Structural Analysis Report - Dataset 5

1. Building Specifications

Parameter	Value	Unit
Width	7.2	m
Length 1	6.6	m
Length 2	10.8	m
Height 1	2.5	m
Height 2	2.65	m
Roof Angle	16	degrees
Purlin Spacing	1.1	m

2. Material Properties (C27 Timber)

According to Eurocode 5 (EN 1995-1-1), C27 timber has the following characteristic properties: - Characteristic bending strength (fm,k): 27 MPa - Characteristic tensile strength parallel to grain (ft,0,k): 16 MPa - Characteristic compressive strength parallel to grain (fc,0,k): 22 MPa - Mean modulus of elasticity parallel to grain (E0,mean): 11500 MPa - Characteristic density: 370 kg/m³

3. Design Strength Calculations

Design strength values are calculated according to Eurocode 5 using the following formula: $Xd = \text{kmod} \times Xk / \gamma M$ where: - Xd is the design strength value - x who is the modification factor (0.8 for service class 2) - Xk is the characteristic strength value - x is the partial safety factor for material properties (1.3 for solid timber)

Property	Design Value	Unit
Bending strength (fm,d)	16.62	MPa
Tensile strength (ft,0,d)	9.85	MPa
Compressive strength (fc,0,d)	13.54	MPa

4. Load Analysis

Structural Force Analysis

Roof Structure Forces Analysis

Load calculations according to Eurocode 1 (EN 1991-1): - Dead load (self-weight): 0.5 kN/m^2 - Snow load: 1.0 kN/m^2 - Wind load: 0.6 kN/m^2 Design load combination: $qd = 1.35 \times Gk + 1.5 \times Qk + 1.5 \times 0.6 \times Wk$ where: - Gk is the characteristic permanent load - Qk is the characteristic snow load - Wk is the characteristic wind load

Load Type	Value	Unit
Characteristic total load	2.10	kN/m²
Design load	2.71	kN/m²

5. Structural Analysis

Rafter Analysis: - Maximum bending moment: $M = (q \times l^2) / 8$ - Axial force: $N = q \times l / (2 \times tan(\alpha))$ where: - q is the design load per meter - l is the rafter length - α is the roof angle

Parameter	Value	Unit
Rafter length	3.75	m
Maximum moment	4.58	kNm
Axial force	17.04	kN

6. Thermal Analysis

Thermal Resistance Analysis

Thermal Insulation Layer Analysis

Thermal resistance calculation according to EN ISO 6946: $R = d / \lambda$ where: - R is the thermal resistance [m²-K/W] - d is the material thickness [m] - λ is the thermal conductivity [W/(m-K)] Total thermal resistance includes all layers: - Steel tile (0.6mm) - Air gap - Mineral wool insulation - Timber structure

Parameter	Value	Unit
Total thermal resistance	5.91	m²-K/W
U-value	0.17	W/m²⋅K

7. Cross-Section Analysis

Cross-Section Analysis

Detailed analysis of structural member cross-sections according to Eurocode 5. The analysis includes calculation of section properties, stress distribution, and verification of structural capacity under combined loading conditions.

7.1 Section Properties

Property	Value	Unit
Cross-sectional area	100.00	cm²
Moment of inertia	3333.33	cm■
Section modulus	333.33	cm ³
Radius of gyration	5.77	cm

7.2 Stress Analysis

The stress analysis considers normal stresses due to bending and axial forces, as well as shear stresses. The combined stress state is evaluated using the von Mises criterion to account for multiaxial loading conditions.

Stress Component	Value	Unit
Normal stress	13.73	MPa
Compressive stress	1.70	MPa
Shear stress	2.56	MPa
Combined stress	14.42	MPa

8. Angle Brace Analysis

Angle Brace Analysis

Analysis of the angle brace connection includes evaluation of axial forces, buckling resistance, and connection capacity. The brace is designed to transfer horizontal forces from the roof structure to the supporting elements.

Parameter	Value	Unit
Axial force	24.10	kN
Slenderness ratio	46.19	1
Critical buckling load	0.00	kN

Utilization ratio	30.20	-
-------------------	-------	---

9. Momentum Analysis

Detailed analysis of momentum in structural elements according to Eurocode 5: $M = F \times d + \Sigma(q \times l^2 / 8)$ where: - M is the total momentum [kNm] - F is the concentrated force [kN] - d is the distance from force application point [m] - q is the distributed load [kN/m] - I is the element length [m] The momentum analysis considers: - Dead load effects - Snow load contribution - Wind load influence - Combined load effects

Component	Value	Unit
Dead load momentum	2.29	kNm
Snow load momentum	3.66	kNm
Wind load momentum	1.37	kNm
Total design momentum	4.58	kNm

10. Ultimate Limit State Verification

Combined bending and compression verification according to Eurocode 5: $(\sigma m,d / fm,d) + (\sigma c,d / fc,0,d) \le 1.0$ where: - $\sigma m,d$ is the design bending stress - $\sigma c,d$ is the design compressive stress - fm,d is the design bending strength - fc,0,d is the design compressive strength

Parameter	Value	Unit
Bending stress	9.53	MPa
Compressive stress	1.42	MPa
Shear stress	2.13	MPa
Combined stress	10.22	MPa
Utilization ratio	0.68	-
ULS verification	PASS	-