1. < a1 6> ≥ Tr (A*B)

a) Compruebe si esta es una buena definición de producto interno Para las matrices A, B, C & Mmxn (c) son matrices artitrarias y 2 € C es un complejo arbitrario.

1. Verificamos que la función es lineal con respecto al primer org < \(\lambda(A+B), C> = \(\frac{1}{1}A* + 2B*)(C)) = \(\frac{1}{2}(A* + B*)(E)) = \(\frac{1}{2}(A* + B*)(E)) = 1 tr (A*C) + 9tr (B*C) = 7(A,C) + 2(B,C)

· Respecto al segundo argumento:

$$\langle A, \lambda(B+C) \rangle = tr((A)^{*}(2B+2C)) = tr(\lambda(A)^{*}(B+C)) = ltr(A^{*}(B+C))$$

= $-ltr(A^{*}B) \mp \lambda tr(A^{*}C) = \lambda \langle A, B \rangle + \lambda \langle A, C \rangle$

2. Verificamos que la función es hermitica:

13. Verificamos que la función es definida positiva:

$$\langle A, A \rangle = tr(A^*A) = \sum_{k=1}^{n} (A^*A)_{k,k} = \sum_{k=1}^{n} (\sum_{j=1}^{m} (A^*)_{k,j} (A)_{j,k})$$

 $\langle A, A \rangle = \sum_{k=1}^{n} \sum_{j=1}^{m} |A_{j,k}|^2 \rightarrow Norma \text{ de Frobenious}$
 $\langle A, A \rangle = \sum_{k=1}^{n} \sum_{j=1}^{m} |A_{j,k}|^2 \rightarrow Norma \text{ de Frobenious}$

C) Encuentre la distancia entre dos matrices 2x2 a partir de la definición de norma de Frobenious

$$A = \begin{bmatrix} 1+2i & 3+4i \\ 5+6i & 7+8i \end{bmatrix}, \quad B = \begin{bmatrix} 2-3i & 4-5i \\ 6-7i & 8-9i \end{bmatrix}$$

$$d(IA), IB>) = ||A-B|| \qquad A-B = \begin{bmatrix} -1.5i & -1+9i \\ -1+13i & -1+19i \end{bmatrix}$$

$$||A-B|| = \frac{6}{26} e^{-1.5i} e^{-1.13i} + |-1+13i|^{2} + |-1+13i|^{2} + |-1+19i|^{2} e^{-1.5i}$$

$$||A-B|| = (26+82+170+290)^{1/2} = (568)^{1/2} = 23,85/$$

1.
$$\sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\sigma = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ $\sigma = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$
• $C\sigma | \sigma_{1} \rangle = Tr \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 $= Tr \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0$

•
$$C\sigma_0 | \sigma_3 \rangle = Tr((1 \ 0)^*(1 \ 0))$$

= $Tr(1 \ 0) = 0$

$$\cdot \langle \sigma_1 | \sigma_3 \rangle = T_r (\begin{pmatrix} 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 0 \end{pmatrix}) = T_r (\begin{pmatrix} 0 & -1 \end{pmatrix} = 0)$$

•
$$\langle \sigma_2 | \sigma_3 \rangle = Tr((0 - i)^*(1 0)) = Tr(0 - i) = 0$$

- Dado que el producto interno entre las matrices es O se compreba que son ortogonales bajo la definición de Frobenious.

c. Distancia entre las matrices

$$d(100), 100) = \sqrt{11-01^2+10-11^2+10-11^2+10-012^{2}}$$

$$= \frac{2}{4}$$

$$d(100), 100) = \sqrt{4^2+10-11^2+10-11^2+10-11^2}$$

$$= \sqrt{4^2+10-11^2+10-11^2+10-11^2}$$

$$= \sqrt{4^2+10-11^2+10-11^2+10-11^2}$$

$$\frac{3(100)}{100}, 100) = \sqrt{4} = 2/2$$

$$\frac{3(100)}{100} = \sqrt{1+2} + 11-21^{2}$$

$$= \sqrt{4} = 2/2$$

$$\frac{3(100)}{100} = \sqrt{1-1} + 100 + 100 + 100 = 2/2$$

$$\frac{3(100)}{100} = \sqrt{1-1} + 100 + 100 = 2/2$$

$$\frac{3(100)}{100} = \sqrt{1-1} + 100 = 2/2$$

$$\frac{3(100)}{100$$

- f) Muestre que las matrices de Pauli & 00,00,00,003 forman una base para el espacio de las matrices 2x2 hermíticas.
- · Para demostrarlo tenemos que comprobar la independecia lineal entre las matrices y que generan el espacio:

