Network Flow Problems

Jaehyun Park

CS 97SI Stanford University

November 5, 2016

Outline

Network Flow Problems

Ford-Fulkerson Algorithm

Bipartite Matching

Min-cost Max-flow Algorithm

Network Flow Problem

- A type of network optimization problem
- Arise in many different contexts (CS 261):
 - Networks: routing as many packets as possible on a given network
 - Transportation: sending as many trucks as possible, where roads have limits on the number of trucks per unit time
 - Bridges: destroying (?!) some bridges to disconnect s from t, while minimizing the cost of destroying the bridges

Network Flow Problem

▶ Settings: Given a directed graph G = (V, E), where each edge e is associated with its capacity c(e) > 0. Two special nodes source s and sink t are given $(s \neq t)$

- Problem: Maximize the total amount of flow from s to t subject to two constraints
 - Flow on edge e doesn't exceed c(e)
 - For every node $v \neq s,t$, incoming flow is equal to outgoing flow

Network Flow Example (from CLRS)

Capacities

Maximum flow (of 23 total units)

Alternate Formulation: Minimum Cut

- ▶ We want to remove some edges from the graph such that after removing the edges, there is no path from *s* to *t*
- ▶ The cost of removing e is equal to its capacity c(e)
- ► The minimum cut problem is to find a cut with minimum total cost

- ► Theorem: (maximum flow) = (minimum cut)
- ▶ Take CS 261 if you want to see the proof

Minimum Cut Example

Capacities

Minimum Cut (red edges are removed)

Flow Decomposition

 Any valid flow can be decomposed into flow paths and circulations

- $-s \rightarrow a \rightarrow b \rightarrow t$: 11
- $s \rightarrow c \rightarrow a \rightarrow b \rightarrow t$: 1
- $s \rightarrow c \rightarrow d \rightarrow b \rightarrow t$: 7
- $-s \rightarrow c \rightarrow d \rightarrow t$: 4

Outline

Network Flow Problems

Ford-Fulkerson Algorithm

Bipartite Matching

Min-cost Max-flow Algorithm

Ford-Fulkerson Algorithm

- A simple and practical max-flow algorithm
- Main idea: find valid flow paths until there is none left, and add them up
- ▶ How do we know if this gives a maximum flow?
 - Proof sketch: Suppose not. Take a maximum flow f^{\star} and "subtract" our flow f. It is a valid flow of positive total flow. By the flow decomposition, it can be decomposed into flow paths and circulations. These flow paths must have been found by Ford-Fulkerson. Contradiction.

Back Edges

- We don't need to maintain the amount of flow on each edge but work with capacity values directly
- ▶ If f amount of flow goes through $u \to v$, then:
 - Decrease $c(u \rightarrow v)$ by f
 - Increase $c(v \rightarrow u)$ by f
- Why do we need to do this?
 - Sending flow to both directions is equivalent to canceling flow

Ford-Fulkerson Pseudocode

- ▶ Set $f_{\text{total}} = 0$
- ▶ Repeat until there is no path from *s* to *t*:
 - Run DFS from s to find a flow path to t
 - Let f be the minimum capacity value on the path
 - Add f to $f_{\rm total}$
 - For each edge $u \rightarrow v$ on the path:
 - ▶ Decrease $c(u \rightarrow v)$ by f
 - ▶ Increase $c(v \rightarrow u)$ by f

Analysis

- Assumption: capacities are integer-valued
- ▶ Finding a flow path takes $\Theta(n+m)$ time
- We send at least 1 unit of flow through the path
- ▶ If the max-flow is f^{\star} , the time complexity is $O((n+m)f^{\star})$
 - "Bad" in that it depends on the output of the algorithm
 - Nonetheless, easy to code and works well in practice

- ▶ We know that max-flow is equal to min-cut
- And we now know how to find the max-flow

- Question: how do we find the min-cut?
- Answer: use the residual graph

"Subtract" the max-flow from the original graph

- Mark all nodes reachable from s
 - Call the set of reachable nodes A

- Now separate these nodes from the others
 - Cut edges going from ${\cal A}$ to ${\cal V}-{\cal A}$

▶ Look at the original graph and find the cut:

▶ Why isn't $b \rightarrow c$ cut?

Outline

Network Flow Problems

Ford-Fulkerson Algorithm

Bipartite Matching

Min-cost Max-flow Algorithm

Bipartite Matching

- Settings:
 - n students and d dorms
 - Each student wants to live in one of the dorms of his choice
 - Each dorm can accommodate at most one student (?!)
 - ► Fine, we will fix this later...

 Problem: find an assignment that maximizes the number of students who get a housing

Flow Network Construction

- Add source and sink
- Make edges between students and dorms
 - All the edge weights are 1

Flow Network Construction

- ► Find the max-flow
- ► Find the optimal assignment from the chosen edges

Related Problems

- A more reasonable variant of the previous problem: dorm j can accommodate c_i students
 - Make an edge with capacity c_i from dorm j to the sink
- Decomposing a DAG into nonintersecting paths
 - Split each vertex v into v_{left} and v_{right}
 - For each edge $u \to v$ in the DAG, make an edge from $u_{\rm left}$ to $v_{\rm right}$
- And many others...

Outline

Network Flow Problems

Ford-Fulkerson Algorithm

Bipartite Matching

Min-cost Max-flow Algorithm

Min-Cost Max-Flow

- ► A variant of the max-flow problem
- ▶ Each edge e has capacity c(e) and cost cost(e)
- ightharpoonup You have to pay $\mathrm{cost}(e)$ amount of money per unit flow flowing through e
- Problem: find the maximum flow that has the minimum total cost
- ▶ A lot harder than the regular max-flow
 - But there is an easy algorithm that works for small graphs

Simple (?) Min-Cost Max-Flow

- Forget about the costs and just find a max-flow
- Repeat:
 - Take the residual graph
 - Find a negative-cost cycle using Bellman-Ford
 - ▶ If there is none, finish
 - Circulate flow through the cycle to decrease the total cost, until one of the edges is saturated
 - The total amount of flow doesn't change!
- Time complexity: very slow

Notes on Max-Flow Problems

- ▶ Remember different formulations of the max-flow problem
 - Again, (maximum flow) = (minimum cut)!
- Often the crucial part is to construct the flow network
- We didn't cover fast max-flow algorithms
 - Refer to the Stanford Team notebook for efficient flow algorithms