

Electronic Notes in Theoretical Computer Science

LSEVIER Electronic Notes in Theoretical Computer Science 73 (2004) 213–215

www.elsevier.com/locate/entcs

Uniform Domains and Uniform Spaces (Abstract)

Hideki Tsuiki¹

 $\begin{array}{c} Division \ of \ Mathematics \\ Faculty \ of \ Integrated \ Human \ Studies, \ Kyoto \ University \\ Kyoto, \ Japan \end{array}$

Abstract

In a previous work, the current author showed that every compact metric space X can be represented in an omega-algebraic domain D so that X is the retract of the set L(D) of limit (i.e. non-finite) elements of D. This means that every infinite strictly increasing sequence in the set K(D) of finite elements of D can be considered as identifying one point of X, and thus this domain structure can be used to define computation over the space X. In this article, we show a condition on an omega-algebraic domain D which ensures that L(D) has a (separable complete) metric space as its retract. We introduce the notion of a uniform domain, and explain that it corresponds to a uniform space with countable weight. Here, we use the word domain for an omega-algebraic dcpo.

Keywords: Uniform space, domain representation, stratified domain

In [3], the current author showed that every compact metric space X can be represented in an ω -algebraic domain D so that X is the retract of the set L(D) of limit (i.e. non-finite) elements of D. This means that every infinite strictly increasing sequence in the set K(D) of finite elements of D can be considered as identifying one point of X, and thus this domain structure can be used to define computation over the space X. In this article, we show a condition on an ω -algebraic domain D which ensures that L(D) has a (separable complete) metric space as its retract. Following [2], we introduce the notion of a uniform domain, and explain that it corresponds to a uniform space with countable weight [1]. Here, we use the word domain for an ω -algebraic dcpo.

1571-0661 © 2004 Elsevier B.V. Open access under CC BY-NC-ND license. doi:10.1016/j.entcs.2004.08.011

¹ Email: tsuiki@i.h.kyoto-u.ac.jp

Definition 0.1 When P is a poset, we define the level of $d \in P$ as the maximal length of a chain $\bot_P = a_0 \leq a_1 \leq \ldots \leq a_n = d$, when it exists, and we write $K_n(P)$ for the set of level-n elements of P. A poset P is stratified if each $e \in P$ has a level, that is, if we have $P = K_0(P) \cup K_1(P) \cup \ldots$ A domain P is stratified if P is a stratified poset, and P is evenly stratified if all the paths to P have the same length for every P is evenly stratified if all the set of level-P approximations of P.

Definition 0.2 Let D be a stratified domain and $d \in K_m(D)$. We denote by $d^* \subset K_m(D)$ the set of elements of $K_m(D)$ which are compatible with d. If, for each $d \in K_m(D)$, there exists a lower bound of d^* in $K_n(D)$, we define that $n <^* m$. When D be a stratified domain and for each $n \in \mathbb{N}$, there is a $m \in \mathbb{N}$ such that $n <^* m$, we say that D is a uniform domain.

Here, a is compatible with b means that a and b have an upper bound in D (which also implies that a and b have an upper bound in K(D)).

Definition 0.3 Let P be a poset.

- 1) $x \in P$ is a minimal element if $y \le x$ implies y = x for all $y \in P$. We write M_P for the set of all minimal elements of P.
- 2) We say that P has enough minimal elements if, for all $y \in P$, there exists $x \in M_P$ such that $x \leq y$.

Theorem 0.4 Let D be a uniform domain.

- 1) L(D) has enough minimal elements.
- 2) $M_{L(D)}$ is a retract of L(D).
- 3) $M_{L(D)}$ is a Hausdorff space.

Note that many of the domains studied in computer science, for example, $P_{\omega} = \{a \mid a \subseteq N\}$ and Plotkin's T^{ω} do not have enough minimal elements. The proof for this theorem is analogous to that of the existence of a minimal Cauchy filter in a uniform space. When $d \in K(D)$, we define \hat{d} as the subset $\uparrow d \cap M_{L(D)}$ of $M_{L(D)}$.

Theorem 0.5 When D is a uniform domain, D induces a complete uniformity μ of countable weight on $M_{L(D)}$, defined through the base consisting of the coverings $\mathcal{B} = \{\mathcal{V}_0, \mathcal{V}_1, \ldots\}$ defined as $\mathcal{V}_i = \{\hat{d} \mid d \in K_i(D)\}$.

Since the weight of the uniformity constructed in Theorem 0.5 is countable, we have the following.

Corollary 0.6 When D is a uniform domain, $M_{L(D)}$ is metrizable.

On the other hand, we have the following.

Theorem 0.7 Let (X, μ) be a complete uniform space with a countable weight, and $\mathcal{U}_0 \succ \mathcal{U}_1 \succ \dots$ be a sequence of open coverings which forms a base of μ . From this sequence, we can form a evenly-stratified uniform domain D such that X is homeomorphic to $M_{L(D)}$.

Thus, a uniform domain can be considered as a uniform space with a selection of a base.

References

- [1] J. R. Isbell. Dimension Theory. American Mathematical Society, Rhode Island, 1964.
- [2] Hideki Tsuiki. Representations of complete uniform spaces via uniform domains. *Electronic Notes in Theoretical Computer Science*, 66, 2002.
- [3] Hideki Tsuiki. Compact metric spaces as minimal-limit sets in domains of bottomed sequences. *Mathematical Structures in Computer Science*, 2003. to appear.