

Scheikunde 5 VWO - Hoofdstuk 8 + 9 - Zuren en basen

Scheikunde (Best notes for high school - NL)

8.2 De pH van een oplossing

- Indicatoren: stoffen die in een zure oplossing een andere kleur hebben dan in een oplossing die niet zuur is.
- + Lakmoes: niet erg nauwkeurig omdat de kleuren van blauw naar rood gaan.
- + Universeel indicator: Hiermee kun je pH erg nauwkeurig bepalen.
- + Oplossingen: bv. broommethylblauw, een stof die 'omslaat' bij pH veranderingen. BINAS 52A

8.3 Zuren in water

- Een oplossing van zuren in water bevat ionen, dus ze kunnen stroomgeleiden.
- **Zuuratoom**: oxoniumion = H_3O^+ Een zuur is een stof dat een H^+ -deeltje kan afstaan.
- Sterk zuur: een zuur dat volledig afsplitst in ionen wanneer opgelost in water, het is een aflopende reactie.

Notatie: $HCl(g) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$.

- Zwak zuur: een zuur dat zich opgelost in water gedeeltelijk splitst in ionen, het is een evenwichtsreactie.

Notatie: $HCN(aq) + H_2O(I) \ge H_3O^+(aq) + CN^-(aq)$.

8.4 Formules en namen van zuren

- Organische zuren: zuren met een koolstofskelet, bv. een carbonzuur.
- **Zuurrestion**: het rest ion dat ontstaat wanneer het H₃O⁺ deeltje wordt gevormd.
- **Eenwaardig zuur**: een zuur met één zuurgroep, die dus maar één H⁺ kan afstaan.
- **Twee/drie/meerwaardige zuren**: kunnen meer H⁺ deeltjes afstaan.
- Anorganische zuren: zuren zonder koolstofskelet.
- Instabiel zuur: een meerwaardig zwak zuur dat maar één H⁺-ion afstaat.
- Sommige ionen kunnen als zuur reageren. BINAS 49

Notatie:
$$NH_4CI(s) \ge NH_4^+(aq) + CI^-(aq)$$
,

$$NH_4^+$$
 (aq) + H_2O (I) \rightleftharpoons H_3O^+ (aq) + NH_3 (aq).

8.5 pH-berekeningen aan zure oplossingen

- pH berekenen d.m.v. $pH = -log[H_3O^+]$
 - $pH = -log[H_3O^+]$ of $[H_3O^+] = 10^{-pH}$
- De [H₃O⁺] heeft als **significantie** het aantal cijfers achter de komma van de pH.
- Sterkzuur berekenen: rechtstreeks.
- **Zwak zuur berekenen**: je moet een evenwichtsvoorwaarde opstellen.

	[HF]	[H ₃ O ⁺]	[F ⁻]
t_0	2,5	0	0
omgezet	-X	+x	+x
t_{ev}	2,5 - x	х	х

$$HF (aq) + H_2O (I) \rightleftharpoons H_3O^+ (aq) + F^- (aq)$$

$$H_3O$$

$$\begin{matrix}
\dot{\iota} \\
-\dot{\iota} \\
F^i \\
\dot{\iota} \\
\dot{\iota}
\end{matrix}$$
 $K_z=0$

wordt

- K_z is de zuurconstante, deze is te vinden in BINAS 49.

De oplossing van HF heeft een molariteit van 2,5 M.

 K_z is 6,3 · 10⁻⁴. Je vult de t_{ev} in in de evenwichtsvoorwaarde en krijgt

$$6.3 \cdot 10^{-4} = \frac{x \cdot x}{(2.5 - x)}$$
 Dit geeft $6.3 \cdot 10^{-4} x^2 + x - 2.5 = 0$

Deze oplossen geeft de x-waarde, pH = -log[x].

9.2 Basen in water

- **Base**: een deeltje dat H⁺ kan opnemen, de oplossing ervan bevat OH⁻-ionen.
- Sterke base: reageert aflopend met water.

Notatie:
$$CH_3COO^{-1}(aq) + H_2O(I) \rightleftharpoons CH_3COOH(aq) + OH^{-1}(aq)$$
.

