Intervals of Increase and Decrease

For each problem, find the x-coordinates of all critical points, find all discontinuities, and find the open intervals where the function is increasing and decreasing.

1)
$$y = -x^3 + 2x^2 + 2$$

2)
$$y = x^3 - 11x^2 + 39x - 47$$

3)
$$y = -x^4 + 3x^2 - 3$$

4)
$$y = \frac{x^2}{4x + 4}$$

$$5) \ \ y = \frac{3x^2 - 3}{x^3}$$

6)
$$y = (2x - 8)^{\frac{2}{3}}$$

7)
$$y = -\frac{1}{5}(x-4)^{\frac{5}{3}} - 2(x-4)^{\frac{2}{3}} - 1$$

Critical thinking question:

8) If functions f and g are increasing on an interval, show that f + g is increasing on the same interval.

9) Give an example where functions f and g are increasing on the interval $(-\infty,\infty)$, but where f-g is decreasing.

Intervals of Increase and Decrease

For each problem, find the x-coordinates of all critical points, find all discontinuities, and find the open intervals where the function is increasing and decreasing.

1)
$$y = -x^3 + 2x^2 + 2$$

Critical points at: $x = 0, \frac{4}{3}$ No discontinuities exist.

Increasing: $\left(0, \frac{4}{3}\right)$ Decreasing: $\left(-\infty, 0\right), \left(\frac{4}{3}, \infty\right)$

2)
$$y = x^3 - 11x^2 + 39x - 47$$

Critical points at: x = 3, $\frac{13}{3}$ No discontinuities exist.

Increasing: $(-\infty, 3), \left(\frac{13}{3}, \infty\right)$ Decreasing: $\left(3, \frac{13}{3}\right)$

3)
$$y = -x^4 + 3x^2 - 3$$

Critical points at: $x = -\frac{\sqrt{6}}{2}$, 0, $\frac{\sqrt{6}}{2}$ No discontinuities exist.

Increasing: $\left(-\infty, -\frac{\sqrt{6}}{2}\right), \left(0, \frac{\sqrt{6}}{2}\right)$ Decreasing: $\left(-\frac{\sqrt{6}}{2}, 0\right), \left(\frac{\sqrt{6}}{2}, \infty\right)$

4)
$$y = \frac{x^2}{4x + 4}$$

Critical points at: x = -2, 0 Discontinuity at: x = -1 Increasing: $(-\infty, -2)$, $(0, \infty)$ Decreasing: (-2, -1), (-1, 0)

$$5) \ \ y = \frac{3x^2 - 3}{x^3}$$

Critical points at:
$$x = -\sqrt{3}$$
, $\sqrt{3}$ Discontinuity at: $x = 0$ Increasing: $(-\sqrt{3}, 0)$, $(0, \sqrt{3})$ Decreasing: $(-\infty, -\sqrt{3})$, $(\sqrt{3}, \infty)$

6)
$$y = (2x - 8)^{\frac{2}{3}}$$

Critical point at:
$$x = 4$$
 No discontinuities exist.
Increasing: $(4, \infty)$ Decreasing: $(-\infty, 4)$

7)
$$y = -\frac{1}{5}(x-4)^{\frac{5}{3}} - 2(x-4)^{\frac{2}{3}} - 1$$

Critical points at: x = 0, 4 No discontinuities exist. Increasing: (0, 4) Decreasing: $(-\infty, 0)$, $(4, \infty)$

Critical thinking question:

8) If functions f and g are increasing on an interval, show that f + g is increasing on the same interval.

We know that if
$$x_1 < x_2$$
, then $f(x_1) < f(x_2)$ and $g(x_1) < g(x_2)$. Therefore, $f(x_1) + g(x_1) < f(x_2) + g(x_2)$.

9) Give an example where functions f and g are increasing on the interval $(-\infty,\infty)$, but where f-g is decreasing.

Many answers. Ex: f = x and g = 2x