ CH ₃		CH₂CH₃
1413.	N(CH ₂ OCH ₃)CH ₂ O(CH ₂) ₂ CH ₃	1438.	N(CH₂OCH₃)CH(CH₂OCH₃)O-
1414.	N(CH ₂ OCH ₃)CH ₂ OCH(CH ₃) ₂		(CH ₂) ₂ CH ₃
1415.	N(CH ₂ OCH ₃)CH ₂ OCH ₂ OCH ₃	1439.	N(CH₂OCH₃)CH(CH₂OCH₃)O-
1416.	N(CH ₂ OCH ₃)CH ₂ CH ₂ OH		CH(CH ₃) ₂
1417.	N(CH ₂ OCH ₃)CH ₂ CH ₂ OCH ₃	1440.	N(CH₂OCH₃)CH(CH₂OCH₃)O-
1418.	N(CH ₂ OCH ₃)CH ₂ CH ₂ OCH ₂ CH ₃		CH₂OCH₃
1419.	N(CH ₂ OCH ₃)CH ₂ CH ₂ O(CH ₂) ₂ CH ₃	1441.	N(CH₂OCH₃)CH(CH₃)CH₂OH
1420.	N(CH ₂ OCH ₃)CH ₂ CH ₂ OCH(CH ₃) ₂	1442.	N(CH₂OCH₃)CH(CH₃)CH₂OCH₃
1421.	N(CH ₂ OCH ₃)CH ₂ CH ₂ OCH ₂ OCH ₃	1443.	N(CH ₂ OCH ₃)CH(CH ₃)CH ₂ O-CH ₂ CH ₃
	N(CH₂OCH₃)CH₂CH₂CH₂OH	1444.	N(CH₂OCH₃)CH(CH₃)CH₂O-
1423.	N(CH₂OCH₃)CH₂CH₂CH₂OCH₃		(CH ₂) ₂ CH ₃
1424.	N(CH ₂ OCH ₃)CH ₂ CH ₂ CH ₂ O-CH ₂ CH ₃	1445.	N(CH₂OCH₃)CH(CH₃)CH₂O-
1425.	N(CH ₂ OCH ₃)CH ₂ CH ₂ CH ₂ O-		CH(CH ₃) ₂
	(CH ₂) ₂ CH ₃	1446.	N(CH₂OCH₃)CH(CH₃)CH₂O-
1426.	N(CH ₂ OCH ₃)CH ₂ CH ₂ CH ₂ O-		CH₂OCH₃
	CH(CH₃)₂	1447.	N(CH ₂ OCH ₃)CH(CH ₂ CH ₃)CH ₂ OH

No.	R ₆	No.	R ₆
1448.	N(CH ₂ OCH ₃)CH(CH ₂ CH ₃)-CH ₂ OCH ₃	1467.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₃)O-CH ₂ CH ₃
1449.	N(CH ₂ CH ₃)CH(CH ₂ CH ₃)CH ₂ O-	1468.	N(CH₂OCH₃)CH₂CH(CH₃)O-
	CH₂CH₃		(CH ₂) ₂ CH ₃
1450.	N(CH₂OCH₃)CH(CH₂CH₃)CH₂O-	1469.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₃)O-
	(CH ₂) ₂ CH ₃		CH(CH ₃) ₂
1451.	N(CH ₂ OCH ₃)CH(CH ₂ CH ₃)CH ₂ O-	1470.	N(CH₂OCH₃)CH₂CH(CH₃)O-
	CH(CH ₃)₂		CH₂OCH₃
1452.	N(CH ₂ OCH ₃)CH(CH ₂ CH ₃)CH ₂ O-	1471.	N(CH₂OCH₃)CH₂CH(CH₂CH₃)OH
	CH₂OCH₃	1472.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ CH ₃)-OCH ₃
1453.	N(CH ₂ OCH ₃)CH(CH ₂ OH)CH ₂ OH	1473.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ CH ₃)O-
1454.	N(CH2OCH3)CH(CH2OH)-CH2OCH3		CH₂CH₃
1455.	N(CH ₂ OCH ₃)CH(CH ₂ OH)CH ₂ O-	1474.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ CH ₃)O-
	CH₂CH₃		(CH ₂) ₂ CH ₃
1456.	N(CH ₂ OCH ₃)CH(CH ₂ OH)CH ₂ O-	1475.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ CH ₃)O-
	(CH ₂) ₂ CH ₃		CH(CH ₃) ₂
1457.	N(CH₂OCH₃)CH(CH₂OH)CH₂O-	1476.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ CH ₃)O-
	CH(CH ₃) ₂		CH₂OCH₃
1458.	N(CH ₂ OCH ₃)CH(CH ₂ OH)CH ₂ O-	1477.	N(CH₂OCH₃)CH₂CH(CH₂OH)OH
	CH₂OCH₃	1478.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ OH)-OCH ₃
1459.	N(CH ₂ OCH ₃)CH(CH ₂ OCH ₃)-CH ₂ OH	1479.	N(CH₂OCH₃)CH₂CH(CH₂OH)O-
1460.	N(CH ₂ OCH ₃)CH(CH ₂ OCH ₃)CH ₂ O-		CH₂CH₃
	CH₃	1480.	N(CH₂OCH₃)CH₂CH(CH₂OH)-
1461.	N(CH ₂ OCH ₃)CH(CH ₂ OCH ₃)CH ₂ O-		(CH ₂ OH)O-(CH ₂) ₂ CH ₃
	CH₂CH₃	1481.	N(CH₂OCH₃)CH₂CH(CH₂OH)-
1462.	N(CH ₂ OCH ₃)CH(CH ₂ OCH ₃)CH ₂ O-		OCH(CH₃)₂
	(CH ₂) ₂ CH ₃	1482.	N(CH₂OCH₃)CH₂CH(CH₂OH)O-
1463.	N(CH₂OCH₃)CH(CH₂OCH₃)CH₂O-		CH₂OCH₃
	CH(CH ₃) ₂	1483.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ OCH ₃)-OH
1464.	N(CH ₂ OCH ₃)CH(CH ₂ OCH ₃)CH ₂ O-	1484.	N(CH₂OCH₃)CH₂CH(CH₂OCH₃)O-
	CH₂OCH₃		CH₃
1465.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₃)OH	1485.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₂ OCH ₃)O-
1466.	N(CH ₂ OCH ₃)CH ₂ CH(CH ₃)OCH ₃		CH₂CH₃

			
No.	R ₆	No.	R ₆ .
1486	6. N(CH₂OCH₃)CH₂CH(CH₂OCH₃)O-	1503.	N(CH ₂ OCH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-
	(CH₂)₂CH₃		CH₂CH₃
1487	'. N(CH₂OCH₃)CH₂CH(CH₂OCH₃)O-	1504.	$N(CH_2OCH_3)C[(CH_3)_2]CH_2CH_2O-$
	CH(CH₃)₂		(CH₂)₂CH₃
1488	3. N(CH₂OCH₃)CH₂CH(CH₂OCH₃)O-	1505.	N(CH ₂ OCH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-
	CH₂OCH₃		CH(CH ₃) ₂
1489	. N(CH₂OCH₃)CH(CH₃)CH₂CH₂OH	1506.	N(CH ₂ OCH ₃)C[(CH ₃) ₂]CH ₂ CH ₂ O-
1490). N(CH₂OCH₃)CH(CH₃)-CH₂CH₂OCH₃		CH₂OCH₃
1491	. N(CH₂OCH₃)CH(CH₃)CH₂CH₂O-	1507.	N(CH ₂ OCH ₃)CH(CH ₂ OH)-
	CH₂CH₃		CH ₂ CH ₂ OH
1492	. N(CH₂OCH₃)CH(CH₃)CH₂CH₂O-	1508.	N(CH ₂ OCH ₃)CH(CH ₂ OH)-
	(CH₂)₂CH₃		CH₂CH₂OCH₃
1493	. N(CH₂OCH₃)CH(CH₃)CH₂CH₂O-	1509.	N(CH ₂ OCH ₃)CH(CH ₂ OH)-
	CH(CH₃)₂		CH ₂ CH ₂ OCH ₂ CH ₃
1494	. N(CH₂OCH₃)CH(CH₃)CH₂CH₂O-	1510.	N(CH ₂ OCH ₃)CH(CH ₂ OH)-
	CH₂OCH₃		CH₂CH₂O(CH₂)₂CH₃
1495	. N(CH₂OCH₃)CH(CH₂CH₃)-	1511.	N(CH₂OCH₃)CH(CH₂OH)-
	CH₂CH₂OH		CH₂CH₂OCH(CH₃)₂
1496	. N(CH₂OCH₃)CH(CH₂CH₃)-	1512.	N(CH₂OCH₃)CH(CH₂OH)-
	CH₂CH₂OCH₃		CH₂CH₂OCH₂OCH₃
1497	. N(CH₂OCH₃)CH(CH₂CH₃)-	1513.	N(CH₂OCH₃)CH(CH₂OCH₃)-
	CH₂CH₂OCH₂CH₃	•	CH₂CH₂OH
1498	. N(CH₂OCH₃)CH(CH₂CH₃)-	1514.	N(CH₂OCH₃)CH(CH₂OCH₃)-
	CH ₂ CH ₂ O(CH ₂) ₂ CH ₃		CH₂CH₂OCH₃
1499	. N(CH₂OCH₃)CH(CH₂CH₃)-	1515.	N(CH₂OCH₃)CH(CH₂OCH₃)-
	CH ₂ CH ₂ OCH(CH ₃) ₂		CH₂CH₂OCH₂CH₃
1500	. N(CH₂OCH₃)CH(CH₂CH₃)-	1516.	N(CH ₂ OCH ₃)CH(CH ₂ OCH ₃)-
	CH₂CH₂OCH₂OCH₃		CH₂CH₂O(CH₂)₂CH₃
1501	. N(CH₂OCH₃)C[(CH₃)₂]CH₂CH₂OH	1517.	N(CH₂OCH₃)CH(CH₂OCH₃)-
1502	. N(CH ₂ OCH ₃)C[(CH ₃) ₂]-		CH₂CH₂OCH(CH₃)₂
	CH₂CH₂OCH₃	1518.	N(CH₂OCH₃)CH(CH₂OCH₃)-
			CH ₂ CH ₂ OCH ₂ OCH ₃

No.	R ₆	No.	R ₆
1519.	NHCH ₂ CH(OCH ₃) ₂	1548.	NHCH(CH₂CH₃)-
1520.	NHCH ₂ CH(OCH ₂ CH ₃) ₂		CH ₂ C(CH ₃)(OCH ₂ CH ₃) ₂
1521.	NHCH(CH₃)CH(OCH₃)₂	1549.	NHCH(CH₂CH₂CH₃)-
1522.	NHCH(CH ₃)CH(OCH ₂ CH ₃) ₂		CH ₂ C(CH ₃)(OCH ₃) ₂
1523.	NHCH(CH ₂ CH ₃)CH(OCH ₃) ₂	1550.	NHCH(CH ₂ CH ₂ CH ₃) -
1524.	NHCH(CH ₂ CH ₃)CH(OCH ₂ CH ₃) ₂		CH ₂ C(CH ₃)(OCH ₂ CH ₃) ₂
1525.	NHCH(CH ₂ CH ₂ CH ₃)CH(OCH ₃) ₂	1551.	NHCH₂CH(SCH₃)₂
1526.	NHCH(CH ₂ CH ₂ CH ₃)-CH(OCH ₂ CH ₃) ₂		NHCH₂CH(SCH₂CH₃)₂
1527.	NHCH2CH2CH(OCH3)2	1553.	NHCH(CH ₃)CH(SCH ₃) ₂
1528.	NHCH2CH2CH(OCH2CH3)2	1554.	NHCH(CH ₃)CH(SCH ₂ CH ₃) ₂
1529.	NHCH(CH ₃)CH ₂ CH(OCH ₃) ₂	1555.	NHCH(CH2CH3)CH(SCH3)2
1530.	NHCH(CH ₃)CH ₂ CH(OCH ₂ CH ₃) ₂	1556.	NHCH(CH2CH3)CH(SCH2CH3)2
1531.	NHCH(CH ₂ CH ₃)CH ₂ CH(OCH ₃) ₂		NHCH(CH ₂ CH ₂ CH ₃)CH(SCH ₃) ₂
1532.	NHCH(CH2CH3)-CH2CH(OCH2CH3)2	1558.	NHCH(CH2CH2CH3)-CH(SCH2CH3)2
1533.	NHCH(CH ₂ CH ₂ CH ₃)-CH ₂ CH(OCH ₃) ₂	1559.	NHCH ₂ CH ₂ CH(SCH ₃) ₂
1534.	NHCH(CH₂CH₂CH₃) -	1560.	NHCH ₂ CH ₂ CH(SCH ₂ CH ₃) ₂
	CH ₂ CH(OCH ₂ CH ₃) ₂	1561.	NHCH(CH₃)CH₂CH(SCH₃)₂
1535.	$NHCH_2C(CH_3)(OCH_3)_2$	1562.	NHCH(CH ₃)CH ₂ CH(SCH ₂ CH ₃) ₂
1536.	NHCH ₂ C(CH ₃)(OCH ₂ CH ₃) ₂	1563.	NHCH(CH2CH3)CH2CH(SCH3)2
1537.	NHCH(CH $_3$)C(CH $_3$)(OCH $_3$) $_2$	1564.	NHCH(CH ₂ CH ₃)-CH ₂ CH(SCH ₂ CH ₃) ₂
1538.	NHCH(CH₃)C(CH₃)(OCH₂CH₃)₂	1565.	NHCH(CH ₂ CH ₂ CH ₃)-CH ₂ CH(SCH ₃) ₂
1539.	NHCH(CH₂CH₃)C(CH₃)(OCH₃)₂	1566.	NHCH(CH ₂ CH ₂ CH ₃) -
1540.	NHCH(CH ₂ CH ₃)-C(CH ₃)(OCH ₂ CH ₃) ₂		CH₂CH(SCH₂CH₃)₂
1541.	NHCH(CH $_2$ CH $_2$ CH $_3$)-C(CH $_3$)(OCH $_3$) $_2$	1567.	NHCH₂CH₂SCH₃
1542.	NHCH(CH₂CH₂CH₃)-	1568.	NHCH₂CH₂SCH₂CH₃
	$C(CH_3)(OCH_2CH_3)_2$	1569.	NHCH ₂ CH ₂ S(CH ₂) ₂ CH ₃
1543.	NHCH₂CH₂C(CH₃)(OCH₃)₂	1570.	NHCH₂CH₂SCH(CH₃)₂
1544.	NHCH ₂ CH ₂ C(CH ₃)(OCH ₂ CH ₃) ₂	1571.	NHCH₂CH₂CH₂SCH₃
1545.	NHCH(CH ₃)CH ₂ C(CH ₃)(OCH ₃) ₂	1572.	NHCH2CH2CH2SCH2CH3
1546.	NHCH(CH ₃)-CH ₂ C(CH ₃)(OCH ₂ CH ₃) ₂	1573.	NHCH ₂ CH ₂ CH ₂ S(CH ₂) ₂ CH ₃
1547.	$NHCH(CH_2CH_3)-CH_2C(CH_3)(OCH_3)_2$	1574.	NHCH₂CH₂CH₂SCH(CH₃)₂
		1575.	NHCH(CH ₃)CH ₂ SCH ₃

No.	R ₆	No.	R ₆
1576.	NHCH(CH ₃)CH ₂ SCH ₂ CH ₃	1608.	NHC[(CH ₃) ₂]CH ₂ S(O)CH ₂ CH ₃
1577.	NHCH(CH ₃)CH ₂ S(CH ₂) ₂ CH ₃	1609.	NHC[(CH ₃) ₂]CH ₂ S(O)(CH ₂) ₂ CH ₃
1578.	NHCH(CH ₃)CH ₂ SCH(CH ₃) ₂	1610.	NHC[(CH ₃) ₂]CH ₂ S(O)CH(CH ₃) ₂
1579.	NHCH(CH ₃)CH ₂ CH ₂ SCH ₃	1611.	NHC[(CH ₃) ₂]CH ₂ CH ₂ S(O)CH ₃
1580.	NHCH(CH₃)CH₂CH₂SCH₂CH₃	1612.	NHC[(CH ₃) ₂]CH ₂ CH ₂ S(O)CH ₂ CH ₃
1581.	NHCH(CH ₃)CH ₂ CH ₂ S(CH ₂) ₂ CH ₃	1613.	NHC[(CH ₃) ₂]CH ₂ CH ₂ S(O)-(CH ₂) ₂ CH ₃
1582.	NHCH(CH ₃)CH ₂ CH ₂ SCH(CH ₃) ₂	1614.	NHC[(CH ₃) ₂]CH ₂ CH ₂ S(O)-CH(CH ₃) ₂
1583.	NHC[(CH ₃) ₂]CH ₂ SCH ₃	1615.	NHCH ₂ CH ₂ S(O) ₂ CH ₃
1584.	NHC[(CH ₃) ₂]CH ₂ SCH ₂ CH ₃	1616.	NHCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃
1585.	$NHC[(CH_3)_2]CH_2S(CH_2)_2CH_3$	1617.	NHCH ₂ CH ₂ S(O) ₂ (CH ₂) ₂ CH ₃
1586.	$NHC[(CH_3)_2]CH_2SCH(CH_3)_2$	1618.	NHCH ₂ CH ₂ S(O) ₂ CH(CH ₃) ₂
1587.	NHC[(CH ₃) ₂]CH ₂ CH ₂ SCH ₃	1619.	NHCH ₂ CH ₂ CH ₂ S(O) ₂ CH ₃
1588.	NHC[(CH ₃) ₂]CH ₂ CH ₂ SCH ₂ CH ₃	1620.	NHCH ₂ CH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃
1589.	$NHC[(CH_3)_2]CH_2CH_2S(CH_2)_2CH_3$	1621.	NHCH ₂ CH ₂ CH ₂ S(O) ₂ (CH ₂) ₂ CH ₃
1590.	$NHC[(CH_3)_2]CH_2CH_2SCH(CH_3)_2$	1622.	NHCH ₂ CH ₂ CH ₂ S(O) ₂ CH(CH ₃) ₂
1591.	NHCH₂CH₂S(O)CH₃	1623.	NHCH(CH₃)CH₂S(O)₂CH₃
1592.	NHCH₂CH₂S(O)CH₂CH₃	1624.	NHCH(CH₃)CH₂S(O)₂CH₂CH₃
1593.	NHCH ₂ CH ₂ S(O)(CH ₂) ₂ CH ₃	1625.	$NHCH(CH_3)CH_2S(O)_2(CH_2)_2CH_3$
1594.	NHCH ₂ CH ₂ S(O)CH(CH ₃) ₂	1626.	NHCH(CH ₃)CH ₂ S(O) ₂ CH(CH ₃) ₂
1595.	NHCH ₂ CH ₂ CH ₂ S(O)CH ₃	1627.	NHCH(CH ₃)CH ₂ CH ₂ S(O) ₂ CH ₃
1596.	NHCH₂CH₂CH₂S(O)CH₂CH₃	1628.	$NHCH(CH_3)CH_2CH_2S(O)_2CH_2CH_3$
1597.	NHCH ₂ CH ₂ CH ₂ S(O)(CH ₂) ₂ CH ₃	1629.	$NHCH(CH_3)CH_2CH_2S(O)_2\text{-}(CH_2)_2CH_3$
1598.	NHCH ₂ CH ₂ CH ₂ S(O)CH(CH ₃) ₂	1630.	NHCH(CH ₃)CH ₂ CH ₂ S(O) ₂ -CH(CH ₃) ₂
1599.	NHCH(CH ₃)CH ₂ S(O)CH ₃	1631.	NHC[(CH ₃) ₂]CH ₂ S(O) ₂ CH ₃
1600.	NHCH(CH ₃)CH ₂ S(O)CH ₂ CH ₃	1632.	$NHC[(CH_3)_2]CH_2S(O)_2CH_2CH_3$
1601.	NHCH(CH ₃)CH ₂ S(O)(CH ₂) ₂ CH ₃	1633.	$NHC[(CH_3)_2]CH_2S(O)_2(CH_2)_2CH_3$
1602.	NHCH(CH₃)CH₂S(O)CH(CH₃)₂	1634.	$NHC[(CH_3)_2]CH_2S(O)_2CH(CH_3)_2$
1603.	NHCH(CH ₃)CH ₂ CH ₂ S(O)CH ₃	1635.	NHC[(CH ₃) ₂]CH ₂ CH ₂ S(O) ₂ CH ₃
1604.	NHCH(CH ₃)CH ₂ CH ₂ S(O)CH ₂ CH ₃	1636.	$NHC[(CH_3)_2]CH_2CH_2S(O)_2\text{-}CH_2CH_3$
1605.	NHCH(CH ₃)CH ₂ CH ₂ S(O)-(CH ₂) ₂ CH ₃	1637.	NHC[(CH ₃) ₂]CH ₂ CH ₂ S(O) ₂ -
1606.	NHCH(CH ₃)CH ₂ CH ₂ S(O)-CH(CH ₃) ₂		(CH ₂) ₂ CH ₃
1607.	$NHC[(CH_3)_2]CH_2S(O)CH_3$	1638.	$NHC[(CH_3)_2]CH_2CH_2S(O)_2\text{-}CH(CH_3)_2$

No.	R ₆	No.	R ₆
1639.	NHCH ₂ CH ₂ Si(OCH ₃) ₃	1658.	
1640.	NHCH₂CH₂Si(OCH₂CH₃)₃		HN N O
1641.	NHCH(CH ₃)CH ₂ Si(OCH ₃) ₃		~ ~
1642.	NHCH(CH ₃)CH ₂ Si(OCH ₂ CH ₃) ₃	1659.	ļ ļ
1643.	NHCH₂CH₂CH₂Si(OCH₃)₃		VN YO
1644.	NHCH2CH2CH2Si(OCH2CH3)3	1660.	0
1645.	NHCH(CH ₃)CH ₂ CH ₂ Si(OCH ₃) ₃		HN
1646.	NHCH(CH ₃)CH ₂ CH ₂ -Si(OCH ₂ CH ₃) ₃	1661.	
1647.	HN	1001.	
	NH .		HN
1648.	HN	1662.	. 1
	NH		HN
1649.	HN		
	VN_O	1663.	
1650.	HN		HN
	_No	1004	•
1651.	HN N	1664.	HN
		4005	
1652.	HN N	1665.	
			HN
1653.	HN , N	1666.	HN. ~
	<u>_</u> 6		
1654.	i	1667.	HN ~
	HN		
		1660	
1655.	i 1	1668.	HN
	NH		
1656.	HN	1669.	HN
	NH NH		\
1657.	LAN	1670.	HN
, 507.	HN N O		
	• •		

WO 01/93682

No. R ₆	No. R ₆
1671.	1690. HNCH(CH ₃)CH(CH ₃)-N=C(NH ₂)NH ₂
HN	1691. HNCH(CH₃)CH₂CH(CH₃)-
1070	$N=C(NH_2)NH_2$
1672. HN NH	1692. NHCH₂-(2-pyridyl)
	1693. NHCH ₂ CH ₂ -(2-pyridyl)
1673. HN NH	1694. NHCH₂CH₂CH₂-(2-pyridyl)
	1695. NHCH(CH ₃)-(2-pyridyl)
1674. NH	1696. NHCH(CH₃)CH₂-(2-pyridyl)
C.	1697. NHCH(CH₃)CH₂CH₂-(2-pyridyl)
1675.	1698. NHCH(CH ₂ CH ₃)-(2-pyridyl)
NH	1699. NHCH(CH ₂ CH ₃)CH ₂ -(2-pyridyl)
	1700. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
1676. HN	(2-pyridyl)
	1701. NHCH₂CH₂O-(2-pyridyl)
1677. HN	1702. NHCH₂CH₂CH₂O-(2-pyridyl)
	1703. NHCH(CH₃)O-(2-pyridyl)
1678. _{HN} 0	1704. NHCH(CH₃)CH₂O-(2-pyridyl)
	1705. NHCH(CH ₃)CH ₂ CH ₂ O-(2-pyridyl)
1679. HN	1706. NHCH(CH ₂ CH ₃)O-(2-pyridyl)
	1707. NHCH(CH ₂ CH ₃)CH ₂ O-(2-pyridyl)
1680. ни	1708. NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-
	(2-pyridyl)
1681. HN	1709. NHCH₂-(3-pyridyl)
<u></u> 6	1710. NHCH₂CH₂-(3-pyridyl)
1682. HNCH ₂ N=C(NH ₂)NH ₂	1711. NHCH₂CH₂CH₂-(3-pyridyl)
1683. HNCH₂CH₂N=C(NH₂)NH₂	1712. NHCH(CH₃)-(3-pyridyl)
1684. HNCH ₂ CH ₂ CH ₂ N=C(NH ₂)NH ₂	1713. NHCH(CH ₃)CH ₂ -(3-pyridyl)
1685. HNCH(CH ₃)N=C(NH ₂)NH ₂	1714. NHCH(CH₃)CH₂CH₂-(3-pyridyl)
1686. HNCH(CH₃)CH₂N=C(NH₂)NH₂	1715. NHCH(CH ₂ CH ₃)-(3-pyridyl)
1687. HNCH(CH ₃)CH ₂ CH ₂ N=C(NH ₂)NH ₂	1716. NHCH(CH ₂ CH ₃)CH ₂ -(3-pyridyl)
1688. HNCH₂CH(CH₃)N=C(NH₂)NH₂	1717. NHCH(CH₂CH₃)CH₂CH₂-
1689. HNCH ₂ CH ₂ CH(CH ₃)N=C(NH ₂)NH ₂	(3-pyridyl)