f.a) Independencia lineal

Sea d1, d2, d3, d4 escalares que E C y que multiplican a las matrices:

$$d_{1}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + d_{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + d_{3}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + d_{4}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Por lo tanto, para que las matrices de Pauli sean linealmente independientes, los escalares deben ser igual a O:

$$d_1(1)+d_2(0)+d_3(0)+d_4(1)=0$$
 $d_1(0)+d_2(1)+d_3(-i)+d_4(0)=0$
 $d_1(0)+d_2(1)+d_3(i)+d_4(0)=0$
 $d_1(0)+d_2(1)+d_3(i)+d_4(0)=0$
 $d_1(1)+d_2(0)+d_3(0)+d_4(-1)=0$

Del anterior sistema de ecuaciones lineales obtemos que:

* d1 = -d4 - d1 = 0

F.b) beneran el Espacio

Ahora debemos verificar que toda matriz 22 hemítica del espacio vectorial se pueda escribir en terminos de una combinación lineal de las matrices de pauli:

$$\beta_{1}\begin{pmatrix}1&0\\0&1\end{pmatrix} + \beta_{2}\begin{pmatrix}0&1\\1&0\end{pmatrix} + \beta_{3}\begin{pmatrix}0&-i\\i&0\end{pmatrix} + \beta_{4}\begin{pmatrix}1&0\\0&-1\end{pmatrix} = \begin{pmatrix}X&y\\2&\omega\end{pmatrix}$$

Ponde X, y, z, w son los elementos de la matriz que pertenecen a los números complejos:

$$\beta_1 + \beta_4 = x$$
 $\beta_2 - \beta_3 i = y$
 $\beta_2 + \beta_3 i = z$
 $\beta_1 - \beta_4 = \omega$
Sistema de
Evæaciones
a Solucionar

Resolviendo el sistema de ecuaciones obtenemos:

$$\beta_1 = \frac{x+\omega}{2}$$
, $\beta_2 = \frac{x+y}{2}$, $\beta_3 = \frac{y_2-z_2}{2}$, $\beta_4 = \frac{x-\omega}{2}$
@ Por tanto, se compreba que los escalares existen y dependen de los elementos x, y, z, ω . En consecuencia, los matrices de Pauli generan el espacio de matrices zxz hermíticas.

9) la base de las matrices 2x2 hermiticas son ortogonales bajo la siguiente definición de producto interno.

$$<\sigma_0|\sigma_1>=tr((10)^{\dagger}(01))=0=tr(01)$$

$$<\sigma_0|\sigma_z> = t((10)^{\dagger}(0-i)) = tr(0-i) = 0$$

$$(\sigma_0 | \sigma_3 \rangle = tr((10)^{\dagger}(10)) = tr(10) = 0$$

$$\langle \sigma_1 | \sigma_2 \rangle = tr((01)^{\dagger}(0-i)) = tr(i0) = 0$$

$$<\sigma_{1}|\sigma_{3}>=tr((0\ 1)^{+}(1\ 0))=tr(0\ -1)=0$$

$$\langle \sigma_{2} | \sigma_{3} \rangle = tr((0-i)^{\dagger}(10)) = tr(0i) = 0$$

- Se compreba que también son ortogonales bajo la definición de este producto interno.

h) Explore si se pueden construir subespacios vectoriales de matrices reales e imaginarias puras.

La forma general de una matriz de este subespacio es:

Primero podemos comprobar que cuando los escalarer a, b, e que E R, tienen valor O obtendremos al cero vector.

