COORDINATION IN SOCIAL NETWORKS

Chun-Ting Chen

January 20, 2015

• An exogenous network models restricted information in collective action.

- An exogenous network models restricted information in collective action.
 - [Chwe] models incomplete information.

- An exogenous network models restricted information in collective action.
 - [Chwe] models incomplete information.
 - [Wolitzky] models network-monitoring.

- An exogenous network models restricted information in collective action.
 - [Chwe] models incomplete information.
 - [Wolitzky] models network-monitoring.
- This paper provides a partial folk theorem with incomplete information and network-monitoring.

- An exogenous network models restricted information in collective action.
 - [Chwe] models incomplete information.
 - [Wolitzky] models network-monitoring.
- This paper provides a partial folk theorem with incomplete information and network-monitoring.
 - Will people act collectively in networks eventually?

JANUARY 20, 2015

• [Chwe]: one-shot collective action (in terms of revolution).

- [Chwe]: one-shot collective action (in terms of revolution).
 - Players of two types (Rebel,Inert). They can observe own/neighbor's type.

- [Chwe]: one-shot collective action (in terms of revolution).
 - Players of two types (Rebel,Inert). They can observe own/neighbor's type.
 - Rebel's pay-off contingent on global type distribution.

- [Chwe]: one-shot collective action (in terms of revolution).
 - Players of two types (Rebel,Inert). They can observe own/neighbor's type.
 - Rebel's pay-off contingent on global type distribution.
- [Chwe]'s result: the ex-post efficient outcome "guaranteed" by complete network.

Model: repeated collective actions (in terms of protest).

- Model: repeated collective actions (in terms of protest).
 - Types are fixed over time.

- Model: repeated collective actions (in terms of protest).
 - Types are fixed over time.
 - Players can observe own/neighbors' types.

- Model: repeated collective actions (in terms of protest).
 - Types are fixed over time.
 - Players can observe own/neighbors' types.
 - Players can observe own/neighbors' actions.

- Model: repeated collective actions (in terms of protest).
 - Types are fixed over time.
 - Players can observe own/neighbors' types.
 - Players can observe own/neighbors' actions.
- Goal: looking for an equilibrium, in which the global type distribution becomes commonly known in finite time.

- Model: repeated collective actions (in terms of protest).
 - Types are fixed over time.
 - Players can observe own/neighbors' types.
 - Players can observe own/neighbors' actions.
- Goal: looking for an equilibrium, in which the global type distribution becomes commonly known in finite time.
- Result: such equilibrium can be constructed under some assumptions.

RELATED LITERATURE

- Collective action.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring

RELATED LITERATURE

- · Collective action.
 - One strand: [Chwe 2000], [Lohmann, 1993,1994], etc
 - This paper adds network-monitoring
- Repeated game in networks.
 - One strand: [Wolitzky 2013]
 - This paper adds incomplete information

Network

- n players; $N = \{1, ..., n\}$ is the set of players.
- G_i is i's neighborhood; G_i is a subset of N such that $i \in G_i$.
- $G = \{G_i\}_i$ is the network.

ASSUMPTION

G is fixed (not random), finite, connected, commonly known, and undirected.

Static *k*-threshold game [Chwe 2000]

•
$$1 \le k \le n$$

Static *k*-threshold game [Chwe 2000]

- $1 \le k \le n$
- $\theta_i \in \Theta_i = \{Rebel, Inert\}$: i's type
- $\theta \in \Theta = \times_{i \in N} \Theta_i$: type profile
- $\pi \in \Delta\Theta$: the prior

Static *k*-threshold game [Chwe 2000]

- $1 \le k \le n$
- $\theta_i \in \Theta_i = \{Rebel, Inert\}$: i's type
- $\theta \in \Theta = \times_{i \in N} \Theta_i$: type profile
- $\pi \in \Delta\Theta$: the prior
- $A_{Rebel} = \{ revolt, stay \}; A_{Inert} = \{ stay \}$

