GAN Final

2018年8月20日

1 牛成式對抗網路 - GAN

1.1 介紹

之前介紹的 CNN 和 RNN 都是屬於監督式的分類任務,但是現實我們想做到的事更多也更宏大

譬如:讓電腦學會寫字,讓電腦學會填補圖畫之類 但是這種任務都是屬於無中生有的事,我們之前所教的單純分類任務是做不到的 於是就有人提出了 GAN(Generative Adversarial Network)

1.2 GAN 介紹

GAN 一個重點就是 Generative(生成),他試圖讓電腦開始有創作的可能性 第二個重點就是 Adversarial(對抗),因為創作,一定不可能是標注好答案的(監督式) 那也不可能完全無憑藉(非監督式)的創造 所以他使用的方法是半監督式,藉由環境的反饋來決定一個創作好不好

上圖是整個 GAN 的架構圖

其實概念非常的簡單

我們會有一個正常的分類器,來當作鑑賞家,這個鑑賞家 (Discriminator) 只要學會分類兩件事情,真(我們真實的 mnist 資料)和偽(我們隨手創造出來的數字)

接著我們會有一個反向 (神經元越來越多) 的深度網路,來當作創作家,這個創作家 (Generator) 會依據神經元的權重來創造數字

接著我們進行以下的步驟,每個 batch 都要這麼進行

- 1. 把真實資料的一個 batch 標示為真丟給鑑賞家,也讓創作家創作一個 batch 標示為鑑賞家,並 且訓練,讓鑑賞家學會真假
- 2. 讓創作家再創作一個 batch,這時候開始訓練創作家,讓創作家的作品接近鑑賞家現在的真

不斷的進行這個步驟,創作家和鑑賞家的水品都會提升,來到最後,創作家就可以創作幾可亂真的作品了

1.3 **變種 GAN**

除了最基本的 GAN, 還有許多不同的 GAN, 譬如 CGAN(Conditional Generative Adversarial Net),把機率換成了條件機率,就可以指定創作某一類的數字

1.4 變種 GAN 參考

https://github.com/eriklindernoren/Keras-GAN

1.5 Step1. 資料預處理

這裡我們選用內建的 mnist 手寫數字資料庫來, mnist 提供共 70000 筆手寫數字, 而且用 keras 讀取的時候會直接幫你分成訓練和測試兩份資料

```
In [1]: from keras.layers import Input
from keras.models import Model, Sequential
from keras.layers.core import Reshape, Dense, Dropout, Flatten
from keras.layers import Embedding, BatchNormalization
from keras.datasets import mnist
import numpy as np
%matplotlib inline
# 我們會使用到一些內建的資料庫, MAC 需要加入以下兩行,才不會把對方的 ssl 憑證視為無效
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
```

Using TensorFlow backend.

1.6 Step2. 建立創作家

我們做一個跟我們以前反向的深度網路,神經元隨著層數越來越大,最後的神經元數目要等於你要創作的圖片的維度 (28 x 28)

這裡大家在 activation 因為不是要二分機率,所以還蠻喜歡有極正和極負的輸出,所以還蠻常使用 tanh 當作激活函數 $(-1 \sim 1)$,不過你也可以使用 tanh 當你的激活函數

1.6.1 BatchNormalization

這裡我們使用了一個在原始 GAN 論文裡沒使用的技巧 因為 GAN 的 Generator 和 Discriminator 都極其的脆弱

- 1. 因為是一個反向的神經元擴大, 所以可以想見一點影響都會被擴大
- 2. 你會發現創作的圖片很容易讓鑑賞家走到 relu 的『死亡區』,就是為 0,而且斜率為 0 的區域,一旦來到這區域,代表梯度更新為 0,沒機會從死亡區回來,這時候我們就說這神經元已經死掉了

這裡我們想起了一件事,我們再傳入我們的圖片的時候,通常會喜歡做一次 Normalization 到 0~1,優點是可以好好配合 Keras 隨機的 Weights,不會隨意的亂走

但第二層以後都是神經網路算出來的值,那我們現在可不可以也採納這個概念呢?讓第二層以後的所有算出值也做出標準化呢?

可以的,而且由於我們是批次 (batch) 的訓練,所以我們也希望可以直接對整個 batch 做一次 Normalization 就好

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

上面是 Batch Normalization 的公式

前三行很簡單,就是普通的標準化,平移到均值為0的位置,縮放成標準差爲1

整個精華在第四行,因為我們的特徵可能本來就不該均值0和標準差1啊,所以他加了個縮放參數在這裡(Gamma 和 Belta)

而且讓神經網路自己學習每一層的縮放參數是多少! 經過這美美的 Batch Normalization, 我們達成兩個優點

- 1. 每一層都有經過適度的縮放和平移,可以很好的配合初始的權重
- 2. 因為經過縮放和平移,所以不會整組落入 relu 死亡區,就算這次落入死亡區,下一次還有機 會經過 BN 被拉回來

記得在 GAN 的創作家每一層,我們都可以放上 Batch Normalization 這個技巧! 會讓你的結果變得比較美!

