# PA001storytelling

## August 25, 2023

- Os dados usados para esse projeto foram coletados na plataforma Kaggle.
- O problema apresentado é fictício, criado com o intuito de aprender Ciência de Dados
- O projeto foi orientado pela Comunidade DS

## 1 Business Problem

CadioCatch Diseases é uma empresa especializada em detecção de doenças cardíacas em estágios iniciais. O seu modelo de negócio é do tipo Serviço, ou seja, a empresa ofereço o diagnóstico precoce de uma doença cardiovascular por um certo preço. Atualmente, o diagnóstico de uma doença cardiovascular é feita manualmente por uma equipe de especialistas. A precisão atual do diagnóstico varia entre 55 % e 65 %, devido a complexidade do diagnóstico e também da fadiga da equipe que se revezam em turnos para minimizar os riscos. O custo de cada diagnóstico, incluindo os aparelhos e a folha de pagamento dos analistas, gira em torno de R\$ 1.000,00.

O preço do diagnóstico, pago pelo cliente, varia de acordo com a precisão conseguida pelo time de especialistas, o cliente paga R\$ 500,00 a cada 5 % de acurácia acima de 50 %. Por exemplo, para uma precisão de 55 %, o diagnóstico custa R\$ 500,00 para o cliente, para uma precisão de 60 %, o valor é de R\$ 1000,00 e assim por diante. Se a precisão do diagnóstico for 50 % o cliente não paga por ele.

Observe que a variação da precisão dada pelo time de especialistas, faz com que a empresa tenha ora uma operação com lucro, receita maior que o custo, ora uma operação com prejuízo, receita menor que o custo. Essa instabilidade do diagnóstico faz com que a empresa tenha um Cashflow imprevisível. O seu objetivo como o Cientista de Dados contratado pela Cardio Catch Diseases é criar uma ferramenta que aumente a precisão do diagnóstico e que essa precisão seja estável para todos os diagnósticos. Portanto o seu trabalho como Data Scientist é criar um ferramenta de classificação de doentes, como umaprecisão estável.

#### 1.1 Premissas

Outliers O filtro dos outliers foram feitos com base na literatura.

#### **Dados**

- Age | Objective Feature | age | int (days)
- Height | Objective Feature | height | int (cm)
- Weight | Objective Feature | weight | float (kg)
- Gender | Objective Feature | gender | categorical code | 1 women, 2 men
- Systolic blood pressure | Examination Feature | ap\_hi | int |
- Diastolic blood pressure | Examination Feature | ap lo | int |

- Cholesterol | Examination Feature | cholesterol | 1: normal, 2: above normal, 3: well above normal |
- Glucose | Examination Feature | gluc | 1: normal, 2: above normal, 3: well above normal |
- Smoking | Subjective Feature | smoke | binary |
- Alcohol intake | Subjective Feature | alco | binary |
- Physical activity | Subjective Feature | active | binary |
- Presence or absence of cardiovascular disease | Target Variable | cardio | binary |

```
[38]: jupyter_settings()
```

