

Departament de Física, Enginyeria de Sistemes i Teoria del Senyal Departamento de Física, Ingeniería de Sistemas y Teoria de la Señal

REDES DE COMPUTADORES EXAMEN DE CONTENIDOS TEÓRICOS

Convocatoria de Junio de 2016

Apellidos:		Nota:
Nombre:	D.N.I.:	
Grupo de Teoría:		

GRADO EN INGENIERÍA INFORMÁTICA

NORMAS PARA REALIZAR EL EXAMEN DE TEORÍA:

- Duración del examen: 1 hora 55 minutos.
- La nota de este examen se corresponde con el 100% de la nota de la parte de contenidos teóricos. En la nota del examen tiene un peso del 80% la nota del test y un peso del 20 % la nota del problema.
- La realización de este examen implica la condición de PRESENTADO a la convocatoria de Junio de 2016.
- La solución escogida para cada pregunta del test se debe especificar con BOLÍGRAFO en la tabla de soluciones. Se evaluará sólo lo contestado en esta tabla.
- En la tabla se debe especificar una sola respuesta por pregunta con letra mayúscula (A, B, C o D) de forma clara; de lo contrario será considerada como respuesta en blanco.
- Cada respuesta incorrecta penaliza 1/4 de respuesta correcta.
- La nota del test se obtiene de la fórmula: Nota = (RC RI/4)*10/35, donde RC son el número de respuestas correctas y RI el número de respuestas incorrectas.
- Las preguntas no contestadas no penalizan.

TABLA DE SOLUCIONES

Pregunta	Solución	Pregunta	Solución	Pregunta	Solución	Pregunta	Solución
1		11		21		31	
2		12		22		32	
3		13		23		33	
4		14		24		34	
5		15		25		35	
6		16		26			
7		17		27			
8		18		28			
9		19		29			
10		20		30			

1. El empleo de la tecnología de difusión para las redes LAN se caracteriza por,

- a) *La necesidad de definir un mecanismo de compartición del medio físico.
- b) La necesidad de definir un mecanismo de encaminamiento para la conectividad entre todos los computadores de la red.
- c) La transmisión de múltiples paquetes para enviar la misma información a todos los computadores de la red.
- d) La tolerancia a fallos que presenta al permitir varios caminos físicos a un determinado computador.

2. Si en una red de conmutación de paquetes basada en circuitos virtuales, un nodo deja de funcionar es cierto que,

- a) Todos los paquetes que alcancen ese nodo serán encaminados a un nodo alternativo sin intervenir los extremos de la comunicación.
- b) Todos los paquetes que hayan pasado por ese nodo han de ser reenviados.
- c) Todos los computadores de la red quedan incomunicados.
- d) *Los computadores que emplean ese nodo para intercambiar paquetes han de determinar una nueva ruta para sus destinos.

3. El empleo del mecanismo de difusión en una red LAN permite,

- a) Identificar grupos de máquinas en la red con una única dirección física (dirección MAC).
- b) Identificar grupos de máquinas en la red con diferentes direcciones físicas (direcciones MAC).
- c) *Identificar a todas las máquinas de la red con una única dirección física (dirección MAC).
- d) Identificar a todas las máquinas de la red con diferentes direcciones físicas (direcciones MAC).

4. La comunicación vertical en una arquitectura de red se caracteriza porque,

- a) Se establece entre las capas pares de nivel físico.
- b) Se establece entre la capa n y la capa par n-1 de la arquitectura.
- c) Se establece entre la capa n y la capa par n+1 de la arquitectura.
- d) *Se establece entre las capas n y n-1 de la arquitectura.

5. Si un protocolo de la capa n de una arquitectura de red envía una PDU que no llega a la capa par correspondiente, es cierto que,

- a) La capa par de nivel n en el otro extremo de la comunicación informa del error.
- b) *La capa n del emisor reenvía la PDU del nivel n perdida.
- c) La capa par de nivel n+1en el otro extremo de la comunicación informa del error.
- d) La capa n+1 del emisor reenvía la PDU del nivel n perdida.

6. Si un protocolo definido en la capa n de una arquitectura de red permite la fragmentación, es cierto que:

- a) Sólo el primer paquete de una fragmentación incorpora la cabecera del protocolo de nivel n.
- b) Sólo el primer paquete de una fragmentación incorpora la cabecera del protocolo de nivel n-1.
- c) Todos los paquetes de una fragmentación incorporan la cabecera del protocolo de nivel n-1.
- d) *Todos los paquetes de una fragmentación incorporan la cabecera del protocolo de nivel n.

