## Distance & Similarity

### **Distance function** if and only if:

- d(i, j) = 0 if and only if i = j
- d(i, j) = d(j, i)
- $d(i, j) \le d(i, k) + d(k, j)$  triangle inequality

### Minkowski Distance

For x, y points in d dimensional real space Given that  $p \ge 1$ :

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

p = 1: Manhattan Distance

p = 2: Euclidean Distance

### **Jaccard Similarity**

$$JDist(x,y) = 1 - \frac{|x \cap y|}{|x \cup y|}$$

 $x \cap y$  is the count of positions where both vectors have a 1 (intersection). How many  $x \cup y$  is the count of positions where at least one vector has a 1 (union).

### **Cosine Similarity**

s(x,y) = cos(theta)

Where theta is the angle between x and y

Two proportional vector has s() of 1 and two orthogonal is 0

## Clustering

### K-means

Given  $X = \{x_1, ..., x_n\}$  our dataset, **d** the euclidean distance, and **k** 

Find k centers  $\{\!\mu_1,\,...\,,\mu_k\!\}$  that minimize the  $cost\ function$  :

$$\sum_{i}^{k} \sum_{x \in C_{i}} d(\mathbf{x}, \boldsymbol{\mu}_{\mathbf{i}})^{2}$$

When **k=1** and **k=n** this is easy. Why?

When  $\mathbf{x_i}$  lives in more than 2 dimensions, this is a very difficult (NP-hard) problem

### K Means - Lloyd's Algorithm

- 1. Randomly pick k centers
- 2. Assign each point to its closest center
- 3. Compute the new centers as the means of each cluster
- 4. Repeat 2 and 3 until convergence



No this cannot happen, since edges of the C2 cluster would be closer to centroid of C1

Kmeans always converge but not always optimal

### K-means ++

Start with one random center from the data points.

For every other point x, compute D(x), the distance between x and the nearest center already chosen.

Choose the next center from the remaining points. But not randomly—instead, pick a point with a probability proportional to D(x)<sup>2</sup>.

- This means points farther away from existing centers are more likely to be chosen as new centers.
- The squared distance D(x) <sup>2</sup> exaggerates this effect, encouraging new centers to be spread out.

Repeat steps 2–3 until k centers are chosen.

### Silhouette Scores

For each data point i:

- **a**<sub>i</sub> = average distance from **i** to all other points **in the same cluster** 
  - → Measures intra-cluster cohesion
- **b**<sub>i</sub> = lowest average distance from **i** to all points in **any other cluster** (i.e., the next nearest cluster)
  - → Measures inter-cluster separation

Then the **Silhouette Score s**<sub>i</sub> is:

$$si = \{b_i - a_i\} / (a_i, b_i)$$

If si is less than 0, possible misclassified

#### **DBScan**

ε and min pts given:

- 1. Find the ε-neighborhood of each point
- 2. Label the point as core if it contains at least min\_pts
- 3. For each core point, assign to the same cluster all core points in its neighborhood (crux of the algorithm)
- 4. Label points in its neighborhood that are not core as border
- 5. Label points as noise if they are neither core nor border
- 6. Assign border points to nearby clusters

## Hierarchical Clustering

### **Single Link Distance**

- Is the minimum of all pairwise distance between a point from one cluster and a point from the other cluster

### **Complete Link Distance**

- Is the maximum of all pairwise distances between a point from one cluster and a point from the other cluster.

### **Average-Link Distance**

- Is the average of all pairwise distances between a point from one cluster and a point from the other cluster.

### **Centroid Distance**

- The distance between the centroids of clusters.

### Ward's Distance

- Is the difference between the spread / variance of points in the merged cluster and the unmerged clusters.

