Lecture 06-07

Proteins

Preference of AA in helix

Table 2.1 Amino acid sequences of three α helices

```
1. - Leu - Ser - Phe - Ala - Ala - Ala - Met - Asn - Gly - Leu - Ala -
2. - Ile - Asn - Glu - Gly - Phe - Asn - Leu - Leu - Ang - Ser - Gly -
3. - Lus - Glu - Asn - Ala - Lus - Gly - Lus - Ser - Glu - Glu - Glu -
```


Formation of helix

Formation of sheet

Observation based post-processing

$$(b) \qquad N \qquad C \qquad N \qquad C \qquad C_{\alpha} \qquad C_{\alpha}$$

A minimum consecutive amino acids are required for the formation of the helix and sheet.

- Improves the accuracy by 3-5%.

What basic structural information is used?

Hydrogen bond patterns

Backbone dihedral angles

PDB file format

ATOM	1	N	ALA A	. 4	11.751	37.846	29.016	1.00 44.65	N
ATOM	2	CA	ALA A	4	12.501	39.048	28.539	1.00 30.68	С
ATOM	3	С	ALA A	. 4	13.740	38.628	27.754	1.00 24.74	С
ATOM	4	0	ALA A	. 4	14.207	37.495	27.890	1.00 25.59	0
ATOM	5	СВ	ALA A	. 4	12.902	39.919	29.730	1.00 16.77	С
MOTA	6	N	TYR A	. 5	14.235	39.531	26.906	1.00 19.29	N
MOTA	7	CA	TYR A	. 5	15.552	39.410	26.282	1.00 8.51	С
MOTA	8	С	TYR A	. 5	16.616	38.913	27.263	1.00 6.11	С
ATOM	9	0	TYR A	. 5	17.187	37.844	27.068	1.00 17.99	0
ATOM	10	CB	TYR A	. 5	15.988	40.762	25.702	1.00 2.00	С
ATOM	11	CG	TYR A	. 5	17.319	40.745	24.982	1.00 2.00	С
ATOM	12	CD1	TYR A	. 5	17.411	40.331	23.653	1.00 19.29	С
MOTA	13	CD2	TYR A	. 5	18.476	41.210	25.604	1.00 9.65	С
ATOM	14	CE1	TYR A	. 5	18.629	40.396	22.953	1.00 2.00	С
ATOM	15	CE2	TYR A	. 5	19.703	41.271	24.914	1.00 8.78	С
MOTA	16	CZ	TYR A	. 5	19.763	40.863	23.594	1.00 8.76	С
MOTA	17	ОН	TYR A	. 5	20.971	40.889	22.920	1.00 8.23	0
ATOM	18	N	ILE A	. 6	16.789	39.630	28.369	1.00 14.56	N
ATOM	19	CA	ILE A	. 6	17.791	39.281	29.375	1.00 23.27	С

Homework

 Write down an algorithm which will check if there is a hydrogen bond between a donor and an acceptor or not.

Formation of helix

Book: Branden and Trooze

Helix in protein structure

Facts:

 α -helix (3.6₁₃):

Hydrogen bond between i and i+4 residues 100° turn in the helix (3.6 residues per turn) 0.15 nm translation along helical axis

 3_{10} -helix:

Hydrogen bond between i and i+3 residues

π-helix:

The α-helix

Source: http://xray.bmc.uu.se/Courses/bioinformatik2003/Intro/a-helix.jpg

Ramachandran Plot

q > 120° and $r_{HO} < 2.5$ Å

DSSP Algorithm

- •The so-called "Dictionary of Secondary Structure of Proteins" (DSSP) by Kabsch and Sander makes its sheet and helix assignments solely on the basis of backbone-backbone hydrogen bonds.
- •The DSSP method defines a hydrogen bond when the bond energy is below -0.5 kcal/mol from a Coulomb approximation of the hydrogen bond energy.
- •The structural assignments are defined such that visually appealing and unbroken structures result.
- In case of overlaps, alpha-helix is given first priority.

DSSP Algorithm

- •The helix definition does not include the terminal residue having the initial and final hydrogen bonds in the helix.
- •A minimal size helix is set to have two consecutive hydrogen bonds in the helix, leaving out single helix hydrogen bonds, which are assigned as turns (state 'T').
- •beta-sheet residues (state 'E') are defined as either having two hydrogen bonds in the sheet, or being surrounded by two hydrogen bonds in the sheet.
- •The minimal sheet consists of two residues at each partner segment.

