AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding

External Registers

TRCQCTLR, Q Element Control Register

The TRCQCTLR characteristics are:

Purpose

Controls when Q elements are enabled.

Configuration

External register TRCQCTLR bits [31:0] are architecturally mapped to AArch64 System register TRCQCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented and TRCIDR0.QFILT == 1. Otherwise, direct accesses to TRCQCTLR are res0.

Attributes

TRCQCTLR is a 32-bit register.

Field descriptions

313029282726252423222120191817161514131211109	8	7	6	5	4	3
RES0	MODE	RANGE[7]	RANGE[6]	RANGE[5]	RANGE[4]	RANG

Bits [31:9]

Reserved, res0.

MODE, bit [8]

Selects whether the Address Range Comparators selected by TRCQCTLR.RANGE indicate address ranges where the trace unit is permitted to generate Q elements or address ranges where the trace unit is not permitted to generate Q elements:

11022 110411119	MODE	Meaning
-----------------	-------------	---------

	0b0	Exclude mode.
		The Address Range
		Comparators selected by
		TRCQCTLR.RANGE indicate
		address ranges where the trace
		unit must not generate Q
		elements. If no ranges are
		selected, Q elements are
		permitted across the entire
		memory map.
	0b1	Include Mode.
		The Address Range
		Comparators selected by
		TRCQCTLR.RANGE indicate
		address ranges where the trace
		unit can generate Q elements. If
		all the implemented bits in
		RANGE are set to 0 then Q
		elements are disabled.
_		

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

RANGE[<m>], bit [m], for m = 7 to 0

Specifies whether Address Range Comparator <m> controls Q elements.

RANGE[<m>]</m>	Meaning
0b0	The address range that
	Address Range
	Comparator <m></m>
	defines, is not selected.
0b1	The address range that
	Address Range
	Comparator <m></m>
	defines, is selected.

This bit is res0 if $m \ge TRCIDR4$.NUMACPAIRS.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Accessing TRCQCTLR

Must be programmed if TRCCONFIGR.QE != 0b00.

Writes are constrained unpredictable if the trace unit is not in the Idle state.

TRCQCTLR can be accessed through the external debug interface:

Component	Offset	Instance	
ETE	0×044	TRCQCTLR	

This interface is accessible as follows:

- When OSLockStatus(), or !AllowExternalTraceAccess() or ! IsTraceCorePowered(), accesses to this register generate an error response.
- Otherwise, accesses to this register are RW.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
Registers	Registers	<u>Instructions</u>	<u>Instructions</u>	Encoding	Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.