

UNIVERSITA DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia "Galileo Galilei" Corso di Laurea in Fisica

Tesi di Laurea

La formazione delle caustiche nella struttura su grande scala dell'Universo

Relatore: Sabino Matarrese

Laureando: Alessandro Bianchetti

Anno Accademico 2019/2020

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Indice

Introduzione

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Capitolo 1

Il problema di ricostruzione

1.1 Equazioni della fluidodinamica

Una delle ipotesi vertice della seguente trattazione è quella che il plasma primordiale fosse altamente omogeneo. Tale teoria è avallata dallo spettro della CMB (Cosmic Microwave Background), che risulta riprodurre la stessa isotropia, eccezion fatta per deboli fluttuazioni termiche che caratterizzavano lo stesso plasma primordiale.

Figura 1.1: Immagine dello spettro della CMB attraverso le misurazioni della sonda spaziale WMAP

Ci muoviamo innanzitutto dal modello cosmologico Einstein-De Sitter, che pone la curvatura dell'universo e la costante cosmologica Λ pari a 0 e prevede uno spazio composto sostanzialmente di materia oscura fredda (CDM). In tale cornice definiamo una mappa Lagrangiana $\mathbb{M}: \boldsymbol{q} \mapsto \boldsymbol{x}(\boldsymbol{q}, \tau)$ che connette la posizione iniziale alla posizione corrente x al tempo di scala $\tau \propto t^{\frac{2}{3}}$. Inoltre le coordinate x sono coordinate comoventi legate alle coordinate fisiche r dalla relazione $\mathbf{x} = \mathbf{r}/a$, dove a rappresenta il fattore cosm ico di scala, che corrisponde a τ in un universo EdS. Definiamo infine le velocità $\boldsymbol{v} = a\dot{\boldsymbol{x}}$ e $\boldsymbol{w} = \dot{\boldsymbol{r}} = H\boldsymbol{r} + v$

Per approcciare la dinamica di particelle non collidenti ("polvere"), definiamo una funzione $f(\boldsymbol{x}, \boldsymbol{p}, t)$ che corrisponde alla densità degli stati nello spazio delle fasi. E' possibile quindi utilizzare il Teorema di Liouville, che afferma che la densità sopra citata si conserva nell'evoluzione di un sistema conservativo: in effetti l'ipotesi di assenza di collisioni ci permette di soddisfare ai requisiti del teorema, e quindi possiamo porre a zero la derivata totale della funzione densità, ricavando l'equazione di Vlasov.

$$\frac{\partial f}{\partial t} + \dot{\boldsymbol{x}} \nabla_{\boldsymbol{x}} f + \dot{\boldsymbol{p}} \nabla_{\boldsymbol{p}} f = 0 \tag{1.1}$$

L'equazione di Vlasov è molto difficile da risolvere analiticamente: adottiamo quindi un approccio teorico semplificato, cioè la descizione Newtoniana di fluido: in particolare sposiamo l'ipotesi di entropia costante e di assenza di termini di pressione dal momento che trattiamo la CDM come una polvere autogravitante e non collidente.

Il set di equazioni adatto all'approccio fluidodinamico è dato da

$$\left. \frac{\partial \rho}{\partial t} \right|_{r} + \nabla_{r}(\rho \mathbf{w}) = 0 \tag{1.2}$$

$$\left. \frac{\partial \boldsymbol{w}}{\partial t} \right|_{\boldsymbol{r}} + (\boldsymbol{w} \cdot \nabla_{\boldsymbol{r}}) \boldsymbol{w} = -\nabla_{\boldsymbol{r}} \Phi \tag{1.3}$$

$$\nabla_{\mathbf{r}}^2 \Phi = 4\pi G \rho \tag{1.4}$$

dove la $\ref{eq:continuità}$ è l'equazione di continuità che costituisce la conservazione della massa, la $\ref{eq:continuità}$ è l'equazione di Eulero e viene dalla conservazione del momento, mentre la $\ref{eq:continuità}$ rappresenta l'equazione di Poisson relativa al potenziale gravitazionale Φ .

