HOL-TestGen 1.9.1 *User Guide*

http://www.brucker.ch/projects/hol-testgen/

Achim D. Brucker Lukas Brügger Abderrahmane Feliachi Chantal Keller Matthias P. Krieger Delphine Longuet Yakoub Nemouchi Frederic Tuong Burkhart Wolff

August 31, 2017

Department of Computer Science The University of Sheffield S14DP Sheffield UK Laboratoire en Recherche en Informatique (LRI) Université Paris-Sud 11 91405 Orsay Cedex France Copyright © 2003–2012 ETH Zurich, Switzerland

Copyright © 2007–2015 Achim D. Brucker, Germany

Copyright © 2008–2016 University Paris-Sud, France

Copyright © 2016 The University of Sheffield, UK

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Note:

This manual describes HOL-TestGen version 1.9.1 (r13171). The manual of version 1.8.0 is also available as technical report number 1586 from the Laboratoire en Recherche en Informatique (LRI), Université Paris-Sud 11, France.

Contents

1.	Introduction	5				
2.	Preliminary Notes on Isabelle/HOL 2.1. Higher-order logic — HOL					
3.	Installation 3.1. Prerequisites	9				
4.	Using HOL-TestGen 4.1. HOL-TestGen: An Overview	11 17 17 19				
5.	Examples 5.1. List	21 21				
6.	Testing List Properties 6.1. Bank	2 9				
7.	. A Simple Deterministic Bank Model 5					
8.	A Simple Non-Deterministic Bank Model 8.1. MyKeOS	61				
9.	The MyKeOS Case Study	65				
10	.The MyKeOS "Traditional" Data-sequence enumeration approach	71				
Α.	Glossary	87				

1. Introduction

Today, essentially two validation techniques for software are used: software verification and software testing. Whereas verification is rarely used in "real" software development, testing is widely-used, but normally in an ad-hoc manner. Therefore, the attitude towards testing has been predominantly negative in the formal methods community, following what we call Dijkstra's verdict [13, p.6]:

"Program testing can be used to show the presence of bugs, but never to show their absence!"

More recently, three research areas, albeit driven by different motivations, converge and result in a renewed interest in testing techniques:

- **Abstraction Techniques:** model-checking raised interest in techniques to abstract infinite to finite models. Provided that the abstraction has been proven sound, testing may be sufficient for establishing correctness [3, 12].
- **Systematic Testing:** the discussion over *test adequacy criteria* [26], i.e. criteria solving the question "when did we test enough to meet a given test hypothesis," led to more systematic approaches for *partitioning* the space of possible test data and the choice of representatives. New systematic testing methods and abstraction techniques can be found in [16, 14].
- **Specification Animation:** constructing counter-examples has raised interest also in the theorem proving community, since combined with animations of evaluations, they may help to find modelling errors early and to increase the overall productivity [2, 17, 11].

The first two areas are motivated by the question "are we building the program right?" the latter is focused on the question "are we specifying the right program?" While the first area shows that Dijkstra's Verdict is no longer true under all circumstances, the latter area shows, that it simply does not apply in practically important situations. In particular, if a formal model of the environment of a software system (e.g. based among others on the operation system, middleware or external libraries) must be reverse-engineered, testing ("experimenting") is without alternative (see [7]).

Following standard terminology [26], our approach is a *specification-based unit test*. In general, a test procedure for such an approach can be divided into:

- **Test Case Generation:** for each operation the pre/postcondition relation is divided into sub-relations. It assumes that all members of a sub-relation lead to a similar behavior of the implementation.
- **Test Data Generation:** (also: Test Data Selection) for each test case (at least) one representative is chosen so that coverage of all test cases is achieved. From the resulting test data, test input data processable by the implementation is extracted.

Test Execution: the implementation is run with the selected test input data in order to determine the test output data.

Test Result Verification: the pair of input/output data is checked against the specification of the test case.

The development of HOL-TestGen [8] has been inspired by [15], which follows the line of specification animation works. In contrast, we see our contribution in the development of techniques mostly on the first and to a minor extent on the second phase.

Building on QuickCheck [11], the work presented in [15] performs essentially random test, potentially improved by hand-programmed external test data generators. Nevertheless, this work also inspired the development of a random testing tool for Isabelle [2]. It is well-known that random test can be ineffective in many cases; in particular, if preconditions of a program based on recursive predicates like "input tree must be balanced" or "input must be a typable abstract syntax tree" rule out most of randomly generated data. HOL-TestGen exploits these predicates and other specification data in order to produce adequate data, combining automatic data splitting, automatic constraint solving, and manual deduction.

As a particular feature, the automated deduction-based process can log the underlying test hypothesis made during the test; provided that the test hypothesis is valid for the program and provided the program passes the test successfully, the program must guarantee correctness with respect to the test specification, see [6, 9] for details.

2. Preliminary Notes on Isabelle/HOL

2.1. Higher-order logic — HOL

Higher-order logic (HOL) [10, 1] is a classical logic with equality enriched by total polymorphic higher-order functions. It is more expressive than first-order logic, since e.g. induction schemes can be expressed inside the logic. Pragmatically, HOL can be viewed as a combination of a typed functional programming language like Standard ML (SML) or Haskell extended by logical quantifiers. Thus, it often allows a very natural way of specification.

2.2. Isabelle

Isabelle [21, 18] is a *generic* theorem prover. New object logics can be introduced by specifying their syntax and inference rules. Among other logics, Isabelle supports first order logic (constructive and classical), Zermelo-Fränkel set theory and HOL, which we chose as the basis for the development of HOL-TestGen.

Isabelle consists of a logical engine encapsulated in an abstract data type thm in Standard ML; any thm object has been constructed by trusted elementary rules in the kernel. Thus Isabelle supports user-programmable extensions in a logically safe way. A number of generic proof procedures (tactics) have been developed; namely a simplifier based on higher-order rewriting and proof-search procedures based on higher-order resolution.

We use the possibility to build on top of the logical core engine own programs performing symbolic computations over formulae in a logically safe (conservative) way: this is what HOL-TestGen technically is.

¹to be more specific: parametric polymorphism

3. Installation

3.1. Prerequisites

HOL-TestGen is built on top of Isabelle/HOL, version 2016-1, thus you need a working installation of *Isabelle 2016-1*. To install Isabelle, follow the instructions on the Isabelle web-site:

http://isabelle.in.tum.de/website-Isabelle2016-1/index.html

3.2. Installing HOL-TestGen

In the following we assume that you have a running Isabelle 2016-1 environment. The installation of HOL-TestGen requires the following steps:

1. Unpack the HOL-TestGen distribution, e.g.:

```
tar zxvf hol-testgen-1.9.1.tar.gz
```

This will create a directory hol-testgen-1.9.1 containing the HOL-TestGen distribution.

```
cd hol-testgen-1.9.1
```

and build the HOL-TestGen heap image for Isabelle by calling

```
isabelle build -d . -b HOL-TestGen
```

3.3. Starting HOL-TestGen

HOL-TestGen can now be started using the isabelle command:¹

```
isabelle jedit -d . -l HOL-TestGen "examples/unit/List/List_test.thy"
```

After a few seconds you should see an jEdit window similar to the one shown in Figure 3.1. Alternatively, the example can be run in batch mode, e.g.,

```
isabelle build -d . HOL-TestGen-List
```

¹Note that the isabelle command must be provided by Isabelle 2016-1.

```
List_test.thy (modified)
List_test.thy (~/codebox/hol-testgen/examples/List/)
                                                                                                             0
   test_spec "sort l = PUT l"
    apply(gen_test_cases 4 1 "PUT")
     txt {*
         which leads after 2 seconds to the following test partitioning (excerpt):
         @{subgoals [display, goals_limit=10]}
        +}
     store test thm "is sorting algorithm"
   thm is_sorting_algorithm.test_thm
  declare [[testgen_iterations=100]]
  gen_test_data "is_sorting_algorithm"
  thm is sorting algorithm.test data
  text{* We obtain test cases like:

■ Tracing 

Auto update Update

[] = PUT [] [[] = PUT []]
[-6] = PUT [-6] [[-6] = PUT [-6]]
[-10, 6] = PUT [-10, 6] [[-10, 6] = PUT [-10, 6]]
[-10, -1] = PUT [-1, -10] [[-10, -1] = PUT [-1, -10]]

[-10, -2, 3] = PUT [-10, -2, 3] [[-10, -2, 3] = PUT [-10, -2, 3]]

[-5, -1, -1] = PUT [-5, -1, -1] [[-5, -1, -1] = PUT [-5, -1, -1]]
[-7, 2, 9] = PUT [2, 9, -7] [[-7, 2, 9] = PUT [2, 9, -7]]
[-2, 2, 4] = PUT [2, -2, 4] [[-2, 2, 4] = PUT [2, -2, 4]]
[-5, -4, 9] = PUT [9, -5, -4] [[-5, -4, 9] = PUT [9, -5, -4]]
[-7, -2, 0] = PUT [0, -2, -7] [[-7, -2, 0] = PUT [0, -2, -7]]
[-10, -7, 4, 6] = PUT [-10, -7, 4, 6] [[-10, -7, 4, 6] = PUT [-10, -7, 4, 6]]
[-8, 1, 2, 3] = PUT [-8, 1, 3, 2] [[-8, 1, 2, 3] = PUT [-8, 1, 3, 2]]
[-10, -7, 9, 10] = PUT [-10, 9, 10, -7] [[-10, -7, 9, 10] = PUT [-10, 9, 10, -7]]
[-7, -1, 0, 7] = PUT [-1, 0, 7, -7] [[-7, -1, 0, 7] = PUT [-1, 0, 7, -7]]
[-10, 6, 7, 10] = PUT [6, -10, 7, 10] [[-10, 6, 7, 10] = PUT [6, -10, 7, 10]]
□ ▼ Output Prover Session
287,18 (10196/12319)
                                                                     (isabelle,sidekick,UTF-8-Isabelle)Him ro UCESS 239Mb 18:05
```

Figure 3.1.: A HOL-TestGen session Using the jEdit Interface of Isabelle

4. Using HOL-TestGen

4.1. HOL-TestGen: An Overview

HOL-TestGen allows one to automate the interactive development of test cases, refine them to concrete test data, and generate a test script that can be used for test execution and test result verification. The test case generation and test data generation (selection) is done in an Isar-based [25] environment (see Figure 4.1 for details). The test executable (and the generated test script) can be built with any SML-system.

4.2. Test Case and Test Data Generation

In this section we give a brief overview of HOL-TestGen related extension of the Isar [25] proof language. We use a presentation similar to the one in the *Isar Reference Manual* [25], e. g. "missing" non-terminals of our syntax diagrams are defined in [25]. We introduce the HOL-TestGen syntax by a (very small) running example: assume we want to test a function that computes the maximum of two integers.

Starting your own theory for testing: For using HOL-TestGen you have to build your Isabelle theories (i. e. test specifications) on top of the theory Testing instead of Main. A sample theory is shown in Table 4.1.

Defining a test specification: Test specifications are defined similar to theorems in Isabelle, e.g.,

would be the test specification for testing a simple program computing the maximum value of two integers. The syntax of the keyword $test_spec: theory \rightarrow proof(prove)$ is given by:

Please look into the Isar Reference Manual [25] for the remaining details, e.g. a description of $\langle contextelem \rangle$.

Figure 4.1.: Overview of the system architecture of HOL-TestGen

```
test_spec "prog a b = max a b"
apply(gen_test_cases "prog" simp: max_def)
mk_test_suite "max_test"

gen_test_data "max_test"

print_conc_tests max_test

generate_test_script "max_test"

thm max_test.test_script

text {* Testing an SML implementation: *}
export_code max_test.test_script in SML module_name TestScript file "impl/sml/max_test_script.sml"

text {* Finally, we export the raw test data in an XML-like format: *}
export_test_data "impl/data/max_data.dat" max_test
end
```

Table 4.1.: A simple Testing Theory

Generating symbolic test cases: Now, abstract test cases for our test specification can (automatically) be generated, e.g. by issuing

```
apply(gen_test_cases "prog" simp: max_def)
```

The gen_test_cases: method tactic allows to control the test case generation in a fine-granular manner:

$$ightharpoonup$$
 gen_test_cases $\cup{(depth) - (breadth)} \cup{(progname)} \cup{(clamsimpmod)}$

where $\langle depth \rangle$ is a natural number describing the depth of the generated test cases and $\langle breadth \rangle$ is a natural number describing their breadth. Roughly speaking, the $\langle depth \rangle$ controls the term size in data separation lemmas in order to establish a regularity hypothesis (see [6] for details), while the $\langle breadth \rangle$ controls the number of variables occurring in the test specification for which regularity hypotheses are generated. The default for $\langle depth \rangle$ and $\langle breadth \rangle$ is 3 resp. 1. $\langle progname \rangle$ denotes the name of the program under test. Further, one can control the classifier and simplifier sets used internally in the gen_test_cases tactic using the optional $\langle clasimpmod \rangle$ option:

The generated test cases can be further processed, e.g., simplified using the usual Isabelle/HOL tactics.

Creating a test suite: HOL-TestGen provides a kind of container, called *test-suites*, which store all relevant logical and configuration information related to a particular test-scenario. Test-suites were initially created after generating the test cases (and test hypotheses); you should store your result of the derivation, usually the test-theorem which is the output of the test-generation phase, in a test suite by:

```
mk test suite "max test"
```

for further processing. This is done using the $mk_test_suite: proof(prove) \rightarrow proof(prove) \mid theory$ command which also closes the actual "proof state" (or test state. Its syntax is given by:

where $\langle name \rangle$ is a fresh identifier which is later used to refer to this test state. This name is even used at the very end of the test driver generation phase, when test-executions are performed (externally to HOL-TestGen in a shell). Isabelle/HOL can access the corresponding test theorem using the identifier $\langle name \rangle$.test_thm, e.g.:

```
thm max test.test thm
```

Generating test data: In a next step, the test cases can be refined to concrete test data:

```
gen test data "max test"
```

The $gen_test_data: theory|proof \rightarrow theory|proof$ command takes only one parameter, the name of the test suite for which the test data should be generated:

```
→ gen_test_data - ⟨name⟩ -----
```

After the successful execution of this command Isabelle can access the test hypotheses using the command print_thyps $\langle name \rangle$ and the test data using the command print_conc_tests $\langle name \rangle$

```
print_thyps max_test
print_conc_tests max_test
```

In our concrete example, we get the output:

```
THYP ((\exists x \ xa. \ x \le xa \land prog \ x \ xa = xa) \longrightarrow (\forall x \ xa. \ x \le xa \longrightarrow prog \ x \ xa = xa))
THYP ((\exists x \ xa. \ \neg x \le xa \land prog \ x \ xa = x) \longrightarrow (\forall x \ xa. \ \neg x \le xa \longrightarrow prog \ x \ xa = x))
```

as well as:

$$prog -9 -3 = -3$$

 $prog -5 -8 = -5$

By default, generating test data is done by calling the *random solver*. This is fine for such a simple example, but as explained in the introduction, this is far incomplete when the involved data-structures become more complex. To handle them, HOL-TestGen also comes with a more advanced data generator based on *SMT solvers* (using their integration in Isabelle, see e. g. [4]).

To turn on SMT-based data generation, use the following option:

```
declare [[testgen SMT]]
```

(which is thus set to false by default). It is also recommended to turn off the random solver:

```
declare [[ testgen iterations =0]]
```

In order for the SMT solver to know about constant definitions and properties, one needs to feed it with these definitions and lemmas. For instance, if the test case involves some inductive function foo, you can provide its definition to the solver using:

```
declare foo.simps [testgen smt facts]
```

as well as related properties (if needed).

A complete description of the configuration options can be found below.

Note that the SMT solver which is used is Z3, which is restricted to non-commercial use in Isabelle. Hence you can use the SMT backend only for academic purposes. To make this clear, you need to define (in your operating system) the following environment variable:

Exporting test data: After the test data generation, HOL-TestGen is able to export the test data into an external file, e.g.:

```
export test data "test max.dat" "max test"
```

exports the generated test data into a file text_max.dat. The generation of a test data file is done using the export_test_data: $theory|proof \rightarrow theory|proof$ command:

```
ightharpoonup export_test_data - \langle filename \rangle - \langle name \rangle \overline{\hspace{1cm}} \langle smlprogname \rangle \overline{\hspace{1cm}}
```

where $\langle filename \rangle$ is the name of the file in which the test data is stored and $\langle name \rangle$ is the name of a collection of test data in the test environment.

Generating test scripts: After the test data generation, HOL-TestGen is able to generate a test script, e.g.:

produces the test script shown in Table 4.2 that (together with the provided test harness) can be used to test real implementations. The generation of test scripts is done using the *generate test script: theory|proof* \rightarrow *theory|proof* command:

where $\langle filename \rangle$ is the name of the file in which the test script is stored, and $\langle name \rangle$ is the name of a collection of test data in the test environment, and $\langle progname \rangle$ the name of the program under test. The optional parameter $\langle smlprogname \rangle$ allows for the configuration of different names of the program under test that is used within the test script for calling the implementation.

Alternatively, the code-generator can be configured to generate test-driver code in other programming languages, see below.

Configure HOL-TestGen: The overall behavior of test data and test script generation can be configured, e.g.

```
declare [[ testgen iterations =15]]
```

The parameters (all prefixed with testgen) have the following meaning:

depth: Test-case generation depth. Default: 3. breadth: Test-case generation breadth. Default: 1.

bound: Global bound for data statements. Default: 200.

case_breadth: Number of test data per case, weakening uniformity. Default: 1. iterations: Number of attempts during random solving phase. Default: 25.

Set to 0 to turn off the random solver.

gen prelude: Generate datatype specific prelude. Default: true.

```
structure TestDriver : sig end = struct
    val return
                  = ref ~63;
    fun eval x2 x1 = let
                        val ret = myMax.max x2 x1
                       ((return := ret);ret)
                    end
    fun retval () = SOME(!return);
     fun toString a = Int.toString a;
     val testres = [];
    val pre_0 = [];
    val post_0 = fn () => ( (eval ~23 69 = 69));
     val res_0 = TestHarness.check retval pre_0 post_0;
     val testres = testres@[res_0];
    val pre_1 = [];
    val post_1 = fn () => ( (eval ~11 ~15 = ~11));
18
    val res_1 = TestHarness.check retval pre_1 post_1;
    val testres = testres@[res_1];
    val _ = TestHarness.printList toString testres;
23 end
```

Table 4.2.: Test Script

gen_wrapper: Generate wrapper/logging-facility (increases verbosity of the gen-

erated test script). Default: true.

SMT: If set to "true" external SMT solvers (e.g., Z3) are used during

test-case generation. Default: false.

smt facts: Add a theorem to the SMT-based data generator basis.

toString: Type-specific SML-function for converting literals into strings

(e.g., Int.toString), used for generating verbose output while

executing the generated test script. Default: "".

setup_code: Customized setup/initialization code (copied verbatim to gener-

ated test script). Default: "".

dataconv code: Customized code for converting datatypes (copied verbatim to

generated test script). Default: "".

type_range_bound: Bound for choosing type instantiation (effectively used elements

type grounding list). Default: 1.

type candidates: List of types that are used, during test script generation, for in-

stantiating type variables (e.g., α list). The ordering of the types determines their likelihood of being used for instantiating a poly-

morphic type. Default: [int, unit, bool, int set, int list]

```
structure myMax = struct
  fun max x y = if (x < y) then y else x
end</pre>
```

Table 4.3.: Implementation in SML of max

Configuring the test data generation: Further, an attribute *test*: attribute is provided, i. e.:

4.3. Test Execution and Result Verification

In principle, any SML-system, e.g. [24, 22, 23, 19, 20], should be able to run the provided test-harness and generated test-script. Using their specific facilities for calling foreign code, testing of non-SML programs is possible. For example, one could test

- implementations using the .Net platform (more specific: CLR IL), e.g. written in C# using sml.net [23],
- implementations written in C using, e.g. the foreign language interface of sml/NJ [24] or MLton [20],
- implementations written in Java using mlj [19].

Also, depending on the SML-system, the test execution can be done within an interpreter (it is even possible to execute the test script within HOL-TestGen) or using a compiled test executable. In this section, we will demonstrate the test of SML programs (using SML/NJ or MLton) and ANSI C programs.

4.3.1. Testing an SML-Implementation

Assume we have written a max-function in SML (see Table 4.3) stored in the file max.sml and we want to test it using the test script generated by HOL-TestGen. Following Figure 4.1 we have to build a test executable based on our implementation, the generic test harness (harness.sml) provided by HOL-TestGen, and the generated test script (test_max.sml), shown in Table 4.2.

If we want to run our test interactively in the shell provided by sml/NJ, we just have to issue the following commands:

Table 4.4.: Test Trace

```
use "harness.sml";
use "max.sml";
use "test_max.sml";
```

After the last command, sml/NJ will automatically execute our test and you will see a output similar to the one shown in Table 4.4.

If we prefer to use the compilation manager of sml/NJ, or compile our test to a single test executable using MLton, we just write a (simple) file for the compilation manager of sml/NJ (which is understood both, by MLton and sml/NJ) with the following content:

```
Group is
harness.sml
max.sml
test_max.sml

#if(defined(SMLNJ_VERSION))
    $/basis.cm
    $smlnj/compiler/compiler.cm
#else
#endif
and store it as test.cm. We have two options, we can
```

• use sml/NJ: we can start the sml/NJ interpreter and just enter

```
CM.make("test.cm")
```

which will build a test setup and run our test.

• use MLton to compile a single test executable by executing

Table 4.5.: Implementation in ANSI C of max

```
mlton test.cm
```

on the system shell. This will result in a test executable called test which can be directly executed.

In both cases, we will get a test output (test trace) similar to the one presented in Table 4.4.

4.3.2. Testing Non-SML Implementations

Suppose we have an ANSI C implementation of max (see Table 4.5) that we want to test using the foreign language interface provided by MLton. First we have to import the max method written in C using the _import keyword of MLton. Further, we provide a "wrapper" function doing the pairing of the curried arguments:

```
structure myMax = struct
  val cmax = _import "max": int * int -> int ;
  fun max a b = cmax(a,b);
end
```

We store this file as max.sml and write a small configuration file for the compilation manager:

```
Group is
harness.sml
max.sml
test_max.sml
```

We can compile a test executable by the command

```
mlton -default-ann 'allowFFI true' test.cm max.c
```

on the system shell. Again, we end up with an test executable **test** which can be called directly. Running our test executable will result in trace similar to the one presented in Table 4.4.

