Department of Creative Informatics Graduate School of Information Science and Technology THE UNIVERSITY OF TOKYO

Master's Thesis

Predicting 3D Bird Flock Motion From 2D Projection

2D プロジェクションによる鳥類の 3D モーションを予測する 方法

Che-An Lin

林哲安

Supervisor: Professor Takeo Igarashi

January 2019

Abstract

Bird flock animation plays an important role in making realistic outdoor scenes in games and movies. However, since making bird flock animation involves a large quantity of moving entities, it takes effort to create and control them. To solve this problem, we introduce a new approach to make this task easier. Our main idea is using a single-view RGB video as input. From the input video, by using animal tracking technique, the two-dimensional position of each bird is retrieved in each frame. We then predict the depth information of each bird by minimizing error function based on trajectory smoothness and flock behavior. With the predicted depth, the three-dimensional bird flock animation is then generated. In this research, we focus on synthesizing three-dimensional flock motion from two-dimensional projection. Generating visually plausible result by the system is our goal.

概要

和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。和文概要の文章である。

和文概要の文章である。

和文概要の文章である。

Contents

Chapter 1	Introduction	1
Chapter 2	Related Work	4
2.1	Animal simulation	4
2.2	Bird flight simulation	4
2.3	Interactive control of simulation	4
2.4	2D-based modeling	5
Chapter 3	Method	6
3.1	Method overview	6
3.2	Bird tracking	8
3.3	Trajectory smoothness	8
3.4	Flock behavior similarity	9
3.5	Frame-by-frame optimization	11
3.6	Modeling flock motion	12
3.7	Interactive user interface	12
Chapter 4	Result	14
Chapter 5	Discussion	16
5.1	Evaluation	16
5.2	Bird tracking	16
5.3	Flock modeling	16
5.4	Sketch input	16
Chapter 6	Conclusion	17
Rafarancas		12

Introduction

The art of flock simulation has received increasing interests in the multi-media and entertainment industry. Bird flock scene is widely used in games and movies to make the scenes more rich or natural. However, since the number of objects involved is large, creating bird flock takes considerable time and efforts.

The work of Raynolds [1, 2] is our starting point about the study of a distributed behavior model. Reynolds proposed boid model, which described the behavior of large groups of birds, herds, and fish with perceptual skills existing in the real world. However, as stated by Reynold, the original boid model can only model flock wandering behavior. Controlling flock remains a necessary task for synthesizing bird flock.

In this paper, we propose an alternative method for modeling bird flock. Our method uses a single RGB bird flock video as input to synthesize flock motion. The goal of our method is not to reproduce the exactly the same flock motion as it in the video. Instead, our method uses video as a reference to synthesize flocks that looks similar and natural to those in the video. We think perfect reconstruction of bird flock is nearly impossible without depth information, as we do not have precise three-dimension motion data as ground truth for evaluating our result.

The biggest challenge of this approach is that RGB video does not contain depth information. This makes flock motion synthesizing a difficult task. Human eyes can easily track moving objects, but tracking moving objects, especially bird flocks, is a challenging task in computer vision. The reason why we use RGB video as input is, obtaining depth information of bird flock with depth camera is difficult in outdoor scene. In work from Ju et al.[3], or recording locomotion of a single bird as training data, they recorded the motion of dove using marker-based optical motion capture and high-speed video cameras for their work. They used 28 cameras to capture a single dove motion in region of $10m \times 10m \times 7m$. Apparently, more space and devices are needed if we do the capture on a bird flock. In fact, we did capture bird flock motion by taking bird video using a 360-degree camera in outdoor scenes, but we failed to get useful video due to bad condition of outdoor environment. And it is also difficult to set up an indoor scene as they did for capturing bird flocks, since the space needed is too large. Thus, we consider predicting depth information of bird flock is helpful for making bird flock motion using real video as reference.