Static *k*-threshold game [Chwe 2000]: •••

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \text{revolt}$ and $\#\{j : a_{\theta_j} = \text{revolt}\} \ge k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$ if $a_{Rebel_i} = \text{revolt}$ and $\#\{j : a_{\theta_j} = \text{revolt}\} < k$

Static k-threshold game [Chwe 2000]: •••

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} \ge k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$ if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} < k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0$ if $a_{Rebel_i} = \mathbf{stay}$

Static *k*-threshold game [Chwe 2000]: •••

• Static game payoff for Rebel i: $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i})$

$$u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1$$
 if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} \ge k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1$ if $a_{Rebel_i} = \mathbf{revolt}$ and $\#\{j : a_{\theta_j} = \mathbf{revolt}\} < k$
 $u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0$ if $a_{Rebel_i} = \mathbf{stay}$

ASSUMPTION

Players perfectly observe their neighbors' types.

• Remark: stay is a safe arm; revolt is a risky arm.

8 / 48

Static *k*-threshold game [Chwe 2000]-example

•
$$n = 3$$
 and $k = 3$

$$RB_1$$
— RB_2 — RB_3

• For some π , this network does not sustain ex-post efficient outcome.

Repeated *k*-threshold game: time line

- Nature choose θ initially according to π .
- Types are then fixed over time.
- Players play the static k-threshold game infinitely repeatedly.

ASSUMPTION

- Players perfectly observe their neighbors' types.
- Players perfectly observe their neighbors' actions.
- π has full support
- Common δ.
- Static pay-off could be observable, noisy or hidden.

Look for

 An equilibrium, the ex-post efficient outcome repeats after some finite time T in the path.

- $[Rebels](\theta) = \{j : \theta_j = Rebel\} \text{ for all } \theta \in \Theta.$
- $\#[Rebels](\theta)$: number of Rebels given θ

- $[Rebels](\theta) = \{j : \theta_j = Rebel\}$ for all $\theta \in \Theta$.
- $\#[Rebels](\theta)$: number of Rebels given θ
- θ_{G_i} : i's private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{j \in G_i} \Theta_j)$
- $h_{G_i}^m$: the history observed by i up to period m. ($h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{j \in G_i} A_{\theta_j}$)
- h: an infinite sequence of players' actions. ($h \in H = \prod_{s=1}^{\infty} \prod_{j \in N} A_{\theta_j}$)

- $[Rebels](\theta) = \{j : \theta_j = Rebel\}$ for all $\theta \in \Theta$.
- $\#[Rebels](\theta)$: number of Rebels given θ
- θ_{G_i} : *i*'s private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{j \in G_i} \Theta_j)$
- $h_{G_i}^m$: the history observed by i up to period m. $(h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{j \in G_i} A_{\theta_j})$
- h: an infinite sequence of players' actions. ($h \in H = \prod_{s=1}^{\infty} \prod_{j \in N} A_{\theta_j}$)
- $\tau_i:\Theta_{G_i}\times\bigcup_0^\infty H_{G_i}^m\to A_{\theta_i}, \ \emph{i's}$ strategy.
- $\tau = (\tau_1, ..., \tau_i, ..., \tau_n)$: a strategy profile.

- $[Rebels](\theta) = \{j : \theta_j = Rebel\} \text{ for all } \theta \in \Theta.$
- $\#[Rebels](\theta)$: number of Rebels given θ
- θ_{G_i} : *i*'s private information about the state. $(\theta_{G_i} \in \Theta_{G_i} = \prod_{j \in G_i} \Theta_j)$
- $h_{G_i}^m$: the history observed by i up to period m. ($h_{G_i}^m \in H_{G_i}^m = \prod_{s=1}^m \prod_{j \in G_i} A_{\theta_j}$)
- h: an infinite sequence of players' actions. ($h \in H = \prod_{s=1}^{\infty} \prod_{j \in N} A_{\theta_j}$)
- $\tau_i:\Theta_{G_i}\times\bigcup_0^\infty H_{G_i}^m\to A_{\theta_i}$, *i*'s strategy.
- $\tau = (\tau_1, ..., \tau_i, ..., \tau_n)$: a strategy profile.
- $\beta_i^{\pi,\tau}(\theta|h_{G_i}^m)$: i's belief for a θ at period m given τ .

