Impact of the Coronavirus in the Tourism and Relationship of visiting Museum, Restaurants and Coffees shops

Case of Study: London UK.

By Antonio BOSNJAK SEMINARIO

December 1, 2020

REPORT

1) The problem and Discussion of the Background.

In the United Kingdom, the confirmed cases of coronavirus is 1,493,300, according to Public Health England. As of Saturday afternoon (November 21, 2020), 54,626 people had died. Due to a <u>data entry error</u>, nearly 16,000 people who tested positive between Sept. 25 and Oct. 2 were not recorded in the daily number of reported cases.

Everyone knows about the increase in Coronavirus cases. However, we are interested in finding out, which is the risk of contagion?, that is, there is really a greater risk of contagion if I dedicate to the tourism activities, such as visiting or working in a museum. Or in the other hand, I am frequently visit: Pubs, Coffee shop, Café, Restaurants, Supermarkets, or many other amenities as before the Coronavirus lockdown. What happened: If, Am I a owner of the Pub, Restaurant or a coffee shop?

Hypothesis:

Our hypothesis is the following: This virus (Covid-19) is affecting much more in highly populated regions, and very dense areas. We will analyze the neighborhoods of London and specifically where the main London Museums are located, in order to determine if someone who lives or travels to this area is more likely to contract this disease.

The main question is: Which are the most common business, or commerce located in the London Neighborhood that causes the new cases Coronavirus (Covid-19) to increase, and a high rate of contagium?.

Macro studies have been carried out with data from all over the country, as can be seen in figure 1. World data has also been counted. However, there are a very few micro analysis of the neighborhoods of a City, to know if there are some areas where the contagion has decreased. And it is towards that micro-analysis of the city of London and its neighbourhoods' that we focus.

Figure 1. Map of the United Kingdom showing the areas most affected by Covid-19. The areas in dark blue are between 201 to 400 cases per 100,000 inhabitants, and those in dark red correspond to 400 cases per 100,000 inhabitants by October 2020.

2) Data Acquisition and Cleaning.

2.1) Data Acquisition:

In this case the data is distributed by four (4) Web sites:

1) For example, In Wikipedia we find the list of the most visited museums in the United Kingdom during the year 2017. This list can be found at the following link: https://en.wikipedia.org/wiki/List_of_most_visited_museums_in_the_United_Kingdom. In figure 2. One part of this list is shown.

List of most visited museums in the United Kingdom

From Wikipedia, the free encyclopedia

This article **lists the most visited museums in the United Kingdom** (including art galleries). The list of 40 is based on the 2017 of the Association of Leading Visitor Attractions unless otherwise noted.^[1]

Rank +	Museum ♦	Location +	Country +	Visitor count ♦
1	British Museum	London	England	5,906,716
2	Tate Modern	London	England	5,656,004
3	National Gallery	London	England	5,229,192
4	Natural History Museum	London	England	4,434,520
5	Victoria and Albert Museum	London	England	3,789,748
6	Science Museum	London	England	3,251,000
7	Royal Museums Greenwich	London	England	2,607,099
8	National Museum of Scotland	Edinburgh	Scotland	2,165,601
9	Tate Britain	London	England	1,777,877
10	Scottish National Gallery	Edinburgh	Scotland	1,600,761
11	Riverside Museum	Glasgow	Scotland	1,355,359
12	Kelvingrove Art Gallery & Museum	Glasgow	Scotland	1,304,072
13	National Portrait Gallery	London	England	1,271,920
14	National Museum of the Royal Navy	Portsmouth	+ England	1,081,909
15	Imperial War Museum	London	+ England	992,690
16	Horniman Museum and Gardens	London	England	942,971
17	Ashmolean Museum	Oxford	England	937,568

Figure 2. List of most visited museums in the United Kingdom in 2017.

2) A list with the names of the neighborhoods and their GSS_Code, plus their location in latitude and longitude. This list was found on Wikipedia and the link where it is found is: https://en.wikipedia.org/wiki/List of London boroughs. The important part is to obtain the latitude and longitude for each of London's neighborhoods. The others columns can be discarded. Figure 3 shows that list:

Figure 3. List of names and Neighborhood of London and their latitude and longitude.