Poniamo inoltre $\rho = \rho_b + \delta \rho$, dove ρ_b è la densità media di background e $\delta \rho$ costituisce una deviazione da tale valore medio. $\Phi = \Phi_b + \phi'$ invece è la somma di un potenziale di background e un potenziale peculiare ϕ' . Grazie a queste due apposizioni possiamo separare l'equazione di Poisson, ottenendo un equazione nella sola coordinata comovente x. Possiamo riscrivere anche ?? e ?? nelle coordinate x, usando la relazione

$$\frac{\partial}{\partial t}\bigg|_{x} = \frac{\partial}{\partial t}\bigg|_{r} + H(r \cdot \nabla_{r}) \tag{1.5}$$

Si ricava dunque

$$\frac{\partial \rho}{\partial t} + 3H\rho + \frac{1}{2}\nabla_{\boldsymbol{x}}(\rho \boldsymbol{v}) = 0 \tag{1.6}$$

$$\frac{\partial \mathbf{v}}{\partial t} + H\mathbf{v} + \frac{1}{a}(\mathbf{v} \cdot \nabla_{\mathbf{x}})\mathbf{v} = -\frac{1}{a}\nabla_{\mathbf{x}}\phi = 0$$
 (1.7)

$$\nabla_x^2 \phi' = 4\pi G \delta \rho \tag{1.8}$$

Le equazioni della fluidodinamica rappresentano in effetti uno sviluppo dell'equazione di Vlasov fino al primo ordine. Per spiegare questo passaggio, osserviamo che la densità di massa e la velocità sono associate rispettivamente al momento di aspettazione di ordine zero e di primo ordine della densità nello spazio delle fasi $f(\boldsymbol{x}, \boldsymbol{p}, t)$.

$$\rho(\boldsymbol{x},t) = \frac{m}{a^3} \int d^3p f(\boldsymbol{x},\boldsymbol{p},t)$$
 (1.9)

$$\mathbf{v}(\mathbf{x},t) = \frac{m}{a^3} \frac{\int d^3p \mathbf{p} f(\mathbf{x}, \mathbf{p}, t)}{\int d^3p f(\mathbf{x}, \mathbf{p}, t)}$$
(1.10)

Integrando ora l'equazione di Vlasov sul dominio del momento p, si trova che l'ultimo termine dell'integrando rappresenta un'integrale di volume della forza $\partial f/\partial p$, che tramite il Teorema di Gauss si può riscrivere come un integrale su una superficie all'infinito, dove la forza si annulla. Utilizzando poi le definizioni ?? e ?? si ricava

$$\frac{\partial}{\partial t}(a^3\rho) + \frac{1}{a^2}\nabla_x \int d^3p \mathbf{p}f = 0 \tag{1.11}$$

maneggiando opportunamente quest'ultima e utilizzando le definzioni fornite in ?? e ?? si arriva esattamente all'equazione di continuità ??.

Se invece si moltiplica l'equazione di Vlasov per p per poi integrare di nuovo su tale variabile, conviene lavorare sul termine i-esimo e operare un'integrazione per parti sempre sull'ultimo addendo dell' integrando.

$$\frac{\partial}{\partial t} \int d^3p p^i f + \frac{1}{ma^2} \partial^i \int d^3p p_j p_j f + a^3 \rho \partial^i \phi = 0 \tag{1.12}$$

Manipolando questa espressione e utilizzando l'equazione di continuità, si arriva proprio all'equazione di Eulero ??.

Le equazioni della fluidodinamica rappresentano dunque i primi termini dello sviluppo dell'equazione di Vlasov, e perciò costituiscono una via più facilmente percorribile, offrendo la possibilità di giungere a delle soluzioni analitiche altrimenti proibitive.

1.2 Approssimazione di Zel'dovich

A questo punto tuttavia conviene operare un ulteriore cambio di variabili sul set di equazioni ottenute ??, ?? e ??. Per farlo si definisce meglio il fattore di scala per mezzo di un'ampiezza a_* e un tempo caratteristico t_* , in modo che $a(t) = (t/t_*)^{2/3}$. Ricordando inoltre $\rho = \rho_b + \delta \rho$ e $\mathbf{v} = a\dot{\mathbf{x}}$, facciamo le seguenti sostituzioni

$$\rho \mapsto \eta = \frac{\rho}{\rho_b} = 1 + \delta \tag{1.13}$$

$$\mathbf{v} \mapsto \mathbf{u} = \frac{d\mathbf{x}}{da} = \frac{d\mathbf{x}}{dt} \frac{dt}{da} = \frac{\mathbf{v}}{a\dot{a}}$$
 (1.14)