Two-dimensional projection data is the key information to predict three-dimension position. The main contribution of this research is to predict three-dimensional from two-dimensional tracking data retrieved from input video. That is, to predict distance from each bird to the camera in each frame. With predefined camera parameters and projection on screen p_n^f , if we can predict the distance between the bird and the camera, three-dimensional position of the bird p_n^f in frame p_n^f of bird p_n^f can be obtained:

$$b_n^f = Proj(p_n^f, d_n^f) \tag{1.1}$$

To predict d, track data must be obtained from input video first. We use animal tracking technique for this task. This part is done using interactive feature tracking technique proposed by Buchanan et al.[4]. Interactive feature tracking is the process of extracting long and accurate tracks of three-dimensional features observed in two-dimensional video. Although the system is designed to track feature points, such as human face or eyes, it is also suitable for tracking bird flock, which contains multiple small trace targets that can also be treated as feature points.

After the track data is obtained, predicting depth of each bird is the next step. Based on our observations and boid flock models, we define two properties that a should have to retain the quality of flock motion. First, considering one bird flying trajectory, we do not expect a bird in frame f to appear too far from its position in frame f-1from its previous speed. That is, changes in position tend to be gradual. This is the first property: trajectory smoothness. Now we consider a group of birds. Reynolds proposed three steering behavior rules: separation, cohesion and alignment[1]. In case of flock simulation, three rules are considered as three forces applied to each bird in each simulation steps. We also apply these rules in our system as the second property, flock behavior similarity. Based on the two rules, we design an error function that shows the difference between the desired target position. Thus, the task of predicting depth can be restated as on optimization problem: choose depth set of N bird in F frames to minimize the error function. However, optimizing over $N \times F$ depths takes time, making the system far from interactive system. To overcome this issue, we propose a frame-by-frame optimization framework. In our implementation, we just optimize the position of N birds in one frame based on the result on previous frames, then optimize the positions in next frame until all frame are optimized. By this frame-by-frame framework, the computation time is greatly decreased. In our experiment, an 30-fps video with 200 frames and 5 birds can be optimized in less than one second. (TODO: MORE RESULT?) We will further discuss the details of the optimization method in Chapter 3.

Note that our contribution is in predicting three-dimensional flock motion from twodimensional projection, not in tracking bird flocks.

The system presented in this paper can be separated into four stages. The first stage is trace retrieving stage. In this stage, trace data is retrieved by the system with user indications. Trace data contains projected two-dimensional positions in each frame for each bird. The system only allows user to retrieve trace for only one bird at a time, so trace data must be generated and saved for each bird before going to the next stage.

The second stage is optimization stage. In this stage, optimization is performed based on defined energy function to predict flock motion in three-dimensional space. Since the processing can be done in real time, user can adjust parameters to the systems and see the result directly for better results.

The last stage is refinement stage. Since the system only predict the position in last stage, the orientation of each bird is calculated based on its position in each frame to complete the flock motion as output.

We implemented a flock simulation system to synthesize bird videos as input. that fit the requirements of the system. Despite we used generated results as inputs, we assume the two-dimensional projection to the camera is unknown. This assumption makes the system can also be used for real bird video. (TODO: EXPERIMENT AND RESULTS DETAIL)

(TODO: CONTRIBUTION SUMMARY??)

The structure of the paper is as follows: In chapter 2, we discuss related work. In

chapter 3, we present the overall design of our system discussing the requirements needed for predicting flock motion, and give implementation detail of our system. In chapter 4, we present the results generated by our system. In chapter 5, we discuss about future work and limitations of our system. Finally, we summarize this research in chapter 6.

Related Work

2.1 Animal simulation

Computer graphic researchers have been fascinated by creating life-like computer-generated creatures. Several models are proposed for the nature motion of animals. Most of this research focus on humans or terrestrial animals. Social force model proposed by Helbing and Molnar [5] has been widely used in pedestrian behavior simulation. Miller [6] proposed a physically-based simulation method for snakes and worms. Satoi et al. proposed a unified motion planner [7] that models fish motion with different swimming styles. Bayazit et al. [8, 9] studied four kinds of group behaviors, including homing, exploring, passing through narrow areas, and shepherding with global information in the form of a roadmap. Most of these simulation uses rule-based algorithm based on local or global behaviors.