4.4. Profiling Test Generation

HOL-TestGen includes support for profiling the test procedure. By default, profiling is turned off. Profiling can be turned on by issuing the command

```
→ profiling_on →
```

Profiling can be turned off again with the command

→ stop_clock - ⟨name⟩ -

When profiling_off

When profiling is turned on, the time consumed by gen_test_cases and gen_test_data is recorded and associated with the test theorem. The profiling results can be printed by

print_clocks

A LaTeX version of the profiling results can be written to a file with the command

write_clocks - ⟨filename⟩

Users can also record the runtime of their own code. A time measurement can be started by issuing

start_clock - ⟨name⟩

where ⟨name⟩ is a name for identifying the time measured. The time measurement is completed by

where $\langle name \rangle$ has to be the name used for the preceding start_clock. If the names do not match, the profiling results are marked as erroneous. If several measurements are performed using the same name, the times measured are added. The command

→ next_clock — ----

proceeds to a new time measurement using a variant of the last name used.

These profiling instructions can be nested, which causes the names used to be combined to a path. The Clocks structure provides the tactic analogues start_clock_tac, stop_clock_tac and next_clock_tac to these commands. The profiling features available to the user are independent of HOL-TestGen's profiling flag controlled by profiling_on and profiling_off.

5. Examples

5.1. List

```
Implementation of integer numbers by target-language integers theory Code-Target-Int
```

```
imports ../GCD
begin
{\bf code\text{-}datatype}\ \mathit{int\text{-}of\text{-}integer}
declare [[code drop: integer-of-int]]
context
includes integer.lifting
begin
lemma [code]:
 integer-of-int (int-of-integer k) = k
 by transfer rule
lemma [code]:
  Int.Pos = \textit{int-of-integer} \circ \textit{integer-of-num}
 by transfer (simp add: fun-eq-iff)
lemma [code]:
  Int.Neg = int-of-integer \circ uminus \circ integer-of-num
 by transfer (simp add: fun-eq-iff)
lemma [code-abbrev]:
  int-of-integer (numeral\ k) = Int.Pos\ k
 by transfer simp
\mathbf{lemma}\ [\mathit{code-abbrev}]:
 int-of-integer (-numeral\ k) = Int.Neg\ k
 by transfer simp
lemma [code, symmetric, code-post]:
  \theta = int-of-integer \theta
 by transfer simp
lemma [code, symmetric, code-post]:
  1 = int\text{-}of\text{-}integer 1
 by transfer simp
```

```
lemma [code-post]:
  int-of-integer (-1) = -1
  by simp
lemma [code]:
  k + l = int\text{-}of\text{-}integer (of\text{-}int k + of\text{-}int l)
  by transfer simp
lemma [code]:
  -k = int - of - integer (- of - int k)
  by transfer simp
lemma [code]:
  k - l = int\text{-}of\text{-}integer (of\text{-}int k - of\text{-}int l)
  by transfer simp
lemma [code]:
  Int.dup\ k = int-of\text{-}integer\ (Code\text{-}Numeral.dup\ (of\text{-}int\ k))
  by transfer simp
declare [[code drop: Int.sub]]
lemma [code]:
  k * l = int\text{-}of\text{-}integer (of\text{-}int k * of\text{-}int l)
  by simp
lemma [code]:
  k \ div \ l = int\text{-}of\text{-}integer \ (of\text{-}int \ k \ div \ of\text{-}int \ l)
  by simp
lemma [code]:
  k \mod l = int\text{-}of\text{-}integer (of\text{-}int k \mod of\text{-}int l)
  by simp
lemma [code]:
  divmod\ m\ n=map-prod\ int-of-integer\ int-of-integer\ (divmod\ m\ n)
  {\bf unfolding}\ prod\text{-}eq\text{-}iff\ divmod\text{-}def\ map\text{-}prod\text{-}def\ case\text{-}prod\text{-}beta\ fst\text{-}conv\ snd\text{-}conv
  by transfer simp
lemma [code]:
  HOL.equal\ k\ l=HOL.equal\ (of\mbox{-}int\ k::integer)\ (of\mbox{-}int\ l)
  by transfer (simp add: equal)
lemma [code]:
  k \leq l \longleftrightarrow (\textit{of-int } k :: \textit{integer}) \leq \textit{of-int } l
  by transfer rule
lemma [code]:
  k \, < \, l \, \longleftrightarrow \, (\textit{of-int} \, \, k \, :: \, \textit{integer}) \, < \, \textit{of-int} \, \, l
  by transfer rule
declare [[code drop: gcd :: int \Rightarrow -lcm :: int \Rightarrow -]]
```

```
lemma gcd-int-of-integer [code]:
  gcd\ (int\text{-}of\text{-}integer\ x)\ (int\text{-}of\text{-}integer\ y) = int\text{-}of\text{-}integer\ (gcd\ x\ y)
by transfer rule
lemma lcm-int-of-integer [code]:
  lcm (int-of-integer x) (int-of-integer y) = int-of-integer (lcm x y)
by transfer rule
end
lemma (in ring-1) of-int-code-if:
  of-int k = (if k = 0 then 0)
     else if k < 0 then - of-int (-k)
     else let
      l = 2 * of\text{-}int (k div 2);
      j = k \mod 2
     in if j = 0 then l else l + 1)
proof -
 from div-mult-mod-eq have *: of-int k = of-int (k \text{ div } 2 * 2 + k \text{ mod } 2) by simp
 \mathbf{show}~? the sis
   by (simp add: Let-def of-int-add [symmetric]) (simp add: * mult.commute)
declare of-int-code-if [code]
lemma [code]:
  nat = nat\text{-}of\text{-}integer \circ of\text{-}int
 including integer.lifting by transfer (simp add: fun-eq-iff)
code-identifier
 code-module \ Code-Target-Int 
ightharpoonup
    (SML) Arith and (OCaml) Arith and (Haskell) Arith
end
```

Avoidance of pattern matching on natural numbers

```
theory Code-Abstract-Nat imports Main begin
```

When natural numbers are implemented in another than the conventional inductive θ/Suc representation, it is necessary to avoid all pattern matching on natural numbers altogether. This is accomplished by this theory (up to a certain extent).

Case analysis Case analysis on natural numbers is rephrased using a conditional expression:

```
lemma [code, code-unfold]:

case-nat = (\lambda f \ g \ n. \ if \ n = 0 \ then \ f \ else \ g \ (n-1))

by (auto simp add: fun-eq-iff dest!: gr0-implies-Suc)
```

Preprocessors The term $Suc\ n$ is no longer a valid pattern. Therefore, all occurrences of this term in a position where a pattern is expected (i.e. on the left-hand side of a code equation) must be eliminated. This can be accomplished – as far as possible – by applying the following transformation rule:

```
lemma Suc-if-eq:
 assumes \bigwedge n. f(Suc n) \equiv h n
 assumes f \theta \equiv g
 shows f n \equiv if n = 0 then g else h (n - 1)
 by (rule eq-reflection) (cases n, insert assms, simp-all)
  The rule above is built into a preprocessor that is plugged into the code generator.
setup (
let.
val\ Suc\text{-}if\text{-}eq = Thm.incr\text{-}indexes\ 1\ @\{thm\ Suc\text{-}if\text{-}eq\};
fun\ remove\text{-}suc\ ctxt\ thms =
 let
   val vname = singleton (Name.variant-list (map fst
     (fold\ (Term.add-var-names\ o\ Thm.full-prop-of)\ thms\ [])))\ n;
   val\ cv = Thm.cterm-of\ ctxt\ (Var\ ((vname,\ 0),\ HOLogic.natT));
   val\ lhs-of = snd\ o\ Thm.dest-comb\ o\ fst\ o\ Thm.dest-comb\ o\ Thm.cprop-of;
   val \ rhs-of = snd \ o \ Thm.dest-comb \ o \ Thm.cprop-of;
   fun\ find\text{-}vars\ ct = (case\ Thm.term\text{-}of\ ct\ of\ 
       (Const (@\{const-name Suc\}, -) $ Var -) => [(cv, snd (Thm.dest-comb ct))]
     | - $ - =>
       let \ val \ (ct1, \ ct2) = Thm.dest-comb \ ct
         map \ (apfst \ (fn \ ct => Thm.apply \ ct \ ct2)) \ (find-vars \ ct1) \ @
         map (apfst (Thm.apply ct1)) (find-vars ct2)
       end
     | - => []);
   val \ eqs = maps
     (fn\ thm => map\ (pair\ thm)\ (find-vars\ (lhs-of\ thm)))\ thms;
   fun \ mk\text{-}thms \ (thm, (ct, cv')) =
     let
       val thm' =
         Thm.implies-elim
         (Conv.fconv-rule (Thm.beta-conversion true)
           (Thm.instantiate'
             [SOME (Thm.ctyp-of-cterm ct)] [SOME (Thm.lambda cv ct),
               SOME (Thm.lambda cv' (rhs-of thm)), NONE, SOME cv'
             Suc-if-eq)) (Thm.forall-intr cv' thm)
     in
       case map-filter (fn thm^{\prime\prime} =>
          SOME (thm", singleton
            (Variable.trade\ (K\ (fn\ [thm'''] => [thm'''\ RS\ thm']))
              (Variable.declare-thm thm'' ctxt)) thm'')
         handle\ THM - => NONE)\ thms\ of
          | = > NONE
         | thmps =>
```

```
let\ val\ (thms1,\ thms2) = split-list\ thmps
            in SOME (subtract Thm.eq-thm (thm :: thms1) thms @ thms2) end
     end
  in get-first mk-thms eqs end;
fun\ eqn\mbox{-}suc\mbox{-}base\mbox{-}preproc\ ctxt\ thms =
   val \ dest = fst \ o \ Logic.dest-equals \ o \ Thm.prop-of;
   val\ contains\ suc = exists\ Const\ (fn\ (c, -) => c = @\{const\ name\ Suc\});
   if forall (can dest) thms and also exists (contains-suc o dest) thms
     then thms |> perhaps-loop (remove-suc ctxt) |> (Option.map o map) Drule.zero-var-indexes
      else NONE
  end;
val\ eqn\mbox{-}suc\mbox{-}preproc = Code\mbox{-}Preproc.simple\mbox{-}functrans\ eqn\mbox{-}suc\mbox{-}base\mbox{-}preproc;
in
  Code-Preproc.add-functrans (eqn-Suc, eqn-suc-preproc)
end;
end
Implementation of natural numbers by target-language integers
theory Code-Target-Nat
imports Code-Abstract-Nat
begin
Implementation for nat context
includes natural.lifting integer.lifting
begin
lift-definition Nat :: integer \Rightarrow nat
 is nat
lemma [code-post]:
 Nat \ \theta = \theta
  Nat 1 = 1
 Nat (numeral k) = numeral k
 by (transfer, simp)+
lemma [code-abbrev]:
  integer-of-nat = of-nat
 by transfer rule
lemma [code-unfold]:
  Int.nat\ (int\mbox{-}of\mbox{-}integer\ k) = nat\mbox{-}of\mbox{-}integer\ k
```

```
by transfer rule
lemma [code abstype]:
  Code-Target-Nat.Nat (integer-of-nat n) = n
 by transfer simp
lemma [code abstract]:
  integer-of-nat (nat-of-integer k) = max 0 k
 by transfer auto
lemma [code-abbrev]:
 nat\text{-}of\text{-}integer (numeral k) = nat\text{-}of\text{-}num k
 by transfer (simp add: nat-of-num-numeral)
lemma [code abstract]:
  integer-of-nat \ (nat-of-num \ n) = integer-of-num \ n
 by transfer (simp add: nat-of-num-numeral)
lemma [code abstract]:
  integer-of-nat \ \theta = \theta
 \mathbf{by}\ \mathit{transfer}\ \mathit{simp}
lemma [code abstract]:
  integer-of-nat 1 = 1
 by transfer simp
lemma [code]:
  Suc \ n = n + 1
 by simp
lemma [code abstract]:
  integer-of-nat \ (m+n) = of-nat \ m + of-nat \ n
 by transfer simp
lemma [code abstract]:
  integer-of-nat\ (m-n) = max\ 0\ (of-nat\ m-of-nat\ n)
 by transfer simp
lemma [code abstract]:
  integer-of-nat \ (m*n) = of-nat \ m*of-nat \ n
 by transfer (simp add: of-nat-mult)
lemma [code abstract]:
  integer-of-nat \ (m \ div \ n) = of-nat \ m \ div \ of-nat \ n
 by transfer (simp add: zdiv-int)
lemma [code abstract]:
  integer-of-nat \ (m \ mod \ n) = of-nat \ m \ mod \ of-nat \ n
 by transfer (simp add: zmod-int)
lemma [code]:
  Divides.divmod-nat\ m\ n=(m\ div\ n,\ m\ mod\ n)
```

```
by (fact divmod-nat-div-mod)
lemma [code]:
  divmod\ m\ n=map-prod\ nat-of-integer\ nat-of-integer\ (divmod\ m\ n)
 by (simp only: prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv)
   (transfer, simp-all only: nat-div-distrib nat-mod-distrib
       zero-le-numeral nat-numeral)
lemma [code]:
  HOL.equal\ m\ n = HOL.equal\ (of-nat\ m\ ::\ integer)\ (of-nat\ n)
 by transfer (simp add: equal)
lemma [code]:
  m \leq n \longleftrightarrow (of\text{-}nat \ m :: integer) \leq of\text{-}nat \ n
 by simp
lemma [code]:
 m < n \longleftrightarrow (of\text{-}nat \ m :: integer) < of\text{-}nat \ n
 by simp
lemma num-of-nat-code [code]:
  num\text{-}of\text{-}nat = num\text{-}of\text{-}integer \circ of\text{-}nat
 by transfer (simp add: fun-eq-iff)
end
lemma (in semiring-1) of-nat-code-if:
  of-nat n = (if n = 0 then 0)
    else let
      (m, q) = Divides.divmod-nat \ n \ 2;
      m' = 2 * of\text{-}nat m
    in if q = 0 then m' else m' + 1
proof -
 from div-mult-mod-eq have *: of-nat n = of-nat (n \text{ div } 2 * 2 + n \text{ mod } 2) by simp
   by (simp add: Let-def divmod-nat-div-mod of-nat-add [symmetric])
     (simp add: * mult.commute of-nat-mult add.commute)
qed
declare of-nat-code-if [code]
definition int-of-nat :: nat \Rightarrow int where
 [code-abbrev]: int-of-nat = of-nat
lemma [code]:
  int-of-nat n = int-of-integer (of-nat n)
 by (simp add: int-of-nat-def)
lemma [code abstract]:
  integer-of-nat\ (nat\ k) = max\ 0\ (integer-of-int\ k)
 including integer.lifting by transfer auto
```

```
lemma term-of-nat-code [code]:
  — Use nat-of-integer in term reconstruction instead of Code-Target-Nat.Nat such that recon-
structed terms can be fed back to the code generator
 term-of-class.term-of n =
  Code-Evaluation.App
    (Code-Evaluation.Const (STR "Code-Numeral.nat-of-integer")
       (typerep.\,Typerep\,\,(STR\,\,''fun\,'')\ [typerep.\,Typerep\,\,(STR\,\,''Code-Numeral.integer\,'')\,\,[],
        typerep. Typerep (STR "Nat.nat") []]))
    (term-of-class.term-of\ (integer-of-nat\ n))
 by (simp add: term-of-anything)
lemma nat-of-integer-code-post [code-post]:
  nat-of-integer \theta = \theta
 nat-of-integer 1 = 1
 nat-of-integer (numeral \ k) = numeral \ k
 including integer.lifting by (transfer, simp)+
code-identifier
 \mathbf{code\text{-}module}\ \mathit{Code\text{-}Target\text{-}Nat} \ \rightharpoonup
   (SML) Arith and (OCaml) Arith and (Haskell) Arith
end
Implementation of natural and integer numbers by target-language integers
theory Code-Target-Numeral
imports Code-Target-Int Code-Target-Nat
```

6. Testing List Properties

This is a reference show-case for HOL-TestGen providing three test-scenarios that were treated from A to Z. This includes:

- 1. The modeling phase ("building the test-theory") comprising definitions and theorems representing the "background theory" of a particular model to test.
- 2. The test-specification, the formal statement from which the tests were derived.
- 3. The abstract test generation phase which basically cuts the input-output relation of the program under test into partitions represented by constraint systems. (since the constraint systems can be unsatisfiable, abstract test cases can be vacuous).
- 4. The test selection phase that attempts to find concrete test-cases, i. e. ground instances of abstract test cases.
- 5. The test driver generation phase converts the concrete test-cases into a program that executes these tests; it is linked to a test-harness allowing to track the test evaluation and the program or system under test.
- 6. The test execution phase (which is currently done outside HOL-TestGen via makefiles.

In this example we present the current main application of HOL-TestGen: generating test data for black box testing of functional programs within a specification based unit test. We use a simple scenario, developing the test theory for testing sorting algorithms over lists, develop test specifications (elsewhere called test targets or test goals), and explore the different possibilities.

```
 \begin{array}{ll} \textbf{theory} & \textit{List-test} \\ \textbf{imports} \\ & \textit{List} \\ & \sim / \textit{src/HOL/Library/Code-Target-Numeral} \\ & \textit{Code-Integer-Fsharp} \\ & \textit{Testing} \\ \textbf{begin} \end{array}
```

A Test-theory as a whole starts with the import of its main components, among them the HOL-TestGen environment grouped together in the *Testing*. The theories *Code-Target-Numeral* and *Code-Integer-Fsharp* are required to support the test driver generation process.

A First Model and a Quick Walk Through

In the following we give a first impression of how the testing process using HOL-TestGen looks like. For brevity we stick to default parameters and explain possible decision points and parameters where the testing can be improved in the next section.

Modeling: Writing the Test Specification We start by specifying a primitive recursive predicate describing sorted lists:

```
primrec is-sorted:: int list \Rightarrow bool

where is-sorted [] = True |

is-sorted (x\#xs) = (case xs of

[] \Rightarrow True

| y\#ys \Rightarrow x \leq y \land is\text{-sorted } xs)
```

We will use this HOL predicate for describing our test specification, i.e. the properties our implementation should fulfill and which we ultimately will test.

```
\begin{array}{ll} \textbf{test-spec} & \textit{is-sorted}(\textit{PUT}\ l) \\ \textbf{oops} & \end{array}
```

where PUT is a "placeholder" for our program under test. For the sake of the presentation, we drop the test attempt here.

However, for the code-generation necessary to generate a test-driver and actually run the test of an external program, the program under test or PUT for short, it is sensible to represent the latter as an **uninterpreted constant**; the code-generation will later on configured such that the place-holder in the test-driver code is actually linked to the real, external program which is a black box from the point of view of this model (the testing procedure needs actually only executable code).

```
consts PUT :: 'a \ list \Rightarrow 'a \ list
```

Note that the choice of the name is arbitrary.

Generating Abstract Test-cases Now we can automatically generate *test cases*. Using the default setup, we just apply our *gen-test-cases*:

```
test-spec is-sorted(PUT(l))
apply(gen-test-cases 3 1 PUT)
```

which leads to the test partitioning one would expect:

```
1. is-sorted (PUT [])
2. THYP (is-sorted (PUT []) \longrightarrow is-sorted (PUT []))
3. is-sorted (PUT [??X8X44])
4. THYP ((\exists x. is\text{-sorted }(PUT [x])) \longrightarrow (\forall x. is\text{-sorted }(PUT [x])))
5. is-sorted (PUT [??X6X38, ??X5X37])
6. THYP
((\exists x \ xa. \ is\text{-sorted }(PUT \ [xa, x])) \longrightarrow (\forall x \ xa. \ is\text{-sorted }(PUT \ [xa, x])))
7. is-sorted (PUT [??X3X30, ??X2X29, ??X1X28])
8. THYP
((\exists x \ xa \ xb. \ is\text{-sorted }(PUT \ [xb, \ xa, \ x])) \longrightarrow (\forall x \ xa \ xb. \ is\text{-sorted }(PUT \ [xb, \ xa, \ x]))
9. THYP ((\exists x \ content{-}(xa, \ content{-}(xa, \ content{-}(xa, \ content{-}(xa, \ xa, \ content{-}(xa, \ conte
```

. Now we bind the test theorem to a particular named $test\ suite$, a kind of container into which all relevant data is stored and under which a group of tests can be referred to during test execution.

mk-test-suite is-sorted-result

The current test theorem contains holes, that correspond to the concrete data of the test that have not been generated yet

thm is-sorted-result.test-thm

Generating Concrete Test-cases Now we want to generate concrete test data, i.e. all variables in the test cases must be instantiated with concrete values. This involves a random solver which tries to solve the constraints by randomly choosing values.

```
thm is-sorted-result.test-thm
gen-test-data is-sorted-result
thm is-sorted-result.test-thm-inst
```

```
Which leads to the following test data: \ is-sorted (PUT []) is-sorted (PUT [10]) is-sorted (PUT [3, 10]) is-sorted (PUT [-8, -3, -3])
```

Note that by the following statements, the test data, the test hypotheses and the test theorem can be inspected interactively.

```
print-conc-tests is-sorted-result
print-abs-tests is-sorted-result
print-thyps is-sorted-result
print-upos is-sorted-result
```

The generated test data can be exported to an external file:

export-test-data impl/data/test-data.data is-sorted-result

Test Execution and Result Verification In principle, any SML-system should be able to run the provided test-harness and generated test-script. Using their specific facilities for calling foreign code, testing of non-SML programs is possible. For example, one could test implementations written:

- for the Net platform, e.g., written in C# using sml.net [23],
- in C using, e.g. the foreign language interface of sml/NJ [24] or MLton [20],
- in Java using MLj [19].

Depending on the SML-system, the test execution can be done within an interpreter or using a compiled test executable. Testing implementations written in SML is straightforward, based on automatically generated test scripts. This generation is based on the internal code generator of Isabelle and must be set up accordingly.

