

planetmath.org

Math for the people, by the people.

Knuth's up arrow notation

Canonical name KnuthsUpArrowNotation

Date of creation 2013-03-22 12:58:43 Last modified on 2013-03-22 12:58:43

Owner Henry (455) Last modified by Henry (455)

Numerical id 7

Author Henry (455)
Entry type Definition
Classification msc 00A05
Synonym up-arrow
Synonym up arrow

Synonym up-arrow notation Synonym up arrow notation Synonym Knuth notation

Related topic ConwaysChainedArrowNotation

Knuth's up arrow noation is a way of writing numbers which would be unwieldy in standard decimal notation. It expands on the exponential notation $m \uparrow n = m^n$. Define $m \uparrow \uparrow 0 = 1$ and $m \uparrow \uparrow n = m \uparrow (m \uparrow \uparrow [n-1])$.

Obviously $m \uparrow \uparrow 1 = m^1 = m$, so $3 \uparrow \uparrow 2 = 3^{3\uparrow \uparrow 1} = 3^3 = 27$, but $2 \uparrow \uparrow 3 = 2^{2\uparrow \uparrow 2} = 2^{2^2\uparrow \uparrow 1} = 2^{(2^2)} = 16$.

In general, $m \uparrow \uparrow n = m^{m \dots m}$, a tower of height n.

Clearly, this process can be extended: $m \uparrow \uparrow \uparrow 0 = 1$ and $m \uparrow \uparrow \uparrow n = m \uparrow \uparrow (m \uparrow \uparrow \uparrow [n-1])$.

An alternate notation is to write $m^{(i)}n$ for $m \underbrace{\uparrow \cdots \uparrow}_{i-2 \text{ times}} n$. (i-2 times)

because then $m^{(2)}n=m\cdot n$ and $m^{(1)}n=m+n$.) Then in general we can define $m^{(i)}n=m^{(i-1)}(m^{(i)}(n-1))$.

To get a sense of how quickly these numbers grow, $3 \uparrow \uparrow \uparrow 2 = 3 \uparrow \uparrow 3$ is more than seven and a half trillion, and the numbers continue to grow much more than exponentially.