One image:

- Shading
- Texture

- Stereo
- Contours
- Motion

One image:

- Shading
- Texture

- Stereo
- Contours
- Motion

One image:

- Shading
- Texture

- Stereo
- Contours
- Motion

One image:

- Shading
- Texture

- Stereo
- Contours
- Motion

One image:

- Shading
- Texture

- Stereo
- Contours
- Motion

SHADING

- Shading models
- Shape from shading
 - Quantitative
 - Qualitative

BUMP MAPPING

Simple mesh + 2D bump map = Complex looking object

LAMBERTIAN HALF-SPHERE

Gray level changes are interpreted as changes in the direction of the surface normal

BOUNDARY CONDITIONS

Shading gives information about surface normals
 → Boundary conditions required for a complete interpretation.

BEETHOVEN

IMAGE FORMATION

DIRECT LIGHTING

LOCAL SHADING MODEL

The effect of a distant source on a surface patch depends on its **apparent** surface.

FUNDAMENTAL RADIOMETRIC EQUATION

Radiance: amount of light emitted in a given direction

Irradiance: amount of light received on a surface

$$Irr = \frac{p}{4} \left(\frac{d}{f}\right)^2 \cos^4(a) Rad$$

$$\Rightarrow I \propto Irr \propto Rad$$

Image intensity

when the camera is photometrically calibrated.

LAMBERTIAN SURFACE

Perfectly matte surface: The radiance depends only on angle of incidence and not on viewing direction.

ESTIMATED ALBEDO

SECONDARY ILLUMINATION

Reflections produce indirect lighting.

Unique light source assumption doe not allow correct albedo recovery.

Recovered albedoes

SIMPLIFYING ASSUMPTIONS

- The illumination sources are distant from the imaged surfaces
- Secondary illumination is not significant
- There are no cast shadows

MONGE SURFACE

$$z = f(x, y)$$

SURFACE NORMALS

$$z = f(x, y)$$

$$p = \frac{\delta z}{\delta x}$$

$$q = \frac{\delta z}{\delta y}$$

TANGENT VECTORS

$$z = f(x, y)$$

$$p = \frac{\delta z}{\delta x}$$

$$q = \frac{\delta z}{\delta y}$$

PROJECTION

Elevation and Normal:

$$z = f(x, y)$$

$$\mathbf{N}(x,y) = \frac{1}{\sqrt{1 + f_x^2 + f_y^2}} \begin{bmatrix} -f_x \\ -f_y \\ 1 \end{bmatrix}$$

Orthographic Projection:

$$u = sx$$

$$v = sy$$

RE-PARAMETRIZATION

$$z = f(u, v)$$

SHAPE FROM NORMALS

$$\mathbf{N} = \frac{1}{\sqrt{1 + \frac{\delta z}{\delta x}^2 + \frac{\delta z}{\delta y}^2}} \begin{bmatrix} -\frac{\delta z}{\delta x} \\ -\frac{\delta z}{\delta y} \\ 1 \end{bmatrix} \propto \begin{bmatrix} -\frac{1}{s} \frac{\delta z}{\delta u} \\ -\frac{1}{s} \frac{\delta z}{\delta v} \end{bmatrix}$$

$$\Rightarrow \frac{\delta z}{\delta u} = -s \frac{n_x}{n_z} \text{ and } \frac{\delta z}{\delta v} = -s \frac{n_y}{n_z}$$

$$\Rightarrow \frac{\delta \bar{z}}{\delta u} = -\frac{n_x}{n_z} = n_1 \text{ and } \frac{\delta \bar{z}}{\delta v} = -\frac{n_y}{n_z} = n_2, \text{ with } \bar{z} = \frac{z}{s}$$

FINITE DIFFERENCES

$$\overline{z}(u+1,v) - \overline{z}(u,v) = n_1(u,v)$$

$$\overline{z}(u,v+1) - \overline{z}(u,v) = n_2(u,v)$$

- \Rightarrow Twice as many equations as there are unknown.
- ⇒ Least square solution up to a scale factor.

GRADIENT SPACE

$$z = f(u, v)$$

$$p = \frac{\delta z}{\delta u}$$

$$q = \frac{\delta z}{\delta v}$$

REFLECTANCE MAP

Reflectance:

Amount of light reflected towards the camera.

Albedo:

Fraction of the light incident on the surface that is reflected over all directions.

→ In the Lambertian case and for a constant albedo

$$I(u,v) \propto Ref(p(u,v),q(u,v))$$

 $\propto [p(u,v),q(u,v),-1] \cdot S$

LAMBERTIAN REFLECTANCE MAP

Reflectance map and shaded surface for Lambertian surface illuminated in the direction [-1 -0.5 -1].

EARTH RISE

The earth seen from the moon. Apollo 8, 1968.

LAMBERTIAN REFLECTANCE MAP

Reflectance map and shaded surface for Lambertian surface illuminated in the direction [0 0 -1].

