Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

PATIENT		
Name: 林于蓁	Patient ID: 48526143	
Date of Birth: Dec 25, 1966	Gender: Female	
Diagnosis: Pancreatic cancer		
ORDERING PHYSICIAN		
Name: 姜乃榕醫師	Tel: 886-228712121	
Facility: 臺北榮總		
Address: 臺北市北投區石牌路二段 201 號		
SPECIMEN		
Specimen ID: S11118997A Collection site: Pancreas	Type: FFPE tissue	
Date received: Jul 28, 2022 Lab ID: AA-22-04373	D/ID: NA	

ABOUT ACTORCO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	Probable Sensitive in Other	
Alterations/Biomarkers	Sensitive	Cancer Types	
	Not de	tected	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
KRAS G12D	-	Afatinib, Cetuximab, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Panitumumab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 38

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KRAS	G12D	52.8%
TP53	R248Q	55.1%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr11	ATM	Heterozygous deletion	1
Chr16	PALB2, TSC2	Heterozygous deletion	1
Chr17	TP53	Heterozygous deletion	1
Chr19	STK11	Heterozygous deletion	1
Chr22	NF2	Heterozygous deletion	1
Chr4	FBXW7	Heterozygous deletion	1
Chr9	CDKN2A	Heterozygous deletion	1
Chr5	TERT	Amplification	7 [¥]

^{*} Increased gene copy number was observed.

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results	
Tumor Mutational Burden (TMB)	< 1 muts/Mb	
Microsatellite Instability (MSI)	Microsatellite stable (MSS)	

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 65% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **38**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3A		
KRAS G12D	Afatinib, Cetuximab, Dacomitinib, Erlotinib, Gefitinib, Osimertinib, Panitumumab	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description		
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication		
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication		
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type		
3B	iomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)		
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies		

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

page 3 of 38

AG4-QP4001-02(06)

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
TP53	Platinum- and taxane-	Less sensitive	Clinical	Overien concer
R248Q	based regimens	Less sensitive	Cilnical	Ovarian cancer

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **4** of **38**

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

VARIANT INTERPRETATION

KRAS G12D

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways^[1]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[1][2]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways^{[3][4]}. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)^{[1][5]}, colon carcinomas (40-50%)^{[6][7]}, and lung carcinomas (30-50%)^{[8][9]}, but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer^[2].

G12D is a hotspot mutation located in the GTP binding region of the KRAS protein (UniProtKB). This mutation results in decreased KRAS GTPase activity, increased activation of downstream signaling, and promotes tumor formation in preclinical studies[10][11][12].

Therapeutic and prognostic relevance

Except for KRAS G12C, other KRAS mutants are not currently targetable, but the downstream MEK serves as a potential target^[13]. MEK inhibitors trametinib, cobimetinib, and binimetinib were approved by the U.S. FDA for patients with advanced metastatic melanoma whose tumors harbor BRAF V600 mutations^{[14][15][16][17]}.

There are case reports indicated that patients harboring a KRAS mutation may benefit from MEK inhibitor treatment. A patient with small cell neuroendocrine carcinoma (SCNEC) of the cervix harboring a KRAS G12D mutation showed significant response with trametinib^[18]. Another low-grade serous carcinoma case with KRAS G12D also has sustained response to trametinib (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143). In addition, a low-grade serous ovarian cancer patient harboring KRAS G12V mutation showed stable disease after 8 weeks of binimetinib treatment, and demonstrated a partial response after another 26 weeks of treatment^[19]. However, trametinib did not demonstrate superiority to docetaxel in KRAS-mutant non-small cell lung cancer (NSCLC) patients, based on results from a randomized Phase II study^[20].

Both clinical and preclinical studies demonstrated a limited response to monotherapy using MEK inhibitors^[21]. Moreover, several clinical trials are in progress to evaluate the combination of MEK and mTOR inhibition as a new potential therapeutic strategy in CRC^[22], and in patient-derived xenografts of RAS-mutant CRC, inhibition of MEK and mTOR suppressed tumor growth, but not tumor regression^[23]. A study using the CRC patient-derived xenograft (PDX) model showed that the combination of trametinib, a MEK inhibitor, and palbociclib, a CDK4/6 inhibitor, was well tolerated and resulted in objective responses in all KRAS mutant models^[24].

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

Cetuximab and panitumumab are two EGFR-specific antibodies approved by the U.S. FDA for patients with KRAS wild-type metastatic colorectal cancer (NCT00154102, NCT00079066, NCT01412957, NCT00364013). Results from the PRIME and FIRE-3 trials indicated that panitumumab and cetuximab did not benefit patients with KRAS or NRAS mutations and may even have a detrimental effect in these patients^[25]. Taken together, the National Comprehensive Cancer Network (NCCN) recommended that, cetuximab and panitumumab should only be used if both KRAS and NRAS genes are normal (NCCN guidelines)^{[26][27]}. Numerous studies have demonstrated the presence of KRAS or NRAS mutations at exon 2, 3 or 4 as a predictor of resistance to anti-EGFR therapies^{[28][29][30][31][32][33][34]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **5** of **38**

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

Sorafenib, a multi-kinase inhibitor, has been shown to be beneficial in KRAS-mutant CRC^[35], KRAS-mutant NSCLC^[36], and KRAS-amplified melanoma^[37].

There has been conflicting data on the effect of KRAS mutation on the efficacy of bevacizumab in metastatic CRC patients(J Clin Oncol 34, 2016 (suppl; abstr 3525))[38][39].

In NCCN guidelines for NSCLC, KRAS mutations have been suggested as an emerging biomarker for EGFR TKIs in NSCLC patients. KRAS mutations are associated with a lack of efficacy of EGFR TKIs, including erlotinib, gefitinib, afatinib, and osimertinib, in NSCLC patients^{[40][41][42]}.