The Second source of data is scraped from a Wikipedia page that contains the List of London borough. This page contains additional information about the boroughs, the following are the columns:

- **Borough**: The names of the 33 London boroughs.
- Inner: Categorizing the borough as an inner London borough or an Outer London Borough.
- **Status**: Categorizing the borough as Royal, City or other borough.
- Local Authority: The local authority assigned to the borough.
- **Political Control**: The political party that control the borough.
- **Headquarters**: Headquarters of the Borough.
- Area (sq mi): Area of the borough in square miles.
- **Population** (2013 est)[1]: The population of the borough recorded during the year 2013.
- **Co-ordinates**: The latitude and longitude of the Boroughs.
- Nr. In map: The number assigned to each borough to represent visually on a map.
- 3) We have a database with data from each of the London neighborhoods, their population, the number of coronavirus cases for the first week of October for each neighborhood; the number of coronavirus cases for the second week of October and its rate of increase per 100,000 inhabitants. This data was obtained from the UK government Web page using the following link: https://www.gov.uk/government/publications/lower-tier-local-authority-watchlist-epidemiological-data-23-october-2020/case-rates-by-region. Figure 4 shows the .CSV file that I will analyse:

4	А	В	C D		E	F	G	Н	I	J
1	Case numbers and rates for p	r vious two weeks	by local authority							
2	England									
3										
4	Local Authority	Total population	Oct to 14 Oct 2020 ct to 07 O	ct 2020 ct to 14	Oct 2020 ct to 07	7 Oct 2020	Rank	recent week	category [for map]	
5	Barking and Dagenham	212906	236	160	110.8	75.2	14	35.6	100-199.9/100k	
5	Barnet	395869	435	424	109.9	107.1	15	2.8	100-199.9/100k	
7	Bexley	248287	183	165	73.7	66.5	31	7.2	50-99.9/100k	
В	Brent	329771	319	299	96.7	90.7	23	6	50-99.9/100k	
9	Bromley	332336	268	222	80.6	66.8	29	13.8	50-99.9/100k	
0	Camden	270029	310	242	114.8	89.6	11	25.2	100-199.9/100k	
1	City of London	9721	3	5	30.9	51.4	33	-20.5	25-49.9/100k	
2	Croydon	386710	295	270	76.3	69.8	30	6.5	50-99.9/100k	
3	Ealing	341806	491	449	143.6	131.4	1	12.2	100-199.9/100k	
4	Enfield	333794	334	269	100.1	80.6	21	19.5	100-199.9/100k	
5	Greenwich	287942	212	206	73.6	71.5	32	2.1	50-99.9/100k	
6	Hackney	281120	357	396	127	140.9	5	-13.9	100-199.9/100k	
7	Hammersmith and Fulham	185143	242	178	130.7	96.1	3	34.6	100-199.9/100k	
8	Haringey	268647	330	271	122.8	100.9	6	21.9	100-199.9/100k	
9	Harrow	251160	294	304	117.1	121	9	-3.9	100-199.9/100k	
0	Havering	259552	298	206	114.8	79.4	12	35.4	100-199.9/100k	
1	Hillingdon	306870	353	303	115	98.7	10	16.3	100-199.9/100k	
2	Hounslow	271523	319	276	117.5	101.6	8	15.9	100-199.9/100k	
3	Islington	242467	261	190	107.6	78.4	16	29.2	100-199.9/100k	
4	Kensington and Chelsea	156129	163	152	104.4	97.4	19	7	100-199.9/100k	
5	Kingston upon Thames	177507	209	178	117.7	100.3	7	17.4	100-199.9/100k	
6	Lambeth	326034	329	299	100.9	91.7	20	9.2	100-199.9/100k	
7	Lewisham	305842	247	228	80.8	74.5	28	6.3	50-99.9/100k	
8	Merton	206548	172	139	83.3	67.3	26	16	50-99.9/100k	
9	Newham	353134	404	329	114.4	93.2	13	21.2	100-199.9/100k	
4	▶ Coronavirus_Case	s_Neighborhood_	North_East North_Wes	t South_East	South_West	East_of_E	ngland	East_M (-) : [4]	

Figure 4. Database with new cases of coronavirus in neighborhoods near the city of London. The name of the Neighborhood, the total population on each Neighborhood, Number of infections in the second week of October, etc. are shown.

4) Additionally we have managed to compile the map of the London neighborhoods excluding MHW. Figure 5 shows the London neighborhood map collected from the UK Government website and drawn with the QGIS program.