2.2 Bird flight simulation

Simulation of bird flight has also gained attention for creating life-like creatures. The work of Wu and Popović [10] describe a physics-based method for synthesis of bird flight animations by given user-specified three-dimensional path. Ju et al. [3] proposed a data-driven approach for controlling flapping flight. These works focus on simulating bird behavior. However, they simulate single bird locomotion based on its structure and aerodynamics, which does not consider the interaction between birds in a flock. In our research, rather than the realism of bird locomotion, we focus on synthesizing life-like flock motion based on trajectory smoothness and flock behavior. For simulating on group behavior, Anderson et al [?], used an iteractive sampling method to generate user-constrained group animation by specifying path in three-dimensional space. Xu et al [11] proposed a shape-constrained flock system for interactively controlling flock navigation. Their systems aim to produce plausible animation that satisfy user-specified constraint while retaining the realistic properties of the underlying behavior model. Nevertheless, synthesizing realistic behavior of bird is our common goal.

2.3 Interactive control of simulation

Crowd simulation is the most commonly used interactive simulation system in games and movies to make crowded scenes. Crowdbrush, proposed by Ulicny et al. [12] is a tool for interactive authoring of real-time crowd scenes. As a pioneer of controlling simulated crowds, it provides interface for controlling crowds with brush tools. But the control operations are still limited to small group of individuals by specifying the property or rule, which still needs lots of work for controlling large crowds. Golaem[13] and Massive[14]

are mature commercial crowd simulation software widely used to build crowded scenes in movies and video games. Both software tools allow user to manage and control crowds based on path planning and steering behaviors. However, modeling aerial motion is more challenging than humans or terrestrial animals, since birds do not only stay on the ground as they do. Golaem also includes tool for controlling flocks, but it has much less function than tools for crowd simulation, only providing target-based control and collision avoidance.

2.4 2D-based modeling

In computer graphics, Image-based modeling is a method which relies on a set of two-dimension images of a scene to generate a three-dimensional model. Iwasaki et al. [15] proposed a modeling method of clouds from a single photograph. Okabe et al. [16] models volumetric fluid such as smoke or fire, from sparse multi-view images. For most works about 3D reconstruction like [17], systems are based on shapes from silhouette in multiple views. Generating three-dimensional curves through sketching is also a rich research domain. Pentland and Kuo [18] presented an approach for reconstructing three-dimension object from two-dimensional sketch. In work of Ijiri et al [19], they presented a system for modeling flowers which synthesizes three-dimensional botanical structure by constant curvature with two-dimensional sketch.

Method

Fig. 3.1. Method overview

3.1 Method overview

Figure 3.1 shows an overview of our method. As mentioned in Chapter 1, our method synthesizes three-dimensional bird flock motion from input video by predicting depths for each bird in each frame. First, trace data of each bird in the video is retrieved from input video. With the interactive feature tracking technique, track data, which contains two-dimensional projection position trajectory of each bird, can be retrieved with the help of user's indications. Next, depth for each bird in every frame is predicted in optimization step. The goal of predicting depth is to maintain the quality of flight trajectory. Here, we consider an image sequence of length F frames as input, with N birds in each frame. Track data contains two-dimensional projection of each bird in the input video. The set of track data is denoted $P = \left\{p_n^f\right\}_{n=1...N,f=1...F}$, where $p_n^f = (x_n^f, y_n^f)$, representing two-dimensional projection on screen, as shown in Figure 3.2. We want to predict depth d_n^f of bird n in frame f, while maintain the two properties above. The quality of a flight with a candidate depth set $X = \left\{d_n^f\right\}_{n=1...N,f=1...F}$ can be defined as:

Fig. 3.2. View scenario in frame f.

$$E(X) = \sum_{n=1}^{N} \sum_{f=1}^{F} e(n, f)$$
(3.1)

$$e(n,f) = \lambda_t t(p_n^f, p_n^{f-1}, d_n^f) + \lambda_f f(p_n^f, p_n^{f-1}, d_n^f)$$
 (3.2)

e(n, f) denotes error function for bird n in frame f, which includes a trajectory smoothness term t(.), and a flock behavior term f(.). λ_s and λ_t are tuning parameters respecting to trajectory smoothness and flock behavior. Thus, the predicting problem can be restated as an optimization problem: choose X to minimize E(X). After the optimal X is found, with the predefined camera parameter and optimal depth d, we can get world position of the bird from its screen position.

In most simulation system, velocity of an object is calculated upon mass and force in simulation steps. However, since our optimization method is over frames, we use position-based dynamics system [20], in which velocity in frame f is denoted as

$$\vec{v(f)} = b(f) - b(f-1)$$
 (3.3)

where v(f) denotes velocity, and b(f) denotes bird position in world space. This makes our optimization system simpler and faster: we can calculate velocity of each bird in current frame and do not need to keep track of it. Although position-based dynamics system is not physically accurate, since our goal is to make visually plausible flock motion, we use it in our system. For s and t in equation 3.2, we use the simple Euclidean distance function on the two positions. We have also experimented with an acceleration term, of the form $s(p_n^f, p_n^{f-1}, p_n^{f-2})$, but it increases the computation cost, and do not produce better result. Details of each term will be discussed in the following sections.

3.2 Bird tracking

To obtain trajectory of each bird in the input video, tracking technique is used in our method. We use tracking system ZooTracer[21], developed by Microsoft research, to do the task. ZooTracer is based on interactive feature tracking technique, proposed by Buchanan and Fitzgibbon [4]. With the tracking system, after preprocessing is done, the user can make tracking data interactively from input video in real time. The system predicts the trajectory of single bird in the video based on user's initial indication. If the tracking is wrong in some frames, user can provide keyframe features by few clicks and improve the track. The main challenge of using interactive feature tracking on tracking birds is distinguishing between tracked birds. The system records fixed-size image patches for tracking feature points, such as eye on a face. However, in case of tracking bird flock, all birds look similar in small patches. It leads to many errors found in the result, making wrong tracking data. Therefore, more manual manipulations need to be done to get an optimal track. On average, user can complete the track data of one bird in a 200-frame video in less than 1 second.

3.3 Trajectory smoothness

Fig. 3.3. Trajectory smooth. Figure on the left shows the scenario of sudden turn, while the trajectory on the right is considered better trajectory, since the speed difference is smaller.

Trajectory smoothness is the first term in our error function in equation 3.1, denoted as t(.). In this term, only the flying trajectory of one bird is considered. We assume that birds minimize its velocity change during flight. The importance of retaining trajectory smoothness is especially obvious when bird is on turning point of the track. In our experiment, we found that if trajectory smooth is not considered, birds will show a sudden turn motion, which is unnatural. Figure 3.3 shows the scenario of sudden turn. Trajectory

smoothness term is then denoted as:

$$t(p_n^f, p_n^{f-1}, d_n^f) = v_n^f = b_n^f - b_n^{f-1}$$
(3.4)

as error function to be minimized in optimization stage to retain trajectory smoothness.

3.4 Flock behavior similarity

We use Reynolds' boid model as basic flock behaviors. Each bird in flock, which is called boid, observes three steering rules: separation, cohesion, and alignment. The definitions of these steering rules rely on the neighbors of the boid. The neighbors of one boid include its surrounding neighbors who are sufficiently close, and each rule has its perceptual neighborhood. Figure 3.4 illustrates the definition of three rules. To calculate flock similarity, target position of boid n in frame f must be calculated first, and then compared with the predicted boid position. Target position is the sum of the three rules above. Here we further the calculation of three steering rules.