### **Agglomerative Clustering Algorithm**

- Let each point in the dataset be in its own cluster
- Compute the distance between all pairs of clusters
- Merge the two closest clusters
- Repeat 3 & 4 until all points are in the same cluster

### Ex.



|   | Α  | В   | С   | D   |
|---|----|-----|-----|-----|
| Α | 0  | √2  | 3   | 2   |
| В | √2 | 0   | √5  | √10 |
| С | 3  | √5  | 0   | √13 |
| D | 2  | √10 | √13 | 0   |

Distance Matrix

|       | A & B | С   | D   |
|-------|-------|-----|-----|
| A & B | 0     | √5  | 2   |
| С     | √5    | 0   | √13 |
| D     | 2     | √13 | 0   |

Distance Matrix

## Soft Clustering

Goal: find the P(S\_j | X\_i) distribution. Where S\_j is species and X\_i is the ith weight in the dataset

How to compute P(S\_j | X\_i)?

$$P(S_j|X_i) = \frac{P(X_i|S_j)P(S_j)}{P(X_i)}$$

P(X | S) is the probability of a certain weight given that is species j

P(S) is the prior probability of seeing a species S\_j

How about P(X i)?

- We combine the weight distribution of all species

$$P(X_i) = \sum_{j} P(S_j) P(X_i|S_j)$$

Therefore its called a Gaussian Mixture Model, where X comes from k mixture components

M Step:

Calculate P(S\_j | X\_i) for all X\_i by using mean, covariance and P(S\_j)

E Step:

Compute and Update mean, covariance and P(S\_i) from the q-function derived from

$$\prod_{i} P(X_i) = \prod_{i} \sum_{j} P(S_j) P(X_i | S_j)$$

Not guaranteed to converge to a global maximum, not guarantee to converge in the finite number of steps

Need to calculate 3k parameters

## **Clustering Aggregation**

### **Disagreement Distance**

|                       | Р | С |
|-----------------------|---|---|
| <b>X</b> <sub>1</sub> | 1 | 1 |
| X <sub>2</sub>        | 1 | 2 |
| X <sub>3</sub>        | 2 | 1 |
| <b>X</b> <sub>4</sub> | 3 | 3 |
| <b>X</b> <sub>5</sub> | 3 | 4 |

### Step-by-step pair comparisons:

disagreement

- 2.  $(x_1, x_3)$   $\circ$  P: same (3,3)
  - $\circ$  P: different (1,2)  $\circ$  C: different (3,4)  $\rightarrow$ 
    - disagreement
  - C: same (1,1) → disagreement
- 3. (x<sub>1</sub>, x<sub>4</sub>)

### **Aggregate Clustering**

Goal: from a set of clusterings, generate a clustering that minimizes:

$$\sum_{i=1}^{m} D(C^*, C_i)$$

## Singular Value Decomposition

Linear Algebra Review:

A set of nnn vectors {v1,v2,...,vn} in an **n-dimensional space** is **linearly independent if and only if**:

det(A)≠0

Where:

- A=[v1 v2 ... vn] is an n×n matrix with each vector as a column.
- Definition: Rank

The rank of a matrix A is:

- The dimension of the vector space spanned by its columns (i.e., the column space of A).
- Equivalently, it is the maximum number of linearly independent columns or rows of A.
- Definition: Full Rank

A matrix A∈Rm×n is **full-rank** if:

rank(A)=min(m,n)

- For a **square matrix** (m=n): full rank means it is **invertible**.
- For a rectangular matrix: full rank means its columns (if m>n) or rows (if n>m) are linearly independent.

### **Frobenius Distance**

$$d_F(A, B) = ||A - B||_F = \sqrt{\sum_{i,j} (a_{ij} - b_{ij})^2}$$



if not a line then rank 2, most the time its dimension 2 except for when B is fixed

Singular Value Decomposition - by Lance Galletti

The Singular Value Decomposition of a rank-r matrix A has the form:



Uisnxr

The columns of U are orthogonal & unit length (U^TU = I)

ith singular vector in E represents the direction of the ith most variance

Vismxr

The columns of V are orthogonal & unit length  $(V^TV = I)$ 

### Use case:

- Low rank approximation
  - Same dimension different rank
- Dimension reduction
- Anomaly Detection

### Classification and KNN

What makes a good predictor?

