# Four key factors to design a Web of things architecture

Francesco Bruni<sup>1</sup> - Claudio Pomo<sup>2</sup> - Gaetano Murgolo<sup>3</sup>

ICWE - EnWoT - Rome June '17

<sup>1</sup>Planetek Italia <sup>2</sup>Polytechnic University of Bari

#### Outline

- The scenario
- The architecture
- The factors
  - Scalability
  - Per-user knowledge
  - Reactivity
- Conclusions

### The scenario



#### The architecture



# Multiple services



#### Scalable and Fault Tolerant



#### Scalable and Fault Tolerant Consumers



# Per-user knowledge



# Per-user knowledge



# Reactive and adapting system



# Reactive and adapting system



### Handling anomalies

Device





Server



#### Deployed environment

| [9]: |                                                                                                                |                |                |                |                        |                 |
|------|----------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|------------------------|-----------------|
|      | <pre>pdf['hour'] = pdf['hour'].map(lambda item: int(item)) pdf.sort_values('hour') pdf.set_index('hour')</pre> |                |                |                |                        |                 |
| [9]: |                                                                                                                | min(WHRL-MEAN) | avg(WHRL-MEAN) | max(WHRL-MEAN) | stddev_samp(WHRL-MEAN) | count(WHRL-MEAN |
|      | hour                                                                                                           |                |                |                |                        |                 |
|      | 7                                                                                                              | 0.009333       | 0.450333       | 1.361000       | 0.492923               | 17              |
|      | 15                                                                                                             | 0.003000       | 1.221301       | 4.401667       | 0.923636               | 174             |
|      | 11                                                                                                             | 0.003333       | 1.178847       | 2.842667       | 0.920330               | 213             |
|      | 3                                                                                                              | 0.013667       | 0.014127       | 0.017000       | 0.000641               | 184             |
|      | 8                                                                                                              | 0.007667       | 1.037897       | 4.139667       | 0.852202               | 71              |
|      | 22                                                                                                             | 0.013667       | 0.014793       | 0.017000       | 0.000925               | 227             |
|      | 16                                                                                                             | 0.000667       | 0.876853       | 4.524000       | 1.096655               | 301             |
|      | 0                                                                                                              | 0.013667       | 0.014173       | 0.017000       | 0.000601               | 185             |







#### Conclusions

- Raw sensed data into a market valuable knowledge
- 4 key factors driven architecture design
  - Being scalable
  - User oriented metrics and control
  - Adapt to external inputs
  - Notify connectionless/non working device

#### **Future works**

- Microservices architecture
- Websocket connection
- Data based anomalies detection
- Harvesting multiple data sources

## Questions?