LAMBERTIAN REFLECTANCE MAP

Reflectance map and shaded surface for Lambertian surface illuminated in the direction [1 0.5 -1].

CAN WE DETERMINE (P,Q) UNIQUELY FOR EACH IMAGE POINT INDEPENDENTLY?

NO -> Global optimization required.

VARIATIONAL METHODS

Minimize:

$$\int \int \left(\left[I(u,v) - Ref(\frac{\delta z}{\delta u}, \frac{\delta z}{\delta v}) \right]^2 + \lambda \left[\left(\frac{\delta^2 z}{\delta u^2} \right)^2 + \left(\frac{\delta^2 z}{\delta u \delta v} \right)^2 + \left(\frac{\delta^2 z}{\delta v^2} \right)^2 \right] \right) du dv$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Or: Brightness constraint Smoothness term
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\int \int \left(\left[I(u,v) - Ref(p,q) \right]^2 + \lambda \left[\left(\frac{\delta p}{\delta u} \right)^2 + \left(\frac{\delta p}{\delta v} \right)^2 + \left(\frac{\delta q}{\delta u} \right)^2 + \left(\frac{\delta q}{\delta v} \right)^2 \right] + \mu \left[\frac{\delta p}{\delta v} - \frac{\delta q}{\delta u} \right]^2 \right) du dv$$
Integrability

constraint

VARIATIONAL METHODS

$$\int \int \left(\left[I(u,v) - Ref(\frac{\delta z}{\delta u}, \frac{\delta z}{\delta v}) \right]^2 + \lambda \left[\left(\frac{\delta^2 z}{\delta u^2} \right)^2 + \left(\frac{\delta^2 z}{\delta u \delta v} \right)^2 + \left(\frac{\delta^2 z}{\delta v^2} \right)^2 \right] \right) du dv$$

Once p and q are estimated, integrate to recover f.

→ Need to know the boundary conditions.

MOONSCAPE

RESULTS IN MEDICAL IMAGING

Scanning Electron Microscope (inverse intensity). Ikeuchi and Horn, AI'81:

Inside a human stomach: Light source located close to the camera optical center. Prados and Faugeras, ICCV'03:

AMBIGUITIES

THE BAS-RELIEF AMBIGUITY

MORE GENERALLY

BAS-RELIEF AMBIGUITY

$$Ref = \mathbf{N} \cdot \mathbf{S}$$

For any invertible 3x3 linear transformation A:

$$\mathbf{N} \bullet \mathbf{S} = N^T S = (A\mathbf{N})^T A^{-T} \mathbf{S}$$

But for a valid surface z=f(u,v), we should have:

$$\frac{\frac{\partial f}{\partial u} = \frac{\mathbf{N}_{1}^{*}}{\mathbf{N}_{3}^{*}}}{\frac{\partial f}{\partial v} = \frac{\mathbf{N}_{1}^{*}}{\mathbf{N}_{3}^{*}}} \Rightarrow \frac{\partial \frac{\mathbf{N}_{1}^{*}}{\mathbf{N}_{3}^{*}}}{\partial v} = \frac{\partial \frac{\mathbf{N}_{2}^{*}}{\mathbf{N}_{3}^{*}}}{\partial u} \text{ with } \mathbf{N}^{*} = \mathbf{A}\mathbf{N}$$

BAS-RELIEF AMBIGUITY

But for a valid surface, we should have:

$$\frac{\partial \mathbf{N}_{1}^{*}}{\partial \mathbf{N}_{3}^{*}} = \frac{\partial \mathbf{N}_{2}^{*}}{\partial u} \text{ with } \mathbf{N}^{*} = \mathbf{A}\mathbf{N}$$

$$\Rightarrow \mathbf{A} \text{ restricted to } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ m & u & l \end{bmatrix}$$

The surface f(u, v) can be changed into $\lambda f(u,v) + \mu u + \nu v$ and still produce the same image.

EVEN WHEN THE LIGHT SOURCE IS KNOWN...

EVEN WHEN THE LIGHT SOURCE IS KNOWN...

MAKING THE PROBLEM WELL-POSED

- Use perspective projection model;
- Radiance depends on distance to light source:

$$I = \frac{Albedo \cdot (\mathbf{N} \cdot \mathbf{S})}{d^2}$$

instead of

$$I = Albedo \cdot (\mathbf{N} \cdot \mathbf{S})$$

- Light source located at the optical center.
- -> Unique solution.

Prados and Faugeras, CVPR'05.

RESULTS

SHAPE REFINEMENT

Shape-from-shading is used to refine the shape and provide high-frequency details.

Valgaerts et al. SIGGRAPH Asia'12

EVERYDAY SETTING

Multiple extended light sources:

- Illumination modeled as a weighted sum of spherical harmonics.
- Illumination parameters estimated using the light probe.