- We want features that are related to the target but not to each other.
- Correlation tests
  - Pearson coefficient
  - Spearman coefficient

How do we know we've done well at classification

- Testing without cheating. Learning not memorizing.
  - Split up our data into a training set and a separate testing set
  - Use the training set to find patterns and create a model
  - Use the testing set to evaluate the model on data it has not seen before

#### KNN

- Compute distances of unseen record to all training record
- Identify the K nearest neighbors
- Aggregate the labels of these k neighbors to predict the unseen record class (ex. Majority rule)

### If k is too small

- Sensitive to noise points, not generalize well

### If k is too big

- Might include points from other classes



The decision boundary for K=1 always in the middle

### **Decision Trees**

### **Hunt's Algorithm**

Recursive Algorithm

- Repeatedly split the dataset based on attributes
- Find the attribute that best splits the data

### Base cases:

- IF Split and all data points in the same class
  - Great! Predict that class
- IF Split and no data points
  - No problem! Predict a reasonable default

### **GINI Index**

$$GINI(t) = 1 - \sum_{j} p(j|t)^{2}$$

 $p(NO|t) = \frac{1}{2}$ 

p(YES | t) = 3/7

| YES 7 | p( YES   t) = 78 | GINI(t) = 1 - 1/64 - 49/64 = 14/64 |
|-------|------------------|------------------------------------|
| NO 4  | p( NO   t) = 4/7 |                                    |

### For multi class



YES 3

$$GINI_{split} = \sum_{t=1}^{k} \frac{n_t}{n} GINI(t)$$

GINI(t) = 1 - 16/49 - 9/49 = 24/49

### Model Evaluation

### **Confusion Matrix**

|              | Predicted Class |             |            |
|--------------|-----------------|-------------|------------|
| Actual Class |                 | Class = Yes | Class = No |
|              | Class = Yes     | a<br>(TP)   | b<br>(FN)  |
|              | Class = No      | c<br>(FP)   | d<br>(TN)  |

Accuracy = (a + d) / (a + b + c + d)Precision = a / (a + c)Recall = a / (a + b)F-measure = 2RP / (R + P)

### **Cross Validation**

- Hyperparameter tuning
- Split the training set into k folds; iteratively train on k-1 folds, validate on the held-out fold, average the scores, pick the hyper-parameter setting with the best average.

### **Ensemble Methods**

We poll different classifiers and take the class that the majority agrees on

### **Bagging**

### **Boosting**

- 1. "Focus on what's still wrong" loop
  - Round 1: Treat every training example equally, train base learner #1.
  - Check mistakes: See which examples it got wrong.
     Re-weight data: Give more weight (higher sampling probability) to those hard examples and less weight to the ones already handled.
  - Round 2: Draw a new training set using these updated weights, train base learner #2.
  - Repeat for a fixed number of rounds (or until accuracy stops improving)

### 2. Final model = weighted vote

Each learner gets a say that is proportional to how well it performed when it was trained. The ensemble prediction is the sign/arg-max of this weighted vote.

### Why the classifiers are (almost) independent

Every round sees a different effective dataset because the sampling distribution keeps changing.

- Early learners train on a near-uniform view of the data.
- Later learners are forced to stare at the stubborn cases the earlier ones still miss.
- This change in perspective reduces correlation between their errors, which makes the final vote stronger than any single learner.

### **Summary**

**Bagging** samples randomly with replacement while **Boosting** samples randomly but the weights of data points varies depending on how successfully these points were predicted. **Bagging** averages the predictions of all models while **Boosting** takes a weighted average.

