Apply AI to learn deadlock

Step 1: Understand the Basics of Deadlock

Before diving into AI-driven experimentation, make sure you understand the foundational concepts:

- 1. **Definition**: A deadlock occurs when a group of processes are waiting for resources held by each other, and none of them can proceed.
- 2. **Necessary Conditions** (Coffman conditions):
 - o Mutual Exclusion: Resources are non-shareable.
 - o **Hold and Wait**: A process holding a resource is waiting for additional resources.
 - o **No Preemption**: Resources cannot be forcibly taken.
 - o Circular Wait: A set of processes are waiting for each other in a circular chain.
- 3. Deadlock Handling Strategies:
 - o **Prevention**: Alter system design to avoid one or more Coffman conditions.
 - o **Avoidance**: Use algorithms like the Banker's Algorithm to avoid unsafe states.
 - o **Detection and Recovery**: Detect deadlocks and terminate or preempt processes.
 - o **Ignorance**: Simply ignore the problem (used in systems like UNIX).

Step 2: use AI Tools and Simulations with code (use Copilot/chatGPT)

Requirements(use Copilot)

- Use Copilot with an account Microsoft (...@fe.edu.vn)
 - Open page: https://learn.microsoft.com/en-us/training/paths/copilot-power-platform/; and then click the button "Start"
 - At prompt: enter keyword "give me example code by Python to simulator deadlock" For example:

- Clicks prompt "how to resolve deadlock issues". Result:

-enter prompt: "draw graph to detect deadlock for the code above"

- Require student use paper and pen to redraw the above graph
- Ask Copilot/chatGPT to improve the above code to prevent deadlock
- Optional: student can run code by Jupiter or any suitable environment

Step 3: Practical Deadlock Exercises

Exercise 1: Simulate a Deadlock

- Use Copilot/chatGPT to generate code to simulate a deadlock, analyze it, and then implement one or more of the following:
 - o Deadlock Prevention (e.g., locking in a specific order).
 - o Deadlock Avoidance (e.g., Banker's Algorithm).
 - o Deadlock Detection (e.g., graph traversal to find cycles).

Exercise 2: Visualize Resource Allocation Graphs

• Use AI to help generate or visualize resource allocation graphs, showing processes and the resources they hold or request.

Exercise 3: Solve a Deadlock Scenario

• Describe a deadlock problem to AI (e.g., "Three processes P1, P2, P3 compete for two resources R1 and R2"). Let AI suggest possible resolutions or guide you in writing a program to simulate and solve the issue.