No.	D	NIc	<u> </u>
	R ₆	No.	R ₆
	NHCH₂CH₂O-(3-pyridyl)		NHCH(CH₃)CH₂-(2-pyrimidyl)
	NHCH₂CH₂CH₂O-(3-pyridyl)		NHCH(CH ₃)CH ₂ CH ₂ -(2-pyrimidyl)
	NHCH(CH ₃)O-(3-pyridyl)	1749.	NHCH(CH ₂ CH ₃)-(2-pyrimidyl)
1721.	NHCH(CH ₃)CH ₂ O-(3-pyridyl)	1750.	NHCH(CH ₂ CH ₃)CH ₂ -(2-pyrimidyl)
1722.	NHCH(CH ₃)CH ₂ CH ₂ O-(3-pyridyl)	1751.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
1723.	NHCH(CH ₂ CH ₃)O-(3-pyridyl)		(2-pyrimidyl)
1724.	NHCH(CH ₂ CH ₃)CH ₂ O-(3-pyridyl)	1752.	NHCH₂CH₂O-(2-pyrimidyl)
1725.	NHCH(CH₂CH₃)CH₂CH₂O-	1753.	NHCH ₂ CH ₂ CH ₂ O-(2-pyrimidyl)
	(3-pyridyl)	1754.	NHCH(CH₃)O-(2-pyrimidyl)
1726.	NHCH₂-(4-pyridyl)	1755.	NHCH(CH ₃)CH ₂ O-(2-pyrimidyl)
1727.	NHCH ₂ CH ₂ -(4-pyridyl)	1756.	NHCH(CH ₃)CH ₂ CH ₂ O-(2-pyrimidyl)
1728.	NHCH ₂ CH ₂ CH ₂ -(4-pyridyl)	1757.	NHCH(CH₂CH₃)O-(2-pyrimidyl)
1729.	NHCH(CH ₃)-(4-pyridyl)	1758.	NHCH(CH ₂ CH ₃)CH ₂ O-(2-pyrimidyl)
1730.	NHCH(CH ₃)CH ₂ -(4-pyridyl)	1759.	NHCH(CH₂CH₃)CH₂CH₂O-
1731.	NHCH(CH ₃)CH ₂ CH ₂ -(4-pyridyl)		(2-pyrimidy!)
1732.	NHCH(CH₂CH₃)-(4-pyridyl)	1760.	NHCH₂-(4-pyrimidyl)
1733.	NHCH(CH ₂ CH ₃)CH ₂ -(4-pyridyl)	1761.	NHCH ₂ CH ₂ -(4-pyrimidyl)
1734.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -	1762.	NHCH₂CH₂CH₂-(4-pyrimidyl)
	(4-pyridyl)	1763.	NHCH(CH₃)-(4-pyrimidyl)
1735.	NHCH ₂ CH ₂ O-(4-pyridyl)	1764.	NHCH(CH₃)CH₂-(4-pyrimidyl)
1736.	NHCH ₂ CH ₂ CH ₂ O-(4-pyridyl)	1765.	NHCH(CH ₃)CH ₂ CH ₂ -(4-pyrimidyl)
1737.	NHCH(CH ₃)O-(4-pyridyl)	1766.	NHCH(CH ₂ CH ₃)-(4-pyrimidyl)
1738.	NHCH(CH ₃)CH ₂ O-(4-pyridyl)	1767.	NHCH(CH ₂ CH ₃)CH ₂ -(4-pyrimidyl)
1739.	NHCH(CH ₃)CH ₂ CH ₂ O-(4-pyridyl)	1768.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
1740.	NHCH(CH₂CH₃)O-(4-pyridyl)		(4-pyrimidyl)
1741.	NHCH(CH₂CH₃)CH₂O-(4-pyridyl)	1769.	NHCH ₂ CH ₂ O-(4-pyrimidyl)
1742.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1770.	NHCH ₂ CH ₂ CH ₂ O-(4-pyrimidyl)
	(4-pyridyl)	1771.	NHCH(CH ₃)O-(4-pyrimidyl)
1743.	NHCH ₂ -(2-pyrimidyl)	1772.	NHCH(CH ₃)CH ₂ O-(4-pyrimidyl)
1744.	NHCH ₂ CH ₂ -(2-pyrimidyl)		NHCH(CH ₃)CH ₂ CH ₂ O-(4-pyrimidyl)
1745.	NHCH ₂ CH ₂ CH ₂ -(2-pyrimidyl)		NHCH(CH₂CH₃)O-(4-pyrimidyl)
1746.	NHCH(CH ₃)-(2-pyrimidyl)		NHCH(CH ₂ CH ₃)CH ₂ O-(4-pyrimidyl)

No.	R ₆	No.	R ₆
1776.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1802.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
	(4-pyrimidyl)		(1,3,5-triazinyl)
1777.	NHCH₂-(5-pyrimidyl)	1803.	NHCH ₂ CH ₂ O-(1,3,5-triazinyl)
1778.	NHCH ₂ CH ₂ -(5-pyrimidyl)	1804.	NHCH ₂ CH ₂ CH ₂ O-(1,3,5-triazinyl)
1779.	NHCH₂CH₂CH₂-(5-pyrimidyl)	1805.	NHCH(CH ₃)O-(1,3,5-triazinyl)
1780.	NHCH(CH₃)-(5-pyrimidyl)	1806.	NHCH(CH ₃)CH ₂ O-(1,3,5-triazinyl)
1781.	NHCH(CH ₃)CH ₂ -(5-pyrimidyl)	1807.	NHCH(CH ₃)CH ₂ CH ₂ O-
1782.	NHCH(CH ₃)CH ₂ CH ₂ -(5-pyrimidyl)		(1,3,5-triazinyl)
1783.	NHCH(CH₂CH₃)-(5-pyrimidyl)	1808.	NHCH(CH ₂ CH ₃)O-(1,3,5-triazinyl)
1784.	NHCH(CH ₂ CH ₃)CH ₂ -(5-pyrimidyl)	1809.	NHCH(CH ₂ CH ₃)CH ₂ O-
1785.	NHCH(CH₂CH₃)CH₂CH₂-		(1,3,5-triazinyl)
	(5-pyrimidyl)	1810.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-
1786.	NHCH₂CH₂O-(5-pyrimidyl)		(1,3,5-triazinyl)
1787.	NHCH₂CH₂CH₂O-(5-pyrimidyl)	1811.	NHCH ₂ -(2-thiazolyl)
1788.	NHCH(CH₃)O-(5-pyrimidyl)	1812.	NHCH ₂ CH ₂ -(2-thiazolyl)
1789.	NHCH(CH₃)CH₂O-(5-pyrimidyl)	1813.	NHCH ₂ CH ₂ CH ₂ -(2-thiazolyl)
1790.	NHCH(CH₃)CH₂CH₂O-(5-pyrimidyl)	1814.	NHCH(CH₃)-(2-thiazolyl)
1791.	NHCH(CH ₂ CH ₃)O-(5-pyrimidyl)	1815.	NHCH(CH ₃)CH ₂ -(2-thiazolyl)
1792.	NHCH(CH ₂ CH ₃)CH ₂ O-(5-pyrimidyl)	1816.	NHCH(CH ₃)CH ₂ CH ₂ -(2-thiazolyl)
1793.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1817.	NHCH(CH₂CH₃)-(2-thiazolyl)
	(5-pyrimidyl)	1818.	NHCH(CH ₂ CH ₃)CH ₂ -(2-thiazolyl)
1794.	NHCH ₂ -(1,3,5-triazinyl)	1819.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
1795.	NHCH₂CH₂-(1,3,5-triazinyl)		(2-thiazolyl)
1796.	NHCH ₂ CH ₂ CH ₂ -(1,3,5-triazinyl)	1820.	NHCH ₂ CH ₂ O-(2-thiazolyl)
1797.	NHCH(CH₃)-(1,3,5-triazinyI)	1821.	NHCH ₂ CH ₂ CH ₂ O-(2-thiazolyl)
1798.	NHCH(CH ₃)CH ₂ -(1,3,5-triazinyl)	1822.	NHCH(CH₃)O-(2-thiazolyl)
1799.	NHCH(CH ₃)CH ₂ CH ₂ -	1823.	NHCH(CH₃)CH₂O-(2-thiazolyl)
	(1,3,5-triazinyl)	1824.	NHCH(CH₃)CH₂CH₂O-(2-thiazolyl)
1800.	NHCH(CH₂CH₃)-(1,3,5-triazinyl)	1825.	NHCH(CH₂CH₃)O-(2-thiazolyl)
1801.	NHCH(CH ₂ CH ₃)CH ₂ -	1826.	NHCH(CH ₂ CH ₃)CH ₂ O-(2-thiazolyl)
	(1,3,5-triazinyl)	1827.	NHCH(CH₂CH₃)CH₂CH₂O-
			(2-thiazolyl)

No.	R ₆	No.	R ₆
1828.	NHCH ₂ -(4-thiazolyl)	1857.	NHCH(CH ₃)CH ₂ O-(5-thiazolyl)
1829.	NHCH ₂ CH ₂ -(4-thiazolyI)	1858.	NHCH(CH ₃)CH ₂ CH ₂ O-(5-thiazolyl)
1830.	NHCH ₂ CH ₂ CH ₂ -(4-thiazolyl)	1859.	NHCH(CH ₂ CH ₃)O-(5-thiazolyl)
1831.	NHCH(CH₃)-(4-thiazolyl)	1860.	NHCH(CH ₂ CH ₃)CH ₂ O-(5-thiazolyl)
1832.	NHCH(CH₃)CH₂-(4-thiazolyl)	1861.	NHCH(CH₂CH₃)CH₂CH₂O-
1833.	NHCH(CH₃)CH₂CH₂-(4-thiazolyl)		(5-thiazolyl)
1834.	NHCH(CH₂CH₃)-(4-thiazolyl)	1862.	NHCH ₂ -(2-furyl)
1835.	NHCH(CH ₂ CH ₃)CH ₂ -(4-thiazolyl)	1863.	NHCH ₂ CH ₂ -(2-furyl)
1836.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -	1864.	NHCH ₂ CH ₂ CH ₂ -(2-furyl)
	(4-thiazolyl)	1865.	NHCH(CH ₃)-(2-furyl)
1837.	NHCH₂CH₂O-(4-thiazolyl)	1866.	NHCH(CH ₃)CH ₂ -(2-furyl)
1838.	NHCH₂CH₂CH₂O-(4-thiazolyl)	1867.	NHCH(CH ₃)CH ₂ CH ₂ -(2-furyl)
1839.	NHCH(CH₃)O-(4-thiazolyl)	1868.	NHCH(CH ₂ CH ₃)-(2-furyl)
1840.	NHCH(CH₃)CH₂O-(4-thiazolyl)	1869.	NHCH(CH ₂ CH ₃)CH ₂ -(2-furyl)
1841.	NHCH(CH ₃)CH ₂ CH ₂ O-(4-thiazolyl)	1870.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
1842.	NHCH(CH₂CH₃)O-(4-thiazolyl)		(2-furyl)
1843.	NHCH(CH ₂ CH ₃)CH ₂ O-(4-thiazolyl)	1871.	NHCH ₂ CH ₂ O-(2-furyl)
1844.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-	1872.	NHCH ₂ CH ₂ CH ₂ O-(2-furyl)
	(4-thiazolyl)	1873.	NHCH(CH₃)O-(2-furyl)
1845.	NHCH ₂ -(5-thiazolyl)	1874.	NHCH(CH₃)CH₂O-(2-furyi)
1846.	NHCH ₂ CH ₂ -(5-thiazolyl)	1875.	NHCH(CH₃)CH₂CH₂O-(2-furyl)
1847.	NHCH ₂ CH ₂ CH ₂ -(5-thiazolyl)	1876.	NHCH(CH ₂ CH ₃)O-(2-furyl)
1848.	NHCH(CH ₃)-(5-thiazolyl)	1877.	NHCH(CH ₂ CH ₃)CH ₂ O-(2-furyl)
1849.	NHCH(CH ₃)CH ₂ -(5-thiazolyl)	1878.	NHCH(CH₂CH₃)CH₂CH₂O-
1850.	NHCH(CH₃)CH₂CH₂-(5-thiazolyl)		(2-furyl)
1851.	NHCH(CH₂CH₃)-(5-thiazolyl)	1879.	NHCH₂-(3-furyl)
1852.	NHCH(CH ₂ CH ₃)CH ₂ -(5-thiazolyl)	1880.	NHCH ₂ CH ₂ -(3-furyl)
1853.	NHCH(CH₂CH₃)CH₂CH₂-	1881.	NHCH ₂ CH ₂ CH ₂ -(3-furyl)
	(5-thiazolyl)	1882.	NHCH(CH₃)-(3-furyl)
1854.	NHCH ₂ CH ₂ O-(5-thiazolyl)	1883.	NHCH(CH ₃)CH ₂ -(3-furyl)
1855.	NHCH ₂ CH ₂ CH ₂ O-(5-thiazolyl)	1884.	NHCH(CH ₃)CH ₂ CH ₂ -(3-furyl)
1856.	NHCH(CH ₃)O-(5-thiazolyl)	1885.	NHCH(CH ₂ CH ₃)-(3-furyl)

			•
No.	R ₆	No.	R ₆
1886.	NHCH(CH₂CH₃)CH₂-(3-furyl)	1914.	NHCH ₂ CH ₂ -(3-thienyl)
1887.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -	1915.	NHCH ₂ CH ₂ CH ₂ -(3-thienyl)
	(3-furyl)	1916.	NHCH(CH ₃)-(3-thienyl)
1888.	NHCH ₂ CH ₂ O-(3-furyl)	1917.	NHCH(CH ₃)CH ₂ -(3-thienyl)
1889.	NHCH ₂ CH ₂ CH ₂ O-(3-furyl)	1918.	NHCH(CH ₃)CH ₂ CH ₂ -(3-thienyl)
1890.	NHCH(CH₃)O-(3-furyl)	1919.	NHCH(CH ₂ CH ₃)-(3-thienyl)
1891.	NHCH(CH₃)CH₂O-(3-furyl)	1920.	NHCH(CH ₂ CH ₃)CH ₂ -(3-thienyl)
1892.	NHCH(CH ₃)CH ₂ CH ₂ O-(3-furyl)	1921.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
1893.	NHCH(CH ₂ CH ₃)O-(3-furyl)		(3-thienyl)
1894.	NHCH(CH ₂ CH ₃)CH ₂ O-(3-furyl)	1922.	NHCH ₂ CH ₂ O-(3-thienyl)
1895.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-		NHCH ₂ CH ₂ CH ₂ O-(3-thienyl)
	(3-furyl)	1924.	NHCH(CH₃)O-(3-thienyl)
1896.	NHCH₂-(2-thienyl)		NHCH(CH ₃)CH ₂ O-(3-thienyl)
1897.	NHCH₂CH₂-(2-thienyl)	1926.	NHCH(CH ₃)CH ₂ CH ₂ O-(3-thienyl)
1898.	NHCH₂CH₂CH₂-(2-thienyl)	1927.	NHCH(CH ₂ CH ₃)O-(3-thienyl)
1899.	NHCH(CH₃)-(2-thienyl)		NHCH(CH ₂ CH ₃)CH ₂ O-(3-thienyl)
1900.	NHCH(CH₃)CH₂-(2-thienyl)		NHCH(CH ₂ CH ₃)CH ₂ CH ₂ O-
1901.	NHCH(CH₃)CH₂CH₂-(2-thienyl)		(3-thienyl)
1902.	NHCH(CH₂CH₃)-(2-thienyl)	1930.	NHCH ₂ -(1-imidazolyl)
1903.	NHCH(CH ₂ CH ₃)CH ₂ -(2-thienyl)	1931.	NHCH ₂ CH ₂ -(1-imidazolyl)
1904.	NHCH(CH₂CH₃)CH₂CH₂-	1932.	NHCH ₂ CH ₂ CH ₂ -(1-imidazolyl)
	(2-thienyl)	1933.	NHCH(CH ₃)-(1-imidazolyl)
1905.	NHCH ₂ CH ₂ O-(2-thienyl)	1934.	NHCH(CH ₃)CH ₂ -(1-imidazolyl)
1906.	NHCH₂CH₂CH₂O-(2-thienyl)	1935.	NHCH(CH ₃)CH ₂ CH ₂ -(1-imidazolyI)
1907.	NHCH(CH ₃)O-(2-thienyl)		NHCH ₂ CH(CH) ₃ CH ₂ -(1-imidazolyI)
1908.	NHCH(CH ₃)CH ₂ O-(2-thienyl)		NHCH ₂ CH ₂ CH(CH) ₃ -(1-imidazolyl)
1909.	NHCH(CH ₃)CH ₂ CH ₂ O-(2-thienyl)	1938.	NHCH(CH ₂ CH ₃)-(1-imidazoly!)
1910.	NHCH(CH₂CH₃)O-(2-thienyl)	1939.	NHCH(CH ₂ CH ₃)CH ₂ -(1-imidazolyl)
1911.	NHCH(CH ₂ CH ₃)CH ₂ O-(2-thienyl)		NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
1912.	NHCH(CH₂CH₃)CH₂CH₂O-		(1-imidazolyl)
	(2-thienyl)		NHCH ₂ CH ₂ O-(1-imidazolyl)
1913.	NHCH ₂ -(3-thienyl)		NHCH₂CH₂CH₂O-(1-imidazolyl)
			. ,,

	No.	R ₆	No.	R ₆
•	1943.	NHCH(CH₃)O-(1-imidazolyl)	1964.	NHCH(CH ₃)CH ₂ CH ₂ O-
	1944.	NHCH(CH₃)CH₂O-(1-imidazolyl)		(1-[1,2,4-triazolyl])
	1945.	NHCH(CH₃)CH₂CH₂O-	1965.	NHCH(CH ₂ CH ₃)O-(1-[1,2,4-
		(1-imidazolyl)		triazolyl])
	1946.	NHCH(CH₂CH₃)O-(1-imidazolyl)	1966.	NHCH(CH₂CH₃)CH₂O-
	1947.	NHCH(CH₂CH₃)CH₂O-		(1-[1,2,4-triazolyl])
		(1-imidazolyl)	1967.	NHCH(CH₂CH₃)CH₂CH₂O-
	1948.	NHCH(CH₂CH₃)CH₂CH₂O-		(1-[1,2,4-triazolyl])
		(1-imidazolyl)	1968.	NHCH ₂ -(1-tetrazolyl)
	1949.	NHCH ₂ -(1-[1,2,4-triazolyl])	1969.	NHCH ₂ CH ₂ -(1-tetrazolyi)
	1950.	NHCH ₂ CH ₂ -(1-[1,2,4-triazolyl])	1970.	NHCH₂CH₂CH₂-(1-tetrazolyl)
	1951.	NHCH ₂ CH ₂ CH ₂ -(1-[1,2,4-triazolyl])	1971.	NHCH(CH ₃)-(1-tetrazolyl)
	1952.	NHCH(CH ₃)-(1-[1,2,4-triazolyl])	1972.	NHCH(CH ₃)CH ₂ -(1-tetrazolyl)
	1953.	NHCH(CH ₃)CH ₂ -(1-[1,2,4-triazolyl])	1973.	NHCH(CH ₃)CH ₂ CH ₂ -(1-tetrazolyl)
	1954.	NHCH(CH ₃)CH ₂ CH ₂ -	1974.	NHCH(CH ₂ CH ₃)-(1-tetrazolyl)
		(1-[1,2,4-triazolyl])	1975.	NHCH(CH ₂ CH ₃)CH ₂ -(1-tetrazolyl)
	1955.	NHCH(CH ₂ CH ₃)-(1-[1,2,4-triazolyl])	1976.	NHCH(CH ₂ CH ₃)CH ₂ CH ₂ -
	1956.	NHCH(CH₂CH₃)CH₂-		(1-tetrazolył)
		(1-[1,2,4-triazolyl])	1977.	NHCH ₂ CH ₂ O-(1-tetrazolyl)
	1957.	NHCH(CH₂CH₃)CH₂CH₂-	1978.	NHCH ₂ CH ₂ CH ₂ O-(1-tetrazolyI)
		(1-[1,2,4-triazolyl])	1979.	NHCH(CH ₃)O-(1-tetrazolyl)
	1958.	NHCH₂CH(CH)₃CH₂-	1980.	NHCH(CH₃)CH₂O-(1-tetrazolyl)
		(1-[1,2,4-triazolyl])	1981.	NHCH(CH₃)CH₂CH₂O-
	1959.	NHCH₂CH₂CH(CH)₃-		(1-tetrazolyl)
		(1-[1,2,4-triazolyl])	1982.	NHCH(CH₂CH₃)O-(1-tetrazolyl)
	1960.	NHCH₂CH₂O-(1-[1,2,4-triazolyl])	1983.	NHCH(CH₂CH₃)CH₂O-
	1961.	NHCH ₂ CH ₂ CH ₂ O-		(1-tetrazolyl)
		(1-[1,2,4-triazolyl])	1984.	NHCH(CH₂CH₃)CH₂CH₂O-
	1962.	NHCH(CH ₃)O-(1-[1,2,4-triazolyl])		(1-tetrazolyl)
	1963.	NHCH(CH₃)CH₂O-	1985.	NHCHO
		(1-[1,2,4-triazolyi])	1986.	NHCOCH₃
			1987.	NHCOCH₂CH₃
		-		

No.	R ₆	No.	R ₆
1988.	NHCO(CH ₂) ₂ CH ₃	2020.	N(CH ₃)COCF ₂ CF ₃
1989.	NHCO(CH ₂) ₃ CH ₃	2021.	N(CH₂CH₃)CHO
1990.	NHCOCH(CH ₃) ₂	2022.	N(CH₂CH₃)COCH₃
1991.	NHCOCH₂CH(CH₃)₂	2023.	N(CH₂CH₃)COCH₂CH₃
1992.	NHCOC(CH ₃) ₃	2024.	N(CH ₂ CH ₃)CO(CH ₂) ₂ CH ₃
1993.	NHCOCF ₃	2025.	N(CH ₂ CH ₃)CO(CH ₂) ₃ CH ₃
1994.	NHCOCF₂CF₃	2026.	N(CH ₂ CH ₃)COCH(CH ₃) ₂
1995.	NHCO(CF ₂) ₂ CF ₃	2027.	N(CH ₂ CH ₃)COCH ₂ CH(CH ₃) ₂
1996.	NHCOCH(OH)CH₃	2028.	N(CH ₂ CH ₃)COC(CH ₃) ₃
1997.	NHCOCH(OCH₃)CH₃	2029.	N(CH ₂ CH ₃)COCF ₃
1998.	NHCOCH₂CH(OH)CH₃	2030.	N(CH ₂ CH ₃)COCF ₂ CF ₃
1999.	NHCOCH₂CH(OCH₃)CH₃	2031.	N(CH(CH ₃) ₂)CHO
2000.	NHCOCH=CH ₂	2032.	N(CH(CH ₃)₂)COCH ₃
2001.	NHCOCH=CHCH ₃	2033.	N(CH(CH ₃) ₂)COCH ₂ CH ₃
2002.	NHCOCH ₂ CH=CH ₂	2034.	N(CH(CH ₃) ₂)CO(CH ₂) ₂ CH ₃
2003.	NHCOCH(CH ₃)CH=CH ₂	2035.	$N(CH(CH_3)_2)CO(CH_2)_3CH_3$
2004.	NHCOC≡CH	2036.	N(CH(CH ₃) ₂)COCH(CH ₃) ₂
2005.	NHCOC≡CCH ₃	2037.	$N(CH(CH_3)_2)COCH_2CH(CH_3)_2$
2006.	NHCOCH₂C≡CH	2038.	N(CH(CH ₃) ₂)COC(CH ₃) ₃
2007.	NHCOCH(CH₃)C≡CH	2039.	N(CH(CH ₃) ₂)COCF ₃
2008.	NHCOC≡CCI	2040.	N(CH(CH ₃) ₂ COCF ₂ CF ₃
2009.	NHCOC≡CCH ₂ OH	2041.	N(CH(CH₂OH)CH₃)CHO
2010.	NHCOC≡CCH₂OCH₃	2042.	N(CH(CH₂OH)CH₃)COCH₃
2011.	N(CH₃)CHO	2043.	N(CH(CH₂OH)CH₃)COCH₂CH₃
2012.	N(CH₃)COCH₃	2044.	N(CH(CH ₂ OH)CH ₃)CO(CH ₂) ₂ CH ₃
2013.	N(CH₃)COCH₂CH₃	2045.	N(CH(CH₂OH)CH₃)CO(CH₂)₃CH₃
2014.	N(CH ₃)CO(CH ₂) ₂ CH ₃	2046.	N(CH(CH ₂ OH)CH ₃)COCH(CH ₃) ₂
2015.	N(CH ₃)CO(CH ₂) ₃ CH ₃	2047.	N(CH(CH ₂ OH)CH ₃)COCH ₂ CH-
2016.	N(CH₃)COCH(CH₃)₂		(CH ₃) ₂
2017.	N(CH ₃)COCH ₂ CH(CH ₃) ₂	2048.	N(CH(CH ₂ OH)CH ₃)COC(CH ₃) ₃
2018.	N(CH ₃)COC(CH ₃) ₃	2049.	N(CH(CH ₂ OH)CH ₃)COCF ₃
2019.	N(CH ₃)COCF ₃	2050.	N(CH(CH ₂ OH)CH ₃)COCF ₂ CF ₃

