Задача о рюкзаке

Вот еще одна известная алгоритмическая задача. Дано n предметов весом w_1,\ldots,w_n и ценой v_1,\ldots,v_n , а также рюкзак, выдерживающий вес W. Требуется найти подмножество предметов, которое можно разместить в рюкзаке, и которое имеет при этом максимальную стоимость. Если вам не нравится представлять себя вором, пытающимся запихнуть в свой рюкзак самые ценные вещи, представьте себя транспортным чиновником, которому надо перевезти максимально ценный груз, не превышающий определенного веса. На рис. 3.8a приведен небольшой экземпляр задачи о рюкзаке.

Исчерпывающий перебор в этой задаче приводит к рассмотрению всех подмножеств данного множества из n предметов, вычислению общего веса каждого из них для того, чтобы выяснить, допустим ли такой набор предметов (т.е. не превосходит ли его общий вес возможности рюкзака), и выбору из допустимых подмножества с максимальным весом. В качестве примера решение экземпляра задачи, представленного на рис. 3.8a, показано на рис. 3.8b. Поскольку общее количество подмножеств n-элементного множества равно 2^n , исчерпывающий перебор приводит к алгоритму со временем работы $\Omega\left(2^n\right)$, вне зависимости от того, насколько эффективным методом генерируются рассматриваемые подмножества.

Таким образом, применение метода исчерпывающего перебора к задачам коммивояжера и о рюкзаке приводит к исключительно неэффективным алгоритмам для любых входных данных. На самом деле эти две задачи представляют собой наиболее известные примеры так называемых NP-сложных задач (NP-hard problems). Ни для одной из NP-сложных задач не известен алгоритм, решающий их за полиномиальное время. Более того, большинство ученых-кибернетиков сходятся

Подмножество	Общий вес	Общая стоимость
Ø	0	0
{1}	7	42
$\{2\}$	3	12
{3}	4	40
$\{4\}$	5	25
$\{1,2\}$	10	36
$\{1,3\}$	11	Недопустим
$\{1, 4\}$	12	Недопустим
$\{2,3\}$	7	52
$\{2,4\}$	8	37
$\{{f 3},{f 4}\}$	9	65
$\{1, 2, 3\}$	14	Недопустим
$\{1, 2, 4\}$	15	Недопустим
$\{1, 3, 4\}$	16	Недопустим
$\{2, 3, 4\}$	12	Недопустим
$\{1, 2, 3, 4\}$	19	Недопустим

Рис. 3.8. a) Экземпляр задачи о рюкзаке. b) Решение путем исчерпывающего перебора (оптимальное решение выделено полужирным шрифтом)

во мнении, что такие алгоритмы не существуют вообще, хотя это важное предположение никем не доказано. Более интеллектуальные подходы, рассматриваемые в разделах 11.2 и 11.2, позволяют решить некоторые (но не все) экземпляры

этих (и подобных) задач за время, меньшее экспоненциального. Можно также воспользоваться одним из приближенных алгоритмов, подобных рассмотренным в разделе 11.3.

8.4 Задача о рюкзаке и функции с запоминанием

Этот раздел мы начнем с разработки алгоритма динамического программирования для решения задачи о рюкзаке: даны n предметов с известными весами w_1,\ldots,w_n и стоимостями v_1,\ldots,v_n и рюкзак вместимостью W. Требуется найти наиболее ценное подмножество предметов, помещающееся в рюкзаке. (Эта задача упоминалась в разделе 3.4, где мы рассматривали ее решение методом исчерпывающего перебора.) Здесь мы считаем, что все веса и емкость рюкзака представляют

собой положительные целые числа; стоимости предметов — не обязательно целые числа.

