Foundations of Software Fall 2022

Week 14

Sébastien Doeraene

Elements of the Scala.js IR type system

Scala.js compilation pipeline

Why formally study an IR

Why formally study an IR

- Optimizations may only be applicable if the type tystem is sound
- Prove that certain optimizations are correct
- Prove that the translation from source and to the target language are correct
- etc.

Mixing primitives and objects

Motivation

Featherweight Java only has objects. How do we model primitives, for example, int and bool?

Motivation

Featherweight Java only has objects. How do we model primitives, for example, int and bool?

Moreover, in Scala, primitive types are "object-like". We can use them in arbitrary type parameters, and they should behave like objects.

On the JVM, this is implemented with *boxing*. In Scala.js, however, boxing would be detrimental to *interoperability* with JavaScript. How do we make primitives object-like without boxing?

Motivation

Featherweight Java only has objects. How do we model primitives, for example, int and bool?

Moreover, in Scala, primitive types are "object-like". We can use them in arbitrary type parameters, and they should behave like objects.

On the JVM, this is implemented with *boxing*. In Scala.js, however, boxing would be detrimental to *interoperability* with JavaScript. How do we make primitives object-like without boxing?

Idea: make primitive types *subtypes* of their "representative classes".

Types and subtyping

```
T ::=
                                         types
                                           class
                                           primitive int
       int
                                           primitive bool
       bool
             CT(C) = class C extends D {...}
                            C <: D
                            T <: T
                       S <: W W <: T
                            S <: T
       int <: Integer
                                      bool <: Boolean
```

Representative classes

$$extit{tpcls}(C) = C$$
 $extit{tpcls}(int) = Integer$ $extit{tpcls}(bool) = Boolean$ $T <: extit{tpcls}(T)$

Syntax (terms)

```
X
t.f
t.m(\overline{t})
new C(\overline{t})
(T) t
false
true
if t then t else t
succ t
pred t
iszero t
```

terms
variable
field access
method invocation
object creation
cast

Syntax (values)

```
values
                                                object creation
        new C(\overline{v})
                                                numeric value
        nv
                                                boolean value
        bv
                                               numeric values
nv ::=
                                                zero
        succ nv
                                                non-zero
bv ::=
                                               boolean values
                                                false
        false
                                                true
        true
```

Typing rules: method calls

Adapting from Featherweight Java:

$$\begin{array}{c} \Gamma \vdash t_0 : C_0 \\ \textit{mtype}(\underline{m}, C_0) = \overline{S} \rightarrow T \\ \hline \Gamma \vdash \overline{t} : \overline{S_1} & \overline{S_1} <: \overline{S} \\ \hline \Gamma \vdash t_0 . m(\overline{t}) : T \end{array} \tag{T-Invk}$$

What if t_0 is a primitive?

Typing rules: method calls

Adapting from Featherweight Java:

$$\begin{array}{c} \Gamma \vdash t_0 : C_0 \\ \textit{mtype}(\underline{m}, C_0) = \overline{S} {\rightarrow} T \\ \hline \Gamma \vdash \overline{t} : \overline{S_1} & \overline{S_1} <: \overline{S} \\ \hline \Gamma \vdash t_0 . m(\overline{t}) : T \end{array} \tag{T-Invk}$$

What if t_0 is a primitive?

$$\begin{split} & \Gamma \vdash \mathtt{t}_0 \, : \, \mathtt{T}_0 \\ & \textit{mtype}(\mathtt{m}, \, \textit{tpcls}(\mathtt{T}_0)) = \overline{\mathtt{S}} {\rightarrow} \mathtt{T} \\ & \frac{\Gamma \vdash \overline{\mathtt{t}} \, : \, \overline{\mathtt{S}}_1 \quad \overline{\mathtt{S}}_1 <: \, \overline{\mathtt{S}}}{\Gamma \vdash \mathtt{t}_0 \, . \mathtt{m}(\overline{\mathtt{t}}) \, : \, \mathtt{T}} \end{split} \tag{T-Invk}$$

If $\Gamma \vdash x : int$, the call x.m(...) is typed by looking up m in Integer.

Example

```
class Boolean extends Object { Boolean() { super(); } }
class Integer extends Object {
  Integer() { super(); }
  int plus(int that) {
    return if (iszero that) then ((int) this)
           else (succ this.plus(pred that)); }
class Pair extends Object {
  Object fst;
  Object snd;
  Pair(Object fst, Object snd) {
    super(); this.fst=fst; this.snd=snd; }
  int sum() {
    return ((int) this.fst).plus((int) this.snd); }
}
new Pair(5, 11).sum()
```

Typing rules: fields

Adapting from Featherweight Java:

$$\frac{\Gamma \vdash \mathsf{t}_0 : \mathsf{C}_0 \quad \textit{fields}(\mathsf{C}_0) = \overline{\mathsf{T}} \ \overline{\mathsf{f}}}{\Gamma \vdash \mathsf{t}_0 . \, \mathsf{f}_i : \, \mathsf{T}_i} \qquad \text{(T-FIELD)}$$

What if t_0 is a primitive?

