Procesamiento Digital de Señales Ingeniería en Computación Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán

Sistema de Transmisión AM con Codificación DTMF

Autores:

Boeri, Benjamin Campero, Leandro Villafañe, Cristian

Contenidos

- Introducción
 Análisis del problema, objetivos del proyecto
- Planteamiento
 Solución propuesta y prototipo
- Filtros digitales
 Marco teórico del desarrollo
- Desarrollo
 Implementación del prototipo y simulación
- Conclusiones
 Resultados, aplicaciones y conceptos
- Preguntas
 Espacio reservado para responder preguntas

01 Introducción

Análisis del problema y objetivos del proyecto

Problema

- Sistema de control
 - Modulación en amplitud (AM)
 - Doble Tono Múltiple Frecuencia (DTMF)
- Implementación
 - Filtros digitales
 - Diseño y análisis
- Simulación
 - Matlab
 - Simulink
- Análisis de resultados
 - Casos favorables (ideales)
 - Casos desfavorables (fallas)

02 Planteamiento

Solución propuesta y análisis del prototipo

Sistema

- Frecuencia de muestreo
 - o 44 kHz
- Frecuencia de portadora
 - o 15 kHz
- Codificación
 - Frecuencias inferiores
 697 Hz, 770 Hz, 852 Hz, 941 Hz
 - Frecuencias superiores
 1209 Hz, 1336 Hz, 1477 Hz

Matriz de Codificación

	1209[Hz]	1336[Hz]	1477[Hz]
697[Hz]	1	2	3
770[Hz]	4	5	6
852[Hz]	7	8	9
941[Hz]		0	

La codificación se basa en la suma de un tono inferior y un tono superior. La decodificación se basa en aislar los tonos para identificarlos

Banco de filtros

Respuesta en frecuencia de filtros pasa-banda

63 Filtros Digitales

Explicación del marco teórico del desarrollo

Procedimiento

- Tipo de filtro
 - Butterworth Pasa-Banda
- Transformación
 - Bilineal → Pre-Warping

Pre-Warping

Compensación de distorsión no lineal

$$\Omega = rac{2}{T} an\left(rac{\omega T}{2}
ight) = 2f_s an\left(\pirac{f}{f_s}
ight)$$

Diseño de filtro analógico

Filtro Butterworth Pasa-Bajos

$$H(s)=rac{1}{(s+1)}$$

Transformación de frecuencia

Filtro Pasa-Bajos → Filtro Pasa-Banda

$$s
ightarrow rac{s^2 + \Omega_l \Omega_h}{s(\Omega_h - \Omega_l)}$$

Transformación Bilineal

Filtro Analógico → Filtro Digital

$$H(s) = rac{(\Omega_h - \Omega_l)s}{s^2 + (\Omega_h - \Omega_l)s + \Omega_h\Omega_l} = rac{BWs}{s^2 + BWs + \Omega_0^2}$$

$$s = rac{2}{T} rac{\left(1 - \mathrm{z}^{-1}
ight)}{\left(1 + \mathrm{z}^{-1}
ight)}$$

$$H(\mathrm{z}) = H(s)|_{s=rac{2}{T}rac{1-\mathrm{z}^{-1}}{1+\mathrm{z}^{-1}}}$$

Ejemplo: Filtro Pasa-Banda centrado en 697[Hz]

$$\Omega_h = 2f_s an\left(\pirac{f_c+60}{f_s}
ight) = 4761,01igg[rac{\mathrm{rad}}{\mathrm{s}}igg]$$

$$\Omega_l = 2f_s an\left(\pirac{f_c-60}{f_s}
ight) = 4005, 15igg[rac{\mathrm{rad}}{\mathrm{s}}igg]$$

Filtro Analógico

$$H(s) = rac{s}{0,00132s^2 + s + 25220}$$

Filtro Digital

$$H(\mathrm{z}) = rac{8,49 imes10^{-3} - 8,49 imes10^{-3}\mathrm{z}^{-2}}{1-1,97\mathrm{z}^{-1} + 0,98\mathrm{z}^{-2}}$$

Ejemplo: Filtro Pasa-Banda centrado en 697[Hz]

Ejemplo: Filtro Pasa-Banda centrado en 697[Hz]

Ejemplo: Filtro Pasa-Banda centrado en 697[Hz]

Polos y ceros (Plano S)

$$p_1 = -379 + 4,35 imes 10^3 j$$

$$p_2 = -379 - 4,35 \times 10^3 j$$

$$c = 0$$

Puntos a la izquierda del eje imaginario

Polos y ceros (Plano Z)

$$p_1 = 0,987 + 0,0981j$$

$$p_2 = 0,987 - 0,0981j$$

$$c_1 = 1$$

$$c_2 = -1$$

Módulo menor a la unidad

Puntos dentro del círculo unitario

04 Desarrollo

Implementación del prototipo y simulación con MATLAB

Simulación: 1º Etapa

Codificación → Modulación → Transmisión → Demodulación

Simulación: 2º Etapa

Banco de filtros → RMS → Truncamiento → Matriz Decod.

Caso 1: Canal ideal

Ancho de banda extendido

```
AWG-24 de menos de 200 [m] de largo BW = 1 MHz BW' = [0 \text{ Hz}; 20 \text{ kHz}]
```


0.015

0.02

0.005

0.01

Respuesta de los filtros a la señal recibida

0.4

0.6

26

Respuesta de la Matriz decodificadora

Caso 2: Canal real

Ancho de banda reducido

```
Cable teléfonico
BW = [300 Hz ; 3500 Hz ]
```


Análisis de estabilidad del filtro BP representativo del canal de transmisión

0.04

Respuesta de los filtros a la señal recibida

0.5

0.2

0.6

Valor eficaz obtenido del banco de filtros

Caso 3: Canal defectuoso

Ancho de banda con atenuaciones

BW = [300 Hz ; 3500 Hz]
Presenta zonas con atenuaciones

Análisis del Canal con Atenuación en Frecuencia

Respuesta en frecuencia del filtro BP representativo del canal de transmisión

Frecuencias previamente mapeadas con Pre-Warping

Se aplica la Transformación Bilineal

Análisis de estabilidad del filtro BP representativo del canal de transmisión

Análisis del espectro: Tecla 3

Tonos ubicados en los extremos de la banda de rechazo

Análisis del espectro: Tecla 5

Tonos alejados de los extremos de la banda de rechazo

N° 5:

f_inf: 770[Hz]

f_sup: 1336[Hz]

Se puede notar una atenuación significativa

Análisis del espectro: Tecla 7

Tonos cercanos al centro de la banda de rechazo

N° 7:

f_inf: 852[Hz]
f_sup: 1209[Hz]

La atenuación es mucho mayor

05 Conclusiones

Análisis de los resultados, aplicaciones del sistema y conceptos adquiridos

Acerca de...

Resultados

- Implementar una solución real
- Adaptable a distintos medios de transmisión

Aplicaciones

 Sistemas de alarma y seguridad, Automatización industrial, Domótica

Problemáticas

- Ajustes según la aplicación del sistema
- Simulink limita el orden de los filtros

Conceptos

- Criterios de ingeniería
- Diseño e implementación de filtros digitales

¡Gracias!

¿Alguna pregunta?