Part 2 (10 points)

You are required to build and test a classification model using the drug_consumption_cannabis.csv dataset. You must study how to use XBoost in R yourself.

must write a R code implementing the following requirements:

Read the drug_consumption_cannabis.csv dataset into df.

Split df into a training set tr and a test set ts with the ratio of 75% - 25%.

Use the training set tr to build the best model. When choosing the best model, you must perform parameter tuning.

Test the model on the test set to and calculate and include the following performance measures in your submission:

	TPR	FPR	Precision	Recall	F-measure	MCC	Kappa
Class 0							
Class 1							
Weighted							
average							

```
> library(vcd)
> library(xgboost)
> library(caret)
> library(e1071)
> df <- read.csv("drug_consumption_cannabis.csv")</pre>
> # Split the dataset
> set.seed(123)
> trainIndex <- createDataPartition(df$C6, p = 0.75, list = FALSE)</pre>
> tr <- df[trainIndex,]</pre>
> ts <- df[-trainIndex,]</pre>
> # Set parameter grid for tuning
> grid <- expand.grid(nrounds = c(50, 100, 150),
                    max_{depth} = c(4, 6, 8),
                    colsample_bytree = c(0.6, 0.8, 1),
                    eta = c(0.01, 0.05, 0.1),
                    gamma = 0,
                    min_child_weight = 1,
                    subsample = 1)
> tr$C6 <- as.factor(tr$C6)</pre>
> # Build model using cross-validation
```

```
> set.seed(123)
> model <- train(</pre>
   C6 ~ ., data = tr, method = "xgbTree",
   trControl = trainControl(method = "cv", number = 5),
   tuneGrid = grid, metric = "Accuracy"
+ )
> # Print parameter list
> print(grid)
  nrounds max_depth colsample_bytree eta gamma min_child_weight subs
ample
1
                  4
                                0.6 0.01
                                             0
                                                             1
                                                                       1
       50
2
      100
                  4
                                0.6 0.01
                                              0
                                                              1
                                                                       1
3
      150
                  4
                                0.6 0.01
                                              0
                                                              1
                                                                       1
4
       50
                  6
                                0.6 0.01
                                                             1
                                                                       1
                                             0
5
                  6
                                0.6 0.01
                                                              1
      100
                                              0
                                                                       1
6
      150
                  6
                                0.6 0.01
                                                              1
                                                                       1
                                              0
7
       50
                  8
                                0.6 0.01
                                             0
                                                             1
                                                                       1
8
      100
                  8
                                0.6 0.01
                                              0
                                                              1
                                                                       1
9
      150
                  8
                                0.6 0.01
                                              0
                                                              1
                                                                       1
10
                  4
                                0.8 0.01
                                                              1
                                                                       1
       50
                                              0
11
                  4
                                0.8 0.01
                                                              1
      100
                                              0
                                                                       1
12
      150
                  4
                                0.8 0.01
                                                              1
                                                                       1
                                              0
13
       50
                  6
                                0.8 0.01
                                              0
                                                              1
                                                                       1
                  6
                                0.8 0.01
                                                              1
                                                                       1
14
      100
                                              0
15
                  6
                                0.8 0.01
                                                              1
                                                                       1
      150
                                              0
16
       50
                  8
                                0.8 0.01
                                              0
                                                              1
                                                                       1
17
                  8
                                0.8 0.01
                                                              1
                                                                       1
      100
                                              0
18
      150
                  8
                                0.8 0.01
                                                              1
                                                                       1
                                              0
                  4
                                                              1
19
       50
                                1.0 0.01
                                              0
                                                                       1
                                1.0 0.01
20
      100
                  4
                                              0
                                                              1
                                                                       1
21
      150
                  4
                                1.0 0.01
                                              0
                                                              1
                                                                       1
22
       50
                  6
                                1.0 0.01
                                              0
                                                              1
                                                                       1
23
                  6
                                1.0 0.01
                                                              1
                                                                       1
      100
                                              0
                  6
                                1.0 0.01
                                                              1
                                                                       1
24
      150
                                              0
25
       50
                  8
                                1.0 0.01
                                              0
                                                              1
                                                                       1
26
      100
                  8
                                1.0 0.01
                                                              1
                                                                       1
                                              0
27
      150
                  8
                                1.0 0.01
                                                              1
                                              0
                                                                       1
28
       50
                  4
                                0.6 0.05
                                              0
                                                              1
                                                                       1
29
      100
                  4
                                0.6 0.05
                                              0
                                                              1
                                                                       1
30
                                0.6 0.05
                                                              1
                                                                       1
      150
                  4
                                              0
31
       50
                  6
                                0.6 0.05
                                                              1
                                                                       1
                                              0
32
      100
                  6
                                0.6 0.05
                                              0
                                                              1
                                                                       1
33
      150
                  6
                                0.6 0.05
                                              0
                                                              1
                                                                       1
34
       50
                  8
                                0.6 0.05
                                              0
                                                              1
                                                                       1
```