Typing rules: fields

Adapting from Featherweight Java:

$$\frac{\Gamma \vdash \mathsf{t}_0 : \mathsf{C}_0 \quad \textit{fields}(\mathsf{C}_0) = \overline{\mathsf{T}} \ \overline{\mathsf{f}}}{\Gamma \vdash \mathsf{t}_0 . \, \mathsf{f}_i : \, \mathsf{T}_i} \qquad \text{(T-Field)}$$

What if t_0 is a primitive?

We can't have that!

Typing rules: fields

Adapting from Featherweight Java:

$$\frac{\Gamma \vdash \mathsf{t}_0 : \mathsf{C}_0 \quad \textit{fields}(\mathsf{C}_0) = \overline{\mathsf{T}} \ \overline{\mathsf{f}}}{\Gamma \vdash \mathsf{t}_0 . \mathsf{f}_i : \mathsf{T}_i} \quad \text{(T-Field)}$$

What if t_0 is a primitive?

We can't have that!

Add additional well-formedness conditions for representative classes:

$$\frac{\textit{fields}(\texttt{Integer}) = \emptyset \qquad \textit{fields}(\texttt{Boolean}) = \emptyset}{\texttt{repr classes OK}}$$

Typing rules: casts

Straightforward generalization to all types.

$$\frac{\Gamma \vdash t_0 : S \qquad S <: T}{\Gamma \vdash (T)t_0 : T} \qquad (T-UCAST)$$

$$\frac{\Gamma \vdash t_0 : S \qquad T <: S \qquad T \neq S}{\Gamma \vdash (T)t_0 : T} \qquad (T-DCAST)$$

$$\frac{\Gamma \vdash t_0 : S \qquad T \not <: S \qquad S \not <: T}{stupid warning}$$

$$\frac{stupid warning}{\Gamma \vdash (T)t_0 : T} \qquad (T-SCAST)$$

Typing rules: casts

Since it is an Intermediate Representation, warnings are not relevant anymore. Therefore, we keep only one typing rule for casts.

$$\frac{\Gamma \vdash \mathsf{t}_0 : \mathsf{S}}{\vdash (\mathsf{T})\mathsf{t}_0 : \mathsf{T}} \tag{T-CAST}$$

Typing rules: casts

Since it is an Intermediate Representation, warnings are not relevant anymore. Therefore, we keep only one typing rule for casts.

$$\frac{\Gamma \vdash t_0 : S}{\Gamma \vdash (T)t_0 : T}$$
 (T-CAST)

Question: can we remove the premise of that rule?

Evaluation rules

$$\frac{\mathit{fields}(\mathtt{C}) = \overline{\mathtt{T}} \ \overline{\mathtt{f}}}{(\mathtt{new} \ \mathtt{C}(\overline{\mathtt{v}})) \cdot \mathtt{f}_i \longrightarrow \mathtt{v}_i} \qquad (E-PROJNEW)$$

$$\frac{\mathit{mbody}(\mathtt{m}, \mathit{tpcls}(\mathit{vtpe}(\mathtt{v}))) = (\overline{\mathtt{x}}, \mathtt{t}_0)}{\mathtt{v} \cdot \mathtt{m}(\overline{\mathtt{u}}) \longrightarrow [\overline{\mathtt{x}} \mapsto \overline{\mathtt{u}}, \mathtt{this} \mapsto \mathtt{v}]\mathtt{t}_0} \qquad (E-InvkVal)$$

$$\frac{\mathit{vtpe}(\mathtt{v}) <: \mathtt{T}}{(\mathtt{T})\mathtt{v} \longrightarrow \mathtt{v}} \qquad (E-CastVal)$$

plus congruence rules and rules for if, pred, succ and iszero (omitted)

 $vtpe(new C(\overline{v})) = C$ vtpe(nv) = int vtpe(bv) = bool

Labeled blocks

Presentation

In JavaScript, we have labeled statements with breaks:

```
label: {
    ...
    if (x)
        break label;
    ...
}
```

If execution reaches break label, it jumps to after the block.