The the following, we show the general generation of test-scripts (part of the finally generated test-driver) in different languages; finally, we will concentrate on the test-generation scenario for C.

```
code-printing
   constant PUT => (Fsharp) \ ((List.map \ (fun \ x \ -> Int'-of'-integer \ x)) \ (myList.sort \ (List.map \ (fun \ x \ -> integer'-of'-int \ x)) \ ((map \ (fn \ x \ => Int'-of'-integer \ x)) \ o \ myList.sort \ o \ (map \ (fn \ x \ => integer'-of'-int \ x)))
   and (Scala) \ ((myList.sort \ ((-).map \ \{x \ => integer'-of'-int(x)\})).map \ \{x \ => int'-of'-integer(x)\})

generate-test-script is-sorted-result
thm is-sorted-result.test-script

Testing an SML implementation:

export-code is-sorted-result.test-script in SML module-name TestScript file impl/sml/is-sorted-test-script.sml
```

We use the SML test script also for testing an implementation written in C:

```
\begin{array}{ll} \textbf{export-code} & \textit{is-sorted-result.test-script} \ \ \textbf{in} \ \textit{SML} \\ \textbf{module-name} \ \textit{TestScript} \ \ \textbf{file} \ \textit{impl/c/is-sorted-test-script.sml} \end{array}
```

Testing an F# implementation:

```
\begin{array}{ll} \textbf{export-code} & \textit{is-sorted-result.test-script in } \textit{Fsharp} \\ \textbf{module-name} & \textit{TestScript file } \textit{impl/fsharp/is-sorted-test-script.fs} \end{array}
```

We use the F# test script also for testing an implementation written in C#:

```
\begin{array}{ll} \textbf{export-code} & \textit{is-sorted-result.test-script in } \textit{Fsharp} \\ \textbf{module-name} & \textit{TestScript file } \textit{impl/csharp/is-sorted-test-script.fs} \end{array}
```

Testing a Scala implementation:

```
\begin{array}{ll} \textbf{export-code} & \textit{is-sorted-result.test-script} \ \textbf{in} \ \textit{Scala} \\ \textbf{module-name} \ \textit{TestScript} \ \textbf{file} \ \textit{impl/scala/is-sorted-test-script.scala} \end{array}
```

We use the Scala script also for testing an implementation written in Java:

```
\begin{array}{ll} \textbf{export-code} & \textit{is-sorted-result.test-script in Scala} \\ \textbf{module-name} & \textit{TestScript file } \textit{impl/java/is-sorted-test-script.scala} \end{array}
```

Finally, we export the raw test data in an XML-like format:

```
export-test-data impl/data/is-sorted-test-data.dat is-sorted-result
```

which generates the following test harness:

In the following, we assume an ANSI C implementation of our sorting method for sorting C arrays that we want to test. (In our example setup, it is contained in the file impl/c/sort.c.) Using the foreign language interface provided by the SML compiler MLton we first have to import the sort method written in C using the _import keyword of MLton and further, we provide a "wrapper" doing some data-type conversion, e.g. converting lists to arrays and vice versa:

```
structure myList = struct

val csort = _import "sort": int array * int -> int array;
fun ArrayToList a = Array.foldl (op ::) [] a;
```

```
>make
mlton -default-ann 'allowFFI true' is_sorted_test.mlb sort.c
./is_sorted_test
Test Results:
_____
         SUCCESS
Test 0 -
        SUCCESS
Test 1 -
Test 2 -
         SUCCESS
Test 3 -
        SUCCESS
Test 4 -
           SUCCESS
Test 5 -
           SUCCESS
Test 6 -
           SUCCESS
Summary:
Number successful tests cases: 7 of 7 (ca. 100%)
Number of warnings: 0 of 7 (ca. 0%)
                           0 of 7 (ca. 0%)
Number of errors:
Number of failures:
                           0 of 7 (ca. 0%)
Number of fatal errors: 0 of 7 (ca. 0%)
Overall result: success
==========
```

Table 6.1.: A Sample Test Trace: The ascending property tested.

```
fun sort_list list = ArrayToList (csort(Array.fromList(list),(length list)));
fun sort list = map IntInf.fromInt (sort_list (map IntInf.toInt list))
end
```

That's all, now we can build the test executable using MLton and end up with a test executable which can be called directly. In impl/c, the process of:

- compiling the generated impl/c/is_sorted_test_script.sml, the test harness (harness.sml), a main routine impl/c/List.sml) and containing a wrapper into an SML structure myList as well as the SML-to-C code-stub sort,
- 2. compiling the C test-driver and linking it to the program under test impl/c/sort.c, and
- 3. executing the test is captured in a impl/c/Makefile. So: executes the test and displays a test-statistic as shown in Table 6.1.

A Refined Model and Improved Test-Results

Obviously, in reality one would not be satisfied with the test cases generated in the previous section: for testing sorting algorithms one would expect that the test data somehow represents the set of permutations of the list elements. We have already seen that the test specification used in the last section "only" enumerates lists up to a specific length without any ordering constraints on their elements. What is missing, is a test that input and output sequence are in fact *permutations* of each other. We could state for example:

```
del-member :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list \ option
where del-member x \mid = None
     |del-member x (y \# S) = (if x = y then Some S)
                              else case del-member x S of
                                     None \Rightarrow None
                                   | Some S' \Rightarrow Some(y \# S'))
        is-permutation :: 'a list \Rightarrow 'a \ list \Rightarrow bool
where is-permutation [] [] = True
     |is\text{-permutation }(a\#S)(a'\#S')| = (if\ a=a'\ then\ is\text{-permutation }S\ S'
                                    else case del-member a S' of
                                           None \Rightarrow False
                                         | Some S'' \Rightarrow is-permutation S(a' \# S''))
     |is\text{-}permutation - - = False
fun is-perm :: 'a list \Rightarrow 'a list \Rightarrow bool
where is-perm [] [] = True
     |is\text{-}perm\ []\ T\ =\ False
     | is-perm (a#S) T = (if length T = length S + 1)
                          then is-perm S (remove1 a T)
                          else False)
```

value *is-perm* [1,2,3::int] [3,1,2]

A test for permutation, that not is hopelessly non-constructive like "the existence of a bijection on the indexes [0 .. n-1], that is pairwise mapped to the list" or the like, is obviously quite complex; the apparent "mathematical specification" is not always the easiest. We convince ourselves that the predicate *is-permutation* indeed captures our intuition by animations of the definition:

```
value is-permutation [1,2,3] [3,2,1::nat]
value \neg is-permutation [1,2,3] [3,1::nat]
value \neg is-permutation [2,3] [3,2,1::nat]
value \neg is-permutation [1,2,1,3] [3,2,1::nat]
value is-permutation [2,1,3] [1::nat,3,2]
value is-perm [1,2,3] [3,2,1::nat]
value \neg is-perm [2,3] [3,2,1::nat]
value \neg is-perm [2,3] [3,2,1::nat]
value \neg is-perm [1,2,1,3] [3,2,1::nat]
value \neg is-perm [2,1,3] [3,2,1::nat]
```

... which are all executable and thus were compiled and all evaluated to true.

Based on these concepts, a test-specification is straight-forward and easy:

```
declare [[goals-limit=5]]
apply(gen-test-cases 5 1 PUT)
mk-test-suite ascending-permutation-test
```

A quick inspection of the test theorem reveals that there are in fact no relevant constraints to solve, so test-data selection is easy:

```
declare [[testgen-iterations=100]]
gen-test-data ascending-permutation-test

print-conc-tests ascending-permutation-test
print-conc-tests (6) ascending-permutation-test
print-thyps ascending-permutation-test
print-thyps (0) ascending-permutation-test
```

Again, we convert this into test-scripts that can be compiled to a test-driver.

```
\begin{array}{ll} \textbf{generate-test-script} \ \ ascending\mbox{-}permutation\mbox{-}test\\ \textbf{thm} & ascending\mbox{-}permutation\mbox{-}test\mbox{-}script \end{array}
```

We use the SML implementation also for testing an implementation written in C:

```
export-code ascending-permutation-test.test-script in SML module-name TestScript file impl/c/ascending-permutation-test-script.sml
```

Try make run_ascending_permutation in directory impl/c to compile and execute the generated test-driver.

A Test-Specification based on a Comparison with a Reference Implementation

We might opt for an alternative modeling approach: Thus we decide to try a more "descriptive" test specification that is based on the behavior of an insertion sort algorithm:

```
fun ins :: ('a::linorder) \Rightarrow 'a \ list \Rightarrow 'a \ list

where ins \ x \ [] = [x]

|ins \ x \ (y\#ys) = (if \ (x < y) \ then \ x\#y\#ys \ else \ (y\#(ins \ x \ ys)))

fun sort :: ('a::linorder) \ list \Rightarrow 'a \ list

where sort \ [] = []

|sort \ (x\#xs) = ins \ x \ (sort \ xs)
```

Now we state our test specification by requiring that the behavior of the program under test PUT is identical to the behavior of our specified sorting algorithm sort:

Based on this specification *gen-test-cases* produces test cases representing all permutations of lists up to a fixed length n. Normally, we also want to configure up to which length lists should be generated (we call this the *depth* of the test case), e.g. we decide to generate lists up to length (1::'a) + (1::'a) + (1::'a). Our standard setup:

```
declare [[goals-limit=100]] test-spec sort l = PUT l apply(gen-test-cases PUT) mk-test-suite is-sorting-algorithm0 generates (1::'a) + (1::'a) + ((1::'a) + (1::'a)) + ((1::'a) + ((1::'a) + ((1::'a))) + ((1::'a)) test cases describing all permutations of lists of length 1::'a, (1::'a) + (1::'a) and
```

(1::'a) + (1::'a) + (1::'a). "Permutation" means here that not only test cases (i.e. I/O-partitions) are generated for lists of length 0::'a, 1::'a, (1::'a) + (1::'a) and (1::'a) + (1::'a) + (1::'a); the partitioning is actually finer: for two-elementary lists, for example, the case of a list with the first element larger or equal and the dual case are distinguished. The entire test-theorem looks as follows:

 $\llbracket [] = PUT \; []; \; THYP \; ([] = PUT \; [] \longrightarrow [] = PUT \; []); \; [??X31X190] = PUT \; [??X31X190];$ THYP $((\exists x. [x] = PUT [x]) \longrightarrow (\forall x. [x] = PUT [x])); PO$ (??X29X182 < ??X28X181); $[??X29X182, ??X28X181] = PUT [??X29X182, ??X28X181]; THYP ((\exists x \ xa. \ xa < x \land xa))$ $[xa, x] = PUT[xa, x] \longrightarrow (\forall x \ xa. \ xa < x \longrightarrow [xa, x] = PUT[xa, x])); PO(\neg ??X26X171$ $<??X25X170); [??X25X170, ??X26X171] = PUT [??X26X171, ??X25X170]; THYP ((\exists x), x) = (\exists x) =$ $xa. \neg xa < x \land [x, xa] = PUT[xa, x]) \longrightarrow (\forall x xa. \neg xa < x \longrightarrow [x, xa] = PUT[xa, x])); PO$ $((??X22X157 < ??X21X156 \land ??X23X158 < ??X21X156) \land ??X23X158 < ??X22X157);$ [??X23X158, ??X22X157, ??X21X156] = PUT [??X23X158, ??X22X157, ??X21X156]; $THYP \ (\exists x \ xa \ xb. \ xa < x \land xb < x \land xb < xa \land [xb, xa, x] = PUT \ [xb, xa, x]) \longrightarrow (\forall x \ xa)$ $xb. xa < x \longrightarrow xb < xa \longrightarrow [xb, xa, x] = PUT[xb, xa, x]); PO((\neg ??X18X140))$ $<??X17X139 \land ??X19X141 <??X17X139) \land ??X19X141 <??X18X140); [??X19X141,$ $??X17X139, ??X18X140] = PUT [??X19X141, ??X18X140, ??X17X139]; THYP ((\exists x xa))$ $xb. \neg xa < x \land xb < x \land xb < xa \land [xb, x, xa] = PUT[xb, xa, x]) \longrightarrow (\forall x xa xb. \neg xa)$ $\langle x \longrightarrow xb \langle x \longrightarrow xb \langle xa \longrightarrow [xb, x, xa] = PUT[xb, xa, x]) \rangle$; PO $((\neg ??X14X123 < x))$ $??X13X122 \land \neg ??X15X124 < ??X13X122) \land ??X15X124 < ??X14X123); [??X13X122,$ $??X15X124, ??X14X123] = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [??X15X124, ??X14X123, ??X13X122]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ??X14X123, ??X14X123, ??X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ??X14X123, ??X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ??X14X123, ??X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ??X14X123, ??X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ?X14X123, ?Y15X124, ?X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ?X14X123, ?X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ?X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ?X14X123]; THYP ((\exists x xa) xa) = PUT [?Y15X124, ?X14X123]; THYP ((\exists x xa) xa) = PUT [?Y1$ $xa < x \longrightarrow \neg xb < x \longrightarrow xb < xa \longrightarrow [x, xb, xa] = PUT [xb, xa, x]); PO ((??X10X106))$ $<??X9X105 \land ??X11X107 <??X9X105) \land \neg ??X11X107 <??X10X106); [??X10X106,$ $??X11X107, ??X9X105] = PUT [??X11X107, ??X10X106, ??X9X105]; THYP ((\exists x xa))$ $xb. xa < x \land xb < x \land \neg xb < xa \land [xa, xb, x] = PUT [xb, xa, x]) \longrightarrow (\forall x xa xb. xa)$ $\langle x \longrightarrow xb \langle x \longrightarrow \neg xb \langle xa \longrightarrow [xa, xb, x] = PUT [xb, xa, x]) \rangle$; PO ((??X6X89 < $??X5X88 \land \neg ??X7X90 < ??X5X88) \land \neg ??X7X90 < ??X6X89); [??X6X89, ??X5X88,$??X7X90] = PUT [??X7X90, ??X6X89, ??X5X88]; THYP (($\exists x \ xa \ xb \ xa < x \land \neg xb$ $x \longrightarrow \neg xb < xa \longrightarrow [xa, x, xb] = PUT [xb, xa, x]); PO ((\neg ??X2X72 < ??X1X71 \land$ $\neg ??X3X73 < ??X1X71) \land \neg ??X3X73 < ??X2X72); [??X1X71, ??X2X72, ??X3X73] =$ $xa \wedge [x, xa, xb] = PUT[xb, xa, x] \longrightarrow (\forall x xa xb. \neg xa < x \longrightarrow \neg xb < x \longrightarrow \neg xb < xa$ $\longrightarrow [x, xa, xb] = PUT[xb, xa, x]); THYP(3 < length l \longrightarrow List-test.sort l = PUT l)]$ $\implies (List\text{-}test.sort\ l = PUT\ l)$

A more ambitious setting is:

```
test-spec sort l = PUT l
```

```
apply(gen-test-cases 5 1 PUT)
```

which leads after 2 seconds to the following test partitioning (excerpt):

```
1. [] = PUT \ []
2. THYP \ ([] = PUT \ [] \longrightarrow [] = PUT \ [])
3. [??X871X8318] = PUT \ [??X871X8318]
4. THYP \ ((\exists x. [x] = PUT \ [x]) \longrightarrow (\forall x. [x] = PUT \ [x]))
```

```
5. PO (??X869X8310 < ??X868X8309)
6. [??X869X8310, ??X868X8309] = PUT [??X869X8310, ??X868X8309]
7. THYP
((\exists x \ xa. \ xa < x \land [xa, x] = PUT \ [xa, x]) \longrightarrow
(\forall x \ xa. \ xa < x \longrightarrow [xa, x] = PUT \ [xa, x]))
8. PO (\neg ??X866X8299 < ??X865X8298)
9. [??X865X8298, ??X866X8299] = PUT [??X866X8299, ??X865X8298]
10. THYP
((\exists x \ xa. \ \neg \ xa < x \land [x, \ xa] = PUT \ [xa, \ x]) \longrightarrow
(\forall x \ xa. \ \neg \ xa < x \longrightarrow [x, \ xa] = PUT \ [xa, \ x]))
A total \ of \ 461 \ subgoals...
```

thm permutation-test.test-thm

mk-test-suite permutation-test

In this scenario, 39 test cases are generated describing all permutations of lists of length 1, 2, 3 and 4. "Permutation" means here that not only test cases (i.e. I/O-partitions) are generated for lists of length 0, 1, 2, 3, 4; the partitioning is actually finer: for two-elementary lists, take one case for the lists with the first element larger or equal.

The case for all lists of depth 5 is feasible, however, it will already take 8 minutes. The resulting constraints for the test cases are complex and require more intensive effort in resolving.

There are several options for the test-data selection. On can either use the (very old) random solver or the more modern smt interface. (One day, we would also have a nitpick-interface to constraint solving via bitblasting sub-models of the constraints to SAT.) The random solver, however, finds only 67 instances out of 150 abstract test cases, while smt instantiates all of them:

Test theorem (gen_test_data) 'permutation_test': 67 test cases in 2.951 seconds

```
 \begin{array}{ll} \mathbf{declare} \ [[testgen\text{-}iterations = 0]] \\ \mathbf{declare} \ [[testgen\text{-}SMT]] \\ \mathbf{gen\text{-}test\text{-}data} \quad permutation\text{-}test \\ \\ \mathbf{print\text{-}conc\text{-}tests} \quad permutation\text{-}test \\ \mathbf{print\text{-}thyps} \quad permutation\text{-}test \\ \\ permutation\text{-}test \\ \\ \end{array}
```

```
\begin{array}{ll} \textbf{generate-test-script} \ \ permutation\text{-}test \\ \textbf{thm} \qquad \qquad permutation\text{-}test.test\text{-}script \\ \end{array}
```

We use the SML implementation also for testing an implementation written in C:

```
\begin{array}{ll} \textbf{export-code} & \textit{permutation-test.test-script in } \textit{SML} \\ \textbf{module-name} & \textit{TestScript file } \textit{impl/c/permutation-test-script.sml} \end{array}
```

```
We obtain test cases like: \backslash [] = PUT [] [-3] = PUT [-3] [-1, 0] = PUT [-1, 0] [0, 0] = PUT [0, 0] [-2, -1, 0] = PUT [-2, -1, 0] [0, 1, 1] = PUT [0, 1, 1] [0, 0, 1] = PUT [0, 1, 0] [-1, -1, 0] = PUT [-1, -1, 0] [-1, 0, 0] = PUT [0, -1, 0]
```

[0, 0, 0] = PUT [0, 0, 0] [-3, -2, -1, 0] = PUT [-3, -2, -1, 0] [-1, 0, 1, 1][2, -2, -1, 0] = PUT[-2, -2, -1, 0][0, 0, 1, 1] = PUT[0, 0, 1, 1][0, 1, 1, 2]= PUT [1, 0, 2, 1] [0, 0, 0, 1] = PUT [0, 0, 1, 0] [-2, -1, -1, 0] = PUT [-2, -1, -1, 0][1, -1, 0] [-2, -1, 0, 0] = PUT [-2, 0, -1, 0] [0, 1, 1, 1] = PUT [0, 1, 1, 1] [0, 1, 1, 1][0, 1, 1] = PUT [0, 1, 1, 0] [-2, -1, -1, 0] = PUT [-1, -2, -1, 0] [-2, -1, 0, -1, 0][0] = PUT[0, -2, -1, 0][0, 1, 1, 1] = PUT[1, 0, 1, 1][0, 0, 1, 1] = PUT[1, 0, 1, 1][0] [-2, -2, -1, 0] = PUT [-2, -1, -2, 0] [-1, -1, 0, 0] = PUT [-1, 0, -1, 0]0] = PUT [-1, -1, -1, 0] [-1, -1, 0, 0] = PUT [0, -1, -1, 0] [-1, 0, 0, 0] =[4, -3, -2, -1, 0] [-2, -1, 0, 1, 1] = PUT [-2, -1, 0, 1, 1] [-1, 0, 1, 1, 2] = PUTPUT [-1, 0, 1, 2, 1] [0, 1, 1, 2, 3] = PUT [0, 1, 2, 3, 1] [0, 0, 1, 2, 3] = PUT [0, 1, 2, 3, 1][1, 2, 3, 0] [-3, -3, -2, -1, 0] = PUT [-3, -3, -2, -1, 0] [-1, -1, 0, 1, 1]= PUT [-1, -1, 0, 1, 1] [0, 0, 1, 1, 2] = PUT [0, 0, 1, 2, 1] [0, 1, 1, 2, 3] = PUT[1, 0, 2, 3, 1] [0, 0, 0, 1, 2] = PUT [0, 0, 1, 2, 0] [-3, -2, -2, -1, 0] = PUT [-3, -2, -2, -2, -1, 0] = PUT[3, -2, -2, -1, 0] [-1, 0, 0, 1, 1] = PUT [-1, 0, 0, 1, 1] [-1, 0, 1, 1, 2] = PUT[-1, 1, 0, 2, 1] [0, 1, 1, 1, 2] = PUT [0, 1, 1, 2, 1] [0, 0, 1, 1, 2] = PUT [0, 1, 1, 2][2, 0] [-3, -2, -2, -1, 0] = PUT [-2, -3, -2, -1, 0] [-1, 0, 0, 1, 1] = PUT[0, -1, 0, 1, 1] [-1, 0, 1, 1, 2] = PUT [1, -1, 0, 2, 1] [0, 1, 1, 1, 2] = PUT [1, 0, 1, 1, 1, 2][1, 2, 1] [0, 0, 1, 1, 2] = PUT [1, 0, 1, 2, 0] [-3, -3, -2, -1, 0] = PUT [-3, -1, 0][2, -3, -1, 0] [0, 0, 1, 2, 2] = PUT [0, 1, 0, 2, 2] [0, 0, 1, 1, 2] = PUT [0, 1, 0, 2, 2][-2, -1, 0] = PUT[-2, -2, -2, -1, 0][0, 0, 0, 1, 1] = PUT[0, 0, 0, 1, 1][0, 0,[0, 1, 1, 2] = PUT[1, 0, 0, 2, 1][0, 1, 1, 1, 2] = PUT[1, 1, 0, 2, 1][0, 0, 0, 0, 1] = PUT[1, 1, 0, 2, 1][0, 0, 0, 0, 1]PUT [0, 0, 0, 1, 0] [-3, -2, -1, -1, 0] = PUT [-3, -2, -1, -1, 0] [-3, -2, -1, -1, 0][-1, 0, 0] = PUT[-3, -2, 0, -1, 0][-1, 0, 1, 1, 1] = PUT[-1, 0, 1, 1, 1][0, 0, 0][1, 1, 2, 2] = PUT [0, 1, 2, 2, 1] [0, 0, 1, 2, 2] = PUT [0, 1, 2, 2, 0] [-2, -2, -1, 2, 2][-1, 0] = PUT [-2, -2, -1, -1, 0] [-2, -2, -1, 0, 0] = PUT [-2, -2, 0, -1, 0][1, 0] [0, 0, 1, 1, 1] = PUT [0, 0, 1, 1, 1] [0, 1, 1, 2, 2] = PUT [1, 0, 2, 2, 1] [0, 0, 1, 1, 1][0, 1, 1] = PUT [0, 0, 1, 1, 0] [-3, -2, -1, -1, 0] = PUT [-3, -1, -2, -1, 0][-3, -2, -1, 0, 0] = PUT [-3, 0, -2, -1, 0] [-1, 0, 1, 1, 1] = PUT [-1, 1, 1, 1][0, 1, 1] [0, 1, 1, 2, 2] = PUT [0, 2, 1, 2, 1] [0, 0, 1, 2, 2] = PUT [0, 2, 1, 2, 0] [-[2, -2, -1, -1, 0] = PUT[-2, -1, -2, -1, 0][-2, -2, -1, 0, 0] = PUT[-2, -2, -1, 0, 0][2, 0, -2, -1, 0] [0, 0, 1, 1, 1] = PUT [0, 1, 0, 1, 1] [0, 1, 1, 2, 2] = PUT [1, 2, 0, 1, 1][2, 1] [0, 0, 0, 1, 1] = PUT [0, 1, 0, 1, 0] [-3, -2, -2, -1, 0] = PUT [-3, -2, -2, -2, -1, 0][-1, -2, 0] [-2, -1, -1, 0, 0] = PUT [-2, -1, 0, -1, 0] [-2, -1, 0, 0, 1] = 0PUT [-2, 0, 1, -1, 0] [0, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1] [0, 0, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1] [0, 0, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1] [0, 0, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1] [0, 0, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1] [0, 0, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1] [0, 0, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 1, 1, 1, 2] = PUT [0, 1, 2, 2, 1, 2] = PUT [0, 1, 2, 2, 2] = PUT [0, 1, 2, 2] = PU[1, 2, 1, 0] [-2, -1, -1, -1, 0] = PUT [-2, -1, -1, 0] [-2, -1, -1, 0, 0][0] = PUT [-2, 0, -1, -1, 0] [-2, -1, 0, 0, 0] = PUT [-2, 0, 0, -1, 0] [0, 1, 0][1, 1, 1] = PUT [0, 1, 1, 1, 1] [0, 0, 1, 1, 1] = PUT [0, 1, 1, 1, 0] [-3, -2, -1, -1] $1, \ \theta] = PUT \ [-1, -3, -2, -1, \ \theta] \ [-3, -2, -1, \ \theta, \ \theta] = PUT \ [\theta, -3, -2, -1, \ \theta, \ \theta]$ [0] [-1, 0, 1, 1, 1] = PUT [1, -1, 0, 1, 1] [0, 1, 1, 2, 2] = PUT [2, 0, 1, 2, 1] [0, 0, 1, 2, 1][1, 2, 2] = PUT [2, 0, 1, 2, 0] [-2, -2, -1, -1, 0] = PUT [-1, -2, -2, -1, 0][-2, -2, -1, 0, 0] = PUT [0, -2, -2, -1, 0] [0, 0, 1, 1, 1] = PUT [1, 0, 0, 1, 1, 1]1] [0, 1, 1, 2, 2] = PUT[2, 1, 0, 2, 1][0, 0, 0, 1, 1] = PUT[1, 0, 0, 1, 0][-3, -2, 1][0, 1, 1, 2, 2]

