IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Lecture 20: Paging

Agenda

- Recap
- Paging
 - Address Translation
- Midterm 1 Feedback

- Free-Space Management
 - Linked list (version 2): link free chunks

- Free-Space Management
 - Linked list (version 2): link free chunks
 - tracking the size of allocated regions via headers
 - The size of the allocated region is the size of the header plus the size of the space allocated to the user.

- Free-Space Management
 - Segregated List
 - Keeping free chunks in different size in a separate list for the size of popular request.
 - Slab allocator
 - Buddy Allocation

- Paging Concepts
 - split up address space into fixed-size units called pages
 - physical memory is also split into fixed-size units called page frames
 - Flexibility & simplicity

128-Byte Physical Memory

Agenda

- Recap
- Paging
 - Address Translation
- Midterm 1 Feedback

 How to map a virtual address (logical address) to a physical address in paging?

- Use a page table
 - contains the base address of each page in physical memory
 - each process has its own page table
- Each virtual address is divided into two parts:
 - VPN: virtual page number (p)
 - used as an index into the page table
 - Offset: offset within the page (d)

page number	page offset
р	d
m -n	n

• E.g., a 2^m bytes address space with page size 2ⁿ

- Paging hardware
 - Process generates a virtual address (logical address)
 - Virtual address is translated into a physical address

- Paging hardware
 - Memory management unit (MMU)

- Paging examples
 - 4-page address space to 8-frame physical memory

- Paging examples
 - The virtual address 21 in 64-byte address space
 - $64 = 2^6$
 - 21: 0x010101

Agenda

- Recap
- Paging
 - Address Translation
- Midterm 1 Feedback

Overview

- Some observations
 - Top scorers
 - attended the class regularly
 - participated in Q&A actively
 - Those sent emails to me about class participation are above average in general
 - followed the instructions

If you did not do well ...

- If you did not do well ...
 - Don't lose heart
 - Midterm 1 only accounts for 10% of your final grade
 - OS (and systems in general) is a very practical area
 - score on paper does not necessarily indicate your potential in practice

- If you did not do well ...
 - Don't lose heart
 - Midterm 1 only accounts for 10% of your final grade
 - OS (and systems in general) is a very practical area
 - score on paper does not necessarily indicate your potential in practice
 - You may want to adjust your study method to secure a high GPA
 - Attend class (more regularly)
 - Ask questions (more frequently)
 - Visit office hours (more frequently)
 - Spend (more) time
 - •