Fig. 3.4. Three boid rules. (left) separation behavior, (middle) Cohesion behavior, (right) alignment behavior.

Separation steering behavior gives a boid the ability to maintain a certain separation distance from others nearby and to prevent boids from crowding together. We think that separation rule is the most important rule for creating nature flock motion, since collision with other birds is obviously unnatural. To compute separation force, first a search is made to find other boids within the specified neighborhoods. For each nearby boid, the force is computed by subtracting the positions of the boid and the nearby boids, normalizing, and then applying a 1/r weighting, making force of nearer nearby boid stronger. All forces for each nearby boid are summed together to produce the overall separation force.

Cohesion steering behavior give a boid the ability to approach and form a group with other nearby characters. That is, boids steer towards the average position of the nearby boids. This behavior helps flock to form a group and not be too separated. The neighborhood of cohesion is set much bigger than neighborhood of separation does to keep the flock form in group while preventing collision.

Alignment steering behavior gives a boid the ability to align itself, heading in the same direction with other nearby boids. However, since in the optimization stage, we only consider optimizing position of each boid, we do not use alignment rule here. Instead, we refine the alignment after optimization is done.

```
// Calculate separation force \vec{s} of bird n
\vec{s} \leftarrow \vec{0}:
neighbor \leftarrow 0;
for i \leftarrow 1 to N do
     if i=n then continue;
     distance \leftarrow ||b_n - b_i||;
    if distance \leq d_{sep} then
         neighbor \leftarrow neighbor + 1 ;
\vec{s} \leftarrow \vec{s} + (b_n - b_i)/distance ;
     \quad \mathbf{end} \quad
\mathbf{end}
\vec{s} \leftarrow \vec{s}/neighbor \ ;
                         Algorithm 1: Calculation of separation vector \vec{s}
// Calculate cohesion force \vec{c} of bird n
\vec{c} \leftarrow \vec{0};
for i \leftarrow 1 to N do
    if i=n then continue;
    \vec{c} \leftarrow \vec{c} + (b_i - b_n);
end
\vec{c} \leftarrow \vec{s}/(n-1);
```

Algorithm 2: Calculation of cohesion vector \vec{c}

Combining rules above, now we can calculate flock behavior similarity term f(.) in equation 3.2 by calculating Euclidean distance between the target position and predicted position. Algorithms of calculating separation and cohesion are shown in Algorithm 1 and 2. In calculating separation vector \vec{s} , a neighborhood distance d_{sep} is set to decide the minimum distance to keep in flock motion between each birds. Tuning this parameter, which can be done by user in optimization stage, is considered as an interactive element in our system. In boid algorithm, a neighborhood of cohesion is also set. However, since we assume all birds in input video belong to one flock that are aware of each other, we just consider every birds in the flock for calculating cohesion force. This can also reduce number of parameters while keeping other parameters more focused.

In most flock simulation approaches, collision is detected in advance by adjusting its direction and speed when other agents are about to collide. In our flock model, since we have separation rule that separate, birds tend to move away to each other when they are too close. Therefore, we do not handle collision avoidance.

```
Data: Trace set X = \{d_n^f\}
// Algorithm start
Scatter bird positions in frame 1;
// Frame-by-frame optimization
for i \leftarrow 2 to F do
     sum \leftarrow 0;
     for j \leftarrow 1 to N do
         \vec{v} \leftarrow b^i_j - b^{i-1}_j \; ;
          if i = 2 then
              // Initial speed
              sum \leftarrow sum + ||||\vec{v}|| - v_{target}||;
          end
          else
               // Trajectory smoothness
              v_{last} \leftarrow b_{j}^{i-1} - b_{j}^{i-2};

sum \leftarrow sum + \lambda_{t} ||||\vec{v}|| - ||v_{last}||||;
               // Flock behavior similarity
               Calculate separation force \vec{s};
               Calculate cohesion force \vec{c};
              target \leftarrow b_j^{i-1} + (w_{sep}\vec{s} + (1 - w_{sep})\vec{c}) ;
sum \leftarrow sum + \lambda_f ||b_j^i - target|| ;
     end
     Minimize sum;
end
```

Algorithm 3: Optimization algorithm.