<IPython.core.display.HTML object>

## 2 Exploratory Data Analysis

## 2.0.1 Univariate Anaysis

```
Geral
```

```
[51]: #Central Tendency - mean, median
ct1 = pd.DataFrame( num_attributes.apply( np.mean)).T
ct2 = pd.DataFrame( num_attributes.apply( np.median)).T

# Dispersion -std, min, max, range, skew, Kurtosis
d1 = pd.DataFrame( num_attributes.apply( np.min )).T
d2 = pd.DataFrame( num_attributes.apply( np.min )).T
d3 = pd.DataFrame( num_attributes.apply( np.max )).T
d4 = pd.DataFrame( num_attributes.apply( lambda x: x.max() - x.min() )).T
d5 = pd.DataFrame( num_attributes.apply( lambda x: x.skew() )).T
d6 = pd.DataFrame( num_attributes.apply( lambda x: x.kurtosis() )).T

#Concatenate
m = pd.concat( [d2, d3, d4, ct1, ct2, d1, d5, d6 ]).T.reset_index()
m.columns = ['attributes', 'min', 'max', 'range', 'mean', 'median', 'std', us'skew', 'kurtosis']
m
```

```
[51]:
        attributes
                      min
                                 max
                                        range
                                                        mean
                                                                 median
                                                                                   std
      skew
              kurtosis
                                      99999.0
                                                              50001.500
                     0.00 99999.00
                                               49972.419900
                                                                          28851.096242
      -0.001278
                  -1.198374
               age 30.00
                                         35.0
                                                   53.303157
                               65.00
                                                                 54.000
                                                                              6.760122
      1
      -0.306468
                  -0.821042
                                                  164.359229
                                                                165.000
            height 55.00
                              250.00
                                        195.0
                                                                              8.210068
      -0.642187
                   7.943653
            weight 10.00
                              200.00
                                        190.0
                                                   74.205690
                                                                 72.000
                                                                             14.395654
                  2.586825
      1.012070
             ap_hi -1.50
                              240.00
                                        241.5
                                                  126.979076
                                                                120.000
                                                                             17.169958
      0.855635
                  2.101024
      5
             ap_lo -0.70
                              208.80
                                        209.5
                                                   81.659033
                                                                 80.000
                                                                             10.235389
```

```
0.850847
           9.013562
              0.00
                        1.00
                                 1.0
                                         0.499700
                                                       0.000
                                                                  0.500000
     cardio
0.001200
          -2.000056
                               295.2
                                         27.556560
        imc
              3.47
                      298.67
                                                       26.375
                                                                  6.091364
7.728847 221.232148
```

Visualização da distribuição da variável resposta:

```
[52]: # counts each class for the target var
_ = sns.countplot(x=df2['cardio'])

# sets plot features
plt.xticks(ticks=[0,1], labels=['No','Yes'])

# displays the plot
plt.show()
```



```
Graf num
[53]: num_attributes.hist( bins=25, figsize=(22,11) );
```



Distribuição dos dados 'age'.

```
[54]: plt.subplot(2, 1, 1) sns.boxplot(x='cardio', y='age', data=df2);
```

Distribuição dos dados 'pressão alta(sistólica)', 'pressão baixa(diastólica)' e a junção entre as 2 pressões.

```
[55]: # PA

plt.subplot(2, 3, 1)
    sns.boxplot(x='cardio', y='ap_hi', data=df2);

plt.subplot(2, 3, 2)
    sns.boxplot(x='cardio', y='ap_lo', data=df2);

plt.subplot(2, 3, 3)
    sns.boxplot(x='cardio', y='pa_status', data=df2);
```



Distribuição dos dados 'altura', 'peso', e 'imc'.

```
[56]: # cm - <130 > 200
    plt.subplot(2, 3, 1)
    aux1 = df_cat[( df_cat['height'] > 140 ) & (df_cat['height'] < 190) ]
    sns.boxplot(x='cardio', y='height', data=aux1);

# KG - <40 > 200
    plt.subplot(2, 3, 2)
    aux2 = df_cat[( df_cat['weight'] > 30 ) & (df_cat['weight'] < 120) ]
    sns.boxplot(x='cardio', y='weight', data=aux2);

plt.subplot(2, 3, 3)
    aux = df_cat[( df_cat['imc'] > 10 ) & (df_cat['imc'] < 45) ]
    sns.boxplot(x='cardio', y='imc', data=aux);</pre>
```



Categorical Analysis Gráfico 1 e 2: Distribuição e densidade de Colesterol

Gráfico 3 e 4: Distribuição e densidade de Glicemia

Gráfico 5 e 6: Distribuição e densidade de Gênero

```
[73]: # soro_map = { 1: 'normal', 2: 'acima', 3: 'elevado'}

plt.subplot( 3, 2, 1)

sns.countplot(
```

```
x='cardio',
   hue=('cholesterol'),
   data=df_cat,
);
plt.subplot(3, 2, 2)
sns.kdeplot( df_cat[df_cat['cholesterol'] == 'normal']['cardio'], fill=True,__
→legend=True );
sns.kdeplot( df_cat[df_cat['cholesterol'] == 'acima']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['cholesterol'] == 'elevado']['cardio'], fill=True,__
 →legend=True );
plt.subplot(3, 2, 3)
sns.countplot(
   x='cardio',
   hue=('gluc'),
   data=df_cat,
);
plt.subplot(3, 2, 4)
sns.kdeplot( df_cat[df_cat['gluc'] == 'normal']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['gluc'] == 'acima']['cardio'], fill=True, __
 →legend=True );
sns.kdeplot( df_cat[df_cat['gluc'] == 'elevado']['cardio'], fill=True, __
→legend=True );
plt.subplot( 3, 2, 5)
sns.countplot(
   x='cardio',
   hue=('gender'),
   data=df_cat,
);
plt.subplot( 3, 2, 6 )
sns.kdeplot( df_cat[df_cat['gender'] == 'mulher']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['gender'] == 'homem']['cardio'], fill=True,__
 →legend=True );
```