Figura 5. Mapa de los vecindarios de Londres y sus alrededores, dibujado con el Programa QGIS.

2.1) Data Cleaning:

The data preparation for each of the three sources of data is done separately. From the United Kingdom Museum data, I selected only the Museums located inside of London and their Boroughs. Figure 6, shows one 'Data Frame' table of 15 Museums located in London.

Drop a row if it contains a Museum outside of London (in this case, "= London")

		_	don = Museum_List[Musedon.head(11)	eum_List	.Locati	ion == 'Lon
Out[9]:		Rank	Museum	Location	Country	Visitor_count
	0	1	British Museum	London		5,906,716
	1	2	Tate Modern	London		5,656,004
	2	3	National Gallery	London		5,229,192
	3	4	Natural History Museum	London		4,434,520
	4	5	Victoria and Albert Museum	London		3,789,748
	5	6	Science Museum	London		3,251,000
	6	7	Royal Museums Greenwich	London		2,607,099
	8	9	Tate Britain	London		1,777,877
	12	13	National Portrait Gallery	London		1,271,920
	14	15	Imperial War Museum	London		992,690
	15	16	Horniman Museum and Gardens	London		942,971

Figure 6. List of most visited Museums in London.

The second data is scraped from a wikipedia page using the **Beautiful Soup** library in python. Using this library we can extract the data in the tabular format as shown in the website. After the web scraping, string manipulation is required to get the names of the boroughs in the correct form (see figure 7). This is important because we will be merging this dataset with the third dataset contains the data of Coronavirus (Covid-19) using the same Borough names.

ut[13]:		Borough	Inner	Status	Local_Authority	Political_Control	Headquarters	Area	Population_2013	Coordinates	NrMap
	0	Barking and Dagenham		Bark	ing and Dagenham London Borough Council	Labour	Town Hall	13.93	194,352	51.5607°N 0.1557°E	25
	1	Barnet			Barnet London Borough Council	Conservative	Barnet House	33.49	369,088	51.6252°N 0.1517°W	31
	2	Bexley			Bexley London Borough Council	Conservative	Civic Offices	23.38	236,687	51.4549°N 0.1505°E	23
	3	Brent			Brent London Borough Council	Labour	Brent Civic Centre	16.70	317,264	51.5588°N 0.2817°W	12
	4	Bromley			Bromley London Borough Council	Conservative	Civic Centre	57.97	317,899	51.4039°N 0.0198°E	20
	5	Camden	Y		Camden London Borough Council	Labour	Camden Town Hall	8.40	229,719	51.5290°N 0.1255°W	11
	6	Croydon			Croydon London Borough Council	Labour	Bernard Weatherill House	33.41	372,752	51.3714°N 0.0977°W	19

Figure 7. List of London Boroughs.

On this dataset the problem is to extract the Latitude and Longitude from the column "Coordinates" because their codification is "lat^oN long^oW or ^oE". It is very important to obtain two columns: one for "Latitude" and another one for "Longitude". A procedure of cleaning data and find only numbers for Latitude and Longitude was made. Figure 8, shows the following Python code:

```
In [14]: new = df_Borough_List["Coordinates"].str.split("N", n =1, expand=True)
           df_Borough_List["Latitude"] = new[0]
df_Borough_List["Longitude"] = new[1]
            # Dropping old Name columns
            # df_Borough_List.drop(columns = ["Coordinates"], inplace=True)
           df_Borough_ListA = df_Borough_List.replace(''',
                                                                         '', regex = True)
           dd_borough_ListA = "ut_borough_List."replace(', ', regex = Irue)
df_Borough_ListA["Latitude"] = df_Borough_ListA["Latitude"].astype(float)
df_Borough_ListA["Indexes"] = df_Borough_ListA["Longitude"].replace('E', '', regex = True)
df_Borough_ListA["Longitude"] = df_Borough_ListA["Longitude"].replace('W', '', regex = True)
df_Borough_ListA["Longitude"] = df_Borough_ListA["Longitude"].astype(float)
           num = df_Borough_ListA["Indexes"]._get_numeric_data()
           Longitude = df_Borough_ListA["Longitude"]._get_numeric_data()
           for i in num:
                j = j + 1

if (i == 7):
                      df_Borough_ListA["Longitude"] = df_Borough_ListA["Longitude"].replace(Longitude[j], -Longitude[j])
           df Borough ListA.drop(columns = ["Inner", "Status", "Local Authority", "Coordinates"], inplace=True)
           df Borough ListA.head(10)
                             Borough Political_Control
                                                               Headquarters Area Population_2013 NrMap Latitude Longitude Indexes
              0 Barking and Dagenham Labour Town Hall 13.93 194,352 25 51.5607 0.1557
               1
                               Barnet
                                          Conservative
                                                                Barnet House 33.49
                                                                                          369,088 31 51.6252
                                                                                                                      -0.1517
                                         Conservative
                                                          Civic Offices 23.38
                                                                                          236,687 23 51.4549
                               Bexley
                                                                                                                      0.1505
                                           Labour Brent Civic Centre 16.70 317,264 12 51.5588
               3
                               Brent
                                                                                                                      -0.2817
                                          Conservative Civic Centre 57.97 317,899 20 51.4039
                                                                                                                      0.0198
                                                           Camden Town Hall 8.40 229,719 11 51.5290
                                                                                                                      -0.1255
                              Camden
```

