Introduction to Beamer

Beamer is a LaTeX class for creating slides for presentations

Steven G. Wicker

Department of Mathematics

Winston Salem, NC wickersg@wfu.edu

Updated Jan. 25, 2010

How to Get Beamer

- You may wish to update to the latest version of MixTeX v. 2.8
- Go to http://latex-beamer.sourceforge.net/ The LaTeX Beamer Class Homepage
- Just Google "Beamer" Should be the 1st link.
- Copy the all the code between and including the begin and end document commands and paste it into a new document in WinEdt.
- PDF/LaTeX the document
- You will have to install FOUR packages as the document processes. This will take some time.

Commands for Header and the Title Page

```
\documentclass[xcolor=dvipsnames]{beamer}
\usecolortheme[named=BurntOrange]
\usetheme{PaloAlto}
\title[]{}
\subtitle[]{}
\author[]{}
\institute[]{}
\date{}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
```


General Set-up for a Slide

```
\begin{frame}[fragile]
  \frametitle{Title of slide}
  content of slide
  definitions
  equations
  pictures
  \end{frame}
```


An itemized/bulleted list:

An itemized/bulleted list:

■ itemized item 1

An itemized/bulleted list:

- itemized item 1
- itemized item 2

An itemized/bulleted list:

- itemized item 1
- itemized item 2
- itemized item 3

An itemized/bulleted list:

- itemized item 1
- itemized item 2
- itemized item 3

Same structure for "enumerate" to produce a numbered list.

An itemized/bulleted list:

- itemized item 1
- itemized item 2
- itemized item 3

Same structure for "enumerate" to produce a numbered list.

```
\begin{itemize}
\pause
  \item itemized item 1
\pause
  \item itemized item 2
\pause
  \item itemized item 3
\end{itemize}
```


■ No external programs needed.

- Easy overlays.
- No external programs needed.

- Normal LaTeX class.
- Easy overlays.
- No external programs needed.

- Normal LaTeX class.
- Easy overlays.
- No external programs needed.

```
\begin{itemize}
\item<3-> Normal LaTeX class.
\item<2-> Easy overlays.
\item<1-> No external programs needed.
\end{itemize}
```


Definition

A triangle that has a right angle is called a right triangle.

Definition

A triangle that has a right angle is called a right triangle.

Theorem

In a right triangle, the square of hypotenuse equals the sum of squares of two other sides.

Definition

A triangle that has a right angle is called a *right triangle*.

Theorem

In a right triangle, the square of hypotenuse equals the sum of squares of two other sides.

Proof.

We leave the proof as an exercise to our astute reader. We also suggest that the reader generalize the proof to non-Euclidean geometries.

\begin{definition} or theorem or proof

Graphics

Here we include three images, one each of PDF, PNG, and JPG types.

Graphics

Here we include three images, one each of PDF, PNG, and JPG types.

Sample code:

\includegraphics[width=0.1\textwidth]{picture.jpg}

Dividing a Slide into Columns

Good for displaying equations on one side and a picture on the other.

Here is the first column.

$$f(x) = 2x^3 - 7x + 3$$

Dividing a Slide into Columns

Good for displaying equations on one side and a picture on the other.

Here is the first column.

$$f(x) = 2x^3 - 7x + 3$$

Second column with picture.

Dividing a Slide into Columns

Good for displaying equations on one side and a picture on the other.

Here is the first column.

$$f(x) = 2x^3 - 7x + 3$$

Second column with picture.

Use \begin{columns} with corresponding end for the columns environment.

Use \begin{column} with corresponding end to make the individual columns

Dividing a Slide into Columns–Code

```
\begin{columns}
  \begin{column}{0.5\textwidth}
    Here is the first column.
    $$ f(x) = 2x^3 -7x +3 $$
  \end{column}
\pause
  \begin{column}{0.3\textwidth}
    Second column with picture.
    \centerline{\includegraphics[width=0.7\textwidth]{pictage}
  \end{column}
\end{columns}
\bigskip
```

A Simple Displayed Equation

A displayed formula:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

A Simple Displayed Equation

A displayed formula:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

Code:

Array Environment-More Complex Displayed Equation

This sample uses the array environment, with \$\$ to create the display. Not labeled/numbered (Raynor):

$$\left\{ \begin{array}{ccc} -\Delta v &= \chi_{\overline{B}} & & \forall x \in \Omega \\ v &= 0 & & \forall x \in \partial \Omega. \end{array} \right.$$