[-2, -1, 0] = PUT [-2, -3, -1, -2, 0] [-2, -1, -1, 0, 0] = PUT [-1, -2, -2, -1, -1, 0, 0][0, -1, 0] [-2, -1, 0, 0, 1] = PUT [0, -2, 1, -1, 0] [0, 1, 1, 1, 2] = PUT [1, 0, 1, 1, 1, 2] = PUT[2, 1, 1] [0, 0, 1, 1, 2] = PUT [1, 0, 2, 1, 0] [-2, -1, -1, -1, 0] = PUT [-1, -1, -1, 0][2, -1, -1, 0] [-2, -1, -1, 0, 0] = PUT [0, -2, -1, -1, 0] [-2, -1, 0, 0, 0]= PUT [0, -2, 0, -1, 0] [0, 1, 1, 1, 1] = PUT [1, 0, 1, 1, 1] [0, 0, 1, 1, 1] = PUT[0, 0] = PUT[-1, 0, -2, -1, 0][-2, -1, 0, 0, 1] = PUT[0, 1, -2, -1, 0][0, 1, -2, -1, 0][-2, -1, 0] [-2, -1, 0, 0, 0] = PUT [0, 0, -2, -1, 0] [0, 1, 1, 1, 1] = PUT [1, 0, 0, 0] = PUT[1, 0, 1, 1] [0, 0, 1, 1, 1] = PUT [1, 1, 0, 1, 0] [-3, -3, -2, -1, 0] = PUT [-3, -3, -2, -1, 0][-2, -1, -3, 0] [-2, -2, -1, 0, 0] = PUT [-2, -1, 0, -2, 0] [-1, -1, 0, 0, 0]1] = PUT [-1, 0, 1, -1, 0] [-1, 0, 0, 1, 2] = PUT [0, 1, 2, -1, 0] [0, 0, 0, 1, 2]= PUT [0, 1, 2, 0, 0] [-2, -2, -2, -1, 0] = PUT [-2, -2, -1, -2, 0] [-1, -2, -2, -1, -2, 0][1, -1, 0, 0] = PUT[-1, -1, 0, -1, 0][-1, -1, 0, 0, 1] = PUT[0, -1, 1, -1, 0, 0, 1][0] [-1, 0, 0, 0, 1] = PUT [0, 0, 1, -1, 0] [0, 0, 0, 0, 1] = PUT [0, 0, 1, 0, 0] [-2, 0, 0, 0, 0] [-2, 0, 0] [-2, 0] [-2,[-2, -1, -1, 0] = PUT [-2, -1, -1, -2, 0] [-2, -2, -1, 0, 0] = PUT [-2, -2, -1, 0, 0][0, -1, -2, 0] [-1, -1, 0, 0, 0] = PUT [-1, 0, 0, -1, 0] [-1, 0, 0, 1, 1] = PUT[0, 1, 1, -1, 0] [0, 0, 0, 1, 1] = PUT [0, 1, 1, 0, 0] [-2, -2, -1, -1, 0] = PUT[-1, -2, -1, -2, 0] [-2, -2, -1, 0, 0] = PUT [0, -2, -1, -2, 0] [-1, -1, -1, -2, 0][0, 0, 0] = PUT [0, -1, 0, -1, 0] [-1, 0, 0, 1, 1] = PUT [1, 0, 1, -1, 0] [0, 0, 0, 0][1, -1, -1, 0, 0] = PUT[-1, 0, -1, -1, 0][-1, -1, 0, 0, 1] = PUT[0, 1, -1, 0, 0, 1][-1, 0] [-1, 0, 0, 0, 1] = PUT [0, 1, 0, -1, 0] [0, 0, 0, 0, 1] = PUT [0, 1, 0, 0, 0][-1, -1, -1, -1, 0] = PUT [-1, -1, -1, -1, 0] [-1, -1, -1, 0, 0] = PUT[0, -1, -1, -1, 0] [-1, -1, 0, 0, 0] = PUT [0, 0, -1, -1, 0] [-1, 0, 0, 0, 0] =PUT [0, 0, 0, -1, 0] [0, 0, 0, 0, 0] = PUT [0, 0, 0, 0, 0].

If we scale down to only 10 iterations, this is not sufficient to solve all conditions, i.e. we obtain many test cases with unresolved constraints where RSF marks unsolved cases. In these cases, it is unclear if the test partition is empty. Analyzing the generated test data reveals that all cases for lists with length up to (and including) 3 could be solved. From the 24 cases for lists of length 4 only 9 could be solved by the random solver (thus, overall 19 of the 34 cases were solved). To achieve better results, we could interactively increase the number of iterations which reveals that we need to set iterations to 100 to find all solutions reliably.

Instead of increasing the number of iterations one could also add other techniques such as

- 1. deriving new rules that allow for the generation of a simplified test theorem,
- 2. introducing abstract test cases or
- 3. supporting the solving process by derived rules.

```
> make run_permutation_test
mlton -default-ann 'allowFFI true' permutation_test.mlb sort.c
./permutation_test
Test Results:
Test 0 -
            SUCCESS
Test 1 -
            SUCCESS
Test 2 - *** FAILURE: post-condition false
Test 3 - *** FAILURE: post-condition false
Test 4 - *** FAILURE: post-condition false
Test 5 - *** FAILURE: post-condition false
Test 6 - *** FAILURE: post-condition false
Test 7 - *** FAILURE: post-condition false
Test 8 - *** FAILURE: post-condition false
Test 9 - *** FAILURE: post-condition false
Test 10 - *** FAILURE: post-condition false
Test 11 - *** FAILURE: post-condition false
Test 12 - *** FAILURE: post-condition false
Test 13 - *** FAILURE: post-condition false
Test 14 - *** FAILURE: post-condition false
Test 15 - *** FAILURE: post-condition false
Test 16 - *** FAILURE: post-condition false
Test 17 - *** FAILURE: post-condition false
Test 18 - *** FAILURE: post-condition false
Test 19 - *** FAILURE: post-condition false
Test 20 - *** FAILURE: post-condition false
Test 21 - *** FAILURE: post-condition false
Test 22 -
              SUCCESS
Test 23 -
              SUCCESS
Test 24 - *** FAILURE: post-condition false
Test 25 - *** FAILURE: post-condition false
Test 26 - *** FAILURE: post-condition false
Test 27 - *** FAILURE: post-condition false
Test 28 - *** FAILURE: post-condition false
Test 29 - *** FAILURE: post-condition false
Test 30 - *** FAILURE: post-condition false
Test 31 - *** FAILURE: post-condition false
Test 32 - *** FAILURE: post-condition false
Summary:
-----
Number successful tests cases: 4 of 33 (ca. 12%)
Number of warnings: 0 of 33 (ca. 0%)
                              0 of 33 (ca. 0%)
Number of errors:
Number of failures:
                              29 of 33 (ca. 87%)
                             0 of 33 (ca. 0%)
Number of fatal errors:
Overall result: failed
```

Table 6.2.: A Sample Test Trace for the Permutation Test Scenario

Running the test (in the current setup: make run_permutation_test)against our sample C-program under impl/c yields the following result:

Summary A comparison of the three scenarios reveals that albeit a reasonable degree of automation in the test generation process, the essence of model-based test case generation remains an *interactive process* that is worth to be documented in a formal test-plan with respect to various aspects: the concrete modeling that is chosen, the precise formulation of the test-specifications (or: test-goals), the configuration and instrumentation of the test-data selection process, the test-driver synthesis and execution. This process can be complemented by proofs establishing equivalences allowing to convert initial test-specifications into more executable ones, or more 'symbolically evaluatable' ones, or that help to reduce the complexity of the constraint- resolution in the test-data selection process.

But the most important aspect remains: what is a good testing model? Besides the possibility that the test specification simply does not test what the tester had in mind, the test theory and test-specification have a crucial importance on the quality of the generated test data that seems to be impossible to capture automatically.

Non-Inherent Higher-order Testing

HOL-TestGen can use test specifications that contain higher-order operators — although we would not claim that the test case generation is actually higher-order (there are no enumeration schemes for the function space, so function variables are untreated by the test case generation procedure so far).

Just for fun, we reformulate the problem of finding the maximal number in a list as a higher-order problem:

```
test-spec foldr max l (0::int) = PUT2 l apply(gen-test-cases PUT2 simp:max-def) mk-test-suite maximal-number declare [[testgen-iterations = 200]] gen-test-data maximal-number print-conc-tests (0) maximal-number
```

end

6.1. Bank

Implementation of integer numbers by target-language integers

```
theory Code-Target-Int
imports ../GCD
begin
```

```
code-datatype int-of-integer
declare [[code drop: integer-of-int]]
context
includes integer.lifting
begin
lemma [code]:
 integer-of-int (int-of-integer k) = k
 by transfer rule
lemma [code]:
  Int.Pos = int-of-integer \circ integer-of-num
 by transfer (simp add: fun-eq-iff)
lemma [code]:
  Int.Neg = int\text{-}of\text{-}integer \circ uminus \circ integer\text{-}of\text{-}num
 by transfer (simp add: fun-eq-iff)
lemma [code-abbrev]:
  int-of-integer (numeral\ k) = Int.Pos\ k
 by transfer simp
lemma [code-abbrev]:
  int-of-integer (-numeral\ k) = Int.Neg\ k
 by transfer simp
lemma [code, symmetric, code-post]:
  \theta = int	ext{-}of	ext{-}integer \ \theta
 by transfer simp
lemma [code, symmetric, code-post]:
 1 = int-of-integer 1
 by transfer simp
lemma [code-post]:
  int-of-integer (-1) = -1
 by simp
lemma [code]:
 k + l = int\text{-}of\text{-}integer (of\text{-}int k + of\text{-}int l)
 by transfer simp
lemma [code]:
  -k = int\text{-}of\text{-}integer (-of\text{-}int k)
 by transfer simp
lemma [code]:
 k - l = int\text{-}of\text{-}integer (of\text{-}int k - of\text{-}int l)
 by transfer simp
```

```
lemma [code]:
  Int.dup \ k = int-of-integer \ (Code-Numeral.dup \ (of-int \ k))
  by transfer simp
declare [[code drop: Int.sub]]
lemma [code]:
  k * l = int\text{-}of\text{-}integer (of\text{-}int k * of\text{-}int l)
  by simp
lemma [code]:
  k \ div \ l = int\text{-}of\text{-}integer \ (of\text{-}int \ k \ div \ of\text{-}int \ l)
  by simp
lemma [code]:
  k \mod l = int\text{-}of\text{-}integer (of\text{-}int \ k \mod of\text{-}int \ l)
  by simp
lemma [code]:
  divmod\ m\ n=map-prod\ int-of-integer\ int-of-integer\ (divmod\ m\ n)
  {\bf unfolding}\ prod\text{-}eq\text{-}iff\ divmod\text{-}def\ map\text{-}prod\text{-}def\ case\text{-}prod\text{-}beta\ fst\text{-}conv\ snd\text{-}conv
  by transfer simp
lemma [code]:
  HOL.equal\ k\ l = HOL.equal\ (of\mbox{-}int\ k :: integer)\ (of\mbox{-}int\ l)
  by transfer (simp add: equal)
lemma [code]:
  k \leq l \longleftrightarrow (\textit{of-int } k :: \textit{integer}) \leq \textit{of-int } l
  by transfer rule
lemma [code]:
  k < l \longleftrightarrow (\textit{of-int } k :: integer) < \textit{of-int } l
  by transfer rule
declare [[code drop: gcd :: int \Rightarrow -lcm :: int \Rightarrow -]]
lemma gcd-int-of-integer [code]:
  gcd\ (int\text{-}of\text{-}integer\ x)\ (int\text{-}of\text{-}integer\ y) = int\text{-}of\text{-}integer\ (gcd\ x\ y)
by transfer rule
lemma lcm-int-of-integer [code]:
  lcm (int-of-integer x) (int-of-integer y) = int-of-integer (lcm x y)
by transfer rule
end
lemma (in ring-1) of-int-code-if:
  \textit{of-int } k = (\textit{if } k = \textit{0 then } \textit{0}
      else if k < 0 then - of-int (-k)
      else let
       l = 2 * of\text{-}int (k div 2);
```

```
j=k \ mod \ 2
in \ if \ j=0 \ then \ l \ else \ l+1)

proof —
from div-mult-mod-eq have *: of-int \ k=of-int \ (k \ div \ 2*2+k \ mod \ 2) by simp show ?thesis
by (simp \ add: \ Let-def \ of-int-add \ [symmetric]) (simp \ add: * mult.commute)
qed

declare of-int-code-if \ [code]

lemma [code]:
nat = nat-of-integer \circ of-int
including \ integer.lifting by transfer \ (simp \ add: \ fun-eq-iff)

code-identifier
code-module Code-Target-Int \longrightarrow (SML) \ Arith and (OCaml) \ Arith and (Haskell) \ Arith
```

Avoidance of pattern matching on natural numbers

```
\begin{array}{l} \textbf{theory} \ \ Code\text{-}Abstract\text{-}Nat\\ \textbf{imports} \ \ Main\\ \textbf{begin} \end{array}
```

When natural numbers are implemented in another than the conventional inductive θ/Suc representation, it is necessary to avoid all pattern matching on natural numbers altogether. This is accomplished by this theory (up to a certain extent).

Case analysis Case analysis on natural numbers is rephrased using a conditional expression:

```
lemma [code, code-unfold]:

case-nat = (\lambda f g n. if n = 0 then f else g (n - 1))

by (auto simp add: fun-eq-iff dest!: gr0-implies-Suc)
```

Preprocessors The term $Suc\ n$ is no longer a valid pattern. Therefore, all occurrences of this term in a position where a pattern is expected (i.e. on the left-hand side of a code equation) must be eliminated. This can be accomplished – as far as possible – by applying the following transformation rule:

```
lemma Suc\text{-}if\text{-}eq:
   assumes \bigwedge n. f(Suc\ n) \equiv h\ n
   assumes f \ 0 \equiv g
   shows f \ n \equiv if\ n = 0 then g else h\ (n-1)
   by (rule\ eq\text{-}reflection)\ (cases\ n,\ insert\ assms,\ simp\text{-}all)

The rule above is built into a preprocessor that is plugged into the code generator.

setup (else)
```

```
val\ Suc\text{-}if\text{-}eq = Thm.incr\text{-}indexes\ 1\ @\{thm\ Suc\text{-}if\text{-}eq\};
fun \ remove-suc ctxt \ thms =
  let
   val vname = singleton (Name.variant-list (map fst
     (fold\ (Term.add-var-names\ o\ Thm.full-prop-of)\ thms\ [])))\ n;
   val\ cv = Thm.cterm-of\ ctxt\ (Var\ ((vname,\ 0),\ HOLogic.natT));
   val\ lhs-of = snd\ o\ Thm.dest-comb\ o\ fst\ o\ Thm.dest-comb\ o\ Thm.cprop-of;
   val\ rhs-of = snd\ o\ Thm.dest-comb\ o\ Thm.cprop-of;
   fun\ find\text{-}vars\ ct = (case\ Thm.term\text{-}of\ ct\ of\ table )
       (Const (@\{const-name Suc\}, -) \$ Var -) => [(cv, snd (Thm.dest-comb ct))]
     | - $ - =>
       let \ val \ (ct1, \ ct2) = Thm.dest-comb \ ct
        map \ (apfst \ (fn \ ct => Thm.apply \ ct \ ct2)) \ (find-vars \ ct1) \ @
        map (apfst (Thm.apply ct1)) (find-vars ct2)
       end
     | - = > []);
   val \ eqs = maps
     (fn\ thm => map\ (pair\ thm)\ (find-vars\ (lhs-of\ thm)))\ thms;
   fun \ mk\text{-}thms \ (thm, (ct, cv')) =
     let
       val thm' =
         Thm.implies-elim
         (Conv.fconv-rule\ (Thm.beta-conversion\ true)
           (Thm.instantiate'
             [SOME (Thm.ctyp-of-cterm ct)] [SOME (Thm.lambda cv ct),
               SOME (Thm.lambda cv' (rhs-of thm)), NONE, SOME cv'
             Suc-if-eq)) (Thm.forall-intr cv' thm)
     in
       case map-filter (fn thm" =>
          SOME (thm", singleton
            (Variable.trade\ (K\ (fn\ [thm'''] => [thm'''\ RS\ thm']))
              (Variable.declare-thm thm'' ctxt)) thm'')
        handle\ THM - => NONE)\ thms\ of
          | = > NONE
         \mid thmps =>
            let \ val \ (thms1, thms2) = split-list \ thmps
            in SOME (subtract Thm.eq-thm (thm :: thms1) thms @ thms2) end
     end
  in get-first mk-thms eqs end;
fun\ eqn-suc-base-preproc\ ctxt\ thms =
 let
   val \ dest = fst \ o \ Logic.dest-equals \ o \ Thm.prop-of;
   val\ contains-suc = exists-Const\ (fn\ (c, -) => c = @\{const-name\ Suc\}\};
   if forall (can dest) thms and also exists (contains-suc o dest) thms
     then thms |> perhaps-loop (remove-suc ctxt) |> (Option.map o map) Drule.zero-var-indexes
      else NONE
  end;
```

```
val\ eqn\mbox{-}suc\mbox{-}preproc = Code\mbox{-}Preproc.simple\mbox{-}functrans\ eqn\mbox{-}suc\mbox{-}base\mbox{-}preproc;
in
  Code-Preproc.add-functrans (eqn-Suc, eqn-suc-preproc)
end;
end
Implementation of natural numbers by target-language integers
theory Code-Target-Nat
imports Code-Abstract-Nat
begin
Implementation for nat context
includes natural.lifting integer.lifting
begin
lift-definition Nat :: integer \Rightarrow nat
 is nat
lemma [code-post]:
  Nat \ \theta = \theta
 Nat 1 = 1
 Nat (numeral k) = numeral k
 by (transfer, simp)+
lemma [code-abbrev]:
  integer-of-nat = of-nat
 by transfer rule
lemma [code-unfold]:
  Int.nat\ (int-of-integer\ k) = nat-of-integer\ k
 by transfer rule
\mathbf{lemma}\ [\mathit{code}\ \mathit{abstype}] \colon
  Code-Target-Nat.Nat (integer-of-nat n) = n
 by transfer simp
lemma [code abstract]:
  integer-of-nat (nat-of-integer k) = max 0 k
 by transfer auto
lemma [code-abbrev]:
 nat-of-integer (numeral \ k) = nat-of-num k
 by transfer (simp add: nat-of-num-numeral)
```

```
lemma [code abstract]:
  integer-of-nat \ (nat-of-num \ n) = integer-of-num \ n
 by transfer (simp add: nat-of-num-numeral)
lemma [code abstract]:
 integer-of-nat \ \theta = \theta
 by transfer simp
lemma [code abstract]:
  integer-of-nat 1 = 1
 by transfer simp
lemma [code]:
  Suc \ n = n + 1
 by simp
lemma [code abstract]:
  integer-of-nat\ (m+n) = of-nat\ m + of-nat\ n
 by transfer simp
lemma [code abstract]:
  integer-of-nat\ (m-n) = max\ 0\ (of-nat\ m-of-nat\ n)
 by transfer simp
lemma [code abstract]:
  integer-of-nat \ (m*n) = of-nat \ m*of-nat \ n
 by transfer (simp add: of-nat-mult)
lemma [code abstract]:
  integer-of-nat\ (m\ div\ n)=of-nat\ m\ div\ of-nat\ n
 by transfer (simp add: zdiv-int)
\mathbf{lemma}\ [\mathit{code}\ \mathit{abstract}] \colon
  integer-of-nat \ (m \ mod \ n) = of-nat \ m \ mod \ of-nat \ n
 by transfer (simp add: zmod-int)
lemma [code]:
  Divides.divmod-nat\ m\ n=(m\ div\ n,\ m\ mod\ n)
 by (fact divmod-nat-div-mod)
lemma [code]:
  divmod \ m \ n = map-prod \ nat-of-integer \ nat-of-integer \ (divmod \ m \ n)
 by (simp only: prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv)
   (transfer, simp-all only: nat-div-distrib nat-mod-distrib
       zero-le-numeral nat-numeral)
lemma [code]:
  HOL.equal\ m\ n = HOL.equal\ (of-nat\ m\ ::\ integer)\ (of-nat\ n)
 by transfer (simp add: equal)
lemma [code]:
 m \leq n \longleftrightarrow (\textit{of-nat } m :: integer) \leq \textit{of-nat } n
```

```
by simp
lemma [code]:
 m < n \longleftrightarrow (\textit{of-nat } m :: integer) < \textit{of-nat } n
 by simp
lemma num-of-nat-code [code]:
 num\text{-}of\text{-}nat = num\text{-}of\text{-}integer \circ of\text{-}nat
 by transfer (simp add: fun-eq-iff)
end
lemma (in semiring-1) of-nat-code-if:
  of-nat n = (if n = 0 then 0)
    else let
      (m, q) = Divides.divmod-nat \ n \ 2;
      m' = 2 * of\text{-}nat m
    in if q = 0 then m' else m' + 1
proof -
 from div-mult-mod-eq have *: of-nat n = of-nat (n \text{ div } 2 * 2 + n \text{ mod } 2) by simp
 \mathbf{show}~? the sis
   by (simp add: Let-def divmod-nat-div-mod of-nat-add [symmetric])
     (simp add: * mult.commute of-nat-mult add.commute)
qed
\mathbf{declare}\ of\text{-}nat\text{-}code\text{-}if\ [code]
definition int-of-nat :: nat \Rightarrow int where
 [code-abbrev]: int-of-nat = of-nat
lemma [code]:
  int-of-nat n = int-of-integer (of-nat n)
 by (simp add: int-of-nat-def)
lemma [code abstract]:
  integer-of-nat\ (nat\ k) = max\ \theta\ (integer-of-int\ k)
 including integer.lifting by transfer auto
lemma term-of-nat-code [code]:
    - Use nat-of-integer in term reconstruction instead of Code-Target-Nat.Nat such that recon-
structed terms can be fed back to the code generator
  term-of-class.term-of n =
   Code-Evaluation. App
    (Code-Evaluation. Const (STR "Code-Numeral.nat-of-integer")
       (typerep. Typerep (STR "fun")
          [typerep. Typerep (STR "Code-Numeral.integer") [],
        typerep. Typerep (STR "Nat.nat") []]))
    (term-of-class.term-of\ (integer-of-nat\ n))
 by (simp add: term-of-anything)
lemma nat-of-integer-code-post [code-post]:
  nat-of-integer \theta = \theta
```

```
nat\text{-}of\text{-}integer\ 1=1 nat\text{-}of\text{-}integer\ (numeral\ k)=numeral\ k including integer.lifting\ \mathbf{by}\ (transfer,\ simp)+ code-identifier code-module Code\text{-}Target\text{-}Nat \rightharpoonup (SML)\ Arith\ \mathbf{and}\ (OCaml)\ Arith\ \mathbf{and}\ (Haskell)\ Arith end
```

