Network Security – prof. Giuseppe Bianchi – 3rd term exam, 4 February 2021

Name+Surname:		me: Univ. Code:
Q1 Prove t	hat a	a Pedersen Commitment is homomorphic
Encryption	sch	private key SK of an user named "bob" constructed in the Boneh-Franklin's Identity Based eme? (notation: s, g^s: PKG key pair; H(): hash function which maps string into EC point) SK = g^H(bob)
		$SK = g H(bbb)$ $SK = H(bbb)^{s}$
	,	$SK = bob^s$ $SK = g^s \times H(bob)$
_		the private/public key pair is A pair of EC points
		A pair of modular integers
0		the private key is a modular integer whereas the public key is an EC point the private key is an EC point whereas the public key is a modular integer
OA A Soom		naring scheme is ideal if
		Each party receives exactly one share
0	b)	The total number of participating parties n is equal to the minimum number of parties t which can reconstruct the secret
0	c)	the size of each share is an integer value
		none of the above answers
Q5 Describ	e th	e RSA common modulus attack
Q6 Determ	ine	the access control matrix that implements the policy: $P = A$ AND B AND (C OR (D AND E))

Network Security - prof. Giuseppe Bianchi - 3rd term exam, 4 February 2021

Name+Surname: Univ. Code:_____

E1 Consider the Elliptic curve $y^2 = x^3 + x + 1$ defined over the modular integer field \mathbb{Z}_7 .

A. find all the points $EC(Z_7)$

$$P = (x_1, y_1)$$

$$Q = (x_2, y_2)$$

$$R = P + Q = (x_3, y_3)$$

$$x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda(x_1 - x_3) - y_1$$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & P \neq Q \\ \frac{3x_1^2 + a}{x_2 - x_1} & P = Q \end{cases}$$

B. State what is the order of the corresponding group

C. Compute [3](2,2)

[HELP: possibly useful mnemonic hints reported here on the right; MUST-DO: show step-by-step detailed computations]

Network Security - prof. Giuseppe Bianchi - 3rd term exam, 4 February 2021

Name+Surname:	Univ. Code:			
E2 Assume arithmetic modulus 101. A Linear secr	ret sharing scheme involving 4 parties is			
described by the following access control matrix:				

1 1 0 A: B: 0 1 -1 C: 0 0 -1 D: 0 1 1

A. Assume that the following shares are revealed:

 $A \rightarrow 23$

 $B \rightarrow 88$

 $C \rightarrow 57$

What is the secret? (explain how you arrived to the result, otherwise the answer is not considered valid)

B. [optional, extra] Assume that the following shares are revealed:

 $A \rightarrow 79$

 $B \rightarrow 20$

 $D \rightarrow 7$

What is the secret? (explain how you arrived to the result, otherwise the answer is not considered valid)

Network Security – prof. Giuseppe Bianchi – 3rd term exam, 4 February 2021

Name+Surname:	Univ. Code:
---------------	-------------

E3 – part 1 – El Gamal Encryption, g=29, p=83:

1. Review El Gamal encryption

- 2. Assume operations are modulo p=83: is g=29 a generator of the Z*₈₃ multiplicative group? [you must respond to this question by performing <u>a single "test"!</u> Trying all possible values in the range is not considered a valid answer]
- 3. Using g=29 and p=83, encrypt message M=37 for an user whose private key is sk=7 and whose public key is pk=4 if you need an ephemeral value, use r=13.

E3 – part 2 – Threshold El Gamal Decryption.

If you have not solved the previous part, solve the exercise by usig as ciphertext the pair {41,25} [note: on purpose different from the solution of the previous exercise!]

The ciphertext produced at the end of the previous part is now sent for threshold description to a (2,3) group. The group has been built by sharing the secret key via a (2,3) Shamir Secret Sharing scheme, prime modulus 41.

The three participating parties P_1 , P_2 , P_3 , use standard x-coordinates $X_i = \{1,2,3\}$.

The message is received by parties P1 and P3 which have, shares σ_1 =26 and σ_3 =23, respectively

- compute the Lagrange interpolation coefficients for parties 1 and 3;
- Assuming that P1 and P3 directly exchange their shares, reconstruct the original secret key
- Assuming, instead, that P1 and P3 do NOT explicitly exchange their shares: show how P1 and P3 can still cooperate to decrypt the previous El Gamal encrypted message (and numerically compute the result, showing the step-by-step operations).