Для разработки алгоритма динамического программирования мы должны вывести рекуррентное соотношение, которое выражает решение экземпляра задачи о рюкзаке через решения его меньших подэкземпляров. Рассмотрим экземпляр, определяемый первыми i предметами, $1 \le i \le n$, весами w_1, \ldots, w_i , стоимостями v_1, \ldots, v_i и емкостью рюкзака $1 \le j \le W$. Пусть $V\left[i,j\right]$ — значение оптимального решения этого экземпляра, т.е. стоимость наиболее ценного подмножества из первых i предметов, которое помещается в рюкзак емкостью j. Мы можем разделить все подмножества первых i предметов, которые помещаются в рюкзак емкостью j, на две категории: те, которые не включают i-ый предмет, и те, которые его включают. Заметим следующее.

- 1. Среди подмножеств, которые не включают i-ый предмет, стоимость оптимального подмножества по определению равна $V\left[i-1,j\right]$.
- **2.** Среди подмножеств, которые включают i-ый предмет (следовательно, $j-w_i\geqslant 0$), оптимальное подмножество составляется из этого предмета и оптимального подмножества первых i-1 предметов, которое размещается в рюкзаке емкостью $j-w_i$. Стоимость такого оптимального подмножества равна v_i+V $[i-1,j-w_i]$.

Таким образом, стоимость оптимального решения среди всех допустимых подмножеств из первых i предметов представляет собой большее из этих двух значений. Конечно, если i-ый предмет не помещается в рюкзак, стоимость оптимального подмножества, выбранного из первых i предметов, оказывается той же, что и стоимость оптимального подмножества, выбранного из первых i-1 предметов. Это наблюдение приводит нас к следующему рекуррентному соотношению:

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{если } j - w_i \geqslant 0, \\ V[i-1,j] & \text{если } j - w_i < 0. \end{cases}$$
(8.12)

Начальные условия удобно определить следующим образом:

$$V\left[0,j
ight]=0$$
 при $j\geqslant0,\,$ и $V\left[i,0
ight]=0$ при $i\geqslant0.$ (8.13)

Наша цель состоит в том, чтобы найти $V\left[n,W\right]$ — максимальную стоимость подмножества из n предметов, которое помещается в рюкзаке емкостью W, и само это подмножество.

На рис. 8.12 показаны значения, входящие в (8.12) и (8.13). При i,j>0 для вычисления элемента таблицы на пересечении i-ой строки и j-го столбца $V\left[i,j\right]$ мы берем значение элемента в предыдущей строке и том же столбце и сумму значений v_i и элемента в предыдущей строке и столбце, отстоящем на w_i столбцов слева, и находим максимальное из них. Таким образом мы заполняем таблицу либо строка за строкой, либо столбец за столбцом.

Рис. 8.12. Таблица для решения задачи о рюкзаке методом динамического программирования

Пример 1. Рассмотрим экземпляр задачи, определяемый следующими данными. Емкость рюкзака W=5.

Предмет	Bec	Стоимость
1	2	12
2	1	10
3	3	20
4	2	15

Таблица динамического программирования после заполнения в соответствии с формулами (8.12) и (8.13) показана на рис. 8.13.

			$Emkoctb\;j$					
		i	0	1	2	3	4	5
		0	0	0	0	0	0 12 22 30 30	0
$w_1=2,$	$v_1=12$	1	0	0	12	12	12	12
$w_2=1,$	$v_2 = 10$	2	0	10	12	22	22	22
$w_3 = 3,$	$v_3 = 20$	3	0	10	12	22	30	32
$w_4=2,$	$v_4 = 15$	4	0	10	15	25	30	37

Рис. 8.13. Пример решения экземпляра задачи о рюкзаке при помощи алгоритма динамического программирования

Итак, максимальная стоимость $V\left[4,5\right]=37$. Мы можем найти состав оптимального подмножества, отслеживая вычисления этого элемента таблицы. Поскольку $V\left[4,5\right] \neq V\left[3,5\right]$, предмет 4 был включен в оптимальное решение вместе с оптимальным подмножеством, заполняющим оставшиеся 5-2=3 единицы емкости рюкзака. Последние представлены элементом $V\left[3,3\right]$. Поскольку $V\left[3,3\right]=V\left[2,3\right]$, элемент 3 не является частью оптимального подмножества. Да-

лее, так как $V[2,3] \neq V[1,3]$, предмет 2 также является частью оптимального выбора, после чего элемент V[1,3-1] остается в качестве определения оставшейся части подмножества. Аналогично, так как $V[1,2] \neq V[0,2]$, делаем вывод, что предмет 1 является последней частью оптимального решения, которое пред-

ставляет собой множество {Предмет 1, Предмет 2, Предмет 4}. \blacksquare

Как временная, так и пространственная эффективность данного алгоритма равна Θ (nW). Время, требующееся для поиска состава оптимального подмножества, равно Θ (n+W). Эти утверждения читателю предлагается доказать самосмощи рекурсивного вызова, и полученный результат записывается в таблице.