Sí
$$a=b=c=0$$
 entonces $(a+c)=(00)=0$

Ahora procedemos a comprobar que cumple con los dos axiones de un subespacio vectorial:

$$D = \left\{ \begin{pmatrix} a+c & b \\ b & a-c \end{pmatrix} \middle| a_ib_ic \in \mathbb{R} \right\}$$

·Axioma I: ā, v ∈ D: ū+v ∈ D

$$\bar{u} = \begin{pmatrix} d_1 + d_3 & d_2 \\ d_2 & d_1 + d_3 \end{pmatrix} \quad \bar{v} = \begin{pmatrix} \beta_1 + \beta_3 & \beta_2 \\ \beta_2 & \beta_1 + \beta_3 \end{pmatrix}$$

$$\bar{u} + \bar{v} = \begin{pmatrix} d_1 + d_3 + \beta_1 + \beta_3 & d_2 + \beta_2 \\ d_2 + \beta_2 & d_1 + d_3 + \beta_1 + \beta_3 \end{pmatrix} = \begin{pmatrix} (d_1 + \beta_1) + (d_2 + \beta_3) & d_2 + \beta_2 \\ d_2 + \beta_2 & d_1 + d_3 + \beta_1 + \beta_3 \end{pmatrix} = \begin{pmatrix} (d_1 + \beta_1) + (d_2 + \beta_3) & d_2 + \beta_2 \\ d_2 + \beta_2 & (d_1 + \beta_1) - (d_3 + \beta_3) \end{pmatrix}$$

$$\bar{u}+\bar{v}=\begin{pmatrix} g_1+g_3 & g_2 \\ g_2 & g_1-g_3 \end{pmatrix}$$
 donde $g=\chi+\beta$, $g\in\mathbb{R}$

• Axioma I $\bar{u} \in D$, $\neq \in \mathbb{R}$: $\forall \bar{u} \in D$

• Axioma I $\bar{u} \in 0$, $\bar{\phi} \in \mathbb{R}$: $\bar{\phi}\bar{u} \in \mathbb{D}$

$$\phi \bar{u} = \phi \left(\frac{d_1 + \beta d_3}{d_2} \right) = \left(\frac{\phi (d_1 + d_3)}{\phi d_2} \right) \left(\frac{\phi d_2}{\phi d_3} \right)$$

$$\phi \bar{u} = (\phi d_1 + \phi d_3 \quad \phi d_2)$$
 dode $\phi d_i \in \mathbb{R}$
 $\phi d_2 \quad \phi d_1 - \phi d_3)$ se cumple que $\phi \bar{u} \in \mathbb{Q}_*$

De matrices reales 2x2 del espacio de matrices hermiticas 2x2.

· Subespacio de matrices imaginarias puras

Para construir este subespacio voy a usar unicamente la primera y segunda matriz de Pauli.

La forma general de este subconjunto es:

$$a\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + b\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 0 & a-bi \\ a+bi & 0 \end{pmatrix}$$
 donde, $a,b \in \mathcal{C}$

Primero podemos comprobar que los escalarea a, b tienen valor cero, obtendremos el cero vector:

$$\begin{pmatrix} 0 & \alpha - bi \\ \alpha + 6i & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_*$$

+ Ahora procedemos a verificar que cumple con los axiomas de un subespacio vectorial.

·Axioma I: a, v e F: a+v e F

$$\bar{a} = \begin{pmatrix} 0 & \lambda_1 - \lambda_2 i \\ \alpha_1 + \alpha_2 i & 0 \end{pmatrix} \quad \bar{V} = \begin{pmatrix} 0 & \beta_1 - \beta_2 i \\ \beta_1 + \beta_2 i & 0 \end{pmatrix}$$

$$\bar{a} + \bar{v} = \begin{pmatrix} 0 & \lambda_1 - \Delta_2 i + \beta_1 - \beta_2 i \\ \alpha_1 + \alpha_2 i + \beta_1 + \beta_2 i \end{pmatrix} = \begin{pmatrix} 0 & (\lambda_1 + \beta_1) - (\lambda_2 + \beta_2) i \\ (\lambda_1 + \beta_1) + (\lambda_2 + \beta_2) i \end{pmatrix} = \begin{pmatrix} 0 & (\lambda_1 + \beta_1) - (\lambda_2 + \beta_2) i \\ 0 & (\lambda_1 + \beta_1) + (\lambda_2 + \beta_2) i \end{pmatrix}$$

$$\bar{a}+\bar{v}=\begin{pmatrix}0&g_1-g_{zi}\\g_1+g_{zi}&0\end{pmatrix}$$
 donde $g=\chi+\bar{p},\ g\in \mathcal{L}$
Se cumple que $\bar{a}+\bar{v}\in \mathcal{F}$

· Axioma II: ae F, ØEC: Que F

$$\phi(i) = \phi(0) d_1 - d_2i = (0) \phi(d_1 - d_2i) = (\phi(d_1 + d_2i))$$

$$\phi \bar{u} = \begin{pmatrix} \hat{0} & \phi d_1 - \phi d_2 \hat{i} \\ \phi d_1 + \phi d_2 \hat{i} & 0 \end{pmatrix}$$
 Se cumple que $\phi \bar{u} \in F$

⇒ Al cumplir los dos axiomas comprobamos que Fes un subespacio de matrices imaginarias puras 2x2 que pertenece al espacio de matrices hermiticas 2x2.