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 256)	25856
batch_normalization_1 (Batch	(None, 256)	1024
dense_2 (Dense)	(None, 512)	131584
batch_normalization_2 (Batch	(None, 512)	2048
dense_3 (Dense)	(None, 784)	402192
Total params: 562,704		
Trainable params: 561,168		
Non-trainable params: 1,536		
dense_2 (Dense) batch_normalization_2 (Batch dense_3 (Dense) Total params: 562,704 Trainable params: 561,168	(None, 512) (None, 512)	131584

1.7 Step3. 建立鑑賞家

一個專門來負責看揪出創作家創造的假作品的鑑賞家,我使用最簡單的 MLP 當作我們鑑賞家

Layer (type)	Output Shape	Param #
dense_4 (Dense)	(None, 1024)	803840
dropout_1 (Dropout)	(None, 1024)	0
dense_5 (Dense)	(None, 512)	524800
dropout_2 (Dropout)	(None, 512)	0
dense_6 (Dense)	(None, 256)	131328
dropout_3 (Dropout)	(None, 256)	0
dense_7 (Dense)	(None, 1)	257
Total params: 1,460,225		
Trainable params: 1,460,225		
Non-trainable params: 0		

1.8 Step4. 組合網路

這裡為了方便訓練創作家, 把它們組合在一起

那由於只是訓練創作家,所以我們要把鑑賞家的參數固定住,直接設置 trainable = False 即可不過要在 compile 前就設定,compile 完了就不會改變

所以我們只有在組合網路有將鑑賞家的參數固定 (可以看 Non-trainable params 確定)

```
______
input_1 (InputLayer) (None, 100)
_____
sequential_1 (Sequential) (None, 784)
                                           562704
sequential_2 (Sequential) (None, 1)
                                           1460225
______
Total params: 2,022,929
Trainable params: 561,168
Non-trainable params: 1,461,761
 ______
In [8]: batch_size = 200
      epoch_count = 10
      d_loss_list = []
      g_loss_list = []
      for epoch in range(0, epoch_count):
         for batch_count in range(0, 300):
            idx = np.random.randint(0, x_train.shape[0], batch_size)
            imgs = x_train_shaped[idx]
            valid = np.ones((batch_size, 1))
            fake = np.zeros((batch_size, 1))
            #步驟 O: 讓創作家製造出 fake image
            noise = np.random.normal(0, 1, (batch_size, random_dim))
            gen_imgs = generator.predict(noise)
            discriminator.trainable = True
            # 步驟 1: 讓鑑賞家鑑賞對的 image
            d_loss_real = discriminator.train_on_batch(imgs, valid)
            # 步驟 2: 讓鑑賞家鑑賞錯的 image
            d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)
            d_loss = (d_loss_real + d_loss_fake) / 2
            discriminator.trainable = False
            noise = np.random.normal(0, 1, (batch_size, random_dim))
```

```
g_loss = gan.train_on_batch(noise, valid)
          dash = "-" * 15
          print(dash, "epoch", epoch, dash)
          print("Discriminator loss:", d_loss)
          print("Generator loss:", g_loss)
          d_loss_list.append(d_loss)
          g_loss_list.append(g_loss)
----- epoch 0 -----
Discriminator loss: 0.1319003701210022
Generator loss: 8.2713375
----- epoch 1 -----
Discriminator loss: 0.1373519003391266
Generator loss: 5.532821
----- epoch 2 -----
Discriminator loss: 0.41682881116867065
Generator loss: 2.3718922
----- epoch 3 -----
Discriminator loss: 0.462246835231781
Generator loss: 1.5258994
----- epoch 4 -----
Discriminator loss: 0.5252199769020081
Generator loss: 1.3568485
----- epoch 5 -----
Discriminator loss: 0.49116039276123047
Generator loss: 1.2497867
----- epoch 6 -----
Discriminator loss: 0.534600019454956
Generator loss: 1.126162
----- epoch 7 -----
Discriminator loss: 0.554734468460083
Generator loss: 1.0554607
----- epoch 8 -----
Discriminator loss: 0.5893127918243408
Generator loss: 1.1031088
----- epoch 9 -----
```

步驟 3: 訓練創作家的創作能力

Discriminator loss: 0.5687193274497986

Generator loss: 1.081857

1.9 Step4. 訓練結果

你發現在鑑賞家的逼迫下,我們訓練出來的創作家創造的數字已經有模有樣了,有些數字已經 看起來非常的真實了!