Figure 8. Cleaning data of the List of London Boroughs. The objective is to obtain the numbers (float64) for Latitude and Longitude of each Borough.

The third source of data is acquired from the UK government. It has the number of new cases of Coronavirus (Covid-19) in each Borough of London area. This dataset has very long names for each column. They try to auto-explained each column, However for our research is better to use shorter names. Figure 9 depicts a list of new Coronavirus cases.

Change the names of the headers with the purpose of processing of this DataFrame.

					•	, - ·				
p: Co	rint("h oronavi	= ["Borough" neaders\n", h .rus_df.colum .rus_df.head(eaders) # ns = head	t Change the						stWeek", "I
:[14]:	heade:	rough', 'Popu		'Case2ndWeek						
	0 Bark	ring and Dagenham	212906	236	160		75.2	200	35.6	100-199.9/100
	1	Barnet	395869	435	424	109.9	107.1	15	2.8	100-199.9/100
	2	Bexley	248287	183	165	73.7	66.5	31	7.2	50-99.9/100
	3	Brent	329771	319	299	96.7	90.7	23	6.0	50-99.9/100
	4	Bromley	332336	268	222	80.6	66.8	29	13.8	50-99.9/100
	5	Camden	270029	310	242	114.8	89.6	11	25.2	100-199.9/100
	6	City of London	9721	3	5	30.9	51.4	33	-20.5	25-49.9/100
	7	Croydon	386710	295	270	76.3	69.8	30	6.5	50-99.9/100
	8	Ealing	341806	491	449	143.6	131.4	1	12.2	100-199.9/100
	9	Enfield	333794	334	269	100.1	80.6	21	19.5	100-199.9/100

Figure 9. Second wave of Coronavirus, from 01 October 2020 until 14 October 2020, for each Borough and computing the rates of the increment of Coronavirus cases.

The third source of data codified by a new headers for each column:

- **Borough**: The names of the 33 London boroughs.
- **Population**: A population for each Borough by 2019.
- Case2ndWeek: A number of new Cases of Coronavirus; Week from 08 October until 14 October 2020.
- Case1stWeek: A number of new Cases of Coronavirus; Week from 01 October until 07 October 2020.
- Rate2ndWeek: Case rate per 100.000 inhabitants. Recent week from 08 October until 14 October 2020.
- Rate1stWeek: Case rate per 100.000 inhabitants. Previous week from 01 October until 07 October 2020...
- Rank: Rank.
- Rate Change: Rate change between previous and recent week.
- Rate_Category: Categorizing of each Borough using for graphics of UK government.

METODOLOGY

As we did with the city of New York and the City of Toronto we will use the Foursquare application to obtain the missing data and solve this Problem. Foursquare will allow me the link between the databases of point (1) List of the names of the names of the most visited museums with the databases (2) and (3). Thus, we can determine the location of the museum on the map, the closest Pub, Coffee Shops, Café, Restaurants, Supermarkets, Clothing store, Fast food, and other stores and to compare them with the increases in cases of Coronavirus.

Many of the economic activities of the year 2019, as is the case of Tourism, have fallen drastically. However, a scientific study has not been done to determine if the lockdown really prevents contagion or on the contrary we are lengthening the problems by causing the economy to end up falling below the global economic recession observed in the 1930s.