3.5 Frame-by-frame optimization

The task in our optimization stage is to minimize error function equation 3.1 with target depth set X. Totally, since we have track data of N birds in F frames, there are $N \times F$ target depths. If the optimization is done globally, the computation time will be costly. Since our goal is to make system that user can adjust the result interactively in real time, we consider doing the optimization frame-by-frame. Frame-by-frame optimizations means we do not optimize Equation 3.1 directly, instead, we predict N depths in frame f from the first frame to next frame, based on the results from last frames. That is, to optimize Equation 3.2 for n=1...N This approach greatly decreases computation time, making it possible for user to do the optimization and see the result interactively while adjusting parameters.

To prevent optimization result make bird flock fly too far or too near to the camera, as inequality constraints in optimization algorithm, a near and a far constraint of depth are set as:

$$d_{near} < d < d_{far} \tag{3.5}$$

However, since constraints d_{near} and d_{far} does not affect the result much. It only avoid flock fly too near or too far to the camera, which seldom happens. Therefore, we do not

consider these two parameters as interactive elements for user. Since target error function can be calculated in each frame, with the inequality constraint 3.5, after optimization is done in every frame, optimized X can be found as result.

Algorithm 3 shows our optimization algorithm. As mentioned above, our frame-by-frame optimization optimizes each frame based on the result from last frames. However, we do not have any previous frame for the first frame. Therefore, we have to decide the initial positions of N birds in the first frame. This part can also be discussed in many aspects. However, we decide to make this part simple: just scatter it in the range within d_{near} and d_{far} randomly, with at least a distance between them.

After the positions of birds in the first frame are decided, next is the second frame. Since the distance of bird positions between frame 1 and frame 2 greatly affects optimization in later frames, the position in frame 2 is important. Here, we use a user-defined speed factor v_{target} as a reference to decide the positions in frame 2. We simply spawn birds in frame 2 in position that approximate the defined distance v_{target} to the position in frame 1.

The reason why we do not dig in the part of deciding initial positions is that it is less important than how trajectory shows in flock motion, since our goal is not to reproduce the original flock motion. That is, how initial positions are decided does not affect the evaluation of the result. Thus, we focus on the transition of bird flock rather than initial position.

After the positions in frame 1 and 2 are decided, now we can apply the rule of trajectory smoothness and flock behavior similarity based on positions in previous frames The first term, trajectory smoothness, is calculated as velocity difference between this frame and last frame. The second term, flock behavior similarity, is calculated as sum of separation force \vec{s} and cohesion force \vec{c} , which are shown in 1 and 2. We balance these two force using parameter w_{sep} , which is considered as an interactive element in our system. As mentioned in section 3.4, separation force prevents birds from colliding, while cohesion force keeps flock stay together. Final force is decided as $(w_{sep}\vec{s}+(1-w_{sep})\vec{c})$. By tuning this from 0 to 1, the user can decide the flock in result to scatter or gather. After two terms are decided, we also balance the two terms are by two parameters: λ_t and λ_f , balancing the trajectory smoothness and flock simulation similarity. After the sum of two terms are calculated, it is optimized by changing d_n^f . After the optimal depth d_n^f is solved by the optimization algorithm, the system moves to next frame until all frames are done.

We implement the optimization part using NLopt library [22] with optimization algorithm constrained optimization by linear approximation (COBYLA)[23].

