Allgemein gilt:

Satz (chinesischer Restsatz für zwei simultane Kongruenzen):

Die simultanen Kongruenzen

$$\overline{x} = \overline{n} \text{ in } \mathbb{Z}_{m_1}^{\checkmark} \text{ und } \overline{x} = \overline{k} \text{ in } \mathbb{Z}_{m_2}^{\checkmark} \checkmark$$

sind lösbar, wenn gilt: $ggT(m_1, m_2) = 1$.

Es gilt dann: $x_0 = n \cdot a \cdot m_2 + k \cdot b \cdot m_1$ ist **eine** Lösung, falls gilt $\overline{a} \cdot \overline{m_2} = \overline{1}$ in \mathbb{Z}_{m_1} und $b \cdot \overline{m_1} = \overline{1} \text{ in } \mathbb{Z}_{m_2}.$

Weitere (positive) Lösungen sind $x = x_0 + i \cdot m_1 \cdot m_2$ für $i \in \mathbb{Z}$ (solange $x \geq 0$ gilt).

Beweis: (1) 95 (m, mz) = 1 => (eullid. Algor. & Lemma un Bézout)

es existint a in \mathbb{Z}_{m_1} mit $\overline{a} \cdot \overline{m}_2 = \overline{1}$ in \mathbb{Z}_{m_2} ; es existint \overline{b} in \mathbb{Z}_{m_2} mit $\overline{b} \cdot \overline{m}_1 = \overline{1}$ in \mathbb{Z}_{m_2}

2) Silde Xo=n-a·m2 + K·b·m, unt a, b aus (1), dans gilt

(2.1) in Zm,: Xo = n.a.m2 + K.b.m,

 $= \overline{n} \cdot \overline{a} \cdot \overline{m}_2 + \overline{k} \cdot \overline{b} \cdot \overline{m}_1 = \overline{n}$ $= \overline{n}$

(2.2) in Zm2: \$\overline{\chi_0} = \overline{n \cdot a \cdot m_2 + k \cdot b \cdot m_1}\$

 $= \overline{n} \cdot \overline{a} \cdot \overline{m}_{2} + \overline{k} \cdot \overline{k} \cdot \overline{m}_{n} = \overline{k} \checkmark$

Lösen Sic Folgende simultane Kongmenzen

 $\overline{X} = \overline{10}$ in $\overline{Z}_{42} \Rightarrow \overline{X} \equiv 10 \mod 101$ alternative $\overline{X} = \overline{M}$ in $\overline{Z}_{42} \Rightarrow \overline{X} \equiv M \mod 47$ Schreibweise

Geben Sie and die Kleinste pas. Fall x an die die zegebenen simaltanen

Kongruenzen löst. 101 = 2.47 + 7

1) 98T (101,47) bestimmen 47 = 6.7 +5

5 = 22 + 1 a 93 T (101, 47) = 1

2 = 2.1 + 0 = Problem lösber