## Naive Bayes

$$P(A|C) = \underbrace{\frac{P(C|A)P(A)}{P(C)}}_{P(A)}$$

$$\underbrace{\frac{P(A \cap C)}{P(A)}}_{P(A)}$$

Given a1, a2 to am data how do we know which class it is from, we find:

$$P(C|A_1 \cap A_2 \cap \dots \cap A_n) = \underbrace{P(A_1 \cap A_2 \cap \dots \cap A_n|C)P(C)}_{P(A_1 \cap A_2 \cap \dots \cap A_n)}$$

We assume a1 to am attributes are independent:

# $P(A_1A_2...A_n | C) = P(A_1 | C) P(A_2 | C) ... P(A_n | C)$

| Refund | Marital Status | Income | Class |
|--------|----------------|--------|-------|
| Yes    | Single         | 125k   | No    |
| No     | Married        | 100k   | No    |
| No     | Single         | 70k    | No    |
| Yes    | Married        | 120k   | No    |
| No     | Divorced       | 90k    | Yes   |
| No     | Married        | 60k    | No    |
| Yes    | Divorced       | 220k   | No    |
| No     | Single         | 85k    | Yes   |
| No     | Married        | 75k    | No    |
| No     | Single         | 90k    | Yes   |

Test Record:

X = (Refund = No, Married, Income = 120k)

- P(X | No) = P(Refund = No | No)
   P(Married | No) P(Income=120k | No) =
   4/7 \* 4/7 \* .0072 = .0024
- P(X | Yes) = P(Refund = No | Yes)
   P(Married | Yes) P(Income=120k | Yes) =
   1 \* 0 \* 1.2 \* 10<sup>-9</sup> = 0

Since P(X | No)P(No) > P(X | Yes)P(Yes) => predict No

Ex.

## **Support Vector Machines**



In this example we have two classes (blue = +1 and green = -1). The line in red is the decision boundary — to classify an unknown point u using the above SVM means:

- $w^T u + b \ge 0$  THEN blue
- w^T u + b < 0 THEN green</li>



$$width = \frac{2}{\|w\|}$$

So to find the widest street, it means we have to find the smallest w

Notice that multiplying w and b by the same constant c doesn't change the decision boundary but does change the width of the street. If:

• 0 < c < 1 the width will expand

• c > 1 the width will retract

### **Perceptron Algorithm**

$$w_{new} = w_{old} + y_i * lr * x_i$$

$$b_{new} = b_{old} + y_i * lr$$

Support Vector Machines From Scratch | by Lance Galletti | Medium

**RBF Kernel ??** 

## **Linear Regression**

### **Assumptions**

- Our data was generated by a linear function plus some noise:

$$\vec{y} = h_X(\beta) + \vec{\epsilon}$$

Where  $\mathbf{h}$  is linear in a parameter  $\boldsymbol{\beta}$ . Where  $\boldsymbol{\epsilon}_i$  are independent  $\mathbf{N}(\mathbf{0}, \boldsymbol{\sigma}^2)$  distribution.

Noie needs to be normally distributed

Variance of the noise is constant

The relationship has to be linear

Example linear function:

Which functions below are linear in  $\beta$ ?

$$h(\beta) = \beta_1 x$$

$$h(\beta) = \beta_0 + \beta_1 x$$

$$h(\beta) = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$h(\beta) = \beta_1 \log(x) + \beta_2 x^2$$

$$h(\beta) = \beta_0 + \beta_1 x + \beta_1^2 x$$

$$x$$

#### Goal:

- Minimize the cost function
  - Least squares

$$\beta_{LS} = \underset{\beta}{\operatorname{arg \, min}} \sum_{i} d(h_{\beta}(x_{i}), y_{i})$$

$$= \underset{\beta}{\operatorname{arg \, min}} \|\vec{y} - h_{\beta}(X)\|_{2}^{2}$$

$$= \underset{\beta}{\operatorname{arg \, min}} \|y - X\beta\|_{2}^{2}$$

$$\beta_{LS} = (X^T X)^{-1} X^T y$$
 pseudo inverse of X

### **Maximum Likelihood**

Another way to define this problem is in terms of probability. Define P(Y | h) as the probability of observing Y given that it was sampled from h.