2051. N(CH(CH₂OCH₃)CH₃)CHO) 2082. N(CH₂CH₃)COO(CH₂)₃CH₃ 2052. N(CH(CH₂OCH₃)CH₃)COCH₃ 2083. N(CH₂CH₃)COOCH₂(CH₃)₂ 2053. N(CH(CH₂OCH₃)CH₃)COCH₂CH₃ 2084. N(CH₂CH₃)COOCH₂CH₃(CH₃)₂ 2054. N(CH(CH₂OCH₃)CH₃)CO-(CH₂)₂CH₃ 2085. N(CH₂CH₃)COOCH₂CH₃)₃ 2055. N(CH(CH₂OCH₃)CH₃)CO-(CH₂)₂CH₃ 2086. N(CH₂CH₃)COOCH₂CF₃ 2056. N(CH(CH₂OCH₃)CH₃)CO-CH(CH₃)₂ 2087. N(CH₂CH₃)COOCH₂CHOCH₃ 2057. N(CH(CH₂OCH₃)CH₃)CO-CH₂CH₃ 2088. N(CH(CH₃)₂COOCH₂CH₃ 2058. N(CH(CH₂OCH₃)CH₃)COC(CH₃)₃ 2090. N(CH(CH₃)₂COOCH₂CH₃ 2059. N(CH(CH₂OCH₃)CH₃)COC(CH₃)₃ 2091. N(CH(CH₃)₂COOCH₂CH₃ 2060. N(CH(CH₂OCH₃)CH₃)COCF₂CF₃ 2092. N(CH(CH₃)₂COOCH₂CH₃ 2061. NHCOOCH₃ 2093. N(CH(CH₃)₂COOCH₂CH₃ 2062. NHCOOCH₂CH₃ 2094. N(CH(CH₃)₂COOCH₂CH₃ 2063. NHCOOCH₂CH₃ 2094. N(CH(CH₃)₂COOCH₂CH₃ 2064. NHCOOCH₂CH₃ 2095. N(CH(CH₂OH)CH₃)₂COOCH₂CH₃ 2065. NHCOOCH₂CH₃ 2096. N(CH(CH₂OH)CH₃)₂COOCH₂CH₃ 2066. NHCOOCH₂CH₃ 2097. N(CH(CH₂OH)CH₃)₂COOCH₂CH₃ 2069. NHCOOCH₂CH₃ 2098. N(CH(CH₂OH)CH₃)₂COOCH₂CH₃ 2070. N(CH₃)₂COOCH₂CH₃ 2100. N(CH(CH₂OH)CH₃)₂COOCH₂CH₃ 2071. N(CH(CH₂OH)CH₃)₂COOCH₂CH₃ 2100. N(CH(CH₂OH)CH₃)₂COOCH₂CH₃	No.	R ₆	No.	R ₆
2053. N(CH(CH ₂ OCH ₃)CH ₃)COCH ₂ CH ₂ 2054. N(CH(CH ₂ OCH ₃)CH ₃)CO-(CH ₂) ₂ CH ₃ 2055. N(CH(CH ₂ OCH ₃)CH ₃)CO-(CH ₂) ₂ CH ₃ 2056. N(CH(CH ₂ OCH ₃)CH ₃)CO-(CH(CH ₃) ₂ 2057. N(CH(CH ₂ OCH ₃)CH ₃)CO- CH ₂ CH(CH ₃) 2058. N(CH(CH ₂ OCH ₃)CH ₃)CO- CH ₂ CH(CH ₃) 2059. N(CH(CH ₂ OCH ₃)CH ₃)CO- CH ₂ CH ₃ CH ₃ COCC(CH ₃) 2059. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₃ 2060. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₂ CF ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. N(CH(CH ₃) ₂)COOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. N(CH(CH ₃) ₂)COOCH ₂ CH ₃ 2069. N(CH(CH ₃) ₂)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₂ CF ₃ 2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH(CH ₃) ₂ 2067. NHCOOCH(CH ₃) ₂ 2068. NHCOOCH(CH ₃) ₂ 2069. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOOCH ₂ CH ₃ 2064. NHCOOCH(CH ₃) ₂ 2065. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH(CH ₃) ₂ 2070. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2070. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2070. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃ COOCH ₂ CH ₃ 2070. N(CH ₃ COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COOCH ₂ CH ₃ 2075. N(CH ₃)COOCH ₂ CH ₃ 2076. N(CH ₃)COOCH ₂ CH ₃ 2077. N(CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2106. N(CH ₂ COH ₃ CH ₃)COOCH ₂ CH ₃ 2107. N(CH ₃ COCH ₃ CH ₃)COOCH ₂ CH ₃ 2108. N(CH(CH ₂ OCH ₃ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃ CH	2051.	N(CH(CH₂OCH₃)CH₃)CHO	2082.	N(CH ₂ CH ₃)COO(CH ₂) ₃ CH ₃
2054. N(CH(CH ₂ OCH ₃)CO ₃ CO-(CH ₂) ₂ CH ₃ 2055. N(CH(CH ₂ OCH ₃)CH ₃ CO-(CH ₂) ₃ CH ₃ 2056. N(CH(CH ₂ OCH ₃)CH ₃ CO-CH(CH ₃) ₂ 2057. N(CH(CH ₂ OCH ₃)CO-CH(CH ₃) ₂ 2058. N(CH(CH ₂ OCH ₃)CO-CH ₃ CH ₃ 2059. N(CH(CH ₂ OCH ₃)CO-CH ₃ CH ₃ 2059. N(CH(CH ₂ OCH ₃)CO-CH ₃ CH ₃ 2059. N(CH(CH ₂ OCH ₃)CO-CH ₃ CH ₃ 2059. N(CH(CH ₂ OCH ₃)CO-CH ₃ CH ₃ 2059. N(CH(CH ₂ OCH ₃)CO-CF ₂ CF ₃ 2060. N(CH(CH ₂ OCH ₃)CO-CF ₂ CF ₃ 2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂)CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH(CH ₃)2 2066. N(CH(CH ₃) ₂ COOCH ₂ CH ₃ 2066. N(CH(CH ₃) ₂ COOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. NHCOOCH(CH ₃) ₂ 2069. N(CH(CH ₃) ₂ COOCH ₂ CH ₃ 2069. N(CH(CH ₃) ₂ COOCH ₂ CH ₃ 2060. N(CH(CH ₃) ₂ COOCH ₂ CH ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH(CH ₃) ₂ 2067. NHCOOCH(CH ₃) ₂ 2068. NHCOOCH(CH ₃) ₂ 2069. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃)COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ COOCH ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃ CH ₃ CO	2052.	N(CH(CH₂OCH₃)CH₃)COCH₃	2083.	N(CH₂CH₃)COOCH(CH₃)₂
2055. N(CH(CH ₂ OCH ₃)CO-(CH ₂) ₃ CH ₃ 2056. N(CH(CH ₂ OCH ₃)CH ₃)CO-CH(CH ₃) ₂ 2057. N(CH(CH ₂ OCH ₃)CO) CH ₂ CH(CH ₃) ₂ 2058. N(CH(CH ₂ OCH ₃)CO) CH ₂ CH(CH ₃) ₂ 2059. N(CH(CH ₂ OCH ₃)CO) CH ₂ CH(CH ₃) ₂ 2059. N(CH(CH ₂ OCH ₃)CO) N(CH(CH ₂ OCH ₂ CH ₃) N(CH(CH ₂ O ₂ C)CO) N(CH(CH ₂ OCH ₃	2053.	N(CH(CH₂OCH₃)CH₃)COCH₂CH₃	2084.	N(CH ₂ CH ₃)COOCH ₂ CH(CH ₃) ₂
2056. N(CH(CH ₂ OCH ₃)CO ₂ CH(CH ₃) ₂ 2057. N(CH(CH ₂ OCH ₃)CO ₃ CO ₄ CH ₂ CH(CH ₃) ₂ 2058. N(CH(CH ₂ OCH ₃)CO ₅ 2059. N(CH(CH ₂ OCH ₃)CO ₅ 2059. N(CH(CH ₂ OCH ₃)COCF ₃ 2059. N(CH(CH ₂ OCH ₃)COCF ₃ 2060. N(CH(CH ₂ OCH ₃)COCF ₂ CF ₃ 2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOO(CH ₂) ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. NHCOO(CH ₂) ₂ CH ₃ 2069. N(CH(CH ₂ OCH ₃)COCF ₂ CF ₃ 2060. NHCOO(CH ₂) ₂ CH ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOO(CH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOO(CH ₂) ₃ CH ₃ 2066. NHCOOCH(CH ₃) ₂ 2067. NHCOOCH(CH ₃) ₂ 2068. NHCOOCH(CH ₃) ₂ 2069. N(CH(CH ₂ OH)CH ₃) ₂ COOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH(CH ₃) ₂ 2069. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2070. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2071. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2071. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COOCH ₂ CH ₃ 2075. N(CH ₃)COOCH ₂ CH ₃ 2076. N(CH ₃)COOCH ₂ CH ₃ 2077. N(CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2106. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2076. N(CH ₃)COOCH ₂ CH ₃ 2107. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2077. N(CH ₃)COOCH ₂ CH ₃ 2108. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OC	2054.	N(CH(CH ₂ OCH ₃)CH ₃)CO-(CH ₂) ₂ CH ₃	2085.	N(CH₂CH₃)COOC(CH₃)₃
2057. N(CH(CH ₂ OCH ₃)CH ₃)CO- CH ₂ CH(CH ₃) ₂ 2058. N(CH(CH ₃) ₂ COOCH ₂ CH ₃ 2059. N(CH(CH ₂ OCH ₃)CH ₃)COC(CH ₃) ₃ 2059. N(CH(CH ₂ OCH ₃)COC ₃ CH ₃ 2060. N(CH(CH ₂ OCH ₃)COC ₅ 2061. NHCOOCH ₃ 2062. NHCOOCH ₃ 2063. NHCOOCH ₃ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₃ CH ₃ 2066. NHCOOCH ₃ CH ₃ 2067. NHCOOCH ₃ CH ₃ 2068. NHCOOCH ₂ CH ₃ 2069. N(CH(CH ₃) ₂ COOCH ₂ CH ₃ CH ₃ 2060. NHCOOCH ₂ CH ₃ 2061. NHCOOCH ₃ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOOCH ₂ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₃ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. NHCOOCH ₂ CH(CH ₃) ₂ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH ₃ CHOCH ₃ 2071. N(CH ₃ COOCH ₂ CH ₃ 2071. N(CH ₃ COOCH ₂ CH ₃ 2072. N(CH ₃ COOCH ₂ CH ₃ 2073. N(CH ₃ COOCH ₂ CH ₃ 2074. N(CH ₃ COOCH ₂ CH ₃ 2075. N(CH ₃ COOCH ₂ CH ₃ 2076. N(CH ₃ COOCH ₂ CH ₃ 2077. N(CH ₃ COOCH ₂ CH ₃ 2078. N(CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH ₃ CHOCH ₃)COOCH ₂ CH ₃ 2109. N(CH ₃ CHOCH ₃)COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ CH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ COCH ₃ COOCH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ COCH ₃ COOCH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ COCH ₃ COOCH ₃ COOCH ₂ CH ₃ 2109. N(CH ₂ COCH ₃ COOCH ₃ COOCH ₂ CH ₃ COOCH ₃ COOCH ₂ CH ₃ COOCH ₂ CH ₃ COOCH ₂ CH ₃ COOCH ₃ COOCH ₂ COOCH ₃ COOCH ₂ COOCH ₃ COOCH ₂ COOCH ₃ COOCH ₃ COOCH ₂ COOCH ₃ COOCH	2055.	N(CH(CH₂OCH₃)CH₃)CO-(CH₂)₃CH₃	2086.	N(CH₂CH₃)COOCH₂CF₃
CH ₂ CH(CH ₃) ₂ 2058. N(CH(CH ₂ OCH ₃)CH ₃)COC(CH ₃) ₃ 2059. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₃ 2069. N(CH(CH ₃) ₂)COO(CH ₂) ₂ CH ₃ 2060. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₂ CF ₃ 2061. NHCOOCH ₃ 2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOO(CH ₂) ₂ CH ₃ 2066. NHCOO(CH ₂) ₂ CH ₃ 2066. NHCOOCH ₃ CH ₃ CH ₃ 2067. NHCOOCH ₂ CH(CH ₃) ₂ 2068. NHCOOCH ₂ CH(CH ₃) ₂ 2069. N(CH(CH ₃) ₂)COOCH ₂ CHCCH ₃ 2060. NHCOOCH ₂ CH ₃ CH ₃ 2060. NHCOOCH ₂ CH ₃ CH ₃ 2061. NHCOOCH ₂ CH ₃ CH ₃ 2062. NHCOOCH ₂ CH ₃ CH ₃ 2063. NHCOOCH ₂ CH ₃ CH ₃ 2064. NHCOOCH ₂ CH ₃ CH ₃ 2065. NHCOOCH ₂ CH ₃ CH ₃ 2066. NHCOOCH ₂ CH ₃ CH ₃ 2067. NHCOOCH ₂ CH(CH ₃) ₂ 2068. NHCOOCH ₂ CH(CH ₃) ₂ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH ₃ CHOOCH ₃ 2101. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂ 2070. N(CH ₃)COOCH ₂ CH ₃ 2102. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂ 2071. N(CH ₃)COOCH ₂ CH ₃ 2102. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2103. N(CH ₃ (CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2104. N(CH ₃ (CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2105. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2106. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2107. N(CH ₃ COOCH ₂ CH ₃) 2108. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₃ COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃ COOCH ₃ COOCH ₂ CH ₃ COOCH ₃ COOCH ₂ CH ₃ CH ₃ COOCH ₃ CO	2056.	N(CH(CH ₂ OCH ₃)CH ₃)CO-CH(CH ₃) ₂	2087.	N(CH₂CH₃)COOCH₂CHOCH₃
2058. N(CH(CH ₂ OCH ₃)CH ₃)COC(CH ₃) ₃ 2059. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₃ 2060. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₂ CF ₃ 2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃) ₂ 2060. NHCOOCH ₂ CH ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. NHCOOCH ₂ CH ₃) ₂ 2069. NHCOOCH ₂ CH ₃) ₂ 2060. NHCOOCH ₂ CH ₃) ₃ 2060. NHCOOCH ₂ CH ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOOCH ₂ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH(CH ₂ OH)CH ₃)COOC+(CH ₂) ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COOCH ₂ CH ₃ 2075. N(CH ₃)COOCH ₂ CH ₃ 2076. N(CH ₃)COOCH ₂ CH ₃ 2077. N(CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₂ CCH ₃)COOCH ₂ CH ₃ 2079. N(CH ₂ CCH ₃)COOCH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COOC-CH ₂ CH ₃ 2109. N	2057.	N(CH(CH₂OCH₃)CH₃)CO-	2088.	N(CH(CH₃)₂)COOCH₃
2059. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₃ 2060. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₂ CF ₃ 2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH ₃ 2068. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH(CH ₃) ₂ 2060. NHCOOCH ₂ CH ₃ 2060. NHCOOCH ₂ CH ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₃ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH(CH ₃) ₂ 2067. NHCOOCH ₂ CH(CH ₃) ₂ 2068. NHCOOCH ₂ CH(CH ₃) ₂ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₃ 2071. N(CH ₃)COOCH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2074. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2075. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₂ COCH ₃) ₃ 2071. N(CH ₂ COCH ₃) ₃ 2072. N(CH ₃ COCCH ₂ CH ₃) 2073. N(CH ₃ COCCH ₂ CH ₃) 2074. N(CH ₃ COCCH ₂ CH ₃) 2075. N(CH ₃ COCCH ₂ CH ₃) 2076. N(CH ₃ COCCH ₂ CH ₃) 2077. N(CH ₃ COCCH ₃ CH ₃) 2078. N(CH ₃ COCCH ₂ CH ₃ 2108. N(CH(CH ₂ COH ₃)CH ₃)COO-CH ₂ CH ₃ 2079. N(CH ₂ COCCH ₃ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2079. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH ₂ COCH ₃)CH ₃)COO-CH ₂ CH ₃ 2109. N(CH(CH₂CH(CH₃)₂	2089.	N(CH(CH ₃) ₂)COOCH ₂ CH ₃
2060. N(CH(CH ₂ OCH ₃)CH ₃)COCF ₂ CF ₃ 2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH(CH ₃) ₂ 2068. NHCOOC(CH ₃) ₂ 2069. NHCOOCH ₂ CH(CH ₃) ₂ 2060. NHCOOCH ₂ CH ₃ 2060. NHCOOCH ₂ CH ₃ 2061. NHCOOCH ₂ CH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOOCH ₂ CH ₃ 2064. NHCOOCH ₂ CH ₃ 2065. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2066. NHCOOCH ₂ CH ₃ 2067. NHCOOCH ₂ CH(CH ₃) ₂ 2068. NHCOOCH ₂ CH(CH ₃) ₂ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CF ₃ 2100. N(CH(CH ₂ OH)CH ₃)COO-(CH ₂) ₃ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₃ 2101. N(CH(CH ₂ OH)CH ₃)COO-(CH ₂) ₃ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2102. N(CH ₃ (CH ₂ OH)CH ₃)COO-(CH ₃) ₂ 2072. N(CH ₃)COOCH ₂ CH ₃ 2103. N(CH(CH ₂ OH)CH ₃)COOC(CH ₃) ₃ 2073. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2104. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2074. N(CH ₃)COOCH ₂ CH ₃ 2105. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2106. N(CH ₃ CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2077. N(CH ₃)COOCH ₂ CH ₃ 2107. N(CH ₃ CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃	2058.	N(CH(CH₂OCH₃)CH₃)COC(CH₃)₃	2090.	$N(CH(CH_3)_2)COO(CH_2)_2CH_3$
2061. NHCOOCH ₃ 2062. NHCOOCH ₂ CH ₃ 2063. NHCOOCH ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOO(CH ₂) ₂ CH ₃ 2066. NHCOO(CH ₂) ₃ CH ₃ 2066. NHCOOCH(CH ₃) ₂ 2067. NHCOOCH(CH ₃) ₂ 2068. NHCOOCH(CH ₃) ₂ 2069. N(CH(CH ₂) ₂ CH ₃) 2060. NHCOOCH(CH ₃) ₂ 2060. NHCOOCH ₂ CH(CH ₃) ₃ 2060. NHCOOCH ₂ CH(CH ₃) ₃ 2060. NHCOOCH ₂ CH(CH ₃) ₃ 2060. NHCOOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₃ 2072. N(CH ₃)COOCH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COOCH ₂ CH ₃ 2075. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COOCH ₂ CH ₃ 2075. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ 2108. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2079. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2059.	N(CH(CH₂OCH₃)CH₃)COCF₃	2091.	$N(CH(CH_3)_2)COO(CH_2)_3CH_3$
2062. NHCOOCH ₂ CH ₃ 2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOO(CH ₂) ₂ CH ₃ 2065. NHCOO(CH ₂) ₃ CH ₃ 2066. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH(CH ₃) ₂ 2067. NHCOOCH ₂ CH(CH ₃) ₂ 2068. NHCOOCH ₂ CH(CH ₃) ₂ 2069. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CHOCH ₃ 2060. NHCOOCH ₂ CH(CH ₃) ₂ 2061. NHCOOCH ₂ CH(CH ₃) ₂ 2062. NHCOOCH ₂ CH(CH ₃) ₂ 2063. NHCOOCH ₂ CH(CH ₃) ₃ 2064. NHCOOCH ₂ CH(CH ₃) ₂ 2065. NHCOOCH ₂ CH(CH ₃) ₂ 2066. NHCOOCH ₂ CH(CH ₃) ₃ 2067. NHCOOC(CH ₃) ₃ 2068. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2100. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₂) ₃ CH ₃ 2070. N(CH ₃)COOCH ₃ 2071. N(CH ₃)COOCH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2078. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH ₂)COOCH ₂ CF ₃ 2108. N(CH ₂)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₂)COOCH ₂ CHOCH ₃ 2109. N(CH ₂ CH ₃)COOCH ₂ CH ₃)COOCH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2109. N(CH(CH	2060.	N(CH(CH₂OCH₃)CH₃)COCF₂CF₃	2092.	N(CH(CH ₃) ₂)COOCH(CH ₃) ₂
2063. NHCOO(CH ₂) ₂ CH ₃ 2064. NHCOO(CH ₂) ₃ CH ₃ 2065. NHCOO(CH ₂) ₃ CH ₃ 2066. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH ₂ CH(CH ₃) ₂ 2066. NHCOOCH ₂ CH(CH ₃) ₂ 2066. NHCOOCH ₂ CH(CH ₃) ₂ 2067. NHCOOC(CH ₂) ₃ 2068. NHCOOCH ₂ CH ₃ 2068. NHCOOCH ₂ CF ₃ 2069. NHCOOCH ₂ CF ₃ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₃ 2101. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂ 2070. N(CH ₃)COOCH ₃ 2102. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2078. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2079. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO- 2079. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2061.	NHCOOCH₃	2093.	N(CH(CH ₃) ₂)COOCH ₂ CH(CH ₃) ₂
2064. NHCOO(CH ₂) ₃ CH ₃ 2065. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH ₂ CH(CH ₃) ₂ 2067. NHCOOCH ₂ CH(CH ₃) ₂ 2068. NHCOOCH ₂ CH(CH ₃) ₃ 2069. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2068. NHCOOCH ₂ CF ₃ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2070. N(CH ₃)COOCH ₃ 2071. N(CH ₃)COOCH ₃ 2071. N(CH ₃)COOCH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COOCH ₂ CH ₃ 2075. N(CH ₃)COOCH ₂ CH ₃ 2076. N(CH ₃)COOCH ₂ CH ₃ 2077. N(CH ₃)COOCH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₂ CH ₃)COOCH ₃ 2070. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₂ CH ₃)C	2062.	NHCOOCH₂CH₃	2094.	N(CH(CH ₃) ₂)COOC(CH ₃) ₃
2065. NHCOOCH(CH ₃) ₂ 2066. NHCOOCH ₂ CH(CH ₃) ₂ 2067. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CH ₃ 2067. NHCOOC(CH ₃) ₃ 2068. NHCOOCH ₂ CF ₃ 2068. NHCOOCH ₂ CF ₃ 2069. NHCOOCH ₂ CH ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2070. N(CH ₃)COOCH ₂ CHOCH ₃ 2070. N(CH ₃)COOCH ₂ CHOCH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₃	2063.	NHCOO(CH ₂) ₂ CH ₃	2095.	N(CH(CH ₃) ₂)COOCH ₂ CF ₃
2066. NHCOOCH ₂ CH(CH ₃) ₂ 2067. NHCOOC(CH ₂) ₃ 2068. NHCOOC(CH ₂) ₃ 2068. NHCOOCH ₂ CF ₃ 2069. N(CH(CH ₂ OH)CH ₃)COO-(CH ₂) ₂ CH ₃ 2069. NHCOOCH ₂ CF ₃ 2100. N(CH(CH ₂ OH)CH ₃)COO-(CH ₂) ₃ CH ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2101. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂ 2070. N(CH ₃)COOCH ₃ 2102. N(CH(CH ₂ OH)CH ₃)COO- 2071. N(CH ₃)COOCH ₂ CH ₃ 2103. N(CH(CH ₂ OH)CH ₃)COOC(CH ₃) ₃ 2073. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2104. N(CH(CH ₂ OH)CH ₃)COOC(CH ₃) ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2106. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH ₂ CCH ₃)CH ₃ COOCH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH(CH ₂ OCH ₃)CH ₃)COO- 2079. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2064.	NHCOO(CH ₂) ₃ CH ₃	2096.	N(CH(CH ₃) ₂)COOCH ₂ CHOCH ₃
2067. NHCOOC(CH ₃) ₃ 2068. NHCOOC(CH ₃) ₃ 2068. NHCOOCH ₂ CF ₃ 2100. N(CH(CH ₂ OH)CH ₃)COO-(CH ₂) ₂ CH ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2101. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂ 2070. N(CH ₃)COOCH ₃ 2102. N(CH(CH ₂ OH)CH ₃)COOC 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2074. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2078. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2079. N(CH ₃)COOCH ₂ CH ₃ 2070. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COOCH ₂ CH ₃ 2073. N(CH ₃)COOCH ₂ CH ₃ 2074. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2075. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2106. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2077. N(CH ₃)COOCH ₂ CH ₃ 2107. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2065.	NHCOOCH(CH ₃) ₂	2097.	N(CH(CH₂OH)CH₃)COOCH₃
2068. NHCOOCH ₂ CF ₃ 2069. NHCOOCH ₂ CHOCH ₃ 2070. N(CH ₃)COOCH ₃ 2070. N(CH ₃)COOCH ₃ 2071. N(CH ₃)COOCH ₃ 2072. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2078. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2079. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2070. N(CH ₃)COOCH ₃ CH ₃ 2070. N(CH ₃)COOCH ₃ CH ₃ 2070. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2070. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2070. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2071. N(CH ₃)COOCH ₂ CH(CH ₃) ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2071. N(CH ₃)COOCH ₃ 2072. N(CH ₃)COOCH ₃ 2073. N(CH ₃)COOCH ₃ 2074. N(CH ₃)COOCH ₃ 2075. N(CH ₃)COOCH ₃ 2076. N(CH ₃)COOCH ₃ 2077. N(CH ₃)COOCH ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ 2079. N(CH ₃ CH ₃)COOCH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃ 2070. N(CH ₂ CH ₃)	2066.	NHCOOCH₂CH(CH₃)₂	2098.	N(CH(CH₂OH)CH₃)COOCH₂CH₃
2069. NHCOOCH ₂ CHOCH ₃ 2101. N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂ 2070. N(CH ₃)COOCH ₃ 2102. N(CH(CH ₂ OH)CH ₃)COO- 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CF ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2078. N(CH ₃)COOCH ₂ CF ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2079. N(CH ₃)COOCH ₂ CHOCH ₃ 2079. N(CH ₂ CHOCH ₃ 2070. N(CH ₂ CHOCH ₃ 2070. N(CH ₃ COOCH ₂ CHOCH ₃ 2071. N(CH ₃ COOCH ₂ CHOCH ₃ 2072. N(CH ₃ COOCH ₂ CHOCH ₃ 2073. N(CH ₃ COOCH ₂ CHOCH ₃ 2074. N(CH ₃ COOCH ₃ CHOCH ₃ 2075. N(CH ₃ COOCH ₃ CHOCH ₃ 2076. N(CH ₃ COOCH ₃ CHOCH ₃ 2077. N(CH ₃ COOCH ₃ CHOCH ₃ 2078. N(CH ₃ COOCH ₂ CHOCH ₃ 2079. N(CH ₂ CH ₃ COOCH ₃ CHOCH ₃ 2079. N(CH ₂ CH ₃ COOCH ₃ CHOCH ₃ 2079. N(CH ₂ CH ₃ COOCH ₃ CHOCH ₃ 2079. N(CH ₂ CH ₃ COOCH ₃ COCH ₃ COOCH ₃ COOC	2067.	NHCOOC(CH ₃) ₃	2099.	N(CH(CH₂OH)CH₃)COO-(CH₂)₂CH₃
2070. N(CH ₃)COOCH ₃ 2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2077. N(CH ₃)COOCH ₂ CH ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2079. N(CH ₃)COOCH ₂ CHOCH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃	2068.	NHCOOCH₂CF₃	2100.	N(CH(CH ₂ OH)CH ₃)COO-(CH ₂) ₃ CH ₃
2071. N(CH ₃)COOCH ₂ CH ₃ 2072. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2073. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2075. N(CH ₃)COOCH(CH ₃) ₂ 2076. N(CH ₃)COOC(CH ₃) ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2078. N(CH ₃)COOCH ₂ CH ₃ CH ₃ 2079. N(CH ₃)COOCH ₂ CHOCH ₃ 2079. N(CH ₂ CHOCH ₃ 2079. N(CH ₂ CHOCH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2090. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃	2069.	NHCOOCH₂CHOCH₃	2101.	N(CH(CH ₂ OH)CH ₃)COOCH(CH ₃) ₂
2072. N(CH ₃)COO(CH ₂) ₂ CH ₃ 2103. N(CH(CH ₂ OH)CH ₃)COOC(CH ₃) ₃ 2073. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2104. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2105. N(CH(CH ₂ OH)CH ₃)COO- 2075. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ 2076. N(CH ₃)COOC(CH ₃) ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CF ₃ 2108. N(CH ₃ COCH ₃ CH ₃ COO-CH ₂ CH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2070.	N(CH ₃)COOCH ₃	2102.	N(CH(CH₂OH)CH₃)COO-
2073. N(CH ₃)COO(CH ₂) ₃ CH ₃ 2104. N(CH(CH ₂ OH)CH ₃)COOCH ₂ CF ₃ 2074. N(CH ₃)COOCH(CH ₃) ₂ 2105. N(CH(CH ₂ OH)CH ₃)COO- 2075. N(CH ₃)COOC(CH ₃) ₃ 2076. N(CH ₃)COOC(CH ₃) ₃ 2106. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH ₂ OCH ₃)CH ₃)COO- 2079. N(CH ₂ CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2071.	N(CH ₃)COOCH ₂ CH ₃		CH ₂ CH(CH ₃) ₂
2074. N(CH ₃)COOCH(CH ₃) ₂ 2105. N(CH(CH ₂ OH)CH ₃)COO- CH ₂ CHOCH ₃ 2076. N(CH ₃)COOC(CH ₃) ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2072.	N(CH ₃)COO(CH ₂) ₂ CH ₃	2103.	N(CH(CH ₂ OH)CH ₃)COOC(CH ₃) ₃
2075. N(CH ₃)COOCH ₂ CH(CH ₃) ₂ CH ₂ CHOCH ₃ 2076. N(CH ₃)COOC(CH ₃) ₃ 2106. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2079. N(CH ₂ CH ₃)COOCH ₃ (CH ₂) ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2073.	N(CH ₃)COO(CH ₂) ₃ CH ₃	2104.	N(CH(CH₂OH)CH₃)COOCH₂CF₃
2076. N(CH ₃)COOC(CH ₃) ₃ 2106. N(CH(CH ₂ OCH ₃)CH ₃)COOCH ₃ 2077. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH(CH ₂ OCH ₃)CH ₃)COO- 2079. N(CH ₂ CH ₃)COOCH ₃ (CH ₂) ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2074.	N(CH ₃)COOCH(CH ₃) ₂	2105.	N(CH(CH₂OH)CH₃)COO-
2077. N(CH ₃)COOCH ₂ CF ₃ 2107. N(CH ₂ OCH ₃)CH ₃)COO-CH ₂ CH ₃ 2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH ₂ OCH ₃)CH ₃)COO- 2079. N(CH ₂ CH ₃)COOCH ₃ (CH ₂) ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2075.	N(CH ₃)COOCH ₂ CH(CH ₃) ₂		CH₂CHOCH₃
2078. N(CH ₃)COOCH ₂ CHOCH ₃ 2108. N(CH ₂ CH ₃)COO- 2079. N(CH ₂ CH ₃)COOCH ₃ (CH ₂) ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)COO-		• -•	2106.	N(CH(CH₂OCH₃)CH₃)COOCH₃
2079. N(CH ₂ CH ₃)COOCH ₃ (CH ₂) ₂ CH ₃ 2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2077.	N(CH ₃)COOCH ₂ CF ₃	2107.	N(CH(CH₂OCH₃)CH₃)COO-CH₂CH₃
2080. N(CH ₂ CH ₃)COOCH ₂ CH ₃ 2109. N(CH(CH ₂ OCH ₃)CH ₃)COO-	2078.	N(CH₃)COOCH₂CHOCH₃	2108.	N(CH(CH₂OCH₃)CH₃)COO-
	2079.	N(CH ₂ CH ₃)COOCH ₃		(CH₂)₂CH₃
2081. N(CH ₂ CH ₃)COO(CH ₂) ₂ CH ₃ (CH ₂) ₃ CH ₃	2080.	N(CH ₂ CH ₃)COOCH ₂ CH ₃	2109.	N(CH(CH₂OCH₃)CH₃)COO-
	2081.	N(CH ₂ CH ₃)COO(CH ₂) ₂ CH ₃		(CH₂)₃CH₃

