Numerical Analysis – Fall 2023

Assignment #5

Issued: Nov. 8, 2023 Due: Nov. 11, 2023

Problem 1:

证明下列积分计算公式具有三次代数精度。

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{b} \left[f(a) + 4f\left(\frac{\alpha+b}{2}\right) + f(b) \right]$$

Problem 2:

假设 N(h) 对于任意 h>0,都是 M 的近似,其中 $M=N(h)+K_1h^2+K_2h^4+K_3h^6+\cdots$,

$$K_1,K_2,K_3,\dots$$
是常数。请使用 $N(h),N\left(rac{h}{3}
ight),N\left(rac{h}{9}
ight)$ 来产生 M 的 $O\left(h^6
ight)$ 近似。

Problem 3:

Approximate the following integrals using the Trapezoidal rule and Simpson's rule, respectively.

a.
$$\int_{-0.25}^{0.25} (\cos x)^2 dx$$
b.
$$\int_{-0.5}^{0} x \ln(x+1) dx$$
c.
$$\int_{-0.5}^{1.3} ((\sin x)^2 - 2x \sin x + 1) dx$$
d.
$$\int_{-0.5}^{e+1} \frac{1}{dx} dx$$

c.
$$\int_{0.75}^{1.3} ((\sin x)^2 - 2x \sin x + 1) dx$$
 d. $\int_{e}^{e+1} \frac{1}{x \ln x} dx$

Problem 4:

Use Romberg integration to compute $R_{3,3}$ for the following integrals.

a.
$$\int_{-1}^{1} (\cos x)^{2} dx$$
b.
$$\int_{-0.75}^{0.75} x \ln(x+1) dx$$
c.
$$\int_{1}^{4} ((\sin x)^{2} - 2x \sin x + 1) dx$$
d.
$$\int_{0}^{2e} \frac{1}{x \ln x} dx$$

Problem 5:

Use Euler's method to approximate the solutions for each of the following initial-value problems.

a.
$$y' = y/t - (y/t)^2$$
, $1 \le t \le 2$, $y(1) = 1$, with $h = 0.1$

b.
$$y' = 1 + y/t + (y/t)^2$$
, $1 \le t \le 3$, $y(1) = 0$, with $h = 0.2$