$$\phi' \mapsto \phi = \frac{3t_*^2}{2a_*^3}\phi' \tag{1.15}$$

Grazie alla mappatura $(\rho, \boldsymbol{v}, \phi') \mapsto (\eta, \boldsymbol{u}, \phi)$, le equazioni del fluido assumono la nuova forma

$$\frac{D\boldsymbol{u}}{Da} + \frac{3}{2a}\boldsymbol{u} = -\frac{3}{2a}\nabla\phi \tag{1.16}$$

$$\frac{D\eta}{Da} + \eta \nabla \cdot \boldsymbol{u} = 0 \tag{1.17}$$

$$\nabla^2 \phi = \frac{\delta}{a} \tag{1.18}$$

dove la derivata D/Da si dice derivata convettiva. Ora usiamo il fatto che in un universo EdS linearizzato, la soluzione growing mode è data complessivamente da $\delta \propto t^{\frac{2}{3}}$, $\boldsymbol{v} \propto t^{\frac{1}{3}}$ e $\phi = const$. Con questi andamenti, è evidente che la nuova coordinata di velocità $\boldsymbol{u} = \boldsymbol{v}/(a\dot{a}) \approx const$, dal momento che sia \boldsymbol{v} che $a\dot{a} \propto t^{2/3} * t^{-1/3}$ hanno lo stesso andamento $t^{1/3}$.

Ma allora il termine Du/Da nell'equazione di Eulero si può considerare nullo

$$\frac{Du}{Da} = 0 \tag{1.19}$$

ottenendo così

$$\boldsymbol{u} = -\nabla \phi \tag{1.20}$$

che è la soluzione linearizzata, valida per piccole deviazioni dalla densità di background, ovvero per $\delta < 1$. L'approssimazione di Zel'dovich sta nel considerare tale risultato legittimo anche oltre il regime di linearità, ossia assumere la validità di $\ref{thm:equation}$ ovunque. Si può inoltre osservare che in queste condizioni l'equazione di Poisson gravitazionale risulta disaccoppiata dalle altre due ed è utile per applicare le condizioni iniziali. La $\ref{thm:equation}$ descrive un moto rettilineo uniforme, in cui la particella è soggetta solamente alla propria inerzia senza perturbazioni gravitazionali esterne. Quindi se la posizione iniziale è descritta dalla coordinata lagrangiana \ref{q} , allora per ogni posizione euleriana \ref{q} del moto varrà che

$$\boldsymbol{u}(\boldsymbol{x},a) = \boldsymbol{u}_0(\boldsymbol{q}) \tag{1.21}$$

Le traiettorie delle particelle, rettilinee e a velocità costante u, sono descritte da

$$\boldsymbol{x}(\boldsymbol{q}, \boldsymbol{a}) = \boldsymbol{q} + au_0(\boldsymbol{q}) \tag{1.22}$$

Ma usando ?? si ricaverà

$$\boldsymbol{x}(\boldsymbol{q}, \boldsymbol{a}) = \boldsymbol{q} - a\nabla\phi_0 \tag{1.23}$$

Alla fine di questi passaggi si è in grado di identificare la mappa M che collega le coordinate lagrangiane iniziali con quelle finali euleriane.

A questo punto saremmo in grado di risolvere l'equazione di continuità semplicemente come un'equazione a variabili separabili, trovando quindi la forma di η . Tuttavia la via più semplice risulta invece dall'impostare la conservazione della massa dei singoli elementi fluidi.

$$\eta(\boldsymbol{x}, a)d^3x = \eta_0(\boldsymbol{q})d^3q \tag{1.24}$$

da cui

$$\eta(\boldsymbol{x}(\boldsymbol{q}, a), a) = (1 + \delta_0(\boldsymbol{q})) \det \left(\frac{\partial q}{\partial x}\right)$$
(1.25)

Ma supponendo che nella configurazione iniizale la perturbazione di energia sia nulla $\delta_0 = 0$ e contemporaneamente utilizzando le proprietà del determinante, si potrà scrivere anche

$$\eta(\boldsymbol{x}(\boldsymbol{q},a),a) = \left[\det\left(\frac{\partial x}{\partial q}\right)\right]^{-1}$$
(1.26)