No.	R ₆	No.	R ₆
2110.	N(CH(CH₂OCH₃)CH₃)COO-	2138.	NHCON(CH ₃)CH(CH ₃) ₂
	CH(CH ₃) ₂	2139.	NHCON(CH₃)CH₂CH(CH₃)₂
2111.	N(CH(CH₂OCH₃)CH₃)COO-	2140.	$NHCON(CH_3)C(CH_3)_3$
	CH ₂ CH(CH ₃) ₂	2141.	NHCON(CH₂CF₃)₂
2112.	N(CH(CH₂OCH₃)CH₃)COO-C(CH₃)₃	2142.	NHCON(CH₂CHOCH₃)₂
2113.	N(CH(CH₂OCH₃)CH₃)COO-CH₂CF₃	2143.	NHSONHCH₃
2114.	N(CH(CH₂OCH₃)CH₃)COO-	2144.	NHSONHCH₂CH₃
	CH₂CHOCH₃	2145.	NHSONH(CH₂)₂CH₃
2115.	NHCONHCH₃	2146.	NHSONH(CH₂)₃CH₃
2116.	NHCONHCH₂CH₃	2147.	NHSONHCH(CH ₃) ₂
2117.	NHCONH(CH ₂) ₂ CH ₃	2148.	NHSONHCH₂CH(CH₃)₂
2118.	NHCONH(CH ₂) ₃ CH ₃	2149.	NHSONHC(CH₃)₃
2119.	NHCONHCH(CH ₃) ₂	2150.	NHSONHCH₂CF₃
2120.	NHCONHCH₂CH(CH₃)₂	2151.	NHSONHCH₂CHOCH₃
2121.	NHCONHC(CH₃)₃	2152.	NHSON(CH₃)₂
2122.	NHCONHCH₂CF₃	2153.	NHSON(CH ₂ CH ₃) ₂
2123.	NHCONHCH₂CHOCH₃	2154.	NHSON(CH₃)(CH₂)₂CH₃
2124.	N(CH ₃)CONHCH ₃ .	2155.	NHSON(CH ₃)(CH ₂) ₃ CH ₃
2125.	N(CH₃)CONHCH₂CH₃	2156.	NHSON(CH₃)CH(CH₃)₂
2126.	N(CH₂CH₃)CONHCH₃	2157.	NHSON(CH ₃)CH ₂ CH(CH ₃) ₂
2127.	N(CH₂CH₃)CONHCH₂CH₃	2158.	NHSON(CH ₃)C(CH ₃) ₃
2128.	N(CH(CH ₃) ₂)CONHCH ₃	2159.	NHSON(CH₂CF₃)₂
2129.	N(CH(CH ₃) ₂)CONHCH ₂ CH ₃	2160.	NHSON(CH₂CHOCH₃)₂
2130.	N(CH(CH₂OH)CH₃)CONHCH₃	2161.	NHS(O)₂NHCH₃
2131.	N(CH(CH₂OH)CH₃)CONHCH₂CH₃	2162.	NHS(O)₂NHCH₂CH₃
2132.	N(CH(CH ₂ OCH ₃)CH ₃)CONHCH ₃	2163.	NHS(O) ₂ NH(CH ₂) ₂ CH ₃
2133.	N(CH(CH₂OCH₃)CH₃)CONH-	2164.	NHS(O) ₂ NH(CH ₂) ₃ CH ₃
	CH₂CH₃	2165.	NHS(O)₂NHCH(CH₃)₂
2134.	NHCON(CH ₃) ₂	2166.	NHS(O) ₂ NHCH ₂ CH(CH ₃) ₂
2135.	NHCON(CH₂CH₃)₂	2167.	NHS(O)₂NHC(CH₃)₃
2136.	NHCON(CH ₃)(CH ₂) ₂ CH ₃	2168.	NHS(O)₂NHCH₂CF₃
2137.	NHCON(CH ₃)(CH ₂) ₃ CH ₃	2169.	NHS(O)₂NHCH₂CHOCH₃

No. R ₆	No. R ₆
2170. NHS(O) ₂ N(CH ₃) ₂	2198. N=C(CH ₂ Cl
2171. NHS(O)₂N(CH₂CH₃)₂	2199. N=C(CH₂Cl
2172. NHS(O) ₂ N(CH ₃)(CH ₂) ₂ CH ₃	2200. N=C(CH ₂ CH
2173. NHS(O)₂N(CH₃)(CH₂)₃CH₃	2201. N=C(NH ₂)N
2174. NHS(O)₂N(CH₃)CH(CH₃)₂	2202. N=C(NH ₂)N
2175. NHS(O) ₂ N(CH ₃)CH ₂ CH(CH ₃) ₂	2203. N=C(NH ₂)N
2176. NHS(O)₂N(CH₃)C(CH₃)₃	2204. N=C(NH ₂)N
2177. NHS(O)₂N(CH₂CF₃)₂	2205. N=C(NH ₂)N
2178. NHS(O)₂N(CH₂CHOCH₃)₂	2206. N=C(NH ₂)N
2179.	2207. N=C(NH(CH
	2208. N=C(NH(CF
2180. NH.	2209. N=C(NH(Ch
2100.	2210. N=C(NH(CH
2181. NH	2211. N=C(NH(CH
℃ °	2212. N=C(NH(CF
2182. NH 0	2213. N=C(NH(CF
	2214. N=C(NH(CH
2183. N=CHNH₂	2215. N=C(NH(CH
2184. N=CHNH(CH₃)	2216. N=C(NH(CH
2185. N=CHN(CH ₃) ₂	2217. N
2186. N=CHNH(CH₂CH₃)) H
2187. N=CHN(CH ₂ CH ₃) ₂	2218.
2188. N=CHNCH ₃ (CH ₂ CH ₃)	$N \searrow N$
2189. N=C(CH ₃)NH ₂	Ä—,
2190. N=C(CH₃)NH(CH₃)	2219.
2191. N=C(CH ₃)N(CH ₃) ₂	N
2192. N=C(CH ₃)NH(CH ₂ CH ₃)) , —_/
2193. N=C(CH ₃)N(CH ₂ CH ₃) ₂	2220.
2194. N=C(CH ₃)NCH ₃ (CH ₂ CH ₃)	N_N
2195. N=C(CH ₂ CH ₃)NH ₂) }
2196. N=C(CH₂CH₃)NH(CH₃)	··
2197. N=C(CH ₂ CH ₃)N(CH ₃) ₂	

2198.	N=C(CH ₂ CH ₃)NH(CH ₂ CH ₃)
2199.	$N=C(CH_2CH_3)N(CH_2CH_3)_2$
2200.	$N=C(CH_2CH_3)NCH_3(CH_2CH_3)$
2201.	$N=C(NH_2)NH_2$
2202.	$N=C(NH_2)NH(CH_3)$
2203.	$N=C(NH_2)N(CH_3)_2$
2204.	$N=C(NH_2)NH(CH_2CH_3)$
2205.	$N=C(NH_2)N(CH_2CH_3)_2$
2206.	$N=C(NH_2)NCH_3(CH_2CH_3)$
2207.	$N=C(NH(CH_3))NH(CH_3)$
2208.	$N=C(NH(CH_3))N(CH_3)_2$
2209.	$N=C(NH(CH_3))NH(CH_2CH_3)$
2210.	$N=C(NH(CH_3))N(CH_2CH_3)_2$
2211.	N=C(NH(CH ₃))NCH ₃ (CH ₂ CH ₃)
2212.	N=C(NH(CH ₂ CH ₃))NH(CH ₃)
2213.	$N=C(NH(CH_2CH_3))N(CH_3)_2$
2214.	$N=C(NH(CH_2CH_3))NH(CH_2CH_3)$
2215.	$N=C(NH(CH_2CH_3))N(CH_2CH_3)_2$
2216.	N=C(NH(CH ₂ CH ₃))NCH ₃ (CH ₂ CH ₃)
2217.	H H
2218.	N N N N N N N N N N N N N N N N N N N
2219.	N N N N N N N N N N N N N N N N N N N
2220.	N N N N N N N N N N N N N N N N N N N

No. R ₆	No. R ₆
2221. N	2230.
HN	N,
0000	<u>_</u> 6
2222.	2231. (^{OH}
HN	Ν
~	└ ó
2223.	2232. N
n	HN
HŇ.	}
2224.	2233.
N	NY NY
HN	HŅ
2225. ну	I
N N	2234.
ĥ	N NH
2226. N	0007
N	2235. N
Ħ	2236. _N
2227. N	2200.
h	2237.
2228.	η,
N N	<u> </u>
Ä—/	
2229. _N	
,	

The invention especially relates to a the use of at least one compound of the formula I or a salt thereof for protecting a plant against attack or infestation by a phytopathogenic organism, especially a microorganism, especially a fungal organism (preferably selected from the group consisting of Ascomycetes, Basidiomycetes, Comycetes and Fungi imperfecti), a bacterium, a virus or a nematode; said compound or salt being selected from the compounds given in Table A or especially in table 59, comprising administering said compound and/or salt to one or more selected from the group consisting of a plant, a part of a plant, seeds and the site of a plant.

Preferred are compounds of formula I, wherein n=0, $R_1=$ halogen or haloalkoxy, each of R_2 to R_5 is hydrogen and R_6 is lower alkylamino wherein the lower alkyl moiety is substituted by one or more (preferably 1 to 3, especially 1 or 2) substitutents independently selected from the group consisting of unsubstituted amino, N-mono- or N,N-di-(lower alkyl)-amino, (lower alkoxy)-lower alkoxy, lower alkoxycarbonylamino, hydroxy-lower alkoxycarbonylamino, lower alkoxy-lower alkoxycarbonylamino, morpholinyl, hydroxy-lower alkylamino, hydroximino, alkoximino, guanidyl, lower alkanoylamino, hydroxy-lower alkanoylamino, lower alkoxy-lower alkanoylamino, hydroxy-lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, lower alkylaminocarbonylamino, amidino, lower alkylaminocarbonyldioxy (= lower alkoxycarbonyloxy), hydroxy-lower alkoxy-lower alkoxy-l

alkanoyloxy, hydroxy-lower alkanoyloxy, lower alkoxy-lower alkanoyloxy, hydroxy, lower alkoxy, lower alkanoylalkoxy, lower alkanyloxy, lower alkanoyl-

piperazinyl (including formylpiperazinyl) and optionally substituted heteroaryloxy,

or a salt thereof.

More preferred is a compound of formula I, wherein n=0, R_1 = chlorine or haloalkoxy, each of R_2 to R_5 is hydrogen and R_6 is alkoxyalkylamino, or a salt thereof.

Especially preferred are compounds 4, 5, 12, 13, 14, 15, 32 and 40 of table 59.

The present invention also relates to the novel compounds of formula I mentioned hereinbefore and hereinafter, or salts thereof;

Especially preferred are the compounds with n=1 (N-oxides) of formula I, or the salts thereof.

Especially preferred is also a compound of formula I selected from the group of compounds provided in tables 1 to 58, or a salt thereof, or that total group of compounds, with the exception of

N-(3-trifluoromethyl-phenyl)-4-[2-(3-hydroxy-propyl-amino)-4-pyridyl]-2-pyrimidine-amine, N-(3-chloro-phenyl)-4-[2-(3-hydroxy-propyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-hydroxy-propyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-carboxy-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-carbamoyl-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-ethoxycarbonyl-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-trifluoromethyl-phenyl)-4-[2-(2-hydroxy-propyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-trifluoromethyl-phenyl)-4-[2-(2-carboxy-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-trifluoromethyl-phenyl)-4-[2-(2-carbamoyl-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-trifluoromethyl-phenyl)-4-[2-(2-ethoxycarbonyl-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine.

N-(3-chloro-phenyl)-4-[2-(2-imidazol-1-yl-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-acetamido-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-(2-hydrazino-4-pyridyl)-2-pyrimidine-amine.

N-(3-chloro-phenyl)-4-[2-(2-guanidyl-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-{2-(methylamino-carbonylamino)-ethyl-amino}-4-pyridyl]-2-pyrimidine-amine.

N-(3-chloro-phenyl)-4-[2-(2-amidino-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

 $N-(3-chloro-phenyl)-4-[2-(N-hydroxy-carbamoyl)-ethyl-amino\}-4-pyridyl]-2-pyrimidine-amine,\\$

N-(3-trifluormethyl-phenyl)-4-[2-{2-(N-hydroxy-carbamoyl)-ethyl-amino}-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-amino-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-trifluoromethyl-phenyl)-4-[2-(2-amino-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-hydroxy-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(1-piperazinyl)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-{2-(4-morpholinyl)-ethyl-amino}-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(4-morpholinyl)- 4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-(2-n-propylamino-4-pyridyl)-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(n-1-butylamino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-(2-amino-4-pyridyl)-2-pyrimidine-amine, and

N-(3-chloro-phenyl)-4-(2-dimethylamino-4-pyridyl)-2-pyrimidine-amine, or a salt thereof.

Preferred is also a compound of the formula I selected from the compounds mentioned in tables 2, 4, 5, 8, 31, 33, 34 and 37, or a salt thereof, or the whole group of compounds mentioned in said table.

Especially preferred is a compound of the formula I selected from the compounds of formula I mentioned in table 59, or a salt thereof, or the whole group of compounds in that table, or a salt of any thereof, with the exception of

N-(3-chloro-phenyl)-4-[2-(3-hydroxy-propyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-hydroxy-propyl-amino)-4-pyridyl]-2-pyrimidine-amine.

N-(3-chloro-phenyl)-4-[2-(2-imidazol-1-yl-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-(2-hydrazino-4-pyridyl)-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-amino-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(2-hydroxy-ethyl-amino)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(1-piperazinyl)-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(4-morpholinyl)-ethyl-amino}-4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-[2-(4-morpholinyl)- 4-pyridyl]-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-(2-n-propylamino-4-pyridyl)-2-pyrimidine-amine,

N-(3-chloro-phenyl)-4-(2-amino-4-pyridyl)-2-pyrimidine-amine, and

N-(3-chloro-phenyl)-4-(2-dimethylamino-4-pyridyl)-2-pyrimidine-amine, or a salt thereof.

The compounds useful according to the invention are prepared according to methods that are, per se, known in the art (this does mean, however, that, where novel compounds are produced, the respective process of manufacture is also novel) especially by reacting a compound of the formula (II),

$$\begin{array}{c|c} R_3 & R_2 \\ \hline R_4 & N & R_1 \\ \hline (O)_n & X & R_5 \end{array}$$

(or a salt thereof) wherein X is a leaving group, especially halo, for example fluoro, chloro, bromo or iodo, and the other moieties have the meanings given for a compound of the formula 1 1, with a hydrazino, amino or imino compound of the formula (III)

$$H-R_6$$
 (III)

(or a salt thereof) wherein R₈ has the meanings given for a compound of the formula I under a) where hydrazino is unsubstituted or mono to threefold substituted by optionally substituted alkyl, b), c) where piperazinyl is bound via a nitrogen atom, d) where morpholinyl is morpholino, or especially e),

or by reacting a compound of the formula (IV)

$$R_3$$
 R_4
 R_5
 R_1
 R_5
 R_1
 R_1
 R_5
 R_1

wherein n and R_1 to R_5 have the meanings given for a compound of the formula I and wherein R_6^* is hydrogen or optionally substituted alkyl as defined above, with a halogenide (Va) or an anhydride (Vb)

$$Hal-R_9$$
 (Va) $O(R_9)_2$ (Vb)

wherein Hal is chloro, bromo or iodo, especially chloro or bromo and R_9 has the meanings of the carboxyl, sulfoxyl and sulfonyl moieties for a compound of the formula I under $R_6 = f$), g), h) or i);

or by reacting a compound of the formula IV with an acetal of an amide (Vc), or any other form of an activated amide

$$(R_{10})_2$$
N-C (R_7) - $(OR_{11})_2$ (Vc)

wherein the term $(R_{10})_2N$ is R_8 as defined under formula I and R_{11} is alkyl or $C(OR_{11})_2$ has the meaning of a cyclic acetal, such as dioxolanyl or dioxanyl for a compound of the formula I under $R_6 = g$), wherein R_7 is hydrogen or alkyl,

WO 01/93682 PCT/EP01/06389

79

or by reacting a compound of the formula IV with a S-alkyl thiourea derivative (Vd), or any other form of an activated urea

$$R_{10}N=C(R_7)-SR_{11}$$
 (Vd)

wherein the term $R_{10}N$ is R_8 and R_{11} is alkyl for a compound of the formula I under $R_6 = g$), wherein R_7 is amino, mono- or dialkylamino,

or by reacting a compound of the formula IV with an aldehyde analogue of an unsubstituted or substituted lower alkyl compound that carries an aldehyde (-CHO) instead of the binding methylene group (-CH2-) of the corresponding unsubstituted or substituted lower alkyl as described above as substituent R₆ "unsubstituted or substituted mono- or di-(lower alkyl)amino" wherein the substituents are as defined above in a final product of formula I in the presence of a reducing agent, preferably sodium cyanoborohydride for a compound of the formula I, wherein R₆ is mono- or di-(lower alkyl)amino wherein the lower alkyl moieties are unsubstituted or substituted by one or more substituents independently selected from the group consisting of amino, N-mono- or N,N-di-(lower alkyl)-amino, (lower alkoxy)-lower alk-oxy, lower alkoxycarbonylamino, hydroxy-lower alkoxycarbonylamino, lower alkoxy-lower alkoxycarbonylamino, morpholinyl, hydroxy-lower alkylamino, cyano, halogen, oxo bound to a carbon that is not directly bound to a heteroatom, hydroximino, alkoximino, optionally substituted hydrazono, lower alkenyl, lower alkynyl, guanidyl, lower alkanoylamino, hydroxylower alkanoylamino, lower alkoxy-lower alkanoylamino, halo-lower alkanoylamino, lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, lower alkoxy-lower alkylaminocarbonylamino, amidino, di-lower-alkylamino-cyclohexyl, carboxy, lower alkoxycarbonyl, hydroxy-lower alkoxycarbonyl, lower alkoxy-lower alkoxycarbonyl, lower alkylcarbonyldioxy (= lower alkoxycarbonyloxy), hydroxy-lower alkoxycarbonyloxy, lower alkoxy-lower alkoxycarbonyloxy, lower alkanoyloxy, halo-lower alkanoyloxy, hydroxy-lower alkanoyloxy, lower alkoxy-lower alkanoyloxy, carbamoyl, N-mono- or N,N-di-lower alkylcarbamoyl, N-(hydroxy-lower alkyl)carbamoyl, N-lower alkyl-N-hydroxy-lower alkylcarbamoyl, N,N-di-(hydroxy-lower alkyl)-carbamoyl, N-hydroxy-carbamoyl, hydroxy, lower alkoxy, lower alkenyloxy, lower alkinyloxy, lower haloalkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower alkoxysilyl, 4-tetrahydro-4H-pyranyl, 3-pyrrolidinyl, 2or 3-tetrahydrofuryl, 2- or 3-dihydrofuryl, piperazinyl, lower alkanoyl-piperazinyl (including formylpiperazinyl), optionally substituted heteroaryl and optionally substituted heteroaryloxy;

or'(to obtain substituted hydrazino R_6 in accordance with the definition under a) for a compound of formula I) by reacting a compound of the formula (VI)

$$R_3$$
 R_4
 R_5
 R_5
 R_1
 R_1
 R_1
 R_1
 R_2
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

wherein n and R_1 to R_5 have the meanings given for a compound of the formula I, with a halogenide (Va) or an anhydride (Vb)

Hal-
$$R_9$$
 (Va) $O(R_7)_9$ (Vb)

wherein Hal is chloro, bromo or iodo, especially chloro or bromo and R_9 has the meanings of

the acyl moiety for a compound of the formula I under $R_6 = a$),

or (to obtain substituted hydrazino R_6 in accordance with the definition under a) for a compound of formula I) by reacting a comound of the formula (VII a-d)

wherein n and R_1 to R_5 have the meanings given for a compound of the formula I and R_9 has the meanings of the acyl moiety for a compound of the formula I under $R_6 = a$), with a halogenide of the formula (VIII)

Hal-R₁₂ VIII

wherein Hal is chloro, bromo or iodo, especially chloro or bromo and R_{12} has the meanings of the alkyl moiety for a compound of the formula I under R_6 = a),

and, if desired, a compound of the formula I thus obtained is converted into a salt thereof, or an obtained salt is converted into a free compound and/or into a different salt, or a compound of formula I is converted into a different compound of formula I,

where functional groups in a starting material of the formula II and/or III, where necessary, are present in protected form, and any protecting groups present are removed in order to obtain the final product.

