Nuovi dati con normalizzazione TMM

Mattia Manna

2025-01-19

Indice

1	Imp	Importazione dati		
	1.1	1.1 Download dati		
		1.1.1	Scaricare informazioni sui pazienti	
		1.1.2	Importare conte dei transcrittomi	
	1.2	Clean	ing dati	
		1.2.1	Ricodifica nome pazienti del dataset delle conte	
		1.2.2	Estrazione dei pazienti per ogni patologia	
		Normalizzazione dati		
	Preparare dati per esportazione			
	3.1	Creaz	ione samples	
		3.1.1	GBM	
		3.1.2	BRCA	
		3.1.3	CRC	
		3.1.4	NSCLC 9	
		3.1.5	PAAD	
		3.1.6	PANCANCER	

1 Importazione dati

1.1 Download dati

I dati sono stati scaricati dal Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/ , in particolare dalla pagina ${\bf GSE183635}$, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183635. e salvati localmente.

I dati sono stati trovati leggendo l'articolo: Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets, https://www.mdpi.com/2072-6694/16/13/2399.

1.1.1 Scaricare informazioni sui pazienti

```
library(GEOquery)
library(readr)
# Scaricare informazioni riguardo ai geni
getGEOSuppFiles("GSE183635") # Check for available supplementary files
# Scaricare informazioni riguardanti i samples
patients <- getGEO('GSE183635',GSEMatrix=T)</pre>
patients<- pData(phenoData(patients[[1]]))</pre>
write_csv(patients,file = "/Users/mattia/Desktop/Università/Magistrale/Tesi/R/Risoluzione Data Leakage/
patients <- read_csv("/Users/mattia/Desktop/Università/Magistrale/Tesi/R/Risoluzione Data Leakage/Dati/
## Rows: 1646 Columns: 43
## -- Column specification ------
## Delimiter: ","
## chr (40): title, geo_accession, status, submission_date, last_update_date, t...
## dbl (3): channel_count, taxid_ch1, data_row_count
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
patients_train <- read.csv("~/Desktop/Università/Magistrale/Tesi/R/GSE68086/patients.csv", row.names=1,
dim(patients)
## [1] 1646
              43
Controllare che i pazienti siano diversi nei due dataset.
IDs <- patients$geo_accession</pre>
IDs_train <- patients_train$geo_accession</pre>
intersect(IDs,IDs_train)
```

I pazienti sono totalmente differenti.

character(0)

```
table(patients$status)
##
## Public on Aug 05 2022
## 1646

table(patients_train$status)
##
## Public on Oct 30 2015
## 285
```

Anche le date confermano che si tratta di sample diversi.

1.1.2 Importare conte dei transcrittomi

```
load("~/Desktop/Università/Magistrale/Tesi/R/Risoluzione Data Leakage/Dati/GSE183635_TEP_Count_Matrix.R
# Trasformare la count matrix in un dataframe
counts <- as.data.frame(TEP_Count_Matrix)
load("~/Desktop/Università/Magistrale/Tesi/R/Risoluzione Data Leakage/Dati/GSE183635_TEP_Count_Matrix_T
# Trasformare la count matrix TSOO in un dataframe
countsTSOO <- as.data.frame(TEP_Count_Matrix_TSOO)
# Rimuovere le matrici
rm(TEP_Count_Matrix_TSOO,TEP_Count_Matrix)</pre>
```

1.2 Cleaning dati

1.2.1 Ricodifica nome pazienti del dataset delle conte

```
colnames(counts) <- gsub("^[0-9]+-", "", colnames(counts))</pre>
```

1.2.2 Estrazione dei pazienti per ogni patologia

Estrarre le patologie di interesse. Che si ricordi essere:

- BRCA, breast cancer
- CRC, colorectal cancer
- GBM, glioblastoma multiforme
- HBC, hepatobiliarity
- NSCLC, non small cell lung cancer
- PAAD, Pancreatic adenocarcinoma

Visualizzare i tipi di cancro disponibili in questo database.

names(table(patients\$`patient group:ch1`))

```
"Asymptomatic Controls"
   [1] "Angina Pectoris"
   [3] "Bowel Disease"
                                      "Breast Cancer"
##
   [5] "Cholangiocarcinoma"
##
                                      "Colorectal Cancer"
##
  [7] "Epilepsy"
                                     "Esophageal Cancer"
                                     "Glioma"
  [9] "Former Sarcoma"
## [11] "Head and Neck Cancer"
                                     "Hodgkin Lymphoma"
## [13] "Melanoma"
                                     "Multiple Myeloma"
## [15] "Multiple Sclerosis"
                                     "Non-Small-Cell Lung Cancer"
## [17] "nSTEMI"
                                      "Ovarian Cancer"
## [19] "Pancreatic Cancer"
                                      "Pancreatic Disease"
## [21] "Prostate Cancer"
                                     "Pulmonary Hypertension"
                                     "Sarcoma"
## [23] "Renal Cell Carcinoma"
## [25] "Urothelial Carcinoma"
```

Sono tutti disponibili tranne l'HBC.