Implementation of natural and integer numbers by target-language integers

 $\begin{array}{l} \textbf{theory} \ \ Code\text{-} Target\text{-}Numeral \\ \textbf{imports} \ \ Code\text{-} Target\text{-}Int \ \ Code\text{-} Target\text{-}Nat \\ \textbf{begin} \end{array}$

 \mathbf{end}

7. A Simple Deterministic Bank Model

```
 bank \\ \textbf{imports} \\ \sim / src/HOL/Library/Code-Target-Numeral} \\ \textit{Testing} \\ \textbf{begin}
```

The Bank Example: Test of a Distributed Transaction Machine

```
declare [[testgen-profiling]]
```

The intent of this little example is to model deposit, check and withdraw operations of a little Bank model in pre-postcondition style, formalize them in a setup for HOL-TestGen test sequence generation and to generate elementary test cases for it. The test scenarios will be restricted to strict sequence checking; this excludes aspects of account creation which will give the entire model a protocol character (a create-operation would create an account number, and then all later operations are just refering to this number; thus there would be a dependence between system output and input as in reactive sequence test scenarios.).

Moreover, in this scenario, we assume that the system under test is deterministic.

The theory of Proof-based Sequence Test Methodology can be found in [9].

The state of our bank is just modeled by a map from client/account information to the balance.

```
type-synonym client = string

type-synonym account-no = int

type-synonym data-base = (client \times account-no) \rightarrow int
```

Operation definitions: Concept A standard, JML or OCL or VCC like interface specification might look like:

```
Init: forall (c,no) : dom(data_base). data_base(c,no)>=0

op deposit (c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(data_base)
post data_base'=data_base[(c,no) := data_base(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(data_base)
post data_base'=data_base and result = data_base(c,no)
```

```
op withdraw(c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(data_base) and data_base(c,no) >= amount
post data_base'=data_base[(c,no) := data_base(c,no) - amount]
```

Operation definitions: The model as ESFM Interface normalization turns this interface into the following input type:

```
datatype in-c = deposit client account-no nat
              | withdraw client account-no nat
              | balance client account-no
typ Bank.in-c
datatype \ out - c = depositO| \ balanceO \ nat \ | \ withdrawO
      precond :: data-base \Rightarrow in-c \Rightarrow bool
where precond \sigma (deposit c no m) = ((c,no) \in dom \ \sigma)
    | precond \sigma (balance c no) = ((c,no) \in dom \sigma)
    | precond \sigma (withdraw c no m) = ((c,no) \in dom \ \sigma \land (int \ m) \leq the(\sigma(c,no)))
fun postcond :: in-c \Rightarrow data-base \Rightarrow (out-c \times data-base) set
where postcond (deposit c no m) \sigma =
         \{ (n,\sigma'). (n = depositO \land \sigma' = \sigma((c,no) \mapsto the(\sigma(c,no)) + int m)) \}
   | postcond (balance c no) \sigma =
         \{ (n,\sigma'). (\sigma=\sigma' \land (\exists x. balanceO x = n \land x = nat(the(\sigma(c,no))))) \}
    | postcond (withdraw c no m) \sigma =
         \{ (n,\sigma'). (n = withdrawO \land \sigma' = \sigma((c,no) \mapsto the(\sigma(c,no)) - int m)) \}
definition init :: data-base \Rightarrow bool
             init \sigma \equiv \forall x \in dom \ \sigma. \ the(\sigma \ x) \geq 0
```

Constructing an Abstract Program Using the Operators impl and strong_impl, we can synthesize an abstract program right away from the specification, i.e. the pair of preand postcondition defined above. Since this program is even deterministic, we will derive a set of symbolic execution rules used in the test case generation process which will produce symbolic results against which the PUT can be compared in the test driver.

```
lemma precond-postcond-implementable: implementable precond postcond apply(auto simp: implementable-def) apply(case-tac \iota, simp-all) done
```

Based on this input-output specification, we construct the system model as the canonical completion of the (functional) specification consisting of pre- and post-conditions. *Canonical completion* means that the step function explicitly fails (returns *None*) if the precondition fails; this makes it possible to to treat sequential execution failures in a uniform way. The system *SYS* can be seen as the step function in an input-output automata or, alternatively, a kind of Mealy machine over symbolic states, or, as an extended finite state machine.

```
definition SYS :: in-c \Rightarrow (out-c, data-base)MON_{SE}

where SYS = (strong-impl \ precond \ postcond)
```

The combinator *strong-impl* turns the pre-post pair in a suitable step functions with the aforementioned characteristics for failing pre-conditions.

Prerequisites

Proving Symbolic Execution Rules for the Abstractly Program The following lemmas reveal that this "constructed" program is actually (due to determinism of the spec):

```
lemma Eps-split-eq': (SOME (x', y'). x'=x \land y'=y) = (SOME (x', y'). x=x' \land y=y') by (rule arg-cong[of - - Eps], auto) deposit
```

```
\begin{array}{c} \textbf{interpretation} \ deposit : \textit{efsm-det} \\ \textit{precond postcond SYS (deposit c no m) $\lambda$-. } \textit{depositO} \end{array}
```

```
\lambda \sigma. \sigma((c, no) \mapsto (the(\sigma(c, no)) + int m)) \lambda \sigma. ((c, no) \in dom \sigma)
by unfold-locales (auto simp: SYS-def Eps-split-eq')
```

find-theorems name:deposit

withdraw

```
\begin{array}{l} \textbf{interpretation} \ \ \textit{withdraw} \ : \ \textit{efsm-det} \\ \qquad \qquad \textit{precond postcond SYS (withdraw c no m) $\lambda$-. withdrawO} \\ \qquad \qquad \lambda \ \sigma. \ \sigma((c, no) \mapsto \ (\textit{the}(\sigma(c, no)) - \textit{int m})) \ \lambda \ \sigma. ((c, no) \in \textit{dom } \sigma) \land (\textit{int m}) \leq \textit{the}(\sigma(c, no)) \\ \textbf{by unfold-locales (auto simp: SYS-def Eps-split-eq')} \end{array}
```

balance

```
interpretation balance : efsm-det 
precond postcond SYS (balance c no) \lambda \sigma. (balanceO (nat(the(\sigma(c, no))))) 
\lambda \sigma. \sigma \lambda \sigma. ((c, no) \in dom \sigma)
by unfold-locales (auto simp: SYS-def Eps-split-eq')
```

Now we close the theory of symbolic execution by exhuding elementary rewrite steps on $mbind_{FailSave}$, i.e. the rules $mbind_{FailSave}$ [] ?iostep ? $\sigma = Some$ ([], ? σ) $mbind_{FailSave}$ (?a # ?S) ?iostep ? $\sigma = (case ?iostep ?a ?\sigma of None <math>\Rightarrow Some$ ([], ? σ) | Some (out, σ') $\Rightarrow case mbind_{FailSave}$?S ?iostep σ' of None $\Rightarrow Some$ ([out], σ') | Some (outs, σ'') $\Rightarrow Some$ (out # outs, σ''))

```
declare mbind.simps(1) [simp \ del] mbind.simps(2) [simp \ del]
```

Here comes an interesting detail revealing the power of the approach: The generated sequences still respect the preconditions imposed by the specification - in this case, where we are talking about a client for which a defined account exists and for which we will never produce traces in which we withdraw more money than available on it.

Restricting the Test-Space by Test Purposes We introduce a constraint on the input sequence, in order to limit the test-space a little and eliminate logically possible, but

irrelevant test-sequences for a specific test-purpose. In this case, we narrow down on test-sequences concerning a specific client c with a specific bank-account number no.

We make the (in this case implicit, but as constraint explicitly stated) test hypothesis, that the SUT is correct if it behaves correct for a single client. This boils down to the assumption that they are implemented as atomic transactions and interleaved processing does not interfere with a single thread.

```
fun test-purpose :: [client, account-no, in-c list] \Rightarrow bool where

test-purpose c no [balance c' no'] = (c=c' \land no=no')

| test-purpose c no ((deposit\ c'\ no'\ m)\#R) = (c=c' \land no=no' \land test-purpose c no R)

| test-purpose c no ((withdraw\ c'\ no'\ m)\#R) = (c=c' \land no=no' \land test-purpose c no R)

| test-purpose c no -= False

lemma [simp]: test-purpose c no [a] = (a = balance\ c no)

by (cases\ a,\ auto)

lemma [simp]: R\neq [] \implies test-purpose c no (a\#R) = (((\exists\ m.\ a = (deposit\ c\ no\ m)) \lor (\exists\ m.\ a = (withdraw\ c\ no\ m))))

\land test-purpose c no R)

apply (simp\ add:\ List.neq-Nil-conv,\ elim\ exE,simp)

by (cases\ a,\ auto)
```

The TestGen Setup The default configuration of gen_test_cases does not descend into sub-type expressions of type constructors (since this is not always desirable, the choice for the default had been for "non-descent"). This case is relevant here since in-c list has just this structure but we need ways to explore the input sequence type further. Thus, we need configure, for all test cases, and derivation descendants of the relusting clauses during splitting, again splitting for all parameters of input type in-c:

Preparation: Miscellaneous We construct test-sequences for a concrete client (implicitely assuming that interleaving actions with other clients will not influence the system behaviour. In order to prevent HOL-TestGen to perform case-splits over names, i. e., list of characters—we define it as constant.

```
definition c_0 :: string where c_0 = "meyer"

consts\ PUT :: (in-c \Rightarrow (out-c, '\sigma)MON_{SE})

lemma\ HH: (A \land (A \longrightarrow B)) = (A \land B) by auto
```

Small, rewriting based Scenarios including standard code-generation

Exists in two formats: General Fail-Safe Tests (which allows for scenarios with normal and exceptional behaviour; and Fail-Stop Tests, which generates Tests only for normal behaviour and correspond to inclusion test refinement.

In the following, we discuss a test-scenario with failsave error semantics; i.e. in each test-case, a sequence may be chosen (by the test data selection) where the client has sev-

eral accounts. In other words, tests were generated for both standard and exceptional behaviour. The splitting technique is general exploration of the type in-c list.

```
test-spec test-balance:
(c_0,no) \in dom \ \sigma_0 \Longrightarrow
 init \sigma_0 \Longrightarrow
 test-purpose c_0 no S \Longrightarrow
 \sigma_0 \models (s \leftarrow mbind_{FailSave} \ S \ SYS; \ return \ (s = x)) \Longrightarrow
  \sigma_0 \models (s \leftarrow mbind_{FailSave} \ S \ PUT; \ return \ (s = x))
  Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in
HOL and blocking x from beeing case-splitted (which complicates the process).
apply(erule \ rev-mp)+
apply(rule-tac \ x=x \ in \ spec[OF \ all I])
  Starting the test generation process.
apply(gen-test-cases 5 1 PUT)
apply(simp-all add: init-def HH split: HOL.if-split-asm)
mk-test-suite bank-simpleSNXB
{f thm}\ bank\text{-}simpleSNXB.test\text{-}thm
  And now the Fail-Stop scenario — this corresponds exactly to inclusion tests for normal-
behaviour tests: any transition in the model is only possible iff the pre-conditions of the
transitions in the model were respected.
declare Monads.mbind'-bind [simp del]
test-spec test-balance2:
(c_0,no) \in dom \ \sigma_0 \Longrightarrow
init \ \sigma_0 \Longrightarrow
test-purpose c_0 no S \Longrightarrow
\sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ SYS; \ return \ (s = x)) \Longrightarrow
\sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ PUT; \ return \ (s = x))
  Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in
HOL and blocking x from beeing case-splitted (which complicates the process).
apply(erule \ rev-mp)+
apply(rule-tac \ x=x \ in \ spec[OF \ allI])
  Starting the test generation process - variant without uniformity generation.
\mathbf{using}[[no\text{-}uniformity]]
apply(gen-test-cases 4 1 PUT)
  So lets go for a more non-destructive approach:
using[[goals-limit=20]]
apply(simp-all add: init-def HH split: HOL.if-split-asm)
using[[no-uniformity=false]]
apply(tactic\ TestGen.ALLCASES(TestGen.uniformityI-tac\ @\{context\}\ [PUT]))
mk-test-suite bank-simpleNB
{f thm}\ bank\text{-}simpleNB.test\text{-}thm
```

Test-Data Generation

Configuration

```
declare [[testgen-iterations=0]]
declare [[testgen-SMT]]
                         [testgen-smt-facts]
declare c_0-def
declare mem-Collect-eq
                           [testgen-smt-facts]
declare Collect-mem-eq
                           [testgen-smt-facts]
declare dom-def
                          [testgen-smt-facts]
declare Option.option.sel [testgen-smt-facts]
  Test Data Selection for the Normal and Exceptional Behaviour Test Scenario
gen-test-data bank-simpleSNXB
{f thm}\ bank\text{-}simpleSNXB.test\text{-}thm
thm bank-simple SNXB. test-thm-inst
print-conc-tests bank-simpleSNXB
  Test Data Selection for the Normal Behaviour Test Scenario
declare [[testgen-iterations=0]]
declare [[testgen-SMT]]
gen-test-data bank-simpleNB
print-conc-tests bank-simpleNB
\mathbf{thm}\ bank\text{-}simpleNB.test\text{-}thm\text{-}inst
```

Generating the Test-Driver for an SML and C implementation

The generation of the test-driver is non-trivial in this exercise since it is essentially two-staged: Firstly, we chose to generate an SML test-driver, which is then secondly, compiled to a C program that is linked to the actual program under test. Recall that a test-driver consists of four components:

- ../../../harness/sml/main.sml the global controller (a fixed element in the library),
- ../../../harness/sml/main.sml a statistic evaluation library (a fixed element in the library),
- bank_simple_test_script.sml the test-script that corresponds merely one-to-one to the generated test-data (generated)
- bank_adapter.sml a hand-written program; in our scenario, it replaces the usual (black-box) program under test by SML code, that calls the external C-functions via a foreign-language interface.

On all three levels, the HOL-level, the SML-level, and the C-level, there are different representations of basic data-types possible; the translation process of data to and from the C-code

under test has therefore to be carefully designed (and the sheer space of options is sometimes a pain in the neck). Integers, for example, are represented in two ways inside Isabelle/HOL; there is the mathematical quotient construction and a "numerals" representation providing 'bit-string-representation-behind- the-scene" enabling relatively efficient symbolic computation. Both representations can be compiled "natively" to data types in the SML level. By an appropriate configuration, the code-generator can map "int" of HOL to three different implementations: the SML standard library Int.int, the native-C interfaced by Int32.int, and the IntInf.int from the multi-precision library gmp underneath the polyml-compiler.

We do a three-step compilation of data-reresentations model-to-model, model-to-SML, SML-to-C.

A basic preparatory step for the initializing the test-environment to enable code-generation is:

```
\begin{array}{ll} \textbf{generate-test-script} \ \ bank\text{-}simpleSNXB \\ \textbf{thm} \qquad \qquad bank\text{-}simpleSNXB.test\text{-}script \\ \\ \textbf{generate-test-script} \ \ bank\text{-}simpleNB \end{array}
```

bank-simpleNB.test-script

 $_{
m thm}$

In the following, we describe the interface of the SML-program under test, which is in our scenario an *adapter* to the C code under test. This is the heart of the model-to-SML translation. The the SML-level stubs for the program under test are declared as follows:

```
consts balance-stub :: string \Rightarrow int \Rightarrow (int, '\sigma)MON_{SE}
code-printing
   constant balance-stub => (SML) (fn \ n => fn \ i => fn \ s => (case \ (BankAdapter.balance \ n \ (integer'-of'-int \ i) \ s) \ of \ (SOME(i',s')) => SOME(Int'-of'-integer \ i',s')))

consts deposit-stub :: string \Rightarrow int \Rightarrow int \Rightarrow (unit, '\sigma)MON_{SE}
code-printing
   constant deposit-stub => (SML) (fn \ s => fn \ i => fn \ j => BankAdapter.deposit \ s
(integer'-of'-int \ i) (integer'-of'-int \ j))

consts withdraw-stub:: string \Rightarrow int \Rightarrow int \Rightarrow (unit, '\sigma)MON_{SE}
code-printing
   constant withdraw-stub => (SML) (fn \ s => fn \ i => fn \ j => BankAdapter.withdraw \ s
(integer'-of'-int \ i) (integer'-of'-int \ j))
```

Note that this translation step prepares already the data-adaption; the type **nat** is seen as an predicative constraint on integer (which is actually not tested). On the model-to-model level, we provide a global step function that distributes to individual interface functions via stubs (mapped via the code generation to SML ...). This translation also represents uniformly nat by int's.

```
fun stepAdapter :: (in-c \Rightarrow (out-c, '\sigma)MON_{SE}) where stepAdapter(balance\ name\ no) = (x \leftarrow balance-stub\ name\ no;\ return(balanceO\ (Int.nat\ x))) | stepAdapter(deposit\ name\ no\ amount) = (- \leftarrow deposit-stub\ name\ no\ (int\ amount);\ return(depositO)) | stepAdapter(withdraw\ name\ no\ amount) =
```

```
(-\leftarrow withdraw-stub\ name\ no\ (int\ amount);\ return(withdrawO))
```

The stepAdapter function links the HOL-world and establishes the logical link to HOL stubs which were mapped by the code-generator to adapter functions in SML (which call internally to C-code inside bank_adapter.sml via a foreign language interface)

... We configure the code-generator to identify the PUT with the generated SML code implicitely defined by the above stepAdapter definition.

```
code-printing
  constant PUT => (SML) stepAdapter
  And there we go and generate the bank_simple_test_script.sml:
export-code
                          stepAdapter bank-simpleSNXB.test-script in SML
module-name TestScript file impl/c/bank-simpleSNXB-test-script.sml
                         stepAdapter bank-simpleNB.test-script in SML
export-code
module-name TestScript file impl/c/bank-simpleNB-test-script.sml
```