The compounds of the formula I thus obtainable and the remaining compounds of the formula I can, mutatis mutandis, also be prepared in accordance with manufacturing processes described in WO 95/09853, or in analogy to the methods described therein – the-

refore WO 95/09853 is herewith incorporated by reference. Also appropriate protecting groups, their introduction and removal are described in WO 95/09853. The characteristic of protecting groups in the strict sense is that they are not present in the final compounds of formula I.

A compound of the formula II can be obtained preferably by reacting a compound of the formula (IX)

(IX)

(or – if n is 0 - a salt thereof) wherein L is a leaving group, especially alkoxy, such as lower alkoxy, esterified OH (especially tosyloxy), or di-(lower alkylamino), X is a leaving group (preferably halo, such as chloro, bromo or iodo) and the other moieties are defined as for a compound of the formula I, with a guanidino compound of the formula (XI),

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

(or a salt thereof) wherein R_1 is as defined for a compound of the formula I.

The reaction preferably takes place under conditions analogous to those mentioned in PCT application WO 95/09583, that is, in a suitable solvent or dispersing agent, for example a suitable alcohol, such as isopropanpol, or 2-butanol, at a temperature from room temperature (approximately 20 °C) to 150 °C, e.g. under reflux.

The compound of the formula (IX) are known or can be obtained in accordance with methods that are known in the art, e.g. by reacting a compound of the formula (XII),

$$R_3$$
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5

wherein the moieties R₂, R₃, R₃ and R₅ have the meanings given for a compound of the formula I and wherein X is a leaving group, preferably as defined for a compound of the formula (IX), either (i) under Claisen or analogue condensation reaction conditions (leading to a free hydroxy instead of the leaving group L in a compound of the formula IV; this free hydroxy group can then be converted into a leaving group, for example by ether formation with an alkylalkohol ("Alkoxy-H";), yielding alkoxy as L, such as lower alkoxy, or by reaction with an acid or an active ester derivative, e.g. an acid chloride, yielding esterified OH (especially tosyloxy); or to alkoxy L, depending on the reaction conditions), or (ii) preferably by reaction with an N,N-di-(lower alkyl)-formamide di-lower alkylacetal, especially N,N-di-(methyl)formamide di-methylacetal, analogous to the procedure described in European Patent Application EP 0 233 461, which is incorporated by reference, e.g. by reaction in the respective N,N-di-(lower alkyl)-formamide di-lower alkylacetal at a temperature between room temperature and the boiling point of the reaction mixture, especially under reflux conditions.

An intermediate of the formula (XII) can, for example, be obtained by reaction of a metallated alkyl derivative of the formula (XIII),

$$R_2$$
-CH₂-Metal (XIII)

wherein R_2 is as defined for a compound of the formula I (preferably it is hydrogen or alkyl) and Metal stands preferably for Mg-Hal (Hal = halogen) or Li, with a pyridine acid derivative of the formula (XIV),

(XIV)

wherein R_3 to R_5 have the meanings given for a compound of the formula I, X is a leaving group, preferably as defined for a compound of the formula (II), and Y is a leaving group, preferably N-lower alkyl-N-lower alkoxy-amino or halogen, under standard conditions for alkylation reactions.

Alternatively, an intermediate of the formula (XII), wherein n is 0, can be obtained by reaction of a metallated pyridine derivative of the formula (XV),

wherein R_3 to R_5 have the meanings given for a compound of the formula I, X is a leaving group, preferably as defined for a compound of the formula (IX), and Metal stands for Mg-Hal (Hal = halogen) or Li, under standard conditions for alkylation reactions with an acyl equivalent of the formula (XVI),

$$R_2 \longrightarrow 0$$
 (XVI)

wherein R₂ is as defined for a compound of formula I and Z is halo, or forms with the rest of the molecule an amide, an alkoxyamide, an anhydride or the like; or Z is hydrogen (meaning that the compound (XVI) is an aldehyde), resulting after the reaction in an alcohol that is then oxidised with a selective oxidant, for example in the presence of oxalylchloride and dimethyl sulfoxide, to the ketone intermediate of the formula (XII).

A starting material of the formula III is known, can be prepared by methods known in the art or is commercially available.

A starting material of the formula (XI) can be prepared (preferably obtaining an acid addition salt) by reaction of an aniline derivative of the formula (XVII),

wherein R₁ is as defined for a compound of formula I, with cyanamide (NC-NH₂) in a suitable solvent, e.g. an alcohol, such as a lower alkanol, for example (i) in the presence of equimolar amounts of the salt-forming acid, for example nitric acid, or (ii) in the presence of a clear, for example 60 %, excess of a mineral acid, such as hydrochloric acid, where an ammonium salt of the desired salt-forming acid is added when the reaction is complete; at a temperature between room temperature and 150 °C, e.g. under reflux.

Compounds of the formulae XIII, XIV, XV and XVI can be prepared according to methods that are known in the art.

The synthesis of many of the starting materials and intermediates can also be done as described in or in analogy to the processes described in WO 95/09853.

In all intermediates, functional groups that shall not participate in the reaction can be protected and deprotected at appropriate stages in order to avoid side reactions—appropriate protecting groups, their introduction and removal can be found e.g. in WO 95/09853.

The present invention also relates to novel starting materials and/or intermediates and to processes for the preparation thereof. The starting materials used and the reaction conditions chosen are preferably such that the compounds shown in this disclosure as being especially preferred or to be used preferably are obtained. Especially preferred among the process conditions are those described in the examples below, or analogous procedures.

The invention also relates to compositions which comprise the compounds of the formula I, or a salt thereof, as an active component, in particular plant-protecting compositions, and also to their use in the agricultural sector or related areas.

Active compounds of the formula I are customarily used in the form of compositions and may be added, simultaneously or successively, to the surface or plant to be treated together with additional active compounds. These additional active compounds may be either fertilizers, trace element-supplying agents or other preparations which influence plant growth. It is also possible, in this context, to use selective herbicides, such as insecticides, fungicides, bactericides, nematicides or molluscicides, or mixtures of several of these preparations, additionally, where appropriate, together with excipients, surfactants or other administration-promoting additives which are customary in formulation technology (designated collectively as carrier materials herein).

Suitable excipients and additives may be solid or liquid and are those substances which are appropriate in formulation technology, for example natural or regenerated minerals, solvents, dispersants, wetting agents, adhesives, thickening agents, binding agents or fertilizers.

A preferred method for applying a compound of formula I, or an agrochemical composition which comprises at least one of these compounds, is administration to the leaves (foliar application). The frequency and rate of aministration depend upon the risk of infestation by the corresponding pathogen. The compounds of formula I I can, however, also penetrate the plant through the roots via the soil (systemic action). If the locus of the plant is impregnated with a liquid formulation or if the substances are introduced in solid form into the soil, e.g. in the form of granules (soil application). In paddy rice crops, such granules can be applied in metered amounts to the flooded rice fields. In order to treat seeds, the compounds of formula I can, however, also be applied to the seeds (coating), either by impregnating the grains or tubers with a liquid formulation of the active ingredient, or by coating them with a solid formulation.

Advantageous rates of application are in normally from 5 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg of a.i./ha, especially from 20 g to 600 g

a.i./ha. When the compound are used as seed dressings, dosages of from 10 mg to 1 g of active ingredient per kg seed are advantageous employed. The agrochemical compositions generally comprise 0.1 to 99% by weight, preferably 0.1 to 95% by weight, of a compound of formula I, 99.9 to 1% by weight, preferably 99.8 to 5% by weight, of a solid or liquid adjuvant and 0 to 25% by weight, preferably 0.1 to 25 % by weight, of a surfactant. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further auxiliaries, such as stabilizers, antifoams, viscosity regulators, binders or tackifiers, as well as fertilizers or other active ingredients for obtaining special effects.

Examples:

The subsequent examples are intended to illustrate the invention, without affecting the scope thereof.

Preparative Examples:

Synthesis example 1:

(3-Chloro-phenyl)-{4-[2-(2-methoxy-1-methyl-ethylamino)-pyridin-4-yl]-pyrimidin-2-yl}-amine

A mixture of (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (10.0g, 0.03mol) and 2-amino-1-methoxypropane (14.0g, 0.16mol) in dioxane (75ml) is heated in an autoclave at 195°C for 12hours. The reaction mixture is partitioned between ethyl acetate and water. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated under reduced presssure. The residue is purified by silicagel chromatography to give the title compound, m.p. 143-144°C.

Synthesis example 2:

(3-Chloro-phenyl)-[4-(2-hydrazino-pyridin-4-yl)-pyrimidin-2-yl]-amine

A mixture of (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (4.8g, 0.015mol) in hydrazine (20ml, 0.41mol) is refluxed for 90 minutes. The reaction is poured into ethanol (300ml) with efficient stirring. The resulting precipitate is filtered with suction to yield the title compound, m.p. 201-203°C.

Synthesis example 3:

{4-[2-(1-Acetoxybutyl-2-amino)-pyridin-4-yl]-pyrimidin-2-yl}-(3-chloro-phenyl)-amine

Step1:

A mixture of (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (10.0g, 0.03mol) and 2-amino-1-hydroxybutane (30.0g, 0.3mol) is heated at 180°C for 18hours. The reaction mixture is partitioned between ethyl acetate and water. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated under reduced presssure. The residue is purified by silicagel chromatography to give the title compound, m.p. 99-101°C.

Step 2:

{4-[2-(1-Hydroxybutyl-2-amino)-pyridin-4-yl]-pyrimidin-2-yl}-(3-chloro-phenyl)-amine (1.24g, 3.3mmol) and acetic anhydride (0.41g, 4.0mmol) are refluxed in dimethoxyethane (20ml) in the presence of a catalytic amount of DMAP for 30 minutes. The reaction mixture is evaporated under reduced pressure. The residue is crystallized by adding crushed ice. The solid is filtered and dried to give the title compound, m.p. 125-126°C.

Synthesis example 4:

{4-[3-Chloro-2-(2-methoxy-ethylamino)-pyridin-4-yl]-pyrimidin-2-yl}-(3-chloro-phenyl)-amine

Step 1:

A solution of 2,3-dichloropyridine (7.4g, 0.05mol) in THF (15ml) is added at -60°C to a solution of lithium diisopropylamine (0.07mmol) in THF / hexane (1:1, 100ml). After stirring for one hour at the same temperature a cooled solution of acetaldehyde in THF (8ml) is added dropwise. The reaction mixture is allowed to warm to -20°C and is then quenched with an aqueous saturated solution of ammonium chloride. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated under reduced pressure to give a clear oil, that is used in the next step without further purification.

Step 2 (Swern Oxidation):

The product described under step 1 is added carefully at -60°C to a solution prepared from oxalyl chloride (6.0ml, 0.07mol) and dimethylsulfoxide (8.5ml, 0.12mol) in methylene

WO 01/93682 PCT/EP01/06389

89

chloride (150ml) at the same temperature. After stirring the reaction mixture for 30 minutes at -60° C triethylamine (49ml, 0.35mol) is added and then allowed to reach room temperature. Brine is added and the methylene chloride is evaporated under reduced pressure. The product is extracted with ether, dried over magnesium sulfate, filtered and distilled under reduced pressure to give the product as a colorless oil, b.p. 90-93/2mm.

Step 3:

The product described under step 2 is refluxed in dimethylformamide diethylacetal (15ml) for 15 minutes. The still hot reaction mixture is diluted with hexane and the resulting crystalline product filtered. This intermediate is refluxed with 3-chlorophenylguanidine hydrogencarbonate (11.5g, 0.05mol) in 2-butanol (200ml) for 14 hours. Diluting the reaction mixture with hexane and filtering gives the intermediate in form of yellow crystals.

Step 4:

The product prepared in step 3 (1.0g, 2.8mmol) is refluxed in 2-methoxyethylamine (5ml) for 8 hours. The reaction mixture is partitioned between ethyl acetate and water. The organic phase is separated, dried, filtered and evaporated under reduced pressure to give the title compound, m.p. 172°C.

Synthesis example 5:

{4-[2-Chloro-6-(2-methoxy-1-methyl-ethylamino)-pyridin-4-yl]-pyrimidin-2-yl}-(3-chloro-phenyl)-amine

Step 1:

A suspension of 2,6-dichloroisonicotinic acid (20.0g, 0.10mol) and oxalylchloride (11.2ml, 0.13mol) in methylenechloride (100ml) is stirred at room temperature in the presence of a katalytic amount of dimethylformamide for 2 hours to give a clear solution. The solvent is evaporated under reduced pressure and the residue is added to a well stirred solution of N,O-dimethylhydroxylamine (12.0 g, 0.2mol) and triethylamine (10.2g, 0.1mol) at 0-5°C. After stirring for 2 hours at room temperature the reaction mixture is washed with water. The organic phase is dried over magnesium sulfate, filtered and evaporated under reduced pressure to give 2,6-dichloro-N-methoxy-N-methyl-isonicotinamide in form of colorless crystals, m.p. 69-70°C.

90 .

Step 2:

To a solution of 2,6-dichloro-N-methoxy-N-methyl-isonicotinamide (20g, 0.085mol) in THF (150ml) is added at -30° C a solution of methyl magnesium chloride in THF (0.2mol) at such a rate that the temperature does not exceed -20° C. After stirring the mixture for an additional hour at -20° C the mixture is poured on an aqueous, saturated solution of ammonium chloride. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated to dryness.

Step 3:

The crystalline product obtained in step 2 is refluxed in dimethylformamide diethyl acetal (20ml) for 10 minutes. The reaction mixture is evaporated under reduced pressure to give a dark red oil. The intermediate is refluxed with 3-chlorophenylguanidine hydrogencarbonate (16.2g, 0.07mol) in 2-butanol (250ml) for 1 hour. The product is crystallizing during this time. The crystals are filtered and washed with ether: yellow crystals, m.p. 239-240°C.

Step 4:

The intermediate obtained in step 3 (0.5g, 1.4mmol) in 1-methoxy-2-aminopropane (2ml) is refluxed for 16 hours. The crude product mixture is purified by flash column chromatography to give the crystalline title compound, m.p. 128-129°C.

Synthesis example 6:

[4-(2-Amino-pyridin-4-yl)-pyrimidin-2-yl]-(3-chloro-phenyl)-amine

A suspension of (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (10.0g, 0.03mol) in dioxane (150ml) and ammonia (20g) is heated in an autoclave at 200°C for 48hours. The reaction mixture is partitioned between ethyl acetate and water. The organic phase is evaporated under reduced pressure and the product is purified by chromatography on silicagel.

Synthesis example 7:

N'-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-.N.,.N.-dimethyl-formamidine

A mixture of [4-(2-amino-pyridin-4-yl)-pyrimidin-2-yl]-(3-chloro-phenyl)-amine (0.3g, 1mmol) and N,N-dimethylformamid diethylacetal (0.3g, 2mmol) are heated in dimethylformamide (5ml) at 120°C for 1hour. The temperature is raised to 140°C and the liberated ethanol is allowed to distill of. After cooling the reaction mixture to room temperature, diethylether is added and the resulting crystals are filtered with suction to give the title compound, m.p. 194-195°C.

Synthesis example 8:

N-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-propionamide

Propionic acid anhydride (0.26g, 2.0mmol) is added to a solution of [4-(2-amino-pyridin-4-yl)-pyrimidin-2-yl]-(3-chloro-phenyl)-amine (0.5g, 1.68mmol) and a catalytic amount of DMAP in dimethoxyethane (10ml) at 95°C. Heating is continued for 1 hour. On cooling the products starts to crystallize. Diethylether is added and the product is filtered of and washed with ether to give the title compound, m.p.215-216°C.

Synthesis example 9:

{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-ylamino}-acetic acid

A mixture of (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (10.0g, 0.03mol) and glycine (4.8g, 0.06ml) in DBU (100ml) is heated at 150°C under an atmosphere of argon for 40 hours. The still hot reaction mixture is poured into water. After washing the aqueous phase with ethyl acetate the pH is adjusted to 5 by adding citric acid. The resulting precipiate is filtered and recrystallized from dimethylformamide / ethanol to give the product in form of yellow crystals, m.p. 136-138°C (with decomposition).

Synthesis example 10:

[4-(2-Allylamino-1-oxy-pyridin-4-yl)-pyrimidin-2-yl]-(3-chloro-phenyl)-amine

To a suspension of [4-(2-allylamino-pyridin-4-yl)-pyrimidin-2-yl]-(3-chloro-phenyl)-amine (1.0g, 3mmol) in methylene chloride (10ml) is added a solution of m-chloroperbenzoic acid (0.73g, 70%, 3mmol) in methylen chloride (5ml) at 5°C. The reaction mixture is stirred at room temperature for 30 minutes, washed with bicarbonate solution and evaporated under

reduced pressure. The residue is purified by chromatography to give the title compound, m.p.223-224 0 C .

Synthesis example 11:

(3-Chloro-phenyl)-{4-[2-(ethyl-methoxymethyl-amino)-pyridin-4-yl]-pyrimidin-2-yl}-amine

Solid potassium–t-butoxide (0.27g, 2.5mmol) is added at room temperature to a solution of (3-chloro-phenyl)-[4-(2-ethylamino-pyridin-4-yl)-pyrimidin-2-yl]-amine (0.5g, 1.5mmol) in dry tetrahydrofurane (15ml). The resulting solution is cooled to 0°C and chloromethylmethylether (0.16g, 2.0mmol) is added at such a rate that the temperature does not exceed 5°C. After stirring the mixture for 2 hours at room temperature, the solvent is evaporated under reduced pressure and the product is purified by chromatography. The product is obtained in form of slightly yellow crystals, m.p. 114-115°C.

Analogously to the above examples the compounds of tables 1 to 58 and those of the following table 59 may be prepared.

Table 59:

$$R_3$$
 R_4
 R_5
 R_1
 R_1

CN	R1	R2	R3	R4	R5	R6	Additio	m.p.
							n	
		ļ	<u> </u>	<u> </u>	L		Salt	l
1.	CI	Н	Н	H	<u> </u>	NHCH ₂ CH ₂ NH ₂		151-156
2.	CI	H	H	Н	Н	NH-(3-tetrahydrofuryl)		184-185
3.	CI	Н	H	Н	Н	NHCH₂COOH		136-138
4.	CI	Н	Н	Н	Н	NHCH(CH ₂ CH ₃)CH ₂ OCH ₃		Oil
5.	OCF ₂ C HF ₂	Н	Н	Н	Н	NHCH(CH₃)CH₂OCH₃		116-117
6.	CI	Н	Н	H	Cl	NHCH2CH2OCH3		172
7.	CI	Н	F	Н	Н	NHCH(CH ₃)CH ₂ OCH ₃		103-105
8.	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ CH ₂ -(4-morpholinyl)		187-188
9.	CI	Н	Н	CI	F	NHCH(CH ₃)CH ₂ OCH ₃		100-101