2. Se construye un espació tensorial a partir de dos espacios vectoriales de polinomios Tz(x;y) = Pz(x) \$\Pi 6z(y)\$.

Tz(x,y) = cis lei, e; > donde, lei> y lei> son las bases ortogonales de Pz(x) y 6z(y).

a) Considere el polinomio pP(x) = x2+x+3 y expreselo en terminos de la base de polinomios de Legendre:

{le?>} => {IP: (x)>}

+ P(x)= x2+x+3 = a1/ep>+ a2/ep>+ a3/ep>+ 62/p>+62/p>+63/p3>+...

Abora escribimas el vector (sus componentes en la base de Legendre) en terminos de las dos bases y sus componentes en la base ortogonal le?>.

Partiendo de:

< P, 1PP> = a1 < P, lep> + a2 < P, lep> + a3 < P, lep> = 61 < P, 1P,>

Hallamos las otras dos componentes respectivamente:

6) Dados pP(x)=x2+x+3 y PG(y)=y+1. Construya el tensor, PPB6(x,y) = PCL) & P6(y).

pro6 = aigile:> lef> = aigile:, ef> = ciile: e6:

C) Dadas las bases IMiZ = £1, x, x23 y IMS > = £1, 4, 423

d) Ahora suponiendo que las bases ortogonales son las de polinomios de Legendre:

[le?>] ← fir(a)] y fle;>] ← fir(a))

$$P^{P \otimes 6}(x,y) = C^{ij} | e_{i}^{p}, e_{j}^{6} \rangle = \tilde{c}^{ij} | p_{i}^{p}, p_{j}^{6} \rangle$$

$$\hat{C}^{ij} = C^{ij} \langle p_{i}^{p}, p_{j}^{6} | e_{i}^{p}, e_{j}^{6} \rangle$$