Studies have shown that KRAS mutation, especially those occurs in exon 2 (codon 12 or 13) and codon 61 indicated a poor prognosis for patients with CRC^[43].

In low-grade serous carcinoma of the ovary or peritoneum, patients with KRAS or BRAF mutations (n=21) had a significantly better OS than those with wild-type KRAS or BRAF (n=58) (106.7 months vs 66.8 months), respectively^[44]. In ovarian serous borderline tumor with recurrent low-grade serous carcinoma, patient harboring KRAS G12V mutation appeared to have shorter survival time^[45].

TP53 R248Q, Heterozygous deletion

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[46]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[47].

R248Q is a missense mutation located in the DNA-binding domain (DBD) of the p53 protein (UniProtKB). This mutation causes oncogenic gain-of-function phenotypes in a breast cancer cell line^[48] and has been reported to target the proteasome activator REG gamma to promote endometrial cancer progression^[49].

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[50].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[51]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[52].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[53][54][55]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[56]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[57][58]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[59].

TP53 oncomorphic mutations, including P151S, Y163C, R175H, L194R, Y220C, R248Q, R248W, R273C, R273H,

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

R273L and R282W have been shown to predict resistance to platinum- and taxane-based chemotherapy in advanced serous ovarian carcinoma patients^[60].

ATM Heterozygous deletion

Biological Impact

The ataxia-telangiectasia mutated protein kinase (ATM) gene encodes a PI3K-related serine/threonine protein kinase involved in genomic integrity maintenance and plays central roles in DNA double-strand break (DSB) repair, which can be induced by ionizing radiation, chemotherapy drugs, or oxidative stress^[61]. ATM is a well-characterized tumor suppressor gene, hereditary mutations and haploinsufficiency of ATM result in markedly increased susceptibility to a variety of cancer types^{[62][63][64][65][66]}. Results from a case-cohort study of colorectal cancer and cancer-free control individuals suggested that germline pathogenic mutations in ATM and PALB2 should be added to established CRC risk genes as part of standard tumor genetic testing panels^[67]. ATM is among the most commonly aberrant genes in sporadic cancers. Somatic ATM aberrations are frequently observed in hematologic malignancies^{[68][69][70][71]} and a board range of tumors such as prostate cancer^[72], head and neck squamous cell carcinoma (HNSCC)^[73], pancreatic cancer^[74], lung adenocarcinoma^[75], breast cancer^[76], and ovarian cancer^[63].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[77].

In addition, ATM has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer or prostate cancer^{[78][79]}, niraparib efficacy in pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in advanced or metastatic cancer (NCT02286687), HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

Besides, another randomized, double-blind Phase II trial in patients with metastatic gastric cancer has shown that addition of olaparib to paclitaxel significantly increased the overall survival in both the overall population and patients with low or undetectable ATM protein expression^[80]. Also, a prospective study in muscle-invasive bladder cancer patients suggested that genomic alternations in the DNA repair genes ATMs, RB1 and FANCC could be recognized as biomarkers predictive of response to cisplatin-based neoadjuvant chemotherapy^[81]. However, loss-of-function of the ATM-CHEK2-TP53 cascade is associated with resistance to anthracycline/mitomycin-containing chemotherapy in patients with breast cancer^[82].

A retrospective study of VICTOR trial demonstrated that ATM loss was associated with worse prognosis in colorectal cancer^[83].

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[84][85][86]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[87]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[88][89]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **38**

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[90][91]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[92][93][94]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[95][96][97]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[91][98][99]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[93]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[100].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[101].

FBXW7 Heterozygous deletion

Biological Impact

The F-box/WD repeat-containing protein 7 (FBXW7) gene encodes a protein that belongs to the SCF (SKP1-CUL1-F-box protein) E3 ligase complex. FBXW7 is recognized as a tumor suppressor which is involved in the negative regulation of oncogenes such as c-Myc^{[102][103]}, c-Jun^[104], cyclin E^[105], Notch family members^{[106][107]}, Aurora-A^[108], mTOR^[109], KLF5^[110], and MCL-1^[111]. Inactivating FBXW7 mutation or copy number loss may result in the accumulation of oncoproteins and therefore lead to malignant transformation^[112]. FBXW7 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[110][111][113]}.

Therapeutic and prognostic relevance

Clinical efficacy of mTOR inhibitors was seen in patients harboring aberrations in the FBXW7 gene (one patient with refractory fibrolamellar hepatocellular carcinoma, and one patient with lung adenocarcinoma)^{[114][115]}. Moreover, in vitro assay also suggested that loss or inactivation of FBXW7 may confer sensitivity to mTOR inhibitor^[109].

Preclinical studies suggested that mutations or loss of FBXW7 were associated with regorafenib and oxaliplatin resistance in CRC cell lines and gefitinib resistance in lung cancer cells^{[116][117][118][119]}.

Retrospective studies have indicated that a relatively low expression level of FBXW7 is an independent prognostic marker of poor survival for patients with hepatocellular carcinoma, lung adenocarcinoma and squamous cell carcinoma^{[120][118]}.

NF2 Heterozygous deletion

Biological Impact

The neurofibromin (NF2) gene encodes the protein Merlin, a tumor suppressor that functions as a negative regulator of the PI3K/AKT/mTOR pathway^{[121][122][123]}. NF2 is a haploinsufficient tumor suppressor gene with one copy loss may

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

lead to weak protein expression and is insufficient to execute its original physiological functions^[124]. Inactivation germline mutations in the NF2 are associated with the hereditary neurofibromatosis type 2, a disorder characterized by the growth of noncancerous tumors in the nervous system^{[121][125]}. Somatic mutations or deletion of NF2 are frequently observed in human cancers, including 20-50% of pleural mesotheliomas^[126], 6% papillary renal cell carcinoma, 5% pancreas cancer, and 4% melanoma (cbioPortal; June 2015), and less frequently in other cancers^[127].