APEX

Notations:

- h_{θ}^{τ} : a history generated by τ given θ .
- Call h_{θ}^{τ} a τ_{θ} -path.
- Call $\{h_{\theta}^{\tau}\}_{\theta\in\Theta}$ the τ -path

DEFINITION

The τ -path is approaching ex-post efficient (APEX) \Leftrightarrow

 $\forall \theta$, there is a finite time T^{θ}

such that the actions after T^{θ} in τ_{θ} repeats the static ex-post efficient outcome.

APEX

DEFINITION (WEAK APEX EQUILIBRIUM)

A weak sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow \tau^*$ -path is APEX, and β^* is the belief system consistent with τ^* .

APEX

DEFINITION (WEAK APEX EQUILIBRIUM)

A weak sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow \tau^*$ -path is APEX, and β^* is the belief system consistent with τ^* .

DEFINITION (APEX EQUILIBRIUM)

A sequential equilibrium (τ^*, β^*) is APEX $\Leftrightarrow (\tau^*, \beta^*)$ is a weak APEX equilibrium and β^* is fully consistent with τ^* [Krep and Wilson 1982].

JANUARY 20, 2015

APEX FOR k = n

 k = n: For all networks, an APEX equilibrium can be found whenever δ is sufficiently high.

If pay-off is observable, for k = n = 3:

$$RB_1$$
— RB_2 — RB_3

All Rebels play revolt in the first period ⇒ then state will be revealed.

If pay-off is hidden or noisy, for k = n = 3:

If pay-off is hidden or noisy, for k = n = 3:

• Rebel 2 chooses **revolt** at the first period ⇒ the state can be revealed.

If pay-off is hidden or noisy, for k = n = 3:

Rebel 2 chooses revolt at the first period ⇒ the state can be revealed.

If pay-off is hidden or noisy, for k = n = 3:

Rebel 2 chooses revolt at the first period ⇒ the state can be revealed.

Rebel 2 chooses stay at the first period ⇒ the state can be revealed.

APEX FOR k < n

- k < n: with additional assumptions,
 - acyclic networks (tree networks): a weak APEX equilibrium can be found when δ is high enough.
 - cyclic networks: open question.

ACYCLIC NETWORK: DEFINITION

DEFINITION (PATH IN A NETWORK)

A **path** from node i to node j is a sequence of nodes

$$\{i, m_1, m_2, ..., m_n, j\}$$
 without repetition

such that $i \in G_{m_1}, m_1 \in G_{m_2}, ..., m_n \in G_j$.

DEFINITION (ACYCLIC NETWORK (TREE))

A network is **acyclic** \Leftrightarrow the path from node i to node j is unique for all nodes i, j.

\overline{APEX} -EXAMPLE FOR k < n

If pay-off is observable, for k = 3 and n = 4:

All Rebels play revolt in the first period ⇒ then state will be revealed.

If pay-off is hidden or noisy, for k = 3 and n = 4:

An APEX equilibrium does not exist.

STRONG CONNECTEDNESS

DEFINITION

 θ has **Strong connectedness** \Leftrightarrow for every pair of Rebels, there is a path consisting of Rebels to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

I.e. Commonly certainty of strong connectedness.

STRONG CONNECTEDNESS

DEFINITION

 θ has **Strong connectedness** \Leftrightarrow for every pair of Rebels, there is a path consisting of Rebels to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

I.e. Commonly certainty of strong connectedness.

ASSUMPTION

 π has full support on strong connectedness.

If pay-off is hidden or noisy, for k = 3 and n = 4 with strong connectedness:

- An APEX equilibrium exists—same idea: Rebel 3 play a "coordination message"
 - \Rightarrow state can be revealed.

If pay-off is hidden or noisy, for k = 3 and n = 4 with strong connectedness:

- An APEX equilibrium exists—same idea: Rebel 3 play a "coordination message"
 ⇒ state can be revealed.
- Later, I generalize the case of k < n for acyclic networks.