Gráfico 1 e 2: Distribuição e densidade de Fumantes

Gráfico 3 e 4: Distribuição e densidade de Álcool

Gráfico 5 e 6:Distribuição e densidade de atividade física

```
[58]: plt.subplot(3, 2, 1)
      sns.countplot(
          x='cardio',
          hue=('smoke'),
          data=df_cat,
      );
      plt.subplot( 3, 2, 2 )
      sns.kdeplot(df_cat[df_cat['smoke'] == 'sim']['cardio'], fill=True, legend=True_
      → );
      sns.kdeplot( df_cat[df_cat['smoke'] == 'nao']['cardio'], fill=True, legend=True__
       ⇔);
      plt.subplot(3, 2, 3)
      sns.countplot(
          x='cardio',
          hue=('alco'),
          data=df_cat,
      );
      plt.subplot( 3, 2, 4 )
      sns.kdeplot( df_cat[df_cat['alco'] == 'sim']['cardio'], fill=True, legend=True __
       ⇔);
```



Gráfico 1 e 2: Distribuição e densidade de imc status

Gráfico 3 e 4: Distribuição e densidade de pa status

```
[59]: plt.subplot(3, 2, 1)
sns.countplot(
    x='cardio',
    hue=('imc_status'),
    data=df2,
);
```

```
plt.subplot(3, 2, 2)
sns.kdeplot( df_cat[df_cat['imc_status'] == 'magreza']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['imc_status'] == 'abaixo']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['imc_status'] == 'normal']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['imc_status'] == 'acima']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['imc_status'] == 'obesidade']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['imc_status'] == 'morbidade']['cardio'], fill=True, __
 →legend=True );
plt.subplot(3, 2, 3)
sns.countplot(
   x='cardio',
   hue=('pa_status'),
   data=df_cat,
);
plt.subplot(3, 2, 4)
\# sns.kdeplot(df_cat[df_cat['pa_status'] == 'baixa']['cardio'], fill=True, 
⇔legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'bom']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'normal']['cardio'], fill=True, ___
 →legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'elevada']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'estagio_I']['cardio'], fill=True,__
 →legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'estagio_II']['cardio'], fill=True, __
 →legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'estagio_III']['cardio'], fill=True,
 →legend=True );
```





### 2.0.2 Bivariate Analysis

## Visão geral das hipóteses:

- 1. False pouco relevante
- 2. True muito Relevante
- 3. True muito relevante
- 4. False pouco relevante
- 5. False pouco relevante
- 6. False pouco relevante
- 7. True pouco relevante
- 8. True muito relevante
- 9. True muito relevante
- 10. False pouco relevante

# 1. Pessoas do gênero masculino tem mais propensão à desenvolver problemas cardíacos - False/ less relevant



# 2. Pessoas com IMC alto tem mais propensão à desenvolver problemas cardíacos - True / Relevant

```
[61]: # magreza - < 16.9 - 0
      # abaixo - 17 ~ 20 - 1
      # normal - 20 ~ 24 - 2
      # acima - 25 ~ 29 - 3
      # obesidade - 30 ~ 35 - 4
      # morbides - > 35 - 5
      plt.subplot( 2, 2, 1 )
      sns.kdeplot( df_cat[df_cat['imc_status'] == 'magreza']['cardio'], fill=True,__
       →legend=True );
      sns.kdeplot( df_cat[df_cat['imc_status'] == 'abaixo']['cardio'], fill=True, __
       →legend=True );
      sns.kdeplot( df_cat[df_cat['imc_status'] == 'normal']['cardio'], fill=True,
       →legend=True );
      sns.kdeplot( df_cat[df_cat['imc_status'] == 'acima']['cardio'], fill=True, __
       →legend=True );
      sns.kdeplot( df_cat[df_cat['imc_status'] == 'obesidade']['cardio'], fill=True, __
       →legend=True );
      sns.kdeplot( df_cat[df_cat['imc_status'] == 'morbides']['cardio'], fill=True,__
       →legend=True );
      plt.subplot( 2, 2, 2 )
      sns.countplot(
```

```
x='cardio',
hue=('imc_status'),
data=df2,
);
plt.subplot( 2, 2, 3 )
sns.histplot(x='imc_status', hue='cardio', data=df_cat, bins=75);
# True
```