Si estraggano.

```
# BRCA, breast cancer
BRCA <- patients[patients$`patient group:ch1`=="Breast Cancer",]

# CRC, colorectal cancer
CRC <- patients[patients$`patient group:ch1`=="Colorectal Cancer",]

Glioma <- patients[patients$`patient group:ch1`=="Glioma",]</pre>
```

```
# GBM, glioblastoma multiforme
GBM <- Glioma[grepl("\\bGBM\\b", Glioma$source_name_ch1), ]

# NSCLC, non small cell lung cancer
NSCLC <- patients[patients$`patient group:ch1`=="Non-Small-Cell Lung Cancer",]
NSCLC <- NSCLC[grepl("\\bNSCLC\\b", NSCLC$title), ]

# PAAD, Pancreatic adenocarcinoma
PAAD <- patients[patients$`patient group:ch1`=="Pancreatic Cancer",]

# Sani
HC <- patients[patients$`patient group:ch1`=="Asymptomatic Controls",]

# Metterli tutti insieme PANCANCER
ALL <- rbind(BRCA,CRC,GBM,NSCLC,PAAD,HC)</pre>
```

2 Normalizzazione dati

3 Preparare dati per esportazione

```
conditions <- ALL[,c("title","patient group:ch1")]</pre>
conditions[1:5,]
## # A tibble: 5 x 2
                            `patient group:ch1`
    title
     <chr>
##
                            <chr>
## 1 MGH-BrCa-H76-TR469
                            Breast Cancer
## 2 MGH-BrCa-P28-TR499
                           Breast Cancer
## 3 MGH-BrCa-P35-TR620 Breast Cancer
## 4 Vumc-BRMETA-13-TR1451 Breast Cancer
## 5 Vumc-BRMETA-12-TR1450 Breast Cancer
dataframe.formato.classificazione <- function(dataframe){</pre>
  # Trasporre il dataframe delle conte di test, in questo modo si hanno le conte
  # disposte nel modo giusto per la classificazione: pazienti sulle righe e geni sulle colonne
  dataframe <- as.data.frame(t(dataframe))</pre>
  # Aggiungere le label y (cancer sano) alle conte
  dataframe <- merge(dataframe, conditions, by.x="row.names",</pre>
                                     by.y="title",all = FALSE)
  #print(dataframe)
  # Sistemare il dataframe dopo l'operazione di merge, rimettere i rownames al posto giusto
  rownames(dataframe) <- dataframe$Row.names</pre>
  # Eliminare la colonna rownames
  dataframe <- dataframe %>% dplyr::select(-"Row.names")
  dataframe$cancer.type.ch1 <- dataframe$`patient group:ch1`</pre>
  dataframe <- dataframe %>% dplyr::select(-"patient group:ch1")
  return(dataframe)
```

3.1 Creazione samples

3.1.1 GBM

```
# Prendere il nome pazienti GBM
pazienti.GBM <- GBM$title

# Prendere il nome dei pazienti SANI
pazienti.sani <- HC$title#[1:57]

# Estrarre dalle conte i pazienti GBM e sani
countsGBM <- counts[,colnames(counts) %in% c(pazienti.GBM,pazienti.sani)]
dim(countsGBM)

## [1] 5440 313</pre>
```

```
# Mettere nel formato adatto alla classificazione le conte
countsGBM <- dataframe.formato.classificazione(countsGBM)

# Estrarsi il vettore dei vecchi nomi
nuovi.nomi.patologia <- countsGBM$cancer.type.ch1

# Sostituire Glioma con GBM
nuovi.nomi.patologia <- gsub("Glioma", "GBM", nuovi.nomi.patologia)

# Sostituire Asymptomatic Controls con HC
nuovi.nomi.patologia <- gsub("Asymptomatic Controls", "HC", nuovi.nomi.patologia)

# Assegnare la nuova nomenclatura
countsGBM$cancer.type.ch1 <- nuovi.nomi.patologia</pre>
table(countsGBM$cancer.type.ch1)
```

```
## ## GBM HC
## 57 256
```

 $\#write.csv(countsGBM,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python\ TMM/Data/GBMtest.csv(countsGBM,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python\ TMM/Data/GBMtest.csv(countsGBM,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python\ TMM/Data/GBMtest.csv(countsGBM,file="/Users/mattia/Desktop/Universit/Python")$