Case of k < n

EQUILIBRIUM CONSTRUCTION

Outline:

Communication by actions

Case of k < n

EQUILIBRIUM CONSTRUCTION

Outline:

- Communication by actions
- Communication in the equilibrium
 - Communication protocol
 - In-the-path belief
 - Off-path belief
 - Sketch of proof

MAIN IDEA

Ex. for n = 5 network:

• First step: index each node a distinguish prime number.

MAIN IDEA

Ex. for n = 5 network:

- First step: index each node a distinguish prime number.
- This indexation is commonly known.

MAIN IDEA-CONTI

Ex. for k = 4, n = 5 with strong connectedness:

Second step: build a communication protocol.

MAIN IDEA-CONTI

Ex. for k = 4, n = 5 with strong connectedness:

$$1 - RB_2 - RB_3 - RB_4 - RB_5$$

- Second step: build a communication protocol.
- If the incentive issue is ignored, ideally,

	Reporting period	Coordination period	
	1,2,,2310	2311,,2421	2422,
RB ₂	s,,s, r,s,,s 2×3×5	¬ send "coordination message"	play revolt afterward
RB₃	$\boldsymbol{s},,\boldsymbol{s}, \overbrace{\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}}$	send "coordination message"	play revolt afterward

COORDINATION IN SOCIAL NETWORKS

COMMUNICATION PHASES

Phases

- **PP** (Reporting period): revealing the information about θ .
- **© CD** (Coordination period): coordinating the future actions.

COMMUNICATION PHASES

Phases

- **PP** (Reporting period): revealing the information about θ .
- ② CD (Coordination period): coordinating the future actions.
- SP and CD alternate finitely.

$$\langle RP \rangle \langle CD \rangle \dots$$

COMMUNICATION PHASES

Phases

- **PP** (Reporting period): revealing the information about θ .
- ② CD (Coordination period): coordinating the future actions.
- Second RP and CD alternate finitely.

$$\underbrace{\langle RP \rangle \langle CD \rangle}_{\text{block}} ...$$

• Call a complete two phases, $\langle RP \rangle \langle CD \rangle$, a **block**.

COORDINATION PERIOD AND MESSAGES

In coordination period,

• "three" messages coordinate actions

Messages	Continuation actions	
message to revolt	play revolt afterward	
message to stay	play stay afterward	
Other messages	continue to next block	

COORDINATION PERIOD AND MESSAGES

- Communication either stops or continues after a CD.
 - Stopping: If Message to stay or Message to revolt is sent ⇒ all Rebels coordinate to play same actions.
 - Continuing: Otherwise, go to the next block.

COORDINATION PERIOD AND MESSAGES

- Communication either stops or continues after a CD.
 - Stopping: If Message to stay or Message to revolt is sent ⇒ all Rebels coordinate to play same actions.
 - 2 Continuing: Otherwise, go to the next block.

LEMMA

Before a Rebel knows $\#[Rebels](\theta) < k$ or $\#[Rebels](\theta) \ge k$, he will not send **Message to stay** or **Message to revolt** if δ is high enough.

• a "grim trigger".

► Comment

REPORTING PERIOD AND MESSAGES

- RPt: the reporting period at t block
- $\langle RP^t \rangle$: the reporting message

Costly message	$\neg \langle \text{stay} \rangle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not costly message	$\langle {\sf stay} \rangle$	s,,s,s,s,,s

REPORTING PERIOD AND MESSAGES

- RP^t: the reporting period at t block
- $\langle RP^t \rangle$: the reporting message

Costly message	$\neg \langle \text{stay} \rangle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not costly message	⟨stay⟩	s,, s, s, s,, s

- Gives incentive to play costly message.
 - Ostly message+message to revolt: coordination to revolt
 - Otherwise, no coordination to revolt

REPORTING PERIOD AND MESSAGES

- RP^t: the reporting period at t block
- $\langle RP^t \rangle$: the reporting message

Costly message	$\neg \langle \text{stay} \rangle$	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{r},\boldsymbol{s},,\boldsymbol{s}$
Not costly message	⟨stay⟩	s,, s, s, s,, s

- Gives incentive to play costly message.
 - Costly message+message to revolt: coordination to revolt
 - Otherwise, no coordination to revolt
- How much cost should a Rebel take? Characterization in the next slides.

