Übungen zu Physik V: Kerne und Teilchen (11)

Abgabetermin: bis 14.01.2025, 10:00 Uhr

Hinweis: Zur Lösung der Aufgaben benötigte bzw. hilfreiche Angaben finden Sie z.B. bei der Particle Data Group im Review of Particle Physics unter https://pdg.lbl.gov.

Aufgabe 1: Hochenergetische e^+e^- -Kollisionen

[LA: nur Teilaufgabe 4] (8 Punkte)

Die Abbildung zeigt auf der linken Seite den Wirkungsquerschnitt $\sigma_h(e^+e^- \to \text{Hadronen})$ und auf der rechten Seite das Verhältnis $R = \sigma_h(e^+e^- \to \text{Hadronen})/\sigma(e^+e^- \to \mu^+\mu^-)$ in Abhängigkeit der Schwerpunktsenerge \sqrt{s} .

- 1. Ab welcher Schwerpunktenergie erwarten Sie, dass $\sigma_h > 0$ ist? Begründen Sie Ihre Antwort. (3 Punkte)
- 2. Der Charmonium-Grundzustand ist nicht das J/ψ sondern das η_c . Warum tritt dieser im obigen Wirkungsquerschnitt nicht auf? (1 Punkt)
- 3. Im Verhältnis

$$R = \frac{\sigma_h(e^+e^- \to \text{Hadronen})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

ist oberhalb des $\psi(2S)$ -Zuständes eine Stufe zu sehen. Berechnen Sie die Höhe dieser Stufe und erläutern Sie Ihre Antwort. (2 Punkte)

4. Wie unterscheiden sich die $c\bar{c}$ -Zustände bei Schwerpunktsenergien oberhalb dieser Stufe von denen bis einschließlich des $\psi(2S)$ -Zustandes? Erklären Sie die Ursache für diesen Unterschied. (2 Punkte)

Aufgabe 2: J/ψ und Charmonium

[LA: nur Teilaufgaben 1,3,4] (13 Punkte)

- 1. Das J/ψ wurde in Elektron-Positron-Annihilation entdeckt. Schließen Sie aus dem Produktionsmechanismus auf die Quantenzahlen J^{PC} des J/ψ . Begründen Sie Ihre Antwort. (1 Punkt)
- 2. Das J/ψ zerfällt überwiegend in Hadronen, u.a. existiert wie für das ω -Meson der Zerfall

1

$$J/\psi \to \pi^+ \pi^- \pi^0$$
, $\omega \to \pi^+ \pi^- \pi^0$.

Vergleichen Sie die Breiten Γ der beiden Mesonen. Welche Wechselwirkungen sind jeweils für diese Zerfälle verantwortlich? Warum sind die Breiten so unterschiedlich? (4 Punkte)

- 3. Tragen Sie die acht leichtesten $c\bar{c}$ -Zustände in ein Termschema (Masse gegen J^{PC}) ein. Hinweis: In den Summary Tables der Particle Data Group sind die Zustände nach aufsteigender Masse sortiert. (3 Punkte)
- 4. Geben Sie zu jedem der Zustände aus Teilaufgabe 3 den Spin s und den Drehimpuls ℓ im Quarkmodell an.

Hinweis: Sie benötigen nur Drehimpulse $\ell < 2$. (3 Punkte)

5. Wie lässt sich der Charmonium-Zustand h_c erzeugen? (2 Punkte)

Aufgabe 3: Exotische Quantenzahlen

(7 Punkte)

- 1. Geben Sie die Quantenzahlen J^{PC} an, die ein $q\bar{q}$ -Zustand mit $J=0,\,J=1$ und J=2 jeweils annehmen kann. (4 Punkte)
- 2. Alle weiteren denkbaren J^{PC} nennt man exotisch. Geben Sie diese exotischen Quantenzahlen für $J=0,\ J=1$ und J=2 an. (1 Punkt)
- 3. Wie könnten Mesonen mit exotischen Quantenzahlen aufgebaut sein? Geben Sie mindestens zwei unterschiedliche Möglichkeiten an. (2 Punkte)

Aufgabe 4: τ -Zerfälle, Anzahl der Farben

[LA: komplette Aufgabe] (12 Punkte)

Das τ -Lepton zerfällt über die schwache Wechselwirkung, vermittelt durch den Austausch eines geladenen W-Bosons. Mit Hilfe der Crossing-Symmetrie kann man den Zerfall eines W^- in τ -Leptonen ableiten.

$$\tau^- \to \nu_{\tau} + W^- \xrightarrow{\operatorname{crossing}} W^- \to \tau^- + \bar{\nu}_{\tau}$$

Eine Eigenschaft der schwachen Wechelwirkung ist, dass die W-Bosonen an alle Quark- und Lepton-Dubletts gleich koppeln.

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}, \quad \begin{pmatrix} u \\ d' \end{pmatrix}, \begin{pmatrix} c \\ s' \end{pmatrix}, \begin{pmatrix} t \\ b' \end{pmatrix}$$

Für den τ -Zerfall gilt also, dass man im Endzustand ein ν_{τ} findet, und die Zerfallsprodukte des W^- aus einem dieser Dubletts stammen.

- 1. Zeichnen Sie den Feynman-Graphen für den Zerfall des τ^- in ein Elektron (und Neutrinos). (3 Punkte)
- 2. Welche Dubletts können beim τ -Zerfall im Endzustand auftreten? (3 Punkte)
- 3. Nehmen Sie an es gäbe nur eine Farbe, wie groß wäre dann das Verhältnis

$$\frac{\sum_{\ell} BR \left(\tau^{-} \to \nu_{\tau} + \ell^{-} + \bar{\nu_{\ell}} \right)}{BR \left(\tau^{-} \to \nu_{\tau} + \text{Hadronen} \right)}$$

wobei ℓ über alle beteiligten Lepton-Dubletts läuft und BR das Verzweigungsverhältnis des Zerfalls bezeichnet. (3 Punkte)

4. Wie ändert sich das obige Verhältnis, wenn es 3 Farben gibt? Vergleichen Sie Ihre Ergebnisse mit dem tatsächlichen Verhältnis (PDG). (3 Punkte)