Goal: Find h that maximizes the probability of having observed our data. Maximize L(h) = P(Y | h)

Since  $\varepsilon \sim N(0, \sigma 2)$  and  $Y = X\beta + \varepsilon$  then  $Y \sim N(X\beta, \sigma 2)$ .

NLL - Negative Log-Likelihood (Gaussian case here)

• What it measures: How unlikely the observed data are under a probabilistic model of the form

$$y_i \sim \mathcal{N}(\hat{y}_i, \ \sigma^2)$$

(with  $\sigma^2$  the noise variance). The function you pasted uses

$$ext{NLL}(w,b) = rac{1}{2} \left[ rac{(y-\hat{y})^2}{\sigma^2} + \lnig(2\pi\sigma^2ig) 
ight]$$

### Evaluation

 $\mathbf{y}_{i}$  is the "true" value from our data set (i.e.  $\mathbf{x}_{i}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{i}$ )

 $\hat{\mathbf{y}}_{i}$  is the estimate of  $\mathbf{y}_{i}$  from our model (i.e.  $\mathbf{x}_{i}\boldsymbol{\beta}_{i,s}$ )

 $\bar{\mathbf{y}}$  is the sample mean all  $\mathbf{y}_{i}$ 

 $\mathbf{y}_{i}$  -  $\mathbf{\hat{y}}_{i}$  are the estimates of  $\mathbf{\varepsilon}_{i}$  and are referred to as residuals

QQ plot ??

$$TSS = \sum_{i}^{n} (y_i - ar{y})^2$$
 This is a measure of the spread of  ${\sf y}_{\sf i}$  around the mean of  ${\sf y}$ 

$$ESS = \sum_{i}^{n} (\hat{y_i} - \bar{y})^2$$
 This is a measure of the spread of our model's estimates of  $\mathbf{y_i}$  around the mean of  $\mathbf{y}$ 

R^2 = ESS / TSS, measures the fraction of variance that is explained by y\_hat

$$TSS = \sum_{i}^{n} (y_i - \bar{y})^2 \qquad R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$
 
$$RSS = \sum_{i}^{n} (y_i - \hat{y}_i)^2 \qquad \qquad \text{This equality only holds for a linear model that minimizes the RSS}$$

### Variance formula:

- Cannot be negative
- Can be greater than 1
- Only use when  $\hat{y}$  is a linear model (minimizing RSS) and is centered around  $\bar{Y}$  (i.e. not omitting an intercept for example)

### Residual-based R2 formula

- Can be negative
- Cannot be greater than 1
- Adapts to any model. A linear model that passes through all points will have an R2 of 1

## Hypothesis Testing

Goal: answer how likely are we to observe this? Is there enough evidence that we can reject assumption

### T Test

Ex. We test whether each coefficient βi is significantly different from 0.

Null Hypothesis (H₀):

### H0:βi=0

→ There is **no** relationship between x i and the dependent variable y.

✓ Alternative Hypothesis (H₁):

H1:βi≠0

→ There **is** a relationship between x\_i and y.

12 t-Statistic:

 $t=\beta^i / std err(\beta^i)$ 

This measures **how many standard errors away** the estimated coefficient is from zero.

p-Value:

This is the probability of observing a t-statistic **at least as extreme** as the one computed, **if the null hypothesis** were true.

How to Interpret (with typical 5% significance level):

- If p < 0.05, reject H0: the coefficient is statistically significant.
- If p ≥ 0.05, fail to reject H0: not enough evidence to say the coefficient is significant.

### **Confidence Intervals**

**Goal**: for a given confidence level (let's say 90%), construct an interval around an estimate such that, if the estimation process were repeated indefinitely, the interval would contain the true value (that the estimate is estimating) 90% of the time.

