## Aula 41

Proposição: Uma matriz A,  $n \times n$ , de coeficientes constantes tem n vectores próprios associados linearmente independentes se e só se é diagonalizável.

<u>Definição</u>: Dada uma matriz A de coeficientes constantes chama-se **multiplicidade algébrica** dum valor próprio  $\lambda$  de A à sua multiplicidade como raíz do polinómio característico  $\det(A - \lambda I) = 0$ .

Chama-se **multiplicidade geométrica** dum valor próprio  $\lambda$  à dimensão do correspondente espaço próprio, ou seja, ao número de vectores próprios linearmente independentes associados a  $\lambda$ .

Proposição: Seja A uma matriz  $n \times n$  de coeficientes constantes e  $\lambda$  um valor próprio. Então

 $1 \leq \mathsf{mult}$ . geométrica de  $\lambda \leq \mathsf{mult}$ . algébrica de  $\lambda \leq n$ 

## Exemplo:

$$A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\det(A - \lambda I) = 0 \Leftrightarrow \lambda^2 - 4\lambda + 4 = 0 \Leftrightarrow (\lambda - 2)^2 = 0.$$

$$\updownarrow$$

 $\lambda=2$  multiplicidade algébrica = 2, geométrica = 1.

$$(A - \lambda I)\mathbf{v} = \mathbf{0} \Leftrightarrow \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow v_1 = v_2$$
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $\downarrow \downarrow$ 

Uma só solução linearmente independente da forma  $e^{\lambda t}\mathbf{v}$ ,

$$e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix}.$$

<u>Definição</u>: Dado um sistema de EDOs lineares de primeira ordem homogéneo

$$\frac{d\mathbf{y}}{dt} = A(t)\mathbf{y},$$

em que A(t) é uma matriz  $n \times n$  com entradas reais contínuas num intervalo  $I \subset \mathbb{R}$ , designa-se por **matriz solução** fundamental, ou **solução matricial fundamental**, qualquer matriz X(t) cujas colunas formam uma base do espaço das soluções do sistema homogéneo

$$X(t) = \underbrace{\left[ \left( \begin{array}{c} \vdots \\ \mathbf{y}_1(t) \\ \vdots \end{array} \right) \left( \begin{array}{c} \vdots \\ \mathbf{y}_2(t) \\ \vdots \end{array} \right) \cdots \left( \begin{array}{c} \vdots \\ \mathbf{y}_n(t) \\ \vdots \end{array} \right) \right]}_{n \text{ sols. lin. independentes}}.$$

Designa-se por **matriz solução principal**, ou **solução matricial principal**, em  $t_0 \in I$ , a (única) matriz solução fundamental  $Y_{t_0}(t)$  tal que  $Y_{t_0}(t_0) = I$ , ou seja, tal que as suas colunas, além de serem uma base do espaço das soluções, satisfazem especificamente

$$\mathbf{y}_1(t_0) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{y}_2(t_0) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \cdots, \mathbf{y}_n(t_0) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Proposição: Dado um sistema de EDOs lineares de primeira ordem homogéneo

$$\frac{d\mathbf{y}}{dt} = A(t)\mathbf{y},$$

em que A(t) é uma matriz  $n \times n$  com entradas reais contínuas num intervalo  $I \subset \mathbb{R}$ , e dada uma matriz X(t) solução fundamental do sistema, então a solução geral do sistema é dada por

$$\mathbf{y}(t) = X(t)\mathbf{c} = c_1 \begin{bmatrix} \vdots \\ \mathbf{y}_1(t) \\ \vdots \end{bmatrix} + c_2 \begin{bmatrix} \vdots \\ \mathbf{y}_2(t) \\ \vdots \end{bmatrix} + \cdots + c_n \begin{bmatrix} \vdots \\ \mathbf{y}_n(t) \\ \vdots \end{bmatrix},$$

com

$$\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$$

qualquer vector de componentes constantes.

Se  $Y_{t_0}(t)$  é a solução principal em  $t_0$ , então a solução do problema de valor inicial  $\mathbf{y}(t_0) = \mathbf{y}_0$  é dada por

$$\mathbf{y}(t) = Y_{t_0}(t)\mathbf{y}_0.$$

Proposição: Dado um sistema de EDOs lineares de primeira ordem homogéneo

$$\frac{d\mathbf{y}}{dt} = A(t)\mathbf{y},$$

em que A(t) é uma matriz  $n \times n$  com entradas reais contínuas num intervalo  $I \subset \mathbb{R}$ , então, se  $Y_{t_0}(t)$  é a solução matricial principal do sistema em  $t_0 \in I$  e X(t) é uma qualquer solução matricial fundamental, tem-se

$$Y_{t_0}(t) = X(t)X^{-1}(t_0).$$

Proposição: Dado um sistema de EDOs lineares de primeira ordem homogéneo

$$\frac{d\mathbf{y}}{dt} = A(t)\mathbf{y},$$

em que A(t) é uma matriz  $n \times n$  com entradas reais contínuas num intervalo  $I \subset \mathbb{R}$ , a matriz X(t) é uma solução matricial fundamental do sistema se e só se satisfaz a EDO matricial

$$\begin{cases} \frac{dX(t)}{dt} = A(t)X(t) \\ \det X(t) \neq 0. \end{cases}$$

A matrix  $Y_{t_0}(t)$  é a solução matricial principal do sistema em  $t_0 \in I$  se e só se satisfaz

$$\begin{cases} \frac{dY_{t_0}(t)}{dt} = A(t)Y_{t_0}(t) \\ Y_{t_0} = I. \end{cases}$$

<u>Definição</u>: Dado um sistema de EDOs lineares de primeira ordem homogéneo, de coeficientes constantes

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y},$$

chama-se **exponencial matricial** de At, e representa-se por  $e^{At}$ , à (única) solução matricial principal do sistema em  $t_0=0$ , ou seja, a única solução do problema

$$\begin{cases} \frac{de^{At}}{dt} = Ae^{At} \\ e^{A0} = I. \end{cases}$$

Proposição: Dada uma matriz A,  $n \times n$ , a exponencial matricial  $e^{At}$  é dada pela série

$$e^{At} = I + At + A^{2} \frac{t^{2}}{2!} + A^{3} \frac{t^{3}}{3!} + \cdots$$
$$= \sum_{n=0}^{\infty} A^{n} \frac{t^{n}}{n!}$$

Proposição: Dadas matrizes A, B,  $n \times n$ , tem-se

- i) Em t = 0,  $e^{At} = e^{[0]} = I$ .
- ii) Se

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & A_k \end{bmatrix}$$

é uma matriz por blocos, então  $e^{At}$  também é uma matriz por blocos e tem-se

$$e^{At} = \begin{bmatrix} e^{A_1t} & 0 & \cdots & 0 \\ 0 & e^{A_2t} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & e^{A_kt} \end{bmatrix}$$

- iii) Se A e B comutam, ou seja, se AB=BA então  $e^{(A+B)t}=e^{At}e^{Bt}.$
- iv)  $e^{At}$  é sempre não singular, com inversa  $(e^{At})^{-1}=e^{-At}$ .
- v) Se

$$A = S\Lambda S^{-1}$$

então

$$e^{At} = Se^{\Lambda t}S^{-1}.$$