Recursively Enumerable and Recursive

Languages

Recall

Definition (class 18.pdf) Definition 10.4, Linz, 6th, page 279

Let S be a set of strings.

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one and

each string is generated in finite time.

Definition:

A language is recursively enumerable if some Turing machine accepts it

Let L be a recursively enumerable language and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state or loops forever

Definition (11.2, page 287):

A language is recursive if some Turing machine accepts it and halts on any input string

In other words:

A recursive language has a membership algorithm.

Let L be a recursive language

and M the Turing Machine that accepts it

L is a recursive language if there is a Turing Machine M such that

For any string w:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state

We will prove:

1. There is a specific language which is not recursively enumerable (not accepted by any Turing Machine)

2. There is a specific language which is recursively enumerable but not recursive

Non Recursively Enumerable

We will prove:

1. If a language is recursive then there is an enumeration procedure for it. Linz 6^{th} , page 287.

2. A language is recursively enumerable if and only if there is an enumeration procedure for it.

Linz 6th, page 287.

Theorem:

if a language L is recursive then there is an enumeration procedure for it

Proof:

Enumeration Machine

11

If the alphabet is $\{a,b\}$ then \widetilde{M} can enumerate strings as follows:

aaa ah ba bbaaa aah

Enumeration procedure

Repeat:

```
\widetilde{M} generates a string w
```

M checks if $w \in L$

YES: print w to output

NO: ignore W

Example: $L = \{b, ab, bb, aaa, \dots\}$

\widetilde{M}	L(M)	Enumeration Output		
\boldsymbol{a}				
b	b	b		
aa	_			
ab	ab	ab		
ba				
bb	bb	bb		
aaa	aaa	aaa		
aab				
• • • • •	• • • • •	•••••		

Theorem:

if language L is recursively enumerable, then there is an enumeration procedure for it

Proof:

Enumeration Machine

If the alphabet is $\{a,b\}$ then \widetilde{M} can enumerate strings as follows:

aaa ah ba bbaaa aah

NAIVE APPROACH

Enumeration procedure

Repeat: \widetilde{M} generates a string w

M checks if $w \in L$

YES: print w to output

NO: ignore W

Problem: If $w \notin L$

machine M may loop forever

BETTER APPROACH

 \widetilde{M} Generates first string w_1

M executes first step on w_1

 \widetilde{M} Generates second string w_2

M executes first step on w_2 second step on w_1

\widetilde{M} Generates third string w_3

M executes first step on w_3 second step on w_2 third step on w_1

And so on.....

If for any string w_i the machine M halts in a final state, then it prints w_i on the output

Theorem:

If for language L there is an enumeration procedure, then L is recursively enumerable

Proof:

Input Tape

Turing machine that accepts L

For input string w

Repeat:

- \cdot Using the enumerator, generate the next string of L
- Compare generated string with w If same, accept and exit loop

We have proven:

A language is recursively enumerable if and only if there is an enumeration procedure for it

A Language which is not Recursively Enumerable

We want to find a language that is not Recursively Enumerable

This language is not accepted by any Turing Machine

Consider alphabet $\{a\}$

Strings:
$$a$$
, aa , aaa , $aaaa$, K

$$a^1 a^2 a^3 a^4 A$$

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, K$$

Example language accepted by M_i

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Alternative representation

	a^1	a^2	a^3	a^4	a^5	a^6	a^7	/1
$L(M_i)$	0	1	0	1	0	1	0	/1

	a^1	a^2	a^3	a^4	/\	
$L(M_1)$	0	1	0	1	/ \	
$L(M_2)$	1	0	0	1	/1	
$L(M_3)$	0	1	1	1	/1	
$L(M_4)$	0	0	0	1	/ \	

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists from the 1's in the diagonal

$$L = \{a^3, a^4, K\}$$

Consider the language \overline{L}

$$L = \{a^i : a^i \in L(M_i)\}$$

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

 \overline{L} consists from the 0's in the diagonal

Theorem:

Language \overline{L} is not recursively enumerable

Proof:

Assume for contradiction that

 \overline{L} is recursively enumerable

There must exist some machine $\,M_{k}\,$ that accepts $\,\overline{L}\,$

$$L(M_k) = L$$

Question: $M_k = M_1$?

Question: $M_k = M_2$?

	a^1	a^2	a^3	a^4	/1
$L(M_1)$	0	1	0	1	/ \
$L(M_2)$	1	0	0	1	/ \
$L(M_3)$	0	1	1	1	/1
$L(M_4)$	0	0	0	1	/ \

Question: $M_k = M_3$?

Similarly:
$$M_k \neq M_i$$
 for any i

Because either:

$$a^i \in L(M_k)$$
 or $a^i \notin L(M_k)$ $a^i \notin L(M_i)$

Therefore, the machine $\,M_{\,k}\,$ cannot exist

Therefore, the language $\,L\,$ is not recursively enumerable

Observation:

There is no algorithm that describes $\,L\,$

(otherwise \overline{L} would be accepted by some Turing Machine)

Non Recursively Enumerable

A Language which is Recursively Enumerable and not Recursive

We want to find a language which

Is recursively enumerable

There is a
Turing Machine
that accepts
the language

The machine doesn't halt on some input

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is recursively enumerable but not recursive

 $L = \{a^3, a^4, K\}$

Theorem:

The language
$$L = \{a^i : a^i \in L(M_i)\}$$

is recursively enumerable

Proof:

We will give a Turing Machine that accepts $\,L\,$

Turing Machine that accepts L For any input string W

- Compute i, for which $w = a^i$
- Find Turing machine \boldsymbol{M}_i (using the enumeration procedure for Turing Machines)
- Simulate M_i on input a^l
- If M_i accepts, then accept w

Observation:

Recursively enumerable

$$L = \{a^i : a^i \in L(M_i)\}$$

Not recursively enumerable

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

(Thus, also not recursive)

Theorem:

The language
$$L = \{a^i : a^i \in L(M_i)\}$$
 is not recursive

Proof:

Assume for contradiction that L is recursive

```
Then \overline{L} is recursive:
```

Take the Turing Machine M that accepts L

M halts on any input:

If M accepts then reject If M rejects then accept

Therefore:

 \overline{L} is recursive

But we know:

 \overline{L} is not recursively enumerable thus, not recursive

CONTRADICTION!!!!

Therefore, L is not recursive

Non Recursively Enumerable

