Homework 5

Computer Science Theory for the Information Age

致远 12 级 ACM 班

刘爽

5112409048

June 17, 2013

1. Let x_i , $1 \ge i \ge n$, be a set of indicator variables with identical probability distributions. Let $x = \sum_{i=1}^n x_i$ and suppose $E(x) \to \inf$. Show that if the x_i are statistically independent then $Prob(x=0) \to 0$.

Proof:

We can use the Chabyshev inequality

$$Var(x) = \sum_{i=1}^{n} Var(x_i) = C$$

$$P(x = 0) \le P(|x - E(x)| \ge E(x))$$

$$\le \frac{Var(x)}{E^{2}(x)}$$

$$= \frac{C}{E^{2}(x)}$$

As $E(x) \to \inf$, $P(x = 0) \to 0$.

2. Consider a model of random subset N(n, p) of integers $\{1, 2, ..., n\}$ where, N(n, p) is the set obtained by independently at random including each of $\{1, 2, ..., n\}$ into the set with probability p. Define what an "increasing property" of N(n, p) means. Prove that every increasing peroperty of N(n, p) has a threshold.

Solution:

We define an increasing property of N(n, p) as follows:

Q is an increasing property of N if when a set N has the property any set obtained by adding numbers to N must also have the property.

First we will proof the following lemma:

If Q is an increasing property and $0 \le p \le q \le 1$, then the probability that N(n,p) has property Q is less than or equal to the probability that N(n,q) has property Q.

Notice we could generate N(n,q) in this way: First we generate N(n,p), then we generate a set $N(n,\frac{q-p}{1-p})$ and take the union of them to get N(n,q). If N(n,p) has the property Q, N(n,q) must has it too.

Next we will prove

Every increasing property of N(n,p) has a threshold at p(n), where for each n, p(n) is the minimum real number a for which the probability that P(n,a) has the property Q is $\frac{1}{2}$.

Suppose $p_0(n)$ is any function such that

$$\lim_{n \to \inf} \frac{p_0(n)}{p(n)} = 0$$

We will show that almost surely $N(n, p_0)$ does not have property Q. Suppose this is false. Then, the probability that $N(n, p_0)$ has the property Q does not converge to zero. By the definition of limit, there must be a positive real number ϵ for which the probability that $N(n, p_0)$ has property Q is at least ϵ on an infinite set I of n.

Let $m = \lceil (1/\epsilon) \rceil$. Lset h be the m-fold replication of $N(n, p_0)$. Since from the m-fold method we have

$$Prob(N(n, mp) \text{ does not have Q}) \leq (Prob(N(n, p) \text{ does not have Q}))^m$$

Then the probability that H does not have Q is at most $(1 - \epsilon)^m \le e^{-1} \le 1/2$ for all $n \in I$. So for then n, since p(n) is the minimum real number a for which the probability

that N(n,a) has property Q is 1/2, $mp_0 \geq p(n)$. This implies that $\frac{p_0(n)}{p(n)}$ is at leat 1/m infinitely often contradicting the hypothesis that $\lim_{n \to \inf} \frac{p_0(n)}{p(n)} = 0$. A symmetric argument shows that for any $p_1(n)$ such that $\frac{p(n)}{p_1(n)} \to 0$, $N(n,p_1)$ almost surely has property Q.