- Zwakke base: reageert in een evenwichtsreactie met water.

Notatie:
$$CaO(aq) + H_2O(I) \rightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$$
.

- **Geconjugeerd zuur-basepaar**: wanneer een <u>zwakke base</u> een H⁺ opneemt, ontstaat een <u>zwak zuur</u> dat een H⁺ kan afstaan, bv. CH₃COO⁻ en CH₃COOH.

9.3 Formules en namen van basen

In BINAS 49 staan de sterkste basen onderaan en de sterkste zuren bovenaan.

- Goed oplosbaar zout met sterk basisch ion: er kan een aflopende reactie verlopen.

Notatie:
$$Na_2O(s) + H_2O(l) \rightarrow 2Na^+(aq) + 2OH^-(aq)$$
.

- Slecht oplosbaar zout met een sterk basisch ion: er kan geen reactie verlopen omdat er weinig ionen zijn.
- Goed oplosbaar zout met een zwak basisch ion: er kan een evenwichtsreactie plaatsvinden.

Notatie: NaF (s)
$$\rightarrow$$
 Na⁺ (aq) + F⁻ (aq),
F⁻ (aq) + H₂O \rightleftharpoons HF (aq) + OH⁻ (aq).

- Slecht oplosbaar zout met een zwak basisch ion: er kan geen reactie plaatsvinden. Er zijn weinig ionen.
- Meerwaardige basen: basen die meerder H⁺-ionen op kan nemen.
 - + Een zwakke meerwaardige base neemt meestal maar één H⁺-ion op.
- Organische basen: aminen en ammoniak (zwakke basen) bevatten een -NH₂-groep die een H⁺ kan opnemen.

Naam	Formul	Naam	Formule
	е		
Hydroxide-ion	OH ⁻	Fosfaat ion	PO ₄ ³⁻
Oxide-ion	O ²⁻	Monowaterstoffosfaation	HPO ₄ ²⁻
Carbonaat ion	CO ₃ ²⁻	Sulfietion	SO ₃ ²⁻
Waterstofcarbonaation	HCO ₃	Cyanide-ion	CN ⁻
Sulfide-ion	S ²⁻	Acetaation	CH₃COO ⁻
Waterstofsulfide-ion	HS ⁻	Ammoniak	NH ₃

Naam	Notatie
Ammonia	NH₃(aq)
Natronloog	Na ⁺ (aq) + OH ⁻ (aq)
Kaliloog	K ⁺ (aq) + OH ⁻ (aq)
Barietwater	Ba ²⁺ (aq) + 2 OH ⁻ (aq)
Kalkwater	Ca ²⁺ (aq) + 2 OH ⁻ (aq)

9.4 pH-berekeningen aan basische oplossingen

- pOH berekenen d.m.v. pOH = -log[OH
$$^{-}$$
] of [OH $^{-}$] = 10^{-pOH} + pH + pOH = 14,00

- Sterke base berekenen: rechtstreeks.
- Zwakke base berekenen: je moet een evenwichtsvoorwaarde opstellen.

$$NO_2^-(aq) + H_2O(I) \stackrel{}{lpha} HNO_2(aq) + OH^-(aq)$$
 wordt $NO_2^{\dot{\iota}}$ \vdots $[HNO_2]\dot{\iota}$ $K_b = \dot{\iota}$

- K_b is de **baseconstante**, deze is te vinden in BINAS 50.
- Deze evenwichtsvoorwaarde is op dezelfde manier op te lossen als die van een zwak zuur.
- Waterevenwicht: een keer doorlezen, 5V boek blz. 43.

9.5 Reacties tussen basen en zuren

- **Zuur-basereacties**: een reactie waarin een zuur een H⁺ afgeeft aan een base.

Stappenplan opstellen zuur-basereactie				
1	Noteer de formules van alle aanwezige deeltjes			
2	Bepaal welke zuur is en welke base			
3	Noteer de sterkste base en het sterkste zuur			
4	Stel de reactievergelijking op van de reagerende deeltjes			