Information Hierarchy

• Characterizing Rebels' incentives in playing costly messages to other reason

Ex:

$$0 - 1 - \frac{RB_2}{RB_3} \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

Information Hierarchy

• Characterizing Rebels' incentives in playing costly messages other reason

Ex:

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

 Rebel 2 has less incentive: Rebel 2's information can be reported by Rebel 3 to Rebel 4.

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

• At **0**-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

$$0 - 1 - RB_2 \cdot \frac{RB_3}{RB_4} \cdot \frac{RB_5}{RB_5} \cdot RB_6 - 7$$

- **1** At **0**-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$
- **a** At 1-block, let $R^1 = \{ 3, 4, 5 \}$

Information Hierarchy

$$0 - 1 - RB_2 - RB_3 - RB_4 - RB_5 - RB_6 - 7$$

$$0 - 1 - RB_2 \cdot \frac{RB_3}{RB_4} \cdot \frac{RB_5}{RB_5} \cdot RB_6 - 7$$

$$0 - 1 - RB_2 \cdot RB_3 \cdot RB_4 \cdot RB_5 \cdot RB_6 - 7$$

- **1** At 0-block, let $\mathbb{R}^0 = \{2, 3, 4, 5, 6\}$
- **a** At 1-block, let $R^1 = \{ 3, 4, 5 \}$
- **3** At 2-block, let $R^2 = \{$ 4 $\}$

32 / 48

The Rebels known by i after t-block: I_i^t .

THEOREM

Given θ , if

- the network is acyclic
- the state has strong connectedness
- $\Rightarrow \exists t^{\theta} \text{ and } \exists i \in R^{t^{\theta}} \text{ such that } l_i^{t^{\theta}} \supset [Rebels](\theta).$

Thus, ideally, APEX can be attained by

At t block

Multiplication of I_i^{t-1} Rebels' prime numbers

$$R^t$$
 Rebelsplay $\langle I_i^{t-1} \rangle$ $\mathbf{s},...,\mathbf{s},$ non- R^t Rebelsplay $\langle \mathbf{stay} \rangle$ $\mathbf{s},...,\mathbf{s},\mathbf{s},\mathbf{s},...,\mathbf{s}$

The Rebels known by i after t-block: I_i^t .

THEOREM

Given θ , if

- the network is acyclic
- the state has strong connectedness
- $\Rightarrow \exists t^{\theta} \text{ and } \exists i \in R^{t^{\theta}} \text{ such that } l_i^{t^{\theta}} \supset [Rebels](\theta).$

Thus, ideally, APEX can be attained by

At t block

Multiplication of I_i^{t-1} Rebels' prime numbers

$$R^t$$
 Rebels play $\langle l_i^{t-1} \rangle$ $\mathbf{s},...,\mathbf{s},$ $\mathbf{r},\mathbf{s},...$ non- R^t Rebels play $\langle \mathbf{stay} \rangle$ $\mathbf{s},...,\mathbf{s},\mathbf{s},\mathbf{s},...,\mathbf{s}$

However, "Pivotal Rebels" will deviate.

PIVOTAL PLAYERS

Relevant information: $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k$.

DEFINITION (PIVOTAL PLAYER IN RP^t)

i is **pivotal** in RP^t

 \Leftrightarrow

 $i \in R^t$ and i will learn the relevant info before I_i^{t-1} is reported given others' truthful reporting.

INFORMATION HIERARCHY

PIVOTAL PLAYERS

Ex.
$$k = 5$$
.

- Rebel 4 and Rebel 5 are pivotal (Free Rider problem)
- They can manipulate their reporting to save costs.