11. Cl H Cl H H H H NHCH(CH ₃)CH ₂ OCH ₃ 128-12 12. Cl H H H H H NHCH(CH ₃)CH ₂ OCH ₃ Citric (d) 13. Cl H H H H H NHCH(CH ₃)CH ₂ OCH ₃ Citric (d) 14. Cl H H H H H NHCH(CH ₃)CH ₂ OCH ₃ Citric (d) 15. Cl H H H H H NHCH(CH ₃)CH ₂ OCH ₃ PhSO3H (d) 16. Cl H H H H H NHCH(CH ₃)CH ₂ OCH ₃ MeSO3H 111-11 16. Cl H H H H H NHCH(CH ₃)CH ₂ CH ₂ (1-imidazolyl) 150-15 17. Cl H H H H H A-morpholinyl 175-17 18. Cl H H H H H NHCH(CH ₃)CH ₂ CH ₂ (1-imidazolyl) 150-15 19. Cl H H H H NHCH(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂ 147-14 20. Cl H H H H NHCH(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂ 147-14 21. Cl H H H H NHCH(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂ 121-12 22. Cl H H H H NHCH(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃ 129-13 23. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃ 129-13 24. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃ 129-13 25. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃ 139-14 26. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃ 139-14 27. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃ 139-14 29. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₂ OCH ₃ 139-14 29. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₃ OCH ₃ 139-14 29. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₃ OCH ₃ 139-14 29. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₃ OCH ₃ 139-14 30. Cl H H H H NHC(CH ₃)CH ₂ CH ₃ OCH ₃ 139-14 31. Cl H H H H NHC(CH ₃)CH ₂ CH ₃ OCH ₃ 139-14 33. Cl H H H H NHC(CH ₃)CH ₂ CH ₃ OCH ₃ 1143-14 33. Cl H H H H NHC(CH ₃)CH ₂ CH ₃ OCH ₃ 1143-14 34. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 38. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 39. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 39. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 31. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 32. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 33. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 34. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 35. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ OCH ₃ 1190-19 36. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ CH ₃ OCH ₃ 1190-19 37. Cl H H H H NHCH(CH ₃)CH ₃ CH ₃ CH ₃ OCH ₃ 1190-19 38. Cl H H H H NHCH(CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃ 1190-19 39. Cl		T			T	T	Tanana and an analysis and analysis and an ana		,
12. CI H H H H H NHCH(CH ₃)CH ₂ OCH ₃ HCI (d)	10.	CI		CI	Н	Н	NHCH(CH ₃)CH ₂ OCH ₃		100-101
12. C H	11.		Н		Н	Н	NHCH(CH ₃)CH ₂ OCH ₃		128-129
13. C H	12.	CI	Н	Н	Н	Н	NHCH(CH₃)CH₂OCH₃	HCI	104-105 (d)
14. C H	13.	CI	Н	Н	Н	Н	NHCH(CH₃)CH₂OCH₃		80-90 (d)
15. C H H H H NHCH(CH ₃)CH ₂ CCH ₃ MeSO3H 111-11 (d)	14.	Cl	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ OCH ₃		103-104 (d)
16. C H H H H H H H H	15.	CI	Н	Н	Н	Н	NHCH(CH₃)CH₂OCH₃	MeSO3H	111-112
17. C H H H H 4-morpholiny 175-17 18. C H H H H NH-(1-amino-2-cyclohexyl) >215 19. C H H H H NH-(1-dychechevel) >215 19. C H H H H NH-(1-dychechevel) >215 20. C H H H H NH-(1-dychechevel) 177-17 21. C C H H H H NH-(1-dychechevel) 177-17 22. C H H H H NH-(1-dychechevel) 103-10 22. C H H H H NH-(1-dychechevel) 129-13 23. C H H H H NH-(1-dychechevel) 129-13 24. C H H H H NH-(1-dychechevel) 129-13 25. C H H H H NH-(1-dychechevel) 129-13 26. C H H H H NH-(1-dychechevel) 129-13 27. C H H H NH-(1-dychechevel) 139-14 28. C H H H NH-(1-dychechevel) 139-14 29. C H H H NH-(1-dychevel) 139-14 30. C H H H NH-(1-dychevel) 139-14 31. C H H H NH-(1-dychevel) 139-14 32. C H H H NH-(1-dychevel) 143-14 33. C H H H NH-(1-dychevel) 143-14 34. C H H H NH-(1-dychevel) 161-16 35. C H H H NH-(1-dychevel) 161-16 36. C H H H NH-(1-dychevel) 130-13 36. C H H H NH-(1-dychevel) 130-13 37. C H H H NH-(1-dychevel) 130-13 38. C H H H NH-(1-dychevel) 130-14 39. C H H H NH-(1-dychevel) 130-14 39. C H H H NH-(1-dychevel) 130-14 40. C H H H NH-(1-dychevel) 130-14 41. C H H H NH-(1-dychevel) 130-14 42. C H H H NH-(1-dychevel) 130-15 44. C H H H NH-(1-dychevel) 135-14 45. C H H H NH-(1-dychevel) 135-14 46. C H H H NH-(1-dychevel) 135-14 47. C H H	16.	CI	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ CH ₂ -(1-imidazolyl)	 	150-151
19. Cl H H H H H NHCH(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂ 147-14 20. Cl H H H H H NHCH(CH ₃)CH ₂ CH ₂ (4-morpholinyl) 171-17 21. Cl H H H H H NHCH ₂ CH ₂ -(4-morpholinyl) 103-16 22. Cl H H H H H NHNH ₂ 201-26 23. Cl H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 129-13 24. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₂ OH 25. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₂ OCH ₃ 26. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃ 27. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₃ CH ₂ OH 63-64 28. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₃ OCH ₃ 30. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 139-14 29. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 90-91 30. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ OH 90-91 31. Cl H H H H NHC(CH ₃)CH ₂ CH ₂ OCH 90-91 32. Cl H H H H H NHCH(CH ₂ CH ₃)CH ₂ OH 90-91 33. Cl H H H H H NHCH(CH ₂ CH ₃ CH ₂ OCH ₃ 143-14 33. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 151-16 35. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 161-16 35. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 161-16 35. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 161-16 36. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 161-16 37. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 161-16 38. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 161-16 39. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 160-13 39. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ OCH ₃ 160-13 39. Cl H H H H NHCH(CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ OCH ₃ 109 39. Cl H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ OCH ₃ 109 41. Cl H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ OCH ₃ 109 41. Cl H H H H NHCH(CH ₃ CH ₂ CH ₃ OCH ₃ 109 41. Cl H H H H NHCH(CH ₃ CH ₂ CH ₃ OCH ₃ 109 41. Cl H H H H NHCH(CH ₃ CH ₂ CH ₃ OCH ₃ 109 41. Cl H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ 109 41. Cl H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ 109 42. Cl H H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ 109 43. Cl H H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ 109 44. Cl H H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ 100-14 45. Cl H H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ 100-14 46. Cl H H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 100-14 47. Cl H H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 100-14 48. Cl H H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 100-14 49. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 100-14 49. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 10	17.	Cl	Н	Н	Н	Н			175-176
19. Cl H H H H H NHCH(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂ 147-14 20. Cl H H H H H NHCH ₂ CH ₂ -(4-morpholinyl) 171-17 21. Cl H H H H H NHCH ₂ CH ₂ -(4-morpholinyl) 103-16 22. Cl H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 129-13 23. Cl H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 129-13 24. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OCH ₃ 25. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OCH ₃ 26. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OCH ₂ CH ₃ 27. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OCH ₂ CH ₃ 28. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 63-64 29. Cl H H H H NHC(CH ₂ CH ₂ CH ₂ CH ₂ OH 139-14 29. Cl H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 90-91 30. Cl H H H H NHC(CH ₂ CH ₂ CH ₂ CH ₂ OH 90-91 31. Cl H H H H NHC(CH ₂ CH ₂ CH ₂ CH ₂ OH 90-91 32. Cl H H H H NHC(CH ₂ CH ₂ CH ₂ CH ₂ OH 90-91 33. Cl H H H H NHCH(CH ₂ CH ₃ COH ₃ 143-14 33. Cl H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ OH 90-91 34. Cl H H H H NHCH(CH ₂ CH ₃ CH ₂ OCH ₃ 161-16 35. Cl H H H H NHCH(CH ₂ CH ₂ CH ₂ OCH ₃ 161-16 35. Cl H H H H NHCH(CH ₂ CH ₂ CH ₂ OCH ₃ 161-16 36. Cl H H H H NHCH(CH ₂ CH ₂ CH ₂ OCH ₃ 161-16 37. Cl H H H H NHCH(CH ₂ CH ₂ CH ₂ OCH ₃ 109-13 38. Cl H H H H NHCH(CH ₂ CH ₃ CH ₂ CH ₃ OH 190-13 39. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-13 39. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OCH ₃ 109 39. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 38. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 39. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 39. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 39. Cl H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 109 41. Cl H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 109 41. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 42. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 43. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 44. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 45. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 46. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 47. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 48. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-19 49. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ OH 190-190-190-190-190-190-190-190-190-190-	18.	CI	Н	Н	Н	Н	NH-(1-amino-2-cyclohexyl)		>215
20. C H H H H NHCH2CH2-(4-morpholinyl) 171-17 21. C H H H H 1-piperazinyl 103-10 222. C H H H H NHNH12 201-20 233. C H H H H NHC(CH3)2CH2CH2CH2 129-13 24. C H H H H NHC(CH3)2CH2CH2CH3 129-13 255. C H H H H NHC(CH3)2CH2CH2CH3 266. C H H H H NHCH2CH2CH2CH3 267. C C H H H H NHCH2CH2CH2CH3 268. C H H H H NHCH2CH2CH2CH3 27. C H H H H NHCH2CH2CH2CH3 27. C H H H H NHCH2CH2CH3CH3 27. C H H H H NHCH2CH2CH3CH3 27. C H H H H NHCH2CH2CH3CH3 27. C C H H H H NHCH2CH2CH3 27. C C H H H H NHCH2CH2CH3 27. C C C C C C C	19.	CI	Н	Н	Н				147-148
21. C H H H H H H H H	20.	Cl	Н	Н	Н	Н			171-172
22. CI H H H H H NHNH2 23. CI H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 24. CI H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OCH ₃ 25. CI H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₂ OCH ₃ 26. CI H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₂ OH 27. CI H H H H NHC(CH ₂ CH ₂ CH ₃ CH ₂ OH 28. CI H H H H NHC(CH ₂ CH ₂ CH ₃ CH ₂ OH 29. CI H H H H NHC(CH ₂ CH ₂ CH ₃ OH 30. CI H H H H NHC(CH ₃)CH ₂ CH ₂ CH ₃ OH 31. CI H H H H NHC(CH ₃ CH ₂ CH ₃ CH ₃ OH 32. CI H H H H NHC(CH ₃ CH ₂ CH ₃ CH ₃ OH 33. CI H H H H NHC(CH ₃ CH ₂ CH ₃ CH ₃ OH 34. CI H H H H NHC(CH ₂ CH ₃ CH ₂ OCH ₃ 35. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ OH 36. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ OH 37. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 38. CI H H H H NHCH ₂ CH ₂ CH ₃ OH 39. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 31. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 31. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 32. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 33. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 34. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 35. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 36. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 37. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 38. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 39. CI H H H	21.	Cl	Н	Н	Н			†	103-104
23. C H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ OH 129-13	22.	Cl	Н	Н	Н	Н		 	
24. CI H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CCH ₃ 25. CI H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃ 26. CI H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃ 27. CI H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃) 28. CI H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃) 29. CI H H H H NHCH ₂ CH(CH ₃)CCH ₃ 30. CI H H H H NHCH ₂ CH(CH ₃)CH ₂ CH 31. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH 32. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ CH 33. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ CH 33. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ COH 34. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₂ CH 35. CI H H H H NHCH ₂ CH ₂ CH ₃ 36. CI H H H H NHCH(CH ₂ CH ₃ CH ₃ 37. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ CHCH ₃) 38. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ CHCH ₃) 39. CI H H H H NHCH ₂ CH ₂ CH(CH ₃ CH ₂ COH ₃ 39. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 39. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 39. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 39. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 39. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 39. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 39. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 39. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₃ CH ₂ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₃ CH ₃ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₃ CH ₃ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH ₃ CH ₃ CH ₃ CH ₃ COH ₃ 30. CI H H H H H NHCH		Cl	Н					 	+
25. CI H H H H H NHC(CH ₃) ₂ CH ₂ CH ₂ CH ₃ 26. CI H H H H H NHC(CH ₂ CH ₂ CH ₂ CH ₃ 27. CI H H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ 28. CI H H H H H NHCH(CH ₂ CH ₂ CH ₂ CH ₃) 29. CI H H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ 30. CI H H H H H NHCH ₂ CH(CH ₃)CH ₂ CH 31. CI H H H H NHCH ₂ CH(CH ₃)CH ₂ CH 32. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ CH ₃ 33. CI H H H H NHCH(CH ₂ CH ₃ CH ₂ CH ₃ 34. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ 35. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ 36. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₃ 36. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 37. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 38. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 39. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 39. CI H H H H NHCH ₂ CH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 39. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ 40. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ 40. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ 41. CI H H H H NHCH(CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ 42. CI H H H H NHCH(CH ₃ CH ₂ CH ₃		CI	Н					 	123 100
26. CI H H H H H NHCH ₂ CH ₂ CCH ₃ Oil 27. CI H H H H H NHCH ₄ CH ₂ CH ₂ CH ₃)CH ₂ OH 63-64 28. CI H H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ OH 139-14 29. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ CH ₂ OH 139-14 30. CI H H H H NHCH ₂ CH ₄ CH ₃ CH ₂ CH 90 31. CI H H H H NHCH ₄ CH ₃ CH ₂ CH ₂ OH 90-91 32. CI H H H H NHCH ₄ CH ₃ CH ₂ COH ₃ 143-14 33. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ 143-14 33. CI H H H H NHCH ₄ CH ₂ CH ₂ COH ₃ 161-16 35. CI H H H H NHCH ₄ CH ₂ CH ₂ COH ₃ 129-13 36. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ 129-13 36. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ 130 37. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ 190-19 38. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ CH ₂ COH ₃ 0il 39. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ CH ₂ COH ₃ 0il 39. CI H H H H NHCH ₄ CH ₂ CH ₃ CH ₂ COH ₃ 109 41. CI H H H H NHCH ₄ CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 109 41. CI H H H H NHCH ₄ CH ₃ CH ₂ CH ₃ CH ₂ COH ₃ 109 42. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ COH ₃ 1140 43. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₄ OH 176-17 44. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ -1-imidazolyl) 176-17 45. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₂ OH ₃ 150-15 46. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ 150-15 46. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ OH ₃ 150-15 46. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ OH ₃ 150-15 46. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ OH ₃ 150-15 47. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ OH ₃ 150-15 48. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ OH ₃ 150-15 49. CI H H H H NHCH ₄ CH ₂ CH ₂ CH ₂ CH ₃ OH ₃ 150-15	25.	CI	Н	Н	Н			 	
27. CI H	26.	CI	Н	Н	Н			 	Oil
28. CI H H H H H NHC(CH ₃) ₂ CH ₂ OH 139-14 29. CI H H H H H NHCH ₂ CH(CH ₃)CCH ₃ 30. CI H H H H H NHCH ₂ CH(CH ₃)CH ₂ -(1-imidazolyl) 203-20 31. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₂ OH 90-91 32. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₂ OCH ₃ 143-14 33. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 161-16 35. CI H H H H NHCH ₂ CH ₂ CH ₃ OCH ₃ 161-16 35. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 129-13 36. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 130 37. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 130 38. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 130 39. CI H H H H NHCH ₂ CH ₂ OH 190-19 38. CI H H H H NHCH ₂ CH ₂ OH 109 40. CI H H H H NHCH ₂ CH ₂ CH ₂ OH 109 41. CI H H H H NHCH ₂ CH ₂ CH ₂ OH 109 42. CI H H H H NHCH ₂ CH ₂ CH ₂ OH ₃ 109 43. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ DH ₂ 140 44. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 1109 45. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH 135-14 46. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH 135-14 47. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH ₃ 150-15 48. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH ₃ 168SO ₃ H 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH ₃ 168SO ₃ H		Cl	Н					 	
29. CI H H H H H NHCH ₂ CH(CH ₃)OCH ₃ 30. CI H H H H H NHCH ₂ CH(CH ₃)CH ₂ -(1-imidazolyl) 203-20 31. CI H H H H H NHCH ₂ CH ₂ CH ₂ OH 32. CI H H H H NHCH ₂ CH ₂ CH ₃)CH ₂ OCH ₃ 33. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 34. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 35. CI H H H H NHCH ₂ CH ₂ OCH ₃ 36. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 37. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 38. CI H H H H NHCH ₂ CH ₂ OH 39. CI H H H H NHCH ₂ CH ₂ OH 39. CI H H H H NHCH ₂ CH ₃ CH ₂ CH ₃ 40. CI H H H H NHCH ₂ CH ₃ CH ₂ OH 41. CI H H H H NHCH ₂ CH ₂ CH ₃ CH ₂ OH 42. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 43. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 44. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 45. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 46. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 47. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 48. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H NH NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 49. CI H H H NH NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 40. CI H H NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H H NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H H NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₂ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₃ CH ₃ 40. CI H NH NH NHCH ₂ CH ₂ CH ₃ CH ₃ 40. CI H NH NH NHCH ₂ CH ₃ CH ₃ CH ₃ 40. CI H NH NH NHCH ₂ CH ₃ CH ₃ CH ₃ 40. CI H NH NH NHCH ₂ CH ₃ CH ₃ CH ₃ CH ₃ 40. CI H NH NH NHCH ₂ CH ₃ CH ₃ CH ₃ CH ₃ 40. CI H NH NH NHCH ₂ CH ₃	-	CI	Н					 	
30. CI H H H H H NH CH ₂ CH(CH ₃)CH ₂ -(1-imidazolyI) 203-2031. CI H H H H NHCH(CH ₂ CH ₃)CH ₂ OH 90-91 32. CI H H H H H NHCH(CH ₃)CH ₂ OCH ₃ 143-14 33. CI H H H H H NHCH ₂ CH ₂ -(1-imidazolyI) 161-16 35. CI H H H H H NHCH ₂ CH ₂ OCH ₃ 129-13 36. CI H H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyI) 130 37. CI H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyI) 130 38. CI H H H H NHCH ₂ CH ₂ OH 190-19 38. CI H H H H NHCH ₂ CH ₂ OH 190-19 39. CI H H H H NHCH ₂ CH ₂ OH 83-85 40. CI H H H H NHCH ₂ CH ₂ OH 109 41. CI H H H H NHCH ₂ CH ₂ OCH ₃ 109 41. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 109 42. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ ICH ₂ OH 0il 43. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₃ ICH ₂ OH 140 43. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH 140 44. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ III-yI 176-17 44. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ III-yI 176-17 44. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH 135-14 47. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH 135-14 48. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ OH 135-14 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ OH 135-14 49. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ OH 135-14		CI						 	103-140
31. CI H H H H NHCH(CH ₂ CH ₃)CH ₂ OH 90-91 32. CI H H H H NHCH(CH ₃)CH ₂ OCH ₃ 143-14 33. CI H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 161-16 34. CI H H H H NHCH ₂ CH ₂ OCH ₃ 129-13 35. CI H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 130 37. CI H H H NHCH ₂ CH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 190-19 38. CI H H H NHCH ₂ CH ₂ CH ₂ OH ₂ OCH ₂ OCH ₃ 0il 39. CI H H H NHCH ₂ CH ₂ OCH ₃ OCH ₂ OCH ₃ 109 41. CI H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ OCH ₃ 109 42. CI H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ OCH ₃ 140 43. CI H H H <td>30.</td> <td>CI</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>+</td> <td></td> <td> </td> <td>203-204</td>	30.	CI	Н	Н	Н	+		 	203-204
32. Cl H H H H H NHCH(CH ₃)CH ₂ OCH ₃ 143-14 33. Cl H H H H H NHCH ₂ CH ₂ -(1-imidazolyl) 161-16 34. Cl H H H H H NHCH ₂ CH ₂ OCH ₃ 161-16 35. Cl H H H H NHCH ₂ CH ₂ CH ₂ OH ₃ 129-13 36. Cl H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 130 37. Cl H H H H NHCH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 130 38. Cl H H H H NHCH ₂ CH ₂ OH 190-19 39. Cl H H H H NHCH(CH ₃)CH ₂ OH 83-85 40. Cl H H H H NHCH(CH ₃)CH ₂ OH 0il 41. Cl H H H H NHCH(CH ₃)CH ₂ OCH ₃ 109 41. Cl H H H H NHCH(CH[CH ₃]CH ₂ CH ₂ OH 0il 42. Cl H H H H NHCH(CH[CH ₃]CH ₂ CH ₂ OH 0il 43. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NH ₂ 140 43. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NH ₂ 140 43. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ -(1-imidazolyl) 176-17 44. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NHCOOCH ₂ CH ₃ 150-15 46. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH 135-14 47. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OH ₃ 135-14 48. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH ₃ MeSO ₃ H 49. Cl H H H H NHCH ₂ CH ₂	31.	Cl	Н	Н	Н			<u> </u>	
33. C H H H H H NHCH ₂ CH ₂ -(1-imidazolyl) 34. C H H H H H NHCH ₂ CH ₂ OCH ₃ 161-16 35. C H H H H H NHCH ₂ CH ₂ OCH ₃ 129-13 36. C H H H H NH NHCH ₂ CH ₂ CH ₂ CH(CH ₃)-(1-imidazolyl) 130 37. C H H H H NH NHCH ₂ CH ₂ CH ₂ OH 190-19 38. C H H H H NH NHCH ₂ CH ₂ OH 190-19 39. C H H H H NH NHCH ₂ CH ₃ OH ₂ OCH ₃ OH 83-85 40. C H H H H NH NHCH ₂ CH ₃ OH ₂ OCH ₃ 109 41. C H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 109 41. C H H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ 109 42. C H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NH ₂ 140 43. C H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NH ₂ 140 43. C H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NH ₂ 140 45. C H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ 150-15 46. C H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NHCOOCH ₂ CH ₃ 150-15 46. C H H H H NH NHCH ₂ CH ₂ CH ₂ CH ₂ OH 135-14 47. C H H H H NH NHCH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ 135-14 48. C H H H H NH NHCH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ MeSO ₃ H 49. C H H H H NH NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ MeSO ₃ H 49. C H H H H NH NHCH ₂ CH ₂	32.	CI	Н	Н	Н			 	·
34. CI H	33.	Cl	Н	Н					, 10 111
35. CI H	34.	CI	Н	Н				 -	161-162
36. Cl H H H H H NHCH₂CH₂CH(CH₃)-(1-imidazolyl) 37. Cl H H H H H NHCH₂CH₂OH 38. Cl H H H H H NHCH₂CH₃OCH₃OCH₂OCH₃) 39. Cl H H H H H NHCH(CH₃)CH₂OH 40. Cl H H H H H NHCH(CH₃)CH₂OCH₃ 41. Cl H H H H H NHCH(CH[CH₃]CH₂CH₃OH 42. Cl H H H H H NHCH₂CH₂CH₂CH₃ 43. Cl H H H H NHCH₂CH₂CH₂CH₂OH 44. Cl H H H H NHCH₂CH₂CH₂CH₂-(1-imidazolyl) 45. Cl H H H H NHCH₂CH₂CH₂-(1,2,4)-triazol-1-yl 45. Cl H H H H NHCH₂CH₂CH₂CH₂NHCOOCH₂CH₃ 46. Cl H H H H NHCH₂CH₂CH₂CH₂OH 47. Cl H H H H NHCH₂CH₂CH₂CH₂OH 48. Cl H H H H NHCH₂CH₂CH₂CH₃ 49. Cl H H H H NHCH₂CH₂CH₂CH₂OH 49. Cl H H H H NHCH₂CH₂CH₂CH₂OH 49. Cl H H H H NHCH₂CH₂CH₂CH₂OH 48. Cl H H H H NHCH₂CH₂CH₂CH₂OH 49. Cl H H H H NHCH₂CH₂CH₂CH₂OH 49. Cl H H H H NHCH₂CH₂CH₂CH₂OH MeSO₃H	35.	Cl	Н	Н	Н			 	129-130
37. CI H	36.	Cl	Н	Н	Н			<u> </u>	
38. CI H H H H H N(CH₂OCH₃)CH(CH₃)CH₂OCH₃) oil 39. CI H H H H NHCH(CH₃)CH₂OH 83-85 40. CI H H H H NHCH(CH₃)CH₂OCH₃ 109 41. CI H H H H NHCH(CH₃CH₂CH₂CH₃)CH₂OH oil 42. CI H H H NHCH₂CH₂CH₂CH₂NH₂ 140 43. CI H H H NHCH₂CH₂CH₂CH₂-(1-imidazolyl) 176-17 44. CI H H H NHCH₂CH₂CH₂CH₂-(1,2,4)-triazol-1-yl 150-15 45. CI H H H NHCH₂CH₂CH₂CH₂OCH₃ 150-15 46. CI H H H NHCH₂CH₂CH₂CH₂OCH₃ 135-14 47. CI H H H NHCH₂CH₂CH₂CH₂OCH₃ MeSO₃H 48. CI H H H NHCH₂CH₂CH₂CH₂CH₂-(1-imidazolyl)	37.	Cl	Н	Н	Н			<u> </u>	
39. Cl H H H H NHCH(CH ₃)CH ₂ OH 40. Cl H H H H NHCH(CH ₃) ₂ CH ₂ OCH ₃ 41. Cl H H H H NHCH(CH[CH ₃]CH ₂ CH ₃)CH ₂ OH 42. Cl H H H H NHCH ₂ CH ₂ CH ₂ NH ₂ 43. Cl H H H H NHCH ₂ CH ₂ CH ₂ -(1-imidazolyl) 44. Cl H H H H NHCH ₂ CH ₂ CH ₂ -(1,2,4)-triazol-1-yl 45. Cl H H H H NHCH ₂ CH ₂ CH ₂ NHCOOCH ₂ CH ₃ 46. Cl H H H H NHCH ₂ CH ₂ CH ₂ OH 47. Cl H H H H NHCH ₂ CH ₂ CH ₂ OH 48. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ 48. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ NHCOOCH ₃ 49. Cl H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH MeSO ₃ H	38.	Cl	Н	Н	Н				
40. CI H	39.	Cl	Н	Н	Н	Н		 	
41. CI H H H H NHCH(CH[CH ₃]CH ₂ CH ₃)CH ₂ OH oil 42. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH 140 43. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ CH-imidazolyl) 176-17 44. CI H H H H NHCH ₂ CH ₂ CH ₂ CH ₂ Ol-1-yl 150-15 45. CI H H H H NHCH ₂ CH ₂ CH ₂ NHCOOCH ₂ CH ₃ 150-15 46. CI H H H NHCH ₂ CH ₂ CH ₂ OH 135-14 47. CI H H H NHCH ₂ CH ₂ CH ₂ OCH ₃ MeSO ₃ H 48. CI H H H NHCH ₂ CH ₂	40.	Cl	Н	Н	Н			 	
42. CI H	41.	Cl	Н				NHCH(CHICH3ICH2CH3)CH2OH	 	
43. Cl H	42.	Cl	Н	Н	Н	Н		 	
44. Cl H	43.	CI	Н	Н	Н				176-177
45. CI H	44.	CI	Н	Н	Н				1
46. Cl H H H H NHCH2CH2CH2CH2OH 135-14 47. Cl H H H NHCH2CH2CH2CH3 135-14 48. Cl H H H NHCH2CH2CH2NH2 MeSO3H 49. Cl H H H NHCH2CH2CH2-(1-imidazolyl) MeSO3H	45.	CI	Н	Н				†	150-151
47. Cl H H H H NHCH₂CH₂CH₂OCH₃ 163 14 48. Cl H H H NHCH₂CH₂CH₂NH₂ MeSO₃H 49. Cl H H H NHCH₂CH₂CH₂-(1-imidazolyl) MeSO₃H							[
48. Cl H H H H NHCH₂CH₂CH₂NH₂ MeSO₃H 49. Cl H H H NHCH₂CH₂CH₂-(1-imidazolyl) MeSO₃H	47.	CI	Н	Н					100 172
49. Cl H H H H NHCH ₂ CH ₂ -(1-imidazolyl) MeSO ₃ H	48.		Н					MeSO ₃ H	
			Н						
50. CI H H H H NHCH(CH ₃)CH ₂ Oac 137-13	50.	CI	Н	Н	Н	Н		 	137-138
10/10								<u> </u>	125-126