Therapeutic and prognostic relevance

Genomic alterations with activating effects on the mTOR signaling pathway have been identified to confer sensitivity to everolimus across multiple cancer types^{[128][129][130][131]}. There are at least two case studies indicating the clinical efficacy of everolimus in bladder cancer and urothelial carcinoma^{[132][133]}, both harboring NF2 truncating mutations. Preclinical evidence has shown the efficacy of MEK1/2 inhibitor selumetinib in KRAS-mutant thyroid cancer model with NF2 loss^[134].

Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed a loss-of-function alteration in genes that modulate mTOR signaling pathway, including NF2 and TSC1^[135].

PALB2 Heterozygous deletion

Biological Impact

The partner and localizer of BRCA2 (PALB2) gene encodes a protein that plays a critical role in homologous recombination repair (HRR) through its ability to interact with BRCA2 in nuclear foci, promoting its localization and stability in key nuclear structures^[136]. The Fanconi anemia complementation group (FANC) which includes FANCA, FANCB, FANCC, FANCD1 (also called BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (also called BRIP1), FANCL, FANCM and FANCN (also called PALB2) are involved in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR)^{[137][138][139]}. PALB2 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological function^[140]. Biallelic germline loss-of-function mutations in PALB2 cause Fanconi anemia, whereas monoallelic loss-of-function mutations are associated with an increased risk of breast cancer and pancreatic cancer^[141]. Fanconi Anemia is an autosomal recessive disease characterized by hematological abnormalities, bone marrow failure, limb deformities, skin hyperpigmentation, and susceptibility to hematologic and solid malignancies, such as acute myeloid leukemia and head and neck carcinoma^{[142][143]}.

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[77].

PALB2 loss of function mutation has been determined as an inclusion criterion for the trial evaluating rucaparib efficacy in ovarian cancer^[78] or prostate cancer^[79]; talazoparib efficacy in HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795) or lung cancer (NCT03377556); niraparib efficacy in pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), or any malignancy (except prostate) cancer (NCT03207347).

A case report demonstrated an exceptional response to mitomycin C and cisplatin treatment in a gemcitabine-resistant pancreatic cancer patient with biallelic inactivation of PALB2^[144].

STK11 Heterozygous deletion

Biological Impact

The serine/threonine kinase 11 (STK11, also known as LKB1) gene encodes the multifunctional serine/threonine kinase,

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(06) page **9** of **38**

Project ID: C22-M001-02276 Report No.: AA-22-04373 ONC

Date Reported: Aug 10, 2022

ACTOnco® + Report

a tumor suppressor that functions as an inhibitor for the mTOR signaling pathway[145][146]. STK11 is a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions[147][148]. In the mouse model, loss of STK11 promotes aggressive endometrial and squamous cell carcinomas[149][150]. Mutations in STK11 have been found in lung, breast, cervical, testicular, and liver cancers, as well as malignant melanoma, pancreatic and biliary carcinoma^[151]. Germline mutations in STK11 are found in 30-70% of Peutz-Jeghers syndrome^[152].

Therapeutic and prognostic relevance

A clinical study in a pancreatic cancer patient with Peutz-Jeghers syndrome whose tumor harboring an STK11 D194E mutation coupled with the loss of heterozygosity of the other STK11 allele displayed partial response to the everolimus treatment[153]. In another clinical case study, an adrenocorticotropic pituitary carcinoma patient whose tumor bearing an STK11 inactivating mutation responded to a combination of everolimus and radiotherapy[154].

Preclinical data suggested that lung cancer cell lines with STK11 inactivating mutations may confer increased sensitivity to the MEK-1 and MEK-2 inhibitor, trametinib[155].

Inactivating mutations of STK11 was shown to be associated with resistance to immune checkpoint blockade in KRASmutant lung adenocarcinoma (LUAC) and NSCLC (DOI: 10.1200/JCO.2017.35.15_suppl.9016)[156][157][158]. It was proposed that loss of STK11 negatively impacts the number and function of tumor-infiltrating T cells (TILs) and PD-L1 expression on tumor cells and therefore results in an ineffective response to PD-1-targeting antibodies[159].

TERT Amplification

Biological Impact

The TERT gene encodes the catalytic subunit of telomerase, an enzyme that maintains telomere length and genomic integrity^[160]. Upregulation of TERT promotes cancer development and progression via modulation of Wnt-catenin and nuclear factor kappa B signaling[161][162], and mitochondrial RNA processing[163]. Activating mutations in the TERT promoter have been identified in a number of cancer types including melanoma, hepatocellular carcinoma, urothelial carcinoma, medulloblastoma, and glioma whereas TERT gene amplification is implicated in lung cancer, cervical cancer, breast cancer, Merkel cell carcinoma, neuroblastoma and adrenocortical carcinoma^{[164][165][166][167][168]}.

Therapeutic and prognostic relevance

Imetelstat (GRN163L), a telomere inhibitor which has been shown to inhibit cell proliferation in various cancer cell lines and tumor xenografts is currently in clinical trials^[160].

TERT gene amplification is an independent poor prognostic marker for disease-free survival in non-small cell lung cancer (NSCLC) and breast cancer^{[169][170][171]}.

