SEMAINE DU 21/09 AU 25/09

1 Cours

Sommeset produits

 $\textbf{Techniques de calcul} \ \ \text{Symbole } \sum \ \text{et règles de calcul, sommes t\'elescopiques, changement d'indice, sommation par paquets.}$

Sommes classiques Suites arithmétiques et géométriques, factorisation de $a^n - b^n$, coefficients binomiaux et formule du binôme de Newton.

Sommes doubles Définition, règles de calcul, interversion des signes \sum (cas de sommes triangulaires), sommation par paquets.

 ${f Produits}\,$ Symbole \prod et règles de calcul, produits télescopiques, passage au logarithme.

Systèmes linéaires

Notion de système linéaire Définition et exemples.

Résolution de systèmes linéaires Méthode du pivot de Gauss.

Systèmes linéaires à paramètres Exemples.

2 Méthodes à maîtriser

- Méthode du pivot de Gauss pour la résolution des systèmes linéaires.
- Changement d'indice.
- Calcul de sommes : il n'y a guère que deux techniques a priori :
 - faire apparaître une somme télescopique;
 - faire apparaître des sommes connues (somme des termes d'une suite arithmétique ou géométrique ou somme provenant d'un développement via la formule du binôme de Newton).
- Interversion des symboles \sum pour les sommes doubles.

3 Questions de cours

Systèmes linéaires Résolution d'un système linéaire de trois équations à trois inconnues au choix de l'examinateur.

Sommes binomiales Soit
$$n \in \mathbb{N}^*$$
. Calculer $S_n = \sum_{k=0}^n k \binom{2n}{2k}$ et $T_n = \sum_{k=0}^{n-1} k \binom{2n}{2k+1}$.

Sommes doubles Calculer
$$\sum_{0 \le i,j \le n} \max\{i,j\}$$
.

Sommes doubles Calculer
$$\sum_{i=1}^{n} \sum_{j=i}^{n} \frac{i}{j}$$
.

Retour sur le DS n°01 Soit $n \in \mathbb{N}^*$. Montrer que $\sqrt{n^2 + 1}$ n'est pas un entier.