Práctica Nro. 8 Excepciones

Objetivo: Conocer e interpretar los distintos modelos de excepciones que implementan los lenguajes de programación.

Ejercicio 1: ¿Explique claramente a qué se denomina excepción?

Ejercicio 2: ¿Qué debería proveer un lenguaje para el manejo de las excepciones? ¿Todos los lenguajes lo proveen?

Ejercicio 3: ¿Qué ocurre cuando un lenguaje no provee manejo de excepciones? ¿Se podría simular? Explique cómo lo haría

Ejercicio 4: Cuando se termina de manejar la excepción, la acción que se toma luego es importante. Indique

- 01. ¿Qué modelos diferentes existen en este aspecto?
- 02. Dé ejemplos de lenguajes que utilizan cada uno de los modelos presentados anteriormente. Por cada uno responda respecto de la forma en que trabaja las excepciones.
 - a. ¿Cómo se define?
 - b. ¿Cómo se lanza?
 - c. ¿Cómo se maneja?
 - d. ¿Cuál es su criterio de continuación?
- 03. ¿Cuál de esos modelos es más inseguro y por qué?

Ejercicio 5: La propagación de los errores, cuando no se encuentra ningún manejador asociado, no se implementa igual en todos los lenguajes. Realice la comparación entre CLU, PL/1, ADA, respecto a este tema. Defina la forma en que se implementa en un lenguaje conocido por Ud.

Ejercicio 6: Sea el siguiente programa escrito en Pascal

Procedure Manejador;
Begin ... end;
Procedure P(X:Proc);
begin
....
if Error then X;
....
end;
Procedure A;
begin
....
P(Manejador);
....
end;

¿Qué modelo de manejo de excepciones está simulando? ¿Qué necesitaría el programa para que encuadre con los lenguajes que no utilizan este modelo? Justifique la respuesta.

Ejercicio 7: Sea el siguiente programa escrito en Pascal:

```
Program Principal;
                                                     Begin
var x:int; b1,b2:boolean;
                                                            x:=4;
Procedure P (b1:boolean);
                                                            b:=true:
                                                            b1:=false;
     var x:int;
     Procedure Manejador1
                                                            if b1=false then Manejador2;
                      begin
                                                            P(b);
                                                            write (x);
               x:=x + 1;
              end;
                                                     End.
       begin
       x:=1;
       if b1=true then Manejador1;
       x:=x+4;
       end;
       Procedure Manejador2;
         begin
              x:=x * 100;
       end;
```

- a) Implemente este ejercicio en PL/1 utilizando manejo de excepciones
- b) ¿Podría implementarlo en ADA utilizando manejo de excepciones? En caso afirmativo, realícelo.

Ejercicio 8: Sean los siguientes, procedimientos de un programa escrito en CLU:

```
Proc_1=proc(m:int)returns(int)
                                                         end while; Except
       signals(tipo1)
                                                                 when tipo1: write("Se produjo un
                                                         error de tipo2 en Proc 2")
         if m=0 then signal tipo1
                                                                 end
                Except
              when tipo1: write("Se produjo un
                                                         end Proc 2
error de tipo1 en Proc 1"); signal tipo2;
                                                         Proc_ppal=proc()returns(int)
              others: write("Se produjo otro tipo
      de error en Proc_1")
                                                           Proc_2
                     end
                                                                 Except
          m:=m * 10
                                                                 when tipo1: write("Se produjo un
                                                         error de tipo1 en Proc ppal")
      end Proc_1
      Proc_2=proc()returns(int)
                                                                 end
      z=0;
       While z>=0
                                                         end Proc_ppal
        if z=0 then Proc_1(z)
                Except
              when tipo2: write("Se produjo un
      error de tipo2 en Proc_2")
              end
```

a) Analizar el ejemplo y decir qué manejadores ejecuta y en qué valores quedan las variables. JUSTIFIQUE LA RESPUESTA.

b) Podría simular un efecto parecido en ADA? En caso de poder, explique cómo.

Ejercicio 9: Indique diferencias y similitudes entre Phyton y Java con respecto al manejo de excepciones.

Ejercicio 10: Qué modelo de excepciones implementa Ruby?. Qué instrucciones específicas provee el lenguaje para manejo de excepciones y cómo se comportan cada una de ellas?

