Probabilités avancées

Espérance

conditionnelle

Question 1/18

 $\mathbb{E}(X\mid\mathcal{G})$ X une variable aléatoire intégrable et \mathcal{G} une sous-tribu de \mathcal{F}

Réponse 1/18

L'unique variable aléatoire intégrable et \mathcal{G} -mesurable Y telle que, pour tout $A \in \mathcal{G}$, $\mathbb{E}(X\mathbb{1}_A) = \mathbb{E}(Y\mathbb{1}_A)$

Question 2/18

$$\mathbb{E}(X \mid Y)$$

Réponse 2/18

$$\mathbb{E}(X \mid \sigma(Y))$$

Question 3/18

Théorème de projection orthogonale pour les espérances conditionnelles

Réponse 3/18

Si X est une variable aléatoire de $\in L^2$ alors $\mathbb{E}(X \mid \mathcal{G}) \in L^2$

C'est le projeté orthigonal de X sur $L^2(\Omega, \mathcal{F}, \mathbb{P})$

Question 4/18

$$\mathbb{E}(X \mid \mathcal{G})$$
 pour X une variable aléatoire à valeurs dans $[0, +\infty]$

Réponse 4/18

$$\lim_{n \to +\infty} (\mathbb{E}(\min(X, n) \mid \mathcal{G}))$$
C'est l'unique variable Y dans $[0, +\infty]$ qui est \mathcal{G} -mesurable et telle que, pour tout $A \in \mathcal{G}$,
$$\mathbb{E}(X\mathbb{1}_A) = \mathbb{E}(Y\mathbb{1}_A)$$

Question 5/18

Valeur de $\mathbb{E}(g(X,Y) \mid \mathcal{G})$ pour X et Y des variables aléatoires à valeurs dans (E,\mathcal{E}) et (F,\mathcal{F}) et $g:E\times F\to\mathbb{R}$ mesurable telle que g(X,Y) est intégrable et $X\perp\!\!\!\perp\mathcal{G}$

Réponse 5/18

$$\mathbb{E}(g(X,Y) \mid \mathcal{G}) = h(Y) \text{ où}$$

$$h(y) = \int f(x,y) \, d\mathbb{P}_X$$

Question 6/18

$$\mathbb{E}(aX + bY \mid \mathcal{G})$$

Réponse 6/18

$$a \mathbb{E}(X \mid \mathcal{G}) + b \mathbb{E}(Y \mid \mathcal{G})$$

Question 7/18

Densité de X sanchat que Z=z pour (X,Z) de densité f

Réponse 7/18

$$\frac{1}{\int_{\mathbb{R}} f(x,z) \, \mathrm{d}x} f(x,z)$$

Question 8/18

 $\mathbb{E}(XY \mid \mathcal{G})$ pour Y une variable aléatoire \mathcal{G} -mesurable

Réponse 8/18

$$Y \mathbb{E}(X \mid \mathcal{G})$$

Question 9/18

$$\mathbb{E}(Y \, \mathbb{E}(X \mid G))$$

Réponse 9/18

$$\mathbb{E}(XY)$$

Question 10/18

Théorème de convergence dominée pour l'espérance conditionnelle

Réponse 10/18

Si (X_n) est une suite de variables aléatoires, Z une variable aléatoire intégrable telle que $|X_n| \leq Z$ presque sûrement et telle que $X_n \to X$ presque sûrement alors X est intégrable et $\mathbb{E}(|X_n - X| \mid \mathcal{G}) \to 0$ On a done $\mathbb{E}(X_n \mid \mathcal{G}) \to 0 \to \mathbb{E}(X \mid \mathcal{G}) \to 0$

Question 11/18

Inégalité de Jensen pour l'espérance conditionnelle

Réponse 11/18

Si X est un variable aléatoire réelle et $\varphi: \mathbb{R} \to \mathbb{R}$ convexe alors $\varphi(\mathbb{E}(X \mid \mathcal{G})) \leq \mathbb{E}(\varphi(X) \mid \mathcal{G})$

Question 12/18

Lien entre $\mathbb{E}(X\mid Z)$ et $\mathbb{E}(Y\mid Z)$ en fonction des lois de probabilités

Réponse 12/18

Si
$$\mathbb{P}_{(X,Z)} = \mathbb{P}_{(Y,Z)}$$
 alors $\mathbb{E}(X \mid Z) = \mathbb{E}(Y \mid Z)$

Question 13/18

Lemme de Doob

Réponse 13/18

Soient Ω_1 et Ω_2 deux ensembles, $X: \Omega_1 \to (\Omega_2, \mathcal{F}_2)$. Soient $\mathcal{F}_1 = \sigma(X), (E, \mathcal{B})$ un espace polonais (métrique séparable) muni de ses boréliens, les fonctions $(\Omega_1, \mathcal{F}_1)$ - (E, \mathcal{B}) mesurables sont celles de la forme Y = f(X)avec $f:(\Omega_2,\mathcal{F}_2)\to(E,\mathcal{B})$ mesurables

Question 14/18

$$\mathbb{E}(X \mid Z_1 + \dots + Z_n)$$

 (X, Z_1, \dots, Z_n) un vecteur gaussien

Réponse 14/18

$$\mathbb{E}(X \mid Z_1 + \dots + Z_n) =$$

$$\mathbb{E}(X) + \sum_i i = 1na_i(Z_i - \mathbb{E}(Z_i))$$
pour un certain $(a_1, \dots, a_n) \in \mathbb{R}^n$
En particulier, $\mathbb{E}(X \mid Z_1 + \dots + Z_n)$ est une variable aléatoire gaussienne

Question 15/18

Lemme de Fatou pour l'espérance conditionnelle

Réponse 15/18

Si (X_n) est une suite de variables aléatoires

positives alors
$$\mathbb{E}\left(\liminf_{n\to+\infty}(X_n) \mid \mathcal{G}\right) \leqslant \liminf_{n\to+\infty}(\mathbb{E}(X_n \mid \mathcal{G}))$$

Question 16/18

Positivité de $\mathbb{E}(\cdot \mid \mathcal{G})$

Réponse 16/18

Si
$$X \geqslant Y$$
 P-presque partout alors $\mathbb{E}(X \mid \mathcal{G}) \geqslant \mathbb{E}(Y \mid \mathcal{G})$

Question 17/18

Théorème de convergence monotone pour l'espérance conditionnelle

Réponse 17/18

Si (X_n) est une suite croissante de variables

aléatoires positives alors
$$\mathbb{E}\left(\lim_{n\to+\infty}(X_n) \mid \mathcal{G}\right) = \lim_{n\to+\infty}(\mathbb{E}(X_n \mid \mathcal{G}))$$

Question 18/18

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) \text{ pour } \mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$$

Réponse 18/18

$$\mathbb{E}(X \mid \mathcal{H})$$