INTRODUCTION

CLASSIFICATION!

WHEN... CLASSIFICATION?

Discuss in your groups:

- □ What are some examples of classifications we encounter in our lives?
- ☐ How might we measure the success of a classification?

WHICH... CLASSIFICATION?

NAÏVE BAYES

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

KNN

LOGISTIC REGRESSION

DECISION TREES

HOW... MEASURE PERFORMANCE?

Confusion Matrix: table to describe the performance of a classifier

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Example: Test for presence of disease NO = negative test = False = 0 YES = positive test = True = 1

- How many classes are there?
- How many patients?
- How many times is disease predicted?
- How many patients actually have the disease?

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it **correct**?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it **correct**?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it **correct**?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- $(TP + TN) / total = 150/165 \neq 0.91$

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

n=165 ₁	Predicted:	Predicted:	L	
Actual: NO	TN = 50	FP = 10		60
Actual: YES	FN = 5	TP = 100		105
	55	110		

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

→ Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

→ Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

CONFUSION MATRIX

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

→ Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

CONFUSION MATRIX

		Predicted:	Predicted:	
Г	n=165	NO	YES	
	Actual: NO	TN = 50	FP = 10	60
	Actual: YES	FN = 5	TP = 100	105
		55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

CONFUSION MATRIX

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

CONFUSION MATRIX

		Predicted:	Predicted:	
ľ	n=165	NO	YES	
	Actual: NO	TN = 50	FP = 10	60
	Actual: YES	FN = 5	TP = 100	105
		55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

Sensitivity:

- When actual value is positive, how often is prediction correct?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

- When actual value is negative, how often is prediction correct?
- TN / actual no = 50/60 = 0.83

RECEIVING OPERATOR CHARACTERISTIC (ROC) CURVE

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Every email is assigned a "spamminess" score by our classification algorithm. To actually make our predictions, we choose a numeric cutoff for classifying as spam.

An ROC Curve will help us to visualize how well our classifier is doing without having to choose a cutoff!

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

The ROC plots the True Positive Rate (TRP) on the y-axis against the False Positive Rate (FPR) on the x-axis.

<u>TPR</u>: When actual value is **spam**, how often is prediction **correct**?

<u>FPR</u>: When actual value is **ham**, how often is prediction **wrong**?

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

1

0.75

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

0.05

0.15

0.25

1

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			

Cutoff | TPR (y)

0.75

0.5

0.25

0

0.50

0.65

0.85

FPR (x)

0.75

0.5

0.25

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			
		1	

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			
		2	

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			
		3	

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

ROC Curve

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC Curve

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			
		7	

FPR

ROC CURVE / AUC

Email Number	Score	True Label	
5	0.99	Spam	
8	0.82	Spam	
2	0.60	Spam	
1	0.60	Ham	
7	0.48	Spam	
3	0.22	Ham	
4	0.10	Ham	
6	0.02	Ham	

	Predicted: NO	Predicted: YES	
Actual: NO			
Actual: YES			
	1	7	

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC Curve

0.15

0.25

1

0.5

0.25

ROC CURVE / AUC

0.85

1

0.25

0

0

ROC CURVE / AUC

TPR (v)

1

1

FPR (x)

1

0.75

0.5

0.25

Cutoff

0.50

0.65

0.85

1

TPR (y)

0.75

0.5

0.25

0

Cutoff

0.05

0.15

0.25

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC Curve

ROC CURVE / AUC

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC Curve

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC CURVE / AUC

Cutoff	TPR (y)	FPR (x)	Cutoff	TPR (y)	FPR (x)
0	1	1	0.50	0.75	0.25
0.05	1	0.75	0.65	0.5	0
0.15	1	0.5	0.85	0.25	0
0.25	1	0.25	1	0	0

ROC Curve

Email Number	Score	True Label
5	0.99	Spam
8	0.82	Spam
2	0.60	Spam
1	0.60	Ham
7	0.48	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

	Predicted: NO	Predicted: YES	
Actual: NO	1	3	4
Actual: YES	0	4	4
	1	7	

CONFUSION VS ROC?

Discuss in your groups:

- ☐ What information do you take away from each of these evaluation techniques?
- □ What decisions can be made from each tool?

CODING

Suppose we have a dataset with features $x_1, ..., x_n$ and a class label C. What can we say about classification using Bayes' theorem?

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Bayes' theorem can help us to determine the probability of a record belonging to a class, given the data we observe.

This term is the **prior probability** of C. It represents the probability of a record belonging to class C before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the likelihood function. It represents the joint probability of observing features $\{x_i\}$ given that that record belongs to class C.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the **normalization constant**. It doesn't depend on C, and is generally ignored.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the **posterior probability** of C. It represents the probability of a record belonging to class C after the data is taken into account.

$$P(\operatorname{class} C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \operatorname{class} C) \cdot P(\operatorname{class} C)}{P(\{x_i\})}$$

The idea of Bayesian inference, then, is to **update** our beliefs about the distribution of c using the data ("evidence") at our disposal.

Q: What piece of the puzzle we've seen so far looks like it could intractably difficult in practice?

A: Estimating the full likelihood function.

$$P({x_i}|C) = P({x_1, x_2, ..., x_n})|C)$$

Observing this exactly would require us to have enough data for every possible combination of features to make a reasonable estimate.

Q: So what can we do about it?

A: Make a simplifying assumption. In particular, we assume that the features x_i are conditionally independent from each other:

$$P(\{x_i\}|C) = P(\{x_1, x_2, ..., x_n\}|C) \approx P(x_1|C) * P(x_2|C) * ... * P(x_n|C)$$

This "naïve" assumption simplifies the likelihood function to make it tractable.

CODING

DECISION TREES

- 1. Find the purest split (using gini index)
- 2. Find the next purest split
- 3. Continue until max depth is reached

Tuning: max_depth, min_sample_leaf

Gini Index =
$$1 - \sum_{j} p_j^2$$

DECISION TREES

Advantages

- 1. Easy to interpret and make for straightforward visualizations.
- 2. The internal workings are capable of being observed and thus make it possible to reproduce work.
- 3. Can handle both numerical and categorical data.
- 4. Perform well on large datasets
- 5. Are extremely fast

Disadvantages

- 1. Purest split at each step might lead to local maximum not global maximum
- 2. Prone to overfitting, leads to high variance from sample to sample

CODING

KNN

- 1. Pick a value for k
- 2. Find colors of k nearest neighbors
- 3. Assign the most common color to the gray dot

k = 3

Tuning: k_neighbors

KNN

Advantages

- 1. Can learn complex topics by local approximation (simple methods)
- 2. No assumptions or cost of learning

Disadvantages

- 1. Does not handle categorical values well
- 2. Can't be interpreted
- 3. Computationally expensive

CODING

Q&A