More advanced Test-Case Generation Scenarios

Exploring a bit the limits ...

```
Rewriting based approach of symbolic execution ... FailSave Scenario
test-spec test-balance:
assumes account-def : (c_0, no) \in dom \ \sigma_0
and
         accounts-pos:init \sigma_0
and
         test-purpose : test-purpose c_0 no S
and
         sym-exec-spec:
       \sigma_0 \models (s \leftarrow mbind_{FailSave} \ S \ SYS; \ return \ (s = x))
shows \sigma_0 \models (s \leftarrow mbind_{FailSave} \ S \ PUT; \ return \ (s = x))
  Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in
HOL and blocking x from beeing case-splitted (which complicates the process).
apply(insert account-def test-purpose sym-exec-spec)
apply(tactic\ TestGen.mp-fy\ @\{context\}\ 1, rule-tac\ x=x\ in\ spec[OF\ allI])
  Starting the test generation process.
apply(gen-test-cases 5 1 PUT)
  Symbolic Execution:
apply(simp-all add: HH split: HOL.if-split-asm)
mk-test-suite bank-large
gen-test-data bank-large
print-conc-tests bank-large
  Rewriting based approach of symbolic execution ... FailSave Scenario
test-spec test-balance:
assumes account-def : (c_0, no) \in dom \ \sigma_0
and
         accounts-pos:init \sigma_0
and
         test-purpose : test-purpose c_0 no S
```

```
and
                  sym-exec-spec:
              \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ SYS; \ return \ (s = x))
shows \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ PUT; \ return \ (s = x))
      Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in
HOL and blocking x from beeing case-splitted (which complicates the process).
apply(insert account-def test-purpose sym-exec-spec)
apply(tactic\ TestGen.mp-fy\ @\{context\}\ 1, rule-tac\ x=x\ in\ spec[OF\ allI])
      Starting the test generation process.
apply(gen-test-cases 3 1 PUT)
      Symbolic Execution:
apply(simp-all add: HH split: HOL.if-split-asm)
mk-test-suite bank-large'
gen-test-data bank-large'
print-conc-tests bank-large'
      And now, to compare, elimination based procedures ...
declare deposit.exec-mbindFSave-If[simp del]
declare balance.exec-mbindFSave-If[simp del]
declare withdraw.exec-mbindFSave-If[simp del]
declare deposit.exec-mbindFStop [simp del]
declare balance.exec-mbindFStop[simp del]
declare withdraw.exec-mbindFStop[simp del]
{\bf thm}\ deposit. exec-mbindFS ave-E\ with draw. exec-mbindFS ave-E\ balance. exec-mbindFS ave-E\ ave-E\ balance. exec-mbindFS ave
test-spec test-balance:
assumes account-defined: (c_0, no) \in dom \ \sigma_0
and
                  accounts-pos: init \sigma_0
and
                  test-purpose : test-purpose c_0 no S
and
                  sym-exec-spec:
              \sigma_0 \models (s \leftarrow \mathit{mbind}_{\mathit{FailStop}} \; \mathit{SSYS}; \; \mathit{return} \; (s = x))
shows \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ PUT; \ return \ (s = x))
\mathbf{apply}(insert \quad account\text{-}defined \ test\text{-}purpose \ sym\text{-}exec\text{-}spec)
apply(tactic\ TestGen.mp-fy\ @\{context\}\ 1, rule-tac\ x=x\ in\ spec[OF\ allI])
using [[no-uniformity]]
apply(gen-test-cases
3 1 PUT )
                                       ALLGOALS (TestGen.REPEAT' (ematch-tac))
                                                                                                                                                   @\{context\}
                                                                                                                                                                                       [@\{thm
apply(tactic
                                                                                                                                                                                                                  bal-
ance.exec-mbindFStop-E,
                                                                                                               @\{thm\ withdraw.exec-mbindFStop-E\},
                                                                                                               @\{thm\ deposit.exec-mbindFStop-E\},
                                                                                                               @\{thm\ valid-mbind'-mt\}
                                              ])))
apply(simp-all)
```

```
\begin{array}{l} \mathbf{using}[[no\text{-}uniformity = false]] \\ \mathbf{apply}(tactic\ TestGen.ALLCASES(TestGen.uniformityI-tac\ @\{context\}\ [PUT])) \\ \mathbf{mk\text{-}test\text{-}suite}\ bank\text{-}large\text{-}very \end{array}
```

Yet another technique: "deep" symbolic execution rules involving knowledge from the model domain. Here: input alphabet must be case-split over deposit, withdraw and balance. This avoids that gen_test_cases has to do deep splitting.

```
theorem hulk:
                    : \sigma \models (s \leftarrow (mbind_{FailStop} (a \# S) SYS); return (P s))
assumes redex
and case-deposit: \bigwedge c \ no \ m. \ a = deposit \ c \ no \ m \Longrightarrow (c, \ no) \in dom \ \sigma \Longrightarrow
                              \sigma((c, no) \mapsto the (\sigma (c, no)) + int m) \models
                                     (s \leftarrow mbind_{FailStop} \ S \ SYS; \ return \ P \ (depositO \ \# \ s)) \Longrightarrow
and case-withdraw : \bigwedge c no m. a = withdraw \ c no m \Longrightarrow (c, no) \in dom \ \sigma \Longrightarrow
                              int \ m \leq the \ (\sigma \ (c, \ no)) \Longrightarrow
                              \sigma((c,no) \mapsto the(\sigma(c,no)) - int m) \models
                                             (s \leftarrow mbind_{FailStop} \ S \ SYS; \ return \ P \ (withdraw O \# s)) \Longrightarrow
and case-balance : \bigwedge c no.
                                   (c, no) \in dom \ \sigma \Longrightarrow
                                \sigma \models (s \leftarrow mbind_{FailStop} S SYS;
                                    return P (balanceO (nat (the (\sigma(c, no)))) # s)) \Longrightarrow
shows Q
proof(cases a) print-cases
     case (deposit\ c\ no\ m) assume hyp: a = deposit\ c\ no\ m show Q
        using hyp redex
        apply(simp only: deposit.exec-mbindFStop)
        apply(rule case-deposit, auto)
        done
next
     case (withdraw c no m) assume hyp: a = withdraw c no m show Q
        using hyp redex
        apply(simp only: withdraw.exec-mbindFStop)
        apply(rule\ case-withdraw,\ auto)
next
     case (balance c no) assume hyp: a = balance c no show Q
        using hyp redex
        apply(simp only: balance.exec-mbindFStop)
        apply(rule case-balance, auto)
        done
qed
Experimental Space
```

```
\begin{aligned} &\mathbf{declare}[[testgen-trace]] \\ &\mathbf{ML} \langle \langle \ prune-params-tac; \ Drule.triv-forall-equality \rangle \rangle \end{aligned}
```

end

8. A Simple Non-Deterministic Bank Model

```
theory
NonDetBank
imports
Testing
begin
declare [[testgen-profiling]]
```

This testing scenario is a modification of the Bank example. The purpose is to explore specifications which are nondetermistic, but at least σ -deterministic, i.e. from the observable output, the internal state can be constructed (which paves the way for symbolic executions based on the specification).

The state of our bank is just modeled by a map from client/account information to the balance.

```
type-synonym client = string

type-synonym account-no = int

type-synonym register = (client \times account-no) \rightarrow int
```

Operation definitions We use a similar setting as for the Bank example — with one minor modification: the withdraw operation gets a non-deterministic behaviour: it may withdraw any amount between 1 and the demanded amount.

```
op deposit (c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register)
post register'=register[(c,no) := register(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(register)
post register'=register and result = register(c,no)

op withdraw(c : client, no : account_no, amount:nat) : nat
pre (c,no) : dom(register) and register(c,no) >= amount
post result <= amount and
    register'=register[(c,no) := register(c,no) - result]</pre>
```

Interface normalization turns this interface into the following input type:

```
datatype in-c = deposit client account-no nat | with draw client account-no nat
```

```
datatype out-c = depositO | balanceO nat | withdrawO nat
fun precond :: register \Rightarrow in - c \Rightarrow bool
where precond \sigma (deposit c no m) = ((c,no) \in dom \ \sigma)
     precond \sigma (balance c no) = ((c,no) \in dom \ \sigma)
     precond \sigma (withdraw c no m) = ((c,no) \in dom \ \sigma \land (int \ m) \leq the(\sigma(c,no)))
       postcond :: in-c \Rightarrow register \Rightarrow (out-c \times register) set
where postcond (deposit c no m) \sigma =
           \{(n,\sigma'), (n = depositO \land \sigma' = \sigma((c,no) \mapsto the(\sigma(c,no)) + int m))\}\}
      postcond (balance c no) \sigma =
         (\{ (n,\sigma'), (\sigma=\sigma' \land (\exists x. balanceO x = n \land x = nat(the(\sigma(c,no))))) \})
      postcond (withdraw c no m) \sigma =
        \{(n,\sigma'). (\exists x \leq m. \ n = withdraw O \ x \land \sigma' = \sigma((c,no) \mapsto the(\sigma(c,no)) - int \ x))\}\}
Proving Symbolic Execution Rules for the Abstractly Constructed Program Us-
ing the Operators impl and strong_impl, we can synthesize an abstract program right away
from the specification, i.e. the pair of pre and postcondition defined above. Since this pro-
gram is even deterministic, we derive a set of symbolic execution rules used in the test
case generation process which will produce symbolic results against which the PUT can be
compared in the test driver.
definition implementable :: ['\sigma \Rightarrow '\iota \Rightarrow bool, '\iota \Rightarrow ('o, '\sigma)MON_{SB}] \Rightarrow bool
             implementable pre post = (\forall \ \sigma \ \iota. \ pre \ \sigma \ \iota \longrightarrow (\exists \ out \ \sigma'. \ (out, \sigma') \in post \ \iota \ \sigma))
where
lemma precond-postcond-implementable:
     implementable precond postcond
apply(auto simp: implementable-def)
apply(case-tac \ \iota, simp-all)
apply auto
done
   The following lemmas reveal that this "constructed" program is actually (due to deter-
minism of the spec)
lemma impl-1:
     strong-impl\ precond\ postcond\ (deposit\ c\ no\ m) =
     (\lambda \sigma \cdot if \ (c, no) \in dom \ \sigma
           then Some(depositO, \sigma((c, no)) \mapsto the (\sigma (c, no)) + int m))
           else None)
by(rule ext, auto simp: strong-impl-def)
lemma valid-both-spec1[simp]:
(\sigma \models (s \leftarrow mbind \ ((deposit \ c \ no \ m) \# S) \ (strong-impl \ precond \ postcond);
                   return (P s))) =
    (if (c, no) \in dom \sigma)
```

then $(\sigma((c, no) \mapsto the (\sigma (c, no)) + int m)) \models (s \leftarrow mbind S (strong-impl precond postcond);$

```
return (P (depositO \# s)))
     else (\sigma \models (return \ (P \ []))))
by(auto simp: exec-mbindFSave impl-1)
lemma impl-2:
     strong-impl\ precond\ postcond\ (balance\ c\ no) =
      (\lambda \sigma. if (c, no) \in dom \sigma
           then Some(balanceO(nat(the\ (\sigma\ (c,\ no)))),\sigma)
           else None)
by(rule ext, auto simp: strong-impl-def)
lemma valid-both-spec2 [simp]:
(\sigma \models (s \leftarrow mbind \ ((balance \ c \ no) \# S) \ (strong-impl \ precond \ postcond);
                    return (P s))) =
    (if (c, no) \in dom \sigma)
     then (\sigma \models (s \leftarrow mbind\ S\ (strong-impl\ precond\ postcond);
                       return (P (balanceO(nat(the (\sigma(c, no))) \# s))))
     else (\sigma \models (return \ (P \ []))))
by(auto simp: exec-mbindFSave impl-2)
```

So far, no problem; however, so far, everything was deterministic. The following keytheorem does not hold:

```
lemma impl-3:
```

```
strong-impl precond postcond (withdraw c no m) = (\lambda \sigma. if (c, no) \in dom \ \sigma \land (int \ m) \leq the(\sigma(c, no)) \land x \leq m
then Some(withdrawO\ x, \sigma((c, no) \mapsto the\ (\sigma\ (c, no)) - int\ x))
else None)
```

oops

This also breaks our deterministic approach to compute the sequence aforehand and to run the test of PUT against this sequence.

However, we can give an acceptance predicate (an automaton) for correct behaviour of our PUT:

```
fun accept :: (in-c \ list \times out-c \ list \times int) \Rightarrow bool

where accept((deposit \ c \ no \ n)\#S, depositO\#S', \ m) = accept \ (S,S', \ m+(int \ n))

| \ accept((withdraw \ c \ no \ n)\#S, \ (withdrawO \ k)\#S', m) = (k \le n \land accept \ (S,S', \ m-(int \ k)))

| \ accept([balance \ c \ no], \ [balanceO \ n], \ m) = (int \ n = m)

| \ accept(a,b,c) = False
```

This format has the advantage

TODO: Work out foundation. accept works on an abstract state (just one single balance of a user), while PUT works on the (invisible) concrete state. A data-refinement is involved, and it has to be established why it is correct.

```
Test Specifications fun test-purpose :: [client, account-no, in-c list] \Rightarrow bool where
```

```
test-purpose c no [] = False

| test-purpose c no (a\#R) = (case R of

[] \Rightarrow a = balance c no
```

```
 \mid a'\#R' \Rightarrow (((\exists m. \ a = deposit \ c \ no \ m) \lor \\ (\exists m. \ a = withdraw \ c \ no \ m)) \land \\ test-purpose \ c \ no \ R))
```

```
test-spec test-balance: assumes account-defined: (c,no) \in dom \ \sigma_0 and test-purpose : test-purpose c no is shows \sigma_0 \models (os \leftarrow mbind \ is \ PUT; \ return \ (accept(is, \ os, \ the(\sigma_0 \ (c,no))))) apply(insert account-defined test-purpose) apply(gen-test-cases PUT split: HOL.if-split-asm) mk-test-suite nbank declare [[testgen-iterations=0]] gen-test-data nbank
```

8.1. MyKeOS

9. The MyKeOS Case Study

```
theory MyKeOS
imports
Testing
begin
```

This example is drawn from the operating system testing domain; it is a rough abstraction of PiKeOS and explains the underlying techniques of this particular case study on a small example. The full paper can be found under [5].

This is a fun-operating system — closely following the Bank example — intended to explain the principles of symbolic execution used in our PikeOS study.

Moreover, in this scenario, we assume that the system under test is deterministic.

The state of a thread (belonging to a task, i.e. a Unix/PosiX like "process" just modeled by a map from task-id/thread-id information to the number of a resource (a communication channel descriptor, for example) that was allocated to a thread.

```
type-synonym task-id = int

type-synonym thread-id = int

type-synonym thread-local-var-tab = thread-id \rightarrow int
```

Operation definitions A standard, JML or OCL or VCC like interface specification might look like:

```
Init: forall (c,no) : dom(data_base::thread_local_var_tab). data_base(c,no)>=0

op alloc (c : task_id, no : thread_id, amount:nat) : unit

pre (c,no) : dom(data_base)

post data_base'=data_base[(c,no) := data_base(c,no) + amount]

op release(c : task_id, no : thread_id, amount:nat) : unit

pre (c,no) : dom(data_base) and data_base(c,no) >= amount

post data_base'=data_base[(c,no) := data_base(c,no) - amount]

op status (c : task_id, no : thread_id) : int

pre (c,no) : dom(data_base)

post data_base'=data_base and result = data_base(c,no)
```

Interface normalization turns this interface into the following input type:

```
datatype in-c = send
                                      thread-id thread-id nat
                             thread-id thread-id nat
                 | status thread-id
datatype in_{fc} = send_{fc} thread-id thread-id nat
                             thread-id thread-id nat
                   rec_{fc}
                   alloc_{fc} thread-id nat
                  | release fc thread-id nat
                  | stat_{fc} | thread-id
typ MyKeOS.in-c
datatype out\text{-}c = send\text{-}ok \mid rec\text{-}ok \mid status\text{-}ok \ nat
datatype out_{fc} = send - ok_{fc} \mid rec - ok_{fc} \mid alloc - ok_{fc} \mid release - ok_{fc} \mid stat - ok_{fc} nat
\mathbf{fun} \quad \textit{precond} :: \textit{thread-local-var-tab} \Rightarrow \textit{in-c} \Rightarrow \textit{bool}
where precond \sigma (send tid tid' m) = (tid \in dom \sigma \land tid' \in dom \sigma \land (int m) \leq the(\sigma tid))
    | precond \sigma (rec tid tid' m) = (tid \in dom \sigma \wedge tid' \in dom \sigma)
    | precond \sigma (status tid) = (tid \in dom \sigma)
fun precond_{fc} :: thread-local-var-tab \Rightarrow in_{fc} \Rightarrow bool
where precond_{fc} \sigma (send_{fc} tid tid' m) = (tid \in dom \sigma \land tid' \in dom \sigma \land (int m) \leq the(\sigma tid))
      precond_{fc} \sigma \ (rec_{fc} \ tid \ tid' \ m) = (tid \in dom \ \sigma \land tid' \in dom \ \sigma)
      precond_{fc} \sigma \ (alloc_{fc} \ tid \ m) = (tid \in dom \ \sigma)
      precond_{fc} \sigma \ (release_{fc} \ tid \ m) = (tid \in dom \ \sigma)
    | precond_{fc} \sigma (stat_{fc} tid) = (tid \in dom \sigma)
       postcond :: in-c \Rightarrow thread-local-var-tab \Rightarrow (out-c \times thread-local-var-tab) set
where postcond (send tid tid' m) \sigma =
          \{ (n,\sigma'). \ n = send - ok \land \sigma' = \sigma(tid \mapsto the(\sigma \ tid) - int \ m) \}
    | postcond (rec tid tid' m) \sigma =
          \{ (n,\sigma'). (n = rec\text{-}ok \land \sigma' = \sigma(tid' \mapsto the(\sigma\ tid') + int\ m)) \}
    | postcond (status tid) \sigma =
          \{(n,\sigma'), (\sigma=\sigma' \land (\exists x. status-ok \ x=n \land x=nat(the(\sigma\ tid))))\}
fun postcond_{fc} :: in_{fc} \Rightarrow thread-local-var-tab \Rightarrow (out_{fc} \times thread-local-var-tab) set
where postcond_{fc} (send_{fc} tid tid' m) \sigma =
          \{ (n,\sigma'). \ n = send - ok_{fc} \land \sigma' = \sigma(tid \mapsto the(\sigma \ tid) - int \ m) \}
    \mid postcond_{fc} (rec_{fc} \ tid \ tid' \ m) \ \sigma =
         \{ (n,\sigma'). (n = rec - ok_{fc} \land \sigma' = \sigma(tid' \mapsto the(\sigma \ tid') + int \ m)) \}
    \mid postcond_{fc} \; (stat_{fc} \; tid) \; \sigma =
          \{(n,\sigma'). (\sigma=\sigma' \land (\exists x. stat-ok_{fc} x = n \land x = nat(the(\sigma tid))))\}
```

Constructing an Abstract Program Using the Operators impl and strong_impl, we can synthesize an abstract program right away from the specification, i.e. the pair of pre-

and postcondition defined above. Since this program is even deterministic, we derive a set of symbolic execution rules used in the test case generation process which will produce symbolic results against which the PUT can be compared in the test driver.

```
lemma precond-postcond-implementable: implementable precond postcond apply(auto simp: implementable-def) apply(case-tac \iota, simp-all) done
```

Based on this machinery, it is now possible to construct the system model as the canonical completion of the (functional) specification consisting of pre- and post-conditions

```
definition SYS = (strong-impl precond postcond)
```

```
lemma SYS-is-strong-impl: is-strong-impl precond postcond SYS by(simp add: SYS-def is-strong-impl)
```

thm SYS-is-strong-impl[simplified is-strong-impl-def, THEN spec, of (send tid tid'm), simplified]

Proving Symbolic Execution Rules for the Abstractly Program The following lemmas reveal that this "constructed" program is actually (due to determinism of the spec):

```
lemma Eps-split-eq': (SOME (x', y'). x'=x \land y'=y) = (SOME (x', y'). x=x' \land y=y') by (rule arg-cong [of - - Eps], auto)
```

```
{\bf interpretation}\ \mathit{send}: \mathit{efsm-det}
```

```
precond postcond SYS (send tid tid' m) \lambda-. send-ok \lambda \sigma. \sigma(tid \mapsto (the(\sigma \ tid) - int \ m)) \lambda \sigma. (tid \in dom \ \sigma \land tid' \in dom \ \sigma \land (int \ m) \leq the(\sigma \ tid)) by unfold-locales (auto simp: SYS-def Eps-split-eq')
```

 $interpretation \ receive: efsm-det$

```
precond postcond SYS (rec tid tid' m) \lambda-. rec-ok \lambda \sigma. \sigma(tid' \mapsto (the(\sigma \ tid') + int \ m)) \lambda \sigma.(tid \in dom \ \sigma \land tid' \in dom \ \sigma) by unfold-locales (auto simp: SYS-def Eps-split-eq')
```

interpretation status: efsm-det

```
precond postcond SYS (status tid) \lambda\sigma.~(status\text{-}ok~(nat(the(\sigma~tid))))\\ \lambda~\sigma.~\sigma~\lambda~\sigma.~(tid~\in~dom~\sigma)\\ \text{by } \textit{unfold-locales}~(auto~simp:~SYS\text{-}def~Eps\text{-}split\text{-}eq')
```

Setup Now we close the theory of symbolic execution by exhuding elementary rewrite steps on $mbind_{FailSave}$, i. e. the rules $mbind_{FailSave}$ [] ?iostep ? $\sigma = Some$ ([], ? σ) $mbind_{FailSave}$ (?a # ?S) ?iostep ? $\sigma = (case ?<math>iostep$?a ? σ of $None \Rightarrow Some$ ([], ? σ) | Some (out, σ') \Rightarrow case $mbind_{FailSave}$?S ?iostep σ' of $None \Rightarrow Some$ ([out], σ') | Some (outs, σ''))

```
\begin{array}{c} \mathbf{declare} \ mbind.simps(1) \ [simp \ del] \\ mbind.simps(2) \ [simp \ del] \end{array}
```

Here comes an interesting detail revealing the power of the approach: The generated sequences still respect the preconditions imposed by the specification - in this case, where we are talking about a task_id for which a defined account exists and for which we will never produce traces in which we release more money than available on it.

