Lecture 4

- Impulse response of a linear system.
- Special cases of the impulse response:
 - Causal systems.
 - Time invariant systems
- Approximating signals by a train of impulses.
- Input-output relation of a linear system.

The impulse response of a linear system

$$\mathbf{x} \longrightarrow \mathbf{y} \qquad \mathbf{y}(t) = T[\mathbf{x}(t)]$$

Apply the input $\delta(t-\tau)$ to the system. Denote the corresponding output by $h(t,\tau)$. This function of the variables t,τ is called the system impulse response.

Impulse response function $h(t, \tau)$

Example: integrator

$$x(t) \longrightarrow \int \longrightarrow y(t) = \int_{-\infty}^{t} x(\sigma) d\sigma$$

$$h(t,\tau) = T[\delta(t-\tau)]$$

$$= \int_{-\infty}^{t} \delta(\sigma-\tau)d\sigma$$

$$= u(t-\tau)$$

$$\delta(t-\tau)$$

$$h(t,\tau)$$

$$h(t,\tau)$$

$$t$$

Integrator:
$$h(t,\tau) = u(t-\tau)$$

Note that in this example:

- a) $h(t,\tau)$ depends only on the difference $t-\tau$
- b) $h(t,\tau) = 0$ for $t < \tau$

This is not a coincidence. In fact:

- a) is a general property of **time invariant** systems
- b) is a general property of **causal** systems.

Impulse response for LTI systems

Property:

$$h(t,\tau) = h(t-\tau,0)$$

This follows directly from time invariance

$h(t,\tau)$

 $\delta(t-\tau)$

Notation:

we often write $h(t-\tau)$ instead of $h(t-\tau,0)$

h(t) is the response to $\delta(t)$

Impulse response for causal systems

Property:

$$h(t,\tau) = 0$$
 for $t < \tau$

This follows directly from causality: the system cannot anticipate that the delta function is coming, so it cannot respond before $t = \tau$

More formally: let $x_1(t) = \delta(t - \tau)$, $x_2(t) \equiv 0$. Since they coincide for $t < \tau$, and the system is causal, we must have $y_1(t) = y_2(t)$ for $t < \tau$. But $y_2 = T[0] = 0$ because of linearity. So $y_1(t) = h(t, \tau) = 0$ for $t < \tau$.

RC circuit example
$$\alpha = \frac{1}{RC}$$

$$x(t)$$

$$x$$

LTI, causal system. So the impulse response function is $h(t-\tau)$, where h(t) is the response to $x(t) = \delta(t)$. To find it, write

$$h(t) = \int_{0-}^{t} \alpha e^{-\alpha(t-\sigma)} \delta(\sigma) d\sigma = \alpha e^{-\alpha t} \text{ for } t \ge 0.$$

Note that to avoid ambiguities, we start the integral in 0-. This means the circuit initial conditions are zero before the impulse is applied. Also, by causality h(t) = 0 for t < 0. In summary:

$$h(t) = \alpha e^{-\alpha t} u(t)$$

Another example:
$$y(t) = \int_{-\infty}^{t} (\sigma + 1)^2 x(\sigma) d\sigma$$
,

Apply the input $x(t) = \delta(t - \tau)$. The output is

$$y(t) = \int_{-\infty}^{t} (\sigma + 1)^{2} \delta(\sigma - \tau) d\sigma = \begin{cases} (\tau + 1)^{2} & \text{if } \tau < t \\ 0 & \text{if } \tau > t \end{cases}$$

$$h(t,\tau) = (\tau+1)^2 u(t-\tau)$$
 Time varying, causal.

Another way to compute the integral is to add a step function and extend the limit of integration to $+\infty$:

$$y(t) = \int_{-\infty}^{t} (\sigma + 1)^2 \delta(\sigma - \tau) d\sigma = \int_{-\infty}^{+\infty} (\sigma + 1)^2 u(t - \sigma) \delta(\sigma - \tau) d\sigma$$
$$= (\tau + 1)^2 u(t - \tau)$$

Why is the impulse response useful?

Idea: we can use impulses to approximate other functions

Are impulse trains physical?

- In cart example: applying an impulse train as a force is like doing a periodic "hammering" instead of a smooth push.
- Electrical example. The current i(t) flowing through a section of a cable is made up of discrete electrons going through. So i(t) is naturally modeled as an impulse train.

In the limit as step-size goes to 0

The expression $\sum_{k} f(kW) \cdot \delta(t - kW) \cdot W$

is like a Riemann sum for the integral

$$\int_{-\infty}^{\infty} f(\sigma) \cdot \delta(t - \sigma) d\sigma$$

The approximation is exact in the limit:

$$\lim_{W\to 0} f_W^{\delta}(t) = \int_{-\infty}^{\infty} f(\sigma) \cdot \delta(t-\sigma) d\sigma = f(t)$$

"Resolution" of a function as a superposition of delta's

Input-output relation of a linear system

$$x \longrightarrow y \qquad y(t) = T[x(t)]$$

We know the system impulse response function $h(t,\tau) = T[\delta(t-\tau)]$. We want to use it to find the response to any input x(t). Strategy:

- 1. Approximate x(t) by a train of impulses.
- 2. Use linearity to obtain the output corresponding to this approximation.
- 3. Take the limit as W goes to zero.

Given: $h(t,\tau) = T[\delta(t-\tau)]$, and an input x(t).

1) Write
$$x_W^{\delta}(t) = \sum_k x(kW) \cdot \delta(t - kW) \cdot W$$

2) Using linearity, the corresponding output is

$$T\left[x_{W}^{\delta}(t)\right] = \sum_{k} x(kW) \cdot T\left[\delta(t - kW)\right] \cdot W$$
$$= \sum_{k} h(t, kW) \cdot x(kW) \cdot W$$

3) Taking limit as $W \rightarrow 0$, we obtain

$$T[x(t)] = \lim_{W \to 0} \sum_{k} h(t, kW) \cdot x(kW) \cdot W = \int_{-\infty}^{\infty} h(t, \sigma) x(\sigma) d\sigma$$

Input-output relation of a linear system

$$\mathbf{x} \longrightarrow \mathbf{y} \qquad \mathbf{y}(t) = T[\mathbf{x}(t)]$$

Let the impulse response function be

$$h(t,\tau) = T[\delta(t-\tau)].$$

For a given input x(t), the corresponding output is

$$y(t) = T[x(t)] = \int_{-\infty}^{\infty} h(t, \sigma) x(\sigma) d\sigma$$

SUPERPOSITION INTEGRAL

Back to earlier example:

System defined by
$$y(t) = \int_{-\infty}^{t} (\sigma + 1)^2 x(\sigma) d\sigma$$

We found before that $h(t,\tau) = (\tau+1)^2 u(t-\tau)$

The superposition integral gives

$$y(t) = \int_{-\infty}^{\infty} h(t,\sigma)x(\sigma)d\sigma = \int_{-\infty}^{\infty} (\sigma+1)^2 u(t-\sigma)x(\sigma)d\sigma$$
$$= \int_{-\infty}^{t} (\sigma+1)^2 x(\sigma)d\sigma$$

Recover original definition. Having the impulse response function is equivalent to having the complete definition.