

Let's have a closer look at our time series

- Nearby points tend to have similar values
- ...Meaning they are correlated

Determine the Period

How can we study such correlation?

A useful tool: <u>autocorrelation</u> plots

- Consider a range of possible lags
- lacksquare For each lag value l:
 - lacksquare Make a copy of the series and shift it by $m{l}$ time steps
 - Compute the <u>Pearson Correlation Coefficient</u> with the original series
- Plot the correlation coefficients over the lag values

Then we look at the resulting plot:

- Where the curve is far from zero, there is a significant correlation
- Where it gets close to zero, no significant correlation exists

Let's have a look at our plot

■ The correlation is strong up to 4-5 lags

These correlations are a source of information

- They could be exploited to improve our estimated probabilities
- ...But our models so far make no use of them

How can we take advantage of them?

These correlations are a source of information

- They could be exploited to improve our estimated probabilities
- ...But our models so far make no use of them

How can we take advantage of them?

For example, rather then feeding our model with individual observations

We can use sequences of observations as input

- This is a very common approach in time series
- ...And in many cases it's a good idea

Sliding Window

A common approach consist in using a sliding window

- \blacksquare We choose a window length w, i.e. the length of each sub-sequence
- We place the "window" at the beginning of the series
- ...We extract the corresponding observations
- Then, we move the forward by a certain stride and we repeat

Sliding Window

The result is a table

Let m be the number of examples and w be the window length

	S_0	\mathbf{S}_{1}	• • •	S_{W-1}
t_{w-1}	x_0	x_1	• • •	x_{w-1}
$t_{\rm w}$	x_1	x_2	• • •	x_w
t_{w+1}	x_2	x_3	• • •	x_{w+1}
•	•	•	•	•
t_{m-1}	x_{m-w}	x_{m-w+1}	•	x_{m-1}

- The first window includes observations from x_0 to x_{w-1}
- lacksquare The second from x_1 to x_w and so on
- \blacksquare t_i is the time window index (where it was applied)
- lacksquare s_j is the position of an observation within a window

pandas provides a sliding window iterator

```
DataFrame.rolling(window, ...)
```

```
In [4]: wlen = 10
        for i, w in enumerate(data['value'].rolling(wlen)):
           print(w)
            if i == 2: break # We print the first three windows
        timestamp
        2014-07-01
                     10844
        Name: value, dtype: int64
        timestamp
        2014-07-01 00:00:00
                               10844
        2014-07-01 00:30:00
                               8127
        Name: value, dtype: int64
        timestamp
        2014-07-01 00:00:00
                               10844
        2014-07-01 00:30:00
                                8127
        2014-07-01 01:00:00
                                 6210
        Name: value, dtype: int64
```

Notice how the first windows are not full (shorter than wlen)

We can build our dataset using the rolling iterator

- We discard the first wlen-1 (incomplete) applications
- Then we store each window in a list, and we wrap everything in a DataFrame

```
In [5]: %%time
  rows = []
  for i, w in enumerate(data['value'].rolling(wlen)):
      if i >= wlen-1: rows.append(w.values)

wdata_index = data.index[wlen-1:]
  wdata = pd.DataFrame(index=wdata_index, columns=range(wlen), data=rows)

CPU times: user 449 ms, sys: 5.18 ms, total: 455 ms
  Wall time: 454 ms
```

- The values field allows access to the series content as a numpy array
- We use it to discard the index
- ...Since the series for multiple iterations have inconsistent indexes

This method works, but it's a bit slow

- We are building our table by rows...
- ...But it is usually faster to do it by columns!
- After all, there are usually fewer columns than rows

Let us look again at our table:

	$\mathbf{S_0}$	\mathbf{s}_1	• • •	s_{w-1}
t_{w-1}	x_0	x_1	• • •	x_{w-1}
$t_{\rm w}$	x_1	x_2	• • •	x_w
t_{w+1}	x_2	x_3	• • •	x_{w+1}
•	•	•	•	•
t_{m-1}	x_{m-w}	x_{m-w+1}	•	x_{m-1}

We can build the columns by slicing the original DataFrame

```
In [6]: m = len(data)
        c0 = data.iloc[0:m-wlen+1] # first column
        c1 = data.iloc[1:m-wlen+1+1] # second column
       print(c0.iloc[0:3])
       print(c1.iloc[0:3])
                             value
        timestamp
        2014-07-01 00:00:00 10844
        2014-07-01 00:30:00
                             8127
        2014-07-01 01:00:00
                            6210
                             value
        timestamp
        2014-07-01 00:30:00
                              8127
        2014-07-01 01:00:00
                              6210
        2014-07-01 01:30:00
                              4656
```

■ iloc in pandas allows to address a DataFrame by position

Now we collect all columns in a list and we stack them

2014-07-0105:00:00 8127 3820 2873 2369 2064 2221 2158 2515 6210 4656 **2014-07-0105:30:00** 6210 4656 3820 2873 2369 2064 2221 2158 2515 4364 **2014-07-0106:00:00** 4656 3820 2873 2369 2064 2221 2158 2515 4364 6526 **2014-07-0106:30:00** 3820 2873 2369 2064 2221 2158 2515 4364 6526 11039

We can wrap this approach in a function:

```
def sliding_window_1D(data, wlen):
    m = len(data)
    lc = [data.iloc[i:m-wlen+i+1] for i in range(0, wlen)]
    wdata = np.hstack(lc)
    wdata = pd.DataFrame(index=data.index[wlen-1:], data=wdata, columns=range(wlen))
    return wdata
```

```
In [8]: %%time
   wdata = nab.sliding_window_1D(data, wlen=wlen)

CPU times: user 1.71 ms, sys: 0 ns, total: 1.71 ms
   Wall time: 1.25 ms
```

- This is available in the (updated)) nab module
- The function works for univariate data (but the approach is general)