Rutgers University: Algebra Written Qualifying Exam August 2015: Problem 4 Solution

Exercise. Let G be a group of order $2015 = 5 \cdot 13 \cdot 31$.

(a) Prove the existence of normal subgroups G of orders 13, 31, and 155. Hint: establish the existence of those subgroups in that order.

Solution.

Using the Sylow theorems:

 $n_{13} \equiv 1 \mod 13$

and

 $n_{13} \mid 155$

 \Longrightarrow

 $n_{13} = 1$

 \implies There is one Sylow 13-subgroup, which has order 13, and it is normal in G.

 $n_{31} \equiv 1 \mod 31$

and

 $n_{31} \mid 65$

 \Longrightarrow

 $n_{31} = 1$

 \implies There is one Sylow 31-subgroup, which has order 31, and it is normal in G. Let's call this subgroup H_{31}

 H_{31} is a cyclic subgroup of order 31 that contains all 30 elements of 31. Let's H_5 denote a Sylow 5-subgroup.

Since 155 is composite, we cannot use typical strategies...

Idea:

- (1) Identify a homomorphism from H_5 to the automorphisms of H_{31}
- (2) Show normalizer of H_5 in G contains both H_5 and H_{31}
- (3) Get $H_5 \triangleleft G$
- (4) Then H_5H31 is a normal subgroup of order 155.
- (1) Define homomorphism $f: H_5 \to A(H_{31})$ that sends element $x \in H_5$ to the automorphism xtx^{-1} of H_31 , $(t \in H_{31})$
- (2) If $\phi: G \to H$ and $\gcd(|G|, |H|) = 1$, then ϕ is the trivial homomorphism.

Since the target has order 31 and the source has order 5 and gcd(5,31) = 1,

f is the trivial homomorphism and so $txt^{-1} = x$ and H_{31} normalizes H_5 . So the normalizer of H_5 in G contains both H_5 and H_{31} .

- \implies it has at least 155 elements and index of at most 13 by Lagrange.
- (3) But, since n_p is the index of the Sylow p-subgroup, its index is $n_5 = 1$ or $31 \implies n_5 = 1 \implies H_5 \triangleleft G$
- (4) $\implies K = H_5H_{31}$ is a subgroup with order 155 since $H_5 \cap H_{31} = \{e\}$ Since H_5 and H_{31} are both normal, $\forall g \in G$

$$gKg^{-1} = gH_5H_{31}g^{-1} = gH_5g^{-1}gH_{31}g^{-1} = H_5H_{31=K}$$

 $\implies K \lhd G$

(b) Show that G is isomorphic to the direct product of a group of order 13 with a group of order 155.

Solution.

 H_{13} and K from part (a) are normal subgroups and

$$H_{13} \cap K = \{e\}$$

because the order of the elements divides the order of the subgroup.

$$\implies H_{13}K = G$$
, since $H_{13}K \subset G$ and $|H_{13}K| = \frac{|H_{13}| \cdot |K|}{1} = 13 \cdot 155 = |G|$
It G is a group and H, K are subgroups, and if $G = HK$ then $G \approx H \times K$

 $\Longrightarrow G \approx H_{13} \times K$

Thus, G is isomorphic to the direct product of a group of order 13 and a group of order 155.