TSC2 Heterozygous deletion

Biological Impact

The tuberous sclerosis complex 2 (TSC2) gene encodes a protein called tuberin, which interact with a protein called hamartin (encoded by the TSC1 gene). This hamartin-tuberin tumor suppressor complex plays a critical role in growth control as a negative regulator of the mammalian target of rapamycin (mTOR) pathway[172][173]. Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex are commonly found in patients with tuberous sclerosis complex[174][175][176], while the loss of heterozygosity (LOH) in TSC1/TSC2 has been identified in head and neck squamous cell carcinoma (HNSCC)[177] and endometrial cancer[178]. TSC2 deletion, splicing-mutant, and inactivating mutations such as A1141T, G305V, S1514X, and R1032X, has been identified in TSC2-null hepatocellular carcinoma (HCC) cell lines, patient-derived xenograft, and primary tumors. Mutations in the TSC1 and TSC2 genes cause the autosomal dominant genetic disorder tuberous sclerosis complex (TSC)[179].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

Therapeutic and prognostic relevance

Genomic alterations with activating effects of the mTOR signaling pathway (including deletion/inactivation of TSC1/TSC2) have been shown to confer sensitivity to everolimus across multiple cancer types, such as bladder cancer, gastric cancer, sarcoma, thyroid cancer, hepatocellular carcinoma (HCC) as well as head and neck squamous cell carcinoma (HNSCC)[132][131][180]. Results from one Phase II study of advanced endometrial cancer showed that mutations in AKT1, TSC1, and TSC2 might predict sensitivity to temsirolimus[181]. Recent studies indicated that there are mTORC1-independent signaling pathways downstream of hamartin-tuberin, which may represent new therapeutic targets[182].

Everolimus has been approval by the U.S. FDA for Tuberous Sclerosis Complex (TSC)-associated renal angiomyolipoma and Tuberous Sclerosis Complex (TSC)-associated subependymal giant cell astrocytoma (SEGA). This approval is based on the results from EXIST-1, EXIST-2, and Study 2485 trials (NCT00789828, NCT00790400, and NCT00411619).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 11 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)		
monarchE	HR-positive, HER2-negative		
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36		
	months(%): 86.1 vs. 79.0]		
MONADOU 2[183]	Breast cancer (Approved on 2018/02/26)		
MONARCH 3 ^[183] NCT02246621	HR-positive, HER2-negative		
NC102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.		
P40NIADQII 0 ^[00]	Breast cancer (Approved on 2017/09/28)		
MONARCH 2 ^[99]	HR-positive, HER2-negative		
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]		
MONAPOU 4[184]	Breast cancer (Approved on 2017/09/28)		
MONARCH 1 ^[184]	HR-positive, HER2-negative		
NCT02102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]		

Binimetinib (MEKTOVI)

Binimetinib is an oral kinase inhibitor that targets MEK. Binimetinib is developed and marketed by Array BioPharma under the trade name MEKTOVI.

- FDA Approval Summary of Binimetinib (MEKTOVI)

MEKTOW[17]	Melanoma (Approved on 2018/06/27)
MEKTOVI ^[17]	BRAF V600E/K
NCT01909453	Encorafenib + binimetinib vs. Vemurafenib [PFS(M): 14.9 vs. 7.3]

Cobimetinib (COTELLIC)

Cobimetinib is a reversible inhibitor which targets MEK1 and MEK2. Cobimetinib is developed by Exelixis and Genentech, and marketed by Genentech under the trade name COTELLIC.

- FDA Approval Summary of Cobimetinib (COTELLIC)

COBRIM ^[185]	Melanoma (Approved on 2015/11/10)
NCT01689519	BRAF V600E/K
NC101009519	Cobimetinib + vemurafenib vs. Placebo + vemurafenib [PFS(M): 12.3 vs. 7.2]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 12 of 38

ACTOnco® + Report

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[186]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
NCT01524783	-
	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
POLEDO 2[187]	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[187] NCT00863655	ER+/HER2-
	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on
EXIST-2	2012/04/26)
NCT00790400	
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
RADIANT-3 ^[188] NCT00510068	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EXIST-1 ^[189] NCT00789828	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
	Everolimus vs. Placebo [ORR(%): 35.0]
RECORD-1 ^[190] NCT00410124	Renal cell carcinoma (Approved on 2009/05/30)
	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
NCT02655016	-
	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
QUADRA ^[191] NCT02354586	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2019/10/23)
	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation
	and/or genomic instability)
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]
NOVA ^[192] NCT01847274	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
	-
	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 13 of 38

ACTOnco® + Report

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OlympiA NCT02032823	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)
	gBRCA
	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]
PROfound ^[77] NCT02987543	Prostate cancer (Approved on 2020/05/19)
	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]
	Ovarian cancer (Approved on 2020/05/08)
PAOLA-1 ^[193] NCT02477644	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation and/or genomic instability)
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]
POLO ^[194]	Pancreatic adenocarcinoma (Approved on 2019/12/27)
NCT02184195	Germline BRCA mutation (deleterious/suspected deleterious)
NC102104195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]
SOLO-1 ^[195]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)
NCT01844986	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)
110101044300	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]
OlympiAD ^[196]	Breast cancer (Approved on 2018/02/06)
NCT02000622	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]
SOLO-2/ENGOT-Ov21 ^[197]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
NCT01874353	gBRCA+
110101074333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]
Study19 ^[198]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
NCT00753545	-
140100733343	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]
Study 42 ^[199] NCT01078662	Ovarian cancer (Approved on 2014/12/19)
	Germline BRCA mutation (deleterious/suspected deleterious)
140101070002	Olaparib [ORR(%): 34.0, DOR(M): 7.9]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

0.000	Breast cancer (Approved on 2017/03/31)
PALOMA-2 ^[200]	ER+, HER2-
NCT01740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **14** of **38**

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

PALOMA-3 ^[201]	Breast cancer (Approved on 2016/02/19)
	ER+, HER2-
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONALEECA 2[98]	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[98] NCT01958021	HR+, HER2-
NC101958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITON2 NCT02952534	Prostate cancer (Approved on 2020/05/15)
	gBRCA+, sBRCA
	Rucaparib [ORR(%): 44.0, DOR(M): NE]
ARIEL3 ^[78]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
	AII HRD tBRCA
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]
ARIEL2[202]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[203]	Breast cancer (Approved on 2018/10/16)
	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **15** of **38**

ACTOnco® + Report

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[204]	Renal cell carcinoma (Approved on 2007/05/30)
	-
NCT00065468	Temsirolimus vs. IFN-α [OS(M): 10.9 vs. 7.3]

Trametinib (MEKINIST)

Trametinib is an anti-cancer inhibitor which targets MEK1 and MEK2. Trametinib is developed and marketed by GlaxoSmithKline (GSK) under the trade name MEKINIST.

