MATH 524 - Lecture 11 (09/26/2023)

Today: * O-dimensional homology

* relative homology

Zero-dimensional Homology with $c'=n_3(v_2-v_3)=n_3(\partial [v_2,v_3])$, we start with an example. $c+c'=n_3(v_2-v_3)=n_3(\partial [v_2,v_3])$,

 $v_{\overline{z}}$ Consider a general 0-chain of the form $\overline{c} = \sum_{i=0}^{\infty} N_i v_i$ see that $\bar{c} = \sum_{i=0}^{\infty} n_i v_i \sim n v_0$ for some $n \in \mathbb{Z}$.

Theorem 7.1 [M] The group $H_0(K)$ of simplicial complex K is free abelian. If $\{v_a\}$ is a collection of vertices such that there is one vertex from each connected component of |K|, then $\{v_a\}$ is a basis for $H_0(K)$.

Proof (ideas)

Step 1

O-skeleton, i.e., vertices

homologous

(i) For $v, w \in K^{(0)}$ we define $v \sim w$ if there is a Sequence $a_0, ..., a_n$, with $a_i \in K^{(0)}$ such that $a_0 = v, a_n = w$, and $\underbrace{(a_i, a_{i+1})}_{?} \in K^{(i)}$ ti.

the orientation does not matter; we just need $\underbrace{(a_i, a_{i+1})}_{?}$ as an edge.

We also define $C_v = \bigcup \xi \operatorname{St} w | w v \xi$

(ii) Show G is path-connected $\forall v \in K^{(0)}$

(iii) If Co + Co. (i.e., are distinct), then they are disjoint.

It follows that Co are the connected components of IKI.

Step 2 Let Eva? be a collection of vertices of K with one vertex
from each component. Each O-chain in a single component is
le la 1 17 lleurs luren O-chain on K is homologous
homologone to Vx. Hence every O-chain on K is homologone
La linear combination of etementary or enains of
11 = Sur le a reneval O-chain. Suppose c= 2d for 1-chain
Let c = 2/2/2 oc of a corried by C.
We can write $d = 2 dx$ where dx has forms of $0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 $
Let $\bar{c}=\Xi n_x v_x$ be a general o-chain. Suppose $\bar{c}=\partial \bar{d}$ for 1-chain We can write $\bar{d}=\Xi \bar{d}_x$ where \bar{d}_x has terms of \bar{d} corried by \bar{c}_x . Consider one such component: $\partial \bar{d}_x \sim n_x v_x$. If follows that $\underline{n}=0$ here.
Let $E: G(K) \to \mathbb{Z}$ be the homomorphism defined by $E(v) = 1 + v \in K^{(0)}$
Then $\varepsilon(\partial[v,w]) = \varepsilon(w-v) = - = 0$. Hence $0 = \varepsilon(\partial \overline{d}_x) = \varepsilon(n_x v_x) = n_x$.
Then $\mathcal{E}(\partial[v,w]) = \mathcal{E}(w-v) = 1-1=0$. (1)
Note: Bo = rk(Ho(K)) counts the number of connected components
1. How example: 3(x)-2 here -> K N2 /2
Another example: $\beta_0(K) = 2$ here $\rightarrow K$ $\{v_0, v_3\}$ is a basis for $H_0(K)$ v_0 v_3
76,03 7 18 00 2000 11 13 (11) V ₆ V ₁ V ₃
To follow the intuition for \$ =1 of B=1 when 1 (pt)-dimensional patch' is

missing (thus creating a p-dim hole), we want $\beta_0=1$ when I edge, for instance, is missing, i.e., when there are two components (not 1). To this end, we define reduced homology groups.

Reduced Homology Groups

Let $E: C_0(K) \to \mathbb{Z}$ be a swijective homomorphism defined by E(v)=1 $\forall v \in K^{(0)}$. For a o-chain \bar{c} $E(\bar{c})$ is the sum of the values of \bar{c} on vertices of K. E is the augmenting map for Values of \bar{c} on vertices of K. E is the augmenting map for $C_0(K)$. Also, $E(\bar{c},\bar{d})=0$ for all 1-chains \bar{d} . So we define the the treduced homology group of K in dimension 0 as

$$\widetilde{H}_{o}(K) = \ker \varepsilon / \operatorname{im} \partial_{1}$$
.
Also, if $p > 0$, $\widetilde{H}_{p}(K) = H_{p}(K)$.

Theorem 7.2 [M] $\widehat{H}_o(K)$ is free abelian, and $\widehat{H}_o(K) \oplus \mathbb{Z} \simeq \widehat{H}_o(K)$. So, $H_o(K)$ vanishes of K is connected. Else $\{V_a - V_o\}$ for $x \neq x_o$ form a basis for $H_o(K)$. Here V_o is any one of the V_o 's, which one from each connected component.