→ Go to discussion

PIVOTAL PLAYERS

Ex.
$$k = 6$$
,

- Rebel 4 is pivotal (given Rebel 5's reporting)
- He can manipulate his reporting to save costs.

STEP 1.

DEFINITION (FREE RIDER IN RP^t)

i is a **free rider** in $RP^t \Leftrightarrow$

- \bullet *i* is pivotal in RP^t
- \bullet *i* will learn $\#[Rebels](\theta)$ before I_i^{t-1} is reported.

DEFINITION (FREE RIDER PROBLEM IN RP^{t})

A free rider problem occurs in $RP^t \Leftrightarrow$ There are more than 2 free riders in RP^t .

STEP 1.

LEMMA

If networks are acyclic, then

- there is a unique PRt where Free Rider Problem may occur.
- there are only two free riders i, j are involved. Moreover $i \in G_i$.
- Moreover, before PR^t and after CD^{t-1} , i, j both certain that they will be involved in free rider problem.

Thus, before RP^t and after CD^{t-1} , pick one of them as a free rider.

STEP 2.

Non-pivotal <i>R</i> ^t Rebels	play	$\langle I_i^{t-1} \rangle$	$\mathbf{s},,\mathbf{s}, \overbrace{\mathbf{r},\mathbf{s},,\mathbf{s}}^{\prod_{j\in I_i^{t-1}}x_j}$
Pivotal R^t Rebels	may play	(1)	$\boldsymbol{s},,\boldsymbol{s},\boldsymbol{s},\boldsymbol{s},,\boldsymbol{r}$
non-R ^t Rebels	play	⟨stay⟩	s,, s, s, s,, s

I.e. Add (1) into the equilibrium path.

JANUARY 20, 2015

STEP 3.

In the equilibrium path,

LEMMA

If networks are acyclic,

i is pivotal but i is not free rider in RPt

 \Rightarrow

i has learned that $\#[Rebels](\theta) \ge k-1$ in RP^t

LEMMA

If networks are acyclic,

i play $\langle 1 \rangle$ in RP^t

i has learned that $\#[Rebels](\theta) > k-1$ in RP^t

STEP 3.

Consequently, if i play $\langle 1 \rangle$ in the path

In RP^t , i plays	is <i>i</i> a free rider?	In RP^t , $j \in G_i$ plays	After RP ^t , i knows
⟨1⟩	yes	$\langle \cdot \rangle$	$\#[Rebels](\theta) \ge k$

STEP 3.

Consequently, if *i* play $\langle 1 \rangle$ in the path

	In RP^t , i plays	is <i>i</i> a free rider?	In RP^t , $j \in G_i$ plays	After RP^t , i knows
-	⟨1⟩	yes	$\langle \cdot \rangle$	$\#[Rebels](\theta) \ge k$
	⟨1⟩	no	⟨1⟩	$\#[\textit{Rebels}](\theta) \geq k$

STEP 3.

Consequently, if i play $\langle 1 \rangle$ in the path

In RP^t , i plays	is <i>i</i> a free rider?	In RP^t , $j \in G_i$ plays	After RP^t , i knows
⟨1⟩	yes	$\langle \cdot \rangle$	$\#[\textit{Rebels}](heta) \geq k$
$\langle 1 \rangle$	no	⟨1⟩	$\#[\textit{Rebels}](heta) \geq k$
$\langle 1 \rangle$	no	$\langle stay angle$	$\#[\textit{Rebels}](\theta) < k$

 \Rightarrow *i* can tell the relevant info. after RP^t .