3. Pessoas idosos tem mais propensão à desenvolver problemas cardíacos -  $\operatorname{True}/\operatorname{Relevant}$ 

```
[62]: plt.subplot( 1, 2, 1 )
    sns.countplot(x='age', hue='cardio', data=df_cat);
# True
```



# 4. Pessoas que NÃO praticam atividades físicas tem mais propensão à desenvolver problemas cardíacos - False





## 5. Fumantes tem mais propensão à desenvolver problemas cardíacos - False



# $6.\ Pessoas$ que bebem tem mais propensão à desenvolver problemas cardíacos - False



# 7. Pessoas com alta glicemia tem mais propensão à desenvolver problemas cardíacos - True/ not relevante



# 8. Pessoas com alto colesterol tem mais propensão à desenvolver problemas cardíacos - True/relevante

```
[67]: # soro_map = { 1: 'normal', 2: 'acima', 3: 'elevado'}

plt.subplot( 1, 2, 1 )
    sns.countplot(x='cholesterol', hue='cardio', data=df_cat)

plt.subplot( 1, 2, 2 )
```



# 9. Quanto maior a Pressão Arterial mais propensão à desenvolver problemas cardíacos - True/Relevant

```
[68]: # Intervalos de PA segundo literatura:
     # baixa:
                   Hi <80 Lo <40 - 0
                   Hi <120 Lo <80 - 1
      # Boa:
      # normal:
                  Hi <129 Lo <84 - 2
     # Elevada:
                   Hi <139 Lo <89 - 3
     # estágio I: Hi <159 Lo <99 - 4
     # Estágio II: Hi <179 Lo <109 - 5
     # Estágio III: Hi >180 Lo >110 - 6
     aux1 = df_cat[['pa_status', 'cardio']].groupby( 'pa_status' ).sum().
      ⇔reset_index()
     plt.subplot( 2, 2, 1 )
     sns.barplot( x ='pa_status', y='cardio', data=aux1 );
```

```
plt.subplot( 2, 2, 2 )
sns.kdeplot( df_cat[df_cat['pa_status'] == 'bom']['cardio'], label = 'bom',__
 →fill=True, legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'normal']['cardio'], label =__

¬'normal', fill=True, legend=True );
sns.kdeplot( df_cat[df_cat['pa_status'] == 'elevada']['cardio'], label =__
sns.kdeplot( df_cat[df_cat['pa_status'] == 'estágio I']['cardio'], label =__
sns.kdeplot( df_cat[df_cat['pa_status'] == 'estágio II']['cardio'], label =__
 ⇔'estágio II', fill=True, legend=True );
sns.kdeplot(df_cat[df_cat['pa_status'] == 'estágio III']['cardio'], label = __
 plt.subplot( 2, 2, 3 )
# sns.kdeplot( df_cat[df_cat['pa status'] == 'baixa']['cardio'], fill=True, ___
→legend=True );
sns.histplot(x='pa_status', hue='cardio', data=df_cat, bins=75);
# True - relevante
```





10. Altura não é relevante para o desenvolvimento de cardiopatias - False/less relevante

```
[69]: filtro = df_cat[(df_cat['height'] >= 135) & (df_cat['height'] <= 200)]
sns.histplot(x='height', hue='cardio', data=filtro);</pre>
```





# 2.0.3 Multivariate Analysis

Variáveis numéricas

```
[70]: # Variáveis numéricas:
nominal.associations(num_attributes.drop('id',axis = 1));
```