3.6 Modeling flock motion

After we get the optimized depth data, next step is to visualize the optimized flock motion. We implement it with Unity[24]. And optimization system is loaded as plugin to make it can be used in an interactive way. After the position of each bird in every frame is predicted, to make good flock motion, refinement must be done. Since the system only finds optimal position of each bird, orientation needs to be assigned to complete flock motion. Here we just simply decide orientation of each bird frame-by-frame based on its current position and position in last frame. (TODO:MODELING DETAIL)

3.7 Interactive user interface

By now, we have introduced 5 parameters for optimization stage: v_{target} for target speed of each bird, λ_t for weight of trajectory smoothness, λ_f for weight of flock behavior similarity,

Fig. 3.5. User interface of our system in optimization stage.

 w_{sep} for weight of separation rule, and d_{sep} for neighborhood distance for separation rule. In our system, these parameters are treated as interactive elements of our system. Since the optimization can be done in seconds, user can see the result and adjust parameter can do the optimization again to get better results. Figure 3.5 illustrates our user interface. (TODO: UI DESCRIPTION)

Result

Fig. 4.1. A view of our flock simulation system.

Due to difficulties of obtaining real bird video, we implemented a bird flock simulation system and capture the flock motion as input video to test our system. The simulation system is based on boid model, which assumes a flock is simply the result of the interaction between the behaviors of individual birds. With these behaviors, the system can produce fine flock motion with numbers of birds. However, boid model can only model flock wandering behavior. That is, after assigning initial parameters, all birds become uncontrollable during the simulation, and the simulation always produces same results. To keep the diversity of the generated simulation result, we further include the homing behavior introduced by Xu et al. [11, 8]. With this behavior, we can generate different flock motions efficiently. After the simulation result is generated, we capture videos from it in various angles. Figure 4.1 shows a view of our flock simulation system. The videos are then used as inputs to our system.

We have tested several video inputs generated from flock simulation system. In figure ??, the generated flock motion contains 5 birds with 200-frames.

(TODO: MORE RESULT)

 $\label{eq:Fig. 4.2.} Fig. \ 4.2. \ Result 1: (top) input \ video. \ \ (middle) generated \ result \ from \ side \ view. \ \ (bottom) generated \ result \ from \ top \ view.$

Discussion

5.1 Evaluation

In this paper, we aim to synthesize visually plausible flock motion from video by However, as mentioned in Chapter 1, due to difficulties of obtaining data from real flocks, we do not have ground truth to numerically evaluate our method.

5.2 Bird tracking

Another limitation in our system is that we assume all birds stay in the view field of camera. Although it is possible to generate this kind of video from flock simulation system, it is difficult to have such video from real bird flock video. It is common that birds leave and enter the view field, which is not considered in our system. In addition, our system assumes that camera is placed in a fixed position, while it is common that bird videos are taken with moving cameras.

5.3 Flock modeling

Modeling flocks can be further studied to make better flock motion. In this research we only consider trajectory smoothness and flock behavior. However, we do not consider environmental effect such as wind or obstacles. In addition, bird locomotion is also not considered while it is a critical part for creating natural flock motion. Although the system allows user to change parameters to modify result, the ability of modification is still quite limited.

5.4 Sketch input

The system can be further developed to receive human-drawn sketch as input. Since human sketch is similar to two-dimension track data obtained from video.

(TODO: USER INTERFACE DETAIL)

Conclusion

In this research, we proposed a novel approach for creating bird flock motion from video based on two-dimensional projections. The proposed system aims to help user to create and model bird flock motion by presenting a bird video as a reference. The system also provides interactive user interface to adjust the generated result in real time by tuning parameters. The benefits of our approach are twofold: providing a new way to create bird flocks by using video input as reference; and the ability to predict three-dimensional flock motion from two-dimensional projection. We tested our system on creating flocks from video, after manual tracking is done, user can adjust parameters and see the result interactively to make better flock motion according to user's wish. We hope that this research can improve the efficiency of creating rich scenes with flocks in game or movie industry and make it easy for repetitive parameter tuning tasks.