$$\langle p_{i}^{p}, p_{j}^{6} | p_{i}^{p}, p_{j}^{6} \rangle$$

$ \hat{V}_{x} \hat{I}^{x} = (-1, 0, 0, 0) \hat{I}^{0}_{x} = -10 = 0 $ $ \hat{V}_{x} \hat{I}^{x} = (0, 0, 0, 0) 0 \rangle = 11 = 0 $ $ \hat{V}_{x} \hat{I}^{x} = (0, 0, 0, 0) 0 \rangle = 12 = 1 = 0 $ $ \hat{V}_{x} \hat{I}^{x} = (0, 0, 0, 0, 0, 0) 0 \rangle = 12 = 1 = 0 $ $ \hat{V}_{x} \hat{I}^{x} = (0, 0, 0, 0, 0, 0, 0) 0 \rangle = 12 = 1 = 0 $ $ \hat{V}_{x} \hat{I}^{x} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$	ŷ. /		= (-1	.0	0	0		10	-	=	-	-[-	- 0	<u> </u>	-	-			_		_	_	_	_					_		از	X	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100		_				_		T	*							_			_							_	_	-	_	-	_		إنــ	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	_	-0	_	_	-	-		+	_	-	_0	_	-		-	-	_	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
$ \hat{L}_{a} \hat{L}^{c} = (0,0,0,0) = 1 + 1^{2} = 1 = 7 +$	-			-	_	-	-	-	1	-	-	-	-	-	_	-					,														
$ \hat{L}_{x}\hat{L}^{2} = (0,0,0,0) = +1^{2} = 1 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7$	12																																		
$ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1 = 1/2 = 1 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1 = 1/2 = 1 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 = 1 = 1/2 = 1 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 = 1/2 $ $ \hat{L}_{x} = (0,0,0,0) = 1/2 $ $ \hat{L}_{x} = (0,$	£41.		_((),1	0,	0)	1	יים	1	± 	l	1.	= 1	<u> </u>		_	_	_	_		_	7.0	-	-	-	-	-	_	-	-	_		-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	_	-	-	Ų.,	\parallel	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-					1	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								13							- 1							- 2													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 70	_	_			_	-	1	_				_	_	_		1	_	_	_1	_	-	_	_	_	_	-	-	_	_	_	_	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ldL	-	((טקט	٦١	0)		0	-		1	=		_	=	7_	L	_	= [-	_	-	-	-	7	- 57		. 6,	20. 1	in a				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	_			12				1 1 1 1	-	_					7				,	3077			11		789						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_			Ţ	13									-	_	_			-		_						_	_	_	-	+	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C. Tr		(0	_	_	-	-	-	10	+	-	-	10	0.0	0	3	-	-	-	7	-	13	-	0	-	-		-	-	-	-	-	-		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-X-1			٠,٠	,0,		072	1					יכון	טיט	- b -					=/.	_								,	_					_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_		_		-	11/	17	-	-						hr)		_			_								_	_	-	-	_
$\begin{bmatrix} 1 & = & 0 \\ 3 & + & 0 \\ 0 & 0 & 0 \\ 4 & 5 & = & (-1, 0, 0, 0) & (5) & = & +50 & = 0 \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & $	-	1	0	7		_		-	1	W'	-	-	-	-	-	-	-	-	-	-	19	-	1	-	-	-			-	-	-	-		1	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ĭ4 =		0	1																-		į									7				_
$ \hat{V}_{0} \hat{S}^{0} = (-1,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{V}_{0} \hat{S}^{0} = (-1,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{V}_{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{V}_{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{V}_{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{V}_{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} \hat{S}^{0} \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}^{0} \hat{S}^{0} \hat{S}^{0} \hat{S}^{0} = (0,0,0,0) \hat{S}^{0} \rangle_{-2} + \hat{S}^{0} = 0 $ $ \hat{S}^{0} \hat{S}$		$ \downarrow $	7	+					-	-	-	-	-	-	-,		-	.7	75				_	-	_	_	_	_	20	~	_		-	-	-
$\hat{L}_{x} = (0, 1, 0, 0) / 0 = 51 = 0$ $\hat{L}_{x} = (0, 1, 0, 0) / 0 = 75' = 0 = 75' = 0$ $\hat{L}_{x} = (0, 0, 0, 1, 0, 0) / 0 = 75' = 0 = 75' = 0$ $\hat{L}_{x} = (0, 0, 0, 1, 0, 0) / 0 = 75' = 0$ $\hat{L}_{x} = (0, 0, 0, 0, 0, 0, 0) / 0 = 75' = 0$ $\hat{L}_{x} = (0, 0, 0, 0, 0, 0, 0) / 0 = 75' = 0$ $\hat{L}_{x} = (0, 0, 0, 0, 0, 0, 0) / 0 = 75' = 0$ $\hat{L}_{x} = (0, 0, 0, 0, 0, 0, 0) / 0 = 75' = 0$ $\hat{L}_{x} = (0, 0, 0, 0, 0, 0, 0) / 0 = 75' = 0$	-			+	_	-	-	-	-	-	-	-		\vdash	H	-	-	-		-		-	_	-							-	=	-	1	-
