

Relaxation-Induced Dipolar Modulation Enhancement (RIDME)

Tutorial

Sergei Kuzin
ETH Zurich

Plan for today

- Short introduction of RIDME: why, when and how
- In-real-time setup for a copper-nitroxide biradical at Q band
- Example of data analysis using DeerLab
- Q&A, extra remarks, advanced topics (if time permits)

Let's measure... DEER?..

Q band (
$$v_{mw} = 34 - 36 \, \text{GHz}$$
)

Motivation

Double-frequency experiments perform poorly when

- One of the centers is of large spectral width
- The two centers have substantially separated EPR spectra
- One of the centers relaxes fast [10.1016/j.jmr.2022.107327]

RIDME experiment

		B-spin (relaxing)			
		Organic	Cu ²⁺	Gd ³⁺ , Mn ²⁺	LS-Fe ³⁺
A-spin (observer)	Organic	-	+	+	±
	Cu ²⁺	•	+	+	+
	Gd ³⁺ , Mn ²⁺	-	-	+	+
	LS-Fe ³⁺	-	-	-	±

B-spins relax during the mixing block

All species presented in the B's EPR spectrum relax

Optimal conditions:

- Hetero-spin case: T₁(A) > T₁(B)
- Homo-spin case: $T_1/T_2 \approx 5^{[a]}$

[a] 10.1039/C6CP04884F

Some practical hints

Single-frequency experiment » center of the mode is OK

- The unique pulse power can be used ($t_\pi=2\cdot t_{\pi/2}$) as long as $\omega_{dd}[{
 m MHz}]\cdot t_\pi[{
 m ns}]\ll 1000$
 - Important! The maximum of the trace (zero time) is then expected at $t=d_1+t_\pi-t_{\pi/2}$
- Modulation depth depends on mixing time approximately as $\lambda \approx \frac{2S_B}{2S_B+1} \cdot \left(1 \exp\left(-\frac{T_{1,B}}{T_{\text{mix}}}\right)\right)$. However, at longer mixing times the background gets steeper.

Rule of thumb for temperature choice in RIDME

		B-spin (relaxing)			
		Organic	Cu ²⁺	Gd ³⁺ , Mn ²⁺	LS-Fe ³⁺
A-spin (observer)	Organic	1	~40 K	~30 K	~10 K
	Cu ²⁺	1	~20 K	~20 K	~10 K
	Gd ³⁺ , Mn ²⁺	1		~20 K	~10 K
	LS-Fe ³⁺	1			~5 K

Auxiliary measurements

Demonstration sample ~ 50 μM of [CuPyMTA]-NO ruler Solvent: H₂O + H₈-Gly Q band

 $T_2
-relaxation$ (A-spin \rightarrow trace length)

Echo-detected Field Sweep

T, K

T₁ and RIDME

1.4 ms

NO

Cu

5.3 μs

50

Measurement set-up

Demonstration sample ~ 50 μM of [CuPyMTA]-NO ruler Solvent: H₂O + H₈-Gly Q band

Conclusion
$t_{\pi/2} = 12 \text{ ns, } t_{\pi} = 24 \text{ ns}$
$d_2 \sim 5 T_{dd} pprox 1.5 \ m \mu s$
$\Delta \tau \sim \frac{T_{dd}}{20} \approx 8 \text{ ns}$ $\operatorname{sx} = \frac{d_1 + d_2 - 2d_3}{\Delta \tau} = 168$
$T_{\rm mix} = 32 \ \mu s$

PulseSPEL p0 **12** ns 24 ns **p1** 400 ns d1 1.5 us d2 **d3** 280 ns **d4** 32 us 8 ns d30 20 h 1 n (d31) 16 ns (m) 8

Measurement time = $8 \cdot m \cdot sx \cdot h \cdot srt \cdot n$

Our measurement time = $8 \cdot 1 \cdot 200 \cdot 20 \cdot 0.012$ [s] $\cdot 1 = 384$ s

Data analysis with DeerLab

Evidence of exchange coupling 10.1039/D0CP03105D

Mostly, the same workflow as for 4p-DEER

More DeerLab & RIDME examples: github.com/JeschkeLab/DeerLabWorkshop2023/

- (1) basic analysis of a RIDME trace with built-in tools
- (2) modulation depth vs. mixing time

- (3) analysis of a RIDME trace with a customized background function
- (4) analysis of a RIDME trace with dipolar overtones

Advanced topics

Further reading

 Original papers and Overviews 	Kulik et al. (2001)	10.1016/S0009-2614(01)00721-7
	Milikisyants et. al. (2009)	10.1016/j.jmr.2009.08.008
	Astashkin (2010)	10.1016/bs.mie.2015.06.031
a Intermelecular background	(2010)	10.1020/C0CD0701FC
Intermolecular background	Keller, Yulikov et al. (2019)	10.1039/C8CP07815G
ESEEM averaging	Keller, Yulikov et al. (2016)	10.1016/j.jmr.2016.09.016
Spectral diffusion in RIDME background	Kuzin, Jeschke, Yulikov (2022)	10.1039/D2CP03039J
 Dipolar overtones in high-spin systems 	Keller et al. (2017)	10.1039/C7CP01524K
	Azarkh et al. (2022)	10.1016/j.jmr.2022.107217
Applications	Wort et al. (2019)	10.1002/ange.201904848
	Yang et al. (2018)	10.1021/acs.jpclett.8b02663
	Azarkh et al. (2019)	10.1021/acs.jpclett.9b00340
	Akhmetzyanov et al. (2016)	10.1039/C6CP05239H
Advances and variations	Abdullin et al. (2021)	10.1007/s00723-021-01326-1
	Wort et al. (2023)	10.1016/j.jmr.2023.107460
	Kuzhelev, Fedin, Bagryanskaya et al. (2018) 10.1039/C8CP01093E	

RIDME & DeerLab