DSSP Algorithm

```
PDB:1crn
     RESIDUE AA STRUCTURE BP1 BP2
                                     ACC
                                           N-H-->O O-->H-N
                                                             N-H-->O O-->H-N
   15
        15
                H >< S+
                                      99
                                           -4,-1.7
                                                      3,-1.3 2,-0.2 -2,-0.2
                                           -4,-2.5
                                                    5,-0.8
                                                             1,-0.3 -2,-0.2
   16
        16
                H 3<>S+
                                      18
             С
   17
        17
                H ><5S+
                                      94
                                           -4, -2.0
                                                      3,-1.6
                                                             1,-0.2 -1,-0.3
             R
                                           -3,-1.3 -1,-0.2 -4,-0.6 -2,-0.2
   18
        18
             L
                T <<5S+
                                  0
                                     144
                T 3 5S-
                                     107
                                           0, 0.0 -1,-0.3
                                                             0, 0.0 -2, -0.1
   19
        19
                                      53
                                           -3,-1.6 -3,-0.2
                                                             1,-0.2 -2,-0.1
   20
        20
             Ģ
                T < 5 +
                                                     -1,-0.2 1,-0.1
                                      37
                                           -5,-0.8
                                                                       5,-0.1
   21
        21
                     < -
   22
        22
             P
                                           0, 0.0
                                                      4,-2.2 0, 0.0
                                                                       3,-0.7
                   >> -
                                      81
   23
        23
                H 3> S+
                                      70
                                           1,-0.2
                                                    4,-2.5 2,-0.2
                                                                       5,-0.1
             Е
                                           1,-0.2
                                                      4,-1.7 2,-0.2 -1,-0.2
   24
        24
                H 3> S+
                                      63
                                           -3, -0.7 4, -1.8 2, -0.2 -1, -0.2
   25
        25
                                      99
             Т
                H <> S+
                                                      4.-1.9
                                                             2,-0.2
   26
        26
                H X S+
                                       0
                                           -4,-2.2
                                                                       6,-0.4
             С
                                           -4,-2.5 4,-2.7 -5,-0.2
   27
        27
                H XS+
                                                                       5,-0.5
             Α
                             0
                                      12
   28
        28
                                           -4,-1.7 -1,-0.2
                                                             1,-0.2 -2,-0.2
                H < S+
                             0
                                     120
   29
        29
             Y
                H < S+
                                     176
                                           -4,-1.8 -1,-0.2 -5,-0.2 -2,-0.2
   30
        30
                                      24
                                           -4,-1.9 -2,-0.2 -3,-0.2 -3,-0.2
                H < S-
                             0
                                           -4, -2.7 -3, -0.2 1, -0.4 -4, -0.1
   31
        31
             G
                   < S+
                             0
                                  0
                                      35
                                       5
                                           -5,-0.5 -1,-0.4 -6,-0.4
   32
        32
             b
                             0
                                                                         2,-0.3
                             3
                                      51
                                          -30, -2.8 -30, -2.4 -3, -0.1 2, -0.5
   33
        33
                                  QA.
             Ι
                E
                       -\mathbf{A}
   34
        34
                \mathbf{E}
                       -A
                                  0A
                                      78
                                           -2,-0.3 -32,-0.2 -32,-0.2
                                                                         3, 0.0
                                        \beta-sheet label
   . . . .
                               \beta-bridge 2' label
                              B-bridaĕ 1 label
                             chirality assignments
                            bend assignments
                          π-helix hvdrögen bonds
                         \alpha-helix hydrogen bonds
                        3<sub>n</sub>-hellx hydrogen bonds
                      secondary structure synopsis
```

STRIDE Algorithm

- •The secondary STRuctural IDEntification method by Frishman and Argos uses an empirically derived hydrogen bond energy and phipsi torsion angle criteria to assign secondary structure.
- •Torsion angles are given alpha-helix and beta-sheet propensities according to how close they are to their regions in Ramachandran plots.
- •The parameters are optimized to mirror visual assignments made by crystallographers for a set of proteins.
- •By construction, the STRIDE assignments agreed better with the expert assignments than DSSP, at least for the data set used to optimize the free parameters.

STRIDE Algorithm

- •Like **DSSP**, **STRIDE** assigns the shortest alpha-helix ('H') if it contains at least two consecutive i i + 4 hydrogen bonds.
- •In contrast to DSSP, helices are elongated to comprise one or both edge residues if they have acceptable phi-psi angles, similarly a short helix can be vetoed.
- •hydrogen bond patterns may be ignored if the phi-psi angles are unfavorable.
- •The sheet category does not distinguish between parallel and anti-parallel sheets. The minimal sheet ('E') is composed of two residues.
- •The dihedral angles are incorporated into the final sheet assignment criterion as was done for the alpha-helix.