7. La capa de transporte en la arquitectura TCP/IP se caracteriza por,

- a) Emplear en la comunicación un protocolo de control del flujo denominado UDP.
- b) *Aumentar el aprovechamiento del medio físico empleando el control del flujo del protocolo TCP.
- c) Gestionar una comunicación fiable estableciendo circuitos virtuales extremo a extremo con el protocolo TCP.
- d) Proporcionar siempre a la capa de aplicación una comunicación no segura, debido al funcionamiento de conmutación con datagramas en Internet.

8. En el intercambio de paquetes DNS entre dos computadores A y B que se encuentran en la misma red IP, la cabecera UDP de esos paquetes se interpreta:

- a) En la puerta de enlace por defecto configurada en el computador que inicia la conexión UDP
- b) En la puerta de enlace por defecto configurada en el computador que recibe la conexión UDP
- c) *En los computadores que intercambian los paquetes.
- d) En todos los routers existentes en la red IP.

9. El intercambio de información entre dos computadores que emplean arquitecturas de red diferentes, es posible si:

- a) Existe un router entre ambos computadores.
- b) Existe un puente entre ambos computadores.
- c) Existe un repetidor entre ambos computadores.
- d) *Existe una pasarela entre ambos computadores.

10. Los valores de amplitud de las componentes frecuenciales de una señal de información periódica, dependen de:

- a) La velocidad de transmisión empleada.
- b) *El contenido de la información transmitida.
- c) El ancho de banda del medio físico empleada.
- d) Ningún factor, todas las señales tienen los mismos valores de amplitud en sus componentes frecuenciales.

- 11. Determina la velocidad máxima de transmisión para una señal de pulsos con 4 niveles de tensión en un medio físico half-duplex con ancho de banda de 1000 Hz.
 - a) 1000 bps.
 - b) 2000 bps.
 - c) *4000 bps.
 - d) 8000 bps.
- 12. Indica cuál de las siguientes señalizaciones de banda base presenta menos problemas de sincronización y menos efecto del ruido:
 - a) Codificación binaria UNIPOLAR CON Retorno a Cero.
 - b) Codificación binaria BIPOLAR SIN Retorno a Cero.
 - c) Codificación binaria UNIPOLAR SIN Retorno a Cero.
 - d) *Codificación Manchester.
- 13. Se desea realizar la transmisión en un medio físico de una señal analógica modulada con PCM. La señal analógica tiene un ancho de banda de 2000 Hz y se emplea una modulación PCM con 512 niveles de tensión. El medio físico precisa de una velocidad de transmisión de:
 - a) 1024 Kbps.
 - b) 2048 Kbps.
 - c) 18 Kbps.
 - d) *36 Kbps.
- 14. Indica el tipo de modulación que ocupa más ancho de banda para la señal modulada:
 - a) Modulación ASK.
 - b) Modulación PSK.
 - c) Modulación OAM.
 - d) *Modulación FSK.
- 15. Indica el tipo de modulación con el que es posible obtener mayores velocidades de transmisión:
 - a) Modulación ASK con dos niveles de amplitud.
 - b) Modulación QPSK.
 - c) *Modulación QAM.
 - d) Modulación PSK de fase coherente a 0° y 180°.
- 16. Indica en qué tipo de cable UTP el ruido de impulso tiene mayor efecto:
 - a) Cable UTP categoría 3.
 - b) Cable UTP categoría 4.
 - c) Cable UTP categoría 5.
 - d) *El ruido de impulso afecta igual a todos los tipos de cable UTP.

17. El empleo de la fibra óptica como medio de comunicación tiene el inconveniente de:

- a) Permitir establecer un solo canal de datos en una fibra óptica.
- b) *Reducir la velocidad de transmisión máxima al aumentar la longitud de la fibra.
- c) Reducir la velocidad de transmisión máxima al aumentar la potencia del haz de luz.
- d) Ser muy sensible al ruido de impulso provocado por aparatos eléctricos.

18. La detección de errores empleando la técnica de códigos de redundancia cíclica (CRC) se caracteriza por,

- a) Permitir detectar errores cuando se producen en un número par de bits.
- b) *Permitir detectar errores cuando se producen en 2 bits.
- c) Permitir detectar errores en ráfaga de longitud mayor que el grado del polinomio generador.
- d) Permitir corregir errores en ráfaga de longitud menor que el grado del polinomio generador.

19. Sea un protocolo de ventana deslizante con ventana de emisor 5 y ventana de recepción 6. Si el emisor envía 3 paquetes con secuencia 1, 2 y 3, y la primera secuencia en la ventana del receptor es 1, es cierto que:

- a) El receptor no puede confirmar ninguno de los paquetes enviados por el emisor.
- b) *El emisor no puede enviar el paquete con secuencia 6 hasta recibir el ACK del paquete con secuencia 1.
- c) El emisor no puede enviar el paquete con secuencia 6 hasta recibir el ACK del paquete con secuencia 2.
- d) El receptor puede confirmar como mucho hasta el paquete con secuencia 6 cuando ha recibido los paquetes con secuencias 1 y 2.