Consequently, pivotal i has to play message to stay or message to revolt

Table : Equilibrium path if i played $\langle 1 \rangle$

In <i>RP</i> ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	After CD ^t
i plays	i plays	<i>i</i> plays	
<u></u> (1)	⟨stay⟩	⟨stay⟩	stay
$\langle 1 \rangle$	$\langle \mathbf{x}_i angle$	$\langle stay \rangle$	revolt

BELIEF UPDATING IN EQUILIBRIUM PATH

Table : Belief updating after CD^t , t>0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	<i>i</i> plays	i plays	The events $j \in G_i$ believes with probability one
$\langle I_i^{t-1} \rangle$	$\langle {\sf stay} \rangle$	$\langle {\sf stay} \rangle$	#[Rebels](heta) < k
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle {\it stay} \rangle$	$\#[\textit{Rebels}](heta) \geq k$
$\langle 1 \rangle$	$\langle {\it stay} \rangle$	$\langle {f stay} \rangle$	#[Rebels](heta) < k
$\langle 1 \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle stay \rangle$	$\#[\textit{Rebels}](heta) \geq k$

BELIEF UPDATING IN EQUILIBRIUM PATH

Table : Belief updating after CD^t , t>0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	<i>i</i> plays	<i>i</i> plays	The events $j \in G_i$ believes with probability one
$\langle stay \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle {\sf stay} \rangle$	$i \notin R^t$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle \mathbf{x}_i angle$	$i \in R^t$

BELIEF UPDATING IN EQUILIBRIUM PATH

Table : Belief updating after CD^t , t>0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
i plays	<i>i</i> plays	i plays	The events $j \in G_i$ believes with probability one
⟨stay⟩	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$i otin R^t$
$\langle I_i^{t-1} \rangle$	$\langle {\sf stay} \rangle$	$\langle {f stay} \rangle$	#[Rebels](heta) < k
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle {f stay} \rangle$	$\#[\textit{Rebels}](\theta) \geq \textit{k}$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle \mathbf{x}_i angle$	$i \in R^t$
$\langle 1 \rangle$	$\langle {\it stay} \rangle$	$\langle \text{stay} \rangle$	#[Rebels](heta) < k
$\langle 1 \rangle$	$\langle \mathbf{x}_i \rangle$	$\langle {\bf stay} \rangle$	$\#[\textit{Rebels}](heta) \geq k$

OFF-PATH BELIEF

OFF-PATH BELIEF

Whenever i detects a deviation, he believes that

for all
$$j \notin G_i$$
, $\theta_j \neq Rebel$

• If he has less than k Rebel-neighbors, he will play **stay** forever.

OFF-PATH BELIEF

OFF-PATH BELIEF

Whenever i detects a deviation, he believes that

for all
$$j \notin G_i$$
, $\theta_j \neq Rebel$

- If he has less than k Rebel-neighbors, he will play **stay** forever.
- This off-path belief then also serve as another "grim trigger" (belief-grim-trigger).

JANUARY 20, 2015

SKETCH OF PROOF

- The equilibrium path is APEX.
- APEX outcome gives maximum ex-post continuation pay-off after some T.
- Undetectable deviation ⇒ protocol-grim-trigger. Protocol-grim-trigger
- Any deviation will let APEX fail in a positive probability.
- **5** Sufficiently high δ will impede deviation.

DISCUSSION

CYCLIC NETWORK

- From the above steps, an APEX equilibrium for **acyclic** networks is constructed.
 - At most 2 free riders will occur. Pexample
- Solving Pivotal-player problem for cyclic networks need more elaboration.
 - More than 3 free riders will occur.

- payoff is perfectly observed
 - Play revolt in the first period, then the relevant information revealed.
- payoff is noisy
 - With full support assumption, the existing equilibrium is APEX.
 - Ex.

$$p_{1s} = \Pr(y = y_1 | \# \text{revolt} \ge k)$$

$$p_{1f} = \Pr(y = y_1 | \# \text{revolt} < k)$$

$$p_{2s} = \Pr(y = y_2 | \# \text{revolt} \ge k)$$

$$p_{2f} = \Pr(y = y_2 | \# \text{revolt} < k)$$

$$1 > p_{1s} > 0, 1 > p_{2s} > 0, p_{1f} = 1 - p_{1s}, p_{2f} = 1 - p_{2s}$$
 (1)

FURTHER WORKS

- Cyclic networks.
- **a** A general model in which players can communicate only by their actions to learn the relevant information in finite time when $\delta < 1$, while the communication protocol itself is an equilibrium.
- Equilibrium selection.