Задача о рюкзаке

Давайте применим метод ветвей и границ к решению задачи о рюкзаке. С этой задачей мы также познакомились в разделе 3.4: дано n предметов с весами w_1,\ldots,w_n и ценами v_1,\ldots,v_n , а также рюкзак, выдерживающий вес W. Требуется найти подмножество предметов, которое можно разместить в рюкзаке и которое имеет при этом максимальную цену. Оказывается удобным упорядочить предметы в убывающем порядке по их удельной цене (отношению цены к весу), с разрешением неоднозначностей произвольным образом:

$$v_1/w_1 \geqslant v_2/w_2 \geqslant \cdots \geqslant v_n/w_n$$
.

Естественной структурой дерева пространства состояний для данной задачи является бинарное дерево, построенное следующим образом (рис. 11.8). Каждый узел на уровне $0 \le i \le n$ представляет все подмножества из n элементов, которые включают определенный выбор из первых i упорядоченных элементов. Этот

частичный выбор однозначно определяется путем от корня к узлу: ветвь, идущая влево, указывает на включение очередного элемента в подмножество, в то время как правая ветвь указывает на отсутствие элемента в подмножестве. Мы записываем общий вес w и общую стоимость v выбора, соответствующего узлу, вместе с верхней границей ub значения для любого подмножества, которое может быть получено путем добавления некоторых элементов (возможно, никаких) к этому выбору.

Рис. 11.8. Дерево пространства состояний алгоритма ветвей и границ для экземпляра задачи о рюкзаке

Простым способом вычисления верхней границы ub является добавление к общей стоимости уже выбранных элементов v произведения оставшейся емкости рюкзака W-w и наибольшего значения удельной стоимости среди оставшихся элементов, которое равно v_{i+1}/w_{i+1} :

$$ub = v + (W - w)(v_{i+1}/w_{i+1}).$$
 (11.1)

В качестве конкретного примера применим метод ветвей и границ к тому же экземпляру задачи о рюкзаке, который мы решали в разделе 3.4 методом исчер-

пывающего перебора (здесь мы переупорядочили элементы в порядке убывания их удельных стоимостей). Емкость рюкзака W=10.

Предмет	Bec	Стоимость	Удельная стоимость
1	4	40	10
2	7	42	6
3	5	25	5
4	3	12	4

В корне дерева пространства состояний не выбран ни один элемент. Следовательно, как общий вес, так и общая стоимость выбранных элементов равны 0. Значение верхней границы, вычисленное по формуле (11.1), равно 100. Узел 1, левый дочерний узел корня, представляет подмножество, состоящее из одного предмета, 1; общий вес и стоимость в этом узле равны, соответственно, 4 и 40, а значение верхней границы $-40 + (10 - 4) \cdot 6 = 76$. Узел 2 представляет подмножество, которое не включает предмет 1, так что в этом узле w=0, v=0и $ub = 0 + (10 - 0) \cdot 6 = 60$. Поскольку узел 1 имеет большую верхнюю границу, чем узел 2, он является более обещающим для данной задачи максимизации, и мы начинаем ветвление с узла 1. Его дочерние узлы -3 и 4 — представляют подмножества с элементом 1 и с и без элемента 2, соответственно. Поскольку общий вес любого подмножества, представленного узлом 3, превосходит емкость рюкзака, работа с этим узлом завершается. У узла 4 те же значения общего веса и общей стоимости, что и у родительского, так что значение верхней границы у этого узла $ub = 40 + (10 - 4) \cdot 5 = 70$. Из узлов 2 и 4 для дальнейшего ветвления мы выбираем узел 4 (почему?) и получаем узлы 5 и 6, включающий и не включающий, соответственно, предмет 3. Общие вес и стоимость и значение верхней границы для этих узлов вычисляются точно так же, как и ранее. Ветвление из узла 5 дает узел 7, который дает недопустимое решение, и узел 8, представляющий подмножество {1,3}. (Поскольку никаких дополнительных предметов нет, верхняя граница для узла 8 просто равна сумме стоимостей указанных предметов.) Оставшиеся живые узлы 2 и 6 имеют меньшие значения верхней границы, чем решение, представленное узлом 8. Следовательно, работа с этими узлами завершается, и множество {1,3} из узла 8 является оптимальным решением задачи.