PCT/EP01/06389

[60]	-		1	T.,	т	All IOL OF THE		T
52.	CI	<u> </u>	H	H	H	NHCH₂CH₂OAc		128-129
53.	CI	H	H	H	Н	NHCH(CH₂CH₂CH₃)CH₂OAc		oil
54.	CI	H	H	Н	H	NHCH(CH ₃)CH ₂ OCH ₂ CH ₃		
55.	CI	H	Н	H	Н	NHCH(CH ₃)CH(CH ₃)OCH ₃		
56.	CI	H	H	H	H	NHCH₂CH(CH₃)OCH₃		
57.	CI	Н	H	H	Н	NHCH₂CH₂OCH₂OCH₃		
58.	CI	H	H	H	Н	NH ₂		214-215
59.	CI	Н	Н	Н	H	N(CH ₃)₂		178-179
60.	CI	Н	Н	Н	Н	NHCH₂CH₃		201
61.	CI	Н	H	H	H	NHCOCH₃		245-247
62.	CI	H	Н	H	Н	NHCOCH₂CH₂CH₃		185-186
63.	CI	Н	H	Н	Н	NHCOCF ₃		180-181
64.	CI	Н	H	Н	H	NHCH₃		196-197
65.	CI	Н	H	H	Н	NHCH(CH ₃)CH(OCH ₃) ₂		121-122
66.	CI	Н	Н	Н	Н	N=C(CH ₃)N(CH ₃) ₂		Oil*
67.	CI	H	H	H	Н	NHCH ₂ CH ₂ CH ₂ CH ₃	- 	165-166
68.	CI	Н	Н	Н	Н	NHCH(CH ₃) ₂		184-185
69.	CI	H	Н	Н	Н	NHCH ₂ CH=CH ₂		179-180
70.	CI	Н	Н	Н	Н	NHC(CH ₃) ₃		125-126
71.	CI	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ CH ₂ -(2-pyridyl)		136-137
72.	CI	Н	Н	Н	Н	N(CH ₃)NH ₂		181-183
73.	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ SO ₂ CH ₃	<u> </u>	164-165
74.	Cl	Н	Н	Н	Н	NHCH₂CH₂SOCH₃		167-168
75.	CI	Н	Н	Н	Н	NHCH ₂ -(2-tetrahydrofuryl)		151-152
76.	CI	Н	Н	H	Н	NHCH ₂ CH(CH ₃)OH		152-153
77.	CI	Н	Н	H	H	NHCOCH(OH)CH₃		169-170
78.	CI	Н	Н	Н	Н	NHCH ₂ -(2-furyl)		185-186
79.	Cl	Н	H	Н	Н	NHCH ₂ -(2-pyridyl)		145-146
80.	CI	Н	H.	Н	Н	NH-(3-pyrrolidyl)		129-130
81.	CI	Н	Н	Н	Н	NHCH ₂ CH=C(CH ₃) ₂		141-143
82.	CI	Н	Н	Н	Н	NHCH(CH ₃) ₂	HCI	88-89
83.	CI	Н	Н	Н	Н	NH-(4-tetrahydropyranyl)		166-167
84.	CI	Н	Н	Н	Н	NHCH ₂ -(3-tetrahydrofuryl)		184-185
85.	Cl	Н	Н	Н	Н	NHCH ₂ CH(CH) ₃ CH ₂ CH ₃		162-164
86.	CI	H	Н	Н	Н	NHCH ₂ CH ₂ OCH ₂ CH ₃		123-124
87.	CI	Н	Н	Н	Н	NHCH ₂ CH(OCH ₃) ₂		148-149
88.	Cl	Н	Н	Н	Н	NCH ₃ NHCH ₃		
89.	Cl	Н	Н	Н	Н	NHCH₂CH₂NHCOOCH₂CH₃		148-150
90.	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ -(2-pyridyl)		164-165
91.	C	Н	H	Н	Н	N(CH ₃)CH ₂ OCH ₃		
92.	CI	Н	Н	Н	Н	NHCOCF ₂ CF ₂ CF ₃		149-150
93.	Cl	Н	Н	Н	Н	NHCOCF₂CF₃		172-174
94.	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ CH ₂ O-(2-pyrimidinyl)	 	93-95
95.	Cl	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ O-(2-pyrimidinyl)		79-80
96.	Cl	Н	Н	Н	Н	NHCOCH ₂ CH ₃		215-216
97.	Cl	Н	Н	Н	Н	N=CHN(CH ₃) ₂		194-195
98.	Cl	Н	Н	Н	Н	N(CH ₂ CH ₃)CH ₂ OCH ₃	 	114-115
				· <u>·</u>	<u> </u>	1		1

99.	CI	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ CH ₃	1	198-199
100.	CI	Н	H	H	H	NHCH ₂ CH ₂ CH ₂ Si(OCH ₃) ₃	 	144-146
101.	CI	H	H	H	H	N(NH ₂) CH ₂ CH ₂ OH	 	144-140
102.	CI	H	H	Н.	H	NHCH ₂ -(3-pyridyl)	 	166-167
103.	CI	H	H	H	H	NHCH ₂ CF ₃		222-223
104.	CI	H	H	H	H	N(CH ₃)N(Ac) ₂		197-199
105.	CI	H	H	H	 	N(CH ₃)NHAc		210-212
106.	CI	H	H	H	H	NHCH ₂ CH ₂ CCOCH ₂ CH ₃	 	210-212
107.	CI	H	 	H	H	NHCH(CH ₃)CH ₂ SCH ₃	 	149-150
108.	CI	H	H	 	H	NHCH ₂ CH ₂ SCH ₃	 	148-149
109.	CI	H	Н	H	H	NHCH(CH ₃)CH ₂ SOCH ₃	<u>!</u>	140-143
110.	CI	H	Н	H	H	N=C(CH ₃)N(CH ₂ CH ₃) ₂		<u> </u>
111.	CI	H	H	H	H	N=C(CH ₃)N(CH ₃)CH ₂ CH ₃	<u>'</u>	
112.	CI	Н	Н	H	H	N=C(CH ₃)N(CH ₂ CH ₃) ₂	 	
113.	CI	Н	Н	Н	H	NHS(O)N(CH ₃) ₂		
114.	CI	H	Н	Н	Н	NHC(O)N(CH ₃) ₂		
115.	CI	H	H	H	H	NHCH(CH ₃)C=CHCH ₃	 	
116.	CI	H	H	H	H	NHCH(CH ₃)C=C(CH ₃) ₂	i	
117.	CI	H	Н	Н	Н	NHCH₂C≡CH	 	-
118.	CI	Н	Н	Н	Н	NHCH(CH₃)C≡CH		<u> </u>
119.	CI	H	Н	Н	Н	NHCON(CH ₂ CH ₃) ₂		
120.	CI	Н	Н	Н	Н	NHCOOCH ₃	†	<u> </u>
121.	CI	Н	Н	Н	Н	NHCOOCH ₂ CH ₃		247-248
122.	CI	Н	Н	Н	Н	N=C(NH ₂)NH ₂	<u> </u>	<u> </u>
123.	CI	Н	Н	Н	Н	N=CHN(CH ₂ CH ₃) ₂		
124.	CI	Н	Н	Н	Н	NHC(CH ₃) ₂ CH ₂ SCH ₃	 	
125.	Cl	Н	Н	Н	Н	NH-(3-tetrahydrofuryl)	HCI	215-216
126.	Cl	Н	Н	Н	Н	NHCH ₂ -(3-furyl)		174-177
127.	CI	Н	Н	Н	Н	NHCH(CH ₃) ₂	MeSO₃H	
128.	CI	Н	Н	Н	Н	NHCH(CH ₃) ₂	Citric	
							acid	
129.	Cl	H	H	H	H			138-139
100	<u> </u>		ļ.,	 	 -		 	
130.	CI	H	H	H	H	NHCH ₂ CH(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃		140-141
131.	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ -(4-imidazolyl)	Tartaric acid	solid
132.	CI	Н	Н	Н	Н	NHCH₂CH₂C(CH₃)₂OH		solid
133.	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ CO (1-[4-		
134.	CI	H	H	Н	H	ETHYLPIPERAŻINYL])		<u> </u>
104.	01	' '		"	"			solid
					L	NH NH		
135.	Cl	Н	Н	Н	Н	0 ^	1	solid
						NH NH		
100	01	 -	 	 	<u> </u>			
136.	CI	H	H	Н	H	NHCH ₂ CH ₂ COOMe		solid
137.	CI	Н	Н	Н	Н			solid
		1	1	1	1	NH NH	l .	!

			T	T				_
138.	Cl	H	H	H	H	NHCH₂CH₂CONHC(CH₃)₃		solid
139.	CI	Н	Н	Н	Н	NHCH₂CH₂CONHCH₂CH₃		solid
140.	Cl	H	Н	Н	H	NHCH₂CH₂CONH(CH₂CH₃)₂		solid
141.	CI	Н	Н	Н	H	NHCH2CH2COOCH(CH3)2		solid
142.	Cl	Н	H	Н	Н	O C		solid
						NH NH N		
				ļ				
143.	CI	Н	H	Н	Н	0 /		solid
;						NH NH		
144.	Cl	Н	Н		-			1
144.	CI	п	ח	Н	Н			solid
						NH O		
145.	CI	Н	Н	H	Н	NHCH ₂ CH ₂ COOCH ₂ CH ₃		solid
146.	CI	Н	Н	H	Н	NHCH ₂ CH ₂ COOH		solid
147.	CI	H	H	H	H	NHCH ₂ CH ₂ -(2-thienyl)		solid
148.	CI	H	H	H	H			
149.	CI	H	H	H		N(CH ₃)CH ₂ CH ₂ NH ₂		solid
					H	NHCH ₂ CH ₂ N(CH(CH3) ₂) ₂		solid
150.	CI	H	H	H	H	NHCH₂CH₂CONHOCH₃		solid
151.	CI	H	H	Н	H	NHCH ₂ CH ₂ CH ₂ CH ₂ NH ₂		solid
152.	CI	Н	H	H	Н	NHCH₂CH₂SO₃H		solid
153.	CI	H	H	H	H	NHCH₂CH₂NHCH₃	MeSO3H	solid
154.	CI	H	Н	H	Н	NHCH₂CH₂NH₂	MeSO3H	solid
155.	Cl	Н	Н	Н	Н	O NH2		solid
						NH ₂ NH ₂		
		1						
156.	Cl	Н	Н	Н	Н	NHCH ₂ CH ₂ NHCH(CH ₃) ₂		solid
157.	C	Н	Н	Н	Н	NHCH ₂ CH ₂ NHCH ₂ CH ₃	MeSO3H	solid
158.	Cl	Н	Н	Н	Н	NHCH ₂ CH ₂ CH ₂ (4-triazolyl)	MeSO3H	solid
159.	Cl	Н	Н	Н	Н	NH-cyclohexyl		191 -
						' '		192
160.	CI	Н	Н	Н	Н	,S_N		240 -
]				}		NH O		241
L						CF ₃		
161.	Cl	Н	Н	Н	Н	NHCH ₂ CH ₂ CH ₂ NHCOCF ₃		solid
162.	C	Н	Н	Н	Н	NHCH ₂ CH ₂ CH ₂ NH(2-pyrimidyl)		186 -
						2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		188
163.	Cl	Н	Н	Н	Н	NHCH2CH2CH2NHCOCH2CH3		171 -
				<u></u>				172
164.	CI	Н	Н	Н	Н	NHCH₂CH₃	MeSO3H	solid
165.	CI	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ OCOOCH ₂ CH ₃		102 -
			l					103
166.	Cl	Н	Н	H	Н	NHCH ₂ CH ₂ CH ₂ (1-triazolyl)		149 -
<u> </u>				<u> </u>				150
167.	Cl	Н	H	H	Н	ОН		90 - 91
			l	L		NH		

C							1.00
168.	CI	Н	Н	H	Н	ОН	139 -
						NH	140
169.	Cl	Н	Н	Н	Н	N(CH ₃)CH ₂ OCH ₃	
170.	C	Н	Н	Н	H_	NHCH ₂ CH ₂ CH ₃	
	CI	Н	Н	Н	Н	\ <u>/</u>	214 -
	-					NH————————————————————————————————————	215
						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		ļ.,	 	<u> </u>	ļ.,-		
171.	CI	Н	Н	Н	Н		solid
			İ			ни ин	
			1				
172.	Cl	Н	Н	Н	Н		oil
			' '		`	NH O	""
470		 -	 	ļ	 	0	
173.	CI	Н	Н	CI	F	N(CH ₃) ₂	138 –
174.	Cl	Н	Н	Н	CI	N(CH ₃) ₂	139 165 -
174.	O.	''	' '	1.,	0'	14(01/3/2	167
175.	CI	Н	F	Н	Н	NHCH(CH ₃) ₂	174 -
							175
176.	CI	Н	Н	Н	Н		143 -
						N N	144
L				<u> </u>	ļ	<u></u> _ 6	
177.	CI	H	Н	Н	Н	N	178 -
		<u> </u>				_6	179
178.	CI	Н	Н	Н	Н		123 -
1			ŀ			l N	124
179.	Cl	Н	Н	Н	Н	ОН	119 -
		ļ					120
						N 7	
180.	CI	Н	Н	Н	Н	NH(CH ₂) ₅ CO ₂ CH ₃	112-115
181.		Н	H	Н	Н	NHCH(CH ₃)CH ₂ OCO ₂ CH ₃	112-113
182.		H	H	H	H	NHNHCOCH ₃	205
183.		Н	Н	Н	Н	NHCH(CH ₃)CO ₂ CH ₃	oil
184.	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ C(CH ₃) ₃	176-178
185.		Н	H	Н	Н	NHCH ₂ CH ₂ CH(CH ₃)CH ₂ C(CH ₃) ₃	155-156
186.	CI	Н	Н	Н	Н	NHCH(CH₃)CH₂OCHO	119-121
187.	CI	Н	Н	H	Н	NHCOCH ₂ OCH ₃	164
188.	CI	Н	H_	Н	Н	NHSO₂CH₃	245
189.	Cl	Н	H_	Н	Н	NHCH(CH₃)CO₂CH(CH₃)₂	oil
190.	Cl	H	H_	Н	Н	N[(CH ₂) ₃ OCO ₂ CH ₂ CH ₃]CO ₂ CH ₂ CH ₃	solid
191.	Cl	Н	H	H	H	CH₂CH₂COOH	
192.	CI	Н_	Н	Н	Н	NHCH ₂ CH ₂ NHCH ₂ CH ₃	

193.	Cl	Н	Н	Н	Н	NHCH ₂ CH ₂ CH ₂ -(1,2,4)-triazol-1-yl	
194.	CI	H	H	H	H	NHCH ₂ CO ₂ CH ₃	164
195.	CI	Н	H	H	Н	NHCH(CH ₃)CO ₂ CH ₂ CH ₃	oil
196.	CI	H	H	H	H	NHCH ₂ CH(CH ₃)CO ₂ CH ₂ CH ₃	oil
197.	CI	Н	H	H	H	0-	155-161
	0.		''		• •	NH O	755-101
			1			\ \frac{1}{\circ_{\circ}\circ_{\circ_{\circ_{\circ_{\circ_{\circ_{\circ}\circ_{\circ_{\circ_{\circ}\circ_{\circ_{\circ_{\circ_{\circ_{\circ_{\circ_{\circ_{\circ_{\	
198.	CI	Н	Н	Н	Н	CO2C(CH3)3	193-197
			}	į		NH N	
			<u> </u>	ļ		6	
199.	CI	H	H	H	Н	NHCH₂CH(CH₃)CO₂CH₃	oil
200.	CI	Н	H	Н	Н	NHCH₂CH₂CH(OH)CH(OH)CH₂OH	133-139
201.	CI	Н	H	Н	Н	NHCH(CH ₃)CO ₂ CH ₂ CH ₃	136-137
202.	CI	Н	Н	Н	Н	NHCH₂CONHCH₃	191-192
203.		Н	Н	Н	H	NHCH(CH₃)CONHCH₃	205
204.		Н	H	Н	Н	NH(CH₂)₄OH	
205.	CI	Н	Н	Н	Н	ни	
		<u> </u>				NH ₂	
206.	CI	H	Н	Н	Н	NH(CH ₂) ₃ NHCH ₂ CH ₂ OH	
207.		Н	Н	Н	Н	NHCH ₂ CH ₂ -(4-imidazolyl)	
208.	Cl	Н	Н	Н	Н	NH(CH ₂) ₅ OH	
209.		Н	Н	Н	Н	N[(CH ₂) ₃ OCONH ₂]CONH ₂	
210.		Н	H	H	Н	N(CH ₃)CH ₂ CH ₂ OH	
211.	CI	Н	H	H	Н	N(CH ₂ CH ₂ OH) ₂	
212.	CI	Н	H	Н	Н	NH	
213.	CI	Н	Н	Н	Н	NH(CH ₂) ₃ OCH(CH ₃) ₂	
214.		Н	Н	Н	Н	NH(CH ₂) ₃ N(CH ₃) ₂	
215.		Н	Н	Н	Н	NH(CH ₂) ₃ OCH ₂ CH ₃	
216.	Cl	Н	Н	Н	Н	0	
						NH	
]					Ì		
217.	Cl	Н	Н	Н	Н	NUCL (4 mindul)	
218.		H	H	H	Н	NHCH ₂ -(4-pyridyl)	
219.		H	Н	Н	Н	NHCH 2 NCH CH 2	
220.		H	H	<u>Н</u>	Н	NH(CH ₂) ₃ N(CH ₂ CH ₃) ₂ NH(CH ₂) ₂ N(CH ₂ CH ₃) ₂	
221.	Cl	H	H	Н	H		
222.	CI	H	H	H	H	NH(CH ₂) ₂ N(CH ₃) ₂ NHCH2CH ₂ -(1-pyrrolidinyl)	
223.		H	Н	H	Н	NHCH2CH ₂ -(1-pyrollality!) NHCH ₂ CH ₂ CONH ₂	
224.	Cl	Н	Н	H	Н	NHCH ₂ CH ₂ CON(CH ₃) ₂	
225.	Cl	H	H	H	Н		
`.	-		' '	''	''	N N	
	<u> </u>					ОН	_ 1
226.	CI	Н	Н	Н	H	NHCH₂CH₂CONHCH₂CH₂CH₃	
227.	Cl	Н	H	Н	H	NHCH ₂ CH ₂ CONHCH ₂ Ph	

228.	CI	Н	Н	Н	Н	MUCH CH COMMA Haved		
229.	Cl	Н	H	H	H	NHCH₂CH₂CONH(c-Hexyl)		
229.	Ci	n	ח	П	"	\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	
						NH NH		
						<u> </u>	L	j
230.	CI	H	H	H	H	NHCH₂CON(CH₂CH₃)₂		
231.	CI	H	Н	Н	H			
						NH NH N		
								İ
232.	CI	Н	Н	H	Н	NHCH₂CH₂CONHOH		
233.	CI	Н	H	<u> </u>	Н	NHCH₂CH₂NHCH₃		
234.	CI	Н	H	Н	Н	NHCH ₂ CH ₂ CH ₂ NHSO ₂ CH ₃		
235.	CI	H	H	H	Н	NHCH2CH2CH2NHCOCH3		
236.	Cl	Н	H	H	Н	NHCH ₂ CH ₂ CH ₂ NHCOCH(CH ₃) ₂		
237.	CI	Н	H	H	Н	NHCH2CH2CH2NHCONH2		
238.	CI	Н	H	H	Н	NHCH(CH ₃)CONHCH ₂ CH ₃		173-174
239.	CI	Н	Н	H	Н			130
					1	NNN		
040			 	ļ. <u>. </u>	 			
240.	CI	Н	H	H	Н	NHCH(CH₃)CH₂OH		122-123
241.	CI	H	H	H	Н	N(COCF ₃)CH(CH ₃)CH ₂ OCH ₃	_	oil
242.	CI	H	H	Н	H	N(CO ₂ CH ₃)CH(CH ₃)CH ₂ OCH ₃		
243.	CI	H	H	H	H	N(CHO)N(CH ₃)CO ₂ C(CH ₃) ₃		solid
244.	CI	H	H	Н	H	NHN(CH ₃)COCH ₃		solid
245.	CI	H	H	H	H	NHCH₂CH₂NHAc		
246.	CI	H	H	H	H	NHCH ₂ CH ₂ -(3-pyridyl)		
247. 248.	Cl	H	H	Н	H	NH(CH ₂) ₃ OH	MeSO ₃ H	
	CI	Н	Н	Н	Н	NHCH₂CH₂COOH	Na	
249.	CI	H	Н	H	H	NH(CH ₂) ₃ NHCH ₂ CH ₂ OH	MeSO ₃ H	
250. 251.	Cl	H	H	Н	H	NHCH ₂ CH ₂ -(1-imidazolyl)	MeSO₃H	
	CI	H	H	Н	H	NHCH2CH2NHCH(CH ₃) ₂	MeSO ₃ H	
202.	CI	Н	Н	H	H	,		
.		[NH NH		
253.	CI	Н	Н	Н	Н	NH		
								1
						H \		İ
254.	Br	Н	Н	Н	Н	NH(CH ₂)₃OH	+	144-146
255.	Br	Н	Н	Н	Н	NH(CH ₂) ₃ OCH ₃		132-134
256.	F	Н	Н	Н	Н	NH(CH ₂) ₃ OH		153-156
257.	CH₃	Н	Н	Н	Н	NH(CH ₂) ₃ OH	+	128-130
258.	CF ₃	Н	Н	Н	Н	NH(CH ₂) ₃ OH		155-156
259.	CH₃O	Н	Н	Н	Н	NH(CH ₂) ₃ OH	 	126-129
260.	CH₃S	H	Н	Н	Н	NH(CH ₂) ₃ OH		98-100
261.	NO ₂	H	Н	Н	Н	NH(CH ₂) ₃ OH	 	152-155
262.	Ac	H	Н	Н	Н	NH(CH ₂) ₃ OH	 	125-128
263.	CF ₃	Н	Н	Н	Н	NH(CH ₂) ₃ OCH ₃	 	144-147
	CICF ₂ O	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ OCH ₃	 -	131131

265.	CICF ₂ O	1	T.,	1	1	NUCLI OU CU	 151 150
		H	H	H	H	NHCH₂CH₂OH	 151-153
266.	OCF ₂ C HF ₂	Н	Н	Н	Н	NH(CH₂)₃OH	
267.	OCF ₂ C HF ₂	Н	Н	Н	Н	NH(CH₂)₃OCH₃	
268.	CF ₃	Н	Н	H	Н	NH(CH ₂) ₂ NH ₂	
269.	OCF ₂ C HF ₂	Н	Н	Н	Н	NH(CH ₂) ₄ NH ₂	
270.	CO ₂ H	Н	Н	Н	Н	NH(CH ₂) ₃ OH	
271	CO₂C	Н	Н	Н	Н	NH(CH ₂) ₃ OH	
	H₃				}	, -/-	
272	CF ₃	Н	Н	Н	Н	NHCH(CH₃)CH₂OH	 142-143
273	AcNH	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ OAc	163
274	CH ₃	Н	Н	Н	Н	NHCH(CH ₃)CH ₂ OH	 80-81
275	CH₃	Н	Н	Н	Н	NHCH ₂ CH ₃	
276	OCF ₂ CHF ₂	Н	Н	Н	Н	NHCH ₂ CH ₂ OH	
277	CI	Н	Н	Н	Н	HN O	201–205
278	Cl	Н	Н	Н	Н	NHN(COCH ₃) ₂	210
279	CI	Н	Н	Н	Н	N O	166-167
280	CI	Н	Н	Н	Н	NHCH ₂ CH ₂ CH ₂ OCOOCH ₂ CH ₃	 148-150

(d) = under decomposition; CN = compound number

Biological Examples:

Using the biological assays B-1 to B-12 described above, the tests are carried out employing compounds, or their salts, from Table 59 given above. Plus "+" in the following table means that the activity observed in the corresponding test system is 70 % or more.