Let's say if you want to be 90% confident, construct a += margin of error around your estimate so you can be right 90% of the time. Ex. \beta\_hat = 6.9 += 0.2

A (frequentist) "p% confidence interval" is *any* rule that, in the long run, contains the true parameter with probability p/100

| Quick-Reference No                    | Quick-Reference Notes on Confidence Intervals                                                                                                                                                                                               |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Торіс                                 | Key points                                                                                                                                                                                                                                  |  |  |
| What a CI is                          | A $p\%$ confidence interval (CI) is any rule that, when repeatedly applied to fresh random samples from the same population, contains the true parameter with probability $p/100$ .                                                         |  |  |
| Frequentist interpretation            | The confidence level refers to the <b>procedure's long-run success rate</b> , not to the probability that a <i>single realised interval</i> contains the parameter (for that single interval the probability is 0 or 1).                    |  |  |
| Basic formula for a mean<br>(known σ) | $	ext{CI}_p: \ ar y \ \pm \ z_{\ 1-lpha/2} \ rac{\sigma}{\sqrt n}$ where $z_{\ 1-lpha/2}$ is the critical value from the standard normal (e.g. 1.96 for 95 %).                                                                             |  |  |
| Standard error (SE) vs s.d.           | SE measures the sampling variability of the estimator (e.g. $\sigma/\sqrt{n}$ ); standard deviation describes spread of raw data. Narrower CI $\Leftrightarrow$ smaller SE $\Leftrightarrow$ more <b>precision</b> , not "more confidence." |  |  |
| Effect of confidence level            | Higher confidence (e.g. 99 % versus 95 %) ⇒ larger critical value ⇒ wider interval. So the statement "intervals shrink as confidence level rises" is false.                                                                                 |  |  |
| Coverage in repeated sampling         | In the long run, $\sim\!99$ of 100 independently constructed 99 % CIs will cover the true parameter.                                                                                                                                        |  |  |

### **Z**-values

- These are the number of standard deviation away from the mean of a standard normal distribution

We use z values to find the std from the standard normal distribution to contain a specific % of values

To find the .95 z-value (the value z such that 95% of the observations lie within z standard deviations of the mean (  $\mu \pm z * \sigma$  )) you need to solve:

$$\int_{-z}^{z} \frac{1}{2\pi} e^{-\frac{1}{2}x^2} dx = .95$$
 Ex.

**Example calculating the confidence interval** 

### **@** Goal:

Estimate the population mean  $\mu$  using the sample mean  $\bar{y}$ , and give a range where  $\mu$  is likely to fall — with 95% confidence.

### **✓** Given:

- $Y_i \sim \mathcal{N}(5,25)$ : Each observation has mean 5, variance 25 (i.e., std dev = 5).
- n=100: Number of observations
- ullet  $\mu_{LS}=ar{y}$ : Our best estimate of  $\mu$  is the sample mean.
- $oldsymbol{\epsilon} \sim \mathcal{N}(0,25)$ : The noise is normally distributed.

### Step-by-Step Calculation:

1. Standard Error (SE):

$$SE(\mu_{LS}) = rac{\sigma_\epsilon}{\sqrt{n}} = rac{5}{\sqrt{100}} = 0.5$$

This measures the variability of the sample mean  $\bar{y}$  as an estimator of  $\mu$ .

### 2. Z-value for 95% CI:

• From the standard normal table:

$$Z_{0.975} = 1.96$$

• This captures the middle 95% of a normal distribution.

3. Confidence Interval Formula:

$$CI_{.95} = [ar{y} - 1.96 \cdot SE, \; ar{y} + 1.96 \cdot SE]$$

$$=[\bar{y}-1.96\cdot0.5,\ \bar{y}+1.96\cdot0.5]=[\bar{y}-0.98,\ \bar{y}+0.98]$$

# Logistic Regression