$\hat{L}_{x} \hat{S}^{x} = (0, 1, 0, 0) / 0 / = 51 = 0$ $\hat{L}_{x} \hat{S}^{x} = (0, 1, 0, 0) / 0 / = 75' = 0 -75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 1, 0, 0) / 0 / = 75' = 0 -75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$ $\hat{S}^{x} \hat{S}^{x} = (0, 0, 0, 1, 0, 0) / 0 / = 75' = 0$	Vaso	K =		-1	0,	0,	0			1	-		-5	0	=	0															ď.				_
$\hat{\mathcal{L}}_{x} = (0,1,0,0) / 0 / = 51 = 0$ $\hat{\mathcal{L}}_{x} = (0,0,0,0) / 0 / = 75^{2} = 0$ $\hat{\mathcal{L}}_{x} = (0,0,0,0) / 0 / = 75^{2} = 0$ $\hat{\mathcal{L}}_{x} = (0,0,0,0) / 0 / = 75^{2} = 0$ $\hat{\mathcal{L}}_{x} = (0,0,0,0) / 0 / = 75^{2} = 0$ $\hat{\mathcal{L}}_{x} = (0,0,0,0) / 0 / = 75^{2} = 0$ $\hat{\mathcal{L}}_{x} = (0,0,0,0) / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /$		<u>.</u>	_	_	_	_	_	H	2	1	-	-	-	-	_	-	-	-	-	-	_	_	_	_				_		_	_	_		-	-
$\hat{L}_{x}\hat{S}^{x} = (0,1,0,0) / 0 / = 51 = 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / = 75^{2} = 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / 0 / = 75^{2} = 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / 0 / = 75^{2} = 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / 0 / = 75^{2} = 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / 0 / = 75^{2} = 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / 0 / = 75^{2} = 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / 0 / 0 / 0 / 0 / 0 / 0$ $\hat{L}_{x}\hat{S}^{x} = (0,0,0,0) / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /$			-	-		-	-	-	12	1	-	-	-	-	-	3		-	-		Jan-1		_	-	1		7,000		-	-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~~									_															~										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ka Sa	=	0	رن	1,0	0)-/			=	-	<u>P.</u>	=	C	-		-	_	_	Tak.	-	-	_	*	1	free!	100	_	_	-	_	_	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-				•	-	1	2	2	\vdash	-					-	-		1	-		,	-	-	-	-					-		1		
$ \begin{array}{c} \overline{S}_{\alpha} \overline{S}^{\alpha} = (0, 0, 0, 159, 0), 0 \\ \overline{S}_{\alpha} \overline{S}^{\alpha} = (0, 0, 0, 159, 0), 0 \\ \overline{S}^{\beta} = 0, 0 \end{array} $ $ \begin{array}{c} \overline{S}^{\beta} = 0, 0, 0, 159, 0, 0 \end{array} $ $ \begin{array}{c} \overline{S}^{\beta} = 0, 0, 0, 159, 0, 0 \end{array} $							1	5	17		L																								_
$ \begin{array}{c} \overline{S}_{\alpha} \overline{S}^{\alpha} = (0, 0, 0, 159, 0), 0 \\ \overline{S}_{\alpha} \overline{S}^{\alpha} = (0, 0, 0, 159, 0), 0 \\ \overline{S}^{\beta} = 0, 0 \end{array} $ $ \begin{array}{c} \overline{S}^{\beta} = 0, 0, 0, 159, 0, 0 \end{array} $ $ \begin{array}{c} \overline{S}^{\beta} = 0, 0, 0, 159, 0, 0 \end{array} $	î ē	2	_	7	_	-			-	72	1-	1	-	0	_	_	-	-	2	_	_	_	_	-	-	4	-	-	_	-	-	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Las	-	=	(0	ر	11	0)	6	1	=	1	1	-	0	-	-	<u>-</u> 7_	1	-	U	-	-	-	-	-	.000		-	-		_	-			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								3	2					=						-		-											4		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array}$		-	-	_	_	_	_	1.2	7.	_	-	-	-			_	-	_				_	-	-	-	_	-		_	-	_	H	-	-	-
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array}$	7.7	Ç.	-/	o.	5,0	10	10	10	10	1	-	7	-	5	-	_	1	FS	en 6	-		-	-	\vdash	-	-		-	_						-
\$7 = 0 (3nb)	00.0								1	1		-																						-	_
\$7 = 0 (3nb)	-	-	_		_	_	_	-	1 5	3	-			-		_	-	_		_			-	-	-	-	-	-	_	-	_	-	-	-	
	-			_	-	-	-	-	10	-	-	-	0)	-	-	-	-	=	-		40	1.50	-	T	-	-	-	-							-
(300)		1		_																					_			1000					-	-	
	2 =		0	1	-	_	_	-	-	-	-	-	-	_	-	-	-	- 1	7	-	-	-			-	-	-	-	-	-	-	-	-	-	-
	-	1	5	-	-	-	-	-	-	-	-	-	-	-	-		1				7	-	-												-
	-		- 11														L							L									1300	-	
	-	-		-	_	_	_	-	-	-	-	-	-	-	_	-	-	-			_	-	-	-	-	-	-	-	-	-	-	-	-	-	tes
	-	\vdash		1					-	-	-	-	-		-	-		-	-																
	the state of the state of				_												L								_			_	_	-					-