Table 60:

CN	B1	B2	B5	B6	B7	B8	B9	B10	B11	B12
1								+		
2	+							+		+
3						+		+		+
4				+		+	+		+	+
5								+	+	+
6										

7 + <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>,</th><th></th><th>· · · · · · · · · · · · · · · · · · ·</th><th>, ;</th></td<>								,		· · · · · · · · · · · · · · · · · · ·	, ;
9	7			+	+				+		
10 11 11 11 12 + <td>8</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>+</td> <td></td> <td>_</td> <td></td> <td></td>	8				+		+		_		
11 12 +	9										
12 + <t< td=""><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	10										
13 + <t< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td>i</td><td></td><td></td><td></td></t<>	11							i			
14 + + + + + + + + + + + + + + + + + + +	12	+		+	+	+	+	+	+		+
15 +	13	+		+	+	+	+		+		+
16	14	<u> </u>			+	+	+		+		+
17 18 19 10 <td< td=""><td>15</td><td>+</td><td></td><td></td><td>+</td><td>+</td><td>+</td><td></td><td>+</td><td></td><td>+</td></td<>	15	+			+	+	+		+		+
18	16					 	+		+		+
19 +	17										
20 +	18										
21	19						+				
22	20				+		+		+		+
23	21										
24	22								+		
25	23		-								
26 + + + + + + + + + + + + + + + + + + +	24							· · - · ·			
27 + + + + + + + + + + + + + + + + + + +	25										
28 +	26					+	+		+		+
29	27					+	+		+		+
30 + + + + + + 31 + + + + + + + 32 + + + + + + + 33 - - - + + + + 34 - + + + + + + 35 + + + + + + 36 - + + + +	28			+		+	+		+		+
31 + </td <td>29</td> <td></td>	29										
32 + </td <td>30</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>+</td> <td> </td> <td>+</td> <td></td> <td>+</td>	30			+			+		+		+
33 + + + + + + + + + + + + + + + + + + +	31	+	+	+		+	+		+	+	
34 + + + + + + 35 + + + + + 36 + + + +	32	+		+	+	+	+	+	+		+
35 + + + + + + 36 + +	33			-							
36 +	34					+	+		+	+	+
	35			+	_	+	+		+		
37 + + + + + +	36			-					+	-	
	37			+	+	+	+	+	+		+

								·		
38		·	+					+		+
39	+				+	+	+	+		+
40										
41			+		+			+		
42						+	<u> </u>	+		+
43					+	+	+	+		+
44										
45										
46	+						+	+		+
47		İ								
48						+		+		+
49					+	+		+		+
50			+	+	+	+	+	+		+
51								+		+
52								+		+
53						+				
54									1	
55							-			
56										
57										
58	+		+	+	+	+	+	+		+
59				+				+		+
60	+	<u> </u>	+		+	+		+		+
61				-					+	
62								+		+
63			+		+	+	+	+	 	+
64		+				+		+		+
65			+	+	+	+	+	+		+
66			+		+	+	+	+	+	+
67										
68	+				<u> </u>	+		+	+	+
	·	<u>L</u>	l	·	L		L			

	· · · · · ·	·	r	 -			 		
69			+		+	+	+		+
70						+	+		+
71							+		+
72									
73									
74							 		+
75	+		+		+	+	+		+
76							+		+
77									
78						+			
79						+	+		
80									
81				+		+	+		+
82	+					+	+		+
83						+	+	+	+
84						+	 +		+
85				····					
86							 	_	
87							+		+
88			7						
89							 		
90						+	 +		
91							 +		+
92							 		
93					+	+	 +		
94	+					+	+		
95			+				+		+
96			+				+	·	+
97						+	 +		+
98							 +		
99		-							
							 	L	

100			 		+			
101			 					
102			 -		+		+	
103	-	<u> </u>	 +				+	 +
104	-		 -					
105		<u> </u>						
106					+	-	+	+
107			 					
108								
109								
110		ļ 	 -					
111				·				
L.								
112								
113			 					
114								
115								
116								
117								1
118								
119								
120			7					
121						+	+	
122								
123								
124		-						
125					+	+	+	+

(I)

105

What is claimed is

1. A process for protecting a plant against attack or infestation by a phytopathogenic organism, comprising applying at least one compound of the formula I,

wherein

n is 0 or 1,

R₁ is halogen, alkoxy, haloalkyl, haloalkoxy or alkyl,

R₂ is hydrogen, halogen, alkyl, haloalkyl, alkoxy or haloalkoxy,

each of R_3 , R_4 and R_5 is, independently of the others, hydrogen, lower alkyl or halogen, and R_6 is

- a) hydrazino, that is unsubstituted or one- to threefold substituted by optionally substituted alkyl and/or optionally substituted acyl,
- b) cyclohexylamino, tetrahydro-4H-pyranyl-4-amino, pyrrolidine-3-amino, 2- or 3-tetrahydro-furylamino, all optionally substitutedby amino. hydroxy, alkoxy, alkyl or alkoxyalkyl,
- c) piperazinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- d) morpholinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- e) oxazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- f) thiazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- g) imidazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- h) amino or mono- or di-(lower alkyl)amino wherein the lower alkyl moieties are unsubstituted or substituted by one or more substitutents independently selected from the

group con- sisting of unsubstituted amino, N-mono- or N,N-di-(lower alkyl)-amino, (lower alkoxy)-lower alk-oxy, lower alkoxycarbonylamino, hydroxy-lower alkoxycarbonylamino, lower alkoxy-lower alkoxycarbonylamino, morpholinyl, hydroxy-lower alkylamino, cyano, halogen, oxo bound to a carbon that is not directly bound to a heteroatom, hydroximino, alkoximino, optionally substituted hydrazono, lower alkenyl, lower alkynyl, guanidyl, lower alkanoylamino, hydroxy-lower alkanoylamino, lower alkoxy-lower alkanoylamino, halo-lower alkanoylamino, lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, lower alkoxy-lower alkylaminocarbonylamino, amidino, di-lower-alkylamino-cyclohexyl, carboxy, lower alkoxycarbonyl, hydroxy-lower alkoxycarbonyl, lower alkoxy-lower alkoxycarbonyl, lower alkylcarbonyldioxy (= lower alkoxycarbonyloxy), hydroxy-lower alkoxycarbonyloxy, lower alkoxy-lower alkoxycarbonyloxy, lower alkanoyloxy, halo-lower alkanoyloxy. hydroxy-lower alkanoyloxy, lower alkoxy-lower alkanoyloxy, carbamoyl, N-mono- or N,N-dilower alkylcarbamoyl, N-(hydroxy-lower alkyl)carbamoyl, N-lower alkyl-N-hydroxy-lower alkyl-carbamoyl, N,N-di-(hydroxy-lower alkyl)-carbamoyl, N-hydroxy-carbamoyl, hydroxy, lower alkoxy, lower alkenyloxy, lower alkinyloxy, lower haloalkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower alkoxysilyl, 4-tetrahydro-4H-pyranyl, 3-pyrrolidinyl, 2or 3-tetrahydrofuryl, 2- or 3-dihydrofuryl, piperazinyl, lower alkanoyl-piperazinyl including formylpiperazinyl, optionally substituted heteroaryl and optionally substituted heteroaryloxy i) optionally substituted alkanoylamino, optionally substituted alkenoylamino, optionally substituted alkynoylamino, optionally substituted mono- or di-alkylaminocarbonylamino, optionally substituted alkoxycarbonylamino, optionally substituted mono- or di-alkylaminosulfonylamino, optionally substituted mono- or di-alkylaminosulfoxylamino, j) N-(optionally substituted alkyl)-N-(optionally substituted lower alkanoyl)-amino,

- k) N-(optionally substituted alkyl)-N-(optionally substituted alkoxycarbonyl)-amino,
- I) N-(optionally substituted alkyl)-N-(N',N'-mono- or di-[optionally substituted alkyl]aminocarbonyl)-amino, or
- m) N=C(R₇,R₈) wherein R₇ is hydrogen, alkyl, amino, mono- or di-alkylamino and R₈ is amino, mono- or dialkylamino or wherein R7 and R8, together with the binding carbon atom, form a saturated five- to seven-membered ring with 0, 1 or 2 ring nitrogen atoms that is optionally substituted by one or more substituents;

or a salt thereof:

to one or more loci selected from the group consisting of a plant, a part of a plant, seeds and the site of a plant.

WO 01/93682 PCT/EP01/06389

107

- 2. A process according to claim I, wherein the phytopathogenic organism is a fungal organism.
- 3. A process according to claim 1, wherein the fungal organism is one or more selected from the group of classes consisting of Ascomycetes, Basidiomycetes, Oomycetes and Fungi imperfecti.
- 4. A process according to claim 1 wherein the phytopathogenic organism is a bacterium.
- 5. A process according to claim 1 wherein the phytopathogenic organism is a virus.
- 6. A process according to claim 1 wherein the phytopathogenic organism is a nematode.
- 7. A process according to any one of claims 1 to 6 wherein a compound of formula I is applied wherein

n is 0 or 1,

R₁ is halogen, haloalkyl or haloalkoxy,

R₂ is hydrogen or alkyl,

each of R_3 , R_4 and R_5 is, independently of the others, hydrogen, lower alkyl or halogen, and R_6 is as defined in claim 1.

8. A process according to any one of claims 1 to 6 wherein a compound of formula I is applied wherein

n is 0 or 1,

R₁ is halogen, haloalkyl or haloalkoxy,

R₂ is hydrogen or alkyl,

each of R₃, R₄ and R₅ is hydrogen, and

Re is as defined in claim 1.

9. A process according to any one of claims 1 to 6 wherein a compound of formula I is applied wherein

n is 0

 R_1 is chloro, trifluoromethyl, trifluoromethoxy or 1,1,2,2-tetrafluoroethoxy R_2 , R_3 , R_4 and R_5 are hydrogen, and R_6 is

- (a) hydrazino, that is unsubstituted or one- to threefold substituted by optionally substituted alkyl and/or optionally substituted acyl,
- (e) amino or mono- or di-(lower alkyl)amino wherein the lower alkyl moieties are unsubstituted or substituted by one or more substitutents independently selected from the group con-sisting of unsubstituted amino, N-mono- or N,N-di-(lower alkyl)-amino, (lower alkoxy)lower alk-oxy, lower alkoxycarbonylamino, hydroxy-lower alkoxycarbonylamino, lower alkoxy-lower alkoxycarbonylamino, morpholinyl, hydroxy-lower alkylamino, cyano, halogen, oxo bound to a carbon that is not directly bound to a heteroatom, hydroximino, alkoximino, optionally substituted hydrazono, lower alkenyl, lower alkynyl, guanidyl, lower alkanoylamino, hydroxy-lower alkanoylamino, lower alkoxy-lower alkanoylamino, halo-lower alkanoylamino, lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, lower alkoxy-lower alkylaminocarbonylamino, amidino, di-lower-alkylamino-cyclohexyl, carboxy, lower alkoxycarbonyl, hydroxy-lower alkoxycarbonyl, lower alkoxy-lower alkoxycarbonyl, lower alkylcarbonyldioxy (= lower alkoxycarbonyloxy), hydroxy-lower alkoxycarbonyloxy, lower alkoxy-lower alkoxycarbonyloxy, lower alkanoyloxy, halo-lower alkanoyloxy, hydroxy-lower alkanoyloxy, lower alkoxy-lower alkanoyloxy, carbamoyl, N-mono- or N,N-dilower alkylcarbamoyl, N-(hydroxy-lower alkyl)carbamoyl, N-lower alkyl-N-hydroxy-lower alkyl-carbamoyl, N,N-di-(hydroxy-lower alkyl)-carbamoyl, N-hydroxy-carbamoyl, hydroxy, lower alkoxy, lower alkenyloxy, lower alkinyloxy, lower haloalkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower alkoxysilyl, 4-tetrahydro-4H-pyranyl, 3-pyrrolidinyl, 2or 3-tetrahydrofuryl, 2- or 3-dihydrofuryl, piperazinyl, lower alkanoyl-piperazinyl including formylpiperazinyl, optionally substituted heteroaryl and optionally substituted heteroaryloxy f) optionally substituted alkanoylamino, optionally substituted alkenoylamino, optionally substituted alkynoylamino, optionally substituted mono- or di-alkylaminocarbonylamino. optionally substituted alkoxycarbonylamino, optionally substituted mono- or di-alkylaminosulfonylamino, optionally substituted mono- or di-alkylaminosulfoxylamino.
- g) N-(optionally substituted alkyl)-N-(optionally substituted lower alkanoyl)-amino.
- h) N-(optionally substituted alkyl)-N-(optionally substituted alkoxycarbonyl)-amino,
- i) N-(optionally substituted alkyl)-N-(N´,N´-mono- or di-[optionally substituted alkyl]-aminocarbonyl)-amino, or

j) $N=C(R_7,R_8)$ wherein R_7 is hydrogen, alkyl, amino, mono- or di-alkylamino and R_8 is amino, mono- or dialkylamino or wherein R_7 and R_8 , together with the binding carbon atom, form a saturated five- to seven-membered ring with 0, 1 or 2 ring nitrogen atoms that is optionally substituted by one or more substituents; or a salt thereof.

10. A compound of the formula I, wherein n is1,

R₁ is halogen, alkoxy, haloalkyl, haloalkoxy or alkyl,

 R_2 is hydrogen, halogen, alkyl, haloalkyl, alkoxy or haloalkoxy, each of R_3 , R_4 and R_5 is, independently of the others, hydrogen, lower alkyl or halogen, and R_6 is

- a) hydrazino, that is unsubstituted or one- to threefold substituted by optionally substituted alkyl and/or optionally substituted acyl.
- b) cyclohexylamino, tetrahydro-4H-pyranyl-4-amino, pyrrolidine-3-amino, 2- or 3-tetrahydro-furylamino, all optionally substitutedby amino, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- c) piperazinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- d) morpholinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, alkoxy, alkyl or alkoxyalkyl,
- e) oxazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl.
- f) thiazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- g) imidazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl.
- h) amino or mono- or di-(lower alkyl)amino wherein the lower alkyl moieties are unsubstituted or substituted by one or more substitutents independently selected from the group con- sisting of unsubstituted amino, N-mono- or N,N-di-(lower alkyl)-amino, (lower alkoxy)-lower alk-oxy, lower alkoxycarbonylamino, hydroxy-lower alkoxycarbonylamino, lower alkoxy-lower alkoxycarbonylamino, morpholinyl, hydroxy-lower alkylamino, cyano, halogen, oxo bound to a carbon that is not directly bound to a heteroatom, hydroximino, alkoximino, optionally substituted hydrazono, lower alkenyl, lower alkynyl, guanidyl, lower alkanoylamino, hydroxy-lower alkanoylamino, halo-lower

alkanoylamino, lower alkylaminocarbonylamino, hydroxy-lower alkylaminocarbonylamino, lower alkoxy-lower alkylaminocarbonylamino, amidino, di-lower-alkylamino-cyclohexyl, carboxy, lower alkoxycarbonyl, hydroxy-lower alkoxycarbonyl, lower alkoxy-lower alkoxycarbonyl, lower alkylcarbonyldioxy (= lower alkoxycarbonyloxy), hydroxy-lower alkoxycarbonyloxy, lower alkoxy-lower alkoxycarbonyloxy, lower alkanoyloxy, halo-lower alkanoyloxy, hydroxy-lower alkanoyloxy, lower alkoxy-lower alkanoyloxy, carbamoyl, N-mono- or N,N-dilower alkylcarbamoyl, N-(hydroxy-lower alkyl)carbamoyl, N-lower alkyl-N-hydroxy-lower alkyl-carbamoyl, N,N-di-(hydroxy-lower alkyl)-carbamoyl, N-hydroxy-carbamoyl, hydroxy, lower alkoxy, lower alkenyloxy, lower alkinyloxy, lower haloalkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower alkoxysilyl, 4-tetrahydro-4H-pyranyl, 3-pyrrolidinyl, 2or 3-tetrahydrofuryl, 2- or 3-dihydrofuryl, piperazinyl, lower alkanoyl-piperazinyl including formylpiperazinyl, optionally substituted heteroaryl and optionally substituted heteroaryloxy i) optionally substituted alkanoylamino, optionally substituted alkenoylamino, optionally substituted alkynoylamino, optionally substituted mono- or di-alkylaminocarbonylamino, optionally substituted alkoxycarbonylamino, optionally substituted mono- or di-alkylaminosulfonylamino, optionally substituted mono- or di-alkylaminosulfoxylamino,

- j) N-(optionally substituted alkyl)-N-(optionally substituted lower alkanoyl)-amino,
- k) N-(optionally substituted alkyl)-N-(optionally substituted alkoxycarbonyl)-amino,
- I) N-(optionally substituted alkyl)-N-(N',N'-mono- or di-[optionally substituted alkyl]-aminocarbonyl)-amino, or
- m) $N=C(R_7,R_8)$ wherein R_7 is hydrogen, alkyl, amino, mono- or di-alkylamino and R_8 is amino, mono- or dialkylamino or wherein R_7 and R_8 , together with the binding carbon atom, form a saturated five- to seven-membered ring with 0, 1 or 2 ring nitrogen atoms that is optionally substituted by one or more substituents; or a salt thereof.
- 11. A compound of the formula I wherein n is 0,

 R_1 is halogen, alkoxy, haloalkyl, haloalkoxy or alkyl, R_2 is hydrogen, halogen, alkyl, haloalkyl, alkoxy or haloalkoxy, each of R_3 , R_4 and R_5 is, independently of the others, hydrogen, lower alkyl or halogen, and R_6 is

a) hydrazino, that is mono to threefold substituted by optionally substituted alkyl and/or

optionally substituted acyl,

- b) tetrahydro-4H-pyranyl-4-amino, pyrrolidine-3-amino, 2- or 3-tetrahydrofurylamino, all optionally substituted by amino, hydroxy, alkoxy, alkyl or alkoxyalkyl
- c) piperazinyl that is substituted by amino, hydroxy, alkoxy, alkoxy, alkoxyalkyl,
- d) morpholinyl that is substituted by amino, hydroxy, alkoxy, alkyl,
- e) oxazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- f) thiazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- g) imidazolidinyl that is optionally substituted by amino, amino-lower alkyl, hydroxy, hydroxylower alkyl, alkoxy, alkyl or alkoxyalkyl,
- h) mono- or di-(lower alkyl)amino wherein the lower alkyl moieties are substituted by one or more substitutents independently selected from the group consisting of (lower alkoxy)-lower alkoxy, lower halogenalkoxy, lower alkoxycarbonylamino, halogen, oxo, hydroximino, alkoximino, optionally substituted hydrazono, lower alkenyl, lower alkynyl, lower alkylcarbonyldioxy, lower alkanoyloxy, lower alkylcarbamoyl, alkenyloxy, alkynyloxy, lower alkylthio, lower alkylsulfinyl,
 - lower alkylsulfonyl, lower alkoxysilyl, 4-tetrahydro-4H-pyranyl, 3-pyrrolidine, 2- or 3-tetrahydrofuryl, 2- or 3-dihydrofuryl, substituted heteroaryl and optionally substituted heteroaryloxy,
- i) optionally substituted alkenoylamino, optionally substituted alkynoylamino, optionally substituted mono- or di-alkylaminocarbonylamino, optionally substituted alkoxycarbonylamino, optionally substituted mono- or di-alkylaminosulfonylamino, optionally substituted mono- or di-alkylaminosulfoxylamino,
- j) N=C(R₇,R₈) wherein R₇ is hydrogen, alkyl, amino, mono- or di-alkylamino and R₈ is amino, mono- or di-alkylamino or wherein R₇ and R₈, together with the binding carbon atom, form a saturated five- to seven-membered ring with 0, 1 or 2 ring nitrogen atoms that is optionally substituted by one or more substituents; or a salt thereof;
- 12. A compound of the formula I according to claim 11 selected from the group of N-(3-chloro-phenyl)-4-(ethylamino-4-pyridyl)-2-pyrimidine-amine, N-(3-chloro-phenyl)-4-[2-{1-(2-methoxy-1-methyl)-ethylamino}-4-pyridyl]-2-pyrimidine-amine, N-(3-chloro-phenyl)-4-[2-(N', N'-dimethyl-acetamidino)-4-pyridyl]-2-pyrimidine-amine,

PCT/EP01/06389

- 13. The use of a compound of the formula I, or a salt thereof, mentioned in any one of claim 1 to 11 for protection of a plant against attack by a phytopathogenic organism or the treatment of a plant infested by a phytopathogenic organism, said use comprising the administration of a compound of the formula I or a salt thereof, or a composition comprising said compound or salt and a carrier material acceptable for agricultural purposes, to any one or more selected from the group consisting of a plant, a part of a plant, seeds and the locus of a plant.
- 14. A method of protecting a plant against attack by a phytopathogenic organism and/or the treatment of a plant infested by a phytopathogenic organism, said method comprising administering a compound of the formula I mentioned in any one of claims 1 to 11 or a salt thereof, or a composition comprising said compound or salt and a carrier material acceptable for agricultural purposes, to any one or more selected from the group consisting of a plant, a part of a plant, seeds and the locus of a plant, preferably if in need of such treatment.
- 15. A composition for protecting a plant against attack by a phytopathogenic organisms and/or the treatment of a plant infested by a phytopathogenic organism, said composition comprising a compound of the formula I as mentioned in any one of claims 1 to 11 or a salt thereof and a carrier material acceptable for agricultural purposes.

Inte mail Application No PCT/EP 01/06389

		PCI/EP 01,	706389
A. CLASSIF IPC 7	ACATION OF SUBJECT MATTER A01N43/54 A01N43/84 A01N43/7	13 A01N43/707 A01N4	43/74
A	International Patent Classification (IPC) or to both national classificat	ion and IBC	
B. FIELDS 9		MI AM IF V	
	cumentation searched (classification system followed by classification AO1N	n symbols)	
Documentati	on searched other than minimum documentation to the extent that su	ch documents are included in the fields se	earched
	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)
EPO-Int	ternal, WPI Data, PAJ, BIOSIS		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		<u></u>
Category *	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to daim No.
Х	US 5 612 340 A (ZIMMERMANN JUERG) 18 March 1997 (1997-03-18)		11,15
	column 1, line 6 - line 67		
	claim 1; examples 41,42 column 2, line 1 - line 42		
	examples 6-12,20,22-26,28,31,39		
Х	US 5 728 708 A (ZIMMERMANN JUERG) 17 Narch 1998 (1998-03-17)		11,15
	cited in the application column 1, line 8 - line 67; examp column 2, line 1 - line 20	les 28,29	
	examples 3-11		
		-/	ļ
		,	
'	,		
1			
X Furt	her documents are listed in the continuation of box C.	X Patent tamily members are listed	l in annex.
° Special ca	ategories of cited documents:	"T" later document published after the int	
	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or the	
'E' earler	document but published on or after the International	invention "X" document of particular relevance; the	
"F. qocnius	ent which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the d	ocument is taken alone
citatio	is cited to establish the publication date of another n or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an in	rventive step when the
other	ent referring to an oral disclosure, use, exhibition or means	document is combined with one or ments, such combination being obvious to the set	
	ent published prior to the International filling date but han the priority date claimed	in the art. *A* document member of the same paten	t family
Date of the	actual completion of the international search	Date of mailing of the international se	earch report
1	9 November 2001	26/11/2001	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentikaan 2	Authorized officer	
	NL - 2200 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Nopper-Jaunky, A	
1	Fax: (+31-70) 340-3016	1	

Inti mal Application No PCT/EP 01/06389

ages Relevant to claim No.
11,15
1-15
1-15
RED; 1-15
F THE 1-15 ANIL. YTIS
L) 1-15
1-15 -13

Information on patent family members

Inti anal Application No PCT/EP 01/06389

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
· · · · · · · · · · · · · · · · · · ·			A11		
US 5612340	A	18-03-1997	ΑU	693475 B2	02-07-1998
			AU	7697694 A	01-05-1995
			CA	2148931 A1	13-04-1995
			MO	9509847 A1	13-04-1995
			EP	0672035 A1	20-09-1995
			JP	8503971 T	30-04-1996
US 5728708	Α	17-03-1998	AU	691834 B2	28-05-1998
			AU	7697794 A	01-05-1995
			CA	2148928 A1	13-04-1995
			CN	1115982 A ,B	31-01-1996
			CZ	9501722 A3	13-03-1996
			WO	9509853 A1	13-04-1995
			EP	0672041 A1	20-09-1995
			FI	952607 A	29-05-1995
			HU	72609 A2	28-05-1996
			ΙL	111077 A	28-10-1999
			JP	2983636 B2	29-11-1999
			JP	8504215 T	07-05-1996
			NO	952132 A	30-05-1995
			NZ	273617 A	26-11-1996
			PL	309225 A1	02-10-1995
			RU	2135491 C1	27-08-1999
			SG	45183 A1	16-01-1998
			TW	378208 B	01-01-2000
			ZA	9407657 A	03-04-1995
US 5705502	Α	06-01-1998	AU	693114 B2	25-06-1998
00 07 00002	Α.	00 01 1990	AU	7783394 A	01-05-1995
			CA	2149147 A1	13-04-1995
			WO	9509851 A1	13-04-1995
			EP	0672042 A1	20-09-1995
			JP	8503970 T	30-04-1996
			SG	45240 A1	16-01-1998
US 5075316	Α	24-12-1991	AU	632319 B2	24-12-1992
02 20/2210	A	24-12-1991	AU	5211490 A	27-09-1990
			BR	9001304 A	02-04-1991
			CA	2012566 A1	22-09-1990
			DD	293115 A5	22-09-1990
			DE	59010042 D1	22-02-1996
			DK	388838 T3	05-02-1996
			EP	0388838 A2	26-09-1990
			ES	2081863 T3	16-03-1996
				95376 B	13-10-1995
			FI		30-06-1996
			HR	940514 A1	28-11-1990
			HU	53490 A2	31-07-1994
			IL	93813 A	31-07-1994 26-11-1990
			JP	2286666 A	
			JP	3002786 B2	24-01-2000
			KR	143776 B1	15-07-1998
			NZ	233003 A	26-02-1991
			PT	93516 A ,B	07-11-1990
			SI	9010548 A	31-10-1997
			TR	25912 A	01-11-1993
			YU	54890 A1	31-10-1991
			ZA BG	9002166 A 51157 A3	28-12-1990 15-02-1993

information on patent family members

inte nal Application No PCT/EP 01/06389

Patent document cited in search report		Publication date		Patent tamily member(s)		Publication date
US 5075316	A		BG	51433	А3	14-05-1993
DE 4034762	Α	07-05-1992	DE	4034762	A1	07-05-1992
DD 151404	A	21-10-1981	DD	151404	A1	21-10-1981
US 4873248	Α	10-10-1989	AU	598883	B2	05-07-1990
			AU	8198887	Α	09-06-1988
			BR	8706528	Α	12-07-1988
			CA	1288433	A1	03-09-1991
			EP	0270362	A2	08-06-1988
			JP	2517992	B2	24-07-1996
			JP	63264478	A	01-11-1988
US 4814338	Α	21-03-1989	DE	3676460	D1	07-02-1991
			DE	224339	T1	05-11-1987
		•	EP	0224339	A2	03-06-1987
			JP	1901608	С	27-01-199!
			JP	6029263	В	20-04-1994
			JP	63208581	Α	30-08-1988
			KR	9300149	B1	09-01-199
			KR	9300150	B 1	09-01-1993
			US	4988704	Α	29-01-199

THIS PAGE BLANK (USPTO)