I merged these three database in only one dataset, and using the Latitude and Longitude of each Borough, with the purpose to graphics using "folium" the Case rate per 100.000 inhabitants for the second week from 08 October until 14 October 2020, that correspond the beginning of the second wave of Coronavirus. Figure 10 shows the map of London using the dataset of Covid-19, if the circle is bigger the rate of Coronavirus contagium is highest.

Figure 10. Visualization of the number of rate cases per 100.000 inhabitants on each Borough. If the circle is bigger the risk of contagium is highest.

With the objective to find which Borough and Neighborhood has the highest risk of Contagium of Coronavirus, we select all the Borough with Rate of Coronavirus cases per 100.000 inhabitants in the second week of October are more than 117.5. (A list of seven (7) Borough are shown in figure 11).

Westr	Westminster_data = Coronavirus_Merge_df[Coronavirus_Merge_df['Rate2ndWeek'] > 117.5].reset_index(drop=Tr Westminster_data											
:	Borough	Population	Case2ndWeek	Case1stWeek	Rate2ndWeek	Rate1stWeek	Rate_Category	Latitude	Longitude			
0	Ealing	341806	491	449	143.6	131.4	100-199.9/100k	51.5130	-0.3089			
1	Hackney	281120	357	396	127.0	140.9	100-199.9/100k	51.5450	-0.0553			
2	Hammersmith and Fulham	185143	242	178	130.7	96.1	100-199.9/100k	51.4927	-0.2339			
3	Haringey	268647	330	271	122.8	100.9	100-199.9/100k	51.6000	-0.1119			
4	Kingston upon Thames	177507	209	178	117.7	100.3	100-199.9/100k	51.4085	-0.3064			
5	Redbridge	305222	388	377	127.1	123.5	100-199.9/100k	51.5590	0.0741			
6	Richmond upon Thames	198019	282	286	142.4	144.4	100-199.9/100k	51.4479	-0.3260			

Figure 11. List of the Borough with highest risk of Contagium of Coronavirus per 100.000 inhabitants.

RESULTS:

One hot encoding is done on the venues data (One hot encoding is a process by which categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction). The Venues data is then grouped by the Neighborhood and the mean of the venues are calculated, finally the 10 common venues are calculated for each of the neighborhood.

Figure 12. Position of each Borough in Latitude and Longitude for London, United Kingdom.

To help to the people find a similar neighborhood where we found high level of Contagium of Coronavirus, we will be clustering similar neighborhood using K – means clustering which is a form of unsupervised machine learning algorithm that clusters data based on predefined cluster size. We will use a cluster size of 4 for this project that will cluster the 8 neighborhoods into 4 clusters. The reason to conduct a K-means clustering is to cluster neighborhoods with similar venues together so the people can shortlist the area of their interest based on the venues/amenities around neighborhood.

After running the K-means clustering we can access each cluster created to see which neighborhood were assigned to each of the four (4) clusters. Looking the list of figure 13.

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Mos Common Venue	
0	Ealing	Coffee Shop	Clothing Store	Italian Restaurant	Bakery	Park	Pub	Café	Hotel	Burger Joint	Pizz Plac	
1	Hackney	Pub	Coffee Shop	Brewery	Cocktail Bar	Café	Bakery	Grocery Store	Modern European Restaurant	Vegetarian / Vegan Restaurant	Organi Grocer	
2	Hammersmith and Fulham	Pub	Café	Coffee Shop	Indian Restaurant	Italian Restaurant	Gastropub	Clothing Store	Grocery Store	Hotel	Japanes Restaurar	
3	Haringey	Park	Café	Portuguese Restaurant	Supermarket	Grocery Store	Hotel Bar	Indian Restaurant	Italian Restaurant	Mediterranean Restaurant	Fast Foo Restaurar	
4	Kingston upon Thames	Coffee Shop	Café	Clothing Store	Pub	Italian Restaurant	Sushi Restaurant	Burger Joint	Bakery	Department Store	Sandwic Plac	
5	Redbridge	Supermarket	Grocery Store	Fast Food Restaurant	Clothing Store	Turkish Restaurant	Sandwich Place	Bakery	Department Store	Coffee Shop	Sports Ba	
6	Richmond upon Thames	Pub	Coffee Shop	Italian Restaurant	Bus Stop	Grocery Store	Pharmacy	Steakhouse	Indian Restaurant	Sandwich Place	Fis Marke	

Figure 13. List of Most Common Venues in Neighborhood of London.