E' possibile scrivere la matrice $\partial x/\partial q$ in componenti, sapendo che $x_i = q_i - a \frac{\partial \phi_0}{\partial q^i}$, e derivando ulteriormente

$$\frac{\partial x^i}{\partial q^j} = \delta^i_j - a \frac{\partial^2 \phi_0}{\partial q_i \partial q^j} = \delta^i_j - a D^i_j(q)$$
 (1.27)

dove si è definito il tensore di deformazione D_j^i . Nel sistema di riferimento opportuno tale tensore ha forma diagonale, con i tre autovalori $\lambda_1(\boldsymbol{q})$, $\lambda_2(\boldsymbol{q})$ e $\lambda_3(\boldsymbol{q})$, dipendenti dalle coordinate iniziali. Questi governano la deformazione locale della materia lungo i tre assi ortogonali identificati dagli autovettori. Si può dimostrare che nell'ipotesi in cui il potenziale phi_0 sia gaussiano come previsto dal meccanismo di inflazione, allora nel almeno uno dei tre autovalori del tensore di deformazione è positivo nel 92% dei casi. Ora, riscrivendo il rapporto di densità η

$$\eta(\boldsymbol{x}(\boldsymbol{q},a),a) = \left[\det\left(\frac{\partial x}{\partial q}\right)\right]^{-1} = \left[\det\left(\mathbb{I} - aD\right)\right]^{-1} =$$

$$= \frac{1}{(1 - a\lambda_1(\boldsymbol{q}))(1 - a\lambda_2(\boldsymbol{q}))(1 - a\lambda_3(\boldsymbol{q}))} \quad (1.28)$$

A questo punto, è evidente che, supponendo che $\lambda_1(q)$ sia l'autovalore maggiore, allora il tempo $\bar{a} = 1/\lambda_1(\boldsymbol{q})$ rappresenta una criticità, in quanto la quantità η diverge e con essa la densità. Questo tipo di evento è detto shell-crossing o caustica ed è rappresenta il fenomeno che si registra quando due particelle con diverse coordinate lagrangiane iniziali $m{q}_1$ e $m{q}_2$ confluiscono nella stessa coordinata di campo \boldsymbol{x} , dando luogo a densità infinita. Tale divergenza è racchiusa nella mancata biunivocità della mappa \mathbb{M}^{-1} , dal momento che a una sola coordinata euleriana possono corrispondere più coordinate iniziali. A causa della mancanza di tale biunivocità, la matrice Jacobiana $\partial x/\partial q$ risulta essere mal definita. Le caustiche delimitano le zone del cosiddetto multistreaming, regioni entro le quali non è più possibile ritracciare le particelle all'indietro, in quanto non sappiamo come si sono comportate negli eventi di shell-crossing. Le strutture di materia che si formano sono detti pancakes, filamenti "quasi" unidimensionali o bidimenzionali, nel senso che la grumosità si sviluppa sostanzialmente in una oppure due direzioni. Queste strutture saranno l'opportuna sede la formazione delle galassie.

Nel regime di single-stream l'approssimazione di Zel'dovich è opportuna, in quanto costitusice un modello non accelerato dove le particelle procedono imperturbate lungo una traiettoria rettilinea e a velocità costante. Tuttavia a partire dal primo shell-crossing l'approssimazione perde di validità, in quanto non prevede effetti di accelerazione gravitazionale esercitata dalle particelle vicine, che modificherebbe il cammino della particella in modo sensibile.

1.3 Metodi di ricostruzione

Come anticipato all'inizio del capitolo, l'alta uniformità della CMB è una prova forte dell'omogeneità dell'Universo primordiale. La grumosità della distrubuzione attuale della massa si spiega invece con la formazione di strutture filiformi e oblate come i pancakes. Per poter rendere conto di questa transizione, sono possibili due tipi di atteggiamento: un forward approach, che si basa sull'i-potizzare un modello iniziale, presumibilmente a densità costante, ed eseguire una simulazione a N corpi sulle basi della dinamica Newtoniana, e controllare il grado d'accordo tra l'output della simulazione e la distrubuzione attuale delle galassie, per poi accettare o eventualmente rigettare il modello iniziale. Tale approccio è praticabile solo tramite tecniche numeriche e non permette di formulare analiticamente il problema a causa del numero troppo elevato di gradi di libertà.

