## ЛАБОРАТОРНАЯ РАБОТА № 4-1.

Изучение магнитного поля соленоида.

## Цели работы:

- 1. Ознакомление с методом измерения магнитной индукции на основе эффекта электромагнитной индукции.
- 2. Исследование распределения индукции магнитного поля на оси соленоида.

## Теоретические основы лабораторной работы.

По закону Био-Савара-Лапласа и принципу суперпозиции вектор магнитной индукции, создаваемой одиночным круговым витком в любой точке на его оси

$$B_{\text{витка}} = \frac{\mu_0 I R^2}{2r^3} \,, \tag{1}$$

где  $\mu_0 = 4\pi \times 10^7$ н/м , I – сила тока, R – радиус витка, r – расстояние от элемента витка до точки на оси, в которой вычисляется поле.

Рассмотрим участок шириной dz соленоида с равномерной очень плотной намоткой. На нем расположены  $\frac{N}{L}dz$  витков.

$$dB = \frac{\mu_0 I R^2}{2r^3} \cdot \frac{N}{L} dz \,. \tag{2}$$

Пусть  $\theta$  и  $d\theta$  – углы, под которыми видны дальний конец участка шириной dz и сам участок из точки на оси, где вычисляется магнитная индукция. Тогда  $dz = rd\theta/sin\theta$ ,  $r = R/sin\theta$ . Отсюда:

$$dB = \frac{\mu_0 IN}{2L} \sin \theta d\theta \,. \tag{3}$$

Пусть  $\theta_1$ ,  $\theta_2$  – углы, под которыми видны концы соленоида.

$$dB = \frac{\mu_0 IN}{2L} \int_{\theta_1}^{\theta_2} \sin\theta d\theta = \frac{\mu_0 IN}{2L} (\cos\theta_1 - \cos\theta_2). \tag{4}$$

Введем координатную ось z, направленную вдоль оси соленоида с началом в центре соленоида и вычислим  $cos\theta_1$  и  $cos\theta_2$ .

$$B(z) = \frac{\mu_0 NI}{2L} \left( \frac{\frac{1}{2}L - z}{\sqrt{R^2 + (\frac{1}{2}L - z)^2}} + \frac{\frac{1}{2}L + z}{\sqrt{R^2 + (\frac{1}{2}L + z)^2}} \right) \div , \tag{5}$$

где L — длина соленоида.

Величину магнитной индукции соленоида можно измерить с помощью эффекта электромагнитной индукции. Для этого через соленоид пропускается переменный ток невысокой частоты. Поле соленоиде в этом случае также является переменным, но соотношения между мгновенным значением магнитной индукции и мгновенным значением тока (например, между амплитудными значениями) точно такие же, как в случае постоянного тока. Если в это переменное магнитное поле поместить небольшую измерительной катушку, то в ней в соответствии с законом электромагнитной индукции наводится ЭДС. По величине этой ЭДС можно вычислить амплитудное значение магнитной индукции в месте расположения измерительной катушки.

Индукция магнитного поля соленоида в работе изменяется по гармоническому закону:

$$B(t) = B_m \cos(2\pi vt) \,, \tag{6}$$

где  $B_m$  – амплитудное значение магнитной индукции, t – время, v – частота. Если ось измерительной катушки совпадает с осью симметрии соленоида, то суммарный магнитный поток поля соленоида через все витки измерительной катушки равен

$$\Phi(t) = \frac{\pi d^2}{4} N_{\text{HK}} B(t) , \qquad (7)$$

где d – средний диаметр измерительной катушки,  $N_{\rm UK}$  – число её витков. По закону электромагнитной индукции в измерительной катушке наводится ЭДС  ${\bf E}(t)=-{d\Phi\over dt}$ . Предполагается, что ток в самой измерительной катушке достаточно мал, и самоиндукцией в ней можно пренебречь.

$$\varepsilon(t) = \frac{\pi^2 d^2 \mathbf{v}}{2} N_{\text{MK}} B_m \sin(2\pi \mathbf{v}t) . \tag{8}$$

Если сопротивление вольтметра подключенного к катушке значительно больше, чем сопротивление катушки, то его показания фактически совпадают с ЭДС в цепи измерительной катушки. Вольтметр для переменного гармонического сигнала показывает действующее значение ЭДС  $\mathbf{\epsilon}_{\pi}$ , которое меньше амплитудного значения в  $\sqrt{2}$  раз.

$$\varepsilon_{\rm H} = \frac{\pi^2 d^2 \nu}{2\sqrt{2}} N_{\rm HK} B_m \,. \tag{9}$$