20. Indica qué protocolo MAC de las normas IEEE 802.X no es soportado por el protocolo IEEE 802.2 (LLC):

- a) MAC IEEE 802.5.
- b) MAC IEEE 802.11x.
- c) MAC IEEE 802.1Q.
- d) *Todas las normas MAC del IEEE son soportadas por el protocolo IEEE 802.2.

21. Indica el servicio del protocolo IEEE 802.2 que emplea el protocolo IP (arquitectura TCP/IP):

- a) *Servicio no orientado a conexión y sin confirmación (tipo 1).
- b) Servicio orientado a conexión (tipo 2).
- c) Servicio no orientado a conexión con confirmación (tipo 3).
- d) Puede emplear cualquiera de los 3 tipos de servicios del IEEE 802.2.

22. ¿ Qué afirmación es cierta sobre el funcionamiento del protocolo CSMA/CD?

- a) *Es válido para dispositivos que funcionan en modo semiduplex.
- b) Los conmutadores Ethernet no permiten este modo de funcionamiento.
- c) La conexión de dos concentradores Ethernet reduce a la mitad el dominio de colisión.
- d) El reenvío de un paquete que ha sufrido una colisión se produce de manera indefinida hasta su éxito.

23. Sobre el funcionamiento del algoritmo Spanning Tree en puentes transparentes, es cierto que:

- a) Tiene como objetivo establecer bucles en una estructura de puentes interconectados.
- b) Reduce el número de saltos entre diferentes segmentos Ethernet a 16.
- c) *Permite inhabilitar puertos de los puentes para el proceso de reenvío y aprendizaje.
- d) Establece puentes raíces y puentes designados.

24. El aumento de 10 Mbps a 100 Mbps en la velocidad de transmisión en una red Ethernet precisa,

- a) Aumentar el tamaño de paquete mínimo de Ethernet a 512 bytes.
- b) *Cambiar el cable UTP categoría 3 por cable UTP categoría 5.
- c) Emplear modulación QAM en vez de codificación Manchester.
- d) Modificar el formato de la cabecera de los paquetes Ethernet.

25. Indica en qué normativa Ethernet es posible emplear como medio físico tanto cable UTP como fibra óptica:

- a) Ethernet 10BaseT.
- b) Ethernet 100BaseFX.
- c) *Ethernet 1000BaseX.
- d) 10Gigabit Ethernet.

26. Sobre el formato de paquete de la norma IEEE 802.1Q, es cierto que:

- a) Tiene un tamaño máximo de paquete igual que en la norma IEEE 802.3.
- b) Tiene un tamaño máximo de datos menor que en la norma IEEE 802.3.
- c) *Emplea el campo Tipo de la cabecera para distinguir entre paquetes con formato IEEE 802.3 y con formato IEEE 802.1Q.
- d) Emplea direcciones MAC origen y destino de 64 bytes de tamaño.

27. Una red inalámbrica Ad-Hoc se caracteriza por:

- a) Permitir una cobertura en distancia mayor que una red de infraestructura.
- b) Evitar la existencia de colisiones de paquetes entre estaciones de la red.
- c) Emplear el mecanismo RTS/CTS para que todas las estaciones tengan cobertura solapada.
- d) *Emplear las mismas normativas de transmisión (IEEE 802.11x) que en las redes de infraestructura.

28. Indica qué mecanismo de AUTENTICACIÓN de redes Wi-Fi es más seguro (más difícil de determinar la clave de autenticación):

- a) WEP.
- b) *PEAP.
- c) LEAP.
- d) TKIP.

29. Sobre el funcionamiento de un punto de acceso (AP) de una red inalámbrica es cierto que,

- a) El punto de acceso transmite regularmente paquetes Beacon-Frame para evitar el problema de la estación oculta.
- b) *Dos computadores asociados a un AP intercambian datos a través del AP que actúa como dispositivo intermedio.
- c) Dos APs con un mismo SSID tienen que emplear siempre el mismo canal Wi-Fi.
- d) Una estación asociada a un AP tiene cobertura con todas las estaciones asociadas al AP.

30. Sobre las funcionalidades de un router en la arquitectura TCP/IP es FALSO que,

- a) Gestiona el encaminamiento de paquetes en la red.
- b) Permite establecer cortafuegos (firewall) entre redes IP.
- c) Gestiona los flujos de información, estableciendo mecanismos de reparto del ancho de banda.
- d) *Libera conexiones TCP en caso de que el router se encuentre congestionado.