Presentation

We generalize the concept to *expressions*. A return to a label jumps out of the block, resulting in the specified value as the value of the block.

```
val y: T = label[T]: {
    ...
    if (x)
        return@label someT;
    ...
    someOtherT
}
```

Use cases: modeling return

```
Traditional return:
def foo(x: int): int = {
  if (x < 0) {
    return -x
  Х
Modeled as:
def foo(x: int): int = {
  ret[int]: {
    if (x < 0) {
      return@ret -x
    х
```

Use cases: modeling break and continue

Traditional break and continue:

```
def foo(x: int): unit = {
  var i: int = x
  while (i > 0) {
    if (i \% 3 == 0)
      continue
    if (i % 10 == 0)
      break
    println(i)
    i = i + 1
```

Use cases: modeling break and continue

```
Modeled as two nested labels:
def foo(x: int): unit = {
  var i: int = x
  breakLoop[unit]: {
    while (i > 0) {
      continueLoop[unit]: {
        if (i \% 3 == 0)
          return@continueLoop unit
        if (i \% 10 == 0)
          return@breakLoop unit
        println(i)
        i = i + 1
```

Use cases: encoding of tail recursion

Tail recursive function in source code:

```
def fact(n: int, acc: int): int = {
  if (n == 0) acc
  else fact(n - 1, n * acc)
}
```

Use cases: encoding of tail recursion

```
Encoding with a creative use of labeled blocks:
def fact(var n: int, var acc: int): int = {
  ret[int]: {
    while (true) {
      tailcall[unit]: {
        return@ret {
          if (n == 0) acc
          else {
            val n' = n - 1
            val acc' = n * acc
            n = n'
            acc = acc'
            return@tailcall unit
```

Use cases: encoding of tail recursion

```
Encoding with a creative use of labeled blocks and loop:
def fact(var n: int, var acc: int): int = {
  ret[int]: {
    loop {
      tailcall[unit]: {
        return@ret {
          if (n == 0) acc
          else {
            val n' = n - 1
            val acc' = n * acc
            n = n'
             acc = acc'
             return@tailcall unit
```

Formalization

On the board

Typing rules

$$\begin{array}{ll} & \Gamma \mid \Delta \mid \Sigma \vdash t_1 : T_1 \\ \hline \Gamma \mid \Delta \mid \Sigma \vdash loop \ t_1 : nothing \end{array} \qquad \text{(T-Loop)} \\ & \frac{\Gamma \mid \Delta, \alpha : T \mid \Sigma \vdash t : T}{\Gamma \mid \Delta \mid \Sigma \vdash \alpha [T] \ \{t\} : T} \qquad \text{(T-Labeled)} \\ \\ & \frac{\alpha \colon T_1 \in \Delta \qquad \Gamma \mid \Delta \mid \Sigma \vdash t_1 : T_1}{\Gamma \mid \Delta \mid \Sigma \vdash return@\alpha \ t_1 : nothing} \qquad \text{(T-Return)}$$

Evaluation rules

```
\begin{array}{c} \operatorname{loop} \ \operatorname{t} \mid \mu \longrightarrow \operatorname{t}; \ \operatorname{loop} \ \operatorname{t} \mid \mu \end{array} \qquad \text{(E-Loop)} \\ \alpha \text{[T]} \ \left\{ \operatorname{v}_1 \right\} \mid \mu \longrightarrow \operatorname{v}_1 \mid \mu \text{(E-LabeledValue)} \\ \alpha \text{[T]} \ \left\{ \operatorname{return@}\alpha \ \operatorname{v}_1 \right\} \mid \mu \longrightarrow \operatorname{v}_1 \mid \mu \text{(E-LabeledRetMatch)} \\ \\ \frac{\beta \neq \alpha}{\alpha \text{[T]} \ \left\{ \operatorname{return@}\beta \ \operatorname{v}_1 \right\} \mid \mu \longrightarrow \operatorname{return@}\beta \ \operatorname{v}_1 \mid \mu} \\ \text{(E-LabeledRetDiff)} \end{array}
```

Plus congruence rules and propagation rules for return, for example:

```
(return@\alpha v<sub>1</sub>) t<sub>2</sub> | \mu \longrightarrow return@\alpha v<sub>1</sub> | \mu (E-APPRET1)
(return@\alpha v<sub>1</sub>); t<sub>2</sub> | \mu \longrightarrow return@\alpha v<sub>1</sub> | \mu (E-SEQRET)
```

Proofs

On the board

Typing rules, fixed

$$\frac{\Gamma \mid \Delta \mid \Sigma \vdash t_{1} : T_{1}}{\Gamma \mid \Delta \mid \Sigma \vdash loop \ t_{1} : nothing} \qquad (T-Loop)$$

$$\frac{\Gamma \mid \Delta, \alpha : T \mid \Sigma \vdash t : T}{\Gamma \mid \Delta \mid \Sigma \vdash \alpha [T] \ \{t\} : T} \qquad (T-LABELED)$$

$$\frac{\alpha : T_{1} \in \Delta \qquad \Gamma \mid \Delta \mid \Sigma \vdash t_{1} : T_{1}}{\Gamma \mid \Delta \mid \Sigma \vdash return@\alpha \ t_{1} : nothing} \qquad (T-RETURN)$$

$$\frac{\Gamma, x : T_{1} \mid \emptyset \mid \Sigma \vdash t_{2} : T_{2}}{\Gamma \mid \Delta \mid \Sigma \vdash \lambda x : T_{1} . t_{2} : T_{1} \rightarrow T_{2}} \qquad (T-Abs)$$