Un modo di ottenere soluzione analitiche invece è seguire un approccio di reconstruction, in cui si tenta di fittare in modo esatto la distribuzione di massa attuale dell'universo e di mappare la velocità delle galassie, per poi invertire il problema usando le posizioni attuali come posizioni iniziali e cambiando segno alla velocità. Tuttavia mentre l'approccio forward, pur con il suo alto coefficiente di difficoltà, si può formulare in un ben definito problema di Cauchy che garantisca l'unicità delle soluzioni, la reconstruction non si può formulare allo stesso modo, dato che si è osservato che a causa dello shell-crossing a una coordinata euleriana possono corrispondere più posizioni iniziali. Quindi con la ricostruzione si pone un problema di condizioni al contorno, per cui la sfida consiste nel trovare un algoritmo che garantisca unicità.

Una via percorribile è rappresentata dal problema variazionale come fu formulato da Peebels in [**peebles**]. Anzichè risolvere le equazioni del moto, è possibile cercare i punti stazionari della corrispondente azione di Eulero-Lagrange, scritta nelle coordinate comoventi \boldsymbol{x} come

$$S = \int_0^{t_0} dt \left[\frac{m_i a^2 \dot{\boldsymbol{x}}_i^2}{2} - \frac{G m_i m_j}{a |\boldsymbol{x}_i - \boldsymbol{x}_j|} + \frac{2}{3} \pi G \rho_b a^2 m_i \boldsymbol{x}_i^2 \right]$$
(1.29)

dove t_0 rappresenta il tempo attuale, \boldsymbol{x}_i è la traiettoria della i-esima particella e ρ_b è la densità media di background. Se denotiamo come \mathcal{L} l'integrando di ??, allora è possibile calcolare la variazione di azione e porla uguale a zero per cercare le orbite stazionarie.

$$\delta S = \int_0^{t_0} dt \left[\frac{\partial \mathcal{L}}{\partial \mathbf{x}_i} \cdot \delta \mathbf{x}_i + \frac{\partial \mathcal{L}}{\partial \mathbf{x}_i} \cdot \delta \dot{\mathbf{x}}_i \right] = 0$$
 (1.30)

Ponendo le opportune condizioni al contorno sarà possibile trovare soluzioni analitiche per x_i . In particolare nel suo primo lavoro Peebles considerò solamente i punti di minimo dell'azione: trovò successivamente che considerando anche i punti di sella si trovava un accordo migliore con i parametri osservati nel Gruppo Locale.

Figura 1.2: Raffigurazione schematica della ricostruzione di Peebles per il Gruppo Locale. Le orbite rosa corrispondono alla scelta del minimo dell'azione, mentre quelle gialle indicano la selezione del punto di sella. Interessante è il caso della galassia N6822, che offre sia una soluzione in avvicinamento che in allontanamento: l'accordo corretto si trova con l'orbita prevista con il punto di sella. Immagine tratta da [mohayaee].

Tuttavia è impresa ardua ripetere gli stessi risultati su altri set di galassie redshiftate, di cui sono sconosciute le velocità, necessarie a porre opportune condizioni al contorno. Non è possibile quindi scegliere l'orbita corretta tra le molte proposte dall'approccio variazionale, per cui si perde l'unicità della soluzione, come accennato in precedenza.

Oltre all'approccio variazionale appena esposto, un'opzione valida è la ricostruzione POTENT, che si basa sul rintracciare il campo potenziale della
velocità integrando le componenti radiali della velocità. Questo metodo regge
solamente in regime euleriano lineare $|(\rho - \rho_b)/\rho_b| \leq 1$, pertanto non recuperano le corrette condizioni iniziali delle regiorni di attuale altà densità, in quanto
non lineari: in altre parole, è un metodo di ricostruzione che non funziona nelle
regioni di multistreaming.