31. Indica cuál de las siguientes direcciones IPv4 NO es válida para asignarla a un dispositivo conectado al troncal (backbone) de Internet:

- a) 5.17.33.4
- b) 122.45.67.34
- c) *192.168.0.1
- d) 200.10.10.1

32. Indica con qué mensaje un router conoce si una conexión TCP del protocolo BGP está ACTIVA:

- a) BGP Open.
- b) BGP Update.
- c) BGP Notification.
- d) *BGP Keepalive.

33. Indica qué campo de la cabecera IPv4 NO existe en la cabecera IPv6:

- a) IP origen.
- b) IP destino.
- c) TTL.
- d) *HL.

34. Si un paquete IP es enviado a la dirección 224.0.0.10 es cierto que,

- a) El paquete es recibido por todos los equipos de Internet asociados a esa dirección.
- b) La dirección IP de destino se cambia por 224.0.0.0 para que llegue a todos los equipos de la red.
- c) *Si el nivel de enlace es Ethernet, se empleará como MAC destino una dirección MAC de multidifusión.
- d) El paquete es procesado por todos los routers de la red que emplean el protocolo RIPv2.

- 35. ¿ Con qué mecanismo el protocolo TCP aumenta el tamaño de la ventana de emisión en una conexión TCP que ha sufrido congestión ?
 - a) *Algoritmo de inicio lento.
 - b) Algoritmo de Nagle.
 - c) Algoritmo de Karn.
 - d) Algoritmo de prevención de la congestión.

PROBLEMA

Se desea diseñar un sistema de comunicaciones full-dúplex (transmisión y recepción simultánea) para un enlace punto a punto entre dos estaciones A y B. El medio físico empleado es cable eléctrico UTP categoría 5 y la distancia de comunicación 100 m. La señalización de datos se realiza con una codificación binaria unipolar de 4 niveles de tensión. El ancho de banda del cable eléctrico es de 100 Mhz.

a) Si se emplea multiplexión en FRECUENCIA para dos canales (un canal de transmisión y otro de recepción) simétricos, determina la velocidad máxima empleada en el canal de transmisión. (2 puntos).

$$Vt(max) = 2 * B * log_2 N$$

 $Vt(max) = 2 * B = 2 * 50 Mhz * log_2(4) = 200 Mbps.$

b) Si se emplea multiplexión en el TIEMPO para dos canales (un canal de transmisión y otro de recepción) simétricos, determina la velocidad máxima empleada en el canal de recepción. (2 puntos).

$$Vt(max) = 2 * B * log_2 N$$

 $Vt(max) = 2 * B = 2 * 100 Mhz * log2(4) = 400 Mbps.$

c) Si se emplea multiplexión en FRECUENCIA para dos canales (un canal de transmisión y otro de recepción) simétricos y la relación señal-ruido en el cable es de 10 dB, determina la velocidad máxima que podrá emplearse en el canal de recepción. (2 puntos).

$$Vt(Nyquist) = 2 * B * log_2 N = 2 * 50 MHz * log_2 4 = 200 Mbps$$

$$S/N = 10 ^(10/10) = 10$$

$$Vt(Shannon) = B * log_2 (1 + S/N) = 50 MHz * log_2 (11) = 50 MHz * 3,4594 = 172,97 Mbps$$

Dado que el límite de Nyquist es mayor que el de Shanon, la Vtmax = 172,97 Mbps

d) Si se emplea multiplexión en el TIEMPO para dos canales (un canal de transmisión y otro de recepción) simétricos y la relación señal-ruido en el cable es de 30 dB, determina la velocidad máxima que podrá emplearse en el canal de recepción. (2 puntos).

$$Vt(Nyquist) = 2 * B * log_2 N = 2 * 100 MHz * log_2 4 = 400 Mbps \\ S/N = 10 ^(30/10) = 1000 \\ Vt(Shannon) = B * log_2 (1 + S/N) = 100 MHz * log_2 (1001) = 100 MHz * 9,967 = 996,7 Mbps \\ Dado que el límite de Nyquist es menor que el de Shanon, la Vtmax = 400 Mbps$$

- e) Se desea transmitir por el cable UTP una señal de datos periódica con periodo de 1 ms. Si el medio físico tiene un ancho de banda de 100 MHz con frecuencia de inicio en 150 KHz. Determina:
 - 1. Número de componentes frecuenciales de la señal que pasan por el medio. (1 punto).

$$f0 = 1/T = 1/0.001 = 1$$
 KHz. $f1 = 1$ KHz, $f2 = 2$ KHz, $f3 = 3$ KHz, etc.

Las componentes que pasan son desde f150 (150 KHz) hasta f100.150 (100.150 KHz).

En total 100.001 componentes frecuenciales.

2. ¿ Se transmitirá adecuadamente la señal ? Justifica la respuesta. (1 punto).

La señal NO se transmite adecuadamente, pues no se transmiten las primeras componentes frecuenciales de la señal.