Rate2ndWeek	Rate1stWeek	Rate_Category	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Co
143.6	131.4	100-199.9/100k	51.5130	-0.3089	2	Coffee Shop	Clothing Store	Italian Restaurant	Bakery	Park	
127.0	140.9	100-199.9/100k	51.5450	-0.0553	2	Pub	Coffee Shop	Brewery	Cocktail Bar	Café	
130.7	96.1	100-199.9/100k	51.4927	-0.2339	1	Pub	Café	Coffee Shop	Indian Restaurant	Italian Restaurant	Gas
122.8	100.9	100-199.9/100k	51.6000	-0.1119	3	Park	Café	Portuguese Restaurant	Supermarket	Grocery Store	Но
117.7	100.3	100-199.9/100k	51.4085	-0.3064	2	Coffee Shop	Café	Clothing Store	Pub	Italian Restaurant	Res
127.1	123.5	100-199.9/100k	51.5590	0.0741	0	Supermarket	Grocery Store	Fast Food Restaurant	Clothing Store	Turkish Restaurant	Sai
142.4	144.4	100-199.9/100k	51.4479	-0.3260	1	Pub	Coffee Shop	Italian Restaurant	Bus Stop	Grocery Store	Pha
<											>

Figure 14. Clustering of the data using the K-means equal 4.

Figure 15. Clustered neighborhoods with highest risk of Contagium of Coronavirus (Covid-19).

Each cluster is color coded for the ease of presentation, we can see that three of Neighborhoods are Blue which corresponds to second cluster. Cluster three corresponding to Haringey is represented in yellow. (Color is similar to background color of this map).

CONCLUSION:

When analyzing the data of the cases of Coronavirus (Covid-19) in each of the London neighborhoods, we can conclude that the hypothesis that Museums constitute a high-risk place for the contagion of Coronavirus is not true; or there are very few data to validate it for various reasons: (a) There is a very low population around the neighborhoods where the Museums are located. (b) Visitors to museums are generally foreign tourists or tourists from distant cities, generally from other countries, while the local population has no interest in attending the museums. (c) On the other hand, due to political measures, these buildings have already been closed and are easier to subject to strict biosecurity controls. Therefore in practice, these institutions do not exist, since they were closed. As the date these conclusions are written, the Museums are closed for the second time due to the medical emergency corresponding to the second wave of the Coronavirus. The government orders the closure of the museums from November 5, 2020 to December 3, 2020.

After a scientific study, we have found that the highest risk of contagion by Coronavirus are the 'Pubs' that are located in the Hackney neighborhoods, where there are a total of 5 'Pubs', in Hammersmith and Fulham A total of 11 'Pubs' were found, as well as in the Richmond upon Thames neighborhood there are a total of 8 'Pubs' according to information obtained through the "Foursquare API". In total there are 24 Pubs in three neighborhoods. The 'Pubs' are closed bars where people go to drink, they meet some strangers, many people smoke making the environment very loaded with nicotine. It is well known that drinking excess liquor, and having a happy life at night lowers the defenses of the immune system, making it easier for the Coronavirus to attack. Some of these 'Pubs' are temporarily closed; some of them works until 18:00 hours. They are expected to full reopen on December 2020.

Another of places that constitute a high risk of contagion of Coronavirus are the Coffee Shop and the cafes, in the Ealing neighborhood: there are a total of 8 coffee shops in Kingston upon Thames: there are a total of 9 Coffee shops in Hammersmith and Fulham: there are 6 coffee in Haringey: there are 2 cafes and in Kingtom upon Thames: 6 cafes in Hackney: there are 4 Coffee shops. That means there are a total of 35 establishments that sell coffee and light meals or sweets, for tourists and for local people (people who live or work near the Center of London).

For the moment we can do:

The World Health Organization WHO has mentioned the following directives. However, I consider that it is very little. Since the WHO is not leading any study with the depth that is required.

- Keep your distance from others. Stay at least six feet away from people outside your household as much as possible.
- Wear a mask outside your home. A mask protects others from your germs, and it
 protects you from infection as well. The more people who wear masks, the more we all
 stay safer.
- Wash your hands often. Anytime you come in contact with a surface outside your home, scrub with soap for at least 20 seconds, rinse and then dry your hands with a clean towel.