Restricting the Test-Space by Test Purposes We introduce a constraint on the input sequence, in order to limit the test-space a little and eliminate logically possible, but irrelevant test-sequences for a specific test-purpose. In this case, we narrow down on test-sequences concerning a specific $task_idc$ with a specific $task_idc$ with a specific $task_idc$.

We make the (in this case implicit, but as constraint explicitly stated) test hypothesis, that the SUT is correct if it behaves correct for a single task_id. This boils down to the assumption that they are implemented as atomic transactions and interleaved processing does not interfere with a single thread.

```
\mathbf{term} \ List.member \ y \ x
fun test-purpose :: [task-id list, in-c list] <math>\Rightarrow bool
  test-purpose R [status\ tid] = (tid \in set\ R)
 test-purpose R ((send tid tid' m) \# S) = (tid \in set R \land tid' \in set R \land test-purpose R S)
 test-purpose R ((rec tid tid' m) \# S) = (tid \in set R \land tid' \in set R \land test-purpose R S)
 test-purpose - - = False
lemma [simp]: test-purpose [] a = False by (induct\ a,\ simp-all, case-tac a1,
                                                simp-all, case-tac a2, simp-all)
lemma [simp]: test-purpose r [] = False by simp
lemma [simp] : test-purpose (tid\#R) [a] = ((a = status\ tid) \lor test-purpose R [a])
proof (induct R)
 case Nil show ?case by(cases a, simp-all)
 case (Cons a' R') then show ?case by(cases a, simp-all)
qed
lemma [rule-format, simp, dest]: test-purpose R (S@[a]) \longrightarrow (\exists tid \in set R. (a = status tid))
proof (induct\ S\ arbitrary:\ R)
 case Nil then show ?case apply(auto)
                   bv (metis in-c.exhaust test-purpose.simps(1) test-purpose.simps(2)
                      test-purpose.simps(3) test-purpose.simps(4))
next
 case (Cons a list) show ?case apply(insert Cons.hyps)
                   by (metis append-Cons hd-Cons-tl in-c.exhaust snoc-eq-iff-butlast
                           test-purpose.simps(2) test-purpose.simps(3) test-purpose.simps(5))
qed
schematic-goal sdf:(\exists tid \in set [1,2,3]. (a = status tid)) = ?X
apply(rule\ trans)
```

```
\begin{array}{ll} \mathbf{apply} \ simp \\ \mathbf{oops} \end{array}
```

```
lemma [simp]:
 \textit{test-purpose} \ H \ (\textit{a\#R}) = ((((\exists \textit{m}. \ \exists \textit{tid} \in \textit{set} \ H. \ \exists \textit{tid}' \in \textit{set} \ H. \ \textit{a} = \textit{send} \ \textit{tid} \ \textit{tid}' \ \textit{m}) \ \lor \\
                                (\exists m. \exists tid \in set H. \exists tid' \in set H. a = rec tid tid' m))
                               \land test-purpose HR) \lor
                               (R=[] \land (\exists tid \in set \ H. \ a = status \ tid)))
proof(induct R arbitrary: a)
  case Nil then show ?case by(simp,case-tac a, simp-all)
next
  case (Cons a list aa) then show ?case by(simp,case-tac aa, simp-all)
qed
   The following scenario checks send-operations to itself
lemma exhaust1[simp]:
 test-purpose [tid] (a\#R) = ((((\exists m. \ a = send \ tid \ tid \ m) \lor )))
                                   (\exists m. \ a = rec \ tid \ tid \ m))
                                   \land test-purpose [tid] R) \lor
                                   (R=[] \land (a = status \ tid)))
by simp
lemma exhaust2[simp]:
 test-purpose \lceil tid, tid' \rceil (a \# R) = ((((\exists m. \ a = send \ tid \ tid \ m) \lor (\exists m. \ a = send \ tid' \ tid' \ m) \lor
                                         (\exists m. \ a = send \ tid \ tid' \ m) \lor (\exists m. \ a = send \ tid' \ tid \ m) \lor
                                         (\exists m. \ a = rec \ tid \ tid' \ m) \lor (\exists m. \ a = rec \ tid' \ tid \ m) \lor
                                         (\exists m. \ a = rec \ tid \ tid \ m) \lor (\exists m. \ a = rec \ tid' \ tid' \ m))
                                         \land test-purpose [tid, tid'] R) \lor
                                       (R=[] \land ((a = status \ tid) \lor (a = status \ tid'))))
by auto
Well-formed traces
fun compair :: in-c \Rightarrow in-c \Rightarrow bool
              compair (send x y z) (rec x' y' z') = ((x=x') \land (y=y') \land (z=z'))
         | compair - - = False
definition wf-trace :: in-c list \Rightarrow bool
               \textit{wf-trace } t = (\exists f. \ \forall \ n \in \{0... < length \ t\}. \ f \ n \in \{0... < length \ t\} \ \land
where
                                                      f(f n) = n \wedge (* derivable ? *)
                                                       (case (t!n) of
                                                         (send - - -) \Rightarrow
                                                                    (compair\ (t!n)\ (t!(f\ n))\ \land f\ n>n)
                                                       |(rec - - -) \Rightarrow
                                                                   (compair\ (t!n)\ (t!(f\ n)) \land f\ n < n)
                                                      |(status -) \Rightarrow (f n) = n|
                          )
```

\mathbf{Misc}

consts $PUT :: in-c \Rightarrow '\sigma \Rightarrow (out-c \times '\sigma) \ option$

 \mathbf{end}

10. The MyKeOS "Traditional" Data-sequence enumeration approach

theory MyKeOS-test imports MyKeOS

begin

The purpose of these test-scenarios is to apply the bute-force data-exploration approach to a little operation system example. It is conceptually very close the Bank-example, essentially a renaming. However, the present "data-exploration" based approach is an interesting intermediate step to the subsequently shown scenarios based on:

- 1. exploration if the interleaving space
- 2. optimized exploration if the interleaving space, including theory for partial-order reduction.

declare [[testgen-profiling]]

The TestGen Setup The default configuration of gen_test_cases does not descend into sub-type expressions of type constructors (since this is not always desirable, the choice for the default had been for "non-descent"). This case is relevant here since in-c list has just this structure but we need ways to explore the input sequence type further. Thus, we need configure, for all test cases, and derivation descendants of the relusting clauses during splitting, again splitting for all parameters of input type in-c:

```
 \begin{array}{lll} \mathbf{set\text{-}pre\text{-}safe\text{-}tac} \langle \langle \\ & (\mathit{fn\ ctxt} => \mathit{TestGen.ALLCASES}(\\ & \mathit{TestGen.CLOSURE}\ (\\ & \mathit{TestGen.case\text{-}tac\text{-}typ\ ctxt}\ [\mathit{MyKeOS.in\text{-}c}]))) \\ \rangle \rangle \\ \end{array}
```

The Scenario We construct test-sequences for a concrete task_id (implicitly assuming that interleaving actions with other task_id's will not influence the system behaviour. In order to prevent HOL-TestGen to perform case-splits over names — i.e. list of characters — we define it as constant.

```
definition tid_0 :: task-id where tid_0 = 0 definition tid_1 :: task-id where tid_1 = 1
```

declare[[goals-limit = 500]]

```
Making my own test-data generation — temporarily lemma HH:(A \wedge (A \longrightarrow B))
= (A \wedge B) by auto
```

Some Experiments with nitpick as Testdata Selection Machine. Exists in two formats: General Fail-Safe Tests (which allows for scenarios with normal *and* exceptional behaviour; and Fail-Stop Tests, which generates Tests only for normal behaviour and correspond to inclusion test refinement.

```
lemma H: ((((X586X11506, X587X11507) \in dom\ X588X11508 \longrightarrow
       [status-ok\ (nat\ (the\ (X588X11508\ (X586X11506,\ X587X11507))))] = X590X11510\ \land
       X588X11508 \ (X586X11506, X587X11507) = Some \ X589X11509) \land
      ((X586X11506, X587X11507) \notin dom\ X588X11508 \longrightarrow
        = X590X11510 \land X588X11508 \ (X586X11506, X587X11507) = Some \ X589X11509) ) 
nitpick[satisfy, debug]
oops
lemma H: (((X586X11506, X587X11507) \in dom
       ([(X586X11506, X587X11507) \mapsto X589X11509]) \longrightarrow
       [status-ok (nat (the (
           ([(X586X11506, X587X11507) \mapsto X589X11509]) (X586X11506, X587X11507))))] =
X590X11510 ∧
         ([(X586X11506, X587X11507) \mapsto X589X11509]) (X586X11506, X587X11507) = Some
X589X11509) \land
      ((X586X11506, X587X11507) \notin dom
       ([(X586X11506, X587X11507) \mapsto X589X11509]) \longrightarrow
           [] = X590X11510 \land ([(X586X11506, X587X11507) \mapsto X589X11509]) (X586X11506,
X587X11507) = Some X589X11509))
nitpick[satisfy, debug, timeout = 500]
oops
```

In the following, we discuss a test-scenario with error-abort semantics; i.e. in each test-case, a sequence may be chosen (by the test data selection) where the task_id has several accounts. . .

```
test-spec test-status: assumes account-def : no \in dom \ \sigma_0 \land no' \in dom \ \sigma_0 and test-purpose : test-purpose [no,no']\ S and sym-exec-spec : \sigma_0 \models (s \leftarrow mbind_{FailSave}\ S\ SYS;\ return\ (s=x)) shows \sigma_0 \models (s \leftarrow mbind_{FailSave}\ S\ PUT;\ return\ (s=x))
```

Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in A HOL and blocking x from beeing case-splitted (which complicates the process).

```
apply(rule rev-mp[OF sym-exec-spec])
apply(rule rev-mp[OF account-def])
apply(rule rev-mp[OF test-purpose])
apply(rule-tac x=x in spec[OF allI])
   Starting the test generation process.
apply(gen-test-cases 3 1 PUT)
apply(simp-all add: HH split: HOL.if-split-asm)
```

```
mk-test-suite mykeos-simpleSNXB
  And now the Fail-Stop scenario — this corresponds exactly to inclusion test.
declare Monads.mbind'-bind [simp del]
test-spec test-status2:
assumes system-def : tid \in dom \ \sigma_0 \land tid' \in dom \ \sigma_0
and
         test-purpose : test-purpose [tid,tid'] S
and
         sym-exec-spec:
       \sigma_0 \models (s \leftarrow \mathit{mbind}_{\mathit{FailStop}} \; \mathit{SSYS}; \; \mathit{return} \; (s = x))
shows \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ PUT; \ return \ (s = x))
  Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in
HOL and blocking x from beeing case-splitted (which complicates the process).
apply(rule rev-mp[OF sym-exec-spec])
apply(rule rev-mp[OF system-def])
apply(rule rev-mp[OF test-purpose])
apply(rule-tac \ x=x \ in \ spec[OF \ all I])
  Starting the test generation process.
using[[no-uniformity]]
apply(gen-test-cases 3 1 PUT)
  So lets go for a more non-destructive approach:
apply simp-all
using[[no-uniformity=false]]
apply(tactic\ TestGen.ALLCASES(TestGen.uniformityI-tac\ @\{context\}\ [PUT]))
mk-test-suite mykeos-simpleNB
\mathbf{ML}\langle\langle Isar-Cmd.done-proof; Proof.global-done-proof\rangle\rangle
Test-Data Generation ML\(\lambda\) Thm.close-derivation
declare [[testgen-iterations=0]]
declare [[testgen-SMT]]
declare tid_0-def [testgen-smt-facts]
declare tid_1-def [testgen-smt-facts]
declare mem-Collect-eq
                             [testgen-smt-facts]
declare Collect-mem-eq
                             [testgen-smt-facts]
declare dom-def
                            [testgen-smt-facts]
declare Option.option.sel [testgen-smt-facts]
```

gen-test-data mykeos-simpleSNXB print-conc-tests mykeos-simpleSNXB gen-test-data mykeos-simpleNB print-conc-tests mykeos-simpleNB

Generating the Test-Driver for an SML and C implementation The generation of the test-driver is non-trivial in this exercise since it is essentially two-staged: Firstly, we chose to generate an SML test-driver, which is then secondly, compiled to a C program that is linked to the actual program under test. Recall that a test-driver consists of four components:

- ../../../harness/sml/main.sml the global controller (a fixed element in the library),
- ../../../harness/sml/main.sml a statistic evaluation library (a fixed element in the library),
- bank_simple_test_script.sml the test-script that corresponds merely one-to-one to the generated test-data (generated)
- bank_adapter.sml a hand-written program; in our scenario, it replaces the usual (black-box) program under test by SML code, that calls the external C-functions via a foreign-language interface.

On all three levels, the HOL-level, the SML-level, and the C-level, there are different representations of basic data-types possible; the translation process of data to and from the C-code under test has therefore to be carefully designed (and the sheer space of options is sometimes a pain in the neck). Integers, for example, are represented in two ways inside Isabelle/HOL; there is the mathematical quotient construction and a "numerals" representation providing 'bit-string-representation-behind- the-scene" enabling relatively efficient symbolic computation. Both representations can be compiled "natively" to data types in the SML level. By an appropriate configuration, the code-generator can map "int" of HOL to three different implementations: the SML standard library Int.int, the native-C interfaced by Int32.int, and the IntInf.int from the multi-precision library gmp underneath the polyml-compiler.

We do a three-step compilation of data-reresentations model-to-model, model-to-SML, SML-to-C.

A basic preparatory step for the initializing the test-environment to enable code-generation is:

 $\begin{array}{ll} \textbf{generate-test-script} \ \ mykeos\text{-}simpleNB \\ \textbf{thm} \qquad \qquad mykeos\text{-}simpleNB.test\text{-}script \\ \textbf{generate-test-script} \ \ mykeos\text{-}simpleSNXB \end{array}$

More advanced Test-Case Generation Scenarios Exploring a bit the limits ...

Rewriting based approach of symbolic execution ... FailSave Scenario test-spec test-status:

```
assumes account\text{-}def : (no) \in dom \ \sigma_0 \land (no') \in dom \ \sigma_0
and
         test-purpose : test-purpose [no,no'] S
and
         sym-exec-spec:
       \sigma_0 \models (s \leftarrow mbind_{FailSave} \ S \ SYS; \ return \ (s = x))
shows \sigma_0 \models (s \leftarrow mbind_{FailSave} \ S \ PUT; \ return \ (s = x))
  Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in
HOL and blocking x from beeing case-splitted (which complicates the process).
apply(insert account-def test-purpose sym-exec-spec)
apply(tactic\ TestGen.mp-fy\ @\{context\}\ 1, rule-tac\ x=x\ in\ spec[OF\ allI])
  Starting the test generation process.
apply(qen-test-cases 3 1 PUT)
  Symbolic Execution:
apply(simp-all add: HH split: HOL.if-split-asm)
mk-test-suite mykeos-large
gen-test-data mykeos-large
print-conc-tests mykeos-large
  Rewriting based approach of symbolic execution ... FailSave Scenario
test-spec test-status:
assumes account-def : (no) \in dom \ \sigma_0 \land (no') \in dom \ \sigma_0
        test-purpose : test-purpose [(no),(no')] S
and
and
         sym-exec-spec:
       \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ SYS; \ return \ (s = x))
shows \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ PUT; \ return \ (s = x))
  Prelude: Massage of the test-theorem — representing the assumptions of the test explicitly in
HOL and blocking x from beeing case-splitted (which complicates the process).
apply(insert account-def test-purpose sym-exec-spec)
apply(tactic\ TestGen.mp-fy\ @\{context\}\ 1, rule-tac\ x=x\ in\ spec[OF\ allI])
  Starting the test generation process.
using [[no-uniformity]]
apply(gen-test-cases 3 1 PUT)
  Symbolic Execution:
apply(simp-all add: HH split: HOL.if-split-asm)
apply(auto)
mk-test-suite mykeos-large2
gen-test-data mykeos-large2
print-conc-tests mykeos-large2
  And now, to compare, elimination based procedures ...
declare
       status.exec-mbindFSave-If [simp del]
       status.exec	ext{-}mbindFStop
                                    [simp \ del]
```

```
\mathbf{ML}\langle\langle open\ Tactical; \rangle\rangle
test-spec test-status:
assumes account-defined: (no) \in dom \ \sigma_0 \land (no') \in dom \ \sigma_0
         test-purpose : test-purpose [(no),(no')] S
and
         sym-exec-spec:
       \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ SYS; \ return \ (s = x))
shows \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ PUT; \ return \ (s = x))
apply(insert account-defined test-purpose sym-exec-spec)
apply(tactic\ TestGen.mp-fy\ @\{context\}\ 1, rule-tac\ x=x\ in\ spec[OF\ allI])
apply(tactic asm-full-simp-tac @{context} 1)
using [[no-uniformity]]
apply(gen-test-cases 3 1 PUT)
oops
end
Implementation of integer numbers by target-language integers
theory Code-Target-Int
imports ../GCD
begin
code-datatype int-of-integer
declare [[code drop: integer-of-int]]
context
includes integer.lifting
begin
lemma [code]:
  integer-of-int (int-of-integer k) = k
 by transfer rule
lemma [code]:
  Int.Pos = int-of\text{-}integer \circ integer\text{-}of\text{-}num
 by transfer (simp add: fun-eq-iff)
lemma [code]:
  Int.Neg = int-of\text{-}integer \circ uminus \circ integer\text{-}of\text{-}num
 by transfer (simp add: fun-eq-iff)
lemma [code-abbrev]:
  int-of-integer (numeral\ k) = Int.Pos\ k
 by transfer simp
lemma [code-abbrev]:
```

```
int-of-integer (-numeral\ k) = Int.Neg\ k
  by transfer simp
lemma [code, symmetric, code-post]:
  \theta = int-of-integer \theta
  by transfer simp
lemma [code, symmetric, code-post]:
  1 = int-of-integer 1
  by transfer simp
lemma [code-post]:
  int-of-integer (-1) = -1
  by simp
lemma [code]:
  k + l = int\text{-}of\text{-}integer (of\text{-}int k + of\text{-}int l)
  by transfer simp
lemma [code]:
  -k = int\text{-}of\text{-}integer (-of\text{-}int k)
  by transfer simp
lemma [code]:
  k - l = int\text{-}of\text{-}integer (of\text{-}int k - of\text{-}int l)
  by transfer simp
lemma [code]:
  Int.dup\ k = int-of\text{-}integer\ (Code\text{-}Numeral.dup\ (of\text{-}int\ k))
  by transfer simp
declare [[code drop: Int.sub]]
lemma [code]:
  k * l = int\text{-}of\text{-}integer (of\text{-}int k * of\text{-}int l)
  by simp
lemma [code]:
  k \ div \ l = int	ext{-}of	ext{-}int eger \ (of	ext{-}int \ k \ div \ of	ext{-}int \ l)
  by simp
lemma [code]:
  k \mod l = int\text{-}of\text{-}integer (of\text{-}int k \mod of\text{-}int l)
  by simp
lemma [code]:
  divmod \ m \ n = map-prod \ int-of-integer \ int-of-integer \ (divmod \ m \ n)
  {\bf unfolding} \ prod-eq-iff \ divmod-def \ map-prod-def \ case-prod-beta \ fst-conv \ snd-conv
  by transfer simp
lemma [code]:
  HOL.equal \ k \ l = HOL.equal \ (of\text{-}int \ k :: integer) \ (of\text{-}int \ l)
```

```
by transfer (simp add: equal)
lemma [code]:
  k \leq l \longleftrightarrow (\textit{of-int } k :: \textit{integer}) \leq \textit{of-int } l
  by transfer rule
lemma [code]:
  k < l \longleftrightarrow (\textit{of-int } k :: integer) < \textit{of-int } l
  \mathbf{by}\ \mathit{transfer}\ \mathit{rule}
declare [[code\ drop:\ gcd::int\Rightarrow -lcm::int\Rightarrow -]]
lemma gcd-int-of-integer [code]:
  gcd\ (int\text{-}of\text{-}integer\ x)\ (int\text{-}of\text{-}integer\ y) = int\text{-}of\text{-}integer\ (gcd\ x\ y)
by transfer rule
lemma lcm-int-of-integer [code]:
  lcm (int-of-integer x) (int-of-integer y) = int-of-integer (lcm x y)
by transfer rule
end
lemma (in ring-1) of-int-code-if:
  of-int k = (if k = 0 then 0)
     else if k < 0 then - of-int (-k)
     else\ let
      l = 2 * of\text{-}int (k div 2);
      j = k \mod 2
     in if j = 0 then l else l + 1)
proof -
  from div-mult-mod-eq have *: of-int k = of-int (k \ div \ 2 * 2 + k \ mod \ 2) by simp
  show ?thesis
    by (simp add: Let-def of-int-add [symmetric]) (simp add: * mult.commute)
qed
declare of-int-code-if [code]
lemma [code]:
  nat = nat\text{-}of\text{-}integer \circ of\text{-}int
  including integer.lifting by transfer (simp add: fun-eq-iff)
code-identifier
  code-module \ Code-Target-Int 
ightharpoonup
    (SML) Arith and (OCaml) Arith and (Haskell) Arith
end
Avoidance of pattern matching on natural numbers
theory Code-Abstract-Nat
imports Main
begin
```

When natural numbers are implemented in another than the conventional inductive θ/Suc representation, it is necessary to avoid all pattern matching on natural numbers altogether. This is accomplished by this theory (up to a certain extent).