Решение задачи о рюкзаке методом ветвей и границ имеет весьма необычные характеристики. Обычно внутренние узлы дерева пространства состояний не определяют точку пространства поиска задачи, поскольку некоторые из компонентов решения остаются неопределенными (см., например, дерево для задачи о назначениях, рассматривавшейся в предыдущем подразделе). В задаче же о рюкзаке каждый узел дерева представляет подмножество данных предметов. Этот факт можно использовать для обновления информации о наилучшем подмножестве после генерации каждого нового узла дерева. Для рассмотренного экземпляра это означает, что мы могли бы прекратить работу с узлами 2 и 6 еще до генерации уз-

ла 8, так как значения верхних границ рассматриваемых узлов меньше стоимости подмножества в узле 5, равной 65.

Приближенные алгоритмы для задачи о рюкзаке

Еще одна широко известная NP-сложная задача — задача о рюкзаке, с которой мы познакомились в разделе 3.4. Дано n предметов с весами w_1, \ldots, w_n и ценами v_1, \ldots, v_n , а также рюкзак, выдерживающий вес W. Наша задача — найти подмножество предметов, которое можно разместить в рюкзаке и которое имеет при этом максимальную цену. Мы видели, как можно решить эту задачу методом исчерпывающего перебора (раздел 3.4), динамического программирования (раздел 8.4) и ветвей и границ (раздел 11.2). Теперь мы будем решать эту задачу при помощи приближенных алгоритмов.

Жадные алгоритмы для задачи о рюкзаке

Можно рассмотреть несколько жадных подходов к данной задаче. Один из них состоит в выборе предметов в убывающем порядке по их весам; беда в том, что более тяжелые предметы могут не быть наиболее ценными в множестве. Другой вариант состоит в выборе предметов в порядке уменьшения их стоимости, однако он не гарантирует эффективное использование емкости рюкзака. Можно ли найти жадную стратегию, которая бы принимала во внимание как вес, так и стоимость предметов? Да, можно: вычисляя удельную стоимость предметов v_i/w_i , $i=1,2,\ldots,n$ и выбирая предметы в порядке уменьшения удельной стоимости (в действительности мы уже использовали этот подход при разработке алгоритма

ветвей и границ для задачи о рюкзаке в разделе 11.2). Вот как выглядит алгоритм, основанный на этой жадной эвристике.

- **Шаг 1.** Вычислим удельные стоимости всех предметов множества $r_i = v_i/w_i$, $i=1,2,\ldots,n$.
- **Шаг 2.** Отсортируем предметы в невозрастающем порядке по их удельным стоимостям, вычисленным на шаге 1 (неоднозначности разрешаются произвольным образом).
- **Шаг 3.** До тех пор пока в отсортированном списке не останется ни одного предмета, повторяем следующие действия: если текущий предмет помещается в рюкзак, мы помещаем его туда; в противном случае переходим к следующему предмету.