References

- [1] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. *ACM SIGGRAPH Computer Graphics*, 21(4):25–34, 1987.
- [2] Craig W. Reynolds. Steering behaviors for autonomous characters. *Proceedings of Game Developers Conference*, pages 763–782, 1999.
- [3] Eunjung Ju, Jungdam Won, Jehee Lee, Byungkuk Choi, Junyong Noh, and Min Gyu Choi. Data-driven control of flapping flight. *ACM Transactions on Graphics*, 32(5), 2013.
- [4] A. Fitzgibbon A. Buchanan. Interactive feature tracking using k-d trees and dynamic programming. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 34(93), 2006.
- [5] Peter Molnar Dirk Helbing. Social force model for pedestrian dynamics. *Physical review. E*, 51:4282–4286, 1995.
- [6] Gavin S. P. Miller. The motion dynamics of snakes and worms. *ACM SIGGRAPH Computer Graphics*, 22(4):169–173, 1988.
- [7] Daiki Satoi, Mikihiro Hagiwara, Akira Uemoto, Hisanao Nakadai, and Junichi Hoshino. Unified motion planner for fishes with various swimming styles. *ACM Transactions on Graphics*, 35(80):169–173, 2016.
- [8] Amato NM Bayazit OB, Lien JM. Roadmap-based flocking for complex environments. 10th Pacific Conference on Computer Graphics and Applications, pages 104–115, 2002.
- [9] Amato NM Bayazit OB, Lien JM. Swarming behavior using probabilistic roadmap techniques. Lecture Notes in ComputerScience, 3342:112–125, 2005.
- [10] Zoran Popović Jia-chi Wu. Realistic modeling of bird flight animations. ACM Transactions on Graphics, 22(3), 2003.
- [11] Jiayi Xu, Xiaogang Jin, Yizhou Yu, Tian Shen, and Mingdong Zhou. Shape constrained flock animation. Computer Animation and Virtual Worlds, 19:319–330, 2008.
- [12] Daniel Thalmann Branislav Ulicny, Pablo de Heras Ciechomski. Crowdbrush: interactive authoring of real-time crowd scenes. SIGGRAPH '05 ACM SIGGRAPH 2005 Courses, (3), 2004.
- [13] Golaem. http://golaem.com/.
- [14] Massive. http://www.massivesoftware.com/.
- [15] Makoto Okabe Kei Iwasaki, Yoshinori Dobashi. Example-based synthesis of threedimensional clouds from photographs. CGI '17 Proceedings of the Computer Graphics International Conference, (28), 2017.
- [16] Makoto Okabe, Yoshinori Dobashi, Ken Anjyo, and Rikio Onai. Fluid volume modeling from sparse multi-view images by appearance transfer. *ACM Transactions on Graphics*, 34(93), 2015.
- [17] Andrew Zisserman Andrew W. Fitzgibbon, Geoff Cross. Automatic 3d model construction for turn-table sequences. Lecture Notes in Computer Science, 1506:155–170, 1998.
- [18] Jeff Kuo Alexander P. Pentland. Three-dimensional line interpretation via local pro-

- cessing. Electronic Imaging, 1249, 1990.
- [19] Takashi Ijiriand Shigeru Owada, Makoto Okabe, and Takeo Igarashi. Floral diagrams and inflorescences: interactive flower modeling using botanical structural constraints. *ACM Transactions on Graphics (TOG)*, 24(3):720–726, 2005.
- [20] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics. *Journal of Visual Communication and Image Representation*, 18(2):109–118, 2007.
- [21] Zootracer. https://www.microsoft.com/en-us/research/project/zootracer/.
- [22] Nlopt. https://nlopt.readthedocs.io/.
- [23] M. J. D. Powell. A direct search optimization method that models the objective and constraint functions by linear interpolation. Advances in Optimization and Numerical Analysis, 275:51–67, 1994.
- [24] Unity. https://unity3d.com/.