3.1.2 BRCA

```
# Prendere il nome pazienti GBM
pazienti.BRCA <- BRCA$title</pre>
# Prendere il nome dei pazienti SANI
pazienti.sani <- HC$title#[1:77]</pre>
# Estrarre dalle conte i pazienti GBM e sani
countsBRCA <- counts[,colnames(counts) %in% c(pazienti.BRCA,pazienti.sani)]</pre>
dim(countsBRCA)
## [1] 5440 333
# Mettere nel formato adatto alla classificazione le conte
countsBRCA <- dataframe.formato.classificazione(countsBRCA)</pre>
dim(countsBRCA)
## [1] 333 5441
# Estrarsi il vettore dei vecchi nomi
nuovi.nomi.patologia <- countsBRCA$cancer.type.ch1</pre>
# Sostituire Glioma con GBM
nuovi.nomi.patologia <- gsub("Breast Cancer", "Breast", nuovi.nomi.patologia)</pre>
# Sostituire Asymptomatic Controls con HC
nuovi.nomi.patologia <- gsub("Asymptomatic Controls", "HC", nuovi.nomi.patologia)
# Assegnare la nuova nomenclatura
countsBRCA$cancer.type.ch1 <- nuovi.nomi.patologia</pre>
table(countsBRCA$cancer.type.ch1)
##
## Breast
              HC
       77
             256
##
```

 $\#write.csv(counts BRCA, file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/BRCA test.com/Universit\`a/Magistrale/Tesi/Python~TMM/Data/BRCA test.com/Universit\'a/Magistrale/Tesi/Python~TMM/Data/BRCA test.com/Universita/Magistrale/Tesi/Python~TMM/Data/BRCA test.com/Universita/Python~TMM/Data/BRCA test.com/Univer$

3.1.3 CRC

```
# Prendere il nome pazienti GBM
pazienti.CRC <- CRC$title</pre>
# Prendere il nome dei pazienti SANI
pazienti.sani <- HC$title#[1:44]</pre>
# Estrarre dalle conte i pazienti GBM e sani
countsCRC <- counts[,colnames(counts) %in% c(pazienti.CRC,pazienti.sani)]</pre>
dim(countsCRC)
## [1] 5440 300
# Mettere nel formato adatto alla classificazione le conte
countsCRC <- dataframe.formato.classificazione(countsCRC)</pre>
dim(countsCRC)
## [1] 300 5441
# Estrarsi il vettore dei vecchi nomi
nuovi.nomi.patologia <- countsCRC$cancer.type.ch1</pre>
# Sostituire Glioma con GBM
nuovi.nomi.patologia <- gsub("Colorectal Cancer", "CRC", nuovi.nomi.patologia)
# Sostituire Asymptomatic Controls con HC
nuovi.nomi.patologia <- gsub("Asymptomatic Controls", "HC", nuovi.nomi.patologia)
# Assegnare la nuova nomenclatura
countsCRC$cancer.type.ch1 <- nuovi.nomi.patologia</pre>
table(countsCRC$cancer.type.ch1)
##
## CRC HC
## 44 256
```

 $\#write.csv(countsCRC,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universit\'a/Magistrale/Tesi/Python~TMM/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/CRCtest.csv(countsCRC,file="/Users/mattia/Desktop/Universita/Python"/Data/Python"/Data/Python"/Data/Python"/Data/Python"/Data/Python"/Dat$

3.1.4 NSCLC

```
# Prendere il nome pazienti GBM
pazienti.NSCLC <- NSCLC$title#[1:256]</pre>
# Prendere il nome dei pazienti SANI
pazienti.sani <- HC$title#[1:44]</pre>
# Estrarre dalle conte i pazienti GBM e sani
countsNSCLC <- counts[,colnames(counts) %in% c(pazienti.NSCLC,pazienti.sani)]</pre>
dim(countsNSCLC)
## [1] 5440 688
# Mettere nel formato adatto alla classificazione le conte
countsNSCLC <- dataframe.formato.classificazione(countsNSCLC)</pre>
dim(countsNSCLC)
## [1] 688 5441
# Estrarsi il vettore dei vecchi nomi
nuovi.nomi.patologia <- countsNSCLC$cancer.type.ch1</pre>
# Sostituire Glioma con GBM
nuovi.nomi.patologia <- gsub("Non-Small-Cell Lung Cancer", "Lung", nuovi.nomi.patologia)
# Sostituire Asymptomatic Controls con HC
nuovi.nomi.patologia <- gsub("Asymptomatic Controls", "HC", nuovi.nomi.patologia)
# Assegnare la nuova nomenclatura
countsNSCLC$cancer.type.ch1 <- nuovi.nomi.patologia</pre>
table(countsNSCLC$cancer.type.ch1)
##
   HC Lung
## 256 432
```

 $\#write.\,csv\,(countsNSCLC,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python\ TMM/Data/NSCLCtest)$

