Factor de actualizare viager	Factor de actualizare de deces
$_{n}\mathbf{E}_{x}=\frac{D_{x+n}}{D_{x}}$	${}_{n}D_{x} = \frac{\sqrt{u(v \cdot D_{x+n} - D_{x+n+1})}}{D_{x}} = {}_{n n+1}A_{x}$
ANUITATI VIAGERE	
Posticipate 1) imediată, nelimitată	$\mathbf{a}_{x} = \frac{N_{x+1}}{D_{x}}$
2) imediată, limitată la "n" ani	$a_{x:\bar{n} } = \frac{N_{x+1} - N_{x+n+1}}{D_x}$ ${}_{n }a_x = \frac{N_{x+n+1}}{D_x}$
3) amânată cu "n" ani (nelimitată)	$_{n }a_{x}=\frac{N_{x+n+1}}{D_{x}}$
Posticipate	FRACTIONATE
1) imediată, nelimitată	$\mathbf{a}_{x}^{(m)} = \mathbf{a}_{x} + \frac{m-1}{2m}$
2) imediată, limitată la "n" ani	$\mathbf{a}_{x:\overline{n} }^{(m)} = \mathbf{a}_{x}^{(m)} - \mathbf{a}_{x}^{(m)} = \mathbf{a}_{x:\overline{n} } + \frac{m-1}{2m} (1 - \mathbf{a}_{x})$
3) amânată cu "n" ani (nelimitată)	$a_x^{(m)} = a_x + \frac{m-1}{2m} \cdot E_x$
Anticipate	INTREGI
1) imediată, nelimitată	$\ddot{\mathbf{a}}_{x} = \frac{N_{x}}{D_{x}}$
2) imediată, limitată la "n" ani	$\ddot{\mathbf{a}}_{x:\overline{n} } = \frac{N_x - N_{x+n}}{D_x}$
3) amânată cu "n" ani (nelimitată)	$_{n }\ddot{\mathbf{a}}_{x}=rac{N_{x+n}}{D_{x}}$
Anticipate	FRACTIONATE
1) imediată, nelimitată	$\ddot{\mathbf{a}}_{x}^{(m)} = \ddot{\mathbf{a}}_{x} - \frac{m-1}{2m}$
2) imediată, limitată la "n" ani	$\ddot{\mathbf{a}}_{x:\overline{n} }^{(m)} = \ddot{\mathbf{a}}_{x}^{(m)} - \mathbf{a}_{x}^{(m)} = \ddot{\mathbf{a}}_{x:\overline{n} } - \frac{m-1}{2m} (1 - \mathbf{a}_{x})$
3) amânată cu "n" ani (nelimitată)	$_{n }\ddot{\mathbf{a}}_{x}^{(m)}=_{n }\ddot{\mathbf{a}}_{x}-\frac{m-1}{2m}\cdot_{n}E_{x}$
ANUITATI DE DECES	
1) imediată și nelimitată	$A_x = \frac{M_x}{D_x}$
2) dublu limitată – inferior la <i>m</i> ani	$_{m n}A_{x} = \frac{M_{x+m} - M_{x+n}}{D_{x}}$
- superior la n ani 3) imediată, limitată la " n " ani ($m = 0$)	$A_{x:\overline{n} } = \frac{M_x - M_{x+n}}{D_x}$
4) amânată cu "n" ani (nelimitată)	$_{n }A_{x}=\frac{M_{x+n}}{D_{x}}$