Array Environment-More Complex Displayed Equation

This sample uses the array environment, with \$\$ to create the display. Not labeled/numbered (Raynor):

$$\left\{ \begin{array}{ll} -\Delta v &= \chi_{\overline{B}} & \forall x \in \Omega \\ v &= 0 & \forall x \in \partial \Omega. \end{array} \right.$$

Code:

```
$$
\left\{
\begin{array}{rlll}
-\Delta v & = \chi_{\overline B} & & \forall
x \in \Omega\\
v & =0& & \forall x \in \partial\Omega.
\end{array}
\right.
$$
```


Equation Environment with a Label

Here is the previous example using the equation environment to get a label. It produces one label for both equations, which is convenient much of the time (Raynor):

$$\begin{cases}
-\Delta v = \chi_{\overline{B}} & \forall x \in \Omega \\
v = 0 & \forall x \in \partial \Omega.
\end{cases}$$
(1)

Equation Environment with a Label

Here is the previous example using the equation environment to get a label. It produces one label for both equations, which is convenient much of the time (Raynor):

$$\begin{cases}
-\Delta v = \chi_{\overline{B}} & \forall x \in \Omega \\
v = 0 & \forall x \in \partial \Omega.
\end{cases}$$
(1)

Code:

```
\left\{
\begin{array}{rlll}
-\Delta v & = \chi_{\overline B} & & \forall x \in \Omega
v & =0& & \forall x \in \partial\Omega.
```

\end{array} \right.

\begin{equation}

Equation Array - Labeled

The eqnarray environment environment, like many equation display environments, has two versions. "eqnarray" creates a multiline displayed equation with labels (Raynor).

$$\vec{\tilde{e}}_4 = \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2$$
 (2)

$$= \begin{bmatrix} \tilde{\beta} \\ 0 \end{bmatrix}, \tag{3}$$

Equation Array - Labeled

\end{bmatrix},

The eqnarray environment environment, like many equation display environments, has two versions. "eqnarray" creates a multiline displayed equation with labels (Raynor).

$$\vec{\tilde{e}}_4 = \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2$$
 (2)

$$= \begin{bmatrix} \tilde{\beta} \\ 0 \end{bmatrix}, \tag{3}$$

```
\begin{eqnarray} % note use of vectors
\vec{\tilde{e}}_4 & = & \vec{e}_4-
\frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\\vec{e}_1\\^2
& = & \begin{bmatrix}
\tilde{\beta} \\0
```

eqnarray* - No Labels

"eqnarray*" creates a multiline displayed equation with no labels (Raynor):

$$\vec{\tilde{e}}_4 = \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2$$

$$= \begin{bmatrix} \tilde{\beta} \\ 0 \end{bmatrix}.$$

egnarray* - No Labels

"egnarray*" creates a multiline displayed equation with no labels (Raynor):

$$\vec{\tilde{e}}_4 = \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2$$

$$= \begin{bmatrix} \tilde{\beta} \\ 0 \end{bmatrix}.$$

```
\begin{eqnarray*}
 \ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ens
& = & \begin{bmatrix}
 \tilde{\beta} \\
 \end{bmatrix}.
 \end{eqnarray*}
```

Equation Array with Pauses

$$2x^2 + 3(x-1)(x-2) = 2x^2 + 3(x^2 - 3x + 2)$$

Equation Array with Pauses

$$2x^{2} + 3(x - 1)(x - 2) = 2x^{2} + 3(x^{2} - 3x + 2)$$
$$= 2x^{2} + 3x^{2} - 9x + 6$$

Equation Array with Pauses

$$2x^{2} + 3(x - 1)(x - 2) = 2x^{2} + 3(x^{2} - 3x + 2)$$
$$= 2x^{2} + 3x^{2} - 9x + 6$$
$$= 5x^{2} - 9x + 6$$

Equation Array with Pauses

$$2x^{2} + 3(x - 1)(x - 2) = 2x^{2} + 3(x^{2} - 3x + 2)$$
$$= 2x^{2} + 3x^{2} - 9x + 6$$
$$= 5x^{2} - 9x + 6$$

```
\begin{eqnarray*}

2x^2 + 3(x-1)(x-2)&=&2x^2 + 3(x^2-3x+2)\\
\pause &=& 2x^2 + 3x^2 - 9x + 6\\
\pause &=& 5x^2 - 9x + 6\\
\end{eqnarray*}
```


Case Definitions

Used when a definition have two or more cases. Use the case statement.

$$f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \text{otherwise} \end{cases}$$

Case Definitions

Used when a definition have two or more cases. Use the case statement.

$$f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \text{otherwise} \end{cases}$$