- FDA Approval Summary of Trametinib (MEKINIST)

BRF117019, NCI-MATCH,	Cancer (Approved on 2022/06/22)
CTMT212X2101	BRAF V600E
NCT02034110,	
NCT02465060,	Dabrafenib + trametinib [ORR(adult patients)(%): 41.0, ORR(pediatric patients)(%): 25.0]
NCT02124772	
BRF117019 ^[205]	Anaplastic thyroid cancer (Approved on 2018/05/04)
NCT02034110	BRAF V600E
NC102034110	Dabrafenib + trametinib [ORR(%): 61.0]
DDE442020[206]	Non-small cell lung cancer (Approved on 2017/06/22)
BRF113928 ^[206] NCT01336634	BRAF V600E
	Trametinib + dabrafenib vs. Dabrafenib [ORR(%): 63.0 vs. 27.0, DOR(M): 12.6 vs. 9.9]
OOMDI 4[14]	Melanoma (Approved on 2014/01/10)
COMBI-d ^[14]	BRAF V600E/K
NCT01584648	Trametinib + dabrafenib vs. Dabrafenib + placebo [PFS(M): 9.3 vs. 8.8]
115	Melanoma (Approved on 2013/05/29)
METRIC ^[15]	BRAF V600E/K
NCT01245062	Trametinib vs. Dacarbazine or paclitaxel [PFS(M): 4.8 vs. 1.5]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 16 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **17** of **38**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Accession Change Number		COSMIC ID	Allele Frequency	Coverage	
KRAS	G12D	2	c.35G>A	NM_004985	COSM521	52.8%	1939	
TP53	R248Q	7	c.743G>A	NM_000546	COSM10662	55.1%	713	

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 38

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change		cDNA Accession Change Number		COSMIC ID	Allele Frequency	Coverage	
BTK	E194G	7	c.581A>G	NM_000061	-	51.1%	366	
CARD11	Splice region	-	c.2703+4A>G	NM_032415	-	49.2%	707	
ERBB3	A1030T	25	c.3088G>A	NM_001982	COSM6655791	24.6%	1116	
FANCE	Splice region	-	c.1383+3G>A	NM_021922	-	82.7%	675	
FGFR3	Splice region	-	c.615+6C>A	NM_000142	-	79.2%	48	
GATA3	S105N	3	c.314G>A	NM_001002295	-	79.9%	338	
GNA11	Splice region	-	c.137-3C>A	NM_002067	-	66.4%	107	
KMT2C	H3887R	44	c.11660A>G	NM_170606	-	53.4%	1210	
LIG3	R942Q	20	c.2825G>A	NM_013975	-	49.2%	1186	
PDGFRA	V544A	11	c.1631T>C	NM_006206	-	27.5%	958	

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **19** of **38**

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: May 2022

Facility retrieved: 臺北榮總

H&E-stained section No.: S11118997A

Collection site: Pancreas

- Examined by: Dr. Chien-Ta Chiang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 75%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 75%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

Mean Depth: 892x

Target Base Coverage at 100x: 94%

RNA test

Average unique RNA Start Sites per control GSP2: 74

LIMITATIONS

- 1. This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **20** of **38**

林干基

Project ID: C22-M001-02276 Report No.: AA-22-04373 ONC

Date Reported: Aug 10, 2022

ACT Onco[®] + Report

the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.

3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 ≥ 3; (2) Number of supporting reads spanning the fusion junction ≥ 5; (3) Percentage of supporting reads spanning the fusion junction ≥ 10%; (4) Fusions annotated

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **22** of **38**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	мис6	MUTYH	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	ТВХЗ
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	ECED	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
		EGFK										

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **23** of **38**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
CDKN2A	Abemaciclib, Palbociclib, Ribociclib	sensitive
STK11	Binimetinib, Cobimetinib, Everolimus, Temsirolimus, Trametinib	sensitive
FBXW7	Everolimus, Temsirolimus	sensitive
NF2	Everolimus, Temsirolimus	sensitive
TSC2	Everolimus, Temsirolimus	sensitive
ATM	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
PALB2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
FBXW7	Gefitinib, Regorafenib	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **24** of **38**

ACTOnco® + Report

1: Everolimus, Temsirolimus; 2: Trametinib, Binimetinib, Cobimetinib

1: Abemaciclib, Palbociclib, Ribociclib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4001-02(06) page **25** of **38**

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 26 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

REFERENCE

- PMID: 2453289; 1988, Cell;53(4):549-54
 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960
 Clinical relevance of KRAS in human cancers.
- PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74 RAS oncogenes: weaving a tumorigenic web.
- PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82
 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- PMID: 3587348; 1987, Nature;327(6120):293-7
 Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44
 [Prevalence of K-ras gene mutations in human colorectal cancers].
- PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30
 The ras oncogenes in human lung cancer.
- PMID: 1486840; 1992, Environ Health Perspect;98():13-24
 Role of proto-oncogene activation in carcinogenesis.
- PMID: 16474405; 2006, Nat Genet;38(3):331-6
 Germline KRAS mutations cause Noonan syndrome.
- PMID: 26037647; 2015, Mol Cancer Res;13(9):1325-35
 Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.
- 12. PMID: 22871572; 2012, Mol Cancer Res;10(9):1228-39
 KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
- PMID: 25414119; 2014, Drugs;74(18):2111-28
 The biology and clinical development of MEK inhibitors for cancer.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88
 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- PMID: 22663011; 2012, N Engl J Med;367(2):107-14
 Improved survival with MEK inhibition in BRAF-mutated melanoma.
- PMID: 25265494; 2014, N Engl J Med;371(20):1867-76
 Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.
- 17. PMID: 29573941; 2018, Lancet Oncol;19(5):603-615
 Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44
 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 27 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

20. PMID: 25722381; 2015, Ann Oncol;26(5):894-901

A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.

21. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61

Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.

22. PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150

Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.

23. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25

Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.

24. PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14

Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.

25. PMID: 25937522; 2015, Eur J Cancer;51(10):1243-52

FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer.

26. PMID: 19188670; 2009, J Clin Oncol;27(12):2091-6

American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy.

27. PMID: 18802721; 2008, Virchows Arch;453(5):417-31

KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program.

28. PMID: 25605843; 2015, J Clin Oncol;33(7):692-700

Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer.

29. PMID: 27422777; 2016, Tumour Biol;37(9):11645-11655

Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer.

30. PMID: 24024839; 2013, N Engl J Med;369(11):1023-34

Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.

31. PMID: 24666267; 2014, Acta Oncol;53(7):852-64

The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.

32. PMID: 27722750; 2017, JAMA Oncol;3(2):194-201

Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials.

33. PMID: 27736842; 2016, Br J Cancer;115(10):1206-1214

A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer.

34. PMID: 20921465; 2010, J Clin Oncol;28(31):4697-705

Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study.

35. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54

Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.

36. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 28 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.

- PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82
 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- 38. PMID: 23828442; 2013, Med Oncol;30(3):650
 KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials.
- 39. PMID: 28632865; 2017, JAMA;317(23):2392-2401 Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial.
- PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8
 Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.
- 41. PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21 KRAS mutation: should we test for it, and does it matter?
- 42. PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7
 Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.
- PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.
- PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- 45. PMID: 24549645; 2013, J Pathol;231(4):449-56 KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- 47. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 48. PMID: 26703669; 2015, Int J Environ Res Public Health;13(1):ijerph13010022
 Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient.
- PMID: 25697482; 2015, Cancer Lett;360(2):269-79
 Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGy.
- 50. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- 51. PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 52. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 54. PMID: 23670029; 2013, Oncotarget;4(5):705-14
 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 29 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

containing therapy.

- 55. PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- 56. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- 57. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- 59. PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- 60. PMID: 25385265; 2015, Int J Oncol;46(2):607-18
 TP53 oncomorphic mutations predict resistance to platinum and taxane based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma.
- 61. PMID: 22079189; 2012, Trends Biochem Sci;37(1):15-22
 The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
- 62. PMID: 1548942; 1992, Leukemia; 6 Suppl 1():8-13 Cancer susceptibility in ataxia-telangiectasia.
- PMID: 12810666; 2003, Cancer Res;63(12):3325-33
 Contributions of ATM mutations to familial breast and ovarian cancer.
- PMID: 1961222; 1991, N Engl J Med;325(26):1831-6
 Incidence of cancer in 161 families affected by ataxia-telangiectasia.
- 65. PMID: 28779002; 2017, J Med Genet;54(11):732-741

 Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks.
- 66. PMID: 16400190; 2006, Carcinogenesis;27(4):848-55 Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors.
- PMID: 29478780; 2018, Am J Hum Genet; 102(3):401-414
 Inherited DNA-Repair Defects in Colorectal Cancer.
- PMID: 9488043; 1998, Oncogene;16(6):789-96
 ATM is usually rearranged in T-cell prolymphocytic leukaemia.
- PMID: 11429421; 2001, J Clin Pathol;54(7):512-6
 Ataxia telangiectasia gene mutations in leukaemia and lymphoma.
- 70. PMID: 11756177; 2002, Blood;99(1):238-44

 ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances.
- 71. PMID: 21993670; 2012, Haematologica;97(1):47-55
 ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression.
- 72. PMID: 22981675; 2013, Eur Urol;63(5):920-6
 Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
- PMID: 22410096; 2012, Oral Oncol;48(8):698-702
 Correlation of Ataxia-Telangiectasia-Mutated (ATM) gene loss with outcome in head and neck squamous cell carcinoma.

CAP ACCREDITED 行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 30 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

- PMID: 23103869; 2012, Nature;491(7424):399-405
 Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
- PMID: 18948947; 2008, Nature;455(7216):1069-75
 Somatic mutations affect key pathways in lung adenocarcinoma.
- PMID: 30537493; 2019, Hum Pathol;86():85-92
 Molecular characterization of metaplastic breast carcinoma via next-generation sequencing.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 78. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 79. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- 80. PMID: 26282658; 2015, J Clin Oncol;33(33):3858-65
 Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer.
- 81. PMID: 26238431; 2015, Eur Urol;68(6):959-67
 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- 82. PMID: 22420423; 2012, Breast Cancer Res;14(2):R47
 Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.
- 83. PMID: 23154512; 2012, Oncotarget;3(11):1348-55
 Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN.
- 84. PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 85. PMID: 8521522; 1995, Cell;83(6):993-1000

 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 86. PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 87. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7
 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2
 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8
 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 91. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35

 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 31 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.