Ejercicio 11: Indique el mecanismo de excepciones de javascript.

Ejercicio 12: Sea el siguiente programa escrito en ADA:

Procedure Principal;	begin	
x:exception;	Read(b);	
y:integer; b:boolean;	y:=1;	
Procedure Prueba1 (out m:integer);	Prueba1(y);	
begin	Prueba2;	
m:=20;	write(y);	
if (b=true) then raise X;	exception	
m:=m + 2;	when constraint-error => begin	
end;	y:=y+4;	
Procedure Prueba2;	write(Y);	
a:int:=0; b:=4/a;	end;	
begin	when $X => begin y:= y*30;$	
y:=y+8;	write(Y);	
exception	end;	
when constraint-error => y:=y+10;	end;	
end;		

- a) Indique el camino de ejecución.
- b) Agregar el uso de una excepción anónima

Ejercicio 13: Sea el siguiente código escrito en CLU

```
Procedure Main
                                                     Procedure Dos() signals error1;
   Error1: exception:
                                                                 m:integer;
                                                                 Begin
   x, y: integer;
   Procedure UNO () signals error1;
           x:integer
                                                                  if m=0 then signal error1;
           Begin
           x:=2; .....
            While y < x Do
                                                     Begin //MAIN
                  If y=0 Then
                                                         x:=1; y:=0;
                         signal error1;
                                                         Uno(); exception when error1 -> x:=x+1;
                end if; exception
                                                                                           y:=y+1;
                         when error1 ->
                                                     end;
                  y:=y+7;
                 x:=x+2; resignal;
                                                         Dos(): exception when error1 -> resignal;
                  end:
                                                     end:
                  Dos():
                  y:=y+1;
                                                     End; //MAIN
          Wend; exception
                  when error1 -> v:=x+3;
                  x:=x+3; Resignal; .End;
   End; //UNO
```

- a) Indique cómo se ejecuta el código. Debe quedar en claro los caminos posibles de ejecución, cuales son los manejadores que se ejecutan y cómo se buscan los mismos y si en algún caso se produce algún error.
- b) La ejecución del manejador para error1 modifica siempre la variable x de UNO? En caso negativo indique cómo haría para lograrlo. Justifique la respuesta.

Ejercicio 14. Dado el siguiente código en Ada. Marque con una cruz sólo los caminos de ejecución correctos en los casos en que se produzca o levante una excepción.

```
Procedure C
                                 Procedure B
                                                                                             BEGIN //MAIN
Program Main
var x,y,i:integer;
                                 var z:integer;
                                                                  Beain
                                                                                              x=1; y=1; i=2;
                                                                 If (x=1) then begin
e,e2:exception
                                 Begin
                                                                                              C();
Procedure A
                                   z=3;
                                                                   raise e2;(8)
                                                                                              write(x);
                                   raise e;(7)
                                                                  end;
                                                                                              (1)Exception when e Begin
  var y,b:integer;
  e:exception;
                                   (4)Exception when e Begin
                                                                  else A();
                                                                                                    x := x + 5;
Begin
                                       x:=x + 1; raise;
                                                                  End;
                                                                                                  End;
                                                                                             (2) when e2 Begin
 x=x=+1;
                                      End;
 y=0;
                                 (9) when e2 Begin
                                                                                                 x := x + 6;
 b=x+i+3;
                                     x := x + 6;
                                                                                             End;
                                                                                             (3) when others Begin
 B();
(6)Exception when e Begin
                                    (5) when others Begin
                                                                                                 x := x + 7;
     x:=x + 5; raise;
                                       x := x + 1;
                                                                                                End;
     End;
                                      End;
                                                                                             END.
                                End:
End:
```

```
En (7) se levanta e y se maneja en 4, luego se relanza la excepción que es relanza la excepción que es relanza la excepción que
```

manejada en (6) y termina manejándose nuevamente en (1)	es manejada en (1) porque e pertenece a main.	manejada en (1) porque e pertenece a main.
En (7) se levanta e y se maneja en 4, luego se vuelve a levantar la excepción de forma anónima por lo que B termina y se busca el manejador en A para menejarse finalmente en (1) de Main porque C y A no tiene manejadores definidos para esa variable.	maneja en 4, luego se relanza la excepción que es manejada en (3) porque e pertenece a	En (8) se levanta e2 y se maneja en 2, y el programa termina.