## Variáveis categóricas

```
binarias = df3[['smoke', 'alco', 'active']]
numericas = df_cat[['age', 'height', 'weight', 'ap_hi', 'ap_lo', 'imc']]

a1 = pointbiserialr(binarias['smoke'], numericas['age'])[0]
a2 = pointbiserialr(binarias['smoke'], numericas['height'])[0]
a3 = pointbiserialr(binarias['smoke'], numericas['weight'])[0]
a4 = pointbiserialr(binarias['smoke'], numericas['ap_hi'])[0]
a5 = pointbiserialr(binarias['smoke'], numericas['ap_lo'])[0]
a6 = pointbiserialr(binarias['smoke'], numericas['imc'])[0]

a7 = pointbiserialr(binarias['alco'], numericas['height'])[0]
a8 = pointbiserialr(binarias['alco'], numericas['height'])[0]
a9 = pointbiserialr(binarias['alco'], numericas['weight'])[0]
```

```
a10 = pointbiserialr(binarias['alco'], numericas['ap_hi'])[0]
a11 = pointbiserialr(binarias['alco'], numericas['ap_lo'])[0]
a12 = pointbiserialr(binarias['alco'], numericas['imc'])[0]
a13 = pointbiserialr(binarias['active'], numericas['age'])[0]
a14 = pointbiserialr(binarias['active'], numericas['height'])[0]
a15 = pointbiserialr(binarias['active'], numericas['weight'])[0]
a16 = pointbiserialr(binarias['active'], numericas['ap_hi'])[0]
a17 = pointbiserialr(binarias['active'], numericas['ap_lo'])[0]
a18 = pointbiserialr(binarias['active'], numericas['imc'])[0]
# creates a DataFrame to store the values
df_pbs_r = pd.DataFrame({'smoke':[a1, a2, a3, a4, a5, a6],
                         'alco':[a7, a8, a9, a10, a11, a12, ],
                         'active': [a13, a14, a15, a16, a17, a18]})
# sets the index equal to columns
df_pbs_r = df_pbs_r.set_index(numericas.columns)
sns.heatmap(df_pbs_r, annot=True);
plt.title("Binaria vs num");
# displays plot
plt.show();
```



### []: MachineLearning(df\_train)

```
Rodando modelo: XGBClassifier
Rodando modelo: SGDClassifier
Rodando modelo: LGBMClassifier
[LightGBM] [Info] Number of positive: 22103, number of negative: 21709
[LightGBM] [Info] Total Bins 375
[LightGBM] [Info] Number of data points in the train set: 43812, number of used
features: 9
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.504496 -> initscore=0.017986
[LightGBM] [Info] Start training from score 0.017986
[LightGBM] [Info] Number of positive: 22103, number of negative: 21709
[LightGBM] [Info] Total Bins 374
[LightGBM] [Info] Number of data points in the train set: 43812, number of used
features: 9
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.504496 -> initscore=0.017986
[LightGBM] [Info] Start training from score 0.017986
[LightGBM] [Info] Number of positive: 22102, number of negative: 21710
[LightGBM] [Info] Total Bins 375
[LightGBM] [Info] Number of data points in the train set: 43812, number of used
features: 9
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.504474 -> initscore=0.017895
[LightGBM] [Info] Start training from score 0.017895
[LightGBM] [Info] Number of positive: 22102, number of negative: 21710
[LightGBM] [Info] Total Bins 375
[LightGBM] [Info] Number of data points in the train set: 43812, number of used
features: 9
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.504474 -> initscore=0.017895
[LightGBM] [Info] Start training from score 0.017895
[LightGBM] [Info] Number of positive: 22102, number of negative: 21710
[LightGBM] [Info] Total Bins 375
[LightGBM] [Info] Number of data points in the train set: 43812, number of used
features: 9
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.504474 -> initscore=0.017895
[LightGBM] [Info] Start training from score 0.017895
Rodando modelo: GaussianNB
Rodando modelo: Regressão Logística
Rodando modelo: DecisionTreeClassifier
Rodando modelo: KNN
Rodando modelo: BaggingClassifier
Rodando modelo: RandomForestClassifier
```

