Algorithms: AutoCor, Lisa, DiscSegm and CutSegm

Guillaume Guex

August 5, 2020

General notations

- $\mathbf{1}_n$: the (column) vector of ones with length n.
- \mathbf{I}_n : the identity matrix of size $(n \times n)$.
- \circ , \div : the component-wise multiplication or division.
- $\mathbf{v}^{(a)}, \mathbf{M}^{(a)}$: the component-wise power of a of a vector or a matrix.
- $\exp(\mathbf{v})$ or $\exp(\mathbf{M})$: the component-wise exponential on a vector or on a matrix.
- \bullet $\mathbf{diag}(\mathbf{M}):$ the diagonal function taking a matrix and returning the diagonal vector.
- \bullet **Diag**(v): the diagonal function taking a vector and returning a diagonal matrix

Algorithms

Algorithm 1: AutoCor algorithm

Input:

- \bullet A scalar r defining the maximum range of autocorrelation.
- A $(v \times n)$ presence matrix **P**, where $p_{ij} = 1$ iif type i is in token position j, 0 otherwise (constructed from corpus).
- A $(v \times v)$ dissimilarity matrix \mathbf{D}_v between types.
- A vector $\boldsymbol{\pi}$ of length v containing type frequencies.

Output:

- The vector $\boldsymbol{\delta}$ of length r containing autocorrelation indices for a token position difference of r.
- 1 Compute the global inertia: $\Delta \leftarrow \frac{1}{2} \mathbf{1}_v^\top (\boldsymbol{\pi} \boldsymbol{\pi}^\top \circ \mathbf{D}_v) \mathbf{1}_v$;
- 2 for i from 1 to r do
- **3** Compute the $(n \times n)$ exchange matrix **E** with range i;
- 4 | Compute the $(v \times v)$ between-types exchange matrix: $\mathcal{E} \leftarrow \mathbf{PEP}^{\top}$;
- 5 Compute the local variance: $\Delta_{\text{loc}} \leftarrow \frac{1}{2} \mathbf{1}_v^{\top} (\mathcal{E} \circ \mathbf{D}_v) \mathbf{1}_v$;
- 6 Compute the autocorrelation for range i: $\delta_i \leftarrow \frac{\Delta \Delta_{loc}}{\Delta}$;
- 7 end
- s return δ ;

Algorithm 2: Lisa algorithm

Input:

- A $(n \times n)$ exchange matrix **E** between token positions.
- A $(v \times v)$ dissimilarity matrix \mathbf{D}_v between types.
- A $(v \times n)$ presence matrix **P**, where $p_{ij} = 1$ iif type i is in token position j, 0 otherwise (constructed from corpus).
- A vector $\boldsymbol{\pi}$ of length v containing type frequencies.

Output:

- The vector $\boldsymbol{\delta}$ of length n containing lisa indices for each token.
- 1 Compute the token weights vector of length $n: \mathbf{f} \leftarrow \mathbf{E}\mathbf{1}_n$;
- **2** Compute the $(n \times n)$ transition matrix between token: $\mathbf{W} \leftarrow \mathbf{E} \div \mathbf{f} \mathbf{1}_n^\top$;
- **3** Compute the $(n \times n)$ token dissimilarity matrix: $\mathbf{D}_n \leftarrow \mathbf{P}^\top \mathbf{D}_v \mathbf{P}$;
- **4** Compute the $(n \times n)$ centration matrix: $\mathbf{H} \leftarrow \mathbf{I}_n \mathbf{1}\mathbf{f}^{\top}$;
- **5** Compute the $(n \times n)$ scalar products matrix: $\mathbf{B} \leftarrow -\frac{1}{2}\mathbf{H}\mathbf{D}_n\mathbf{H}^{\top}$;
- 6 Compute the global inertia: $\Delta \leftarrow \frac{1}{2} \mathbf{1}_v^\top (\boldsymbol{\pi} \boldsymbol{\pi}^\top \circ \mathbf{D}_v) \mathbf{1}_v$;
- 7 Compute the lisa vector of length $n: \delta \leftarrow \frac{1}{\Delta} \mathbf{diag}(\mathbf{WB});$
- s return δ ;

Algorithm 3: DiscSegm algorithm

Input

- A $(n \times n)$ exchange matrix **E** between token positions.
- A $(v \times v)$ dissimilarity matrix \mathbf{D}_v between types.
- A $(v \times n)$ presence matrix **P**, where $p_{ij} = 1$ iif type i is in token position j, 0 otherwise (constructed from corpus).
- A vector $\boldsymbol{\pi}$ of length v containing type frequencies.
- \bullet An integer m defining the number of groups.
- Hyperparmaters $\alpha > 0$, $\beta > 0$ and $\kappa \in [0, 1]$.

Output:

- The $(n \times m)$ membership matrix **Z** with fuzzy memberships of tokens into each group.
- Compute the token weights vector of length n: f ← E1_n;
 Compute the (n × n) transition matrix between token: W ← E ÷ f1_n^T;
 Compute the (n × n) token dissimilarity matrix: D_n ← P^TD_vP;
 Initialize Ž with random strictly positive values;
 Normalize Z: Z ← Ž ÷ (Ž1_m1_n^T);
 while Z has not converged do
 Compute the group weights vector of length m: ρ ← (Z ∘ f1_m^T)^T1_n;
 Compute the (n × m) token distribution among groups matrix:
 F ← (Z ÷ 1_nρ^T) ∘ f1_m^T;
 Compute the (n × m) uncentered token-centroid distance matrix:
- 9 Compute the $(n \times m)$ uncentered token-centroid distance matrix: $\widetilde{\mathcal{D}} \leftarrow \mathbf{D}_n^{\top} \mathbf{F}$;
- Compute the vector of group inertia of length $m: \boldsymbol{\delta} \leftarrow \frac{1}{2} \mathbf{diag}(\widetilde{\boldsymbol{\mathcal{D}}}^{\top} \mathbf{F});$
- 11 Compute the $(n \times m)$ token-centroid distance matrix:

$$\mathcal{D} \leftarrow \widetilde{\mathcal{D}} - \mathbf{1}_n \boldsymbol{\delta}^{ op};$$

Compute the Dirichlet form vector or length m:

$$\epsilon \leftarrow (\mathbf{E}\mathbf{Z}^{(2)})^{\top}\mathbf{1}_n - \mathbf{diag}(\mathbf{Z}^{\top}\mathbf{E}\mathbf{Z});$$

Compute the $(n \times m)$ matrix **H**:

$$\mathbf{H} \leftarrow \beta \mathbf{\mathcal{D}} + \alpha \mathbf{1}_n (\boldsymbol{\rho}^{(-\kappa)})^{\top} \circ (\mathbf{Z} - \mathbf{WZ}) - \frac{\alpha \kappa}{2} \mathbf{1}_n (\boldsymbol{\rho}^{(-\kappa-1)} \circ \boldsymbol{\epsilon})^{\top};$$

14 Compute the new unormalized membership matrix:

$$\widetilde{\mathbf{Z}} \leftarrow \mathbf{1}_n \boldsymbol{\rho}^{\top} \circ \mathbf{Exp}(-\mathbf{H});$$

Normalize the new membership matrix: \mathbf{Z} : $\mathbf{Z} \leftarrow \widetilde{\mathbf{Z}} \div (\widetilde{\mathbf{Z}} \mathbf{1}_m \mathbf{1}_n^\top)$;

16 end

17 return Z;