## Результаты измерений и их обработка.

|         |                       | T                                         |                     | T                                       |
|---------|-----------------------|-------------------------------------------|---------------------|-----------------------------------------|
| № точки | Z <sub>III</sub> , MM | $\mathbf{\epsilon}_{_{\mathcal{I}}}$ , MB | $B_m^{(\Im)}$ , мТл | $B_m^{(\mathrm{T})}$ , м $\mathrm{T}$ л |
| 1       | -100                  | 0,163                                     | 2,24                | 1,78                                    |
| 2       | -90                   | 0,232                                     | 3,20                | 2,54                                    |
| 3       | -80                   | 0,286                                     | 3,94                | 3,20                                    |
| 4       | -70                   | 0,319                                     | 4,39                | 3,65                                    |
| 5       | -60                   | 0,340                                     | 4,68                | 3,93                                    |
| 6       | -50                   | 0,352                                     | 4,85                | 4,09                                    |
| 7       | -40                   | 0,362                                     | 4,99                | 4,19                                    |
| 8       | -30                   | 0,366                                     | 5,04                | 4,24                                    |
| 9       | -20                   | 0,368                                     | 5,07                | 4,27                                    |
| 10      | -10                   | 0,369                                     | 5,08                | 4,28                                    |
| 11      | 0                     | 0,369                                     | 5,08                | 4,27                                    |
| 12      | 10                    | 0,366                                     | 5,04                | 4,24                                    |
| 13      | 20                    | 0,359                                     | 4,94                | 4,19                                    |
| 14      | 30                    | 0,351                                     | 4,83                | 4,09                                    |
| 15      | 40                    | 0,336                                     | 4,63                | 3,93                                    |
| 16      | 50                    | 0,312                                     | 4,30                | 3,65                                    |
| 17      | 60                    | 0,270                                     | 3,72                | 3,20                                    |
| 18      | 70                    | 0,208                                     | 2,86                | 2,54                                    |
| 19      | 80                    | 0,138                                     | 1,90                | 1,78                                    |
| 20      | 90                    | 0,090                                     | 1,24                | 1,16                                    |

Средний диаметр намотки соленоида  $D = (0,059 \pm 0,0005)$  м.

 $L = (0.168 \pm 0.001)$  m.

N = 2600.

 $d = (0.0204 \pm 0.0002)$  M.

Толщина измерительной катушки  $\delta = (0.003 \pm 0.0001)$  м.

 $N_{\rm MK} = 1000$ .

 $\nu = 50$  Гц.

Действующее значение тока  $I_{\scriptscriptstyle \rm I\hspace{-1pt}I}$  = 0,165 A.

Предел измерения амперметра  $D_I$  = 0,25 A.

Класс точности амперметра  $k_I = 0.5$ .

$$\Delta \mathbf{E}_{\pi} = 0,002.$$

$$\Delta I_{_{\rm I\! I}} = I_{_{\rm I\! I}} \ D_I \ k_I = 0.021 \ {\rm A}.$$

$$I_m = I_{\perp} \times \sqrt{2} = 0.233 \text{ A}.$$

$$z_0 = -10 \text{ MM}.$$

$$\Delta z = 1$$
 MM.



$$\frac{\Delta B_m^{(3)}}{B_m^{(3)}} = \sqrt{\left(2\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta \varepsilon_{_{\rm I}}}{\varepsilon_{_{\rm I}}}\right)^2}.$$

 $\Delta B_m^{(9)}(0) = 0,1$  мТл.

$$\Delta B_{m}^{(\mathrm{T})} = \sqrt{\left(\frac{\mu_{0}N}{2L}\left(\frac{L/2-z}{\sqrt{R^{2}+(L/2-z)^{2}}} + \frac{L/2+z}{\sqrt{R^{2}+(L/2+z)^{2}}}\right)} \Delta I\right)^{2} + \left(\frac{\mu_{0}NID}{8L}\left(\frac{L/2-z}{(D^{2}/4+(L/2-z)^{2})^{3/2}} + \frac{L/2+z}{(D^{2}/4+(L/2+z)^{2})^{3/2}}\right)} \Delta D + \frac{L(L/2+z)^{2}}{4L^{2}} + \frac{L(L/2+z)^{2}}{(D^{2}/4+(L/2-z)^{2})^{3/2}} + \frac{L(L/2+z)^{2}}{(D^{2}/4+(L/2+z)^{2})^{3/2}} - \frac{2z}{\sqrt{R^{2}+(L/2-z)^{2}}} + \frac{2z}{\sqrt{R^{2}+(L/2+z)^{2}}} \Delta L\right)^{2} + \frac{L(L/2+z)^{2}}{2L} \left(\frac{L(L/2-z)^{2}}{(D^{2}/4+(L/2-z)^{2})^{3/2}} - \frac{(L/2+z)^{2}}{(D^{2}/4+(L/2+z)^{2})^{3/2}} - \frac{1}{\sqrt{R^{2}+(L/2-z)^{2}}} + \frac{1}{\sqrt{R^{2}+(L/2+z)^{2}}} \Delta z\right)^{2} \cdot B_{m}^{(\mathrm{T})}(0) = 0,4 \, \mathrm{MTz}.$$