

FOUNDATIONS OF STATISTICAL ANALYSIS & MACHINE LEARNING

Amric Trudel amric.trudel@epita.fr

COURSE PROGRAM

Structure

PREPARATION	Data exploration
	Data preprocessing
REGRESSION	Linear regression with one variable
	Multiple and polynomial regression
CLASSIFICATION	Logistic regression
	Classification model assessment
	k-NN, Decision Tree, SVM
CLUSTERING	k-means, hierarchical clustering
DIMENSIONALITY REDUCTION	Principal Components Analysis
ALL NOTIONS	Final assignment

DIMENSIONALITY REDUCTION

Objectives

- Get intuition on the data set
- Better understand the relationship between X and Y
- Limit to a smaller relevant subspace
- Escape the curse of dimensionality
- Speed up training on large datasets
- Visualize decision regions and boundaries on a 2D plane

DIMENSIONALITY REDUCTION

Methods

- Feature Selection: selection among the existing features
 - Selected features remain interpretable
 - Risk of losing information with deleted features
 - Features are usually not completely uncorrelated
- Feature Extraction: combination of existing features
 - Extracted features are not easily interpretable
 - Insures that the k first extracted features hold the most information.

Principle

Data set with a large number of interrelated variables

New set with a small number of uncorrelated variables (called principal components) retaining as much as possible of the variation of the original data set

Principle

• The data lies in a **space** defined its features

Principle

• Find the axis that maximizes the variance of the dataset

 λ_1 : variance along a_1

Principle

• Find a second axis that is **orthogonal** to the first one and that maximizes the variance of the data set.

 λ_1 : variance along a_1

 λ_2 : variance along a_2

Principle

• The derived axes are called **Principal components**. You can select a subset of the principal compents for your dimensionality reduction.

Principle

 Project the data in the subspace generated by the principal components you selected

Principle

 Project the data in the subspace generated by the principal components you selected

Process

- Compute the **eigenvalues** $(\lambda_i)_{i=1..p}$ and **eigenvectors** $(a_i)_{i=1..p}$ from the **covariance matrix** of the data set $X_{(p)}$: $\Sigma = \sum_{i=1}^p \lambda_i a_i a_i^T$
- Sort the eigenvalues in descending order: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$. These elements are the coefficients of the **principal components**.
- Select the k eigenvectors that correspond to the k largest eigenvalues: $\Sigma \cong \sum_{i=1}^k \lambda_i a_i a_i^T$
- Construct the **transfer matrix** A from the k selected eigenvectors and use it to project the original data set in the k-dimensional subspace: $\hat{X}_{(k)} = AX_{(p)}$

Process

• Choice of k: based on proportion of variation explained by each principal component $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$

Python implementation

Training a PCA:

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 2)
pca.fit(X)
```

• Projecting the data along the principal components:

```
X_pca = pca.transform(X)
```

• Getting the sorted eigenvalues ratio and eigenvectors associated to each principal component:

```
pca.explained_variance_ratio_
pca.components_
```

Implementation

- Data set: iris data set (characteristics of three species of iris)
- Objectives:
 - Apply a PCA
 - Check the eigenvalues
 - Project the data along the two main components