Front $2 \in \ker \mathcal{E}$, then $\mathcal{E}(\bar{c}) = \mathcal{E}(\bar{c}') = 0$, where $\bar{c}' \sim \bar{c}$ and $\bar{c}' = \sum r_{\lambda} v_{\lambda}$. But $\mathcal{E}(\bar{c}') = \sum r_{\lambda} \mathcal{E}(v_{\lambda}) = \sum r_{\lambda}$.

If |K| has only one component, C'=0. If |K| has more than one component, then C' is a linear combination of $\{V_x-V_z\}$. We refer to $rk(H_0(K)) = \beta_0$ as the reduced oth beth number of K We get $\beta_0 = \beta_0 - 1$ and $\beta_p = \beta_p + p = 1$.

Homology of a b-simplex $K: \nabla (3-\text{simplex}) \text{ and all its faces.}$ V_0 V_0

 $\widetilde{H}_3(K)=0$, $\widetilde{H}_2(K)=0$, $\widetilde{H}_1(K)=0$, but $H_0(K)\simeq \mathbb{Z}$, and hence $\widetilde{H}_0(K)=0$.

Let S^{p-1} be the simplicial complex whose polytope is $Bd\sigma$. Then, $H_i(S^{p-i}) = 0$ for $i \neq p-1$, and $H_{p-1}(S^{p-i}) \simeq \mathbb{Z}$.

Here (for $\beta=3$), $\sum_{i=0}^{2}$ consists of the four triangles that are faces of σ , and their own faces. There are no tetrahedra in $\sum_{i=0}^{2}$, so $\bar{r}=n\sum_{i=0}^{2}$ T_{i} , where T_{i} are the triangles, is a 2-cycle which is not a 2-boundary for each $n\in\mathbb{Z}$, $n\neq 0$. Hence $\{n\}$ is a basis for $H_{2}(\sum_{i=0}^{2})$.

Relative Homology

We often want to talk about homology groups restricted to some parts of the given simplicial complex K. In particular, we want to avoid a subcomplex from consideration. Given a subcomplex Ko, a chain carried by Ko is trivially extended to a chain in all of K by assigning zero as the coefficient for all simplices in K but not in Ko. Intuitively, we want to 'zero out' all chains in Ko, and talk about homology groups in K modulo Ko.

Def If $K_o \subseteq K$ is a subcomplex, the quotient group $G_o(K)/C_p(K_o)$ is the group of relative p-chains of K modulo K_o , denoted $G_o(K,K_o)$.

Notice that $C_p(K_0)$ can be naturally considered as a subgroup of $G_p(K)$, by assigning coefficients of zero to simplices not in K_0 .

Cp(K,Ko) is free abelian, and has as a basis all cosets of the form Evil = vi + Cp (Ko) where of is a p-simplex of Knot in Ko.

Intuitively, adding any chain from $G_p(K_0)$ to σ_i is like adding "zero" as far as $G_p(K,K_0)$ is concerned.

the "absolute" boundary operator) 2: Cp(Ko) -> Cp,(Ko) is just the restriction of 2 on Cp(K) to Ko. This homomorphism induces a homomorphism $\partial: C_p(K_1K_0) \longrightarrow C_{p-1}(K_1K_0)$. This is the relative boundary operator. operators Like the absolute boundary operator, the relative boundary operator also satisfies $\partial \cdot \partial = 0$. We let $Z_p(K_1K_0) = \ker \partial_p : G_p(K_1K_0) \rightarrow G_p(K_1K_0),$ $B_{p}(K_{1}K_{0}) = im \partial_{ph}: G_{ph}(K_{1}K_{0}) \longrightarrow G_{p}(K_{1}K_{0}), \text{ and}$ $H_p(K_1K_0) = Z_p(K_1K_0)/B_p(K_1K_0).$

These groups are called the relative p-cycle, relative p-boundary, and the relative homology group of dimension p of K modulo Ko.

A relative p-chain \bar{c} is a relative p-cycle iff $\partial_{\bar{b}}\bar{c}$ is corried by Ko. Furthermore, its a relative p-boundary iff there exists a (pt)-chain \bar{d} of K such that $\bar{c}-\partial_{pt}\bar{d}$ is carried by K_0 .

Recall that in the absolute case, we wanted $\partial_p \bar{c}$ and $\bar{c} - \partial_{ph} \bar{d}$ to be empty, respectively.

Example 1 Let K be the p-simplex σ and all its faces. Let K_0 be $K^{(p-1)}$, i.e., the Simplicial complex made of all proper faces of σ . Then $H_i(K_1K_0) = 0$ $H_i \neq p$, and

 $H_p(K_1K_0) \simeq \mathbb{Z}$, and $\S \circ \S$ is a basis $H_2(K_1K_0) \simeq \mathbb{Z}$ as $\partial_p \sigma$ is carried by K_0 , and hence its a relative p-cycle. There are no (pH)-simplices to bound, K_0 its not a relative p-boundary.

Notice that $\bar{c} = n\sigma$ for $n \in \mathbb{Z}$ is not an absolute cycle, as $\partial_2 \bar{c} \neq 0$.