| []:                 | acurácia | recall   | precision | eficiência | f1-score |
|---------------------|----------|----------|-----------|------------|----------|
| XGBClassifier       | 0.726413 | 0.697191 | 0.744334  | 0.719974   | 0.726677 |
| SGDClassifier       | 0.717210 | 0.716051 | 0.721785  | 0.718348   | 0.717222 |
| LGBMClassifier      | 0.726486 | 0.700811 | 0.742564  | 0.721063   | 0.726718 |
| GaussianNB          | 0.704355 | 0.649052 | 0.734164  | 0.688976   | 0.704855 |
| Regressão Logística | 0.718196 | 0.677211 | 0.741811  | 0.708014   | 0.718567 |

```
      DecisionTreeClassifier
      0.630238
      0.609418
      0.640325
      0.624468
      0.630426

      KNN
      0.669424
      0.681012
      0.669473
      0.675168
      0.669319

      BaggingClassifier
      0.662595
      0.644708
      0.672838
      0.658455
      0.662756

      RandomForestClassifier
      0.682936
      0.697300
      0.681548
      0.689314
      0.682806
```

#### Model Evaluation

```
[]: threshold = 0.45
    n_rows = 2
     n_{cols} = 2
     fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 8))
     lista_de_modelos = [XGBClassifier(learning_rate=0.1, n_estimators=100,_
      →max_depth=3),
                         SGDClassifier(loss='log_loss', random_state=SEED,_
      \rightarrown_jobs=-1),
                         LGBMClassifier(random_state=SEED, n_jobs=-1,_

¬force_row_wise=True),
                         LogisticRegression(max_iter=220, random_state=SEED)]
     for clf, ax in zip(lista_de_modelos, axes.flatten()):
         # Fit the model
         clf.fit( x_train, y_train )
         # Predict the probabilities
         clf_probs = clf.predict_proba( x_teste )
         # Keep probabilities for the positive outcome only
         probs = clf_probs[:, 1]
         # Apply the threshold
         y_pred = np.where(probs > threshold, 1, 0)
         # Calculate the confusion matrix
         cm = confusion_matrix(y_teste, y_pred)
         # Plot the confusion matrix as a heatmap
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax)
         ax.set_title(type(clf).__name__)
     # Adjust subplot layout
     plt.tight_layout()
     # Display the plot
     plt.show()
```

```
[LightGBM] [Info] Number of positive: 27628, number of negative: 27137 [LightGBM] [Info] Total Bins 376 [LightGBM] [Info] Number of data points in the train set: 54765, number of used features: 9 [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.504483 -> initscore=0.017932
```

[LightGBM] [Info] Start training from score 0.017932



```
# trains the classifiers
xgb.fit( x_train, np.ravel( y_train ) )
lgbm.fit( x_train, np.ravel( y_train ) )
sgd.fit( x_train, np.ravel( y_train ) )
lr.fit( x_train, np.ravel( y_train ) )

# store the predicted probabilities for class 1
y_pred_xgb = xgb.predict_proba( x_teste )[ :,1 ]
y_pred_lgbm = lgbm.predict_proba( x_teste )[ :,1 ]
y_pred_sgd = sgd.predict_proba( x_teste )[ :,1 ]
y_pred_lr = lr.predict_proba( x_teste )[ :,1 ]
# uses the variable ax for single a Axes
```

```
fig, ax = plt.subplots()
# generate a no skill prediction (majority class)
ns_probs = [ 0 for _ in range( len( y_teste ) ) ]
# calculates the roc curves
ns_fpr, ns_tpr, _ = roc_curve( y_teste, ns_probs )
xgb_fpr, xgb_tpr, _ = roc_curve( y_teste, y_pred_xgb )
lgbm_fpr, lgbm_tpr, _ = roc_curve( y_teste, y_pred_lgbm )
sgd_fpr, sgd_tpr, _ = roc_curve( y_teste, y_pred_sgd )
lr_fpr, lr_tpr, _ = roc_curve( y_teste, y_pred_lr )
# plots the roc curve for the model
plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(xgb_fpr, xgb_tpr, marker='.', label='XGB')
plt.plot(lgbm_fpr, lgbm_tpr, marker='.', label='LGBM')
plt.plot(sgd_fpr, sgd_tpr, marker='.', label='SGD')
plt.plot(lr_fpr, lr_tpr, marker='.', label='LR')
# sets plot features
plt.title("ROC Curve", fontsize=14)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# displays the legend
plt.legend()
# displays the plot
plt.show()
[LightGBM] [Info] Number of positive: 27628, number of negative: 27137
[LightGBM] [Info] Total Bins 376
[LightGBM] [Info] Number of data points in the train set: 54765, number of used
features: 9
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.504483 -> initscore=0.017932
[LightGBM] [Info] Start training from score 0.017932
```