Пример 3. Давайте рассмотрим экземпляр задачи о рюкзаке емкостью 10 и следующей информацией о предметах:

Предмет	Bec	Стоимость
1	7	42
2	3	12
3	4	40
4	5	25

Вычислим удельные стоимости и отсортируем предметы в невозрастающем порядке их удельных стоимостей, что даст нам следующую таблицу:

Протист	Вес Стоимость		Стоимость	
предмет	Бес	Стоимость	Bec	
3	4	40	10	
1	7	42	6	
4	5	25	5	
2	3	12	4	

Жадный алгоритм выбирает предмет 3 с весом 4, пропускает предмет 1 с весом 7, затем выбирает предмет 4 с весом 5 и пропускает предмет 2 с весом 3. Полученное решение оказывается оптимальным для данного экземпляра задачи (см. раздел 11.2, где этот же экземпляр задачи решен методом ветвей и границ).

Может быть, жадный алгоритм всегда приводит к оптимальному решению? Конечно же, нет — если бы это было так, мы бы имели полиномиальный алгоритм для NP-сложной задачи. Приведенный далее пример показывает, что при помощи этого алгоритма нельзя получить гарантированную конечную верхнюю границу точности.

ветвей и границ для задачи о рюкзаке в разделе 11.2). Вот как выглядит алгоритм, основанный на этой жадной эвристике.

- **Шаг 1.** Вычислим удельные стоимости всех предметов множества $r_i = v_i/w_i$, $i=1,2,\ldots,n$.
- **Шаг 2.** Отсортируем предметы в невозрастающем порядке по их удельным стоимостям, вычисленным на шаге 1 (неоднозначности разрешаются произвольным образом).
- **Шаг 3.** До тех пор пока в отсортированном списке не останется ни одного предмета, повторяем следующие действия: если текущий предмет помещается в рюкзак, мы помещаем его туда; в противном случае переходим к следующему предмету.

Пример 3. Давайте рассмотрим экземпляр задачи о рюкзаке емкостью 10 и следующей информацией о предметах:

Предмет	Bec	Стоимость
1	7	42
2	3	12
3	4	40
4	5	25

Вычислим удельные стоимости и отсортируем предметы в невозрастающем порядке их удельных стоимостей, что даст нам следующую таблицу:

Протист	Вес Стоимость		Стоимость	
предмет	Бес	Стоимость	Bec	
3	4	40	10	
1	7	42	6	
4	5	25	5	
2	3	12	4	

Жадный алгоритм выбирает предмет 3 с весом 4, пропускает предмет 1 с весом 7, затем выбирает предмет 4 с весом 5 и пропускает предмет 2 с весом 3. Полученное решение оказывается оптимальным для данного экземпляра задачи (см. раздел 11.2, где этот же экземпляр задачи решен методом ветвей и границ).

Может быть, жадный алгоритм всегда приводит к оптимальному решению? Конечно же, нет — если бы это было так, мы бы имели полиномиальный алгоритм для NP-сложной задачи. Приведенный далее пример показывает, что при помощи этого алгоритма нельзя получить гарантированную конечную верхнюю границу точности.

Пример 4. Емкость рюкзака W > 2.

Предмет І	Dan Con	Cmarragem	Стоимость	
	Вес	вес Стоимость	Bec	
1	1	2	2	
2	W	W	1	

Поскольку предметы уже расположены в требуемом порядке, алгоритм выбирает первый из них и пропускает второй; общая стоимость подмножества равна при этом 2. Оптимальным же является выбор второго предмета стоимостью W. Следовательно, отношение точности $r\left(s_{a}\right)$ этого приближенного решения равно

$W^{\prime}/2$ — величине, не ограниченной сверху.

Этот алгоритм очень легко модифицировать, получив приближенный алго-ритм с конечным коэффициентом производительности. Все, что для этого надо, — выбирать лучшее из двух решений: одно из них получается при помощи жадного алгоритма, а второе — из одного предмета наибольшей стоимости, который может поместиться в рюкзаке (заметим, что второй вариант в последнем примере оказывается лучше первого). Нетрудно доказать, что коэффициент производительности такого усовершенствованного жадного алгоритма равен 2. Таким образом, сто-имость оптимального подмножества s^* не более чем в два раза больше стоимости подмножества s_a , полученного при помощи усовершенствованного жадного алгоритма, причем 2 — наименьший множитель, для которого можно сформулировать такое утверждение.