Infine il metodo MAK supera sia il problema della non unicità che affligge la ricostruzione di Peebles, sia i limiti di validitò dell'algoritmo POTENT, rimanendo valido anche ben oltre il regime lineare euleriano. Occorre innanzitutto formulare un'equazione di conservazione della massa e prenderla a vincolo

$$\rho(\mathbf{x})d\mathbf{x} = \rho_0(\mathbf{q})d\mathbf{q} \tag{1.31}$$

dove $\rho_0(\mathbf{q})$ è la densità iniziale e a $\rho(\mathbf{x})$ è la densità alla posizione attuale euleriana. Manipolando tale equazione di conservazione otterremo

$$\det \left[\frac{\partial q_i}{\partial x_i} \right] = \frac{\rho(\mathbf{x})}{\rho_0(\mathbf{q})} \tag{1.32}$$

dove il membro di destra dovrebbe essere noto: conosciamo infatti la posizione della particella e la densità del campo euleriano, e assumiamo inoltre una densità iniziale costante $\rho_0(\mathbf{q}) = \rho_0$ - Per risolvere l'equazione, si fa l'ipotesi che la mappa lagrangiana $\mathbb{M} : \mathbf{q} \mapsto \mathbf{x}$ si possa scrivere come il gradiente di un potenziale convesso Φ .

$$\boldsymbol{x}(\boldsymbol{q},t) = \nabla_{\boldsymbol{q}} \Phi(\boldsymbol{q},t) \tag{1.33}$$

La convessità del potenziale assicura una relazione biunivoca tra coordinata lagrangiana e coordinata euleriana, ossia garantisce l'unicità evitando i fenomeni di multistreaming. Si osserva che nel caso dell'approssimazione di Zel'dovich, con l'equazione ?? che esplicita la mappa lagrangiana è possibile costruire il potenziale Φ , che sarebbe dato da $\Phi(q,t) = q^2/2 - a\phi_0(q,t)$. Tuttavia è evidente che tale potenziale non è convesso ovunque, e proprio per questo l'approssimazione di Zel'dovich non garantisce unicità, in quanto propone una traiettoria rettilinea secondo cui le particelle proseguono dritte nella direzione in cui sono entrate nella zona di shell-crossing, in modo abbastanza irrealistico, dal momento che la trajettoria di una particella che entra in una zona di alta densità viene presumibilmente modificata in modo consistente. Sarà invece possibile identificare un potenziale convesso e recuperare quindi l'unicità solamente con una proposta alternativa all'approssimazione di Zel'dovich, ossia il modello di adesione, che prevede l'aggiunta di termini di interazione gravitazionale. Se Φ esiste ed è convesso sarà definita convessa anche la mappa inversa $\Theta(x,t)$ tale caustiche $q = \nabla_x \Theta$. La relazione tra $\Phi \in \Theta$ è stabilita dalle trasformazioni di Legendre-Fenchel.

$$\Theta(\boldsymbol{x}) = \max_{q} \{ \boldsymbol{q} \cdot \boldsymbol{x} - \Phi(\boldsymbol{q}) \} \qquad \Phi(\boldsymbol{q}) = \max_{x} \{ \boldsymbol{x} \cdot \boldsymbol{q} - \Theta(\boldsymbol{x}) \}$$
 (1.34)

A questo punto l'equazione ?? diventa l'equazione di Monge-Ampere.

$$\det \left[\frac{\partial^2 \Theta(\boldsymbol{x}, t)}{\partial x_i \partial x_i} \right] = \frac{\rho(\boldsymbol{x})}{\rho_0}$$
 (1.35)

Solo recentemente si è scoperto che la soluzione a tale equazione è equivalente alla soluzione unica di un problema di trasporto ottimo, in particolare il problema di trasporto di massa di Monge-Kantorovich, in cui si cerca quale relazione tra \boldsymbol{q} e \boldsymbol{x} minimizza la la funzione quadratica di costo $c(\boldsymbol{q}, \boldsymbol{x}) = |\boldsymbol{x} - \boldsymbol{q}|^2$, o meglio si cerca la minimizzazione del funzionale I.

$$I = \int_{q} \rho_0(\mathbf{q}) |\mathbf{x} - \mathbf{q}|^2 d\mathbf{q} = \int_{x} \rho(\mathbf{x}) |\mathbf{x} - \mathbf{q}|^2 d\mathbf{x}$$
 (1.36)

Si trova infatti che per ottenere la condizione $\delta I = 0$, q(x) deve essere il gradiente di una funzione di x. I dettagli della trattazione sono reperibili in [mohayaee] e [matarrese]. Per risolvere l'equazione ?? la si discretizza e si risolve il relativo problema di assegnazione tramite algoritmi numerici, come quelli presentati in [mohayaee], che permettano di preservare l'unicità delle soluzioni.

Capitolo 2

Tipi di singolarità nella trattazione Lagrangiana

2.1 Parte prima

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

2.2 Parte seconda

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Conclusioni

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.