Case analysis Case analysis on natural numbers is rephrased using a conditional expression:

```
lemma [code, code-unfold]:

case-nat = (\lambda f g \ n. \ if \ n = 0 \ then \ f \ else \ g \ (n-1))

by (auto simp add: fun-eq-iff dest!: gr0-implies-Suc)
```

Preprocessors The term $Suc\ n$ is no longer a valid pattern. Therefore, all occurrences of this term in a position where a pattern is expected (i.e. on the left-hand side of a code equation) must be eliminated. This can be accomplished – as far as possible – by applying the following transformation rule:

```
lemma Suc-if-eq:
 assumes \bigwedge n. f(Suc n) \equiv h n
 assumes f \theta \equiv g
 shows f n \equiv if n = 0 then g else h (n - 1)
 by (rule eq-reflection) (cases n, insert assms, simp-all)
  The rule above is built into a preprocessor that is plugged into the code generator.
setup (
let
val\ Suc\text{-}if\text{-}eq = Thm.incr\text{-}indexes\ 1\ @\{thm\ Suc\text{-}if\text{-}eq\};
fun \ remove-suc \ ctxt \ thms =
 let
   val vname = singleton (Name.variant-list (map fst
     (fold\ (Term.add-var-names\ o\ Thm.full-prop-of)\ thms\ [])))\ n;
   val\ cv = Thm.cterm-of\ ctxt\ (Var\ ((vname,\ 0),\ HOLogic.natT));
   val\ lhs-of = snd\ o\ Thm.dest-comb\ o\ fst\ o\ Thm.dest-comb\ o\ Thm.cprop-of;
   val \ rhs-of = snd \ o \ Thm.dest-comb \ o \ Thm.cprop-of;
   fun\ find\text{-}vars\ ct = (case\ Thm.term\text{-}of\ ct\ of\ 
       (Const (@\{const-name Suc\}, -) \$ Var -) => [(cv, snd (Thm.dest-comb ct))]
     | - $ - =>
       let \ val \ (ct1, \ ct2) = Thm.dest-comb \ ct
         map \ (apfst \ (fn \ ct => Thm.apply \ ct \ ct2)) \ (find-vars \ ct1) \ @
         map (apfst (Thm.apply ct1)) (find-vars ct2)
       end
     | - = > []);
    val \ eqs = maps
     (fn\ thm => map\ (pair\ thm)\ (find-vars\ (lhs-of\ thm)))\ thms;
   fun \ mk\text{-}thms \ (thm, (ct, cv')) =
     let
       val thm' =
         Thm.implies-elim
         (Conv.fconv-rule (Thm.beta-conversion true)
```

```
(Thm.instantiate'
             [SOME (Thm.ctyp-of-cterm ct)] [SOME (Thm.lambda cv ct),
               SOME (Thm.lambda cv' (rhs-of thm)), NONE, SOME cv'
             Suc\text{-}if\text{-}eq)) (Thm.forall\text{-}intr\ cv'\ thm)
     in
       case\ map-filter\ (fn\ thm''=>
           SOME\ (thm^{\,\prime\prime},\ singleton
             (\mathit{Variable.trade}\ (\mathit{K}\ (\mathit{fn}\ [\mathit{thm}^{\prime\prime\prime}] => [\mathit{thm}^{\prime\prime\prime}\ \mathit{RS}\ \mathit{thm}^\prime]))
              (Variable.declare-thm thm'' ctxt)) thm'')
         handle\ THM - => NONE)\ thms\ of
           | = > NONE
         \mid thmps =>
             let \ val \ (thms1, thms2) = split-list \ thmps
             in SOME (subtract Thm.eq-thm (thm :: thms1) thms @ thms2) end
     end
 in get-first mk-thms eqs end;
fun\ eqn-suc-base-preproc ctxt\ thms =
 let
   val \ dest = fst \ o \ Logic.dest-equals \ o \ Thm.prop-of;
   val\ contains-suc = exists-Const\ (fn\ (c,\ -) => c = @\{const-name\ Suc\});
 in
   if forall (can dest) thms and also exists (contains-suc o dest) thms
     then thms |> perhaps-loop (remove-suc ctxt) |> (Option.map o map) Drule.zero-var-indexes
      else\ NONE
  end;
val\ eqn-suc-preproc = Code-Preproc.simple-functrans\ eqn-suc-base-preproc;
in
  Code-Preproc.add-functrans (eqn-Suc, eqn-suc-preproc)
end;
end
Implementation of natural numbers by target-language integers
theory Code-Target-Nat
imports Code-Abstract-Nat
begin
Implementation for nat context
includes natural.lifting integer.lifting
begin
lift-definition Nat :: integer \Rightarrow nat
 is nat
```

```
lemma [code-post]:
 Nat \ \theta = \theta
 Nat 1 = 1
 Nat (numeral k) = numeral k
 by (transfer, simp)+
lemma [code-abbrev]:
 integer-of-nat = of-nat
 by transfer rule
lemma [code-unfold]:
 Int.nat\ (int-of-integer\ k) = nat-of-integer\ k
 by transfer rule
lemma [code abstype]:
  Code-Target-Nat.Nat (integer-of-nat n) = n
 by transfer simp
lemma [code abstract]:
 integer-of-nat (nat-of-integer k) = max \ 0 \ k
 by transfer auto
lemma [code-abbrev]:
 nat-of-integer (numeral \ k) = nat-of-num k
 by transfer (simp add: nat-of-num-numeral)
lemma [code abstract]:
  integer-of-nat \ (nat-of-num \ n) = integer-of-num \ n
 by transfer (simp add: nat-of-num-numeral)
lemma [code abstract]:
 integer-of-nat \ \theta = \theta
 by transfer simp
\mathbf{lemma} \ [\mathit{code} \ \mathit{abstract}] :
 integer-of-nat 1 = 1
 by transfer simp
lemma [code]:
 Suc \ n = n + 1
 \mathbf{by} \ simp
lemma [code abstract]:
 integer-of-nat (m + n) = of-nat m + of-nat n
 by transfer simp
lemma [code abstract]:
  integer-of-nat\ (m\ -\ n) = max\ \theta\ (of-nat\ m\ -\ of-nat\ n)
 by transfer simp
lemma [code abstract]:
 integer-of-nat \ (m*n) = of-nat \ m*of-nat \ n
```

```
by transfer (simp add: of-nat-mult)
lemma [code abstract]:
 integer-of-nat (m \ div \ n) = of-nat m \ div \ of-nat n
 by transfer (simp add: zdiv-int)
lemma [code abstract]:
  integer-of-nat \ (m \ mod \ n) = of-nat \ m \ mod \ of-nat \ n
 by transfer (simp add: zmod-int)
lemma [code]:
  Divides.divmod-nat\ m\ n=(m\ div\ n,\ m\ mod\ n)
 by (fact divmod-nat-div-mod)
lemma [code]:
  divmod\ m\ n=map-prod\ nat-of-integer\ nat-of-integer\ (divmod\ m\ n)
 by (simp only: prod-eq-iff divmod-def map-prod-def case-prod-beta fst-conv snd-conv)
   (transfer, simp-all only: nat-div-distrib nat-mod-distrib
       zero-le-numeral nat-numeral)
lemma [code]:
  HOL.equal\ m\ n = HOL.equal\ (of\mbox{-}nat\ m\ ::\ integer)\ (of\mbox{-}nat\ n)
 by transfer (simp add: equal)
lemma [code]:
 m \leq n \longleftrightarrow (\textit{of-nat } m :: integer) \leq \textit{of-nat } n
 by simp
lemma [code]:
 m < n \longleftrightarrow (\textit{of-nat } m :: integer) < \textit{of-nat } n
 by simp
lemma num-of-nat-code [code]:
 num\text{-}of\text{-}nat = num\text{-}of\text{-}integer \circ of\text{-}nat
 by transfer (simp add: fun-eq-iff)
end
lemma (in semiring-1) of-nat-code-if:
  of-nat n = (if n = 0 then 0)
    else\ let
      (m, q) = Divides.divmod-nat \ n \ 2;
      m' = 2 * of\text{-}nat m
    in if q = 0 then m' else m' + 1
proof -
 from div-mult-mod-eq have *: of-nat n = of-nat (n \text{ div } 2 * 2 + n \text{ mod } 2) by simp
 show ?thesis
   by (simp add: Let-def divmod-nat-div-mod of-nat-add [symmetric])
     (simp add: * mult.commute of-nat-mult add.commute)
qed
declare of-nat-code-if [code]
```

```
definition int-of-nat :: nat \Rightarrow int where
 [code-abbrev]: int-of-nat = of-nat
lemma [code]:
 int-of-nat n = int-of-integer (of-nat n)
 by (simp add: int-of-nat-def)
lemma [code abstract]:
 integer-of-nat\ (nat\ k) = max\ \theta\ (integer-of-int\ k)
 including integer.lifting by transfer auto
lemma term-of-nat-code [code]:
  — Use nat-of-integer in term reconstruction instead of Code-Target-Nat.Nat such that recon-
structed terms can be fed back to the code generator
 term-of-class.term-of n =
  Code-Evaluation.App
    (Code-Evaluation. Const (STR "Code-Numeral.nat-of-integer")
      (typerep. Typerep (STR "fun")
         [typerep. Typerep (STR "Code-Numeral.integer") [],
       typerep. Typerep (STR ''Nat.nat'') []]))
    (term-of-class.term-of\ (integer-of-nat\ n))
 by (simp add: term-of-anything)
lemma nat-of-integer-code-post [code-post]:
 \textit{nat-of-integer}\ \theta \,=\, \theta
 nat-of-integer 1 = 1
 nat-of-integer (numeral \ k) = numeral \ k
 including integer.lifting by (transfer, simp)+
code-identifier
 code-module Code-Target-Nat \rightarrow
   (SML) Arith and (OCaml) Arith and (Haskell) Arith
end
Implementation of natural and integer numbers by target-language integers
theory Code-Target-Numeral
imports Code-Target-Int Code-Target-Nat
begin
end
theory MyKeOS-test-conc
imports MyKeOS
      \sim \sim /src/HOL/Library/Code-Target-Numeral
      Code-gdb-script
begin
declare [[testgen-profiling]]
```

Interleaving

The purpose of this example is to model system calls that consists of a number of (internal) atomic actions; the global behavior is presented by the interleaving of the actions actions

```
definition SEND tid tid' m = [send \ tid \ tid' \ m, \ status \ tid]
definition REC tid tid' m = [rec \ tid \ tid' \ m, \ status \ tid]
value interleave (SEND 5 0 m) (REC 0 5 m)
   In the following, we do a predicate abstraction on the interleave language, leading to an
automaton represented as a set of rewrites ...
fun Interleave :: in-c list \Rightarrow nat \times nat \Rightarrow int \Rightarrow nat \Rightarrow nat \Rightarrow bool (infixl \bowtie 100)
           S \bowtie (a, b) = (\lambda \ tid \ m \ m' \ . \ (S \in interleave \ (drop \ a \ (SEND \ tid \ 5 \ m))
                                                  (drop\ b\ (REC\ 5\ tid\ m'))))
lemma init-Interleave: (S \bowtie (0, 0)) tid m m' = (S \in interleave (SEND tid 5 m) (REC 5 tid m'))
by simp
value interleave (SEND 0 5 m) (REC 5 0 m')
find-theorems name:Interleave
lemma ref-mt [simp]: \neg([] \bowtie (0, 0)) tid m m'
by (simp add:REC-def SEND-def)
lemma ref-0-0 [simp]: \neg(((status\ a)\ \#\ R)\bowtie(0,\ 0))\ tid\ m\ m'
by (simp add:REC-def SEND-def)
lemma ref-1-0 [simp]: a \neq tid \Longrightarrow \neg(((status\ a)\ \#\ R)\bowtie (1,\ 0))\ tid\ m\ m'
by (simp add:REC-def SEND-def)
lemma ref-0-1 [simp]: a \neq 5 \Longrightarrow \neg(((status\ a) \# R) \bowtie (0, 1)) tid m m'
by (simp add:REC-def SEND-def)
lemma ref-1-1 [simp]: a \neq 5 \implies a \neq tid \implies \neg(((status\ a) \# R) \bowtie (1,\ 1))\ tid\ m\ m'
by (simp add:REC-def SEND-def)
lemma ref-3-1 [simp]: a \neq 5 \Longrightarrow \neg(((status\ a)\ \#\ R)\bowtie(3,\ 1))\ tid\ m\ m'
by (simp add:REC-def SEND-def)
lemma ref-1-3 [simp]: a \neq tid \Longrightarrow \neg(((status\ a)\ \#\ R)\bowtie (1,\ 3))\ tid\ m\ m'
by (simp add:REC-def SEND-def)
value (((a \# R) \bowtie (0, 0)) \ tid \ m \ m')
lemma trans-0-0 [simp]: (((a \# R) \bowtie (0, 0)) \text{ tid } m m') =
```

 $((a = send \ tid \ 5 \ m \land (R \bowtie (1, 0)) \ tid \ m \ m') \lor$

```
(a = rec \ 5 \ tid \ m' \land (R \bowtie (0, 1)) \ tid \ m \ m'))
apply (simp add: SEND-def REC-def)
by auto
lemma trans-1-0 [simp]: (((a \# R) \bowtie (1, 0)) \text{ tid } m \text{ m}') =
                  ((a = rec \ 5 \ tid \ m' \land (R \bowtie (1, 1)) \ tid \ m \ m') \lor
                   (a = status \ tid \land (R \bowtie (2, 0)) \ tid \ m \ m'))
apply (simp add:SEND-def REC-def)
by auto
lemma trans-2-0 [simp]: (((a \# R) \bowtie (2, 0)) \text{ tid } m \text{ m}') =
                     ((a = rec \ 5 \ tid \ m' \land R = [status \ 5]))
by (simp add: SEND-def REC-def)
lemma trans-2-1 [simp]: (((a \# R) \bowtie (2, 1)) \text{ tid } m \text{ m}') = (a = \text{status } 5 \land R = [])
by (simp add: SEND-def REC-def)
value interleave (drop 0 (SEND tid m m'))(drop 0 (REC tid m'' m'''))
  TestData Hack:
lemma PO-norm0 [simp]: PO True by(simp add: PO-def)
  The following scenario is meant to describe the symbolic execution step by step.
declare Monads.mbind'-bind [simp del]
find-theorems mbind_{FailStop}
{f lemma}\ example-symbolic-execution-simulation:
  assumes H: S = [send \ tid \ 1 \ m, rec \ tid \ 0 \ m', rec \ tid \ 1 \ m''', status \ tid ]
  assumes SE: \sigma_0 \models (s \leftarrow mbind_{FailStop} \ S \ SYS; \ return \ (x = s))
  shows
                P
apply(insert SE H)
apply(hypsubst)
apply(tactic\ ematch-tac\ @\{context\}\ [@\{thm\ status.exec-mbindFStop-E\},
                                @\{thm\ receive.exec-mbindFStop-E\},
                                @\{thm\ send.exec-mbindFStop-E\}] 1)
apply(tactic\ ematch-tac\ @\{context\}\ [@\{thm\ status.exec-mbindFStop-E\},
                                @\{thm\ receive.exec-mbindFStop-E\},
                                @\{thm\ send.exec-mbindFStop-E\}] \ 1)
apply(tactic\ ematch-tac\ @\{context\}\ [@\{thm\ status.exec-mbindFStop-E\},
                                @\{thm\ receive.exec-mbindFStop-E\},
                                @\{thm\ send.exec-mbindFStop-E\}] 1)
apply(tactic\ ematch-tac\ @\{context\}\ [@\{thm\ status.exec-mbindFStop-E\},
                                @\{thm\ receive.exec-mbindFStop-E\},
                                @\{thm\ send.exec-mbindFStop-E\}] 1)
apply(tactic ematch-tac @{context} [@{thm status.exec-mbindFStop-E},
                                @\{thm\ receive.exec-mbindFStop-E\},
                                @\{thm\ send.exec-mbindFStop-E\},
                                @\{thm\ valid-mbind'-mtE\}\]\ 1)
apply simp
oops
```

 $\quad \mathbf{end} \quad$

A. Glossary

- **Abstract test data**: In contrast to pure ground terms over constants (like integers 1, 2, 3, or lists over them, or strings ...) abstract test data contain arbitrary predicate symbols (like *triangle 3 4 5*).
- **Regression testing:** Repeating of tests after addition/bug fixes have been introduced into the code and checking that behavior of unchanged portions has not changed.
- **Stub:** Stubs are "simulated" implementations of functions, they are used to simulate functionality that does not yet exist ore cannot be run in the test environment.
- **Test case:** An abstract test stimuli that tests some aspects of the implementation and validates the result.
- **Test case generation:** For each operation the pre/postcondition relation is divided into sub-relations. It assumes that all members of a sub-relation lead to a similar behavior of the implementation.
- **Test data:** One or more representative for a given test case.
- **Test data generation (Test data selection):** For each test case (at least) one representative is chosen so that coverage of all test cases is achieved. From the resulting test data, test input data processable by the implementation is extracted.
- **Test execution:** The implementation is run with the selected test input data in order to determine the test output data.
- **Test executable:** An executable program that consists of a test harness, the test script and the program under test. The Test executable executes the test and writes a test trace documenting the events and the outcome of the test.
- **Test harness:** When doing unit testing the program under test is not a runnable program in itself. The *test harness* or *test driver* is a main program that initiates test calls (controlled by the test script), i.e. drives the method under test and constitutes a test executable together with the test script and the program under test.
- **Test hypothesis**: The hypothesis underlying a test that makes a successful test equivalent to the validity of the tested property, the test specification. The current implementation of HOL-TestGen only supports uniformity and regularity hypotheses, which are generated "on-the-fly" according to certain parameters given by the user like *depth* and *breadth*.
- **Test specification**: The property the program under test is required to have.

- **Test result verification:** The pair of input/output data is checked against the specification of the test case.
- **Test script:** The test program containing the control logic that drives the test using the test harness. HOL-TestGen can automatically generate the test script for you based on the generated test data.
- **Test theorem:** The test data together with the test hypothesis will imply the test specification. HOL-TestGen conservatively computes a theorem of this form that relates testing explicitly with verification.

Test trace: Output made by a test executable.

Bibliography

- [1] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Computer Science and Applied Mathematics. Academic Press, Orlando, May 1986.
- [2] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In J. Cuellar and Z. Liu, editors, *Software Engineering and Formal Methods (SEFM 2004)*, pages 230–239. IEEE Computer Society, 2004.
- [3] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking. In M. Zelkowitz, editor, *Advances In Computers*, volume 58. Academic Press, 2003.
- [4] S. Böhme and T. Weber. Fast lcf-style proof reconstruction for Z3. In M. Kaufmann and L. C. Paulson, editors, *Interactive Theorem Proving (ITP)*, volume 6172 of *Lecture Notes in Computer Science*, pages 179–194. Springer, 2010.
- [5] A. D. Brucker, O. Havle, Y. Nemouchi, and B. Wolff. Testing the IPC protocol for a real-time operating system. In Verified Software: Theories, Tools, and Experiments 7th International Conference, VSTTE 2015, San Francisco, CA, USA, July 18-19, 2015. Revised Selected Papers, pages 40-60, 2015.
- [6] A. D. Brucker and B. Wolff. Symbolic test case generation for primitive recursive functions. In J. Grabowski and B. Nielsen, editors, Formal Approaches to Testing of Software, number 3395 in Lecture Notes in Computer Science, pages 16–32. Springer-Verlag, Linz, 2005.
- [7] A. D. Brucker and B. Wolff. A verification approach for applied system security. *International Journal on Software Tools for Technology Transfer (STTT)*, 2005.
- [8] A. D. Brucker and B. Wolff. HOL-TestGen: An interactive test-case generation framework. In M. Chechik and M. Wirsing, editors, Fundamental Approaches to Software Engineering (FASE09), number 5503 in Lecture Notes in Computer Science, pages 417–420. Springer-Verlag, Heidelberg, 2009.
- [9] A. D. Brucker and B. Wolff. On theorem prover-based testing. Formal Aspects of Computing, 2012.
- [10] A. Church. A formulation of the simple theory of types. *Journal of Symbolic Logic*, 5:56–68, 1940.
- [11] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell programs. In *Proceedings of the fifth ACM SIGPLAN international conference on Functional programming*, pages 268–279. ACM Press, 2000.

- [12] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In *Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages*, pages 238–252. ACM Press, 1977.
- [13] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. *Structured Programming*, volume 8 of *A.P.I.C. Studies in Data Processing*. Academic Press, London, 1972.
- [14] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-based specications. In J. Woodcock and P. Larsen, editors, Formal Methods Europe 93: Industrial-Strength Formal Methods, volume 670 of LNCS, pages 268–284. Springer, Apr. 1993.
- [15] P. Dybjer, Q. Haiyan, and M. Takeyama. Verifying haskell programs by combining testing and proving. In *Proceedings of the Third International Conference on Quality Software*, page 272. IEEE Computer Society, 2003.
- [16] M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors, TAPSOFT 95, volume 915 of Lecture Notes in Computer Science, pages 82–96. Springer-Verlag, Aarhus, Denmark, 1995.
- [17] S. Hayashi. Towards the animation of proofs—testing proofs by examples. *Theoretical Computer Science*, 272(1–2):177–195, 2002.
- [18] The Isabelle Home Page, 2016.
- [19] MLj.
- [20] MLton, 2016.
- [21] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
- [22] Poly/ML the poly/ml implementation of standard ml., 2016.
- [23] sml.net.
- [24] SML of New Jersey.
- [25] M. Wenzel. The Isabelle/Isar Reference Manual. TU München, München, 2004.
- [26] H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy. *ACM Computing Surveys*, 29(4):366–427, 1997.

Index

abstract test data, 87	test, 6
,	test (attribute), 17
breadth, 87	test specification, 11
$\langle breadth \rangle$, 13	test theorem, 13
$\langle clasimpmod \rangle$, 13	test case, 11
	test data generation, 11
data separation lemma, 13	test executable, 11
depth, 87	test specification, 6
$\langle depth \rangle$, 13	test case, 5, 6, 87
	test case generation, 5, 11, 13, 17, 87
$\mathtt{export_test_data}\ (\mathtt{command}),\ 15$	test data, 5, 11, 14, 87
(,1 1) 19	test data generation, 5, 87
gen_test_cases (method), 13	test data selection, see test data genera-
gen_test_data (command), 14	tion
generate_test_script (command), 15	test driver, see test harness
higher-order logic, see HOL	test executable, 17–19, 87
HOL, 7	test execution, 6, 11, 17, 87
,	test harness, 15, 87
Isabelle, 6, 7, 9	test hypothesis, 6, 87
w · /(1) 11	test procedure, 5
Main (theory), 11	test result verification, 11
mk_test_suite (command), 13	test result verification, 6, 88 test script, 11, 15–17, 88
$\langle name \rangle$, 13	test specification, 13, 87
(100.110), 10	test theorem, 88
program under test, 13, 15	test theory, 12
	test trace, 18, 19, 88
random solver, 14	test spec (command), 11
regression testing, 87	Testing (theory), 11
regularity hypothesis, 13	3 (* *** 77)
SML, 7	unit test
software	specification-based, 5
testing, 5	
validation, 5	
verification, 5	
Standard ML, see SML	
stub, 87	