Reducing the Size of Large Language Models Using Quantization

Sondos El-hariry

October 2025

1 Introduction

Modern transformer-based models like **BERT**, **GPT**, and **LLaMA** are powerful but extremely **resource-intensive**, often requiring **gigabytes of storage** and **significant memory** to load. This makes them **difficult to deploy** on edge devices, mobile phones, or even memory-limited servers.

Quantization is one of the most effective techniques to reduce the size and memory footprint of these models — with minimal performance loss.

2 Motivation

A typical BERT-base model uses 32-bit floating-point (FP32) weights:

• 110 million parameters \times 4 bytes = \sim 440 MB just for weights.

By quantizing to 8-bit integers (INT8), we reduce this to:

• 110 million \times 1 byte = \sim 110 MB \rightarrow 4 \times smaller!

3 Quantization: Core Idea

Quantization reduces the **precision** of the numbers used to represent the model's weights and activations. Instead of using full **FP32**, we can convert weights to:

- INT8 \rightarrow 8-bit integer
- INT4, even binary in extreme cases

4 Mathematical Formulation: Quantization Formula

Quantization maps a float x to a lower-bit representation q using:

$$q = \text{round}\left(\frac{x - \min}{\text{scale}}\right)$$

 $x \approx q \times \text{scale} + \min$

Where:

- scale = $\frac{\max-\min}{2^k-1}$
- k is the number of bits (e.g., 8 for INT8)

5 Code Example: Quantizing BERT using Hugging Face + bitsandbytes

6 Performance Comparison

Works best on models supported by AutoGPTQ or bitsandbytes

Model	Precision	Size (MB)	Speed
BERT (FP32) BERT (INT8) BERT (INT4)	32-bit	440 MB	Slow
	8-bit	110 MB	Fast
	4-bit	~55 MB	Faster

Table 1: Quantization performance comparison

You can create this visualization with matplotlib.pyplot.bar() and display in your notebook.

7 Real-World Examples

- \bullet Meta's LLaMA-2 is frequently quantized to 4-bit for fast inference on laptops.
- GGML / GPTQ projects allow 13B+ models to run on 8GB RAM machines using quantized formats.
- **DistilBERT** already reduces size via architectural changes combine that with quantization for *super lightweight* deployments.

8 Conclusion

Quantization provides a powerful, deployment-friendly tradeoff:

- Up to 4–8× smaller model sizes
- Lower memory & storage usage

- Faster inference
- Slight accuracy loss (often <1%)

Quantization = Compression without Compromise