The code for the above example:

```
f(x) =
    \begin{cases}
1          & -1 \le x < 0 \\
    \frac{1}{2} & x = 0 \\
1 - x^2          & \mbox{otherwise}
    \end{cases}</pre>
```


Align Environment - Unstarred and Starred

The advantage of the align environment is that you can force multiple parts of each line to align correctly vertically, making pretty multipart sets of equations (Raynor):

$$\frac{\partial u_i}{\partial t} + \sum_{j=1}^n u_j \frac{\partial u_1}{\partial x_j} = \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x, t) \quad x \in \mathbb{R}^n, t \ge 0 \quad (4)$$

$$\nabla \cdot \vec{u} = 0 \qquad \qquad x \in \mathbb{R}^n, t \ge 0 \quad (5)$$

$$\vec{u}(x,0) = \vec{u}_0(x) \qquad \qquad x \in \mathbb{R}^n, \tag{6}$$

Align Environment - Unstarred and Starred

The advantage of the align environment is that you can force multiple parts of each line to align correctly vertically, making pretty multipart sets of equations (Raynor):

$$\frac{\partial u_i}{\partial t} + \sum_{j=1}^n u_j \frac{\partial u_1}{\partial x_j} = \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x, t) \quad x \in \mathbb{R}^n, t \ge 0 \quad (4)$$

$$\nabla \cdot \vec{u} = 0 \quad x \in \mathbb{R}^n, t \ge 0 \quad (5)$$

$$\vec{u}(x, 0) = \vec{u}_0(x) \quad x \in \mathbb{R}^n, \quad (6)$$

A Matrix Using the Array Environment

The equation environment is used to display a single equation with a tag (Raynor):

$$J\mathcal{H}(\omega)|_{D_{\omega}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & a(\omega) & 0 \end{pmatrix}, \tag{7}$$

A Matrix Using the Array Environment

The equation environment is used to display a single equation with a tag (Raynor):

$$J\mathcal{H}(\omega)|_{D_{\omega}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & a(\omega) & 0 \end{pmatrix}, \tag{7}$$

```
\begin{equation}% equation* for no label
J\mathcal{H}(\omega)|_{D_\omega}= \left(
\begin{array}{cccc}
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & a(\omega)& 0
```


Inline Matrix

And matrices can also be created inline with text, as such: $\begin{pmatrix} u \\ v \end{pmatrix}$. (This sample uses the pmatrix environment.) (Raynor)

 $\begin{matrix} x & y \setminus z & v \in \{matrix\} \end{matrix}$

\begin{vmatrix} x & y \\ z & v \end{vmatrix}

\begin{matrix} x & y \\ z & v \end{matrix}

\begin{vmatrix} x & y \\ z & v \end{vmatrix}

$$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$$

\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}

$$\begin{bmatrix} x & y \\ z & v \end{bmatrix}$$

\begin{bmatrix} x & y \\ z & v \end{bmatrix}
$$\begin{bmatrix} x & y \\ z & v \end{bmatrix}$$

A matrix expression

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

A matrix expression

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Code:

```
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \times
\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$$
```


Another matrix example

$$\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

Another matrix example

$$\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

Code:

```
$$ \begin{bmatrix} 0 & \cdots & 0 \\
  \vdots & \ddots & \vdots \\
    0 & \cdots & 0 \end{bmatrix} $$
```


Handouts

```
\documentclass[xcolor=dvipsnames,handout]{beamer}
\usepackage{pgfpages}
\pgfpagesuselayout{4 on 1}[border shrink=5mm]
```


Handouts

```
\documentclass[xcolor=dvipsnames,handout]{beamer}
\usepackage{pgfpages}
\pgfpagesuselayout{4 on 1}[border shrink=5mm]
```

"handout" gets rid of the pauses
The other commands give you 4 of your slides printed on one page.

URL's

A regular URL:

http://www.math.wfu.edu/

URL's

A regular URL:

http://www.math.wfu.edu/

A URL with text other than the web address:

WFU MATH

URL's

A regular URL:

http://www.math.wfu.edu/

A URL with text other than the web address:

```
WFU MATH
\usepackage{hyperref} (might not be needed)
\textcolor{DarkOrchid}{\url{http://www.math.wfu.edu/}}
\textcolor{red}{\href{http://www.math.wfu.edu}}{WFU MATH}}
```


For Later Reference

http://www.wfu.edu/~wickersg/latex/index.html

- Color palate that can be used in Beamer
- Beamer Themes
- Beamer Quick Start Guide
- Posters
- Thesis style