ILLUMINATION HEMISPHERE

$$L_{o}(\mathbf{P}, \mathbf{q}_{o}, \mathbf{f}_{o}) = \int_{\Omega_{i}} \mathbf{r}_{bd} (\mathbf{q}_{o}, \mathbf{f}_{o}, \mathbf{q}_{i}, \mathbf{f}_{i}) L_{i}(\mathbf{P}, \mathbf{q}_{i}, \mathbf{f}_{i}) \cos(\mathbf{q}_{i}) d\mathbf{w}_{i}$$

$$= \int_{\Omega_{i}} L_{i}(\mathbf{q}_{i}, \mathbf{f}_{i}) \mathbf{r}_{bd} (\mathbf{q}_{o}, \mathbf{f}_{o}, \mathbf{q}_{i}, \mathbf{f}_{i}) \max(0, \cos(\mathbf{q}_{i})) d\mathbf{w}_{i}$$

$$= \int_{\Omega_{i}} L_{i}(\mathbf{q}_{i}, \mathbf{f}_{i}) \mathbf{r}^{*} (\mathbf{q}_{i}, \mathbf{f}_{i}) d\mathbf{w}_{i}$$

with $r^*(q_i, f_i) = r_{bd}(q_o, f_o, q_i, f_i) \max(0, \cos(q_i))$ is the BRDF product function.

PATCH INTENSITY AND DEFORMATION MODES

Synthesize a training database containing deformed patches and the corresponding intensity patterns. Compute:

Deformation modes: $D = D_0 + \sum_i y_i D_i$

Intensity modes: $I = I_0 + \sum_i x_i I_i$

AMBIGUOUS MAPPING

Mapping from intensity to surface deformation.

Unfortunately, the mapping is not one to one.

Algorithm:

- Partition the training database according to average normal to learn an unambiguous mapping.
 - At run-time, predict several potential shapes for each imagepatch and use a Markov-Random field to pick a set of consistent interpretations.

ALGORITHMIC FLOW

→ The light environment and the camera need to be very carefully calibrated but there is hope ...

Varol et al., PAMI'12

Given multiple images of the same surface under different known lighting conditions, can we recover the surface shape?

Yes! (Woodham, 1978)

- Take several images under different lighting conditions.
 - Infer the orientation from the changes in illumination.

ALGEBRAIC FORMULATION

Lambertian model:

$$I = a(\mathbf{N} \cdot \mathbf{L}) = \mathbf{L} \cdot \mathbf{M}$$

Three light sources:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{L}_2 \\ \mathbf{L}_3 \end{bmatrix} \mathbf{M}$$

$$N = \frac{M}{\left\| M \right\|}$$

$$a = ||\mathbf{M}||$$

ADDITIONAL LIGHTS

Over-constrained problem:

$$I = LM$$
, with $I = \begin{bmatrix} I_1 \\ \vdots \\ I_n \end{bmatrix}$ and $L = \begin{bmatrix} L_1 \\ \vdots \\ L_n \end{bmatrix}$

 \Rightarrow L^tLM = L^tI (Least - squares solution)

SHADOWS

- Shadowed pixels for a given light source position are outliers.
- Premultiplying by a thresholded weight matrix eliminates their contributions.

$$\begin{bmatrix} I_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & I_n \end{bmatrix} \boldsymbol{I} = \begin{bmatrix} I_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & I_n \end{bmatrix} \boldsymbol{L} \boldsymbol{M}$$

SYNTHETIC SPHERE IMAGES

Five different lighting conditions:

VIRTUOSO

One camera and five light sources

DELIGHTED TEXTURE MAPS

SPECULARITIES

- At specular points Lambertian assumptions are violated.
- However, they can be used to infer normal information.

ANGLES

Angle of incidence (i): angle between the surface normal and the direction of the incident light ray.

Angle of emittance (e): angle between emitted light ray and surface normal.

Phase angle (g): angle between incident and emitted light ray.

LAMBERTIAN+SPECULAR REFLECTANCE MAP

Weighted average of the individual diffuse- and specular-component of glossy white paint.

SPECULAR SURFACE

Perfect mirror: Reflects light only when i = e and i + e = g.

→ In practice, most surfaces are a mixture of specular and Lambertian.

SHAPE FROM SPECULARITIES

Chen et al., CVPR 2006

SHAPE FROM SPECULARITIES

Chen et al., CVPR 2006

POSE FROM TEXTURE

- Texture tracking yields correct reprojection of frontal facets.
- But the jittering top shows that the tracking is nevertheless inaccurate.

POSE FROM SPECULARITIES

Taking advantage of specularities yields better poses

→ No more jittering top!

TEXTURE AND SPECULARITIES

Specularities are:

Very sensitive to motion

Affected differently than texture by
the same motion

Specularities are not:

Capable of constraining all the degrees of freedom

Therefore texture and specularities must be combined

IN SHORT

Traditional Shape-from-Shading requires making strong assumptions:

- Constant or piece-wise constant albedo
- No inter-reflections
- No shadows
- No specularities
- → In a single image context, it is most useful in conjunction with other information sources.