3.1.5 PAAD

```
# Prendere il nome pazienti GBM
pazienti.PAAD <- PAAD$title</pre>
#set.seed(123) # Per rendere il risultato riproducibile
numeri_casuali <- sample(1:283, 86, replace = TRUE)</pre>
# Prendere il nome dei pazienti SANI
#pazienti.sani <- HC$title[1:86]</pre>
pazienti.sani <- HC$title#[numeri_casuali]</pre>
# Estrarre dalle conte i pazienti GBM e sani
countsPAAD <- counts[,colnames(counts) %in% c(pazienti.PAAD,pazienti.sani)]</pre>
dim(countsPAAD)
## [1] 5440 342
# Mettere nel formato adatto alla classificazione le conte
countsPAAD <- dataframe.formato.classificazione(countsPAAD)</pre>
dim(countsPAAD)
## [1] 342 5441
# Estrarsi il vettore dei vecchi nomi
nuovi.nomi.patologia <- countsPAAD$cancer.type.ch1</pre>
# Sostituire Glioma con GBM
nuovi.nomi.patologia <- gsub("Pancreatic Cancer", "Pancreas", nuovi.nomi.patologia)
# Sostituire Asymptomatic Controls con HC
nuovi.nomi.patologia <- gsub("Asymptomatic Controls", "HC", nuovi.nomi.patologia)</pre>
# Assegnare la nuova nomenclatura
countsPAAD$cancer.type.ch1 <- nuovi.nomi.patologia</pre>
table(countsPAAD$cancer.type.ch1)
##
##
         HC Pancreas
                  86
##
        256
```

 $\#write.csv(countsPAAD,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/PAAD test.com/Universit\ra/Magistrale/Tesi/Python~TMM/Data/PAAD test.com/Universit\ra/Magistra/PaaD test.com/Universit/Adata/PaaD test.com/Universit/Python~TMM/Data/PaaD test.com/Universit/Python~TMM/Data/PaaD test.com/Universit/Python~TMM/Data/PaaD test.com/Universit/Python~TMM/Data/PaaD test.com/Universit/Python~TMM/Data/Paa$

3.1.6 PANCANCER

```
# Prendere il nome pazienti GBM
#pazienti.PANCANCER <- c(BRCA$title, CRC$title, GBM$title, NSCLC$title, PAAD$title)
pazienti.PANCANCER <- c(BRCA$title#[1:53]</pre>
                         ,CRC$title#[1:53]
                         ,GBM$title#[1:53]
                         ,NSCLC$title#[1:53]
                         ,PAAD$title#[1:53]
# Prendere il nome dei pazienti SANI
pazienti.sani <- HC$title#[1:256]</pre>
# Estrarre dalle conte i pazienti GBM e sani
countsPANCANCER <- counts[,colnames(counts) %in% c(pazienti.PANCANCER,pazienti.sani)]</pre>
dim(countsPANCANCER)
## [1] 5440 952
# Mettere nel formato adatto alla classificazione le conte
countsPANCANCER <- dataframe.formato.classificazione(countsPANCANCER)</pre>
dim(countsPANCANCER)
## [1] 952 5441
# Estrarsi il vettore dei vecchi nomi
nuovi.nomi.patologia <- countsPANCANCER$cancer.type.ch1</pre>
# Sostituire Glioma con GBM
nuovi.nomi.patologia <- gsub("Breast Cancer", "Cancer", nuovi.nomi.patologia)
nuovi.nomi.patologia <- gsub("Colorectal Cancer", "Cancer", nuovi.nomi.patologia)
nuovi.nomi.patologia <- gsub("Glioma", "Cancer", nuovi.nomi.patologia)</pre>
nuovi.nomi.patologia <- gsub("Non-Small-Cell Lung Cancer", "Cancer", nuovi.nomi.patologia)
nuovi.nomi.patologia <- gsub("Pancreatic Cancer", "Cancer", nuovi.nomi.patologia)
# Sostituire Asymptomatic Controls con HC
nuovi.nomi.patologia <- gsub("Asymptomatic Controls", "HC", nuovi.nomi.patologia)
# Assegnare la nuova nomenclatura
countsPANCANCER$cancer.type.ch1 <- nuovi.nomi.patologia</pre>
table(countsPANCANCER$cancer.type.ch1)
##
## Cancer
             HC
##
      696
             256
```

 $\#write.csv(countsPANCANCER,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\`a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PANCANCER,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PancanceR,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PancanceR,file="/Users/mattia/Desktop/Universit\~a/Magistrale/Tesi/Python~TMM/Data/PancanceR,file="/Users/mattia/Desktop/Universita/Python">Users/mattia/Desktop/Univers/mattia/Python~TMM/Data/Python~TMM/Data/Python~TMM/Data/Python~TMM/Data/Python~TMM/Data/Python~TMM/Data/Python~TMM/Data/Python~TMM/Data/Py$