35	100	8	0.6 0.05	0	1	1
36	150	8	0.6 0.05	0	1	1
37	50	4	0.8 0.05	0	1	1
38	100	4	0.8 0.05	0	1	1
39	150	4	0.8 0.05	0	1	1
40	50	6	0.8 0.05	0	1	1
41	100	6	0.8 0.05	0	1	1
42	150	6	0.8 0.05	0	1	1
43	50	8	0.8 0.05	0	1	1
44	100	8	0.8 0.05	0	1	1
45	150	8	0.8 0.05	0	1	1
46	50	4	1.0 0.05	0	1	1
47	100	4	1.0 0.05	0	1	1
48	150	4	1.0 0.05	0	1	1
49	50	6	1.0 0.05	0	1	1
50	100	6	1.0 0.05	0	1	1
51	150	6	1.0 0.05	0	1	1
52	50	8	1.0 0.05	0	1	1
53	100	8	1.0 0.05	0	1	1
54	150	8	1.0 0.05	0	1	1
55	50	4	0.6 0.10	0	1	1
56	100	4	0.6 0.10	0	1	1
57	150	4	0.6 0.10	0	1	1
58	50	6	0.6 0.10	0	1	1
59	100	6	0.6 0.10	0	1	1
60	150	6	0.6 0.10	0	1	1
61	50	8	0.6 0.10	0	1	1
62	100	8	0.6 0.10	0	1	1
63	150	8	0.6 0.10	0	1	1
64	50	4	0.8 0.10	0	1	1
65	100	4	0.8 0.10	0	1	1
66	150	4	0.8 0.10	0	1	1
67	50	6	0.8 0.10	0	1	1
68	100	6	0.8 0.10	0	1	1
69	150	6	0.8 0.10	0	1	1
70	50	8	0.8 0.10	0	1	1
71	100	8	0.8 0.10	0	1	1
72	150	8	0.8 0.10	0	1	1
73	50	4	1.0 0.10	0	1	1
74	100	4	1.0 0.10	0	1	1
75	150	4	1.0 0.10	0	1	1
76	50	6	1.0 0.10	0	1	1
77	100	6	1.0 0.10	0	1	1
78	150	6	1.0 0.10	0	1	1

```
79
       50
                  8
                                1.0 0.10
                                              0
                                                              1
                                                                        1
80
                                 1.0 0.10
                                                              1
                                                                        1
       100
                  8
                                              0
81
       150
                  8
                                 1.0 0.10
                                              0
                                                              1
                                                                        1
> best_parameters <- model$bestTune</pre>
> print(best_parameters)
  nrounds max_depth eta gamma colsample_bytree min_child_weight subsa
mple
59
       100
                  4 0.1
                            0
                                           0.8
                                                                      1
                                                             1
> # Forecast
> predictions <- predict(model, ts)</pre>
> # Convert ts$C6 to factor
> ts$C6 <- as.factor(ts$C6)</pre>
> # Convert predictions to factor with same levels as ts$C6
> predictions <- factor(predictions, levels = levels(ts$C6))</pre>
>
> # Calculate confusion matrix
> confusion_matrix <- confusionMatrix(predictions, ts$C6)</pre>
> # Function to extract performance metrics
> extract_metrics <- function(confusion_matrix) {</pre>
   tp <- confusion_matrix[2, 2]</pre>
   fp <- confusion_matrix[1, 2]</pre>
   tn <- confusion_matrix[1, 1]</pre>
   fn <- confusion_matrix[2, 1]</pre>
   tpr \leftarrow tp / (tp + fn)
   fpr <- fp / (fp + tn)
   precision <- tp / (tp + fp)</pre>
   recall <- tpr
   f_measure <- 2 * (precision * recall) / (precision + recall)</pre>
   mcc_numerator <- as.numeric(tp) * as.numeric(tn) - as.numeric(fp)</pre>
* as.numeric(fn)
   mcc_denominator <- sqrt(as.numeric(tp + fp) * as.numeric(tp + fn)</pre>
* as.numeric(tn + fp) * as.numeric(tn + fn))
   mcc <- mcc_numerator / mcc_denominator</pre>
    kappa_obj <- vcd::Kappa(as.table(confusion_matrix))</pre>
    kappa_value <- kappa_obj$statistic["Kappa"]</pre>
+
   return(c(TPR = tpr, FPR = fpr, Precision = precision, Recall = reca
11, F_measure = f_measure, MCC = mcc, Kappa = kappa))
+ }
```

```
> # Calculate metrics for each class
> class_0_metrics <- extract_metrics(confusion_matrix$table)</pre>
> class_1_metrics <- extract_metrics(matrix(c(confusion_matrix$table</pre>
[2,2], confusion_matrix$table[2,1], confusion_matrix$table[1,2], conf
usion_matrix$table[1,1]), nrow = 2))
> # Calculate weighted average metrics
> n_class_0 <- sum(df$C6 == 0)
> n_class_1 <- sum(df$C6 == 1)</pre>
> weighted_avg_metrics <- (n_class_0 * class_0_metrics + n_class_1 * c</pre>
lass_1_metrics) / (n_class_0 + n_class_1)
> # Display metrics
> cat("Class 0 Metrics:\n")
Class 0 Metrics:
> print(class_0_metrics)
                 FPR Precision
                                     Recall
                                              F_measure
                                                              мсс кар
pa.Kappa
 0.8485804 0.3051948 0.8512658 0.8485804 0.8499210 0.5424863
  0.5424800
> cat("Class 1 Metrics:\n")
Class 1 Metrics:
> print(class_1_metrics)
      TPR
                                     Recall F_measure
                 FPR Precision
                                                              мсс кар
pa.Kappa
 0.6903226 0.1487342
                        0.6948052 0.6903226
                                                0.6925566 0.5424863
  0.5424800
> cat("Weighted Average Metrics:\n")
Weighted Average Metrics:
> print(weighted_avg_metrics)
                 FPR Precision
                                     Recall
                                             F_measure
                                                              мсс кар
pa.Kappa
 0.7423756  0.2001960  0.7462670  0.7423756  0.7443157  0.5424863
  0.5424800
```