#### 2.0.4 Final Result

```
[]: # # Modelo selecionado
     # XGBoosting já aplica o boosting então não precisa dessa etapa.
     # final_model = XGBClassifier( colsample_bytree= 0.8, learning_rate= 0.1,_
     →max_depth= 6, n_estimators= 100, subsample= 0.8)
     final_model = XGBClassifier( colsample_bytree= 1.0, learning_rate= 0.1, __
      max_depth= 3, n_estimators= 100, subsample= 0.8 )
     final_model.fit(x_train, y_train)
     y_pred = final_model.predict( x_teste )
     # Calculando as métricas de avaliação com base nas previsões da validação.
      \hookrightarrow cruzada
     accuracy = accuracy_score(y_teste, y_pred)
     recall = recall_score(y_teste, y_pred)
     precision = precision_score(y_teste, y_pred)
     balanced_accuracy = balanced_accuracy_score(y_teste, y_pred)
     f1 = f1_score(y_teste, y_pred)
     print("Accuracy:", accuracy)
     print("Recall:", recall)
     print("Precision:", precision)
     print("Balanced Accuracy:", balanced_accuracy)
     print("F1 Score:", f1)
```

Accuracy: 0.7340052585451359

Recall: 0.7017748036077975 Precision: 0.7518703241895262

Balanced Accuracy: 0.7341376218097656

F1 Score: 0.7259593679458239

### 2.0.5 Cros-Validation

```
[]: # Validação cruzada Leave One Out
kf = StratifiedKFold(n_splits = 10)

lista_de_medidas = ['precision', 'recall', 'f1']

modelo_final_cv = XGBClassifier( colsample_bytree= 1.0, learning_rate= 0.1, usinax_depth= 3, n_estimators= 100, subsample= 0.8)

kf_scores = cross_validate(modelo_final_cv, x_final, y_final, cv=kf, usinate = 0.1, usinate
```

Average precision: 0.7455 (+/- 0.0124) Average recall: 0.6995 (+/- 0.0126) Average f1: 0.7217 (+/- 0.0104)

### Final Model Evaluation

```
modelo_final_cv = XGBClassifier(learning_rate=0.1, n_estimators=100,u_max_depth=3)

# Fit the model
modelo_final_cv.fit(x_final, y_final)

# Predict the probabilities
modelo_final_cv_probs = modelo_final_cv.predict_proba(x_teste)

# Keep probabilities for the positive outcome only
probs = modelo_final_cv_probs[:, 1]

# Apply the threshold
y_pred = np.where(probs > threshold, 1, 0)

# Calculate the confusion matrix
cm = confusion_matrix(y_teste, y_pred)

# Create a heatmap of the confusion matrix
```

```
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title("Confusion Matrix")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.show()
```



## 3 Business Performance

A lembrar: "o cliente paga R\$ 500,00 a cada 5% de acurácia acima de 50%. Por exemplo, para uma precisão de 55%, o diagnóstico custa R\$ 500,00 para o cliente, para uma precisão de 60%, o valor é de R\$ 1000,00 e assimpor diante. Se a precisão do diagnóstico for 50% o cliente não paga por ele."

```
[]: # Número de pacientes da base de dados: 70000

price_per_percent = 500/5
baseline = 50
```

```
num_pacients = 70000

# Medida escolhida: Precisão
model_accuracy = kf_scores['test_precision'].mean()
deviation = kf_scores['test_precision'].std() * 2

accuracy_lower = (model_accuracy - deviation) * 100
accuracy_upper = (model_accuracy + deviation) * 100

percent_difference_lower = accuracy_lower - baseline
percent_difference_upper = accuracy_upper - baseline

amount_best = percent_difference_upper * price_per_percent * num_pacients
amount_worst = percent_difference_lower * price_per_percent * num_pacients
average = ( amount_best + amount_worst ) /2

print(f'Best: ${round(amount_best, 2):,.2f}')
print(f'Worst: ${round(amount_worst, 2):,.2f}')
print(f'Average: ${round(average, 2):,.2f}')
```

Best: \$180,490,556.97 Worst: \$163,173,926.15 Average: \$171,832,241.56