- 92. PMID: 28283584; 2017, Oncologist;22(4):416-421
 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 93. PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 94. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- 95. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 96. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 97. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 99. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 100. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33
 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 101. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- 102. PMID: 15498494; 2004, Curr Biol;14(20):1852-7
 A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size.
- PMID: 15103331; 2004, EMBO J;23(10):2116-25
 Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7.
- 104. PMID: 16023596; 2005, Cancer Cell;8(1):25-33

 The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase.
- 105. PMID: 11533444; 2001, Science;294(5540):173-7
 Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase.
- 106. PMID: 11461910; 2001, J Biol Chem;276(38):35847-53
 The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog.
- PMID: 11425854; 2001, J Biol Chem;276(37):34371-8
 Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor.
- 108. PMID: 16863506; 2006, Cancer Sci;97(8):729-36
 Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation.
- 109. PMID: 18787170; 2008, Science;321(5895):1499-502
 FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 32 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

- 110. PMID: 20484041; 2010, Cancer Res;70(11):4728-38
 The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.
- PMID: 21368833; 2011, Nature; 471(7336): 104-9
 SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction.
- 112. PMID: 18094723; 2008, Nat Rev Cancer;8(2):83-93
 FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
- 113. PMID: 23032637; 2012, Cancer Inform;11():157-71 Haploinsufficiency of Tumor Suppressor Genes is Driven by the Cumulative Effect of microRNAs, microRNA Binding Site Polymorphisms and microRNA Polymorphisms: An In silico Approach.
- 114. PMID: 24586741; 2014, PLoS One;9(2):e89388
 FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.
- 115. PMID: 24360397; 2014, Lung Cancer;83(2):300-1 Temsirolimus therapy in a patient with lung adenocarcinoma harboring an FBXW7 mutation.
- 116. PMID: 27399335; 2017, Oncogene;36(6):787-796 FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation.
- PMID: 25860929; 2015, Oncotarget;6(11):9240-56
 FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15.
- PMID: 29633504; 2018, Mol Oncol;12(6):883-895
 FBXW7 deletion contributes to lung tumor development and confers resistance to gefitinib therapy.
- 119. PMID: 28522751; 2017, Cancer Res;77(13):3527-3539
 Targeting FBW7 as a Strategy to Overcome Resistance to Targeted Therapy in Non-Small Cell Lung Cancer.
- 120. PMID: 24884509; 2014, Mol Cancer;13():110
 Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma.
- 121. PMID: 25893302; 2016, Oncogene; 35(5):537-48 Role of Merlin/NF2 inactivation in tumor biology.
- 122. PMID: 19451229; 2009, Mol Cell Biol;29(15):4235-49 Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.
- 123. PMID: 19451225; 2009, Mol Cell Biol;29(15):4250-61

 NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth.
- 124. PMID: 17655741; 2007, Brain Pathol; 17(4):371-6
 Role of NF2 haploinsufficiency in NF2-associated polyneuropathy.
- PMID: 19545378; 2009, Orphanet J Rare Dis;4():16
 Neurofibromatosis type 2 (NF2): a clinical and molecular review.
- 126. PMID: 21642991; 2011, Nat Genet;43(7):668-72
 The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma.
- 127. PMID: 24393766; 2014, Oncotarget;5(1):67-77
 NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations
- 128. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24
 Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers:
 Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.

CAP ACCREDITED 行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 33 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

129. PMID: 26503204; 2016, J Clin Oncol;34(5):419-26

Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2.

130. PMID: 24833916; 2014, Breast Cancer (Dove Med Press);6():43-57

Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes.

131. PMID: 26859683; 2016, Oncotarget;7(9):10547-56

Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.

132. PMID: 22923433; 2012, Science; 338(6104):221

Genome sequencing identifies a basis for everolimus sensitivity.

133. PMID: 25630452; 2015, Eur Urol;67(6):1195-1196

Exceptional Response on Addition of Everolimus to Taxane in Urothelial Carcinoma Bearing an NF2 Mutation.

134. PMID: 26359368; 2015, Cancer Discov;5(11):1178-93

NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.

135. PMID: 24813888; 2014, Cell Rep;7(4):999-1008

Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1.

136. PMID: 16793542; 2006, Mol Cell;22(6):719-29

Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2.

137. PMID: 23325218; 2013, Nature;493(7432):356-63

Fanconi anaemia and the repair of Watson and Crick DNA crosslinks.

138. PMID: 15905196; 2005, Carcinogenesis;26(10):1731-40

The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells.

139. PMID: 27037238; 2016, EMBO J;35(9):909-23

Interplay between Fanconi anemia and homologous recombination pathways in genome integrity.

140. PMID: 24153426; 2013, Nat Commun;4():2578

Heterozygous mutations in PALB2 cause DNA replication and damage response defects.

141. PMID: 20858716; 2010, Cancer Res;70(19):7353-9

PALB2/FANCN: recombining cancer and Fanconi anemia.

142. PMID: 25754594: 2015. Hum Mutat:36(5):562-8

Loss-of-Function FANCL Mutations Associate with Severe Fanconi Anemia Overlapping the VACTERL Association.

143. PMID: 28678401; 2017, Cancer;123(20):3943-3954

Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50.

144. PMID: 21135251; 2011, Mol Cancer Ther;10(1):3-8

Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer.

145. PMID: 19029933; 2008, Oncogene;27(55):6908-19

LKB1; linking cell structure and tumor suppression.

146. PMID: 19584313; 2009, Physiol Rev;89(3):777-98

LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism.