Probabilities for residues in α -helical (a) and β -sheet (b) as calculated in STRIDE

$$P_i^{\alpha} = egin{cases} N_i^{\alpha} & \text{if } -180^{\circ} < \phi < 10^{\circ} \text{ and } -120^{\circ} < \phi < 45^{\circ} \\ \hline N_i^{\text{total}} & \text{otherwise} \end{cases}$$

$$P_{i}^{eta} = egin{cases} N_{i}^{eta} & ext{if } -180^{\circ} < \phi < 0^{\circ}, -180^{\circ} < \phi < -120^{\circ} ext{ or } 45^{\circ} < \phi < 180^{\circ} \\ N_{i}^{ ext{total}} & ext{otherwise} \end{cases}$$

Probabilities for residues in α -helical (a) and β -sheet (b) as calculated in STRIDE

Formation of helix

Formation of sheet

STRIDE Algorithm

PDB:1crn										
REM	M Residue				Structure	-Phi-	-Psi-	-Area-	1CRN	
ASG	VAL -	15	15	H	${\tt AlphaHelix}$	-69.24	-41.22	93.8	1CRN	
ASG	CYS -	16	16	H	AlphaHelix	-56.67	-36.00	18.4	1CRN	
ASG	ARG -	17	17	H	AlphaHelix	-77.07	-16.13	94.1	1CRN	
ASG	LEU -	18	18	H	AlphaHelix	-53.21	-46.17	143.0	1CRN	
ASG	PRO -	19	19	С	Coil	-77.19	-7.60	108.9	1CRN	
ASG	GLY -	20	20	Ç	Coil	106.26	7.31	52.1	1CRN	
ASG	THR -	21	21	С	Coil	-52.67	136.34	38.4	1CRN	
ASG	PRO -	22	22	C	Coil	-56.98	146.62	81.9	1CRN	
ASG	GLU -	23	23	H	AlphaHelix	-56.41	-36.19	68.9	1CRN	
ASG	ALA -	24	24	H	AlphaHelix	-63.43	-34.86	61.3	1CRN	
ASG	ILE -	25	25	H	AlphaHelix	-74.77	-37.89	98.2	1CRN	
ASG	CYS -	26	26	H	AlphaHelix	-64.95	-31.69	0.0	1CRN	
ASG	ALA -	27	27	H	AlphaHelix	-62.04	-54.03	11.6	1CRN	
ASG	THR -	28	28	H	AlphaHelix	-68.78	-25.49	121.1	1CRN	
ASG	TYR -	29	29	H	AlphaHelix	-67.59	-36.30	174.0	1CRN	
ASG	THR -	30	30	H	AlphaHelix	-108.96	-18.47	23.4	1CRN	
ASG	GLY -	31	31	С	Coil	91.82	-3.07	36.1	1CRN	
ASG	CYS -	32	32	Ċ	Coil	-69.52	164.38	4.6	1CRN	
ASG	ILE -	33	33	E	Strand	-129.76	157.03	51.0	1CRN	
ASG	ILE -	34	34	E	Strand	-111.56	129.59	78.0	1CRN	

Comparison between DSSP and STRIDE

Size of dataset:226 protein chains

Visualization of proteins

Visualization of proteins

Protein Data Bank

(http://www.rcsb.org)

FASTA file format

>12AS:A|PDBID|CHAIN|SEQUENCE

MKTAYIAKQRQISFVKSHFSRQLEERLGLIEVQAPILSRVGDGTQDNLSGAEKAVQVKVKALPDAQFEVVHSLA KWKRQTLGQHDFSAGEGLYTHMKALRPDEDRLSPLHSVYVDQWDWERVMGDGERQFSTLKSTVEAIWAGIKATE AAVSEEFGLAPFLPDQIHFVHSQELLSRYPDLDAKGRERAIAKDLGAVFLVGIGGKLSDGHRHDVRAPDYDDWS TPSELGHAGLNGDILVWNPVLEDAFELSSMGIRVDADTLKHQLALTGDEDRLELEWHQALLRGEMPQTIGGGIG QSRLTMLLLQLPHIGQVQAGVWPAAVRESVPSLL

>12AS:B|PDBID|CHAIN|SEQUENCE

MKTAYIAKQRQISFVKSHFSRQLEERLGLIEVQAPILSRVGDGTQDNLSGAEKAVQVKVKALPDAQFEVVHSLA KWKRQTLGQHDFSAGEGLYTHMKALRPDEDRLSPLHSVYVDQWDWERVMGDGERQFSTLKSTVEAIWAGIKATE AAVSEEFGLAPFLPDQIHFVHSQELLSRYPDLDAKGRERAIAKDLGAVFLVGIGGKLSDGHRHDVRAPDYDDWS TPSELGHAGLNGDILVWNPVLEDAFELSSMGIRVDADTLKHQLALTGDEDRLELEWHQALLRGEMPQTIGGGIG OSRLTMLLLQLPHIGOVQAGVWPAAVRESVPSLL

Topology in Structure

References

 http://kinemage.biochem.duke.edu/teaching/ anatax/

Introduction to Protein Structure

Authors: Carl Branden, John Tooze