Problema de PVI

Marcio Barros e Claudemir Woche

24 de Setembro de 2020

1 Introdução

Seja o problema de uma partícula em queda livre com resistência do ar dado pela eqição diferencial ordianária.

$$\frac{d^2y}{dt^2} + \frac{dy}{dt} \cdot (\frac{k}{m}) + g = 0 \tag{1}$$

Podemos então definir o estado da particula como S(t)=(v(t),y(t)), e assim reescrever o problema como.

$$\frac{dS}{dt} = (\frac{dv}{dt}, v(t)) \tag{2}$$

pela equação (1) e (2) temos que

$$\frac{dS}{dt} = \left(-g - \left(\frac{k}{m}\right)v(t), v(t)\right) \tag{3}$$

 $com S(t_0) = (v_0, y_0)$

Aplicando o método de Euler explícito em (3), obtemos.

$$S_k = S_{k-1} + \Delta t \frac{dS}{dt} \tag{4}$$

portanto.

$$S_k = (y_k, v_k) = (y_{k-1} + \Delta t. v_{k-1}, v_{k-1} + \Delta t. (-g - \frac{k}{m} v_{k-1}))$$
 (5)

Agora pelo método de Euler implícito a equação (5) ficará.

$$S_k = (y_k, v_k) = (y_{k-1} + \Delta t. v_k, v_{k-1} + \Delta t. (-g - \frac{k}{m} v_k))$$
 (6)

desenvolvendo tal que v_k saia da equação.

$$S_k = (y_k, v_k) = \left(\frac{m}{m + k\Delta t}(y_k - g\Delta t), y_k + \frac{m\Delta t}{m + k\Delta t}(y_k - g\Delta t)\right)$$
(7)

2 Código Método Euler Explícito

```
def PVI(h, v, k, m, delta):
list_t=[]
list_h=[]
i=0
list_t.append(0)
list_h.append(h)
critico=0
while(list_h[i]>0):
    i=i+1
    list_t.append(delta*i)
    list_h.append(list_h[i-1]+delta*v)
    vant=v
    v=v+delta*(-10-(k/m)*v)
    if(vant*v<0):
        critico=list_t[i-1]+delta/2
        hmax=list_h[i-1]+(delta/2)*v
    list_t.append(list_t[i-1]+delta/2)
    list_h.append(list_h[i-1]+(delta/2)*v)
    plt.plot(list_t,list_h)
    return v,list_t[i+1],critico,hmax,list_h[i+1]</pre>
```

Figura 1: Código do método de Euler explícito

Podemos ver o código onde dado os parametros de altura inicial, velocidade inicial, constante k, massa e o Δt respectivamente, irá obter a sequência de valores S_k e nos devolve os valores da velocidade final, o tempo final, ponto crítico, altura máxima e o valor aproximado do nível do mar, respectivamente.

Aplicando para os valores de $H_0 = 200$, $v_0 = 5$, k = 0.25, m = 2, e com diferentes valores de Δt , obtemos os seguintes resultados.

Δt	t	Altura Máxima
0.1	0.45	201.35872903312685
0.01	0.485	201.22388635009906
0.001	0.4845	201.20265739951964
0.0001	0.48495	201.20048444234698

Δt	Tempo Final	Velocidade Final
0.1	7.85000000000000005	-48.533374942779815
0.01	7.795	-47.95819766723352
0.001	7.7905	-47.904514416104774
0.0001	7.7897500000000001	-47.89794102320015

Δt	Tempo Final	Nível do Mar
0.1	7.85000000000000005	-1.3461628815810993
0.01	7.795	-0.09502869760505603
0.001	7.7905	-0.019936426391585663
0.0001	7.7897500000000001	0.0019230425297018941

3 Código Método Euler Implícito

Código análogo ao anterior, com a mesmas entradas e saídas.

```
def PVI(h, v, k, m, delta):
list_t=[]
list_h=[]
i=0
list_t.append(0)
list_h.append(h)
critico=0
while(list_h[i]>0):
    i=i+1
    list_t.append(delta*i)
    list_h.append(list_h[i-1]+((m*delta)/(m+k*delta))*(v-10*delta))
    vant=v
    v=(m/(m+k*delta))*(v-10*delta)
    if(vant*v<0):
        critico=list_t[i-1]+delta/2
        hmax=list_h[i-1]+((m*(delta/2))/(m+k*(delta/2)))*(v-10*delta)
    list_t.append(list_t[i-1]+delta/2)
    list_h.append(list_h[i-1]+((m*(delta/2))/(m+k*(delta/2)))*(v-10*delta))
    plt.plot(list_t,list_h)
    return v,list_t[i+1],critico,hmax,list_h[i+1]</pre>
```

Figura 2: Código do método de Euler Implícito

Aplicando para os valores de $H_0=200,\,v_0=5,\,k=0.25,\,m=2,\,{\rm e}$ com diferentes valores de $\Delta t,$ obtemos os seguintes resultados.

Δt	t	Altura Máxima
0.1	0.45	200.9078928655108
0.01	0.485	201.1753873876815
0.001	0.4855	201.1978073734709
0.0001	0.4850500000000000004	201.19999943950728

Δt	Tempo Final	Velocidade Final
0.1	7.75	-47.74430242587237
0.01	7.785	-47.879021787358916
0.001	7.7895	-47.89659463025376
0.0001	7.7897500000000001	-47.89755028855338

Δt	Tempo Final	Nível do Mar
0.1	7.75	0.3067725103913994
0.01	7.785	0.07121924859540313
0.001	7.7895	-0.00329816368739759
0.0001	7.789750000000001	-0.001202848632990106

4 Comparação

Comparação dos tempos finais com t=7.7897573665027sendo o tempo exato.

4	Δt	Implícito	Erro	Explícito	Erro
().1	7.75	0.03975737	7.85000000000000005	0.06024263
0	.01	7.785	0.004757367	7.795	0.005242633
0.	001	7.7895	0.0002573665	7.7905	0.0007426335
0.0	0001	7.7897500000000001	7.366503e-6	7.7897500000000001	7.366503e-6

Comparação das alturas máximas com Hmax=201.2002420374817 sendo a altura exata.

Δt	Implícito	Erro	Explícito	Erro
0.1	200.9078928655108	0.29234917	201.35872903312685	0.06024263
0.01	201.1753873876815	0.02485465	201.22388635009906	0.005242633
0.001	201.1978073734709	0.002434664	201.20265739951964	0.0007426335
0.0001	201.19999943950728	0.000242598	201.20048444234698	7.366503e-6

Comparação dos pontos críticos com t=0.4849969722874sendo ponto crítico exata.

Δt	Implícito	Erro	Explícito	Erro
0.1	0.45	0.03499697	0.45	0.03499697
0.01	0.485	3.027713e-6	0.485	3.027713e-6
0.001	0.4855	0.0005030277	0.4845	0.0004969723
0.0001	0.4850500000000000004	5.302771e-5	0.48495	4.697229e-5

Comparação das velocidades finais com v=-47.8975745754916sendo a velocidade final exata.

Δt	Implícito	Erro	Explícito	Erro
0.1	-47.74430242587237	0.1532721	-48.533374942779815	0.63580037
0.01	-47.879021787358916	0.01855279	-47.95819766723352	0.06062309
0.001	-47.89659463025376	0.0009799452	-47.904514416104774	0.006939841
0.0001	-47.89755028855338	2.428694e-5	-47.89794102320015	0.0003664477