147. PMID: 20142330; 2010, Dis Model Mech;3(3-4):181-93

Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **34** of **38**

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

- PMID: 17676035; 2007, Nature;448(7155):807-10
 LKB1 modulates lung cancer differentiation and metastasis.
- PMID: 18245476; 2008, Cancer Res;68(3):759-66
 Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas.
- PMID: 18172296; 2008, Cancer Res;68(1):55-63
 LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis.
- 151. PMID: 25244018; 2014, Int J Mol Sci;15(9):16698-718

 Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function.
- 152. PMID: 9425897; 1998, Nat Genet;18(1):38-43
 Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase.
- PMID: 21189378; 2011, J Clin Oncol;29(6):e150-3
 mTOR inhibitor treatment of pancreatic cancer in a patient With Peutz-Jeghers syndrome.
- 154. PMID: 27615706; 2016, CNS Oncol;5(4):203-9
 Widely metastatic atypical pituitary adenoma with mTOR pathway STK11(F298L) mutation treated with everolimus therapy.
- 155. PMID: 27821489; 2017, Cancer Res;77(1):153-163 A Transcriptional Signature Identifies LKB1 Functional Status as a Novel Determinant of MEK Sensitivity in Lung Adenocarcinoma.
- 156. PMID: 29764856; 2018, Clin Cancer Res;24(22):5710-5723
 TP53, STK11, and EGFR Mutations Predict Tumor Immune Profile and the Response to Anti-PD-1 in Lung Adenocarcinoma.
- PMID: 29773717; 2018, Cancer Discov;8(7):822-835
 STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
- 158. PMID: 29337640; 2018, J Clin Oncol;36(7):633-641
 Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing.
- 159. PMID: 26833127; 2016, Cancer Res;76(5):999-1008 STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
- 160. PMID: 21332640; 2011, J Cell Mol Med;15(7):1433-42 Targeting telomerase-expressing cancer cells.
- 161. PMID: 19571879; 2009, Nature;460(7251):66-72Telomerase modulates Wnt signalling by association with target gene chromatin.
- 162. PMID: 23159929; 2012, Nat Cell Biol;14(12):1270-81
 Telomerase directly regulates NF-kB-dependent transcription.
- 163. PMID: 19701182; 2009, Nature;461(7261):230-5
 An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA.
- 164. PMID: 23348506; 2013, Science; 339(6122):957-9 Highly recurrent TERT promoter mutations in human melanoma.
- 165. PMID: 23530248; 2013, Proc Natl Acad Sci U S A;110(15):6021-6
 TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal
- 166. PMID: 11103775; 2000, Cancer Res;60(22):6230-5
 Frequent amplification of the telomerase reverse transcriptase gene in human tumors.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 35 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

- PMID: 12007187; 2002, Genes Chromosomes Cancer;34(3):269-75
 Amplification of the telomerase reverse transcriptase (hTERT) gene in cervical carcinomas.
- 168. PMID: 25301727; 2014, Oncotarget;5(20):10048-57
 TERT promoter mutations and gene amplification: promoting TERT expression in Merkel cell carcinoma.
- 169. PMID: 16641908; 2006, Br J Cancer;94(10):1452-9 Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer.
- 170. PMID: 27982019; 2017, Cancer Gene Ther;24(1):20-27
 The associations of TERT-CLPTM1L variants and TERT mRNA expression with the prognosis of early stage non-small cell lung cancer.
- 171. PMID: 29100407; 2017, Oncotarget;8(44):77540-77551
 TERT promoter status and gene copy number gains: effect on TERT expression and association with prognosis in breast cancer.
- PMID: 21157483; 2011, Nat Rev Mol Cell Biol;12(1):21-35
 mTOR: from growth signal integration to cancer, diabetes and ageing.
- 173. PMID: 12271141; 2002, Proc Natl Acad Sci U S A;99(21):13571-6
 Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
- 174. PMID: 9242607; 1997, Science;277(5327):805-8 Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
- PMID: 8269512; 1993, Cell;75(7):1305-15
 Identification and characterization of the tuberous sclerosis gene on chromosome 16.
- 176. PMID: 1303246; 1992, Nat Genet;2(1):37-41 Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease.
- 177. PMID: 18538015; 2008, BMC Cancer;8():163
 Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma.
- 178. PMID: 28339086; 2017, Int J Oncol;50(5):1778-1784

 Identification of novel mutations in endometrial cancer patients by whole-exome sequencing.
- PMID: 17005952; 2006, N Engl J Med;355(13):1345-56
 The tuberous sclerosis complex.
- 180. PMID: 25724664; 2015, Mol Cancer Ther;14(5):1224-35
 Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus.
- PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8
 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- 182. PMID: 26412398; 2015, Sci Rep;5():14534
 PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 184. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224
 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- 185. PMID: 27480103; 2016, Lancet Oncol;17(9):1248-60
 Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised,

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 36 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

double-blind, phase 3 trial.

186. PMID: 26703889; 2016, Lancet; 387(10022): 968-977

Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.

187. PMID: 22149876; 2012, N Engl J Med;366(6):520-9

Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.

188. PMID: 21306238; 2011, N Engl J Med;364(6):514-23

Everolimus for advanced pancreatic neuroendocrine tumors.

189. PMID: 23158522; 2013, Lancet; 381(9861):125-32

Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.

190. PMID: 18653228; 2008, Lancet;372(9637):449-56

Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.

191. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.

192. PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164

Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.

193. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428

Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.

194. PMID: 31157963; 2019, N Engl J Med;381(4):317-327

Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.

195. PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505

Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.

196. PMID: 28578601; 2017, N Engl J Med;377(6):523-533

Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.

197. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.

198. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.

199. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50

Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.

200. PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936

Palbociclib and Letrozole in Advanced Breast Cancer.

201. PMID: 26030518; 2015, N Engl J Med;373(3):209-19

Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

202. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87

Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.

203. PMID: 30110579; 2018, N Engl J Med;379(8):753-763

Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 37 of 38

Project ID: C22-M001-02276 Report No.: AA-22-04373_ONC Date Reported: Aug 10, 2022

ACTOnco® + Report

- PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.
- 205. PMID: 29072975; 2018, J Clin Oncol;36(1):7-13
 Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer.
- 206. PMID: 27080216; 2016, Lancet Oncol;17(5):642-50
 Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 38 of 38