ML experiments management, pipelines automation and reproducibility:

with DVC and MLFlow

Mikhail Rozhkov

ml-repa.ru

How do we want to experiment?

What	Why
Reproducible ML pipelines	Debug / Trust / Consistency / Performance
Save experiment metadata (params, metrics, versions, dependencies)	Debug / Reproducibility
Store Models and Artifacts	Debug / Inference / Reproducibility
Models and Artifacts version control	Debug / Roll-back / Experimentation
Experiment results tracking	Experiment runs benchmark

ML reproducibility is about quality

What is Reproducibility?

using the original methods applied to the original data to produce the original results [Gardner]

Why should you care?

- Trust
- Consistent Results
- Versioned History
- Team Performance

ML Experiment Management checklist

- 1. Automated pipelines
- 2. Control run params
- Control execution DAG
- Code version control
- Artifacts version control (models, datasets, etc.)
- 6. Use shared/cloud storage for artifacts
- 7. Environment dependencies control
- 8. Experiments results tracking

Upgrade ML experiments

use case

- automated pipelines
- reproducibility
- experiments management

Use Case:

Iris Flowers Classification

Task: classify Iris flowers

Dataset: Iris dataset

Metrics: F1

References:

- https://en.wikipedia.org/wiki/Iris_flower_data_set
- https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning. html

How to start?

Step 0: AS IS

- common ML practices
- all code in on Jupyter Notebook

Step 1: Jupyter Notebook

- code in Jupyter Notebook
- everything in Docker

ML Experiment Management checklist

- 1. Automated pipelines
- 2. Control run params
- 3. Control execution DAG
- 4. Code version control
- 5. Artifacts version control (models, datasets, etc.)
- 6. Use shared/cloud storage for artifacts

- 7. Environment dependencies control
- 8. Experiments results tracking

Step 2: build pipelines

- move common code into .py modules
- build pipelines
- everything in Docker
- run experiments in terminal or Jupyter Notebook

Project structure

Setup pipelines

ML Experiment Management checklist

1. Automated pipelines

2. Control run params

3. Control execution DAG

4. Code version control

5. Artifacts version control (models, datasets, etc.)

6. Use shared/cloud storage for artifacts

8. Experiments results tracking

Step 3: add version control for artifacts

- add models/data/congis under DVC control
- same code in .py modules
- same pipelines
- everything in Docker
- run experiments in terminal or Jupyter
 Notebook

ML Experiment Management checklist

Automated pipelines

Control run params

Control execution DAG

Code version control

Artifacts version control (models, datasets, etc.)

Use shared/cloud storage for artifacts

Environment dependencies control

Step 4: add execution DAG control

- add pipelines dependencies under DVC control
- models/data/congis under DVC control
- same code in .py modules
- same pipelines
- everything in Docker
- run experiments in terminal or Jupyter
 Notebook

Setup pipelines

ML Experiment Management checklist

Automated pipelines

Control run params

Control execution DAG

Code version control

Artifacts version control (models, datasets, etc.)

Use shared/cloud storage for artifacts

Environment dependencies control

Step 5: add experiments control

- add experiments benchmark (DVC, mlflow)
- pipelines dependencies under DVC control
- models/data/congis under DVC control
- same code in .py modules
- same pipelines
- everything in Docker
- run experiments in terminal or Jupyter
 Notebook

Compare experiments

- dvc metrics show
- dvc metrics show -a
- dvc metrics show -t json -x f1_score -a
- dvc metrics show -T

Metrics tracking in mlflow UI

from mlflow import log_metric, log_param, log_artifact log_artifact(args.config) log_param('batch_size', config['batch_size']) log_metric('f1', f1) log metric('roc auc', roc auc)

Experiments benchmarking

					params		metrics Metrics		
_	Date	User	Source	Version	alpha	I1_ratio	mae	r2	rmse
	2018-06-04 23:00:10	mlflow	train.py	05e956	1	1	0.649	0.04	0.862
	2018-06-04 23:00:10	mlflow	train.py	05e956	1	0.5	0.648	0.046	0.859
	2018-06-04 23:00:10	mlflow	train.py	05e956	1	0.2	0.628	0.125	0.823
	2018-06-04 23:00:09	mlflow	train.py	05e956	1	0	0.619	0.176	0.799
	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	1	0.648	0.046	0.859
	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0.5	0.628	0.127	0.822
	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0.2	0.621	0.171	0.801
	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0	0.615	0.199	0.787
	2018-06-04 23:00:09	mlflow	train.py	05e956	0	1	0.578	0.288	0.742
	2018-06-04 23:00:09	mlflow	train.py	05e956	0	0.5	0.578	0.288	0.742
	2018-06-04 23:00:09	mlflow	train.py	05e956	0	0.2	0.578	0.288	0.742
	2018-06-04 23:00:08	mlflow	train.py	05e956	0	0	0.578	0.288	0.742

runs

ML Experiment Management checklist

Control run params

Control execution DAG

Code version control

Artifacts version control (models, datasets, etc.)

Use shared/cloud storage for artifacts

Environment dependencies control

Experiments results tracking

Conclusions

- 1. ML experiments require an engineering approach
- 2. Reproducibility and automation are important
- 3. Start where you detect a "copy-paste" pattern
- 4. Version models and artifacts

Links

- Automate ML experiments with DVC_v3 slides
- Data Version Control (DVC): Tutorial 1: Get Started
- Data Version Control (DVC): Tutorial 2: Iris Demo Project