SPRAWOZDANIE Z TEORII OPTYMALIZACJI

Imię, Nazwisko, Numer	Michał Krzyszczuk N=14
Temat ćwiczenia	Metoda zewnętrznej funkcjii kary
Data i godzina wykonania ćwiczenia	17 kwietnia 2019, godz: 14:30

Zadanie 1.

Rozwiązanie numeryczne.

```
function [outputArg1] = f(x,j)
outputArg1 = x(1).^2 + x(2).^2 + 2*exp(j)*(x(2)-14).^2;
end
```

```
close all;
clear all;
x0 = [14; 14];
wyniki = zeros(20,2);
for i=1:20
    P = @(x) f(x,i);
    wyniki(i,:) = fminsearch(P,x0);
end
figure()
plot(wyniki(1,1), wyniki(1,2), 'o', 'DisplayName', 'Punkt')
początkowy')
hold on;
plot(wyniki(:,1), wyniki(:,2), '-*', 'DisplayName', 'Iteracje')
plot(wyniki(20,1), wyniki(20,2), 'x', 'DisplayName', 'Punkt
końcowy')
xlabel('x1')
ylabel('x2')
grid on;
legend show;
```


Rozwiązanie analityczne

 $f(x_1,14) = x_1^2 + 196$ osiqqa minimum dla $x_1 = 0$

Zadanie 2

$$f(x_1, x_2) = \sqrt{(x_1^2 + x_2^2)}$$
, przy założeniu dla $N = 14x_1 + x_2 - 14 = 0$ i $x_1 + x_2 - 28 = 0$

Rozwiązanie Analityczne.

 $x_1+x_2-14=0$ $x_1+x_2-28=0$ odejmując obustronnie otrzymoano równanie:

14=0, które jest sprzeczne . W przestrzeni \mathbb{R}^2 nie istnieje wektor spełniający ograniczenia

Próba rozwiązania numerycznego

```
function [outputArg1] = f(x,j)
outputArg1 = x(1).^2 + x(2).^2 + 2*exp(j)*((x(2)+x(1)-14).^2+(x(2)+x(1)-28).^2);
end
```

```
close all;
clear all;
x0 = [14;14];
wyniki = zeros(20,2);
```

```
for i=1:20
    P = @(x) f(x,i);
    wyniki(i,:) = fminsearch(P,x0);
end
figure()
plot(wyniki(1,1),wyniki(1,2),'o', 'DisplayName','Punkt
poczatkowy')
hold on;

plot(wyniki(:,1),wyniki(:,2),'-*','DisplayName','Iteracje')
plot(wyniki(20,1),wyniki(20,2),'x','DisplayName','Punkt
końcowy')
xlabel('x1')
ylabel('x2')
grid on;
legend show;
```


Otrzymany wynik $x = [10.4996788585270 \quad 10.5003210942808]$

Dodatek

Załączona historia wyników w zależności od operacji

Zadanie 2:

10.0383636785633	10.0383933310199
10.3253222200996	10.3253362245015
10.4350851320929	10.4350335973175
10.4760265228549	10.4760108201716
10.4911391238764	10.4911860453164
10.4967959551304	10.4967007376468
10.4987856358257	10.4988206410304
10.4995246924995	10.4995950009633
10.4998122794566	10.4998637565836
10.4999738168141	10.4999068477826
10.5000283169120	10.4999279230722
10.5000205154108	10.4999633348321
10.4999679785060	10.5000261794105
10.4999935228762	10.5000043257622
10.5000255510288	10.4999736390904
10.4999422528276	10.5000575063459
10.4998900016548	10.5001098986741
10.5000085630923	10.4999913871313
10.5002049154165	10.4997950486598
10.4996788585270	10.5003210942808

Zadanie 1

3.35621549539237e-05	11.8249366231554
-3.00469850002116e-05	13.1126913119977
-4.87680195206194e-05	13.6599533409755
-2.35556349108039e-05	13.8729537118083
2.54082752025079e-06	13.9529941168453
1.94767772686469e-05	13.9826671084214
4.25561627756728e-06	13.9936191235716
-4.68430843906595e-05	13.9976514612958
-2.45504213208679e-05	13.9991365389396
-2.45510129414918e-05	13.9996821760124
-1.81333853228760e-05	13.9998830277221
-4.74747306432528e-05	13.9999569317771
1.14560713241576e-05	13.9999842012505
-1.60541721699654e-05	13.9999941555932
-1.04654788074675e-05	13.9999978794618
2.52823764469141e-05	13.9999992153636
1.38159827580477e-05	13.9999997058528
9.26266506731119e-06	13.9999998966856
1.07705098900576e-05	13.999999636966
1.08911208317618e-05	13.999999858546